Mathematical Foundation of Computer Sciences VII

Pushdown Systems

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Pushdown Systems

Pushdown System (PDS)

Definition

A pushdown system (PDS) is a triplet (P, Γ, Δ) where

- P is a finite set of states,
- Γ is finite stack alphabet, and
- $\Delta \subseteq P \times \Gamma^{\leq 2} \times P \times \Gamma^{\leq 2}$ is a finite set of transitions, where $(p, v, q, w) \in \Delta$ is denoted by $(p, v) \to (q, w)$.

Pushdown Systems

$$\frac{(p,\gamma) \to (p',\gamma') \in \Delta}{\langle p,\gamma w \rangle \hookrightarrow \langle p',\gamma' w \rangle} \quad \text{Inter} \quad \frac{(p,\gamma) \to (p',\alpha\beta) \in \Delta}{\langle p,\gamma w \rangle \hookrightarrow \langle p',\alpha\beta w \rangle} \quad \text{Push}$$

$$\frac{(p,\gamma) \to (p',\epsilon) \in \Delta}{\langle p,\gamma w \rangle \hookrightarrow \langle p',w \rangle} \quad \text{Pop}$$

Transition Rules

$$\frac{(p,\gamma) \to (p',\gamma') \in \Delta}{\langle p,\gamma w \rangle \hookrightarrow \langle p',\gamma' w \rangle} \quad \text{Inter} \quad \frac{(p,\gamma) \to (p',\alpha\beta) \in \Delta}{\langle p,\gamma w \rangle \hookrightarrow \langle p',\alpha\beta w \rangle} \quad \text{Push}$$

$$\frac{(p,\gamma) \to (p',\epsilon) \in \Delta}{\langle p,\gamma w \rangle \hookrightarrow \langle p',w \rangle} \quad \text{Pop}$$

$$\frac{(p,\epsilon) \to (p',\alpha) \in \Delta}{\langle p,w \rangle \hookrightarrow \langle p',\alpha w \rangle} \quad \text{Simple-Push}$$

$$\frac{(p,\alpha\beta) \to (p',\gamma) \in \Delta}{\langle p,\alpha\beta w \rangle \hookrightarrow \langle p',\gamma w \rangle} \quad \text{Nonstandard-Pop}$$

Reachability of PDS: Pre*

 Pre^* : If $\langle p, \gamma \rangle \hookrightarrow \langle p', w \rangle$, and $p' \stackrel{w}{\to}^* q$, then (p, γ, q) .

Reachability of PDS: Post*

- If $\langle p, \gamma \rangle \hookrightarrow \langle p', \varepsilon \rangle$ and $p' \stackrel{\gamma}{\rightarrow}^* q$, then (p', ε, q)
- If $\langle p, \gamma \rangle \hookrightarrow \langle p', \gamma' \rangle$ and $p' \stackrel{\gamma}{\rightarrow}^* q$, then (p', γ', q)
- $\bullet \ \, \text{If} \,\, \langle p,\gamma \rangle \hookrightarrow \langle p',\gamma'\gamma'' \rangle \,\, \text{and} \,\, p' \stackrel{\gamma}{\to}^* \,\, q, \,\, \text{then} \,\, (p',\gamma',q_{p',\gamma'}) \,\, \text{and} \,\, (q_{p',\gamma'},\gamma'',q)$

Well-Structured Transition Systems

Well-Quasi-Order (WQO)

Definition

A quasi-order (D, \leq) is a reflexive transitive binary relation on D. It is a well-quasi-order (WQO) if, for each infinite sequence a_1, a_2, \ldots in D, there exist i, j with i < j and $a_i \leq a_i$.

Well-Structured Transition Systmes (WSTS)

Definition

A well-structured transition system (WSTS) is a triplet $M = \langle (P, \preceq), \rightarrow \rangle$ where (P, \preceq) is a WQO, and $\rightarrow \subseteq P \times P$ is monotonic, i.e., for each $p_1, p_2, q_1 \in P$, $p_1 \rightarrow q_1$ and $p_1 \preceq p_2$ imply that there exists q_2 with $p_2 \rightarrow q_2 \wedge q_1 \preceq q_2$.

Well-Structured Pushdown Systems

WSPDS is a triplet $\langle (P, \preceq), (\Gamma, \leq), \Delta \rangle$, where

- $(P, \preceq), (\Gamma, \leq)$ are well-quasi-orders,
- ∆ is monotonic.

Two subclasses

- pushdown VAS $\langle (P, \preceq), \Gamma, \Delta \rangle$
- vector pushdown systems $\langle P, (\Gamma, \leq), \Delta \rangle$

However...

- pushdown VAS C WSPDS
- Vector pushdown systems = WSPDS

A Final Quiz

Do *pre** and *post** work in WSPDS?