shortPath nb updating values

April 29, 2018

```
In [1]: # Austin Griffith
        # Python 3.6.5
        # 4/25/2018
        import pandas as pd
        import numpy as np
        from gurobipy import *
        import matplotlib.pyplot as plt
        import matplotlib.pylab as pylab
        import networkx as nx
In [2]: # set up plotting parameters
        params = {'legend.fontsize': 20,
                  'figure.figsize': (13,9),
                 'axes.labelsize': 20,
                 'axes.titlesize':20,
                 'xtick.labelsize':15,
                 'ytick.labelsize':15}
        pylab.rcParams.update(params)
In [3]: # graph all nodes and paths
        def networkCompletePlot(solution, maxNode):
            G = nx.DiGraph()
            G.add_nodes_from(range(0,maxNode+1))
            for i,j in nodes:
                G.add_edge(i,j)
            # get solution nodes
            sp = [i for i,j in solution[1]]
            sp.append(end)
            colorNode = ['white' if not node in sp else 'red' for node in G.nodes()]
            title = 'Complete Network: Gamma = '+str(int(solution[0]))+', Opt Obj = '+str(round(
            nx.draw_networkx(G,node_color=colorNode,node_size=200)
            plt.axis('off')
            plt.title(title)
            plt.show()
```

```
def networkPathPlot(solution,maxNode,cost):
            # get solution nodes
            sp = [i for i,j in solution[1]]
            sp.append(end)
            # set up random position values
            a = np.arange(maxNode+1)
            b = np.arange(maxNode+1)
            np.random.shuffle(a)
            posArray = np.array([a,b]).transpose()
            positions = {}
            for p in range(0,len(sp)):
                L = posArray[p]
                positions[sp[p]] = (L[0],L[1])
            # set up network graph
            G = nx.DiGraph()
            G.add_nodes_from(sp)
            for i,j in tuplelist(solution[1]):
                G.add_edge(i,j)
            labels = {}
            for i in solution[1]:
                labels[i] = round(c[i],3)
            title = 'Optimal Path: Gamma = '+str(int(solution[0]))+', Opt Obj = '+str(round(solution[0]))
            nx.draw_networkx(G,positions,node_size=350)
            nx.draw_networkx_edge_labels(G,positions,edge_labels=labels)
            plt.axis('off')
            plt.title(title)
            plt.show()
In [4]: # pull data
        edges = pd.read_csv('edge_values.csv')
        edges['i'] = np.int64(edges['i'])
        edges['j'] = np.int64(edges['j'])
        # create dictionaries of edge values
        c = \{\}
        d = \{\}
        nodes = tuplelist()
        for i in edges.index:
            c[edges['i'][i],edges['j'][i]] = edges['c(ij)'][i]
            d[edges['i'][i],edges['j'][i]] = edges['d(ij)'][i]
```

