Machine learning

Review Lecture

Lecture XII

למידת מכונה – סיכום סמסטר

- מקווים שנהנתם ולמדתם... אבל ... כן, יש גם מבחן
- מבחן 50% מציון סופי לגבי הפורמט הודעה בקרוב (או במדול או כל השאלות אמריקאיות כמו במצגת התרגול)
 - 14:00 בשעה 23/6/2021 באריך הבחינה \$ ₪
 - משך המבחן שעתיים ללא הפסקה ❖
- ⇒ המבחן כולל 25 שאלות, חלקם שאלות הבנה אמריקאיות וחלקם כוללות רכיבי
 חישוב (או שאלות חישוב)
 - שאלות עם חישוב כשליש מהשאלות 🌸
 - אות (יינתן בקרוב) חומר עזר מחשבון ודף נוסחאות (יינתן בקרוב) ↔
 - של בחומר של הרצאות והתרגיל − לא כולל סיקוד בחומר של הרצאות והתרגיל + לא כולל מיקוד בחומר של הרצאות והתרגיל + לא כולל של מיקוד בחומר של הרצאות והתרגיל + לא כולל של הרצאות והתרגיל ביולל ב
 - נושאים מרכזיים:

למידת מכונה – סיכום סמסטר

- נושאים מרכזיים רוחביים:
- מושגים מתמטיים הסתברותיים וסטטיסטים
- מידול והבנת בעיות למידת מכונה; flow של למידת מכונה; למידה מונחית מול למידה לא מונחית
 - סילום; טיפול מקדים במידע; אנומליות
 - שיטות מרחק; קשר בין משתנים *
 - נושאים מתורת האינפורמציה
 - (clustering-סיווג, רגרסיה ו o יווג, ביצועים *
 - Gradient descent אופטימיזציה;
 - * בחירת מודל ופרמטרים;

ועוד ...

למידת מכונה – סיכום סמסטר

- Paradigm: "Programming by example"
 - Replace ``human writing code'' with ``human supplying data''
- Most central issue: generalization
 - How to abstract from ``training'' examples to ``test'' examples?

למידת מכונה – מטרות הקורס

- By the end of the semester, you should be able to
 - Look at a problem
 - Identify if ML is an appropriate solution
 - If so, identify what types of algorithms might be applicable
 - Apply those algorithms
- This course is not
 - A survey of ML algorithms
 - A tutorial on ML toolkits such as sklearn, python, ...

המאפיינים – ממרחב המאפיינים לווקטור המאפיינים

מאפיינים –

(מספריים)

ערכים בדידים

:(sepal) עלי גביע

אורך, רוחב

עלי כותרת (petal):

אורך, רוחב

	Vertical stripes		4 legs	largo	
aiiiiiiai	stripes	wille	4 legs	iaige	
0	1	1	0	0	
1	0	1	0	0	
1	0	0	1	1	
1	1	1	1	1	

רוח	הזבו	בעיית

פסים אנכיים: (אנכיים, אופקיים, ללא)
צבעים: (שחור, לבן, חום,)
רגלייה (2 4 ללא)

חיה: (כן, לא)

מאפיינים

קטגוריים.

ערכים

רגליים: (2, 4, ללא) גודל החיה: (גדולה, בינונית, קטנה)

sep	oal	petal			
length	width	length	width		
5.1	3.5	1.4	0.2		
4.9	3	1.4	0.2		
4.7	3.2	1.3	0.2		
4.6	3.1	1.5	0.2		
5	3.6	1.4	0.2		

מאפיינים ערכים רציפים

(מספריים)

א. מידול (Modeling):

שאלת סיווג; קטגורית התשובה; מאפיינים

:(features/attribute)

בלמידת מכונה, מתייחסים לחלק מהמאפיינים, כדי למדל דוגמאנת (תצפיות).

