A számítástudomány alapjai

Gráfbejárások és legrövidebb utak

2022. szeptember 20.

Munkaterv

- Irányítatlan gráfok esetén a csúcsok közötti elérhetőséget a komponensek ill. feszítő erdő segítségével tudjuk kompakt módon leírni. Irányított gráfokban ez a struktúra ennél jóval bonyolultabb.
- Irányított gráfban fogjuk azt vizsgálni, hogy egy megadott csúcsból a gráf milyen más csúcsai érhetők el, majd az elérhető csúcsokba keresünk legrövidebb utat.
- Ennek során (többek között) egy újfajta módszert látunk a feszítőfa (ill. feszítő erdő) keresésére.
- A továbbiakban irányított gráfokkal foglalkozunk: irányítatlan gráf esetén arra az irányított gráfra gondolunk, amit az irányítatlanból az élek oda-vissza irányításával kapunk. Ezzel a módszerrel az irányított gráfra kapott eredmények az irányítatlan esetre is könnyen átültethetők.

A gráfbejárási algoritmus az inputgráf csúcsait és éleit fedezi fel. Minden csúcs az eléretlen \rightarrow elért \rightarrow befejezett állapotokat veszi fel. A bejárás akkor ér véget, amint minden csúcs befejezetté vált.

- 1. Van elért csúcs. Választunk egyet, mondjuk u-t.
- (1a) Ha van olyan uv él, amire v eléretlen, akkor v elértté válik.
- (1b) Ha nincs ilyen uv él, akkor u befejezetté válik.
- 2. Nincs elért csúcs.
- (2a) Ha van eléretlen u csúcs, akkor u-t elértté tesszük.
- (2b) Ha nincs eléretlen csúcs (azaz ∀ csúcs befejezett), akkor END.

A gráfbejárási algoritmus az inputgráf csúcsait és éleit fedezi fel. Minden csúcs az eléretlen \rightarrow elért \rightarrow befejezett állapotokat veszi fel. A bejárás akkor ér véget, amint minden csúcs befejezetté vált.

- 1. Van elért csúcs. Választunk egyet, mondjuk u-t.
- (1a) Ha van olyan uv él, amire v eléretlen, akkor v elértté válik.
- (1b) Ha nincs ilyen *uv* él, akkor *u* befejezetté válik.
- 2. Nincs elért csúcs.
- (2a) Ha van eléretlen u csúcs, akkor u-t elértté tesszük.
- (2b) Ha nincs eléretlen csúcs (azaz ∀ csúcs befejezett), akkor END.

Szélességi bejárás (BFS) szabálya:

Az 1. esetben mindig a legkorábban elért u-t választjuk.

Input: G = (V, E) (ir/ir.tatlan) gráf, $(v \in V \text{ gyökérpont}^1)$.

Output: (1) A csúcsok elérési és befejezési sorrendje.

(2) Az élek osztályozása:

faél: Olyan él, ami mentén egy csúcs elértté vált.

uv előreél: nem faél, de u-ból v-be faélekből irányított út vezet.

uv visszaél: v-ből u-ba faélekből irányított út vezet.

keresztél: minden más él (u és v közt nincs leszármazási viszony).

Input: G = (V, E) (ir/ir.tatlan) gráf, $(v \in V \text{ gyökérpont}^1)$.

Output: (1) A csúcsok elérési és befejezési sorrendje.

(2) Az élek osztályozása:

faél: Olyan él, ami mentén egy csúcs elértté vált.

uv előreél: nem faél, de u-ból v-be faélekből irányított út vezet.

uv visszaél: v-ből u-ba faélekből irányított út vezet.

keresztél: minden más él (u és v közt nincs leszármazási viszony).

(3) A bejárás fája: a faélek alkotta részgráf.

(A bejárás fája valójában egy gyökereiből kifelé irányított erdő.)

Input: G = (V, E) (ir/ir.tatlan) gráf, $(v \in V \text{ gyökérpont}^1)$.

