VECTOR CALCULUS NOTES NICHOLAS HAYEK

Lectures by Prof. Jean Pierre Mutanguha

CONTENTS

I Vector Fields	1
Products on Vector Spaces	1
Lines	1
Planes	2
Transformations and Parameterizations	2
Surfaces	4

VECTOR FIELDS

Vector Fields T

PRODUCTS ON VECTOR SPACES

Recall the definition of the *inner product* over a vector space *V*:

1. $\langle u, v \rangle = \overline{\langle v, u \rangle} = \langle v, u \rangle$ in \mathbb{R} (where we'll be in this class)

2. $\langle au + bw, v \rangle = a \langle u, v \rangle + v \langle w, v \rangle$

3. $\langle u, u \rangle \ge 0$, and $= 0 \iff u = 0$

From this, we define the *norm* of $u \in V$ to be $||u|| := \sqrt{\langle u, u \rangle}$. This is well-defined, since $\langle u, u \rangle \geq 0$.

$$\forall u, v \in V, |\langle u, v \rangle| \le ||u|| ||v||$$

Cauchy-Schwartz Inequality

PROP 1.2

PROP 1.1

 $\forall u, v \in V, ||u + v|| \le ||u|| + ||v||$

The *cross product* of $u, v \in \mathbb{R}$, with respect to \mathbb{R}^3 , is the determinate of the following "matrix":

$$u \times v := \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

where $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$. We observe the following two properties of the cross product in \mathbb{R}^3 :

PROP 1.3

- 1. $(u \times v) \cdot u = 0$
- 2. $||u \times v|| = ||u|| ||v|| \sin(\theta)$, where θ is the angle found between u and v. A conceptualization of this property is that "u-cross-v is equal to the area created by the parallelogram bounded by u and v."

LINES

Define a *line* $l(t) \in \mathbb{R}^n$ to be a function from $\mathbb{R} \to \mathbb{R}^n$, with the primary form l(t) =P + td, with $P, d \in \mathbb{R}^n$, $t \in \mathbb{R}$. We call P the "point vector" and d the "direction vector" An alternate form, with two points $P, Q \in \mathbb{R}^n$, would be l(t) = (1-t)P + tQ, where l(t) lies along the path between P and Q for $t \in [0, 1]$.

Distance between a point and line Using this definition, how an we find the shortest path between a point R and a line l(t), which lies between P and Q?

Idea 1 We know the desired vector $w = PR\sin(\theta)$, the angle between PR and PQ. To find this value, note that $||PR \times PQ|| = ||PR|| ||PQ|| \sin(\theta)$.

Idea 2 We can project R onto PQ, and then subtract this projection from PR.

Idea 3 We can minimize a distance function between R and a point on l, i.e. l(t). Thus, we take $\min_{t \in \mathbb{R}} \|R - l(t)\| = \alpha$, and then take $Rl(\alpha)$ to be the shortest path.

Idea 4 We can find when $(R - l(t)) \cdot d = 0$.

Distance between 2 lines Consider two lines, l_1 and l_2 , which do not intersect but are not necessarily parallel. What is the minimal distance between l_1 and l_2 ?

- *Idea 0* Conceptualize this problem as finding the distance between the parallel planes defined by $\{l_1, l_2\}$.
- *Idea 1* We can minimize $||l_1(t) l_2(s)||$ (really, one should minimize the square to make one's life easier).
- *Idea* 2 Pick any two points, say $l_1(T)$ and $l_2(S)$, and project $l_1(T)l_2(S)$ onto $l_1 \times l_2$.
- *Idea* 3 Minimize dist($l_1(t)$, l_2) for fixed t.

Idea 4 Find t and s such that $[l_1(t) - l_2(s)] \cdot \vec{d_1} = 0$ and $[l_1(t) - l_2(s)] \cdot \vec{d_2} = 0$

 $||u \times v|| = ||u|| ||v|| \sin(\theta) = \text{Area of parallelogram defined by } u \text{ and } v.$

PLANES

A plane r(s,t) is a function $[0,1]^2 \to \mathbb{R}^3$ defined by $d_1, d_2 \in \mathbb{R}^3$, two vectors, and $P \in \mathbb{R}^3$, a point. In particular, $r(s,t) = P + s\vec{d_1} + t\vec{d_2}$. This is called the *parametric form*.

The *point-normal* form is a function $\mathbb{R}^2 \to \mathbb{R}^3$ is given by $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$, where $\vec{n}=\langle a,b,c\rangle$ is a vector normal to the plane, and $P=\langle x_0,y_0,z_0\rangle$ is a point lying on the plane.

Distance between a point R and a plane r

Idea 1 Minimize ||R - r(s, t)|| (or the square)

Idea 2 $\|\text{proj}_{\vec{n}}(P-R)\|$, where \vec{n} and P are as given in the point-normal form.

TRANSFORMATIONS AND PARAMETERIZATIONS

The following table give general examples of linear transformations $\lambda : \mathbb{R}^n \to \mathbb{R}^m$.

