COMP_SCI 214: Data Structures and Algorithms

Graph ADTs

PROF. SRUTI BHAGAVATULA

Announcements

- ► Homework 3 due next Tuesday
- Watch Dean Wes Burghardt's academic integrity video
 - Chance for extra credit
 - ► Form closes tonight to be eligible
 - ▶ But also read academic integrity section in syllabus (very detailed on what's allowed → no excuse to violate it)

Announcements

- ► Exam 1 is Thursday
 - Read the instructions on the practice exam --- mostly the same instructions on the exam
 - ► I won't be taking clarifying questions during the exam for two big reasons:
 - ► It's super distracting for the students around you especially if I have to squeeze between rows and then talk
 - Students who get clarifications are at an advantage to those who didn't hear what I said
 - ▶ If you spot a genuine bug, I'll ask that you come down to talk to me so that us talking doesn't distract your neighbors.

Exam tips

- Concepts are crucial but applying concepts to problems equally important
 - ▶ Your fundamentals will be strong if you're doing your best in and out of class
 - ▶ You will be able to apply your strong fundamentals to new problems
- ▶ Don't overthink but read problems **very** carefully (don't miss important details), write your thoughts/notes down, and take your time
- ▶ Draw things out for all problems where applicable (e.g., DSes, algorithm)
 - Draw things out to solidify your understanding of a problem and your solution
 - Detach appendix and scratch paper and use liberally
- Get a lot of rest!

Representing connections

- What if we need to represent complex connections?
 - ► Connections between users in a social network
 - Wikipedia link tracing (one page leads to many links)
 - ▶ The spread of a disease between users in locality
- Dictionaries, stacks, and queues aren't going to cut it

Graphs review

- 1. What is the degree of f?
 - **2**

- 1. What is the degree of f?
 - **2**
- 2. What is the degree of g?
 - **3**

- 1. Is E reachable from A?
 - ▶ No

- 1. Is E reachable from A?
 - ► No
- 2. Are A and B strongly connected?
 - Yes

Open graphs Q&A

- ► Any questions?
 - ► Raise your hand
 - ► Ask on Piazza

Graph ADT

Different types of graphs

- ► Four different possible types of graphs
 - 1. Unweighted Undirected graph (UU)
 - 2. Unweighted Directed graph (UD)
 - 3. Weighted Undirected graph (WU) ———— Homework 4
 - 4. Unweighted Directed graph (WD)
- One ADT definition can't handle each of the above!
 - ► Each needs its own ADT with abstract values and operations

#1: Unweighted Undirected graph ADT

- ightharpoonup Abstract values look like: (V = set of vertices, E = set of edges)
 - $V = \{0, 1, ..., |V| 1\}$
 - ▶ We will use natural numbers 0...n-1 as our vertices
 - ▶ One edge is a set of 2 vertices
 - $ightharpoonup U E \subseteq V$

#1: UU graph ADT

- \blacktriangleright Abstract values look like: (V, E) (one edge is a set of 2 vertices)
- ► ADT in DSSL2

```
interface UUGRAPH:
    def add_edge(self, u: nat?, v: nat?) -> NoneC
    def has_edge?(self, u: nat?, v: nat?) -> bool?
    def get_vertices(self) -> SetC[nat?]
    def get neighbors(self, v: nat?) -> SetC[nat?]
```

#1: UU ADT Laws

```
▶ \{g = (V, E) \land n, m \in V\} g.add\_edge(n, m) \Rightarrow None \{g = (V, E \cup \{(n, m)\})\}

▶ \{g = (V, E) \land (n, m) \in E\} g.has\_edge(n, m) \Rightarrow True \{\}

▶ \{g = (V, E) \land (n, m) \notin E\} g.has\_edge(n, m) \Rightarrow False \{\}

▶ \{g = (V, E)\} g.get\_vertices() \Rightarrow V \{\}
```

#2: UD graph ADT

- \blacktriangleright Abstract values look like: (V, E)
- ► ADT in DSSL2

```
interface UDGRAPH:
    def add_edge(self, u: nat?, v: nat?) -> NoneC
    def has_edge?(self, u: nat?, v: nat?) -> bool?
    def get_vertices(self) -> SetC[nat?]
    def get_succs(self, v: nat?) -> SetC[nat?]
    def get preds(self, v: nat?) -> SetC[nat?]
```

#2: UD ADT Laws

```
\blacktriangleright \{g = (V, E)\}\ g.get\_vertices() \Rightarrow V \{\}
▶ \{g = (V, E)\}\ g.get\_succs(n) \Rightarrow \{m \in V: \{n, m\} \in E\}\ \{\}
▶ \{g = (V, E)\}\ g.get\_preds(n) \Rightarrow \{m \in V: \{m, n\} \in E\}\ \{\}
```

#4: WD graph ADT

- ightharpoonup Abstract values look like: (V, E, w)
 - w maps edges to weights
- ► ADT in DSSL2

#4: WD ADT Laws - Part 1

```
g.set\_edge(n, a, m) \Rightarrow None
                           \{g = (V, E \cup \{(n, m)\}, w \cup \{(n, m) \rightarrow a\})\}\
g.set\_edge(n, \infty, m) \Rightarrow None
                           \{g = (V, E \setminus \{(n, m)\}, w \setminus \{(n, m) \rightarrow a\})\}
```

#4: WD ADT Laws - Part 2

Concrete data structures for graphs

Cost parameters

- ightharpoonup e = number of edges
- v = number of vertices

How can we implement a UU graph ADT?

- Using what we know so far?
 - ► A linked list of edges
 - ▶ Hash table of edges

	Linked list of edges	Hash table of edges
has_edge	O(e)	O(1) avg + amortized
add_edge	O(1)	O(1) avg + amortized
get_neighbors	O(e)	O(e)

- Doesn't allow vertex operations as these DSes only hold edge info
 - ▶ What if there are vertices without edges to/from them?
- Can we do better?

More data structures!

- ▶ Two common concrete data structures to represent graphs
 - ► Adjacency List (AL)
 - Adjacency Matrix (AM)

Adjacency list

Adjacency list

- Array of linked lists
- ► Each element in the array's index corresponds to a vertex #
- Each linked list for a vertex # contains that vertex's neighbors (or successors)
- Akin to dictionary mapping vertex # to list of neighbors or successors
 - ► Keys are 0... n-1 → direct addressing!

Adjacency matrix

	0	1	2	3
0	F	F	Т	F
1	F	F	T	T
2	F	T	F	F
3	F	T	F	F

Adjacency matrix

- v-by-v matrix (vector of vectors)
- ► Each element in the matrix contains a Boolean
 - ▶ True if there is an edge between two vertices
 - ▶ False if there is no edge between two vertices

	0	1	2	3
0	F	F	F	F
1	F	F	T	T
2	F	T	F	F
3	F	T	F	F

Undirected graph (unweighted)

Undirected graph (unweighted)

- Representations are symmetric
- With an adjacency list
 - Every edge is represented in two lists
 - \blacktriangleright E.g., AL on the right is a graph with one edge: 0-1
- With an adjacency matrix
 - ► Every edge is represented in two cells/elements
 - ▶ E.g., AM on the right is a graph with one edge: 0-1

ightharpoonup 0 - 1 is still only one edge

	0	1	2	3
0	F	T	F	F
1	Т	F	F	F
2	F	F	F	F
3	F	F	F	F

Directed graph (unweighted)

Directed graphs (unweighted)

- Representations may not be symmetric
- With an adjacency list
 - Only the predecessor vertex # stores the edge
 - ▶ E.g., AL on the right is a graph with two edges: $0 \rightarrow 1$, $y \rightarrow 0$
- With an adjacency matrix
 - Only the cell with the predecessor vertex # on the left stores the edge
 - ▶ E.g., AM on the right is a graph with one edge: $0 \rightarrow 1$

	0]	2	3
0	F (\bigcup_{\bot}	F	F
1	F	F	F	F
2	F	F	F	F
3	F	F	F	F

Undirected weighted graph

Undirected weighted graph

- With an adjacency list
 - Every item in the list can contain the other vertex # and the edge weight
 - \blacktriangleright E.g., AL on the right is a graph with one edge: 0-1 with weight 90
- With an adjacency matrix
 - All cells have a default value and cells for existing edges contain the edge weight
 - ▶ E.g., AM on the right is a graph with one edge: 0-1 with weight 2 90

