cisco

Lecture#6: Network Layer

Internetworking

Introduction to Networks v7.0 (ITN) Module: 8

6.1 Layer 3 Characteristics

Network Layer Characteristics

The Network Layer

Network layer provides services to allow end devices to exchange data

- IP version 4 (IPv4) and IP version 6 (IPv6) are the principle network layer communication protocols.
- The network layer performs four basic operations: i) Addressing end devices, ii) Encapsulation, iii) Routing and iv) De-encapsulation.

ıllıılıı cisco

Network Layer Characteristics

IP Encapsulation

- IP encapsulates the transport layer segment.
- IP can use either an IPv4 or IPv6 packet and not impact the layer 4 segment.
- IP packet will be examined by all layer 3 devices as it traverses the network.
- The IP addressing does not change from source to destination.

Note: NAT will change addressing, but will be discussed in a later module.

Network Layer Characteristics Characteristics of IP

IP is meant to have low overhead and may be described as:

- Connectionless
- Best Effort
- Media Independent

Network Layer Characteristics

Connectionless

IP is Connectionless

- IP does not establish a connection with the destination before sending the packet.
- There is no control information needed (synchronizations, acknowledgments, etc.).
- The destination will receive the packet when it arrives, but no pre-notifications are sent
- If there is a need for connection-oriented traffic, then another protocol will handle this (typically TCP at the transport layer).

Network Layer Characteristics Best Effort

IP is **Best Effort**

- IP will not guarantee delivery of the packet.
- IP has reduced overhead since there is no mechanism to resend data that is not received.
- IP does not expect acknowledgments.
- IP does not know if the other device is operational or if it received the packet.

Network Layer Characteristics Media Independent

IP is unreliable:

- It cannot manage or fix undelivered or corrupt packets.
- IP cannot retransmit after an error.
- IP cannot realign out of sequence packets.
- IP must rely on other protocols for these functions.

IP is **media Independen**t:

- IP does not concern itself with the type of frame required at the data link layer or the media type at the physical layer.
- IP can be sent over any media type: copper, fiber, or wireless.

Network Layer Characteristics Media Independent (Contd.)

The network layer will establish the **MTU**.

- Network layer receives this from control information sent by the data link layer.
- The network then establishes the MTU size.

Fragmentation is when Layer 3 splits the IPv4 packet into smaller units.

- Fragmenting causes latency.
- IPv6 does not fragment packets.
- Example: Router goes from Ethernet to a slow WAN with a smaller MTU

6.2 IPv4 Packet

IPv4 Packet Header

- IPv4 is the primary communication protocol for the network layer.
- The network header has many purposes:
 - § It ensures the packet is sent in the correct direction (to the destination).
 - § It contains information for network layer processing in various fields.
 - § The information in the header is used by all layer 3 devices that handle the packet

IPv4 Packet

IPv4 Packet Header Fields

The IPv4 network header characteristics:

- It is in binary.
- Contains several fields of information
- Diagram is read from left to right, 4 bytes per line
- The two most important fields are the source and destination.

Protocols may have may have one or more functions.

IPv4 Packet

IPv4 Packet Header Fields

Significant fields in the IPv4 header:

Function	Description
Version	This will be for v4, as opposed to v6, a 4 bit field= 0100
Differentiated Services	Used for QoS: DiffServ – DS field or the older IntServ – ToS or Type of Service
Header Checksum	Detect corruption in the IPv4 header
Time to Live (TTL)	Layer 3 hop count. When it becomes zero the router will discard the packet.
Protocol	I.D.s next level protocol: ICMP, TCP, UDP, etc.
Source IPv4 Address	32 bit source address
Destination IPV4 Address	32 bit destination address

6.3 IPv6 Packets

IPv6 Packets Limitations of IPv4

IPv4 has three major limitations:

- IPv4 address depletion We have basically run out of IPv4 addressing.
- Lack of end-to-end connectivity To make IPv4 survive this long, private addressing and NAT were created. This ended direct communications with public addressing.
- Increased network complexity NAT was meant as temporary solution and creates issues on the network as a side effect of manipulating the network headers addressing. NAT causes latency and troubleshooting issues.

