Technical Report GL-98-4 May 1998



# Geological-Seismological Evaluation of Earthquake Hazards at St. Stephen Powerhouse, Cooper River Rediversion Project, South Carolina, and Newmark-Sliding-Block Type Deformation Analysis of Embankments

by Ellis L. Krinitzsky, Mary E. Hynes, Donald E. Yule, Richard S. Olsen



Approved For Public Release; Distribution Is Unlimited

19980505 065



The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

# Geological-Seismological Evaluation of Earthquake Hazards at St. Stephen Powerhouse, Cooper River Rediversion Project, South Carolina, and Newmark-Sliding-Block Type Deformation Analysis of Embankments

by Ellis L. Krinitzsky, Mary E. Hynes, Donald E. Yule, Richard S. Olsen U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Engineer District, Charleston P.O. Box 4970

Charleston, SC 29402-0919



#### Waterways Experiment Station Cataloging-in-Publication Data

Geological-seismological evaluation of earthquake hazards at St. Stephen Powerhouse, Cooper River Rediversion Project, South Carolina, and Newmark-sliding-block type deformation analysis of embankments / by Ellis L. Krinitzsky ... [et al.]; prepared for U.S. Army Engineer District, Charleston.

134 p.: ill.; 28 cm. — (Technical report; GL-98-4) Includes bibliographic references.

1. Earthquake hazard analysis — South Carolina. 2. Earth dams — South Carolina — Earthquake effects. 3. Retaining walls — South Carolina — Analysis. I. Krinitzsky, E. L. II. United States. Army. Corps of Engineers. Charleston District. III. U.S. Army Engineer Waterways Experiment Station. IV. Geotechnical Laboratory (U.S. Army Engineer Waterways Experiment Station) V. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); GL-98-4.

# **Contents**

| ^                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preface iv Conversion Factors, Non-SI to SI Units of Measurement                                                                                       |
|                                                                                                                                                        |
| 1Introduction                                                                                                                                          |
| Executive Summary                                                                                                                                      |
| Purpose and Scope                                                                                                                                      |
| Organization of Report                                                                                                                                 |
| 2Geological-Seismological Evaluation of Earthquake Hazard                                                                                              |
| Background                                                                                                                                             |
| Geology and Tectonics                                                                                                                                  |
| Seismicity                                                                                                                                             |
| Earthquake Ground Motions                                                                                                                              |
| 3Newmark-Sliding-Block Type Deformation Analysis of Embankments 15                                                                                     |
| Background                                                                                                                                             |
| Sections Selected for Analysis                                                                                                                         |
| Yield Accelerations                                                                                                                                    |
| Dynamic Response                                                                                                                                       |
| Deformation Estimates                                                                                                                                  |
| Damage Assessment                                                                                                                                      |
| References                                                                                                                                             |
| Tables 1-8                                                                                                                                             |
| Figures 1-68                                                                                                                                           |
| Appendix A: Seismic History, $M \ge 3.5$ , within 150 km of the St. Stephen Powerhouse Site (from the National Geophysical Data Center, NOAA, Boulder, |
| CO)                                                                                                                                                    |

### **Preface**

This report summarizes a study conducted by the U.S. Army Engineer Waterways Experiment Station (WES) for the U.S. Army Engineer District, Charleston, SC (CESAC). The CESAC Project Manager was Mr. Wayne Bieganousky, Chief, Geotechnical, Materials, Sitework and Navigation Section (CESAC-EN-DF).

Dr. Ellis L. Krinitzsky, Geotechnical Laboratory (GL), and Mr. Donald E. Yule, Earthquake Engineering and Geophysics Branch (EEGB), Earthquake Engineering and Geosciences Division (EEGD), GL, conducted the portion of the study regarding seismic hazard. Dr. Mary E. Hynes, Chief, EEGB, Dr. Richard S. Olsen, EEGB, and Mr. Yule conducted the portion of the study regarding displacement analyses. Mr. Joseph B. Dunbar, Engineering Geology Branch (EGB), EEGD, GL, assisted the project considerably by collecting background information about the project, construction and design records, and regional geological and seismicity information.

Overall direction at WES was provided by Dr. Lillian D. Wakeley, Acting Chief, EEGD, and Dr. William F. Marcuson III, Director, GL.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Robin R. Cababa, EN.

# Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

| Multiply                          | Ву        | To Obtain                                                               |
|-----------------------------------|-----------|-------------------------------------------------------------------------|
| feet                              | 0.3048    | meters                                                                  |
| inches                            | 2.540     | centimeters                                                             |
| miles (U.S. statute)              | 1.609344  | kilometers                                                              |
| pounds                            | 0.4535924 | kilograms, assuming G=980.665 cm/sec <sup>2</sup>                       |
| pounds                            | 4.4481    | Newtons                                                                 |
| pounds (force) per<br>square inch | 175.1     | Newtons per square meter                                                |
| pounds (force) per<br>square inch | 6.8947    | kiloPascals                                                             |
| tons per square foot              | 95.8      | kiloPascals                                                             |
| atmospheric<br>pressure           | 1.0332    | kilograms per square centimeter, assuming G=980.665 cm/sec <sup>2</sup> |
| atmospheric<br>pressure           | 101.325   | kiloPascals                                                             |

Note: 1 atm = 14.696 psi = 1.0581 tsf = 1 ksc = 100 kPa

#### 1 Introduction

At the request of the U.S. Army Engineer District, Charleston, the U.S. Army Engineer Waterways Experiment Station conducted an evaluation of the geological-seismological hazard at the St. Stephen Powerhouse Project, which is part of the Cooper River Rediversion Project in South Carolina. The project is located about 60 km north of Charleston, SC, and consists of a reinforced concrete powerhouse structure founded on rock, flanked by rolled-fill earth embankments, founded partially on rock and partially on alluvium. For the purposes of this study, the alluvium is assumed to be competent, not susceptible to liquefaction.

#### **Executive Summary**

The Maximum Credible Earthquake (MCE) is estimated to correspond to a magnitude 7.5 event, 55 km from the site, resulting in peak ground accelerations at the site of 0.32 to 0.35 g. The Operating Basis Earthquake (OBE) is estimated to correspond to about a magnitude 5 event, resulting in a peak ground acceleration of 0.04 to 0.05 g at the site. The Newmark-sliding-block analyses indicate deformations in the maximum section under the MCE will be negligible, less than 1 cm. However, deformations under retaining walls and embankments founded on natural ground may be on the order of 15 to 35 cm.

#### Purpose and Scope

The purpose and scope of this study are as follows:

- a. Determine rock outcrop ground motions appropriate for seismic analysis of embankment dam and reinforced concrete control structures, to include peak ground motion parameters, recommended analogous accelerograms, and response spectra.
- b. Provide these recommendations in a letter report, to include the basis for selection of these motions, historical seismicity of the area, identified seismic source zones and hot spots, and basis for attenuating these motions to the site.
- c. Since this is a low hazard dam with high consequences of failure, provide ground motions ranging from MCE motions to standard OBE motions

(corresponding to a return period of 144 years as recommended in ER 1110-2-1806).

- d. WES personnel visited the Charleston District to collect background information about the site and dam structures necessary for the selection of ground motions and as needed for a preliminary deformation analysis of the embankment structure.
- e. Conduct preliminary seismic response and deformation analysis of the embankment, and include in the report. It is assumed that sufficient information is available from design memoranda to estimate input parameters for the embankment deformation analysis.
  - f. An evaluation of liquefaction potential is beyond the scope of this study.

#### **Organization of Report**

The earthquake ground motions, ranging from MCE to OBE, are provided in Chapter 2 with the basis for selecting these motions. Chapter 3 contains the results of the Newmark-sliding-block analyses. References, Tables, and Figures follow the text. Appendix A contains a detailed listing of the seismic history of the project area.

# 2 Geological-Seismological Evaluation of Earthquake Hazard

#### **Background**

#### Purpose and Scope

The purpose of the geological-seismological investigation is to evaluate the earthquake hazards at the St. Stephen Powerhouse site. The objective is to provide ground motion parameters, response spectra, and analogous accelerograms for the earthquake ground motions that would be felt in the free field at the site. The ground motions defined by this study are for use in the engineering evaluation of the embankments and reinforced-concrete structures.

This study consists of both a geological and a seismological analysis and includes the following: (a) a geological appraisal of the tectonics and the potentials for activity in the region, (b) a seismological appraisal of the historic seismicity, (c) an interpretation of seismic source areas and MCE with their prospects for recurrence, (d) attenuated peak ground motions at the site, and (e) accelerograms and response spectra for analogous cyclic shaking. The ground motions presented are in accordance with the requirements mandated by ER 1110-2-1806 of 31 July 1995.

#### Study Area

The study includes the geology, seismic tectonics, and earthquake potential within a radial distance of 150 km of the powerhouse.

#### **Geology and Tectonics**

The St. Stephen Powerhouse is in the Atlantic Coastal Plain about 60 km north of Charleston. Figure 1, from Klitgord, Dillon, and Popenoe (1983), shows schematically the geology of the region. The fall line separates the Coastal Plain from the ancient metamorphosed rocks of the Piedmont. There are two basement hinge zones. The hinge zone at the fall line is where the ancient

metamorphosed and crystalline rocks dip seaward and are overlain by the younger sedimentary deposits that comprise the Coastal Plain. Another hinge line at the edge of the Continental Shelf is where the dip steepens into the ocean and where the Coastal Plain is terminated.

The buried metamorphosed rocks beneath the sediments of the Coastal Plain show magnetic highs and magnetic lows. The ancient rocks contain the remnants of basins that resulted from late Triassic rifting. These show up as magnetic lows. Intrusive igneous rocks, which may be ancient, show up as magnetic highs. These heterogeneities beneath the blanket of Coastal Plain sediments may be responsible for concentrating stresses, the release of which causes fault displacements that extend into the overlying deposits and are locally the cause of earthquakes.

Shilt et al. (1983) ran reflection profiles through the Coastal Plain sedimentary layers. A probable boundary between lower Mesozoic sediments and crystalline basement or an older basalt is formed at about 1,400 m in the Charleston area. The profiles contain displacements that indicate faulting within the sedimentary section. The thickness of sedimentary rocks at the St. Stephen Powerhouse site is slightly less than that in the Charleston area, or about 1,000 m.

#### **Foundation Lithology**

The Powerhouse is in an area of the Coastal Plain where the surficial deposits are alluvial terraces and alluvium deposited in river valleys. Thicknesses of those deposits were determined by borings at the site and were found to be in the range of 80 to 100 ft. Preconstruction borings (Design Memorandum 6, 1975-1978) show a good correlation of materials from boring to boring throughout the site. Typically the section is composed of bedded sands and silts with interspersed clays and occasional lenses which contain crushed shells.

The bedrock sequence beneath the Powerhouse, as revealed by borings (Design Memorandum 6) is:

- a. Indurated clay shale, about 15- to 20-ft thick.
- b. A glauconite zone about 1/2-ft thick.
- c. Fossiliferous limestone or coquina, about 15-ft thick, (with the above glauconite zone, this is the bearing level for the Powerhouse).
- d. Thin sand layer, slightly calcareous and partially indurated about 5- to 10-ft thick.

- e. Limestone, about 25- to 30-ft thick. The limestone is a highly fossiliferous coquina through most of its thickness. The coquina is highly porous and is believed to be the main water-producing stratum in the section. The water is artesian.
- f. Sand, about 20-ft thick, slightly calcareous, and irregularly indurated. The lower 5 ft is shaley and grades into the underlying layer.
- g. Soft to medium hard, calcareous shale. The shale forms an aquiclude for the aquifer lying above. This shale is similar to the upper shale.

These sedimentary beds are generally flat-lying and are correlatable between borings. No fault displacements or other structural anomalies were observed in the borings and excavations made at the site.

#### **Seismicity**

#### Seismic History

A tabulation of earthquakes of Modified Mercalli (MM) intensity III and greater, recorded within 150 km of the St. Stephen Powerhouse, is shown in Appendix A. The data are from the National Geophysical Data Center of the National Oceanic and Atmospheric Agency in Boulder, CO. The years of coverage are from 1698 to 1993. Figure 2 shows the geographic distribution of these earthquakes. The location of the St. Stephen Powerhouse is indicated by a star. No earthquakes are shown within a radius of about 45 km from the Powerhouse. The principal source area of seismicity is a relatively small area of intense seismicity to the southwest of the Powerhouse. Another lesser and more diffused source lies to the west of the Powerhouse.

The earthquake information for this region prior to the 1960's was recorded as "intensity" which is a measure of how an earthquake is felt and the damage it does. The scale used is the MM of 1931, shown in an abbreviated form in Table 1. The scale is a subjective numerical index that ranges from I to XII. Intensity XII, or total destruction, is conceptual but almost never occurs.

Earthquake magnitudes are indirect measures of the energies released during earthquakes. The general relation between intensity and magnitude for a plate interior is shown in Table 2.

Earthquakes in this region can be inferred to result from one or more of the following possible causes.

a. Focusing of regional compressive stresses along the boundaries of heterogeneous rock masses and release of these stresses by movement through reactivation of ancient faults.

- b. Possible small-scale introduction of magma from great depth with an accompanying buildup of stresses.
- c. Focusing and release of regional stresses along ancient rifts which remain as zones of crustal weakness.
- d. Slow, very broad regional compression causing reactivation of ancient thrust faults.
- e. Extensional movement along a sagging graben with activation of normal faults.

There is no way that all of these theories can apply everywhere since the extensional and the compressional postulations contradict each other. Also, each of these theories can be interpreted as meaning that a major earthquake can happen at a location where no historic earthquake has occurred. That idea, though seemingly possible on the face of it, must be handled with care because it can mean that larger earthquakes will happen almost everywhere in this region and that is not what we observe elsewhere in the world. It is essential to concentrate on the experiences with earthquakes as the only direct clue to present-day tectonics. Earthquake- generating faults are not identifiable on the ground surface in the region. However, the areal distribution of earthquakes and their concentrations can be used to define locations and boundaries for seismic source zones.

#### Seismic Source Zones and Maximum Earthquakes

A seismic source zone is an inclusive area over which an earthquake of a given maximum size can occur anywhere. That earthquake is a floating earthquake. A seismic zone is supplemental to and can include faults that are the sources of earthquakes when they are identified. The purpose of such zones is to avoid surprises.

The seismic zones as constructed in this report represent present-day tectonism. These are zones that are not determined by tectonic and physiographic provinces or regional geologic structure since those are products of past tectonism.

Criteria for developing zonations are:

a. Zones that have great activity should be as small as possible. They are likely to be caused by a definite structure, such as a fault or a pluton, and activity should be limited to that structural association. Such a source may be a <u>seismic hotspot</u>. A seismic hotspot requires locally large historic earthquakes, frequent to continuous microearthquakes, and a well defined area. Maps of residual values for magnetometer and

Bouguer gravity surveys may provide structural information to corroborate the boundaries of hotspots.

- b. One earthquake can adjust a boundary to a seismic zone, but cannot create a zone.
- c. The maximum felt earthquake is equal to or less than the maximum zone earthquake.
- d. The maximum zone earthquake is a floating earthquake, one that can be moved anywhere in that zone.
- e. Assignment of the maximum zone earthquake is judgmental.

Figure 3 shows seismic zones with MM intensity values for maximum floating earthquakes. These are zones for potential earthquakes.

The severest seismic hazard is concentrated in two small seismic source zones at Summerville and Bowman. Summerville is given a peak intensity of IX to X based on the 1886 experience. Bowman has similar seismicity, but the earthquakes are much fewer and more restricted in area, thus a lower potential of VIII is assigned. The much broader and more encompassing zone that includes Columbia and Greenville includes widely scattered small earthquakes. The largest are M = 4.5-4.9. An earthquake of this size indicates a peak epicentral intensity of V to VI. The VI was raised to VII for conservatism. The adjacent zones are very nearly aseismic. However, as small earthquakes are known to occur even in the most aseismic areas, a base seismicity of VI is assigned. The VI is a level at which there is hardly any damage.

Figure 4, from Tarr and Rhea (1983), shows in greater detail the evidence for identifying and locating the heightened seismic potential at Summerville and Bowman. Note the interpretations for the seismicity at Summerville, Middleton Place, and Adams Run. The elongate ellipses represent interpretations of the fault zones along which the earthquakes are occurring. The interpretations are from fault-plane solutions made on microearthquakes, those that are  $M \le 3.5$ , recorded between March 1973 and December 1979. The exercise was to more accurately locate the source area for the Charleston earthquakes.

Tarr and Rhea (1983) believe that the observed activity in the Summerville - Middleton Place source area identifies the proper location of the Charleston earthquakes of 1886. They found a three-segment fault zone. The faults strike northwest and are steeply dipping at angles of 80° to 90°. The interpretation is that these are dip-slip motions. Events at Bowman and Adams Run are spatially distinct. No earthquakes were recorded in the gaps between these sources in 9 years of observations following 1971. The depths and intense clustering of the earthquakes indicate planes of weakness in crustal units of Mesozoic age.

The vertical sections in Figure 4 show that the earthquakes have focal depths to about 15 km and are broadly scattered in the vertical sections. These are earthquakes that reach far into the crystalline basement rocks where stress drops can be large enough to produce powerful earthquakes.

Appendix A shows that dozens of felt earthquakes occurred along with the Charleston event of 1886. There would have been thousands of microearthquakes shown had there been recordings made. Those earthquakes are still occurring, as shown in the work of Tarr and Rhea (1983). This meets the criteria for a seismic hotspot.

Appendix A lists four Charleston earthquakes of 1886 that range from VI to X. These are shown in Table 3 along with approximate coordinates for their epicenters.

In the isoseismal map shown in Figure 5, Bollinger (1977) reinterpreted the reports of ground shaking in 1886. His interpretation for the St. Stephen site is approximately an intensity VIII. This value can be corroborated by attenuating the intensity over the distance from the source to the site. A general distance, which can only be approximate for an intensity value, is given in Appendix A as 57 km. A rate of attenuation for the Eastern Province is given by Chandra (1979). Figure 6 shows this attenuation to be 1-1/2 intensity units. The intensity at the Powerhouse would be an MM 8.5.

Bollinger (1983) determined that the intensity data showed the 1 September 1886 Charleston earthquake to an  $m_b = 6.7$ . Table 2 shows this to be an M = 7.5. This magnitude value allows a determination to be made for magnitude-and-distance attenuations. These will be presented in this report under ground motions.

Table 3 shows that 11 historic earthquakes were felt at the St. Stephen Powerhouse site with intensities of IV and greater. Significantly, nine of these events came from the Summerville area. The 3 August 1959 earthquake came from a different source in the region. That earthquake was an intensity VI and it originated in the same intensity VI zone in which the Powerhouse is located. An intensity of MM VI was estimated by Stearns and Wilson (1972) for the effects in the area of the site of shaking from the major New Madrid event, around 800 km distant. The only serious shaking came from the 1 September 1886 Charleston earthquake and was an MM intensity of 8.5 at the site.

#### **Earthquake Ground Motions**

#### Maximum Credible Earthquake (MCE)

The MCE is the largest earthquake that can reasonably be expected. ER 1110-2-1806 (31 July 1995) mandates that for a critical structure MCE be

obtained by a deterministic analysis. The deterministic analysis is not timedependent, as is a probabilistic evaluation.

For the St. Stephen Powerhouse, MCEs would be as follows:

- a. An MM intensity X earthquake, M = 7.5, attenuated from the Summerville source for  $\sim 55$  km to the site (see Figure 3).
- b. A floating earthquake of MM VI, M = 5.0.

#### **Field Conditions**

Ground motions from an earthquake source using MM intensity are characterized as being either near field or far field. Ground motions are different for each field type. Near field motions, those originating near the earthquake source, are characterized by a large dispersion in the peak ground motions which are caused by complicated reflection and refraction patterns, focusing effects of the waves, impedance mismatches, and resonance effects. In contrast, the wave patterns for far field motions are more orderly and they are more muted or dampened so that they are better predictable.

The limits of the near field are variable, depending on the severity of the earthquakes. The relationship between earthquake magnitude (M), epicentral intensity, and the limits of the near field are given in the following set of relations, see Krinitzsky (1995).

|     | Near Field I             | Limits                   |
|-----|--------------------------|--------------------------|
| М   | MM Maximum Intensity, Io | Distance from Source, km |
| 5.0 | VI                       | 5                        |
| 5.5 | VII                      | 15                       |
| 6.0 | VIII                     | 25                       |
| 6.5 | IX                       | 35                       |
| 7.0 | X                        | 40                       |
| 7.5 | X-XI                     | 45                       |

Near field conditions are specified only when the site of interest is located within or near a seismic hotspot.