0	1	2	3
∞	90	∞	∞
90	∞	∞	∞
∞	∞	∞	∞
∞	8	8	∞

Directed weighted graph

Directed weighted graph

► E.g., AL on the right is a graph with two edges: $0 \rightarrow 1$ (weight = 87), $1 \rightarrow 0$ (weight = -45)

- Cells for existing edges contain the edge weight; remaining cells contain a default value
- ► E.g., AM on the right is a graph with one edge: $1 \rightarrow 0$ with weight 34

	0	1	2	3
0	8	8	8	8
1	34	8	8	8
2	8	8	8	8
3	8	8	8	8

Complex data in graphs

- What if your vertices are not natural numbers?
 - Pretty much most useful graphs, e.g., social media users, cities)
- ▶ For simplicity, still aim to use natural number vertices but...
- Just use another ADT to help: a dictionary!
 - Maintain a dictionary (your choice of impl.) of vertex ID #s to actual data
 - ► E.g., dictionary mapping natural numbers to city names

```
{0: 'Chicago', 1: 'Milwaukee', 2: 'St. Louis'}
```

And maintain a dictionary in the other direction if needed

Practice with graph representations

UU Adjacency List

Symmetric: Bidirectional so one edge is represented twice!

UU Adjacency matrix

Symmetric: Bidirectional so one edge is represented twice!

	0	1	2	3	4
0	F	Τ	Τ	F	F
1	T	F	T	F	Т
2	Т	T	F	T	F
3	F	F	Τ	F	T
4	F	T	F	T	F

UD Adjacency List

Asymmetric: Direction matters; one edge is represented once!

UD Adjacency matrix

Asymmetric: Direction matters; one edge is represented once!

	0	1	2	3	4
0	Т	Т	Щ	Т	F
1	Т	Н	F	F	F
2	T	T	F	F	F
3	F	T	T	F	Т
4	F	F	F	T	F

Same idea applies to weighted graphs

- ▶ For adjacency list: each vertex in a list also contains the weight
- ► For adjacency matrix: the cell contains the weight and nonexisting edges have a default value

Graph implementation skeleton

```
class GraphImpl(UUGRAPH): #can implement one of the other graph ADTs too
  # Here goes data about the adjacency matrix or adjacency list
  # For Adjacency list, the data may look like:
        # An array where each element can hold a linked list of edges
        # For Adjacency matrix, the data may look like:
        # A vector of vectors where the outer vector is size v
        # and each inner vector is also size v
```

Here goes functions that operate on the above data

Complexity of representations

Cost parameters

- ightharpoonup e = number of edges
- v = number of vertices

- ► For simplicity, let's consider a UU graph
- ▶ Undirected graph → maximum value of $e = \frac{v(v-1)}{2}$

Space complexity: Let's fill this in

Adjacency list	Adjacency matrix

Space complexity

In-class exercise (4 minutes)

1. Assume you have a graph that looks like below. Which implementation would you choose out of Adjacency List and Adjacency Matrix?

2. Explain why you picked your answer above in a few sentences. Be specific given **this particular graph**.

Dense vs. sparse graphs

- ▶ Dense graphs:
 - ► A lot of edges
 - Number of edges in $O(v^2)$
- ► Sparse graphs:
 - ▶ Fewer edges
 - ▶ Number of edges is in O(v) or $O(v \log v)$

Space complexity

Adjacency list	Adjacency matrix
O(v + e)	O(v ²)

- Adjacency lists usually better for sparse graphs
- Adjacency list and matrix give same space complexity for dense graphs
 - What about time complexity though?
- Need to also consider operation complexity and importance of specific operations

Time complexity: Let's fill this in

	Adjacency list	Adjacency matrix
add_edge		
has_edge		
get_vertices		
get_neighbors		

Adjacency list

	Adjacency list
add_edge	0(e)
has_edge	O(e)
get_vertices	$O(\Lambda)$
get_neighbors	0(e)

Adjacency matrix

	Adjacency matrix
add_edge	0(1)
has_edge	O(1)
get_vertices	0(1)
get_neighbors	

