Simple 8 bit ALU (Arithmetic Logic Unit)

OpCode	Operation A + B A - B A * B
0 0	A + B
0 1	A - B
1 0	A * B

top level entity includes both structural and dataflow (same logic as in assignment 1)

For the input of the 4 x 4 Array Multiplier please use A[3:0],B[3:0]

8 bit Adder / Subtractor

FA = Full Adder, all gates are **XORs**

When **SUB** = 0 the circuit works as an Adder, otherwise as a Subtractor.

Please use generate command! (structural code please)

4x4 Array Multiplier

 $a0b0 \rightarrow A0 AND B0$

 $a0b1 \rightarrow A0 AND B1$

etc...

In total we need 16 AND gates!

FA = Full Adder, **HA** = Half Adder

P0...7 = 8bit Product

Please use generate command! (structural code please)

This is a Shift-Add implementation of an array multiplier. First we compute a set of partial products and then we sum the partial products together. Same as we multiply numbers on paper.

+ a pdf with screenshots of your results.

Please upload your code (including testbench)