Notas Curso Topología I Axiomas de Numerabilidad

Cristo Daniel Alvarado

5 de junio de 2024

Índice general

5 .	Axiomas de Numerabilidad		
	5.1.	Conceptos Fundamentales	2
	5.2.	Espacios Primero Numerables	2
	5.3.	Espacios Segundo Numerables	5
6.	Espacios Conexos		12
	6.1.	Conceptos Fundamentales	12
	6.2.	Espacios Localmente Conexos	25

Capítulo 5

Axiomas de Numerabilidad

5.1. Conceptos Fundamentales

Observación 5.1.1

De ahora en adelante numerable será equivalente a lo sumo numerable.

Definición 5.1.1

Sea (X, τ) un espacio topológico.

- 1. Sean $x \in X$ y \mathcal{U} una colección de vecindades de x. Diremos que \mathcal{U} es un sistema fundamental de vecindades de x si dada $V \in \mathcal{V}(x)$ existe $U \in \mathcal{U}$ tal que $U \subseteq V$. Si \mathcal{U} es numerable, \mathcal{U} se dice un sistema fundamental numerable de vecindades de x.
- 2. Si dado $x \in X$ existe un sistema fundamental numerable de vecindades de x, el espacio (X, τ) se dice **primero numerable**.
- 3. El espacio (X, τ) se dice un **espacio segundo numerable** si su topología tiene una base numerable.
- 4. El espacio (X, τ) se dice un **espacio separable** si existe $A \subseteq X$ tal que A es numerable y además $\overline{A} = X$ (es decir que es denso en X).
- 5. El espacio (X, τ) se dice un **espacio de Lindelöf** si cada cubierta abierta del espacio tiene una subcubierta numerable.

5.2. Espacios Primero Numerables

Proposición 5.2.1

Sea (X, τ) un espacio primero numerable. Si $Y \subseteq X$ entonces (Y, τ_Y) es primero numerable.

Demostración:

Sea $Y \subseteq X$. Sea $y \in Y$, en particular $y \in X$. Como (X, τ) es primero numeable, existe un sistema fundamental de vecindades de y en (X, τ) , digamos \mathcal{U}' , es decir que para este \mathcal{U}' se cumple:

$$\forall V \in \mathcal{V}(y) \exists U \in \mathcal{U}' \text{ tal que } U \subseteq V$$

Sea

$$\mathcal{U} = \left\{ Y \cap U \middle| U \in \mathcal{U}' \right\}$$

Tenemos que $U \in \mathcal{U}'$, $Y \cap U$ es una vecindad de y en (Y, τ_Y) y, como \mathcal{U}' es numerable, también \mathcal{U} lo es.

Sea $W \subseteq Y$ una vecindad de y en (Y, τ_Y) , luego existe $V \in \tau$ tal que

$$y \in Y \cap V \subseteq W$$

Como en particular V es una vecindad de y en (X,τ) , entonces existe $U\in\mathcal{U}'$ tal que

$$U \subseteq V$$

luego,

$$Y \cap U \subseteq Y \cap V \subseteq W$$

donde $Y \cap U \in \mathcal{U}$. Así, \mathcal{U} es un sistema fundamental de vecindades de y en (Y, τ_Y) . Como $y \in Y$ fue arbitrario, se sigue que (Y, τ_Y) es primero numerable.

Proposición 5.2.2

La propiedad de ser primero numerable es topológica.

Demostración:

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos homeomorfos tales que (X_1, τ_1) es primero numerable. Sea $f: (X_1, \tau_1) \to (X_2, \tau_2)$ el homeomorfismo entre tales espacios. Veamos que (X_2, τ_2) es primero numeable.

En efecto, sea $x_2 \in X_2$, entonces existe un único $x_1 \in X_1$ tal que $f(x_1) = x_2$. Como (X_1, τ_1) es primero numerable, entonces existe \mathcal{U}_1 sistema fundamental numerable de vecindades de x_1 . Sea

$$\mathcal{U}_2 = \left\{ f(U_1) \middle| U_1 \in \mathcal{U}_1 \right\}$$

Como \mathcal{U}_1 es numerable, \mathcal{U}_2 también lo es. Y, como $U_1 \in \mathcal{U}_1$ es una vecindad de x_1 , entonces $f(U_1)$ es una vecindad de x_2 (por ser f homeomorfismo). Por tanto, \mathcal{U}_2 es una colección de vecindades de x_2 . Ahora, sea $V \in \mathcal{V}(x_2)$ una vecindad de x_2 . Como f es homeomorfismo entonces

$$f^{-1}(V) \in \mathcal{V}(x_1)$$

Luego, existe $U \in \mathcal{U}_1$ tal que

$$U \subseteq f^{-1}(V) \Rightarrow f(U) \subseteq V$$

por ser f biyección, donde $f(U) \in \mathcal{U}_2$.

Así, \mathcal{U}_2 es un sistema fundamental numerable de vecindades de x_2 . Como el elemento x_2 fue arbitrario, se sigue que (X_2, τ_2) es primero numerable. Luego, la propiedad de ser primero numerable es topológica.

Proposición 5.2.3

Sean $\{(X_k, \tau_k)\}_{k \in \mathbb{N}}$ una familia numerable de espacios topológicos y

$$X = \prod_{k \in \mathbb{N}} X_k$$

Entonces, (X, τ_p) es primero numerable si y sólo si (X_k, τ_k) es primero numerable, para todo $k \in \mathbb{N}$.

Demostración:

 \Rightarrow): Es inmediato del hecho de que la propiedad de ser primero numerable es hereditaria y topológica.

 \Leftarrow): Suponga que (X_k, τ_k) es primero numerable para todo $k \in \mathbb{N}$. Sea $x = (x_n)_{n \in \mathbb{N}} \in X$. Para $x_k \in X_k$ existe

$$\mathcal{U}_k = \left\{ U_m^k \right\}_{m \in \mathbb{N}}$$

sistema fundamental numerable de vecindades de x_k en (X_k, τ_k) . Definimos

$$\mathcal{U} = \left\{ \prod_{l \in \mathbb{N}} A_l \middle| \text{ existe } I = \{i_1, ..., i_t\} \subseteq \mathbb{N} \text{ finito con } i_r < i_s \text{ si } r < s \text{ tal que} \right.$$

$$l \in \mathbb{N} - I \Rightarrow A_l = X_l \text{ y } l \in I \Rightarrow A_k \in \mathcal{U}_l \}$$

veamos que $\mathcal{U} \subseteq \mathcal{V}(x)$ y además \mathcal{U} es un sistema fundamental de vecindades de x. Sea $U = \prod_{t \in \mathbb{N}} U_t$ un básico de la topología producto tal que $x \in U$. Tenemos que existe $I \subseteq \mathbb{N}$ finito tal que

$$l \in \mathbb{N} - I \Rightarrow U_l = X_l \ y \ l \in I \Rightarrow x_l \in U_l \in \tau_l$$

Para $l \in I$ existe $U_{m_l}^l \in \mathcal{U}_l$ tal que $x_l \in U_{m_l}^l \subseteq U_l$. Sea

$$A = \prod_{l \in \mathbb{N}} A_l$$

donde,

$$l \in \mathbb{N} - I \Rightarrow A_l = X_l \text{ y } l \in I \Rightarrow A_l = U_{m_l}^l$$

por tanto, $A \in \mathcal{U}$ y es tal que $x \in A \subseteq U$.

Veamos ahora que \mathcal{U} es numerable. Sea $A = \prod_{l \in \mathbb{N}} A_l \in \mathcal{U}$, entonces existe $I \subseteq \mathbb{N}$ finito, digamos $I = \{i_1, ..., i_t\}$ (ordenados de forma estrictamente creciente y siendo todos distintos) tales que $l \in \mathbb{N} - I$ entonces $A_l = X_l.Y$, si $l \in I$ entonces $A_l = U^l_{m_l} \in \mathcal{U}_l$. Sea $(i_1, ..., i_t, m_{i_1}, ..., m_{i_t}) \in \mathbb{N}^{2t}$.

Definimos la función

$$f:\mathcal{U}\to \bigcup_{t\in\mathbb{N}}\mathbb{N}^{2t}$$

(donde \mathbb{N}^{2t} expresa el producto cartesiano de \mathbb{N} consigo mismo 2t-veces) tal que $A \mapsto (i_1, ..., i_t, m_{i_1}, ..., m_{i_t})$ (siendo el A de la forma en que se expresó anteriormente). Se tiene por la elección de los elementos de \mathcal{U} , que la función f está bien definida y es inyectiva. Por tanto, \mathcal{U} es numerable.