Though the Summerville source is a hotspot, its distance from the site requires the use of far field motions for the attenuated intensity level. A mean plus standard deviation (SD) is used to encompass the range of strong motion values and to provide a practical level for engineering.

For the floating earthquake of MM VI in the zone of the St. Stephen Powerhouse, a far field set of motions would be used. The principle is that the earthquake, even if it were to happen at the site, would be at a focal depth at or greater than the near field limit for a MM VI.

Table 4 gives parameters for peak MCE ground motions in the free field at the St. Stephen Powerhouse site. The parameters are for selecting and adjusting strong motion records to use in engineering analyses. The ground motions were obtained from intensity-based charts (Krinitzsky 1995) and magnitude-distance charts (Krinitzsky 1995). The intensity charts are shown for acceleration, velocity, and duration for hard sites in Figures 7 to 9 and for soft sites in Figures 10 to 12. Ground motion charts for magnitude and distance for hard sites are shown in Figures 13 to 15. Soft sites are shown in Figures 16 to 18.

A site is soft when it has a surface layer  $\geq 16$  m, in which the shear wave velocities are less than 400 m/sec. A hard site is where the shear wave velocities are greater than 400 m/sec and overlying soft layers with smaller shear wave velocities are less than or equal to 15 m in thickness.

The earthquakes in South Carolina are interpreted to be shallow crustal events for which the focal depths are  $\leq 19$  km.

#### **MCE Analogous Time Histories**

The charts in Figures 7-18 show peak values and catalogue numbers for selected strong motion records. The catalogue is by Leeds (1992) and is a collection of recommended accelerograms and response spectra. Figures 19 to 30 show a selection of records that can be used. They are:

- Figure 19. San Fernando Earthquake, 9 February 1971, 535 S. Fermont AV., Basement, CAL 61.
- Figure 20. Superstition Mountain, 15 October 1979, CAL 139.
- Figure 21. Coalinga, 2 May 1983, Parkfield Fault Zone 14, 90 Deg CAL 189.
- Figure 22. Coalinga, 2 May 2 1983, Parkfield Fault Zone 14, 0 Deg, CAL 190.
- Figure 23. Santa Cruz Mountains, Loma Prieta, 17 October 1989, San Francisco International Airport, CAL 391.
- Figure 24. Morgan Hill Earthquake, 24 April 1984, Gilroy No. 7, CAL 216.
- Figure 25. Morgan Hill Earthquake 24 April 1984, Coyote Lake Dam, CHN-1, 285 Deg, CAL 228.

- Figure 26. Morgan Hill Earthquake, 24 April 1984, Coyote Lake Dam, CHN-3, 195 Deg, CAL 229.
- Figure 27. Whittier Earthquake, 1 October 1987, Tarzana, Cedar Hill Nursery, CHN 1, 90 Deg, CAL 270.
- Figure 28. Whittier Earthquake, 1 October 1987, Tarzana, Cedar Hill Nursery, CHN-3, 0 Deg, CAL 271.
- Figure 29. Sturno, Italy, 23 November 1980, N-S Component, ITA 20.
- Figure 30. Sturno, Italy, 23 November 1980, E-W Component, ITA 21.

All of the records are for hard sites except those in Figures 19 and 20, which are for soft sites. Additional hard site records were extracted from the USGS database of strong ground motion recordings to find records that best fit the target ratio of peak ground acceleration (PGA) and peak ground velocity (PGV), magnitude, distance, and response spectra (described in the next section). The records considered are listed in Table 5. Among these records, three appeared to be particularly promising because of the PGA to PGV ratio:

- 1. Loma Prieta Gilroy #7, 0 degree component.
- 2. Coalinga Earthquake, Parkfield Fault Zone 14.
- 3. San Fernando Earthquake, 234 Figuero.

The acceleration histories and Arias intensities for these records are shown in Figures 31, 32, and 33, respectively. Duration of strong motion is shown in two forms on these figures:

- 1. The duration of motion exceeding 0.05 g.
- 2. The duration of Arias intensity from 5 to 95% of total energy

By both duration definitions, the three records have durations ranging from  $11 \sec to 18 \sec$ , which is reasonably consistent with the target duration for a hard site. The Loma Prieta and Coalinga records are from M=6.5 events, somewhat less than the target MCE magnitude of 7.5. This is reflected in the total Arias intensity delivered during the period of strong motion and total energy. The Loma Prieta Gilroy # 7 record has total Arias intensity of  $101 \, \mathrm{cm/sec}$ , with  $91 \, \mathrm{cm/sec}$  delivered in the duration of strong motion (defined as  $5 \, \mathrm{to} \, 95\%$  of total energy delivered) of  $11.5 \, \mathrm{sec}$ . The Coalinga Fault Zone  $14 \, \mathrm{record}$  has  $67 \, \mathrm{cm/sec}$  total Arias intensity with  $56 \, \mathrm{cm/sec}$  delivered in a duration of  $13.38 \, \mathrm{sec}$ . The San Fernando Gilroy # 7 record has  $73 \, \mathrm{cm/sec}$  total Arias intensity with  $65 \, \mathrm{delivered}$  in a duration of  $11.3 \, \mathrm{sec}$ .

#### **MCE** Response Spectra

The response spectra for the MCE was estimated from spectral attenuations developed for Eastern North America, specifically Atkinson and Boore (1995) and Toro, Abrahamson, and Schneider (1997), using the sources zones described earlier. The Toro-Abrahamson spectra generally exceed the Atkinson and Boore spectra at periods exceeding 0.1 sec, and are recommended for the MCE response spectra. Figure 34 shows the Toro-Abrahamson spectra for damping ratios of 2, 5, 10, and 15%. Figures 35, 36, and 37 show the mean and meanplus-sigma response spectra from these two relationships for a damping of 5%, with the response spectra of the three acceleration histories superimposed, Loma Prieta record in Figure 35, Coalinga record in Figure 36, and San Fernando record in Figure 37. All three records have high energy content in the period range of about 0.1 sec to 2 sec, and generally trace the target mean-plus-sigma response spectra.

#### Operating Basis Earthquake (OBE)

The OBE is an earthquake that allows damage, providing there is no hazard to human life, and permits the structure to remain operational with repairs. Further, it is an earthquake that is expected to occur during the life of the structure. According to ER 111-2-1806, the OBE may be determined either deterministically or probabilistically. The actual values of the OBE motions are based on economic considerations, but typically they correspond to ground motions with a return period of exceedance of about 144 years. For this study, the OBE ground motions were selected from the USGS maps (dated November 1996) available over the Internet. These maps provide detailed probabilistic seismic hazard information on the resolution of 0.1 degree latitude by 0.1 degree longitude for return periods of 475, 975, and 2,475 years. The USGS maps provide peak ground acceleration (PGA) for various site conditions as well as equal hazard spectral ordinates (SA) for periods of 0.2, 0.3, and 1.0 sec. Earthquake Design Guidance for Structures (EDGS), Developing Standard Response Spectra and Effective Peak Ground Accelerations for Use in the Design of Civil Works Projects, dated October 1996, recommends extrapolating the data on a log-log plot to estimate spectral ordinates and PGA for other return periods. The resulting seismic hazard curves are shown in Figure 38 and listed in Table 6. Since the points are generally not colinear on a log-log plot, extrapolation using all three return periods is slightly different from using only the nearest two data points. These two extrapolations are shown in Figure 38, and result in the range of values listed in Table 6.

## USGS-National Seismic Hazards Mapping Project-Deaggregated Seismic Hazard

Extracted from National Hazard Mapping Project, USGS www home page:

At 56 cities in the Central and Eastern U.S. (CEUS) and 44 cities in the Western U.S. (WUS), the seismic hazard corresponding to a 2% probability of exceedance in 50 years is deaggregated by magnitude (Mw, or moment magnitude) and by epicentral distance (CEUS) or hypocentral distance (WUS). Hazard with respect to magnitude is binned into intervals of width 0.5 Mw. Hazard with respect to epicentral distance is binned into intervals of 25 km width. The hazard probabilities are deaggregated for the following ground motion parameters: PGA, 1.0, 0.3, and 0.2 second PSA (Note: This corresponds to PGA in text.).

Four matrices of percent contribution to hazard are available at this web site. The matrices are organized with magnitude intervals corresponding to columns and distance intervals corresponding to rows. The first row of numbers gives the upper endpoint of the magnitude interval. For example, the number 6 means that seismic sources with magnitudes in the interval 5.5< Mw <= 6.0 are included in hazard calculations for that column. The first column of numbers gives the upper endpoint of the epicentral distance interval. For example, the number 150 means that source-to-station distances in the interval 125 < d <= 150 km are included in the hazard calculations for that row. Missing rows, or gaps in the matrix, correspond to distance ranges for which the greatest percent contribution to hazard is less than 0.0005, yielding a row of zeros to the level of precision given in the below data.

For the CEUS, the lowest magnitude considered for hazard calculations is MbLg 5.0. This magnitude corresponds to Mw = 4.7 using the Johnston (1996) relationship between the two magnitudes. Thus, for CEUS cities, the interval width for the first column of contribution to hazard is about 0.3 Mw units, rather than 0.5 units, the usual interval width. For the WUS, the lowest magnitude considered for hazard calculations is Mw = 5.0. The entries are percent contribution to hazard. They will sum to 100 percent for each matrix.

The deaggregated matrices for Charleston, SC, are provided in Table 7 for PGA and SA at 1, 3.33, and 5 Hz (periods of 1, 0.3, and 0.2 sec), for a return period of 2,475 years. Examination of the table indicates that the majority of seismic hazard comes from nearby zones, within 25 to 50 km, as expected from the seismic history, and as identified earlier in this chapter. The deaggregated

matrices are plotted in Figure 39 for PGA and Figures 40-42 for the spectral ordinates.

#### **Previous Interpretation of Ground Motions**

Previous interpretations of ground motion parameters for use at the Cooper River Rediversion Project, of which the St. Stephen Powerhouse is a part, are as follows:

- a. In a letter of 22 December 1981 to Mr. Harry E. Thomas, FERC,
   Washington, DC, from Otto W. Nuttli, H. Bolton Seed, and Stanley D.
   Wilson, the following reasonings were presented:
  - (1) A Charleston, SC, earthquake was postulated at a distance of 65 km. MM intensities of IX to X should be constant to 25 km and fall off to IX at 45 km.
  - (2) The design motions should be for a Charleston earthquake, M = 7, 15 mi from the Pinopolis West Dam. (The Pinopolis West Dam is about 10 km from the St. Stephen Powerhouse.)
  - (3) Peak acceleration at the site is 0.30 to 0.35 g.
- b. In a meeting with FERC on 2 September 1982 in Washington, DC, re the Santee North and Pinopolis West Dams, the following values were recommended:
  - (1) A magnitude at the source of 7.5.
  - (2) Acceleration = 0.45g. Motion for a rock outcrop near the dam. Duration = 25 sec (≥ 0.05g).
- c. In a report of 10 June 1986 to Mr. Ronald A. Corso, FERC, Washington, DC, from Dr. A. J. Hendron, Jr., the following recommendation was made for the Pinopolis West Dam:
  - (1) Acceleration = 0.45 g, Velocity = 22 in./sec

The reasoning for the values was that 1 g has a velocity of 48 in./sec; proportional scaling provided the above parameters.

(2) Use the Taft and Castaic records. Both records have single high peaks of 0.45 g.

# 3 Newmark-Sliding-Block Type Deformation Analysis of Embankments

#### **Background**

A Newmark-sliding-block type of deformation analysis models the displacing part of an embankment as a rigid block sliding on an inclined plane (Newmark 1965). This type of analysis is appropriate for an embankment dam if the embankment and its foundation soils are not expected to suffer liquefaction or severe softening under cyclic loading due to earthquake shaking, as is the case assumed at the St. Stephen Powerhouse Project. Other contributions to a coherent procedure using the sliding block approach have been made by Taylor and Whitman (1952), Ambraseys and Sarma (1967), Sarma (1975, 1979), Goodman and Seed (1966), Makdisi and Seed (1977), Franklin and Chang (1977), Franklin and Hynes-Griffin (1981), and Hynes-Griffin and Franklin (1984).

Shearing resistance between the potential sliding mass and the underlying base is evaluated in terms of a yield acceleration,  $k_y$ , defined as the acceleration of the sliding mass that will reduce the factor of safety against sliding to unity, i.e., that will make sliding imminent. The value of  $k_y$  is expressed as a fraction of gravity (g) and is obtained through a traditional limit equilibrium slope stability analysis that applies the seismic load horizontally at the center of gravity of the sliding mass. Spencer's method (1967) in the computer program UTEXAS3<sup>TM</sup> (developed by Stephen G. Wright at the University of Texas at Austin), adapted for microcomputer use as documented by Edris and Wright (1992), was used in this study.

An analysis of the amplification response of the embankment is typically incorporated to account for amplified accelerations in the embankment. Amplifications were estimated from empirical observations of dynamic response of embankments (Harder 1991), SHAKE analyses, and charts developed by Makdisi and Seed (1977) from numerous finite element response analyses of embankment dams founded on rock.

Because the amplified accelerations vary over the height of the embankment, yield accelerations were determined for possible sliding masses whose bases lie at various elevations in the idealized sections, both upstream and downstream.

Displacement charts have been developed for Newmark-sliding-block models by Makdisi and Seed (1977) and Hynes-Griffin and Franklin (1984). The Makdisi and Seed displacement charts were used in this study since they include the effect of earthquake magnitude and frequency changes due to amplification in the embankment.

#### **Sections Selected for Analysis**

A plan of the project is shown in Figure 43. Three sections were considered in the deformation analysis: Section 1, estimated to be the most vulnerable embankment section founded on natural soil deposits; Section 2, estimated to be the most vulnerable upstream section through a retaining wall; and Section 3, the maximum section of the embankment dams flanking the Powerhouse structure. The locations of these sections are shown in Figure 43. Section 1, as idealized, is shown in Figure 44. Section 2, as idealized, is shown in Figure 45. Section 3, as idealized, is shown in Figure 46. The material properties for the zones shown in Figures 44-46 were derived from the existing project documentation and are listed in Table 8.

#### **Yield Accelerations**

Yield accelerations were computed with Spencer's method in UTEXAS3. The slip surfaces with minimum yield accelerations at a given elevation are shown in Figure 47 for Section 1, Figure 48 for Section 2, and Figure 49 for Section 3. The computed yield accelerations for these sections are shown in Figures 50-52. Also shown are the computed static factors of safety.

#### Dynamic Response

Makdisi and Seed (1977) developed charts for dynamic response of embankment dams founded on rock from numerous finite element response analyses. In these analyses, the earthquake-induced acceleration applied to the sliding mass is interpreted by summing the contributions from the elements along the potential sliding surface, as proposed by Chopra (1966). Figure 53 shows the Makdisi-Seed dynamic response chart, which gives the summed acceleration applied to the sliding surface,  $k_{\text{max}}$ , divided by the peak crest acceleration,  $u_{\text{crest}}$ , expressed for surfaces at different depths in the embankment, as a ratio of depth of sliding surface, y, to embankment height, h.

Use of the Makdisi-Seed response chart requires estimation of the crest acceleration. Harder (1991) collected empirical observations of crest to base or abutment accelerations and developed the upper-bound chart shown in Figure 54. The data from the U.S. Army Engineer Corps Strong Motion Instrument Program (SMIP) database for seismic response of Corps dams, current through 1996, have been added to this figure. For a base acceleration of about 0.33g as recommended in Chapter 2, the corresponding upper-bound crest acceleration is 0.64g.

The Makdisi-Seed chart was derived for embankments founded on rock. For embankments founded on soil deposits, it requires some estimation of appropriate effective embankment height and crest acceleration to use in estimating  $k_{max}$ . SHAKE analyses were also performed to estimate  $k_{max}$  and  $u_{crest}$ , using the Corps program WESHAKE. Although WESHAKE is a onedimensional wave propagation code, it provides a fairly good approximation of the dynamic response at depth (error is typically greatest in the top 10 to 20% of height of the column (Elton, Shie, and Hadj-Hamou 1991), particularly for slip surfaces passing through natural materials. The WESHAKE results in this study were also used to estimate  $k_{max}$ . The WESHAKE columns and estimated shear wave velocity profiles are shown in Figure 55. Shear wave velocities were estimated from the WES shear wave velocity data base and Cone Penetrometer Test (CPT) data base using Standard Penetration Test (SPT) blowcounts reported in the project documentation. The accelerogram used in the computations was the Loma Prieta Gilroy #7 record described in Chapter 2. The WESHAKE results, acceleration, cyclic shear stress, and cyclic shear strain plotted versus depth, are shown in Figures 56-59. The  $k_{max}$  values, estimated from both the Makdisi-Seed chart and the WESHAKE results, are shown in Figures 60-63.

Section 1, embankment on natural ground. The crest acceleration for the dike was estimated from the free-field WESHAKE analysis which indicates a base acceleration of about 0.5g. The corresponding crest acceleration is about 0.7g from Figure 54. This results in the  $k_{\text{max}}$  values shown in Figure 60, estimated from the Makdisi-Seed chart in Figure 53. The WESHAKE analysis of this section assumed a possible zone of low velocity in the natural materials. If such a zone exists, it is unlikely that such high levels of acceleration could be transmitted to the dike. Consequently, the displacements were calculated using  $k_{\text{max}}$  values from both the Makdisi-Seed approach as well as the WESHAKE values plotted in Figure 60.

Section 2, upstream retaining wall. The crest acceleration for the retaining wall section was estimated as 0.64g from Figure 54, with a base acceleration of 0.33g, observed in the WESHAKE analysis. The  $k_{max}$  values from both the Makdisi-Seed approach and the WESHAKE calculations are plotted in Figure 61. Since all the yield surfaces passed below the wall, below the effective height, a constant value of  $k_{max}$  at a depth of 72 ft from the Makdisi-Seed approach was used in the displacement calculations.

Section 3, maximum embankment section flanking Powerhouse, upstream surfaces. The WESHAKE and Makdisi-Seed estimates for  $k_{max}$  values are plotted in Figure 62. Two effective heights were used in estimating the Makdisi-Seed values, 115 ft corresponding to the height of the crest above the shale bedrock base, and 64 ft, an average height of embankment above intake and tailrace elevations.

Section 3, maximum embankment section flanking Powerhouse, downstream switchyard surfaces. The WESHAKE and Makdisi-Seed estimates for  $k_{\text{max}}$  values are plotted in Figure 63. Because the switchyard is a fairly large, level ground area, the ground surface acceleration from WESHAKE was used to estimate the crest acceleration for the Makdisi-Seed  $k_{\text{max}}$  values, hence the close agreement between both approaches to estimate  $k_{\text{max}}$ .

#### **Deformation Estimates**

The Makdisi-Seed deformation chart, shown in Figure 64, was developed specifically for embankment dams founded on rock, as is the case for the main flanking embankments at the St. Stephen Powerhouse Project. The Hynes<sup>2</sup> Franklin displacement chart (after Hynes-Griffin and Franklin 1984) is shown in Figure 65 for comparison. The upper-bound displacement curve in the Hynes-Franklin chart generally corresponds to magnitude 7.5 earthquakes, and falls slightly below the average of the magnitude 7.5 relationship in the Makdisi-Seed chart. This difference is due in part to the integration scheme used to develop the chart, as well as the fact that the Makdisi-Seed chart uses response accelerograms computed in FLUSH throughout the embankment, whereas the Hynes-Franklin chart is computed directly from the recorded accelerogram. Since the difference is greatest at small levels of displacement, the Makdisi-Seed chart was used in the displacement computations. The displacement results are plotted in Figures 66-68.

Section 1, embankment on natural ground. Deformations and yield surfaces for this section are plotted in Figure 66. The yield surfaces for the dike section all pass beneath the embankment through natural soil deposits. The properties of these materials were estimated from other locations at the site since no direct measurements were available in the documentation. With these estimated strengths, the largest deformation is estimated to be about 16 to 34 cm. Better information about the natural soils may significantly reduce these deformation estimates.

Section 2, upstream retaining wall. Deformations and yield surfaces for this section are plotted in Figure 67. The maximum displacement estimated was 20 cm for surfaces passing through select fill beneath the retaining wall.

Section 3, maximum embankment section flanking Powerhouse, upstream surfaces. The displacements for this section are plotted in Figure 68. For an effective height of 64 ft, the displacements are zero, since the yield accelerations

exceed the estimated  $k_{max}$  values. For an effective height of 115 ft, which should be conservative, the maximum displacement is less than 1 cm.

Section 3, maximum embankment section flanking Powerhouse, downstream switchyard surfaces. The displacements for this section are plotted in Figure 68. The yield acceleration for these surfaces all exceeded estimated  $k_{\text{max}}$  values. Consequently, displacements for this section are zero.

