Равнина и права в пространството

Яна Алексиева

2 септември 2025 г.

Параметрични уравнения на равнина в тримерно пространство

Нека е дадена афинна координатна система K = Oxyz в тримерно пространство.

Нека M_0 е фиксирана точка, а \overrightarrow{p} и \overrightarrow{q} са два линейно независими вектора. Тогава съществува единствена равнина α , която минава през точката M_0 и е компланарна с векторите \overrightarrow{p} и \overrightarrow{q} . Точка M от пространството лежи в равнината α точно тогава, когато векторите $\overrightarrow{M_0M}$, \overrightarrow{p} и \overrightarrow{q} са компланарни, което е еквивалентно на съществуването на единствена наредена двойка реални числа (m,n), за които:

$$\overrightarrow{M_0M} = m\overrightarrow{p} + n\overrightarrow{q}.$$

Ако обозначим радиус-векторите $\overrightarrow{OM_0} = \overrightarrow{r_0}$ и $\overrightarrow{OM} = \overrightarrow{r}$, то:

$$\overrightarrow{M_0M} = \overrightarrow{OM} - \overrightarrow{OM_0} = \overrightarrow{r} - \overrightarrow{r_0}.$$

Получаваме уравнението:

$$\overrightarrow{r} = \overrightarrow{r_0} + m\overrightarrow{p} + n\overrightarrow{q}, \quad (m, n) \in \mathbb{R} \times \mathbb{R},$$

което се нарича векторно-параметрично уравнение на равнината α .

Нека спрямо K=Oxyz са въведени следните координати: $M_0(x_0,y_0,z_0)$, M(x,y,z) и $\overrightarrow{p}(p_1,p_2,p_3)$ и $\overrightarrow{q}(q_1,q_2,q_3)$. Тогава координатните параметрични уравнения на равнината α са:

$$\begin{cases} x = x_0 + mp_1 + nq_1 \\ y = y_0 + mp_2 + nq_2, \\ z = z_0 + mp_3 + nq_3 \end{cases} (m, n) \in \mathbb{R} \times \mathbb{R}.$$

2 Общо уравнение на равнина в тримерно пространство

Теорема:

1. Всяка равнина в пространството има уравнение от вида:

$$Ax + By + Cz + D = 0$$
, $(A, B, C) \neq (0, 0, 0)$.

2. Обратно,всяко уравнение от вида $Ax+By+Cz+D=0, \quad (A,B,C) \neq (0,0,0)$ определя точно една равнина в пространството.

Доказателство:

1. Нека равнината α минава през фиксираната точка M_0 и е компланарна на линейно независимите вектори \overrightarrow{p} и \overrightarrow{q} . Точка M от пространството лежи върху равнината α тогава и само тогава, когато векторите

$$\overrightarrow{M_0M}(x-x_0,y-y_0,z-z_0), \quad \overrightarrow{p}(p_1,p_2,p_3), \quad \overrightarrow{q}(q_1,p_2,p_3)$$

са компланарни. Координатното условие за компланарност на три вектора в пространството е:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ p_1 & p_2 & p_3 \\ q_1 & q_2 & q_3 \end{vmatrix} = 0$$

След развиване получаваме уравнението:

$$\begin{vmatrix} p_2 & p_3 \\ q_2 & q_3 \end{vmatrix} (x - x_0) + \begin{vmatrix} p_3 & p_1 \\ q_3 & q_1 \end{vmatrix} (y - y_0) + \begin{vmatrix} p_1 & p_2 \\ q_1 & q_2 \end{vmatrix} (z - z_0) = 0.$$

Полагаме:

$$A = \begin{vmatrix} p_2 & p_3 \\ q_2 & q_3 \end{vmatrix}, \quad B = \begin{vmatrix} p_3 & p_1 \\ q_3 & q_1 \end{vmatrix}, \quad C = \begin{vmatrix} p_1 & p_2 \\ q_1 & q_2 \end{vmatrix}, D = -Ax_0 - By_0 - Cz_0$$

и получаваме:

$$Ax + By + Cz + D = 0$$
, $(A, B, C) \neq (0, 0, 0)$.

Това уравнение се нарича общо уравнение на равнината α в пространството

2. Обратно, ще докажем, че всяко уравнение от вида:

$$Ax + By + Cz + D = 0$$
, $(A, B, C) \neq (0, 0, 0)$,

е уравнение на точно една равнина.

