第六章图的基本概念

陈建文

6.1 图论的产生与发展史概述

设V为一个集合,V的一切二元子集之集合记为 $\mathcal{P}_2(V)$,即

$$\mathcal{P}_2(V) = \{A|A \subseteq V \boxplus |A| = 2\}$$

定义2.1

设V为一个非空有限集合, $E \subseteq \mathcal{P}_2(V)$,二元组G = (V, E)称为一个无向图。V中的元素称为无向图G的顶点,V为顶点集;E中的元素称为无向图G的边,E为边集。无向图简称图。如果|V| = p,|E| = q,则称G为一个(p,q)图,即G是一个具有p个顶点q条边的图。

定义2.2

在图G = (V, E)中,如果 $\{u, v\} \in E$,则称顶点u与v邻接;若x与y为图G的两条边,并且仅有一个公共端点,即 $|x \cap y| = 1$,则称边x与y邻接;如果 $x = \{u, v\}$ 为图G的一条边,则称u与x互相关联,同样的,称v与x互相关联。

定义2.3

如果一个图中两个顶点间允许有多于一条边存在,则称为多重图,这些边称为多重边;如果一个图中允许联结一个顶点与其自身的边存在,则称为带环图,这些边称为环;允许有环或多重边存在的图,称之为伪图。

定义2.4

设G = (V, E)为一个图,如果 $E = \Phi$,则称G为零图; (1, 0)图称为平凡图。

定义2.5

设v为图G = (V, E)的任意一个顶点,G中与v关联的边的数目称为顶点v的B,记为deg x。

定理2.1

设G = (V, E)为一个具有p个顶点q条边的图,则G中各顶点度的和等于边的条数q的两倍,即

$$\sum_{v \in V} \deg v = 2q$$

定理2.2

在任一图中,度为奇数的顶点的数目必为偶数。

定义2.6

图G称为r度正则图,如果G的每个顶点的度都等于r。3度正则图也叫三次图。一个具有p个顶点的p-1度正则图称为包含p个顶点的完全图,记为 K_p 。

定义2.7

设G = (V, E)为一个图,图 $H = (V_1, E_1)$ 称为G的一个子图,当且仅当 V_1 为V的非空子集且 E_1 为E的子集。如果 $H \neq G$,则称H为G的真子图。

定义2.8 设G = (V, E)为一个图,如果 $F \subseteq E$,则称G的子图H = (V, F)为G的一个生成子图。

定义2.9

设图G的子图H具有某种性质,若G中不存在与H不同的具有此性质且包含H的子图,则称H是具有此性质的<mark>极大子图</mark>。

定义2.9

设图G的子图H具有某种性质,若G中不存在与H不同的具有此性质且包含H的子图,则称H是具有此性质的<mark>极大子图</mark>。

定义2.10

设S为图G = (V, E)的顶点集V的非空子集,则G的以S为顶点集的极大子图称为由S导出的子图,记为 $\langle S \rangle$ 。形式的,

$$\langle S \rangle = (S, \mathcal{P}_2(S) \cap E)$$

定义2.11

设 $G=(V,E),\ H=(U,F)$ 为两个图,如果存在一个一一对应 $\phi:V\to U$,使得 $\{u,v\}\in E$ 当且仅当 $\{\phi(u),\phi(v)\}\in F$,则称G与H同构。

定义3.1

设G = (V, E)为一个图。G的一条<mark>通道</mark>是G的顶点和边的一个交错序列

$$v_0, x_1, v_1, x_2, v_2, x_3, \ldots, v_{n-1}, x_n, v_n$$

其中 $x_i = v_{i-1}v_i, i = 1, 2, ..., n$ 。n称为通道的长。这样的通道常称为 $v_0 - v_n$ 通道,并简记为 $v_0v_1v_2...v_n$ 。当 $v_0 = v_n$ 时,则称此通道为闭通道。

定义3.2

如果图中一条通道上的各边互不相同,则称此通道为图的<mark>迹</mark>。如果一条闭通道上的各边互不相同,则此闭通道称为<mark>闭迹</mark>。

定义3.3

如果一条通道上的各顶点互不相同,则称此通道为路。如果闭通道上除终点外各顶点互不相同,则称此闭通道为<mark>圈</mark>,或回路。

定义3.4

设G = (V, E)为一个图,如果G中任两个不同顶点间至少有一条路联结,则称G为一个<mark>连通图</mark>。

定义3.5 图G的极大连通子图称为G的一个 \overline{z} 。

定理3.1

设G = (V, E)是一个图。在V上定义二元关系 \cong 如下:

 $\forall u, v \in V, u \cong v$ 当且仅当u与v间有一条路,

则 \cong 为V上的等价关系,G的支就是关于 \cong 的每个等价类的导出子图。

定义4.1

定义4.1

定义4.2

定义4.2

定理4.1

对任一有6个顶点的图G,G中或G^c中有一个三角形。

证明.

