§ 93 Maps as families $\pi: X \longrightarrow Y$, $y \in Y$

Def: Fiber of TT over y is Specky, X

. The underlying set of Spec $K(y) \stackrel{.}{\times} X$ is set theovetic $\pi^{-1}(y)$.

Juven $Y \longrightarrow Y \longrightarrow X \xrightarrow{X} X$ is the base charge or full-back.

Say the general fiber has some property P if \exists dense open $U \subseteq Y$ such that all fibers over fibs in U have property P. When Y irreducible, the generic fiber is over the (ringue) generic fit on Y.

§9.4 Properties preserved by base change

If B has property P other so does B' where P is one of : open embedding, closed embedding, affine, sintered, integral, locally finite stype, locally finitely presented, quasi-finite, surgentive

§ 3.5 Properties not preserved by Base- change

Eg. Suppose E/F finite suporable field extension

Tet E=F(X) for some generator X. $p(x) \in F(x)$ minimal poly of X i.e. $E \cong F(X)(p(x))$ who at $Spec \in F \longrightarrow Spec \in F$.

Rich a Galois extension of F containing E.

Note: π' does not have integral filer, connected filer, is not sinyective

Ex E = E = Ka)/k-up = E = Ka)/k(up) is a family shuggenable enhagen.

Ex E = Ka)/k-up

E = Ka)/k-up

= Em/n-up not reduced Def of geometric point of a scheme X is a morphism of the form. Spec $k \to X$. k algebraically closed of geometric point consists of i) $x \in X$, i0 K0 K0 K0.

Def. Let π has geometrically connected/irreducible/integral filter if all geometric fibers are connected/-/-. Then properties intable under base change:

Sact: The above freferites are all OK for geometric base foints over a bigger algebraically closed field \overline{k} if they are true for $\overline{K}\overline{n}$.

§ 97 Normalization

obef: \times integral scheme, a normalization of \times is $\stackrel{\sim}{\times} \to \times$ dominant (surjective) such that for any \times normal with a dominant map $\times \to \times$ normal scheme $\xrightarrow{\text{Normal}}$

The Normalization of any scheme X exists.

People of $X = \operatorname{Spec} A$, $X = \operatorname{Spec} \widetilde{A} \longleftarrow$ integral colours of A in Froc A. $X \longrightarrow X$ surjective by Ging over Heorem. These glue.

Important Fuel: A Noetherian integral domain, K = Froc A, L/K if integral entersion, B = integral obsure of A a) If A normal and L/K imparable $\Rightarrow B$ finitely generated as A-module

i) A if g. k-algebra $\Rightarrow B$. fg. as A-module

Consequence: X is an integral finite type k-scheme then $\widetilde{X}{\longrightarrow} X$ is finite

\$10 Separated, proper morphisms, varieties

§10 Separatedness

Separatedness (Relative Hausdorff