min S(x) x ∈ X ⊆ Rd X - mounde" un-bo

4) Q (2)

Example: Master's Admission

- $0.0 \le \text{GPA} \le 4.0 \text{ (from F to A)}$
- $0 \le Salary$
- $1.0 \le \text{Perfomance} \le 6.0 \text{ (final score of secess)}$
- Historical data:

GPA	Salary	Perfomance
3.52	100	3.92
3.66	109	4.34
3.76	113	4.80
3.74	100	4.67
3.93	100	5.52
3.88	115	5.44
3.77	115	5.04
3.66	107	4.73
3.87	106	5.03
3.84	107	5.06

Master's Admission: Linear model

Hypothesis:

Perfomance
$$\approx (w_0 + (w_1) \cdot \text{GPA} + (w_2) \cdot \text{Salary}$$

for weights w_0, w_1, w_2 to be learned.

Approach: Find w_0, w_1, w_2 by minimizing least squares error over the historical data.

Question: what we need to do with data before solving something?

Master's Admission: Linear model

Hypothesis:

Perfomance
$$\approx w_0 + w_1 \cdot \text{GPA} + w_2 \cdot \text{Salary}$$

for weights w_0, w_1, w_2 to be learned.

Approach: Find w_0, w_1, w_2 by minimizing least squares error over the historical data.

Question: what we need to do with data before solving something?

- Relevant GPA scores span a range of 0.5 (take only top students).
- Relevant Salary scores span a range of 20 (from 100 to 120 others go to jobs, not to master).
- \Rightarrow normalize first so that w_1, w_2 can be compared

General setting

- $n \text{ inputs } x_1, \dots, x_n, x_i \in \mathbb{R}^d \text{ for all } i$ $d \text{ input variables } 1, 2, \dots, d$
 - 10 (GPA, Salary) pairs, two input variables
- $n \text{ outputs } y_1, \ldots, y_n \in \mathbb{R}$
 - 10 Perfomance scores

 (x_i, y_i) : an observation

• ((3.93, 100), 5.52), observation (of a student doing very well)

With weights w_0 , $w = (w_1, \dots, w_d) \in \mathbb{R}^d$, we plan to minimize the least squares objective

$$f(w_0, \mathbf{w}) = \sum_{i=1}^{n} (\underline{w_0} + \underline{\mathbf{w}^T \mathbf{x}_i} - y_i)^2.$$

←□▶ ←□▶ ← ≣▶ ● ■ りへ○

Aleksandr Beznosikov Lecture 2 5 March 2024 6 / 28

General setting: centering

Want to assume that

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}=0, \quad \frac{1}{n}\sum_{i=1}^{n}y_{i}=0.$$

Can be achieved by

- subtracting the mean $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ from every input
- subtracting the mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ from every output.

Question: after centering what we can assume?

General setting: centering

Want to assume that

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}=0, \quad \frac{1}{n}\sum_{i=1}^{n}y_{i}=0.$$

Can be achieved by

- subtracting the mean $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$ from every input
- subtracting the mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ from every output.

Question: after centering what we can assume?

After centering: $w_0^* = 0$, w^* is unaffected

⇒ From now on consider function

$$f(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}.$$

General setting: normalization

Want to assume that for all j, the n input values $x_{1j}, \ldots x_{nj}$ are on the same scale:

$$\frac{1}{n}\sum_{i=1}^{n}x_{ij}^{2}=1, \quad j=1,\ldots,d.$$

Can be achieved by

- multiplying x_{ij} by $s(j) = \sqrt{n/\sum_{i=1}^{n} x_{ij}^2}$ for all i, j
- in w*, this just multiplies w_j^* by 1/s(j)

Master's Admission: Centered and normalized data

x_{i1} (GPA)	x_{i2} (Salary)	y_i (Perfomance)
-2.04	-1.28	-0.94
-0.88	0.32	-0.52
-0.05	1.03	-0.05
-0.16	-1.28	-0.18
1.42	-1.28	0.67
1.02	1.39	0.59
0.06	1.39	0.19
-0.88	-0.04	-0.12
0.89	-0.21	0.17
0.62	-0.04	0.21

Least-squares objective:

Aleksandr Beznosikov Lecture 2 5 March 2024 9 / 28

Master's Admission: Results

Optimal solution: MIN

$$\mathbf{w}^* = (\mathbf{w}_1^*, \mathbf{w}_2^*) \approx (0.43, 0.097)$$

 \checkmark

Master's Admission: Results

Optimal solution:

$$\mathbf{w}^* = (\mathbf{w}_1^*, \mathbf{w}_2^*) \approx (0.43, 0.097)$$

Under hypothesis (linear model), we expect $y_i \approx y_i^* = 0.43x_{i1} + 0.097x_{i2}$

$$y_i \approx y_i^* = 0.43x_{i1} + 0.097x_{i2}$$

x_{i1}	X _{i2}	Уi	y_i^*
-2.04	-1.28	-0.94	-1.00
-0.88	0.32	-0.52	-0.35
-0.05	1.03	-0.05	0.08
-0.16	-1.28	-0.18	-0.19
1.42	-1.28	0.67	0.49
1.02	1.39	0.59	0.57
0.06	1.39	0.19	0.16
-0.88	-0.04	-0.12	-0.38
0.62	-0.04	0.21	0.26

