What Is Claimed Is:

5

14

1

2

3

1. A method of selecting one or more compounds from a virtual combinatorial library associated with R reagent combinations, comprising the following steps:

- selecting a first set of N reagent combinations from the R reagent a. combinations associated with the virtual combinatorial library, wherein N < R;
- enumerating said first set of N reagent combinations to produce a b. first set of F enumerated compounds;
- selecting M compounds from said first set of F enumerated c. compounds, wherein M < F;
- d. deconvoluting said M compounds into reagents;
- generating a focused library based on said reagents; and e.
- f. enumerating a plurality of reagent combinations associated with said focused library to produce a second set of S enumerated compounds.
- 2. The method of claim 1, further comprising the step of:
 - selecting K compounds from said second set of S enumerated g. compounds, wherein K < S.

- 3. The method of claim 2, wherein step (g.) comprises selecting said K compounds such that said K compounds can be produced using a predetermined number T of reagents.
- 4. The method of claim 1, wherein step (a.) comprises selecting said first set of N reagent combinations substantially at random from the virtual combinatorial library.
 - 5. The method of claim 1, wherein step (a.) comprises selecting said first set of N reagent combinations such that a substantially uniform coverage of a reagent space associated with the virtual combinatorial library is achieved.
 - 6. The method of claim 1, wherein step (a.) comprises selecting said first set of reagent combinations such that each reagent in the virtual combinatorial library is selected a substantially equal number of times.
 - 7. The method of claim 1, wherein step (c.) comprises selecting said M compounds from said first set of F enumerated compounds based on a fitness function.
 - 8. The method of claim 7, further comprising the step of:
 - g. selecting K compounds from said second set of S enumerated compounds based on said fitness function, wherein K < S.

1	9. The method of cla	aim 7, further comprising the step of:
2	g.\ select	ing K compounds from said second set of S enumerated
3	comp	ounds based on said fitness function and such that said K
4	comp	ounds can be produced using a predetermined number T of
5	reager	nts, wherein K < S.
	\	
1	10. The method of c	lain 8, wherein step (c) comprises
₽ 2 1	i.	initially selecting M compounds from said first set of
		enumerated compounds to produce a first sub-set of
4		enumerated compounds;
5	ii.	evaluating said first sub-set of enumerated compounds
₩ 6 0		based on said fitness function; and
6	iii.	refining said first sub-set of enumerated compounds based
8		on said fitness function.
1	11. The method of c	laim 10, wherein step (g.) comprises
2	i.	initially selecting K compounds from said second set of
3		enumerated compounds to produce a second sub-set of
4		enumerated compounds;
5	ii.	evaluating said second sub-set of enumerated compounds
6		based on said fitness function; and

1	15. The method of claim 14, wherein step (g.) comprises:
2	i. \ characterizing each compound of said second set of
3	enumerated compounds;
4	ii. evaluating each characterized compound of said second set
5	of enumerated compounds based on said fitness function;
6	iii. ranking each characterized compound of said second set of
7	enumerated compounds; and
<u>_8</u>	iv. selecting K compounds of said second set of compounds
Ψ 179 2	based on sald ranking.
1	16. The method of claim 15, wherein step (c.i.) comprises characterizing each
_2	compound of said first set of enumerated compounds using a set of molecular
1U 143	descriptors.
1	17. The method of claim 16, wherein step (g.) comprises characterizing each
2	compound of said second set of enumerated compounds using said set of
3	molecular descriptors.
1	18. The method of claim 15, wherein the fitness function is related to similarity
2	to one or more query structures, and wherein step (c.ii.) comprises evaluating
3	similarity between each compound of said first set of enumerated compounds and
4	the one or more query structures.
	1

	\wedge
1	19. The method of claim 18, wherein at least one of the following similarity
2	measures is used in step (c.ii.) for evaluating similarity between each compound
3	and the one or more query structures:
4	similarity in number of atoms, bonds and rings of
5	the same types;
6	(2) \similarity in shape and surface characteristics;
7	(3) similarity in electron density distribution;
<u>_8</u>	(4) similarity based on common substructure;
COPIE OF BEARING	(5) similarity based on the presence and orientation of
10	pharmacophoric groups;
ħ	(6) similarity in binding affinity; and
12	(7) similarity in degree of conformational overlap with
13	a know receptor binder.
1	20. The method of claim 18, wherein step (g.ii.) comprises evaluating similarity
2	between each compound of said second set of enumerated compounds and the one
3	or more query structures, and wherein the same similarity measure is used for
4	evaluating similarity in step (c.ii.) and step (g.ii.).
1	21. The method of claim 14, wherein the fitness function is related to at least one
2	desired characteristic, and wherein step (c.ii.) comprises evaluating each
3	compound of said first set of enumerated compounds to determine an extent that
4	each compound possesses the at least one desired characteristic

