

-s large

	Coefficient	Std. error	$t ext{-statistic}$	<i>p</i> -value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on TV, radio, and newspaper advertising budgets.

NULL HYPOTHESIS:

Simple Regression & Ho: B1:0 Ha: B1=0

Multiple Regression | flo: \$1: \$2...\$p=0 Ha: alleast one (3) à non zero

A: Now Hypo:

- ·) TV has no R" wrt Sales
- ·) Rad has no R" with sales
- e) News has no R" wit sales

A: conclusion:

e) As the p value for TV or radio is very less we can say that there is R believen these parameters and Sales. e) P (Neumoanes) . Lila . . .

do not reject to

2). KNN classifier:

- 1. get the data
- 2. Init the K
- 3. Find nearest k point to our target point

for a class j and point i:

$$P(Y_j | X_i) = \frac{1}{K} \underset{i:N_0}{\leq} I(y_{i-j})$$

kNN regression:-

Same:

$$\hat{f}(x_0): \frac{1}{K} \underset{x_i \in N_0}{\leq} y_i$$

Find digt btw points mean - L1 Loss

median - L2 loss

3)- X_1 : GPA X_2 : IQ X_3 : G college: 1 School: 0 14: X18X2 X5= X18X3 $\beta_0: 50$ $\beta_1: 20$ $\beta_2: 0.09$ $\beta_3: 35$ B4:0.01 Ps:-10. Y(starting salary) in 1000 \$ A: Salwy : \$0 + \$1 X1 + \$2 X2 + \$3 X3 ... -> 1 2 50 + 20 X₁ + 0.07 X₂ + 35 X₃ + 0.01 X₄ + (-10 X_{5}) Salvey Hs = 50+ 20X1+0-07X2 + 0+0.01X4+0 Salary cou = Salary HS 50 + 20×1 + 0.07 ×2 + 35 ×3 + 0.01 ×4 - 10×5 = 50 + 20/1, + 0.0/1×2 + 0.0/×4 35 xz -10 xs = 0 $35 X_3 > 10 X_5$ 35 X3 > 10 X1 X/3 $\frac{35}{10}$ < X1 60PA > 3.5//

Only (iii) is correct-

(b) IQ:110 GPA:4.0
Plug - Unese into (1)
\$\frac{137100.0}{}

The coeff tells that how much effect it has on whit necess.

Every unit 1 of P4, 4 10\$

① Do S.E to check how good our estimate is $S.E \iff S.E \iff S.E \iff seliable params$ $Bp \iff Q S.E \iff = aysets \hat{y}$ $Bp \iff Q S \in S.E \implies not aysething \hat{y}$

4. n:100

Linear: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$ Cubic: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$ (a) X & Y is linear

RSS train (un) RSS what would be it? train (cubic)

' T' ' [''] | F''' ' ' ' | U

From my learning:

RSS cubic will be less-than linear because

RSS: $e_1^2 + e_2^2 + e_3^2$.

Bias: error of Train data

Vas: error of test data

While training linear would have High B & High Var. training cubic would have low bear & High Var.

RSS train > RSS train cubic

(b) For testing:

Culeii - overfits & linear. underfits
RSS (Cineau) < RSS (cubii)

It explains more variance

- (C) RSS training & as the model is of high variance RSS whi <<< New model
- (d) For test we cannot say because If the new model is little