

Probabilistic Surfel Fusion for Dense LiDAR Mapping

Chanoh Park, Soohwan Kim, Peyman Moghadam, Clinton Fookes, Sridha Sridharan

ICCV workshop 2017

Narrow FoV Short sensing range Sensitive to ambient light

This work covers the map fusion for LiDAR

DATA **61**

What is a surfel? Surface + Element

Points Cloud map

Surfels map

What make it difficult to introduce surfel fusion in LiDAR-based SLAM

Absence of projective data association

Radius search

Uncertainty based search

What make it difficult to introduce surfel fusion in LiDAR-based SLAM

- Absence of projective data association
- Existence of the surfel degeneracy

Dual Map Representation

3D Ellipsoidal Surfel Map

from Multi-resolutional Voxel Hassing

2D Disk Surfel Map

from Nearest Neighbor Searching

*Color is coded with normal direction

Noise Modelling

Surfel position uncertainty modeling

Surfel normal direction uncertainty modeling

Global map

Benefits of this approach

- 1. Easy control of the surface resolution
 - Space digitization is not required
- 2. It searches more in the laser beam direction
 - Better noise handling

Higher Resolution
with a Euclidian
distance threshold

Dense Surfel Fusion

$$\begin{array}{c} \boldsymbol{\Sigma}_d \leftarrow (\boldsymbol{\Sigma}_s^{-1} + \boldsymbol{\Sigma}_d^{-1} + \boldsymbol{\Sigma}_s^{-1})^{-1} \\ \mathbf{p}_d \leftarrow (\boldsymbol{\Sigma}_s^{-1} + \boldsymbol{\Sigma}_d^{-1})^{-1} (\boldsymbol{\Sigma}_d^{-1} \mathbf{p}_d + \boldsymbol{\Sigma}_s^{-1} \mathbf{p}_s) \end{array} \end{array} \hspace{-0.5cm} \text{Fusion}$$

Normal Direction Fusion:

$$\Sigma'_{\mathbf{n}_{d}} \leftarrow (\Sigma_{\mathbf{n}_{s}}^{-1} + \Sigma_{\mathbf{n}_{d}}^{-1})^{-1}$$

$$\mathbf{n'}_{d} \leftarrow \Sigma'_{\mathbf{n}_{d}} (\Sigma_{\mathbf{n}_{s}}^{-1} \mathbf{n}_{s} + \Sigma_{\mathbf{n}_{d}}^{-1} \mathbf{n}_{d})$$

$$[\lambda \quad \mathbf{v}] \leftarrow SVD(\Sigma'_{\mathbf{n}_{d}})$$

$$\Sigma_{new} \leftarrow \lambda + diag(\sigma_{\theta}^{s}, \sigma_{\phi}^{s}, -\lambda_{3})$$

$$\mathbf{R} \leftarrow [u_{1} \times \mathbf{n'}_{d} \quad (u_{1} \times \mathbf{n'}_{d}) \times \mathbf{n'}_{d} \quad \mathbf{n'}_{d}]$$

$$\Sigma'_{\mathbf{n}_{d}} \leftarrow \mathbf{R} \Sigma_{new} \mathbf{R}^{T}$$

Fusion

Tangentiality reinforcement

Experiment Results

Real Data Experiment

Surfel map with normal direction color coded

Trajectory

Color fused surfel map

Utilized scanning system

Real Data Experiment

0.7			41	
U./m p	atch extr	acted from	om the	maps

	CT-SLAM			Proposed method				
Patch No.	Position Err.		Normal Err.		Position Err.		Normal Err.	
	mean	std.	mean	std.	mean	std.	mean	std.
a	8.2	14.8	5.8	4.7	3.4	4.7	4.0	4.3
b	9.3	16.8	6.9	6.7	3.2	4.4	4.9	4.4
c	8.9	17.3	5.3	6.9	3.4	6.2	4.4	4.7
d	9.4	17.0	4.9	5.7	3.9	5.3	4.5	4.6
f	8.0	13.7	5.5	5.0	3.4	4.7	4.8	4.6
g	9.1	16.0	6.1	6.6	4.5	6.5	4.5	4.7

Table 2. Comparison by wellknown structures.

^{*}Position error is in mm. Normal error is in degree.

Real Data Experiment

Summary

- 1. Probabilistic dense surfel fusion for LiDAR is proposed
- Our method shows denser but lesser noise level
- 3. An advantage on long-term SLAM applications

