

Look-up table, caso generale

Anche memoria associativa, associative array, map, symbol table, dictionary: collezione di elementi nella forma coppia attributo / valore (key, value), quindi dati generici, caratterizzati da un campo chiave, con associate le operazioni:

- Inserimento di una coppia nella collezione
- Cancallazione di una coppia dalla collezione
- Ricerca di una chiave
- Modifica di un valore corrispondente ad una chiave

Vittorio Maniezzo - Universita di Bologna

Una solutione ...

Possiamo ridurre l'occupazione di spazio da $\Theta(|S|)$ a $\Theta(|S'|)$ usando liste.

PROBLEMA (non finiscono mai): Inserimento, Cancellazione e Ricerca costano $\Theta(|S'|)$ invece di $\Theta(1)$.

Cala la memoria e cresce il tempo ...

Vittorio Maniezzo - Universita di Bologna

7

Compromesso TEMPO / STAZIO

Si possono ottenere tutti e due i risultati assieme!

Usando tabelle Hash possiamo raggiungere:

- Tempo di accesso: $\Theta(1)$
- Spazio di memoria: $\Theta(|S'|)$

Ma ... in media e non nel caso pessimo.

Vittorio Maniezzo - Universita di Bologna

Frequenza delle collisioni

Tabella di dimensione m e p elementi da inserire:

Funzione hash, m^p diverse possibilità di allocazione dei p elementi

(Esempio: con p = 8 e $m = 10 \rightarrow 10^8$ possibili allocazioni diverse)

Ci sono $\frac{m!}{(m-p)!}$ possibilità di un hashing senza collisioni

(*Esempio*: se p = 8 e m = 10 ci sono $3 \cdot 4 \cdot ... \cdot 10$ possibilità di hashing senza collisioni)

Paradosso del compleanno

Con 23 persone, la probabilità che tutti abbiano il compleanno in un giorno diverso è < 1/2

Cioè: con p = 23 e m = 365, la probabilità di collisione è $\geq \frac{1}{2}$

(prob. cond. ogni compl. diverso = $\left(\frac{1}{365}\right)^{23} \cdot (365 \cdot 364 \cdot ... \cdot 343) \approx 0.49$)

La prob. Di collisione cresce in modo sorprendente!

Vittorio Maniezzo - Universita di Bologna

11

Chaining

Risoluzione di collisioni con "chaining"

- Si crea una lista per ogni cella della tabella (valore assumibile dalla h)
- Si collegano i record afferenti a una stessa cella nella sua lista
- Le celle della tabella sono le teste delle liste (nil se liste vuote)


```
Chaining

Chained-hash-insert(T,x)

// inserisci x in testa alla lista

T[h(key[x])]

Chained-hash-search(T,k)

// ricerca l'elemento con chiave k nella lista

T[h(k)]

Chained-hash-delete(T,x)

// cancella x dalla lista

T[h(key[x])]

Vittorio Maniezzo - Universita di Bologna
```


Simple uniform hashing

Una funzione hash si dice semplice uniforme quando rende uniforme il riempimento della tabella.

Non quando la distribuzione delle chiavi è uniforme.

Vittorio Maniezzo - Universita di Bologna

17

Complessitá SUH

Teorema:

Ipotesi:

- · collisioni gestite con chaining
- simple uniform hashing
- caso medio

Tesi:

una ricerca ha costo computazionale $\Theta(1+\alpha)$

Dimostrazione: prima caso ricerca senza successo, poi con successo

Vittorio Maniezzo - Universita di Bologna

Complessitá SUH

Dimostrazione: caso di ricerca senza successo.

Il load factor α è la lunghezza media di una catena.

In una ricerca senza successo il numero di elementi esaminati è uguale alla lunghezza media delle catene, cioè $\frac{n}{m} = \alpha$.

Calcolare h() costa $\Theta(1)$.

