INTERNET DAS COISAS APLICADA À DOMÓTICA

Autor: Fernando Mendonça de Almeida Orientador: Marco Túlio Chella

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

- A presença da automação residencial é muito menor do que outros tipos de automação
- A automação automobilística é um grande exemplo
 - Vidros elétricos fazem parte dos pacotes básicos de carros populares
 - Direção Elétrica, navegadores GPS, marcha automática são relativamente comuns

- No setor industrial linhas de montagens altamente automatizadas são comuns
 - Ex: Fabricação de Chips
- Tanto no setor automobilístico como no setor industrial a automação é tratada como investimento
- No setor residencial, os moradores tratam como despesas

- Um grande problema da automação residencial é a falta de comunicação entre as soluções tradicionais
- A Associação Brasileira de Automação Residencial (AURESIDE) (2013) divulga a importância de contratar um profissional denominado "Integrador de Sistemas Residenciais"

- Esse trabalho visa apresentar uma arquitetura de rede de nós sensores/atuadores sem fio utilizando os conceitos de:
 - Internet das Coisas,
 - Domótica;
 - Arquitetura Orientada a Serviços

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

Objetivos

- Objetivo Geral
- Objetivos Específicos

Objetivo Geral

 Demonstrar como a loT e a SOA podem agregar valor à Domótica

Objetivos Específicos

- Projetar nós sensores e atuadores orientados a serviços;
- Conectar esses nós em uma rede doméstica sem fio de baixo custo;
- Integrar a rede doméstica à Internet;

Objetivos Específicos

- Implementar a rede projetada em um estudo de caso;
- Fornecer um projeto e uma implementação de baixo custo e livre para que possa ser replicado com facilidade

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

Contextualização

- Automação Residencial
- Domótica
- Internet das Coisas

Contextualização

- Automação Residencial
- Domótica
- Internet das Coisas

- A automação residencial e predial originou-se dos conceitos utilizados em automação industrial (SENA, 2005)
- Para a automação industrial é mais importante a imunidade a falhas
- Para a automação residencial é mais importante interfaces amigáveis

- Um marco importante foi o surgimento dos módulos X-10 na década de 70
- Esse módulos utilizavam a própria rede elétrica para a comunicação
- Na década de 80 houve a popularização dos PCs que forneciam interfaces amigáveis
- No final da década de 90 a popularização do telefone celular e da Internet despertam o interesse dos consumidores

Figura 1 - Possibilidades da Automação Residencial

Fonte: SENA (2005)

- Uma aplicação de destaque da automação residencial é a automação inclusiva
- A automação inclusiva trata de facilitar um deficiente, ou um idoso, a ter uma vida mais autônoma e independente

Contextualização

- Automação Residencial
- Domótica
- Internet das Coisas

Domótica

- A domótica está para automação residencial assim como a robótica está para a automação industrial
- Ela trata de sistemas mecânicos, possivelmente controlados eletronicamente, com o objetivo de automatizar as tarefas do lar

Domótica

- Um conceito bastante utilizado em sistemas de domótica é o de triggers (disparos)
- Os disparos são detectados como eventos e gerarão um resultado, semelhante a uma GUI
- Soluções oferecem o disparo de eventos de forma manual, aleatória e/ou programada

Domótica

 Soluções atuais fornecem acesso remoto, através da Internet

Contextualização

- Automação Residencial
- Domótica
- Internet das Coisas

- O conceito ainda não é bem definido
- Atzori et al (2010) definem três orientações para várias visões da IoT:
 - Visão Orientada às Coisas
 - Originada da palavra "Coisas"
 - Visão Orientada à Internet
 - Originada da palavra "Internet"
 - Visão Orientada à Semâtica
 - Originada da problemática dos dados transmitidos

Figura 2 - As três visões da IoT,

Fonte: Autoria Própria (2013), adaptado de Atzori et al (2010)

- Dentre as visões é possível citar:
 - RFID Tags identificadoras
 - NFC Campos de comunicação próximos
 - WSAN Redes de nós sensores e atuadores
 - IPSO IP para Objetos Inteligentes
 - Internet 0 IP sobre qualquer coisa

- Os Middlewares são bastante presentes
- A arquitetura mais usada para os middlewares é a SOA

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

- A arquitetura consiste em uma rede de sistemas sem fio
- Cada sistema compõe um nó
- O nó pode ser:
 - Local
 - De Fronteira
 - Mestre

