Задачи по геометрии для подготовки к Всероссийской олимпиаде школьников

Г. Р. Соснов

28 августа 2023 г.

1 Задачи

- 1. Неравнобедренный треугольник ABC вписан в окружность Ω . Касательная к Ω , проведенная в точке A пересекает прямую BC в точке P. Пусть M и N середины сторон AB и AC. Прямая MN пересекает Ω в точках X и Y. Докажите, что $\angle XPA = \angle YPC$.
- 2. Дана трапеция ABCD ($AB \parallel CD$, AB < CD). Точки L на отрезке AB и K на отрезке DC таковы, что $\frac{AL}{LB} = \frac{DK}{KC}$. Точки P и Q на отрезке KL таковы, что $\angle DPC = \angle ABC$ и $\angle AQB = \angle DCB$. Докажите, что P, Q, C и B лежат на одной окружности.
- 3. Дан неравнобедренный остроугольный треугольник ABC. Пусть BB_1 его симедиана. Луч BB_1 вторично пересекает описанную около треугольника ABC окружность в точке L. Пусть H_A , H_B , H_C основания высот треугольника ABC. Луч BH_B вторично пересекает описанную около треугольника ABC окружность в точке T. Докажите, что H_A , H_C , T, L лежат на одной окружности. (Двенадцатая олимпиада по геометрии им. И.Ф.Шарыгина $\mathbb{N} 12$)
- 4. Пусть ABC треугольник с ортоцентром H, а M середина BC. Пусть P и Q различные точки на окружности с диаметром AH, отличные от A, такие что M лежит на прямой PQ. Докажите, что ортоцентр APQ лежит на описанной окружности ABC.

- 5. Пусть ABC остроугольный разносторонний треугольник, а M, N, P середины BC, CA и AB соответственно. Пусть серединные перпендикуляры к AB и AC пересекают луч AM в точках D и E соответственно, а прямые BD и CE пересекаются в точке F внутри треугольника ABC. Докажите, что точки A, N, F и P лежат на одной окружности.
- 6. Пусть ABC остроугольный треугольник, в котором AC < BC; M середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ . Докажите, что описанная окружность ω треугольника Δ касается окружности Ω . (Всерос 2016 10.8)

2 Решения

1. Проведём прямую l параллельную BC через точу A. Пусть l пересекает BC в бесконечно удалённой точке T_{∞} . Так как $YX \parallel BC \parallel AT_{\infty}$, то $\angle AT_{\infty}Y = \angle PT_{\infty}X$. Так как AP касательная к Ω , то $\angle XAP = \angle XYA$, а так как $XY \parallel AT_{\infty}$, то $\angle XAP = \angle XYA = \angle YAT_{\infty}$. Значит точки X и Y - изогонально сопряжены в треугольнике $T_{\infty}AP$, поэтому $\angle YPT_{\infty} = \angle XPA$ (см. рис. 1).

Рис. 1:

2. Пусть AD и BC пересекаются в точке F, тогда K, L и F - лежат на одной

прямой. Действительно, сделаем гомотетию с центром в точке F переводящую AB в DC, она переводит L в K, а значит F, L и K - лежат на одной прямой. Пусть гомотетия с центром в точке F, переводящая K в L, переводит P' в P, а Q в Q'. Тогда $PC \parallel P'B$, $QB \parallel Q'C$, AP'BQ и DPCQ' - вписаны. Также описанные окружности AP'BQ и DPCQ' касаются FB в точках B и C соответственно, так как $\angle AQB = \angle ABF$ и $\angle DQ'C = \angle DCF$. Так как $\angle FQ'C + \angle P'BC = \angle FQB + \angle P'BA + \angle ABC = \angle FQB + \angle AQF + \angle ABC = \angle DCB + \angle ABC = 180^\circ$, то P'BCQ' - вписанный. Тогда P'B и Q'C - антипараллельны относительно $\angle KFC$, но тогда и параллельные им прямые QB и PC - антипараллельны относительно $\angle KFC$, то есть PQBC - вписан (см. рис. 2). \square

Рис. 2:

3. Докажем, что AC, H_CH_A и LT - пересекаются в одной точке. Пусть $LT\cap AC=P$ и $H_CH_A\cap AC=Q$. Широко известен факт, что $(A,C;H_B,Q)=-1$. Спроецируем из точки T гармоническую четвёрку A,C,B и L на прямую

