MATH 231: Numerical ODEs

Pratham Lalwani

March 16, 2025

Question 1: Eigenvalues of special tridiagonal matrices

This question is about finding eigenvalues of tridiagonal linear systems arising from applications, specifically finding the eigenvalues of an $n \times n$ matrix of the form,

$$A = \left(\begin{array}{cccc} a & b & & \\ c & a & b & & \\ & \ddots & \ddots & \ddots & \\ & & c & a & b \\ & & c & a \end{array}\right)$$

where a, b, c are real numbers with bc > 0 (i.e. b and c have the same signs).

(a) Show that the eigenvalue problem of A is equivalent to the equations

$$cv_{j-1} + (a - \lambda)v_j + bv_{j+1} = 0, \quad j = 1, \dots, n$$

 $v_0 = 0 = v_{n+1}$

where $\mathbf{v} = (v_1, \dots, v_n)^T$ is an eigenvector of A associated with the eigenvalue λ .

(b) The recurrence relation (1) is a second order linear difference equation and can be solved similar to second order linear differential equations. By guessing $v_j = r^j$ for some constant r, show that r satisfies

$$r_{\pm} = \frac{\lambda - a \pm \sqrt{(\lambda - a)^2 - 4bc}}{2b}, \quad \text{with} \quad r_{+}r_{-} = \frac{c}{b}$$

(c) Show by contradiction that r_{\pm} must be distinct.

Hint: if $r_{\pm} = r$ are repeated, then $v_j = Ar^j + Bjr^j$ for some constants A, B.

(d) Since r_{\pm} are distinct, the general solution for (1) is $v_j = Ar_+^j + Br_-^j$ for constants A, B. Use this to conclude from (2) and (3) that,

$$\left(\frac{br_+^2}{c}\right)^{n+1} = 1$$

(e) From part (c), (3) and (4), show that r_{\pm} must be complex valued and conclude that (4) has the solutions for k = 1, ..., n,

$$r_{\pm,k} = \sqrt{\frac{c}{b}} \exp\left(\frac{\pm ik\pi}{n+1}\right), \quad \text{where } i = \sqrt{-1}$$

(f) Using part (e), conclude that the eigenvalues of A is given by

$$\lambda_k = a + 2\operatorname{sgn}(\sqrt{bc})\cos\left(\frac{\pi k}{n+1}\right), \quad k = 1, \dots, n$$

(g) Find the eigenvalues of the $n \times n$ finite difference matrix $A_h = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & \ddots & & \\ & \ddots & \ddots & & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$, where

$$h = \frac{1}{n+1}.$$

Conclude that A_h is symmetric positive definite and find its condition number $\kappa(A_h)$ with respect to $\|\cdot\|_2$. Show that $\kappa(A_h) = O(h^{-2})$ as number of grid points n increases. What does this mean for solving $A_h x = b$ when n is large?

1

Solution

(a) Let (λ, \vec{v}) be an eigenpair of A

$$A\vec{v} = \lambda \vec{v}$$

$$(A - \lambda I)\vec{v} = \vec{0}$$

$$\begin{pmatrix} (a - \lambda)v_1 + bv_2 \\ cv_1 + (a - \lambda)v_2 + bv_3 \\ \vdots \\ cv_{n-2} + (a - \lambda)v_{n-1} + b_n \\ \vdots \\ cv_{n-1} + (a - \lambda)v_n \end{pmatrix} = \vec{0}.$$

We can write the above relation as the following,

$$cv_{j-1} + (a - \lambda)v_j + bv_{j+1} = 0. (1)$$

Where $0 \le j \le n+1$ and $v_0 = 0 = v_{n+1}$

(b) Using the hint we guess the following form of the solution $v_i = r^j$. Substituting in 1,

$$cr^{j-1} + (a - \lambda) r^j + br^{j+1} = 0$$

 $c + (a - \lambda) r + br^2 = 0$

Using the quadratic formula, we get

$$r_{\pm} = \frac{\lambda - a \pm \sqrt{(a - \lambda)^2 - 4bc}}{2b}.$$

As r_{\pm} are the roots to a quadratic, hence

$$r_{+}r_{-} = \frac{c}{b} \tag{2}$$

(c) If 1 has a repeated root, say $r_{\pm} = r$, then solution to the recursion would look like,

$$v_j = Ar^j + Bjr^j.$$

Checking the boundary conditions, $v_0 = 0 = v_{n+1}$

$$v_0 = Ar^0 + B(0)r^0 = A = 0. (3)$$

$$v_{n+1} = (0)r^{n+1} + B(n+1)r^{n+1} = B(n+1)r^{n+1} = 0 \implies B = 0.$$
 (4)

Combining 3 & 4 gives,

$$v_i = 0.$$

Which is the trivial eigenvector. Hence, we cannot have a repeated root if we want a non-zero eigenvector.

