PCT

世界知的所有権機関 国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07C 62/34, 69/734, 323/52, C07D 213/30, 263/32, 277/24, 317/54, 413/04, 417/04, 417/12, A61K 31/19, 31/215, 31/42, 31/425, 31/44, 31/36

(11) 国際公開番号

WO99/46232

(43) 国際公開日

1999年9月16日(16.09.99)

(21) 国際出願番号

PCT/JP99/01134

JP

A1

(22) 国際出願日

1999年3月9日(09.03.99)

(30) 優先権データ

特願平10/58444 特願平10/87560

1998年3月10日(10.03.98)

1998年3月31日(31.03.98)

(71) 出願人(米国を除くすべての指定国について) 小野薬品工業株式会社 (ONO PHARMACEUTICAL CO., LTD.)[JP/JP]

(ONO PHARMACEUTICAL CO., LTD.)[JP/JP] 〒541-8526 大阪府大阪市中央区道修町2丁目1番5号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

田嶋久男(TAJIMA, Hisao)[JP/JP]

中山孝介(NAKAYAMA, Yoshisuke)[JP/JP]

福島大吉(FUKUSHIMA, Daikichi)[JP/JP]

〒618-8585 大阪府三島郡島本町桜井3丁目1番1号

小野薬品工業株式会社 水無瀬総合研究所内 Osaka, (JP)

(74) 代理人

弁理士 大家邦久, 外(OHIE, Kunihisa et al.)

〒103-0013 東京都中央区日本橋人形町2丁目2番6号 堀口第2ビル7階 大家特許事務所 Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (AM, AZ,

添付公開書類

国際調査報告書

BY, KG, KZ, MD, RU, TJ, TM)

(54)Title: CARBOXYLIC ACID DERIVATIVES AND DRUGS CONTAINING THE SAME AS THE ACTIVE INGREDIENT

(54)発明の名称 カルボン酸誘導体およびその誘導体を有効成分として含有する薬剤

(57) Abstract

Compounds represented by general formula (I), nontoxic salts thereof or hydrates of the same; and peroxisome proliferator-activated receptor regulating agents containing the same as the active ingredient, wherein each symbol is as defined in the specification. Because of having an effect of regulating PPAR receptor, the compounds of the general formula (I) are useful as hypoglycemic agents, lipid-lowering agents, preventives and/or remedies for diseases associating metabolic errors (diabetes, obesity, syndrome X, hypercholesterolemia, hyperlipoproteinemia, etc.), hyperlipemia, arteriosclerosis, hypertension, circulatory diseases, overeating, ischemic heart diseases, etc., HDL cholesterol-elevating agents, LDL cholesterol and/or VLDL cholesterol-lowering agents and drugs for relieving risk factors of diabetes or syndrome X.

一般式(I)

(式中の記号は明細書記載の通り。)で示される化合物、それらの非毒性塩、またはそれらの水和物、およびそれらを有効成分として含有するペルオキシソーム増殖薬活性化受容体制御剤。

一般式(I)で示される化合物は、PPAR受容体を制御する作用を有しており、血糖降下剤、脂質低下剤、糖尿病、肥満、シンドローム X、高コレステロール血症、高リポ蛋白血症等の代謝異常疾患、高脂血症、動脈硬化症、高血圧、循環器系疾患、過食症、虚血性心疾患等の予防および/または治療剤、HDLコレステロール上昇剤、LDLコレステロールおよび/またはVLDLコレステロールの減少剤、糖尿病やシンドローム Xのリスクファクター軽減剤として有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アテルステンタ アテルバング では 長下 アルバメニア アルバメニア オーストリリア オーストラジャル アデン アゼルバイ・ス アン メンルバルギー・ア アブルボリア アンブルボリア アイナン スーダン スウェブボーン シンガエニア スロヴェキン スロヴィ・オ ドミニカ エストニア スペイン フィンランド フランス ガボン カザフスタン セントルシア リヒテンシュタイン スリ・ランカ リベリア LLLLLLLLLMM リベリト ア リルト リルト リントてニア リントてセンア ラトナコドヴコ ヴァ マグケドコ ヴァ マグケドニ サマ和リ コル マブリ ゴル マーリ ゴル モーリタニア SL セネガル スワジランド チャード が 英国 グレナダ グルジア チャゴト BEBE ベテン ブラジル ベラルーシ トルクメニスタン RYAFGHIMNRUYZEK ーラルーシ カナダ 中央アフリカ コンゴー モモマメニオール リタイコール リタイコール サーラウシェンルウ・ンド ルー・ファンド リー・ファンド ボルーマンド ボルーマンド ボルーマンド ボルーマンド DELNSTPEGPR スイス コートジボアール コートンボノ カメルーン 中国 コスタ・リカ NOZ PTOU コキュア・バ キプロスコ チェッツ デンマーク

明細書

カルボン酸誘導体およびその誘導体を有効成分として含有する薬剤

5

技術分野

本発明はカルボン酸誘導体およびカルボン誘導体を有効成分として含有するペルオキシソーム増殖薬活性化受容体制御剤に関する。

さらに詳しく言えば、一般式(I)

$$(R^{1})_{n} \qquad R^{2}$$

$$Cyc2 \qquad Cyc1 \qquad A^{1} \qquad A^{2} \qquad \stackrel{2}{\underset{A^{3}}{\longrightarrow}} R^{3} \qquad (I)$$

10

15

(式中、すべての記号は後記と同じ意味を表わす。)で示されるカルボン酸誘導体、それらの非毒性塩およびそれらの水和物を有効成分として含有するペルオキシソーム増殖薬活性化受容体制御剤、および一般式(I)で示される新規なカルボン酸誘導体、それらの非毒性塩、それらの水和物およびそれらの製造方法に関する。

背景技術

最近、脂肪細胞分化マーカー遺伝子の発現誘導にかかわる転写因子の研究に 20 おいて、核内受容体であるペルオキシソーム増殖薬活性化受容体(Peroxisome Proliferator Activated Receptor;以下、PPAR受容体と略記する。)が注目され ている。PPAR受容体は、さまざまな動物種からcDNAがクローニングさ れ、複数のアイソフォーム遺伝子が見出され、哺乳類ではα、δ、γの3種類

が知られている(J. Steroid Biochem. Molec. Biol., 51, 157 (1994); Gene Expression., 4, 281 (1995); Biochem Biophys. Res. Commun., 224, 431 (1996); Mol. Endocrinology., 6, 1634 (1992)参照)。さらに、 γ 型は主に脂肪組織、免疫細胞、副腎、脾臓、小腸で、 α 型は主に脂肪組織、肝臓、網膜で発現し、 δ 型は組織特異性が見られず普遍的に発現していることが知られている(Endocrinology., 137, 354 (1996)参照)。

5

10

15

ところで、以下に示したチアゾリジン誘導体は、インスリン非依存型糖尿病 (NIDDM) に対する治療薬として知られており、糖尿病患者の高血糖を是正するために用いられる血糖降下剤である。また、高インスリン血症の是正または改善、耐糖能の改善、また血清脂質の低下に効果を示し、インスリン抵抗性改善薬としてきわめて有望であると考えられている化合物である。

また、これらのチアゾリジン誘導体の細胞内標的蛋白質の一つが $PPAR\gamma$ 受容体であり、 $PPAR\gamma$ の転写活性を増大させることが判明している (Endocrinology., 137, 4189 (1996); Cell., 83, 803 (1995); Cell., 83, 813 (1995); J. Biol. Chem., 270, 12953 (1995) 参照)。従って、 $PPAR\gamma$ の転写活性を増大さ

PCT/JP99/01134 WO 99/46232

せるPPARγ 活性化剤(アゴニスト)は、血糖降下剤および/または脂質低 下剤として有望であると考えられる。また、PPARY アゴニストはPPAR γ蛋白自身の発現を亢進することが知られている(Genes & Development., 10, 974 (1996))ことから、PPARYを活性化するのみならずPPARY 蛋白自身の発 現を増加させる薬剤も臨床的に有用と考えられる。

核内受容体PPARγは脂肪細胞分化に関わっており(J. Biol. Chem., 272, 5637 (1997) およびCell., 83, 803 (1995)参照)、これを活性化できるチアゾリジン 誘導体は脂肪細胞分化を促進することが知られている。最近、ヒトにおいて、 チアゾリジン誘導体が体脂肪を増生させ、体重増加、肥満を惹起するとの報告 がなされた(Lancet., 349, 952 (1997)参照)。従って、PPARγ活性を抑制す る拮抗剤(アンタゴニスト)やPPARγ蛋白自身の発現を減少できる薬剤も臨 床的に有用であると考えられる。ところで、Science., 274, 2100 (1996)には、PP AR γ をリン酸化することによってその活性を抑制できる化合物が紹介されて おり、そのことからPPARY 蛋白には結合しないもののその活性を抑制する 15 薬剤もまた臨床的に有用であると考えられる。

10

20

これらのことからPPARY 受容体の活性化剤 (アゴニスト)、また蛋白自 身の発現を増加できるPPARY 蛋白発現制御剤は血糖降下剤、脂質低下剤、 糖尿病、肥満、シンドロームX、高コレステロール血症、高リポ蛋白血症等の 代謝異常疾患、高脂血症、動脈硬化症、高血圧、循環器系疾患、過食症等の予 防および/または治療剤として有用であることが期待される。

一方、PPARY 受容体の転写活性を抑制するアンタゴニスト、あるいは蛋 白自身の発現を抑制できるPPARケ蛋白発現制御剤は、血糖降下剤、糖尿病、 肥満、シンドロームX等の代謝異常疾患、高脂血症、動脈硬化症、高血圧、過 食症等の予防および/または治療剤として有用であることが期待される。

また、以下に示すフィブレート系化合物、例えば、クロフィブレートは脂質 低下剤として知られているが、

5

10

15

20

フィブレート系化合物の細胞内標的蛋白質の一つが P P A R α 受容体であることも判明している(Nature., 347, 645 (1990); J. Steroid Biochem. Molec. Biol., 51, 157 (1994); Biochemistry., 32, 5598 (1993)参照)。これらのことから、フィブレート系化合物が活性化しうる P P A R α 受容体の制御剤は、脂質低下作用を有していると考えられ、高脂血症等の予防および/または治療剤として有用であることが期待される。

これ以外にも、PPAR αが関与する生物活性として、最近、WO9736579号明細書には抗肥満作用があることが報告された。また、J. Lipid Res., 39, 17 (1998)にはPPAR α 受容体の活性化によって高密度リポ蛋白 (HDL) コレステロール上昇作用、そして、低密度リポ蛋白 (LDL) コレステロールや超低密度リポ蛋白 (VLDL) コレステロール、さらにはトリグリセドの低下作用を有していることが報告されている。Diabetes., 46, 348 (1997)にはフィブレート系化合物の一つ、ベザフィブレートによって血中脂肪酸組成や高血圧の改善、インスリン抵抗性の改善が認められたと報告されている。従ってPPAR α 受容体を活性化するアゴニストやPPAR α 蛋白自身の発現を亢進するPPAR α 制御剤は脂質低下剤、高脂血症治療薬として有用であるばかりでなく、HDLコレステロール上昇作用、LDLコレステロールおよび/またはVLDLコレステロールの減少作用、そして動脈硬化進展抑制やその治

療、また肥満抑制効果が期待され、血糖降下剤として糖尿病の治療や予防、高血圧の改善、シンドロームXのリスクファクター軽減や虚血性心疾患の発症予防にも有望であると考えられる。

一方、PPAR & 受容体を有意に活性化したリガンドやPPAR & 受容体が 5 関与する生物活性の報告は少ない。

PPARδは、ときにPPARβ、あるいはヒトの場合にはNUC1とも称されている。これまでにPPARδの生物活性として、WO9601430号明細書にはhNUC1B(ヒトNUC1とアミノ酸1個が異なるPPARサブタイプ)がヒトPPARαや甲状腺ホルモンレセブターの転写活性を抑制できることが示されている。また、最近ではWO9728149号明細書において、PPARδ蛋白質に高い親和性を有し、PPARδを有意に活性化する化合物(アゴニスト)が見出され、さらにそれらの化合物がHDL(高密度リポ蛋白)コレステロール上昇作用を有していることが報告された。従って、PPARδを活性化できるアゴニストには、HDLコレステロール上昇作用、それによる動脈硬化進展抑制やその治療、脂質低下剤や血糖降下剤としての応用が期待され、さらには高脂血症の治療、血糖降下剤、糖尿病の治療やシンドロームXのリスクファクターの軽減や虚血性心疾患の発症予防にも有用であると考えられる。

PPAR受容体制御剤として、以下のものが報告されている。

20 (1) 例えばWO9728115号明細書には、一般式(A)

10

15

$$(Z^{A}-W^{A})_{tA}$$
 $(X^{1A})_{0-3}$ X^{2A} R^{4A} (A) $(Z^{A}-W^{A})_{vA}$ (A)

(式中、R^{1A}は水素原子、C3~10シクロアルキル等から選択され、R2A は水素原子、C5~10アリール、C5~10ヘテロアリール等から選択され、 R^{4A} は R^{2A} 等から選択され、($Z^{A}-W^{A}-$)は $Z^{A}-CR^{6A}R^{7A}$ 、また はZA-CR6AR7A-R8A-等を表わし、R8AはCR6AR7A、O、 5 $S(O)_{nA}$ 等から選択され、 R^{6A} および R^{7A} はそれぞれ独立して、水素原 子、 $C1\sim6$ アルキルから選択され、 $X^{1}A$ および $X^{2}A$ はそれぞれ独立して、 水素原子、C1~15アルキル、ハロゲン原子等から選択され、YAは S(O)nA、一〇一等から選択され、YIAはO、C等から選択され、ZAは CO_2R^3A 等から選択され、tAおよびvAはそれぞれ独立して0または1を 10 表わし、tA+vAは1を表わし、QAは飽和または不飽和の2~4の直鎖の炭 化水素を表わし、pAは0~2を表わし、R3Aは水酸基、C1~15アルコ キシ等を表わす。)で示される化合物、またはそれらの医薬的に許容な塩がP PAR δ 受容体の調節剤であることが記載されている (式中の基の説明は必要 な部分を抜粋した。)。また、WO9727857号明細書およびWO972 8137号明細書にも上記と類似の化合物がPPAR & 受容体の調節剤である 15 ことが記載されている。

(2) また、WO9731907号明細書には、一般式(B)

$$A^{B}-B^{B}-O$$

$$Alk^{B}$$

$$Z^{B}$$
(B)

20

(式中、 A^B はフェニルであり、前記フェニルは1つまたはそれ以上のハロゲン原子、 $C1\sim6$ アルキル、 $C1\sim3$ アルコキシ、 $C1\sim3$ フルオロアルコキシ、-トリルまたは-NR 7 BR 8 B (R 7 B 8 B (R 8 B 8 8 B 8 8 C 8 R 8 B 8 C 8 R 8

原子またはC1~3アルキルを表わす。)で置換されてもよい;

 B^B は酸素原子、窒素原子および硫黄原子から選択されるヘテロ原子を少なくとも1つを含む、5または6員のヘテロ環-C1 \sim 6アルキレン-を表わし、前記ヘテロ環はC1 \sim 3アルキルで置換されてもよい;

5 AlkBはCl~3アルキレンを表わし;

10

15

20

 $R^{1}B$ は水素原子または $C_{1}\sim 3$ アルキルを表わし;

 Z^B は-(C^1 ~ 3^7 ルキレン)フェニル、または-NR 3 BR 4 Bから選択される。)で示される化合物、またはそれらの医薬的に許容な塩が、 $PPAR\gamma$ アゴニスト活性を有していることが記載されている(式中の基の説明は必要な部分を抜粋した。)。

(3) 一方、特開平9-323982号明細書には、一般式 (C)

$$R^{c}$$
 R^{6C}
 R^{10C}
 R^{10C}
 R^{7C}

R^{5C} O # # # # # # | N

(RCは R N または N (式中、R'Cは置換されていてもよい芳香族炭化水素基、置換されていてもよい環式脂肪族炭化水素基、置換されていてもよい複素環基または置換されてもよい縮合複素環基であり、R5Cは低級アルキル基である。)で表わされる基であり、R4Cは水素原子または低級アルキル基であり、R6Cは水素原子またはR9Cと一緒になって二重結合を形成し、R7'Cは水素原子、ヒドロキシ基、カルボキシ基、アシル基、置換されていてもよいアルコキシカルボニル基、置換されてもよい低級アルキル基、置換さ

れてもよいカルバモイル基、置換されてもよいアリールオキシカルボニル基、 置換されてもよいアラルキルオキシカルボニル基または一般式 - YC-R8C (式中、YCは-NH-または酸素原子であり、R8Cは置換されてもよいアシル基、置換されてもよいアルコキシカルボニル基、アリールオキシカルボニル 基またはアラルキルオキシカルボニル基である。)で表わされる基であり、R9Cは水素原子、置換されてもよい低級アルキル基または置換されてもよい低級アルコキシ基、置換されてもよい低級アルキル基、置換されてもよい低級アルキル基、置換されてもよい低級アルキル基、置換されてもよい下ラルキルオキシ基である。)で表わされるプロピオン酸誘導体またはその医薬上許容し得る塩を含有する医薬組成物が血糖低下作用および血中脂質低下作用を有していることが記載されている。また、特開平8-325264号明細書、特開平8-325250号明細書、W09638415号明細書、およびW09800137号明細書にも類似の化合物が血糖低下作用および血中脂質低下作用を有していることが記載されている。

5

10

15

(4) また、特開平8-104688号明細書には、一般式 (D)

$$R^{D}-(O)_{nD} \xrightarrow{\parallel} X^{D} \xrightarrow{L^{D}} K^{D} \xrightarrow{L^{D}} M^{D} \xrightarrow{(D)} K^{D}$$

$$R^{1D} \xrightarrow{R^{2D}} R^{2D} \xrightarrow{S} NH$$

20 (式中、RDは炭素鎖を介して結合していてもよい置換されていてもよい炭化水 素残基または複素環基を、nDは0または1を、XDはCHまたはNを、YDは 2価の炭化水素残基をそれぞれ示す。R1DおよびR2Dは同一または異なって 水素原子、ハロゲン原子、置換されていてもよいヒドロキシル基または置換さ れていてもよい炭化水素残基を示し、R1D、R2DのいずれかとYDの一部と

互いに結合して環を形成していてもよい。)で示される化合物またはその塩が 血糖低下作用および血中脂質低下作用を有していることが記載されている(式 中の基の説明は必要な部分を抜粋した。)。また、特開昭 6 1 - 8 5 3 7 2 号 明細書にも同様の化合物が血糖降下作用および脂質低下作用を有していること が記載されている。

(5) 一方、特開平1-143856号明細書には、一般式(E)

$$R^{3E}$$
 Y^{E}
 Z^{E}
 R^{2E}
 R^{2E}
 R^{2E}
 R^{2E}

10 (式中、 X^E は $-CR^{4E}$ =または-N=、 Y^E は $-CR^{4E}$ =N-、-N=C R^{4E} -、 $-CR^{4E}$ = CR^{4E} -、-O-、-S-または $-NR^{4E}$ -、 Z^E は $-(CH_2)_{nE}O$ -、 $-(CH_2)_{nE}S$ -等、 R^{1E} は $-(CHR^{7E})_{nE}$ $COOR^{6E}$ 等、nEは各々独立して0~5、 R^{2E} は各々水素、低級アルキル、低級アルコキシ、トリフルオロメチル、ニトロ、シアノまたはハロゲン等、

20

 W^E は結合であるかまたは-O-、-S-または $-NR^{4E}-$ 、mEは $1\sim15$ 、 R^{4E} は、各々、独立して水素または低級アルキル、 R^{7E} は水素またはメチルを意味する。)で示される化合物またはその医薬上許容される塩が、リポキシゲナーゼ抑制活性およびロイコトリエン拮抗活性を有することが記載されている。

(6) また、特表平8-504194号明細書には、一般式(F)

$$X^F - Y^E - Z^E = T + D - D + C - A^E - B^F$$
 (F)

(式中、" アリール" は 0 、 1 、 2 、 3 または 4 個の N 原子を含み、置換基を もたないかまたは R^{5} で 置換された単環式芳香族 6 員環系であり;

 X^F はN、O、Sから選択された0、1、2、3または4個のヘテロ原子を含み、 置換基をもたないかまたは R^{1F} 、 R^{2F} 、 R^{3F} もしくは R^{4F} で置換された単 環式または多環式の芳香族または非芳香族 $4\sim10$ 員環系等であり、

 R^{1F} 、 R^{2F} 、 R^{3F} および R^{4F} は、水素、 $C1\sim10$ アルキル、 $C3\sim8$ シクロアルキル、アリール $C0\sim8$ アルキル、アミノ $C0\sim8$ アルキル、 $C1\sim6$ アルキルアミノ $C0\sim8$ アルキル、 $C1\sim6$ ジアルキルアミノ $C0\sim8$ アルキル、 $C1\sim6$ ジアルキルアミノ $C0\sim8$ アルキル、 $C1\sim4$ アルコキシ $C0\sim6$ アルキル等から成る群から独立して選択され:

 Y^F はC0~8Tルキル、C0~8Tルキル-O-C0~8Tルキル、C0~8Tルキル-S0 $_{n}$ $_{F}$ -C0~8Tルキル等であり、ここで $_{n}$ $_{F}$ は0~2 $_{n}$ を数で

15 あり;

20

10

ZFおよびAFは(CH $_2$) $_{mF}$ 、(CH $_2$) $_{mF}$ O(CH $_2$) $_{nF}$ 、(CH $_2$) $_{mF}$ SO $_2$ (CH $_2$) $_{nF}$ 、(CH $_2$) $_{mF}$ SO(CH $_2$) $_{nF}$ 、(CH $_2$) $_{mF}$ SO(CH $_2$) $_{nF}$ 等から独立して選択され、ここでmFおよびnFは0 ~ 6 から独立して選択される整数であり、ただしAFが(CH $_2$) $_{mF}$ であるとき、ZFおよび AFと結合した"アリールF"環は少なくとも 1 個のヘテロ原子を含まなければならず;

 R^{5F} は水素、 $C1\sim6$ アルキル、 $C0\sim6$ アルキルオキシ $C0\sim6$ アルキル、またはハロゲン等であり;

$$R^{10F}$$
 R^{11F} Q R^{12F} R^{12F}

R 6 F、R 7 F、R 8 F、R 9 F、R 10 F およびR 11 F は、水素、C 1~8 アルキル等から独立して選択され、

R^{12F}はヒドロキシ、C1~8アルキルオキシ等から選択される。)で示される化合物および医薬的に許容可能なその塩がフィブリノーゲンレセプターアンタゴニスト活性を有することが記載されている(式中の基の説明は必要な部分を抜粋した。)。

発明の開示

本発明者らは、PPAR受容体の制御作用を有する化合物を見出すべく鋭意 10 研究を行なった結果、一般式(I)で示される化合物が目的を達成することを 見出し、本発明を完成した。

また、一般式(I)で示される化合物の一部は、前記特開平1-143856号明細書および特表平8-504194号明細書で既に公知であり、それらの作用、すなわち、リポキシゲナーゼ抑制活性、ロイコトリエン拮抗活性、フィブリノーゲンレセプターアンタゴニスト活性を有していることも公知であるが、これらのことからPPAR受容体の制御作用が予想されるものではない。

また、一般式(I)で示される化合物の一部はこれまで知られていない新規な化合物である。

本発明は、

5

15

20 1) 一般式(I)

(式中、

 A^{1} は $C_{1} \sim 4$ アルキレン基または $C_{2} \sim 4$ アルケニレン基を表わし、

 A^2 は-O-基または-S-基を表わし、

A³はCH基またはN基を表わし、

5 nは1~5を表わし、

Rlは

- (i) 水素原子、
- (ii) C1~8アルキル基、
- (iii) ハロゲン原子、
- 10 (iv) C1~4アルコキシ基、
 - (v) ニトロ基、
 - (vi) トリハロメチル基、
 - (vii)トリハロメトキシ基、
 - (viii) トリハロメチルチオ基、
- 15 (ix) シアノ基、
 - (x) C1~4アルキルチオ基、
 - (xi) NR 5 R 6 基(基中、R 5 およびR 6 はそれぞれ独立して、水素原子またはC 1 ~ 4 アルキル基を表わす。)、
 - (xii)炭素環基、または
- 20 (xiii) ヘテロ環基を表わし、

R2は

- (i) 水素原子、
- (ii) C1~4アルキル基、
- (iii) ハロゲン原子、または
- 25 (iv) トリハロメチル基を表わし、

Cycl基は

Cyc2基は

- (i) 炭素環基、または
- (ii) ヘテロ環基を表わし、
- 5 R³は
 - (i) 水素原子、
 - (ii) C1~8アルキル基、
 - (iii) ハロゲン原子、
 - (iv) C1~4アルコキシ基、
- 10 (v) ニトロ基、
 - (vi) トリハロメチル基、
 - (vii)トリハロメトキシ基、
 - (viii) トリハロメチルチオ基、
 - (ix) シアノ基、または
- 15 (x) C1~4アルキルチオ基を表わし、

R 4 は

$$R^8$$
 R^9
(i) $-A^4-C-COOR^7$ 基、または

(ii) 2, 4-チアゾリジンジオン-5-イル基を表わし、

A 4 は

- 20 (i) 単結合、
 - (ii) C1~4アルキレン基、
 - (iii) -C1~4アルキレン-O-基、または
 - (iv) $-C1\sim4$ アルキレン-S-基を表わし、

 R^7 、 R^8 および R^9 はそれぞれ独立して、水素原子、または $C1\sim4$ アルキル

基を表わす。

ただし、

- (1) R⁴は2位または3位に結合するものとし、
- (2) R 4 が 3 位に結合し、A 4 が単結合またはメチレンを表わし、A 3 が C H を表わし、C y c 1 がペンゼンを表わすとき、A 1 はメチレン、エチレン、またはビニレンを表わすものとする。) で示されるカルボン酸誘導体、それらの非毒性塩、またはそれらの水和物を有効成分として含有するペルオキシソーム増殖薬活性化受容体制御剤、
 - 2) 一般式(I)

10

$$(R^{1})_{n} \qquad R^{2}$$

$$Cyc2 \qquad Cyc1 \qquad A^{1} \qquad A^{2} \qquad R^{3}$$

$$R^{3} \qquad (I)$$

(式中、

 A^{1} は C_{1} ~4Tルキレン基または C_{2} ~4Tルケニレン基を表わし、

15 A^2 は-O-基または-S-基を表わし、

A³はCH基またはN基を表わし、

nは1~5を表わし、

R1は

- (i) 水素原子、
- 20 (ii) C1~8アルキル基、
 - (iii) ハロゲン原子、
 - (iv) C1~4アルコキシ基、

- (v) ニトロ基、
- (vi) トリハロメチル基、
- (vii) トリハロメトキシ基、
- (viii) トリハロメチルチオ基、
- 5 (ix) シアノ基、
 - (x) C1~4アルキルチオ基、
 - (xi) NR 5 R 6 基(基中、R 5 およびR 6 はそれぞれ独立して、水素原子またはC 1 ~ 4 アルキル基を表わす。)、
 - (xii)炭素環基、または
- 10 (xiii) ヘテロ環基を表わし、

R21

- (i) 水素原子、
- (ii) C1~4アルキル基、
- (iii) ハロゲン原子、または
- 15 (iv) トリハロメチル基を表わし、

Cyc1基は

Cyc2基は

- (i) 炭素環基、または
- 20 (ii) ヘテロ環基を表わし、

R3は

- (i) 水素原子、
- (ii) C1~8アルキル基、
- (iii) ハロゲン原子、
- 25 (iv) C1~4アルコキシ基、

- (v) ニトロ基、
- (vi) トリハロメチル基、
- (vii) トリハロメトキシ基、
- (viii) トリハロメチルチオ基、
- 5 (ix) シアノ基、または
 - (x) C1~4アルキルチオ基を表わし、

R 4 は

$$R^8$$
 R^9
(i) $-A^4-C-COOR^7$ 基、または

- (ii) 2, 4-チアゾリジンジオン-5-イル基を表わし、
- 10 A 4 は
 - (i) 単結合、
 - (ii) C1~4アルキレン基、
 - (iii) -C1~4アルキレン-O-基、または
 - (iv) $-C1\sim4$ アルキレン-S-基を表わし、
- 15 R^7 、 R^8 および R^9 はそれぞれ独立して、水素原子、または $C1\sim 4$ アルキル 基を表わす。

ただし、

- (1) R 4 は 2 位または 3 位に結合するものとし、
- (2) R^4 が3位に結合し、 A^4 が単結合またはメチレンを表わし、 A^3 がCH
- 20 を表わし、Cyclがペンゼンを表わすとき、Alはメチレン、エチレン、またはビニレンを表わすものとする。)で示されるカルボン酸誘導体、それらの非 毒性塩、またはそれらの水和物、および
 - 3) 一般式(I) で示される化合物の製造方法に関する。
- 25 発明の詳細な説明

本発明においては、特に指示しない限り異性体はこれをすべて包含する。例

えば、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アルキレン基、アルケニレン基およびアルキニレン基には直鎖のものおよび分岐鎖のものが含まれる。さらに、二重結合、環、縮合環における異性体(E、Z、シス、トランス体)、不斉炭素の存在等による異性体(R、S体、

5 α、β体、エナンチオマー、ジアステレオマー)、旋光性を有する光学活性体 (D、L、d、l体)、クロマトグラフ分離による極性体(高極性体、低極性 体)、平衡化合物、これらの任意の割合の化合物、ラセミ混合物は、すべて本 発明に含まれる。

本発明において、C1~4アルキル基とは、メチル、エチル、プロピル、プ 10 チル基およびこれらの異性体基である。

C1~8アルキル基とは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基およびこれらの異性体基である。

C1~4アルコキシ基とは、メトキシ、エトキシ、プロポキシ、ブトキシ基およびこれらの異性体基である。

15 C1~4アルキルチオ基とは、メチルチオ、エチルチオ、プロピルチオ、ブ チルチオ基およびこれらの異性体基である。

C1~4アルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン基およびこれらの異性体基である。

 $C2 \sim 4$ アルケニレン基とは、エテニレン、プロペニレン、ブテニレン基お 20 よびこれらの異性体基である。

ハロゲン原子とは、ヨウ素原子、臭素原子、フッ素原子および塩素原子である。

トリハロメチル基とは、ヨウ素原子、臭素原子、フッ素原子、塩素原子によってトリ置換されたメチル基である。

25 トリハロメトキシ基とは、ヨウ素原子、臭素原子、フッ素原子、塩素原子に よってトリ置換されたメトキシ基である。

トリハロメチルチオ基とは、ヨウ素原子、臭素原子、フッ素原子、塩素原子

によってトリ置換されたメチルチオ基である。

炭素環とは、C3~15の単環、二環、三環式炭素環および架橋式炭素環を 表わす。C3~15の単環、二環、三環式炭素環および架橋式炭素環としては、 例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、 - シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロペン テン、シクロヘキセン、シクロペンダジエン、シクロヘキサジエン、ベンゼン、 ペンタレン、インデン、ナフタレン、アズレン、フルオレン、フェナントレイ ン、アントラセン、アセナフチレン、ピフェニレン、ペルヒドロペンタレン、 インダン (ジヒドロインデン)、ペルヒドロインデン、ジヒドロナフタレン、 テトラヒドロナフタレン、ペルヒドロナフタレン、ペルヒドロアズレン、ペル 10 ヒドロフルオレン、ペルヒドロフェナントレイン、ペルヒドロアントラセン、 ペルヒドロアセナフチレン、ペルヒドロフェニレン、ビシクロペンタン、ビシ クロヘキサン、ビシクロヘプタン(「2.2.1]ビシクロヘプタン)、ビシ クロオクタン、ビシクロノナン、ビシクロデカン、アダマンタン等が挙げられ る。 15

ヘテロ環とは、 $1 \sim 4$ 個の窒素原子、 $1 \sim 2$ 個の酸素原子および/または1 個の硫黄原子を含む $4 \sim 1$ 8 員の単環、二環または三環式複素環アリールまたはその一部または全部が飽和したものが含まれる。

前記した1~4個の窒素原子、1~2個の酸素原子および/または1個の硫 類原子を含む4~18員の単環、二環または三環式複素環アリールとしては、 ピロール、イミダゾール、トリアゾール、テトラゾール、ピラゾール、ピリジ ン、ピラジン、ピリミジン、ピリダジン、アゼピン、ジアゼピン、フラン、ピ ラン、オキセピン、オキサゼピン、チオフェン、チアイン (チオピラン)、チ エピン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、オ キサジアゾール、オキサアジン、オキサジアジン、オキサアゼピン、オキサジ アゼピン、チアジアゾール、チアアジン、チアジアジン、チアアゼピン、チア ジアゼピン、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、

ベンゾチオフェン、イソベンゾチオフェン、インダゾール、キノリン、イソキ ノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、 ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、カルバゾール、 アクリジン環等が挙げられる。

前記した1~4個の窒素原子、1~2個の酸素原子および/または1個の硫 5 黄原子を含む4~18員の単環、二環または三環式複素環で一部または全部飽 和したものとしては、ピロリン、ピロリジン、イミダゾリン、イミダゾリジン、 トリアゾリン、トリアゾリジン、テトラゾリン、テトラゾリジン、ジヒドロピ リジン、ジヒドロピラジン、ジヒドロピリミジン、ジヒドロピリダジン、ピペ リジン、ピペラジン、テトラヒドロピリミジン、テトラヒドロピリダジン、ジ 10 ヒドロフラン、テトラヒドロフラン、ジヒドロピラン、テトラヒドロピラン、 ジヒドロチオフェン、テトラヒドロチオフェン、ジヒドロチアイン(ジヒドロ チオピラン)、テトラヒドロチアイン(テトラヒドロチオピラン)、ジヒドロ オキサゾール、テトラヒドロオキサゾール、ジヒドロイソオキサゾール、テト ラヒドロイソオキサゾール、ジヒドロチアゾール、テトラヒドロチアゾール、 15 ジヒドロイソチアゾール、テトラヒドロイソチアゾール、モルホリン、チオモ ルホリン、インドリン、イソインドリン、ジヒドロベンゾフラン、パーヒドロ ベンゾフラン、ジヒドロイソベンゾフラン、パーヒドロイソベンゾフラン、ジ ヒドロベンゾチオフェン、パーヒドロベンゾチオフェン、ジヒドロイソベンゾ 20 チオフェン、パーヒドロイソベンゾチオフェン、ジヒドロインダゾール、パー ヒドロインダゾール、ジヒドロキノリン、テトラヒドロキノリン、パーヒドロ キノリン、ジヒドロイソキノリン、テトラヒドロイソキノリン、パーヒドロイ ソキノリン、ジヒドロフタラジン、テトラヒドロフタラジン、パーヒドロフタ ラジン、ジヒドロナフチリジン、テトラヒドロナフチリジン、パーヒドロナフ チリジン、ジヒドロキノキサリン、テトラヒドロキノキサリン、パーヒドロキ 25 ノキサリン、ジヒドロキナゾリン、テトラヒドロキナゾリン、パーヒドロキナ **ゾリン、ジヒドロシンノリン、テトラヒドロシンノリン、パーヒドロシンノリ**

ン、ジヒドロベンゾオキサゾール、パーヒドロベンゾオキサゾール、ジヒドロベンゾイミダゾール、パーヒドロベンゾイミダゾール、ベンゾオキサゼピン、ベンゾオキサジアゼピン、ベンゾオキサジアゼピン、ベンゾチアアゼピン、ベンゾナアジアゼピン、ベンブアゼピン、ベンブアゼピン、ベンブアゼピン、インドロオキリアゼピン、インドロテトラヒドロオキサゼピン、インドロオキサジアゼピン、インドロテトラヒドロオキサジアゼピン、インドロテトラヒドロチアアゼピン、インドロテトラヒドロチアアゼピン、インドロテトラヒドロチアジアゼピン、インドロテトラヒドロデザピン、インドロテトラヒドロジアゼピン、インドロテトラヒドロジアゼピン、インドロテトラヒドロジアゼピン、インドロテトラヒドロジアゼピン、インドロテトラヒドロジアゼピン、インドロテトラヒドロガルバゾール、ガンファー、イミダゾチアゾール、ジヒドロカルバゾール、テトラヒドロカルバゾール、パーヒドロカルバゾール、ジヒドロアクリジン、テトラヒドロアクリジン、パーヒドロアクリジン、1、3ージオキサインダン、1、4ージオキサインダン環等が挙げられる。

