

Proyecto Farmacocinética Poblacional Piperacilina en Unidades de Cuidado Intensivo

Daniel S. Parra González

Bogotá, agosto de 2018

Farmacocinética en pacientes de UCI

En pacientes internados en unidades de cuidado intensivo (UCI) existen cambios fisiopatológicos que alteran el comportamiento PK.

Por tal, la extrapolación de estudios de voluntarios sanos es inapropiada para maximizar el beneficio terapéutico.

Las manifestaciones de la enfermedad pueden alterar V_D y Cl_T que puede causar sobre- o subexposición de un antibiótico.

Para conocer el efecto de un estado fisiopatológico en la disposición es importante hacer una clasificación de los antibióticos por propiedades FQ:

- -**Hidrofílicos**: aminoglicósidos, β-lactámicos, polimixinas, glicopéptidos, lipopéptidos, lipoglicopéptidos, y fosfomicina.
- -Lipofílicos: fluoroquinolonas, glicilciclinas, lincosamidas, macrólidos, metronidazol, oxazolidinonas, rifampicina.

Aumento en Volumen de Distribución

Sólo en antibióticos hidrofílicos

En paciente crítico el $V_{\rm D}$ se puede alterar con cambios en ECF. Este es ~15-20 L en pacientes sanos, y cambios de 5-10L son sustanciales.

Sepsis y choque séptico:

Respuesta fuera de regulación del hospedero a la infección. Hay ruptura capilar que permite transferencia de albumina a los tejidos lo que \uparrow V_D .

Las D_L deben ser mayores para tener efectividad (relevante en el caso de aminoglicósidos por tener índice C_{max}/MIC .

Hipoalbuminemia:

Puede ser causada por sepsis, por \downarrow producción (envejecimiento, cáncer, malnutrición, enf. Hepática), o por \uparrow eliminación (quemaduras extensas, o síndrome nefrótico).

Causa \uparrow V_D (10-624%) en fármacos con f_U = 15-20% por el aumento de la fracción libre. Se ha reportado con CFT, DPT, ETP, flucoxacilina y teicoplanina. Se altera también CL_R por lo que se debe vigilar D_M

Efusiones pleurales, pericárdicas, y peritoneales:

Se da el fenómeno del 'tercer espacio', se da un $\uparrow V_D$ consistente. Se han reportado casos de efus. pleurales con $\uparrow V_D$ para AG y MEP. En pacientes terminales con ascitis en AG y β -lactámicos. También se puede dar en drenajes quirúrgicos con PIP y MEP.

Aumento en Eliminación Renal

Sólo en antibióticos hidrofílicos

El mecanismo común podría ser un \uparrow Flujo Sanguíneo Renal que lleva a \uparrow TFG y \uparrow secreción tubular. Se ha definido el clearance renal aumentado (ARC) cuando se tiene CrCL > 130 mL/min

Circulación hiperdinámica:

En la fase temprana de sepsis se puede dar $GC(\uparrow) \to RBF(\uparrow) \to hiperfiltración glomerular y ARC. La consecuencia es <math>CL_R(\uparrow)$ de antibióticos frente a voluntarios sanos. Se ha observado en DPT, VAN y MEP. Es un factor que puede causar falla de la terapia con β-lactámicos.

Daño cerebral traumático o no traumático:

Hasta 85-100% de pacientes con traumatismos tienen ARC durante la primera semana en la UCI. Podría estar causado por cambios CV o ANP(\uparrow). Se ha observado su efecto en VAN con necesidad de incremento del doble D_M .

Leucemia aguda / Neutropenia Febril:

El ARC es común en paciente con neoplasias hematológica, se cree estar causado en el periodo post-quimioterapia por lisis celular → carga proteínica alta → hiperfiltración glomerular.

En el caso de NF puede estar dado por GC(个) e hiperfiltración causados por SIRS. Se ha observado con VAN y PIP. Es común, la presencia de hipoalbuminemia en estos pacientes por lo cual se debería hacer TDM.

Quemaduras severas:

Las quemaduras con compromiso > 30% TBSA pueden afectar mucho la PK. Se puede dar por el daño térmico y la respuesta sistémica (cambios hemodinámicos).

