# Rapid decay and Baum-Connes for large type Artin groups

Laura Ciobanu  $\cdot$  Derek Holt  $\cdot$  Sarah Rees

**Abstract** We prove that many Artin groups of large type satisfy the rapid decay property, including all those of extra-large type. For many of these, including all 3-generator groups of extra-large type, a result of Lafforgue applies to show that the groups satisfy the Baum-Connes conjecture without coefficients.

Our proof of rapid decay combines elementary analysis with combinatorial techniques, and relies on properties of geodesic words in Artin groups of large type that were observed in [17] by two of the authors of this current article.

2000 Mathematics Subject Classification: 20E06, 43A15, 46L99.

**Keywords** rapid decay · Baum-Connes · Artin groups

#### 1 Introduction

An Artin group G is defined to be a finitely generated group with presentation

$$\langle x_1, \dots, x_n \mid m_{ij}(x_i, x_j) = m_{ij}(x_j, x_i)$$
 for each  $i \neq j$  with  $m_{ij} < \infty \rangle$ ,

where the integers  $m_{ij}$  are the entries in a Coxeter matrix (a symmetric  $n \times n$  matrix over  $\mathbb{N} \cup \{\infty\}$ , with  $m_{ii} = 1$ , and  $m_{ij} \geq 2 \ \forall i \neq j$ ), and, for generators x, y and  $m \in \mathbb{N}$ , the word m(x, y) is defined to be the product of m alternating

Mathematics Department, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland. E-mail: Laura.Ciobanu@unine.ch

#### D. F. Holt

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK. E-mail: D.F.Holt@warwick.ac.uk

#### S. Rees

School of Mathematics and Statistics, University of Newcastle, Newcastle NE1 7RU, UK. Tel:INT+44 191 222 7236, FAX: INT+44 191 222 8020. E-mail: Sarah.Rees@newcastle.ac.uk

L. Ciobanu

x's and y's that starts with x. The associated Coxeter group is defined by adding the relations  $x_i^2 = 1$  for all i.

A Coxeter matrix can be specified using an undirected labelled graph  $\Gamma$  with n vertices and an edge labelled  $m_{ij}$  between distinct vertices i and j whenever  $m_{ij} < \infty$ , but no edge between i and j if  $m_{ij}$  is infinite. (We note that an alternative and widely used convention deletes instead edges labelled 2 and leaves those with infinite labels.) We denote the Artin group defined in this way by  $G(\Gamma)$ .

The Artin group G is said to be of large type if  $m_{ij} \geq 3 \ \forall i \neq j$ , and of extra-large type if  $m_{ij} \geq 4 \ \forall i \neq j$ . The concepts of large and extra-large type for Artin groups were introduced by Appel and Schupp [2,1], who used small cancellation arguments to prove solubility of the word and conjugacy problems, the embedding of parabolic subgroups, the freeness of the subgroups  $\langle x_i^2 \mid 1 \leq i \leq n \rangle$ , and more, for these groups. An Artin group is said to be of dihedral type if 2-generated, of spherical type if the associated Coxeter group is finite, or of right-angled type if  $m_{ij} \in \{2, \infty\}$  for all i, j.

The purpose of this paper is to prove the following two results.

**Theorem 1** Let  $G = G(\Gamma)$  be an Artin group of large type for which  $\Gamma$  has no triangles with edge labels 3, 3, m with  $3 \leq m < \infty$ . Then G satisfies the rapid decay property. In particular, all Artin groups of extra-large type satisfy this property.

**Theorem 2** Let  $G = G(\Gamma)$  be an Artin group satisfying the hypotheses of Theorem 1. Then G satisfies the Baum-Connes conjecture without coefficients whenever one of the following holds.

- 1. G is 3-generated.
- 2.  $\Gamma$  is triangle-free.
- 3. The edges of  $\Gamma$  can be oriented in such a way that the oriented graph contains no subgraph of either of the two types shown.



In particular, any large type Artin group  $G(\Gamma)$  for which  $\Gamma$  is triangle-free satisfies the Baum-Connes conjecture without coefficients.

Following Jolissaint [18], we say that a finitely generated group G has the rapid decay property (RD) if the operator norm  $||.||_*$  for the group algebra  $\mathbb{C}G$  is bounded by a constant multiple of the Sobolev norm  $||.||_{s,r,\ell}$ , a norm that is a variant of the  $l^2$  norm weighted by a length function for the group.

More precisely, rapid decay holds for G if there are constants C, r and a length function  $\ell$  on G such that for any  $\phi, \psi \in \mathbb{C}G$ ,

$$||\phi||_* := \sup_{\psi \in \mathbb{C}G} \frac{||\phi * \psi||_2}{||\psi||_2} \le C||\phi||_{2,r,\ell}.$$

Here,  $\phi * \psi$  denotes the convolution of  $\phi$  and  $\psi$ ,  $||.||_2$  is the standard  $l^2$  norm, and  $||.||_{2,r,\ell}$  the Sobolev norm of order r, with respect to the length function  $\ell$ , that is

$$\phi * \psi(g) = \sum_{h \in G} \phi(h)\psi(h^{-1}g),$$

$$||\psi||_2 = \sqrt{\sum_{g \in G} |\psi(g)|^2}$$

$$||\phi||_{2,r,\ell} = \sqrt{\sum_{g \in G} |\phi(g)|^2 (1 + \ell(g))^{2r}}.$$

We call a function  $\ell: G \to \mathbb{R}$  a length function for G if it satisfies

$$\ell(1_G) = 0$$
,  $\ell(g^{-1}) = \ell(g)$ ,  $\ell(gh) \le \ell(g) + \ell(h)$ ,  $\forall g, h \in G$ .

An account of the rapid decay property is given in [8].

The main interest in the rapid decay property for a group G stems from Lafforgue's result [19] that the combination of rapid decay with an appropriate action of G implies that the Baum-Connes conjecture without coefficients holds for G. That conjecture relates the K-theory of the reduced  $C^*$ -algebra  $C^*_r(G)$  to the  $K^G$ -homology of the classifying space  $\underline{E}G$  for proper G-actions, claiming that the assembly maps

$$\mu_i^G:RK_i^G(\underline{E}G)\to K_i(C_r^*(G)),\quad i=0,1,$$

are isomorphisms. This in turn implies the Novikov conjecture and (when G is torsion-free) the Kaplansky-Kadison idempotent conjecture; see [24].

The conjecture as stated above is commonly referred to as the Baum-Connes conjecture 'without coefficients' in order to distinguish it from a more general conjecture, with coefficients from a  $C^*$ -algebra admitting an action of G, to which counter-examples were claimed in [16].

Braid groups (Artin groups of type  $A_n$ ) are shown to satisfy rapid decay in [5], where the result is proved for mapping class groups; braid groups are proved to satisfy Baum-Connes in [23, Corollary 14]. We note that since Artin groups of type  $B_n$  and  $D_n$  are split extensions of free groups by braid groups [11], it follows immediately from [23, Corollary 14] that those spherical type Artin groups also satisfy Baum-Connes (but we do not know if the result holds for the remaining spherical type groups). Right-angled Artin groups are proved to satisfy both rapid decay and Baum-Connes through their action on CAT(0) cube complexes [8]; alternative proofs of their rapid decay follow from their small cancellation properties [22], or the fact that they are graph

products of infinite cyclic groups [10]. Dihedral Artin groups are easily proved to satisfy rapid decay since they are virtually direct products of free and cyclic groups. For the same reason they satisfy the Haagerup property (see [9]), which implies Baum-Connes [15]. We are not aware of any other classes of Artin groups known to satisfy either rapid decay or Baum-Connes prior to our results.

We shall prove rapid decay for Artin groups satisfying the hypotheses of Theorem 1, using as our length function the word length metric over the standard generating set; that is, for each element g we shall define  $\ell(g)$  to be the length of the shortest word over the standard generators that represents g. Our proof will use results from [17]; that article studied the sets of geodesics and shortlex minimal geodesics of Artin groups of large type in their standard presentations, proving those sets of geodesics to be regular and the groups to be shortlex automatic, and developing a rewrite technique. We shall prove that certain conditions hold for the factorisation of geodesics, and derive rapid decay in groups for which these conditions hold. For many of those groups we can build on work of [6] to construct an action of the group that allows the application of Lafforgue's result to deduce Baum-Connes.

Our strategy to prove rapid decay by examining the factorisation of geodesics was also used by Jolissaint [18] and de la Harpe [14] to prove rapid decay for word hyperbolic groups, extending Haagerup's proof for free groups [13]; Drutu and Sapir used similar techniques to prove rapid decay for a group hyperbolic relative to a family of subgroups with the property [12]. Other authors have used more geometric techniques [7,8].

In Section 2 we explain how Theorem 2 can be deduced from Theorem 1. Then Section 3 shows how rapid decay can be deduced from a pair of combinatorial conditions D1 and D2 relating to the factorisation of geodesics in the group. Section 5 introduces the notation we need for the remainder of the article. Section 6 examines dihedral Artin groups, first recalling from [17] some technical results on the structure of geodesics, and then using these to deduce the conditions D1 and D2 for these groups. Section 7 extends the results of Section 6 to deduce the same conditions for the large type groups considered in Theorem 1.

### 2 Deducing Baum-Connes from rapid decay

Any discrete group that acts continuously, isometrically, properly and cocompactly on a CAT(0) metric space is in the class  $\mathcal{C}'$  defined by Lafforgue in [19]; hence by [19, Corollary 0.4], for such a group the Baum-Connes conjecture is a consequence of rapid decay.

We shall deduce Theorem 2 from Theorem 1 using results of [6] to construct an appropriate CAT(0) action for a large class of Artin groups of large type.

A CAT(0) space is defined to be a metric space in which distances across a triangle with geodesic sides of lengths p, q, r are always bounded above by distances between equivalent points in a Euclidean triangle with the same side

lengths. A space is locally-CAT(0) or equivalently non-positively curved if any point has a neighbourhood that is CAT(0). By the Cartan-Hadamard theorem of [4], a simply connected locally-CAT(0) space is actually CAT(0).

Brady and McCammond define non-positively curved presentation complexes for non-standard presentations of 3-generator Artin groups of large type (and some others) in [6]. We shall see that the actions of the groups on the universal covers of these complexes satisfy the conditions we need.

Theorems 4, 6 and 7 of that paper consider the three cases of our theorem. In each of the three cases we define a complex  $K_{\Gamma}$ , the presentation complex for a presentation  $I_{\Gamma}$  of the Artin group  $G(\Gamma)$  in which all relators have length 3, formed from the standard presentation by the addition of some generators. The presentation complex  $K_{\Gamma}$  has a single 0-cell  $v_0$ , a 1-cell for each generator of  $I_{\Gamma}$ , and a triangular 2-cell for each relator of  $I_{\Gamma}$ . We define  $L_{\Gamma}$  to be the link of  $v_0$ ; this is the intersection with the surrounding complex of a small sphere centred on  $v_0$ , and can be viewed as a graph to which each edge of K contributes two vertices, and each corner of a 2-cell contributes an edge.  $\tilde{K}_{\Gamma}$  is the universal cover of  $K_{\Gamma}$ ; this is simply connected, and also has  $L_{\Gamma}$  as the link of each 0-cell.

In each of the three cases of our theorem, it is proved in [6] that some specification of edge lengths of the triangles which are the 2-cells of  $K_{\Gamma}$  extends to a piecewise Euclidean metric on  $K_{\Gamma}$ ; in the first and third cases of the theorem all triangles are made equilateral with side length 1, and in the second case all triangles are made isosceles and right-angled with their shorter sides of length 1. The piecewise Euclidean metric induces a metric on the link  $L_{\Gamma}$  of  $v_0$ , where the length of each edge is equal to the angle at the corner through  $v_0$  of the corresponding 2-cell. The metric can also be lifted to the cover  $\tilde{K}_{\Gamma}$ .

An action of G by isometries on  $\tilde{K}_{\Gamma}$  is inherited from the left regular action of G on its Cayley graph (the 1-skeleton of  $\tilde{K}_{\Gamma}$ ), in which the vertex h is mapped by g to the vertex gh. The action is free, so clearly it is both proper and continuous. The quotient,  $K_{\Gamma}$ , of  $\tilde{K}_{\Gamma}$  by G is certainly compact. In order to apply Lafforgue's result, we need simply to verify that  $\tilde{K}_{\Gamma}$  equipped with this metric is CAT(0).

That  $K_{\Gamma}$  is non-positively curved (locally-CAT(0)) is proved in [6]. In each of the three cases the length of a closed path in the link of a vertex is seen to be at least  $2\pi$ ; hence [3, Theorem 15] applies to show that  $K_{\Gamma}$  is non-positively curved. Exactly the same argument can be applied to the link of a vertex in  $\tilde{K_{\Gamma}}$  to deduce that the simply connected cover  $\tilde{K_{\Gamma}}$  is also non-positively curved, and hence by the Cartan-Hadamard theorem of [4],  $\tilde{K_{\Gamma}}$  is CAT(0). Baum-Connes in each of these cases now follows by [19, Corollary 0.4].

### 3 Reformulation of the rapid decay condition

Let  $\ell$  be a length function on a group G. Given  $k \in \mathbb{N}$ , we define  $C_k$  to be the set of elements of G with  $\ell(g) = k$ . We write  $\chi_k$  for the characteristic function on  $C_k$ , and for  $\phi \in \mathbb{C}G$ , we write  $\phi_k$  for the pointwise product  $\phi.\chi_k$ .

(Generally, in this article we use a subscript k to indicate that a function has support on  $C_k$ .)

