Marius Dadarlat *

Department of Mathematics, Purdue University, West Lafayette IN 47907

October 5, 1999

Abstract

Let A, B be unital C*-algebras and assume that A is separable and quasidiagonal relative to B. Let $\varphi, \psi: A \to B$ be unital *-homomorphisms. If A is nuclear and satisfies the UCT, we prove that φ is approximately stably unitarily equivalent to ψ if and only if $\varphi_* = \psi_*: K_*(A, \mathbb{Z}/n) \to K_*(B, \mathbb{Z}/n)$ for all $n \geq 0$. We give a new proof of a result of $[DE_2]$ which states that if A is separable and quasidiagonal relative to B and if $\varphi, \psi: A \to B$ have the same KK-class, then φ is approximately stably unitarily equivalent to ψ . For nuclear separable C*-algebras A, we give a KK-theoretical description of the closure of zero in $\operatorname{Ext}(A, B)$.

1 Introduction

Two representations $\gamma, \gamma': A \to \mathbb{M}(\mathcal{K} \otimes B)$ are called properly approximately unitarily equivalent, written $\gamma \simeq \gamma'$, if there is a sequence of unitaries $(u_n) \in \mathbb{C}I + \mathcal{K} \otimes B$ such that

- $\lim_{n\to\infty} \|u_n \gamma(a) u_n^* \gamma'(a)\| = 0$, for all $a \in A$
- $u_n \gamma(a) u_n^* \gamma'(a) \in \mathcal{K} \otimes B$, for all n, and $a \in A$.

The continuous version of the above equivalence is defined as follows [DE₂]. Two representations $\gamma, \gamma' : A \to \mathbb{M}(\mathcal{K} \otimes B)$ are called *properly asymptotically unitarily equivalent*, written $\gamma \cong \gamma'$, if there is a norm-continuous path of unitaries $u : [0, \infty) \to \mathbb{C}I + \mathcal{K} \otimes B$ such that

^{*}The author was partially supported by an NSF grant

- $\lim_{t\to\infty} \|u_t \gamma(a) u_t^* \gamma'(a)\| = 0$, for all $a \in A$
- $u_t \gamma(a) u_t^* \gamma'(a) \in \mathcal{K} \otimes B$, for all $t \in [0, \infty)$, and $a \in A$.

As in [DE₂], the use of the word 'proper' reflects that the unitaries implementing the above equivalence relations are compact perturbations of the identity.

Let A, B be unital C*-algebras and assume that A is separable. For two unital *-homomorphisms $\varphi, \psi : A \to B$ consider the following conditions.

- (1) $[\varphi] = [\psi]$ in KK(A, B).
- (2) $\varphi \oplus \gamma \cong \psi \oplus \gamma$ for some unital representation $\gamma : A \to M(\mathcal{K} \otimes B)$.
- (3) $[\varphi] = [\psi]$ in Rørdam's group $KL(A, B) = KK(A, B)/Pext(K_*(A), K_{*+1}(B)),$ ([Rø]).
- (4) $\varphi \oplus \gamma \simeq \psi \oplus \gamma$ for some unital representation $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$.
- (5) φ is approximately stably unitarily equivalent to ψ (see Definition 3.7).

By a result of Eilers and the author $[DE_2]$ we have $(1) \Leftrightarrow (2)$. Note that $(2) \Rightarrow (4)$ is obvious. Suppose that A is quasidiagonal relative to B. This notion was introduced by Salinas [Sa], see Definition 3.5. Then it is not hard to see that $(4) \Leftrightarrow (5)$, see Lemma 3.8.

Condition (3) is stated under the assumption that A satisfies the universal coefficient theorem (abbreviated UCT) of [RS]. In view of the universal multi-coefficient theorem (UMCT) of [DL], (3) is equivalent to

(3')
$$\varphi_* = \psi_* : K_*(A, \mathbb{Z}/n) \to K_*(B, \mathbb{Z}/n)$$
 for all $n \ge 0$.

In this paper we prove that if A is separable nuclear quasidiagonal relative to B and satisfies the UCT, then $(3) \Leftrightarrow (4)$, hence $(3) \Leftrightarrow (5)$, see Theorem 5.1. The latter equivalence was conjectured informally by Lin [L], and it was known to be true if A is abelian [D₁], or if A can be approximated by nuclear C*-subalgebras satisfying the UCT and having finitely generated K-theory and B is simple [L], or if A is simple and B satisfies certain conditions in unstable K-theory and has bounded exponential rank [L], [DE₁].

The proof of $(3) \Leftrightarrow (4)$ is based on a new proof that we give for the implication $(1) \Rightarrow (5)$ of $[DE_2]$, stated here as Theorem 3.11. Unlike previous approaches, the proof does not use the theorem of Kadison and Ringrose on derivable automorphisms of C*-algebras.

The same result is used to give a KK-theoretical description of the closure of zero in $\operatorname{Ext}(A,B)$, see Theorem 4.3. This yields new proofs of several results of Schochet [Sch₁]-[Sch₃], see Corollaries 4.5–4.7. Corollary 4.7 is used in the proof of Theorem 5.1.

The results on approximate stable unitary equivalence of *-homomorphisms have important applications in Elliott's classification program. There are interesting situations when

the maps γ_n from Definition 3.7 can be chosen to be *-homomorphisms. For instance if A is nuclear and residually finite dimensional then γ_n can be taken to be finite dimensional representations of A into matrices over $\mathbb{C}1_B$. Another example considered by Lin [L] and generalized in $[DE_1]$ is when A is nuclear and there is a full unital embedding $\iota: A \hookrightarrow B$. In that case one can take $\gamma_n = n \cdot \iota = \iota \oplus \cdots \oplus \iota$ (n-times).

2 Some preliminaries in KK-theory

Throughout this paper, A is a separable C*-algebra and B is a σ -unital C*-algebra. We work with Hilbert B-modules E countably generated over B such as $E = H_B = H \otimes B$ where H is a separable infinite dimensional Hilbert space. We use the notation from $[Kas_1]$. Let $\mathbb{M}(K \otimes B)$ denote the multiplier C*-algebra of $K \otimes B$ and let $Q(K \otimes B)$ denote the generalized Calkin algebra $\mathbb{M}(K \otimes B)/K \otimes B$. The quotient map $\mathbb{M}(K \otimes B) \to Q(K \otimes B)$ is denoted by π . Very often we will identify $\mathbb{M}(K \otimes B)$ with $L(H_B)$. Recall that the group $\operatorname{Ext}^{-1}(A, B)$ is generated by *-homomorphisms from A to $Q(K \otimes B)$ which admit completely positive liftings $A \to \mathbb{M}(K \otimes B)$. Such a map is called a semisplit extension. The group $\operatorname{KK}^1(A, B)$ consists of equivalence classes of pairs (τ, P) where $\tau : A \to \mathbb{M}(K \otimes B)$ is a representation and $P \in \mathbb{M}(K \otimes B)$ is a selfadjoint projection such that $[\tau(a), P] \in K \otimes B$ for all $a \in A$. Kasparov $[Kas_2]$ proved that there is an isomorphism $\kappa : \operatorname{KK}^1(A, B) \to \operatorname{Ext}^{-1}(A, B)$ which maps the class of (τ, P) to the class of the extension $\pi \circ P\tau(-)P$.

Let $x \in \mathrm{KK}^1(C(S^1), \mathbb{C})$ be the element defined by the Toeplitz extension

$$0 \longrightarrow \mathcal{K} \longrightarrow T \longrightarrow C(S^1) \longrightarrow 0.$$

Recall from [Bla, 17.8.5] that there is a natural homomorphism

$$\tau_A: \mathrm{KK}^*(C(S^1), \mathbb{C}) \longrightarrow \mathrm{KK}^*(C(S^1) \otimes A, A).$$

Using the Kasparov product

$$\mathrm{KK}^1(C(S^1)\otimes A, A)\times \mathrm{KK}(A, B)\longrightarrow \mathrm{KK}^1(C(S^1)\otimes A, B)$$

we define a group homomorphism

$$\tau_A(x) \otimes - : \mathrm{KK}(A, B) \longrightarrow \mathrm{KK}^1(C(S^1) \otimes A, B).$$

This homomorphism is injective, and in fact its composition with the restriction map

$$\mathrm{KK}^1(C(S^1)\otimes A, B) \to \mathrm{KK}^1(SA, B)$$

is an isomorphism. It coincides with the homomorphism

$$\tau_A(x_0) \otimes - : \mathrm{KK}(A, B) \longrightarrow \mathrm{KK}^1(SA, B),$$

where $x_0 \in \mathrm{KK}^1(S\mathbb{C},\mathbb{C})$ is the element defined by the reduced Toeplitz extension

$$0 \longrightarrow \mathcal{K} \longrightarrow T_0 \longrightarrow S\mathbb{C} \longrightarrow 0.$$

Up to a sign, its inverse is given by $\tau_A(y_0) \otimes - : \mathrm{KK}^1(SA, B) \longrightarrow \mathrm{KK}(A, B)$, where $y_0 \in \mathrm{KK}^1(\mathbb{C}, S\mathbb{C})$ is the class of the extension

$$0 \longrightarrow S\mathbb{C} \longrightarrow C\mathbb{C} \longrightarrow \mathbb{C} \longrightarrow 0.$$

(Recall that $x_0 \otimes y_0 = -1$ and $y_0 \otimes x_0 = -1$ by Bott periodicity, [Bla, 19.2].)

