Введение

Полезность нелинейных преобразований последовательностей для улучшения и даже индуцирования сходимости была достаточно продемонстрирована Шенксом [2]. Однако эвристическая основа преобразований Шенкса имеет некоторые недостатки. Путём соответствующей модификации, предложенной Левиным, генерируются преобразования, которые дают значительное улучшение по сравнению с преобразованиями Шенкса. Дополнительным преимуществом является то, что преобразования выражены в простой замкнутой форме без необходимости вычисления высокопорядковых детерминант, как это происходит в некоторых преобразованиях Шенкса.

От Шенкса к Левину

Для последующего упоминания резюмируем подход Шенкса и преобразования, которые он получает [2]. Шенкс начинает с последовательности

$$A = \{A_r\}, \qquad r = 0, 1, 2, \ldots,$$

и, сравнивая её с представлением A_r как функции от r вида

$$A_r = B + \sum_{i=1}^k a_i q_i^r \qquad (q_i \neq 1,0),$$
 (1)

он может вычислить её «спектр амплитуд» a_i , её «отношения» q_i и её «базу» B.

Определение 1: «спектр амплитуд» a_i , «отношения» q_i и её «база» B определяются как параметры, характеризующие поведение последовательности A_r в представлении (1). «Спектр амплитуд» a_i описывает веса различных экспоненциальных компонент, «отношения» q_i задают скорости изменения этих компонент, а «база» B при удовлетворении $\{A_r\}$ уравнению (1) и удовлетворении каждого отношения $|q_i| < 1$ представляет собой предел последовательности при $r \to \infty$:

$$B = \lim_{r \to \infty} A_r.$$

Определение 2: если $\{A_r\}$ удовлетворяет уравнению (1) и одно или более $|q_i| \ge 1$, A_r не сходится, тогда Шенкс утверждает [1], что « A_r расходится от B», и называется «антипределом» $\{A_r\}$. На практике антипредел предоставляет механизм для применения методов ускорения сходимости к последовательностям, которые формально расходятся. Это позволяет использовать преобразования, такие как методы Шенкса [2] или Эйлера [3], для извлечения численных результатов из расходящихся последовательностей [2]. Но многие последовательности, которые возникают естественным образом при решении задач, не могут быть представлены в виде (1). Но во многих случаях можно сказать, что $\{A_r\}$ имеет почти k-й порядок для некоторого k, по крайней мере для r, большего некоторого фиксированного N [1]. Тогда по аналогии с (1) стремимся определить локальную базу k-го порядка B_{kn} , решая 2k+1 уравнений

$$A_r = B_{kn} + \sum_{i=1}^k a_{in} q_{in}^r, \qquad n - k \le r \le n + k, \qquad n \ge k, \qquad (q_{in} \ne 1, 0)$$

(которые центрированы вокруг A_n) для 2k+1 величин B_{kn} , a_{in} , q_{in} (i=1,2,...,k), и рассматриваем B_{kn} как метод сходимости для $\{A_r\}$.

<u>Определение 3</u>: локальная база k-го порядка B_{kn} определяется решением системы уравнений, аналогичной (1), для последовательностей, которые не могут быть точно представлены в виде (1), но имеют поведение, близкое к нему. Локальная база позволяет анализировать и ускорять сходимость последовательностей, которые формально расходятся.

Алгебраически получаем для B_{kn} формулу

$$B_{kn} = \frac{\begin{vmatrix} A_{n-k} & \cdots & A_{n-1} & A_n \\ \Delta A_{n-k} & \cdots & \Delta A_{n-1} & \Delta A_n \\ \Delta A_{n-k+1} & \cdots & \Delta A_n & \Delta A_{n+1} \\ \vdots & & \vdots & & \vdots \\ \Delta A_{n-1} & \cdots & \Delta A_{n+k-2} & \Delta A_{n+k-1} \\ \hline 1 & \cdots & 1 & 1 \\ \Delta A_{n-k} & \cdots & \Delta A_{n-1} & \Delta A_n \\ \Delta A_{n-k+1} & \cdots & \Delta A_n & \Delta A_{n+1} \\ \vdots & \cdots & & \vdots \\ \Delta A_{n-1} & \cdots & \Delta A_{n+k-2} & \Delta A_{n+k-1} \end{vmatrix},$$
 (2)

где

$$\Delta A_n = A_{n+1} - A_n.$$

Тогда преобразование Шенкса [1] определяется как

$$e_k(A)_n = e_k(A_n) = B_{kn} \qquad (n \ge k),$$

а диагональное или e_d преобразование Шенкса как

$$e_d(A)_n = e_d(A_n) = B_{nn}.$$

Обозначим

$$\Delta A_n = a_{n+1}$$

таким образом,

$$A_n = \sum_{i=0}^n a_i \,,$$

если определим

$$a_0 = A_0$$
.

