LLM 面试核心公式汇总

AI 助手

May 11, 2025

Contents

1	激活函数 (Activation Functions) 1.1 Sigmoid	3 3 3 3 3 4
2	损失函数 (Loss Functions) 2.1 均方误差 (Mean Squared Error, MSE)	4 4
3	正则化 (Regularization) 3.1 L1 正则化 (Lasso Regression)	4 5 5
4	Transformer 核心组件 4.1 Scaled Dot-Product Attention	5 5 5 6 6
5	门控线性单元及其变体 (Gated Linear Units and Variants) 5.1 门控线性单元 (GLU - Gated Linear Unit) 基础	6 7 7 7
6	评估指标 (Evaluation Metrics)	7 7

7	优化	器相关 (Optimizer Related)	7
	7.1	SGD with Momentum	7
	7.2	Adam (Adaptive Moment Estimation) - 核心思想	8

1 激活函数 (Activation Functions)

激活函数为神经网络引入非线性,使其能够学习更复杂的模式。

1.1 Sigmoid

主要用于二分类问题的输出层,或作为门控机制。

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

输出范围: (0,1)

1.2 Tanh (双曲正切)

与 Sigmoid 类似, 但输出范围是 (-1,1), 通常在隐藏层中表现比 Sigmoid 好。

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

输出范围: (-1,1)

1.3 ReLU (Rectified Linear Unit)

现代神经网络中最常用的激活函数之一。

$$ReLU(x) = max(0, x)$$

输出范围: $[0,\infty)$

1.4 GeLU (Gaussian Error Linear Unit)

在 Transformer 模型中广泛使用。

$$GELU(x) = x \cdot \Phi(x)$$

其中 $\Phi(x)$ 是标准正态分布的累积分布函数 (CDF)。近似计算公式:

GELU(x)
$$\approx 0.5x \left(1 + \tanh \left[\sqrt{\frac{2}{\pi}} \left(x + 0.044715x^3 \right) \right] \right)$$

1.5 Swish

一个自门控激活函数。函数定义为 x 乘以其自身经过 Sigmoid 函数(并可能由一个可学习的参数 或固定值调节)的结果。与 ReLU 不同, Swish 处处可导,这在优化过程中可能更有利。

基本形式 (β = 1):

$$Swish(x) = x \cdot \sigma(x) = \frac{x}{1 + e^{-x}}$$

带参数 β:

$$Swish_{\beta}(x) = x \cdot \sigma(\beta x) = \frac{x}{1 + e^{-\beta x}}$$

1.6 Softmax

通常用于多分类问题的输出层,将原始分数(logits)转换为概率分布。对于一个向量 $\mathbf{z} = (z_1, z_2, \dots, z_K)$:

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{i=1}^{K} e^{z_i}} \quad \text{for } i = 1, \dots, K$$

输出 $\sum_{i=1}^{K} \operatorname{Softmax}(z_i) = 1$,且每个元素 $\in (0,1)$ 。

2 损失函数 (Loss Functions)

损失函数衡量模型预测值与真实值之间的差异。

2.1 均方误差 (Mean Squared Error, MSE)

常用于回归问题。

$$L_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

其中 N 是样本数量, y_i 是真实值, \hat{y}_i 是预测值。

2.2 交叉熵损失 (Cross-Entropy Loss)

常用于分类问题。

• 二分类交叉熵 (Binary Cross-Entropy, BCE):

$$L_{\text{BCE}} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

其中 $y_i \in \{0,1\}$ 是真实标签, \hat{y}_i 是模型预测样本为类别 1 的概率。

• 分类交叉熵 (Categorical Cross-Entropy): 对于单个样本,真实标签 one-hot 编码 $\mathbf{y} = (y_1, \dots, y_K)$,模型预测概率 $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_K)$:

$$L_{\text{CE}} = -\sum_{k=1}^{K} y_k \log(\hat{y}_k)$$

3 正则化 (Regularization)

正则化用于防止模型过拟合。

3.1 L1 正则化 (Lasso Regression)

向损失函数添加权重的绝对值之和。

$$L_{\text{total}} = L_{\text{original}} + \lambda \sum_{j=1}^{M} |w_j|$$

其中 M 是权重数量, λ 是正则化强度。

3.2 L2 正则化 (Ridge Regression / Weight Decay)

向损失函数添加权重的平方和。

$$L_{\text{total}} = L_{\text{original}} + \frac{\lambda}{2} \sum_{j=1}^{M} w_j^2$$

3.3 Dropout

训练时,以概率 p 随机将一些神经元的输出置为 0。推断时,通常关闭 Dropout 并将权重乘以 (1-p)(如果使用 Inverted Dropout 则推断时无需操作)。

4 Transformer 核心组件

Transformer 是现代 LLM 的基础架构。

4.1 Scaled Dot-Product Attention

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

其中 Q: Queries, K: Keys, V: Values, d_k : Key/Query 的维度。

4.2 Multi-Head Attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

其中每个头 $head_i$ 是:

$$\mathrm{head}_i = \mathrm{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$

