

Cairo University Faculty of Computers and artificial intelligence

Department: Operations Research and Decision Support

Course Name: Systems Modeling and Simulation

Course Code: DS331 / DS241

Instructor: Assoc. Prof. Ayman Ghoneim

Report Documentation For Problem I [Supermarket Multi-Channel Queue] BY:

No.	Name	IDs
1	Hazem Medhat Abd El-Aziz	20210116
2	Mohamed Ashraf Ramdan	20210327
3	Abdullah Mohamed Mokhtar	20210237

Contents

Problem formulation & Objectives	3
System Components:	4
System Analysis:	4
Experimental Design Parameters:	
Justification of experiment parameters values	-
Result analysis:	
Conclusion	
	…∠ວ

Problem formulation & Objectives.

Formulation:

A Supermarket has 2 customers express, which represents 60% of the customers, and regular, which represents the other.

The supermarket has 2 cashiers express and regular, the regular customer enters the regular cashier, and the express customer enters the express cashier if the length of the express cashier queue length less 1.5 times than the regular cashier queue length.

Objectives:

-To get the waiting time and service time for each customer and then determine if the 2 cashiers are enough or not.

-To reach the highest level of customers satisfaction.

System Components:

Entity: Customer.

Attributes: Type of customers.

Activity: Service time.

State: Number of waiting customers.

Event: Arrival time, completion time.

System Analysis:

Calendar table:

Customer	Туре	I A T	Arrival time	Start Servi ce time	Waiting time	Service Time	Regular	Express
1	Regular	0	0	0	0	5	5	0
2	Express	1	1	5	4	2	7	0
3	Regular	4	5	7	2	5	12	0
4	Express	3	8	8	0	1	12	9
5	Regular	0	8	12	4	5	17	9
6	Express	3	11	11	0	3	17	14
7	Express	1	12	14	2	3	17	17
8	Regular	2	14	17	3	5	22	17
9	Regular	3	17	22	5	7	29	17
10	Regular	1	18	29	11	7	36	17

Cumulative distribution tables:

Time between Arrivals (Minutes)		
Cumulative Distribution	Time	
0.16	0	
0.39	1	
0.69	2	
0.9	3	
1	4	

Express Customers Service Time (Minutes)		
Cumulative Distribution Time		
0.3	1	

0.7	2
1	3

Regular Customers Service Time (Minutes)		
Cumulative Distribution	Time	
0.2	3	
0.7	5	
1	7	

Experimental Design Parameters:

Controllable inputs:

- Number of Customer

Probabilistic inputs:

- Interarrival time.
- Service time for two types of customers.

Justification of experiment parameters values

Controllable inputs:

- Number of Customers = 1000.

Probabilistic inputs:

- Inter arrival time generated randomly for each customer.
- Service time for each customer type.

Result analysis:

Test case1:

Number of customers small = 20 Number of repeating is 100

Output 'Average of Average':

Avarage_of_avgs_regular_stt: 3.789818533361165

Avarage_of_avgs_express_stt: 1.9454353575890808

 $Avarage_of_avgs_regular_wtt: 2.5949988513668076$

Avarage_of_avgs_express_wtt: 0.11201039907798335

Avarage_of_max_regular_max_length: 3.0

Avarage_of_max_express_max_length: 0.97

<u>Test case2:</u>
Number of customers medium = 500
Number of repeating is 100

Output 'Average of Average':

Avarage_of_avgs_regular_stt: 3.7561512920418934

Avarage_of_avgs_express_stt: 2.003303846358435

Avarage_of_avgs_regular_wtt: 87.42558955026234

Avarage_of_avgs_express_wtt: 1.3417074442642076

Avarage_of_max_regular_max_length: 20.67

Avarage_of_max_express_max_lengthh: 19.81

<u>Test case2:</u>
Number of customers large = 1000
Number of repeating is 100

Output 'Average of Average':

Avarage_of_avgs_regular_stt: 3.7866175576782606

Avarage_of_avgs_express_stt: 1.9969288215359973

Avarage_of_avgs_regular_wtt: 142.5743068713762

Avarage_of_avgs_express_wtt: 1.9368402055711047

Avarage_of_max_regular_max_length: 31.02

Avarage_of_max_express_max_lengthh: 38.88

Conclusion

The average waiting time for a regular cashier is large and this will lead to 'Customer dissatisfaction'.

We should minizine the relation between the regular and express cashier for the express customer.

Regarding 60% for express and 40% for regular the waiting time of the regular cashier was large so when we replace the percentages the waiting time will increase more.

