# Chapter 1

# Introduction to Method

# Comparison Studies

#### 1.1 Agreement

- The FDA define precision as the *closeness of agreement* (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under prescribed conditions.
- Barnhart describes precision as being further subdivided as either within-run, intra-batch precision or repeatability (which assesses precision during a single analytical run), or between-run, inter-batch precision or repeatability (which measures precision over time).

# 1.2 Purposes of MCS

The question being answered is not always clear, but is usually epxressed as an attempt to quantify the agreement between two methods (Bland and Altman 1995)

Some lack of agreement between different methods of measurement is inevitable. What matters is the amount by which they disagree. we want to know by how much the new method is likely to differ from the old, so that it is not enough to cause problems in the mathematical interpretation we can preplace the old method by the new, or even use the two interchangably.

It often happens that the same physical and chemical property can be measured in different ways. For example, one can determine For example, one can determine sodium in serum by flame atomic emission spectroscopy or by isotops dilution mass spectroscopy. The question arises as to which method is better (Mandel 1991)

In areas of inter-laboratory quality control, method comparisons, assay validations and individual bio-equivalence, etc, the agree between observations and target (reference) value is of interest (lin 2002)

The purpose of comparing two methods of measurement of a continuous biological variable is to uncover systematic differences, not to point to similarities. (ludbrook 1997)

In the pharmaceutical industry, measurement methods that measure the quantity of products are regulated. The FDA (U.S. Food and Drug Administration) requires that the manufacturer show equivalency prior to approving the new or alternatice method in quality control (Tan & Inglewicz, 1999)

# 1.3 Indications on how to deal with outliers in Bland Altman plots

We wish to determine how outliers should be treated in a Bland Altman Plot

In their 1983 paper they merely state that the plot can be used to 'spot outliers'.

In their 1986 paper, Bland and Altman give an example of an outlier. They state

that it could be omitted in practice, but make no further comments on the matter.

In Bland and Altmans 1999 paper, we get the clearest indication of what Bland and Altman suggest on how to react to the presence of outliers. Their recommendation is to recalculate the limits without them, in order to test the difference with the calculation where outliers are retained.

The span has reduced from 77 to 59 mmHg, a noticeable but not particularly large reduction.

However, they do not recommend removing outliers. Furthermore, they say:

We usually find that this method of analysis is not too sensitive to one or two large outlying differences.

We ask if this would be so in all cases. Given that the limits of agreement may or may not be disregarded, depending on their perceived suitability, we examine whether it would possible that the deletion of an outlier may lead to a calculation of limits of agreement that are usable in all cases?

Should an Outlying Observation be omitted from a data set? In general, this is not considered prudent.

Also, it may be required that the outliers are worthy of particular attention themselves.

Classifying outliers and recalculating We opted to examine this matter in more detail.

The following points have to be considered

how to suitably identify an outlier (in a generalized sense)

Would a recalculation of the limits of agreement generally results in a compacted range between the upper and lower limits of agreement?

#### 1.3.1 Agreement

Bland and Altman (1986) define Perfect agreement as 'The case where all of the pairs of rater data lie along the line of equality'. The Line of Equality is defined as the 45 degree line passing through the origin, or X=Y on a XY plane.

## 1.4 Roy's Approach

For the purposes of comparing two methods of measurement, ? presents a methodology utilizing linear mixed effects model. This methodology provides for the formal testing of inter-method bias, between-subject variability and within-subject variability of two methods.

? uses an approach based on linear mixed effects (LME) models for the purpose of comparing the agreement between two methods of measurement, where replicate measurements on items (often individuals) by both methods are available. Three tests of hypothesis appropriate are provided for evaluating the agreement between the two methods of measurement under this sampling scheme.

Importantly? further proposes a series of three tests on the variance components of an LME model, which allow decisions on the second and third of Roy's criteria. For these tests, four candidate LME models are constructed.

? proposes the use of LME models to perform a test on two methods of agreement to comparing the agreement between two methods of measurement, where replicate measurements on items (often individuals) by both methods are available, determining whether they can be used interchangeably. The methodology proposed by ? is largely based on ?, which in turn follows on from ?.

? proposes a novel method using the LME model with Kronecker product covariance structure in a doubly multivariate set-up to assess the agreement between a new method and an established method with unbalanced data and with unequal replications for different subjects. By doubly multivariate set up, Roy means that the information on each patient or item is multivariate at two levels, the number of methods and number of replicated measurements. Further to ?, it is assumed that the replicates are linked over time. However it is easy to modify to the unlinked case.

