

Zajęcia Projektowe Oprogramowanie Systemów Pomiarowych

Aplikacja autoryzacji dostępu oparta na biometrycznej weryfikacji tożsamości

Autorzy:

Jakub Pająk Łukasz Grabarski Krzysztof Grądek Piotr Legień

AiR Grupa 5TI

Spis treści

1.	Wp	rowadzenie	2
	1.1.	Cel projektu	2
	1.2.	Założenia wstępne	2
	1.3.	Harmonogram realizacji projektu	2
		1.3.1. Okres 1	2
		1.3.2. Okres 2	2
		1.3.3. Okres 3	2
		1.3.4. Okres 4	2
2.	Dol	kumentacja aplikacji	2
	2.1.	Zagadnienia ogólne oraz środowiska programistyczne	2
	2.2.	Omówienie szkieletu aplikacji - Framework LabView JKI	3
	2.3.	Framework JKI - opis podstawowych stanów	3
		2.3.1. Ogólny wygląd schematu blokowego JKI	4
	2.4.	Implementacja procesu logowania w LabView	6
		2.4.1. Stan Face ID: Initialize Grab Image	6
		2.4.2. Stan Face ID: Grab Image	7
		2.4.3. Stan Face ID: Stop Grab Image	8
		2.4.4. Stan Face ID: Image Processing	8
	2.5.	Implementacja identyfikacji użytkownika	9
	2.6.	Implementacja procesu dodawania użytkownika	9
		2.6.1. Stan Add User: Input Image Init	9
	2.7.	Implementacja połączenia aplikacji z bazą danych	9
3.	Nap	potkane problemy	9
	3.1.	Implementacja zakładek	9
	3.2.	Wywoływanie skryptów Python z poziomu LabVIEW	9
	3.3.	Wykonanie działającego połączenia aplikacji z bazą danych	
	- 0.	SQL	9
1	Poc	dsumowanie	a

1. Wprowadzenie

1.1. Cel projektu

Celem projektu była implementacja aplikacji mającej główną część logiki osadzoną w środowisku progtamistycznym LabView oraz napisanie skryptu w języku Python realizującego rozpoznawanie twarzy w celu autoryzacji dostępu.

1.2. Założenia wstępne

Wstępne odgórne założenia implikowały wykorzystanie środowiska programistycznego LabView z szczególnym warunkiem jakim było wykorzystanie maszyny stanów JKI - jednego z znaczących framework-ów LabView.

Rdzeń aplikacji winien był być osadzony w wcześniej wymienionej maszynie stanów. Kolejnym wymaganiem było napisanie odpowiedniej funkcji w języku Python porównującej pobrane zdjęcie podczas próby logowania z zdjęciami znanych użytkowników. Ponadto należało zaimplementować prostą bazę danych do zarządzania znanymi użytkownikami oraz ich danymi.

1.3. Harmonogram realizacji projektu

1.3.1. Okres 1

Zaprojektowanie podstawowego interfejsu użytkownika w środowisku LabVIEW. Dodanie stosownych pól oraz przycisków umożliwiających późniejsze logowanie oraz nawigację po aplikacji.

1.3.2. Okres 2

Zapoznanie się z sposobem połączenia oraz wywołania skryptu napisanego w języku Python z poziomu środowiska LabView. Implementacja podstawowej wersji skryptu zdolnego do poprawnego porówniania dwóch obrazów zawierających twach potencjalnego użytkownika. Próba wywołania skryptu w aplikacji LabView.

1.3.3. Okres 3

Dostosowanie skryptu do odpowiednich folderów oraz zmiana implementacji tak, aby kod sprawdzał czy użytkownik próbujący zalogować się do aplikacji widnieje wśród użytkowników znanych, czyt. uprzednio dodanych do folderu. Zapoznanie się z sposobem połączenia apliakcji LabView z relacyjną bazą danych SQL Server.

1.3.4. Okres 4

Wdrożenie połączenia z bazą danych oraz weryfikacja poprawności połączenia przy wykorzystaniu podstawowych operacji takich jak SELECT lub INSERT. Testy aplikacji.

