Geometric Foundation of Parameter Inference

Master's Colloquium

Rafael Arutjunjan

Chair of Theoretical Physics I, FAU & Center for Astronomy Heidelberg

10. September 2020

Rafael Arutjunjan FAU 10. September 2020

Table of Contents

- Basics of Information Geometry
- Construction of Exact Confidence Regions
 - Confidence Bands
- Applications of Information Geometry
 - Toy Model
 - Analysis of Type 1A Supernovæ
 - Performance & Complexity

Rafael Arutjunjan FAU 10. September 2020

Basics of Information Geometry

Parameter Inference and Information Geometry

- Parameter Inference: Given a dataset and a model, for which parameter configuration does the model most faithfully describe the data?
- What is the uncertainty in the "optimal" parameter configuration that was found?
- Information Geometry: Rephrase statistical problems in such a way that they can be given a geometric interpretation.
- Use powerful toolkit of differential geometry which focuses on intrinsic quantities which are invariant under reparametrisation.
- Almost no information-geometric literature on uncertainty and confidence regions available.

Chart Philosophy

- Coordinate representations give a potentially distorted view of the underlying "real system".
- Separate coordinate effects from intrinsic properties of the underlying manifold.

Information Divergences between Probability Distributions

- Quantify separation / dissimilarity between probability distributions e.g. using so-called information divergences, which are positive-definite functionals.
- For example, the Kullback-Leibler divergence D_{KI} defined by

$$D_{\mathsf{KL}}[p:q] \coloneqq \int \! \mathrm{d} y \, p(y) \, \ln\!\left(rac{p(y)}{q(y)}
ight) = \mathbb{E}_p\!\left(\ln\!\left(p/q
ight)
ight).$$
 (1)

- Can be interpreted as measuring loss of information (i.e. relative increase in Shannon entropy) by approximating a distribution p(x)through q(x).
- Advantages: invariant under reparametrisation, applicable between any two distributions with common support.
- Problem: typically not symmetric and does not satisfy a triangle inequality \implies not a distance function.

Fisher Metric on Probability Spaces

 Can establish so-called Fisher metric on spaces of probability distributions via Hessian of Kullback-Leibler divergence:

$$g_{ab}(\theta) := \left[\frac{\partial^2}{\partial \psi^a \, \partial \psi^b} \, D_{\mathsf{KL}} \Big[p(y; \theta) : p(y; \psi) \Big] \right]_{\psi=\theta} \tag{2}$$

$$= \dots = -\mathbb{E}_{p} \left(\frac{\partial^{2} \ln(p)}{\partial \theta^{a} \partial \theta^{b}} \right) = \dots = \mathbb{E}_{p} \left(\frac{\partial \ln(p)}{\partial \theta^{a}} \frac{\partial \ln(p)}{\partial \theta^{b}} \right)$$
(3)

- Fulfils all the necessary requirements for a Riemannian metric tensor (symmetry, positive-definiteness, transformation behaviour).
- First employed by C. Rao in 1945 to study manifolds of probability distributions.
- Proof by Čencov in 1981 that Fisher metric is the unique metric which is invariant under so-called Markov morphisms.

Datasets and Error Distributions

- Dataset consists of observations $y_i \in \mathcal{Y} = \mathbb{R}^D$, observation conditions $x_i \in \mathcal{X} = \mathbb{R}^d$ and a specification of the uncertainty in the data points.
- For N data points, can consider the collection of all observations $\{y_i\}$ as a single point $y_{\text{data}} := (y_1, ..., y_N) \in \mathcal{Y}^N =: \mathcal{D}$.

Model Maps

The model map $y_{\text{model}}: \mathcal{X} \times \mathcal{M} \longrightarrow \mathcal{Y}$ must be

- sufficiently differentiable (preferably C^3) with respect to the parameters $\theta \in \mathcal{M}$,
- continuous with respect to the observation conditions $x \in \mathcal{X}$.

