	Page No.: Date:		YOUVA	
111	APPLICATIONS.	Compton	1	
411	Mile as browning some a sufferior street	- lands		
•	Since the electrode potential is a a	mate	mt	it
	can be used as a secondary rejerence			
	Yo determine electrode potential of of	heri	inki	nown
	electrodes	-	1 30	
,	To determine the pH of a solution.			
	Pt, nz, n+ 1/ KC1 Hg2C1/Hg			
4	Electerade reaction: H++e- => 1/2 H2 (3		1	
	E = E - (2.303RT) log [H2] 1/2	ソ		
	nf [H+7]			
	= 0 - 0.0592 log 1/[Ht] -			
	= -0.0592 pH			
	Eull = 0.2422 - (-0.0592 pH)	10-1-		
100	PH = [Ecel - 0.2422]	The	. 0	
	0.0592	and		
	it is the per of the test with the test of the	alu		
	reljem slattarela:	Luch		-
	ADVANTAGES OF CALOMEL ELECTRODE	-		
	It is simple to construct			1
	It can be used for a long time evithout I			nhòn
	Electrode potential is stable			
	It has a low temperature coefficient of e	m		
	It is less prome to contamination.	15	0	
	12 (1 atm)/ WT 1) Say / March 1) w			
	DISADVANTAGES OF CALOMEL ELECTRODE			
			(
·	Calomel electrodes should not be used also	ve 5	o°c,	do
•	Mercury is toruic			
		1		

<u> </u>	Write the cell scheme and determine the
	electrode potential of zinc immersed in 0.1 M
tita	2nSog. given EMF of cell = 1.0022 V and
Books	E'(Calomel Electrocle) = 0:2422V.
akriun	
Ans.	Zn/Zn504(0·114) // KC1; Hg_C12; Hg
	Ecell = Ecoshode - Earnod
	101 H cli es -2 + the mithage should be
	$1.0022 = 0.2422 - \frac{E_{2n^2}}{2n}$
	$E_{2n^2t/2n} = -0.76 \text{ V}$
	1 - 0.0592pH
	Full = 0.2122 - (-0.0592pH)
<u> </u>	The emp of a cell commisting of a hydrogen
	and the normal calomel is 0.664 V at 25°C.
	Calculate the pH of the solution containing the
	hydrogen electrode.
	Ecell = Ecal (normal) (-0.0591 pH)
1.	4.40
Ans.	0.664 = 0.2810+0.0591 pH
alle alle	0.383 = 0.0591pH
	PH = 6.48.
9.	at 25°C He EME A He as an Oh H () atas)
9.	et 25°C, the EMF of the cell Pt, H2 (1 atm)
	Pt, H2 (1 atm)/HT /) K(1 (sard) / Hg2Cl2 (s), Hg is 0.4451. Calculate the pH
	The prison and a signal way in
Ans.	0.445 = 0.2444 + 0.0591 pm.
	pH = 0.2006/0.0591 = 3.3942

М	T	W	T	F	S	S
Page No.:			vo	UVA		
Date:					10	UVA

ION SELECTIVE ELECTRODE It is sensitive to a specific ion present in an electrolyte The potential of this depends upon the activity of this ion in the electroleyte ragnitude of potential of this electrode indicator of the concentration in the electrolyte. This type of electrode is called indicator electrode SCHEME OF TYPICAL PH GLASS ELECTRODE 1. a sensing part of electrode 2 a bull made join a specific glass sometimes electrode contain small amount of Agal pocecipitate inside the glean electricle. 3. internal solution usually 0.1M HCI Jon pH electrodes. internal electrode, usually AgCI electrode on calomel electrode. 5. body of electrode made from nonconductive glass on plastics. 6. sue fevence electrode, usually the same type as 4. junction with studied solution, usually made Josom aramics on capillary with aslessos on quarte Couning 015 glass

	91 aga(%)	Page No.: Date: YOUVA	
1	The sources of assymmetry po	stential include	
dom	i) Pissering conditions of Marcian	in the two glass	
	surjours during manufactur	re - to the different	
	in response of the inner and	ourer my gour	
	the glass but to changes in		
	ii) rechanical abrasion on the	outer surface	
	during use.		
	iii) Chemical etching of the or	ver merface during	*
	Me assumenter potamical ch	anges Mouly with	
	The asymmetry potential of	Sof grande of Soc.	
	$Fa = F_1 + F_2 + F_3$	advice 10 7 Maked	
	Eg = Eb + Eref + Easy	ton at and Mat	
	CHEAN		
ulsu.	Solution to be Membrane 0-1M	HCI, Ag/Aga	
-	6	nternal rejevence.	
	E1 E2.		
	gian o a HT	DI TH TH	
	Ep = E, - Ez = RT/nF (In Cz - Inci)	BUTH THE	_
	= RT/pF lnC, + RT/of in C		
	= L + RT/nF In C2	7.02	_
	Endepends on [H] Es=L	- 0.0592 pH.	_
			_
	En = E. + En 10 1 + Ensy	F	
	Eg = Eb + Englage + Easy = L - 0.0592 pH + Englage	+ Easy	
	F = 1 + F	(t F3.)	
	See CEG = L+E	Agingel Casy)	
	Eg = Eq - 0.0592 pH.	soliting - Pro-	_
			$\rightarrow \uparrow$
			\rightarrow
	·		

		Page No.:	
		Date:	
-		APPLIA	
1		APPLICATIONS	
-		D +	
-	<u> </u>	Determination of pH.	
na		Cell: SCE Test Solution / GE	
	-	Each = Eg - Eal	
-		10	
		Ecul = (Eg - 0.0592 pH) - Ecal	
		n l	
24		pH-Eg-Ecol/0.0592	
		ADVANTAGES.	
		can be used without interjerence in solns containing	ng
		strong oxidants reductants proteins, viscous fluids	
		and gases.	
	2.	PH range 2 to 10	
	3.	mmune to poisoning and easy to use.	
	4.	Equilibrium is ereached quickly & napid response	
	5.	Can be used for very small quantity of solrs.	
	6.	Mucho more convenient to handle than SHE	
B recovered to			
Section 1		DISADVANTAGES.	
Manusco, de al-			
	1.	Bull- is Inagile.	
	2.	In presence of alkali ions, glas surjace becomes	
		susponsive to both hydrogen and alkali ions.	
		reasived pH values are low.	
	2	and the same and the value are his	zh
	<u> </u>	- P A A A A A A A A A A A A A A A A A A	e e
		Ordinary potententiometers can't be used to mean	re
	_5.	the potential of glass electrode.	
	,	The commercial version is expensive.	1
	-b.	Standardization to be carried out frequently.	
	1.	Scanned with CamScanner	
		Scalineu with Camscalinei	