ANADI - Trabalho Prático 2: Análise de Desempenho De Técnicas de Aprendizagem Automática

Fábio Borges*, Joel Ferreira[†], Jorge Cruz[‡]

Departamento de Engenharia Informática

Instituto Superior de Engenharia do Porto

Porto, Portugal

- * 1100719@isep.ipp.pt
- † 1191843@isep.ipp.pt
- [‡] 1221715@isep.ipp.pt

Resumo—Este artigo tem como objetivo a aplicação de algoritmos de aprendizagem automática na exploração de dados e respetiva comparação usando os testes estatísticos mais adequados. A temática incide sobre os níveis de poluição e seus impactos em diversos países europeus, no âmbito da disciplina de Análise de Dados em Informática.

Foram aplicados modelos de regressão e classificação para prever mortes prematuras e distinguir doenças respiratórias. Os modelos foram avaliados com métricas estatísticas e comparados entre si.

Index Terms—poluição, saúde, regressão linear, classificação, árvores de decisão, K-vizinhos-mais-próximos, redes neuronais, SVM.

I. INTRODUÇÃO

Este artigo começa por fazer uma introdução aos conceitos teóricos relevantes para a execução do trabalho e que foram abordados na disciplina de ANADI, nomeadamente distribuição de dados, testes, correlações, regressões e previsões.

De seguida, na ótica dos dados do problema - a poluição, são descritos os métodos e resultados obtidos em cada problema proposto.

Por último, são apresentadas as conclusões do trabalho.

Foi utilizado o *python* para tratamento e processamento dos dados.

II. INTRODUÇÃO TEÓRICA

Nesta secção serão introduzidos os conceitos teóricos sobre os diferentes algoritmos e modelos desenvolvidos na resolução deste trabalho.

A. Regressão

1) Regressão linear: A regressão linear é uma técnica estatística usada para modelar a relação entre uma variável dependente e uma ou mais variáveis independentes. Quando há apenas uma variável explicativa, o modelo é denominado regressão linear simples, sendo representado pela equação:

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{1}$$

onde Y é a variável que tentamos prever, denominada variável dependente. X é a variável independente (ou preditora), β_0 e β_1 são os coeficientes do modelo, e ε representa o erro aleatório. [1]

2) Regressão linear múltipla: A regressão linear múltipla é uma extensão da regressão linear simples, na qual há mais de uma variável independente. A equação do modelo assume a forma:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \varepsilon \tag{2}$$

Para se poder aplicar a regressão linear múltipla é necessário que exista uma relação linear entre a variável objetivo (Y) e as variáveis preditoras, os resíduos da regressão devem seguir uma distribuição normal e não deve existir multicolineariadade. [1]

B. Métricas de avaliação de modelos de regressão

As métricas MAE, MSE, RMSE e R² são utilizadas principalmente para avaliar as taxas de erro de previsão e o desempenho do modelo na análise de regressão.

1) Mean Absolute Error - MAE: Erro absoluto médio, é a soma das diferenças absolutas entre as previsões e os valores reais, dividindo pelo número total de pontos de dados.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (3)

2) Mean Squared Error - MSE: Erro quadrático médio, representa a diferença entre os valores originais e os valores previstos extraídos através do quadrado da diferença média do conjunto de dados.

3) Root Mean Squared Error - RMSE: Mede a magnitude média do erro, tomando a raiz quadrada da média das diferenças quadráticas entre a previsão $(\hat{y_i})$ e a observação efetiva (y_i) .

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (4)

O RMSE é uma boa medida de exatidão, mas apenas para comparar erros de previsão de diferentes modelos ou configurações de modelos para uma determinada variável e não entre variáveis, uma vez que é dependente da escala.

4) R² - Coeficiente de Determinação: Representa o coeficiente de determinação dos valores em comparação com os valores originais. O valor de 0 a 1 é interpretado como percentagem. Quanto mais elevado for o valor, melhor é o modelo. [2]

C. Árvores de Decisão

Uma árvore de decisão, Figura 1, consiste num conjunto de nós de decisão, ligados por ramos, que se estendem para baixo a partir do nó raiz até terminarem em nós folha.

