Universidade Federal do Rio Grande do Sul Escola de Engenharia

ENG04010 Teoria Eletromagnética e Ondas

Trabalho Complementar Resolução de Problemas de Valor de Contorno

Pedro Lubaszewski Lima (00341810)

Turma U

Sumário

1.1	Enunc	iado do Problema	
2.1	Resolu	tesolução Analítica do Problema	
		Determinando o Comportamento das Soluções	
	2.1.2	Cálculo dos Coeficientes das Soluções	
		Forma Análitica Final	
3.1	Resolu	ıção Numérica do Problema	
	3.1.1	Comportamento Numérico da Solução	
	3.1.2	Simulação em Software	

1.1 Enunciado do Problema

Com o intuito de exercitar os conhecimentos ensinados sobre Problemas de Valores de Contorno (PVC) em Eletrostática, foi proposto o seguinte exercício a ser resolvido:

Considere um cubo oco de dimensões laterais a, composto de faces condutoras ideais, conforme a figura abaixo. Suponha que exista uma pequena separação entre cada face. As faces laterais, em tom mais claro, são mantidas em um potêncial nulo. A face superior (0 < x < a, 0 < y < a, z = a) é mantida em potencial contante e uniforme V_0 .

Figura 1: Cubo Condutor de Dimensões Laterais a

Com isso em mente, faça o que se pede:

- 1. Determine uma equação para o potencial no interior do cubo de forma analítica, utilizando o Método da Separação de Variáveis (discutido na Seção 2.1).
- 2. Esboce o potencial, na forma de um "mapa de calor", para a região central do cubo (fixando $x=\frac{a}{2}$ ou $y=\frac{a}{2}$ e variando as outras duas variáveis), utilizando resultados obtidos numericamente (discutido na Seção 3.1).

2.1 Resolução Analítica do Problema

Partindo de primeiros princípios, utilizando os postulados da Eletrostática:

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{\rho_V}{\varepsilon_0}$$

$$\overrightarrow{\nabla} \times \overrightarrow{E} = \overrightarrow{0}$$

Com a segunda expressão, deduz-se que o campo elétrico é conservativo, ou seja,

$$\Rightarrow \exists V \mid \overrightarrow{E} = -\overrightarrow{\nabla}V$$

Logo, unindo essa equação e a primeira equação dessa seção:

$$\Rightarrow \overrightarrow{\nabla} \cdot (-\overrightarrow{\nabla} V) = \frac{\rho_V}{\varepsilon_0}$$

$$\Rightarrow \nabla^2 V = -\frac{\rho_V}{\varepsilon_0}$$
 (Equação de Poisson)

Para o caso do problema onde não há cargas onde procura-se determinar o potencial elétrico:

$$\Rightarrow \nabla^2 V = 0$$
 (Equação de Laplace)

Com isso, para modelar o comportamento de V(x,y,z) analiticamente, partir-se-á da Equação de Laplace com as Condições de Contorno fornecidas no problema:

$$\begin{cases} \nabla^2 V = 0 \\ x : V(0, y, z) = 0, \ V(a, y, z) = 0 \\ y : V(x, 0, z) = 0, \ V(x, a, z) = 0 \\ z : V(x, y, 0) = 0, \ V(x, y, a) = V_0 \end{cases}$$
(1)

A partir dela, tem-se, em coordenadas cartesianas, que:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

E, pelo Método da Separação de Variáveis, assume-se que, para coordenadas cartesianas:

$$V(x, y, z) = X(x)Y(y)Z(z)$$

Portanto, a partir daí, tem-se que:

$$\begin{split} \Rightarrow \frac{\partial^2 V}{\partial x^2} &= Y(y)Z(z)\frac{\partial^2}{\partial x^2}X(x) \\ \Rightarrow \frac{\partial^2 V}{\partial y^2} &= X(x)Z(z)\frac{\partial^2}{\partial y^2}Y(y) \\ \Rightarrow \frac{\partial^2 V}{\partial z^2} &= X(x)Y(y)\frac{\partial^2}{\partial z^2}Z(z) \\ \Rightarrow \nabla^2 V &= Y(y)Z(z)\frac{\partial^2}{\partial x^2}X(x) + X(x)Z(z)\frac{\partial^2}{\partial y^2}Y(y) + X(x)Y(y)\frac{\partial^2}{\partial z^2}Z(z) = 0 \end{split}$$

