Lógica para Computação Linguagem da Lógica Proposicional

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

- Introdução
- 2 Proposições
- 3 Conectivos
- 4 Linguagem da Lógica Proposicional
- 6 Estrutura Indutiva
- 6 Precedência

Tópicos

- Introdução
- 2 Proposições
- Conectivos
- 4 Linguagem da Lógica Proposicional
- Estrutura Indutiva
- 6 Precedência

Objetivo

- Desenvolver uma linguagem para modelar situações e informações
- Modelar situações para poder raciocinar sobre elas
- Construir argumentos válidos e que possam ser executados em computadores

- Se o trem chega tarde e não tem táxis na estação então João está atrasado para a reunião.
- João não está atrasado para a reunião.
- O trem chegou tarde.
- O que podemos concluir?

- Se o trem chega tarde e não tem táxis na estação então João está atrasado para a reunião.
- João não está atrasado para a reunião.
- O trem chegou tarde.
- O que podemos concluir?
- Logo, tinha táxi na estação.
- Temos um conjunto de sentenças seguidas por uma outra sentenças
- Um argumento é valido quando a última sentença é consequência lógica das demais

- Se está chovendo e Maria não está com seu guarda-chuva então ela vai ficar molhada.
- Maria não está molhada.
- Está chovendo.
- O que podemos concluir?

- Se está chovendo e Maria não está com seu guarda-chuva então ela vai ficar molhada.
- Maria não está molhada.
- Está chovendo.
- O que podemos concluir?
- Maria está com seu guarda-chuva.
- A sequência de sentenças dos dois exemplos tem a mesma estrutura

- O trem chega tarde e está chovendo
- tem táxi na estação e Maria está com o guarda-chuva
- João está atrasado para a reunião e Maria fica molhada

- O trem chega tarde e está chovendo
- tem táxi na estação e Maria está com o guarda-chuva
- João está atrasado para a reunião e Maria fica molhada
- Será que podemos generalizar esse tipo de raciocínio?

- O trem chega tarde e está chovendo
- tem táxi na estação e Maria está com o guarda-chuva
- João está atrasado para a reunião e Maria fica molhada
- Será que podemos generalizar esse tipo de raciocínio?
- Se p e não q então r. Não r. p. Logo, q.
- Muitas vezes só precisamos da estrutura das sentenças para analisar sua veracidade
- Não precisamos nos preocupar com o tipo de informação das sentenças!

Tópicos

- Introdução
- 2 Proposições
- Conectivos
- 4 Linguagem da Lógica Proposicional
- Estrutura Indutiva
- Precedência

Linguagem

- Para representar informações precisamos de uma linguagem
- A linguagem deve deixar claro a estrutura lógica das sentenças
- Vamos usar a linguagem da Lógica Proposicional
- Essa linguagem usa proposições
- Cada proposição pode ser, ou verdadeira ou falsa.

Exemplos de Proposições

- A soma dos números 3 e 5 é igual a 8
- Maria reagiu de forma violenta com a notícia
- Todo número natural par maior que 2 é a soma de dois números primos
- Todos os marcianos gostam de pizza

Não são Proposições

- Você pode me passar o sal?
- Que horas são?
- Bom dia.

Proposições Atômicas

- Para descrever a linguagem da Lógica Proposocional vamos considerar certas sentenças como atômicas
 - O número 5 é par
 - O trem chega cedo
- Vamos usar letras minúsculas com ou sem índice para representar proposições atômicas: p, q, r, p₁, p₂, x₃

Tópicos

- Introdução
- 2 Proposições
- 3 Conectivos
- 4 Linguagem da Lógica Proposicional
- Estrutura Indutiva
- 6 Precedência

Proposições Compostas

- Podemos compor as proposições atômicas em proposições mais complexas
- Vamos usar os conectivos $\neg, \lor, \land, \rightarrow$ para compor as atômicas
- ¬p representa a negação de p.
- $q \lor r$ representa q ou r e é também chamado de disjunção de q e r.
- $p \wedge r$ representa p e r, ou seja, a conjunção de p e r.
- $s \to t$ representa se s então t, ou seja, s implica em t. Chamamos p de suposição e q de conclusão.

