Теорема о разложении периодических дробей имеющих циклическую природу в бесконечное количество геометрических прогрессий.

Частный случай:

Число 1/7 разложимо в бесконечное количество геометрических прогрессий.

Первый член геометрической прогрессии представляет собой число **а.** Число **а** составленное из любого количества цифр после запятой. Т.е. а может принимать значения 0.1, 0.14, 0.142, 0.1428, 0.14285, 0.142857 и т. д.

Число **A** представляет собой целое содержащие в себе ту же последовательность цифр, что и число **a**, т. е. **A** может принимать значения: 1, 14, 142, 1428, 14285 и т. д.

Знаменатель геометрической прогрессии $\mathbf{q} = \mathbf{m} / \mathbf{d}$.

Параметр \mathbf{m} представляет собой 1 из 6 возможных остатков от деления, образующихся в процессе вычисления 1/7:[1,3,2,6,4,5]. Параметр \mathbf{m} зависит от \mathbf{a} , а именно от единственного изменяющегося в а параметра — количества символов после запятой. Можно записать формулу $\mathbf{m} = ([\lg(\mathbf{A})] - 1)\%$ 6, где $[\lg(\mathbf{A})]$ это характеристика десятичного логарифма, что тождественно количеству цифр в десятичной системе счисления.

Параметр **d** так же находится в зависимости от $[\lg(\mathbf{A})]$ и может быть определен с ледующим образом: $\mathbf{d} = 10^{[\lg(\mathbf{A})]}$.

Общий случай:

Разложимо любое $1/\mathbf{P}$, где \mathbf{P} простое число, попадающие под категорию reptend prime, но не обязательно full reptend prime.

Доказательство:

Рассмотрим вначале частный случай.

Формула суммы бесконечно убывающей геометрической прогрессии может быть записанна следующим образом: $\mathbf{S} = \mathbf{a} / (1 - \mathbf{q})$. Как можно видеть — по мере увеличения количества цифр \mathbf{S} будет стрмиться к 1/7, а \mathbf{q} будет стремиться к нулю.

Докажем справедливость для каждого из 6 возможных параметров **m**:

При $\mathbf{m}=1$ мы будем иметь **a** составленное из повторений полного цикла периодической дроби 1/7, т. е. **A** может принимать значения: 142857, 142857142857, и т.д. Как следствие параметр **d** будет принимать значения $10^{6*(\mathbf{n}+1)}$, где **n** изменяется от 0 до беск.

Проанализируем S, как будет изменяться знаменатель $(1-\mathbf{q})$:

Т.к. $\mathbf{q}=\mathbf{m}*\mathbf{d}$, $\mathbf{m}=\mathbf{1}$, $\mathbf{d}=10^{6*(\mathbf{n}+1)}$ мы можем записать $\mathbf{q}=1/\mathbf{d}=10^{-6*(\mathbf{n}+1)}$, где n изменяется от 0 до бесконечности, и представляет собой номер очередного элемента \mathbf{a} , удовлетворяющего условию $\mathbf{m}=1$.

```
Таким образом получим что при (1-\mathbf{q}) = 1 - 1/10^{6*(\mathbf{n}+1)}. При \mathbf{n}=0, получим (1-\mathbf{q}) = 999999/10^6.
```

Легко увидеть что для любого n мы будем получать в числителе (1- \mathbf{q}) число составленное из девяток в количестве $6*(\mathbf{n}+1)$. Знаменатель будет равен \mathbf{d} , которое так же равно отношению \mathbf{a} к \mathbf{A} .

Теперь рассмотрим формулу суммы ряда при $\mathbf{n}=0$:

 $S = 0.142857 / (999999/10^6)$, как видно мы можем сократить её.

S=142857/999999. Как видно — при измененнии п мы будем увеличивать каждый раз количество цифр в числителе и знаменателе на 6, т. е. Общее количество цифр 142857 повторенных $\mathbf{n}+1$ циклов — будет соответствовать колличество цифр 9 в знаменателе.