Figura 3 - Possível configuração da rede Fonte: Autoria Própria (2013)

- Elementos da Rede
- Protocolo
- Estudo de Caso

- Elementos da Rede
- Protocolo
- Estudo de Caso

Elementos da Rede

- Nó Local
- Nó de Fronteira
- Nó Mestre
- Cliente

Elementos da Rede

- Nó Local
- Nó de Fronteira
- Nó Mestre
- Cliente

Nó Local

- É composto por:
 - · Controlador;
 - N Sensores;
 - M Atuadores;
 - Módulo de comunicação wireless

Nó Local

Figura 4 - Diagrama de blocos do Nó local Fonte: Autoria Própria (2013)

Nó Local

- Pode ser Classificado como:
 - Sensor X Não-sensor;
 - Atuador X Não-atuador;
 - Cliente X Não-cliente;
 - Servidor X Não-servidor;
 - Roteador X Não-roteador

Nó Local

	Nó Sensor?	Nó Atuador?	Nó Cliente?	Nó Servidor?	Nó Roteador?
Dimmer para lâmpada	Não	Sim	Não	Sim	Sim ou Não
Interface com Usuário	Sim	Não	Sim	Não	Sim ou Não
Sensor de temperatura, umidade e luminosidade	Sim	Não	Não	Sim	Sim ou Não
Extensor de rede (Repetidor)	Não	Não	Não	Não	Sim

Tabela 1 - Classificação de alguns exemplos de possibilidades de nós locais Fonte: Autoria Própria (2013)

Elementos da Rede

- Nó Local
- Nó de Fronteira
- Nó Mestre
- Cliente

Figura 5 – Diagrama de Nó de Fronteira com suas conexões Fonte: Autoria Própria (2013)

Elementos da Rede

- Nó Local
- Nó de Fronteira
- Nó Mestre
- Cliente

Nó Mestre

Figura 6 – Diagrama de blocos do nó mestre com a conexão com o nó de fronteira Fonte: Autoria Própria (2013)

Elementos da Rede

- Nó Local
- Nó de Fronteira
- Nó Mestre
- Cliente

Cliente

- Um cliente é qualquer elemento que irá consumir algum serviço fornecido pela rede
- Pode ser outro nó local ou ser um cliente externo

Metodologia

- Elementos da Rede
- Protocolo
- Estudo de Caso

Protocolo

- Módulo Wireless
- Pacote
- Endereçamento e Roteamento

Protocolo

- Módulo Wireless
- Pacote
- Endereçamento e Roteamento

Módulo Wireless

- Faz parte dos Nós Locais e do nó Mestre
- Responsável pela comunicação entre os nós da rede
- Deve ser responsável pelo menos pela camada física e de enlace

Protocolo

- Módulo Wireless
- Pacote
- Endereçamento e Roteamento

Pacote

- Conterá informações para:
 - Comunicação entre dois nós;
 - Informações de cosumo e fornecimento de serviços

Protocolo

- Módulo Wireless
- Pacote
- Endereçamento e Roteamento

Endereçamento e Roteamento

- Por haver mais de um nó, torna-se necessário um endereçamento
- Pela topologia escolhida, há a necessidade de um roteamento
- Esse problema será discutido posteriormente

Metodologia

- Elementos da Rede
- Protocolo
- Estudo de Caso

Estudo de Caso

- O estudo de caso será apresentado posteriormente
- Ele implementa os conceitos propostos nesse trabalho

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

Desenvolvimento

- Tecnologias Escolhidas
- Comunicação
- Protocolo
- Estudo de Caso

Desenvolvimento

- Tecnologias Escolhidas
- Comunicação
- Protocolo
- Estudo de Caso

Tecnologias Escolhidas

- Nó local
- Nó de Fronteira
- Módulo de Comunicação sem Fio
- Custo Total

Tecnologias Escolhidas

- Nó local
- Nó de Fronteira
- Módulo de Comunicação sem Fio
- Custo Total

- Opções analisadas para o microcontrolador:
 - · Atmel;
 - · Microchip;
 - Texas Instruments

- A Atmel possui uma linha de microcontroladores AVR
 - Ex: TinyAVR, megaAVR, XMEGA
- O mais interessante para os produtos da Atmel é a plataforma Arduino
- O Arduino é uma plataforma composta de uma placa de desenvolvimento e uma IDE, ambos de código aberto