Começando no nó raiz, que por convenção é colocado no topo do diagrama de árvore de decisão, as variáveis são testadas nos nós de decisão, sendo que cada resultado possível resulta num ramo. Cada ramo conduz então a outro nó de decisão ou a um nó folha terminal.

A aprendizagem em árvore de decisão é um método de aproximação de uma função-alvo de valor discreto representada numa árvore de decisão. [7]

Figura 1. Exemplo de árvore de decisão. [7]

1) Árvore de Decisão - Regressão: As árvores de regressão são utilizados para prever variáveis-alvo contínuas, como o preço de uma casa ou o número de clientes que visitarão uma loja num determinado dia. Para fazer uma previsão, o regressor da árvore de decisão percorre a árvore desde o nó raiz até ao nó folha que corresponde às caraterísticas do novo ponto de dados. O valor previsto é então o valor médio da variável alvo para todos os pontos de dados no nó folha. [8]

2) Árvore de Decisão - Classificação: Os classificadores de árvores de decisão são utilizados para prever variáveis-alvo categóricas, como, por exemplo, se uma mensagem de correio eletrónico é ou não spam ou se um cliente vai ou não desistir. Para efetuar uma previsão, o classificador de árvore de decisão percorre a árvore desde o nó raiz até ao nó folha que corresponde às caraterísticas do novo ponto de dados. A classe prevista é então a classe com a maioria dos pontos de dados no nó folha. [8]

D. Cross-Validation

A validação cruzada (Cross-Validation) é um método estatístico de avaliação e comparação de algoritmos de aprendizagem, dividindo os dados em dois segmentos: um utilizado para treinar um modelo e o outro utilizado para validar o modelo. Na validação cruzada típica, os conjuntos de treino e validação devem cruzar-se em rondas sucessivas, de modo a que cada ponto de dados tenha uma hipótese de ser validado. [9]

- 1) Hold Out: Esta abordagem consiste em dividir aleatoriamente os dados em dois conjuntos: um conjunto é utilizado para treinar o modelo e o outro conjunto é utilizado para testar o modelo. O processo funciona da seguinte forma:
 - Construir (treinar) o modelo no conjunto de dados de treino;
 - Aplicar o modelo ao conjunto de dados de teste para prever o resultado de novas observações não vistas;
 - Quantificar o erro de previsão como a diferença média quadrática entre os valores de resultados observados e previstos. [2]
- 2) K-Fold Cross-Validation: O método de validação cruzada k-fold avalia o desempenho do modelo em diferentes subconjuntos dos dados de treino e, em seguida, calcula a taxa média de erro de previsão. O algoritmo é o seguinte:
 - 1) Dividir aleatoriamente o conjunto de dados em *k* subconjuntos (ou *k-fold*) (por exemplo, 5 subconjuntos);
 - 2) Reservar um subconjunto e treinar o modelo em todos os outros subconjuntos;
 - Testar o modelo no subconjunto reservado e registar o erro de previsão;
 - 4) Repetir este processo até que cada um dos *k* subconjuntos tenha servido como conjunto de teste;
 - 5) Calcular a média dos *k* erros registados. Este é o chamado erro de validação cruzada, que serve de métrica de desempenho para o modelo.

A validação cruzada *K-fold* (CV) é um método robusto para estimar a exatidão de um modelo. [2]

E. Redes Neuronais

Uma rede neuronal, Figura 2, consiste numa rede de neurónios artificiais ou nós, em camadas, com alimentação direta e completamente ligada:

 A natureza feedforward da rede restringe-a uma única direção de fluxo e não permite ciclos.

Figura 2. Exemplo de rede neuronal.

