Remark 2.8 If one knows the distance d(c) of the code then t=d(c)-1 is the best droice for the number of ecos that can be detected.

e = [d(c)-1] is the lessest muhler of errors, C can correct.

 $g(c) \ge 2e+1$ $d(c) - 1 \ge e$ 1 $a(c) - 1 \ge e$

Det 2.9 An (h, M, d) code

is a code $C \subseteq K^h$ of code luph n, size (Cl = M) and the nininum distance d(C) = Ol.

The rabba $\stackrel{d}{=}$ is called the radative distance.

Example 2.10 The repetition code

 $C = 3 (a, a) \in K^n : a \in K3$

Block length: u

The rize: |C|=|K|=: 9 the alphabet size.

The distance: d(C) = n.

Mis C can devent n-1 errors and correct

2.2. Bounds on rodos
Theorem 2.11 (The sphere padicy board,
Hemmils bound
Let C = Kn be a coole over a 9-asy espheliet
K (n GIN, 9 EN, 9 = 2) and let e FNo
be sotistying 20+1 = d(1). Then one has
$ C \leq \frac{q^n}{V_q^n(e)}$
$V_q^h(e)$
Furthermore, the equality
$V_q^h(e)$ Furthermore, the equality $V_q^h(e)$
$ C = \frac{9^n}{V_q^n(e)}$ is attained
if and only if each word x f K is contained
in exactly one ball 18(Ge) with CEC
(He ball w. s.t. the Hamming distance).
oof: By assumptions, d'acr) >2e for all call
$\Rightarrow B(ze) \cap B(c,e) = \emptyset$
(see [23]).
So, Me balls B(ce)
win c EC are pairwise
disjoint.
$\left \bigcup_{c \in C} B(\varsigma e) \right = \sum_{c \in C} B(\varsigma e) = C \cdot V_q^n(e)$
On the one hand this size is at most the
8120 of K", which 9". =>
9" = 101. Va"(e) => 101 = Va"(e).

In pechicules, having equality $|C| = \frac{9^n}{V_q^{\gamma}(e)}$ is equivalent to K^{γ} being the disjoint union of the balls B(C,e) with centers $c \in C$. Del. 2.12 Codos schirpsing the capacity 9 = 101. Var(e) are called perfect One can show that some maker of perfect codes exist, but they're "quite rare". Even then we count or don't know how to get to the equality in $|C| \leq \frac{9^{\circ}}{V_{q}^{n}(e)}$, we at least can try to get close to the $\frac{1}{9}^{n}(e)$ egacality case. Thm 2.13 (Gilbert - Varshamov bound = 6V bound) Let n, q, d & IN with 1 \le d \le n and 9 \rightarrow 2 be given and let K be an alphabet of size 9. Then share exists a code C = K" of monimum distance d(() =d an a lize /c/ = 9" $V_q^n(d-1)$ Proof: let's use a greedy stackay to construct and C. Skat with the enply set C = \$. Ikrchively, add another eleman CEKN
to C mar Mc+ d(c(c') > d for an c'f(

as long as ma an element exist? In thems of In ball, the condition on the choice of a EK" c E Kh \ U B(c', d-1). This process konince after binikly man I iteration, becaus we pick elements from the Linite set Kh Upon tecarination, are have $\bigcup B(e,d-e) = K^n.$ 9" = |K" | = | () B(('d-1) | = [1B(('d-1)]) = 1c1. V9 (d-4) $=> |C| > \frac{9^n}{V_9^n(d-1)}$

Example 2.14 K=101,2,33 N=2 d=2 3 0 0 0 C- (20, Code over the 11, alphabet of rize 32, with block bugh 0 1 2 3 033 4=2 , the airiam distance 2 and hise 4. Another code like this: 20011,22,333 LQS n=6, d=3, 9=2: Try to find a large code with this parameters: C = 20136 d(C) = 3Try using greedy stockeys as above? Ca you do better ? Thm 2.16 (Singleton bound) Let C = K 6e a 9-ary code with the original distance d= d(C) when 9, da LIN acce 922. Then 101 = 9 n-d+1 or equivalently $d \leq n - \log_q |C| + 1$ Proof. Cn EC (= - C1 (2 (3 Cd.1 Col · --Ch' & C C'= C'C'C' C' C' C' if the distance is dan (fo') after the example of the tirst d-1 symbols there is still a difference

Consider the map T: C -> Kn-d+1 given By $T(C_1, C_n) := C_d, C_n$. Since d(C) = dany two distinct codemands CCIFC would sun'spy T(c) + T(c'), because care c'aiper in et lent de positions and one of this positions i= !... us full it no the range i fild ..., us. So Tis an injective map. Since T is injective $|C| = |T(C)| \leq |K|^{n-d+1}$ $= > |C| \leq q^{n-d+1}$ 310 (=) logg (() = n-d+1 (=) d = n - logq (c) +1. Let's discuss what if means. Assume one excodes KK (Hat is one sua k symbols) via sonal code C. That maces (C) = 9k. The bonce is $d \leq n - k + 1.$ the ocacheca i we have K signifold of information and n-k Symbols for reducate y.

Assum we decide to back n-k=5.

Then, singleton born of says of $\le 5 + 1 = 6$.

So, the maximum distance we can hope for is 6.

If we attain it we can correct afront $\left\lfloor \frac{6-1}{2} \right\rfloor = 2$

Definition 2.18 A code attainy the historic board with equality is called maximes distance separable or an MDS code

3) Decoding for stodiastic channels

3.11 Probability over findle sample spaces

Del 3.1 A hinte probability space is a pair

(DP) where SI is a nonempty him be set and P: SI -> R is a function with P(as) = o texase as E SI and Del 2 P(as) = 1.

as En is cause the elementary was I p(w) is caused it's probability A & De is caused on event

are P(A): = I P(a) is called the probabilities of w GA Example 3.2. Ourcones of 2 tosses of a fair coin. ______ = {00,10,01,113 = 20,132 P(w) = 1 for are west P(outcomes were different) Example 3.3. 4 Tosses of a bia sed coin with the probability of tailes equal to E. 0 = (i) Probabil: 4y 1-8 1 = (1) Probability 8. P(1001) = 62. (1-E)2 ξ³. (1-ξ) P(1011) = P(1111) = wt(x) 4-wt(x) $P\left(\underset{\times}{\times}_{1} \times_{2} \times_{3} \times_{4}\right) =$ wt(x) = # of contero P(0000) = (1-2)4 entries in X P (exactly one tail) = (4) &. (1-8)3 P (exactly two tails) = (4) 22 (1-8)2

P (exactly three tails) = $\binom{4}{3}$ ξ^3 $(1-\xi)^7$ P (are four Geins ta: (5) = (4) & 4. (1-5) Catching up on counting: Binomic Coefficients. there are in courses offerered in the Masks's program: lets make Kan from 1 n. A student has decided to take i of these courses. i = 0, ..., n. What is the number of possibilities one can take i out of u courses. 1 2 -1 2 $\frac{6.5.4}{3.2.1} = 20$ 3 × - 3 4 X = 2 $n \cdot (u - 1) \cdot \dots \cdot (u - i + 1) = (n)$ $i \cdot (i - 1) \cdot \dots \cdot (1 - i - 1)$ 5 [] 6 5 - the binomial coefficient. i! (u-i)! Bet some experience with coulding LQ6