ERTIFICATE OF No plicant(s): Kouchi et a	MAILING BY FIRST CLASS	S MAIL (37 CFR 1.8)	Docket No. 91039
Serial No. 10/721,671	Filing Date November 25, 2003	Examiner Not Yet Assigned	Group Art Unit Not Yet Assigned
DEC 2 9 2003	uipment and Antenna Mounting l	Printed-Circuit Board	
I hereby certify that this is being deposited wi	th the United States Postal Seents, P.O. Box 1450, Alexandria,	(Identify type of correspondence) rvice as first class mail ir	
		Eric D. Cohen, R. (Typed or Printed Name of Person (Signature of Person Mail	on Mailing Correspondence)
	Note: Each paper must hav	e its own certificate of mailing.	
	Document; Request To File Cor ected Application Data Sheet; an		eet; Japanese Patent No.

91039

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:)	CERTIFICAT	E OF MAILING
	Kouichi et al.)	•	at this paper is being
Serial No.:	10/721,671)	Service as First	United States Postal Class Mail in an ed to: Commissioner
Conf. No.	Not Yet Assigned)	for Patents, P.	O. Box 1450, nia 22313-1450, on
Filed:	November 25, 2003)	this date.	
For:	Electronic Equipment And Antenna Mounting Printed-Circuit Board) .)	December 23, 200 Date	Eric D. Cohen Reg. No. 38,110
Primary)		
Examiner:	Not Yet Assigned)		
Art Unit:	Not Yet Assigned)		

SUBMISSION OF SECOND PRIORITY DOCUMENT

Commissioner for Patents P. O. Box 1450 Alexandria, Virginia 22313-1450

INTRODUCTION

This communication is a Submission of Second Priority Document (JP2003-019435, 01/28/03) for the above-identified patent application. Please confirm receipt of this document.

The Commissioner is hereby authorized to charge any additional fee which may be required for this application under 37 C.F.R. §§ 1.16-1.18, including but not limited to the issue fee, or credit any overpayment, to Deposit Account No. 23-0920. Should no proper amount be enclosed herewith, as by a check being in the wrong amount, unsigned, post-dated, otherwise improper or informal, or even entirely missing, the Commissioner is authorized to charge the unpaid amount to Deposit Account No. 23-0920. A duplicate copy of this sheet(s) is enclosed.

Respectfully submitted,

WELSH & KATZ, LTD.

Ву

Eric D. Cohen

Registration No. 38,110

December 23, 2003 WELSH & KATZ, LTD. 120 South Riverside Plaza 22nd Floor Chicago, Illinois 60606 (312) 655-1500 Filed:

For:

Primary Examiner:

Art Unit:

PATENT APPLICATION

Eric D. Cohen

Reg. No. 38,110

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE In re Patent Application of: **CERTIFICATE OF MAILING** Kouichi et al. I hereby certify that this paper is being deposited with the United States Postal Serial No.: 10/721,671 Service as First Class Mail in an envelope addressed to: Commissioner for Patents, P. O. Box 1450, Conf. No. Not Yet Assigned Alexandria, Virginia 22313-1450, on this date. November 25, 2003 December 23, 2003

Date

REQUEST TO FILE CORRECTED APPLICATION DATA SHEET

Commissioner for Patents P. O. Box 1450 Alexandria, Virginia 22313-1450

INTRODUCTION

Dear Sir or Madam:

Please substitute the enclosed Corrected Application Data Sheet for the one submitted with the patent application filed on November 25, 2003. The Corrected Application Data Sheet corrects an error in the Priority Claim, and should read as follows:

JP2003-015385 filed January 23, 2003, Japan and

Electronic Equipment And Antenna

Mounting Printed-Circuit Board

Not Yet Assigned

Not Yet Assigned

JP2003-019435 filed January 28, 2003, Japan.

Please make this request of record and send a corrected filing receipt.

The Commissioner is hereby authorized to charge any additional fee which may be required for this application under 37 C.F.R. §§ 1.16-1.18, including but not limited to the issue fee, or credit any overpayment, to Deposit Account No. 23-0920. Should no proper amount be enclosed herewith, as by a check being in the wrong amount, unsigned, post-dated, otherwise improper or informal, or even entirely missing, the Commissioner is authorized to charge the unpaid amount to Deposit Account No. 23-0920. A duplicate copy of this sheet(s) is enclosed.

Respectfully submitted,

WELSH & KATZ, LTD.

Ву

Eric D. Cohen

Registration No. 38,110

December 23, 2003 WELSH & KATZ, LTD. 120 South Riverside Plaza 22nd Floor Chicago, Illinois 60606 (312) 655-1500

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 1月28日

出 願 番 号

特願2003-019435

Application Number: [ST. 10/C]:

[J P 2 0 0 3 - 0 1 9 4 3 5]

出 願 人
Applicant(s):

ソニーケミカル株式会社

2003年11月14日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 SCP020100P

【提出日】 平成15年 1月28日

【あて先】 特許庁長官 殿

【国際特許分類】 H01Q 3/00

H01Q 1/38

【発明者】

【住所又は居所】 石川県能美郡根上町赤井町は86番 ソニーケミカル株

式会社 根上事業所内

【氏名】 向 幸市

【発明者】

【住所又は居所】 石川県能美郡根上町赤井町は86番 ソニーケミカル株

式会社 根上事業所内

【氏名】 安田 周一郎

【発明者】

【住所又は居所】 石川県能美郡根上町赤井町は86番 ソニーケミカル株

式会社 根上事業所内

【氏名】 朝倉 健二

【発明者】

【住所又は居所】 石川県能美郡根上町赤井町は86番 ソニーケミカル株

式会社 根上事業所内

【氏名】 村中 秀信

【特許出願人】

【識別番号】 000108410

【氏名又は名称】 ソニーケミカル株式会社

【代理人】

【識別番号】 100110434

【弁理士】

【氏名又は名称】 佐藤 勝

ページ: 2/E

【先の出願に基づく優先権主張】

【出願番号】

特願2003- 15385

【出願日】

平成15年 1月23日

【手数料の表示】

【予納台帳番号】

076186

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 電子機器及びアンテナ実装プリント配線基板

【特許請求の範囲】

【請求項1】 少なくとも通信機能を有する電子機器であって、

直線偏波の信号をそれぞれ送信及び/又は受信するチップ状の2つのアンテナ素子が互いに直交する軸に沿って配置されてなる少なくとも1つのアンテナ素子対と、各種機能を実現するための各種モジュールとが実装されたプリント配線基板を備え、

上記アンテナ素子は、それぞれ、断面が矩形状を呈する薄板状であり、且つ互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されたものであり、

上記プリント配線基板には、上記アンテナ素子のそれぞれにおける矩形断面を 形成する4辺のうち、少なくとも3辺の周囲領域を囲うように、1又は複数の他 のモジュールに必要とされるグラウンドが配置されるとともに、上記アンテナ素 子のそれぞれにおける矩形断面を形成する4辺のうち、残りの1辺が当該プリン ト配線基板のエッジ部分に臨むように上記アンテナ素子が配置されて実装されて いること

を特徴とする電子機器。

【請求項2】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、偏波面が異なる直線偏波の信号をそれぞれ送信及び/又は受信することを特徴とする請求項1記載の電子機器。

【請求項3】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、偏波面が互いに直交する直線偏波の信号をそれぞれ送信及び/又は受信すること