- Sejam as proposições atômicas representando as sentenças:
- p: Eu ganhei na mega-sena na semana passada.
- q: Eu comprei um bilhete da mega-sena.
- r: Eu ganhei na loteria dos sonhos na semana passada.
- As proposições compostas representam as sentenças:
- ¬p: Eu não ganhei na mega-sena semana passada. Também pode ser: não é verdade que eu ganhei na mega-sena semana passada.
- $p \lor r$: Eu ganhei na mega-sena semana passada ou eu ganhei na loteria dos sonhos na semana passada.
- q ∧ p: Eu comprei um bilhete da mega-sena e eu ganhei na mega-sena na semana passada.
- $p \land q$: Se eu ganhei na mega-sena na semana passada então eu comprei um bilhete da mega-sena.

- Podemos continuar usando as regras de construção de proposições repetidamente:
- $p \land q \rightarrow \neg r \lor q$
- Como deve ser lido?

- Podemos continuar usando as regras de construção de proposições repetidamente:
- $p \land q \rightarrow \neg r \lor q$
- Como deve ser lido?
- p e se q então não r ou q
- Se p e q então não r ou q

- Podemos continuar usando as regras de construção de proposições repetidamente:
- $p \land q \rightarrow \neg r \lor q$
- Como deve ser lido?
- p e se q então não r ou q
- Se p e q então não r ou q
- Como queremos que um computador seja capaz de manipular esses dados precisamos retirar ambiguidades
- $\bullet \ (p \land q) \rightarrow ((\neg r) \lor q)$

Exercício

Represente as senteças abaixo na linguagem da Lógica Proposicional. Especifique as atômicas.

- Se hoje faz sol, então amanhã não faz sol.
- Roberto estava com ciúmes de Marta ou ele não estava de bom humor.
- Maria e João são namorados
- Hoje vai chover ou fazer sol, mas não ambos.

Solução

- Se o sol brilha muito hoje, então ele não vai brilhar muito amanhã.
- $(p \rightarrow (\neg q))$
- Roberto estava com ciúmes de Marta ou ele não estava de bom humor.
- $(c \vee (\neg b))$
- Maria e João são namorados
- p
- Hoje vai chover ou fazer sol, mas não ambos.
- $(r \lor s) \land \neg (r \land s)$

Tópicos

- Introdução
- 2 Proposições
- Conectivos
- 4 Linguagem da Lógica Proposicional
- Estrutura Indutiva
- Precedência

Introdução

- Queremos que as fórmulas possam ser processadas por computadores
- Temos que deixar claro qual a estrutura da fórmulas
- Precisamos definir formalmente como as fórmulas são construídas
- A definição deve eliminar ambiguidades

- Seja $Prop = \{a, b, c, ..., a_1, b_1, ..., p_1, ...\}$ o conjunto de proposições atômicas e $Con = \{\land, \lor, \neg, \rightarrow\}$ o conjunto de conectivos.
- O alfabeto da linguagem da lógica proposicional é $A_{lp} = Prop \cup Con \cup \{\}, (\}$

- Seja $Prop = \{a, b, c, ..., a_1, b_1, ..., p_1, ...\}$ o conjunto de proposições atômicas e $Con = \{\land, \lor, \neg, \rightarrow\}$ o conjunto de conectivos.
- O alfabeto da linguagem da lógica proposicional é $A_{lp} = Prop \cup Con \cup \{\}, (\}$
- $((p \land (\neg r)) \to (p \lor s))$ é uma string no alfabeto A_{lp} e é uma fórmula da lógica proposicional

