

Language Models for Fact-Checking and Claim Assessment

Othman EL HOUFI

othman.el-houfi@etu.u-cergy.fr

Dimitris KOTZINOS

dimitrios.kotzinos@cyu.fr

Fake news & NLP

This tweet caused \$130 billion value drop in stock market!

Fake news & NLP

Fake news

<u>false</u>, often <u>sensational</u>, information <u>disseminated</u> under the <u>guise</u> of <u>news</u> <u>reporting</u>.

Collins English Dictionary

Humans

have been proven <u>irrational</u> and <u>vulnerable</u> when <u>differentiating</u> between <u>real</u> and <u>fake</u> news. Typical accuracy ranges between 55% and 58%.

Xinyi Zhou, Reza Zafarani, Kai Shu, and Huan Liu. Fake news: Fundamental theories, detection strategies and challenges.

Language Models

- A new <u>Deep Neural Network Architecture</u>,
 - Aka <u>Transformers</u>
- Based on <u>Attention mechanism</u>,
 - Helps draw connections between any parts of the sequence input i.e <u>Context</u>
- Great for NLP tasks:
 - Translation, Sentiment analysis, Text summarization...
- <u>Powerful</u>, <u>faster</u>, <u>stable</u> than old architectures (RNNs, LSTMs)

Attention is all you need (2017).

Language Models

Pre-trained LMs comparison								
	BERT	XLNet	XLNet RoBERTa ALBERT DistilBERT		DistilBERT	BigBird	ConvBERT	
	October 11, 2018	July 16, 2019	July 26, 2019	September 26, 2019	October 2, 2019	July 28, 2020	August 6, 2020	
Parameters	Base: 110M Large: 340M	Base: 110M Large: 340M	Base: 125M Large: 355M	Base: 12M Large: 18M	Base: 66M	Base : 110M	Base: 96M	
Layers / Hidden dimensions / Self- attention heads	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 6 / 768 / 12	Base: 12 / 768 / 12	Base: 12 / 768 / 12	
Pre-trained data	BooksCorpus + English Wikipedia ~ 16 GB	Base: 16 GB BERT data Large: 113 GB of textual data (16 GB BERT data + 97 GB additional)	BERT + CCNews + OpenWebText + Stories ~ 160 GB	BooksCorpus + English Wikipedia ~ 16 GB	BooksCorpus + English Wikipedia ~ 16 GB	BERT + CCNews + Stories ~ 97 GB	OpenWebText ~ 32 GB	
Method	Bidirectional Transformer, MLM & NSP	Bidirectional Transformer with Permutation based modeling	BERT without NSP, Using Dynamic Masking	BERT with reduced parameters & SOP (not NSP)	BERT Distillation	Block Sparse Attention instead of normal attention	Improves BERT by using a span level dynamic convolution	

- All Transformers
- Subtle changes in the architecture and training datasets

Datasets

FEVER

185K annotated claims 3-labels

Liar

12.8K annotated claims 6-labels

MultiFC

35K annotated claims >30-labels reduced to 5-labels

COVID-19

6K annotated claims
2-labels

ANTi-Vax

15K annotated claims 2-labels Extracted from *Wikipedia* and subsequently verified without knowledge of the sentence they were derived from.

Manually labeled short statements that were collected in various contexts from *PolitiFact.com*.

Collected from <u>26 fact checking websites</u> in English, paired with textual sources and rich metadata, and labeled for veracity by <u>human expert journalists</u>.

Rumors about COVID-19 extracted from various <u>social-media</u> <u>platforms</u> such as Twitter, Facebook, Instagram, etc.

<u>Tweets</u> that were annotated as misinformation or general COVID-19 vaccine tweets using reliable sources and validated by <u>medical experts</u>.