Output: (1) A csúcsok elérési és befejezési sorrendje.

(2) Az élek osztályozása:

faél: Olyan él, ami mentén egy csúcs elértté vált.

uv előreél: nem faél, de u-ból v-be faélekből irányított út vezet.

uv visszaél: v-ből u-ba faélekből irányított út vezet.

keresztél: minden más él (u és v közt nincs leszármazási viszony).

(3) A bejárás fája: a faélek alkotta részgráf.

Megf: Irányítatlan esetben az előreél és a visszaél ugyanazt jelenti.

Terminológia: Ha a bejárás fájában *u*-ból *v*-be irányított út vezet, akkor *u* a *v* őse és *v* az *u* leszármazottja. A faél és az előreél tehát ősből leszármazottba, a visszaél leszármazottból ősbe vezet.

¹A gyökér kezdetben elért állapotú, ezért kivétel az általános szabály alól.

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \ldots, v_n . Ekkor az alábbiak teljesülnek.

(1) Ha i < j, akkor v_i -t hamarabb fejezzük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_i gyerekeit az elérési sorrendben.

Biz: A v_i -t befejezésének pillanatában v_i minden gyereke elért, de v_j -nek még egy gyereke sem az. Ezért v_j gyerekeit a v_i csúcs befejezése után érjük el, majd ezt követően fejezzük be v_i -t.

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \ldots, v_n . Ekkor az alábbiak teljesülnek.

- (1) Ha i < j, akkor v_i -t hamarabb fejezzük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_j gyerekeit az elérési sorrendben.
- (2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.

Biz: Ha v_i -t korábban érjük el, mint v_j -t, akkor (1) miatt v_i -t korábban is fejezzük be v_j -nél. Ezért bármely két csúcs sorrendje ugyanaz az elérési sorrendben mint befejezési sorrendben. Tehát az elérési sorrendnek meg kell egyeznie a befejezési sorrenddel.

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \ldots, v_n . Ekkor az alábbiak teljesülnek.

- (1) Ha i < j, akkor v_i -t hamarabb fejezzük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_i gyerekeit az elérési sorrendben.
- (2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.
- (3) **Gráfél nem ugorhat át faélt**: ha $k < i < j \le \ell$ és $v_i v_j$ faél, akkor $v_k v_\ell$ nem lehet gráfél.

Biz: Ha $v_k v_\ell \in E(G)$, akkor v_ℓ szülője v_k vagy egy v_k -t megelőző csúcs. (1) miatt v_j szülője sem következhet v_k után, vagyis v_i nem lehet v_i szülője.

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \ldots, v_n . Ekkor az alábbiak teljesülnek.

- (1) Ha i < j, akkor v_i -t hamarabb fejezzük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_j gyerekeit az elérési sorrendben.
- (2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.
- (3) **Gráfél nem ugorhat át faélt**: ha $k < i < j \le \ell$ és $v_i v_j$ faél, akkor $v_k v_\ell$ nem lehet gráfél.
- (4) **Nincs előreél.** (Irányítatlan eset: csak faél és keresztél van.) **Biz:** Indirekt: ha $v_i v_j$ előreél lenne, akkor v_i -ből v_j -be irányított út vezetne a BFS-fában, és $v_i v_j$ ennek a faélekből álló útnak az utolsó élét átugrná.

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \ldots, v_n . Ekkor az alábbiak teljesülnek.

- (1) Ha i < j, akkor v_i -t hamarabb fejezzük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_j gyerekeit az elérési sorrendben.
- (2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.
- (3) Gráfél nem ugorhat át faélt: ha $k < i < j \le \ell$ és $v_i v_j$ faél, akkor $v_k v_\ell$ nem lehet gráfél.
- (4) Nincs előreél. (Irányítatlan eset: csak faél és keresztél van.)
- (5) Ha a BFS-fában k-élű irányított út vezet u-ból v-be, akkor G-ben nincs k-nál kevesebb élű uv-út.

