## основы теории цепей

Лабораторная работа №3

Исследование частотных характеристик цепей первого порядка

## Варианты заданий к лабораторной работе

| Вариант | Цепь | L, мГн | и, мГн C, мкФ |             |  |
|---------|------|--------|---------------|-------------|--|
| 1       | _    | _      | _             | R, кОм<br>– |  |
| 2       | RC   | _      | 1,            | 1           |  |
| 3       | CR   | -      | 1             | 1           |  |
| 4       | RL   | 10     | _             | 0,1         |  |
| 5       | LR   | 10     | _             | 0,1         |  |
| 6       | RC   | _      | 0,2           | 0,3         |  |
| 7       | CR   | -      | 0,2           | 0,3         |  |
| 8       | RL   | 0,5    | _             | 0,01        |  |
| 9       | LR   | 0,5    | _             | 0,01        |  |
| 10      | RC   | _      | 0,25          | 0,5         |  |
| 11      | CR   | -      | 0,25          | 0,5         |  |
| 12      | RL   | 8      | _             | 0,05        |  |
| 13      | LR   | 8      | _             | 0,05        |  |
| 14      | RC   |        | 0,7           | 0,2         |  |
| 15      | CR   | -      | 0,7           | 0,2         |  |
| 16      | RL   | 2      |               | 0,04        |  |
| 17      | LR   | 2      | -             | 0,04        |  |
| 18      | RC   |        | 0,5           | 0,7         |  |
| 19      | CR   | _      | 0,5           | 0,7         |  |

Цепь RC и CR различаются выходом. RC – выходной сигнал снимается с C.

Не забываем в Місгосар заземлять схему.

**Цель работы:** экспериментальное определение амплитудно-частотной характеристики (АЧХ) и фазо-частотной характеристики (ФЧХ) простейших цепей первого порядка.

## ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Перед началом выполнения работы необходимо получить у преподавателя <u>индивидуальный</u> вариант задания, содержащий в себе конкретный тип исследуемой цепи и значения элементов. По заданным параметрам элементов цепи необходимо определить следующие характеристики цепи:

– постоянная времени цепи:

RC-цепь

$$\tau_{RC} = RC$$

RL-цепь

$$\tau_{RL} = \frac{L}{R},$$

где R – сопротивление резистора;

С – емкость конденсатора;

L – индуктивность катушки индуктивности.

– граничная частота цепи:

$$f_{zp} = \frac{1}{2\pi \, \tau_{yenu}} \, .$$

- 3. Установите частоту генератора равной *граничной частоте*, рассчитанной в теоретической части, и амплитуду генератора, равной  $U_{ex} = 1$  В. Запустите анализ модели. После окончания моделирования зарисуйте построенные графики и определите:
  - коэффициент передачи цепи по напряжению,
  - фазовый сдвиг, вносимый цепью.

Для определения коэффициента передачи по напряжению  $K_U$  нужно, зная амплитуду входного  $U_{ex}$  гармонического сигнала, определить амплитуду выходного  $U_{ebx}$  гармонического сигнала и вычислить искомое значение по формуле:

$$K_U = \frac{U_{\scriptscriptstyle \rm BBLX}}{U_{\scriptscriptstyle \it BY}}$$
 .

Для определения фазового сдвига измерить временной сдвиг выходного сигнала относительно входного. Временной сдвиг может быть определен графически, и его абсолютное значение (модуль) равно временному интервалу между точками, где сигналы находятся в одинаковых фазах. Практически, временной сдвиг можно определить между точками сигналов, где они пересекают ось времени и при этом имеют одинаковые направления изменения: сигналы одновременно увеличиваются, как на рис. 2.а, или одновременно

уменьшаются, как на рис. 2.б. Однако, следует правильно выбрать знак. На рис. 2.а выходной сигнал (пунктирный) <u>опережает</u> выходной (сплошной) на некоторое время  $\tau$ . Знак  $\tau$  – положительный. На рис. 2.б, напротив, выходной сигнал <u>запаздывает</u> относительно входного на время  $\tau$ , и в этом случае знак  $\tau$  – отрицательный.



Рис. 2 Определение временного сдвига

Временной сдвиг т связан с фазовым сдвигом ф следующей формулой:

$$\varphi = \frac{\tau}{T} \cdot 2\pi$$

где T — период гармонического сигнала, который также может быть определен графически (см. рис. 2).



Настройка параметров источника переменного напряжения

В строке Value набирается вручную **sin**. В строке А устанавливается **1**. В строке F ваше расчетное значение частоты (в первый раз **frp**).

Таким образом, были найдены значения коэффициента передачи по напряжению  $K_U$  и фазовый сдвиг  $\phi$  для одной заданной частоты. Для построения АЧХ и ФЧХ необходимо определить значения  $K_U$  и  $\phi$  для различных частот. Чтобы увидеть качественный ход зависимостей, необходимо определить значения коэффициента передачи по напряжению и фазового сдвига для частот в 2, 5,10 раз больше и в 2, 5, 10 раз меньше *граничной частоны* (при необходимости можно снять и большее число измерений). Результаты занести в таблицу 1.

Таблица 1

| $f$ , к $\Gamma$ ц | $f_{\it ep}/10$ | $f_{ep}/5$ | $f_{ep}/2$ | $f_{\it ep}$ | $2f_{ep}$ | $5f_{ep}$ | 10f <sub>rp</sub> |
|--------------------|-----------------|------------|------------|--------------|-----------|-----------|-------------------|
| $U_{ebix}$ , B     |                 |            |            |              |           |           |                   |
| $K_U$              |                 |            |            |              |           |           |                   |
| τ, мкс.            |                 |            |            |              |           |           |                   |
| Т, мкс.            |                 |            |            |              |           |           |                   |
| $\varphi$ , рад    |                 |            |            |              |           |           |                   |

Таблицу удобно создавать в интегрированной среде Excel. Там же удобно ввести в соответствующие ячейки соответствующие формулы. Там же удобно построить графики АЧХ и ФЧХ (тип диаграммы – точечная).

По значениям таблицы 1 построить графики амплитудно-частотной и фазо-частотной характеристик.

На графиках АЧХ и ФЧХ следует отметить значение *граничной час- тоты*.

## ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет по лабораторной работе должен содержать следующее:

- 1. Название работы.
- 2. Вариант задания.
- 3. Аналитические выражения для АЧХ, ФЧХ, графики этих зависимостей.
- 4. Схема макета исследуемой цепи.
- 5. Осциллограммы входного и выходного сигналов.
- 6. Таблица измеренных значений.
- 7. Графики найденных экспериментальных зависимостей.
- 8. Выводы по проделанной работе.

На всех графиках обязательно должны быть указаны величины, откладываемые по осям и их размерности.

значений частоты что и в экспериментальной части (в среде Excel на том же рисунке, что и экспериментальные АЧХ и ФЧХ )? Графики вставить в отчет.