0.1 Matrix Form Linear Model

Form: $Y = X\beta, X \in \mathbb{R}^{n \times p}, Y \in \mathbb{R}^n, e \in \mathbb{R}^n, \beta \in \mathbb{R}^p$ Assumptions: [A1] $Y = X\beta + e$ [A2] E(e|X) = 0 [A3] $Var(e_i|X) = \sigma^2$ [A4] $Cov(e_i, e_j|X) = 0$ [A5] $e \sim N(0, \sigma I_n)$ Normal Equations:

$$RSS(\beta) = \|(Y - X\beta)\|^2, SXX = \|x - \bar{x}\|^2, SXY = \langle x - \bar{x}, y - \bar{y} \rangle$$
$$\hat{\beta} = (X^T X)^{-1} X^T Y, H = X(X^T X)^{-1} X^T, \hat{Y} = X \hat{\beta} = HY$$

$$\hat{\beta}(e) = \beta + (X^T X)^{-1} X^T e$$

Properties of H: (i) $\hat{\epsilon} = (I-H)Y$ (ii) H, I-H symmetric, (iii) H, I-H idempotent $(H^2=H)$ (iv) HX=X (v) $\hat{e} \perp X$ (vi) (I-H)X=0 (vii) (I-H)H=H(I-H)=0 (viii) $\forall a \in \mathbb{R}^n, Ha \perp (I-H)a$ (ix) H only has eigen values 0,1 because Hx=x if x in span H.

Variance Estimate: $\mathbb{E}(\|\hat{e}\|) = \mathbb{E}(\hat{e}^T(I-H)\hat{e}) = \mathbb{E}(tr(\hat{e}\hat{e}^T(I-H))) = n\sigma^2(n-p)$, so

$$\hat{\sigma}^2 = \frac{\hat{e}^T \hat{e}}{n-p} = \frac{RSS}{n-p}$$

Variance $\hat{\beta}$: $Var(\hat{\beta}) = (X^T X)^{-1} X^T Var(Y) X (X^T X)^{-1} = \sigma^2 (X^T X)^{-1} X^T X (X^T X)^{-1} = \sigma^2 (X^T X)^{-1}$

Gauss Markov: If a^TY is an unbiased estimator of $c^T\beta$, then $Var(c^T\hat{\beta}) \leq Var(a^TY)$. Proof: first note $c^T\beta = E(a^TY) = a^TX\beta \rightarrow c^T = a^TX$ Thus,

$$\begin{aligned} \operatorname{Var}(a^T Y) - \operatorname{Var}(c^T \hat{\beta}) &= \operatorname{Var}(a^T (X \beta + e)) - \operatorname{Var}(a^T X \beta) \\ &= \operatorname{Var}(a^T e) - \operatorname{Var}(a^T H Y) \\ &= a^T \operatorname{Var}(e) a - \operatorname{Var}(a^T H X \beta + a^T H e) \\ &= \sigma^2 \|a\|^2 - \operatorname{Var}(a^T H e) \\ &= \sigma^2 \|a\|^2 - Ha \operatorname{Var}(e) a^T H \\ &= \sigma^2 \|a\|^2 - \sigma^2 \|Ha\|^2 \end{aligned}$$

R-squared: $R^2 = 1 - \frac{RSS}{SYY} = \text{Corr}(\hat{y}, y)$

0.2 Inference

ANOVA Table:

1110 VII labic.				
	$\mathrm{d}\mathrm{f}$	SS	ms	\mathbf{F}
Reg Res	_	$\frac{\sum(\hat{Y} - \bar{Y})}{\text{RSS}}$	$\frac{\text{SS/p}}{\hat{\sigma}^2 = \frac{RSS}{n-n}}$	$F = \frac{SS/p}{\hat{\sigma}^2}$

Distribution Estimators: $\hat{\beta}$ and $\hat{\sigma}^2$ independent under least squares, $\hat{\beta} \sim N_p(\beta, \sigma^2(X^TX)^{-1})$, and $\frac{\hat{\sigma}^2}{\sigma^2}(n-p) \sim \chi^2_{n-p}$. Distribution of $\hat{\beta}$ follows from it being a linear transformation of Y and variance as said earlier.