Biz: Ha lenne a BFS fa-beli útnál kevesebb élű út G-ben, akkor lenne olyan gráfél, ami faélt ugrik át.

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \ldots, v_n . Ekkor az alábbiak teljesülnek.

- (1) Ha i < j, akkor v_i -t hamarabb fejezzük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_j gyerekeit az elérési sorrendben.
- (2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.
- (3) **Gráfél nem ugorhat át faélt**: ha $k < i < j \le \ell$ és $v_i v_j$ faél, akkor $v_k v_\ell$ nem lehet gráfél.
- (4) Nincs előreél. (Irányítatlan eset: csak faél és keresztél van.)
- (5) Ha a BFS-fában k-élű irányított út vezet u-ból v-be, akkor G-ben nincs k-nál kevesebb élű uv-út.
- (6) A BFS-fa egy legrövidebb utak fája: a BFS-fa v_1 gyökeréből bmely v_i csúcsba vezető faút a G egy legkevesebb élű v_1v_i -útja.

Legrövidebb utak

Def: Adott G (ir) gráf és ℓ : $E(G) \to \mathbb{R}$ hosszfüggvény esetén egy P út hossza a P éleinek összhossza: $\ell(P) = \sum_{e \in E(P)} \ell(e)$. Az u és v csúcsok távolsága a legrövidebb uv-út hossza: $dist_{\ell}(u,v) := \min\{\ell(P) : P \ uv - \text{út}\}\ (\not\exists uv - \text{út} \Rightarrow dist_{\ell}(u,v) = \infty.)$ Az ℓ hosszfüggvény nemnegatív, ha $\ell(e) \geq 0$ teljesül minden e élre. Az ℓ hosszfv konzervatív, ha G-ben $\not\exists$ negatív összhosszú ir. kör. Cél: Legrövidebb út keresése irányított/irányítatlan gráfban. Megf: Ha $\ell(e) = 1$ a G minden e élére, akkor $\ell(P)$ a P élszáma. Ezért a BFS-fa minden gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből, azaz a szélességi bejárás tekinthető egy legrövidebb utat kereső algoritmusnak is. **Def**: Adott G (ir) gráf, $\ell: E(G) \to \mathbb{R}$ hosszfv. és $r \in V(G)$. (r,ℓ) -felső becslés olyan $f:V(G) \to \mathbb{R}$ függvény, ami felülről becsli minden csúcs r-től mért távolságát: $dist_{\ell}(r, v) \leq f(v) \ \forall v \in V(G)$. Triviális (r, ℓ) -felső becslés: $f(v) = \begin{cases} 0 & v = r \\ \infty & v \neq r \end{cases}$. Pontos (r, ℓ) -felső becslés: $f(v) = dist_{\ell}(r, v) \ \forall v \in V(G)$.

Def: Tfh f egy (r, ℓ) -fb és $uv \in E(G)$. Az f uv-élmenti javítása

az az
$$f'$$
, amire $f'(z) = \begin{cases} f(z) & z \neq v \\ \min\{f(v), f(u) + \ell(uv)\} & z = v \end{cases}$

Megf: Tfh az ℓ : $E(G) \to \mathbb{R}$ hosszfv konzervatív és f(r) = 0. Ekkor (1) Az $f(r,\ell)$ -fb élmenti javítása mindig (r,ℓ) -fb-t ad.

Biz: Azt kell megmutatni, hogy van olyan rv-út, aminek a hossza legfeljebb $f(u) + \ell(uv)$. Ha egy legrövidebb ru-utat kiegészítünk az uv éllel, akkor olyan rv-élsorozatot kapunk, aminek az összhossza $dist_{\ell}(r,u) + \ell(uv) \leq f(u) + \ell(uv)$. "Könnyen" látható, hogy az élhosszfv konzervativitása miatt ha van x összhosszúságú rv-élsorozat, akkor van legfeljebb x összhosszúságú rv-út is. Ezek szerint van legfeljebb $f(u) + \ell(u,v)$ hosszúságú uv-út is, azaz az émj után szintén (r,ℓ) -fb-t kapunk.

