2015-MA- 53-65

EE24BTECH11021 - Eshan Ray

- 53) Let $H = \{(x_n) \in l_2 : \sum_{n=1}^{\infty} \frac{x_n}{n} = 1\}$. Then H
 - a) is bounded
 - b) is closed
 - c) is a subspace
 - d) has an interior point
- 54) Let V be a closed subspace of $L^2[0,1]$ be given by f(x) = x and $g(x) = x^2$. If $V^{\perp} =$ $S pan\{f\}$ and Pg is the orthogonal projection of g on V, then $(g - Pg)(x), x \in [0, 1]$, is
 - a) $\frac{3}{4}x$

 - b) $\frac{1}{4}x$ c) $\frac{3}{4}x^2$ d) $\frac{1}{4}x^2$
- 55) Let p(x) be the polynomial of degree at most 3 that passes through the points (-2, 12), (-1, 1), (0, 2) and (2, -8). Then the coefficient of x^3 in p(x) is equal to ...
- 56) If, for some $\alpha, \beta \in R$, the integration formula

$$\int_{0}^{2} p(x) dx = p(\alpha) + p(\beta)$$

holds for all polynomials p(x) of degree at most 3, then the value of $3(\alpha - \beta)^2$ is

57) Let y(t) be a continuous function on $[0, \infty)$ whose Laplace transform exists. If y(t)satisfies

$$\int_0^t \left(1 - \cos\left(t - \tau\right)\right) y\left(\tau\right) d\tau = t^4,$$

then y(1) is equal to ...

58) Consider the initial value problem

$$x^2y'' - 6y = 0$$
, $y(1) = \alpha$, $y'(1) = 6$.

if $y(x) \to 0$ as $x \to 0^+$, then α is equal to ...

59) Define $f_1, f_2: [0, 1] \to R$ by

$$f_1(x) = \sum_{n=1}^{\infty} \frac{x \sin(n^2 x)}{n^2}$$
 and $f_2(x) \sum_{n=1}^{\infty} x^2 (1 - x^2)^{n-1}$

Then

- a) f_1 is continuous but f_2 is NOT continuous
- b) f_2 is continuous but f_1 is NOT continuous
- c) both f_1 and f_2 are continuous

- d) neither f_1 nor f_2 is continuous
- 60) Consider the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ and the unit norm vector $\hat{n} = (x, y, z)$ at each point (x, y, z) on S. The value of the surface integral

$$\int \int_{S} \left\{ \left(\frac{2x}{\pi} + \sin\left(y^{2}\right) \right) x + \left(e^{z} - \frac{y}{\pi} \right) y + \left(\frac{2z}{\pi} + \sin^{2} y \right) z \right\} d\sigma$$

is equal to

61) Let $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 1000, 1 \le y \le 1000\}$. Define

$$f(x,y) = \frac{xy}{2} + \frac{500}{x} + \frac{500}{y}$$

Then the minimum value of f on D is equal to ...

- 62) Let $D = \{z \in C : |z| < 1\}$. Then there exists a non-constant analytic function f on D such that for all $n = 2, 3, 4, \dots$
 - a) $f\left(\frac{\sqrt{-1}}{n}\right) = 0$
 - b) $f\left(\frac{1}{n}\right) = 0$
 - c) $f(1-\frac{1}{n})=0$
 - d) $f(\frac{1}{2} \frac{1}{n}) = 0$
- 63) Let $\sum_{n=-\infty}^{\infty} a_n z^n$ be the Laurent series expansion of $f(z) = \frac{1}{2z^2 13z + 15}$ in the annulus $\frac{3}{2} < |z| < 5. \text{ Then } \frac{a_1}{a_2} \text{ is equal to } \dots$ 64) The value of $\frac{i}{4-\pi} \int_{|z|=4} \frac{dz}{z\cos(x)}$ is equal to \dots 65) Suppose that among all continuously differentiable functions y(x), $x \in R$, with y(0) = 1
- 0 and $y(1) = \frac{1}{2}$, the function $y_0(x)$ minimizes the functional

$$\int_0^1 \left(e^{-(yv-x)} + (1+y)yv \right) dx.$$

Then $y_0\left(\frac{1}{2}\right)$ is equal to

- a) 0