Таким образом, идентифицируем члены последовательности $\{A_r\}$ с частичными суммами бесконечного ряда $\sum_{i=2}^{\infty} a_i$. Тогда можем легко проверить, что (2) для B_{kn} также получается, если решим для B_{kn} систему уравнений

$$A_r = B_{kn} + \sum_{i=0}^{k-1} \beta_{in} a_{r+i+1} \qquad n - k \le r \le n \qquad n \ge k,$$
 (3)

где имеется только k+1 уравнений для k+1 величин B_{kn} и β_{in} с i=0,1,2,...,k-1.

Идея Шенкса заключается в том, чтобы рассматривать A_r как функцию r [2], вычисленную для целых значений r, и аппроксимировать эту функцию как сумму степеней с произвольными коэффициентами, как в (1), и, таким образом, получать информацию о поведении последовательности при $r \to \infty$ из конечного числа членов последовательности. В соответствии с (3), видим, что также можем рассматривать эту аппроксимацию функции A_r как аппроксимацию с помощью линейной комбинации функций a_m (как функций от m) для $r+1 < m \le k+r$ с произвольными коэффициентами и включая константный член B_{kr} . Шенкс показывает в своей статье [2], что если A_r являются частичными суммами степенного ряда разложения рациональной функции от z, то преобразование e_k работает наиболее эффективным образом, так что при достаточно больших k и $e_k(A_n)$ является точно этой рациональной функцией во всей z-плоскости. Однако функции a_n настолько схожи между собой, что использование линейной комбинации таких, практически, идентичных функций для аппроксимации A_r , как это реализовано в (3), представляется неэффективным. Кроме того, аппроксимация A_r с помощью линейной комбинации степеней может быть не подходящей для последовательностей, скорость сходимости или расходимости которых меньше скорости, с которой q^r стремится к нулю или к бесконечности соответственно. В качестве примеров можно упомянуть последовательности $A_r = r^{-2}$ и $A_r = r^2$.

Алгоритм Левина

Алгоритм Левина [1] относится к классу нелинейных методов ускорения сходимости и основывается на построении преобразований, полученных в результате аппроксимации A_r с помощью функций от r, отличных от используемых Шенксом. Алгоритм имеет несколько вариаций. Рассмотрим каждую из них.

t-преобразование. По аналогии с (3) записываем k+1 уравнений для последовательности $A=\{A_r\}$ [1]:

$$A_r = T_{kn} + R_k(r) \qquad n \le r \le n + k, \tag{4}$$

где $R_k(r)$ — функции от r, включающие k произвольных констант, и стремимся решить систему (4) для T_{kn} полагая, что T_{kn} должно быть аппроксимацией предела последовательности A. Если последовательность A расходится, но одномерная последовательность $\{B_r\}$, которую можем сформировать из T_{kn} , стремится к пределу b, то будем называть b антипределом $A = \{A_r\}$ относительно соответствующего преобразования. В случае k=1 получаем два уравнения

$$A_r = T_{1n} + R_1(r), \qquad r = n_1, n + 1$$

и хотим выбрать $R_1(r)$ такое, чтобы

$$T_{1n} \doteq b$$
,

то есть, чтобы

$$R_1(r) \doteqdot A_r - b. \tag{5}$$

Предположим, что каким-то образом нашли функцию $R_1(r)$. Тогда очевидно, что желательно улучшить эту аппроксимацию, поэтому для k>1 определяем

$$R_k(r) = R_1(r) \sum_{i=0}^{k-1} \gamma_{in} f_i(r),$$

где γ_{in} – константы, которые должны быть определены из (4), в то время как $f_i(r)$ – функции от r, которые выберем на основе удобства и взаимной независимости. Уравнения (4) теперь принимают форму:

$$A_r = T_{kn} + R_1(r) \sum_{i=0}^{k-1} \gamma_{in} f_i(r) \qquad n \le r \le n + k.$$
 (6)

