Computational Physics

numerical methods with C++ (and UNIX)

Fernando Barao

Instituto Superior Tecnico, Dep. Fisica email: barao@lip.pt

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (1)

computer storage precision

the number of bytes assigned to a real variable (word length) is controlled by the programmer

single precision										
4 Bytes	s(1)	e(8)	m(23)							
double precision										
8 Bytes	s(1)	e(11)	m(52)							

accuracy

single

$$2^{-23} \sim 10^{-8}$$

double

$$2^{-52} \sim 10^{-16}$$

max/min values

single

$$2^{127} \simeq 1.7 \times 10^{38}$$

 $2^{-127} \ 2^{-23} \sim \times 10^{-45}$

✓ round-off errors

 a real number with a finite number of digits in the decimal system can require an infinite number of bits in the binary system

0.42 = 0.01111101 10101110000101000111101 (round-off)

Types of errors

approximation errors errors resulting from the problem simplification in order to be solved on the computer

continuous functions are approximated by finite arrays of values

- problem discretization
- replacement of a infinite series by a sum for finite terms

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \simeq \sum_{n=0}^{N} \frac{x^{n}}{n!} = e^{x} + \Delta(x, N)$$

✓ round-off errors errors arising from using a finite number of digits to represent real numbers

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (3)

Example: derivative computation

✓ Function Taylor expansion :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^k}{k!}f^{(k)}(x_0) + \dots$$

✓ The derivative of the function can be calculated as :

$$f'(x_0) \simeq \frac{f(x_0 + h) - f(x_0)}{h}$$

✓ The discretization error :

$$\Delta f_d^{'} \simeq \frac{h}{2} f^{''}(x_0)$$

Derivative computation errors

✓ Let's compute the error on the derivative $f'(x_0)$ as function of the discretization distance $h: \Delta f' = f'(x_0) - cos(x_0)$

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (5)

Loss of precision

✓ Every real number x has a machine representation x_c

$$x_c = x(1 + \varepsilon_x)$$

where $|\varepsilon_x| \le \varepsilon_M$ is the relative error associated to the machine precision

- $\sim 10^{-7}$ for single precision representation
- $\sim 10^{-16}$ for doubleprecision representation

two numbers subtraction

$$a_{c} = b_{c} - c_{c} = b(1 + \varepsilon_{b}) - c(1 + \varepsilon_{c})$$

$$= \underbrace{(b - c)}_{a} + b\varepsilon_{b} - c\varepsilon_{c}$$

$$\frac{a_{c}}{a} = 1 + \frac{b}{a}\varepsilon_{b} - \frac{c}{a}\varepsilon_{c}$$

$$a = \frac{1}{a} + \frac{c_b}{a} = \frac{c_c}{a}$$

$$\varepsilon_a \simeq \frac{b}{a} (\varepsilon_b - \varepsilon_c) \qquad (b \simeq c)$$

two numbers multiplication

$$a_{c} = b_{c} \times c_{c}$$

$$= b(1 + \varepsilon_{b}) \times c(1 + \varepsilon_{c})$$

$$\approx \underbrace{bc}_{a} + bc\varepsilon_{b} + bc\varepsilon_{c}$$

$$\frac{a_{c}}{a} = 1 + \varepsilon_{b} + \varepsilon_{c}$$

$$\varepsilon \approx \varepsilon_{c} + \varepsilon$$

Derivative computation errors (cont.)

✓ Discretization :

$$\Delta f_d^{'} = \frac{h}{2} f^{''}(x_0)$$

✓ Round-off:

$$\delta f = f(x_0 + h) - f(x_0)$$

$$\Delta f_r' = \frac{\Delta(\delta f)}{h}$$

$$= f(x_0) \frac{\varepsilon_M}{h}$$

$$\sim \frac{10^{-7}}{h}$$
10⁻⁵

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (7)

Error sum

 \checkmark The total error if a sequence of N arithmetic operations are made, can be estimated assuming uncorrelated errors

$$F = \sum_{i=1}^{N} x$$
$$(\Delta_F)^2 = \sum_{N} (\Delta_X)^2 = N (\Delta_X)^2$$
$$\Delta_F = \sqrt{N} \Delta_Y$$

math.h constants

- ✓ Solving problems with a computer and requiring a good precision implies the use of double-precision in numbers representation
 - unless you are short in computer memory!
- a set of mathematical constants are already defined in the unix operating system
 - file : /usr/include/math.h (double-precision!)

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (9)

The hexadecimal system

✓ Binary numbers can be arranged in groups of 4-bits

```
(b_3 \ b_2 \ b_1 \ b_0)_2 = b_0 \ 2^0 + b_1 \ 2^1 + b_2 \ 2^2 + b_3 \ 2^3

min: (0000)_2 = 0

max: (1111)_2 = 15

base-16 system: 0, 2, 3, 4, 5, ..., 9, A, B, C, D, E, F
```

- ✓ one byte (8-bits) is represented by two hexadecimal numbers
- Examples:

$$(10\ 1111)_2 = (2F)_{16}$$

The corresponding decimal value:

$$2 \times 16^{1} + 15 \times 16^{0} = 47$$

 $1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 47$

Characters representation

- Characters are 8-bit (byte) numbers
- ✓ ASCII (American Standard Code for Information Interchange) convention

128 characters are represented by numerical values in the range 0-127

7 bits needed

✓ The extended ASCII character set (ECS) includes 128 additional characters encoded by integers in the range 128-254

8 bits required

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (11)

Characters representation (cont.)

The ASCII Table

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
00	00	NUL	32	20	SP	64	40	0	96	60	ſ
01	01	SOH	33	21	!	65	41	A	97	61	a
02	02	STX	34	22	"	66	42	В	98	62	b
03	03	ETX	35	23	#	67	43	C	99	63	С
04	04	EOT	36	24	\$	68	44	D	100	64	d
05	05	ENQ	37	25	%	69	45	E	101	65	е
06	06	ACK	38	26	&	70	46	F	102	66	f
07	07	BEL	39	27	,	71	47	G	103	67	g
08	08	$_{\mathrm{BS}}$	40	28	(72	48	Н	104	68	h
09	09	HT	41	29)	73	49	I	105	69	i
10	0A	$_{ m LF}$	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	0D	CR	45	2D	-	77	4D	М	109	6D	m

• • •