Luego, (X, τ_p) es primero numerable.

Proposición 5.2.4

Sea (X, τ) un espacio primero numerable.

- 1. Sea $A \subseteq X$ y $x \in X$. Entonces $x \in \overline{A}$ si y sólo si existe una sucesión de puntos $\{x_n\}_{n=1}^{\infty}$ de A que converge a x.
- 2. Sean (X', τ') espacio topológico y $f: (X, \tau) \to (X', \tau')$ una función. Entonces, para $x \in X$, f es continua en X si y sólo si para cada sucesión $\{x_n\}_{n=1}^{\infty}$ de puntos en X que converge a x, se tiene que la sucesión $\{f(x_n)\}_{n=1}^{\infty}$ converge a f(x).

Demostración:

De (1): Se probará la doble implicación.

 \Rightarrow): Sea $x \in \overline{A}$ y $\{B_n\}_{n \in \mathbb{N}}$ un sistema fundamental numerable de vecindades de x. Entonces

$$B_1 \cap A \neq \emptyset$$

pues $x \in \overline{A}$ y B_1 es vecindad de x. Tomemos $x_1 \in B_1 \cap A$. Para cada $n \in \mathbb{N}$, como

$$B_1 \cap \cdots \cap B_n$$

es vecindad de x, entonces su intersección con A es no vacía. Tome así $x_n \in B_1 \cap \cdots \cap B_n \cap A$ y constrúyase así la sucesión $\{x_n\}_{n\in\mathbb{N}}$. Veamos que esta sucesión converge a x. En efecto, sea $U \in \tau$ tal que $x \in \tau$. Como este es un sistema fundamental de vecindades, existe $l \in \mathbb{N}$ tal que $B_l \subseteq U$, luego

$$x_{l+m} \in B_l \subseteq U$$

para todo $m \ge 0$. Por tanto, la sucesión converge a x.

 \Leftarrow): Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de puntos de A tal que $x_n \to \infty$. Tomemos $M \in \tau$ tal que $x \in M$, luego existe $k \in \mathbb{N}$ tal que $x_{k+m} \in M$, para todo $m \ge 0$, así $M \cap A \ne \emptyset$. Por tanto, $x \in \overline{A}$.

De (2): Se probará la doble implicación.

 \Rightarrow): Suponga que f es continua en x. Sea $\{x_n\}$ una sucesión de puntos que converge a x. Sea $V \in \tau'$ tal que $f(x) \in V$, entonces $x \in f^{-1}(V)$, donde $f^{-1}(V) \in \tau$ por ser f continua en x. Luego, existe $k \in \mathbb{N}$ tal que

$$x_{k+m} \in f^{-1}(V), \quad \forall m \ge 0$$

es decir que

$$f(x_{k+m}) \in f(f^{-1}(V)) \subseteq V, \quad \forall m \ge 0$$

Por tanto, $\{f(x_n)\}_{n=1}^{\infty}$ converge a f(x).

 \Leftarrow): Veamos que dado $A \subseteq X$ se cumple que $f(\overline{A}) \subseteq \overline{f(A)}$. En efecto, sea $x \in \overline{A}$. Por 1) al ser (X,τ) primero numerable existe una sucesión $\{x_n\}_{n=1}^{\infty}$ de puntos de A que converge a x. Entonces $\{f(x_n)\}_{n=1}^{\infty}$ es una sucesión de puntos de f(A) que converge a f(x). Por tanto, $f(x) \in \overline{f(A)}$ (en la prueba de la suficiencia no es necesario que (X,τ) sea primero numerable, así que en este caso no se ocupa que (X',τ') sea primero numerable). Por tanto, $f(\overline{A}) \subseteq \overline{f(A)}$

5.3. Espacios Segundo Numerables

Proposición 5.3.1

La propiedad de ser segundo numerable es hereditaria.

Demostración:

Sea (X, τ) un espacio topológico segundo numerable y $Y \subseteq X$ subconjunto. Veamos que (Y, τ_Y) es segundo numerable. En efecto, como (X, τ) es primero numerable, existe $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ una base para la topología τ que es a lo sumo numerable. Se tiene que

$$\mathcal{B}' = \left\{ Y \cap B \middle| B \in \mathcal{B} \right\}$$

es una base para τ_Y (por una proposición anterior). Como \mathcal{B} es numerable, se sigue que \mathcal{B}' es numerable. Por tanto, (Y, τ_Y) es segundo numerable.

Proposición 5.3.2

La propiedad de ser segundo numerable es topológica.

Demostración:

Sean (X, τ) y (Y, σ) espacios topológicos homeomorfos con $f: (X, \tau) \to (Y, \sigma)$ el homeomorfismo y, suponga que (X, τ) es segundo numerable y sea $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ una base de τ . Entonces, la por una proposición, la colección:

 $\mathcal{B}' = \left\{ f(B) \middle| B \in \mathcal{B} \right\}$

es una base para la topología σ (por ser f homeomorfismo) la cual es a lo sumo numerable. Por tanto, (Y, σ) es segundo numerable.

Así, la propiedad de ser segundo numerable es topológica.

Ejercicio 5.3.1

Sea $\{(X_n, \tau_n)\}_{n=1}^{\infty}$ una familia de espacios topológicos segundo numerables y, tomemos

$$X = \prod_{n=1}^{\infty} X_n$$

Entonces, (X, τ_p) es segundo numerable.

Demostración:

Teorema 5.3.1

Sea (X, τ) un espacio topológico.

- 1. Si (X, τ) es segundo numerable, entonces es primero numerable.
- 2. Si (X, τ) se segundo numerable, entonces el espacio es de Lindelöf.
- 3. Si (X, τ) es segundo numerable, entonces es separable.

Demostración:

De (1): Sea $\{B_n\}_{n\in\mathbb{N}}$ una base para la topología τ . Tomemos $x\in X$ y defina

$$\mathcal{B}_x = \left\{ B \in \mathcal{B} \middle| x \in B \right\}$$

Se tiene que \mathcal{B}_x es a lo sumo numerable. Sea $U \in \tau$ tal que $x \in U$, luego como \mathcal{B} es base existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$, luego $B \in \mathcal{B}_x$. Por tanto, \mathcal{B}_x es un sistema fundamental de vecindades de x el cual es a lo sumo numerable. Al ser $x \in X$ arbitrario, se sigue que (X, τ) es primero numerable.

De (2): Sea $\{B_n\}_{n\in\mathbb{N}}$ una base para la topología τ y sea \mathcal{A} una cubierta abierta de X. Dado $x\in X$, como A es una cubierta existe $A_x\in\mathcal{A}$ tal que

$$x \in A_x \in \tau$$

luego, existe $B_x \in \mathcal{B}$ tal que $x \in B_x \subseteq A_x$. Sea

$$\mathcal{K} = \left\{ m \in \mathbb{N} \middle| \exists A \in \mathcal{A} \text{ tal que } B_m \subseteq A \right\}$$

por la observación anterior, $\mathcal{K} \neq \emptyset$. Dado $k \in \mathcal{K}$ escogemos un único $A_k \in \mathcal{A}$ tal que $B_k \subseteq A_k$. Sea

$$\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$$

 $\mathcal{A}' \subseteq \mathcal{A}$ es una subcolección a lo sumo numerable.

Sea $x \in X$, tomemos $A \in \mathcal{A}$ tal que $x \in A$. Por ser \mathcal{B} base existe $B_i \in \mathcal{B}$ tal que

$$x \in B_i \subseteq A$$

Luego, $i \in \mathcal{K}$ por ende $x \in A_i$ siendo $A_i \in \mathcal{A}'$. Por tanto:

$$X = \bigcup_{i=1}^{\infty} A_i$$

luego, (X, τ) es Lindelöf.

De (3): Sea $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ base para τ . Dado $n \in \mathbb{N}$ si $B_n \neq \emptyset$, escogemos $x_n \in B_n$ y con estos puntos formamos al conjunto numerable $A = \{x_n | n \in \mathbb{N}\}$.

Veamos que $\overline{A}=X$. En efecto, sea $U\in\tau$ tal que $U\neq\emptyset$, veamos que $U\cap A\neq\emptyset$. En efecto, sea $x\in U$, luego existe $m\in\mathbb{N}$ tal que $x\in B_m\subseteq U$. Como $B_m\cap A\neq\emptyset$ entonces $U\cap A\neq\emptyset$. Se sigue que $\overline{A}=X$.

Proposición 5.3.3

Sean (X, τ) un espacio segundo numerable y \mathcal{B} una base para su topología τ . Entonces, \mathcal{B} contiene una base numerable para τ .

