(f) Int. Cl. 6:

- (9) BUNDESREPUBLIK
 DEUTSCHLAND
- OffenlegungsschriftDE 197 24 199 A 1

Anmeldetag:

(3) Offenlegungstag:

197 24 199.9 9. 6. 97 10. 12. 98

DEUTSCHES
PATENT- UND
MARKENAMT

C 08 G 18/78 C 08 G 18/77 B 01 F 17/14 B 01 F 17/52 C 09 D 7/02 C 09 D 175/04 C 07 F 9/09 C 07 D 273/04 C 08 L 75/04

C 08 G 18/38

C 08 G 18/73

C 08 G 18/75

// C07F 7/22

- (1) Anmelder: BASF AG, 67063 Ludwigshefen, DE
- Treiber, Reinhard, 69181 Leimen, DE; Renz, Hans, Dr., 67149 Meckenheim, DE; Häberle, Karl, Dr., 67346 Speyer, DE; Dannenfelser, Dirk, 67591 Mörstadt, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Emulgatoren
- Emulgatoren (E) aus

 a) aliphatischen, cycloaliphatischen oder aromatischen
 Polyisocyanaten und
 b) sauren Estern der Phosphorsäure.

Beschreibung

Die vorliegende Erfindung betrifft Emulgatoren (E) aus

- a) aliphatischen, cycloaliphatischen oder aromatischen Polyisocyanaten und
- b) sauren Estern der Phosphorsäure.

5

Weiterhin betrifft die Erfindungen Mischungen aus dem Emulgator (E) und weiteren Polyisocyanaten, Mischungen aus wässerigen Polymerdispersionen und dem Emulgator (E) sowie Gegenstände, die mit den letztgenannten Mischungen beschichtet, verklebt oder imprägniert sind.

Gebrauchseigenschaften wäßriger Dispersionen werden verbessert durch Zusatz von Polyisocyanaten.

Um eine einwandfreie Funktion der Isocyanate zu gewährleisten, ist es nötig, daß das Isocyanat homogen in die zu

Bei den Isocyanaten, die z. B. nach der Lehre der EP-A-206 059 oder der EP 486 881 hergestellt sind, ist ein sehr sorgverbessernde Dispersion eingemischt wird. fältiges Einrühren erforderlich, d. h. es bedarf, wenn die Vermischung innerhalb kurzer Zeit abgeschlossen sein soll, eines Rührorgans, das in der Lage ist, hohe Scherkräfte zu übertragen oder bei Verwendung eines einfacheren Rührorgans entsprechend längerer Mischzeiten.

Ein leichteres Einrühren gewährleisten Lösungen von hydrophil modifizierten Isocyanaten in Lactonen oder cyclischen Kohlensäureestern, wie in der EP-A 697 424 beschrieben. Diese Systeme haben jedoch den Nachteil, daß in die

Aufgabe der Erfindung war daher, ein wasseremulgierbares Polyisocyanat zur Verfügung zu stellen, das mit geringe-Dispersionen ein Lösungsmittel eingeschleppt wird. rem oder gar ohne Rühraufwand in der zu verbessernden Dispersion emulgierbar ist.

Demgemäß wurde der oben definierte Emulgator (E), Mischungen aus dem Emulgator (E) und weiteren Polyisocyanaten, Mischungen aus wässerigen Polymerdispersionen und dem Emulgator (E) sowie Gegenstände, die mit der letzt-

genannten Mischung beschichtet, verklebt oder imprägniert sind, gefunden. Polyisocyanate (a), die sich für die Herstellung der Emulgatoren (E) eignen, sind übliche Polyisocyanate mit einer arithmetischen mittleren NCO-Funktionalität von 2,0 bis 4,5. Diese Komponenten können alleine oder im Gemisch vor-

