0.1 高等代数中两个重要结论和思想

定义 0.1 (函数组线性无关/相关)

设 $\{f_1(x), f_2(x), \dots, f_n(x)\}$ 是一组定义域为 D 的函数, 如果不存在不全为零的标量 c_1, c_2, \dots, c_n , 使得 $c_1f_1(x) + c_2f_2(x) + \dots + c_nf_n(x) = 0, \quad \forall x \in D.$

则称这组函数在1上是线性无关的.

反之,如果存在不全为零的 c_i 使得上式成立,则称这组函数是**线性相关的**.

定理 0.1

设 X 是域 \mathbb{F} 上的线性空间, $f_1, f_2, \cdots, f_n \in X^*$, 记 $N = \bigcap_{i=1}^n \ker f_i$, 则下述条件等价

- (1) $f ∈ X^*$ 可被 f_1, f_2, \cdots, f_n 线性表出;
- (2) $N \subset \ker f$.

其中 X^* 是线性空间X的对偶空间.

证明 (1) 推 (2) 是显然的, 我们来看 (2) 推 (1).

构造线性映射

$$\pi: X \to \mathbb{F}^n, \mathbf{x} \mapsto (f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_n(\mathbf{x})).$$

于是 $\ker \pi = N$. 定义

$$g:\pi(X)\to\mathbb{F},\pi(\mathbf{x})\mapsto f(\mathbf{x}).$$

先证 g 的良定义. 若 $\pi(x) = \pi(y)$, 则 $\pi(x - y) = 0$, 从而 $x - y \in \ker \pi = N$, 于是 f(x - y) = 0, 即 f(x) = f(y). 故 g 是良定义的.

现在 g 线性延拓到 \mathbb{F}^n 上 (补空间上定义为零映射), 取 \mathbb{F}^n 的标准基为 $\{e_1, e_2, \cdots, e_n\}$, 其中 $e_i = (0, \cdots, 1, \cdots, 0)^T$, $i = 1, 2, \cdots, n$. 现在我们注意到对 $\forall x \in X$, 都有

$$f(x) = g(\pi(x)) = g(f_1(x), f_2(x), \dots, f_n(x)) = g\left(\sum_{i=1}^n f_i(x)e_i\right) = \sum_{i=1}^n g(e_i)f_i(x).$$

这就证明了 f 可被 f_1, f_2, \cdots, f_n 线性表出.

推论 0.1

n 维线性空间 X 的 n 个线性函数 f_1, f_2, \cdots, f_n 线性无关的充要条件是他们可分点,即对任何 $a \neq 0$,存在某个 $k=1,2,\cdots,n$,使得 $f_k(a) \neq 0$. 也即 $\bigcap_{i=1}^n \ker f_i = \{0\}$.

证明 注意到 n 个线性函数 f_1, f_2, \dots, f_n 线性无关等价于 f_1, f_2, \dots, f_n 是这个线性空间对偶空间 X^* 的一组基, 从而等价于任意的 $f \in X^*$ 都可被 f_1, f_2, \dots, f_n 线性表出. 又由定理 0.1知, 任意的 $f \in X^*$ 都可被 f_1, f_2, \dots, f_n 线性表出的充要条件是

$$\bigcap_{i=1}^{n} \ker f_i \subset \bigcap_{f \in X^*} \ker f,\tag{1}$$

下证 $\bigcap_{f \in X^*} \ker f = \{0\}$. 对 $\forall \alpha \in \bigcap_{f \in X^*} \ker f$, 若 $\alpha \neq 0$, 则 X^* 中存在线性函数

$$f_0: X \longrightarrow X, x \longmapsto 2x$$

从而 $f(\alpha)=2\alpha\neq 0$. 这与 $\alpha\in\ker f_0$ 矛盾! 因此 $\alpha=0$, 故 $\bigcap_{f\in X^*}\ker f=\{0\}$. 再由(1)式可知, f_1,f_2,\cdots,f_n 线性无关

1

等价于 $\bigcap_{i=1}^{n} \ker f_i = \{0\}$, 即使 f_i 的像全为 0 的向量只能是 0. 这就完成了证明.