Can be specified

- explicitly, i.e. using a closed analytical expression
- implicitly, e.g. as the solution to a system of differential equations

$$(\mathscr{D}_{x} y_{\text{model}})(x; \theta) = f\left(x, y_{\text{model}}, \frac{\partial}{\partial x^{a_{1}}} y_{\text{model}}, ..., \frac{\partial}{\partial x^{a_{1}}} ... \frac{\partial}{\partial x^{a_{m}}} y_{\text{model}}; \theta\right)$$

• Notations: $y_{\text{model}}(x;\theta) \equiv y(x;\theta)$.

The Likelihood Function

- Probability of measuring a given dataset if y_{model} with parameter configuration $\theta \in \mathcal{M}$ is "true".
- For independent observations, the likelihood can be factored as

$$L(\operatorname{data} | \theta) \equiv L(y_{\operatorname{data}} | y_{\theta}(x)) = \prod_{j=1}^{N} \mathbb{P}_{j}(y_{j} | y_{\operatorname{model}}(x_{j}; \theta))$$
(4)

where \mathbb{P}_i the error distribution associated with *j*-th observation.

lacktriangle For correlated measurements of dim $\mathcal{Y}=1$ with normal error distributions

$$L\left(\operatorname{data}\left|\theta\right.\right) = \frac{1}{\sqrt{(2\pi)^{N}\operatorname{det}(\Sigma)}}\,\exp\!\left(-\frac{1}{2}\,\zeta^{i}(\theta)\,(\Sigma^{-1})_{ij}\,\zeta^{j}(\theta)\right) \tag{5}$$

where
$$\zeta^{a}(\theta) := \left(y_{\mathrm{data}} - h(\theta)\right)^{a}$$
 and $h(\theta) := \left(y(x_{1}; \theta), ..., y(x_{N}; \theta)\right)$.

The Likelihood Function

- Typically it is more convenient to work with the logarithm of the likelihood $\ell := ln(L)$.
- Gradient of log-likelihood is a covector field

$$d\ell = \frac{\partial \ell}{\partial \theta^j} d\theta^j = \frac{1}{L} \frac{\partial L}{\partial \theta^j} d\theta^j$$
 (6)

and generally referred to as the "score".

■ Maximum likelihood estimate $\theta_{\mathsf{MLE}} \in \mathcal{M}$ is defined by

$$(\mathrm{d}\ell)(\theta_{\mathsf{MLE}}) \stackrel{!}{=} 0 \qquad \Longleftrightarrow \qquad \frac{\partial \ell}{\partial \theta^{\mathsf{a}}} \Big|_{\theta_{\mathsf{MLE}}} \stackrel{!}{=} 0.$$
 (7)

and $\operatorname{Hess}_{\ell}(\theta_{\mathsf{MLE}})$ negative-definite.

Structural Identifiability

- When is the task of finding optimal parameters well-defined?
- Counterexample: $y_{\text{model}}(x; a, b) = a \cdot b \cdot x$.
- Cannot simultaneously determine both a and b from data, only the combination $m = a \cdot b$ is identifiable.
- Another example is given by $y_{\text{model}}(x; a, b) = (a + b) \cdot x$ where only m = a + b is identifiable.

Rafael Arutjunjan

Structural Identifiability

- Multiple desirable properties of model maps discussed e.g. in [1, 7, 8, 9].
- Existence of curves of unidentifiable configurations implies that there is a direction in \mathcal{M} in which ℓ does not change.
- Most important concept of parameter identifiability is "global structural identifiability", which requires that model is injective with respect to parameters, i.e. as a map $y_{\text{model}}: \mathcal{M} \longrightarrow C^0(\mathcal{X}, \mathcal{Y})$.
- Can conveniently check if model is locally injective (in a small neighbourhood around any $\theta \in \mathcal{M}$) by checking if determinant of Fisher metric is non-zero.