Beispiele für übliche Diisocyanate sind aliphatische Diisocyanate wie Tetramethylendiisocyanat, Hexamethylendiisocyanate cyanat (1,6-Diisocyanatohexan), Octamethylendiisocyanat, Decamethylendiisocyanat, Tecamethylendiisocyanat, Tecamethylendi tradecamethylendiisocyanat, Trimethylhexandiisocyanat oder Tetramethylhexandiisocyanat, cycloaliphatische Diisocyanate wie 1,4-, 1,3- oder 1,2-Diisocyanatocyclohexan, 4,4'-Di(isocyanatocyclohexyl)methan, 1-Isocyanato-3,3,5-trimethyl-5-(isocyanatomethyl)cyclohexan (Isophorondiisocyanat) oder 2,4-, oder 2,6-Diisocyanato-1-methylcyclohexan sowie aromatische Diisocyanate wie 2,4- oder 2,6-Toluylendiisocyanat, Tetramethylxylylendiisocyanat, p-Xylylendiisocyanat, 2,4'- oder 4,4'-Diisocyanatodiphenylmethan, 1,3- oder 1,4-Phenylendiisocyanat, 1-Chlor-2,4-phenylendiisocyanat, 1,5-Naphthylendiisocyanat, Diphenylen-4,4'-diisocyanat, 4,4'-Diisocyanato-3,3'-dirnethyldiphenyl, 3-Methyldiphenat, 1,5-Naphthylendiisocyanat, Diphenylen-4,4'-diisocyanat, 4,4'-Diisocyanato-3,3'-dirnethyldiphenyl, 3-Methyldiphenyl, 3-Methyld nylmethan-4,4'-diisocyanat oder Diphenylether-4,4'-diisocyanat. Es können auch Gemische der genannten Diisocyanate vorliegen. Bevorzugt sind Hexamethylendiisocyanat und Isophorondiisocyanat.

Als übliche höherfunktionelle Polyisocyanate eignen sich beispielsweise Triisocyanate wie 2,4,6-Triisocyanatotoluol oder 2,4,4'-Triisocyanatodiphenylether oder die Gemische aus Di-, Tri- und höheren Polyisocyanaten, die durch Phosgenierung von entsprechenden Anilin/Formaldehyd-Kondensaten erhalten werden und Methylenbrücken aufweisende Po-

Von besonderem Interesse sind übliche aliphatische höher funktionelle Polyisocyanate der folgenden Gruppen: lyphenylpolyisocyanate darstellen.

- (a) Isocyanuratgruppen aufweisende Polyisocyanate von aliphatischen und/oder cycloaliphatischen Diisocyanaten. Besonders bevorzugt sind hierbei die entsprechenden Isocyanato-Isocyanurate auf Basis von Hexamethylendiisocyanat und Isophorondiisocyanat. Bei den vorliegenden Isocyanuraten handelt es sich insbesondere um einfache Tris-Isocyanatoalkyl- bzw. Tris-Isocyanatocycloalkyl-Isocyanurate, welche cyclische Trimere der Diisocyanate 45 darstellen, oder um Gemische mit ihren höheren, mehr als einen Isocyanuratring aufweisenden Homologen. Die Isocyanato-Isocyanurate haben im allgemeinen einen NCO-Gehalt von 10 bis 30 Gew.-%, insbesondere 15 bis 25 Gew.-%, und eine mittlere NCO-Funktionalität von 2,6 bis 4,5. 50
 - (b) Uretdiondiisocyanate mit aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen, vorzugsweise von Hexamethylendiisocyanat oder Isophorondiisocyanat abgeleitet. Bei Uretdiondiisocyanaten handelt es sich um cyclische Dimerisierungsprodukte von Diisocyanaten.
- (c) Biuretgruppen aufweisende Polyisocyanate mit aliphatisch gebundenen Isocyanatgruppen, insbesondere Tris(6-isocyanatohexyl)biuret oder dessen Gemische mit seinen höheren Homologen. Diese Biuretgruppen aufweisenden Polyisocyanate weisen im allgemeinen einen NCO-Gehalt von 10 bis 30 Gew.-%, insbesondere von 18 bis 55 25 Gew.-% und eine mittlere NCO-Funktionalität von 3 bis 4,5 auf.
- (d) Urethan- und/oder Allophanatgruppen aufweisende Polyisocyanate mit aliphatisch oder cycloaliphatisch gebundenen Isocyanatgruppen, wie sie beispielsweise durch Umsetzung von überschüssigen Mengen an Hexamethylendiisocyanat oder an Isophorondiisocyanat mit einfachen mehrwertigen Alkoholen wie Trimethylolpropan, Glycerin, 1,2-Dihydroxypropan oder deren Gemischen erhalten werden können. Diese Urethan- und/oder Allophanat-60 gruppen aufweisenden Polyisocyanate haben im allgemeinen einen NCO-Gehalt von 12 bis 20 Gew.-% und eine
- (e) Oxadiazintriongruppen enthaltende Polyisocyanate, vorzugsweise von Hexamethylendiisocyanat oder Isophorondiisocyanat abgeleitet. Solche Oxadiazintriongruppen enthaltenden Polyisocyanate sind aus Diisocyanat und 65 Kohlendioxid herstellbar.
 - (f) Uretonimin-modifizierte Polyisocyanate.

