面向持久性内存的数据库发展与研究现状

华东师范大学 数据学院 胡卉芪

hqhu@dase.ecnu.edu.cn

数据库系统关注热点

数据库系统的需求

其他数 分布式 据管理 新硬件 DB+AI 数据库 方法 性能

云数据 NoSQL 多模态 DB-as-Service

库

更低的成本实现更低 的延迟、更高的吞吐

易用性

数据库低运维, 简易实用

DB	RDBMS	OLTP	OLAP	NoSQL S	Cloud&NewSOL	? ?
•	1970s • 70: relation • 74: system R • 74: ingres • 76: ER • 79: oracle		1990s • 93:OLAP • 95:MySQL	2000s • 00:SQLite • 04:CStore • 07:Neo4j • 08: Cassandre • 09:Mango • 09: Redis	2010s • 10:Hive • 13:F1 • 14: Spark SQL • 14: Aurora • 14: snowflake • 15: cosmos	2020s

新型硬件对数据库系统的发展驱动

硬件红利,低延迟、高带宽

内存持久化能力 微妙级低延迟网<mark>终</mark>

当下:现有数据库的适配与优化

未来?新型硬件对数据库的 架构性颠覆 数据存储

减少写放大,减少IO栈,降低访问延迟

内存计算

扩大缓存容量,减少内存成本,大内存计算

持久化与高可用

结合RDMA,低延迟的日志持久化与同步

新型硬件与设施 RDMA、持久性内存、GPU、云存储等对数据库的变革

新型硬件-持久化内存

持久化内存(Persistent Memory)

- 字节操作
- 持久化能力
- 更高存储密度

新型硬件-持久化内存

- 更高的性能 (相较于SSD)
- 单位存储更低的价格 (相较于DRAM)

Capacity

持久性内存的两种模式[1]

1. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory. FAST 20

研究&Startups

- 存储
 - 文件系统
 - 键值存储

MemVerge & Big Memory

PM在关系数据库中的应用范畴

商用数据库中的应用

Storage Space

数据存储 (一)

- ORACLE. 21c新特性: Persistent Memory Filestore
 - 1. 通过内存拷贝的方式持久化数据,比I/O操作更加高效
 - 2. 读操作不必一定经过缓存,提高了缓存利用率

持久化内存操作比I/O操作更高效

https://docs.oracle.com/en/database/oracle/oracle-database/21/nfcon/persistent-memory-database-258797846.html

数据存储(二)-轻日志/无日志存储引擎

数据持久化在PM上,降低日志代价,轻日志甚至无日志的存储引擎

• 无日志

数据先持久化, 事务再提交

• 数据行粒度

Gang Liu, Leying Chen, Shimin Chen: Zen: a High-Throughput Log-Free OLTP Engine for Non-Volatile Main Memory. Proc. VLDB Endow. 14(5): 835-848 (2021)

Joy Arulraj, Matthew Perron, Andrew Pavlo: Write-Behind Logging. Proc. VLDB Endow. 10(4): 337-348 (2016)

Hideaki Kimura: FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. SIGMOD Conference 2015: 691-706

数据存储(二)-轻日志/无日志存储引擎

(a) MMDB with NVM Capacity

(b) WBL

(c) FOEDUS

(d) Zen (our proposal)

OLTP engine designs for NVM	日志	减少NVM 写入次数	事务	粒度	读写放 大
MMDB with NVM Capacity	√ (Undo log/Redo log & checkpoint)	×	DRAM NVM	tuple	✓
WBL	✓ (时间戳C _p , C _d)	✓	DRAM NVM	tuple	×
FOEDUS	✓ (Redo log)	✓	DRAM	page	\checkmark
Zen	× (缓存中的元数据 替代)	✓	DRAM	tuple	×

数据存储(三)

