

```
Esqueleto do Código
                                                                    Estruturas de Controle
// includes
                                                        if(boolean){ } // se verdadeiro executa este bloco;
// constantes
                                                        if else (boolean) { } // caso contrario verifica se este
// variáveis globais
                                                                            // verdadeiro, se sim executa o bloco
// função de setup
                                                        else { } // se nenhum for verdadeiro executa este ;
void setup(){
  // código que preprara o arduino
                                                        for(char i=0;i > 20;++i){ } // executa 21 vezes
  // conforme sua necessidades
                                                                                       // o bloco
  // definindo função das portas por exemplo
                                                                // se deseja contar inversamente,
  // configurações de interrupção
                                                                // troque de lugar o valor 0 com 20 e
                                                                // e use o operador — (--i)
                                                                          Controle Digital
// variáveis globais usadas no loop
// e outras funções
                                                        pinMode(pino, modo); // coloca o pino no modo
                                                                                // desejado, entrada ( INPUT)
// função loop executa sempre que preciso
                                                                                // ou entrada com resistor de
void loop(){
                                                                                // de pullup (INPUT_PULLUP)
  // código que é executado constantemente
                                                                                // ou saída ( OUTPUT),
  // deve ser construido de forma a monitorar
  // portas, toma<mark>r dec</mark>isões
                                                        boolean valor = digitalRead(pino); // lê o estado
  // nunca deve parar, mesmo que usando
                                                                                              // da porta
  // return será executado logo em seguida
                                                                     // se ligado (HIGH), se desligado (LOW)
                     Sintaxe
                                                        digitalWrite(pino,valor); // define o estado do pino,
                                                                     // conforme valor;
// assim é um comentário de uma linha
                                                                     // se ligado (HIGH), se desligado (LOW);
                                                                       Controle Analógico
/*
* Assim comenta-se várias linhas
                                                        analogReference(tipo); // define conversão analógica,
*/
                                                                  // conforme tipo parâmetros abaixo:
                                                                 // - DEFAULT: 5V padrão, ou 3.3V padrão
                                                                 // - INTERNAL: 1.1V UNO, não existe no MEGA
ou assim se preferir
                                                                 // - INTERNAL1V1: 1.1V Mega somente
*/
                                                                 // - INTERNAL2V56: 2.56V Mega somente
                                                                 // - EXTERNAL: usa como referência a tensão
{ } as chaves demarcam blocos de código
                                                                 // - do pino AREF (somente 0 a 5V)
                                                        int value = analogRead(pino); // lê valor Analógico
[ ] Colchetes inicializam arrays vazios.
                                                        analogWrite(pino,value); // escreve o valor analógico
[x] sendo x um número inicializa arrays de x elementos
                                                                // na porta especificada, deve ser um
                                                                // valor entre 0 e 255, equivale 0V até 5V
; Finaliza um alinha, deve ser usado para cada comando
                                                                // respectivamente, sendo que
                                                                // 128 representa 2,5V
#define — define uma macro/constante
                                                                // se a porta não tiver recurso PWM,
        // exemplo: #define CONTROLE_PORTAO
                                                                // será escrito (LOW) para valores até de 127,
                                                                // e (HIGH) para valores acima de 127;
```


Variáveis

char // Inteiros, ocupam 1 byte (8bits)
Valores **com** sinal, entre -128 e 127,
Valores **sem** sinal (unsigned char), entre 0 e 255
Equivalente ao tipo byte

byte // Veja "unsigned char"

int // Inteiros, ocupam 2 bytes (16bits) // Valores entre -32768 e 32767 // ou entre 0 e 65,535 sem sinal

Iong // Inteiros longos, ocupam 4 bytes (32bits) // Valores entre -2,147,483,648 e // 2,147,483,647. // e sem sinal entre 0 a 4,294,967,295

boolean — Equivalente a true e false, representados por um bit, porém ocupa um byte

float — números complexos, representados por notação científica Ocupam 4 bytes (32 bits) Valores entre -3.4028235E+38 e 3.4028235E+38.

Escopo e qualificadores de variáveis

unsigned — sinaliza que uma variáv<mark>el</mark> não usará sinal. signed — sinaliza que uma variável us<mark>ar</mark>á sinal.

const — sinaliza que é uma constante.

static — sinaliza que a variável será usada apenas no arquivo onde foi declarada, se dentro da função que não deve ser reinicializada;

volatile — indica que a variável será usada dentro de uma interrupção;

#define MACRONAME value

Define uma constante do tipo macro com o nome "MACRONAME" e valor como sendo "value"

Srings

string - um array de char; String — um objeto do tipo Sring;

Operadores Matemáticos

- = Atribuição de valor a uma variável
- + Soma dois valores ou variaveis
- Subtrai dois valroes ou variáveis
- Multiplica dois valores ou variáveis
- / Divide dois valores ou variáveis
- % Modulo da divisão
- >> Empurra os bits para direita
- << Empurra os bits para esquerda
- ++ Incremento
- Decremento
- += Atribuição com soma
- Atribuição com subtração
- *= Atribuição com multiplicação;
- /= Atribuição com divisão;
- &= Atribuição usando bitwise AND
- | = Atribuição usando bitwise OR