המאפיינים שבאמצעותם (מרחב המאפיינים): Feature Set נתייחס לכל דוגמה

עבור במאפיינים עבור (וקטור המאפיינים): Feature Vector

(instance) דוגמה מסוימת

ערך המאפיין:

ערך המאפיין יכול להיות קטגורי, מספר בדיד או מספרי רציף

עבור ערכים קטגוריים, בד"כ (וגם ב-KNN), נרצה להמיר את ערך המאפיין לערך מספרי בדיד.

למידת מכונה – מרכיבי למידה

- Training vs. test examples
 - Memorizing the training examples is not enough!
 - Need to generalize to make good predictions on test examples
- Inductive bias
 - Many classifier hypotheses are plausible
 - Need assumptions about the nature of the relation between examples and classes

dataset - train-set and test-set

Training Dataset: The dataset that we use to train the model

* The model sees and learns from this data.

Test dataset: The dataset that provides the gold standard used to evaluate the model.

It is only used once a model is completely trained.

שאלות בסיסיות

? המודלים (evaluation) "שאלה 1: למה מתכוונים כשאומרים "שערוך"

?feature vector ומהו ?feature set שאלה 2: מהו

?test set ומהו train set מהו ?dataset מהו 3: מהו

שאלות בסיסיות - המשך

שאלה 4: נניח שאנחנו צריכים לחזות את מזג האוויר מחר (מבחינת טמפרטורה), האם זו בעיית סיווג? מדוע?

שאלה 5: נניח שאנחנו רוצים לבנות מערכת שתחליט אם תמונה שמצלמים במדגסקר (אפריקה) היא תמונה של זברה או שהיא אינה תמונה של זברה. לשם כך אספנו 100 תמונות של זברות בגן החיות ב-'central park' (שבעיר ניו יורק).

? מדוע? מחמונות מתאימות (ברמה גבוה) לבניית מודל סיווג? מדוע

A typical classification flow - diving in

Data →Remove	Train- Test split + sampling	Scaling → Minmax norm. → t-dist. standardization	Feature Selection → Feature compared to itself. → compared to other features. → compared to category.	Learning Algos. → KNN → Decision Trees → Naïve Bayes → Perceptron → ANN	Validation → Hyper parameter tuning	Post Processing	Evaluation → Error (rate) → Accuracy → Confusion matrix → Precision
→Repair	→Repair	category.	→SVM			→ Recall	

התפלגות המחלקות

במגדר, למשל, הנתונים מתפלגים בערך בצורה מאוזנת (balanced).

משתנים אחרים, בהם יתכן ונרצה להתייחס (בבעיות סיווג), אינם מתפלגים בצורה מאוזנת (imbalanced)

דיאגרמות ואן

רקע מתמטי וסטטיסטי

סטטיסטיקה - שאלות בסיסיות

שאלה 1: מהם השונות וסטיית התקן? מה הם באים למדוד?

שאלה 2: מה ההבדל בין סטיית תקן באוכלוסיה וסטיית תקן במדגם?

שאלה 3: מהם התפלגות z והתפלגות t, ומה ההבדל בינהם?

סקלרים ווקטורים - שאלות

שאלה 1:

מהו סקלר? מהו וקטור בתצורה גאומטרית? מהו וקטור בתצורה אלגברית?

<u>:2 שאלה</u>

מהי נורמה?

מה המשמעות של מכפלה סקלרית של וקטורים במובן האלגברי? מה המשמעות של מכפלה סקלרית של וקטורים במובן הגאומטרי? מהו משמעות כפל וקטורים שנותן 1-? מהו משמעות כפל וקטורים שנותן 0?

שערוך מודלים - שאלות

- ?הילו שיטות שיערוך מיועדים לבעיית רגרסיה.
 - Accuracy .x
 - ב. Euclidean Distance
 - SAE.x
- ?clustering אילו שיטות שיערוך מיועדים לבעיות 2.
 - WSSE .×
 - precision .ב
 - SAE .x
 - ד. כל התשובות נכונות
 - ?. אילו שיטות שיערוך מיועדים לבעיות סיווג.
 - WSSE .×
 - Error-rate .□
 - K. MSE

Validation

dataset - train-test-validation

Holdout Method

- Split your dataset into 3 disjoint sets: Training, Validation, Test
- If a lot of data are available then you can try 50:25:25 otherwise 60:20:20.