Для удобства обозначим $R_r \equiv R_1(r)$, и получаем T_{kn} с помощью правила Крамера:

$$T_{kn} = \frac{\begin{vmatrix} A_n & A_{n+1} & \cdots & A_{n+k} \\ R_n f_0(n) & R_{n+1} f_0(n+1) & \cdots & R_{n+k} f_0(n+k) \\ R_n f_1(n) & R_{n+1} f_1(n+1) & \cdots & R_{n+k} f_1(n+k) \\ \vdots & \vdots & & \vdots \\ R_n f_{k-1}(n) & R_{n+1} f_{k-1}(n+1) & \cdots & R_{n+k} f_{k-1}(n+k) \end{vmatrix}}{\begin{vmatrix} 1 & 1 & \cdots & 1 \\ R_n f_0(n) & R_{n+1} f_0(n+1) & \cdots & R_{n+k} f_0(n+k) \\ R_n f_1(n) & R_{n+1} f_1(n+1) & \cdots & R_{n+k} f_1(n+k) \\ \vdots & & \vdots & & \vdots \\ R_n f_{k-1}(n) & R_{n+1} f_{k-1}(n+1) & \cdots & R_{n+k} f_{k-1}(n+k) \end{vmatrix}}.$$

Детерминанты в T_{kn} не удобны для вычислений в общем случае, но для частного случая

$$f_i(r) \equiv r^{-i} \tag{7}$$

и при условии, что $R_n \neq 0$ для любого n, можем легко выразить их через детерминанты Вандермонда, деля последовательные столбцы на $R_n, R_{n+1}, ..., R_{n+k}$ соответственно и разлагая по первой строке. Это элементарное вычисление даёт результат

$$T_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{A_{n+j}}{R_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{1}{R_{n+j}}}.$$
 (8)

Теперь нужно подходящее выражение для $R_r \equiv R_1(r)$, которое обладает свойством, выраженным в (5). По аналогии с (3) теперь записываем k+1 уравнений для последовательности $A = \{A_r\}$. Стоит учитывать, что, следуя Шенксу, нумерация членов последовательности начинается с A_0 , однако дальше в некоторых случаях будет удобнее начинать с A_1 как с первого члена последовательности.

Известные преобразования, такие как e_k , часто значительно улучшают сходимость последовательностей, сформированных из частичных сумм чередующихся рядов:

$$A_n = \sum_{k=1}^{n} (-1)^{k+1} d_k; \qquad d_k > 0, \qquad n = 1, 2, \dots.$$
 (9)

Соответственно, сначала рассмотрим оценку для $R_1(r)$, которая подходит для таких последовательностей. Если предполагаем, что d_n является достаточно гладкой функцией от n, и что

$$\lim_{n\to\infty} A_n = d$$

(когда последовательность расходится, d – антипредел), то очевидно, что

$$A_r - d = O(d_r)$$

и более точно

$$A_r - d = \frac{1}{2}(-1)^{r+1}d_r = \frac{1}{2}\Delta A_{r-1}$$

В соответствии с (6) видим, что достаточно выбрать $R_1(r)$ с точностью до константного множителя, и поэтому берём

$$R_1(r) = \Delta A_{r-1} = a_r.$$

Кроме того, $R_1(r)=a_r$ является хорошей аппроксимацией для последовательности, которая расходится очень быстро, так как тогда A_r имеет порядок величины $\Delta A_{r-1}=a_r$, и если A имеет антипредел b относительно разрабатываемого преобразования, то для больших r

$$A_r - b \neq A_r \neq a_r$$

что именно то, что требуется от $R_1(r)$ (см. (5)). Соответственно, принимая $R_1(r)=a_r$, можем ожидать получения из (8) хороших аппроксимаций к пределу или антипределу последовательности, сгенерированной частичными суммами чередующегося ряда, и к антипределу очень быстро сходящегося ряда. При условии, что $a_r \neq 0$ для всех $r \geq 1$, подставляем $R_r \equiv R_1(r) = a_r$ в (8) и получаем

$$T_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{A_{n+j}}{a_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{1}{a_{n+j}}}.$$
 (10)

Видим из (10), что T_{kn} является взвешенным средним последовательности и использует $A_n, A_{n+1}, \dots, A_{n+k}$, а сами веса зависят от $A_{n-1}, A_{n_1}, \dots, A_{n+k}$. Таким образом, преобразование, заданное двумерной таблицей T_{kn} , является нелинейным. Псевдокод для t-преобразования представлен на $\underline{Pucynke\ 1}$, а пример его применения представлен на $\underline{Pucynke\ 2}$.

