Zusammenfassung für Analysis I

(Prof. Dr. Schnürer)

Wintersemester 2014/2015

von Dagmar Sorg

Grundlagen: Logik, Mengenlehre

UND REELLE ZAHLEN

KAP. 1

LOGISCHE GRUNDLAGEN

PART 1.1

Definition (Aussage)

- D. 1.1
- (i) Eine Aussage ist etwas, dem der Wahrheitsgehalt "wahr" oder "falsch" zugeordnet ist.
- (ii) Eine ${\it Aussage form}$ ist eine Aussage, die eine noch unbestimmte oder freie Variable enthält.

Definition (Negation, Verneinung)

D. 1.3

Ist p eine Aussage, so bezeichnet $\neg p$ die Negation dieser Aussage.

Definition (Konjunktion)

D. 1.5

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \wedge q$ ("p und q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

Definition (Disjunktion)

D. 1.6

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("p oder q") mittels der folgenden Wahrheitstabelle:

p	q	$p \lor q$
\overline{w}	w	w
w	f	w
f	w	w
f	f	f

Definition (Kontravalenz)

D. 1.7

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \lor q$ ("entweder p oder q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

Definition (Implikation)

D. 1.8

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \Rightarrow q$ ("p impliziert q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

- (i) p heißt Voraussetzung, Prämisse oder hinreichende Bedingung für q
- (ii) q heißt Behauptung, Konklusion oder notwendige Bedingung

Definition

D. 1.10

(i) Seien p, q Aussagen. Definiere $p \Leftrightarrow q$ ("p und q sind äquivalent", "genau dann, wenn p gilt, gilt auch q") durch

p	q	$p \Leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

(ii) p_1, p_2, \ldots heißen äquivalent, falls für je zwei dieser Aussagen, p und $q, p \Leftrightarrow q$ gilt.

Proposition

P. 1.11

(Symmetrie)

Seien p, q, r Aussagen. Dann gelten

- (i) $\neg \neg p \Leftrightarrow p$
- (ii) $p \lor \neq p$
- (iii) $(p \wedge q) \Leftrightarrow (q \wedge p)$

(iv) $(p \lor q) \Leftrightarrow (q \lor p)$

- (Symmetrie) (v) $(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$
- (Symmetrie) (vi) $(p \land p) \Leftrightarrow p$ (Idempotenz)
- (vii) $(p \lor p) \Leftrightarrow p$ (Idempotenz)
- (viii) $(p \land q) \Rightarrow p$
- (ix) $p \Rightarrow (p \lor q)$
- (x) $(p \Leftrightarrow q) \Rightarrow ((p \lor r) \Leftrightarrow (q \lor r))$
- (xi) $(p \Leftrightarrow q) \Rightarrow ((p \land r) \Leftrightarrow (q \land r))$
- (xii) $(p \Leftrightarrow q) \Rightarrow ((p \Leftrightarrow r) \Leftrightarrow (q \Leftrightarrow r))$

(xiii) $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$ (Assoziativität)

- (xiv) $((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$ (Assoziativität)
- (xv) $(p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$ (Distributivität)
- (xvi) $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$ (Distributivität)
- (xvii) $\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$ (De Morgan) (xviii) $\neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$ (De Morgan)
- (xix) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$
- $(xx) ((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$
- (xxi) $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- (xxii) $(p \Rightarrow q) \Leftrightarrow ((\neg p) \lor q)$
- (xxiii) $(p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p))$
- (xxiv) $p \Leftrightarrow ((p \land r) \lor (p \land \neg r))$ (Fallunterscheidung)

Erste Mengenlehre

PART 1.2

Definition (naive Definition einer Menge)

D. 1.12

Eine Menge ist eine Zusammenfassung von Objekten, Elemente genannt. Ist A eine Menge, x ein Objekt, so schreiben wir $x \in A$, falls x ein Element von A ist. $x \notin A : \Leftrightarrow \neg(x \in A)$ Für eine Menge A, die genau die Elemente a, b und c enthält, schreiben wir $A = \{a, b, c\}$. Es ist irrelevant, ob a mehrfach auftaucht oder wie die Elemente angeordnet werden.

Definition

D. 1.13

Seien A, B Mengen.

- (i) Dann ist A eine Teilmenge von B ($A \subset B$ oder $A \subseteq B$), falls aus $x \in A$ auch $x \in B$
- (ii) A und B heißen gleich (A = B), falls $A \subset B$ und $B \subset A$ gelten. $A \neq B : \Leftrightarrow \neg (A = B)$ (Extensionalitätsaxiom)
- (iii) Schreibe $A \subseteq B$ für $A \subset B$ und $A \neq B$.

