Sistema mulireactivo en fase gasosa en equilibrio

Enunciado

As seguintes reaccións en fase gasosa teñen lugar nun reactor de volume constante:

$$A + B \Longleftrightarrow C + D \tag{1}$$

$$B + C \iff X + Y$$
 (2)

$$A + X \Longleftrightarrow Z$$
 (3)

O equilibrio das reacciones anteriores queda descrito por un sistema de ecuacións alxébricas no lineares. As relacións no lineares de equilibrio son as expresións da constante de equilibrio termodinámica pero tamén obtéñense a partires das ecuacións estequiométricas das reacciones:

$$K_{C_1} = \frac{C_C C_D}{C_A C_B} \tag{4}$$

$$K_{C_2} = \frac{C_X C_Y}{C_B C_C} \tag{5}$$

$$K_{C_1} = \frac{C_Z}{C_A C_X} \tag{6}$$

$$C_A = C_{A_0} - C_D - C_Z (7)$$

$$C_B = C_{B_0} - C_D - C_Y (8)$$

$$C_C = C_D - C_Y \tag{9}$$

$$C_X = C_Y + C_Z \tag{10}$$

onde C_A , C_B , C_C , C_D , C_X , C_Y e C_Z son as concentracións das diferentes especies no equilibrio, acadadas a partires das concentracións iniciais C_{A_0} e C_{B_0} . As constantes de equilibrio K_{C_1} , K_{C_2} e K_{C_3} teñen valores coñecidos.

Resolver este sistema de ecuacións cando C_{A_0} = C_{B_0} = 1.5 M, K_{C_1} = 1.06, K_{C_2} = 2.63 e K_{C_3} = 5, empezando con tres conxuntos de valores estimados:

1.
$$C_D$$
 = C_X = C_Z = 0

2.
$$C_D = C_X = C_Z = 1$$

3.
$$C_D = C_X = C_Z = 10$$