を特徴とする請求項2記載の電子機器。

【請求項4】 上記アンテナ素子対を構成する上記2つのアンテナ素子のうち、一方のアンテナ素子は、直線偏波の第1の信号を送信及び/又は受信し、

他方のアンテナ素子は、上記第1の信号と位相が90°異なる直線偏波の第2 の信号を送信及び/又は受信すること を特徴とする請求項1記載の電子機器。

【請求項5】 上記少なくとも2つのアンテナ導体は、互いに高さ方向に離隔されていること

を特徴とする請求項1記載の電子機器。

【請求項6】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、所定の樹脂基板に3次元的な構造を呈する導体パターンが形成されて構成されていること

を特徴とする請求項1記載の電子機器。

【請求項7】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、上記樹脂基板の表面から裏面にかけて貫通するように穿設されその内部に銅箔が施された1又は複数のスルーホールを介して複数のアンテナ導体が互いに電気的に導通可能に接続されることによって上記導体パターンが形成されていること

を特徴とする請求項6記載の電子機器。

【請求項8】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、上記1又は複数のスルーホールを介して上記複数のアンテナ導体が蛇行状に接続されることによって上記導体パターンが形成されていること

を特徴とする請求項7記載の電子機器。

【請求項9】 上記樹脂基板は、ガラス布エポキシ基板からなることを特徴とする請求項6記載の電子機器。

【請求項10】 少なくとも通信機能を有する機器に搭載され、各種機能を実現するための各種モジュールが実装されたアンテナ実装プリント配線基板であって、

直線偏波の信号をそれぞれ送信及び/又は受信するチップ状の2つのアンテナ素子が互いに直交する軸に沿って配置されてなる少なくとも1つのアンテナ素子対と、

断面が矩形状を呈する薄板状とされる上記アンテナ素子のそれぞれにおける矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うように配置された1又は複数の他のモジュールに必要とされるグラウンドとが実装され、

上記アンテナ素子は、それぞれ、互いに離隔された少なくとも2つのアンテナ 導体によって開放端が形成されたものであり、矩形断面を形成する4辺のうち、 残りの1辺が当該プリント配線基板のエッジ部分に臨むように配置されているこ と

を特徴とするアンテナ実装プリント配線基板。

【請求項11】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、 それぞれ、偏波面が異なる直線偏波の信号をそれぞれ送信及び/又は受信すること

を特徴とする請求項10記載のアンテナ実装プリント配線基板。

【請求項12】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、 それぞれ、偏波面が互いに直交する直線偏波の信号をそれぞれ送信及び/又は受 信すること

を特徴とする請求項11記載のアンテナ実装プリント配線基板。

【請求項13】 上記アンテナ素子対を構成する上記2つのアンテナ素子のうち、一方のアンテナ素子は、直線偏波の第1の信号を送信及び/又は受信し、

他方のアンテナ素子は、上記第1の信号と位相が90°異なる直線偏波の第2 の信号を送信及び/又は受信すること

を特徴とする請求項10記載のアンテナ実装プリント配線基板。

【請求項14】 上記少なくとも2つのアンテナ導体は、互いに高さ方向に離隔されていること

を特徴とする請求項10記載のアンテナ実装プリント配線基板。

【請求項15】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、 それぞれ、所定の樹脂基板に3次元的な構造を呈する導体パターンが形成されて 構成されていること

を特徴とする請求項10記載のアンテナ実装プリント配線基板。

【請求項16】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、上記樹脂基板の表面から裏面にかけて貫通するように穿設されその内部に銅箔が施された1又は複数のスルーホールを介して複数のアンテナ導体が互いに電気的に導通可能に接続されることによって上記導体パターンが形成されて

いること

を特徴とする請求項15記載のアンテナ実装プリント配線基板。

【請求項17】 上記アンテナ素子対を構成する上記2つのアンテナ素子は、 それぞれ、上記1又は複数のスルーホールを介して上記複数のアンテナ導体が蛇 行状に接続されることによって上記導体パターンが形成されていること

を特徴とする請求項16記載のアンテナ実装プリント配線基板。

【請求項18】 上記樹脂基板は、ガラス布エポキシ基板からなることを特徴とする請求項15記載のアンテナ実装プリント配線基板。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、少なくとも通信機能を有する電子機器、及びこの電子機器に搭載されるアンテナ実装プリント配線基板に関する。

[0002]

【従来の技術】

近年、例えば、携帯電話機等の移動体通信機やいわゆるIEEE(Institute of Electronic and Electronics Engineers)802.11規格の無線LAN(Local Area Network)といったように、各種無線通信技術の開発が著しく進められているが、これにともない、無線通信を行うために必然的に設けられる部材であるアンテナ素子に関する技術も各種開発されている。

[0003]

アンテナ素子としては、例えば円柱状の誘電体に放射電極や表面電極等を形成したものが知られている。この種のアンテナ素子は、機器本体の外部に設置されて用いられるのが一般的である。ただし、外部に配設して用いるタイプのアンテナ素子においては、機器の小型化の妨げとなること、高い機械的強度が要求されること、及び部品点数の増加を招来すること等が問題になる。

[0004]

そこで、これに替わるアンテナ素子として、機器本体の内部に設けられたプリント配線基板に表面実装し得るチップ状のアンテナ素子が提案されている。

[0005]

このチップ状のアンテナ素子としては、例えば放射電極としての導体を逆下字状に形成したいわゆる逆下型アンテナや導体をコイル状に形成したいわゆるヘリカルアンテナといったように、様々なものが提案されている。このようなチップ状のアンテナ素子においては、基材にセラミック等の高誘電率材料を用いて形成されるものが代表的である。しかしながら、この種のアンテナ素子においては、高誘電体材料自体が高価であることに加えて、その加工が煩雑であるという欠点があり、生産性の低下や製造コストの増大を招来するという問題がある。

[0006]

そこで、近年では、フォトエッチング技術の向上にともない、このような不都合を解消することを目的として、両面に銅箔を有するプリント配線基板を基材として用い、これにフォトエッチング技術を利用してアンテナ導体を形成したいわゆるプリントアンテナが提案されている(例えば、特許文献1及び特許文献2参照。)。

[0007]

【特許文献1】

特開平5-347509号公報

【特許文献2】

特開2002-118411号公報

[0008]

特許文献1には、両面基板の上面側の銅箔を用いて少なくともループ状の導体部を含むアンテナ導体層を形成するとともに、下面側の銅箔を用いてアース導体層を形成し、さらに、両面基板における上下銅箔部間の絶縁材部を誘電体層として用いるプリントアンテナが開示されている。このプリントアンテナは、アース導体層側にこのアース導体層とは絶縁して銅箔で給電部を形成し、アンテナ導体層のループ状の導体部とアース導体層とを誘電体層を介して接地用導体で接続している。また、このプリントアンテナは、給電部から誘電体層を介して給電用導体をループ状の導体部内に臨ませ、給電用導体とループ状の導体部との間にアンテナ本体部のリアクタンスを打ち消して帯域幅を広帯域化するインダクタンス素

子とキャパシタンス素子とからなる直列共振回路を設けている。特許文献1には、このようにプリントアンテナを構成することにより、リアクタンス補償法を用いて帯域幅を広帯域化することができ、製作後の総合的な組み合わせ調整を不要とし、さらに、アンテナ利得の低下を軽減することができる旨が記述されている

[0009]

また、特許文献2には、プリント配線基板上に複数のスルーホールを互い違いに平行に形成し、これらのスルーホールの端部を全体が螺旋を描くように接続したヘリカルアンテナが開示されている。この特許文献2には、このようにヘリカルアンテナを構成することにより、小型の移動体通信機用のアンテナ素子を提供することができる旨が記述されている。

