CSE326: Analysis and Design of AlgorithmsLecture 1

Course Outline (Tentative)

- Basics: Asymptotic notation and recurrences
- Divide-and-Conquer
- Dynamic programming
- Greedy algorithms
- Amortized analysis
- NP-completeness
- Graph algorithms

Course Logistics

- Course updates will be posted on MS teams.
 - Team code posted to your group.

Grade distribution (tentative):

Coursework and labs: 25%

• Midterm: 25%

• Final: 50%

Academic integrity:

You must complete the sheets and assignments independently.
 Avoid any violation of academic integrity.

Textbook

• Main textbook: *Introduction to Algorithms*, 3rd Edition by Cormen, Leiserson, Rivest, & Stein (CLRS).

Other useful references will be posted when needed.

Lecture 1: Asymptotic Notation and Recurrences

The following slides are an edited version of slides by professors *Erik D. Demaine* and *Charles E. Leiserson* provided by MIT OCW (CC license).

Analysis of algorithms

The theoretical study of computer-program performance and resource usage.

In practice, are there other aspects that we care about?

Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.
- Performance is the *currency* of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

Analysis of Algorithms

- Goal: Predicting the resources that an algorithm requires
- Efficiency metrics:
 - Running time
 - Memory (space) used
 - Communication overhead, e.g., packets sent over a network in a distributed algorithm
- The efficiency is measured with respect to the input size.
 - Note: The input size is defined based on the problem.
 - For a sorting problem, it is usually the number of items.
 - For a graph problem, it is usually expressed in two numbers: number of edges and number of vertices.
 - For integer multiplication, it is the number of bits of the input numbers.

Analysis of Algorithms

- In most cases, assumed model of computation: the RAM model
- The RAM model contains instructions commonly found in real computers:
 - Arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling),
 - Data movement (load, store, copy)
 - Control (conditional and unconditional branch, subroutine call and return).
- Each basic instruction is assumed to take a constant amount of time.
- Data types: integer and floating-point types
 - Each word of data has a limited size.

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Insertion sort

"pseudocode"

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i - 1

A[i+1] = key
```


Insertion sort

INSERTION-SORT (A, n) $\triangleright A[1 ... n]$ for $j \leftarrow 2$ to n**do** $key \leftarrow A[j]$ $i \leftarrow j - 1$ "pseudocode" while i > 0 and A[i] > key $\operatorname{do} A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ A[i+1] = keyn*A*: key sorted

8 2 4 9 3 6

Running time of insertion sort

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- T(n) = expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (bogus)

• Cheat with a slow algorithm that works fast on *some* input.

Machine-independent time

What is insertion sort's worst-case time?

- It depends on the speed of our computer:
 - relative speed (on the same machine),
 - absolute speed (on different machines).

BIG IDEA:

- Ignore machine-dependent constants.
- Look at *growth* of T(n) as $n \to \infty$.

"Asymptotic Analysis"

Next

- Asymptotic Notation
 - O-, Ω -, and Θ -notation
- Recurrences
 - Substitution method
 - Recursion tree
 - Master method

Figure 3.1(b) from CLRS

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$ functions, not values

Set definition of O-notation

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```


Set definition of O-notation

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```

EXAMPLE:
$$2n^2 \in O(n^3)$$

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example:
$$f(n) = n^3 + O(n^2)$$

means
 $f(n) = n^3 + h(n)$
for some $h(n) \in O(n^2)$.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

```
EXAMPLE: n^2 + O(n) = O(n^2) means for any f(n) \in O(n): n^2 + f(n) = h(n) for some h(n) \in O(n^2).
```


O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$. We use Ω to indicate lower bounds.

```
\Omega(g(n)) = \{ f(n) : \text{there exist constants} \ c > 0, n_0 > 0 \text{ such} \ \text{that } 0 \le cg(n) \le f(n) \ \text{for all } n \ge n_0 \}
```


Figure 3.1(c) from CLRS

$$\Omega(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \\ \text{for all } n \ge n_0 \}$$

EXAMPLE:
$$\sqrt{n} = \Omega(\lg n)$$
 ($c = 1, n_0 = 16$)

Θ-notation (tight bounds)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Θ-notation (tight bounds)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

EXAMPLE:
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

Θ-notation (tight bounds)

```
\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}
```


Asymptotic Notation

• Θ -, O-, and Ω -notation

o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like < and >.

$$o(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{there is a constant } n_0 > 0 \\ \text{such that } 0 \le f(n) < cg(n) \\ \text{for all } n \ge n_0 \}$$

EXAMPLE:
$$2n^2 = o(n^3)$$

 $2n^2 < cn^3$ for any c > 0 and all $n \ge n_0$ where $n_0 > 2/c$

o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like < and >.

