Laboratorio di Meccanica PPI2

Iacobelli 2008402

7 giugno 2022

1 Strumenti di misura

strumento	portata	risoluzione	σ_B	offset	unità
Bilancia	3000	0.1	0.065	-	g
Nonio ventesimale	200	0.05	0.088	± 0.3	mm
Squadra	200	1	0.65	±1	mm
Metro	200	0.1	0.12	±0.2	cm
Cronometro digitale	-	0.001s	$0.053 \; \mathrm{s}$	-	S

Tabella 1: Caratteristiche degli strumenti usati. L'incertezza di tipo B (σ_B) è giustificata nel testo.

- Bilancia di precisione: è noto dalla scheda tecnica dello strumento che $E_{MAX}=0.1g$: L'incertezza di tipo B può quindi essere valutata come: $\sigma_B=\sqrt{(\frac{Ris}{\sqrt{12}})^2+(\frac{2E_{MAX}}{\sqrt{12}})^2}$.
- Nonio ventesimale: l'incertezza di tipo di B si stima con il termine $Ris/\sqrt{12}$ e inoltre, data la difficoltà sperimentale nell'eseguire le misure e considerando che la base del perno centrale non è circolare , si assume un offset variabile distribuito uniformemente in ± 0.3 mm, assimilabile ad un errore massimo. Tale modello non introduce una correlazione tra le misure. L'incertezza di tipo B può quindi essere valutata come: $\sigma_B = \sqrt{(\frac{Ris}{\sqrt{12}})^2 + (\frac{2E_{MAX}}{\sqrt{12}})^2}$, dove $E_{MAX} = 0.3mm$.
- Squadra: oltre al termine dovuto alla risoluzione, tenendo conto della difficoltà sperimentale nell'eseguire le misure e del fatto che le distanze tra il centro del disco e i fori possono non essere identiche tra loro, si assume un offset variabile distribuito uniformemente in ± 1 mm, assimilabile ad un errore massimo. Tale modello non introduce una correlazione tra le misure. L'incertezza di tipo B può quindi essere valutata come: $\sigma_B = \sqrt{(\frac{Ris}{\sqrt{12}})^2 + (\frac{2E_{MAX}}{\sqrt{12}})^2}$, dove $E_{MAX} = 1mm$.
- Metro: si considera un termine per l'incertezza, pari a $E_{MAX}=0.2cm$, schematizzabile come un offset non costante, centrato in zero e distribuito uniformemente. Tale modello non introduce una correlazione tra le misure. L'incertezza di tipo B può quindi essere valutata come: $\sigma_B = \sqrt{(\frac{Ris}{\sqrt{12}})^2 + (\frac{2E_{MAX}}{\sqrt{12}})^2}$, dove $E_{MAX}=0.2cm$.
- Cronometro digitale: non possedendo dati tecnici relativi allo strumento, l'incertezza di tipo B sulle misure di tempo è valutata a partire dai dati raccolti durante la prima esperienza di laboratorio. Si stima quindi la seguente incertezza di tipo B dovuta all'offset introdotto dallo sperimentatore: $\sigma_{offset} = 0.053^{1}$ s. L'incertezza di tipo B dovuta alla risoluzione dello strumento risulta trascurabile.

 $^{^1}$ In particolare, poiché si è stimato il seguente offset: (0.014 ± 0.053) s si assume E[offset]=0 e si considera esclusivamente $\sigma_{offset}.$

Nei casi in cui verranno effettuate misure ripetute in condizioni di ripetibilità l'incertezza totale è ottenuta sommando in quadratura l'incertezza di tipo A con l'incertezza di tipo B:

$$\sigma_{tot} = \sqrt{\sigma_A^2 + \sigma_B^2} = \sqrt{\left(\frac{S_{N-1}}{\sqrt{N}}\right)^2 + \sigma_B^2} \tag{1}$$

Dove $S_{N-1} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$ e la deviazione standard campionaria delle misure. A partire dalle misure effettuate, in tutti i casi in cui avremo una funzione di più variabili casuali del tipo:

$$Y = f(X_1, X_2, ..., X_N) (2)$$

la formula utilizzata per la propagazione delle incertezza sarà:

$$Var[Y] = \sum_{i,j} \frac{\partial Y}{\partial X_i} \frac{\partial Y}{\partial X_j} Cov[X_i, X_j]$$
(3)

caso particolare della formula:

$$Cov[Y, Z] = \sum_{i,j} \frac{\partial Y}{\partial X_i} \frac{\partial Z}{\partial X_j} Cov[X_i, X_j]$$
(4)

per due funzioni delle variabili $X_1...X_N$.