	<i>t</i>
1	22. The method of claim 21, wherein the at least one desired characteristic
2	comprises at least one of the following:
3	(1) a desired physical property;
4	(2) a desired chemical property;
5	(3) \ a desired functional property; and
6	(4) \a desired bioactive property.
Ç	
Į	23. A system for selecting, based on a fitness function, one or more compounds
2	from a virtual combinatorial library associated with R reagent combinations,
	comprising:
4	means for selecting a first set of N reagent combinations from the R reagent
145 145	combinations associated with the virtual combinatorial library, wherein R
<u>[</u> 6	< N;
7	means for enumerating said first set of N reagent combinations to produce a first
8	set of F enumerated compounds;
9	means for selecting M compounds of said first set of F enumerated compounds
10	based on the fitness function, wherein $M < F$;
11	means for deconvoluting said M compounds into reagents;
12	means for generating a focused library based on said reagents;
13	means for enumerating a plurality of reagent combinations associated with said
14	focused library to produce a second set of S enumerated compounds;
	\

15	means for selecting K compounds of said second set of enumerated compounds
16	based on the fitness function, wherein K < S.
1	24. A computer program product comprising a computer useable medium having
2	computer program logic recorded thereon for enabling a processor to assist in
3	selecting, based on a fitness function, one or more compounds, from a virtual
4	combinatorial library associated with R regent combinations, the computer
<u>_</u> 5	program logic comprising:
6	means for enabling a processor to select a first set of N reagent combinations from
7	the R reagent combinations associated with the virtual combinatorial
- 8	library, wherein $N < R$;
	means for enabling a processor to enumerate said first set of N reagent
10	combinations to produce a first set of F enumerated compounds;
直1	means for enabling a processor to select M compounds of said first set of
12	enumerated compounds based on the fitness function, wherein M < F;
13	means for enabling a processor to deconvolute said M compounds into reagents;
14	means for generating a focused library based on said reagents;
15	means for enabling a processor to enumerate a plurality of reagent combinations
16	associated with said focused library to produce a second set of S
17	enumerated compounds; and
18	means for enabling a processor to select K compounds of said second set of
19	enumerated compounds based on the fitness function, wherein K < S.
	\

1	25. A method of selecting one or more compounds from an enumerated virtual
2	combinatorial library associated with R enumerated compounds, comprising the
3	following steps:
4	a. selecting a first set of N enumerated compounds for the R
5	enumerated compounds associated with the enumerated virtual
6	combinatorial library, wherein N < R;
7	b. selecting M compounds from said first set of N enumerated
[8	compounds, wherein M N;
و	c. deconvoluting said M compounds into reagents; and
10	d. using said reagents to extract an enumerated focused library from
手 計1	said enumerated virtual combinatorial library, said enumerated
12	focused library including S enumerated compounds.
草 1	26. The method of claim 25, further comprising the step of:
2	e. selecting K compounds from said S enumerated compounds,
3	wherein $K < S$.
1	27. The method of claim 26, wherein step (e.) comprises selecting said K
2	compounds such that said K compounds can be produced using a predetermined
3	number T of reagents.

1	28. The method of claim 25, wherein step (a.) comprises selecting said first set
2	of N enumerated compounds substantially at random from the enumerated virtual
3	combinatorial library.
1	29. The method of claim 25, wherein step (a.) comprises selecting said first set
2	of N enumerated compounds such that a substantially uniform coverage of a
3	reagent space associated with the enumerated virtual combinatorial library is
	achieved.
<u>1</u> 1	30. The method of claim 25, wherein step (a.) comprises selecting said first set
	of enumerated compounds such that each reagent in the enumerated virtual
5 3 3 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	combinatorial library is selected a substantially equal number of times.
1	31. The method of claim 25, wherein step (b.) comprises selecting said M
2	compounds from said first set of N enumerated compounds based on a fitness
3	function.
1	32. The method of claim 31, further comprising the step of:
2	e. selecting K compounds from said S enumerated compounds based
3	on said fitness function, wherein K < S.

33. The method of claim 31, further comprising the step of:

1

2	e.	selecti	ng K compounds from said S enumerated compounds based
3		on said	Infitness function and such that said K compounds can be
4		produc	ced using a predetermined number T of reagents, wherein K
5		< S.	
1	34. The metho	od of cl	aim 32, wherein step (b.) comprises
2		i.	initially selecting M compounds from said first set of
3			enumerated compounds to produce a first sub-set of
4			enumerated compounds;
<u>5</u>		ii.	evaluating said first sub-set of enumerated compounds
- 6			based on said fitness function; and
_7 U		iii.	refining said first sub-set of enumerated compounds based
			on said fitness function.
1	35. The metho	od of cla	aim 34, wherein step (e.) comprises
2		i.	initially selecting K compounds from said S enumerated
3			compounds to produce a second sub-set of enumerated
4			compounds;
5		ii.	evaluating said second sub-set of enumerated compounds
6			based on said fitness function; and
7		iii.	refining said second sub-set of enumerated compounds
8			based on said fitness function.