(d) From (c) we have that roots are distinct. Therefore, we look for solutions of the form $v_j = Ar_+^j + Br_-^j$ for some constants A and B defined by the "boundary conditions" of the recursion. We have,

$$v_0 = A + B = 0 \implies A = -B$$

$$v_{n+1} = Ar_+^{n+1} + Br_-^{n+1} = 0 \implies r_+^{n+1} = r_-^{n+1}$$
(5)

From, 2 and 5, it follows that

$$(r_+^2)^{(n+1)} = \left(\frac{c}{b}\right)^{n+1}$$
$$\left(\frac{br_+^2}{c}\right)^{(n+1)} = 1$$

Question 2: Classical iterative methods for strictly diagonally dominant matrices

- (a) Show that the diagonal part of any strictly diagonally dominant (S.D.D.) matrix is invertible.
- (b) Recall the Gershgorin's theorem below, which can give useful information about the eigenvalues of a matrix. The eigenvalues of a complex valued matrix A lies in the union of n discs $\bigcup_{i=1}^{n} D_i$ on the complex plane, where

$$D_i = \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \right\}$$

Using Gershgorin's theorem, conclude S.D.D. matrices are invertible. Hint: Show that $0 \notin D_i$ for all i = 1, ..., n.

The next two parts are about showing convergence of Jacobi and Gauss-Seidel iterations for S.D.D. matrices.

- (c) Recall the matrix $-M^{-1}N$ associated with the Jacobi iteration takes the form $-D^{-1}(L+U)$, where A=L+D+U.
 - (i) Let A be S.D.D. and λ be any eigenvalue of $-D^{-1}(L+U)$. Show that $\det(L+U+\lambda D)=0$ using part (a).
 - (ii) Now suppose $|\lambda| \ge 1$. Deduce from A being S.D.D. that $L + U + \lambda D$ must also be S.D.D.
 - (iii) Deduce a contradiction by applying the result from part (b) to $L + U + \lambda D$, and conclude that $|\lambda| < 1$.
 - (iv) Combine parts (i)-(iii) to conclude that Jacobi iteration converges for S.D.D. matrices.
- (d) Follow a similar argument as part (c) to show that Gauss-Seidel iterations converges for S.D.D. matrices.

Solution

(a) Let A be a S.D.D matrix and,

$$\implies a_{ii} > \sum_{\substack{j=1\\j\neq i}}^n a_{ij} \ge 0 \implies a_{ii} > 0 \quad \forall 1 \le i \le n.$$

Let D be the matrix containing the diagonial entries of A, hence

$$D = \begin{bmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{bmatrix}.$$

As, all $a_{ii} > 0$, therefore we D^{-1} exists.

(b) Let λ_i be the eigenvalues associated with disc D_i . Suppose $0 \in D_i$ for some $1 \le i \le n$, therefore, we have,

$$a_{ii} \leqslant \sum_{\substack{j=0\\i\neq i}}^{n} a_{ij}.$$

3

Which is false as A is a S.D.D matrix, hence, $0 \notin D_i$. Therefore we have, $|\lambda_i| > 0 \quad \forall i, 1 \le i \le n \implies A^{-1}$ exists. (c) (i) Given that λ is an eigenvalue of $-D^{-1}(L+U)$. Therefore we have \vec{v} such that $\vec{v} \neq 0$,

$$-D^{-1}(L+U)\vec{v} = \lambda \vec{v}$$
$$(L+U)\vec{v} = -\lambda D\vec{v}$$
$$(L+U+\lambda D)\vec{v} = \vec{0}.$$

As there is a non-zero null vector associated with $L + U + \lambda D$, therefore $\det(L + U + \lambda D) = 0$.

