

TXN/TYN 0512 ---> TXN/TYN 1012

SCR

FEATURES

- HIGH SURGE CAPABILITY
- HIGH ON-STATE CURRENT
- HIGH STABILITY AND RELIABILITY
- TXN Serie: INSULATED VOLTAGE = 2500V_(RMS) (UL RECOGNIZED: E81734)

DESCRIPTION

The TYN/TXN 0512 ---> TYN/TXN 1012 Family of Silicon Controlled Rectifiers uses a high performance glass passivated technology.

This general purpose Family of Silicon Controlled Rectifiers is designed for power supplies up to 400Hz on resistive or inductive load.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit		
I _T (RMS)	RMS on-state current TXN (180° conduction angle) TXN		Tc=80°C Tc=90°C	12	А
lT(AV)	Average on-state current (180° conduction angle,single phase circuit)	Tc=80°C Tc=90°C	8	А	
ITSM				125	A
	(Tj initial = 25°C)		tp=10 ms	120	
l ² t	I ² t value tp=10 ms			72	A ² s
dI/dt	Critical rate of rise of on-state current Gate supply: IG = 100 mA dig/dt = 1 A/µs	100	A/μs		
Tstg Tj	Storage and operating junction temperature range			- 40 to + 150 - 40 to + 125	°C °C
TI	Maximum lead temperature for soldering during 10 s at 4.5 mm from case			260	°C

Symbol	Parameter		TYN/TXN					Unit	
		0512	112	212	412	612	812	1012	
VDRM VRRM	Repetitive peak off-state voltage Tj = 125 °C	50	100	200	400	600	800	1000	٧

April 1995 1/5

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth (j-a)	Junction to ambient		60	°C/W
Rth (j-c) DC	(j-c) DC Junction to case for DC TXN		3.5	°C/W
		TYN	2.5	

GATE CHARACTERISTICS (maximum values)

 $P_{G (AV)} = 1W$ $P_{GM} = 10W (tp = 20 \ \mu s)$ $I_{FGM} = 4A (tp = 20 \ \mu s)$ $V_{RGM} = 5 \ V.$

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions	Value	Unit		
IGT	$V_D=12V$ (DC) $R_L=33\Omega$	Tj=25°C	MAX	15	mA
V _{GT}	$V_D=12V$ (DC) $R_L=33\Omega$	Tj=25°C	MAX	1.5	V
V_{GD}	$V_D=V_{DRM}$ R _L =3.3k Ω	Tj= 125°C	MIN	0.2	V
tgt	$V_D=V_{DRM}$ $I_G=40$ mA $dI_G/dt=0.5$ A/ μ s	Tj=25°C	TYP	2	μs
ΙL	IG= 1.2 IGT	Tj=25°C	TYP	50	mA
lн	I _T = 100mA gate open	Tj=25°C	MAX	30	mA
VTM	ITM= 24A tp= 380μs	Tj=25°C	MAX	1.6	V
IDRM	V _{DRM} Rated	Tj=25°C	MAX	0.01	mA
IRRM	VRRM Rated	Tj= 125°C		3	
dV/dt	Linear slope up to V _D =67%V _{DRM} gate open	Tj= 125°C	MIN	200	V/μs
tq	V _D =67%V _{DRM} I _{TM} = 24A V _R = 25V dI _{TM} /dt=30 A/μs dV _D /dt= 50V/μs	Tj= 125°C	TYP	70	μs

Fig.1: Maximum average power dissipation versus average on-state current (TXN).

Fig.3: Maximum average power dissipation versus average on-state current (TYN).

Fig.5: Average on-state current versus case temperature (TXN).

Fig.2: Correlation between maximum average power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (TXN).

Fig.4: Correlation between maximum average power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (TYN).

Fig.6: Average on-state current versus case temperature (TYN).

Fig.7: Relative variation of thermal impedance versus pulse duration.

Fig.9: Non repetitive surge peak on-state current versus number of cycles.

Fig.11: On-state characteristics (maximum values).

Fig.8: Relative variation of gate trigger current versus junction temperature.

Fig.10 : Non repetitive surge peak on-state current for a sinusoidal pulse with width : $t \le 10$ ms, and corresponding value of l^2t .

PACKAGE MECHANICAL DATA

TO220AB Plastic

REF.	DIMENSIONS					
	Millimeters		Inc	hes		
	Min. Max.		Min.	Max.		
Α	10.00	10.40	0.393	0.409		
В	15.20	15.90	0.598	0.625		
С	13.00	14.00	0.511	0.551		
D	6.20	6.60	0.244	0.259		
F	3.50	4.20	0.137	0.165		
G	2.65	2.95	0.104	0.116		
Н	4.40	4.60	0.173	0.181		
I	3.75	3.85	0.147	0.151		
J	1.23	1.32	0.048	0.051		
L	0.49	0.70	0.019	0.027		
М	2.40	2.72	0.094	0.107		
N	4.80	5.40	0.188	0.212		
0	1.14	1.70	0.044	0.066		
Р	0.61	0.88	0.024	0.034		

Cooling method: by conduction (method C)

Marking: type number Weight: 2.3 g

Recommended torque value : 0.8 m.N. Maximum torque value : 1 m.N.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved. SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