15 一般式(I)中、 R^2 としては、好ましくは $C_1 \sim 4$ アルキル基であり、特に 好ましくはメチル基およびエチル基である。

一般式(I)中、Сус1としては、好ましくは

(基中、右側の結合手がA¹に結合するものとする。) であり、特に好ましくは、

20

(基中、右側の結合手がA1に結合するものとする。) である。

一般式(I)中、 A^1 としては、好ましくは $C1\sim 4$ アルキレン基であり、特に好ましくは $C1\sim 2$ アルキレン基($-CH_2$ -基、 $-(CH_2)_2$ -基)である。

一般式 (I) 中、 A^2 としては、好ましくは-O-基である。

一般式(I)中、A³としては、好ましくはCH基である。

一般式(I)中、R4の好ましい結合位置は3位である。

一般式 (I) 中、R 4 としては、好ましくは $-A^4$ -C -COOR 基である。

一般式(I)中、A⁴としては、好ましくは単結合または-C1~4アルキレン-O-基または-C1~4アルキレン-S-基であり、特に好ましくは単結合、または-CH₂-S-基である。

一般式(I) 中、 R^8 および R^9 としては、好ましくは水素原子またはメチル基であり、特に好ましくは水素原子である。

一般式(I) 中、 R^1 としては、好ましくは水素原子、 $C1 \sim 8$ アルキル基、10 ハロゲン原子、トリハロメトキシ基、またはトリハロメチルチオ基であり、特に好ましくは水素原子、ハロゲン原子またはトリハロメトキシ基である。

一般式(I)中、Cyc2で表わされる炭素環としては、好ましくはC3~10の単環または二環式炭素環であり、より好ましくはシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘブタン、シクロオクタン、シクロノナン、シクロデカンまたはベンゼンであり、さらに好ましくはシクロプロパン、シクロペンタン、シクロヘキサンまたはベンゼンである。

15

20

一般式(I)中、 R^1 で表わされる炭素環としては、好ましくは $C_3 \sim 1_0$ の 25 単環または二環式炭素環であり、より好ましくはシクロプロパン、シクロブタ

ン、シクロペンタン、シクロヘキサン、シクロヘブタン、シクロオクタン、シクロノナン、シクロデカンまたはベンゼンであり、さらに好ましくはシクロプロパン、シクロペンタン、シクロヘキサンまたはベンゼンである。

一般式(I)中、 R^1 で表わされるヘテロ環としては、好ましくは $1\sim 2$ 個の 室素原子、 $1\sim 2$ 個の酸素原子および/または1個の硫黄原子を含む $5\sim 1$ 0 貝の単環または二環式複素環アリールまたはその一部または全部が飽和したものであり、より好ましくはフラン、チオフェン、ピリジン、チアジアゾール(1, 2, 3-4アジアゾール)、ピペラジンまたはジオキサインダン(1, 3-5 オキサインダン)であり、さらに好ましくはチアジアゾール(1, 2, 3-4 アジアゾール)である。

本発明において、PPAR受容体制御剤とは、PPAR受容体 α 型、 γ 型、 δ 型、 α 型+ γ 型、 α 型+ δ 型、 γ 型+ δ 型および α 型+ γ 型+ δ 型制御剤 すべてを包含する。制御様式としては、好ましくはPPAR受容体 α 型制御剤、PPAR受容体 α 型+ γ 型制御剤、またはPPAR受容体 α 型+ β 型制御剤であり、特に好ましくはPPAR受容体 α 型+ γ 型制御剤、またはPPAR受容体 α 型+ γ 型制御剤、またはPPAR α 型制御剤である。

また、PPAR受容体制御剤には、PPAR受容体アゴニストおよびPPA

15

R受容体アンタゴニストも含まれるが、好ましくはPPAR受容体アゴニストであり、より好ましくはPPAR受容体 α 型アゴニスト、PPAR受容体 δ 型 20 アゴニスト、PPAR受容体 α 型+ γ 型アゴニスト、またはPPAR受容体 α 型+ δ 型アゴニストであり、特に好ましくはPPAR受容体 α 型+ γ 型アゴニストである。

一般式(I)で示される化合物のうち、好ましい化合物としては、 一般式(I-a)

$$(R^1)_n$$
 O
 R^2
 $Cyc2$
 N
 O
 R^8
 R^9
 $COOH$
 $(I-a)$

$$(R^1)_n$$
 O
 R^2
 $Cyc2$
 R^8
 R^9
 $COOH$
 $(I-b)$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 -般式(I-c)

$$(R^1)_n \qquad \qquad R^8 \qquad R^9$$

$$Cyc2 \qquad \qquad \qquad COOH \qquad (I-c)$$

$$R^3$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 15 一般式(I-d)

$$\begin{array}{c|c} (R^1)_n & & & \\ \hline \\ Cyc2 & & \\ O & & \\ \hline \\ R^2 & & \\ \end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 一般式 (I-e)

5

$$(R^1)_n$$
 S
 R^2
 $Cyc2$
 R^8
 R^9
 $COOH$
 $(I-e)$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 一般式 (I-f)

10

$$\begin{array}{c|c}
(R^1)_n \\
Cyc2
\end{array}$$

$$\begin{array}{c|c}
S & R^2 \\
\hline
N & O \\
\end{array}$$

$$\begin{array}{c|c}
R^8 & R^9 \\
\hline
COOH
\end{array}$$

$$\begin{array}{c|c}
(I-f) \\
\end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 一般式 (I-g)

15

$$(R^1)_n \longrightarrow N \longrightarrow O \longrightarrow R^8 \longrightarrow R^9$$

$$COOH (I-g)$$

$$R^3$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 一般式 (I-h)

5

$$\begin{array}{c|c} (R^1)_n & & & \\ \hline \\ Cyc2 & & \\ S & & \\ R^2 & & \\ \end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 一般式 \cdot (I-j)

10

$$\begin{array}{c|c} (R^1)_n & R^2 \\ \hline Cyc2 & R^8 & R^9 \\ \hline COOH & (I-j) \\ \hline R^3 & \end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、一般式 (I-k)

15

$$\begin{array}{c|c} (R^1)_n & R^2 \\ \hline \\ Cyc2 & S \end{array}$$

$$\begin{array}{c|c} R^8 & R^9 \\ \hline \\ COOH \end{array} (I-k)$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 一般式(I-1)

5

$$\begin{array}{c|c} (R^1)_n & R^8 & R^9 \\ \hline Cyc2 & II & COOH \\ \hline R^2 & R^3 & \end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、 一般式 (I-m)

10

$$\begin{array}{c|c} (R^1)_n & & & \\ \hline \\ Cyc2 & & \\ \hline \\ R^2 & & \\ \hline \\ R^3 & & \\ \end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、 それらの非毒性塩およびそれらの水和物が挙げられる。

15 具体的な化合物としては、以下の表 $1 \sim 20$ に記載した化合物、それらの非 毒性塩またはそれらの水和物が挙げられる。

以下の各表中、Me はメチル基を表わし、Et はエチル基を表わし、t-B u は t- ブチル基を表わし、その他の記号は前記と同じ意味を表わす。

$$(R^1)_n$$
 Cyc2 N N O COOH $(I-a-1)$

No.	(R ¹) _n -Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N	21	S
2	Me —	12	NC-{}	22	○ -
3	t-Bu—	13	MeS —	23	(<u>)</u>
4	MeO-	14	Me CI	24	N-S N Me
5	F-	15	Me O ₂ N	25	N
6	cı———	16	MeO — MeO	26	Me-N N-
7	O ₂ N-	17	MeO MeO	27	
8	F ₃ C-\(\bigc\)	18	Me F F	28	\$ New
9	F₃CO -{	19		29	
10	F ₃ CS-	20	\(\rightarrow\)	30	F+0 F

$$(R^{1})_{n} \xrightarrow{\text{Cyc2}} N \xrightarrow{\text{Et}} COOH \text{(I-a-2)}$$

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -Cyc2
1		11	Me ₂ N —	21	S
2	Me —	12	NC-(22	\bigcirc
3	t-Bu	13	MeS-	23	
4	MeO —	14	Me CI	24	N-S N Me
5	F-	15	Me → O ₂ N	25	N
6	CI—	16	MeO MeO	26	Me-N_N-
7	O₂N-{	17	MeO MeO	27	\bigcirc — \bigcirc —
8	F ₃ C-\(\bigc\)	18	Me F F	28	\$ New
9	F₃CO-⟨¯¯⟩	19		29	
10	F ₃ CS —	20	\(\rightarrow\)	30	F+O

$$(R^{1})_{n} \xrightarrow{\text{Cyc2}} N \xrightarrow{\text{O}} N \xrightarrow{\text{Me}} S \xrightarrow{\text{COOH}} (I-b-1)$$

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n - Cyc2	No.	(R ¹) _n —Cyc2—
1.		11	Me₂N —	21	∑ ≻
2	Me —	12	NC —	22	\bigcirc
3	t-Bu	13	MeS-	23	\$
4	MeO -	14	Me CI	24	N-S N Me
5	F-(15	Me ————————————————————————————————————	25	N
6	ci—(16	MeO MeO	26	Me-N N-
7	O₂N—(17	MeO MeO MeO	27	
8	F ₃ C-\(\bigc\)	18	Me F F	28	S N=N
9	F₃CO-⟨¯¯⟩	19		29	
10	F ₃ CS —	20	\(\rightarrow\)	30	F-FO

$$\mathbb{R}^{1}$$
)n \mathbb{C} yc2 \mathbb{R}^{0} \mathbb{C} \mathbb{C}

No.	(R ¹) _n —(Cyc2)—	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N—	21	S
2	Me —	12	NC-{\bigs_}	22	
3	t-Bu—	13	MeS —	23	
4	MeO-	14	Me CI	24	N-S N N Me
5	F-(15	Me O ₂ N	25	N
6	cı—()—	16	MeO MeO	26	Me-N_N-
7	O ₂ N-	17	MeO MeO MeO	27	
8	F ₃ C-	18	Me F F	28	ş N ₂ N
9	F₃CO-{}	19		29	
10	F ₃ CS—	20	\(\rightarrow\)	30	F + O

$$(R^1)_n$$
 $Cyc2$ N Me $COOH$ $(I-c-1)$

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n - Cyc2	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N —	21	S
2	Me —	12	NC-	22	\bigcirc
3	t-Bu	13	MeS-	23	© —
4	MeO -	14	Me CI	24	N-S N Me
5	F-(15	Me → O₂N	25	N
6	cı———	16	MeO — MeO	26	Me-N N-
7	O₂N-{\bigs_}	17	MeO MeO	27	
8	F ₃ C	18	Me F F	28	\$ \
9	F₃CO-	19		29	
10	F ₃ CS —	20	○	30	F+O

$$(R^1)_n$$
 $Cyc2$ N $COOH$ $(I-c-2)$

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	S -
2	Me —	12	NC-	22	\bigcirc
3	t-Bu—	13	MeS-	23	© —
4	MeO-	14	Me CI	24	N-S N Me
5	F-	15	Me O ₂ N	25	N D
6	cı—()—	16	MeO MeO	26	Me-N N-
7	0 ₂ N-	17	MeO MeO	27	\bigcirc
8	F ₃ C-\(\bigc\)	18	Me F F	28	s N≈N
9	F ₃ CO —	19	<u>.</u>	29	
10	F ₃ CS —	20	\Diamond	30	0 F+0 F

$$(R^1)_n$$
 $Cyc2$ N O Me O S $COOH$ $(I-d-1)$

No.	(R ¹) _n -Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N	21	S
2	Me —	12	NC-()	22	\bigcirc
3	t-Bu—	13	MeS —	23	
4	MeO —	14	Me CI	24	N-S N Me
5	F-(15	Me → O ₂ N	25	N
6	cı—(¯)—	16	MeO MeO	26	Me - N N —
7	O ₂ N-√	17	MeO MeO	27	
8	F ₃ C	18	Me F F	28	S NaN
9	F₃CO —	19	<u></u>	29	
10	F₃CS—	20	\Diamond	30	F O F

$$(R^1)_n$$
 $Cyc2$ N $Cyc2$ S $COOH$ $(I-d-2)$

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -(Cyc2)	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	[\$_
2	Me —	12	NC-{\bigs_}	22	\bigcirc
3	t-Bu-	13	MeS —	23	
4	MeO-	14	Me CI	24	N-S N Me
5	F-	15	Me \ O ₂ N	25	N
6	cı—()—	16	MeO MeO	26	Me-N N-
7	O ₂ N-	17	MeO MeO	27	
8	F ₃ C-\	18	Me F F	28	S N ₂ N
9	F ₃ CO —	19	<u> </u>	29	
10	F ₃ CS	20	○	30	F+0 F

$$(R^{1})_{n} \xrightarrow{\text{Cyc2}} N \xrightarrow{\text{Me}} COOH \text{ (I-e-1)}$$

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n - Cyc2	No.	(R ¹) _n —Cyc2—
1		11	Me ₂ N —	21	S
2	Me -	12	NC-{\rightarrow}	22	\bigcirc
3	t-Bu	13	MeS-	23	
4	MeO -	14	Me CI	24	N-S N Me
5	F-	15	Me ✓ ✓ ✓ ✓ O ₂ N	25	N
6	cı—()—	16	MeO MeO	26	Me-N N-
7	O₂N-{	17	MeO MeO	27	
8	F ₃ C —	18	Me F F	28	ş N = N
9	F₃CO-	19		29	
10	F ₃ CS —	20	\(\rightarrow\)	30	F+0

$$(R^1)_n \xrightarrow{\text{Cyc2}} S \xrightarrow{\text{Et}} O \xrightarrow{\text{COOH } (I\text{-e-2})}$$

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n —(Cyc2)—	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	S
2	Me —	12	NC-()	22	\bigcirc
3	t-Bu—	13	MeS —	23	(
4	MeO —	14	Me CI	24	N-S N Me
5	F-(15	Me → O ₂ N	25	N
6	CI—	16	MeO MeO	26	Me-N N—
7	O ₂ N-\(\bigcirc\)	17	MeO MeO	27	\bigcirc - \bigcirc -
8	F ₃ C-	18	Me F F	28	\$ \
9	F ₃ CO -	19		29	
10	F ₃ CS-\bigcolongright	20		30	F + O

$$(R^{1})_{n} \xrightarrow{\text{Cyc2}} N \xrightarrow{\text{S} \text{Me}} O \xrightarrow{\text{S} \text{COOH}} (I-f-1)$$

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me₂N —	21	€ S -
2	Me —	12	NC -	22	\bigcirc
3.	t-Bu	13	MeS-	23	
4	MeO -	14	Me CI	24	N-S N Me
5	F-{_}	15	Me O ₂ N	25	N
6	CI—	16	MeO MeO	26	Me-N_N-
7	O₂N-{	17	MeO MeO	27	
8	F ₃ C-\(\bigc\)	18	Me F F	28	s N = N
9.	F ₃ CO-	19	├	29	
10	F ₃ CS-\bigcip_	20	. 🔷	30	F + O

$$(R^1)_n \xrightarrow{\text{Cyc2}} S \xrightarrow{\text{Et}} O \xrightarrow{\text{S} \text{COOH}} (I\text{-f-2})$$

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -Cyc2
1		11	Me ₂ N —	21	€ S
2	Me —	12	NC-{}	22	\bigcirc
3	t-Bu	13	MeS-	23	
4	MeO -	14	Me CI	24	N-S N Me
5	F-{	15	Me — O ₂ N	25	N
6	CI—	16	MeO MeO	26	Me-N_N-
7	O ₂ N-	17	MeO MeO	27	
. 8	F ₃ C-	18	Me F F	28	\$ N ₂ N
9	F ₃ CO-	19		29	
10	F ₃ CS —	20	○	30	F-OF

$$(R^1)_n$$
 $Cyc2$ N Me $COOH$ $(I-g-1)$

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	€\$—
2	Me —	12	NC-{\bigcream}	22	○ -
3	t-Bu—	13	MeS-	23	(>
4	MeO-(14	Me ————	24	N-S N Me
5.	F-(15	Me → O ₂ N	25	N
6	cı———	16	MeO MeO	26	Me-N N-
7	O ₂ N-	17	MeO MeO	27	
8	F ₃ C-\	18	Me F F	28	\$ NaN
9	F ₃ CO —	19		29	
10	F ₃ CS-	20		30	F+OF

$$(R^1)_n$$
 $Cyc2$ S Et $COOH$ $(I-g-2)$

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	S
2	Me —	12	NC-{\bigs_}	22	\bigcirc
3	t-Bu—	13	MeS-	23	\$
4	MeO -	14	Me CI	24	N-S N Me
5	F-	15	Me ————— O₂N	25	N D
6	cı—()—	16	MeO MeO	26	Me-N N-
7	O ₂ N-\(\bigcirc\)	17	MeO MeO	27	
8	F ₃ C-(18	Me F F	28	S N=N
9	F₃CO-⟨¯¯⟩	19		29	
10	F ₃ CS-	20	\(\rightarrow\)	30	0 F + 0 F

$$(R^1)_n$$
 $Cyc2$ N Me O S $COOH$ $(I-h-1)$

No.	(R ¹) _n -Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	[\$_
2	Me —	12	NC-{\bigs_}	22	\bigcirc
3	t-Bu—	13	MeS-	23	(>
4	MeO-	14	Me CI	24	N-S N Me
5	F-	15	Me → O ₂ N	25	N
6	cı———	16	MeO MeO	26	Me - N N
7	O ₂ N-	17	MeO MeO	27	○-○ -
8	F₃C-⟨¯¯⟩	18	Me F F	28	\$ N=N
9	F ₃ CO —	19	\triangleright	29	
10	F ₃ CS	20	⇔	30	F + O

$$(R^1)_n$$
 $Cyc2$ S Et O S $COOH$ $(I-h-2)$

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N-	21	[\$_
2	Me —	12	NC-(22	\bigcirc
3	t-Bu-	13	MeS —	23	
4	MeO-	14	Me CI	24	N-S N Me
5	F-	15	Me ————— O ₂ N	25	~
6	· cı————	16	MeO MeO	26	Me-N_N-
7	O ₂ N-	17	MeO MeO	27	
8	F ₃ C-{	18	Me F F	28	S N=N
9	F ₃ CO	19		29	
10	F ₃ CS-\bigcip_	20	\Diamond	30	F+0 F

$$\frac{\underline{\pm 1.7}}{\text{Cyc2}}$$
 (R¹) $_{n}$ — Cyc2 — COOH $_{(\text{I-j-1})}$

No.	(R ¹) _n -Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N —	21	€ S -
2	Me —	12	NC-{\bigs_}	22	\bigcirc
3	t-Bu—	13	MeS-	23	
4	MeO-	14	Me CI	24	N-S N Me
5	F-\(\bigcirc\)	15	Me — — — O₂N	25	N
6	cı———	16	MeO MeO	26	Me-N N-
7	O ₂ N-	17	MeO MeO	27	
8	F ₃ C-\	18	Me F F	28	S N=N
9	F ₃ CO —	19		29	
10	F ₃ CS-	20	\Diamond	30	0

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2
1		11	Me ₂ N —	21	S
2	Me —	12	NC-()	22	\bigcirc
3	t-Bu—	13	MeS-	23	
4	MeO -	14	Me CI	24	N-S N Me
5.	F-(15	Me → O ₂ N	25	N
6	cı—(16	MeO MeO	26	Me-N N-
7	O ₂ N-(17	MeO MeO	27	
8	F₃C – €	18	Me F F	28	s N=N
9	F ₃ CO	19	\triangleright	29	
10	F ₃ CS -	20	○	30	F F O

$$\overline{\underline{\$19}}$$
 COOH (I-I-1)

No.	(R ¹) _n -(Cyc2)-	No.	(R ¹) _n - Cyc2	No.	(R ¹) _n —Cyc2—
1		11	Me ₂ N —	21	S →
2	Me —	12	NC-{}	22	\bigcirc
3	t-Bu-	13	MeS-	23	
4	MeO —	14	Me — CI	24	N-S N → Me
5	F-	15	Me ✓	25	N
6	cı———	16	MeO ————	26	Me-N N-
7	0 ₂ N-\	17	MeO MeO	27	
8	F ₃ C-\	18	Me F F	28	\$ N=N
9	F ₃ CO-	19	F F	29	
10	F ₃ CS-	20		30	F+O

$$\frac{\underline{\cancel{R}} \ 2 \ 0}{\text{Cyc2}} \text{S^COOH}$$
 (I-m-1)

No.	(R ¹) _n - Cyc2	No.	(R ¹) _n -Cyc2	No.	(R ¹) _n —Cyc2—
1		11	Me ₂ N —	21	S
2.	Me —	12	NC -	22	\bigcirc
3	t-Bu-	13	MeS-	23	~
4	MeO -	14	Me CI	24	N-S N Me
5	F-(15	Me → O ₂ N	25	N
6	CI—	16	MeO —	26	Me-N N-
7	O ₂ N-	17	MeO MeO	27	\bigcirc — \bigcirc —
8	F ₃ C-	18	Me F F	28	S N=N
9	F ₃ CO-	19	<u> </u>	29	
10	F ₃ CS —	20	<u></u>	30	F+O

[本発明化合物の製造方法]

(1) 一般式(I)で示される本発明化合物のうち、

$$\mathbf{R}^{8}$$
 \mathbf{R}^{9} \mathbf{R}^{4} \mathbf{M}^{6} \mathbf{R}^{4} \mathbf{M}^{6} \mathbf{R}^{4} \mathbf{M}^{6} \mathbf{R}^{6} 基である化合物、すなわち一般式($I-1$)

$$(R^{1-1})_n$$
 R^2 R^8 R^9 $A^4-C-COOR^{7-1}$ R^3 R^3 R^3

5

10

(式中、 R^{1-1} および $COOR^{7-1}$ はそれぞれ R^{1} および $COOR^{7}$ と同じ意味を表わす。ただし、 R^{1-1} によって表わされるアミノ基は保護が必要な場合には保護されているものとし、 $COOR^{7-1}$ によって表わされるCOOH基は保護が必要な場合には保護されているものとする。アミノ基の保護基としては、例えば、ベンジルオキシカルボニル基、t-プトキシカルボニル基、トリフルオロアセチル基等を意味し、COOH基の保護基としては、例えば、メチル基、エチル基、t-プチル基、ベンジル基等を意味する。その他の記号は前記と同じ意味を表わす。)で示される化合物は、一般式 (II)

15

$$(R^{1-1})_n$$
 R^2 $Cyc2$ $Cyc1$ A^1 OH (II)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物と、一般式 (Ⅲ)

20

HO
$$\begin{array}{c}
R^{8} \quad R^{9} \\
A^{4} \quad C \quad COOR^{7-1} \\
R^{3}
\end{array}$$
(III)

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物を反応 させるか、

5 一般式 (IV)

$$(R^{1-1})_n$$
 R^2 $Cyc2$ $Cyc1$ A^1-R^{10} (IV)

(式中、 R^{10} はハロゲン原子またはメタンスルホニルオキシ基を表わし、その 他の記号は前記と同じ意味を表わす。) で示される化合物と一般式 (V)

$$R^{11}$$
 A^{4}
 C
 $COOR^{7-1}$
 R^{3}
 R^{3}

(式中、R¹1は水酸基またはメルカプト基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物を反応させることにより、製造することができる。

一般式(II)で示される化合物と一般式(III)で示される化合物の反応は公知であり、例えば、一般式(II)で示される化合物および一般式(III)で示される化合物を、有機溶媒(塩化メチレン、エーテル、テトラヒドロフラン、アセト

ニトリル、ベンゼン、トルエン等)中、アゾ化合物(アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、1, 1' - (アゾジカルボニル) ジピペリジン、1, 1' - アゾビス(N, N - ジメチルホルムアミド等)およびホスフィン化合物(トリフェニルホスフィン、トリプチルホスフィン、トリメチルホスフィン等)存在下、0 \mathbb{C} $\mathbb{C$

一般式(IV)で示される化合物および一般式(V)で示される化合物の反応は公知であり、例えば、一般式(IV)で示される化合物および一般式(V)で示される化合物を不活性有機溶媒(テトロヒドロフラン(THF)、ジエチルエーテル、塩化メチレン、クロロホルム、四塩化炭素、ペンタン、ヘキサン、ベンゼン、トルエン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスファアミド(HMPA)等)中、塩基(水素化ナトリウム、炭酸カリウム、トリエチルアミン、ピリジン、炭酸セシウム等)の存在下、場合によっては添加剤(ヨウ化ナトリウム、ヨウ化カリウム等)を加えて、0~80℃で反応させることにより行なうことができる。

(2) 一般式(I)で示される化合物のうち、 R^4 が2, 4-チアゾリジンジ オン-5-イル基を表わす化合物、すなわち一般式(I-2)

$$(R^{1-1})_n \qquad R^2 \qquad O \qquad H \qquad N \qquad O$$

$$Cyc2 \qquad Cyc1 \qquad A^1 \qquad A^2 \qquad S \qquad (I-2)$$

$$A^3 \qquad R^3 \qquad (I-2)$$

20

10

15

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は、一般式 (VI)

$$(R^{1-1})_n \qquad R^2 \qquad X \qquad (VI)$$

$$Cyc2 \qquad Cyc1 \qquad A^1 \qquad A^2 \qquad R^3$$

(式中、Xはハロゲン原子を表わし、その他の記号は前記と同じ意味を表わす。)とチオ尿素を反応させることにより製造することができる。

- 5 上記反応は公知であり、例えば、一般式 (VI) で示される化合物およびチオ 尿素を有機溶媒 (メタノール、エタノール、プロパノール等) 中、0℃~溶媒 還流温度で3~20時間反応させた後、酸 (濃硫酸等) を加えて、0℃~溶媒 還流温度で3~20時間反応させることにより行なうことができる。
- (3) 一般式(I)で示される化合物のうち、 R^1 および $COOR^7$ のうちの 10 少なくとも1つの基がCOOH基またはアミノ基を表わす化合物、すなわち一 般式(I-3)

$$(R^{1-2})_n$$
 R^2 R^8 R^9 $A^4-C-COOR^{7-2}$ R^3 R^3 R^3

15 (式中、 R^{1-2} および $COOR^{7-2}$ はそれぞれ R^{1} および $COOR^{7}$ と同じ意味を表わす。ただし、 R^{1-2} および $COOR^{7-2}$ のうちの少なくとも1つの基がアミノ基またはCOOH基を表わし、その他の記号は前記と同じ意味を表わす。)で示さされる化合物は前記一般式(I-1)で示される化合物をアルカリ加水分解、酸性条件下における脱保護反応または加水素分解による脱保護の反応に付すことによっても製造することができる。

アルカリ加水分解による脱保護反応は公知であり、例えば、有機溶媒(メタ ノール、エタノール、テトラヒドロフラン、ジオキサン等)中、アルカリ金属 の水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)、アル カリ土類金属の水酸化物(水酸化バリウム、水酸化カルシウム等)または炭酸 塩(炭酸ナトリウム、炭酸カリウム等)あるいはその水溶液もしくはこれらの 混合物を用いて0~40℃の温度で行なわれる。

酸性条件下での脱保護反応は公知であり、例えば有機溶媒(塩化メチレン、 クロロホルム、ジオキサン、酢酸エチル、アニソール等)中、有機酸(酢酸、 トリフルオロ酢酸、メタンスルホン酸、ヨウ化トリメチルシリル等)、または 無機酸(塩酸、硫酸等)もしくはこれらの混合物(臭化水素酢酸等)中、0~ 100℃の温度で行なわれる。

10

15

20

加水素分解による脱保護反応は公知であり、例えば不活性溶媒 [エーテル系(例えば、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチルエーテル等)、アルコール系(例えば、メタノール、エタノール等)、ベンゼン系(例えば、ベンゼン、トルエン等)、ケトン系(例えば、アセトン、メチルエチルケトン等)、ニトリル系(例えば、アセトニトリル等)、アミド系(例えば、ジメチルホルムアミド等)、水、酢酸エチル、酢酸またはそれらの2以上の混合溶媒等]中、水素化触媒(例えば、バラジウムー炭素、パラジウム黒、パラジウム、水酸化パラジウム、二酸化白金、ニッケル、ラネーニッケル、塩化ルテニウム等)の存在下、無機酸(例えば、塩酸、硫酸、次亜塩素酸、ホウ酸、テトラフルオロホウ酸等)または有機酸(例えば、酢酸、pートルエンスルホン酸、シュウ酸、トリフルオロ酢酸、ギ酸等)の存在下または非存在下、常圧または加圧下の水素雰囲気下またはギ酸アンモニウム存在下、0~200℃の温度で行なわれる。酸を用いる場合には、その塩を用いてもよい。

25 (4) 一般式(I)で示される化合物のうち、R 4 が 2 , 4 - チアゾリジンジ オン-5 - イル基を表わし、R 1 のうちの少なくとも一つの基がアミノ基を表わ す化合物、すなわち一般式 (I - 4)

$$(R^{1-3})_n \qquad R^2 \qquad O \qquad N \qquad N$$

$$Cyc2 \qquad Cyc1 \qquad A^1 \qquad A^2 \qquad S \qquad (I-4)$$

$$A^3 \qquad R^3 \qquad (I-4)$$

(式中、 R^{1-3} は R^{1} と同じ意味を表わす。ただし、 R^{1-3} のうちの少なくとも 1つの基がアミノ基を表わし、その他の記号は前記と同じ意味を表わす。) で示される化合物は、前記一般式(I-2)で示される化合物を酸性条件下に おける脱保護反応または加水素分解による脱保護反応に付すことによっても製造することができる。

酸性条件下における脱保護反応または加水素分解による脱保護反応は前記と 10 同様の方法で行なうことができる。

本発明において脱保護反応とは、当業者には容易に理解できる一般的な脱保 護反応、例えば、アルカリ加水分解、酸性条件下における脱保護反応、加水素 分解による脱保護反応を意味し、これらの反応を使い分けることにより、目的 とする本発明化合物が容易に製造される。

- 当業者には容易に理解できることであるが、カルボキシル基の保護基としてはメチル基、エチル基、tーブチル基およびベンジル基が挙げられるが、それ以外にも容易にかつ選択的に脱離できる基であれば特に限定されない。例えばT. W. Greene, Protective Groups in Organic Synthesis, Wiley, New York, 1991に記載されたものが用いられる。
- 20 アミノ基の保護基としては、ベンジルオキシカルボニル基、 t ープトキシカルボニル基、トリフルオロアセチル基が挙げられるが、それ以外にも容易にかつ選択的に脱離できる基であれば特に限定されない。例えばT. W. Greene, Protective Groups in Organic Synthesis, Wiley, New York, 1991に記載されたものが用いられる。

一般式 (II)、 (III)、 (IV)、 (V) および (VI) で示される化合物は、それ自体公知であるか、あるいは公知の方法により容易に製造することができる。 例えば、一般式 (II) で示される化合物のうち、 $2-(5-x+\nu-2-2-z-2-\nu)$ ニルオキサゾールー4-4-1 エタノールはJ. Med. Chem., 41, 5037-5054 (1998) 記載の方法によって製造することができる。

例えば、一般式(IV)、(V)および(VI)で示される化合物は以下の反応 工程式によって示される方法により製造することができる。

各反応工程式中の記号は以下の意味を表わし、その他の記号は前記と同じ意味を表わす。

10 R 1 1-1: 保護された水酸基またはメルカプト基;

 A^{4-1} : 単結合またはC1~4アルキレン基;

 A^{4-2} : $-C1\sim4$ アルキレン-O - 基または $-C1\sim4$ アルキレン-S -

基:

TMSCN: トリメチルシリルシアニド;

15 $Ph_3P:hJJr=nh\pi \lambda J\tau \lambda$;

ADDP: 1, 1'- (アゾジカルボニル) ジピペリジン。

反応工程式1

反応工程式2

ハロゲン化
または
メシル化
$$R^{11-1}$$
 R^{11-1} R^{11} R^{11}

$$R^{8}$$
 R^{9}

$$A^{4-2}-C-COOR^{7-1}$$

$$A^{3} - R^{3}$$

$$(V-2)$$

反応工程式3

反応工程式4

TMSCN,
$$Znl_2$$
. $Cyc2$ $Cyc1$ A^1-A^2 A^3 $Cyc2$ $Cyc1$ A^3 $Cyc2$ $Cyc1$ A^3 $Cyc2$ $Cyc1$ A^3 $Cyc2$ $Cyc1$ $Cyc1$ $Cyc1$ $Cyc2$ $Cyc1$ $Cyc1$

$$(R^{1-1})_n \stackrel{R^2}{\longleftarrow} X$$

$$Cyc2 \stackrel{Cyc1}{\longleftarrow} A^1 - A^2 \stackrel{1}{\longleftarrow} R^3$$

$$(VI)$$

各反応工程式中の出発原料はそれ自体公知であるか、または公知の方法により製造することができる。

5 各反応工程式中の反応はすべて公知の方法により行なうことができる。

また、本発明における他の出発物質および各試薬は、それ自体公知であるかまたは公知の方法により製造することができる。

本明細書中の各反応において、反応生成物は通常の精製手段、例えば、常圧下または減圧下における蒸留、シリカゲルまたはケイ酸マグネシウムを用いた高速液体クロマトグラフィー、薄層クロマトグラフィー、あるいはカラムクロマトグラフィーまたは洗浄、再結晶等の方法により精製することができる。精製は各反応ごとに行なってもよいし、いくつかの反応終了後に行なってもよい。本明細書に記載した化合物は、公知の方法で塩に変換される。塩は、非毒性でかつ水溶性であるものが好ましい。適当な塩としては、アルカリ金属(カリウム、ナトリウム等)の塩、アルカリ土類金属(カルシウム、マグネシウム等)の塩、アンモニウム塩、薬学的に許容される有機アミン(テトラメチルアンモニウム、トリエチルアミン、メチルアミン、ジメチルアミン、シクロペンチルアミン、ベンジルアミン、フェネチルアミン、ピペリジン、モノエタノールアミン、ジエタノールアミン、トリス(ヒドロキシメチル)アミノメタン、リジ

一般式(I)で示される本発明化合物は、公知の方法で相当する酸付加塩に 変換される。酸付加塩は毒性のない、水溶性のものが好ましい。適当な酸付加塩としては、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩、硝酸塩のような無機酸塩、または酢酸塩、トリフルオロ酢酸塩、乳酸塩、酒石酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、クエン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、イセチ オン酸塩、グルクロン酸塩、グルコン酸塩のような有機酸塩が挙げられる。

ン、アルギニン、NーメチルーDーグルカミン等)の塩が挙げられる。

本明細書に記載した本発明化合物またはその非毒性の塩は、公知の方法により、水和物に変換されることもある。

[薬理活性]

10

25 一般式(I)で示される本発明化合物がPPAR受容体制御活性を有することは以下の実験で証明された。

PPAR aアゴニスト活性、PPAR y アゴニスト活性およびPPAR & アゴ

ニスト活性の測定

20

25

1) ヒトPPAR α 、 γ または δ 受容体を用いたルシフェラーゼアッセイの材料の調製

全体の操作は、基本的な遺伝子工学的手法に基づき、また酵母Oneーハイブリッド、またはTwoーハイブリッドシステムで常法となっている手法を活用した。チミジンキナーゼ(TK)プロモーター支配下のルシフェラーゼ遺伝子発現ベクターとして、PicaGene Basic Vector 2(商品名,東洋インキ社,カタログ No. 309-04821)からルシフェラーゼ構造遺伝子を切り出し、TKプロモーターをもつpTKβ(クロンテック社,カタログ No. 6179-1)から必要最小のプロモーター活性としてTKプロモーター(-105/+51)支配下のルシフェラーゼ遺伝子発現ベクターpTKーLuc.を作成した。TKプロモーター上流に酵母の基本転写因子であるGal4蛋白の応答配列、UASを4回繰り返したエンハンサー配列を挿入し、4×UAS-TK-Luc.を構築し、レポーター遺伝子とした。以下に用いたエンハンサー配列(配列番号 1)を示す。

15 配列番号 1 : G a 1 4 蛋白応答配列を繰り返したエンハンサー配列 5'-T(CGACGGAGTACTGTCCTCCG)x4 AGCT-3'

