

EIE4110 Introduction to VLSI and CAD Laboratory 5 – High-Level Synthesis (HLS)

	Student Name:		
	Student No.:		
	Date:		
PART 1 – fir.c Synthesis a.) Convert the fir SW description into syn required.	thesizable C code for HL		anges marks)
b)Synthesize the fir.c design. Annotate fro type of Functional Units (FUs) needed to f		iption	und marks)
b.) Report from the QoR file the size of the Report also the latency of the synthesized		ath and maximum freque	
c.) Perform Logic synthesis using Xilinx IS Discuss if they match or not and why they	•		s. marks)

PART 2 - for.c Verification

a.)	Perform a cycle-accurate simulation using the untimed test vectors used for the software
	simulation and make sure that the simulation outputs match. Demonstrate it to the supervisor
	(signature required)

(2 marks)

PART 3 firc Design Space Exploration

a.) Reduce the number of FUs in the Resource Constraint file (FCNT) from the maximum number obtained in the initial design to half that number and to only 1 FU. Annotate the Area in terms if LUTs and the latency of each of the 3 designs in a table. Plot the graph of area vs. latency of the 3 designs. Discuss the results. Are they what you expected? (Yes/No) (6 marks)

Design	Functional Units	LUTs	Latency	Critical path
1	Maximum number of FUs			
2	1 FU of each Type			
3	A single FU of each type of the largest bitwidth			