- Seja $Prop = \{a, b, c, ..., a_1, b_1, ..., p_1, ...\}$ o conjunto de proposições atômicas e $Con = \{\land, \lor, \neg, \rightarrow\}$ o conjunto de conectivos.
- O alfabeto da linguagem da lógica proposicional é
 A_{lp} = Prop ∪ Con ∪ {}, (}
- $((p \land (\neg r)) \to (p \lor s))$ é uma string no alfabeto A_{lp} e é uma fórmula da lógica proposicional
- $(\neg) \lor pq \to \text{\'e}$ uma string no alfabeto A_{lp} mas não 'e uma fórmula da lógica proposicional

- Seja $Prop = \{a, b, c, ..., a_1, b_1, ..., p_1, ...\}$ o conjunto de proposições atômicas e $Con = \{\land, \lor, \neg, \rightarrow\}$ o conjunto de conectivos.
- O alfabeto da linguagem da lógica proposicional é $A_{lp} = Prop \cup Con \cup \{\}, (\}$
- $((p \land (\neg r)) \to (p \lor s))$ é uma string no alfabeto A_{lp} e é uma fórmula da lógica proposicional
- $(\neg) \lor pq \to$ é uma string no alfabeto A_{lp} mas não é uma fórmula da lógica proposicional
- Como podemos definir formalmente as fórmulas da lógica proposicional?

Fórmulas

Definição

As fórmulas da lógica proposicional são obtidas usando apenas as regras a seguir uma quantidade finita de vezes

- Se $p \in Prop$ então p é fórmula
- Se ϕ é uma fórmula então $(\neg \phi)$ é uma fórmula
- Se ϕ e ψ são fórmulas então $(\phi \wedge \psi)$ é uma fórmula
- Se ϕ e ψ são fórmulas então $(\phi \lor \psi)$ é uma fórmula
- ullet Se ϕ e ψ são fórmulas então $(\phi
 ightarrow \psi)$ é uma fórmula

• $(\neg(p_7 \to p_1))$ é uma fórmula de acordo com a definição anterior?

- $(\neg(p_7 \to p_1))$ é uma fórmula de acordo com a definição anterior?
- Podemos tentar gerar a string usando as regras da definição

- $(\neg(p_7 \to p_1))$ é uma fórmula de acordo com a definição anterior?
- Podemos tentar gerar a string usando as regras da definição
- E $p_1 \to p_7$?

- $(\neg(p_7 \to p_1))$ é uma fórmula de acordo com a definição anterior?
- Podemos tentar gerar a string usando as regras da definição
- E $p_1 \to p_7$?
- E ($\rightarrow p_2$?

- $(\neg(p_7 \to p_1))$ é uma fórmula de acordo com a definição anterior?
- Podemos tentar gerar a string usando as regras da definição
- E $p_1 \to p_7$?
- E ($\rightarrow p_2$?
- $(((\neg p) \land q) \to (p \land (q \lor (\neg r))))$ é uma fórmula de acordo com a definição anterior?

Tópicos

- Introdução
- 2 Proposições
- Conectivos
- 4 Linguagem da Lógica Proposicional
- Estrutura Indutiva
- Precedência

Estrutura Indutiva

- Podemos nos beneficiar da definição indutiva das fórmulas para provar propriedades e definir algoritmos
- Algoritmos recursivos e funções recursivas para processar as fórmulas
- Indução para provar propriedades de fórmulas

Exemplo

• Vamos definir uma função para retornar o tamanho de uma fórmula

Definição

$$tam(\phi) = \begin{cases} 1, & \text{se } \phi \text{ \'e atômica.} \\ 1 + tam(\psi), & \text{se } \phi = (\neg \psi) \\ 1 + tam(\psi_1) + tam(\psi_2), & \text{se } \phi = (\psi_1 \land \psi_2) \\ 1 + tam(\psi_1) + tam(\psi_2), & \text{se } \phi = (\psi_1 \lor \psi_2) \\ 1 + tam(\psi_1) + tam(\psi_2), & \text{se } \phi = (\psi_1 \to \psi_2) \end{cases}$$

