SQL: Structured Query Language

Adam Peterson

University of Michigan: Department of Biostatistics

 $materials\ found\ at \\ https://github.com/apeterson91/computing_workshops/workshop_2$

Agenda

- Motivation
- Keywords:
 - 'SELECT'
 - 'WHERE'
 - 'GROUP BY'
- Inner queries
- Joins
 - Inner
 - Outer
 - · Left, Right

Motivation

• What is SQL and why is it important?

- What is SQL and why is it important?
- SQL is a programming language that allows one to programmatically access data in databases

- What is SQL and why is it important?
- SQL is a programming language that allows one to programmatically access data in databases
- i.e. With SQL we can query
 a database for just the
 information we want and
 nothing else.

Set-Up:1

Table : Student_Table

S_ID	First_Name	Last_Name	Student_Age	Student_Major
1	John	Smith	23	Biostatistics
2	Anne	Doroughty	21	Biostatistics
3	Anthony	Jones	19	Statistics

Set-Up:2

Loading Data into SAS for PROC SQL exercises

SELECT Keyword

SELECT

SELECT: Formulaic

SELECT <ColumnNames> FROM <TableName>

SELECT: Example

SELECT First_Name FROM Student_Table;

First_Name John

Anne

Anthony

SELECT Keyword

SELECT example- SAS

Code fairly simple...

SELECT example- SAS

```
Code fairly simple...
PROC SQL;
SELECT First_Name
FROM Student_Table;
QUIT;
```

WHERE Keyword

Where

WHERE: Formulaic

SELECT < ColumnNames> FROM < TableName> WHERE < Condition>

WHERE: Example

SELECT First_Name FROM Student_Table WHERE Student_Age<22;

First_Name
Anne
Anthony

WHERE Keyword

WHERE example- SAS

```
PROC SQL;
SELECT First_Name
FROM Student_Table
WHERE Student_Age < 22; QUIT;
```

GROUP BY Keyword

GROUP BY: Formulaic

$$\label{eq:selection} \begin{split} &\mathsf{SELECT} < \mathsf{Aggregate_Function}(\mathsf{ColumnNames}) > \mathsf{FROM} \\ &<\mathsf{TableName} > \mathsf{GROUPBY} < \mathsf{GroupColumnName} > \end{split}$$

GROUP BY: Example

SELECT Student_Major, SUM(Student_Age) FROM Student_Table WHERE Student_Age >19 GROUP BY Student_Major;

Student_Major	SUM(Student_Age)
Biostatistics	44

Keywords

Group By example- SAS

```
PROC SQL;

SELECT SUM(Student_Age)

FROM Student_Table

WHERE Student_Age > 19

GROUP BY Student_Major;

QUIT;
```

Inner Query: Formulaic

SELECT <ColumnNames> FROM (SELECT <ColumnNames> FROM <TableName>)

Inner Query: Example

SELECT First_Name FROM (SELECT * FROM Student_Table WHERE Student_Age<22);

First_Name
Anne
Anthony


```
PROC SQL;
SELECT First_Name FROM
(SELECT * FROM Student_Table WHERE Student_Age < 22);
QUIT;</pre>
```

Quick Aside: Relational Databases

Let's talk a bit about how data is stored in tables in a relational database

Unique Identifiers

Quick Aside: Relational Databases

Let's talk a bit about how data is stored in tables in a relational database

- Unique Identifiers
- One-To-Many Relationship
 - One student, multiple classes

Joins

Quick Aside: Relational Databases

Let's talk a bit about how data is stored in tables in a relational database

- Unique Identifiers
- One-To-Many Relationship
 - One student, multiple classes

$StuClass_Table$

S_ID	Class_Num	Class_Name	Class_Dept
1	602	Statistical Inference II	Biostatistics
1	651	Applied Linear Regression II	Biostatistics
2	516	Epidemiology II	Epidemiology
3	601	Statistical Inference I Biostatistics	
3	531	Analysis of Time Series Statistics	

Type of Joins

- Left Outer
 - Get everything from 'left' table, matching items from right
- Right Outer
 - Get everything from 'right' table, matching items from left
- Inner
 - Only items that are found in both tables
- More...

SQL JOINS

Type of Joins

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key WHERE A.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

Join: Example

Join: Formulaic

SELECT Table_1.<ColumnNames>, Table_2.<ColumnNames> FROM <TableName> <Type> JOIN

Join: Example

SELECT Student_Table.First_Name StuClass_Table.Class_Name FROM Student_Table INNER JOIN StuClass_Table ON Student_Table.S_ID = StuClass_Table.S_ID;

Join: Example

Join: Example

SELECT Student_Table.First_Name, StuClass_Table.Class_Name FROM Student_Table INNER JOIN StuClass_Table ON Student_Table.S_ID = StuClass_Table.S_ID;

$Student_ID$	First_Name	Class_Name
1	John	Statistical Inference II
1	John	Applied Linear Regression II
2	Anne	Epidemiology II
3	Anthony	Statistical Inference I
3	Anthony	Analysis of Time Series

SAS - Join Example

```
PROC SQL;

SELECT Student_Table.First_Name,

StuClass_Table.Class_Name

FROM Student_Table

INNER JOIN StuClass_Table

ON Student_Table.S_ID = StuClass_Table.S_ID;

QUIT;
```

Resources for Further Learning

- pandasql
- sqldf
- CodeAcademy's SQL Course
- W3 great reference

Questions

Any Questions?

