

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-117013-1

Client Project/Site: Gold King Mine - Region 8

For:

Weston Solutions, Inc. 1435 Garrison Street Suite 100 Lakewood, Colorado 80215

Attn: Moira Pryhoda

Authorized for release by: 9/24/2015 6:17:29 PM

Sheila Hoffman, Project Manager II (912)354-7858 e.3004

hele Hoffman

sheila.hoffman@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

A

· ·

_

10

1

12

Definitions/Glossary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Qualifiers

GC/MS VOA

Quaimer	Quainier Description
U	Indicates the analyte was analyzed for but not detected.

X Surrogate is outside control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
U	Indicates the analyte was analyzed for but not detected.
* * * * * * * * * * * * * * * * * * * *	

HPLC/IC

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Metais	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
F3	Duplicate RPD exceeds the control limit
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Definitions/Glossary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Glossary (Continued)

Abbreviation

These commonly used abbreviations may or may not be present in this report.

TEQ

Toxicity Equivalent Quotient (Dioxin)

Sample Summary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
680-117013-1	CC06_09212015_1300	Solid	09/21/15 13:00 09/23/15 00:00
680-117013-2	Trip Blank	Water	09/21/15 13:00 09/23/15 00:00

Case Narrative

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Job ID: 680-117013-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Weston Solutions, Inc.

Project: Gold King Mine - Region 8

Report Number: 680-117013-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 09/23/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 0.6° C and 2.4° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample CC06_09212015_1300 (680-117013-1) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared and analyzed on 09/23/2015.

Surrogate recovery for the following sample was outside control limits: CC06_09212015_1300 (680-117013-1). Re-analysis was performed with concurring results. The original analysis has been reported.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 680-401060 and analytical batch 680-402348.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample Trip Blank (680-117013-2) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 09/23/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 680-401060 and analytical batch 680-402348.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS)

Sample CC06_09212015_1300 (680-117013-1) was analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared and analyzed on 09/23/2015.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for 400-110975-C-31-B MS. DCB Decachlorobiphenyl failed the surrogate recovery criteria low for 400-110975-C-31-C MSD.

Case Narrative

Client: Weston Solutions. Inc.

Project/Site: Gold King Mine - Region 8

Job ID: 680-117013-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

PCB-1260 failed the recovery criteria low for the MSD of sample 400-110975-31 in batch 680-402546.

The presence of the '4' qualifier indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Sample CC06 09212015 1300 (680-117013-1) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 09/23/2015 and analyzed on 09/23/2015 and 09/24/2015.

Several analytes failed the recovery criteria low for the MS of sample CC06_09212015_1300MS (680-117013-1) in batch 680-402754. Copper failed the recovery criteria high.

Several analytes failed the recovery criteria low for the MSD of sample CC06 09212015 1300MSD (680-117013-1) in batch 680-402754. Arsenic and Copper exceeded the RPD limit.

Vanadium, Copper and Zinc exceeded the RPD limit for the duplicate of sample CC06_09212015_1300DU (680-117013-1).

Refer to the QC report for details.

Sample CC06_09212015_1300 (680-117013-1)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Sample CC06_09212015_1300 (680-117013-1) was analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 09/23/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

AMMONIA

Sample CC06 09212015 1300 (680-117013-1) was analyzed for ammonia in accordance with EPA Method 350.1. The samples were prepared and analyzed on 09/23/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL KJELDAHL NITROGEN

Sample CC06_09212015_1300 (680-117013-1) was analyzed for total kjeldahl nitrogen in accordance with EPA Method 351.2. The samples were prepared on 09/23/2015 and analyzed on 09/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Sample CC06_09212015_1300 (680-117013-1) was analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared on 09/23/2015 and analyzed on 09/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9056 ANIONS

Sample CC06 09212015 1300 (680-117013-1) was analyzed for 9056 Anions in accordance with EPA SW846 Method 9056 (DI Leach). The samples were leached on 09/23/2015 and analyzed on 09/24/2015.

~ - - - -

TestAmerica Savannah

TestAmerica Job ID: 680-117013-1

ED 000792 00003253-00006

Case Narrative

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Job ID: 680-117013-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Sample CC06_09212015_1300 (680-117013-1) was analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 09/23/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Lab Sample ID: 680-117013-1

Client Sample ID: CC06_09212015_1300

Date Collected: 09/21/15 13:00 Matrix: Solid
Date Received: 09/23/15 00:00 Percent Solids: 17.6

Method: 8260B - Volatile Org Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	16		34	16	ug/Kg	<u>₩</u>	09/23/15 11:41		
1,1,1-Trichloroethane	4.0		34		ug/Kg		09/23/15 11:41	09/23/15 14:24	
1,1,2,2-Tetrachloroethane	11	U	34	11	ug/Kg	\$	09/23/15 11:41	09/23/15 14:24	
1,1,2-Trichloroethane	8.7		34	8.7	ug/Kg	∴	09/23/15 11:41	09/23/15 14:24	
1,1-Dichloroethane	7.4		34		ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,1-Dichloroethene	10	U	34		ug/Kg	₩	09/23/15 11:41		
1,1-Dichloropropene	6.4	U	34		ug/Kg	☆	09/23/15 11:41		
1,2,3-Trichlorobenzene	11	U	34	11	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
1,2,3-Trichloropropane	16	U	34	16	ug/Kg	Φ	09/23/15 11:41	09/23/15 14:24	
1,2,4-Trichlorobenzene	6.0	U	34	6.0	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
1,2,4-Trimethylbenzene	9.4	U	34	9.4	ug/Kg	☼	09/23/15 11:41	09/23/15 14:24	
1,2-Dibromo-3-Chloropropane	30	U	67	30	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
1,2-Dichlorobenzene	8.7	U	34	8.7	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
1,2-Dichloroethane	7.4	U	34	7.4	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
1,2-Dichloroethene, Total	4.2	U	67	4.2	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,2-Dichloropropane	5.8	U	34		ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,3,5-Trimethylbenzene	11	U	34	11	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
1,3-Dichlorobenzene	11	U	34	11		₩	09/23/15 11:41	09/23/15 14:24	
1,3-Dichloropropane	12	U	34	12	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
1,4-Dichlorobenzene	5.0	U	34			₩	09/23/15 11:41	09/23/15 14:24	
2,2-Dichloropropane	7.4		34		ug/Kg	\$	09/23/15 11:41		
2-Chlorotoluene	13		34		ug/Kg	☆	09/23/15 11:41		
2-Hexanone	22		170		ug/Kg	≎	09/23/15 11:41		
4-Chlorotoluene	11		34	11	ug/Kg	₩.	09/23/15 11:41		
Acetone	170		340			☆	09/23/15 11:41		
Benzene	4.9		34	4.9	ug/Kg	\$	09/23/15 11:41		
Bromobenzene	11	U	34	11	ug/Kg		09/23/15 11:41		
Bromochloromethane	22		34				09/23/15 11:41	09/23/15 14:24	
Bromoform	10		34	10		~ ⊅	09/23/15 11:41	09/23/15 14:24	
					ug/Kg	~ ☆			
Bromodichloromethane	6.5		34		ug/Kg		09/23/15 11:41	09/23/15 14:24	
Bromomethane	10		34	10	ug/Kg		09/23/15 11:41	09/23/15 14:24	
Carbon disulfide	7.4		34		ug/Kg	₩.	09/23/15 11:41	09/23/15 14:24	
Carbon tetrachloride	5.6		34		ug/Kg		09/23/15 11:41		
Chlorobenzene	6.5		34		ug/Kg	₩.	09/23/15 11:41		
Chloroethane	18		34		ug/Kg	÷	09/23/15 11:41		
Chloroform	7.4		34		ug/Kg			09/23/15 14:24	
Chloromethane	6.7	U	34		ug/Kg	- Ç		09/23/15 14:24	
cis-1,2-Dichloroethene	9.4		34	9.4	ug/Kg	₩		09/23/15 14:24	
cis-1,3-Dichloropropene	5.6	U	34	5.6	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
Dibromochloromethane	11	U	34	11	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
Dibromomethane	11	U	34	11	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
Dichlorodifluoromethane	6.3	U	34	6.3	ug/Kg	☼	09/23/15 11:41	09/23/15 14:24	
Ethylbenzene	8.7	U	34	8.7	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
Isopropylbenzene	13	U	34	13	ug/Kg	-\$-	09/23/15 11:41	09/23/15 14:24	
m-Xylene & p-Xylene	17	U	34	17	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
Methyl tert-butyl ether	6.7	U	34	6.7	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
Methylene Chloride	6.6	U	34		ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
4-Methyl-2-pentanone	28	U	170		ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
2-Butanone	16		170		ug/Kg	Ď.		09/23/15 14:24	

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Date Collected: 09/21/15 13:00 Matrix: Solid
Date Received: 09/23/15 00:00 Percent Solids: 17.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,2-Dibromoethane	10	U	34	10	ug/Kg	<u> </u>	09/23/15 11:41	09/23/15 14:24	
-Butylbenzene	16	U	34	16	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
I-Propylbenzene	18	U	34		ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
-Xylene	7.4	U	34	7.4	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
-lsopropyltoluene	15	U	34		ug/Kg	☼	09/23/15 11:41	09/23/15 14:24	
ec-Butylbenzene	14	U	34		ug/Kg	♦	09/23/15 11:41	09/23/15 14:24	
ityrene	6.3		34		ug/Kg	⇔	09/23/15 11:41	09/23/15 14:24	
ert-Butylbenzene	12		34		ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
etrachloroethene	13	U	34		ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
oluene	5.6	_	34		ug/Kg	☆	09/23/15 11:41		
ans-1,2-Dichloroethene	4.2		34		ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
ans-1,3-Dichloropropene	5.9		34		ug/Kg ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
• •	8.7		34			~ ;>	09/23/15 11:41	09/23/15 14:24	
richloroethene					ug/Kg				
richlorofluoromethane	8.1		34	8.1	ug/Kg	φ æ	09/23/15 11:41	09/23/15 14:24	
inyl acetate	17		67		0 0	∴	09/23/15 11:41	09/23/15 14:24	
inyl chloride	10		34		ug/Kg	ψ.	09/23/15 11:41	09/23/15 14:24	
ylenes, Total	7.4	U	67	7.4	ug/Kg	:	09/23/15 11:41	09/23/15 14:24	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
oluene-d8 (Surr)	97		70 - 130				09/23/15 11:41	09/23/15 14:24	
2-Dichloroethane-d4 (Surr)	81		70 - 130				09/23/15 11:41	09/23/15 14:24	
ibromofluoromethane (Surr)	87		70 ₋ 130				09/23/15 11:41	09/23/15 14:24	
-Bromofluorobenzene (Surr)	134	×	70 - 130					09/23/15 14:24	
			Di Di	MOI	linit	ח	Dranarad	Analyzad	Dile
-	62	Qualifier U	RL 190	MDL 62		D 页	Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12	Dil F
CB-1016		U					•	•	Dil F
CB-1016 CB-1221	62	U	190	62	ug/Kg		09/23/15 12:39	09/23/15 23:12	Dil F
CB-1016 CB-1221 CB-1232	62 85	U U U	190 190	62 85	ug/Kg ug/Kg ug/Kg	<u>∓</u>	09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12	Dil F
PCB-1016 PCB-1221 PCB-1232 PCB-1242	62 85 29	U U U	190 190 190	62 85 29 28	ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
CB-1016 CB-1221 CB-1232 CB-1242 CB-1248	62 85 29 28	U U U U	190 190 190 190	62 85 29 28 46	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
CB-1016 CB-1221 CB-1232 CB-1242 CB-1248 CB-1254	62 85 29 28 46	U U U U U	190 190 190 190 190	62 85 29 28 46 57	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil I
CB-1016 CB-1221 CB-1232 CB-1242 CB-1248 CB-1254 CB-1260	62 85 29 28 46 57	U U U U U U	190 190 190 190 190 190	62 85 29 28 46 57	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	
CB-1016 CB-1221 CB-1232 CB-1242 CB-1254 CB-1260 Currogate	62 85 29 28 46 57 54	U U U U U U	190 190 190 190 190 190	62 85 29 28 46 57	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	
CB-1016 CB-1221 CB-1232 CB-1242 CB-1254 CB-1260 Currogate etrachloro-m-xylene	62 85 29 28 46 57 54 %Recovery	U U U U U U	190 190 190 190 190 190 190	62 85 29 28 46 57	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed	
CB-1016 CB-1221 CB-1232 CB-1242 CB-1248 CB-1254 CB-1260 currogate etrachloro-m-xylene CB Decachlorobiphenyl	62 85 29 28 46 57 54 %Recovery 54 62	U U U U U U Qualifier	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133	62 85 29 28 46 57	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12	
CB-1016 CB-1221 CB-1232 CB-1242 CB-1248 CB-1254 CB-1260 Surrogate Tetrachloro-m-xylene CB Decachlorobiphenyl	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr	U U U U U U Qualifier	190 190 190 190 190 190 Limits 46 - 130 54 - 133	62 85 29 28 46 57 54	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12	Dil F
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion unalyte	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result	U U U U U Qualifier aphy - So Qualifier	190 190 190 190 190 190 Limits 46 - 130 54 - 133	62 85 29 28 46 57 54	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12	Dil F
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Analyte litrate as N	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5	U U U U U U Qualifier aphy - So Qualifier U	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133	62 85 29 28 46 57 54 MDL 2.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
CB-1016 CB-1221 CB-1222 CB-1232 CB-1242 CB-1248 CB-1254 CB-1260 urrogate etrachloro-m-xylene DCB Decachlorobiphenyl Method: 9056A - Anions, Ion analyte litrate as N litrate Nitrite as N	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5	U U U U U U Qualifier aphy - So Qualifier U	190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 luble RL 5.6 5.6	62 85 29 28 46 57 54 MDL 2.5 2.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12	Dil i
CB-1016 CB-1221 CB-1222 CB-1232 CB-1242 CB-1248 CB-1254 CB-1260 currogate etrachloro-m-xylene DCB Decachlorobiphenyl Method: 9056A - Anions, Ion analyte litrate as N litrate Nitrite as N litrite as N	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5	U U U U U U Qualifier aphy - So Qualifier U	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133	62 85 29 28 46 57 54 MDL 2.5 2.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	- D 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil I
CB-1016 CB-1221 CB-1222 CB-1232 CB-1242 CB-1248 CB-1254 CB-1260 currogate etrachloro-m-xylene CB Decachlorobiphenyl Method: 9056A - Anions, Ion analyte litrate as N litrite as N litrite as N Method: 6010C - Metals (ICP)	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5	U U U U U Qualifier aphy - So Qualifier U U	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 Uble RL 5.6 5.6 5.6	62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30	Dil F
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Petrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Analyte Jitrate as N Jitrate Nitrite as N Jitrite as N Method: 6010C - Metals (ICP) Analyte	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5 2.5	U U U U U Qualifier aphy - So Qualifier U U Qualifier	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 luble RL 5.6 5.6 5.6	62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	ug/Kg	D D	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39 Prepared	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30	Dil F
CCB-1016 CCB-1221 CCB-1232 CCB-1242 CCB-1248 CCB-1254 CCB-1260 Common and the com	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5	U U U U U U	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 Lible RL 5.6 5.6 5.6 RL 100	62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	ug/Kg	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 13:38	Dil F
CCB-1016 CCB-1221 CCB-1232 CCB-1242 CCB-1248 CCB-1254 CCB-1260 Common and the com	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5	U U U U U Qualifier aphy - So Qualifier U U Qualifier	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 luble RL 5.6 5.6 5.6	62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	ug/Kg	D D	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30	Dil F
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Petrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Analyte Litrate as N Litrite as N Method: 6010C - Metals (ICP) Analyte Litrimony Selenium	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5	U U U U U U U U U U U U U U U U U U U	190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 Lible RL 5.6 5.6 5.6 RL 100	62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	ug/Kg	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 12:39 Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 13:38	Dil F
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Analyte Jitrate as N Jitrate Nitrite as N Jitrite as N Method: 6010C - Metals (ICP) Analyte Antimony Selenium Jickel Jickel Jickel	62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr Result 2.5 2.5 2.5	U U U U U U U U U U U U U U U U U U U	190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 Iuble RL 5.6 5.6 5.6 5.6 100 130	62 85 29 28 46 57 54 MDL 2.5 2.5 2.5 2.5	ug/Kg	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 12:39 Prepared 09/23/15 12:39	09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 13:38 09/24/15 13:38	Dil F