The Embedding Picture

- Crucial insight by Transtrum et al. in [8]: For normal likelihoods, \mathcal{D} constitutes a vector space.
- View parameter manifold \mathcal{M} as embedded in the "data space" $\mathcal{D} := \mathcal{Y}^N$ via the map $h: \mathcal{M} \longrightarrow \mathcal{D}$ defined by

$$h(\theta) := (y_{\text{model}}(x_1; \theta), ..., y_{\text{model}}(x_N; \theta)) \equiv \bigotimes_{j=1}^{N} y_{\text{model}}(x_j; \theta) \in \mathcal{D}.$$

• $C: \mathcal{D} \longrightarrow \mathbb{R}^+_{\cap}$ measures distance of any point in \mathcal{D} from y_{data} .

Direct Consequences of Vector Space Structure on $\mathcal D$

- If $h: \mathcal{M} \longrightarrow \mathcal{D}$ is linear, then vector space structure of \mathcal{D} is inherited along h to \mathcal{M} .
- Recovers Gauss–Markov theorem, which states that least squares estimator is the "best linear unbiased estimator" (BLUE).
- lacksquare For ${\mathcal M}$ to be consistently embedded in ${\mathcal D}$, one must have that

$$\forall X, Y \in \mathcal{TM}: \quad g_{\mathcal{M}}(X, Y) = h^*g_{\mathcal{D}}(X, Y) = g_{\mathcal{D}}(h_*X, h_*Y).$$

- Metric tensor on \mathcal{D} given by inverse covariance between observations Σ^{-1} and is in particular constant.
- Induces distance function on \mathcal{D} via

$$d_{\mathcal{D}}(\tilde{y}, y_{\text{data}}) = \sqrt{(y_{\text{data}} - \tilde{y})^{\top} \Sigma^{-1} (y_{\text{data}} - \tilde{y})} =: C(\tilde{y}).$$
 (8)

• Since \mathcal{D} is flat, so is \mathcal{M} for linear h.

Construction of Exact Confidence Regions

Confidence Intervals in 1D

- Confidence intervals should contain only the most likely parameter configurations (particularly the MLE).
- Should contain a fixed probability volume $q \in [0, 1]$.
- In 1D, one can quantify uncertainty as $C_{1\sigma} = [\theta_l, \theta_u] \subseteq \mathcal{M}$.

Approximating Higher-Dimensional Confidence Regions

- For dim $\mathcal{M}>1$, cannot treat the uncertainties in each individual parameter independently.
- Usually, one resorts to approximations of the "true" uncertainty.
- Most popular: Estimate covariance in parameters via Cramér–Rao lower bound:

$$\Sigma_{\mathsf{true}} \geq g^{-1}(\theta_{\mathsf{MLE}})$$
 : \iff $\Sigma_{\mathsf{true}} - g^{-1}(\theta_{\mathsf{MLE}})$ positive-definite.

- However, no guarantee if or when this lower bound is actually attained!
- For example, $a = 5 \pm 0.5$, $b = 1 \pm 0.3$ is typically not an accurate reflection of uncertainty.
- Several examples of this lower bound estimate will be shown later.

Rafael Arutjunjan

Likelihood Ratio Test and Wilks' Theorem

- Neyman-Pearson lemma (see [5]) states that likelihood ratio test is most powerful test to discriminate between simple hypotheses.
- Wilks' theorem: likelihood ratio test asymptotically distributed as

$$-2(\ell(\theta) - \ell(\theta_{\mathsf{MLE}})) \sim \chi_k^2$$
 (as $N \longrightarrow \infty$) (9)

with k the number of parameters in which θ and θ_{MLE} differ.

• Pearson χ^2 test statistic as second order approximation to likelihood ratio test

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - y_{\text{model}}(x_i; \theta)}{\sigma_i} \right)^2.$$
 (10)

Often used to judge quality of a fit.