(ii) Given that A is S.D.D. Suppose $|\lambda| \ge 1$. Consider,

$$\begin{aligned} |(L+U+\lambda D)_{ii}| &= |\lambda a_{ii}| = |\lambda||a_{ii}| \\ &> |\lambda|| \sum_{\substack{j=1\\j\neq i}}^n a_{ij}| \\ &\geq |\sum_{\substack{j=1\\j\neq i}}^n a_{ij}| \\ &= |\sum_{\substack{j=1\\j\neq i}}^n (L+U+\lambda D)_{ij}| \end{aligned}$$

Hence, $(L + U + \lambda D)$ is S.D.D. .

(iii) If $|\lambda| \ge 1$ and A is S.D.D, gives that $(L+U+\lambda D)$ is S.D.D . Therefore, $(L+U+\lambda D)$ is invertible. Which is a contradiction as $det(L+U+\lambda D)=0$. Therefore, $|\lambda|<1$.

(iv) Let M = D and N = L + U. From parts (i)-(iii) we get,

$$\lambda_i \leq \lambda_{max} < 1 \implies \rho(-M^{-1}N) < 1.$$

By theorem of convergence of iterative solvers we get, iterations based on $-M^{-1}N$ converges to 0.

(d) (i) Let λ be an eigenvalue of $-(L+D)^{-1}(U)$. Therefore we have \vec{v} such that $\vec{v} \neq 0$,

$$-(L+D)^{-1}(L+U)\vec{v} = \lambda \vec{v}$$

$$(U)\vec{v} = -\lambda(L+D)\vec{v}$$

$$(U+\lambda(L+D))\vec{v} = \vec{0}.$$

As there is a non-zero null vector associated with $U + \lambda (L + D)$, therefore $\det(U + \lambda (L + D)) = 0$.

(ii) Given that A is S.D.D. Suppose $|\lambda| \geq 1$. Consider,

$$\begin{aligned} |(U + \lambda(L + D))_{ii}| &= |\lambda a_{ii}| = |\lambda| |a_{ii}| \\ &> |\lambda| |\sum_{\substack{j=1 \ j \neq i}}^{n} a_{ij}| \\ &\geq |\lambda \sum_{\substack{j=1 \ j \neq i}}^{i-1} a_{ij} + \sum_{\substack{j=i+1}}^{n} a_{ij}| \\ &= |\sum_{\substack{j=1 \ i \neq i}}^{n} (U + \lambda(L + D))_{ij}| \end{aligned}$$

Hence, $(U + \lambda(L + D))$ is S.D.D. .

- (iii) If $|\lambda| \ge 1$ and A is S.D.D, gives that $(U + \lambda(L + D))$ is S.D.D. Therefore, $(L + U + \lambda(L + D))$ is invertible. Which is a contradiction as $det(U + \lambda(L + D)) = 0$. Therefore, $|\lambda| < 1$.
- (iv) Let M = L + D and N = U. From parts (i)-(iii) we get,

$$\lambda_i \leq \lambda_{max} < 1 \implies \rho(-M^{-1}N) < 1.$$

By theorem of convergence of iterative solvers we get, iterations based on $-M^{-1}N$ converges to 0.

Question 3: Classical iterative methods for symmetric positive definite matrices

This question is about coding and comparing classical iterative methods for the S.P.D. matrix A_h from Q1(g).

- (a) Write a pseudocode for the classical iterative methods: Richardson, optimal Richardson, Jacobi, Gauss-Seidel, S.O.R., and optimal S.O.R.
- (b) Implement a program to solve $A_h x = b$ with $b = (1, ..., 1)^T \in \mathbb{R}^{20}$ and $x_0 = (1, 0, ..., 0)^T \in \mathbb{R}^{20}$ using Richardson (with $\omega = \lambda_{\text{max}}^{-1}$), optimal Richardson, Jacobi, Gauss-Seidel, S.O.R. (with $\theta = 1.2$) and optimal S.O.R. Generate a plot comparing the log of their residual in ℓ_2 norm versus iterations up to 5000. Rank the performance of each method by comparing the iterations needed to reach the residual tolerance of 10^{-14} . Use sparse representation when appropriate.

 Hint: Use Q1(q) to find parameters for Richardson and vary θ to find an approximate optimal
 - Hint: Use QI(g) to find parameters for Richardson and vary θ to find an approximate optimal parameter for S.O.R.
- (c) Comment on the decreases in performance when n=1000. Explain briefly how this relates to $\kappa(A_h)=O\left(h^{-2}\right)$.

