

CHAPTER 1: INTRODUCTION

Lesson #1: A big picture about Digital Signal Processing

Lesson #2: Analog-to-Digital and Digital-to-Analog conversion

Lesson #3: The concept of frequency in CT & DT signals

Duration: 6 hrs

References: Joyce Van de Vegte, "Fundamentals of Digital Signal Processing," Chap. 1, 2

John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing," Chap. 1

Lecture 1: A big picture about Digital Signal Processing

- Duration: 2 hr
- Outline:
 - 1. Signals
 - 2. Digital Signal Processing (DSP)
 - 3. Why DSP?
 - 4. DSP applications

* * * * * * *

Learning Digital Signal Processing is not something you accomplish; it's a journey you take.

4

Signals

- Function of independent variables such as time, distance, position, temperature
- Convey information

Examples:

1D signal: speech, music, biosensor...

2D signal: image

2.5D signal: video (2D image + time)

3D signal: animated

1-D signals

2-D image signals

Grey image

Color image

2.5-D video signals

3-D animated signals

Lecture 1: A big picture about Digital Signal Processing

- Duration: 2 hr
- Outline:
 - 1. Signals
 - 2. Digital Signal Processing (DSP)
 - 3. Why DSP?
 - 4. DSP applications

Discrete-time signal vs. continuous-time signal

Continuous-time signal:

- define for a continuous duration of time
- sound, voice...

Discrete-time signal:

- define only for discrete points in time (hourly, every second, ...)
- an image in computer, a MP3 music file
- amplitude could be discrete or continuous
- if the amplitude is also discrete, the signal is digital.

Analog signal vs. digital signal

Analog signal

Digital signal

What is Digital Signal Processing?

- Represent a signal by a sequence of numbers (called a "discrete-time signal" or "digital signal").
- Modify this sequence of numbers by a computing process to change or extract information from the original signal
- The "computing process" is a system that converts one digital signal into another— it is a "discrete-time system" or "digital system".
- Transforms are tools using in computing process

Signal processing systems

Digital signal processing

Digital Signal Processing implementation

Performed by:

- Special-purpose (custom) chips: application-specific integrated circuits (ASIC)
- Field-programmable gate arrays (FPGA)
- General-purpose microprocessors or microcontrollers ($\mu P/\mu C$)
- General-purpose digital signal processors (DSP processors)
- DSP processors with application-specific hardware (HW) accelerators

Digital Signal Processing implementation

	ASIC	FPGA	μΡ/μC	DSP processor	DSP processors with HW accelerators
Flexibility	None	Limited	High	High	Medium
Design time	Long	Medium	Short	Short	Short
Power consumption	Low	Low-medium	Medium-high	Low-medium	Low-medium
Performance	High	High	Low-medium	Medium-high	High
Development cost	High	Medium	Low	Low	Low
Production cost	Low	Low-medium	Medium-high	Low-medium	Medium

Digital Signal Processing implementation

- Use basic operations of addition, multiplication and delay
- Combine these operations to accomplish processing: a discrete-time input signal → another discrete-time output signal

An example of main step: "DT signal processing"

From a discrete-time input signal:

Create a discrete-time output signal:

What is the relation between input and output signal?

Two main categories of DSP

Lecture 1: A big picture about Digital Signal Processing

- Duration: 2 hr
- Outline:
 - 1. Signals
 - 2. Digital Signal Processing (DSP)
 - 3. Why DSP?
 - 4. DSP applications

- Flexible: re-programming ability
- More reliable
- Smaller, lighter → less power
- Easy to use, to develop and test (by using the assistant tools)
- Suitable to sophisticated applications
- Suitable to remote-control applications

- A/D and D/A needed → aliasing error and quantization error
- Not suitable to high-frequency signal
- Require high technology

Mixed Signal Processing

Lecture 1: A big picture about Digital Signal Processing

- Duration: 2 hr
- Outline:
 - 1. Signals
 - 2. Digital Signal Processing (DSP)
 - 3. Why DSP?
 - 4. DSP applications

Radar

Examples

2) tracking

Biomedical

 Analysis of biomedical signals, diagnosis, patient monitoring, preventive health care

Examples:

electrocardiogram (ECG) signal – provides doctor with information about the condition of the patient's heart

electroencephalogram (EEG) signal – provides
 Information about the activity of the brain

Speech compression

Speech recognition

Communication

Digital telephony: transmission of information in digital form via telephone lines, modern technology, mobile phone

Image processing

Image enhancement: processing an image to be more suitable than the original image for a specific application

