Latent Dirichlet Allocation

Topics

Document is a distribution over topics

Topics Document is a distribution over topics 80% **Document** 20% "Cats" "Dogs"

Topics

Document is a distribution over topics

Model Distribution over topics

Model Topic for each word z_{d1} Distribution over topics $z_{dn} \in \{1..T\}$

Model Topic for each word Words z_{d1} Distribution over topics w_{d2} $\rightarrow w_{dN_d}$ $z_{dn} \in \{1..V\}$ $w_{dn} \in \{1..V\}$

$$\theta \longrightarrow z \longrightarrow w$$
 D

$$p(W, Z, \Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn} | \theta_d) p(w_{dn} | z_{dn})$$

$$\theta \longrightarrow z \longrightarrow w$$
 D

$$p(W,Z,\Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn})$$
 for each document

$$heta \longrightarrow z \longrightarrow w$$
 D

$$p(W,Z,\Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn})$$
 for each document ______ generate topic probabilities

for each word

$$p(W,Z,\Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn})$$
 for each document generate topic probabilities

$$\frac{\text{for each word}}{p(W,Z,\Theta)} = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn})$$
 for each document generate topic probabilities

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}) = \prod_{d=1}^{D} p(\boldsymbol{\theta}_d) \prod_{n=1}^{N_d} p(z_{dn} | \boldsymbol{\theta}_d) p(w_{dn} | z_{dn})$$

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}) = \prod_{d=1}^{D} p(\boldsymbol{\theta}_d) \prod_{n=1}^{N_d} p(z_{dn} | \boldsymbol{\theta}_d) p(w_{dn} | z_{dn})$$

$$p(\theta_d) \sim \text{Dir}(\alpha)$$

$$p(W, Z, \Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn})$$

$$p(\theta_d) \sim \text{Dir}(\alpha)$$

$$p(z_{dn}|\theta_d) = \theta_{dz_{dn}}$$

$$p(W, Z, \Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn})$$

$$p(\theta_d) \sim \text{Dir}(\alpha)$$

$$p(z_{dn}|\theta_d) = \theta_{dz_{dn}}$$

$$p(w_{dn}|z_{dn}) = \Phi_{z_{dn}w_{dn}}$$

$$p(W, Z, \Theta) = \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N_d} p(z_{dn} | \theta_d) p(w_{dn} | z_{dn})$$

$$p(\theta_d) \sim \text{Dir}(\alpha)$$

$$p(z_{dn}|\theta_d) = \theta_{dz_{dn}}$$

$$p(w_{dn}|z_{dn}) = \Phi_{z_{dn}w_{dn}} \longleftarrow \sum \Phi_{tw} = 1$$

Constraints:

$$\Phi_{tw} \ge 0$$

Known: W data

Unknown: Φ parameters, distribution over words for each topic

Unknown: Z latent variables, topic of each word

Unknown: ⊖ latent variables, distribution over topics for each document

ТЕХНИЧЕСКИЙ СЛАЙД (15 мин на доску)

• ВЫВОД ФОРМУЛ VAR. EM НА ДОСКЕ

