Package 'mvtnorm'

February 15, 2013

Title Multivariate Normal and t Distributions

Version 0.9-9994			
Date 2012-12-07			
Author Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl, Bjoern Bornkamp, Torsten Hothorn			
Maintainer Torsten Hothorn <torsten.hothorn@r-project.org></torsten.hothorn@r-project.org>			
Description Computes multivariate normal and t probabilities, quantiles, random deviates and densities.			
Imports stats			
Depends $R(>=1.9.0)$			
License GPL-2			
Repository CRAN			
Date/Publication 2012-12-10 18:46:29			
NeedsCompilation yes			
R topics documented:			
algorithms 2 Mvnorm 2 Mvt 4 pmvnorm 5 qmvnorm 1 qmvt 1			
Index 15			

2 algorithms

algorithms	Choice of Algorithm and Hyper Parameters
------------	--

Description

Choose between three algorithms for evaluating normal distributions and define hyper parameters.

Usage

```
GenzBretz(maxpts = 25000, abseps = 0.001, releps = 0)
Miwa(steps = 128)
TVPACK(abseps = 1e-6)
```

Arguments

maxpts	maximum number of function values as integer. The internal FORTRAN code always uses a minimum number depending on the dimension. (for example 752 for three-dimensional problems).
abseps	absolute error tolerance as double.
releps	relative error tolerance as double.
steps	number of grid points to be evaluated.

Details

There are three algorithms available for evaluating normal probabilities: The default is the randomized Quasi-Monte-Carlo procedure by Genz (1992, 1993) and Genz and Bretz (2002) applicable to arbitrary covariance structures and dimensions up to 1000.

For smaller dimensions (up to 20) and non-singular covariance matrices, the algorithm by Miwa et al. (2003) can be used as well.

For two- and three-dimensional problems and semi-infinite integration region, TVPACK implements an interface to the methods described by Genz (2004).

Value

An object of class GenzBretz or Miwa defining hyper parameters.

References

Genz, A. (1992). Numerical computation of multivariate normal probabilities. *Journal of Computational and Graphical Statistics*, **1**, 141–150.

Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. *Computing Science and Statistics*, **25**, 400–405.

Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate t-probabilities. *Journal of Computational and Graphical Statistics*, **11**, 950–971.

Mvnorm 3

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, *Statistics and Computing*, **14**, 251–260.

Genz, A. and Bretz, F. (2009), *Computation of Multivariate Normal and t Probabilities*. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.

Miwa, A., Hayter J. and Kuriki, S. (2003). The evaluation of general non-centred orthant probabilities. *Journal of the Royal Statistical Society*, Ser. B, 65, 223–234.

Mvnorm

Multivariate Normal Density and Random Deviates

Description

These functions provide the density function and a random number generator for the multivariate normal distribution with mean equal to mean and covariance matrix sigma.

Usage

Arguments

x	Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
n	Number of observations.
mean	Mean vector, default is rep(0, length = ncol(x)).
sigma	Covariance matrix, default is diag(ncol(x)).
log	Logical; if TRUE, densities d are given as log(d).
method	Matrix decomposition used to determine the matrix root of sigma, possible methods are eigenvalue decomposition ("eigen", default), singular value decomposition ("svd"), and Cholesky decomposition ("chol").
pre0.9_9994	Logical; if FALSE, the output produced in mytnorm versions up to 0.9-9993 is reproduced. In 0.9-9994, the output is organized such that rmynorm(10,) has the same first ten rows as rmynorm(100,) when called with the same seed.

Author(s)

Friedrich Leisch and Fabian Scheipl

See Also

pmvnorm, rnorm, qmvnorm

4 Mvt

Examples

```
dmvnorm(x=c(0,0))
dmvnorm(x=c(0,0), mean=c(1,1))

sigma <- matrix(c(4,2,2,3), ncol=2)
x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma)
colMeans(x)
var(x)

x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma, method="chol")
colMeans(x)
var(x)

plot(x)</pre>
```

Mvt

The Multivariate t Distribution

Description

These functions provide information about the multivariate t distribution with non-centrality parameter (or mode) delta, scale matrix sigma and degrees of freedom df. dmvt gives the density and rmvt generates random deviates.

Usage

Arguments

X	Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
n	Number of observations.
delta	the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode.
sigma	Correlation matrix, default is diag(ncol(x)).
df	degree of freedom as integer.
log	Logical; if TRUE, densities d are given as log(d).
type	type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral t-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type = "shifted" corresponds to the formula right before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It

pmvnorm 5

is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide. Note that the defaults differ from the default in pmvt (for reasons of backward compatibility).

. . . additional arguments to rmvnorm, for example method.

