Практическая работа №1

Котов Артем, МОиАД ВШЭ СПб 3 ноября 2021 г.

Содержание

Task 1	2
Task 2	3
Task 3	5
Task 4	7
Task 5	9
Task 6	9

Параметры:

- $a \in [75, 90]$
- $b \in [500, 600]$
- $c \in [0,690]$
- · $d \in [1380]$
- $p_1 = 0.1$
- $p_2 = 0.01$
- $p_3 = 0.3$

Обозначения:

- Обычно, в суммах не указаны нижние и верхние пределы, что означает, что суммирование ведется по всем возможным значениям соответствующих величин.
- \mathcal{B} биномиальное распределение.
- $\cdot \ \mathcal{P} -$ Пуассоновское распределение.

Task 1

Условие: Вычисляем p(a), p(b), p(c), p(d), p(c|a), p(c|b), p(c|ab), p(c|abd)

Решение.

Замечание. $U[a,b] \sim \frac{1}{b-a+1}[a\leqslant x\leqslant b]$ $Bin(n,p)\sim \binom{n}{x}p^x(1-p)^{n-x}$

$$p(a) = \frac{1}{16} [75 \leqslant a \leqslant 90]$$
$$p(b) = \frac{1}{101} [500 \leqslant b \leqslant 600]$$

Для вычисления p(c) нам потребуется p(c|ab) (для второй модели в целом, аналогично, разве что свертка упростится):

$$p_{\text{model1}}(c|ab) \sim \mathcal{B}(a, p_1) + \mathcal{B}(b, p_2) \sim \sum_{i}^{c} \binom{a}{i} p_1^{i} (1 - p_1)^{a-i} \binom{b}{c-i} p_2^{c-i} (1 - p_2)^{b-c+i}$$
$$p_{\text{model2}}(c|ab) \sim \mathcal{P}(ap_1 + bp_2)$$

тогда

$$p(c) = \sum_{ab} p(c|ab)p(a)p(b) = \frac{1}{1616} \sum_{a=a-i}^{a_{\text{max}}} \sum_{b=b-1}^{b_{\text{max}}} \sum_{i=0}^{c} \binom{a}{i} \binom{b}{c-i} p_1^i p_2^{c-i} (1-p_1)^{a-i} (1-p_2)^{b-c+i}.$$

Но это не удобно программировать, лучше оставить в виде сверток двух биномиальных:

$$p(c|ab) = \sum_{x=0}^{c} p(\mathcal{B}(a, p_1) = x) p(\mathcal{B}(b, p_2) = c - x)$$

$$p(c|a) = \sum_{b} p(c|ab)p(b) = \frac{1}{101} \sum_{b=500}^{600} p(c|ab)$$
$$p(c|b) = \sum_{a} p(c|ab)p(a) = \frac{1}{16} \sum_{a=75}^{90} p(c|ab)$$
$$p(c) = \sum_{ab} p(c|ab) \underbrace{p(a)p(b)}_{p(ab)}$$

Теперь с d:

$$p(d|c) = p(c + \mathcal{B}(c, p_3) = d) = p(\mathcal{B}(c, p_3) = d - c)$$

$$p(d) = \sum_{c} p(d|c)p(c)$$

$$p(c|d) = \frac{p(d|c)p(c)}{p(d)}$$

$$p(c|abd) = \frac{p(abcd)}{p(abd)} = \frac{p(d|c)p(c|ab)p(a)p(b)}{\sum_{c} p(d|c)p(c|ab)p(a)p(b)}$$

Task 2

Условие: Найти математические ожидания и дисперсии априорных распределений p(a), p(b), p(c), p(c). *Решение.*

Вообще все можем посчитать просто так:

$$\mathbb{E}x = \sum_{x} xp(x)$$

$$\mathbb{D}x = \sum_{x} x^{2}p(x) - (\mathbb{E}x)^{2}$$

Для a, b можем посчитать ручками:

$$\mathbb{E}a = \frac{a_{\min} + a_{\max}}{2} \qquad \mathbb{D}a = \frac{(a_{\max} - a_{\min} + 1)^2 - 1}{12}$$

$$\mathbb{E}b = \frac{b_{\min} + b_{\max}}{2} \qquad \mathbb{D}b = \frac{(b_{\max} - b_{\min} + 1)^2 - 1}{12}$$

Таблица 1: Мат. ожидания и дисперсии p(a), p(b), p(c) и p(d), округленные до 2-ух знаков после запятой.