例题 0.1 设 V 是有限维线性空间且 A 是 V 上的线性变换. 定义

$$B: V^* \to V^*, g \mapsto g \circ A.$$

证明 f, Bf, B^2f , \cdots , $B^{n-1}f$ 构成 V^* 的基的充要条件是 A 的任一非 0 不变子空间都不是 $\ker f$ 的子空间.

笔记 联想循环子空间的基本性质即 $span\{x, Ax, A^2x, \dots\}$ 是包含 x 的最小 A- 不变子空间.

证明 由推论 0.1知 $f, Bf, B^2f, \dots, B^{n-1}f$ 构成 V^* 的基等价于

$$\bigcap_{k=0}^{n-1} \ker B^k f = \{0\}. \tag{2}$$

于是由

$$x \in \bigcap_{k=0}^{n-1} \ker B^k f = \bigcap_{k=0}^{n-1} \ker (f \circ A^k)$$
 $\iff f(A^i x) = 0, \forall i = 0, 1, 2, \cdots, n-1$
 $\iff A^i x \in \ker f, \forall i = 0, 1, 2, \cdots, n-1$
 $\xrightarrow{\text{定理??}} \operatorname{span}\{x, Ax, A^2 x, \cdots\} = \operatorname{span}\{x, Ax, \cdots, A^{n-1} x\} \subset \ker f$
 $\xrightarrow{\text{循环} \cdot \text{?} \circ \text{။}} \operatorname{ind} \operatorname{in$

知 (2) 成立等价于只有 $0 \in \bigcap_{k=0}^{n-1} \ker B^k f$, 等价于只有包含 0 的最小 A— 不变子空间 (即 $\{0\}$) 含于 $\ker f$, 也等价于含于 $\ker f$ 的 A— 不变子空间只能是 $\{0\}$, 这就等价于 A 的任一非 $\{0\}$ 不变子空间都不是 $\ker f$ 的子空间.

定理 0.2

函数 f_1, f_2, \dots, f_m 线性无关的充要条件是: 存在 m 个数 $x_i, i = 1, 2, \dots, m$, 使得

$$\begin{vmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{m}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{m}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(x_{m}) & f_{2}(x_{m}) & \cdots & f_{m}(x_{m}) \end{vmatrix} \neq 0$$
(3)

注 本题并未指出 f 定义域, 因此其定义域未必是数字.

证明 充分性: 设存在 m 个数 x_i , $i=1,2,\cdots,m$, 使得 (3) 成立. 考虑关于 c_1,c_2,\cdots,c_m 的齐次线性方程组

$$\sum_{i=1}^{m} c_i f_i(x_j) = 0, j = 1, 2, \cdots, m.$$

我们由(3)知其系数矩阵可逆,因此线性方程组只有0解,这就证明了 f_1, f_2, \cdots, f_m 线性无关.

必要性: 假定 f_1, f_2, \cdots, f_m 线性无关, 不妨设定义域 D 有不少于 m 个不同的点, 否则, 不妨设定义域 D 内有 $k \leq m$ 个点, 则考虑关于 c_1, c_2, \cdots, c_m 的齐次线性方程组

$$\sum_{i=1}^{m} c_i f_i(x_j) = 0, j = 1, 2, \dots, k.$$

因为 $k \leq m$, 所以上述方程有无穷多个解, 可从中任取一组非零解 $(c_1', c_2', \cdots, c_m')$, 于是

$$\sum_{i=1}^{m} c_i' f_i(x) = 0, \forall x \in D.$$

故 f_1, f_2, \cdots, f_m 线性相关.

