## METAQUANT: LEARNING TO QUANTIZE BY LEARNING TO PENETRATE NON-DIFFERENTIABLE QUANTIZATION

# Shangyu Chen (schen025@e.ntu.edu.sg), Wenya Wang (wangwy@ntu.edu.sg), Sinno Jialin Pan(sinnopan@ntu.edu.sg)

School of Computer Science and Engineering, Nanyang Technological University, Singapore



#### Motivation

Existing training-based quantization methods reply on Straight-Through-Estimator (STE) to enable **non-differentiable** quantization training:

$$\ell = \operatorname{Loss}(f(Q(\mathbf{W}); \mathbf{x}), y), \qquad \frac{\partial Q(r)}{\partial r} = \begin{cases} 1 & \text{if} & |r| \leq 1 \\ 0 & \text{else.} \end{cases} \tag{1}$$

However, it inevitably brings the problem:

- Gradient Mismatch: the gradients of the weights are not generated using the value of weights, but rather its quantized value.
- Poor Gradient: STE fails at investigating better gradients for quantization

We propose to learn  $\frac{\partial Q(r)}{\partial r}$  by a neural network  $(\mathcal{M})$  during quantization training. Such neural network is called meta quantizer and is trained together with the base quantized model.

#### Contribution

- Proper gradients is learned in quantization training without any manually designed knowledge.
- Generated gradient is loss-aware, contributing to the training of base model.
- Meta quantizer is removed and consumes no space in deployment.

### **Problem Statement**

- Pre-trained full-precision base model f with L-layer parameterized as  $\mathbf{W}=$  $[\mathbf{W}_1,...,\mathbf{W}_L]$ .
- Pre-processing function  $\mathcal{A}(\cdot)$ , pre-quantized weights:  $\mathbf{W}$ .
- Quantization function  $Q(\cdot)$ , quantized weights:  $\hat{\mathbf{W}}$ .
- Forward quantization:

$$\begin{aligned} & \text{dorefa}: \ \tilde{\mathbf{W}} \!=\! \mathcal{A}(\mathbf{W}) \!=\! \frac{\tanh(\mathbf{W})}{2 \text{max}(|\tanh(\mathbf{W})|)} \!+\! \frac{1}{2}, \ \hat{\mathbf{W}} \!=\! Q(\tilde{\mathbf{W}}) \!=\! 2 \frac{\text{round}\left[(2^k-1)\tilde{\mathbf{W}}\right]}{2^k-1} - 2 \\ & \text{BWN}: \ \tilde{\mathbf{W}} = \mathcal{A}(\mathbf{W}) = \mathbf{W}, \qquad \hat{\mathbf{W}} = Q(\tilde{\mathbf{W}}) = \frac{1}{n} ||\tilde{\mathbf{W}}||_{\tilde{l}_1} \times \text{sign}(\tilde{\mathbf{W}}). \end{aligned}$$

#### **Generation of Meta Gradient**

- Gradient of quantized weights:  $g_{\hat{\mathbf{W}}} = \frac{\partial \ell}{\partial \hat{\mathbf{W}}}$ .
- Meta Gradient / Gradient of pre-quantized weights:

$$g_{\tilde{\mathbf{W}}} = \mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}, \tilde{\mathbf{W}})$$
 (2)

Gradient of full-precision weights:

$$g_{\mathbf{W}} = \frac{\partial \ell}{\partial \tilde{\mathbf{W}}} \frac{\partial \tilde{\mathbf{W}}}{\partial \mathbf{W}} = g_{\tilde{\mathbf{W}}} \frac{\partial \tilde{\mathbf{W}}}{\partial \mathbf{W}} = \mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}, \tilde{\mathbf{W}}) \frac{\partial \tilde{\mathbf{W}}}{\partial \mathbf{W}}$$
(3)

- Calibration: dorefa:  $\frac{\partial \tilde{\mathbf{W}}}{\partial \mathbf{W}} = \frac{1 \tanh^2(\mathbf{W})}{\max(|\tanh(\mathbf{W})|)}$ , BWN:  $\frac{\partial \tilde{\mathbf{W}}}{\partial \mathbf{W}} = \mathbf{1}$
- Gradient Refinement: **SGD**:  $\pi(g_{\mathbf{W}}) = g_{\mathbf{W}}$ , **Adam**:  $\pi(g_{\mathbf{W}}) = g_{\mathbf{W}} + \text{residual}$
- Update of full-precision:

$$\mathbf{W}^{t+1} = \mathbf{W}^t - \alpha \pi(g_{\mathbf{W}}^t) \tag{4}$$

#### **Overflow of MetaQuant**



Fig. 1: Overflow of MetaQuant.

## **Training of Meta Quantizer**



Fig. 2: Incorporation of meta quantizer into quantization training. Red dash box is composed of calibration, gradient refinement and multiplication of learning rate  $\alpha$ . Output of meta quantizer is involved in W's update and contributes to final loss, constructing a differential path from loss to  $\phi$ -parameterized meta quantizer.

- Meta quantizer is a coordinate-wise neural network: each weight in the base model is processed independently.
- During each inference, the inputs in (4) are arranged as batches with size 1: W comes from a convolution layer with shape  $\mathbb{R}^{o \times i \times k \times k} \to \mathbb{R}^{(o \times i \times k^2) \times 1}$ .