2. Dokumentacja aplikacji

2.1. Zagadnienia ogólne oraz środowiska programistyczne

Aplikacja została zrealizowana w zaawansowanym środowisku programistycznym produkowanym przez firmę National Instruments, znanym jako LabView. Jest to blokowy język programowania, który umożliwia stosunkowo szybkie tworzenie szerokiej gamy aplikacji. Obszerna paleta dostępnych rozszerzeń oraz dodatkowych pakietów znacząco zwiększa efektywność pracy w języku LabView. Wiele złożonych zagadnień można rozwiązać za pomocą kilku elementów z odpowiednich bibliotek. Jednakże, ze względu na nietypowy sposób tworzenia programów w LabView, okres adaptacji do tego nowego środowiska może być nieco dłuższy.

Drugim środowiskiem programistycznym, które zostało wykorzystane, jest Python w wersji 3.10. Szczegółowe uzasadnienie wyboru tej konkretnej dystrybucji języka zostanie przedstawione w dalszych

częściach dokumentacji. Podobnie jak LabView, język Python umożliwia dostęp do szerokiej gamy gotowych rozwiązań, które umożliwiają rozwiązywanie złożonych problemów. W związku z tym, w projekcie zastosowano bibliotekę OpenCV wraz z nowoczesnym pakietem face-recognition. Wykorzystanie tych pakietów sprawiło, że implementacja logiki rozpoznawania twarzy stała się zadaniem prostym i efektywnym.

Trzecim środowiskiem programistycznym, jakie zostało użyte, jest SQL Server w połączeniu z systemem SQL Management Studio (SSMS). Ostatni element aplikacji, polegający na dodaniu bazy danych do środowiska LabView, został zrealizowany przy użyciu tych narzędzi. Proces ten nie był tak prosty, jak mogłoby się wydawać na pierwszy rzut oka, dlatego zostanie dokładnie omówiony w odpowiedniej sekcji dokumentacji.

2.2. Omówienie szkieletu aplikacji - Framework LabView JKI

Framework LabView JKI jest zaawansowanym zestawem narzędzi oraz wzorców projektowych stworzonych z myślą o usprawnieniu procesu tworzenia aplikacji w środowisku LabView. Jest on szczególnie ceniony za swoje podejście modularne, które umożliwia tworzenie skalowalnych i łatwych do utrzymania aplikacji.

Struktura Frameworka

Framework LabView JKI charakteryzuje się jasno zdefiniowaną strukturą, która ułatwia organizację kodu. Składa się z modułów, które są niezależnymi jednostkami funkcjonalnymi, co pozwala na efektywną separację zadań i logiki aplikacji. Moduły te mogą być łatwo integrowane i wymieniane, co zapewnia elastyczność w zarządzaniu projektem oraz wprowadzaniu zmian.

Zarządzanie zasobami i procesami

Jednym z kluczowych aspektów frameworka JKI jest jego podejście do zarządzania zasobami i procesami. Wykorzystuje on wzorzec aktorów, gdzie każdy aktor reprezentuje autonomiczną jednostkę wykonawczą odpowiedzialną za konkretne zadania. Komunikacja pomiędzy aktorami odbywa się za pomocą wiadomości, co minimalizuje ryzyko konfliktów i zapewnia płynność operacji.

Efektywność i optymalizacja

Framework JKI zawiera szereg narzędzi wspomagających optymalizację aplikacji. Dzięki wbudowanym mechanizmom monitorowania i debugowania, deweloperzy mogą szybko identyfikować i rozwiązywać problemy wydajnościowe. Ponadto, framework wspiera zarządzanie pamięcią oraz zasobami systemowymi, co jest kluczowe dla utrzymania wysokiej wydajności aplikacji nawet przy intensywnym obciążeniu.

Integracja z innymi technologiami

Framework LabView JKI został zaprojektowany z myślą o łatwej integracji z innymi technologiami i systemami. Obsługuje różnorodne protokoły komunikacyjne oraz standardy wymiany danych, co umożliwia płynne połączenie z zewnętrznymi bazami danych, urządzeniami pomiarowymi oraz innymi aplikacjami. Dzięki temu, możliwe jest tworzenie kompleksowych rozwiązań, które są w stanie sprostać najbardziej wymagającym zadaniom.

Dokumentacja i wsparcie społeczności

Framework JKI jest dobrze udokumentowany, co znacznie ułatwia naukę i wdrażanie jego elementów w projekcie. Obszerna dokumentacja zawiera szczegółowe opisy funkcji, przykłady kodu oraz najlepsze praktyki. Dodatkowo, aktywna społeczność użytkowników i deweloperów stanowi cenne źródło wsparcia oraz inspiracji, co jest szczególnie ważne w przypadku napotkania problemów lub wątpliwości.