设图G的顶点集为 $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$,考虑顶点 v_1 。

- ▶ 存在三个顶点,其中的每个顶点都与顶点v₁相邻接。不失一般性,不妨设这个三个顶点为v₂, v₃, v₄。
 - 在顶点 v_2 , v_3 , v_4 中,存在两个顶点相邻接,此时G中存在三角形。
 - 在顶点 v_2, v_3, v_4 中,任意两个顶点都不邻接,此时G°中存在三角形。
- ► 存在三个顶点,其中的每个顶点都与顶点v₁不邻接。不失一般性,不妨设这个三个顶点为v₂, v₃, v₄。
 - 在顶点 v_2, v_3, v_4 中,存在两个顶点不邻接,此时 G^c 中存在三角形。
 - 在顶点 v_2, v_3, v_4 中,任意两个顶点互相邻接,此时G中存在三角性。

定义4.3

对任意的正整数m, n, $m \ge 2$, $n \ge 2$, 求一个最小的正整数r(m,n), 使得任何有r(m,n)个顶点的图G中一定含有一个 K_m 或者图G^c中一定含有一个 K_n , 这里的数r(m,n)称为<mark>拉姆齐数</mark>。

定义4.4

设G = (V, E)为一个图,如果G的顶点集V有一个二划分 $\{V_1, V_2\}$,使得G的任一条边的两个端点一个在 V_1 中,另一个在 V_2 中,则称G为偶图。如果 $\forall u \in V_1, v \in V_2$ 均有 $uv \in E$,则称G为完全偶图,记为 $K_{m,n}$,其中 $|V_1| = m$, $|V_2| = n$ 。

定义4.5

设G = (V, E)是一个图,u和v是G的顶点。联结u和v的最短路的长称为u与v之间的<mark>距离</mark>,并记为d(u, v)。如果u与v间在G中没有路,则定义 $d(u, v) = \infty$ 。

定理4.2

图 G 为偶图的充分必要条件为它的所有圈都是偶数长。

6.4 补图、偶图

定理4.3

所有具有p个顶点而没有三角形的图中最多有 $Lp^2/4$ 」条边。

定义5.1

包含图的所有顶点和所有边的闭迹称为<mark>欧拉闭迹</mark>。存在一条欧拉闭迹的图称为<mark>欧拉图</mark>。

定理5.1

图 G为欧拉图当且仅当 G为连通的且每个顶点的度为偶数。

证明.

首先,假设图G为欧拉图,往证G是连通的且每个顶点的度为偶数。

由图G为欧拉图知G中有一条包含所有边和所有顶点的闭迹 $T: v_0, x_1, v_1, \ldots, x_n, v_n$,其中 $v_n = v_0$ 。显然 G是连通的。顶点 v_0 在 T中的第一次出现与一条边相关联,最后一次出现与一条边相关联,其余的每次出现均与两条边相关联,因此其度为偶数。除 v_0 之外的其他顶点在 T中的每次出现均与两条边相关联,因此其度也为偶数。

定理 5.1

图 G为欧拉图当且仅当 G为连通的且每个顶点的度为偶数。

证明(续上页).

其次,假设G为连通的且每个顶点的度为偶数,往证G为欧拉图。

设 $v_0, x_1, v_1, \ldots, x_n, v_n$ 为图G的一条最长的迹,记为Z,则Z为闭 迹。否则, $v_n \neq v_0$, v_n 在迹Z中的最后一次出现与一条边相关 联,其他的每次出现均与两条边相关联,由v_n的度为偶数 知、 v_n 在G中还有一条与之关联的边没有在Z中出现、记 为 $x_{n+1} = v_n v_{n+1}$ 。则 $v_0, x_1, v_1, \dots, x_n, v_n, x_{n+1}, v_{n+1}$ 构成了图G的 一条更长的迹,这与 $v_0, x_1, v_1, \ldots, x_n, v_n$ 为图G的一条最长的迹矛 盾。接下来证明Z包含了图G的所有的边。若不然,则图G中有 一条边x不在Z中出现,并且x有一个端点在Z中出现。在图G中 夫掉7中的所有边。得到图G'。取图G'中一条包含x的最长的 $\dot{\omega}$ Z'. 由图G'中所有顶点的度均为偶数易知Z'为闭迹(与前面证 明Z为闭迹的过程相类似)。于是Z和Z'可以联结成一条更长的 迹,这与 $v_0, x_1, v_1, \ldots, x_n, v_n$ 为图G的一条最长的迹矛盾。

定义5.2 包含图的所有顶点和边的迹称为<mark>欧拉迹</mark>。

定理5.2

图 6 有一条欧拉开迹当且仅当 6 为连通的且恰有两个奇度顶点。

证明.

