Pell's equation and continued fractions

THEOREM (EXISTENCE OF SOLUTIONS TO PELL'S EQUATION): Let D be a positive integer that is not a perfect square. Then the Pell's equation $x^2 - Dy^2 = 1$ has a positive solution.

THEOREM (SOLUTIONS TO PELL'S EQUATION ARE CONVERGENTS): Let D be a positive integer that is not a perfect square. For every positive solution (a, b) to the Pell's equation $x^2 - Dy^2 = 1$, there is some $k \in \mathbb{Z}_{\geq 0}$ such that the ratio $\frac{a}{b}$ is a convergent C_k of the continued fraction of \sqrt{D} .

THEOREM (GOOD APPROXIMATIONS ARE CONVERGENTS): Let r be an irrational real number. If p,q are integers with q>0 such that $|r-\frac{p}{q}|<\frac{1}{2q^2}$, then there is some $k\in\mathbb{Z}_{\geq 0}$ such that $\frac{p}{q}$ is a convergent C_k of the continued fraction of r.

- (1) Solving Pell's equation completely:
 - (a) Given the theorems above, devise a method to find the smallest positive solution to the Pell's equation $x^2 - Dy^2 = 1$.
 - (b) Apply your method for D=2, D=3, D=10, and D=21. Compare your results for D=2 and D=3 to what you found last time by trial and error.
 - (c) Give a formula for all positive solutions to Pell's equation for D=10 and D=21.
 - (a) Compute the continued fraction for \sqrt{D} , and test whether $p_k^2 Dq_k^2 = 1$ for the sequence of convergents $C_k = \frac{p_k}{q_k}$. The first one that works is the smallest positive solution of Pell's equation.
 - (b) For D=2, the convergent $C_1=\frac{3}{2}$ yields the smallest solution (3,2). For D=3, the convergent $C_1=\frac{2}{1}$ yields the solution (2,1). For D=10, the convergent $C_1=\frac{19}{6}$ yields the solution (19,6). For D=21, the convergent $C_5=\frac{55}{12}$ yields the solution (55,12).

(c) For D=10, the positive solutions (x_k,y_k) are given by the coefficients of $x_k+y_k\sqrt{10}=$ $(19+6\sqrt{10})^k$.

For D=21, the positive solutions (x_k,y_k) are given by the coefficients of $x_k+y_k\sqrt{21}=$ $(55+12\sqrt{21})^k$.

(2) Prove the Theorem (Solutions to Pell's equation are convergents) using the Theorem (Good approximations are convergents).

Suppose that (a,b) is a positive solution to the Pell's equation, so $a^2 - Db^2 = 1$. Dividing through by b^2 ,

$$\left| \left(\frac{a}{b} \right)^2 - D \right) \right| < \frac{1}{b^2}.$$

Factoring the left-hand side, we get

$$\left|\frac{a}{b} - \sqrt{D}\right| \left|\frac{a}{b} + \sqrt{D}\right| < \frac{1}{b^2}, \quad \text{so} \quad \left|\frac{a}{b} - \sqrt{D}\right| < \frac{1}{b^2 \left|\frac{a}{b} + \sqrt{D}\right|}.$$

We claim that $\frac{a}{b} + \sqrt{D} > 2$ for any solution to Pell's equation. Note that if D > 4, then $\sqrt{D} > 2$ and this is clear. In general, D > 1, so $\sqrt{D} > 1$, and $a \ge b$ implies $\frac{a}{b} \ge 1$, so

 $\frac{a}{h} + \sqrt{D} > 2$. Thus, from the equations above, we have

$$\left| \frac{a}{b} - \sqrt{D} \right| < \frac{1}{2b^2}.$$

By the Theorem (Good approximations are convergents), $\frac{a}{b}$ must be a convergent of \sqrt{D} .

- (3) Proof of Theorem (Existence of solutions to Pell's equation):
 - (a) Use Dirichlet's approximation theorem to show that there are infinitely many pairs of integers (x_i, y_i) such that $|x_i^2 - Dy_i^2| < 2\sqrt{D} + 1$.
 - (b) Show that there is some integer m with $0 < |m| < 2\sqrt{D} + 1$ such that there are infinitely many pairs of integers (x_i, y_i) with $x_i^2 - Dy_i^2 = m$.
 - (c) Show that there is some integer m with $|m| < 2\sqrt{D} + 1$ and $a,b \in \mathbb{Z}$ such that there are infinitely many pairs of integers (x_i, y_i) with

$$\begin{cases} x_i^2 - Dy_i^2 = m \\ x_i \equiv a \pmod{|m|} \\ y_i \equiv b \pmod{|m|} \end{cases}.$$

- (d) Given $i \neq j$ and x_i, x_j, y_i, y_j as in the previous part, show that $\frac{x_j + y_j \sqrt{D}}{x_i + y_i \sqrt{D}}$ is an element of $\mathbb{Z}[\sqrt{D}].$
- (e) Complete the proof of the Theorem.
 - (a) By Dirichlet's approximation theorem, there are infinitely many p/q such that

$$\left| \frac{p}{q} - \sqrt{D} \right| < \frac{1}{q^2},$$

given by the convergents of the continued fraction of \sqrt{D} . Then

$$\left| \left(\frac{p}{q} \right)^2 - D \right| = \left| \frac{p}{q} - \sqrt{D} \right| \left| \frac{p}{q} + \sqrt{D} \right| < \frac{\left| \frac{p}{q} + \sqrt{D} \right|}{q^2},$$