L. 1.14 Lemma Seien A, B, C Mengen. Dann gelten: (i) $A \subset A$ (Reflexivität) (ii) $x \in A$ und $A \subset B$ implizieren $x \in B$ (iii) $A \subset B \subset C \Rightarrow A \subset C$ (Transitivität) Axiom (Aussonderungsaxiom) A. 1.15 Sei A eine Menge und a(x) eine Aussageform. Dann gibt es eine Menge B, deren Elemente genau die $x \in A$ sind, die a(x) erfüllen. Schreibe $B = \{x \in A : a(x)\}.$ Bem. 1.17 Bemerkung Zu jeder Menge A gibt es eine Menge B und eine Aussageform $a(x): A = \{x \in B : a(x)\}.$ Nehme $B = A, a(x) = (x \in A).$ Bem. 1.18 Bemerkung (Russelsche Antinomie) Nimmt man im Aussonderungsaxiom statt A die "Allmenge" (Menge aller Elemente), dann bekommt man Probleme: Sei $A = Allmenge, B = \{X \in A : X \notin X\}$. Es gilt $y \in B \Leftrightarrow (y \in A \land y \notin y) \Leftrightarrow y \notin y$. Gilt $B \in B$? \rightarrow Widerspruch. L. 1.19 Lemma (Existenz der leeren Menge) Es gibt eine Menge \emptyset , die leere Menge, die kein Element enthält. Sie erfüllt: (i) $\emptyset \subset A$ für alle Mengen A(ii) ∅ ist eindeutig bestimmt. Part 1.3 QUANTOREN **Definition** D. 1.20 Sei A eine Menge, a(x) eine Aussageform. (i) **Existenzquantor:** Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a(x) \text{ für "Es gibt ein } x \text{ in }$ der Menge A, sodass dieses x a(x) erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit a(x). Dies zeigt man, indem man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit a(x), a(y) : x = y zeigt. (ii) **Allquantor:** Schreibe $\forall x \in A : a(x)$ oder $\underset{x \in A}{\forall} a(x)$ manchmal auch $a(x) \forall x \in A$ für "Für alle $x \in A$ gilt a(x)." L. 1.22 Lemma Seien A, B Mengen. p(x), p(x, y) Aussageformen. Dann gelten $(1.1) \bigvee_{x \in A} \bigvee_{y \in B} p(x, y) \iff \bigvee_{y \in B} \bigvee_{x \in A} p(x, y)$ $(1.2) \exists \exists z \in A} p(x, y) \iff \exists z \in A} p(x, y)$ $(1.3) \exists \forall z \in A} p(x, y) \iff \forall z \in A} p(x, y)$ $(1.4) \exists z \in A} p(x, y) \iff \forall z \in A} p(x, y)$ $(1.4) \ \neg \left(\bigvee_{x \in A} p(x) \right) \Longleftrightarrow \underset{x \in A}{\exists} \neg p(x)$ $(1.5) \ \neg \left(\underset{x \in A}{\exists} p(x) \right) \Longleftrightarrow \bigvee_{x \in A} \neg p(x)$

Weitere Mengenlehre	Part 1.4
Axiom (Existenz einer Obermenge) Sei \mathcal{M} eine Menge von Mengen. Dann gibt es eine Menge M (=Obermenge) m $\mathcal{M} \Rightarrow A \subset M$. Bemerkung: M ist eindeutig bestimmt.	A. 1.24 it $A \in$
 Definition (Vereinigung und Durchschnitt) Seien A, B Mengen mit Obermenge X. (i) Dann ist die Vereinigung von A und B (A∪B) definiert durch A∪B := {x ∈ X : x ∈ A ∨ x ∈ B} (ii) der (Durch-) Schnitt von A und B (A∩B) ist definiert durch A∩B := {x ∈ X : x ∈ A ∧ x ∈ B} 	D. 1.25
Sei \mathcal{M} eine Menge von Mengen mit Obermenge X . (i) Vereinigung: $\bigcup_{A \in \mathcal{M}} A := \{x \in X : (\exists A \in \mathcal{M} : x \in A)\}$ (ii) Schnitt: $\bigcap A := \{x \in X : (\forall A \in \mathcal{M} : x \in A)\}$	
Bemerkung Enthält \mathcal{M} keine Menge, so gelten $\bigcup A = \emptyset$ sowie $\bigcap A = X$	Bem. 1.26
 Definition (Disjunkte Mengen) Seien A, B Mengen. (i) A und B heißen disjunkt, falls A∩B = ∅. Schreibe in diesem Fall A∪B statt (ii) Sei M eine Menge von Mengen. Dann heißen die Mengen in M disjunkt, fa 	
(ii) Set \mathcal{M} eine Menge von Mengen. Dann hensen die Mengen in \mathcal{M} disjunkt, is $A, B \in \mathcal{M}, A \neq \emptyset$ stets $A \cap B = \emptyset$ gilt. Schreibe $\bigcup_{A \in \mathcal{M}} A$ statt $\bigcup_{A \in \mathcal{M}} A$.	ans tui
Definition (Komplement) Seien A, B Mengen mit fester Obermenge X . (i) Definiere das Komplement von A in B durch $B \setminus A := \{x \in B : x \notin A\}$ (ii) Definiere das Komplement von A durch $CA = A^{C} := \{x \in X : x \notin A\}$	D. 1.28
Proposition	P. 1.29
Seien A, B, C Mengen mit Obermenge X . Dann gelten:	
(i) $A \cup B = B \cup A$ (Kommutat (ii) $A \cap B = b \cap A$ (Kommutat (iii) $(A \cup B) \cup C = A \cup (B \cup C)$ (Assoziat (iv) $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziat (v) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (Distribut (vi) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (Distribut (vii) $C(A \cup B) = CA \cap CB$ (De Morgansche (viii) $C(A \cap B) = CA \cup CB$ (De Morgansche (ix) $CCA = A$ (x) $A \cup CA = X$	tivität) tivität) tivität) tivität) tivität) tivität) Regel)
(xi) $A \setminus B = A \cap CB$ Axiom (Potenzmenge)	A. 1.30
Sei A eine beliebige Menge. Dann gibt es die Menge $\mathcal{P}(A)$ (oder 2^A), die Potenz von A . Die Elemente von $\mathcal{P}(A)$ sind genau die Teilmengen von A .	
Axiom (Kartesisches Produkt)	A. 1.32
Seien A, B Mengen. Dann gibt es eine Menge, das Kartesische Produkt von $A \in (A \times B)$, die aus allen geordneten Paaren (a, b) mit $a \in A, b \in B$ besteht. a heißt eheißt zweite Komponente des Paares (a, b) . $A \times B := \{(a, b) : a \in A \land b \in B\}$	und B