- A maioria das redes é constituída por três camadas: uma camada de entrada, uma camada oculta e uma camada de saída;
 - Pode haver mais de uma camada oculta, embora a maioria das redes contenha apenas uma, o que é suficiente para a maioria das finalidades.
- A rede neuronal está completamente ligada, o que significa que cada nó de uma determinada camada está ligado a todos os nós das camadas adjacentes, mas não a outros nós da mesma camada:
 - Cada conexão entre nós tem um peso (por exemplo, w₁₁) associado.
 - Na inicialização, estes pesos são atribuídos aleatoriamente a valores entre 0 e 1. [10]

F. Support Vector Machines - SVM

Uma máquina de vetores de suporte (SVM) é um algoritmo de aprendizagem automática supervisionada utilizado tanto para a classificação como para a regressão. Embora também se fale de problemas de regressão, é mais adequado para a classificação. O principal objetivo do algoritmo SVM é encontrar o hiperplano ideal num espaço N-dimensional que possa separar os pontos de dados em diferentes classes no espaço de caraterísticas, Figura 3. O hiperplano tenta que a margem entre os pontos mais próximos das diferentes classes seja a máxima possível. A dimensão do hiperplano depende do número de caraterísticas. Se o número de caraterísticas de entrada for dois, então o hiperplano é apenas uma linha. Se o número de caraterísticas de entrada for três, então o hiperplano torna-se num plano 2-D. [11]

Terminologia:

- **Hiperplano**: Um limite de decisão que separa diferentes classes no espaço de caraterísticas e é representado pela equação wx + b = 0 na classificação linear.
- Vetores de suporte: Os pontos de dados mais próximos do hiperplano, cruciais para determinar o hiperplano e a margem no SVM.
- Margem: A distância entre o hiperplano e os vetores de suporte. O objetivo do SVM é maximizar esta margem para obter um melhor desempenho de classificação.
- **Kernel**: Uma função que mapeia os dados para um espaço de dimensão superior, permitindo que o SVM lide com dados não linearmente separáveis. [11]

Figura 3. Hiperplano, vetores de suporte e margem - SVM.

G. kNN - K-Vizinhos Mais Próximos

O algoritmo do vizinho mais próximo (*Nearest Neighbour*) classifica uma instância de dados com base nos seus vizinhos. A classe de uma instância de dados determinada pelo algoritmo dos k-vizinhos mais próximos é a classe com maior representação entre os k-vizinhos mais próximos.

Os algoritmos do vizinho mais próximo estão entre os algoritmos de aprendizagem automática supervisionada mais "simples" e têm sido bem estudados no domínio do reconhecimento de padrões.

O algoritmo do k-vizinho mais próximo é usado em projetos de classificação como referência de desempenho preditivo quando se está a tentar desenvolver modelos mais sofisticados. O kNN funciona utilizando a proximidade e a votação por maioria para efetuar previsões. [12]

III. MÉTODOS E RESULTADOS OBTIDOS

A. Análise Exploratória de Dados

1) Exercício 4.1.1: Neste exercício era pretendida a construção de um gráfico onde fosse possível verificar os níveis médios do poluente O_3 nas diversas regiões de Portugal. Era também requisito identificar a região com nível de O_3 mais elevado. Foram então importados os dados onde constava essa informação (ficheiro AIRPOL data).

Para uma melhor visualização dos dados e para utilizarmos apenas os dados necessários, filtramos os mesmos. Assim, foram selecionados apenas os dados correspondentes a Portugal e cujo poluente em questão seja O₃. Verificamos a existência de alguns dados duplicados, o que nos levou à eliminação dos mesmos de modo a limpar o *dataset*.

O gráfico obtido pode ser observado na Figura ??. É possível então verificar que todas as regiões apresentam um nível médio de O₃ situado entre os 80 e os 102.4 µg/m³. A região com o maior valor médio de poluente é PT16H com um valor de 102.4 µg/m³.

Figura 4. Distribuição dos níveis médios de PM2.5 por País

2) Exercício 4.1.2: Pretendia-se a construção de um gráfico para comparação das distribuições dos níveis médios de PM2.5 em Portugal, Espanha, França e Itália.

Inicialmente, os dados foram importados e filtrados. Como tal, foram selecionados apenas os dados correspondentes aos países mencionados anteriormente e cujo poluente em questão fosse PM2.5. Verificamos a existência de alguns dados duplicados, o que nos levou à eliminação dos mesmos de modo a limpar o dataset.

