金融服务计算 项目文档

作者:刘清仪,刘宏阳,李想,狄休,黄文瀚,廖超 指导老师:英俊好,曹健

2017-12-15

Contents

1	基本概念与定义	2
2	现值(Price)的计算	5
3	分期支付利息的计算	6
4	Dirty Price的计算	7
5	利用牛顿迭代法计算年化收益率y	9
6	算法总结	10
7	流程图	11
8	API	12
9	参考文献	13

1 基本概念与定义

表1给出了基本概念与定义。

_ 名称	含义
Interest rate 利率 r	利率,又叫利息率,是衡量利息高
	低的指标。是一定时期内利息额和
	本金的比率。利率=利息/本金。
Discount factor 贴现因子 r	一般来说,当利率为r时,承
	诺T年之后支付R美元的现值是R美
	元 $/(1+r)^T$ 。因此,即使没有通货
	膨胀,将来1美元的价值也小于现
	在1美元的价值,必须按某一数额
	贴现,该数额取决于利率的高低和
	收到货币的时间长短。其中1/(1+
	$r)^T$ 被称为未来T时期的货币的贴现
	因子.
cash flow 现金流	现金流量是现代理财学中的一个重
COOSTI HOW PALME THE	要概念,是指企业在一定会计期间
	按现金收付实现制,通过一定经济
	活动(包括经营活动、投资活动、筹
	资活动和非经常性项目)而产生的现
	金流入、现金流出及其总量情况的
	总称。即:企业一定时期的现金和
	现金等价物的流入和流出的数量。
Coupon 息票	息票一词来自英文coupon,原指旧
Coupon 恋录	时的债券票面的一部分,债券持有
	人可将其剪下,在债券付息日携至
	债券发行人处要求兑付当期利息。
	现在发行的债券多采用电子化形
	式,但票面利率(coupon rate)仍
	被用来表示债券的利率。

Zero coupon bound 无息债券	无息债券 (Zero Coupon Bond) 债
	券无附设任何利息回报,发行机构
	以债券票面值在到期日偿还债券本
	金,故无息债券市价必定给予较票
	面值较大折让。 我国一次还本付息
	债券可视为无息债券.无息债券是指
	采用以复利计算的一次性付息方式
	付息的债券。无息债券又称"无息
	票债券"。按面值折扣发行,到期
	按面值十足还本的债券。
Present Value 现值 PV	现值(Present value),指资金折
	算至基准年的数值,也称折现值、
	也称在用价值,是指对未来现金流
	量以恰当的折现率进行折现后的价
	值。指资产按照预计从其持续使用
	和最终处置中所产生的未来净现金
	流入量折现的金额,负债按照预计
	期限内需要偿还的未来净现金流出
	量折现的金额。
Price 债券的市场价格 $P = v/(1 + y/f)^n$	债券在市场上交易时的价格。
Face Value 票面价值 v	债券面值是指债券发行时所设定
	的票面金额,它代表着发行人借入
	并承诺于未来债券到期日,偿付给
	债券持有人的金额。由于贴息债券
	的购买价低于债券面值,此外,债
	券发行有溢价发行和折价发行,因
	此,债券面值和投资债券的本金不
	一定相等。
Yield 收益率 y	市场上同类债券的年化收益率,年
	化利率是通过产品的固有收益率折
	现到全年的利率。
Payment Frequency 付息频率 f	一年支付利息次数。
Time 付息次数 n	累计计算利息次数。

duration 久期 $D = dP/dy \cdot 1/P$	它是以未来时间发生的现金流,按
, , ,	照目前的收益率折现成现值,再用
	每笔现值乘以现在距离该笔现金流
	发生时间点的时间年限,然后进行
	求和,以这个总和除以债券目前的
	价格得到的数值就是久期。概括来
	说,就是债券各期现金流支付所需
	时间的加权平均值。
convexity 凸性 $C = (d^2P)/(dy^2) \cdot 1/P$	久期描述了价格-收益率曲线的斜
	率,凸性描述了价格/收益率曲线
	的弯曲程度。凸性是债券价格对收
	益率的二阶导数。
	$m \wedge \vdash \vdash \vdash \lor$

Table 1: 基本概念与定义

(备注:由于相同duration对不同金额的债券影响程度不一样,所以duration中除以了price,以进行规约化处理,convexity同理。)

2 现值(Price)的计算

图5给出了息票在市场上的价格P和市场上同类息票/债券的年化收益率y之间的定性关系。

Figure 1: P-y关系图

根据泰勒展开式

 $P_1 \approx P_0 - P_0 \cdot Duration_D \cdot (y_1 - y_0) + 1/2 \cdot P_0 \cdot Convexity_D \cdot (y_1 - y_0)$ 这里的 $Duration_D$ 和 $Convexity_D$ 分别指的是一阶导数和二阶导数,没有除以Price。通过上式,我们可以通过当前息票价格求得未来某时刻息票价格。