Confidence Regions via Hypothesis Tests

- If distribution of a hypothesis test is known, it can be used to define confidence regions.
- Find a threshold value below or above which points belong to confidence region.
- lacktriangle For likelihood-based confidence regions of level $q\in [0,1]$ one has

$$\mathcal{C}_q := \left\{ heta \in \mathcal{M} \;\middle|\; \ell(heta_{\mathsf{MLE}}) - \ell(heta) \leq rac{1}{2} \, F_k^{-1}(q)
ight\}$$
 (11)

where F_k denotes the cumulative distribution of the χ_k^2 distribution.

lacktriangle The boundary of a confidence region \mathcal{C}_q is then defined by

$$\partial \mathcal{C}_q = \left\{ \theta \in \mathcal{M} \mid \ell(\theta_{\mathsf{MLE}}) - \ell(\theta) = \frac{1}{2} F_k^{-1}(q) \right\}.$$
 (12)

Efficient Construction of Exact Confidence Regions

- Idea: Exploit the fact that confidence boundaries are level sets of a (differentiable) function f.
- Systematically construct families of vector fields which are tangential to the level sets of f.
- Then the level sets are obtained as integral manifolds (i.e. curves or surfaces) to these vector fields.
- Problem of finding confidence region is converted into (numerically) solving a system of ODEs.
- Initial condition for this system of ODEs is given by a single point which is already known to lie on the desired boundary.

Likelihood-Annihilating Vector Fields

• Given the log-likelihood function ℓ , find non-vanishing vector fields X such that

$$(\mathrm{d}\ell)(X) \equiv \mathcal{L}_X \, \ell = X^j \, \frac{\partial \ell}{\partial \theta^j} \stackrel{!}{=} 0$$
 everywhere. (13)

One possible strategy: construct vector fields X according to

$$X^{j} = \alpha^{j} \prod_{i \neq j} \frac{\partial \ell}{\partial \theta^{i}}$$
 where $\alpha^{j} \in \mathbb{R} : \sum_{j=1}^{\dim \mathcal{M}} \alpha^{j} = 0.$ (14)

■ Thus, the original criterion is satisfied by choosing the coefficients α^j such that $\sum_i \alpha^j = 0$ since

$$X^{j} \frac{\partial \ell}{\partial \theta^{j}} = \left(\sum_{j=1}^{\dim \mathcal{M}} \alpha^{j}\right) \underbrace{\prod_{i=1}^{\dim \mathcal{M}} \frac{\partial \ell}{\partial \theta^{i}}}_{2} = 0$$
 (15)

Integral Manifolds & Frobenius' Theorem

- Frobenius' thm: Every finite-dimensional Lie algebra of vector fields gives rise to a unique family of integral submanifolds (e.g. curves, surfaces) to which this Lie algebra constitutes the tangent bundle
- This family of integral submanifolds constitutes a foliation of the underlying manifold
- Set of likelihood-annihilating vector fields given by

$$\mathfrak{L} = \left\{ \left(\alpha^j \prod_{i \neq j} \frac{\partial \ell}{\partial \theta^i} \right) \frac{\partial}{\partial \theta^j} \in \Gamma(T\mathcal{M}) \mid \sum_{j=1}^{\dim \mathcal{M}} \alpha^j = 0 \right\}.$$
 (16)

- lacksquare If one can show that $(\mathfrak{L},[\,\cdot\,,\,\cdot\,])$ forms a closed Lie subalgebra of $(\Gamma(T\mathcal{M}), [\,\cdot\,,\,\cdot\,])$, then confidence boundaries $\partial \mathcal{C}_q$ foliate \mathcal{M} .
- Can be proven that this is indeed the case, provided that the model is globally structurally identifiable!

