LECTURE 18

유체역학은 공학 분야의 기초이고 다양한 분야에 응용된다. 이 단원에서는 유체가 무엇인지를 알아보고 유체 운동에서 쓰이는 여러 가지 단어와 용어의 의미를 이해한다. 또한, 유체운동을 나타내는 원리나 방정식에는 어떠한 것들이 있는지를 알아본다.

14 유체

14.1 유체, 밀도, 압력

14.2 정지해 있는 유체

14.3 압력의 측정

14.4 Pascal의 원리

14.5 Archimedes의 원리

14.6 이상유체의 운동

14.7 Bernoulli 방정식

14.1 유체, 밀도, 압력

학습목표

☞ 유체가 무엇인지를 알아보고 그와 관련된 용어들을 이해한다.

유체

- 고체와 달리 변형이 쉬워 담겨 있는 그릇의 형태에 따라 그 모양이 변하고 액체, 기체, 플라스마처럼 흐를 수 있는 물질들을 가리켜 유체라고 한다.
- 물과 수증기는 대표적인 유체이다.
- 유체의 운동은 질량과 힘보다 **밀도**와 **압력**을 사용하여 표현된다.

밀도

유체 내 어느 한 점에서의 밀도 ρ는 다음처럼 정의된다.

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V}$$

- ullet ΔV 은 점을 포함하는 작은 부피이다.
- ullet Δm 은 ΔV 에 들어있는 질량이다.
- 부피 *V* 안에 질량 *m*의 유체가 균일하게 채워져 있다면 그 밀도 는 다음처럼 쓸 수 있다.

$$\rho = \frac{m}{V}$$

■ 밀도는 스칼라량이고 SI 단위는 kg/m³이다.

압력

• 유체 내 어느 한 점에서의 **압력** p은 다음처럼 정의된다.

$$p = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$$

- ΔA 은 점이 놓여있는 작은 면적이고 ΔF 은 그 면에 수직으로 작용하는 힘의 크기이다.
- 평평한 면적 A에 F의 힘이 균일하게 작용하면 그 압력은 다음처럼 쓸 수 있다.

$$p = \frac{F}{A}$$

• 압력은 방향과 무관한 스칼라량이고 SI 단위는 파스칼(Pa)이다.

$$1 \text{ Pa} = 1 \text{ N/m}^2 = 1 \text{ kg/m} \cdot \text{s}^2$$

14.2 정지해 있는 유체

학습목표

☞ 흐르지 않는 물이나 흐르지 않는 대기에서의 압력이 깊이나 높이 에 따라 어떻게 변하는지를 알아본다.

정지 유체압력

- 정지해 있는 유체로부터 받는 압력을 정지 유체압력이라고 한다.
- 잠수부나 등산가들이 느끼는 압력이 대표적인 정지 유체압력이다.

다음처럼 가정된 어항에서 깊이에 따른 물의 압력을 고려하자.

- **❖** 물의 밀도는 *ρ*이다.
- ❖ 수면을 원점으로 잡고 수면 위의 방향이 양의 방향이 되도록 y축을 잡는다.
- ❖ 가상의 원통(점선)이 어항 안에 있다고 가정한다.
- ❖ 원통의 윗면과 아랫면은 수면과 평행하고 그 면적은 A이다.

- ❖ 원통의 윗면은 $y = y_1$ 에 위치하고 아랫면은 $y = y_2$ 에 위치한다.
- ❖ 원통 안에 들어있는 물의 질량은 *m*이다.
- ❖ 원통의 윗면에 작용하는 힘의 크기는 F₁이다.
- ❖ 원통의 아랫면에 작용하는 힘의 크기는 F₂이다.
- \diamond 원통 안에 있는 물에 작용하는 중력 크기는 F_{σ} 이다.
- 원통의 물은 정적 평형상태에 있으므로 원통에 작용하는 세 힘은 평형을 이룬다.

$$p_2 A = F_2 = F_1 + F_{\rm g} = p_1 A + mg$$

- p_1 와 p_2 은 원통의 윗면과 아랫면에 작용하는 압력이다.
- 원통의 부피는 $A(y_1 y_2)$ 이므로 그 질량 m은 $A(y_1 y_2)g$ 이다.

