

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

БОЛТЫ, ВИНТЫ И ШПИЛЬКИ

МЕХАНИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИСПЫТАНИЯ

ГОСТ 1759.4-87 (ИСО 898/1-78)

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

БОЛТЫ, ВИНТЫ И ШПИЛЬКИ

Механические свойства и методы испытаний

Bolts, screws and studs.

Mechanical properties and test methods

ГОСТ 1759.4-87

(ИСО 898/1-78)

Срок действия <u>с 01.01.89</u> до 01.01.94

Настоящий стандарт распространяется на болты, винты и шпильки из углеродистых нелегированных или легированных сталей с метрической резьбой - по Γ до 48 мм.

Стандарт не распространяется на установочные винты и аналогичные им резьбовые крепежные изделия, а также на болты, винты и шпильки, к которым предъявляются специальные требования, такие как свариваемость, коррозионная стойкость, работоспособность при температурах выше плюс 300° С (для автоматной стали - плюс 250° С) и ниже минус 50° С.

1. СИСТЕМА ОБОЗНАЧЕНИЙ

Система обозначений классов прочности болтов, винтов и шпилек приведена в <u>табл.</u> 1.

По оси абсцисс дано номинальное значение временного сопротивления $\sigma_{\scriptscriptstyle B}$ в H/мм²; по оси ординат - относительное удлинение $\delta_{\scriptscriptstyle 5}$ в %.

Обозначение класса прочности состоит из двух цифр:

первая соответствует 1/100 номинального значения временного сопротивления разрыву в H/мм²;

вторая соответствует 1/10 отношения номинального значения предела текучести к временному сопротивлению в процентах. Произведение указанных двух цифр соответствует 1/10 номинального значения предела текучести в $H/мм^2$.

Минимальный (или условный) предел текучести и минимальное временное сопротивление равны или больше их номинальных значений.

Минимальное временное сопротивление H/mm^2		30	00 4	00	5()0 	600	70)) 	80	00	900	10	00	 12 	 200 	 14 	00
	7																	
	8						_											
	9							6.	.8							12	2.9	
	10													10).9			
							5.8						9	.8				
	12																	
												8.8						
Минимальное	14																	
относительное					4.	.8												
удлинение δ_3 в	16																	
%																		
	18							6.	.6									
	20																	
	22						5.6											
	25				4.	.6												
	30			3.6														
Отношение преде	ела теку	/чести	к вре	емен	но	мус	сопро	тив	лен	ию)							
Номинальный пр	едел те	кучест	ти σт							v1	00,	_{1/0}		60	8	30	9	0
Номинальное вре	менное	сопро	тивл	енц	e δ _в	1				^1	υυ,	, U						
Вторая цифра сим	ивола													.6		.8		9

^{*}Применяется только для изделий с диаметром резьбы $d \le 16$ мм.

Примечание. Не все классы прочности, приведенные в <u>табл. 1</u>. могут использоваться для всех крепежных изделий. Указание о применении определенных классов прочности для стандартизованных изделий приведены в соответствующих стандартах на эти изделия. Для нестандартизованных изделий рекомендуется делать выбор по аналогии.

(Измененная редакция, Изм. № 1).

2. МАТЕРИАЛ

В <u>табл. 2</u> указаны стали для изготовления болтов, винтов и шпилек различных классов прочности и их термообработка.

Химический состав сталей обязателен только для тех крепежных изделий, которые не могут быть испытаны на растяжение.

Минимальная температура отпуска, указанная в $\underline{\text{табл. 2}}$, обязательна для классов прочности от 8.8 до 12.9.

Таблица 2

I/		Химически	ій состав (к	онтрольнь	ый анализ), %	Температура
Класс	Материал и обработка	углерода	фос	фора	серы	отпуска, °С,
прочности		Мин.	Макс.	Макс.	Макс.	МИН
3.6*	Углеродистая сталь	-	0,20	0,05	0,06	
4.6*		-	0,55	0,05	0,06	
4.8*						
5.6		0,15	0,55	0,05	0,06	-
5.8*		-	0,55	0,05	0,06	
6.6						
6.8 "						
8.8**	Углеродистая сталь с					425
		O 15***	0.40	0.025	0.025	

0,15*** 0,40 0,035 0,035

V жала		Химически	ий состав (ко	онтрольный	анализ), %	Температура
Класс	Материал и обработка	углерода	а фосс	þopa	серы	отпуска, °С,
прочности		Мин.	Макс.	Макс.	Макс.	мин
	добавками (бор, марганец или хром) закаленная и отпущенная					
8.8**	Углеродистая сталь без добавок закаленная и отпущенная	0,25	0,55	0,035	0,035	
9.8	Углеродистая сталь с добавками (бор, марганец или хром) закаленная и отпущенная	0,15***	0,35	0,035	0,035	
	Углеродистая сталь без добавок закаленная и отпущенная	0,25	0,55	0,035	0,033	
10.9*4	Углеродистая сталь с добавками (бор, марганец или хром) закаленная и отпущенная	0,15***	0,35	0,035	0,033	340
10.9*5	Углеродистая сталь без добавок закаленная и отпущенная	0,25	0,55	0,035	0,035	425
10.9*5	Углеродистая сталь с добавками (бор, марганец или хром) закаленная и отпущенная Легированная сталь закаленная и отпущенная	0,20***	0,55	0,035	0,035	425
12.9* ⁵ * ⁶	Легированная сталь закаленная и отпущенная* ⁷	0,20	0,50	0,035	0,035	380

^{*}Для данных классов прочности допускается применение автоматных сталей с содержанием серы, фосфора и свинца не более 0.34; 0.11; 0.35% соответственно.

Допускается применять другие материалы и виды термообработки по соглашению между изготовителем и истребителем, если изготовитель гарантирует выполнение всех механических свойств, предусмотренных настоящим стандартом.

(Измененная редакция, Изм. № 1).

