忽软忽硬

一本中的医软硬件结合疗效好的说明书

刘延栋

2019年11月17日

薛定谔的软与硬

版权所有

因为有一些数学公式,在 web 上不好看,又恰好我会用 LATEX,所以我做了 PDF,你可以打印出来自己看,也可以打印出来卖给别人,但是,你要知道,你只要打印了,并且获利了,就是非法出版物,要坐牢的,十年起。我是免费放出来的,跟博客一样。版权应该属于我吧,我不太确定。如果国家需要,版权可以送给国家,送给你不行。

发行

写一篇发一篇, 不定期写, 不定期更, 随意非商业传播, 感谢互联网。

People who're serious about software should make their own hardware.

– Alan Kay

前言

糊里糊涂的就要奔四了,没做过任何值得一提的事情。<u>时常感觉来到这个世界上</u>就是充数的。

回想起来,记忆里好像就是不停的踢球,到处闲逛,找网吧通宵上网,和朋友熬夜看球。

眨眼间儿子已经十几岁了,前两天他来问我一个问题,问我懂不懂一个电子设备的原理,我看了一下,就是一个跑马灯。一个单片机控制十来个发光二极管做单一的左移或右移,从左到右再从右到左,反反复复,每一支发光二极管点亮的时间大概是300ms。他问我难不难做?我告诉他这东西一点也不难。

我又给他讲了如何控制电子表上七段数码管的显示,他听得有点兴趣,虽然我能感觉到他应该没听懂。他问我怎么知道的?我就找出了一大堆当年的,已经落满灰尘的面包板,洞洞板,电络铁,万用表,还有许多没用过的电阻,电容…… 这些老朋友已经快 15 年没动过了。

当年我做了很多的东西,只是这些年来,生活所迫,我已经忘记以前我很喜欢焊东西了。我试了一下,电烙铁还可以用,也许我还能再焊一些东西,我花了两个小时就焊了一个跑马灯,还加了个定时器......

说实在的,我还有点怀念以前在面包板上找 bug,在洞洞板上焊元件的时光了,可能只是怀念当年的青春吧。我想围绕硬件和软件写一点文章,录一点视频,做一点东西,希望对看到的人有些许帮助。

我对电子感兴趣的时候是 1990 年左右,没人指导,只见过收音机,还有一本收音机维修手册,我就是靠这个"入门"的。现在的条件好很多了,希望年青人有开放的心态,广阔的眼界,融入世界,做对人类有贡献的人。

Contents

Co	ntent	:S																vi
1	1.1 1.2 1.3 1.4	电阻的用 品牌 阻值 功率 电阻的种	 	 			 	 			 				 	 		1 1 2
连	载中	•••••																6

List of Figures

т 2	ist of Tables											
1.1	resistor color codes	 										2

我是栋哥, 欢迎收看《忽软忽硬》, 今天是硬件, 讲在电阻。

1.2 品牌 ... <

1.1 电阻的用途 1

1.1 电阻的用途

在这个世界上,任何材料都对电流有一定的阻碍作用,只是有的大一些,有的小一些,导体和绝缘体之间并没有绝对的划分界限,取决于其导电能力的相对强弱。比如低温条件下的超导体,低于 10 –25, 空气在电压极大下也是导体。

利用材料对电流的阻抗特征,当电流经过电阻的时候,会改变电阻两端的电压。电阻是电路中最常用的电子元件之一。¹如果大家是电子爱好者要做实验的话,在选购电阻的时候要注意这四个方面,分别是: <u>品牌,电阻阻值,电阻功率以及电阻种类</u>。接下来我分别介绍一下这四个内容。