2.3. Framework JKI - opis podstawowych stanów

Sekcja ta ma na celu wprowadzenie użytkownika dla którego programowanie w LabVIEW, a w szczególności z wykorzystaniem framework-a JKI jest obce. Framework ten ma pewne elementy specyficzne dla siebie, a których rozumienie jest kluczowe w rozumieniu zasady działania aplikacji.

Warto nadmienić, że bardzo pomocym narzędziem podczas korzystania z Lab View jest Help - można użyć skrótu klawiszowego CTRL + H. Informacje zawarte w pomocy są często bardzo pomocne, jeśli nie wystarczają można przejść do linka "Detailed help", tam znajdują się bardzo szczegółowe informacje oraz niekiedy przykłady użycia.

2.3.1. Ogólny wygląd schematu blokowego JKI

Rysunek 1: Zdjęcie przedstawiające podstawowy widok schemtu blokowego maszyny stanów JKI

Maszyna stanów JKI składa się z dwóch głównych elementów:

- Pętli While,
- Struktury Case.

Pętla while odpowiada za nieskończone (naturalnie do momentu zdarzenia kończącego działania aplikacji) wykonywanie się aplikacji w pętli. Podczas uruchomienia aplikacja rozpoczyna pracę w pętli oraz przechodzi przez kolejne stany (case) aplikacji.

Drugim elementem jest struktura Case, która odpowiada za naturę działania maszyny stanów - przechodzenie do odpowiednich stanów zdefiniowanych podczas uruchomienia oraz następnie zaciąganych z kolejki.

Rysunek 2: Zdjęcie przedstawiające stan "Macro: Initialize"

Stan "Macro: Initialize" jest wykonywany podczas startu aplikacji (jest to wyszczególnione pod rozwijaną listą ze stanami). Ważnym elementem jest pole statyczne typu String (oznaczone typowo kolorem różowym) zawierające pięć kolejnych stanów, które zostaną wysłane na kolejkę w celu odpowiedniego toku wykonywania. Najpierw wykona się stan Data: Initialize, następnie Initialize: Core Data etc. Na samym końcu zostanie wywołany stan Face ID: Initialize Grab Image. Jest to pierwszy stan, który nie jest zapewniony przez framework, a zatem kod napisany samodzielnie rozpoczyna się wraz z wywołaniem stanu piątego.

Rysunek 3: Zdjęcie przedstawiające stan "Data: Initialize"

Stan "Data: Initialize" odpowiada za inicjalizację żyły zawierającej dane przepływające między stanami. Dzięki wykorzystaniu tej możliwości można przekazywać dowolne dane między kolejnymi stanami oraz modyfikować te dane. Dokładne wykorzystanie tej opcji zostanie zaprezentowane w dalszej części dokumentacji. Na potrzeby projektu linia danych jest inicjalizowana za pomocą trzech zmiennych:

- New Image przechowuje obraz, jest to zmienna typowa dla biblioteki IMAQ,
- IMAQdx Session kolejna zmienna typowa dla biblioteki IMAQ, przechowuje referencję do otwartek sesji kamery,
- Img Path zmienna typu String przechowująca ściezkę do nowo pobranego zdjęcia.

Rysunek 4: Zdjęcie przedstawiające stan "UI: Initialize"

Stan "UI: Initialize" odpowida za wyświetlenie podstawowego widoku aplikacji. W przypadku powyższego projektu odpowiada on za wyświetlenie pierwszej zakładki aplikacji przy pomocy struktury Tab dostarczanej przez LabVIEW. Element "Page 1" jest standardowym typem wyliczeniowym enum zawierającym deklaracje poszczególnych zakładek. Element "Tab Control" odpowiada za wyświetlenie odpowiedniej strony na podstawie wybranej opcji w typie wyliczeniowym.

2.4. Implementacja procesu logowania w LabView

Proces logowania jest procesem złożonym z kilku stanów, każdy stan zostanie szczegółowo opisany w poniższej sekcji.