3. МЕХАНИЧЕСКИЕ СВОЙСТВА

При испытаниях по методам, описанным в <u>разд. 6</u>, болты, винты и шпильки при комнатной температуре должны иметь механические свойства, указанные в <u>табл. 3</u> (при повышенных температурах - по <u>приложению 2</u>). Рекомендуемые технологические процессы изготовления болтов, винтов и шпилек - по приложению 1.

^{**} Для размеров свыше M 20 с целью достижения необходимой прокаливаемости могут применяться стали, рекомендуемые для изделий класса прочности 10.9.

^{***} В случае обычной углеродистой стали с добавками бора, с содержанием углерода менее 0,25% (анализ пробы из ковша), минимальное содержание марганца должно быть 0,06% для класса прочности 8.8 и 0,7% для классов прочности 9.8 и 10.9.

^{*&}lt;sup>4</sup>Изделия должны дополнительно маркироваться путем подчеркивания символа класса прочности (см. ГОСТ 1759.0-87).

^{*} Материалы, предназначенные для этих классов прочности, должны обладать прокаливаемостью, достаточной для получения структуры, содержащей приблизительно 90% мартенсита в сердцевине резьбового участка крепежного изделия и состоянии закалки перед отпуском.

^{* &}lt;sup>6</sup>На крепежных изделиях класса прочности 12.9, подвергаемых действию растягивающих напряжений, не допускается определяемый металлографическим исследованием белый фосфористый налет.

 $^{*^7}$ Легированная сталь должна содержать, одни или несколько легирующих элементов хром, никель, молибден или ванадий.

Таблица 3

								Кл	асс пр	очност	<u> </u>				
Номер пункта	Механическі	ие свойс	тва	3.6	4.6	4.8	5.6	5.8	6.6	6.8		.8 <i>d</i> >16 мм	9.8*	10.9	12.9
3.1	Временное сопротивле	ение	Номин.	300	4	00	50	00	6	00	800	800	900	1000	1200
3.2	$\sigma_{\rm B}^{**,***} \text{H/mm}^2$		Мин.	330	400	420	500	520	6	00	800	830	900	1040	1020
3.3	Твердость по Виккерсу	, HV	Мин.	95	120	130	155	160	1	90	250	255	290	320	385
			Макс.				250				320	335	360	380	435
3.4	Твердость по Бринеллю	, HB	Мин.	90	114	124	147	152	1	81	238	242	276	304	366
			Макс.				238				304	318	342	361	414
3.5	Твердость по Роквеллу,	мин.	HRB	52	67	71	79	82	8	39	-	-	-	-	-
	HR		HRC_9	-	-	-	-	-		-	22	23	28	32	30
		макс.	HRB				99,5				-	-	-	-	-
			HRC_9				-				32	34	37	39	44
3.6	Твердость поверх	ности Н	V 0,3 _{макс}				-						*4		
3.7	Предел текучести $\sigma_{\scriptscriptstyle \rm T}^{*5}$,		Номин.	180	240	320	300	400	360	480					
	H/MM^2		Мин.	100	240	340	300	420	360	480	-	-	-	-	-
3.8	Условный предел		Номин.				-				640	640	720	900	1080
	текучести $\sigma_{0,2}$, H/мм ²		Мин.								640	660	720	940	1100
3.9	Напряжение от пробной	$\sigma_{\scriptscriptstyle \rm I}$	$_{\scriptscriptstyle \rm I}/\sigma_{\scriptscriptstyle m T}$ или $\sigma_{0,2}$	0,94	0,94	0,91	0,93	0,90	0,	,92	0,91	0,91	0,90	0,88	0,88
	нагрузки $\sigma_{\scriptscriptstyle \Pi}$		H/mm^2	180	225	310	280	380	4	40	580	600	650	830	970
3.10	Относительное		Мин.												
	удлинение после разрыва			25	22	14	20	10	16	8	12	12	10	9	8
	δ ₅ , %														
3.11	Прочность на разрыв	на косо	й шайбе***	Прочн	ость на р	азрыв на к	сосой шай	бе целых	болтов	и винт	ов (кроме	шпилек) до	олжна бы	ть не мен	ньше
					МИНИ	мального	значения і	временно	го сопр	отивле	ния разры	ву, указанн			
3.12	Работа удара, Дж		Мин.		-		25 (50)	-	20	-	30 (60)	30 (60)	25 (50)	20 (40)	15 (30)
	(Ударная вязкость,								(40)						
	Дж/см ²)														
3.13	Прочность соединения			Отсутствие трещин по						ин под	головкой		ı		
3.14		альная высота необезуглероженной зоны I			1 E -						$1/2 H_1$ $2/3 H_1$ $3/4 H_1$				
		Максимальная глубина полного			- 0,015										
	обезуглерожи	обезуглероживания G, мм													

^{*}Только для портальных диаметров резьбы $d \le 16$ мм.

- **Минимальные значения при растяжении относятся к изделиям с номинальной длиной l=2,5 d. Минимальная твердость относится к изделиям с длиной l<2,5d и другим изделиям, которые не могут быть подвергнуты испытанию на растяжение (например, из-за конфигурации головки).
 - ***При испытании целых болтов, винтов и шпилек должны использоваться нагрузки, указанные в табл. 6-9.
- *⁴Твердость поверхности не должна быть более, чем на 30 единиц по Виккерсу выше измеренной твердости сердцевины изделия при проведении измерений при НВ 0,3. Для класса прочности 10.9 любое повышение твердости поверхности, при котором твердость будет превышать 390 НВ, недопустимо.
 - *В случаях, когда предел текучести не может быть определен, допускается измерение условного предела текучести.

(Измененная редакция, Изм. № 1).

4. КОНТРОЛЬ МЕХАНИЧЕСКИХ СВОЙСТВ

В <u>табл. 5</u> приведены две программы испытаний A и B для контроля механических свойств болтов, винтов и шпилек с использованием методов испытаний, приведенных в разд. 6.