Integral Curves of Vector Fields

- For dim $\mathcal{M}=2$, confidence regions around MLE are topological disks and their boundaries are closed curves.
- Integral curve γ of a vector field X characterised by

$$X_{\gamma(t)} \stackrel{!}{=} \dot{\gamma}(t) \qquad \Longleftrightarrow \qquad \left(X_{\gamma(t)}\right)^{j} \stackrel{!}{=} \left(\theta^{j} \circ \gamma\right)'(t).$$
 (17)

Parameter $\theta^1 \equiv a$

FAU

Integral Surfaces of the Likelihood

- Flows associated with likelihood-annihilating vector fields $X \in \mathfrak{L}$ convenient way of getting from any point on ∂C_q to any other.
- Lie algebra parametrised by coefficients $\vec{\alpha} \in \mathbb{R}^{\dim \mathcal{M}}$

$$\mathcal{H} := \left\{ \vec{\alpha} \in \mathbb{R}^{\dim \mathcal{M}} \mid \sum_{j} \alpha^{j} = 0 \right\}. \tag{18}$$

• \mathcal{H} constitutes linear sub-vector space of $\mathbb{R}^{\dim \mathcal{M}}$, which can easily be given an orthonormal basis.

Pointwise Confidence Bands

- Also want to quantify uncertainty in prediction of model.
- Use so-called pointwise confidence bands, which are typically defined by two enveloping functions I(x) and u(x)

$$\forall x \in \mathcal{X} : \mathbb{P}(I(x) \leq y_{\text{model}}(x; \theta_{\text{MLE}}) \leq u(x)) = q.$$
 (19)

■ Instead, can also define pointwise confidence bands $\mathcal{B}_a(x)$ via

$$\mathcal{B}_q(x) := y_{\text{model}}(x; \mathcal{C}_q) = \left\{ y_{\text{model}}(x; \theta) \in \mathcal{Y} \mid \theta \in \mathcal{C}_q \right\}.$$
 (20)

- For visualisation, one is particularly interested in boundary $(\partial \mathcal{B}_a)(x)$.
- Does $(\partial \mathcal{B}_a)(x) = \partial y_{\text{model}}(x; \mathcal{C}_a) \stackrel{?}{=} y_{\text{model}}(x; \partial \mathcal{C}_a)$ hold?
- Yes, guaranteed if model injective and continuous with respect to parameters! Significant reduction in computational effort.

Survey of Qualitative Effects of Reparametrisations

X	у	σ
1	4	0.5
2	5	0.45
3	6.5	0.6

- Confidence bands narrower in the midrange of the observation conditions of a dataset.
- Use different parametrisations of model reflecting linear relationship between x and y.
- Look at qualitative difference in shapes of confidence regions.

Rafael Arutjunjan

Embedding of linearly-parametrised ${\cal M}$

- Uses linear parametrisation according to $y_{\text{model}}(x; a, b) = ax + b$.
- Red point corresponds to $y_{\text{data}} \in \mathcal{D}$, whereas orange point is $h(\theta_{\text{MLE}}) \in \mathcal{D}$.

Embedding of non-linearly parametrised ${\cal M}$

- Uses parametrisation $y_{\text{model}}(x; a, b) = (a + b)x + \exp(a b)$
- Manifold $h(\mathcal{M}) \subseteq \mathcal{D}$ is the same, coordinatisation different.

Applications of Information Geometry

Toy Model

■ Linear parametrisation of quartic x-y relationship via

$$y_{lin}(x;\theta) = y_{lin}(x;a,b) = ax^4 + b.$$
 (21)

Alternatively, non-linear parametrisation according to

$$y_{\text{non-lin}}(x;\theta) = y_{\text{exp}}(x;a,b) = 15a^3x^4 + b^5.$$
 (22)

lacktriangle Reparametrisation corresponds to effective transformation on ${\cal M}$

$$\Phi(a,b) = (15a^3, b^5)$$
 and $\Phi^{-1}(a,b) = (\sqrt[3]{a/15}, \sqrt[5]{b}).$ (23)

- Clearly, Φ^{-1} is no longer differentiable for a=0 or b=0.
- Study parameter manifold in both parametrisations and investigate effects of non-linear transformation.