2.4.1. Stan Face ID: Initialize Grab Image

Stan "Face ID: Initialize Grab Image" obejmuje procedurę inicjalizacji kamery, niezbędną do późniejszego akwizycji obrazu. W strukturze blokowej tego stanu, centralną rolę pełni struktura "Case", która odpowiada za odpowiednią reakcję aplikacji na wybór kamery. Blok "List Cams" jest opcjonalny, lecz zaleca się jego użycie w przypadku dostępności wielu kamer, umożliwiając użytkownikowi wybór preferowanej. Po dokonaniu wyboru kamery, program przechodzi do kolejnego bloku, który sprawdza dostępność oraz poprawność działania kamery. Z tego bloku wynika binarna flaga, wyznaczająca stan struktury "Case" zgodnie z wynikiem wyboru kamery. Warto zaznaczyć, że blok "Select Camera" zwraca wartość

True, jeśli kamera nie została znaleziona lub nie udało się jej poprawnie zainicjalizować; w przypadku powodzenia zwraca False.

W przypadku uzyskania wartości False, odpowiedni stan struktury case zostaje wykonany. Na wejście struktury przekazywane są aktualne stany w kolejce oraz linia Timeout. W centralnej części znajdują się bloki finalizujące konfigurację kamery oraz jej przygotowanie do użycia. Dodatkowo, do linii danych przekazywana jest sesja kamery utworzona przez blok "Configure Grab", oraz pusta referencja do nowego obrazu, który zostanie nadpisany w kolejnym kroku. Ponadto, stan "Face ID: Grab Image"jest dodawany do kolejki jako następny do wykonania.

Należy zwrócić uwagę na nadpisanie domyślnego Timeout, mające na celu zabezpieczenie aplikacji przed zatrzymaniem w stanie "Idle", czyli bezczynnością.

Jeśli zostanie uzyskana wartość True, a zatem kamera nie została znaleziona, na kolejkę zostaje wysłany stan "Error Handler"oraz wszystkie inne stany zostają usunięte. Dodatkowo do linii danych zostaje przesłana pusta referencja do sesji kamery oraz pusta referencja do obrazu.

Warto zauważyć, że w tym przypadku timeout pozostaje niezmieniony względem jego dymyślnej wartości.

2.4.2. Stan Face ID: Grab Image

Stan "Face ID: Grab Image" odpowiada za właściwą akwizycję obrazu oraz jego wyświetlenie na interfejsie użytkownika.

Pierwszym elementem widoczym na schemacie blokowym jest blok "Unbundle by Name", który odpowiada za wyodrędnienie danych przesyłanych poprzez linię danych jako klaster. Drugim elementem jest przycisk, mający na celu rozpoczęcie akwizycji obrazu. W centralnym punkcie schematu znajduje się blok "Take Image Case Struct". Jest to plik SubVi, który przechowuje logikę pobierania obrazu. Na wejścia tego bloku należy poprowadzić:

- IMAQdx Session aktualną sesję kamery,
- New Image Referencję do obrazu,
- Przycisk odpowiedzialny za rozpoczęcie procesu logowania,
- Error In Błąd.

Na wyjściach bloku znajdują się:

- IMAQdx Session Aktualną sesję kamery,
- New Image Referencję do pobranego obrazu,
- Kolejne stany do kolejki,
- Error Out Błąd wyjściowy.

Kolejnym istotnym elementem jest blok Image Display, odpowiada on za wyświetlenie pobranego obrazu na interfejsie użytkownika.

Ostatnim elementem znajdującym się na schemacie jest blok "Bundle By Name", którego działanie jest odwrotne do działania bloku "Unbundle By Name", zatem tworzy on klaster danych poprzez połączenie kilku danych wejściowych.

Take Image Case Struct - SubVi

Jak wspomniano wcześniej, powyższy SubVi odpowiada za logikę pobrania zdjęcia. Ze względu na dbałość o czyistość i przejrzystość kodu w przypadku dużej ilości bloków, należy starać się wyodrębnić część bloków do SubVi właśnie. Naturalnie wejścia oraz wyjścia są takie same jak opisane wyżej, dlatego nie będą ponownie wyszczególniane.

Rdzeniem tego SubVi jest struktura Case, która na podstawie stanu przycisku odpowiednio wykonuje stan True lub False. Jeśli stan przycisku jest równy False, obraz jest pobierany przez blok "Get Image2", a następnie przekazywany na wyjście wraz z trwającą sesją kamery. Natomiast do kolejki zostaje przekazany stan "Face ID: Grab Image", co oznacza zapętlenie maszyny stanów w tym stanie dopóki nie nastąpi naciśnięcie przycisku "Exit"kończącego działanie całej aplikacji lub nie zostanie naciśnięty przycisk logowania.