Details

For type = "shifted" the following density is implemented

$$c(1+(x-\delta)'S^{-1}(x-\delta)/\nu)^{-(\nu+m)/2}$$

where

$$c = \Gamma((\nu + m)/2)/((\pi \nu)^{m/2} \Gamma(\nu/2)|S|^{1/2}),$$

here S is a positive definite symmetric matrix (which might be the correlation or the scale matrix), delta is the non-centrality vector and ν are the degrees of freedom.

See Also

```
pmvt and qmvt
```

Examples

```
dmvt(x=c(0,0), sigma = diag(2))
x <- rmvt(n=100, sigma = diag(2), df = 3)
plot(x)
```

pmvnorm

Multivariate Normal Distribution

Description

Computes the distribution function of the multivariate normal distribution for arbitrary limits and correlation matrices.

Usage

6 pmvnorm

Arguments

lower the vector of lower limits of length n.
upper the vector of upper limits of length n.

mean the mean vector of length n.

corr the correlation matrix of dimension n.

sigma the covariance matrix of dimension n. Either corr or sigma can be specified. If

sigma is given, the problem is standardized. If neither corr nor sigma is given,

the identity matrix is used for sigma.

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to

be used as well as the associated hyper parameters.

... additional parameters (currently given to GenzBretz for backward compatibility

issues).

Details

This program involves the computation of multivariate normal probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The implemented methodology is described in Genz (1992, 1993) (for algorithm GenzBretz), in Miwa et al. (2003) for algorithm Miwa (useful up to dimension 20) and Genz (2004) for the TVPACK algorithm (which covers 2- and 3-dimensional problems for semi-infinite integration regions).

Note that both -Inf and +Inf may be specified in lower and upper. For more details see pmvt.

The multivariate normal case is treated as a special case of pmvt with df=0 and univariate problems are passed to pnorm.

The multivariate normal density and random deviates are available using dmvnorm and rmvnorm.

Value

The evaluated distribution function is returned with attributes

error estimated absolute error and

msg status messages.

Source

http://www.sci.wsu.edu/math/faculty/genz/homepage

References

Genz, A. (1992). Numerical computation of multivariate normal probabilities. *Journal of Computational and Graphical Statistics*, **1**, 141–150.

Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. *Computing Science and Statistics*, **25**, 400–405.

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, *Statistics and Computing*, **14**, 251–260.

pmvnorm 7

Genz, A. and Bretz, F. (2009), *Computation of Multivariate Normal and t Probabilities*. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.

Miwa, A., Hayter J. and Kuriki, S. (2003). The evaluation of general non-centred orthant probabilities. *Journal of the Royal Statistical Society*, Ser. B, 65, 223–234.

See Also

qmvnorm

Examples

```
n <- 5
mean \leftarrow rep(0, 5)
lower \leftarrow rep(-1, 5)
upper \leftarrow rep(3, 5)
corr <- diag(5)</pre>
corr[lower.tri(corr)] <- 0.5</pre>
corr[upper.tri(corr)] <- 0.5</pre>
prob <- pmvnorm(lower, upper, mean, corr)</pre>
print(prob)
stopifnot(pmvnorm(lower=-Inf, upper=3, mean=0, sigma=1) == pnorm(3))
a <- pmvnorm(lower=-Inf,upper=c(.3,.5),mean=c(2,4),diag(2))</pre>
stopifnot(round(a,16) == round(prod(pnorm(c(.3,.5),c(2,4))),16))
a <- pmvnorm(lower=-Inf,upper=c(.3,.5,1),mean=c(2,4,1),diag(3))</pre>
stopifnot(round(a,16) == round(prod(pnorm(c(.3,.5,1),c(2,4,1))),16))
# Example from R News paper (original by Genz, 1992):
m <- 3
sigma <- diag(3)
sigma[2,1] <- 3/5
sigma[3,1] <- 1/3
sigma[3,2] <- 11/15
pmvnorm(lower=rep(-Inf, m), upper=c(1,4,2), mean=rep(0, m), corr=sigma)
# Correlation and Covariance
a <- pmvnorm(lower=-Inf, upper=c(2,2), sigma = diag(2)*2)
b <- pmvnorm(lower=-Inf, upper=c(2,2)/sqrt(2), corr=diag(2))</pre>
stopifnot(all.equal(round(a,5) , round(b, 5)))
```

8 pmvt

pmvt	Multivariate t Distribution	

Description

Computes the the distribution function of the multivariate t distribution for arbitrary limits, degrees of freedom and correlation matrices based on algorithms by Genz and Bretz.

Usage

issues).

