Electrónica Analógica

Mg. Víctor Hugo Serrano

Universidad Nacional de Salta

Técnicatura Electrónica Universitaria

Programa Analítico

- Tema 1. Introducción a la instrumentación: variables y señales, sistemas de medida, características estáticas y dinámicas de mismas, análisis de error de los instrumentos analógicos y digitales. Símbolos de componentes. Mediciones en bajo nivel de señal. Puentes de medición. Osciloscopio.
- Tema 2. Componentes electrónicos: pasivos y activos, resistores, capacitores, inductores, diferentes tipos y características que determinan su empleo de acuerdo tensión, temperatura y frecuencia. Patrones. Componentes que varían sus valores con algún parámetro físico.
- Tema 3. Materiales semiconductores. Características físicas del diodo de unión PN. Características corriente-voltaje del diodo. Polarización de un diodo. Diodo Zener. Circuitos varios: aplicaciones.
- Tema 4. Transistor de unión bipolar. Estructura física del transistor bipolar. Características corriente-voltaje del transistor bipolar. Amplificación de corriente en el transistor. Circuitos de polarización.

Programa Analítico

- Tema 5. Amplificadores de corriente y tensión: ideales y reales. Características fundamentales. Principios básicos de realimentación. Amplificadores operacionales, características típicas y dependencia de sus parámetros fundamentales con la temperatura. Aplicaciones lineales. Amplificadores operacionales para instrumentación, acondicionadores de señal. Comparadores. Introducción a los filtros activos. Filtros ideales. Filtro activo de primer orden. Respuestas de filtros de segundo orden.
- Tema 6. Fuentes de poder. Conceptos fundamentales. Transformadores, rectificadores, fusibles y filtros. Reguladores de tensión, discretos e integrados. Su utilización en los circuitos de medición y sensado. Introducción a las fuentes conmutadas. Configuraciones básicas: funcionamiento.
- Tema 7. Modelo en pequeña serial del transistor BJT. Configuraciones con varios transistores. Amplificadores diferenciales y etapas de entrada. Configuraciones especiales: Darlington, fuentes de corriente. Amplificadores de potencia: clase A, B, A-B. Introducción a la teoría de funcionamiento del transistor efecto de campo. Distintos tipos.
- Tema 8. Materiales y componentes especiales. Sensores de temperatura: Uniones metálicas, resistencias metálicas y semiconductoras. Fotoceldas. Fototransistores y leds.
- Tema 9. Tiristores y triacs. Características corriente-voltaje del tiristor Regulación y control de potencia alterna con triacs y llaves detectoras de cruce por cero.

Clasificación de los materiales electrónicos

- La caracteristica que posee un material (o una sustancia) para permitir el paso de una corriente eléctrica está definida por su **resistividad** (ρ) dada en [Ω .cm].
- Otra magnitud utilizada es la **Conductividad** (σ) dada en $[\Omega^{-1}. cm^{-1}]$ o [Siemens/metro] , [S/m] y se define como la inversa de la **resistividad**.

Materiales	Resistividad ($\Omega.cm$)
Aisladores	$10^5 < \rho$
Semiconductores	$10^{-3} < \rho < 10^5$
Conductores	$\rho < 10^{-3}$

Ya sea que se definan por la conductividad o la resistividad, los materiales electrónicos se dividen en conductores, aisladores y semiconductores.

Clasificación de los materiales electrónicos

Conductores.

- Un material conductor permite el flujo de electrones oponiendo una mínima resistencia.
- Cobre, es el metal más empleado como conductor eléctrico en aplicaciones industriales y residenciales, dado el balance que presenta entre su conductividad y el precio.
- Oro, Es un material empleado en montajes electrónicos de microprocesadores y circuitos integrados. También se emplea para fabricar los bornes de las baterías de vehículos, entre otras aplicaciones. La conductividad del oro es aproximadamente 20% menor que la conductividad del cobre recocido. Sin embargo, es un material muy duradero y resistente a la corrosión.

Conductores.

- Plata, Con una conductividad de 6,30x10⁷ [S/m] (9-10%) superior a la conductividad del cobre recocido, es el metal con mayor conductividad eléctrica conocido a la fecha.
- Se trata de un material muy maleable y dúctil, con una dureza comparable a la del oro o el cobre.
- No obstante, su costo es sumamente elevado, por lo que su uso no es tan común en la industria.
- Otra propiedad de los metales es que son buenos conductores del calor y de la electricidad.

Conductores.

https://zmscable.es/cable-conductor/

Aisladores.