№ Модели		p(a)	p(b)	p(c)	p(d)
1	\mathbb{E}	82.50	550.00	13.75	17.88
	\mathbb{D}	21.25	850.00	13.17	25.14
2	\mathbb{E}	82.50	550.00	13.75	17.87
	\mathbb{D}	21.25	850.00	14.05	26.63

Из таблицы видно, что мат. ожидания почти не чувствуют разницу в моделях, а вот дисперсии для c и d несколько отличаются.

Task 3

Условие: Пронаблюдать, как происходит уточнение прогноза для величины с по мере прихода новой косвенной информации.

Решение.

Рис. 1: График плотности распределений p(c), p(c|a), p(c|b), p(c|d), p(c|ab), p(c|abd) для первой модели, где $c \in [0,30]$, a,b,d равны своим математическим ожиданиям.

Рис. 2: График плотности распределений p(c), p(c|a), p(c|b), p(c|d), p(c|ab), p(c|abd) для второй модели, где $c \in [0, 30]$, a, b, d равны своим математическим ожиданиям.

На графиках видно, что многие распределения совпали, так, например, p(c|d) и p(c|abd) крайне похожи для обоих моделей. Также видно, что знание о d существенно уменьшает дисперсию величины c, при это дополнительная информация о a,b уже существенно не влияет на распределение.

Таблица 2: Мат. ожидания и дисперсии p(c), p(c|a), p(c|b), p(c|d), p(c|ab), p(c|abd), округленные до 2-ух знаков после запятой.

№ Модели		p(c)	p(c a)	p(c b)	p(c d)	p(c ab)	p(c abd)
1	\mathbb{E}	13.75	13.80	13.75	13.90	13.80	13.90
	\mathbb{D}	13.17	13.00	13.08	1.53	12.92	1.53
2	\mathbb{E}	13.75	13.80	13.75	13.89	13.80	13.90
	\mathbb{D}	14.05	13.88	13.96	1.54	13.80	1.54

Для этих распределений, в целом, аналогично, мат ожидания не чувствуют разницу в моделях, а дисперсии у второй модели систематически больше.

Task 4

Условие: Определить, какая из величин a,b,d вносит наибольший вклад в уточнение прогноза для величины с (в смысле дисперсии распределения).

Проведенный численный эксперимент показал, что для первой модели условия $\mathbb{D}[c|d] < \mathbb{D}[c|b]$ и $\mathbb{D}[c|d] < \mathbb{D}[c|a]$ выполняются для любых допустимых значений $a \in [75,90]$, $b \in [500,600]$ и $d \in [0,1380]$. Однако для второй модели это оказывается неверным, к сожалению, аналитически показать это строго пока не удалось, т.е. может быть так, что это просто численная ошибка, но я, скорее, склоняюсь к тому, что это свойства модели.

Рис. 3: График множества точек $(a,b):\mathbb{D}[c|b]< D[c|a]$ (синий) и $(a,b):\mathbb{D}[c|b]\geqslant D[c|a]$ (оранжевый) для первой модели.

Рис. 4: График множества точек $\{(a,b):\mathbb{D}[c|b]< D[c|a]\}$ (синий) и $\{(a,b):\mathbb{D}[c|b]\geqslant D[c|a]\}$ (оранжевый) для второй модели.

В целом, из графиков можно сделать вывод, что эти множества таки линейно разделимы для обоих моделей.

