Task 2: Data Visualization

Goal

Visualize the given dataset (https://www.kaggle.com/datasets/shree1992/housedata)

Requirements:

- 1. Load the dataset
- 2. Perform basic data cleaning (if needed) and explore the dataset (using .describe(), .info(), etc.).

Create the following visualizations:

- 1. A scatter plot of features (yr_built,floors) vs price and explain which one impacts the price more.
- 2. A box plot for a single feature to identify outliers.
- 3. A heatmap to visualize the correlation between features.
- 4. A line graph to show a trend.

```
#Importing relevant python libraries
import kagglehub
import plotly.express as px
import pandas as pd
from scipy import stats
import numpy as np
from kagglehub import KaggleDatasetAdapter
#Set the path to the file in the dataset from Kaggle
file_path = "data.csv"
#Load the Dataset
df = kagglehub.load_dataset(
  {\tt KaggleDatasetAdapter.PANDAS,}
  "shree1992/housedata",
 file path,
 # we can add further arguments to import as required (sql, etc.). See documenation for more information:
  {\tt\#\ https://github.com/Kaggle/kagglehub/blob/main/README.md\#kaggledatasetadapterpandas}
)
```

⇒ <ipython-input-37-063d27ed61af>:2: DeprecationWarning:

load_dataset is deprecated and will be removed in a future version.

#Exploring the dataset
df.head()

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement	yr_bui
0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	0	3	1340	0	19
1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	4	5	3370	280	19
2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	0	4	1930	0	19
3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	0	4	1000	1000	19
4	2014- 05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	0	4	1140	800	19

#Exploring the dataset
df.info()
df.describe()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4600 entries, 0 to 4599
    Data columns (total 18 columns):
         Column
                       Non-Null Count Dtype
     0
         date
                        4600 non-null
                                        object
     1
         price
                        4600 non-null
                                        float64
         bedrooms
                        4600 non-null
                                        float64
         bathrooms
                        4600 non-null
                                        float64
         sqft_living
                        4600 non-null
                                        int64
         sqft_lot
                        4600 non-null
                                        int64
         floors
                        4600 non-null
                                        float64
         waterfront
                        4600 non-null
                                       int64
        view
                        4600 non-null
                                        int64
         condition
                        4600 non-null
                                        int64
     10 sqft_above
                        4600 non-null
                                        int64
     11 sqft_basement 4600 non-null
                                        int64
     12 yr_built
                        4600 non-null
                                        int64
     13 yr_renovated
                        4600 non-null
                                       int64
     14 street
                        4600 non-null
                                        object
     15 city
                        4600 non-null
                                       object
     16 statezip
                        4600 non-null
                                       object
     17 country
                        4600 non-null
    dtypes: float64(4), int64(9), object(5)
    memory usage: 647.0+ KB
```

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	s
count	4.600000e+03	4600.000000	4600.000000	4600.000000	4.600000e+03	4600.000000	4600.000000	4600.000000	4600.000000	4600.000000	
mean	5.519630e+05	3.400870	2.160815	2139.346957	1.485252e+04	1.512065	0.007174	0.240652	3.451739	1827.265435	
std	5.638347e+05	0.908848	0.783781	963.206916	3.588444e+04	0.538288	0.084404	0.778405	0.677230	862.168977	
min	0.000000e+00	0.000000	0.000000	370.000000	6.380000e+02	1.000000	0.000000	0.000000	1.000000	370.000000	
25%	3.228750e+05	3.000000	1.750000	1460.000000	5.000750e+03	1.000000	0.000000	0.000000	3.000000	1190.000000	
50%	4.609435e+05	3.000000	2.250000	1980.000000	7.683000e+03	1.500000	0.000000	0.000000	3.000000	1590.000000	
75%	6.549625e+05	4.000000	2.500000	2620.000000	1.100125e+04	2.000000	0.000000	0.000000	4.000000	2300.000000	
max	2.659000e+07	9.000000	8.000000	13540.000000	1.074218e+06	3.500000	1.000000	4.000000	5.000000	9410.000000	
4 4											

Double-click (or enter) to edit

```
#Check for missing values
print(df.isnull().sum())
```

```
→ date
    price
    bedrooms
                      0
    bathrooms
    sqft_living
                      0
    sqft_lot
                      0
    floors
                      0
    waterfront
    view
                     0
    condition
                     0
    sqft_above
                     0
    sqft_basement
    yr_built
                     0
    yr_renovated
                     0
    street
                     0
    city
                     0
    statezip
                     0
    country
                      0
    dtype: int64
```

No data cleaning is required because we have found no missing/erroneous values from exploring the dataset above.

Visualizations

Scatter Plot of Year Built vs. Price

$\overline{\pm}$

Scatter Plot of Floors vs. Price


```
#get trendline data for yr_built vs price
results_1 = px.get_trendline_results(fig_1)
r_squared_1 = results_1.px_fit_results.iloc[0].rsquared
slope_1 = results_1.px_fit_results.iloc[0].params[1]

#get trendline data for floors vs price
results_2 = px.get_trendline_results(fig_2)
r_squared_2 = results_2.px_fit_results.iloc[0].rsquared
slope_2 = results_2.px_fit_results.iloc[0].params[1]

print(f"R-squared for yr_built vs price: {r_squared_1}")
print(f"Slope for yr_built vs price: {slope_1}")
print(f"R-squared for floors vs price: {r_squared_2}")
print(f"Slope for floors vs price: {slope_2}")
```

```
R-squared for yr_built vs price: 0.0004777210349372618
Slope for yr_built vs price: 414.49287992337895
R-squared for floors vs price: 0.022940374099241656
Slope for floors vs price: 158648.89345565005
```

R-squared is a statistical measure that represents the proportion of the variance for a dependent variable (price) that's explained by an independent variable (yr_built or floors). Higher R-squared values indicate a stronger linear relationship, i.e. a better model fit. On the other hand, the slope (or gradient) represents the change in the dependent variable (price) for a one-unit change in the independent variable (yr_built or floors).

In our case, the R-squared metric for floors vs price is 0.0229 which is significantly higher than that of yr_built vs price, which is 0.0004777. This suggests that floors has a stronger linear relationship with price compared to yr_built.

The slope/gradient for floors vs price (158648.89) is much larger than the slope for yr_built vs price (414.49) which indicates a high unit increase impact on price of floors in comparison to yr_built.

Therefore, according to both the statistical metrics, no. of floors has a greater impact on price than year built.

_→

Box Plot of Sqft. of Living Area

The houses outside the box plot are outliers as can be seen above the box plot.

Correlation Matrix Heatmap

Corr

Line Graph of Year Built vs. Count