The well-known "Limits of Agreement", as developed by ? are not referred to directly, but are easily computable using the framework proposed by ?. Further discussion will be provided in due course.

Further to this, ? demonstrates an suite of tests that can be used to determine how well two methods of measurement, in the presence of repeated measures, agree with each other.

- No Significant inter-method bias
- No difference in the between-subject variabilities of the two methods
- No difference in the within-subject variabilities of the two methods

The formulation presented above usefully facilitates a series of significance tests that advise as to how well the two methods agree. These tests are as follows:

- A formal test for the equality of between-item variances,
- A formal test for the equality of within-item variances,
- A formal test for the equality of overall variances.

These tests are complemented by the ability to consider the inter-method bias and the overall correlation coefficient. Two methods can be considered to be in agreement if criteria based upon these methodologies are met. Additionally Roy makes reference

to the overall correlation coefficient of the two methods, which is determinable from variance estimates. Other important aspects of the method comparison study are consequent. The limits of agreement are computed using the results of the reference model.

Differences in between-subject variabilities of the two methods arise when one method is yielding average response levels for individuals than are more variable than the average response levels for the same sample of individuals taken by the other method. Differences in within-subject variabilities of the two methods arise when one method is yielding responses for an individual than are more variable than the responses for this same individual taken by the other method. The two methods of measurement can be considered to agree, and subsequently can be used interchangeably, if all three null hypotheses are true.

#### 1.4.1 LME Model Specification

Let  $y_{mir}$  denote the rth replicate measurement on the ith item by the mth method, where m = 1, 2, i = 1, ..., N, and  $r = 1, ..., n_i$ . When the design is balanced and there is no ambiguity we can set  $n_i = n$ . The LME model underpinning Roy's approach can be written

$$y_{mir} = \beta_0 + \beta_m + b_{mi} + \epsilon_{mir}. \tag{1.1}$$

Here  $\beta_0$  and  $\beta_m$  are fixed-effect terms representing, respectively, a model intercept and an overall effect for method m.

The  $b_{1i}$  and  $b_{2i}$  terms represent random effect parameters corresponding to the two methods, having  $E(b_{mi}) = 0$  with  $Var(b_{mi}) = g_m^2$  and  $Cov(b_{mi}, b_{m'i}) = d_{12}$ . The random error term for each response is denoted  $\epsilon_{mir}$  having  $E(\epsilon_{mir}) = 0$ ,  $Var(\epsilon_{mir}) = \sigma_m^2$ ,  $Cov(b_{mir}, b_{m'ir}) = \sigma_{12}$ ,  $Cov(\epsilon_{mir}, \epsilon_{mir'}) = 0$  and  $Cov(\epsilon_{mir}, \epsilon_{m'ir'}) = 0$ .

When two methods of measurement are in agreement, there is no significant differences between  $\beta_1$  and  $\beta_2$ ,  $g_1^2$  and  $g_2^2$ , and  $\sigma_1^2$  and  $\sigma_2^2$ . Here  $\beta_0$  and  $\beta_m$  are fixed-effect terms representing, respectively, a model intercept and an overall effect for method m.

The model can be reparameterized by gathering the  $\beta$  terms together into (fixed effect) intercept terms  $\alpha_m = \beta_0 + \beta_m$ . The  $b_{1i}$  and  $b_{2i}$  terms are correlated random effect parameters having  $E(b_{mi}) = 0$  with  $Var(b_{mi}) = g_m^2$  and  $Cov(b_{1i}, b_{2i}) = d_{12}$ .

The random error term for each response is denoted  $\epsilon_{mir}$  having  $E(\epsilon_{mir}) = 0$ ,  $Var(\epsilon_{mir}) = \sigma_m^2$ ,  $Cov(\epsilon_{1ir}, \epsilon_{2ir}) = \sigma_{12}$ ,  $Cov(\epsilon_{mir}, \epsilon_{mir'}) = 0$  and  $Cov(\epsilon_{1ir}, \epsilon_{2ir'}) = 0$ . Two methods of measurement are in complete agreement if the null hypotheses  $H_1: \alpha_1 = \alpha_2$  and  $H_2: \sigma_1^2 = \sigma_2^2$  and  $H_3: g_1^2 = g_2^2$  hold simultaneously. ? uses a Bonferroni correction to control the familywise error rate for tests of  $\{H_1, H_2, H_3\}$  and account for difficulties arising due to multiple testing.

