8. Design of Adders

J. A. Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

> EE 382M.7 - VLSLL Fall 2011

September 21, 2011

Single-Bit Addition

Half Adder $S = A \oplus B$ $C_{out} = A \cdot B$ A B

Α	В	C_{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

$$S = A \oplus B \oplus C$$

$$C_{out} = MAJ(A, B, C)$$

$$C_{out} + C$$

Α	В	С	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder Design I

Brute force implementation from equations

$$S = A \oplus B \oplus C$$
$$C_{out} = MAJ(A, B, C)$$

Full Adder Design II

- ullet Factor S in terms of C_{out}
 - $S = A \cdot B \cdot C + (A + B + C) \cdot \overline{C_{out}}$
- ullet Critical path is usually C to C_{out} in ripple adder

Layout of Full Adder

- Clever layout circumvents usual line of diffusion
 - Use wide transistors on critical path
 - Eliminate output inverters

Full Adder Design III

- Complementary Pass Transistor Logic (CPL)
 - Slightly faster, but more area

Ripple Carry Adder

- Simplest design: cascade full adders
 - Critical path goes from C_{in} to C_{out}
 - Design full adder to have fast carry (small delay for carry signal)

Deal with Inversions to Speed Up Carry Path

- Critical path passes through majority gate
 - Built from minority + inverter
 - Eliminate inverter and use inverting full adder

Carry Propagate Adders

- N-bit adder called CPA
 - Each sum bit depends on all previous carries
 - How do we compute all these carries quickly?

Carry Propagate, Generate, Kill (P, G, K)

For a full adder, define what happens to carries

- Generate: $C_{out} = 1$, independent of C
 - $G = A \cdot B$
- Propagate: $C_{out} = C$
 - $P = A \oplus B$
- Kill: $C_{out} = 0$, independent of C
 - $K = \overline{A} \cdot \overline{B}$

Generate and Propagate for groups spanning i:j

- $G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j}$
- $\bullet \ P_{i:j} = P_{i:k} \cdot P_{k-1:j}$
- Base Case
 - $G_{i:i} \equiv G_i = A_i \cdot B_i$, $G_{0:0} = G_0 = C_{in}$
 - $P_{i:i} \equiv P_i = A_i \oplus B_i$, $P_{0:0} = P_0 = 0$
- Sum: $S_i = P_i \oplus G_{i-1:0}$

PG Logic

Ripple Carry Adder Revisited in the PG Framework

$$G_{i:0} = G_i + P_i \cdot G_{i-1:0}$$

Ripple Carry PG Diagram

$$t_{ripple} = t_{pg} + (N-1)t_{AO} + t_{xor}$$

PG Diagram Notation

Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Carry-Skip PG Diagram

For
$$k$$
 n -bit groups $(N = nk)$ $t_{skip} = t_{pg} + [2(n-1) + (k-1)] t_{AO} + t_{xor}$

Variable Group Size

Delay grows as $O(\sqrt{N})$

Carry-Lookahead Adder (CLA)

- Carry-lookahead adder computes $G_{i:0}$ for many bits in parallel
- Uses higher-valency cells with more than two inputs

CLA PG Diagram

Higher Valency Cells

Carry-Select Adder

- Trick for critical paths dependent on late input X
 - Precompute two possible outputs for X=0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums for both possible carries into n-bit group

Carry-Increment Adder

Factor initial PG and final XOR out of carry-select

$$\begin{aligned} t_{increment} &= t_{pg} + \\ \left[(n-1) + (k-1) \right] t_{AO} + \\ t_{xor} \end{aligned}$$

Variable Group Size

Buffer non-critical signals to reduce branching effort

Tree Adders

- Tree structures can be used to speed up computations
- Look at computing the XOR of 8 bits using 2-input XOR-gates

- If lookahead is good for adders, lookahead across lookahead!
 - Recursive lookahead gives O(log N) delay
- Many variations on tree adders

Brent-Kung Adder

Sklansky Adder

Kogge-Stone Adder

Tree Adder Taxonomy

- Ideal N-bit tree adder would have
 - L = log N logic levels
 - Fanout never exceeding 2
 - No more than one wiring track between levels
- Describe adder with 3-D taxonomy (l, f, t)
 - Logic levels: L+l
 - Fanout: 2f + 1
 - Wiring tracks: 2^t
- Known tree adders sit on plane defined by l+f+t=L-1

Tree Adder Taxonomy, Cont'd

Han-Carlson Adder

Brent-Kung Adder

Knowles [2,1,1,1] Adder

Ladner-Fischer Adder

Tree Adder Taxonomy Revisited

Summary of Adders

Adder architectures offer area/power/delay tradeoffs Choose the best one for your application

Architecture	Classifi-	Logic lev-	Max.	Tra-	Cells
	cation	els	fanout	cks	
Ripple Carry		N-1	1	1	N
Carry-skip(n=4)		N/4 + 5	2	1	1.25N
Carry-inc.(n=4)		N/4 + 2	4	1	2N
Brent-Kung	(L-1,0,0)	$2log_2N-1$	2	1	2N
Sklansky	(0,L-1,0)	log_2N	N/2+1	1	$0.5Nlog_2N$
Kogge-Stone	(0,0,L-1)	log_2N	2	N/2	$Nlog_2N$