En la fase aguda (< 48 hrs) se puede dar cambios de albumina, con hipovolemia, RBG(\downarrow), TFG(\downarrow). No se deben hacer cambios en dosificación por que bajo CL_T se ve compensado por eliminación por la herida.

En la fase hipermetabólica, se tiene una respuesta sistémica, con GC(\uparrow), RVP(\uparrow), TFG(\uparrow). En esta fase el ARC hace que CL_T (\downarrow), el efecto es dramático en β-lactámicos.

Disminución en Eliminación Renal

Sólo en antibióticos hidrofílicos

Falla Renal Aguda:

Es un factor que puede complicar la sepsis, es causada por la respuesta inflamatoria y disfunción microcirculatoria.

Este fenómeno puede alterar la disposición en fármacos con eliminación renal (en donde, $CL_T \propto CrCL$).

La función renal varía mucho día a día por lo cual debe evaluarse cada 24 hrs y preferiblemente con la eliminación urinaria de Cr por 24 horas.

Se recomienda realizar ajustes de dosis en pacientes con CrCL < 50 mL/min en casos con IT bajos.

El ajuste se hace manteniendo D_M aumentando τ en agentes concentración dependientes (para $\uparrow C_{max}/MIC$) como vancomicina.

En el caso de agentes tiempo-dependientes (β -lactámicos) se \downarrow D_M conservando τ .

Piperacilina y Tazobactam

1 Piperacilina

2 Tazobactam

Mecanismo de acción de antibióticos beta-lactámicos

Distribución de Piperacilina

•Absorción: nula por vía oral; 75% por vía IM

•Distribución:

 $-V_D = 11.9-15.8L -> 16-21\%$ Masa corporal

 $-f_{\rm u}$ = 75%

-Buena penetración en tejidos.

•Metabolismo: hepático sólo 6-9%

•Excreción:

-Renal: 50-60%, mecanismos de filtración y

secreción

-Biliar: 2%

Metabolismo de Piperacilina

Indicaciones Aprobadas

Modelos Farmacocinéticos Convencionales (2)

	Tino	Nº Pacientes	Dosis (PIP/TAZ]	Tiempo de Infusión	Vd	CL	t _{1/2}
	Tipo	N- Pacientes	Dosis (FIF/TAZ]		<u>L</u>	mL/min	<u>Horas</u>
Evans MAL, et al. (1]	Voluntarios	4	15 mg/kg	3 min	30.5 (7]	NR	1.37 (0.4]
	Sanos	4	30 mg/kg	3 min	27.5 (6]	NR	1.50 (0.7]
		4	60 mg/kg	3 min	21.2 (3]	NR	1.30 (0.2]
Tjandramaga TB, et	Voluntarios	5	1000mg	3 min	Vc = 14.5 (1.3]	408.6 (16.8]	$\beta = 0.60 (0.05]$
al. (2]	Sanos	5	2000mg	3 min	Vc = 10.9 (1.3]	301.8 (32.3]	$\beta = 0.90 (0.08]$
		5	4g	3 min	Vc = 11.2 (1.9]	254.2 (19.3]	β = 1.02 (0.05]
		5	6000mg	3 min	Vc = 11.9 (1.6]	209.6 (8.30]	β = 1.05 (0.07]
Sörgel F, Kinzig M.	Voluntarios Sanos	6	4g	30 min	11.9 (12]	240 (17]	0.87 (9]
(3]		6	4.5mg	30 min	12.3 (7]	242 (8]	0.83 (14]
		6	4.5mg	5 min	15.8 (16]	229 (8]	1.14 (20]
Richerson MA, et al. (4]	Voluntarios Sanos	11	4.5mg	30 min	NR	NR	0.81 (0.22]
Auclair B, Ducharme MP. (5]	Voluntarios Sanos	NR	(8000/1000]mg	5 min	Vc = 8.4 (37] g	273.3	NR
		NR	(12000/1500]mg	30 min	Vc = 7.7 (13] g	228.3	NR
		NR	(16000/2000]mg	5 min	Vc = 9.1 (12] g	243.3	NR
		NR	(18000/2500]mg	30 min	Vc = 8.4 (5] g	253.3	NR