Т.к. при делении любого числа в десятичной системе счисления, на число состоящее из такого же количества цифр, все из которых равны 9 — мы будем получать периодическую дробь — для любых \mathbf{n} результат гарантированно равен 1/7.

Теперь рассмотрим $\mathbf{m} = 3$.

В таком случае параметр **A** может принимать вид: 1, 1428571 итд Параметр $\mathbf{d} = 10 + 10^{6*n} = 10^{6*n+1}$.

Проанализируем S, как будет изменяться знаменатель $(1-\mathbf{q})$:

Т.к. $\mathbf{q}=\mathbf{m}*\mathbf{d}$, $\mathbf{m}=3$, $\mathbf{d}=10^{6*n+1}$ мы можем записать $\mathbf{q}=3/\mathbf{d}=10^{6*n+1}$, где п изменяется от 0 до бесконечности, и представляет собой номер очередного элемента \mathbf{a} , удовлетворяющего условию $\mathbf{m}=3$.

Таким образом (1-**q**) в при $\mathbf{n} = \mathbf{0}$ будет равно 7/10.

Рассмотрим сумму при зависимости от **n**. Сократим числитель и знаменатель на **d**. $\mathbf{S} = \mathbf{A}/\mathbf{denum}(\mathbf{n})$, где denum при n=0 равно 7, при n=1 равно 9999997, и так далее при каждом последующем **n** к **denum** будут добавляться 6 старших разрядов с цифрами 9.

Схожим образом мы можем описать и m=1, а так же все последующие.

Для $\mathbf{m}=1$ параметр **denum** может принимать значения состоящие из $6*(\mathbf{n}+1)$ цифр "9".

Для \mathbf{m} =3 параметр **denum** может принимать значения состоящие из младшего разряда 7, а так же $6*\mathbf{n}$ старших цифр "9".

Для \mathbf{m} =2 параметр **denum** может принимать значения состоящие из младшых разрядов 98, а так же $6*\mathbf{n}$ старших цифр "9".

Для \mathbf{m} =6 параметр **denum** может принимать значения состоящие из младшых разрядов 994, а так же 6* \mathbf{n} старших цифр "9".

Для \mathbf{m} =4 параметр **denum** может принимать значения состоящие из младшых разрядов 9996, а так же $6*\mathbf{n}$ старших цифр "9".

Для \mathbf{m} =5 параметр **denum** может принимать значения состоящие из младшых разрядов 99995, а так же $6*\mathbf{n}$ старших цифр "9".

Теперь необходимо доказать, что для любого **A**, соответствующий **denum** всегда будет иметь одинаковую пропорцию, т. е. $\mathbf{S} = \mathbf{A}/\mathbf{denum} = 1/7 = 0.(142857)$

На основании компьютерных вычислений видно что эа пропорция всегда выполняется, при разложении на простые числа А всегда будет содержать тот же набор простых чисел что и denum, но denum будет всегда содержать на один множитель «7» больше.

Таким образом для любого \mathbf{m} и \mathbf{n} - \mathbf{denum} в своём разложение на простые числа должен обязательно содержать «7» или \mathbf{P} в общем случае. Это необходимое, но не достаточное условие для доказательства теоремы.

Достаточным условием будет являться доказательство того что все простые числа на которые могут раскладываться $\bf A$ и **denum**, при любых $\bf n$ и $\bf m$ — будут идентичны, и в общем случае теоремы: $\bf A$ / $\bf denum$ = 1 / $\bf P$.

Для этого необходимо ввести фунции ${\bf A}$ и **denum**, зависимые от ${\bf m}$ и ${\bf n}$ и научиться предсказывать простые числа на которые разлагаются ${\bf A}$ и **denum**, при изменении ${\bf m}$ и ${\bf n}$.