Demostración:

Sea $\mathcal{B} = \{B_{\alpha}\}_{{\alpha} \in I}$ una base para τ y, como (X, τ) es segundo numerable, existe $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$ base a lo sumo numerable de τ .

a. Sea $\mathcal{U} \in \tau$. Definimos:

$$\mathcal{U}^* = \left\{ A \in \mathcal{A} \middle| \exists U \in \mathcal{U} \text{ tal que } A \subseteq U \right\}$$

dado $A \in \mathcal{U}^*$ escogemos un único $U_A \in \mathcal{U}$ tal que $A \subseteq U_A$. Defina

$$\mathcal{U}' = \left\{ U_A \in \mathcal{U} \middle| A \in \mathcal{U}^* \right\}$$

se tiene que \mathcal{U}' es numerable por ser \mathcal{A} numerable. Como $\mathcal{U}' \subseteq \mathcal{U}$, entonces

$$\bigcup \mathcal{U}' \subseteq \bigcup \mathcal{U}$$

Veamos que se cumple la otra contención. Sea $x \in \bigcup \mathcal{U}$, luego existe $U \in \mathcal{U}$ tal que $x \in \mathcal{U}$. Como \mathcal{A} es una base y $U \in \tau$, existe $A \in \mathcal{A}$ tal que

$$x \in A \subseteq U$$

así, $A \in \mathcal{U}^*$, luego $x \in A \subseteq U_A$ por lo cual $x \in \bigcup \mathcal{U}'$. Así,

$$\bigcup \mathcal{U}' = \bigcup \mathcal{U}$$

b. Sea $A \in \mathcal{A}$, $A \in \tau$ luego existe $\mathcal{B}_A \subseteq \mathcal{B}$ tal que

$$A = \bigcup \mathcal{B}_A$$

Por (a) existe $\mathcal{B}'_A \subseteq \mathcal{B}_A$ tal que \mathcal{B}'_A es numerable y

$$A = \bigcup \mathcal{B}'_A$$

Luego, $\bigcup \{\mathcal{B}'_A | A \in \mathcal{A}\}$ es un conjunto a lo sumo numerable contenida en \mathcal{B} tal que es una base para τ .

Por los dos incisos anteriores, se tiene el resultado.

Ejemplo 5.3.1

Sea $X = \{0, 1\}$ y tomemos $\tau_D = \{X, \emptyset, \{0\}, \{1\}\}$. El espacio (X, τ_D) es segundo numerable, en particular primero numerable, Lindelöf y separable (además, metrizable pues τ_D es la topología discreta).

Ejemplo 5.3.2

Considere $X = \{0, 1\}$ y tomemos $\tau = \tau_D$. Para $r \in \mathbb{R}$ definimos $X_r = X$ y $\tau_r = \tau$. Veamos que $(X = \prod_{r \in \mathbb{R}} X_r, \tau_p)$ no es primero numerable.

Demostración:

En efecto, sea $x = (x_r)_{r \in \mathbb{R}} \in X$ tal que

$$x_r = 0, \quad \forall r \in \mathbb{R}$$

Sea $\mathcal{V} = \{V_n\}_{n \in \mathbb{N}}$ una familia numerable de vecindades de x. Dado $m \in \mathbb{N}$ existe un básico $B_m \in \tau_p$ tal que

$$x_m \in B_m \subseteq V_m$$

como B_m es un básico de τ_p , luego existe $J_m \subseteq \mathbb{R}$ finito tal que

$$B_m = \prod_{r \in \mathbb{R}} W_r$$

con $W_r \in \tau_r$, para cada $r \in J_m$ y $W_r = X_r$ para todo $r \in \mathbb{R} - J_m$. Por lo tanto, si

$$V_m = \prod_{r \in \mathbb{R}} K_r$$

entonces para todo $r \in \mathbb{R} - J_m$ se tiene que $K_r = X_r$. Tomemos

$$J = \bigcup_{m \in \mathbb{N}} J_m$$

este conjunto es a lo sumo numerable, siendo tal que $J \subseteq \mathbb{R}$, luego $\mathbb{R} - J$ es no vacío. Sea $t \in \mathbb{R} - J$, se tiene que para todo $m \in \mathbb{N}$, $t \notin J_m$. Sea

$$U = \prod_{r \in \mathbb{R}} U_r$$

donde

$$U_r = \left\{ \begin{array}{ll} \{0\} & \text{si} & r = t \\ X_r & \text{si} & r \neq t \end{array} \right.$$

 $U \in \tau_p$ además, $x \in U$. Se cumple además que $V_m \nsubseteq U$ para todo $m \in \mathbb{N}$. Suponga que $\exists m_0 \in \mathbb{N}$ tal que

$$V_{m_0} \subseteq U$$

Se tiene que

$$\{0,1\} = X_t = K_t = p_t(V_{m_0}) \subseteq p_t(U) = \{0\}$$

lo cual es una contradicción. Por tanto, $\mathcal V$ no puede ser un sistema fundamnetal de vecindades para x, así que no es primero numerable.

Observación 5.3.1

En el ejemplo anterior, $(\prod_{r\in\mathbb{R}} U_r, \tau_p)$ no es segundo numerable, pues no es primero numerable. Pero, (X_r, τ_r) es segundo numerable, para todo $r \in \mathbb{R}$.

Tampoco es metrizable, siendo (X_r, τ_r) para todo $r \in \mathbb{R}$, pues metrizable implica primero numerable.

Proposición 5.3.4

Sea (X, τ) un espacio metrizable. Entonces, (X, τ) es primero numerable.

Demostración:

Sea $d: X \times X \to \mathbb{R}$ una métrica tal que $X = X_d$. Sea $x \in X$. Para $m \in \mathbb{N}$ definimos

$$B_n = B_d\left(x, \frac{1}{m}\right)$$

Entonces, $\{B_n\}_{n\in\mathbb{N}}$ es un sistema fundamental de vecindades para x el cual es a lo sumo numerable. En efecto, sea $U\in\tau$ tal que $x\in U$. Entonces, como el sistema de bolas abiertas forma una base para la topología τ se tiene que existe r>0 tal que

$$B(x,r) \subseteq U$$

Por la propiedad arquimediana existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < r$. Así,

$$B\left(x,\frac{1}{n}\right) \subseteq U$$

siendo $B(x,\frac{1}{n})$ un elemento del sistema fundamental de vecindades.

Ejemplo 5.3.3

Sea $\mathcal{B}_l = \{[a,b) | a,b \in \mathbb{R}\}$. Ya se sabe que \mathcal{B}_l es una base para una topología sobre \mathbb{R} , la cual se denota por τ_l . A la pareja (\mathbb{R}, τ_l) se suele escribir simplemente como \mathbb{R}_l .

- 1. \mathbb{R}_l es de Hausdorff (esto se deduce de forma casi inmediata).
- 2. \mathbb{R}_l es primero numerable. En efecto, sea $r \in \mathbb{R}$, entonces el conjunto:

$$\mathcal{V} = \left\{ [r, r + \frac{1}{n}) \middle| n \in \mathbb{N} \right\}$$

es un sistema fundamental de vecindades de r. En efecto, sea $U \in \tau_l$ tal que $r \in U$. Considere $[l,k) \in \mathcal{B}_l$ que cumpla

$$r \in [l, k) \subseteq U$$

Entonces, $l \leq r < k$. Por la propiedad arquimediana existe $n \in \mathbb{N}$ tal que

$$r + \frac{1}{n} < k$$

luego,

$$[r, r + \frac{1}{n}) \subseteq [l, k) \subseteq U$$

Así, \mathcal{V} es un sistema fundamental de vecindades de r.

3. \mathbb{R}_l no es segundo numerable. Sea \mathcal{B} una base para τ_l . Dado $x \in \mathbb{R}$, escogemos $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq [x, x+1)$$

Tenemos $x = \inf B_x$ luego dados $x, y \in \mathbb{R}$ con x < y existen $B_x, B_y \in \mathcal{B}$ tales que $B_x \neq B_y$. Por tanto, \mathcal{B} no puede ser numerable, así que \mathbb{R}_l no puede ser segundo numerable.