1: 另外的有电容和电感也非常常用,以后会讲

1.2 品牌

第一个是品牌。做电阻有很多品牌,价格从几分到几十一个都有,以我的经验,一分钱一分货。因为这些品牌也没给我广告费,我也不是做测评的,我个人建议如果经济允许的话,多花个 10% 到 20% 的钱,买日本厂商生产的电阻,会给你带来很多好处。²如果只是贪图便宜,两个相同的电阻误差可能会差超过 20%,在电路中就很难调整出自己想要的电压。日本的厂商在误差控制上做的可能是最好的之一。

2: 很多电子爱好者都经历过设计 10 分钟,调试 10 小时的经历,很多就是因为电子器件质量不合格。

1.3 阻值

第二个是阻值。电阻的阻值都标在自己身上,有两种标法,一种是直接写上阻值,基本上功率大于3W以上的电阻,都会标上阻值。如

图片来自 wikipedia, https://upload.wikimedia.org/wikipedia/commons/7/75/Electronic-Axial-Lead-Resistors-Array.jpg

果功率小于 3W 的电阻,则可以根据电阻上的色环来计算出其阻值。

不同单位之间的换算关系如下:

 $1M\Omega = 10^3 K\Omega = 10^6 \Omega$

Figure 1.1: 可以根据电阻的色环计算电阻的阻值

在设计电路的时候不能任意选择电阻,比如你想要 2019 欧姆的电阻,这是不存在的。如果你非要,只能说明你太有工匠精神了,在实际的电路中,并不需要特别精确的电阻,只需要在一定的范围内选择即可。EIA(Electronic Industries Alliance)规定了若干系列的阻值取值基准。其中 E12,E24,E48,E96 基准最为常见。E12 允许误差为 10%,³ E24 允许误差为 5%。

如果需要特别精确的电阻, 电阻器的价格可能会从几分钱飙升到 几十块美金。对某些特别注重性能的比如滤波器电路, 对电阻值的要求会特别高。 3: 科技进步了,现在的电阻已经很少有误差超过10%的了。

1.4 功率

第三点是功率。一般来说电阻的功率越大,体积也就越大,价格也会越高。在电路图中,只要超过 1/8W 的电阻,就要标注出来,如果不标注,容易发生这样的故障。能量越大,比如电热毯。

电路大于 1/8w 就要在电路图中标出来。一般情况下,功率越大,体积越大,价格越高。如果体积足够大,就不用再用色环标了。

如果电阻用错了功率,会发生烧毁电阻的情况,而电阻一旦被烧毁,一般会城门失火,殃及池鱼。

1.5 电阻的种类

最后是电阻的种类,电阻有非常多的种类,不同的划分标准可以 将电阻分成不同的种类,我想把电阻分成两个大类,这两个大类分别 是可变阻值电阻和不可变阻值电阻。顾名思义,就是阻值固定的和阻 值不固定的。

先来讲可变阻值的电阻,主要有两种,一种是分压器,一种叫电位器。实际上,这两种的原理是一样的,也有其它的名字和用途,比如叫变阻器,微调器,比如收音机或者电视机上的音量调整的旋钮就是电位器的具体应用。

在现实中,用的更广泛的是固定阻值的电阻。固定阻值的电阻也分为很多种,我主要讲其中的两种,一种叫碳电阻,一种叫金属膜电阻。这两种电阻样子差不多,在前些年,碳电阻的外表要丑一点,没有金属光泽,是土黄色,最近这两年技术先进了,这两种电阻仅从外表看不出来。

这两种电阻价格都不是很贵,碳电阻的价格更低。如果手头有这两种电阻,并且仅通过外表没法辨别出来,可以用这种方法来验证。用加热后的电烙铁靠近电阻,如果万用表的电阻有剧烈变化,那就是碳电阻。如果阻值不怎么发生变化,就是金属膜电阻。

这两种电阻的构造差不多,先来看一个砸开的电阻,这个电阻最外层是树脂,相对比较好砸,金属膜电阻的最外层是金属,不好砸。外壳里面的这一层黑色的是碳的混合物,可以通过调节碳膜的厚度和碳的浓度就可以控制电阻的大小。如果想控制的更精确,就在这层碳膜上加工出螺旋的沟槽,螺旋越多,那么电阻就越大。最中间的是一根玻璃或者陶瓷。

