Ejemplo: algoritmo RSA

1. Generación de claves

$$p = 101, q = 113 \Rightarrow n = 11413 \text{ y } \varphi(n) = 100 \times 112 = 11200.$$

Elegimos d (exponente de desencriptación) que tiene que cumplir con la siguiente condición: $gcd(\varphi(n), d) = 1$. Un posible d es 6597.

Por último, calculamos el inverso modular del exponente d utilizando el algoritmo de Euclides. Es decir, $e \times d = 1 \mod \varphi(n)$

Haciendo las cuentas obtenemos: e = 3533

Clave Pública = (e,n) / Clave Privada (d,n)

2. Encriptación ($E_k(m) = m^e \mod n$)

A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P	Q	R	S	T	U	V	\mathbf{W}	X	Y	Z				

 $M = OPERACION = 15165181391514 \dots$ Ahora debemos dividir el mensaje plano en bloques de tamaño máximo n-1

3. Desencriptación ($D_k(c) = c^d \mod n$)