1

a

True

Let L is a finite language, and Let |L| = n, for some $n \ge 0$

For n = 0, $L=\phi$ and it is regular.

For n > 0,

lets , $L=\{a_1,a_2,a_3,....a_n\}$ where a_k for $k\geq 1$ is the individual string in L.

Now, for each string $a_k \in L$ we generate a new Language, $L_k = a_k$ for $k \geq 1$.

We can draw a DFA for a language that has a single string, therefore all L_k for $k \geq 1$ is regular.

Since, $L = L_1 \cup L_2 \cup \cup L_k$ and set of regular language is closed under Union operation. therefore L is a regular language.

b

False

We will disprove the satement with an example,

Let, $L = \{W \in \{0,1\}^* | \text{ W contains an even number of 0's} \}$

This is a regular language as we have constructed a DFA for this language, in Lecture 7, but it is a infinite language.

Therefore there exists a regular language that is finite.

C

False

We will disprove the satement with an example,

Language of all binary string is regular, we can draw a DFA. with one state.

 $L = \{W \in \{0,1\}^*\}$, L is regular. As shown by the DFA below.

DFA:

But $L'=\{W\in\{0,1\}*|W=0^k1^k, \text{for }k\geq 0\}$ is not regular though $L'\subset L$ Hence the statement is false.

d

False

We will disprove the satement with an example,

Lets consider infinitely many language with only one string, Such that, $L_k=0^k1^k$ where, $k\geq 0$, For All $k\geq 0$ such L_k is regular as a language with one string is regular.

But if we take union of such infinite number of language where, $L=L_0\cup L_1\cup L_2\cup L_3\cup.....=\{W\in\{0,1\}*|W=0^k1^k,\text{for }k\geq 0\}$ Which we have proved that a non regular language in lecture 10.

Hence the statement is false.

е

True

Let, We have n regular languages, $L_1,L_2,L_3,.....,L_n$ We consider , $L=L_1\cup L_2\cup L_3\cup.....\cup L_n$ Since, Regular language are closed under union, therefore L is regular

f

False

We will disprove the satement with an example,

NFA 2 is generated from NFA 1 using the algorithm described in the statement.

Here If we pick a string x=0 then x is accepted by both the NFA's. Hence NFA 2 is not valid NFA for complement of L where L is accepted by NFA 1.

g

False

We will disprove the satement with an example,

$$L = \{00, 1, 10, 11\}$$

$$B = 1$$

$$X = 0$$

Accordign to definition string Equivalence, \forall ,X if $AX \in L$ if and only if $BX \in L$, but in our example, $AX \notin L$ but $BX \in L$, Hence the statement is false.

2

a

$$\mathscr{L}(M) = \{W \in 0, 1^* | W \ has \ no \ consecutive \ 0's \}$$

b

We will reference this diagram for our proof. This DFA is constructed from the given DFA description.

After running the DFA on input W, the following three Invariants are true.

Invariant 1: If the current state is A, then W has no consecutive 0's and if $|W| \geq 1$ then, the last symbol of Y is 1

Invariant 2: If the current state is B, then W has no consecutive 0's and last symbol of W is 0.

Invariant 2: If the current state is C, then ${\it W}$ has at least one instance of consecutive 0's.

We will prove that the, the DFA accepts if $W \in \mathscr{L}(M)$

Proof:

We proceed by induction on the length of W.

Base case

For the base case, $W=\epsilon$, notice that we are in A and W has no 2 consecutive 0's. hence out invariant 1 is true.

When $W = \epsilon$ we are not in state B and C, so invariant 2 and 3 are vacuously true.

Induction hypothesis

Assume that, after running the DFA on any string Y of length $k \geq 0$, the following statements are true:

- 1. If the current state A, then Y has no consecutive 0's and if $|Y| \geq 1$ then, the last symbol of Y is 1.
- 2. If the current state B, then Y has no consecutive 0's. Last symbol of Y is 0.
- 3. If the current state C, then Y has at least one consecutive 2 0's.

Inductive step

Let's consider a string W of length k+1, such that, $W=Y\cdot z$, where z is the final symbol of W.

Invariant 1

Suppose that after reading $W = Y \cdot z$, the current state is A,

From the diagram of machine, we conclude that the machine was in state A or B after reading Y, For z = 1, we consider,

Case 1: consider the machine was in State A,

By induction hypothesis, Y has no consecutive 0's, hence $W=Y\cdot z$ also has no consecutive 0's.

Case 1: consider the machine was in State B,

By induction hypothesis, Y has no consecutive 0's, hence $W=Y\cdot z$ also has no consecutive 0's.

Invariant 2

Suppose that after reading $W = Y \cdot z$, the current state is B,

From the diagram of machine, we conclude that the machine was in state \boldsymbol{A} after reading \boldsymbol{Y} ,

For z = 0,

By induction hypothesis,

Y has no consecutive 0's and the last symbol of Y is 1. therefore, $W=Y\cdot z$ has no consecutive 0's.