Modelos Farmacocinéticos Dos Etapas (3)

Población	No Pacientes	Dosis (PIP/TAZ]	Vd	CL	Ref	
1 Oblacion			L	mL/min	Kei	
No obeso	11	4.5 a 6.75g q8h T. Inf = 4 horas	24.5 [17.1-37.7]	166.3 [48.3]	<i>(</i> 6)	
Obeso	16	4.5 a 6.75g q8h T. Inf = 4 horas	32.5 [19.8-69.8]	220 [70]	(6]	
Fibrosis quística	8	4.5g q8h T. Inf = 5 min	V ₁ = 6.6 (5.6-7.7]	190 [175-205]	(7]	
Sano	26	4.5g q8h T. Inf = 5 min	V ₁ = 7.1 (6.4-8.0]	188.3 [182-195]	(7)	
Neutropenia febril	9	75mg/kg q6h T. Inf = 15 min	V ₁ = 7.7 (5.6]	138.5 [56.5]	(8]	
Neutropenia febril	9	75 mg/kg q6h T. Inf = 30 min	V ₁ = 6.3 (2.8]	101.7 [42.3]	(9]	
Neutropenia febril	16	4.5g q8h NC	23.8 (12.6]	165.5 [115.8]	(10]	
Intrabdominal	8	4.5g q8h T. Inf = 30 min	21 (4.18]	245.8 [65.5]	(11]	
Intrabdominal (Itermitente)	26	13.5 mg/día T. Inf = 24 hrs	22.3 (4.5]	266 [95.2]	(12]	
Intrabdominal (Infusión)	30	3.4mg q6h T. Inf = 30 min	22.4 (6.2]	228.7 [71.8]	(12]	

Modelos Farmacocinéticos Dos Etapas (4)

Población	No Pacientes	Dosis (PIP/TAZ]	Vd L	CL mL/min	Ref
Sano	7	4g q8h T. Inf = 15 min	31.5 (6.3]	457 [137]	
Cirrosis	8	4g q8h T. Inf = 15 min	35 (4.2]	291 [41]	(13]
Cirrosis y ascitis	11	4g q8h T. Inf = 15 min	39.9 (3.5]	243 [29]	
Infecciones nosocomiales	11	4.2mg q8h T. Inf = 4 hrs	V ₁ = 18.9 (9.19]	290 [101.5]	(14]
Sano	6	4.5mg q8h T. Inf = 10 min	NR	NR	(15)
Post-cirugía cardiaca	6	4.5mg q8h T. Inf = 10 min	NR	NR	(15]
Críticamente enfermos	7	4.5mg q8h T. Inf = 15 min	34.6 (6.8]	197 [72]	(16]
Críticamente enfermos, anúricos, CVVHD	8	A necesidad T. Inf = 15 min	21.7 (4.9]	47 [26-220]	(17]
Choque séptico	15	A necesidad T. Inf = 15 min	7.3 {11.8} h	60 [261.7]	(18]

Farmacocinética Poblacional

Fase I - Modelo de Observaciones y Sistema PK/PD (variación intra-individual).

$$\mathbf{Y} = f(\mathbf{x}; \mathbf{t}; \boldsymbol{\beta}) + \boldsymbol{\epsilon}, \qquad j = 1, ..., m$$

 $\boldsymbol{\epsilon} \sim N(0, G(\boldsymbol{\beta}, \boldsymbol{\Phi}))$

Fase II – Modelo de Parámetros (variación inter-individual).

$$\beta_i \sim_{iid} (h(z; \theta), \omega_{\beta_i}^2), \quad i = 1, ..., n$$

El modelo completo es:
$$\mathbf{Y} = f(\beta, \theta, x, z, \epsilon) + \epsilon$$
, $j = 1, ..., m$, $i = 1, ..., n$