Arguments

lower	the vector of lower limits of length n.
upper	the vector of upper limits of length n.
delta	the vector of noncentrality parameters of length n , for type = "shifted" delta specifies the mode.
df	degree of freedom as integer. Normal probabilities are computed for df=0.
corr	the correlation matrix of dimension n.
sigma	the scale matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.
algorithm	an object of class GenzBretz or TVPACK defining the hyper parameters of this algorithm.
type	type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral t-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type = "shifted" corresponds to the formula right before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide.
	additional parameters (currently given to GenzBretz for backward compatibility

pmvt 9

Details

This program involves the computation of central and noncentral multivariate t-probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The methodology is based on randomized quasi Monte Carlo methods and described in Genz and Bretz (1999, 2002).

For 2- and 3-dimensional problems one can also use the TVPACK routines described by Genz (2004), which only handles semi-infinite integration regions (and for type = "Kshirsagar" only central problems).

For type = "Kshirsagar" and a given correlation matrix corr, for short A, say, (which has to be positive semi-definite) and degrees of freedom ν the following values are numerically evaluated

$$I = 2^{1-\nu/2}/\Gamma(\nu/2) \int_0^\infty s^{\nu-1} \exp(-s^2/2) \Phi(s \cdot lower/\sqrt{\nu} - \delta, s \cdot upper/\sqrt{\nu} - \delta) ds$$

where

$$\Phi(a,b) = (\det(A)(2\pi)^m)^{-1/2} \int_a^b \exp(-x'Ax/2) \, dx$$

is the multivariate normal distribution and m is the number of rows of A.

For type = "shifted", a positive definite symmetric matrix S (which might be the correlation or the scale matrix), non-centrality vector δ and degrees of freedom ν the following integral is evaluated:

$$c \int_{lower_1}^{upper_1} \dots \int_{lower_m}^{upper_m} (1 + (x - \delta)' S^{-1}(x - \delta)/\nu)^{-(\nu + m)/2} dx_1 \dots dx_m,$$

where

$$c = \Gamma((\nu + m)/2)/((\pi \nu)^{m/2} \Gamma(\nu/2)|S|^{1/2}),$$

and m is the number of rows of S.

Note that both -Inf and +Inf may be specified in the lower and upper integral limits in order to compute one-sided probabilities.

Univariate problems are passed to pt. If df = 0, normal probabilities are returned.

Value

The evaluated distribution function is returned with attributes

error estimated absolute error and

msg status messages.

Source

http://www.sci.wsu.edu/math/faculty/genz/homepage

10 pmvt

References

Genz, A. and Bretz, F. (1999), Numerical computation of multivariate t-probabilities with application to power calculation of multiple contrasts. *Journal of Statistical Computation and Simulation*, **63**, 361–378.

Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate t-probabilities. *Journal of Computational and Graphical Statistics*, **11**, 950–971.

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, *Statistics and Computing*, **14**, 251–260.

Genz, A. and Bretz, F. (2009), *Computation of Multivariate Normal and t Probabilities*. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.

S. Kotz and S. Nadarajah (2004), *Multivariate t Distributions and Their Applications*. Cambridge University Press. Cambridge.

Edwards D. and Berry, Jack J. (1987), The efficiency of simulation-based multiple comparisons. *Biometrics*, **43**, 913–928.

See Also

qmvt

Examples

```
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)</pre>
corr[lower.tri(corr)] <- 0.5</pre>
delta \leftarrow rep(0, 5)
prob <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)</pre>
print(prob)
pmvt(lower=-Inf, upper=3, df = 3, sigma = 1) == pt(3, 3)
# Example from R News paper (original by Edwards and Berry, 1987)
n < -c(26, 24, 20, 33, 32)
V <- diag(1/n)</pre>
C \leftarrow c(1,1,1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,0,-1,-1,0,0,-1,0,0)
C <- matrix(C, ncol=5)</pre>
### scale matrix
cv <- C %*% V %*% t(C)
### correlation matrix
dv <- t(1/sqrt(diag(cv)))</pre>
cr <- cv * (t(dv) %*% dv)
delta <- rep(0,5)
myfct <- function(q, alpha) {</pre>
```