Toy Dataset

- Constant metric $g_{\mathcal{M}}$ for linear parametrisation.
- Equidistant points from y_{data} form hyperellipse in \mathcal{D} .
- Thus pull-back along linear h^* also results in elliptic confidence regions on \mathcal{M} .

Exact Confidence Regions of Linear Toy Model

- Confidence regions from 1σ to 5σ in linear parametrisation.
- Dashed rectangles circumscribe linear estimate for covariance matrix from Cramér-Rao lower bound.

Exact Confidence Regions of Non-Linear Toy Model

- Confidence regions from 1σ to 5σ in non-linear parametrisation.
- Can see that non-linearity introduced by chart transition Φ is relatively mild.

Log-Likelihood in Coordinates

- Larger view of log-likelihood ℓ and confidence regions 1σ to 8σ .
- Not visible from log-likelihood that there is any problem at b=0.

Geometric Density in Coordinates

- Rescaling according to $f = \log_{10} \left(1 + \sqrt{\det(g)} \right)$.
- Geometric density vanishes precisely on the b=0 line.

Curvature on the Parameter Manifold

- Plot of $tanh(R(\theta))$ reveals that $\mathcal M$ basically flat everywhere.
- However, one can see that $b \approx 0$ is problematic.

The Supernova Cosmology Project (SCP)

- Founded in 1988 at Berkeley National Laboratory by S. Perlmutter.
- Exploits predictable luminosity of type 1A supernova detonations to estimate their distance via their apparent brightness.
- Heads of SCP and HZT were jointly awarded the 2011 Nobel Prize in Physics for the discovery that the expansion of the Universe is accelerating.

Left to right [6]: Adam G. Riess (1/4)Saul Perlmutter (1/2)Brian P. Schmidt (1/4)

The SCP Dataset

$$\mu(z; \Omega_{\rm m}, w) = 10 + 5 \log_{10} [(1+z) d_{\rm H} \mathcal{I}(z; \Omega_{\rm m}, w)]$$
 (24)

$$\mathcal{I}(z;\Omega_{m},w) = \int_{0}^{z} dx \, \frac{1}{\sqrt{\Omega_{m} (1+x)^{3} + (1-\Omega_{m})(1+x)^{3(1+w)}}} \quad (25)$$

Physical Assumptions of the Employed Model

- Universe filled with only two cosmological fluids:
 - Matter fluid with density $\Omega_{\rm m}$ and associated equation of state parameter $w_{\rm m}=0$.
 - Dark energy fluid with density Ω_{Λ} and equation of state parameter w.
- Particularly, the curvature fluid Ω_{κ} is assumed to vanish, i.e. Universe flat.
- Contribution of radiation is negligible for late cosmological times, i.e. set $\Omega_{\rm rad} = 0$.
- Thus, by Friedmann equations: $\Omega_m + \Omega_{\Lambda} \stackrel{!}{=} 1$.
- Only need to model matter density Ω_m and equation of state parameter for dark energy fluid w.
- Assuming $H_0 = 70 \frac{\text{km}}{\text{s.Mpc}}$.

Confidence Regions for the SCP Dataset

- Non-linear dependence of model on parameters clearly visible from distorted shape of confidence regions.
- $\operatorname{vol}(\mathcal{C}_{1\sigma}) = 51.4 \pm 0.1$ and $\operatorname{vol}(\mathcal{C}_{2\sigma}) = 492 \pm 20$.