- 4. \mathbb{R}_l es separable. Considere $\mathbb{Q} \subseteq \mathbb{R}$. Este conjunto es numerable y denso en \mathbb{R}_l .
- 5. \mathbb{R}_l es de Lindelöf. Sea \mathcal{A} una cubierta de \mathbb{R}_l formada por básicos. Suponga que

$$\mathcal{A} = \left\{ [a_{\alpha}, b_{\alpha}) \middle| \alpha \in I \right\}$$

Sea

$$C = \bigcup_{\alpha \in I} (a_{\alpha}, b_{\alpha})$$

Considere C como subespacio de (\mathbb{R}, τ_u) . El espacio (\mathbb{R}, τ_u) es segundo numerable, luego (X, τ_{uC}) es segundo numerable. Por lo tanto, (X, τ_{uC}) es de Lindelöf. Tenemos que existe $J = \{\alpha_1, ..., \alpha_m, ...\} \subseteq I$ numerable tal que

$$C = \bigcup_{i=1}^{\infty} (a_{\alpha_i}, b_{\alpha_i})$$

Sea

$$\mathcal{A}' = \left\{ [a_{\alpha}, b_{\alpha}) \middle| \alpha \in J \right\}$$

Se tiene que

$$C \subseteq \bigcup_{\alpha \in J} [a_{\alpha}, b_{\alpha})$$

Tomemos

$$D = \mathbb{R} - C$$

Veamos que D es numerable. En efecto, sea $x \in D$, luego $x \in \mathbb{R} - C$. Así, para todo $\alpha \in I$,

$$x \notin (a_{\alpha}, b_{\alpha})$$

Luego, existe $\alpha_0 \in I$ tal que $x = a_{\alpha_0}$. Sea $q_x \in (a_{\alpha_0}, b_{\alpha_0}) \cap \mathbb{Q}$, entonces

$$(x,q_x) \subset C$$

Sea $f: D \to \mathbb{Q}$ la función definida por: dado $x \in D$, $x \mapsto q_x$. Veamos que f es inyectiva. Sean $x, y \in D$ con x < y.

- I) Suponga que $q_y \leq q_x$. Se tiene que $x < y < q_x \leq q_y$ (por la elección de los q). Por tanto, $y \in (x, q_x) \subseteq C \Rightarrow y \notin D\#_c$.
- II) Por (i), $q_x < q_y$. Así, f es inyectiva. Luego, D es a lo sumo numerable.

Dado $d \in D$ escogemos un único elemento $A_d \in \mathcal{A}$ tal que $d \in A$. Sea

$$\mathcal{A}'' = \left\{ A_d \middle| d \in D \right\}$$

Se tiene que \mathcal{A}' y \mathcal{A}'' son a lo sumo numerables, luego su unión también lo es y es tal que

$$\mathbb{R}\subseteq \bigcup \mathcal{A}'\cup \mathcal{A}''$$

por tanto, \mathbb{R}_l es Lindelöf.

6. $\mathbb{R}^2_l = \mathbb{R}_l \times \mathbb{R}_l$ no es de Lindelöf. Sea

$$\mathcal{L} = \left\{ (x, -x) \middle| x \in \mathbb{R} \right\}$$

Afirmamos que $\mathcal{L} \subseteq \mathbb{R}^2_l$ es cerrado. Sea

$$\mathcal{A} = \{\mathbb{R} - \mathcal{L}\} \bigcup \left\{ [a, b) \times [-a, d) \middle| a, b, d \in \mathbb{R} \right\}$$

Se tiene que \mathcal{A} es una cubierta abierta de \mathbb{R}^2_l . Además, para $U = [a, b) \times [-a, d)$ tenemos que $U \cap \mathcal{L} = \{(a, -a)\}$. Luego, para todo $a \in \mathbb{R}$

$$\{(a, -a)\} \in \tau_{l \mathcal{L}}^2$$

pero entonces \mathcal{A} no puede tener una subcolección numerable que cubra a \mathbb{R}^2_l .

- 7. \mathbb{R}^2_l es separable pues $\mathbb{Q}^2 \subseteq \mathbb{R}^2_l$ es numerbale y denso.
- 8. \mathcal{L} como subespacio de \mathbb{R}^2_l no es separable. Sea $A \subseteq \mathcal{L}$ numerable. Se tiene que $\tau^2_{l\mathcal{L}}$ coincide con la topología discreta. Luego $\mathcal{L} A$ es abierto, así \mathcal{A} es cerrado (todo esto en la topología del subespacio), así A no es denso en (L,). Por tanto, el espacio no puede ser separable.

Capítulo 6

Espacios Conexos

6.1. Conceptos Fundamentales

Definición 6.1.1

Sea (X, τ) un espacio topológico.

- a. Una **partición de** X es una pareja formada por dos conjuntos abiertos U, V no vacíos tales que $U \cap V = \emptyset$ y $X = U \cap V$.
- b. Dos subconjuntos A, B de X se dicen **mutuamente separados** en (X, τ) si $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.
- c. (X, τ) se llama un **espacio conexo** si no existe una partición de X y, en caso contrario lo llamaremos **espacio disconexo**. Si $A \subseteq X$ se dice que A es un **conjunto conexo** si (A, τ_A) es conexo.

Ejemplo 6.1.1

Dado $(X, \tau_I = \{X, \emptyset\})$ es un conjunto conexo.

Ejemplo 6.1.2

Sea X un conjunto con al menos dos puntos distintos. Entonces, (X, τ_D) no es conexo.

Ejemplo 6.1.3

Sean τ_1 y τ_2 dos topologías definidas sobre el conjunto X tales que $\tau_2 \subseteq \tau_1$. Si (X, τ_1) es conexo, entonces (X, τ_2) también lo es.

Demostración:

Ejemplo 6.1.4

Sea $X = \{a, b, c\}$ y considere la topología $\tau = \{X, \emptyset, \{a, b\}, \{b, c\}, \{b\}\}$. Entonces, (X, τ) es conexo.

Pero, $A = \{a, c\}$ es un conjunto tal que $(A, \tau_A = \{A, \emptyset, \{a\}, \{c\}\})$ no es conexo.

Por tanto, la propiedad de ser conexo no se hereda.

Proposición 6.1.1

Sea (\mathcal{L}, \prec) un conjunto ordenado tal que:

- 1. Dados $x, y \in \mathcal{L}$ tales que $x \prec y$, existe $z \in \mathcal{L}$ que cumple $x \prec z \prec y$.
- 2. Todo subconjunto no vacío de \mathcal{L} acotado superiormente tiene mínima cota superior.

Entonces, al considerar $(\mathcal{L}, \tau_{\prec})$ tenemos que en \mathcal{L} , el mismo \mathcal{L} , cada intervalo abierto, cerrado, semi-abierto y cualquier rayo, son conjuntos conexos

Demostración:

Sea $Y \subseteq \mathcal{L}$ tal que $Y = \mathcal{L}$ o Y es un intervalo o Y es un rayo.

Tenemos que dados $p, q \in Y$ con $p \prec q$ se cumple que $[p, q] \subseteq Y$, es decir que Y es un conjunto convexo. Mostremos que Y es conexo.

Sean $A, B \subseteq Y$ tales que $A, B \in \tau_{\prec Y}$ son ambos no vacíos y $A \cap B \neq \emptyset$. Mostraremos que $A \cup B$ es un subconjunto propio de Y, es decir que

$$A \cup B \subsetneq Y$$

Sean $a \in A$ y $b \in B$. Podemos suponer que $a \prec b$. Como Y es convexo, entonces $[a, b] \subseteq Y$. Sea

$$A_0 = A \cap [a, b] \neq \emptyset$$

У

$$B_0 = B \cap [a, b] \neq \emptyset$$

Entonces A_0, B_0 son dos conjuntos abiertos no vacíos en $([a, b], \tau_{\prec [a, b]})$. Para todo $x \in A_0$ se tiene que $x \prec b$. Existe pues $c \in \mathcal{L}$ tal que c es la mínima cota superior de A_0 . Probemos que $c \in [a, b]$ y que $c \notin A \cup B$.

- 1. $c \notin A_0$. Suponga que $c \in A_0$, entonces $a \leq c \prec b$. Como A_0 es abierto en [a, b] existe $d \in \mathcal{L}$ tal que $[c, d) \subseteq A_0$ y $c \prec d$. Como $c \prec d$ entonces existe $y \in \mathcal{L}$ tal que $c \prec y \prec d$. Luego $y \in A_0 \#_c$. Por tanto, $c \notin A_0$.
- 2. $c \in [a, b]$. Sea $y_0 \in A_0 = A \cap [a, b]$. Por la parte anterior se tiene que $y \prec c \leq b$, luego $c \in [y_0, b] \subseteq [a, b]$.
- 3. $c \notin A$.
- 4. $c \notin B_0$. Suponga que $c \in B_0 = B \cap [a, b]$, entonces $a \prec c$. B_0 es abierto en [a, b], luego existe $d \in [a, b]$ tal que $d \prec c$ y $(d, c] \subseteq B_0$. Existe entonces $x \in A_0$ tal que $d \prec x \prec c$, luego $x \in A$ y $x \in B$ pues $(d, c] \subseteq B_0 \#_c$. Luego, $c \notin B_0$.
- 5. $c \notin B$.

