Hamiltonova cesta / cyklus

LUKÁŠ DRAHNÍK - XDRAHNOO

Teorie

- Hamiltonovská cesta v grafu G je cesta, která obsahuje každý uzel U v grafu G právě jednou
- pokud v G existuje cesta délky U 1 splňující první bod, je cesta Hamiltonovská
- pokud začíná a končí ve stejném vrcholu a je délky U, jedná se o cyklus
- Hamiltonovská cesta je také vždy nejdelší cestou v grafu
- spadá do kategorie NP-úplné

Vylučující podmínky

Počet uzlů - > 2

Stupeň každého z uzlů pro cestu - >= 1

Stupeň každého z uzlů pro cyklus - >= 2

Při nesplnění se program nepouští!

Potvrzující podmínky

Diracova - každý uzel má stupeň alespoň ½ celkového počtu uzlů

Oreho - každá dvojice uzlů nespojených hranou má součet stupňů alespoň jako je celkový počet vrcholů

Pósova - pro každé přirozené číslo $k < \frac{1}{2}$ celkého počtu vrcholů existuje počet uzlů, jejichž stupeň nepřevyšuje k, menší než k

Pouze jako informace navíc!

Vstupní data a zobrazování

*.in

Vstupní data a zobrazování

```
A B
A G
ВС
                                                             strict graph "" {
C D
CJ
DE
             \rightarrow (python script) \rightarrow
                                                                                      \rightarrow Graphviz \rightarrow
DΗ
                                                                    C -- D;
E F
ΕI
                                                                    H -- D;
                                                                    H -- I;
                                                                    D -- E;
                                                                    J -- E;
G H
                                                                   J -- I;
G J
                                                                    E -- F;
                                                                    E -- I;
                                                                    F -- I;
IJ
```

*.in

*.dot

*.png

Implementovaný algoritmus

- začátek prohledávání na počátečním vrcholu
- postupný průchod všemi zbylými hranami (rekurzivní zavolání)

bez uvedení počátečního nebo cílového vrcholu => první vrchol

Počet vrcholů	Hrany	Prozkoumané vrcholy	Doba trvání[s]	Počet řešení	Počet alokací	Alokovaná paměť[B]
3	3	5	0,008	2	32	6766
4	6	16	0,009	6	58	8948
5	10	65	0,009	24	126	17478
6	15	326	0,009	120	410	64204
7	21	1957	0,010	720	2068	392246
8	28	13700	0,023	5040	13842	3091836
9	36	109601	0,132	40320	109778	28090078
10	45	986410	1,219	362880	986626	284130788
11	55	9864101	14,063	3628800	9864360	3156573535
12	66	108505112	187,34	39916800	108505418	38193881957

Experimentální ověření složitostí

Testováno na grafech se 3 – 12 vrcholy

Děkuji za pozornost

Prostor pro dotazy

Zdroje