Structural Identifiability of SCP Model

- What about confidence regions of higher level?
- Closer examination of SCP model reveals that maximal open injective domain is given by

$$\mathcal{M} = \left\{ (\Omega_{\mathsf{m}}, w) \in \mathbb{R}^2 \mid 0 < \Omega_{\mathsf{m}} < 1, w < 0 \right\}. \tag{26}$$

- At approximately 2.734σ , the boundary of the confidence region touches the $\Omega_m=0$ line.
- Conceptual upper limit to confidence regions which can be displayed in this chart.

Geometric Density in Coordinates

- Rescaled geometric density factor according to $\ln(\sqrt{\det g})$.
- \blacksquare Strong fluctuations in geometric density factor for small $\Omega_{\rm m}.$
- Due to rapid growth in components of Fisher metric.

Curvature on the Parameter Manifold

- Rescaled curvature as $f = \tanh(8 \tanh R)$.
- \blacksquare Similar to geometric density, fluctuating curvature near $\Omega_{\mbox{\tiny m}}=0.$
- Indication of chart boundary as with non-linear toy model?

Confidence Bands for SCP

- Increasing width of confidence band for larger redshifts z.
- New observations at high z will constrain uncertainty in prediction more than observations at lower z.

Sparse Excerpt of SCP Dataset

- To verify consistency of integral manifold method, study sparse excerpt of SCP dataset.
- Clearly, MLE obtained from smaller dataset will be different.
- Does the MLE of full dataset still lie within confidence region associated with excerpt?
- What at what confidence level? 1σ ? 2σ ?
- What about linear approximation of uncertainty for sparse MLE?

Sparsified SCP Dataset

- Semi-randomly chosen subset containing $35/580 \approx 6\%$ of the SCP dataset.
- Although the prediction looks almost indistinguishable, one finds $\theta_{\text{MLE.Sparse}} \approx (0.51, -2.23)$ compared with $\theta_{\text{MLE,Full}} \approx (0.28, -1.00).$

Confidence Regions of Sparse SCP Dataset

- For CRLB, the "true" MLE apparently far outside 1σ region, whereas exact region shows that this is still within 1σ .
- Therefore, CRLB grossly misrepresents true uncertainty in parameters both in shape and magnitude. (Not even a true lower bound!)

Performance for the SCP dataset (on my tablet)

Solver tol.	$\#Function\ Evals$	Time
10^8	740	9.0 s
10^{-9}	1100	14.2 s
10^{-10}	1500	18.2 s
10^{-11}	2100	25 s
10^{-12}	3200	38 s
$5\cdot 10^{-13}$	3600	44 s
10^{-13}	5000	61 s
$5\cdot 10^{-14}$	5700	69 s
10^{-14}	8000	96 s

- Single core performance of integral curve scheme for 1σ boundary of the SCP dataset.
- Score evaluation takes 8.8 ms, log-likelihood takes 0.88 ms.

Comparison of Complexities

- Naïve method of constructing exact confidence regions: evaluate likelihood ratio test on a grid of parameter configurations and use interpolation to estimate location of boundary.
- Scales according to $O(H^{\dim M})$ where H denotes the grid density.
- Majority of likelihood evaluations "wasted" far away from location of boundary.
- Integral manifold method requires evaluation of gradient of likelihood (which has dim $\mathcal M$ components) at every step.
- Scales according to $O(\dim \mathcal{M} \cdot H^{\dim \mathcal{M}-1})$ where H denotes the grid density.
- Significantly more efficient use of likelihood evaluations.

Summary

- lacktriangle Parameter space ${\mathcal M}$ should be viewed as a manifold instead of as a vector space.
- Valid domain of a parametrised model can be conveniently investigated using manifold invariants.
- Especially for non-linearly parametrised models, Cramér-Rao lower bound yields poor approximation of both shape and magnitude of true uncertainty.
- For "well-defined" models, exact confidence boundaries and confidence bands both exist and can be computed efficiently.