我们用归纳法, m=1 命题显然成立, 假设命题对不超过 m-1 时成立, 则考虑 m 时, 对 $f_1, f_2, \cdots, f_{m-1}$ 用归

纳假设存在 x_i , $i = 1, 2, \dots, m-1$ 使得

$$\begin{vmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{m-1}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{m-1}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(x_{m-1}) & f_{2}(x_{m-1}) & \cdots & f_{m-1}(x_{m-1}) \end{vmatrix} \neq 0,$$

$$(4)$$

因为 f_1, f_2, \dots, f_m 线性无关, 所以存在 x_m 使得关于 k_1, k_2, \dots, k_m 的方程

$$k_1 f_1(x_m) + k_2 f_2(x_m) + \dots + k_m f_m(x_m) = 0.$$
 (5)

只有零解.将

$$\begin{vmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_m) & f_2(x_m) & \cdots & f_m(x_m) \end{vmatrix}$$

按最后一行展开得

$$\begin{vmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_m) & f_2(x_m) & \cdots & f_m(x_m) \end{vmatrix} = a_1 f_1(x_m) + a_2 f_2(x_m) + \cdots + a_m f_m(x_m),$$

其中 a_i 为(m,i)元的代数余子式.由(4)式可知

$$a_{m} = \begin{vmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{m}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{m}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(x_{m-1}) & f_{2}(x_{m-1}) & \cdots & f_{m-1}(x_{m-1}) \end{vmatrix} \neq 0.$$

故由方程(5)只有零解知

$$a_1 f_1(x_m) + a_2 f_2(x_m) + \dots + a_m f_m(x_m) \neq 0,$$

即

$$\begin{vmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_m) & f_2(x_m) & \cdots & f_m(x_m) \end{vmatrix} \neq 0.$$

这就证明了存在 x_m 使得(3)成立,我们完成了证明.

例题 0.2 设 $X \subset C[0,1]$ 的有限维子空间, 证明 X 中函数列逐点收敛蕴含一致收敛.

🖹 笔记 证明的想法是把函数列逐点收敛转化为系数的收敛,从而一致收敛.

证明 设 f_1, f_2, \dots, f_m 是 X 的一组基, 我们知道存在 m 个数 $x_i, i = 1, 2, \dots, m$, 使得

$$\begin{vmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{m}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{m}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(x_{m}) & f_{2}(x_{m}) & \cdots & f_{m}(x_{m}) \end{vmatrix} \neq 0.$$
(6)

对函数列 $\{f^{(k)}\}\subset X, k=1,2,\cdots$,我们知道有表示

$$f^{(k)}(x) = \sum_{j=1}^{m} c_j^{(k)} f_j(x), \lim_{k \to \infty} f^{(k)}(x) = f(x), \forall x \in [0, 1].$$

于是由(6)知

$$\begin{pmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{m}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{m}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(x_{m}) & f_{2}(x_{m}) & \cdots & f_{m}(x_{m}) \end{pmatrix} \begin{pmatrix} c_{1}^{(k)} \\ c_{2}^{(k)} \\ \vdots \\ c_{m}^{(k)} \end{pmatrix} = \begin{pmatrix} f^{(k)}(x_{1}) \\ f^{(k)}(x_{2}) \\ \vdots \\ f^{(k)}(x_{m}) \end{pmatrix}$$

即

$$\begin{pmatrix} c_1^{(k)} \\ c_2^{(k)} \\ \vdots \\ c_m^{(k)} \end{pmatrix} = \begin{pmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_m) & f_2(x_m) & \cdots & f_m(x_m) \end{pmatrix}^{-1} \begin{pmatrix} f^{(k)}(x_1) \\ f^{(k)}(x_2) \\ \vdots \\ f^{(k)}(x_m) \end{pmatrix}$$

因此存在 c_i 使得

$$\lim_{k \to \infty} c_j^{(k)} = c_j, j = 1, 2, \cdots, m.$$

现在就有

$$\lim_{k \to \infty} f^{(k)}(x) = \sum_{j=1}^{m} c_j f_j(x), \forall x \in [0, 1].$$

