Série 9

David Wiedemann

4 mai 2021

On va d'abord montrer l'existence du minimum, on montrera ensuite qu'il est unique.

Soit $x \in E$, par hypothèse, il existe un $M \in [0, \infty[$, tel que $\forall y \in E : ||y|| \ge M \Rightarrow f(y) \ge f(x)$.

Donc en particulier, pour ||y|| > M, on a $f(y) \ge f(x)$.

Considérons donc l'ensemble des points $\overline{B}(0,M) \cap E$.

Cet ensemble est trivialement compact, car l'intersection de deux ensembles fermés est fermée et car tous les éléments de l'ensemble $\overline{B}(0,M)$ ont une norme finie .

On sait qu'une fonction continue atteint son minimum sur un ensemble compact, donc il existe $x_m \in \overline{B}(0,M) \cap E$ tel que, $f(x_m) \leq f(x) \forall x \in \overline{B}(0,M) \cap E$.

Or, par définition, $\forall y \in E \setminus \overline{B}(0, M)$, on a $f(y) \geq f(x)$, et donc x_m est un minimum global.

Montrons maintenant l'unicité du minimum.

Par l'absurde, supposons qu'il y ait deux minimums globaux a et $b \in E$, alors, par convexité de l'ensemble E, le segment $[a,b] = \{\lambda a + (1-\lambda)b|\lambda \in [0,1]\}$ est contenu dans E, et donc en particulier le point $\frac{1}{2}a + \frac{1}{2}b$.

Par stricte convexité, et car f(a) = f(b), on a

$$\frac{1}{2}f(a) + \frac{1}{2}f(b) = f(a) > f(\frac{1}{2}a + \frac{1}{2}b)$$

Ce qui contredit la minimalité du point a et du point b. Ainsi, le minimum est unique.