Нека (x_0, y_0, z_0) е едно решение на горното уравнение, т.е.

$$Ax_0 + By_0 + Cz_0 + D = 0.$$

Разглеждаме точката $M_0(x_0, y_0, z_0)$ и векторите

$$\overrightarrow{p}(-B, A, 0), \quad \overrightarrow{q}(-\frac{C}{A}, 0, 1), A \neq 0.$$

Векторите \overrightarrow{p} и \overrightarrow{q} са линейно независими. Тогава съществува точно една равнина α , която минава през точката M_0 и е компланарна на векторите \overrightarrow{p} и \overrightarrow{q} . От условие за компланарност имаме:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ -B & A & 0 \\ -\frac{C}{A} & 0 & 1 \end{vmatrix} = 0,$$

което е еквивалентно на:

$$Ax + By + Cz + D = 0$$
, където $D = -Ax_0 - By_0 - Cz_0$.

Окончателно, уравнението Ax+By+Cz+D=0, при $(A,B,C)\neq (0,0,0)$, е общо уравнение точно на разгледаната равнина α .

Условие за компланарност на вектор и равнина

Нека равнината α е зададена с общо уравнение:

$$Ax + By + Cz + D = 0$$
, $(A, B, C) \neq (0, 0, 0)$,

Векторът $\overrightarrow{v}(v_1, v_2, v_3)$ е компланарен на α точно тогава, когато

$$Av_1 + Bv_2 + Cv_3 = 0.$$

3 Взаимни положения на две равнини в пространството

Разглеждаме две равнини α_1 и α_2 , зададени с техни общи уравнения:

$$\alpha_1 : A_1x + B_1y + C_1z + D_1 = 0, \quad \alpha_2 : A_2x + B_2y + C_2z + D_2 = 0.$$

За да определим взаимните им положения, разглеждаме тяхното сечение като решение на системата:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0. \end{cases}$$

1. **Съвпадащи равнини:** Ако редовете на матрицата от коефициентите имат ранг 1,

$$\operatorname{rank} \begin{bmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{bmatrix} = 1,$$

тогава съществува константа $k \neq 0$, така че:

$$A_1 = kA_2$$
, $B_1 = kB_2$, $C_1 = kC_2$, $D_1 = kD_2$.

В този случай всяка точка M, която удовлетворява уравнението на α_1 , удовлетворява и това на α_2 . Двете равнини съвпадат $\alpha_1 \equiv \alpha_2$.

2. **Успоредни равнини:** Ако редовете на матрицата от коефициентите имат ранг 2, но редуцираната матрица от коефициентите без свободните членове има ранг 1,

$$\operatorname{rank} \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix} = 1, \quad \operatorname{rank} \begin{bmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{bmatrix} = 2,$$

то системата е несъвместима, двете равнини нямат общи точки, те са успоредни $\alpha_1 \parallel \alpha_2$.

3. **Пресичащи се равнини:** Ако редовете на матрицата от коефициентите пред променливите има ранг 2,

$$\operatorname{rank} \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix} = 2,$$

то системата има безброй много решения, които определят права линия в пространството. Двете равнини се пресичат в една права g.

4 Нормално уравнение на равнина в пространството. Разстояние от точка до равнина

Нека спрямо ортонормирана координатна система K = Oxyz е дадена равнината α с общо уравнение:

$$Ax + By + Cz + D = 0$$
, $(A, B, C) \neq (0, 0, 0)$.

Вектор $\overrightarrow{n_{\alpha}}$, който е с направление, перпендикулярно на α , наричаме *норма- лен вектор* на равнината.

Нормалният вектор е перпендикулярен на всеки вектор, компланарен с равнината. Като вземем предвид даденото по-горе условие за компланарност и ортонормираната координатна система K, можем да считаме, че координатите на $\overrightarrow{n_{\alpha}}$ са (A,B,C).

Дължината на този вектор е:

$$|\overrightarrow{n_{\alpha}}| = \sqrt{A^2 + B^2 + C^2},$$

следователно единичният нормален вектор на α е

$$\overrightarrow{n_1} = \frac{\overrightarrow{n_{\alpha}}}{\sqrt{A^2 + B^2 + C^2}} = \left(\frac{A}{\sqrt{A^2 + B^2 + C^2}}, \frac{B}{\sqrt{A^2 + B^2 + C^2}}, \frac{C}{\sqrt{A^2 + B^2 + C^2}}\right).$$

Ще намерим такова общо уравнение на α , при което коефициентите пред $x,\ y$ и z да са координатите на вектора $\overrightarrow{n_1}$. Всички общи уравнения на α имат вида:

$$(kA)x + (kB)y + (kC)z + (kD) = 0, (kA, kB, kC) \neq (0, 0, 0).$$

Търсим стойност на k, за която:

$$(kA)^2 + (kB)^2 + (kC)^2 = 1.$$

Получаваме $k=\pm \frac{1}{\sqrt{A^2+B^2+C^2}}.$ Следователно уравненията:

$$\pm \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}} = 0,$$

се наричат *нормални уравнения* на равнината α .