IPv6 Packets IPv6 Overview

- IPv6 was developed by Internet Engineering Task Force (IETF).
- IPv6 overcomes the limitations of IPv4.
- Improvements that IPv6 provides:
 - Increased address space based on 128 bit address, not 32 bits
 - Improved packet handling simplified header with fewer fields
 - Eliminates the need for NAT since there is a huge amount of addressing, there is no need to use private addressing internally and be mapped to a shared public address.

IPv4 and IPv6 Address Space Comparison

IPv6 Packets

IPv4 Packet Header Fields in the IPv6 Packet Header

- The IPv6 header is simplified, but not smaller.
- The header is fixed at 40 Bytes or octets long.
- Some IPv4 fields like Flag, Fragment Offset, Header Checksum etc were removed to improve performance:

IPv6 Packets

IPv6 Packet Header

Significant fields in the IPv6 header:

Function	Description
Version	This will be for v6, as opposed to v4, a 4 bit field= 0110
Traffic Class	Used for QoS: Equivalent to DiffServ – DS field
Flow Label	Informs device to handle identical flow labels the same way, 20 bit field
Payload Length	This 16-bit field indicates the length of the data portion or payload of the IPv6 packet
Next Header	I.D.s next level protocol: ICMP, TCP, UDP, etc.
Hop Limit	Replaces TTL field Layer 3 hop count
Source and Destination IPv6 Addresses	128 bit source and destination addresses

IPv6 Packets

IPv6 Packet Header (Cont.)

IPv6 packet may also contain extension headers (EH).

EH headers characteristics:

- provide optional network layer information
- are optional
- are placed between IPv6 header and the payload
- may be used for fragmentation, security, mobility support, etc.

Note: Unlike IPv4, routers do not fragment IPv6 packets.

6.4 How a Host Routes

How a Host Routes

Host Forwarding Decision

- Packets are always created at the source.
- Each host devices creates their own routing table.

- A host can send packets to the following:
 - Itself 127.0.0.1 (IPv4), ::1 (IPv6)
 - Local Hosts destination is on the same LAN
 - Remote Hosts devices are not on the same LAN

How a Host Routes

Host Forwarding Decision (Cont.)

- The Source device determines whether the destination is local or remote
- Method of determination:
 - IPv4 Source uses its own IP address and Subnet mask, along with the destination IP address
 - IPv6 Source uses the network address and prefix advertised by the local router

- Local traffic is dumped out the host interface to be handled by an intermediary device.
- Remote traffic is forwarded directly to the default gateway on the LAN.

How a Host Routes Default Gateway

- A router or layer 3 switch can be a default-gateway.
- Features of a default gateway (DGW):
 - § It must have an IP address in the same range as the rest of the LAN.
 - § It can accept data from the LAN and is capable of forwarding traffic off of the LAN.
 - § It can route to other networks.
- If a device has no default gateway or a bad default gateway, its traffic will not be able to leave the LAN.

How a Host Routes

A Host Routes to the Default Gateway

- The host will know the default gateway (DGW) either statically or through DHCP in IPv4.
- IPv6 sends the DGW through a router solicitation (RS) or can be configured manually.
- A DGW is static route which will be a last resort route in the routing table.
- All device on the LAN will need the DGW of the router if they intend to send traffic remotely.

How a Host Routes

Host Routing Tables

- On Windows, route print or netstat -r to display the PC routing table
- Three sections displayed by these two commands:
 - § Interface List all potential interfaces and MAC addressing
 - § IPv4 Routing Table
 - § IPv6 Routing Table

IPv4 Routing Table for PC1 C:\Users\PC1> netstat -r IPv4 Route Table Active Routes: Network Destination 0.0.0.0 192.168.10.1 192.168.10.10 127.0.0.0 127.0.0.1 255.255.255.255 127.255.255.255 255.255.255.255 On-link 192.168.10.10 192.168.10.10 255.255.255.255 On-link 192.168.10.10 192.168.10.255 255.255.255.255 On-link 192.168.10.10 On-link 192.168.10.10 224.0.0.0 On-link 255.255.255.255 255.255.255.255 On-link 306 255.255.255.255 255.255.255 On-link 192.168.10.10

