Netikėti atsakymai į klausimus apie atomus

Julius Ruseckas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas

Rugpjūčio 5, 2011

Kvantinės optikos grupė

http://www.itpa.lt/quantumgroup/

Vandenilio atomas sudarytas iš dviejų elektros krūvį turinčių dalelių, protono ir elektrono.

Kaip atrodo elektronų judėjimas?

Video

Elektronas turi bangų savybių.

Elektronas turi bangų savybių.

de Broglie bangos ilgis

$$\lambda = \frac{h}{mv}$$

čia $h = 6.62606896(33) \times 10^{-34} \, \text{J} \cdot \text{s}$ yra Planck'o konstanta.

Elektrono energija atome:

Kintetinė energija

Elektrono energija atome:

$$E = \frac{m_{\rm e}v^2}{2} - \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r}$$

Kintetinė energija

Potencinė energija

Išsireiškiame greitį:

$$E = \frac{\mathit{h}^2}{2\mathit{m}_e \lambda^2} - \frac{1}{4\pi\varepsilon_0} \frac{\mathit{e}^2}{\mathit{r}}$$

Laikykime, kad

 $\lambda \sim 2\pi r$

Laikykime, kad

$$\lambda \sim 2\pi r$$

Tada

$$E = \frac{\hbar^2}{2m_{\rm e}r^2} - \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r}$$

čia $\hbar = h/2\pi$

leškome energijos minimumo:

$$-\frac{\hbar^2}{m_{\rm e}r^2} + \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r} = 0$$

Konstantos

$$\hbar = 1.05 \times 10^{-34} \,\mathrm{J \cdot s}$$
 $e = 1.60 \times 10^{-19} \,\mathrm{C}$
 $m_{\rm e} = 9.11 \times 10^{-31} \,\mathrm{kg}$ $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$

leškome energijos minimumo:

$$-\frac{\hbar^2}{m_{\rm e}r^2} + \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r} = 0$$

Konstantos

$$\hbar = 1.05 \times 10^{-34} \,\mathrm{J \cdot s}$$
 $e = 1.60 \times 10^{-19} \,\mathrm{C}$ $m_{\rm e} = 9.11 \times 10^{-31} \,\mathrm{kg}$ $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$

Sprendinys

$$a_{\rm B} = \frac{4\pi\varepsilon_0\hbar^2}{e^2m_{\rm e}} = 5.3 \times 10^{-11}\,{\rm m}$$

vadinamas Bohr'o radiusu

Jonizacijos energija

$$E_0 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{2a_{\rm B}} = 2.2 \times 10^{-18} \,\rm J = 13.6 \,\rm eV$$

Jonizacijos energija

$$E_0 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{2a_{\rm B}} = 2.2 \times 10^{-18} \,{\rm J} = 13.6 \,{\rm eV}$$

Ar didelė energija yra 1 eV?

• Šiluminė energija: $k_BT = 1 \text{ eV}, k_B = 1.38 \times 10^{-23} \text{ J/K}$

Jonizacijos energija

$$E_0 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{2a_{\rm B}} = 2.2 \times 10^{-18} \,\rm J = 13.6 \,\rm eV$$

Ar didelė energija yra 1 eV?

- Šiluminė energija: $k_{\rm B}T=1\,{\rm eV},\,k_{\rm B}=1.38\times10^{-23}\,{\rm J/K}$ $T\approx10000\,{\rm K}$
- Šviesos energija: $h\nu = hc/\lambda$ Žalios šviesos $\lambda = 500 \, \mathrm{nm}$

Jonizacijos energija

$$E_0 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{2a_{\rm B}} = 2.2 \times 10^{-18} \,\rm J = 13.6 \,\rm eV$$

Ar didelė energija yra 1 eV?

- Šiluminė energija: $k_{\rm B}T=1~{\rm eV},\,k_{\rm B}=1.38\times10^{-23}\,{\rm J/K}$ $T\approx10000~{\rm K}$
- Šviesos energija: $h\nu = hc/\lambda$ Žalios šviesos $\lambda = 500 \, \mathrm{nm}$ Gauname $h\nu = 2.5 \, \mathrm{eV}$

Sukesni atomai

Atomas, kurio branduolio krūvis Ze, jonizuotas paliekant tik vieną elektroną.

Potencinė energija

$$-\frac{1}{4\pi\varepsilon_0}\frac{Ze^2}{r}$$

Sukesni atomai

Atomas, kurio branduolio krūvis *Ze*, jonizuotas paliekant tik vieną elektroną.