Figura 7 – Arduino Uno R3 Fonte: http://arduino.cc

- A Microchip possui a linha PIC de microcontroladores
- Essa linha possui diversas famílias, para diversas aplicações
 - Exemplos de 8 bits
 - 10, 12, 14, 16, 18
 - Exemplos de 16 bits
 - 24, 30
 - Exemplos de 32 bits
 - 32

- A Texas possui o MPS430 como principal microcontrolador de 8 bits
- Inspirada no Arduino surgiu a plataforma LaunchPad

Figura 8 – MSP430 LaunchPad Fonte: http://www.ti.com

- Considerando os microcontroladores com mesmo poder de processamento escolheu-se aquela que fornecia mais facilidade de desenvolvimento
- Foi escolhida a plataforma Arduino por possuir diversas bibliotecas livres e uma comunidade bastante ativa

Tecnologias Escolhidas

- Nó local
- Nó de Fronteira
- Módulo de Comunicação sem Fio
- Custo Total

- Para o nó de Fronteira foram analisados as placas com processadores mais potentes
- Foi analisado aqueles que possuiam processadores com núcleo ARM
 - BeagleBoard;
 - i.MX53;
 - RaspberryPi;
 - Arduino Due;
 - Android 4.0 Mini PC

- Pelo menor poder de processamento dentre as plataformas analisadas, o Arduino Due foi descartado
- Dentre as outras a com melhor custo benefício foi a Raspberry Pi

- A RaspberryPi possui:
 - Processador de aplicação ARM1176JZ-F (Núcleo ARM Cortex-A8)
 - Co-processador Multimedia dual core VideoCore IV
 - Codificador e Decodificador de video H.264 Full HD 1080p30
 - GPU VideoCore de baixa potência e alta performance com OpenGL-ES 1.1/2.0

Figura 9 – Raspberry Pi

Fonte: http://upload.wikimedia.org/wikipedia/commons/d/d2/Raspberry_Pi_Photo.jpg

Tecnologias Escolhidas

- Nó local
- Nó de Fronteira
- Módulo de Comunicação sem Fio
- Custo Total

Módulo de Comunicação sem Fio

- Para o módulo de comunicação sem fio foram analisados:
 - Bluetooth;
 - Wi-Fi;
 - Zigbee;
 - 6LoWPAN;
 - NRF24L01

Módulo de Comunicação sem Fio

- O módulo mais barato foi o NRF24L01
- Ele implementa as camadas Física, de Enlace, de Rede e de Transporte
- Apesar de uma certa limitação na camada de Transporte, ele se mostrou viável para a utilização

Tecnologias Escolhidas

- Nó local
- Nó de Fronteira
- Módulo de Comunicação sem Fio
- Custo Total

Custo Total

Componente	Preço por unidade	Quantidade	Preço
RaspberryPi	R\$ 170,00	1	R\$ 170,00
Arduino	R\$ 70,00	3	R\$ 210,00
Módulo NRF24L01	R\$ 20,00	3	R\$ 60,00
Cabo USB tipo A/B	R\$ 5,00	3	R\$ 15,00
LED RGB	R\$ 1,10	1	R\$ 1,10
LDR	R\$ 1,30	1	R\$ 1,30
Resistor 10k Ohm	R\$ 0,05	1	R\$ 0,05
Resistor 1k Ohm	R\$ 0,05	3	R\$ 0,15
Cabo Ethernet	R\$ 8,00	1	R\$ 8,00
		Total	R\$ 465,60

Tabela 2 – Tabela de custos do trabalho

Fonte: Autoria Própria (2013)

Desenvolvimento

- Tecnologias Escolhidas
- Comunicação
- Protocolo
- Estudo de Caso

Figura 10 – Diagrama de Sequência ilustrando a comunicação entre os nós da rede Fonte: Autoria Própria (2013)

- Nó de Fronteira com Nó Mestre
- Nó Mestre com Nó Local
- Cliente remoto com Nó de Fronteira
- Nó Local com Nó Local

- Nó de Fronteira com Nó Mestre
- Nó Mestre com Nó Local
- Cliente remoto com Nó de Fronteira
- Nó Local com Nó Local