#### **Damage Assessment**

For Section 3, the maximum section for the embankments flanking the powerhouse, zero to negligible (less than 1 cm) permanent displacements are expected for the assumed material properties and input motions, using maximum crest accelerations from empirical response charts. For the other sections, the dike and the retaining wall, deformations on the order of 15 to 30 cm were calculated, again using fairly conservative estimates of response. Deformation levels on this order are generally assumed to be acceptable, with no threat to reservoir retention.

### References

Ambraseys, N. N. and Sarma, S. K. (1967). "The response of earth dams to strong earthquakes," *Geotechnique* 17(2), 181-213.

Atkinson G.M. and Boore, D. M. (1995). "Ground-motion relations for Eastern North America," Bulletin of the Seismological Society of America 85(1), 17-30.

Bollinger, G. A. (1977). "Reinterpretation of the intensity data for the 1886 Charleston, SC earthquake," Studies related to the Charleston, SC, earthquake of 1886 - a preliminary report, Rankin, D. W., ed., Professional Paper 1028-B, U.S. Geological Survey, Washington, DC.

Bollinger, G. A. (1983). "Speculations on the nature of seismicity at Charleston, SC," Studies related to the Charleston, SC earthquake of 1886 - tectonics and seismicity, Gohn, G. S., ed., Professional Paper 1313, U.S. Geological Survey, Washington, DC.

Chandra, U. (1979). "Attenuation of intensities in the United States," Bulletin of the Seismological Society of America 69(6), 2003-2024.

Chopra, A. K. (1966). "Earthquake effects on dams," Ph.D. diss., University of California, Berkeley, CA.

Design Memorandum 6, 1975 - 1978, with Supplement No. 1., "Site selection and geology," Cooper River Rediversion Project, Lake Moultrie and Santee River, SC, U.S. Army Engineer District, Savannah.

Edris, E. V., Jr. and Wright, S. G. (1992). "User's guide: UTEXAS3 slope stability package," Technical Report GL-87-1, Vol. IV, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Elton, D. J., Shie, C. F., and Hadj-Hamou, T. (1991). "One- and two-dimensional analysis of earth dams. *Recent advances in geotechnical earthquake engineering and soil dynamics*. Second international conference, St. Louis, MO, 11-15 March 1991. University of Missouri, Rolla, MO, 1043-1049.

Franklin, A. G. and Chang, F. K. (1977). "Earthquake resistance of earth and rock-fill dams; permanent displacements of earth embankments by Newmark sliding block analysis," Miscellaneous Paper S-71-17, Report 5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Franklin, A. G. and Hynes-Griffin, M. E. (1981). "Dynamic analysis of embankment sections, Richard B. Russell Dam." *Earthquakes and earthquake engineering*. The Eastern United States conference, Knoxville, TN.

Goodman, R. E. and Seed, H. B. (1966). "Earthquake-induced displacements in sand embankment," *Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers*, 92(SM2), 125-146.

Harder, L. F. Jr. (1991). "Performance of earth dams during the Loma Prieta earthquake," *Recent advances in geotechnical earthquake engineering and soil dynamics*, second international conference, St. Louis, MO, 11-15 March 1991, Univeristy of Missouri, Rolla, 1613-1629.

Hynes-Griffin, M. E. and Franklin, A. G. (1984). "Rationalizing the seismic coefficient method," Miscellaneous Paper GL-84-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Johnston, A. (1996). "Moment magnitude assessment of stable continental earthquakes, part 2: historical seismicity," *Geophysics Journal International*, 125, 639-678.

Krinitzsky, E. L. (1995). "Selection of earthquake ground motions for engineering; Report 29, State-of-the-art for assessing earthquake hazards in the United States," Miscellaneous Paper S-73-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Klitgord, K. D., Dillon, W. P., and Popenoe, P. (1983). "Mesozoic tectonics of the Southeastern United States Coastal Plain and Continental Margins," Studies related to the Charleston, SC earthquake of 1886 - tectonics and seismicity, Gohn G. S., ed., Professional Paper 1313, U.S. Geological Survey, Washington, DC.

Leeds, D. J. (1992). "Recommended accelerograms for earthquake ground motions; Report 28, State-of-the-art for assessing earthquake hazards in the United States," Miscellaneous Paper S-73-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Makdisi, F. I. and Seed, H. B. (1977). "A simplified procedure for estimating earthquake-induced deformations in dams and embankments," Report No. UCB/EERC-77/19, University of California, Berkeley.

Newmark, N. M. (1965). "Effects of earthquakes on dams and embankments," *Geotechnique*, 5(2).

Sarma, S. K. (1975). "Seismic stability of earth dams and embankments," *Geotechnique*, 25(4), 743-761.

Sarma, S. K. (1979). "Response and stability of earth dams during strong earthquakes," Miscellaneous Paper GL-79-13, U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Shilt, F. S., Brown, L. D., Oliver, J. E., and Kaufman, S. (1983). "Subsurface structure near Charleston, SC - results of Cocorp reflection profiling in the Atlantic Coastal Plain," Studies related to the Charleston, SC earthquake of 1886 - tectonics and seismicity, Gohn, G. S., ed., Professional Paper 1313, U.S. Geological Survey, Washington, DC.

Spencer, E. (1967). "A method of analysis of the stability of embankments assuming parallel inter-slice forces," *Geotechnique*, 17(1), 11-26.

Stearns, R. G. and Wilson, C. W. (1972). "Relationships of earthquakes and geology in west Tennessee and adjacent areas," Tennessee Valley Authority, Knoxville, TN.

Tarr, A. C., and Rhea S. (1983). "Seismicity near Charleston SC, March 1973 to December 1979," Studies related to the Charleston, SC, earthquake of 1886 - tectonics and seismicity, Gohn, G. S., ed., Professional Paper 1313, U.S. Geological Survey, Washington, DC.

Taylor, D. W. and Whitman, R. V. (1952). Letter to the U.S. Army Engineer District, Los Angeles, regarding the seismic analysis of Prado Dam, from MIT, Department of Civil Engineering, Cambridge, MA.

Toro G. R., Abrahamson, N. A., and Schneider, J. F. (1997). "Model of strong ground motions from earthquakes in Central and Eastern North America: best estimates and uncertainties," *Seismological Research Letters*, 68(1), 41-57.

Visvanathan, T. R. (1980). "Earthquakes in South Carolina, 1698-1975," Bulletin 40, South Carolina Geological Survey.

Engineering Regulation 1110-2-1806, 31 July 1995, Earthquake Design and Evaluation for Civil Works Projects.

"National hazard mapping project." United States Geological Survey, http://www.geohazards.cr.usgs.gov/eq (November 1996).

Earthquake Design Guidance for Structures (EDGS), Developing Standard Response Spectra and Effective Peak Ground Accelerations for use in the Design of Civil Works Projects, October 1996.

# Table 1 Abbreviated Modified Mercalli 1931 Intensity Scale

- I. Not felt except by a very few under especially favorable conditions.
- II. Felt only by a few persons at rest, especially on upper floors of buildings. Delicately suspended objects may swing.
- III. Felt quite noticeably indoors, especially on upper floors of buildings, but many people do not recognize it as an earthquake. Standing automobiles may rock slightly. Vibration like passing of truck. Duration can be estimated.
- IV. During the day felt indoors by many, outdoors by few. At night some awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Standing automobiles rocked noticeably.
- V. Felt by nearly everyone; many awakened. Some dishes, windows, and other fragile items broken; a few instances of cracked plaster; unstable objects overturned. Disturbance of trees, poles and other tall objects sometimes noticed. Pendulum clocks may stop.
- VI. Felt by all; many frightened and run outdoors. Some heavy furniture moved; a few instances of fallen plaster or damaged chimneys. Damage slight.
- VII. Everybody runs outdoors. Damage negligible in buildings of good design and construction; slight to moderate in well-build ordinary structure; considerable in poorly built or badly designed structures. Some chimneys broken. Noticed by persons driving automobiles.
- VIII. Damage slight in specially designed structures; considerable in ordinary substantial buildings with partial collapse. Great damage in poorly built structures. Panel walls thrown out of frame structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned. Sand and mud ejected in small amounts. Changes in well water. Persons driving automobiles disturbed.
- IX. Damage considerable in specially designed structures; well-designed frame structures thrown out-of-plumb; damage great in substantial buildings, with partial collapse. Buildings shifted off foundations. Ground cracked conspicuously. Underground pipes broken.

(Continued)

#### Table 1 (Concluded)

- X. Some well-built wooden structures destroyed; most masonry and frame structures destroyed. Ground badly cracked. Railroad rails bent. Many landslides on river banks and steep slopes. Shifted sand and mud. Water splashed over banks of rivers and lakes.
- XI. Few structures remain standing. Unreinforced masonry structures are nearly totally destroyed. Bridges destroyed. Broad fissures in ground. Underground pipe lines completely out of service. Earth slumps and land slips in soft ground. Railroad rails bent greatly.
- XII. Damage total. Waves apparently seen on ground surfaces. Lines of sight and level appear visually distorted. Objects thrown upward into the air.

Table 2
Equivalences Between Magnitude Scales and Intensity (Magnitudes were Modified from Nuttli and Shieh (1987). From Krinitzsky (1995)

|      |       |                  |                | Plate Inte  | rior                     |                            |
|------|-------|------------------|----------------|-------------|--------------------------|----------------------------|
| M    | $m_b$ | M <sub>L</sub> * | M <sub>s</sub> | $M_{\rm W}$ | M <sub>0</sub> (dyne-cm) | Epicentral<br>Intensity MM |
| 4.3  | 4.0   |                  | 2.9            | 3.8         | 1021                     | IV                         |
| 4.8  | 4.5   |                  | 3.4            | 4.1         | 10 <sup>22</sup>         | v                          |
| 5.1  | 5.0   |                  | 4.4            | 4.8         | 10 <sup>23</sup>         | VI                         |
| 5.4  | 5.5   |                  | 5.4            | 5.4         | 10 <sup>24</sup>         | VII                        |
| 6.4  | 6.0   |                  | 6.4            | 6.1         | 10 <sup>25</sup>         | VIII                       |
| 7.4  | 6.5   |                  | 7.4            | 6.8         | 10 <sup>26</sup>         | IX-X                       |
| 8.4  | 7.0   |                  | 8.4            | 7.4         | 10 <sup>27</sup>         | XI-XII                     |
| 4.55 |       |                  | 1 .            |             |                          |                            |

<sup>\*</sup> M<sub>L</sub> generally not used in plate interior.

Table 3 Modified Mercalli,  $I_s \ge IV$  at the St. Stephen Powerhouse Site. Data from IGDA/NOAA and Visvanathan (1980)

|                       |                |       | <del></del>    | <del></del>                 |        |
|-----------------------|----------------|-------|----------------|-----------------------------|--------|
| Date of<br>Earthquake | Coordina       | tes   | I <sub>o</sub> | Distance<br>from Site<br>km | $I_s$  |
| Dec 16, 1811          | New Madrid, MO |       | XI-XII         | 800                         | IV*    |
| Sep 1, 1886           | 32.9 N         | 80. W | X              | 57                          | VIII** |
| Sep 21, 1886          | 32.9           | 80    | VI             | 57                          | IV     |
| Oct 22, 1886          | 32.9           | 80    | VII            | 57                          | V      |
| Nov 5, 1886           | 32.9           | 80    | VI             | 57                          | IV     |
| June 12, 1912         | 32.9           | 80    | VII***         | 57                          | v      |
| Aug 3, 1959           | 33.            | 79.5  | VI             | 61                          | IV     |
| Mar 12, 1960          | 33.07          | 80.12 | v              | 42                          | IV     |
| Feb 3, 1972           | 33.31          | 80.58 | V              | 44                          | IV     |
| Nov 22, 1974          | 32.9           | 80.14 | VI             | 60                          | IV     |
| Sep 21, 1992          | 32.05          | 80.11 | V              | 44                          | IV     |

<sup>\*</sup> Stearns and Wilson (1972). \*\* Bollinger (1977). \*\* Visvanathan (1980).

| Table 4 Free Field Egk Ground Moti- Rediversion Project                                                                            | ons for MCE at St.         | Stephen Power  | house, Cooper River |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|---------------------|
|                                                                                                                                    | Accel, cm/sec <sup>2</sup> | Vel, cm/sec    | Dur ≥ 0.05g, sec    |
| I <sub>o</sub> = X (10),<br>Far Field, mean + S.D.,<br>Distance = 55 km,<br>Chandra Intensity Attenuatio<br>I <sub>s</sub> = (8.5) | n = 1.5 units.             |                |                     |
| Soft Site                                                                                                                          | 330                        | 48             | 23                  |
| Hard Site                                                                                                                          | 340                        | 30             | 24                  |
| Magnitude = 7.5*,<br>Attenuated 55 km                                                                                              |                            |                |                     |
| Soft Site                                                                                                                          | 330                        | 52             | 60                  |
| Hard Site                                                                                                                          | 320                        | 23             | 18                  |
| * Bollinger (1983) pg T1: M                                                                                                        | $I_b = 6.7$ , equivalent   | to $M = 7.5$ . |                     |

| Table 5 Step                          | Stephen Pt Powerh | owerho   | use Ear      | ouse Earthquake Time History Selection - Hard Sites | History S | election - | Hard Sit     | es                 |                            |
|---------------------------------------|-------------------|----------|--------------|-----------------------------------------------------|-----------|------------|--------------|--------------------|----------------------------|
| Earthquake<br>Station Comp            | EPI<br>dist,km    | Mag      | Int          | Amax, cm/s²<br>(Scale Factor)                       | Vmax,     | ΑΛ         | Site         | Selection<br>Basis | File Shake Folk#           |
| Target                                | 50                | 7.5      |              | 330                                                 | 48        | 11         | hard         | #Mag               |                            |
|                                       | 50                |          | Is8.5        | 320                                                 | 23        | 14         | hard         | #Int               |                            |
| Recorded Strong Motion Time Histories | ion Time H        | istories |              |                                                     |           |            |              |                    |                            |
| San Fernando<br>234 Figuero           | 41                | 6.5ML    | [o11         | 195.6<br>(1.67)                                     | 16.8      | 11.6       | H,b-1<br>S4  | Dbase              | USACA02.055<br>Cal58 DB#1  |
| Imperial Val<br>Superstition Mtn      | 58                | 6.6ML    | Io09         | 189.2<br>(1.69)                                     | 0.6       | 21.0       | H,f+1<br>S1  | Mag                | USACA24.058<br>Cal139      |
| Loma Prieta<br>Golden Gate            | 100               | 7.1ML    | 1008         | 238.8 (1.37)                                        | 35.5      | 6.7        | H,brdg<br>S1 | Dbase              | USACA57.072<br>Cal349      |
| Coalinga<br>Fault Zone 14             | 41                | 6.5      |              | 268.4 (1.20)                                        | 28.8      | 9.3        | Н            | Mag                | USACA52.124<br>Cal189 DB#3 |
| <b>(3)</b>                            | (0)               | 69       |              | 257.0<br>(1.26)                                     | 35.4      | 7.3        | н            | Mag                | USACA52.125<br>Cal190      |
| Campania-Luciana<br>Sturno NS         | 35                | 6.5ML    | 1009<br>Is08 | 220.8*<br>(1.47)                                    | 42.2*     | 5.2        | н            | lat lat            | TFA03.006<br>TFA20         |
| "" WE                                 | ""                | ę,       | ŝ            | 327.6*<br>(0.99)                                    | 70.2*     | 4.7        | <b>§</b>     |                    | TA03.006<br>TA21           |

NOTES: { +Dbase query for (epi:20-70) & (H) & (a/v:10-14)} {\*uncorrected} {# KCN Charts}

| Table 5 Step                           | Stephen Pt Powerl | owerho | ise Ear      | house Earthquake Time History Selection - Hard Sites | History Se  | lection - ] | Hard Sit     | es                 |                            |
|----------------------------------------|-------------------|--------|--------------|------------------------------------------------------|-------------|-------------|--------------|--------------------|----------------------------|
| Earthquake<br>Station Comp             | EPI<br>dist,km    | Mag    | Int          | Amax, cm/s²<br>(Scale Factor)                        | Vmax,<br>cm | Α/V         | Site         | Selection<br>Basis | File<br>Shake Eqk#         |
| Loma Prieta<br>Gilroy#7 0Deg           | 24                | 7.1Ms  | Io08<br>Is07 | 205.6<br>(1.56)                                      | 16.6        | 12.4        | Н            | +Dbase             | GILROY#7.v2<br>Cal381 DB#2 |
| ""<br>90Deg                            | <b>(6)</b>        | 69     | 603          | 314.3<br>(1.03)                                      | 16.3        | 19.3        | 603          | (0)                | GILROY#7.v2<br>Cal381      |
| Loma Prieta<br>SFO TransAm bld         | 19                | 7.1    | lo8<br>Is6   | 104<br>(3.12)                                        | 8.8         | 11.8        | H,bldg       | +Dbase             | USACA57.060<br>Cal344      |
| Morgan Hill<br>Coyote Lake Dam         | 25                | 6.2ML  | 1007         | 639.8<br>(0.51)                                      | 51.9        | 12.3        | H,abut<br>S2 | +Dbase             | USACA36.005<br>Cal229      |
| Whittier Narrows<br>Cedar Hill Nur. 90 | 43                | 5.9ML  | 1008         | 526.9<br>(0.62)                                      | 24.2        | 21.8        | H<br>S4      | Int                | USACA39.013<br>Ca1270      |
| 0 (**)                                 | 69                | 69     | \$           | 397.5<br>(0.82)                                      | 19.2        | 20.7        | (63)         | (63)               | USACA39.013<br>Cal271      |

**NOTES:** { +Dbase query for (epi:20-70) & (H) & (a/v:10-14)} {\*uncorrected} {# KCN Charts}

|                  | Powerhouse, SC<br>c Hazard Spectra | •                  | +33.4 Longit<br>GS NEHRP No      | ude: - 79.9<br>ovember 1996 M | Iaps        |  |  |
|------------------|------------------------------------|--------------------|----------------------------------|-------------------------------|-------------|--|--|
| Return<br>Period | Annual                             | Peak Ground        | Peak Spectral Acceleration (g's) |                               |             |  |  |
| (yr)             | Frequency of Exceedence            | Acceleration (g's) | 0.2 sec                          | 0.3 sec                       | 1.0 sec     |  |  |
| 475              | 0.0021                             | 0.16               | 0.305                            | 0.230                         | 0.070       |  |  |
| 975              | 0.0010                             | 0.36               | 0.680                            | 0.530                         | 0.190       |  |  |
| 2475             | 0.0004                             | 0.84               | 1.590                            | 1.240                         | 0.460       |  |  |
| Extrapolated     |                                    |                    |                                  |                               |             |  |  |
| 144              | 0.0069                             | 0.041-0.050        | 0.013-0.019                      | 0.056-0.068                   | 0.081-0.095 |  |  |