设图G有一条欧拉开迹 $Z: v_0, x_1, v_1, \ldots, x_n, v_n$,其中 $x_i = v_{i-1}v_i, i = 1, 2, \ldots, n$ 。显然,图G是连通的。顶点 v_0 在Z中除了其首次出现与一条边相关联外,其余的每次出现均与两条边相关联,因此顶点 v_0 的度为奇数;同理, v_n 的度为奇数。除了 v_0 和 v_n 之外其余的每个顶点在Z中的每次出现均与两条边相关联,因此其度为偶数。这证明了图G恰有两个奇度顶点。设图G是连通的,且恰有两个奇度顶点u和v。在顶点u和v之间加一条边,得到图G'。则图G'是连通的且每个顶点的度为偶数,因此有一条欧拉闭迹。在该欧拉闭迹上去掉新加的顶点u与顶点v之间的边,便得到了图G的一条欧拉开迹。

定理5.3

设G为连通图,G恰有2n个奇度顶点, $n \ge 1$,则G的全部边可以排成n条开迹,且不能排成少于n条开迹。

证明.

设连通图G有2n个奇度顶点 $u_1, v_1, u_2, v_2, \ldots, u_n, v_n$ 。在G中加入n条边 $u_1v_1, u_2v_2, \ldots, u_nv_n$,得到图G'。则G'是连通的,且每个顶点的度为偶数,因此存在一条欧拉闭迹Z。在Z中去掉新加入的边 $u_1v_1, u_2v_2, \ldots, u_nv_n$,则得到图G的n条开迹。假设图G的所有边能排成m条开迹,m < n。则只有这m条开迹的端点可能为奇度顶点,因此图G至多有2m个奇度顶点,这与图G有2n个奇度顶点矛盾。

定义6.1

图G的一条包含所有顶点的路称为G的一条哈密顿路;图G的一个包含所有顶点的圈称为G的一个哈密顿圈。具有哈密顿圈的图称为哈密顿图。

定理6.1

设G = (V, E)为哈密顿图,则对V的每个非空子集S,均有

$$\omega(G-S) \leq |S|$$

其中G-S是从G中去掉S中那些顶点后所得到的图, $\omega(G-S)$ 是图G-S的支数。

定理6.2

设G为有 $p(p \ge 3)$ 个顶点的图。如果对G的任一对不邻接的顶点u和v,均有

$$\deg u + \deg v \ge p,$$

则G是一个哈密顿图。

定理6.3

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则G为连通的。

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则*G*有哈密顿路。

证明.

设G中的最长路为 $v_1v_2\cdots v_k$,

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则*G*有哈密顿路。

证明.

设G中的最长路为 $v_1v_2\cdots v_k$,只需证明k=p。

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则G有哈密顿路。

证明.

设G中的最长路为 $v_1v_2 \cdots v_k$,只需证明k = p。用反证法,假设k < p。

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则G有哈密顿路。

证明.

设G中的最长路为 $v_1v_2\cdots v_k$,只需证明k=p。 用反证法,假设k< p。以下证明 $v_1v_2\cdots v_k$ 必在同一个圈上。

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则*G*有哈密顿路。

证明.

设G中的最长路为 $v_1v_2\cdots v_k$,只需证明k=p。 用反证法,假设k < p。以下证明 $v_1v_2\cdots v_k$ 必在同一个圈上。

▶ 如果 v_1 与 v_k 邻接,则 $v_1v_2 \cdots v_k v_1$ 构成G中的一个圈;

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则G有哈密顿路。

证明.

设G中的最长路为 $v_1v_2 \cdots v_k$,只需证明k = p。 用反证法,假设k < p。以下证明 $v_1v_2 \cdots v_k$ 必在同一个圈上。

- ▶ 如果 v_1 与 v_k 邻接,则 $v_1v_2 \cdots v_k v_1$ 构成G中的一个圈;
- ▶ 如果 v_1 与 v_k 不邻接,由 $v_1v_2 \cdots v_k$ 为最长路知 v_1, v_k 只能与 v_2, v_3, \dots, v_{k-1} 中的顶点邻接。

定理6.4

设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则*G*有哈密顿路。

证明(续上页).

