Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Габдрахманов Булат Маратович группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Пос	становка задачи	2
2	Teo 2.1 2.2	рия Индекс Жаккара	2 2 2
3	Pea	лизация	3
4	Рез	ультаты	3
5	Зак	илючение	14
C	пис	сок иллюстраций	
	1	Исходные данные выборка X_1	3
	2	Гистограмма распределения δ_i для X_1	4
	3	Исходные данные выборка X_2	4
	4	Γ истограмма распределения δ_i для X_2	5
	5	Интервальная выборка X_1	5
	6	Интервальная выборка X_2	6
	7	Частота пересечений подинтервалов с интервалами выбор-	
		ки X_1	6
	8	Частота пересечений подинтервалов с интервалами выбор-	
		ки X_2	7
	9	Зависимость индекса Жаккара от значения R	8
	10	Объединённая выборка $X_1 \cup R_{opt} X_2$	8
	11	Частота пересечений подинтервалов с интервалами выбор-	
		ки $X_1 \cup R_{opt} X_2$	9
	12	Зависимость частоты пересечения моды с интервалами $X_1 \cup$	
		RX_2	10
	13	Внутренняя и внешняя оценки R	11
	14	Интервальная выборка X_1'	12
	15	Интервальная выборка X_2'	12
	16	Зависимость индекса Жаккара от значения R	13
	17	Зависимость числа интервалов в моде от R	13
	18	Объединённая выборка $X' \perp \perp B' - X'$	14

1 Постановка задачи

Имеется две вещественные выборки $\overline{X_1}, \overline{X_2}$. Необходимо построить из них две интервальные выборки X_1, X_2 и найти такой вещественный коэффициент R, что выборка $X_1 \cup RX_2$ будет наиболее совместной в смысле индекса Жаккара.

2 Теория

2.1 Индекс Жаккара

Индекс Жаккара определяет степень совместности двух интервалов x,y.

$$JK(x,y) = \frac{wid(x \wedge y)}{wid(x \vee y)} \tag{1}$$

Здесь \land , \lor представляют собой операции взятия минимума и максимума по включению в полной арифметике Каухера. Формула 1 легко может быть обобщена на случай интервальной выборки $X = \{x_i\}_{i=1}^n$.

$$JK(X) = \frac{wid(\wedge_{i=1,n}x_i)}{wid(\vee_{i=1,n}x_i)}$$
(2)

Видно, что $JK(X) \in [-1,1]$. Для удобства перенормируем значение JK(X) так, чтобы оно было в интервале [0,1].

$$JK(X) = \frac{1}{2} + \frac{1}{2}JK(X)$$
 (3)

2.2 Нахождение оптимального значения R

Для нахождения оптимального R необходимо сначала найти верхнюю и нижнюю границы $R, \overline{R}.$

$$\underline{R} = \frac{\min_{i=1,n} \underline{x_{1i}}}{\max_{i=1,n} \overline{x_{2i}}} \tag{4}$$

$$\overline{R} = \frac{\max_{i=1,n} \overline{x_{1i}}}{\min_{i=1,n} x_{2i}}$$
(5)

Затем оптимальное значение R может быть найдено методом половинного деления.

3 Реализация

Весь код написан на языке Python (версии 3.9). Ссылка на GitHub с исходным кодом.

4 Результаты

Данные были взяты из файлов $data/dataset1/+0_5V/+0_5V_0.txt$ и $data/dataset/-0_5V/-0_5V_42.txt$. Обынтерваливание было произведено следующим образом.

$$\mathbf{x}_i = [(x_i - \delta_i) - \varepsilon, (x_i - \delta_i) + \varepsilon], \varepsilon = \frac{1}{2^{14}}$$
 (6)

где x_i - точечное значение, δ_i - точечная погрешность. Набор δ_i получен из соответствующих файлов в data/dataset1/ZeroLine.txt

Для начала рассмотрим исходные данные с учётом и без учёта δ_i .

Рис. 1: Исходные данные выборка X_1

Гистограмма распеределения δ_i для X_1 имеет вид.

Рис. 2: Гистограмма распределения δ_i для X_1

Тоже самое для X_2

Рис. 3: Исходные данные выборка X_2

Гистограмма распеределения δ_i для X_2 имеет вид.

Рис. 4: Гистограмма распределения δ_i для X_2

На рис. 1, 3 видно, что учёт δ_i значительно уменьшил разброс исходных данных.