Программа В является предпочтительной для всех изделии и обязательной для изделий с разрывной нагрузкой менее 500 кН.

Программа А применяется для испытания образцов, полученных механической обработкой, и изделий, площадь сечения стержня которых меньше номинальной площади сечения резьбового участка.

В табл. 4 приведен ключ к программам испытаний (см. табл.5).

Таблица 4

	Болты, винты и шпильки с	Болты, винты и шпильки с
Размеры	диаметром резьбы $d \le 4$ мм или	диаметром резьбы $d>4$ мм и
	длиной l <2.5 d *	длиной $l≥2,5d$
Испытание, определяющее приемку	0	•

^{*} Также болты и винты со специальной конструкцией головки или стержня, менее прочной, чем резьбовой участок.

Таблица 5

			Программа испытан	ний А		Программа испытан	нии В	
				Класс пр	очности		Кла прочн	
Группа испытаний		Свойства	Метод испытания	3.6 4.6 5.6 6.6	8.8 9.8 10.9 12.9	Метод испытания	3.6 4.6 4.8 5.6 5.8 6.6 6.8	8.8 9.8 10.9 12.9
I	3.1 и 3.2	Минимальное временное сопротивление $\sigma_{\scriptscriptstyle B}$	6.1. Испытание на растяжение	•	•	6.2. Испытание на растяжение	•	•
	3.3	Минимальная твердость**		0	0		0	0
	3.4 и 3.5	Максимальная твердость		•	•		•	•
			6.3. Измерение твердости	0	0	6.3. Измерение твердости***	0	0
	3.6	Максимальная твердость поверхности			•			•
	3.7	Минимальный предел текучести, $\sigma_{\scriptscriptstyle T}$	6.1. Испытание на растяжение	•				
	3.8	Условный предел текучести $\sigma_{0,2}$	6.1. Испытание на растяжение.		•			
II	3.9	Напряжение от пробной нагрузки (σ_t)				6.4. Испытание пробной нагрузкой	•	•
	3.10	Минимальное относительное удлинение σ_5	6.1. Испытание на растяжение	•	•			
III	3.11	Прочность на разрыв на косой шайбе* ⁴				6.5. Испытание на разрыв на косой шайбе	•	•
IV	3.12	Минимальная ударная вязкость	6.6. Испытание на ударную вязкость* ⁵	*6 •	•			
	3.13	Прочность соединения головки со стержнем* ⁷				6.7. Испытание на прочность соединения головки со стержнем		0
V	3.14	Максимальная зона обезуглероживания	6.8. Испытание на обезуглероживание		•	6.8. Испытание на обезуглероживание		•
	3.15 Минимальная температура отпуска		6.8а. Испытание на повторный отпуск		•	6.8а. Испытание на повторный отпуск		•
	3.16		6.9. Контроль качества поверхности	•	•	6.9. Контроль качества поверхности	•	•

- * Если испытание на разрыв на косой шайбе дает удовлетворительные результаты, испытание на растяжение не проводят.
- ** Минимальная твердость относится только к изделиям c номинальной длиной $l < 2, b \ d$ и другим изделиям, которые не могут быть подвергнуты испытанию на растяжение (например из-за конфигурации головки).
- *** Твердость может быть измерена по Виккерсу, Бринеллю или Роквеллу. При разногласиях решающее значение для приемки имеет измерение твердости по Виккерсу.
 - *4 Болты и винты со специальной конструкцией головки, менее прочной, чем резьбовой участок, не подвергаются испытанию на разрыв на косой шайбе.
 - *⁵Только для болтов, винтов и шпилек с диаметром резьбы *d*≥16 мм и только по требованию потребителя.
 - *⁶Только класс, прочности 5.6.
 - $*^7$ Только для болтов и пиктов с диаметром резьбы $d \le 16$ мм и при длинах, слишком малых для испытания на разрыв на косой шайбе.

(Измененная редакция, Изм. № 1).

5. МИНИМАЛЬНЫЕ РАЗРУШАЮЩИЕ НАГРУЗКИ И ПРОБНЫЕ НАГРУЗКИ

В табл. 6 и 7 приведены минимальные разрушающие нагрузки и пробные нагрузки для болтов, винтов и шпилек с крупной резьбой.

В табл. 8 и 9 - для болтов, винтов и шпилек с мелкой резьбой.

Таблица 6 Минимальные разрушающие нагрузки для болтов, винтов и шпилек с крупной резьбой

Номинальный	Шаг	Номинальная		Минима	альная р	разруша	ющая н	агрузка	Н, для	класса і	трочност	И
диаметр резьбы d , мм	резьбы <i>Р</i> , мм	площадь сечения A_s , мм ²	3.6	4.6	4.8	5.6	5.8	6.6; 6.8	8.8	9.8	10.9	12.9
3	0,5	5,03	1660	2010	2110	2510	2620	3020	4020	4530	5230	6140
3,5	0,6	6,78	2240	2710	2850	3390	3530	4070	5420	6100	7050	8270
4	0,7	8,78	2900	3510	3690	4390	4570	5270	7020	7900	9130	10700
5	0,8	14,2	4690	5680	5960	7100	7380	8520	11350	12800	14800	17300
6	1	20,1	6630	8040	8440	10000	10400	12100	16100	18100	20900	24500
7	1	28,9	9540	11600	12100	14400	15000	17300	23100	26000	30100	35300
8	1,5	36,6	12100	14600	15400	18300	19000	22000	29200	32900	38100	44600
10	1,5	58,0	19100	23200	24400	29000	30200	34800	46400	52200	60300	70800
12	1,75	84,3	27800	33700	35400	42200	43800	50600	67400	75900	87700	103000
14	2	115	38000	46000	48300	57500	59800	69000	92000	104000	120000	140000
16	2	157	51800	02800	05900	78500	81600	94000	125000	141000	163000	192000
18	2,5	192	63400	76800	80600	96000	99800	115000	159000	-	200000	234000
20	2,5	245	80800	98000	103000	122000	127000	147000	203000	-	255000	299000
22	2,5	303	100000	121000	127000	152000	158000	182000	252000	-	315000	370000
24	3	353	116000	141000	148000	176000	184000	212000	293000	-	367000	431000
27	3	459	152000	184000	193000	230000	239000	275000	381000	-	477000	560000
30	3,5	561	185000	224000	236000	280000	292000	337000	466000	-	583000	684000
33	3,5	694	229000	278000	292000	347000	361000	416000	576000	-	722000	847000
36	4	817	270000	327000	343000	408000	425000	490000	678000	-	850000	997000
39	4	976	322000	390000	410000	488000	508000	586000	810000	-	1020000	1200000
42	4,5	1120	370000	448000	470000	560000	582000	672000	930000	-	1165000	136600
45	4,5	1306	431000	542000	550000	653000	679000	784000	108400	-	1360000	1590000
48	5,0	1472	486000	586000	618000	736000	765000	883000	122200	-	1531000	1700000