Entonces, $c \notin A \cup B$. Así, $A \cup B$ no puede formar una partición de Y, es decir que Y es conexo.

Corolario 6.1.1

Consideremos (\mathbb{R}, τ_u) , entonces cada intervalo, cada rayo y el mismo conjunto \mathbb{R} son subconjuntos conexos de (\mathbb{R}, τ_u) .

Demostración:

Es inmediato del teorema anterior.

Proposición 6.1.2

Sea C un subconjunto de (\mathbb{R}, τ_u) . Entonces, C es conexo si y sólo si C es un intervalo o C es un rayo o $C = \mathbb{R}$ o $C = \emptyset$ o $C = \{r\}$ con $r \in \mathbb{R}$.

Demostración:

 \Rightarrow): Sea $C \subseteq \mathbb{R}$ tal que $C \neq \mathbb{R}$, $C \neq \emptyset$, C no es un intervalo ni un rayo ni un conjunto unipuntual. Entonces, existen $a, b \in C$ y un punto $x \in \mathbb{R} - C$ tal que

Sea

$$A = \left\{ c \in C \middle| c < x \right\} \quad \text{y} \quad B = \left\{ c \in C \middle| x < c \right\}$$

tanto A como B son conjuntos no vacíos. Otra forma de expresarlos es como:

$$A = (-\infty, x) \cap C$$
 y $B = (x, \infty) \cap C$

A y B son dos conjuntos no vacíos abiertos en (C, τ_{uC}) tales que $A \cap B = \emptyset$. Además, $A \cup B = C$. Luego C no es conexo.

 \Leftarrow): Es inmediata del teorema anterior.

Observación 6.1.1

Sea (X,τ) un espacio toplógico no conexo. Entonces, existen $U,V\in\tau-\{\emptyset\}$ tales que

$$U \cap V = X$$
 $X = U \dot{\cup} V$

por ende, U = X - V y V = X - U son cerrados disjuntos tales que

$$\mathring{U} = U = \overline{U}$$

Análogamente

$$\mathring{V} = V = \overline{V}$$

Además, $U \cap \overline{V} = \overline{U} \cap V = \emptyset$. También, $Fr(U) = Fr(V) = \emptyset$.

Proposición 6.1.3

Sea (X,τ) un espacio topológico, entonces los siguientes enunciados son equivalentes:

- 1. (X,τ) es conexo.
- 2. Los únicos subconjuntos de X que son a la vez abiertos y cerrados son X y \emptyset .
- 3. Los únicos subconjuntos de X con frontera vacía son X y \emptyset .

Demostración:

 $(1) \Rightarrow (2)$: Sea $A \subseteq X$ tal que A es abierto y cerrado a la vez, es decir que $A, X - A \in \tau$. Suponga que $A \neq X, \emptyset$, se tiene pues que

$$X = A \cup (X - A)$$
 y $A \cap (X - A) = \emptyset$

siendo $A, X - A \neq \emptyset$. Luego esto implicaría que (X, τ) no es conexo $\#_c$. Por tanto, $A = \emptyset$ o $A = \mathbb{R}$.

 $(2) \Rightarrow (3)$: Sea $A \subseteq X$ tal que $Fr(A) = \emptyset$. Entonces,

$$\emptyset = \operatorname{Fr}(A) = \overline{A} - \mathring{A} \Rightarrow \mathring{A} = \overline{A}$$

luego A es cerrado y abierto en (X, τ) . Por tanto, A = X o $A = \emptyset$.

 $(3) \Rightarrow (1)$: Suponga que $U, V \in \tau$ son tales que

$$U \cap V = \emptyset$$
 y $U \cup V = X$

Se tiene que U = X - V y V = X - U donde se sigue que U, V son cerrados en (X, τ) . Así,

$$\overline{U} = U = \mathring{U}$$
 v $\overline{V} = V = \mathring{V}$

por tanto, $Fr(U) = \emptyset$, es decir que $U = \emptyset$ y V = X, o U = X y $V = \emptyset$. Luego, (X, τ) es conexo.

Definición 6.1.2

Sea (X, τ) un espacio topológico. Dos conjuntos $U, V \in \tau$ se dicen **mutuamente separados** si $U \cap \overline{V} = \overline{U} \cap V = \emptyset$.

Definición 6.1.3

Sea (X, τ) un espacio topológico y sea $Y \subseteq X$. Una pareja A, B de subconjuntos de X mutuamente separados en (X, τ) es una **separación de** Y **en** (X, τ) si

$$Y = A \cup B$$
, $Y \cap A \vee Y \cap B \neq \emptyset$

Proposición 6.1.4

Sean (X, τ) un espacio topológico y $Y \subseteq X$. Entonces (Y, τ_Y) es conexo si y sólo si no existe una separación de Y en X.

Demostración:

 \Rightarrow): Suponga que $A, B \subseteq X$ son una separación de Y en (X, τ) . Tenemos que

$$\overline{A} \cap B = A \cap \overline{B} = \emptyset$$

también,

$$Y = A \cup B$$
 $Y \cap A \neq \emptyset$ y $Y \cap B \neq \emptyset$

Se tiene pues que

$$\overline{A} \cap Y = \overline{A} \cap (A \cup B)$$

= $(\overline{A} \cap A) \cup (\overline{A} \cap B)$
= A

análogamente se prueba que $\overline{B} \cap Y = B$. Por tanto, A, B forman una partición de $(Y, \tau_Y) \#_c$. Por tanto, (Y, τ_Y) es conexo.

 \Leftarrow): Suponga que (Y, τ_Y) no es conexo. Entonces existen $A, B \in \tau_Y$ con $A, B \neq \emptyset$ tales que

$$A \cap B = \emptyset$$
 v $A \cup B = Y$

Luego A y B son conjuntos abiertos y cerrados en (Y, τ_Y) .

$$A = \overline{A} \cap Y$$
 v $B = \overline{B} \cap Y$

Siendo tales que

$$\emptyset = A \cap B = (\overline{A} \cap Y) \cap B = \overline{A} \cap (Y \cap B) = \overline{A} \cap B$$

de forma análoga $A \cap \overline{B} = \emptyset$. Así, A y B forman una separación de Y en (X, τ) .

Corolario 6.1.2

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es conexo si y sólo si no existen $A, B \subseteq X$ no vacíos tales que

$$X = A \cup B$$
 $A \cap \overline{B} = \emptyset = \overline{A} \cap B$

Demostración:

Inmediata de la proposición anterior.

Proposición 6.1.5

Sea (X, τ) un espacio topológico y sean $Y, Z \subseteq X$ tales que $Y \subseteq Z$. Si U, V es una separación de Z en (X, τ) y Y es conexo, entonces $Y \subseteq U$ ó $Y \subseteq V$.

Demostración:

Se tiene que $Y \subseteq U \cup V$. Sea

$$U_1 = Y \cup U$$
 y $V_1 = Y \cap V$

entonces,

$$Y = U_1 \cup V_1$$

Como $U \cap \overline{V} = \emptyset = \overline{U} \cap V$, entonces

$$\overline{U_1} \cap V_1 = \overline{Y \cap U} \cap (Y \cap V)$$

$$\subseteq \overline{U} \cap (Y \cap V)$$

$$= (\overline{U} \cap V) \cap Y$$

$$= \emptyset$$

$$\Rightarrow \overline{U_1} \cap V_1 = \emptyset$$

de forma análoga se obtiene que $U_1 \cap \overline{V_1} = \emptyset$. Como Y es conexo entonces $U_1 = \emptyset$ o $V_1 = \emptyset$, es decir que $Y \subseteq V$ o $Y \subseteq U$.

Proposición 6.1.6

Sea (X,τ) un espacio topológico y $\{A_{\alpha}\}_{{\alpha}\in I}$ una familia de subconjuntos conexos de X tales que

$$\bigcap_{\alpha \in I} A_{\alpha} \neq \emptyset$$

Entonces $\bigcup_{\alpha \in I} A_{\alpha}$ es conexo.