O gráfico obtido pode ser observado na Figura 4. É possível então concluir o seguinte:

- Itália é o país que apresenta os valores mais elevados de PM2.5. Apresenta *outliers* e uma grande dispersão de dados.
- Portugal e França apresentam níveis mais baixos de concentração de PM2.5. Estes dois países também apresentam a menor dispersão. França, apresenta um número de outliers mais elevado do que Portugal.
- Espanha, encontra-se entre os grupos de países mencionados anteriormente. A sua dispersão é superior à de Portugal e França.
- 3) Exercício 4.1.3: O objetivo deste exercício consiste na construção de um gráfico para comparação do número de mortes prematuras entre Portugal, Espanha, França e Itália.

Os dados foram importados e filtrados. Como tal, foram selecionados apenas os dados correspondentes aos países mencionados. Para melhor visualização do dataframe, selecionamos apenas as colunas correspondentes ao país e ao valor de mortes prematuras.

O gráfico obtido pode ser observado na Figura 5. É possível então concluir o seguinte:

- A média de mortes prematuras tende a seguir valores baixos, embora sejam visíveis *outliers*.
- Itália destaca-se pelo país com os números mais extremos de mortes prematuras.
- Portugal é o país que apresenta menor dispersão e valores menores de mortes prematuras.
- 4) Exercício 4.1.4: Neste exercício era pretendida a construção de uma tabela que indicasse os valores da média, quartis, desvio padrão, assimetria e *Kurtosis* relativa ao número de mortes prematuras associadas a Stroke para os seguintes

Figura 5. Distribuição do número de mortes prematuras por País

	Pais	Media	Q1	Q2	Q3	Desvio Padrao	Assimetria	Curtose
0	Greece	334.1071	7.0	39.5	188.50	1321.0480	10.4851	142.0496
1	Spain	440.9848	13.0	56.5	248.75	1654.5759	11.1839	166.7873
2	France	259.1919	6.0	36.5	150.00	1207.8623	16.8939	364.0919
3	Italy	668.8781	21.0	78.0	295.25	3425.7706	16.3037	341.0540

Figura 6. Valores da média, quartis, desvio padrão, assimetria e kurtosis, do número de mortes prematuras associado a AVC

países: Espanha, França, Itália e Grécia. Foram então importados os dados onde constava essa informação (ficheiro AIRPOLdata).

Para uma melhor visualização dos dados e para utilizarmos apenas os dados necessários, filtramos os mesmos. Assim, foram selecionados apenas os dados correspondentes aos países mencionados e cujas mortes prematuras estivessem associadas a AVC (Stroke).

Da tabela apresentada na figura Figura 6, é possível concluir o seguinte:

- O valor da média varia entre os diferentes países. É notório que Itália regista o maior número de mortes prematuras por AVC. França regista a menor média.
- Relativamente aos quartis, Itália apresenta os valores mais elevados para os mesmos, reforçando a tendência para os valores elevados. Esta medida ajuda a entender a dispersão dos dados.
- Itália apresenta também o desvio-padrão mais elevado, o que prova mais uma vez a sua grande disperão de dados.
 França apresenta o menor desvio-padrão e consequente menor dispersão.
- O coeficiente de assimetria é positivo. Isto indica que a distribuição tem uma cauda longa à direita. Logo, os países registam valores elevados de mortes prematuras por AVC. França e Itália apresentam os valores mais altos, o que indica que apresentam os outliers mais elevados.
- Os países registam uma Kurtosis elevada. Isto indica que há valores extremos a influenciar os dados. França e Itália reforçam a sua grande presença de *outliers*.

B. Inferência Estatistica

1) Exercício 4.2.1: Neste exercício é necessário selecionar uma amostra aleatória de 50 registos dos níveis médios de poluição em Portugal e analisar a sua distribuição.

Figura 7. Distribuição dos níveis de poluição por região em Portugal

Filtrou-se os dados apenas para Portugal, realizou-se uma amostragem aleatória de 50 registos, calculou-se estatísticas descritivas e gerou-se um gráfico de barras da Figura 7.