It is proved by Jolissaint [18, Proposition 1.2.6] that rapid decay for G is equivalent to the following condition (\*):

$$\forall \phi, \psi \in \mathbb{C}G, k, l, m \in \mathbb{N},$$

$$|k - l| \le m \le k + l, \Rightarrow ||(\phi_k * \psi_l)_m||_2 \le ||\phi_k||_{2,r,\ell}||\psi_l||_2,$$
otherwise 
$$||(\phi_k * \psi_l)_m||_2 = 0$$

We observe that it follows from the properties of a length function that the norm  $||(\phi_k * \psi_l)_m||_2$  is zero for m outside the range [|k-l|, k+l]. Hence we shall verify rapid decay by verifying the following condition (\*\*):

there exists a polynomial P(x) such that:

$$\forall \phi, \psi \in \mathbb{C}G, k, l, m \in \mathbb{N},$$
$$|k - l| \le m \le k + l, \Rightarrow ||(\phi_k * \psi_l)_m||_2 \le P(k)||\phi_k||_2||\psi_l||_2.$$

We can clearly assume that the coefficients of such a polynomial P are non-negative, and hence that P is an increasing function of x, and we shall assume throughout this paper that all polynomials that arise have this property.

## 4 Geodesic factorisation

For  $g \in G$  we call a decomposition of g as a product  $g_1 \cdots g_k$  a geodesic factorisation of g if  $\sum \ell(g_i) = \ell(g)$ , and call the elements  $g_i$  divisors of g. In particular  $g_1$  is called a left divisor and  $g_k$  is called a right divisor. Given  $g \in C_{k+l}$  we define

$$\operatorname{Fact}_{k,l}(g) := \{ (g_1, g_2) : g_1 \in C_k, g_2 \in C_l : g_1 g_2 =_G g \}$$
$$\operatorname{F}_{k,l} := \sup_{g \in C_{k+l}} |\operatorname{Fact}_{k,l}(g)|$$

Let  $\mathcal{P}$  be a subset of  $G^2$  and, for  $g \in G$ , let  $\mathcal{P}(g) = \{(g_1, g_2) \in \mathcal{P} : g_1g_2 = g\}$ . We shall refer to the factorisations of g in  $\mathcal{P}(g)$  as the *permissible* factorisations of g. We define

$$\operatorname{Fact}_{\mathcal{P},k,l}(g) := \{ (g_1, g_2) : g_1 \in C_k, g_2 \in C_l, (g_1, g_2) \in \mathcal{P}(g) \}$$
$$\operatorname{F}_{\mathcal{P},k,l} := \sup_{g \in C_{k+l}} |\operatorname{Fact}_{\mathcal{P},k,l}(g)|$$

We shall verify the condition (\*\*) above for Artin groups satisfying the hypotheses of Theorem 1, and hence verify rapid decay, by finding a suitable set  $\mathcal{P}$  of permissible factorisations for which the size of both  $\operatorname{Fact}_{\mathcal{P},k,l}(g)$  and a related set are polynomially bounded.

We define two conditions D1, D2 that we shall require to hold on a suitable subset  $\mathcal{P}$  of  $G^2$ .



Fig. 1 Condition D2

D1  $F_{\mathcal{P},k,l}$  is bounded above by  $P_1(\min(k,l))$  for some polynomial  $P_1(x)$ .

D2 For each  $g \in G$ , each  $k, l \ge 0$ , there is a subset S(g, k, l) of  $G^3$  as follows. For each decomposition of g as a product  $g_1g_2$  with  $g_1 \in C_k$ ,  $g_2 \in C_l$ , S(g, k, l) contains a triple  $(f_1, \hat{g}, f_2)$ , for which  $g = f_1\hat{g}f_2$ , and  $\hat{g} = h_1h_2$ , where  $(f_1, h_1) \in \operatorname{Fact}_{\mathcal{P}, k-p_1, p_1}(g_1)$  and  $(h_2, f_2) \in \operatorname{Fact}_{\mathcal{P}, p_2, l-p_2}(g_2)$ , for some  $p_1, p_2 \le K \min(k, l)$ , for some global constant K.

Furthermore, there are polynomials  $P_2(x), P_3(x)$  such that

- (a) for all  $g, k, l, |S(g, k, l)| \le P_2(\min(k, l)),$
- (b)  $|T(k,l)| \le P_3(\min(k,l))$ , where  $T(k,l) := \{\hat{g} : \exists g, (f_1, \hat{g}, f_2) \in S(g,k,l)\}$ .

Figure 1 illustrates the condition D2.

**Theorem 3** Let G be a group and  $\mathcal{P}$  a subset of  $G^2$  for which the conditions D1 and D2 hold. Then G satisfies rapid decay with respect to the word length metric.

Before launching into the proof of Theorem 3 we prove a few technical results.

Suppose first that  $\phi_k$  is a function with support on  $C_k$ . Then for any  $p \geq 0$ , we can define functions  $\phi_{\mathcal{P},k-p}^{(p)}$  and  $\phi_{\mathcal{P},k-p}^{(p)}$  with support on  $C_{k-p}$  by

$$\phi_{\mathcal{P},k-p}^{(p)}(g) = \sqrt{\sum_{h \in C_p, (g,h) \in \mathcal{P}} |\phi_k(gh)|^2}, \quad \text{if} \quad g \in C_{k-p}$$

$$= 0 \quad \text{otherwise}$$

$$(p) \phi_{\mathcal{P},k-p}(g) = \sqrt{\sum_{h \in C_p, (h,g) \in \mathcal{P}} |\phi_k(hg)|^2}, \quad \text{if} \quad g \in C_{k-p}$$

$$= 0 \quad \text{otherwise}$$

We prove

## Lemma 1

$$||\phi_{\mathcal{P},k-p}^{(p)}||_2^2 \le \mathcal{F}_{\mathcal{P},k-p,p}||\phi_k||_2^2$$
$$||^{(p)}\phi_{\mathcal{P},k-p}||_2^2 \le \mathcal{F}_{\mathcal{P},p,k-p}||\phi_k||_2^2$$

Proof

$$||\phi_{k-p}^{(p)}||_2^2 = \sum_{g \in C_{k-p}} \sum_{h \in C_p, (g,h) \in \mathcal{P}} |\phi_k(gh)|^2$$

$$\leq F_{\mathcal{P},k-p,p} \sum_{g_1 \in C_k} |\phi_k(g_1)|^2$$

$$= F_{\mathcal{P},k-p,p} ||\phi_k||_2^2$$

The second inequality follows similarly.

We shall frequently make use of the following, which is an easy application of the Cauchy-Schwarz inequality.

**Lemma 2** For  $a_i \in \mathbb{C}$ ,  $n \in \mathbb{N}$ ,

$$|\sum_{i=1}^{n} a_i|^2 \le n \sum_{i=1}^{n} |a_i|^2$$

We are now ready to prove the theorem.

Proof of Theorem 3: So now suppose that D1 and D2 hold, and let K,  $P_1(x)$ ,  $P_2(x)$ ,  $P_3(x)$  and the sets  $\mathcal{P}$ , S(g,k,l) and T(k,l) be as specified by those conditions.

Choose k, l, m such that  $|k - l| \le m \le k + l$ . Define  $\hat{k} := \min(k, l)$ .

Now let  $g \in G$  with  $\ell(g) = m$ .

Then

$$|(\phi_k * \psi_l)(g)| = |\sum_{\substack{g_1 \in C_k, g_2 \in C_l \\ g = g_1 g_2}} \phi_k(g_1) \psi_l(g_2)| \le \sum_{\substack{g_1 \in C_k, g_2 \in C_l \\ g = g_1 g_2}} |\phi_k(g_1) \psi_l(g_2)|$$

Now the condition D2 defines an injection from  $\operatorname{Fact}_{k,l}(g)$  to  $G^5 \times \mathbb{N}^2$  that maps  $(g_1, g_2)$  to  $(f_1, \hat{g}, f_2, h_1, h_2, p_1, p_2)$ , where  $h_1 \in C_{p_1}, h_2 \in C_{p_2}, (f_1, h_1), (h_2, f_2) \in \mathcal{P}$  and  $h_1h_2 = \hat{g}$ . We define

$$H(f_1, \hat{g}, f_2, p_1, p_2) := \{h_1 \in C_{p_1} : h_2 := h_1^{-1} \hat{g} \in C_{p_2}, (f_1, h_1), (h_2, f_2) \in \mathcal{P}\}.$$

So the right hand side of the above inequality is bounded above by:

$$\sum_{p_1, p_2 = 0}^{Kk} \sum_{\substack{(f_1, \hat{g}, f_2) \in S(g, k, l) \\ h_2 := h_1^{-1} \hat{g}}} \sum_{\substack{|\phi_k(f_1 h_1) \psi_l(h_2 f_2)| \\ h_2 := h_1^{-1} \hat{g}}} |\phi_k(f_1 h_1) \psi_l(h_2 f_2)|$$

Note that this summation is over a set that is possibly larger than the image of that injection, and hence we have an upper bound rather than equality.

Now by the Cauchy-Schwartz inequality, this sum is at most

$$\sum_{p_1, p_2 = 0}^{K\hat{k}} \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \sqrt{\sum_{\substack{h_1 \in C_{p_1} \\ (f_1, h_1) \in \mathcal{P}}} |\phi_k(f_1 h_1)|^2} \sqrt{\sum_{\substack{h_2 \in C_{p_2} \\ (h_2, f_2) \in \mathcal{P}}} |\psi_l(h_2 f_2)|^2}$$

$$= \sum_{p_1, p_2 = 0}^{K\hat{k}} \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \phi_{\mathcal{P}, k - p_1}^{(p_1)}(f_1) \quad ^{(p_2)} \psi_{\mathcal{P}, l - p_2}(f_2)$$

where  $\phi_{\mathcal{P},k-p}^{(p)}$  and  $\phi_{\mathcal{P},l-p}^{(p)}$  are as defined above. So now, we have

$$||(\phi_k * \psi_l)_m||_2^2 = \sum_{g \in C_m} |\phi_k * \psi_l(g)|^2$$

$$\leq \sum_{g \in C_m} |\sum_{p_1, p_2 = 0}^{K\hat{k}} \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \phi_{\mathcal{P}, k - p_1}^{(p_1)}(f_1) |^{(p_2)} \psi_{\mathcal{P}, l - p_2}(f_2)|^2$$

Using Lemma 2 twice we see that

$$\sum_{g \in C_m} \left| \sum_{p_1, p_2 = 0}^{K\hat{k}} \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \phi_{\mathcal{P}, k - p_1}^{(p_1)}(f_1) \right|^{(p_2)} \psi_{\mathcal{P}, l - p_2}(f_2) |^2$$

$$\leq (K\hat{k} + 1)^2 \sum_{g \in C_m} \sum_{p_1, p_2 = 0}^{K\hat{k}} \left| \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \phi_{\mathcal{P}, k - p_1}^{(p_1)}(f_1) \right|^{(p_2)} \psi_{\mathcal{P}, l - p_2}(f_2) |^2$$

$$\leq (K\hat{k} + 1)^2 \sum_{p_1, p_2 = 0}^{K\hat{k}} \sum_{g \in C_m} \left| S(g, k, l) \right| \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \left| \phi_{\mathcal{P}, k - p_1}^{(p_1)}(f_1) \right|^{(p_2)} \psi_{\mathcal{P}, l - p_2}(f_2) |^2$$

$$\leq (K\hat{k} + 1)^2 P_2(\hat{k}) \sum_{p_1, p_2 = 0}^{K\hat{k}} \sum_{g \in C_m} \sum_{(f_1, \hat{g}, f_2) \in S(g, k, l)} \left| \phi_{\mathcal{P}, k - p_1}^{(p_1)}(f_1) \right|^{(p_2)} \psi_{\mathcal{P}, l - p_2}(f_2) |^2$$

The last sum is bounded above by

$$(K\hat{k}+1)^2 P_2(\hat{k}) \sum_{p_1, p_2=0}^{K\hat{k}} \sum_{\hat{g} \in T(k, l)} \left( \sum_{f_1 \in C_{k-p_1}} |\phi_{\mathcal{P}, k-p_1}^{(p_1)}(f_1)|^2 \sum_{f_2 \in C_{l-p_2}} |^{(p_2)} \psi_{\mathcal{P}, l-p_2}(f_2)|^2 \right)$$

which is a sum of the same terms but over a possibly larger set. We bound the last sum above by

$$(K\hat{k}+1)^{2}P_{2}(\hat{k})P_{3}(\hat{k})\sum_{p_{1},p_{2}=0}^{K\hat{k}}|\phi_{\mathcal{P},k-p_{1}}^{(p_{1})}||_{2}^{2}||^{(p_{2})}\psi_{\mathcal{P},l-p_{2}}||_{2}^{2}$$

$$\leq (K\hat{k}+1)^{2}P_{2}(\hat{k})P_{3}(\hat{k})\sum_{p_{1},p_{2}=0}^{K\hat{k}}F_{\mathcal{P},k-p_{1},p_{1}}F_{\mathcal{P},p_{2},l-p_{2}}||\phi_{k}||_{2}^{2}||\psi_{l}||_{2}^{2}$$

$$\leq (K\hat{k}+1)^{2}P_{2}(\hat{k})P_{3}(\hat{k})\sum_{p_{1},p_{2}=0}^{K\hat{k}}P_{1}(\min(k-p_{1},p_{1}))P_{1}(\min(p_{2},l-p_{2}))||\phi_{k}||_{2}^{2}||\psi_{l}||_{2}^{2},$$

using Lemma 1 to relate the  $l^2$ -norms. Since  $\min(k-p_1, p_1)$  and  $\min(p_2, l-p_2)$  above are bounded by  $K\hat{k}$ , condition (\*\*) now follows easily.

## 5 Notation for Artin groups

Our Artin groups will be defined in their standard presentations

$$\langle x_1, \dots, x_n \mid m_{ij}(x_i, x_j) = m_{ij}(x_j, x_i)$$
 for each  $i \neq j \rangle$ .