Agora, assumindo que $X(x) \neq 0$, $Y(y) \neq 0$ e $Z(z) \neq 0$, na região de interesse, pode-se dividir a equação acima por X(x)Y(y)Z(z):

$$\Rightarrow \frac{1}{X(x)}\frac{\partial^2 X(x)}{\partial x^2} + \frac{1}{Y(y)}\frac{\partial^2 Y(y)}{\partial y^2} + \frac{1}{Z(z)}\frac{\partial^2 Z(z)}{\partial z^2} = 0$$

Porém, a única forma dessa equação resultar em zero para todos os valores de X(x), Y(y) e Z(z) se dá quando cada uma das parcelas somadas na equação é uma constante. Em outras palavras:

$$\begin{cases} \frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} = -K_x^2 \\ \frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} = -K_y^2 & \Rightarrow K_x^2 + K_y^2 + K_z^2 = 0 \\ \frac{1}{Z(z)} \frac{\partial^2 Z(z)}{\partial z^2} = -K_z^2 \end{cases}$$
 (2)

Essa escolha de constantes foi feita para facilitar a dedução do resto do problema, visto que as constantes podem ser complexas.

Multiplicando cada uma das equações de 2 pelas suas respectivas funções dependentes apenas de uma coordenada e somando a constante dos dois lados das equações obtém-se o seguinte sistema de Equações Diferenciais Ordinárias (EDOs):

$$\begin{cases} \frac{d^2 X(x)}{dx^2} + X(x) K_x^2 = 0\\ \frac{d^2 Y(y)}{dy^2} + Y(y) K_y^2 = 0\\ \frac{d^2 Z(z)}{dz^2} + Z(z) K_z^2 = 0\\ K_x^2 + K_y^2 + K_z^2 = 0 \end{cases}$$
(3)

Dadas essas EDOs, para alguma das variáveis, pode-se obter as seguintes soluções gerais:

$$S(s) = A_0 s + B_0, K_s^2 = 0 (4)$$

$$S(s) = A_1 \sin(K_s s) + B_1 \cos(K_s s), K_s^2 > 0, K_s \in \mathbb{R}$$
(5)

$$S(s) = A_2 \sinh(K_s s) + B_2 \cosh(K_s s), K_s^2 < 0, K_s \in \mathbb{I}$$
(6)

Todas essas para S(s)=X(x),Y(y),Z(z). Para cada variável $x,\ y$ e z, a forma da solução geral depende das Condições de Fronteira.

Alguns PVCs em Eletrostática apresentam dependência em apenas algumas variáveis. No entanto, mesmo que este tenha alguma simetria em relação à x e y (fixando um certo x ou y, e fazendo z variar em função da variável restante deve resultar no mesmo comportamento de V(y,z) ou V(x,z)), de forma geral, precisar-se-á resolver o problema para todas as variáveis separadamente.

2.1.1 Determinando o Comportamento das Soluções

Para descobrir qual é o comportamento de cada variável desse problema, basta analisar as Condições de Fronteira para duas das variáveis dadas em 1 e, pela equação 3, obter e confirmar o comportamento da variável restante. Para a variável z:

$$z: V(x, y, 0) = 0, V(x, y, a) = V_0$$

Ou seja, observa-se um comportamento de decaímento. Quanto mais afasta-se verticalmente da placa com potencial V_0 , menor será o potencial. No entanto, esse comportamento não pode ser linear, pois esse é o caso quando há apenas duas placas paralelas, uma com potencial não nulo e a outra com potencial nulo. Esse não é o caso para este problema porque, ao decrementar a variável z, ocorre um certo amortercimento devido ao potencial nulo das placas laterais, gerando comportamento não linear em z. Isso indica, dentre as soluções gerais para as equações, que a solução nessa variável corresponde a um decaímento exponencial descrito pela equação 6. Ou seja, $K_z^2 < 0$. Por conta disso, sabe-se que precisa haver $K_x^2 > 0$ ou (inclusivo) $K_y^2 > 0$ para que o resto da equação 3 seja satisfeito. Nesse caso, como é um cubo com todas as distâncias iguais e com todos os potenciais iguais, exceto na tampa, percebe-se que tanto a variável x, quanto a variável y devem apresentar o mesmo comportamento. Isso também pode ser observado diretamente nas Condições de Fronteira dessas variáveis:

$$x: V(0, y, z) = 0, V(a, y, z) = 0$$

$$y: V(x, 0, z) = 0, V(x, a, z) = 0$$

Logo, pelas constatações acima, sabe-se que $K_x^2 > 0$ e que $K_y^2 > 0$. Portanto, obtém-se as seguintes equações gerais para as variáveis do problema:

$$X(x) = A\sin(|K_x|x) + B\cos(|K_x|x), \ K_x^2 > 0, \ K_x \in \mathbb{R}$$
(7)

$$Y(y) = C\sin(|K_y|y) + D\cos(|K_y|y), K_y^2 > 0, K_y \in \mathbb{R}$$
(8)

$$Z(z) = E \sinh(|K_z|z) + F \cosh(|K_z|z), K_z^2 < 0, K_z \in \mathbb{I}$$
(9)

Será confirmado se essas constatações estão efetivamente corretas através da análise numérica na seção 3.1.

Portanto, agrupando 7, 8 e 9, obtém-se a seguinte solução geral para o problema original:

$$V(x,y,z) = [A\sin(|K_x|x) + B\cos(|K_x|x)][C\sin(|K_y|y) + D\cos(|K_y|y)][E\sinh(|K_z|z) + F\cosh(|K_z|z)]$$
(10)

2.1.2 Cálculo dos Coeficientes das Soluções

Com as Condições de Fronteira, serão primeiramente calculados os coeficientes mais diretos. Ou seja, com as condições que envolvem zerar as soluções gerais:

• Usando V(0, y, z) = 0 na equação 10:

$$\Rightarrow V(0, y, z) = [A \cdot 0 + B \cdot 1][C \sin(|K_y|y) + D \cos(|K_y|y)][E \sinh(|K_z|z) + F \cosh(|K_z|z)] = 0$$

$$\Rightarrow B[C \sin(|K_y|y) + D \cos(|K_y|y)][E \sinh(|K_z|z) + F \cosh(|K_z|z)] = 0$$

Para uma multiplicação ser nula, precisa-se algum dos termos multiplicados seja nulo. Como sabe-se que exponenciais nunca são nulas, para essa parcela ser nula, precisar-se-ia que tanto E=0, quanto F=0. No entanto, isso resulta na solução trivial para a variável z, algo já constatado como falso. Logo, alguma das outras parcelas ou ambas deve ser nula:

$$\Rightarrow B[C\sin(|K_y|y) + D\cos(|K_y|y)] = 0$$

O mesmo raciocínio se aplica para as constantes C e D, visto que as funções seno e cosseno nunca são zero ao mesmo tempo, exigindo que, para essa parcela ser nula, precisa-se da solução trivial para y, algo analisado anteriormente como não verdadeiro. Portanto, só resta a conclusão que:

$$\Rightarrow B = 0$$

• Usando V(x,0,z)=0 na equação 10 sabendo que B=0:

$$\Rightarrow V(x,0,z) = A\sin(|K_x|x)[C \cdot 0 + D \cdot 1][E\sinh(|K_z|z) + F\cosh(|K_z|z)] = 0$$
$$\Rightarrow D \cdot A\sin(|K_x|x)[E\sinh(|K_z|z) + F\cosh(|K_z|z)] = 0$$

