Neural ODE-based Model Predictive Control

Luke Roberto and Anupam Kumar

Agenda

- Introduction
- Literature Review
- Methodology
- Experimental Results
- Discussion

Introduction

- Robotic planning is difficult
- Need high quality models in order to effectively plan
- Real world is continuous
- How can we encode this inductive bias in our models?

Literature Review

Neural ODEs

RNNs are an Euler approximation to a differential equation

Define a loss on the states and back-propagate ODE solver

Literature Review

Learned Transition Models

Literature Review

Learned Transition Models

Methodology

Learning Transition Models

Methodology

Model Predictive Control

Algorithm 1: Model Predictive Control

```
Input: Predictive model g, planning cost function c
output: a_t, predicted best action
for t = 0... T - 1 do
   for i = 0... n_{iter} - 1 do
       if i == 0 then
            Sample M actions over the horizon a_{t:t+H-1}^{(m)} from a uniform distribution over our
             discrete action space;
       else
            Sample M actions over horizon from updated distribution over action space.;
       end
       Check if actions are valid, otherwise resample.;
       Use g to predict future state sequence \hat{s}_{t:t+H-1}^{(m)}.;
        Evaluate each action sequence with cost function, c.;
        Update action distribution with lowest cost action distribution.;
    end
    return a_t^*, first action from best sequence;
end
```

Experimental Setup

Acrobot

- Double pendulum
- Simple environment, with sufficiently complex dynamics
- Encouraged diversity with random starts

Experimental Results

Model Learning

Experimental Results

Model Learning

Experimental Results

MPC Swing-Up Experiments

Predicted Trajectory

Actual Trajectory

What We Learned

And what we want to try next!

- Neural odes are hard to train
 - o dynamics models in general are hard to learn
- We plan to extend the environments we want to tackle, perhaps those that are non markov
- Use an encoder structure to learn a latent dynamics model to handle pixel level information