Теперь посмотрим на построенные интервальные выборки X_1, X_2 .

Рис. 5: Интервальная выборка X_1

Рис. 6: Интервальная выборка X_2

Также построим график частоты пересечений подинтервалов для построения моды с исходными интервалами выборок. Сначала для X_1 .

Рис. 7: Частота пересечений подинтервалов с интервалами выборки X_1

Затем для X_2 .

Рис. 8: Частота пересечений подинтервалов с интервалами выборки X_2

Мода для выборки X_1 равна интервалу $\mu_{X_1}=[0.427979,0.427981],$ для выборки X_2 мода равно интервалу $\mu_{X_2}=[-0.423771,-0.423769].$

Посчитаем индекс Жаккара обеих выборок. $JK(X_1) = 0.01036, JK(X_2) = 0.00905$. Найдем оптимальное значение R (для наглядности на графике 9 изображён более широкий интервал значений R).

Рис. 9: Зависимость индекса Жаккара от значения R

Оптимальное значение R оказалось равно $R_{opt}=-1.0095$ Построим объединённую выборку $X=X_1\cup R_{opt}X_2.$

Рис. 10: Объединённая выборка $X_1 \cup R_{opt} X_2$

Индекс Жаккара полученной выборки равен JK(X) = 0.00905.

Построим график частоты пересечений подинтервалов с объединённой выборкой $X_1 \cup R_{opt} X_2$.

Рис. 11: Частота пересечений подинтервалов с интервалами выборки $X_1 \cup R_{opt} X_2$

Мода для объединённой выборки $X_1 \cup R_{opt} X_2$ равна интервалу $\mu_{X_1 \cup R_{opt} X_2} = [0.427926, 0.427928].$

Посмотрим на зависимость частоты пересечений моды $\mu(R)$ с интервалами для объединённой выборки $X_1 \cup RX_2$ в зависимости от значений R.

Рис. 12: Зависимость частоты пересечения моды с интервалами $X_1 \cup RX_2$

Найдём внутреннюю оценку ${\bf R}$ двумя способами: используя индекс Жаккара и моду. Для этого введём уровень доверия $\alpha=0.95$ и найдем крайние значений R, удовлетворяющие $JK(R)>JK(R_{opt})*\alpha$ в случае индекса Жаккара и $\mu(R)>\mu(R_{opt})*\alpha$ в случае моды. Результаты представлены на рис. 13 (график $\mu(R)$ нормирован так, чтобы $\max_R \mu(R)$ и $\max_R JK(R)$ были равны).

Рис. 13: Внутренняя и внешняя оценки R

В итоге получили следующие оценки: $R_{JK}=[-1.012119,-1.004806],$ $R_{\mu}=[-1.01361,-1.008163].$ Внешнюю оценку получим по формулам 4, 5 $R_{out}=[-1.01062,-1.006362].$ Сравним полученные результаты с теми, что будут без учёта $\delta_i.~X_k'=$

 $\{[x_i-arepsilon,x_i+arepsilon]\}_{i=1}^n, k=1,2.$ X_1' имеют вид.

Рис. 14: Интервальная выборка X_1'

Рис. 15: Интервальная выборка X_2^\prime

Вычислим индекс Жаккара $JK(X_1')=0.00227, JK(X_2')=0.00318.$ Зависимость индекса Жаккара от значения параметра R имеет вид.

Рис. 16: Зависимость индекса Жаккара от значения R

Также построим зависимость числа интервалов в моде от параметра ${\cal R}.$

Рис. 17: Зависимость числа интервалов в моде от R

Видно, что оптимальное значение параметра R равно $R_{opt}^{\prime}=-0.94892,$

что значительно отличается от первого случая. Тогда объединённая выборка $X_1' \cup R_{opt}' X_2'$ имеет вид.

Рис. 18: Объединённая выборка $X_1' \cup R_{opt}' X_2'$

5 Заключение

- Из рисунка 9 можно заметить, что график значений индекса Жаккара в зависимости от параметра R имеет один локальный минимум.
- Значения индексов Жаккара для каждой выборки X_1, X_2 превосходят индекс Жаккара объединённой выборки $X = X_1 \cup RX_2$ для любого значения R.
- Но тем не менее JK(X) не сильно отличается от значений $JK(X_1)$, $JK(X_2)$. Вероятнее всего это связано с тем, что интервалы из X_1 и RX_2 (рис. 10) имеют примерно одинаковую длину.