Given two unital *-homomorphisms $\varphi, \psi: A \to B$, we want an explicit computation of $\tau_A(x) \otimes ([\varphi] - [\psi]) \in \mathrm{KK}^1(C(S^1) \otimes A, B)$ or rather of its image in $Ext^{-1}(C(S^1) \otimes A, B)$ under Kasparov's isomorphism $\kappa: \mathrm{KK}^1(C(S^1) \otimes A, B) \to Ext^{-1}(C(S^1) \otimes A, B)$. In order to formulate the result we need some notation. Let $\mathbb{Z}_+ = \{k \in \mathbb{Z} : k \geq 0\}, \mathbb{Z}_- = \{k \in \mathbb{Z} : k < 0\}$, and let $p_{\pm}: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z}_{\pm})$ be the canonical projections. Let $S: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ be the bilateral shift, $Se_i = e_{i+1}$, where (e_i) is the canonical orthonormal basis of $\ell^2(\mathbb{Z})$. Define $\Phi, \Psi: A \to \mathbb{M}(\mathcal{K}(\ell^2(\mathbb{Z}_+)) \otimes B)$ by

$$\Phi = \varphi \oplus \varphi \oplus \psi \oplus \varphi \oplus \psi \oplus \cdots = \varphi \oplus (\varphi \oplus \psi)_{\infty}$$

$$\Psi = \psi \oplus \varphi \oplus \psi \oplus \varphi \oplus \psi \oplus \cdots = \psi \oplus (\varphi \oplus \psi)_{\infty}.$$

Let $w: \ell^2(\mathbb{Z}_+) \otimes B \to \ell^2(\mathbb{Z}_+) \otimes B$ be a unitary operator defined by $w(e_0 \otimes b) = e_1 \otimes b$, $w(e_{2k-1} \otimes b) = e_{2k+1} \otimes b$ and $w(e_{2k} \otimes b) = e_{2k-2} \otimes b$ for $k \geq 1$ and $b \in B$, where (e_i) is the canonical orthonormal basis of $\ell^2(\mathbb{Z}_+)$. Note that $\Phi(a) = w\Psi(a)w^*$ for all $a \in A$. Therefore $[\Phi(a), w] \in \mathcal{K} \otimes B$ for all $a \in A$ since $\Phi(a) - \Psi(a) \in \mathcal{K} \otimes B$.

If $x \in \mathbb{M}(\mathcal{K} \otimes B)$, then $\pi(x) \in Q(\mathcal{K} \otimes B)$ will be denoted by \dot{x} . If $\sigma : A \to \mathbb{M}(\mathcal{K} \otimes B)$ is a map, then $\pi \circ \sigma$ will be denoted by $\dot{\sigma}$.

Proposition 2.1 Let A, B be unital C*-algebras with A separable and let $\varphi, \psi : A \to B$ be two unital *-homomorphisms. Then with notation as above,

$$\kappa(\tau_A(x)\otimes[\varphi]-\tau_A(x)\otimes[\psi])=[\sigma],$$

where $\sigma: C(S^1) \otimes A \to Q(\mathcal{K} \otimes B)$ is defined by $\sigma(f \otimes a) = f(\dot{w})\dot{\Phi}(a)$.

Proof. The element $\tau_A(x) \in \mathrm{KK}^1(C(S^1) \otimes A, A)$ is given by the class of the pair (τ, P_+) , where $\tau : C(S^1) \otimes A \to \mathbb{M}(\mathcal{K}(\ell^2(\mathbb{Z})) \otimes A) = L(\ell^2(\mathbb{Z}) \otimes A)$, $\tau(f \otimes a) = f(S) \otimes a$, S being the bilateral shift, and $P_+ = p_+ \otimes \mathrm{id}_A$. It is then clear that $-\tau_A(x)$ is given by the class of (τ, P_-) with $P_- = p_- \otimes \mathrm{id}_A$.

Since φ is a *-homomorphism, we have $\tau_A(x) \otimes [\varphi] = \varphi_*(\tau_A(x))$ by [Bla][18.7.2(a)], so that $\tau_A(x) \otimes [\varphi]$ is represented by the class of the pair (τ_{φ}, P_+) , where $\tau_{\varphi} : C(S^1) \otimes A \to \mathbb{M}(\mathcal{K}(\ell^2(\mathbb{Z}) \otimes B), \tau_{\varphi}(f \otimes a) = f(S) \otimes \varphi(a)$ and $P_+ = p_+ \otimes \mathrm{id}_B : \ell^2(\mathbb{Z} \otimes B) \to \ell^2(\mathbb{Z}_+ \otimes B)$.

Similarly, $-\tau_A(x) \otimes [\psi] = [\tau, P_-] \otimes [\psi]$ is represented by (τ_{ψ}, P_-) , where $\tau_{\psi} : C(S^1) \otimes A \to \mathbb{M}(\mathcal{K}(\ell^2(\mathbb{Z})) \otimes B)$, $\tau_{\psi}(f \otimes a) = f(S) \otimes \psi(a)$ and $P_- = p_- \otimes \mathrm{id}_B : \ell^2(\mathbb{Z} \otimes B) \to \ell^2(\mathbb{Z}_- \otimes B)$. Thus

$$\tau_A(x) \otimes ([\varphi] - [\psi]) = [\tau_{\varphi}, P_+] + [\tau_{\psi}, P_-] = [\tau_{\psi} \oplus \tau_{\varphi}, P_- \oplus P_+].$$

The image of the latter element in $Ext^{-1}(C(S^1) \otimes A, B)$ under κ is equal to $[\dot{\omega}]$, where $\omega: C(S^1) \otimes A \to L(\ell^2(\mathbb{Z}_+) \otimes B) \oplus L(\ell^2(\mathbb{Z}_+) \otimes B) \subset L(\ell^2(\mathbb{Z}) \otimes B)$ is a completely positive map defined by $\omega = P_-\tau_{\psi}P_- + P_+\tau_{\varphi}P_+$. Therefore

$$\omega(f \otimes a) = p_{-} \otimes \mathrm{id}_{B} (f(S) \otimes \psi(a)) p_{-} \otimes \mathrm{id}_{B} + p_{+} \otimes \mathrm{id}_{B} (f(S) \otimes \varphi(a)) p_{+} \otimes \mathrm{id}_{B}$$

$$= p_{-}f(S)p_{-} \otimes \psi(a) + p_{+}f(S)p_{+} \otimes \varphi(a).$$

Since $[f(S), p_{\pm}] \in \mathcal{K}$, we have

$$\omega(f \otimes a) - f(S) \otimes \mathrm{id}_B(p_- \otimes \psi(a) + p_+ \otimes \varphi(a)) \in \mathcal{K}(\ell^2(\mathbb{Z})) \otimes B, \quad \forall f \in C(S^1), a \in A.$$

Therefore, if $\Phi_1 = p_- \otimes \psi + p_+ \otimes \varphi = \cdots \oplus \psi \oplus \psi \oplus \varphi \oplus \varphi \oplus \varphi \oplus \cdots$, and $\sigma_1 : C(S^1) \otimes A \to Q(\mathcal{K}(\ell^2(\mathbb{Z}) \otimes B))$ is defined by $\sigma_1(f \otimes a) = f(\pi(S \otimes \mathrm{id}_B))\dot{\Phi}_1(a)$, then $\dot{\sigma}_1 = \dot{\omega}$. Let $\xi : \mathbb{Z} \to \mathbb{Z}_+$ be a bijection defined by $\xi(0) = 0$, $\xi(1) = 1$, $\xi(k) = 2k + 1$, if $k \geq 1$ and $\xi(k) = -k$ if k < 0. Under the corresponding identification of $\ell^2(\mathbb{Z})$ with $\ell^2(\mathbb{Z}_+)$, Φ_1 , $S \otimes \mathrm{id}_B$ correspond to Φ , w, respectively, so that σ_1 corresponds to σ .

3 Approximate unitary equivalence

In this section we show that the conditions (1), (4) and (5) from the introduction are related as follows: $(1) \Rightarrow (4) \Leftrightarrow (5)$.