$[0\ 0\ 1\ 0]$

【発明が解決しようとする課題】

ところで、近年では、いわゆる携帯情報端末機(Personal Digital Assistance;以下、PDAという。)といった携帯型の電子機器においても、例えば外出 先からインターネット等のネットワークへのアクセスを可能とするために、上述 したIEEE802.11規格の無線LANといった無線通信機能が付加されている。

[0011]

このような電子機器においては、携帯しながら信号の送受信を行うことから、 信号の送信側と受信側との間で偏波面が異なるものとなるおそれがあり、受信側 での受信が困難となる場合がある。そのため、これら電子機器においては、送信 側と受信側との間で偏波面が一致していなくても受信可能とするために、いわゆ る直線偏波ではなく円偏波の信号の送受信を行うアンテナ素子を実装している場 合が多い。

[0012]

この円偏波の信号を送受信可能とするアンテナ素子としては、いわゆるパッチアンテナがある。このパッチアンテナを実装した電子機器の具体例として、図15に平面図及び下方から見た断面図を示すPDA200を用いて説明する。

$[0\ 0\ 1\ 3]$

PDA200は、同図に示すように、略直方体状の筐体を有し、当該筐体内部に設けられた所定の配線基板202における互いに対向する2つの隅角付近の領域に、円偏波の信号を送受信することができる2つのパッチアンテナ201a,201bが配置されて構成される。なお、2つのパッチアンテナ201a,201bが配置されているのは、指向性のダイバーシティの観点に基づくものであり、PDA200としては、いずれか1つのパッチアンテナのみを備えるようにしてもよい。

$[0\ 0\ 1\ 4]$

このようなPDA200は、これらパッチアンテナ201a, 201bを用いることにより、円偏波の信号を送受信することができ、送信側と受信側との間で 偏波面を切り替えることなく無線通信を行うことが可能とされる。

[0015]

しかしながら、近年では、PDA等の移動体通信機をはじめ、無線通信を行う 電子機器の開発にあたっては、小型化が重要視されている。

[0016]

ここで、PDA200を例にとると、パッチアンテナ201a,201bは、主面の大きさが約20mm×20mm程度であるとともに、その厚さ方向の長さが約4mm~5mm程度である。そのため、PDA200においては、面積が大きいパッチアンテナ201a,201bを実装するために、図示しない他の各種モジュールを実装する必要がある配線基板上のレイアウトの自由度が極めて制限され、また、約4mm~5mm程度の厚さの部材を格納する筐体を用いざるを得ないことから、特に厚さ方向の長さが大きくなり、小型化を図る妨げとなっていた。

$[0\ 0\ 1\ 7]$

本発明は、このような実情に鑑みてなされたものであり、極めて効率よく円偏波の信号を送受信することが可能でありながら、レイアウトの自由度を大幅に拡大するとともに、大幅な小型化を図ることができる電子機器及びアンテナ実装プリント配線基板を提供することを目的とする。

[0018]

【課題を解決するための手段】

上述した目的を達成する本発明にかかる電子機器は、少なくとも通信機能を有する電子機器であって、直線偏波の信号をそれぞれ受信するチップ状の2つのアンテナ素子が互いに直交する軸に沿って配置されてなる少なくとも1つのアンテナ素子対と、各種機能を実現するための各種モジュールとが実装されたプリント配線基板を備え、上記アンテナ素子は、それぞれ、断面が矩形状を呈する薄板状であり、且つ互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されたものであり、上記プリント配線基板には、上記アンテナ素子のそれぞれにおける矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うように、1又は複数の他のモジュールに必要とされるグラウンドが配置されるとともに、上記アンテナ素子のそれぞれにおける矩形断面を形成する4辺のうち、残りの1辺が当該プリント配線基板のエッジ部分に臨むように上記アンテナ素子が配置されて実装されていることを特徴としている。

[0019]

このような本発明にかかる電子機器は、直線偏波の信号をそれぞれ受信する 2 つのアンテナ素子を互いに直交する軸に沿って配置した少なくとも 1 つのアンテナ素子対を実装することにより、特に厚さ方向の長さを削減することができ、円偏波の信号を受信する従来のアンテナ素子と同様の特性のもとに信号を受信することが可能でありながら、大幅に小型化を図ることができる。

[0020]

また、このような本発明にかかる電子機器は、アンテナ素子として、互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されたものを実装することにより、開放端に比較的大きなキャパシタンスを生じさせることができる。そのため、本発明にかかる電子機器においては、アンテナ素子における共振周波数の変動を無視できる程度に抑制することができることから、周辺に存在するグラウンドの影響に対する耐性を非常に強くすることができ、むしろ近傍にグラウンドを配置し、このグラウンドを利用してマッチングをとることが可能となる。そして、本発明にかかる電子機器においては、このようなアンテナ素子にお

ける矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うようにグラウンドを配置することにより、アンテナ素子の指向性を所定の方向に制御することができ、空間ダイバーシティのみならず指向性のダイバーシティの効果を得るとともに、複数のアンテナ素子を実装することによる干渉を軽減することができる。

[0021]

ここで、上記アンテナ素子対を構成する上記2つのアンテナ素子は、それぞれ、偏波面が異なる直線偏波の信号をそれぞれ送信及び/又は受信するように構成され、より具体的には、偏波面が互いに直交する直線偏波の信号をそれぞれ送信及び/又は受信するように構成される。

[0022]

また、上記アンテナ素子対を構成する上記2つのアンテナ素子のうち、一方のアンテナ素子は、直線偏波の第1の信号を受信し、他方のアンテナ素子は、上記第1の信号と位相が90°異なる直線偏波の第2の信号を受信するように構成される。

[0023]

さらに、上記アンテナ素子としては、上記少なくとも2つのアンテナ導体が、 互いに高さ方向に離隔されているものを用いることができる。

$[0\ 0\ 2\ 4]$

さらにまた、この本発明にかかる電子機器において、上記アンテナ素子は、それぞれ、所定の樹脂基板に3次元的な構造を呈する導体パターンが形成されて構成されていることを特徴としている。

[0025]

このような本発明にかかる電子機器は、アンテナ素子の導体パターンを3次元的な構造とすることにより、誘電率が低い基板を用いてアンテナ素子を構成した場合であっても大型化することがなく、帯域幅の狭帯域化も回避することができる。また、本発明にかかる電子機器は、アンテナ素子の開放端にキャパシタンスが生じることに起因してインピーダンスが低下する問題も解消することができる

[0026]

具体的には、上記アンテナ素子としては、それぞれ、上記樹脂基板の表面から 裏面にかけて貫通するように穿設されその内部に銅箔が施された1又は複数のス ルーホールを介して複数のアンテナ導体が互いに電気的に導通可能に接続される ことによって上記導体パターンが形成されているものを用いることができる。特 に、上記アンテナ素子としては、それぞれ、上記1又は複数のスルーホールを介 して上記複数のアンテナ導体が蛇行状に接続されることによって上記導体パター ンが形成されているのが望ましい。なお、上記樹脂基板としては、ガラス布エポ キシ基板からなるものを用いることができる。

[0027]

また、上述した目的を達成する本発明にかかるアンテナ実装プリント配線基板は、少なくとも通信機能を有する機器に搭載され、各種機能を実現するための各種モジュールが実装されたアンテナ実装プリント配線基板であって、直線偏波の信号をそれぞれ受信するチップ状の2つのアンテナ素子が互いに直交する軸に沿って配置されてなる少なくとも1つのアンテナ素子対と、断面が矩形状を呈する薄板状とされる上記アンテナ素子のそれぞれにおける矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うように配置された1又は複数の他のモジュールに必要とされるグラウンドとが実装され、上記アンテナ素子は、それぞれ、互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されており、矩形断面を形成する4辺のうち、残りの1辺が当該プリント配線基板のエッジ部分に臨むように配置されていることを特徴としている。

