

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3109</u>	К работе допущен		
Студент Суханкин Дмитрий Юрьевич	Работы выполнена		
Преподаватель Крылов В. А.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.02

«Изучение скольжения тележки по

Наклонной плоскости»

- 1. Цель работы.
 - 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
 - 2. Определение величины ускорения свободного падения д
- 2. Задачи, выполняемые при выполнении работы.
 - 1. Проверка движения тележки на равноускоренность
 - 2. Исследование движения тележки с фиксированным углом наклона.
 - 3. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту.
- 3. Объект исследования.

Статические закономерности

- 4. Метод экспериментального исследования.
 - 1. Анализ
 - 2. Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.

$$Y = x_{2} - x_{1}$$

$$Z = \frac{t_{2}^{2} - t_{1}^{2}}{2}$$

$$\Delta t = t_{a,N} \cdot \sqrt{\frac{\sum_{i=1}^{N} (t_{i} - \langle t \rangle)^{2}}{N(N-1)}}$$

Формула нахождения коэффициента a и его СКО:

$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}; \ \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}}$$

Абсолютная погрешность коэффициента α:

$$\Delta a = 2\sigma_a$$

Относительная погрешность ускорения:

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\%$$

Синус угла наклона рельса к горизонту:

$$\sin a = \left| \frac{(h_0 - h) - (h_0' - h')}{x' - x} \right|$$

Ускорение и его погрешность:

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{\tiny M2}})^2 + (\Delta x_{\text{\tiny M1}})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

Коэффициенты линейной зависимости:

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin a_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin a_i}{\sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin a_i)^2}$$
$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin a_i \right)$$

б. Измерительные приборы.

Таблица 1: Измерительные приборы

Наименование	Предел	Цена	Класс	$\Delta_{\scriptscriptstyle \mathrm{M}}$
	измерений	деления	точности	
Линейка на рельсе	1.3 м	1 см/дел	-	5 мм
Линейка на угольнике	250 мм	1 мм/дел	-	0.5 мм
ПКЦ-3 в режиме секундомера	100 c	0.1 c	-	0.1 c

7. Схема установки.

Рис. 1. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Линейка-угольника

8. Результаты прямых измерений и их обработки.

Таблица 2

х, м	х′, м	h_{0} , м	${h_0}^\prime$, M	
0.22	1.00	0.216	0.216	
$\Delta x = \Delta x' = 5$ мм, $\Delta h_0 = \Delta h_0' = 0.5$ мм				

Таблица 3

Измеренные величины					Рассчитанные величин	
No	х ₁ , м	<i>x</i> ₂ , M	<i>t</i> ₁ , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c ²
1	0.15	0.4	1.3	2.9	0.25	3.4
2	0.15	0.5	1.3	3.0	0.35	3.6
3	0.15	0.7	1.5	4.2	0.55	7.7
4	0.15	0.9	1.4	4.6	0.75	9.6
5	0.15	1.1	1.5	5.4	0.95	13

Таблица 4

$N_{\Pi J}$	<i>h</i> , мм	h^\prime , мм	No॒	<i>t</i> ₁ , c	<i>t</i> ₂ , c
1	216	208	1	1.4	5.1
			2	1.4	5.4
			3	1.4	5.2
			4	1.5	5.1
			5	1.5	5.4
		208	1	1.0	3.5
			2	1.0	3.6
2	229		3	1.0	3.5
			4	1.0	3.5
			5	1.1	3.6
	234	208	1	0.8	2.7
			2	0.7	2.7
3			3	0.7	2.7
			4	0.8	2.8
			5	0.8	3.0
	240	208	1	0.7	2.5
			2	0.7	2.6
4			3	0.7	2.6
			4	0.8	2.7
			5	0.7	2.7
	251	208	1	0.6	2.0
5			2	0.5	2.0
			3	0.6	2.0
			4	0.6	2.0
			5	0.6	2.0

 $N_{\rm пл}$ – количество пластин h - высота на координате x=0.22 м h' - высота на координате x'=1.00 м

9. Расчет результатов косвенных измерений и размер некоторых погрешностей.