Holdout Method – Hyperparameter tuning

- Keep the classifier that leads to the maximum performance on the validation set (in this example the one trained with 35 hidden neurons).
- This is called parameter optimization/tuning, since you select the set of parameters that have produced the best classifier.

Cross Validation – Test Set Performance Estimation

- Divide dataset into *k* (usually 10) folds using *k*-1 for training + validation and one for testing
- Test data between different folds should never overlap!
- Training + Validation and test data in the same iteration should never overlap!
- In each iteration the error on the left-out test set is estimated
- Error estimate: average of the k errors

Overfitting

• Given a hypothesis space H, h∈H overfits the training data if there exists some alternative hypothesis h'∈ H such that h has smaller error than h' over the training examples, but h' has smaller error than h over the entire distribution of instances.

- Overfitting: Small error on training set, but large error on unseen examples.
- Underfitting: Larger error on training and test sets.

validation set שימושים ל

- overfitting סיוע במניעת
 - Model selection *
- מיטביים hyperparameters בחירת
 - * תהליכים משלימים לתהליך האימון
 - של עצי החלטה Post pruning *
- ANN -בדיקה נקודה טובה לעצירה ב- *
- cross validation מקובל test שיערוך המודל, בהיעדר

ועוד ...

סילום (scaling)

מוטיבציה –

- למאפיינים שונים פונקציית התפלגות שונה
- clustering לא מניח איזשהם הנחות על התפלגות הנתונים (כנ"ל לאלגוריתמי איזשהם הנחות על התפלגות הנתונים (כנ"ל לאלגוריתמי שלמדנו)
 - - linear regression-פגיעה גם ב
 - משפרת גם אלגוריתם רבים.

:(Scaling) סילום

- training-ביין ב-(t-distribution) standardization * להתפלגות המאפיין ב-t-distribution) t להתפלגות t
 - [-1,1]; [0,1] שינוי הטווח לאחיד בין minmax normalization *

סילום - שאלות

?שאלה 1: את מה משנה פעולת הסילום

?t-distribution Standardization שאלה 2: איך מחשבים

?Min-max normalization שאלה 3: מה מבצע

?שאלה 4: מתי מסוכן לבצע סילום

דמיון ומרחק

Manhattan Distance:

$$d = \sum_{i=1}^{n} |\mathbf{x}_i - \mathbf{y}_i|$$

Euclidean Distance:

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Chebyshev Distance:

$$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \max_{1 \le m \le d} |x_{j_m} - x_{i_m}|$$

Cosine similarity :
$$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \frac{\overrightarrow{x_j}^T \cdot \overrightarrow{x_i}}{\|\overrightarrow{x_j}\| \cdot \|\overrightarrow{x_i}\|}$$

Edit distance

שאלות ביניים

שאלה 1: מה הקשר בין מרחק, קרבה ושכנות? מה הקשר לקביעת הקטגוריה של הדוגמה החדשה (נניח בדוגמה של השכן הקרוב ביותר)?

שאלה 2: האם יכול להיות שמרחק צ'בישב גדול ממרחק מנהטן?

שאלה 3: מה הקשר בין מרחק אוקלידי למרחק בין נקודות במרחב?

k-means -שאלה 4: כיצד משתמשים במרחק או בדמיון ב

?אלה 5: מה הקשר בין פונקציות מרחק לשערוך מודל רגרסיה?

– Information Theory

* Entropy
$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_n \log_2 p_n$$

= $-\sum_{j=1}^{n} p_j \log_2 p_j$

* Information Gain: $Gain(Y \mid X) = H(Y) - H(Y \mid X)$

$$NMI = \frac{I(f1; f2)}{|H(f1) + H(f2)|/2}$$

מודלים הסתברותיים

- The Naïve Bayes classifier
 - Conditional independence assumption
 - How to train it?
 - How to make predictions?
 - How does it relate to other classifiers we know?