Client: Weston Solutions. Inc.

Date Collected: 09/21/15 13:00

Date Received: 09/23/15 00:00

Project/Site: Gold King Mine - Region 8

Client Sample ID: CC06 09212015 1300

TestAmerica Job ID: 680-117013-1

Lab Sample ID: 680-117013-1

© 09/23/15 11:45 09/24/15 04:44

Matrix: Solid

Percent Solids: 17.6

Analyte	(ICP) (Continued) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	210		51	5.1	mg/Kg	<u> </u>	09/23/15 11:52	09/24/15 13:38	10
Iron	530000		1000	270	mg/Kg	Þ	09/23/15 11:52	09/24/15 13:38	10
Potassium	13	U	510	13	mg/Kg	≎	09/23/15 11:52	09/23/15 16:45	1
Chromium	16	J	51	11	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Copper	1800	F2	130	8.7	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Barium	8.2	U F1	51	8.2	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Beryllium	0.19	J	2.1	0.051	mg/Kg	≎	09/23/15 11:52	09/23/15 16:45	1
Silver	3.1	U	51	3.1	mg/Kg	₽	09/23/15 11:52	09/24/15 13:38	10
Aluminum	3600		1000	160	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Arsenic	340	F2	100	41	mg/Kg	☆	09/23/15 11:52	09/24/15 13:38	10
Cadmium	5.1	U F1	26	5.1	mg/Kg	₽	09/23/15 11:52	09/24/15 13:38	10
Calcium	270	U	2600	270	mg/Kg	☆	09/23/15 11:52	09/24/15 13:38	10
Cobalt	5.1	U	51	5.1	mg/Kg	Ð.	09/23/15 11:52	09/24/15 13:38	10
Sodium	2500	U F1	10000	2500	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Thallium	31	U	130	31	mg/Kg	☼	09/23/15 11:52	09/24/15 13:38	10
Vanadium	71		5.1	0.51	mg/Kg	☼	09/23/15 11:52	09/23/15 16:45	1
Zinc	340		100	36	mg/Kg	Ÿ.	09/23/15 11:52	09/24/15 13:38	10
Method: 7471A - Mercury	v (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.039	U	0.098	0.039	mg/Kg	<u> </u>	09/23/15 13:48	09/23/15 16:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	0.71	U	1.6	0.71	mg/Kg	<u> </u>	09/23/15 13:47	09/23/15 14:50	1
Nitrogen, Kjeldahl	140	U	230	140	mg/Kg	₽	09/23/15 16:15	09/24/15 10:50	1

Client Sample ID: Trip Blank Lab Sample ID: 680-117013-2

1.2 U

Date Collected: 09/21/15 13:00 Date Received: 09/23/15 00:00

Cyanide, Total

Method: SM 6200B - SM 6200B Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1,2-Tetrachloroethane 0.37 U 1.0 0.37 ug/L 09/23/15 13:12 0.37 U 1.0 0.37 ug/L 09/23/15 13:12 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 0.62 U 1.0 0.62 ug/L 09/23/15 13:12 1.1.2-Trichloroethane 0.33 U 1.0 0.33 ug/L 09/23/15 13:12 1,1-Dichloroethane 0.38 U 1.0 0.38 ug/L 09/23/15 13:12 0.36 U 1.0 0.36 ug/L 09/23/15 13:12 1,1-Dichloroethene 1,1-Dichloropropene 0.34 U 1.0 0.34 ug/L 09/23/15 13:12 1,2,3-Trichlorobenzene 2.5 U 5.0 2.5 ug/L 09/23/15 13:12 1,2,3-Trichloropropane 0.39 U 1.0 0.39 ug/L 09/23/15 13:12 1,2,4-Trichlorobenzene 2.5 U 5.0 2.5 ug/L 09/23/15 13:12 1,2,4-Trimethylbenzene 0.47 U 1.0 0.47 ug/L 09/23/15 13:12 1.1 U 1,2-Dibromo-3-Chloropropane 5.0 1.1 ug/L 09/23/15 13:12 1,2-Dichloroethane 0.50 U 1.0 0.50 ug/L 09/23/15 13:12 0.37 ug/L 0.37 U 1,2-Dichloroethene, Total 2.0 09/23/15 13:12 1,2-Dichloropropane 0.67 U 1.0 0.67 ug/L 09/23/15 13:12 1 1,3,5-Trimethylbenzene 0.31 U 1.0 0.31 ug/L 09/23/15 13:12

2.7

1.2 mg/Kg

TestAmerica Savannah

Matrix: Water

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: Trip Blank

Date Collected: 09/21/15 13:00 Date Received: 09/23/15 00:00 Lab Sample ID: 680-117013-2

Matrix: Water

Method: SM 6200B - SM 62 Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,3-Dichloropropane	0.34		1.0	0.34				09/23/15 13:12	
2,2-Dichloropropane	0.37		1.0	0.37				09/23/15 13:12	
2-Chloroethyl vinyl ether	5.0		10		ug/L			09/23/15 13:12	
2-Chlorotoluene	0.27		1.0	0.27				09/23/15 13:12	
2-Hexanone	2.0		10	2.0	ug/L			09/23/15 13:12	
4-Chlorotoluene	0.45		1.0	0.45				09/23/15 13:12	
Acetone	7.0		10		ug/L			09/23/15 13:12	
Benzene	0.43		1.0	0.43	-			09/23/15 13:12	
Bromobenzene	0.50		1.0	0.43	_			09/23/15 13:12	
Bromochloromethane	0.45			0.45	_				
			1.0					09/23/15 13:12	
Bromoform	0.43		1.0	0.43				09/23/15 13:12	
Bromodichloromethane	0.44		1.0	0.44	_			09/23/15 13:12	
Bromomethane	2.5		5.0		ug/L			09/23/15 13:12	
Carbon disulfide	1.0		2.0		ug/L			09/23/15 13:12	
Carbon tetrachloride	0.33		1.0	0.33				09/23/15 13:12	
Chlorobenzene	0.26		1.0	0.26	-			09/23/15 13:12	
Chloroethane	2.5		5.0		ug/L			09/23/15 13:12	
Chloroform	0.50	U	1.0	0.50				09/23/15 13:12	
Chloromethane	0.40	U	1.0	0.40	ug/L			09/23/15 13:12	
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			09/23/15 13:12	
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			09/23/15 13:12	
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			09/23/15 13:12	
Dibromomethane	0.35	U	1.0	0.35	ug/L			09/23/15 13:12	
Dichlorodifluoromethane	0.60	U	1.0	0.60				09/23/15 13:12	
Ethylbenzene	0.33	U	1.0	0.33	-			09/23/15 13:12	
sopropylbenzene	0.35	U	1.0	0.35	-			09/23/15 13:12	
n-Xylene & p-Xylene	0.35		1.0	0.35	_			09/23/15 13:12	
Methyl tert-butyl ether	0.30		10	0.30				09/23/15 13:12	
Methylene Chloride	2.5		5.0		ug/L			09/23/15 13:12	
4-Methyl-2-pentanone	2.1		10		ug/L			09/23/15 13:12	
2-Butanone	3.4		10		ug/L			09/23/15 13:12	
	0.44		1.0		-			09/23/15 13:12	
1,2-Dibromoethane				0.44				09/23/15 13:12	
n-Butylbenzene	0.47		1.0	0.47	_				
N-Propylbenzene	0.38		1.0	0.38	-			09/23/15 13:12	
o-Xylene	0.23		1.0	0.23	-			09/23/15 13:12	
o-Isopropyltoluene	0.48		1.0	0.48				09/23/15 13:12	
sec-Butylbenzene	0.42		1.0	0.42				09/23/15 13:12	
Styrene	0.27		1.0		ug/L			09/23/15 13:12	
ert-Butylbenzene	0.45		1.0		ug/L			09/23/15 13:12	
Γetrachloroethene	0.74	U	1.0		ug/L			09/23/15 13:12	
Toluene	0.48	U	1.0	0.48	ug/L			09/23/15 13:12	
rans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			09/23/15 13:12	
rans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			09/23/15 13:12	
Frichloroethene	0.48	U	1.0	0.48	ug/L			09/23/15 13:12	
Frichlorofluoromethane	0.42	U	1.0		ug/L			09/23/15 13:12	
/inyl acetate	0.81		2.0		ug/L			09/23/15 13:12	
√inyl chloride	0.50		1.0		ug/L			09/23/15 13:12	
Xylenes, Total	0.23		1.0		ug/L			09/23/15 13:12	

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: Trip Blank Lab Sample ID: 680-117013-2 Date Collected: 09/21/15 13:00

Matrix: Water

Date Received: 09/23/15 00:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130	09/23/15 13:1	2 1
1,2-Dichloroethane-d4 (Surr)	99	70 _ 130	09/23/15 13:1	2 1
Dibromofluoromethane (Surr)	101	70 - 130	09/23/15 13:1	2 1
4-Bromofluorobenzene (Surr)	111	70 - 130	09/23/15 13:1	2 1

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-402406/6 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Ratch: 402406

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	2.4	U —	4.9	2.4	ug/Kg			09/23/15 13:22	
1,1,1-Trichloroethane	0.58	U	4.9	0.58	ug/Kg			09/23/15 13:22	1
1,1,2,2-Tetrachloroethane	1.6	U	4.9	1.6	ug/Kg			09/23/15 13:22	1
1,1,2-Trichloroethane	1.3	U	4.9	1.3	ug/Kg			09/23/15 13:22	1
1,1-Dichloroethane	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
1,1-Dichloroethene	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
1,1-Dichloropropene	0.94	U	4.9		ug/Kg			09/23/15 13:22	1
1,2,3-Trichlorobenzene	1.6	U	4.9		ug/Kg			09/23/15 13:22	1
1,2,3-Trichloropropane	2.4	U	4.9		ug/Kg			09/23/15 13:22	1
1,2,4-Trichlorobenzene	0.88	. U	4.9		ug/Kg			09/23/15 13:22	1
1,2,4-Trimethylbenzene	1.4		4.9		ug/Kg			09/23/15 13:22	
1,2-Dibromo-3-Chloropropane	4.3		9.9		ug/Kg			09/23/15 13:22	
1,2-Dichlorobenzene	1.3		4.9		ug/Kg			09/23/15 13:22	
1,2-Dichloroethane	1.1		4.9	1.1	ug/Kg			09/23/15 13:22	
1,2-Dichloroethene, Total	0.62		9.9		ug/Kg			09/23/15 13:22	
1,2-Dichloropropane	0.85		4.9		ug/Kg			09/23/15 13:22	
1,3,5-Trimethylbenzene	1.7		4.9		ug/Kg ug/Kg			09/23/15 13:22	
1.3-Dichlorobenzene	1.7		4.9		ug/Kg ug/Kg			09/23/15 13:22	,
1,3-Dichloropropane	1.8		4.9		ug/Kg			09/23/15 13:22	1
1,4-Dichlorobenzene	0.73		4.9		ug/Kg			09/23/15 13:22	1
2,2-Dichloropropane	1.1		4.9	1.1	ug/Kg			09/23/15 13:22	1
2-Chlorotoluene	2.0		4.9		ug/Kg			09/23/15 13:22	1
2-Hexanone	3.3		25		ug/Kg			09/23/15 13:22	1
4-Chlorotoluene	1.7		4.9		ug/Kg			09/23/15 13:22	1
Acetone	11		49	11	ug/Kg			09/23/15 13:22	1
Benzene	0.72		4.9		ug/Kg			09/23/15 13:22	1
Bromobenzene	1.7		4.9		ug/Kg			09/23/15 13:22	1
Bromochloromethane	3.3		4.9		ug/Kg			09/23/15 13:22	1
Bromoform	1.5	U	4.9		ug/Kg			09/23/15 13:22	1
Bromodichloromethane	0.96	U	4.9	0.96	ug/Kg			09/23/15 13:22	1
Bromomethane	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
Carbon disulfide	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
Carbon tetrachloride	0.82	U	4.9	0.82	ug/Kg			09/23/15 13:22	1
Chlorobenzene	0.95	U	4.9	0.95	ug/Kg			09/23/15 13:22	1
Chloroethane	2.7	U	4.9	2.7	ug/Kg			09/23/15 13:22	1
Chloroform	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
Chloromethane	0.99	U	4.9		ug/Kg			09/23/15 13:22	1
cis-1,2-Dichloroethene	1.4		4.9		ug/Kg			09/23/15 13:22	1
cis-1,3-Dichloropropene	0.82		4.9		ug/Kg			09/23/15 13:22	1
Dibromochloromethane	1.7		4.9		ug/Kg			09/23/15 13:22	
Dibromomethane	1.7		4.9		ug/Kg			09/23/15 13:22	1
Dichlorodifluoromethane	0.93		4.9		ug/Kg			09/23/15 13:22	
Ethylbenzene	1.3		4.9		ug/Kg			09/23/15 13:22	
Isopropylbenzene	1.9		4.9		ug/Kg			09/23/15 13:22	,
m-Xylene & p-Xylene	2.6		4.9		ug/Kg ug/Kg			09/23/15 13:22	,
Methyl tert-butyl ether	0.99		4.9		ug/Kg ug/Kg			09/23/15 13:22	,
	0.99				ug/Kg ug/Kg			09/23/15 13:22	
Methylene Chloride 4-Methyl-2-pentanone	0.97 4.1		4.9 25		ug/Kg ug/Kg			09/23/15 13:22	1