qmvnorm 11

```
lower <- rep(-q, ncol(cv))</pre>
  upper <- rep(q, ncol(cv))</pre>
  pmvt(lower=lower, upper=upper, delta=delta, df=df,
       corr=cr, abseps=0.0001) - alpha
}
round(uniroot(myfct, lower=1, upper=5, alpha=0.95)$root, 3)
# compare pmvt and pmvnorm for large df:
a <- pmvnorm(lower=-Inf, upper=1, mean=rep(0, 5), corr=diag(5))</pre>
b \leftarrow pmvt(lower=-Inf, upper=1, delta=rep(0, 5), df=rep(300,5),
          corr=diag(5))
а
b
stopifnot(round(a, 2) == round(b, 2))
# correlation and scale matrix
a <- pmvt(lower=-Inf, upper=2, delta=rep(0,5), df=3,
          sigma = diag(5)*2)
b <- pmvt(lower=-Inf, upper=2/sqrt(2), delta=rep(0,5),</pre>
          df=3, corr=diag(5))
attributes(a) <- NULL
attributes(b) <- NULL
stopifnot(all.equal(round(a,3) , round(b, 3)))
a <- pmvt(0, 1,df=10)
attributes(a) <- NULL
b \leftarrow pt(1, df=10) - pt(0, df=10)
stopifnot(all.equal(round(a,10) , round(b, 10)))
```

qmvnorm

Quantiles of the Multivariate Normal Distribution

Description

Computes the equicoordinate quantile function of the multivariate normal distribution for arbitrary correlation matrices based on inversion of pmvnorm.

Usage

12 qmvt

Arguments

р	probability.
interval	optional, a vector containing the end-points of the interval to be searched by uniroot.
tail	specifies which quantiles should be computed. lower tail gives the quantile x for which $P[X \leq x] = p$, upper tail gives x with $P[X > x] = p$ and both tails leads to x with $P[-x \leq X \leq x] = p$.
mean	the mean vector of length n.
corr	the correlation matrix of dimension n.
sigma	the covariance matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.
algorithm	an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to be used as well as the associated hyper parameters.
	additional parameters to be passed to GenzBretz.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each dimension coincide. Currently, the distribution function is inverted by using the uniroot function which may result in limited accuracy of the quantiles.

Value

A list with four components: quantile and f.quantile give the location of the quantile and the value of the function evaluated at that point. iter and estim.prec give the number of iterations used and an approximate estimated precision from uniroot.

See Also

```
pmvnorm, qmvt
```

Examples

```
qmvnorm(0.95, sigma = diag(2), tail = "both")
```

qmvt

Quantiles of the Multivariate t Distribution

Description

Computes the equicoordinate quantile function of the multivariate t distribution for arbitrary correlation matrices based on inversion of qmvt.

qmvt 13

Usage

```
qmvt(p, interval = NULL, tail = c("lower.tail",
    "upper.tail", "both.tails"), df = 1, delta = 0, corr = NULL,
    sigma = NULL, algorithm = GenzBretz(),
    type = c("Kshirsagar", "shifted"), ...)
```

Arguments

p	probability.
interval	optional, a vector containing the end-points of the interval to be searched by uniroot.
tail	specifies which quantiles should be computed. lower.tail gives the quantile x for which $P[X \leq x] = p$, upper.tail gives x with $P[X > x] = p$ and both.tails leads to x with $P[-x \leq X \leq x] = p$.
delta	the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode.
df	degree of freedom as integer. Normal quantiles are computed for df = 0.
corr	the correlation matrix of dimension n.
sigma	the covariance matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.
algorithm	an object of class GenzBretz or TVPACK defining the hyper parameters of this algorithm.
type	type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)) and type = "shifted" corresponds to the formula before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)).
	additional parameters to be passed to GenzBretz.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each dimension coincide. Currently, the distribution function is inverted by using the uniroot function which may result in limited accuracy of the quantiles.

Value

A list with four components: quantile and f.quantile give the location of the quantile and the value of the function evaluated at that point. iter and estim.prec give the number of iterations used and an approximate estimated precision from uniroot.

See Also

pmvnorm, qmvnorm

14 qmvt

Examples

```
qmvt(0.95, df = 16, tail = "both")
```

Index

```
*Topic distribution
     algorithms, 2
    Mvnorm, 3
    Mvt, 4
    pmvnorm, 5
    pmvt, 8
    qmvnorm, 11
     qmvt, 12
*Topic multivariate
    Mvnorm, 3
    Mvt, 4
\hbox{algorithms}, \textcolor{red}{2}
dmvnorm, 6
dmvnorm (Mvnorm), 3
dmvt (Mvt), 4
GenzBretz, 6, 8, 12, 13
GenzBretz (algorithms), 2
Miwa, 6, 12
Miwa (algorithms), 2
Mvnorm, 3
Mvt, 4
pmvnorm, 3, 5, 12, 13
pmvt, 5, 6, 8
pnorm, 6
pt, 9
qmvnorm, 3, 7, 11, 13
qmvt, 5, 10, 12, 12
rmvnorm, 5, 6
rmvnorm (Mvnorm), 3
rmvt (Mvt), 4
rnorm, 3
TVPACK, 6, 8, 12, 13
TVPACK (algorithms), 2
uniroot, 12, 13
```