设 $v_{i_1}, v_{i_2}, \dots, v_{i_r}$ 与 v_1 邻接, $2 = i_1 < i_2 < \dots < i_r < k$,则 v_k 必与某个 v_{i_s-1} 邻接, $2 \le s \le r$ 。否则, v_k 至多与最长路上其余的顶点邻接,所以

$$\deg v_1 + \deg v_k \le r + ((k-1)-r) = k-1 < p-1$$

矛盾。于是, $v_1v_2\cdots v_{i_{s-1}}v_kv_{k-1}\cdots v_{i_s}v_1$ 是G中的一个圈。总之, v_1,v_2,\cdots,v_k 在G的同一个圈C上。

定理6.4

设G是一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则*G*有哈密顿路。

证明(续上页).

由于G是连通的,k < p,所有G必有某个顶点v,v不在C上,但与C上 某个顶点v;邻接。于是得到G的一条更长的路,这就出现了矛盾。

6.7 图的邻接矩阵

6.7 图的邻接矩阵

定理7.1

设G = (V, E)为一个(p,q)图, $p \times p$ 矩阵A为G的邻接矩阵,则G中 v_i 与 v_j 间长为I的通道的条数等于A'的第i行第j列元素的值。

设G是一个(p,q)图,证明:若 $q \ge p+4$,则G中有两个边不重的圈。

证明.

当q > p + 4时,可以在G中任意去掉一些边,使得剩余的边数恰好比顶点数多 4 。如果此时得到的新图中有两个边不重的圈,则原来的图G中也一定有两个边不重的圈。因此,以下只需证当q = p + 4时,图G中有两个边不重的圈。用数学归纳法证明,施归纳于顶点数p。

(1)当 $p \le 4$ 时,图G最多有p(p-1)/2条边,易验证此时q = p + 4不可能成立。当p = 5时,q = 9。设此时图G的顶点集为 $\{v_1, v_2, v_3, v_4, v_5\}$,除了 v_1 和 v_5 之间没有边关联之外,其余的任意两个顶点之间均有边关联,则此时 $v_1v_2v_3v_1$ 和 $v_3v_4v_5v_3$ 就是图G中两个边不重的圈。

设G是一个(p,q)图,证明:若 $q \ge p+4$, 则G中有两个边不重的圈。

证明(续上页).

- (2)假设当p = k时结论成立,往证当p = k + 1时结论也成立。设图G有k + 1个顶点。分以下四种情况进行验证:
- (i)当 $\delta(G) = 0$ 时,去掉图G中任意一个度为0的顶点和任意一条边,得到的图G'中有p'个顶点,q'条边,则q' = p' + 4。由归纳假设,图G'中有两个边不重的圈,它们也是图G中两个边不重的圈。
- (ii) $\[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[$

设G是一个(p,q)图,证明:若 $q \ge p+4$, 则G中有两个边不重的圈。

证明(续上页).

(iii) $\exists \delta(G) = 2$ 时,设u为图G中度为2的顶点,与之邻接的两个 顶点为v和w。分两种情况讨论。在第一种情况下,v和w之间没 有边关联、夫掉顶点u及其与之关联的两条边uv和uw、添加一条 边vw,得到的图G'中有p'个顶点,q'条边,则q' = p' + 4。由归 纳假设、图G'中有两个边不重的圈。如果新添加的边vw不在这 两个圈上,则这两个圈就是图G中两个边不重的圈,如果新添加 的边vw在其中的一个圈上,将其替换为图G中的两条 \dot{D}_{VU} 和 $_{UW}$,则所得到的圈与另一个圈一起构成图 $_{G}$ 中两个边不 重的圈。在第二种情况下,v和w之间有边关联,此时uvwu构成 图G中的一个圈,去掉该圈上的三条边,得到的图G'中有p'个顶 点, q'条边。此时q' = p' + 1,因此图G'中必定有一个圈, 与原 来图G中的圈 $\mu\nu\nu\mu$ 构成图G中两个边不重的圈。

设G是一个(p,q)图,证明: 若 $q \ge p + 4$, 则G中有两个边不重的圈。

证明(续上页).

习题1

在一个有n个人的宴会上,每个人至少有m个朋友

 $(2 \le m \le n)$ 。试证:有不少于m+1个人,使得它们按某种方法坐在一张圆桌旁,每人的左右均是他的朋友。

习题2

设G是图。证明: 若 $\delta(G) \geq 2$,则G包含长至少是 $\delta(G) + 1$ 的圈。

习题3

若G是一个(p,q)图, $q>\frac{1}{2}(p-1)(p-2)$, 试证G是连通图。