•

|          |       |       |        |           | arleston, SC<br>Period 2475 |        |
|----------|-------|-------|--------|-----------|-----------------------------|--------|
| Distance |       |       | Moment | Magnitude |                             |        |
| (km)     | 5     | 5.5   | 6      | 6.5       | 7                           | 7.5    |
| 25       | 4.646 | 0     | 5.669  | 5.162     | 3.491                       | 56.908 |
| 50       | 0     | 0.123 | 0.462  | 1.088     | 1.616                       | 15.414 |
| 75       | 0     | 0.002 | 0.015  | 0.086     | 0.266                       | 3.681  |
| 100      | 0     | 0     | 0.001  | 0.011     | 0.055                       | 0.816  |
| 125      | 0     | 0     | 0      | 0.003     | 0.019                       | 0.364  |
| 150      | 0     | 0     | 0      | 0.001     | 0.006                       | 0.082  |
| 175      | 0     | 0     | 0      | 0         | 0.002                       | 0.007  |
| 200      | 0     | 0     | 0      | 0         | 0                           | 0.002  |
| 225      | 0     | 0     | 0      | 0         | 0                           | 0.001  |

| T<br>% ( | able 7b. D<br>Contribution | eaggregat<br>1 to Hazard | ed Seismid<br>to SA of 1 | c Hazard C<br>Hz for Retu | harleston,<br>rn Period 2 | SC<br>475 yrs |
|----------|----------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------|
| Distance |                            |                          |                          | Magnitude                 |                           |               |
| (km)     | 5                          | 5.5                      | 6                        | 6.5                       | 7                         | 7.5           |
| 25       | 0                          | 0.032                    | 0.691                    | 2.538                     | 2.994                     | 56.841        |
| 50       | 0                          | 0.001                    | 0.064                    | 0.697                     | 1.837                     | 19.594        |
| 75       | 0                          | 0                        | 0.006                    | 0.126                     | 0.579                     | 7.96          |
| 100      | 0                          | 0                        | 0.001                    | 0.033                     | 0.209                     | 2.831         |
| 125      | 0                          | 0                        | 0                        | 0.016                     | 0.114                     | 1.836         |
| 150      | 0                          | 0                        | 0                        | 0.008                     | 0.063                     | 0.608         |
| 175      | 0                          | 0                        | 0                        | 0.004                     | 0.036                     | 0.085         |
| 200      | 0                          | 0                        | 0                        | 0.002                     | 0.023                     | 0.028         |
| 225      | 0                          | 0                        | 0                        | 0.001                     | 0.017                     | 0.022         |
| 250      | 0                          | 0                        | 0                        | 0.001                     | 0.011                     | 0.016         |
| 275      | 0                          | 0                        | 0                        | 0                         | 0.006                     | 0.013         |
| 300      | 0                          | 0                        | 0                        | 0                         | 0                         | 0.013         |
| 325      | 0                          | 0                        | 0                        | 0                         | 0                         | 0.01          |
| 350      | 0                          | 0                        | 0                        | 0                         | 0                         | 0.007         |
| 375      | 0                          | 0                        | 0                        | 0                         | 0                         | 0.006         |
| 400      | 0                          | 0                        | 0                        | .0                        | 0                         | 0.005         |
| 425      | 0                          | 0                        | 0                        | 0                         | 0                         | 0.004         |
| 450      | 0                          | o o                      | 0                        | 0                         | 0                         | 0.004         |
| 475      | 0                          | 0                        | 0                        | 0                         | 0                         | 0.003         |
| 500      | 0                          | 0                        | 0                        | 0                         | 0                         | 0,003         |

|          | ble 7c. Dentribution |       |        |           |       |        |
|----------|----------------------|-------|--------|-----------|-------|--------|
| Distance |                      |       | Moment | Magnitude |       |        |
| (km)     | 5                    | 5.5   | 6      | 6.5       | 7     | 7.5    |
| 25       | 0                    | 1.074 | 2.937  | 4.099     | 3.378 | 57.495 |
| 50       | 0                    | 0.034 | 0.281  | 1.042     | 1.902 | 17.925 |
| 75       | 0                    | 0.001 | 0.017  | 0.136     | 0.464 | 5.85   |
| 100      | 0                    | 0     | 0.002  | 0.026     | 0.133 | 1.727  |
| 125      | 0                    | 0     | 0.001  | 0.01      | 0.062 | 1.002  |
| 150      | 0                    | 0     | 0      | 0.004     | 0.028 | 0.29   |
| 175      | 0                    | 0     | 0      | 0.001     | 0.012 | 0.032  |
| 200      | 0                    | 0     | 0      | 0.001     | 0.006 | 0.008  |
| 225      | 0                    | 0     | 0      | 0         | 0.003 | 0.005  |
| 250      | 0                    | 0     | 0      | 0         | 0     | 0.005  |
| 275      | 0                    | 0     | 0      | 0         | 0     | 0.003  |
| 300      | 0                    | 0     | 0      | 0         | 0     | 0.001  |
| 325      | 0                    | 0     | 0      | 0         | 0     | 0.001  |

·

| T:<br>% C | able 7d. D | eaggregat<br>1 to Hazard | ed Seismid<br>to SA of 5 | c Hazard C<br>Hz for Retu | charleston,<br>rn Period 24 | SC<br>175 yrs |
|-----------|------------|--------------------------|--------------------------|---------------------------|-----------------------------|---------------|
| Distance  |            |                          | Moment                   | Magnitude                 |                             |               |
| (km)      | 5          | 5.5                      | 6                        | 6.5                       | 7                           | 7.5           |
| 25        | 2.18       | 0                        | 3.931                    | 4.413                     | 3.347                       | 57.418        |
| 50        | 0          | 0.076                    | 0.388                    | 1.097                     | 1.784                       | 17.042        |
| 75        | 0          | 0.002                    | 0.023                    | 0.13                      | 0.395                       | 5.165         |
| 100       | 0          | 0                        | 0.002                    | 0.022                     | 0.104                       | 1.417         |
| 125       | 0          | 0                        | 0.001                    | 0.007                     | 0.045                       | 0.749         |
| 150       | 0          | 0                        | 0                        | 0.002                     | 0.018                       | 0.199         |
| 175       | 0          | 0                        | 0                        | 0.001                     | 0.007                       | 0.02          |
| 200       | 0          | 0                        | 0                        | 0                         | 0.003                       | 0.005         |
| 225       | 0          | 0                        | 0                        | 0                         | 0                           | 0.004         |
| 250       | 0          | 0                        | 0                        | 0                         | 0                           | 0.002         |
| 275       | 0          | 0                        | 0                        | 0                         | 0                           | 0.001         |

Table 8 - Static Soil properties

|                          | Material type           | Layer to<br>layer<br>elevation | total<br>unit<br>weight | Drained soil<br>properties       | Soil strengths used for slope stability calculations                 |
|--------------------------|-------------------------|--------------------------------|-------------------------|----------------------------------|----------------------------------------------------------------------|
|                          |                         | Interface<br>(feet)            |                         |                                  | Undrained soil properties                                            |
| Select and pervious fill | ervious fill            |                                | 120 pcf                 | $\varphi_d=35^\circ$             | $\phi_{\rm u} = 35$                                                  |
| Impervious fill          | 611                     |                                | 120 pcf                 | $\phi_d = 28^{\circ}$            | $\phi_{\rm u} = 13^{\rm o}  c_{\rm u} = 600  \rm psf$                |
| Zone II fill             |                         |                                | 120 pcf                 | $\phi_d = 32^\circ$              | $\phi_{\rm u} = 23^{\rm o}  c_{\rm u} = 400  \rm psf$                |
| Zone I fill              |                         | 40.5                           | 125 pcf                 | $\phi_d = 31^{\circ}$            | $\phi_{\rm u} = 13^{\rm o}  {\rm c_u} = 600  {\rm psf}$              |
| Upper natural soil zone  | al soil zone            | /U.II.                         | 120 pcf                 | $\phi_d = 28^\circ$              | $\phi_{\rm u} = 24^{\circ}  c_{\rm u} = 700  \rm psf$                |
| Middle                   | Non horizontal layers   | <del>1</del>                   | 110 pcf                 | $\phi_d = 26^\circ$              | $\phi_{\rm u} = 13^{\rm o}  c_{\rm u} = 500  \rm psf$                |
| natural<br>soil zone     | Short horizontal layers | 18 ft                          | 110 pcf                 | $\Phi_d = 18^{\circ}$            | $\phi_{\mathbf{u}} = 13^{\circ}  c_{\mathbf{u}} = 500  \mathrm{psf}$ |
| Lower natural soil zone  | al soil zone            | 4 00                           | 115 pcf                 | $\phi_d = 28^\circ$              | $\phi_{\rm u} = 15^{\rm o}  c_{\rm u} = 800  \rm psf$                |
| Shale                    |                         | -20 II                         | 105 pcf                 | $\phi_d = 28^{\circ} c_d = 1000$ | $\phi_{\rm u} = 20^{\rm o}  {\rm c_u} = 2600  {\rm psf}$             |
| Limestone                |                         | 11 14-                         | 135 pcf                 | $\phi_d = 28^{\circ} c_d = 5700$ | $\phi_{\rm u} = 37^{\rm o}  c_{\rm u} = 5700  \rm psf$               |



Figure 1. Geology and tectonism in the Charleston, South Carolina, region. From Klitgard et al. (1983).



Historic seismicity within 150 km of the St. Stephen Powerhouse (shown with a star). The data are listed in Appendix A. Figure 2.



Figure 3. Seismic source zones in South Carolina.



Figure 4. Locations of earthquakes and their hypocenters near Charleston, South Carolina. The data are from recordings made between March 1973 and December 1979. From Tarr and Rhea (1983).



Figure 5. Distribution of Modified Mercalli intensities for the Charleston, South Carolina, earthquake of September 1, 1886. From Bollinger (1977).



Figure 6. Attenuation of MM intensities with distance in various areas of the United States. From Chandra (1979).



Figure 7. Accelerograms for acceleration and intensity for shallow earthquakes at far-field hard sites.



Figure 8. Accelerograms for velocity and intensity for shallow earthquakes at far-field hard sites.



Figure 9. Accelerograms for duration and intensity for shallow earthquakes at far-field hard sites.



Figure 10. Accelerograms for acceleration and MM intensity for shallow earthquakes at far-field soft sites.



Figure 11. Accelerograms for velocity and intensity for shallow earthquakes at far-field soft sites.



Figure 12. Accelerograms for duration and intensity for shallow earthquakes,  $M \ge 6.9$  at far-field soft sites.



Figure 13. Accelerograms for acceleration, M = 7.5, and distance from source for shallow earthquakes at hard sites.



Figure 14. Accelerograms for velocity, M = 7.5, and distance from source for shallow earthquakes at hard sites.



Figure 15. Accelerograms for duration, M = 7.5, and distance from source for shallow earthquakes at hard sites.



Figure 16. Accelerograms for acceleration, M = 7.5, and distance from source for shallow earthquakes at soft sites.



Figure 17. Accelerograms for velocity, M = 7.5, and distance from source for shallow earthquakes at soft sites.



Figure 18. Accelerograms for duration, M = 7.5, and distance from source for shallow earthquakes at soft sites.



Figure 19. San Fernando earthquake Feb 9, 1971 - 0600 PST, CAL 61.





USGS OF 80-703

## SEISMIC ENGINEERING BRANCH/USGS BAND PASSED FROM

.030- .170 TO 23.00-25.00 HZ 2317.135DEG CRITICAL DAMPING 0.2.5.10.20 PERCENT

Figure 20. Superstition MT. CAL. 10/15/79, CAL 139.



Figure 21. Coalinga Earthquake, Parkfield fault Zone 14, CHN 1: 90 Deg May 2, 1983 16:42 PDT, CAL 189.



Figure 22. Coalinga Earthquake, Parkfield fault Zone 14, CHN 3: 0 Deg May 2, 1983, 16:42 PDT, CAL 190.





Figure 23. Santa Cruz Mtns (Loma Prieta) Earthquake, Oct 17, 1989, 17: 04 PDT, CAL 391.



Figure 24. Morgan Hill Earthquake, Gilroy No. 7 - Mantelli Ranch, CHN 3, 0 Deg, April 24, 1984, 13:15 PST, CAL 216.





Figure 25. Morgan Hill Earthquake, April 24, 1984, 13:15 PST, CAL 228.



Figure 26. Morgan Hill Earthquake, April 24, 1984, 13:15 PST, CAL 229.





Figure 27. Whittier Earthquake, Oct 1, 1987, 07 42 PDT, CAL 270.





Figure 28. Whittier Earthquake, Oct 1, 1987, 07 42 PDT, CAL 271.





BERARDI ET AL 1981

DRMPING VALUES

19H34M545

COMP. NS

ENCORP

Figure 29. Sturno, Italy, ITA 20.

ENEL DCO - SERVIZIO DEDTECNICO

0629 EARTHQUAKE 23-NOV-80 19H34H54S
RECORDED AT STURNO





Figure 30. Sturno, Italy, ITA 21.



Figure 31. Loma Prieta Gilroy #7, 0 degree component, scaled



Figure 32. Coalinga earthquake, Parkfield Fault Zone 14, scaled



Figure 33. San Fernando earthquake, 234 Figuero, scaled



Figure 34a. Psuedo velocity response spectrum for 2 % damping for the Toro & Abrahamson and the Atkinson & Boore attenution relationships.



Figure 34b. Psuedo velocity response spectrum for 5 % damping for the Toro & Abrahamson and the Atkinson & Boore attenution relationships.



Figure 34c. Psuedo velocity response spectrum for 10 % damping for the Toro & Abrahamson and the Atkinson & Boore attenution relationships.



Figure 34d. Psuedo velocity response spectrum for 15 % damping for the Toro & Abrahamson and the Atkinson & Boore attenution relationships.

## Stephen Powerhouse Design Earthquake Response Spectra Comparison



Figure 35. MCE and Loma Prieta Gilroy # 7 response spectra (5 % damping)

## Stephen: Powerhouse Design Earthquake Response Spectra Comparison



Figure 36. MCE and Coalinga, Fault Zone 14 response spectra (5 % damping)

## Stephen Powerhouse Design Earthquake Response Spectra Comparison



Figure 37. MCE and San Fernando earthquake, 234 Figuero response spectra (5 % damping)

Probabilistic Seismic Hazard Curve St. Stephen Powerhouse, Cooper River Diversion Project, GA NEHRP National Hazard Maps November 1996 Soil Profile B-C



GRAPHER1.4: sphprob.grf probhz1.dat

Figure 38. USGS Probabilistic seismic hazard curves for St. Stephen Powerhouse site

Charleston, SC Probabilistic Seismic Hazard Return Period 2475 yrs PGA



Figure 39. Deaggregated PGA hazard, Charleston, South Carolina

Charleston,SC
Probabilitic Seismic Hazard
Return Period 2475 yrs
SA=1 Hz



Figure 40. Deaggregated SA(1 Hz) hazard, Charleston, South Carolina

Charleston, SC
Probabilistic Seismic Hazard
Return Period 2475 yrs
SA=3.3 Hz



Figure 41. Deaggregated SA(3.3 Hz) hazard, Charleston, South Carolina



Figure 42. Deaggregated SA(5 Hz) hazard, Charleston, South Carolina



Figure 43. Plan of St. Stephen Powerhouse Project



Figure 44. Section 1, as idealized, embankment on natural foundation deposit



Figure 45. Section 2, as idealized, upstream retaining wall



Figure 46. Section 3, as idealized, maximum section of embankment dam



Figure 47. Yield acceleration slip surfaces, Section 1



Figure 48. Yield acceleration slip surfaces, Section 2



Figure 49. Yield acceleration slip surfaces, Section 3



Figure 50. Section 1 yield accelerations, static factors of safety against sliding

Critical section through upstream retaining walls



Figure 51. Section 2 yield accelerations, static factors of safety against sliding

Yield acceration - Upstream slip using circular mode Yield acceration - Downstream slip using circular mode



Figure 52. Section 3 yield accelerations, static factors of safety against sliding



Figure 53. Makdisi-Seed dynamic response chart for Newmark-type deformation analysis (after Makdisi and Seed 1977)



Figure 54. Upper-bound relationship between crest and base or abutment response for dams (after Harder 1991, as modified by WES 1996)

Maximum Section



Figure 55. Locations of SHAKE profiles













Figure 60.  $k_{max}$  values for Section 1



Figure 61.  $k_{max}$  values for Section 2



Figure 62.  $k_{max}$  values for Section 3, crest and upstream surfaces



Figure 63.  $k_{\text{max}}$  values for Section 3, switchyard and downstream surfaces



Figure 64. Makdisi-Seed displacement chart (after Makdisi and Seed 1977).



Figure 65. Hynes-Franklin displacement chart (Note:  $N=k_{yield}$ ,  $A=k_{max}$ , after Hynes-Griffin and Franklin 1984)



Figure 66. Displacements computed for Section 1

Critical section through upstream retaining walls



Figure 67. Displacements computed for Section 2



Figure 68. Displacements computed for Section 3.

APPENDIX A: SEISMIC HISTORY, M  $\geq$  3.5, WITHIN 150 KM OF THE ST. STEPHEN POWERHOUSE SITE. FROM THE NATIONAL GEOPHYSICAL DATA CENTER/NOAA, BOULDER, CO

## SEISMICITY (M>=3.5) WITHIN 150 KM OF 33N25' 79W56'

Radial Search

|                      | Q/N DISTANCE<br>KM             | 44444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | DIS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                | B 31<br>30 0 4 4 16<br>116 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | E CE                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                | 821111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | DTSVNWUI                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | INT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | INT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                | DEW DEW DG BLA GS NES DG BLA GS SLM BLA SLM BLA SLM BLA SLM BLA SLM BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                | NAME OF THE PROPERTY OF THE PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | LOCAL                          | 748 44 44 44 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | ES                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FILE                 | -MAGNITUDES-<br>OTHER          | 0 TUL<br>0 BLA<br>0 BLA<br>9 BLA<br>0 BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ATA                  | MAGN<br>OT                     | 4.40<br>3.00<br>2.60<br>4.09<br>3.00<br>3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| JAKE I               | M.S.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EARTHQUAKE DATA FILE | MD (T)                         | 4.20<br>4.50<br>4.10<br>4.40<br>1.10<br>3.30<br>3.30<br>3.30<br>3.30<br>3.30<br>3.30<br>3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NGDC                 | DЕРТН<br>КМ                    | 188<br>109<br>100<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | JDE                            | 2200W W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | LOCATION<br>LATITUDE LONGITUDE | 880<br>1021<br>880<br>1021<br>880<br>1021<br>880<br>1021<br>880<br>1022<br>880<br>1022<br>880<br>1022<br>880<br>1032<br>880<br>1032<br>880<br>1032<br>880<br>1032<br>880<br>1032<br>880<br>1032<br>880<br>1032<br>880<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>103                                                                                                                                                                                                                                                                                                                                              |
|                      | LOCATION<br>UDE LONG           | 0082N<br>0772N<br>0772N<br>0772N<br>0772N<br>0750N<br>0550N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N<br>0750N |
|                      | I                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | SEC LA                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | 띩                              | 25. 24. 44. 44. 44. 44. 44. 44. 44. 44. 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | TI<br>HR MN                    | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | DY F                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | DATE<br>MO I                   | 11112 000 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | YR                             | 19974<br>19975<br>19972<br>19972<br>19972<br>19973<br>19973<br>19973<br>19973<br>19973<br>19973<br>19973<br>19975<br>19975<br>19975<br>19975<br>19975<br>19975<br>19975<br>19975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | SOURCE<br>P                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | SO                             | 2**15C 2**5TOO 3**5DNAA 4**BLAA 4**BLAA 1**PDE 11**PDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 田                                  |                                                                      |                                                                              |                                                                 |                                                          | •••                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q/N DISTANCE<br>KM                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$             | ល ល ល ល ប ប ល ល ល ប<br>វ ល ល ល ល ល ល ល ល ប វ                                 | ,                                                               |                                                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                          |
| CE Q/N I                           | 16.<br>A                                                             | 116<br>116<br>33<br>27                                                       | 31<br>22<br>31<br>8<br>22<br>8                                  | 17<br>8<br>11                                            |                                                                                                                                                                                                                                                                                                                                                                      |
| 刊<br>1                             | 511<br>511<br>511<br>511<br>1                                        | 5111<br>5111<br>5111<br>5111<br>5111                                         | 5111<br>5111<br>5111<br>5111<br>5111<br>6511                    |                                                          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                |
| INT<br>MAX DISVNWUI                |                                                                      |                                                                              |                                                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                      |
| INT                                |                                                                      |                                                                              |                                                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                      |
| LOCAL                              | 20 MD<br>50 NU<br>70 DR<br>77 LG                                     |                                                                              | 20 MD<br>20 MD<br>32 SL<br>52 LG<br>10 MD<br>90 CL              | 250 SE               | 2.00 MB BLA<br>2.70 MB BLA<br>3.50 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>2.70 MB BLA |
| -MAGNITUDES-<br>OTHER              | 2.50 BLA                                                             | 2.29 BLA                                                                     | 3.20 BLA                                                        | 2.60 BLA                                                 |                                                                                                                                                                                                                                                                                                                                                                      |
| W W                                |                                                                      |                                                                              |                                                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                      |
| QW.                                | 2.70                                                                 | . 4.C.1. 6.                                                                  | • • •                                                           | 2.90                                                     | ?<br>•                                                                                                                                                                                                                                                                                                                                                               |
| DEРТН<br>КМ                        | 100<br>100<br>100<br>100<br>100                                      | U                                                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                          | 78 7 2 8 8 8 7 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9     |                                                                                                                                                                                                                                                                                                                                                                      |
| TION<br>LONGITUDE                  | 42224                                                                |                                                                              |                                                                 |                                                          | M0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                               |
| LOCATION<br>SEC LATITUDE LONGITUDE | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                | , , , , , , , , , , , , , , , , , , ,                                        |                                                                 |                                                          | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                               |
| TIME                               | 44 156 156 156 156 156 156 156 156 156 156                           | 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25                                   | 32 13 34 3 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4                      | 7 4 4 1 1 1 4 4 4 7 1 4 4 4 4 4 4 4 4 4                  |                                                                                                                                                                                                                                                                                                                                                                      |
| DY HR                              | 00000                                                                | 100 00 00 00 00 00 00 00 00 00 00 00 00                                      |                                                                 | 0404040                                                  | 31188844 91951                                                                                                                                                                                                                                                                                                                                                       |
| DATE<br>YR MOI                     | 986 03<br>979 08<br>979 08<br>986 03<br>980 09                       |                                                                              | 9990 111<br>9990 05<br>9990 111<br>963 05<br>990 111<br>9977 03 | 977 03<br>977 12<br>982 03<br>990 01<br>982 03<br>977 12 | 1754<br>1754<br>1754<br>1754<br>1860<br>1880<br>1886<br>1886<br>1886<br>1886<br>1886<br>1886                                                                                                                                                                                                                                                                         |
| SOURCE                             | * * * BLA<br>* * * STO<br>* * * BLA<br>* * STO<br>* * STO<br>* * STO | BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>* BLA<br>* BLA<br>* BLA<br>* BLA<br>* BLA |                                                                 |                                                          | BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA                                                                                                                                                                                                                                                                                                   |

