Practice Problems 2: Convergence of sequences and monotone sequences

- 1. Investigate the convergence of the sequence (x_n) where
 - (a) $x_n = \frac{1}{1+n^2} + \frac{2}{2+n^2} + \dots + \frac{n}{n+n^2}$.
 - (b) $x_n = (a^n + b^n)^{1/n}$ where 0 < a < b.
 - (c) $x_n = (\sqrt{2} 2^{\frac{1}{3}})(\sqrt{2} 2^{\frac{1}{5}})...(\sqrt{2} 2^{\frac{1}{2n+1}}).$
 - (d) $x_n = n^{\alpha} (n+1)^{\alpha}$ for some $\alpha \in (0,1)$.
 - (e) $x_n = \frac{2^n}{n!}$.
 - (f) $x_n = \frac{1-2+3-4+\cdots+(-1)^{n-1}n}{n}$.
- 2. Let $x_n = (-1)^n$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) does not converge.
- 3. Let A be a non-empty subset of \mathbb{R} and $\alpha = \inf A$. Show that there exists a sequence (a_n) such that $a_n \in A$ for all $n \in \mathbb{N}$ and $a_n \to \alpha$.
- 4. Let $x_0 \in \mathbb{Q}$. Show that there exists a sequence (x_n) of irrational numbers such that $x_n \to x_0$.
- 5. Let (x_n) be a sequence in \mathbb{R} . Prove or disprove the following statements.
 - (a) If $x_n \to 0$ and (y_n) is a bounded sequence then $x_n y_n \to 0$.
 - (b) If $x_n \to \infty$ and (y_n) is a bounded sequence then $x_n y_n \to \infty$.
- 6. Let (x_n) be a sequence in \mathbb{R} . Prove or disprove the following statements.
 - (a) If the sequence $(x_n + \frac{1}{n}x_n)$ converges then (x_n) converges.
 - (b) If the sequence $(x_n^2 + \frac{1}{n}x_n)$ converges then (x_n) converges.
- 7. Show that the sequence (x_n) is bounded and monotone, and find its limit where
 - (a) $x_1 = 2$ and $x_{n+1} = 2 \frac{1}{x_n}$ for $n \in \mathbb{N}$.
 - (b) $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n}$ for $n \in \mathbb{N}$.
 - (c) $x_1 = 1$ and $x_{n+1} = \frac{4+3x_n}{3+2x_n}$, for $n \in \mathbb{N}$.
- 8. Let $0 < b_1 < a_1$ and define $a_{n+1} = \frac{a_n + b_n}{2}$ and $b_{n+1} = \sqrt{a_n b_n}$ for all $n \in \mathbb{N}$. Show that both (a_n) and (b_n) converge.
- 9. Let a > 0 and $x_1 > 0$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) converges to \sqrt{a} .
- 10. Let (x_n) be a sequence in (0,1). Suppose $4x_n(1-x_{n+1})>1$ for all $n\in\mathbb{N}$. Show that the sequence is monotone and find the limit.
- 11. Let A be a non-empty subset of \mathbb{R} and $x_0 \in \mathbb{R}$. Show that there exists a sequence (a_n) in A such that $|x_0 a_n| \to d(x_0, A)$. Recall that $d(x_0, A) = \inf\{|x_0 a| : a \in A\}$.
- 12. Let (a_n) be a bounded sequence. For every $n \in \mathbb{N}$, define $x_n = \sup\{a_k : k > n\}$. Show that the sequence (x_n) converges.
- 13. (*) Show that the sequence (e_n) defined by $e_n = (1 + \frac{1}{n})^n$ is increasing and bounded above.