Proof: Since (I - H) symmetric, for P orthogonal matrix of eigenvalues and D matrix with eigenvalues on diagonal, $I - H = PDP^{T}$. All eigenvalues are 0 or 1, so get

$$I-H=PDP^T=[P_1P_2]\left[\begin{array}{cc}I_{n-p}&\mathbf{0}\\\mathbf{0}&\mathbf{0}\end{array}\right][P_1P_2]^T=P_1P_1^T$$

So, $\operatorname{Var}(P_1^T \hat{e}) = \operatorname{E}(P_1^T \hat{e} \hat{e}^T P_1) - \operatorname{E}(P_1^T \hat{e})^2 = \sigma^2 P_1^T P_1 = \sigma^2 I_{n-p}$. This gives us that $\frac{1}{\sigma^2} \hat{e}^T \hat{e} = \frac{1}{\sigma^2} \hat{e}^T P_1 P_1^T \hat{e} \sim \chi_{n-p}^2$. Distribution Standardized Estimators: $\hat{\beta}_i \sim t_{n-p}$.

Proof: $\operatorname{Var}(\hat{\beta}_i) = \sigma^2(X^TX)_{ii}^{-1}$ so $SE(\hat{\beta}_i) = \hat{\sigma}\sqrt{(X^TX)^{-1}}$. Thus

$$\frac{\hat{\beta}_i - \beta_i}{SE(\hat{\beta}_i)} = \frac{\hat{\beta}_i - \beta_i}{\sqrt{\sigma^2(\hat{\beta}_i)}} \sqrt{\frac{\sigma^2}{\hat{\sigma}^2}} \sim N(0, 1) \sqrt{\frac{n-p}{\chi_{n-p}^2}} \sim t_{n-p}$$

t-test: $2P[t_{n-p} > \frac{\hat{\beta}_i - \beta_i}{SE(\hat{\beta}_i)}]$

Prediction Interval:

$$P\left(\hat{Y}_* \in (x_*^T \hat{\beta} \pm t_{n-p,\alpha/2} \hat{\sigma} \sqrt{x_*^T (X^T X)^{-1} x_*})\right) = 1 - \alpha$$

$$P\left(Y_* \in (x_*^T \hat{\beta} \pm t_{n-p,\alpha/2} \hat{\sigma} \sqrt{1 + x_*^T (X^T X)^{-1} x_*})\right) = 1 - \alpha$$

F-test: If you have two models where one is a subset of the other $(span(H_1) \subset span(H_2))$, then if $rank(H_1) = q, rank(H_2) = p$,

$$\frac{\frac{1}{p-q}(\|\hat{e}_1\|^2 - \|\hat{e}_2\|^2)}{\frac{1}{n-n}\|\hat{e}_2\|^2} \sim F_{p-q,n-p}$$

This is a one sided test. Good for testing sets of parameters. **Joint Confidence Interval:** A $1-\alpha$ confidence region for β is

$$\frac{\frac{1}{p}(\hat{\beta} - \beta)^T (X^T X)(\hat{\beta} - \beta)}{\hat{\sigma}^2} \le p\hat{\sigma}^2 f_{p,n-p,\alpha}$$

If $R\beta$ has rank q, a $1-\alpha$ confidence region for $R\beta$ is

$$\frac{\frac{1}{p}(R\hat{\beta} - R\beta)^T (R(X^T X)^{-1} R^T)^{-1} (R\hat{\beta} - R\beta)}{\hat{\sigma}^2} \le p\hat{\sigma}^2 f_{q,n-p,\alpha}$$