General Architecture

- Pre-process each dataset:
 - FEVER, Liar, MultiFC, COVID-19, ANTi-Vax
- Fine-tune a set of LMs:
 - BERT, RoBerta, ALBERT, XLNET, DistilBERT, BigBird, ConvBERT
- Deploy the best LM to <u>assess</u> the <u>validity</u> of new <u>input claims</u>

Results & Discussion

Dataset	Metric	2-labels	3-labels	5-labels	6-labels
EEVED	accuracy	0.81	0.64		-
FEVER	macro f1	0.81	0.63		-
MultiFC	accuracy	0.72	-	0.50	-
Muttire	macro f1	0.64	-	0.40	-
l ion	accuracy	0.69	-		0.31
Liar	macro f1	0.61	-		0.30
COVID-19	accuracy	0.98		-	
	macro f1	0.98		-	
ANTi-Vax	accuracy	0.99		-	
	macro f1	0.99		-	

Conclusion & Perspective

- LMs have a great <u>potential to solve</u> different <u>NLP problems</u>,
- LMs for fact-checking are good but not the best,
 - Does not beat state-of-art traditional models.
- Different paths can be explored
 - We still have much to learn about LMs.
- In the future we plan to exploit the <u>structural features of</u> <u>Complex Networks</u> in combination with LMs.

Bibliography

Datasets

FEVER

185K annotated claims 3-labels The Apple Store first opened in 2001.

Adventure Time won an Oscar.

Yamaha Corporation produces hardware.

SUPPORTS

REFUTES

NEI

Liar

12.8K annotated claims 6-labels FIFA pressured Brazil into passing a so-called Budweiser bill, allowing beer sales in soccer stadiums.

Says Barack Obama founded ISIS. I would say the co-founder would be crooked Hillary Clinton.

Sixty-two percent of all personal bankruptcies are caused by medical problems.

TRUE

FALSE

HALF-TRUE

MultiFC

35K annotated claims >30-labels reduced to 5-labels

The government does not need a warrant to read your old emails.

About 99% of rape allegations are fabricated.

Husbands rarely beat up their wives. Single women get beaten up more.

TRUE

FALSE

IN-BETWEEN

COVID-19

6K annotated claims 2-labels Holding your breath can let you test whether you may have COVID-19.

WHO: We recommend systemic corticosteroids for the treatment of patients with severe and critical #COVID_19 which could be lifesaying, https://t.co/R4HNTnEEwD

FAKE

REAL

ANTi-Vax

15K annotated claims 2-labels Just got my appointment to be vaccinated and I'm extremely nervous and slightly excited all in one. #vaccine

Disturbing and Mysterious #Death of 18yo #Camilla after #COVID #Vaccine. #AstraZeneca's Jabs stopped in #Italy for Young #People!#Experimental https://t.co/Ssz9kKkFDu

NOT_MISSINFO

MISSINFO

Fake news & NLP

<u>Automatic</u> fake news <u>detection</u> is a practical <u>NLP problem</u> useful to all online content providers.

- → Reduce the human time and effort to detect fake news,
- → Can sweep through huge data streams,
- → Capable of ceasing the spreading much faster.

- How can we differentiate fake news from real news?
- At what level of confidence can we do so?
- What are the existing methods that solves this problem?

Related work

S Hangloo, B Arora. Fake News Detection Tools and Methods – A Review

Related work

Knowledge-based Fake News Detection

aims to assess news authenticity by comparing the knowledge extracted from to-be verified news content with known facts, also called fact-checking.

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav Nakov. Whatthewikifact: Fact-checking claims against wikipedia.

Style-based Fake News Detection

focuses on the style of writing, i.e. the form of a text rather than its meaning.

P. Przybyla. Capturing the style of fake news. In Proceedings of the AAAI Conference on Artificial Intelligence.

Related work

Language Model based Fact-Checking

a new approach that relies on fine-tuning state-of-art LMs like BERT that were pre-trained on Wikipedia's articles in order to solve the claim classification problem.

Nayeon Lee, Belinda Z Li, Sinong Wang, Wen-tau Yih, Hao Ma, and Madian Khabsa. Language models as fact checkers?

- What are Language Models?
- How can they be employed as fact-checkers?