El problema de la estimación poblacional involucra la estimación de todos los parámetros

$$p(Y_i, \eta_i | \theta, \Omega, \Sigma) = L_i(\theta, \Omega, \Sigma | Y_i, \eta_i) = p(Y_i | \theta, \Sigma, \eta_i) \cdot p(\eta_i | \theta, \Omega)$$

$$p(Y_i|\theta,\Sigma,\eta_i) = \int p(Y_i|\theta,\Sigma,\eta_i) \cdot p(\eta_i|\Omega) d\eta$$

$$L(\theta, \Omega, \Sigma) = \prod_{i=1}^{n} p(Y_i | \theta, \Omega, \Sigma)$$

Algoritmos Poblacionales

Modelo Base

Estructura del Error

Simple	$\begin{array}{ccc} \sigma^2 & 0 & 0 \\ & \sigma^2 & 0 \\ & & \sigma^2 \end{array}$	Spatial power $\begin{bmatrix} 1 & a^{d_{12}} & a^{d_{13}} \end{bmatrix}$
No estructurada	$egin{array}{cccc} \sigma_{11}^2 & \sigma_{12}^2 & \sigma_{13}^2 \ & \sigma_{21}^2 & \sigma_{23}^2 \ & & \sigma_{33}^2 \end{array}$	Spatial power $\sigma^{2} \begin{bmatrix} 1 & \rho^{d_{12}} & \rho^{d_{13}} \\ & 1 & \rho^{d_{23}} \\ & & 1 \end{bmatrix}$ Spatial exponential $\begin{bmatrix} 1 & \exp\left(-\frac{d_{12}}{\rho}\right) & \exp\left(-\frac{d_{13}}{\rho}\right) \end{bmatrix}$
Simetría compuesta	$\sigma_{1}^{2} + \sigma^{2}$ σ_{1}^{2} σ_{1}^{2} σ_{1}^{2} σ_{1}^{2} $\sigma_{1}^{2} + \sigma^{2}$ $\sigma_{1}^{2} + \sigma^{2}$	$\sigma^{2} \begin{bmatrix} 1 & \exp\left(-\frac{d_{12}}{\rho}\right) & \exp\left(-\frac{d_{13}}{\rho}\right) \\ 1 & \exp\left(-\frac{d_{23}}{\rho}\right) \end{bmatrix}$ $Spatial$ $Gaussian \begin{bmatrix} 1 & \exp\left(-\frac{d_{12}^{2}}{\rho^{2}}\right) & \exp\left(-\frac{d_{13}^{2}}{\rho^{2}}\right) \end{bmatrix}$
AR (1)	σ^2 $\rho\sigma^2$ $\rho^2\sigma^2$ σ^2 σ^2 σ^2 σ^2	Spatial Gaussian $\sigma^2 \begin{bmatrix} 1 & \exp\left(-\frac{d_{12}^2}{\rho^2}\right) & \exp\left(-\frac{d_{13}^2}{\rho^2}\right) \\ & 1 & \exp\left(-\frac{d_{23}^2}{\rho^2}\right) \end{bmatrix}$
Toepliz	$\sigma^2 \sigma_{12}^2 \sigma_{13}^2 \ \sigma^2 \sigma_{23}^2 \ \sigma^2$	

Selección de covariables

Evaluación interna de modelos

Evaluación interna de modelos

Evaluación interna de modelos

Gráfico de Spaghetti SIM ADAPT 180819

Modelos de farmacocinética poblacional (1)

