MẪU SOẠN THẢO ĐỀ THI

NÔI DUNG SOAN NÔI DUNG HIÊN Cho 2 số nguyên ~A~ và ~B~. Cho 2 số nguyên A và B. ## Yêu cầu Yêu cầu Hãy tính $\sim A \sim + \sim B \sim$. Hãy tính A + B. ## Dữ liệu vào Dữ liêu vào Têp ~aplusb.in~ gồm 1 dòng chứa 2 số nguyên ~A~ và ~B~ (~1 \le A, B \le 100\,000~) cách nhau Têp aplusb. in gồm 1 dòng chứa 2 số nguyên A và B ($1 \le A, B \le 100\,000$) cách nhau bởi dấu cách. bởi dấu cách. Kết quả ra ## Kết quả ra Tệp aplusb. out chứa giá trị duy nhất là A+B. Tệp ~aplusb.out~ chứa giá trị duy nhất là $\sim A \sim + \sim B \sim$. Ví du ## Ví du aplusb. in ~aplusb.in~ Сору 3 4 3 4 ~aplusb.out~ aplusb. out 7 Сору 7 The Fibonacci sequence is a well known sequence of numbers in which The Fibonacci sequence is a well known sequence of numbers in which $F(n) = \operatorname{cases} 0$, & \text{if} $n = 0 \setminus 1$, & \text{if} $n = 1 \setminus F(n-2) + F(n-1)$, & \text{if}

 $n \ge 2 \left(\frac{\cos {\$\$}}{n \right)$

 $\sim 1 \,000 \,000 \,007 \sim \sim (= 10^9 + 7) \sim . < br/>$

Given a number $\sim N \sim (1 \le N \le 10^{19})$, find the $\sim N^{th} \sim Fibonacci number, modulo$

**Note: ** For 30% of the marks of this problem, it is guaranteed that \sim (1 \le N \le 1\,000\,000) \sim .

$$F(n) = \begin{cases} 0, & \text{if } n = 0 \\ 1, & \text{if } n = 1 \\ F(n-2) + F(n-1), & \text{if } n \ge 2 \end{cases}$$

Given a number N ($1 \le N \le 10^{19}$), find the N^{th} Fibonacci number, modulo $1\,000\,000\,007$ ($=10^9+7$). Note: For 30% of the marks of this problem, it is guaranteed that ($1 \le N \le 1\,000\,000$).