#### 1.4.2 Variance Covariance Matrices

Under Roy's model, random effects are defined using a bivariate normal distribution. Consequently, the variance-covariance structures can be described using  $2 \times 2$  matrices. A discussion of the various structures a variance-covariance matrix can be specified under is required before progressing. The following structures are relevant: the identity structure, the compound symmetric structure and the symmetric structure.

The differences in the models are specifically in how the the D and  $\Lambda$  matrices are constructed, using either an unstructured form or a compound symmetry form. To illustrate these differences, consider a generic matrix A,

$$m{A} = \left( egin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} 
ight).$$

A symmetric matrix allows the diagonal terms  $a_{11}$  and  $a_{22}$  to differ. The compound

symmetry structure requires that both of these terms be equal, i.e  $a_{11} = a_{22}$ .

The identity structure is simply an abstraction of the identity matrix. The compound symmetric structure and symmetric structure can be described with reference to the following matrix (here in the context of the overall covariance Block- $\Omega_i$ , but equally applicable to the component variabilities D and  $\Sigma$ );

$$\left(\begin{array}{cc} \omega_1^2 & \omega_{12} \\ \omega_{12} & \omega_2^2 \end{array}\right)$$

Symmetric structure requires the equality of all the diagonal terms, hence  $\omega_1^2 = \omega_2^2$ . Conversely compound symmetry make no such constraint on the diagonal elements. Under the identity structure,  $\omega_{12} = 0$ . A comparison of a model fitted using symmetric structure with that of a model fitted using the compound symmetric structure is equivalent to a test of the equality of variance.

#### Independence

As though analyzed using between subjects analysis.

$$\begin{pmatrix}
\psi^2 & 0 & 0 \\
0 & \psi^2 & 0 \\
0 & 0 & \psi^2
\end{pmatrix}$$

#### Compound Symmetry

Assumes that the variance-covariance structure has a single variance (represented by  $\psi^2$ ) for all 3 of the time points and a single covariance (represented by  $\psi_{ij}$ ) for each of the pairs of trials.

$$\begin{pmatrix}
\psi^2 & \psi_{12} & \psi_{13} \\
\psi_{21} & \psi^2 & \psi_{23} \\
\psi_{31} & \psi_{32} & \psi^2
\end{pmatrix}$$

#### 1.4.3 Model Terms (Roy 2009)

- Let  $y_{mir}$  be the response of method m on the ith subject at the r-th replicate.
- Let  $y_{ir}$  be the  $2 \times 1$  vector of measurements corresponding to the i-th subject at the r-th replicate.
- Let  $y_i$  be the  $R_i \times 1$  vector of measurements corresponding to the i-th subject, where  $R_i$  is number of replicate measurements taken on item i.
- Let  $\alpha_m i$  be the fixed effect parameter for method for subject i.
- Formally ARoy2009 uses a separate fixed effect parameter to describe the true value  $\mu_i$ , but later combines it with the other fixed effects when implementing the model.
- Let  $u_{1i}$  and  $u_{2i}$  be the random effects corresponding to methods for item i.
- $\epsilon_i$  is a  $n_i$ -dimensional vector comprised of residual components. For the blood pressure data  $n_i = 85$ .
- • 
   ß is the solutions of the means of the two methods. In the LME output, the
   bias ad corresponding t-value and p-values are presented. This is relevant to
   ARoy2009's first test.

#### 1.4.4 Model Terms (Roy 2009)

It is important to note the following characteristics of this model.

Let the number of replicate measurements on each item i for both methods be  $n_i$ , hence  $2 \times n_i$  responses. However, it is assumed that there may be a different number of replicates made for different items. Let the maximum number of replicates be p. An item will have up to 2p measurements, i.e.  $\max(n_i) = 2p$ .

Later on  $X_i$  will be reduced to a 2 × 1 matrix, to allow estimation of terms. This is due to a shortage of rank. The fixed effects vector can be modified accordingly.

 $\mathbf{Z}_i$  is the  $2n_i \times 2$  model matrix for the random effects for measurement methods on item i.

 $\boldsymbol{b}_i$  is the 2 × 1 vector of random-effect coefficients on item i, one for each method.  $\boldsymbol{\epsilon}$  is the  $2n_i \times 1$  vector of residuals for measurements on item i.

G is the 2  $\times$  2 covariance matrix for the random effects.

 $\mathbf{R}_i$  is the  $2n_i \times 2n_i$  covariance matrix for the residuals on item i.

