MTH 385 2022-02-14 Worksheet

Exercise 1. Define greatest common divisor.

Exercise 2. Define relatively prime.

Exercise 3. Use the Euclidean Algorithm as presented in the textbook to compute gcd(1001, 65).

Exercise 4. Based on your experience with Exercise 1, suggest a refinement to the algorithm.

Exercise 5. Find integers m and n such that gcd(1001, 65) = 1001m + 65n.

Exercise 6. Find a counterexample to the following statement: If n is a number that divides ab, then n divides a or b.

Exercise 7. *Prove: If n is relatively prime to a and n divides ab, then n divides b.*

Exercise 8. State and prove the Fundamental Theorem of Arithmetic.

Exercise 9. State the Well-Ordering Principle.

Exercise 10 (3.3.1). Use the prime divisor property to show that the proper divisors of $2^{n-1}p$, for any odd prime p, are $1, 2, 2^2, \ldots, 2^{n-1}$ and $p, 2p, 2^2p, \ldots, 2^{n-2}p$.

Exercise 11 (3.3.4). The equation 12x + 15y = 1 has no integer solution. Why?