Bemerkung	Bem. 1.33
$(a,b) \equiv \{a,\{a,b\}\} \in \mathcal{P}(A \cup \mathcal{P}(A \cup B))$	
Definition (Funktion, Abbleitung)	D. 1.34
Seien A, B Mengen.	
(i) Eine Funktion (oder Abbildung) f von A nach B , $f:A\to B$, ist eine Teilmenge von	
$A \times B$, sodass es zu jedem $a \in A$ genau ein $b \in B$ mit $(a,b) \in f$ gibt: $\forall a \in A \exists b \in B$	
$B:(a,b)\in f.$	
Schreibe $b = f(a), a \mapsto b$. Definiere den Graphen von f :	
graph $f:=\{(x,f(x))\in A\times B:x\in A\}=f\subset A\times B$	
(ii) A heißt Definitionsbereich von f , $D(f)$.	
$f(A) := \{f(x) : x \in A\} \equiv \{y \in B : (\exists x \in A : \underbrace{f(x) = y})\} = im \ f = R(f)$	
heißt \boldsymbol{Bild} oder $\boldsymbol{Wertebereich}$ von f .	
(iii) Sei $M \subset A$ beliebig.	
$f(M) := \{ y \in B : (\exists x \in M : f(x) = y) \} \equiv \{ f(x) : x \in M \}$ Somiting density $f(x) \in B$, where $f(x) \in B$ distribution $f(x) \in B$.	
Somit induziert $f: A \to B$ eine Funktion $\mathcal{P}(A) \to \mathcal{P}(B)$, die wir wieder mit f bezeichnen.	
(iv) Zu einer beliebigen Funktion $f: A \to B$ definieren wir die <i>Urbildabbildung</i>	
$f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A) \text{ mit } F^{-1}(M) := \{x \in A : f(x) \in M\}, M \subset B \text{ beliebig.}$	
$f^{-1}(M)$ heißt $Urbild$ von M unter f .	
Bemerkung	Bem. 1.35
$f:A\to B$ und $g:C\to D$ sind gleich, falls sie als Teilmengen von $A\times B$ bzw. $C\times D$	
gleich sind, insbesondere $B = D$.	
Definition	D. 1.36
Sei $f: A \to B$.	
(i) f heißt $injektiv$, falls für alle $x, y \in A$ aus $f(x) = f(y)$ auch $x = y$ folgt.	
(ii) f heißt $surjektiv$, falls $f(A) = B$. Wir sagen, dass f die Menge A <u>auf</u> B abbildet.	
Bei nicht-surjektiven Abbildungen sagt man A wird nach oder in B abgebildet.	
(iii) f heißt bijektiv , falls f injektiv und surjektiv ist. f ist eine Bijektion .	
(iv) ist f injektiv, so definieren wir die Inverse von f durch $f^{-1}: R(f) \to A$ mit $f(x) \mapsto x$.	
$f: R(f) \to A \text{ find } f(x) \mapsto x.$ Es gilt $f^{-1}(f(x)) = x$	
Bemerkung	Bem. 1.37
(i) $\mathcal{I}(f(x))$ bezeichnet die Inverse von $f(x)$.	Delli. 1.37
(ii) $U(\{f(x)\})$ bezeichnet die Umkehrabbildung der Menge $\{f(x)\}$, sie ist definiert durch	
$U: \mathcal{P}(B) \to \mathcal{P}(A)$ mit $M \subset B \mapsto \{x \in A: f(x) \in M\}$	
(iii) $f: A \to B$ induziert $g: \mathcal{P}(A) \to \mathcal{P}(B)$	
$\Rightarrow \{f(x)\} = g(\{x\})$	
Definition (Komposition von Abbildungen)	D. 1.38
Seien $f:A \to B, g:B \to C$ Abbildungen. Dann heißt	
$g \circ f : A \to C \text{ mit } x \mapsto g(f(x)) \text{ Komposition von } f \text{ und } g.$	
Bemerkung	Bem. 1.40
Seien $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Dann gilt	_ = = =
$h \circ (g \circ f) = (h \circ g) \circ f$	
Sowie für Inverse und Umkehrabbildungen:	
$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	