We prove rapid decay for Artin groups satisfying the hypotheses of Theorem 1 with respect to the word length metric, by verifying the conditions D1 and D2 above. In order to do that we need to examine the structure of geodesics in these groups; we build on the results of [17].

Given an Artin group G as before we let X be the set of generators in the standard presentation and let A be the set  $X \cup X^{-1}$ ; we call the elements of A letters. We shall generally use symbols like x, y, z, t for generators in X and a, b for letters in A. A letter is positive if it is a generator, negative otherwise. For each  $x \in X$ , we define x to be the name of the two letters x and  $x^{-1}$ . We say that a word  $w \in A^*$  involves the generator x if w contains a letter with name x, and we call w a 2-generator word if it involves exactly two of the generators. Words in  $A^*$  will be denoted by u, v, w (possibly with subscripts) or  $\alpha, \beta, \gamma, \eta, \xi$ . (Roughly speaking, the difference is that u, v, w will be used for interesting subwords of a specified word, and the Greek letters for subwords in which we are not interested.) A positive word is one in  $X^*$  and a negative word one in  $(X^{-1})^*$ ; otherwise it is unsigned. For  $u, v \in A^*$ , u = v denotes equality as words, whereas  $u =_G v$  denotes equality within the Artin group. The length of the word w is denoted by |w|, while as above  $|w|_G$  denotes the length of a geodesic representative and, for  $g \in G$ , |g| denotes the length of a

geodesic word representing g. A syllable in a word is a subword that is a power of a single generator, and is not a subword of a higher power.

For any distinct letters a and b and a positive integer r, we define alternating products r(a,b) and  $(b,a)_r$ . The product r(a,b), is defined, as it was earlier (over generators), to be the word of length r of alternating a's and b's starting with a, while  $(b,a)_r$  is defined to be the word of length r of alternating a's and b's ending with a. For example,  $_6(a,b) = ababab = (a,b)_6$ ,  $_5(a,b) = ababa = (b,a)_5$ . We define both  $_0(a,b)$  and  $_0(b,a)_0$  to be the empty word. For any nonempty word w, we define f[w] and f[w] to be respectively the first and last letter of f[w] and f[w] to be the maximal proper prefix and suffix of f[w].

## 6 Dihedral Artin groups

#### 6.1 The structure of geodesics in dihedral Artin groups

We need some results on the structure of geodesics from [21,17]. We summarise what we need, and refer to those articles for details.

Let

$$DA(m) = \langle x_1, x_2 \mid {}_{m}(x_1, x_2) = {}_{m}(x_2, x_1) \rangle$$

be a 2-generator (dihedral) Artin group with  $2 \le m < \infty$ . Conjugation by the Garside element

$$\Delta := {}_{m}(x_1, x_2) =_{\mathrm{DA}(m)} {}_{m}(x_2, x_1)$$

induces a permutation  $\delta$  of order 2 or 1 (depending on the parity of m) on the letters in A, and hence an automorphism  $\delta$  of order 2 or 1 of the free monoid  $A^*$ .

Let w be a freely reduced word over  $A = \{x_1, x_2, x_1^{-1}, x_2^{-1}\}$ . Then we define p(w) to be the minimum of m and the length of the longest subword of w of alternating  $x_1$ 's and  $x_2$ 's (that is the length of the longest subword of w of the form  $r(x_1, x_2)$  or  $r(x_2, x_1)$ ). Similarly, we define n(w) to be the minimum of m and the length of the longest subword of w of alternating  $x_1^{-1}$ 's and  $x_2^{-1}$ 's. It is proved in [21, Proposition 4.3] that w is geodesic in DA(m) if and only if  $p(w) + n(w) \le m$ ; if p(w) + n(w) < m, then w is the unique geodesic representative of the group element it defines, but if p(w) + n(w) = m then there are other representatives. Note that a non-geodesic word is always unsigned.

For example, suppose that m=3, so  $\mathrm{DA}(m)=\langle x_1,x_2 \mid x_1x_2x_1=x_2x_1x_2\rangle$ . Then  $w:=x_1x_2x_1$  and  $w':=x_2x_1x_2$  are two geodesic representatives of the same element with p(w)=p(w')=3, n(w)=n(w')=0, and  $w=x_1x_2^2x_1^{-1}$  and  $w'=x_2^{-1}x_1^2x_2$  are two geodesic representatives of the same element with p(w)=p(w')=2, n(w)=n(w')=1. In fact all four words are examples of critical words, as defined in [17].

As in [17], we define a freely reduced word w with p(w) + n(w) = m to be critical if one of the following holds, where  $\xi$  is a subword with the obvious restrictions.

(i) w is unsigned of one of the two forms  $p(x,y)\xi(z^{-1},t^{-1})_n$  or  $p(x^{-1},y^{-1})\xi(z,t)_p$ , with  $\{x,y\}=\{z,t\}=\{x_1,x_2\}$ ,

- (ii) w is positive of one of the two forms  $m(x,y)\xi$  or  $\xi(x,y)_m$ , and only the one positive alternating subword of length m,
- (iii) w is negative of one of the two forms  $m(x^{-1}, y^{-1})\xi$  or  $\xi(x^{-1}, y^{-1})_m$ , and only the one negative alternating subword of length m.

An involution  $\tau$  on the set of critical words swaps critical words that represent the same element. We define  $\tau$  by

$$\begin{split} _{p}(x,y)\,\xi\,(z^{-1},t^{-1})_{n} &\leftrightarrow^{\tau}{}_{n}(y^{-1},x^{-1})\,\delta(\xi)\,(t,z)_{p},\\ &\quad m(x,y) \leftrightarrow^{\tau}{}_{m}(y,x),\\ &\quad m(x^{-1},y^{-1}) \leftrightarrow^{\tau}{}_{m}(y^{-1},x^{-1})\\ &\quad m(x,y)\,\xi \leftrightarrow^{\tau}\delta(\xi)\,(z,t)_{m}, \quad \text{where} \quad z=l\xi,\,\{x,y\}=\{z,t\},\\ &\quad m(x^{-1},y^{-1})\,\xi \leftrightarrow^{\tau}\delta(\xi)\,(z^{-1},t^{-1})_{m}, \quad \text{where} \quad z=l\xi^{-1},\,\{x,y\}=\{z,t\}. \end{split}$$

Where a critical word w' occurs as a subword of a word w, we call the substitution of the subword w' by  $\tau(w')$  a  $\tau$ -move on w.

The following lemma is proved in [17, Lemma 2.3].

**Lemma 3** Suppose that  $w \in A^*$  is geodesic and  $a \in A$ . If wa is non-geodesic, then either  $lw = a^{-1}$  or w has a critical suffix v such that  $l\tau(v) = a^{-1}$ . Similarly, if aw is non-geodesic, then either  $f[w] = a^{-1}$  or w has a critical prefix v such that  $f[\tau(v)] = a^{-1}$ .

It is proved in [17] that, whenever w is a freely reduced word that is not minimal under the shortlex ordering, w has a factorisation as  $w_1w_2w_3$ , where  $w_2$  is critical and either  $w_1\tau(w_2)w_3<_{\text{lex}} w$  or  $w_1\tau(w_2)w_3$  is not freely reduced. In that case, we call the  $\tau$ -move on w that replaces  $w_2$  by  $\tau(w_2)$  together with any subsequent free reduction within  $w_1\tau(w_2)w_3$  a critical reduction of w. It follows from [17, Theorem 2.4] that a succession of critical reductions reduces any word to its shortlex minimal representative. Further, any two geodesic representatives are related by a sequence of  $\tau$ -moves. In particular this implies that two representatives of the same group element must either both be signed or both unsigned.

In order to deal with the reduction of non-geodesic words, we extend the concept of  $\tau$ -moves.

A freely reduced subword u of a word w is said to be *over-critical* if it is has either of the forms

$$_{n}(x,y)\xi(z^{-1},t^{-1})_{n}$$
 or  $_{n}(x^{-1},y^{-1})\xi(z,t)_{n}$ ,

with  $p, n \leq m$ , p+n > m and  $\{x,y\} = \{z,t\} = \{x_1,x_2\}$ , and the extra condition that, if p < m, then p(x,y) or  $(z,t)_p$  is a maximal positive alternating subword of w and if n < m then  $(z^{-1},t^{-1})_n$  or  $n(x^{-1},y^{-1})$  is a maximal negative alternating subword of w.

Note that we do not require that p = p(w) or n = n(w). But since the conditions on p, n force p(w) + n(w) > m, over-critical words are necessarily non-geodesic.

We define  $\tau$  on over-critical words by

$$\tau(p(x,y)\,\xi\,(z^{-1},t^{-1})_n) := {}_{m-p}(y^{-1},x^{-1})\,\delta(\xi)\,(t,z)_{m-n},$$
  
$$\tau(p(x^{-1},y^{-1})\,\xi\,(z,t)_p) := {}_{m-p}(y,x)\,\delta(\xi)\,(t^{-1},z^{-1})_{m-p}.$$

We refer to these as length reducing  $\tau$ -moves. Note that any such move can also be achieved by an ordinary  $\tau$ -move followed by free reduction. So it follows from Lemma 3 that any word can be reduced to a geodesic by a sequence of length reducing  $\tau$ -moves and free reduction. We call the move *positive* if p=m, negative if n=m and unsigned otherwise. (So if p=n=m it is both positive and negative, but we won't need to use that case.)

**Lemma 4** Let w be freely reduced with 0 < p(w), n(w) < m. Then w can be reduced to a geodesic using a sequence of unsigned length reducing  $\tau$ -moves alone (i.e. with no free reduction).

*Proof* This follows from lemma 3 together with the fact that applying an unsigned length reducing  $\tau$ -move to w results in a freely reduced word, and does not increase p(w) or n(w).

We shall also need the following lemma when we come to verify D2 for Artin groups of extra large type.

**Lemma 5** Let  $g, h \in DA(m)$ . If  $gh \in \langle x_i \rangle$ , then g and h have geodesic factorisations  $x_i^s w$  and  $w^{-1}x_i^t$ , for some element w and integers s, t.

*Proof* The result is trivial if either g or h (and hence both) is in  $\langle x_i \rangle$ , so we suppose not.

Suppose that  $g = a^k h^{-1}$  with  $a = x_i^{\pm 1}$  and  $k \ge 0$ . Suppose first that  $|ah^{-1}| = 1 + |h|$ . Then |g| = k + |h| and the result is clear. Otherwise, by Lemma 3,  $a^{-1}$  is a left divisor of  $h^{-1}$ . Let l be maximal such that  $a^{-l}$  is a left divisor of  $h^{-1}$ , and let  $h^{-1} = a^{-l}w$ . Then  $a^{k-l}w$  is a geodesic factorisation of g, and the result follows.

# 6.2 Verifying D1 and D2 for dihedral Artin groups

Our aim in this section is to verify that the properties D1 and D2 hold in any dihedral Artin group G. In fact, it can be shown that the kernel of the natural homomorphism of  $\mathrm{DA}(m)$  onto the dihedral group of order 2m in which the images of  $x_1$  and  $x_2$  have order 2 is a direct product of an infinite cyclic group and a free group of rank m-1. The fact that  $\mathrm{DA}(m)$  has rapid decay then follows from [18, Propositions 2.1.5, 2.1.9], so we do not need to verify D1 and D2 in order to prove rapid decay in these groups. However we need the

properties here in order to prove that corresponding properties hold for Artin groups satisfying the hypotheses of Theorem 1.

We shall assume throughout this section that  $m \geq 3$ . We assume also that  $k \leq l$ , and deduce D1 and D2 in that case; the case  $k \geq l$  then follows immediately by symmetry.

We first need to define our set  $\mathcal{P}$  of permissible geodesic factorisations of elements  $g \in G$ . For unsigned elements g, we define  $\mathcal{P}(g)$  to be the set all geodesic factorisations of g; that is,  $\mathcal{P}(g) := \{(g_1, g_2) \in G^2 : g_1g_2 = g, |g_1| + |g_2| = |g|\}$ . If m is infinite (that is, the 2-generator group is free) then for any element g we define  $\mathcal{P}(g)$  to be its set of geodesic factorisations. From now on we shall assume that  $m < \infty$ .

Unfortunately, for  $m < \infty$ , if we adopt the above definition for signed words, then D1 does not hold, so we are forced to use a more restrictive definition, which significantly increases the technical complications in the proofs.

For a positive (respectively negative) element g, we define d(g) to be the maximal k such that  $\Delta^k$  (respectively  $\Delta^{-k}$ ) is a divisor of g. Then we call a geodesic factorisation  $g_1g_2 = g$  of g  $\Delta$ -decreasing if  $d(g_1) + d(g_2) < d(g)$ . We define  $\mathcal{P}(g) := \mathcal{P}^1(g) \cup \mathcal{P}^2(g)$ , where  $\mathcal{P}^1(g)$  is the set of factorisations  $g_1g_2$  for which at least one of  $g_1, g_2$  is represented by geodesic words with at most two syllables (i.e. either  $g_1$  or  $g_2$  equals  $a^sb^t$  with  $a, b \in A$ ,  $s, t \geq 0$ ), and  $\mathcal{P}^2(g)$  is the set of geodesic factorisations of g that are not  $\Delta$ -decreasing. That is,

$$\mathcal{P}^2(g) := \{ (g_1, g_2) \in G^2 : g_1 g_2 = g, |g_1| + |g_2| = |g|, d(g_1) + d(g_2) = d(g) \}.$$

(In fact we could omit the factorisations in  $\mathcal{P}^1$  and still obtain D1 and D2 in the dihedral case, but we will need them in the next section in order to prove the conditions when there are more than two generators; that proof is easier if we include those factorisations already for the dihedral case.) We say that a left (respectively right) divisor h of g lies in  $\mathcal{P}^i_l(g)$  (respectively  $\mathcal{P}^i_r(g)$ ) for i=1 or 2 if  $(h,h^{-1}g)\in\mathcal{P}^i(g)$  (respectively  $(gh^{-1},h)\in\mathcal{P}^i(g)$ ), and let  $\mathcal{P}_l(g):=\mathcal{P}^1_l(g)\cup\mathcal{P}^2_l(g)$  and  $\mathcal{P}_r(g):=\mathcal{P}^1_r(g)\cup\mathcal{P}^2_r(g)$ .