| STANCE<br>KM                       | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                       | 00000000000000000000000000000000000000                                                           |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| CE Q/N DISTANCE<br>KM              |                                                                                                                                                                                                                                                                                                                                                                                                                              | ունունունունունուն եր նունունունո                                                                |
| INT F-E<br>MAX DTSVNWUI            | 55111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                       | 511<br>511<br>511<br>511<br>511<br>511<br>511<br>511                                             |
| INT<br>MAX D                       |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| INT                                |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
|                                    | BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA                                                                                                                                                                                                                                                                                                                                                           | BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA                                      |
| LOCAL                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | 330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB |
| MAGNITUDES<br>OTHER                |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| Mb Ms                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| БЕРТН<br>КМ                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| TION<br>LONGITUDE                  | M0000.08                                                                                                                                                                                                   | 0000000000                                                                                       |
| LOCATION<br>SEC LATITUDE LONGITUDE | V 32.900N<br>V 32.900N | 00000000000000000000000000000000000000                                                           |
| TIME                               | 100<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                           | 3 2 7                                                                                            |
| Y HR                               | 200 000 000 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                      | 7000 0000                                                                                        |
| ы<br>П                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                       | 01000110000                                                                                      |
| YR                                 | 1886<br>1886<br>1886<br>1886<br>1886<br>1886<br>1886<br>1886                                                                                                                                                                                                                                                                                                                                                                 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                      |
| SOURCE<br>DUP                      |                                                                                                                                                                                                                                                                                                                                                                                                                              | BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA                               |

| Q/N DISTANCE        | KM                                       | 57<br>57                                 | 57                                                             | 57                            | 57                            | 57                            | 57                            | 57                            | 22                            | 57                            | 57                            | 57                           | ر<br>د ر                      | 72                            | 57                            | 57                            | 57                            | 57<br>123                     | 7,7                           | 57                            | 57                                                            | , c<br>, r                    | 57                                    | 57                             | 57                                    | 57                                    | 57                                    | 57                                    | 5.7                         | ر<br>7 ر             | 57                         | 57                      | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                   | 57                | 57                   | 57                                       | 57                         |
|---------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------------------|------------------------------------------|----------------------------|
| F-E CE Q/N          | •                                        | 511 F<br>511 F                           | 111 F                                                          | 11 F                          | 511 F                         | 11 F                          | 11 1                          |                               | •                             |                               | 511 F                         |                              |                               |                               |                               |                               |                               |                               |                               |                               | 511 F                                                         | 711 F                         | 511 16                                | Į.                             |                                       | দ                                     | ഥ                                     | [파]                                   | -1 *<br>-1 *                | ט פ                  |                            |                         | 511<br>611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                   |                      |                                          | 511 G**                    |
| -                   | DISVNWUI                                 | מינט                                     | ט ע                                                            | נטנ                           | 2,1                           | 1, u                          | ,                             |                               | 47                            |                               |                               | ., .                         | ., .                          | ,                             | <b>u</b> ,                    | .,                            |                               |                               |                               |                               | u, c                                                          | ., .                          | , ,                                   | , .,                           | , ,,                                  | .,                                    | -,                                    |                                       | .,                          | , _                  |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,                   | . = .             |                      |                                          | . = .                      |
| INI                 | MAX                                      | III                                      | III                                                            | III                           | III                           | 7 T T<br>1 T T                | HHH                           | >                             | III                           | III                           | 음!                            | <b>}</b>                     | > ⊢<br>⊢<br>⊢                 | HHH                           | III                           | IΛ                            | HII                           | <b>}</b> }                    | TII                           | III                           | H                                                             | -1 ►<br>-1 ►                  | H                                     | >                              | >                                     | IΛ                                    | >                                     | III                                   | > T                         | 7                    | >                          | >                       | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) III                | III               | Δī                   | Ν                                        | iii                        |
| INI                 | MAP                                      |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                |                                       |                                       |                                       |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| !                   |                                          | BLA                                      | BLA<br>RLA                                                     | BLA                           | BLA                           | BLA<br>BI A                   | BLA                           | BLA                           | BLA                           | BLA                           | BLA                           | BLA<br>619                   | BLA                           | BLA                           | BLA                           | BLA                           | BLA                           | AT'A                          | BLA                           | BLA                           | BLA                                                           | RI.A                          | SLM                                   |                                | GS                                    | GLD                                   | GLD                                   | GLD                                   | טייט                        |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
|                     | ⋖                                        |                                          |                                                                |                               |                               |                               |                               | 0                             | 图!                            |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               | _                             |                                                               |                               |                                       |                                |                                       | O MO                                  |                                       |                                       | •                           |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| ł                   | ğ                                        |                                          |                                                                |                               |                               | •                             |                               | 5                             |                               | ``                            | •                             | •                            | 2.70                          | •                             | •                             | •                             | •                             | 7.00                          |                               | ٠.                            | ۲. د                                                          |                               | . 5                                   |                                |                                       | •                                     | •                                     | 2.60                                  | •                           |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| -MAGNITUDES-        | ¥.                                       |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                | GS                                    |                                       | GS                                    |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| GNIT                | CTHER                                    |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                | 3.3                                   |                                       | 3.30                                  |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| 1                   | ω                                        |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                | .,                                    |                                       | •                                     |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| 1 2                 | R<br>S                                   |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                |                                       |                                       |                                       |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
|                     |                                          |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                |                                       |                                       |                                       |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| 1 5                 | Q<br>E                                   |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               |                                       |                                |                                       |                                       |                                       |                                       |                             |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| DEPTH               |                                          |                                          |                                                                |                               |                               |                               |                               |                               |                               |                               |                               |                              |                               |                               |                               |                               |                               |                               |                               |                               |                                                               |                               | Ŋ                                     |                                | 10G                                   | ω:                                    | 7                                     | א ת                                   | Þ                           |                      |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |                      |                                          |                            |
| DEPTH               | Y.                                       | M000<br>M000                             | M000                                                           | MOOC                          | MOOO                          | M000                          | M000                          | M000                          | M000                          | MOO.                          | MOOK                          | 000W                         | M000                          | M000                          | 000W                          | M000                          | WOO C                         | M000                          | M000                          | MOOC                          | MOO C                                                         | M000                          |                                       | _                              | 29W                                   | 52W                                   | 57W                                   | MAC                                   | M M                         | : 🅿                  | B                          | <b>&amp;</b> :          | M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>.</b> A           | M                 | ጃ :                  | 8 8                                      | M                          |
| DEPTH               | Y.                                       | 80.000W<br>80.000W                       |                                                                | 0                             |                               |                               |                               | o.                            | o c                           | ;<br>;                        |                               | · c                          |                               | ö                             | <i>.</i>                      | · .                           |                               |                               | 0                             | 0                             |                                                               |                               | 0.150W                                | 0. W                           | 0.159W                                | 0.152W                                | 0.157W                                | 0.158W                                | MOOT 0                      | 80. W                | W .08                      | 80.                     | αC. Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80. W                | 80. W             | 80.                  | 80°.                                     | 80. W                      |
| DEPTH               | Y.                                       | 800.                                     | 80.0                                                           | 80                            | 800                           | 800                           | 80.                           | 80.                           | 80.0                          | 200                           | 200                           |                              | 80.                           | 80.                           | 80.                           | 80                            | . 0                           | 80.                           | 80.                           | 80.                           |                                                               | 80.                           | 80.150W                               | 80. W                          | 80.159W                               | 8N 80.152W                            | 5N 80.157W                            | 6N 80.158W                            | MOOT 08 N                   | · œ                  | ∞ ·                        | ω (                     | pα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ω                  | ω                 | N 80. W              | <b>ο</b> α                               | ω                          |
| DEPTH               | Y.                                       | 2.900N 80.<br>2.900N 80.                 | 2.900N 80.                                                     | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | . 900N 80.                   | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                    | 2.900N 80.                                                    | 2.900N 80.                    | 2.935N 80.150W                        | 2.9 N 80. W                    | 2.937N 80.159W                        | 2.928N 80.152W                        | 2.935N 80.157W                        | 2.936N 80.158W                        | 2.9 M 80. 190W              | 2.9 N 8              | 2.9 N 8                    | 2.9<br>2.9              | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9 Z                | 2.9 N 8           | 8.0<br>8.0<br>8.0    | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 2.9 N 8                    |
| DEPTH               | Y.                                       | .900N 80.                                | 32.900N 80.                                                    | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32 900N 80.                  | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                   | 32.900N 80.                                                   | 32.900N 80.                   | 32.935N 80.150W                       | Z 32.9 N 80. W                 | .8G 32.937N 80.159W                   | .4S 32.928N 80.152W                   | .38 32.935N 80.157W                   | .25 32.936N 80.158W                   | G 32.9 N 80. TO             | 32.9 N 8             | 32.9 N 8                   | 32.9 N                  | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.9 N 8             | 32.9 N 8          | 8.0<br>8.0<br>8.0    | 32.9 N                                   | 32.9 N 8                   |
| ME LOCATION DEPTH   | SEC DAILIODE LONGITODE AM                | 5 V 32.900N 80.                          | 3 V 32.900N 80.                                                | 3 V 32.900N 80.               | 5 V 32.900N 80.               | 8 V 32,900N 80.               | 7 V 32.900N 80.               | 5 V 32.900N 80.               | 2 V 32.900N 80.               | 6 V 32.900IN 80.              | 5 V 32.900N 80.               | 7 32 900N 80                 | 0 V 32.900N 80.               | 5 V 32.900N 80.               | 0 V 32.900N 80.               | 0 V 32.900N 80.               | 3                             | 5 V 32.900N 80.               | 0 V 32.900N 80.               | 5 V 32.900N 80.               | 6 V 32 900N 80.                                               | 0 V 32.900N 80.               | 7 41.5V 32.935N 80.150W               | 0 Z 32.9 N 80. W               | 2 19.8G 32.937N 80.159W               | 3 49.45 32.928N 80.152W               | 7 16.38 32.935N 80.157W               | 5 16.25 32.936N 80.158W               | G 32.9 N 80. W              | 32.9 N 8             | 0 G 32.9 N 8               | 32.9 N                  | 4 52.34 N 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G 32.9 N 8           | 32.9 N 8          | G 32.9 N 8           | 0 G 32.9 N 8                             | 4 G 32.9 N 8               |
| TIME LOCATION DEPTH | MN SEC LATITIODE LONGITODE AM            | 7 25 V 32.900N 80.<br>4 45 V 32.900N 80. | 8 09 V 32.900N 80.                                             | 8 03 V 32.900N 80.            | 2 25 V 32.900N 80.            | 1 58 V 32.900N 80.            | 4 47 V 32.900N 80.            | 4 05 V 32.900N 80.            | 9 12 V 32.900N 80.            | 9 46 V 32.900N 80.            | 9 05 V 32.900N 80.            | 7 40 V 32.900M 80.           | 5 40 V 32.900N 80.            | 7 25 V 32.900N 80.            | 1 50 V 32.900N 80.            | 4 40 V 32.900N 80.            | 6 35 V 32.900M 80.            | 9 15 V 32.900N 80.            | 9 50 V 32.900N 80.            | 0 55 V 32.900N 80.            | 2 52 V 52.900N 80.                                            | 7 20 V 32.900N 80.            | 2 57 41.5V 32.935N 80.150W            | 8 30 Z 32.9 N 80. W            | 9 02 19.8G 32.937N 80.159W            | 9 33 49.4S 32.928N 80.152W            | 1 57 16.38 32.935N 80.157W            | 6 35 16.28 32.936N 80.158W            | 03 N 6.32.0 M               | 32.9 N 8             | 8 20 G 32.9 N 8            | G 32.9 N 8              | 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G 32.9 N 8           | 32.9 N 8          | G 32.9 N 8           | G 32.9 N 8                               | 3 14 G 32.9 N 8            |
| TIME LOCATION DEPTH | AN SEC LATITODE LONGITODE KM             | 3 17 25 V 32.900N 80.                    | 4 08 09 V 32.900N 80.<br>6 07 53 V 32.900N 80.                 | 8 08 03 V 32.900N 80.         | 8 12 25 V 32.900N 80.         | 0 11 58 V 32.900N 80.         | 1 04 47 V 32.900N 80.         | 1 04 05 V 32.900N 80.         | 1 09 12 V 32.900N 80.         | 1 09 48 V 32.900N 80.         | 6 09 05 V 32.900N 80.         | 8 15 25 V 32 900N 80         | 1 05 40 V 32.900N 80.         | 1 07 25 V 32.900N 80.         | 1 01 50 V 32.900N 80.         | 8 04 40 V 32.900N 80.         | 3 TO 35 V 32.900N 80.         | 0 09 15 V 32.900N 80.         | 6 19 50 V 32.900N 80.         | 9 10 55 V 32.900N 80.         | 6 UI 52 V 32.9UUN 8U.<br>6 U2 16 V 32 9UUN 8U                 | 1 17 20 V 32.900N 80.         | 2 02 57 41.5V 32.935N 80.150W         | 9 08 30 Z 32.9 N 80. W         | 6 09 02 19.8G 32.937N 80.159W         | 7 09 33 49.4S 32.928N 80.152W         | 3 01 57 16.38 32.935N 80.157W         | 2 Ib 35 Ib.25 32.936N 80.158W         | 7 03 04 04 05 05 05 W 80. W | 4 G 32.9 N 8         | 1 08 20 G 32.9 N 8         | 8 09 G 32.9 N 8         | 7 TO CE 25.3 N CE 27.9 N CE 25.0 N C | 0 32.9 N 8           | G 32.9 N 8        | G 32.9 N 8           | 8 18 20 G 32.9 N 8                       | 1 03 14 G 32.9 N 8         |
| TIME LOCATION DEPTH | DI DE MIN SEC LATITODE LONGITODE AM      | 17 25 V 32.900N 80.                      | 1 04 08 09 V 32.900N 80.<br>1 06 07 53 V 32.900N 80.           | 1 08 08 03 V 32.900N 80.      | 1 08 12 25 V 32.900N 80.      | 1 10 11 58 V 32.900N 80.      | 1 11 04 47 V 32.900N 80.      | 6 21 04 05 V 32.900N 80.      | 6 21 09 12 V 32.900N 80.      | 0 21 09 46 V 32.500M 80.      | 7 06 09 05 V 32.900N 80.      | 7 08 15 25 V 32 900N 80      | 9 21 05 40 V 32.900N 80.      | 9 21 07 25 V 32.900N 80.      | 0 01 01 50 V 32.900N 80.      | 1 08 04 40 V 32.900N 80.      | 2 U3 I6 33 V 32.9UUN 8U.      | 1 10 09 15 V 32.900N 80.      | 3 16 19 50 V 32,900N 80.      | 6 09 10 55 V 32.900N 80.      | 6 16 01 52 V 32.900N 80.                                      | 8 11 17 20 V 32.900N 80.      | 6 02 02 57 41.5V 32.935N 80.150W      | 4 19 08 30 Z 32.9 N 80. W      | 1 06 09 02 19.8G 32.937N 80.159W      | 9 17 09 33 49.48 32.928N 80.152W      | 1 23 01 57 16.38 32.935N 80.157W      | 1 02 16 35 16.28 32.936N 80.158W      | 2 07 G 32.9 N 80. W         | 4 04 G 32.9 N 8      | 4 11 08 20 G 32.9 N 8      | 1 08 09 G 32.9 N 8      | 2 10 12 G 32.9 N 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 19 G 32.9 N 8      | 0 G 32.9 N 8      | 2 12 G 32.9 N 8      | 8 28 18 20 G 32.9 N 8                    | 9 01 03 14 G 32.9 N 8      |
| TIME LOCATION DEPTH | IN MO DI AR MN SEC LATITODE LONGITODE AM | 1 03 17 25 V 32.900N 80.                 | 892 11 04 08 09 V 32.900N 80.<br>892 11 06 07 53 V 32.900N 80. | 892 11 08 08 03 V 32.900N 80. | 892 11 08 12 25 V 32.900N 80. | 892 11 10 11 58 V 32.900N 80. | 892 11 11 04 47 V 32.900N 80. | 893 06 21 04 05 V 32.900N 80. | 893 06 21 09 12 V 32.900N 80. | 893 UG ZI UY 46 V 32.9UUN 8U. | 893 07 06 09 05 V 32.900N 80. | 893 07 08 07 48 V 32 900M 80 | 893 09 21 05 40 V 32.900N 80. | 893 09 21 07 25 V 32.900N 80. | 893 10 01 01 50 V 32.900N 80. | 893 11 08 04 40 V 32.900N 80. | 893 12 03 TO 35 V 32.900M 80. | 894 01 10 09 15 V 32.900N 80. | 894 03 16 19 50 V 32.900N 80. | 894 06 09 10 55 V 32.900N 80. | 894 UO 10 UI DZ V 3Z.3UUN 8U.<br>894 OK 16 OO 16 V 32 9OON 8O | 894 08 11 17 20 V 32.900N 80. | 990 06 02 02 57 41.5V 32.935N 80.150W | 907 04 19 08 30 Z 32.9 N 80. W | 983 11 06 09 02 19.8G 32.937N 80.159W | 986 09 17 09 33 49.45 32.928N 80.152W | 988 01 23 01 57 16.38 32.935N 80.157W | 989 UI UZ IB 35 IB.ZS 32.936N 80.IS8W | 757 02 07 G 32.9 N 80. W    | 799 04 04 G 32.9 N 8 | 799 04 11 08 20 G 32.9 N 8 | 817 01 08 09 G 32.9 N 8 | 843 02 07 15 G 32.9 N 8857 12 19 14 04 G 32.9 N 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 860 12 19 G 32.9 N 8 | 876 10 G 32.9 N 8 | 876 12 12 G 32.9 N 8 | 886 08 28 18 20 G 32.9 N 8               | 886 09 01 03 14 G 32.9 N 8 |

| Ħ                         | <del>-</del> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q/N DISTANCE<br>KM        | 75.2<br>77.2<br>77.2<br>77.2<br>77.2<br>77.2<br>77.2<br>77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CE Q/N                    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F-E (                     | \$211<br>\$211<br>\$211<br>\$211<br>\$211<br>\$211<br>\$211<br>\$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INT<br>MAX DT             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INT                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOCAL                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAGNITUDES<br>OTHER       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ms                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| qw                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ОЕРТН<br>КМ               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UDE                       | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LOCATION<br>UDE LONGITUDE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEC LATIT                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TIME                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HR                        | 00001111110001001111010101<br>00000111111000011101101011<br>0000011111101011<br>000001111110101<br>000001111110101<br>000001111110101<br>0000011111110101<br>0000011111110001<br>0000011111110001<br>0000011111110001<br>0000011111110001<br>0000011111110001<br>0000011111110001<br>0000011111110001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DΥ                        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DATE<br>MO                | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| YR                        | 11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886<br>11886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOURCE<br>DUP             | 8 5 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 0 17 8 10 |

| ы                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Q/N DISTANCE<br>KM     | 758<br>758<br>758<br>758<br>758<br>758<br>758<br>758<br>758<br>758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.                               |
| CE Q/N ]               | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * * * * * * * * * * * * * * * * * * *                                |
| · F-E (<br>DTSVNWUI    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52111111111111111111111111111111111111                               |
| INT<br>MAX             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| - INT<br>MAP           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| LOCAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| -MAGNITUDES-<br>OTHER  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| Ms                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| Q₩                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| DEРТН<br>КМ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| TUDE                   | 888888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 888888888888                                                         |
| LOCATION<br>UDE LONGIT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000000                                                          |
| LOCA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| SEC LATIT              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |
| TIME<br>HR MN          | Φ         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07 40<br>08 55<br>09 05<br>01 35<br>07 17<br>09 09<br>09 56<br>08 46 |
| DY                     | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119<br>330<br>330<br>227<br>227<br>10                                |
| DATE                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000444444                                                            |
| X                      | 18887<br>1887<br>1887<br>1887<br>1887<br>1887<br>1887<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| SOURCE<br>DUP          | 0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018<br>0.018 | STO                              |

