Network-independent tricks

Mohamed Osama Ahmed October 5th, 2016

Overview

- Activation Units
- Loss Functions
- Initialization
- Regularization
- Optimization
- Model selection
- Other Tricks:
 - Debugging
 - Batch Normalization

NEURAL NETWORK

Topics: multilayer neural network

- Could have L hidden layers:
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

• hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

MACHINE LEARNING

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

- $m l(f(\mathbf{x}^{(t)};m heta),y^{(t)})$ is a loss function
- $oldsymbol{\Omega}(oldsymbol{ heta})$ is a regularizer (penalizes certain values of $oldsymbol{ heta}$)
- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize (e.g. upper bound)

MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - $m{ heta}$ initialize $m{ heta}$ ($m{ heta} \equiv \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \})$
 - for N iterations
 - $\begin{array}{c} \text{- for each training example} \quad (\mathbf{x}^{(t)}, y^{(t)}) \\ & \swarrow \Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\ & \swarrow \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \; \Delta \end{array} \end{array} \right\} \begin{array}{c} \text{training epoch} \\ & = \\ \text{iteration over all examples} \end{array}$
- · To apply this algorithm to neural network training, we need
 - $m{\cdot}$ the loss function $l(\mathbf{f}(\mathbf{x}^{(t)};m{ heta}),y^{(t)})$
 - $m{\cdot}$ a procedure to compute the parameter gradients $abla_{m{ heta}}l(\mathbf{f}(\mathbf{x}^{(t)};m{ heta}),y^{(t)})$
 - ullet the regularizer $\Omega(oldsymbol{ heta})$ (and the gradient $abla_{oldsymbol{ heta}}\Omega(oldsymbol{ heta})$)

Activation Function

Topics: linear activation function

- Performs no input squashing
- Not very interesting...

$$g(a) = a$$

Topics: sigmoid activation function

- Squashes the neuron's pre-activation between 0 and 1
- Always positive
- Bounded
- Strictly increasing

$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

Topics: hyperbolic tangent ("tanh") activation function

- Squashes the neuron's pre-activation between
 -1 and 1
- Can be positive or negative
- Bounded
- Strictly increasing

$$g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Topics: rectified linear activation function

- Bounded below by 0

 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities

$$g(a) = reclin(a) = max(0, a)$$

LOSS FUNCTION

LOSS FUNCTION

Topics: loss function for classification

- Neural network estimates $f(\mathbf{x})_c = p(y = c|\mathbf{x})$
 - ullet we could maximize the probabilities of $y^{(t)}$ given ${f x}^{(t)}$ in the training set
- To frame as minimization, we minimize the negative log-likelihood natural log (In)

$$l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c} 1_{(y=c)} \log f(\mathbf{x})_{c} = -\log f(\mathbf{x})_{y}$$

- we take the log to simplify for numerical stability and math simplicity
- sometimes referred to as cross-entropy

INITIALIZATION

INITIALIZATION

size of $\mathbf{h}^{(k)}(\mathbf{x})$

Topics: initialization

- For biases
 - initialize all to 0
- For weights
 - Can't initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 - Can't initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 - Recipe: sample $\mathbf{W}_{i,j}^{(k)}$ from $U\left[-b,b\right]$ where $b=\frac{\sqrt{6}}{\sqrt{H_k+H_{k-1}}}$ the idea is to sample around 0 but break symmetry
 - other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

MODEL SELECTION

MACHINE LEARNING

Topics: training, validation and test sets, generalization

- ullet Training set $\mathcal{D}^{ ext{train}}$ serves to train a model
- ullet Validation set $\mathcal{D}^{\mathrm{valid}}$ serves to select hyper-parameters
 - ▶ hidden layer size(s), learning rate, number of iterations/epochs, etc.
- \cdot Test set $\mathcal{D}^{ ext{test}}$ serves to estimate the generalization performance (error)

- Generalization is the behavior of the model on unseen examples
 - this is what we care about in machine learning!

MODEL SELECTION

Topics: grid search, random search

- To search for the best configuration of the hyper-parameters:
 - you can perform a grid search
 - specify a set of values you want to test for each hyper-parameter
 - try all possible configurations of these values
 - you can perform a random search (Bergstra and Bengio, 2012)
 - specify a distribution over the values of each hyper-parameters (e.g. uniform in some range)
 - sample independently each hyper-parameter to get configurations
 - bayesian optimization or sequential model-based optimization ...
- Use a validation set performance to select the best configuration
- · You can go back and refine the grid/distributions if needed

FIGHTING OVERFITTING

REGULARIZATION

Topics: L2 regularization

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^2 = \sum_{k} ||\mathbf{W}^{(k)}||_F^2$$

• Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = 2\mathbf{W}^{(k)}$

- · Only applied on weights, not on biases (weight decay)
- Can be interpreted as having a Gaussian prior over the weights

REGULARIZATION

Topics: L1 regularization

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

- Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = \operatorname{sign}(\mathbf{W}^{(k)})$
 - where $\operatorname{sign}(\mathbf{W}^{(k)})_{i,j} = 1_{\mathbf{W}_{i,j}^{(k)} > 0} 1_{\mathbf{W}_{i,j}^{(k)} < 0}$
- Also only applied on weights
- Unlike L2, L1 will push certain weights to be exactly 0
- Can be interpreted as having a Laplacian prior over the weights

