Definition 1: Fiber Bundle

We call a *Smooth (Fiber) Bundle* a quadruple $E = (E, M, Q, \pi)$ where:

- E, M, Q: smooth manifolds called respectively Total Space, Base Space, Typical Fiber.
- $\pi: E \to M$ smooth, everywhere defined, surjective function (called *Bundle Projection*)

Such that $\forall x \in M \quad \exists \text{ a local trivialization} (U, \chi).$

Definition 2: Local Trivialization of the Fiber Bundle E

A Pair (U, χ) where:

- · U: neighbourhood of $x \in M$
- $\cdot \chi : \pi^{-1}(U) \to U \times Q$: diffeomorphism ^{a b}

such that the natural projection $p_1: U \times F \to U$ satisfies the following equation:

$$p_1 \cdot \chi = \pi|_{\pi^{-1}(p)}$$

i.e.: the following graph commutes:

$$\begin{array}{ccc}
\pi^{-1}(U) & \xrightarrow{\chi} U \times Q \\
\pi \downarrow & & \\
U & & \\
\end{array}$$

 $^{^{}b}$ cartesian product of topological space is a topological space with the direct product topology.

Figure 1: The complete fiber bundle Structure.

Definition 3: Vector Bundle

We call *Vector Bundle* a smooth bundle $E = (E, \pi, M; V)$ such that:

- \cdot The typical fiber V is a finite dimensional vector space.
- · All trivializations χ_{α} are diffeomorphisms such that:

^asurjectivity $\Rightarrow \pi^{-1}(U) \neq \emptyset$.

$$\chi_{\alpha}|_{\pi^{-1}(p)} \in \mathbb{GL}(n,\mathbb{R}) : \pi^{-1}(p) \to \{p\} \times V \simeq V$$

Definition 4: Smooth (cross) Section

We call *Smooth (cross) Section* a smooth right-inverse function of π .

I.e. any $\phi \in C^{\infty}(M; E)$ such that:

$$\pi \circ \phi = id|_{M}$$

Definition 5: Bundle map (Fiber Preserving map)

We call *bundle map* a smooth function $\phi : E \to E'$ such that:

$$\phi(E_x) = F_x \qquad \forall x \in M$$

i.e. the following graph commutes:

Definition 6: Bundle of homomorphisms

We call *bundle of homomorphisms* a fiber bundle $\operatorname{Hom}(E, E')$ over the base space M such that the fiber over a base point $p \in M$ is the infinite dimensional manifold $\operatorname{Hom}(E_p, E'_p)$ isomorphic to $\operatorname{Hom}(Q, Q')$.

Definition 7: Tangent Bundle

We call *tangent bundle of M* the smooth vector bundle $TM = (TM, \tau, M; \mathbb{R}^m)$ such that:

· The total space is the (disjoint) union of all tangent spaces to M:

$$TM := \bigsqcup_{p \in M} T_p M \equiv \bigcup_{x \in M} x \times T_x M$$

· The bundle projection maps each tangent vector $v \in T_pM$ to the correspondent base point p;

$$\tau:(p,v_p)\mapsto p$$

- The *Cotangent Bundle* T^*M is the vector bundle T^*M builded by disjoint union of the dual tangent space T_n^*M .
- ullet The $Tensor\ Bundle\ T^{(k,l)}M$ is build by disjoint unions of the tensor product of tangent space with itself:

$$T_p^{(k,l)}M = \underbrace{T_p^*M \otimes \cdots \otimes T_p^*M}_{\text{k-times}} \otimes \underbrace{T_pM \otimes \cdots \otimes T_pM}_{\text{l-times}}$$

• The *k-form Bundle* $\bigwedge^m(T^*M)$ is build by disjoint unions of the antisimmetrized tensor product of the dual tangent space with itself.

Definition 8: Tautological (Poincaré) 1-form

We call *tautological form* the 1-form over $\mathcal{M} = T^*Q$:

$$\theta_0 \in \Gamma^{\infty}(T^*\mathcal{M})$$

such that the action on a generic point $\omega_{\alpha_p} \in T_{\alpha_p}M$ (in the fiber of α_p , which in turn is a one-form on the

fiber of $p \in Q$) is given by:

$$\theta_0(\alpha_p): T_{\alpha_p} \mathcal{M} \to \mathbb{R} \qquad : \omega_{\alpha_p} \mapsto \alpha_q \circ T\tau_Q^*(\omega_{\alpha_p})$$

where T is the *tangent map*, namely the bundle-morphism which act on each fiber as the differential map $d(\tau_O^*)$.

Figure 2: The definition of tautological 1-form is achieved exploiting the concept of *Tangent map* and remembering that $\alpha_p : T_p \mathcal{M} \to \mathcal{M}$ is a linear functional.

