Assignment 2

Q1. Determine if the follow functions are injective, surjective, or bijective.

a.
$$f: N \to N, f(x) = x^2$$
 (10%)

b.
$$f: R \to R, f(x) = x^2$$
 (10%)

c.
$$f: N \to N, f(x) = x + 2$$
 (10%)

d.
$$f: R \to R, f(x) = 2x - 3$$
 (20%)

Solution:

- a. Injective
- b. Injective
- c. Surjective
- d. Bijective

Proof d.:

If
$$f(x_1) = f(x_2)$$
 then $2x_1 - 3 = 2x_2 - 3 \Rightarrow x_1 = x_2$. Hence injective.

$$2x - 3 = y$$
, so $x = \frac{y+5}{3}$, which belongs to R and $f(x) = y$. Hence surjective.

∴ Injective & Surjective

∴ Bijective

Q2.

a.
$$f(x) = 2x + 3$$
, $g(x) = -x^2 + 5$. Find $(g \circ f)(x)$. (10%)

b.
$$f(x) = \frac{3}{5}x + 4$$
, $g(x) = 2x^2 - 5x + 9$. Find $(f \circ g)(\frac{1}{2})$. (10%)

Solution:

a.
$$(g \circ f)(x) = -(2x+3)^2 + 5$$

= $-4x^2 - 12x - 9 + 5$
= $-4x^2 - 12x - 4$

b.
$$(f \circ g)(x) = \frac{3}{5}(2x^2 - 5x + 9) + 4$$

 $(f \circ g)(x) = \frac{6x^2}{5} - 3x + \frac{27}{5} + 4$
 $(f \circ g)(\frac{1}{2}) = \frac{6}{5 \times 4} - \frac{3}{2} + \frac{27}{5} + 4 = \frac{6}{20} - \frac{3}{2} + \frac{27}{5} + 4 = \frac{6 - 30 + 108 + 80}{20}$
 $(f \circ g)(\frac{1}{2}) = \frac{164}{20} = \frac{41}{5}$

Q3. Define $f, g: R \to R, f(x) = 3^x, g(x) = x^3$. Prove g is surjective and f is not surjective. (20%)

("onto") $\forall y \in Y, \exists x \in X$, such that y = f(x).

Proof:

Since $x \in R$, then 3^x is always positive.

But there are some $b \le 0$, when b is the co-domain of f.

 $\therefore f$ is not surjective.

On the other hand, for any $b \in R$, the b = g(x) has a solution (namely $x = \sqrt[3]{b}$), so b has a preimage under g.

 $\therefore g$ is surjective.

Q4. Use contrapositive proof to prove: If x and $y \in Z$, x + y is even, then x and y have the same parity (either both are even, or both are odd). (10%)

Proof:

Contrapositive.

Prov If both x and y do not have the same parity, then x + y is odd.

Assume: x is odd and y is even.

Then $\exists m \in \mathbb{Z}$, such that x = 2m + 1

 $\exists n \in \mathbb{Z}$, such that y = 2n

$$x + y = (2m + 1) + 2n = 2(m + n) + 1$$

 $\therefore x + y$ must be odd.

Proved. ■