又

$$\begin{split} \sup_{x \in [0,1]} \left| f^{(k)}(x) - f(x) \right| & \leq \sup_{x \in [0,1]} \sum_{j=1}^{n} \left| c_{j}^{(k)} - c_{j} \right| \cdot \left| f_{j}(x) \right| \\ & \leq \sup_{\substack{1 \leq j \leq m, \\ x \in [0,1]}} \left| f_{j}(x) \right| \cdot \sum_{j=1}^{n} \left| c_{j}^{(k)} - c_{j} \right| \to 0, k \to \infty. \end{split}$$

这就证明了X中函数列逐点收敛蕴含一致收敛.

定理 0.3

设 V 是域 $\mathbb F$ 上的线性空间,A 是 V 上线性变换, $f,f_i\in\mathbb F[x],i=1,2,\cdots,s$ 满足 $f=f_1f_2\cdots f_s$ 并有 f_1,f_2,\cdots,f_s 两两互素. 则

$$\ker f(A) = \ker f_1(A) \oplus \ker f_2(A) \oplus \cdots \oplus \ker f_s(A).$$

 $\hat{\mathbf{y}}$ 笔记 这个定理最常见的情况是: 当 f 为 A 的零化多项式时, 就有 $\ker f(A) = V$, 此时利用这个定理就能得到一个全空间的直和分解.

证明 当 s=2, 此时由裴蜀等式得 $p_1, p_2 \in \mathbb{F}[x]$ 使得 $p_1f_1 + p_2f_2 = 1$. 于是对 $\alpha \in \ker f(A)$, 我们有

$$\alpha = p_1(A)f_1(A)\alpha + p_2(A)f_2(A)\alpha.$$

定义

$$\alpha_1 \triangleq p_2(A)f_2(A)\alpha, \quad \alpha_2 \triangleq p_1(A)f_1(A)\alpha.$$

现在

$$f_1(A)\alpha_1=p_2(A)f_1(A)f_2(A)\alpha=p_2(A)f(A)\alpha=0\Rightarrow\alpha_1\in\ker f_1(A);$$

$$f_2(A)\alpha_2 = p_1(A)f_1(A)f_2(A)\alpha = p_1(A)f(A)\alpha = 0 \Rightarrow \alpha_2 \in \ker f_2(A).$$

因此我们的确有

$$\ker f(A) = \ker f_1(A) + \ker f_2(A).$$

现在设
$$\alpha \in \ker f_1(A) \cap \ker f_2(A)$$
, 于是 $\alpha = p_1(A)f_1(A)\alpha + p_2(A)f_2(A)\alpha = 0$, 即
$$\ker f(A) = \ker f_1(A) \oplus \ker f_2(A).$$

对 s > 2, 我们考虑归纳法. 假设命题对 s - 1 已经成立, 设 $g(x) riangleq f_2(x) f_3(x) \cdots f_s(x)$, 则由命题??知 f_1, g 互素. 由 s = 2 的结论知

$$\ker f(A) = \ker f_1(A) \oplus \ker g(A)$$
.

对g用归纳假设得

$$\ker f(A) = \ker f_1(A) \oplus \ker f_2(A) \oplus \cdots \oplus \ker f_s(A).$$

例题 0.3 设 $B_i \in \mathbb{C}^{n \times n}$, $i = 1, 2, \dots, k$ 是幂等矩阵, $A = B_1 B_2 \dots B_k$, 证明:

$$r(I-A) \leqslant k(n-r(A)).$$

证明 将 A,B_i 都看作在 \mathbb{C}^n 上左乘诱导的线性变换. 由 B_i 是幂等矩阵知

$$B^2 = B \iff \ker(B_i^2 - B_i) = \mathbb{C}^n, \ i = 1, 2, \dots, k.$$

由定理 0.3知

$$\mathbb{C}^n = \ker(B_i^2 - B_i) = \ker B_i \oplus \ker(I - B_i), i = 1, 2, \dots, k.$$

再结合维数公式可得

$$n = \dim \ker B_i + \dim \ker (I - B_i) = n - \dim \operatorname{Im} B_i + n - \dim \operatorname{Im} (I - B_i)$$

= $n - r(B_i) + n - r(I - B_i)$, $i = 1, 2, \dots, k$.