It makes all the difference whether one sees darkness through the light or brightness through the shadows

David Lindsay

Image processing

Image compression: reducing the redundancy in the image data

UW Campus (bmp) 180 kb

UW Campus (jpg) 13 kb

Image processing

Image restoration: reconstruct a degraded image using a priori knowledge of the degradation phenomenon

Music

Recording, encoding, storing

Playback

Manipulation/mixing

Finger print recognition

Noise removal

Lecture 2: Analog-to-Digital and Digital-to-Analog conversion

- Duration: 2 hr
- Outline:
 - 1. A/D conversion
 - 2. D/A conversion

ADC

Sampling

■ Continuous-time signal → discrete-time signal

Sampling

- Taking samples at intervals and don't know what happens in between → can't distinguish higher and lower frequencies:
 aliasing
- How to avoid aliasing?

Nyquist sampling theory

- To guarantee that an analog signal can be perfectly recovered from its sample value
- Theory: a signal with maximum of frequency of W Hz must be sampled at least 2W times per second to make it possible to reconstruct the original signal from the samples
- Nyquist sampling rate: minimum sampling frequency
- Nyquist frequency: half the sampling rate
- Nyquist range: 0 to Nyquist frequency range
- To remove all signal elements above the Nyquist frequency
 - → antialiasing filter

Anti-aliasing filter

Some examples of sampling frequency

Speech coding/compression ITU G.711, G.729, G.723.1:

$$fs = 8 \text{ kHz} \rightarrow T = 1/8000 \text{ s} = 125 \mu \text{s}$$

Broadband system ITU-T G.722:

$$fs = 16 \text{ kHz} \rightarrow T = 1/16\ 000\ s = 62.5 \mu s$$

Audio CDs:

$$fs = 44.1 \text{ kHz} \rightarrow T = 1/44100 \text{ s} = 22.676 \mu \text{s}$$

Audio hi-fi, e.g., MPEG-2 (moving picture experts group),
 AAC (advanced audio coding), MP3 (MPEG layer 3):

$$fs = 48 \text{ kHz} \rightarrow T = 1/48\ 000 \text{ s} = 20.833 \mu\text{s}$$

Sampling and Hold

- Sampling interval T_s (sampling period): time between samples
- Sampling frequency f_s (sampling rate): # samples per second

Analog signal

Sample-and-hold signal

Quantization

■ Continuous-amplitude signal → discrete-amplitude signal

Coding

■ Quantized sample → N-bit code word

Example of quantization and coding

Analog pressures are recorded,		Range of analog	
using a pressure	Digital code	Level (V)	inputs (V)
transducer, as	000	0.0	0.0-0.1875
voltages between 0 and 3V. The	001		
signal must be	010		
quantized using a	011		
3-bit digital code. Indicate how the	100		
analog voltages	101		
will be converted	110		
to digital values.	111		

Example of quantization and coding

1	2	n	2	I

An analog voltage between -5V and 5V must be quantized using 3 bits. Quantize each of the following samples, and record the quantization error for each:

-3.4V; 0V; .625V

Digital code	Quantization Level (V)	Range of analog inputs (V)
100	-5.0	-5.0 → -4.375
101		
110		
111		
000		
001		
010		
011		

Quantization parameters

- Number of bits: N
- Full scale analog range: R
- Resolution: the gap between levels $Q = R/2^N$
- Quantization error = quantized value actual value
- Dynamic range: number of levels, in decibel Dynamic range = $20log(R/Q) = 20log(2^N) = 6.02N dB$
- Signal-to-noise ratio SNR = 10log(signal power/noise power)
 Or SNR = 20log(signal amplitude/noise amplitude)
- Bit rate: the rate at which bits are generated
 Bit rate = N.f_s

Noise removal by quantization

Non-uniform quantization

■ Quantization with variable quantization step ←→ Q value is variable

- Q value is directly proportional to signal amplitude → SNR is constant
- Most used in speech

A-law compression curve

ITU G.711 A-law curve

ITU G.711 standard

Input range	Step size	Part 1	Part 2	No. code word	Decoding output
0-1	2	000	0000	0	1
30-31			 1111	 15	 31
32-33	2	001	0000	16	33
62-63			 1111	 31	63
64-67	4	010	0000	32	66
124-127			 1111	47	 126
128-135	8	011	0000	48	132
248-255			 1111	63	 252
256-271	16	100	0000	64	264
496-511			 1111	 79	504
512-543	32	101	0000	80	528
992-1023			 1111	95	 1008
1024-1087	64	110	0000	96	1056
1984-2047			 1111	 111	2016
2048-2175	128	111	0000	112	2112
3968-4095			 1111	 127	 4032

Example of G.711 code word

A quantized-sample's value is +121

Code word: ?