Our first aim is to prove Property D1. In order to do that we need to examine the set of geodesic words representing a given element. Let w be a geodesic word with p(w) + n(w) = m; we write p := p(w), n := n(w). We have seen that w can be reduced to its shortlex normal form by a sequence of lex-reducing critical reductions. It follows that if w' is another geodesic word with  $w =_G w'$ , then w can be transformed to w' by a sequence of  $\tau$ -moves.

First suppose that p, n > 0. The word w has the form  $\eta_0 w_1 \eta_1 \cdots w_s \eta_s$ , where each  $w_i$  has the form  $(x, y)_p$  or  $(x^{-1}, y^{-1})_m$  with  $\{x, y\} = \{x_1, x_2\}$ , and  $p(\eta_i) < p$ ,  $m(\eta_i) < m$  for all i. A  $\tau$ -move has the effect of changing the signs of  $w_i$ ,  $w_j$  for some i < j for which  $w_i, w_j$  have opposite signs, and replacing the subword between them by its image under  $\delta$ . Denote this  $\tau$ -move by (i, j). So  $w' = \eta'_0 w'_1 \eta'_1 \cdots w'_s \eta'_s$ , where each  $\eta'_r = \eta_r$  or  $\delta(\eta_r)$ , and all of the subwords  $w_r, w'_r$  are maximal alternating. But note that although  $|\eta'_r| = |\eta_r|$ , it is not necessarily true that  $|w_r| = |w'_r|$ .

**Lemma 6** Let w, w' be geodesic words as above. If, for some r with  $1 \le r \le s$ , the number of positive  $w_i$  with  $1 \le i \le r$  is equal to the number of positive  $w_i'$  with  $1 \le r \le s$ , then  $\eta_0'w_1'\eta_1'\cdots w_r' =_G \eta_0w_1\eta_1\cdots w_r$  and  $\eta_r = \eta_r'$ .

*Proof* This is by induction on r. Since none of the  $\tau$ -moves changes  $\eta_0$ , we have  $\eta_0 = \eta'_0$ , and so the result is true for r = 0.

So suppose that  $r \geq 1$ . Since  $w_1$  can only be changed by a transformation (1,i) with 1 < i, there are only two possible  $w'_1$ , one of which is  $w_1$  and the other a word of opposite sign to  $w_1$ . So if  $\mathrm{Sign}(w_1) = \mathrm{Sign}(w'_1)$ , then  $w_1 = w'_1$  and the result follows by induction. Otherwise, we have  $\{w_1, w'_1\} = \{p(x,y), m(y^{-1},x^{-1})\}$ . From the hypothesis, there must be both positive and negative  $w_i$  with  $i \leq r$ , so there is a  $w'_i$  with  $1 \leq i \leq r$  and  $1 \leq i \leq$ 

For a positive element g (the negative case is similar), let r = d(g). Then, for a geodesic factorisation  $g = g_1g_2$  in  $\mathcal{P}^2(g)$ , we have  $d(g_1) = s$  and  $d(g_2) = r - s$  for some  $0 \le s \le r$ , and then  $g_1$  has  $\Delta^s$  as a left divisor and  $g_2$  has  $\Delta^{r-s}$  as a right divisor.

**Lemma 7** Let w, w' be positive geodesic words representing  $g \in G$  such that w and w' both have  $\Delta^s$  as a prefix and  $\Delta^{r-s}$  as suffix for some s, where r = d(g). Then w = w'.

Proof We have  $w = \Delta^s \eta \Delta^{r-s}$ ,  $w' = \Delta^s \eta' \Delta^{r-s}$  with  $\eta =_G \eta'$ . Since d(g) = r, we have  $d(\eta) = d(\eta') = 0$  so by [21, Proposition 4.3]  $\eta_G$  has a unique geodesic representative, and hence  $\eta = \eta'$  and w = w'.

**Lemma 8** Let  $g \in G$  be a positive element and let  $l \ge 0$ . Then, for  $a, b \in A$  with  $\{a, b\} = \{x_1, x_2\}$ , the number of right divisors of g of the form  $a^s b^t$  with s + t = l is at most d(g) + 1.

Proof The proof is by induction on l, the case l=0 being trivial. We may suppose that  $a^l$  is a right divisor of g, since otherwise all right divisors of g of the required form end in b, and the result follows from the case l-1 applied to  $gb^{-1}$ . Similarly, we may assume that  $b^l$  is a right divisor of g, since otherwise the suffixes of the required form all begin with a, and the result follows from the case l-1 applied to g.

Let d=d(g). We may assume that d>0, since otherwise g has a unique geodesic representative. It is straightforward to prove by induction on t that, for any t>0, the group element  $g_{a,t}:=\Delta^t a^{-t}$  is positive with  $d(g_{a,t})=0$  and  $lg_{a,t}=b$  (that is, the unique geodesic representative ends in b); in fact the unique geodesic representative is a concatenation of positive alternating words each of length m-1. Similarly  $g_{b,t}=\Delta^t b^{-t}$  has  $d(g_{b,t})=0$  with  $lg_{b,t}=a$  and, since  $g_{b,t}$  is obtained from  $g_{a,t}$  by interchanging a and b, we have  $f[g_{a,t}]\neq f[g_{b,t}]$ . We write  $g=g'\Delta^d$  with d(g')=0, and observe that the element  $g'g_{a,d}=ga^{-d}$  is divisible by  $\Delta$  if and only if g' ends in a positive letter other than  $f[g_{a,t}]$ , and

similarly for the element  $g'g_{b,d} = gb^{-d}$ ; hence exactly one of the two group elements  $g'g_{a,d}$  and  $g'g_{b,d}$  is not divisible by  $\Delta$ . If  $g'g_{a,d} = ga^{-d}$  is not divisible by  $\Delta$ , then its unique geodesic representative ends in  $lg_{a,d} = b$ ;  $ga^{-d}$  cannot have a as a right divisor, and g cannot have  $a^{d+1}$  as a right divisor; Similarly we see that if  $g'g_{b,d}$  is not divisible by  $\Delta$ , then g cannot have  $b^{d+1}$  as a right divisor. Hence g cannot have both  $a^{d+1}$  and  $b^{d+1}$  as right divisors. It now follows from the preceding paragraph that  $l \leq d$ , and then the result follows immediately, by counting the number of pairs (s,t) with s+t=l.

We can now prove D1, which we can express as follows:

**Corollary 1** There is a polynomial P(x) with the following property: for any  $g \in G$  the number of left divisors of g of length k in  $\mathcal{P}_l(g)$  is bounded above by P(k).

Proof Suppose that  $g \in G$  has length k + l. We need to bound the number of group elements  $u_G$  for which w = uv is a geodesic word representing g, with |u| = k, |v| = l and  $(u_G, v_G) \in \mathcal{P}$ .

First suppose that w = uv is unsigned, of the form  $\eta_0 w_1 \eta_1 \cdots w_s \eta_s$ , as above. If one of the subwords  $w_i$  of w intersects both u and v, then let  $u_1$  be the prefix of w that ends at the end of  $w_i$ ; otherwise let  $u_1 = u$ .

Suppose that  $u_1$  contains  $r_p$  positive subwords  $w_i$  and  $r_n$  negative subwords  $w_i$ . The group element  $(u_1)_G$  is determined by those two parameters by Lemma 6. Since each of  $r_p, r_n$  must be in the range [0, k], there are at most  $k^2$  choices for  $(u_1)_G$  corresponding to unsigned geodesics w. Since u differs from  $u_1$  by an alternating subword of length less than m (and there are less than 4m such words), there are at most  $4mk^2$  choices for  $u_G$  that correspond to unsigned geodesic representatives w.

Now suppose that w=uv is signed. Suppose first that  $(u,v) \in \mathcal{P}^1$ , so that either u or v has at most 2 syllables. There are at most 2(k+1) possible words u with at most two syllables. By Lemma 8, there are at most 2(d(g)+1) possible words v with at most two syllables. If the signed element g has the geodesic factorisation  $g=g'a^sb^t$  then, by collecting powers of  $\Delta$  that divide g to the left, we see that at least m-2 of the letters in each occurrence of  $\Delta$  in g must come from g', and hence  $|g'| \geq (m-2)d(g) \geq d(g)$ . So, if there are factorisations in which v has two syllables, then  $k \geq d(g)$ . So there are at most 4(k+1) such pairs (u,v).

Now assume that  $(u,v) \in \mathcal{P}^2$ . Then  $u =_G \Delta^s u'$  and  $v =_G v' \Delta^{d(g)-s}$  for some s, where u'v' is not divisible by  $\delta$ , and by Lemma 7 u'v' is completely determined by g, s. Further u'v' is the unique geodesic representative of  $(u'v')_G$ . Hence (given g, k),  $(u_G)$  is completely determined by  $s \in [0, k]$ . The number of such factorisations is therefore at most k + 1.

In order to verify the condition D2, we first describe a process that we call merging, which we can use to define the set S(g,k,l) that appears in that condition.

Given elements  $g_1, g_2$  of length k, l whose product g has length less than k+l, an application of the merging process results in a triple  $(f_1, \Delta^r, f_2)$  of elements, such that for some  $h_1, h_2$  with  $h_1h_2 =_G \Delta^r$ ,  $f_1h_1$  and  $h_2f_2$  are geodesic factorisations of  $g_1, g_2$ , respectively, and furthermore  $(f_1, h_1), (h_2, f_2) \in \mathcal{P}$ . We call such a triple a merger of  $g_1$  and  $g_2$ ; we do not claim or need  $g_1, g_2$  to have a unique merger (although we suspect that it does). Then we define the set S(g, k, l) to be the set of all triples  $(f_1, \Delta^r, f_2)$  that arise as mergers of pairs of elements  $g_1, g_2$  of lengths k, l and with  $g_1g_2 =_G g$ .

We compute a merger of  $(g_1, g_2)$  as the last term of a sequence of triples  $(g_1^{(t)}, \Delta^{r_t}, g_2^{(t)})$ , defined as follows. When one or both of  $g_1, g_2$  is a signed word, we have to be careful to ensure that the resulting geodesic factorisations of  $g_1$  and  $g_2$  lie in  $\mathcal{P}$ . We set  $g_1^{(1)} := g_1, r_1 := 0, g_2^{(1)} := g_2$ .

Now, the t-th step of the merging process computes  $g_1^{(t+1)}, r_{t+1}, g_2^{(t+1)}$  as follows. In each of the three situations below, we choose non-identity group elements h, h', and then define  $g_1^{(t+1)} := g_1^{(t)} h^{-1}$  and  $g_2^{(t+1)} := h'^{-1} g_2^{(t)}$  such that  $g_1^{(t+1)} h$  and  $h' g_2^{(t+1)}$  are geodesic factorisations of  $g_1^{(t)}$  and  $g_2^{(t)}$  respectively, with  $g_1^{(t+1)} \in \mathcal{P}_l(g_1)$  and  $g_2^{(t+1)} \in \mathcal{P}_r(g_2)$ .

- (i) If we can choose h, h' with  $h\delta^{r_t}(h') = 1$ , then we do so with h, h' as long as possible, and put  $r_{t+1} := r_t$  (we call this a cancellation move).
- (ii) Otherwise, if  $g_1^{(t)}$  and  $g_2^{(t)}$  are both signed words, and we can choose  $h = h' = \Delta^{\epsilon}$  with  $\epsilon = \pm 1$ , then do so, and put  $r_{t+1} := r_t + 2\epsilon$ .
- (iii) Otherwise, if we can choose h, h' with  $h\delta^{r_t}(h') = \Delta^{\epsilon}$  with  $\epsilon = \pm 1$ , then do so and put  $r_{t+1} := r_t + \epsilon$  (we call this a  $\Delta$ -extraction move).

If for some t, no pair of elements h,h' satisfy any of these three conditions, then merging is complete, and we output  $(f_1,\Delta^r,f_2):=(g_1^{(t)},\Delta^{r_t},g_2^{(t)})$  as a merger of  $(g_1,g_2)$ . Note that we needed the conditions at each previous step that  $g_1^{(t+1)}\in\mathcal{P}_l(g_1)$  and  $g_2^{(t+1)}\in\mathcal{P}_r(g_2)$  to ensure that  $(f_1,\Delta^r,f_2)$  possesses all the required properties of a merger of  $(g_1,g_2)$ .

**Lemma 9** Suppose that  $g_1, g_2$  are elements of length k, l respectively, where  $k \leq l$ , and that  $(f_1, \Delta^r, f_2)$  is a merger of  $(g_1, g_2)$ ; Let  $h_1 := f_1^{-1}g_1$  and  $h_2 := g_2f_2^{-1}$ . Then  $r \leq k$  and  $|h_1|, |h_2| \leq (m-1)k$ .

Proof It is clear that the process above completes in at most k stages, giving the required bound on r. At each stage of the merging process, the ratio of the lengths of the elements h,h', stripped from  $g_1^{(t)}$  and  $g_2^{(t)}$  to give  $g_1^{(t+1)}$  and  $g_2^{(t+1)}$ , is in the interval [1/(m-1), m-1]. Hence the same is true for the total lengths of elements stripped off, that is,  $1/(m-1) \leq |h_1|/|h_2| \leq m-1$ . Since  $|h_1| \leq |g_1| = k$  and  $h_2 \leq |g_2| = l$ , we get  $|h_1|, |h_2| \leq (m-1)k$ , as claimed.