Definition (Relationen) Seien A, B Mengen. (i) $R \subset A \times B$ heißt **Relation**. Statt $(x,y) \in R$ sagen wir R(x,y) gilt. (ii) $R \subset A \times A$ heißt (a) **reflexiv**, falls R(x,x) für alle $x \in A$ gilt (b) **symmetrisch**, falls $R(x,y) \Rightarrow R(y,x)$ für alle $x,y \in A$ (c) antisymmetrisch, falls $R(x,y) \wedge R(y,x) \Rightarrow x = y$ für alle $x,y \in A$ (d) **transitiv**, falls $R(x,y) \wedge R(y,z) \Rightarrow R(x,z)$ für alle $x,y,z \in A$ (iii) $R \subset A \times A$ heißt \ddot{A} quivalenzrelation, falls R reflexiv, symmetrisch und transitiv ist. Schreibweise bei Äquivalenzrelationen: $x \sim y$ statt R(x,y)Definition Sei $R \subset A \times A$ eine Äquivalenzrelation. Sei $x \in A$. dann heißt $[x] := \{y \in A : R(x,y)\}$ \ddot{A} quivalenzklasse von x. Schreibe $y \equiv x \pmod{R}$ für $y \in [x]$. $A/R := \{[x] : x \in A\}$ ist die Menge aller Äquivalenzklassen von R. DIE REELLEN ZAHLEN Part 1.5 **Definition** Die reellen Zahlen, R, sind eine Menge mit den folgenden Eigenschaften: (A) R ist ein Körper, d.h. es gibt die Abbildung (i) $+: \mathbb{R} \times \mathbb{R}$, die **Addition**, schreibe x + y für x(x, y)(ii) $\cdot : \mathbb{R} \times \mathbb{R}$, die Multiplikation, mit $(x,y) \mapsto x \cdot y \equiv xy$ bezeichnet und zwei ausgezeichneten Elementen: $0, 1 \text{ mit } 0 \neq 1$ Es gilt, soweit nicht anders angegeben, für alle $x, y, z \in \mathbb{R}$: (K1) x + (y + z) = (x + y) + z(K2) x + y = y + x(K3) 0 + x = x(K4) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$, Schreibe -x für y : x + (-x) = 0(K5) (xy)z = x(yz)(K6) xy = yx(K7) 1x = x(K8) $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : xy = 1$, Schreibe x^{-1} für $y : xx^{-1} = 1$ (K9) x(y+z) = xy + xz(B) \mathbb{R} ist ein angeordneter Körper, d.h. es gibt eine Relation $R \subset \mathbb{R} \times \mathbb{R}$ (schreibe $x \leq y$

für R(x,y), die für alle $x,y,z\in\mathbb{R}$ folgendes erfüllt:

(O1) $x \le y \land y \le z \Rightarrow x \le z$

(Transitivität)

(O2) $x \le y \land y \le x \Rightarrow x = y$

(Antisymmetrie)

(O3) es gilt $x \le y$ oder $y \le x$

(O4) aus $x \le y$ folgt $x + z \le y + z$

(O5) aus $0 \le x$ und $0 \le y$ folgt $0 \le xy$.

Schreibe $y \ge x$ statt $x \le y$ und x < y bzw. y > x für $x \le y$ und $x \ne y$

(C) \mathbb{R} ist vollständig, d.h. jede nicht-leere nach oben beschränkte Teilmenge von \mathbb{R} besitzt ein Supremum in \mathbb{R} .

Definition (Ordnung)

Eine transitive, antisymmetrische Relation \leq , für die stets $x \leq y$ oder $y \leq x$ gilt, heißt (totale) Ordnung.