Таблица 7 Пробные нагрузки для болтов, винтов и шпилек с крупной резьбой

Номинальный	Шаг	Номинальная			Проб	ная нагр	эузка, Н	[, для кл	асса про	очности		
	резьбы Р, мм	площадь сечения A_s , мм ²	3.6	4.6	4.8	5.6	5.8	6.6; 6.8	8.8	9.8	10.9	12.9
3	0,5	5,03	910	1130	1560	1410	1910	2210	2920	3270	4180	4880
3,5	0,6	6,78	1220	1530	2100	1900	2580	2980	3940	4410	5630	6580
4	0,7	8,78	1580	1980	2720	2460	3340	3860	5100	5710	7290	8520
5	0,8	14,2	2560	3200	4400	3980	54100	6250	8230	9230	11800	13800
6	1	20,1	3620	4520	6230	5630	7640	8840	11600	13100	16700	19500
7	1	28,9	5200	6500	8960	8090	11000	12700	16800	18800	24000	28000
8	1,5	36,6	6590	8240	11400	10200	13900	16100	21200	23800	30400	35500
10	1,5	58,0	10400	13000	18000	16200	22000	25500	33700	37700	48100	56300
12	1,75	84,3	15200	19000	26100	23600	32000	37100	48900	54800	70000	81800
14	2	115	20700	25900	35600	32200	43700	50600	66700	74800	95500	112000
16	2	157	28300	35300	48700	44000	59700	69100	91000	102000	130000	152000
18	2,5	192	34600	43200	59500	53800	73000	84500	115000	-	159000	186000
20	2,5	245	44100	55100	76000	68600	93100	108000	147000	-	203000	238000
22	2,5	303	54500	68200	93900	84800	115000	133000	182000	-	252000	294000
24	3	353	63500	79400	109000	98800	134000	155000	212000	-	293000	342000
27	3	459	82600	103000	142000	128000	174000	202000	275000	-	381000	44500

Номинальный	Шаг	Номинальная			Проб	ная нагј	рузка, Н	, для кл	асса про	очности		
	резьбы <i>Р</i> , мм	площадь сечения A_s , мм ²	3.6	4.6	4.8	5.6	5.8	6.6; 6.8	8.8	9.8	10.9	12.9
30	3,5	561	101000	126000	174000	157000	213000	247000	337000	-	466000	544000
33	3,5	694	125000	156000	215000	194000	264000	305000	416000	-	570000	673000
36	4	817	147000	184000	253000	229000	310000	359000	490000	-	678000	792000
39	4	976	176000	220000	303000	273000	371000	429000	586000	-	810000	947000
42	4,5	1120	202000	252000	347000	314000	426000	493000	672000	-	930000	1086000
45	4,5	1306	235000	294000	405000	366000	496300	574500	784000	-	1084000	1267000
48	5,0	1472	265000	33100	456000	412000	559000	648000	783000	-	122200	1428000

Таблица 8 Минимальные разрушающие нагрузки для болтов, винтов и шпилек с мелкой резьбой

Номинальный	Шаг	Номинальная		Миним	альная	разруша	ающая н	агрузка	, Н, для і	класса п	рочности	1
	резьбы <i>Р</i> , мм	площадь сечения A_s , мм 2	3.6	4.6	4.8	5.6	5.8	6.6; 6.8	8.8	9.8	10.9	12.9
8	1	39,2	12900	15700	16500	19600	20400	23500	31360	35300	40800	47800
10	1,25	61,2	20200	24500	25700	30600	31800	36700	49000	55100	63600	74700
12	1,25	92,1	30400	36800	38700	46000	47900	55300	73700	82900	95800	112000
14	1,5	125	41200	50000	52500	62500	65000	75000	100000	112000	130000	152000
16	1,5	167	55100	66800	70100	83500	86800	100000	134000	150000	174000	204000
18	1,5	216	71300	86400	90700	108000	112000	130000	179000	-	225000	264000
20	1,5	272	89800	109000	114000	130000	141000	163000	226000	-	283000	332000
22	1,5	333	110000	133000	140000	166000	173000	200000	276000	-	346000	406000
24	2	384	127000	154000	161000	192000	200000	230000	319000	-	399000	469000
27	2	496	164000	194000	208000	248000	258000	298000	412000		516000	605000
30	2	621	205000	248000	261000	310000	323000	373000	515000	-	646000	758000
33	2	761	251000	304000	320000	380000	396000	457000	632000	-	791000	928000
36	3	865	285000	346000	363000	432000	450000	519000	718000	-	900000	1050000
39	3	1030	340000	112000	433000	515000	536000	618000	855000	-	1070000	1260000
42	3	1205	398000	482000	506000	603500	627000	723000	1000000		1253000	1470000
45	3	1400	162000	560000	588000	700000	728000	840000	1120000	-	1456000	1708000
48	3	1603	529000	641000	673000	802000	834000	962000	1330000	-	1667000	195600