Definition 9: Canonical (Poincarè) symplectic form

We call Canonical (Poincarè) form the symplectic:

$$\omega_0 \coloneqq -d\theta_0$$

In canonical coordinates it assumes the renown expression:

$$\omega_0 \coloneqq \sum_{i=1}^n dq^i \wedge dp_i$$

0.0.1 Jet Bundles

The jet bundle is a construction that makes a new smooth fiber bundle out of a given bundle.

Definition 10: r-jet equivalence

Two sections $\sigma, \eta \in \Gamma^{\infty}(p)$ have the same *r-jet* at p ($\sigma \sim \eta$) iff:

$$\left.\frac{\partial^{|I|}\sigma^\alpha}{\partial x^I}\right|_p = \left.\frac{\partial^{|I|}\eta^\alpha}{\partial x^I}\right|_p \quad \forall I \in \mathbb{N}_0^m \, | \, 0 \leq |I| \leq r.$$

Remark:

(multi-index notation)

A multi-index is a finite dimensional vector $I = (i_1, i_2, ..., i_m) \in \mathbb{N}_0^m$ with $m < \infty$.

On \mathbb{R}^n a differential operator can be identified by a multi-index:

$$\frac{\partial^{|I|}}{\partial x^I} := \prod_{i=1}^m \left(\frac{\partial}{\partial x^i}\right)^{I(i)}$$

(Whenever the Schwartz theorem holds, the order of derivation is irrelevant.)

The order of the multi-index is defined as:

$$|I| := \sum_{i=1}^{m} I(i)$$

Definition 11: Space of r-th Jet in p

We call *space of the r-th jet in p* the set of the equivalence class under the jet equivalence relation.

$$J_p^r(E) := \frac{\Gamma^{\infty}(p)}{\sim}$$

where \sim is the r-Jet equivalence.

Notation fixing

A r-jet with representative σ is denoted as $j_n^r \sigma$.

The integer r is also called the order of the jet, p is its source and $\sigma(p)$ is its target.

Definition 12: r-th Jet Bundle of E

We call *r-th Jet Bundle of E* the smooth bundle $(J^r(E), \pi_r, M)$ where:

$$\cdot \ J^r(E) \coloneqq \mathop{\sqcup}_{p \in M} J^r_p(E) \equiv \left\{ j^r_p \sigma \quad | \ p \in M, \, \sigma \in \Gamma^\infty(p) \right\}$$

 $\pi_r: J^r(E) \to M \text{ such that } j_p^r \sigma \mapsto p$

Definition 13: (Pseudo-Riemannian) Metric

We call (Pseudo-Riemannian) Metric a map on the bundle product of TM with itself:

$$g: TM \times_M TM \to \mathbb{R}$$

such that the restriction on each fiber

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

is a non-degenerate bilinear form.

Definition 14: Pseudo-Riemannian Manifold

We call *Pseudo-Riemannian manifold* a pair (M, g) such that:

- · M is a n-dimensional ($n \ge 2$), Hausdorff, second countable, connected, orientable smooth manifold.
- · g is a Pseudo-Riemannian metric.

Definition 15: Time-orientation

We call *time-orientation* a global tangent vector field $\mathfrak{t} \in \Gamma^{\infty}(TM)$ over the Lorenzian manifold M such that:

$$\cdot \text{ supp}(\mathfrak{t}) = M$$

• $\mathfrak{t}(p)$ is time-like $\forall p \in M$.

Definition 16: Spacetime

We call *spacetime* a quadruple (M, g, o, t) such that:

- · (M, g) is a time-orientable ^a n-dimensional Lorentzian manifold (n > 2)
- · o is a choice of orientation
- · t is a choice of time-orientation

Definition 17: Achronal Set

We call *achronal set* a subset $\Sigma \subset M$ such that every inextensible timelike curve intersects Σ at most once.

Definition 18: future past Domain of dependence of an Achronal set

We call $\frac{future}{past}$ domain of dependence of an achronal set $\Sigma \subset M$, the two subset:

$$\mathbf{D}_{M}^{\pm}(\Sigma) \coloneqq \left\{q \in M \middle| \ \forall \gamma \text{ p ast} \text{ inextensible causal curve passing through } q: \ \gamma(I) \cap \Sigma \neq \emptyset \right\}$$

Definition 19: Cauchy Surface

We call *Cauchy surface* a closed, achronal subset $\Sigma \subset M$ such that:

$$\mathbf{D}_M(\Sigma) \equiv M$$

Notation fixing

We denote the set of all the Cauchy surfaces as $\mathscr{P}_C(M)$.

Definition 20: Globally-Hyperbolic SpaceTime

We call a spacetime M globally hyperbolic if it contains at least one Cauchy Surface.