$$p_2 A = F_2 = p_1 A + \rho A (y_1 - y_2) g \implies \therefore p_2 = p_1 + \rho g (y_1 - y_2)$$

• 수면 아래로 h만큼의 깊이에서 작용하는 압력 p을 구하고자 y_1 , y_2, p_1, p_2 을 다음처럼 설정한다. 압력 p를 **절대압력**이라 부른다.

$$y_1 = 0$$
, $y_2 = -h$, $p_1 = p_0$, $p_2 = p$

- *p*₀는 공기가 수면을 누르는 압력(**대기압**)과 같다.
- 압력 p은 깊이에만 의존한다.

$$p = p_0 + \rho g h$$

- 위 식은 밀도가 균일한 모든 액체에 적용될 수 있다.
- 절대압력에서 대기압을 뺀 압력을 **계기압력**(gauge pressure)이라 부른다.
- 위치 y=-h에서의 계기압력은 ρgh 이다.
- ρgh 은 y = -h보다 위에 있는 액체가 y = -h에 있는 점을 누르는 압력이다.
- ρ 를 공기밀도 $\rho_{\rm air}$ 로 대체함으로써 위 식들은 지면 위에 있는 공기에도 적용될 수 있다.

■ 지면 위로 h만큼의 높이에서 작용하는 대기압 p을 구하고자 y_1 , y_2, p_1, p_2 을 다음처럼 설정한다.

$$y_1 = h$$
, $y_2 = 0$, $p_1 = p$, $p_2 = p_0$

- *p*₀는 지면에서의 대기압이다.
- 대기압 *p*은 높이에만 의존한다.

$$p = p_0 - \rho_{\rm air} g h$$

14.3 압력의 측정

학습목표

☞ 기압계가 어떻게 기체의 압력을 측정하는지를 설명한다.

수은기압계

대기압 p_0 을 측정하는 데 사용되는 **수은기압계**는 우측 그림처럼 수은이 담긴 그릇과 유리관으로 구성된다.

- ❖ 유리관 위쪽은 진공상태이다.
- ❖ 수은의 밀도 *ρ*는 균일하다.
- ❖ 자유낙하 가속도는 *g*이다.
- ❖ 수은의 기둥 높이는 *h*이다.
- ❖ p₀는 대기압이다.
- ❖ 수은 기둥의 위쪽 공간에 있는 수
 은 증기로부터 받는 압력 p은 무
 시할 수 있을 정도로 매우 작다.

■ 그때 대기압 p_0 은 수은 기둥으로부터 받는 압력과 같다.

$$p_0 = p + \rho g h \approx \rho g h$$

열린관 압력계

밀도 ρ 가 균일한 기체의 계기압력 p_g 을 측정하는 데 사용되는 **열린 관 압력계**는 아래 그림처럼 기체가 들어있는 용기와 액체가 담겨 있는 U관으로 구성된다.

- ❖ 자유낙하 가속도는 *g*이다.
- ❖ U관의 좌측 끝은 기체에 노출되어 있다.
- ❖ U관의 우측 끝은 대기에 노출되어 있다.
- ❖ 기체의 절대압력 p_a 는 대기압 p_0 보다 크다. 즉, $p_a > p_0$.
- ❖ U관의 우측에는 높이가 h인 액체 기둥이 생긴다.

• 기체의 계기압력 p_{g} 은 액체 기둥으로부터 받는 압력과 같다.

$$p_{\rm g} = p_{\rm a} - p_0 \ \& \ p_{\rm a} = p_0 + \rho g h \ \Rightarrow \ \therefore \ p_{\rm g} = + \rho g h$$

• $p_{\rm a} < p_0$ 이면 액체 기둥은 U관의 좌측에 생긴다. 그 액체 기둥의 높이가 h이면 기체의 계기압력 $p_{\rm g}$ 은 다음처럼 쓸 수 있다.

$$p_{\rm g}=p_{\rm a}-p_0 \ \& \ p_{\rm a}+\rho gh=p_0 \ \Rightarrow \ \therefore \ p_{\rm g}=-\rho gh$$

14.4 Pascal의 원리

학습목표

☞ 파스칼의 원리를 이해하고 유압지렛대에 그 원리가 어떻게 적용되는지를 알아본다.

