02 Programavimas Matematika

Aibė matematikoje

Aibės svarbu suprantant funkcijos apibrėžimą. **Aibė** – skirtingų objektų, laikomų visuma, rinkinys (grupė).

- Aibė žymima didžiąją raide (pvz.: A, B, Z...);
- Aibės objektai vadinami elementais;
- Elementai žymimi mažąją raide (pvz.: a, b, z...);

Matematikoje aibė dažniausiai sudaryta iš skaičių.

Apibrėžimo srities aibė

Funkcija matematikoje

taisyklė, kuri vienam, arba keliems apibrėžimo srities aibės elementams priskiria vienintelį elementą kitoje funkcijos reikšmių - aibėje.

Pagrindiniai principai:

- Kiekvienai įvesčiai tenka išvestis. Jei įvesite skaičių, išeis skaičius.
- Tam tikra įvestis visada duos tą pačią išvestį. Jei šiandien, rytoj ar kitąmet įvesite 3, mašina "Double Me!" visada duos 6.

Funkcija ir ne funkcija

Kiekvienai įvesčiai tenka išvestis. Jei įvesite skaičių, išeis skaičius.

Matematinė funkcija kaip juodoji dėžė

Čia x ir y - realus skaičius, kompleksinis skaičius, vektorius, matrica, kitos funkcija, eilutė arba seka, aibė, grafas arba tinklas.

01 Funkcijos apibrėžimas

Funkcija **f**, kuri kiekvienam aibės **X** elementui priskiria vienintelį elementą iš aibės **Y**, žymima:

$$f:\,X o Y$$

Kiekvienam elementui x aibėje x, yra susietas elementas aibėje y, žymimas f(x) arba y. Tai ryšys gali būti atvaizduotas:

$$y = f(x)$$

02 Funkcijos apibrėžimas

$$y = f(x)$$

- y funkcijos nepriklausomu kintamasis (argumentas);
- x funkcijos priklausomas kintamasis (reikšmė);
- f funkcijos pavadinimas;

- Argumentų gali būti daug. Pavyzdžiui f(x,y,z).
- Funkcijos pavadinimas gali būti kitoks. Pavyzdžiui g(x), t(x) ir t.t.

Kaip atrodo reali funkcija?

Pavadinimas	Teorinis apibrėžimas	Pavyzdys
Tiesinė funkcija	f(x) = ax + b	f(x) = x
Kvadratinė funkcija	$f(x) = ax^2 + bx + c$	$f(x)=x^2+2x+1$
Šaknies funkcija	$f(x) = \sqrt{(x-a)} + b$	$f(x) = \sqrt{x} + 1$
Logaritminė funkcija	$f(x) = \log_b{(x-a)} + c$	$f(x) = \log_{10} x$

Dvigubinimo funkcija

$$2 \rightarrow 4 \times 4 \rightarrow 4$$

$$3.5 \rightarrow 4 \times 4 \rightarrow 2 \times 4$$

$$1000 \rightarrow 4 \times 4 \rightarrow 2 \times 4$$

$$2 \times 2 \times 4 \times 4 \rightarrow 2 \times 4$$

$$f(x) = x^{2} + 2x + 1;$$

$$x_{1} = -5; \quad f(-5) = (-5)^{2} + 2 \cdot (-5) + 1 = 16$$

$$x_{2} = 0; \quad f(0) = 1$$

$$x_{3} = 10; \quad f(10) = 10^{2} + 2 \cdot 10^{2} + 1 = 121$$

Sudėtinės palūkanos

Tarkime, kad nusprendėte investuoti 1000 eurų į banko sąskaitą, kurioje metinė palūkanų norma yra 5 procentai. Tačiau palūkanos kaupiamos kas ketvirtį. Kiek pinigų turėsite po trejų metų?

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

- A Būsimoji investicijos vertė, įskaitant palūkanas;
- P Pradinis įnašas.
- r Metinė palūkanų norma (dešimtainė forma);
- n Kiek kartų per metus taikomos palūkanos;
- t Laikas, kuriam investuojami pinigai (metais).

Sudėtinės palūkanos

Tarkime, kad nusprendėte investuoti 1000 eurų į banko sąskaitą, kurioje metinė palūkanų norma yra 5 procentai. Tačiau palūkanos išmokamos kas ketvirtį. Kiek pinigų turėsite po trejų metų?

Sprendimas:

•••

•••

•••

Taigi, po trejų metų, investavę 1000 eurų į banko sąskaitą su 5 % metine palūkanų norma, išmokant kas ketvirtį, turėsite maždaug 1 161,68 eurų.

Sudėtinės palūkanos

Tarkime, kad nusprendėte investuoti 1000 eurų į banko sąskaitą, kurioje metinė palūkanų norma yra 5 procentai. Tačiau palūkanos kaupiamos kas ketvirtį. Kiek pinigų turėsite po trejų metų?

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

- A Būsimoji investicijos vertė, įskaitant palūkanas;
- P Pradinis įnašas.
- r Metinė palūkanų norma (dešimtainė forma);
- n Kiek kartų per metus taikomos palūkanos;
- t Laikas, kuriam investuojami pinigai (metais).

Funkcija programavime

instrukcijų seka, atliekanti konkrečią užduotį, supakuota kaip vienetas. Šį vienetą galima naudoti programose visur, kur tik reikia atlikti konkrečią užduotį.

Funkcija programavime kaip juodoji dėžė

Čia x ir y - bet kas, ką įmanoma apibrėžti kitamuoju. Išvesties gali ir nebūti. Funkcija gali turėti pašalinį efektą.

Funkcija

Matematika vs Programavimas

Nesaugo būsenos, visada deterministinė - t.y. atsakymas visada toks pat, kai įvestis ta pati (Stateless).	Gali saugoti būseną (stateful), o ta iš anksčiau išsaugota būsena - keisti rezultatą.
Kiekviena įvestis turi lygiai vieną išeitį.	Gali būti keletą išveščių vienai įvesčiai (per objektą, ar per kalbos sintaksę).
Apibūdina tik santykius tarp skaičių.	Gali daryti aktyvius veiksmus. Pvz.: nuskaityti failą, padaryti užklausą į serverį, išjungti programą ir t.t.
Statiška. Kartą aprašyta visuose kontekstuose reikš tą patį.	Funkcija veikimas gali kisti priklausomai nuo konteksto ir įvesties (objektinis programavimas - perkrovimas arba perašymas).

Matematikos atitikmenys programavime

01 IF-ELSE

```
def f(x):
   if x < 0:
       V = -X
   else:
def f(x):
   return abs(x)
```

Funkcija dalimis (angl. piecewise function)

$$f(x) = egin{cases} -x & if \, x \leq 0 \ x & if \, > 0 \end{cases}$$

Absolute Value Function is a Piecewise Function

