浙江农林大学 2015 - 2016 学年第二学期考试卷答案 (A卷)

参考答案

课程名称 概率论与数理统计(B)课程类别: 必修 考试方式: 闭卷 注意事项: 1、本试卷满分 100 分. 2、考试时间 120分钟.

答题纸(交卷时,答题纸背面朝上放在桌面上)

一、选择题(每小题3分,共24分) 得分								
题号	1	2	3	4	5	6	7	8
答案	A	A	С	D	В	С	D	D

二、填	空题(每小题3分,共18分	得分			
题号	答案	题号	答案		
1	$F(x_0) - F(x_0 - 0)$	2	1		
3	0. 5	4	t (16)		
5	16	6	$\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{\sigma_{0}^{2}} < \chi_{1-\alpha}^{2} (n-1)$		

三、实验解读应用题(每空 2 分,共 24 分)						
题号	答案	题号	答案			
1	$\frac{9s^2}{\sigma^2} \sim \chi^2(9)$	2	(24.2239, 64.2936)			
3	$\mu_1 = \mu_2$	4	0.410398			
5	接受原假设,甲乙两厂蓄电池的电容量无明显差异.	6	3			
7	2	8	P=0.17799			
9	不显著	10	$\hat{y} = -1.425424 + 0.1231638x$			
11	显著	12	2.27			

四、应用题(每小题5分,共10分)

得分

解:设X为在90000次波浪冲击中纵摇 角大于3°的次数, $X \sim B(90000,1/3)$ 由 中心极限定理得到

$$P\left\{\frac{29500-np}{\sqrt{np(1-p)}} \le \frac{X-np}{\sqrt{np(1-p)}} \le \frac{30500-np}{\sqrt{np(1-p)}}\right\} \quad t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$\approx \Phi\left(\frac{30500-np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{29500-np}{\sqrt{np(1-p)}}\right)$$

$$= \Phi\left(\frac{5\sqrt{2}}{2}\right) - \Phi\left(-\frac{5\sqrt{2}}{2}\right) = 0.9996$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

$$t = \frac{1150-1100}{20/\sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

2. $M: H_0: \mu \le \mu_0 = 1100$, $H_1: \mu > \mu_0$

$$P\left\{\frac{\overline{X}-1100}{S/\sqrt{n}} > t_{\alpha}(n-1)\right\} \le \alpha$$

$$t = \frac{1150 - 1100}{20 / \sqrt{16}} = 10 > 1.753 = t_{0.05}(15)$$

拒绝 H_0 ,认为采用新工艺生产的灯泡平均寿命 显著地大于 1100h.

五、综合计算题(每问3分,共24分)

得分

1.解:

$$(1)\int_0^1 Ax^2 dx = 1 \Rightarrow A = 3.$$

$$(2)P(-\frac{1}{2} < X < \frac{1}{2}) = \int_0^{\frac{1}{2}} 3x^2 dx = \frac{1}{8}.$$

$$(3)E(X^{2}) = \int_{0}^{1} x^{2} \cdot 3x^{2} dx = \frac{3}{5}.$$

$$(4)F(x) = \begin{cases} 0, x < 0\\ \int_0^x 3t^2 dt = x^3, 0 \le x < 1\\ 1, x \ge 1 \end{cases}$$

$$\mathfrak{M}$$
: (1) $E(X) = \theta + 2 \cdot 2\theta + 3(1 - 3\theta) = 3 - 4\theta$

(2)
$$\overline{x} = (1+1+2+2+3)/5 = 9/5$$

由 $3-4\hat{\theta}=9/5$ 得参数 θ 的矩估计值 $\hat{\theta}=3/10$

(3)
$$L(\theta) = \theta \cdot \theta \cdot 2\theta \cdot 2\theta \cdot (1 - 3\theta)$$

$$=4(\theta^4-3\theta^5)$$

(4)
$$\frac{dL(\theta)}{d\theta} = 4(4\theta^3 - 15\theta^4)$$

由 $4(4\tilde{\theta}^3-15\tilde{\theta}^4)=0$ 得参数 θ 最大似然估计值

为
$$\tilde{\theta} = 4/15$$