Questiob: what we can say about results? Salary has only very small influence ($w_2^* = 0.097$)

Problems:

- least squares solution is optimized for the training data, not for the future ("overfitting")
- "unimportant" variables should have weight 0, but they typically don't

Problems:

- least squares solution is optimized for the training data, not for the future ("overfitting")
- "unimportant" variables should have weight 0, but they typically don't

Subset selection heuristics: drop variables with seemingly "small" contribution

Problems:

- least squares solution is optimized for the training data, not for the future ("overfitting")
- "unimportant" variables should have weight 0, but they typically don't

Subset selection heuristics: drop variables with seemingly "small" contribution (various methods to decide what "small" means, and how many to drop)

Best subset selection: solve least squares subject to an additional constraint that there are at most k nonzero weights. Easy of not?

Problems:

- least squares solution is optimized for the training data, not for the future ("overfitting")
- "unimportant" variables should have weight 0, but they typically don't

Subset selection heuristics: drop variables with seemingly "small" contribution (various methods to decide what "small" means, and how many to drop)

Best subset selection: solve least squares subject to an additional constraint that there are at most k nonzero weights. Easy of not? Non-convex or NP-hard – various k might have to be tried.

Question: if we have 100 features, how many different subsets (of features) can we have?

Problems:

- least squares solution is optimized for the training data, not for the future ("overfitting")
- "unimportant" variables should have weight 0, but they typically don't

Subset selection heuristics: drop variables with seemingly "small" contribution (various methods to decide what "small" means, and how many to drop)

Best subset selection: solve least squares subject to an additional constraint that there are at most k nonzero weights. Easy of not? Non-convex or NP-hard – various k might have to be tried.

Question: if we have 100 features, how many different subsets (of features) can we have? $2^{100} \approx 1.26 \cdot 10^{30}$.

LASSO: popular approach with some favorable statistical properties

minimize
$$\sum_{i=1}^{n} ||\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}||^{2}$$
 subject to
$$||\mathbf{w}||_{1} \leq R,$$

where $R \in \mathbb{R}_+$ is some parameter.

Aleksandr Beznosikov Lecture 2 5 March 2024 12 / 28

minimize
$$\sum_{i=1}^{n} \|\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}\|^{2}$$
 subject to
$$\|\mathbf{w}\|_{1} \leq R,$$
 (1)

where $R \in \mathbb{R}_+$ is some parameter. $\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$ is the 1-norm.

◆□ → ◆□ → ◆ ■ → ● ● り へ ○

minimize
$$\sum_{i=1}^{n} \|\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}\|^{2}$$
 subject to
$$\|\mathbf{w}\|_{1} \leq R,$$
 (1)

where $R \in \mathbb{R}_+$ is some parameter.

$$\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$$
 is the 1-norm.

In our case:

$$R = 0.2 \Rightarrow w^* = (w_1^*, w_2^*) = (0.2, 0)$$
:

minimize
$$\sum_{i=1}^{n} \|\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}\|^{2}$$
 subject to
$$\|\mathbf{w}\|_{1} \leq R,$$
 (1)

where $R \in \mathbb{R}_+$ is some parameter.

$$\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$$
 is the 1-norm.

In our case:

$$R = 0.2 \Rightarrow w^* = (w_1^*, w_2^*) = (0.2, 0)$$
: Salary is gone!

minimize
$$\sum_{i=1}^{n} \|\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}\|^{2}$$
 subject to
$$\|\mathbf{w}\|_{1} \leq R,$$
 (1)

where $R \in \mathbb{R}_+$ is some parameter.

$$\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$$
 is the 1-norm.

In our case:

$$R = 0.2 \Rightarrow w^* = (w_1^*, w_2^*) = (0.2, 0)$$
: Salary is gone!

$$R = 0.3 \Rightarrow w^* = (w_1^*, w_2^*) = (0.3, 0)$$

◆ロ > ◆昼 > ◆昼 > ● ● りへで

minimize
$$\sum_{i=1}^{n} \|\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}\|^{2}$$
 subject to
$$\|\mathbf{w}\|_{1} \leq R,$$
 (1)

where $R \in \mathbb{R}_+$ is some parameter.

$$\|\mathbf{w}\|_{1} = \sum_{i=1}^{d} |w_{i}|$$
 is the 1-norm.

