Statistics and Machine Learning

K-means and PCA

Contents of Week 14

K-means and pca

- Review of supervised learning and 5 building blocks
- What is un-supervised learning? Examples.
- K-means: clustering
- PCA: finding maximum variance from linear combination of features
- Lab: Hand-written digits, PCA plus k-means

5 building blocks for ML tasks

From supervised learning to unsupervised learning

Data set Model Loss function

Training error

Test error

Data set

Model

In [26]: advertising.head()

Out[26]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

Model

In [26]: advertising.head()

Out[26]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

In [26]: advertising.head()

Out[26]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

Mean squared deviation between truth and prediction: $\frac{1}{N} \sum_{N} |(True - Pred)^2|$

Training error and test error

Data universe

Training error

Training error and test error

Training error

Test error

Training error and test error

Training error

Data universe

This is where your model will be deployed

Test error

Unsupervised learning 1: k-means

Data without label

Feature1 (x1)	Feature2 (x2)	Feature3 (x3)	?
X[O, O]	X[O, 1]	X[0, 2]	Empty
X[1, O]	X[1, 1]	X[1, 2]	Empty
• • •	• • •	•••	• • •
•••	•••	• • •	•••
• • •	•••	•••	• • •

K-means: Kand means

We can still build a model, but what to predict and what is loss function

X1	X2	X3
•••	•••	•••
•••	•••	• • •
•••	•••	•••
•••	•••	•••

K-means: Kand means

We can still build a model, but what to predict and what is loss function

X1	X2	X3
• • •	•••	•••
• • •	•••	•••
• • •	•••	•••
• • •	•••	•••

$$\rightarrow f(\mathbf{x}) = f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$$

K-means: Kand means

We can still build a model, but what to predict and what is loss function

X1	X2	X3
•••	•••	•••
• • •	•••	•••
• • •	•••	•••
• • •	•••	•••

Cluster index (Values in 0,1,2,,K-1)
1
O
3
K-1

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		0

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		O

Cluster means and cluster variance

Very important: Every datum is associated with an integer in {0,1,2,...,K-1} -> there are K clusters and each datum is associated with a cluster!

Feature 1	Feature 2	Cluster index
		1
		1
		O
		1
		0

Loss function =
$$\sum_{i}$$
 Var[cluster = i]

Loss function =
$$\sum_{i}$$
 Var[cluster = i]

In the end, we search for the cluster index for each datum that minimizes the total variance from all clusters!

Loss function =
$$\sum_{i}$$
 Var[cluster = i]

In the end, we search for the cluster index for each datum that minimizes the total variance from all clusters!

Then how do we do it? First method: enumerate all possibilities.

Second method: google 'EM'

Data

Data

Step 1

Data

Iteration 1, Step 2a

Data

Iteration 1, Step 2b

Step 1 Data Iteration 1, Step 2a Iteration 2, Step 2a Final Results Iteration 1, Step 2b

K-Means Clustering Results with K=2

PCA: Principal component analysis

K-means: looking for minimum variance; PCA: looking for largest variance

Feature1	Feature2	Feature3	Feature4	Feature100

Very difficult to visualize (no one knows how to plot >4 dimensions)

Very difficult to visualize (no one knows how to plot >4 dimensions)

We care about the label (?) for the data, many of the features are redundant!

Very difficult to visualize (no one knows how to plot >4 dimensions)

We care about the label (?) for the data, many of the features are redundant!

A feature with large variance is a good feature!

Very difficult to visualize (no one knows how to plot >4 dimensions)

We care about the label (?) for the data, many of the features are redundant!

A feature with large variance is a good feature!

PCA is a very simple yet elegant way of compressing data features.