Client Sample ID: Method Blank

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Lab Sample ID: MB 680-402406/6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid								Prep Type: To	otal/NA
Analysis Batch: 402406									
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone	2.4	U	25	2.4	ug/Kg			09/23/15 13:22	1
1,2-Dibromoethane	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
n-Butylbenzene	2.4	U	4.9	2.4	ug/Kg			09/23/15 13:22	1
N-Propylbenzene	2.7	U	4.9	2.7	ug/Kg			09/23/15 13:22	1
o-Xylene	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
p-lsopropyltoluene	2.2	U	4.9	2.2	ug/Kg			09/23/15 13:22	1
sec-Butylbenzene	2.1	U	4.9	2.1	ug/Kg			09/23/15 13:22	1
Styrene	0.92	U	4.9	0.92	ug/Kg			09/23/15 13:22	1
tert-Butylbenzene	1.8	U	4.9	1.8	ug/Kg			09/23/15 13:22	1
Tetrachloroethene	1.9	U	4.9	1.9	ug/Kg			09/23/15 13:22	1
Toluene	0.83	U	4.9	0.83	ug/Kg			09/23/15 13:22	1
trans-1,2-Dichloroethene	0.62	U	4.9	0.62	ug/Kg			09/23/15 13:22	1
trans-1,3-Dichloropropene	0.86	U	4.9	0.86	ug/Kg			09/23/15 13:22	1
Trichloroethene	1.3	U	4.9	1.3	ug/Kg			09/23/15 13:22	1
Trichlorofluoromethane	1.2	U	4.9	1.2	ug/Kg			09/23/15 13:22	1
Vinyl acetate	2.5	U	9.9	2.5	ug/Kg			09/23/15 13:22	1
Vinyl chloride	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
Xylenes, Total	1.1	U	9.9	1.1	ug/Kg			09/23/15 13:22	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130		09/23/15 13:22	1
1,2-Dichloroethane-d4 (Surr)	87		70 - 130		09/23/15 13:22	1
Dibromofluoromethane (Surr)	88		70 - 130		09/23/15 13:22	1
4-Bromofluorobenzene (Surr)	121		70 - 130		09/23/15 13:22	1

Lab Sample ID: LCS 680-402406/3

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Ratch: 402406

0		1.00				0/ D	
•							
Added	Result	Qualifier	Unit	D	%Rec	Limits	
49.8	48.9		ug/Kg		98	70 - 130	
49.8	46.1		ug/Kg		93	70 - 130	
49.8	49.5		ug/Kg		99	70 - 130	
49.8	49.7		ug/Kg		100	70 - 130	
49.8	46.4		ug/Kg		93	70 - 130	
49.8	45.4		ug/Kg		91	70 _ 130	
49.8	46.6		ug/Kg		94	70 - 130	
49.8	42.6		ug/Kg		86	70 - 130	
49.8	48.6		ug/Kg		98	70 _ 130	
49.8	44.3		ug/Kg		89	70 - 130	
49.8	50.9		ug/Kg		102	70 - 130	
49.8	48.8		ug/Kg		98	40 - 160	
49.8	48.8		ug/Kg		98	70 - 130	
49.8	50.4		ug/Kg		101	70 - 130	
99.6	98.8		ug/Kg		99	70 - 130	
49.8	51.2		ug/Kg		103	70 - 130	
49.8	50.4		ug/Kg		101	70 - 130	
49.8	48.7		ug/Kg		98	70 - 130	
	49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8	Added Result 49.8 48.9 49.8 46.1 49.8 49.5 49.8 49.7 49.8 46.4 49.8 45.4 49.8 46.6 49.8 42.6 49.8 48.6 49.8 44.3 49.8 50.9 49.8 48.8 49.8 48.8 49.8 50.4 99.6 98.8 49.8 51.2 49.8 50.4	Added Result Qualifier 49.8 48.9 49.8 46.1 49.8 49.5 49.8 49.7 49.8 46.4 49.8 45.4 49.8 46.6 49.8 42.6 49.8 48.6 49.8 50.9 49.8 48.8 49.8 48.8 49.8 50.4 99.6 98.8 49.8 50.4 49.8 50.4 49.8 50.4	Added Result Qualifier Unit 49.8 48.9 ug/Kg 49.8 46.1 ug/Kg 49.8 49.5 ug/Kg 49.8 49.7 ug/Kg 49.8 46.4 ug/Kg 49.8 45.4 ug/Kg 49.8 46.6 ug/Kg 49.8 42.6 ug/Kg 49.8 48.6 ug/Kg 49.8 44.3 ug/Kg 49.8 50.9 ug/Kg 49.8 48.8 ug/Kg 49.8 48.8 ug/Kg 49.8 50.4 ug/Kg 49.8 51.2 ug/Kg 49.8 50.4 ug/Kg 49.8 50.4 ug/Kg	Added Result Qualifier Unit D 49.8 48.9 ug/Kg ug/Kg 49.8 49.5 ug/Kg ug/Kg 49.8 49.7 ug/Kg ug/Kg 49.8 46.4 ug/Kg ug/Kg 49.8 45.4 ug/Kg ug/Kg 49.8 46.6 ug/Kg ug/Kg 49.8 42.6 ug/Kg ug/Kg 49.8 44.3 ug/Kg ug/Kg 49.8 50.9 ug/Kg ug/Kg 49.8 48.8 ug/Kg ug/Kg 49.8 48.8 ug/Kg ug/Kg 49.8 50.4 ug/Kg ug/Kg 49.8 51.2 ug/Kg 49.8 50.4 ug/Kg	Added Result Qualifier Unit D %Rec 49.8 48.9 ug/Kg 98 49.8 46.1 ug/Kg 93 49.8 49.5 ug/Kg 99 49.8 49.7 ug/Kg 93 49.8 46.4 ug/Kg 93 49.8 45.4 ug/Kg 91 49.8 46.6 ug/Kg 94 49.8 42.6 ug/Kg 86 49.8 48.6 ug/Kg 98 49.8 44.3 ug/Kg 89 49.8 50.9 ug/Kg 98 49.8 48.8 ug/Kg 98 49.8 48.8 ug/Kg 98 49.8 50.4 ug/Kg 101 99.6 98.8 ug/Kg 103 49.8 51.2 ug/Kg 103 49.8 50.4 ug/Kg 103 49.8 50.4 ug/Kg	Added Result Qualifier Unit D %Rec Limits 49.8 48.9 ug/Kg 98 70 - 130 49.8 46.1 ug/Kg 93 70 - 130 49.8 49.5 ug/Kg 99 70 - 130 49.8 49.7 ug/Kg 93 70 - 130 49.8 46.4 ug/Kg 93 70 - 130 49.8 45.4 ug/Kg 91 70 - 130 49.8 46.6 ug/Kg 94 70 - 130 49.8 42.6 ug/Kg 98 70 - 130 49.8 48.6 ug/Kg 98 70 - 130 49.8 44.3 ug/Kg 89 70 - 130 49.8 50.9 ug/Kg 98 70 - 130 49.8 48.8 ug/Kg 98 40 - 160 49.8 48.8 ug/Kg 98 70 - 130 49.8 50.4 ug/Kg 99 70 - 130

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-402406/3 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 402406 LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 70 - 130 1,3-Dichloropropane 49.8 50 4 ug/Kg 101 1,4-Dichlorobenzene 49.8 49.0 ug/Kg 98 70 - 130 49.8 46.5 93 70 - 130 2,2-Dichloropropane ug/Kg 2-Chlorotoluene 49.8 47.6 ug/Kg 96 70 - 130 2-Hexanone 249 252 ug/Kg 101 40 - 160 49.8 48.1 97 70 - 130 4-Chlorotoluene ug/Kg 249 184 74 40 - 160 Acetone ug/Kg Benzene 49.8 48.4 ug/Kg 97 70 - 13047.3 Bromobenzene 49.8 ug/Kg 95 70 - 130 95 Bromochloromethane 49.8 47.5 ug/Kg 70 - 130 Bromoform 49.8 51.7 ug/Kg 104 70 - 130 Bromodichloromethane 49.8 48.8 ug/Kg 98 70 - 130 Bromomethane 49.8 41.4 83 40 - 160 ug/Kg Carbon disulfide 49.8 90 40 - 160 44.7 ug/Kg Carbon tetrachloride 49.8 47.6 96 70 - 130 ug/Kg 49.8 46.4 93 Chlorobenzene ug/Kg 70 - 130Chloroethane 49.8 46.8 ug/Kg 94 40 - 160 ug/Kg 96 Chloroform 49.8 47.8 70 - 130 76 Chloromethane 498 37.7 40 - 160 ug/Kg 49.8 49.3 99 70 - 130 cis-1,2-Dichloroethene ug/Kg 104 49.8 51.6 70 - 130cis-1,3-Dichloropropene ug/Kg Dibromochloromethane 49.8 50.5 ug/Kg 101 70 - 130 Dibromomethane 49.8 50.1 ug/Kg 101 70 - 130 Dichlorodifluoromethane 49.8 31.0 ug/Kg 62 40 - 160 Ethylbenzene 49.8 46.9 ug/Kg 94 70 - 130 Isopropylbenzene 49.8 48.3 ug/Kg 97 70 - 130 96 m-Xylene & p-Xylene 49.8 47.8 ug/Kg 70 - 130 107 Methyl tert-butyl ether 49.8 53.3 ug/Kg 70 - 130 49.8 45.5 91 70 - 130 Methylene Chloride ug/Kg 4-Methyl-2-pentanone 249 249 ug/Kg 100 40 - 160 2-Butanone 249 258 104 40 - 160 ug/Kg 1,2-Dibromoethane 49.8 52.8 ug/Kg 106 70 - 130 n-Butylbenzene 49.8 55.0 ug/Kg 111 70 - 130 49.8 97 70 - 130 N-Propylbenzene 48.3 ug/Kg o-Xylene 49.8 47.0 ug/Kg 94 70 - 130 49.8 50.8 102 70 - 130 p-Isopropyltoluene ug/Kg sec-Butylbenzene 49.8 48.7 ug/Kg 98 70 - 13049.8 96 Styrene 47.9 ug/Kg 70 - 130 97 tert-Butylbenzene 49.8 48.4 ug/Kg 70 - 130 Tetrachloroethene 49.8 46.9 ug/Kg 94 70 - 130 Toluene 49.8 48.6 98 70 - 130 ug/Kg 99 trans-1,2-Dichloroethene 49.8 49.5 70 - 130 ug/Kg trans-1,3-Dichloropropene 49.8 50.8 102 70 - 130 ug/Kg 49.8 97 70 _ 130 Trichloroethene 48.4 ug/Kg Trichlorofluoromethane 49.8 41.7 ug/Kg 84 40 - 160 99.6 74 Vinyl acetate 74.1 ug/Kg 70 - 130 Vinyl chloride 49.8 40.7 ug/Kg 82 70 _ 130 Xylenes, Total 99.6 94.8 ug/Kg 95 70 - 130