The expected value is given as  $E(y_i) = X_i \beta$ . (?)

The variance of the response vector is given by  $Var(\boldsymbol{y}_i) = \boldsymbol{Z}_i \boldsymbol{G} \boldsymbol{Z}_i' + \boldsymbol{R}_i$  (?).

 $\boldsymbol{b}_i$  is a m-dimensional vector comprised of the random effects.

$$\boldsymbol{b}_{i} = \begin{pmatrix} b_{1i} \\ b_{21} \end{pmatrix} \tag{1.2}$$

V represents the correlation matrix of the replicated measurements on a given method.  $\Sigma$  is the within-subject VC matrix.

V and  $\Sigma$  are positive definite matrices. The dimensions of V and  $\Sigma$  are  $3 \times 3 = 3 \times 3$ 

$$p \times p$$
) and  $2 \times 2 (= k \times k)$ .

It is assumed that  $oldsymbol{V}$  is the same for both methods and  $oldsymbol{\Sigma}$  is the same for all replications.

 $V \bigotimes \Sigma$  creates a  $6 \times 6 (= kp \times kp)$  matrix.  $\mathbf{R}_i$  is a sub-matrix of this.

# Chapter 2

# Review of MCS Methodologies

#### 2.1 Bland-Altman methodology

Notwithstanding previous remarks about linear regression, the first step recommended, which the authors argue should be mandatory, is construction of a simple scatter plot of the data. The line of equality should also be shown, as it is necessary to give the correct interpretation of how both methods compare. In the case of good agreement, the observations would be distributed closely along the line of equality. A scatter plot of the Grubbs data is shown in Figure 1.1. Visual inspection confirms the previous conclusion that there is an inter-method bias present, i.e. Fotobalk device has a tendency to record a lower velocity.

? notes that scatter plots were very seldom presented in the Annals of Clinical Biochemistry. This apparently results from the fact that the 'Instructions for Authors' dissuade the use of regression analysis, which conventionally is accompanied by a scatter plot.

# Scatterplot for Grubbs' data (with line of equality) Scatterplot for Grubbs' data (with line of equality) 762 762 762 762 790 791 792 793 794

Figure 2.1: Scatter plot For Fotobalk and Counter Methods.

Fotobalk measurements

#### 2.1.1 Bland-Altman plots

In light of shortcomings associated with scatterplots, ? recommend a further analysis of the data. Firstly case-wise differences of measurements of two methods  $d_i = y_{1i} - y_{2i}$  for i = 1, 2, ..., n on the same subject should be calculated, and then the average of those measurements  $(a_i = (y_{1i} + y_{2i})/2 \text{ for } i = 1, 2, ..., n)$ .

? proposes a scatterplot of the case-wise averages and differences of two methods of measurement. This scatterplot has since become widely known as the Bland-Altman plot. ? express the motivation for this plot thusly:

"From this type of plot it is much easier to assess the magnitude of disagreement (both error and bias), spot outliers, and see whether there is any trend, for example an increase in (difference) for high values. This way of plotting the data is a very powerful way of displaying the results of a

method comparison study."

The case wise-averages capture several aspects of the data, such as expressing the range over which the values were taken, and assessing whether the assumptions of constant variance holds. Case-wise averages also allow the case-wise differences to be presented on a two-dimensional plot, with better data visualization qualities than a one dimensional plot. ? cautions that it would be the difference against either measurement value instead of their average, as the difference relates to both value. This methodology has proved very popular, and the Bland-Altman plots is widely regarded as powerful graphical methodology for making a visual assessment of the data.

The magnitude of the inter-method bias between the two methods is simply the average of the differences  $\bar{d}$ . This inter-method bias is represented with a line on the Bland-Altman plot. As the objective of the Bland-Altman plot is to advise on the agreement of two methods, it is the case-wise differences that are also particularly relevant. The variances around this bias is estimated by the standard deviation of these differences  $S_d$ .

#### 2.1.2 Bland-Altman plots for the Grubbs data

In the case of the Grubbs data the inter-method bias is -0.61 metres per second, and is indicated by the dashed line on Figure 1.2. By inspection of the plot, it is also possible to compare the precision of each method. Noticeably the differences tend to increase as the averages increase.