In our case:

$$R = 0.2 \Rightarrow w^* = (w_1^*, w_2^*) = (0.2, 0)$$
: Salary is gone! $R = 0.3 \Rightarrow w^* = (w_1^*, w_2^*) = (0.3, 0)$

$$R = 0.4 \Rightarrow w^* = (w_1^*, w_2^*) = (0.36, 0.036)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕Qで

minimize
$$\sum_{i=1}^{n} \|\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}\|^{2}$$
 subject to
$$\|\mathbf{w}\|_{1} \leq R,$$
 (1)

where $R \in \mathbb{R}_+$ is some parameter.

$$\|\mathbf{w}\|_{1} = \sum_{i=1}^{d} |w_{i}|$$
 is the 1-norm.

In our case:

$$R = 0.2 \Rightarrow w^* = (w_1^*, w_2^*) = (0.2, 0)$$
: Salary is gone!
 $R = 0.3 \Rightarrow w^* = (w_1^*, w_2^*) = (0.3, 0)$
 $R = 0.4 \Rightarrow w^* = (w_1^*, w_2^*) = (0.36, 0.036)$
 $R \ge 0.6 \Rightarrow w^* = (w_1^*, w_2^*) = (0.43, 0.097)$

Aleksandr Beznosikov Lecture 2 5 March 2024 12 / 28

Geometry of the LASSO

Geometry of the LASSO

Question: Can we somehow modify gradient method to work with constraints?

Terobil ommunarbreching 5: Rd - Rd
· 5 - Kongrue gymnigne · V - formyrve
$X^{p} \in X$ - noderland uns. min $S(K) \Leftarrow X$ $X \in X$ $X \in X$ $X \in X$ $X \in X$
$< \emptyset $ $(x^*); x-x^*> > 0$ $\forall x \in \mathbb{N}$
Pry. cruser: Solven : So
x*-penerul min $\xi(x)$
Dox-be:
• goernamounde. \Leftarrow $\langle \nabla f(x^*); x-x^* \rangle \gg \forall x \in X$
benymound 5: $f(x) = f(x^*) + \langle \nabla f(x^*); x - x^* \rangle \ge f(x^*)$ $\forall x \in X$
X* - 2ros. mmny tre X
· kleobecznobene. =>
$x^{*}-2nodatorion : \exists xe X : \langle \nabla f(x^{*}); x-x^{*} \rangle < 0$ on youndness: $\exists xe X : \langle \nabla f(x^{*}); x-x^{*} \rangle < 0$
$\phi(\lambda) = f(\lambda x + (-\lambda) x^*)$

$$\frac{d\phi}{d\lambda} = \frac{d}{d\lambda} \left(f(\lambda(x-x^*) + x^*) \right) = \langle pf(\lambda(x-x^*) + x^*), x-x^* \rangle$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x-x^* \rangle < 0$$

$$\frac{d\phi}{d\lambda} \Big|_{\lambda=0} = \langle pf(x^*), x$$

Memory years. Conjected to impression of the parameters
$$X^{k+1} = X^k - X = X^k$$

The open $X^{k+1} \in X$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X = X^k \right)$$

$$X^{k+1} = \prod_{X} \left(X^k - X$$

Cb-bn moensui:

Now bound of the second of

(a) Chery, norme year enjoyee c yeargreen

$$X^* = \prod_X (X^* - Y \triangleright S(X^*))$$
 $P_{VK}.lo$:

 $\prod_X (X^* - Y \triangleright S(X^*)) = arg_{min} [IX - X^* + Y \triangleright S(X^*)]_{\epsilon}^{\epsilon}$
 $= arg_{min} [IX - X^*]_{\epsilon}^{\epsilon} + 2X < \triangleright S(X^*); X - X^* > + X^2 |IDS(X^*)|_{\epsilon}^{\epsilon}$
 $= arg_{KEX} [IX - X^*]_{\epsilon}^{\epsilon} + 2X < \triangleright S(X^*); X - X^* > + X^2 |IDS(X^*)|_{\epsilon}^{\epsilon}$
 $= arg_{KEX} [IX - X^*]_{\epsilon}^{\epsilon} + 2X < \triangleright S(X^*); X - X^* > + X^2 |IDS(X^*)|_{\epsilon}^{\epsilon}$
 $= arg_{KEX} [IX - X^*]_{\epsilon}^{\epsilon} + 2X < arg_{KEX}^{\epsilon}) - arg_{KEX}^{\epsilon}$
 $= arg_{KEX} [IX - X^*]_{\epsilon}^{\epsilon} + arg_{KEX}^{\epsilon}$
 $= arg_{KEX}^{\epsilon} [IX - X^*]_{\epsilon}^{\epsilon} + arg_{KEX}$