- Fundamental Machine Learning concepts
 - Bayes optimal classifier
 - Maximum Likelihood estimation
 - Generative story

Bayes' Rule

Class observation
$$p(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

- P(c) *prior* probability of class c before any vector is seen
- P(x|c) likelihood of the observed data if the class is c
- P(x) evidence probability of the data
- P(c|x) posterior Probability of class c after the data is seen

Naïve Bayes Classifier

Using Bayes rule:

$$P(c \mid x_1, x_2, \dots, x_D) = \frac{P(C)P(x_1, x_2, \dots, x_D \mid C)}{P(x_1, x_2, \dots, x_D)}$$

• Select the feature set such that each feature x_i is independent of every other feature x_i .

$$P(x_1, x_2, \dots, x_D \mid c) = P(x_1 \mid c)P(x_2 \mid c)P(x_3 \mid c)\dots P(x_D \mid c) = \prod_{i=1}^{D} P(x_i \mid c)$$

שאלות – Naïve Bayes

posterior לבין prior probability מאלה 1: מה הבדל בין prior probability?

שאלה 2: מה הבדל בין מודל גנרטיבי למודל דיסקרמנטיבי? לאיזה סוג משתייך מודל של Naïve Bayes?

?Naïve Bayes-שאלה 3: מהי ההנחה הנאיבית ב-3

?smoothing שאלה 4: את מה מנסים לפתור בעזרת

K-NN

Most basic learning method

- Distance based classification
- Scaling is key here
- Hyper parameter tuning
- Several optimization methods
- No real training here..
- * Much much more....

- KNN

:1 שאלה

מיהם השכנים? שכנים של מי? מה הקשר בין ה-test-set ל-training-set ב-KNN?

?knn-ב tuning שאלה 2: מהם ה-hyper parameters שאפשר לעשות עבורם tuning שאלה 2: מהם להם ואיך עושים להם

<u>שאלה 3</u>:

1-NN כיצד נקבל החלטה לגבי הקטגוריה של דוגמה חדשה ע"י KNN? מה פירוש בעצם? מה ההבדל בין בחירה לפי הרוב, לבין בחירה ממושקלת?

<u>שאלה 4:</u>

מה המשמעות של ערכי K שונים (קטנים וגדולים)? מדוע נשאף לבחור K אי זוגי אם מספר הקטגוריות הוא 2?

עצי החלטה

Intuitive learning methods

- Self explainable
- Information theory (where else do we use it?)
- Evaluation methods, confusion matrix
- Overfitting risks
- How to handle overfit
- Discrete attributes
- Supports mutli class (number of classes > 2)
 - As some of the other algorithms we've learned

עצי החלטה ותורת האינפורמציה - שאלות

שאלה 1: ממה מורכבים עצי החלטה ומה מייצגים הרכיבים השונים בעץ? ומה פינה מורכבים השונים בעץ? ומה feature-vector? והקטגוריות??

שאלה 2: האם נעדיף הפרדה "מסובכת" או "פשוטה" בין המחלקות? מה היתרון והחסרון של על אפשרות? ומה מנחה אותנו בעצי החלטות?

שאלה 3: כדי למצוא את המאפיין הבא בעץ, האם נחפש מאפיין שיגדיל את האנטרופיה בכל תת קבוצה של העץ או יקטין אותה?

שאלה 4: היכן עוד למדנו שאפשר להשתמש בתורת האינפורמציה בלמידת מכונה?

Basic Text Analysis Flow

Vectorization: extracting basic feature units

The bag of words (BOW) model:

Each word is treated as a feature in a unit called document.

Each such word will become a feature

- Alternative: original tokens no processing
- Alternative: normalized words e.g., lemmas, stems
- * Alternative: characters e.g., prefixes
- Alternative: ngrams unigram, bigram, trigram
- * More complex alternatives ...

