

Indian Institute of Technology Mandi भारतीय प्रौद्योगिकी संस्थान मण्डी

MA-201: B.Tech. II year

Odd Semester: 2011-12 **Exercise-5 Linear Algebra**

NOTE: The set of real numbers \mathbb{R} is a field with addition and multiplication of real numbers as the binary compositions. If the underlying field is not mentioned then take $(\mathbb{R},+,.)$ as the default field.

- 1. Consider the set $V = \mathbb{C}^n$ of all ordered n-tuples of complex numbers. Prove that V is a vector space over the field $\mathbf{F} = \mathbb{C}$.
- 2. Let $V = \mathbb{R}^+$ be the set of all positive real numbers. Define the operations of vector addition and scalar multication as follows:

$$\mathbf{u} + \mathbf{v} = \mathbf{u}.\mathbf{v} \ \forall \ \mathbf{u}, \ \mathbf{v} \in V$$

 $\alpha.\mathbf{u} = \mathbf{u}^{\alpha} \ \forall \ \mathbf{u}, \ \mathbf{v} \in \mathbf{V} \ \text{and} \ \alpha \in \mathbb{R}$

Prove that **V** is a vector space over the field $\mathbf{F} = \mathbb{R}$.

3. Which of the following subsets of $\mathbf{V} = \mathbb{R}^4$ are vector spaces for co-ordinatewise addition and scalar multiplication?

(a)
$$S = \{x \in \mathbf{V} \mid x_4 = 0\}$$

(d)
$$S = \{x \in \mathbf{V} \mid x_3^2 \ge 0\}$$

(a)
$$S = \{x \in \mathbf{V} \mid x_4 = 0\}$$
 (d) $S = \{x \in \mathbf{V} \mid x_3^2 \ge 0\}$ (g) $S = \{x \in \mathbf{V} \mid x_1 + \frac{3}{2}x_2 - \frac{3}{2}x_3 + \frac{3}{2}x_3 - \frac{3}$

(b)
$$S = \{x \in \mathbf{V} \mid x_1 = 1\}$$
 (e) $S = \{x \in \mathbf{V} \mid x_1^2 < 0\}$

(e)
$$S = \{x \in \mathbf{V} \mid x_1^2 < 0\}$$

$$3x_3 + x_4 = 1\}$$

(c)
$$S = \{x \in \mathbf{V} \mid x_2 > 0\}$$

(f)
$$S = \{x \in \mathbf{V} \mid 2x_1 + 3x_2 = 0\}$$

- 4. In any vector space **V** prove that $\alpha.\mathbf{u} = \mathbf{0}_V$ iff either $\alpha = 0_F$ or $\mathbf{u} = \mathbf{0}_V$.
- 5. Let \mathscr{P} be the set of all polynomials then find which of the following subsets of \mathscr{P} are vector spaces over the field $\mathbf{F} = \mathbb{R}$.

(a)
$$S = \{ \mathbf{p} \in \mathscr{P} \mid \text{degree of } \mathbf{p} \leq n \}$$

(e)
$$S = \{ \mathbf{p} \in \mathscr{P} \mid \mathbf{p}(2) = 1 \}$$

(b)
$$S = \{ \mathbf{p} \in \mathscr{P} \mid \text{degree of } \mathbf{p} = 3 \}$$

(f)
$$S = \{ \mathbf{p} \in \mathscr{P} \mid \mathbf{p'}(1) = 0 \}$$

(c)
$$S = \{ \mathbf{p} \in \mathcal{P} \mid \text{degree of } \mathbf{p} \geq 4 \}$$

(1)
$$S = \{ \mathbf{p} \in \mathcal{F} \mid \mathbf{p}(1) = 0 \}$$

(d) $S = \{ \mathbf{p} \in \mathscr{P} \mid \mathbf{p}(1) = 0 \}$

- (g) $S = \{ \mathbf{p} \in \mathscr{P} \mid \mathbf{p} \text{ has integer coeffi-}$ cients}.
- 6. Let $\mathscr{C}[0,1]$ be the set of all continuous functions over the interval [0,1]. Which of the following subsets of $\mathscr{C}[0,1]$ are vector spaces over $\mathbf{F} = \mathbb{R}$?