Further Results

- lacktriangle Geometries induced on $\mathcal D$ by non-normal error distributions associated with observations.
- For example, metric induced by pseudo-Poisson errors results in non-vanishing Christoffel symbols on \mathcal{D} (but still R=0).
- Cauchy error distributions result in "halved information content" of each observation.
- Square of geodesic distance on M can be used as a reliable approximation to likelihood ratio test in cases of normal error distributions.

Outlook and Strict Subset of Open Questions

- Implement non-normal (e.g. asymmetric) error distributions and investigate associated confidence regions.
- **Extend formalism to include uncertainty in conditions** $x \in \mathcal{X}$ (see e.g. [3, 4]).
- If M flat, there should exist a smooth coordinate transformation in which makes confidence regions elliptic (see also [2]).
- Study Lie group associated with algebra of likelihood-annihilating vector fields (e.g. its Killing form).
- Simultaneous confidence bands in geometric picture?
- Bayesian analogue of geometric Fisher formalism?
- Finsler Geometry instead of Riemannian Geometry: can it provide a better approximation to Kullback-Leibler divergence?

Q & A

Questions?

⊠ arutjunjan.r@gmail.com

• RafaelArutjunjan/Master-Thesis

 \bigcap /RafaelArutjunjan/InformationGeometry.jl

Rafael Arutjunjan FAU 10. September 2020 55

References I

- [1] ARUTJUNJAN, R.: On the Geometric Foundation of Parameter Inference, Friedrich-Alexander University Erlangen-Nürnberg, Master's thesis, August 2020. https://github.com/RafaelArutjunjan/Master-Thesis
- [2] GIESEL, E. S.: Investigation of Non-Gaussian Likelihoods in the Framework of Information Geometry, Heidelberg University, Master's Thesis
- [3] HEAVENS, A. F.; SEIKEL, M.; NORD, B. D.; AICH, M.; BOUFFANAIS, Y.; BASSETT, B. A.; HOBSON, M. P.: Generalised Fisher Matrices. (2014). https://arxiv.org/pdf/1404.2854v2.pdf
- [4] HEAVENS, A.: Generalisations of Fisher Matrices. In: Entropy 18 (2016), Jun, Nr. 6, 236. http://dx.doi.org/10.3390/e18060236. DOI 10.3390/e18060236. ISSN 1099-4300
- [5] NEYMAN, J.; PEARSON, E. S.; PEARSON, K.: IX. On the problem of the most efficient tests of statistical hypotheses. In: *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character* 231 (1933), Nr. 694-706, 289-337. http://dx.doi.org/10.1098/rsta.1933.0009. - DOI 10.1098/rsta.1933.0009

Rafael Arutjunjan FAU Appendix 10. September 2020 56

References II

- [6] OVERBYE, D.: Studies of Universe's Expansion Win Physics Nobel. (2011), October. https://www.nytimes.com/2011/10/05/science/space/05nobel.html
- [7] TRANSTRUM, M. K.; MACHTA, B.; BROWN, K.; DANIELS, B. C.; MYERS, C. R.; SETHNA, J. P.: Sloppiness and Emergent Theories in Physics, Biology, and Beyond. (2015). https://arxiv.org/pdf/1501.07668.pdf
- [8] TRANSTRUM, M. K.; MACHTA, B. B.; SETHNA, J. P.: Geometry of nonlinear least squares with applications to sloppy models and optimization. 83 (2011), March, Nr. 3, S. 036701. http://dx.doi.org/10.1103/PhysRevE.83.036701. – DOI 10.1103/PhysRevE.83.036701
- [9] WHITE, A.; TOLMAN, M.; THAMES, H. D.; WITHERS, H. R.; MASON, K. A.; TRANSTRUM, M. K.: The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems. In: *PLOS Computational Biology* 12 (2016), 12, Nr. 12, 1-26. http://dx.doi.org/10.1371/journal.pcbi.1005227. DOI 10.1371/journal.pcbi.1005227

Rafael Arutjunjan FAU Appendix 10. September 2020 57