Nó de Fronteira com Nó Mestre

- Comunicação entre o Nó Mestre e o Nó de Fronteira
- Feito através da porta USB simulando uma porta Serial
- Foi usada a biblioteca Serial padrão no Arduino
- Na Raspberry Pi foi usada a biblioteca serialport para NodeJS

Nó de Fronteira com Nó Mestre

Figura 11 – Diagrama de atividades do código executado no Arduino Fonte: Autoria Própria (2013)

Nó de Fronteira com Nó Mestre

Figura 12 – Diagrama de atividades do código executado na Raspberry Pi Fonte: Autoria Própria (2013)

- Nó de Fronteira com Nó Mestre
- Nó Mestre com Nó Local
- Cliente remoto com Nó de Fronteira
- Nó Local com Nó Local

Nó Mestre com Nó Local

- Foi usado o código de exemplo da biblioteca MIRF que utiliza o módulo NRF24L01
- Implementa um ping entre o cliente e o servidor
- O código pode ser visto na pasta de exemplos no link

https://github.com/aaronds/arduino-nrf24l01/tree/master/Mirf

- Nó de Fronteira com Nó Mestre
- Nó Mestre com Nó Local
- Cliente remoto com Nó de Fronteira
- Nó Local com Nó Local

Cliente remoto com Nó de Fronteira

- Foi implementado na Raspberry Pi um servidor HTTP que pega as informações importantes da requisição e envia de volta na resposta
- Como cliente foi utilizado o programa curl que permite, através da linha de comando, que se envie uma requisição HTTP

Cliente remoto com Nó de Fronteira

```
curl -X POST -d \
"{\"usuario\":\"Fernando\",\"senha\":\"123deoliveira4\"}" \
localhost:8080 -H "content-type:application/json"
```

```
127.0.0.1
{'user-agent': 'curl/7.26.0',
  host: 'localhost:8080',
  accept: '*/*',
  'content-type': 'application/json',
  'content-length': '49'}
/
POST
Fernando
123deoliveira4
{"usuario": "Fernando", "senha": "123deoliveira4"}
```

- Nó de Fronteira com Nó Mestre
- Nó Mestre com Nó Local
- Cliente remoto com Nó de Fronteira
- Nó Local com Nó Local

Nó Local com Nó Local

- Foi utilizado o código de exemplo da biblioteca MIRF como base
- Foi alterado o código para que houvesse um nó entre o cliente e o servidor
- Esse nó recebe pacotes do cliente e do servidor e a depender de um byte na mensagem ele encaminha o pacote para um ou outro

Nó Local com Nó Local

Figura 13 – Diagrama de blocos representando a comunicação entre os nós locais Fonte: Autoria Própria (2013)

Desenvolvimento

- Tecnologias Escolhidas
- Comunicação
- Protocolo
- Estudo de Caso

Protocolo

- Pacote
- Endereçamento e Roteamento

Protocolo

- Pacote
- Endereçamento e Roteamento

- O objetivo do pacote é permitir a implementação de serviços nos nós locais
- O protocolo usado em serviços REST geralmente é o HTTP
- O HTTP é composto por uma mensagem de requisição e uma resposta

- Implementar o protocolo HTTP diretamente não é viável
- Uma requisição simples necessitou de 55 bytes
- Foi necessário uma análise das informações necessárias da requisição e da resposta

- Na Requisição foram retiradas as seguintes informações:
 - Recurso acessado
 - Método realizado
 - Parâmetro do método
- Na resposta foram retiradas as seguintes informações
 - Código de estado
 - Conteudo da Resposta

 As informações do cabeçalho do pacote podem ser vistos na figura abaixo

Figura 14 – Informações do cabeçalho do pacote projetado Fonte: Autoria Própria (2013)

- Para a compactação e descompactação do pacote de uma estrutura para um vetor de bytes e viceversa foi desenvolvido um programa
- Esse programa recebe como entrada uma descrição de pacote e retorna uma sequência de instruções para a compactação e descompactação

```
1 addr1:8
2 addr2:8
3 id:4
4 r0r:1
5 rInfo:3
```

Figura 15 – Exemplo de descrição de pacote

Fonte: Autoria Própria (2013)

Figura 16 – Exemplo de saída do programa desenvolvido nessa parte do trabalho Fonte: Autoria Própria (2013)