Vectorization: feature's value

Count Vectorizer - Converts a collection of text documents to a matrix of token counts

The bag of words (BOW) model:

Word Count

$$_{*}$$
 Binary, $f_{t,d}$

$$\star$$
 Binary, $f_{t,d}$, $\operatorname{tf}(t,d) = rac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}$, $\log(1+f_{t,d})$

$$\log(1+f_{t,d})$$

How rare is the word?

inverse document frequency (idf) = $\frac{\log |D|}{|\{d \in D : t \in d\}|}$

$$\operatorname{tfidf}(t,d,D) = \operatorname{tf}(t,d) \cdot \operatorname{idf}(t,D)$$

$$\log rac{N}{|\{d \in D: t \in d\}|}$$

number of documents containing term

number of documents

Tf-idf Vectorizer - Converts a collection of raw documents to a matrix of TF-IDF features

מודלים לינארים

- What are linear models?
 - a general framework for binary classification
 - how optimization objectives are defined
- loss functions
 - separate model definition from training algorithm (Gradient Descent)

מסווג לינארי – שאלות בסיסיות

1. איזו משוואה דיסקרמינטיבית (מפרידה) מהמשוואות הבאות הינה משוואה לינארית?

$$x_1^2 + 2x_2 + 1 = 0$$
.

 $3x_1+x_2+5=0$.

2. עבור משוואה $x_1 = 0$ (שלילית) מה יהיה הסיווג של זוגות הערכים הבאים (האפשרויות: חיובית שלילית)?

?(1,-1) כיצד המשוואה הנ"ל עבור מודל רגרסיה, תחזה ערך עבור הוקטור (3

Gradient Descent

Gradient descent

- a generic algorithm to minimize objective functions
- what are the properties of the objectives for which it works well?
- subgradient descent (ie what to do at points where derivative is not defined)
- why choice of step size, initialization matter
 - מהי פונקצית גרדיאנט? מה הקשר שלה ללמידת מכונה? - למה זקוקים לאלגורתם Gradient descent?

רשתות נוירונים

- What are Neural Networks?
 - Multilayer perceptron
- How to make a prediction given an input?
 - Forward propagation: Matrix operations + nonlinearities
- Why are neural networks powerful?
 - Universal function approximators!
- How to train neural networks?
 - The backpropagation algorithm
 - How to step through it, and how to derive update rules

ANN

Perceptron w/ signum

Neuron w/ sigmoid

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

Multilayer

Backpropagation − forward (result) → Backward (error)

שאלות - ANN

?הרי פונקציית אקטיבציה?

?perceptron מהו .2

28 CKPROPAGATION כיצד מתקנים את המשקולות באלגוריתם.

?ANN שלמדנו עבור hyper parameters-. מהם ה-4

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

6 X 6 image

-1 -1 -1

3 X 3 filter

עיבוד תמונה -דוגמה לקונבולוציה של גרדיינט אנכי

$$3*1 + 0 + 1*-1 + 1*1 + 5*0 + 8*-1 + 2*1 + 7*0 + 2*-1 = -5$$

האלמנט הראשון שמכפילים (מהמטריצה המקורית):

עיבוד תמונה -דוגמה לקונבולוציה של גרדיינט אנכי

ניתן לראות שהקונוולוציה משמשת לגילוי קצוות

עיבוד תמונה - דוגמה לרשת LeNet-5

It takes a grayscale image as input. Once we pass it through a combination of convolution and pooling layers, the output will be passed through fully connected layers and classified into corresponding classes. The total number of parameters in LeNet-5 are:

- Parameters: 60k
- Layers flow: Conv -> Pool -> Conv -> Pool -> FC ->
 FC -> Output
- Activation functions: Sigmoid/tanh and ReLu

סוגי בעיות אופטימיזציה

בעיות אופטימיזציה של מזעור, בהם פונקצית <u>Convex programming</u> המטרה הם קמורות (Convex).

