Pseudoalignment & kallisto

Nicolas Bray

The growth of RNA-seq

Deluge of data

- Datasets are growing not only in number but in size and complexity
- Consortia like GTEx generate thousands of samples, while individual biologists can easily generate hundreds of millions of reads worth of RNA-seq data
- Traditional analysis of this data is very computationally intensive, often involving expensive computational resources

Democratizing analysis

- When analysis requires computational power beyond what's easily available to the average biologist, this adds a barrier between them and their data
- The ability to analyze their own data can reduce dependence on external support
- The ability to explore their data computational can lead to new questions and new discoveries

Usability

- We want data analysis to be not just possible but usable
- Analysis should make it easy to say "What if..."
- When an analysis takes huge amounts of computer time, it limits exploration
- Personal anecdote: I once waited two weeks for an analysis of a particularly large RNA-seq dataset to finish, only to have a new transcriptome annotation be released the next day

ATGTGATCC

GAAAGGGTTG

read 5 CACAGGTGTGG

read 3

read 1	GGGTTGTACCC	t1 @position 17, t2 @position 4
read 2	ATGTGATCC	
read 3	CCGTTG	
read 4	GAAAGGGTTG	
read 5	CACAGGTGTGG	

read 1	GGGTTGTACCC	t1 @position 17, t2 @position 4
read 2	ATGTGATCC	t1 @position 1
read 3	CCGTTG	
read 4	GAAAGGGTTG	
read 5	CACAGGTGTGG	

read 1	GGGTTGTACCC	t1 @position 17, t2 @position 4
read 2	ATGTGATCC	t1 @position 1
read 3	CCGTTG	t1 @position 37, t2 @position 24, t3 @position 10
read 4	GAAAGGGTTG	
read 5	CACAGGTGTGG	

read	1 GGGTTGTACCC	t1 @position 17, t2 @position 4
read	2 ATGTGATCC	t1 @position 1
read	3 CCGTTG	t1 @position 37, t2 @position 24, t3 @position 10
read	4 GAAAGGGTTG	t1 @position 53, t2 @position 40, t3 @position 26
read	5 CACAGGTGTGG	

read 1	GGGTTGTACCC	t1 @position 17, t2 @position 4
read 2	ATGTGATCC	t1 @position 1
read 3	CCGTTG	t1 @position 37, t2 @position 24, t3 @position 10
read 4	GAAAGGGTTG	t1 @position 53, t2 @position 40, t3 @position 26
read 5	CACAGGTGTGG	t3 @position 51

- Even ultra-fast alignment is still pretty slow
- Alignments contain information that we don't usually care about.

The kallisto mantra

Do as much as you can, with as little as you can.

The kallisto mantra

- for computing transcript abundances, the set of transcripts a read is compatible with tells you almost everything about it
- idea: let's compute that directly rather than a basepair-level alignment that has more information than we need

- Given our reference transcriptome, we first construct its target de Bruijn Graph (T-DBG)
- This encodes the transcript sequences but also provides information about how they overlap with each other
- Only has to be done once per transcriptome (and is fast)

- Given a read, finding its constitutive k-mers in the T-DBG gives you information about where the read could have come from
- This can be done very fast
- But individual k-mers might be more ambiguous than the read as a whole

- Combining information across the k-mers can recover lost information
- For each k-mer we have the set of transcripts it could have come from.
 Intersecting them gives the set of transcripts that all k-mers could have come from
- It's possible for their combination to have information equivalent to the entire read, even if no single k-mer does by itself

· 110.

- Is there a reason you picked the name kallisto for your program?
 - Yes.

k-mers alone lose lots of information; strong together only

→ 140.

- Is there a reason you picked the name kallisto for your program?
 - Yes.

• **k**-mers **a**lone lose lots of **i**nformation; **s**trong **t**ogether **o**nly

kallisto

- Knowing the T-DBG, we can predict ahead of time which k-mers will be potentially interesting
- By only processing those k-mers, kallisto runs ~8 times faster

Transcript compatibility counts

Quantifying transcript abundances

Estimating uncertainty

- "What are the abundances of the different transcripts in my sample?"
- kallisto gives an answer but how sure should you be of it?
- In an alternate universe, your sample prep and sequencing might have produced slightly different data for no real biological reason
- What would that data look like?

Estimating uncertainty

- The simplicity of the kallisto method allows us to apply a classic statistical tool known as the bootstrap.
- We can't access alternate universes, but we can try to simulate them as best we can
- Alternate datasets are constructed by resampling from the original dataset
- Each alternate dataset can then be analyzed with kallisto allowing us to gain some insight into the variability inherent in the data

Estimating uncertainty

Testing the bootstrap

pachterlab.github.io/kallisto/