Вход: A – ряд, представленный в виде $\sum_{m=1}^n a_m$, параметр $k \geq 1$ - порядок преобразования, индекс элемента $n \geq k$

Выход: ускоренная последовательность T_{kn} , полученная путём применения t-преобразования

Получить A, k, n

if k < 1: **return** «Ошибка: k должен быть ≥ 1 »

if n < k: **return** «Ошибка: n должен быть $\geq k$ »

Вычислить необходимые частичные суммы (9)

if $n + k \ge длина(A)$: return "Ошибка: недостаточно данных"

else:

Инициализировать:

Числитель = 0

Знаменатель = 0

for j от 0 до k:

if A[текущий индекс] – A[текущий индекс - 1] **or**

текущий индекс = 0: **return** «Ошибка: нулевая разность»

Числитель
$$+= (-1)^j \binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{A_{n+j}}{a_{n+j}} \# \underline{(10)}$$

Знаменатель
$$+= (-1)^j \binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{1}{a_{n+j}} \# \underline{(10)}$$

if Знаменатель \neq 0: **return** T_{kn} = Числитель / Знаменатель

else: return «Ошибка: нулевой знаменатель»

<u>Рисунок 1</u>. Псевдокод для *t*-преобразования.

Вход:
$$A = \sum_{m=1}^{n} \frac{(-1)^{m+1}}{2m-1}, k = 2, n = 5$$

Выход: $T_{kn} = 0.7854$

Рисунок 2. Пример применения *t*-преобразования.

Теперь определим t_k преобразование аналогично e_k преобразованию Шенкса [0, р. 7]:

$$t_k(A)_n = T_{kn}$$
.

Также определяем преобразование t_d

$$t_d(A)_n = T_{n1}$$
.

Это определение не соответствует диагональному преобразованию e_d Шенкса. И t_d , и e_d используют ровно первые 2n+1 элементов последовательности $A=\{A_1,A_2,...,A_{2n+1}\}$. Например, для вычисления $e_d(A)_n$ требуются $A_1,A_2,...,A_{2n+1}$, и для $t_d(A)_{2n}$ необходимы те же элементы. Различие заключается в том, что в преобразовании Шенкса e_d результат не зависит от нумерации элементов. Если определить новую последовательность A' со сдвигом индексов: $A'_i = A_{i+1}$ (i = 0,1,2,...), то преобразование e'_d для A' будет эквивалентно исходному, то есть $e'_d(A)_{n+1} = e_d(A')_n$. В преобразовании Левина t_d результат зависит от нумерации. Например, $t_d(A)_{2n}$ требует, чтобы элементы были проиндексированы строго с A_1 .

Свойства t_k - и t_d -преобразований. Преобразования t_k , t_d , или в общем, любое преобразование t, которое можно сформировать из T_{kn} (10), не являются линейными, но, как и с преобразованиями Шенкса, есть два простых, но важных свойства [1]:

$$t(A+C) = t(A) + c \qquad n > 1 \tag{11}$$

$$t(\gamma \cdot A) = \gamma \cdot t(A),\tag{12}$$

где C используется для обозначения последовательности

$$C = \{C_n\}; \qquad C_n = c,$$

содержащей каждый член, равный одной и той же константе c. Доказательство этого элементарно.

Преобразования t_k , t_d не являются регулярными, то есть существуют сходящиеся последовательности, для которых t_k и t_d приводят к последовательностям, которые расходятся или имеют другой предел, но если A является последовательностью частичных сумм сходящегося ряда, то $t_k(A)$ и $t_d(A)$ сходятся к пределу A. Это можно показать, записав преобразование t_k , например, в форме метода суммирования γ_{ij} : $T_k(A)_1 = \sum_{i=1}^{\infty} \gamma_{ij} A_j$, где

 $\gamma_{ij} = \gamma_{ij}(A)$. Тогда для фиксированного чередующегося ряда A применение теоремы Сильвермана-Тёплица [4] позволяет установить регулярность метода суммирования $\gamma_{ij}(A)$. В частности, в работе [5] приведено доказательство того, что данный метод суммирует A к его пределу при выполнении условий теоремы.