- Los aisladores muestran un comportamiento altamente resistivo para el flujo de la corriente eléctrica.
- Esto se debe a la baja cantidad de electrones libres que poseen.
- Vidrio
- Papel
- Teflón
- Madera
- Cerámica
- Goma (caucho)
- Plásticos y polímeros orgánicos
- Se utilizan como cubiertas de cables o motores, también en líneas de alta tensión para separar lineas de transmisión de alta tensión.

Aisladores.

VÍCTOR HUGO SERRANO

Aisladores.

VÍCTOR HUGO SERRANO

Semiconductores

Se utilizan para fabricar transistores, diodos, tiristores, circuitos integrados, celdas fotovoltaicas, etc.

Estos componentes pueden estar formados por cristales de silicio simple (puro) o por cristales compuestos.

Semiconductores más utilizados en dispositivos electrónicos

Germanio

Ge Facil de encontrar Gran disponibilidad Fácil de refinar Inestable térmicamente Formado por 1 solo cristal

Silicio

Si

Abundante

Precisa refinamiento 99,99% Menor Sensibilidad térmica Formado por 1 solo cristal PC, Telefonía,..

Semiconductores más utilizados en dispositivos electrónicos

Arseniuro de galio GaAs Dificil de fabricar en alta pureza Velocidad superior al silicio Circuitos integrados a gran escala (VLSI) Fabricación muy costosa Formado por la unión de dos cristales

Electrónica Analógica-Mg. Víctor Hugo Serrano

Características de los materiales compuestos

- Alta velocidad de operación. (Alta mobilidad de los electrones).
- Generan señales de alta frecuencia (micro-onda).
- Baja tensión de operación.
- Emiten luz visible, infraroja, laser.
- Sensibilidad a la luz. (Fotodetectores)
- Sensibilidad al magnetismo. (Sensores)
- Resistentes a la radiación y temperatura. (celdas solares)

Estructura atómica. Modelo de Bohr

http://www.engineeringa

EKT 102: Basic Electronic Engineering

Estructura atómica. Modelo de Bohr

Estructura atómica. Modelo de Bohr

Electrónica Analógica-Mg. Víctor Hugo Serrano

Electrones de valencia

- Son los electrones de la capa más externa.
- Indica el potencial requerido para remover electrones de la estructura atómica.
- Este potencial es significativamente más bajo que el requerido para cualquier otro electrón en la estructura.
- El Silicio y el Germanio tiene cuatro electrones de valencia.
- El Galio tiene tres electrones de valencia.
- El Arsénico tiene cinco electrones de valencia.

Enlace covalente

- La idea de enlace covalente fue sugerida en 1916 por G. N. Lewis.
- Los átomos pueden adquirir estructura de gas noble compartiendo electrones para formar un enlace de pares de electrones.
- Regla del octeto: Los átomos tienden a ganar, perder o compartir electrones para alcanzar 8 electrones en la capa de valencia.
- La unión se debe a la fuerza de atracción entre el núcleo (carga positiva)y los electrones (carga negativa) compartidos.
- La unión covalente permite formar moléculas.
- Existe otro tipo de unión: enlace iónico que no se estudiara en este curso.

Enlace covalente del átomo de silicio

Enlace covalente del átomo de silicio.

Semiconductor Intrinseco - Cristal de Silicio SI SI SI SI SI SI SI Victor Hugo Serrano 🦳 sı 💽 sı 💽 sı 💽 sı 💽 sı 💽 Victor Huge Serrano Victor Hugo Serrano Victor Hago Sernano 🦳 si 💽 si 💽 si 💽 si 💽 si 💽

Electrónica Analógica-Mg. Víctor Hugo Serrano

Semiconductores intrínsecos

- Son elementos puros.
- Forman una red cristalina.
- A temperatura ambiente se comportan como aislantes.
- Presentan flujo de electrones y huecos por acción térmica.
- La corriente total es nula.

Semiconductor intrínseco. Banda de energía. Niveles

- Cuanto más alejado está un electrón del núcleo, mayor es su estado de energía.
- Todo electrón que haya abandonado a su átomo padre tiene un estado de energía mayor.

Semiconductores intrínsecos. Banda de energía a O Kelvin.

Electrónica Analógica-Mg. Víctor Hugo Serrano

Semiconductor intrínseco. Banda de energía con energía calorífica.

Electrónica Analógica-Mg. Víctor Hugo Serrano

Semiconductor intrínseco. Banda de energía para diferentes elementos

- Un electron-volt es la energía de un electrón que fue acelerado a travez de una diferencia de potencial de 1 volt
- $1eV = 1.6 \times 10^{19}$ joules.