Таблица 9 **Пробные нагрузки для болтов, винтов и шпилек с мелкой резьбой**

Номинальный	Шаг	Номинальная			Проб	ная наг	эузка, Н	, для кл	асса про	очности		
	та резьбы <i>Р</i> , мм	площадь сечения A_s , мм ²	3.6	4.6	4.8	5.0	5.8	0.6; 0.8	8.8	9.8	10.9	12.9
8	1	39,2	7060	8820	12200	11000	14900	17200	22700	25500	32500	38000
10	1,25	61,2	11000	13800	19000	17100	23300	26900	35500	39800	50800	59400
12	1,25	92,1	16600	20700	28600	25800	35000	40500	53400	59900	76400	89300
14	1,5	125	22500	28100	38800	35000	47500	55000	72500	81200	104000	121000
16	1,5	167	30100	37600	51800	46800	63500	73500	96900	109000	139000	162000
18	1,5	216	38900	48600	67000	60500	82100	95000	130000	-	179000	210000
20	1,5	272	49000	61200	84300	76200	103000	120000	163000	-	226000	264000
22	1,5	333	59900	74900	103000	93200	126000	146000	200000	-	276000	323000
24	2	384	69100	86400	119000	108000	146000	169000	230000	-	319000	372000
27	2	496	89300	112000	154000	139000	188000	218000	298000	-	412000	481000
30	2	621	112000	140000	192000	174000	236000	273000	373000	-	515000	602000
33	2	761	137000	171000	236000	213000	289000	335000	457000	-	632000	738000
36	3	865	156000	195000	268000	242000	329000	381000	519000	-	718000	838000
39	3	1030	185000	232000	319000	288000	391000	453000	618000	-	855000	999000
42	3	1205	217000	271000	374000	337000	458000	530000	723000	-	1000000	1170000
45	3	1400	252000	315000	434000	392000	532000	616000	840000	-	1160000	1360000
48	3	1603	289000	361000	497000	449000	609000	705000	962000	-	1330000	1550000

6. МЕТОДЫ ИСПЫТАНИЙ

6.1. Испытание на растяжение образцов, выточенных из крепежных изделий

Методика проведения испытания - по ГОСТ 1497-84.

При проведении испытания на растяжение на выточенных образцах определяют следующие механические свойства:

- а) временное сопротивление $\sigma_{\rm B}$;
- б) предел текучести $\sigma_{\text{т}}$ или условный предел текучести $\sigma_{0.2}$;
- в) относительное удлинение

$$\delta_5 = \frac{L_{\rm c} - L_0}{L_0} \times 100.$$

Образец для испытаний

Для проведения испытания на растяжение применяют образец, показанный на $\underline{\text{черт.}}$ 1.

Черт. 1

d - номинальный диаметр резьбы;

 d_0 -диаметр образца для испытании (d_0 менее внутреннего диаметра резьбы);

b - длина резьбы (b ≥ d);

 $L_0 = 5d_0$ или ($^{5,65\sqrt{S_0}}$);

 $L_{\rm c}$ - длина цилиндрической части образца (L_0+d_0);

 $L_{\rm t}$ - общая длина образца ($L_{\rm c}$ +2R+b);

 $L_{\rm u}$ - длина после разрушения;

 S_0 - площадь поперечного сечения;

R - радиус галтели ($R \ge 4$ мм).

При вытачивании образца из термообработанного болта или винта с диаметром резьбы более 16 мм, допускается уменьшение диаметра стержня не более чем на 25% первоначального диаметра (около 44% площади поперечного сечения).

6.2. Испытание на растяжение целых болтов, винтов и шпилек

Испытание на растяжение целых болтов, винтов и шпилек проводят аналогично испытанию на растяжение выточенных образцов (см. $\underline{\pi}$. 6.1). Это испытание проводят для определения временного сопротивления. Расчет временного сопротивления выполняет по площади поперечного сечения.

$$A_{\rm s} = \frac{\pi}{4} \left(\frac{d_2 + d_3}{2} \right)^2,$$

где d_2 - средний диаметр резьбы;

 d_3 - внутренний диаметр резьбы.

При проведении испытания длина нагруженной резьбовой части должна быть равна

одному диаметру резьбы. Изделие считают выдержавшим испытание, если разрушение происходит по стержню или резьбе, но не в месте соединения головки со стержнем. Гайка, применяемая при испытании, должна быть высотой не менее 0,8 диаметра резьбы.

Скорость нагружения, определяемая свободно движущимся ползуном, не должна превышать 25 мм/мин. Зажимы разрывной машины должны быть самоцентрирующимися во избежание бокового нагружения образца.

6.3. Измерение твердости

При обычной проверке твердость болтов, винтов и шпилек может определяться на головке, торце или стержне после удаления покрытия и соответствующей подготовки образца.

Для классов прочности 4.8, 5.8 и 6.8 твердость должна определяться только на торце болта, винта и шпильки.

Если твердость превышает максимально допустимое значение, должен быть проведен вторичный замер на поперечном сечении на расстоянии одного диаметра от торца стержня в точке, удаленной от поверхности на величину половины радиуса. В этой точке максимально допустимая твердость не должна быть выше нормы. В сомнительных случаях решающим для приемки является испытание твердости по Виккерсу.

Твердость поверхности измеряют на торцах или гранях шестигранника, которые должны быть слегка отшлифованы или отполированы, чтобы обеспечить необходимую точность результатов измерения.

Решающим испытанием при контроле твердости поверхности является измерение по Виккерсу с нагрузкой 300 г.

Значения твердости поверхности при HB 0,3 должны сравниваться со значениями твердости сердцевины материала при HB 0,3 для реальной оценки и определения относительного превышения до 30 единиц по Виккерсу. Превышение более чем на 30 единиц по Виккерсу указывает на науглероживание.

