January 10 samples used:

- Co-60
 - 1 Feb 09: 34.92 kBq = .9437 μCi
- Ba-133
 - 1 Feb 09: 35.59 kBq = .9619 μCi
- Cs-137
 - 1 Feb 09: 34.58 kBq = .9347 μCi

Current radioactivity of each sample

All same age: (2020-Jan-10) - (2009-Feb-01)

- 3995 days / (365 days per year)
 - = 10.945 years

General decay formula: $A = A_0 * e^{-t * \lambda}$

 $\lambda = (\ln 2) / (T_{1/2})$

So the formula for each element's decay will be A = A_0 * $e^{-10.945 * \lambda}$

Co-60

- $A_0 = .9437 \mu Ci$
- $T_{1/2} = 5.27 y$
- $\lambda = (\ln 2) / (5.27 \text{ y})$
 - \circ = 0.131527 y⁻¹
- A = (.9437 μ Ci) * $e^{-10.945 * 0.131527}$
 - \circ = 0.2237 µCi

Ba-133

- $A_0 = .9619 \mu Ci$
- $T_{1/2} = 10.51 \text{ y}$
- $\lambda = (\ln 2) / (10.51 \text{ y})$
 - \circ = 0.065951 y⁻¹
- A = (.9619 μ Ci) * $e^{-10.945 * 0.065951}$
 - \circ = 0.4673 µCi

Cs-137

- $A_0 = .9347 \mu Ci$
- $T_{1/2} = 30.0 \text{ y}$
- $\lambda = (\ln 2) / (30.0 \text{ y})$


```
 \circ = .0231 \text{ y}^{-1} 
• A = (.9619 \muCi) * e<sup>-10.945 * .0231</sup>
• = 0.747 \muCi
```

Efficiency Calibration

```
DE = D/N

DE = detector efficiency

D = number of photons counted in the detector

N = number of photons emitted by the source

N = TB<sub>Specific energy of isotope</sub> x T<sub>Detection</sub> x A<sub>Isotope</sub>
```

```
N = TB_{Specific energy of isotope} \times T_{Detection} \times A_{Isotope}
Co-60
Total decays:
= 131.63 sec * 0.2237 \muCi * ((3.7 * 10<sup>4</sup> decays per second)/(1 \muCi ))
= 1.089 * 10<sup>6</sup> decays
    a. 1173.23 KeV
N = 1 \text{ photon/decay} * (1.089 * 10^6 \text{ decays})
= 1.089 * 10^6  photons
    b. 1332.49 KeV
N = 1 \text{ photon/decay} * (1.089 * 10^6 \text{ decays})
= 1.089 * 10<sup>6</sup> photons
Ba-133
Total decays:
= (131.63 \text{ sec}) * (0.4673 \mu \text{Ci}) * (3.7 * 10^4 \text{ decays per second})/(1 \mu \text{Ci})
= 2.276 * 10<sup>6</sup> decays
    a. 81 KeV
N = 0.34 * (total decays)
= 773,804 photons
    b. 276 KeV:
N = (.075 \text{ avg photons/decay}) * (2.276 * 10^6 \text{ decays})
```

= 170,700 photons

```
c. 303 KeV
```

N = .183 * (total decays)

= 417,171 photons

D = 26965.9 counts

DE = 26965.9 / 773804.59

= .0348

d. 356 KeV

N = 0.62 * (total decays)

N = 1,411,055 photons

D = 59841 counts

Cs-137

Total decays:

= $(131.63 \text{ sec}) * (0.747 \mu\text{Ci}) * (3.7 * 10^4 \text{ decays per second})/1 (\mu\text{Ci})$

= 3.638 * 10⁶ decays

a. 661.66 KeV

N = 0.85 avg photons/decay * (3.638 * 10⁶ decays)

= 3,092,403 photons

D = 97,575 photons

Energy Calibration

Gamma-ray energies and intensities:

- Co-60:
 - 1173.23 KeV, 99.85%
 - 1332.49 KeV, 99.98%
- Ba-133:
 - o 81.00 KeV, 34.06%
 - o 275.93 KeV, 7%
 - o 302.85 KeV, 18.33%
 - o 356.01 KeV, 62.05%
- Cs-137:

Results

Efficiency Calibration Results

We had trouble obtaining an equation that matched the existing calibration curve, above the knee. The below table has the energy levels with corresponding efficiency ratios (DE = D/N).

Area determined by GammaVision + calculated Detector Efficiency (DE)

Isotope	Centroid channel #	Energy (KeV)	Gross area counts, GammaVi sion	Net area counts, GammaVi sion	Measured counts (D), using GammaVi sion net area	Total emitted counts (N)	DE = D/N
	5693	<u>1173</u>	9789	9053 +/- 119	9053	1,087,854	0.00832
Co-60	6463	<u>1332</u>	8576	8129 +/- 106	8129	1,089,270	0.00746
	394	<u>81</u>	57934	38145 +/- 375	38145	775,170	0.04921
	1342	<u>276</u>	15623	6211 +/- 241	6211	170,700	0.03639
	1466	303	26175	17471 +/- 256	17471	417,172	0.04188
Ba-133	1727	<u>356</u>	59841	50026 +/- 323	50026	1,411,055	0.03545
Cs-137	3187	<u>662</u>	97575	91505 +/- 359	91505	3,092,403	0.02959

Energy Calibration R results

Residuals:

1 2 3 4 5 6 7 0.1950 -0.2944 0.0652 -0.2033 0.3382 -0.1804 0.0797

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.731e-01 3.226e-01 -1.467 0.2164
poly(data\$channel, 2, raw = TRUE)1 2.069e-01 2.576e-04 803.181 1.44e-11 ***
poly(data\$channel, 2, raw = TRUE)2 -1.240e-07 3.552e-08 -3.491 0.0251 *
--Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2844 on 4 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 1 F-statistic: 8.593e+06 on 2 and 4 DF, p-value: 5.417e-14

2nd order polynomial fit: $y = -0.473 + 0.207x - 1.240 \cdot 10^{-7}x^2$ Calibration report: $y = -0.125 + 0.207x - 7.297 \cdot 10^{-8}x^2$

Energy Calibration

Appendix

ListPRO binary output file of Co-60, Ba-133, Cs-137, plotted with Python's Matplotlib
Horizontal axis: channel
Vertical axis: counts