酵母G a 1 4 蛋白のD N A結合領域のカルボキシル末端に核内受容体ヒトP P A R α 、 γ または δ 受容体のリガンド結合領域を融合させたキメラ受容体蛋白を発現するベクターを以下のように作成した。すなわち、PicaGene Basic Vector 2 (商品名,東洋インキ社,カタログ No. 309-04821) を基本発現ベクターとしてプロモーター・エンハンサー領域はそのままに、構造遺伝子をキメラ受容体蛋白のそれに交換した。

Gal4蛋白のDNA結合領域、1番目から147番目までのアミノ酸配列をコードするDNA下流にヒトPPAR α 、 γ または受容体のリガンド結合領域をコードするDNAがフレームが合うように融合して、PicaGene Basic Vector 2 (商品名) のプロモーター・エンハンサー領域下流に挿入した。この際、発現

したキメラ蛋白が核内に局在すべく、ヒトPPAR α 、 γ または δ 受容体のリガンド結合領域のアミノ末端にはSV-40 T-antigen由来の核移行シグナル、AlaProLysLysLysArgLysValGly(配列番号2)を配し、一方、カルボキシ末端には発現蛋白質の検出用にエピトープタグシークエンスとして、インフルエンザのヘマグルチニンエピトープ、TyrProTyrAspValProAspTyrAla(配列番号3)と翻訳停止コドンを順に配するようなDNA配列とした。

ヒトPPARα、γまたはδ受容体のリガンド結合領域として用いた構造遺伝子部分は、R. Mukherjeeら(J. Steroid Biochem. Molec. Biol., <u>51</u>, 157 (1994)参照)、10 M. E. Greenら(Gene Expression., <u>4</u>, 281 (1995)参照)、A. Elbrechtら(Biochem Biophys. Res. Commun., <u>224</u>, 431 (1996)参照またはA. Schmidtら(Mol. Endocrinology., <u>6</u>, 1634 (1992)参照)に記載されたヒトPPAR受容体の構造比較から、

ヒトPPAR αリガンド結合領域:Ser¹⁶⁷-Tyr⁴⁶⁸

15 ヒトPPARγリガンド結合領域: Ser¹⁷⁶-Tyr⁴⁷⁸ ヒトPPARδリガンド結合領域: Ser¹³⁹-Tyr⁴⁴¹

20

25

(ヒトPPARγ1受容体、ヒトPPARγ2受容体ではSer²⁰⁴-Tyr⁵⁰⁶に相当し、全く同じ塩基配列である。)をコードするDNAを使用した。また、基本転写に対する影響をモニターすべく、PPARリガンド結合領域を欠失したGal4蛋白のDNA結合領域、1番目から147番目までのアミノ酸配列のみをコードするDNAを有する発現ベクターも併せて調製した。

2) ヒトPPARα、γまたはδ受容体を用いたルシフェラーゼアッセイ 宿主細胞として用いたCV-1細胞は常法に従って培養した。すなわち、ダルベッコ改変イーグル培地 (DMEM) に牛胎児血清 (GIBCO BRL社, カタログ No. 26140-061) を終濃度10%になるように添加し、さらに終濃度50U/

レポーター遺伝子、Gal4ーPPAR発現ベクターの両DNAを宿主細胞内へ導入するトランスフェクションに際し、細胞を予め10cm dishに2× 10⁶ cells播種しておき、血清を含まない培地で一回洗浄操作を施した後、同培地10mlを加えた。レポーター遺伝子10μg、Gal4ーPPAR発現ベクター0.5μgとLipofectAMINE(商品名,GIBCOBRL社,カタログ No. 18324-012)50μlをよく混和し、上記培養dishに添加した。37℃で培養を5~6時間続け、10mlの透析牛胎児血清(GIBCOBRL社,カタログ No. 26300-061)20%を含む培地を加えた。37℃で一晩培養した後、細胞をトリプシン処理によって分散させ、8000 cells/100ml DMEM-10%透析血清/wellの細胞密度で96穴プレートに再播種し、数時間培養し細胞が付着したとき、検定濃度の2倍濃度を含む本発明化合物のDMEM-10%透析血清溶液100μlを添加した。37℃で42時間培養し、細胞を溶解させ、常法に従ってルシフェラーゼ活性を測定した。

PPAR α アゴニスト活性に関しては、PPAR α に対して有意にルシフェラーゼ遺伝子の転写を活性化できる陽性対照化合物カルバサイクリン(Eur. J. Biochem., 233, 242 (1996); Genes & Development., 10, 974 (1996)参照) 10μ M添加時のルシフェラーゼ活性を1.0としたときの本発明化合物 0.3μ M添加時の相対活性を表 21 に示した。

20

PPAR γ アゴニスト活性に関しては、PPAR γ に対して有意にルシフェラーゼ遺伝子の転写を活性化できる、すでに血糖降下剤として上市されている、陽性対照化合物トログリタゾン(Cell., 83, 863 (1995)、Endocrinology., 137, 4189 (1996)およびJ. Med. Chem., 39, 665 (1996)参照) 10μ M添加時のルシフェラーゼ活性を1.0としたときの本発明化合物 1.0μ M添加時の相対活性を表 22 に示した。

PPAR δ アゴニスト活性に関しては、化合物を含まない溶媒のみを添加し

たときのルシフェラーゼ活性値を1.0とし、本発明化合物の相対活性を表23に示した。

さらに、実施例化合物については、3回行なって再現性を検討し、また、用 量依存性の有無を確認した。

5

<u>表21</u> PPARαアゴニスト活性

化合物番号	相対活性	
実施例 2	2. 1	
実施例 2 (5)	0.8	
実施例2 (11)	3. 2	
実施例2(12)	1. 7	

<u>表22</u> PPAR_γアゴニスト活性

化合物番号	相対活性	
実施例2 (12)	1. 4	

<u>表23</u> PPAR&アゴニスト活性

化合物番号	0	濃度(μM) 1. 0	10.0
実施例2 (22)	1. 0	9. 3	66.7
実施例2 (93)	1. 0	36.1	54.7
実施例 6	1. 0	11.9	61.6

血糖および血中脂質の低下作用:

雄性KKAy/Taマウス(1群7匹)を7週齢(体重35~40g)で入荷後、約1週間の予備飼育と3日間の粉末飼料での馴化飼育を行ない、実験を開始した。実験開始当日(0日)、体重、血糖値および血中脂質(トリグリセリド(TG)値)に基づく群分けを行ない、翌日より2日間、本発明化合物を0.03%(w/w)含む飼料、もしくは粉末飼料そのもので飼育した。飼育3日目の13:00に採血を行ない、血糖値、TG値を測定した。結果を表24に示す。なお、摂餌量はコントロール群(粉末飼料のみ)、本発明化合物群(0.03%化合物を含む粉末飼料)両者で有意な違いは認められなかった。

表24

化合物番号	血糖値(mg/dl) 3日	TG値(mg/dl) 3日
コントロール	495±35	558±107
実施例 2 (1 2) 混餌38.9mg/kg/day(換算值)	214±19*	221±66*

^{*:} p<0.01 vs コントロール (1群7匹)

血中コレステロールおよび血中脂質低下作用:

10

15

雄性SDラット(1群7匹)を6週齢で入荷後、シングルケージにて、1週間、粉末飼料にて自由摂餌および摂水で飼育し、馴化させた。

実験開始当日(0日)9:00に尾静脈から採血し、体重、血中脂質(トリグリセリド(TG)値)、遊離脂肪酸(NEFA)、総コレステロール(TC)値による群分けを行ない、各パラメーターの群間差を最小限にした。当日、17:00に本発明化合物を0.5%カルボキシメチルセルロース(CMC)水溶液にて溶解後、経口投与し、同時に高コレステロール食(チャールズリバー社, CRF-1粉末飼料に5.5%ピーナツ油、1.5%コレステロール、0.5%コール酸を混合したもの)を供した。

実験開始1日目9:00に尾静脈採血を行ない、本発明化合物投与後の血中脂質 (TG、NEFA、TC値)を測定した。結果を表25に示す。なお、本発明 化合物は10mg×3/kg/dayで経口投与を行なった。また、摂餌量はコントロール群 (0.5%CMCのみ投与) および本発明化合物投与群両者で有意な違いは認められなかった。

表25

化合物番号	TC値 (mg/dl)	TG値 (mg/dl)	NEFA値 (μEq/I)
コントロール	188±5	147±9	489±66
実施例2 (12)	70±5**	100±14*	178±14**

*: p<0.05 vs コントロール(1群7匹)

**: p<0.01 vs コントロール(1群7匹)

KKAy/Taマウスにおける血糖あるいは脂質低下作用は糖尿病や高脂血症等の 20 予防および/または治療剤としての可能性を示唆するものである。また、高コレステロール食負荷ラットでの血中コレステロールレベル減少作用や遊離脂肪

酸低下作用は動脈硬化症等の予防および/または治療剤として有用であることを示唆するものである。

産業上の利用の可能性

5 [効果]

10

15

20

25

一般式(I)で示される本発明化合物、それらの非毒性塩、およびそれらの水和物は、PPAR受容体を制御する作用を有しており、血糖降下剤、脂質低下剤、糖尿病、肥満、シンドロームX、高コレステロール血症、高リポ蛋白血症等の代謝異常疾患、高脂血症、動脈硬化症、高血圧、循環器系疾患、過食症、虚血性心疾患等の予防および/または治療剤、HDLコレステロール上昇剤、LDLコレステロールおよび/またはVLDLコレステロールの減少剤、糖尿病やシンドロームXのリスクファクター軽減剤としての応用が期待される。

また、一般式(I)で示される本発明化合物、それらの非毒性塩、およびそれらの水和物は特にPPAR α アゴニスト作用および/またはPPAR γ アゴニスト作用を有しているため、血糖降下剤、脂質低下剤、糖尿病、肥満、シンドロームX、高コレステロール血症、高リポ蛋白血症等の代謝異常疾患、高脂血症、動脈硬化症、高血圧、循環器系疾患、過食症等の予防および/または治療剤、HDLコレステロール上昇作用、LDLコレステロールおよび/またはVLDLコレステロールの減少作用、そして動脈硬化進展抑制やその治療、また肥満抑制効果が期待され、血糖降下剤として糖尿病の治療や予防、高血圧の改善、シンドロームXのリスクファクター軽減や虚血性心疾患の発症予防剤としての応用が期待される。

また、一般式(I)で示される本発明化合物、それらの非毒性塩、およびそれらの水和物はPPAR&アゴニスト作用を有しているため、HDLコレステロール上昇作用、それによる動脈硬化進展抑制やその治療、脂質低下剤や血糖降下剤としての応用が期待され、さらには高脂血症の治療、血糖降下剤、糖尿病の治療やシンドロームXのリスクファクターの軽減や虚血性心疾患の発症予

防にも有用であると考えられる。

[毒性]

10

15

本発明化合物の毒性は十分に低いものであり、医薬品として使用するために 5 十分安全であると考えられる。

[医薬品への適用]

一般式(I)で示される本発明化合物、その非毒性の塩、酸付加塩、または その水和物を上記の目的で用いるには、通常、全身的または局所的に、経口ま たは非経口の形で投与される。

投与量は、年齢、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常、成人一人あたり、1回につき、1mgから1000mgの範囲で、1日1回から数回経口投与されるか、または成人一人あたり、1回につき、0.1mgから100mgの範囲で、1日1回から数回非経口投与(好ましくは、静脈内投与)されるか、または1日1時間から24時間の範囲で静脈内に持続投与される。

もちろん前記したように、投与量は種々の条件によって変動するので、上記 投与量より少ない量で十分な場合もあるし、また範囲を越えて必要な場合もあ る。

20 本発明化合物を投与する際には、経口投与のための内服用固形剤、内服用液 剤および、非経口投与のための注射剤、外用剤、坐剤等として用いられる。

経口投与のための内服用固形剤には、錠剤、丸剤、カプセル剤、散剤、顆粒剤等が含まれる。カプセル剤には、ハードカプセルおよびソフトカプセルが含まれる。

25 このような内服用固形剤においては、ひとつまたはそれ以上の活性物質はそのままか、または賦形剤(ラクトース、マンニトール、グルコース、微結晶セルロース、デンプン等)、結合剤(ヒドロキシプロピルセルロース、ポリビニ

ルピロリドン、メタケイ酸アルミン酸マグネシウム等)、崩壊剤(繊維素グリコール酸カルシウム等)、滑沢剤(ステアリン酸マグネシウム等)、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸等)等と混合され、常法に従って製剤化して用いられる。また、必要によりコーティング剤(白糖、ゼラチン、

ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等)で被覆していてもよいし、また2以上の層で被覆していてもよい。さらにゼラチンのような吸収されうる物質のカプセルも包含される。

経口投与のための内服用液剤は、薬剤的に許容される水剤、懸濁剤、乳剤、シロップ剤、エリキシル剤等を含む。このような液剤においては、ひとつまたはそれ以上の活性物質が、一般的に用いられる希釈剤(精製水、エタノールまたはそれらの混液等)に溶解、懸濁または乳化される。さらにこの液剤は、湿潤剤、懸濁化剤、乳化剤、甘味剤、風味剤、芳香剤、保存剤、緩衝剤等を含有していてもよい。

10

15

20

非経口投与のための注射剤としては、溶液、懸濁液、乳濁液および用時溶剤に溶解または懸濁して用いる固形の注射剤を包含する。注射剤は、ひとつまたはそれ以上の活性物質を溶剤に溶解、懸濁または乳化させて用いられる。溶剤として、例えば注射用蒸留水、生理食塩水、植物油、プロピレングリコール、ポリエチレングリコール、エタノールのようなアルコール類等およびそれらの組み合わせが用いられる。さらにこの注射剤は、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸、ポリソルベート80(登録商標)等)、懸濁化剤、乳化剤、無痛化剤、緩衝剤、保存剤等を含んでいてもよい。これらは最終工程において滅菌するか無菌操作法によって製造、調製される。また無菌の固形剤、例えば凍結乾燥品を製造し、その使用前に無菌化または無菌の注射用蒸留水または他の溶剤に溶解して使用することもできる。

25 非経口投与のためのその他の製剤としては、ひとつまたはそれ以上の活性物質を含み、常法により処方される外用液剤、軟膏剤、塗布剤、吸入剤、スプレー剤、坐剤および膣内投与のためのペッサリー等が含まれる。

スプレー剤は、一般的に用いられる希釈剤以外に亜硫酸水素ナトリウムのような安定剤と等張性を与えるような緩衝剤、例えば塩化ナトリウム、クエン酸ナトリウムあるいはクエン酸のような等張剤を含有していてもよい。スプレー剤の製造方法は、例えば米国特許第 2,868,691 号および同第3,095,355 号に詳しく記載されている。

発明を実施するための最良の形態

以下、参考例および実施例によって本発明を詳述するが、本発明はこれらに 限定されるものではない。

10 クロマトグラフィーによる分離の箇所およびTLCに示されるカッコ内の溶媒は、使用した溶出溶媒または展開溶媒を示し、割合は体積比を表わす。

NMRの箇所に示されているカッコ内の溶媒は、測定に使用した溶媒を示している。

15 参考例 1

5

3-メトキシメトキシベンズアルデヒド

20 3-ヒドロキシベンズアルデヒド(20g)、クロロメチルメチルエーテル (25ml)およびジイソプロピルエチルアミン(114ml)のテトラヒド ロフラン(300ml)溶液を室温にて1晩撹拌した。反応混合溶液に氷水を 加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液、水および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残 25 留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=25:

1) で精製し、下記物性値を有する標題化合物(23g)を得た。

TLC: Rf 0.65 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 9.98 (s, 1H), 7.42-7.56 (m, 3H), 7.30 (m, 1H), 5.24 (s, 2H), 3.50 (s, 3H)_o

5

参考例 2

3-メトキシメトキシペンジルアルコール

10

水素化アルミニウムリチウム(690mg)のテトラヒドロフラン(60ml) 懸濁液に参考例1で製造した化合物(3.0g)のテトラヒドロフラン(40ml)溶液を加え、室温で30分間撹拌した。反応混合溶液に飽和硫酸ナトリウム水溶液および硫酸マグネシウムを加え、セライトでろ過した。ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、下記物性値を有する標題化合物(2.5g)を得た。TLC:Rf 0.39(ヘキサン:酢酸エチル=3:1);

NMR (CDCl₃): δ 7.25 (t, J = 7.5 Hz, 1H), 7.10-6.95 (m, 3H), 5.20 (s, 2H), 4.70 (d, J = 6 Hz, 2H), 3.50 (s, 3H), 1.75 (t, J = 6 Hz, 1H)_o

20

15

参考例3

3-メトキシメトキシベンジルプロミド

参考例2で製造した化合物(2.48g)およびトリフェニルホスフィン(4.64g)の塩化メチレン(150ml)溶液に四臭化炭素(7.34g)を加え、室温で30分間撹拌した。反応混合溶液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製し、下記物性値を有する標題化合物(4.41g)を得た。

TLC: Rf 0.71 (ヘキサン: 酢酸エチル=2:1);

10 NMR (CDCl₃): δ 7.25 (t, J = 7.5 Hz, 1H), 7.10-6.95 (m, 3H), 5.20 (s, 2H), 4.45 (s, 2H), 3.50 (s, 3H)_o

参考例 4

2-(3-メトキシメトキシフェニルメチルチオ) 酢酸・メチルエステル

15

参考例3で製造した化合物(4.41g)、チオグリコール酸メチル(1.5ml)、 炭酸カリウム(2.45g)およびヨウ化カリウム(250mg)のアセトニトリル (50ml) 懸濁液を3時間還流した。反応混合溶液をろ過し、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 5:1)で精製し、下記物性値を有する標題化合物(2.81g)を得た。

TLC: Rf 0.57 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.25 (t, J = 7.5 Hz, 1H), 7.05-6.90 (m, 3H), 5.20 (s, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.50 (s, 3H), 3.10 (s, 2H),

参考例 5

2-(3-ヒドロキシフェニルメチルチオ) 酢酸・メチルエステル

5

10

た。

参考例 4 で製造した化合物 (2.81g) のメタノール (20m1) 溶液に 4N- 塩酸のジオキサン溶液 (11m1) を加え、室温で 30 分間撹拌した。反応混合溶液を濃縮した。残留物をシリカゲルカラムクロマトグラフィー (へキサン:酢酸エチル=5:1)で精製し、下記物性値を有する標題化合物 (2.16g) を得

TLC: Rf 0.45 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.20 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 6.85 (d, J = 2 Hz, 1H), 6.75 (dd, J = 7.5, 2 Hz, 1H), 5.05 (s, 1H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H)_o

実施例1

20

15

参考例5で製造した化合物(0.30g)を塩化メチレン(10ml)に溶解し、2-ヒドロキシメチルー4-(4-メチルフェニル)チアゾール(0.34g)およびトリフェニルホスフィン(0.44g)を加えて、室温で5分間撹拌した。反応混5溶液に1,1'-アゾジカルボニルジピペリジン(0.56g)を加えて、室温で1晩撹拌した。反応混合溶液にジエチルエーテルを加え、ろ過した。ろ液を飽和炭酸水素ナトリウム水溶液、水および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、下記物性値を有する本発明10 化合物(0.51g)を得た。

TLC: Rf 0.56 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃) : δ 7.79 (d, J = 8.2 Hz, 2H), 7.44 (s, 1H), 7.22-7.30 (m, 3H), 6.91-7.05 (m, 3H), 5.42 (s, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 2.39 (s, 3H).

15 <u>実施例 1 (1)~実施例 1 (137)</u>

参考例 5 で製造した化合物または相当する誘導体および 2 ーヒドロキシメチルー 4 ー (4 ーメチルフェニル) チアゾールまたは相当する誘導体を用いて、 実施例 1 で示される方法と同様に操作し、以下に示す本発明化合物を得た。

20 実施例1(1)

TLC: Rf 0.75 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.48-7.66 (2H,m), 7.43 (1H, s), 7.28-7.10 (3H, m), 6.88-6.72

5 (3H, m), 5.41 (2H, s), 3.66 (3H, s), 2.59 (2H, t, J=8.0Hz), 2.39 (3H, s), 2.30 (2H, t, J=7.5Hz), 1.74-1.46 (4H, m), 1.45-1.16 (2H, m)_o

<u>実施例1(2)</u>

5-(3-(ビフェニル-4-イルメトキシ)フェニル)ペンタン酸・メチル10 エステル

TLC: Rf 0.57 (ヘキサン: 酢酸エチル=4:1);

15 NMR (CDCl₃): δ 7.30-7.62 (m, 9H), 7.20 (m, 1H), 6.77-6.83 (m, 3H), 5.08 (s, 2H), 3.64 (s, 3H), 2.60 (t, J = 6.8 Hz, 2H), 2.32 (t, J = 6.8 Hz, 2H), 1.59-1.66 (m, 4H)_o

<u>実施例1(3)</u>

4-(3-(ビフェニル-4-イルメトキシ) フェニル) ブタン酸・メチルエステル

5

TLC: Rf 0.65 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.57-7.64 (m, 4H), 7.31-7.53 (m, 5H), 7.22 (m, 1H), 6.78-6.87 (m, 3H), 5.09 (s, 2H), 3.66 (s, 3H), 2.64 (t, J = 7.5 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 1.96 (tt, J = 7.5, 7.5 Hz, 2H) $_{\circ}$

10

実施例1 (4)

4-(3-(4-(4-)3+) 7 - (3-(4-)4-) 7

15

TLC: Rf 0.59 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.79 (d, J = 8.0 Hz, 2H), 7.44 (s, 1H), 7.18-7.26 (m, 3H), 6.81-6.87 (m, 3H), 5.41 (s, 2H), 3.66 (s, 3H), 2.64 (t, J = 7.5 Hz, 2H), 2.39 (s, 3H), 2.33

 $(t, J = 7.5 \text{ Hz}, 2H), 1.95 (tt, J = 7.5, 7.5 \text{ Hz}, 2H)_{\circ}$

実施例1 (5)

4-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル)エト5 キシ)フェニル)ブタン酸・メチルエステル

TLC: Rf 0.39 (ヘキサン: 酢酸エチル=3:1);

10 NMR (CDCl₃): δ 7.98 (m, 2H), 7.38-7.46 (m, 3H), 7.17 (m, 1H), 6.72-6.77 (m, 3H), 4.23 (t, J = 7.0 Hz, 2H), 3.66 (s, 3H), 2.98 (t, J = 7.0 Hz, 2H), 2.60 (t, J = 7.5 Hz, 2H), 2.38 (s, 3H), 2.32 (t, J = 7.5 Hz, 2H), 1.93 (tt, J = 7.5, 7.5 Hz, 2H)_o

実施例1 (6)

15 6-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) ヘキサン酸・メチルエステル

TLC: Rf 0.51 (ヘキサン: 酢酸エチル=3:1);
NMR (CDCl₃): δ 8.04-7.92 (2H,m), 7.50-7.36 (3H, m), 7.16 (1H, t, J=8.0Hz), 6.80-6.60 (3H, m), 4.23 (2H, t, J=7.0Hz), 3.65 (3H, s), 2.98 (2H, t, J=7.0Hz), 2.56 (2H, t, J=7.5Hz), 2.38 (3H, s), 2.29 (2H, t, J=7.0Hz), 1.75-1.52 (4H, m), 1.44-1.26 (2H, m)。

実施例1 (7)

5

TLC: Rf 0.28 (ヘキサン: 酢酸エチル=5:1);

NMR (CDCl₃): δ 8.03-7.94 (2H,m), 7.49-7.36 (3H, m), 7.23-7.12 (1H, m), 6.78-10 6.68 (3H, m), 4.23 (2H, t, J=7.0Hz), 3.65 (3H, s), 2.98 (2H, t, J=7.0Hz), 2.64-2.52 (2H, m), 2.38 (3H, s), 2.38-2.26 (2H, m), 1.75-1.58 (4H, m)_o

実施例1 (8)

2-(3-(3-(ビフェニル-4-イルメトキシ) フェニル) プロピルチオ)15 酢酸・メチルエステル

TLC: Rf 0.73 (ヘキサン: 酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.57-7.64 (m, 4H), 7.31-7.53 (m, 5H), 7.22 (dd, J = 9.0, 7.6 Hz, 1H), 6.79-6.86 (m, 3H), 5.10 (s, 2H), 3.72 (s, 3H), 3.23 (s, 2H), 2.71 (t, J = 7.4 Hz,

2H), 2.65 (t, J = 7.4 Hz, 2H), 1.93 (tt, J = 7.4, 7.4 Hz, 2H).

実施例1(9)

2-(3-(3-(4-(4-メチルフェニル) チアゾール-2-イルメトキ
 5 シ) フェニル) プロピルチオ) 酢酸・メチルエステル

TLC: Rf 0.68 (ヘキサン: 酢酸エチル=2:1);

10 NMR (CDCl₃): δ 7.79 (d, J = 8.0 Hz, 2H), 7.44 (s, 1H), 7.18-7.26 (m, 3H), 6.82-6.88 (m, 3H), 5.41 (s, 2H), 3.72 (s, 3H), 3.22 (s, 2H), 2.71 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.39 (s, 3H), 1.92 (tt, J = 7.5, 7.5 Hz, 2H)_o

<u>実施例1(10)</u>

15 6-(2-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) ヘキサン酸・メチルエステル

TLC: Rf 0.51 (ヘキサン: 酢酸エチル=5:1);

NMR (CDCl₃): δ 7.95-8.00 (m, 2H), 7.40-7.45 (m, 3H), 7.02-7.17 (m, 2H), 6.81-6.89 (m, 2H), 4.25 (t, J = 6.4 Hz, 2H), 3.65 (s, 3H), 2.99 (t, J = 6.4 Hz, 2H), 2.56 (t, J = 7.8 Hz, 2H), 2.38 (s, 3H), 2.26 (t, J = 7.8 Hz, 2H), 1.46-1.76 (m, 4H), 1.22-1.45 (m, 2H)_o

<u>実施例1 (11)</u>

2-(3-(ビフェニル-4-イルメトキシ)フェニルメチルチオ)酢酸・メ チルエステル

10

5

TLC: Rf 0.56 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.57-7.63 (m, 4H), 7.34-7.52 (m, 5H), 7.24 (dd, J = 8.1, 7.7 Hz, 1H), 6.87-7.00 (m, 3H), 5.10 (s, 2H), 3.80 (s, 2H), 3.71 (s, 3H), 3.07 (s, 2H) $_{\circ}$

実施例1(12)

20

15

TLC: Rf 0.36 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.95-8.00 (m, 2H), 7.37-7.44 (m, 3H), 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 6.87-6.90 (m, 2H), 6.80 (dd, J = 8.0, 2.5 Hz, 1H), 4.24 (t, J = 6.7 Hz, 2H), 3.77 (s, 2H), 3.70 (s, 3H), 3.07 (s, 2H), 2.98 (t, J = 6.7 Hz, 2H), 2.37 (s, 3H),

<u>実施例1 (13)</u>

5-(2-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エト キシ) フェニル) ペンタン酸・メチルエステル

10

TLC: Rf 0.59 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.05-7.95 (m, 2H), 7.45-7.35 (m, 3H), 7.20-7.05 (m, 2H), 6.90-15 6.80 (m, 2H), 4.25 (t, J = 6.5 Hz, 2H), 3.65 (s, 3H), 3.00 (t, J = 6.5 Hz, 2H), 2.60 (t, J = 7 Hz, 2H), 2.40 (s, 3H), 2.25 (t, J = 7 Hz, 2H), 1.80-1.45 (m, 4H)_o

実施例1 (14)

TLC: Rf 0.55 (ヘキサン: 酢酸エチル=5:1);

NMR (CDCl₃): δ 7.79 (d, J = 8.0 Hz, 2H), 7.44 (s, 1H), 7.24 (d, J = 8.0 Hz, 2H),

5 7.15-7.22 (m, 2H), 6.91-6.98 (m, 2H), 5.42 (s, 2H), 3.65 (s, 3H), 2.73 (t, J = 7.6 Hz, 2H), 2.39 (s, 3H), 2.32 (t, J = 7.4 Hz, 2H), 1.61-1.77 (m, 4H), 1.38-1.50 (m, 2H)_o

実施例1 (15)

10 エトキシ)フェニル)プロピルチオ)酢酸・メチルエステル

TLC: Rf 0.29 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.95-8.00 (m, 2H), 7.40-7.46 (m, 3H), 7.17 (dd, J = 8.1, 8.1 Hz, 1H), 6.72-6.77 (m, 3H), 4.23 (t, J = 6.8 Hz, 2H), 3.71 (s, 3H), 3.22 (s, 2H), 2.98 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H), 1.90 (tt, J = 6.8, 6.8 Hz, 2H)_o

20 実施例1(16)

酢酸・メチルエステル

5 TLC: Rf 0.48 (ヘキサン: 酢酸エチル=3:1);
NMR (CDCl₃): δ 7.53-7.61 (m, 4H), 7.30-7.47 (m, 5H), 7.22 (dd, J = 8.2, 8.2 Hz,
1H), 6.78-6.92 (m, 3H), 4.21 (t, J = 7.0 Hz, 2H), 3.79 (s, 2H), 3.71 (s, 3H), 3.14 (t, J

 $= 7.0 \text{ Hz}, 2\text{H}), 3.09 (s, 2\text{H})_{\circ}$

10 実施例1 (17)

2-(4-)000-3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

15

TLC: Rf 0.41 (ヘキサン:酢酸エチル=2:1);

NMR (CDCl₃): δ 8.00 (m, 2H), 7.50-7.35 (m. 3H), 7.27 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 2.0 Hz, 1H), 6.83 (dd, J = 8.0, 2.0 Hz, 1H), 4.30 (t, J = 6.5 Hz, 2H), 3.75 (s, 2H), 3.71 (s, 3H), 3.05 (s, 2H), 3.05 (t, J = 6.5 Hz, 2H), 2.42 (s, 3H)_o

20

実施例1(18)

2-(4-クロロ-3-(4-(4-メチルフェニル)チアゾール-2-イルメトキシ)フェニルメチルチオ)酢酸・メチルエステル

TLC: Rf 0.61 (ヘキサン: 酢酸エチル=2:1);

5 NMR (CDCl₃): δ 7.78 (d, J = 8.0 Hz, 2H), 7.45 (s. 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 2.0 Hz, 1H), 6.93 (dd, J = 8.0, 2.0 Hz, 1H), 5.49 (s, 2H), 3.77 (s, 2H), 3.69 (s, 3H), 3.01 (s, 2H), 2.38 (s, 3H) $_{\circ}$

実施例1(19)

2-(3-(ビフェニル-4-イルメトキシ)-4-クロロフェニルメチルチ オ) 酢酸・メチルエステル

TLC: Rf 0.62 (ヘキサン: 酢酸エチル=2:1);
NMR (CDCl₃): δ 7.70-7.35 (m, 5H), 7.58 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.88 (dd, J = 8.0, 2.0 Hz, 1H), 5.22 (s, 2H), 3.77 (s, 2H), 3.70 (s, 3H), 3.00 (s, 2H)。

実施例1 (20)

2-(3-((2E)-3-(ビフェニル-4-4ル) プロペニルオキシ) フェニルメチルチオ) 酢酸・メチルエステル

5

TLC: Rf 0.63 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.53-7.63 (m, 4H), 7.15-7.50 (m, 6H), 6.74-6.93 (m, 4H), 6.45 (dt, J = 16.2, 5.7 Hz, 1H), 4.73 (dd, J = 5.7, 1.4 Hz, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H)_o

<u>実施例1 (21)</u>

2-(3-(3-(ビフェニル-4-イル) プロポキシ) フェニルメチルチオ) 酢酸・メチルエステル

15

10

TLC: Rf 0.66 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.19-7.61 (m, 10H), 6.79-6.92 (m, 3H), 4.00 (t, J = 6.2 Hz, 2H),

3.80 (s, 2H), 3.72 (s, 3H), 3.10 (s, 2H), 2.86 (t, J = 7.7 Hz, 2H), 2.14 (m, 2H).

<u>実施例1 (22)</u>

2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エト

5 キシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.50 (ヘキサン: 酢酸エチル=2:1);

10 NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.50-7.35 (m, 3H), 7.20 (m, 1H), 6.90-6.75 (m, 3H), 4.25 (t, J = 7Hz, 2H), 3.70 (s, 3H), 3.60 (s, 2H), 3.00 (t, J = 7Hz, 2H), 2.40 (3H, s)_o

実施例1 (23)

15 2-(3-(ビフェニルー4-イルメトキシ) ピリジン-5-イルメチルチオ)
酢酸・メチルエステル

20 TLC: Rf 0.22 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 8.32 (d, J = 3.0 Hz, 1H), 8.18 (d, J = 2.0 Hz, 1H), 7.70-7.30 (m,

10H), 5.16 (s, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.06 (s, 2H).

<u>実施例1 (24)</u>

2-(3-(4'-)プロピルピフェニル-4-()イルメトキシ)フェニルメチル 5 チオ)酢酸・メチルエステル

TLC: Rf 0.65 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.60 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.24 (dd, J = 7.7, 7.7 Hz, 1H), 6.87-7.00 (m, 3H), 5.10 (s, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 2.63 (t, J = 7.4 Hz, 2H), 1.68 (tq, J = 7.4, 7.4 Hz, 2H), 0.98 (t, J=7.4 Hz, 3H)_o

15 <u>実施例1(25)</u>

2-(3-(4-(ピリジン-4-イル)) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.50 (酢酸エチル);

NMR (CDCl₃): δ 8.67 (d, J = 4.5 Hz, 1H), 8.66 (d, J = 4.5 Hz, 1H), 7.67 (d, J = 8.6 Hz, 2H), 7.50-7.58 (m, 4H), 7.26 (dd, J = 8.0, 8.0 Hz, 1H), 6.80-7.01 (m, 3H), 5.13 (s, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H)_o

実施例1 (26)

2-(3-(4-(ピリジン-3-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル

10

5

TLC: Rf 0.77 (ヘキサン: 酢酸エチル=1:9);

NMR (CDCl₃): δ 8.86 (d, J = 2.4 Hz, 1H), 8.60 (dd, J = 5.0, 1.6 Hz, 1H), 7.89 15 (ddd, J = 8.0, 2.4, 1.6 Hz, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.38 (dd, J = 8.0, 5.0Hz, 1H), 7.26 (dd, J = 8.0, 8.0 Hz, 1H), 6.87-7.01 (m, 3H), 5.13 (s, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H)_o

<u>実施例1 (27)</u>

20 2-(3-(4-(1, 3-ジオキサインダン-5-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.48 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.54 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.25 (dd, J = 7.9, 7.9 Hz, 1H), 6.86-7.08 (m, 6H), 6.00 (s, 2H), 5.09 (s, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H)_o

実施例1 (28)

2-(3-(4-(ピリジン-2-17)) フェニルメトキシ) フェニルメチル 10 チオ) 酢酸・メチルエステル

TLC: Rf 0.47 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl3): δ 8.70 (d, J = 4.6 Hz, 1H), 8.01 (d, J = 8.6 Hz, 2H), 7.74-7.77 (m, 3H), 7.54 (d, J = 8.6 Hz, 2H), 7.24 (m, 1H), 6.75-7.00 (m, 3H), 5.13 (s, 2H), 3.80 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H)_o

<u>実施例1 (29)</u>

2-(5-(ビフェニル-4-イルメトキシ)-2-ニトロフェニルメチルチオ) 酢酸・メチルエステル

5

TLC: Rf 0.38 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 8.14 (d, J = 9.0 Hz, 1H), 7.57-7.65 (m, 4H), 7.45-7.52 (m, 3H), 7.36-7.45 (m, 2H), 7.08 (d, J = 2.8 Hz, 1H), 6.97 (dd, J = 9.0, 2.8 Hz, 1H), 5.22 (s, 2H), 4.22 (s, 2H), 3.71 (s, 3H), 3.07 (s, 2H)_o

10

実施例1 (30)

2-(3-(ビフェニル-4-イルメトキシ)-4-ニトロフェニルメチルチオ) 酢酸・メチルエステル

15

TLC: Rf 0.34 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.85 (d, J = 5.5 Hz, 1H), 7.53-7.63 (m, 6H), 7.42-7.48 (m, 2H), 7.33-7.38 (m, 1H), 7.20 (d, J = 1.0 Hz, 1H), 7.01 (dd, J = 5.5, 1.0 Hz, 1H), 5.31 (s,

2H), 3.83 (s, 2H), 3.71 (s, 3H), 3.00 (s, 2H)_o

<u>実施例1 (31)</u>

2 - (3 - (4 - (1, 3 - i) + i) + i)

5 フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.52 (ヘキサン: 酢酸エチル=3:1);

10 NMR (CDCl₃): δ 7.74 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.24 (dd, J = 7.8, 7.8 Hz, 1H), 6.80-7.09 (m, 6H), 6.02 (s, 2H), 5.11 (s, 2H), 3.80 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H)_o

実施例1 (32)

15 2-(3-(2-フェニルチアゾール-4-イルメトキシ)フェニルメチルチオ) 酢酸・メチルエステル

20 TLC: Rf 0.38 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.92-7.99 (m, 2H), 7.43-7.48 (m, 3H), 7.32 (t, J = 1.0 Hz, 1H),

7.26 (dd J = 7.9, 7.9 Hz, 1H), 6.90-7.04 (m, 3H), 5.27 (d, J = 1.0 Hz, 2H), 3.81 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H).

