COMP2270/6270 – Theory of Computation Fourth week

School of Electrical Engineering & Computing The University of Newcastle

- 1) Not true. Because we know, "Given an NDFSM M=(K, Σ , Δ , s, A) that accepts some language L there exists an equivalent DFSM that accepts L." Therefore, there could not exists such a language L that is accepted by some NDFSM but no DFSM.
- 2) Consider the following NDFSM *M*:

For each of the following strings w, determine whether $w \in L(M)$:

- a) aabbba.b) bab.c) baba.Yes.Yes.
- 3) Show a possibly nondeterministic FSM to accept each of the following languages:
 - a) $\{a^n b a^m : n, m \ge 0, n \equiv_3 m\}.$

b) $\{w \in \{0, 1\}^* : w \text{ corresponds to the binary encoding of a positive integer that is divisible by 16 or is odd}\}$.

c) $\{w \in \{0, 1\}^* : w \text{ contains both } 101 \text{ and } 010 \text{ as substrings} \}.$

EXTRA from THE BOOK

a) $\{w \in \{a, b\}^* : w \text{ contains at least one instance of aaba, bbb or ababa}\}.$

b) $L = \{w \in \{0-9\}^* : w \text{ represents the decimal encoding of a natural number whose encoding contains, as a substring, the encoding of a natural number that is divisible by 3}.$

Note that 0 is a natural number that is divisible by 3. So any string that contains even one 0, 3, 6, or 9 is in L, no matter what else it contains. Otherwise, to be in L, there must be a sequence of digits whose sum equals 0 mod 3.

c) $\{w \in \{a, b, c, d, e\}^* : |w| \ge 2 \text{ and } w \text{ begins and ends with the same symbol}\}.$

Guess which of the five symbols it is. Go to a state for each. Then, from each such state, guess that the next symbol is not the last and guess that it is.

- d) Show an FSM (deterministic or nondeterministic) that accepts $L = \{w \in \{a, b, c\}^* : w \text{ contains at least one substring that consists of three identical symbols in a row}\}$. For example:
 - The following strings are in *L*: aabbb, baacccbbb.
 - The following strings are not in L: ε , aba, abababab, abcbcab.

4) a)

S	eps(s)
q_0	$\{q_0, q_1, q_3\}$
q_1	$\{q_1, q_3\}$
q_2	$\{q_{2}\}$
q_3	$\{q_3\}$
q_4	$\{q_2, q_4, q_5\}$
(15	{as}

$\{q_0, q_1, q_3\}$	0	$\{q_2, q_4, q_5\}$
	1	$\{q_0, q_1, q_3\}$
$\{q_2, q_4, q_5\}$	0	$\{q_2, q_4, q_5\}$
	1	$\{q_1, q_3, q_5\}$
$\{q_1, q_3, q_5\}$	0	$\{q_2, q_4, q_5\}$
	1	{ }

Calculate the epsilon closure of each state:

S	eps(s)
q0	{q0}
q1	{q1}
q2	{q2}
q3	{q3}
q4	{q4}

Starting with the only active state {q0}, calculate the δ'

{q0}	a	{q0,q1}
(4*)	b	{q0}
{q0,q1}	a	{q0,q1,q2}
(1 / 1 /	b	{q0,q2}
{q0,q1,q2}	a	{q0,q1,q2,q3}
	b	{q0,q2,q3}
{q0,q2}	a	{q0,q1,q3}
	b	{q0,q3}
{q0,q1,q2,q3}	a	{q0,q1,q2,q3,q4}
	b	{q0,q2,q3,q4}
{ q0,q2,q3}	a	{q0,q1,q3,q4}
	b	{q0,q3,q4}
{q0,q1,q3}	a	{q0,q1,q2,q4}
	b	{q0,q2,q4}
{q0,q3}	a	{q0,q1,q4}
	b	{q0,q4}
{q0,q1,q2,q3,q4}	a	{q0,q1,q2,q3,q4}
	b	{q0,q2,q3,q4}
{q0,q2,q3,q4}	a	{q0,q1,q3,q4}
	b	{q0,q3,q4}
{q0,q1,q3,q4}	a	{q0,q1,q2,q4}
	b	{q0,q2,q4}
{q0,q3,q4}	a	{q0,q1,q4}
	b	{q0,q4}
{q0,q1,q2,q4}	a	{q0,q1,q2,q3}
	b	{q0,q2,q3}
{q0,q2,q4}	a	{q0,q1,q3}
	b	{q0,q3}
{q0,q1,q4}	a	{q0,q1,q2}
	b	{q0,q2}
{q0,q4}	a	{q0,q1}
	b	{q0}

S	eps(s)
q_0	$\{q_0, q_1\}$
q_1	$\{q_1\}$
q_2	$\{q_2\}$
q_3	$\{q_3, q_0, q_1\}$
q_4	$\{q_4\}$
q_5	$\{q_5\}$

5)