Constitution	Efectos Fij	os	Efector Alectorics		
Condición	CL	V _i , Q _{ij} , ALAG	Efectos Aleatorios	Error Residual	Ref.
Voluntarios	CL _R = 4.40 L/h	V ₁ = 7.00 L	$\omega(CL_R) = 9.62\%$	Proporcional = 12.5%	(1)
sanos	CL _{NR} = 5.70 L/h	$V_2 = 2.95 L$	$\omega(V_{maxR}) = 50.4\%$	Aditivo = 0.447 mg/L	
3 compartm.	$V_{\text{max,R}} = 170 \text{ mg/h}$	$V_3 = 2.71 L$	$\omega(Km_R) = 150\%$		
(n = 4)	$Km_R = 49.7 \text{ mg/L}$	$Q_{12} = 12.7 L/h$	$\omega(V_{ss}) = 13.5\%$		
		$Q_{23} = 1.28 L/h$			<u> </u>
Voluntarios	CL _R = 8.46 L/h	$V_1 = 6.42 L$	$\omega(CL_R) = 39\%$	Proporcional = 13.1%	(2)
sanos ¹	CL _{NR} = 3.40 L/h	$Q_{12} = 14 L/h$	$\omega(CL_{NR}) = 30\%$	Aditivo = 0.31 mg/L	
3 compartm.		$V_2 = 3.63 L$	$\omega(V_1) = 18\%$		
(n = 10)		$Q_{23} = 0.62 \text{ L/h}$	$\omega(V_2) = 40\%$		
		V ₃ = 1.92 L	$\omega(V_3) = 31\%$		
		ALAG = 5 min	(=0) =		(2)
Voluntarios	$\theta_1 = 11.3 \text{ L/h}$	$\theta_3 = 7.01 L$	$\omega(CI) = 74\%$	Proporcional = 13.2%	(3)
sanos y	$\theta_2 = 0.75$	$\theta_4 = 3.37 L$	$\omega(V_1) = 87\%$	Aditivo = 1.88 mg/L	
pacientes con	$CL = \theta_1 \left(\frac{LBM}{53}\right)^{\theta_2}$	Q ₁₂ = 12.8 L/h	$\omega(V_2) = 95\%$		
fibrosis quística	CL = 01 (53)	ALAG = 5 min			
2 compartm.	$V_1 = \theta_3 \cdot FCYF \cdot \frac{LBM}{53}$				
(n = 34)	53 LBM		ibrosis quística: FCYF		
	$V_1 = \theta_4 \cdot FCYF \cdot \frac{LBM}{53}$	Si individuo no tier	ne fibrosis quística: FC	YF = 1.000	
Hospitalizados	$\theta_1 = 5.05$	$\theta_3 = 22.3$	ω(CL) 27.7%	Proporcional = 18.5%	(4)
1 compartm.	$\theta_2 = 9.60$	03 22.0	ω(V) 25.2%	Aditivo = 1.77 mg/L	(. /
(n = 52)	CLCR	PESO	ω(ν) 23.270	7.0.0.70 2.776/2	
(5=)	$CL = \theta_1 + \theta_2 \cdot \frac{CLCR}{47}$	$V_{D} = \theta_{3} \cdot \frac{PESO}{81.8}$			
Hospitalizados	$\theta_1 = 2.90$	$\theta_2 = 19.50$	ω(CL) = 24.73%	Proporcional = 10.8 %	(5)
2 compartm.	$\theta_5 = 4.03$	$Q_{12} = 2.29$	$\omega(V) = 84.36\%$		
(n = 33)		$V_2 = 3.76$			
	$CL = \theta_1 + \theta_5 \cdot \frac{CLCR}{47}$	$V_1 = \theta_2 \cdot \frac{PESO}{60}$			
Hospitalizados	$\theta_1 = 9.14$	$\theta_3 = 12.2$	ω(CL) = 31.1%	Proporcional = 9.33%	(6)
1 compartm.	$\theta_2 = 4.60$	$\theta_4 = 9.49$	$\omega(CL) = 31.1\%$ $\omega(V) = 38\%$	110porcional - 3.3370	(0)
(n = 50)	02 4.00	04 5.45	ω(ν) 30/0		
(55)	CLCR	PESO			
	$CL = \theta_1 + \theta_2^{\frac{CLCR}{68.7}}$	$V_D = \theta_3 + \theta_4^{\frac{PESO}{61.1}}$ $\theta_2 = 31.3$			
Obesos y no	$\theta_1 = 11.3$	$\theta_2 = 31.3$	ω(CL) 14.8%	Proporcional = 15.5%	
obesos	$\theta_3 = 0.0646$	$\theta_4 = 0.132$	ω(V)=31.4%	Aditivo = 5.27 mg/L	(7)
1 compartm.	$\theta_5 = 0.0579$				
(n = 27)	$CL = \theta_1 + \theta_3 (CLCR - 105)$	$+ \theta_5 (IMC - 35)$			
	$V_D = \theta_2 + \theta_4 (PESO - 120)$)			
Quemados	θ ₁ = 16.6 L/h	$\theta_2 = 25.3 \text{ L}$	ω(CL) = 35.4%	Proporcional = 18.5%	(8)
2 compartm.	$\theta_5 = -0.087 \text{ L/h}$	$\theta_6 = 14.8 \text{ L}$	$\omega(V_1) = 42.4\%$	Aditivo = 0.539 mg/L	(-,
(n = 50)	-3	Q ₁₂ = 0.64 L/h	$\omega(Q_{12}) = 90.3\%$		
`,		V ₂ = 16.1 L			
	CLCD				
	$CL = \theta_1 \cdot \frac{CLCR}{132} + (DAI \cdot \theta_5)$		$V_1 = \theta_2 + SEPSIS \cdot$	θ_6	
I	132				ı