AC, получим, что $-1=(A,C;B,T)=(A,C;H_B,P)$, значит P=Q, что и требовалось доказать. Тогда, из вписанности AH_CH_AC и ACLT: $PA\cdot PC=PH_C\cdot PH_A=PT\cdot PL$, значит H_CH_ATL - вписанный (см. рис. 3). \square

Рис. 3:

- 4. Пусть R ортоцентр $\triangle PAQ$, K и N середины AH и HR соответственно. Пусть Ω и Γ описанные окружности треугольников ABC и PAQ, соответственно, а ω окружность Эйлера $\triangle ABC$. Так как при центральной симметрии ортоцентра R относительно N он переходит в точку диаметрально противоположную точке A относительно Γ точку H, то $AR \parallel KN$, тогда $KN \perp MN$. Так как $\angle KNM = 90^\circ = \angle KH_AM$, то KNH_AM вписан в ω . Рассмотрим гомотетию с центром в точке H и коэффициентом 2, при ней ω переходит в Ω , а N в R, то есть R лежит на Ω (см. рис. 4). \square
- 5. Заметим, что F точка Болтая $\triangle ABC$ вершины A, действительно, пусть R точка Шалтая $\triangle ABC$ вершины A, тогда: $\angle FBA = \angle BAR = \angle RBC$ и $\angle FCA = \angle RAC = \angle RCB$, то есть R и F изогонально сопряжены,

Рис. 4:

то есть F - точка Болтая. Тогда $\angle FAC = \angle BAR$, $\angle FAB = \angle RAC$, то есть $\triangle BFA \sim \triangle AFC$. Рассмотрим поворотную гомотетию с центром в точке F переводящую $\triangle BFA$ в $\triangle AFC$, она переводит FP в FN, то есть $\angle PFN = \angle AFC = 180^{\circ} - \angle FAN - \angle FCA = 180^{\circ} - \angle BAC$, то есть PFNA - вписанный (см. рис. 5). \square

6. Пусть перпендикуляр к AC' восстановленный из точки K пересекает AB в A_1 , а перпендикуляр к BC' восстановленный из точки L пересекает AB в B_1 , $KA_1 \cap LB_1 = C_1$, $CM \cap \Omega = U$. Пусть треугольник $A_1B_1C_1$ вписан в ω . Пусть $C'C_1$ пересекает Ω в точке X. Докажем, что ω и Ω касаются в точке X. Заметим, что $LC_1 \parallel BC$ и $KC_1 \parallel AC$, а также, что KC_1LC' вписанный, поэтому: $\angle XCA = \angle XC'A = \angle C_1LC = \angle UCB$, то есть CX и CU - изогонали $\angle ACB$. Получаем, что AXUB - трапеция, и $XU \parallel AB$. Пусть $AU \cap BX = R$. $\angle RML = 90^\circ - (180^\circ - \angle BAC - \angle UCA) = \angle BAC + \angle ACB - \angle XBA - 90^\circ = 90^\circ - \angle XBA - \angle ABC = \angle LBR$, то есть LBMR - вписанный. Получаем: $\angle RLB = 180^\circ - \angle RMB = 90^\circ = \angle C_1LB = \angle B_1LB$,

Рис. 5:

то есть LB_1 , XB и UA - конкурентны. Заметим, что $\angle ULB_1 = \angle XCA = \angle UAB_1$, то есть LUB_1A - вписанный. Так как R - лежит на радикальной оси описанных окружностей LUB_1A и ABC, то $BR \cdot RX = AR \cdot RU = LR \cdot RB_1$, то есть LXB_1B - вписанный и $\angle B_1XB = \angle B_1LB = 90^\circ$. $\angle C'XB_1 = \angle C'XB + \angle BXB_1 = 90^\circ - \angle BAC + 90^\circ = 180^\circ - \angle C_1A_1B_1$, то есть $C_1A_1B_1X$ - вписанный. Пусть прямая l - касательная к Ω в точке X. $\angle lXC' = \angle C'BX = \angle LB_1C_1$, то есть l касается ω (см. рис. 6). \square

Рис. 6: