Grafuri

Probleme cu grafuri K

Izomorfism de grafuri

DFS

BFS

Care sunt valorile atributelor \mathbf{d} și $\boldsymbol{\pi}$ rezultate din rularea algoritmului **BFS** pe graful din f vârful \mathbf{c})?

Sortare Topologica

Fie graful de mai jos. Sa se sorteze topologic acest graf (daca este posibil).

Daco Farc i - j, at i aparc inainte a lui j

Select one:

a, b, d, c, e, f, g, h

nici un raspuns nu este corect

a, c, e, h, b, d, f, g

a, e, b, d, f, g, e, h

G graful dat nu e DAG, deci nu se poate sorta topologic

Dijkstra

Care sunt valorile atributelor d si π d daca este rulat algoritmul lui Dijkstra pe urmatorul graf. Luati ca si sursa varful a (sau varful 1).

Select one:

$$\bigcirc$$
 d = [0, 2, 2, 4, 3], π = [nil, a, d, c, b]

$$\bigcirc$$
 d = [0, 1, 2, 2, 3], π = [nil, a, c, c, b]

$$\bigcirc$$
 d = [0, 1, 2, 4, 3], π = [nil, a, d, c, b]

4	a	b	C	d	و	
	H	q	5	C	4	
d	0	1	Z	4	4.	
d'	0	1	1	2	3	
		()	(Lum		vua)	

Bellman-Ford

Modificarea algoritmului Bellman-Ford consta in inlocuirea primului for cu un while, care se repeta pana nu mai putem imbunatati (cu o variabila booleana).

Ce intoarce algoritmul Bellman-Ford daca este rulat pe urmatorul graf? Luati ca sursa varful s (vf 1). Care sunt valorile atributelor d si π. Alegeti varianta corecta din variantele disponibile mai jos:

Select one:

- \bigcirc true, d=[0, 4, 8, 7, -10, -10, -5], π =[nil, 2, 1, 4, 1, 5, 7]
- O true, d=[0, 4, 8, 7, -10, -12, -5], π =[nil, 2, 1, 4, 1, 5, 7]
- O true, d=[0, 4, 8, 5, -10, -7, -5], π =[nil, 1, 1, 4, 1, 5, 7]
- O true, d=[0, 4, 8, 5, -10, -10, -5], π =[nil, 1, 1, 4, 1, 5, 7]

Prufer

Codare Prufer: se repeta cat timp frunza e diferita de radacina

Ciclul Eulerian, Hamiltonian, cuplaje

Vårfurile unui graf neorietat $G = \{V, E\}$ sunt numerotate 1,2,...,2222. Muchia (i, j) există dacă $|i - j| \le 3$, unde $i \ne j$. Care din următoarele afirmații sunt adevărate:

Select one or more:

- G conţine un cuplaj perfect.
- ☐ G conţine un ciclu Eulerian.
- G este Hamiltonian.

Vârfurile unui graf neorietat G = (V, E) sunt numerotate 1,2,...,3273. Muchia (i, j) există dacă $|i - j| \le 3$, unde $i \ne j$. Care din următoarele afirmații sunt adevărate:

Select one or more:

- G este Hamiltonian.
- G conţine un ciclu Eulerian.
- G conţine un cuplaj perfect.

mor de moderni impare => nu e cup pert grad imp => nu contine cide Tubrian

Vårfurile unui graf neorietat G = (V, E) sunt numerotate 1,2,...,4286. Muchia (i, j) există dacă $|i - j| \le 3$, unde $i \ne j$. Care din următoarele afirmații sunt adevărate:

Select one or more:

- G conține un ciclu Eulerian.
- G conține un cuplaj perfect.
- G este Hamiltonian.

Matrice de incidenta

Arbore (minim de acoperire + Prim)

Sunt echivalente următoarele afirmații pentru un arbore? Demonstrați.

- ullet G este conex, dacă se șterge o muchie din E, graful rezultat va conține două componente.
- ullet G este fără cicluri și are n-1 muchii.

vezi curs 6 notite, 2=>3

Sunt echivalente următoarele afirmații pentru un arbore? Demonstrați.

- Oricare două vârfuri din G sunt conectate de un lanţ simplu.
- G este conex, dacăa se șterge o muchie din E graful rezultat va conține două componente.

1=>2

Pentru ca exista un singur lant intre oricare noduri, G este conex.

2=>1

Daca e conex, inseamna ca exista 1 sau ai multe lanturi care conecteaza 2 noduri, dar, deoarece la stergere obtii 2 comp conexe, exista un sungur lant care uneste nodurile.

Care sunt valorile atributelor **key** și π dacă este rulat algoritmul lui **Prim** pe următorul graf? Luați ca și sursă vârful **e.** 2 2 3 3 6 Select one: O key=[2, 3, 1, 2, 0, 2, 1], π =[e, a, c, b, nil, a, f] • **key=**[2, 2, 2, 1, 0, 1, 1], π =[e, e, d, b, nil, c, f]

Câți arbori minimi de acoperire există pentru graful G de mai jos? (răspundeți cu un număr întreg pozitiv) Se elimina o nunchie de 2198; o muchie de 3 Answer:

Câți arbori minimi de acoperire există pentru graful G de mai jos? (răspundeți cu un număr întreg pozitiv

Irobonie täide:

- Muchia de S

 \bigcirc **key=**[2, 3, 2, 1, 0, 2, 1], π =[e, e, c, b, nil, a, f]

- muchia de 2 (N) orice muchie de 3 (2 variante)

Answer: 2 (1.1.2)

Flux maxim (+Ford-Fulkerson)

Acest graf nu poate avea fluxul maxim 11, deoarece fluxul maxim al lui t poate sa fie 5, deoarece sunt trimise doar 5 unitati.

Care este numărul maxim de pași (cel mai rău caz) în care algoritmul Ford-Fulkerson găsește fluxul maxim în următorul graf în care sursa este nodul 1, iar destinația este nodul 6?

Select one:

- 14
- 0 22
- 15
- 0 5

Care este numărul maxim de pași (cel mai rău caz) în care algoritmul Ford-Fulkerson găsește fluxul maxim în următorul graf în care sursa este nodul 1, iar destinația este nodul 6?

Select one:

- 0 10
- 0 23
- 0 32
- **2**0

Care este numărul maxim de pași (cel mai rău caz) în care algoritmul Ford-Fulkerson găsește fluxul maxim în următorul graf în care sursa este nodul 1, iar destinația este nodul 7?

Select one:

- 0 99
- 0 42
- 0 9
- 41

Care este numărul maxim de pași (cel mai rău caz) în care algoritmul Ford-Fulkerson găsește fluxul maxim în următorul graf în care sursa este nodul 1, iar destinația este nodul 6?

Select one:

- 20
- 0 10
- O 32
- O 23

= fluxul maxim

Care este numărul maxim de pași (cel mai rău caz) în care algoritmul Ford-Fulkerson găsește fluxul maxim în următorul graf în care sursa este nodul 1, iar destinația este nodul 5?

1-3-3-6-5:3

1-12-74-76-75:5

Select one:

- O 30
- 0 3
- 0 25
- **9** 21

Care este fluxul maxim în rețeaua de transport G de mai jos (de la s la t)?

D₁: S > C > d > g ≥ t (flux:5) D₂: S > b > e > g ≥ t (flux:5) | g> t=10 D₃: S > a > b > e > f > t (flux:4)

=> flux S>t=14

Select one:

- 0 12
- 0 15
- 0 13
- 0 16
- 14

Drum critic

Tabelul de mai jos prezintă sarcinile unui proiect, timpii de execuție pentru fiecare sarcină și dependențele între sarcini. Care este drumul critic în proiect

			7
sarcina	durata	dependențe	
A	5	-	
В	2	-:	Lant 015/5 \sinch
С	4	A, B	400 161515 31 Class 1618120 20180
D	3	-	$\frac{050}{3125} \rightarrow \frac{11562}{3125} \rightarrow \frac{11562}{3125}$
E	6	F	1 9/7 / RIHIDI 1/2
F	5	C, D	
G	4	F	6 3 9
Н	3	G	3 14 Hi 18 17
Select one	e:		
\bigcirc B \rightarrow C \rightarrow F \rightarrow E		1	we critic: 1->(->1->6->4
D→F-	→E		mr courc . 1 -> (-> 1-> 12-> 11
D→F-	→G→H		
A → C-	→F→G→H		

Polinomul cromatic

Atentie! De aici, se inverseaza – cu /. Rezultatul este identic!

 $Deduceți polinomul cromatic și determinați numărul cromatic al următorului graf G. \hat{ln} câte feluri poate fi colorat graful cu \\ \chi(G) culori?$

Scrieți răspunsurile în căsuța text de mai jos.

De exemplu, polinomul $3x^{y+2} + x(x^2 + 7)$ va fi reprezentat ca $3*x^{(y+2)} + x*(x^2 + 7)$.

Deduceți polinomul cromatic și determinați numărul cromatic al următorului graf G. În câte feluri poate fi colorat graful cu χ (G) culori?

Scrieți răspunsurile în căsuța text de mai jos.

entru reprezentarea polinomului se vor folosi următoarele convenții:

- "*" pentru înmulţire;
- "^" pentru ridicare la putere.

De exemplu, polinomul $3x^{y+2} + x(x^2 + 7)$ va fi reprezentat ca $3*x^(y + 2) + x*(x^2 + 7)$

G-Ga, eg-lunge modwik a-e G-Ga, eg-eliminā muchia a-e

PG(K) = K(K-1)6 - K(K-1)5 - K(K-1)5 + K(K-1)9 = K(K-1)9 (K-2)2

(Cel mai mic K pt can P(K) >0)

Deduceți polinomul cromatic și determinați numărul cromatic al următorului graf G. În câte feluri poate fi colorat graful cu χ (G) culoi Scrieți răspunsurile în căsuța text de mai jos.

Pentru reprezentarea polinomului se vor folosi următoarele convenții:

- "*" pentru înmulţire;
- "^" pentru ridicare la putere.

De exemplu, polinomul $3x^{y'+2} + x(x^2+7)$ va fi reprezentat ca $3*x^{(y+2)} + x*(x^2+7)$.