| <b>3</b> 00           |                                                                                                                                                         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q/N DISTANCE<br>KM    | $\begin{array}{c} \alpha \alpha$ |
| CE Q/N                | * * * * * * * * * * * * * * * * * * *                                                                                                                   |
| F-E C<br>DTSVNWUI     | 55111111111111111111111111111111111111                                                                                                                  |
| INT<br>MAX            |                                                                                                                                                         |
| INT                   |                                                                                                                                                         |
| LOCAL                 |                                                                                                                                                         |
| -MAGNITUDES-<br>OTHER |                                                                                                                                                         |
| W S                   |                                                                                                                                                         |
| QM                    |                                                                                                                                                         |
| DEРТН<br>КМ           |                                                                                                                                                         |
| UDE                   | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                            |
| ATION<br>LONGITUDE    |                                                                                                                                                         |
| LOCATION<br>UDE LONG  | 2222222222222222222222222222222222222                                                                                                                   |
| SEC LATIT             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                   |
| TIME<br>MN            | 440044014644164666666666666666666666666                                                                                                                 |
| HR                    | 00000000000000000000000000000000000000                                                                                                                  |
| TE<br>MO DY           | 1111223888888202221111124400001111222228888888888                                                                                                       |
| DA<br>YR              | 1188996 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                             |
| SOURCE<br>DUP         | \$ 518 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                              |

| 63                   |                                                                      |                                                                                 |
|----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Q/N DISTANCE<br>KM   | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                               | 557<br>577<br>577<br>577<br>577                                                 |
| CE Q/N               | * * * * * * * * * * * * * * * * * * *                                | * * * * * * * *<br>• * * * * * * *<br>• * * * * * * *                           |
| ក<br>ភ               | 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                              | 2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011                    |
| DTSVNWUI             |                                                                      |                                                                                 |
| INT<br>MAX I         |                                                                      |                                                                                 |
| INT<br>MAP           |                                                                      |                                                                                 |
| LOCAL                |                                                                      |                                                                                 |
| DES                  |                                                                      |                                                                                 |
| MAGNITUDES-<br>OTHER |                                                                      |                                                                                 |
| Ms                   |                                                                      |                                                                                 |
| q <sub>M</sub>       |                                                                      |                                                                                 |
| ОБРТН .<br>КМ        |                                                                      |                                                                                 |
| UDE                  | X                                                                    | 888888                                                                          |
| TION<br>LONGITUDE    |                                                                      | 0000000                                                                         |
| AC:                  | 222222222222222222222222222222222                                    | 222222                                                                          |
| TTL                  | <b>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</b>                         |                                                                                 |
| LOC.<br>SEC LATITUDE | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                 | m $m$ $m$ $m$ $m$ $m$ $m$                                                       |
| SEC                  |                                                                      |                                                                                 |
| TIME                 |                                                                      | 36<br>29<br>29<br>29                                                            |
| HR I                 | 88NWW8N8WN14NW000W010 0W410000444 86044                              | 10<br>00<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |
|                      | 11110000111100011110001101000000000000                               | 240018<br>23222<br>912224                                                       |
|                      | 008 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0                              |                                                                                 |
| DA<br>YR             | 11888899<br>8899<br>8899<br>110990000<br>109900033339999999999999999 | 9000<br>0000<br>0010<br>0010<br>0010                                            |
| SOURCE<br>DUP        | 212                                                                  | STO<br>STO<br>STO<br>STO<br>STO<br>STO                                          |

| E                                  | <del>-</del> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Q/N DISTANCE<br>KM                 | $\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}_{\mathcal{C}}}}}}}}}}$ | 57               |
| CE Q/N                             | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| F-E C<br>DTSVNWUI                  | 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| INT<br>MAX 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · > >            |
| INT<br>MAP                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| LOCAL                              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 MB<br>80 CL   |
| -MAGNITUDES-<br>OTHER              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| SW CW                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| DEPTH -<br>KM                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| UDE                                | 000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M00              |
| LOCATION<br>SEC LATITUDE LONGITUDE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0              |
| LOCATION<br>UDE LONG               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NON              |
| ATIT                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ر<br>ت<br>ن      |
| SEC L                              | oooooooooooooooooooooooooooooooooooooo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| TIME<br>MN                         | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000              |
| HR                                 | 846840064884684484000468844C04484064C488000C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80               |
| DΥ                                 | 01101112212212212222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                |
| DATE<br>MO                         | 24447766611184460888848800084888620011004429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00               |
| YR                                 | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31               |
| SOURCE<br>DUP                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1**BLA<br>1**BLA |

| 5.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Q/N DISTANCE<br>KM     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| F-E CE Q/1             | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |
| INT<br>MAX D           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| INT<br>MAP             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| LOCAL                  | 2.70 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>2.70 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>3.50 MB BLA<br>2.70 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.50 MB BLA<br>3.70 MB BLA | . 50 MB<br>. 70 MB<br>. 70 MB<br>. 30 MB<br>. 30 MB                              |
| -MAGNITUDES-<br>OTHER  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| sw cw                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| ОЕРТН ·<br>КМ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| rion<br>Longitude      | M0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |
| SEC LATITUDE LONGITUDE | V V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20000000000000000000000000000000000000                                           |
| TIME<br>HR MN          | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 44<br>13<br>00 57<br>11 00<br>07 00<br>14 09                                  |
| E DATE<br>YR MO DY     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 887 01 0<br>887 01 0<br>887 01 1<br>887 02 2<br>887 03 0<br>887 03 1<br>887 03 1 |
| SOURCE<br>DUP          | 1 ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1**BLA<br>1**BLA<br>1**BLA<br>1**BLA<br>1**BLA<br>1**BLA<br>1**BLA               |

| Q/N DISTANCE<br>KM        |                                                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 557<br>577<br>577<br>577<br>577<br>577    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| · F-E CE Q/P              | . 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                         | 55111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
| INT<br>MAX 1              |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| INT<br>MAP                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| LOCAL                     |                                                                                                                                | 330 MB 33 |                                           |
| MAGNITUDES<br>Ms OTHER    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| sm dm                     |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| рвртн<br>КМ               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| LOCATION<br>UDE LONGITUDE |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800000000                                 |
| LOCA<br>SEC LATITUDE      |                                                                                                                                | . თ თ თ თ თ თ თ თ თ თ თ თ თ თ თ თ თ თ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | пиимимими                                 |
| TIME<br>HR MN             |                                                                                                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08 12 12 12 12 12 12 12 12 12 12 12 12 12 |
| DATE<br>YR MO             | 8887 03 3887 03 8887 03 8887 03 8887 03 8887 03 8887 04 04 04 04 04 04 04 04 04 04 04 04 04                                    | 1887 05 12<br>1887 05 14<br>1887 05 16<br>1887 06 03<br>1887 06 06<br>1887 08 28<br>1888 01 12<br>1888 02 12<br>1888 03 04<br>1888 03 04<br>1888 03 04<br>1888 03 14<br>1888 03 14<br>1888 03 14<br>1889 07 12<br>1889 07 12<br>1889 07 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10  |
| SOURCI<br>UP              | ***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA<br>***BLA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************    |

| ACE.                   |                                                   | <del></del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q/N DISTANCE<br>KM     |                                                   | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F-E CE (               |                                                   | 55111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| INT<br>MAX D1          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INT                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOCAL                  | 30 MB         | 2.70 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>2.70 MB BLA<br>3.30 MB BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAGNITUDES<br>MS OTHER |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M dh                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEРТН<br>КМ            |                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TION<br>LONGITUDE      | M0000000000000000000000000000000000000            | M0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SEC LATIT              |                                                   | V V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E Z                    | 007 17<br>009 009 009 009 009 009 009 009 009 009 | )<br>\( \text{P}      |
| DATE<br>YR MO D        | 75777777777777777777777777777777777777            | 1894 12 29<br>1895 01 08<br>1895 01 08<br>1895 01 08<br>1895 01 10<br>1895 02 07<br>1895 04 27<br>1895 04 27<br>1895 07 25<br>1895 10 06<br>1895 11 06<br>1895 11 06<br>1896 03 11<br>1896 03 31<br>1896 06 30<br>1896 06 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOURCE                 |                                                   | ** BLA ** |

| 闰                           |                               |                  |      |          |     |       |                   |          |          |        |               |       |            |         |         |          |                   |            |          |        |        |           |            |       |        |      |       |       |               | _     | • ·     |            |               |      |                   |
|-----------------------------|-------------------------------|------------------|------|----------|-----|-------|-------------------|----------|----------|--------|---------------|-------|------------|---------|---------|----------|-------------------|------------|----------|--------|--------|-----------|------------|-------|--------|------|-------|-------|---------------|-------|---------|------------|---------------|------|-------------------|
| Q/N DISTANCE<br>KM          | 57<br>57                      | 57<br>57         | 57   | 57       | 57  | 57    | 57                | 57       | 57       | 57     | 57            | 57    | 57         | 57      | 57      | 57       | υ<br>7            | 57         | 57       | 57     | 57     | 0<br>7    | 57         | 57    | 22     | 57   | 57    | 5.7   | ر<br>د<br>د   | 57    | 57      | 5.7<br>7.7 | 57            | 57   | 57<br>57          |
| F.E CE                      | 511 F<br>511 F                | 511 F<br>511 F   | 11   | 11       | Ξ:  |       | 1 [               | <u> </u> |          | 1 =    | 디 :           |       | 1 -        | []      |         | ٦,       |                   | ! ~!       | ᅼ        | ٠,٠    | -1 -   |           |            | H     | ٠.     | ٠, ٠ | ۰ ب   | ج -   | . –           | 7     | ٦,      |            | -             | Н,   | 511 F<br>511 F    |
| INT<br>MAX DTSVNWUİ         | NI<br>VI                      | 21               | III  | III      | III | 777   | rii               | NI .     | II       | III    | III           | 777   | īī         | HH      | III     | > T L    | ; H<br>; H<br>; H | III        | III      | III    | 777    | AT I      | III        | IV    | III    | ^ F  | \ T \ | T T T | III           | III   | III     | 111        | III           | HHH  | - H<br>- H<br>- H |
| INT                         |                               |                  |      |          |     |       |                   |          |          |        |               |       |            |         |         |          |                   |            |          |        |        |           |            |       |        |      |       |       |               |       |         |            |               |      |                   |
| LOCAL                       |                               | 30 MB            | . س  | .70 MB   |     | 30 MB | .70 MB            | 30 20 2  | 30       | .70 MB | 0.70<br>Mg 62 | 70 MB | 30 MB      | 22<br>E | 0 / 0 E | 70 MB    | 70 MB             | 70 MB      | 2.0<br>图 | 70 MB  | 30 MB  | 70 MB     | 70 MB      | 30 19 |        | 200  | 70 M  | 70 PB | 70 MB         | 70 MB | - [     | 70 MB      | 70 MB         |      | 70 MB             |
| MAGNITUDES-<br>s OTHER      | ٠                             |                  |      |          |     |       |                   |          |          |        |               |       |            |         |         |          |                   |            |          |        |        |           |            |       |        |      |       |       |               |       |         |            |               |      |                   |
| Ms                          |                               |                  |      |          |     |       |                   |          |          |        |               |       |            |         |         |          |                   |            |          |        |        |           | ٠          |       |        |      |       |       |               |       |         |            |               |      |                   |
| QF.                         |                               |                  |      |          |     |       |                   |          |          |        |               |       |            |         |         |          |                   |            |          |        |        |           |            |       |        |      |       |       |               |       |         |            |               |      |                   |
| DEРТН<br>КМ                 |                               |                  |      |          |     |       |                   |          |          |        |               |       |            |         |         |          |                   |            |          |        |        |           |            |       |        |      |       |       |               |       |         |            |               |      |                   |
| TION<br>LONGITUDE           | 9,0,0                         |                  | .0.  | $\sim$   | :   | ~     | 80.000W           | : -:     | <u> </u> | -:-    |               | _:    | ٠.         |         | : _:    | _:       |                   | <u>.</u> . | • -      | • -    |        |           |            | · -   | • •    | ٠.•  | •     | •     |               | , 0   | 80.000W | 00.        | 0.0           | 38   | .00               |
| E<br>SEC LATITUDE LONGITUDE | $\sigma \sigma \sigma \sigma$ | 32               | 32.9 | 32.0     | 32. | 32.9  | 32.0              | 32.0     | 32.9     | 32.0   | 32.           | 32.9  | 32.9       | 32.9    | 32.9    | 32.9     | 32.9              | 2,5        | 32.0     | 32.9   | 32.9   | 32.0      | 22.0       | 20.00 | 32.9   | 32.9 | 32.9  | 32.9  | 32.9          | 2 C   | 32.9    | 32.9       | 22.<br>22.0   | 32.  | 32.9              |
| TIME<br>R MN                | )6 14<br>)8 15<br>)9 24       | 7.0              | 100  | יי<br>יי | 10  | w .   | ~ ~<br>~ ~        | 10       | ~ ~      | 2 I.O. | M             | щ·    | <b>4</b> 4 | . 4     | 4       | 0        | <br>              | n c        | . m      |        | 26     | m         | >          | ~     | 54     | 0    | 4     | ស     | ٠             | 4     | 4       | C7 -       | - 0           | 36   | 0                 |
| DY HR                       |                               | ~ ~              | -    | 010      | . ~ | 0     | ~ ~               | . ~      |          | . ~    | ~             |       | O -        |         | ~       | <b>⊣</b> | ~                 | · -        |          |        | 0      | 0 -       | <b>⊣</b> ⊂ | · —   | -      | ⊣    |       | ٠ ٢   |               | - 0   | Н       | 0          | <b>&gt;</b> C | 1 13 | 7                 |
| DATE<br>MO D                | 08 11 08 11 11                | 88               |      |          |     | m (   | 2 C               |          |          | 1 M    | . ~           | α ·   |            | 10      | -:      | ⊣,       |                   | - C        | . ~      |        | 0,     | ⊣ c       | -<br>4 c   |       | m      | 0    | 0     | 0.0   | <b>&gt;</b> C | 0     |         | 0 (        | 4 C           | 2    | -                 |
| YR YR                       | 1896<br>1896<br>1896          | 396<br>396       | 396  | 39.0     | 396 | 396   | 3 6<br>9 6<br>0 0 | 396      | 396      | 200    | 398           | 86.0  | ν ο<br>ν ο | 66      | 66      | 000      | 200               |            | 00       | 01     | 901    | 200       | 200        | 903   | 903    | 903  | 903   | 803   | 400           | 905   | 905     | 906        | 000           | o o  | 606               |
| SOURCE<br>DUP               | 1**BLA<br>1**BLA<br>1**BLA    | 1**BLA<br>1**BLA | * *  | *        | *   | * 1   | 1. BLA<br>1. BLA  | *        | 1**BLA   | *      | *             | * 1   | 1 * * BLA  | *       | * *     | 1**BLA   | 1 * * BLA         | 1 * * BI.A | 1**BLA   | 1**BLA | 1**BLA | 1 * * BLA | 1 * * BT.A | *     | 1**BLA | *    | * *   | * *   | 1 * * BLA     | *     | *       | I**BLA     | *             | *    | 1**BLA            |

| Q/N DISTANCE<br>KM      | 57<br>57<br>57                                                                                                                       | 57<br>57<br>57                                                    | 0007<br>007<br>1000<br>1000                                                                                                          | 0 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , r r r r r r r r r r r r r r r r r r r                                                                                                                                                   |                                                                                                                                                                                                                          | 57.7<br>57.7<br>57.7<br>57.7<br>57.7<br>57.7                                                                                                                                                                                                       | 57<br>57<br>57                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Q N/Q                   |                                                                                                                                      |                                                                   |                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                          | 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                            |                                                                                                                                   |
| F-E CE                  | 5555                                                                                                                                 |                                                                   | 1222                                                                                                                                 | 12222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100000                                                                                                                                                                                    | , 4 4 4 4 4 4 4 7                                                                                                                                                                                                        | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                              |                                                                                                                                   |
| INT<br>MAX D            |                                                                                                                                      |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                   |
| INT I                   | минн                                                                                                                                 |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,,                                                                                                                                                                                      |                                                                                                                                                                                                                          | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                            |                                                                                                                                   |
| LOCAL M                 | .70 MB .70 MB .70 MB .70 MB .70 MB                                                                                                   | 2.70 MB BLA<br>3.30 MB BLA<br>3.30 MB BLA                         | 30 SE                                                                                            | 70 MB 77 70 | . 70 MB<br>. 50 MB<br>. 30 MB<br>. 30 MB                                                                                                                                                  | . 70 MB<br>. 70 MB<br>. 30 MB<br>. 30 MB<br>. 30 MB<br>. 30 MB<br>. 70 MB                                                                                                                                                | 330 MB<br>330 MB<br>330 MB<br>330 MB<br>330 MB<br>30 MB<br>30 MD                                                                                                                                                                                   | .00 MD<br>.70 DR<br>.25 MI                                                                                                        |
| MAGNITUDES-<br>MS OTHER |                                                                                                                                      |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                   |
| MS i                    |                                                                                                                                      |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                   |
| 1 1                     |                                                                                                                                      |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                   |
| φ.                      |                                                                                                                                      |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    | 2.50                                                                                                                              |
| -                       |                                                                                                                                      |                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                          | 10<br>7<br>7<br>5                                                                                                                                                                                                                                  | 2.5                                                                                                                               |
| DEPTH                   | 00000                                                                                                                                |                                                                   | 0000                                                                                                                                 | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000000                                                                                                                                                                                    | M000.08<br>M000.08<br>M000.08<br>M000.08<br>M000.08                                                                                                                                                                      | 00000<br>00000<br>00000<br>00000<br>00000<br>15900<br>15900<br>1580                                                                                                                                                                                | .166W 6<br>.150W 5 2.5                                                                                                            |
| LOCATION DEPTH          | 32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0                                                                                         | 32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0                      | 32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0                                                                         | 32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0                                                                                                              | 2.900N 80.0<br>2.900N 80.0<br>2.900N 80.0<br>2.900N 80.0<br>2.900N 80.0                                                                                                                                                  | 32.900N 80.000W<br>32.900N 80.000W<br>32.900N 80.000W<br>32.900N 80.000W<br>32.900N 80.000W<br>32.937N 80.159W 1<br>32.937N 80.159W<br>32.935N 80.159W<br>32.935N 80.159W                                                                          | 4.0V 32.934N 80.166W 6<br>1.5V 32.935N 80.150W 5 2.5<br>0.04 32.900N 80.000W 0                                                    |
| DEPTH                   | 32.900N 80.0<br>32.900N 80.0<br>32.900N 80.0                                                                                         | 8 06 V 32.900N 80.0<br>2 30 V 32.900N 80.0<br>6 30 V 32.900N 80.0 | 8 13 V 32.900N 80.0<br>1 53 V 32.900N 80.0<br>0 55 V 32.900N 80.0<br>6 45 V 32.900N 80.0                                             | 2 05 V 32.900N 80.0<br>3 45 V 32.900N 80.0<br>3 48 V 32.900N 80.0<br>4 25 V 32.900N 80.0<br>6 06 V 32.900N 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 43 V 32.900N 80.0<br>1 30 V 32.900N 80.0<br>9 40 V 32.900N 80.0<br>9 55 V 32.900N 80.0<br>9 7 32.900N 80.0<br>2 36 V 32.900N 80.0                                                       | 6 20 V 32.900N 80.0<br>8 46 V 32.900N 80.0<br>4 25 V 32.900N 80.0<br>7 30 V 32.900N 80.0<br>0 20 V 32.900N 80.0<br>2 20 V 32.900N 80.0<br>2 40 V 32.900N 80.0<br>8 9 V 32.900N 80.0                                      | V 32.900N 80.000W<br>V 32.930N 80.159W<br>6.4V 32.935N 80.159W<br>6.4V 32.935N 80.159W                               | 5 04 34.0V 32.934N 80.166W 6<br>2 57 41.5V 32.935N 80.150W 5 2.5<br>3 37 30.04 32.900N 80.000W 0                                  |
| TIME LOCATION DEPTH     | 910 05 02 09 15 V 32.900N 80.0<br>910 09 02 07 18 V 32.900N 80.0<br>910 09 12 18 29 V 32.900N 80.0<br>912 03 31 20 25 V 32.900N 80.0 | 72 0 2 2 0 8 0 0 0 2 2 2 2 2 0 0 0 0 0 0                          | 914 06 19 08 13 V 32.900N 80.0<br>914 07 14 01 53 V 32.900N 80.0<br>915 12 20 00 55 V 32.900N 80.0<br>916 04 30 06 45 V 32.900N 80.0 | 916 06 25 12 05 V 32.900N 80.0<br>921 04 19 23 45 V 32.900N 80.0<br>921 04 23 23 48 V 32.900N 80.0<br>923 03 24 04 25 V 32.900N 80.0<br>924 02 14 16 06 V 32.900N 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 924 06 03 15 43 V 32.900N 80.0 930 09 03 01 30 V 32.900N 80.0 933 12 23 09 40 V 32.900N 80.0 934 12 09 09 55 V 32.900N 80.0 935 02 06 12 36 V 32.900N 80.0 935 02 06 12 36 V 32.900N 80.0 | 935 10 20 16 20 V 32.900N 80.0 940 01 05 08 46 V 32.900N 80.0 940 01 05 13 45 V 32.900N 80.0 943 12 28 14 25 V 32.900N 80.0 945 01 30 20 20 V 32.900N 80.0 945 05 18 12 20 V 32.900N 80.0 946 05 08 18 09 V 32.900N 80.0 | 4 30 V 32.900N 80.000W<br>6 53 V 32.900N 80.000W<br>2 55 V 32.900N 80.000W<br>7 55 V 32.900N 80.000W<br>2 32 V 32.900N 80.000W<br>2 32 V 32.900N 80.000W<br>9 02 19.8V 32.930N 80.159W<br>1 57 16.4V 32.935N 80.159W<br>6 35 16.3V 32.935N 80.159W | 989 06 02 05 04 34.0V 32.934N 80.166W 6<br>990 06 02 02 57 41.5V 32.935N 80.150W 5 2.5<br>960 07 24 03 37 30.04 32.900N 80.000W 0 |