Demostración:

Sea $A = \bigcup_{\alpha \in I} A_{\alpha}$. Supongamos que A no es conexo, entonces existe una separación $U, V \in \tau$ de A en X. Tomemos $\beta \in I$. Como $A_{\beta} \subseteq A$ y A_{β} es conexo, entonces por la proposición anterior se tiene que:

$$A_{\beta} \subseteq U$$
 ó $A_{\beta} \subseteq V$

Podemos suponer sin pérdida de generalidad que $A_{\beta} \subseteq U$. Como $\bigcap_{\alpha \in I} A_{\alpha} \subseteq A_{\beta}$, entonces para todo $\gamma \in I$ se tiene que $A_{\gamma} \cap U \neq \emptyset$, luego por ser cada A_{γ} conexo debe suceder que:

$$A_{\gamma} \subseteq U$$

para todo $\gamma \in I$. Por tanto:

$$A = \bigcup_{\alpha \in I} A_{\alpha} \subseteq U$$

así, $A \cap V = \emptyset \#_c$ pues $U \setminus V$ forman una separación de A. Por tanto A debe ser conexo.

Proposición $6.\overline{1.7}$

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos tales que existe una función continua y suprayectiva $f: (X_1, \tau_1) \to (X_2, \tau_2)$. Si (X_1, τ_1) es conexo, entonces (X_2, τ_2) también lo es.

Demostración:

Sea $A \subseteq X_2$ tal que $A, X_2 - A \in \tau_2$. Suponga que $A \neq \emptyset$, para probar que (X_2, τ_2) es conexo basta con ver que $A = X_2$. En efecto, veamos que como f es suprayectiva entonces $f^{-1}(A) \neq \emptyset$ y, al ser f continua se tiene que

$$f^{-1}(A) \in \tau_1$$

Pero,

$$f^{-1}(X_2 - A) = X_1 - f^{-1}(A)$$

donde $X_2 - A \in \tau_2$, luego $X_1 - f^{-1}(A) \in \tau_1$. Por ser (X_1, τ_1) conexo, al ser $f^{-1}(A) \neq \emptyset$ debe tenerse pues que:

$$f^{-1}(A) = X_1$$

(pues $f^{-1}(A)$ y $X_1 - f^{-1}(A)$ están en τ_1). Por tanto

$$A = f(f^{-1}(A)) = f(X_1) = X_2$$

lo que prueba el resultado.

Corolario 6.1.3

La propiedad de ser conexo es topológica.

Demostración:

Es inmediata del teorema anterior.

Proposición 6.1.8

Sea (X,τ) un espacio topológico, y sea $Y=\{a,b\}$ dotado de la topología discreta $\tau_D=\{\emptyset,T,\{a\},\{b\}\}\}$. Entonces (X,τ) conexo si y sólo si no es posible definir una función $f:(X,\tau)\to (Y,\tau_D)$ que sea suprayectiva y continua.

Demostración:

 \Rightarrow): Suponga que se puede definir tal función, entonces por la proposición anterior se seguiría que (Y, τ_D) es conexo $\#_c$, pues $Y = \{a\} \cup \{b\}$ siendo $\{a\}, \{b\} \in \tau_D$ tales que $\{a\} \cap \{b\} = \emptyset$. Por tanto, no es posible definir una función con tales propiedades.

 \Leftarrow) : Suponga que (X,τ) no es conexo, entonces existen $U,V\in\tau-\{\emptyset\}$ tales que

$$X = U \cup V$$
 v $U \cap V = \emptyset$

defina $f:(X,\tau)\to (Y,\tau_D)$ como sigue:

$$f(x) = \begin{cases} a & \text{si} & x \in U \\ b & \text{si} & x \in V \end{cases}, \quad \forall x \in X.$$

se tiene que $f^{-1}(\{a\}) = U$, $f^{-1}(\{b\}) = V$, luego f es continua. Además por definición f es suprayectiva. Lo anterior prueba la contrapositiva.

Proposición 6.1.9

Sean (X, τ) un espacio topológico, $A, B \subseteq X$ tales que $A \subseteq B \subseteq \overline{A}$. Si A es conexo, entonces B es conexo.

Demostración:

Suponga que B no es conexo. Podemos definir una función $f:(B,\tau_B)\to (Y,\tau_D)$ continua y suprayectiva, donde $Y=\{a,b\}$. Como $B\subseteq \overline{A}$ se tiene que:

$$\overline{A}^B = \overline{A} \cap B = B$$

Por lo cual $f(\overline{A}^B) = f(B) = Y$, por ser f continua,

$$Y = f\left(\overline{A}^{B}\right) \subseteq \overline{f(A)} = f(A) \Rightarrow f(A) = Y$$

Tenemos pues que $f|_A:(A,\tau_A)\to (Y,\tau_D)$ es una función continua (por ser reestricción) y suprayectiva. Por ende, A no es conexo $\#_c$. Por tanto, B es conexo.

Corolario 6.1.4

Sea (X, τ) es un espacio topológico. Si $A \subseteq X$ es conexo, entonces \overline{A} es conexo.

Demostración:

Es inmediato del teorema anterior.

Teorema 6.1.1 (Teorema del valor medio)

Sea (X, τ) un espacio conexo, (Y, \prec) un conjunto ordenado y $f: (X, \tau) \to (Y, \tau_{\prec})$ una función continua. Si $a, b \in X$ y $\gamma \in Y$ es tal que:

$$f(a) \prec \gamma \prec f(b)$$

entonces existe $c \in X$ tal que $f(x) = \gamma$.

Demostración:

Suponga que no existe $c \in X$ tal que $f(c) = \gamma$

Proposición 6.1.10

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios conexos. Entonces $(X_1 \times X_2, \tau_p)$ es un espacio conexo.

Demostración:

Entonces, para todo $x \in X_1$, tenemos que $T_x = (X_1 \times \{b\}) \cup (\{x\} \times X_2)$ es un conexo.

Además, para todo $x \in X_1$, $(a, b) \in T_x$ (recordando que $a \in X_1$ es arbitrario fijo), luego $\bigcup_{x \in X_1} T_x$ es conexo. Veamos que

$$\bigcup_{x \in X_1} T_x = X_1 \times X_2$$

En efecto, sea $(p,q) \in X_1 \times X_2$, entonces $(p,q) \in T_p \subseteq \bigcup_{x \in X_1} T_x$.

Se sigue entonces que $(X_1 \times X_2, \tau_p)$ es conexo.

Ejercicio 6.1.1

Si $\{(X_1, \tau_1), ..., (X_n, \tau_n)\}$ son espacios topológicos conexos, entonces

$$X = \prod_{i=1}^{n} X_i$$

dotado de la topología producto es un espacio conexo.

Sugerencia. Se puede demostrar que $(X_1 \times ... \times X_{n-1}) \times X_n$ es homeomorfo a $X_1 \times ... \times X_n$.

Demostración:

Proposición 6.1.11

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia arbitraria de espacios topológicos y sea

$$X = \prod_{\alpha \in I} X_{\alpha}$$

Entonces (X, τ_p) es conexo si y sólo si para todo $\alpha \in I$, (X_α, τ_α) es un espacio conexo.

Demostración:

 \Rightarrow) : Sea $\alpha \in I$ y considere la función $p_{\alpha}:(X,\tau_{p})\to(X_{\alpha},\tau_{\alpha})$. Esta función es continua y suprayectiva, se sigue entonces que $(X_{\alpha},\tau_{\alpha})$ es conexo.

 \Leftarrow): Sea $b=(b_{\alpha})_{\alpha\in I}\in X$ elemento arbitrario fijo de X y, sea $J=\{\alpha_1,...,\alpha_n\}\subseteq I$. Definimos

$$X_J = \left\{ (x_\alpha)_{\alpha \in I} \in X \middle| x_\alpha = b_\alpha \text{ para } \alpha \notin J \right\}$$

Se tiene que $X_J \neq \emptyset$ pues $b \in X_J$. Podemos escribir X_J como

$$X_J = \prod_{\alpha \in I} Y_\alpha$$

donde

$$Y_{\alpha} = \left\{ \begin{array}{ll} \{b_{\alpha}\} & \text{si} \quad \alpha \notin J \\ X_{\alpha} & \text{si} \quad \alpha \in J \end{array} \right.$$

Sea $X' = \prod_{i=1}^{\infty} X_{\alpha_i}$. Definamos $\varphi : (X', \tau_p) \to (X_J, \tau_{p_{X_J}})$ tal que

$$(x_{\alpha_1},...,x_{\alpha_n})\mapsto (y_{\alpha})_{\alpha\in I}$$

donde

$$y_{\alpha} = \begin{cases} b_{\alpha} & \text{si} \quad \alpha \notin J \\ x_{\alpha} & \text{si} \quad \alpha \in J \end{cases}$$

1. φ es suprayectiva. Veamos que $\varphi(X') = X_J$. En efecto, sea $\zeta = (\zeta_\alpha)_{\alpha \in I} \in X_J$, es decir que si $\alpha \notin J$ se tiene que $\zeta_\alpha = b_\alpha$, luego:

$$\varphi((\zeta_{\alpha_1},...,\zeta_{\alpha_n})) = \zeta$$

se concluye que $\varphi(X') = X_J$.