Разстояние от точка до равнина

С помощта на вектора $\overrightarrow{n_1}$ ще получим формула за разстоянието от фиксирана точка M_0 до равнината α . За удобство въвеждаме означенията:

$$A_1 = \frac{A}{\sqrt{A^2 + B^2 + C^2}}, \quad B_1 = \frac{B}{\sqrt{A^2 + B^2 + C^2}}, \quad C_1 = \frac{C}{\sqrt{A^2 + B^2 + C^2}}, \quad D_1 = \frac{D}{\sqrt{A^2 + B^2 + C^2}}.$$

Нека ортогоналната проекция на точката M_0 върху равнината α е точката H. Тогава векторът $\overrightarrow{HM_0}$ е колинеарен на $\overrightarrow{n_1}$, т.е.:

$$\overrightarrow{HM_0} = \delta \overrightarrow{n_1},$$

за точно една стойност на реалния параметър δ .

За да пресметнем ориентираното разстояние $\delta(M_0,\alpha)$ от M_0 до равнината α , използваме координатите на участващите обекти:

$$M_0(x_0, y_0, z_0), H(x_H, y_H, z_H), \overrightarrow{n_1}(A_1, B_1, C_1),$$

$$\begin{cases} x_0 - x_H = \delta A_1 \\ y_0 - y_H = \delta B_1 \\ z_0 - z_H = \delta C_1 \end{cases} \Leftrightarrow \begin{cases} x_H = x_0 - \delta A_1 \\ y_H = y_0 - \delta B_1 \\ z_H = z_0 - \delta C_1. \end{cases}$$

Като заместим кооординатите на точката H в нормалното уравнение на α :

$$A_1 x_H + B_1 y_H + C_1 z_H + D_1 = 0,$$

намираме ориентираното разстояние:

$$\delta(M_0, \alpha) = \frac{Ax_0 + By_0 + Cz_0 + D}{\sqrt{A^2 + B^2 + C^2}}.$$

5 Полупространства

Нека спрямо произволна афинна координатна система K = Oxyz е дадена равнината α с общо уравнение:

$$Ax + By + Cz + D = 0$$
, $(A, B, C) \neq (0, 0, 0)$.

Означаваме l(x,y,z)=Ax+By+Cz+D. Разглеждаме две различни точки $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$, които не лежат на равнината α . В сила е следната теорема.

Теорема: Точките M_1 и M_2 са от различни полупространства спрямо равнината α тогава и само тогава, когато $l(x_1,y_1,z_1)l(x_2,y_2,z_2)<0$.

Доказателство:

1. (\Rightarrow) Нека отсечката M_1M_2 пресича равнината α в точката $M_0(x_0,y_0,z_0)$. Точката M_0 е вътрешна за отсечката $M_1M_2 \Leftrightarrow \overline{M_0M_1} = k\overline{M_0M_2}$ за k < 0.

$$\begin{cases} x_0 - x_1 = k(x_0 - x_2) \\ y_0 - y_1 = k(y_0 - y_2) \\ z_0 - z_1 = k(z_0 - z_2) \end{cases} \Leftrightarrow \begin{cases} x_0 = \frac{x_1 - kx_2}{1 - k} \\ y_0 = \frac{y_1 - ky_2}{1 - k} \\ z_0 = \frac{z_1 - kz_2}{1 - k} \end{cases}$$

 $M_0(x_0,y_0,z_0)\in \alpha\Leftrightarrow l(x_0,y_0,z_0)=0.$ След заместване получаваме $l(x_1,y_1,z_1)-kl(x_2,y_2,z_2)=0\Leftrightarrow k=rac{l(x_1,y_1,z_1)}{l(x_2,y_2,z_2)}<0\Rightarrow l(x_1,y_1,z_1)l(x_2,y_2,z_2)<0$