graph path, with costs on edges

```
nodes.append((edges['i'][i],edges['j'][i]))
        maxNodes = max(edges['j'])
        minNodes = min(edges['i'])
In [5]: # choose start and end nodes
        start = 0
        end = int(maxNodes)
        # allowed edge congestions
        gend = 4
        gammas = np.linspace(0,gend,gend+1)
        print('Allowed Congestions:')
       print(gammas)
Allowed Congestions:
[0.1.2.3.4.]
In [6]: # initialize model
       model = Model('Shortest_Path')
        # set up x binary variables, set to each location/movement
        xVars = model.addVars(nodes, vtype=GRB.BINARY, name='move')
        y0 = model.addVar(vtype=GRB.CONTINUOUS, name='y0')
        zVars = model.addVars(nodes, lb=0.0, vtype=GRB.CONTINUOUS, name='cong')
        model.update()
In [7]: # constrain all entrance and exit nodes
        enterStart = []
        leaveStart = []
        enterEnd = []
        leaveEnd = []
        for n in nodes:
            # for start nodes
            if n[0] == start:
                leaveStart.append(xVars[n])
            elif n[1] == start:
                enterStart.append(xVars[n])
            # for end nodes
            if n[0] == end:
                leaveEnd.append(xVars[n])
            elif n[1] == end:
                enterEnd.append(xVars[n])
        model.addConstr(quicksum(leaveStart) == 1)
        model.addConstr(quicksum(enterStart) == 0)
        model.addConstr(quicksum(leaveEnd) == 0)
```

```
model.addConstr(quicksum(enterEnd) == 1)
        model.update()
In [8]: # gather all paths
        paths = []
        for i in range(minNodes+1, maxNodes):
            pathFrom = []
            pathTo = []
            for n in nodes:
                if n[0] == i:
                    pathFrom.append(xVars[n])
                elif n[1] == i:
                    pathTo.append(xVars[n])
            paths.append([pathFrom,pathTo])
        model.update()
        for p in paths:
            model.addConstr(quicksum(p[0]) - quicksum(p[1]) == 0.0)
        model.update()
        print('Example of Path Constraint for a Given Node:')
        print(quicksum(p[0]) - quicksum(p[1]))
Example of Path Constraint for a Given Node:
<gurobi.LinExpr: move[88,57] + move[88,55] + move[88,64] + move[88,30] + move[88,49] + move[88,64]</pre>
In [9]: # objective function
        costObj = []
        for n in nodes:
            costObj.append(xVars[n]*c[n])
            model.addConstr(zVars[n] >= xVars[n]*d[n] - y0)
        model.update()
        print('Example of Congestion Constraint:')
        print(zVars[n],' >= ',xVars[n]*d[n] - y0)
Example of Congestion Constraint:
<gurobi.Var cong[90,42]> >= <gurobi.LinExpr: 3.88801471279467 move[90,42] + -1.0 y0>
In [10]: # iterate optimization through various gammas (congestions)
         output = []
         for g in gammas:
             # optimize
             objective = quicksum(costObj) + g*y0 + quicksum(zVars)
             model.setObjective(objective, GRB.MINIMIZE)
             model.optimize()
```

```
# order the printout of optimal edges
             moves = \Pi
             for m in xVars:
                 if xVars[m].x != 0:
                     moves.append(m)
             order = [moves[0]]
             for i in range(len(moves)):
                 for m in moves:
                     if order[i][1] == m[0]:
                         order.append(m)
             output.append([g,order,model.objVal])
Optimize a model with 6061 rows, 11939 columns and 29729 nonzeros
Variable types: 5970 continuous, 5969 integer (5969 binary)
Coefficient statistics:
  Matrix range
                   [9e-05, 5e+00]
                   [2e-04, 1e+00]
  Objective range
                   [1e+00, 1e+00]
 Bounds range
 RHS range
                   [1e+00, 1e+00]
Found heuristic solution: objective 0.9533653
Presolve removed 5971 rows and 6294 columns
Presolve time: 0.03s
Presolved: 90 rows, 5645 columns, 11180 nonzeros
Variable types: 0 continuous, 5645 integer (5645 binary)
Root relaxation: objective 9.273644e-02, 24 iterations, 0.00 seconds
            Current Node
                                  Objective Bounds
                                                                     Work
Expl Unexpl | Obj Depth IntInf | Incumbent
                                                 BestBd
                                                          Gap | It/Node Time
           0
                                   0.0927364
                                                0.09274 0.00%
                                                                         0s
Explored O nodes (24 simplex iterations) in 0.06 seconds
Thread count was 8 (of 8 available processors)
Solution count 2: 0.0927364 0.953365
Optimal solution found (tolerance 1.00e-04)
Best objective 9.273644178749e-02, best bound 9.273644178749e-02, gap 0.0000%
Optimize a model with 6061 rows, 11939 columns and 29729 nonzeros
Variable types: 5970 continuous, 5969 integer (5969 binary)
Coefficient statistics:
                   [9e-05, 5e+00]
 Matrix range
  Objective range [2e-04, 1e+00]
  Bounds range
                   [1e+00, 1e+00]
  RHS range
                   [1e+00, 1e+00]
```

Loaded MIP start with objective 4.09274

Presolve removed 199 rows and 1126 columns

Presolve time: 0.18s

Presolved: 5862 rows, 10813 columns, 56035 nonzeros

Variable types: 5137 continuous, 5676 integer (5676 binary)