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-402406/3

Matrix: Solid

Analysis Batch: 402406

LCS LCS

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: LCSD 680-402406/4

Matrix: Solid

Analysis Batch: 402406

Analysis Batch: 402406	Spike	1.000	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	%Rec.	RPD	Limit
1,1,1,2-Tetrachloroethane	48.9	51.0	Quanner	ug/Kg		104	70 ₋ 130	4	20
1,1,1-Trichloroethane	48.9	47.3		ug/Kg ug/Kg		97	70 - 130 70 - 130	3	20
1,1,2,2-Tetrachloroethane	48.9	49.7		ug/Kg ug/Kg		102	70 - 130 70 - 130	0	20
1,1,2-Trichloroethane	48.9	49.9		ug/Kg ug/Kg		102	70 - 130 70 - 130	0	20
1,1-Dichloroethane	48.9	49.2		ug/Kg ug/Kg		101	70 - 130 70 - 130	6	20
1,1-Dichloroethane	48.9	48.7		ug/Kg ug/Kg		99	70 - 130 70 - 130	7	20
1,1-Dichloropropene	48.9	49.0		ug/Kg ug/Kg		100	70 - 130 70 - 130	5	20
1,2,3-Trichlorobenzene	48.9	42.3		ug/Kg ug/Kg		86	70 - 130 70 - 130	1	20
1,2,3-Trichloropropane	48.9	50.9		ug/Kg ug/Kg		104	70 ₋ 130	5	20
1,2,4-Trichlorobenzene	48.9	43.1		ug/Kg ug/Kg		88	70 - 130 70 - 130	3	20
1,2,4-Trichloroberizene	48.9	52.5		ug/Kg ug/Kg		107	70 - 130 70 - 130	3	20
1,2-Dibromo-3-Chloropropane	48.9	46.0		ug/Kg ug/Kg		94	40 - 160	6	20
1.2-Dichlorobenzene	48.9	49.2		ug/Kg ug/Kg		101	70 - 130	1	20
1,2-Dichloroethane	48.9	50.5		ug/Kg ug/Kg		103	70 - 130 70 - 130	0	20
1,2-Dichloroethane	97.8	100		ug/Kg ug/Kg		103	70 - 130 70 - 130	2	20
1,2-Dichloropropane	48.9	51.4		ug/Kg ug/Kg		105	70 - 130 70 - 130	0	20
1,3,5-Trimethylbenzene	48.9	51.4		ug/Kg ug/Kg		105	70 - 130 70 - 130	2	20
1.3-Dichlorobenzene	48.9	49.1		ug/Kg ug/Kg		100	70 - 130 70 - 130	1	20
1,3-Dichloropenzene	48.9	50.9		ug/Kg ug/Kg		104	70 - 130 70 - 130	1	20
1,4-Dichlorobenzene	48.9	48.7		ug/Kg ug/Kg		100	70 - 130 70 - 130	1	20
2,2-Dichloropropane	48.9	47.8		ug/Kg ug/Kg		98	70 - 130 70 - 130	3	20
2-Chlorotoluene	48.9	50.1		ug/Kg ug/Kg		102	70 - 130 70 - 130	5	20
2-Hexanone	245	250		ug/Kg ug/Kg		102	40 - 160	1	20
4-Chlorotoluene	48.9	51.3		ug/Kg		105	70 - 130	6	20
Acetone	245	210		ug/Kg		86	40 - 160	13	20
Benzene	48.9	49.7		ug/Kg		102	70 ₋ 130	3	20
Bromobenzene	48.9	48.5		ug/Kg		99	70 - 130	2	20
Bromochloromethane	48.9	47.8		ug/Kg		98	70 - 130	1	20
Bromoform	48.9	52.5		ug/Kg		107	70 - 130	2	20
Bromodichloromethane	48.9	50.4		ug/Kg		103	70 - 130	3	20
Bromomethane	48.9	50.0		ug/Kg		102	40 - 160	19	20
Carbon disulfide	48.9	47.1		ug/Kg		96	40 - 160	5	20
Carbon tetrachloride	48.9	49.3		ug/Kg		101	70 - 130	3	20
Chlorobenzene	48.9	49.2		ug/Kg		101	70 - 130	6	20
Chloroethane	48.9	48.6		ug/Kg		99	40 - 160	4	20
Chloroform	48.9	48.7		ug/Kg		100	70 - 130	2	20
Chloromethane	48.9	38.8		ug/Kg		79	40 - 160	3	20
cis-1,2-Dichloroethene	48.9	49.5		ug/Kg		101	70 - 130	0	20
, , , , , , , , , , , , , , , , , , , ,	•			33			- ·-•	_	

70 - 130

40 - 160

70 - 130

70 - 130

70 - 130

4

10

1

6

103

95

76

88

102

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-402406/4

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 402406 LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Unit D %Rec Limits **RPD** Limit Analyte 70 - 130 cis-1,3-Dichloropropene 48.9 53.1 ug/Kg 108 3 20 Dibromochloromethane 48.9 50.9 ug/Kg 104 70 - 130 20 Dibromomethane 48.9 50.8 ug/Kg 104 70 - 130 20 2 Dichlorodifluoromethane 48.9 32.4 ug/Kg 66 40 - 160 20 Ethylbenzene 48.9 49.6 101 70 - 130 6 20 ug/Kg 48.9 50.7 104 5 20 Isopropylbenzene 70 - 130 ug/Kg m-Xylene & p-Xylene 48.9 50.4 103 70 - 130 20 ug/Kg Methyl tert-butyl ether 48.9 52.1 106 70 - 130 2 20 ug/Kg Methylene Chloride 48.9 48.4 ug/Kg 99 70 - 130 6 20 101 20 4-Methyl-2-pentanone 245 247 ug/Kg 40 - 160 1 7 2-Butanone 245 241 99 40 - 160 20 ug/Kg 1,2-Dibromoethane 48.9 52.1 ug/Kg 107 70 - 130 20 n-Butylbenzene 48.9 54.2 ug/Kg 111 70 - 130 2 20 N-Propylbenzene 48.9 51.5 105 70 - 130 ug/Kg 20 20

o-Xylene	48.9	49.0	ug/Kg	100	70 - 130	4	
p-lsopropyltoluene	48.9	50.9	ug/Kg	104	70 - 130	0	
sec-Butylbenzene	48.9	50.9	ug/Kg	104	70 _ 130	4	
Styrene	48.9	50.3	ug/Kg	103	70 - 130	5	
tert-Butylbenzene	48.9	50.6	ug/Kg	103	70 - 130	4	
Tetrachloroethene	48.9	48.8	ug/Kg	100	70 _ 130	4	
Toluene	48.9	49.2	ug/Kg	101	70 - 130	1	
trans-1,2-Dichloroethene	48.9	50.8	ug/Kg	104	70 - 130	3	
trans-1,3-Dichloropropene	48.9	50.6	ug/Kg	104	70 - 130	0	

50.5

46.3

74.5

43.1

99.4

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

48.9

48.9

97.8

48.9

70 - 130

Xylenes, Total 97.8 LCSD LCSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 70 - 130 1,2-Dichloroethane-d4 (Surr) 104 70 - 130 Dibromofluoromethane (Surr) 104 70 - 130

102

Method: SM 6200B - SM 6200B

Lab Sample ID: MB 680-402348/9

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 402348

4-Bromofluorobenzene (Surr)

Trichloroethene

Vinyl acetate

Vinyl chloride

Trichlorofluoromethane

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			09/23/15 09:18	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			09/23/15 09:18	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0	0.62	ug/L			09/23/15 09:18	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			09/23/15 09:18	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			09/23/15 09:18	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			09/23/15 09:18	1

TestAmerica Savannah

20

20

20

20

20

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: MB 680-402348/9 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 402348	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	0.34	U	1.0	0.34	ug/L			09/23/15 09:18	1
1,2,3-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			09/23/15 09:18	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			09/23/15 09:18	1
1,2,4-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			09/23/15 09:18	1
1,2,4-Trimethylbenzene	0.47	U	1.0	0.47	ug/L			09/23/15 09:18	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			09/23/15 09:18	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			09/23/15 09:18	1
1,2-Dichloroethene, Total	0.37	U	2.0	0.37	ug/L			09/23/15 09:18	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			09/23/15 09:18	1
1,3,5-Trimethylbenzene	0.31	U	1.0	0.31	ug/L			09/23/15 09:18	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			09/23/15 09:18	1
2-Chloroethyl vinyl ether	5.0	U	10	5.0	ug/L			09/23/15 09:18	1
2,2-Dichloropropane	0.37	U	1.0	0.37	ug/L			09/23/15 09:18	1
2-Chlorotoluene	0.27	U	1.0	0.27	ug/L			09/23/15 09:18	1
2-Hexanone	2.0	U	10	2.0	ug/L			09/23/15 09:18	1
4-Chlorotoluene	0.45	U	1.0	0.45				09/23/15 09:18	1
Acetone	7.0	U	10		ug/L			09/23/15 09:18	1
Benzene	0.43	U	1.0	0.43	-			09/23/15 09:18	1
Bromobenzene	0.50		1.0		ug/L			09/23/15 09:18	1
Bromochloromethane	0.45	U	1.0		ug/L			09/23/15 09:18	1
Bromoform	0.43	U	1.0	0.43	=			09/23/15 09:18	,
Bromodichloromethane	0.44		1.0	0.44				09/23/15 09:18	
Bromomethane	2.5		5.0		ug/L			09/23/15 09:18	1
Carbon disulfide	1.0		2.0		ug/L			09/23/15 09:18	1
Carbon tetrachloride	0.33		1.0		ug/L			09/23/15 09:18	
Chlorobenzene	0.26		1.0	0.26				09/23/15 09:18	
Chloroethane	2.5		5.0		ug/L			09/23/15 09:18	
Chloroform	0.50		1.0		ug/L			09/23/15 09:18	
Chloromethane	0.40		1.0	0.40				09/23/15 09:18	1
cis-1,2-Dichloroethene	0.41		1.0	0.41	-			09/23/15 09:18	1
cis-1,3-Dichloropropene	0.40		1.0	0.40	_			09/23/15 09:18	1
Dibromochloromethane	0.32		1.0	0.32	-			09/23/15 09:18	1
Dibromomethane	0.35		1.0	0.35	_			09/23/15 09:18	1
Dichlorodifluoromethane	0.60		1.0	0.60				09/23/15 09:18	
Ethylbenzene	0.33		1.0	0.33	-			09/23/15 09:18	
Isopropylbenzene	0.35		1.0	0.35				09/23/15 09:18	1
m-Xylene & p-Xylene	0.35		1.0		ug/L			09/23/15 09:18	
Methyl tert-butyl ether	0.30		10		ug/L			09/23/15 09:18	1
Methylene Chloride	2.5		5.0		ug/L			09/23/15 09:18	1
4-Methyl-2-pentanone	2.1		10		ug/L			09/23/15 09:18	1
2-Butanone	3.4		10		ug/L			09/23/15 09:18	1
1,2-Dibromoethane	0.44		1.0		ug/L			09/23/15 09:18	1
n-Butylbenzene	0.44		1.0		ug/L ug/L			09/23/15 09:18	
N-Propylbenzene	0.47		1.0		ug/L ug/L			09/23/15 09:18	1
o-Xylene	0.38		1.0		ug/L ug/L			09/23/15 09:18	1
p-Isopropyltoluene	0.23		1.0		ug/L ug/L			09/23/15 09:18	1
sec-Butylbenzene	0.48		1.0		ug/L ug/L			09/23/15 09:18	1
Styrene	0.42		1.0		ug/L ug/L			09/23/15 09:18	1

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: MB 680-402348/9

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 402348

rindiyoro watorii romo ro									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butylbenzene	0.45	U	1.0	0.45	ug/L			09/23/15 09:18	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			09/23/15 09:18	1
Toluene	0.48	U	1.0	0.48	ug/L			09/23/15 09:18	1
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			09/23/15 09:18	1
trans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			09/23/15 09:18	1
Trichloroethene	0.48	U	1.0	0.48	ug/L			09/23/15 09:18	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			09/23/15 09:18	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			09/23/15 09:18	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			09/23/15 09:18	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			09/23/15 09:18	1

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared

 Toluene-d8 (Surr)
 102
 70 - 130
 70 - 130

 Toluene-d8 (Surr)
 102
 70 - 130
 09/23/15 09:18
 1

 1,2-Dichloroethane-d4 (Surr)
 99
 70 - 130
 09/23/15 09:18
 1

 Dibromofluoromethane (Surr)
 102
 70 - 130
 09/23/15 09:18
 1

 4-Bromofluorobenzene (Surr)
 114
 70 - 130
 09/23/15 09:18
 1

Lab Sample ID: LCS 680-402348/4

Matrix: Water

Analysis Batch: 402348

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyzed

Dil Fac

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Analyte ug/L 50.0 47.1 94 80 - 120 1,1,1,2-Tetrachloroethane 50.0 1,1,1-Trichloroethane 52.4 ug/L 105 74 - 128 50.0 1,1,2,2-Tetrachloroethane 54.9 ug/L 110 72 - 128 1,1,2-Trichloroethane 50.0 58.7 ug/L 117 79 - 125 1,1-Dichloroethane 50.0 48.2 ug/L 96 80 - 120ug/L 50.0 46.1 92 74 - 125 1,1-Dichloroethene 50.0 99 78 - 127 1,1-Dichloropropene 49.7 ug/L 50.0 84 61 - 151 1,2,3-Trichlorobenzene 41.9 ug/L 50.0 55.7 70 - 132 1,2,3-Trichloropropane ug/L 111 1,2,4-Trichlorobenzene 50.0 41.1 82 77 - 131ug/L 1,2,4-Trimethylbenzene 50.0 47.3 ug/L 95 80 - 124 50.0 42.5 85 1,2-Dibromo-3-Chloropropane ug/L 59 _ 141 50.0 56.8 1,2-Dichloroethane ug/L 114 75 - 130 100 103 ug/L 103 1,2-Dichloroethene, Total 80 - 120 1,2-Dichloropropane 50.0 56.0 ug/L 112 80 - 123 ug/L 1,3,5-Trimethylbenzene 50.0 50.0 100 80 - 120 50.0 78 - 127 1,3-Dichloropropane 59.3 ug/L 119 2-Chloroethyl vinyl ether 50.0 61.0 ug/L 122 10 - 190 2,2-Dichloropropane 50.0 51.0 ug/L 102 72 - 133 2-Chlorotoluene 50.0 49.9 ug/L 100 77 - 121 2-Hexanone 250 301 ug/L 120 70 - 141 101 4-Chlorotoluene 50.0 50.7 80 - 120 ug/L Acetone 250 253 ug/L 101 60 - 154 Benzene 50.0 52.4 105 73 - 131 ug/L 102 Bromobenzene 50.0 51.2 ug/L 79 - 124Bromochloromethane 50.0 49.7 ug/L 99 77 - 122

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: LCS 680-402348/4 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis	Batch	: 402348
----------	-------	----------

