§1 Оценка приращения дифференциального отображения

Утверждение 1. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$, $m \geqslant 2$. Тогда формула Лагранжа

$$f(b) - f(a) = f'(c)(b - a)$$

не работает.

Е.д. Пусть

$$f(t) := (\cos t, \sin t), b - a = 2\pi$$

Теорема 2 (об оценке приращения отображения). Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}^m$, G - выпуклое, f - дифференцируема,

$$\forall x \in G \ \|f'(x)\| \leqslant M$$

Тогда $\forall a, b \in G \ \|f(b) - f(a)\| \leqslant M\|b - a\|$

□ «Окружим» исходную функцию:

$$F = \psi \circ f \circ \varphi$$

где

$$\varphi: \mathbb{R}^n \to \mathbb{R}^m \qquad \qquad \varphi(t) := t(b-a) + a, \qquad \qquad t \in [0,1]$$

$$\psi: \mathbb{R}^m \to \mathbb{R} \qquad \qquad \psi(y) := \langle y, \ell \rangle, \qquad \qquad \ell = f(b) - f(a)$$

Заметим, что F — обычная вещественнозначная функция. Так что для неё работает формула Лагранжа:

$$\exists c \in [0,1]: F(1) - F(0) = F'(c)(1-0) = F'(c)$$

Тогда из свойств нормы (по ходу дела обозначим $\varphi(c)$ за x):

$$||F'(c)|| = ||\psi'(f(x)) \cdot f'(x) \cdot \varphi'(c)|| \le ||\psi'(f(x))|| \cdot ||f'(x)|| \cdot ||\varphi'(c)||$$

Здесь тонкость в обозначениях. Производные — вроде матрицы, поэтому их нормы — что-то странное на первый взгляд. На самом деле смысл немного иной.

$$dL(x,h) = f'(x) \cdot h$$

Таким образом, дифференциал — неплохое линейное отображение. А под «нормой производной» имеется в виду норма соответствующего линейного отображения.

Теперь давайте что-нибудь скажем про эти нормы.

1.
$$\varphi'(t) = (b - a) \Rightarrow \|\varphi'(c)\| = \|b - a\|$$

2.
$$\psi(y) = \langle y, l \rangle, \|\psi\| = \|\ell\|$$

Так что

$$||F'(c)|| \leqslant M \cdot ||\ell|| \cdot ||b - a||$$

С другой стороны:

$$F(1) - F(0) = \psi(f(b)) - \psi(f(a)) = \langle f(b), \ell \rangle - \langle f(a), \ell \rangle = \langle \ell, \ell \rangle = ||\ell||^2$$

В итоге, совмещая оба выражения, приходим к утверждению теоремы.

§ 2 Частные производные высших порядков

Определение 1. Пусть $f\colon G\subset\mathbb{R}^n\to\mathbb{R}$, существуют производные k-го порядка. Тогда

$$\partial_{i_1,\dots,i_{k+1}}^{k+1} f(x) := \partial_{i_{k+1}} (\partial_{i_1,\dots,i_{k+1}}^k f)(x)$$

3амечание 1. $C^p(G)$ — класс функций, определённых в G с непрерывной производной до p-го порядка включительно. Функции из C^1 ещё называются гладкими.

Теорема 1 (Зависимость производных *p*-го порядка от перестановки переменных). Пусть $f \in C^p(G), x \in G$. При этом

$$i = \{i_1, \dots, i_p \mid i_k \in \{1, \dots, n\}\}$$

$$j = \{j_1, \dots, j_p \mid j_k \in \{1, \dots, n\}\}$$

$$j = \pi(i)$$

 $Tor \partial a \ \partial_i^p f(x) = \partial_i^p f(x)$

Замечание 1. Тут важно, что есть целая окрестность. Одной точки не хватит.