Root relaxation: objective 7.614694e-01, 108 iterations, 0.02 seconds

Nodes		Current Node			9	Objec	tive Bound	ls	Work		
Expl Unexpl		xpl	Obj	Depth	Int	Inf	Incumbent	BestBo	l Gap	It/Node	Time
	0	0	0.76	147	0	48	4.09274	0.76147	81.4%	-	0s
Н	0	0					2.4704548	0.76147	69.2%	-	0s
Н	0	0					2.3521988	0.76147	67.6%	-	0s
Н	0	0					1.7104797	0.76147	7 55.5%	-	0s
Н	0	0					1.5548262	0.76157	7 51.0%	-	0s
	0	0	0.81	.954	0	28	1.55483	0.81954	47.3%	_	0s
	0	0	0.93	375	0	25	1.55483	0.93375	39.9%	-	0s
Н	0	0					1.5058401	0.93375	38.0%	-	0s
	0	0	0.95	309	0	22	1.50584	0.95309	36.7%	-	0s
Н	0	0					1.4460993	0.95309	34.1%	-	0s
	0	0	0.95	709	0	27	1.44610	0.95709	33.8%	-	0s
Н	0	0					1.2989292	0.95709	26.3%	-	0s
Н	0	0					1.2815288	0.95709	25.3%	-	0s
	0	0	1.02	2650	0	29	1.28153	1.02650	19.9%	-	0s
	0	0	1.02	2650	0	24	1.28153	1.02650	19.9%	-	0s
	0	0	1.05	961	0	25	1.28153	1.05961	17.3%	-	0s
	0	0	1.09	182	0	25	1.28153	1.09182	2 14.8%	-	0s
	0	0	1.23	3169	0	24	1.28153	1.23169	3.89%	-	0s
	0	0	1.23	3169	0	18	1.28153	1.23169	3.89%	-	0s
	0	0	1.23	3169	0	29	1.28153	1.23169	3.89%	-	0s
	0	0	1.23	3169	0	14	1.28153	1.23169	3.89%	-	0s
	0	0	1.24	060	0	16	1.28153	1.24060	3.19%	-	0s
	0	0	1.27	684	0	6	1.28153	1.27684	0.37%	-	0s
	0	0	cut	off	0		1.28153	1.28153	0.00%	-	0s

Cutting planes:

Gomory: 1 MIR: 2

Explored 1 nodes (427 simplex iterations) in 0.81 seconds Thread count was 8 (of 8 available processors)

Solution count 9: 1.28153 1.29893 1.4461 ... 4.09274

Optimal solution found (tolerance 1.00e-04)
Best objective 1.281528811296e+00, best bound 1.281528811296e+00, gap 0.0000%

Optimize a model with 6061 rows, 11939 columns and 29729 nonzeros Variable types: 5970 continuous, 5969 integer (5969 binary)

Coefficient statistics:

Matrix range [9e-05, 5e+00] Objective range [2e-04, 2e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+00]

Loaded MIP start with objective 1.64177

Presolve removed 68 rows and 132 columns

Presolve time: 0.03s

Presolved: 5993 rows, 11807 columns, 29400 nonzeros

Variable types: 5904 continuous, 5903 integer (5903 binary)

Root relaxation: objective 8.678581e-01, 105 iterations, 0.00 seconds

Nodes		-	Cu	rrent	Node			Object	ive	Bounds			Work	Σ
Expl	Unexpl	-	Obj	Depth	Int	Inf		Incumbent	В	estBd	Gap	It	/Node	Time
	0 0)	0.86	786	0	56		1.64177	0.	86786	47.1%		-	0s
	0 0)	0.98	548	0	45		1.64177	0.	98548	40.0%		-	0s
	0 0)	0.98	548	0	39		1.64177	0.	98548	40.0%		-	0s
H	0 0)					-	1.5697475	0.	98548	37.2%		-	0s
	0 0)	1.02	430	0	34		1.56975	1.	02430	34.7%		-	0s
	0 0)	1.02	430	0	31		1.56975	1.	02430	34.7%		-	0s
	0 0)	1.05	457	0	37		1.56975	1.	05457	32.8%		-	0s
	0 0)	1.08	872	0	32		1.56975	1.	08872	30.6%		-	0s
	0 0)	1.11	275	0	33		1.56975	1.	11275	29.1%		-	0s
	0 0)	1.21	582	0	29		1.56975	1.	21582	22.5%		-	0s
	0 0)	1.29	376	0	21		1.56975	1.	29376	17.6%		-	0s
	0 0)	1.33	737	0	14		1.56975	1.	33737	14.8%		-	0s
	0 0)	1.33	928	0	12		1.56975	1.	33928	14.7%		-	0s
	0 0)	1.38	501	0	4		1.56975	1.	38501	11.8%		-	0s
	0 0)	1.51	625	0	7		1.56975	1.	51625	3.41%		-	0s
	0 0)	cut	off	0			1.56975	1.	56975	0.00%		-	0s

Cutting planes:

Gomory: 1 MIR: 1

Explored 1 nodes (521 simplex iterations) in 0.41 seconds Thread count was 8 (of 8 available processors)

Solution count 2: 1.56975 1.64177

Optimal solution found (tolerance 1.00e-04)
Best objective 1.569747518826e+00, best bound 1.569747518826e+00, gap 0.0000%

Optimize a model with 6061 rows, 11939 columns and 29729 nonzeros

Variable types: 5970 continuous, 5969 integer (5969 binary)

