Esercizi di Teoria di Galois 4.

Roma Tre, 12 Maggio 2003

1. Si calcoli il gruppo di Galois (cioè il numero di elementi e la struttura di ciascuno dei seguenti):

a.
$$x^4 + 2x^3 + 15x^2 + 14x + 73$$
; b. $x^4 + 8x^3 + 26x^2 + 24x + 28$; c. $x^4 - 354 * x^2 + 29929$; d. $x^4 - 11x^3 + 41x^2 - 61x + 30$; e. $x^4 + 8x^3 + 14x^2 - 8x - 23$; f. $y^4 - 13y^3 + 64y^2 - 142y + 121$; g. $x^4 + x^3 + 2x^2 + 4x + 2$ h. $X^4 + 25X^2 + 5$; i. $X^4 + 3X^3 + 3$ l. $x^4 + x^3 + 4x^2 + 3x + 3$; m. $x^4 + 60x^3 + 99x^2 + 60x + 1$

2. Sia $\Phi_p(x) = 1 + x + \cdots + x^{p-1}$ il polinomio ciclotomico. Mostrare che

disc
$$\Phi_p(x) = (-1)^{(p-1)/2} p^{p-1}$$
.

- 3. Mostrare che $\Phi_{p^r}(x) = \Phi_p(x^{p^{r-1}})$ e dedurne una formula per il discriminante di $\Phi_{p^r}(X)$. 4. Mostrare che se n è dispari, allora $\Psi_{2n}(x) = \Psi_n(-x)$ e che

$$\Psi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

dove μ è la funzione di Möbius.

- 5. Calcolare una fomula per il discriminante di $X^n + aX + b$.
- 6. In ciascuno dei seguenti casi si calcoli il campo di spezzamento e il numero di campi intermedi tra il campo base e il campo di spezzamento.

a.
$$(x^4 + x^2 + x + 1)(x^3 + x + 1) \in \mathbf{F}_2[x];$$
 b. $(x^3 + x + 1)(x^6 + x + 1) \in \mathbf{F}_3[x];$ c. $(x^4 + x^2 + 1)(x^3 + x + 1)(x^3 + 1) \in \mathbf{F}_5[x];$ d. $(x^4 + x^2 + 1)(x^3 + x + 1)(x^3 + 1) \in \mathbf{F}_7[7].$

7. L'obbiettivo di questo esercizio è di scoprire per passi successivi del seguente:

Teorema. Dato un gruppo abeliano G, esiste sempre $f \in \mathbb{Q}[x]$ tale che $G \cong G_f$.

i. Il famoso Teorema di Dirichlet per primi in progressione aritmentica afferma (tra l'altro) che per ogni intero m, esiste sempre un numero primo congruente a 1 modulo m. Dedurne che esiste un polinomio a coefficienti razionali il cui gruppo di Galois è isomorfo al gruppo ciclico $\mathbf{Z}/m\mathbf{Z}$;

Suggerimento: cercare tra i sottocampi di un opportuno campo ciclotomico.

ii. Dimostrare f e g sono polinomi $\in \mathbf{Q}[x]$ con campi di spezzamento linearmente disgiunti (i.e. $\mathbf{Q}_f \cap \mathbf{Q}_f = \mathbf{Q}$) allora $G_{fg} \cong G_f \times G_f$.

Suggerimento: Utilizzare la proprietà (studiata in classe) che $Gal(E_1E_2/F) \cong \{(\sigma_1, \sigma_2) \in Gal(E_1/F) \times Gal(E_2/F) \mid \sigma_1|_{E_1 \cap E_2} = \sigma_2|_{E_1 \cap E_2} \}.$

- iii. Dedurre il teorema dal Teorema di classificazione dei gruppi abeliani finiti che dice che ogni gruppo abeliano è il prodotto di gruppi ciclici con ordini coprimi.
- 8. Mostrare che se f è un polinomio irriducibile di grado tre a coefficienti in un campo F, G_f è di tipo S_3 se e solo se F_f non contiene sottocampi quadratici.
- 9. Si calcoli il gruppo di Galois di $y^5 3 * y^2 + 1$.
- 9. Risolvere i problemi sulle note di Milne a pagina 51.