実施例1 (33)

5 2-(3-(2-(5-メチル-2-(4-メチルフェニル) オキサゾールー 4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

10 TLC: Rf 0.81 (ヘキサン: 酢酸エチル=1:1);
NMR (CDCl₃): δ 7.86 (d, J = 8.2 Hz, 2H), 7.25-7.16 (m, 3H), 6.90-6.76 (m, 3H),
4.24 (t, J = 6.7 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.7 Hz, 2H), 2.39 (s, 3H), 2.37 (s, 3H)。

15 実施例1(34)

2- (3- (2- (2-フェニルチアゾール-4-イル) エトキシ) フェニル メチルチオ) 酢酸・メチルエステル

20

TLC: Rf 0.39 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.92-7.96 (m, 2H), 7.41-7.46 (m, 3H), 7.23 (dd, J = 8.4, 8.4 Hz, 1H), 7.07 (s, 1H), 6.81-6.93 (m, 3H), 4.37 (t, J = 6.6 Hz, 2H), 3.79 (s, 2H), 3.71 (s, 3H), 3.31 (t, J = 6.6 Hz, 2H), 3.09 (s, 2H)_o

実施例1 (35)

5

2-(3-(2-(5-メチル-2-(4-トリフルオロメチルフェニル) オ キサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステ ル

TLC: Rf 0.22 (ヘキサン:酢酸エチル=2:1);

10 NMR (CDCl₃): δ 8.09 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.19 (m, 1H), 6.89 (m, 2H), 6.8 (d, J = 7.2 Hz, 1H), 4.25 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 2.99 (t, J = 6.5 Hz, 2H), 2.41 (s, 3H)_o

実施例1 (36)

15 2-(3-(2-(2-フェニルオキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

20 TLC: Rf 0.40 (ヘキサン: 酢酸エチル=3:1);
NMR (CDCl₃): δ 8.00-8.05 (m, 2H), 7.58 (s, 1H), 7.41-7.46 (m, 3H), 7.23 (dd, J = 8.0, 8.0 Hz, 1H), 6.81-6.93 (m, 3H), 4.29 (t, J = 6.5 Hz, 2H), 3.79 (s, 2H), 3.72 (s, 3H), 3.09 (t, J = 6.5 Hz, 2H), 3.09 (s, 2H)。

実施例1 (37)

5

10

15

TLC: Rf 0.62 (ヘキサン:酢酸エチル=1:1);

NMR (CDCl₃): δ 7.96 (m, 2H), 7.06-7.24 (m, 3H), 6.91-6.74 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.77 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

実施例1 (38)

2-(3-(2-(5-)3+)2-(1,3-)3+)3+3+(2-(3-1)3+3+(2-1)3+3+(2-1)3+(2-

TLC: Rf 0.84 (ヘキサン: 酢酸エチル=1:1);

20 NMR (CDCl₃): δ 7.52 (dd, J = 8.0, 1.4 Hz, 1H), 7.43 (d, J = 1.4 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.91-6.77 (m, 4H), 6.01 (s, 2H), 4.23 (t, J = 6.7 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.95 (t, J = 6.7Hz, 2H), 2.35 (s, 3H)_o

<u>実施例1 (39)</u>

5

10

15

5-(3-(3-(5-メチル-2-フェニルオキサゾール-4-イル) プロポキシ) フェニル) ペンタン酸・メチルエステル

TLC: Rf 0.64 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.50-7.35 (m, 3H), 7.20 (dd, J = 8, 7.5 Hz, 1H), 6.80-6.70 (m, 3H), 4.00 (t, J = 6 Hz, 2H), 3.65 (s, 3H), 2.70 (t, J = 6 Hz, 2H), 2.60 (m, 2H), 2.35 (m, 2H), 2.30 (s, 3H), 2.15 (m, 2H), 1.70-1.50 (m, 4H)_o

実施例1 (40)

2-(3-(2-(5-)3+)2-(4-)2-(4-)2-(12-)3+)3+ ない 4-(4-)2-(4-)2-(4-)3+ ない 4-(4-)2-(4-)2-(4-)2-(4-)3+ ない 4-(4-)2

$$CI$$
 CH_3
 CH_3
 CH_3

TLC: Rf 0.83 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.93 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.27 (t, J = 7.9 Hz, 1H), 7.06 (m, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 4.27 (t, J = 7.8 Hz, 2H), 3.88 (s, 2H), 3.70 (s, 3H), 3.15 (s, 2H), 2.97 (t, J = 7.8 Hz, 2H), 2.39 (s, 3H)_o

<u>実施例1 (41)</u>

2- (3- (5-メチル-2-フェニルオキサゾール-4-イルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル

5

TLC: Rf 0.56 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.05-8.00 (m, 2H), 7.50-7.40 (m, 3H), 7.25 (dd, J = 8, 8 Hz,

10 1H), 7.05-6.90 (m, 3H), 5.00 (s, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H), 2.50 (s, 3H)_o

実施例1 (42)

2-(3-(3-(5-x)) プロ - (3-(5-x)) プロ - (3-(3-(5-x)) - (3-(5-x)) -

TLC: Rf 0.53 (ヘキサン:酢酸エチル=2:1);

20 NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.50-7.40 (m, 3H), 7.25 (dd, J = 7.5, 7.5 Hz, 1H), 6.95-6.75 (m, 3H), 4.00 (t, J = 6 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H), 2.70 (t, J = 7 Hz, 2H), 2.30 (s, 3H), 2.15 (m, 2H)_o

実施例1 (43)

5

15

TLC: Rf 0.48 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.97-8.02 (m, 2H), 7.41-7.46 (m, 3H), 7.22 (dd, J = 8.0, 8.0 Hz,

10 1H), 6.76-6.81 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.64 (s, 3H), 2.99 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 1.55 (S, 6H).

<u>実施例1 (44)</u>

2-(3-(2-(5-メチル-2-(2-メチルフェニル) オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.70 (ヘキサン: 酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.91 (m, 1H), 7.25-7.15 (m, 4H), 6.90-6.77 (m, 3H), 4.25 (t, J = 6.7 Hz, 2H), 3.77 (s, 2H), 3.68 (s, 3H), 3.06 (s, 2H), 2.98 (t, J = 6.7 Hz, 2H), 2.65 (s, 3H), 2.36 (s, 3H)_o

<u>実施例1 (45)</u>

2-(3-(2-(5-x) + n - 2 - (3-x) + n - 2 - n

5

TLC: Rf 0.64 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.81 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.32-7.14 (m, 3H), 6.89-

10 6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.75 (s, 2H), 3.67 (s, 3H), 3.06 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H), 2.35 (s, 3H).

実施例1 (46)

TLC: Rf 0.43 (ヘキサン: 酢酸エチル=3:1);

20 NMR (CDCl₃): δ 7.92 (d, J = 9.0 Hz, 2H), 7.21 (dd, J = 8.1, 8.1 Hz, 1H), 6.94 (d, J = 9.0 Hz, 2H), 6.88-6.98 (m, 2H), 6.81 (m, 1H), 4.24 (t, J = 6.7 Hz, 2H), 3.85 (s, 3H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.7 Hz, 2H), 2.36 (s, 3H) $_{\circ}$

<u>実施例1(47)</u>

2-(3-(2-(5-x) + n - 2 - (4-x) + n - 2 - (4

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4N
 O_4N

TLC: Rf 0.32 (ヘキサン:酢酸エチル=3:1);

NMR (CDCl₃): δ 8.30 (d, J = 9.0 Hz, 2H), 8.14 (d, J = 9.0 Hz, 2H), 7.22 (dd, J = 8.0, 8.0 Hz, 1H), 6.77-6.91 (m, 3H), 4.26 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.43 (s, 3H)_o

実施例1 (48)

15

10

5

TLC: Rf 0.45 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.96-8.00 (m, 2H), 7.40-7.46 (m, 3H), 6.91 (m, 1H), 6.77-6.81 (m, 2H), 4.23 (t, J = 6.6 Hz, 2H), 3.73 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

実施例1 (49)

5

TLC: Rf 0.48 (ヘキサン: 酢酸エチル=5:1);

NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.46-7.39 (m, 3H), 7.07 (t, J = 7.9 Hz, 1H), 6.85-6.77 (m, 2H), 4.24 (t, J = 6.5 Hz, 2H), 3.83 (s, 2H), 3.73 (s, 3H), 3.11 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 2.21 (s, 3H) $_{\circ}$

10

<u>実施例1 (50)</u>

15

20

TLC: Rf 0.68 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.46-7.39 (m, 3H), 7.21 (t, J = 8.2 Hz, 1H), 6.94-6.89 (m, 2H), 6.82-6.76 (m, 1H), 4.25 (t, J = 6.7 Hz, 2H), 4.10 (q, J = 7.2 Hz, 1H), 3.67 (s, 3H), 3.02 (s, 2H), 2.98 (t, J = 6.7 Hz, 2H), 2.39 (s, 3H), 1.55 (d, J = 7.2 Hz, 3H)_o

実施例1 (51)

2-(3-(2-(5-x)) - 2-(2-(5-x)) - 2-(2-(3-(2-(5-x)) - 2-(2-(2-(5-x))) - 2-(2-(2-(5-x)) - 2-(2-(2-(2-x))) - 2-(2-(2-(2-x)) - 2-(2-(2-x)) - 2-(2-x) - 2-(

TLC: Rf 0.72 (ヘキサン: 酢酸エチル=2:1)。

実施例1 (52)

5

10 2-(3-(2-(5-h)) フェニルオロメチルー2ーフェニルオキサゾールー4ーイル エトキシ フェニルメチルチオ) 酢酸・メチルエステル

15 TLC: Rf 0.37 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 8.10-8.00 (m., 2H), 7.55-7.41 (m., 3H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.94-6.75 (m, 3H), 4.31 (t, J = 6.5 Hz, 2H), 3.77 (s, 2H), 3.71 (s, 3H), 3.25-3.14 (m, 2H), 3.08 (s, 2H)_o

20 <u>実施例1 (53)</u>

TLC: Rf 0.54 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 8.00-7.94 (m, 2H), 7.44-7.37 (m, 3H), 7.29 (t, J = 8.2 Hz, 1H), 6.89-6.86 (m, 2H), 6.79 (dd, J = 8.4, 2.0 Hz, 1H), 4.17-4.03 (m, 2H), 3.77 (s, 2H), 3.71 (s, 3H), 3.26-3.15 (m, 1H), 3.08 (s, 2H), 2.37 (s, 3H), 1.41 (d, J = 6.8 Hz, 3H)_o

実施例1 (54)

2-(3-(2-(5-)3+)2-2-7+2-)2-10 キシ) フェニルメチルチオ) プロパン酸・エチルエステル

$$\begin{array}{c|c}
 & CH_3 \\
 & CH_3 \\
 & CH_3
\end{array}$$

TLC: Rf 0.75 (ヘキサン: 酢酸エチル=7:1);

NMR (CDCl₃): δ 8.00-7.94 (m, 2H), 7.46-7.38 (m, 3H), 7.20 (t, J = 8.2 Hz, 1H), 6.90 (m, 2H), 6.82-6.75 (m, 1H), 4.24 (t, J = 6.8 Hz, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.82 (d, J = 13.4 Hz, 1H), 3.74 (d, J = 13.4 Hz, 1H), 3.28 (q, J = 7.0 Hz, 1H), 2.98 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H), 1.38 (d, J = 7.0 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H).

20 <u>実施例1 (55)</u>

2-(3-(2-(5-)3+)2-(4-)2+)3+3+(3-)2+(3-(3-(5-)3+)2-(4-)3+(

TLC: Rf 0.57 (酢酸エチル: ヘキサン=1:2);

5 NMR (CDCl₃): δ 7.88 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 4.24 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.5 Hz, 2H), 2.68 (q, J = 7.5 Hz, 2H), 2.37 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H)_o

10 実施例1(56)

15

TLC: Rf 0.59 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 7.75 (dd, J = 8.0, 1.0 Hz, 1H), 7.69 (d, J = 1.0 Hz, 1H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.88 (s, 1H), 6.80 (d, J = 8.0 Hz, 1H), 4.23 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.09 (s, 2H), 2.96 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H)_o

実施例1 (57)

2-(3-(2-(5-x)) オキサゾール -4-(4-(3-(5-x))) フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.63 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 7.88 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 4.24 (t, J = 7.0 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 7.0 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.37 (s, 3H), 1.65 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H)_o

実施例1 (58)

2-(3-(2-(5-メチル-2-(4-イソプロピルフェニル)) オキサゾ15 -ル-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

$$H_3C$$
 O
 CH_3
 O
 CH_3

TLC: Rf 0.60 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 7.89 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 4.24 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.5 Hz, 2H), 2.94 (m, 1H), 2.37 (s, 3H), 1.26 (d, J = 7.0 Hz, 6H)_o

<u>実施例1(59)</u>

5

15

TLC: Rf 0.54 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.89-7.83 (m, 2H), 7.45-7.36 (m, 3H), 7.21 (t, J = 8.0 Hz, 1H),

10 6.91-6.77 (m, 3H), 4.33 (t, J = 6.8 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.19 (t, J = 6.8 Hz, 2H), 3.08 (s, 2H), 2.47 (s, 3H)_o

実施例1 (60)

2-(3-(2-(5-メチル-2-(4-プチルフェニル) オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.59 (ヘキサン: 酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.90 (d, J = 7 Hz, 2H), 7.25-7.15 (m, 3H), 6.90-6.75 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.75 (s, 2H), 3.70 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H), 1.60 (m, 2H), 1.35 (m, 2H), 0.95 (t, J = 7 Hz, 3H)_o

PCT/JP99/01134

実施例1 (61)

2-(3-(2-(5-エチル-2-フェニルオキサゾール-4-イル) エト キシ) フェニルメチルチオ) 酢酸・メチルエステル

5

TLC: Rf 0.27 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.96-8.01 (m, 2H), 7.40-7.48 (m, 3H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.87-6.90 (m, 2H), 6.79 (m, 1H), 4.24 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.99 (t, J = 6.6 Hz, 2H), 2.75 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H).

実施例1 (62)

15 2-(3-(2-(5-メチル-2-(2, 3, 5, 6-テトラフルオロー4 -メチルフェニル) オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

$$H_3C$$
 F
 CH_3
 CH_3

20

TLC: Rf 0.45 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.94-6.75 (m, 3H), 4.25 (t, J = 6.4 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 3.03 (t, J = 6.4 Hz, 2H), 2.42 (s,

3H), 2.36-2.30 (m, 3H).

実施例1 (63)

2-(3-(2-(5-メチル-2-(4-ペンチルフェニル) オキサゾール5-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

TLC: Rf 0.66 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.90 (d, J = 8 Hz, 2H), 7.25-7.20 (m, 3H), 6.95-6.75 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.80 (s, 2H), 3.70 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H), 1.60 (m, 2H), 1.40-1.25 (m, 4H), 0.90 (t, J = 6.5 Hz, 3H).

15 <u>実施例1 (64)</u>

2-(3-(2-(5-メチル-2-(3-クロロ-4-メチルフェニル) オ キサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステ ル

20

TLC: Rf 0.47 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.96 (d, J = 1.8 Hz, 1H), 7.75 (dd, J = 7.8, 1.8 Hz, 1H), 7.28 (d,

J = 7.8 Hz, 1H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.88-6.91 (m, 2H), 6.79 (m, 1H), 4.24 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H).

5 実施例1(65)

2-(3-(2-(5-メチル-2-シクロヘキシルオキサゾール-4-イル) エトキシ)フェニルメチルチオ)酢酸・メチルエステル

$$\bigcirc \bigvee_{O \subset CH_3}^{N} \bigcirc \bigvee_{CH_3}^{O} \bigcirc CH_3$$

10

TLC: Rf 0.65 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.20 (m, 1H), 6.95-6.70 (m, 3H), 4.15 (t, J = 7.5 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.15 (s, 2H), 2.90 (t, J = 7.5 Hz, 2H), 2.70 (m, 1H), 2.25 (s, 3H), 2.10-1.20 (m, 10 H)_o

15

実施例1 (66)

2-(3-(2-(5-x+n-2-(4-(2-x+n)) - 2-x+n)) オキサゾールー4-4 ーイル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

20

TLC: Rf 0.58 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.90 (d, J = 8 Hz, 2H), 7.25-7.20 (m, 3H), 6.90-6.75 (m, 3H), 4.25 (t, J = 7 Hz, 2H), 3.80 (s, 2H), 3.70 (s, 3H), 3.10 (s, 2H), 2.95 (t, J = 7 Hz, 2H), 2.50 (d, J = 8 Hz, 2H), 2.40 (s, 3H), 1.90 (m, 1H), 0.90 (d, J = 7 Hz, 6H)_o

5 実施例1(67)

2-(3-(2-(5-)3+)2-(4-)14+)14+12-(4-)14-(4-)14-(4

$$\begin{array}{c|c} H_3C \\ H_3C \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ CH_3 \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ CH_3 \\ \end{array}$$

10

TLC: Rf 0.50 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.90 (d, J = 8 Hz, 2H), 7.45 (d, J = 8 Hz, 2H), 7.20 (dd, J = 8, 8 Hz, 1H), 6.90-6.75 (m, 3H), 4.25 (t, J = 7 Hz, 2H), 3.80 (s, 2H), 3.70 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 7 Hz, 2H), 2.40 (s, 3H), 1.35 (s, 9H) $_{\circ}$

15

実施例1 (68)

2-(3-(2-(5-)3+)2-(4-)2-(4-)2-(3-)3+)3+(3-(2-(5-)3+)2-(4-)2

20

TLC: Rf 0.42 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.88 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.87-6.90 (m, 2H), 6.80 (m, 1H), 4.23 (t, J = 6.8 Hz, 2H), 3.78 (s,

2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.8 Hz, 2H), 2.53 (m, 1H), 2.37 (s, 3H), 1.70-1.94 (m, 4H), 1.30-1.53 (m, 6H)_o

実施例1 (69)

5 2-(3-(5-メチル-2-(1,3-ジオキサインダン-5-イル)オキサゾール-4-イルメトキシ)フェニルメチルチオ)酢酸・メチルエステル

10 TLC: Rf 0.50 (ヘキサン:酢酸エチル=4:1);
NMR (CDCl₃): δ 7.55 (dd, J = 8.0, 1.8 Hz, 1H), 7.47 (d, J = 1.8 Hz, 1H), 7.21
(dd, J = 8.0, 8.0 Hz, 1H), 7.08-7.02 (m, 1H), 6.96-6.82 (m, 3H), 6.02 (s, 2H), 5.00 (s, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.11 (s, 2H), 2.43 (s, 3H)。

15 実施例1(70)

$$H_3C$$
 N
 O
 CH_3
 CH_3

20

TLC: Rf 0.50 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 7.93 (dd, J = 8.5, 2.0 Hz, 2H), 7.35-7.18 (m, 3H), 7.09-7.03 (m,

1H), 6.96-6.84 (m, 2H), 5.02 (s, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.11 (s, 2H), 2.94 (sep., J = 7.0 Hz, 1H), 2.43 (s, 3H), 1.27 (d, J = 7.0 Hz, 6H).

実施例1 (71)

5 2-(3-(2-(4-メチル-2-フェニルオキサゾール-5-イル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル

10 TLC: Rf 0.37 (ヘキサン:酢酸エチル=3:1);
NMR (CDCl₃): δ 8.01-7.96 (m, 2H), 7.46-7.39 (m, 3H), 7.22 (t, J = 8.2 Hz, 1H), 6.97-6.88 (m, 2H), 6.80 (m, 1H), 4.23 (t, J = 6.8 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.16 (t, J = 6.8 Hz, 2H), 3.08 (s, 2H), 2.22 (s, 3H)。

15 <u>実施例1 (72)</u>

2- (3- (2- (5-メチル-2- (3, 4-ジメトキシフェニル) オキサ ゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

$$H_3C - O$$
 O
 CH_3
 O
 CH_3

20

TLC: Rf 0.18 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 7.56 (dd, J = 8.3, 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.1, 8.1 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.87-6.91 (m, 2H), 6.80 (ddd, J =

8.1, 2.5, 1.0 Hz, 1H), 4.24 (t, J = 6.7 Hz, 2H), 3.97 (s, 3H), 3.93 (s, 3H), 3.78 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 2.97 (t, J = 6.7 Hz, 2H), 2.37 (s, 3H).

実施例1 (73)

$$F_3C$$
 O
 CH_3
 O
 CH_3

10

TLC: Rf 0.62 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.00 (d, J = 8 Hz, 2H), 7.30-7.15 (m, 3H), 6.95-6.75 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.40 (s, 3H)_o

15

実施例1 (74)

2-(3-(2-(5-)3+)2-(3,4,5-)13+)2-(3-(3-(2-(5-)3+)2-(3,4,5-)13+)13+(3-)2-(3-(3-)3+(3-)3+(3-)3+(3-(3-)3+(3-)

20

TLC: Rf 0.24 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.25-7.15 (m, 3H), 6.95-6.75 (m, 3H), 4.25 (t, J = 7.5 Hz, 2H), 3.95 (s, 6H), 3.90 (s, 3H), 3.80 (s, 2H), 3.70 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H)_o

5

実施例1 (75)

2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(4-)3+(4-)3+(4-)3+(4-)3+(4-)3-(4-

10

$$H_3C-N$$
 N
 O
 CH_3
 O
 CH_3

TLC: Rf 0.12 (酢酸エチル);

NMR (CDCl₃): δ 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 4.20 (t, J = 7.0 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.42 (t, J = 5.0 Hz, 4H), 3.09 (s, 2H), 2.95 (t, J = 7.0 Hz, 2H), 2.50 (t, J = 5.0 Hz, 4H), 2.34 (s, 3H), 2.26 (s, 3H).

<u>実施例1 (76)</u>

TLC: Rf 0.46 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 7.88 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 4.24 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.5 Hz, 2H), 2.52 (s, 3H), 2.37 (s, 3H)_o

5

実施例1 (77)

2-(3-(2-(5-)3+)2-(2-)3) ない 2-(3-(2-)3+)3+(2-)3+(

10

15

TLC: Rf 0.60 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl₃): δ 8.71 (m, 1H), 8.05 (m, 1H), 7.73 (m, 1H), 7.32 (m, 1H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.76-6.92 (m, 3H), 4.27 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 3.01 (t, J = 6.6 Hz, 2H), 2.44 (s, 3H).

実施例 1 (78)

2-(3-(2-(5-x)) カー 2-(5-x) カー 2-(5-x) かい 2-(5-x)

20

TLC: Rf 0.40 (ヘキサン:酢酸エチル=3:1);

NMR (CDCl₃): δ 7.58 (dd, J = 3.6, 1.3 Hz, 1H), 7.37 (dd, J = 5.0, 1.3 Hz, 1H),

7.21 (dd, J = 8.0, 8.0 Hz, 1H), 7.08 (dd, J = 5.0, 3.6 Hz, 1H), 6.87-6.91 (m, 2H), 6.79 (m, 1H), 4.22 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H)_o

5 <u>実施例1 (79</u>)

10

2-(3-(2-(5-メチルー2-(3-ニトロー4-メチルフェニル)) オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

TLC: Rf 0.42 (ヘキサン: 酢酸エチル= 2:1);

NMR (CDCl₃): δ 8.55 (d, J = 1 Hz, 1H), 8.10 (dd, J = 8, 1 Hz, 1H), 7.40 (d, J = 8 Hz, 1H), 7.20 (dd, J = 8, 8 Hz, 1H), 6.95-6.80 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.65 (s, 3H), 2.40 (s, 3H)_o

実施例1(80)

2-(3-(2-(5-x)) + 2-(4-x) + 2-(4-x) + 2-(3-(2-(5-x)) + 2-(4-x) + 2-(4-x)

TLC: Rf 0.43 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 7.83 (d, J = 9.0 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 6.71 (d, J = 9.0 Hz, 2H), 4.23 (t, J = 7.0 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 3.01 (s, 6H), 2.96 (t, J = 7.0 Hz, 2H), 2.34 (s, 3H)_o

5

実施例1 (81)

10

TLC: Rf 0.46 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.20 (m, 1H), 6.95-6.70 (m, 3H), 4.15 (t, J = 6.5 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.15 (m, 3H), 2.90 (t, J = 6.5 Hz, 2H), 2.25 (s, 3H), 2.20-1.50 (m, 8H)_o

実施例1(82)

2-(3-(2-(5-メチル-2-(4-メチルフェニル) オキサゾールー4-イル) エトキシ) フェニル) 酢酸・メチルエステル

20

15

TLC: Rf 0.54 (ヘキサン:酢酸エチル=2:1);

NMR (CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2H), 7.28-7.15 (m, 3H), 6.88-6.76 (m, 3H),

4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H), 2.36 (s, 3H).

実施例1 (83)

5 2-(3-(2-(5-メチル-2-(4-エチルフェニル) オキサゾールー4-イル) エトキシ) フェニル) 酢酸・メチルエステル

10 TLC: Rf 0.56 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.90 (d, J = 8.0 Hz, 2H), 7.30-7.16 (m, 3H), 6.88-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 2.37 (s, 3H), 1.26 (t, J = 7.6 Hz, 3H)_o

15 実施例1(84)

20

TLC: Rf 0.59 (ヘキサン:酢酸エチル=2:1);

NMR (CDCl₃): δ 7.88 (d, J = 8.4 Hz, 2H), 7.27-7.15 (m, 3H), 6.88-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.36 (s, 3H), 1.66 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H)_o

実施例1 (85)

5

$$H_3C$$
 O
 CH_3
 O
 CH_3

TLC: Rf 0.66 (ヘキサン:酢酸エチル=2:1);

NMR (CDCl₃): δ 7.89 (d, J = 8.4 Hz, 2H), 7.34-7.15 (m, 3H), 6.88-6.75 (m, 3H),

10 4.23 (t, J = 6.8 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.8 Hz, 2H), 3.04-2.86 (m, 1H), 2.36 (s, 3H), 1.28 (s, 3H), 1.25 (s, 3H)_o

実施例1 (86)

 $2-\left(3-\left(2-\left(5-\textit{y}\textit{f}\textit{v}-2-\left(4-\left(2-\textit{y}\textit{f}\textit{v}\right)^{2}\textit{d}^{2}\textit{v}\right)\right)\right.\right.\right.$

15 オキサゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.60 (ヘキサン: 酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.88 (d, J = 8.2 Hz, 2H), 7.27-7.15 (m, 3H), 6.90-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.51 (d, J = 5.4 Hz, 2H), 2.36 (s, 3H), 2.00-1.76 (m, 1H), 0.92 (s, 3H), 0.89 (s, 3H).

実施例1 (87)

$$\begin{array}{c|c} H_3C \\ H_3C \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ CH_3 \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ CH_3 \\ \end{array}$$

TLC: Rf 0.57 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.90 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 7.21 (m, 1H), 6.88-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H), 1.34 (s, 9H)_o

実施例1 (88)

2-(3-(2-(5-メチル-2-シクロプロピルオキサゾール-4-イル) エトキシ)フェニルメチルチオ)酢酸・メチルエステル

15

5

TLC: Rf 0.47 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl₃): δ 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.75 (m, 3H), 4.15 (t, J = 7.0 Hz, 2H), 3.79 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 2.84 (t, J = 7.0 Hz, 2H), 2.22 (s, 3H), 1.97 (m, 1H), 1.05-0.90 (m, 4H)_o

実施例1 (89)

2-(3-(2-(5-x)) + 2-(4-(1, 2, 3-x)) + 2-(4-

TLC: Rf 0.75 (ヘキサン:酢酸エチル=2:1);

NMR (CDCl₃): δ 8.72 (s, 1H), 8.13 (s, 4H), 7.22 (t, J = 8.0 Hz, 1H), 6.93-6.77 (m, 3H), 4.27 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.09 (s, 2H), 3.00 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H)_o

実施例1 (90)

5

15

2-(3-(2-(5-x+n-2-(4-(4-x+n-1, 2, 3-x+n-1))) ジアゾール-5-(4-(4-x+n-1, 2, 3-x+n-1)) ブェニル)オキサゾール-4-(4-x+n-1, 2, 3-x+n-1) することには、アンドラー・エルメチルチオ)酢酸・メチルエステル

TLC: Rf 0.89 (ヘキサン:酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.21 (t, J = 7.4 Hz, 1H), 6.94-6.74 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 3.02 (s, 3H), 2.99 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H)_o

実施例1 (91)

5

15

TLC: Rf 0.38 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.91 (d, J = 9.0 Hz, 2H), 7.20 (m, 1H), 6.94 (d, J = 9.0 Hz, 2H), 6.88-6.77 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 3.68 (s, 3H), 3.58 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H)_o

<u>実施例1 (92)</u>

2-(3-(2-(5-)3+)2-(3,4-)3+)3+ゾール-4-(4-)3+(3-)3+(

 H_3C O CH_3 O CH_3

TLC: Rf 0.17 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃ + CD₃OD): δ 7.56 (dd, J = 8.2, 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 20 1H), 7.21 (m, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.89-6.77 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.97 (s, 3H), 3.93 (s, 3H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H)_o

実施例1 (93)

2-(3-(2-(5-x)) カーション 2-(1, 3-y) を 2-(1, 3-y

5

15

TLC: Rf 0.44 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.52 (dd, J = 8.2, 1.8 Hz, 1H), 7.44 (d, J = 1.8 Hz, 1H), 7.21 (m,

10 1H), 6.99-6.76 (m, 4H), 6.01 (s, 2H), 4.22 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H) $_{\circ}$

<u>実施例1 (94)</u>

2-(3-(2-(5-x)) 2-(3, 4, 5-トリメトキシフェニル) オキサゾールー4-イル) エトキシ) フェニル) 酢酸・メチルエステル

TLC: Rf 0.28 (ヘキサン: 酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.28-7.17 (m, 3H), 6.89-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.94 (s, 6H), 3.89 (s, 3H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.38 (s,

3H)。

実施例1 (95)

5 オキサゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.61 (ヘキサン: 酢酸エチル=2:1);

10 NMR (CDCl₃): δ 8.01 (d, J = 8.6 Hz, 2H), 7.32-7.16 (m, 3H), 6.89-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

<u>実施例1 (96)</u>

15 2-(3-(2-(5-x+n-2-(2,2-i)7n+1-1,3-i)7+1) サインダン-5-(7-x+1) オキサゾー(7-x+1) エトキシ)フェニル)酢酸・メチルエステル

20

TLC: Rf 0.52 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.75 (dd, J = 8.4, 1.8 Hz, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.21 (m, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.89-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s,

3H), 3.58 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H).

<u>実施例1 (97)</u>

2-(3-(2-(5-メチル-2-(4-トリフルオロメチルチオフェニル)オキサゾールー4-イル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル

$$F_3C$$

10 TLC: Rf 0.45 (ヘキサン: 酢酸エチル=3:1);

NMR (CDCl₃): δ 8.02 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.21 (t, J = 7.8 Hz, 1H), 6.91-6.73 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.40 (s, 3H)_o

15 実施例1 (98)

20

TLC: Rf 0.35 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.08 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.21 (m, 1H), 6.75-6.94 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.09 (s, 2H), 2.99 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H)_o

実施例1 (99)

5

$$\bigcup_{O \subset CH_3}^{N} \bigcup_{CH_3}^{O \subset CH_3}$$

TLC: Rf 0.32 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.52 (m, 1H), 7.21 (m, 1H), 6.86-6.96 (m, 3H), 6.79 (m, 1H),

10 6.51 (m, 1H), 4.24 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.72 (s, 3H), 3.08 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H).

実施例1(100)

2 - (3 - (5 - x + y - 2 - y - z - y + y + y - y - 4 - 4 - 4 - 4 + y)

15 フェニル) 酢酸・メチルエステル

TLC: Rf 0.69 (ヘキサン: 酢酸エチル=2:1);

20 NMR (CDCl₃): δ 7.98-8.10 (m, 2H), 7.40-7.54 (m, 3H), 7.26 (m, 1H), 6.86-7.00 (m, 3H), 4.99 (s, 2H), 3.68 (s, 3H), 3.61 (s, 2H), 2.44 (s, 3H)_o

実施例1(101)

5

TLC: Rf 0.56 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.90-7.81 (m, 2H), 7.46-7.35 (m, 3H), 7.25-7.16 (m, 1H), 6.87-6.78 (m, 3H), 4.32 (t, J = 6.8 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 3.19 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H)_o

<u>実施例1 (102)</u>

15

TLC: Rf 0.42 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.94-8.04 (m, 2H), 7.36-7.50 (m, 3H), 7.22 (m, 1H), 6.76-6.90 (m, 3H), 3.98 (t, J = 6.2 Hz, 2H), 3.69 (s, 3H), 3.59 (s, 2H), 2.70 (t, J = 7.0 Hz, 2H), 2.28 (s, 3H), 2.15 (m, 2H)_o

実施例1 (103)

$$\bigcirc N \bigcirc O \bigcirc CH_3$$

TLC: Rf 0.53 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.96-8.08 (m, 2H), 7.57 (s, 1H), 7.40-7.52 (m, 3H), 7.24 (m, 1H), 6.80-6.92 (m, 3H), 4.28 (t, J = 6.6 Hz, 2H), 3.69 (s, 3H), 3.59 (s, 2H), 3.09 (t, J = 6.6 Hz, 2H)_o

実施例1(104)

2-(3-(2-(5-x) + n - 2 - (4-y) + n - 2 - n

15

5

$$\bigcirc \bigvee_{O} \bigvee_{CH_3} \bigvee_{O} \bigvee_{CH_3} \bigvee_{O} CH_3$$

TLC: Rf 0.67 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.88 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.21 (m, 1H), 6.77-6.86 (m, 3H), 4.23 (t, J = 7.0 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.96 (t, J = 7.0 Hz, 2H), 2.55 (m, 1H), 2.36 (s, 3H), 1.73-7.87 (m, 4H), 1.30-1.60 (m, 6H)_o

実施例1 (105)

2-(3-(2-(5-x+n-2-(3-p-10-4-x+n-2-n)))

キサゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル

5 TLC: Rf 0.53 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.96 (d, J = 1.8 Hz, 1H), 7.75 (dd, J = 8.0, 1.8 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.22 (m, 1H), 6.78-6.86 (m, 3H), 4.23 (t, J = 6.7 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.96 (t, J = 6.7 Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H) $_{\circ}$

10 実施例1(106)

2-(3-(2-(5-x)) + 2-(4-x) + 2-(1) +

$$H_3C$$
 O
 CH_3
 O
 CH_3

15

TLC: Rf 0.31 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.84 (d, J = 9.0 Hz, 2H), 7.21 (m, 1H), 6.78-6.87 (m, 3H), 6.71 (d, J = 9.0 Hz, 2H), 4.23 (t, J = 6.8 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 3.01 (s, 6H), 2.95 (t, J = 6.8 Hz, 2H), 2.34 (s, 3H)_o

20

実施例1(107)

2-(3-(2-(5-エチル-2-フェニルオキサゾール-4-イル)エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.61 (ヘキサン: 酢酸エチル=2:1);

5 NMR (CDCl₃): δ 7.94-8.04 (m, 2H), 7.37-7.50 (m, 3H), 7.21 (m, 1H), 6.76-6.89 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.75 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H)_o

<u>実施例1(108)</u>

10 2-(3-(2-(5-x)) - 2-(4-x) + 2-x + 2-

$$H_3C$$
 O
 CH_3
 O
 CH_3

- TLC: Rf 0.62 (ヘキサン: 酢酸エチル=2:1);
 NMR (CDCl₃): δ 7.88 (d, J = 8.6 Hz, 2H), 7.16-7.28 (m, 3H), 6.76-6.90 (m, 3H),
 4.23 (t, J = 6.8 Hz, 2H), 3.69 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.8 Hz, 2H), 2.64 (t, J = 7.0 Hz, 2H), 2.36 (s, 3H), 1.62 (m, 2H), 1.34 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H)。
- 20 <u>実施例1 (109)</u>
 2-(3-(2-(5-メチル-2-(4-クロロフェニル) オキサゾールー4-イル) エトキシ) フェニル) 酢酸・メチルエステル

TLC: Rf 0.54 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.91 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.21 (m, 1H),

5 6.75-6.89 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.96(t, J = 6.6 Hz, 2H), 2.37 (s, 3H)_o

実施例1(110)

2-(3-(2-(5-)3+)2-(5+)3+)3+(5-)3+

TLC: Rf 0.43 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 7.58 (dd, J = 3.7, 1.2 Hz, 1H), 7.36 (dd, J = 5.2, 1.2 Hz, 1H), 7.22 (m, 1H), 7.08 (dd, J = 5.2, 3.7 Hz, 1H), 6.77-6.88 (m, 3H), 4.22 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H).

