Quiz #2

- Due Apr 14 at 11:59pm
- Points 10
- Questions 10
- Available Apr 12 at 12:01am Apr 14 at 11:59pm
- Time Limit 60 Minutes

Instructions

OK, now you should be in the swing of things!

Same drill -- 10 points, 60 minutes to do it in. All open notes.

Good luck!

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	16 minutes	10 out of 10

(!) Correct answers will be available on Apr 15 at 12:01am.

Score for this quiz: 10 out of 10 Submitted Apr 13 at 10:51am

This attempt took 16 minutes.

Question 1

1 / 1 pts

Amdahl's Law says that we will probably never get 100% Speedup Efficiency. Why?

- Compilers will never be that good.
- There will always be heat generated by the cores.
- There will always be programming imperfdetions by less-than-perfect programmers
- There will always be a sequential fraction to our program, preventing infinite parallelism.

Question 2

1 / 1 pts

According to Amdahl's Law, what is the maximum speedup achievable?

- #cores
- 1/#cores
- 1/Fsequential

○ 1/Fparallel
Question 3
1 / 1 pts
If you have a working multicore program, can you compute the F _{parallel} ?
No, it's too compliicated.
Yes, but it will require more knowledge than we are covering here
Yes, measure a speedup and use the inverse Amdahl's Law
O No, it's too unpredictable
Question 4
1 / 1 pts What does Gustafson's Observation tall us about using Amdahl's Law?
What does Gustafson's Observation tell us about using Amdahl's Law?
The speeduup stays about the same regardless of data set size
Amdahl's Law was good for its time, but doesn't apply now.
The situation is actually much worse than Amdahl's Law indicates
Amdahl's Law is actually too pessimistic Fparallel increases as the data set size increases.
Question 5
1 / 1 pts In OpenMD what does the MD stand for?
In OpenMP, what does the MP stand for?
Mike Pailey Many Processes
Many Processes
Much Parallelism
Multi-Processing
Question 6
1 / 1 pts
True or False?
One of the great things about OpenMP is that it guarantees identical behavior across different
vendors and hardware.
True
False
Question 7
1 / 1 pts

True or False?

OpenMP is deterministic in its scheduling. For example, a piece of code that looks like this:
omp_set_num_threads(8);
#pragma omp parallel default(none)
printf("Hello, World, from thread #%d ! \n" , omp_get_thread_num());
will always produce the same output on the same hardware.
True
False
Question 8 1 / 1 pts
In a parallel for loop in OpenMP, the clause:
default(none)
is
an illegal syntax error
OK, but only if you are an experienced expert
likely to cause problems with the logic
a good idea, but not required
Question 9 1 / 1 pts
The advantage of using the OpenMP reduction clause is
Actually a disadvantage it can produce wrong, non-deterministic answers
No advantage, it is just cleaner code
It greatly speeds, and makes thread-safe, reduction operations
It is less likely to result in a compiler error
Question 10 1 / 1 pts A "Mutex" is
A sound you make when you sneeze
A "multiple texture" for graphics processing
A "mutual text" message

Another term for a "mutual exclusion lock"

Quiz Score: 10 out of 10