Exemplo

$$tam((p \rightarrow q)) = 3$$
$$tam(((p \land q) \rightarrow r)) = 5$$

Exemplo

 Vamos construir um algoritmo para retornar o tamanho de uma fórmula

```
1: procedure TAM(\phi)

2: if \phi é atômica then

3: return 1

4: if \phi = (\neg \psi) then

5: return 1 + TAM(\psi)

6: if \phi = (\psi_1 \Box \psi_2) then

7: return 1 + TAM(\psi_1) + TAM(\psi_2)
```

 Vamos definir uma função para retornar a quantidade de conectivos de uma fórmula

 Vamos definir uma função para retornar a quantidade de conectivos de uma fórmula

Definição

$$conec(\phi) = \begin{cases} 0, & \text{se } \phi \text{ \'e atômica.} \\ 1 + conec(\psi), & \text{se } \phi = (\neg \psi) \\ 1 + conec(\psi_1) + conec(\psi_2), & \text{se } \phi = (\psi_1 \land \psi_2) \\ 1 + conec(\psi_1) + conec(\psi_2), & \text{se } \phi = (\psi_1 \lor \psi_2) \\ 1 + conec(\psi_1) + conec(\psi_2), & \text{se } \phi = (\psi_1 \to \psi_2) \end{cases}$$

- ullet Uma subfórmula de uma fórmula ϕ é uma substring de ϕ que é uma fórmula
- Quais as subfórmulas da fórmula $((\neg p) \land q)$?

- Uma subfórmula de uma fórmula ϕ é uma substring de ϕ que é uma fórmula
- Quais as subfórmulas da fórmula $((\neg p) \land q)$?
- $((\neg p) \land q)$

- Uma subfórmula de uma fórmula ϕ é uma substring de ϕ que é uma fórmula
- Quais as subfórmulas da fórmula $((\neg p) \land q)$?
- $((\neg p) \land q)$
- (¬p)

- Uma subfórmula de uma fórmula ϕ é uma substring de ϕ que é uma fórmula
- Quais as subfórmulas da fórmula $((\neg p) \land q)$?
- $((\neg p) \land q)$
- (¬p)
- p
- q

- Vamos definir formalmente a noção de subfórmula
- Para isso vamos definir uma função que retorna o conjunto das subfórmulas de uma fórmula

Definição

$$sub(\phi) = \begin{cases} \{\phi\}, & \text{se } \phi \text{ \'e atômica.} \\ \{\phi\} \cup sub(\psi), & \text{se } \phi = (\neg \psi) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \land \psi_2) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \lor \psi_2) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \to \psi_2) \end{cases}$$

- Vamos definir formalmente a noção de subfórmula
- Para isso vamos definir uma função que retorna o conjunto das subfórmulas de uma fórmula

Definição

$$sub(\phi) = \begin{cases} \{\phi\}, & \text{se } \phi \text{ \'e atômica.} \\ \{\phi\} \cup sub(\psi), & \text{se } \phi = (\neg \psi) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \land \psi_2) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \lor \psi_2) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \to \psi_2) \end{cases}$$

• Quais as subfórmulas da fórmula $((p \lor r) \to (r \land (\neg q)))$?

- Vamos definir formalmente a noção de subfórmula
- Para isso vamos definir uma função que retorna o conjunto das subfórmulas de uma fórmula

Definição

$$sub(\phi) = \begin{cases} \{\phi\}, & \text{se } \phi \text{ \'e atômica.} \\ \{\phi\} \cup sub(\psi), & \text{se } \phi = (\neg \psi) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \land \psi_2) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \lor \psi_2) \\ \{\phi\} \cup sub(\psi_1) \cup sub(\psi_2), & \text{se } \phi = (\psi_1 \to \psi_2) \end{cases}$$

- Quais as subfórmulas da fórmula $((p \lor r) \to (r \land (\neg q)))$?
- $\{((p \lor r) \to (r \land (\neg q))), (p \lor r), (r \land (\neg q)), (\neg q), p, r, q\}$
- Como a definição usou conjuntos, não precisamos nos preocupar com repetições de subfórmulas

• Prove que para qualquer fórmula da Lógica Proposicional ϕ , $|sub(\phi)| \leq 2conec(\phi) + 1$.