[0028]

このような本発明にかかるアンテナ実装プリント配線基板は、直線偏波の信号をそれぞれ受信する2つのアンテナ素子を互いに直交する軸に沿って配置した少なくとも1つのアンテナ素子対を実装することにより、特に厚さ方向の長さを削減することができ、円偏波の信号を受信する従来のアンテナ素子と同様の特性のもとに信号を受信することが可能でありながら、搭載される機器を大幅に小型化することに寄与する。

[0029]

また、このような本発明にかかるアンテナ実装プリント配線基板は、アンテナ素子として、互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されたものを実装することにより、開放端に比較的大きなキャパシタンスを生じさせることができる。そのため、本発明にかかるアンテナ実装プリント配線基板においては、アンテナ素子における共振周波数の変動を無視できる程度に抑制することができることから、周辺に存在するグラウンドの影響に対する耐性を非常に強くすることができ、むしろ近傍にグラウンドを配置し、このグラウンドを利用してマッチングをとることが可能となる。そして、本発明にかかるアンテナ実装プリント配線基板においては、このようなアンテナ素子における矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うようにグラウンドを配置することにより、アンテナ素子の指向性を所定の方向に制御することができ、空間ダイバーシティのみならず指向性のダイバーシティの効果を得るとともに、複数のアンテナ素子を実装することによる干渉を軽減することができる。

[0030]

【発明の実施の形態】

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細 に説明する。

[0031]

この実施の形態は、例えば、いわゆるIEEE(Institute of Electronic and Electronics Engineers) 8 0 2. 1 1 規格の無線LAN(Local Area Network)といった、少なくとも通信機能を有する電子機器である。この電子機器は、基材となる所定の樹脂基板にアンテナ導体をパターニング形成したいわゆるプリントアンテナと称されるチップ状のアンテナ素子が実装された所定のプリント配線基板を搭載したものである。

[0032]

ここで、このアンテナ素子としては、単独ではいわゆる直線偏波の信号を送受信するものが用いられる。電子機器は、このようなアンテナ素子を少なくとも2つ用意し、これらアンテナ素子によって信号をそれぞれ送受信するように配置することにより、円偏波の信号を送受信することが可能でありながら、レイアウト

の自由度を大幅に拡大するとともに、大幅な小型化を図ることができるものである。また、この電子機器は、この円偏波の信号の送受信を可能とするのに加え、アンテナ素子として、周辺に存在するグラウンドの影響を受けにくく、むしろ積極的に周辺に存在するグラウンドを利用してマッチングをとり、優れた指向性を実現するプリントアンテナを実装したものであり、空間ダイバーシティのみならず指向性のダイバーシティの効果を得るとともに、複数のプリントアンテナを実装することによる干渉を軽減し、極めて効率のよい送受信を行うことができるものである。

[0033]

なお、以下では、説明の便宜上、電子機器の具体例として、いわゆる携帯情報端末機(Personal Digital Assistance;以下、PDAという。)を用いて説明するものとする。また、一般に、送信用のアンテナと受信用のアンテナとでは互いに可逆的な性質を有することから、以下では、説明の便宜上、信号を受信することに主眼をおいた説明を行うものとする。

[0034]

図1に平面図及び下方から見た断面図を示すように、PDA10は、略直方体状の筐体を有し、当該筐体内部に搭載された所定のプリント配線基板12上に、例えばRF(Radio Frequency)モジュールといった当該PDA10の機能を実現するための図示しない1又は複数の他のモジュールとともに、単独で直線偏波の信号を受信する4つのプリントアンテナ11a,11b,11c,11dが実装される。

[0035]

これら4つのプリントアンテナ11a, 11b, 11c, 11dは、それぞれ、主面の大きさが例えば $3\,\mathrm{mm}\times8$. $8\,\mathrm{mm}$ の矩形状を呈するとともに、厚さ方向の長さが例えば0. $6\,\mathrm{mm}$ 程度であり、その主面における長辺がプリント配線基板 $12\,\mathrm{ox}$ 工ッジ部分に臨むように配置される。すなわち、PDA10においては、 $2\mathrm{ox}$ プリントアンテナ11a, 11bが、それぞれ、互いに直交する軸に沿って配置されることにより、これらプリントアンテナ11a, 11bのそれぞれによって偏波面が異なる信号を受信することが可能とされる。また、同様に、

PDA10においては、残り2つのプリントアンテナ11c, 11dが、それぞれ、互いに直交する軸に沿って配置されることにより、これらプリントアンテナ11c, 11dのそれぞれによって偏波面が異なる信号をそれぞれ受信することが可能とされる。

[0036]

ここで、円偏波は、水平偏波と垂直偏波とを90°位相をずらして合成したものであることから、偏波面が互いに直交する直線偏波の信号を受信する2つのアンテナ素子を互いに直交する軸に沿って配置し、90°位相をずらした信号を与えれば、円偏波の信号を受信することができることに着目する。これは、いわゆるダイポールアンテナを互いに90°位相をずらして十字状に配置したいわゆるターンスタイルアンテナ等と同様の原理に基づくものである。

[0037]

したがって、PDA10は、プリントアンテナ11aによって第1の信号を受信するとともに、この第1の信号と位相が90°異なる第2の信号をプリントアンテナ11bによって受信し、さらに、プリントアンテナ11cによって第1の信号を受信するとともに、第2の信号をプリントアンテナ11dによって受信するように構成される。すなわち、PDA10においては、2つのプリントアンテナ11a,11bからなるプリントアンテナ対と、2つのプリントアンテナ11c,11dからなるプリントアンテナ対が、それぞれ、円偏波の信号を受信する1つのパッチアンテナに相当する作用を奏するものとなる。これにより、PDA10は、4つのプリントアンテナ11a,11b,11c,11dによって少なくとも空間ダイバーシティの効果を得ながら円偏波の信号を受信することが可能となる。

[0038]

このようなプリントアンテナ11a, 11b, 11c, 11dを備えるPDA 10は、上述したように、当該プリントアンテナ11a, 11b, 11c, 11dが0.6mm程度の厚さで構成されることから、図2に示すように、同様の受信特性を有する2つのパッチアンテナ21a, 21bを備えた従来のPDA20と比較して薄く形成することができ、大幅に小型化を図ることができる。

[0039]

また、PDA10においては、詳細は後述するが、プリントアンテナ11a, 11b, 11c, 11dを、それぞれ、グラウンドに近接させて配置する。したがって、PDA10においては、プリントアンテナ11a, 11b, 11c, 11dの主面の大きさが、それぞれ、上述した3mm×8.8mm程度である場合には、当該プリントアンテナ11a, 11b, 11c, 11dのそれぞれを実装するための領域を、図3にプリントアンテナ11dの近傍領域を示すように、6mm×8mm程度の面積で済ませることができ、面積に限りがあるプリント配線基板上で他の各種モジュールに対して割り当てることができる領域を確保することができ、小型化を図ることができるとともに、レイアウトの自由度も高めることができる。

[0040]

さて、このような4つのプリントアンテナ11a, 11b, 11c, 11dを 備えることによって円偏波の信号を受信することができるPDA10ではあるが、このままでは、以下のような問題が残存する。

[0041]

