Klasszikus fizika laboratórium

9. mérés

Fényhullámhossz és diszperzió mérése

Bakó Bence Kedd délelőtti csoport

Mérés dátuma: 2020. február 18. Leadás dátuma: 2020. február 25.

1. A mérés célja:

A mérés két különálló részre osztható. Az első részben spektrállámpa fényének komponenseit vizsgáljuk optikai rács segítségével, valamint kiszámoljuk ezek hullámhosszát a mért eltérülési szögekből. A második részben prizmával dolgozunk, megmérjük a törőszögét és vizsgáljuk a diszperzióját.

2. Mérőeszközök:

- Spektrállámpa és tápegység
- Goniométer
- Optikai rács
- Prizma

3. A mérés menete:

A mérést megelőzte a goniométer beállítása. Először a tárgyasztal síkját a forgástengelyre merőlegesre állítottam a szintezőcsavarok segítségével. Ezek után a kollimátort és a távcsövet egytengelyűvé tettem, amely így párhuzamos volt a tárgyasztal síkjával. Az optikai rácsot merőlegesen állítottam a kollimátorra és a skála kezdőértékét a 0. maximum helyén 0 fokra állítottam.

3.1. Optikai rács

A kollimátorból induló nyaláb optikai rácson történő elhajlását vizsgálva azt tapasztaltam, hogy a különböző színű fénysugarak különböző szög alatt látszanak. Ezeket a szögeket mértem első- és másodrendben balra és jobbra is annak érdekében, hogy a pontatlan beállításból származó hibát valamennyire kiküszöböljem.

3.2. Prizma

Megmértem a rés törőlapokról visszavert képének a beeső nyalábbal bezárt szögét és ebből kiszámoltam a prizma törőszögét. Ezután megmértem mindegyik színképvonal minimális eltérítési szögét, hogy ebből megkaphassam a prizma törésmutatóját. Végül a hibaszámításhoz még kétszer megkerestem a piros színképvonalhoz tartozó fent említett szöget lejegyeztem ezeket az értékeket is.

4. A mérés elmélete:

4.1. Optikai rács

Optikai rácsnak egy plánparalel lemezt használtunk, amiben karcolások vannak (bár ezek nem tökéletesek, így a mérés során sok esetben nem voltak láthatóak ugyanazok

a színek mindkét oldalon). Ha a rácsra párhuzamos fénynyalábot eresztünk, akkor Franhauser-diffrakció (jelen körülmények között) jön rajta létre az alábbiak szerint:

$$k \cdot \lambda = d \cdot sin\alpha$$

Ahol $k \in \mathbb{N}$, λ a hullámhossz, d a rácsállandó és α az eltérülés szöge.

4.2. Prizma

A prizma esetében egyszerű geometriával és a Sinellius-Descartes-törvény segítségével belátható, hogy a törésmutató függése a minimális eltérítési szögtől:

$$n = \frac{\sin\frac{\phi + \epsilon_{min}}{2}}{\sin\frac{\phi}{2}}$$

5. Mérési adatok és kiértékelés:

5.1. Optikai rács

A rácson 15000 LPI volt feltüntetve és ez alapján a rácsállandó d=1693,3nm. Ez alapján kiszámítható a különböző színek hullámhossza a szög függvényében. El is végeztem ezt első és második rendre:

Szín	Bal	Jobb	Átlag [°]	Hullámhossz [nm]
ibolya	14°49'32"	346°3'6"	14,30361	418,34
ibolya		344°56'16"	15,0622	440,03
kék	15°55'42"	343°47'30"	16,06833	468,67
kék	16°20'42"	343°21'26"	16,4939	480,75
zöld	17°20'10"	342°19'28"	17,5058	509,35
zöld	18°38'30"	340°57'10"	18,8444	546,93
sárga	19°43'30"	339°48'52"	19,9553	577,90
sárga	19°47'58"	339°55'6"	19,94057	577,49
vörös	22°5'36"	337°19'40"	22,38275	644,79

Szín	Bal	Jobb	Átlag [°]	Hullámhossz [nm]
ibolya	30°25'2"	328°30'2"	30,9583	435,52
kék	32°52'10"		32,8694	459,49
kék	33°48'2"		33,8005	470,99
zöld	36°4'30"	324°34'18"	35,7516	494,67
zöld	39°7'20"	322°1'26"	38,5491	527,62
sárga	41°43'12"	318°30'56"	41,6022	562,13
sárga	41°53'56"		41,8988	565,40
vörös	47°41'2"		47,6838	626,04

5.2. Prizma

A 2-es prizmát választottam és annak az 1-es csúcsát állítottam a kollimátor felé, tehát az 1-es csúcs törőszögét mértem.