Dimension	Linear	Affine
n = 0	$\lambda(0) = 0$	$\lambda(0) = P$
n = 1	$\lambda(0) = 0$ $\lambda(t) = t\vec{d}$	$\lambda(t) = P + t\vec{d}$
n = 2	$\lambda(t,s) = t\vec{d_1} + s\vec{d_2}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$
<i>n</i> = 3	$\lambda(t, s, r) = t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$ $\lambda(t,s,r) = P + t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$

PROP 1.4

Sometimes

lines"

called "skew

3 I VECTOR FIELDS

We also define the following important curves in \mathbb{R}^2 :	We also	define the	following	important	curves in \mathbb{R}^2 :
---	---------	------------	-----------	-----------	----------------------------

Type	Explicit Form	Parametric Form
Ellipse	$x^2 + y^2 = 1$	$r(t) = \left\langle t, \sqrt{1 - t^2} \right\rangle_{t \in [-1, 1]} = \left\langle \cos(t), \sin(t) \right\rangle_{t \in [-\pi, \pi]}$
Hyperbola	$x^2 - y^2 = 1$	$r(t) = \left\langle \sqrt{1 + t^2}, t \right\rangle_{t \in \mathbb{R}} = \left\langle \cosh(t), \sinh(t) \right\rangle_{t \in \mathbb{R}}$
Parabola	$x = y^2$	
Double Cone	$x^2 = y^2$	
Any Function	y = F(x)	$r(t) = \langle t, F(t) \rangle$

Define a *path* in \mathbb{R}^m to be a continuous function $r : \mathbb{R} \to \mathbb{R}^m$, e.g. $[a, b] \to \mathbb{R}^m$.

Define a *curve* in \mathbb{R}^m to be the image of a path (i.e. a set of points in \mathbb{R}^m). Recall the statement "paths parameterize curves."

For example, the unit circle $x^2 + y^2 = 1$ is parameterized by the path $r : \mathbb{R} \to \mathbb{R}^2$ given by $r(t) = \langle \cos(t), \sin(t) \rangle$.

Define the *tangent* line of \vec{r} at $a \in \mathbb{R}$ to be an affine transformation $l : \mathbb{R} \to \mathbb{R}^m$ satisfying the following:

1.
$$l(t) = r(a) + (t - a)\vec{d} : \vec{d} \neq 0$$

2.
$$\lim_{t\to a} \frac{\|r(t)-l(t)\|}{|t-a|} = 0$$

– ♦ Examples **♣** –––––

We'll now find the derivative of the unit circle at a point $a \in \mathbb{R}$: we have $r(a) = \langle \cos(a), \sin(a) \rangle$. Thus:

$$l(t) = \langle \cos(t), \sin(t) \rangle + (t - a) \langle d_1, d_2 \rangle$$

Where $\langle d_1, d_2 \rangle \neq 0$. Consider now the limit in question 2:

$$\lim_{t \to a} \frac{\|r(t) - l(t)\|}{|t - a|} = \lim_{t \to a} \frac{1}{|t - a|} \sqrt{(\cos(t) - \cos(a) - (t - a)d_1)^2 + (\sin(t) - \sin(a) - (t - a)d_2)^2}$$

$$= \lim_{t \to a} \sqrt{\left(\frac{\cos(t) - \cos(a)}{t - a} - d_1\right)^2 + \left(\frac{\sin(t) - \sin(a)}{t - a} - d_2\right)^2}$$

$$\stackrel{=}{\underset{t \to a}{\longrightarrow}} \sqrt{(-\sin(a) - d_1)^2 + (\cos(a) - d_2)^2} = 0$$

$$\iff d_1 = -\sin(a) \land d_2 = \cos(a)$$

$$\implies l(t) = \langle -\sin(a), \cos(a) \rangle \quad \Box$$

Frequently, l(t) is referred to as the "velocity vector" of r(t), and is notated as r'(t). Notice that r'(t) is equivalent to the component-wise derivative of the coordinates of r(t) w.r.t. t. Formally:

Given $\vec{r}: \mathbb{R} \to \mathbb{R}^n$, the *derivative* of \vec{r} at $a \in \mathbb{R}$ is a linear transformation $\vec{\lambda}: \mathbb{R} \to \mathbb{R}^n$ satisfying

$$\lim_{t\to a} \frac{\|r(t)-r(a)-\lambda(t-a)\|}{|t-a|} = 0 \quad \text{or equivalently} \quad \lim_{h\to 0} \frac{\|r(a+h)-r(a)-\lambda(a)\|}{|h|} = 0$$

It is denoted $D\vec{r_a}$, and represented by the $n \times 1$ matrix r'(a). One may now rewrite the tangent line in the form $l(t) = r(a) + \lambda(t - a)$.

The arc length of a curve r(t) is given by

$$s = \int_{a}^{b} ||r'(t)|| dt$$

SURFACES

We note the following quadric surfaces:

Туре	Explicit Form
Ellipsoid	$x^2 + y^2 + z^2 = 1$
Elliptic Hyperboloid	$x^2 + y^2 - z^2 = 1$
Elliptic Paraboloids	$x^2 + y^2 - z^2 = -1$
Hyperbolic Paraboloids	$x = y^2 - z^2$
Double Cones	$x^2 = y^2 + z^2$