Aliphatische und cycloaliphatische Polyisocyanate sind besonders bevorzugt. Ganz besonders bevorzugt sind Hexamethylendiisocyanat und Isophorondiisocyanat und insbesondere deren Isocyanurate und Biurete. Zur Herstellung der erfindungsgemäßen der Emulgatoren (E) werden die o.a. Polyisocyanate umgesetzt mit sauren 5 Estern der Phophorsäure (b), d. h. Mono- oder Diester der ortho-Phosphorsäure. Geeignete Phosphorsäureester (b) sind solche der Formel (I) $(HO)_x(RO)_{3-x}P=O$ (I) 10 mit R = Alkyl, bevorzugt C_1 - bis C_{10} -Alkyl, Cycloalkyl. Bevorzugt C_4 - bis C_8 -Alkyl, Aryl, bevorzugt C_6 - bis C_{10} Aryl, Aralkyl, bevorzugt C7- bis C15-Aralkyl, wobei im Falle von x = 1 die Gruppen R gleich oder verschieden sein können. Die Gruppen R können auch durch Heteroatome wie O, N, S unterbrochen sein. Die Gruppen R sollen jedoch keine mit Isocyanat reaktiven Gruppen wie z. B. NH, OH, SH, COOH tragen. Besonders bevorzugt leiten sich die Reste R von Fettsäurealkoholen oder alkoxylierten Fettsäurealkoholen ab und stehen beispielsweise für solche der allgemeinen Formel (II) 20 $OH-(CH_2-CH_2-O)_{m}-(CH_2-CH(CH_3)-O)_{n}-R'$ (II) $R' = C_{1}$ - bis C_{20} -, bevorzugt C_{10} - bis C_{20} -Alkyl 25 m = 1 bis 50Die Wiederholungseinheiten im Rest der Formel (II) -(CH₂-CH₂-O)_m und (CH₂CH(CH₃)-O)_n können sowohl statin = 1 bis 50.stisch verteilt als auch in Form von Blöcken vorliegen. Wir vermuten, daß bei der Herstellung der Emulgatoren (E) durch Umsetzung der Polyisocyanate (a) mit den sauren Estern der Phosphorsäure (b) die Hydroxylgruppen der Komponente (b) mit den NCO-Gruppen der Komponente (a) in 30 einer Additionsreaktion unter Ausbildung einer kovalenten Bindung reagiert. Setzt man die Komponenten (a) und (b) in solchen Mengenverhältnissen (V) ein, daß das Verhältnis (V) NCO-Gruppen zu Phosphorsäureestergruppen 1: 1 oder kleiner ist. So erhält man einen Emulgator (E), der frei von NCO-Gruppen ist. Ein solcher Emulgator (E) kann selbstverständlich nicht mehr selbst zur Molekulargewichtserhöhung und damit Verbesserung der Gebrauchseigenschaften der wässerigen Polymerdispersionen beitragen. Deshalb ist es erforderlich, ihn in 35 Form einer Mischung einzusetzen, enthaltend - aliphatische, cycloaliphatische