Lista 2

Zadanie 1. Czy następujące układy wektorów są liniowo niezależne (nad \mathbb{R})? Rozszerz ich maksymalny podzbiór niezależny do bazy.

- 1. (1,1,0),(0,1,1),(1,1,1),(1,0,1);
- 2. (0,1,2), (1,1,1), (1,1,1);
- 3. (1,0,1,0), (1,2,0,1), (0,2,1,1), (0,0,1,1);
- 4. (1,0,1,0), (0,2,0,2), (1,1,0,0), (0,0,2,1).

Zadanie 2. Uzasadnij, że poniższe zbiory wektorów są liniowo niezależne (w odpowiednim \mathbb{R}^n), rozszerz je do bazy (odpowiedniego) \mathbb{R}^n :

- (2,2,7,-1),(3,-1,2,4),(1,1,3,1);
- (2,3,-4,-1),(1,-2,1,3);
- (2,3,5,-4,1),(1,-1,2,3,5).

Zadanie 3. Rozważamy przestrzenie nad \mathbb{R} . Niech v_1, v_2, \dots, v_n będą liniowo niezależne. Dla jakich wartości $\alpha \in \mathbb{R}$ zbiory wektorów

- $\{\alpha v_1 + v_2, v_1 + \alpha v_2\}$
- $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_{n-1} + v_n, v_n + \alpha v_1\}$

są liniowo niezależne?

(jakiej). Można na nich zastosować eliminację Gaußa.

Wskazówka: Można bezpośrednio z definicji, ale szybciej: zauważ, że v_1,\ldots,v_n są bazą przestrzeni liniowej

Zadanie 4. Załóżmy, że dla przestrzeni liniowych W, W' (będących podprzestrzeniami V) zachodzi

$$\dim(\mathbb{W} + \mathbb{W}') = 1 + \dim(\mathbb{W} \cap \mathbb{W}').$$

Udowodnij, że suma $\mathbb{W} + \mathbb{W}'$ jest jedną z przestrzeni \mathbb{W}, \mathbb{W}' , a przecięcie $\mathbb{W} \cap \mathbb{W}'$ —drugą.

Zadanie 5. Niech $\mathbb{U}, \mathbb{W}, \mathbb{W}' \leq \mathbb{V}$. Udowodnij zawieranie:

$$(\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')\leq\mathbb{U}\cap(\mathbb{W}+\mathbb{W}')$$

Pokaż, że jeśli $\mathbb{W} \leq \mathbb{U}$ to w zachodzi równość obu stron zawierania.

Zadanie 6. Wyraź w bazach $B = \{(1,2,3); (0,1,2); (0,0,1)\}$ oraz $C = \{(1,-1,2); (0,1,1); (0,-1,1)\}$ wektory

- \bullet (1, 0, 0)
- (0,1,0)
- (0,0,1)
- (7,3,2)
- (-2,1,5)
- (3, -2, 1).

Zadanie 7. Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla

- $S = \{(1, 2, 0, 1), (1, 1, 1, 0)\}, T = \{(1, 0, 1, 0), (1, 3, 0, 1)\};$
- $S = \{(2, -1, 0, -2), (3, -2, 1, 0), (1, -1, 1, -1)\}, T = \{(3, -1, -1, 0), (0, -1, 2, 3), (5, -2, -1, 0)\}.$

Zadanie 8 (* Nie liczy się do podstawy.). Uwaga: w tym zadaniu nie można korzystać z twierdzenia o równoliczności baz ani z lematu o wymianie.

Używając eliminacji Gaußa udowodnij następujące twierdzenie:

Jeśli $B = \{b_1, \ldots, b_k\}$ jest bazą przestrzeni liniowej \mathbb{V} , to zbiór liczący k+1 wektorów jest liniowo zależny. W tym celu wyraź wektory v_1, \ldots, v_{k+1} w bazie B i przeprowadź na tej reprezentacji eliminację Gaußa. Wywnioskuj z tego twierdzenia, że każde dwie bazy przestrzeni skończenie wymiarowej są równoliczne.

Zadanie 9. Niech $\mathbb{W} \leq \mathbb{V}$ będą przestrzeniami liniowymi, zaś $U \subseteq \mathbb{V}$. Udowodnij, że następujące warunki są równoważne:

- 1. istnieje wektor $u \in \mathbb{V}$, taki że $U = u + \mathbb{W}$;
- 2. istnieje wektor $u \in U$, taki że U = u + W;
- 3. dla każdego wektora $u \in U$ zachodzi $U = u + \mathbb{W}$.

Udowodnij też równoważność poniższych warunków:

- 1. istnieje wektor $u \in \mathbb{V}$, taki że U u jest przestrzenią liniową;
- 2. istnieje wektor $u \in U$, taki że U-u jest przestrzenią liniową;
- 3. dla każdego wektora $u \in U$ zbiór U u jest przestrzenią liniową.

Zadanie 10. Niech $\mathbb{W} \leq \mathbb{V}$ będzie podprzestrzenią liniową, zaś U i U' jej warstwami. Pokaż, że

$$U = U'$$
 lub $U \cap U' = \emptyset$.

Możesz skorzystać z Zadania 9, nawet jeśli nie potrafisz go udowodnić.

Zadanie 11. Niech $\mathbb V$ będzie przestrzenią liniową, zaś U i U' warstwami jakichś (niekoniecznie takich samych) podprzestrzeni $\mathbb V$.

Pokaż, że przecięcie $U \cap U'$ jest puste lub jest warstwą (jakiejś podprzestrzeni).