

Steady RANS Simulation of the TUDa-GLR-Openstage Using ANSYS Fluent 19.2

Presenter: SUN Wei

Affiliation: AECC Compressor Research Center

Email: swsunwei000000@163.com

Part 1

CFD Setup

Part 2

Overall Performance

Part 3

1D&2D aerodynamic parameter distributions

Part 4

Flow Field Visualization

CFD Solver: ANSYS Fluent 19.2

- Developed by ANSYS Inc.
- Pressure-based & Density-based solver
- Unstructured Grid
- Edge-based dual-control volume method
- Scheme adopted: Pressure-based pressure-velocity coupling scheme (default discretization scheme of all transport equations: 2nd-order upwind), ILU
- Ideal Gas model
- Turbulence model: SST-2003 SST-2003-Helicity
- Operating condition: N100

Grid Generation

- Geometry: released by 1st V&V workshop in 2021
- NUMECA Autogrid^{V8} & Pointwise v18.1
- Average y⁺ of first cell layer: <2, no wall function

Rotor tip gap mesh

Rotor hub fillet mesh

Grid density: between "medium" and "fine" versions of the official grid released

Row	Dimension	No.	Row	Dimension	No.	Row	Dimension	No.	Rows	Overall No.
	Radial (including tip gap)	93		Radial	93		Radial	77	R1+S1 +OGV	
	Radial (tip gap)	21	stator	Radial (tip fillet)	17	OGV	Radial (tip fillet)	17		
	Radial (hub fillet)	17		Radial (hub fillet)	17		Radial (hub fillet)	17		
	Pitchwise (per passage)	65		Pitchwise (per passage)	73		Pitchwise (per passage)	81		3.11
rotor	Streamwise (within blade passage)	129		Streamwise (within blade passage)	113		Streamwise (within blade passage)	85		million
	Blade boundary layer (within skin O block)	21		Blade boundary layer (within skin O block)	21		Blade boundary layer (within skin O block)	17		
	Pitchwise (Tip- clearance O block)	17								_))
	Total cell count	1.56 million		Total cell count	0.96 million		Total cell count	0.59 million		

Boundary Conditions

Inlet Mean-flow conditions

- From data package "TUDa-GLR_Open_Stage_N100_Rad" and "N65_Rad" at ME15
- Ensemble average of experimental Pt&Tt profiles over 9 operating conditions
- Axial flow direction

Tt average (ME15), N100

Inlet turbulence conditions

From "inlet_BC.input": Tu 4%, Turb Length Scale: 0.09mm

Rotation Speed: Ensemble average over 9 operating conditions, 20298 rpm

Outlet conditions: Radial equilibrium backpressure

Turbulence model

- Menter's SST-2003 model (SST-2003)
- SST-2003 with velocity helicity correction (SST-2003-Helicity)
 - Helicity model (Liu et al.[1-2]):

$$h = \left| \frac{\vec{v} \cdot \vec{\omega}}{|\vec{v}||\vec{\omega}| + 0.00001} \right| \qquad C_{h1} = 0.71 \qquad C_{h2} = 0.6$$

• SST-2003-Helicity:

$$\frac{\partial k}{\partial t} + \frac{\partial \left(u_{j}k\right)}{\partial x_{j}} = \tau_{ij} \frac{\partial u_{i}}{\partial x_{j}} + \underbrace{\widetilde{P}_{kh}} - \beta^{*}k\omega + \frac{\partial}{\partial x_{j}} \left[\left(v + \sigma_{k}v_{t}\right) \frac{\partial k}{\partial x_{j}} \right] \\
\frac{\partial \omega}{\partial t} + \frac{\partial \left(u_{j}\omega\right)}{\partial x_{j}} = \frac{\gamma}{v_{t}} \underbrace{\widetilde{P}_{k}} + \frac{\gamma}{v_{t}} \underbrace{\widetilde{P}_{kh}} - \beta\omega^{2} + \frac{\partial}{\partial x_{j}} \left[\left(v + \sigma_{\omega}v_{t}\right) \frac{\partial \omega}{\partial x_{j}} \right] + 2\left(1 - F_{1}\right) \frac{\sigma_{\omega 2}}{\omega} \frac{\partial k}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}$$

- Helicity model implemented via UDF
 - Not Galilian invariant
 - For rotating zones: \vec{v} , $\vec{\omega}$ becomes relative ones

Multi-reference Frame

Overall Performance

Total pressure ratio (N100)

Isentropic Efficiency (N100)

Table 1. Aerodynamic parameters prediction results (PE condition)

16		0991 9092		
Measured/Calculated	Total pressure ratio	Relative error of total pressure ratio (%)	Isentropic efficiency (%)	Isentropic efficiency error (%)
Exp	1.491	_	86.92%	_
SST	1.491	0.0%	88.17%	+1.25%
SST-Helicity	1.489	-0.134%	88.00%	+1.08%

Table 2. Aerodynamic parameters prediction results (NS condition)

Measured/Calculated	Mass flow rate (kg/s)	Mass flow rate error (kg/s)	Stall margin* (%)	Stall margin error (%)	
Exp	13.375	_	24.81%		
SST	15.319	+1.934kg/s	8.71%	-16.1%	
SST-Helicity	14.011	+0.626kg/s	20.9%	-3.91%	

- PE condition: SST & SST-Helicity high accuracy
- NS condition: achieved by increment of backpressure by 0.2KPa, stall margin (SST-Helicity) more than double

Aerodynamic Parameter Distributions

ME21 (PE)

ME30 (PE)

Rotor exit:

- Pt prediction deviation over upper span (60% span up) for both SST & SST-Helicity
- Absolute yaw angle overpredicted over most of span: "thinner" blade surface boundary layer predicted?

Stator exit:

- Reasonable Pt & Smaller Tt predicted: lower loss, corresponding to "thinner" boundary layer
- Pt overpredicted near hub: neglection of stator hub leakage flow

Aerodynamic Parameter Distributions

- PE: hub Pt deviation due to neglection of stator hub leakage effect (no hub cavity)
- NS: pre-mature stall for SST (>14.784kg/s), stator hub leakage effect much more significant

Flow Field Visualization (15.49kg/s)

Rotor (surface limiting streamline)

SST-Helicity

- smaller shock-induced separation bubble
- smaller corner separation

Flow Field Visualization (15.49kg/s)

Stator (surface limiting streamline)

Stator (particle traces)

SST

SST-Helicity

SST-Helicity

- smaller blockage due to casing corner separation region
- reduction of blockage in both rotor & stator contributes to increased stall operating range

References

- 1. Liu Y, Lu L, Fang L, Gao F. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity. *Phys lett, A* 2011;375(24):2377-2381.
- 2. Liu Y, Tang Y, Scillitoe AD, Tucker PG. Modification of shear stress transport turbulence model using helicity for predicting corner separation flow in a linear compressor cascade. *J Turbomach* 2020;142(2): 021004.

Thank you for your attention!