実施例1(111)

20 2-(3-(2-(5-)3+)2-(7-)3+)3+ 20 2-(3-(2-(5-)3+)2-(7-)3+)3+ 3 3-(2-(7-)3+)3+ 3 3-(7-)3

TLC: Rf 0.33 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.51 (m, 1H), 7.21 (m, 1H), 6.92 (d, J = 3.4 Hz, 1H), 6.78-6.87 5 (m, 3H), 6.50 (dd, J = 3.4, 1.8 Hz, 1H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.57 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H)_o

<u>実施例1 (112)</u>

2-(3-(2-(5-x)) - 2-(2-2) + 2-2 +

$$O$$
 CH_3
 O
 CH_3

TLC: Rf 0.57 (酢酸エチル);

15 NMR (CDCl₃): δ 8.70 (m, 1H), 8.05 (m, 1H), 7.78 (ddd, J = 7.8, 7.8, 1.6 Hz, 1H), 7.31 (m, 1H), 7.21 (m, 1H), 6.76-6.86 (m, 3H), 4.25 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.57 (s, 2H), 3.00 (t, J = 6.6 Hz, 2H), 2.43 (s, 3H) $_{\circ}$

実施例1(113)

TLC: Rf 0.76 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.91 (m, 1H), 7.19-7.34 (m, 4H), 6.78-6.87 (m, 3H), 4.25 (t, J = 6.8 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.98 (t, J = 6.8 Hz, 2H), 2.65 (s, 3H), 2.37 (s,

実施例1(114)

5

3H)。

2-(3-(2-(5-x)) - 2-(3-x) + 2-2 -

TLC: Rf 0.55 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 7.75-7.82 (m, 2H), 7.17-7.35 (m, 3H), 6.78-6.86 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H)_o

<u>実施例1(115)</u>

20 2-(3-(2-(5-メチル-2-(4-トリフルオロメチルフェニル) オ キサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル

TLC: Rf 0.57 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.09 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.21 (m, 1H),

5 6.75-6.90 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.99(t, J = 6.6 Hz, 2H), 2.40 (s, 3H)_o

<u>実施例1 (116)</u>

2-(3-(2-(5-)3+)2-(4-)7+)3+ 10 -4-4ル) エトキシ) フェニル) 酢酸・メチルエステル

$$\mathsf{F} = \bigcup_{\mathsf{CH}_3}^{\mathsf{N}} \bigcup_{\mathsf{CH}_3}^{\mathsf{O}} \bigcup_{\mathsf$$

TLC: Rf 0.51 (ヘキサン: 酢酸エチル= 2:1);

15 NMR (CDCl₃): δ 7.91-8.04 (m, 2H), 7.05-7.24 (m, 3H), 6.75-6.92 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H).

実施例1(117)

2-(3-(2-(5-)3+)2-(4-)27)2+2-(3-(2-(5-)3+)2-(4-)27)2+2-(4-)2-(4

TLC: Rf 0.37 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.07 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.8 Hz, 2H), 7.22 (m, 1H), 6.78-6.87 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.40 (s, 3H)_o

実施例1(118)

10

2-(3-(2-(5-x+n-2-(4-x+n-1, 2, 3-+r)) アプ - n-5-4n) オキサゾールー4-4n エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.49 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 7.22 (m, 1H), 6.78-6.87 (m, 3H), 4.23 (t, J = 6.2 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 3.02 (s, 3H), 2.98 (t, J = 6.2 Hz, 2H), 2.41 (s, 3H).

実施例1(119)

$$H_3C$$
 E
 CH_3
 CH_3

TLC: Rf 0.58 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.20 (m, 1H), 6.75-6.90 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.68

5 (s, 3H), 3.58 (s, 2H), 3.02 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H), 2.33 (s, 3H).

実施例1(120)

10

$$H_3C$$
 O_2N
 O_2N
 O_3
 O_4
 O_4
 O_5
 O_5
 O_7
 O_7
 O_8
 O

TLC: Rf 0.33 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.55 (d, J = 1.6 Hz, 1H), 8.09 (dd, J = 8.0, 1.6 Hz, 1H), 7.41 (d,

15 J = 8.0 Hz, 1H), 7.19 (m, 1H), 6.70-6.88 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.64 (s, 3H), 2.40 (s, 3H).

実施例1(121)

2 - (3 - (2 - (5 - x + u - 2 - y + v - u - 4 - 4 u))

20 エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.50 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.21 (m, 1H), 6.76-6.86 (m, 3H), 4.15 (t, J = 6.7 Hz, 2H), 3.69 (s, 3H), 3.58 (s, 2H), 2.87 (t, J = 6.7 Hz, 2H), 2.69 (m, 1H), 2.24 (s, 3H), 1.96-2.08

(m, 2H), 1.20-1.86 (m, 8H)_o

<u>実施例1(122)</u>

10 エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.50 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 7.21 (m, 1H), 6.76-6.86 (m, 3H), 4.15 (t, J = 6.7 Hz, 2H), 3.69 (s, 3H), 3.58 (s, 2H), 3.11 (m, 1H), 2.86 (t, J = 6.7 Hz, 2H), 2.24 (s, 3H), 1.58-2.12 (m, 8H) $_{\circ}$

実施例1(123)

20 2-(3-(2-(5-)3+)2-(4-)3+)3+ では、(4-)3+(3-

TLC: Rf 0.55 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 7.88 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.17 (m, 1H),

5 6.70-6.88 (m, 3H), 4.23 (t, J = 6.8 Hz, 2H), 3.68 (s, 3H), 3.57 (s, 2H), 2.96(t, J = 6.8 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.36 (s, 3H), 1.64 (m, 2H), 1.20-1.42 (m, 4H), 0.89 (t, J = 6.6 Hz, 3H).

<u>実施例1(124)</u>

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

TLC: Rf 0.22 (ヘキサン: 酢酸エチル=1:1);
NMR (CDCl₃): δ 8.90 (d, J = 6 Hz, 2H), 7.85 (d, J = 6 Hz, 2H), 7.20 (dd, J = 8, 8 Hz, 1H), 6.95-6.80 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.45 (s, 3H)。

20 実施例1(125)

2-(3-(2-(5-)3+)2-(2-(2-)3-)3+)3+(2-)3-(3-(2-(5-)3+)2-(2-(2-)3-)3+(2-)3-(2-

TLC: Rf 0.33 (ヘキサン: 酢酸エチル=1:3);

NMR (CDCl₃): δ 9.22-9.18 (m, 1H), 8.61 (dd, J = 5.0 Hz, 1.8 Hz, 1H), 8.25-8.19

5 (m, 1H), 7.37-7.16 (m, 2H), 6.85-6.76 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.66 (s, 3H), 3.56 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

実施例1(126)

2-(3-(2-(5-x)) - 2-(2-x) + 2-(2-

Rf 0.25 (ヘキサン:酢酸エチル=1:3);

15 NMR (CDCl₃): δ 8.71-8.67 (m, 2H), 7.83-7.80 (m, 2H), 7.26-7.17 (m, 1H), 6.86-6.79 (m, 3H), 4.24 (t, J = 6.4 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.99 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H)_o

<u>実施例1 (127)</u>

20 2-(3-(2-(5-)3+)2-(4-)3+)2-(4-)3+(3-(3-(2-(5-)3+)2-(4-)3+)2-(4-)3+(2-(3-(2-(5-)3+)2-(4-)3+)2-(4-)3+(2-(3-(4-)3+)2-(4-)3+(2-(3-(4-)3+)2-(4-)3+(2-(4-)3+

$$H_3C-N$$
 N
 CH_3
 CH_3
 CH_3

TLC: Rf 0.39 (0.39

NMR (CDCl₃): δ 7.21 (m, 1H), 6.77-6.85 (m, 3H), 4.19 (t, J = 7.1 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 3.42 (m, 4H), 2.94 (t, J = 7.1 Hz, 2H), 2.50 (m, 4H), 2.33 (s, 3H), 2.25 (s, 3H)_o

実施例1(128)

2-(3-(2-(5-x)) - 2-(2-(5-x)) - 2-(2-(5-x

TLC: Rf 0.79 (酢酸エチル: ヘキサン=1:1);

15 NMR (CDCl₃): δ 7.98 (m, 2H), 7.50-7.35 (m, 3H), 7.24 (dd, J = 8.0, 8.0 Hz, 1H), 6.95-6.80 (m, 3H), 4.58 (s, 2H), 4.25 (t, J = 6.5 Hz, 2H), 3.96 (s, 2H), 2.98 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 1.47 (s, 9H)_o

実施例1 (129)

20 2-(3-(2-(5-x)) - 2-(2-(2-x)) + 2-(2-x) - 3-(2-x) + 2-(2-x) + 2-(2-x)

TLC: Rf 0.14 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl₃): δ 9.20 (d, J = 2 Hz, 1H), 8.65 (dd, J = 5, 2 Hz, 1H), 8.25 (m, 1H),

5 7.35 (m, 1H), 7.20 (dd, J = 8, 8 Hz, 1H), 6.95-6.75 (m, 3H), 4.25 (t, J = 6.5 Hz, 2H), 3.80 (s, 2H), 3.75 (s, 3H), 3.10 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.40 (s, 3H)_o

実施例1 (130)

2-(3-(2-(5-x)) + 2-(4-x) + 2-(2-x) + 2-(2-

TLC: Rf 0.39 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 7.88 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 7.17 (dd, J = 7.8, 7.6 Hz, 1H), 6.70-6.88 (m, 3H), 4.22 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.51 (s, 3H), 2.37 (s, 3H) $_{\circ}$

実施例1 (131)

20 2-(3-(2-(5-メチル-2-シクロプロピルオキサゾール-4-イル) エトキシ)フェニル) 酢酸・メチルエステル

TLC: Rf 0.39 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl₃): δ 7.26-7.16 (m, 1H), 6.85-6.76 (m, 3H), 4.14 (t, J = 6.8 Hz, 2H),

5 3.68 (s, 3H), 3.57 (s, 2H), 2.83 (t, J = 6.8 Hz, 2H), 2.21 (s, 3H), 2.04-1.90 (m, 1H), 1.01-0.89 (m, 4H)_o

実施例1(132)

10

$$O_2N$$
 O_2N
 O_1
 O_2
 O_3
 O_4
 O_4
 O_4
 O_4
 O_4
 O_5
 O_5
 O_7
 O_8
 $O_$

TLC: Rf 0.57 (ヘキサン: 酢酸エチル=4:3);

15 NMR (CDCl₃): δ 8.29 (d, J = 9.0 Hz, 2H), 8.13 (d, J = 9.0 Hz, 2H), 7.22 (m, 1H), 6.77-6.87 (m, 3H), 4.25 (t, J = 6.6 Hz, 2H), 3.86 (s, 3H), 3.58 (s, 2H), 3.00 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H)_o

実施例1(133)

TLC: Rf 0.38 (ヘキサン: 酢酸エチル=4:3);

NMR (CDCl₃): δ 8.17-8.29 (m, 3H), 7.83 (m, 1H), 7.75 (m, 1H), 7.57 (m, 1H),

5 7.22 (m, 1H), 6.78-6.86 (m, 3H), 4.29 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 3.05 (t, J = 6.6 Hz, 2H), 2.49 (s, 3H).

実施例1 (134)

10 オキサゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.46 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 7.91 (dt, J = 7.8, 1.2 Hz, 1H), 7.85-7.82 (m, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.28-7.17 (m, 2H), 6.88-6.77 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H)_o

実施例1 (135)

TLC: Rf 0.43 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl₃): δ 8.11-8.04 (m, 1H), 7.49-7.31 (m, 3H), 7.27-7.16 (m, 1H), 6.88-

5 6.76 (m, 3H), 4.25 (t, J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 2.99 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H)_o

実施例1(136)

2-(3-(2-(4-メチル-2-フェニルオキサゾール-5-イル) エト 10 キシ) フェニル) 酢酸・メチルエステル

TLC: Rf 0.37 (ヘキサン: 酢酸エチル=2:1);

15 NMR (CDCl₃): δ 8.02-7.95 (m, 2H), 7.49-7.38 (m, 3H), 7.28-7.18 (m, 1H), 6.90-6.77 (m, 3H), 4.22 (t, J = 6.8 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 2H), 3.16 (t, J = 6.8 Hz, 2H), 2.22 (s, 3H)_o

<u>実施例1(137)</u>

20 2-(3-(2-(5-メチル-2-(1,3-ジオキサインダン-5-イル) オキサゾール-4-イル) エトキシ) フェニルメトキシ) 酢酸・t-プチルエステル

TLC: Rf 0.83 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl₃): δ 7.51 (dd, J = 8.0, 1.8 Hz, 1H), 7.43 (d, J = 1.8 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.97-6.79 (m, 4H), 6.01 (s, 2H), 4.58 (s, 2H), 4.23 (t, J = 6.8 Hz, 2H), 3.96 (s, 2H), 2.95 (t, J = 6.8 Hz, 2H), 2.35 (s, 3H), 1.48 (s, 9H)_o

実施例 2

2-(3-(4-(4-)4-)4-)4-)4-2-(4-)4-2-10 エニルメチルチオ)酢酸

実施例1で製造した化合物(0.51g)をメタノールーテトラヒドロフラン(8 ml、1:1)の混合溶液に溶解し、2 Nー水酸化ナトリウム水溶液(3.2ml)を加えて、室温で3時間撹拌した。反応混合溶液に塩酸を加えて、酸性にした後、酢酸エチルで抽出した。抽出液を水および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をヘキサンー酢酸エチルで再結晶し、下記物性値を有する本発明化合物(0.39g)を得た。

20 TLC: Rf 0.37 (酢酸エチル);

NMR (CDCl₃+4 drop of CD₃OD) : δ 7.77 (2H, d, J=8.0Hz), 7.45 (1H, s), 7.23-

7.31 (3H, m), 6.91-7.05 (3H, m), 5.42 (2H, s), 3.83 (2H, s), 3.08 (2H, s), 2.39 (3H, s),

<u>実施例2(1)~実施例2(137)</u>

5 実施例1で製造した化合物の代わりに実施例1 (1) ~実施例1 (137) で製造した化合物を用いて、実施例2で示される方法と同様に操作し、さらに 必要に公知の方法によって相当する塩に変換して、以下に示す本発明化合物を 得た。

10 実施例2(1)

15

TLC: Rf 0.41 (ヘキサン:酢酸エチル=1:1);

NMR (CDCl₃): δ 7.78 (2H, d, J=8.0Hz), 7.43 (1H, s), 7.28-7.16 (3H, m), 6.90-6.78 (3H, m), 5.42 (2H, s), 2.60 (2H, t, J=7.5Hz), 2.39 (3H, s), 2.34 (2H, t, J=7.5Hz), 1.76-1.54 (4H, m), 1.46-1.24 (2H, m)_o

20

実施例2 (2)

5-(3-(ピフェニル-4-イルメトキシ)フェニル)ペンタン酸

TLC: Rf 0.49 (酢酸エチル);

NMR (CDCl₃): δ 7.58-7.64 (4H, m), 7.35-7.53 (5H, m), 7.21 (1H, m), 6.78-6.84 (3H, m), 5.09 (2H, s), 2.62 (2H, t, J=7.0Hz), 2.38 (2H, t, J=7.0Hz), 1.64-1.72 (4H, m)_o

実施例2 (3)

4-(3-(ピフェニル-4-イルメトキシ)フェニル)ブタン酸

10

TLC: Rf 0.67 (酢酸エチル);

NMR (d₆-DMSO): δ 7.62-7.66 (4H, m), 7.31-7.51 (5H, m), 7.14 (1H, dd, J=7.5, 7.5Hz), 6.71-6.82 (3H, m), 5.07 (2H, s), 2.52 (2H, t, J=7.0Hz), 2.06 (2H, t, J=7.0Hz), 1.74 (2H, tt, J=7.0, 7.0Hz)_o

<u>実施例2 (4)</u>

4-(3-(4-(4-メチルフェニル) チアゾール-2-イルメトキシ) フ

ェニル) ブタン酸

5 TLC: Rf 0.63 (酢酸エチル);

NMR (CDCl₃): δ 7.78 (2H, d, J=8.0Hz), 7.43 (1H, s), 7.23 (2H, d, J=8.0Hz), 7.22 (1H, m), 6.81-6.88 (3H, m), 5.41 (2H, s), 2.66 (2H, t, J=7.5Hz), 2.38 (3H, s), 2.36 (2H, t, J=7.5Hz), 1.96 (2H, tt, J=7.5, 7.5Hz)_o

10 実施例2 (5)

4-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エト キシ) フェニル) ブタン酸

15

TLC: Rf 0.47 (酢酸エチル);

NMR (CDCl₃): δ 7.94-8.02 (2H, m), 7.39-7.48 (3H, m), 7.18 (1H, m), 6.72-6.78 (3H, m), 4.23 (2H, t, J=6.6Hz), 2.98 (2H, t, J=6.6Hz), 2.64 (2H, t, J=7.2Hz), 2.38 (3H, s), 2.35 (2H, t, J=7.2Hz), 1.95 (2H, tt, J=7.2, 7.2Hz)_o

20

実施例2 (6)

6-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エト キシ) フェニル) ヘキサン酸

5

TLC: Rf 0.41 (0.41);

NMR (CDCl₃): δ 8.02-7.91 (2H, m), 7.49-7.36 (3H, m), 7.16 (1H, t, J=8.0Hz), 6.78-6.69 (3H, m), 4.24 (2H, t, J=7.0Hz), 2.98 (2H, t, J=7.0Hz), 2.58 (2H, t, J=7.5Hz), 2.38 (3H, s), 2.34 (2H, t, J=7.5Hz), 1.75-1.54 (4H, m), 1.45-1.25 (2H, m)_o

10

実施例2 (7)

15

20

TLC: Rf 0.36 ($\rho \Box \Box \pi \nu \Delta : \forall \beta / \neg \nu = 1.5 : 1$);

NMR (CDCl₃): δ 8.04-7.92 (2H, m), 7.49-7.36 (3H, m), 7.17 (1H, t, J=8.0Hz), 6.78-6.68 (3H, m), 4.24 (2H, t, J=7.0Hz), 2.98 (2H, t, J=7.0Hz), 2.68-2.53 (2H, m), 2.45-2.30 (5H, m), 1.79-1.56 (4H, m)_o

実施例2(8)

2 - (3 - (3 - (7) - (7

酢酸

5 TLC: Rf 0.38 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 7.35-7.64 (9H, m), 7.22 (1H, m), 6.78-6.86 (3H, m), 5.09 (2H, s), 3.25 (2H, s), 2.70 (2H, t, J=7.5Hz), 2.67 (2H, t, J=7.5Hz), 1.94 (2H, tt, J=7.5, 7.5Hz)。

10 実施例2 (9)

15

NMR (CDCl₃): δ 7.75 (2H, d, J=8.0Hz), 7.43 (1H, s), 7.18-7.26 (3H, m), 6.80-6.91 (3H, m), 5.44 (2H, s), 3.23 (2H, s), 2.71 (2H, t, J=7.4Hz), 2.65 (2H, t, J=7.4Hz), 2.38 (3H, s), 1.93 (2H, tt, J=7.4, 7.4Hz)_o

実施例2 (10)

5

NMR (CDCl₃): δ 7.95-8.00 (2H, m), 7.39-7.44 (3H, m), 7.07-7.17 (2H, m), 6.81-10 6.88 (2H, m), 4.23 (2H, t, J=6.7Hz), 3.00 (2H, t, J=6.7Hz), 2.57 (2H, t, J=7.3Hz), 2.37 (3H, s), 2.30 (2H, t, J=7.4Hz), 1.46-1.69 (4H, m), 1.22-1.40 (2H, m)_o

実施例2 (11)

2-(3-(ピフェニル-4-イルメトキシ)フェニルメチルチオ)酢酸

15

TLC: Rf 0.39 (酢酸エチル);

NMR (CDCl₃): δ 7.60-7.64 (4H, m), 7.22-7.53 (6H, m), 6.89-7.02 (3H, m), 5.11

(2H, s), 3.83 (2H, s), 3.10 (2H, s).

実施例2 (12)

2-(3-(2-(5-x)+u-2-v)+v)-u-4-v)

5 キシ)フェニルメチルチオ)酢酸

TLC: Rf 0.33 (酢酸エチル);

10 NMR (CDCl₃): δ 7.95-8.00 (2H, m), 7.40-7.47 (3H, m), 7.21 (1H, dd, J=8.0, 8.0Hz), 7.03 (1H, dd, J=2.0, 1.0Hz), 6.88 (1H, ddd, J=8.0, 3.0, 2.0Hz), 6.81 (1H, ddd, J=8.0, 3.0, 1.0Hz), 4.28 (2H, t, J=7.5Hz), 3.86 (2H, s), 3.16 (2H, s), 2.98 (2H, t, J=7.5Hz), 2.39 (3H, s)₀

15 <u>実施例2(13)</u>

20

TLC: Rf 0.58 ($\rho \Box \Box \pi \nu \Delta : \forall \rho / \neg \nu = 9 : 1$);

NMR (CDCl₃): δ 8.00-7.95 (2H, m), 7.50-7.35 (3H, m), 7.20-7.05 (2H, m), 6.90-

6.80 (2H, m), 4.25 (2H, t, J = 7 Hz), 3.05 (2H, t, J = 7 Hz), 2.60 (2H, t, J = 7 Hz), 2.40 (3H, s), 2.35 (2H, t, J = 6 Hz), 1.80-1.50 (4H, m).

実施例2 (14)

10 TLC: Rf 0.76 (酢酸エチル);

NMR (CDCl₃): δ 7.79 (2H, d, J=8.4Hz), 7.44 (1H, s), 7.15-7.26 (4H, m), 6.91-6.98 (2H, m), 5.41 (2H, s), 2.73 (2H, t, J=7.4Hz), 2.38 (3H, s), 2.36 (2H, t, J=7.3Hz), 1.62-1.78 (4H, m), 1.37-1.52 (2H, m)_o

15 実施例2(15)

20

TLC: Rf 0.42 (0.42 (0.42 (0.42 (0.42 (0.42 (0.42);

NMR (CDCl₃): δ 7.94-7.98 (m, 2H), 7.41-7.44 (m, 3H), 7.16 (dd, J = 7.7, 7.7 Hz, 1H), 6.89 (m, 1H), 6.72-6.76 (m, 2H), 4.29 (t, J = 7.2 Hz, 2H), 3.23 (s, 2H), 3.01 (t, J = 7.2 Hz, 2H), 2.72 (t, J = 6.7 Hz, 2H), 2.66 (t, J = 6.7 Hz, 2H), 2.40 (s, 3H), 1.94 (tt, J = 6.7, 6.7 Hz, 2H)_o

5

実施例2 (16)

$$2-(3-(2-(ビフェニル-4- 4 ル) エトキシ) フェニルメチルチオ)$$
 酢酸

10

15

TLC: Rf 0.43 (クロロホルム: メタノール=10:1);

NMR (CDCl₃): δ 7.52-7.61 (m, 4H), 7.34-7.47 (m, 5H), 7.23 (dd, J = 8.0, 8.0 Hz, 1H), 6.80-6.92 (m, 3H), 4.21 (t, J = 6.8 Hz, 2H), 3.81 (s, 2H), 3.14 (t, J = 6.8 Hz, 2H), 3.11 (s, 2H)_o

実施例2 (17)

$$2-(4-)$$
000-3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸

20

TLC: Rf 0.38 (水:メタノール:クロロホルム=1:10:100); NMR (CDCl₃): δ 7.99 (m, 2H), 7.50-7.40 (m. 3H), 7.28 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 6.82 (dd, J = 8.0, 2.0 Hz, 1H), 6.30 (br., 1H), 4.38 (t, J = 6.5 Hz, 2H), 3.85 (s, 2H), 3.18 (s, 2H), 3.03 (t, J = 6.5 Hz, 2H), 2.42 (s, 3H)。

5

実施例2(18)

2-(4-)000-3-(4-(4-メチルフェニル) チアゾールー2-イルメトキシ) フェニルメチルチオ) 酢酸

10

15

TLC: Rf 0.42 (水:メタノール:クロロホルム=1:10:100); NMR (CDCl₃): δ 7.73 (d, J = 8.0 Hz, 2H), 7.44 (s. 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 8.0, 2.0 Hz, 1H), 5.50 (s, 2H), 3.80 (s, 2H), 3.04 (s, 2H), 2.37 (s, 3H)。

実施例2 (19)

2-(3-(ビフェニル-4-イルメトキシ)-4-クロロフェニルメチルチオ) 酢酸

20

TLC: Rf 0.34 (水: メタノール: クロロホルム=1:10:100);

NMR (CDCl₃): δ 7.65-7.35 (m, 9H), 7.33 (d, J = 8.0 Hz, 1H), 7.01 (d, J = 2.0 Hz,

5 1H), 6.87 (dd, J = 8.0, 2.0 Hz, 1H), 5.20 (s, 2H), 3.79 (s, 2H), 3.02 (s, 2H).

実施例2 (20)

2-(3-((2E)-3-(ビフェニル-4-4ル)) プロペニルオキシ) フェニルメチルチオ) 酢酸

10

TLC: Rf 0.29 (0.29

NMR (CDCl₃): δ 7.22-7.62 (m, 10H), 6.74-6.97 (m, 4H), 6.45 (dt, J = 16.0, 5.6

15 Hz, 1H), 4.73 (d, J = 5.6 Hz, 2H), 3.84 (s, 2H), 3.12 (s, 2H).

実施例2(21)

2-(3-(3-(ビフェニルー4-イル) プロポキシ) フェニルメチルチオ) 酢酸

TLC: Rf 0.29 (0.29

5 NMR (CDCl₃): δ 7.19-7.61 (m, 10H), 6.78-6.93 (m, 3H), 4.00 (t, J = 6.1 Hz, 2H), 3.82 (s, 2H), 3.12 (s, 2H), 2.86 (t, J = 7.6 Hz, 2H), 2.14 (tt, J = 7.6, 6.1 Hz, 2H).

実施例2 (22)

2- (3- (2- (5-メチル-2-フェニルオキサゾール-4-イル) エト

10 キシ)フェニル)酢酸・メチルエステル

TLC: Rf 0.52 ($\rho \Box \Box \pi \nu \Delta : \forall \rho / \neg \nu = 9 : 1);$

15 NMR (CDCl₃): δ 8.00-7.90 (m, 2H), 7.45-7.35 (m, 3H), 7.20 (t, J = 7.5 Hz, 1H), 6.90-6.75 (m, 3H), 4.20 (t, J = 7 Hz, 2H,), 3.60 (s, 2H), 2.95 (t, J = 7 Hz, 2H), 2.35(s, 3H)_o

実施例2 (23)

20 2-(3-(ビフェニル-4-イルメトキシ) ピリジン-5-イルメチルチオ)酢酸

TLC: Rf 0.14 (水: メタノール: クロロホルム=1:10:100);

5 NMR (DMSO-d₆): δ 8.27 (d, J = 3.0 Hz, 1H), 8.12 (d, J = 1.5 Hz, 1H), 7.75-7.30 (m, 10H), 5.23 (s, 2H), 3.83 (s, 2H), 3.15 (s, 2H)_o

実施例2 (24)

2-(3-(4'-)プロピルビフェニル-4-イルメトキシ) フェニルメチル 10 チオ) 酢酸

TLC: Rf 0.41 (酢酸エチル);

15 NMR (CDCl₃): δ 7.60 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.26 (dd, J = 7.8, 7.8 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 6.88-7.01 (m, 3H), 5.10 (s, 2H), 3.83 (s, 2 H), 3.10 (s, 2H), 2.63 (t, J = 7.4 Hz, 2H), 1.68 (tq, J = 7.4, 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H)_o

<u>実施例2 (25)</u>

2-(3-(4-(ピリジン-4-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸

5

NMR (CDCl₃ + 17 drops of CD₃OD): δ 8.53 (d, J = 5.8 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H), 7.49-7.52 (m, 4H), 7.18 (dd, J = 7.7, 7.7 Hz, 1H), 6.80-6.95 (m, 3H), 5.07 (s, 2H), 3.76 (s, 2H), 3.02 (s, 2H)_o

<u>実施例2(26)</u>

2-(3-(4-(ピリジン-3-4ル) フェニルメトキシ) フェニルメチル チオ) 酢酸

15

NMR (DMSO-d₆): δ 8.88 (d, J = 1.5 Hz, 1H), 8.56 (dd, J = 4.8, 1.5 Hz, 1H), 8.05

(m, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.48 (m, 1H), 7.19 (dd, J = 8.0, 8.0 Hz, 1H), 6.86-6.9 9 (m, 3H), 5.11 (s, 2H), 3.73 (s, 2H), 2.99 (s, 2H).

実施例2 (27)

5 2-(3-(4-(1, 3-ジオキサインダン-5-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸

10 TLC: Rf 0.28 (クロロホルム: メタノール=10:1);
NMR (CDCl₃): δ 7.53 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.26 (dd, J = 7.8, 7.8 Hz, 1H), 6.86-7.07 (m, 6H), 6.00 (s, 2H), 5.09 (s, 2H), 3.83 (s, 2H), 3.10 (s, 2H)_o

15 実施例2(28)

2-(3-(4-(ピリジン-2- 4 ル)) フェニルメトキシ) フェニルメチルチオ) 酢酸

NMR (CDCl₃ +3 drops of CD₃OD): δ 8.64 (ddd, J = 5.0, 1.6, 1.4 Hz, 1H), 7.90 (d, J = 8.6 Hz, 2H), 7.67-7.82 (m, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.18-7.29 (m, 2H), 6.84-6.94 (m, 3H), 5.13 (s, 2H), 3.77 (s, 2H), 3.00 (s, 2H)_o

<u>実施例2 (29</u>)

2-(5-(ビフェニル-4-イルメトキシ) -2-ニトロフェニルメチルチオ) 酢酸

10

NMR (CDCl₃): δ 8.16 (d, J = 9.0 Hz, 1H), 7.56-7.65 (m, 4H), 7.32-7.51 (m, 5H),

15 7.04 (d, J = 2.8 Hz, 1H), 6.99 (dd, J = 9.0, 2.8 Hz, 1H), 5.21 (s, 2H), 4.25 (s, 2H), 3.09 (s, 2H)_o

<u>実施例2(30)</u>

2-(3-(ビフェニル-4-イルメトキシ)-4-ニトロフェニルメチルチ

20 オ)酢酸

TLC: Rf 0.25 (クロロホルム:メタノール=10:1);

NMR (CDCl₃): δ 7.85 (d, J = 8.4 Hz, 1H), 7.35-7.64 (m, 9H), 7.17 (d, J = 1.6 Hz,

5 1H), 7.00 (dd, J = 8.4, 1.6 Hz, 1H), 5.29 (s, 2H), 3.84 (s, 2H), 3.03 (s, 2H).

<u>実施例2 (31)</u>

2-(3-(4-(1, 3-ジオキサインダン-4-イル) フェニルメトキシ)フェニルメチルチオ) 酢酸

10

TLC: Rf 0.35 ($D \Box \Box \pi \nu \Delta : \forall 9 \ J - \nu = 10 : 1);$

NMR (CDCl₃): δ 7.73 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.25 (dd, J = 8.0, 8.0 Hz, 1H), 6.80-7.08 (m, 6H), 6.01 (s, 2H), 5.11 (s, 2H), 3.82 (s, 2H), 3.08 (s, 2H)_o

実施例2 (32)

2-(3-(2-フェニルチアゾール-4-イルメトキシ)フェニルメチルチ

オ) 酢酸

5 TLC: Rf 0.42 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 8.80 (brs, 1H), 7.90-7.96 (m, 2H), 7.40-7.45 (m, 3H), 7.32 (s, 1H), 7.25 (dd, J = 7.8, 7.8 Hz, 1H), 6.89-7.03 (m, 3H), 5.27 (s, 2H), 3.09 (s, 2H)。

10 実施例2 (33)

2-(3-(2-(5-メチル-2-(4-メチルフェニル)) オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸

15

TLC: Rf 0.42 (0.42 (0.42 (0.42 (0.42 (0.42);

NMR (CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2H), 7.25-7.17 (m, 3H), 7.07 (s, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.80 (dd, J = 8.0, 1.4 Hz, 1H), 4.29 (t, J = 7.7 Hz, 2H), 3.87 (s, 2H), 3.18 (s, 2H), 2.96 (t, J = 7.7 Hz, 2H), 2.39 (s, 3H), 2.37 (s, 3H).

20

実施例2 (34)

2-(3-(2-(2-フェニルチアゾール-4-イル) エトキシ) フェニル メチルチオ) 酢酸

5 NMR (CDCl₃): δ 7.90-7.95 (m, 2H), 7.39-7.46 (m, 3H), 7.23 (dd, J = 7.8, 7.8 Hz, 1H), 7.08 (s, 1H), 6.81-6.98 (m, 3H), 4.38 (t, J = 7.0 Hz, 2H), 3.83 (s, 2H), 3.30 (t, J = 7.0 Hz, 2H), 3.12 (s, 2H), δ

実施例2 (35)

10 2-(3-(2-(5-メチル-2-(4-トリフルオロメチルフェニル)) オ キサゾール-4-(4-(3-(5-x))) フェニルメチルチオ) 酢酸

15 TLC: Rf 0.27 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 8.09 (d, J = 9.0 Hz, 2H), 7.70 (d, J = 9.0 Hz, 2H), 7.22 - 6.79
(m, 4H), 4.29 (t, J = 7.5 Hz, 2H), 3.86 (s, 2H), 3.17 (s, 2H), 2.99 (t, J = 7.5 Hz, 2H), 2.42 (s, 3H)_o

20 実施例 2 (36)

TLC: Rf 0.34 (0.34 (0.34 (0.34 (0.34);

NMR (CDCl₃): δ 7.99-8.04 (m, 2H), 7.58 (s, 1H), 7.42-7.47 (m, 3H), 7.23 (dd, J

5 = 7.7, 7.7 Hz, 1H, 6.89-6.95 (m, 2H), 6.83 (dd, J = 7.7, 2.5 Hz, 1H), 4.30 (t, J = 7.1 Hz, 2H), 3.84 (s, 2H), 3.14 (s, 2H), 3.08 (t, J = 7.1 Hz, 2H).

実施例2 (37)

2-(3-(2-(5-)3+)2-(4-)3+)3+ 10 -4-(3-(5-)3+)3+ 10 -4-(3-(5-)3+)3+ 10 -4-(3-)3+ 10 -4-

$$\mathsf{F} = \bigcup_{\mathsf{CH}_3}^{\mathsf{N}} \bigcup_{\mathsf{CH}_3}^{\mathsf{O}} \mathsf{S} \bigcup_{\mathsf{O}}^{\mathsf{OH}}$$

TLC: Rf 0.39 (0.39 (0.39 (0.39 (0.39 (0.39 (0.39 (0.39));

15 NMR (CDCl₃): δ 7.97 (dd, J = 8.8, 5.2 Hz, 2H), 7.24-7.07 (m, 3H), 6.97 (m, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.79 (dd, J = 8.0, 1.8 Hz, 1H), 4.25 (t, J = 7.1 Hz, 2H), 3.82 (s, 2H), 3.13 (s, 2H), 2.9 7 (t, J = 7.1 Hz, 2H), 2.37 (s, 3H).

