

PMatch: Probabilistic Subgraph Matching on Huge Social Networks

Matthias Bröcheler, Andrea Pugliese & V.S. Subrahmanian

Example Query

Simple query, yet complex structure and difficult to answer by hand

Query Uncertainty

Was it really a drama movie?

Probabilistic Matching Query

Intelligence and Security

Intelligence and Security

PMatch Applications

Intelligence

- Information retrieval on open source data

Search

- Facilitate productive use of social network data

Security

Finding suspicious patterns

Social Network Analysis

- Querying as a primitive operation for data retrieval

Outline

Motivation

PMatch Query Definition

PMatch Query Answering

Experiments

Related Work & Conclusion

PMatch Query

- Set of Boxes
 - Each contains edges
 - Has a weight
 - Infinity → certainty or "core" of query
- Naturally extends exact subgraph matching queries

 ∞

friend

?f

attende

attended

organized

Peter

Francis

PMatch Query

- Matching boxes
 - Let b_i = 1 if box B_i is
 matched by a substitution
 else 0 for i=1 to n (= # of boxes)
 - Weights w_i, offset w₀
- Probability of match (user defined)
 - =0 if b_0 = 0, core must be matched

$$= \frac{1}{1 + e^{-(w_0 + \sum_{i=1}^n w_i b_i)}}$$

PMatch Query Answer

- All substitutions
 with probability
 above user defined
 threshold τ
- Need to eliminate redundant answers
- 3 tines
 Prama

 6 Prama

attende

attended

?u

organized

Peter

Francis

friend

?f

PMatch Answer

■
$$1/(1+e^{-(-5+6)}) \approx 73\%$$
- $w_0=-5$

Outline

Motivation

PMatch Query Definition

PMatch Query Answering

Experiments

Related Work & Conclusion

PMatch Query Answering

- Try to find all answers at once by exploiting shared substructures and efficiently maintain data structures.
- Depth first-search algorithm
 - Terminates when search space is exhausted or answer probability falls below threshold.
- Provably correct

PMatch Initialization

PMatch Data Structures

Maintained per vertex:

- R: Set of substitution candidates
 - Pairs of the form <x,H_x>, where x is a potential substitution and H_x the set of box ids it matches.
 - H_x maintained as bit vector
- S: Set of box ids for which R has been initialized

PMatch Initialization

Vertex selection heuristic

- Goodness(v) = $\frac{\text{progress(v)}}{\text{cost(v)}}$
- Progress(v) = cumulative box weight of edges to be processed
 - Normalize weight by box cardinality
- Cost(v) = use standard cost models from exact subgraph matching
 - Cardinality, estimated selectivity

Initial vertex selection

Processing of "Francis" vertex

Threshold Pruning

PMatch

PMatch Algorithm

 $R = \{ < Peter's Bday | 2,3 >,$ <Silvester 09|2,3>} $S = \{2,3\}$ **Francis** ?p organized {2} Attended {2.3} $R = \{ < Jenny | 2,3 > \}$ $S = \{2,3\}$ Peter ?u $R = {< peter | 2>}$ $S = \{2\}$?b Drama $R = \{\}$ S = {} $\tau = 0.75$ $\theta = \{?f/Mark,?b/Titanic\}$

Processing vertex "?b". Maintaining box indices

Found Result

Query Splitting

Selecting "Peter" first causes query to be split.

Outline

Motivation

PMatch Query Definition

PMatch Query Answering

Experiments

Related Work & Conclusion

Experimental Setup I

- Implementation in Java (approx 5500 loc) on top of Neo4j
- Datasets
 - Friendship Network (Flickr, Orkut, Livejournal,
 Youtube): 778 million edges
 - Delicious Network: 1.1 billion edges
- Query Benchmark for each dataset: 9
 PMatch queries each of increasing complexity

Experimental Setup II

- Compared
 - PMatch-1: box weight
 - PMatch-2: normalized box weight
 - DOGMA: Exact matching for all combination
 - Neo4j: Exact matching for all combinations
 - Too slow not shown in the charts
- System: AMD Opteron, 15K RPM 300 GB SAS HD, 2GB of heap space

Friendship network (small queries)

Friendship network (large queries)

Delicious network (small queries)

Delicious network (large queries)

Outline

Motivation

PMatch Query Definition

PMatch Query Answering

Experiments

Related Work & Conclusion

Related Work I

- Exact Subgraph Matching
 - Many systems: RDF-3X, OWLIM, YARS (2), Sesame, Jena, DOGMA, COSI etc.
 - Efficient on-disk index structures
 - Query answering algorithms focused on exact queries (e.g. SPARQL).
- No treatment of query uncertainty

Related Work II

- Approximate Subgraph Matching
 - SAGA, TALE, Grafil, etc
 - Database containing many small graphs
 - Do not scale to large social networks
 - Query uncertainty is defined in the system.
- PMatch provides an expressive language to specify probabilistic queries and answers them efficiently.

Conclusion

- Query uncertainty often occurs in social network search, information retrieval and pattern matching.
- PMatch provides a language to concisely express and algorithms to efficiently answer probabilistic subgraph matching queries.

dogma.umiacs.umd.edu

Related Work III

- Data Uncertainty
 - Specified at the tuple or edge level
 - How to answer certain (SQL) queries over uncertain data and what are the answer probabilities?

First Name	Last Name	Income	Probability
John	Smith	80,000	0.6
Alice	Baker	85,000	0.5
Jennifer	Temper	90,000	0.9

Related Work III

- Data Uncertainty
 - How to encode dependencies?
 - Need to make strong independence assumptions to be efficient
 - Where are the probabilities coming form?
- Instead, we assume certain data and model uncertainty in the user specified query.

Query Uncertainty Motivation

- User Uncertainty
 - User does not know what she is looking for exactly
- Lack of schema
 - Lack of schema complicates query design
- Data heterogeneity
 - Can be caused by data integration
- Noisy or Missing Data
 - It's real world data