A note on a prior for multinomial vector pairs

Version 12/17/16, by MAN

Set up: In modeling single-cell RNASeq data, we imagine that cells fall into one of K > 1 cell-type classes, and further that we have cells from two source conditions, giving n_1 and n_2 cells respectively. Let $z^1 = \{z_k^1\}$ be multinomial counts recording the number of cells of each cell type in the first condition, and $z^2 = \{z_k^2\}$ be similar counts for the second condition. One task may be to infer something about possible equalities in the underlying probability vectors, which here I denote $\phi = \{\phi_k\}$ and $\psi = \{\psi_k\}$. I.e.

$$z^1 \sim \text{Multinomial}_K(n_1, \phi)$$

and

$$z^2 \sim \text{Multinomial}_K(n_2, \psi)$$

Here I describe a prior $p(\phi, \psi)$ that is conjugate to multinomial sampling but that also enables downstream gene-specific inferences about differential distribution when certain cell types do not differ in their expression distributions. To provide this functionality, we need to work with partitions of the cell-type classes, say $\pi = \{b\}$ of $\{1, 2, \dots, K\}$. Here b indicates a block in the partition π , and of course different blocks do not overlap and they cover the whole set of classes: $\bigcup_{b \in \pi} b = \{1, 2, \dots, K\}$. We recall there is a large number of such partitions π , say constituting the set Π of cardinality Bell(K). We'll carry along an example involving K = 7 cell types, and one three-block partition, shown in Figure 1, taken from the set of 877 possible partitions of $\{1, 2, \dots, 7\}$.

Mixture prior: For our purposes, the prior will have a spike-slab structure that mixes over distinct patterns of equality of π -associated accumulated probabilities:

$$p(\phi, \psi) = \sum_{\pi \in \Pi} p(c_{\pi}) p(\phi, \psi | c_{\pi})$$

where

$$c_{\pi} = \{ (\phi, \psi) : \Phi_b = \Psi_b \, \forall b \in \pi \}$$

where $\Phi_b = \sum_{k \in b} \phi_k$ and $\Psi_b = \sum_{k \in b} \psi_k$. Figure 2 shows one pair (ϕ, ψ) within c_{π} , where π is from Figure 1.

Indeed, c_{π} is precisely the structure needed to address differential distribution DD_g at a given gene g from expression data. Briefly, if the class probabilities satisfy c_{π} , and if the class-specific expression distributions are constant among classes k within each $k \in \mathbb{R}$, then

Figure 1: Example partition of 7 cell types, k, into 3 blocks, b

even if there are differential proportions $\phi_k \neq \psi_k$ on such classes, this will not lead to differential distribution. More specifically, we say cell class specific means $\mu = \{\mu_k\}$ satisfy expression pattern d_{π} if

$$\mu_j = \mu_k \quad \forall j, k \in b, \quad \forall b \in \pi$$

EBSeq computed over the identified cell classes computes the posterior probability of d_{π} given expression data, for all π and at each gene. With ED_g denoting equivalent distribution, which is the complement of DD_g,

Conjecture: At a given gene, equivalent distribution is

$$ED_g = \bigcup_{\pi \in \Pi} \left[c_{\pi} \cap d_{\pi} \right].$$

The central point is that even allowing for cell-type probabilities to change between source conditions, there is no differential distribution at a given gene if the relevant cell types are not differentially expressed at that gene. Upon setting up a prior $p(\phi, \psi)$ that can mix over structures c_{π} , and by combining cell-type counts z^1 and z^2 with expression data x_g at a gene, we may compute $P(ED_g|data)$ at each gene:

$$P(\mathrm{ED}_g|\mathrm{data}) = \sum_{\pi \in \Pi} P(c_{\pi}|z^1, z^2) P(d_{\pi}|x_g).$$