Для классов прочности 8.8-12.9 разность между твердостью сердцевины и твердостью поверхности является решающей для оценки состояния науглероживания в поверхностном слое болта, винта или шпильки. При этом имеется ввиду, что прямой зависимости между твердостью и теоретическим временным сопротивлением может и не быть. Максимальные значения твердости выбирают по другим, не связанным с теоретическими максимальными напряжениями, соображениям (например с целью избегания хрупкости).

 Π р и м е ч а н и е. Следует четко разграничивать повышение твердости, вызванное науглероживанием и повышение твердости в результате термообработки или холодного деформирования поверхности.

6.2, 6.3. (Измененная редакция, Изм. № 1).

- 6.3.1. Измерение твердости по Виккерсу по ГОСТ 2999-75.
- 6.3.2. Измерение твердости по Бринеллю по ГОСТ 9012-59.
- 6.3.3. Измерение твердости по Роквеллу по ГОСТ 9013-59.

6.4. Испытание пробной нагрузкой

Испытание пробной нагрузкой состоит из следующих основных операций:

- а) приложение заданной пробной нагрузки (черт. 2);
- б) измерение остаточного удлинения (если оно имеется), возникающего под действием пробной нагрузки.

 $d_{\rm h}$.- диаметр отверстия по второму ряду ГОСТ 11284-75; A - требуемый вид контакта между сферической поверхностью измерительного штифта и конической поверхностью отверстия в торце болта

Черт. 2

Пробная нагрузка должна быть приложена по оси болта (винта, шпильки) на обычной разрывной машине. Полная пробная нагрузка должна выдерживаться в течение 15 с. Длина свободной части резьбы, находящейся под нагрузкой, должна быть равной 6 шагам резьбы (6P).

Для болтов и винтов, имеющих резьбу до головки, длина свободной резьбовой части, находящейся под нагрузкой, должна быть как можно ближе к 6 шагам резьбы.

Для измерения остаточного удлинения на торцах, болта (винта, шпильки) сверлят центровые отверстия с конусом 60°. До и после приложения нагрузки изделие устанавливают на призму измерительного прибора между двумя измерительными штифами со сферическими концами. При измерениях следует применять перчатки или щипцы, чтобы погрешность измерения свести до минимума.

По условиям испытаний пробной нагрузкой длина болта, винта или шпильки после нагружения должна быть такой же, как и до приложения нагрузки, в пределах допуска $\pm 12,5$ мкм на погрешность измерения.

Скорость нагружения, определяемая свободно движущимся ползуном, не должна превышать 3 мм/мин. Захваты машины должны быть самоцентрирующимися, чтобы исключить боковое нагружение образца.

Из-за влияния некоторых непостоянных величин, таких как отклонение от соосности и прямолинейности (плюс погрешность измерения), при первоначальном нагружении пробной нагрузкой удлинение может оказаться больше допускаемого. В таких случаях изделия могут быть повторно испытаны нагрузкой, превышающей первоначальную на 3%.

Результат испытания можно считать удовлетворительным, если после повторного нагружения длина изделия будет такой же, как после первого (с допуском на погрешность измерения 12,5 мм).

(Измененная редакция, Изм. № 1).

6.5. Испытание на разрыв на косой шайбе

Испытание болтов и винтов на разрыв на косой шайбе должно проводиться в соответствии с <u>черт. 3</u>.

^{*}Допускается фаска под углом 45°.

Черт. 3

Твердость косой шайбы - не менее 45 HRC₃. Размеры косой шайбы приведены в табл. 9a, 10.

Таблипа 9а

					M	M						
Номинальный диаметр резьбы <i>d</i>	3	3,5	4	5	6	7	8	10	12	14	16	18
$d_{ m h}$	3,4	3,9	4,5	5,5	6,6	7,6	9,0	11,0	13,5	15,5	17,5	20,0
R	0,7	0,7	0,7	0,7	0,7	0,8	0,8	0,8	0,8	1,3	1,3	1,3

Продолжение табл. 9а

Номинальный диаметр резьбы <i>d</i>	20	22	24	27	30	33	36	39	42	45	48
$d_{ m h}$	22,0	24,0	26,0	30,0	33,0	36,0	39,0	42,0	45,0	48,0	52,0
R	1,3	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6

Таблипа 10

	Класс прочности для							
	болтов и винтов с дл	пиной гладкой части	болтов и винтов резьбой до головки или с					
Номинальный диаметр резьбы d , мм	стерж	ня ≥2 <i>d</i>	длиной гладкой части стержня $<2d$					
	3.6, 4.6, 4.8, 5.6. 5.8, 8.8, 6.6, 9.8, 10.9	6.6, 12.9	3.6, 4.6, 4.8, 5.6, 5.8, 8.8, 6.6, 9.8, 10.9	6.8, 12.9				
		Угол кли	на α±30°					
<i>d</i> ≤f20	10°	6°	6°	4°				
20< <i>d≤</i> 48	6°	4°	4°	4°				

Расстояние от сбега резьбы болта до контактной поверхности гайки зажимного устройства должно быть равно диаметру резьбы d. Косая шайба устанавливается под головкой болта. Испытание на растяжение проводится до наступления разрушения болта.

Результаты испытания считаются удовлетворительным, если разрыв болта произошел в стержне или резьбе болта, но не в месте перехода от головки к стержню. При этом должно выполняться требование по минимальному временному сопротивлению (либо при испытании на косой шайбе, либо в дополнительном испытании на растяжение без косой шайбы) в соответствии с значениями, предусмотренными для соответствующих классов прочности.

Винты с резьбой до головки считаются выдержавшими испытания, если трещина, вызывающая разрушение, начинается на свободном участке резьбы (даже если она распространяется в момент разрушения на округленно под головкой или на головку).

Для изделий класса точности C радиус R для шайбы рассчитывается по формуле

$$R = \frac{d_{\rm a \, max} + d_{\rm s \, min}}{2} + 0.2,$$

где $d_{\text{a max}}$ - наибольший диаметр окружности сопряжение сопряжения под головкой с опорной плоскостью;

 $d_{
m s\,min}$ - наименьший диаметр стержня болта.

