Projeto e Análise de Algoritmos 2024.2

Grafos e Corretude de Algoritmos

Prof. Marcio Costa Santos DCC/UFMG

GRAFOS E REPRESENTAÇÃO

Grafos

- Grafo G = (V, E).
- Vizinhança: $N(v) = \{u | vu \in E\}$.
- Grau d(v) = |N(v)|.
- Caminho conjunto de arestas $(v_1v_2, v_{k-1}v_k)$ que não passa duas vezes menos vértice.
- Ciclo conjunto de arestas (v_1v_2, v_kv_1) que não passa duas vezes menos vértice, exceto o v_1 .

Grafos

- Subgrafo H é subgrafo de G se $V(H) \subseteq V(G)$ e $E(H) \subseteq E(G)$.
- Subgrafo Induzido se H é subgrafo de G e o conjunto de arestas em V(H) é igual em H e G.
- Conexo: se existe um caminho entre todo par de vértice.

Representação

Grafos - Representação

- Representação:
 - Lista de Adjacência.
 - Matriz de Adjacência(*).

Representação - Matriz de Adjacência

	1	2	3	4	5	6
1	0	1	1	1	0	0
2	1	0	0	1	1	0
3	1	0	0	1	0	0
4	1	1	1	0	1	1
5	0	1	0	1	0	0
6	0	0	0	1	0	0

Representação - Lista de Adjacência

- adj[1] = [2, 3, 4].
- adj[2] = [1, 4, 5].
- adj[3] = [1, 4].
- adj[4] = [1, 2, 3, 5, 6].
- adj[5] = [2, 4].
- adj[6] = [4].

Vizinhança

- $V(G) = \{1, \ldots, n\}.$
- E(G) é o conjunto de arestas.
- $N(v) = \{u \in V(G) \mid uv \in N(v)\}.$
- Lista de Adjacência: O(1)
- Matriz de Adjacência: O(n)

Vizinhança - Lista de Adjacência

```
Entrada: Grafo G(V, E), vértice v \in V(G)
Saída: N(v)
retorna adj[v];
```

Vizinhança - Matriz de Adjacência

```
Entrada: Grafo G(V, E), vértice v \in V(G)
Saída: N(v)
Ist \leftarrow \emptyset:
for u de 1 até n do
   if M[v][u] then
      Inclui u em Ist:
    end
end
retorna lst:
```

Grau

- d(v) = |N(v)|.
- Lista de Adjacência: O(d(v))
- Matriz de Adjacência: O(n)

Grau - Lista de Adjacência

```
Entrada: Grafo G(V, E), vértice v \in V(G)
Saída: d(v)
lst \leftarrow adi[v].head;
deg \leftarrow 0;
while lst \neq \lambda do
    lst \leftarrow lst.next;
    deg \leftarrow deg + 1;
end
retorna deg;
```

Grau - Matriz de Adjacência

```
Entrada: Grafo G(V, E), vértice v \in V(G)
Saída: d(v)
deg \leftarrow 0;
for u de 1 até n do
   if M[v][u] then
      deg \leftarrow deg + 1;
   end
end
retorna deg;
```

Pertinência de Aresta

- Responder se $uv \in E(G)$?
- Lista de Adjacência: O(d(v))
- Matriz de Adjacência: O(1)

Pertinência de Aresta - Lista de Adjacência

```
Entrada: Grafo G(V, E), vértice v, u \in V(G)
Saída: uv \in E(G)?
lst \leftarrow adi[v].head;
while lst \neq \lambda do
    if lst = u then
      retorna true
    end
    lst \leftarrow lst.next;
end
retorna false;
```

Pertinência de Aresta - Matriz de Adjacência

```
Entrada: Grafo G(V, E), vértice v, u \in V(G)
Saída: uv \in E(G)?
retorna M[v][u]
```

Grafos Direcionados

- Grafo direcionado G = (V, A).
- Vizinhança de saída $N^+(v) = \{u | vu \in A\}$
- Vizinhança de entrada $N^-(v) = \{u | vu \in A\}$
- Grau de saída $d^+(v) = |N^+(v)|$
- Grau de entrada $d^-(v) = |N^-(v)|$
- Chamamos essas arestas de arcos

Grafos Direcionados

- Representação:
 - Lista de Adjacência.
 - Matriz de Adjacência(*).
- Cuidado que os arcos possuem sentidos!

Representação

CORRETUDE DE ALGORITMOS

Corretude de Algoritmos

- É necessário mostrar que nossos algoritmos estão corretos.
- Provas matemáticas formais.
- indução matemática.
- invariantes de laço.

Invariantes de Laço

- É uma relação/propriedade entre as variáveis do algoritmo.
- É verdade antes da execução do laço.
- É verdade depois de cada execução do laço.

Soma de elementos num vetor

```
Entrada: vetor de inteiros x, tamanho n de x.

soma \leftarrow 0;

para i = 1 até n faça

soma \leftarrow soma + x[i];

fim

retorna soma;
```

Soma de elementos num vetor -Invariantes

```
Entrada: vetor de inteiros x, tamanho n de x.

soma \leftarrow 0;

para i = 1 até n faça

soma \leftarrow soma + x[i];

fim

retorna soma;
```

Invariante

soma é a soma de todos os elementos do vetor, até aquela iteração. $soma = \sum_{i=1}^{n} x[i]$

Maior elementos num vetor

```
Entrada: vetor de inteiros x, tamanho n de x.

max \leftarrow x[1];

para i = 2 até n faça

| if x[i] > max then
| max \leftarrow x[i];
end

fim

retorna max;
```

Maior elementos num vetor - Invariantes

```
Entrada: vetor de inteiros x, tamanho n de x.

max \leftarrow x[1];

para i = 2 até n faça

| if x[i] > max then
| max \leftarrow x[i];
end

fim

retorna max;
```

Invariante

 \max é o maior de todos os elementos do vetor, até aquela iteração. $\max = \max_{i < j} x[j]$

Fatorial

```
Entrada: inteiro n.
if n > 2 then
   retorna n.fat(n-1);
end
else
   retorna 1;
end
               Algoritmo 1: fat(n)
```

Indução Matemática

- Uma forma mais formal e geral.
- Estrutura de uma prova por indução:

Base: valor inicial, normalmente 0 ou 1.

Hipótese: assumimos que é verdade para k.

Passo: provamos que se vale para k também

vale para k+1.