Definition 3.1 Two representations $\gamma: A \to L(E)$, $\gamma': A \to L(E')$ are called approximately unitarily equivalent, written $\gamma \sim \gamma'$, if there exists a sequence of unitaries (u_n) in L(E', E) such that

- (i) $\lim_{n\to\infty} \|\gamma(a) u_n \gamma'(a) u_n^*\| = 0, \ a \in A,$
- (ii) $\gamma(a) u_n \gamma'(a) u_n^* \in \mathcal{K}(E)$, for all $n, a \in A$.

Definition 3.2 A representation $\gamma: A \to L(H_B) = \mathbb{M}(\mathcal{K} \otimes B)$ is called absorbing if $\gamma \oplus \sigma \sim \gamma$ for any representation $\sigma: A \to L(E)$. If A is unital, then a representation $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$ is called unitally absorbing if $\gamma \oplus \sigma \sim \gamma$ for any unital representation $\sigma: A \to L(E)$.

Note that any absorbing representation is injective. Any two absorbing representations are approximately unitarily equivalent.

Examples 3.3 (a) A scalar representation $\gamma: A \longrightarrow \mathbb{M}(\mathcal{K} \otimes B)$ is a representation which factors as

$$A \xrightarrow{\gamma'} L(H) \xrightarrow{-\otimes 1} L(H) \otimes 1 \hookrightarrow M(\mathcal{K} \otimes B).$$

Suppose that A or B are nuclear, γ' is faithful and $\gamma'(A) \cap \mathcal{K} = \{0\}$. If γ' is unital, then γ is unitally absorbing. If $\overline{\gamma'(A)H}$ has infinite codimension in H, then γ is absorbing, [Kas₂].

- (b) Lin [L] showed that if A is nuclear and separable and if $\iota: A \to B$ is a unital embedding, then the map $d_{\iota}: A \to \mathbb{M}(\mathcal{K} \otimes B)$ defined by $d_{\iota}(a) = 1 \otimes \iota(a)$ is unitally absorbing, whenever either A or B is simple. A unital *-homomorphism $\iota: A \hookrightarrow B$ is called a full embedding if the linear span of $B\iota(a)B$ is dense in B for all nonzero $a \in A$. It was shown in $[DE_1]$ that d_{ι} is unitally absorbing whenever ι is a full embedding.
- (c) Thomsen [Tho₂] proved the existence of absorbing extensions $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$ for arbitrary separable C^* -algebras A and B.

A C*-algebra B is called *stably unital* if $B \otimes \mathcal{K}$ has a countable approximate unit consisting of projections. A subset $E \subset \mathbb{M}(\mathcal{K} \otimes B)$ is called quasidiagonal if there is a countable approximate unit (p_n) of $\mathcal{K} \otimes B$ consisting of projections such that

(1)
$$\lim_{n \to \infty} ||p_n a - a p_n|| = 0, \quad a \in E.$$

A representation $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$ is called quasidiagonal if the set $\gamma(A) \subset \mathbb{M}(\mathcal{K} \otimes B)$ is quasidiagonal.

Remark 3.4 (a) If $\gamma, \gamma' : A \to \mathbb{M}(\mathcal{K} \otimes B)$ are representations with $\gamma \sim \gamma'$ and γ is quasidiagonal, then γ' is quasidiagonal.

(b) If A is unital and if $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$ is a unital, unitally absorbing representation, then $\gamma \oplus 0_{\mathbb{M}(\mathcal{K} \otimes B)}$ is an absorbing representation [DE₁, Lemma 2.17].

(c) Suppose that $E \subset \mathbb{M}(\mathcal{K} \otimes B)$ is a quasidiagonal set and that $p \in E$ is a projection such that $p \in E$ is a projection $p_n \in \mathbb{K} \otimes B$ such that $p \in E$ is a projection $p_n \in \mathbb{K} \otimes B$ such that $p \in E$ is a quasidiagonal set, there is an approximate unit of projections $p_n \in \mathbb{K} \otimes B$ such that $p \in E$ is a quasidiagonal set, there is an approximate unit of projections $p_n \in \mathbb{K} \otimes B$ such that $p \in E$. In particular $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in \mathbb{K} \otimes B$, such that $p \in E$ is a projection $p \in E$. (see $p \in E$). Lemma 5.1 (iii)].

Definition 3.5 [Sa] Let A be a separable C^* -algebra and let B be a stably unital C^* -algebra. We say that A is quasidiagonal relative to B if there exists an absorbing quasidiagonal representation $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$.

By Remark 3.4 (a) we have that if a separable C*-algebra A is quasidiagonal relative to B, then any absorbing representation $\gamma:A\to \mathbb{M}(\mathcal{K}\otimes B)$ is quasidiagonal. It also follows from Remark 3.4 that a separable unital C*-algebra is quasidiagonal relative to a stably unital C*-algebra B if and only if any (or some) unital unitally absorbing representation is quasidiagonal. Note that a C*-algebra A is quasidiagonal if and only if is quasidiagonal relative to \mathbb{C} .

Lemma 3.6 Let C be a unital nuclear C^* -subalgebra of a UHF algebra. Let A be a unital separable C^* -algebra and let B be a stably unital C^* -algebra. If A is quasidiagonal relative to B, then $C \otimes A$ is quasidiagonal relative to B.

Proof. By assumption, there is a unital embedding $j:C\hookrightarrow D$ where D is a unital UHF algebra $D=\overline{\cup D_i}$ with $D_i\cong M_{r(i)}(\mathbb{C})$. Let $\pi:D\to L(H)$ and $\sigma:A\to \mathbb{M}(\mathcal{K}\otimes B)$ be unital unitally absorbing representations. It is clear that $\pi\otimes\sigma:D\otimes A\to L(H)\otimes L(H_B)\subset \mathbb{M}(\mathcal{K}\otimes B)$ is quasidiagonal since both π and σ are so. Therefore $\pi\jmath\otimes\sigma$ is a quasidiagonal representation of $C\otimes A$. It remains to prove that $\pi\jmath\otimes\sigma$ is unitally absorbing. First we observe that $\pi\otimes\sigma$ is unitally absorbing since its restriction to each of the $D_i\otimes A\cong M_{r(i)}(\mathbb{C})\otimes A$ is easily seen to be unitally absorbing, using the assumption that σ is unitally absorbing. If $\pi:A\to L(E)$ is a representation and $\varphi:A\to \mathcal{K}(F)$ is a completely positive map, we write $\varphi\prec\pi$ if there is a bounded sequence $v_i\in\mathcal{K}(F,E)$ such that

- $\lim_{i\to\infty} \|\varphi(a) v_i^*\pi(a)v_i\| = 0$ for all $a \in A$
- $\lim_{i\to\infty} ||v_i^*\xi|| = 0$ for all $\xi \in E$.

Here E, F are countable B-modules. As a corollary of [DE₁, Theorem 2.13] a unital representation $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$ is unitally absorbing if and only if $\varphi \prec \gamma$ for any completely

positive contraction $\varphi: A \to \mathcal{K}(F)$. Therefore in order to prove that $\pi \jmath \otimes \sigma$ is unitally absorbing it will suffice to show that $\varphi \prec \pi \jmath \otimes \sigma$ for any completely positive contraction $\varphi: C \otimes A \to \mathcal{K}(F)$.

Since C is nuclear, we find two sequences of completely positive contractions

$$\alpha_n: C \to M_{k(n)}(\mathbb{C}), \quad \beta_n: M_{k(n)}(\mathbb{C}) \to C$$

such that $\|\beta_n \alpha_n(c) - c\| \to 0$ for all $c \in C$. By Arveson's extension theorem, we can extend α_n to a completely positive contraction $\alpha'_n : D \to M_{k(n)}(\mathbb{C})$ such that $\alpha'_n \circ j = \alpha_n$. If $E_n = \beta_n \circ \alpha'_n : D \to C$, then E_n is a completely positive contraction with $\|E_n j(c) - c\| \to 0$ for all $c \in C$. Since $\pi \otimes \sigma$ is unitally absorbing, we have $\varphi \circ (E_n \otimes \mathrm{id}_A) \prec \pi \otimes \sigma$, hence

$$\varphi_n = \varphi \circ (E_n \otimes \mathrm{id}_A) \circ (\jmath \otimes \mathrm{id}_A) = \varphi \circ (E_n \jmath \otimes \mathrm{id}_A) \prec \pi \jmath \otimes \sigma.$$

Since $\|\varphi_n(x) - \varphi(x)\| \to 0$ for all $x \in C \otimes A$, it follows that $\varphi \prec \pi \jmath \otimes \sigma$.