对金属膜电阻来说也是一样的,只是把其中的碳混合物换成了金属膜,主要是镍铬。相比于碳电阻,金属膜电阻有很多优点,比如稳定性好,精度高,可以做到 E192,也就是说误差可以小到 0.5% 以下。如果经济允许的话,对电子爱好者来说,买金属膜电阻更好。

现实中还有更多的电阻,比如有手机,数码相机里的贴片电阻。还有光敏电阻,通常用在光控的地方,比如楼道里的感应器里,常见的光敏电阻是用硫化镉或者硫化硒来做的。还有热敏电阻,我有一根可以测-50 到 500 度的电阻,误差很小,号称准确度高达 0.001 °C,我也不知道真假,不过测个体温什么的挺准的。这些电阻都非常的有用,只是可玩性不够,像贴片电阻,不可能通过手工来焊,⁴只能通过机器才能操作,在这里就不讲了。我只讲可以用手触摸安装的电阻。

4: 有人能焊 1-2 毫米的电子元件,都是些牛人,反正我是不能,手残。

视频的花絮部分

想讲一下欧姆定律和焦耳定律,这种可能没人想看,一看就想 到了上学的痛苦,但是真的很有用。 在初中物理电学部分,我们都应该知欧姆这位科学家,也知道欧姆是电阻的单位。欧姆在 1787 年出生在德国,1787 年在中国是乾隆年间,在美国的话是诞生美国宪法的那一年。距离今天已经 230 多年了。我们可以横向的比较一下德国,中国,美国当年的情况。德国是当年科学的核心地带,美国则诞生了世界上第一部成文宪法,中国的乾隆皇帝在这一年写了一首打油诗,"间年外域有人来,宁可求全关不开;人事天时诚极盛,盈虚默念惧增哉。"这首诗的意思是想想自己太强大了,都有点害怕了呢。如果有上帝的话,那一年他肯定要笑到肚子痛。

欧姆的爸爸的家族是锁匠,他的妈妈是裁缝的女儿。父母都没上过学,但是他父亲有极强的自学能力,自己学会了物理的数学,然后教自己的孩子。欧姆有7个兄弟姐妹,当年的医疗条件不好,夭折了4个,只有三个兄弟姐妹长大成人。其中西蒙·欧姆是著名的物理学家,他弟弟马丁·欧姆是著名的数学家,他还有个妹妹叫伊丽莎白·芭芭拉。5欧姆的妈妈在他十岁就去世了,所以他的爸爸要照顾好几个孩子,是个伟大的父亲。

欧姆很小就表现的很聪明,在 16 岁的时候就考入了埃尔朗根大学,在大学里他彻底放飞自我,不再从事学习的任务,转而对跳舞、滑冰和台球有非常大的兴趣,他的台球水平极高,可惜当年没有世界职业斯诺克锦标赛,否则他将是和亨德利、奥沙利文一样传奇的人物。他的父亲得知儿子不再学习,家里的经济也不宽裕,就把他打了一顿,让他退学去瑞士的中学当老师。被老爸教育了一顿的欧姆方才对自己的前途有所担忧,在当老师的期间,继续用简陋的仪器做电学实验。也正是因为这种不专业,他长期被科学家忽视。并且在 1825 年的时候,他写的一篇论文中引用了不严谨的数据,于是很长时间内他被人认为是假内行,冒牌货。

虽然被父亲退学,但是他却爱上了学习,在当中学老师的时候,他没忘记学习,最后竟然花了7年时间自学,拿到了埃尔朗根大学的博士学位,然后,继续辗转多个学校当中学老师。后来他提出的欧姆定律,也不被人所重视。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。1854年欧姆与世长辞。十年之后的1864年,英国为了纪念他,决定用欧姆的名字作为电阻单位的名称。希望大家每次使用这个电阻单位的时候,能想起这位非常聪明,台球打的很好,又被老爸修理,最后勤奋顽强的学习,最后成为一代科学家的中学教师。

