

- 1970 Paper von Bayer und McCreight
- Maximale Anzahl an Sekundärspeicherzugriffen begrenzt
- Seitengröße i.d.R. zwischen 2 und 16 KB
- Effiziente Ausführung von Grundoperationen
 - Suchen
 - Einfügen
 - Löschen

- Def.: B Baum vom Typ k
 - (1) Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche Länge.
 - (2) Jeder Knoten, außer der Wurzel und den Blättern hat mind. k+1 Söhne. Die Wurzel ist Blatt, oder hat mind. 2 Söhne.
 - (3) Jeder Knoten hat max. 2k+1 Söhne.
 - (4) Jedes Blatt, außer die Wurzel, hat mind. k und max. 2k Einträge.

Knotenaufbau

- b = Anzahl Schlüssel
- K_i (Schlüssel), D_i (Daten)
- · L : Größe der Seite

- Einfügen
 - suche Platz zum Einfügen
 - Seite voll → Split
 - neue Seite holen
 - Aufteilung

$$K_{2k+1}$$

- Löschen
 - suche Schlüssel
 - Problem falls Anzahl Schlüssel < k
 - → Ausgleich
 - → Mischen

Ausgleich

Mischen (Konkatenation)

- Nachteil
 - Daten/Datenverweise in den inneren Knoten nicht sinnvoll
 - → durch das Einfügen kann die Baumhöhe steigen
 - → längere Zugriffszeiten