

Term End Examination - November 2011

Course: MAT101 - Multivariable Calculus and Differential Equations Slot: F1+TF1

Time : Three Hours Max.Marks:100

$PART - A (10 \times 3 = 30 \text{ Marks})$ Answer <u>ALL</u> the Questions

1. If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.

2. If
$$x^x ext{.} y^y ext{.} z^z = c$$
 then show that $\frac{\partial^2 z}{\partial x^2} = (x \cdot \log ex)^{-1}$ at $x = y = z$.

3. Change into polar coordinates and then evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$$

4. Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta \ d\theta}$$
 by beta-gamma functions.

5. Find div curl
$$\vec{F}$$
 where $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$.

- 6. Prove, by Stokes theorem, that curl (grad Φ) = 0.
- 7. Find the general solution of the equation y'' + 4y = 0.

8. Find the particular integral of
$$\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$$
.

- 9. Find the Laplace transform of unit step function.
- 10. Find the Inverse Laplace transform of $\log \left(\frac{s^2 + 1}{s(s+1)} \right)$.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. a) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
 then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$.

b) Find the dimensions of a rectangular box that opens at the top and requires least material for its construction with volume 32 cubic feet.

- 12. a) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$ and hence evaluate the same.
 - b) Evaluate $\iiint_{V} xyz \, dz \, dy \, dx$ where V is volume of the sphere $x^2 + y^2 + z^2 = 1$.
- 13. (a) Find the values of a, b, c so that $\vec{F} = \left(axy + bz^3\right)\hat{i} + \left(3x^2 cz\right)\hat{j} + \left(3xz^2 y\right)\hat{k} \text{ may be irrotational. For those values of a, b, c find its scalar potential.}$
 - (b)By using Gauss divergence theorem, evaluate $\iint_S (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$, where S is the closed surface of the cylinder $x^2 + y^2 = a^2$ and circular disks z=0, z=6.
- 14. a) Find the general solution of $(D-2)^2 y = 8.(e^{2x} + \sin 2x + x^2)$
 - b) Solve the differential equation $\frac{d^2y}{dx^2} + 4y = \tan 2x$, using the method of variation of parameters.
- 15. (a) Using Laplace transform solve y''' + 2y'' y' 2y = 0 where y = 0, y' = 0, y'' = 6 at x = 0
 - (b) State convolution theorem and hence evaluate $L^{-1}\left[\frac{1}{(s^2+9)(s^2+1)}\right]$
- 16. a) Evaluate by Greens theorem $\oint_C [(y \sin x) dx + \cos x dy]$ where C is the triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$, $\pi y = 2x$.
 - b) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$ by the method of undetermined co-efficients.
- 17. (a) Show that $\beta(m,n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}$ and hence find the value of $\mu(\frac{1}{2})$. [7]
 - (b) Find the Laplace transform of

$$f(t) = \begin{cases} \sin \omega t & 0 < t < \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}; \quad f\left(t + \frac{2\pi}{\omega}\right) = f(t)$$
 [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$