Como já argumentado acima, $E \neq 0$ e $F \neq 0$:

$$\Rightarrow D \cdot A \sin(|K_x|x) = 0$$

Pela mesma lógica da condição anterior, para não haver solução trivial na variável x, precisa-se que $A \neq 0$:

$$\Rightarrow D = 0$$

• Usando V(x, y, 0) = 0 na equação 10 sabendo que B = 0 e D = 0:

$$\Rightarrow V(x, y, 0) = A \sin(|K_x|x)C \sin(|K_y|y)[E \cdot 0 + F \cdot 1] = 0$$
$$\Rightarrow F \cdot A \sin(|K_x|x)C \sin(|K_y|y) = 0$$

Como já discutido anteriormente, para não haver solução trivial nas variáveis x e y, precisa-se que $A \neq 0$ e $C \neq 0$:

$$\Rightarrow F = 0$$

Assim, para facilitar, chamar-se-á $A' := A \cdot C \cdot E$, ou seja:

$$V(x,y,z) = A'\sinh(|K_z|z)\sin(|K_x|x)\sin(|K_y|y)$$
(11)

• Usando V(a, y, z) = 0 na equação 11:

$$\Rightarrow V(a, y, z) = A' \sinh(|K_z|z) \sin(|K_x|a) \sin(|K_y|y) = 0$$

Como a contante A' não pode ser nula e as funções seno e seno hiperbólico são não nulas para diversos valores de y e z, resta que:

$$\Rightarrow \sin(|K_x|a) = 0$$

A função seno é periódica e apresenta valor zero quando o seu argumento vale $i\pi$, onde $i\in\mathbb{Z}$:

$$\Rightarrow |K_x|a = i\pi$$
$$|K_x| = \frac{i\pi}{a}, i \in \mathbb{Z}$$

• Usando V(x, a, z) = 0 na equação 11:

$$\Rightarrow V(x, a, z) = A' \sinh(|K_z|z) \sin(|K_x|x) \sin(|K_y|a) = 0$$

Pelo mesmo raciocínio anterior, tem-se que:

$$\Rightarrow \sin(|K_y|a) = 0$$

$$\Rightarrow |K_y|a = j\pi$$

$$|K_y| = \frac{j\pi}{a}, j \in \mathbb{Z}$$

Agora, tomando a última equação de 3:

$$K_x^2 + K_y^2 + K_z^2 = 0$$
$$\Rightarrow -K_z^2 = K_x^2 + K_y^2$$

Como $K_z^2 < 0, K_y^2 > 0$ e $K_x^2 > 0$,

$$\Rightarrow |K_z|^2 = |K_x|^2 + |K_y|^2$$
$$\Rightarrow |K_z| = \sqrt{|K_x|^2 + |K_y|^2}$$

Substituindo os valores de $|K_x|$ e $|K_y|$ na equação anterior, tem-se que:

$$\Rightarrow |K_z| = \sqrt{\left(\frac{i\pi}{a}\right)^2 + \left(\frac{j\pi}{a}\right)^2}$$
$$\Rightarrow |K_z| = \frac{\pi}{a}\sqrt{i^2 + j^2}$$

Portanto, em resumo:

$$|K_x| = \frac{i\pi}{a}, i \in \mathbb{Z} \tag{12}$$

$$|K_y| = \frac{j\pi}{a}, j \in \mathbb{Z} \tag{13}$$

$$|K_z| = \frac{\pi}{a} \sqrt{i^2 + j^2}, i, j \in \mathbb{Z}$$

$$\tag{14}$$

Por fim, será utilizada a condição de fronteira $V(x, y, a) = V_0$ em 11. No entanto, essa condição não é trivial de ser aplicada, visto que gera-se a seguinte sequência de afirmações:

$$\Rightarrow V(x, y, a) = A' \sinh(|K_z|a) \sin(|K_x|x) \sin(|K_y|y) = V_0$$

Coletando as constantes e definindo $C_{ij} := A' \sinh(|K_z|a)$, obtém-se que

$$\Rightarrow C_{ij}\sin(|K_x|x)\sin(|K_y|y) = V_0$$
$$\Rightarrow C_{ij}\sin\left(\frac{i\pi x}{a}\right)\sin\left(\frac{j\pi y}{a}\right) = V_0$$