2 Sequenza operazioni sperimentali

2.1 Parte 1

Per ottenere la distanza R tra il centro del disco e il centro dei fori si effettuano le seguenti misure dirette:

• d: diametro del sostegno centrale. Misura eseguita con il nonio ventesimale.

$$d = (12.300 \pm 0.088)mm \tag{5}$$

• R_1 : distanza tra il bordo del sostegno centrale e il punto più esterno di uno dei fori. Misura eseguita con la squadra.

$$R_1 = (117.00 \pm 0.65)mm \tag{6}$$

 \bullet R_2 : distanza tra il bordo del sostegno centrale e il punto più interno di uno dei fori. Misura eseguita con la squadra.

$$R_2 = (105.00 \pm 0.65)mm \tag{7}$$

per ognuna dei queste misure l'incertezza si stima esclusivamente con il termine σ_B riportato in tabella 1. Vale la seguente relazione grazie alla quale è possibile ottenere la distanza R:

$$R = \frac{R_1 + R_2 + d}{2} \tag{8}$$

Propagando opportunamente le incertezze con la formula 3 si ottiene:

$$\sigma_R = \frac{\sqrt{\sigma_{R_1}^2 + \sigma_{R_2}^2 + \sigma_d^2}}{2} \tag{9}$$

La miglior stima della misura del raggio R con la relativa incertezza è la seguente:

$$R = (117.15 \pm 0.93)mm \tag{10}$$

Si effettuano singole misure di massa M per ognuna delle 6 coppie bullone+dado. Si osserva che le masse delle singole coppie non sono tra loro identiche, per ottenere la miglior stima della massa M che sia unica per tutte le coppie bullone+dado si procede nel seguente modo:

- si ottiene la miglior stima della massa M come media delle singole masse misurate;
- ullet per quanto concerne l'incertezza σ_M poiché non si sta stanno effettuando misure dello stesso misurando, si procede con un approccio conservativo e si pone $\sigma_M = S_N$, dove S_N è la deviazione standard campionaria delle 6 misure effettuate.

Si ottiene il seguente risultato:

$$M = (53.67 \pm 0.24)g \tag{11}$$

Per ottenere valore atteso e deviazione standard di multipli di M è sufficiente moltiplicare valore atteso e deviazione standard si M per n=numero di bulloni.

Si inseriscono nei fori rispettando le seguenti configurazioni:

- 0 bulloni;
- 2 bulloni;
- 3 bulloni;
- 4 bulloni;
- 6 bulloni.

Per ogni configurazione si è scelto di effettuare N=10 misure ripetute del periodo T di un'oscillazione completa del pendolo. La miglior stima del periodo si ottiene calcolando la media delle 10 misure ripetute:

$$\overline{T} = \frac{\sum_{i}^{N} T_{i}}{N} \tag{12}$$

Mentre l'incertezza totale σ_T sulla misura si ottiene dalla formula 1.

La grandezza fisica d'interesse T^2 è il quadrato del periodo di una singola oscillazione, tramite le formule della propagazione delle incertezze si ottiene: $E[T^2] = E^2[T]$ e $\sigma_{T^2} = 2E[T]\sigma_T$. Si riportano in tabella 2 le misure così ottenute.

n. di "bullone+1dado"	(nM)	T	T^2
0	0 g	$(13.282 \pm 0.082)s$	$(176.4 \pm 2.2)s^2$
2	$(107.34 \pm 0.48)g$	$(16.471 \pm 0.066)s$	$(271.3 \pm 2.2)s^2$
3	$(161.01 \pm 0.72)g$	$(17.909 \pm 0.065)s$	$(320.7 \pm 2.3)s^2$
4	$(214.68 \pm 0.96)g$	$(19.012 \pm 0.075)s$	$(361.5 \pm 2.9)s^2$
6	$(322.0 \pm 1.44)g$	$(21.529 \pm 0.060)s$	$(463.5 \pm 2.6)s^2$

Tabella 2: Misure della grandezza (nM), del periodo di singola oscillazione T e del periodo al quadrato T^2 nelle diverse configurazioni.

2.2 Fit lineare

E' nota la relazione lineare:

$$T^2 = \frac{4\pi^2 R^2}{k} (nM) + \frac{4\pi^2 I_o}{k} \tag{13}$$

E' possibile quindi eseguire un fit lineare dell'andamento di T^2 in funzione di (nM) $x_1^2 + x_2^2$ in funzione di T^2 ed estrarre il valore del coefficiente angolare

$$m = \frac{4\pi^2 R^2}{k} \tag{14}$$

e dell'intercetta:

$$c = \frac{4\pi^2 I_o}{k} \tag{15}$$

Figura 1: Grafico delle misure di posizione T^2 in funzione di (nM). E' allegato anche il grafico dei residui normalizzati.