§ 3 «Многомерный» дифференциал высоких порядков

Определение 1. Пусть $f : G \subset \mathbb{R}^n \to \mathbb{R}, f \in C^p(G)$

$$d^{p} f(x) := \sum_{1 \leq i_{1} \leq \dots \leq i_{p} \leq n} \frac{\partial^{p} f}{\partial x_{i_{p}} \dots \partial x_{i_{p}}} dx_{i_{1}} \dots dx_{i_{p}}$$

Утверждение 1. Если частные производные можно переставлять, то

$$d^{p} f(x) = \sum_{\substack{\alpha_{i} \geqslant 0 \\ \sum \alpha_{i} = p}} \frac{p!}{\alpha_{1}! \cdots \alpha_{n}!} \frac{\partial^{p} f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}} dx_{i_{1}} \cdots dx_{i_{p}}$$

§ 4 Формула Тейлора для функций многих переменных

Теорема 1. Пусть $f \in C^p(G), G \in \mathbb{R}^n$, $a \in G$. Пусть также $h \in \mathbb{R}^n$: $a + h \in G$. Тогда

$$f(a+h) = \sum_{k=0}^{p} \frac{1}{k!} d^{k} f(a,h) + R_{p}(h)$$

 $Ocmamok\ R_p(h)$ можно представить несколькими способами:

- 1. В форме Пеано: $R_p(h) = o(\|h\|^p)$
- 2. В форме Лагранжа: $R_p(h) = \frac{1}{(p+1)!} d^{p+1} f(a+\theta h,h), \ \theta \in (0,1)$

§5 Экстремумы

Определение 1. Пусть $f\colon G\subset\mathbb{R}^n\to\mathbb{R},\ a\in G.$ Тогда говорят, что f имеет в a максимум (нестрогий), если

$$\exists U(a) : \forall x \in U \ f(x) \leq f(a)$$

Когда неравенство строгое, а окрестность проколотая, то максимум — строгий Для минимума + нужно \geq .

Теорема 1 (Необходимое условие экстремума). Пусть а внутренняя точка $G \subset \mathbb{R}^n$, $f \in C^1(a)$. Тогда если f имеет g а экстремум, то

$$df(a) = 0 \Leftrightarrow \forall i \ \partial_i f(a) = 0$$

Теорема 2 (Необходимое условие экстремума). Пусть $a \in G \subset \mathbb{R}^n$, $a - внутренняя точка, <math>f \in C^2(a)$.

- 1. df(a) = 0, $d^2f(a) > 0 \Rightarrow f$ имеет в a min
- 2. df(a) = 0, $d^2f(a) < 0 \Rightarrow f$ umeem e a max
- 3. df(a) = 0, $d^2f(a) \leq 0 \Rightarrow$ ничего нет
- 4. df(a) = 0, $d^2f(a) \leq 0 \Rightarrow f$ не имеет в a min
- 5. df(a) = 0, $d^2f(a) \geqslant 0 \Rightarrow f$ не имеет в а max

§ 6 Понятие о неявной функции

Определение 1. Пусть $F: G \subset \mathbb{R}^2 \to \mathbb{R}$. Рассмотрим уравнение

$$F(x,y) = 0 (1)$$

Пусть $a=(x_0,y_0)$ удовлетворяет 1, а U — окрестность $a\colon U=U_x\times U_y$. Тогда будем говорить, что уравнение 1 определяет неявную функцию f в U, если

$$\forall x \in P \exists ! y \in Q \colon F(x,y) = 0 \qquad (y = f(x))$$

Теорема 1 (О неявной функции). Пусть $F: G \subset \mathbb{R}^2 \to \mathbb{R}, F \in C^1(x_0, y_0), a \ a = (x_0, y_0)$:

- 1. $F(x_0, y_0) = 0$
- 2. $F'_{u}(x_0, y_0) \neq 0$

Тогда $\exists P(x_0), Q(y_0)$: в $U = P \times Q$ уравнение 1 задаёт неявную функцию $f \colon P \to Q$. При этом

$$f \in C^1 \wedge f'(x) = -\frac{F'_x(x, y)}{F'_y(x, y)}$$

1. (Доказательство существования)