D. 1.45

D. 1.41

D. 1.42

D. 1.44

Definition (Supremum, Infimum)		D. 1.46
(i) $A \subset \mathbb{R}$ heißt $nach$ $oben$ $beschränkt$, falls es ein		
(ii) $x_0 \in \mathbb{R}$ ist eine obere Schranke von $A \subset \mathbb{R}$, falls		
(iii) $x_0 \in \mathbb{R}$ ist das Supremum von $A \subset \mathbb{R}, x_0 = \sup A$		
A stets $x \ge x_0$ gilt. x_0 heißt kleinste obere Sch a (iv) Ist sup $A \in A$, so heißt sup A Maximum von A.	ranke.	
(iv) Ist $\sup A \in A$, so held $\sup A$ Maximum von A . (v) Ist $A \subset \mathbb{R}$ nicht nach oben beschränkt, so gibt $\sup A$	$A = \pm \infty$ Für alle $x \in \mathbb{R}$ vereinbaren	
wir $-\infty < x < +\infty$.	1 – 1 oc. 1 til alle a C in verembaren	
(vi) Entsprechend: nach unten beschränkt, unter untere Schranke), Minimum.	e Schranke, Infimum (=größte	
Ist A nach unten unbeschränkt, so gilt inf $A = -$	$-\infty$. Alternativ: $-A = \{-a : a \in$	
$A\},A\subset\mathbb{R}.$ A heißt nach $unten\ beschränkt,\ \mathrm{falls}\ -A\ \mathrm{nach}\ \mathrm{o}$	ben beschränkt ist. $x = \inf A$, falls	
$-x = \sup -A$.	:0+ 1	
(vii) Ist $A \subset \mathbb{R}$ nach oben und unten beschränkt, so he	ilst A beschrankt.	D 1 47
Bemerkung		Bem. 1.47
$\sup \emptyset = -\infty \text{ und inf } \emptyset = +\infty$		D 1 40
Definition		D. 1.49
Seien $a, b \in \mathbb{R}, a < b$.	(C I) 11)	
(i) $(a,b) := \{x \in \mathbb{R} : a < x < b\}$	(offenes Intervall)	
(ii) $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ (iii) $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$	(halboffenes Intervall) (halboffenes Intervall)	
(iii) $[a, b] := \{x \in \mathbb{R} : a \le x < b\}$ (iv) $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$	(abgeschlossenes Intervall)	
	(abgeschiossenes Intervair)	
a,b heißen ${\it Endpunkte}$ der Intervalle.		
Lemma		L. 1.50
Sei $x \in \mathbb{R}$. Dann gilt $x0 = 0x = 0$.		
Lemma		L. 1.51
Sei $x \in \mathbb{R}$. Dann gelten		
(i) $(-1)x = -x$		
(ii) -(-x) = x		
(iii) $(-1)(-1) = 1$		
Lemma		L. 1.52
Sei $x \in \mathbb{R}$. Dann ist die additive Inverser $-x$ eindeutig	g bestimmt.	
Lemma		L. 1.53
Es gelten $0 < 1$ und $-1 < 0$.		
Lemma		L. 1.54
Seien $x,y\in\mathbb{R}.$ Dann gilt genau ein der drei folgender	n Aussagen:	
x < y, $x = y,$	x > y	
Lemma		L. 1.55
Gelte $0 < x < y$. Dann gelten:		
(i) $0 < x^{-1}$		
(ii) $0 < y^{-1} < x^{-1}$		
_emma		L. 1.56
$x, y \in \mathbb{R}$. Gilt $xy = 0 \Rightarrow x = 0$ oder $y = 0$.		
Lemma		L. 1.57
Seien $a, b \in \mathbb{R}$.		
(i) Aus $0 \le a \le b$ folgt $a^2 \le b^2$		
(ii) Aus $a^2 \le b^2$ and $b \ge 0$ folgt $a \le b$.		