Coefficient statistics:

Matrix range [9e-05, 5e+00]
Objective range [2e-04, 3e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Loaded MIP start with objective 1.84057

Presolve removed 68 rows and 132 columns

Presolve time: 0.03s

Presolved: 5993 rows, 11807 columns, 29400 nonzeros

Variable types: 5904 continuous, 5903 integer (5903 binary)

Root relaxation: objective 9.211145e-01, 133 iterations, 0.01 seconds

Nodes		- [Cu	rrent	Node		Object	ive Bounds	- 1	Worl	ζ
Expl	Unexpl	.	Obj	Depth	Int	Inf	Incumbent	${\tt BestBd}$	Gap	It/Node	Time
	0 0)	0.92		0	69	1.84057	0.92111	50.0%	-	0s
	0 0)	1.15	557	0	34	1.84057	1.15557	37.2%	-	0s
	0 0)	1.15	557	0	47	1.84057	1.15557	37.2%	-	0s
	0 0)	1.24	425	0	28	1.84057	1.24425	32.4%	-	0s
	0 0)	1.27	932	0	28	1.84057	1.27932	30.5%	-	0s
	0 0)	1.30	883	0	26	1.84057	1.30883	28.9%	-	0s
	0 0)	1.30	883	0	41	1.84057	1.30883	28.9%	-	0s
	0 0)	1.30	883	0	23	1.84057	1.30883	28.9%	-	0s
	0 0)	1.32	785	0	35	1.84057	1.32785	27.9%	-	0s
H	0 0)					1.8005042	1.32785	26.3%	-	0s
	0 0)	1.35	446	0	28	1.80050	1.35446	24.8%	-	0s
	0 0)	1.35	446	0	35	1.80050	1.35446	24.8%	-	0s
	0 0)	1.35	446	0	29	1.80050	1.35446	24.8%	-	0s
	0 0)	1.35	446	0	28	1.80050	1.35446	24.8%	-	0s
	0 0)	1.36	510	0	27	1.80050	1.36510	24.2%	-	0s
	0 0)	1.36	524	0	25	1.80050	1.36524	24.2%	-	0s
	0 0)	1.50	659	0	25	1.80050	1.50659	16.3%	-	0s
	0 0)	1.72	042	0	25	1.80050	1.72042	4.45%	-	0s
	0 0)	1.72	042	0	28	1.80050	1.72042	4.45%	-	0s
	0 0)	1.72	042	0	28	1.80050	1.72042	4.45%	-	0s
	0 0)	1.72	042	0	24	1.80050	1.72042	4.45%	-	0s
	0 0)	1.72	042	0	20	1.80050	1.72042	4.45%	_	0s
	0 0)	1.72	042	0	19	1.80050	1.72042	4.45%	_	0s
	0 0)	1.72	042	0	18	1.80050	1.72042	4.45%	_	0s
	0 0)	1.72	042	0	16	1.80050	1.72042	4.45%	_	0s
	0 0)	1.72	042	0	15	1.80050	1.72042	4.45%	-	0s
	0 0)	1.72	042	0	16	1.80050	1.72042	4.45%	-	0s
	0 0)	1.72	042	0	16	1.80050	1.72042	4.45%	-	0s

0	0	1.72042	0	16	1.80050	1.72042	4.45%	-	0s
0	0	1.72042	0	14	1.80050	1.72042	4.45%	-	0s
0	0	1.72883	0	8	1.80050	1.72883	3.98%	-	0s
0	0	1.73773	0	7	1.80050	1.73773	3.49%	-	0s
0	0	1.76343	0	1	1.80050	1.76343	2.06%	_	0s

Cutting planes:

MIR: 1

Explored 1 nodes (851 simplex iterations) in 0.49 seconds Thread count was 8 (of 8 available processors)

Solution count 2: 1.8005 1.84057

Optimal solution found (tolerance 1.00e-04)

Best objective 1.800504231753e+00, best bound 1.800504231753e+00, gap 0.0000%

Optimize a model with 6061 rows, 11939 columns and 29729 nonzeros

Variable types: 5970 continuous, 5969 integer (5969 binary)

Coefficient statistics:

Matrix range [9e-05, 5e+00] Objective range [2e-04, 4e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+00]

Loaded MIP start with objective 2.03126

Presolve removed 68 rows and 132 columns

Presolve time: 0.03s

Presolved: 5993 rows, 11807 columns, 29400 nonzeros

Variable types: 5904 continuous, 5903 integer (5903 binary)

