Structure Prediction

- This mini-lecture will introduce
 - motivations of structure prediction
 - how structure space < sequence space
 - making predictions that maximize template information
 - the new deep learning methods, AlphaFold and RoseTTAFold
- At the end of this mini-lecture, we will have a discussion about:
 - What factors increase/decrease
 - your confidence in a predicted structure?
 - the influences of the prediction algorithm?
 - Can current structure prediction methods be used to predict the effect of a mutations or buffer conditions?

Why perform structure prediction?

- Predict
 - functional differences between homologs (e.g. isoforms or different species)
 - effects of mutations
 - binding sites and drug interactions
- Design the above
- It's easier than structure determination
- Even with rapid expansion of the PDB, many-fold more sequences have been obtained
- Fortunately...

Structure < sequence space

- The number of unique folds is far less than the number of sequences
- Similar sequences have similar structure in general, sequence identify only needs to be 30-40%!
- Therefore we can model a sequence of unknown structure based on a homolog with known structure
- But how?

Evolutionary significance of an alignment

Given this alignment...

Biologist infers...

- The gene was extended by one residue at the N-terminus.
- The Phe is conserved.
- Four residue deletion occurred between G to H.
- A non-similar mutation Y->K occurred.
- A two-residue insertion occurred between M and Q.
- A similar mutation F->Y occurred.

Aligned positions share a common ancestral position.

An alignment as modeling instructions

Given this alignment...

- Modeler program should...
- Add Ala to the N-terminal Cys using energy minimization.
- Keep the conserved Phe sidechain and backbone.
- Cut out the four residue insertion and connect G to H.
- Switch non-similar sidechains Y->K. Possibly move backbone. Possibly pick another alignment.
- Cut at M-Q, insert two residues, Asn-Pro
- Switch similar sidechains F->Y. Keep backbone fixed.

Aligned positions share a common spatial position.

Choosing Structure Prediction Software

- There are many software tools for protein structure prediction (see https://en.wikipedia.org/wiki/List_of_protein_structure_prediction_software)
- How should you decide which to use?
 - Ease of use
 - Web server easier for sporadic use
 - Downloadable and scriptable easier for large-scale applications
 - Accuracy

CASP

- "Critical Assessment of protein Structure Prediction" (CASP) experiments are blinded tests of the ability to predict structure from sequence. (see http://www.predictioncenter.org/index.cgi)
 - "I-TASSER (as 'Zhang-Server') was ranked as the No 1 server for protein structure prediction in recent community-wide <u>CASP7</u>, <u>CASP8</u>, <u>CASP9</u>, <u>CASP10</u>, <u>CASP11</u>, <u>CASP12</u>, and <u>CASP13</u> experiments."
 - "AlphaFold is an Al system developed by DeepMind that predicts a protein's 3D structure from its amino acid sequence. It regularly achieves accuracy competitive with experiment." "In CASP14, AlphaFold was the top-ranked protein structure prediction method by a large margin."

AlphaFold and RoseTTA fold

Discuss

- What factors increase/decrease
 - your confidence in a predicted structure?
 - the influences of the prediction algorithm?
- Can homology modeling/threading be used to
 - predict the effect of a mutation
 - of a contact with a ligand in a binding site?
 - on a large-scale conformational change?
 - predict the effect of buffer conditions?

References

- <u>Lecture 19 of BIOL 4550</u> by Chris Bystroff of Rensselaer Polytechnic Institute
- <u>Lab 04 of IIBM3202 Molecular Modeling and Simulation</u> from the Institute for Biological and Engineering at Pontificia Universidad Catolica de Chile
- Chothia C & Lesk AM (1986) _EMBO J_ 5(4), 823–826
- AlphaFold paper: https://www.nature.com/articles/s41586-021-03819-2
- RoseTTA fold paper: https://doi.org/10.1126/science.abj8754