Def: Tfh f egy (r, ℓ) -fb és $uv \in E(G)$. Az f uv-élmenti javítása az az f', amire $f'(z) = \begin{cases} f(z) & z \neq v \\ \min\{f(v), f(u) + \ell(uv)\} & z = v \end{cases}$ Megf: Tfh az $\ell : E(G) \to \mathbb{R}$ hosszfv konzervatív és f(r) = 0. (1) Az $f(r,\ell)$ -fb élmenti javítása mindig (r,ℓ) -fb-t ad. (2) $f(r, \ell)$ -fb (pontos) \iff (f-en $\not\exists$ érdemi élmenti javítás). Biz: \Rightarrow : Ha f pontos, akkor biztosan nincs rajta érdmei élmenti javítás: ha volna, akkor egy felső becslés a pontos érték alá csökkenne, így az élmenti javítás nem (r, ℓ) -fb-t eredményezne. \Leftarrow : Legyen $v \in V(G)$ tetsz, és legyen P egy legrövidebb rv-út. A P egyik éle mentén sincs érdemi élmenti javítás, ezért P minden u csúcsára pontos a felső becslés: $f(u) = dist_{\ell}(r, u)$. Ez igaz az út utolsó csúcsára, a tetszőlegesen választott v-re is.

Def: Tfh f egy (r, ℓ) -fb és $uv \in E(G)$. Az f uv-élmenti javítása

az az
$$f'$$
, amire $f'(z) = \begin{cases} f(z) & z \neq v \\ \min\{f(v), f(u) + \ell(uv)\} & z = v \end{cases}$

Megf: Tfh az ℓ : $E(G) \to \mathbb{R}$ hosszfv konzervatív és f(r) = 0.

Ekkor (1) Az $f(r,\ell)$ -fb élmenti javítása mindig (r,ℓ) -fb-t ad.

(2) $f(r,\ell)$ -fb (pontos) \iff (f-en $\not\exists$ érdemi élmenti javítás).

Köv: Adott G, konzervatív ℓ és $r \in V(G)$ esetén ha kiindulunk a triviális (r,ℓ) -fb-ből, és addig végzünk émj-kat, amíg lehet, akkor a végén megkapjuk minden csúcs r-től való távolságát.

Kérdés: Milyen sorrendben végezzül az émj-kat, ha garantáltan gyorsan kell végeznünk a feladattal?

Bemelegítés Fontos spec. eset: nemnegatív élhosszok.

Def: Tfh f egy (r, ℓ) -fb és $uv \in E(G)$. Az f uv-élmenti javítása

az az f', amire $f'(z) = \begin{cases} f(z) & z \neq v \\ \min\{f(v), f(u) + \ell(uv)\} & z = v \end{cases}$

Megf: Tfh az ℓ : $E(G) \to \mathbb{R}$ hosszfv konzervatív és f(r) = 0.

Ekkor (1) Az $f(r,\ell)$ -fb élmenti javítása mindig (r,ℓ) -fb-t ad.

(2) $f(r, \ell)$ -fb (pontos) \iff (f-en $\not\exists$ érdemi élmenti javítás).

Dijkstra-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}_+$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\mathsf{M\"uk\"od\acute{e}s}}$: $U_0 := \emptyset$, f_0 a triv. (r, ℓ) -fb.

Az *i*-dik fázis:

- 1. Legyen $U_i := U_{i-1} \cup \{u_i\}$, ahol u_i olyan csúcs a $V \setminus U_{i-1}$ halmazból, amelyre $f_{i-1}(v)$ minimális.
- 2. f_i : f_{i-1} élmenti javítása minden U_i -ből kivezető $u_i x$ élen. Output: $f_{|V|}$. Megjelöljük a végső $f_{|V|}(v)$ értékeket beállító éleket.