| CE                             |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   | <b>-</b> -          |             |                   |                   |                   |
|--------------------------------|----------------------|-------------|--------------|---------------|---------------|---------|---------------|-------------|--------|-------|-------------|--------|-----|------------------|------------------|-------------|------------|------------------|------|-------|-----------------|------------------|-------------|-------------------|------------|------------------|-------|-------------|-------------------|---------------------|-------------|-------------------|-------------------|-------------------|
| Q/N DISTANCE<br>KM             | 57                   | 57          | 57           | 57            | 57            | 57      | 57            | 57          | 57     | 57    | 57          | 57     | 57  | , r              | 57               | 57          | 57         | 57               | 57   | 57    | 57              | 57               | 57          | 57                | 0<br>7     | 57               | 57    | 57          | 57                | 57<br>57            | 22          | 57                | 57                | 57<br>57          |
|                                | •                    | *<br>*<br>© | * ;          | *<br>*<br>* * | *<br>*<br>• * | * * * * | *<br>* *<br>" | *<br>*<br>E | * ·    | ት ¢   | *<br>*<br>* | *<br>" | * * | *<br>*<br>*<br>* | *<br>*<br>*<br>* | *<br>*<br>ያ | * *<br>* * | *<br>*<br>*<br>* | ***  | * * † | *<br>* *<br>" " | *<br>*<br>*<br>* | *<br>*<br>* | * *<br>* *<br>* * | • •        | *<br>*<br>*<br>* | * * ' | * * * * * * | * +<br>* +<br>* ( | * *<br>• *<br>• • • | *<br>*<br>* | * *<br>* *<br>© ( | * *<br>5 *<br>5 * | * *<br>* *<br>© © |
| F-E CE                         | 511 F<br>511 F       |             | 11.          |               | 11            | 11      | 11            | 11          | 77     | 7 T   | 11          | 11     | 117 | + <del></del>    | 11               | T ;         | - 1        | 11               | 11   | 77    | 1 <del>-</del>  | 11               | 11          |                   | 11         | 11               | 11    | _ :         | <u> </u>          | 11                  | 디           | <u> </u>          | 15                |                   |
|                                | വവ                   | വവ          | ro n         | nυ            | חט            | IO I    | nυ            | വ           | ى<br>د | ט ע   | വ           | L)     | ս ռ | ט נט             | S                | IO I        | in in      | יא ה             | Ŋ    | in i  | ni in           | 21.              | i Oi        | io, ir            | ່ທ່        | Ω.               | . 53  | jų į        | υ, <u>Γ</u>       | . 72                |             |                   | 5.5               | 51                |
| DTSVNWUI                       |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| INT                            | N<br>N               | VII<br>III  | III          | > >           | III           | HHH     | Λ.            | III         | Z I    | 7 1 1 | III         | ĭ;     | 7.2 | III              | III              | III         | 7 × ±      | HII              | III  | 22    | ΔIΛ             | III              | III         | 7 T T             | ΙΛ         | III              | Λį    |             | 111               | î A                 | 2;          | ) T T T           |                   | rii               |
| INT                            |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
|                                |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| LOCAL                          |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| DES                            |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      | -     | i.              |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| MAGNITUDES-<br>s OTHER         |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| W                              |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| QV.                            |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| 1                              |                      |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| ОБРТН<br>Е КМ                  | > > >                | · '> '5     | > <b>'</b> > | >             | > >           | • •>    | <b>5</b>      | · •         |        | -     |             |        | _   | <b>.</b>         |                  |             | _          |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| LOCATION<br>LATITUDE LONGITUDE | ×××                  |             |              |               |               |         |               |             |        |       |             |        |     |                  |                  |             |            |                  |      |       |                 |                  |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
| LOCATION<br>UDE LONG           | 880                  |             |              |               |               |         |               |             |        |       |             |        | -   | ~ •              | ~ w              | · w         | ω.         |                  | o w  | ω     | ω (             | υa               | σ ω         | ω.                | ω ο        | υα               | , ω   | ۵           | œ                 | <b>ω</b> α          | ο           | ω (               | ∞ ∞               | œ                 |
| LOC                            | 0.00                 | 00          | ົດ           | σ,            | ത             | . 0     | o 0           | ש פ         | , a    | ο .   |             |        | ω,  | ~ ~              |                  | _           | σ,         | n o              | י ס  | 6     | თ c             | nσ               |             |                   |            |                  |       |             |                   |                     |             |                   |                   |                   |
|                                | 32                   | 32          | 32           | 32            | 322           | 32      | 32            | 3 5         | 32     | 32    | 3 6         | 32     | 33  | 2 6              | 32,              | 32          | 325        | 3 6              | 32   | 32.   | 32              | 2 6              | 32          | 32.               | 32.        | 32.              | 32.   | 32.         | 32                | 32.                 | 32.         | 32.               | 327               | 32.               |
| E<br>SEC                       | 2020                 |             | , 0          | Ο,            |               |         | 0 (           | 9 0         | , 0    | 0 (   | 9 0         |        | 0 0 | ש פ              | יט פ             | G           | <b>.</b>   | 9 6              | 9 69 | Ö     | ტ (             | ט פ              | ) O         | <b>O</b>          | ტ <u>(</u> | ט פ              | . G   | Ö           | O.                | <b>ტ</b>            | O           | <b>O</b> (        | <b>છ</b> છ        | O                 |
| TIME<br>HR MN                  | 4 04<br>0 20<br>9 45 | y           | 9 55         | m             |               | സ       | 30            | J 44        | . R    | വ വ   | 0           | 0      | M L | n c              | •                | 5 29        | 7          | 1 C              | 14   | 4.    | 4 <             | 4                | 0           | 4, 0              | 7 -        | -                |       | 7           | 10                | )                   | 25          |                   |                   |                   |
| ру н                           | 22 2 1 1 1           | +           |              | 7             |               | 2       | 7             |             | 3      | 0 0   |             | 0      | H F | 4 0              | · <del></del>    | 0           | o :        | 77               |      | 0     | 0 -             | ·                |             | α,                | <b>-</b>   | 10               |       | 0           | 23                | >                   | 0           | 0 +               | 80 8              | 0                 |
| DATE<br>MO D                   | 12 1<br>10 2<br>10 2 | m 10        | <# -         |               | 90            | m       | m m           |             | ~      | ~ ~   |             | _      | ~ ~ | . ~              | _                | _           |            | V (*)            | -    | -     | ے د<br>-        | , –              | CA          | <u>ო</u> (        | <u>ه</u> د | 1 (7             | 0     | 0           | <b>⊢</b> (        | 4 C1                | Н           | (7) C             | 4 (2              | 7                 |
| YR                             | 1857<br>1886<br>1886 | 598<br>754  | 967          | 900           | 386           | 386     | 386           | 988         | 386    | 9 8   | 98          | 988    | 989 | 9 9              | 86               | 98          | 9 9        | 98               | 98   | 98    | φ α             | 98               | 98          | 98                | 9 9        | 98               | 86    | 87          | 8,7               | 87                  | 87          | 87                | 87                | 87                |
| SOURCE<br>P                    | ноа<br>Еон<br>Еон    | STO         |              | 01.0          | STO           | STO     |               | STO         |        | STO   | STO         | STO    | STO | STO              | STO              | STO         | STO        | STO              | STO  | STO   |                 | STO              | STO         | OIS               | STO        | STO              | STO   | STO         | STO               | STO                 |             |                   | STO               |                   |
| י נאַם                         | * * *                | * *         | * *          | < +c          | *             | * 1     | k +k          | -k          | *      |       | *           | *      |     | *                | *                | * 1         | * *        | *<br>*<br>-! +-! | *    | * *   | * *             | *                | * :         | * *               | £          | Ξ                | τ.    | 7           |                   | *                   | *           | * *               | *                 | *                 |

| 貿                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| DISTANCE<br>KM                     | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 557<br>557<br>557<br>557<br>557<br>557<br>557        |
| CE Q/N                             | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * * * * * * * * * * * * * * * * * * *                |
| म<br>।                             | 5111<br>5111<br>5111<br>5111<br>5111<br>5111<br>5111<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 511<br>511<br>511<br>511<br>511<br>511<br>511<br>511 |
| DTSVNWUL                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| INT<br>MAX 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| INT<br>MAP                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| LOCAL                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| UDES                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| MAGNITUDES<br>S OTHER              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| Ms                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| QW                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| БЕРТН<br>КМ                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| UDE                                | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33333333333333                                       |
| LOCATION<br>SEC LATITUDE LONGITUDE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| JOCA                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZZZZZZZZZZZZ                                         |
| TIL                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1010101010101010101010101                            |
| r<br>LA                            | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , , , , , , , , , , , , , , , , , , ,                |
| E<br>SE(                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| TIME                               | 4 6 8 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230<br>230<br>230<br>21<br>21<br>21<br>21<br>21      |
| HR                                 | 000 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000000000000000000000000000000000000000              |
| DX                                 | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000000000000                                       |
| DATE                               | 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 440000000000000000000000000000000000000              |
| Y                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                    |
| SOURCE<br>DUP                      | 11** \$50<br>11** \$51<br>11** \$51 | * * * * * * * * * * * *                              |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |

| ACE.                      |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
|---------------------------|--------|------|--------------|----------|--------------|------------|------------|-------|---------------|---------------|-------------|----------------|-----------|------------|-------------|----------------|------------|------|------|----------|--------------|-------------|-------|--------------|-----------|------------|---------------|-------------------|------------|-------------|--------|----------------|--------------|------------|--------------|----------|----------|------------|------------|-------------------|------------------|------------|--------------|
| STAN                      | ı      | 57   | 27           | 22       | 22           | 22         | 57         | 57    | 57            | 57            | 57          | 57             | 7         | , r        | 57          | 57             | 57         | 57   | 22   | 22       | 27           | 57          |       | ر<br>ا       | U L       | 57         | 57            | 57                | 28         | 28          | 200    | 200            | ວິດ          | 2 60       | 28           | 28       | 28       | ט ה<br>ט כ | ח<br>טיס   | 60                | 09               | 09         | 09           |
| Q/N DISTANCE<br>KM        |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
|                           |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                | r<br>U     | Ö    | *    | ტ        |              |             | •     | >            | <b>C</b>  |            | 0             |                   | **¤        | *<br>*<br>* | *<br>« |                |              | 80         | 31           | 4        |          |            |            | 29                |                  | * *        |              |
| CE                        |        | եւ   |              |          |              |            | ſĿ,        |       |               |               |             |                |           |            |             | Ēų             |            |      |      |          |              |             |       | ζ            |           |            |               | Ω                 | ,          |             |        | ı, [ı          |              | Ľτ         |              |          |          |            |            |                   |                  |            |              |
| ਜ਼<br>ਜ਼                  | į      | 511  | 775          | 110      | 511          | 511        | 511        | 511   | 511           | 511           | 511         | 511            | 511       | 511        | 511         | 511            | 511        | 511  | 511  | 511      | 511          | 511         | 717   | 7 T T        | 117       | 511        | 511           | 511               | 511        | 511         | 211    | 717            | 511          | 511        | 511          | 511      | 511      | 717        | 711        | 511               | 511              | 511<br>511 | 511          |
| WUI                       |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
| IUWNATA                   |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       | tr.          | 2         |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
|                           | :      | > ⊦  | <b>-</b> 1 + | -1 1     | - <b>1</b> 1 | н          | >          | >     | >             | н             | 5           | 5              | 5         | ы          | >           | H              | 5d         | _    | _    | ٠. ·     | ٠.           |             |       | ۲.           |           |            |               | u                 | _ ·        | ٠.          |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
| INT                       | ·      |      | ⊣            | -i i     | -i i         | T          | ì          |       | _             | III           | P           | Σſ             | >         | III        | Ν           | IΛ             | _          | ΛI   | _    | ,        | > +          | T T /       |       | ^            | VII       |            |               | ĭ                 | H          | 1           | 7      | 12             | III          | >          |              | 5        | <b>7</b> | >          |            | III               | III              | 7 F        | II           |
| INT                       |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
| !                         | ,<br>, | 6 LA | <u> </u>     | ţ.       | ţ,           | ٠<br>ا     | ∢ .        | ď     | ď             | Ą             | Ą           | Ą              | Ą         | Ą          | Ą           |                |            |      |      | 4        | Ç e          | \$ A        | 1 A   | ;            |           | Ħ          | H             |                   |            | >           | E A    | : A            | A            |            | <sub>O</sub> | •        | €        | <b> -</b>  | ı H        | Σ                 | Z Z              | E <b>2</b> | ł et         |
| į                         |        |      | •            |          |              |            |            |       | B BLA         |               | R BLA       |                |           |            | R BLA       |                |            |      |      |          | אונט<br>פונט |             |       |              |           |            | HÕE ]         |                   |            |             | RIA    |                | BLA          |            |              | 3 6      |          |            | TEL        |                   | SLM              | -          |              |
| LOCAL                     | -      |      | ۰ د          | ٠        | ٠ د          | ٥ د        | 5          | E MAG | 0             | 0             | 0<br>DR     | 0              | 0         | 0          | 0<br>DR     |                |            |      |      |          | 3 5          |             |       | -            |           |            | 5 MI          |                   |            | ช           |        | E O            |              |            | 型:<br>0      | ל ב<br>ס |          | MI         |            |                   | 5<br>5<br>5<br>6 |            |              |
| 13                        |        | •    | •            | ٠        | •            | ٠          | •          | •     | ٠             | •             | •           | ص<br>س         | •         |            |             |                |            |      |      |          | ٠            | 4.20        |       | •            |           | 6.90       | ٠             |                   |            | ~           |        | · M            | ۲.           |            | 4.7          | J. R     |          |            | •          | 2.70              | •                |            | •            |
| ES                        |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               | ליז               |            |             |        |                |              |            |              | _        | r        |            |            |                   |                  |            |              |
| MAGNITUDES-<br>OTHER      |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               | SIG               |            |             |        |                |              |            |              | ET.A     |          |            |            |                   |                  |            |              |
| AGN:<br>OTH               |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            | ,             | 0.00              |            |             |        |                |              |            |              | 70       |          |            |            |                   |                  |            |              |
| Σi<br>!<br>! ω            |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
| MS                        |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |
| ĘĘ.                       |        |      |              |          |              |            |            |       |               | 6             | ٠<br>د      | 9.6            | .30       | 9.         | 9           |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                | 0.           | ₹.         | ,            | 7        | 2        |            |            | 90                |                  |            | .20          |
| 1                         |        |      |              |          |              |            |            |       |               | •             | י רי        | .77            | <b>,</b>  | ~          | 7           |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                | m (          |            | ~            | 4        | 4        |            |            | 6                 |                  |            | т            |
| DЕРТН<br>КМ               |        |      |              |          |              |            |            |       |               | •             | י ת         | ا م            |           | 4.         | Ω           |                |            |      |      |          |              |             | 0     |              |           | 0          | <b>&gt;</b> c | >                 |            | 9           | ,      |                | ر م          | 52         | ט ע          | o co     | 18       |            | ω          | o 0               | 0                |            | 0            |
|                           |        | : !~ | ?            | ×        |              | : !<       | : :=       | 2 2   | 2 2           | <b>-</b> :    | <b>&gt;</b> | <b>~</b>       | ۰ ح       | > .        | <b>-</b> ': | <b>-</b> ':    | 2 2        |      |      | >        | -            | <b>&gt;</b> | >     | <b>&gt;</b>  | -         | -          | <b>-</b> •    | - F               |            | . ~-        | _      | _              |              |            |              |          |          |            | _          |                   |                  | _          | _            |
| TUD]                      | 0      | M000 | 0            | 0        | C            | , C        | ) C        | ) C   | <b>&gt;</b> < | <b>&gt;</b> ~ | ٦,          | LOWW           | ٠, ا      | ٦,         | 4           | > <u> </u>     | <u>د</u> « | 3    | 3    | 000      | 000          | .000W       | 0004  | 3            | 3         | M000       |               | 5 5<br>5 6<br>5 6 |            | 27          | 0      | 300M           | <u> </u>     | 558W       | oν           | വ        | )        | 0          | 0          | 163W              | $\infty$         | æ          | 380W         |
| TONC                      | 80.    | 80   | 80.          |          |              | 200        |            | 200   | •             | ~ ~           | ·           |                | ·         | <u> </u>   | 9 0         |                | 0<br>0     | 2    |      |          |              |             |       | 80.          | <u>.</u>  | <u>.</u> . | ٠.            | • -               | • _        | ٠.          |        | _•             | •            | •          | • .          | ٠.       | •        | ٠          | ٠          | 088               |                  | •          | •            |
| LOCATION<br>UDE LONGITUDE | Z      | NO   | Z            | Z        | Z            | : <u>2</u> | ; <u>z</u> | ;     | 3 2           | 3 2           | 2 2         | Z 2            | 2;        | Z ;        | 3 2         | : Z            | : 2        | : 2  | ; 2  | z        | z            | z           | z     | z            | z:        | Z 2        | 2 2           | 2 2               | : 2        | z           | z      | z              | z :          | 2 2        | 3 <b>2</b>   | : 7:     | -        | z          | <b>7</b> . | קל                | . 17             | <b>7</b>   | <del>5</del> |
| LOCI<br>SEC LATITUDE      | 0      | .900 | .900         | σ        | g            | O          | ١o         | 000   | ١o            | J O           | ηc          | NTCK.          | n c       | 'nο        | #<br>?      | ٠ ٥            | . 0        | . 0  | . 6  | 900      | .900         | N006        | 900   | Z (          | σ,        | υc         | NOOD          | <i>J</i>          | . 4        | ຸດາ         | ⊽      | 4              | איכ          | ກວ         | 80 C 6       | g        | 9        | 65         | 65         | N806              | 46               | 46         | 9            |
| LAT                       |        |      |              |          | 32           | 32         | 3 6        |       | 1 0           | 2 6           | 4 6         | 2 6            | 9 0       | 3 6        | 4 6         | 3 6            | 3 6        | 3 6  | 32   | ^1       | $\sim$       | $\sim$ 1    | 32    | ~ 1          | ~ .       | ~ ~        | 2 6           |                   |            | 32          | 33     | m (            | 2,5          | יו ני      | 3 6          | m        | 32       | 33         | 33         | 3 22              | 333              | 33         | (L)          |
| SEC                       | >      | >    | >            | >        | >            | >          | · >        | 0.00  | •             |               | •           | 7.7            | •         | •          | ٠           | ז כי           | י כ        | ) C  | )    | >        | >            |             | . 04  | 7            | (         | 2.0        |               |                   | ) O        | •           | >      |                | •            | •          |              | •        | •        | •          | •          |                   | •                | O          | >            |
| TIME<br>MN :              | 4      | വ    | 0            | ς.       | 4            | ~          | ı          | 7.3   | )<br>- (~     | י<br>ה        | 3 C         | יי<br>ייי      | - L       | ) -<br>-   | ۲<br>۲ ح    | , <del>-</del> |            | 4    | 0    | 0        | 0            | 4           | 00    | <b>-</b> 1 1 | Ω.<br>•   | 7 0        | ) C           | •                 | 0          | 6 08        |        | •              | 0 0          | ס ת        | טינ          | S        | ស        | 0          | 0          | 1 6<br>1 5<br>1 5 | I                | <b>~</b> . |              |
| HR M                      | 4      | 19 4 | σ            | 0        | ~            | 4          | r          | (C)   | יינ           | יי כ<br>מו    | א<br>מ      | ) <del>-</del> | יוני<br>ה | ים<br>מוני | , ,         | ויר            |            | 0    | m    | ж<br>Ж   | Э            | 0           | 0 1   |              | 4         | .,<br>.,   | אני           | •                 | 8          | 0 1         |        | ლ <sub>ნ</sub> | ⊣            | 4 R<br>U C | . ro         | 5 2      | 52       | 9          |            | / L               | 2                | 20.        | 2            |
|                           | 6      | 2    | S.           | ო        | ဖ            | 6          | თ          | 4     |               | o uc          | , r         | ٠,             |           | 3 0        | . LC        |                | . ~        | N.   | •    | <u>_</u> | C)           | <b>Ω</b>    | ω.    | <i>r</i>     | \1 -      | 70         |               | ,                 |            | 1           | •      | 0,             | ٦ ,          |            | 0            | 0        | 0        | Η,         | (          | ⊃ <del>[</del> ]  | 0                | 0          | 0            |
| TE<br>MO DY               | 2      | 0    | _            | ~        | 2            | ~          | _          | 2     | . 10          |               | , ~         | , -            | 1 C       |            |             |                | ~~         | . 62 | 7    | -        |              | C -         | I (   | O (          | 7 0       | ) r        | 10            |                   | 0          | 2 19        |        |                | ٦ -          | - C        | . (1)        | 2        | 7        | (7)        | 20         | 6 07<br>6 02      | 0                | 0          | 0            |
| Ž                         | 57     | 98   | 80           | 5        | 33           | 33         | 52         | 20    |               | ١.            |             | 2 00           | 0         | 0          | 98          | 98             | 36         | 14   | 7 (  | ) (      | 2            |             | 27    | 9 4          | ָם<br>פַּ | ָ<br>פַּ   | 2 9           | , E               | 0          | 3 1         | 5      | 0,0            | ე <u>ნ</u>   | 14         | 4            | 4        | 4 1      | 0 0        | 200        | 000               | 2                | 0 0        | 0            |
| E<br>YR                   | 8      | m    | ā            | <u> </u> | ä            | à          | <u>~</u>   | ā     | ō             |               |             | · ~            | . ~       | · ~        | : ~         | ~              | ~~         | Ξ,   | =    | $\simeq$ | $\Xi$        | $\equiv$    | -     | ~ ;          | ຼຸ        | Σ.         | 1 44          | ,                 |            | 5           | u) (   | . A L          |              | , L        | . [~         | 7        |          | σ,         | סככ        | 1 6               | 7                | <b>~</b> [ | _            |
| SOURCE<br>P               | BLA    | BLA  | *BLA         | BLA      | BLA          | BLA        | BLA        | BLA   | BLA           | BLA           | RI.A        | BLA            | PT.A      | BI.A       | EOH         | STO            | STO        | STO  | *USN | *BLA     | *BLA         | *BLA        | * DNA | FOH.         | NGO:      | A AND      | SIG           | ST.               | STO        | 3TO         | 3LA    | BLA            | און מ<br>הרס | *DNA       | STO          | BLA      | USN      | TEI        | Ας.        | BLA               | STO              | ဥ <u>:</u> | A.           |
| S<br>DUP                  | *      | * •  | *            | *        | *            | *          | *          | 2**]  | *             | *             | *           | *              | *         | *          | *           | *              | *          | *    | *    | *        | * •          | * +         | k a   | 1 × × C      | : *       | *          | *             |                   | <b>J</b> 1 |             | * +    | k *            | *            | *          | *            | 2**E     |          | L* * 9     | K<br>K     | чД                | υĵ.              | *          | K            |
|                           |        |      |              |          |              |            |            |       |               |               |             |                |           |            |             |                |            |      |      |          |              |             |       |              |           |            |               |                   |            |             |        |                |              |            |              |          |          |            |            |                   |                  |            |              |