Protocolo

- Pacote
- Endereçamento e Roteamento

Endereçamento e Roteamento

- O Endereçamento nesse trabalho não teve muito enfoque
- Ele é feito de forma estática, definida no código do programa
- O roteamento também é feito de forma estática, não possuindo uma tabela de roteamento

Endereçamento e Roteamento

Figura 17 – Diagrama exemplificado o funcionamento do roteamento nestre trabalho Fonte: Autoria Própria (2013)

Desenvolvimento

- Tecnologias Escolhidas
- Comunicação
- Protocolo
- Estudo de Caso

Estudo de Caso

- O Estudo de Caso apresenta um cenário simples ilustrando uma automação residencial
- Os nós locais são: node1 e node2
- O node1 é responsável por controlar uma lâmpada colorida
- O node2 é responsável por controlar automaticamente o node1

Estudo de Caso

 Além dos nós locais, do nó mestre e do nó de fronteira, também foi implementado um cliente externo em javascript para consumir os serviços da rede

Estudo de Caso

Figura 18 – Diagrama da rede implementada no Estudo de Caso Fonte: Autoria Própria (2013)

	Nó Sensor?	Nó Atuador?	Nó Cliente?	Nó Servidor?	Nó Roteador?
Nó Mestre	Não	Não	Não	Não	Sim
nodel	Não	Sim	Não	Sim	Não
node2	Sim	Não	Sim	Sim	Não

Tabela 3 – Classificação dos nós da rede

Fonte: Autoria Própria (2013)

Nó local	Recurso do Nó	Método	Entrada	Saída
node1	and ED	GET		Cor em RGB
node1	corLED	POST	Cor em RGB	Cor em RGB
node2	controleAuto	GET		1 ou 0
node2		POST	1 ou 0	1 ou 0

Tabela 4 – Serviços fornecidos pela rede Fonte: Autoria Própria (2013)

Nó local	Serviço Consumido	Método
node2	corLED	POST

Tabela 5 – Serviço consumido pela rede Fonte: Autoria Própria (2013)

- O Nó Mestre deste estudo de caso é o único nó roteador
- Ele pode receber pacotes do node1, node2 ou nó de fronteira
- É necessário fazer o roteamento dos pacotes recebidos por ele

Figura 19 – Diagrama de atividades implementado no nó mestre Fonte: Autoria Própria (2013)

- Para os nós locais suportarem SOA, foi necessário adaptar o fluxo do programa original deles
- Primeiramente desenvolveu o laço principal dos mesmos de forma que o tratamento de pacotes não estivesse sendo feito
- Depois adaptou esse laço em um padrão que foi utilizado nos dois nós, e possivelmente pode ser utilizado em outros nós

Figura 20 – Diagrama de atividades padrão dos nós locais Fonte: Autoria Própria (2013)

- Para o Nó de fronteira foram implementados:
 - O processamento da requisição quando recebe uma requisição HTTP;
 - O processamento da resposta quando recebe um pacote da porta Serial

Figura 21 - Diagrama de atividades do processamento da requisição no nó de fronteira Fonte: Autoria Própria (2013)

Figura 22 – Diagrama de atividades do processamento da resposta no nó de fronteira Fonte: Autoria Própria (2013)

- O cliente externo foi implementado com três seletores deslizantes e dois botões
- Os seletores escolhem as cores da lâmpada colorida do node1
- Um dos botões ativa ou desativa o modo automático do node2
- O outro botão atualiza os valores de cor da lâmpada colorida

Figura 23 – Cliente externo escrito em JavaScript Fonte: Autoria Própria (2013)

Figura 24 – Diagrama esquemático do node1 Fonte: Autoria Própria (2013)

Figura 25 – Diagrama esquemático do node1 Fonte: Autoria Própria (2013)

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

Figura 26 – Foto do nó de Fronteira Fonte: Autoria Própria (2013)

Figura 27 – Foto do Nó Mestre Fonte: Autoria Própria (2013)

Figura 28 – Foto do node1 Fonte: Autoria Própria (2013)

Figura 29 – Foto do node2 Fonte: Autoria Própria (2013)

Demonstração

- Os objetivos definidos no início do trabalho foram alcançados
- A metodologia mostra como foi feito o projeto da rede
- O desenvolvimento mostra como os nós foram conectados
- A rede pode ser considerada de baixo custo