Side issue: Each structure c_{π} is a closed subset of the product simplex holding all possible pairs of multinomial vectors (ϕ, ψ) . As constructed, structures corresponding to different partitions are not disjoint, though we could refine the definition to encode disjointness. Consider the case where the partition π has a refinement π^* , say (i.e. unions of blocks in π^* lead to blocks in π). Then $c_{\pi^*} \subset c_{\pi}$ because of the aggregation constraint. Essentially the overlap represents a lower dimensional subset. Our approach is to define $p(\phi, \psi|c_{\pi})$ in such a way that points in lower dimensional subsets receive zero probability mass in that mixture component, so that we don't need to strictly enforce disjointness. It's analogous to the spike-slab issue of a parameter θ that either equals 0 or does not; conditional on the latter case we might uses a Gaussian prior for θ , which gives zero mass but positive density to the subset $\theta = 0$. Another approach might be to force disjointness of c_{π} (giving up closed sets) by removing from c_{π} the c_{π^*} corresponding to partition refinements of π . [needs to be worked out]

Mixture components: For notation, we use ϕ_b for the vector of values ϕ_k for $k \in b$, and similarly for ψ_b . Analogously, Φ_{π} and Ψ_{π} are vectors of accumulated class probabilities ϕ_b and ψ_b for all $b \in \pi$, respectively.

Initially, the multitude of $p(c_{\pi})$'s will be preset constants. To complete the prior specification $p(\phi, \psi)$, consider further scalers $\alpha_k > 0$ for each class k and $\beta_b > 0$ for each potential block b. (Extending the notational convention, α_b is the vector of α_k for $k \in b$, and β_{π} is the vector of β_b for $b \in \pi$.) For any block b consider conditional probabilities

$$\tilde{\phi}_b = \frac{\phi_b}{\Phi_b} \qquad \tilde{\psi}_b = \frac{\psi_b}{\Psi_b}$$

Figure 2: Multinomial probability vectors for two conditions arranged according to a fixed partition

which indicate the conditional probability of each class k given that the cell is of one of the types in b. Assume that conditional upon $(\phi, \psi) \in c_{\pi}$,

$$\Phi_{\pi} \sim \text{Dirichet}_{N(\pi)}[\beta_{\pi}]$$

where $N(\pi)$ is the number of blocks b in π , and further that accumulated probabilities are the same between the two source conditions: $\Phi_{\pi} = \Psi_{\pi}$. Finally, assume that for each $b \in \pi$,

$$\tilde{\phi}_b, \tilde{\psi}_b \sim_{\text{i.i.d.}} \text{Dirichlet}_{N(b)}[\alpha_b]$$

where N(b) is the number of cell types in block b. In other words, if c_{π} is the active structure, then accumulated probability vectors Φ_{π} and Ψ_{π} are equal between the two source conditions, though the sub-block class-specific rates ϕ_k and ψ_k may differ, as would (re-normalized) independent Dirichlet-distributed vectors. Taken together,

$$p(\phi, \psi | c_{\pi}) = p(\Phi_{\pi}, \Psi_{\pi} | c_{\pi}) \prod_{b \in \pi} \left[p(\tilde{\phi}_b) p(\tilde{\psi}_b) \right]$$

with

$$p(\Phi_{\pi}, \Psi_{\pi} | c_{\pi}) = \frac{\Gamma(\sum_{b \in \pi} \beta_b)}{\prod_{b \in \pi} \Gamma(\beta_b)} \left[\prod_{b \in \pi} \Phi_b^{\beta_b - 1} \right] 1 \left[\Phi_{\pi} = \Psi_{\pi} \right]$$

and

$$p(\tilde{\phi}_b) = \frac{\Gamma(\sum_{k \in b} \alpha_k)}{\prod_{k \in b} \Gamma(\alpha_k)} \prod_{k \in b} \tilde{\phi}_k^{\alpha_k - 1}, \qquad p(\tilde{\psi}_b) = \frac{\Gamma(\sum_{k \in b} \alpha_k)}{\prod_{k \in b} \Gamma(\alpha_k)} \prod_{k \in b} \tilde{\psi}_k^{\alpha_k - 1}.$$

Distributional consequences: Using the Dirichlet-Multinomial conjugacy and the collapsing property of these distributions (cite), we get closed formulas for the predictive probability of cell-type counts z^1 and z^2 . Fixing π , let $t_b^j = \sum_{k \in b} z_k^j$, for cell conditions j = 1, 2, record the total numbers of cells accumulated over all types in block b. And following our notation convention, t_{π}^j is the vector of these counts over $b \in \pi$. From the prior and model structure

$$p(z^1, z^2 | c_{\pi}) = p(z^1 | t_{\pi}^1) p(z^2 | t_{\pi}^2) p(t_{\pi}^1, t_{\pi}^2 | c_{\pi}).$$

