AADL Security Annex

<u>Julien Delange</u>, Peter Feiler, Will Klieber , Min-Young Nam, Joseph Seibel

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003597

Agenda

Why a security annex?

Main Concepts

Analysis Support

Rationale for security annex

Increasing attention on security for cyber-physical systems

Automotive: Jeep hack (1.4M recall), Ford (400K)

Avionics: Chris Roberts story

Security issues are not only a matter of code

Configuration: inappropriate encryption/isolation

Deployment: collocated components

Add security characteristics in Architecture Models

Extend **AADL** with security annotations

Design guidelines

	Pros	Cons
Property Set	 No learning curve, easy to adopt No specific tool support (i.e. parser) Extensible, easily modifiable Tool compatibility Quick to design/prototype 	Limited capability or expressiveness
Annex Language	 Clear, separate declarations Ability to use with other languages 	 Need to train users Support of specific parser Tool compatibility Long design process (i.e. EMV2)

Security Annex document

Written using markdown

Facilitate review and track changes

Using pandoc to convert to SAE format

Exercised early to investigate potential uses

Security analysis

Code generation for seL4

Starting ballot in 2016

Concepts – security levels & domains

Security Levels

Distinguish levels (top-secret, secret)

Compliance with approach such as Bell-Lapadula

```
security levels: list of addlinteger => (100) applies to (all);
                : constant aadlinteger => 10;
top secret
                : constant aadlinteger => 40;
secret
unclassified
                : constant aadlinteger => 100;
```

Domains

Distinguish domains (i.e. entertainment, command & control)

Not a security hierarchy

Capture MILS requirements

```
domains: list of aadlstring applies to (all);
```

Concepts – Trust and Exposure

Trust

Can I trust this component?

Reflect efforts to prove component correctness

0 = no review/verification; 100 = formally verified

```
trust : aadlinteger 0 .. 100 => 0 applies to (all);
```

Exposure

How exposed is my component?

Reflect the possibility of a physical attack

0 = protected (in a box); 100 = exposed to everybody

```
exposure : aadlinteger => 100 applies to
     (bus, virtual bus, processor, device, system, memory);
```



```
encryption: security_properties::encryption_type applies to
   (port, virtual bus, bus, memory, access);
encryption type
                  : type record (
                  : security properties::supported encryption method;
  method
  algorithm
                  : security properties::supported encryption algorithm;
  public_key
                  : aadlstring;
  private_key
                  : aadlstring;
                  : aadlstring;
  key
   operation_mode : security_properties::supported_operation_mode;
);
supported encryption method
             type enumeration (symetric, assymetric, clear);
supported encryption algorithm
             type enumeration (tripledes, des, rsa, blowfish, aes, clear);
supported operation mode: type enumeration (ecb, cbc, pcbc, cfb, ofb, ctr);
```

Concepts - Authentication

supported authentication methods:

type enumeration (shared_password, user_password, key, ipaddr);
authentication method :

list of security_properties::supported_authentication_methods
applies to (bus, virtual bus);

10

Analysis Tools

Attack Surface

Discovery of vulnerabilities in the architecture Measure of how safe is your system

Attack Impact & Attack Tree

Graphical representation of vulnerabilities & their impact Similar goal than FMEA & FTA for safety

Code Generation to seL4

First formally verified kernel with a focus on security Leverage HACMS/SMACCM efforts

Julien Delange

CMU-SEI

4500 5th avenue

Pittsburgh, PA15213

+1-412-268-9652

jdelange@sei.cmu.edu