W przypadku naciśnięcia przycisku logowania, zostaje wykonany stan True. Proces pobierania obrazu oraz przekazywania jego referencji na wyjście jest niezmieniony. Różnica pojawia się natomiast w sposobie przekazywania kolejnego stanu do kolejki. Poczynając od środka, można zauważyć blok "Elapsed Time", jest on odpowiedzialny za licznik, który określa jak długo ma trwać akwizycja danych. Jeśli licznik jest w trakcie odliczania, na jego wyjściu pojawia się flaga "False"i trafia na blok "Select", który jest odpowiedzialny za wybór odpowiedniej wartości na podstawie warunku. Można porównać ten blok do prostej instrukcji warunkowej if. Zatem jeśli licznik jest w trakcie działania, do kolejki jest przekazywany stan "Face ID: Grab Image"oraz grupa stanów "Event Structure". To oznacza, że ponownie tak długo jak trwa timer, aplikacja będzie zapętlona na stanie "Face ID: Grab Image". W momencie, gdy licznik zwróci wartość True - odliczy zadany czas, do kolejki zostaje przekazany stan "Face ID: Stop Grab Image".

2.4.3. Stan Face ID: Stop Grab Image

Następny stan odpowiada za zatrzymanie akwizycji obrazu oraz usunięcie nieużywanych referencji w celu zwolnienia zasobów komputera.

Pierwszą wykonywaną funkcją jest wyodrębnienie danych z klastra pochodzącego z linii danych. Następnie, trwająca sesja kamery zostaje przekazana jako parametr wejściowy dla bloku "Stop Acquisition". Sesja kamery jest następnie przekazywana do bloków "Unconfigure Camera"oraz "Close Camera". Ta sekwencja jest konieczna do poprawnego zamknięcia kamery. Jeśli nie wszystkie kroki zostaną wykonane, istnieje ryzyko, że kamera będzie niewidoczna lub niedostępna dla innych aplikacji z powodu nieusuniętej referencji utworzonej przez aplikację LabVIEW.

Referencja do obrazu zostaje przekazana do bloku "Save Image". Zapis obrazu jest konieczny ze względu na późniejszą analizę zarejestrowanego obrazu oraz weryfikację tożsamości. Następnie referencja jest usuwana przy użyciu bloku "Imaq Dispose".

Warto zauważyć sposób przekazania ścieżki do zapisu zarejestrowanego obrazu. W celu większej elastyczności programu zastosowane zostały ścieżki względne. Budowa ścieżki względnej rozpoczyna się od użycia bloku "Current VI's Path", zwracającego ścieżkę bezwzględną do aktualnej lokalizacji VI. Następnie odpowiednio dodawana jest stała typu "Path Constant", w taki sposób, aby otrzymać pożądaną lokalizację. Następnie używany jest blok "Build Path", który konkatenuje obie składowe, tworząc poprawną ścieżkę.

Do linii danych przekazywana jest pusta referencja do sesji kamery, przygotowując system na ewentualne ponowne użycie kamery. Do kolejki przekazywany jest kolejny stan "Face ID: Image Processing".

Ponieważ niebezpieczeństwo zablokowania aplikacji podczas używania kamery przestaje obowiązywać po jej zamknieciu, zostaje właczony domyślny timeout.

Dodatkowo, następuje przejście z zakładki "Page 1"do zakładki "Page 2"za pomocą bloku "Tab Control", do którego na wejście przekazywana jest odpowiednia wartość typu wyliczeniowego zawierającego istniejące zakładki.

2.4.4. Stan Face ID: Image Processing

Ostatni stan związany z procesem logowania to "Face ID: Image Processing". Proces identyfikacji użytkownika rozpoczyna się od bloku "Open Python Session", który przygotowuje środowisko uruchomieniowe LabVIEW do użycia języka Python. Na wejście bloku należy podać błąd, wersję języka Python oraz ścieżkę do pliku wykonywalnego .exe uruchamiającego kompilator. Na wyjściu pojawi się sygnał zawierający aktualną sesję Python oraz ewentualny błąd.

