COMP4901Y Homework 1

Question 1. Einstein Notation in PyTorch (15 points).

Implement the following operations according to PyTorch Einstein notations:

- 4D tensor element-wise multiplication given input tensors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times d_4}$, output should be $\mathbf{c} \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times d_4}$;
- Batch transposed matrix multiplication given input tensor $\mathbf{a} \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times d_4}$, $\mathbf{b} \in \mathbb{R}^{d_5 \times d_4}$, output should be $\mathbf{c} \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times d_5}$:
- Aggregate a 4D tensor through the 3rd dimension given input tensor $\mathbf{a} \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times d_4}$, output should be $\mathbf{a'} \in \mathbb{R}^{d_1 \times d_2 \times d_4}$

Submission. This part should be submitted in a python file named **question1.py** by fill the missing part in the corresponding sample code.

Question 2. Training a two-layer MLP without PyTorch Autograd (25 points).

Implement an SGD training algorithm to train a simple 2-layer MLP regression model based on the L2 loss defined below **without** using pytorch autograd.

- Input: $\mathbf{X} \in \mathbb{R}^{N imes D}, \mathbf{Y} \in \mathbb{R}^{N imes 1}$
- Model parameters: $\mathbf{W}_1 \in \mathbb{R}^{D imes H}, \mathbf{W}_2 \in \mathbb{R}^{H imes 1}$
- Forward computation (each iteration samples a single data point $(\mathbf{x}_t \in \mathbb{R}^{1 imes D}, y_t \in \mathbb{R})$):
 - $\circ \mathbf{a} = \mathbf{x}_t \mathbf{W}_1$
 - $\circ \mathbf{a}' = \text{relu}(\mathbf{a})$
 - $\circ y' = \mathbf{A'}W_2$
 - $\circ \ \ l = \left(y' y_t
 ight)^2$
- Backward computation:
 - Construct the backward computation for the linear layer as we discussed in class;
 - The derivative of the relu function can be computed by:

$$rac{df_{
m relu}(a)}{da} = \left\{egin{array}{cc} 1 & a \geq 0 \ 0 & a < 0 \end{array}
ight.$$

- SGD update:
 - Use a fixed learning rate of 0.03 (tunable hyper-parameter), no momentum;
 - Implement sampling with replacement;
- ullet Run the 10^5 iteration of the SGD iteration. Record the loss for every 100 iterations. Plot the results as we introduced in class.

Submission. This question should be submitted by:

- A Python file named question2.py fills in the missing part in the corresponding sample code.
- A pdf file named question2_result.pdf to visualize the convergence result.

Question 3. Transfer Learning by PyTorch Autograd (20 points).

PyTorch provides a set of pre-trained models; for example, you can load a resnet18 model by the following statement:

resnet18_model = torchvision.models.resnet18(weights='IMAGENET1K_V1')

We want to use the intermediate convolutional layers defined in this resnet18_model but change the fc layer to fit the FashionMNIST dataset, as we demoed in our class. Here are some additional notes:

• You need to change the output dimensions of the last fc layer;

· You need to change the input dimensions of the first input layer;

• You need to tune the SGD hyper-parameters in the following sets and use the optimal setting in your submitted script.

 \circ Batch size: 16,64

 $\begin{tabular}{ll} \bullet & \mbox{Learning rate: } 0.01, 0.03 \\ \bullet & \mbox{Momentum: } 0.0, 0.9 \\ \end{tabular}$

• Run the 2 epochs of the training. Record the loss and plot the results as we introduced in class.

Submission. This part should be submitted with:

• A Python file named question3.py fills in the missing part in the corresponding sample code.

• A pdf file named **question3_result.pdf** of convergence result.

Question 4. Auto-Diff Example (30 points).

Given the following function $\mathbf{y} = f(\mathbf{x}): \mathbb{R}^2 o \mathbb{R}^2$ defined by:

$$y_1 = \left(x_1 + x_2
ight)^2 \ y_2 = \left(x_1 - x_2
ight)^2$$

One way to construct the computation graph is as follows:

Please fill the following tables to compute the Jacobin matrix at the point $x_1=2, x_2=4$:

• Table 1: forward mode to compute $\frac{\partial y_1}{\partial x_1}, \frac{\partial y_2}{\partial x_1}$:

Forward Primal	Value	Forward Tangent	Value
$v_{-1}=x_1$	2	$\dot{v}_{-1}=\dot{x}_1$	1
$v_0=x_2$	4	$\dot{v}_0=\dot{x}_2$	0
$v_1 = v_{-1} + v_0$		\dot{v}_1	
$v_2 = v_{-1} - v_0$		\dot{v}_2	
$v_3=\left(v_1\right)^2$		\dot{v}_3	
$v_4=\left(v_2 ight)^2$		\dot{v}_4	
$y_1=v_3$		$\dot{y}_1=\dot{v}_3$	
$y_2=v_4$		$\dot{y}_2=\dot{v}_4$	

• Table 2: forward mode to compute $\frac{\partial y_1}{\partial x_2}$, $\frac{\partial y_2}{\partial x_2}$:

Forward Primal	Value	Forward Tangent	Value
$v_{-1}=x_1$	2	$\dot{v}_{-1}=\dot{x}_1$	0
$v_0=x_2$	4	$\dot{v}_0 = \dot{x}_2$	1
$v_1 = v_{-1} + v_0$		\dot{v}_1	
$v_2 = v_{-1} - v_0$		\dot{v}_2	
$v_3=(v_1)^2$		\dot{v}_3	
$v_4=\left(v_2 ight)^2$		\dot{v}_4	
$y_1=v_3$		$\dot{y}_1=\dot{v}_3$	
$y_2=v_4$		$\dot{y}_2=\dot{v}_4$	

• Table 3: reverse mode to compute $\frac{\partial y_1}{\partial x_1}$, $\frac{\partial y_1}{\partial x_2}$:

Forward Primal	Value	Reverse Adjoint	Value
$v_{-1}=x_1$	2	$ar{x}_1=ar{v}_{-1}$	
$v_0=x_2$	4	$ar{x}_2 = ar{v}_0$	
$v_1 = v_{-1} + v_0$		$ar{v}_{-1}$	
		$ar{v}_0$	
$v_2 = v_{-1} - v_0$		$ar{v}_{-1}$	
		$ar{v}_0$	
$v_3=\left(v_1\right)^2$		$ar{v}_1$	
$v_4=\left(v_2 ight)^2$		$ar{v}_2$	
$y_1=v_3$		$ar{y}_1 = ar{v}_3$	1
$y_2=v_4$		$ar{y}_2 = ar{v}_4$	0

• Table 4: reverse mode to compute $\frac{\partial y_2}{\partial x_1}, \frac{\partial y_2}{\partial x_2}$:

Forward Primal	Value	Reverse Adjoint	Value
$v_{-1}=x_1$	2	$ar{x}_1=ar{v}_{-1}$	
$v_0=x_2$	4	$ar{x}_2=ar{v}_0$	
$v_1 = v_{-1} + v_0$		$ar{v}_{-1}$	
		$ar{v}_0$	
$v_2 = v_{-1} - v_0$		$ar{v}_{-1}$	
		$ar{v}_0$	
$v_3=\left(v_1\right)^2$		$ar{v}_1$	
$v_4=\left(v_2\right)^2$		$ar{v}_2$	
$y_1=v_3$		$\bar{y}_1 = \bar{v}_3$	0
$y_2=v_4$		$ar{y}_2=ar{v}_4$	1

• [Optional]: Think about whether the Jacobin matrix will change when we reformulate $\mathbf{y}=f(\mathbf{x}):\mathbb{R}^2 o\mathbb{R}^2$ as:

$$egin{aligned} y_1 &= x_1^2 + 2x_1x_2 + x_2^2 \ y_2 &= x_1^2 - 2x_1x_2 + x_2^2 \end{aligned}$$

Submission. This part should be submitted with:

• A pdf file named question4.pdf to include Table 1, Table 2, Table 3, and Table 4.

Question 5. Gradient Computation in FC Layer (10 points).

Following the computation introduced in Slides 29-31 of Lecture 4, verify that $\frac{\partial L}{\partial \mathbf{W}} = \mathbf{X}^T \frac{\partial L}{\partial \mathbf{Y}}$.

Submission. This part should be submitted with:

- A pdf file named **question5.pdf** to include the computation.
- Latex is recommended for equation editing.

Submission Checklist.

You should submit a zip file including the following components:

- question1.py
- question2.py
- question2_result.pdf
- question3.py
- question3_result.pdf
- question4.pdf
- question5.pdf

COMP4901Y Homework 1

4