2. φ es continua. Sea $U = \prod_{\alpha \in I} U_{\alpha}$ un básico de (X, τ_p) , es decir que $U_{\alpha} \in \tau_{\alpha}$ para todo $\alpha \in I$ (y coincide con X_{α} para casi todo $\alpha \in I$ salvo una cantidad finita). Tomemos

$$U' = U \cap X_J \in \tau_{p_{X_J}} - \{\emptyset\}$$

Se tiene que $U' \in \tau_{p_{X_I}}$, más aún:

$$U' = \left(\prod_{\alpha \in I} U_{\alpha}\right) \cap \left(\prod_{\alpha \in I} Y_{\alpha}\right)$$
$$= \prod_{\alpha \in I} (U_{\alpha} \cap Y_{\alpha})$$

donde

$$U_{\alpha} \cap Y_{\alpha} = \left\{ \begin{array}{ll} \{b_{\alpha}\} & \text{si} \quad \alpha \notin J \\ U_{\alpha} & \text{si} \quad \alpha \in J \end{array} \right., \quad \forall \alpha \in I$$

Por tanto

$$\varphi^{-1}(U') = \prod_{\alpha \in J} U_{\alpha} \in \tau_{p_{X'}}$$

luego φ es una función continua.

Por el ejercicio anterior se tiene que $(X', \tau_{pX'})$ es conexo, entonces (X_J, τ_p) es conexo (por ser φ continua y suprayectiva).

Sea

$$\mathcal{F} = \left\{ J \subseteq I \middle| J \text{ es un conjunto finito} \right\}$$

Para todo $J \in \mathcal{F}$, X_J es conexo por lo probado anteriormente para el cual $b \in X_J$. Por ende, el conjunto

$$\bigcup_{J \in \mathcal{F}} X_J = Y$$

es conexo en (X, τ_p) . Veamos que

$$\overline{Y} = X$$

En efecto, sea $W = \prod_{\alpha \in I} W_{\alpha}$ un básico de τ_p con $W \neq \emptyset$. Se tiene que para todo $\alpha \in I$, $W_{\alpha} \in \tau_{\alpha}$ y además existe $K \in \mathcal{F}$ tal que si $\alpha \notin K$, $W_{\alpha} = X_{\alpha}$.

Para $\alpha \in K$, $x_{\alpha} \in X_{\alpha}$ y definimos

$$y_{\alpha} = \begin{cases} x_{\alpha} & \text{si} \quad \alpha \in K \\ b_{\alpha} & \text{si} \quad \alpha \notin K \end{cases}, \quad \forall \alpha \in I$$

Entonces $y = (y_{\alpha})_{\alpha \in I} \in X_K \cap W$ lo que implica que $Y \cap W \neq \emptyset$. Luego $\overline{Y} = X$ y así, (X, τ_p) es conexo.

Definición 6.1.4

Sea (X, τ) un espacio topológico y sea $p \in X$. Tomemos

$$C = \left\{ C \subseteq X \middle| C \text{ es conexo y } p \in C \right\}$$

tenemos que $\{p\} \in \mathcal{C}$ y además para todo $C \in \mathcal{C}$, $p \in C$. Por tanto $C_p = \bigcup_{C \in \mathcal{C}} C$ es un conjunto conexo, el cual llamaremos la componente conexa de p.

Observación 6.1.2

Se tiene lo siguiente:

- 1. C_p es el máximo conexo de X que contiene a $p \in X$.
- 2. C_p es un conjunto cerrado.
- 3. Sean $p, q \in X$, entonces $C_p = C_q$ ó $C_p \cap C_q = \emptyset$.

Demostración:

De 1): Es inmediata de la definición.

De 2): Como C_p es conexo, entonces $\overline{C_p}$ es conexo, luego por maximalidad $\overline{C_p} \subseteq C_p$ lo cual implica que C_p es cerrado.

De 3): Si $C_p \cap C_q \neq \emptyset$ entonces $C_p \cup C_q$ es conexo, pero es tal que contiene a $p \neq q$, luego

$$C_p \subseteq C_p \cup C_q \subseteq C_p$$
 y $C_q \subseteq C_p \cup C_q \subseteq C_q$

por tanto, $C_p \cup C_q = C_p = C_q$.

Definición 6.1.5

Sea (X, τ) un espacio topológico, definimos sobre X la relación \sim siguiente:

$$x \sim y \iff$$
 no existen $A, B \in \tau$ tales que $A \cap B = \emptyset, A \cup B = X, x \in A$ y $y \in B$

Esta es una realción de equivalencia sobre X. Esta relación de equivalencia dice básicamente que dos elementos están relacionados si y sólo si están en la misma componente conexa.

Demostración:

Hay que probar que se cumplen tres condiciones:

- \sim es reflexiva: En efecto, para todo $x \in X$ se tiene que $x \sim x$.
- \sim es transitiva. En efecto, si $x \sim y$ entonces no es posible que $y \nsim x$ (por la definición de \sim), por ende $y \sim x$.
- \sim es transitiva. Sean $x, y, z \in X$ tales que $x \sim y$ y $y \sim z$. Procederemos por contradicción, suponga que $x \nsim z$, luego existen dos abiertos $U, V \in \tau$ disjuntos tales que

$$x \in U$$
 y $z \in V$

con $U \cup V = X$. Si $y \in U$ entonces se tendría que $y \nsim z$ y, si $y \in V$ entonces $x \nsim y$. Ambos casos llegan a una contradicción. Por tanto, debe suceder que $x \sim z$.

Por los tres incisos, \sim es una relación de equivalencia.

Observación 6.1.3

Denotamos por [x] a los elementos del conjunto cociente X/\sim . [x] será llamado una cuasicomponente de (X,τ) .

Proposición 6.1.12

Sean (X, τ) espacio topológico y $x \in X$, entonces

$$[x] = \bigcap \{ A \subseteq X | x \in A \text{ es tal que } A \text{ es abierto y cerrado} \}$$

En particular el conjunto [x] es cerrado en (X, τ) .

Demostración:

Sea $A \subseteq X$ tal que $x \in A$ y $A, X - A \in \tau$. Veamos que $[x] \subseteq A$. En efecto, si $y \in [x]$ se tiene que $x \sim y$. Pero

$$X = A\dot{\cup}(X - A)$$

Como $x \in A$ entonces no puede ser que $y \in X - A$ pues en tal caso se tendría que $x \nsim y$. Por ende, $y \in A$. Así, $[x] \subseteq A$.

Sea $y \in \bigcap \{A \subseteq X | x \in A \text{ es tal que } A \text{ es abierto y cerrado} \}$. Suponga que $y \nsim x$, entonces existen $U, V \in \tau$ tales que $U \cap V = \emptyset$, $U \cup V = X$ y

$$x \in U$$
 y $y \in V$

Luego $U, V = X - U \in \tau$, donde $x \in U$. Se sigue pues que $y \in U \#_c$. Por tanto, $x \sim y$.

Proposición 6.1.13

Cada componente está contenida en una cuasi-componente.

Demostración:

Sea $x \in X$ y considere C_x , veamos que $C_x \subseteq [x]$. En efecto, sea $A \subseteq X$ tal que $x \in A$ con $A, X - A \in \tau$. Como C_x es un conexo y $x \in C_x$ entonces $C_x \cap A \neq \emptyset$, luego $C_x \subseteq A$.

Por tanto, de la proposición anterior se sigue que $C_x \subseteq [x]$.

Ejemplo 6.1.5

Para cada $n \in \mathbb{N}$ defina $I_n = \left\{\frac{1}{n}\right\} \times [0,1]$. Tomemos

$$X = \{(0,0), (0,1)\} \cup \bigcup_{n \in \mathbb{N}} I_n$$

Se tiene que $X \subseteq \mathbb{R}^2$ tomando a (\mathbb{R}^2, τ_u) . Las componentes de (X, τ_{uX}) son $\{(0,0)\}, \{(0,1)\}$ y para todo $n \in \mathbb{N}$, I_n . Las cuasi-componentes son $\forall n \in \mathbb{N}$ I_n y $\{(0,0),(0,1)\}$.

Demostración:

La parte de las componentes es inmediata. Para las cuasicomponentes, afirmamos que $(0,0) \sim (0,1)$. En efecto, suponga que $(0,0) \nsim (0,1)$, entonces existen $U,V \in \tau_{uX}$ tales que $U \cap V = \emptyset$, $U \dot{\cup} V = X$ con $(0,0) \in U$ y $(0,1) \in V$.