実施例2 (38)

TLC: Rf 0.30 (0.30 (0.30 (0.30 (0.30 (0.30);

NMR (CDCl₃): δ 7.53 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 2.0 Hz, 1H), 7.21 (t, J =

5 7.9 Hz, 1H), 7.05 (s, 1H), 6.90-6.78 (m, 3H), 6.02 (s, 2H), 4.27 (t, J = 7.4 Hz, 2H), 3.87 (s, 2H), 3.18 (s, 2H), 2.95 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H).

実施例2 (39)

5-(3-(3-(5-)3+) - 2-) - 2-) - 2-) プロ ポキシ) フェニル ペンタン酸

TLC: Rf 0.63 ($\rho \Box \Box \pi \nu \Delta : \forall \rho / \neg \nu = 9 : 1$);

15 NMR (CDCl₃): δ 8.05 -7.95 (m, 2H), 7.50-7.40 (m, 3H), 7.15 (m, 1H), 6.80-6.70 (m, 3H), 4.00 (t, J = 6 Hz, 2H), 2.75 (t, J = 7 Hz, 2H), 2.60 (m, 2H), 2.35 (m, 2H), 2.30 (s, 3H), 2.15 (m, 2H), 1.75-1.60 (m, 4H)_o

実施例2 (40)

20 2-(3-(2-(5-x)) + 2-(4-2) + 2-

TLC: Rf 0.29 (0.29

NMR (CDCl₃): δ 7.92 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.21 (t, J =

5 7.9 Hz, 1H), 7.02 (m, 1H), 6 89 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 4.27 (t, J = 7.8 Hz, 2H), 3 86 (s, 2H), 3.16 (s, 2H), 2.97 (t, J = 7.8 Hz, 2H), 2 39 (s, 3H).

実施例2 (41)

2-(3-(5-)3+)2-2-7 エニルオキサゾールー 4-(1) イルメトキシ) フ 10 エニルメチルチオ) 酢酸

TLC: Rf 0.37 (0.37

15 NMR (CDCl₃): δ 8.05 -7.95 (m, 2H), 7.50-7.40 (m, 3H), 7.25 (dd, J = 7.5, 7.5 Hz, 1H), 7.05 (m, 1H), 6.95-6.85 (m, 2H), 5.05 (s, 2H), 3.80 (s, 2H), 3.15 (s, 2H), 2.45 (s, 3H)_o

実施例2 (42)

20 2-(3-(3-(5-)3+)2-2-7+2-2-1) がまシ) フェニルメチルチオ) 酢酸

NMR (CDCl₃): δ 8.00 -7.90 (m, 2H), 7.45-7.40 (m, 3H), 7.25 (dd, J = 8, 8 Hz,

5 1H), 6.95-6.85 (m, 2H), 6.80 (m, 1H), 4.15 (t, J = 6.5 Hz, 2H), 3.85 (s, 2H), 3.10 (s, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.30 (s, 3H), 2.10 (m, 2H)_o

実施例2(43)

TLC: Rf 0.51 (0.51);

15 NMR (CDCl₃): δ 7.96-8.01 (m, 2H), 7.40-7.45 (m, 3H), 7.22 (dd, J = 8.0, 8.0 Hz, 1H), 6.92-6.98 (m, 2H), 6.78 (m, 1H), 4.22 (t, J = 6.6 Hz, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H), 1.57 (s, 6H).

実施例2 (44)

20 2-(3-(2-(5-x)) + 2-(2-x) + 2-

TLC: Rf 0.38 (クロロホルム: メタノール=10:1);

NMR (CDCl₃): δ 7.89 (m, 1H), 7.33-7.17 (m, 4H), 6.99-6.79 (m, 3H), 4.29 (t, J = 7.2 Hz, 2H), 3.83 (s, 2H), 3.12 (s, 2H), 2.99 (t, J = 7.2 Hz, 2H), 2.61 (s, 3H), 2.39 (s, 3H)_o

実施例2 (45)

2-(3-(2-(5-)3+)2-(3-)3+)3+ 10 4-(3-)3+(3-)

TLC: Rf 0.39 (0.39

15 NMR (CDCl₃): δ 7.79 (m, 2H), 7.37-7.17 (m, 3H), 7.03 (m, 1H), 6.88 (d, J = 7.4 Hz, 1H), 6.81 (m, 1H), 4.28 (t, J = 7.2 Hz, 2H), 3.86 (s, 2H), 3.16 (s, 2H), 2.98 (t, J = 7.2 Hz, 2H), 2.40 (s, 3H), 2.39 (s, 3H)_o

実施例2 (46)

20 2-(3-(2-(5-)3+)2-(4-)3+)2-(4-)3+2-(3-(3-(2-(5-)3+)2-(4-)3+)2-(3-(3-(2-(5-)3+)2-(4-)3+)2-(4-)3+2-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(4-)3-(

TLC: Rf 0.43 (0.43 (0.43 (0.43 (0.43 (0.43) 0.43 (0.43)

NMR (CDCl₃): δ 7.92 (d, J = 9.0 Hz, 2H), 7.20 (dd, J = 7.9, 7.9 Hz, 1H), 7.05 (m,

5 1H), 6.95 (d, J = 9.0 Hz, 2H), 6.78-6.90 (m, 2H), 4.27 (t, J = 7.4 Hz, 2H), 3.86 (s, 2H), 3.85 (s, 3H), 3.17 (s, 2H), 2.96 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H)_o

実施例2 (47)

2-(3-(2-(5-メチル-2-(4-ニトロフェニル)) オキサゾールー 4-イル) エトキシ) フェニルメチルチオ) 酢酸

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4N
 O_4N

TLC: Rf 0.48 (0.48

15 NMR (CDCl₃): δ 8.29 (d, J = 9.0 Hz, 2H), 8.13 (d, J = 9.0 Hz, 2H), 7.22 (dd, J = 8.0, 8.0 Hz, 1H), 6.88-6.94 (m, 2H), 6.80 (dd, J = 8.0, 1.6 Hz, 1H), 4.27 (t, J = 6.5 Hz, 2H), 3.82 (s, 2H), 3.13 (s, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.43 (s, 3H).

実施例2(48)

TLC:Rf 0.26(クロロホルム:メタノール:水=100:10;1);

NMR (CDCl₃): δ 7.95-8.00 (m, 2H), 7.41-7.47 (m, 3H), 6.93 (m, 1H), 6.89 (m,

5 1H), 6.81 (dd, J = 2.0, 2.0 Hz, 1H), 4.27 (t, J = 7.2 Hz, 2H), 3.81 (s, 2H), 3.17 (s, 2H), 2.97 (t, J = 7.2 Hz, 2H), 2. 39 (s, 3H)_o

実施例2 (49)

10

2-(3-(2-(5-)3+) - 2-

15 NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.45-7.40 (m, 3H), 7.06 (t, J = 8.0 Hz, 1H), 6.85-6.78 (m, 2H), 4.23 (t, J = 6.5 Hz, 2H), 3.84 (s, 2H), 3.13 (s, 2H), 3.01 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 2.22 (s, 3H)_o

実施例2 (50)

TLC: Rf 0.38 (クロロホルム:メタノール=10:1);

NMR (CDCl₃): δ 8.00-7.94 (m, 2H), 7.46-7.39 (m, 3H), 7.23 (t, J = 7.8 Hz, 1H),

7.01 (brs, 1H), 6.93 (brd, J = 8.0 Hz, 1H), 6.83-6.78 (m, 1H), 4.27 (t, J = 7.2 Hz, 2H), 4.18 (q, J = 7.0 Hz, 1H), 3.06 (d, J = 15.6 Hz, 1H), 3.04(d, J = 15.6 Hz, 1H),
2.96 (t, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.58 (d, J = 7.0 Hz, 3H)_o

実施例2 (51)

15 TLC: Rf 0.37 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 8.00-7.94 (m, 2H), 7.45-7.38 (m, 3H), 7.18 (t, J = 7.2 Hz, 1H), 7.04 (brs, 1H), 6.89-6.77 (m, 2H), 4.77 (m, 1H), 3.83 (s, 2H), 3.16 (d, J = 15.0 Hz, 1H), 3.10 (d, J = 15.0 Hz, 1H), 3.01 (dd, J = 14.2, 5.4 Hz, 1H), 2.63 (dd, J = 14.2,

7.8 Hz, 1H), 2.35 (s, 3H), 1.34 (d, J = 6.2 Hz, 3H).

20

実施例2(52)

2-(3-(2-(5-1) フェールオロメチル-2-フェールオキサゾール-4-1 (2-(5-1) フェールメチルチオ) 酢酸

TLC: Rf 0.23 (0.23

5 NMR (CDCl₃): δ 8.10-8.01 (m, 2H), 7.58-7.42 (m, 3H), 7.22 (t, J = 8.0Hz, 1H), 6.96-6.87 (m, 2H), 6.81 (m, 1H), 4.31 (t, J = 7.0 Hz, 2H), 3.81 (s, 2H), 3.20 (t, J = 7.0 Hz, 2H), 3.10 (s, 2H)_o

実施例2 (53)

10 2-(3-(2-(5-)3+)) プロポキシ) フェニルメチルチオ) 酢酸

15 TLC: Rf 0.38 (ヘキサン: 酢酸エチル=1:3);
NMR (CDCl₃): δ 8.00-7.91 (m, 2H), 7.38-7.33 (m, 3H), 7.06 (t, J = 8.0 Hz, 1H), 6.83-6.67 (m, 3H), 4.18-3.94 (m, 2H), 3.67 (s, 2H), 3.15 (m, 1H), 3.08 (s, 2H), 2.31 (s, 3H), 1.34 (d, J = 7.0 Hz, 3H)。

20 実施例2(54)

2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル)エト キシ)フェニルメチルチオ)プロパン酸・ナトリウム塩

TLC: Rf 0.37 (0.37 (0.37);

NMR (CD₃OD): δ 7.98-7.93 (m, 2H), 7.50-7.41 (m, 3H), 7.15 (t, J = 7.8 Hz, 1H),

5 6.94-6.86 (m, 2H), 6.76 (m, 1H), 4.24 (t, J = 6.6 Hz, 2H), 3.73 (d, J = 13.2 Hz, 1H), 3.72 (d, 13.2 Hz, 1H) 3.27 (q, J = 7.0 Hz, 1H), 2.96 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H), 1.34 (d, J = 7.0 Hz, 3H)_o

<u>実施例2(55)</u>

10 2-(3-(2-(5-メチル-2-(4-エチルフェニル) オキサゾールー 4-イル) エトキシ) フェニルメチルチオ) 酢酸

15 TLC: Rf 0.33 (水:メタノール:クロロホルム=1:10:100);
NMR (CDCl₃): δ 7.88 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 7.01 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.80 (dd, J = 8.0, 2.5 Hz, 1H), 4.26 (t, J = 7.0 Hz, 2H), 3.84 (s, 2H), 3.15 (s, 2H), 2.97 (t, J = 7.0 Hz, 2H), 2.68 (q, J = 7.5 Hz, 2H), 2.37 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H)。

<u>実施例2(56)</u>

20

2-(3-(2-(5-x)) + 2-(2, 2-y) + 2-(1, 3-y) + 2-(1, 3-y)

チオ)酢酸

5 TLC: Rf 0.31 (水:メタノール:クロロホルム=1:10:100);
NMR (CDCl₃): δ 7.75 (dd, J = 8.5, 2.0 Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 6.96 (d, J = 2.5 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.80 (dd, J = 8.0, 2.5 Hz, 1 H), 4.25 (t, J = 7.0 Hz, 2H), 3.83 (s, 2H), 3.14 (s, 2H), 2.97 (t, J = 7.0 Hz, 2H), 2.38 (s, 3H)_o

10

実施例2 (57)

15

20

TLC: Rf 0.50 (水:メタノール:クロロホルム=1:10:100);
NMR (CDCl₃): δ 7.88 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 7.02 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.80 (dd, J = 8.0, 2.5 Hz, 1H), 4.27 (t, J = 7.5 Hz, 2H), 3.8 5 (s, 2H), 3.16 (s, 2H), 2.97 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.37 (s, 3H), 1.65 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H)。

実施例2 (58)

5

TLC: Rf 0.53 (水:メタノール:クロロホルム=1:10:100);
NMR (CDCl₃): δ 7.89 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 7.06 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.81 (dd, J = 8.0, 2.5 Hz, 1H), 4.28 (t, J = 7.5 Hz, 2H), 3.87 (s, 2H), 3.17 (s, 2H), 2.97 (t, J = 7.5 Hz, 2H), 2.94 (m, 1H), 2.38 (s, 3H), 1.26 (d, J = 7.0 Hz, 6H)。

<u>実施例2 (59)</u>

2-(3-(2-(5-)3+))-2-(3-)2-(3-(5-)3+)2-(3-)2-(

TLC: Rf 0.32 ($\rho \Box \Box \pi \nu \Delta : \forall \beta / - \nu = 10:1$);

20 NMR (CDCl₃): δ 7.88-7.82 (m, 2H), 7.45-7.34 (m, 3H), 7.21 (t, J = 7.8 Hz, 1H), 6.98 (m, 1H), 6.92-6.77 (m, 2H), 4.33 (t, J = 7.2 Hz, 2H), 3.83 (s, 2H), 3.20 (t, J = 7.2 Hz, 2H), 3.12 (s, 2H), 2.47 (s, 3H)_o

実施例2 (60)

5

15

TLC: Rf 0.43 (0.43

NMR (CDCl₃): δ 7.85 (d, J = 7 Hz, 2H), 7.30-7.05 (m, 3H), 7.05 (brs, 1H), 6.90-6.75 (m, 2H), 4.30 (t, J = 8 Hz, 2H), 3.85 (s, 2H), 3.20 (s, 2H), 2.95 (t, J = 8 Hz, 2H), 2.60 (t, J = 8 Hz, 2H), 2.40 (s, 3H), 1.60 (m, 2H), 1.35 (m, 2H), 0.95 (t, J = 7 Hz, 3H)_o

実施例2 (61)

2-(3-(2-(5-エチル-2-フェニルオキサゾール-4-イル)エトキシ)フェニルメチルチオ)酢酸

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$$

TLC: Rf 0.63 ($\rho \Box \Box \pi \nu \Delta : \forall \beta / \neg \nu = 5 : 1$);

NMR (CDCl₃): δ 7.96-8.01 (m, 2H), 7.40-7.47 (m, 3H), 7.21 (dd, J = 7.8, 7.8 Hz, 1H), 7.04 (m, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.81 (dd, J = 7.8, 2.4 Hz, 1H), 4.28 (t, J = 7.5 Hz, 2H), 3.86 (s, 2H), 3.17 (s, 2H), 2.98 (t, J = 7.5 Hz, 2H), 2.75 (q, J = 7.4 Hz, 2H), 1.31 (t, J = 7.4 Hz, 3H)_o

実施例2 (62)

2-(3-(2-(5-x)+v-2-(2, 3, 5, 6-x)+5)v+v-4-4v-4v)

5 酢酸

TLC: Rf 0.33 ($D D D \pi N \Delta : \forall 9 J - N = 15:1$);

10 NMR (CDCl₃): δ 7.21 (t, J = 7.8 Hz, 1H), 6.97-6.75 (m, 3H), 4.26 (t, J = 7.0 Hz, 2H), 3.82 (s, 2H), 3.12 (s, 2H), 3.02 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H), 2.33 (m, 3H)_o

実施例2 (63)

20 NMR (CDCl₃): δ 7.90 (d, J = 8 Hz, 2H), 7.30-7.15 (m, 3H), 7.05 (br., 1H), 6.90-6.75 (m, 2H), 4.30 (t, J = 8 Hz, 2H), 3.90 (s, 2H), 3.20 (s, 2H), 3.00 (t, J = 8 Hz, 2H), 2.65 (t, J = 8 Hz, 2H), 2.40 (s, 3H), 1.60 (m, 2H), 1.45-1.20 (m, 4H), 0.90 (t, J = 7)

Hz, 3H).

実施例2 (64)

2-(3-(2-(5-x)) - 2-(3-2) - 2-(3-2) - 2-(3-2) + 3-2 - 2-(3-2) - 2-(3-2) + 3-2 - 2-(3-2) + 3

TLC: Rf 0.63 (0.63

NMR (CDCl₃): δ 7.95 (d, J = 1.8 Hz, 1H), 7.76 (dd, J = 8.0, 1.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 7.8, 7.8 Hz, 1H), 6.99 (m, 1H), 6.89 (m, 1H), 6.80 (m, 1H), 4.26 (t, J = 7.1 Hz, 2 H), 3.84 (s, 2H), 3.15 (s, 2H), 2.97 (t, J = 7.1 Hz, 2H), 2.40 (s, 3H), 2.38 (s, 3H)_o

15 実施例2(65)

2-(3-(2-(5-x)) - 2-(2-(5-x)) - 2-(3-(2-(5-x)) - 2-(2-(5-x)) - 2-(2-(

20

TLC: Rf 0.38 (0.38

NMR (CDCl₃): δ 7.20 (dd, J = 7.5, 7.5 Hz, 1H), 7.05 (br. 1H), 6.90-6.75 (m, 2H), 4.20 (t, J = 8 Hz, 2H), 3.90 (s, 2H), 3.20 (s, 2H), 2.85 (t, J = 8 Hz, 2H), 2.25 (s, 3H),

2.10-1.20 (m, 10H)_o

2-(3-(2-(5-メチル-2-シクロヘキシルオキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・ナトリウム塩

5

NMR (CDCl₃): δ 6.96 (m, 1H), 6.76-6.66 (m, 2H), 6.58 (m, 1H), 4.00 (m, 2H),

10 3.48 (s, 2H), 3.07 (s, 2H), 2.74 (m, 2H), 2.62 (m, 1H), 2.15 (s, 3H), 2.01-1.89 (m, 2H), 1.80-1.15 (m, 8H)_o

<u>実施例2 (66)</u>

$$2-(3-(2-(5-メチル-2-(4-(2-メチルプロピル) フェニル)$$

15 オキサゾールー4ーイル)エトキシ)フェニルメチルチオ)酢酸

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

20 NMR (CDCl₃): δ 7.90 (d, J = 7 Hz, 2H), 7.30-7.15 (m, 3H), 7.05 (m, 1H), 6.95-6.75 (m, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.85 (s, 2H), 3.20 (s, 2H), 3.00 (t, J = 7.5 Hz, 2H), 2.50 (d, J = 8 Hz, 2H), 2.40 (s, 3H), 1.90 (m, 1H), 0.90 (d, J = 8 Hz, 6H)_o

実施例2(67)

5

10

15

NMR (CDCl₃): δ 7.90 (d, J = 9 Hz, 2H), 7.45 (d, J = 9 Hz, 2H), 7.20 (dd, J = 8, 8 Hz, 1H), 7.05 (br., 1H), 6.90-6.80 (m, 2H), 4.30 (t, J = 7.5 Hz, 2H), 3.85 (s, 2H), 3.20 (s, 2H), 3.00 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H), 1.35 (s, 9H)_o

実施例2 (68)

 $\bigcirc \bigvee_{O} \bigvee_{CH_3} \bigvee_{O} \bigvee_{O}$

TLC: Rf 0.65 (0.65

NMR (CDCl₃): δ 7.89 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 7.03 (m, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.80 (dd, J = 8.0, 2.2 Hz, 1H), 4.27 (t, J = 7.5 Hz, 2H), 3.85 (s, 2H), 3.16 (s, 2H), 2.97 (t, J = 7.5 Hz, 2H), 2.53 (m, 1H), 2.37 (s, 3H), 1.70-1.90 (m, 4H), 1.20-1.52 (m, 6H)₀

<u>実施例2 (69)</u>

5

10

TLC: Rf 0.40 (0.40 (0.40 (0.40 (0.40);

NMR (CDCl₃): δ 7.54 (dd, J = 8.0, 1.8 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.07-7.02 (m, 1H), 6.96-6.82 (m, 3H), 6.02 (s, 2H), 5.00 (s, 2H), 3.78 (s, 2H), 3.11 (s, 2H), 2.42 (s, 3H)_o

実施例2 (70)

2-(3-(5-x)+v-2-(4-4)) ない 2-(5-x)+v-2-(4-4) ない 2-(5-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(4-x)+v-2-(

15

TLC: Rf 0.48 (クロロホルム: メタノール=10:1);

NMR (CDCl₃): δ 7.92 (d, J = 8.5 Hz, 2H), 7.34-7.17 (m, 3H), 7.08-7.03 (m, 1H), 6.96-6.84 (m, 2H), 5.02 (s, 2H), 3.78 (s, 2H), 3.11 (s, 2H), 2.94 (sep., J = 7.0 Hz, 1H), 2.44 (s, 3H), 1.26 (d, J = 7.0 Hz, 6 H)_o

実施例2 (71)

5

TLC: Rf 0.38 (クロロホルム: メタノール=10:1);

NMR (CDCl₃): δ 8.00-7.95 (m, 2H), 7.49-7.37 (m, 3H), 7.22 (t, J = 8.0 Hz, 1H),

10 6.95-6.76 (m, 3H), 4.23 (t, J = 7.0 Hz, 2H), 3.81 (s, 2H), 3.15 (t, J = 7.0 Hz, 2H), 3.10 (s, 2H), 2.22 (s, 3H).

実施例2 (72)

TLC: Rf 0.62 (0.62

NMR (CDCl₃): δ 7.57 (dd, J = 8.5, 2.0 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.0, 8.0 Hz, 1H), 7.04 (m, 1H), 6.91 (d, J = 8.5 Hz, 1H), 6.78-6.90 (m, 2H), 4.28 (t, J = 7.5 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 3.86 (s, 2H), 3.16 (s, 2H), 2.96 (t, J = 7.5 Hz, 2H), 2.38 (s, 3H)_o

実施例2 (73)

5

TLC: Rf 0.39 (0.39 (0.39 (0.39 (0.39 (0.39 (0.39 (0.39));

NMR (CDCl₃): δ 8.00 (d, J = 8 Hz, 2H), 7.30 (d, J = 8 Hz, 2H), 7.20 (dd, J = 7.5,

10 7.5 Hz, 1H), 7.00 (br. 1H) 6.90 (d, J = 7.5 Hz, 1H), 6.80 (dd, J = 7.5, 7.5 Hz, 1 H), 4.25 (t, J = 7 Hz, 2H), 3.85 (s, 2H), 3.15 (s, 2H), 3.00 (t, J = 7 Hz, 2H), 2.40 (s, 3H)_o

<u>実施例2 (74)</u>

2-(3-(2-(5-x)+v-2-(3,4,5-v)+v)+v)

15 オキサゾールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸

TLC: Rf 0.39 (> 1 > 1);

20 NMR (CDCl₃): δ 7.25-7.15 (m, 3H), 7.05 (m, 1H), 6.90-6.75 (m, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.95 (s, 6H), 3.90 (s, 3H), 3.85 (s, 2H), 3.15 (s, 2H), 2.95 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H)_o

実施例2 (75)

2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3-(4-

5

TLC:Rf 0.26(水:メタノール:クロロホルム=1:10:100);

NMR (CDCl₃): δ 7.14 (dd, J = 7.5, 7.5 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 6.73

10 (dd, J = 7.5, 2.0 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 4.27 (t, J = 6.5 Hz, 2H), 3.78 (s, 2H), 3.55 (t, J = 5.0 Hz, 4H), 3.14 (s, 2H), 2.90 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 5.0 Hz, 4H), 2.51 (s, 3H), 2.19 (s, 3H)_o

<u>実施例2(76)</u>

20 TLC: Rf 0.33 (水:メタノール:クロロホルム=1:10:100);
NMR (CDCl₃): δ 7.88 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 7.03 (dd, J = 2.5, 2.0 Hz, 1H), 6.88 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 6.80 (ddd, J = 8.0, 2.5, 1.0 Hz, 1H), 4.27 (t, J = 7.5 Hz, 2H), 3.85 (s, 2H), 3.16 (s, 2H), 2.96 (t, J = 7.5 Hz, 2H), 2.51 (s, 3H), 2.37 (s, 3H)。

実施例2 (77)

2-(3-(2-(5-)3+)2-(2-)3) ない 2-(3-(2-)3+)3+(2-)3+(

5

TLC: Rf 0.55 (0.55) (0.55) (0.55) (0.55) (0.55) (0.55)

NMR (CDCl₃): δ 8.77 (ddd, J = 4.9, 1.8, 0.8 Hz, 1H), 8.04 (ddd, J = 8.0, 1.2, 0.8 Hz, 1H), 7.84 (ddd, J = 8.0, 7.6, 1.8 Hz, 1H), 7.38 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.23 (dd, J = 7.8, 7.8 Hz, 1 H), 7.10 (m, 1H), 6.92 (m, 1H), 6.81 (m, 1H), 4.34 (t, J = 7.0 Hz, 2H), 3.85 (s, 2H), 3.13 (s, 2H), 2.99 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H)_o

実施例2 (78)

20 TLC: Rf 0.52 (クロロホルム: メタノール=5:1);
NMR (CDCl₂): δ 7.64 (dd, J = 3.6, 1.2 Hz, 1H), 7.39 (dd, J = 5.0, 1.2 Hz, 1H).

7.20 (dd, J = 7.8, 7.8 Hz, 1H), 7.09 (dd, J = 5.0, 3.6 Hz, 1H), 7.00 (m, 1H), 6.88 (m, 1H), 6.80 (m, 1H), 4.25 (t, J = 7.4 Hz, 2H), 3.85 (s, 2H), 3.16 (s, 2H), 2.95 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H).

<u>実施例2 (79)</u>

2-(3-(2-(5-)3+)2-(3-)3+)2-(3-(3-)3+)3+(3-(3-)3+)3+(3-)3+

5

$$H_3C$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4N
 O_4N
 O_4N
 O_5N
 O_5N
 O_5N
 O_7N
 O_7N

TLC: Rf 0.40 (酢酸エチル);

NMR (CDCl₃): δ 8.52 (s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.18 (m, 1H), 6.70 - 7.00 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 3.11 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.61 (s, 3H), 2. 39 (s, 3H)_o

実施例2(80)

TLC: Rf 0.47 (水: メタノール: クロロホルム=1:10:100);

NMR (CDCl₃): δ 7.84 (d, J = 9.0 Hz, 2H), 7.20 (dd, J = 8.0, 8.0 Hz, 1H), 7.11 (dd, J = 2.0, 1.0 Hz, 1H), 6.87 (dd, J = 8.0, 1.0 Hz, 1H), 6.80 (dd, J = 8.0, 2.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 2H), 4.29 (t, J = 8.0 Hz, 2H), 3.88 (s, 2H), 3.19 (s, 2H), 3.02 (s, 6H), 2.94 (t, J = 8.0 Hz, 2H), 2.35 (s, 3H) $_{\circ}$

<u>実施例2 (81)</u>

5

$$\bigcirc \bigvee_{O \subset CH_3}^{N} \bigcirc \bigvee_{O \subset CH_3}^{OH}$$

TLC: Rf 0.44 (0.44 (0.44 (0.44 (0.44 (0.44 (0.44 (0.44));

NMR (CDCl₃): δ 7.20 (dd, J = 7.5, 7.5 Hz, 1H), 7.10 (br., 1H), 6.85 (d, J = 7.5

10 Hz, 1H), 6.80 (dd, J = 7.5, 1.5 Hz, 1H), 4.20 (t, J = 7.5 Hz, 2H), 3.85 (s, 2H), 3.20 (s, 2H), 3.15 (m, 1H), 2.85 (t, J = 7.5 Hz, 2H), 2.25 (s, 3H), 2.20-1.60 (m, 8H)_o

15

TLC: Rf 0.29 (0.29

NMR (DMSO-d₆): δ 7.18 (t, J = 8.0 Hz, 1H), 6.88-6.72 (m, 3H), 4.09 (t, J = 6.8

20 Hz, 2H), 3.69 (s, 2H), 3.19-3.00 (m, 1H), 2.96 (s, 2H), 2.84 (s, 2H), 2.78 (t, J = 6.8 Hz, 2H), 2.21 (s, 3H), 2.06-1.48 (m, 8H)_o

実施例2(82)

TLC: Rf 0.46 (クロロホルム:メタノール=10:1);

NMR (CDCl₃): δ 7.85 (d, J = 8.4 Hz, 2H), 7.27-7.14 (m, 3H), 6.89-6.75 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H), 2.35 (s, 3H)_o

実施例2(83)

15

5

TLC: Rf 0.54 (0.54 (0.54);

NMR (CDCl₃): δ 7.88 (d, J = 8.2 Hz, 2H), 7.29-7.15 (m, 3H), 6.89-6.75 (m, 3H), 20 4.20 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 2.35 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H)_o

<u>実施例2(84)</u>

5

TLC: Rf 0.57 (/ 100 + 0.57);

NMR (CDCl₃): δ 7.87 (d, J = 8.2 Hz, 2H), 7.28-7.15 (m, 3H), 6.88-6.76 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.61 (t, J = 7.5 Hz, 2H), 2.35 (s, 3H), 1.65 (sixtet, J = 7.5 Hz, 2H), 0.94 (t, J = 7.5 Hz, 3H)_o

10

実施例2 (85)

15

20

TLC: Rf 0.52 (0.52 (0.52 (0.52 (0.52 (0.52 (0.52));

NMR (CDCl₃): δ 7.88 (d, J = 8.2 Hz, 2H), 7.32-7.15 (m, 3H), 6.88-6.76 (m, 3H), 4.19 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.93 (sept, J = 7.2 Hz, 1H), 1.25 (d, J = 7.2 Hz, 6H)_o

実施例2 (86)

2-(3-(2-(5-)3+)2-(4-(2-)3+)2-(3-(3-(5-)3+)2-(4-(2-)3+(2-

TLC: Rf 0.50 (0.50) (0.50) (0.50);

5 NMR (CDCl₃): δ 7.87 (d, J = 8.2 Hz, 2H), 7.26-7.15 (m, 3H), 6.89-6.76 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.50 (d, J = 7.0 Hz, 2H), 2.35 (s, 3H), 1.88 (m, 1H), 0.90 (d, J = 6.6 Hz, 6H)_o

実施例2(87)

10 2-(3-(2-(5-)3+)2-(4-t-)7+)3+ オキサゾー (3-(3-(2-(5-)3+)2-(4-t-)7+)3+)3+ かつ (4-(3-(5-)3+)3+)3+ が かっ (4-(5-)3+)3+ かっ (4-(5-)3

15 TLC: Rf 0.44 (クロロホルム: メタノール=10:1);
NMR (CDCl₃): δ 7.89 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 6.89-6.76 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.33 (s, 9H)。

20 実施例2(88)

2-(3-(2-(5-x)) - 2-(2-(5-x)) - 2-(2-(5-x

TLC: Rf 0.39 (水: メタノール: クロロホルム=1:10:100);

NMR (CDCl₃): δ 7.18 (dd, J = 8.0, 8.0 Hz, 1H), 7.00 (d, J = 2.5 Hz, 1H), 6.86 (d,

5 J = 8.0 Hz, 1H), 6.77 (dd, J = 8.0, 2.5 Hz, 1H), 4.19 (t, J = 7.5 Hz, 2H), 3.83 (s, 2H), 3.15 (s, 2H), 2.84 (t, J = 7.5 Hz, 2H), 2.22 (s, 3H), 2.06 (m, 1H), 1.10-0.95 (m, 4H).

<u>実施例2(89)</u>

2-(3-(2-(5-メチル-2-(4-(1, 2, 3-チアジアゾールー 10 4-イル) フェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチ オ) 酢酸

15 TLC: Rf 0.30 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ 9.35 (d, J = 0.8 Hz, 1H), 8.24 (d, J = 8.2 Hz, 2H), 8.11 (d, J = 8.2 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 6.95-6.78 (m, 3H), 4.27 (t, J = 6.2 Hz, 2H), 3.78 (s, 2H), 3.06 (s, 2H), 3.00 (t, J = 6.2 Hz, 2H), 2.41 (s, 3H)。

20 実施例2 (90)

2-(3-(2-(5-)3+)2-(4-(4-)3+)2-(3-)3-3+)2-(3-(3-(5-)3+)2-(4-(4-)3+)2-(4-)3+)2-(4-)3+(4-)

TLC: Rf 0.34 (0.34 (0.34 (0.34 (0.34 (0.34 (0.34);

5 NMR (CDCl₃): δ 7.22 (t, J = 8.0 Hz, 1H), 6.95-6.74 (m, 3H), 4.24 (t, J = 6.2 Hz, 2H), 3.81 (s, 2H), 3.11 (s, 2H), 3.02 (s, 3H), 2.99 (t, J = 6.2 Hz, 2H), 2.42 (s, 3H)_o

<u>実施例2 (91)</u>

$$H_3C$$

15 NMR (CDCl₃): δ 7.90 (d, J = 9.0 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 9.0 Hz, 2H), 6.89-6.76 (m, 3H), 4.19 (t, J = 6.6 Hz, 2H), 3.84 (s, 3H), 3.59 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.34 (s, 3H)_o

実施例2 (92)

TLC: Rf 0.54 (0.54) (0.54);

NMR (CDCl₃ + CD₃OD): δ 7.56 (dd, J = 8.2, 2.0 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.90-6.77 (m, 3H), 4.22 (t, J = 6.6 Hz, 2H), 3.97 (s, 3H), 3.93 (s, 3H), 3.57 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

<u>実施例2 (93)</u>

10 2-(3-(2-(5-)3+)2-(1,3-)3+) すキサゾール-4-(3-)3+(3-

15 TLC: Rf 0.53 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 7.51 (dd, J = 8.2, 1.8 Hz, 1H), 7.43 (d, J = 1.8 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 6.89-6.76 (m, 4H), 6.00 (s, 2H), 4.19 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.94 (t, J = 6.6 Hz, 2H), 2.34 (s, 3H)_o

20 実施例2 (94)

2-(3-(2-(5-x)) 2-(3, 4, 5-トリメトキシフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸

$$H_3C - O$$
 O
 CH_3
 O
 CH_3
 O
 CH_3

5 NMR (CDCl₃): δ 7.21 (t, J = 8.0 Hz, 1H), 7.20 (s, 2H), 6.89-6.76 (m, 3H), 4.21 (t, J = 6.6 Hz, 2H), 3.91 (s, 6H), 3.88 (s, 3H), 3.60 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

実施例2 (95)

10 2-(3-(2-(5-メチル-2-(4-トリフルオロメトキシフェニル)オキサゾール-4-イル) エトキシ) フェニル) 酢酸

15 TLC: Rf 0.57 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 8.00 (d, J = 8.8 Hz, 2H), 7.30-7.16 (m, 3H), 6.89-6.76 (m, 3H), 4.21 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H)_o

実施例2 (96)

TLC: Rf 0.53 (0.53) (0.53) (0.53);

5 NMR (CDCl₃): δ 7.74 (dd, J = 8.4, 1.5 Hz, 1H), 7.68 (d, J = 1.5 Hz, 1H), 7.22 (dd, J = 9.4, 7.4 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 6.89-6.76 (m, 3H), 4.21 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H).

