

SF1625 Envariabelanalys Tentamen Måndagen 12 mars 2018

Skrivtid: 08.00-11.00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av tre delar; A, B och C, som vardera ger maximalt 12 poäng. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

- 1. Bestäm alla primitiva funktioner till $f(x) = \frac{(\ln(x))^3}{x}$. (4 p)
- 2. Bestäm Taylorpolynomet av grad 2, omkring x = 1, till $g(x) = e^{-x^2}$. (4 p)
- 3. Ge definitionen av derivatan till en funktion φ i en punkt x. (4 **p**)

DEL B

- 4. Visa att ekvationen $x^7 + 3x^5 \frac{3}{2x} + 2 = 0$ har en unik lösning i det öppna intervallet (0,1).
- 5. Bestäm integralen $\int_0^1 x\sqrt{1+x} \, dx$. (4 p)
- 6. Funktionen $f(x) = \frac{x^3}{x^2 4}$ är definierad på det öppna intervallet (-2, 2). Visa att f(x) har en invers.

DEL C

- 7. För varje heltal N>0 låter vi $S_N=\sum_{n=1}^N\frac{1}{n\sqrt{n}}$. Serien konvergerar mot ett tal S. Vi vill approximera talet S med S_N . Bestäm något tal N sådan att att felet i approximationen är mindre än 1/100.
- 8. För varje heltal n > 0 definierar vi intervallet $I_n = [-\frac{1}{n}, \frac{1}{n}]$. Låt φ vara en kontinuerlig funktion, definierad för alla tal x. Vi låter φ_n vara det största värdet funktionen φ har på intervallet I_n . Visa att gränsen

$$\lim_{n\to\infty} \varphi_n$$
 existerar, och bestäm detta värdet. (6 p)