	3)	
$\{q_0, q_1\} \equiv Q1$	a	$\{q_2, q_4\} \equiv \mathbb{Q}2$
	b	$\{q_0, q_1, q_3\} \equiv Q3$
$\{q_2, q_4\} \equiv \mathbb{Q}2$	a	$\{q_1, q_2, q_4\} \equiv Q4$
	b	$\{q_0, q_1, q_3, q_5\} \equiv Q5$
$\{q_0, q_1, q_3\} \equiv Q3$	a	$\{q_2, q_4,\} \equiv \mathbb{Q}2$
	b	$\{q_0, q_1, q_3\} \equiv Q3$
$\{q_1, q_2, q_4\} \equiv Q4$	a	$\{q_1, q_2, q_4\} \equiv Q4$
	b	$\{q_0, q_1, q_3, q_5\} \equiv Q5$
$\{q_0, q_1, q_3, q_5\} \equiv Q5$	a	$\{q_2, q_4\} \equiv Q2$
	b	$\{q_0, q_1, q_3\} \equiv Q3$

Accepting state is $\{q_0, q_1, q_3, q_5\} \equiv Q5, \{q_2, q_4\} \equiv Q2, \{q_1, q_2, q_4\} \equiv Q4.$

EXTRA from THE BOOK

Let M be the following NDFSM. Construct (using ndfsmtodfsm), a DFSM that accepts $\neg L(M)$.

Calculate the epsilon closure of each state:

s	eps(s)
q1	{q1, q2, q4}
q2	{q2}
q3	{q3}
q4	{q4}
q5	{q5}
q6	{q6}
q7	{q7}

Starting with the only active state {q1, q2, q4}, calculate the δ'

{q1, q2, q4}	a	{q3}
	b	{q5, q6}
{q3}	a	φ
	b	{q5}
{q5,q6}	a	{q3,q7}
	b	{q6}
{q5}	a	{q3}
	b	φ
{q3,q7}	a	φ
	b	{q5, q6}
{q6}	a	{q7}
	b	{q6}
{q7}	a	φ
	b	{q6}

So the DFSM:

Now complement the DFSM by swapping the accepting and non-accepting states. The resulting DFSM will accept $\neg L(M)$.

- 5) Describe in English, as briefly as possible, the language defined by each of these regular expressions:
 - a) $(b \cup ba) (b \cup a)^* (ab \cup b)$.

The set of strings of length at least two over the alphabet {a, b} that start and end with b.

b) $(((a*b*)*ab) \cup ((a*b*)*ba))(b \cup a)*$.

The obvious answer is the set of strings over the alphabet {a, b} that contain at least one occurrence of ab or ba. A simpler answer is the set of strings over the alphabet {a, b} that contain at least one a and at least one b.

- 6) Write a regular expression to describe each of the following languages:
 - a) $\{w \in \{a, b\}^* : \text{ every } a \text{ in } w \text{ is immediately preceded and followed by } b\}.$

b (b (ab)*)* $\cup \varepsilon$

b) $\{w \in \{a, b\}^* : w \text{ does not end in ba}\}.$

 $\varepsilon \cup a \cup (a \cup b)^* (b \cup aa)$

c) $\{w \in \{0, 1\}^* : \exists y \in \{0, 1\}^* (|xy| \text{ is even})\}.$

 $(0 \cup 1)^*$

d) $\{w \in \{0, 1\}^* : w \text{ corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}.$

 $(1(0 \cup 1)*00) \cup 0$

- 7) Simplify each of the following regular expressions:
 - a) $(a \cup b)^* (a \cup \epsilon) b^*$.

 $(a \cup b)^*$.

b) $(\emptyset^* \cup b) b^*$.

b*.

c) $(a \cup b)*a* \cup b$.

 $(a \cup b)^*$.

d) $((a \cup b)^*)^*$.

 $(a \cup b)^*$.

e) $a ((a \cup b)(b \cup a))^* \cup a ((a \cup b) a)^* \cup a ((b \cup a) b)^*$.

 $a ((a \cup b)(b \cup a))*.$

- 8) For each of the following expressions *E*, answer the following three questions and prove your answer:
 - (i) Is E a regular expression?
 - (ii) If E is a regular expression, give a simpler regular expression.
 - (iii) Does *E* describe a regular language?
 - a) $((a \cup b) \cup (ab))^*$.

E is a regular expression. A simpler one is $(a \cup b)^*$. The language is regular.

b) $(a^+ a^n b^n)$.

E is not a regular expression. The language is not regular. It is $\{a^mb^n : m > n\}$.

c) $((ab)^* \emptyset)$.

E is a regular expression. A simpler one is \emptyset . The language is regular.

d) $(((ab) \cup c)^* \cap (b \cup c^*)).$

E is not a regular expression because it contains \cap . But it does describe a regular language (c^*) because the regular languages are closed under intersection.

e) $(\emptyset^* \cup (bb^*))$.

E is a regular expression. A simpler one is b^* . The language is regular.

- 9) Let $L = \{a^n b^n : 0 \le n \le 4\}$.
 - a) Show a regular expression for L.

 $(\varepsilon \cup ab \cup aabb \cup aaabbb \cup aaaabbbb)$

b) Show an FSM that accepts L.