– בבעיות אופטימיזציה – מאפשר לביטוי
 – בבעיות אופטימיזציה – מאפשר לביטוי
 המופיע בפונקצית המטרה (אותה רוצים למקסם או למזער) להיות ביטוי ריבועי
 (quadratic)

- SVM אופטימיזציה של של אופטימיזציה של אופטימיזציה של א
- א תזכורת ב-SVM המטרה ליצור מרווח (margin) מקסימלי בין שתי המחלקות

הערה: כמובן, ישנם סוגים נוספים שונים של פתרונות ובעיות אופטימיזציה

(constraint satisfaction problem) בעיית סיפוק אילוצים

בעיות סיפוק אילוצים הן בעיות של השמת ערכים למשתנים כך שיש אילוצים מסוימים בין ערכים

נתייחס ל-2 סוגי אילוצים אפשריים:

- (equality) אילוצי שיוויון
- :אילוצי השיוויון נראים כך

$$g_i(\mathbf{x}) = c_i \quad \text{ for } i = 1, \dots, n$$

(inequality) אילוצי אי-שיוויון

 $h_j(\mathbf{x}) \geqq d_j \quad ext{for } j=1,\ldots,m$ אילוצי אי-השיוויון נראים כך: *

אינו בהם האילוץ אינו – constraint optimization problems – תת סוג של בעיות סיפוק אילוצים, בהם האילוץ אינו קשיח, ובעצם המטרה, היא להוריד את מחיר האילוצים למינימום.

SVM-ב constraint optimization problems אנחנו נתייחס

למידת מכונה – כפונק' קירוב

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ... (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

SVM

- What are Support Vector Machines
 - Hard margin vs. soft margin SVMs
- How to train SVMs
 - Which optimization problem we need to solve
- Geometric interpretation
 - What are support vectors and what is their relation with parameters **w**,b?
- How do SVM relate to the general formulation of linear classifiers
- Why/how can SVMs be kernelized
- Kernel functions
 - What they are, why they are useful, how they relate to SVM?
 - Where else could we use kernels?

margin-איך מחשבים את ה

Point-plain distances from the two margins to the origin:

$$d_{+} = \frac{\left\| \left(w \cdot 0 \right) + b + 1 \right\|}{\left\| w \right\|}, d_{-} = \frac{\left\| \left(w \cdot 0 \right) + b - 1 \right\|}{\left\| w \right\|}$$

$$\Rightarrow M = \frac{2}{\left\| w \right\|}$$

$$\text{The margin-a principle of the princip$$

m חישוב

Calculating w, b:

$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$

קבועי לגראנג' - 0 - אם $-\alpha_i \geq 0$, support vectors-מדובר ב--0אחרת שווים ל

$$y_i(w \cdot x_i + b) - 1 \ge 0 \ \forall i$$

$$b_{+} = \min(b_{i}); y_{i} = +1$$

$$b_{-} = \max(b_{i}); y_{i} = -1$$

$$b = \frac{b_+ + b_-}{2}$$

$$b = -\frac{max_{y_i=-1}(\mathbf{w} \cdot \mathbf{x}_i) + min_{y_i=1}(\mathbf{w} \cdot \mathbf{x}_i)}{2}$$

הקו האמצעי

Final decision function:

$$f(x) = sign(w \cdot x + b) = sign\left(\sum_{i=1}^{l} \alpha_i y_i x_i \cdot x + b\right)$$

שאלות - SVM

?ל משמאל משמאל? כמה וקטורים תומכים יש בדוגמא משמאל?

2. האם הנקודה המוקפתבעיגול (משמאל) הינהוקטור תומך או שגיאה?

- ?(מהם קבועי לאגרנג' ולמה הם משמשים (2 שימושים)?
 - ?kernels מה משמשים .4
 - ?האם עדיף margine מינימלי או מקסימלי?

A typical regression flow - diving in

Data	Train-	Scaling	Feature Selection	Learning Algos.	Validation	Processing	Evaluation
Cleaning	Test	→ Minmax	→ Feature	→ Linear	→ Hyper	Processing	→ SAE
→ Duplicates	split	norm.	compared to itself.→ compared to other features.	regression	parameter tuning		→ MAE
→ Missing	+ sampling						→ SSE
Data							→ MSE
→Remove							→ RMSE
→Repair							→ R^2

