Rank-68 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_1 + X_0^2 X_2 = 0$$

General information

Number of lines	9
Number of points	11
Number of singular points	3
Number of Eckardt points	6
Number of double points	0
Number of single points	4
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	39
Type of lines on points	$5, 3^6, 1^4$

Singular Points

The surface has 3 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$
 $2: P_8 = \mathbf{P}(1,1,1,0) = \mathbf{P}(1,1,1,0)$ $1: P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1)$

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \mathbf{Pl}(1, 0, 1, 0, 0, 0)_3$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{6} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{6} = \mathbf{PI}(0,0,0,0,1,0)_{9}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \mathbf{PI}(1,0,1,0,1,0)_{13}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \mathbf{PI}(0,0,0,1,1,0)_{15}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{PI}(0,1,0,0,1,0)_{11}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{PI}(0,1,0,1,0,0)_{7}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \mathbf{PI}(1,1,1,1,0,0)_{8}$$

$$\ell_{7} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{PI}(0,1,0,1,1,0)_{17}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \mathbf{PI}(1,1,1,1,1,0)_{18}$$

Rank of lines: (1, 6, 3, 13, 20, 33, 15, 27, 17)

Rank of points on Klein quadric: (3, 9, 13, 15, 11, 7, 8, 17, 18)

Eckardt Points

The surface has 6 Eckardt points:

 $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0), T = 5$

 $1: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1), T = -1$

 $2: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0), T = 5$

 $3: P_8 = \mathbf{P}(1, 1, 1, 0) = \mathbf{P}(1, 1, 1, 0), T = -1$

 $4: P_9 = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1), T = 5$

 $5: P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1). T = 5$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 4 single points:

The single points on the surface are:

$$0: P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_3

1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_4

2 : $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_3

The single points on the surface are:

$$3: P_{13} = (1,0,1,1)$$
 lies on line ℓ_4

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c} 012345678 \\ \hline 0 & 0111001111 \\ 1 & 101111111 \\ 2 & 110001111 \\ 3 & 010011010 \\ 4 & 010101010 \\ 5 & 111110111 \\ 6 & 111001011 \\ 7 & 111111101 \\ 8 & 111001110 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_7	ℓ_8
in point	P_0	P_0	P_7	P_7	P_8	P_8

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8
in point	P_0	P_0	P_3	P_3	P_3	P_9	P_3	P_9

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6	ℓ_7	ℓ_8
in point	P_0	P_0	P_{14}	P_4	P_4	P_{14}

Line 3 intersects

Line	ℓ_1	ℓ_4	ℓ_5	ℓ_7
in point	P_3	P_3	P_3	P_3

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_7
in point	P_3	P_3	P_3	P_3

Line 5 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_8
in point	P_7	P_3	P_{14}	P_3	P_3	P_7	P_3	P_{14}

Line 6 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_5	ℓ_7	ℓ_8
in point	P_7	P_9	P_4	P_7	P_4	P_9

Line 7 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_8
in point	P_8	P_3	P_4	P_3	P_3	P_3	P_4	P_8

Line 8 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_7
in point	P_8	P_9	P_{14}	P_{14}	P_9	P_8

The surface has 11 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$4: P_6 = (1,0,1,0)$	$8: P_{11} = (1, 1, 0, 1)$
$1: P_3 = (0,0,0,1)$	$5: P_7 = (0, 1, 1, 0)$	9: $P_{13} = (1,0,1,1)$
$2: P_4 = (1, 1, 1, 1)$	$6: P_8 = (1, 1, 1, 0)$	10: $P_{14} = (0, 1, 1, 1)$
$3: P_5 = (1, 1, 0, 0)$	$7: P_9 = (1,0,0,1)$	