파스칼의 원리

밀도가 균일한 비압축성 액체로 채워진 원통을 고려하자.

❖ 원통의 위쪽은 피스톤으로 막혀있다.

❖ 피스톤에는 p_{ext} 의 압력이 가해지고 이 압력은 액체에 전달된다.

- ❖ 비압축성 액체의 밀도는 *ρ*이다.
- ❖ 자유낙하 가속도는 *g*이다.

• 피스톤으로부터 아래로 h만큼의 깊이에서 작용하는 압력 p은 다음처럼 쓸 수 있다.

$p = p_{\rm ext} + \rho g h$

■ 피스톤으로부터 액체에 전달되는 압력이 $\Delta p_{\rm ext}$ 만큼 증가하면 y=-h에서의 압력도 $\Delta p_{\rm ext}$ 만큼 증가한다.

$$\Delta p = \Delta p_{\rm ext}$$

- 압력 변화 $\Delta p_{\rm ext}$ 는 h에 무관하다.
- 갇혀 있는 비압축성 유체에 가해진 압력은 유체의 모든 부분과 유 체를 담고 있는 그릇의 모든 부분에 똑같이 전달된다.
- 이를 **파스칼의 원리**(Pascal's principle)라고 한다.

유압지렛대

아래 그림과 같은 **유압지렛대**를 고려하자.

- ❖ 그릇 안에는 밀도가 균일한 비압축성 액체가 들어있다.
- ❖ 그릇의 좌측 위쪽과 우측 위쪽은 둘 다 피스톤으로 막혀있다.
- � 입력 피스톤과 출력 피스톤의 윗면적은 각각 A_i 와 A_o 이다.
- ❖ 입력 피스톤에는 크기가 F_i 인 힘이 작용하고, 그 피스톤의 압력은 액체로 전달된다.
- ❖ 출력 피스톤에는 액체에서 피스톤으로 압력이 전달되어 크기가 F_0 인 힘이 작용한다.
- ❖ 입력 피스톤이 아래로 d_i 만큼 움직일 때 출력 피스톤은 위로 d_o 만 큼 움직인다.

- 파스칼의 원리로 말미암아 특정 부분의 압력 변화는 액체의 다른 모든 부분에 똑같이 전달된다.
- 입력 피스톤의 압력 변화와 출력 피스톤의 압력 변화는 같다.

$$\frac{F_{\rm i}}{A_{\rm i}} = \frac{F_{\rm o}}{A_{\rm o}} \quad \Rightarrow \quad \therefore \quad F_{\rm o} = F_{\rm i} \frac{A_{\rm o}}{A_{\rm i}}$$

- $A_0 > A_1$ 이면 F_0 은 F_1 보다 크다.
- 입력 피스톤의 위치변화로 생기는 부피 변화와 출력 피스톤의 위 치변화로 생기는 부피 변화는 같다.

$$A_{i}d_{i} = A_{0}d_{0} \implies \therefore d_{0} = d_{i}\frac{A_{i}}{A_{0}}$$

 $lue{}$ 입력 피스톤이 한 일 $W_{
m i}$ 과 출력 피스톤이 한 일 $W_{
m o}$ 은 같다.

$$W_{\mathrm{o}} = F_{\mathrm{o}}d_{\mathrm{o}} = \left(F_{\mathrm{i}}\frac{A_{\mathrm{o}}}{A_{\mathrm{i}}}\right)\left(d_{\mathrm{i}}\frac{A_{\mathrm{i}}}{A_{\mathrm{o}}}\right) = F_{\mathrm{i}}d_{\mathrm{i}} = W_{\mathrm{i}}$$

• 이러한 유압지렛대를 사용하면 짧은 거리를 움직이는 대신에 작은 힘을 큰 힘으로 변환시킬 수 있다.

14.5 Archimedes의 원리

학습목표

☞ 부력이 발생하는 원인으로부터 아르키메데스의 원리를 이해한다.