プリントアンテナを所定のプリント配線基板上に実装することを考える。プリントアンテナは、通常、周辺に存在するグラウンドの影響を受けやすく、グラウンドの存在によって特性が変動する。そのため、プリントアンテナを実装するプリント配線基板においては、通常、プリントアンテナを実装する箇所の周辺領域にはグラウンド、すなわち、他の金属体を設けないように当該プリント配線基板上のレイアウトが設計される。換言すれば、プリント配線基板においては、他の各種モジュールに必要とされるグラウンドが存在しない専用のランドを当該プリント配線基板上に設け、このランドにプリントアンテナが実装される。

[0042]

したがって、上述したように、4つのプリントアンテナをプリント配線基板上に実装する場合には、例えば図4に示すようになる。すなわち、4つのプリントアンテナ31a,31b,31c,31dは、それぞれ、同図中斜線部で示すグラウンドを避けるようにプリント配線基板30の外周に沿って設けられたランド

32に実装されることになる。この場合、各アンテナ31a, 31b, 31c, 31dから放射される放射電界は、8の字状のダイポールモードとなる。

[0043]

ここで、このようなプリント配線基板30上でダイポールタイプの指向性を出現させる直線偏波のプリントアンテナ31a,31b,31c,31dを組み合わせて形成した円偏波アンテナのダイバーシティを考えると、空間ダイバーシティの効果は得ることができるものの、指向性のダイバーシティ効果はほとんど得ることができない。これは、プリントアンテナ31a,31bからなるプリントアンテナ対による円偏波アンテナの指向性と、プリントアンテナ31c,31dからなるプリントアンテナ対による円偏波アンテナの指向性とが、同じものとなるためである。

$[0\ 0\ 4\ 4]$

また、このようなプリントアンテナ31a,31b,31c,31dを組み合わせて形成した円偏波アンテナにおいては、当該プリントアンテナ31a,31b,31c,31dを組み合わせて形成した円偏波アンテナにおいては、当該プリントアンテナ31a,31b,31c,31dを組み合と、31c,31dの配置位置と共振方向との関係から、ダイバーシティをなす2組のプリントアンテナ同士が、互いに干渉する事態を招来するという問題もある。すなわち、プリントアンテナ31aによる共振は、同図中矢印bで示す方向に生じ、プリントアンテナ31cによる共振は、同図中矢印bで示す方向に生じ、プリントアンテナ31dによる共振は、同図中矢印cで示す方向に生じ、プリントアンテナ31dによる共振は、同図中矢印dで示す方向に生じることから、プリント配線基板30においては、当該プリント配線基板30における中央付近の広い範囲で干渉が生じることになる。

[0045]

そこで、このような問題を回避するために、PDA10に搭載されるプリントアンテナ11a, 11b, 11c, 11d、及びこれらプリントアンテナ11a, 11b, 11c, 11dを実装するプリント配線基板として、以下に示すものを提案する。

[0046]

まず、プリント配線基板の詳細についての説明に先だって、プリントアンテナ

11a,11b,11c,11dについて図5乃至図8を用いて説明する。なお、以下では、プリントアンテナ11a,11b,11c,11dとともにPDA10の機能を実現するための他のモジュールが実装されたプリント配線基板と、プリントアンテナ11a,11b,11c,11dの基材として用いられるプリント配線基板とを区別するために、プリントアンテナ11a,11b,11c,11dの基材として用いられるプリント配線基板については、単に基板と称して説明するものとする。また、以下では、説明の便宜上、プリントアンテナ11a,11b,11c,11dをプリントアンテナ11と総称して説明するものとする。

[0047]

プリントアンテナ11は、プリント配線基板の基材として一般に用いられるものであれば、その種類を問わずいずれを用いても構成することができる。具体的には、プリントアンテナ11は、米国電気製造業者協会(National Electrical Manufacturers Association;NEMA)による記号XXP,XPC等として規定されている紙フェノール基板、同記号FR-2として規定されている紙ポリエステル基板、同記号FR-3として規定されている紙エポキシ基板、同記号CEM-1として規定されているガラス紙コンポジットエポキシ基板、同記号CHE-3として規定されているガラス不織紙コンポジットエポキシ基板、同記号Gー10として規定されているガラス不工ポキシ基板、同記号FR-4として規定されているガラス布エポキシ基板、同記号FR-4として規定されているガラス布エポキシ基板といった両面に銅箔を有するいわゆるリジッド基板を用いて構成される。なお、これらのうち、吸湿性や寸法変化が少なく、自己消炎性を有するガラス布エポキシ基板(FR-4)が最も好適である。

[0048]

プリントアンテナ11は、図5に平面図を示すように、上述したように、例えば矩形状を呈する薄板状の基板をエッチングすることにより、放射電極としての複数のアンテナ導体51,52,53,54,55が基板の表面に露出形成されて構成される。具体的には、プリントアンテナ11においては、基板上に、略コ字状のアンテナ導体51と矩形状のアンテナ導体52,53,54,55とが形成される。また、プリントアンテナ11は、図6に底面図を示すように、放射電

極としての複数の矩形状のアンテナ導体 5 6, 5 7, 5 8, 5 9, 6 0, 6 1, 6 2 が基板の裏面に露出形成されて構成される。このうち、アンテナ導体 6 1 は、給電用の電極として用いられ、アンテナ導体 6 2 は、接地用の電極として用いられる。

[0049]

さらに、プリントアンテナ11は、内部に銅箔が施された複数のスルーホール 51_1 , 51_2 , 52_1 , 52_2 , 53_1 , 53_2 , 54_1 , 54_2 , 55_1 , 55_2 が基板の表面から裏面にかけて貫通するように穿設される。具体的には、プリントアンテナ11においては、スルーホール 51_1 , 52_1 , 52_2 , 54_1 , 54_2 が、互いに略等間隔に一列に穿設されるとともに、スルーホール 51_2 , 53_1 , 53_2 , 55_1 , 55_2 が、互いに略等間隔に一列に穿設され、スルーホール 51_1 , 52_1 , 52_2 , 54_1 , 54_2 からなるスルーホール群と、スルーホール 51_2 , 53_1 , 53_2 , 55_1 , 55_2 からなるスルーホール群と、スルーホール 51_2 , 53_1 , 53_2 , 55_1 , 55_2 からなるスルーホール群とが、互いに平行に配列される。

[0050]

れたアンテナ導体 5 4 における一の端部を始点とするとともに、アンテナ導体 5 9 における他の端部を終点として穿設され、スルーホール 5 4 2 は、アンテナ導体 5 4 における他の端部を始点とするとともに、裏面側に設けられたアンテナ導体 6 1 における一の端部を終点として穿設される。また、スルーホール 5 5 1 は、基板の表面側に設けられたアンテナ導体 5 5 における一の端部を始点とするとともに、アンテナ導体 6 0 における他の端部を終点として穿設され、スルーホール 5 5 2 は、アンテナ導体 5 5 における他の端部を始点とするとともに、裏面側に設けられたアンテナ導体 6 2 における一の端部を終点として穿設される。