A multiplicação de duas funções periódicas dessa forma nunca será constante. Portanto, será preciso extrapolar o problema e considerar que a função potencial é uma função períodica ímpar tanto em x, quanto em y, formando uma espécie tabuleiro de xadrez com largura de posição a no espaço:

Figura 2: Extrapolação do Potencial além de x=y=z=a

Com essa suposição, já que o potencial fora do cubo não é importante para o problema, pode-se aplicar a teoria das Séries de Fourrier para achar uma solução que satisfaça às condições acima.

Como há uma infinidade de múltiplos de i e j que fazem as contantes C_{ij} , $|K_x|$ e $|K_y|$ satisfazerem as Condições de Contorno, sabe-se que, nessa última Condições de Contorno, precisa-se de uma resposta da forma:

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \sin\left(\frac{i\pi x}{a}\right) \sin\left(\frac{j\pi y}{a}\right) = V_0$$
 (15)

Como sabe-se, manipulando a sua definição, que $A' = \frac{C_{ij}}{\sinh(|K_z|a)} = \frac{C_{ij}}{\sinh(\pi\sqrt{i^2+j^2})}$, a resposta final é da forma:

$$V(x,y,z) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{C_{ij}}{\sinh(\pi\sqrt{i^2 + j^2})} \sinh\left(\frac{\pi z}{a}\sqrt{i^2 + j^2}\right) \sin\left(\frac{i\pi x}{a}\right) \sin\left(\frac{j\pi y}{a}\right)$$
(16)

Agora, resta determinar a última constante que é C_{ij} a partir da equação 15.

Para fazer isso, será utilizado o "Truque de Fourrier"
tanto na variável x, quanto na variável y. Ou seja, multiplicar-se-á a equação 15 por $\sin\left(\frac{n\pi x}{a}\right)\sin\left(\frac{m\pi y}{a}\right)$, com $n,m\in\mathbb{Z}$:

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \sin\left(\frac{i\pi x}{a}\right) \sin\left(\frac{j\pi y}{a}\right) \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{a}\right) = V_0 \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{a}\right)$$

$$\Rightarrow \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \sin\left(\frac{i\pi x}{a}\right) \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{j\pi y}{a}\right) \sin\left(\frac{m\pi y}{a}\right) = V_0 \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{a}\right)$$

Agora, utilizando a identidade trigonométrica $\sin(a)\sin(b)=\frac{\cos(a-b)-\cos(a+b)}{2}$ no lado esquerdo, obtém desse lado:

$$\Rightarrow \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \left[\frac{\cos\left(\frac{i\pi x}{a} - \frac{n\pi x}{a}\right) - \cos\left(\frac{i\pi x}{a} + \frac{n\pi x}{a}\right)}{2} \right] \left[\frac{\cos\left(\frac{j\pi y}{a} - \frac{m\pi y}{a}\right) - \cos\left(\frac{j\pi y}{a} + \frac{m\pi y}{a}\right)}{2} \right]$$

$$\Rightarrow \frac{1}{4} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \left[\cos \left(\frac{\pi x(i-n)}{a} \right) - \cos \left(\frac{\pi x(i+n)}{a} \right) \right] \left[\cos \left(\frac{\pi y(j-m)}{a} \right) - \cos \left(\frac{\pi y(j+m)}{a} \right) \right]$$