Покажем, в какой степени улучшение сходимости — общее правило. Укажем улучшение, достигнутое t_1 , t_2 при применении к определённому классу чередующихся рядов. В первую очередь, можем отметить из выражений для t_k и e_k , что $t_1=e_1$. Кроме того, для e_1 Шенкс доказал следующий результат [1].

<u>Определение 4</u>: пусть для последовательности $\{A_n\}$, сходящейся к пределу B, исходная погрешность убывает как:

$$\Delta A_n = |A_n - B| = O(n^{-\alpha}),$$

а после применения преобразования ϕ погрешность становится:

$$\Delta \varphi(A)_n = |\varphi(A)_n - B| = O(n^{-\beta}),$$

тогда мерой улучшения сходимости называется отношение $\frac{\beta}{\alpha}$.

Шенкс показал [1], что если f(m), g(m) — полиномы степеней M_1 , M_2 соответственно, и g(m) не обращается в ноль при целых $m \ge 0$, то для последовательности

$$A_n = \sum_{m=0}^{n} (-1)^m \frac{f(m)}{g(m)}$$
 (13)

погрешность преобразования e_1 убывает как:

$$\Delta e_1(A)_n = \Delta A_n \left[\frac{M_1 - M_2}{4n^2} + O\left(\frac{1}{n^3}\right) \right].$$

Это даёт меру улучшения сходимости, достигнутого $e_1 = t_1$, при применении к последовательности (13). Аналогичный подход применяется для t_2 -преобразования. Предположим теперь, что $A = \{A_n\}$ является последовательностью

$$A_n = \sum_{m=1}^n \frac{x^m}{h(m)},$$

когда $x \neq 1$ и h(m) имеет разложение вида

$$h(m) = m^k + O(m^{k-1})$$

и $h(m) \neq 0$ для m — положительного целого числа. Тогда нетрудно по вычислению, аналогичному тому, что у Шенкса, показать, что

$$\Delta t_2(A)_n = \Delta A_n \cdot O\left(\frac{1}{n^k}\right). \tag{14}$$

Легко показать, что, если A сходится, $t_2(A)$ сходится к тому же пределу, и (14) показывает улучшение, достигнутое в скорости сходимости.

u-nреобразование. Методы e'_d и t_d демонстрируют [1] высокую эффективность для чередующихся рядов и последовательностей с экспоненциально убывающими членами, однако для медленно сходящихся монотонных рядов, таких как:

$$A_n = \sum_{m=1}^n \frac{1}{m_2},$$

эти методы неэффективны. Связано это с тем, что их алгоритмы предполагают убывание остатка со скоростью, превышающей степенную, что не выполняется для последовательностей вида

$$A_n = O(n^{-k}).$$

Для таких рядов погрешности преобразований e_d' и t_d убывают с той же скоростью, что и исходная последовательность:

$$\Delta e'_d(A)_n = O(n^{-1}), \qquad \Delta t_d(A)_n = O(n^{-1}),$$

где $\Delta A_n = O(n^{-1})$. Однако простым изменением T_{kn} можно получить преобразование, которое даёт очень хорошие результаты для таких медленно сходящихся монотонных рядов. Рассмотрим ряд $\sum_{n=1}^{\infty} a_n$, $a_n > 0$. Когда a_n имеет асимптотическое разложение

$$a_n = n^{-k} + \gamma n^{-k-1} + O(n^{-k-2}), \tag{15}$$

и k>1, так что ряд сходится. Пробуем получить выражение для $R_1(r)$, которое подходит для такого рода. Запишем

$$A_r = \sum_{n=1}^r a_n \,,$$

и тогда в соответствии с (5) нужно

$$R_1(r) \doteq A_r - \lim_{n \to \infty} A_n = \sum_{n=r+1}^{\infty} a_n.$$
 (16)

Можем легко оценить этот остаток, рассматривая выражение (15) для a_n как функцию от n, определённую для всех положительных действительных n, и сравнивая $\sum_{n=r+1}^{\infty} a_n$ с интегралом $\int_r^{\infty} a_n \, dn$. Таким образом, находим

$$R_1(r) \doteq \frac{r^{-k} + 1}{-k + 1} + O(r^{-k}) = \frac{ra_r}{1 - k} \left[1 + O\left(\frac{1}{r}\right) \right],\tag{17}$$