Для изделий с диаметром опорной поверхности головки более 1,7d, которые не прошли испытание, головка может быть подвергнута механической обработке до 1,7d и испытание проводится повторно, используя угол клина в соответствии с $\underline{\text{табл. }}10$.

Для изделий с диаметром опорной поверхности головки более 1,9~d угол клина 10° может быть уменьшен до 6° .

(Измененная редакция, Изм. № 1).

6.6. Определение ударной вязкости

Определение ударной вязкости должно проводиться по <u>ГОСТ 9454-78</u> на образцах типа 8 с U-образным надрезом. Образец для испытания вырезается из болтов, винтов и шпилек в продольном направлении, возможно ближе к поверхности.

Ненадрезанная сторона образца должна располагаться как можно ближе к поверхности болта. Испытанию подлежат изделия с диаметром резьбы $d \ge M16$.

6.7. Испытание на прочность соединения головки со стержнем

Испытание на прочность соединения головки со стержнем должно проводиться в соответствии с черт. 4.

Значения $d_{\rm h}$ и R - по <u>табл. 9</u>а. Толщина матрицы - более 2 d. Значения угла β - по <u>табл. 11</u>.

После нескольких ударов молотком головка должна согнуться на угол 90° - β без следов трещин в округлении под головкой при контроле с увеличением не менее 8^{\times} и не более 10^{\times} . Винты с резьбой до головки считаются выдержавшими испытания, даже если в первом витке резьбы появятся трещины, но головка не отрывается.

Черт. 4

Таблица 11

Класс прочности	3.6; 4.6; 5.6	4.8; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9
Угол β	60°	80°

Испытанию подлежат болты и винты с диаметром резьбы $d \le M16$, имеющие недостаточную длину, чтобы провести испытание на разрыв на косой шайбе.

Данное испытание может проводиться и для более длинных болтов и винтов, однако решающим для них является испытание на косой шайбе.

(Измененная редакция, Изм. № 1).

6.8. Проверка обезуглероживания

Используя подходящий метод измерения (<u>пп. 6.8.2.1</u> и 6.8.2.2) на продольном сечении резьбового участка, проверяют соответствие установленным нормам высоты зоны основного металла (E) и глубины зоны полного обезуглероживания (G), (черт. 5).

Минимальное значение E и максимальное значение G указаны в <u>табл. 3</u>.

1 - частичное обезуглероживание; 2 - полное обезуглероживание; 3 - основной металл: H_1 - высота профиля наружной резьбы. Значения H_1 приведены в <u>табл. 12</u>.

Черт. 5

Таблица 12

Шаг резьбы, P^* , мм		0,5	0,6	0,7	0,8	1	1,25	1,5	1,75	2	2,5	3	3,5	4
Н ₁ , мм		0,307	0,368	0,429	0,491	0,613	0,767	0,920	1,074	1,227	1,534	1,840	2,147	2,454
Е, мм не менее для классов	8.8 9.8	0,154	0,184	0,215	0,245	0,307	0,384	0,460	0,537	0,614	0,767	0,920	1,074	1,227
прочности	10.9	0,205	0,245	0,286	0,327	0,409	0,511	0,013	0,710	0,818	1,023	1,227	1,431	1,636
	12.9	0,230	0,276	0,322	0,308	0,400	0,575	0,090	0,806	0,920	1,151	1,380	1,610	1,811

^{*}P≤1 мм - только для микроскопического метода.

- 6.8.1. Определения
- 6.8.1.1. **Твердость основного металла** твердость в точке, расположенной максимально близко к поверхности (от оси к наружному диаметру), непосредственно перед зоной с увеличением или уменьшением твердости, вызываемым науглероживанием или обезуглероживанием.
- 6.8.1.2. Обезуглероживание снижение содержания углерода на поверхности изделий из стали.
- 6.8.1.3. **Частичное обезуглероживание** обезуглероживание, вызывающее незначительное отличие в структуре отпущенного мартенсита и значительное снижение твердости по сравнению с твердостью примыкающей зоны основного металла.
- 6.8.1.4. **Полное обезуглероживание** обезуглероживание с потерей такого количества углерода, которая при металлографическом анализе даст картину четко выраженных зерен феррита.
- 6.8.1.5. Восстановление углерода процесс восстановления в поверхностном слое углерода, потерянного при термообработке, путем выдерживания в печи с контролируемым потенциалом.
- 6.8.1.6. **Науглероживание** процесс насыщения поверхности углеродом в количестве, превышающем его содержание в основном металле.
 - 6.8.2. Методы измерения

6.8.2.1. Микроскопический метод

Метод позволяет определять параметры - E и G. Образец, предназначенный для исследования, вырезают по оси резьбы на расстоянии одного диаметра от конца болта, винта или шпильки, после всех операций термообработки, которым должно быть подвергнуто изделие. Для шлифовки и полировки образец устанавливают в зажимы или заливают пластиком (последнее является предпочтительным).

После заливки образец шлифуют и полируют в соответствии с требованиями металлографического анализа.

Для выявления изменений в микроструктуре, вызванных обезуглероживанием, образец подвергают травлению в 3%-м растворе азотной кислоты в этиловом спирте.

Микроскопическое исследование проводят при увеличении 100^{\times} , если другой договоренности нет.

Если при исследовании применяют микроскоп с матовым экраном, то значение обезуглероживания измеряют непосредственно по шкале. Если для измерения используют окуляр, то он должен иметь сетку или шкалу.

6.8.2.2. Метод измерения по твердости

Решающий метод для частичного обезуглероживания

Этот метод применяется для резьбы с шагом 1,25 мм и более. Твердость измеряют в трех точках в соответствии с <u>черт. 6</u>. Значения параметра E приведены в <u>табл. 3</u>. Нагрузка при измерении твердости должна быть 300 г.