Potencinė energija

$$-\frac{1}{4\pi\varepsilon_0}\frac{Ze^2}{r}$$

Vidutinis elektrono atstumas iki branduolio

$$a_Z = \frac{a_B}{Z}$$

Jonizacijos energija

$$E_Z = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{2a_0} = Z^2 E_0$$

Sunkesni atomai

Klausimas

Kodėl sunkesniuose atomuose visi elektronai nesušoka į a_Z atstuma?

Atsakymas

Elektronai yra fermionai.

Fermionams draudžiama užimti tą pačią kvantinę būseną — Pauli draudimo principas.

Sunkesni atomai

Išoriniai elektronai.

Ekranavimas: atomų dydis yra maždaug toks pat $\sim 2a_B$.

Kodėl atomai nepereina skersai vienas kito?

Kodėl atomai nepereina skersai vienas kito?

Elektrostatinė stūma

Kodėl atomai nepereina skersai vienas kito?

- Elektrostatinė stūma
- Pauli draudimo principas

Nepaisysime saveikos tarp elektronų. Iš pradžių nagrinėsime vienmatę sistemą. Tegu turime dėžę, kurios kraštinė *L*. Turi tilpti sveikas pusbangių skaičius:

$$\frac{\lambda}{2} = \frac{L}{j}$$

kur j yra sveikas skaičius.

Bangos skaičius

$$k \equiv \frac{2\pi}{\lambda} = \frac{\pi}{L}j$$

Elektronai pildosi iki didžiausio skaičiaus j_{max} . Jį atitinka mažiausias bangos ilgis λ_F ir didžiausias bangos skaičius k_F .

Bangos skaičius

$$k \equiv \frac{2\pi}{\lambda} = \frac{\pi}{L} j$$

Elektronai pildosi iki didžiausio skaičiaus j_{\max} . Jį atitinka mažiausias bangos ilgis $\lambda_{\rm F}$ ir didžiausias bangos skaičius $k_{\rm F}$. Elektronu skaičius

us
$$extstyle N=2~j_{ ext{max}}=2 extstyle k_{ ext{F}}rac{ extstyle L}{\pi}$$
 dėl sukinio $extstyle N=2$

Turime

$$k_{\rm F}=\frac{\pi}{2}n$$

kur n = N/L yra linijinis elektronų tankis

Vidutinis atstumas tarp elektronų

$$a_{\rm vid} = \frac{L}{N} = \frac{1}{n}$$

todėl

$$k_{\rm F} \sim {1\over a_{
m vid}}$$

Vidutinis atstumas tarp elektronų

$$a_{\rm vid} = \frac{L}{N} = \frac{1}{n}$$

todėl

$$k_{\rm F} \sim {1\over a_{
m vid}}$$

Vidutinė elektrono kinetinė energija

$$\sim \frac{\hbar^2 k_{\rm F}^2}{2 m_e} \sim \frac{\hbar^2}{2 m_e a_{\rm vid}^2}$$

Mažėjant atstumui tarp elektronų jų kinetinė energija didėja!

Fermi dujos

Trimatėje erdvėje: elektronų skaičius yra

Iš čia

$$k_{\rm F} = (3\pi^2 n)^{\frac{1}{3}}$$

Fermi energija:

$$E_{\rm F} = rac{\hbar^2 k_{
m F}^2}{2m_{
m e}} = rac{\hbar^2 (3\pi^2 n)^{rac{2}{3}}}{2m_{
m e}}$$

Elektronai metale

Pavyzdžiui: Na tankis $ho=968\,{\rm kg/m^3}$, atominė masė A=23. Vienam atomui tenka vienas laisvas elektronas. Avogadro konstanta $N_{\rm A}=6.022\times 10^{23}\,{\rm mol}^{-1}$

Elektronai metale

Pavyzdžiui: Na tankis $ho=968\,{\rm kg/m^3}$, atominė masė A=23. Vienam atomui tenka vienas laisvas elektronas. Avogadro konstanta $N_{\rm A}=6.022\times 10^{23}\,{\rm mol}^{-1}$

Elektronų tankis

$$n = \frac{\rho N_{\rm A}}{10^{-3} A} = 2.5 \times 10^{28} \, \rm m^{-3}$$

Elektronai metale

Pavyzdžiui: Na tankis $ho=968\,{\rm kg/m^3}$, atominė masė A=23. Vienam atomui tenka vienas laisvas elektronas. Avogadro konstanta $N_{\rm A}=6.022\times 10^{23}\,{\rm mol}^{-1}$