La ricerca costerà $\Theta(1) + \Theta(\alpha) = \Theta(1 + \alpha)$

Vittorio Maniezzo - Universita di Bologna

19

Complessitá SUH

Dimostrazione: caso di ricerca con successo.

Assumiamo di inserire elementi in coda alla catena.

Simple uniform hashing \rightarrow numero medio di elementi in una catena dopo i inserimenti = i/m

L'elemento j verrà inserito mediamente nella posizione 1+(j-1)/m all'interno di una catena.

Un elemento generico finirà in media nella posizione data dalla formula:

$$1/n \sum (1+(i-1)/m) = 1/n (n+[n(n+1)]/[2m] - n/m) =$$

= $1 + \alpha/2 - 1/(2m) =$
= $\Theta(1+\alpha)$

Vittorio Maniezzo - Universita di Bologna

Complessitá SUH

Supponiamo che n=O(m). Ovvero che il numero di elementi inseriti nella tabella sia proporzionale alla dimensione della tabella. Avremo:

$$\alpha = n/m = O(m)/m = O(1)$$

In questo caso la ricerca impiega tempo costante!!!

Cosa succede se gli elementi vengono inseriti all'inizio delle liste?

Vittorio Maniezzo - Universita di Bologna

21

Se usiamo liste doppiamente linkate per le catene e se inseriamo i nuovi elementi in testa alle liste abbiamo

Ricerca Cancellazione Inserimento

O(1) operazioni in media

Vittorio Maniezzo - Universita di Bologna

Funzioni hash: progettazione

Pr(k) = probabilità della chiave k $S_i = \{ k \in U \text{ tali che } h(k) = j \}$

Vogliamo uniform hashing ovvero

$$\sum_{k \in S_i} \Pr(k) = 1/m \quad (m = \text{dimensione della tabella})$$

Vittorio Maniezzo - Universita di Bologna

23

Funzioni hash: progettazione

Se Pr(•) è sconosciuta

Supponiamo per semplicità che le chiavi siano numeri naturali.

IDEA:

- lacksquare h deve dipendere da tutti i bit di k
- deve essere indipendente da eventuali pattern che possono essere presenti nelle chiavi

Vittorio Maniezzo - Universita di Bologna

24

Metodo della divisione

$$h(k) = k \mod m$$

Esempio:

m=12, k=100,

 $h(100) = 100 \mod 12 = 4$

Per controllare se uno ha scelto un buon m è consigliabile usare un "benchmark" reale.

Vittorio Maniezzo - Universita di Bologna

25

Metodo della divisione

Metodo della divisione, possibili cattive scelte di m

Se m e tutte le chiavi sono pari \rightarrow si usano solo la metà degli slot

Es., m = 100 e i dati sono 50, 100, 150, 200, 250

50 → 50

100 100 150 → 50

200 → 100

Es., $m = 2^4 = 16$ e i dati sono 0, 32, 64, 96

0000000 = 0

0010000 = 32 \rightarrow 16 0100000 = 64 → 16

Euristica: usare *m* primo e non troppo vicino a una potenza di 2 o di 10 (le basi più comuni)

Vittorio Maniezzo - Universita di Bologna

Metodo della moltiplicazione
$$h(k) = \lfloor m(kA \mod 1) \rfloor$$
• Scegli una costante A con $0 < A < 1$
• Calcola $k \cdot A$
• Prendi la parte frazionaria: $k \cdot A - \lfloor k \cdot A \rfloor$
• Moltiplica il risultato per m
• Prendi la parte intera
• La chiave k è mappata in $\lfloor (m \cdot (k \cdot A - \lfloor k \cdot A \rfloor)) \rfloor$
Esempio:
$$A = (5^{1/2} - 1)/2 = 0.618...,$$

$$k = 123456,$$

$$m = 10000$$

$$h(123456) = \text{conti conti conti} = 41$$
Vittorio Maniezzo - Universita di Bologna

Open addressing

- Nessun puntatore: spazio risparmiato!
- $\alpha \le 1$ sempre. Nessuna lista per gestire le collisioni
- Hash function più complessa: <h(k,0), h(k,1), ...,
 h(k,m-1)> deve essere una permutazione di <1, ..., m>

h(k,i) = posizione della tabella in cui inserire la chiave k quando tutte le posizioni h(k,0), ..., h(k,i-1) sono già occupate.