Per verificare l'ipotesi di andamento lineare si esegue un test del χ^2 con un livello di significatività $\alpha = 5\%$. Si misura $P_{value} = 0.24 > \alpha$, l'ipotesi di andamento lineare non è rigettata. Si riportano in tabella 3 i valori estratti dal fit lineare con le rispettive incertezze.

	valore	incertezza	unità di misura
m	887.0	1.0	s^2/kg
c	176.2	1.8	s^2
Cov[m,c]	-14.3	-	s^4/kg
$\rho[m,c]$	-0.80	-	-

Tabella 3: In tabella sono inseriti i valori estratti dal fit lineare con le relative incertezze.

Poiché per ognuno dei punti sperimentali $\sigma_{T^2} >> m\sigma_{nM}$ è lecito trascurare le incertezze sulla massa. A partire dai risultati ottenuti tramite il fit lineare e dalle relazioni note 14 e 15 è possibile determinare la migliore stima di k e I_0 con la relativa incertezza:

$$k = \frac{4\pi^2 R^2}{m} \qquad I_0 = \frac{kc}{4\pi^2} = \frac{R^2 c}{m} \tag{16}$$

Il valore atteso di k e di I_0 si stimano sostituendo nelle formule 16 i valori attesi delle variabili casuali in gioco. Per quanto riguarda l'incertezza è necessario effettuare una propagazione tramite la formula 3, poiché non vi è correlazione tra m e R:

$$\sigma_k = \sqrt{\left(\frac{\partial k}{\partial R}\right)^2 \sigma_R^2 + \left(\frac{\partial k}{\partial m}\right)^2 \sigma_m^2} = \sqrt{\left(\frac{8\pi^2 R}{m}\right)^2 \sigma_R^2 + \left(\frac{4\pi^2 R^2}{m^2}\right)^2 \sigma_m^2} \tag{17}$$

Considerando invece il termine di correlazione tra m e c:

$$\sigma_{I_0} = \sqrt{(\frac{\partial I_0}{\partial R})^2 \sigma_R^2 + (\frac{\partial I_0}{\partial m})^2 \sigma_m^2 + (\frac{\partial I_0}{\partial c})^2 \sigma_c^2 + 2\frac{\partial I_0}{\partial m} \frac{\partial I_0}{\partial c} Cov_{m,c}} = \sqrt{(\frac{2Rc}{m})^2 \sigma_R^2 + (\frac{R^2}{m})^2 \sigma_c^2 + (\frac{R^2c}{m^2})^2 \sigma_m^2 - 2\frac{R^4c}{m^3} Cov_{m,c}}$$

$$(18)$$

Si stimano infine:

$$k = (0.6108 \pm 0.0097) m^2 g/s^2 \tag{19}$$

$$I_0 = (2.726 \pm 0.065)gm^2 \tag{20}$$

2.3 Parte 2

Si effettuano 5 misure del periodo di un oscillazione nella configurazione 6 bulloni+2dadi. Come descritto nel punto precedente si ottiene la seguente migliore stima del periodo con la relativa incertezza:

$$T = (23.464 \pm 0.096)s \tag{21}$$

	valore	unità
\overline{x}	0.1	kg
\overline{y}	303.8	s^2
$\overline{x^2}$	0.0	kg^2
\overline{xy}	53.9	kgs^2
Var[x]	0.0	kg
Cov[x,y]	10.2	kgs^2
$\sum_{i} \sigma_{y_i}^{-2}$	0.9	s^{-4}

Tabella 4: Quantità utilizzate come input del fit lineare.

Mentre il periodo al quadrato è:

$$T^2 = (550.6 \pm 4.5)s^2 \tag{22}$$

Si effettua una singola misura della massa dei 6 dadi che sono stati aggiunti all'ultima configurazione del punto precedente e si stima l'incertezza tenendo conto esclusivamente della sigma B:

$$m_{bulloni} = (92.0 \pm 0.65)g$$
 (23)

Per ottenere la massa totale si somma la massa dell'ultima configurazione del punto precedente con quella appena misurata. Propagando l'incertezza come somma in quadratura delle due incertezze si ottiene $M_{tot} = (413.9 \pm 1.4)g$.

E' possibile ora utilizzare la retta del fit ottenuta precedentemente per estrapolare il periodo atteso con la relativa incertezza:

$$T_{estr} = \sqrt{mM_{tot} + c} \tag{24}$$

Propagando le incertezze:

$$\sigma_{T_{estr}} = \frac{\sqrt{m^2 \sigma_{M_{tot}}^2 + M_{tot}^2 \sigma_m^2 + \sigma_c^2 + 2mCov[m, c]}}{2T_{estr}}$$
(25)

Si ottiene la seguente stima finale:

$$T_{estr} = (23.3081 \pm 0.0029)s \tag{26}$$

E' possibile infine effettuare un test del χ^2 con $\alpha=5\%$ per verificare la compatibilità tra T_{estr} e $T_{misurato}$

$$z = \frac{T_{estr} - T_{misurato}}{\sqrt{\sigma_{T_{estr}}^2 + \sigma_{T_{mis}}^2}} = -1.62 \tag{27}$$