Notation fixing

Let M be a globally hyperbolic spacetime and $E = (E, \pi, M; V)$ a vector bundle of typical fiber V. We denote:

- · $\Gamma_0(E)$ the space of *compactly supported* smooth sections.
- · $\Gamma_{sc}(E)$ the space of *spacelike compact* smooth sections. $(f \in \Gamma_{sc}(E))$ if there exists a compact subset $K \subset M$ such that $\operatorname{supp} f \subset J_M(K)$.
- · $\Gamma_{fc}(E)$ the space of *future- compact* smooth sections. $(f \in \Gamma_{fc}(E) \text{ if } \text{supp}(f) \cap J_M^+(K) \text{ is compact for all } p \in M.)$
- · $\Gamma_{pc}(E)$ the space of *past-compact* smooth sections. $(f \in \Gamma_{pc}(E) \text{ if supp}(f) \cap \mathbf{J}_{M}^{-}(K) \text{ is compact for all } p \in M.)$
- · $\Gamma_{tc}(E) := \Gamma_{pc}(E) \cap \Gamma_{fc}(E)$ the space of *timelike compact* smooth sections.

Definition 21: Linear Partial Differential operator (of order at most $s \in \mathbb{N}_0$)

We call *linear partial differential operator* a linear map $L: \Gamma(E) \to \Gamma(E')$ such that $\forall p \in M$ there exists:

• $U \ni p$ open set rigged with:

^aManifold for which such *time-orientation* exists.

- (U, φ) local chart on M.
- (U, χ) local trivialization of F
- (U, χ') local trivialization of F'
- $\{A_{\alpha}: U \to \operatorname{Hom}(V, V') \mid \alpha \in \mathbb{N}_{0}^{n}, |\alpha| \leq s\}$ a collection of smooth maps labeled by multi-indices where *s* is a fixed integer said *order of the operator*.

which allows to express L locally:

$$\chi' \circ (L\sigma) \circ \varphi^{-1} = \sum_{|\alpha| \le s} A_{\alpha} \partial^{\alpha} (\chi \circ \sigma \circ \varphi^{-1}) \qquad \forall \sigma \in dom(L) \subset \Gamma(E)$$

(where we have make use of the multi-index notation 0.0.1)

Definition 22: Formal Dual Operator (of *L***)**

We call *formal dual operator* of L the unique linear partial differential operator $L^*: \Gamma(G^*) \to \Gamma(E^*)$ such that:

$$< L^* g', f> = < g', Lf>$$

 $\forall f \in \Gamma(E), g' \in \Gamma(G^*)$ which have supports with compact overlap. $(<\cdot,\cdot>$ denotes the 1-form evaluation: $<\alpha, v>=\alpha(v) \quad \forall v \in E_p, \alpha \in E_n^*$.)

Definition 23: $_{advanced}^{retarded}(\pm)$ **Green Operators**

We call $_{advanced}^{retarded}(\pm)$ Green Operator of L a l.p.d.o. $G^{\pm}:\Gamma(E)\to\Gamma(E)$ such that:

- $\cdot dom(G^+) = \Gamma_{pc}(E) \qquad dom(G^-) = \Gamma_{fc}(E)$
- $\cdot \ LG^{\pm}f = G^{\pm}Lf = f \qquad \forall f \in dom(G^{\pm})$
- $\cdot \operatorname{supp}(G^{\pm}f) \subset \mathbf{J}_{M}^{\pm}(\operatorname{supp}(f)) \qquad \forall f \in \operatorname{dom}(G^{\pm})$

In others words we can say that G^{\pm} is the left-right inverse of the restriction of L to $dom(G^{\pm})$.

Notation fixing

We call Advanced minus Retarded operator or Causal Propagator[?] the operator:

$$E := G^- - G^+ : \Gamma_{tc}(E) \to \Gamma(E)$$

Definition 24: Green hyperbolic operator

We call *Green hyperbolic* a linear partial differential operator P such that P and P^* have advanced and retarded Green's operators.

For these operators uniqueness of Green's operators is guaranteed:

Theorem 0.0.1 (Characterization of Green Hyperbolic operators)

- $E = (E, \pi, M)$ a vector bundle over a globally hyperbolic spacetime M.
- $P:\Gamma(E)\to\Gamma(E)$ a Green hyperbolic operator, G^\pm its Green's operators and G^\pm_\star the Green's operators of the dual.

Th:

- P possesses a unique retarded G^+ and a unique advanced G^- Green's operator.
- $\langle G_{\star}^{\pm} f', f \rangle = \langle f', G^{\mp} f \rangle$ $\forall f \in \Gamma_0(E), \forall f' \in \Gamma_0(E^*)$

Definition 25

A Poisson algebra is a Triple $(V, \cdot, \{,\})$ space]] where:

- V is a vector space of field K
- $\cdot: V \times V \to \mathbb{R}$ and $\{,\}: V \times V \to \mathbb{R}$ are bilinear products

such that:

- The product \cdot forms an associative K-algebra.
- The product {,}, called the *Poisson Brackets* is anti-symmetric, and obeys the *Jacobi Identity* (i.e. forms a Lie Algebra)
- The Poisson bracket acts as a derivation of the associative product \cdot , i.e. for any three elements x, y, z in the algebra, one has

$$\{x, y \cdot z\} = x, y \cdot z + y \cdot x, z$$