Modelos farmacocinética poblacional (2)

Carraliai du	Efectos Fijos		Efector Alectorica	Form Desideral	Dof
Condición	CL	V _i , Q _{ij} , ALAG	Efectos Aleatorios	Error Residual	Ref.
Sepsis	$\theta_1 = 17.1 \text{ L/h}$	V ₁ = 7.2 L	ω(CL) = 29.8%	Proporcional = 25.3%	(9)
2 compartm.		$Q_{12} = 52.0 L/h$	$\omega(V_1) = 26.4\%$		
(n = 16)		$V_2 = 17.8 L$	$\omega(V_2) = 50.2\%$		
		ALAG = 0.07 h	$\omega(Q_{12}) = 73.2\%$		
			$\omega(ALAG) = 43.7\%$		
	CL - 0 PESO		$\omega_{BOV}(CL) = 46.2\%$		
	$CL = \theta_1 \cdot \frac{PESO}{70}$		$\omega_{BOV}(V_1) = 24.4\%$		
Sepsis	$\theta_1 = 3.60 \text{ L/h}$	V ₁ = 7.3 L	ω(CL) = 71.2%	Proporcional = 14.7%	(10)
2 compartm.	$\theta_2 = 1.39 \text{ L/h}$	$Q_{12} = 6.6 L/h$	$\omega(V_1) = 57.8\%$		
(n = 15)		$V_2 = 3.9 L$			
	$CL = \theta_1 + \theta_2(S_{CR} - 170)$ $\theta_1 = 16.3 \text{ L/h}$				
Sepsis	$\theta_1 = 16.3 \text{ L/h}$	V ₁ = 19.9 L	$\omega(CL) = 56.0\%$	Proporcional = 1.0%	(11)
2 compartm.		$Q_{12} = 37.3 L/h$	$\omega(V_1) = 29.6\%$		
(n = 48)	$CL = \theta_1 \cdot \frac{CLCR}{100}$	$V_2 = 18.8 L$	$\omega(V_2) = 67.6\%$		
		ALAG = 0.8 h	$\omega(ALAG) = 0.3\%$		
Sepsis y SDMO	$\theta_1 = 6.11 \text{ L/h}$	$V_1 = 19.4 L$	$\omega(CL) = 17.54\%$	Proporcional = 46%	(12)
2 compartm.	$\theta_2 = 1.39$	$Q_{12} = 9.5 L/h$	$\omega(V_1) = 52.2\%$	Aditivo = 13.3 mg/L	
(n = 19)		$V_2 = 12.9 L$			
	$(PESO)^{\theta_2}$	Si la membrana	usada fue AN69ST 1.5m ²	$: \theta_3 = 1.00$	
	$CL = \theta_1 \cdot \left(\frac{PESO}{80}\right)^{\theta_2} \cdot \theta_3$	Si la membrana usada fue AN69 0.9m^2 : $\theta_3 = 0.51$			
Pediatría	$\theta_1 = 0.369 \text{ L/h}$	$\theta_2 = 0.742$	$\omega(CL_R) = 17.9\%$	Proporcional = 26.9%	(13)
2 compartm.	$\theta_5 = 1.440$	$Q_{12} = 1.119$	$\omega(V_1) = 20.8\%$		
(n = 71)	$\theta_6 = 0.271$	$V_2 = 0.269$			
	$CL = \theta_1 \left(\frac{PESO}{2.76}\right)^{\theta_5} \left(\frac{PNA}{6}\right)^{\theta_6}$		$V_1 = \theta_2 \cdot \left(\frac{PESO}{2.76}\right)$		
Pediatría	$\theta_1 = 4.00 \text{ L/h}$	$\theta_3 = 1.80 \text{ L}$	ω(CL) = 26.7%	Proporcional = 31.0%	(14)
Críticos	$\theta_5 = 0.74$	$\theta_4 = 1.59 L$	$\omega(V_2) = 22.6\%$		
2 compartm.	$\theta_6 = 1.62$	$\theta_5 = 2.72 \text{ L/h}$			
(n = 47)	θ_7 = 62.5 semanas	$\theta_{8} = 0.75$			
	$CL = \theta_1 \left(\frac{PESO}{14}\right)^{\theta_5} \frac{PMA^{\theta}}{\theta_7^{\theta_6} + PM}$ $V_1 = \theta_3 \cdot \left(\frac{PESO}{14}\right)^{1}$	$\frac{6}{1A^{\theta_6}}$	$V_2 = \theta_4 \cdot \left(\frac{\text{PESO}}{14}\right)^1$		
	$V_1 = \theta_3 \cdot \left(\frac{\text{PESO}}{14}\right)^1$	($Q = \theta_5 \cdot \left(\frac{PESO}{14}\right)^{\theta_8}$		