The Bland-Altman plot for comparing the 'Fotobalk' and 'Counter' methods, which shall henceforth be referred to as the 'F vs C' comparison, is depicted in Figure 1.2, using data from Table 1.3. The presence and magnitude of the inter-method bias is indicated by the dashed line.

| Round | Fotobalk | Counter | Differences | Averages  |
|-------|----------|---------|-------------|-----------|
|       | [F]      | [C]     | [F-C]       | [(F+C)/2] |
| 1     | 793.8    | 794.6   | -0.8        | 794.2     |
| 2     | 793.1    | 793.9   | -0.8        | 793.5     |
| 3     | 792.4    | 793.2   | -0.8        | 792.8     |
| 4     | 794.0    | 794.0   | 0.0         | 794.0     |
| 5     | 791.4    | 792.2   | -0.8        | 791.8     |
| 6     | 792.4    | 793.1   | -0.7        | 792.8     |
| 7     | 791.7    | 792.4   | -0.7        | 792.0     |
| 8     | 792.3    | 792.8   | -0.5        | 792.5     |
| 9     | 789.6    | 790.2   | -0.6        | 789.9     |
| 10    | 794.4    | 795.0   | -0.6        | 794.7     |
| 11    | 790.9    | 791.6   | -0.7        | 791.2     |
| 12    | 793.5    | 793.8   | -0.3        | 793.6     |

Table 2.1: Fotobalk and Counter methods: differences and averages.

| Round | Fotobalk | Terma | Differences | Averages                   |
|-------|----------|-------|-------------|----------------------------|
|       | [F]      | [T]   | [F-T]       | $\left  [(F+T)/2] \right $ |
| 1     | 793.8    | 793.2 | 0.6         | 793.5                      |
| 2     | 793.1    | 793.3 | -0.2        | 793.2                      |
| 3     | 792.4    | 792.6 | -0.2        | 792.5                      |
| 4     | 794.0    | 793.8 | 0.2         | 793.9                      |
| 5     | 791.4    | 791.6 | -0.2        | 791.5                      |
| 6     | 792.4    | 791.6 | 0.8         | 792.0                      |
| 7     | 791.7    | 791.6 | 0.1         | 791.6                      |
| 8     | 792.3    | 792.4 | -0.1        | 792.3                      |
| 9     | 789.6    | 788.5 | 1.1         | 789.0                      |
| 10    | 794.4    | 794.7 | -0.3        | 794.5                      |
| 11    | 790.9    | 791.3 | -0.4        | 791.1                      |
| 12    | 793.5    | 793.5 | 0.0         | 793.5                      |

Table 2.2: Fotobalk and Terma methods: differences and averages.

#### Bland-Altman plot for Grubbs' data (F vs C comparison)



Figure 2.2: Bland-Altman plot For Fotobalk and Counter methods.

In Figure 1.3 Bland-Altman plots for the 'F vs C' and 'F vs T' comparisons are shown, where 'F vs T' refers to the comparison of the 'Fotobalk' and 'Terma' methods. Usage of the Bland-Altman plot can be demonstrate in the contrast between these comparisons. By inspection, there exists a larger inter-method bias in the 'F vs C' comparison than in the 'F vs T' comparison. Conversely there appears to be less precision in 'F vs T' comparison, as indicated by the greater dispersion of covariates.



Figure 2.3: Bland-Altman plots for Grubbs' F vs C and F vs T comparisons.

#### 2.1.3 Adverse features

Estimates for inter-method bias and variance of differences are only meaningful if there is uniform inter-bias and variability throughout the range of measurements. Fulfilment of these assumptions can be checked by visual inspection of the plot. The prototype Bland-Altman plots depicted in Figures 1.4, 1.5 and 1.6 are derived from simulated data, for the purpose of demonstrating how the plot would inform an analyst of features that would adversely affect use of the recommended methodology.

Figure 1.4 demonstrates how the Bland-Altman plot would indicate increasing variance of differences over the measurement range. Fitted regression lines, for both the upper and lower half of the plot, has been added to indicate the trend. Figure 1.5 is an example of cases where the inter-method bias changes over the measurement range. This is known as proportional bias, and is defined by ? as meaning that 'one method gives values that are higher (or lower) than those from the other by an amount that

is proportional to the level of the measured variable'. In both Figures 1.4 and 1.5, the assumptions necessary for further analysis using the limits of agreement are violated.

Application of regression techniques to the Bland-Altman plot, and subsequent formal testing for the constant variability of differences is informative. The data set may be divided into two subsets, containing the observations wherein the difference values are less than and greater than the inter-method bias respectively. For both of these fits, hypothesis tests for the respective slopes can be performed. While both tests can be considered separately, multiple comparison procedures, such as the Benjamini-Hochberg (?) test, should be also be used.