Operadores Lógicos

- testa se é valor maior que segundo valor; (10 > 12) retorna falso;
- testa se é valor menor que segundo valor; (10 < 12) retorna verdadeiro;</p>
- >= testa se é valor maior ou igual a segundo valor; (15 >= 13) retorna verdadeiro;
- <= testa se é valor menor ou igual a segundo valor; (15 <= 13) retorna falso;</p>
- == testa se dois valores são iguais;

(15 == 10) retorna falso;

- != testa se dois valores são diferentes; (15 != 10) retorna verdadeiro;
- ! inverte um booleano; !(TRUE) retorna falso;
- ? testa um valor, se verdadeiro retorna a primeira opção antes ":", sendo falso retorna o valor após;

&& operador "E" (and)

- | | operador "OU" (or)
- ! (exclamação) negação
- & AND bit a bit
- OR bit a bit
- ^ XOR bit a bit
- ~ not binário (inversor de bits)

Operadores Compostos	Comunicação Serial		
+= Soma da variável com atribuição -= Subtrai da variável com atribuição *= Multiplica da variável com atribuição /= Subtração da variável com atribuição += Soma da variável com atribuição &= "and" bit a bit da variável com atribuição != "or" bit a bit da variável com atribuição	Serial.begin(baudrate); // Inicializa porta serial // Utiliza um dos baud rates padrões: // 300, 600, 1200, 2400, 4800, 9600 (Padrão), // 14400, 19200, 28800, 38400, 57600, // ou 115200 // outros valores são válidos Serial.available(); // Consulta disponibilidade // de bytes na porta serial;		
Controle do Tempo	Serial.print(val); // imprime em formato ascii na porta		
delay(tempo); // interrompe o processamento // por "tempo" em milessegundos; delayMicrosseconds(tempo); // interrompe o proc.	Serial.println(val); // imprime em ascii com cr+lf*1 /* print ou println pode receber um segundo parâmetro informando como o valor fornecido deve ser impresso, por exemplo "BIN" para imprimir em binário, "HEX" para imprimir em hexadecimal, "OCT" para Octal,		
// por "tempo" em microsegundos; milliø(); // retorna total de milessegundos // desde a última chamada microø(); // retorna total de microssegundos	"DEC" que é o padrão para decimal, ou um número par indicar quantas casas devem ser usadas; /* Serial.write(val); // escreve em formato binário o va Serial.writeln(""); // escreve adicionado cr+lf		
// desde a última chamada	Serial.read(); //		
Funções matemáticas map(val1,val1min,val1max,valmin,valmax) // mapeia valores entre val1min e val1max	char val = Serial.peek(); // pega caracter disponível // sem consumi-lo;		
// para valmin e valmax, p <mark>a</mark> ra nor <mark>ma</mark> lizar val1	long value = Serial.parseInt(); // espera um long valido;		
min(val1, val2) //	Serial.flueh(); // aguarda até que o buffer se esvazie;		
max(val1, val2) //			
abs(val1) //	// de dadas na manta accide		
constraint(val1, min, max) // delimita valor;	// de dados na porta serial;		
pow(val,p) // potência	shiftln(pino,pinoclock); // obtém o valor do pino, // sendo pinoclock o pino de pulso		
sqrt(val) // retorna a raiz quadrada	shiftOut(pino,pinoclock,valor); // empurra o valor; // no pino, sendo pinoclock o pulso;		

¹ cr+lf = retorno de carro mais salto de linha, conceito originado nos primórdios da computação relativo as impressoras; equivale a ASCII 10 + ASCII 13

Interrupções

interrupts() - ativa interrupções nointerrupts() - desativa as interrupções

anexa a função (somente nome da função) a uma das interrupções conforme o número em parentes, o segundo número é o pino referente:

(int.0) 2 (uno, mega), (int.1)3 (uno, mega),
(int.2)21 (mega), (int.3)20 (mega),
(int.4)19 (mega), (int.5)18 (mega),

a função informada deve ter a assinatura:

void functioname() { };

attachInterrupt(num, functionname, mode)

O parâmetro "mode" deve ser:

LOW, para lançar a interrupção quando o pino tem seu sinal LOW
CHANGE, para lançar a interrupção quando o pino tem seu valor alterado
RISING, para lançar a interrupção quando o valor vai de LOW para HIGH FALLING, quando o valor vai de HIGH para LOW

dettachInterrupt(num); desativa a interrupção;