 $W_{i}^{Q},W_{i}^{K},W_{i}^{V}$ 是特定于头的投影矩阵, W^{O} 是输出投影矩阵。

4.3 Positional Encoding (Sinusoidal)

提供序列中 Token 的位置信息。

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}})$

其中 pos: 位置, i: 维度索引, d_{model}: 模型隐藏层维度。

4.4 Layer Normalization

对每个样本的特征进行归一化。对于隐藏层向量 $\mathbf{x} = (x_1, \dots, x_D)$:

$$\mu_j = \frac{1}{D} \sum_{i=1}^{D} x_i$$

$$\sigma_j^2 = \frac{1}{D} \sum_{i=1}^{D} (x_i - \mu_j)^2$$

$$\text{LayerNorm}(\mathbf{x})_i = \gamma_i \frac{x_i - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}} + \beta_i$$

 γ, β 是可学习参数, ϵ 是小常数。

4.4.1 RMS Norm (Root Mean Square Layer Normalization)

Layer Normalization 的简化版本,移除了均值中心化。对于输入向量 $\mathbf{x} = (x_1, \dots, x_d)$:

$$RMS(\mathbf{x}) = \sqrt{\frac{1}{d} \sum_{i=1}^{d} x_i^2}$$

$$RMSNorm(\mathbf{x})_i = \frac{x_i}{RMS(\mathbf{x}) + \epsilon} \cdot g_i$$

其中 g_i 是可学习的增益参数。

4.5 Feed-Forward Network (FFN) / Position-wise FFN

Transformer 块中的子层,包含两个线性变换加一个激活,是 Transformer 参数量最大的模块。

$$FFN(x) = Activate(xW_1 + b_1)W_2 + b_2$$

'Activate' 通常是 ReLU 或 GeLU。

5 门控线性单元及其变体 (Gated Linear Units and Variants)

GLU 通过门控机制动态控制信息流,常用于 Transformer 的 FFN 层。其核心思想是将输入通过两个线性变换,其中一个变换的结果经过 Sigmoid 函数作为门,与另一个线性变换的结果进行逐元素相乘。

5.1 门控线性单元 (GLU - Gated Linear Unit) 基础

原始 GLU 定义:

$$GLU(X, W, V, b, c) = (XW + b) \odot \sigma(XV + c)$$

其中 σ 是 Sigmoid 函数, \odot 是逐元素乘法。

5.2 Transformer FFN 中的 GLU 变体

通用形式 (通常省略偏置 b_1, b_2 以简化表示,并在 W_3 后添加):

$$FFN_{GLU}(x) = (\phi(xW_1) \odot (xW_2))W_3$$

其中 $x \in \mathbb{R}^{d_{model}}$, $W_1, W_2 \in \mathbb{R}^{d_{model} \times d_{ff}}$, $W_3 \in \mathbb{R}^{d_{ff} \times d_{model}}$ 。 ϕ 是一个激活函数。

5.2.1 GeGLU (Gaussian Error Linear Unit Gated Linear Unit)

 $\phi = \text{GeLU}$

$$FFN_{GeGLU}(x) = (GeLU(xW_1) \odot (xW_2))W_3$$

5.2.2 SwiGLU (Swish Gated Linear Unit)

$$\phi = \text{Swish}(x) = x \cdot \sigma(x)$$

$$FFN_{SwiGLU}(x) = (Swish(xW_1) \odot (xW_2))W_3$$

5.2.3 ReGLU (ReLU Gated Linear Unit)

 $\phi = \text{ReLU}$

$$FFN_{ReGLU}(x) = (ReLU(xW_1) \odot (xW_2))W_3$$

6 评估指标 (Evaluation Metrics)

6.1 Perplexity (PPL)

衡量语言模型好坏,越低越好。对于序列 $W = w_1, \ldots, w_N$:

$$PPL(W) = P(w_1, \dots, w_N)^{-\frac{1}{N}}$$

或基于交叉熵:

$$PPL(W) = \exp\left(CrossEntropyLoss\right) = \exp\left(-\frac{1}{N}\sum_{i=1}^{N}\log P(w_i|w_1,\dots,w_{i-1})\right)$$

7 优化器相关 (Optimizer Related)

7.1 SGD with Momentum

 v_t 是动量项, γ 是动量系数, η 是学习率。

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} L(\theta_{t-1})$$

$$\theta_t = \theta_{t-1} - v_t$$

7.2 Adam (Adaptive Moment Estimation) - 核心思想 $g_t = \nabla_{\theta} L(\theta_t)$ 是梯度。

- 一阶矩 (动量): $m_t = \beta_1 m_{t-1} + (1 \beta_1) g_t$
- 二阶矩 (平方梯度): $v_t = \beta_2 v_{t-1} + (1 \beta_2) g_t^2$
- 偏差修正: $\hat{m}_t = \frac{m_t}{1-\beta_1^t}$, $\hat{v}_t = \frac{v_t}{1-\beta_2^t}$
- 参数更新: $\theta_{t+1} = \theta_t \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$