Invariant 3

Direct Proof: Suppose that after reading $W = Y \cdot z$, the current state is C,

There 2 cases of z for which we can be in state c

Case 1

z = 0

From the diagram of machine, we conclude that the machine was in state B or C after reading Y,

- Case 1.1 (machine was in state B)
 - \circ By induction hypothesis, Y has no 2 consecutive 0 and the last symbol of the string is 0.
 - \circ Since z = 0, $W = Y \cdot z$ has at least one consecutive 0's.
- Case 1.2 (machine was in state C)
 - $\circ\,$ By induction hypothesis, Y has at least one consecutive 2 0's.
 - \circ therefore $W=Y\cdot z$ also has at least one consecutive 2 0's.

Case 2

z = 1

From the diagram of machine, we conclude that the machine was in state C after reading Y,

By induction hypothesis Y has at least one consecutive 0's.

therfore $W=Y\cdot z$ has at least one consecutive 0's.

Hence by induction principle all the invariants are proved.

- ullet From the machine description we see that the accepting states are $A,\ B$
- We proved invariant 1: if the machine is in state A, then the string has no consecutive 2 0's.
- We proved invariant 2: if the machine is in state **B**, then the string has no consecutive 2 0's.
- We proved invariant 3: if the machine is in state C, then the string has at least 1 consecutive 2 0's.

In other words M accepts $W \implies W$ has no consecutive 0's, and, M rejects $W \implies W$ has consecutive 0's. Thus proving our statement in part a.

3

a

b

C

4

a

All the Myhill-Nerode equivalence classes induced by L are as follows,

$$egin{aligned} C_1 &= \{W \in \{0,1\}^* | W = 1^k \ where \ k \geq 1 \} \ C_2 &= \{W \in \{0,1\}^* | W = \epsilon \} \ C_3 &= \{W \in \{0,1\}^* | W = 0^k \ where \ k \geq 1 \} \ C_4 &= \{W \in \{0,1\}^* | W = 1^k 0 \ where \ k \geq 1 \} \ C_5 &= \{W \in \{0,1\}^* | W = 1^k 0 \ where \ k \geq 1 \} \end{aligned}$$

Two prove these are the Myhill-Nerode equivalence classes of L, We need to prove that,

- 1. All strings in C_1 are equivalent to each other with respect to L.
- 2. All strings in C_2 are equivalent to each other with respect to L.
- 3. All strings in C_3 are equivalent to each other with respect to L.
- 4. All strings in C_4 are equivalent to each other with respect to L.
- 5. All strings in C_5 are equivalent to each other with respect to L.
- 6. There exists, a string in C_1 , that is not equivalent to C_2 with respect to L.
- 7. There exists, a string in C_1 , that is not equivalent to C_3 with respect to L.
- 8. There exists, a string in C_1 , that is not equivalent to C_4 with respect to L.
- 9. There exists, a string in C_1 , that is not equivalent to C_5 with respect to L.
- 10. There exists, a string in C_2 , that is not equivalent to C_3 with respect to L.
- 11. There exists, a string in C_2 , that is not equivalent to C_4 with respect to L.
- 12. There exists, a string in C_2 , that is not equivalent to C_5 with respect to L.
- 13. There exists, a string in C_3 , that is not equivalent to C_4 with respect to L.
- 14. There exists, a string in C_3 , that is not equivalent to C_5 with respect to L.
- 15. There exists, a string in C_4 , that is not equivalent to C_5 with respect to L.

We will use the following statement to check if a String belongs in L or not.

If a string is of the form 0^n where $n \geq 0$ or of the form 1^m0 where $m \geq 1$ then the string is in L.

Proof: All strings in C_1 are equivalent to each other with respect to L.

Let A and B be 2 arbritary string in C_1 ,

Consider string X, where

case 1 X is of the form 1^k0 where $k\geq 0$

then both AX and BX are of the form 1^m0 where $m\geq 1$

therefore, AX and $BX \in L$

case 2 X is not of the form 1^k0 where $k\geq 0$

then none of the AX or BX are of the form 1^m0 where $m\geq 1$ or 0^n where $n\geq 0$ therefore, AX, $BX\notin L$

This concludes the proof that an arbitrary A and B from C_1 are equivalent with respect to L.

Proof: All strings in C_2 are equivalent to each other with respect to L.

Since C_2 has only one element therefore the statement is vacuously true

Proof: All strings in C_3 are equivalent to each other with respect to L.