| 日日                                 |                         |              |           |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      |            |           |                       | -           |          |                  |                |                |
|------------------------------------|-------------------------|--------------|-----------|---------------|------------|------------|----------|------------------|---------------|---------|------------|---------------|------|--------------|------------|---------------|------------|---------|------------|-----------------------|------|------------|-----------|-----------------------|-------------|----------|------------------|----------------|----------------|
| Q/N DISTANCE<br>KM                 | 000                     | 60           | 61        | 61            | 61<br>61   | 9,0        | 63.6     | 93<br>93         | 65            | 67      | 67         | 67            | 89   | 92           | 71         | 71            | 71         | 71      | 71         | 71                    | 71   | 71         | 73        | 73                    | 77          | 88       | 8 8              | 92             | 8 8 8          |
| Q/N E                              |                         | 31           |           | Ċ             | ۵۶<br>۲    | *          | A        | <b>B</b>         | σ             | Д       | ω -        |               | H    |              |            | * *           | :<br>h     |         | B<br>12    | 10                    | t    |            | m ;       | 10                    | 10          | *<br>a v | ;<br>,           | *<br>'U        | н              |
| CE                                 |                         | ΩE           | ı A       |               |            |            | ·        | <br>Гъ           |               | •       | Þ          | 4             |      | ŭ.           |            |               | ,<br>4 F4  | •       | _          |                       |      | '~         |           |                       |             | · ·      | TL.              | <u> </u>       |                |
| 년<br>코                             | 511<br>511<br>511       | 511          | 511       | 511           | 511        | 511<br>511 | 511      | 511<br>511       | 511           | 511     | 511        | 511           | 511  | 511<br>511   | 511        | 511           | 511        | 511     | 511<br>511 | 511                   | 511  | 511        | 511       | 511<br>511            | 511         | 511      | 511              | 511<br>511     | 511<br>511     |
| WUI                                |                         |              |           |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      |            |           |                       |             |          |                  |                |                |
| DTSVNWUI                           |                         |              |           |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      |            |           |                       |             |          |                  |                |                |
| INT<br>MAX D                       |                         | I A          | VI<br>VI  |               | > :        | > A        | 2:       | > H<br>H H       | <u>-</u>      | ; >     | ļ-         | ! <b>&gt;</b> | > ⊦  | -i ⊳         | ;          | <b>&gt;</b> T | Ν          | ;       | <u> </u>   |                       | ΔI   | ΙΛ         | >         | ٥                     |             | H₽       | i A i            | нн             | >>             |
|                                    | AAA                     |              |           |               |            | П          | P-1 F    | 7 🖺              | 111           | 1       | 111        | i             | F    | 777          | ,          | 7             | н          | ,       | -1 h-      | 1 1                   | Н    | н          |           |                       |             | H A      | IHI              |                | >>             |
| INT                                |                         | PDE          | USE       |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      |            |           |                       |             |          |                  |                |                |
| !<br>!<br>!                        | BLA<br>BLA<br>BLA       |              |           | DNG           | e e        | BLA        | ţ        | BLA              | EPR<br>BLA    | GB      | EPR        | BLA           |      |              | BOL        | BLA           | BLA        | BLA     | SLM        | EPR                   | БГА  |            | GB        | BLA                   |             |          | BLA              | BLA            |                |
|                                    | M N N                   |              |           | MB<br>MB      |            | 3          | ٤        |                  |               |         | MR         | $C\Gamma$     |      |              | æ          | LG            |            |         |            |                       | 2    |            | ე<br>გ    |                       |             |          | ₩<br>W           | æ              |                |
| LOCAL                              | 2.70<br>2.90<br>2.70    |              |           |               | 4.5        | •          | ~        | 3.84             | ω. <u>r</u> . |         | ٠          | 3.60          |      |              | 3.50       | 5             | •          | ٠.<br>د | . ω        | 3.75                  | ₹.   |            | 3.4<br>20 |                       |             |          | 3.30             | 2.70           |                |
| MAGNITUDES<br>OTHER LOCAL          | Ą                       | Ą            | Ę         | Ħ             | ĸ          | ⊈          |          |                  | Ø             |         |            | Ą             |      | Æ            |            |               |            |         |            |                       |      |            |           | Æ                     | ບ           |          |                  |                |                |
| GNITUD<br>OTHER                    | 0 BLA                   | BLA          |           | - KÖ <u>.</u> | b<br>1     | >          |          |                  | 80 BLA        |         |            | 0 BLA         |      | BLA          |            |               |            |         |            | Ę                     |      |            |           | 0 BLA                 |             |          |                  |                |                |
| MAGN                               | 2.70                    | ъ.           | L         | ο.<br>Ο       | <b>-</b>   | o.         |          |                  | 3.8           |         |            | 3.70          |      | 3.1          |            |               |            |         |            | 0                     | ٠    |            |           | 3.5                   | ۳.          |          |                  |                |                |
| MS                                 |                         |              |           |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      |            |           |                       |             |          |                  |                |                |
|                                    | 000                     | •            |           |               | c          |            |          |                  |               |         |            | _             |      |              |            |               |            |         |            | _                     |      |            |           | _                     |             |          |                  |                |                |
| Ą                                  | 3.20                    | •            |           |               | 7.5        |            | 3.4      |                  |               | 3.4     |            | 3.40          |      |              |            |               |            |         |            |                       | . œ  | <br>       | •         | 3.80                  |             |          |                  |                |                |
| LH                                 | 0000                    | m            | _         |               | 0.0        |            | _        | ♥ <              |               |         |            |               |      | _            | _          |               |            |         |            |                       |      |            |           |                       |             |          |                  |                |                |
| DEP'<br>KM                         | 00,00                   | Ω 0,         | -         | -1            |            | •          | 72       | 4.               | r 🗸           |         | 25         | -             |      | 10           | <b>-</b>   |               |            | ന       | m          | ۰ ۳                   | 33   | 33         | 4 4       | 13                    | 33          |          |                  |                |                |
| rude                               | 63                      | 4.0          | 2         | 80M           | 38 W       | ≥;         | ₩<br>00₩ | സസ               | າຕໍ່          | യ യ     | 259W       | Ω             | 3    | 92W          | <b>8 8</b> | 3             | M00        | M86     | M86        | M00                   | *    | <b>≥</b> ≥ | 4 CJ      | 21W                   | •           |          | % %<br>00        | 00             | <b>₹</b> ≯     |
| TON<br>ONGE                        | 80.5<br>80.1<br>80.1    | 300          | , a       | :             | <u>.</u>   | :          | -: -:    | <u>.</u>         | : -:          |         | : ::       | <u>.</u>      | : _: | <i>-</i> : - | : .:       | _:            | <u>.</u> _ | : -:    | _:         | -: -:                 | : -: | <u>.</u> . | : -:      | _:                    | <u>.</u> _  | • -•     | 79.8<br>80.6     | • •            | 79.            |
| LOCATION<br>SEC LATITUDE LONGITUDE |                         |              |           |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      | 22         |           |                       |             |          |                  |                | 3 2            |
| L                                  | .460N<br>.908N<br>.907N | ກຸດາ         |           | . ~           | ო ო        | ی د        | نمن      | <b>س</b> س       | . m. a        | ນ ຕ     | <u>س</u> ، | ო დ           | ω.   | 96.          | r co       | 4.0           | ∞ ⊲        | 'n      | സ്         |                       | 4    | 4. α       | 900       | _                     | - ~         |          | N 00             | 800            |                |
| LAT                                | 2222                    | ., ., .      | 7 (-7 (-7 | ,,            | .,, .,     | (,) (,     | , (*)    | G 33             | 1 (*) (       | ני) ניי | (7)        | ייז ניי       | m    | m c          | חח         | സ             | <i>.</i>   | ואו     | സ          | 4 32<br>V 33          | m ·  | <u>ო</u> ო | 4 32      | m                     | 2 K         | m        | V 34<br>G 32     | m c            | 9 6            |
| SEC                                | 39.9V<br>15.3V          | ი ო          | 30.0      | . 6           |            |            |          | C                | 0.0           | ა ო     | 5.6        | ر.<br>د       |      | ٠,٠          |            | ٠,            |            | 7.5     | 7.5        | 7.5                   | 0.1  | 0.<br>     | 2.5       | 2.5                   | ς.          | 0,       | - 0              |                |                |
| TIME                               | 53<br>39                | იდი          | ္ ထ ထ     | Д,            |            | ω <b>s</b> | מויל     | ທ ທ              | 10 1          | ===     | ١٥.        | c#I           | ស    | 200          | 2 (4       |               | 7.7        | 0       | 0          | 0 0<br>70<br>70<br>70 | 4.   | 4 4        | 4         | 4.                    | 40          | 20       | 030              | 03             | 47 4           |
| HR                                 | 002                     | 160          | 90        | 23            | 233        | 12         | 12       | 7<br>7<br>7<br>8 | 20            | 127     | 20         | 7.7           | 00   | 0.0          | 010        | 5             | TO         | 04      | 04         | 04                    | 60   | 0 0        | 60        | 60                    | 0.0         | 01       | 0<br>0<br>7<br>0 | 04             | 12             |
| λO.                                | 07                      | • • • •      |           |               |            | <b>–</b> 1 | . –      | ,,               |               |         | (.) 4      |               | Π.   | ., -         | 1 (-1      | П,            | 7 (        | (A      | CA +       | -1 CV                 | CAL  | W ()       | (         | (4)                   | 40          | 0        | - 0              | 0 -            | 4 —            |
| DATE                               | 72 02<br>90 02<br>90 06 | # <b>~</b> G | , , ,     | ~ ~           | o o<br>∾ ∾ | <b>м</b> - |          |                  |               |         |            | - A           |      | o c          | . ~        | - 6           | > O        |         | 0          |                       |      |            | ١,        | - ·                   | - 0         | 0        |                  | 00             | -              |
| YR                                 | 1997                    | ה סה ס       | 999       | 0 6           | , ס        | 90         | , 60     | 9 9              | 9             | 2 0     | 6          | מם ב          | 6    | בי ני        | . 6        | 2             | 2 C        | 7       | ζ,         | 20                    | 9    | စ် ဇ       | 9         | 9                     | 인다          | $\Xi$    | ᅼᅼ               | $\Xi^{\alpha}$ | 9              |
| SOURCE<br>P                        | *BLA<br>*BLA<br>*BLA    | PDE          | PDE       | *DNA          | STO        | STO        | BLA      | STO              | BLA           | DINA    | PDE        | USN           | nsn  | PDE          | ST.        | STO           | BLA<br>BLA | STO     | BLA        | BLA                   | PDE  | NSD        | NA        | BLA                   | USN<br>CISN | STO      | STO              | 3LA            | PDE            |
| SOUP                               | * * * *                 |              | 1 * * ]   | * 1           | K *        |            | 1**]     | 1 * * 1          | * *           | *       | * *        | :<br>:        | 1**[ | <b>}-</b> -  | . 01       | *             | * *        | *       | * *        | *                     | * 1  | K<br>K     | *         | 2×+<br>+ × +<br>+ × + | ;           | * * * *  |                  | 1**E           | , 1,<br>*<br>* |
|                                    |                         |              |           |               |            |            |          |                  |               |         |            |               |      |              |            |               |            |         |            |                       |      |            |           |                       |             |          |                  |                | •              |

| F-E CE Q/N DISTANCE<br>KM          | . * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 166T TO |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Ε<br>Ε                             | * о о н о ф и т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0     |
| ы<br>Б                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7       |
| DTSVNWUI                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| INT                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| INT                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                    | BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA<br>BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| LOCAL                              | 70 MB<br>50 MB<br>75 MI<br>00 CL<br>00 CL<br>20 ML<br>40 CL<br>40 CL<br>40 CL<br>40 CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| ļ                                  | 3.50<br>3.50<br>3.50<br>3.30<br>3.30<br>4.4<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| MAGNITUDES<br>MS OTHER             | 3.00 BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| QW.                                | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| DEPTH<br>KM                        | 33<br>112<br>5<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| LOCATION<br>SEC LATITUDE LONGITUDE | 80.6 W<br>81.1 W<br>81.096W<br>81.096W<br>81.000W<br>80.2 W<br>80.2 W<br>80.2 0W<br>80.200W<br>80.200W<br>81.200W<br>81.200W<br>81.300W<br>81.300W<br>81.300W<br>81.300W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| LOCA                               | 20 NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| ATIT                               | 333.22<br>333.22<br>333.22<br>333.22<br>333.22<br>333.22<br>333.22<br>333.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| SEC I                              | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| TIME                               | 00 00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| HR 1                               | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| DY                                 | 11000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| DATE                               | 440 440 440 440 440 440 440 440 440 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| CE YR                              | 11843<br>11843<br>118443<br>1199644<br>1199643<br>1199633<br>1199633<br>1199633<br>1199633<br>1199633<br>1199633<br>1199633<br>1199633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| SOURCE<br>DUP                      | STO<br>1**BLA<br>1**STO<br>2**BLA<br>WES<br>3**USN<br>1**STO<br>2**USN<br>3**USN<br>3**DNA<br>4**BLA<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**STO<br>1**S |         |

## REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blank)                                                                                          | 2. REPORT DATE                                     | 3. REPORT TYPE       | AND DATES COVERED                                                    |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------------------------------------------------------|
|                                                                                                                           | May 1998                                           | Final report         |                                                                      |
| 4. TITLE AND SUBTITLE  Geological-Seismological Evaluati Powerhouse, Cooper River Rediver Newmark-Sliding-Block Type Defe | on of Earthquake Hazar<br>rsion Project, South Car | olina, and           | 5. FUNDING NUMBERS MIPR No. W81D4A72185172                           |
| 5. AUTHOR(S) Ellis L. Krinitzsky, Mary E. Hynes                                                                           | , Donald E. Yule, Richa                            | rd S. Olsen          |                                                                      |
| 7. PERFORMING ORGANIZATION NAME U.S. Army Engineer Waterways Ex 3909 Halls Ferry Road Vicksburg, MS 39180-6199            |                                                    |                      | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER Technical Report GL-98-4 |
| 9. SPONSORING/MONITORING AGENCY<br>U.S. Army Engineer District, Charl<br>P.O. Box 4970<br>Charleston, SC 29402-0919       |                                                    | S(ES)                | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER                       |
| 11. SUPPLEMENTARY NOTES  Available from National Technica                                                                 | ll Information Service, 5                          | 285 Port Royal Road, | Springfield, VA 22161.                                               |
| 12a. DISTRIBUTION/AVAILABILITY STA' Approved for public release; dist                                                     |                                                    |                      | 12b. DISTRIBUTION CODE                                               |
| 13. ABSTRACT (Maximum 200 words)                                                                                          |                                                    |                      |                                                                      |

An evaluation of the geological-seismological hazard was conducted at the St. Stephen Powerhouse Project, which is part of the cooper River Rediversion Project in South Carolina. The project is located about 60 km north of Charleston, SC, and consists of a reinforced concrete powerhouse structure founded on rock, flanked by rolled-fill earth embankments, founded partially on rock and partially on alluvium. For the purposes of this study, the alluvium is assumed to be competent, not susceptible to liquefaction. The Maximum Credible Earthquake (MCE) is estimated to correspond to a magnitude 7.5 event, 55 km from the site, resulting in peak ground accelerations at the site of 0.32 and 0.35 g. The Operating Basis Earthquake (OBE) is estimated to correspond to about a magnitude 5 event, resulting in a peak ground acceleration of 0.04 to 0.05 g at the site. The Newmark-sliding-block analyses indicate deformations in the maximum section under the MCE will be negligible, less than 1 cm. However, deformation under retaining walls and embankments founded on natural ground may be on the order of 15 to 35 cm.

| 14. SUBJECT TERMS                                                     |                                           |                                         | 15. NUMBER OF PAGES        |
|-----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------|
| Dynamic response                                                      |                                           | g-block analysis                        | 134                        |
| Earthquake engineering<br>Embankment dams<br>Maximum Credible Earthqu | Retaining walls<br>Seismic hazard<br>aake |                                         | 16. PRICE CODE             |
| 17. SECURITY CLASSIFICATION OF REPORT                                 | 18. SECURITY CLASSIFICATION OF THIS PAGE  | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF ABSTRACT |
| UNCLASSIFIED                                                          | UNCLASSIFIED                              |                                         |                            |