WYDAJNOŚĆ ZŁĄCZEŃ I ZAGNIEŻDŻEŃ DLA SCHEMATÓW ZNORMALIZOWANYCH I ZDENORMALIZOWANYCH

Dominika Szarek, nr 402890 GEOINFORMATYKA, 2 rok

Akademia Górniczo – Hutnicza im. Stanisława Staszica

1. Schemat bazy danych

Porównanie wydajności złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych przeprowadzono za pomocą tabeli stratygraficznej, która obrazuje przebieg historii Ziemi na podstawie następstwa procesów i warstw skalnych. W opracowaniu skupiono się na konstrukcji tabeli w dwóch przypadkach:

• Schemacie znormalizowanym

Rys. 1. Znormalizowany schemat tabeli stratygraficznej

• Schemacie zdenormalizowanym

Rys 2. Zdenormalizowany schemat tabeli stratygraficznej

Testy przeprowadzono na tabelach o dużej liczbie danych. W tym celu powstała tabela Milion, wypełniona kolejnymi liczbami naturalnymi od 0 do 999 999, której dane łączono z danymi tabeli stratygraficznej.

Tabelę utworzono na podstawie złączenia tabeli Dziesiec wypełnionej liczbami od 0 do 9.

```
INSERT INTO Milion SELECT al.cyfra + 10*a2.cyfra + 100*a3.cyfra +
1000*a4.cyfra
+ 10000*a5.cyfra + 100000*a6.cyfra AS liczba , al.cyfra AS cyfra,
al.bit AS bit
FROM dziesiec al, dziesiec a2, dziesiec a3, dziesiec a4, dziesiec a5,
dziesiec a6
```


Rys 3. Schemat tabeli Milion i Dziesiec

2. Konfiguracja sprzętowa i programowa

Testy zostały wykonane na komputerze o następujących parametrach:

• CPU: Intel(R) Core(TM) i7-4600U CPU 2.10GHz

• RAM: Pamięć DDR3 12.0 GB

• SSD: INTEL SSDSC2BF240A4L

• S.O.: Windows 10 Pro

Jako systemy zarządzania bazami danych wybrano oprogramowania wolno dostępne:

- Microsoft SQL Server Management Studio, wersja 15.0.18369.0
- PostgreSQL, wersja 13.3.2

3. Kryteria testów

W teście wykonano szereg zapytań sprawdzających wydajność złączeń i zagnieżdżeń z tabelą geochronologiczną w wersji zdenormalizowanej i znormalizowanej. Zapytania były wykonywane na tabelach o dużej liczbie danych. Procedura testowa obejmowała zapytania bez nałożonych indeksów na kolumny danych. W późniejszym etapie natomiast nałożono indeksy na kolumny biorące udział w złączeniu.

• Zapytanie 1 (1 ZL) – łączy tabelę syntetyczną miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej:

```
SELECT COUNT(*) FROM Milion INNER JOIN GeoTabela
ON (Milion.liczba%68)=(GeoTabela.ID Pietro)
```

 Zapytanie 2 (2 ZL) – łączy tabelę syntetyczną miliona wyników z tabelą geochronologiczną w postaci znormalizowanej w postaci złączenia pięciu tabel:

```
SELECT COUNT(*) FROM Milion INNER JOIN GeoPietro gpi
ON (Milion.liczba%68)=gpi.ID_Pietro
INNER JOIN GeoEpoka ep ON gpi.ID_Epoka = ep.ID_Epoka
INNER JOIN GeoOkres okr ON okr.ID_Okres = ep.ID_Okres
INNER JOIN GeoEra er ON er.ID Era = okr.ID Era
```

 Zapytanie 3 (3 ZG) – łączy tabelę syntetyczną miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej, złączenie jest wykonywane poprzez zagnieżdżenie skorelowane:

```
SELECT COUNT(*) FROM Milion WHERE Milion.liczba%68=
(SELECT id_pietro FROM GeoTabela WHERE
Milion.liczba%68=(ID Pietro));
```

• Zapytanie 4 (4 ZG) – łączy tabelę syntetyczną miliona wyników z tabelą geochronologiczną w postaci znormalizowanej, złączenie wykonywane jest poprzez zagnieżdżenie skorelowane, a zapytanie wewnętrzne jest złączeniem tabel poszczególnych jednostek geochronologicznych:

```
SELECT COUNT(*) FROM Milion WHERE (Milion.liczba%68) =
(SELECT gpi.ID_Pietro FROM GeoPietro gpi
INNER JOIN GeoEpoka ep ON gpi.ID_Epoka = ep.ID_Epoka
INNER JOIN GeoOkres okr ON ep.ID_Okres = okr.ID_Okres
INNER JOIN GeoEra er ON okr.ID_Era = er.ID_Era
INNER JOIN GeoEon eo ON er.ID_Eon = eo.ID_Eon
WHERE Milion.liczba%68 = (ID_Pietro))
```

4. Wyniki testów

	1 ZL		2ZL		3ZL		4ZL	
BEZ INDEKSÓW	MIN	ŚR	MIN	ŚR	MIN	ŚR	MIN	ŚR
MSSQL Server	126	141	117	142	5843	4049	74223	77185
PostgreSQL	636	733	1410	1562	20534	216989	22742	26368
Z INDEKSAMI	MIN	ŚR	MIN	ŚR	MIN	ŚR	MIN	ŚR
MSSQL Server	93	104	100	122	93	117	6936	7100
PostgreSQL	433	498	769	908	16578	17660	45288	47731

Każdy test przeprowadzono kilkukrotnie. Czas wykonania zapytań przedstawiony jest w milisekundach [ms].

5. Wnioski

Na podstawie wyników możemy zauważyć, że tabela w postaci zdenormalizowanej w większości przypadków jest wydajniejsza, o czym świadczą porównane wyniki zapytania 1 ZL do reszty zapytań. Zagnieżdżenia skorelowane charakteryzują się zdecydowanie wolniejszym czasem wykonania niż złączenia, co obserwujemy na podstawie zapytań 3 ZG i 4 ZG porównując je do dwóch poprzednich.

W systemie MSSQL Server Management Studio użycie indeksów przyspieszyło czas wykonania zapytania w każdym badanym przypadku. Podobnie sytuacja prezentuje się w systemie PostgreSQL, wyłączając zapytanie 4 ZG, gdzie indeksy znacząco wydłużyły czas zapytania.

Bibliografia:

• https://www.yumpu.com/xx/document/read/30346243/pobierz-plik-referatu