부력

아래 그림처럼 밀도가 균일한 물 안에 있는 원통을 고려하자.

- ❖ 원통의 질량은 무시할 수 있다.
- ❖ 원통과 물은 정적 평형상태에 있다.

- ❖ 원통 안에는 질량 $m_{\rm f}$ 의 물로 가득 차 있다.
- ❖ 원통의 윗면에 작용하는 힘의 크기는 F이다.
- ❖ 자유낙하 가속도는 *q*이다.

- 원통 안에 있는 물의 무게는 $m_{\mathrm{f}}g$ 이다.
- 물이 가득 차 있는 원통은 정지해 있으므로 힘의 균형에 말미암아 원통의 아랫면에 작용하는 힘의 크기는 F와 m_tg의 합이다.
- 원통에 작용하는 알짜힘 $\overrightarrow{F}_{\rm b}$ 은 $m_{\rm f}g$ 의 크기와 수면 위쪽을 향하는 방향을 갖는다. 이 힘을 **부력**이라고 한다.

$$\vec{F}_{\rm b} = m_{\rm f} g \; \hat{\rm j}$$

■ 물이 든 원통이 부피가 같고 질량이 m인 물체 X로 대체될 때 물체 X에 작용하는 알짜힘 \overrightarrow{F} 은 다음과 같다.

$$\overrightarrow{F} = \overrightarrow{F}_{\rm b} + \overrightarrow{F}_{\rm g} = (m_{\rm f} - m)g \ \hat{\mathbf{j}}$$

- 여기서 $\overrightarrow{F_g}$ 은 물체 X에 작용하는 중력이다.
- $m < m_{\rm f}$ 이면 물체 X는 수면 위쪽으로 떠오르고 $m > m_{\rm f}$ 이면 물체 X는 수면 아래로 가라앉는다.
- 아래 그림처럼 물체 X의 일부가 수면 위로 나와 있으면 물체에 작용하는 알짜힘 F은 다음처럼 쓸 수 있다.

 $\overrightarrow{F} = \overrightarrow{F}_{\rm b} + \overrightarrow{F}_{\rm g} = (\rho_{\rm f} \, V - m) g \ \hat{\rm j}$

- 여기서 $ho_{
 m f}$ 은 물의 밀도이고 V은 수면 아래로 들어가 있는 물체 ${
 m X}$ 의 부피이다.
- 이때 부력과 중력의 크기가 같으면 물체 X은 정적 평형상태에 있 게 된다.

$\rho_{\rm f} V g \ \hat{\mathbf{j}} = \overrightarrow{F}_{\rm h} = -\overrightarrow{F}_{\sigma} = m g \ \hat{\mathbf{j}} \quad \Rightarrow \quad \therefore \quad \rho_{\rm f} V = m$

아르키메데스의 원리

- 앞의 결과들은 물 뿐만 아니라 다른 모든 유체에서도 성립된다.
- 즉, 어떤 물체의 전부 또는 일부가 유체에 잠기게 되면 잠긴 물체 가 밀어낸 유체의 무게와 같은 크기의 부력이 위쪽으로 작용한다. 이를 일컬어 **아르키메데스 원리**(Archimedes' principle)라고 한다.

겉보기 무게

■ 유체 안에서 저울로 물체의 무게를 측정하면 부력의 영향으로 말 미암아 그 무게는 실제 무게보다 작아진다. 이때 저울 눈금이 가 리키는 무게를 겉보기 무게라고 한다.

(겉보기 무게) = (실제 무게) - (부력의 크기)

■ 물체가 유체 안에 떠 있을 때 그 물체의 겉보기 무게는 0이다.

14.6 이상유체

학습목표

☞ 이상유체가 어떻게 정의되는지를 알아본다.

유선

- 유체를 이루는 각 유체요소가 흐르는 길을 유선(streamline)이라고 한다. 유체요소의 속도는 유선의 접선방향을 향한다.
- 두 유선이 교차한다면 교차점에 있는 유체요소는 동시에 두 가지 속도를 가져야 하므로 두 유선은 절대 교차하지 않는다.

이상유체의 흐름 다음과 같은 흐름을 하는 유체를 이상유체(ideal fluid)라고 한다.

