

# **Chapter 5: Clustering**

崔金华

电子邮箱: jhcui@hust.edu.cn

个人主页: https://csjhcui.github.io/

# Contents







**K-均值算法**K-means Algorithms





# High Dimensional Data



□Given a cloud of data points we want to understand its

structure



## The Problem of Clustering



- □Given a **set of points(点集)**, with a notion of **distance** between points, **group the points** into some number of *clusters(簇)*, so that
  - ➤ Members of a cluster are close/similar to each other
  - > Members of different clusters are dissimilar

### **□Usually:**

- ➤ Points are in a high-dimensional space
- ➤ Similarity is defined using a distance measure
  - Euclidean, Cosine, Jaccard, edit distance, ...

## Example: Clusters & Outliers





## Clustering is a hard problem!





## Why is it hard?



- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- □And in most cases, looks are not deceiving (欺骗性)

- □However, many applications involve not 2, but 10 or 10,000 dimensions
- □ High-dimensional spaces look different: Almost all pairs of points are at about the same distance

## Clustering Problem: Galaxies



- □SkyCat: A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- □Problem: Cluster into similar objects, e.g., galaxies (星系), nearby stars (近恒星), quasars (类星体), etc.

□Sloan Digital Sky Survey (斯隆数字化巡天项目)



## Clustering Problem: Documents



□ Finding topics: Represent a document by a vector  $(x_1, x_2, ..., x_k)$ , where  $x_i = 1$  iff the i<sup>th</sup> word (in some order) appears in the document

 $\triangleright$ It actually doesn't matter if k is infinite; i.e., we don't limit the set

of words

 Documents with similar sets of words may be about the same topic



## Clustering Problem: Music CDs



- Intuitively: Music divides into categories, and customers prefer a few categories
  - ➤ But what are categories really?
- Represent a CD by a set of customers who bought it:
  - ➤ Similar CDs have similar sets of customers, and vice-versa

## Clustering Problem: Music CDs



- □Space of all CDs: Think of a space with one dim. for each customer
  - ➤ Values in a dimension may be 0 or 1 only
  - A CD is a point in this space  $(x_1, x_2, ..., x_k)$ , where  $x_i = 1$  iff the i<sup>th</sup> customer bought the CD
- □ For Amazon, the dimension is tens of millions
- Task: Find clusters of similar CDs

### Cosine, Jaccard, and Euclidean



- ■As with CDs we have a choice when we think of documents as sets of words or shingles:
  - >Sets as points: Measure similarity by Euclidean distance
  - >Sets as sets: Measure similarity by the Jaccard distance
  - >Sets as vectors: Measure similarity by the Cosine distance

### **Euclidean Distance**



### □Euclidean distance(欧氏距离)

▶也就是我们通常想象的距离. 在n维欧氏空间下, 每个点是一个n维实数向量. 在该空间下的传统距离测度, 即我们常说的L2范式(L2-norm).



$$d(p,q) = \sqrt{\sum_{j=1}^{d} (p_j - q_j)^2}$$

### **□ Euclidean similarity**

 $>\frac{1}{1+d(p,q)}$ , (0, 1]. closer to 1, the more similar

### Jaccard Distance



### **□Goal:** define what "distance" means in high-dim. space

➤The Jaccard similarity of two sets is the size of their intersection(交集) divided by the size of their union(并集):

$$sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

> Jaccard distance:  $d(C_1, C_2) = 1 - |C_1 \cap C_2|/|C_1 \cup C_2|$ 



3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

### Example: Jaccard Distance



Example: The Jaccard distance for the documents?

new

apple pie

D3

apple releases new ipod D1

apple releases new ipad

D2

recipe

Vefa rereases new book with apple pie recipes

D4

#### □Ans:

- >sim(D1,D2) = 3/5, sim(D1,D3) = sim(D2,D3) = 2/6, sim(D1,D4) = sim(D2,D4) = 3/9
- $\rightarrow$ d(D1,D2)=2/5, d(D1,D3)=d(D2,D3)=4/6, d(D1,D4)=d(D2,D4)=6/9

## **Cosine Similarity**



- $\square$ Sim(X,Y) = cos(X,Y)
  - The cosine of the angle between X and Y



Geometric illustration of the cosine measure.