A região mais poluída é a PT119 com um valor médio de poluição de 24,82 μ g/m³.

2) Exercício 4.2.2: Nesta questão vamos testar se o valor médio de poluição em Portugal é inferior ao da Albânia.

Selecionaram-se amostras independentes de 50 registos para cada país, verificou-se a normalidade usando o teste de *Shapiro-Wilk* e a homogeneidade de variâncias recorrendo ao teste de *Levene*.

Aplicou-se o teste *t-Student* unilateral $(H_0: \mu_{\text{Portugal}} \ge \mu_{\text{Albânia}} \text{ vs } H_1: \mu_{\text{Portugal}} < \mu_{\text{Albânia}})$

Tabela I RESULTADOS DOS TESTES ESTATÍSTICOS

Teste	Estatística	p-valor
mer Shapiro-Wilk (PT)	0.2743	0.000
Shapiro-Wilk (AL)	0.3545	0.000
Levene	0.4467	0.5055
Teste t	-1.1860	0.1192

Como p<0,05, rejeita-se H_0 , concluindo-se que a poluição em Portugal é significativamente inferior à da Albânia, para um grau de confiança de 5%.

3) Exercício 4.2.3: Nesta alínea vamos verificar se há diferenças significativas nos níveis de poluição entre Espanha e França, para isso extraíram-se duas amostras independentes de 20 registos cada.

Testou-se a normalidade usando o teste de *Shapiro-Wilk*, cujo resultado mostrou que os dados não seguem uma distribuição normal.

Aplicou-se, então, o teste não paramétrico Mann-Whitney-U.

Tabela II RESULTADOS DOS TESTES ESTATÍSTICOS

Teste	Estatística	p-valor
Shapiro-Wilk (ES)	0.5459	0.0000
Shapiro-Wilk (FR)	0.3241	0.0000
Mann-Whitney U	222.5000	0.5514

Como p >0.05, não há evidência de diferença significativa entre os dois países.

4) Exercício 4.2.4:

C. Classificação

1) Exercício 4.3.1: Neste exercício iremos considerar os países das quatro regiões previamente definidas: Western Europe, Eastern Europe, Southern Europe e Northen Europe.

Derivando um novo atributo denominado *RespDisease*, que separa as doenças em respiratórias e não-respiratórias. Na Figura 8, podemos observar a distribuição dos valores deste atributo, com 6270 doenças identificadas como não-respiratórias e 4180 como respiratórias.

Figura 8. Distribuição de valores entre doença Respiratória e Não-Respiratória.

- 2) *Exercício 4.3.2*: Usando o método *k-fold cross validation* desenvolvemos modelos de previsão de *RespDisease* usando os seguintes métodos:
- a) Árvore de Decisão: Começamos por definir os dados de entrada (X), que contêm os valores das colunas Affected Population, Populated Area[km2], Air Pollution Average[ug/m3] e Value e a variável objetivo (y) RespDisease.

De seguida, o *dataset* é dividido na proporção 70-30 para treino e teste, com opção estratificada que garante que a proporção das classes se mantém balanceada entre treino e teste.

Passamos à aplicação do método de *cross-validation*, escolhendo k = 10 folds. Este irá armazenar a exatidão de cada fold (k).

Depois deste passo, treina-se o modelo final com todos os dados de treino e avalia-se no conjunto de teste separado inicialmente. Para isso, a função *DecisionTreeClassifier - DTC* é utilizada, com critério de entropia. Na Figura 9 podemos visualizar a matriz de confusão resultante.

Para otimizar os parâmetros do modelo vamos tentar perceber qual o nível de profundidade que gera um melhor desempenho, iterando-a de 1 a 10, no algoritmo DTC e aplicando a validação cruzada.

Tomando o valor máximo da exatidão entre os diferentes níveis, verifica-se que o valor é máximo para o nível 10 de profundidade.

Figura 9. Matriz de Confusão do modelo final.

