Fatal Police Shootings in the US

Context

Context: Black Lives Matter

Shooting death of African-American teen Trayvon Martin by a police officer Acquittal of the police officer:

The movement
Black Lives Matter
was born

Shooting death of George Floyd : <u>The movement</u> <u>became</u> <u>international</u>

Context: Black Lives Matter

Black Lives Matter (BLM) is a decentralized political and social movement advocating for non-violent civil disobedience in protest against incidents of police brutality and all racially motivated violence against black people

Data exploration

Data Sources

Washington Post

- Tracking details about each killing
- Gathering this information from:
 - law enforcement websites,
 - local new reports,
 - o social media,
 - by monitoring independent databases

The Washington Post

median household income,

racial demographics

Population by city

Data visualisation by ethnic group

Which are the part of fatal shootings by ethnic group?

Data visualisation by city

Which cities counts the highest number of fatal shooting? (between 2015 & 2017)

Data visualisation

What's the part of men and women?

Data visualisation

What condition was the victim in?

Data visualisation: median income

Median Income & number of fatal shootings by state for 10,000 inhabitants

Data visualisation: education

Percent completed high school & number of fatal shootings by state for 10,000 inhabitants

Data visualisation: Correlation

Highly correlated columns

```
[['share_white', 'share_black', -0.82],
['nb_period0', 'nb_period1', 0.85],
['nb_period0', 'nb_period2', 0.87],
['nb_period1', 'nb_period2', 0.86],
['nb_period0', 'nb_period3', 0.81],
['nb_period1', 'nb_period3', 0.79],
['nb_period2', 'nb_period3', 0.85],
['nb_period0', 'nb_period4', 0.77],
['nb_period1', 'nb_period4', 0.74],
['nb_period2', 'nb_period4', 0.82],
['nb_period3', 'nb_period4', 0.82],
['nb_period3', 'nb_period4', 0.84]]
```


Machine Learning

Structure of the dataset

- Target : predict the number of fatal shootings by police by city between 2015 & 2017
- Features:
 - Median Income,
 - o poverty_rate,
 - percent_completed_hs, (education)
 - o share_white,
 - o share black,
 - share_native_american,
 - o share_asian,
 - share_hispanic,
 - o pop_total_state,
 - o population,
 - o nb_period0, (number of fatal shootings between 2003 & 2005)
 - o nb_period1, (number of fatal shootings between 2006 & 2008)
 - o nb_period2, (number of fatal shootings between 2009 & 2011)
 - o nb_period3, (number of fatal shootings between 2012 & 2014)

Linear Regression

- Target : predict the number of fatal shootings by police by city between 2015 & 2017
- The number of <u>fatal shootings between 2015 & 2017</u> is highly correlated to the other periods, and more especially between 2012 & 2014.

		_			4		
Dep. Varial	ble:		у	R	-square	d: 0.70	07
Mod	del:		OLS	Adj. R	-square	d: 0.70)7
Meth	od:	Least	Squares	F	-statisti	c: 4.737e+0)4
Da	ate:	Гue, 10 N	ov 2020	Prob (F-	statistic	0.0	00
Tir	me:	1	13:58:27	Log-Li	kelihoo	d: -1661	7.
No. Observatio	ns:		19639		AIC	3.324e+0)4
Df Residua	als:		19637		BIG	C: 3.325e+0)4
Df Mod	del:		1				
Covariance Ty	pe:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]	
Intercept 0.	.0379	0.004	9.364	0.000	0.030	0.046	
nb_period3 0	.8336	0.004	217.648	0.000	0.826	0.841	
Omnibus	s: 220	637.964	Durbir	n-Watson	:	1.856	
Prob(Omnibus)):	0.000	Jarque-	Bera (JB)	: 2071	0837.613	
Skew	r:	5.231		Prob(JB)	:	0.00	
Kurtosis	s:	161.746		Cond. No).	1.13	

Distribution of the target

Distribution with the value '0'

Distribution without the value '0'

Tweedie distribution

What's Tweedie Regression?

Tweedie distribution is :

- a special case of exponential dispersion models
- with a power parameter p, which determines the underlying target distribution according to the following table:

Power	Distribution
0	Normal
1	Poisson
(1,2)	Compound Poisson Gamma
2	Gamma
3	Inverse Gaussian

 This model can be applied where you find a mixture of zeros and non-negative continuous data points.

Tweedie distribution

Tweedie Regression: comparison results

^	D 1.	2.4	D	A	
<>	Results	with	Dummy	Regres	ssion

ľ	subset	train	test
-	metric		
	D² explained	0.4966	-0.2237
	mean Tweedie dev p=1.3000	2.4774	3.4891
	mean Tweedie dev p=1.5000	1.6477	2.6495
	mean Tweedie dev p=1.8000	0.9726	2.0093
	mean Tweedie dev p=1.9000	0.8383	1.9063
	mean Tweedie dev p=2.0000	0.7348	1.8454
	mean Tweedie dev p=2.1000	0.6575	1.8228
	mean Tweedie dev p=2.2000	0.6043	1.8378
	mean Tweedie dev p=2.2200	0.5966	1.8454
	mean Tweedie dev p=2.5000	0.6455	2.1810
	mean Tweedie dev p=3.0000	7.3867	10.4233
	mean abs. error	5.1705	4.9667
	mean squared error	73.0003	60.0414

subset	train	test
metric		
D² explained	0.1833	0.1052
mean Tweedie dev p=1.3000	4.6902	4.5944
mean Tweedie dev p=1.5000	3.0285	3.0203
mean Tweedie dev p=1.8000	1.6448	1.6760
mean Tweedie dev p=1.9000	1.3599	1.3940
mean Tweedie dev p=2.0000	1.1334	1.1682
mean Tweedie dev p=2.3000	0.7160	0.7497
mean Tweedie dev p=2.3100	0.7082	0.7420
mean Tweedie dev p=2.3200	0.7009	0.7347
mean Tweedie dev p=2.5000	0.6641	0.7055
mean Tweedie dev p=3.0000	7.1544	7.8260
mean abs. error	7.5226	7.0451
mean squared error	115142.3160	113.7477

train test	t	subset
	:	metric
-0.5407 -0.6426	i	D² explained
8.2781 7.5482	r	mean abs. error
195.2634 145.6299	r '	mean squared error

- Dummy regression is a simple baseline to compare with other (real) regressors.
- Different strategies, but here :
 - → strategy='mean' : always predicts the mean of the training set

Conclusion

- \diamondsuit The best method to predict the number of fatal shootings by a police officer is **Linear Regression**.
- It seems that poverty, size of cities, share of ethnic groups or education have no impact on the number of fatal police shootings.
- The prevention should be done in the city already affected in the past.

Thanks!