因此

$$r(I - B_i) + r(B_i) = n, i = 1, 2, \dots, k.$$

注意到

$$I - A = I - B_1 B_2 \cdots B_k = (I - B_1) B_2 \cdots B_k + (I - B_2) B_3 \cdots B_k + \cdots + (I - B_{k-1}) B_k + I - B_k$$

故由矩阵秩的基本公式(2)知

$$r(A) = r(B_1 B_2 \cdots B_k) \le r(B_i), i = 1, 2, \cdots, k.$$

从而再由矩阵秩的基本公式(2)和(5)知

$$r(I - A) \le r(I - B_1) + r(I - B_2) + \dots + r(I - B_k)$$

= $kn - r(B_1) - r(B_2) - \dots - r(B_k)$
 $\le kn - kr(A) = k(n - r(A)).$

例题 0.4 设 V 是域 \mathbb{F} 上的线性空间, A 是 V 上线性变换. 设 $f, f_i \in \mathbb{F}[x], i = 1, 2, \dots, s$ 满足 $f = f_1 f_2 \cdots f_s$ 并有 f_1, f_2, \dots, f_s 两两互素, f 是 A 的零化多项式. 证明:

$$V = \operatorname{Im} \frac{f(A)}{f_1(A)} \oplus \operatorname{Im} \frac{f(A)}{f_2(A)} \oplus \cdots \oplus \operatorname{Im} \frac{f(A)}{f_s(A)}.$$

注 题目中出现了 $\frac{f}{f_i}$, 就是默认了 $f_i \mid f$, 也即 $\frac{f}{f_i} \in \mathbb{F}[x]$. 证明 由定理 0.3, 我们有

 $\ker f(A) = \ker f_1(A) \oplus \ker f_2(A) \oplus \cdots \oplus \ker f_s(A).$

设

$$\alpha = \frac{f(A)}{f_i(A)}\beta \in \operatorname{Im} \frac{f(A)}{f_i(A)},$$

我们有

$$f_i(A)\alpha = f(A)\beta = 0 \implies \alpha \in \ker f_i(A),$$

故 $\operatorname{Im} \frac{f(A)}{f_i(A)} \subseteq \ker f_i(A), i = 1, 2, \dots, s.$ 于是由命题??知

$$\operatorname{Im} \frac{f(A)}{f_1(A)} + \operatorname{Im} \frac{f(A)}{f_2(A)} + \dots + \operatorname{Im} \frac{f(A)}{f_s(A)}$$

是直和. 由命题**??**知 $\frac{f}{f_i}$, $i=1,2,\cdots,s$ 互素, 由裴蜀等式我们知道存在 $u_i\in\mathbb{F}[x]$, $i=1,2,\cdots,s$ 使得

$$\sum_{i=1}^{s} u_i \frac{f}{f_i} = 1.$$

于是对 $\alpha \in V$, 我们有

$$\alpha = \sum_{i=1}^{s} \frac{f(A)}{f_i(A)} (u_i(A)\alpha) \in \operatorname{Im} \frac{f(A)}{f_1(A)} \oplus \operatorname{Im} \frac{f(A)}{f_2(A)} \oplus \cdots \oplus \operatorname{Im} \frac{f(A)}{f_s(A)}.$$

现在我们知道

$$V = \operatorname{Im} \frac{f(A)}{f_1(A)} \oplus \operatorname{Im} \frac{f(A)}{f_2(A)} \oplus \cdots \oplus \operatorname{Im} \frac{f(A)}{f_s(A)}.$$