Lógica de Predicados

Proposições Singulares - Lógica Proposicional

Lógica de Predicados

- Quantificadores
- Variáveis
- Funções

Variável: representa todos os elementos de um conjunto.

Função Proposicional: Predicado associado a uma ou mais variáveis.

Exemplos:

- Brasileiros: B(x)
- Humanos: H(x)
- Platão (p): Platão é humano. H(p)
- A) Todos os Humanos são mortais.
- B) Platão é Humano.
- C) Logo, Platão é mortal

 $A \wedge B o C$

Quantificadores:

- **Universal**: Para todo, para qualquer que seja. ∀
- Existencial: Existe pelo menos um. \exists

Universal Afirmativa: Todo S é P.

$$\forall x (S(x) \rightarrow P(x))$$

Universal Negativa. Nenhum S é P.

Particular Afirmativa: Algum S é P.

$$\exists x (S(x) \land P(x))$$

Particular Negativa: Algum S não é P.

$$\exists x (S(x) \land \neg P(x))$$

Podemos colocar negações na frente de Quantificadores, por exemplo, colocando "¬" antes do **Universal Afirmativa**:

$$orall x(S(x) o P(x)) \implies
eg \exists x(S(x) \land
eg P(x))$$

Negativa dos Quantificadores

Universal Afirmativa: Todo S é P.

$$\neg \exists x (S(x) \land \neg P(x))$$

Universal Negativa. Nenhum S é P.

$$eg\exists x (S(x) \wedge P(x))$$

Particular Afirmativa: Algum S é P.

$$eg \forall x (S(x)
ightarrow
eg P(x))$$

Particular Negativa: Algum S não é P.

$$eg \forall x (S(x) \to P(x))$$

Exemplos:

- Todos os quadriláteros são polígonos. $\forall x (Q(x) \rightarrow P(x))$
- Nenhum polígono é um tridimensional. orall x(P(x) o
 eg T(x))
- O losango é um quadrilátero. Q(l)
- O losango é um polígono. P(l)

Exemplo de argumento:

• $\forall x (Q(x) \rightarrow P(x)) \land Q(l) \rightarrow P(l)$

Função Proposicional

Px P(x)B(x) B(a)

Quantificadores

• Universal: $\forall \ \forall x$

• Existencial: $\exists \exists x$

Frase	Expressão	Negativa
Todo S é P	orall x(s(x) o P(x))	$ eg\exists x (S(x) \land eg P(x))$
Nenhum S é P	orall x(s(x) ightarrow eg P(x))	$\neg \exists x (S(x) \land P(x))$
Algum S é P	$\exists x (s(x) \land P(x))$	orall x(s(x) ightarrow eg P(x))
Algum S não é P	$\exists x (s(x) \land \neg P(x))$	orall x(s(x) o P(x))

Exercícios Complementares

Expressar formalmente (em termos de conectivos, variáveis, constantes e quantificadores) os argumentos apresentados a seguir.

(1) Ácidos e bases são produtos químicos. $\forall x (A(x) \to (x)) \land \forall x (B(x) \to P(x))$

O vinagre é um ácido. A(v)

Logo, o vinagre é um produto químico. P(v)

Argumento Formalizado:

$$orall x(A(x) o(x)) \wedge orall x(B(x) o P(x)) \wedge A(v) o P(v)$$

(2) Todos os que estavam doentes foram medicados. $\forall x(D(x) \rightarrow M(x))$

Alguns indivíduos não foram medicados. $\exists x (I(x) \land \neg M(x))$

Portanto, nem todos estavam doentes. $\exists x(\neg D(x))$

Argumento Formalizado:

$$orall x(D(x) o M(x)) \wedge \exists x(I(x)\wedge \lnot M(x)) \wedge \exists x(\lnot D(x))$$

(3) Há pelo menos um estudante na turma que não leu o livro texto. $\exists x (E(x) \land \neg L(x))$

Todos os alunos foram bem na primeira prova. $\forall x (E(x) \rightarrow B(x))$

Logo, alguém que foi bem na prova não leu o livro texto. $\exists x (B(x) \land \neg L(x))$

Argumento Formalizado:

$$\exists x (E(x) \land \lnot L(x)) \land orall x (E(x)
ightarrow B(x)) \land
ightarrow \exists x (B(x) \land \lnot L(x))$$

(4) Nenhum jogador é feliz. $\forall x(J(x) \rightarrow \neg F(x))$

Alguns idealistas são felizes. $\exists x (I(x) \land F(x))$

Portanto, alguns idealistas não são jogadores. $\exists x(I(x) \land \neg J(x))$

Argumento Formalizado:

$$orall x(J(x)
ightarrow
eg F(x)) \wedge \exists x(I(x) \wedge F(x))
ightarrow \exists x(Ix) \wedge
eg J(x))$$

(5) Alguns elementos químicos são metais. $\exists x (E(x) \land M(x))$ Todos os metais são bons condutores de eletricidade. $\forall x (M(x) \land B(x))$ Logo, alguns elementos químicos são bons condutores de eletricidade. $\exists x (E(x) \land B(x))$

Argumento Formalizado:

$$\exists x (E(x) \land (M(x)) \land \forall x (M(x) \land B(x))
ightarrow \exists x (E(x) \land B(x))$$

Exercício 2

1. Expressar formalmente (em termos de conectivos, variáveis, constantes e quantificadores) as proposições apresentadas. (DICA! "∃" não se usa "→")

	Proposições	Formalização
(a)	Todos os cientistas são filósofos.	
(b)	Todos os filósofos são cientistas.	
(c)	Nenhum cientista é filósofo.	
(d)	Nenhum filósofo é cientista.	
(e)	Alguns cientistas são filósofos.	
(f)	Alguns filósofos são cientistas.	
(g)	Alguns cientistas não são filósofos.	
(h)	Alguns filósofos não são cientistas.	
(i)	Alguns não cientistas não são filósofos.	
(j)	Alguns escritores são filósofos e cientistas.	
(k)	Alguns escritores são filósofos ou cientistas.	
(l)	Alguns escritores e cientistas são filósofos.	

	Proposições	Formalização
(m)	Alguns escritores ou cientistas são filósofos.	
(n)	Algumas cidades são capitais de um país.	
(o)	Todos os países têm uma capital.	

- 2. Expressar, formalmente e em linguagem natural, a negação das proposições apresentadas na questão 1.
- 3. Expressar formalmente (em termos de conectivos, variáveis, constantes e quantificadores) o argumento apresentado a seguir. Verificar a validade do argumento:

Todos os gregos são europeus. Todos os italianos são europeus. Dante é italiano. Sócrates é grego. Logo, Dante e Sócrates são europeus.