The definition of the merging process ensures that, for a merger  $(f_1, \Delta^r, f_2)$  of  $(g_1, g_2)$ , we have  $(f_1, h_1), (h_2, f_2) \in \mathcal{P}$ . So, in order to verify that D2 holds, we just need to find polynomial bounds on S(g, k, l) and the associated set T(k, l) of powers of  $\Delta$ , and a value for the constant K.

The above lemma already bounds |T(k,l)| by 2k+1 and K by m-1, so it remains to find a polynomial bound on S(g,k,l). In order to do this we need to explore a reduction process, which we call *compression*, that starts with a triple  $(f_1, \Delta^r, f_2) \in S(g, k, l)$  and produces a geodesic representative of g. Reversing the compression process will then enable us to estimate the size of S(g, k, l).

So suppose that  $(f_1, \Delta^r, f_2) \in S(g, k, l)$ . The fact that the merging process has completed at  $(f_1, \Delta^r, f_2)$  ensures that  $f_1, f_2$  cannot both have powers of  $\Delta$  as divisors and that, if one of the two elements has such a divisor  $\Delta^{r_0}$  and  $r, r_0 \neq 0$ , then  $r, r_0$  cannot have opposite signs. Hence we see that  $f_1, f_2$  have geodesic representatives of the form  $u\Delta^{r_0}, v$  or  $u, \Delta^{r_0}v$  for some  $r_0$  (possibly zero), where u, v are not divisible by  $\Delta^{\pm 1}$ . Then  $g_1\Delta^r g_2$  is represented by  $u\Delta^{r_1}v =_G u\delta^{r_1}(v)\Delta^{r_1}$ , where  $r_1 = r + r_0$  has the same sign as r, and (since the merging process terminated),  $u\delta^{r_1}(v)$  is freely reduced and also contains no powers of  $\Delta$ . Then, by Lemma 4, if non-geodesic,  $u\delta^{r_1}(v)$  can be reduced to a geodesic word using only unsigned length reducing  $\tau$ -moves.

We describe that reduction more precisely as follows. We define  $u_1$  to be the shortest prefix of  $u\delta^{r_1}(v)$  that contains u and ends at the end of a maximal alternating subword, and define  $v_1$  to be the remainder of the word. Then  $v_1$  is geodesic, and we set  $v_2 := v_1$ . If  $u_1$  is also geodesic, then we set  $u_2 := u_1$ , but otherwise we set  $u_2$  to be a geodesic word derived from  $u_1$  by a single length reducing  $\tau$ -move. We set  $u_2^{(1)} := u_2, v_2^{(1)} := v_2$ .

We can now reduce  $u_2^{(1)}v_2^{(1)}$  to geodesic form through a series of words  $u_2^{(t)}v_2^{(t)}$  using a sequence of length reducing  $\tau$ -moves, the i-th of which involves one alternating subword within  $u_2^{(t)}$  and one within  $v_2^{(t)}$ . Specifically, we derive  $u_2^{(t+1)}, v_2^{(t+1)}$  from  $u_2^{(t)}, v_2^{(t)}$  by either replacing a suffix  $p(x,y) \xi_1$  in  $u_2^{(t)}$  and a prefix  $\xi_2(z^{-1},t^{-1})_n$  in  $v_2^{(t)}$  by a suffix  $m-p(y^{-1},x^{-1})\delta(\xi_1)$  in  $u_2^{(t+1)}$  and a prefix  $\delta(\xi_2)(t,z)_{m-n}$  in  $v_2^{(t+1)}$  or by replacing a suffix  $n(x^{-1},y^{-1})\xi_1$  in  $u_2^{(t)}$  and a prefix  $\xi_2(z,t)_p$  in  $v_2^{(t)}$  by a suffix  $m-n(y,x)\delta(\xi_1)$  in  $u_2^{(t+1)}$  and a prefix  $\delta(\xi_2)(t^{-1},z^{-1})_{m-p}$  in  $v_2^{(t)}$ . Eventually this process produces a geodesic word  $u_3v_3$ .

Next we need to consider the reduction to geodesic form of  $u_3v_3\Delta^{r_1}$ . We do this in two stages. First we reduce  $v_3\Delta^{r_1}$  to  $v_4\Delta^{r'}$ , using a sequence of length reducing  $\tau$ -moves, each of which involves a single  $\Delta^{\pm 1}$  and an alternating subword of the opposite sign within  $v_3$  (or the word derived from it); at the end of this stage, either  $v_4\Delta^{r'}$  is signed or r'=0.

Now if r'=0 we set  $u_4:=u_3$ , but otherwise, we apply a further sequence of length reducing  $\tau$ -moves to  $u_3\Delta^{r'}$ , each move involving a single  $\Delta^{\pm 1}$  and an alternating subword of the opposite sign in the word derived from  $u_3'$ , and hence reduce  $u_3\Delta^{r'}$  to  $u_4\Delta^s$ . The fact that  $u_4\delta^{r'-s}(v_4)\Delta^s$  is now a geodesic representative of  $u_3v_3\Delta^{r_1}$  follows from the two equations  $u_3v_4\Delta^{r'}=_Gu_3\Delta^{r'}\delta^{r'}(v_4)$  and  $u_4\delta^{r'-s}(v_4)\Delta^s=_Gu_4\Delta^s\delta^{r'}(v_4)$ . Our construction ensures that  $u_4\delta^{r'-s}(v_4)$  has no divisor of the form  $\Delta^{\pm 1}$ . This is the end of compression; we use the name  $\kappa(f_1,\Delta^r,f_2)$  for the group element  $(u_4)_G$ .

We now want to estimate both the number of group elements that can arise as  $\kappa(f_1, \Delta^r, f_2)$  out of the compression of at least one element  $(f_1, \Delta^r, f_2)$  of S(g, k, l), and the number of triples  $(f_1, \Delta^r, f_2) \in S(g, k, l)$  for which  $\kappa(f_1, \Delta^r, f_2) = g'$  for a particular group element g'. The product of these two values will give a bound on |S(g, k, l)|.

**Lemma 10** The size of  $\kappa(S(g,k,l))$  is bounded by a polynomial in k.

Proof Suppose that compression of  $(f_1, \Delta^r, f_2)$  leads to  $u_4 \delta^{r'-s}(v_4) \Delta^s$ . We first need to relate  $|u_4|$  to  $k = |g_1|$ . We recall that  $|u| \leq |f_1| \leq k$ ,  $|u_1| \leq |u| + m - 1$ , and  $|u_2| \leq |u_1|$ . Then each move from  $u_2^{(t)}$  to  $u_2^{(t+1)}$  replaces a distinct alternating subword by an alternating subword that is longer by a factor of at most m-1, and doesn't alter the lengths of the subwords before or after that alternating subword. Hence  $|u_3| \leq (m-1)|u_2|$ . By the same argument  $|u_4| \leq (m-1)|u_3|$ . So  $|u_4| \leq (m-1)^2(k+m-1)$ .

Then  $u_4$  is a prefix of length  $k' \leq (m-1)^2(k+m-1)$  of  $w' := u_4 \delta^{r'-s}(v_4)$ , for which  $w' \Delta^s$  is a geodesic representing g and no power of  $\Delta$  divides w'; it follows that  $u_4 \in \mathcal{P}_l(g)$ . By Corollary 1 we know that, for some polynomial  $P_1(x)$ ,  $P_1(k')$  bounds the number of elements of  $\mathcal{P}_l(g)$  represented by a word that is a prefix of length k' of some such w. Hence, since k' is bounded by a polynomial in k, the number of group elements represented by any such  $u_4$  with k' in the appropriate range is bounded by a polynomial in k.

**Lemma 11** The number of triples  $(f_1, \Delta^r, f_2)$  in S(g, k, l) for which  $\kappa(f_1, \Delta^r, f_2)$  is a particular element  $g' \in G$  is bounded by a polynomial in k.

Proof We recall that for elements of S(g,k,l),  $f_1,f_2$  are represented either by words  $u\Delta^{r_0},v$  or by words  $u,\Delta^{r_0}v$ , where u,v have no divisors of the form  $\Delta^{\pm 1}$ . The triple  $(f_1,\Delta^r,f_2)$  is completely determined by the above binary choice together with  $u_G,r$ , and  $r_0$  in the first case. But r (and  $r_0$  in the first case) is bounded above by k. Hence it is now sufficient to bound the number of choices of  $u_G$ . Hence the proof of this lemma is completed by application of the lemma that follows.

**Lemma 12** Given  $g' \in G$ , a polynomial in k bounds the number of group elements  $u_G$  associated as above with triples  $(f_1, \Delta^r, f_2)$  in S(g, k, l) for which  $\kappa(f_1, \Delta^r, f_2) =_G g'$ .

*Proof* We reverse the steps of compression. Suppose that  $w = u_4 \delta^{r'-s}(v_4) \Delta^s$  is a word resulting from compression of some element of S(g, k, l), and that  $(u_4)_G = g'$ .

We first examine the possible geodesics of the form  $u_3v_3\Delta^{r'}$  from which w might have been derived during compression by length reducing moves.

If  $v_4\Delta^s$  is unsigned, then we must have  $u_3 = u_4$ , r' = s, and  $(u_3)_G = (u_4)_G$ Otherwise, if  $\delta^{r'-s}(v_4)\Delta^s$  is positive, r'-s might be any non-negative integer bounded above by the number of maximal positive alternating subwords in  $u_4$ , and  $u_3$  could be any word derived from  $u_4$  by reversing r'-s length

reducing rules using  $\Delta$ , while if  $\delta^{r'-s}(v_4)\Delta^s$  is negative, s-r' might be any non-negative integer bounded above by the number of maximal negative alternating subwords in  $u_4$ ,  $u_3$  could be a word derived from  $u_4$  by reversing s-r' length reducing rules using  $\Delta^{-1}$ . We can check that the value of  $(u_3)_G$  is determined by  $(u_4)_G$  and r'-s.

Hence there are at most (k+1) possibilities for  $(u_3)_G$  for which  $(u_4)_G =_G g'$ . We saw above that if  $v_3$  is unsigned or if it has the opposite sign to r', then  $|r'| \leq k$ , and so can take up to 2k+1 values. Otherwise,  $v_3 \Delta^{r'}$  is a signed word, and then r' is uniquely determined by  $(v_3 \Delta^{r'})_G$ .

We next reverse the length reducing  $\tau$ -moves that transformed  $u_2v_2$  to  $u_3v_3$ . Each reversed move involves replacing a subword  $_p(x,y)\xi(z^{-1},t^{-1})_n$  or  $_n(x^{-1},y^{-1})\xi(z,t)_p$  with 0 < p, n < m and p+n < m by  $_{m-p}(y^{-1},x^{-1})\delta(\xi)(t,z)_{m-n}$  or  $_{m-n}(y,x)\delta(\xi)(t^{-1},z^{-1})_{m-p}$ , where the left maximal alternating subword is in some  $u_2^{(t+1)}$  and the right one in  $v_2^{(t+1)}$ . Call these transformations of type (p,-n) or (-n,p). Then there are at most  $m^2$  such possible types. The element  $(u_2)_G$  depends only on  $(u_3)_G$  and the total number of  $\tau$ -moves of each type. Since there are at most k such  $\tau$ -moves in total, there are at most  $k^{m^2}$  possible elements  $(u_2)_G$  for a given  $(u_3)_G$ .

And  $u_1$  represents the same element as  $u_2$ . A final reversal of a  $\tau$ -move on the final maximal alternating suffix of  $u_2$  recovers the word  $u_1$ , which represents the same group element as  $u_2$ . And the deletion of an alternating suffix of length at most m-1 from  $u_1$  yields u; hence each choice of  $(u_1)_G$  yields at most m choices of u.

The combination of Lemma 10 and Lemma 11 gives the required polynomial bound on S(g, k, l). Hence the proof of D2 for dihedral Artin groups is complete.

## 7 Artin groups of large type

Our aim in this section is to prove that Artin groups satisfying the hypotheses of Theorem 1 satisfy D1 and D2, and hence have rapid decay. Much of what we say is true for any large-type Artin group. But occasionally we shall need to restrict the groups we consider to those satisfying the conditions of Theorem 1. For those results where this is the case, we shall make it clear in the statement of the result; the remaining results are proved for all Artin groups of large type.

We assume throughout this section that G is an Artin group of large type, with notation as defined in Section 5. We may assume that not all  $m_{ij}$  are infinite, for otherwise the group is free, and rapid decay is known. For any distinct pair of generators  $x_i, x_j$ , we let G(i, j) = G(j, i) be the subgroup of G generated by  $x_i$  and  $x_j$ . We use  $\Delta_{ij}$  to denote  $(x_i, x_j)_{m_{ij}}$ , and  $\delta_{ij}$  to denote the permutation of  $\{x_i, x_i^{-1}, x_j, x_j^{-1}\}$  induced by conjugation by  $\Delta_{ij}$ .

The process of reducing words in G to shortlex minimal form is described in [17, Proposition 3.3]. In [17, Section 3], a leftward or rightward *critical sequence* 

is defined as a sequence of  $\tau$ -moves applied to a word, in which successive moves overlap in a single letter. For a geodesic word whose maximal proper prefix is already shortlex minimal, but which is not itself lexicographically minimal, a lexicographic reduction to a shortlex minimal word can be achieved by a single leftward critical sequence, known as a leftward lex reducing sequence. Similarly, for a non-geodesic word whose maximal proper prefix is shortlex minimal, a length reduction to a shortlex minimal word can be achieved by a single rightward critical sequence followed by a single free cancellation; the combination is known as a rightward length reducing sequence.

## 7.1 The geodesics in Artin groups of large type

We shall need some results about geodesics in Artin groups of large type. The first of these is proved in [17].