Semiconductores. Alteración de propiedades eléctricas

- La conductividad se modifica por:
- Cambio de temperatura.(Energía térmica)
- Incidencia de la luz. (Fotones)
- Diferencia de potencial. (Energía eléctrica)
- Agregado de impurezas o dopaje.
 - El proceso de dopaje consiste en agregar impurezas al cristal semiconductor para aumentar su conductividad y obtener dos tipos de portadores:
 - electrones y huecos.

Semiconductores. Alteración de propiedades eléctricas

- Al incrementarse la temperatura, más uniones covalentes son quebradas.
- 2. Se crean más electrones libres y huecos.

Ruptura de unión covalente

- 1. Incremento de temperatura.
- 2. Electrón libre.
- 3. En la capa exterior se crea una región de carga positiva. (hueco o laguna)
- 4. El átomo se convierte en ion positivo.
- 5. Suposición: El hueco tiene carga positiva de una magnitud igual a la carga negativa del electrón.
- Suposición: Los electrones libres son atraídos a los huecos (carga positiva).
- 7. Al recombinarse el par hueco-electrón el átomo vuelve a ser electricamente neutro.

Rupturas de uniones covalentes

Electrónica Analógica-Mg. Víctor Hugo Serrano

Rupturas de uniones covalentes por efecto de un campo eléctrico.

Adaptado de: Alternative energy sources: Electricity by solar radiation

Rupturas de uniones covalentes por efecto de un campo eléctrico.

http://www.angelfire.com/la/SEMICONDUCTORES/mecani.html

Rupturas de uniones covalentes por efecto de un campo eléctrico.

https://electronics.stackexchange.com/questions/33610/fundamental difference between a metal and a semiconductor

Movimiento de electrones y huecos

When a valence electron moves left to right to fill a hole while leaving another hole behind, the hole has effectively moved from right to left. Gray arrows indicate effective movement of a hole.

EKT 102: Basic Electronic Engineering

Semiconductores intrinsecos. Resumen

- Baja concentración de portadores, (huecos y electrones), a temperatura ambiente.
- Para obtener una densidad de corriente apreciable se precisa un campo eléctrico grande.
- Solución: Agregar impurezas en el material intrínseco.
- Las impurezas se agregan 1 parte en 10 millones.

Semiconductores extrínsecos

Un material semiconductor que ha sido sometido al proceso de dopado se conoce como material extrínseco.

- Generalmente las impurezas pueden ser:
 - · Elementos del grupo III.
 - Elementos del grupo V.
- Según las impurezas agregadas, los materiales extrínsecos se clasifican en:
 - · Materiales tipo n.
 - Materiales tipo p.

Semiconductores extrínsecos

Electrónica Analógica-Mg. Víctor Hugo Serrano

Semiconductores extrínsecos. Semiconductor tipo n

- Se agregan elementos pentavalentes: Antimonio, Arsénico, Fósforo.
- Se forman cuatro enlaces covalentes.
- Queda un quinto electrón libre.
- Los electrones se denominan Portadores mayoritarios.
- Los huecos se denominan Portadores minoritarios.

Semiconductores extrínsecos. Semiconductor tipo n

Efecto de las impurezas de un donador en la estructura de la banda de energía.

- Las impurezas difundidas con cinco electrones de valencia se conocen como átomos donadores.
- lacktriangle Un nivel de energía discreto (llamado nivel donador) aparece en la banda prohibida con una E_g .

Semiconductores extrínsecos. Semiconductor tipo P

- Se agregan elementos con tres electrones de valencia(trivalente): boro, aluminio, galio e indio.
- Se forman tres enlaces covalentes.
- Queda un cuarta unión covalente sin completar.
- Los huecos se denominan Portadores mayoritarios.
- Los electrones se denominan Portadores minoritarios.

Semiconductores extrínsecos. Semiconductor tipo p

- Las impurezas difundidas con tres electrones de valencia se llaman átomos aceptores.
- 2. El material tipo p es eléctricamente neutro.
- Los huecos se mueven como carga positiva dentro del cristal.
- 4. El movimiento de los huecos sigue el sentido convencional de corriente.

Portadores mayoritarios y minoritarios

 En un material tipo p el hueco se llama portador mayoritario y el electrón portador minoritario.

- En un material tipo n el electrón se llama portador mayoritario y el hueco portador minoritario.
- Ion positivo: es el átomo al que le falta un electrón.
- Ion negativo: es el átomo al que le sobra un electrón.

Unión PN