Forward: 
$$\tilde{\mathbf{W}}^t = \mathcal{A}(\mathbf{W}^t) = \mathcal{A}\left[\mathbf{W}^{t-1} - \alpha \times \pi(\mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}^{t-1}, \tilde{\mathbf{W}}^{t-1}) \frac{\partial \tilde{\mathbf{W}}^{t-1}}{\partial \mathbf{W}^{t-1}})\right],$$

$$\ell = \operatorname{Loss}\left\{f\left[Q(\tilde{\mathbf{W}}^t); \mathbf{x}\right], y\right\}, \tag{5}$$

Backward: 
$$\frac{\partial L}{\partial \phi^t} = \frac{\partial L}{\partial \tilde{\mathbf{W}}^t} \frac{\partial \tilde{\mathbf{W}}^t}{\partial \phi^t} = \mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}^t}, \tilde{\mathbf{W}}^t) \frac{\partial \tilde{\mathbf{W}}^t}{\partial \phi^t}.$$
 (6)

## **Design of Meta Quantizer**

 $\mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}) = \mathsf{FCs}(\phi, \sigma, g_{\hat{\mathbf{W}}}),$ FCGrad

 $\mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}, \tilde{\mathbf{W}}) = g_{\hat{\mathbf{W}}} \cdot \mathsf{FCs}(\phi, \sigma, \tilde{\mathbf{W}}).$  $\mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}, \tilde{\mathbf{W}}) = g_{\hat{\mathbf{W}}} \cdot \mathsf{FCs}(\phi_{FCs}, \sigma, (\mathsf{LSTM}(\phi_{LSTM}, \tilde{\mathbf{W}}))).$ LSTMFC :

 $\phi$ : parameters in meta quantizer,  $\sigma$ : nonlinear activation.

MultiFC:

#### **Experiment**

| Network-Dataset   | Forward | Backward | Optimization | Test Acc (%)                | FP Acc (%)  |  |
|-------------------|---------|----------|--------------|-----------------------------|-------------|--|
| ResNet20-CIFAR10  | dorefa  | STE      |              | 80.745(2.113)               |             |  |
|                   |         | MultiFC  | SGD          | 88.942(0.466)               |             |  |
|                   |         | LSTMFC   |              | 88.305(0.810)               |             |  |
|                   |         | FCGrad   |              | 88.840(0.291)               |             |  |
|                   |         | STE      | Adam         | 89.782(0.172)               | 91.5        |  |
|                   |         | MultiFC  |              | 89.941(0.068)               |             |  |
|                   |         | LSTMFC   |              | 89.979(0.103)               |             |  |
|                   |         | FCGrad   |              | 89.962(0.068)               |             |  |
|                   | BWN     | STE      | SGD          | 75.913(3.495)               |             |  |
|                   |         | LSTMFC   |              | 89.289(0.212)               |             |  |
|                   |         | FCGrad   |              | 88.949(0.231)               |             |  |
|                   |         | STE      | Adam         | 89.896(0.182)               |             |  |
|                   |         | LSTMFC   |              | 90.036(0.109)               |             |  |
|                   |         | FCGrad   |              | 90.042(0.098)               |             |  |
|                   | dorefa  | STE      | SGD          | 42.265(8.143)               | 71.22       |  |
| ResNet56-CIFAR100 |         | MultiFC  |              | 65.791(0.415)               |             |  |
|                   |         | LSTMFC   |              | 63.645(2.183)               |             |  |
|                   |         | FCGrad   |              | 64.351(0.935)               |             |  |
|                   |         | STE      | Adam         | 66.419(0.533)               |             |  |
|                   |         | MultiFC  |              | 66.588(0.375)               |             |  |
|                   |         | LSTMFC   |              | 66.483(0.793)               |             |  |
|                   |         | FCGrad   |              | 66.564(0.351)               |             |  |
|                   | BWN     | STE      |              | 34.479(11.737)              |             |  |
|                   |         | LSTMFC   | SGD          | 63.346(2.253)               |             |  |
|                   |         | FCGrad   |              | 64.402(1.434)               |             |  |
|                   |         | STE      |              | 64.297(1.309)               |             |  |
|                   |         | LSTMFC   | Adam         | 66.584(0.349)               |             |  |
|                   |         | FCGrad   |              | 67.018(0.329)               |             |  |
| ResNet18-ImageNet | dorefa  | STE      |              | 58.349(2.072)/81.477(1.567) |             |  |
|                   |         | MultiFC  |              | 59.472(0.025)/82.410(0.010) | 69.76/89.08 |  |
|                   |         | FCGrad   | Adam         | 59.835(0.359)/82.671(0.232) |             |  |
|                   | BWN     | STE      |              | 59.503(0.835)/82.549(0.506) |             |  |
|                   |         | FCGrad   |              | 60.328(0.391)/83.025(0.234) |             |  |

Fig. 3: Overall experiments of MetaQuant.

| Network  | Method    | Acc Drop (%) | Network           | Method    | Acc Drop (%) |
|----------|-----------|--------------|-------------------|-----------|--------------|
| ResNet20 | ProxQuant | 1.29         | ResNet32          | ProxQuant | 1.28         |
|          | MetaQuant | 0.7          | nesnet32          | MetaQuant | 0.39         |
| ResNet44 | ProxQuant | 0.99         | LABNet            | LAB       | 1.4          |
|          | MetaQuant | 0.08         | LADNet            | MetaQuant | -0.2         |
| ResNet18 | ELQ       | 3.55/2.65    | ResNet18-2bits    | TTQ       | 3.00/2.00    |
|          | MetaQuant | 6.32/4.31    | Tiesive (10-2DIUS | MetaQuant | 5.17/3.59    |

Fig. 4: Experimental result of MetaQuant V.S Non-STE training-based quantization: ProxQuant, LAB, ELQ, TTQ.





Fig. 5: Convergence analysis of MetaQuant using ResNet20, CIFAR10, dorefa, SGD/Adam.



Fig. 6: Overall training of MetaQuant using ResNet110, CIFAR100, dorefa, SGD.