$[0\ 0\ 5\ 1]$

換言すれば、プリントアンテナ11においては、スルーホール511を介して アンテナ導体51,57が電気的に導通可能に接続され、スルーホール512を 介してアンテナ導体51,58が電気的に導通可能に接続される。また、プリン トアンテナ11においては、スルーホール521を介してアンテナ導体52,5 7が電気的に導通可能に接続され、スルーホール 5 2 2 を介してアンテナ導体 5 2,59が電気的に導通可能に接続される。さらに、プリントアンテナ11にお いては、スルーホール531を介してアンテナ導体53,58が電気的に導通可 能に接続され、スルーホール532を介してアンテナ導体53,60が電気的に 導通可能に接続される。さらにまた、プリントアンテナ11においては、スルー ホール541を介してアンテナ導体54,59が電気的に導通可能に接続され、 スルーホール542を介してアンテナ導体54,61が電気的に導通可能に接続 される。また、プリントアンテナ11においては、スルーホール551を介して アンテナ導体55,60が電気的に導通可能に接続され、スルーホール552を 介してアンテナ導体55,62が電気的に導通可能に接続される。したがって、 プリントアンテナ11においては、アンテナ導体51、52、53、54、55 , 57, 58, 59, 60, 61, 62が、互いに電気的に導通可能に接続され て構成される。

[0052]

より具体的には、プリントアンテナ11は、図7に基板内部を示すように、複数のスルーホール51₁,51₂,52₁,52₂,53₁,53₂,54₁,

542, 551, 552を介して蛇行状(櫛歯状)に接続された複数のアンテナ 導体 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62を、アンテナ導体 51を中心にして略コ字状に屈曲させたような一連の導体パターンを形成して構成される。

[0053]

一般に、誘電率が低い基板を用いてアンテナ素子を構成する場合には、利得を確保するために周辺に存在するグラウンドの影響を考慮して長い導体パターンを形成せざるを得ず、これにともない当該アンテナ素子が大型化してしまう。これに対して、プリントアンテナ11は、3次元的な構造を呈する導体パターンを形成することにより、周辺に存在するグラウンドの影響に耐え得る値までインピーダンスを大きくすることができる。したがって、プリントアンテナ11は、大幅な小型化及び薄型化を図ることができ、帯域幅の狭帯域化も回避することができる。

[0054]

このようなプリントアンテナ11は、アンテナ導体51,56が互いに離隔されて配置されることにより、開放端を形成する。具体的には、プリントアンテナ11は、図8に横断面図を示すように、アンテナ導体56が同図中破線部で示すプリント配線基板12にはんだ等を介して直接的に溶着される一方で、このアンテナ導体56と基板の厚さ分だけ高さ方向に空間的に離隔されてアンテナ導体51が設けられる。これにより、プリントアンテナ11においては、アンテナ導体51,56の間に比較的大きなキャパシタンスが生じる。

[0055]

ここで、プリントアンテナ11においては、アンテナ導体51,56によって 形成される開放端に最大電圧を生じ、この開放端が、例えば接地用の電極といっ た各種モジュールの一部としてプリント配線基板12上に実装された他の金属体 70の近傍に設けられた場合には浮遊容量が発生する。

[0056]

しかしながら、プリントアンテナ11は、アンテナ導体51,56を互いに離隔して積極的に大きなキャパシタンスを形成することにより、たとえアンテナ導

体56と金属体70との間の距離にバラツキが生じた場合であっても、共振周波数の変動を無視できる程度に抑制することができる。したがって、プリントアンテナ11は、周辺に存在するグラウンドの影響に対する耐性を非常に強くすることができ、むしろ近傍にグラウンドを配置し、このグラウンドを利用してマッチングをとることが可能となる。

[0057]

なお、プリントアンテナ11においては、アンテナ導体51,56の間にキャパシタンスが生じることに起因してインピーダンスが低下するが、上述したように、3次元的な構造を呈する導体パターンを形成することにより、この問題を解消することができる。

[0058]

このようなプリントアンテナ11は、アンテナ導体56,57,58,59,60,61,62が露出形成された裏面側をはんだ等によってプリント配線基板12に溶着することにより、当該プリント配線基板12上に実装される。

[0059]

さて、以下では、このようなプリントアンテナ11が実装されたプリント配線 基板12について説明する。

[0060]

プリントアンテナ11は、上述したように、周辺に存在するグラウンドの影響に対する耐性が強く、むしろグラウンドを利用してマッチングをとるものである。そのため、プリント配線基板12においては、例えば図9に示すように、同図中斜線部で示す他のモジュールに必要とされるグラウンドの近傍に、プリントアンテナ11が実装される。

$[0\ 0\ 6\ 1\]$

ここで、従来のプリントアンテナを含むアンテナ素子がプリント配線基板上に 実装される場合について考える。例えば図10に示すように、従来のアンテナ素 子101は、通常、プリント配線基板102における隅角付近の領域であって、 周辺にグラウンドが存在しない領域に実装されることが多い。この場合、放射電 界は、同図中破線で示すように、8の字状のダイポールモードとなる。したがっ

て、従来のアンテナ素子101においては、給電された電力の半分を損失してしまうことになる。

[0062]

これに対して、プリント配線基板12においては、プリントアンテナ11の周囲領域のうち、一部領域を除いた残りの領域を囲うようにグラウンドを配置する。例えば、プリント配線基板12においては、先に図9に示したように、断面が矩形状を呈するプリントアンテナ11における矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うようにグラウンドを配置する。そして、プリント配線基板12においては、プリントアンテナ11における残りの1辺が当該プリント配線基板12のエッジ部分に臨むように、プリントアンテナ11を配置する。

[0063]

プリント配線基板12においては、このようにプリントアンテナ11と周辺のグラウンドとを配置した場合、プリントアンテナ11のアンテナ導体に電流が流れることにより、プリントアンテナ11の周囲領域のうち、グラウンドによって囲まれていない領域近傍、すなわち、当該プリント配線基板12のエッジ部分が励起される。これにより、プリント配線基板12においては、放射電界が、ダイポールモードとはならず、同図中破線で示すように、バルーン状に1方向に放出するように形成される。すなわち、プリント配線基板12においては、プリントアンテナ11が所定の方向にのみ指向性を有するように動作させることができる

[0064]

本件出願人は、この指向性の様子を具体的に確認するために、所定のプリント配線基板を用いてシミュレーションを行った。このシミュレーションは、図11 (A) に平面図及び同図(B) に側面図を示すように、プリント配線基板12として、材質がFR-4であり、大きさが縦51mm×横38mm×厚さ0.8mmの薄板状のものを用いて行った。また、このシミュレーションにおいては、同図(A)中斜線部で示すように、断面が矩形状を呈するプリントアンテナ11における矩形断面を形成する4辺のうち、3辺の周囲領域を囲うように、プリント

配線基板12の表裏面にグラウンドを配置した。なお、このシミュレーションは、プリントアンテナ11の特性を検証するために行ったものであるため、プリント配線基板12上に4つのプリントアンテナ11を実装したのではなく、1つのプリントアンテナ11を実装して行ったものである。

$[0\ 0\ 6\ 5]$

この場合、放射電界の等高線図を求めると、図12(A)及び同図(B)に示すような結果が得られた。なお、図12(A)は、図11(A)に対応してプリント配線基板12を上方から見たときの放射電界を示し、図12(B)は、図11(B)に対応してプリント配線基板12を側方から見たときの放射電界を示している。また、図12においては、プリント配線基板12の横方向をx軸とし、縦方向をy軸とし、厚さ方向をz軸としている。

[0066]

同図から、放射電界は、明らかに8の字状のダイポールモードとは異なり、x y 平面において、プリント配線基板12を放射源として+y 方向に膨張するバルーン状に形成されることがわかる。なお、この結果から、約2.06dBiの利得が得られた。例えば、このプリント配線基板12をLANカードに適用した場合には、-x 方向は損失方向となるが、+y 方向に対して小さいことから、プリント配線基板12は、効率的に給電される電力を利用していることがわかる。

[0067]