- □If the vectors are aligned (correlated) angle is zero degrees and cos(X,Y)=1
- □ If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X,Y) = 0
- □Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

## **Cosine Similarity**



- **Cosine similarity**:  $cos(d_1, d_2) = \frac{d_1 \cdot d_2}{||d_1|| ||d_2||}$ 
  - ➤d1 and d2 are two vectors. indicates vector dot product (向量的点积, 或称内积); ||d|| is the length of vector d (向量的大小).
  - $\triangleright$  (-1,1). closer to 1, the more similar
- □ Example:  $d_1 = 3205000200$ ,  $d_2 = 1000000102$
- □Ans:
  - First, d1 d2= 3\*1+2\*0+0\*0+5\*0+0\*0+0\*0+0\*0+2\*1+0\*0+0\*2=5;
  - $||d1|| = \sqrt{3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0} = 6.481;$
  - $||d2|| = \sqrt{1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2} = 2.245.$
  - $\triangleright$  So, cos(d1, d2)=0.3150

### Cosine Distance



- □Cosine Distance(余弦距离):  $dis(d_1, d_2) = 1 cos(d_1, d_2)$ 
  - **>**(0,2)
  - >closer to 0, the more similar

## **Example: Cosine Distance**



■Example: The cosine distance for the documents?

| document | Apple | Microsoft | Obama | Election |
|----------|-------|-----------|-------|----------|
| D1       | 10    | 20        | 0     | 0        |
| D2       | 30    | 60        | 0     | 0        |
| D3       | 60    | 30        | 0     | 0        |
| D4       | 0     | 0         | 10    | 20       |

□Ans:

dis(D1,D2) =0 
$$\longrightarrow$$
 D1 and D2 similarity  
dis (D3,D1) = dis (D3,D2) = 1/5  
dis(D4,D1) = dis(D4,D2)  $\longrightarrow$  D4 and D1 dissimilarity;  
= dis(D4,D3) = 1

### 补充: 编辑距离



- **□Edit Distance**(编辑距离): The edit distance between two strings  $x = x_1x_2...x_n$  and  $y = y_1y_2...y_m$  is the smallest number of insertions and deletions of single characters that will convert x to y.
  - ➤ This distance makes sense when points are strings (编辑距离适用于字符串比较).
- **□Example:** What is the edit distance between the strings x = abcde and y =acfdeg?
- **Ans**: d(x, y) = 3. To convert x to y: Step 1. Delete b; Step 2: Insert f after c; Step 3: Insert g after e. No sequence of fewer than three insertions and/or deletions will convert x to y.

### 补充: 编辑距离



- □Longest common subsequence (LCS, 最长公共子序列) of x and y is a string that is constructed by deleting positions from x and y, and that is as long as any string that can be constructed that way.
- □Then, edit distance d(x, y)=the length of x +the length of y 2\* the length of their LCS.

- **Example:** What is the edit distance between the strings x = abcde and y = acfdeg?
- $\square$ **Ans**: d(x, y) = 3. LCS is "acde". Then 5+6-2\*4=3.

### 补充: 海明距离



□ Hamming Distance(海明距离): Given a space of vectors, we define the Hamming distance between two vectors to be the number of components in which they differ.

- □ **Example**: What is the Hamming distance between the vectors 10101 and 11110
- □Ans: Hamming distance is 3. That is, these vectors differ in the second, fourth, and fifth components (10101 and 11110), while they agree in the first and third components.



# Section 5.2: Hierarchical clustering

## Clustering Overview



### **■**Methods of clustering:

□1、Hierarchical(层次聚类, 分级聚类,

### 凝聚式算法):

- **≻Agglomerative** (bottom up):
  - Initially, each point is a cluster
  - Repeatedly combine the two "nearest" clusters into one
- **➤ Divisive** (top down):
  - Start with one cluster and recursively split it

### □2、Point assignment(点分配):

- ➤ Maintain a set of clusters
- ➤ Points belong to "nearest" cluster
- ≽e.g. K-mean, BFR, CURE...





## **Hierarchical Clustering**



### □ Key operation: Repeatedly combine two nearest clusters



### **□**Three important questions:

- ▶1) How do you represent a cluster of more than one point?
- **▶2)** How do you determine the "nearness" of clusters?
- **▶3)** When to stop combining clusters?