oder aromatische Polyisocyanate (B), welche gleich oder verschieden sind von denen, aus denen der Emulgator (E) aufgebaut ist. 40 Als Polyisocyanate (B) kommen alle diejenigen in Betracht, die auch zur Herstellung des Emulgators (E) eingesetzt Erhöht man das Verhältnis (V) auf Werte über 1:1, werden zunächst teilweise auch solche Emulgatoren (E) gebildet, werden können. die selbst NCO-Gruppen tragen und mit wachsendem Verhältnis (V) in zunehmendem Maße auch Gemische aus diesen Emulgatoren (E) und nicht abreagierten Polyisocyanaten (a) gebildet. Zur Abmischung wässeriger Polymerdispersionen werden besonders wirksam solche Emulgatoren (E) oder Mischungen, enthaltend Emulgatoren (E) und ein oder beide Polyisocyanate (a) oder (B), eingesetzt, die vorzugsweise einen Gehalt an Gruppen, abgeleitet von Phosphorsäureestern (b), von 0,02 bis 3 bevorzugt 0,1 bis 1 mol pro kg Emulgatoren (E), oder, falls die Emulgatoren (E) als Mischungen mit Polyisocyanaten (a) oder (B) vorliegen, pro kg dieser Mischungen, Emulgatoren (E), oder Mischungen aus Emulgator (E) und Polyisocyanaten (a) oder (B), die diesen vorstehend geenthalten. nannten Gehalt an Gruppen, abgeleitet von Phosphorsäureestern (b) aufweisen, werden nachfolgend kurz "Wasseremul-Die wasseremulgierbaren Isocyanate weisen mit Vorteil einen Gehalt an NCO-Gruppen von 1 bis 6, bevorzugt von 2 gierbare Polyisocyanate" genannt. 55 Werden andere hydrophile Gruppen wie z.B. nichtionisch-hydrophile Gruppen wie Poylethylenoxide oder ionische bis 5 mol pro kg auf. Gruppen wie Carboxylat-, Sulfonat- oder Ammoniumgruppen mitverwendet, so sollen nicht mehr als 15 Gew.-% Ethylenoxid-Einheiten bzw. nicht mehr als 2 mol/kg Ausgangsisocyanat chemisch an das Isocyanat gebundene Carboxyl-, Sulfonat- oder Ammoniumgruppen mitverwendet werden. Die Mitverwendung anderer hydrophiler Gruppen ist jedoch 60 Die Umsetzung der Phosphorsäureester (b) mit den Polyisocyanaten (a) erfolgt üblicherweise bei Temperaturen zwii.a. nicht erforderlich. schen 20°C und 150°C und ggf. unter Verwendung von Katalysatoren, wie sie bei der Bildung von Urethanen verwendet werden, z. B. Dibutylzinndilaurat oder Diazabicyclooctan. Im Allgemeinen wird die Reaktion bei Normaldruck durch-