Рассмотрим $\varphi(y) = F(x_0, y)$. Пусть НУО $F'_{v}(x_0, y_0) > 0$. Тогда

$$\exists U_{\varepsilon}(x_0, y_0) \colon \forall x, y \in U \ F'_{y}(x, y) > 0$$

Обозначим соответствующие проекции U (шар) на координатные оси за U_x, U_y Получается, что $\varphi \uparrow U_y = (y_0 - \varepsilon; y_0 + \varepsilon)$. Тогда

$$\exists V_1(x_0) \colon \forall x \in V_1 F(x, y + \varepsilon) > 0$$
$$\exists V_2(x_0) \colon \forall x \in V_2 F(x, y - \varepsilon) < 0$$
$$P = V_1 \cap V_2$$

Тогда из теоремы Больцано-Коши и монотонности φ

$$\forall x \in P \exists ! y \in Q = U_y : F(x, y) = 0$$

В итоге получилось определение неявной функции.

- 2. Непрерывность в (x_0, y_0) вроде очевидна, мы же каждому x из P сопоставили 1 y из Q. Принадлежность классу C можно установить проведя аналогичные рассуждения для $x \in P(x_0)$
- 3. С гладкостью что-то странное. Можно наверное сделать как в Зориче.
- 4. $F(x, f(x)) \equiv 0 \Rightarrow F'_x \cdot 1 + F'_2 f'(x) = 0$

§ 7 Полнота пространства \mathbb{R}^n

§8 Теорема о сжимающем отображении

Определение 1. Пусть (X, ρ) — метрическое пространство. Тогда отображение $T \colon X \to X$ называется сжимающим, если

$$\exists C \in (0,1) \colon \forall x', x'' \rho(T(x'), T(x'')) \leqslant C \cdot \rho(x', x'')$$

Теорема 1 (Банах). Пусть (X, ρ) — полное метрическое пространство, а отображение $T: X \to X$ — сжимающее. Тогда $\exists ! x_* \in X : Tx_* = x_*$ (неподвижная точка).

Ещё часто ссылаются на следующий факт, появляющийся в процессе доказательства:

$$\forall x_0 \in X \exists \lim_{n \to \infty} T^n x_0 = x_*$$

§ 9 Метод Ньютона

потом

§ 10 Теорема об обратном отображении (формулировка)

Пусть $F:G\subset\mathbb{R}^n\to\mathbb{R}^m$ — гладкое. Порассуждаем, когда может существовать F^{-1} .

Рассмотрим, например, линейное отображение.

$$y = F(x) = Ax \Leftrightarrow \begin{cases} y_1 = a_{11}x_1 + \dots + a_{1n}x_n \\ \dots \\ y_m = a_{m1}x_1 + \dots + a_{mn}x_n \end{cases}$$

Понятно, что в таком случае задача поиска обратного отображения сводится к поиску обратной матрицы. Тогда из линала ясно, что для того, чтобы у нас всё вышло, нужно

$$m = n \wedge \det A \neq 0$$

Теперь попытаемся обобщить на остальные функции.

Пусть $a \in G$, b = F(a)

$$(?)\exists U(a), V(b): F: U \leftrightarrow V$$

$$\Delta F = F(x) - F(a) = y - b = \Delta y \tag{1}$$

$$\Delta F = F'(a)dx + o(dx) \tag{2}$$

$$dF(a) = dy(b) \tag{3}$$

Условие разрешимости $3 - \det(F'(a)) \neq 0$. Утверждается, что $3 \Rightarrow 1$ Соответственно, формулировка

Теорема 1. Пусть $F: G \subset \mathbb{R}^n \to \mathbb{R}^n$, $a \in G$, b = F(a). Пусть ещё $F \in C^1$, $\det(F'(a)) \neq 0$ Тогда

$$\exists U(a), V(b) : F: U \leftrightarrow V$$
$$\exists F^{-1}V \to U, F^{-1} \in C^{1}$$

§ 11 Доказательство теоремы об обратимости

□ (Теорема об обратимости отображения) Введём обозначения:

$$F'(a) = \Gamma$$

$$\Phi(x) = x - \Gamma^{-1}(F(x) - y)$$

Нетрудно заметить, что x — неподвижная точка Φ (что \Leftrightarrow F(x)=y). Очень хотелось бы подогнать всё под теорему Банаха (0.8.1). Тогда отображение в окрестности a будет взаимнооднозначным.