0.3 Numerical Techniques

Condition Number: This is something to do with the effect of a small change in Y on β . With

$$cos(\theta) = \frac{\|\hat{Y}\|}{\|Y\|} = \frac{\|X\hat{\beta}\|}{\|Y\|}$$

$$\frac{\|\Delta \hat{\beta}\|}{\|\hat{\beta}\|} \leq cond(X) \frac{1}{cos(\theta)} \frac{\|\Delta Y\|}{\|Y\|}$$

Cholesky Factorization: If X has rank n, X^TX has full rank, and has Cholesky factorization LL^T . Thus, $X^TX\hat{\beta} = X^TY$, which can be solved in stages $Lz = X^TY$ and then $L^T\hat{\beta} = z$.

QR Factorization: $\exists Q \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{p \times p}$ where Q is orthogonal and R is upper triangular such that

$$X = \left[\begin{array}{c} R \\ \mathbf{0} \end{array} \right]$$

so we get

$$Q^T X \hat{\beta} = \left[\begin{array}{c} R \\ \mathbf{0} \end{array} \right] \hat{\beta} \cong \left[\begin{array}{c} f \\ r \end{array} \right] = Q^T Y$$

This gives us $RSS = \|y - X\hat{\beta}\|^2 = \|Q^Ty - Q^TX\hat{\beta}\|^2 = \|f - R\hat{\beta}\|^2 + \|r\|^2$, which is minimized by $f = R\hat{\beta}$.

0.4 Resampling

Permutation Sampling: Test significance of set of predictors by shuffling them over outcomes and other predictors a number of times. If F statistic original model higher than all but α of shuffles, significant.

Bootstrap: Get confidence interval of statistic (possibly θ) by drawing with replacement a number of times and calculating statistic.

0.5 Designed Experiment

Orthogonal Predictor: If X_1 , X_2 orthogonal, then

$$\beta = (X^T X)^{-1} X^T Y = \begin{bmatrix} X_1^T X_1 & 0 \\ 0 & X_2^T X_2 \end{bmatrix}^{-1} X^T Y$$
$$= \begin{bmatrix} (X_1^T X_1)^{-1} X_1^T Y \\ (X_2^T X_2)^{-1} X_2^T Y \end{bmatrix}$$

Estimates don't change if X_1 or X_w removed, both less dependent other non-orthogonal vars.

Randomization: If Z can't be included in regression, in an experiment, by randomly assigning it to observations, Cov(X, Z) should be 0, so effect Z part of error.

Lurking Variable If Z correlated with X, then,

$$E(Y|x, z) = X\beta + \delta z$$

 $E(Z|x) = X\gamma$

so

$$E(Y|x) = X(\beta + \gamma)$$

0.6 Diagnostics

Non-Constant Variance: Can Regress $|\hat{e}|$ on \hat{Y} if. Transform: Transform non-linear/non-constant residual data.

$$h(Y) = \log(Y + \delta), h(Y) = \sqrt(Y)$$

Not Normal: QQplot, Shapiro-Wilk

Correlated Error: Durbin-Watson, where ρ autocorrelation:

$$d = \frac{\sum_{i=2}^{n} (\hat{e}_i - \hat{e}_{i-1})^2}{\sum_{i=1}^{n} \hat{e}_i^2} \sim 2(1 - \rho)$$

Leverage: $h_i = H_i i = x_i^T (X^T X)^{-1} x_i$. How strongly effects model.