数据分布与成本一致

- DRAM+PM+SSD+
 磁盘的混合存储
- 热/温/冷数据
 - 检测方法
 - 放置方法

数据存储(四)-LSM-tree存储

· 很多新的数据库采用LSM-tree架构作为其存储(TiDB, Oceanbase等、阿里数据库)

PM在LSM-tree存储中的可能性

- (1) Logging
- (2) Memtable
- (3) Cache (扩大缓存容量)
- (4) Level 0 (快速compaction)
- (5) Level 1-N

- Baoyue Yan, Xuntao Cheng, Bo Jiang, Shibin Chen, Canfang Shang, Jianying Wang, Kenry Huang, Xinjun Yang, Wei Cao, Feifei Li: Revisiting the Design of LSM-tree Based OLTP Storage Engine with Persistent Memory. Proc. VLDB Endow. 14(10): 1872-1885 (2021)
- Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Changsheng Xie, Xubin He: Matrix KV: Reducing Write Stalls and Write Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. USENIX Annual Technical Conference 2020: 17-31
- Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau: Redesigning LSMs for Nonvolatile Memory with NoveLSM. USENIX Annual Technical Conference 2018: 993-1005
- Revisiting the Design of LSM-tree Based OLTP Storage Engine with Persistent Memory. VLDB 21

日志持久化与复制(一)

- 使用PM作为日志存储
 - 效果??
 - 内存数据库 (Tps 1M/s) , 产生大量日志
 - 并行日志: 多设备提交日志

- Scalable Logging through Emerging Non-Volatile Memory. VLDB 2014
- Taurus: Lightweight Parallel Logging for In-Memory Database Management Systems
- Plover: parallel logging for replication systems. Frontiers Comput. Sci. 14(4) (2020)

日志持久化与复制(二)

- 分布式数据库中数据库事务提交需要多轮通讯
- RDMA+PM
 - 应用于备机日志复制,减少事务提交延迟
 - RDMA操作在远程PM持久化的问题
 - 如何解决异地备份的问题?

- Query Fresh: Log Shipping on Steroids. VLDB 2017
- Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, Binyu Zang:
 Characterizing and Optimizing Remote Persistent Memory with RDMA and NVM.
- USENIX Annual Technical Conference 2021: 523-536
 - Anuj Kalia, David G. Andersen, Michael Kaminsky:
 Challenges and solutions for fast remote persistent memory access. SoCC 2020: 105-119

Working Space

数据库缓冲区

- 1、将DRAM升级成更小粒度的缓存(64B)
- 2、DRAM/PM 共存, 灵活的替换策略
- 1. Managing Non-Volatile Memory in Database Systems. SIGMOD 2018
- 2. Spitfire: A Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. SIGMOD 2021

PM内存索引

FPTree

宕机一致性

叶子结点结构

应用场景

- 内存数据库
 - e.g. 华为openGauss 内存引擎

索引结构

- 哈希表、B+树、ART 关键技术
- 宕机一致性
- 减少持久化内存的写入
- 减少读写放大

PM内存索引

基于B+树的PM索引

持久性索引结构	宕机一致性保证	减少NVM 写入次数	读写 放大	锁开 销放 大
PCM-friendly B+- Tree	✓ (日志)	✓	×	×
CDDS-Tree	✓ (多版本)	\checkmark	*	×
wB+-Tree	✓ (原子操作、日志)	✓	×	×
NV-Tree	* 内部节点✓ 叶子节点 (原子操作、日志)	✓	×	×
FPTree	✓ (原子操作、日志)	✓	×	*
FAST+FAIR	✓ (无日志)	✓	*	*
LB+-Tree	✓ (原子操作)	✓	\checkmark	×
BP+-tree	✓ 无锁日志	\checkmark	\checkmark	✓

总结

- 利用PM作为构建DRAM/PM/SSD等多级存储和缓冲区 处理空间的数据库已经出现
 - 作为数据库的一个组成部分
- 在研究方面,技术已经渐渐成熟,在商业上,以PM特征 而设计的,颠覆性架构的数据库系统还在发展阶段

谢谢聆听