3 分期支付利息的计算

对于一个3年期的息票来说,发行者每年付一次利息,而非到期一次性结清利息。

图5给出了一个例子。

Figure 2: 付息日的利息计算

假设本金100元,年利率为10%。

 $PV = (v*10\%)/(1+10\%)^1+(v*10\%)/(1+10\%)^2+(v*(10\%+1))/(1+10\%)^3$ 其中,第一项表示第一年付息的现值,第二项表示第二年付息的现值,第三项表示第三年付息和本金的现值。

讲一步地,

 $PV = (c * v)/f * j_1^j 1/(1 + y_i/f)^i + v/(1 + y_n/f)^n$

这里,我们把未来的每个现金流折现到今天。

图5给出了更进一步的例子。

我们将未来的现金流折现到 t_0 时刻,求得息票在 t_0 时刻的现值后,我们就可以知道应当以多少钱在市场上购入/卖出该息票。这里的 $y_0.5, y_1, \cdots y_3$,指的是vield to maturity(到期收益率)。

Figure 3: 非付息日的利息计算

4 Dirty Price的计算

图5给出了Dirty Price与时间t的关系。

Dirty price指的是clean price和accrued interest (已经发放的利息)的和。 Clean price指的是还未领取的息票本金折现到当前时刻是多少钱。

其中t坐标轴的偶数(2,4,6,8, ······)指的是股息发放日。每次发放股息后,coupon的dirty price等于clean price。随着利息的积累,dirty price逐渐高于clean price,直到下次股息发放日股息再次方法,dirty price再次等于clean price。市场上的报价通常是clean price,所以交易双方需要根据自己的交易模型计算出accrued interest,在交易时把积累的利息加上去。

对于Duration和convexity, 我们有以下结论: 1.Duration的加权平均就是该coupon bond的加权平均 2.Convexity 的加权平均就是该coupon bond的加权平均

规范化表示: $Duration_a vg = (P*V_1*D_1+P*V_2*D_2+\cdots)/(P*V_1+P*V_2+\cdots)$ $Convexity_a vg = (P*V_1*C_1+P*V_2*C_2+\cdots)/(P*V_1+P*V_2+\cdots)$

Figure 4: Dirty Price与时间t的关系

5 利用牛顿迭代法计算年化收益率y

图5表示利用牛顿迭代法计算年化收益率y。

Figure 5: 牛顿迭代法

先根据市场年化率,猜测一个 y_1 ,对曲线上点 (y_1,D_1) 和 (y_0,D_0) ,我们可以求出Duration=dp/dy,逐步调整 y_1 的值,缩小 Δy ,把猜测的值往真实值逼近,也就是牛顿迭代法。

6 算法总结

输入:给定任意一个coupon bond 输出:该coupon bond的present value,duration以及convexity 从市场获得与当前coupon bond相似的其他bond的y,这里的相似主要指的是利率、到期时间等相似,数据来源:彭博社(bloomberg.com)通过牛顿迭代法找到需要的 y_i ,具体进行几轮牛顿迭代法,找到几个 y_i ,取决于从当前时刻到到期,还要发放利息几次利用上文给出的公式,将 y_i 的具体值带入,求出PV,duration和convexity。

本计算方法的核心在于,我们的利率计算模型。也就是求到期收益率y。对于每一个到期收益率y,有一个现值PV一一对应。对于给定的一个coupon bond,我们在计算其现值PV时,可以有两种处理方法。Y随着时间的变化而变化,可以认为每天都有一个y值(但是不一定每天的y值都不相同,也可能有些日期的y值是相同的。)

法一将未来每次发息日发放的利息,折现到当前时刻。例如,假设未来还将发息3次,分别在0.2年、0.7年、1.2年以后,那么我们需要计算出0.2年后对应的到期收益率y,0.7年后的到期收益率y以及1.2年以后的到期收益率y。计算这些y的方法,是通过与给定coupon bound相似的一些coupon bound或者zero coupon bound的y值,来拟合出一条到期收益率y与时间t的关系曲线。通过这种方式,我们将y和t之间的散点图变为了连续函数,使得我们可以得到任何一天的到期收益率y。从而通过将未来的利息及本金折现到当前时刻,得到当前时刻的现值PV。

法二 在法一中,我们需要多个y。这里,我们使用一个y来求得当前时刻的现值PV。因为y和PV是一一对应的关系。所以我们通过相似债券的y和PV的关系图,利用牛顿迭代法,直接得到某个到期收益率y对应的现值PV。那么如果知道我输入的coupon bond的在当前时刻y是多少呢?我们可以对一群相似的coupon bond的到期收益率进行加权平均来估计要求的coupon bond的到期收益率y。

7 流程图

待补充。

8 API

待补充。

9 参考文献

待补充。