Inverse Linear Transformations

Dr. Biswambhar Rakshit

Rotation in the plane Show that the L.T. $T: R^2 \to R^2$ given by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

has the property that it rotates every vector in R^2 counterclockwise about the origin through the angle

Sol: θ

 $\mathbf{v} = (x, y) = (r \cos \alpha, r \sin \alpha)$ (Polar coordinates: for every point on the xy-plane, it can be represented by a set of (r, α))

r: the length of $\mathbf{v} = \sqrt{x^2 + y^2}$

 α : the angle from the positive x-axis counterclockwise to the vector **v**

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r \cos \alpha \\ r \sin \alpha \end{bmatrix}$$
$$= \begin{bmatrix} r \cos \theta \cos \alpha - r \sin \theta \sin \alpha \\ r \sin \theta \cos \alpha + r \cos \theta \sin \alpha \end{bmatrix}$$
according to the addition formula of trigonometric identities

- r: remain the same, that means the length of $T(\mathbf{v})$ equals the length of \mathbf{v}
- $\theta + \alpha$: the angle from the positive x-axis counterclockwise to the vector $T(\mathbf{v})$

Thus, $T(\mathbf{v})$ is the vector that results from rotating the vector \mathbf{v} counterclockwise through the angle θ

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator that rotates each vector in the xy-plane through the angle θ .
- Since every vector in the xy-plane can be obtained by rotating through some vector through angle θ , we have $R(7) = R^2$.
- The only vector that rotates into $\mathbf{0}$ is $\mathbf{0}$, so ker(7) = { $\mathbf{0}$ }.

Ex: Finding a basis for the kernel

Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$, where \mathbf{x} is in \mathbb{R}^5 and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$$

Find a basis for ker(T) as a subspace of R^5

Sol:

To find ker(T) means to find all **x** satisfying $T(\mathbf{x}) = A\mathbf{x} = \mathbf{0}$.

Thus we need to form the augmented matrix $\begin{bmatrix} A \mid \mathbf{0} \end{bmatrix}$ first

$$[A \mid \mathbf{0}] =$$

$$\begin{bmatrix} A & | \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 & 0 \\ 2 & 1 & 3 & 1 & 0 & 0 \\ -1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 8 & 0 \end{bmatrix} \xrightarrow{G.J.E.} \begin{bmatrix} 1 & 0 & 2 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & s^0 & 0 & t^0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2s + t \\ s + 2t \\ s \\ -4t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

$$B = \{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}$$
: one basis for the kernel of T

4

Kernel and Range of a Matrix Transformation

If $T_A: R^n \to R^m$ is multiplication by the $m \times n$ matrix A, then,

- the kernel of T_A is the null space of A
- the range of T_A is the column space of A

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$. The range of T is equal to the column space of A, i.e. range(T) = CS(A)

- (1) According to the definition of the range of \(\mathcal{T}(\mathbf{x}) = A\mathbf{x}\), we know that the range of \(\mathcal{T}\) consists of all vectors \(\mathbf{b}\) satisfying \(A\mathbf{x} = \mathbf{b}\), which is equivalent to find all vectors \(\mathbf{b}\) such that the system \(A\mathbf{x} = \mathbf{b}\) is consistent
- (2) Ax = b can be rewritten as

$$A\mathbf{x} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \mathbf{b}$$

Therefore, the system $A\mathbf{x} = \mathbf{b}$ is consistent iff we can find $(x_1, x_2, ..., x_n)$ such that \mathbf{b} is a linear combination of the column vectors of A, i.e. $\mathbf{b} \in CS(A)$.

Thus, we can conclude that the range consists of all vectors \mathbf{b} , which is a linear combination of the column vectors of A or said $\mathbf{b} \in CS(A)$. So, the column space of the matrix A is the same as the range of T, i.e. range(T) = CS(A)

- X For the orthogonal projection of any vector (x, y, z) onto the xyplane, i.e. T(x, y, z) = (x, y, 0)
- \times According to the above analysis, we already knew that the range of *T* is the *xy*-plane, i.e. range(*T*)={(*x*, *y*, 0)| *x* and *y* are real numbers}
- \times T can be defined by a matrix A as follows

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ such that } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

 \times The column space of A is as follows, which is just the xy-plane

$$CS(A) = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}, \text{ where } x_1, x_2 \in R$$

Ex: Finding a basis for the range of a linear transformation

Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$, where \mathbf{x} is \mathbb{R}^5 and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$$

Find a basis for the range of T

Sol: Since range(T) = CS(A), finding a basis for the range of T is equivalent to fining a basis for the column space of A. We can easily find that the basis for the column space is $\{(1,2,-1,0),(2,1,0,0),(1,1,0,2)\}$.

Ex: Finding the rank and nullity of a linear transformation

Let $T: \mathbb{R}^5 \to \mathbb{R}^7$ be a linear transformation

- (a) Find the dimension of the kernel of *T* if the dimension of the range of *T* is 2
- (b) Find the rank of T if the nullity of T is 4
- (c) Find the rank of T if $ker(T) = \{0\}$

Sol:

- (a) dim(domain of T) = n = 5dim(kernel of T) = $n - \dim(\text{range of } T) = 5 - 2 = 3$
- (b) rank(T) = n nullity(T) = 5 4 = 1
- (c) rank(T) = n nullity(T) = 5 0 = 5

Definition

one-to-one

A linear transformation $T:V \rightarrow W$ is said to be **one-to-one** if T maps distinct vectors in V into distinct vectors in W.

