

Analog IC Design

Lecture 15 Negative Feedback

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Electrical Communications Eng. (EECE) Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- ☐ Root locus and Bode plot
- Phase and gain margin

Outline

- □ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- ☐ Root locus and Bode plot
- Phase and gain margin

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

High Frequency Small Signal Model

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$
$$g_{mb} = \eta g_m \qquad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\partial I_{D}/\partial V_{DS}} = \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}}$$
 $V_{A} \propto L \leftrightarrow \lambda \propto \frac{1}{L}$ $V_{DS} \uparrow V_{A} \uparrow$ $C_{gb} \approx 0$ $C_{gs} \gg C_{gd}$ $C_{sb} > C_{db}$

Rin/out Shortcuts Summary

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D $v_{in} \circ V_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ V_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} \\ \gg 1$

$$A_{vCM2d} = \frac{v_{od}}{v_{iCM}} \approx \frac{\Delta R_D}{2R_{SS}} + \frac{\Delta g_m R_D}{2g_{m1,2}R_{SS}}$$

$$CMRR = \frac{A_{vd}}{A_{vCM2d}}$$

Op-Amp

- An op-amp is simply a high gain differential amplifier
 - The gain can be increased by using cascodes and multi-stage amplification
- The diff amp is a key block in many analog and RF circuits
 - DEEP understanding of diff amp is ESSENTIAL

Op-Amp vs OTA

- ☐ In short, an OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА
Rout	Rout LOW	
Model	v_{in} i_{in} i_{in} i_{out} i_{out} i_{out} i_{out} i_{out}	$v_{in} \bigcirc i_{in}$ $R_{in} \bigcirc R_{out}$ $R_{out} \bigcirc v_{out}$
Diff input, SE output		
Fully diff		

V-star (V^*)

 \Box V-star (V^*) is inspired by V_{ov} but calculated from actual simulation data

$$g_m = \frac{2I_D}{V^*} \leftrightarrow V^* = \frac{2I_D}{g_m} = \frac{2}{g_m/I_D}$$

 \Box Figures-of-merit in terms of V^*

$$g_m r_o = \frac{2I_D}{V^*} \cdot \frac{1}{\lambda I_D} = \frac{2}{\lambda V^*}$$

$$f_T = \frac{g_m}{2\pi C_{gg}} = \frac{1}{2\pi} \cdot \frac{2I_D}{V^*} \cdot \frac{1}{C_{gg}}$$

$$\frac{g_m}{I_D} = \frac{2}{V^*}$$

The boundary between weak and strong inversion $(n = 1.2 \rightarrow 1.5)$ $V_{on}(SI) = V^*(WI) = 2nV_T \approx 60 \rightarrow 80mV$

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- ☐ Root locus and Bode plot
- ☐ Phase and gain margin

General Feedback System

General Feedback System

- \Box Error signal = $V_{err} = V_{in} V_{fb}$
- \Box Open loop (OL) gain = $A_{OL} = \frac{V_{out}}{V_{err}} \gg 1$
- $\Box \quad \text{Feedback factor} = \beta = \frac{V_{fb}}{V_{out}}$
- \square Closed loop (CL) gain = $A_{CL} = \frac{V_{out}}{V_{in}}$

Closed-loop Gain

$$V_{out} = A_{OL}(V_{in} - V_{fb}) = A_{OL}(V_{in} - \beta V_{out})$$

$$A_{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{A_{OL}}{1 + LG}$$

 \square Loop gain = $LG = \beta A_{OL} \gg 1$

$$A_{CL} \approx \frac{1}{\beta}$$

Closed-loop gain is independent of open-loop gain!

Error Signal

$$V_{err} = V_{in} - V_{fb} = V_{in} - \beta V_{out} = V_{in} - \beta A_{OL} V_{err}$$
$$V_{err} = \frac{V_{in}}{1 + \beta A_{OL}} = \frac{V_{in}}{1 + LG}$$

 \square Loop gain = $LG = \beta A_{OL} \gg 1$

$$V_{err} = \frac{V_{in}}{1 + LG} \to 0$$

Negative feedback loop works to minimize the error signal

Feedback Example

- ☐ Op-amp functions: (1) subtraction and (2) amplification
- The network R_1 and R_2 functions: (1) sensing the output voltage and (2) providing a feedback factor $\beta = \frac{R_2}{(R_1 + R_2)}$

$$A_{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{A_{OL}}{1 + \frac{R_2}{(R_1 + R_2)} \cdot A_{OL}} \approx \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- ☐ Root locus and Bode plot
- ☐ Phase and gain margin