Analysis Batch: 402348	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	50.0	46.7		ug/L		93	69 - 135	
Bromodichloromethane	50.0	60.7		ug/L		121	77 - 129	
3romomethane	50.0	49.8		ug/L		100	20 - 180	
Carbon disulfide	50.0	42.2		ug/L		84	73 - 127	
Carbon tetrachloride	50.0	52.6		ug/L		105	75 - 130	
Chlorobenzene	50.0	50.6		ug/L		101	80 _ 120	
Chloroethane	50.0	50.6		ug/L		101	50 - 151	
Chloroform	50.0	54.2		ug/L		108	79 - 122	
Chloromethane	50.0	42.5		ug/L		85	63 _ 126	
cis-1,2-Dichloroethene	50.0	52.9		ug/L		106	80 - 122	
sis-1,3-Dichloropropene	50.0	60.7		ug/L		121	80 - 133	
Dibromochloromethane	50.0	52.0		ug/L		104	71 - 136	
Dibromomethane	50.0	58.2		ug/L		116	80 - 122	
Dichlorodifluoromethane	50.0	42.6		ug/L		85	51 - 140	
Ethylbenzene	50.0	50.1		ug/L		100	80 - 120	
sopropylbenzene	50.0	50.0		ug/L		100	80 - 120	
n-Xylene & p-Xylene	50.0	49.5		ug/L		99	80 - 120	
Methyl tert-butyl ether	50.0	58.8		ug/L		118	74 - 135	
Methylene Chloride	50.0	46.9		ug/L		94	76 - 129	
I-Methyl-2-pentanone	250	305		ug/Ľ		122	75 - 135	
2-Butanone	250	286		ug/L		114	75 - 133	
1,2-Dibromoethane	50.0	58.5		ug/L		117	77 - 131	
n-Butylbenzene	50.0	45.3		ug/L		91	78 - 124	
N-Propylbenzene	50.0	49.4		ug/L		99	80 - 120	
p-Xylene	50.0	51.3		ug/L		103	80 - 120	
p-Isopropyltoluene	50.0	40.4		ug/L		81	80 - 120	
sec-Butylbenzene	50.0	44.5		ug/L		89	76 - 125	
Styrene	50.0	53.8		ug/L		108	80 - 122	
ert-Butylbenzene	50.0	45.2		ug/L		90	80 - 120	
Fetrachloroethene	50.0	50.5		ug/L		101	77 - 123	
Foluene	50.0	53.1		ug/L		106	80 - 122	
rans-1,2-Dichloroethene	50.0	49.8		ug/L		100	78 - 123	
rans-1,3-Dichloropropene	50.0	53.0		ug/L		106	74 - 140	
Trichloroethene	50.0	51.7		ug/L		103	80 - 123	
Trichlorofluoromethane	50.0	44.8		ug/L		90	58 - 145	
/inyl acetate	100	87.2		ug/L		87	15 - 190	
/inyl chloride	50.0	45.0		ug/L		90	68 - 132	
Xylenes, Total	100	101		ug/L		101	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	106		70 - 130
1,2-Dichloroethane-d4 (Surr)	111		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: LCSD 680-402348/5 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 402348	Outles	Spike LCSD LCS					, , , , , , , , , , , , , , , , , , ,				
Analyte	Spike Added		Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit		
1,1,1,2-Tetrachloroethane	Added	47.1	Quanner	ug/L	— –	94	80 ₋ 120	——————————————————————————————————————	20		
1,1,1-Trichloroethane	50.0	53.3		ug/L ug/L		9 4 107	74 ₋ 128	2	20		
1,1,2,2-Tetrachloroethane	50.0	55.8		-		112	74 - 128 72 - 128	2	20		
	50.0	56.3		ug/L		113	72 - 126 79 - 125	4	20		
1,1,2-Trichloroethane				ug/L		91	79 - 125 80 - 120	5	20		
1,1-Dichloroethane	50.0	45.7		ug/L			74 - 125		20		
1,1-Dichloroethene	50.0	45.4		ug/L		91		2			
1,1-Dichloropropene	50.0	52.0		ug/L		104	78 ₋ 127		20		
1,2,3-Trichlorobenzene	50.0	42.6		ug/L		85	61 - 151	2	40		
1,2,3-Trichloropropane	50.0	56.3		ug/L		113	70 ₋ 132	1	30		
1,2,4-Trichlorobenzene	50.0	42.0		ug/L		84	77 ₋ 131	2	20		
1,2,4-Trimethylbenzene	50.0	48.7		ug/L		97	80 - 124	3	20		
1,2-Dibromo-3-Chloropropane	50.0	42.3		ug/L		85	59 - 141	1	30		
1,2-Dichloroethane	50.0	54.3		ug/L		109	75 - 130	4	20		
1,2-Dichloroethene, Total	100	102		ug/L		102	80 - 120	0	20		
1,2-Dichloropropane	50.0	54.0		ug/L		108	80 - 123	4	20		
1,3,5-Trimethylbenzene	50.0	52.6		ug/L		105	80 - 120	5	20		
1,3-Dichloropropane	50.0	56.8		ug/L		114	78 - 127	4	20		
2-Chloroethyl vinyl ether	50.0	59.0		ug/L		118	10 _ 190	3	50		
2,2-Dichloropropane	50.0	52.4		ug/L		105	72 - 133	3	20		
2-Chlorotoluene	50.0	51.7		ug/L		103	77 - 121	4	20		
2-Hexanone	250	297		ug/L		119	70 - 141	1	40		
4-Chlorotoluene	50.0	52.4		ug/L		105	80 - 120	3	20		
Acetone	250	250		ug/L		100	60 - 154	1	40		
Benzene	50.0	52.7		ug/L		105	73 - 131	1	30		
Bromobenzene	50.0	52.0		ug/L		104	79 - 124	2	20		
Bromochloromethane	50.0	47.4		ug/L		95	77 _ 122	5	20		
Bromoform	50.0	46.7		ug/L		93	69 - 135	0	20		
Bromodichloromethane	50.0	58.4		ug/L		117	77 - 129	4	20		
Bromomethane	50.0	48.8		ug/L		98	20 - 180	2	40		
Carbon disulfide	50.0	43.2		ug/L		86	73 - 127	2	20		
Carbon tetrachloride	50.0	55.1		ug/L		110	75 _ 130	5	20		
Chlorobenzene	50.0	51.1		ug/L		102	80 - 120	1	20		
Chloroethane	50.0	52.9		ug/L		106	50 - 151	5	30		
Chloroform	50.0	53.4		ug/L		107	79 - 122	1	20		
Chloromethane	50.0	41.2		ug/L		82	63 - 126	3	30		
cis-1,2-Dichloroethene	50.0	52.1		ug/L		104	80 - 122	1	20		
cis-1,3-Dichloropropene	50.0	58.6		ug/L		117	80 - 133	3	20		
Dibromochloromethane	50.0	51.4		ug/L		103	71 - 136	1	20		
Dibromomethane	50.0	55.9		ug/L		112	80 - 122	4	20		
Dichlorodifluoromethane	50.0	43.0		ug/L		86	51 _ 140	1	40		
Ethylbenzene	50.0	51.9		ug/L		104	80 - 120	3	20		
Isopropylbenzene	50.0	53.4		ug/L		107	80 - 120	7	20		
m-Xylene & p-Xylene	50.0	52.5		ug/L		105	80 - 120	6	20		
Methyl tert-butyl ether	50.0	56.8		ug/L		114	74 - 135	4	20		
Methylene Chloride	50.0	45.4		ug/L		91	76 _ 129	3	20		
4-Methyl-2-pentanone	250	300		ug/L		120	75 - 135	2	30		
2-Butanone	250	271		ug/L		108	75 - 133	5	30		
1,2-Dibromoethane	50.0	56.5		ug/L		113	77 ₋ 131	3	30		

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: LCSD 680-402348/5 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 402348

Analysis Daton. 402040									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
n-Butylbenzene	50.0	47.9		ug/L		96	78 - 124	6	20
N-Propylbenzene	50.0	52.9		ug/L		106	80 - 120	7	20
o-Xylene	50.0	53.0		ug/L		106	80 - 120	3	20
p-Isopropyltoluene	50.0	42.3		ug/L		85	80 - 120	5	20
sec-Butylbenzene	50.0	47.7		ug/L		95	76 - 125	7	30
Styrene	50.0	54.4		ug/L		109	80 - 122	1	20
tert-Butylbenzene	50.0	48.6		ug/L		97	80 - 120	7	20
Tetrachloroethene	50.0	51.5		ug/L		103	77 - 123	2	20
Toluene	50.0	52.9		ug/L		106	80 - 122	0	20
trans-1,2-Dichloroethene	50.0	50.4		ug/L		101	78 - 123	1	20
trans-1,3-Dichloropropene	50.0	51.4		ug/L		103	74 - 140	3	20
Trichloroethene	50.0	52.6		ug/L		105	80 - 123	2	20
Trichlorofluoromethane	50.0	45.2		ug/L		90	58 - 145	1	30
Vinyl acetate	100	80.9		ug/L		81	15 - 190	7	50
Vinyl chloride	50.0	44.5		ug/L		89	68 - 132	1	30
Xylenes, Total	100	106		ug/L		106	80 - 120	5	20
				-					

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	109		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 680-402448/9-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Prep Batch: 402448

Analysis Batch: 402546

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016		U –	33	11	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1221	15	U	33	15	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1232	5.2	U	33	5.2	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1242	5.0	U	33	5.0	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1248	8.2	U	33	8.2	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1254	10	U	33	10	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1260	9.6	U	33	9.6	ug/Kg		09/23/15 12:39	09/23/15 22:26	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	64		46 - 130	09/23/15 12:39	09/23/15 22:26	
DCB Decachlorobiphenyl	69		54 - 133	09/23/15 12:39	09/23/15 22:26	1

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 680 Matrix: Solid Analysis Batch: 402546	-402448/10-A					Clier	ıt Saı	mple ID	: Lab Cor Prep Ty _l Prep Ba	oe: Tot	al/NA
*			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016			400	347		ug/Kg		87	43 - 130		
PCB-1260			400	320		ug/Kg		80	45 _ 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	87		46 - 130								
DCB Decachlorobiphenyl	72		54 - 133								
Lab Sample ID: LCSD 68 Matrix: Solid Analysis Batch: 402546	0-402448/19-/	A			(Client Sa	mple	ID: Lab	Control : Prep Tyl Prep Ba	e: Tot	al/NA
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			400	320		ug/Kg		80	43 _ 130	8	50
PCB-1260			400	309		ug/Kg		77	45 - 130	4	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	72		46 - 130								
DCB Decachlorobiphenyl	71		54 - 133								
Lab Sample ID: 400-1109	75-C-31-B M	S					CI	ient Sa	mple ID: I	Matrix :	Spike
Matrix: Solid									Prep Ty		
Analysis Batch: 402546									Prep Ba		
	Sample	Sample	Spike	MS	MS				%Rec.		•
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016	12	U	424	365		ug/Kg	_ ₹	86	43 - 130		
PCB-1260	63	⊏ 4	424	266		ug/Kg	≎	48	45 - 130		

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	12	U	424	365		ug/Kg	₩	86	43 - 130	
PCB-1260	63	F1	424	266		ug/Kg	≎	48	45 - 130	
	Me	MC								

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	93		46 - 130
DCB Decachlorobiphenyl	43	X	54 ₋ 133

Lab Sample ID: 400-110979 Matrix: Solid		Client	Samp	le ID: N	latrix Spil Prep Ty	*					
Analysis Batch: 402546									Prep Ba	•	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	12	U	424	296		ug/Kg	<u> </u>	70	43 - 130	21	50
PCB-1260	63	F1	424	182	F1	ug/Kg	፨	28	45 - 130	37	50

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	50	p	46 - 130
DCB Decachlorobiphenyl	23	X	54 - 133

QC Sample Results

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 680-402521/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Soluble

Analysis Batch: 402647

MB MB Result Qualifier RL **MDL** Unit **Analyte** D Prepared Analyzed Dil Fac 0.45 U 1.0 0.45 mg/Kg Nitrate as N 09/24/15 08:43 0.45 mg/Kg Nitrate Nitrite as N 0.45 U 1.0 09/24/15 08:43 Nitrite as N 0.45 U 1.0 0.45 mg/Kg 09/24/15 08:43

Lab Sample ID: LCS 680-402521/2-A Client Sample ID: Lab Control Sample

Matrix: Solid Prep Type: Soluble

Analysis Batch: 402647

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits Nitrate as N 20.0 20.0 mg/Kg 100 75 - 125 Nitrate Nitrite as N 39.9 393 mg/Kg 98 75 - 125 19.9 97 75 - 125 Nitrite as N 19.3 mg/Kg

Lab Sample ID: LCSD 680-402521/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Soluble

Analysis Batch: 402647

Spike LCSD LCSD %Rec. **RPD** Added RPD Limit Result Qualifier Unit Limits **Analyte** D %Rec 20.0 21.0 75 - 125 5 30 Nitrate as N mg/Kg 105

Nitrate Nitrite as N 39.9 41.2 mg/Kg 103 75 - 125 5 30 Nitrite as N 19.9 20.2 101 75 - 125 30 mg/Kg 5

Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_1300

Matrix: Solid

Analysis Batch: 403647

Analysis Batch: 402647

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits ₹5 Nitrate as N 2.5 U 116 117 mg/Kg 101 75 - 125 ✡ Nitrate Nitrite as N 2.5 U 231 210 mg/Kg 91 75 - 125Nitrite as N 2.5 U 115 93.2 mg/Kg 81 75 - 125

Lab Sample ID: 680-117013-1 MSD Client Sample ID: CC06_09212015_1300

Matrix: Solid Prep Type: Soluble

Analysis Batch: 402647

Sample Sample Spike MSD MSD %Rec. **RPD** Added **RPD** Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Limit 35 2.5 U 115 102 75 - 125 30 Nitrate as N 117 mg/Kg 0 Nitrate Nitrite as N 2.5 U 230 ✡ 92 75 - 125 210 mg/Kg 0 30 Nitrite as N 2.5 U 115 93.3 81 75 - 125 30 mg/Kg 0

Lab Sample ID: 680-117013-1 DU Client Sample ID: CC06_09212015_1300

Matrix: Solid Prep Type: Soluble

Analysis Batch: 402647

DU DU RPD Sample Sample **Analyte** Result Qualifier Result Qualifier Unit D RPD Limit Nitrate as N 2.5 U 2.6 U mg/Kg NC 30 2.6 U ₽ Nitrate Nitrite as N 2.5 U mg/Kg NC 30 35 Nitrite as N 2.5 U 2.6 U mg/Kg NC 30

QC Sample Results

Client: Weston Solutions. Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Method: 6010C - Met	tals (ICP)	į
---------------------	------------	---

Lab Sample ID: MB 680-402446/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA Analysis Batch: 402630 Prep Batch: 402446

MB MB Result Qualifier RL MDL Unit Dil Fac **Analyte** Prepared **Analyzed** 8.6 U 49 8.6 mg/Kg 09/23/15 11:52 09/23/15 16:36 Magnesium Potassium 2.4 U 97 2.4 mg/Kg 09/23/15 11:52 09/23/15 16:36 0.39 Beryllium 0.0097 U 0.0097 mg/Kg 09/23/15 11:52 09/23/15 16:36 Vanadium 0.097 U 0.97 0.097 mg/Kg 09/23/15 11:52 09/23/15 16:36

Lab Sample ID: MB 680-402446/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA Analysis Batch: 402754 Prep Batch: 402446 MR ME