А теперь попробуем привести показательство: рассмотрим p(c|ab) и заметим, что a|b=a, т.к. a и b независимые.

Введем
$$y=c|b$$
 и $x=a|b\ (=a)$, тогда $c|ab=y|x$

Замечание. Не важно, в каком порядке обуславливать на a и b: сначала a, а потом b или наоборот, т.к. a и b независимые.

По формуле полной вариации:

$$\mathbb{D}y = \mathbb{E}(\mathbb{D}[y|x]) + \mathbb{D}(\mathbb{E}[y|x])$$

$$\mathbb{D}[y|x] = \mathbb{D}[c|ab] = \mathbb{D}[\mathcal{B}(a,p_1) + \mathcal{B}(b,p_2)] = ap_1(1-p_1) + bp_2(1-p_2)$$

$$\mathbb{E}_a\mathbb{D}[y|x] = \mathbb{E}a \cdot p_1(1-p_1) + \underbrace{b}_{\text{т.к. b не зависит от }a} p_2(1-p_2)$$

$$\mathbb{E}[y|x] = \mathbb{E}[\mathcal{B}(a,p_1) + \mathcal{B}(b,p_2)] = ap_1 + bp_2$$

$$\mathbb{D}_a(\mathbb{E}[y|x]) = \mathbb{D}ap_1^2,$$

тогда получаем, что

$$\mathbb{D}[c|b] = \mathbb{E}a \cdot p_1(1-p_1) + bp_2(1-p_2) + \mathbb{D}a \cdot p_1^2.$$

Аналогично

$$\mathbb{D}[c|a] = \mathbb{E}b \cdot p_2(1-p_2) + ap_1(1-p_1) + \mathbb{D}b \cdot p_2^2.$$

Рассмотрим множество точек, где $\mathbb{D}[c|a] = \mathbb{D}[c|b]$, т.е.

$$bp_2(1-p_2) = C + ap_1(1-p_1),$$

где C – некая константа, определяемая через $p_1, p_2, \mathbb{E}b, \mathbb{E}a$. Заметим, что это уравнение есть уравнение прямой в плоскости (a,b): b=ka+c, т.е. множество точек, где $\mathbb{D}[c|a]=\mathbb{D}[c|b]$ есть прямая в плоскости (a,b), т.е. множества действительно линейно разделимы.

Для модели Пуассона все аналогично, разве что для c|ab мы получим $\mathcal{P}(ap_1+bp_2)$, что в итоге даст:

$$\mathbb{D}[c|a] = \mathbb{E}ap_1 + bp_2 + \mathbb{D}ap_1$$

$$\mathbb{D}[c|b] = \mathbb{E}bp_2 + ap_1 + \mathbb{D}bp_2,$$

что приведет снова к уравнению прямой в плоскости (a,b).

Task 5

Условие: Провести временные замеры по оценке всех необходимых распределений p(c), p(c|a), p(c|b). *Решение.*

Таблица 3: Временные замеры [мс] расчетов p(c), p(c|a), p(c|b), p(c|d), p(c|ab), p(c|abd), p(d). Расчеты проведены векторно сразу для всех допустимых значений a, b, c, d.

№ Модели	p(c)	p(c a)	p(c b)	p(c d)	p(c ab)	p(c abd)	p(d)
1	64 ± 7	86 ± 22	95 ± 19	173 ± 11	89 ± 14	4630 ± 26	161 ± 6
2	83 ± 20	91 ± 18	111 ± 42	198 ± 47	63 ± 20	4890 ± 170	141 ± 4

Task 6

По большей степени можно выделить 2 существенных отличия:

- 1) Дисперсии величин c,d,c|a,c|b,c|ab и c|abd у второй модели систематически больше, чем у первой
- 2) Нарушаются условия $\mathbb{D}[c|d] < \mathbb{D}[c|b]$ и $\mathbb{D}[c|d] < \mathbb{D}[c|a]$ для второй модели, т.е. существуют такие a,b и d, что эти неравенства невыполнены.