Angewandte mathematische Statistik

5. Aufgabenblatt

1. Aufgabe (Monte Carlo)

Berechnen Sie π mittels der Simulation gleichverteilter Zufallsvariablen.

2. Aufgabe (Dimensionsreduktion)

- (a) Simulieren Sie $X_i \sim \mathcal{N}(\mu, \Sigma)$ mit einem $\mu \in \mathbb{R}^2$ und einem $\Sigma \in \mathbb{R}^{2 \times 2}$ Ihrer Wahl und berechnen Sie die Hauptkomponenten der simulierten Daten. Stellen Sie Ihr Ergebnis graphisch dar und vergleichen Sie es mit der R-Funktion prcomp().
- (b) Wiederholen Sie dies mit $\Sigma = \begin{pmatrix} 1 & 0.95 \\ 0.95 & 1 \end{pmatrix}$ und projizieren Sie Ihre zweidimensionalen Daten auf die offensichtlich relevantere Hauptkomponente.
- (c) Berechnen Sie nun eine Hauptkomponentenanalyse mit den Iris-Daten, die Ihnen via data(iris) zur Verfügung stehen. Logarithmieren Sie die Daten zunächst.

3. Aufgabe (Clustering)

Implementieren Sie den K-Means-Algorithmus und testen Sie ihn an Daten, die aus einem Gaußschen-Mischmodell stammen. Versuchen Sie verschiedene Initialisierungen sowie Cluster-Anzahlen K.