Изпит по "Дискретни структури" (СУ, ФМИ, 07.02.2019 г.) — задачи за специалност "Компютърни науки", I курс, II поток

Втора част

Име: Факултетен № Група:

Задача	4	5	6	Общо за 2. част
точки				
от макс.	20	20	20	60

Всяка от двете части на изпита съдържа по три задачи и всяка задача носи най-много 20 точки.

За отлична оценка са достатъчни общо 100 точки. Ако имате над 100 точки, това е бонус за Вас.

Всички отговори трябва да бъдат обосновани подробно!

Задача 4. В краен неориентиран граф без примки е избран неизолиран връх v_0 . Известно е, че има единствен най-дълъг прост път с начало v_0 . Докажете, че краят му (различен от v_0) е връх от нечетна степен.

Задача 5. Нека A е непразно множество и $\mathcal{T} = \{B \mid B \subseteq A \times A\}$. Дефинираме три предиката P_1, P_2 и P_3 над множеството \mathcal{T} :

- $\forall x \in \mathcal{T} : P_1(x)$ тогава и само тогава, когато $(\forall y \in A : (y, y) \in x)$.
- $\forall x \in \mathcal{T} : P_2(x)$ тогава и само тогава, когато $(\forall y \in A, \forall z \in A : (y, z) \in x \leftrightarrow (z, y) \in x)$.
- $\forall x \in \mathcal{T} : P_3(x)$ тогава и само тогава, когато

$$(\forall y \in A, \forall w \in A, \forall z \in A : (y, w) \in x \land (w, z) \in x \rightarrow (y, z) \in x).$$

Професор Парадоксов твърди, че

$$\forall x \in \mathcal{T} : P_2(x) \land P_3(x) \to P_1(x),$$

и предлага следното доказателство.

Разглеждаме произволно $x\in\mathcal{T}$. Приемаме, че $P_2(x)$ и $P_3(x)$. Ще докажем, че $P_1(x)$. Разглеждаме произволно $a\in A$, такова че $(a,b)\in x$. Щом $P_2(x)$, то $(b,a)\in x$. Тогава $(a,b)\in x$ и $(b,a)\in x$. Тъй като $P_3(x)$, то от $(a,b)\in x$ и $(b,a)\in x$ следва, че $(a,a)\in x$.

Тъй като разгледаното a е произволно, то този извод важи за всяко a от A. Но това е същото като $\forall y \in A : (y,y) \in x$. Тогава $P_1(x)$ е истина за всяко $x \in \mathcal{T}$.

Прав ли е професорът? Валидно ли е доказателството му?

Задача 6. Дадена е булевата функция $f(x,y) \equiv (x \lor y) \to (x \land y)$.

- а) Намерете съвършената дизюнктивна нормална форма на f. (6 точки)
- б) Намерете полинома на Жегалкин на функцията f. (7 точки)
- в) Множеството от булеви функции $\{f, \vee, \wedge\}$ пълно ли е? (7 точки)

РЕШЕНИЯ

Задача 4. Най-дългият прост път с начало $\,v_0^{}\,$ изглежда така:

където k е дължината, v_0 е началото, v_k е краят на пътя.

Щом v_0 е неизолиран връх, то $k \geq 1$ и краят v_k е различен от v_0 . Затова краят v_k има предходен връх v_{k-1} (който може да съвпада с v_0). Тогава степента на v_k е поне единица.

Да допуснем, че степента на v_k е по-голяма от единица, т.е. v_k е свързан с поне един връх, различен от v_{k-1} (а също и от v_k , защото графът няма примки). Има две възможности:

1) Върхът v_k е свързан с някой връх v_i , който е от същия път, но е различен от v_{k-1} (т.е. i е някой от индексите 0, 1, 2, ..., k-2). Можем да получим друг най-дълъг път, като вземем реброто v_i v_k вместо v_i v_{i+1} :

$$v_0 -\hspace{-0.5cm} \cdots -\hspace{-0.5cm} v_{i-1} -\hspace{-0.5cm} \cdots -\hspace{-0.5cm} v_i -\hspace{-0.5cm} v_k -\hspace{-0.5cm} \cdots -\hspace{-0.5cm} v_{k-1} -\hspace{-0.5cm} \cdots -\hspace{-0.5cm} \cdots -\hspace{-0.5cm} v_{i+1} \, .$$

Полученият път е прост (върховете му са различни), започва от v_0 и има същата дължина k. Тоест това е втори най-дълъг прост път с начало v_0 , а по условие има само един такъв.

2) Върхът $\,v_k^{}\,$ е свързан с някой връх $\,u_{}^{},\,$ различен от $\,v_0^{}\,,\,$ $\,v_1^{}\,,\,$ $\,v_2^{}\,,\,$ $\,\ldots\,,\,$ $\,v_{k-1}^{}\,$ и $\,v_k^{}\,.\,$ Тогава

$$v_0$$
 ——— v_1 ——— v_2 ——— v_3 ———— v_{k-1} ——— v_k ——— u

е прост път с начало v_0 и дължина k+1, което противоречи на избора на k (получава се прост път, по-дълъг от най-дългия прост път).

И в двата случая се стига до противоречие. Следователно допускането не е вярно, тоест степента на v_k не е по-голяма от единица. Тогава степента на v_k е равна на единица, затова v_k е връх от нечетна степен (единицата е нечетно число).

Задача 4 може да се реши по още един начин — чрез позоваване на теорема от домашно № 4: има четен брой най-дълги прости пътища с начало даден връх v_0 и с краен връх от четна степен. По условие има само един най-дълъг прост път с начало v_0 . Тогава споменатият четен брой най-дълги прости пътища може да бъде само нула. Тоест единственият най-дълъг прост път с начало v_0 не завършва във връх от четна степен. Значи, завършва във връх от нечетна степен.

Задача 5 разглежда въпроса: ако една бинарна релация, дефинирана над декартов квадрат, е симетрична и транзитивна, следва ли, че тя е и рефлексивна? Отговорът гласи: не, не следва. Празната релация \varnothing е контрапример. Грешката в доказателството на професор Парадоксов е, че се предполага съществуването на наредена двойка $(a,b) \in x$. Такава двойка може и да няма.

Задача 6. Съвършената ДНФ на f е $f(x,y)=\overline{x}\ \overline{y}\lor x\ y$, а полиномът на Жегалкин е f(x,y)=x+y+1. Множеството $\{f,\lor,\land\}$ е непълно: трите функции запазват единицата.