Loop Gain

- □ Deactivate the input → Break the loop → Apply a test source → Calculate the gain around the loop
- \Box Loop gain = $LG = -\frac{V_{out}}{V_t} = \beta A_{OL}$
- ☐ A.k.a. loop transmission, return ratio ...
- But biasing/loading changes when we break the loop!
 - Make sure dc biasing is properly set
 - Add a dummy load

Loop Gain

- \square Modern circuit simulators can compute the loop gain without explicitly breaking the loop
 - Use stability (STB) analysis
 - Insert a 0V dc voltage source or iprobe in the loop
 - Polarity matters for Eldo, but not for Spectre
 - Loop gain = $LG = \beta A_{OL}$ is calculated by the simulator

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- ☐ Root locus and Bode plot
- Phase and gain margin

Why Negative Feedback?

- We use a very high gain amplifier (A_{OL}) , but end up with a much smaller gain A_{CL} $= \frac{A_{OL}}{1+\beta A_{OL}} \approx \frac{1}{\beta}$
- ☐ We can design high gain amplifiers, but we really do not need all that gain
- ☐ High gain is the balance that we use to buy other useful properties
- Negative feedback useful properties
 - 1. Gain Desensitization → Stable, linear, and accurate gain
 - 2. Bandwidth Extension
 - 3. Modification of I/O Impedances

Gain Desensitization

$$A_{CL} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{1}{\beta} \left(\frac{1}{\frac{1}{\beta A_{OL}} + 1} \right) \approx \frac{1}{\beta} \left(1 - \frac{1}{\beta A_{OL}} \right) = \frac{1}{\beta} \left(1 - \frac{1}{LG} \right)$$

Static gain error

$$\epsilon_{s} = \frac{\left|A_{CL,ideal} - A_{CL,actual}\right|}{A_{CL,ideal}} \approx \frac{1}{\beta A_{OL}} = \frac{1}{LG}$$

- \Box A_{OL} varies due to PVT, load, and input signal variations
- \blacksquare A_{CL} almost independent of A_{OL} (if $LG \gg 1$)
 - Independent of PVT: stable and robust
 - Independent of load: stable and robust
 - Independent of input level: linear

Gain Desensitization

- ☐ In IC design, we cannot control absolute values due to PVT, load, and input signal variations
- ☐ But we can precisely control ratios of MATCHED components

$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{A_{OL}}{1 + \frac{R_2}{(R_1 + R_2)} \cdot A_{OL}} \approx \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

 \square $R_1 = 3R$ and $R_2 = R \Rightarrow A_{CL} = 4 \Rightarrow$ Stable, linear, and <u>accurate</u>

Bandwidth Extension

☐ Assume the op-amp (OL) is a first order system

$$A_{OL}(s) = \frac{A_{OLo}}{1 + \frac{s}{\omega_{p,OL}}}$$

☐ The CL transfer function is also a first order system

$$A_{CL}(s) = \frac{A_{OL}(s)}{1 + \beta A_{OL}(s)} = \frac{\frac{A_{OLo}}{(1 + \beta A_{OLo})}}{1 + \frac{s}{(1 + \beta A_{OLo})\omega_{p,OL}}} = \frac{A_{CLo}}{1 + \frac{s}{\omega_{p,CL}}}$$

But the pole is at a much higher frequency

$$\omega_{p,CL} = (1 + LG_o)\omega_{P,OL}$$

- \Box CL DC gain reduced by $(1 + LG_0)$
- \Box CL bandwidth extended by $(1 + LG_o)$
- ☐ GBW (and UGF) remains constant

Bandwidth Extension

- \Box CL DC gain reduced by $(1 + LG_o)$
- \Box CL bandwidth extended by $(1 + LG_o)$
- ☐ GBW (and UGF) remains constant

$$A_{CL}(s) = \frac{\frac{A_{OLo}}{(1 + LG_o)}}{1 + \frac{S}{(1 + LG_o)\omega_{p,OL}}} = \frac{A_{CLo}}{1 + \frac{S}{\omega_{p,CL}}}$$

Modification of I/O Impedances

- \Box Shunt sensing/mixing \rightarrow R decreases
- \Box Series sensing/mixing \rightarrow R increases

Output impedance falls by 1+ loop gain.

Input impedance rises by 1+ loop gain.

Output impedance rises by 1+ loop gain.

Input impedance falls by 1+ loop gain.