Antimony 0.80 U 1.9 0.80 mg/Kg 09/23/15 11:52 09/2 Selenium 0.94 U 2.4 0.94 mg/Kg 09/23/15 11:52 09/2 Nickel 0.37 U 3.9 0.37 mg/Kg 09/23/15 11:52 09/2 Lead 0.33 U 0.97 0.33 mg/Kg 09/23/15 11:52 09/2		
Selenium 0.94 U 2.4 0.94 mg/Kg 09/23/15 11:52 09/2 Nickel 0.37 U 3.9 0.37 mg/Kg 09/23/15 11:52 09/2 Lead 0.33 U 0.97 0.33 mg/Kg 09/23/15 11:52 09/2	nalyzed Di	il Fac
Nickel 0.37 U 3.9 0.37 mg/Kg 09/23/15 11:52 09/2 Lead 0.33 U 0.97 0.33 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Lead 0.33 U 0.97 0.33 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
	4/15 13:29	1
Manganese 0.097 U 0.97 0.097 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
	4/15 13:29	1
Iron 5.1 U 19 5.1 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Chromium 0.20 U 0.97 0.20 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Copper 0.17 U 2.4 0.17 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Barium 0.16 U 0.97 0.16 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Silver 0.058 U 0.97 0.058 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Aluminum 3.0 U 19 3.0 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Arsenic 0.78 U 1.9 0.78 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Cadmium 0.097 U 0.49 0.097 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Calcium 5.0 U 49 5.0 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Cobalt 0.097 U 0.97 0.097 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Sodium 47 U 190 47 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Thallium 0.58 U 2.4 0.58 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	1
Zinc 0.68 U 1.9 0.68 mg/Kg 09/23/15 11:52 09/2	4/15 13:29	4

Lab Sample ID: LCS 680-402446/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 402630 Prep Batch: 402446 Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte D %Rec Limits Magnesium 472 475 101 80 - 120 mg/Kg Potassium 472 494 mg/Kg 80 - 120 105 Beryllium 4.72 5.01 mg/Kg 106 80 - 120

9.48

mg/Kg

mg/Kg

101

80 - 120

Lab Sample ID: LCS 680-402446/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

9.43

Analysis Batch: 402754 Prep Batch: 402446 Spike LCS LCS %Rec. Added **Analyte** Result Qualifier Unit D %Rec Limits Antimony 4.72 4.99 mg/Kg 106 80 _ 120 Selenium 9.43 9.59 mg/Kg 102 80 - 12080 - 120 9.75 Nickel 9.43 mg/Kg 103 47.2 101 80 - 120 Lead 47.7 mg/Kg 47.2 49.6 105 80 - 120

TestAmerica Savannah

Vanadium

Manganese

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-402446/2-A Matrix: Solid Analysis Batch: 402754				Client Sample ID: Lab Control Sam Prep Type: Total/ Prep Batch: 4024						
Allalysis Datcii. 4021 34	Spike	LCS	LCS				%Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Iron	472	475		mg/Kg		101	80 - 120			
Chromium	9.43	9.99		mg/Kg		106	80 - 120			
Copper	9.43	9.83		mg/Kg		104	80 - 120			
Barium	9.43	9.77		mg/Kg		104	80 - 120			
Silver	4.72	4.88		mg/Kg		104	80 - 120			
Aluminum	472	459		mg/Kg		97	80 - 120			
Arsenic	9.43	10.3		mg/Kg		109	80 - 120			
Cadmium	4.72	5.04		mg/Kg		107	80 - 120			
Calcium	472	489		mg/Kg		104	80 - 120			
Cobalt	4.72	5.03		mg/Kg		107	80 - 120			
Sodium	472	500		mg/Kg		106	80 - 120			
Thallium	3.77	3.98		mg/Kg		105	80 - 120			
Zinc	9.43	9.87		mg/Kg		105	80 - 120			

Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_1300 Matrix: Solid Prep Type: Total/NA Analysis Batch: 402630 Prep Batch: 402446 Sample Sample Spike MS MS %Rec. Result Qualifier **Analyte** Added Result Qualifier Unit D %Rec Limits 97 Magnesium 100 J 2480 2520 mg/Kg 75 - 125 Potassium 13 U 2480 2670 108 75 - 125 mg/Kg ✡ Beryllium 24.8 27.2 109 75 - 125 0.19 J mg/Kg

109

mg/Kg

 \Diamond

76

75 - 125

Client Sample ID: CC06_09212015_1300

49.5

Lab Sample ID: 680-117013-1 MS

71

Vanadium

Matrix: Solid Analysis Batch: 402754								Prep Type: Total/NA Prep Batch: 402446
Sam	ole Sample	Spike	MS	MS				%Rec.
Analyte Res	ult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	42 U	24.8	41	U	mg/Kg	*	NC	75 - 125
Selenium	50 U F1	49.5	48.9	J	mg/Kg	≎	99	75 ₋ 125
Nickel	20 U	49.5	39.6	J	mg/Kg	≎	80	75 ₋ 125
Lead	80	248	308		mg/Kg	₩	92	75 - 125
Manganese	10	248	432		mg/Kg	≎	90	75 - 125
Iron 530	00	2480	524000	4	mg/Kg	❖	-389	75 - 125
Chromium	16 J	49.5	67.1		mg/Kg	♡	102	75 - 125
Copper 1	00 F2	49.5	2280	4	mg/Kg	≎	1004	75 - 125
Barium	3.2 U F1	49.5	34.1	JF1	mg/Kg	≎	69	75 - 125
Silver	3.1 U	24.8	25.1	J	mg/Kg	♦	101	75 - 125
Aluminum 3	00	2480	5630		mg/Kg	≎	81	75 - 125
Arsenic	40 F2	49.5	312	4	mg/Kg	≎	-53	75 - 125
Cadmium	5.1 U F1	24.8	16.3	JF1	mg/Kg	≎	66	75 - 125
Calcium	70 U	2480	1870	J	mg/Kg	≎	75	75 - 125
Cobalt	5.1 U	24.8	24.9	J	mg/Kg	≎	101	75 - 125
Sodium 2	00 UF1	2480	2400	U F1	mg/Kg	₩	Ö	75 - 125
Thallium	31 U	19.8	30	U	mg/Kg	≎	NC	75 ₋ 125
Zinc	40	49.5	350	4	mg/Kg	☆	19	75 - 125

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-117013-1 MSD Client Sample ID: CC06_09212015_1300 Matrix: Solid Prep Type: Total/NA Analysis Batch: 402630 Prep Batch: 402446 Sample Sample Spike MSD MSD %Rec. Result Qualifier RPD Limit **Analyte** Added Result Qualifier Unit D %Rec Limits 吞 100 J 2570 98 75 - 125 Magnesium 2620 mg/Kg 4 20 Potassium 13 U 2570 2790 mg/Kg ✡ 109 75 - 125 20 ≎ Beryllium 0.19 J 25.7 28.1 109 20 mg/Kg 75 - 125 Vanadium 71 51.3 128 mg/Kg 111 75 - 125 20

Lab Sample ID: 680-117013-1 MSD Client Sample ID: CC06_09212015_1300

Matrix: Solid									Prep Ty	pe: Tot	:al/NA
Analysis Batch: 402754									Prep Ba	atch: 40	02446
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	42	U	25.7	49.7	J	mg/Kg	₹	NC	75 - 125	NC	20
Selenium	50	U F1	51.3	50	U F1	mg/Kg	≎	0	75 - 125	NC	20
Nickel	20	U	51.3	41.3	J	mg/Kg	❖	80	75 - 125	4	20
Lead	80		257	314		mg/Kg	≎	91	75 - 125	2	20
Manganese	210		257	445		mg/Kg	≎	92	75 - 125	3	20
Iron	530000		2570	533000	4	mg/Kg	❖	-36	75 - 125	2	20
Chromium	16	J	51.3	66.1		mg/Kg	≎	97	75 - 125	2	20
Copper	1800	F2	51.3	1750	4 F2	mg/Kg	≎	-52	75 - 125	26	20
Barium	8.2	U F1	51.3	33.7	JF1	mg/Kg	≎	66	75 - 125	1	20
Silver	3.1	U	25.7	23.6	J	mg/Kg	≎	92	75 - 125	6	20
Aluminum	3600		2570	5620		mg/Kg	≎	78	75 - 125	0	20
Arsenic	340	F2	51.3	396	4 F2	mg/Kg	≎	112	75 - 125	24	20
Cadmium	5.1	U F1	25.7	17.0	JF1	mg/Kg	≎	66	75 - 125	4	20
Calcium	270	U	2570	1960	J	mg/Kg	≎	77	75 - 125	5	20
Cobalt	5.1	U	25.7	24.9	J	mg/Kg	≎	97	75 - 125	0	20
Sodium	2500	UF1	2570	2500	U F1	mg/Kg	♦	Ö	75 - 125	NC	20
Thallium	31	U	20.5	31	U	mg/Kg	≎	NC	75 - 125	NC	20
Zinc	340		51.3	332	4	ma/Ka	፨	-15	75 - 125	5	20

Lab Sample ID: 680-117013-1 DU Client Sample ID: CC06_09212015_1300 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 402630							Prep Batch: 40	02446
_	Sample	Sample	DU	DU			-	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Magnesium	100	J	117	J	mg/Kg	— 		20
Potassium	13	U	13	U	mg/Kg	⇔	NC	20
Beryllium	0.19	J	0.166	J	mg/Kg	₽	13	20
Vanadium	71		110	F3	ma/Ka	₩	43	20

Lab Sample ID: 680-117013-1 DU Client Sample ID: CC06_09212015_1300

Matrix: Solid Analysis Batch: 402754							Prep Type: Tot Prep Batch: 40	
-	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	42	U	43	U	mg/Kg	- ₹	NC NC	20
Selenium	50	U F1	51	U	mg/Kg	≎	NC	20
Nickel	20	U	20	U	mg/Kg	❖	NC	20
Lead	80		73.9		mg/Kg	₩.	8	20
Manganese	210		212		mg/Kg	❖	1	20

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-117013 Matrix: Solid Analysis Batch: 402754	-1 DU					Client	t Samp	ole ID: (CC06_09212015 Prep Type: Tot Prep Batch: 4	al/NA
•	Sample	Sample		DU	DU				*	RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Iron	530000			470000		mg/Kg	₩		13	20
Chromium	16	J		18.1	J	mg/Kg	❖		10	20
Copper	1800	F2		965	F3	mg/Kg	≎		59	20
Barium	8.2	U F1		8.4	U	mg/Kg	₩		NC	20
Silver	3.1	U		3.1	U	mg/Kg	≎		NC	20
Aluminum	3600			3500		mg/Kg	≎		3	20
Arsenic	340	F2		348		mg/Kg	≎		3	20
Cadmium	5.1	U F1		5.2	U	mg/Kg	❖		NC	20
Calcium	270	U		270		mg/Kg	≎		NC	20
Cobalt	5.1	U		5.2	U	mg/Kg	❖		NC	20
Sodium	2500			2500		mg/Kg	⇔		NC	20
Thallium	31			31		mg/Kg	≎		NC	20
Zinc	340			239		mg/Kg	⇔		35	20
							Clie	nt Sam	ple ID: Method	Blank
Lab Sample ID: MB 680-402 Matrix: Solid Analysis Batch: 402533	2360/13-A	мв мв							Prep Type: Tot Prep Batch: 4	:al/NA
Matrix: Solid		MB MB sult Qualifier	F	₹∟ !	MDL Unit			epared	Prep Type: Tot Prep Batch: 4	al/NA
Matrix: Solid Analysis Batch: 402533	Re		F		MDL Unit		D Pr	epared	Prep Type: Tot Prep Batch: 4	al/NA 02360 Dil Fac
Matrix: Solid Analysis Batch: 402533 Analyte	Re 0.0	sult Qualifier		18 0.0		g	D Pr 09/23	r epared 3/15 08:2	Prep Type: Tot Prep Batch: 4	al/NA 02360 Dil Fac 1 ample al/NA
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid	Re 0.0	sult Qualifier	0.0	18 0.0	0073 mg/K	g	D Pr 09/23	r epared 3/15 08:2	Prep Type: Tot Prep Batch: 40 Analyzed 8 09/23/15 15:32 : Lab Control Sa Prep Type: Tot Prep Batch: 40	al/NA 02360 Dil Fac 1 ample al/NA
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402533	Re 0.0	sult Qualifier	0.0°	18 0.0	0073 mg/K	g Clie	D Pr 09/23	repared 3/15 08:2 nple ID	Analyzed O9/23/15 15:32 Lab Control Sa Prep Type: Tot Prep Batch: 46 %Rec.	al/NA 02360 Dil Fac 1 ample al/NA
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402533 Analyte	Re 0.0 2360/14-A	sult Qualifier	0.0° Spike Added	18 0.0 LCS Result	LCS Qualifier	g Clie Unit	D Pr 09/23 nt San	repared 3/15 08:2 nple ID %Rec 104	Prep Type: Tot Prep Batch: 40 Analyzed 09/23/15 15:32 : Lab Control Sa Prep Type: Tot Prep Batch: 40 %Rec. Limits	al/NA 02360 Dil Fac 1 ample al/NA 02360 Spike
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: 680-116830 Matrix: Solid	Re 0.0 2360/14-A -B-1-C MS Sample	sult Qualifier	Spike Added 0.223	LCS Result 0.232	LCS Qualifier	g Clie Unit	D Pr 09/23 nt San	repared 3/15 08:2 nple ID %Rec 104	Prep Type: Tot Prep Batch: 40 Analyzed 09/23/15 15:32 Lab Control Sa Prep Type: Tot Prep Batch: 40 Rec. Limits 80 - 120 mple ID: Matrix Prep Type: Tot Prep Batch: 40 Prep Batch: 40	al/NA 02360 Dil Fac 1 ample al/NA 02360 Spike
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: 680-116830 Matrix: Solid Analysis Batch: 402533	Re 0.0 2360/14-A -B-1-C MS Sample	sult Qualifier 0073 U Sample Qualifier	Spike Added 0.223	LCS Result 0.232	LCS Qualifier	Clie Unit mg/Kg	D Pr 09/23 nt San D Cli	repared 3/15 08:2 nple ID %Rec 104	Prep Type: Tot Prep Batch: 40 Analyzed 09/23/15 15:32 Lab Control Sa Prep Type: Tot Prep Batch: 40 Rec. Limits 80 - 120 mple ID: Matrix Prep Batch: 40 Rec. Prep Batch: 40 Rec. Prep Batch: 40 Rec. Prep Batch: 40 Rec.	al/NA 02360 Dil Fac ample al/NA 02360 Spike
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: 680-116830 Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: 680-116830 Matrix: Solid Analysis Batch: 402533	Re	Sample Qualifier J Sample Sample Qualifier J	Spike Added 0.223 Spike Added 0.107	LCS Result 0.232 MS Result 0.126	LCS Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg Client	D Pr 09/2: ent San D Cli D ≅	repared 3/15 08:2: nple ID **Rec 104 ient Sa **Rec 101	Prep Type: Tot Prep Batch: 40 Analyzed 8 09/23/15 15:32 Lab Control Sa Prep Type: Tot Prep Batch: 40 Rec. Limits 80 - 120 Prep Batch: 40 Rec. Limits 80 - 120 Atrix Spike Dup Prep Type: Tot Prep Batch: 40 Rec. Limits 80 - 120	al/NA 02360 Dil Fac 1 ample al/NA 02360 Spike al/NA 02360 licate al/NA 02360 RPD
Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: 680-116830 Matrix: Solid Analysis Batch: 402533 Analyte Mercury Lab Sample ID: 680-116830 Matrix: Solid Matrix: Solid	Re	Sample Qualifier J Sample Qualifier J Sample Qualifier	Spike Added 0.223 Spike Added 0.107	LCS Result 0.232 MS Result 0.126	LCS Qualifier MS Qualifier	Clie Unit mg/Kg Unit mg/Kg	D Pr 09/23 ent San D Cli S D Cli	repared 3/15 08:2 nple ID *Rec 104 ient Sai	Prep Type: Tot Prep Batch: 40 Analyzed 8 09/23/15 15:32 : Lab Control Sa Prep Type: Tot Prep Batch: 40 %Rec. Limits 80-120 mple ID: Matrix Prep Type: Tot Prep Batch: 40 %Rec. Limits 80-120 latrix Spike Dup Prep Type: Tot Prep Batch: 40 Prep Batch: 40 Prep Batch: 40 Prep Batch: 40	al/NA 02360 Dil Fac 1 ample al/NA 02360 Spike al/NA 02360