Es ist vorteilhaft, die Phosphorsäureester vor oder nach der Umsetzung mit dem Isocyanat durch Neutralisation mit

Basen wenigstens teilweise in Salzgruppen zu überführen. Als Basen sind hierbei bevorzugt tertiäre Amine, die keine weiteren gegenüber Isocyanat reaktiven Gruppen wie OH, NH, SH oder COOH-Gruppen tragen, zu verwenden. Geeig-

geführt.

net sind z. B. Trialkylamine wie Triethylamin.

Die Amine können in solchen Mengen zugesetzt werden, daß 0,1 bis 100 Mol%, bevorzugt 10 bis 100 Mol%, der sauren Gruppen des Phosphorsäureesters neutralisiert sind.

Die Umsetzung erfolgt im allgemeinen in Substanz. Weiterhin ist es möglich, bei der Synthese gegenüber NCO inerte Lösungsmittel wie Kohlenwasserstoffe, Ketone, Ester, insbesondere cyclische Carbonate, Amide oder Lactame zu ver-

Falls es für die Herstellung der vorstehend definierten wasseremulgierbaren Isocyanate erforderlich ist, die Emulgatoren (E) zusätzlich mit Polyisocyanat (B) abzumischen, weil erstere keine oder in zu geringem Umfang NCO-Gruppen tragen oder unumgesetztes Polyisocyanat (a) enthalten, so kann diese Abmischung zu einem beliebigen Zeitpunkt nach

der Herstellung der Emulgatoren (E) erfolgen. Die Wasseremulgierbaren Polyisocyanate eignen sich als Zusatzmittel, d. h. als Vernetzungsmittel, für wäßrige Polymerdispersionen, insbesondere für Dispersionen von Polyurethanen oder radikalisch polymerisierten Polymeren. Sie eignen sich besonders als Zusatzmittel für Klebstoffe, Beschichtungsmittel oder Imprägnierungsmittel auf Basis wäßriger Dispersionen insbesondere von Polyurethanen oder radikalisch polymerisierten Polymeren.

Sie können auch alleine, z. B. zur Ausrüstung von Textilien verwendet werden (s. z. B. DE-A-44 15 451).

Die Vermischung der Wasseremulgierbaren Polyisocyanate und wässerigen Dispersionen von Polyurethanen oder radikalisch polymerisierten Polymeren sollte nicht früher als 48 h vor der Beschichtung, Verklebung oder Imprägnierung von Gegenständen min dieser Mischung vorgenommen werden.

Die erhaltenen Imprägnierungs-, Beschichtungsmittel und Klebstoffe weisen eine nur unwesentlich erhöhte Hydrophi-

20

35

45

60

Beispiele

Polyisocyanat PI I

Durch Trimerisierung eines Teils der Isocyanatgruppen von HDI hergestelltes, Isocyanuratgruppen aufweisendes Polyisocyanat mit einem NCO-Gehalt von 22,0% und einer Viskosität bei 23°C von 2800 mPas.

Vergleichsbeispiel (nach EP 206 059)

90 Teile PI I werden mit 10 Teilen eines auf Methanol gestarteten Polyethylenoxidalkohols des Molgewichts Man erhält ein klares, gelbliches Harz mit einem Gehalt an EO-Einheiten von 10 Gew.-% und einem NCO-Gehalt von 1100 g/mol bei 100°C während 150 min gerührt. 19.1 Gew.-%.

Beispiel 1

200 g eines sauren Phosphorsäureesters, der durch Reaktion eines alkoxylierten Fettalkohols der Zusammensetzung R- $(EO_{12}PO_6)$ -OH mit R = CH_3 - $(CH_2)_{13-15}$ (EO = $-CH_2$ - CH_2 -O-; PO = $-CH_2$ - $CH(CH_3)$ -O-) mit Phosphorsäureanhydrid erhalten wurde und der ein Säureäquivalentgewicht von ca. 386 g/mol aufweist, wurden mit 25,0 g Triethylamin (TEA)

100 g dieser Mischung wurden mit 666 g PI I gemischt und bei 50°C 30 min lang gerührt. Man erhielt ein gelbliches Harz mit einem NCO-Gehalt von 18,5 Gew.-% (4,40 mol NCO/kg) und einer Viskosität bei 23°C von 6300 mPas.

Beispiel 2

20 g eines Gemisches von Mono- und Dibutylphosphat (40 mol% Mono) wurden mit 8 g TEA gemischt. 20 g der Mischung wurden mit 200 g PI I gemischt und bei 50°C 30 min lang gerührt. Man erhielt ein gelbliches Harz mit einem NCO-Gehalt von 19,0 Gew.-% (4,52 mol NCO/kg) und einer Viskosität bei 23°C von 9000 mPas.

