A deep dive into the convolution operation

Romain Thalineau

qwertee.io

romain.thalineau@qwertee.io

@romaintha

PyData Cluj-Napoca, November 25, 2019

About

Ph.D. in physics (Grenoble, France) Quantum computing hardware

PROTIP: YOU CAN SAFELY IGNORE ANY SENTENCE THAT INCLUDES THE PHRASE "ACCORDING TO CURNITIM MECHANICS"

Machine learning engineer Computer vision

Convolutions are everywhere!

Many people are not aware that most elementary operations on all numbers (multiplication & addition) are simply special cases of (1x1) convolutions. Let's finally start to teach convolution in its full glory to all children from primary school! #feelthelearn

10:50 PM · Oct 19, 2018 · Twitter Web Client

Intuition

Go to notebook

Convolution: mathematical formalism

The mathematical definition of the convolution of the functions f and g written $f \ast g$ is:

$$s(t) = (f * g)(t) = \int_{-\infty}^{-\infty} f(\tau)g(t - \tau)d\tau$$

In the discrete case, the convolution is expressed as:

$$s(t) = (f * g)(t) = \sum_{n=-\infty}^{-\infty} f(n)g(t-n)$$

From 1d to 2d convolutions

Considering an image I and a kernel(filter) K, both being 2 dimensional, the convolution S of I and K is:

$$S(i,j) = (I * K)(i,j) = \sum_{m=-\infty}^{-\infty} \sum_{n=-\infty}^{-\infty} I(m,n)K(i-m,j-n)$$

Convolutions for image processing

Go to notebook

Image recognition

Learn the conditional probability p(y|x) where:

y: muffin or chihuahua

x: input image

Deep learning: Universal Approximation Theorem

Universal Approximation Theorem¹:

a MLP can approximate any function with any degree of accuracy (given enough hidden units)

Image source: http://www.mdpi.com/

But:

No guarantee of learning it

Number of hidden units required $\propto e^{input_size} \rightarrow \text{Overfitting}$

¹Hornik et al (1989)

Deep learning: MLP

Any output y_i is simply a linear combination of all inputs x_i to which an activation function σ is applied:

$$y_i = \sigma(b_i + \sum_{j=1}^N w_{j,i}x_j)$$

Image key properties

Locality

Translation invariance

Deep learning: convolution

The output y_i can be written as a linear combination of only a few input x_i :

$$y_i = \sigma(b_i + w_1x_i + w_2x_{i-1} + w_3x_{i+1})$$

This leverages 3 important ideas: sparse connectivity, parameter sharing, equivariance to translation

Deep learning: convolution arithmetic

$$o = \left[\frac{i + 2p - k}{s}\right] + 1$$

where:

- o: output size
- i: input size
- p: zero padding (number of zeros added around the image)
- k: kernel size
- s: stride (distance between two consecutive positions of the kernel)

More on convolution arithmetic here.

Deep learning: deep convolutional network

Stacking simple blocks allows for learning higher level features ¹

¹ Lecun et al

Deep learning: visualizing CNN

Laver 3

Deep learning: other kind of convolutions

Transposed convolution (a.k.a. deconvolution)

Dilated convolution (a.k.a. atrous convolution)

Image by Vincent Dumoulin

Extra resources

- Deep learning book
- Dive into deep learning book
- Understanding convolutions
- Feature visualization
- Deconvolution and checkerboard artifacts

Thank you for your attention