Aplicando a integral dupla $\int_0^a dy \int_0^a dx$ no lado esquerdo:

$$\Rightarrow \frac{1}{4} \int_0^a \int_0^a \sum_{i=1}^\infty \sum_{j=1}^\infty C_{ij} \left[\cos \left(\frac{\pi x (i-n)}{a} \right) - \cos \left(\frac{\pi x (i+n)}{a} \right) \right] \left[\cos \left(\frac{\pi y (j-m)}{a} \right) - \cos \left(\frac{\pi y (j+m)}{a} \right) \right] dx dy$$

$$\Rightarrow \frac{1}{4} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \int_{0}^{a} \left[\cos \left(\frac{\pi x(i-n)}{a} \right) - \cos \left(\frac{\pi x(i+n)}{a} \right) \right] dx \int_{0}^{a} \left[\cos \left(\frac{\pi y(j-m)}{a} \right) - \cos \left(\frac{\pi y(j+m)}{a} \right) \right] dy$$

Neste ponto, caso $n \neq i$ ou (inclusivo) $m \neq j$:

$$\Rightarrow \frac{a^2}{4\pi^2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \Big[\frac{1}{i-n} \sin \Big(\frac{\pi x(i-n)}{a} \Big) - \frac{1}{i+n} \sin \Big(\frac{\pi x(i+n)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j+m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j+m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) - \frac{1}{j+m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{1}{j-m} \sin \Big(\frac{\pi y(j-m)}{a} \Big) \Big]_0^a \Big[\frac{\pi y(j-m)}{a} \Big]_0^a \Big$$

Avaliando a integral acima, quando x=0 e y=0, observa-se que a afirmação acima é nula. Caso x=a e y=a, o argumento dos senos será um múltiplo inteiro qualquer de π , zerando novamente toda a afirmação. Com isso, concluí-se que:

 $n \neq i \lor m \neq j \rightarrow \text{ a afirmação esquerda é nula.}$

Agora, caso n = i e m = j:

$$\Rightarrow \frac{1}{4} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \left[\int_{0}^{a} dx - \int_{0}^{a} \cos\left(\frac{2i\pi x}{a}\right) dx \right] \left[\int_{0}^{a} dy - \int_{0}^{a} \cos\left(\frac{2j\pi y}{a}\right) dy \right]$$
$$\Rightarrow \frac{1}{4} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \left[x - \frac{a}{2i\pi} \sin\left(\frac{2i\pi x}{a}\right) \right]_{0}^{a} \left[y - \frac{a}{2j\pi} \sin\left(\frac{2j\pi y}{a}\right) \right]_{0}^{a}$$

Ou seja, como qualquer múltiplo inteiro de π torna a função seno nula, tem-se, no lado esquerdo:

$$\frac{a^2}{4} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \tag{17}$$

Agora, voltando para o lado direito da equação e aplicando a mesma integral dupla para manter a igualdade válida:

$$\Rightarrow \int_0^a \int_0^a V_0 \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{a}\right) dx dy$$

$$\Rightarrow V_0 \int_0^a \sin\left(\frac{n\pi x}{a}\right) dx \int_0^a \sin\left(\frac{m\pi y}{a}\right) dy$$

$$\Rightarrow \frac{a^2 V_0}{\pi^2} \left[-\frac{1}{n} \cos\left(\frac{n\pi x}{a}\right) \right]_0^a \left[-\frac{1}{m} \cos\left(\frac{m\pi y}{a}\right) \right]_0^a$$

$$\Rightarrow \frac{a^2 V_0}{\pi^2} \left[\frac{1}{n} - \frac{1}{n} \cos(n\pi) \right] \left[\frac{1}{m} - \frac{1}{m} \cos(m\pi) \right]$$

Nesse ponto, o valor da integral depende da paridade de n e m. Caso n ou (inclusivo) m for par, a integral se torna nula. Logo, precisa-se que n=i=2l-1 e m=j=2k-1, com $l,k\in\mathbb{Z}$ para que o lado direito não seja nulo e valha:

$$\frac{4a^2V_0}{\pi^2 nm}, n = 2l - 1, m = 2k - 1, l, k \in \mathbb{Z}$$
(18)

