

Kasia Kulma & Erle Holgersen

OVERVIEW

- 1. R-ladies who are we? (5 mins)
- 2. What's R and why you should learn it (5 mins)
- 3. Let's learn some R! (1h 20 mins)
- 4. Post-session survey (5 mins)

What's R-Ladies?

R-ladies is a world-wide organization to promote gender diversity in the R community: https://rladies.org/

- 60+ Chapters worldwide
- 20+ Countries
- 6000+ Members

What's R...

- Open source programming language for statistical computing & graphics
- Originated from language S
- Developed & matured in early 1990's in New Zealand (Auckland University)
- Names to remember: Ross Ihaka & Robert Gentleman

- Freeware, open source & platform independent
- HUGE choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- **Easy** reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- HUGE choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- **Easy** reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- **HUGE** choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- Easy reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- **HUGE** choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- **Easy** reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- HUGE choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- Easy reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- HUGE choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- Easy reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- **HUGE** choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- **Easy** reporting and blogging (RMarkdown, blogdown)
- AWESOME community

- Freeware, open source & platform independent
- **HUGE** choice of analytics and statistics libraries
- Integrates many data sources
- Efficient data structures (data.frame, tibble, data.table, etc.)
- Produces arguably best Data Visualizations
- Can build interactive web apps (Shiny)
- **Easy** reporting and blogging (RMarkdown, blogdown)
- AWESOME community

Let's learn some R!

- Installing R and RStudio
- RStudio Projects
- Data import and exploration
- O Data manipulation & basic Data Visualisation
- Taking R to the next level

Installing R and RStudio

- Install R from CRAN (https://cran.r-project.org/)
- 2. Install R's IDE: RStudio (https://www.rstudio.com/)
- 3. Open RStudio Console

RStudio Projects

R Projects - divide your work into multiple contexts, <u>each with their own working</u> <u>directory, workspace, history, and source documents</u>

RStudio Projects

R Projects - divide your work into multiple contexts, <u>each with their own working</u> <u>directory, workspace, history, and source documents</u>


```
# shows current working directory
getwd()
```

changes current working directory
setwd()

RStudio Projects

R Projects - divide your work into multiple contexts, <u>each with their own working</u> <u>directory, workspace, history, and source documents</u>


```
# shows current working directory
getwd()
# changes current working directory
setwd()
```


Data import and exploration

In - built datasets

data(iris) # loads data into the workspace head(iris) # views the top 6 rows head(iris, 10) # views the top 10 rows tail(iris, 10) # views bottom 10 rows str(iris) # explores data structure summary(iris) # summarises data

Data import and exploration

```
## saving and importing .csv files
# saves a data.frame in a .csv file
write.csv(iris, file = "20171019_iris_local.csv")
# imports a .csv file and saves it in a new data object
local_iris <- read.csv("20171019_iris_local.csv")</pre>
str(local_iris)
```



```
# numeric to integer
local_iris$Petal.Length
<-as.integer(local_iris$Petal.Length)</pre>
# numeric to character
local_iris$Petal.Width
<-as.character(local_iris$Petal.Width)</pre>
```

```
# new logical var
local_iris$is_setosa <- local_iris$Species == "setosa"</pre>
# new numeric variables
local_iris$sepal_sum <- local_iris$Sepal.Width +</pre>
local_iris$Sepal.Length
local_iris$petal_sum <- local_iris$Petal.Width +</pre>
local_iris$Petal.Length
```



```
## simple scatter plots in base R
plot(iris$Sepal.Length ~ iris$Sepal.Width) # basic plot
# base plot + main title
plot(iris$Sepal.Length ~ iris$Sepal.Width, main = "Sepal length by
sepal width")
# base plot + main title + axis labels
plot(iris$Sepal.Length ~ iris$Sepal.Width, main = "Sepal length by
sepal width", ylab = "Sepal length", xlab = "Sepal Width")
```


simple bar plots in base R

```
boxplot(iris$Sepal.Length ~ iris$Species) # base plot
```

base plot + main title

```
boxplot(iris$Sepal.Length ~ iris$Species, main = "Sepal length by
species")
```

base plot + main title + axis labels

```
boxplot(iris$Sepal.Length ~ iris$Species, main = "Sepal length by
species", ylab = "Sepal length", xlab = "Species")
```


Need help?

Each function comes with a documentation page that can be visualised typing:

- help(name_of_function) or
- ?name_of_function

Other suggestions:

- Join R-Ladies already done!
- Google your problem
- Browse http://rseek.org/ to find out which packages are available for a given topic
- Join an R users forum (e.g. <u>R-help-archive Google Groups</u> or the RStudio community forum https://community.rstudio.com/)
- Post a question on https://stackoverflow.com

Taking R to the next level

Cheat Sheets & Reference Guides

- R Reference Card (http://cran.r-project.org/doc/contrib/Short-refcard.pdf)
- Writing R extensions (http://bit.ly/1H0U02a)
- Google's R Style Guide (https://google.github.io/styleguide/Rguide.xml)
- RStudio cheatsheets:
 - Data Visualization (http://bit.ly/1Foy1Lb)
 - Package Development (http://bit.ly/1CfbTD2)
 - Data Wrangling (http://bit.ly/1y2nh3f)
 - R Markdown (http://bit.ly/1BluuT5)
 - R Markdown Reference Guide (http://bit.ly/1L2tC7U)
 - Shiny (http://bit.ly/1GiGArG)

Taking R to the next level

Great tutorials:

- edx MiT course (https://www.edx.org/course/analytics-edge-mitx-15-071x-2)
- DataCamp (<u>https://www.datacamp.com/</u>)
- Coursera (https://www.coursera.org/learn/r-programming)
- Kaggle Tutorial (https://www.kaggle.com/mrisdal/titanic/exploring-survival-on-the-titanic)