2. (\Leftarrow) Нека $l(x_1,y_1,z_1)l(x_2,y_2,z_2)<0$. Означаваме $k=\frac{l(x_1,y_1,z_1)}{l(x_2,y_2,z_2)}<0$ и разглеждаме точката $M_0(x_0,y_0,z_0)$, за която

$$x_0 = \frac{x_1 - kx_2}{1 - k}, \quad y_0 = \frac{y_1 - ky_2}{1 - k}, \quad z_0 = \frac{z_1 - kz_2}{1 - k}.$$

Така имаме, че $l(x_0,y_0,z_0)=l(x_1,y_1,z_1)-kl(x_2,y_2,z_2)=0\Rightarrow M_0(x_0,y_0,z_0)\in\alpha.$

За координатите на векторите $\overrightarrow{M_0M_1}$ и $\overrightarrow{M_0M_2}$ получаваме:

$$\begin{cases} x_0 - x_1 = k(x_0 - x_2) \\ y_0 - y_1 = k(y_0 - y_2) \\ z_0 - z_1 = k(z_0 - z_2) \end{cases}, k < 0.$$

Следователно $\overrightarrow{M_0M_1}=k.\overrightarrow{M_0M_2}$ за $k<0\Leftrightarrow$ векторите са противопосочни $\Rightarrow M_0(x_0,y_0,z_0)$ е вътрешна за отсечката M_1M_2 , а точките M_1 и M_2 са от различни полупространства спрямо равнината α .

В следствие на горната теорема аналитично описваме двете полупространства λ и $\bar{\lambda}$ с контур равнината α по следния начин:

$$\lambda_{\alpha} = \{ M(x, y, z) : l(x, y, z) > 0 \} \quad \bar{\lambda}_{\alpha} = \{ M(x, y, z) : l(x, y, z) < 0 \}.$$

6 Параметрични уравнения на права в пространството

Нека е дадена афинна координатна система K = Oxyz в пространството.

Нека M_0 е фиксирана точка, а $\overrightarrow{p} \neq \overrightarrow{0}$ е фиксиран вектор, тогава съществува единствена права g, която минава през точката M_0 и е колинеарна на вектора \overrightarrow{p} . Произволна точка M от пространството лежи върху правата g точно тогава, когато векторите $\overrightarrow{M_0M}$ и \overrightarrow{p} са колинеарни. Това е еквивалентно на съществуването на единствено реално число s, за което:

$$\overrightarrow{M_0M} = s\overrightarrow{p}$$
.

Ако обозначим радиус-векторите $\overrightarrow{OM_0} = \overrightarrow{r_0}$ и $\overrightarrow{OM} = \overrightarrow{r}$, то:

$$\overrightarrow{M_0M} = \overrightarrow{OM} - \overrightarrow{OM_0} = \overrightarrow{r} - \overrightarrow{r_0}.$$

Следователно, векторно-параметричното уравнение на правата q e:

$$\overrightarrow{r} = \overrightarrow{r_0} + s\overrightarrow{p}, \quad s \in \mathbb{R}.$$

Нека $M_0(x_0, y_0, z_0)$, M(x, y, z) и $\overrightarrow{p}(p_1, p_2, p_3)$, то координатните параметрични уравнения на правата g са:

$$\begin{cases} x = x_0 + sp_1 \\ y = y_0 + sp_2, \\ z = z_0 + sp_3 \end{cases} \quad s \in \mathbb{R}.$$

7 Права като пресечница на две равнини в пространството

Дадени са две равнини α_1 и α_2 с техни общи уравнения:

$$\alpha_1 : A_1x + B_1y + C_1z + D_1 = 0, \quad \alpha_2 : A_2x + B_2y + C_2z + D_2 = 0.$$

Нека равнините не съвпадат и не са успоредни, т.е. rank $\begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix} = 2$. Тогава $\alpha_1 \cap \alpha_2 = g$ Без ограничение на общността можем да считаме, че $A_1B_2 - A_2B_1 \neq 0$. Тогава от системата уравнения на α_1 и α_2 можем да изразим x и y като линейни функции на z:

$$\begin{cases} x = az + p \\ y = bz + q \end{cases}.$$

Тези две уравнения се наричат канонични уравнения на пресечницата g на двете равнини α_1 и α_2 . Ако положим z=s, произволен реален параметър, получаваме координатни параметрични уравнения на правата g:

$$\begin{cases} x = p + sa \\ y = q + sb, \\ z = 0 + s \end{cases} \quad s \in \mathbb{R}.$$

Геометрично това означава, че правата g минава през точката $M_0(p,q,0)$ и е колинеарна на вектор $\overrightarrow{v}(a,b,1)$.