Homework 2

Ruan Xingcheng 2015K8009929047

1 Answer Sheet

Theorem 1 If a heuristic is consistent, it must be admissible. \Leftrightarrow 对任意结点 n, 和它的任意祖先 n', 满足 $h(n') \leq h(n) + c(n', a, n) \Rightarrow h(n) \leq h^*(n)$, 其中 $h^*(n)$ 是从结点 n 到目标的最优路径长度。

Proof 1 在 heuristic 是 consistent 的时候,如果存在一个结点 n_0 , $h(n_0) > h^*(n_0)$,那么:

$$g(n_0) + h(n_0) > g(n_0) + h^*(n_0) \quad (h^*(n_0) \quad is \quad optimal)$$

$$= g(GOAL) \quad (obvious)$$

$$= g(GOAL) + h(GOAL) \quad (h(GOAL) = 0)$$

$$\Rightarrow h(n_0) > g(GOAL) - g(n_0) + h(GOAL) = c(n_0, a, GOAL) + h(GOAL)$$

$$\Rightarrow n_0 \quad is \quad not \quad admissible, \quad contrary.$$

综上所述,不存在任意结点 n_0 , $h(n_0)>h^*(n_0)$,那么对于任意结点 n,有 $h(n)\leq h^*(n)$ 。

problem2

Give an example of heuristic, which is admissible but not consistent.

example

heuristic 如下给定:

$$h(n) = \lfloor h^*(n) \rfloor$$

显然这个 heuristic 满足 admissible, 然后看下面的例子:

3 个结点 n_0 , n_1 , Goal 在同一条直线上,我们很容易能得到下面的关系:

$$h(n_0)=\lfloor h^*(n_0)\rfloor=7>c(n_0,a,n_1)+h(n_1)=c(n_0,a,n_1)+\lfloor h^*(n_1)\rfloor=6.2$$
这样,这个例子便不满足 consistent。

Theorem 2 A^* of graph search is **not** optimal with admissible heuristic.

Proof 2 满足 admissible 的 heuristic 直接沿用上一题中的定义, 然后我们来看下面的例子:

四个结点 n_0 , n_1 , n_2 , Goal 在同一条直线上, n_3 在 n_2 上方, 各点间的消耗如图所示。起始结点为 n_0 , 它离目标结点 Goal 的直线距离为 2.3, 其它结点不再赘述。值得注意的是, $h(n_0) = h(n_1) = 2$, $h(n_2) = h(n_3) = 1$ 。现在进行图搜索,第一次 frontier 扩展到 n_1, n_3 ,由于

$$f(n_3) < 0.6 + 1 < f(n_1) = 0.2 + 2 = 2.2$$

故从 n_3 开始扩展到 n_2 , 由于

$$f(n_2) = g(n_2) + h(n_2) = 0.7 + 1 < 0.2 + 2 = g(n_1) + h(n_1) = f(n_1)$$

故路径会从 n_2 先扩展到 Goal, 而轮到 n_1 时,由于 n_2 已经被扩展到了,所以不能再扩展,此时只能返回路径 $n_0 \to n_3 \to n_2 \to Goal$,最优路径应是 $n_0 \to n_1 \to n_2 \to Goal$,故满足 admissible 的heuristic 的图搜索不是最优的。