B. Claims

A complete listing of all the claims appears below; this listing replaces all earlier amendments and listings of the claims.

1. (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (1) in a molecule;

$$\begin{array}{c}
R\\N-H\\C=O\\(CH_2)m\\O\\(CH_2)n-O\\
\end{array}$$
(1)

2

Wherein wherein R represents $-A_1$ -SO₂R₁, R₁ represents OH, a halogen atom, ONa, OK, or OR_{1a}, R_{1a} and A₁ each independently represent a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R, R₁, R_{1a}, A₁, m, and n each are independently have the above meaningselected for each unit.

2. (Currently Amended) A polyhydroxyalkanoate according to claim 1, comprising one or more units each represented by the chemical formula (2), (3), (4A), or (4B) in a molecule as the units of the chemical formula (1);

wherein R₂ represents OH, a halogen atom, ONa, OK, or OR_{2a}, R_{2a} represents a

phenyl group, A2 represents a linear or branched alkylene group having 1 to 8 carbon atoms, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when

linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted

multiple units exist, A2, R2, R2a, m, and n each-are independently have the above

meaningselected for each unit,

wherein R_{3a}, R_{3b}, R_{3c}, R_{3d}, and R_{3e} each independently represent SO₂R_{3f} (R_{3f} represents OH, a halogen atom, ONa, OK, or OR_{3f1} (R_{3f1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{3g} (R_{3g} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph represents a phenyl group), and at least one of these groups represents SO₂R_{3f}, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R_{3a}, R_{3b}, R_{3c}, R_{3d}, R_{3e}, R_{3f}, R_{3f1}, R_{3g}, m, and n each are independently selected have the above meaning for each unit,

$$R_{4g}$$
 R_{4g}
 R_{4g}
 R_{4b}
 R

2

Wherein wherein R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, and R_{4g} each independently represent SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1} (R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph represents a phenyl group), and at

least one of these groups represents SO_2R_{4o} , n represents an integer selected from 1 to 4 and m represents an integer selected from 0 to 8, and wherein when multiple units exist, R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} , R_{4g} , R_{4g} , R_{4o} , R_{4o1} , R_{4p} , m, and n each are independently have the above meaningselected for each unit),

$$R_{4h}$$
 R_{4h}
 R_{4h}

wherein R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4l}, R_{4m}, and R_{4n} each independently represent SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4ol}, <u>OR</u>_{4ol} (R_{4ol} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph represents a phenyl group), and at least one of these groups represents SO₂R_{4o}, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and wherein when multiple units exist, R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4h}, R_{4m}, R_{4o}, R_{4o}, R_{4o}, m, and n each are independently have the above

meaningselected for each unit.

3. (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (5).

$$(CH2)m$$

$$(CH2)n - O$$

$$(5)$$

Wherein wherein R₅ represents a hydrogen atom, a group for forming a salt, or

group having a saccharide, n represents an integer selected from 1 to 4, m represents an integer

 $R_{5a,}\,R_{5a}$ represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, or a

selected from 0 to 8, when n = 4, R_5 represents only a group having a saccharide for m = 0, and

when multiple units exist, R_5 , R_{5a} , m, and n each are independently have the above

meaningselected for each unit.)

4. (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (6):

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

2

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, when n = 3, m represents an integer selected from 0 and 2 to 8, and when multiple units exist, m and n each are independently have the above meaning selected for each unit.

5. (Currently Amended) A polyhydroxyalkanoate according to any one of claims 1 to 4, further comprising a unit represented by the chemical formula (7) in a molecule;

$$\begin{pmatrix} 0 & R_7 \\ 0 & 0 \end{pmatrix}$$
 (7)

2

wherein (R_7 represents a linear or branched alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 1 or 2 carbon atoms (alkylene groups each independently have 1 or 2 carbon atoms), or an alkylidene group having 1 to 5 carbon atoms, which may be substituted by <u>an aryl group</u>, and when multiple units exist, R_7 's R_7 each is independently have the above meaning for each unit.

6. (Currently Amended) A method of producing a polyhydroxyalkanoate represented by the chemical formula (6), comprising the a step of polymerizing a compound represented by the chemical formula (8) in the a presence of a catalyst;

$$(CH_2)n$$
 O
 O
 O
 O
 O
 O
 O
 O
 O

2

wherein n represents an integer selected from 1 to 4_n when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, and when n = 3, m represents an integer selected from 0 and 2 to 8,

$$(CH_2)m$$
 $(CH_2)n^{-0}$
 $(CH_2)n^{-0}$

2

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, when n = 3, m represents an integer selected from 0 and 2 to 8, and when multiple units exist, m and n each-are independently have the above meaningselected for each unit.

7. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (10), comprising the <u>a</u> step of oxidizing a double bond portion of a polyhydroxyalkanoate containing a unit represented by the chemical formula (9);

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

2

wherein n represents an integer selected from 1 to 4 and m represents an integer selected from 0 to 8, <u>and</u> when multiple units exist, m and n <u>each-are</u> independently <u>have the above meaning selected</u> for each unit,

$$\begin{array}{c} COOR_{10} \\ (CH_2)m \\ \hline \\ O \end{array}$$

$$\begin{array}{c} (CH_2)n \\ \hline \end{array}$$

$$\begin{array}{c} (CH_2)n \\ \hline \end{array}$$

2

wherein R_{10} represents a hydrogen atom or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, m, n, and R_{10} each are independently have the above meaning selected for each unit.

8. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (1),(1) comprising the a step of subjecting a polyhydroxyalkanoate containing a unit represented by the chemical formula (10) and at least one kind of amine compound represented by the chemical formula (11) to a condensation reaction;

$$COOR_{10}$$
 $(CH_2)m$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

Wherein wherein R_{10} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, m, n, and R_{10} each are independently have the above meaning selected for each unit;

$$H_2N - A_3 - SO_2R_{11}$$
 (11)

wherein R_{11} represents OH, a halogen atom, ONa, OK, or OR_{11a} , R_{11a} and A_3 are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{11} , R_{11a} , and A_3 each are independently have the above meaningselected for each unit,

$$\begin{array}{c}
R \\
N-H \\
C=O \\
(CH_2)m \\
O \\
\end{array}$$
(CH₂)n (1)

wherein R represents $-A_1$ -SO₂R₁, R₁ represents OH, a halogen atom, ONa, OK, or OR_{1a}, R_{1a} and A₁ each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R, R₁, R_{1a}, A₁, m, and n each are independently have the above meaning selected for each unit.

9. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (101), comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by the chemical formula (99) to react with a base; and

allowing the <u>a</u> compound obtained in the foregoing step to react with a compound represented by the chemical formula (100);):

$$(CH_2)n^{-O}$$
 (9 9)

wherein n represents an integer selected from 1 to 4, and when multiple units exist, n's eachn is independently have the above meaning selected for each unit,

(100)

2

wherein m represents an integer selected from 0 to 8, X represents a halogen atom, R_{100} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when n=4 in the chemical formula (99), m is not equal to 0,

$$(CH2)m$$

$$(CH2)n -O \rightarrow (101)$$

2

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist, R_{101} , m, and n each are independently have the above meaning-selected for each unit.

10. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (102),(102) comprising the <u>a</u> step of hydrolyzing a polyhydroxyalkanoate containing a unit represented by the chemical formula (101) in the <u>a</u> presence of an acid or an alkali or the <u>a</u> step of subjecting the polyhydroxyalkanoate to hydrogenolysis including <u>a</u> catalytic reduction;

$$(CH2)m$$

$$(CH2)n -O$$

$$(101)$$

ad from 1 to 1 when n represents on integer

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist, R_{101} , m, and n each are independently have the above meaning selected for each unit,

$$(CH_2)_{m}$$

$$(CH_2)_{n}$$

$$(CH_2)_{n}$$

$$(102)$$

2

wherein R_{102} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4. when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, and when multiple units exist, R_{102} , m, and n each-are independently have the above meaning selected for each unit.

11. (Currently Amended) A method of producing a polyhydroxyalkanoate

containing a unit represented by the chemical formula (104),(104) comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by the chemical formula (99) to react with a base; and

allowing the <u>a</u> compound obtained in the foregoing step to react with a compound represented by the chemical formula (103);):

$$(OH_2)n^{-O}$$

2

(In the formula, wherein n represents an integer selected from 1 to 4. When, and when multiple units exist, n's each n is independently have the above meaning selected for each unit.).

2

Wherein wherein R_{103} represents $-A_{103}$ - SO_2R_{103a} , R_{103a} represents OH, a halogen atom, ONa, OK, or OR_{103b} , R_{103b} and A_{103} are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{103} , R_{103a} , R_{103b} , and A_{103} each-are independently have the above meaning selected for each unit,

$$\begin{array}{c}
R & 104 \\
N-H \\
O = \\
(CH_2)_2 \\
(CH_2)_n - O
\end{array}$$
(1 0 4)

Wherein wherein n represents an integer selected from 1 to 4, R_{104} represents - A_{104} -SO₂ R_{104a} , R_{104a} represents OH, a halogen atom, ONa, OK, or OR_{104b} , R_{104b} and A_{104} each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{104} , R_{104a} , R_{104b} , A_{104} , and n are each independently have the above meaningselected for each unit.