TestAmerica Savannah

TestAmerica Job ID: 680-117013-1

QC Sample Results

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Analysis Batch: 402534	Lab Sample ID: MB 680-402	2487/1-A						Clie	ent Sam _l	ple ID: Meti		
Malayte	Matrix: Solid											
Analyte	Analysis Batch: 402534		MD MD							Prep Batc	n: 40	248
Ammonia	Analysta	D.			DI I	MDI Unit				Anabaad		ii Fa
Client Sample ID: Lab Control Samp Result Client Sample ID: Lab Control Samp Prep Type: Total/N Prep Batch: 40248 Analyte	-								•	•		
Matrix: Solid Analysis Batch: 402534 Spike Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Sample Sampl	Ammonia		0.13 0		0.30	0.13 mg/K	3	09/2	3/15 13:47	09/23/15 14:	50	
Matrix: Solid Analysis Batch: 402534 Spike Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Sample Sampl	Lah Sample ID: LCS 680-40	12/187/2_A					Clies	nt Sar	mnle ID:	Lab Contro	al Sar	nnl
Analysis Batch: 402534	-	Z-1011Z-M					Ollei	it Oai	uhie in.			
Spike Added Adde												
Analyte	Allalysis Batcil. 402004			Snike	LCS	LCS				•	II. 4V	L-+U
Ammonia S.00	Δnalvte			•			Unit	ח	%Rec			
Client Sample ID: CC06_09212015_130 Client Sample ID: CC06_09212015_130 Prep Type: TotalNA						- Cuamici						
Matrix: Solid Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Added Result Qualifier Added Result Qualifier Mission Miss	Attitionia			0.00	4.70		mg/rtg		30	70 - 120		
Matrix: Solid Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Added Result Qualifier Added Result Qualifier Mission Miss	Lab Sample ID: 680-117013	-1 MS					Client	Sami	ole ID: C	C06 09212	015	1300
Analysis Batch: 402534	-									NAME OF TAXABLE PARTY.		
Sample Sample Sample Sample Sample Result Qualifier Added Result Qualifier Unit D Mec Limits Missing Mis												
Analyte	rendry or and core round r	Sample	Sample	Spike	MS	MS				*	*** ***	
Ammonia 0.71 U 28.5 22.1 mg/kg	Analyte	-	-	=	Result	Qualifier	Unit	D	%Rec	Limits		
Client Sample ID: CC06_09212015_130	Ammonia	0.71	U —	28.5	22.1		mg/Kg	— <u>\$</u>	78	75 - 125		
Matrix: Solid Analysis Batch: 402534 Sample Sample Sample Result Qualifier Added Result Qualifier Matrix: Solid Result Qualifier Added Result Qualifier Matrix: Solid Result Qualifier Rt MDL Unit D Rec Matrix: Matrix: Solid Result Qualifier Rt MDL Unit D Rec Matrix: Matrix: Solid Result Qualifier Rt MDL Unit D Rec Matrix: Mat							0 0					
Analysis Batch: 402534	Lab Sample ID: 680-117013	-1 MSD					Client	Sami	ple ID: C	C06_09212	015_	1300
Sample Sample Spike MSD MS	Matrix: Solid									Prep Type:	Tota	I/N/
Analyte	Analysis Batch: 402534									Prep Batc	h: 40	2487
Ammonia 0.71 U 28.4 22.2 mg/Kg 78 75-125 0 International Prep	-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPI
Client Sample ID: MB 680-402518/1-A	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits I	RPD	Limi
Lab Sample ID: MB 680-402518/1-A Matrix: Solid Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Only 23/15 16:15 09/24/15 10:48 Lab Sample ID: LCS 680-402518/2-A Matrix: Solid Analysis Batch: 402670 Spike LCS LCS Prep Batch: 40251 Analyte Nitrogen, Kjeldahl Client Sample ID: Lab Control Sample ID: Matrix: Solid Prep Batch: 40251 Analyte Added Result Qualifier Unit D WRec Limits Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Prep Batch: 40251 Sample Sample Spike MS MS WS WRec. Analyte Result Qualifier Added Result Qualifier Unit D WRec Limits	Ammonia	0.71	<u>U</u>	28.4	22.2		mg/Kg	☼	78	75 - 125	0	30
Lab Sample ID: MB 680-402518/1-A Matrix: Solid Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Only 23/15 16:15 09/24/15 10:48 Lab Sample ID: LCS 680-402518/2-A Matrix: Solid Analysis Batch: 402670 Spike LCS LCS Prep Batch: 40251 Analyte Nitrogen, Kjeldahl Client Sample ID: Lab Control Sample ID: Matrix: Solid Prep Batch: 40251 Analyte Added Result Qualifier Unit D WRec Limits Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Prep Batch: 40251 Sample Sample Spike MS MS WS WRec. Analyte Result Qualifier Added Result Qualifier Unit D WRec Limits	·											
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared 09/23/15 16:15 09/24/15 10:48 Analyzed Dil Frep Type: Total/N Lab Sample ID: LCS 680-402518/2-A Client Sample ID: Lab Control Sample Natrix: Solid Prep Type: Total/N Analyte Spike LCS LCS (Rec. Added Result Qualifier Unit Dil Matrix: Solid Analysis Batch: 402670 Watch Sample ID: CC06_09212015_130 Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_130 Matrix: Solid Analysis Batch: 402670 Prep Type: Total/N Sample Sample Sample Sample Result Qualifier Added Result Qualifier Unit D Rec Limits Prep Batch: 40251	Method: 351.2 - Nitroge	n, Total I	Kjeldahl									
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared 09/23/15 16:15 09/24/15 10:48 Analyzed Dil Frep Type: Total/N Lab Sample ID: LCS 680-402518/2-A Client Sample ID: Lab Control Sample Natrix: Solid Prep Type: Total/N Analyte Spike LCS LCS (Rec. Added Result Qualifier Unit Dil Matrix: Solid Analysis Batch: 402670 Watch Sample ID: CC06_09212015_130 Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_130 Matrix: Solid Analysis Batch: 402670 Prep Type: Total/N Sample Sample Sample Sample Result Qualifier Added Result Qualifier Unit D Rec Limits Prep Batch: 40251										8 1 DWG 18 40 4 8	K 2000	
Analysis Batch: 402670 MB MB MB MB MB MB MB M	-	!518/1-A						CIIE	ent Sam _l			
Mailyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fall Fall												
Analyte	Analysis Batch: 4026/0		MD MD							Prep Batc	h: 40	2578
Nitrogen, Kjeldahl 30 U 50 30 mg/Kg 09/23/15 16:15 09/24/15 10:48			MR MR				_			A b		
Lab Sample ID: LCS 680-402518/2-A Matrix: Solid Analysis Batch: 402670 Spike Analyte Analyte Nitrogen, Kjeldahl Lab Sample ID: Lab Control Sample Spike Added Result Qualifier Mit Mit Mit Mit Mit Mit Mit Mi		_	4 0 00						renared	Anaivzed		·
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 Spike LCS LCS KRec. Resc. Acc. Acc. MRec. MRec. MRec. MRec. Limits MRec.		Re	•				_		•	-		
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 Spike LCS LCS KRec. Resc. Acc. Acc. MRec. MRec. MRec. MRec. Limits MRec.		Re	•				_		•	-		il Fac
Analysis Batch: 402670 Spike LCS LCS	Nitrogen, Kjeldahl		•]	09/2	3/15 16:15	09/24/15 10:	48	,
Spike LCS LCS	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40		•]	09/2	3/15 16:15	09/24/15 10:	48 ol Sar	nple
Analyte Added Result Qualifier Unit D %Rec Limits Nitrogen, Kjeldahl 400 416 mg/Kg 104 75 - 125 Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid		•]	09/2	3/15 16:15	09/24/15 10: Lab Contro Prep Type:	48 ol Sar Tota	nple
Nitrogen, Kjeldahl Aud 416 mg/Kg 104 75 - 125 Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Analyte Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670		•	Snika	50	30 mg/Kg]	09/2	3/15 16:15	D9/24/15 10: Lab Contro Prep Type: Prep Batc	48 ol Sar Tota	nple
Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670		•		50 LCS	30 mg/Kg	Clie	09/2	3/15 16:15 mple ID:	O9/24/15 10: Lab Contro Prep Type: Prep Batc %Rec.	48 ol Sar Tota	nple
Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte		•	Added	50 LCS Result	30 mg/Kg	Clier	09/2	3/15 16:15 mple ID: %Rec	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits	48 ol Sar Tota	nple
Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte		•	Added	50 LCS Result	30 mg/Kg	Clier	09/2	3/15 16:15 mple ID: %Rec	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits	48 ol Sar Tota	nple
Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl	2518/2-A	•	Added	50 LCS Result	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits	ol Sar Tota h: 402	mple II/N/ 2518
Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl Lab Sample ID: 680-117013	2518/2-A	•	Added	50 LCS Result	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125 C06_09212	48 ol Sar Tota h: 402	mple 1/N/ 2518
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl Lab Sample ID: 680-117013 Matrix: Solid	2518/2-A	•	Added	50 LCS Result	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	O9/24/15 10: Lab Control Prep Type: Prep Batc %Rec. Limits 75 - 125 CO6_09212 Prep Type:	48 ol Sar Tota h: 402 015_ Tota	mple il/N/ 2518
	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl	2518/2-A -1 MS	30 U	Added 400	LCS Result 416	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	O9/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125 CO6_09212 Prep Type: Prep Batc	48 ol Sar Tota h: 402 015_ Tota	mple il/NA 2518
(MICOURE EXTERNAL)	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl Lab Sample ID: 680-117013 Matrix: Solid Analysis Batch: 402670	-1 MS	30 U	Added 400 Spike	LCS Result 416	30 mg/Kg LCS Qualifier	Clien Unit mg/Kg Client	09/2 nt Sar D Samp	3/15 16:15 mple ID: **Rec 104 ple ID: C	O9/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125 CO6_09212 Prep Type: Prep Batc %Rec.	48 ol Sar Tota h: 402 015_ Tota	mple il/NA 2518

QC Sample Results

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Lab Sample ID: MB 680-402456/1-A

TestAmerica Job ID: 680-117013-1

Client Sample ID: Method Blank

Method:	351.2 - Ni	trogen, Tot	al Kjeldahl (0	Continued)	

Lab Sample ID: 680-11701: Matrix: Solid	3-1 MSD					Client	Samı	ole ID:	CC06_092 Prep Ty	-	
Analysis Batch: 402670									Prep Ba		
rindiy did adddii read i	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrogen, Kjeldahl	140	U	1990	2140		mg/Kg	<u>\</u>	108	75 - 125	2	40

Method: 9012B - Cyanide, Total andor Amenable

Matrix: Solid								Prep Type: To	otal/NA
Analysis Batch: 402573								Prep Batch:	402456
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanida Total	0.21	11	0.50	0.21	malka		00/22/15 11:45	00/24/15 04:42	

Lab Sample ID: LCS 680-402456/2-A				Clien	it Sar	nple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 402573							Prep Batch: 402456
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide Total	5.00	4 87		ma/Ka		97	75 - 125

Lab Sample ID: 680-117013-1	MS					Client S	Samp	ole ID: (CC06_0921	2015_1300
Matrix: Solid									Prep Type	e: Total/NA
Analysis Batch: 402573									Prep Bat	ch: 402456
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	1.2	U	27.1	27.0		mg/Kg	_ ☆	99	75 - 125	

Lab Sample ID: 680-117013-1 MSD Matrix: Solid Analysis Batch: 402573				-			CC06_092 Prep Typ Prep Ba	oe: Tot	al/NA		
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	1.2	U	27.1	26.6		mg/Kg	₩	98	75 - 125	1	30

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

GC/MS VOA	

Analy	/sis	Batch:	402348

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-2	Trip Blank	Total/NA	Water	SM 6200B	
LCS 680-402348/4	Lab Control Sample	Total/NA	Water	SM 6200B	
LCSD 680-402348/5	Lab Control Sample Dup	Total/NA	Water	SM 6200B	
MB 680-402348/9	Method Blank	Total/NA	Water	SM 6200B	

Analysis Batch: 402406

Lab Sample ID 680-117013-1	Client Sample ID CC06_09212015_1300	Prep Type Total/NA	Matrix Solid	Method 8260B	Prep Batch 402440
LCS 680-402406/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-402406/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 680-402406/6	Method Blank	Total/NA	Solid	8260B	