Root relaxation: objective 9.600741e-01, 131 iterations, 0.00 seconds

	Nodes	s	Curi	rent N	lode		1	Objec	tiv	e Bounds		Wo	ork
Ex	pl Une	expl	Obj I	Depth	Int	Inf	Ir	ncumbent		${\tt BestBd}$	Gap	It/Noo	le Time
	0	0	0.9600	07	0	70	2	2.03126	(0.96007	52.7%	_	0s
Η	0	0					2.0	0194844		1.01923	49.5%	-	0s
	0	0	1.2970)5	0	42	2	2.01948		1.29705	35.8%	-	0s
	0	0	1.2970)5	0	54	2	2.01948		1.29705	35.8%	_	0s
	0	0	1.3612	26	0	42	2	2.01948		1.36126	32.6%	_	0s
	0	0	1.3930	08	0	38	2	2.01948		1.39308	31.0%	_	0s
	0	0	1.4481	11	0	27	2	2.01948		1.44811	28.3%	_	0s
	0	0	1.4481	11	0	46	2	2.01948		1.44811	28.3%	_	0s
	0	0	1.4481	11	0	36	2	2.01948		1.44811	28.3%	_	0s
	0	0	1.4481	11	0	27	2	2.01948		1.44811	28.3%	_	0s
	0	0	1.4481	11	0	24	2	2.01948		1.44811	28.3%	_	0s
	0	0	1.4620	07	0	27	2	2.01948		1.46207	27.6%	_	0s

H	0	0				1.9370508	1.46207	24.5%	-	0s
	0	0	1.47896	0	24	1.93705	1.47896	23.6%	-	0s
	0	0	1.49347	0	22	1.93705	1.49347	22.9%	_	0s
	0	0	1.50208	0	26	1.93705	1.50208	22.5%	_	0s
	0	0	1.50208	0	41	1.93705	1.50208	22.5%	_	0s
	0	0	1.50208	0	28	1.93705	1.50208	22.5%	_	0s
	0	0	1.50512	0	27	1.93705	1.50512	22.3%	-	0s
	0	0	1.52360	0	26	1.93705	1.52360	21.3%	_	0s
	0	0	1.53626	0	26	1.93705	1.53626	20.7%	-	0s
H	0	0				1.9330727	1.53626	20.5%	_	0s
	0	0	1.92971	0	26	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	30	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	27	1.93307	1.92971	0.17%	_	0s
	0	0	1.92971	0	24	1.93307	1.92971	0.17%	_	0s
	0	0	1.92971	0	27	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	28	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	25	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	21	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	18	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	26	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	21	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	21	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	23	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	20	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	20	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	19	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	16	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	13	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	14	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	13	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	14	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	8	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	4	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	4	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	4	1.93307	1.92971	0.17%	-	0s
	0	0	1.92971	0	4	1.93307	1.92971	0.17%	-	0s
	0	0	infeasible	0		1.93307	1.93307	0.00%	-	0s

Cutting planes:

Gomory: 3 MIR: 1

Explored 1 nodes (1223 simplex iterations) in 0.55 seconds Thread count was 8 (of 8 available processors)

Solution count 4: 1.93307 1.93705 2.01948 2.03126

Optimal solution found (tolerance 1.00e-04)

Complete Network: Gamma = 0, Opt Obj = 0.09274

Optimal Path: Gamma = 0, Opt Obj = 0.09274

For Gamma: 1.0

Path:

[(0, 34), (34, 51), (51, 82), (82, 65), (65, 89)]

Cost of Movement (Objective):

1.2815288112962624

Complete Network: Gamma = 1, Opt Obj = 1.28153

Optimal Path: Gamma = 1, Opt Obj = 1.28153

For Gamma: 2.0

Path:

[(0, 34), (34, 43), (43, 61), (61, 37), (37, 65), (65, 89)]

Cost of Movement (Objective):

1.5697475188262433

Complete Network: Gamma = 2, Opt Obj = 1.56975

Optimal Path: Gamma = 2, Opt Obj = 1.56975

For Gamma: 3.0

Path:

[(0, 34), (34, 43), (43, 61), (61, 37), (37, 65), (65, 89)]

Cost of Movement (Objective):

1.8005042317534627

Complete Network: Gamma = 3, Opt Obj = 1.8005

Optimal Path: Gamma = 3, Opt Obj = 1.8005

For Gamma: 4.0

Path:

[(0, 52), (52, 84), (84, 89)] Cost of Movement (Objective):

1.9330727297958064

Complete Network: Gamma = 4, Opt Obj = 1.93307

Optimal Path: Gamma = 4, Opt Obj = 1.93307