Черт. 6

Определение твердости в точке 3 следует проводить на линии среднего диаметра резьбы на витке, примыкающем к витку, на котором производятся измерения в точке 1

Значение твердости по Виккерсу в точке 2 должно быть равно или больше чем в точке 1 минус 30 единиц по Виккерсу. В этом случае высота необезуглероженной зоны E должна быть равна, как минимум, значению указанному в табл. 12.

Значение твердости по Виккерсу в точке 3 должно быть равно или меньше чем в точке 1 плюс 30 единиц по Виккерсу. Увеличение твердости более чем на 30 единиц по Виккерсу означает, что имеет место науглероживание.

Полное обезуглероживание до максимального значения, указанного в <u>табл. 3</u>, не может быть определено измерением твердости.

6.8.2.1, 6.8.2.2. (Измененная редакция, Изм. № 1).

6.8а. Испытание на повторный отпуск

Повторный отпуск проводят при температуре на 10°C ниже, чем установленная для данного изделия минимальная температура отпуска, в течение 30 мин. Среднеарифметическое трех значении твердости болта, винта или шпильки, измеренной до повторного отпуска и после него, не должно отличаться более чем на 20 единиц по Виккерсу.

(Введен дополнительно, Изм. № 1).

6.9. Контроль качества поверхности

Контроль качества поверхности болтов, винтов и шпилек - по ГОСТ 1759.2-82.

При испытаниях по программе А контроль болтов, винтов и шпилек проводят перед механической обработкой.

(Измененная редакции, Изм. № 1).

ПРИЛОЖЕНИЕ 1 Рекомендуемое

Рекомендуемые технологические процессы изготовления болтов, винтов и шпилек из нелегированных и легированных сталей и марки сталей

Класс прочности	Технологические процессы	Марка стали	Обозначение стандартов
3.6	Горячая штамповка Холодная штамповка с последующей смягчающей термообработкой	10, 10 кп	ГОСТ 10702-78
4.6	Горячая штамповка С последующей смягчающей термообработкой	20	ГОСТ 1050-38
4.8	Холодная штамповка	10, 10 кп	ГОСТ 10702-78
5.6	Горячая штамповка Холодная штамповка с последующей смягчающей термообработкой	30, 35	ΓΟCT 1050-83, <u>ΓΟCT 4543-71</u> , ΓΟCT 10702-78
5.8	Холодная штамповка	10, 10 кп 20, 20 кп	
6.6	Горячая штамповка с последующими закалкой и отпуском Холодная штамповка с последующей закалкой и отпуском Горячая штамповка	35 45, 40 Γ	<u>ΓΟCT 1050-88</u> , <u>ΓΟCT 4543-71</u> , <u>ΓΟCT 5663-79</u> , <u>ΓΟCT 10702-78</u>
6.8	Холодная штамповка	20, 20 кп	<u>ΓΟCT 1050-88</u> , ΓΟCT 5603-79, ΓΟCT 10702-78
8.8-12.9	Горячая штамповка с последующими закалкой и отпуском Холодная штамповка с последующей закалкой н отпуском Резание с последующей закал-кон и отпуском Холодная штамповка из термоупрочненного металла	, ,	ГОСТ 45.13-71, ГОСТ 10702-78

Свойства крепежных изделий при повышенных температурах

	Температура, °С								
Класс прочности	+20 +100 +200 +250				+300				
	Минимальный предел текучести $\sigma_{\scriptscriptstyle T}$ или условный предел текучести $\sigma_{0,2},$ Н/мм ²								
5.6	300	270	230	215	195				
8.8	640	590	540	510	480				
10.9	940	875	790	745	705				
12.9	1100	1020	925	875	825				

Приведенные в таблице справочные данные указывают на примерное снижение механических свойств крепежных изделий при растяжении в условиях повышенных температур. Эти данные не должны использоваться в качестве требований к болтам, винтам и шпилькам при испытаниях.

(Введено дополнительно, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР РАЗРАБОТЧИКИ

- Б. М. Ригмант, Н. Г. Андреева, Т. Е. Юрченко
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.12.87 № 5112
- 3. Срок проверки 1993г.
- 4. Стандарт полностью соответствует международному стандарту ИСО 898/1-78
- 5. Взамен ГОСТ 1759-70 (в части механических свойств и методов испытаний болтов, винтов и шпилек)

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта приложения
<u>ΓΟCT 1050-88</u>	<u>Приложение 1</u>
<u>ΓΟCT 1497-84</u>	<u>6.1</u>
ГОСТ 1759.0-87	<u>2</u>
ГОСТ 1759.2-82	<u>6.9</u>
<u>ΓΟCT 2999-75</u>	<u>6.3.1</u>
<u>ΓΟCT 4543-71</u>	<u>Приложение 1</u>
<u>ΓΟCT 5663-79</u>	<u>Приложение 1</u>
<u>ΓΟCT 9012-59</u>	<u>6.3.2</u>
ГОСТ 9013-59	<u>6.3.3</u>
<u>ΓΟCT 9454-78</u>	<u>6.6</u>
ГОСТ 10702-78	<u>Приложение 1</u>
ГОСТ 11284-75	6.4
<u>ΓΟCT 24705-81</u>	Вводная часть

7. ПЕРЕИЗДАНИЕ (октябрь 1990 г.) с Изменением № 1, утвержденным в ноябре 1989 г. (ИУС 2-90)

СОДЕРЖАНИЕ

1. Система обозначений	1
2. Материал	
3. Механические свойства	3
4. Контроль механических свойств.	

5. Минимальные разрушающие нагрузки и пробные нагрузки	9
6. Методы испытаний	
Приложение 1 Рекомендуемые технологические процессы изготовления болтов,	
винтов и шпилек из нелегированных и легированных сталей и марки сталей	19
Приложение 2 Свойства крепежных изделий при повышенных температурах	20