<u>実施例2 (97)</u>

15 TLC: Rf 0.47 (クロロホルム: メタノール=10:1);
NMR (DMSO-d₆): δ 8.02 (d, J = 8.1Hz, 2H), 7.81 (d, J = 8.1Hz, 2H), 7.20 (t, J = 7.8Hz, 1H), 6.86-6.80 (m, 3H), 4.20 (t, J = 6.6Hz, 2H), 3.74 (s, 2H), 3.09 (s, 2H), 2.94 (t, J = 6.6Hz, 2H), 2.37 (s, 3H)。

20 実施例2 (98)

2-(3-(2-(5-)3+)2-(4-)2-(4-)2-(12-)3+)3+ ない 4-(4-)2-(4-

TLC: Rf 0.24 (ヘキサン: 酢酸エチル=1:1);

5 NMR (CDCl₃): δ 8.08 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.22 (m, 1H), 6.76-6.98 (m, 3H), 4.26 (t, J = 6.6 Hz, 2H), 3.83 (s, 2H), 3.13 (s, 2H), 2.99 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H)_o

<u>実施例2(99)</u>

10 2-(3-(2-(5-)3+)2-(7-)3+)3+ 10 2-(3-(2-(5-)3+)2-(7-)3+)3+ 10 3-(3-(2-(5-)3+)2-(7-)3+)3+ 10 3-(3-(2-(5-)3+)2-(7-)3+)3+ 11 (10 3-(3-)3+(3-)3+ 11 (10 3-(3-)3+(3-)3+ 11 (10 3-(3-)3+(3-)3+(3-)3+ 11 (10 3-(3-)3+(3-

$$\bigcup_{O \subset CH_3}^{N} \bigcup_{CH_3}^{O} \bigcup_{O \subset CH_3}^{OH}$$

- TLC: Rf 0.24 (ヘキサン: 酢酸エチル=1:1);
 NMR (CDCl₃): δ 7.52 (m, 1H), 7.20 (m, 1H), 6.74-7.03 (m, 4H), 6.51 (dd, J = 3.4, 1.6 Hz, 1H), 4.25 (t, J = 6.8 Hz, 2H), 3.82 (s, 2H), 3.13 (s, 2H), 2.97 (t, J = 6.8 Hz, 2H), 2.37 (s, 3H)。
- 20 <u>実施例2(100)</u>2-(3-(5-メチル-2-フェニルオキサゾール-4-イル)メトキシ)フェニル) 酢酸

TLC: Rf 0.31 (クロロホルム:メタノール=8:1);

NMR (CDCl₃): δ 8.00 (m, 2H), 7.42 (m, 3H), 7.24 (m, 1H), 6.85-6.98 (m, 3H),

5 4.98 (s, 2H), 3.61 (s, 2H), 2.42 (s, 3H)_o

<u>実施例2 (101)</u>

10

TLC: Rf 0.43 (クロロホルム:メタノール=9:1);

NMR (): δ 7.89-7.81 (m, 2H), 7.46-7.34 (m, 3H), 7.26-7.16 (m, 1H), 6.87-6.78

15 (m, 3H), 4.30 (t, J = 6.8 Hz, 2H), 3.59 (s, 2H), 3.18 (t, J = 6.8 Hz, 2H), 2.45 (s, 3H).

実施例2 (102)

NMR (CDCl₃): δ 7.97 (m, 2H), 7.41 (m, 3H), 7.22 (m, 1H), 6.74-6.92 (m, 3H),

5 3.94 (t, J = 6.0 Hz, 2H), 3.61 (s, 2H), 2.68 (t, J = 7.0 Hz, 2H), 2.27 (s, 3H), 2.11 (m, 2H).

<u>実施例2(103)</u>

2-(3-(2-(2-フェニルオキサゾール-4-イル) エトキシ) フェニ 10 ル) 酢酸

TLC: Rf 0.39 (クロロホルム:メタノール=8:1);

15 NMR (CDCl₃): δ 8.01 (m, 2H), 7.55 (s, 1H), 7.43 (m, 3H), 7.23 (m, 1H), 6.85 (m, 3H), 4.25 (t, J = 6.4 Hz, 2H), 3.60 (s, 2H), 3.07 (t, J = 6.4 Hz, 2H)_o

実施例2(104)

2-(3-(2-(5-メチル-2-(4-シクロヘキシルフェニル)) オキサ 20 ゾール-4-イル) エトキシ) フェニル) 酢酸

$$\bigcirc \bigvee_{O} \bigvee_{CH_3} \bigvee_{O} \bigvee_{O}$$

TLC: Rf 0.62 (/ 2 + 1);

NMR (CDCl₃): δ 7.88 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.21 (m, 1H),

5 6.78-6.87 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.52 (m, 1H), 2.35 (s, 3H), 1.70-1.95 (m, 4H), 1.20-1.53 (m, 6H)_o

<u>実施例2(105)</u>

2-(3-(2-(5-)3+)2-(3-

15 NMR (CDCl₃): δ 7.95 (d, J = 1.7 Hz, 1H), 7.75 (dd, J = 8.0, 1.7 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.21 (m, 1H), 6.78-6.88 (m, 3H), 4.21 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.40 (s, 3H), 2.36 (s, 3H) $_{\circ}$

実施例2 (106)

20 2-(3-(2-(5-)3+)2-(4-)3+) が (4-)3+)3+ で (4-)3+ で (4-)3

TLC: Rf 0.55 (クロロホルム: メタノール=5:1);

NMR (CDCl₃): δ 7.83 (d, J = 9.0 Hz, 2H), 7.09 (dd, J = 8.0, 8.0 Hz, 1H), 6.76-5 6.87 (m, 3H), 6.70 (d, J = 9.0 Hz, 2H), 4.18 (t, J = 6.8 Hz, 2H), 3.60 (s, 2H), 3.01 (s, 6H), 2.94 (t, J = 6.8 Hz, 2H), 2.32 (s, 3H)_o

実施例2(107)

2- (3- (2- (5-エチル-2-フェニルオキサゾール-4-イル) エト

10 キシ)フェニル)酢酸

NMR (CDCl₃): δ 7.97 (m, 2H), 7.41 (m, 3H), 7.20 (m, 1H), 6.82 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.73 (q, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H)_o

<u>実施例2(108)</u>

TLC: Rf 0.54 (0.54);

NMR (CDCl₃): δ 7.87 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 7.14-7.28 (m,

5 1H), 6.82 (m, 3H), 4.19 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.34 (s, 3H), 1.61 (m, 2H), 1.35 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H)_o

<u>実施例2(109)</u>

10 2-(3-(2-(5-メチル-2-(4-クロロフェニル)) オキサゾールー4-イル) エトキシ) フェニル) 酢酸

15 TLC: Rf 0.57 (クロロホルム:メタノール=8:1);
NMR (CDCl₃): δ 7.90 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.16-7.28 (m, 1H), 6.83 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H)_o

20 実施例2(110)

NMR (CDCl₃): δ 7.59 (dd, J = 3.6, 1.2 Hz, 1H), 7.36 (dd, J = 4.8, 1.2 Hz, 1H),

5 7.21 (m, 1H), 7.07 (dd, J = 4.8, 3.6 Hz, 1H), 6.77-6.87 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2. 34 (s, 3H)_o

<u>実施例2 (111)</u>

TLC: Rf 0.69 (0.69

15 NMR (CDCl₃): δ 7.51 (m, 1H), 7.21 (m, 1H), 6.93 (d, J = 3.5 Hz, 1H), 6.78-6.87 (m, 3H), 6.50 (dd, J = 3.5, 1.9 Hz, 1H), 4.22 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H)_o

実施例2(112)

20 2-(3-(2-(5-メチル-2-(ピリジン-2-イル)) オキサゾールー4-イル) エトキシ) フェニル) 酢酸

NMR (CDCl₃): δ 8.71 (d, J = 4.8 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.79 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 7.32 (ddd, J = 7.8, 4.8, 1.8 Hz, 1H), 7.21 (dd, J = 7.8, 7.8 Hz, 1H), 6.78-6.87 (m, 3H), 4.26 (t, J = 6.8 Hz, 2H), 3.61 (s, 2H), 2.99 (t, J = 6.8 Hz, 2H), 2.41 (s, 3H)_o

実施例2(113)

10 2-(3-(2-(5-)3+)2-(2-)3+)3+ オキサゾールー 4-(3-(2-(5-)3+)2-(2-)3+)3+ 作酸

15 TLC: Rf 0.68 (クロロホルム:メタノール=5:1);
NMR (CDCl₃): δ 7.90 (m, 1H), 7.18-7.30 (m, 4H), 6.80-6.87 (m, 3H), 4.24 (t, J = 6.7 Hz, 2H), 3.60 (s, 2H), 2.98 (t, J = 6.7 Hz, 2H), 2.64 (s, 3H), 2.37 (s, 3H)。

<u>実施例2</u>(114)

20 2 - (3 - (2 - (5 - メチル - 2 - (3 - メチルフェニル) オキサゾール - 4 - イル) エトキシ) フェニル) 酢酸

TLC: Rf 0.71 (0.71);

NMR (CDCl₃): δ 7.74-7.81 (m, 2H), 7.17-7.35 (m, 3H), 6.78-6.87 (m, 3H), 4.21

5 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H), 2.36 (s, 3H).

実施例2 (115)

2-(3-(2-(5-)3+)2-(4-)17)2+(3-(5-)3+)2-(4-)17)2+(4-)17

10

TLC: Rf 0.54 (0.54

NMR (CDCl₃): δ 8.08 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.17-7.24 (m,

15 1H), 6.83 (m, 3H), 4.23 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.98 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H).

<u>実施例2(116)</u>

2-(3-(2-(5-x)) + 2-(4-y) + 2-(4-y) + 2-(3-y) + 2-(3-

TLC: Rf 0.59 (0.59 (0.59) (0.59

NMR (CDCl₃): δ 7.95 (m, 2H), 7.03-7.26 (m, 3H), 6.83 (m, 3H), 4.20 (t, J = 6.6

5 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H).

<u>実施例2 (117)</u>

$$2-(3-(2-(5-)3+)2-(4-)2-(4-)2-(3-)3+)3+$$
 オキサゾールー $4-(3-)3+(3-)3$

10

TLC: Rf 0.52 (0.52

NMR (CDCl₃): δ 8.06 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 7.22 (m, 1H),

15 6.78-6.87 (m, 3H), 4.23 (t, J = 6.4 Hz, 2H), 3.60 (s, 2H), 2.98 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H)

実施例2(118)

$$2-(3-(2-(5-x))+2-(4-x))$$
 20 $2-(3-(2-(5-x))+2-(4-x))$ 20 $2-(3-(2-(5-x))+2-(4-x))$ 20 $2-(3-(2-(5-x))+2-(4-x))$ 20 $2-(3-(2-(5-x))+2-(4-x))$ 3 $2-(3-(5-x))$ 6 酸

NMR (CDCl₃): δ 7.23 (m, 1H), 6.78-6.88 (m, 3H), 4.23 (t, J = 6.5 Hz, 2H), 3.60

5 (s, 2H), 3.02 (s, 3H), 2.98 (t, J = 6.5 Hz, 2H), 2.40 (s, 3H).

実施例2 (119)

2-(3-(2-(5-)3+)2-(2,3,5,6-)7+)2-(4-)3-(3-(2-(5-)3+)2-(2-(2,3,5,6-)7+)2-(2-(2,3,5)6-)7+(2-(2,

10

$$H_3C$$
 F
 F
 O
 CH_3
 O
 OH

TLC: Rf 0.34 (0.34

NMR (CDCl₃): δ 7.22 (m, 1H), 6.76-6.90 (m, 3H), 4.23 (t, J = 6.4 Hz, 2H), 3.60

15 (s, 2H), 3.01 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H), 2.33 (s, 3H).

実施例2 (120)

2-(3-(2-(5-)3+)2-(3-)3+)2-(3-)3+ 1 (3-) 1 (3-) 1 (3-) 2 (3-) 1 (3-)

$$H_3C$$
 O_2N
 O_1
 O_2
 O_1
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 O_7
 O_8
 $O_$

TLC: Rf 0.31 (0.31);

NMR (CDCl₃): δ 8.54 (d, J = 1.6 Hz, 1H), 8.08 (dd, J = 8.0, 1.6 Hz, 1H), 7.39 (d,

5 J = 8.0 Hz, 1H), 7.17 (m, 1H), 6.66-6.90 (m, 3H), 4.21 (t, J = 6.4 Hz, 2H), 3.59 (s, 2H), 2.97 (t, J = 6.4 Hz, 2H), 2.63 (s, 3H), 2.39 (s, 3H).

実施例2(121)

10 エトキシ)フェニル)酢酸

15 NMR (CDCl₃): δ 7.19 (dd, J = 8.0, 8.0 Hz, 1H), 6.74-6.87 (m, 3H), 4.10 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.85 (t, J = 6.6 Hz, 2H), 2.71 (m, 1H), 2.23 (s, 3H), 1.96-2.04 (m, 2H), 1.19-1.86 (m, 8H)_o

実施例2(122)

20 2-(3-(2-(5-メチル-2-シクロペンチルオキサゾール-4-イル)エトキシ)フェニル) 酢酸

TLC: Rf 0.46 (0.46 (0.46 (0.46 (0.46 (0.46 (0.46 (0.46));

NMR (CDCl₃): δ 7.19 (dd, J = 7.9, 7.9 Hz, 1H), 6.74-6.87 (m, 3H), 4.11 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 3.14 (m, 1H), 2.86 (t, J = 6.6 Hz, 2H), 2.24 (s, 3H), 1.56-2.12 (m, 8H)_o

<u>実施例2 (123)</u>

2-(3-(2-(5-メチル-2-(4-ペンチルフェニル) オキサゾール10 -4-イル) エトキシ) フェニル) 酢酸

$$H_3C$$

TLC: Rf 0.44 (0.44 (0.44 (0.44 (0.44 (0.44 (0.44 (0.44));

NMR (CDCl₃): δ 7.87 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.20 (m, 1H), 6.75-6.90 (m, 3H), 4.19 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.62 (t, J = 7.6 Hz, 2H), 2.35 (s, 3H), 1.62 (m, 2H), 1.23-1.44 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H)_o

20 実施例2(124)

2-(3-(2-(5-メチル-2-(ピリジン-4-イル) オキサゾールー4-イル)エトキシ)フェニルメチルチオ)酢酸

TLC: Rf 0.36 (0.36 (0.36 (0.36 (0.36 (0.36 (0.36 (0.36));

NMR (DMSO-d₆): δ 8.75 (d, J = 6 Hz, 2H), 7.80 (d, J = 6 Hz, 2H), 7.20 (dd, J = 8, 8 Hz, 1H), 6.95-6.80 (m, 3H), 4.20 (t, J = 7 Hz, 2H), 3.75 (s, 2H), 3.05 (s, 2H), 2.95 (t, J = 7 Hz, 2H), 2.40 (s, 3H)_o

実施例2(125)

2-(3-(2-(5-メチル-2-(ピリジン-3-イル) オキサゾールー10 4-イル) エトキシ) フェニル) 酢酸

TLC: Rf 0.39 (0.39

NMR (DMSO-d₆): δ 12.28 (brs, 1H), 9.07 (d, J = 1.5 Hz, 1H), 8.65 (d, J = 4.8 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 8.4 Hz, 4.8 Hz, 1H), 7.21-7.16 (m, 1H), 6.82-6.79 (m, 3H), 4.18 (t, J = 6.6 Hz, 2H), 3.50 (s, 2H), 2.93 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H)_o

20 実施例2(126)

2-(3-(2-(5-)3+)2-(2-(2-)3)2-4-(3-)3+)3+(3-)3

TLC: Rf 0.34 (0.34 (0.34 (0.34 (0.34 (0.34 (0.34 (0.34));

NMR (DMSO-d₆): δ 12.29 (brs, 1H), 8.69 (d, J = 6.0 Hz, 2H), 7.80 (d, J = 6.0 Hz,

5 2H), 7.21-7.16 (m, 1H), 6.82-6.78 (m, 3H), 4.19 (t, J = 6.6 Hz, 2H), 3.50 (s, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

<u>実施例2(127)</u>

10

2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3-(4-

$$H_3C-N$$
 N
 CH_3
 CH_3
 CH_3

15 NMR (CDCl₃): δ 7.00-7.20 (m, 2H), 6.70-6.85 (m, 3H), 4.19 (t, J = 6.6 Hz, 2H), 3.46-3.55 (m, 4H), 2.91 (t, J = 6.6 Hz, 2H), 2.75-2.83 (m, 4H), 2.47 (s, 3H), 2.24 (s, 3H),

<u>実施例2(128)</u>

TLC: Rf 0.31 (水: メタノール: クロロホルム=1:10:100);

NMR (CDCl₃): δ 7.98 (m, 2H), 7.50-7.40 (m. 3H), 7.24 (dd, J = 8.0, 8.0 Hz, 1H),

5 7.00 (m, 1H), 6.95-6.80 (m, 2H), 4.62 (s, 2H), 4.26 (t, J = 7.0 Hz, 2H), 4.11 (s, 2H), 2.99 (t, J = 7.0 Hz, 2H), 2.39 (s, 3H).

実施例2(129)

TLC: Rf 0.41 (0.41);

15 NMR (DMSO-d₆): δ 9.05 (s, 1H), 8.65 (d, J = 4 Hz, 1H), 8.25 (d, J = 7 Hz, 1H), 7.55 (m, 1H), 7.20 (dd, J = 7, 7 Hz, 1H), 6.95-6.80 (m, 3H), 4.20 (t, J = 6 Hz, 2H), 3.80 (s, 2H), 3.10 (s, 2H), 2.95 (t, J = 6 Hz, 2H), 2.40 (s, 3H)_o

実施例2(130)

20 2-(3-(2-(5-)3+)2-(4-)3+)3+ かー 4-4 ルー 4-4 ルー

NMR (CDCl₃): δ 7.87 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.21 (m, 1H), 6.75-6.89 (m, 3H), 4.20 (t, J = 6.6 Hz, 2H), 3.59 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.51 (s, 3H), 2.35 (s, 3H)_o

実施例2(131)

TLC: Rf 0.43 (0.43

15 NMR CDCl₃): δ 7.25-7.10 (m, 1H), 6.86-6.74 (m, 3H), 4.10 (t, J = 6.6 Hz, 2H), 3.58 (s, 2H), 2.82 (t, J = 6.6 Hz, 2H), 2.20 (s, 3H), 2.04-1.98 (m, 1H), 1.01-0.94 (m, 4H)_o

実施例2(132)

20 2-(3-(2-(5-x)) + 2-(4-x) + 2-

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4N
 O_4N

TLC: Rf 0.53 (0.53) 0.53 (0.53)

NMR (CDCl₃): δ 8.30 (d, J = 9.0 Hz, 2H), 8.14 (d, J = 9.0 Hz, 2H), 7.22 (dd, J = 8.0, 8.0 Hz, 1H), 6.77-6.90 (m, 3H), 4.25 (t, J = 6.6 Hz, 2H), 3.57 (s, 2H), 3.00 (t, J = 6.6 Hz, 2H), 2.43 (s, 3H)_o

実施例2(133)

2-(3-(2-(5-メチル-2-(キノリン-2-イル) オキサゾールー10 4-イル) エトキシ) フェニル) 酢酸

TLC: Rf 0.51 (0.51);

15 NMR (CDCl₃): δ 8.16-8.28 (m, 3H), 7.83 (m, 1H), 7.75 (m, 1H), 7.57 (m, 1H), 7.22 (dd, J = 8.2, 8.2 Hz, 1H), 6.78-6.87 (m, 3H), 4.29 (t, J = 6.6 Hz, 2H), 3.61 (s, 2H), 3.04 (t, J = 6.6 Hz, 2H), 2.46 (s, 3H) $_{\circ}$

<u>実施例2(134)</u>

20 2-(3-(2-(5-)3+)2-(3-)3+)2-(3-)3+ ない 2-(3-(3-)3+)3+ ない 3-(3-)3+ ない 3-(3-)3

TLC: Rf 0.37 (0.37

NMR (CDCl₃): δ 7.91 (dt, J = 7.8, 1.2 Hz, 1H), 7.85-7.80 (m, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.28-7.17 (m, 2H), 6.89-6.78 (m, 3H), 4.22 (t, J = 6.6 Hz, 2H), 3.60 (s, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H)_o

<u>実施例2(135)</u>

10 オキサゾールー4ーイル)エトキシ)フェニル)酢酸

15 NMR (CDCl₃): δ 8.06 (dd, J = 7.8, 2.0 Hz, 1H), 7.49-7.31 (m, 3H), 7.27-7.17 (m, 1H), 6.88-6.78 (m, 3H), 4.23 (t, J = 6.8 Hz, 2H), 3.60 (s, 2H), 2.98 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H) $_{\circ}$

実施例2(136)

20 2-(3-(2-(4-メチル-2-フェニルオキサゾール-5-イル) エトキシ) フェニル) 酢酸

TLC: Rf 0.44 (0.44 (0.44 (0.44 (0.44 (0.44));

NMR (CDCl₃): δ 8.00-7.93 (m, 2H), 7.46-7.37 (m, 3H), 7.28-7.18 (m, 1H), 6.90-

5 6.78 (m, 3H), 4.22 (t, J = 6.8 Hz, 2H), 3.61 (s, 2H), 3.14 (t, J = 6.8 Hz, 2H), 2.20 (s, 3H)_o

<u>実施例2 (137)</u>

2-(3-(2-(5-x+n-2-(1, 3-i)x+h-1)x+n-2-(1, 3-i)x+n-2-(1, 3-i)x+n-2-(

10 オキサゾールー4ーイル)エトキシ)フェニルメトキシ)酢酸

TLC: Rf 0.20 (クロロホルム: メタノール: 水= 100:10:1);

15 NMR (CD₃OD): δ 7.49 (dd, J = 8.4, 1.8 Hz, 1H), 7.38 (d, J = 1.8 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.97-6.79 (m, 4H), 6.01 (s, 2H), 4.54 (s, 2H), 4.26 (t, J = 6.4 Hz, 2H), 4.06 (s, 2H), 2.93 (t, J = 6.4 Hz, 2H), 2.33 (s, 3H)_o

実施例3

20 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エチルチオ) フェニル) 酢酸・メチルエステル

2-(5-メチル-2-フェニルオキサゾール-4-イル) エチルブロマイド(136mg) および3-メルカプトフェニル酢酸・メチルエステル(78mg) をアセトニトリル(5ml) に溶解し、炭酸カリウム(180mg) を加え、室温で1時間撹拌した。反応混合溶液を氷水に加え、エーテルで抽出した。抽出液を水酸化ナトリウム水溶液、水および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=200:1→50:1) で精製し、

下記物性値を有する本発明化合物(92mg)を得た。

TLC: Rf 0.33 (酢酸エチル: ヘキサン=1:3);

NMR (CDCl₃): δ 7.96 (m, 2H), 7.50-7.35 (m. 3H), 7.30-7.15 (m, 3H), 7.06 (m, 1H), 3.69 (s, 3H), 3.57 (s, 2H), 3.28 (t, J = 7.0 Hz, 2H), 2.82 (t, J = 7.0 Hz, 2H), 2.27 (s, 3H)_o

15

10

実施例4

2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ)フェニルメチルチオ)-2-メチルプロパン酸・エチルエステル

20

メチルプロパン酸・エチルエステル (0.64 m l) およびナトリウムメチレート (290 m g) を0℃で加え、3時間還流した。反応混合溶液を室温まで冷却後、ろ過した。ろ液を水に加え、水層を酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=5:1) で精製し、下記物性値を有する本発明化合物 (1.69 g) を得た。

TLC: Rf 0.46 (ヘキサン: 酢酸エチル=4:1);

NMR (CDCl₃): δ 8.01-7.94 (m, 2H), 7.46-7.37 (m, 3H), 7.18 (t, J= 8.0 Hz, 1H), 6.89-6.72 (m, 3H), 4.23 (t, J = 6.8 Hz, 2H), 4.12 (q, J = 7.0 Hz, 2H), 3.79 (s, 2H), 2.97 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H), 1.53 (s, 6H), 1.26 (t, J = 7.0 Hz, 3H)_o

実施例5~実施例5 (1)

実施例1で製造した化合物の代わりに実施例3および実施例4で製造した化合物を用いて、実施例2で示される方法と同様に操作し、さらに必要に公知の 15 方法によって相当する塩に変換して、以下に示す本発明化合物を得た。

実施例 5

2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エチルチオ) フェニル) 酢酸

20

25

5

10

TLC: Rf 0.50 (水:メタノール:クロロホルム=1:10:100);
NMR (CDCl₃): δ 7.94 (m, 2H), 7.45-7.35 (m. 3H), 7.30-7.15 (m, 3H), 7.07 (m, 1H), 3.58 (s, 2H), 3.25 (t, J = 7.0 Hz, 2H), 2.81 (t, J = 7.0 Hz, 2H), 2.25 (s, 3H)_o

<u>実施例 5 (1)</u>

5

TLC: Rf 0.53 (ヘキサン: 酢酸エチル=1:3);

NMR (CDCl₃): δ 8.00-7.94 (m, 2H), 7.46-7.41 (m, 3H), 7.15 (t, J = 7.8 Hz, 1H),

10 7.08 (m, 1H), 6.84-6.74 (m, 2H), 4.29 (t, J = 7.2 Hz, 2H), 3.88 (s, 2H), 2.99 (t, J = 7.2 Hz, 1H), 2.38 (s, 3H), 1.58 (s, 6H)_o

2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エト キシ) フェニルメチルチオ) -2-メチルプロパン酸・ナトリウム塩

15

TLC: Rf 0.53 (ヘキサン: 酢酸エチル=1:3);

NMR (CD₃OD): δ 7.98-7.93 (m, 2H), 7.49-7.43 (m, 3H), 7.13 (t, J = 7.4 Hz, 1H),

20 6.92-6.85 (m, 2H), 6.78-6.70 (m, 1H), 4.23 (t, J = 6.6 Hz, 2H), 3.78 (s, 2H), 2.96 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H), 1.46 (s, 6H).

参考例 6

3- (2- (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) ベンズアルデヒド

$$\bigcirc \bigvee_{O \subset CH_3}^{N} \bigcup_{CH_3}^{O} \bigvee_{H}$$

5

2-(5-メチル-2-フェニルオキサゾール-4-イル) エタノール (1.02g)、3-ヒドロキシベンズアルデヒド (0.73g) およびトリフェニルホスフィン (1.57g) を塩化メチレン (10ml) に溶解し、1,1'-(アゾジカルボロル)ジピペリジン (1.74g)を0℃で加え、室温で2時間撹拌した。反応混合溶液にヘキサンを加え、固体をろ別した。ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィー (メタノール:クロロホルム=1:100) で精製し、下記物性値を有する標題化合物 (1.30g) を得た。

15 NMR (CDCl₃): δ 9.96 (s, 1H), 7.98 (m, 2H), 7.50-7.35 (m, 6H), 7.17 (m, 1H), 4.31 (t, J = 6.0Hz, 2H), 3.01 (t, J = 6.0Hz, 2H), 2.38 (s, 3H)_o

参考例7

3-(2-(5-x) + (2-1)

20 マンデロニトリル

参考例6で製造した化合物(135mg)およびヨウ化亜鉛(13mg)を塩化メチレン(3ml)に溶解し、0℃でトリメチルシリルニトリル(0.14ml)を加え、0℃で4時間撹拌した。反応混合溶液に冷水および飽和炭酸水素ナトリウム水溶液を加え、有機層を分取した。有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残留物をジオキサン(3ml)に溶解し、2N-塩酸(0.5ml)を加え、室温で一晩撹拌した。反応混合溶液を冷水に加え、酢酸エチルで抽出した。抽出液を水および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、下記物性値を有する標題化合物(140mg)を得た。

TLC: Rf 0.27 (酢酸エチル: ヘキサン=1:2);

NMR (CDCl₃): δ 7.94 (m, 2H), 7.45-7.35 (m, 3H), 7.29 (dd, J = 8.0, 8.0Hz, 1H), 7.10-7.00 (m, 2H), 6.90 (m, 1H), 5.49 (d, J = 6.0Hz, 1H), 4.73 (d, J = 6.0Hz, 1H), 4.16 (t, J = 6.5Hz, 2H), 2.92 (t, J = 6.5Hz, 2H), 2.37 (s, 3H)_o

15

10

5

参考例8

20

参考例7で製造した化合物(93mg)を塩化メチレン(3ml)に溶解し、 室温で塩化チオニル(61ml)およびジメチルホルムアミド(1滴)を加え、 室温で30分間撹拌した。反応混合溶液を冷水に加え、酢酸エチルで抽出した。

抽出液を飽和炭酸水素ナトリウム水溶液および飽和食塩水で順次洗浄し、無水 硫酸マグネシウムで乾燥後、濃縮し、下記物性値を有する標題化合物 (99 mg)を得た。

TLC: Rf 0.74 (酢酸エチル: ヘキサン=1:1);

5 NMR (CDCl₃): δ 7.97 (m, 2H), 7.50-7.35 (m, 3H), 7.33 (dd, J = 8.0, 8.0Hz, 1H), 7.10-7.00 (m, 2H), 6.98 (m, 1H), 5.75 (s, 1H), 4.23 (t, J = 6.5Hz, 2H), 2.93 (t, J = 6.5Hz, 2H), 2.36 (s, 3H)_o

実施例 6

15 参考例8で製造した化合物(99mg)をエタノール(1ml)に溶解し、 チオウレア(26mg)を加え、3時間還流した。反応混合溶液に2N-塩酸 (1.5ml)を加え、一晩還流した。反応混合溶液を冷水に加え、酢酸エチルで 抽出した。抽出液を水および飽和食塩水で願次洗浄し、無水硫酸マグネシウム で乾燥後、濃縮した。残留物をメタノールで再結晶し、下記物性値を有する本 20 発明化合物(60mg)を得た。

TLC: Rf 0.31 (酢酸エチル: ヘキサン=1:1);

NMR (d₆-DMSO): δ 7.90 (m, 2H), 7.60-7.40 (m, 3H), 7.31 (dd, J=8.0, 8.0Hz, 1H), 7.00-6.90 (m, 3H), 5.75 (s, 1H), 4.23 (t, J = 6.5Hz, 2H), 2.93 (t, J = 6.5Hz, 2H), 2.36 (s, 3H)_o

[製剤例]

製剤例1

以下の各成分を常法により混合した後打錠して、一錠中に100mgの活性 成分を含有する錠剤100錠を得た。

5	・2 - (3 - (4 - (4 - メチルフェニル) チアゾールー2	ーイル	メトキシ)
	フェニルメチルチオ)酢酸	•••••	10.0 g
	・線維素グリコール酸カルシウム(崩壊剤)	•••••	0.2 g
	・ステアリン酸マグネシウム(潤滑剤)	•••••	0.1 g
	・微結晶セルロース	•••••	9.7 g

10

製剤例2

以下の各成分を常法により混合した後、溶液を常法により滅菌し、5 m l ずつ、アンブルに充填し、常法により凍結乾燥し、1 アンブル中、20 m g の活性成分を含有するアンプル100本を得た。

)

15	・2 - (3 - (4 - (4 - メチルフェニル)チアゾール-	- 2 – イルメ	トキシ
	フェニルメチルチオ)酢酸	•••••	2 g
	・マンニット	•••••	5 g
	・蒸留水	100	0m l

請求の範囲

1. 一般式(I)

5

(式中、

 A^1 は $C1\sim4$ アルキレン基または $C2\sim4$ アルケニレン基を表わし、

A²は一〇一基または一S一基を表わし、

A³はCH基またはN基を表わし、

10 nは1~5を表わし、

R1は

- (i) 水素原子、
- (ii) C1~8アルキル基、
- (iii) ハロゲン原子、
- 15 (iv) C1~4アルコキシ基、
 - (v) ニトロ基、
 - (vi) トリハロメチル基、
 - (vii)トリハロメトキシ基、
 - (viii) トリハロメチルチオ基、
- 20 (ix) シアノ基、
 - (x) C1~4アルキルチオ基、
 - (xi) NR 5 R 6 基(基中、R 5 および R 6 はそれぞれ独立して、水素原子またはC1~4アルキル基を表わす。)、

- (xii) 炭素環基、または
- (xiii)ヘテロ環基を表わし、

R2は

- (i) 水素原子、
- 5 (ii) C1~4アルキル基、
 - (iii) ハロゲン原子、または
 - (iv) トリハロメチル基を表わし、

Cycl基は

- 10 Cyc2基は
 - (i) 炭素環基、または
 - (ii) ヘテロ環基を表わし、

R3は

- (i) 水素原子、
- 15 (ii) C1~8アルキル基、
 - (iii) ハロゲン原子、
 - (iv) C1~4アルコキシ基、
 - (v) ニトロ基、
 - (vi) トリハロメチル基、
- 20 (vii) トリハロメトキシ基、
 - (viii) トリハロメチルチオ基、
 - (ix) シアノ基、または
 - (x) C1~4アルキルチオ基を表わし、

R 4 は

$$R^8$$
 R^9
(i) $-A^4-C-COOR^7$ 基、または

(ii) 2. 4ーチアゾリジンジオン-5-イル基を表わし、

A 4 は

- (i) 単結合、
- 5 (ii) C1~4アルキレン基、
 - (iii) $-C1\sim4$ アルキレン-O-基、または
 - (iv) -C1~4アルキレン-S-基を表わし、

 R^7 、 R^8 および R^9 はそれぞれ独立して、水素原子、または $C^1 \sim 4$ アルキル基を表わす。

10 ただし、

25

- (1) R⁴は2位または3位に結合するものとし、
- (2) R 4 が 3 位に結合し、A 4 が単結合またはメチレンを表わし、A 3 が C H を表わし、C y c 1 がベンゼンを表わすとき、A 1 はメチレン、エチレン、またはビニレンを表わすものとする。) で示されるカルボン酸誘導体、それらの非 毒性塩、またはそれらの水和物を有効成分として含有するペルオキシソーム増殖薬活性化受容体制御剤。
- 2. 請求の範囲1記載の一般式(I)で示される化合物、それらの非毒性塩、またはそれらの水和物を有効成分として含有する血糖降下剤および/または脂 20 質低下剤である請求の範囲1記載のペルオキシソーム増殖薬活性化受容体制御剤。
 - 3. 請求の範囲1記載の一般式(I)で示される化合物、それらの非毒性塩、またはそれらの水和物を有効成分として含有する糖尿病、肥満、シンドロームX、高コレステロール血症、高リポ蛋白血症等の代謝異常疾患、高脂血症、動脈硬化症、高血圧、循環器系疾患、過食症、虚血性心疾患の予防および/また

は治療剤、HDLコレステロール上昇剤、LDLコレステロールおよび/またはVLDLコレステロールの減少剤、糖尿病またはシンドロームXのリスクファクター軽減剤である請求の範囲1記載のペルオキシソーム増殖薬活性化受容体制御剤。

5

4. 一般式(I)

10 (式中、

 A^1 は $C1\sim 4$ アルキレン基または $C2\sim 4$ アルケニレン基を表わし、

A²は-O-基または-S-基を表わし、

A³はCH基またはN基を表わし、

nは1~5を表わし、

- 15 R 1 は
 - (i) 水素原子、
 - (ii) C1~8アルキル基、
 - (iii) ハロゲン原子、
 - (iv) C1~4アルコキシ基、
- 20 (v) ニトロ基、
 - (vi) トリハロメチル基、
 - (vii)トリハロメトキシ基、
 - (viii) トリハロメチルチオ基、

- (ix) シアノ基、
- (x) C1~4アルキルチオ基、
- (xi) NR 5 R 6 基(基中、R 5 および R 6 はそれぞれ独立して、水素原子またはC $1\sim4$ アルキル基を表わす。)、
- 5 (xii) 炭素環基、または
 - (xiii) ヘテロ環基を表わし、

R2は

- (i) 水素原子、
- (ii) C1~4アルキル基、
- 10 (iii) ハロゲン原子、または
 - (iv) トリハロメチル基を表わし、

Cycl基は

Cyc2基は

- 15 (i) 炭素環基、または
 - (ii) ヘテロ環基を表わし、

R31

- (i) 水素原子、
- (ii) C1~8アルキル基、
- 20 (iii) ハロゲン原子、
 - (iv) C1~4アルコキシ基、
 - (v) ニトロ基、
 - (vi)トリハロメチル基、
 - (vii)トリハロメトキシ基、
- 25 (viii) トリハロメチルチオ基、

- (ix) シアノ基、または
- (x) C1~4アルキルチオ基を表わし、

R 4 は

5 (ii) 2, 4ーチアゾリジンジオン-5ーイル基を表わし、

A 4 は

- (i) 単結合、
- (ii) C1~4アルキレン基、
- (iii) -C1~4アルキレン-O-基、または
- 10 (iv) C1~4アルキレン-S-基を表わし、

 R^7 、 R^8 および R^9 はそれぞれ独立して、水素原子、または $C^1 \sim 4$ アルキル基を表わす。

ただし、

- (1) R⁴は2位または3位に結合するものとし、
- 15 (2) R^4 が 3位に結合し、 A^4 が単結合またはメチレンを表わし、 A^3 がC H を表わし、C y c 1 がベンゼンを表わすとき、 A^1 はメチレン、エチレン、またはビニレンを表わすものとする。)で示されるカルボン酸誘導体、それらの非毒性塩、またはそれらの水和物。
- 20 5. 請求の範囲 4 記載の一般式 (I) で示される化合物のうち、Cycl基が