Figure 2.4: Bland-Altman plot demonstrating the increase of variance over the range.

#### 2.1.4 Replicate Measurements

Thus far, the formulation for comparison of two measurement methods is one where one measurement by each method is taken on each subject. Should there be two

#### Bland-Altman plot: indicating proportional bias



Figure 2.5: Bland-Altman plot indicating the presence of proportional bias.

or more measurements by each methods, these measurement are known as 'replicate measurements'. ? recommends the use of replicate measurements, but acknowledges the additional computational complexity.

? address this problem by offering two different approaches. The premise of the first approach is that replicate measurements can be treated as independent measurements. The second approach is based upon using the mean of the each group of replicates as a representative value of that group. Using either of these approaches will allow an analyst to estimate the inter method bias.

However, because of the removal of the effects of the replicate measurements error, this would cause the estimation of the standard deviation of the differences to be unduly small. ? propose a correction for this.

? takes issue with the limits of agreement based on mean values of replicate measurements, in that they can only be interpreted as prediction limits for difference be-

tween means of repeated measurements by both methods, as opposed to the difference of all measurements. Incorrect conclusions would be caused by such a misinterpretation.

? demonstrates how the limits of agreement calculated using the mean of replicates are 'much too narrow as prediction limits for differences between future single measurements'. This paper also comments that, while treating the replicate measurements as independent will cause a downward bias on the limits of agreement calculation, this method is preferable to the 'mean of replicates' approach.

#### 2.1.5 Sampling Protocols

Dunn discusses the sampling protocols in depth. Consider a random sample of N specimens. A simple design is a set of measurements on each specimen using each of the two methods, yield 2N measurements. Dunn remarks that such a design would not yield much in the way of information. The criticism projected at the correlation coefficient is only valid if one is specifically interested in assessing agreement. However, it should be used as an exploratory tool in the first instance. Exchangealility encompasses the qualities of similar precision.

#### 2.1.6 MCS Research Notes

The problem of comparing two methods of measurement is ubiquitous in scientific literature. The use of well-established methodologies, such as the paired t-test, correlation and regression approaches is criticised in Altman and Bland(1983). In the Bland-Altman papers, the British Standards Institute emerge as the key authority on the definition of the Limits of agreement. It is assumed that, in the absence of a specified probability, that the level is 95%.

Bland and Altman proposed a simple graphical technique, plotting the case-wise

differences against the case-wise means of the respective measurements. The benefit of such an approach is the plot makes it easier to assess the magnitude of the disagreement (both error and bias), spot outliers, and see whether there is any trend.

#### 2.1.7 Underlying Model

The model underlying the Bland-Altman approach can be expressed as an LME model with heterogeneous variances.

$$y_{ij} = \beta_j + b_i + \varepsilon_{ij}$$

The case-wise differences and case-wise means follow a bivariate normal distribution, with expected values and variances specified as [input equations].

#### 2.1.8 Outlier detection

Additionally, there is no clear guidance in any of the Bland-Altman papers on the treatment of outliers that may arise in a plot. An example used in Bland-Altman 1986 identifies a clear outlier, where it is advised by the authors that in practice, one could omit this subject. Bland and Altman 1999 recommend the computationally intensive approach of calculating the limits of agreement with, and then without, suspected outliers, in order to assess the impact on the results. However, they are clear that they do not recommend excluding outliers from analyses.

#### 2.2 Westgard et Al

Westgard et al. (1)(2)(3) outlined the basic principles for method comparison in a clear, easy to follow manual. They also introduced the concept of allowable analytical error and gave an overview of published performance criteria. They recommended that the

estimated analytical imprecision and bias be compared with these performance criteria in method evaluation as well as in method comparison. Their approach made use of a scatter-plot and calculations based on regression lines, but with confidence limits and judgment of acceptability based on the criteria for allowable analytical error.

These principles of comparing analytical performance with performance criteria, however, have not been universally accepted, and recent publications have criticized the misuse of correlation coefficients (4) and overinterpretation of regression lines in method comparison (5)(6)(7). Bland and Altman (4) recommended the difference plot (or bias plot or residual plot) as an alternative approach for method comparison. On the abscissa they used the mean value of the methods to be compared, to avoid regression towards the mean, and on the ordinate they plotted the calculated difference between measurements by the two methods. They further estimated the mean and standard deviation of differences and displayed horizontal lines for the mean and for 2—the standard deviation. However, they missed the concept of a more objective criterion for acceptability. Recently, Hollis (5) has recommended difference plots as the only acceptable method for method comparison studies for publication in Annals of Clinical Biochemistry, but without specifying criteria for acceptability.

