A Users Guide to **panel**Technical Report 12 Department of Statistics University of Auckland

R. C. Gentleman
Department of Statistics
University of Auckland

August 7, 2001

Abstract

Documentation for the R/S/Splus function **panel**. Included are installation instructions, a brief description of the problem and some problem solving hints. It is assumed that you know how to program R/S/Splus and some experience with the foreign function interface would be helpful-281/54c]TJ Olel

inspection times and the state of the individual at the inspection times. There are a great number of examples of such data, see for example Kalbfleisch and Lawless (1985), Gentleman, Lawless,

aware that it is a very strong assumption that is seldom met.

A multi-state model fY(t): t = 0g is Markov^[1] if

with $D = diag(d_1; d_2; \dots; d_k)$. Thus,

$$P(t) = Adiag(e^{d_1t}; e^{d_2t}; \dots; e^{d_kt})A^{-1};$$
(5)

where the dependence of Q, P(t), A and the d_v 's on _ is suppressed for notational convenience. Once A and D are obtained, transition probabilities may be rapidly computed from (5). Additional

units you are using, **stage**, a vector of stages occupied by the individual at the corresponding inspection times, **cov**, a vector of covariate value(s) at the corresponding inspection times, and **len**, the length of the time vector.

The arguments are as follows:

indata The data in the list structure described above.

qmatf A function which takes the parameter vector $\underline{}$ as an argument and returns the \mathbf{Q} matrix. This is a three-way array. The first dimension codes the levels of the covariate and within each of these the two-way array is the \mathbf{Q} matrix.

gamma The vector of parameter estimates. Recall that i = exp(

The appropriate versions of the qfun and qderiv functions are given below.

> qfun.m2 <- function(gamma)</pre>

```
rmat[4, 1, 3, 3] <- ( - theta[4])
rmat[4, 2, 3, 2] <- theta[4]
rmat[4, 2, 3, 3] <- ( - theta[4])
rmat[5, 1, 3, 3] <- ( - theta[5])
rmat[5, 1, 3, 4] <- theta[5]
rmat[6, 1, 2, 4] <- theta[6]
rmat[6, 1, 2, 2] <- ( - theta[6])
rmat[7, 2, 1, 1] <- ( - theta[7])
rmat[7, 2, 1, 2] <- theta[7]
rmat[8, 2, 2, 2] <- ( - theta[8])</pre>
```

```
qarr[2, 1, 1] <- qarr[2, 1, 1] * exp(gamma[7])</pre>
         qarr[3, 1, 1] \leftarrow qarr[3, 1, 1] * exp(2 * gamma[7])
         qarr[3, 1, 2] \leftarrow qarr[3, 1, 2] * exp(2 * gamma[7])
         return(garr)
}
> qderiv.ord <- function(gamma)</pre>
         rmat \leftarrow array(0, c(7, 3, 4, 4))
         theta <- exp(gamma)
         rmat[1, 1, 1, 1] \leftarrow (-theta[1])
         rmat[1, 1, 1, 2] <- theta[1]
         rmat[1, 2, 1, 1] \leftarrow (-theta[1] * exp(gamma[7]))
         rmat[1, 2, 1, 2] \leftarrow theta[1] * exp(gamma[7])
         rmat[1, 3, 1, 1] \leftarrow (-theta[1] * exp(2 * gamma[7]))
         rmat[1, 3, 1, 2] \leftarrow theta[1] * exp(2 * gamma[7])
         rmat[2, , 2, 1] <- theta[2]
         rmat[2, , 2, 2] \leftarrow (-theta[2])
         rmat[3, , 2, 2] \leftarrow (-theta[3])
         rmat[3, , 2, 3] <- theta[3]
         rmat[4,
                  , 2, 4] <- theta[4]
                  , 2, 2] <- ( - theta[4])
         rmat[4,
         rmat[5, , 3, 3] \leftarrow (-theta[5])
         rmat[5, , 3, 2] <- theta[5]
         rmat[6, , 3, 4] \leftarrow theta[6]
         rmat[6, , 3, 3] \leftarrow (-theta[6])
         rmat[7, 2, 1, 1] \leftarrow (-theta[1] * exp(gamma[7]))
         rmat[7, 2, 1, 2] \leftarrow theta[1] * exp(gamma[7])
         rmat[7, 3, 1, 1] \leftarrow (-2 * theta[1] * exp(2 * gamma[7]))
         rmat[7, 3, 1, 2] \leftarrow 2 * theta[1] * exp(2 * gamma[7])
         return(rmat)
}
```

Some simulated data from this model has been included and is in the file simord.data. The data

given by

$$Q = B$$

```
rmat[1, 2, 3] <- theta[4]
        rmat[2, 1, 1] <- ( - theta[1] * theta[6] - theta[2])</pre>
        rmat[2, 1, 2] <- theta[1] * theta[6]</pre>
        rmat[2, 1, 3] <- theta[2]
        rmat[2, 2, 1] <- theta[3] * theta[8]</pre>
        rmat[2, 2, 2] <- ( - theta[3] * theta[8] - theta[4])</pre>
        rmat[2, 2, 3] <- theta[4]
        rmat[3, 1, 1] <- ( - theta[1] * theta[5] - theta[2])</pre>
        rmat[3, 1, 2] <- theta[1] * theta[5]
        rmat[3, 1, 3] <- theta[2]
        rmat[3, 2, 1] <- theta[3] * theta[7]</pre>
        rmat[3, 2, 2] \leftarrow (-theta[3] * theta[7] - theta[4])
        rmat[3, 2, 3] <- theta[4]
        rmat[4, 1, 1] <- ( - theta[1] * theta[5] * theta[6] - theta[2])
        rmat[4, 1, 2] <- theta[1] * theta[5] * theta[6]</pre>
        rmat[4, 1, 3] <- theta[2]
        rmat[4, 2, 1] <- theta[3] * theta[7] * theta[8]</pre>
        rmat[4, 2, 2] <- ( - theta[3] * theta[7] * theta[8] - theta[4])
        rmat[4, 2, 3] <- theta[4]
        return(rmat)
}
qderivs.kl<- function(gamma)</pre>
        rmat \leftarrow array(0, c(8, 4, 3, 3))
        theta <- exp(gamma)
        rmat[1, 1, 1, 1] <- ( - theta[1])
        rmat[1, 1, 1, 2] <- theta[1]
        rmat[1, 2, 1, 1] <- ( - theta[1] * theta[6])</pre>
        rmat[1, 2, 1, 2] <- theta[1] * theta[6]
        rmat[1, 3, 1, 1] \leftarrow (-theta[1] * theta[5])
        rmat[1, 3, 1, 2] <- theta[1] * theta[5]
        rmat[1, 4, 1, 1] <- ( - theta[1] * theta[6] * theta[5])</pre>
        rmat[1, 4, 1, 2] <- theta[1] * theta[6] * theta[5]</pre>
```

3.3 Optimization Algorithms

To avoid some problems with the optimization rather than work with the $_i$ directly they are transformed to $_i = \exp(_i)$. The main reason being that $_i$ are constrained to be positive (requiring constrained optimization) while the $_i$ are not constrained and standard Newton–Raphson c55 Tf92(be)]TJ -

always be positive while for other models some form of constrained estimation will be require	d.

large differences and it is worth amplifying these	e. At each observed failure time covariate informa-

Either there v	was one trans	ition intensity	that was sev	veral orders o	of magnitude	different from t	he

у 1