**Proposition 1** ([17, Proposition 4.5]) Suppose that v, w are any two geodesic words representing the same group element, and that  $lv \neq lw$ . Then:

- (1) lv and lw have different names;
- (2) The maximal 2-generator suffixes of v and w involve generators with names equal to those of lv and lw;
- (3) Any geodesic word equal in G to v must end in lv or in lw.

Corresponding results apply if  $f[v] \neq f[w]$ .

**Corollary 2** If wa is a geodesic word for some  $a \in A$  and k > 1, then  $wa^k$  is a geodesic word for all k > 1.

*Proof* Otherwise, choosing k minimal with  $wa^k$  non-geodesic, the group element  $wa^{k-1}$  has geodesic representatives ending both in a and in  $a^{-1}$ , contradicting Proposition 1 (1).

**Proposition 2** Let  $g \in G$  and  $x_i, x_j \in X$  with  $i \neq j$ . Then g has a unique left divisor  $\mathrm{LD}_{ij}(g) \in G(i,j)$  of maximal length. Furthermore, if w is any geodesic word representing g, and u is the maximal  $\{x_i, x_j\}$ -prefix of w, then  $\mathrm{LD}_{ij}(g) =_G ua^r$  for some  $r \neq 0$  with  $a \in \{x_i^{\pm 1}, x_j^{\pm 1}\}$  and  $|\mathrm{LD}_{ij}(g)| = |u| + r$ .

Similarly, g has a unique right divisor  $RD_{ij}(g) \in G(i,j)$  of maximal length, to which the corresponding results apply.

*Proof* Order the monoid generators of G such that  $x_i^{\pm 1}, x_j^{\pm 1}$  (in some order) come first, and let w' be the shortlex least representative of g, using this ordering, with maximal  $\{x_i, x_j\}$ -prefix u'.

Let w be an arbitrary geodesic representative of g and let u be the maximal  $\{x_i, x_j\}$ -prefix of w. We consider the process of reducing w to its shortlex form w' by considering each letter of w in turn, and reducing the prefix ending in that letter to shortlex form. Suppose that  $w_0 = w$ , that w reduces through the sequence of words  $w_1, w_2, \ldots$  to  $w_n = w'$  and that  $u_0 = u, u_1, \ldots, u_n = u'$  is the corresponding sequence of maximal  $\{x_i, x_j\}$ -prefixes.

By [17, Proposition 3.3], the prefix of length k in  $w_k$  is either already shortlex reduced, or can be reduced to shortlex form with a single leftward lex reducing sequence. Such a reduction cannot change a letter of  $u_k$  to a letter with name not in  $\{x_i^{\pm 1}, x_j^{\pm 1}\}$ , since that would be shortlex increasing. So either  $u_{k+1} = u_k$  or  $u_{k+1}$  is the shortlex reduction of  $u_k a^s$  for some  $a \in \{x_i^{\pm 1}, x_j^{\pm 1}\}$  and s > 0. By [17, Lemma 3.8(2)], after such a reduction, the names of the next two letters in  $w_{k+1}$  after  $u_{k+1}$  are the name of a and a generator not in  $\{x_i, x_j\}$ . So if subsequent reductions occur that increase the length of the maximal i, j-prefix, then they all involve adjoining the same letter a. (We can't adjoin a and then  $a^{-1}$  or the word would not be geodesic!) So we have  $u' =_G ua^r$  with |u'| = |u| + r. as claimed. Since the equation holds for any choice of w, we have proved that  $(u')_G$  is the unique longest left divisor of g in G(i, j).

The proof for the maximal right divisor is similar.

The next proposition implies that for the groups in Theorem 1, for a given g, i and j, the letter a arising in Proposition 2 is unique. This is false if we only assume large type.

**Proposition 3** Assume that G satisfies the hypotheses of Theorem 1, and let  $g \in G$  and  $x_i, x_j \in X$  with  $i \neq j$ . Then either

- (1) every geodesic word representing g has a prefix that represents  $LD_{ij}(g)$ ; or
- (2) there is a unique letter  $a \in \{x_i^{\pm 1}, x_j^{\pm 1}\}$ , and an element  $\mathrm{LD}'_{ij}(g) \in G(i,j)$  such that, for any geodesic representative w with maximal  $\{x_i, x_j\}$ -prefix u, we have  $\mathrm{LD}_{ij}(g) =_G ua^r$  and  $u =_G \mathrm{LD}'_{ij}(g)a^s$ , for  $r, s \geq 0$ .

In case (1), we define  $LD'_{ij}(g) = LD_{ij}(g)$ , for future reference.

Proof Let  $h := LD_{ij}(g)$  and  $h' := h^{-1}g$ , and suppose that case (1) does not hold. Then g has at least one geodesic representative whose maximal  $\{x_i, x_j\}$ -prefix u is a proper left divisor of  $LD_{ij}(g)$ . Proposition 2 implies that  $h =_G ua^r$  with r > 0.

If a is not uniquely determined, then g has another geodesic representative with maximal  $\{x_i, x_j\}$ -prefix v such that  $h =_G vb^s$ , with s > 0 and  $b \neq a$ . We may assume that the names of a and b are  $x_i, x_j$  respectively. Note that, since h has more than one geodesic representative, the vertices corresponding to  $x_i, x_j$  in the graph  $\Gamma$  defining G must be joined by an edge (that is  $m_{ij} < \infty$ ).

Now  $a^rh' = u^{-1}g$  has a geodesic representative beginning with a and another geodesic representative beginning with a letter with name  $x_{i'}$  for some  $i' \neq i, j$ . By Proposition 1, all geodesic representatives of  $a^rh'$  have their longest 2-generator prefix in G(i, i'), and hence all geodesic representatives of h' must begin with the same letter c, of which the name is  $x_{i'}$ . Furthermore, any geodesic representative of  $\mathrm{LD}_{ii'}(a^rh')$  must contain a critical subword, and similarly  $\mathrm{LD}_{ii'}(b^sh')$  contains a critical subword.

From the hypothesis of Theorem 1 and the fact that the vertices  $x_i$  and  $x_j$  are joined by an edge in  $\Gamma$ , it follows that the edges joining vertices  $x_i$ ,  $x_{i'}$  and

vertices  $x_j, x_{i'}$  cannot both have the label 3. So, for at least one of  $\mathrm{LD}_{ii'}(a^rh')$  and  $\mathrm{LD}_{ji'}(b^sh')$ , it is true that any geodesic representative has at least four syllables. Assume without loss that this is true for  $\mathrm{LD}_{ii'}(a^rh')$ . So h' has geodesic representatives  $u_1, u_2$ , where  $u_1$  has a prefix in G(i, i') with at least three syllables and  $u_2$  has a prefix in G(j, i') with at least two syllables. But then, if  $c^s$  is the highest power of c that is a left divisor of h',  $c^{-s}h'$  has a geodesic representative beginning with  $x_i$  with a 2-generator prefix in G(i, i') and another geodesic representative beginning with  $x_j$ , which contradicts Proposition 1 (as applied to prefixes of  $u_1$  and  $u_2$ ).

So a is indeed uniquely determined. We define  $LD'_{ij}(g) := LD_{ij}(g)a^{-s}$ , where  $a^s$  is the maximal power of a that is a right divisor of  $LD_{ij}(g)$ .

- **Proposition 4** (1) Let v, w be two geodesic words representing the same group element g, with  $lv \neq lw$ . Then a single rightward critical sequence can be applied to v to yield a word ending in lw.
  - (2) Let v be a freely reduced non-geodesic word with v = wa with  $a \in A$  and w geodesic. Then v admits a rightward length reducing sequence.

Proof The proof of (1) is by induction on |v|, the result being vacuously true when |v| = 1. Let  $x_i$  and  $x_j$  be the names of lv and lw, and let v = v'u, where u is the longest 2-generator suffix of v. If u has a geodesic representative ending in lw, then the result follows from [17, Corollary 2.6], so suppose not. By Corollary 2, we have  $RD_{ij}(g) =_G a^r u$  for some  $a \in \{x_i^{\pm 1}, x_j^{\pm 1}\}$ , and also  $RD_{ij}(g)$  has a geodesic representative ending in lw. So, by [17, Lemma 2.8], a single  $\tau$ -move can be applied to au to give a word ending in lw. Now, by inductive hypothesis, a single rightward critical sequence can be applied to v' to yield a word ending in a, and following this by the above  $\tau$ -move results in the required critical sequence, which completes the proof of (1).

If v is as in (2), then w has a geodesic representative ending in  $a^{-1}$ , and the result follows from (1).

In fact the above proposition provides a slightly shorter proof that Artin groups of large type have FFTP than the one in [17].

## 7.2 Verifying D1 and D2 for the Artin groups in Theorem 1

We must first define our set  $\mathcal{P}$  of permissible geodesic factorisations  $(g_1, g_2)$ . We use the notation  $\mathcal{P}_{ij}$  to denote the set of permissible geodesic factorisations in the dihedral Artin group on G(i,j), as defined in Subsection 6.2. Recall that  $\mathrm{LD}_{ij}(g)$  and  $\mathrm{RD}_{ij}(g)$  were defined in Proposition 2 as the longest left and right divisors of g in G(i,j). Then we define  $\mathcal{P}$  to be the set of geodesic factorisations  $(g_1,g_2)$  in G such that for every pair of generators  $x_i,x_j$ ,  $(\mathrm{RD}_{ij}(g_1),\mathrm{LD}_{ij}(g_2)) \in \mathcal{P}_{ij}$ .

Our proof of D1 will involve an inductive argument. To make this work properly, we have to investigate in what circumstances we can have a geodesic factorisation  $(ag_1, g_2) \in \mathcal{P}$  for some  $a \in A$ , with  $(g_1, g_2) \notin \mathcal{P}$ .

**Lemma 13** Suppose that  $g \in G$ ,  $a \in A$ , |ag| = |g| + 1,  $(ag_1, g_2) \in \mathcal{P}(ag)$  but  $(g_1, g_2) \notin \mathcal{P}(g)$ .

- (1) Then ag has a geodesic representative that begins with a letter  $b \neq a$ .
- (2) If G satisfies the hypotheses in Theorem 1, and if  $ag_1$  does not lie in any 2-generator subgroup of G, then all geodesic representatives of  $LD'_{ij}(ag)$  (as defined in Proposition 3) begin with b, where  $x_i$  and  $x_j$  are the names of a and b.

Proof Suppose first that  $ag_1$  lies in a 2-generator subgroup G(i,j). Then  $(ag_1,g_2) \in \mathcal{P}_{ij}$  and  $(g_1,g_2) \notin \mathcal{P}_{ij}$  implies that the factorisation  $(g_1,g_2)$  of g must be  $\Delta_{ij}$ -decreasing (as defined in Section 6.2), while the factorisation  $(ag_1,g_2)$  of ag is not. So  $ag_1$  is divisible by  $\Delta_{ij}$ , and conclusion (1) is immediate

So now suppose that  $ag_1$  is not in a 2-generator subgroup. Then there exist distinct i', j' such that  $(\mathrm{RD}_{i'j'}(ag_1), \mathrm{LD}_{i'j'}(g_2)) \in \mathcal{P}_{i'j'}$  and  $(\mathrm{RD}_{i'j'}(g_1), \mathrm{LD}_{i'j'}(g_2)) \notin \mathcal{P}_{i'j'}$ . Let  $h := \mathrm{RD}_{i'j'}(ag_1)$ . Since, by Proposition 2,  $\mathrm{RD}_{i'j'}(g_1)$  is a right divisor of h, we have  $|h| > |\mathrm{RD}_{i'j'}(g_1)|$ . We are assuming that  $ag_1 \notin G(i', j')$ , so  $|h| < |ag_1|$ , and  $ag_1h^{-1}$  cannot have a geodesic representative beginning with a, as that would imply that h was a right divisor of  $g_1$ . Hence all geodesic representatives of  $ag_1h^{-1}$  begin with some letter b with  $b \neq a$ , and hence ag has a geodesic representative beginning with b, which proves (1).

We observe also that  $(\mathrm{RD}_{i'j'}(g_1), \mathrm{LD}_{i'j'}(g_2))$  must be a  $\Delta_{i'j'}$ -decreasing factorisation, whereas  $(h, \mathrm{LD}_{i'j'}(g_2))$  is not, so h must be a signed element divisible by  $\Delta_{i'j'}^{\pm 1}$ . Hence h has geodesic representatives beginning with letters with names  $x_{i'}$  and  $x_{j'}$ ; these are suffices u', v' of geodesic representatives u, v of  $ag_1$ . Now if both u' intersects the maximal  $\{x_i, x_j\}$ -prefix of u and v' intersects the maximal  $\{x_i, x_j\}$ -prefix of v, we have  $\{i, j\} = \{i', j'\}$  and hence  $ag_1 \in G(i, j)$ , a contradiction. This implies that ag has a geodesic representative in which the maximal  $\{x_i, x_j\}$ -prefix is a left divisor of  $ag_1h^{-1}$ . Then, by Proposition 3,  $\mathrm{LD}'_{ij}(ag)$  is a left divisor of  $ag_1h^{-1}$ ; hence, as we showed in the proof of (1), all of its geodesic representatives begin with b, and (2) is proved.

In Corollary 1, we proved D1 for 2-generator Artin groups. Let P' be a polynomial such that D1 holds with P' for each of the 2-generator subgroups G(i,j) of G.

**Lemma 14** Assume that G satisfies the hypotheses of Theorem 1. Let  $g \in G$  with |g| = m and suppose that v, w are geodesic representatives of g with  $f[v] \neq f[w]$ . Suppose that  $0 \leq k \leq m$ . Let  $\mathcal{D}$  be the set of left divisors  $g_1$  of g in  $\mathcal{P}_l(g)$  of length k for which all geodesic representatives begin with f[v]. Then  $|\mathcal{D}| \leq Q(k) := \sum_{j=1}^k P'(j)$ .