However, a few difference plots with evaluation of acceptability according to defined criteria have been published, e.g., in evaluation of estimated biological variation compared with analytical imprecision (8), and in external quality assessment of plasma proteins for the possibilities of sharing common reference intervals (9).

Maybe the scarcity of such publications is more a question of interpretation of the data by plotting than a strict choice between scatter-plot and difference plot, as discussed by Stckl (10) recently. Investigators seem to rely too much on regression lines and r-values, without doing the equally important interpretation of the data points of the plot. This is becoming more and more disadvantageous with the increasing number of Reference Methods available for comparison with field methods, because in these cases, it is not a question of finding some relationships, but simply of judging the field method to be acceptable or not.

NCCLS has recently published guidelines for method comparison and bias estimation by using patients samples (11), where both scatter-plots and bias plots are advised. The document also recommends plotting of single determinations as mean values and stresses the need of visual inspection of data. Further, comparison with performance criteria is recommended, but these criteria are not specified and they are not used in the graphical interpretation. Recently, Houbouyan et al. (12) used ratio plots in their validation protocol of analytical hemostasis systems, where they used a preset, but arbitrarily chosen, acceptance limit of inaccuracy of 15

In the following, we will use the difference plot (or bias plot) in combination with simple statistics for the principal judgment of the identity or acceptability of a field method. The difference plot makes it easier to apply the concept; in principle, however, the same evaluations could be performed for a scatter-plot in relation to the line of identity (y = x).

The aim of this contribution is to pay attention to the hypothesis of identity and the concept of acceptable analytical quality in method comparison, especially when one of the methods is a Reference Method.

## 2.3 Other Types of Studies

? categorize method comparison studies into three different types. The key difference between the first two is whether or not a 'gold standard' method is used. In situations where one instrument or method is known to be 'accurate and precise', it is considered as the 'gold standard' (?). A method that is not considered to be a gold standard is

referred to as an 'approximate method'. In calibration studies they are referred to a criterion methods and test methods respectively.

- 1. Calibration problems. The purpose is to establish a relationship between methods, one of which is an approximate method, the other a gold standard. The results of the approximate method can be mapped to a known probability distribution of the results of the gold standard (?). (In such studies, the gold standard method and corresponding approximate method are generally referred to a criterion method and test method respectively.) ? make clear that their methodology is not intended for calibration problems.
- 2. Comparison problems. When two approximate methods, that use the same units of measurement, are to be compared. This is the case which the Bland-Altman methodology is specifically intended for, and therefore it is the most relevant of the three.
- 3. Conversion problems. When two approximate methods, that use different units of measurement, are to be compared. This situation would arise when the measurement methods use 'different proxies', i.e different mechanisms of measurement. ? deals specifically with this issue. In the context of this study, it is the least relevant of the three.

#### 2.4 Fuzzy Gold Standards

The Gold Standard is considered to be the most accurate measurement of a particular parameter. But even gold standard raters must be assumed to have some level of measurement error. Fuzzy gold standard are considered by Phelps and Hutson (1994)

?, p.47 cautions that gold standards' should not be assumed to be error free. 'It is of necessity a subjective decision when we come to decide that a particular method or instrument can be treated as if it was a gold standard'. The clinician gold standard, the sphygmomanometer, is used as an example thereof. The sphygmomanometer 'leaves considerable room for improvement' (?). ? similarly addresses the issue of glod standards, 'well-established gold standard may itself be imprecise or even unreliable'.

The NIST F1 Caesium fountain atomic clock is considered to be the gold standard when measuring time, and is the primary time and frequency standard for the United States. The NIST F1 is accurate to within one second per 60 million years (?).

Measurements of the interior of the human body are, by definition, invasive medical procedures. The design of method must balance the need for accuracy of measurement with the well-being of the patient. This will inevitably lead to the measurement error as described by ?. The magnetic resonance angiogram, used to measure internal anatomy, is considered to the gold standard for measuring aortic dissection. Medical test based upon the angiogram is reported to have a false positive reporting rate of 5% and a false negative reporting rate of 8%. This is reported as sensitivity of 95% and a specificity of 92% (?).