```
\omega(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{there is a constant } n_0 > 0 \\ \text{such that } 0 \le cg(n) < f(n) \\ \text{for all } n \ge n_0 \}
```

EXAMPLE:
$$\sqrt{n} = \omega(\lg n)$$

o-notation and ω -notation

Limit Definition

$$f(n) = o(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) = \omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Asymptotic performance

When n gets large enough, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm.

- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.

Exercise

- Sort the following functions by the order of their growth:
 - 5n²
 - n lg n
 - log₃ n²
 - lg n
 - (lg n)²
 - n!
 - (n+1)!
 - 2ⁿ
 - 3 lg n

Note: Section 3.2 in CLRS has a review of standard mathematical functions that can help with this problem.

Solution

From lowest to highest:

Functions written on the same line are in the same group. f(n) and g(n) are in the same group if and only if $f(n) = \theta(g(n))$

- lg n, log₃ n²
- (lg n)²
- n lg n
- 3 lg n
- 5n²
- 2ⁿ
- n!
- (n+1)!

Insertion sort analysis

Worst case: Input reverse sorted.

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$
 [arithmetic series]

Average case: All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small *n*.
- Not at all, for large *n*.

Merge sort

Merge-Sort A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort A[1..[n/2]] and A[[n/2]+1..n].
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

20 12

13 11

7 9

2 1

20 12

13 11

7 9

Time = $\Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

```
T(n)<br/>\Theta(1)<br/>2T(n/2)MERGE-SORT A[1 ... n]<br/>1. If n = 1, done.<br/>2. Recursively sort A[1 ... [n/2]]<br/>and A[[n/2] +1 ... n].<br/>3. "Merge" the 2 sorted lists.
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Next, we will discuss several ways to find a good upper bound on T(n).

Solving Recurrences

- Iterating the recurrence
- Substitution method
- Recursion tree
- Master method

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

EXAMPLE: T(n) = 4T(n/2) + n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$$

$$\leq cn^3 \leftarrow desired$$
whenever $(c/2)n^3 - n \geq 0$, for example, if $c \geq 2$ and $n \geq 1$.
$$residual$$

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= O(n^{2})$$

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= 0$$

$$= 0$$
Wrong! We must prove the I.H.

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

 $\leq 4c(n/2)^2 + n$
 $= cn^2 + n$
 $= cn^2$) Wrong! We must prove the I.H.
 $= cn^2 - (-n)$ [desired – residual]
 $\leq cn^2$ for no choice of $c > 0$. Lose!

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \quad \text{if } c_2 \geq 1.$$

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \quad \text{if } c_2 \geq 1.$$

Pick c_1 big enough to handle the initial conditions.

Exercises

 Solve the following recurrence using the substitution method.

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

• Solve this recurrence:

$$T(n) = 2T\left(\left\lfloor \sqrt{n} \right\rfloor\right) + \lg n ,$$

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- When using a recursion tree to generate a good guess, a small amount of "sloppiness," is tolerated, since the guess will be verified later on.

Solve
$$T(n) = 2T(n/2) + cn$$
, where $c > 0$ is constant.
$$T(n)$$

$$T(n/2)$$
 $T(n/2)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$T(n/4)$$
 $T(n/2)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^2$$
 $(n/2)^2$ $T(n/16)$ $T(n/8)$ $T(n/8)$ $T(n/4)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Note: This computes a bound, not the exact cost.

$$\therefore T(n) = \Theta(n^2).$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Q. Why was the cost of the leaf nodes ignored?

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Q. Why was the cost of the leaf nodes ignored? The number of leaf nodes is O(n).

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Three common cases

Compare f(n) with $n^{\log ba}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```


Three common cases

Compare f(n) with $n^{\log ba}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution:
$$T(n) = \Theta(n^{\log_b a})$$
.

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log ba}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$
.

Three common cases (cont.)

Compare f(n) with $n^{\log ba}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

ALGORITHMS

Examples

```
Ex. T(n) = 4T(n/2) + n

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.

Case 1: f(n) = O(n^{2-\epsilon}) for \epsilon = 1.

\therefore T(n) = \Theta(n^2).
```


Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n)$.

Examples

```
Ex. T(n) = 4T(n/2) + n^3

a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^3.

Case 3: f(n) = \Omega(n^{2+\epsilon}) for \epsilon = 1

and \ 4(n/2)^3 \le cn^3 (reg. cond.) for c = 1/2.

\therefore T(n) = \Theta(n^3).
```


Examples

Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ CASE 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$ $and \ 4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $\therefore T(n) = \Theta(n^3).$

Ex. $T(n) = 4T(n/2) + n^2/\lg n$ $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2/\lg n.$ Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.