Partial Permutations

Partial Permutations

```
# orders of n objects = n!
                                 # orders of some of the n objects = ?
                    any digits
                                        distinct digits
                                             32
# 2-digit PINs
                                             10 x 9
                     10 x 10
                                                 2nd digit
                                     1st digit
                     any letters
                                        distinct letters
                                                dad
                                         abc
# 3-letter words
                                        26 x 25 x 24
                    26 x 26 x 26
                                                    3rd
                                       1st
                                             2nd
```

Sequences without Repetition

k-permutation of [n]

Length-k sequences over [n]

with repetition

 n^k

without repetition

 $n^{\underline{k}}$

k-Permutations

Set of size n: n-set ation

An ordering of k elements in a set S is a k-permutation of S

2-permutations of {a,b,c}

ab, ac, ba, bc, ca, cb

n-permutation of an n-set is just a permutation of the set

k-permutations of an n-set

$$n \cdot (n-1) \cdot \ldots \cdot (n-k+1) \stackrel{\text{def}}{=} n^k$$

k	n^{κ}	
1	n	
2	n(n-1)	
3	n(n-1)(n-2)	
k	n(n-1)(n-k+1)	

kth falling power of n

Also denoted P(n,k) or (n)_k

Falling Powers and Factorials

Falling powers are simply related to factorials

$$n^{\underline{k}} \qquad n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Factorials and Permutations

4 programming, 5 probability, 6 machine-learning books

ordered lists with 2 books from each subject where same subject books are listed consecutively

Prob 3, Prob 1, ML 5, ML 2, Prog 1, Prog 4

ML 2, ML 6, Prog 1, Prog 2, Prob 5, Prob 1

$$3! \cdot 4^{2} \cdot 5^{2} \cdot 6^{2} = 6 \times (4x3) \times (5x4) \times (6x5) = 43,200$$

Stirling's Approximation

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

N	N!	Stirling approximation	Error%
1	1	1.00	0.227445%
2	2	2.00	0.032602%
3	6	6.00	0.009986%
4	24	24.00	0.004266%
5	120	120.00	0.002198%
6	720	720.01	0.001276%
7	5040	5040.04	0.000805%
8	40320	40320.22	0.000540%
9	362880	362881.38	0.000380%
10	3628800	3628810.05	0.000277%
11	39916800	39916883.11	0.000208%
12	479001600	479002368.48	0.000160%
13	6227020800	6227028659.89	0.000126%
14	87178291200	87178379323.32	0.000101%
15	1307674368000	1307675442913.47	0.000082%
16	20922789888000	20922804061389.80	0.000068%
17	355687428096000	355687629001078.00	0.000056%
18	6402373705728000	6402376752492220.00	0.000048%
19	121645100408832000	121645149634119000.00	0.000040%
20	2432902008176640000	2432902852332160000.00	0.000035%