Beispiel 3

20 g eines Gemisches von Mono- und Di-(2-ethylhexyl)phosphat (45 mol% Mono) wurden mit 6,5 g TEA gemischt. 20 g der Mischung wurden mit 200 g PI I gemischt und bei 50°C 30 min lang gerührt. Man erhielt ein gelbliches Harz mit einem NCO-Gehalt von 18,3 Gew.-% (4,36 mol NCO/kg) und einer Viskosität bei 23°C von 6700 mPas.

Prüfung

Draht-Tropfen-Versuche zum Ermitteln der Lösegeschwindigkeit von wasseremulgierbaren Isocyanaten Versuchsbe-Ein Kupfer-Draht mit dem Durchmesser von ca. 120 µm wird am Ende zu einem Haken von etwa gleichem Innendurchmesser gebogen. Der Haken wird mit Isocyanat benetzt und unmittelbar danach in ein mit entionisiertem Wasser gefülltes Glasrohr gehängt (Durchmesser min. 2 cm, Länge min. 25 cm). Die Zeit vom Eintauchen bis zum kompletten Emulgieren des Isocyanates wird gemessen. Die Meßergebnisse sind in Tabelle 1 wiedergegeben.

Tabelle 1

Messung	Vergleich	Beispiel 1	Beispiel 2	Beispiel 3
	(sec)	(sec)	(sec)	(sec)
	600	1330	140	115
2	510	330	150	110
3	590	320	165	120
4	570	240	150	100
5	500	280	145	110
Mittelwert	550 .	302	150	111

15

10

5

Patentansprüche

1. Emulgatoren (E) aus

20

- a) aliphatischen, cycloaliphatischen oder aromatischen Polyisocyanaten und
- b) sauren Estern der Phosphorsäure.

- 2. Emulgatoren (E) nach Anspruch 1, wobei es sich bei dem Polyisocyanat (a) um Isophorondiisocyanat, Hexamethylendiisocyanat oder davon abgeleitete Polyisocyanate handelt.
- 3. Emulgatoren (E) nach Anspruch 1 oder 2, wobei es sich bei dem sauren Ester der Phosphorsäure (b) um eine Verbindung der Formel (I)

 $(HO)_x(RO)_{3-x}P=O$ (I)

mit

30

35

x = 1 oder 2 und

R = Alkyl, Cycloalkyl, Aryl, Aralkyl,

wobei die Gruppen R auch durch die Heteroatome O, N oder S unterbrochen und im Falle von x = 1 gleich oder verschieden sein können, handelt.

- 4. Wasseremulgierbare Isocyanate, bei denen es sich um Emulgatoren (E), oder Mischungen aus Emulgator (E) und Polyisocyanaten (a) oder (B) handelt, die einen Gehalt an Gruppen, abgeleitet von sauren Estern der Phosphorsäure, von 0,02 bis 3 mol pro kg Emulgatoren (E), oder, falls die Emulgatoren (E) als Mischungen mit Polyisocyanaten (a) oder (B) vorliegen, pro kg dieser Mischungen, enthalten.
- 5. Wasseremulgierbare Isocyanate gemäß Anspruch 4, enthaltend 1 bis 6 mol NCO-Gruppen pro kg.

40

- Wasseremulgierbaren Polyisocyanaten gemäß Anspruch 4 oder 5 und
- wässerigen Dispersionen von Polyurethanen oder radikalisch polymerisierten Polymeren.
- 7. Verfahren zur Beschichtung, Verklebung oder Imprägnierung von Gegenständen mit einer Mischung gemäß Anspruch 6, wobei man die Vermischung der wasseremulgierbaren Polyisocyanaten und wässerigen Dispersionen von Polyurethanen oder radikalisch polymerisierten Polymeren nicht früher als 48 h vor der Beschichtung, Verklebung oder Imprägnierung von Gegenständen mit dieser Mischung vornimmt.
- 8. Gegenstände, welche nach dem Verfahren nach Anspruch 7 hergestellt sind.

50

55

65