- ❖ 유체의 유선들이 평행한 층을 이룬다.
 - (충흐름; laminar flow 또는 streamline flow)
- ❖ 유체 내 각 지점의 속도가 시간에 따라 변하지 않는다. (정상흐름; steady flow 또는 stationary flow)

❖ 유체가 비압축성이고 그 밀도가 균일하다.

(비압축성 흐름; incompressible flow)

❖ 유체의 흐름에 대한 저항(점성; viscosity)이 없다.

(비점성 흐름; nonviscous flow)

- ★ 마찰이 있는 표면에 있는 물체가 열에너지를 발생시키는 것처럼 점성이 있는 유체도 열에너지를 발생시킨다.
- ❖ 유체의 각 유체요소가 회전하지 않는다.

(비회전 흐름; irrotational flow)

연속방정식

그림처럼 단면적이 일정하지 않은 관을 지나는 이상유체를 고려하자.

- ❖ 유체는 좌측에서 우측으로 흐른다.
- ❖ 관의 좌측 끝에서 유체의 속력은 v₁이다.
- ❖ 관의 우측 끝에서 유체의 속력은 v_2 이다.
- ❖ 관의 좌측 끝에서 관의 단면적은 A₁이다.
- � 관의 우측 끝에서 관의 단면적은 A_2 이다.

• 시간 Δt 동안 부피 ΔV 만큼의 유체가 관의 좌측 끝에서 들어오면 같은 부피만큼의 유체가 관의 우측 끝으로 빠져나간다.

 $A_1 v_1 \Delta t = A_1 \Delta x_1 = \Delta V = A_2 \Delta x_2 = A_2 v_2 \Delta t \quad \Rightarrow \quad \therefore \quad A_1 v_1 = A_2 v_2$

• 위 관계식을 이상유체의 흐름에 대한 **연속방정식**이라고 한다.

> • 이 관계식은 실제의 관뿐만 아니라 유선을 가상적인 경계로 정의 한 흐름관에서도 성립한다.

- 유체요소는 유선을 가로지를 수 없으므로 흐름관 안에 들어 있는 유체는 경계 안에 머물게 된다.
- 즉, 흐름관은 실제의 관처럼 고려될 수 있다.

■ 그러므로 앞의 연속방정식은 다음처럼 쓸 수 있다.

$$R_{\rm V} = Av = 상수$$

- 여기서 $R_{\rm V}$ 은 단위시간당 지나가는 유체의 부피이다. 이를 **부피흐** 름률이라고 한다. 또한, 그 SI 단위는 m³/s이다.
- 연속방정식의 양변에 유체의 밀도 ρ을 곱하면 다음 관계식을 얻 을 수 있다.

$$R_{\rm m} = \rho R_{\rm V} = \rho A v =$$
상수

- 여기서 $R_{\rm m}$ 은 단위시간당 지나가는 유체의 질량이다. 이를 **질량흐름률**이라고 한다. 또한, 그 SI 단위는 kg/s이다.
- 그러므로 흐름관으로 매초마다 들어오는 질량과 흐름관에서 매초 마다 나가는 질량은 같다.

14.7 Bernoulli 방정식

하습목표

☞ 베르누이 방정식을 유도하고 이해한다.

베르누이 방정식 그림처럼 관을 통해 이상유체가 흐르고 있는 경우를 고려하자.

- ❖ 관에 들어있는 밀도가 ρ인 유체를 하나의 계로 고려한다.
- � 시간 Δt 동안 부피 ΔV 만큼의 유체가 좌측에서 들어오고, 같은 부 피의 유체가 우측으로 나간다.
- ❖ y₁와 v₁은 관의 좌측 끝으로 들어오는 유체의 높이와 속력이다.
- ❖ y_2 와 v_2 은 관의 우측 끝에서 나가는 유체의 높이와 속력이다.
- ❖ p₁는 관의 좌측 끝에 작용하는 외부 압력이다.
- ❖ p₂는 관의 우측 끝에 작용하는 외부 압력이다.