Como U es abierto, entonces existe $\varepsilon > 0$ tal que $B((0,0),\varepsilon) \subseteq U$, luego...

Teorema 6.1.2

Si (X,τ) es compacto y T_2 , entonces cada cuasi-componente es conexa.

Demostración:

Luego se hará la demostración del resultado.

Lema 6.1.1

Sea (X, τ) un espacio compacto y T_2 . Sean $A \subseteq X$ cerrado y $x \in X - A$. Si para cada $y \in A$ existen U_y y V_y elementos de τ tales que

$$x \in U_y$$
 y $y \in V_y$

con $U_y \cap V_y = \emptyset$ y $U_y \cup V_y = X$, entonces existen $U, V \in \tau$ tales que $U \cap V = \emptyset$, $U \cup V = X$ con

$$x \in U \quad {\rm y} \quad A \subseteq V$$

Demostración:

Como $A\subseteq X$ es cerrado y (X,τ) es compacto, entonces A es compacto. Para $y\in A$ existen $U_y,V_y\in\tau$ tales que

$$x \in U_y$$
 y $y \in V_y$

con $U_y \cap V_y = \emptyset$ y $U_y \cup V_y = X$. Entonces

$$A \subseteq \bigcup_{y \in A} V_y$$

luego $\{V_y\}_{y\in A}$ forma una cubierta abierta de A. Por ser A compacto existen $y_1,...,y_n\in A$ tales que

$$A \subseteq \bigcup_{i=1}^{n} V_{y_i}$$

Sean

$$U = \bigcap_{i=1}^{n} U_{y_i} \quad \mathbf{y} \quad V = \bigcup_{i=1}^{n} V_{y_i}$$

Se tiene que $x \in U$, $A \subseteq V$. Además, $U \cap V = \emptyset$ (por construcción). Veamos que

$$U \cup V = X$$

En efecto, sea $z \in X$. Se tienen dos casos:

- $z \in U_{y_i}$ para todo $i \in [1, n]$, entonces $z \in U$, luego $z \in U \cup V$.
- Existe $i \in [1, n]$ tal que $z \notin U_{y_i}$, luego como $X = U_{y_i} \cup V_{y_i}$ debe suceder que $z \in V_{y_i}$, lo cual implica que $z \in V \subset U \cup V$.

Por tanto, $z \in U \cup V$. Así, $X = U \cup V$.

Lema 6.1.2

Sea (X, τ) un espacio compacto y T_2 , $A, B \subseteq X$ cerrados con $A \cap B = \emptyset$. Si dados $a \in A$ y $b \in B$ existen $U, V \in \tau$ tales que

$$a \in U$$
 y $b \in V$

con $U \cap V = \emptyset$ y $U \cap V = X$, entonces existen $M, N \in \tau$ con $M \cap N = \emptyset$ con $M \cup N = X$ siendo tales que

$$A \subseteq M$$
 y $B \subseteq N$

Demostración:

Sea $b \in B$, entonces $b \notin A$ pues $A \cap B = \emptyset$. Por el lema anterior existen $U_b, V_b \in \tau$ tales que

$$U_b \cap V_b = \emptyset$$
 y $U_b \cup V_b = X$

siendo tales que $b \in U_b$ y $A \subseteq V_b$. Luego

$$B \subseteq \bigcup_{b \in B} U_b$$

Como B es un cerrado en un espacio compacto, entonces es compacto, luego existen $b_1, ..., b_n \in B$ tales que

$$B \subseteq \bigcup_{i=1}^{n} U_{b_i}$$

Sea

$$N = \bigcup_{i=1}^{n} U_{b_i} \quad \mathbf{y} \quad M = \bigcap_{i=1}^{n} V_{b_i}$$

Se tiene que $M,N\in \tau$ y, además $M\cap N=\emptyset.$ Veamos ahora que $M\cup N=X.$ En efecto,

$$M \cup N = \left(\bigcap_{i=1}^{n} V_{b_{i}}\right) \cup \left(\bigcup_{i=1}^{n} U_{b_{i}}\right)$$

$$= \left(\bigcap_{i=1}^{n} \left[V_{b_{i}} \cup \left(\bigcup_{j=1}^{n} U_{b_{j}}\right)\right]\right)$$

$$= \left(\bigcap_{i=1}^{n} \left(\bigcup_{j=1}^{n} V_{b_{i}} \cup U_{b_{j}}\right)\right)$$

$$= \left(\bigcap_{i=1}^{n} \left(\bigcup_{j=1, j \neq i}^{n} V_{b_{i}} \cup U_{b_{j}}\right) \cup V_{b_{i}} \cup U_{b_{i}}\right)$$

$$= \left(\bigcap_{i=1}^{n} \left(\bigcup_{j=1, j \neq i}^{n} V_{b_{i}} \cup U_{b_{j}}\right) \cup X\right)$$

$$= \left(\bigcap_{i=1}^{n} X\right)$$

$$= X$$

Lema 6.1.3

Sea (X, τ) un espacio compacto y T_2 . Sean Q una quasi-componente de X y $U \in \tau$ tal que $Q \subseteq U$. Entonces existe $H \subseteq X$ tal que $H, X - H \in \tau$ y $Q \subseteq H \subseteq U$.

Demostración:

Tenemos que Q, X-U son dos conjuntos cerrados disjuntos. Si $a \in Q$ y $b \in X-U$ entonces $a \nsim b$ pues en caso contrario se tendría que $b \in Q$. Por tanto, existen $V, W \in \tau$ tales que

$$a \in V$$
, $b \in W$

tales que

$$V \cap W = \emptyset$$
 y $V \cup W = X$

Por tanto, los cerrados Q y X-U cumplen las hipótesis del lema anterior, luego existen dos abiertos $H,F\in\tau$ tales que

$$Q \subseteq H \quad X - U \subseteq F \tag{6.1}$$

y,

$$H \cap F = \emptyset$$
 y $H \cup F = X$

Se tiene al ser la unión disjunta que $F = X - H \in \tau$. Además,

$$X - U \subseteq F \Rightarrow X - F \subseteq U \Rightarrow H \subseteq U$$

Por tanto, H es el conjunto abierto deseado.

Teorema 6.1.3

Sea (X, τ) un espacio compacto y T_2 . Entonces, toda cuasi-componente de X es conexa.

Demostración:

Sea Q una cuasi-componente de X y suponga que Q no es conexa. Entonces existen $U,V\in\tau_Q$ no vacíos tales que

$$U \cap V = \emptyset$$
 y $U \cup V = Q$

Como U y V son cerrados en (Q, τ_Q) y Q es cerrado en (X, τ) , entonces U, V son cerrados en (X, τ) . Como (X, τ) es compacto y T_2 , es normal. Así, existen $M, N \in \tau$ tales que

$$M \cap N = \emptyset$$

con $U \subseteq M$ y $V \subseteq N$. Por ende

$$Q = U \cup V \subseteq M \cup N \in \tau$$

Por el lema anterior existe $H \subseteq X$ tal que $H, X - H \in \tau$ con

$$Q \subseteq H \subseteq M \cup N$$

Por tanto,

$$W = M \cap H = (X - N) \cap H$$

es cerrado y abierto, pues los dos conjuntos de la derecha son cerrados y los dos de en medio son abiertos. Por tanto, $W, X - W \in \tau$. Más aún , se tiene que

$$U \subseteq W$$
 y $V \subseteq X - W$

y, $Q = U \cup V \subseteq W \cup (X - W) = X$. De esta forma dados $x \in W$ y $y \in X - W$ entonces $Q_x \neq Q_y \#_c$. Por tanto, uno de los dos U, V debe ser vacío. Así, Q debe ser conexo.

Corolario 6.1.5

Si (X, τ) es un espacio compacto y T_2 . Entonces las componentes y las cuasi-componentes coinciden.

Demostración:

Inmediata de lo anterior.

6.2. Espacios Localmente Conexos

Definición 6.2.1

Un espacio topológico (X, τ) es **localmente conexo** si dado $x \in X$ existe una base de vecindades conexas de x. Es decir, cualquier vecindad de x contiene una vecindad conexa de x.

Proposición 6.2.1

Si (X, τ) es un espacio localmente conexo y C es una componente conexa de X, entonces C es un abierto.

Demostración:

Sea C una componente conexa de X y $p \in C$. Sea U una vecindad conexa de p. Se tiene que $U \cap C \neq \emptyset$, luego $U \cap C$ es un conexo que contiene a p. Por maximalidad se sigue que $U \cup C = C$, es decir que $U \subseteq C$.