Definition 3.7 Let A, B be unital C^* -algebras and assume that A is quasidiagonal relative to B. Two unital *-homomorphisms $\varphi, \psi: A \to B$ are called approximately stably unitarily equivalent if for any unital unitally absorbing representation $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$, and any approximate unit of projections (p_n) of $\mathcal{K} \otimes B$ with $\|[\gamma(a), p_n]\| \to 0$, $a \in A$, if $\gamma_n(a) = p_n \gamma(a) p_n$, then there exist an increasing sequence of integers (k(n)) and a sequence of partial isometries (v_n) in $\mathcal{K} \otimes B$ such that $v_n^* v_n = v_n v_n^* = 1_B \oplus p_{k(n)}$ and

(2)
$$\lim_{n \to \infty} \|v_n(\varphi(a) \oplus \gamma_{k(n)}(a))v_n^* - \psi(a) \oplus \gamma_{k(n)}(a)\| = 0, \quad a \in A.$$

Lemma 3.8 Let $\varphi, \psi : A \to B$ be two unital *-homomorphisms. Suppose that A is separable and quasidiagonal relative to B. Then the following conditions are equivalent.

- (i) $\varphi \oplus \eta \simeq \psi \oplus \eta$ for some unital representation $\eta : A \to \mathbb{M}(\mathcal{K} \otimes B)$.
- (ii) $\varphi \oplus \gamma \simeq \psi \oplus \gamma$ for some unital unitally absorbing representation $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$.
- (iii) $\varphi \oplus \gamma \simeq \psi \oplus \gamma$ for any unital unitally absorbing representation $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$.
- (iv) φ is approximately stably unitarily equivalent to ψ .
- (v) φ and ψ satisfy the conditions of Definition 3.7 for some γ and some (p_n) .

Proof. The implications (iii) \Rightarrow (ii) \Rightarrow (i) and (iv) \Rightarrow (v) are obvious. By [DE₂, Lemma 3.4] if $\gamma \sim \gamma'$ then $\varphi \oplus \gamma \simeq \psi \oplus \gamma$ if and only if $\varphi \oplus \gamma' \simeq \psi \oplus \gamma'$. This proves that (ii) \Rightarrow (iii). To prove (i) \Rightarrow (ii), note that (i) $\Rightarrow \varphi \oplus \eta \oplus \gamma \simeq \psi \oplus \eta \oplus \gamma$. This readily implies (ii) since $\eta \oplus \gamma \sim \gamma$ as γ is absorbing.

(iii) \Rightarrow (iv) Let $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$ and (p_n) be as in Definition 3.7. By assumption there is a sequence of unitaries (u_n) in $\mathbb{C}I + \mathcal{K} \otimes B$ such that

(3)
$$u_n(\varphi(a) \oplus \gamma(a))u_n^* - \psi(a) \oplus \gamma(a) \to 0, \quad a \in A$$

as $n \to \infty$. We also have $||p_n\gamma(a) - \gamma(a)p_n|| \to 0$, $a \in A$. After passing to a subsequence $(p_{k(n)})$ we may arrange that $||[e_n, u_n]|| \to 0$ as $n \to \infty$, where $e_n = 1_B \oplus p_{k(n)}$. By functional calculus we find a sequence of unitaries $v_n \in e_n(\mathcal{K} \otimes B)e_n$ such that $||e_nu_ne_n - v_n|| \to 0$ as $n \to \infty$. Compressing by e_n in (3) we obtain that

$$||v_n(\varphi(a) \oplus \gamma_{k(n)}(a))v_n^* - \psi(a) \oplus \gamma_{k(n)}(a)|| \to 0$$

as $n \to \infty$ for all $a \in A$. This proves (iv).

(v) \Rightarrow (ii) Fix $\gamma: A \to \mathbb{M}(\mathcal{K} \otimes B)$, (p_n) , (k(n)) and (v_n) as in Definition 3.7. We want to prove that $\varphi \oplus \gamma \simeq \psi \oplus \gamma$. Let $u_n = 0_B \oplus (1 - p_{k(n)}) + v_n \in \mathbb{C}I + \mathcal{K} \otimes B$ and define $\gamma'_{k(n)}(a) = (1 - p_{k(n)})\gamma(a)(1 - p_{k(n)})$. We have

(4)
$$\|\gamma(a) - \gamma_{k(n)}(a) - \gamma'_{k(n)}(a)\| \to 0, \text{ as } n \to \infty, a \in A,$$

since $[\gamma(a), p_n] \to 0$. It is now clear that (3) follows from (4) and (2). This proves that $\varphi \oplus \gamma \simeq \psi \oplus \gamma$.

We regard $Q(\mathcal{K} \otimes B) \oplus Q(\mathcal{K} \otimes B)$ as a unital subalgebra of $Q(\mathcal{K} \otimes B)$ is the usual way.

Lemma 3.9 Let A be a unital separable C^* -algebra and let B be a stably unital C^* -algebra. Suppose that A is quasidiagonal relative to B and let σ be a unital semisplit extension such that $[\sigma] = 0$ in $\operatorname{Ext}^{-1}(A, B)$. Then for any unital unitally absorbing representation $\gamma: A \to \mathbb{M}(K \otimes B)$ the set

$$E_{\sigma \oplus \dot{\gamma}} = \{ X \in \mathbb{M}(\mathcal{K} \otimes B) : \dot{X} \in (\sigma \oplus \dot{\gamma})(A) \}$$

is quasidiagonal.

Proof. Since γ is unitally absorbing, $\gamma \oplus 0_{\mathbb{M}(\mathcal{K} \otimes B)}$ is absorbing by Remark 3.4 (b). Since $[\sigma] = 0$ in $\operatorname{Ext}^{-1}(A, B)$, $\sigma \oplus \dot{\gamma} \oplus 0$ is of the form $\dot{u}(\dot{\gamma} \oplus 0 \oplus 0)\dot{u}^*$ for some unitary $u \in \mathbb{M}(\mathcal{K} \otimes B)$. Therefore it lifts to an absorbing representation $\delta : A \to \mathbb{M}(\mathcal{K} \otimes B)$. Since A is quasidiagonal

relative to B, $\delta(A) + \mathcal{K} \otimes B$ is a quasidiagonal set. Finally we observe that $E_{\sigma \oplus \dot{\gamma}} \oplus 0_{\mathbb{M}(\mathcal{K} \otimes B)} \subset \delta(A) + \mathcal{K} \otimes B$, so that $E_{\sigma \oplus \dot{\gamma}}$ is quasidiagonal by Remark 3.4(c), as it contains an element acting as a unit.

Lemma 3.10 Let A, B be unital C^* -algebras with A separable. Let $\varphi, \psi : A \to B$ be two unital *-homomorphisms. Suppose that there exist a unital unitally absorbing representation $\eta : A \to \mathbb{M}(\mathcal{K} \otimes B)$ and a unitary $u \in \mathbb{M}(\mathcal{K} \otimes B)$ such that

- (i) $\varphi \oplus \eta = u(\psi \oplus \eta)u^*$
- (ii) the set $(\varphi \oplus \eta)(A) \cup \{u\}$ is quasidiagonal in $\mathbb{M}(\mathcal{K} \otimes B)$.

Then φ is approximately stably equivalent to ψ .

Proof. From (ii) there exists an approximate unit of projections (e_n) of $\mathcal{K} \otimes B$ such that for all $a \in A$

(5)
$$[e_n, (\varphi \oplus \eta)(a)] \to 0, \quad [e_n, u] \to 0 \quad \text{as } n \to \infty.$$

From (i) and (5) $[e_n, (\psi \oplus \eta)(a)] \to 0$ as $n \to \infty$. We may also arrange that, in addition to the above, $e_n \ge e_{11} \otimes 1_B \in \mathcal{K} \otimes B$, so that $e_n = e_{11} \otimes 1_B + q_n$ where (q_n) is a sequence of projections satisfying $[q_n, \eta(a)] \to 0$ for all $a \in A$ as $n \to \infty$. Compressing by e_n in (i), we obtain that for all $a \in A$

(6)
$$\|\varphi(a) \oplus q_n \eta(a) q_n - e_n u e_n(\psi(a) \oplus q_n \eta(a) q_n) e_n u^* e_n\| \to 0, \text{ as } n \to \infty.$$

Since $[e_n, u] \to 0$, for large n, $u_n = e_n u e_n |e_n u e_n|^{-1/2}$ is a unitary in $e_n(\mathcal{K} \otimes B) e_n$ with $||u_n - e_n u e_n|| \to 0$. We then obtain from (6) that

$$\|\varphi(a) \oplus q_n \eta(a) q_n - u_n(\psi(a) \oplus q_n \eta(a) q_n) u_n^*\| \to 0$$
, as $n \to \infty$.

We conclude the proof by applying $(v) \Rightarrow (iv)$ of Lemma 3.8.

Theorem 3.11 ([**DE**₂]) Let A, B be unital C^* -algebras. Assume that A is separable, and quasidiagonal relative to B. Let $\varphi, \psi : A \to B$ be two unital *-homomorphisms with $[\varphi] = [\psi]$ in KK(A, B). Then φ is approximately stably equivalent to ψ . Equivalently, $\varphi \oplus \gamma \simeq \psi \oplus \gamma$, for any unital unitally absorbing representation $\gamma : A \to M(K \otimes B)$.