Let A and B be 2 arbritary string in C_3 ,

Consider string X, where

case 1 $X \in \{W \in \{0,1\}^* | W = 0^n \text{ for } n \ge 0\}$

then both AX and BX are of the form 0^m where $m \geq 0$ and thus $AX, BX \in L$ case 2 X contains at aleast one 1 as symbol.

then none of the AX or BX are of the form 1^m0 where $m\geq 1$ or 0^n where $n\geq 0$ therefore, both AX and BX are not in L, as for a string starting with 0 can only contain 0, but X has at least 1 and thus both AX and BX at least one or more 1 and L has no such string.

This concludes the proof that an arbitrary A and B from C_3 are equivalent with respect to L.

Proof: All strings in C_4 are equivalent to each other with respect to L.

Let A and B be 2 arbritary string in C_4 ,

Consider string X, where

case 1 X = ϵ

then both AX and BX are of the form $\mathbf{1}^m\mathbf{0}$ where $m\geq 1$

case 2 X a non empty string,

then none of the AX or BX are of the form 1^m0 where $m\geq 1$ or 0^n where $n\geq 0$

therefore, both AX and $BX \notin L$

This concludes the proof that an arbitrary A and B from C_4 are equivalent with respect to L.

Proof: All strings in C_5 are equivalent to each other with respect to L.

Let A and B be 2 arbritary string in C_5 ,

Consider an arbritary string X,

then none of the AX or BX are of the form 1^m0 where $m\geq 1$ or 0^n where $n\geq 0$

i.e. for all X AX and $BX \not\in L$

This concludes the proof that an arbitrary A and B from C_5 are equivalent with respect to L.

Proof: There exists, a string in C_1 , that is not equivalent to C_2 with respect to L.

We chose, A = 11 from C_1 and B = ϵ from C_2 ,

for $X = \epsilon$

 $A\cdot X\notin L$

 $B \cdot X \in L$

therfore, C_1, C_2 forms seperate equivalence class

Proof: There exists, a string in C_1 , that is not equivalent to C_3 with respect to L.

We chose A = 11 from C_1 and B = 00 from C_3 ,

for X = 00

 $A \cdot X \notin L$

 $B \cdot X \in L$

therfore, C_1, C_3 forms seperate equivalence class

Proof: There exists, a string in C_1 , that is not equivalent to C_4 with respect to L.

We chose A = 11 from C_1 and B = 110 from C_4 ,

for X = 0

 $A \cdot X \in L$

 $B\cdot X\notin L$

therfore, C_1, C_2 forms seperate equivalence class

Proof: There exists, a string in C_1 , that is not equivalent to C_5 with respect to L.

We chose A = 11 from C_1 and B = 101 from C_5 ,

for X = 0

 $A \cdot X \in L$

 $B \cdot X \notin L$

therfore, C_1, C_5 forms seperate equivalence class

Proof: There exists, a string in C_2 , that is not equivalent to C_3 with respect to L.

We chose A = ϵ from C_2 and B=0 from C_3 ,

for X = 10

 $A \cdot X \in L$

 $B \cdot X \in L$

therfore, C_2, C_3 forms seperate equivalence class

Proof: There exists, a string in \mathcal{C}_2 , that is not equivalent to \mathcal{C}_4 with respect to L.

We chose A = ϵ from C_2 and B = 10 from C_4 ,

for X = 0

 $A \cdot X \in L$

 $B\cdot X\notin L$

therfore, C_2, C_4 forms seperate equivalence class

Proof: There exists, a string in \mathcal{C}_2 , that is not equivalent to \mathcal{C}_5 with respect to L.

We chose A = ϵ from C_2 and B = 101 from C_4 ,

for X = 0

 $A\cdot X\in L$

 $B \cdot X \notin L$

therfore, C_2, C_5 forms seperate equivalence class

Proof: There exists, a string in C_3 , that is not equivalent to C_4 with respect to L.

We chose A = 00 from C_3 and B = 10 from C_4 ,

for X = 0

$$A \cdot X \in L$$

$$B \cdot X \notin L$$

therfore, C_3, C_4 forms seperate equivalence class

Proof: There exists, a string in C_3 , that is not equivalent to C_5 with respect to L.

We chose A = 11 from C_3 and B = 101 from C_5 ,

for
$$X = 0$$

$$A \cdot X \in L$$

$$B \cdot X \notin L$$

therfore, C_3, C_5 forms seperate equivalence class

Proof: There exists, a string in \mathcal{C}_4 , that is not equivalent to \mathcal{C}_5 with respect to L.

We chose 10 from C_4 and 101 from C_5 ,

for
$$X = \epsilon$$

$$A \cdot X \in L$$

$$B\cdot X\notin L$$

therfore, C_4, C_5 forms seperate equivalence class

Thus we have proved that, C_1, C_2, C_3, C_4, C_5 are the 5 Myhill-nerode equivalence classes induced by the given L.

b

The smalled DFA of L has 5 states.

We are drawing the corresponding DFA with 5 states.