Proof The proof is by induction on m, the result being vacuously true for m=1. Let the names of f[v] and f[w] be  $x_i, x_j$ , let  $h:=\mathrm{LD}_{ij}(g)$ , and let  $h':=\mathrm{LD}'_{ij}(g)$ , as defined in Proposition 3. Suppose that  $g_1\in\mathcal{D}$ , with  $g=g_1g_2$ . If  $g_1\in G(i,j)$ , then  $g_1\in\mathcal{P}_l(h)$ . It follows immediately from Corollary 1 that there are at most P'(k) such choices for  $g_1$ .

So now suppose that  $g_1 \notin G(i, j)$ . Since  $g_1$  has f[v] as unique left divisor of length 1, whereas g and hence h, by Proposition 2, has more than one such left divisor, h cannot be a left divisor of  $g_1$ .

Since  $g_1 \notin G(i,j)$ , Proposition 3 implies that h' is a left divisor of  $g_1$ , and so a proper divisor of h, and that  $h = h'a^r$  for some r > 0,  $a \in \{x_i^{\pm 1}, x_j^{\pm 1}\}$ . But now, since  $\mathrm{LD}_{ij}(g_1)$  is certainly a left divisor of g, Proposition 3 also implies that  $h = \mathrm{LD}_{ij}(g_1)a^s$ , for some s > 0. We deduce that  $\mathrm{LD}_{ij}(g_1) = h'a^t$ , with  $t \geq 0$ . By [17, Lemma 2.8], h'a has more than one left divisor of length 1, and so cannot be a left divisor of  $g_1$ , so t = 0. Hence  $\mathrm{LD}_{ij}(g) = h'$ .

Now  $h'^{-1}g$  has a geodesic representative with first letter a, whereas  $g'_1 := h'^{-1}g_1$  does not. So by Proposition 1, all geodesic representatives of  $g'_1$  have the same first letter.

We claim that  $g'_1 \in \mathcal{P}_l(h'^{-1}g)$ . If not then for some i',j',  $(g'_1,g_2)$  is  $\Delta_{i'j'}$ -decreasing whereas  $(g_1,g_2)$  is not, and hence  $\mathrm{RD}_{i'j'}(g_1)$  is longer than  $\mathrm{RD}_{i'j'}(g'_1)$ , Now suppose that vw is a geodesic representative of  $g_1$ , with w representing  $\mathrm{RD}_{i'j'}(g_1)$ . Then by Proposition 3 (2) some prefix u of vw represents h'. If u is a prefix of v, then w is a suffix of a representative of  $g'_1$ , and  $\mathrm{RD}_{i'j'}(g_1)$  is a right divisor of  $g'_1$ , yielding a contradiction. So u and w must intersect non-trivially, and hence  $|\{i,j\} \cap \{i',j'\}| = 1$ . We may suppose that i = i' and  $j \neq j'$ . Then since  $(g_1,g_2)$  is not  $\Delta_{i'j'}$ -decreasing, the element  $\mathrm{RD}_{i'j'}(g_1)$  is divisible by  $\Delta_{i'j'}$ , and so has a representative that begins with  $x_j^{\pm 1}$ ; hence we can find a geodesic representative of  $g_1$ , and then one of g, in which the longest  $\{x_i, x_j\}$ -prefix is shorter than |h'|, contradicting Proposition 3 (2).

Now by the inductive hypothesis applied to  $h'^{-1}g$ , there are at most  $Q(k-|h'|) \leq Q(k-1)$  possible  $g'_1$  and hence at most Q(k-1) possible  $g_1$  of length k not in G(i,j). This bounds the total number of  $g_1$  of length k by Q(k-1) + P'(k) = Q(k) for any  $k \leq m$ , and so completes the inductive step.

**Proposition 5** D1 holds with the polynomial  $P_1$  defined by  $P_1(n) = 2\sum_{j=0}^n Q(j)$  for Artin groups satisfying the hypothesis of Theorem 1, where the set  $\mathcal{P}$  and the polynomial Q are as defined above.

*Proof* Let g be an element of length m and choose k with  $0 \le k \le m$ . The proof is by induction on m, the case m = 1 being clear.

If all geodesic representatives of g begin with the same letter, then the result follows immediately from the inductive hypothesis and Lemma 13 (1). So suppose that g has geodesic representatives v, w with  $f[v] \neq f[w]$ , and let  $x_i, x_j$  be the names of f[v], f[w]. Assume without loss that  $\mathrm{LD}'_{ij}(g)$  has a geodesic representative beginning with f[w].

Let  $\mathcal{D}$  be the set of elements in  $\mathcal{P}_l(g)$  of length k. Then  $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{D}_3$ , where  $\mathcal{D}_1$  consists of those elements of  $\mathcal{D}$  that lie in G(i,j),  $\mathcal{D}_2$  consists of those elements of  $D \setminus \mathcal{D}_1$  with at least one geodesic representative beginning with f[w], and  $\mathcal{D}_3$  consists of those elements of  $\mathcal{D} \setminus \mathcal{D}_1$  all of whose geodesic representatives begin with f[v]. Then  $|\mathcal{D}_1| \leq Q(k)$  from the 2-generator case and  $|\mathcal{D}_3| \leq Q(k)$  by Lemma 14.

Suppose that  $g_1 \in \mathcal{D}_2$ . If  $f[w]^{-1}g_1 \notin \mathcal{P}_l(f[w]^{-1}g)$ , then by Lemma 13 (2), all geodesic representatives of  $LD'_{ij}(g)$  begin with f[v], contrary to assumption;

so  $f[w]^{-1}g_1 \in \mathcal{P}_l(f[w]^{-1}g)$ , and the inductive hypothesis applied to  $f[w]^{-1}g_1$  gives  $|\mathcal{D}_2| \leq P_1(k-1)$ . So  $|\mathcal{D}| \leq P_1(k-1) + 2Q(k) = P_1(k)$  as required.

The following lemma is of the same type as Lemma 5.

**Lemma 15** For some  $i \neq j$ , suppose that no nontrivial element of G(i,j) is either a left divisor of  $g_1$  or a right divisor of  $g_2$ . If  $g_1g_2 \in G(i,j)$ , then  $g_1g_2 = 1$ .

Proof Suppose  $g_1g_2 = h$  with  $1 \neq h \in G(i,j)$ . Since  $g_1$  has no element of G(i,j) as left divisor,  $hg_2^{-1}$  cannot be a geodesic factorisation. Let u,v be geodesic words representing  $h, g_2^{-1}$ . Let u' = au'' with  $a \in \{x_i^{\pm 1}, x_j^{\pm 1}\}$  be the shortest suffix of u such that u'v is non-geodesic. Then u''v has a geodesic representative beginning with  $a^{-1}$  whereas u'' does not. So the maximal  $\{x_i, x_j\}$ -prefix of that geodesic representative of u''v cannot represent a left divisor of  $(u'')_G$ , and hence by Lemma 2  $(u'')_G \neq \mathrm{LD}_{ij}((u''v)_G)$ . But then  $g_2$  must have a nontrivial right divisor in G(i,j), contrary to assumption.

It remains to verify D2 for the Artin groups in Theorem 1. We start by defining a merging process for elements  $g_1 \in C_k$  and  $g_2 \in C_l$  which, as in the 2-generator case, will result in a merger  $(f_1, \Delta_{ij}^r, f_2)$  for some i, j where, for  $h_1 := f_1^{-1}g_1$ ,  $h_2 := g_2f_2^{-1}$ , we have  $h_1h_2 = \Delta_{ij}^r$ ,  $(f_1, h_1) \in \mathcal{P}(g_1)$  and  $(h_2, f_2) \in \mathcal{P}(g_2)$ .

As in the 2-generator case, the merging process proceeds through a series of steps, starting with  $g_1^{(1)} := g_1$ ,  $r_1 := 0$ ,  $g_2^{(1)} := g_2$ , and in the t-th step we compute  $g_1^{(t+1)}, r_{t+1}, g_2^{(t+1)}$ , by choosing geodesic factorisations  $g_1^{(t+1)}h$  and  $h'g_2^{(t+1)}$  of  $g_1^{(t)}$  and  $g_2^{(t)}$  such that  $g_1^{(t+1)} \in \mathcal{P}_l(g_1)$  and  $g_2^{(t+1)} \in \mathcal{P}_r(g_2)$ . But there is an additional complication in that the i,j in the term  $\Delta_{ij}^{r_t}$  may change during the process.

Recall from Subsection 6.2 that there are three types of merging steps, the first being free cancellation, and the other two involving a specific  $\Delta_{ij}$ . In general, they are defined in the same way as in the 2-generator case subject to the condition that, if  $r_t \neq 0$ , then we must choose  $h, h' \in G(i, j)$ . If  $r_t = 0$ , then there is no such restriction on free cancellation moves whereas, for the other two types, we have  $h, h' \in G(i, j)$  for the new values of i, j.

Again as in the 2-generator case, for  $g \in G$ ,  $k, l \in \mathbb{N}$  k + l = m := |g| we define the set S(g, k, l) to be the set of all triples  $(f_1, \Delta^r, f_2)$  that arise as mergers of pairs of elements  $g_1, g_2$  of lengths k, l and with  $g_1g_2 = g$ . For each such triple, we have  $\Delta = \Delta_{ij}$  for some i, j; if r = 0, then  $\{i, j\}$  is not necessarily uniquely defined. There exist  $h_1, h_2 \in G$  with  $h_1h_2 = \Delta^r$  where  $g_1 = f_1h_1$  and  $g_2 = h_2f_2$ , and the restrictions on the merging steps described above ensure that  $(f_1, h_1) \in \mathcal{P}(g_1)$  and  $(h_2, f_2) \in \mathcal{P}(g_2)$ .

In order to verify D2, we have to show that |S(g, k, l)| is bounded by P(k) for some polynomial P. We decompose S as a disjoint union  $S_0 \cup S_1 \cup S_2$ , and establish polynomial bounds for each of those subsets.

We define  $S_0$  to be the subset of elements of S(g, k, l) for which r = 0 and  $f_1, f_2 \in \langle x_i \rangle$  for some generator  $x_i$ . Since  $|f_1| \leq k$ ,  $f_2 = f_1^{-1}g$ , and  $x_i$  is determined by g, we have  $|S_0| \leq 2k + 1$ .

The sets  $S_1, S_2$  are defined with respect to the elements  $f_1'', \hat{f}, f_2''$  that are defined in Proposition 6 below. We define  $S_1$  to be the set of triples in  $S(g, k, l) \setminus S_0$  for which  $f_1'' \hat{f} f_2''$  is a geodesic factorisation of g, and  $S_2$  to be the others.

**Proposition 6** Let  $(f_1, \Delta^r, f_2) \in S(g, k, l) \setminus S_0$ . Then the following is true for some  $i \neq j$  with  $1 \leq i, j \leq n$  where, if  $r \neq 0$ , i, j are determined by  $\Delta = \Delta_{ij}$ . There exist  $f''_1, f''_1, f''_2, f'_2, \hat{f} \in G$  such that

- (1)  $f'_1, f'_2, \hat{f} \in G(i, j)$ , but  $f''_1$  has no right divisor in G(i, j) and  $f''_2$  has no left divisor in G(i, j),
- (2)  $g = f_1'' \hat{f} f_2'', f_1 = f_1'' f_1', f_2 = f_2' f_2'', and$
- (3)  $(f'_1, \Delta^r, f'_2) \in S(\hat{f}, k', l')$  for some  $k' \le k$  and  $l' \le l$ .

Furthermore,  $\hat{f}$  does not lie in  $\langle x_i \rangle$  for any i.

Proof Since  $(f_1, \Delta^r, f_2) \in S(g, k, l)$ , it is the merger of elements  $g_1 \in C_k$  and  $g_2 \in C_l$ , and so there exist  $h_1, h_2 \in G$  with  $g_1 = f_1 h_1$ ,  $g_2 = h_2 f_2$  and  $h_1 h_2 = \Delta^r$ .

Suppose first that  $r \neq 0$ , and hence that i, j are uniquely specified, with  $m_{ij} < \infty$ . Define  $f'_1 := \mathrm{RD}_{ij}(f_1)$ ,  $h'_1 := \mathrm{LD}_{ij}(h_1)$ ,  $f'_2 := \mathrm{LD}_{ij}(f_2)$ ,  $h'_2 := \mathrm{RD}_{ij}(h_2)$ ,  $k' = |f'_1h'_1|$ ,  $l' = |h'_2f'_2|$  and  $\hat{f} = f'_1h'_1h'_2f'_2$ . Now Lemma 15 applied to  $h'_1^{-1}h_1$  and  $h_2h'_2^{-1}$  tells us that  $h'_1h'_2 = h_1h_2 = \Delta^r$ . In other words, during the merging the right divisor  $(h'_1)^{-1}h_1$  of  $h_1$  has cancelled with the left divisor  $h_2(h'_2)^{-1}$  of  $h_2$ . We see also that  $(f'_1, \Delta^r, f'_2) \in S(\hat{f}, k', l')$  is the result of the merging of  $f'_1h'_1$  and  $h'_2f'_2$  in G(i,j). Suppose that  $\hat{f} \in \langle x_{i'} \rangle$  for i' = i or j. Then the application of Lemma 5 to  $f'_1h'_1$  and  $h'_2f'_2$  shows that free cancellation of w with  $w \in \mathcal{P}_r(f'_1h'_1)$ ,  $w^{-1} \in \mathcal{P}_l(h'_2f'_2)$  can be used to merge  $f'_1h'_1$  and  $h'_2f'_2$  to give just a power of  $x_{i'}$ , contradicting the fact that  $r \neq 0$ . (Here we are using the factorisations in  $\mathcal{P}^1$ , to ensure that such a cancellation would be permissible.)

