Reconnaissance et indexation de formes

Quentin Cormier

Yassine Hamoudi

4 mai 2015

Table des matières

1 Introduction

L'objectif est de classifier un certain nombre d'images noir et blancs en une catégorie parmi 70 possibles. On dispose pour cela d'une dizaine d'images "d'entraînement" par catégories (le training set, noté T).

A partir de ces images d'entrainement on doit pouvoir classifier une image inconnu dans l'une de ses 70 catégories.

Au vu de la taille relativement restreinte du training set, on décide d'encoder l'image en un vecteur de réels (le descripteur associé à l'image), et d'utiliser une distance entre deux descripteurs pour classifier une image inconnue.

Ainsi, pour une image inconnue M, on calcule le descripteur associé d_M , puis on cherche l'image la plus proche dans le training set :

$$M' = argmin_{M' \in T} d(d_M, d_{M'})$$

d étant la distance choisie.

On prédit alors la classe de M comme étant la même que celle de M'

1.1 Descripteur associé à l'image

La partie principale du projet est donc le calcul du descripteur associé à l'image. Ce vecteur de réels, doit varier en fonction de la forme de l'image. Idéalement, deux images ayant des formes similaires doivent donner deux descripteurs similaires.

Dans la mesure du possible, il doit être également invariant par translation, par rotation et par dilatation : translater une image, la tourner, l'agrandir ou la rétrécir ne change pas la catégorie de l'image, et donc ne devrait pas changer le descripteur. On aimerait également une robustesse au bruit : un léger bruit ne doit que modifier très légèrement le descripteur.

On choisit ici d'utiliser un descripteur inspiré par la physique qui respecte, on le verra, toutes ces contraintes.

Onde associé à un domaine

En physique, il est bien connu qu'une onde stationnaire se propageant dans une cavité ne peut se propager seulement qu'en certaines fréquences discrètes qui dépendent de la forme de la cavité. On se propose de construire un descripteur basé sur ces fréquences. On comprends bien qu'il sera facile de garantir l'invariance par rotation et translation : tourner ou bouger la cavité ne change pas les fréquences qui peuvent se propager dans ladite cavité!

Une onde dans une cavité vérifie l'équation suivante :

$$\Delta E + \frac{1}{v^2} \frac{\partial^2 E}{\partial t^2} = 0$$

avec par exemple : E(x, y, t) nulle sur les bords de la cavité (condition aux limites de Dirichlet).

Si l'on recherche les solutions stationnaires, on pose $E = f(x,y)e^{iwt}$, et on obtient :

$$\Delta f - \frac{w^2}{v^2} f = 0,$$

f s'annulant sur les bords de la cavité.

Ainsi, on peut voit f comme un vecteur propre de l'opérateur Laplacian et $\frac{w^2}{v^2}$ la valeur propre associée.

Calcul du descripteur

2 Méthode

3 Résultats

Nous exposons les résultats obtenus grâce à la méthode détaillée précédemment. Nous allons étudier dans un premier temps la sensibilité de notre algorithme aux perturbations (rotation, redimensionnement, bruit, ...), puis nous détaillerons les résultats de classification sur le dataset d'images.

3.1 Sensibilité aux perturbations

Les valeurs propres du Laplacien de Dirichlet vérifient un certain nombre de propriétés mathématiques qui garantissent que notre descripteur est insensible au redimensionnement, à la rotation et à la translation. Nous vérifions expérimentalement ces propriétés ci-dessous.

Redimensionnement Etant donné un domaine Ω et un facteur a>0, on a $\lambda_k(a\Omega)=\frac{\lambda_k(\Omega)}{a^2}$ (voir [?]). Or, notre descripteur utilise des rapports de valeurs propres, il est donc inchangé par redimensionnement : $\frac{\lambda_k(a\Omega)}{\lambda_m(a\Omega)}=\frac{\lambda_k(\Omega)}{\lambda_m(a\Omega)}$. Nous avons calculé différents rapports pour l'image camel-1.pgm, les résultats figurent table ??. Les variations d'une image à l'autre peuvent s'expliquer par les dégrations des contours suite au redimensionnement. Les rapports restent tout de même très proches. En pratique, nous utilisons une longueur de 50 pixels afin d'obtenir des temps de calcul raisonnables (environ 20s pour calculer les valeurs propres associées à une image de taille 50x50).

	λ_1/λ_2	λ_1/λ_3	λ_1/λ_4	λ_2/λ_3	λ_3/λ_4	λ_4/λ_5
75 pixels	0.63	0.42	0.36	0.67	0.84	0.89
50 pixels	0.61	0.42	0.32	0.68	0.83	0.89
25 pixels	0.53	0.39	0.31	0.73	0.80	0.81

Table 1 – Rapports de valeurs propres en fonctions de la longueur de l'image camel-1.pgm redimensionnée (l'image initiale est de taille 346x346)

<u>Translation</u> Nous recadrons systématiquement l'image afin de conserver le plus petit rectangle contenant la figure. Ceci nous permet d'être insensible aux translations.

<u>Rotation</u> Il a été démontré mathématiquement que les valeurs propres sont inchangées lorsque le domaine subit une rotation (voir [?]). Ce résultat se vérifie facilement à partir de quatre rotations appliquées sur deer-20.pgm. Les valeurs propres associées à chaque figure sont regroupées dans la table ??.

Table 2 - Valeurs propres associées à deer-20.pgm en fonctions de l'angle de rotation

Bruit Le bruit peut déformer le domaine de l'image et modifier par conséquent les valeurs propres. Cependant, les premières valeurs propres $(\lambda_1, \lambda_2, \lambda_3, \dots)$ correspondent à la fondamentale et aux premières harmoniques, et donc aux composantes de la solution au Laplacien de Dirichlet de longueur d'onde élevé. Par conséquent, on peut s'attendre à ce qu'une déformation relativement faible du contour impacte peu ces valeurs (contrairement aux valeurs associées à des longueurs d'onde faibles). Vrai ? Par ailleurs, le redimensionnement systématique de l'image que l'on applique permet de gommer partiellement le bruit.

Afin de tester la robustesse au bruit, nous avons implémenté un modèle de bruit de Kanungo (pour un facteur de bruit $0 \le a \le 1$, tout point x du domaine à distance d du bord est colorié en noir avec probabilité a^d). La table ?? démontre le faible impact du bruit sur les valeurs propres.

Table 3 - Valeurs propres associées à beetle-13.pgm en fonctions du facteur de bruit

3.2 Performances

Taille du descripteur

4 Discussion

5 Conclusion

Bonus

Nous avons essayé de reconstruire un son à partir des valeurs propres du Laplacien de Dirichlet. Pour cela, à partir du spectre des valeurs propres $\{\lambda_1, \lambda_2, ...\}$ de l'image, on en déduit les fréquences pouvant se propager dans la cavité définie par l'image, de la forme $\{\alpha\sqrt{\lambda_1}, \alpha\sqrt{\lambda_2}, ...\}$, α étant une constante choisie de façon à ce que le spectre obtenu soit compris entre 100Hz et 2kHz.

En pratique, $\alpha=40,$ on ne retient que 3 valeurs propres. Enfin on associe la même puissance à chacune des 3 fréquences calculées.

On peut s'amuser à changer ces différents paramètres pour entendre des sons différents.

Afin d'entendre le son associé à l'image beetle-11.pgm par exemple, entrer :

python3 sound.py database/beetle-11.pgm

Nous avons également développé un petit jeu, accessible par :

python3 sound_game.py

Il s'agit de retrouver parmi les sons de plusieurs objets celui appartenant à la même catégorie qu'un motif de départ.