Language Models

Attention is all you need.

Bert: Pre-training of deep bidirectional transformers for language understanding.

Language Models BERT

Q 2019 brazil traveler to usa need a visa

9:00 google.com top Washington Post > 2019/03/21 U.S. citizens can travel to Brazil without the red tape of a visa ... Mar 21, 2019 · Starting on June 17, you can go to Brazil without a visa and ... Australia, Japan and Canada will no longer need a visa to ... washingtonpost.com; © 1996-2019 The Washington Post ...

BEFORE

Language Models BERT

Q parking on a hill with no curb

BEFORE

AFTER

Results & Discussion

Fine-tuned model	Label	prec	recall	f1	accuracy	macro prec	macro recall	macro f1
BERT-base-uncased	SUPPORTS REFUTES NEI	0.55 0.75 0.61	0.78 0.59 0.47	0.64 0.66 0.53	0.62	0.63	0.62	0.61
ALBERT-base-v2	SUPPORTS REFUTES NEI	0.46 0.77 0.50	0.81 0.46 0.33	0.59 0.58 0.40	0.53	0.58	0.53	0.52
DistilBERT-base-uncased	SUPPORTS REFUTES NEI	0.54 0.75 0.60	0.78 0.58 0.47	0.64 0.65 0.53	0.61	0.63	0.61	0.61
RoBERTa-base	SUPPORTS REFUTES NEI	0.54 0.75 0.63	0.81 0.59 0.45	0.65 0.66 0.53	0.62	0.64	0.62	0.61
BigBird-RoBERTa-base	SUPPORTS REFUTES NEI	0.53 0.75 0.63	0.81 0.58 0.44	0.64 0.66 0.52	0.61	0.64	0.61	0.60
XLNET-base-cased	SUPPORTS REFUTES NEI	0.53 0.74 0.63	0.81 0.59 0.43	0.64 0.65 0.51	0.61	0.63	0.61	0.60
Related work	Label	prec	recall	f1	accuracy	macro prec	macro recall	macro f1
BERT-large [7]	SUPPORTS REFUTES NEI	0.54 0.62 0.57	0.67 0.55 0.49	0.59 0.58 0.53	0.57	0.57	0.57	0.57
FEVER Baseline [19]	l -	-	-	-	0.49	-	-	-
Ohio State University [19]	-	-	-	-	0.50	-	-	-
Columbia NLP [19]	-	-	-	-	0.58	-	-	-
Papelo [19]	-	-	-	-	0.61 0.68	-	-	-
UNC-NLP [19] DREAM [20]	-	-	-	-	0.77	-	-	-

Proposed Method

Language Models for classification

Comparison BERT October 11, 2018		RoBERTa July 26, 2019	DistilBERT October 2, 2019	ALBERT September 26, 2019	
Parameters	Base: 110M Large: 340M	Base: 125 Large: 355	Base: 66	Base: 12M Large: 18M	
Layers / Hidden Dimensions / Self- Attention Heads	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 6 / 768 / 12	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	
Training Time	Base: 8 x V100 x 12d Large: 280 x V100 x 1d	1024 x V100 x 1 day (4-5x more than BERT)	Base: 8 x V100 x 3.5d (4 times less than BERT)	[not given] Large: 1.7x faster	
Performance	Outperforming SOTA in Oct 2018	88.5 on GLUE	97% of BERT-base's performance on GLUE	89.4 on GLUE	
Pre-Training Data	BooksCorpus + English Wikipedia = 16 GB	BERT + CCNews + OpenWebText + Stories = 160 GB	BooksCorpus + English Wikipedia = 16 GB	BooksCorpus + English Wikipedia = 16 GB	
Method	Bidirectional Trans- former, MLM & NSP	BERT without NSP, Using Dynamic Masking	BERT Distillation	BERT with reduced para- meters & SOP (not NSP)	

https://humboldt-wi.github.io/blog/research/information_systems_1920/uncertainty_identification_transformers/