1. Сначала оценим $\|\Phi'\|$.

$$\Phi'(x) = E - \Gamma^{-1}(F'(x)) = \Gamma^{-1}(F'(a) - F'(x))$$

Можно норму оценить

$$\|\Phi'(x)\| = \|\Gamma^{-1}\| \cdot \|(F'(a) - F'(x))\|$$

Последний множитель явно $\xrightarrow[x \to a]{} 0$ (так как $F \in C^1$) Тогда и $\|\Phi'(x)\| \to 0$. А значит найдётся $U_{\varepsilon}(a) \colon \|\Phi'(x)\| \leqslant \frac{1}{2}$.

Тогда по теореме 0.1.2

$$x, x' \in U_{\varepsilon}(a) \Rightarrow \|\Phi(x) - \Phi(a)\| \leqslant \frac{1}{2} \|x - x'\|$$

Собственно, почти победа. Осталось лишь выбрать внутри U_{ε} компакт $\overline{U_{\varepsilon_1}}$ (иначе множество не очень полное).

2. Теперь покажем, что

$$\exists \, \overline{U} \colon \Phi(U) \subset U$$

Попутно примем $||y - b|| < \delta$, это потом поможет доказать непрерывность.

$$\|\Phi(x) - a\| = \|x - a - \Gamma^{-1}(F(x) - y)\| \le \|\Gamma^{-1}\| \cdot \|\Gamma(x - a) - F(x) + y + b - b\|$$

$$\le \|\Gamma^{-1}\| \cdot (\| - \underbrace{(F(x) - F'(a)(x - a) - F(a))}_{x} \| + \|y - b\|)$$

Выберем произвольный ε : $0 < \varepsilon < \varepsilon_1$.

Однако мы ещё можем подкрутить ε_1 .

$$\exists U_{\varepsilon_1} \colon \frac{\|\alpha\|}{\|x - a\|} < \frac{1}{2\|\Gamma^{-1}\|}$$

Это следует из формулы Тейлора (0.4.1), а применять её можно, так как шар — выпуклое множество. Ещё выберем $\delta = \frac{\varepsilon}{2||\Gamma^{-1}||}$. Там правда ε , а не ε_1 .

Тогда цепочка неравенств выше преобразуется к такому виду

$$\dots < \|\Gamma^{-1}\| \cdot \frac{\|x-a\|}{2\|\Gamma^{-1}\|} + \frac{\varepsilon}{2\|\Gamma^{-1}\|} \cdot \|\Gamma^{-1}\|$$

А теперь положим $||x-a|| \leqslant \varepsilon$ (неравенство нужно нестрогое для полноты). Тогда

$$x \in \overline{U_{\varepsilon}}(a) \Rightarrow \Phi(x) \in U_{\varepsilon}(a) \subset \overline{U_{\varepsilon}}(a)$$

А теперь по теореме Банаха

$$\exists ! x_0 \in \overline{U_{\varepsilon}}(a) \colon \Phi(x_0) = x_0 \Leftrightarrow F(x_0) = y_0$$

Видимо, осталось пересечь окрестность a с прообразом $V(b): U = F^{-1}(V) \cap U_{\varepsilon}(a)$

3. Заодно получилась и непрерывность:

$$\forall U \exists V_{\delta}(b) \colon F^{-1}(V_{\delta}) \subset U_{\varepsilon}$$

§ 12 Теорема о дифференцируемости обратного отображения

Теорема 1 (о дифференцируемости F^{-1}). Пусть $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^n$, $F: U \leftrightarrow V$. Пусть также $F - \partial u \phi \phi$ беренцируемо в $a \in U$, F(a) = b, $\det F'(a) \neq 0$. Тогда F^{-1} дифференцируемо в b.

