Lecture Note #07: LP Solvers

线性规划案例及求解

清华大学数学科学系 张立平

Email: <u>lipingzhang@tsinghua.edu.cn</u>

Office: 理科楼A302

Tel: 62798531

例1 加工奶制品的生产计划

每天: 50桶牛奶 时间480小时 至多加工100公斤A₁

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人,付出的工资最多是每小时几元?
- A₁的获利增加到 30元/公斤,应否改变生产计划?

每天 50桶牛奶 时间480小时 至多加工100公斤A₁

决策变量

 x_1 桶牛奶生产 A_1 x_2 桶牛奶生产 A_2

目标函数

获利 $24 \times 3x_1$ 获利 $16 \times 4x_2$

每天获利 $Max z = 72x_1 + 64x_2$

约束条件

原料供应 劳动时间 加工能力 非负约束

$$x_{1} + x_{2} \le 50$$

$$12x_{1} + 8x_{2} \le 480$$

$$3x_{1} \le 100$$

$$x_{1}, x_{2} \ge 0$$

线性 规划 模型 (LP)

MATLAB 求解 LP

$$\min \ z = c^T x$$

s.t.
$$A_1 x \le b_1, A_2 x = b_2, v_1 \le x \le v_2$$

[x,fval,exitflag,output,lambda] =
linprog(c,A1,b1,A2,b2,v1,v2,x0,options)

输入:

x0~初始解(缺省时为0)
options ~ MATLAB控制参数
中间所缺参数项补门

输出:

lambda ~ Lagrange乘子, 维数等于约束个数,非零分 量对应于起作用约束

- lambda.ineqlin
- · lambda. eqlin
- · lambda. upper
- lambda. lower

MATLAB 求解 LP

options ~ MATLAB控制参数:三种算法选择

- 缺省时采用大规模算法(是一种内点算法);
- · 当opt中 "LargeScale"参数设置为 "off"时,采用中规模算法,该模式下缺省的算法是二次规划的算法(一种有效集方法);
- · 当opt中 "LargeScale"参数设置为 "off",并且 "Simplex" 参数设置为 "on"时,采用单纯形算法。

只有有效集方法可以由用户提供初始解**x0**,其他两个算法则不需要(即使提供了也会被忽略)。

examLP01.m

例1 加工奶制品的生产计划

$$Max z = 72x_1 + 64x_2$$

$$x_1 + x_2 \le 50$$

$$12x_1 + 8x_2 \le 480$$

$$3x_1 \le 100$$

$$x_1, x_2 \ge 0$$

c=[72 64];

A1=[1 1;12 8;3 0];

b1=[50 480 100];

v1=[0 0];

[x,z0,ef,out,lag]=linprog(-c,A1,b1,[],[],v1)

examLP01.m

$$x=(30,20)$$
; $z=-z0=3360$; lag.ineqlin =(48;2; 0); ...

LINDO 公司软件产品简要介绍

美国芝加哥(Chicago)大学的Linus Schrage教授于1980年前后开发,后来成立LINDO系统公司(LINDO Systems Inc.),网址: http://www.lindo.com

LINDO: Linear INteractive and Discrete Optimizer (V6.1)

LINGO: Linear INteractive General Optimizer (V8.0)

LINDO API: LINDO Application Programming Interface (V2.0)

What's Best!: (SpreadSheet e.g. EXCEL) (V7.0)

演示(试用)版、学生版、高级版、超级版、工业版、扩展版... (求解问题规模和选件不同)

LINDO和LINGO软件能求解的优化模型

模型求解

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000 48.000000
- 3) 0.000000 2.000000
- 4) 40.000000 0.000000

NO. ITERATIONS= 2

20桶牛奶生产A₁,30桶生产A₂,利润3360元。

max 72x1+64x2

st

2) x1+x2<50

3) 12x1+8x2<480

4) 3x1<100

end

模型求解

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

OBJECTIVE FUNCTION VALUE

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000 48.000000
- 3) 0.000000 2.000000
- 4) 40.000000 0.000000

NO. ITERATIONS= 2

reduced cost值表 示当该非基变量 增加一个单位时 (其他非基变量 保持不变)目标 函数减少的量(对 max型问题)

也可理解为:

为了使该非基变 量变成基变量, 目标函数中对应 系数应增加的量

结果解释

max 72x1+64x2

st

- 2) x1+x2<50
- 3) 12x1+8x2<480
- 4) 3x1<100

end

三种资源

原料无剩余

时间无剩余

加工能力剩余40

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 48.000000

3) 0.000000 2.000000

4) 40.000000 0.000000

"资源"剩余为零的约束为紧约束(有效约束)

积极约束

结果解释

2.000000

最优解下"资源"增加1单位时"效益"的增量

影子价格

原料增1单位,利润增48时间加1单位,利润增2能力增减不影响利润

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.0000000

X2 30.000000 0.0000000

OW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 48.000000

4) 40.000000 0.000000

0.000000

•35元可买到1桶牛奶,要买吗? 35 <48, 应该买!