- O nó de fronteira processa o protocolo HTTP para compactá-lo e descompactá-lo para o pacote da rede local
- O estudo de caso foi implementado com sucesso e é possível consumir os serviços da rede através de um webService REST

- Além dos obetivos alcançados, houve alguns resultados decorrente do desenvolvimento do trabalho
- Um deles foi um programa que gerasse automaticamente as instruções de codificação e decodificação de um pacote
- Outro foi uma possível padronização de implementação de serviços em sistemas embarcados

- E talvez o mais importante foi o projeto de uma rede sem fio de baixo custo, utilizando softwares livres que pode ser replicada para outros trabalhos
- Essa rede por ser usada para diversas finalidades, tanto acadêmicas como de pesquisa
- Uma rede já montada facilita em um trabalho cujo objetivo seja melhorar o roteamento, por exemplo

Internet das Coisas aplicada à Domótica

- Introdução
- Objetivos
- Contextualização
- Metodologia
- Desenvolvimento
- Resultados
- Referências

- ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The Internet of Things: A survey. Computer Networks, 54, 1 de Junho de 2010.
- AURESIDE. Casa Inteligente Inclusiva, 4 de março de 2010. Disponível em http://www.aureside.org.br/artigos/default.asp? file=01.asp&id=87>, acesso em 20 de março de 2013.
- AURESIDE. Curso de Integrador de Sistemas Residenciais. Disponível em http://www.aureside.org.br/treinamento/default.asp ?file=introducao.asp>, acesso em 11 de agosto de 2013.

- AUTO-ID LABS. Disponível em http://www.autoidlabs.org, acesso em 3 de abril de 2013.
- DRISCOLL, Edward B., Jr.. The history of X10.
 Disponível em
 http://home.planet.nl/~lhendrix/x10_history.htm, acesso em 20 de setembro de 2013.
- DUNKELS, Adam; VASSEUR, JP. IP for Smart Objects, Internet Protocol for Smart Objects (IPSO) Alliance, White Paper #1, 2008.
- GERSHENFELD, Neil; KRIKORIAN, Raffi; COHEN, Danny. The Internet of Things. Scientific America, p.76-81, 1 de outubro de 2004

- HUI, Jonathan; CULLER, David; CHAKRABARTI, Samita. 6LoWPAN: Incorporating IEEE 802.15.4 into the IP Architecture – Internet Protocol for Smart Objects (IPSO) Alliance, White Paper #3, 2009.
- IEEE. IEEE 802.15 WPAN™ Task Group 4 (TG4).
 Disponível em
 http://www.ieee802.org/15/pub/TG4.html, acesso em 3 de abril de 2013.
- ILUFLEX. Iluflex Automação Sem Fio. Disponível em http://www.iluflex.com.br/, acesso em 2 de outubro de 2012.

- PRESSER, Mirko; GLUHAK, Alexander. The Internet of Things: Connecting the Real World with the Digital World, EURESCOM mess@ge The Maganize for Telecom Insiders, vol. 2, 2009. Disponível em http://archive.eurescom.eu/message/messageSep2009/The-Internet-of-Thing%20-Connecting-the-real-world-with-the-digital-world-asp>, acesso em 3 de abril de 2013.
- RFC. Hypertext Transfer Protocol HTTP/1.1.
 Disponível em
 http://www.rfc-editor.org/rfc/rfc2616.txt, acesso em 16 de agosto de 2013.

- SENA, Diane C. S.. Automação Residencial.
 Projeto de Graduação (Graduação em Engenharia Elétrica) Departamento de Engenharia Elétrica.
 Espírito Santo: Universidade Federal do Espírito Santo, 2005.
- SNELL, James. Resource-oriented vs.
 Activity-oriented Web services. Disponível em
 http://www.ibm.com/developerworks/webservices/library/ws-restvsoap/, acesso em 9 de agosto de 2013.

- TOMA, Ioan; SIMPERL, Elena; HENCH, Graham. A joint roadmap for Semantic technologies and the Internet of Things.
- TOPTENREVIEWS. 2013 Best Home Automation Systems Compared and Reviewed. Disponível em http://home-automation-systems-review.toptenreviews.com/, acesso em 23 de abril de 2013.

INTERNET DAS COISAS APLICADA À DOMÓTICA

Autor: Fernando Mendonça de Almeida Orientador: Marco Túlio Chella