Math League Contest Problem Set 12128 Sprint Round Problem 29

David Sun

Math League, LLC

In $\triangle XYZ$, side XY has length 4 and side YZ has length 3. Point W lies on side XZ such that the length of segment YW is 2, and the length of segment XW is twice the length of segment WZ. What is the square of the length of side XZ?

Compute XZ²

Compute XZ²

Compute XZ²

Compute XZ²

Compute XZ²

By Pythagorean Theorem,

$$XZ^2 = XQ^2 + QZ^2$$

By Pythagorean Theorem,

$$XZ^2 = XQ^2 + (YZ^2 - YQ^2)$$

$$XZ^2 = (XY + YQ)^2 + (YZ^2 - YQ^2)$$

$$XZ^2 = (4 + YQ)^2 + (YZ^2 - YQ^2)$$

$$XZ^2 = (4+1)^2 + (YZ^2 - 1^2)$$

$$XZ^2 = (4+1)^2 + (3^2 - 1^2)$$

$$XZ^2 = 25 + (9 - 1^2)$$

$$XZ^2 = 25 + (9 - 1)$$

$$XZ^2 = 25 + 8$$

Key Concepts

Key Concepts

Similar Triangles

Key Concepts

- Similar Triangles
- Properties of Isosceles Triangles

Key Concepts

- Similar Triangles
- Properties of Isosceles Triangles
- Pythagorean Theorem