*** ATENÇÃO *** DENTRO DE UMA INTERRUPÇÃO A FUNÇÃO DELAY(), MICROS(), MILES(), DELAYMICROSSECONDS() NÃO FUNCIONAM;

Variáveis em Memória de programa

#include <avr/pgmspace.h> // inclui cabeçalho

```
// para trabalhar com mémoria de programa;
prog_char // tamanho de um char (1 byte)
           // valor de -127 a 128
prog_uchar // tamanho de um char (1 byte)
             // valores de 0 a 255
prog_int16_t // tamanho de um int (2 bytes)
              //valores de -32,767 a 32,768
prog_uint16_t // tamanho de um int (2 bytes)
               // valores de 0 a 65,535
prog_int32_t // tamanho de um long (4 bytes)
               // -2,147,483,648 to * 2,147,483,647
prog_uint32_t //tamanho de um long (4 bytes)
               // 0 to 4,294,967,295
// read back a 2-byte
int displayInt =
            pgm_read_word_near(charSet + k);
// read back a
char myChar =
        pgm_read_byte_near(signMessage +
```

```
// Then set up a table to refer to your strings. PROGMEM const char
```


		.com.br				
Digital Port Co	nstants	Analog Port Constants				
HIGH LOW INPUT INPUT_PULLUP OUTPUT	A6	A0 até A5 Portas analogicas de 0 a 5 A6 até A Portas analógicas de 6 até, somente no Arduino Mega				
Constantes de Pon	to Flutuante	Constantes Lógicas				
10.0 10 2.34E5 2.34 * 10^5 67e-12 67.0 * 10^-12	00.000	LSE Fals				
		Matemática Binária				
Constantes Nu Binárias, Octais e		Além dos operadores binários apresentados acima, é importante entender que.				cima, é
B00000001 <-> 1 B00000010 <-> 2 B00000011 <-> 3 B111111101 <-> 253 B111111110 <-> 254		RMB (right most bit/byte) bit/byte de baixa ordem/menor valor LMB (least most bit/byte) bit/byte de alta ordem/maior valor				
B11111111 <-> 255						
BITTITIT <-> 255			Magnitud		(Compl. 1)	(Compl. 2)
		Binário	S/ Sinal	C/ Sinal	C/ Sinal	C/ Sinal
0x01 <-> 01	24		248	-122	-7	-8
0x02 <-> 02	24		249	-121	-6	-7
	25		250	-122	-5	-6
0x0A <-> 10	25 25		251 252	-123 -124	-4 -3	-5
0x0B <-> 11	25		252	-124	-3 -2	-4 -3
	25		254	-126	<u>-2</u> -1	-2
0x0F <-> 15	25		255	-127	-0	-1
0x10 <-> 16		0 00000000	0	0	0	0
0x11 <-> 17	1	1 00000001	1	1	1	1
	2	2 00000010	2	2	2	2
	3	3 00000011	3	3	3	3
	 	4 00000100	4	4	4	4
		5 00000101	5	5	5	5
	6	6 00000110	6	6	6	6
	! ! =			,		1 7
	7		7	7	7	7
		7 00000111 8 00001000	8	8	8	8

	Acrónimos
	Tensões no Circuito
VCC	Tensão de alimentação positiva para o coletor, ou seja com referência ao coletor do transistor para o terra (GND), usada para indicar a tensão que alimenta circuitos eletrônicos normalmente construídos com transistores BJT do tipo NPN.
VEE	Tensão de alimentação negativa, ou seja com referencia ao emissor do transistor para o terra (GND), usada para indicar a tensão que alimenta circuitos eletrônicos normalmente construídos com transistores BJT do tipo NPN.
VDD	Como nos circuitos construídos com transistores bipolares (BJT), os circuitos baseados em transistores FET em geral tem sua tenção positiva identificada por VDD, sendo o D de dreno.
VSS	Idem ao VEE, porém para o Source dos circuitos baseados em transistores do tipo FET.
GND	Em todo circuito é preciso um referencial comum para todas as medições de tensão, as medidas do tipo VCC, VEE, VDD e VSS são feitas em relação ao terra ou seja o GND.
VCE	Medida de tensão entre o coletor e emissor de um transistor BJT
VBE	Tensão medida entre a Base e o Emissor de um transistor do tipo BJT
VC	Tensão medida em circuitos BJT, diretamente no coletor do transistor
VE	Tensão medida em circuitos BJT, diretamente no coletor do transistor
AVDD	Em circuitos que há presença de circuitos digitais e analógicos tem-se o costume de identificar a tenção que alimenta o circuito analógico pelo acrónimo AVDD, comumente usado em MCUs, também podemos encontrar como AVCC.
МСИ	MicroControler Unit, Unidade MicronControladora, no caso do Arduino UNO é o chip "Atmega328"
СРИ	Central Processor Unit, Unidade Central de processamento, é o coração de qualquer computador, e também de uma MCU, no caso do Arduino que usa ATmega é do tipo AVR, no Arduino DUE por exemplo que usa um núcleo do tipo ARM.
ARM	É uma arquitetura de CPU ou MCU que tem um núcleo tipicamente de 32 bits e é baseado em um conjunto de instrução do tipo RISC, hoje a arquitetura ARM permite tanto seu uso em Microcontroladores como em Microcontroladores.
AVR	
PIC	