1	36. The method of claim 35, wherein the fitness function is related to diversity of
2	a collection of compounds, and wherein step (b.ii.) comprises evaluating the
3	diversity of said first sub-set of enumerated compounds, and wherein step (b.iii.)
4	comprises refining said first sub-set to increase the diversity of said first sub-set.
1	37. The method of claim 36, wherein step (e.ii.) comprises evaluating the diversity
2	of said S enumerated compounds, and wherein step (e.iii.) comprises refining said
3	S enumerated compounds to increase the diversity of said S enumerated
	compounds.
	38. The method of claim 32, wherein step (b.) comprises:
2	i. characterizing each compound of said first set of
⊒ -3	enumerated compounds;
4	ii. evaluating each characterized compound of said first set of
5	enumerated compounds based on said fitness function;
6	iii. ranking each characterized compound of said first set of
7	enumerated compounds; and
8	iv. selecting M compounds of said first set of enumerated
9	compounds based on said ranking.
1	39. The method of claim 38, wherein step (e.) comprises:
2	i. characterizing each compound of said S enumerated
3	compounds;

4	ii.	evaluating each characterized com	pound of said S
5		enumerated compounds based on said	fitness function;
6	iii.	ranking each characterized compe	ound of said S
7		enumerated compounds; and	
8	iv.	selecting K compounds of said S enum	nerated compounds
9		based on said ranking.	
<u> </u>	40. The method of cl	aim 39, wherein step (b.i.) comprises of	haracterizing each
<u>2</u> 2	compound of said fire	et set of enumerated compounds using	a set of molecular
	descriptors.		
1	41. The method of cl	aim 40, wherein step (e.i.) comprises c	haracterizing each
일 2 뉴	compound of said S	enumerated compounds using said	set of molecular
3	descriptors.		
F			
1	42. The method of cla	im 38, wherein the fitness function is r	elated to similarity
2	to one or more query	structures, and wherein step (b.ii.) con	mprises evaluating
3	similarity between each	h compound of said first set of enumerat	ed compounds and
4	the one or more query	structures.	\
1	43. The method of c	aim 42, wherein at least one of the fo	ollowing similarity
2	measures is used in ste	p (b.ii.) for evaluating similarity betwe	en each compound
3	and the one or more q	uery structures:	

4	(1) \similarity in number of atoms, bonds and rings of
5	the same types;
6	(2) similarity in shape and surface characteristics;
7	(3) similarity in electron density distribution;
8	(4) similarity based on common substructure;
9	(5) similarity based on the presence and orientation of
10	pharmacophoric groups;
9 1	(6) similarity in binding affinity; and
[<u>1</u> 2	(7) similarity in degree of conformational overlap with
	a know receptor binder.
₽ 1	44. The method of claim 42, wherein step (e.ii.) comprises evaluating similarity
	between each compound of said S enumerated compounds and the one or more
5 3	query structures, and wherein the same similarity measure is used for evaluating
4	similarity in step (b.ii.) and step (e.ii.).
1	45. The method of claim 38, wherein the fitness function is related to at least one
2	desired characteristic, and wherein step (b.ii.) comprises evaluating each
3	compound of said first set of enumerated compounds to determine an extent that
4	each compound possesses the at least one desired characteristic.
1	46. The method of claim 45, wherein the at least one desired characteristic
2	comprises at least one of the following:

3	(1) a desired physical property;
4	(2) a desired chemical property;
5	(3) \ a desired functional property; and
6	(4) a desired bioactive property.
1	47. A system for selecting, based on a fitness function, one or more compounds
2	from an enumerated virtual combinatorial library associated with R enumerated
3	compounds, comprising:
<u>.</u> 14	means for selecting a first set of N enumerated from the R enumerated compounds
5	associated with the enumerated virtual combinatorial library, wherein R <
	N;
<u>.</u>	means for selecting M compounds of said first set of N enumerated compounds
14 18	based on the fitness function, wherein $M < N$;
<u>p</u>	means for deconvoluting said M compounds into reagents;
10	means for extracting an enumerated focused library, based on said reagents, from
11	the enumerated virtual combinatorial library, wherein said enumerated
12	focused library includes S enumerated compounds; and
13	means for selecting K compounds of said S enumerated compounds based on the
14	fitness function, wherein $K < S$.
1	48. A computer program product comprising a computer useable medium having
2	computer program logic recorded thereon for enabling a processor to assist in
3	selecting, based on a fitness function, one or more compounds, from an

5
6
7
8
9
10

4

enumerated virtual combinatorial library associated with R enumerated
compounds, the computer program logic comprising:
means for enabling a processor to select a first set of N enumerated compounds
from the R enumerated compounds associated with the enumerated virtual
combinatorial library, wherein N < R;
means for enabling a processor to select M compounds of said first set of
enumerated compounds based on the fitness function, wherein M < N;
means for enabling a processor to deconvolute said M compounds into reagents;
means for extracting an enumerated focused library, based on said reagents, from
the enumerated virtual combinatorial library, wherein said enumerated
focused library includes S enumerated compounds; and
means for enabling a processor to select K compounds of said S enumerated
compounds based on the fitness function, wherein $K < S$.