Automata

DFA

A Deterministic Finite Automata is defined as $M=(Q,\Sigma,\delta,q_0,F)$ where

- Q: A finite set of states
- Σ : A finite set of symbols
- δ : Transition function
- $\delta: Q \times \Sigma \to Q$
- F: A set of accept states
- $F \subset Q$

Notes:

F = ∅ ⇒ L(M) = ∅

A Nondeterministic Finite Automata is defined as $M=(Q,\Sigma,\delta,q_0,F)$ where

- · Q: A finite set of states
- Σ : A finite set of symbols
- Let $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- δ : Transition function
- $\bullet \ \delta: Q \times \Sigma_\varepsilon \to \mathcal{P}(Q)$
- F: A set of accept states

· Implicit reject when no transition is labeled

A Pushdown Automata is defined as $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ where

- Q: Set of states
- Σ : Input alphabet
- Γ: Stack alphabet
- $\bullet \ \delta \mathpunct{:} Q \times \Sigma_\varepsilon \times \Gamma_{\!\varepsilon} \Rightarrow \mathcal{P}(Q \times \Gamma_{\!\varepsilon})$
- q_0 : Start state
- F: Set of accept states

CFG

A CFG is defined as (V, Σ, R, S) where

- V: finite set of variables
- Σ : finite set of terminals
- R: finite set of rules
- S: start variable

Closure

Regular Languages

Closed under:

- Union
- Concatenation
- · Star
- · Intersection
- Complement

CFLs

Closed under:

- Union
- Concatenation
- Star

If A_1 is a regular language and A_2 is a CFL, then $A_1 \cup A_2$ is a CFL

Pumping Lemmas

Regular Languages

 \forall Regular Language $A, \exists p \in \mathbb{Z}^{>0}$ s.t. $s \in A \land |s| \ge p \Rightarrow s$ may be divided into 5 pieces, s = xyz s.t.

- 1) $xy^iz \in A \ \forall \ i \geq 0$
- 2) |y| > 0
- 3) $|xy| \leq p$

- 1) $uv^ixy^iz \in A \ \forall \ i \geq 0$
- 2) $vy \neq \varepsilon$
- 3) $|vxy| \leq p$

Other

CNF

A CFG is in Chomsky Normal Form if every rule is of the form:

$$A \to BC$$

$$A \rightarrow a$$

and

- a is a terminal
- A, B, C are variables
- · Start variable cannot be on the right side of any rule
- $S \to \varepsilon$ is permitted **only** for the start variable S

Converting to CNF

- 1. Add a new start variable S_0 and rule $S_0 \to S$, where S is the original start
- 2. Eliminate all ε -rules of the form $A \to \varepsilon$, where $A \neq S_0$
 - · For each occurrence of A on the right side of a rule, add a new rule with that occurrence removed
- 3. Eliminate unit rules of the form $A \rightarrow B$
 - For any rule $B \to u$, add $A \to u$
 - · Including the start variable
- 4. Convert remaining rules to proper form
 - For each rule $A \to u_1 u_2 ... u_k$, $k \ge 3$, where each u_i is a variable or terminal:
 - Remove the rule and add the following rules:
 - $A \rightarrow u_1 A_1$,

 - $\begin{array}{l} -\ A_1 \rightarrow u_2 A_2, \\ -\ A_{k-2} \rightarrow u_{k-1} A_k, \end{array}$

Converting CFG to PDA

We use the procedure developed in Lemma 2.21 to construct a PDA P_1 from the following CFG G.

$$S
ightarrow {
m a} T {
m b} \mid {
m b} \ T
ightarrow T {
m a} \mid arepsilon$$

The transition function is shown in the following diagram.

- 1. Place "\$" and then the start variable on the stack
- 2. Repeat the following steps:
 - a. If the top of the stack is a variable A, then:
 - · Nondeterministically select one of the rules for A and substitue A with the right side of the rule
 - b. If the top of the stack is a terminal a, then:
 - · Read the next symbol from the input and compare it with a. If not match, reject the branch
 - c. If the top of the stack is \$, then:
 - · If all input has been read, accept.