• Prove que para qualquer fórmula da Lógica Proposicional ϕ , $|sub(\phi)| \leq 2conec(\phi) + 1$.

Prova

Base: Seja p uma fórmula atômica qualquer. Temos que |sub(p)|=1 e conec(p)=0. Logo, $|sub(p)|\leq 2\times conec(p)+1$.

H.I: Seja ψ_1 e ψ_2 duas fórmulas tal que $|sub(\psi_1)|\leq 2\times conec(\psi_1)+1$ e $|sub(\psi_2)|\leq 2\times conec(\psi_2)+1$.

Passo: Seja $(\psi_1\Box\psi_2)$ para $\Box\in\{\wedge,\vee,\to\}$. Temos que $sub((\psi_1\Box\psi_2))=sub(\psi_1)\cup sub(\psi_2)\cup\{(\psi_1\Box\psi_2)\}$ e $conec((\psi_1\Box\psi_2))=conec(\psi_1)+conec(\psi_2)+1$, para $\Box\in\{\wedge,\vee,\to\}$. Portanto, $|sub((\psi_1\Box\psi_2))|\leq |sub(\psi_1)|+|sub(\psi_2)|+1$ (note que pode ter interseção). Pela **Hipótese de Indução**,

 $|sub((\psi_1 \Box \psi_2))| \le 2 \times conec(\psi_1) + 1 + 2 \times conec(\psi_2) + 1 + 1$. Logo,

 $|sub((\psi_1 \square \psi_2))| \le 2 \times conec(\psi_1) + 2 \times conec(\psi_2) + 2 + 1 =$

 $2 \times conec((\psi_1 \square \psi_2)) + 1.$

 Vamos definir uma função para retornar o conjunto de atômicas de uma fórmula

 Vamos definir uma função para retornar o conjunto de atômicas de uma fórmula

Definição

$$atom(\phi) = \begin{cases} \{\phi\}, & \text{se } \phi \text{ \'e at\^nmica.} \\ atom(\psi), & \text{se } \phi = (\neg \psi) \\ atom(\psi_1) \cup atom(\psi_2), & \text{se } \phi = (\psi_1 \wedge \psi_2) \\ atom(\psi_1) \cup atom(\psi_2), & \text{se } \phi = (\psi_1 \vee \psi_2) \\ atom(\psi_1) \cup atom(\psi_2), & \text{se } \phi = (\psi_1 \rightarrow \psi_2) \end{cases}$$

Tópicos

- Introdução
- 2 Proposições
- Conectivos
- 4 Linguagem da Lógica Proposicional
- Estrutura Indutiva
- 6 Precedência

Precedência dos Conectivos

- Para simplificar a notação podemos economizar parênteses
- Vamos usar as seguintes regras de precedência:
- ¬ tem a maior precedência.
- \lor e \land tem mesma precedência e maior que a do \rightarrow .
- o tem associatividade à direita: p o q o r é o mesmo que (p o (q o r)).

- Coloque os parênteses nas proposições abaixo de acordo com a convenção de precedência:
- $\neg p \land q \rightarrow r$
- $(p \rightarrow q) \rightarrow (r \rightarrow s \lor t)$
- $p \lor q \to \neg p \land r$
- $p \lor q \land r$

- Coloque os parênteses nas proposições abaixo de acordo com a convenção de precedência:
- $(((\neg p) \land q) \rightarrow r)$
- $\bullet \ ((p \rightarrow q) \rightarrow (r \rightarrow (s \lor t)))$
- $((p \lor q) \to ((\neg p) \land r))$
- $p \lor q \land r$ está mal formulada