$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2} = \frac{26}{345} = 0.075 \frac{M}{c^2}$$

$N_{\scriptscriptstyle \Pi J I}$	sin a	$\langle t_1 \rangle \pm \Delta t_1$, c	$\langle t_2 \rangle \pm \Delta t_2$, c	$\langle a \rangle \pm \Delta a, \frac{M}{c^2}$
1	0.01	1.4 ± 1	5.2 ± 0.27	0.02 ± 0.002
2	0.02	1 ± 0.08	3.5 ± 0.1	0.06 ± 0.004
3	0.03	0.76 ± 0.1	2.8 ± 0.23	0.15 ± 0.03
4	0.04	0.72 ± 0.08	2.6 ± 0.15	0.24 ± 0.03
5	0.05	0.58 ± 0.08	2 ± 0	0.52 ± 0.014

Расчеты на примере первой строки

Ha примере первой строки
$$\sin a = \left| \frac{(h_0 - h) - (h_0' - h')}{x' - x} \right| = \left| \frac{(216 - 216) - (216 - 208)}{1000 - 220} \right| = 0.01$$

$$\langle t_1 \rangle = 1.4c$$

$$\langle t_2 \rangle = 5.2c$$

$$\Delta t_1 = t_{a,N} \cdot \sqrt{\frac{\sum_{i=1}^{N} (t_i - \langle t \rangle)^2}{N(N-1)}} = 0.1c$$

$$\Delta t_2 = 0.27c$$

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} = \frac{2 \cdot (0.4 - 0.15)}{4^2 - 1.4^2} = \frac{0.5}{16 - 1.96} = 0.02 \frac{M}{c^2}$$

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{H2}})^2 + (\Delta x_{\text{H1}})^2}{(x_2 - x_1)^2}} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2} = 0.002$$

$$B = g = \frac{\sum_{i=1}^{N} a_i \sin a_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin a_i}{\sum_{i=1}^{N} \sin a_i} = 9.9 \frac{M}{c^2}$$

10. Размер погрешностей измерений.

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}} = \sqrt{\frac{0.008}{4 \cdot 345}} = 0.0024 \frac{M}{c^2}$$

Абсолютная и относительная погрешность коэффициента а:

$$\Delta a = 2\sigma_a = 2 \cdot 0.0024 = 0.005 \frac{M}{c^2}$$

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\% = \frac{0.0048}{0.075} \cdot 100\% = 6.4\%$$

Абсолютная и относительная погрешность значения времени:

$$S_{\langle t_1 \rangle} = \frac{\sum_{i=1}^{N} (t_i - \langle t \rangle)^2}{N(N-1)} = \frac{0.012}{20} = 0.0006c$$

$$D = \sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin a_i \right)^2 = 0.0014$$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(N-2)}} = 0.75 \frac{M}{c^2}$$

$$\Delta g = 2\sigma_g = 1.5 \frac{M}{c^2}$$

$$\varepsilon_g = \frac{\Delta g}{g} \cdot 100\% = 15\%$$

11.Графики.

Зависимость Ү от Z

Зависимость ускорения от угла наклона

12.Окончательные результаты.

Ускорение тележки:

$$a = (0.075 \pm 0.005) \frac{M}{c^2}$$
; $\varepsilon_a = 6.4\%$; $\alpha = 0.95$

Ускорение свободного падения:

$$g = (9.9 \pm 1.5) \frac{\text{M}}{\text{c}^2}$$
; $\varepsilon_g = 15\%$; $a = 0.90$

0.0805 — абсолютное отклонение экспериментального значения ускорения свободного от его табличного значение для Санкт-Петербурга.

13. Выводы и анализ результатов работы.

Движение тележки можно считать равноускоренным, так как точки графика, полученные из расчетов экспериментальных данных, почти совпадают с графиком зависимости между перемещением и полу-разности квадратов значений времени.

Также абсолютное значение ускорения свободного падения отличается от табличного значения для Санкт-Петербурга меньше, чем абсолютная погрешность, так что полученные измерения можно считать достоверными.