Elektronų tankis

$$n = \frac{\rho N_{\rm A}}{10^{-3} A} = 2.5 \times 10^{28} \, \rm m^{-3}$$

Fermi energija

$$E_{\rm F} = \frac{\hbar^2 (3\pi^2 n)^{\frac{2}{3}}}{2m_{\rm e}} = 5 \times 10^{-19} \,{
m J} = 3 \,{
m eV}$$

NGC 2440

Gravitacinė potencinė energija

$$U \sim -rac{GM^2}{R}$$

Gravitacinę trauką atsveria elektronų slėgis.

$$N rac{\hbar^2}{m_{
m e} a_{
m vid}^2} \sim rac{G M^2}{R}$$

kur *N* — elektronų skaičius, a_{vid} — vidutinis atstumas tarp elektronų.

Žvaigždės spindulys
$$R^3 \sim \textit{Na}_{\mathrm{vid}}^3$$
. Masė $\textit{M} \sim \frac{\textit{N}}{\textit{N}_{\mathrm{br}}} \textit{m}_{\mathrm{br}}$

Gravitacinė potencinė energija

$$U\sim -rac{GM^2}{R}$$

Gravitacinę trauką atsveria elektronų slėgis.

$$N rac{\hbar^2}{m_{
m e} a_{
m vid}^2} \sim rac{G M^2}{R}$$

kur *N* — elektronų skaičius, a_{vid} — vidutinis atstumas tarp elektronų.

Žvaigždės spindulys $R^3 \sim Na_{
m vid}^3$. Masė $M \sim rac{N}{N_{
m br}} m_{
m br}$

Gauname:

$$R \sim rac{\hbar^2 N_{
m br}^{5/3}}{G m_{
m e} m_{
m br}^{5/3} M^{1/3}}$$

Kuo didesnė masė, tuo spindulys mažesnis!

Pavyzdžiui: saulės masė $M_{\odot}\approx 2.0\times 10^{30}\,\mathrm{kg}$. Būsimos baltosios nykštukės masė $M\approx 0.5M_{\odot}$ Anglies atominė masė A=12, elektronų kiekis $N_{\mathrm{br}}=6$. Gravitacijos konstanta $G=6.67\times 10^{-11}\,\mathrm{m}^3\mathrm{kg}^{-1}\mathrm{s}^{-2}$.

Pavyzdžiui: saulės masė $M_{\odot}\approx 2.0\times 10^{30}~{\rm kg}$. Būsimos baltosios nykštukės masė $M\approx 0.5M_{\odot}$ Anglies atominė masė A=12, elektronų kiekis $N_{\rm br}=6$. Gravitacijos konstanta $G=6.67\times 10^{-11}~{\rm m}^3{\rm kg}^{-1}{\rm s}^{-2}$.

Gauname

$$R \approx 2.5 \times 10^6 \,\mathrm{m}$$

Palyginimui: Žemės spindulys $6.4 \times 10^6 \, \mathrm{m}$

Jei masė labai didelė: elektronų greitis pasidaro artimas šviesos greičiui. Reliatyvistiniams elektronams kinetinė energija

$$cp = c\hbar k$$

Palyginame su gravitacine energija:

$$N rac{c\hbar}{a_{
m vid}} \sim rac{GM^2}{R}$$

Jei masė labai didelė: elektronų greitis pasidaro artimas šviesos greičiui. Reliatyvistiniams elektronams kinetinė energija

$$cp = c\hbar k$$

Palyginame su gravitacine energija:

$$N \frac{c\hbar}{a_{
m vid}} \sim \frac{GM^2}{R}$$

Gauname:

$$M_{
m limit} \sim \left(rac{c\hbar}{G}
ight)^{rac{3}{2}} \left(rac{N_{
m br}}{m_{
m br}}
ight)^2$$

Chandrasekhar'o riba

Jei masė labai didelė: elektronų greitis pasidaro artimas šviesos greičiui. Reliatyvistiniams elektronams kinetinė energija

$$cp = c\hbar k$$

Palyginame su gravitacine energija:

$$N rac{c\hbar}{a_{
m vid}} \sim rac{GM^2}{R}$$

Gauname:

$$M_{
m limit} \sim \left(rac{c\hbar}{G}
ight)^{rac{3}{2}} \left(rac{N_{
m br}}{m_{
m br}}
ight)^2$$

Chandrasekhar'o riba

Suskaičiavus: $M_{\text{limit}} \approx 9 \times 10^{29} \, \text{kg} \approx 0.5 M_{\odot}$. Tikroji vertė $\approx 1.4 M_{\odot}$

Ačiū už dėmesį!