Theorem 1.5.1 (欧姆定律) $V = IR = I\left(\frac{L}{\sigma A}\right) = I\left(\frac{\rho L}{A}\right)^a$

"后面两个等号如果看不懂没关系,上大学后就能看懂了。

欧姆定律是一个非常重要的公式,在我们设计电路的时候,尤其是有电阻的电路,要格外关注电阻的阻值。比如我可能会在将来的视频中用到 12V,9V,5V 和 3V 的电压,可以通过电阻来改变两端的电压。这时候,就要用欧姆定律来稍微的算一下。在现实中和考试不同,如果我们要 1.5V 的电源,考试的时候会告诉我们干电池的电压是 1.5V,实际上并不是准确的 1.5V,如果是块新的干电池,可能是 1.6V 多,如果用了一段时间,可能是 1.4V 多。像我在做一些东西的时候,经常要用到 5V 和 3V 的电压,我会从树莓派这引脚上取电,也并不是正好 5V,可能是 5V 多一点,也可能少一点。现实生活总是不那么完美。

Theorem 1.5.2 (焦耳定律) $Q = I^2 Rt$

5: Elizabeth Barbara, 我仔细去查了资料,就叫伊丽莎白·芭芭拉, 我总觉得应该叫伊丽莎白·欧姆或者芭芭拉·欧姆,至少有个姓吧, 但是实际上就是这个名字

但是在把一个电子元件接入之后,还是要根据欧姆定律算一下电流,然后用焦耳定律算一下产生的功率。焦耳也是个科学家,在这里我就不做介绍了,焦耳是一个很低调的人,他一生写了接近 100 篇论文,但是晚年是靠救济金度日。他说他一生只做了两三件事,没有什么值得炫耀的。实际上,我们普通人,一生别说两三件事,连零点零零两三件事情都做不到。焦耳定律可以计算电流通过电阻时产生的热量,与电流的平方,电阻的大小以及时间的长短有关系。一定要计算一下,再选择合适的电阻,否则会烧坏电阻和芯片的。

第一期的内容就到这里,我这个视频的名字叫《忽软忽硬》,我有一个电台叫《软件那些事儿》,音频节目对硬件的支持并不友好,我曾经在电台里讲了如何用最基本的电路做一台可以计算的机器出来,但是总归是讲不清楚。农民都可以做出能上天的飞机,恰好我又是一个农民,也许我能做一些与计算机相关的东西出来。这就是《忽软忽硬》视频的目的,也是我新的尝试。

公式中用到的字母以及发音

字母	英文名和发音	字母	英文名和发音
α	alpha <i>AL-fuh</i>	ν	nu <i>NEW</i>
β	beta BAY-tuh	ξ , Ξ	xi KSIGH
γ, Γ	gamma GAM-muh	O	omicron OM-uh-CRON
δ , Δ	delta DEL-tuh	π , Π	pi PIE
ϵ	epsilon EP-suh-lon	ho	rho ROW
ζ	zeta ZAY-tuh	σ, Σ	sigma SIG-muh
η	eta AY-tuh	au	tau TOW (as in cow)
θ , Θ	theta THAY-tuh	υ, Υ	upsilon OOP-suh-LON
ι	iota eye-OH-tuh	ϕ , Φ	phi FEE, or FI (as in hi)
K	kappa KAP-uh	χ	chi KI (as in hi)
λ, Λ	lambda <i>LAM-duh</i>	ψ , Ψ	psi SIGH, or PSIGH
μ	mu MEW	ω, Ω	omega oh-MAY-guh

以上有罗马与希腊字母的不同,以防大家看到有不同的公式,只是字母的写法不同。

连载中.....