KNOWING WHEN TO STOP

Topics: early stopping

 To select the number of epochs, stop training when validation set error increases (with some look ahead)

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Topics: dropout

- Use random binary masks $\mathbf{m}^{(k)}$
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

• hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: test time classification

- At test time, we replace the masks by their expectation
 - this is simply the constant vector 0.5 if dropout probability is 0.5
 - for single hidden layer, can show this is equivalent to taking the geometric average of all neural networks, with all possible binary masks
- · Can be combined with unsupervised pre-training

- Beats regular backpropagation on many datasets
 - Improving neural networks by preventing co-adaptation of feature detectors. Hinton, Srivastava, Krizhevsky, Sutskever and Salakhutdinov, 2012.

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

encourage hidden layers to encode that structure

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- · We will use a greedy, layer-wise procedure
 - train one layer at a time, from first to last, with unsupervised criterion
 - fix the parameters of previous hidden layers

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- We call this procedure unsupervised pre-training
 - first layer: find hidden unit features that are more common in training inputs than in random inputs
 - second layer: find combinations of hidden unit features that are more common than random hidden unit features
 - third layer: find combinations of combinations of ...
 - etc.
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

FINE-TUNING

Topics: fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular feed-forward network
 - forward propagation, backpropagation and update
- We call this last phase fine-tuning
 - all parameters are "tuned" for the supervised task at hand
 - representation is adjusted to be more discriminative

OPTIMIZATION

OTHER TRICKS OF THE TRADE

Topics: mini-batch, momentum

- Can update based on a mini-batch of example (instead of I example):
 - the gradient is the average regularized loss for that mini-batch
 - can give a more accurate estimate of the risk gradient
 - can leverage matrix/matrix operations, which are more efficient

Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get through plateaus more quickly, by "gaining momentum"

OTHER TRICKS OF THE TRADE

Topics: Adagrad, RMSProp, Adam

- Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^{2} \qquad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

RMSProp: instead of cumulative sum, use exponential moving average

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^{2} \qquad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

Adam: essentially combines RMSProp with momentum

DEBUGGING

GRADIENT CHECKING

Topics: finite difference approximation

 To debug your implementation of fprop/bprop, you can compare with a finite-difference approximation of the gradient

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- f(x) would be the loss
- \bullet x would be a parameter
- $f(x+\epsilon)$ would be the loss if you add ϵ to the parameter
- $f(x-\epsilon)$ would be the loss if you subtract ϵ to the parameter

DEBUGGING ON SMALL DATASET

Topics: debugging on small dataset

- Next, make sure your model is able to (over)fit on a very small dataset (~50 examples)
- If not, investigate the following situations:
 - Are some of the units saturated, even before the first update?
 - scale down the initialization of your parameters for these units
 - properly normalize the inputs
 - Is the training error bouncing up and down?
 - decrease the learning rate
- Note that this isn't a replacement for gradient checking
 - could still overfit with some of the gradients being wrong

Topics: batch normalization

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization also be useful at the level of the hidden layers?
- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
 - each unit's **pre-**activation is normalized (mean subtraction, stddev division)
 - during training, mean and stddev is computed for each minibatch
 - backpropagation takes into account the normalization
 - at test time, the global mean / stddev is used

Topics: batch normalization

Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize
$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i})$$
 // scale and shift

Learned linear transformation to adapt to non-linear activation function $(\gamma \text{ and } \beta \text{ are } \textbf{trained})$

Topics: batch normalization

- Why normalize the pre-activation?
 - can help keep the pre-activation in a non-saturating regime (though the linear transform $y_i \leftarrow \gamma \hat{x}_i + \beta$ could cancel this effect)
- Why use minibatches?
 - since hidden units depend on parameters, can't compute mean/stddev once and for all
 - adds stochasticity to training, which might regularize (dropout not as useful)

Topics: batch normalization

- How to take into account the normalization in backdrop?
 - derivative wrt x_i depends on the partial derivative of the mean and stddev
 - \blacktriangleright must also update γ and β

- Why use the global mean stddev at test time?
 - removes the stochasticity of the mean and stddev
 - requires a final phase where, from the first to the last hidden layer
 - 1. propagate all training data to that layer
 - 2. compute and store the global mean and stddev of each unit
 - for early stopping, could use a running average

Discussion

- Sigmoid Units are coming back thanks to BN.
- Initialization: Pre-training can help.
- Regularization: BN, Dropout, early stopping.
- Optimization: Adam, RMSPROP.
- Model selection: Random search or grid search.

THANK YOU!

Topics: dropout backpropagation

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

• for k from L+1 to 1

- compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^\top$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot \left[\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots\right] \odot \mathbf{m}^{(k-1)}$$

$$\frac{\partial \ell}{\partial \widehat{x}_i} = \frac{\partial \ell}{\partial y_i} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} = \sum_{i=1}^m \frac{\partial \ell}{\partial \widehat{x}_i} \cdot (x_i - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^2 + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$