Outlier Test: $\hat{y}_{(i)}$ excludes *i*th observation.

$$t_i = \frac{y_i - \hat{y}_{(i)}}{\sqrt{\hat{\sigma}_{(i)}^2 (x_i^T (X_{(i)}^T X_{(i)})^{-1} x_i + 1)}}$$

Where $r_i = \frac{\hat{e}_i}{\hat{\sigma}\sqrt{1-h_i}}$ (studentized residuals), this gives us

$$t_i = r_i \sqrt{\frac{n-p-1}{n-p-r_i^2}} \sim t_{n-p-1}$$

Bonferroni Correction: reject only if $t_{n-p-1,\alpha/n} > t_i$. **Cook Statistic:** Indicates influential point, whose removal effects fit.

$$D_{i} = \frac{(\hat{\beta} - \hat{\beta}_{(i)})^{T} (X^{T} X)(\hat{\beta} - \hat{\beta}_{(i)})}{p \hat{\sigma}^{2}} = \frac{1}{p} r_{i}^{2} \frac{h_{i}}{1 - h_{i}}$$

Partial Residual Plots Fit models, where $X_{(i)}$ excludes column i,

$$Y = X_{(i)}\beta_{(i)} + q_i, X_i = X_{(i)}\gamma + s_i$$

Plot q_i in terms s_i . Can see leverage of points on β_i

0.7 Distributions

Normal Distribution: $\phi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$, joint normal vars independent iff $\text{Cov}(Z_1, Z_2) = 0$.

Multivariate Normal Distribution: if $X \sim N(\mu, \Sigma)$ and Σ positive definite,

$$f_X(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} exp\left(-\frac{1}{2}(x - mu)^T \Sigma^{-1}(x - \mu)\right)$$

Chi Square: k degree of freedom, then $\sum_{i=1}^{k} Z_i^2 \sim \chi_k^2$ if Z_i s independent standard normals

Student's T: $t_{\nu} \sim Z \sqrt{\frac{\nu}{\chi_{\nu}^2}}$ if Z standard normal independent of χ_{ν}^2 .

F: $F_{d_1,d_2} \sim \frac{\chi_{d_1}^2/d_1}{\chi_{d_2}^2/d_2}$ if $\chi_{d_1}^2$ and $\chi_{d_2}^2$ independent.

0.8 Linear Algebra

Cauchy Scwarz: $|\langle x,y\rangle| \leq ||x|| ||y||$. Equality iff linearly independent

Triangle Inequality: $||x+y|| \le ||x|| + ||y||$

Rank: Number linearly independent columns/rows. $rk(A_{m \times n}) \leq \min(m, n), rk(AB) \leq \min(rk(A), rk(B)), rk(A+B) \leq rk(A) + rk(B), Rk(AA^T = rk(A))$

Orthogonal: $A^TA = I$. Columns A orthonormal basis R^n , rotate/reflect vector. $\langle Ax, Ax \rangle = \langle x, x \rangle$.

Idempotent: AA = A. Projection matrix. If $x \in span(A), Ax = x$.

Determinant: |AB| = |A||B|, if A orthogonal, $|A| = \pm 1, |A^TBA| = |B|$.

Trace: Sum diagonal entries. $tr(A) = tr(A^T), tr(A + B) = tr(A) + tr(B), tr(ABC) = tr(CAB)$, if A idempotent, rk(A) = tr(A), if A nonsingular, $tr(A^{-1}BA) = tr(B)$.

Eigenvalues: If A idempotent, $\lambda = 1, 0$. If Orthogonal λ has modulus 1 (radius in complex plane less than 1). Symmetric matrix has real eigenvalues.

Positive (semi) definite: $x^T A x > (\ge) 0 \forall x$. $B B^T$ always positive semi definite.

Eigen Decomposition: If A symmetric, $A = P^T DP$, where P matrix eigenvectors and D diagonal matrix of eigenvalues. If AB=BA and symmetric, $B = P^T D_B P$ for same P.

Diagonally Dominant: If each diagonal greatest entry in column, *A* positive semi definite if *A* symmetric and diagonals positive. Strictly diagonally dominant matrix nonsingular.

Cholesky Decomposition: If A symmetric and positive definite, $\exists L$ unique lower diagonal with positive diagonal entries such that $A = LL^T$. If A only positive semi-definite, L may not be unique and may have 0 diagonal entries. Underdetermined Linear System: Smallest norm solution to Ax = y is $x = A^T(AA^T)^{-1}y$.