Optimization in Machine Learning

Univariate optimization Golden ratio

Learning goals

- Simple nesting procedure
- Golden ratio

UNIVARIATE OPTIMIZATION

Let $f : \mathbb{R} \to \mathbb{R}$ (search over interval $(x_{\text{left}}, x_{\text{right}})$ in practice)

Goal: Iteratively improve eval points. Assume function -f is unimodal. Will not rely on gradients, so this also works for black-box problems.

SIMPLE NESTING PROCEDURE

- Initialization: Search interval $(x_{\text{left}}, x_{\text{right}}), x_{\text{left}} < x_{\text{right}}$
- Choose x_{best} randomly
- For t = 0, 1, 2, ...
 - Choose x_{new} randomly in $[x_{\text{left}}, x_{\text{right}}]$
 - If $f(x_{new}) < f(x_{best})$:
 - $x_{\text{best}} \leftarrow x_{\text{new}}$
 - New interval: points around x_{best}

Key question: How can x_{new} be chosen better than randomly?

- Insight 1: Always in bigger subinterval to maximize reduction
- Insight 2: x_{new} symmetrically to x_{best} for uniform reduction

Consider two hypothetical outcomes for x_{new} : $f_{new,a}$ and $f_{new,b}$

If outcome is $f_{new,a}$, x_{best} remains best and we search around x_{best} :

 $[x_{\text{left}}, x_{\text{new}}]$

If $f_{new,b}$ is outcome, x_{new} becomes best point and search around x_{new} :

 $[x_{\text{best}}, x_{\text{right}}]$

For uniform reduction the two potential intervals must be equal-sized:

$$b := x_{\text{right}} - x_{\text{best}} = x_{\text{new}} - x_{\text{left}}$$

One iteration ahead: require again the intervals to be of same size.

$$c := x_{\text{best}} - x_{\text{left}} = x_{\text{right}} - x_{\text{new}}$$

To summarize, we require:

$$a = x_{\text{right}} - x_{\text{left}},$$

$$b = x_{\text{right}} - x_{\text{best}} = x_{\text{new}} - x_{\text{left}}$$

$$c = x_{\text{best}} - x_{\text{left}} = x_{\text{right}} - x_{\text{new}}$$

- We require same percentage improvement in each iteration
- For φ reduction factor of interval sizes (a to b, and b to c)

$$\varphi := \frac{b}{a} = \frac{c}{b}$$

$$\varphi^2 = \frac{b}{a} \cdot \frac{c}{b} = \frac{c}{a}$$

• Divide a = b + c by a:

$$\frac{a}{a} = \frac{b}{a} + \frac{c}{a}$$

$$1 = \varphi + \varphi^{2}$$

$$0 = \varphi^{2} + \varphi - 1$$

• Unique positive solution is $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618$

- With x_{new} we always go φ percentage points into the interval
- Given x_{left} and x_{right} it follows

$$x_{\text{best}} = x_{\text{right}} - \varphi(x_{\text{right}} - x_{\text{left}})$$

= $x_{\text{left}} + (1 - \varphi)(x_{\text{right}} - x_{\text{left}})$

and due to symmetry

$$x_{\text{new}} = x_{\text{left}} + \varphi(x_{\text{right}} - x_{\text{left}})$$

= $x_{\text{right}} - (1 - \varphi)(x_{\text{right}} - x_{\text{left}}).$

- Some termination criterion has to be chosen
- A reasonable choice is the absolute error, i.e. the width of the last interval:

$$|x_{\text{best}} - x_{\text{new}}| < \tau$$

 In practice, more complicated termination criteria are usually applied, e.g. Numerical Recipes in C → Teukolsky et al. 2017 proposes

$$|x_{\mathsf{right}} - x_{\mathsf{left}}| \le \tau (|x_{\mathsf{best}}| + |x_{\mathsf{new}}|)$$

as a termination criterion