Proof. We are going to find a representation $\eta:A\to \mathbb{M}(\mathcal{K}\otimes B)$ and a unitary $u\in \mathbb{M}(\mathcal{K}\otimes B)$ such that φ,ψ,η and u satisfy the assumptions of Lemma 3.10. Recall that the canonical map $\mathbb{M}(\mathcal{K}\otimes B)\to Q(\mathcal{K}\otimes B)$ is denoted by π and that we sometimes write \dot{a} for $\pi(a)$. We are using the notation from Proposition 2.1. Since $\tau_A(x)\otimes -: \mathrm{KK}(A,B)\to \mathrm{KK}^1(C(S^1)\otimes A,B)$ is a homomorphism and $[\varphi]-[\psi]=0$, it follows from Proposition 2.1 that $[\sigma]=0$ in $\mathrm{Ext}^{-1}(C(S^1)\otimes A,B)$. By assumption, A is quasidiagonal relative to B. Since $C(S^1)$ embeds unitally in a UHF algebra, it follows from Lemma 3.6 that $C(S^1)\otimes A$ is also quasidiagonal relative to B. Therefore there exists a unital, unitally absorbing quasidiagonal representation $\Delta:C(S^1)\otimes A\to \mathbb{M}(\mathcal{K}\otimes B)$. By adding a suitable representation to Δ , if necessary, we may arrange that if δ is the restriction of Δ to $1\otimes A$, $\delta(a)=\Delta(1\otimes a)$, then δ is also unitally absorbing. Let $v=\Delta(z\otimes 1)$, where z is the canonical unitary generator of $C(S^1)$. Recall that

$$\Phi = \varphi \oplus (\varphi \oplus \psi)_{\infty} \quad \Psi = \psi \oplus (\varphi \oplus \psi)_{\infty}, \quad \Phi = w\Psi w^*.$$

Therefore if we set $\eta = (\varphi \oplus \psi)_{\infty} \oplus \delta$, and $u = w \oplus v$, then

$$\varphi \oplus \eta = \Phi \oplus \delta$$
, $\psi \oplus \eta = \Psi \oplus \delta$, and $\varphi \oplus \eta = u(\psi \oplus \eta)u^*$

since $\Phi = w\Psi w^*$ and δ commutes with v. Thus condition (i) of Lemma 3.10 satisfied. Note that η is unital unitally absorbing since its direct summand δ is so. It remains to verify condition (ii) of the same lemma. With our notation, that amounts to checking that the set

$$E = (\Phi \oplus \delta)(A) \cup \{u\}$$

is quasidiagonal. Note that $E \subset E_{\sigma \oplus \dot{\Delta}}$ since $\pi(\Phi \oplus \delta) = \sigma|_{1 \otimes A} \oplus \dot{\delta}$ and $\dot{u} = \dot{w} \oplus \dot{v} = (\sigma \oplus \dot{\Delta})(z \otimes 1)$. Now $E_{\sigma \oplus \dot{\Delta}}$ is quasidiagonal by Lemma 3.9, since $[\sigma] = 0$ in $\operatorname{Ext}^{-1}(A, B)$. Therefore its subset E is quasidiagonal as well.

Corollary 3.12 ([DE₁]) Let A, B be unital C*-algebras and let $\iota: A \to B$ be a full unital embedding (Example 3.3(b)). Suppose that A is nuclear and separable. Let $\varphi, \psi: A \to B$ be two unital *-homomorphisms such that $[\varphi] = [\psi]$ in KK(A, B). Then for any finite subset $\mathcal{F} \subseteq A$ and any $\epsilon > 0$, there exist n and a unitary $u \in M_{n+1}(B)$ such that

$$\|(u(\varphi(a) \oplus n \cdot \iota(a))u^* - \psi(a) \oplus n \cdot \iota(a)\| < \epsilon.$$

for all $a \in \mathcal{F}$.

Proof. This follows from Theorem 3.11 applied for $\gamma = d_{\iota}$.

4 The closure of zero in Ext(A, B)

In this section we give a purely KK-theoretical description of the closure of zero in $\operatorname{Ext}(A, B)$ under the assumption that A is separable and nuclear and B is σ -unital.

The following proposition is well known to the specialists. A proof is included for the sake of completeness.

Proposition 4.1 If A is a separable C^* -algebra then $KK^i(A, \mathbb{M}(K \otimes B)) = 0$, i = 0, 1, for any C^* -algebra B.

Proof. This is similar to the proof of $[D_2$, Proposition 2.2]. To simplify the notation, let $M = \mathbb{M}(\mathcal{K} \otimes B) = L(H_B)$. Since $KK^1(A, M) \cong KK(SA, M)$ is suffices to consider only the case i = 0. Since M is unital, $KK(A, M) \cong [qA, \mathcal{K}(E) \otimes M]$, by [Cun], where E is an infinite dimensional Hilbert space. The addition on the latter group is given by $[\varphi] + [\psi] = [\theta_{\varphi,\psi}], \ \theta_{\varphi,\psi}(a) = w_1 \varphi(a) w_1^* + w_2 \psi(a) w_2^*$, where $w_i \in M(\mathcal{K}(E) \otimes M)$ are isometries with $w_1 w_1^* + w_2 w_2^* = 1$. This definition does not depend on the particular choice of the pair w_i (see [JT, 1.3]). Let $s_1, s_2 : H_B \to H_B$ be isometries with $s_1 s_1^* + s_2 s_2^* = 1$ and set $w_i = 1_E \otimes s_i : E \otimes H_B \to E \otimes H_B$. Let $s : H_B \oplus H_B \to H_B$ be defined by $s(x_1 \oplus x_2) = s_1 x_1 + s_2 x_2$. Then $1_E \otimes s : E \otimes H_B \oplus E \otimes H_B \to E \otimes H_B$ is a unitary such that $\theta_{\varphi,\psi}(a) = 1_E \otimes s(\varphi(a) \oplus \psi(a)) 1_E \otimes s^*$. Define $\alpha : \mathbb{M}(\mathcal{K} \otimes B) \to \mathbb{M}(\mathcal{K} \otimes \mathcal{K} \otimes B)$ by $\alpha(x) = 1_H \otimes x$ and let $v = v_0 \otimes \mathrm{id}_B : H \otimes H \otimes B \to H \otimes B$ for some unitary $v_0 : H \otimes H \to H$.

If $\varphi: qA \to \mathcal{K}(E) \otimes M$ is a *-homomorphism, define $\eta: qA \to \mathcal{K}(E) \otimes M$ by

(7)
$$\eta(a) = 1_E \otimes v(\mathrm{id}_{\mathcal{K}(E)} \otimes \alpha) \circ \varphi(a) 1_E \otimes v^*, \quad a \in A.$$

We are going to show that $[\varphi] + [\eta] = [\eta]$, or equivalently $[\theta_{\varphi,\eta}] = [\eta]$, in $[qA, \mathcal{K}(E) \otimes M]$. That will show that $[\varphi] = 0$ for all φ so that $[qA, \mathcal{K}(E) \otimes M] = 0$. Since the unitary group of $\mathbb{M}(\mathcal{K}(E) \otimes M)$ is path connected in the strict topology [JT], it suffices to find a unitary w in $\mathbb{M}(\mathcal{K}(E) \otimes M)$ such that $w\theta_{\varphi,\eta}w^* = \eta$. Let (e_i) , i = 0, 1, ... be an orthonormal basis of H and define a unitary $u_0 : H \oplus H \otimes H \to H \otimes H$ by $u_0(h \oplus 0) = e_0 \otimes h$, $u_0(e_i \otimes h) = e_{i+1} \otimes h$, $h \in H$. Set $u = u_0 \otimes \mathrm{id}_B : H \otimes B \oplus H \otimes H \otimes B \to H \otimes H \otimes B$ and note that $1_H \otimes x = u(x \oplus 1_H \otimes x)u^*$ for all $x \in M$, hence $\alpha = u(\mathrm{id}_M \oplus \alpha)u^*$. Therefore

(8)
$$(\mathrm{id}_{\mathcal{K}(E)}\otimes\alpha)\circ\varphi(a)=1_E\otimes u(\varphi(a)\oplus(\mathrm{id}_{\mathcal{K}(E)}\otimes\alpha)\circ\varphi(a))1_E\otimes u^*,\quad a\in A.$$

Finally, using (7) and (8), one checks that

$$w = 1_E \otimes (vu(1_{H_B} \oplus v^*)s^*) \in 1_E \otimes M \subset \mathbb{M}(\mathcal{K}(E) \otimes M)$$

is a unitary satisfying $w\theta_{\varphi,\eta}w^* = \eta$. Note that the unitary $vu(1_{H_B} \oplus v^*)s^*$ belongs to $\mathbb{M}(\mathcal{K} \otimes B)$ since it is given by a composite of B-linear unitaries

$$H_B \xrightarrow{s^*} H_B \oplus H_B \xrightarrow{1 \oplus v^*} H_B \oplus (H \otimes H)_B \xrightarrow{u} (H \otimes B)_B \xrightarrow{v} H_B,$$

where $(H \otimes H)_B = H \otimes H \otimes B$.