- 이 계는 열린 비고립계이다. 즉, 질량이 관 안으로 들어오거나 관 밖으로 빠져나간다. 또한, 외부력이 존재한다.
- 계가 초기 상태에서 최종 상태로 변할 때 일-운동에너지 정리로 말미암아 계에 작용하는 힘이 한 일 W과 계의 운동에너지 변화 ΔK 는 같다.

$$W = \Delta K$$

■ 관에 들어오는 유체 질량과 관에서 나가는 유체 질량은 같지만 유 체 속력은 그렇지 않다. 이 차이는 계의 운동에너지를 변화시킨다.

$$\Delta K = \frac{1}{2} (\Delta m) v_2^2 - \frac{1}{2} (\Delta m) v_1^2 = \frac{1}{2} \rho \Delta V(v_2^2 - v_1^2)$$

- 여기서 Δm 은 시간 Δt 동안 관으로 들어오거나 관에서 나가는 유 체 질량이다.
- 계에 작용하는 힘은 -y축 방향으로 작용하는 중력과 +x축 방향으로 작용하는 힘이 있다.
- 계에 작용하는 중력이 한 일 $W_{\rm g}$ 은 질량이 Δm 인 유체를 높이 y_1 에서 높이 y_2 로 이동시킬 때 중력이 한 일과 같다.

$$W_{\rm g} = - \; (\Delta m) g (y_2 - y_1) = - \; (\rho \Delta \; V) g (y_2 - y_1)$$

• 관의 입구 단면적 A_1 에 작용하는 힘 $F_1\hat{\mathbf{i}}$ 이 유체에 한 일 $W_{\mathrm{p},1}$ 은 압력 p_1 와 부피 ΔV 의 곱과 같다.

$$W_{\rm p,1} = F_1 \Delta x_1 = (p_1 A_1)(\Delta x_1) = p_1 \Delta V$$

• 여기서 Δx_1 은 입구에 있는 유체가 이동한 거리이다.

• 관의 출구 단면적 A_2 에 작용하는 힘 F_2 $\hat{\bf i}$ 이 유체에 한 일 $W_{\rm p,2}$ 은 압력 p_2 와 부피 ΔV 의 곱과 같다.

$$W_{\rm p,2} = F_2 \Delta x_2 = (p_2 A_2)(\Delta x_2) = p_2 \Delta V$$

- 여기서 Δx_2 은 출구에 있는 유체가 이동한 거리이다.
- lue 그러므로 x축으로 작용하는 힘이 계에 한 일 $W_{ t p}$ 은 다음과 같다.

$$W_{\rm p} = W_{\rm p,1} - W_{\rm p,2} = p_1 \Delta V - p_2 \Delta V = -(p_2 - p_1) \Delta V$$

• 계에 작용하는 힘이 한 일 W은 $W_{\scriptscriptstyle D}$ 와 $W_{\scriptscriptstyle D}$ 의 합이다.

$$W = W_{\rm g} + W_{\rm p}$$

• 일-운동에너지 정리로 말미암아 계에 작용하는 힘이 한 일 W은 계의 운동에너지 변화 ΔK 와 같다.

$$\Delta K = W_{\rm g} + W_{\rm p}$$

$$\frac{1}{2} \rho \varDelta \ V(v_2^2 - v_1^2) = - \ \rho g \varDelta \ V(y_2 - y_1) - (p_2 - p_1) \varDelta \ V$$

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2 \ \ 또는 \ p + \frac{1}{2}\rho v^2 + \rho g y = 상수$$

- 위 식을 일컬어 베르누이 방정식(Bernoulli' equation)이라고 한다.
- 베르누이 방정식은 새로운 법칙이 아니라 에너지 보존법칙을 유체 역학에 알맞게 재구성한 것이다.
- 정지해 있는 유체에서 베르누이 방정식은 다음처럼 표현된다.

$$p_1 + \rho g y_1 = p_2 + \rho g y_2 \implies \therefore p_2 = p_1 + \rho g (y_1 - y_2)$$

• 높이가 일정한 관에서 베르누이 방정식은 다음처럼 표현된다.

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

유체요소가 수평인 유선을 따라 움직일 때 속력이 증가하면 압력
 은 감소한다. 반대로, 속력이 감소하면 압력은 증가한다.