The Price We Pay

- Negative feedback useful properties
 - 1. Gain Desensitization → Stable, linear, and accurate gain
 - 2. Bandwidth Extension
 - 3. Modification of I/O Impedances
- The price we pay to buy these useful properties
 - 1. Gain reduction
 - 2. The risk of instability

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- Stability of feedback system
- ☐ Root locus and Bode plot
- ☐ Phase and gain margin

Stability of Feedback System

$$A_{CL}(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{A_{OL}(s)}{1 + \beta A_{OL}(s)}$$

Barkhausen's Oscillation Criteria

$$|\beta A_{OL}(s)| = 1$$

$$\angle \beta A_{OL}(s) = -180$$

Stable vs Unstable System: Pole-Zero Plot

Laplace domain	Time domain
1	e^{at}
s-a	

Stable vs Unstable System: Bode Plot

- □ Gain crossover frequency (GX): @ $|\beta A_{OL}(s)| = 1$
 - Same as ω_u
- □ Phase crossover frequency (PX): @ $\angle \beta A_{OL}(s) = -180$
- ☐ For a stable system: GX < PX

Effect of Feedback Factor (β)

- \Box We assume β is independent of frequency
 - $\angle \beta A_{OL}$ is independent of $\beta \rightarrow PX$ is independent of β
- \square Increasing β shifts mag up \rightarrow GX increases \rightarrow bad for stability
- \Box Worst-case stability corresponds to $\beta = 1 \rightarrow \beta A_{OL} = A_{OL}$
 - Unity-gain feedback → buffer → smallest CL gain

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- Root locus and Bode plot
- Phase and gain margin

Single-Pole System: Root Locus

- \square Note that β does not affect poles of LG (assuming β is real!)
 - But it affects poles of A_{CL} : Roots of the characteristic equation $(1 + \beta A_{OL})$
- \Box The locus exists on real axis to the left of an odd number of poles and zeros.
- \square The locus starts at the open-loop poles and ends at the open-loop zeros or at infinity.
- ☐ For first-order system, pole always in LHP: Unconditionally stable

Single-Pole System: Bode Plot

$$A_{CL}(s) = \frac{A_{OL}(s)}{1 + \beta A_{OL}(s)} = \frac{\frac{A_{OLo}}{(1 + \beta A_{OLo})}}{1 + \frac{s}{(1 + \beta A_{OLo})\omega_{p,OL}}} = \frac{A_{CLo}}{1 + \frac{s}{\omega_{p,CL}}}$$

Two-Pole System: Root Locus

☐ Poles always in LHP: Unconditionally stable

$$A_{CL}(s) = \frac{A_{CLo}}{1 + \frac{1}{Q} \frac{s}{\omega_o} + \frac{s^2}{\omega_o^2}} = \frac{A_{CLo}}{1 + 2\zeta \frac{s}{\omega_o} + \frac{s^2}{\omega_o^2}}$$

- $\zeta > 1$ (Q < 0.5): Overdamped (real and distinct CL poles)
- $\zeta = 1$ (Q = 0.5): Critical damped (real and equal CL poles)
- $\zeta < 1$ (Q > 0.5): Underdamped (complex conjugate CL poles)

Two-Pole System: Bode Plot

- \Box Phase shift always < 180^o
 - Unconditionally stable
- \Box $\zeta > 1$ (Q < 0.5): Overdamped
- \Box $\zeta = 1$ (Q = 0.5): Critical damped
- \Box ζ < 1 (Q > 0.5): Underdamped
 - Overshoot in step response
- $\Box \zeta < 1/\sqrt{2} = 0.707$
 - $Q > 1/\sqrt{2} = 0.707$
 - Peaking in frequency response
 - Ringing in step response

Three-Pole System: Root Locus

- lacktriangle Poles cross $j\omega$ axis at a specific value of $\beta=\beta_{crit}$
 - The system becomes unstable
- ☐ Pole are NOT always in LHP
 - Conditionally stable: $\beta < \beta_{crit}$

Three-Pole System: Bode Plot

Instability (oscillation) condition can be satisfied

15: Negative Feedback [Razavi, 2017]

Stability Summary

- ☐ First-order system
 - Unconditionally stable
- ☐ Third order system
 - Conditionally stable: Set $\beta < \beta_{crit}$
- ☐ Second-order system
 - Unconditionally stable
 - But may suffer from CL peaking/ringing if close to oscillation condition
 - How much margin is needed?