Prep Batch: 402440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 402448

.					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-110975-C-31-B MS	Matrix Spike	Total/NA	Solid	3546	
400-110975-C-31-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	3546	
LCS 680-402448/10-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 680-402448/19-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 680-402448/9-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 402546

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-110975-C-31-B MS	Matrix Spike	Total/NA	Solid	8082A	402448
400-110975-C-31-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8082A	402448
680-117013-1	CC06_09212015_1300	Total/NA	Solid	8082A	402448
LCS 680-402448/10-A	Lab Control Sample	Total/NA	Solid	8082A	402448
LCSD 680-402448/19-A	Lab Control Sample Dup	Total/NA	Solid	8082A	402448
MB 680-402448/9-A	Method Blank	Total/NA	Solid	8082A	402448

HPLC/IC

Leach Batch: 402521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Soluble	Solid	DI Leach	
680-117013-1 DU	CC06_09212015_1300	Soluble	Solid	DI Leach	
680-117013-1 MS	CC06_09212015_1300	Soluble	Solid	DI Leach	
680-117013-1 MSD	CC06_09212015_1300	Soluble	Solid	DI Leach	
LCS 680-402521/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 680-402521/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
MB 680-402521/1-A	Method Blank	Soluble	Solid	DI Leach	

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Analysis	Batch:	402647

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Soluble	Solid	9056A	402521
680-117013-1 DU	CC06_09212015_1300	Soluble	Solid	9056A	402521
680-117013-1 MS	CC06_09212015_1300	Soluble	Solid	9056A	402521
680-117013-1 MSD	CC06_09212015_1300	Soluble	Solid	9056A	402521
LCS 680-402521/2-A	Lab Control Sample	Soluble	Solid	9056A	402521
LCSD 680-402521/3-A	Lab Control Sample Dup	Soluble	Solid	9056A	402521
MB 680-402521/1-A	Method Blank	Soluble	Solid	9056A	402521

Metals

Prep Batch: 402360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116830-B-1-C MS	Matrix Spike	Total/NA	Solid	7471A	
680-116830-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	7471A	
LCS 680-402360/14-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 680-402360/13-A	Method Blank	Total/NA	Solid	7471A	

Prep Batch: 402446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	3050B	
680-117013-1 DU	CC06_09212015_1300	Total/NA	Solid	3050B	
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	3050B	
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	3050B	
LCS 680-402446/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 680-402446/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 402533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116830-B-1-C MS	Matrix Spike	Total/NA	Solid	7471A	402360
680-116830-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	402360
680-117013-1	CC06_09212015_1300	Total/NA	Solid	7471A	402360
LCS 680-402360/14-A	Lab Control Sample	Total/NA	Solid	7471A	402360
MB 680-402360/13-A	Method Blank	Total/NA	Solid	7471A	402360

Analysis Batch: 402630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 DU	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	6010C	402446
LCS 680-402446/2-A	Lab Control Sample	Total/NA	Solid	6010C	402446
MB 680-402446/1-A	Method Blank	Total/NA	Solid	6010C	402446

Analysis Batch: 402754

Lab Sample ID 680-117013-1	Client Sample ID CC06 09212015 1300	Prep Type Total/NA	Matrix Solid	Method 6010C	Prep Batch 402446
680-117013-1 DU	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	6010C	402446

Client: Weston Solutions, Inc.

TestAmerica Job ID: 680-117013-1 Project/Site: Gold King Mine - Region 8

Metals (Continue	<u> </u>				
Analysis Batch: 402	754 (Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
LCS 680-402446/2-A	Lab Control Sample	Total/NA	Solid	6010C	402446
MB 680-402446/1-A	Method Blank	Total/NA	Solid	6010C	402446
General Chemist	ry				
Analysis Batch: 402	136				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	Moisture	
Prep Batch: 402456					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	9012B	
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	9012B	
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	9012B	
LCS 680-402456/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 680-402456/1-A	Method Blank	Total/NA	Solid	9012B 9012B	
Prep Batch: 402487		. • • • • • • • • • • • • • • • • • • •			
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-117013-1	CC06_09212015_1300	Total/NA	Solid	3-154	- Fieb Batci
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	3-154	
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	3-154	
LCS 680-402487/2-A MB 680-402487/1-A	Lab Control Sample Method Blank	Total/NA Total/NA	Solid Solid	3-154 3-154	
Prep Batch: 402518	Wested Statik	rotante	Colla	0 104	
_	Oliant Camala ID	Duna Taura	88-4	8.8 - 41l	D D.4.1
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	Digestion	
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	Digestion	
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	Digestion	
LCS 680-402518/2-A	Lab Control Sample	Total/NA	Solid	Digestion	
MB 680-402518/1-A	Method Blank	Total/NA	Solid	Digestion	
Analysis Batch: 402	534				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	350.1	402487
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	350.1	402487
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	350.1	40248
LCS 680-402487/2-A	Lab Control Sample	Total/NA	Solid	350.1	40248
MB 680-402487/1-A	Method Blank	Total/NA	Solid	350.1	40248
Analysis Batch: 402	573				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	9012B	402456
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	9012B	402456
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	9012B	402456
			0 - 11 - 1	00400	400456
LCS 680-402456/2-A	Lab Control Sample	Total/NA	Solid	9012B	402456

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

General Chemistry (Continued)

Analysis Batch: 402670

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	351.2	402518
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	351.2	402518
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	351.2	402518
LCS 680-402518/2-A	Lab Control Sample	Total/NA	Solid	351.2	402518
MB 680-402518/1-A	Method Blank	Total/NA	Solid	351.2	402518

Lab Chronicle

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: CC06_09212015_1300 Lab Sample ID: 680-117013-1

Date Collected: 09/21/15 13:00 Matrix: Solid

Date Received: 09/23/15 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			402436	09/23/15 11:25	FES	TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: CC06_09212015_1300

Lab Sample ID: 680-117013-1 Matrix: Solid Date Collected: 09/21/15 13:00 Date Received: 09/23/15 00:00 Percent Solids: 17.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.235 g	5 mL	402440	09/23/15 11:41	FES	TAL SAV
Total/NA	Analysis Instrume	8260B nt ID: CMSB		1	4.235 g	5 mL	402406	09/23/15 14:24	DJK	TAL SAV
Total/NA	Prep	3546			15.10 g	10 mL	402448	09/23/15 12:39	KAC	TAL SAV
Total/NA	Analysis Instrume	8082A nt ID: CSGZ		1	15.10 g	10 mL	402546	09/23/15 23:12	JCK	TAL SAV
Soluble	Leach	DI Leach			5.05 g	100 mL	402521	09/23/15 12:40	AJO	TAL SAV
Soluble	Analysis Instrume	9056A nt ID: CICG		1	5 mL	5 mL	402647	09/24/15 09:30	RSW	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	402446	09/23/15 11:52	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.11 g	100 mL	402630	09/23/15 16:45	BCB	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	402446	09/23/15 11:52	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		10	1.11 g	100 mL	402754	09/24/15 13:38	BCB	TAL SAV
Total/NA	Prep	7471A			0.58 g	50 mL	402360	09/23/15 13:48	JKL	TAL SAV
Total/NA	Analysis Instrume	7471A nt ID: LEEMAN2		1	0.58 g	50 mL	402533	09/23/15 16:24	BCB	TAL SAV
Total/NA	Prep	3-154			20.80 g	100 mL	402487	09/23/15 13:47	JER	TAL SAV
Total/NA	Analysis Instrume	350.1 nt ID: KONELAB1		1	20.80 g	100 mL	402534	09/23/15 14:50	JER	TAL SAV
Total/NA	Prep	Digestion			0.2471 g	40 mL	402518	09/23/15 16:15	JRJ	TAL SAV
Total/NA	Analysis Instrume	351.2 nt ID: LACHAT3		1	0.2471 g	40 mL	402670	09/24/15 10:50	CRW	TAL SAV
Total/NA	Prep	9012B			1.04 g	50 mL	402456	09/23/15 11:45	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.04 g	50 mL	402573	09/24/15 04:44	DAM	TAL SAV

Client Sample ID: Trip Blank Lab Sample ID: 680-117013-2

Date Collected: 09/21/15 13:00 Matrix: Water Date Received: 09/23/15 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method SM 6200B	Run	Factor 1	Amount 5 mL	Amount 5 mL	Number 402348	or Analyzed 09/23/15 13:12	Analyst	Lab TAL SAV
	,	nt ID: CMSA2		·	·	•		55.25.15 .5.12		

Lab Chronicle

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Certification Summary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Colorado	State Program	8	N/A	12-31-15

Method Summary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
SM 6200B	SM 6200B	SM21	TAL SAV
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL SAV
9056A	Anions, Ion Chromatography	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
'471A	Mercury (CVAA)	SW846	TAL SAV
350.1	Nitrogen, Ammonia	MCAVWV	TAL SAV
351.2	Nitrogen, Total Kjeldahl	MCAVW	TAL SAV
9012B	Cyanide, Total andor Amenable	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM21 = Standard Methods For The Examination Of Water And Wastewater, 21st Edition

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

	П	1
	Г	1
ı	_	
ı	_	
	⋍	′
	╚	,
	C)
	_	J
	cc	١
	ř	۱
	١,	•
ı	_	
	⊆	,
	⊆)
	\boldsymbol{C}	1
	7	١
	\sim	١
	۲	
	Ņ	J
	σ	1
	u)
	Ī	
	C)
	C)
	Ē	1
	7	ì
	×	۰
	4	,

	Chain of Custody Record	Sampler ID Fr Temperature on R	•			Amei	rica	TESTAMEN A 4955 YAK ARVADA,	LICA- RVADA LROW ST	
	Client UNIX Address 1417 FS WESTON SOLUTIONS Address STE IN City State Zip Code CO 80715	Telephone Number (Area Code)/Fax Number Site Contact Lab Contact			THE LEADER IN ENVIRONMENTAL Date Lab Number A LUI Single is need to be a space is need.			Chain of Custody Number 190500 Page of		
	Project Name and Location (State) Contract/Purchase Order/Quete No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Matrix Time Jay 190	824	Containers & Preservatives		Tars (Chan-) Rud 224/228 VOCS Diverse		Special Conditio	Instructions/ ons of Receipt	
	TRIP BLANK 9/21/15	1300 (8)	12	2.	021	2				
39 of 41	Comments	6	2/1	9/	680	0-117013 Chain of Cu	ustody			
	Durit la Usand la niff nife									
	Turn Around Time Required 1 Turn Around Time Required 1 Turn Around Time Required 1 Turn Around Time Required	Sample Disp Unknown Return 1		Disposal By Lai		For Months		sessed if samples are nth)	e retained	
9/2	1. Relinquished By 2. Relinquished By 3. Relinquished By	Dater Time	568	Received By Received By Received By Received By	West		The state of the s	Date Pate 2 / L	Time JUYO Time	
3	Comments FASTEST POSS TAT AND FASTES DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with			VEL 14	L JATI	KOMI SOKG-3	K 0	2/0.6%	10434	

Toct A morical	testAmerica Savannah Website: www.testamericainc.com Phone: (912) 354-7858 Savannah, GA 31404 Fax: (912) 352-0165				
TestAmerica 60/51 **	Alternate Laboratory Name/Location Phone:				
THE LEADER IN ENVIRONMENTAL TESTING FEEL EX 3070 6824 7007	Fax:				
PROJECT REFERENCE PROJECT NO. PROJECT LOCATION MATRI GOLD KING MULE TYPE					
TAL (LAB) PROJECT MANAGER P.O. NUMBER CONTRACT NO.	STANDARD REPORT DELIVERY				
CLIENT (SITE) PM MOI RATE PRINTED CLIENT PHONE CLIENT FAX X 6101	DELIVERY SOLVE SOLVE				
CLIENTE-MAIL LANGE 9/2/15 9 CLIENTE-MAIL LANGE 9/2/15	DELIVERY DOING SOLVEINT DATE DUE EXPEDITED REPORT DELIVERY ON / U/ C / L L DOING SOLVEINT DELIVERY ON / U/ C / L DATE DUE ASAP				
CLIENT ADDRESS 1435 Fourison St. Ste 100 Lakewood, Co 80215 6 18 18 18 18 18 18 18 18 18 18 18 18 18	DATE DUE ASAP				
COMPANY CONTRACTING THIS WORK (if applicable) SAMPLE DATE TIME CLIENT ADDITION SAMPLE SAMPLE IDENTIFICATION CO 80215 O WORK (if applicable) SAMPLE IDENTIFICATION CO 80215 O WORK (if applicable) SAMPLE IDENTIFICATION	NUMBER OF COOLERS SUBMITTED PER SHIPMENT:				
SAMPLE SAMPLE IDENTIFICATION SO SO SO SAMPLE IDENTIFICATION	NUMBER OF CONTAINERS SUBMITTED. REMARKS				
19/21/15 1300 CE06_092115_1300 GX					
9/22/15 1200 TRIP BRAINS LEW 9/11/15 GX	X LAW LAND APUTS				
9/21/15 1300 Trip blank GX	2				
THEASTRE PASSIBLE THE					
FASTEST POSSIBLE THT + FASTEST POSSIBLE THE PILG *					
LEVEL 4 DATA PICE *					
(0.50.81)					
	122/15				
RELINQUISHED BY: (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE) PETEL	DATE TIME RELINQUISHED BY: (SIGNATURE) DATE TIME 9/22/15 1500 File 130				
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) 1/21/15 16 40 FEDEX Mich	DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME				
DESCRIVED SOD LABORATORY BY	RY USE ONLY SAVANNAH LABORATORY REMARKS				
SIGNATURE) DATE TIME CUSTODY INTACT YES NO NO CUSTODY SEAL NO.	SAVANNAH LABORATORY REMARKS LOG NO. O 1 5125 + 011 LABORATORY REMARKS O 1 5125 + 011 LABORATORY REMARKS O 1 5125 + 011 LABORATORY REMARKS				
	TAL 820,000 MEA DASS LAT				

Login Sample Receipt Checklist

Client: Weston Solutions, Inc.

Job Number: 680-117013-1

Login Number: 117013 List Source: TestAmerica Savannah

List Number: 1

Creator: Daughtry, Beth A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	Did not receive the water portion for this sample
Samples are received within Holding Time.	False	Waters: cr-6/NO3 OFH
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	