 $Mit \ a^2 = a \cdot a.$

Definition (Natürliche Zahlen)		D. 1.58
Die natürlichen Zahlen $\mathbb N$ sind die kleinste Teilmenge $A \in (\mathbb N1) = \in A$	$\subset \mathbb{R}$ mit	
$(N2) \ a+1 \in A, \forall a \in A$		
\mathbb{N} ist die kleinste Menge mit (N1), (N2) in dem Sinn, da (N1) und (N2) auch $\mathbb{N} \subset \mathcal{N}$ gilt.	ass für alle $\mathcal{N} \subset \mathbb{R}$ mit \mathcal{N} erfüllt	
Lemma		L. 1.59
Es gibt die natürlichen Zahlen. Sie sind eindeutig bestim	amt.	1 1 60
Lemma (Peanoaxiome) Es gelten:		L. 1.60
(i) $0 \in \mathbb{N}$		
(ii) jedes $a \in \mathbb{N}$ besitzt genau einen Nachfolger $a^+ \in \mathbb{N}$ (iii) 0 ist kein Nachfolger einer natürlichen Zahl		
(iv) $\forall n, m \in \mathbb{N} : m^+ = n^+ \Rightarrow n = m$		
(v) Sei $X \subset \mathbb{R}$ beliebig mit $0 \in X$ und $n^+ \in X, \forall n \in X$. Es folgt $\mathbb{N} \subset X$	
Der Nachfolger von $a \in \mathbb{N}$ ist die Zahl $a^+ := a + 1 \in \mathbb{N}$. Theorem		T. 1.61
\mathbb{R} ist archimedisch , d.h. zu jedem $x \in \mathbb{R}$ gibt es $n_0 \in \mathbb{N}$,	, sodass für alle $\mathbb{N}\ni n\geq n_0$ auch	
$n \ge x$ gilt. Korollar		K. 1.62
Sei $x \in \mathbb{R}$ beliebig und sei $a > 0$.		
(i) Dann gibt es $n \in \mathbb{N}$ mit $an \ge x$		
(ii) Dann gibt es $m \in \mathbb{N}$ mit $0 < \frac{1}{n} \le a$		
(iii) Ist $a \leq \frac{1}{n}$ für alle $n \in \mathbb{N}$ (oder alle $n \in \mathbb{N}$ mit $n \geq n$	t_0), so ist $a \le 0$.	T 1.60
Theorem (Vollständige Induktion) Erfüllt $M \subset \mathbb{N}$ die Bedingungen		T. 1.63
(i) $0 \in M$	(Induktionsanfang)	
(ii) $n \in M \Rightarrow n+1 \in M$	(Induktionsschritt)	
so gilt $M = \mathbb{N}$. Theorem		T. 1.64
Sei p eine Aussageform auf \mathbb{N} . Gelten		
(i) $p(0)$ und (ii) $p(n) \Rightarrow p(n+1)$ für alle $n \in \mathbb{N}$,		
so gilt $p(n)$ für alle $n \in \mathbb{N}$.		
Definition (Familie, Folge)		D. 1.67
(i) Seien \mathcal{I}, X Mengen, $f: \mathcal{I} \to X$ eine Abbildung. Danr	n heißt f auch Familie : $(x_i)_{i \in \mathcal{I}}$	
mit $x_i = f(i), \forall i \in \mathcal{I}$ (\mathcal{I} bezeichnet die Indexmenge). (ii) Ist $\mathcal{I} = \mathbb{N}$, so heißt $(x_i)_{i \in \mathcal{I}}$ Folge: $(x_i)_{i \in \mathbb{N}} \subset X$.		
(iii) Ist $J \subset \mathcal{I}$, so heißt $(x_j)_{j \in J}$ Teilfamilie von $(x_i)_{i \in \mathcal{I}}$, f	alls die Werte auf J übereinstim-	
men. (iv) Ist $\mathcal{I} = \mathbb{N}, J \subset \mathbb{N}$ unendlich, so heißt $(x_j)_{j \in J}$ Teilfol		
eine Folge mit $j_{k+1} > j_k, \forall k$ und $J = \bigcup_{k \in \mathbb{N}} \{j_k\}$, so schr		
(v) Sei $(x_i)_{i\in\mathcal{I}}$ eine Familie. Ist $\mathcal{I} = \{1, 2, \dots, n\} \ (\to (x_i))$	$1 \le i \le n$):	
(a) $n = 2$: Die Familie heißt $\operatorname{\textbf{\it Paar}}(x_1, x_2)$ (b) $n = 3$: Die Familie heißt $\operatorname{\textbf{\it Triple}}(x_1, x_2, x_2)$		
(c) n beliebig: Die Familie heißt n - Tupel $(x_1, x_2,$	(x_n, x_n)	

Definition	D. 1.68
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen mit Obermenge X . (i) $\bigcup_{i\in\mathcal{I}} A_i := \{x\in X : (\exists i\in\mathcal{I}:x\in A_i)\}$	
(ii) $\bigcap_{i\in\mathcal{I}}^{i\in\mathcal{I}} A_i := \{x \in X : (\forall i \in \mathcal{I} : x \in A_i)\}$	
(iii) $\mathcal{I} = \{1, 2, \dots, n\} : \bigcup_{i=1}^{n} A_i = \bigcup_{i \in \mathcal{I}} A_i$, sowie $\bigcap_{i=1}^{n} A_i = \bigcap_{i \in \mathcal{I}} A_i$	
Definition	D. 1.69
Ist $(x_i)_{i\in\mathcal{I}}$ eine Familie reeller Zahlen, so gilt $\sup x_i := \sup \{x_i : i \in \mathcal{I}\}$, sowie	
$\inf_{i \in \mathcal{I}} x_i := \inf\{x_i : i \in \mathcal{I}\}.$	
Proposition	P. 1.70
 (i) Seien A, B ⊂ R, A ⊂ B. ⇒ sup A ≤ sup B, inf A ≥ inf B. (ii) Sei (A_i)_{i∈I} eine Familie von Mengen A_i ⊂ R, ∀i ∈ I. Dann definiere 	
$A := \bigcup_{i \in \mathcal{I}} A_i$ $\Rightarrow \sup A = \sup_{i \in \mathcal{I}} \sup A_i \text{ und inf } A = \inf_{i \in \mathcal{I}} \inf A_i.$	
	D. 1.71
	D. 1.7
(i) Sei A eine Menge, $f: A \to \mathbb{R}$ eine Funktion. f heißt $nach \ oben \ (unten) \ beschränkt$, falls für $f(A)$ gilt:	
(a) $\sup f(A) = \sup_{x \in A} f(x)$	
(b) $\inf f(A) = \inf_{x \in A} f(x)$	
(ii) Sei A eine Menge und $f_i:A\to\mathbb{R}$ eine Familie von Funktionen. Gilt für alle $x\in A$, dass $\sup_{i\in\mathcal{I}}f_i(x)<\infty$, so definieren wir die Funktion	
$\sup_{i\in\mathcal{I}}f_i:A o\mathbb{R}$	
$(\sup_{i \in \mathcal{I}} f_i)(x) := \sup_{i \in \mathcal{I}} f_i(x)$	
(iii) Ohne $\sup_{i \in \mathcal{I}} f_i(x) < \infty$ erhalten wir mit derselben Definition $\sup_{i \in \mathcal{I}} f_i : A \to \mathbb{R} \cup \{+\infty\}$	
(iv) Analog für $\inf_{i \in \mathcal{I}} f_i$.	
(v) Ist $\mathcal{I} = \{1, \dots, n\}$ gilt	
$\sup_{i\in\mathcal{I}}f_i=\sup(f_1,\ldots,f_n)=\max(f_1,\ldots,f_n).$	
Entsprechend für Infimum/Minimum.	D 1 70
Definition (Kartesisches Produkt)	D. 1.72
(i) Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Definiere das kartesische Produkt wie folgt: $\prod_{i \in \mathcal{I}} A_i := \{(x_i)_{i \in \mathcal{I}} : (\forall i \in \mathcal{I} : x_i \in A_i)\}$	
(ii) Zu $j \in \mathcal{I}$ definieren wir die j -te Projektionsabbildung $\pi_j : \prod_{i \in \mathcal{I}} A_i \to A_j \text{ mit } \pi_j((x_i)_{i \in \mathcal{I}}) := x_j$	
Axiom	A. 1.74
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen $A_i\neq\emptyset, \forall i\in\mathcal{I}$. Dann gilt $\prod A_i\neq\emptyset$, d.h. es gibt	
eine Familie $(x_i)_{i\in\mathcal{I}}$ mit $x_i\in A_i, \forall i\in\mathcal{I}$.	

Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Dann gilt $\prod_{i \in \mathcal{I}} A_i = \emptyset \iff \exists i \in \mathcal{I} : A_i \neq \emptyset$.	
Lemma (Zornsches Lemma) Sei $M \neq \emptyset$ mit einer Teilordnung (= partielle Ordnung) \leq . Nehme an, jede total geordnete Teilmenge $\Lambda \subset M$ (= Kette) besitzt eine obere Schranke $b \in M$, d.h. $x \leq b, \forall x \in \Lambda$. Dann enthält M ein maximales Element x_0 , d.h. $\exists x_0 \in M : x \geq x_0 \Rightarrow x = x_0$.	L. 1.76
Definition (Ausschöpfung, Partition, Überdeckung) Sei A eine Menge. (i) Eine $\ddot{U}berdeckung$ von A ist eine Familie $(A_i)_{i\in\mathcal{I}}$ mit $\bigcup \supset A$.	D. 1.77
(ii) Eine Partition von A ist eine Überdeckung $(A_i)_{i\in\mathcal{I}}$ mit $A_i\subset A$ und $A_i\cap A_j=\emptyset, \forall i\neq j\in\mathcal{I}, A=\bigcup_{i\in\mathcal{I}}A_i.$	
(iii) Eine Ausschöpfung von A ist eine aufsteigende Folge $(A_n)_{n\in\mathbb{N}}$ von Teilmengen von A , die $A_m \subset A_n, \forall m \leq n$ und $\bigcup_{n\in\mathbb{N}} A_n = A$ erfüllt.	
Proposition	P. 1.78
 (i) Sei ~ eine Äquivalenzrelation auf A. Dann bilden die Restklassen von ~ eine Partition von A. (ii) Sei (A_i)_{i∈I} eine Partition von A. Dann ist ~ mit x ~ y :⇔ ∃i ∈ I : x, y ∈ A_i eine 	
Aquivalenzrelation auf A . Lemma	L. 1.79
Seien A, B Mengen. Sei $(A_n)_{n\in\mathbb{N}}$ eine Ausschöpfung von A . Sei $(f_n)_{n\in\mathbb{N}}$ eine Familie von Abbildungen $f_n: A_n \to B$ mit $f_n _{A_m} = f_m$ für alle $m \le n$. Dann gibt es genau eine Funktion $f: A \to B$ mit $f(x) = f_n(x), \forall x \in A_n$ oder $f _{A_n} = f_n, \forall n \in \mathbb{N}$.	2. 1.10
Proposition (Rekursive Definition) Sei $B \neq \emptyset$ eine Menge, $x_0 \in B$ und $F : \mathbb{N} \times B \to B$ eine Funktion. Dann gibt es genau eine Funktion $f : \mathbb{N} \to B$ mit den Ergebnissen: (i) $f(0) = x_0$ und (ii) $f(n+1) = F(n, f(n))$ für alle $n \in \mathbb{N}$.	P. 1.80
f ist eine rekursiv definierte Funktion.	
Kardinalität	Part 1.6
Definition (Mächtigkeit) Seien A, B Mengen. (i) A, B heißen gleich mächtig $(A \sim B)$, falls es eine Bijektion $f: A \to B$ gibt. (ii) B heißt mächtiger als A (BSuccA) oder A weniger mächtig als B ($A \prec B$), falls es eine injektive Abbildung $f: A \to B$ gibt. (iii) A heißt abzählbar, falls $A \sim \mathbb{N}$. (iv) A heißt höchstens abzählbar, falls $A \prec \mathbb{N}$. (v) A heißt überabzählbar, falls A nicht höchstens abzählbar ist. (vi) Sei A abzählbar, so heißt die Folge $(x_i)_{i \in \mathbb{N}}$ eine A bzählung von A , falls $x_i \neq x_j$ für $i \neq j$ und $\bigcup_{i \in \mathbb{N}} \{x_i\} = A$.	D. 1.84

