PCT/GB2004/005234

!.

CLAIMS

- The combination of a growth hormone secretagogue and a p38 kinase 1. inhibitor for use in treatment or prevention of a disease associated with deposition of $A\beta$ in the brain.
- The use, for the manufacture of a medicament for treatment or 2. prevention of a disease associated with deposition of $A\beta$ in the brain, of a growth hormone secretagogue and a p38 kinase inhibitor.

10

5

- Use according to claim 2 wherein the disease is Alzheimer's disease. 3.
- Use according to claim 3 wherein the medicament is for administration 4. to a patient suffering from MCI.

15

20

25

Use according to claim 4 wherein the patient additionally possesses one 5. or more risk factors for developing AD selected from: a family history of the disease; a genetic predisposition to the disease; elevated serum cholesterol; adult-onset diabetes mellitus; elevated baseline hippocampal volume; elevated CSF levels of total tau; elevated CSF levels of phospho-tau; and lowered CSF levels of A β (1-42).

- Use according to any of claims 2-5 wherein the growth hormone 6. secretagogue is N-[1(R)-[(1,2-dihydro-1-methanesulfonylspiro[3H-indole-3,4'piperidin]-1'-yl)carbonyl]-2-(phenylmethyloxy)ethyl]-2-amino-2-methylpropanamide, or pharmaceutically acceptable salt thereof.
- Use according to any of claims 2-6 wherein the p38 kinase inhibitor is 7. a compound of formula XI:

$$R^{1}$$
 R^{1}
 R^{2}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{4}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}

or pharmaceutically acceptable salts thereof, wherein Non-Ar-Cyc is

$$R^{7}$$
 $(CH_{2})_{n}$
 E^{2}
 $(CH_{2})_{m}$

5

$$R^{7}$$
 $(CH_{2})_{n}$
 E^{2}
 $(CH_{2})_{m}$,

 $(CH_2)_p$

(CH₂)_{m"}

$$R^{77}$$
 $(CH_2)_{n'}$ $(CH_2)_{n''}$ $(CH_2)_{n''}$ $(CH_2)_{m''}$ $(CH_2)_{m''}$

A is N, O, NH, CH2, or CH;

B is -C₁-6alkyl-, -C₀-3alkyl-O-C₀-3alkyl-, -C₀-3alkyl-NH-C₀-3alkyl-, -C₀-3alkyl-NH-C₃-7cycloalkyl-, -C₀-3alkyl-N(C₀-3alkyl)-C(O)-C₀-3alkyl-, -C₀-3alkyl-NH-SO₂-C₀-3alkyl-, -C₀-3alkyl-, -C₀-3alkyl-S-C₀-3alkyl-, -C₀-3alkyl-SO₂-C₀-3alkyl-, -C₀-3alkyl-PH-C₀-3alkyl-, -C₀-3alkyl-C(O)-C₀-3alkyl, or a direct bond;

D is CH, CH₂, N, or NH; optionally A and D are bridged by -C₁-4alkyl- to form a fused bicyclo ring with A and D at the bicyclo cusps;

E¹ is CH, N, or CR⁶; or B and E¹ form –CH=C<; E² is CH₂, CHR, C(OH)R NH, NR, O, S, –S(O)–, or –S(O)₂–; G¹ is N, CH, or C(C₁₋₃alkyl); G² is N, CH, or C(C₁₋₃alkyl);

R, R⁷ and R⁷ each independently is hydrogen, C₁₋₆alkyl– group, C₂₋₆alkenyl– group, C₄₋₆cycloalkyl-C₀₋₆alkyl– group, N(C₀₋₄alkyl)(C₀₋₄alkyl)– C₁₋₄alkyl–N(C₀₋₄alkyl)– group, –N(C₀₋₄alkyl)(C₀₋₄alkyl) group, C₁₋₃alkyl– C₀₋₆alkyl– group, C₀₋₆alkyl–O-C(O)–C₀₋₄alkyl– group, C₀₋₆alkyl– C(O)–O-C₀₋₄alkyl– group, N(C₀₋₄alkyl)(C₀₋₄alkyl)–(C₀₋₄alkyl)C(O)(C₀₋₄alkyl)– group, phenyl–C₀₋₄alkyl– group, pyridyl–C₀₋₄alkyl– group, pyrimidinyl–C₀₋₄alkyl– group, pyrazinyl–C₀₋₄alkyl– group, thiophenyl–C₀₋₄alkyl– group, pyrazolyl–C₀₋₄alkyl– group, imidazolyl–C₀₋₄alkyl– group, triazolyl–C₀₋₄alkyl– group, azetidinyl–C₀₋₄alkyl– group, pyrrolidinyl–C₀₋₄alkyl– group, isoquinolinyl–C₀₋₄alkyl– group, indanyl–C₀₋₄alkyl– group, benzothiazolyl–C₀₋₄alkyl– group, any of the groups optionally substituted with 1-6 substituents, each substituent independently being –OH, –N(C₀₋₄alkyl)(C₀₋₄alkyl), C₁₋₄alkyl, C₁₋₆alkoxyl, C₁₋₆alkyl–C₀₋₄alkyl–, pyrrolidinyl–C₀₋₄alkyl–, or halogen;

or R⁷ together with a bond from an absent ring hydrogen is =0; n' + n" = n; m' + m" = m; n is 1, 2, 3, or 4;

5

10

15

20

25

30

5

10

15

20

25

m is 0, 1, 2, 3, or 4;
n+m is 2, 3, 4, 5, or 6;
p is 0, 1, 2, or 3;
R¹, R², R³, R⁴, and R⁶ are each independently halogen, C₀-4alkyl, –
C(O)-O(C₀-4alkyl), or –C(O)-N(C₀-4alkyl)(C₀-4alkyl);
R⁵ and R⁵⁵ independently is H, CH₃, CH₂CH₃, or absent;
R⁸⁸ and R⁸ each is independently –CN, –C₀-4alkyl, –C(O)-N(C₀-4alkyl)(C₀-4alkyl), –C(O)-O-C₀-4alkyl or 1,3-dioxolan-2-yl-C₀-4alkyl-;
R⁹ is –C₀-4alkyl, or absent; and

R⁹ is -C₀₋₄alkyl, or absent; and any alkyl is optionally substituted with 1-6 independent halogen or -

OH.

- 8. A pharmaceutical composition comprising in a pharmaceutically acceptable carrier, a growth hormone secretagogue and a p38 kinase inhibitor.
- 9. A kit comprising a first medicament comprising a growth hormone secretagogue and a second medicament comprising a p38 kinase inhibitor together with instructions for administering said medicaments sequentially or simultaneously to a patient suffering from AD, age-related cognitive decline, MCI, cerebral amyloid angiopathy, multi-infarct dementia, dementia pugilistica or Down syndrome.
- 10. A method of treatment or prevention of a disease associated with deposition of Aβ in the brain comprising administering to a subject in need thereof a therapeutically effective amount of a growth hormone secretagogue (GHS) in combination with a therapeutically effective amount of a p38 kinase inhibitor.