и так как достаточно определить $R_1(r)$ с точностью до константного множителя, то целесообразно взять

$$R_1(r) = ra_r. (18)$$

Подставляем это в (8) и получаем величину U_{kn} , заданную

$$U_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-2} \frac{A_{n+j}}{a_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-2} \frac{1}{a_{n+j}}}.$$
(19)

Стоит отметить, что это уравнение для U_{kn} очень похоже на (10) для T_{kn} и может быть получено из (6), взяв $R_1(r) = a_r$ как прежде, но выбрав $f_i(r) = r^{1-i}$ вместо r^{-i} как в (7). Псевдокод для u-преобразования представлен на $\underline{Pucyhke\ 3}$, а пример его применения представлен на $\underline{Pucyhke\ 4}$.

Вход: A – ряд, представленный в виде $\sum_{m=1}^{n} a_m$, параметр $k \geq 2$ - порядок преобразования, индекс элемента $n \geq k$

Выход: ускоренная последовательность U_{kn} , полученная путём применения u-преобразования

Получить A, k, n

if k < 2: **return** «Ошибка: k должен быть ≥ 2 »

if n < k: return «Ошибка: n должен быть $\geq k$ »

Вычислить необходимые частичные суммы (аналогично 23)

if $n + k \ge длина(A)$: return "Ошибка: недостаточно данных"

else:

Инициализировать:

Числитель = 0

Знаменатель = 0

for j от 0 до k:

if A[текущий индекс] – A[текущий индекс - 1] **or**

текущий индекс = 0: **return** «Ошибка: нулевая разность»

Числитель
$$+= (-1)^j \binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-2} \frac{A_{n+j}}{a_{n+j}} \# (19)$$

Знаменатель
$$+= (-1)^j \binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-2} \frac{1}{a_{n+j}} \# (19)$$

if Знаменатель \neq 0: **return** U_{kn} = Числитель / Знаменатель

else: return «Ошибка: нулевой знаменатель»

Рисунок 3. Псевдокод для *и*-преобразования.

Вход:
$$A = \sum_{m=1}^{n} \frac{1}{m^2}, k = 4, n = 5$$

Выход: $U_{kn} = 1.5239$

Рисунок 4. Пример применения и-преобразования.

Так же, как с помощью T_{kn} определили t-преобразования, теперь определяем u-преобразования с помощью U_{kn} . В особенности, определяем

$$u_k(A)_n = U_{kn}$$

$$u_n(A)_n = U_{n1}.$$

Как для t-преобразований, наблюдаем, что u-преобразования удовлетворяют условиям (11) и (12), и можем показать, что последовательности частичных сумм, сходящихся чередующихся рядов преобразуются в последовательности, сходящиеся к тому же пределу, и кажется, что для таких последовательностей t и u оказывают примерно одинаковую степень улучшения скорости сходимости. Однако для медленно сходящихся монотонных последовательностей u-преобразования более эффективны. Связано это с тем, что в них весовой множитель $(r+i)^{1-i}$ усиливает вклад остаточного члена ra_r , благодаря чему погрешность снижается до порядка $O(r^{-\alpha-1})$ (16-18).

v-преобразования. v-преобразование, которое сейчас будет представлено, является примером использования известных преобразований для получения более эффективных преобразований. Начнём с преобразования $t_1=e_1$, применённого к любой последовательности $A=(A_n)$ [1]:

$$e_1(A)_n = \frac{A_{n-1}a_{n+1} - A_na_n}{a_{n+1} - a_n} = A_n + \frac{a_na_{n+1}}{a_n - a_{n+1}}.$$

Предполагая, что $e_1(A)_n$ является аппроксимацией предела или антипредела A, можем использовать (5), чтобы получить выражение для $R_1(r)$:

$$R_1(r) \doteqdot A_r - b \doteqdot A_r - e_1(A)_r \doteqdot \frac{a_r a_{r+1}}{a_{r+1} - a_r}.$$

Подстановка этого значения для $R_1(r)$ в (8) даёт

$$V_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1} - a_{n+j}}{a_{n+j} a_{n+j+1}} A_{n+j}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1} - a_{n+j}}{a_{n+j} a_{n+j+1}}}.$$
(20)

Псевдокод для v-преобразования представлен на $\underline{Pucyhke\ 5}$, а пример его применения представлен на $\underline{Pucyhke\ 6}$.