Outline

- ☐ Recapping previous key results
- ☐ General feedback system
- Loop gain
- Why negative feedback?
- ☐ Stability of feedback system
- ☐ Root locus and Bode plot
- Phase and gain margin

Phase and Gain Margin

$$PM = 180^{o} - |\angle \beta A_{OL}(GX)| = 180^{o} - \tan^{-1} \left(\frac{GX}{\omega_{p1}}\right) - \tan^{-1} \left(\frac{GX}{\omega_{p2}}\right)$$
$$GM = 0 - 20 \log|\beta A_{OL}(PX)|$$

Phase Margin (PM)

$$PM = 90^o - \tan^{-1} \left(\frac{GX}{\omega_{p2}} \right)$$

 $PM > 0 \rightarrow stable$

But low PM means:

- → frequency domain peaking
- → time domain ringing

Frequency domain peaking

→ noise amplification

Time domain ringing

→ poor settling time

Phase Margin (PM)

$$PM = 90^o - \tan^{-1} \left(\frac{GX}{\omega_{p2}} \right)$$

 $PM > 0 \rightarrow stable$

But low PM means:

- → frequency domain peaking
- → time domain ringing

Frequency domain peaking

→ noise amplification

Time domain ringing

→ poor settling time

Phase Margin: Ultimate GBW

- \Box If $\omega_{p2}=\omega_u$: PM = 45°
 - Typically inadequate (peaking/ringing)
- lacksquare Thus ω_{p2} should be $>\omega_u
 ightarrow \omega_{p1} \ll \omega_u < \omega_{p2}$
 - ω_{p1} defines OL BW and ω_{p2} defines ultimate GBW (max CL BW)

→ noise amplification
Time domain ringing
→ poor settling time

Asymptotic vs Actual UGF

- \Box For $\omega < \omega_u$ the Bode plot is similar to a 1st order system
- $f \square$ For a true 1st order system: GBW = UGF = $\omega_u = \omega_{u1}$
- ☐ But the 2nd pole causes some bending below the asymptote
 - Actual ω_u slightly < ω_{u1} : UGF < GBW

Optimum Phase Margin (Freq Response)

- \square Maximum CL BW without peaking occurs at $\zeta = Q = 0.707$
 - Maximally flat response

Optimum Phase Margin (Freq Response)

- \Box Maximum CL BW without peaking occurs at $\zeta = Q = 0.707$
 - Maximally flat response
 - $\omega_{p2} = 2\omega_{u1}$ and $PM \approx 65^o$

$\omega_{p2}I\omega_{u1}$	Q	ω_u / ω_{uI}	Phase margin (°)
1	1	0.786	51.8
2	0.707	0.910	65.5
3	0.577	0.953	72.4
4	0.500	0.972	76.3
5	0.477	0.981	78.9
6	0.408	0.987	80.7
7	0.378	0.990	81.9
8	0.354	0.992	82.9
9	0.333	0.994	83.7
10	0.316	0.995	84.3
∞	_	1	90

Optimum Phase Margin (Freq Response)

- \Box Maximum CL BW without peaking occurs at $\zeta = Q = 0.707$
 - Maximally flat response
 - $\omega_{p2} = 2\omega_{u1}$ and $PM \approx 65^{\circ}$
- \blacksquare But $\zeta < 1$: Underdamped system
 - Overshoot exists in transient response

Optimum Phase Margin (Tran Response)

- □ Fastest settling without overshoot occurs at $\zeta = 1$ (Q = 0.5)
 - Critical damped system
 - $\omega_{p2} = 4\omega_{u1}$ and $PM \approx 76^o$

BX Ve		actual
-------	--	--------

$\omega_{p2}I\omega_{uI}$	${\it Q}$	$\omega_{u}I\omega_{uI}$	Phase margin (°)
1	1	0.786	51.8
2	0.707	0.910	65.5
3	0.577	0.953	72.4
4	0.500	0.972	76.3
5	0.477	0.981	78.9
6	0.408	0.987	80.7
7	0.378	0.990	81.9
8	0.354	0.992	82.9
9	0.333	0.994	83.7
10	0.316	0.995	84.3
∞	_	1	90

Second-Order System Speed-up

- \Box First order system corresponds to $\omega_{p2}/\omega_{u1} \rightarrow \infty$
 - Too much overdamping
- ☐ The settling of 2nd order system with optimum PM is faster
 - Critical damped system is faster than overdamped system
- ☐ But we must take some extra margin to account for variations

Dynamic settling error (ε_d)	$t_s I au$	$t_s J au$	Speedup (%)
	$(\omega_{p2}I\omega_{uI}\to\infty)$	$(\omega_{p2}I\omega_{uI}=4)$	
10%	2.3	1.9	15.5
1%	4.6	3.3	27.9
0.1%	6.9	4.6	33.1
0.01%	9.2	5.9	36.2

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015
- ☐ B. Razavi, "Design Of Analog CMOS Integrated Circuit," 2nd ed., McGraw-Hill, 2017.
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed.,
 Wiley, 2012.
- P. Jespers and B. Murmann, Systematic Design of Analog CMOS Circuits Using Pre-Computed Lookup Tables, Cambridge University Press, 2017.

Bandwidth Extension

- Cascade of feedback amplifiers provides the same gain and a much faster response
 - But power consumption and area doubled