Comparación Clearance de PIPC en estudios

Comparación Volúmen de Distribución de PIPC en estudios

Comparación Clearance Intercompartimental de PIPC en estudios

Comparación Variabilidad Interindividual de PIPC en estudios

Índices PK-PD

Simulación de Montecarlo

Ejemplo de Simulación (1)

$$\theta_1 = 3.6 \text{ L/h} ; \theta_2 = -0.011 \text{ L/h}$$
 $CL = \theta_1 + \theta_2 (S_{CR} - 170) ; \omega(CL) = 71.2\%$
 $CL_j = CL \cdot e^{\eta 1_j} ; \eta_1 \sim \Re(0, \omega(CL)^2)$

$$V_1 = 7.3 \text{ L}; \omega(V_1) = 57.8\%$$

$$V_{1j} = V_1 \cdot e^{\eta_{2j}}$$
; $\eta_2 \sim \aleph(0, \omega(V_1)^2)$

$$Q_{12} = 6.6 L/h$$

$$V_2 = 3.9 L$$

Ejemplo de Simulación (2)

$$A = D_{O} \cdot \frac{\alpha - k_{21}}{V_{c}(\alpha - \beta)}$$

$$B = D_0 \cdot \frac{k_{21} - \beta}{V_c(\alpha - \beta)}$$

$$k_{12} = Q/V_1$$

$$k_{21} = Q/V_2$$

$$k_{10} = CL/V_1$$

$$\alpha = \frac{(\mathbf{k}_{12} + \mathbf{k}_{21} + \mathbf{k}_{10}) + \sqrt{(\mathbf{k}_{12} + \mathbf{k}_{21} + \mathbf{k}_{10})^2 - 4 \cdot (\mathbf{k}_{21} \cdot \mathbf{k}_{10})}}{2}$$

$$\beta = \frac{(k_{12} + k_{21} + k_{10}) - \sqrt{(k_{12} + k_{21} + k_{10})^2 - 4 \cdot (k_{21} \cdot k_{10})}}{2}$$

$$C_P(i,j) = Ae^{-\alpha t_i} + Be^{-\beta t_i}$$

$$C_{P}(i,j) = A\left(\frac{1 - e^{-n\alpha\tau}}{1 - e^{-\alpha\tau}}\right)e^{-\alpha t_{i}} + B\left(\frac{1 - e^{-n\beta\tau}}{1 - e^{-\beta\tau}}\right)e^{-\beta t_{i}}$$

$$C_{P,R}(i,j) = \left[A \left(\frac{1 - e^{-n\alpha\tau}}{1 - e^{-\alpha\tau}} \right) e^{-\alpha t_i} + B \left(\frac{1 - e^{-n\beta\tau}}{1 - e^{-\beta\tau}} \right) e^{-\beta t_i} \right] \cdot (1 + \epsilon)$$