 \square То, что есть обратное отображение, доказали выше. Пусть y=F(x). Обозначим: h=x-a, k=y-b. Отображение биективно, значит $h\neq 0 \Leftrightarrow k\neq 0$. Из дифференцирумости F

$$k = y - b = F(x) - F(a) = Ah + \alpha\alpha = o(h) \ (h \to 0)$$

 $A=F'(a) \neq 0$, следовательно $\exists\,A^{-1}$

$$A^{-1}k = A^{-1}Ah + A^{-1}\alpha \Rightarrow \Delta F^{-1} = h = A^{-1}k - A^{-1}\alpha$$

Докажем, что $-A^{-1}\alpha =: \beta = o(k) \; (k \to 0)$

$$\beta \leqslant \frac{-\alpha}{\|k\|} = \frac{-\alpha}{\|h\|} \cdot \frac{\|h\|}{\|k\|}$$

Покажем, что последни член — ограничен

$$\frac{\|h\|}{\|k\|} = \frac{\|h\|}{\|Ah + \alpha\|} \leqslant \frac{\|h\|}{\|\|Ah\| - \|\alpha\|\|} = \frac{1}{\|\frac{\|Ah\|}{\|h\|} - \frac{\|\alpha\|}{\|h\|}}$$

А последнее выражение ограничено при $\|h\| < \delta$

Следствие. $(F^{-1})'(b) = (F'(a))^{-1}$

§ 13 Теорема о гладкости обратного отображения

Теорема 1. Пусть $F\colon U \leftrightarrow V$, биективна, $\in C^p$. Пусть κ тому же $\det F'(x) \neq 0$. Тогда $F^{-1} \in C^p$

□ Введём обозначения (оно всё существует по предыдущим теоремам хоть где-то)

$$F'(x) = \left(\frac{\partial F_i}{\partial x_j}\right)_{i,j=1}^n = (a_{ij}) = A$$
$$(F^{-1})'(y) = \left(\frac{\partial F_i^{-1}}{\partial y_j}\right)_{i,j=1}^n = (b_{ij}) = B$$

Вполне ясно, что $B = A^{-1}$. Из алгебры $b_{ij} = \frac{\mathcal{A}_{ji}}{\det A}$ (здесь \mathcal{A} — алгебраическое дополнение).

Заметим, что из последнего выражения следует, что b_{ij} — рациональная функция от $\{a_{lk}\}$. Следовательно, $\widetilde{b_{ij}} = b_{ij}(a_{11}, \dots, a_{kl}, \dots, a_{nn}) \in C^{\infty}$. С другой стороны

$$b_{ij}(y) = \frac{\partial F^{-1}}{\partial y_i}(y) = \frac{\partial F^{-1}}{\partial y_i}(F(x)) \Leftrightarrow b_{ij}(y) = \widehat{b_{ij}}(x)$$

Так что $\widehat{b_{ij}} = b_{ij} \circ F$.

Дальше немного магии. Введём ещё одну функцию

$$\overline{b_{ij}}(x) = b_{ij}(a_{11}(x), \dots, akl(x), \dots, a_{nn}(x))$$

Заметим, что каждая $a_{ij}(x) \in C^{p-1} \Rightarrow \overline{b_{ij}} \in C^{p-1}$. Хорошо, тогда

$$b_{ij}(y) = (\overline{b_{ij}} \circ F^{(-1)})(y)$$

Раньше доказали, что $F^{-1} \in C^0$. Теперь разматываем цепочку дальше:

$$F^{-1} \in C^i \Rightarrow \overline{b_{ij}} \circ F^{-1} \in C^i \Rightarrow b_{ij} \in C^i$$

Значит, частные производные F^{-1} принадлежат C^i . Тогда сама $F^{-1} \in C^{i+1}$. Таким бобром мы доберёмся до C^p . Дальше не выйдет, так как не хватит гладкости $\overline{b_{ij}}$.