このように、プリント配線基板12においては、プリントアンテナ11の周囲 領域のうち、一部領域を除いた残りの領域を囲うようにグラウンドを配置するこ とにより、プリントアンテナ11に給電される電力の大幅な損失を回避して有効 に利用することができるとともに、優れた指向性を実現し、感度を向上させるこ とが可能となる。プリント配線基板12は、他のモジュールに必要とされるグラ ウンドが存在しない専用のランドを設けることを不要とするとともに、アンテナ 素子自体についても周辺にグラウンドが存在しないことを前提に設計することを 不要とし、設計指針に全く新たな概念を提案するものである。

[0068]

上述したPDA10は、このようなプリントアンテナ11が実装されたプリン

ト配線基板12を搭載する。換言すれば、PDA10は、直線偏波の信号を受信する2つの直線偏波アンテナとグラウンドエッジ部分とによって構成される円偏波アンテナを実装する。これにより、PDA10は、上述したダイバーシティ及び干渉の問題を解消することができる。

[0069]

すなわち、PDA10においては、図13に示すように、プリント配線基板12上に、プリントアンテナ11a, 11b, 11c, 11dのそれぞれにおける少なくとも3辺の周囲領域を、同図中斜線部で示すグラウンドで囲むとともに、残りの1辺が当該プリント配線基板12のエッジ部分に臨むように、プリントアンテナ11a, 11b, 11c, 11dを配置する。

[0070]

ここで、このようなプリント配線基板12上でプリントアンテナ11a, 11b, 11c, 11dを組み合わせて形成した円偏波アンテナのダイバーシティを考えると、プリントアンテナ11a, 11b, 11c, 11dは、上述したように、それぞれ指向性が強いことから、空間ダイバーシティ効果に加え、指向性のダイバーシティ効果も得ることができる。

$[0\ 0\ 7\ 1]$

また、プリントアンテナ11a, 11b, 11c, 11dは、それぞれ、上述したように、プリント配線基板12のエッジ部分を励起する。したがって、プリントアンテナ11aによる共振は、同図中矢印eで示す方向に生じ、プリントアンテナ11bによる共振は、同図中矢印fで示す方向に生じ、プリントアンテナ11cによる共振は、同図中矢印gで示す方向に生じ、プリントアンテナ11dによる共振は、同図中矢印hで示す方向に生じることになる。このように、PDA10においては、プリントアンテナ11a, 11b, 11c, 11dによる共振が、それぞれ、おのおのが位置するプリント配線基板12におけるエッジ部分で生じることから、各プリントアンテナ11a, 11b, 11c, 11dと、自己が位置するエッジ部分とは異なる他のエッジ部分に位置するプリントアンテナとの干渉を軽減することができる。

[0072]

以上説明したように、本発明の実施の形態として示したPDA10は、直線偏波の信号を受信するプリントアンテナ11a, 11b, 11c, 11dを備え、これらプリントアンテナ11a, 11b, 11c, 11dのうち、2つのプリントアンテナ11a, 11bを、互いに直交する軸に沿って配置し、偏波面が互いに直交して位相が90°異なる信号をそれぞれ受信するように構成するとともに、残り2つのプリントアンテナ11c, 11dを、互いに直交する軸に沿って配置し、偏波面が互いに直交して位相が90°異なる信号をそれぞれ受信するように構成されることにより、従来のパッチアンテナを実装した場合と比較して、特に厚さ方向の長さを削減することができ、従来のパッチアンテナを実装した場合と同様の特性のもとに円偏波の信号を受信することが可能でありながら、大幅に小型化を図ることができる。

[0073]

また、PDA10においては、2つのアンテナ導体51,56によって開放端が形成されたプリントアンテナ11a,11b,11c,11dを備えることにより、これらプリントアンテナ11a,11b,11c,11dを、それぞれ、周辺に存在するグラウンドの影響を受けにくく、むしろ積極的に周辺に存在するグラウンドを利用してマッチングをとるものとして扱うことができる。そのため、PDA10においては、レイアウトの設計段階で、他のモジュールに必要とされるグラウンドが存在しない専用のランドを設ける必要がなく、柔軟なレイアウトが可能となり、また、このような開放端が形成されたプリントアンテナ11a,11b,11c,11dのそれぞれの周囲領域のうち、一部領域を除いた残りの領域を囲うようにグラウンドを配置することにより、各プリントアンテナ11a,11b,11c,11dを実現し、空間ダイバーシティのみならず指向性のダイバーシティの効果を得るとともに、複数のプリントアンテナプリントアンテナ11a,11b,11c,11dを実装することによる干渉を軽減し、極めて効率のよい受信を行うことができる。

[0074]

このように、PDA10は、小型化を促進するとともに、レイアウトの自由度を大幅に拡大することができ、設計及び電力制限が厳しい状況に極めて有効であ

る。

[0075]

さらに、PDA10においては、基材に安価なプリント配線基板を用いたプリントアンテナ11a, 11b, 11c, 11dを実装することから、アンテナ素子の加工も容易であり、また、プリント配線基板12の製造工程を利用してアンテナ素子を製造することが可能となり、全体の製造コストを大幅に削減することができる。

[0076]

なお、本発明は、上述した実施の形態に限定されるものではない。例えば、上述した実施の形態では、2つのプリントアンテナ11a, 11bによって偏波面が互いに直交する信号をそれぞれ受信するように構成するとともに、残り2つのプリントアンテナ11c, 11dによって偏波面が互いに直交する信号をそれぞれ受信するように構成するものとして説明したが、信号の偏波面は、必ずしも互いに直交するものでなくてもよい。なぜなら、偏波面の直交からのずれは位相のずれで補償できるからである。したがって、本発明は、2つのアンテナ素子によって直線偏波の信号をそれぞれ受信するように構成するものであればよく、より望ましくは、偏波面が互いに直交する2つの異なる信号を受信するように構成するものであればよい。

[0077]

また、上述した実施の形態では、4つのプリントアンテナ11a,11b,11c,11dを実装するものとして説明したが、これは、2つのパッチアンテナを実装することによってダイバーシティ効果を得る環境と同様の効果を実現するためである。したがって、本発明は、偏波面が互いに直交して位相が90°異なる直線偏波の信号を受信する2つのアンテナ素子が互いに直交する軸に沿って配置されてなる少なくとも1つのアンテナ素子対を実装するものであれば適用することができる。

[0078]

さらに、上述した実施の形態では、アンテナ素子としてプリントアンテナを用いるものとして説明したが、本発明は、プリントアンテナに限らず、プリント配

ページ: 26/

線基板に表面実装し得るチップ状のアンテナ素子であれば、任意のものを適用することができる。

[0079]

さらにまた、上述した実施の形態では、プリントアンテナの断面が矩形状を呈するものとし、この場合には、プリントアンテナにおける矩形断面を形成する 4 辺のうち、3 辺の周囲領域を囲うようにグラウンドを配置するものとして説明したが、本発明においては、アンテナ素子の断面が矩形状を呈する場合には、例えば図 1 4 中斜線部で示すように、アンテナ素子 8 1 における矩形断面を形成する 4 辺のうち、3 辺の周囲領域に加え、残りの1 辺における一部の周囲領域を囲うようにグラウンドを配置するとともに、当該1 辺をプリント配線基板のエッジ部分に臨むように配置したものであってもよく、アンテナ素子における矩形断面を形成する 4 辺のうち、少なくとも 3 辺の周囲領域を囲うようにグラウンドを配置するとともに、残りの1 辺をプリント配線基板のエッジ部分に臨むように配置するのであれば、いかなる配置であっても適用することができる。

[0080]