Portanto, reunindo novamente o lado esquerdo 17 e o lado direto 18, mantendo as restrições impostas por cada lado, tem-se:

$$\Rightarrow \frac{a^2}{4} \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} C_{(2l-1)(2k-1)} = \frac{4a^2 V_0}{\pi^2 (2l-1)(2k-1)}$$
$$\Rightarrow \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} C_{(2l-1)(2k-1)} = \frac{16V_0}{\pi^2 (2l-1)(2k-1)}$$

Sem perda de generalidade, como, para cada valor de iterador l e k, obtém-se uma nova igualdade, obtém-se:

$$\Rightarrow \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} C_{(2l-1)(2k-1)} = \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} \frac{16V_0}{\pi^2 (2l-1)(2k-1)}$$
$$\Rightarrow C_{(2l-1)(2k-1)} = \frac{16V_0}{\pi^2 (2l-1)(2k-1)}$$

Retornando essa constante para a equação 16, tem-se que:

$$V(x,y,z) = \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} \frac{16V_0}{\pi^2 (2l-1)(2k-1) \sinh(\pi \sqrt{(2l-1)^2 + (2k-1)^2})} \sinh\left(\frac{\pi}{a} \sqrt{(2l-1)^2 + (2k-1)^2}z\right) \sin\left(\frac{(2l-1)\pi x}{a}\right) \sin\left(\frac{($$

2.1.3 Forma Análitica Final

Para finalizar, reunindo a última equação, movendo alguns termos para organizá-la e renomeando os iteradores, obteve-se a seguinte expressão:

$$V(x,y,z) = \frac{16V_0}{\pi^2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{ij \sinh(\pi\sqrt{i^2 + j^2})} \sinh\left(\frac{\pi z}{a}\sqrt{i^2 + j^2}\right) \sin\left(\frac{i\pi x}{a}\right) \sin\left(\frac{j\pi y}{a}\right)$$
(19)

Onde, na expressão acima, $i=1,3,5,\dots,2l-1,\dots$ e $j=1,3,5,\dots,2k-1,\dots,0 < x < a,$ 0 < y < ae 0 < z < a.

3.1 Resolução Numérica do Problema

3.1.1 Comportamento Numérico da Solução

3.1.2 Simulação em Software

Para realizar a simulação, estabeleceu-se os mesmo parâmetros utilizados na subseção anterior. Ou seja, os seguintes valores:

- a = 3mm;
- $V_0 = 100 \text{V};$
- Plano de corte em $x = \frac{a}{2}$.

Além disso, para ser possível obter-se resultados na versão gratuita do simulador, colocouse um pequeno espaçamento $\varepsilon=0,1$ mm entre cada face do cubo. Para conseguir bons resultados, utilizou-se o tipo de *mesh* hexaédrico, com acurácia acc = 10^{-9} .

Com esses parâmetros, gerou-se os seguintes gráficos no simulador CST Studio Suite 2024 - Learning Edition:

Figura 3: Mapa de Calor do Potencial

Figura 4: Linhas Equipotenciais

Apesar dos efeitos de borda, gerou-se resultados que representam funções contínuas.

Comparando com os gráficos gerados pelo cálculo númerico da solução análitica, observa-se grande semelhança entre as conclusões obtidas pelas duas abordagens.

Para analisar o efeito nas variáveis individualmente, gerou-se gráficos unidimensionais ao fixar as duas outras variáveis no centro do cubo:

Figura 5: Comportamento da Variável \boldsymbol{x}

Figura 6: Comportamento da Variável y

Figura 7: Comportamento da Variável \boldsymbol{z}

Esses últimos plots confirmam as hipóteses iniciais da solução analítica. Essas imagens mostram que, de fato, as variáveis x e y apresentam o mesmo comportamento periódico e senoidal e que a variável z apresenta crescimento exponencial.