Lab 3 - ProgConc

Objetivo:

Projetar e implementar uma solução concorrente para o problema de multiplicação de matrizes, coletar informações sobre o seu tempo de execução, e calcular o ganho de desempenho obtido.

Compilação:

gcc nome_do_arquivo.c -o nome_do_executavel -lpthread

Uso:

```
./matriz <linhas> <colunas> <arquivo_saida>

./multi_matriz_seq <arquivo_matriz_1>
<arquivo_matriz_2> <arquivo_saida>

./multi_matriz_conc <arquivo_matriz_1>
<arquivo_matriz_2> <arquivo_saida> <num threads>
```

Especificações:

Plots:

1. Matriz 500x500:

2. Matriz 1000x1000:

3. Matriz 2000x2000:

Tabelas de Tempos:

Sequencial:

Execução	Tempo de Preparação (s)	Tempo de Processamento (s)	Tempo de Finalização (s)	Tempo Total (s)
Matriz (500x500)	0.001103	0.448264	0.000632	0.449999
Matriz (1000x1000)	0.005101	3.800625	0.002167	3.807893
Matriz (2000x2000)	0.015061	31.613690	0.007891	31.636642

Concorrente - 1 thread:

Execução	Tempo de Inicialização (s)	Tempo de Processamento (s)	Tempo de Finalização (s)	Tempo Total (s)
Matriz (500x500)	0.001195	0.540947	0.000937	0.543079
Matriz (1000x1000)	0.004289	4.652261	0.002171	4.658721
Matriz (2000x2000)	0.018548	38.223447	0.008483	38.250478

Concorrente - 2 threads:

Execução	Tempo de Inicialização (s)	Tempo de Processamento (s)	Tempo de Finalização (s)	Tempo Total (s)
Matriz (500x500)	0.001135	0.270841	0.000898	0.272874
Matriz (1000x1000)	0.003655	2.297899	0.002849	2.304403
Matriz (2000x2000)	0.017530	19.164263	0.009713	19.191506

Concorrente - 4 threads:

Execução	Tempo de Inicialização (s)	Tempo de Processamento (s)	Tempo de Finalização (s)	Tempo Total (s)
Matriz (500x500)	0.002057	0.156186	0.000795	0.159038
Matriz (1000x1000)	0.004884	1.272430	0.002434	1.279748
Matriz (2000x2000)	0.014957	10.467537	0.008123	10.490617

Concorrente - 8 threads:

Execução	Tempo de Inicialização (s)	Tempo de Processamento (s)	Tempo de Finalização (s)	Tempo Total (s)
Matriz (500x500)	0.001058	0.089466	0.000859	0.091383
Matriz (1000x1000)	0.004572	0.722602	0.002533	0.729707
Matriz (2000x2000)	0.015914	6.110316	0.007846	6.134076

Conclusão:

No processamento sequencial, a multiplicação de matrizes é realizada de forma linear, uma operação após a outra. Cada cálculo é feito em sequência, o que pode resultar em tempos de execução mais longos, especialmente para matrizes grandes, já que todas as operações são executadas em um único fluxo de trabalho.

Enquanto no processamento concorrente, a multiplicação é dividida entre várias threads, permitindo a execução simultânea de múltiplas operações no CPU. Isso é possível porque cada thread lida com uma parte específica da tarefa, e essas partes são processadas em paralelo. Dessa forma, o tempo total de processamento é reduzido significativamente.