また、上述した実施の形態では、複数のスルーホールを介して蛇行状(櫛歯状)に接続された複数のアンテナ導体を略コ字状に屈曲させたような一連の導体パターンが形成されたプリントアンテナについて説明したが、本発明においては、アンテナ素子の導体パターンとして、周辺のグラウンドとのマッチングを適切にとることを条件として任意のものを適用することができ、例えば多層基板を用いて開放端を含む所定の導体パターンが形成されるものも適用することができる。

[0081]

いずれにせよ、アンテナ素子としては、周辺のグラウンドとのマッチングを適切にとることを条件とし、互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されたものであればよく、さらに望ましくは3次元的な構造を呈する導体パターンが形成されたものであればよい。また、このとき、アンテナ素子としては、少なくとも2つのアンテナ導体が互いに高さ方向に離隔されて配置されることによって開放端を形成するのではなく、高さは同一で平面的に離隔されて配置されることによって開放端を形成するようにしてもよい。

[0082]

さらに、上述した実施の形態では、プリントアンテナ11a, 11b, 11c, 11dによって信号を受信することに主眼をおいた説明を行ったが、これらプリントアンテナ11a, 11b, 11c, 11dは、信号を送信することができることはいうまでもない。

[0083]

さらにまた、上述した実施の形態では、電子機器の具体例として、PDA10 を用いて説明したが、本発明は、例えば携帯電話機をはじめとする任意の電子機 器に適用することができるのは勿論である。

[0084]

このように、本発明は、その趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。

[0085]

【発明の効果】

以上詳細に説明したように、本発明にかかる電子機器及びアンテナ実装プリント配線基板は、直線偏波の信号をそれぞれ受信する2つのアンテナ素子を互いに直交する軸に沿って配置した少なくとも1つのアンテナ素子対を実装することにより、特に厚さ方向の長さを削減することができ、円偏波の信号を受信する従来のアンテナ素子と同様の特性のもとに信号を受信することが可能でありながら、大幅に小型化を図ることができる。

[0086]

また、このような本発明にかかる電子機器及びアンテナ実装プリント配線基板は、アンテナ素子として、互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成されたものを実装することにより、アンテナ素子における共振周波数の変動を無視できる程度に抑制することができることから、周辺に存在するグラウンドの影響に対する耐性を非常に強くすることができ、むしろ近傍にグラウンドを配置し、このグラウンドを利用してマッチングをとることが可能となる。したがって、本発明にかかる電子機器及びアンテナ実装プリント配線基板は、レイアウトの設計段階でグラウンドが存在しない専用のランドを設ける必要が

なく、小型化を促進するとともに、レイアウトの自由度を飛躍的に向上させることができる。

[0087]

そして、本発明にかかる電子機器及びアンテナ実装プリント配線基板においては、このようなアンテナ素子における矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うようにグラウンドを配置することにより、アンテナ素子の指向性を所定の方向に制御することができることから、アンテナ素子に給電される電力の大幅な損失を回避して有効に利用することができるとともに、優れた指向性を実現し、感度を向上させることが可能となり、空間ダイバーシティのみならず指向性のダイバーシティの効果を得るとともに、複数のアンテナ素子を実装することによる干渉を軽減することができる。

[0088]

また、本発明にかかる電子機器及びアンテナ実装プリント配線基板は、アンテナ素子の導体パターンを3次元的な構造とすることにより、誘電率が低い基板を用いてアンテナ素子を構成した場合であっても大型化することがなく、帯域幅の狭帯域化も回避することができる。また、本発明にかかる電子機器及びアンテナ実装プリント配線基板は、アンテナ素子の開放端にキャパシタンスが生じることに起因してインピーダンスが低下する問題も解消することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態として示すPDAの平面図及び下方から見た断面図である

【図2】

図1に示すPDAと、2つのパッチアンテナを備えた従来のPDAとの平面図及び下方から見た断面図であって、これら2つのPDAを比較するための図である。

【図3】

図1に示すPDAに実装される1つのプリントアンテナの近傍領域の要部平面 図である。

【図4】

4つのプリントアンテナが実装されたプリント配線基板の平面図であり、4つのプリントアンテナが、それぞれ、グラウンドを避けるようにプリント配線基板の外周に沿って設けられたランドに実装されている様子を説明するための図である。

【図5】

図1に示すPDAに搭載されるプリント配線基板に実装されるプリントアンテナの平面図である。

【図6】

プリントアンテナの底面図である。

【図7】

プリントアンテナにおける基板内部の導体パターンを説明する斜視図である。

図8】

プリントアンテナの横断面図であり、2つのアンテナ導体によって形成される 開放端について説明するための図である。

【図9】

プリントアンテナが実装されたプリント配線基板における一部領域の平面図である。

【図10】

従来のアンテナ素子が実装された従来のプリント配線基板における一部領域の 平面図であり、プリント配線基板上でのアンテナ素子の配置位置とそのときの放 射電界の様子について説明するための図である。

【図11】

シミュレーションで用いるプリントアンテナが実装されたプリント配線基板の 構成を説明する図であり、(A)は、平面図であり、(B)は、側面図である。

【図12】

図11に示すプリント配線基板を用いたシミュレーションによって求めた放射電界の様子を説明する等高線図であり、(A)は、図11(A)に対応してプリント配線基板を上方から見たときの放射電界の等高線図であり、(B)は、図1

ページ: 30/E

1 (B) に対応してプリント配線基板を側方から見たときの放射電界の等高線図である。

【図13】

4つのプリントアンテナが実装されたプリント配線基板の平面図であり、4つのプリントアンテナのそれぞれにおける少なくとも3辺の周囲領域をグラウンドで囲むとともに、残りの1辺が当該プリント配線基板12のエッジ部分に臨むようにプリントアンテナが配置されている様子を説明するための図である。

【図14】

図9に示すプリント配線基板とは異なるレイアウトからなるプリント配線基板 における一部領域の平面図である。

【図15】

パッチアンテナを実装した従来のPDAの平面図及び下方から見た断面図である。

【符号の説明】

10 PDA、 11, 11a, 11b, 11c, 11d プリントアンテナ、 12 プリント配線基板、 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 アンテナ導体、 51₁, 51₂, 52₁, 52₂, 53₁, 53₂, 54₁, 54₂, 55₁, 55₂ スルーホール、 70 金属体、 81 アンテナ素子

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

 $\widehat{\mathbf{A}}$

【図13】

【図14】

【図15】

【書類名】 要約書

【要約】

【課題】 極めて効率よく円偏波の信号を受信することが可能でありながら、レイアウトの自由度を大幅に拡大して小型化を図る電子機器を提供する。

【解決手段】 PDA10は、直線偏波の信号を受信するチップ状の2つのプリントアンテナ11が互いに直交する軸に沿って配置されてなる少なくとも1つのプリントアンテナ対が実装されたプリント配線基板12を備える。各プリントアンテナ11は、互いに離隔された少なくとも2つのアンテナ導体によって開放端が形成される。また、プリント配線基板12には、各プリントアンテナ11における矩形断面を形成する4辺のうち、少なくとも3辺の周囲領域を囲うように、1又は複数の他のモジュールに必要とされるグラウンドが配置されるとともに、残りの1辺が当該プリント配線基板12のエッジ部分に臨むように各プリントアンテナ11が配置されて実装される。

【選択図】 図1

特願2003-019435

出願人履歴情報

識別番号

[000108410]

1. 変更年月日

2002年 6月13日

[変更理由]

住所変更

住 所

東京都品川区大崎一丁目11番2号 ゲートシティ大崎イース

トタワー8階

氏 名

ソニーケミカル株式会社