Constructions

- 1. **To divide a line segment internally in a given ratio m: n**, where both m and n are positive integers, we follow the steps given below:
 - Step 1: Draw a line segment AB of given length by using a ruler.
 - Step 2: Draw any ray AX making an acute angle with AB.
 - Step 3: Along AX mark off (m + n) points $A_1, A_2, ..., A_{m-1}, A_{m+1}, ..., A_{m+n}$, such that $AA_1 = A_1A_2 = A_{m+n-1}A_{m+n}$.
 - Step 4: Join BA_{m+n}
 - Step 5: Through the point A_m , draw a line parallel to $A_{m+n}B$ by making an angle equal to $\angle AA_{m+n}B$ at A_m , intersecting AB at point P.

The point *P* so obtained is the required point which divides *AB* internally in the ratio *m*: *n*.

Justification

In $\triangle ABA_{m+n}$, we observe that A_mP is parallel to $A_{m+n}B$. Therefore, by Basic Proportionality theorem, we have:

$$\frac{AA_{m}}{A_{m}A_{m+n}} = \frac{AP}{PB}$$

$$\Rightarrow \frac{AP}{PB} = \frac{m}{n} \qquad \left[\because \frac{AA_{m}}{A_{m}A_{m+n}} = \frac{m}{n}, \text{ by construction} \right]$$

$$\Rightarrow AP : PB = m : n$$

Hence, P divides AB in the ratio m: n.

2. Alternative method to divide a line segment internally in a given ratio m: n

Example

Find the point C such that it divides BA in ratio 2:3

Steps of Construction:

- 1. Draw any ray XA making an acute angle with BA.
- 2. Draw a ray YB parallel to XA by making ∠YBA equal to ∠XAB.
- 3. Locate the points A_1 , A_2 , A_3 (m = 3) on AX and B_1 , B_2 (n = 2) on BY such that $AA_1 = A_1A_2 = A_2A_3 = BB_1 = B_1B_2$.
- 4. Join A₃B₂. Let it intersect AB at a point C Then BC : CA = 2:3

Justification

Here $\Delta BB_2C \sim \Delta AA_3C$...AA test

$$\frac{BB_2}{AA_3} = \frac{BC}{AC} ... (c.p.s. t.)$$

$$\frac{2}{3} = \frac{BC}{AC}$$

- 3. The ratio of the sides of the triangle to be constructed with the corresponding sides of the given triangle is known as a **scale factor**. The scale factor may be less or greater than 1.
- 4. If the scale factor is less than 1, then the new figure will be smaller in comparison to the given figure.
- 5. If the scale factor is greater than 1, then the new figure will be bigger in comparison to the given figure.

Construction of Triangle Similar to given Triangle

Consider a triangle *ABC*. Let us construct a triangle similar to \triangle *ABC* such that each of its sides is | | of $(\frac{m}{n})^{th}$ the corresponding sides of \triangle *ABC*.

Steps of constructions when m < n:

- Step 1: Construct the given triangle ABC by using the given data.
- Step 2: Take any one of the three side of the given triangle as base. Let *AB* be the base of the given triangle.
- Step 3: At one end, say A, of base AB. Construct an acute angle $\angle BAX$ below the base AB.
- Step 4: Along AX mark off n points A_1 , A_2 , A_3 ,..., A_n such that

$$AA_1 = A_1A_2 = \dots = A_{n-1}A_n$$

Step 5: Join A_nB

- Step 6: Draw A_mB' parallel to A_nB which meets AB at B'.
- Step 7: From B' draw B'C'||BC meeting AC at C'.

Triangle *AB'C'* is the required triangle each of whose sides is $\left(\frac{m}{n}\right)^{th}$ of the corresponding side of $\triangle ABC$.

Justification

Since $A_m B' || A_n B$. Therefore

$$\frac{AB'}{B'B} = \frac{AA_m}{A_m A_m}$$

[by basic proportionality theorem]

$$\Rightarrow \frac{AB'}{B'B} = \frac{m}{n-m}$$

$$\Rightarrow \frac{B'B}{AB'} = \frac{n-m}{m}$$
Now $\frac{AB}{AB'} = \frac{AB'+B'B}{AB'}$

$$\Rightarrow \frac{AB}{AB'} = 1 + \frac{B'B}{AB'} = 1 + \frac{n-m}{m} = \frac{n}{m}$$

$$\Rightarrow \frac{AB'}{AB'} = \frac{m}{m}$$

In triangles ABC and AB'C', we have

$$\angle BAC = \angle B'AC'$$

and
$$\angle ABC = \angle AB'C'$$

So, by AA similarity criterion, we have

$$\Delta AB'C' \sim \Delta ABC$$

$$\Rightarrow \frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC}$$

$$\Rightarrow \frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC} = \frac{m}{n}$$

Steps of construction when m > n:

- Step 1: Construct the given triangle by using the given data.
- Step 2: Take any one of the three sides of the given triangle and consider it as the base. Let *AB* be the base of the given triangle.
- Step 3: At one end, say A, of base AB. Construct an acute angle $\angle BAX$ below base AB i.e., on the opposite side of the vertex C.
- Step 4: Along AX mark off m (large of m and n) points A_1 , A_2 , A_3 , A_m of AX such that $AA_1 = A_1A_2 = \dots = A_{m-1}A_m$.
- Step 5: Join A_nB to B and draw a line through A_m parallel to A_nB , intersecting the extended line segment AB at B'.
- Step 6: Draw a line through B' parallel to BC intersecting the extended line segment AC at C'.
- Step 7: $\triangle AB'C'$ so obtained is the required triangle.

Justification

Consider triangle ABC and AB' C'. We have:

$$\angle BAC = \angle B'AC'$$

$$\angle ABC = \angle AB'C'$$

So, by AA similarity criterion,

$$\Rightarrow \frac{AB}{AB'} = \frac{BC}{B'C'} = \frac{AC}{AC'}$$

In
$$\triangle A A_m B'$$
, $A_n B || A_m B'$.

$$\therefore \frac{AB}{BB} = \frac{AA_n}{A_n A_m}$$

$$\Rightarrow \frac{BB'}{AB} = \frac{A_n A_m}{AA_n}$$

$$\Rightarrow \frac{BB'}{AB} = \frac{m-n}{n}$$

$$\Rightarrow \frac{AB' - AB}{AB} = \frac{m - n}{n}$$

$$\Rightarrow \frac{AB'}{AB} - 1 = \frac{m - n}{n}$$

$$\Rightarrow \frac{AB'}{AB} = \frac{m}{n}$$

From (i) and (ii), we have

$$\frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC} = \frac{m}{n}$$

The tangent to a circle is a line that intersects the circle at exactly one point.

Tangent to a circle is perpendicular to the radius through the point of contact.

Construction of Triangle to a Circle from a point outside the Circle

Construction of a tangent to a circle from a point outside the circle, when its centre is known

The steps of constructions are as follows:

Step 1: Join the centre O of the circle to the point P.

Step 2: Draw perpendicular bisector of *OP* intersecting *OP* at *Q*.

Step 3: With Q as centre and radius OQ, draw a circle. This circle has OP as its diameter.

Step 4: Let this circle intersect the first circle at two points T and T. Join PT and P T.

PT and *PT* are the two tangents to the given circle from the point P.

Justification

Join OT and OT

It can be seen that $\angle PTO$ is an angle in the semi-circle. We know that angle in a semi-circle is a right angle.

∴ ∠*PTO* = 90°

 \Rightarrow OT \perp PT

Since *OT* is the radius of the circle, *PT* has to be a tangent of the circle. Similarly, *PT* is a tangent of the circle.