• One-to-one :

A function $T: V \to W$ is called one-to-one if the preimage of every \mathbf{w} in the range consists of a single vector. This is equivalent to saying that T is one-to-one iff for all \mathbf{u} and \mathbf{v} in V, $T(\mathbf{u}) = T(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$

one-to-one

not one-to-one

Examp A One-

Example A One-to-One Linear Transformation

Let
$$T: P_n \to P_{n+1}$$
 be the linear transformation $T(\mathbf{p}) = T(p(x)) = xp(x)$

If
$$\mathbf{p} = p(x) = c_0 + c_1 x + ... + c_n x^n$$
 and $\mathbf{q} = q(x) = d_0 + d_1 x + ... + d_n x^n$

are distinct polynomials, then they differ in at least one coefficient. Thus,

$$T(\mathbf{p}) = c_0 x + c_1 x^2 + ... + c_n x^{n+1} \text{ and}$$

$$T(\mathbf{q}) = d_0 x + d_1 x^2 + ... + d_n x^{n+1}$$

Also differ in at least one coefficient. Thus, since it maps distinct polynomials \mathbf{p} and \mathbf{q} into distinct polynomials $\mathcal{T}(\mathbf{p})$ and $\mathcal{T}(\mathbf{q})$.

Theorem: One-to-one linear transformation

Let $T: V \to W$ be a linear transformation. Then

T is one-to-one iff $ker(T) = \{0\}$

Pf:

 (\Rightarrow) Suppose T is one-to-one

Then $T(\mathbf{v}) = \mathbf{0}$ can have only one solution : $\mathbf{v} = \mathbf{0}$ i.e. $ker(T) = \{0\}$

Due to the fact that
$$T(\mathbf{0}) = \mathbf{0}$$
 in

$$(\Leftarrow)$$
 Suppose $ker(T) = \{0\}$ and $T(\mathbf{u}) = T(\mathbf{v})$

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) = \mathbf{0}$$

 $T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) = \mathbf{0}$ T is a linear transformation, see Property of linear transform

$$\therefore \mathbf{u} - \mathbf{v} \in \ker(T) \Rightarrow \mathbf{u} - \mathbf{v} = \mathbf{0} \Rightarrow \mathbf{u} = \mathbf{v}$$

 \Rightarrow T is one-to-one (because $T(\mathbf{u}) = T(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$)

4

Example: One-to-one and not one-to-one linear transformation

(a) The linear transformation $T: M_{m \times n} \to M_{n \times m}$ given by $T(A) = A^T$ is one-to-one

because its kernel consists of only the $m \times n$ zero matrix

(b) The zero transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is not one-to-one because its kernel is all of \mathbb{R}^3

4

Equivalent Statements

Theorem 8.3.1

If T:V→W is a linear transformation, then the following are equivalent.

- (a) T is one-to-one
- (b) The kernel of T contains only zero vector; that is , ker(T) = {0}
- (c) Nullity (T) = 0

Theorem

If V is a finite-dimensional vector space and $T: V \rightarrow V$ is a linear operator then the following are equivalent.

- (a)T is one to one
- (b) $ker(T) = \{0\}$
- (c)nullity(T) = 0
- (d) The range of T is V; that is R(T) = V

Onto:

A function $T: V \to W$ is said to be onto if every element in W has a preimage in V(T is onto W when W is equal to the range of T)

Theorem: Onto linear transformations

Let $T: V \to W$ be a linear transformation, where W is finite dimensional. Then T is onto if and only if the rank of T is equal to the dimension of W

$$\operatorname{rank}(T) = \dim(\operatorname{range} \operatorname{of} T) = \dim(W)$$

The definition of the rank of a linear transformation transformation

The definition of onto linear transformation transformations

The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is given by $T(\mathbf{x}) = A\mathbf{x}$. Find the nullity and rank of T and determine whether T is one-to-one, onto, or neither

(a)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

$$(b) A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

$$(d) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

6.20

$$T: R^{n} \rightarrow R^{m}$$

$$= \dim(R^{n})$$

$$= n$$

$$= m$$

$$= dim(R^{n})$$

$$= m$$

Inverse Linear Transformations

If $T: V \to W$ is a linear transformation, then the <u>range of T</u> denoted by R(T), is the subspace of W consisting of all images under T of vectors in V.

If T is one-to-one, then each vector \mathbf{w} in R(T) is the image of a unique vector \mathbf{v} in V.

2020/5/9 21

This uniqueness allows us to define a new function, call the inverse of T, denoted by T^{-1} , which maps \mathbf{w} back into \mathbf{v} .

The mapping $T^{-1}: R(T) \to V$ is a <u>linear transformation</u>. Moreover,

 $\mathbf{w} = T(\mathbf{v})$

R(T)

$$\mathcal{T}^{-1}(\mathcal{T}(\mathbf{v})) = \mathcal{T}^{-1}(\mathbf{w}) = \mathbf{v}$$

 $\mathcal{T}(\mathcal{T}^{-1}(\mathbf{w})) = \mathcal{T}(\mathbf{v}) = \mathbf{w}$

Inverse Linear Transformations

- If $T: V \to W$ is a one-to-one linear transformation, then the domain of T^{-1} is the range of T.
- The range may or may not be all of W (one-to-one but *not* onto).
- For the special case that $T: V \rightarrow V$, then the linear transformation is one-to-one and onto.

4

Theorem

If T₁:U->V and T₂:V->W are one to one linear transformation then:

 $(a)T_2 \circ T_1$ is one to one

(b)
$$(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$$