Summary

- Expected Value of Sample Information
- Expected Net Benefit of Sampling
 - ► Trial costs
- Challenges/Discussion

References

Welton NJ et al 2014. Expected Value of Sample Information for Cluster Randomised Trials with Binary Outcomes: Medical Decision Making, 34:352-365

BMHE Team University of Lausanne Lausanne, 20-24 June 2022

EVSI for Study Design

- EVSI measures the value of reducing uncertainty by running a study of a given design
- Can compare the benefits and costs of a study with given design
 - ► To see if a proposed study likely to be a good use of resources
 - ► To find the optimal study design

EVSI Can Help Assess

- Do we really need another study?
- What type of study (or studies)? RCT (# arms?)?
- What should the new study measure?
 - ▶ Efficacy? Which interventions? Which outcomes?
 - ► Economic data?
- Length of follow-up? Follow-up existing trials?
- What patient group should the new study include?
- What sample size should be used?
- etc...

EVSI: Basic Idea

- ullet A new study with given design (eg sample size) will provide new data, D=d
 - ▶ Reducing uncertainty in a subset of model parameters
- Update inputs (eg meta-analysis) to CEA model
- Update the cost-effectiveness model
 - ▶ If the optimal decision changes gain in NB from using new optimal treatment
 - ▶ If optimal decision unchanged, no gain in NB

EVSI: Basic Idea

- ullet A new study with given design (eg sample size) will provide new data, D=d
 - ▶ Reducing uncertainty in a subset of model parameters
- Update inputs (eg meta-analysis) to CEA model
- Update the cost-effectiveness model
 - ▶ If the optimal decision changes gain in NB from using new optimal treatment
 - ▶ If optimal decision unchanged, no gain in NB
- ullet Average this gain in INB over future possible datasets D to obtain EVSI
 - Based on a prediction from existing evidence
- Expected Value of Partial Perfect Information (EVPPI) is an upper bound for EVSI for given subset of parameters

Prior predictive distribution (pre-posterior)

Optimal Trial Design

• Expected Net Benefit of Sampling:

• Population EVSI:

Pop.
$$EVSI = EVSI \times prevalence \times time horizon$$

Cost of Trial:

Depend on sample size

Trial Costs

- Fixed Costs
 - Staff time: managers, coordinator, administrator, statistician, data-base support
- Costs per practise
 - ▶ Recruitment, training, site visits
 - Data collection
- Opportunity Costs
 - Net Benefit differences between randomised arm and (current) optimal arm
 - Value of research to those involved in the trial.

$$\begin{split} C(n) &= \begin{bmatrix} c_f + \sum_{t=1}^T \left(c_t n_t \right) \end{bmatrix} + EVSI(n) \sum_{t=1}^T n_t \\ &+ \sum_{t=1}^T \left\{ n_t E_{\vartheta}[NB_{t^*}(\vartheta) - NB_t(\vartheta)] \right\} \end{split}$$

Optimal Trial Design

- Only studies where expected benefits outweigh study costs are a good use of resources
- Choose the design with greatest Expected Net Benefit of Sampling (ENBS):
 - No value of a study design with ENBS < 0</p>
 - ▶ There is value in a study where ENBS > 0... even if it not the maximum ENBS

Case Study 1: Interventions for Attendance at Breast Screening¹

- Richards et al (2002)
 - Cluster randomised 2×2 factorial trial
 - ▶ 24 practices randomised
 - None, Flag, Letter, Both
- EVSI analysis
 - ▶ BEFORE: Based on evidence base before the trial
 - ★ Monte Carlo (MC) simulation
 - AFTER: Based on pre-trial evidence base updated by the trial
 - ★ Markov Chain Monte Carlo (MCMC) simulation

9/18

¹Richards et al 2001. Cluster randomised controlled trial comparing the effectiveness and cost-effectiveness of two primary care interventions aimed at improving attendance for breast screening. Journal of Medical Screening. 8:91-98

- Decision tree model
- Evidence on efficacy before Richards et al based on systematic review of similar types of intervention
- Other model inputs from routine data sources (Toms 2004) and cohort study (Wolstenholme 1998)
- Prevalence: 300,000 per year eligible for 1st invitation to screening
 - ▶ 30,000 in low-uptake practices as sensitivity analysis
- Time horizon = 10 years, 3.5% discount rate
- Willingness to pay per QALY = £20,000

• Lower decision uncertainty for low-uptake practices

Implications for Research Design

- There was value in carrying out the Richards trial based on prior evidence
 - Sample size could have been larger
- No further value in running a new trial subsequent to the Richards et al trial
- Only considered new study measuring relative intervention effects
 - ... and only one aspect of study design (sample size)
 - Richards et al also collected intervention cost data

EVSI Computation: Nested Simulation

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{\theta}, d \mid \boldsymbol{\theta}} \left[\max_{t} \left\{ \mathsf{E}_{\boldsymbol{\theta} \mid d} \left[\mathsf{NB}_{t}(\boldsymbol{\theta}) \right] - \mathsf{NB}_{t^*}(\boldsymbol{\theta}) \right\} \right]$$

- Simulate data from prior predictive distribution (pre-posterior) "outer" simulation
- Given data, form the posterior expected NB_t
 - Typically requires "inner" simulation, which may need to be Markov Chain Monte Carlo simulation
 - ► Average over "inner' simulation to find posterior ENB
- Find maximum posterior expected net benefit
- Average over "outer" simulation
- This can be very time-consuming!
- Optimising over different study designs is even more expensive.

Efficient Computation Methods for EVSI

- There are four general purpose methods to compute EVSI:
 - ▶ Importance Sampling Method (Menzies, 2016)
 - ► Gaussian Approximation Method (Jalal and Alarid-Escudero, 2018 & Jalal et al., 2015)
 - Moment Matching Method (Heath et al., 2018)
 - Regression-Based Method (Strong et al., 2015)
- We will discuss Moment Matching and the Regression-Based method in this course.
- Each method requires different expertise and has different advantages.

Required Inputs and Expertise to Compute EVSI

Requirements	Methods					
	RB	IS	GA	MM		
Inputs						
Decision-Analytic Model				Х		
Probabilistic sensitivity analysis	х	×	×	×		
Simulations of the expected net bene-		×		×		
fit conditional on ϕ (required to com-						
pute EVPPI)						
Expertise & Skills						
Regression methods	Х		Х			
Specification of likelihoods		×				
Requirement of summary statistic	X		*			
Bayesian updating			*	Х		

Strengths and Limitations of Each Method

Requirements	Methods				
	RB	IS	GA	MM	
Can estimate EVSI with a large num-		Х		Х	
ber of outcomes					
Inaccurate with sample sample sizes			Х	Х	
or prior sample sizes					
Computational challenges with large		×			
proposed studies					
Requires a low-dimensional summary	Х				
statistics					
Requires accurate EVPPI estimation		Х		×	
Uses non-parametric regression	Х		Х		
Quantifies uncertainty in EVSI esti-	Х		Х	Х	
mation					
Estimates EVSI across sample size			Х	Х	