Practice Problems2: Hints/Solutions

- 1. (a) Since $(1+2+...+n)\frac{1}{n+n^2} \le x_n \le (1+2+...+n)\frac{1}{1+n^2}, x_n \to \frac{1}{2}$
 - (b) Note that $b = (b^n)^{1/n} \le x_n \le (2b^n)^{1/n} = 2^{1/n}b \to b$. Therefore $x_n \to b$.
 - (c) We have $0 < x_n < (\sqrt{2} 1)^n$ and hence $x_n \to 0$.
 - (d) Observe that $-x_n = n^{\alpha} [(1 + \frac{1}{n})^{\alpha} 1] < n^{\alpha} [1 + \frac{1}{n} 1] = \frac{1}{n^{1-\alpha}} \to 0$. Hence $x_n \to 0$.
 - (e) Consider $\frac{x_{n+1}}{x_n}$ and apply the ratio test for sequences to conclude that $x_n \to 0$.
 - (f) Here $x_{2n} = -\frac{1}{2}$ and $x_{2n+1} = \frac{n+1}{2n+1} \to \frac{1}{2}$. The sequence does not converge.
- 2. Suppose $x_n \to x_0$ for some x_0 . Then, by the definition, for $\epsilon = \frac{1}{4}$ (why $\frac{1}{4}$?) there exists N such that $|x_n x_0| < \frac{1}{4}$ for all $n \ge N$. Then for all $m, n \ge N, |x_n x_m| \le |x_n x_0| + |x_m x_0| \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ which is not true because $|x_n x_{n+1}| = 2$ for any n.
- 3. Since $\alpha + \frac{1}{n}$ is not a l.b., find $a_n \in A$ such that $\alpha \leq a_n < \alpha + \frac{1}{n}$. Allow $n \to \infty$.
- 4. Find an irrational x_n satisfying $x_0 < x_n < x_0 + \frac{1}{n}$ for every $n \in \mathbb{N}$. Allow $n \to \infty$.
- 5. (a) True. Find $M \in \mathbb{N}$ such that $0 \le |x_n y_n| < M|x_n|$. Allow $n \to \infty$.
 - (b) False. Take $x_n = n^2$ and $y_n = \frac{1}{n}$.
- 6. (a) Let $y_n = x_n + \frac{1}{n}x_n = (1 + \frac{1}{n})x_n$. Then $x_n = \frac{y_n}{(1 + \frac{1}{n})}$. Hence (x_n) converges if (y_n) converges.
 - (b) The statement is not true. Take, for example, $x_n = (-1)^n$.
- 7. (a) Observe that $x_2 < x_1$. If $x_n < x_{n-1}$, then $x_{n+1} < 2 \frac{1}{x_{n-1}} = x_n$. The sequence is decreasing. Note that $x_n > 0$. The sequence converges and the limit is 1.
 - (b) Observe that $x_2 > x_1$. Since $x_{n+1}^2 x_n^2 = 2(x_n x_{n-1})$, by induction (x_n) is increasing. It can be observed again by induction that $x_n \le 2$. The limit is 2.
 - (c) Note that $x_2 > x_1$. Since $x_{n+1} x_n = \frac{x_n x_{n-1}}{(3 + 2x_n)(3 + 2x_{n-1})}$, by induction (x_n) is increasing. Note that $x_{n+1} = 1 + \frac{1 + x_n}{3 + 2x_n} \le 2$. The limit is $\sqrt{2}$.
- 8. By the AM-GM inequality $b_n \leq a_n$. Therefore $0 \leq a_{n+1} \leq \frac{a_n + a_n}{2} = a_n$. Note that $b_{n+1} \geq \sqrt{b_n b_n} = b_n$ and $b_n \leq a_n \leq a_1$. Use monotone criterion for both (a_n) and (b_n) .
- 9. Note that $x_n > 0$ and $x_{n+1} x_n = \frac{1}{2}(x_n + \frac{a}{x_n}) x_n = \frac{1}{2}(\frac{a x_n^2}{x_n})$. Further, by the A.M -G.M. inequality, $x_{n+1} \ge \sqrt{a}$. Therefore (x_n) is decreasing and bounded below.
- 10. By the AM-GM inequality $\frac{x_n+(1-x_{n+1})}{2} \ge \sqrt{x_n(1-x_{n+1})} > \frac{1}{2}$. Therefore $x_n > x_{n+1}$. Suppose $x_n \to x_0$ for some x_0 . Then $4x_0(1-x_0) \ge 1$ which implies that $(2x_0-1)^2 \le 0$. Therefore $x_0 = \frac{1}{2}$.
- 11. Use Problem 2 or follow the steps of the solution of Problem 2.
- 12. Observe that the sequence (x_n) is decreasing and bounded.
- 13. By binomial theorem $e_n = 1 + 1 + \frac{1}{2!}(1 \frac{1}{n}) + \frac{1}{3!}(1 \frac{1}{n})(1 \frac{2}{n}) + \dots + \frac{1}{n!}(1 \frac{1}{n})\dots(1 \frac{n-1}{n}) \le e_{n+1}$ and $e_n \le 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} \le 3$.

Alternate Solution: For each $n \in \mathbb{N}$, apply AM-GM inequality for $a_1 = 1, a_2 = a_3 = \dots = a_{n+1} = 1 + \frac{1}{n}$. We get $e_{n+1} > e_n$.