Decoding value: ?

A quantized-sample's value is -121

Code word: ?

Lecture 2: Analog-to-Digital and Digital-to-Analog conversion

- Duration: 2 hr
- Outline:
 - 1. A/D conversion
 - 2. D/A conversion

DAC

Anti-imaging filter

The concept of frequency in CT & DT signals

- Duration: 2 hrs
- Outline:
 - 1. CT sinusoidal signals
 - 2. DT sinusoidal signals
 - 3. Relations among frequency variables

Mathematical description of CT sinusoidal signals

Functions:

$$x_{a}(t) = A\cos(\omega t + \theta), \quad -\infty < t < +\infty$$
$$= A\cos(2\pi f t + \theta), \quad -\infty < t < +\infty$$

Plot:

Properties of CT sinusoidal signals

1. For every fixed value of the frequency f, $x_a(t)$ is periodic: $x_a(t+T_p) = x_a(t)$

 $T_p = 1/f$: fundamental period

- 2. CT sinusoidal signals with different frequencies are themselves different
- 3. Increasing the frequency f results in an increase in the rate of oscillation of the signal (more periods in a given time interval)

Properties of CT sinusoidal signals (cont)

• For
$$f = 0 \rightarrow T_p = \infty$$

• For
$$f = \infty \rightarrow T_p = 0$$

- Physical frequency: positive
- Mathematical frequency: positive and negative

$$x_a(t) = A\cos(\omega t + \theta) = \frac{A}{2}e^{j(\omega t + \theta)} + \frac{A}{2}e^{-j(\omega t + \theta)}$$

The frequency range for CT signal:

$$-\infty < f < +\infty$$

CT & DT signals

Duration: 2 hrs

Outline:

- 1. CT sinusoidal signals
- 2. DT sinusoidal signals
- 3. Relations among frequency variables

Mathematical description of DT sinusoidal signals

Functions:

$$x(n) = A\cos(\Omega n + \theta), -\infty < n < +\infty$$
$$= A\cos(2\pi F n + \theta), -\infty < n < +\infty$$

Plot:

Properties of DT sinusoidal signals

 A DT sinusoidal signal x(n) is periodic only if its frequency F is a rational number

$$x(n+N) = x(n) \forall n$$

$$A\cos[2\pi F_0(n+N)+\theta)] = A\cos(2\pi F_0 n+\theta) \quad \forall n$$
$$2\pi F_0 N = 2\pi k$$

$$F_0 = \frac{k}{N}$$

Properties of DT sinusoidal signals

2. DT sinusoidal signals whose frequencies are separated by an integer multiple of 2π are identical

$$x(n) = \cos[(\Omega_0 + 2\pi)n + \theta] = \cos(\Omega_0 n + 2\pi n + \theta) = \cos(\Omega_0 n + \theta)$$

$$\Rightarrow \text{All} \quad x_k(n) = A\cos(\Omega_k n + \theta), \quad k = 0, 1, 2, \dots \\ \Omega_k = \Omega_0 + 2k\pi, \quad -\pi \leq \Omega_0 \leq +\pi \\ \text{are identical}$$

Properties of DT sinusoidal signals

3. The highest rate of oscillation in a DT sinusoidal signal is obtained when:

$$\Omega = \pi \quad (\text{or } \Omega = -\pi)$$

or, equivalently,
$$F = \frac{1}{2}$$
 (or $F = -\frac{1}{2}$)

 $-\pi \le \Omega \le \pi$ or $-1/2 \le F \le 1/2$: fundamental range

Lecture 3 The concept of frequency in CT & DT signals

- Duration: 2 hrs
- Outline:
 - 1. CT sinusoidal signals
 - 2. DT sinusoidal signals
 - 3. Relations among frequency variables