Feature1	Feature2	Feature3	Feature4	•••••	Feature100

Feature1	Feature2	Feature3	Feature4	•••••	Feature100

PCA

	Feature100	•••••	Feature4	Feature3	Feature2	Feature1
PCA						

Feature1	Feature2	Feature3	Feature4	•••••	Feature100		New feat.1	New feat.2
						PCA		


```
In [13]: np.var(X0,axis=0)
Out[13]: array([0.9569638 , 0.97715073])
```



```
In [13]: np.var(X0,axis=0)
Out[13]: array([0.9569638 , 0.97715073])
```



```
In [13]: np.var(X0,axis=0)
Out[13]: array([0.9569638 , 0.97715073])
```



```
In [13]: np.var(X0,axis=0)
Out[13]: array([0.9569638 , 0.97715073])
```



```
In [13]: np.var(X0,axis=0)
Out[13]: array([0.9569638 , 0.97715073])
```



```
In [15]: np.var(X1,axis=0)
```

Out[15]: array([0.9654444 , 0.98708471])


```
In [15]: np.var(X1,axis=0)
```

Out[15]: array([0.9654444 , 0.98708471])


```
In [15]: np.var(X1,axis=0)
```

Out[15]: array([0.9654444 , 0.98708471])


```
In [15]: np.var(X1,axis=0)
Out[15]: array([0.9654444 , 0.98708471])
In [16]: from sklearn.decomposition import PCA
         model = PCA()
         model.fit(X)
         print(model.components_)
         [[-0.56934021 0.82210201]
          [-0.82210201 -0.56934021]
In [19]: X1_transform = model.transform(X1)
         np.var(X1_transform,axis=0)
Out[19]: array([0.78612429, 1.16640482])
```



```
In [15]: np.var(X1,axis=0)
Out[15]: array([0.9654444 , 0.98708471])
In [16]: from sklearn.decomposition import PCA
         model = PCA()
         model.fit(X)
         print(model.components_)
         [[-0.56934021 0.82210201]
          [-0.82210201 -0.56934021]
In [19]: X1_transform = model.transform(X1)
         np.var(X1_transform,axis=0)
Out[19]: array([0.78612429, 1.16640482])
```



```
In [15]: np.var(X1,axis=0)
Out[15]: array([0.9654444 , 0.98708471])
In [16]: from sklearn.decomposition import PCA
         model = PCA()
         model.fit(X)
         print(model.components_)
         [[-0.56934021 0.82210201]
          [-0.82210201 -0.56934021]
In [19]: X1_transform = model.transform(X1)
         np.var(X1_transform,axis=0)
Out[19]: array([0.78612429, 1.16640482])
```

Example: MNIST dataset

Each datum has 64 pixels (features)

pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	 pixel55	pixel56	pixel57	pixel58	pixel59	pixel60	pixel61	pixel62	pixel63	label
0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	6.0	13.0	10.0	0.0	0.0	0.0	0
0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	2.0	16.0	4.0	0.0	0.0	4
0.0	0.0	0.0	12.0	13.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	9.0	15.0	11.0	3.0	0.0	6
0.0	0.0	11.0	12.0	0.0	0.0	0.0	0.0	0.0	2.0	 0.0	0.0	0.0	9.0	12.0	13.0	3.0	0.0	0.0	9
0.0	0.0	1.0	9.0	15.0	11.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	10.0	13.0	3.0	0.0	0.0	0

Example: MNIST dataset

Each datum has 64 pixels (features)

pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	 pixel55	pixel56	pixel57	pixel58	pixel59	pixel60	pixel61	pixel62	pixel63	label
0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	6.0	13.0	10.0	0.0	0.0	0.0	0
0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	2.0	16.0	4.0	0.0	0.0	4
0.0	0.0	0.0	12.0	13.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	9.0	15.0	11.0	3.0	0.0	6
0.0	0.0	11.0	12.0	0.0	0.0	0.0	0.0	0.0	2.0	 0.0	0.0	0.0	9.0	12.0	13.0	3.0	0.0	0.0	9
0.0	0.0	1.0	9.0	15.0	11.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	10.0	13.0	3.0	0.0	0.0	0

-- .