Tabela III
EXATIDÃO DA ÁRVORE DE DECISÃO POR PROFUNDIDADE

Profundidade da Árvore	Exatidão
1	0.697
2	0.731
3	0.746
4	0.764
5	0.775
6	0.786
7	0.797
8	0.803
9	0.812
10	0.817

b) Rede Neuronal: Iniciamos a abordagem de forma análoga ao problema anterior, contudo, desta vez, fazemos a codificação da variável objetivo recorrendo ao LabelEncoder, que lhe atribui valores binários (0 e 1).

Depois da separação dos dados em treino e teste, é feita a sua normalização recorrendo ao *MinMaxScaler*, uma vez que as variáveis preditoras têm valores de magnitude muito distantes.

Definiram-se 2 configurações possíveis para a rede neuronal - uma com 50 neurónios na *hidden layer* e a segunda com duas camadas - 100 e 50 na mesma *layer*. Em comum, estas configurações têm a função ativação (tanh), parâmetro alpha (0,01), solver (lbfgs) e numero máximo de iterações $(max_iter = 500)$.

Outros parâmetros foram testados como o *solver* "adam" mas obtiveram-se resultados inferiores de exatidão.

Entre estas duas configurações, a segunda (100,50) revelouse um pouco melhor a nível de performance.

c) SVM: O método de SVM, ao contrário da rede neuronal, necessita dos dados normalizados com o StandardScaler.

Para este algoritmo foi utilizado o método SVC - Support Vector Classification, com parâmetros C = 10 e C = 100. e usando o Kernel rbf.

Na Figura 9 podemos visualizar a comparação entre os dois modelos, em que C=100 obtém uma ligeira vantagem.

Figura 10. Comparação entre resultados de SVM para C=10 e C=100.

- d) K-vizinhos-mais-próximos kNN: Neste algoritmo, a normalização dos dados é necessária, para isso, utilizámos o MinMaxScaler, uma vez que estamos a falar de distância entre pontos para a kNN.
- O KNeighborsClassifier foi utilizado, testando entre 1 e 49, num passo de 2 (1,3,5...49). De todas as iterações, foi encontrada a que tem maior exatidão para k=5, visivel na Figura 11.

Figura 11. kNN - Valores de exatidão em função de número de vizinhos k.

3) Exercício 4.3.3: Para cada modelo da questão anterior obtemos os seguintes valores médios e desvio padrão de Accuracy, Sensitivity, Specificity e F1:

Tabela IV
DESEMPENHO DOS MODELOS DE CLASSIFICAÇÃO

Métrica	Decision Tree	NN (100,50)	SVM (C=100)	KNN
Accuracy	0.784 ± 0.017	0.815 ± 0.013	0.823 ± 0.011	0.614 ± 0.029
Sensitivity	0.775 ± 0.031	0.660 ± 0.031	0.629 ± 0.028	0.507 ± 0.026
Specificity	0.775 ± 0.010	0.920 ± 0.010	0.952 ± 0.008	0.686 ± 0.059
F1 Score	0.775 ± 0.019	0.741 ± 0.019	0.739 ± 0.020	0.513 ± 0.017

4) Exercício 4.3.4: À luz dos resultados obtidos na questão anterior, percebemos que os modelos de SVM e NN têm a melhor accuracy (exatidão), por isso, verificámos se existe

uma diferença significativa no desempenho entre os dois, para um nível de significância de 5% recorrendo ao teste *t-stat*.

Como o *p-value* é inferior a 0,05, concluímos que há diferenças estatisticamente significativas entre os dois modelos.

5) Exercício 4.3.5: A análise detalhada dos modelos revelou que o SVM com parâmetro C=100 apresenta o melhor desempenho global. Os principais pontos fortes incluem a maior accuracy (82,3%) entre todos os modelos, excelente specificity (95,2%) — o que indica menor número de falsos positivos — e baixa variabilidade, o que demonstra consistência nos resultados. Contudo, a principal limitação é a sensitivity mais baixa (62,9%), o que pode levar à perda de casos positivos.

A rede neural com arquitetura (100,50) foi a segunda melhor opção, alcançando uma *accuracy* de 81,5%, o melhor *F1-score* (74,1%), indicando bom equilíbrio entre precisão e sensibilidade, e uma *specificity* elevada (91,9%). No entanto, a *sensitivity* foi inferior à da Árvore de Decisão.

