

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Four year) Degree in Industrial Mathematics Fourth Year- Semester I Examination – September/October 2019

MAT 4301- OPERATIONAL RESEARCH I

INSTRUCTIONS:

- Answer ALL questions
- Time Allowed: THREE hours
- 1. Consider the (M/M/1): $(\infty/FIFO)$ queuing model, where average arrival rate λ is less than the average service rate μ . Assume that the system is in steady state and $P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$, where P_n is the probability of n customers in the system.

With the usual notation derive the formulas for the following:

- (a) Expected number of customers in the system and in the queue.
- (b) Expected waiting time in the system and in the queue.

Patients arrive at a Government hospital for emergency service at the rate of one every hour. Currently only one emergency case can be handled at a time. Patients spend on average of 20 minutes receiving emergency care. The doctor wishes to have enough seats in the waiting room so that no more than about 1% of arriving patients will have to stand. Find

- (i) the probability that a patient arriving at the hospital will have to wait.
- (ii) the average length of the queue that forms.
- (iii) average time a patient spends in the queue.
- (iv) probability that there will be five or more patients waiting for the service.

2. Consider the (M/M/1): (N/FIFO) queuing model. In the usual notation and steady state, find the probability of n customers in the system. Also, find the average number of customers in the system and in the queue.

Assume a railway marshalling yard is sufficient only for 10 trains. Trains arrive at the rate of 25 trains per day, inter-arrival time and service time follow exponential with an average of 30 minutes. Find

- (i) the probability that the yard is empty.
- (ii) the average queue length.
- (iii) the expected number of trains in the system.
- 3. (a) Define a zero-sum game in game theory.

Distinguish between pure strategies and mixed strategies.

Player I and II simultaneously call out one of the numbers one or two. Player I's name is Odd; he wins if the sum of the numbers is odd. Player II's name is even; she wins if the sum of the numbers is even. The amount paid to the winner by the loser is always the sum of the numbers in dollars.

- (i) Construct a payoff matrix for the above game.
- (ii) Does the above payoff matrix have a saddle point? Justify your answer.
- (iii) Determine the mixed strategies of Players I and II, and hence find the value of the game.
- (iv) Verify the solution in (ii) graphically.
- (b) Consider the payoff matrix: $\begin{pmatrix} 2 & 0 & 4 \\ 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix}$.
 - (i) Reduce the given payoff matrix to order two by using the dominance property.
 - (ii) Solve the reduced payoff matrix in (i) and hence find the value of the game.

4. Consider the following payoff matrix of players A and B:

Player B
$$\begin{array}{cccc}
Player & B \\
0 & 1 & -1 \\
-2 & 2 & 1
\end{array}$$

- (i) Formulate Linear Programming Models for both players.
- (ii) Solve the formulated models in (i) and determine the value of the game, and mixed strategies of each player.
- 5. Briefly explain the method in stepwise form to find the optimal sequence of processing n jobs in m machines.

The below table gives the processing times (in hours) of seven jobs to be processed on four machines M_1 , M_2 , M_3 , M_4 in that order:

	M_1	M_2	M_3	M_4
\boldsymbol{A}	3	-1	4	12
\boldsymbol{B}°	8	0	5	15
C	11	3	8	10
D	4	7	3	8
\boldsymbol{E}	5	5	1.	10
F	10	2	0	13
G	2	5	6	9

- (i) Determine the order in which the jobs should be processed in order to minimize the total time required to turn out all the jobs.
- (ii) Construct a table showing time in and time out of each stage and also, idle time of each activity.
- (iii) Find the total minimum elapsed time if no passing of jobs is permitted.
- (iv) Construct a Gannt chart showing the sequence of processing the jobs.