P. 1.75

Proposition

(ii) $A \prec B \prec C \Rightarrow A \prec C$		
(iii) $A \prec A$		
(iv) $G := \{2n : n \in \mathbb{N}\}, G \prec \mathbb{N} : 2n \mapsto 2n \text{ und } \mathbb{N} \prec G : n \mapsto 2n.$ Bijektiv: $\mathbb{N} \sim G$		
Theorem (Schröder-Bernstein)	Т	. 1.86
Aus $A \prec B$ und $B \prec A$ folgt $A \sim B$.		
Proposition	P	. 1.87
A,B,C sind Mengen. Seien $\varphi:A\to B,\psi:B\to C$ Abbildungen. Sei $f:A\to B$ Abbildung. Dann gelten: (i) Ist $\psi\circ\varphi$ injektiv, so ist φ injektiv (ii) Ist $\psi\circ\varphi$ surjektiv, so ist ψ surjektiv (iii) f surjektiv $\Leftrightarrow\exists g:B\to A,f\circ g=id_B$ (iv) f injektiv $\Leftrightarrow\exists g:B\to A,g\circ f=id_A$		
Betrag und Wurzel	Part	1.7
Weitere Zahlen und Mächtigkeit	Part	1.8

Bem. 1.85

Bemerkung

(i) \sim ist Äquivalenz relation

$oldsymbol{L}$		
Konvergenz	KAP	. 2
Metrische Räume	Part	2.1
Folgen	Part	2.2
Definition Sei E ein metrischer Raum. Sei $x \in E, \varepsilon > 0$. Definiere $B_{\varepsilon}(x) := \{y \in E : d(y, x) < \varepsilon\}$ die ε -Kugel. $B_{\varepsilon}(x)$ heißt auch ε -Umgebung von x	I	D. 2.1
Definition (Konvergenz)		D. 2.2
 Sei (x_n)_{n∈ℕ} ⊂ E eine Folge in einem metrischen Raum E. (i) Dann konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, falls für beliebige ε > 0 <u>fast alle</u> (nur endlich viele liegen außerhalb) Folgeglieder in B_ε(a) liegen (ii) Konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, so heißt a Limes oder Grenzwert der Folge (x_n)_{n∈ℕ}: a = lim x_n oder x_n → a für n → ∞ oder x_n → a. 		
Bemerkung	Ber	m. 2.3
Die Definition von Konvergenz ist äquivalent zu (i) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $x_n \in B_{\varepsilon}(a)$ gilt. (ii) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $d(x_n, a) < \varepsilon$ gilt.		
Korollar (Bolzano-Weierstraß) Sei $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ eine beschränkte Folge, d.h. $\exists r>0: x_k\in B_r(0), \forall k\in\mathbb{N}$. Dann besitzt	1	K. 2.4
$(x_k)_{k\in\mathbb{N}}$ eine konvergente Teilfolge mit Grenzwert a und $ a \leq r$. Bemerkung	Rei	m. 2.5
In \mathbb{R}^n gilt: $(x_k)_{k\in\mathbb{N}}$ konvergiert $\Leftrightarrow (x_k^i)_{k\in\mathbb{N}}$ konvergiert für alle i .	Bei	11. 2.3
Definition (Cauchyfolge, Vollständigkeit)	I	D. 2.6
 (i) Eine Folge (x_n)_{n∈ℕ} in einem metrischen Raum E heißt Cauchyfolge (CF), falls es zu jedem ε > 0 ein n₀ ∈ ℕ mit d(x_k, x_l) < ε, ∀k, l ≥ n₀ gibt. (ii) Ein metrischer Raum, in dem jede CF konvergiert, heißt vollständiger metrischer Raum. 		
 (iii) Ein normierter Raum, in dem jede CF konvergiert, heißt vollständiger normierter Raum oder Banachraum (BR). (iv) Ein vollständiger Skalarproduktraum heißt Hilbertraum (HR). 		
Lemma		L. 2.7
Sei E ein metrischer Raum. Sei $(x_n)_{n\in\mathbb{N}}\subset E$ konvergent. Dann ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge.		
Reihen	Part	2.3
Gleichmässige Konvergenz	Part	2.4