Sampling of CT sinusoidal signals

CT signal

 $x_a(t)$

Sampling

DT signal

 $x_a(nT)$

 $A\cos(2\pi f nT + \theta)$

$$= A \cos \left(\frac{2\pi f n}{f_S} + \theta \right)$$

 $A\cos(2\pi f t + \theta)$

$$F = \frac{f}{f_s}$$

Normalized frequency

Relations among frequency variables

$$\omega = 2\pi f$$

$$-\infty < \omega < +\infty$$

$$-\infty < f < +\infty$$

$$-\pi/T \le \omega \le +\pi/T$$
$$-f_s/2 \le f \le +f_s/2$$

DT signals

$$\Omega = 2\pi F$$

$$F = \frac{f}{f_s}$$

$$-\pi \le \Omega \le +\pi$$

$$-1/2 \le F \le +1/2$$

Exercise 1

Consider the analog signal

$$x(t) = 3\cos 100\pi t, \quad t[s]$$

- a) Determine the minimum sampling rate required to avoid aliasing
- b) Suppose that the signal is sampled at the rate $f_s = 200$ Hz. What is the DT signal obtained after sampling?
- c) Suppose that the signal is sampled at the rate $f_s = 75$ Hz. What is the DT signal obtained after sampling?
- d) What is the frequency $0 < f < f_s/2$ of a sinusoidal signal that yields samples identical to those obtained in part (c)?

Solution

$$x(t) = 3\cos 100\pi t, \quad t[s]$$

Solution

$$x(t) = 3\cos 100\pi t, \quad t[s]$$

Exercise 2

An analog signal is sampled at its Nyquist rate $1/T_s$, and quantized using L quantization levels. The derived signal is then transmitted on some channels.

(a) Show that the time duration, T, of one bit of the transmitted binary encoded signal must satisfy

$$T \le T_s / (\log_2 L)$$

(b) When is the equality sign valid?

HW - Problem 1 (20%)

n 1 0 1 2 3 4 5 6 7 8

Sample(V) 0.1111 0.6250 0.9555 3.4373 4.0500 2.8755 1.5625 2.7500 4.9676

A set of analog samples, listed in	2	Quantization	Range of analog	
table 1, is digitized	Digital code	Level (V)	inputs (V)	
using the	000	0.0	0.0 →0.3125	
quantization table	001	0.625	0.3125 → 0.9375	
2. Determine the	010	1.250	0.9375 → 1.5625	
digital codes, the	011	1.875	1.5625 → 2.1875	
quantized level, and the	100	2.500	2.1875 → 2.8125	
quantization error	101	3.125	2.8125 → 3.4375	
for each sample.	110	3.750	3.4375→4.0625	
	111	4.375	4.0625 → 5.0	

HW - Problem 2 (20%)

Consider that you desire an A/D conversion system, such that the quantization distortion does not exceed $\pm 1\%$ of the full scale range of analog signal.

- (a) If the analog signal's maximum frequency is **4000 Hz**, and sampling takes place at the Nyquist rate, what value of sampling frequency is required?
- (b) How many quantization levels of the analog signal are needed?
- (c) How many bits per sample are needed for the number of levels found in part (b)?
- (d) What is the data rate in bits/s?

A 3-bit D/A converter produces a *O V* output for the code *OOO* and a *5 V* output for the code *111*, with other codes distributed evenly between *O* and *5 V*.

Draw the zero order hold output from the converter for the input below:

111 101 011 101 000 001 011 010 100 110

HW - Problem 4 (20%)

Determine whether or not each of the following signals is periodic, specify its fundamental period.

$$a)x(t) = 3\cos(5t + \pi/6)$$

$$b)x(n) = 3\cos(5n + \pi/6)$$

$$c)y(n) = 2\exp[j(n/6) - \pi]$$

$$d)h(n) = \cos(n/8)\cos(n\pi/8)$$

$$e)w(n) = \cos(n\pi/2) - \sin(n\pi/8) + 3\cos(n\pi/4 + \pi/3)$$

HW - Problem 5 (20%)

Consider the following continuous-time sinusoidal signal

$$x_a(t) = \sin 2\pi f_0 t, \quad -\infty < t < +\infty$$

Its sampled version is described by values every T (s) as the formula below

$$x(n) = x_a(nT) = \sin 2\pi \frac{f_0}{f_s} n, \quad -\infty < n < +\infty$$

where $f_s = 1/T$ is the sampling frequency.

- a) Plot the signal x(n), $0 \le n \le 99$ for $f_s = 5$ kHZ and $f_0 = 0.5$, 2, 3, and 4.5 kHz. Explain the similarities and differences among the various plots.
- b) Suppose that $f_0 = 2 \text{ kHz}$ and $f_s = 50 \text{ kHz}$.
 - (1) Plot the signal x(n). What is the frequency F_0 of the signal x(n).
 - (2) Plot the signal y(n) created by taking the even-numbered samples of x(n). Is this a sinusoidal signal? Why? If so, what is its frequency?