For the remaining of this section we assume that A is a separable nuclear C*-algebra and B is σ -unital. In this case all extensions $\sigma: A \to Q(\mathcal{K} \otimes B)$ are semisplit by the Choi-Effros theorem, and $Ext^{-1}(A,B) = \operatorname{Ext}(A,B)$. Any *-homomorphism $\varphi: A \to Q(\mathcal{K} \otimes B)$ gives both and element $[\varphi]_{\operatorname{Ext}}$ of $\operatorname{Ext}(A,B)$ and element $[\varphi]_{\operatorname{KK}}$ of $\operatorname{KK}(A,Q(\mathcal{K} \otimes B))$.

Proposition 4.2 Let A be a separable nuclear C^* -algebra and let B be a σ -unital C^* -algebra. Then the map $\chi : \operatorname{Ext}(A,B) \to \operatorname{KK}(A,Q(\mathcal{K}\otimes B))$, defined by $\chi[\varphi]_{\operatorname{Ext}} = [\varphi]_{\operatorname{KK}}$, is a natural isomorphism of groups.

Proof. From the six-term exact sequence for KK(A, -) associated with the extension

$$(9) 0 \to \mathcal{K} \otimes B \to \mathbb{M}(\mathcal{K} \otimes B) \to Q(\mathcal{K} \otimes B) \to 0$$

and from Proposition 4.1 we get an exact sequence

(10)

$$0 = \mathrm{KK}(A, \mathbb{M}(\mathcal{K} \otimes B)) \to \mathrm{KK}(A, Q(\mathcal{K} \otimes B)) \xrightarrow{\partial} \mathrm{KK}^{1}(A, \mathcal{K} \otimes B) \to \mathrm{KK}^{1}(A, \mathbb{M}(\mathcal{K} \otimes B)) = 0.$$

Thus ∂ is an isomorphism. By a theorem of Kasparov [Kas₂], there is a natural isomorphism

$$\kappa: KK^1(A, B) \longrightarrow \operatorname{Ext}(A, B) = \operatorname{Ext}(A, B)^{-1}.$$

Therefore $\partial^{-1} \circ \kappa^{-1} : \operatorname{Ext}(A, B) \to \operatorname{KK}(A, Q(\mathcal{K} \otimes B))$ is an isomorphism. We need to show that $\partial^{-1} \circ \kappa^{-1} = \chi$. The image of $[\varphi]_{\operatorname{Ext}}$ under κ^{-1} is denoted by δ_{φ} . Let

$$(11) 0 \longrightarrow \mathcal{K} \otimes B \longrightarrow E_{\varphi} \longrightarrow A \longrightarrow 0$$

be the pullback of the extension (9) by $\varphi: A \to Q(\mathcal{K} \otimes B)$. Then we have a commutative diagram

$$0 \longrightarrow \mathcal{K} \otimes B \longrightarrow \mathbb{M}(\mathcal{K} \otimes B) \xrightarrow{\pi} Q(\mathcal{K} \otimes B) \longrightarrow 0$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow^{\varphi}$$

$$0 \longrightarrow \mathcal{K} \otimes B \longrightarrow E_{\varphi} \longrightarrow A \longrightarrow 0$$

By the naturality of the boundary map ∂ we obtain a commutative diagram:

Therefore

$$\partial \varphi_*[\mathrm{id}_A]_{\mathrm{KK}} = \partial [\mathrm{id}_A]_{\mathrm{KK}}.$$

Now $\varphi_*[\mathrm{id}_A]_{\mathrm{KK}} = \partial[\varphi]_{\mathrm{KK}}$ and by [Bla, Theorem 19.5.7]

$$\partial[\mathrm{id}_A]_{\mathrm{KK}} = [\mathrm{id}_A] \otimes \delta_{\varphi} = \delta_{\varphi} = \kappa^{-1}[\varphi]_{\mathrm{Ext}}.$$

Therefore $\partial[\varphi]_{KK} = \kappa^{-1}[\varphi]_{Ext}$, hence $\chi = \partial^{-1} \circ \kappa^{-1}$. This completes the proof as we have seen that both ∂ and κ are natural isomorphisms.

Following [BDF] and [Br], Salinas [Sa] introduced a natural topology on $\operatorname{Ext}(A,B)$. This is just the quotient topology of the point-norm topology on the space of extensions $A \to Q(\mathcal{K} \otimes B)$. An extension τ is called absorbing if for any trivial extension $\sigma, \tau \oplus \sigma$ is unitarily equivalent to τ via a unitary liftable to $\mathbb{M}(\mathcal{K} \otimes B)$. If $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$ is a scalar absorbing representation (see Example 3.3(a)), then $\theta = \dot{\gamma}$ is an absorbing extension. Also $\tau \oplus \theta$ is absorbing for any extension τ . If $\tau : A \to Q(\mathcal{K} \otimes B)$ is an absorbing extension, and if $\theta : A \to Q(\mathcal{K} \otimes B)$ is a trivial absorbing extension, then $[\tau]$ belongs to the closure of zero in $\operatorname{Ext}^{-1}(A,B)$, denoted by Z(A,B), if and only if there is a sequence of unitaries $u_n \in Q(\mathcal{K} \otimes B)$ such that $||\tau(a) - u_n\theta(a)u_n^*|| \to 0$ for all $a \in A$, as $n \to \infty$. Since both τ and θ are absorbing, one can arrange that the unitaries u_n lift to unitaries in $\mathbb{M}(\mathcal{K} \otimes B)$. This is easily seen if we keep in mind that τ , θ are unitarily equivalent with $\tau \oplus 0$, $\theta \oplus 0$, respectively, via liftable unitaries.

To simplify notation, $Q(\mathcal{K} \otimes B)$ will be denoted by \mathbf{Q} . Let $d: \mathbf{Q} \to \prod_{n=1}^{\infty} \mathbf{Q}$ be defined by $d(x) = (x, x, x, \dots)$. Let

$$\nu: \prod_{n=1}^{\infty} \mathbf{Q} \to \prod_{n=1}^{\infty} \mathbf{Q} / \sum_{n=1}^{\infty} \mathbf{Q}$$

denote the quotient map and let

$$\Omega: \mathrm{KK}(A, \mathbf{Q}) \to \mathrm{KK}(A, \prod \mathbf{Q} / \sum \mathbf{Q})$$

be the map induced by $\nu \circ d$, that is $\Omega = (\nu \circ d)_*$. Fix $\theta = \dot{\gamma} : A \to \mathbf{Q}$ where $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$ is an absorbing scalar representation as in Example 3.3(a).

Theorem 4.3 Let A, B be C^* -algebras with A nuclear and separable. Then $\operatorname{Ker} \Omega$ consists of the classes $[\varphi]_{KK}$ of those *-homomorphisms $\varphi: A \to Q(K \otimes B)$ for which there exists a sequence of unitaries (u_n) in $\operatorname{M}_2(Q(K \otimes B))$ such that for all $a \in A$

(12)
$$\lim_{n \to \infty} \|u_n(\varphi \oplus \theta)(a)u_n^* - (\theta \oplus \theta)(a)\| = 0.$$

Equivalently, if $\varphi: A \to Q(\mathcal{K} \otimes B)$ is an absorbing extension, then $[\varphi] \in \text{Ker }\Omega$ if and only if there is a sequence of unitaries $v_n \in \mathbb{M}(\mathcal{K} \otimes B)$ such that $\lim_{n \to \infty} \|\varphi(a) - \dot{v}_n \theta(a) \dot{v}_n^*\| = 0$ for all $a \in A$.

Proof. If $\varphi: A \to \mathbf{Q}$ is a *-homomorphism and θ is as above, we let

$$\Phi = \nu \circ d \circ \varphi, \quad \Theta = \nu \circ d \circ \theta.$$

Suppose that φ and θ satisfy the condition (12) and let us show that $\Omega[\varphi]_{KK} = 0$. The sequence (u_n) gives a unitary $u \in M_2(\prod \mathbf{Q}/\sum \mathbf{Q})$ such that $u(\Phi \oplus \Theta)u^* = \Theta \oplus \Theta$. This clearly implies that $[\Phi] = [\Theta]$ in $KK(A, \prod \mathbf{Q}/\sum \mathbf{Q})$. On the other hand

$$[\Theta]_{KK} = \Omega[\theta]_{KK} = \Omega\chi[\theta]_{Ext} = 0,$$

since $[\theta]_{\text{Ext}} = 0$ as θ lifts to a representation γ .