Dijkstra, egy példán

a	Ь	C	d	e	f
0	∞	∞	∞	∞	∞
0	8	∞	2	∞	∞
0	8	∞	2	∞	5
0	6	6	2	∞	5
0	6	6	2	7	5
0	6	6	2	7	5

Dijkstra-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}_+$, $r \in V$. Output: $dist_{\ell}(r, v) \ \forall v \in V$ Működés: $U_0 := \emptyset$, f_0 a triv. (r, ℓ) -fb. Az i-dik fázis:

- 1. Legyen $U_i := U_{i-1} \cup \{u_i\}$, ahol u_i olyan csúcs a $V \setminus U_{i-1}$ halmazból, amelyre $f_{i-1}(v)$ minimális.
- 2. f_i : f_{i-1} élmenti javítása minden U_i -ből kivezető $u_i x$ élen. Output: $f_{|V|}$. Megjelöljük a végső $f_{|V|}(v)$ értékeket beállító éleket. Megf: Ha v-be vezet megjelölt él, akkor vezet r-ből v-be megjelölt éleken út, és ennek hozza megegyezik $f_{|V|}(v)$ -vel. Biz: $f_{|V|}(r) = 0$, és a megjelölt élek mentén haladva az $f_{|V|}$ érték az élhosszal növekszik.

Dijkstra, egy példán

a	Ь	C	d	e	f
0	∞	∞	∞	∞	∞
0	8	∞	2	∞	∞
0	8	∞	2	∞	5
0	6	6	2	∞	5
0	6	6	2	7	5
0	6	6	2	7	5

Dijkstra-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}_+$, $r \in V$. Output: $dist_{\ell}(r, v) \ \forall v \in V$ Működés: $U_0 := \emptyset$, f_0 a triv. (r, ℓ) -fb. Az i-dik fázis:

- 1. Legyen $U_i := U_{i-1} \cup \{u_i\}$, ahol u_i olyan csúcs a $V \setminus U_{i-1}$ halmazból, amelyre $f_{i-1}(v)$ minimális.
- 2. f_i : f_{i-1} élmenti javítása minden U_i -ből kivezető $u_i x$ élen. Output: $f_{|V|}$. Megjelöljük a végső $f_{|V|}(v)$ értékeket beállító éleket. Megf: Ha v-be vezet megjelölt él, akkor vezet r-ből v-be megjelölt éleken út, és ennek hozza megegyezik $f_{|V|}(v)$ -vel. Köv: Ha a Dijkstra-algoritmus helyes, akkor az algoritmus végén a

megjelölt élek egy legrövidebb utak fáját alkotják r gyökérrel.

Megf: Tfh u_1, u_2, \ldots, u_n a G csúcsainak sorrendje a Dijkstra-algoritmus végrehajtása után. (1) Ekkor $f_{|V|}(u_i) \leq f_{|V|}(u_{i+1})$ teljesül $\forall 1 \leq i \leq n$. Biz: Az i-dik fázisban $f_i(u_i) \leq f_i(u_{i+1})$ teljesült az u_i választása miatt. Ezek után $f_i(u_i)$ már nem változott: $f_{|V|}(u_i) = f_i(u_i)$. Ugyan $f_i(u_{i+1})$ még csökkenhetett, de csak az $u_i u_{i+1}$ él mentén történt javítás miatt, hiszen az (i+1)-dik fázisban u_{i+1} bekerül az U_i halmazba, és a hozzá tartozó (r,ℓ) -fb már nem csökken tovább. Ekkor $f_{i+1}(u_{i+1}) = \min\{f_i(u_{i+1}), f_i(u_i) + \ell(u_i u_{i+1})\} \geq f_i(u_i), \text{ mivel}$ $\ell(u_i u_{i+1}) > 0$. Ezért $f_{|V|}(u_i) = f_i(u_i) \le f_{i+1}(u_{i+1}) = f_{|V|}(u_{i+1})$

Megf: Tfh u_1, u_2, \ldots, u_n a G csúcsainak sorrendje a Dijkstra-algoritmus végrehajtása után.

