

Universidade de Brasília

Departamento de Ciência da Computação Projeto e Análise de Algoritmos

Atividade 07

José Antônio Alcântara da Silva de Andrade Mat: 232013031

Professor:

Flávio Leonardo Calvacanti de Moura

Turma 02

 ${\rm Bras{\it i}lia,\,DF} \\ {\rm 3~de~junho~de~2025}$

Exercício

"Mostre que, em um heap de n elementos e raiz A[i], cada uma das subárvores com raiz em 2i e 2i + 1 têm, no máximo, 2n/3 nós."

Resolução

Considere uma estrutura de heap com n nós implementada como um subvetor A[i..(i+n)] de A[1..l] $(1 \le i \le i+n \le l)$ tal que independente da raiz A[j] escolhida, o filho à esquerda terá índice 2j e o filho à direita índice 2j+1.

Dessa forma, observa-se que o maior heap possível será aquele que cobre o vetor inteiro, com raiz A[1]: todas as outras possíveis raízes desconsideram elementos de níveis superiores. Portanto, se a propriedade for válida à raiz A[1], ela será válida para toda outra raíz do heap.

Note, também, que, proporcionalmente, a maior quantidade de nós nos filhos de A[1] (neste caso, A[2] e A[3]) ocorre quando o tamanho do heap $n=3\cdot 2^{k-2}-1$ com $k\in\mathbb{N}$ onde $k\geq 2$ é a altura do heap. Se diminuírmos o tamanho de n, tanto o ramo da esquerda quanto o total diminuirá, facilitando a validade da propriedade. Se aumentarmos o valor de n, o tamanho total aumenta enquanto o ramo da esquerda mantém estático, e o ramo da direita está apenas alcançando o tamanho do ramo esquerdo.

Os casos $k \leq 1$ são excluídos nessa definição, mas tais serão analizados individualmente.

No caso geral, teremos que a quantidade de nós no ramo da esquerda (A[2]) será $2^{k-1} - 1$, enquanto a quantidade do ramo da direita (A[3]) será $2^{k-2} - 1$. Note que, para o ramo da esquerda:

$$2^{k-1} - 1 \le \frac{2 \cdot (3 \cdot 2^{k-2} - 1)}{3}$$

$$2^{k-1} - 1 \le \frac{3 \cdot 2^{k-1} - 2}{3}$$

$$2^{k-1} - 1 \le 2^{k-1} - \frac{2}{3}$$

$$-1 \le -\frac{2}{3}$$

$$3 \ge 2$$

É verdade, e, para o ramo da direita:

$$2^{k-2} - 1 \le \frac{2 \cdot (3 \cdot 2^{k-2} - 1)}{3}$$

$$2^{k-2} - 1 \le \frac{3 \cdot 2^{k-1} - 2}{3}$$

$$2^{k-2} - 1 \le 2^{k-1} - \frac{2}{3}$$

$$-1 + \frac{2}{3} \le 2^{k-1} - 2^{k-2}$$

$$-\frac{1}{3} \le 2^{k-2}$$

O que também é verdade, uma vez que $k \geq 2$. Ou seja, a propriedade é válida para heaps de altura $k \geq 2$.

Para o caso k=1, teremos um heap de apenas um nó: A[1]. Ou seja, teremos que a quantidade de nós nos filhos da raíz é zero, assim cumprindo a propriedade, uma vez que: $0 \le 2/3$. Já para o caso k=0, o resultado é semelhante: $0 \le 0$.

Portanto, a propriedade vale para todo heap.