(a)
$$S = \{ f \in \mathcal{C}[0,1] \mid f(0.5) = 0 \}$$

$$x = \frac{1}{2}\}$$

(b)
$$S = \{ f \in \mathscr{C}[0,1] \mid f(\frac{3}{4}) = 1 \}$$

(f)
$$S = \{ f \in \mathscr{C}[0,1] \mid f \text{has extrema at } x = \frac{1}{2} \}$$

(c)
$$S = \{ f \in \mathcal{C}[0,1] \mid f'(x) = xf(x) \}$$

(g)
$$S = \{ f \in \mathcal{C}[0,1] \mid f(x) = 0 \text{ at finite number of points in } [0,1] \}$$

- (d) $S = \{ f \in \mathcal{C}[0,1] \mid f(0) = f(1) \}$ (e) $S = \{ f \in \mathscr{C}[0,1] \mid f \text{ has maxima at } \}$
- 7. Let $\mathbf{W} = \{(x_1, x_2, x_3, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$. Prove that \mathbf{W} is a subspace of \mathbb{R}^n
- 8. Prove that $\mathbf{W} = \{(x_1, x_2, \dots, x_n) \in \mathbb{C}^n \mid \alpha_1 x_1 + \alpha_2 x_2 + \alpha x_3, \dots, \alpha_n x_n = 0, \alpha_i' s \text{ are given} \}$ constants} is a subspace of \mathbb{C}^n
- 9. Which of the following sets are subspaces of \mathbb{R}^3 over the field $\mathbf{F} = \mathbb{R}$?

10. Which of the following sets are subspace of
$$\mathscr P$$
 over the field $F=\mathbb R$?

(a) $\{p\in\mathscr P\mid \text{degree of }p=4\}$ (b) $\{p\in\mathscr P\mid \text{degree of }p\leq 3\}$ (c) $\{p\in\mathscr P\mid \text{degree of }p\geq 5\}$ (c) $\{p\in\mathscr P\mid \text{degree of }p\geq 5\}$ (e) $\{p\in\mathscr P\mid p(1)=0\}$

11. which of the following sets are subspaces of $\mathscr C(a,b)$ over the field $F=\mathbb R$?

(a) $\{f\in\mathscr C(a,b)\mid f(x_0)=0,x_0\in(a,b)\}$ (e) $\{f\in\mathscr C(a,b)\mid \int_b^a f(x)dx=0\}$. (f) $\{f\in\mathscr C(a,b)\mid f(x)=0\}$ (f) $\{f\in\mathscr C(a,b)\mid f(x)=0\}$ (f) $\{f\in\mathscr C(a,b)\mid f(x)=0\}$ (g) $\{f\in\mathscr C(a,b)\mid f(x)=0\}$ (g) $\{f\in\mathscr C(a,b)\mid f(x)=0\}$ (g) $\{f\in\mathscr C(a,b)\mid f(x)=x^2f(x)\}$

12. If f u and f ware subspace of f v. The following as subspace of f v. The following f is a subspace of f v. The following f

(a) $\{(x_1, x_2, x_3) \mid x_1 x_2 = 0\}$

(b) $\{(x_1, x_2, x_3) \mid \sqrt{2}x_1 = \sqrt{3}x_2\}$ (c) $\{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \le 1\}$ (d) $\{(x_1, x_2, x_3) \mid x_1 = \sqrt{2}x_2, x_3 = 3x_2\}$

(e) $\{(x_1, x_2, x_3) \mid x_1 - 2x_2 = x_3 - \frac{3x_2}{2}\}$