

Rozdělování bonbónů

Teta Kateřina připravuje pro soutěžící n krabic bonbónů. Krabice jsou očíslovány od 0 do n-1 a jsou na začátku prázdné. Do krabice i ($0 \le i \le n-1$) se vejde nejvýše c[i] bonbónů.

Teta Kateřina připravuje bonbóny q dní. V den j ($0 \le j \le q-1$) provede akci popsanou třemi celými čísly $l[j], \ r[j]$ a v[j], kde $0 \le l[j] \le r[j] \le n-1$ a $v[j] \ne 0$. Pro každou krabici k takovou, že $l[j] \le k \le r[j]$:

- Jestliže v[j]>0, teta přidává postupně bonbóny do krabice k, dokud jich buď nepřidá v[j], nebo se krabice zcela naplní. Jestliže krabice k před touto akcí obsahovala p bonbónů, po této akci jich tedy bude obsahovat $\min(c[k], p+v[j])$.
- Jestliže v[j] < 0, teta naopak bonbóny z krabice k odebírá, dokud jich buď neodebere -v[j], nebo se krabice nevyprázdní. Jestliže krabice k před touto akcí obsahovala p bonbónů, po této akci jich tedy bude obsahovat $\max(0, p + v[j])$.

Určete počet bonbónů v každé krabici po q dnech.

Implementační detaily

Implementujte následující funkci:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: pole délky n. Pro $0 \le i \le n-1$ je c[i] kapacita krabice i.
- $l,\ r$ a v: tři pole délky q. V den j (kde $0 \le j \le q-1$) teta Kateřina provede akci popsanou celými čísly $l[j],\ r[j]$ a v[j] tak, jak je popsáno výše.
- Vraťte pole s délky n, jehož prvek s[i] pro $0 \le i \le n-1$ je roven počtu bonbónů v krabici i po q dnech.

Příklad

Uvažme následující volání:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Do krabice 0 se tedy vejde 10 bonbónů, do krabice 1 se jich vejde 15 a do krabice 2 se jich vejde 13.

Na konci dne 0 je počet bonbónů v krabici 0 roven $\min(c[0], 0 + v[0]) = 10$, v krabici 1 je $\min(c[1], 0 + v[0]) = 15$ bonbónů a v krabici 2 je $\min(c[2], 0 + v[0]) = 13$ bonbónů.

Na konci dne 1 je počet bonbónů v krabici 0 roven $\max(0,10+v[1])=0$ a v krabici 1 jsou $\max(0,15+v[1])=4$ bonbóny. Jelikož 2>r[1], počet bonbónů v krabici 2 se nezmění. Počty bonbónů po jednotlivých dnech tedy jsou:

Den	Krabice 0	Krabice 1	Krabice 2
0	10	15	13
1	0	4	13

Funkce distribute_candies proto vrátí pole [0,4,13].

Omezení

- $1 \le n \le 200000$
- $1 \le q \le 200\,000$
- $1 \leq \bar{c}[i] \leq 10^9$ (pro $0 \leq i \leq n-1$)
- $0 \le l[j] \le r[j] \le n-1$ (pro $0 \le j \le q-1$)
- ullet $-10^9 \le v[j] \le 10^9, v[j]
 eq 0 ext{ (pro } 0 \le j \le q-1)$

Podúlohy

- 1. (3 body) $n,q \leq 2000$
- 2. (8 bodů) v[j]>0 (pro $0\leq j\leq q-1$)
- 3. (27 bodů) $c[0]=c[1]=\ldots=c[n-1]$
- 4. (29 bodů) l[j]=0 a r[j]=n-1 (pro $0\leq j\leq q-1$)
- 5. (33 bodů) Bez dalších omezení.

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač načítá vstup v následujícím formátu:

- řádka 1: n
- řádka 2: c[0] c[1] \dots c[n-1]
- řádka 3: q
- řádka 4+j ($0 \leq j \leq q-1$): $l[j] \; r[j] \; v[j]$

Výstup vypisuje v následujícím formátu:

• řádka 1: s[0] s[1] \dots s[n-1]