SO

$$|p^2 - Dq^2| < \frac{p}{q} + \sqrt{D}.$$

Since $q \ge 1$, we have that $\frac{p}{q} - \sqrt{D} < 1$, so $\frac{p}{q} + \sqrt{D} < 2\sqrt{D} + 1$. For p/q as above, taking $x_i = p$, $y_i = q$, we get infinitely many pairs of integers with $|x_i^2 - Dy_i^2| < 2\sqrt{D} + 1.$

- (b) There are finitely many integers m such that $|m|<2\sqrt{D}+1$, so by the pigeonhole principle, there must be some m such that there are infinitely many (x_i, y_i) with x_i^2 $Dy_i^2 = m$.
- (c) Take m as in the previous part; this m is nonzero since \sqrt{D} is irrational. For each element in the sequence obtained in the previous part, it corresponds to one element of $\mathbb{Z}_{|m|} \times \mathbb{Z}_{|m|}$ by taking the congruences

$$\begin{cases} x_i \equiv a \pmod{|m|} \\ y_i \equiv b \pmod{|m|} \end{cases}.$$

Since $\mathbb{Z}_{|m|} \times \mathbb{Z}_{|m|}$ is finite, by the pigeonhole principle, there must be some element of $\mathbb{Z}_{|m|} \times \mathbb{Z}_{|m|}$ corresponding to infinitely many elements of the sequence. This gives the statement.

(d) Given $i \neq j$ and x_i, x_j, y_i, y_j as in the previous part, note that

$$N(x_i + y_i \sqrt{D}) = N(x_i + y_i \sqrt{D}) = m.$$

We can write

$$\frac{x_j + y_j \sqrt{D}}{x_i + y_i \sqrt{D}} = \frac{1}{m} (x_j + y_j \sqrt{D})(x_i - y_i \sqrt{D}) = \frac{1}{m} ((x_i x_j - y_i y_j D) + (x_j y_i - x_i y_j) \sqrt{D}).$$

We claim that

$$x_i x_j - y_i y_j D \equiv x_j y_i - x_i y_j \equiv 0 \pmod{|m|}.$$

Indeed,

$$x_i x_j - y_i y_j D \equiv a^2 - b^2 D \equiv m \equiv 0$$
 (mod $|m|$)
 $x_i y_i - x_i y_j \equiv ab - ab \equiv 0$ (mod $|m|$).

This implies that the coefficients of $(x_ix_j - y_iy_jD) + (x_jy_i - x_iy_j)\sqrt{D}$ are divisible by m, so the number above is an element of $\mathbb{Z}[\sqrt{D}]$.

(e) In the previous part, we have found an element $\alpha \in \mathbb{Z}[\sqrt{D}]$ such that $\alpha(x_i + y_i\sqrt{D}) = x_i + y_i\sqrt{D}$ and

$$N(x_j + y_j \sqrt{D}) = N(x_i + y_i \sqrt{D}) = m \neq 0.$$

Thus, by the lemma, we much have $N(\alpha) = 1$. This yields the solution we seek.

(4) Prove¹ Theorem (Good approximations are convergents).

Suppose that p/q is not a convergent of r. If $q=q_k$ for some k but $p\neq p_k$, then

$$\left|r - \frac{p}{q_k}\right| \ge \left|\left|\frac{p}{q_k} - \frac{p_k}{q_k}\right| - \left|r - \frac{p_k}{q_k}\right|\right|.$$

Since $\left|\frac{p}{q_k} - \frac{p_k}{q_k}\right| \ge \frac{1}{q_k}$ and $\left|r - \frac{p_k}{q_k}\right| < \frac{1}{q_k^2}$ by Dirichlet approximation Theorem, the difference above is at least $\frac{q_k-1}{q_k^2} > \frac{1}{2q_k^2}$, contradicting the hypotheses. Thus, we must have $q \ne q_k$ for any k, so $q_{k-1} < q < q_k$ for some k.

By hypothesis,

$$\left| r - \frac{p}{q} \right| < \frac{1}{2q^2} < \frac{1}{2qq_{k-1}}.$$

Following the proof of Problem set #5 problem #4, by replacing k by k-1 in steps (a)–(d), we see that

$$|q_{k-1}r - p_{k-1}| \le |qr - p|.$$

Since |qr - p| < 1/2q, by hypothesis, we get

$$\left|r - \frac{p_{k-1}}{q_{k-1}}\right| \le \frac{1}{2qq_{k-1}}.$$

¹Hint: If not, we can assume $q_{k-1} < q < q_k$ for some k. In Problem set #5 problem #4, the same proof with k-1 in place of k in parts (a)–(d) shows that, under the same hypotheses, $|qr-p| \ge |q_{k-1}r-p_{k-1}|$. Then show that $|\frac{p}{q} - \frac{p_{k-1}}{q_{k-1}}| < \frac{1}{qq_{k-1}}$.

Then, by the triangle inequality,

$$\left| \frac{p}{q} - \frac{p_{k-1}}{q_{k-1}} \right| \le \left| r - \frac{p}{q} \right| + \left| r - \frac{p_{k-1}}{q_{k-1}} \right| < \frac{1}{2qq_{k-1}} + \frac{1}{2qq_{k-1}} = \frac{1}{qq_{k-1}}.$$

Clearing denominators, this forces $\left|\frac{p}{q}-\frac{p_{k-1}}{q_{k-1}}\right|=0$. This contradicts the assumption that p/q is not a convergent of r.