Conditional independence of z^1 and z^2 given the block-level totals t_{π}^1 and t_{π}^2 on c_{π} reflects the possible differential class proportion structure within blocks but between cell conditions. For either cellular group j=1,2, we find, after some simplification, the following Dirichlet-Multinomial masses:

$$p(z^{j}|t_{\pi}^{j}) = \prod_{b \in \pi} \left\{ \left[\frac{\Gamma(t_{b}^{j}+1)}{\prod_{k \in b} \Gamma(z_{k}^{j}+1)} \right] \left[\frac{\Gamma(\sum_{k \in b} \alpha_{k})}{\prod_{k \in b} \Gamma(\alpha_{k})} \right] \left[\frac{\prod_{k \in b} \Gamma(\alpha_{k}+z_{k}^{j})}{\Gamma(t_{b}^{j}+\sum_{k \in b} \alpha_{k})} \right] \right\}$$

and

$$p(t_{\pi}^1, t_{\pi}^2 | c_{\pi}) = \left[\frac{\Gamma(n_1 + 1)\Gamma(n_2 + 1)}{\prod_{b \in \pi} \Gamma(t_b^1 + 1)\Gamma(t_b^2 + 1)} \right] \left[\frac{\Gamma(\sum_{b \in \pi} \beta_b)}{\prod_{b \in \pi} \Gamma(\beta_b)} \right] \left[\frac{\prod_{b \in \pi} \Gamma(\beta_b + t_b^1 + t_b^2)}{\Gamma(n_1 + n_2 + \sum_{b \in \pi} \beta_b)} \right].$$

Let's look at some special cases to dissect this result.

Check 1: If π has a single block equal to the entire set of cell types $\{1, 2, \dots, K\}$, then $t_b^j = n_j$ for both j = 1, 2, and the second formula reduces, correctly, to $p(t_\pi^1, t_\pi^2 | c_\pi) = 1$. Further,

$$p(z^{j}|t_{\pi}^{j}) = \left[\frac{\Gamma(n_{j}+1)}{\Gamma(n_{1}+\sum_{k=1}^{K}\alpha_{k})}\right] \left[\frac{\Gamma(\sum_{k=1}^{K}\alpha_{k})}{\prod_{k=1}^{K}\Gamma(\alpha_{k})}\right] \left[\prod_{k=1}^{K}\frac{\Gamma(\alpha_{k}+z_{k}^{j})}{\Gamma(z_{k}^{j}+1)}\right]$$

which is the well-known Dirichlet-multinomial predictive distribution for counts z^j (cite). E.g, taking $\alpha_k = 1$ for all types k we get the uniform distribution

$$p(z^{j}|t_{\pi}^{j}) = \frac{\Gamma(n_{j}+1)\Gamma(K)}{\Gamma(n_{j}+K)}.$$

Check 2: At the opposite extreme, π has one block b for each class k. Then $t_b^j = z_k^j$, and $p(z^j|t_\pi^j) = 1$, and further, assuming $\beta_b = \alpha_k$,

$$p(t_{\pi}^{1}, t_{\pi}^{2} | c_{\pi}) = \left[\frac{\Gamma(n_{1}+1)\Gamma(n_{2}+1)}{\prod_{k=1}^{K} \Gamma(z_{k}^{1}+1)\Gamma(z_{k}^{2}+1)} \right] \left[\frac{\Gamma(\sum_{k=1}^{K} \alpha_{k})}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \right] \left[\frac{\prod_{k=1}^{K} \Gamma(\alpha_{k}+z_{k}^{1}+z_{k}^{2})}{\Gamma(n_{1}+n_{2}+\alpha_{k})} \right].$$

comment: cite a Bayes comparison of two multinomials

Regardless of the partition, log scale probabilities are readily evaluated given hyper-parameters $\{\alpha_k\}$ and $\{\beta_b\}$ and for cell-type counts z^1 and z^2 .

Example

Here's an example using the probabilities ϕ and ψ from Figure 2; with $n_1 = n_2 = 500$, and $\alpha_k = 1$ for all k and $\beta_b = \sum_{k \in b} \alpha_k$.

[1] 2 2 1 1 1 3 3

1 2 3 ## [1,] 215 221 64

[2,] 209 221 70