Vittorio Maniezzo - Universita di Bologna

29

29

Open addressing, uniform hashing

Se gestiamo le collisioni con il metodo open addressing, la funzione hash restituisce una permutazione degli indici <1, ..., m>.

Invece di simple uniform hashing parliamo di uniform hashing.

Uniform hashing: tutte le permutazioni devono apparire con la stessa probabilità

Vittorio Maniezzo - Universita di Bologna

```
Open addressing, inserimento

Hash-insert(T,k)

i=0

repeat j=h(k,i)

if T[j]=nil

then T[j]=k

return j

else i=i+1

until i=m

error "hash table overflow"
```

```
Open addressing, ricerca

Hash-search(T,k)

i=0

repeat j=h(k,i)

if T[j]=k

then return j

else i=i+1

until (T[j]==nil) or (i==m)

return nil
```


open addressing, co	incellazione
Esercizio: Modificare Hash-search e Ha	sh-delete
per risolvere il problema illus precedente.	
Si può usare un carattere con il quale	1 3 2 7
contrassegnare gli elementi cancellati.	3 D 4 6

Quadratic probing

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

 $con c_2 \neq 0$

Cosa si può dire sul clustering primario?

Vittorio Maniezzo - Universita di Bologna

_

39

Double hashing

$$h(k,i) = (h_1(k) + i h_2(k)) \mod m$$

Cosa succede se $MCD(m,h_2(k)) = d > 1$????

Quante permutazioni distinte produce il double hashing ???

Vittorio Maniezzo - Universita di Bologna

Double hashing, esempio

$$h_1(k) = k \mod m$$

$$h_2(k) = 1 + (k \mod (m-2))$$

$$m = 13$$
, $h_1(k) = k \mod 13$, $h_2(k) = 1 + (k \mod 11)$

k	$h_1(k)$	$h_2(k)$	h(k,i)
18	5	8	5
41	2	9	2
22	9	1	9
44	5	1	5,6
59	7	5	7
32	6	11	6,4
31	5	10	5,2,7,11
73	8	8	8

Vittorio Maniezzo - Universita di Bologna

41

Open addressing, ricerca

Teorema:

Data una hash table con open addressing e load factor $\alpha = n/m < 1$, la lunghezza media di una "probe" in una ricerca senza successo è $1/(1-\alpha)$.

(Ipotesi: uniform hashing)

$$\alpha = (m-1)/m$$
(valore massimo di α)

 $(1/(1-\alpha) = m$

$$\alpha = 1/m$$
 (valore minimo di α) $1/(1-\alpha) = m/(m-1)$

$$\alpha = 1/2$$
 $1/(1-\alpha) = 2$

Vittorio Maniezzo - Universita di Bologna

Open addressing, inserimento

Teorema:

Data una hash table con open addressing e load factor $\alpha = n/m < 1$, la lunghezza media di una "probe" è $1/(1-\alpha)$.

(Ipotesi: uniform hashing)

Dimostrazione:

Nota: α deve essere < 1.

Per inserire un elemento abbiamo bisogno di determinare la posizione nella tabella dove inserirlo.

Ricerca: costo $1/(1-\alpha)$.

Per inserire nella tabella nella posizione appena determinata: $\Theta(1)$.

Se la tabella è piena al 50%, ci aspettiamo 2 probe Se la tabella è piena al 90%, ci aspettiamo 10 probe

Vittorio Maniezzo - Universita di Bologna