Conversely, assume that $\Omega[\varphi]_{KK} = 0$. Let us observe that since θ is absorbing, for any integer $m \geq 1$, $m \cdot \theta = \theta \oplus \cdots \oplus \theta$ (m - times) is unitarily equivalent to θ . Therefore the condition (12) is equivalent to the following:

For any finite subset \mathcal{F} of A and any $\epsilon > 0$, there exist $m \geq 1$ and a unitary $u \in \mathcal{M}_{m+1}(\mathbf{Q})$ such that

(13)
$$||u(\varphi \oplus m \cdot \theta)(a)u^* - (\theta \oplus m \cdot \theta)(a)|| < \epsilon, \quad a \in \mathcal{F}.$$

Consequently, it suffices to prove that φ and θ satisfy (13) rather than (12). Since $\Omega[\varphi] = 0$ by assumption, and $\Omega[\theta] = 0$ as we saw above, we have $\Omega[\varphi]_{KK} = \Omega[\theta]_{KK}$, hence $[\Phi] = [\Theta]$ in $KK(A, \prod \mathbf{Q}/\sum \mathbf{Q})$.

Let A denote the C*-algebra obtained by adding a unit to A. This is done even if A was unital in the first place. By replacing φ by $\varphi \oplus \theta$ if necessary, we may arrange that $1_{\mathbf{Q}} \notin \varphi(A)$. Let $\widetilde{\varphi}, \widetilde{\theta} : \widetilde{A} \to \mathbf{Q}$ be the unital extensions of φ and θ and set $\widetilde{\Phi} = \nu \circ d \circ \widetilde{\varphi}$ and $\widetilde{\Theta} = \nu \circ d \circ \widetilde{\theta}$. We have that $[\widetilde{\Phi}] = [\widetilde{\Theta}]$ in $\mathrm{KK}(\widetilde{A}, \prod \mathbf{Q}/\sum \mathbf{Q})$ since $[\Phi] = [\Theta]$ in $\mathrm{KK}(A, \prod \mathbf{Q}/\sum \mathbf{Q})$, and $\widetilde{\Phi}, \widetilde{\Theta}$ are unitizations of Φ, Θ .

Note that $\Theta: A \to \prod \mathbf{Q}/\sum \mathbf{Q}$ is a full embedding since it factors as a product of unital maps

$$A \xrightarrow{\widetilde{\gamma'}} L(H) \hookrightarrow \mathbb{M}(\mathcal{K} \otimes B) \to Q(\mathcal{K} \otimes B) \longrightarrow \prod \mathbf{Q}/\sum \mathbf{Q}$$

and $\widetilde{\gamma}$ is a full embedding since $\widetilde{\gamma}'(A) \cap \mathcal{K}(H) = \{0\}$. By Corollary 3.12, for any finite subset \mathcal{F} of A and any $\epsilon > 0$, there exist $m \geq 1$ and a unitary $U \in \mathcal{M}_{m+1}(\prod \mathbf{Q}/\sum \mathbf{Q})$ such that

(14)
$$||U(\widetilde{\Phi} \oplus m \cdot \widetilde{\Theta})(a)U^* - (\widetilde{\Theta} \oplus m \cdot \widetilde{\Theta})(a)|| < \epsilon, \quad a \in \mathcal{F}.$$

Let $V = (v_i) \in \prod \mathbf{Q}$ be a unitary lifting of U. Then it follows from (14) that there is some large i such that

(15)
$$||v_i(\widetilde{\varphi} \oplus m \cdot \widetilde{\theta})(a)v_i^* - (\widetilde{\theta} \oplus m \cdot \widetilde{\theta})(a)|| < \epsilon, \quad a \in \mathcal{F}.$$

This shows that φ and θ satisfy (13) and completes the proof.

Remark 4.4 The map Ω can be integrated in a six-term exact sequence

$$\begin{array}{ccc} \operatorname{KK}(A, \mathbf{Q}) & \xrightarrow{\Omega} & \operatorname{KK}(A, \prod \mathbf{Q} / \sum \mathbf{Q}) & \xrightarrow{1-\sigma} & \operatorname{KK}(A, \prod \mathbf{Q} / \sum \mathbf{Q}) \\ & \uparrow & & \downarrow \\ \operatorname{KK}^{1}(A, \prod \mathbf{Q} / \sum \mathbf{Q}) & \xleftarrow{1-\sigma} & \operatorname{KK}^{1}(A, \prod \mathbf{Q} / \sum \mathbf{Q}) & \xleftarrow{\Omega} & \operatorname{KK}^{1}(A, \mathbf{Q}) \end{array}$$

which is similar to an exact sequence in E-theory found by Thomsen [Tho₁].

Note that Theorem 4.3 says that $\chi(Z(A,B)) = Ker \Omega$. Let $\alpha \in KK(A,A')$ be a KK-equivalence. If $\mathbf{Q} = Q(\mathcal{K} \otimes B)$ as before, α induces a commutative diagram:

This gives right away the following corollary.

Corollary 4.5 ([Sch₁]) Let A, A' be separable nuclear C^* -algebras and let B be a σ -unital C^* -algebra. If $\alpha \in KK(A, A')$ is a KK-equivalence, then the isomorphism $\alpha \otimes - : Ext(A, B) \to Ext(A', B)$ maps Z(A, B) onto Z(A', B).

Corollary 4.6 ([Sch₂]) Let A be a separable nuclear C^* -algebra satisfying the UCT and let B be a σ -unital C^* -algebra. Then Z(A, B) is naturally isomorphic to $Pext(K_*(A), K_*(B))$.

Proof. If A satisfies the UCT, then A is KK-equivalent to a commutative C^* -algebra. Therefore A satisfies the UMCT of [DL], so that there is an exact sequence

(16) $0 \to \operatorname{Pext}(K_*(A), K_{*+1}(Q(\mathcal{K} \otimes B)) \to \operatorname{KK}(A, Q(\mathcal{K} \otimes B)) \to \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(Q(\mathcal{K} \otimes B))) \to 0,$

where $\underline{K}(A) = \bigoplus_n K_*(A; \mathbb{Z}/n)$ is the total K-theory group, and Λ is a certain set of operations on $\underline{K}(-)$. We regard both $Z(A, B) \cong \chi(Z(A, B))$ and $\operatorname{Pext}(K_*(A), K_*(B)) \cong \operatorname{Pext}(K_*(A), K_{*+1}(Q(\mathcal{K} \otimes B)))$ as subgroups of $\operatorname{KK}(A, Q(\mathcal{K} \otimes B))$. First we want to verify the inclusion

$$Z(A, B) \subset \operatorname{Pext}(K_*(A), K_{*+1}(Q(\mathcal{K} \otimes B))).$$

If θ is a trivial absorbing extension, then $[\theta] = 0$ so that the map $\underline{\theta} : \underline{K}(A) \to \underline{K}(Q(K \otimes B))$ vanishes. If $[\sigma] \in Z(A, B)$ is the class of an absorbing extension σ , then by the very definition of the topology on $\operatorname{Ext}(A, B)$, σ is approximately unitarily equivalent to θ , hence $\underline{\sigma} = \underline{\theta} = 0$. Therefore $[\sigma] = [\sigma] - [\theta] \in \operatorname{Pext}(K_*(A), K_{*+1}(Q(K \otimes B)))$ by the UMCT (16). To prove the opposite inclusion

$$\operatorname{Pext}(K_*(A), K_{*+1}(Q(\mathcal{K} \otimes B))) \subset Z(A, B),$$

we note that since both subsets are invariant under KK-equivalence in the first variable, it suffices to prove the statement for any C^* -algebra KK-equivalent to A. Thus, using [RS, Proposition 7.3], we may assume that $A = \bigcup_{i=1}^{\infty} A_i$ where A_i are nuclear C^* -algebras satisfying the UCT and such that $K_*(A_i)$ is finitely generated for each i. In particular $\text{Pext}(K_*(A_i), K_{*+1}(Q(\mathcal{K} \otimes B))) = 0$ for all i. Let $\sigma, \theta : A \to Q(\mathcal{K} \otimes B)$ be two absorbing extensions with θ trivial and $[\sigma] \in \text{Pext}(K_*(A), K_{*+1}(Q(\mathcal{K} \otimes B)))$. Then $[\sigma|_{A_i}] \in \text{Pext}(K_*(A_i), K_{*+1}(Q(\mathcal{K} \otimes B)))$ vanishes, so that $[\sigma|_{A_i}] = [\theta|_{A_i}] \in \text{KK}(A_i, Q(\mathcal{K} \otimes B))$ by (16). Since both $\sigma|_{A_i}$ and $\theta|_{A_i}$ are absorbing, they are unitarily equivalent. Therefore σ is approximately unitarily equivalent to θ , hence $[\sigma] \in Z(A, B)$.

