Charakterystyka Eulera

Zadanie domowe

Weronika Jakimowicz

Zadanie 6. Niech $\mathbb K$ będzie ciałem. Grassmannian $\mathrm{Gr}_{\mathbb K}(k,n)$ to przestrzeń k-wymiarowych podprzestrzeni $\mathbb K^n$. Jeśli $\mathbb K=\mathbb R,\mathbb C$ to jest to rozmaitość. Oblicz charakterystykę Eulera Grassmannianu $\mathrm{Gr}_{\mathbb C}(k,n)$ korzystając z uogólnionej formuły Riemanna-Hurwitza i działania torusa $\mathrm T^n$ na $\mathbb C^n$.

Każdą k-wymiarową podprzestrzeń \mathbb{C}^n możemy utożsamić z macierzą rzutu ortogonalnego na tę podprzestrzeń, która ma rząd k. Jeśli $V \in Gr_{\mathbb{C}}(k,n)$, to macierz z nią utożsamioną będziemy oznaczać A_V .

Działanie torusa - definicja

Działanie torusa T^n na \mathbb{C}^n to mnożenie przez macierze diagonalne z wyrazami długości 1 na przekątnej. Możemy to działanie przenieść na Grassmannian - torus będzie działał na podprzestrzeń k-wymiarową V macierzą T:

 TVT^{-1} .

Macierze ortogonalne są hermitowskie

Macierze rzutu zawsze spełniają $A^2 = A$. Jeśli ten rzut jest ortogonalny, to dodatkowo wymagamy, aby $A^T = A$. Macierz rzutu ortogonalnego na zespolonej przestrzeni wektorowej jest jednocześnie macierzą hermitowską, tzn. dla wszystkich x, y spełnia $\langle x, Ay \rangle = \langle Ax, y \rangle$:

$$\begin{split} \langle \mathsf{Ax},\mathsf{y}\rangle - \langle \mathsf{x},\mathsf{Ay}\rangle &= \langle \mathsf{Ax},\mathsf{y}\rangle - \langle \mathsf{x} - \mathsf{Ax} + \mathsf{Ax},\mathsf{Ay}\rangle = \\ &= \langle \mathsf{Ax},\mathsf{y}\rangle - \langle \mathsf{Ax},\mathsf{Ay}\rangle + \langle \mathsf{Ax} - \mathsf{x},\mathsf{Ay}\rangle = \\ &= \langle \mathsf{Ax},(\mathsf{I} - \mathsf{A})\mathsf{y}\rangle + \langle (\mathsf{A} - \mathsf{I})\mathsf{x},\mathsf{Ay}\rangle = \mathsf{0}, \end{split}$$

bo dla A ortogonalnej $\langle Ax, (I-A)y \rangle = 0$. Skoro wiemy już, że A_V jest zawsze macierzą hermitowską, to wiemy, że $\overline{A_V^T} = A_V^T$.

Działanie torusa jest dobrze określone

Wiemy też, że każda hermitowska macierz jest diagonalizowalna przez unitarne macierze z rzeczywistymi wartościami własnymi. Dzięki tej własności macierzy hermitowskich działanie torusa zdefiniowane wcześniej jest dobrze określone.

Jeśli $V \in Gr_{\mathbb{C}}(k,n)$ i $A_V = PDP^{-1}$, to po działaniu na A_V macierzą z torusa też jest diagonalizowalna przez macierze unitarne:

$$TA_VT^{-1} = TPDP^{-1}T^{-1} = (TP)D(TP)^{-1},$$

gdyż T również jest macierzą unitarną, czyli TP też takie jest.

Orbity działania torusa i χ

Torus T^n jest produktem n okręgów S^1 . Jeśli działamy okręgiem na przestrzeni, to punkty mają albo trywialny stabilizator, albo trywialną orbitę. Stąd, jeśli T^n działa na $Gr_{\mathbb{C}}(k, n)$ to punkty mają albo trywialną orbitę, albo ich orbita to produkt okręgów.

Jeśli więc określimy odwzorowanie $f: Gr_{\mathbb{C}}(k,n) \to Gr_{\mathbb{C}}(k,n)/T^n$, to wzór Riemanna-Hurwitza podpowiada, że tylko punkty stacjonarne liczą się do charakterystyki Eulera Grassmannianu:

$$\chi(\mathsf{Gr}_{\mathbb{C}}(\mathsf{k},\mathsf{n}) = \int_{\mathsf{Gr}_{\mathbb{C}}(\mathsf{k},\mathsf{n})/\mathsf{T}^{\mathsf{n}}} \chi(\mathsf{f}^{-1}(\mathsf{X})) \mathsf{d}\chi(\mathsf{X})$$

będzie zerować się na podzbiorach będących okręgami, bo $\chi(S^1)=0$. Natomiast punkty stałe, których orbity są punktami, będą liczyć się do charakterystyki Eulera po jeden raz. Stąd

$$\chi(Gr_{\mathbb{C}}(k, n)) = \#\{punkty \text{ state działania } T^n\}$$

Ile jest punktów stałych?

Punkt stały działania torusa musi spełniać

$$TA_VT^{-1} = A_V$$

$$TA_V = A_V T$$

dla wszystkich możliwych T.

Macierze hermitowskie, które nie są diagonalne będą miały niediagonalną macierz unitarną P w diagonalizacji PDP^{-1} . Aby takie macierze były punktami stałymi, to dla dowolnej T musi zachodzić

$$TPDP^{-1}T^{-1} = PDP^{-1}$$

$$D = (P^{-1}TP)D(P^{-1}TP)^{-1}$$

dla T ≠ Id powyższa równość będzie zachodzić niezmiernie rzadko.

Wszystkie macierze diagonalne A_V mające k jedynek i (n-k) zer na przekątnej będą punktami stałymi działania torusa. Macierz

$$TA_V$$

to "obcięcie" T do k wyrazów na przekątnej, a domnożenie do tego T^{-1} zwróci 1 w kolumnach, które zostały zachowane oryginalnie przez A_V . Stąd

$$TA_VT^{-1} = A_V$$
.

Takich macierzy jest $\binom{n}{k}$, bo wybieramy k miejsc na 1 spośród n miejsc na przekątnej.