3)

• 聘用临时工人付出的工资最多每小时几元? 2元!

敏感性分析(LINGO Ranges)

RANGES IN WHICH THE BASIS IS UNCHANGED:

最优解不变时目标 系数允许变化范围

OBJ COEFFICIENT RANGES

(约束条件不变)

VARIABLE CURRENT ALLOWABLE ALLOWABL

COEF INCREASE DECREAS

X1 72.000000 24.000000 8.000000 x_1 系数范围(64,96)

 x_2 64.000000 8.000000 16.000000 x_2 系数范围(48,72)

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	50.000000	10.000000	6.666667
3	480.000000	53.333332	80.000000
4	100.000000	INFINITY	40.000000

 x_1 系数由24×3=

72 增加为30×3=

90,在允许范

围内

·A₁获利增加到 30元/千克,应否改变生产计划

不变!

结果解释

清華大学 Tsinghua University

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

	COEF	INCREASE	DECREASE
X 1	72.000000	24.000000	8.000000
X2	64.000000	8.000000	16.000000

影子价格有意义 时约束右端的允 许变化范围

(目标函数不变)

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABI	LE
	RHS	INCREASE	DECREA	.SE
2	50.000000	10.000000	6.666667	原料最多增加10
3	480.000000	53.333332	80.000000	时间最多增加53
4	100.000000	INFINITY	40.000000	

• 35元可买到1桶牛奶,每天最多买多少?

最多买10桶?

使用LINDO的一些注意事项

- **1. ">"**(或 "<")号与 ">="(或 "<=")功能相同
- 2. 变量与系数间可有空格(甚至回车), 但无运算符
- 3. 变量名以字母开头,不能超过8个字符
- 4. 变量名不区分大小写(包括LINDO中的关键字)
- 5. 目标函数所在行是第一行,第二行起为约束条件
- 6. 行号(行名)自动产生或人为定义。行名以")"结束
- 7. 行中注有"!"符号的后面部分为注释。如:
 - ! It's Comment.
- 8. 在模型的任何地方都可以用"TITLE"对模型命名 (最多72个字符),如:

TITLE This Model is only an Example

使用LINDO的一些注意事项

- 9. 变量不能出现在一个约束条件的右端
- 10. 表达式中不接受括号"()"和逗号","等任何符号, 例: 400(X1+X2)需写为400X1+400X2
- 11. 表达式应化简,如2X1+3X2-4X1应写成 -2X1+3X2
- 12. 缺省假定所有变量非负;可在模型的 "END"语句 后用 "FREE name"将变量name的非负假定取消
- 13. 可在 "END"后用 "SUB"或 "SLB"设定变量上下界例如: "sub x1 10"的作用等价于 "x1<=10" 但用 "SUB"和 "SLB"表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。
- 14. "END"后对0-1变量说明。INT n 或 INT name
- 15. "END"后对整数变量说明: GIN n 或 GIN name

LINGO软件简介

LINGO模型的优点

- •包含了LINDO的全部功能,并能处理非线性优化
- •提供了灵活的编程语言(矩阵生成器)

LINGO模型的构成: 4个段

- 目标与约束段
- 集合段 (SETS ENDSETS)
- 数据段(DATA ENDDATA)
- 初始段 (INIT ENDINIT)

集合的类型

集合

setname(parent_set_list)
[/member_list/]

[: attribute_list];

setname [/member_list/]
[: attribute list];

稀疏集合、稠密集合

派生集合

元素列表法

元素过滤法

直接列举法

隐式列举法

SETS:

CITIES /A1,A2,A3,B1,B2/;
ROADS(CITIES, CITIES)/
A1,B1 A1,B2 A2,B1 A3,B2/:D;
ENDSETS

SETS:

STUDENTS /S1..S8/;

PAIRS(STUDENTS, STUDENTS) | &2 #GT# &1: BENEFIT, MATCH;

ENDSETS

集合循环函数

四个集合循环函数: FOR、SUM、 MAX、MIN

@function(setname [(set_index_list)[| condition]] : expression_list);

Example:

$$\sum_{(I,J)\in PAIRS} BENEFIT(I,J)*MATCH(I,J)$$

[objective] MAX = @SUM(PAIRS(I, J): BENEFIT(I, J) * MATCH(I, J));

$$\sum_{\substack{(J,K) \in PAIRS\\J=I \text{ or } K=I}} MATCH(J,K) = 1$$

@FOR(STUDENTS(I): [constraints]

@SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I: MATCH(J, K)) =1);

例2 学生入学问题

问题

小	非本地户	本地户籍	与学校A的	与学校B的
区	籍学生数	学生数	距离(km)	距离(km)
1	50	200	1	2
2	50	250	2	1
3	100	150	1	0.5

- 每所学校最多只能容纳500名新生
- 每所学校非本地户籍学生的比例,与当地非本地户籍学生的总比例应大致一致(绝对误差≤5%)

→ 总比例: 200/800=25%; 范围: 20-30%

将学生分配到两所学校,使学生所走的总路程最短

模型

小	非本地户	本地户籍	与学校A的	与学校B的
X	籍学生数	学生数	距离(km)	距离(km)
1	50	200	1	2
2	50	250	2	1
3	100	150	1	0.5

决策变量

 $x_{ii} \sim i$ 区到j校上学的非本地户籍学生数量

$$i=1,2,3$$

 $y_{ii} \sim i$ 区到j校上学的本地户籍学生数量

$$j=A,B$$

目标函数

总路程最短

Min
$$z = \sum_{j=A}^{B} \sum_{i=1}^{3} d_{ij} (x_{ij} + y_{ij})$$

约束条件

学生全入学

$$\sum_{j=A}^{B} x_{ij} = m_i \qquad \sum_{j=A}^{B} y_{ij} = n_i$$

模型

约束条件(续)

每校最多500人

(最少300人)

户籍比例限制

$$300 \le \sum_{i=1}^{3} (x_{ij} + y_{ij}) \le 500$$

$$0.2 \le \sum_{i=1}^{3} x_{ij} / \sum_{i=1}^{3} (x_{ij} + y_{ij}) \le 0.3$$

转化为线性的规划

$$\frac{7}{3}$$

 $\frac{7}{3} \sum_{i=1}^{3} x_{ij} \le \sum_{i=1}^{3} y_{ij} \le 4 \sum_{i=1}^{3} x_{ij}$

上下界约束

 $x_{ii} \ge 0$, $y_{ii} \ge 0$

整数?

线性规划模型(LP)

严格说,应该是整数线性规划

学生入学问题的求解

LINGO软件实现

TITLE student-school allocation;

sets:!定义集合及其属性(数组);

district/1..3/:m,n;

 $school/A,B/; \leftarrow$

match(district, school):d,x,y;

endsets

data: !原始数据;

m= 50,50,100;

n=200,250,150;

d=1 2 2 1 1 0.5;

enddata

1	2
2	1
1	0.5

定义集合district={1, 2, 3},而数组m,n的 下标属于集合district

定义集合school={A,B}

定义集合match = {(i,j) | i∈district, j∈school};

d, x, y的下标属于match

LINGO软件实现

[obj] min=@sum(match: d*(x+y));!目标函数; @for(district(i):!每个小区的学生人数约束; [MINO] @sum(school(j): x(i,j))=m(i); [NONM] @sum(school(j): y(i,j))=n(i);

$$\sum_{j=A}^{B} x_{ij} = m_i$$

$$\sum_{j=A}^{B} y_{ij} = n_i$$

@for (school(j): !每所学校的学生人数约束;

[LB] @sum(district(i): x(i,j)+y(i,j))>300;

[UB] @sum(district(i): x(i,j)+y(i,j))<500;

[MixL] 7*@sum(district(i): x(i,j)) <

3*@sum(district(i): y(i,j));

[MixU] 4*@sum(district(i): x(i,j)) > @sum(district(i): y(i,j));

$$300 \le \sum_{i=1}^{3} (x_{ij} + y_{ij}) \le 500$$

$$\frac{7}{3} \sum_{i=1}^{3} x_{ij} \le \sum_{i=1}^{3} y_{ij} \le 4 \sum_{i=1}^{3} x_{ij}$$

学生入学问题的求解

LINGO求解结果

小	非本地户	本地户籍
X	籍学生数	学生数
1	50	200
2	50	250
3	100	150

Variable	Value	Reduced
Cost		
X(1,A)	50.00000	0.000000
X(2, B)	50.00000	0.000000
X(3,A)	10.00000	0.000000
X(3, B)	90.00000	0.000000
$\mathbf{Y}(1,\mathbf{A})$	200.0000	0.000000
Y(2, B)	250.0000	0.000000
Y(3,A)	40.00000	0.000000
$\mathbf{Y}(3,\mathbf{B})$	110.0000	0.000000

1区学生全部去A校,2区的学生全部去B校 3区非本地户籍学生10人去A校,90人去B校 3区本地户籍学生40人去A校,110人去B校

最优值: 700公里