Solution

Algorithm 1: Richardson Iteration

```
1 function ded(A,b,x_0,\omega,tol,maxIter):
       Input:
       A: The matrix to find the solution to
       b: The resultant vector in Ax = b
       x_0: The initial guess
       \omega: Richardson parameter (fixed)
       maxIter: The maximum of iterations
       Output: x: The solution to Ax = b
       M \leftarrow \omega^{-1}I
       N \leftarrow A - M
       x \leftarrow x_0
       r \leftarrow b - Ax
       while ||r||_2 < tol and i < maxIter:
           x \leftarrow x + \omega r
           r \leftarrow b - Ax
 8
       end
 9
10
       return x;
```

Algorithm 2: Optimal Richardson Iteration

```
1 function ded(A, b, x_0, tol, maxIter):
        Input:
        A: The matrix to find the solution to
        b: The resultant vector in Ax = b
        x_0: The initial guess
        maxIter: The maximum of iterations
        Output: x: The solution to Ax = b
        \omega \leftarrow \frac{-}{\lambda_{max}\left(A\right) + \lambda_{min}\left(A\right)}
 2
        M \leftarrow \omega^{-1}I
 3
        N \leftarrow A - M
 4
        x \leftarrow x_0
 5
        r = b - Ax
 6
        while ||r||_2 < tol and i < maxIter:
 7
            x \leftarrow x + \omega r
            r \leftarrow b - Ax
 9
        end
10
11
        return x;
```

Algorithm 3: Jacobi Iteration

```
1 function ded(A, b, x_0, tol, maxIter):
        Input:
        A: The matrix to find the solution to
        b: The resultant vector in Ax = b
        x_0: The initial guess
        maxIter: The maximum of iterations
        Output: x: The solution to Ax = b
        M \leftarrow \operatorname{diag}(A)
        N \leftarrow A - M
 3
        x \leftarrow x_0
 4
        r \leftarrow b - Ax
        while ||r||_2 < tol \ and \ i < maxIter:

| x \leftarrow M^{-1}(x + b - Nx)
 6
             r \leftarrow b - Ax
 8
            i = i + 1
 9
        \quad \text{end} \quad
10
        {	t return} \ x
11
```

Algorithm 4: Gauss-Sidel Iteration

```
1 function ded(A, b, x_0, tol, maxIter):
        A: The matrix to find the solution to
        b: The resultant vector in Ax = b
        x_0: The initial guess
        maxIter: The maximum of iterations
        Output: x: The solution to Ax = b
        M \leftarrow \operatorname{diag}(A) + \operatorname{lower}(A)
 2
        N \leftarrow A - M
 3
        x \leftarrow x_0
 4
 5
        r \leftarrow b - Ax
        i \leftarrow 0
 6
        while ||r||_2 < tol \ and \ i < maxIter:
            x \leftarrow M^{-1}(x + b - Nx)
            r \leftarrow b - Ax
 9
            i = i + 1
10
        end
11
12
        return x;
```

Question 4: Steepest Descent and Conjugate Gradient

- (a) Let A be a S.P.D. matrix. Show that $(x, y)_A := x^T A y$ for $x, y \in \mathbb{R}^n$ forms an inner product on \mathbb{R}^n .
- (b) Using part (a), conclude that $\|x\| = (x, x)_A^{1/2}$ for $x \in \mathbb{R}^n$ is a norm on \mathbb{R}^n . Hint: You can assume the Cauchy-Schwarz inequality $|(x, y)_A| \leq \|x\|_A \|y\|_A$ holds.
- (c) For the method of Steepest Descent, show that $\nabla f(x_k)$ and $\nabla f(x_{k+1})$ are orthogonal (i.e. zig-zaging behavior), where $f(y) = \frac{1}{2}y^TAy y^Tb$. Hint: Recall how the step size for Steepest Descent is determined.
- (d) Repeat the experiment from $\mathbf{Q3}(\mathbf{b})$ with $\mathbf{b} = (1, \dots, 1)^T \in \mathbb{R}^{1000}$ and $\mathbf{x}_0 = (1, 0, \dots, 0)^T \in \mathbb{R}^{1000}$ using the method of Steepest Descent and Conjugate Gradient. Generate a plot comparing the log of their residual in ℓ_2 norm versus iterations up to 5000. Rank their performance by comparing the iterations needed to reach the residual tolerance of 10^{-14} , as well as versus the classical iterative methods. Verify your CG method terminates after the desired number of iterations. Use sparse representation when appropriate.

Solution

- (a) (.,.) is an inner-product if:
 - (a)
 - (b)
 - (c)