(Cost Function) רגרסיה לינארית - פונקצית מחיר

$$\hat{y}_i = ec{w} \cdot ec{x}_i$$
 במודל הלינארי:

$$J\left(ec{oldsymbol{v}}
ight)=rac{1}{n}\sum_{i=1}^n\left(\hat{y}_i-y_i
ight)^2=rac{1}{n}\sum_{i=1}^n\left(ec{oldsymbol{v}}\cdotec{x}_i-y_i
ight)^2$$
 פונקצית המחיר ($n\geq 1$)

Multivariate Gradient Descent Algorithm - for linear regression:

Repeat until done:

We want w_0 to be partialy derived as the rest of \vec{w} , so if j=0, $x_{i,0}=1$

$$w_j = w_j - \alpha \cdot \frac{\partial J}{\partial w_j} = w_j - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^n \left[(\vec{w} \cdot \vec{x}_i - y_i) \cdot \vec{x}_{i,j} \right]$$

(simultaneously update w_j for j=0,...,d)

רגרסיה לינארית - שאלות

- 1. בפונקציה רציפה וגזירה פעמיים, כיצד נמצא את נקודת המינימום? א. אם הפונקציה, בעל נגזרת ראשונה >0, לפני הנקודה, ונגזרת שנייה שווה לאפס, זוהי נקודת מינימום. ב. אם הפונקציה בעלת ערך=0 בנגזרת הראשונה בנקודה ונגזרת שניה>0, זוהי נקודת מינימום.
 - 2. לאיזה כיוון נצטרך להתקדם, בשביל להתקרב למינימום בפונקציה?
 - ?(convex פונקציה קמורה (פונקציית 3.3)
 - ?מהו גראדיאנט.4
 - ?. מהו מטריצת הסיאן ומדוע לא נשתמש בה לאימון מודל רגרסיה לינארית.
 - ?. מה הקשר בין פונקצית הפסד לאימון רגרסיה לינארית?

A typical clustering flow - diving in

Data Cleaning

- → Duplicates
- → Missing

Data

→ Remove

→ Repair

→ Minmax

norm.

→ t-dist.

standardization

→ Feature compared to itself.

→ compared to other features.

→ K-means

→ WSSE (WSS)

Clustering

What are other unsupervised problems

Why is clustering difficult

K-means

Distance methods

Evaluation methods

Clustering

- * What types of errors do we have re: clustering?
- * Is k-means loss function a convex function?
- * Where did we see convex function?
- * How do we know we have good clusters?

– Clustering

- ?clustering איזו מהבעיות הבאות נרצה לפתור בעזרת 1.
- א. בניית מודל שיחליט האם תמונה מסויימת היא של הולך רגל או לא
 - ב. בניית מודל שימצא קבוצות חברים ברשת חברתית
 - ג. בניית מודל שיחזה את תחזית מזג האוויר מחר
 - ?הוקטור רק ל-cluster אחד? באיזו שיטה ישוייך הוקטור רק ל-
- -3 איך נחשב את ה-prototype לכל cluster לכל prototype איך נחשב את ה-3 אייכותי ביחס לווקטרים השייכים אליו?

שאלות הבנה לדוגמא

 After training a SVM, we can discard all examples which are not support vectors and can still classify new examples. True or False?

• In knn, if we increase the k hyper-parameter, does it increase or decrease the variance?

Advanced generalization bounds:

- Stability based
- * More Radamacher
- * PAC Bayes.
- Compression bounds

Optimization for machine learning:

- Coordinate descent
- Adaptive gradients
- Variance reduction methods

Deep learning

- Theory of non-convex optimization
- Sequence to sequence models
- Unsupervised deep learning
- Getting it to work!

Reinforcement learning (RL)

- Humans behave in an environment, and our actions
- affect and are affected by our surroundings.
- * The RL framework nicely captures this and is in a sense the most general learning setting.
- Much recent progress when combined with deep learning
- * Much much more....

למידת מבונה – סיבום סמסטר

- * אלגוריתמי הלמידה שלמדנו:
 - K-NN *
 - עצי החלטה
 - Naive Bayes *
 - perceptrons *
 - ♦ רשתות נוירונים
 - SVM *

- * רגרסיה לינארית
 - PCA *
 - K-means *

בהצלחה לכולם ©