Suppose instead that r = 0. Then  $h_1 = h_2^{-1}$ . Since we are assuming that  $(f_1, \Delta^r, f_2) \notin S_0$ , we can choose distinct i, j such that  $f'_1 := \mathrm{RD}_{ij}(f_1)$  and  $f'_2 := \mathrm{LD}_{ij}(f_2)$  do not both lie in the same cyclic subgroup  $\langle x_{i'} \rangle$  for i' = i or j. If possible, we choose i, j such that the vertices corresponding to i, j in the graph  $\Gamma$  defining G are joined by an edge (equivalently,  $m_{ij} < \infty$ ). Again we define  $h'_1 := \mathrm{LD}_{ij}(h_1), h'_2 := \mathrm{RD}_{ij}(h_2), k' = |f'_1h'_1|, l' = |h'_2f'_2|$  and  $\hat{f} = f'_1h'_1h'_2f'_2$ . Since  $h_1 = h_2^{-1}$ , we have  $h'_1 = (h'_2)^{-1}$ , so in this case too  $(f'_1, \Delta^r_{ij}, f'_2) \in S(\hat{f}, k', l')$  is a merger of  $f'_1h'_1$  and  $h'_2f'_2$  in G(i, j) and, by Lemma 5,  $f'_1h'_1h'_2f'_2$  does not lie in a cyclic subgroup  $\langle x_{i'} \rangle$  for i' = i or j.

For triples in  $S_1$ , we claim that  $f_1'' \in \mathcal{P}_l(g)$ . Since  $f_1''$  has no right divisor in G(i,j) the only way that the factorisation  $(f_1'', \hat{f}f_2'')$  could be  $\Delta$ -decreasing for some  $\Delta$  would be with  $\Delta = \Delta_{ii'}$ , where  $x_{i'}$  is the name of both  $lf_1''$  and  $f[f_2'']$  and  $\hat{f} = x_i^s x_j^t$  for some s, t > 0. But then  $\mathrm{RD}_{ii'}(\hat{f}f_2'')$  would have at most two syllables, and so the factorisation would still be permissible. So the claim is true.

Hence, since  $|f_1''| \leq k$ , the number of choices of  $f_1''$  is bounded by  $P_1(k)$ . For given  $f_1''$  and a pair i,j, we have  $\hat{f} = LD_{ij}(f_1''^{-1}g)$  and  $f_2'' = \hat{f}^{-1}f_1''^{-1}g$ . Now  $(f_1', \Delta_{ij}^r, f_2') \in S(\hat{f}, |f_1'h_1'|, |h_2'f_2'|)$ , which we know from the dihedral case has size bounded by  $P_2^{ij}(\min |f_1'h_1'|, |h_2'f_2')) \leq P_2^{ij}(k)$ . So  $|S_1| \leq P_1(k) \sum_{i,j} P_2^{ij}(k)$ . In order to bound  $|S_2|$ , we need some further technical lemmas.

**Lemma 16** Suppose that  $f_1''\hat{f}f_2''$  is not a geodesic factorisation of g. Then  $\hat{f} = a^sb^t$  for some s,t > 0 where  $a,b \in \{x_i^{\pm 1},x_j^{\pm 1}\}$  and a,b have different names.

Proof Let  $u_1'', \hat{u}, u_2''$  be geodesic words representing  $f_1'', \hat{f}, f_2''$ , respectively. Suppose (for a contradiction) that  $\hat{u}$  has at least three syllables. Since  $u_1''\hat{u}u_2''$  is not geodesic, we can by Proposition 4 (2) apply a rightward length reducing sequence to a prefix of it containing  $u_1''$ .

If the left-hand end of the first critical subword in the sequence were to the left of  $\hat{u}$ , then some  $\tau$ -move in the sequence would replace a letter in the first syllable of  $\hat{u}$  by a letter c with name not equal to  $x_i$  or  $x_j$ . But since c would then be followed by at least two syllables with names  $x_i$  and  $x_j$ , c would not be the leftmost letter in a critical subword, and so this would be the last  $\tau$ -move in the sequence, and would not provoke a free reduction. So the left hand end of the first critical subword must be within  $\hat{u}$ .

We may assume that the first  $\tau$ -move of the sequence is not completely within  $\hat{u}$ , since otherwise we could just replace  $\hat{u}$  by the result of this move. So the first critical subword overlaps the right hand end of  $\hat{u}$  and hence has its left hand end in the final syllable,  $a^s$  say, of  $\hat{u}$ . But then  $a^su_2''$  is not geodesic and so, by Corollary 2, neither is  $au_2''$ . But then  $f_2''$  has a geodesic representative beginning with  $a^{-1}$ , contradicting  $f_2 = f_2'f_2''$  with  $f_2' = \mathrm{LD}_{ij}(f_2)$ .

**Lemma 17** Assume that  $G = G(\Gamma)$  satisfies the hypotheses of Theorem 1. Suppose that  $\hat{f} = a^s b^t$  for some s, t > 0, where a, b have distinct names  $x_i, x_j$ , and that  $f_1'' \hat{f} f_2''$  is not a geodesic factorisation of g. Then there exists a letter c with name  $x_{i'}$  not equal to  $x_i$  or  $x_j$ , q > 0, and  $e_1, e_2 \in G$ , such that  $f_1'' a^s = e_1 c^q$  and  $b^t f_2'' = c^{-q} e_2$ , where  $e_1 c^q$ ,  $c^{-q} e_2$  and  $e_1 e_2$  are all geodesic factorisations. Furthermore, the vertices corresponding to  $x_i, x_j$  in the graph  $\Gamma$  are joined by an edge; that is  $m_{ij} < \infty$ .

Proof Let  $u_1'', u_2''$  be geodesic representatives of  $f_1'', f_2''$ . Using similar reasoning to that of the proof of the previous lemma, we see that a rightward length reducing sequence applied to the word  $u_1''a^sb^tu_2''$  would consist of a sequence of moves that replaced  $u_1''a^s$  by a word ending in a letter c with name  $x_{i'}$  not equal to  $x_i$  or  $x_j$ , followed by a length reducing sequence applied to  $cb^tu_2''$ . But then  $b^tu_2''$  would have a geodesic representative starting with  $c^{-1}$ . Let q be maximal such that  $f_1''a^s$  and  $b^tf_2''$  have geodesic factorisations  $e_1c^q$  and  $c^{-q}e_2$  respectively.

If  $m_{ij}$  were infinite, then we would have r = 0 in Proposition 6, in which case we could and would have chosen one of the pairs i, i' or j, i', depending

on which of  $m_{ii'}$  and  $m_{ji'}$  was finite rather than i, j in the proof of that proposition. So  $m_{ij} < \infty$ , which proves the final assertion in the lemma. Hence the hypothesis of Theorem 1 implies that at least one of the  $m_{ii'}$  and  $m_{ji'}$  is at least 4.

Let  $h_1$  and  $h_2$  be the group elements represented by  $e_1c^q =_G u_1''a^s$  and  $c^{-q}e_2 =_G b^t u_2''$ , respectively. Applying Propositions 1 and 2 to these elements, we see that  $\mathrm{RD}_{ii'}(h_1)$  and  $\mathrm{LD}_{ji'}(h_2)$  are represented by  $w_1$  and  $w_2$ , ending in  $c^q$  and beginning with  $c^{-q}$ , respectively. Since  $w_1$  and  $w_2$  are not the unique geodesic representatives of  $\mathrm{RD}_{ii'}(h)$  and  $\mathrm{LD}_{ji'}(h_2)$ , the above condition on the edge labels implies that at least one of  $w_1$  and  $w_2$  has at least four syllables. Hence either  $e_1$  has a geodesic representative  $v_1$  in which at least the final three syllables are powers of a and c, or  $e_2$  has a geodesic representative  $v_2$  in which at least the first three syllables are powers b and c. We see that no rightward length reducing sequence can pass through this middle section, and hence  $v_1v_2$  is geodesic, which completes the proof.

By Lemma 16, each element  $(f_1, \Delta_{ij}^r, f_2)$  of  $S_2$  determines  $f'', \hat{f}, f_2''$  for which the hypotheses and conclusion of Lemma 17 hold. Since  $|g| \geq l - k$ , we must have  $q \leq k$ , so there are at most 2nk possibilities for  $c^q$ . So assume that  $c^q$  is fixed. Unfortunately we have no bound on  $|e_1|$  as a polynomial in k. Let  $e_1 = e_1''e_1'$  with  $e_1' = \text{RD}_{ii'}(e_1)$ . Then  $|e_1''| < |f_1''| < k$  and  $e_1'' \in \mathcal{P}_l(e_1)$ , so there are at most  $P_1(k)$  possible  $e_1''$ .

We claim that the triple  $(f_1, \Delta_{ij}^r, f_2)$  is uniquely determined by g,  $c^q$  and  $e_1''$ . To see this note that  $\mathrm{LD}_{ii'}(e_1''^{-1}g) = e_1c^{-t}$  for some  $t \geq 0$  and, since  $(e_1, c^q)$  is a geodesic factorisation,  $e_1$  does not have  $c^{-1}$  as right divisor. Hence, given g,  $c^q$  and  $e_1''$ ,  $e_1'$  is determined as  $\mathrm{LD}_{ii'}(e_1''^{-1}g)c^t$ , where  $c^{-t}$  is the longest right divisor of  $\mathrm{LD}_{ii'}(e_1''^{-1}g)$  of that form. Then  $e_1$  and  $f_1''$  are determined as  $e_1''e_1'$  and  $e_1c^qa^{-s}$ , where  $a^s$  is the highest power of a that is a right divisor of  $e_1c^q$ . Then, as in the previous case, we have  $\hat{f} = LD_{ij}(f_1''^{-1}g)$  and  $f_2'' = \hat{f}^{-1}f_1''^{-1}g$ , which establishes the claim.

So the number of triples  $(f_1, \Delta_{ij}^r, f_2) \in S(g, k, l)$  that satisfy the conclusion of Lemma 17, and hence also  $|S_2|$ , is bounded by  $2nkP_1(k) \sum_{i,j} P_2^{ij}(k)$ .

This completes the proof that Artin groups satisfying the hypotheses of Theorem 1 satisfy D1 and D2, and hence also the proof of Theorem 1.

## Acknowledgments

The first author was partially supported by the Marie Curie Reintegration Grant 230889. The third author would like to thank the Mathematics Departments of the Universities of Fribourg and Neuchâtel, Switzerland, for their hospitality and generous support, and acknowledge further financial support from the UK Engineering and Physical Sciences Research Council grant EP/F014945/1, Quantum Computation: Foundations, Security, Cryptography and Group Theory.

#### References

K I Appel, On Artin groups and Coxeter groups of large type, Contemporary Mathematics 33 (1984) 50–78.

- K I Appel and P E Schupp, Artin groups and infinite Coxeter groups, Invent. Math. 72 (1983) 201–220.
- 3. W. Ballmann, Singular spaces of non-positive curvature, Sur les groupes hyperboliques d'après Mikhail Gromov, Progr. Math. 83, Birkhäuser Boston, Boston MA, 1990
- W. Ballmann, Lectures on spaces of non-positive curvature, DMV seminar 25, Birkhäuser, 1995.
- 5. J. Behrstock and Y. Minsky, Centroids and the rapid decay property in mapping class groups, J. Lon. Math. Soc. 84 (2011) 765–784.
- T. Brady and J. McCammond, Three generator Artin groups of large type are biautomatic, J. Pure Appl. Alg. 151 (2000) 1–9.
- 7. Indira Chatterji, On property RD for certain discrete groups, PhD thesis, ETH Zürich, September 2001.
- 8. I. Chatterji and K. Ruane, Some geometric groups with rapid decay, Geom. Funct. Anal. 15 (2005) 311–339.
- 9. P.A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A. Valette, Groups with the Haagerup property (Gromov's a-T-menability), Progr. Math. 197, Birkhäuser, Basel, 2001.
- 10. L. Ciobanu, D.F. Holt and S. Rees, Rapid decay is preserved by graph products, http://arxiv.org/abs/1110.6831, preprint 2011.
- 11. J. Crisp and L. Paris, Artin groups of type B and D, Adv. Geom. 5 (2005) 607–636.
- C. Drutu and M. Sapir. Relatively Hyperbolic Groups with Rapid Decay Property, Int. Math. Res. Notices 19 (2005) 1181–1194.
- 13. U. Haagerup, An example of a non-nuclear  $C^*$ -algebra, which has the metric approximation property, Invent. Math. 50 (1978/9) 278–293.
- P. de la Harpe. Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris Sér. I. Math. 307 (1988) 771–774.
- N. Higson and G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) 23–74.
- N. Higson, V. Lafforgue, G. Skandalis, Counter-examples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002) 330–354.
- 17. D.F. Holt and S. Rees, Artin groups of large type are shortlex automatic with regular geodesics, Proc. Lon. Math. Soc. 104 (2012) 486–512.
- 18. P Jolissaint, Rapidly decreasing functions in reduced  $C^*$ -algebras of groups, Trans. Amer. Math. Soc. 317 (1990) 167–196.
- V. Lafforgue, K-théorie bivariante pour les algègbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002) 1–95.
- R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- J. Mairesse and F. Mathéus, Growth series for Artin groups of dihedral type, Int. J. Alg. Comp. 16 (2006) 1087–1107.
- 22. P. Z. Ong, Rapid decay property and small cancellation groups. Ph.D. Thesis, University of California, San Diego, 1991.
- T. Schick, Finite group extensions and the Baum-Connes conjecture, Geom. Topol. 11 (2007) 1767-1775.
- 24. A. Valette, Introduction to the Baum-Connes conjecture. From notes taken by Indira Chatterji. With an appendix by Guido Mislin. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2002.