$$+2L\chi^{2}(s(x^{k})-s(x^{k})-cPs(x^{k});x^{k}x^{k})$$

$$=(1-\chi_{p})||x^{k}-x^{k}||_{2}^{2}$$

$$+2\chi(s(L-1))(s(x^{k})-s(x^{k})-cPs(x^{k});x^{k}-x^{k})$$

$$+2\chi(s(L-1))(s(x^{k})-s(x^{k})-cPs(x^{k})-cPs(x^{k});x^{k}-x^{k})$$

$$+2\chi(s(L-1))(s(x^{k})-s(x^{k})-cPs(x^{k})-c$$

Innerine zugwa (ven arem. moenyen / kb. zazwu);
min < 5; 9>

Opinwelle

1)
$$X = \{ x \in \mathbb{R}^d \mid \|x\|_1 \le 1 \}$$

 $S^* = - \operatorname{sign}(g_i) e_i \leftarrow \text{Saymenter}$ becomes
 $i = \operatorname{arg\,max} |g_j|$

2)
$$X = \begin{cases} x \in \mathbb{R}^d \mid \frac{d}{z} X_i = 1; & X_i \ge 0 \end{cases}$$

 $S^* = Q_i \quad i = \operatorname{argmin} Q_j$

3)
$$\chi = \begin{cases} \chi \in \mathbb{R}^d \mid ||\chi||_{\infty} \leq 1 \end{cases}$$

 $S^* = - \begin{cases} \frac{1}{2} \text{ sign}(g_i) \\ \frac{1}{2} \end{cases}$

Memos Trum - Byroge

$$S^{k} = \underset{S \in X}{\operatorname{argmin}} \langle S; \nabla f(x^{k}) \rangle$$

$$X^{k+1} = (1-\chi_{k}) \chi^{k} + \chi_{k} S^{k} \qquad \chi_{k} = \frac{2}{k+2}$$

Pujura:

· correcto nex may

Re yennsax

$$S^{\circ}, S^{1}... - tea yearnest (b_{ii}yearse')$$

$$un - ba)$$

$$\chi^{(d)} = \left(1 - \frac{2}{k+2}\right) \chi^{(i)} + \frac{2}{k+2} S^{k}$$

$$1 - \chi^{k}$$

 $x^{lf1} = \frac{k}{l_{f1}} x^{k} + \frac{1}{l_{f1}} s^{k}$ nogerem cyegneso

$$\frac{Dox-bc}{S(x^{bit})} = \frac{S(x^{b} + f_{k}(s^{b} - x^{b}))}{S(x^{bit})} = \frac{S(x^{b} + f_{k}(s^{b} - x^{b}))}{L-ungreemb}$$

$$\leq \frac{S(x^{b})}{S(x^{b})} + \frac{S(x^{b} - x^{b})}{S(x^{b})} + \frac{J^{2}L}{J^{2}} \|s^{b} \cdot x^{b}\|_{2}^{2}$$

$$\times - \frac{S(x^{b})}{S(x^{b})} + \frac{S(x^{b})}{J^{2}} + \frac{LD^{2}J^{2}}{J^{2}}$$

$$\leq \frac{S(x^{b})}{S(x^{b})} - \frac{S^{*}}{S^{*}} = \frac{S(x^{b})}{S(x^{b})} - \frac{S^{*}}{S^{*}} + \frac{LD^{2}J^{2}}{S(x^{b})} + \frac{LD^{2}J^{2}}{J^{2}}$$

$$\leq \frac{S(x^{b+1})}{S(x^{b+1})} - \frac{S^{*}}{S^{*}} = \frac{S(x^{b})}{S(x^{b})} - \frac{S^{*}}{S^{*}} + \frac{LD^{2}J^{2}}{J^{2}}$$

$$= \frac{JD^{2}}{J^{2}}$$

$$= \frac{LD^{2}}{J^{2}}$$

$$= \frac{LD^{2}}{J^{2}}$$

$$= \frac{LD^{2}}{J^{2}}$$

$$= \frac{JD^{2}}{J^{2}}$$

$$= \frac{JD$$

$$\frac{111}{5} \leq \left(1 - \frac{2}{lc+2}\right) \left(\frac{\max\{4C; f(x^{\circ}) - f^{*}\}}{lc+2}\right) + \frac{\max\{4C; f(x^{\circ}) - f^{*}\}}{(k+2)^{2}}$$

$$= \frac{\max\{4C; f(x^{\circ}) - f^{*}\}}{(k+2)^{2}}$$

· cysumerina croz. gre bom. jagaru (van j GD)

· b cryrue curvour bonymoum bee jaber gomeine

mopurg = unevine unom.