Вход: A – ряд, представленный в виде $\sum_{m=1}^{n} a_m$, параметр $k \geq 1$ - порядок преобразования, индекс элемента $n \geq k+1$

Выход: ускоренная последовательность V_{kn} , полученная путём применения v-преобразования

Получить A, k, n

if k < 1: **return** «Ошибка: k должен быть ≥ 1 »

if n < k + 1: **return** «Ошибка: n должен быть $\geq k + 1$ »

Вычислить необходимые частичные суммы (аналогично 23)

if $n + k + 1 \ge длина(A)$: **return** "Ошибка: недостаточно данных"

else:

Инициализировать:

Числитель, Знаменатель = 0

for j от 0 до k:

if A[текущий индекс] – A[текущий индекс - 1] **or**

текущий индекс = 0: **return** «Ошибка: нулевая разность»

Числитель
$$+= (-1)^j \binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1} - a_{n+j}}{a_{n+j} a_{n+j+1}} A_{n+j} \# \underline{(20)}$$

Знаменатель
$$+= (-1)^j \binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1} - a_{n+j}}{a_{n+j} a_{n+j+1}} \# \underline{(20)}$$

if Знаменатель \neq 0: **return** $V_{kn} =$ Числитель / Знаменатель

else: return «Ошибка: нулевой знаменатель»

Рисунок 5. Псевдокод для *v*-преобразования.

Вход:
$$A = \sum_{m=1}^{n} \frac{(-1)^{m+1}}{m}, k = 1, n = 4$$

Выход: $V_{kn} = 0.6806$

Рисунок 6. Пример применения *v*-преобразования.

Используя V_{kn} , определяем v-преобразования

$$v_k(A)_n = V_{kn},$$

$$v_n(A)_n = V_{n1}.$$

 $\frac{3aмечание}{j}$: в (55) коэффициенты $\binom{k}{j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1}-a_{n+j}}{a_{n+j}a_{n+j+1}}$ являются оптимальными для исходной последовательности $\{A_n\}$, точно отражая поведение остаточного члена R_n . Рекурсивное применение (55) пересчитывает эти коэффициенты на основе вновь полученной последовательности V_{kn} , вследствие чего они уже не соответствуют первоначальной структуре остаточного члена, и дополнительное ускорение исчезает, а накопленные численные ошибки способны ухудшить сходимость.

Также v-преобразования имеют свойства (11) и (12), и они регулярны для последовательностей, сгенерированных как частичные суммы чередующихся рядов. v-преобразования так же хороши, как t- или u-, разница же заключается в том, что они хороши для обоих типов рядов.

Заключение

Полученные преобразования могут быть применены к вычислению бесконечных интегралов от осциллирующих функций путём интегрирования между нулями функции, а затем преобразования полученного чередующегося ряда. Также, как другое применение, можно упомянуть улучшение простой численной интеграции.

Во многих случаях последовательность будет монотонной, и тогда обычные методы для ускорения сходимости не так эффективны. Но тогда u- или v-преобразование должно быть подходящим.

Преобразования t-, v-, v- могут быть использованы для генерации рациональных аппроксимаций функций f(z), имеющих формальные разложения в степенные ряды. При определённых условиях эти аппроксимации превосходят сопоставимые члены таблицы Паде функции f(z).

Список литературы

- 0. Проект старшекурсников (при объединении файлов убрать)
- 1. Development of non-linear transformations for improving convergence of sequences // International Journal of Computer Mathematics // Levin D. A. 1972. P. 371-388.
- 2. Non-Linear Transformations of Divergent and Slowly Convergent Sequences // Shanks D. C. 1955. P. 1-42.
- 3. A continuous Euler transformation and its application to the Fourier transform of a slowly decaying function // Journal of Computational and Applied Mathematics // Ooura T. 2001. P. 259-270.
- 4. Divergent Series // Oxford University Press // Hardy G. H. 1949. P. 43-48.
- 5. Theory and Application of Infinite Series // Dover Publications // Knopp. K. 1990. P. 451-460.