A Árvore de Decisão destacou-se por apresentar a maior sensitivity (77,5%), sendo a mais indicada em contextos onde é fundamental não deixar de identificar ocorrências relevantes. O modelo também apresentou equilíbrio geral entre as métricas, mas a *accuracy* foi inferior à dos modelos SVM e NN.

Por fim, o modelo KNN demonstrou o pior desempenho geral, com a menor *accuracy* (61,4%), alta variabilidade entre os *folds* e o *F1-score* mais baixo (51,3%), indicando um desempenho inferior em todos os aspetos avaliados.

CONCLUSÕES

Da análise exploratória de dados, foi possível verificar que todas as regiões portuguesas apresentam um nível médio de O3 situado entre os 80 e os 102.4 ug/m3. A região com o maior valor médio de poluente é PT16H com um valor de 102.4 µg/m3.

Relativamente à concentração do poluente PM2.5 foram analisados os países Portugal, Espanha, França e Itália. Itália é o país que apresenta os valores mais elevados, sendo observados outliers e uma grande dispersão de dados. Portugal e França apresentam níveis mais baixos de concentração de PM2.5.

A média de mortes permaturas tende a seguir valores baixos, embora se tenham verificado outliers. Itália destaca-se pelo país com os números mais extremos de mortes permaturas. Portugal é o país que apresenta menor dispersão e valores menores de mortes permaturas.

Relativamente às mortes associadas a AVC, Itália volta a registar o maior número de mortes permaturas em relação aos países analisados (França, Grécia, Itália e Espanha).

Da inferência estatistica podemos concluir que a Albânia tem níveis de poluição significativamente mais altos que Portugal, Espanha e França.

Portugal apresenta menor poluição que a Albânia, mas sem diferença significativa face a Espanha e França.

Não existe correlação significativa entre os níveis de poluição médios de PM2.5 para asma e doença isquémica do coração entres Portugal, Espanha, França ou Itália.

Para o problema do poluente PM2.5 na Alemanha, os dados não cumprem os pressupostos necessários para se efetuar inferência estatística e, embora o modelo obtido tenha um coeficiente de determinação de 76,8%, as previsões de mortes ficam completamente desfasadas da realidade.

REFERÊNCIAS

- Madureira, A., & Matos, J. (2024). *Aulas T Linear Regression and Tree Regression*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [2] Madureira, A. (2024). *Aulas T Cross Validation*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [3] Moore, D. S., McCabe, G. P., & Craig, B. A. (2017). *Introduction to the Practice of Statistics* (9th ed.). New York: W. H. Freeman.
- [4] Madureira, A., & Matos, J. (2024). *Aulas T Testes de Correlação*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [5] Zar, J. H. (2005). *Spearman Rank Correlation*. In Biostatistical Analysis (5th ed., pp. 383-387). Pearson Prentice Hall.
- Madureira, A. (2024). *Aulas T Introduction to Machine Learning*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [7] Madureira, A. (2024). *Aulas T Decision Trees*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [8] A. Ohekar, "What is the difference between a Decision Tree Classifier and a Decision Tree Regressor?," *Medium*, Sep. 26, 2023. [Online]. Available: https://medium.com/@aaryanohekar277/what-is-the-difference-between-a-decision-tree-classifier-and-a-decision-tree-regressor-36641bd6559c [Accessed: Jun. 7, 2025].
- [9] P. Refaeilzadeh, L. Tang, and H. Liu, "Cross-Validation," in *Encyclope-dia of Database Systems*, Springer, Boston, MA, 2009, pp. 532–538.
- [10] Madureira, A. (2024). *Aulas T Neural Networks*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [11] Madureira, A. (2024). *Aulas T Support Vector Machines*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [12] Madureira, A. (2024). *Aulas T kNN Algorithm*. Instituto Superior de Engenharia do Porto (ISEP). Ano letivo 2024/2025.
- [13] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis (6^a ed.). Wiley.