In literature they are, perhaps more accurately, referred to as 'fuzzy gold standards' (?). Consequently when one of the methods is essentially a fuzzy gold standard, as opposed to a 'true' gold standard, the comparison of the criterion and test methods should be consider in the context of a comparison study, as well as of a calibration study.

? makes two important points in relation to these categories. Firstly he remarks that there isn't clear cut differences between each category.

Secondly he comments on the clinician gold standard, the sphygmomanometer, leaves considerable room for improvement. ? also attends to this issue: well-established

gold standard may itself be imprecise or even unreliable.

The Magnetic resonance angiogram is considered to the gold standard for measuring a ortic dissection, with a sensitivity of 95% and a specificity of 92%. (?)

In literature they are, perhaps more accurately, referred to as 'bronze standards'.

Consequently when one of the methods is essentially a bronze standard, as opposed to a true gold standard, the comparison procedure should be considered as being of the second category.

#### 2.5 Fuzzball Agreement

Fuzzball agreement is a case where the correlation coefficient is close to zero. The sample values is restricted to a narrow range. but an examination of a relevant scatter-plot would indicate that there is agreement between the two methods.

Agreement - a numerical measure Hutson et al define a numerical measure for agreement.

For example, suppose the pairs of rater measurements are (1, 1), (1.1, 1), (1, 1.1), and (1.1, 1.1) then the sample Pearson correlation r = .0, yet the two raters or devices are considered to be in good agreement. We will refer to the instance where r is close to 0, yet there may be good agreement as "fuzzball agreement."

Fuzzball agreement occurs quite often in practice when the sample values have very narrow or restricted ranges. Fuzzball agreement is just one instance where the correlation coefficient is a poor measure of agreement.

Furthermore, note that the ICC is also a poor measure of agreement when there is fuzzball agreement. At the other extreme suppose the same raters given in the previous example had pairs of measurements (1, 101), (2, 102), (3, 103), and (4, 104) on the same relative scale as before. In this instance, r = 1.0, yet there is large disagreement between rater.

#### 2.6 Repeatability and gold standards

Currently the phrase 'gold standard' describes the most accurate method of measurement available. No other criteria are set out. Further to ?, various gold standards have a varying levels of repeatability. Dunn cites the example of the sphygmomanometer, which is prone to measurement error. Consequently it can be said that a measurement method can be the 'gold standard', yet have poor repeatability. Some authors, such as [cite] and [cite] have recognized this problem. Hence, if the most accurate method is considered to have poor repeatability, it is referred to as a 'bronze standard'. Again, no formal definition of a 'bronze standard' exists.

The coefficient of repeatability may provide the basis of formulation a formal definition of a 'gold standard'. For example, by determining the ratio of CR to the sample mean  $\bar{X}$ . Further to [Lin], it is preferable to have a sample size specified in advance. A gold standard may be defined as the method with the lowest value of  $\lambda = CR/\bar{X}$  with  $\lambda < 0.1\%$ . Similarly, a silver standard may be defined as the method with the lowest value of  $\lambda$  with  $0.1\% \le \lambda < 1\%$ . Such thresholds are solely for expository purposes.

#### 2.7 The Conversion Problem

In this section, we will reconsider the conversion problem, where by the methods of measurements are denominated in different units. Conversion problems arise when the comparison is between two approximate methods of measurement each of which measures the quantity in different units.

This situation can arise when the methods in question proceed by measuring different proxies for the underlying quantity of interest. (lewis 1991)

For the single measurement case, the author can not foresee any scope for insights that are not already offered by using a structural relation model, as proposed by lewis et 1991, or error-in-variables regression. In the case of orthonormal regression, it is not reasonable to assume that both methods have equal measurement variance, when they are denominated in different units. The analyst may attempt to mitigate the problem by scaling the variance of one method, but even still problems remain. Similarly for Deming regression, no further insights on how to properly estimate the variance ratio

can be offered.

For the case of conversion problem with replicate measurements, a framework that incorporates the ideas offered by Roy (2009) can be proposed. Estimates for between-subject and within-subject variances may be sought. However Roy's tests on variability are no longer applicable, as one would not expect the method to have similar estimates. An estimate for the scaling factor  $\beta$  may be sought, where  $Y_i \approx \beta X$ .

$$X_i = \tau_i + \delta_i$$

$$Y_i = \alpha + \beta X \tau_i + \epsilon_i$$

We will simulate a data set based in lewis conversion problems, provide three replicates values for both measurements. To acheive this we add "jitter noise" to three copies of each original measurement.