Corollary 4.7 ([Sch₃]) Let A be a separable nuclear C^* -algebra satisfying the UCT, and let B be a stably-unital C^* -algebra. Suppose that A is quasidiagonal relative to B. Let $\sigma: A \to Q(K \otimes B)$ be an absorbing extension. Then $E_{\sigma} = \{y \in M(K \otimes B) : \dot{y} \in \sigma(A)\}$ is a quasidiagonal set if and only if $[\sigma] \in Pext(K_*(A), K_*(B))$.

Proof. This follows from Corollary 4.6 and from [Sa, Theorem 4.4] which states that if A is quasidiagonal relative to B and $\sigma: A \to Q(K \otimes B)$ is an absorbing extension, then E_{σ} is a quasidiagonal set if and only if $[\sigma] \in Z(A, B)$. It should be noted that the proof from [Sa] also applies to the case when A is nonunital.

5 Approximate unitary equivalence revisited

In this section we prove the equivalences $(3) \Leftrightarrow (4) \Leftrightarrow (5)$ from the introduction.

Theorem 5.1 Let A, B be unital C^* -algebras with A nuclear and separable. Suppose that A is quasidiagonal relative to B and let $\varphi, \psi : A \to B$ be two unital *-homomorphisms. The following assertions are equivalent.

- (i) $[\varphi] [\psi] \in \text{Pext}(K_*(A), K_{*+1}(B))$ in KK(A, B).
- (ii) $\varphi \oplus \gamma \simeq \psi \oplus \gamma$ for some (any) unital unitally absorbing quasidiagonal representation $\gamma : A \to \mathbb{M}(\mathcal{K} \otimes B)$.
- (iii) φ is approximately stably unitarily equivalent to ψ .

Proof. We have that (ii) \Leftrightarrow (iii) by Lemma 3.8.

- (iii) \Rightarrow (i) It follows easily from (iii) that $\varphi_* = \psi_* : K_*(A, \mathbb{Z}/n) \to K_*(B, \mathbb{Z}/n)$ for all $n \geq 0$, so that (i) follows from the UMCT (16).
 - (i) \Rightarrow (iii) Let T be the group morphism defined as the composition

$$\mathrm{KK}(A,B) \xrightarrow{\tau_A(x) \otimes -} \mathrm{KK}^1(C(S^1) \otimes A,B) \xrightarrow{\partial^{-1}} \mathrm{KK}(C(S^1) \otimes A,Q(\mathcal{K} \otimes B)),$$

with $\tau_A(x)$ as in Proposition 2.1 and ∂^{-1} as in Theorem 4.3. The morphism T is clearly compatible with the UMCT (16), in the sense that it induces a commutative diagram

$$\begin{array}{ccc} \operatorname{KK}(A,B) & \longrightarrow & \operatorname{Hom}_{\Lambda}(\underline{\operatorname{K}}(A),\underline{\operatorname{K}}(Q(\mathcal{K}\otimes B))) \\ & & & & \underline{T} \Big\downarrow \\ \operatorname{KK}(C(S^1)\otimes A,B) & \longrightarrow & \operatorname{Hom}_{\Lambda}(\underline{\operatorname{K}}(C(S^1)\otimes A),\underline{\operatorname{K}}(Q(\mathcal{K}\otimes B))) \end{array}$$

Here $\underline{T}(h) = \partial_*^{-1} \circ h \circ \tau$, where $\tau : \underline{K}(C(S^1) \otimes A) \to \underline{K}_{+1}(A)$ is induced by $\tau_A(x) \in KK^1(C(S^1) \otimes A, A)$ and ∂_*^{-1} is the inverse of the isomorphism $\partial_* : \underline{K}(Q(K \otimes B)) \to \underline{K}_{+1}(B)$. That shows that T maps $\text{Pext}(K_*(A), K_{*+1}(B))$ to $\text{Pext}(K_*(C(S^1) \otimes A), K_{*+1}(Q(K \otimes B)))$. Note that

$$T = \partial^{-1} \circ (\tau_A(x) \otimes -) = \chi \circ \kappa \circ (\tau_A(x) \otimes -).$$

Therefore by Propositions 4.2 and 2.1,

$$[\sigma]_{\mathrm{KK}} = \chi[\sigma]_{\mathrm{Ext}} = T([\varphi] - [\psi]) \in \mathrm{Pext}(K_*(C(S^1) \otimes A), K_{*+1}(Q(\mathcal{K} \otimes B))).$$

Here we use the same notation as in the proof of Theorem 3.11. Since $C(S^1) \otimes A$ is quasidiagonal relative to B and it satisfies the UCT, we have by Corollary 4.7 that $E_{\sigma \oplus \dot{\Delta}}$ is a quasidiagonal set whenever $\Delta : C(S^1) \otimes A \to \mathbb{M}(\mathcal{K} \otimes B)$ is an absorbing extension. The rest of the proof is identical with the last part of the proof of Theorem 3.11. Indeed, if $\eta = (\varphi \oplus \psi)_{\infty} \oplus \delta$, then the set $(\varphi \oplus \eta)(A) \cup \{u\} = (\Phi \oplus \delta)(A) \cup \{u\} \subset E_{\sigma \oplus \dot{\Delta}}$ is quasidiagonal and $\varphi \oplus \eta = u(\psi \oplus \eta)u^*$. Therefore φ is approximately stably equivalent to ψ by Lemma 3.10.

There is a number of interesting corollaries of Theorem 5.1 where the approximate multiplicative morphisms γ_n implementing (iii) can be chosen to be *-homomorphisms. For instance this is the case when A is nuclear residually finite dimensional (γ_n will be finite dimensional representations) or when there is a full embedding $\iota: A \hookrightarrow B$ ($\gamma_n = k(n) \cdot \iota$ as in Corollary 3.12).

References

- [Bla] B. Blackadar, K-theory for operator algebras, Math. Sci. Research Inst. Publ., vol. 5, Springer-Verlag, New York, 1986.
- [BDF] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) (Berlin), Springer, 1973, pp. 58–128. Lecture Notes in Math., Vol. 345.
- [Br] L. G. Brown, The universal coefficient theorem for Ext and quasidiagonality. Operator algebras and group representations, Vol. I (Neptun, 1980), 60–64, Monographs Stud. Math., 17, Pitman, Boston, Mass.-London, 1984.
- [Cun] J. Cuntz, Generalized homomorphisms between C*-algebras and KK-theory, Dynamics and Processes, Springer Lect. Notes in Math. 1031, Springer-Verlag, 1983, pp. 31–45.
- [D₁] M. Dadarlat, Approximately unitarily equivalent morphisms and inductive limit C^* -algebras, K-Theory 9 (1995), 117–137.
- [D₂] M. Dadarlat Quasidiagonal morphisms and homotopy J. Funct. Anal. **151** (1997), no. 1, 213–233.
- [DE₁] M. Dadarlat and S. Eilers, On the classification of nuclear C^* -algebras, preprint, 1998 (revised 1999).

- [DE₂] M. Dadarlat and S. Eilers, Asymptotic unitary equivalence in KK-theory, preprint, 1999.
- [DL] M. Dadarlat and T.A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355–377.
- [JT] K.K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, Boston, 1991.
- [KR67] R.V. Kadison and J.R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys. 4 (1967), 32–63.
- [Kas₁] G.G. Kasparov, Hilbert C*-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133–150.
- [Kas₂] G.G. Kasparov, The operator K-functor and extensions of C^* -algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719.
- [Kir] E. Kirchberg, The classification of purely infinite C^* -algebras using Kasparov's theory, preprint, third draft, 1994.
- [L] H. Lin, Stably approximately unitary equivalence of homomorphisms, preprint, 1997.
- [RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987), 431–474.
- [Rø] M. Rørdam, Classification of certain infinite simple C*-algebras, J. Funct. Anal. 131 (1995), no. 2, 415–458.
- [Sa] N. Salinas Relative quasidiagonality and KK-theory. Houston J. Math. 18 (1992), no. 1, 97–116.
- [Sch₁] C. Schochet On the fine structure of the Kasparov groups I:Continuity of the KK pairing, preprints 1999.
- [Sch₂] C. Schochet On the fine structure of the Kasparov groups II:Toplogizing the UCT, preprint 1999.
- [Sch₃] C. Schochet On the fine structure of the Kasparov groups III: Relative quasidiagonality, preprint 1999.
- [Ta] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.

- [Tho₁] K. Thomsen, Discrete asymptotic homomorphisms in E-theory and KK-theory, preprint 1990.
- [Tho₂] K. Thomsen, On absorbing extensions, preprint 1999.
- [Voi] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113.

MARIUS DADARLAT
DEPARTMENT OF MATHEMATICS
PURDUE UNIVERSITY
WEST LAFAYETTE
IN 47907
U.S.A.
mdd@math.purdue.edu