Ejemplo de Simulación (2)

$$\begin{split} A &= R_0 \cdot \frac{\alpha - k_{21}}{V_c(\alpha - \beta) \cdot \alpha} & k_{12} = Q/V_1 \\ B &= R_0 \cdot \frac{k_{21} - \beta}{V_c(\alpha - \beta) \cdot \beta} & k_{21} = Q/V_2 \\ \alpha &= \frac{(k_{12} + k_{21} + k_{10}) + \sqrt{(k_{12} + k_{21} + k_{10})^2 - 4 \cdot (k_{21} \cdot k_{10})}}{2} \\ \beta &= \frac{(k_{12} + k_{21} + k_{10}) - \sqrt{(k_{12} + k_{21} + k_{10})^2 - 4 \cdot (k_{21} \cdot k_{10})}}{2} \\ C_P(i, j) &= \frac{R_0 \cdot k_{21}}{\alpha \cdot \beta \cdot V} - A e^{-\alpha t_i} - B e^{-\beta t_i} \end{split}$$

$$C_{P,R}(i,j) = \left[\frac{R_0 \cdot k_{21}}{\alpha \cdot \beta \cdot V_c} - Ae^{-\alpha t_i} - Be^{-\beta t_i} \right] \cdot (1 + \epsilon)$$

Ejemplo de Simulación (2)

$$A = R_0 \cdot \frac{\alpha - k_{21}}{V_c(\alpha - \beta) \cdot \alpha}$$

$$k_{12} = Q/V_1$$

$$k_{21} = Q/V_2$$

$$k_{21} - \beta$$

$$k_{10} = CL/V_1$$

$$\alpha = \frac{(k_{12} + k_{21} + k_{10}) + \sqrt{(k_{12} + k_{21} + k_{10})^2 - 4 \cdot (k_{21} \cdot k_{10})}}{2}$$

$$\beta = \frac{(k_{12} + k_{21} + k_{10}) - \sqrt{(k_{12} + k_{21} + k_{10})^2 - 4 \cdot (k_{21} \cdot k_{10})}}{2}$$

$$C_{P}(i,j) = \frac{R_{0} \cdot k_{21}}{\alpha \cdot \beta \cdot V_{c}} - A e^{-\alpha t_{i}} - B e^{-\beta t_{i}}$$

$$C_{1} = \frac{R_{0}}{V_{1}} \left[\frac{k_{21}}{\alpha \beta} - \frac{(\alpha - k_{21})}{\alpha (\alpha - \beta)} \frac{(1 - e^{-N\alpha \tau})}{(1 - e^{-\alpha \tau})} e^{-\alpha (t - (N-1)\tau)} - \frac{(k_{21} - \beta)}{\beta (\alpha - \beta)} \frac{(1 - e^{-N\beta \tau})}{(1 - e^{-\beta \tau})} e^{-\beta (t - (N-1)\tau)} \right]$$

$$C_{1} = \frac{R_{0}}{V_{1}} \left[\frac{(\alpha - k_{21})(e^{\alpha b} - 1)}{\alpha(\alpha - \beta)} \frac{(1 - e^{-N\alpha\tau})}{(1 - e^{-\alpha\tau})} e^{-\alpha(t - (N-1)\tau)} + \frac{(k_{21} - \beta)(e^{\beta b} - 1)}{\beta(\alpha - \beta)} \frac{(1 - e^{-N\beta\tau})}{(1 - e^{-\beta\tau})} e^{-\beta(t - (N-1)\tau)} \right]$$

Simulación de Montecarlo

Farmacocinética - Set de datos Öbrink-Hansen K. AAC - 2015

Modelo Poblacional de Piperacilina en Bolos

Modelo PK-PD

Concentración Mínima Inhibitoria (MIC)

Forma de administración

- Bolo Intermitente 4g q6h
- Infusión Continua 16g q/24h
- Infusión Extendida 4g q6h inf.4h