を表わす請求の範囲の4記載の化合物、それらの非毒性塩、またはそれらの水 和物。

- 6. 化合物が、
- 5-(3-(ビフェニル-4-イルメトキシ)フェニル)ペンタン酸・メチルエステル、
- 5 2) 4-(3-(ビフェニル-4-イルメトキシ)フェニル)ブタン酸・メチル エステル、
 - 3) 4-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ)フェニル)プタン酸・メチルエステル、
 - 4) $6 (3 (2 (5 \lambda + \nu 2 2 2 + \nu + \nu + \nu + \nu \nu 4 4 4 \nu))$
- 10 トキシ)フェニル)ヘキサン酸・メチルエステル、
- 15 7) 5-(2-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) ペンタン酸・メチルエステル、

 - 9) 5-(3-(3-(5-メチル-2-フェニルオキサゾール-4-イル) プ
- 20 ロポキシ)フェニル)ペンタン酸・メチルエステル、
 - 10) 2-(3-(2-(5-)3+)2-(4-)3+)3+ オキサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
- 25 12) 2-(3-(2-(5-)3+)2-(4-)7-(2-(4-)7-2-)3+ オキサゾ -(3-(4-)3+)3+ アンドラン フェニル) 酢酸・メチルエステル、
 - 13) 2-(3-(2-(5-メチル-2-(4-イソプロピルフェニル) オキ

サゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル、

- 14) 2-(3-(2-(5-)3+)2-(4-(2-)3+)2-(2-)3+)2-(3-(2-(5-)3+)2-(4-(2-)3+)2-(2-)3+)2-(3-(2-)3+(2-)3
- 15) 2-(3-(2-(5-メチル-2-(4-t-ブチルフェニル) オキサ
- 5 ゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル、
 - 16) 2-(3-(2-(5-)3+)2-(4-)3+)3+ で (4-)3+3+3+ で (4-)3+3+ で (4-)3+3+ で (4-)3+ で (4-)3+
- 10 18) 2-(3-(5-メチル-2-フェニルオキサゾール-4-イル)メトキシ)フェニル) 酢酸・メチルエステル、
 - 19) 2-(3-(2-(5-メチル-2-フェニルチアゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
- 15 プロポキシ)フェニル)酢酸・メチルエステル、

 - 22) 2-(3-(2-(5-メチル-2-(3-クロロ-4-メチルフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
- 20 23) 2-(3-(2-(5-エチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
 - 24) 2-(3-(2-(5-)3+)2-(4-)7+)2-(4-)7+ カー 4-(4-)7+ カー
 - 25) $2 (3 (2 (5 \lambda + \mu 2 (4 \mu \mu \mu))))$
- 25 ルー4ーイル)エトキシ)フェニル)酢酸・メチルエステル、
 - 26) 2-(3-(2-(5-)3+)2-(2-)3+)3+ かんしょう 2-(3-(2-)3+)3+ かんしょう 3-(2-)3+ かんしょう 3-(2-)3+

27) 2-(3-(2-(5-)3+)2-(3-)3+)3+ 2-(3-)3+ 3-(3-)3

- 5 29) 2-(3-(2-(5-メチル-2-(4-フルオロフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
 - 30) 2-(3-(2-(5-x)) 2-(4-x) 2
- 10 オキサゾールー4ーイル)エトキシ)フェニル)酢酸・メチルエステル、

 - 33) 2-(3-(2-(5-メチル-2-(4-ニトロフェニル)) オキサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
- 15 34) 5-(3-(ビフェニル-4-4ルメトキシ) フェニル) ペンタン酸
 - 35) 4 (3 (ビフェニル 4 イルメトキシ) フェニル) ブタン酸、
 - 36) 4-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) ブタン酸、
- 20 エトキシ)フェニル)ヘキサン酸、
 - 38) 5-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) ペンタン酸、
 - 39) 6-(2-(5-)メチル-2-) フェニルオキサゾールー4-イル) エトキシ) フェニル) ヘキサン酸、
- 25 40) 5 (2 (2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ)フェニル)ペンタン酸、

エトキシ)フェニル)酢酸・メチルエステル、

- 42) 5-(3-(3-(5-メチル-2-フェニルオキサゾール-4-イル) プロポキシ) フェニル) ペンタン酸、
- 5 ルー4ーイル)エトキシ)フェニル)酢酸、
 - 44) 2-(3-(2-(5-x)) + 2-(4-x) + 2-(2-x) + 2
 - 45) 2-(3-(2-(5-メチル-2-(4-プロピルフェニル)) オキサゾ -ル-4-イル) エトキシ) フェニル) 酢酸、
- 10 46) 2-(3-(2-(5-メチル-2-(4-イソプロピルフェニル) オキ サゾール-4-イル) エトキシ) フェニル) 酢酸、
 - 47) 2-(3-(2-(5-)3+)2-(4-(2-)3+)2-(4-(2-)3+)2-(3-(3-)3+(3
- 15 ゾールー4ーイル)エトキシ)フェニル)酢酸、
 - 49) 2-(3-(2-(5-メチル-2-(4-メトキシフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、
- 20 51) 2-(3-(5-メチル-2-フェニルオキサゾール-4-イル)メトキシ)フェニル) 酢酸、
 - 52) 2-(3-(2-(5-メチル-2-フェニルチアゾール-4-イル) エトキシ) フェニル) 酢酸、
- 25 プロポキシ)フェニル)酢酸、
 - 54) 2-(3-(2-(2-フェニルオキサゾール-4-イル) エトキシ) フェニル) 酢酸、

55) 2-(3-(2-(5-メチル-2-(3-クロロ-4-メチルフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、

- 56) 2-(3-(2-(5-x+n-2-7x-x+++y-n-4-4-1)) エトキシ) フェニル) 酢酸、
- 5 57) 2-(3-(2-(5-)3+)2-(4-)7+)7+ 1-(4-
 - 58) 2-(3-(2-(5-)3+)2-(4-)2-(4-)2-(10-)3+)3+ ルー4ーイル) エトキシ) フェニル) 酢酸、
 - 59) 2-(3-(2-(5-メチル-2-(2-メチルフェニル) オキサゾー
- 10 ルー4ーイル)エトキシ)フェニル)酢酸、
 - 60) 2-(3-(2-(5-)3+)2-(3-)3+)3+ かつ (3-)3+ かい (3
 - 61) 2-(3-(2-(5-メチル-2-(4-トリフルオロメチルフェニル)オキサゾール-4-(4-1) エトキシ)フェニル)酢酸、
- 15 62) 2-(3-(2-(5-メチル-2-(4-フルオロフェニル)) オキサゾ $-\nu-4-4\nu$) エトキシ) フェニル) 酢酸、
 - 63) 2-(3-(2-(5-メチル-2-(4-シアノフェニル)) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、
 - 64) 2-(3-(2-(5-x)+v-2-(3-x)+v-4-x+v)+v-2-v)
- 20 オキサゾールー4ーイル)エトキシ)フェニル)酢酸、
 - 65) 2-(3-(2-(5-メチル-2-(4-ペンチルフェニル)) オキサゾ -ル-4-イル) エトキシ) フェニル) 酢酸、
 - 66) 2-(3-(2-(5-)3+)2-(4-)3+)3+ かんしょう (3-(2-(5-)3+)2-(4-)3+)3+ かんしょう (4-)3+(3-)3+ かんしょう (4-)3+(3-)3
- 25 67) 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エチルチオ)フェニル) 酢酸・メチルエステル、

エチルチオ)フェニル) 酢酸、またはそれらの非毒性塩、またはそれらの水和物である請求の範囲 4 記載の化合物。

- 7. 化合物が、
- 5 1) 2-(3-(4-(4-メチルフェニル) チアゾール-2-イルメトキシ)フェニルメチルチオ) 酢酸・メチルエステル、
 - 2) 2-(3-(3-(ピフェニル-4-イルメトキシ) フェニル) プロピルチオ) 酢酸・メチルエステル、
- 3) 2-(3-(3-(4-(4-メチルフェニル) チアゾール-2-イルメト10 キシ)フェニル)プロピルチオ)酢酸・メチルエステル、
 - 4) 2-(3-(ピフェニルー4-イルメトキシ)フェニルメチルチオ) 酢酸・ メチルエステル、
- 15 6) 2-(3-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) フェニル) プロピルチオ) 酢酸・メチルエステル、
 - 7) 2-(3-(2-(ピフェニル-4-4ル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 8) 2-(4-クロロ-3-(2-(5-メチル-2-フェニルオキサゾール-
- 20 4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 9) 2-(4-0) -(4-(4-x) -(4-x) -
 - 10) 2-(3-(ビフェニル-4-イルメトキシ)-4-クロロフェニルメチルチオ) 酢酸・メチルエステル、
- 25 11) 2-(3-((2E)-3-(ピフェニル-4-4ル)) プロペニルオキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 12) 2-(3-(3-(ビフェニル-4-イル) プロポキシ) フェニルメチル

チオ)酢酸・メチルエステル、

15

13) 2-(3-(ビフェニル-4-イルメトキシ) ピリジン-5-イルメチルチオ) 酢酸・メチルエステル、

- 14) 2-(3-(4'-プロピルビフェニル-4-イルメトキシ)フェニルメ5 チルチオ) 酢酸・メチルエステル、
 - 15) 2-(3-(4-(ピリジン-4-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 16) 2-(3-(4-(ピリジン-3-4ル)) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
- 10 17) 2-(3-(4-(1, 3-ジオキサインダン-5-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 18) 2-(3-(4-(ピリジン-2-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 19) 2-(3-(4-(1, 3-ジオキサインダン-4-イル) フェニルメトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
- 20) 2-(3-(2-フェニルチアゾール-4-イルメトキシ) フェニルメチ

 - ルー4ーイル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
- 20 22) 2-(3-(2-(2-フェニルチアゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 23) 2-(3-(2-(2-フェニルオキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 24) 2-(3-(2-(5-x)+v-2-(1, 3-y)+++1)x-5-
- 25 イル) オキサゾールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、

フェニルメチルチオ) 酢酸・メチルエステル、

- 26) 2-(3-(3-(5-x)) では、 2-(3-(5-x)) では、2-(3-(5-x)) では
- 27) 2-(3-(2-(5-メチル-2-(2-メチルフェニル) オキサゾー
- 5 ルー4ーイル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
 - 28) 2-(3-(2-(5-)3+)2-(3-)3+)3+ かい 2-(3-)3+ ない 3-)3+ ない 3
 - 29) 2-(3-(2-(5-x)) カキサゾ $-\nu-4-4\nu$) エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
- - 32) 2-(3-(2-(5-x))-2-7x-2-1)
- 15 -1-メチルエトキシ)フェニルメチルチオ)酢酸・メチルエステル、
 - 33) 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) プロポキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 34) 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ)フェニルメチルチオ)プロパン酸・エチルエステル、
- - 36) 2-(3-(2-(5-x)) カキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 37) 2-(3-(2-(5-)4+)-2-(4-)7)
- 25 サゾールー4ーイル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
 - 38) 2-(3-(2-(5-メチル-2-フェニルチアゾール-4-イル) エ トキシ) フェニルメチルチオ) 酢酸・メチルエステル、

39) 2-(3-(2-(5-)3+)2-(4-)7+)2-(3-(3-)3+)3+ 3-(3-)3+(3-

- 40) 2-(3-(2-(5-x+2)-2-x+2) + y-2-x+2 + y-2
- 5 41) 2-(3-(2-(5-x)) 2-(4-x) 2-(4-x) 3-(2-(5-x)) 3-(4-x) 3-(4-

 - 43) 2-(3-(2-(5-メチル-2-(4-(2-メチルプロピル) フェ
- 10 ニル) オキサゾールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 44) 2-(3-(2-(5-)3+) 2-(4-)1 (4
 - 45) 2-(3-(2-(5-メチル-2-(4-シクロヘキシルフェニル) オ
- 15 キサゾールー4 ーイル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
- 20 47) 2-(3-(5-x) 2-(4-x) 2-(4-x) 2-(4-x) 2-(3-x) 2-(3-x) 2-(3-x) 2-(3-x) 2-(3-x) 2-(3-x) 2-(3-x) 2-(3-x) 2-(4-x) 2-
 - 48) 2-(3-(2-(4-メチル-2-フェニルオキサゾール-5-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 - 49) 2-(3-(2-(5-x))-2-(3,4-y)+2-y)
- 25 キサゾールー4ーイル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、

オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸·メチルエステル、

- 5 52) 2-(3-(2-(5-x)) 2-(5-x) 2-(5-x)
 - 53) 2-(3-(2-(5-x)) カー (4-x) カー (4-x) カー (4-x) かい (4-x)
- 10 54) 2-(3-(2-(5-)3+)2-2-)2+(3-)3+(3-

 - 56) 2-(3-(2-(5-x)+v-2-(4-(1, 2, 3-x)+v)))
- 15 ルー4ーイル)フェニル)オキサゾールー4ーイル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
 - 57) 2-(3-(2-(5-)3+)2-(4-(4-)3+)2-1, 2, 3-チアジアゾール-5-イル)フェニル)オキサゾール-4-イル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
- 20 58) 2-(3-(2-(5-x)) 2-(7-x) 2-(7-x)
 - 59) 2-(3-(2-(5-x)) 2-(2-(2-x)) 2-(2-x) 2-(2-
 - 60) 2-(3-(2-(5-x)+v-2-7)x-v+v-v-4-4v)
- 25 エトキシ)フェニルメトキシ)酢酸・t-ブチルエステル、
 - 61) 2-(3-(2-(5-x)) カー 2-(2-x) が 2-(2-x) が 2-(2-x) かっと 2-(2-x) が 2-(2-x) が

- 63) 2-(3-(3-(ピフェニル-4-イルメトキシ) フェニル) プロピル チオ) 酢酸、
- 5 64) 2-(3-(3-(4-(4-メチルフェニル) チアゾール-2-イルメトキシ) フェニル) プロピルチオ) 酢酸、
 - (3-(3-(ビフェニル-4-イルメトキシ) フェニルメチルチオ) 酢酸、
- 10 67) 2-(3-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ)フェニル)プロピルチオ)酢酸、
 - 68) 2-(3-(2-(ピフェニル-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 69) 2-(4-クロロ-3-(2-(5-メチル-2-フェニルオキサゾール15 -4-イル) エトキシ) フェニルメチルチオ) 酢酸、
 - 70) 2-(4-0) (4-(4-x) (4-x) (
 - 71) 2-(3-(ビフェニル-4-イルメトキシ)-4-クロロフェニルメチルチオ) 酢酸、
- 20 72) 2-(3-((2E)-3-(ビフェニル-4-4ル) プロペニルオキシ) フェニルメチルチオ) 酢酸、
 - 73) 2-(3-(3-(ビフェニル-4-イル) プロポキシ) フェニルメチルチオ) 酢酸、
 - 74) 2 (3 (ピフェニルー4 イルメトキシ) ピリジンー5 イルメチル
- 25 チオ) 酢酸、
 - 75) 2-(3-(4'-) プロピルビフェニル-4- イルメトキシ) フェニルメチルチオ) 酢酸、

76) 2-(3-(4-(ピリジン-4-イル) フェニルメトキシ) フェニルメ チルチオ) 酢酸、

- 77) 2-(3-(4-(ピリジン-3-4ル) フェニルメトキシ) フェニルメチルチオ) 酢酸、
- - 79) 2-(3-(4-(ピリジン-2-17)) フェニルメトキシ) フェニルメチルチオ) 酢酸、
- 80) 2-(3-(4-(1, 3-ジオキサインダン-4-イル) フェニルメト 10 キシ) フェニルメチルチオ) 酢酸、
 - 81) 2-(3-(2-フェニルチアゾール-4-イルメトキシ) フェニルメチルチオ) 酢酸、
 - 82) 2-(3-(2-(5-x)) 2-(4-x) + 2-(2-x) + 2
- 15 83) $2-(3-(2-(2-7x-2) + 7y^2 y^2 y^2 y^2 y^2 + y^2 +$

 - 85) 2-(3-(2-(5-x)+v-2-(1, 3-y)+v+1)+v-5-
- 20 イル) オキサゾールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸、
 - 86) 2-(3-(5-)3+) 2-) 2-) 2-) 2-) 3-(3-) 2-) 3-(3-) 2-) 3-(3-) 3-)
 - 87) 2-(3-(3-(5-x)) 2 -(3-(5-x)) 2 -(3-(5-x)) 1 で (3-(5-x)) 2 -(3-(5-x)) 1 で (3-(5-x)) 2 -(3-(5-x)) 1 で (3-(5-x)) 1 で (3-(5-x)) 2 -(3-(5-x)) 3 -(
- 25 88) 2-(3-(2-(5-メチル-2-(2-メチルフェニル)) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
 - 89) 2-(3-(2-(5-メチル-2-(3-メチルフェニル) オキサゾー

ルー4-イル) エトキシ) フェニルメチルチオ) 酢酸、

- 90) 2-(3-(2-(5-メチル-2-(4-メトキシフェニル)) オキサゾ -ル-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 91) 2-(3-(2-(5-x))
- 5 エトキシ) 5 クロロフェニルメチルチオ) 酢酸、
 - 92) 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ) -2-メチルフェニルメチルチオ) 酢酸、
 - 93) 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル)-1-メチルエトキシ) フェニルメチルチオ) 酢酸、
- - 95) 2-(3-(2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ)フェニルメチルチオ)プロパン酸・ナトリウム塩、
 - 96) 2-(3-(2-(5-メチル-2-(4-エチルフェニル) オキサゾー
- 15 ルー4ーイル)エトキシ)フェニルメチルチオ)酢酸、
 - 97) 2-(3-(2-(5-)3+)2-(4-)7-(4-)7-(2-)3+)3+ が (4-)7-(2-)3+(4-)7-(4-
 - 98) 2-(3-(2-(5-メチル-2-(4-イソプロピルフェニル) オキ サゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 20 99) 2-(3-(2-(5-メチル-2-フェニルチアゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
 - 100) 2-(3-(2-(5-x)) 2-(4-y) + y 2-(4
 - 101) 2-(3-(2-(5-x)+v-2-y+y+y)-v-4-4v)
- 25 エトキシ)フェニルメチルチオ)酢酸、
 - 102) 2-(3-(2-(5-)3+)2-(4-3)3+) する (4-3)3+(3-3

- 104) 2-(3-(2-(5-メチル-2-(4-(2-メチルプロピル)) フェニル) オキサゾールー4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 5 105) 2-(3-(2-(5-)3+)2-(4-)12+)3+ がールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸、
 - 106) 2-(3-(2-(5-メチル-2-(4-シクロヘキシルフェニル)) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
 - 107) 2-(3-(5-x)+v-2-(1, 3-v)+v+1)
- 10 オキサゾールー4ーイルメトキシ)フェニルメチルチオ)酢酸、
 - 108) 2-(3-(5-x) + (4-1) +
 - 109) 2-(3-(2-(4-メチル-2-フェニルオキサゾール-5-イル) エトキシ) フェニルメチルチオ) 酢酸、
- - 111) 2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(2-(5-)3+)2-(4-)3+)2-(3-(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3+(4-)3-(4-)
 - 112) 2-(3-(2-(5-メチル-2-(ピリジン-2-イル) オキサゾー
- 20 ルー4ーイル)エトキシ)フェニルメチルチオ)酢酸、

 - 114) 2-(3-(2-(5-メチル-2-(4-ジメチルアミノフェニル)) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 25 115) 2-(3-(2-(5-メチル-2-シクロペンチルオキサゾール-4-イル)エトキシ)フェニルメチルチオ) 酢酸、
 - 116) $2 (3 (2 (5 \cancel{5} + \cancel{5}$

イル) エトキシ) フェニルメチルチオ) 酢酸、

- 117) 2-(3-(2-(5-メチル-2-(4-(1, 2, 3-チアジアゾール-4-イル) フェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 5 118) 2-(3-(2-(5-メチル-2-(4-(4-メチル-1, 2, 3-チアジアゾール-5-イル) フェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- - 122) 2-(3-(2-(5-x)+v-2-(2)))
- 15 ルー4ーイル) エトキシ) フェニルメチルチオ) 酢酸、
- 20 125) 2-(3-(2-(5-メチル-2-(1,3-ジオキサインダン-5-イル)オキサゾール-4-イル)エトキシ)フェニルメトキシ)酢酸・tーブ チルエステル、
 - 126) 2-(3-(2-(5-x)) 2-(1, 3-y) 3-y) 12-(3-(2-(5-x)) 12-(3-(2-(5-x))) 12-(3-(5-x)) 12-(5-x) 12-
- 25 それらの非毒性塩、またはそれらの水和物である請求の範囲 4 記載の化合物。
 - 8. 化合物が、

- 1) 6-(3-(4-(4-)3+)1)2+1)3-(3-(4-)4-)3+1)3-(3-(4-)4-)3+1)3-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3+13-(3-)3-(3-)3+13-(3-)3-(
- 5 3) 6-(2-(4-(4-)4-)3-)3-(
 - 4) 2-(5-(ピフェニル-4-イルメトキシ)-2-ニトロフェニルメチルチオ) 酢酸・メチルエステル、
- 5) 2-(3-(ビフェニルー4-イルメトキシ)-4-ニトロフェニルメチル10 チオ) 酢酸・メチルエステル、

 - 7) 2-(3-(2-(5-x)) フェニルメチルチオ) 酢酸・メチルエステル、

15

- 8) 2-(3-(2-(5-メチル-2-(4-クロロフェニル)) オキサゾール <math>-4-(4-4) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
- 20 10) 2-(3-(2-(5-メチル-2-(4-ニトロフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、

 - 12) 2-(3-(2-(5-トリフルオロメチル-2-フェニルオキサゾール
- 25 -4-4ル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、

チルチオ) 酢酸・メチルエステル、

10

テル、

- 14) 2-(3-(2-(5-メチル-2-(2,3,5,6-テトラフルオロ-4-メチルフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
- 5 15) 2-(3-(2-(5-メチル-2-(3-クロロー4-メチルフェニル) オキサゾールー4-イル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
 - 16) 2-(3-(2-(5-メチル-2-(4-トリフルオロメトキシフェニル)オキサゾール-4-イル)エトキシ)フェニルメチルチオ)酢酸・メチルエステル、
- 18) 2-(3-(2-(5-メチル-2-(4-メチルチオフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエステル、
 19) 2-(3-(2-(5-メチル-2-(3-ニトロ-4-メチルフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸・メチルエス
- 20) 2-(3-(2-(5-)3+)-2-(1, 3-)3+)+(1)3+(3-)3+
 - 21) 2-(3-(2-(5-)3+)2-(3,4,5-)13+)2-(3-(3-(5-)3+)2-(3-(3-)3+(3-
 - 22) 2-(3-(2-(5-)3+)2-(4-)17)2+17)2+17 かい オキサゾールー4ーイル エトキシ フェニル 酢酸・メチルエステル、
- 25 23) 2-(3-(2-(5-メチル-2-(2, 2-ジフルオロ-1, 3-ジ オキサインダン-5-イル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、

- 25) 2-(3-(2-(5-)3+)2-(4-)2-(4-)2-(2-)3+)3+ ルー4-(3-)3+(
 - 26) 2-(3-(2-(5-x)) 2-(4-y) 2
 - 27) 2-(3-(2-(5-x)) 2-(4-x) 2
- 10 28) 2-(3-(2-(5-メチル-2-(チオフェン-2-イル)) オキサゾ -ル-4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
 - 29) 2-(3-(2-(5-メチル-2-(フラン-2-イル) オキサゾール -4-イル) エトキシ) フェニル) 酢酸・メチルエステル、
 - 30) $2 (3 (2 (5 \lambda + \mu 2 (4 2 4 \mu))))$
- 15 ルー4ーイル) エトキシ) フェニル) 酢酸・メチルエステル、
- 32) 2-(3-(2-(5-x)) + 2-(2, 3, 5, 6-x) + 3-(2-x) + 3-

 - 34) 2-(3-(2-(5-メチル-2-シクロペンチルオキサゾール-4-
- 25 イル) エトキシ) フェニル) 酢酸・メチルエステル、

メチルエステル、

35) 2-(3-(2-(5-)3+)2-(2-)3) 1 (2) 35) 2-(3-(2-)5-)3+ 2 (2) 3 (3) 3 (4) 3 (4) 3 (4) 3 (4) 4 (4)

36) 2-(3-(2-(5-x)) 2 -(2-(2-x)) 36) 2-(3-(2-(5-x))) 1 -(2-(2-x)) 2 -(2-(2-x)) 36) 2-(3-(2-(5-x))) 1 -(2-(2-x)) 1 -(2-(2-x))

- 37) 2-(3-(2-(5-x)+v-2-(4-x)+v)) では、 2-(3-(2-(5-x)+v-2-(4
- 5 38) 2-(3-(2-(5-メチル-2-(4-メチルチオフェニル)) オキサ ゾール-4-イル エトキシ フェニル) 酢酸・メチルエステル、
 - 39) 2-(3-(2-(5-メチル-2-シクロプロピルオキサゾール-4-イル)エトキシ)フェニル)酢酸・メチルエステル、
 - 40) 2-(3-(2-(5-x)+v-2-(4)y)-2-4v)
- 10 ルー4ーイル)エトキシ)フェニル)酢酸・メチルエステル、
- 15 43) 6-(2-(4-(4-メチルフェニル) チアゾール-2-イルメトキシ) フェニル) ヘキサン酸、
 - 44) 2-(5-(ビフェニルー4-イルメトキシ)-2-ニトロフェニルメチルチオ) 酢酸、
 - 45) 2-(3-(ビフェニル-4-イルメトキシ)-4-ニトロフェニルメチ
- 20 ルチオ) 酢酸、
 - 46) 2-(3-(2-(5-メチル-2-(4-トリフルオロメチルフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
- 25 48) 2-(3-(2-(5-メチル-2-(4-クロロフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、

エトキシ)フェニル)-2-メチルプロパン酸、

50) 2-(3-(2-(5-x)) カー 2-(4-x) かい x x かい x かい

- 51) 2-(1-(3-(2-(5-メチル-2-フェニルオキサゾール-4-
- 5 イル) エトキシ) フェニル) エチルチオ) 酢酸、
 - 52) 2-(3-(2-(5-1)) フェニルオロメチルー2ーフェニルオキサゾールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸、
- 53) 2-(3-(2-(5-メチル-2-(2, 2-ジフルオロ-1, 3-ジオキサインダン-5-イル)オキサゾール-4-イル)エトキシ)フェニルメ・10 チルチオ)酢酸、
 - 54) 2-(3-(2-(5-メチル-2-(2,3,5,6-テトラフルオロ-4-メチルフェニル) オキサゾール-4-イル) エトキシ) フェニルメチルチオ) 酢酸、
 - 55) $2 (3 (2 (5 \cancel{5} + \cancel{\nu} 2 (3 \cancel{5} \cancel{\nu} 4 \cancel{\nu} + \cancel{\nu}) 2 (3 \cancel{\nu} 4 \cancel{\nu} + \cancel{\nu}))$
- 15 オキサゾールー4ーイル)エトキシ)フェニルメチルチオ)酢酸、
 - 56) 2-(3-(2-(5-x)+2-(4-y)-2-(4-y)-2-y)-2-y)
 - ル)オキサゾールー4ーイル)エトキシ)フェニルメチルチオ)酢酸、
 - 57) 2-(3-(2-(5-x)+w-2-(3, 4, 5-y)+y+2))
 - ル) オキサゾールー4ーイル) エトキシ) フェニルメチルチオ) 酢酸、
- - 59) 2-(3-(2-(5-)3+)2-(3-)3+)2-(3-)3+(3
 - 60) 2-(3-(2-(5-x)+2)-2-(1, 3-y)+2+1)
- 25 イル) オキサゾールー4ーイル) エトキシ) フェニル) 酢酸、
 - 61) 2-(3-(2-(5-x)+v-2-(3, 4, 5-v)+v+v)-z-
 - ル) オキサゾールー4ーイル) エトキシ) フェニル) 酢酸、

62) 2-(3-(2-(5-メチル-2-(4-トリフルオロメトキシフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、

- 5 酢酸、

 - 65) 2-(3-(2-(5-x) + 2-(4-x) + 2-
- 10 66) 2-(3-(2-(5-)3+)) 2 -(4-)2
 - 67) 2-(3-(2-(5-x)) カー (4-y) カー (4-y) カー (4-y) カー (4-y) カー (4-y) カー (4-y) かい (4-y)
 - 68) 2-(3-(2-(5-x)+v-2-(7+x)-2-4v))
- 15 ールー4ーイル) エトキシ) フェニル) 酢酸、
 - 69) 2-(3-(2-(5-)3+)2-(7-)3+)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-)3-(7-)3+ (7-2) (7-2) (7-)3-(7-)3+ (7-2)
 - 70) 2-(3-(2-(5-メチル-2-(ピリジン-2-イル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、
- 20 71) 2-(3-(2-(5-メチル-2-(4-メチル-1, 2, 3-チアジ アゾール-5-イル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、

 - 73) 2-(3-(2-(5-メチル-2-シクロヘキシルオキサゾール-4-
- 25 イル)エトキシ)フェニル)酢酸、
 - 74) 2-(3-(2-(5-)3+)) 2 -(3-(5-)3+) 2 -(3-(5-)3+) 2 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 7 -(3-(5-)3+) 8 -(3-(5-)3+) 7 -(3-(5-)3+) 8 -(3-(5-)3+) 8 -(3-(5-)3+) 8 -(3-(5-)3+) 7 -(3-(5-)3+) 8 -(3-(5-)3+) 8 -(3-(5-)3+) 8 -(3-(5-)3+) 8 -(3-(5-)3+) 8 -(3-(5-)3+) 9 -

75) 2-(3-(2-(5-x)) 2-(ピリジン-3-イル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、

- 76) 2-(3-(2-(5-)3+)2-(2-(2-)3)2-4-(2-)3+4-(2-(2-)3+4-)3-(2-(2-)3+2-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(2-)3-(
- 5 77) 2-(3-(2-(5-メチル-2-(4-メチルピペラジン-1-イル) チアゾール-4-イル) エトキシ) フェニル) 酢酸、

 - 79) 2-(3-(2-(5-メチル-2-シクロプロピルオキサゾール-4-
- 10 イル) エトキシ) フェニル) 酢酸、
 - 80) 2-(3-(2-(5-メチル-2-(キノリン-2-イル)) オキサゾール-4-イル) エトキシ) フェニル) 酢酸、
 - 81) 5 (3 (2 (5 x + y + y 2 y + z + y + y y 4 4 4 + y)x + 2 y + 3 y + 4
- - 83) 2-(3-(2-(5-メチル-2-(2-トリフルオロメトキシフェニ
 - ル)オキサゾール-4-イル)エトキシ)フェニル)酢酸・メチルエステル、
 - 84) 2-(3-(2-(4-メチル-2-フェニルオキサゾール-5-イル)
- 20 エトキシ)フェニル)酢酸・メチルエステル、
 - 85) 2-(3-(2-(5-メチル-2-(3-トリフルオロメトキシフェニル) オキサゾール-4-イル) エトキシ) フェニル) 酢酸
- 25 87) 2 (3 (2 (4 メチル 2 フェニルオキサゾール 5 イル) エトキシ) フェニル) 酢酸、またはそれらの非毒性塩、またはそれらの水和物である請求の範囲 4 記載の化合物。

配列表

Sequence Listing

(110) ONO Pharmaceutical Co., Ltd.

<120> Carboxylic acid derivatives and medicines containing the same as the active ingredient

<130> ONF-2923PCT

<150> JP 10-058444

<151> 1998-03-10

<150> JP 10-087560

<151> 1998-03-31

<160> 3

<210> 1

<211> 85

<212> DNA

<213> Artificial sequence

<220>

<223> Enhancer sequence including 4 times repeated Gal4 protein response sequences

<400> 1

tcgacggagt actgtcctcc gcgacggagt actgtcctcc gcgacggagt actgtcctcc 60 gcgacggagt actgtcctcc gagct 85

<210> 2

<211> 9

<212> PRT

<213> Unknown

<220>

<223> Nuclear localization signal derived from SV-40 T-antigen

```
<400> 2
```

Ala Pro Lys Lys Lys Arg Lys Val Gly
1 5

⟨210⟩ 3

<211> 9

<212> PRT

<213 Influenza virus

<220>

<223> hemagglutinin epitope

<400> 3

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/01134

Int.	C16 C07C62/34, C07C69/734, C07C07D277/24, C07D317/54,	07D413/04, C07D417/04,	
	o International Patent Classification (IPC) or to both na S SEARCHED	tional classification and IPC	
		L	
Int.	ocumentation searched (classification system followed C1 ⁶ C07C62/34, C07C69/734, C07C07D277/24, C07D317/54, C0	7C323/52, C07D213/30, (C07D263/32, C07D417/12,
Documentat	ion searched other than minimum documentation to the	e extent that such documents are included	d in the fields searched
	ata base consulted during the international search (namUS (STN), REGISTRY (STN)	ne of data base and, where practicable, so	earch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	, , , , , , , , , , , , , , , , , , , ,	Relevant to claim No.
X A	JP, 3-101669, A (Roussel Ucl 26 April, 1991 (26. 04. 91) & EP, 402246, A1	.af),	4-8 1-3
A	JP, 4-217966, A (Bristlol-My 7 August, 1992 (07. 08. 92) & EP, 434034, A1 & US, 5265		1-8
A	JP, 9-323982, A (Japan Tobac 16 December, 1997 (16. 12. 9 & WO, 98/07699, A1		1-8
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
"A" docum conside "E" earlier "L" docum cited to special docum means "P" docum the prior "P" docum the pri	categories of cited documents: ent defining the general state of the art which is not tred to be of particular relevance document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other treason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than ority date claimed actual completion of the international search ane, 1999 (01.06.99)	"T" later document published after the interdate and not in conflict with the applicathe principle or theory underlying the in document of particular relevance; the cloosidered novel or cannot be considered when the document is taken alone document of particular relevance; the cloosidered to involve an inventive step combined with one or more other such being obvious to a person skilled in the "&" document member of the same patent far Date of mailing of the international sea 15 June, 1999 (15.	tion but cited to understand vention as imed invention cannot be at to involve an inventive step aimed invention cannot be when the document is documents, such combination art imily
Name and	nailing address of the ISA/	Authorized officer	
	anese Patent Office	Authorized officet	
Facsimile N	No.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/01134

<u>A.</u>	(Continuati	on) CLASSI	FICATION OF	SUBJECT MAT	<u>rer</u>
A61K31/19.	A61K31/215.	A61K31/42.	A61K31/425,	A61K31/44.	A61K31/36

B. (Continuation) FIELDS SEARCHED

A61K31/19, A61K31/215, A61K31/42, A61K31/425, A61K31/44, A61K31/36

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl. 6 C07C62/34, C07C69/734, C07C323/52, C07D213/30, C07D263/32, C07D277/24, C07D317/54, C07D413/04, C07D417/04, C07D417/12, A61K31/19, A61K31/215, A61K31/42, A61K31/425, A61K31/44, A61K31/36

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. CO7C62/34, CO7C69/734, CO7C323/52, CO7D213/30, CO7D263/32, CO7D277/24, CO7D317/54, CO7D413/04, CO7D417/04, CO7D417/12, A61K31/19, A61K31/215, A61K31/42, A61K31/425, A61K31/44, A61K31/36

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN)

X JP, 3-101669, A (ルセルーユクラフ) A 26. 4月. 1991 (26. 04. 91) &EP, 402246, A1 A JP, 4-217966, A (ブリストルーマイヤーズ スクイブ カンパニー)	4~8 1~3
A JP, 4-217966, A (ブリストルーマイヤーズ スクイブ カンパニー)	1
7.8月.1992(07.08.92) &EP, 434034, A1 &US, 5262540, A	1~8
A JP, 9-323982, A (日本たばこ産業株式会社) 16.12月.1997(16.12.97) &WO, 98/07699, A1	1~8

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 01.06.99 国際調査報告の発送日 15.06.99 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 本堂 裕司 中 本堂 裕司 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3443