α_1	360° - α_2	ϕ
58°8'26"	298°17'54"	59°55'16"

A különböző színekre mért minimumszögekből kiszámoltam a törésmutatókat és összevetettem az általam mért hullámhosszakkal. A hibát a következő részben ismertetett képlettel számoltam.

Szín	$\epsilon_{min}[^{\circ}]$	n	$\lambda[nm]$
vörös	38,0467	$1,5108 \pm 0.0003$	644,79
sárga	38,2655	$1,5133 \pm 0.0003$	577,49
zöld	38,4011	$1,5149 \pm 0.0003$	527,62
zöld	38,5872	$1,5170 \pm 0.0003$	509,35
kék	38,7667	$1,5190 \pm 0.0003$	480,75
kék	38,8477	$1,5200 \pm 0.0003$	468,67
ibolya	39,11	$1,5229 \pm 0.0003$	440,03
ibolya	39,425	$1,5265 \pm 0.0003$	418,34

A hibaszámítás érdekében a vörös színt még kétszer lemértem:

Ábrázoltam a törésmutatót a törésmutatókat a hullámhossz függvényében:

Jól látszik, hogy a törésmutató függ a fény hullámhosszától, ezért bontaja fel a fehér fényt komponenseire.

A prizma közepes diszterziója a mért adatokra: n=1.51805. Ezt összevetve a megadott törésmutatókkal arra következtethetünk, hogy a prizma anyaga nagy valószínűséggel Koronaüveg.

5.3. Elméleti feladat:

A legnagyobb mért hullámhossz $\lambda = 644,79nm$. Erre úgy kapjuk meg a maximális rendet, ha a $\sin(\alpha)$ -t egynek választjuk:

$$k_{max} = \frac{d \cdot \sin(\alpha)}{\lambda} = \frac{d}{\lambda} = 2,626$$

De k csak egész lehet, tehát a maximális rend erre a hullámhosszra a k=3.

5.4. Elméleti feladat:

A különböző rendű spektrumok átfedhetnek, tehát a j-ed rendű ibolya megelőzheti a k-ad rendű vöröset. Ez matematikailag azt jelenti, hogy n-szeres átfedés (j=k+n) a következő k rendre teljesül:

$$j \cdot \lambda_i = k \cdot \lambda_v \Rightarrow k(\lambda_v - \lambda_i) = n\lambda_i \Rightarrow k = \frac{n \cdot \lambda_i}{\lambda_v - \lambda_i}$$

Vagyis mivel k egész, ezért az ennél nagyobb első egész számmal lesz egyenlő. A mért esetre kettős átfedés matematikailag akkor jöhetne létre, ha előállhatna negyedrendű vörös és hatodrendű ibolya, de ha egyiket visszahelyettesítjük, akkor a következőt kapjuk:

$$\sin(\alpha) = \frac{4 \cdot \lambda_v}{d} = 1,52$$

Ez pedig értelmetlen, tehát nem jöhet létre a mért esetben kettős átfedés.

6. Hibaszámítás:

A háromszor megfigyelt piros színnél a szélső értékek 38°2'48" és 38°2'24", tehát a leolvasott szög hibája kb $\Delta\alpha=24"=0,006667^\circ=0,000116.$ Innen a hullámhossz hibája a piros színre:

$$\Delta \lambda = \frac{d}{k}\cos(\alpha) \cdot \Delta \alpha = \frac{d}{k}\cos(\alpha) \cdot 0,000116 \approx 0,15nm$$

A törésmutató relatív hibája:

$$\frac{\Delta n}{n} = ctga \cdot \Delta a + ctgb \cdot \Delta b \approx 0.0002$$

Ahol $a=\frac{\phi+\epsilon_{min}}{2}\approx 0,8549$ és $b=\frac{\phi}{2}\approx 0,5229$

Hivatkozások

Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.