Następnie następuje właściwe wywołanie funkcji realizującej porównanie. Na wejście bloku "Python Node"należy podłączyć otwartą wcześniej sesję oraz ścieżkę do miejsca, w którym znajduje się skrypt. Ścieżka została zaimplementowana za pomocą bloku "Path Builder". Opcjonalnie blok "Python Node"można rozciągnąć, aby pokazały się puste pola, które obrazują argumenty wejściowe funkcji oraz typ wartości zwracanej. W aktualnej wersji aplikacji do wymienionego bloku została podłączona stała typu Boolean, co wskazuje na typ wartości zwracanej. Argumenty wejściowe nie są wymagane w obecnej wersji aplikacji.

Po zakończeniu działania sesja Python zostaje zamknięta, a wartość zwrócona z funkcji find_face_encodings wywołuje odpowiedni stan struktury case. Jeśli proces logowania został zakończony sukcesem, wykonuje się case "True wyświetlana jest informacja na ekranie użytkownika o statusie logowania, a do kolejki zostaje przekazany kolejny stan, którym jest "Face ID: Control Panel". Następuje również przełączenie na trzecią zakładkę za pomocą bloku "Tab Control".

W przypadku, gdy logowanie nie zakończyło się sukcesem, wyświetlana jest informacja o statusie logowania, a do kolejki zostaje przekazany stan "Face ID: Initialize Grab Image", co powoduje, że aplikacja wraca do stanu początkowego. Zakładka zostaje przełączona na ekran początkowy.

2.5. Implementacja identyfikacji użytkownika

Funkcja find_face_encodings realizuje proces porównania twarzy w celu identyfikacji użytkownika. Działanie funkcji można podzielić na kilka kluczowych kroków.

Na początku, funkcja definiuje ścieżkę do folderu z zarejestrowanymi użytkownikami oraz wczytuje tymczasowy obraz logowania za pomocą biblioteki cv2.

Następnie, za pomocą funkcji face_recognition.face_encodings, funkcja przetwarza wczytany obraz w celu ekstrakcji cech twarzy. Jeżeli w obrazie nie zostanie wykryta twarz, funkcja zwraca wartość False i kończy działanie, informując o braku wykrycia twarzy.

Funkcja iteruje przez wszystkie pliki graficzne znajdujące się w folderze z zarejestrowanymi użytkownikami. Dla każdego obrazu próbuje wyodrębnić cechy twarzy. Jeżeli w obrazie nie zostanie wykryta twarz, funkcja kontynuuje przetwarzanie kolejnych plików, informując o niepowodzeniu detekcji dla danego pliku.

Dla każdej zarejestrowanej twarzy, funkcja porównuje jej kodowanie z kodowaniem twarzy z obrazu logowania za pomocą funkcji face_recognition.compare_faces. Jeżeli zostanie znalezione dopasowanie, funkcja oblicza odległość pomiędzy kodowaniami twarzy przy użyciu funkcji

face_recognition.face_distance oraz przekształca tę odległość na poziom dokładności (accuracy).

Jeżeli funkcja znajdzie dopasowanie, informuje o sukcesie porównania, wyświetlając nazwę dopasowanego pliku oraz poziom dokładności. Funkcja zwraca wartość **True**, sygnalizując pomyślne logowanie użytkownika.

Jeżeli żadne z kodowań twarzy z zarejestrowanych obrazów nie będzie zgodne z kodowaniem twarzy z obrazu logowania, funkcja zwraca wartość False, informując o niepowodzeniu procesu logowania.

Funkcja find_face_encodings jest kluczowym elementem systemu rozpoznawania twarzy, odpowiadającym za porównanie twarzy użytkownika z bazą zarejestrowanych obrazów. Wykorzystując biblioteki cv2 oraz face_recognition, funkcja ta skutecznie identyfikuje użytkownika, zapewniając odpowiedni poziom dokładności i niezawodności.

- 2.6. Implementacja procesu dodawania użytkownika
- 2.6.1. Stan Add User: Input Image Init
- 2.7. Implementacja połączenia aplikacji z bazą danych
- 3. Napotkane problemy
- 3.1. Implementacja zakładek
- 3.2. Wywoływanie skryptów Python z poziomu LabVIEW
- 3.3. Wykonanie działającego połączenia aplikacji z bazą danych SQL
- 4. Podsumowanie