- (1) Ekkor $f_{|V|}(u_i) \leq f_{|V|}(u_{i+1})$ teljesül $\forall 1 \leq i \leq n$.
- (2) $f_{|V|}(u_1) \leq f_{|V|}(u_2) \leq \ldots \leq f_{|V|}(u_n)$
- (3) A Dijkstra-algoritmus outputjaként kapott $f_{|V|}$ -n élmenti javítás nem tud változtatni.

Biz: Tegyük fel, hogy $u_i u_j \in E(G)$ a G egy tetsz. éle. Ha i > j, akkor (2) miatt $f_{|V|}(u_i) \geq f_{|V|}(u_j)$, ezért az $u_i u_j$ mentén történő javítás nem tudja $f_{|V|}(u_j)$ -t csökkenteni, hisz $\ell(u_i u_j)$ pozitív. Ha pedig i < j, akkor az i-dik fázisban megtörtént az $u_i u_j$ mentén történő javítás, és ezt követően $f(u_i)$ nem változott, azaz $f_{|V|}(u_i) = f_i(u_i)$. A másik (r,ℓ) -fb pedig csak tovább csökkenhetett a későbbi émj-ok során $f_{|V|}(u_j) \leq f_i(u_j)$. Ezért az $u_i u_j$ él mentén sem az i-dik fázisban, sem később nincs érdemi javítás.

Megf: Tfh u_1, u_2, \ldots, u_n a G csúcsainak sorrendje a Dijkstra-algoritmus végrehajtása után.

- (1) Ekkor $f_{|V|}(u_i) \leq f_{|V|}(u_{i+1})$ teljesül $\forall 1 \leq i \leq n$.
- (2) $f_{|V|}(u_1) \leq f_{|V|}(u_2) \leq \ldots \leq f_{|V|}(u_n)$
- (3) A Dijkstra-algoritmus outputjaként kapott $f_{|V|}$ -n élmenti javítás nem tud változtatni.

Tétel: A Dijkstra algoritmus helyesen működik, azaz G minden csúcsára igaz, hogy $dist(r, v) = f_{|V|}(v)$.

Biz: A Dijkstra-algoritmus az f_0 triviális (r,ℓ) -fb-ből indul ki, és élmenti javításokat alkalmaz. Így minden f_i (speciálisan $f_{|V|}$ is) (r,ℓ) -fb lesz. A fenti (3)-as megfigyelés miatt $f_{|V|}$ -n nem végezhető érdemi élmenti javítás. Ezért egy korábbi (2)-es megfigyelés miatt $f_{|V|}$ pontos (r,ℓ) -fb, azaz $f_{|V|}(v) = dist_{\ell}(r,v) \ \forall v \in V(G)$.

Megf: Tfh u_1, u_2, \ldots, u_n a G csúcsainak sorrendje a Dijkstra-algoritmus végrehajtása után.

- (1) Ekkor $f_{|V|}(u_i) \leq f_{|V|}(u_{i+1})$ teljesül $\forall 1 \leq i \leq n$.
- (2) $f_{|V|}(u_1) \leq f_{|V|}(u_2) \leq \ldots \leq f_{|V|}(u_n)$
- (3) A Dijkstra-algoritmus outputjaként kapott $f_{|V|}$ -n élmenti javítás nem tud változtatni.

Tétel: A Dijkstra algoritmus helyesen működik, azaz G minden csúcsára igaz, hogy $dist(r, v) = f_{|V|}(v)$.

"Lépésszámanalízis": Ha a G gráfnak n csúcsa és m éle van, akkor a Dijkstra-algoritmus n-szer keresi meg legfeljebb n szám minimumát, ami összességében legfeljebb $konst \cdot n^2$ lépést igényel. Ezen kívül legfeljebb m élmenti javítást végez, ami $konst' \cdot m$ lépés. Összességében tehát legfeljebb $konst'' \cdot (n^2 + m)$ lépésre van szükség, az algoritmus hatékony.