Contents

Introduction	1
Review: Representations, the Reduced Group C*-Algebra, and the Universal Group C*-Algebra	1
Left-Regular Representation	1
A Bit on Representations and C*-(Semi)norms	
Using the Left-Regular Representation to Establish Amenability	3

Introduction

Finally, the last part of my notes on C^* -algebras and amenability as part of my Honors Thesis independent study. Specifically, I am going to focus more on the theory of C^* -algebras, discussing ideas such as amenability and nuclearity in C^* -algebras. There are a few central results I'm going to be working on understanding and proving: almost-invariant vectors, Kesten's criterion, Hulanicki's criterion, nuclearity, and the equivalence of $C^*_{\lambda}(G)$ and $C^*(G)$.

I will be using a variety of sources more focused on amenability, including but not limited to Volker Runde's *Amenable Banach Algebras*, Kate Juschenko's *Amenability of Discrete Groups by Examples*, and Brown and Ozawa's C*-*Algebras and Finite-Dimensional Approximations*.

Review: Representations, the Reduced Group C^* -Algebra, and the Universal Group C^* -Algebra

Left-Regular Representation

Let Γ be a group. Consider the space $\ell_2(\Gamma)$. For every $s \in \Gamma$, we define the operator

$$\lambda_s(\xi)(t) = \xi(s^{-1}t).$$

The map is linear, well-defined, and an isometry, as

$$\begin{split} \left\| \lambda_s(\xi) \right\|^2 &= \sum_{t \in \Gamma} \left| \lambda_s(\xi)(t) \right|^2 \\ &= \sum_{t \in \Gamma} \left| \xi \left(s^{-1} t \right) \right|^2 \\ &= \sum_{r \in \Gamma} \left| \xi(r) \right|^2 \\ &= \left\| \xi \right\|^2. \end{split}$$

Additionally, each λ_s admits an inverse, $\lambda_{s^{-1}} = \lambda_s^*$. Applying to the orthonormal basis $\{\delta_t\}_{t \in \Gamma}$, we get

$$\lambda_s(\delta_t) = \delta_{st}$$
.

Thus, $\lambda_s \circ \lambda_r = \lambda_{sr}$, and we have the unitary representation of Γ , λ : $\Gamma \to \mathcal{U}(\ell_2(\Gamma))$, where $\lambda(s) = \lambda_s$, for $s \in \Gamma$. This is the left-regular representation of Γ .

Note that the left regular representation is a faithful representation, hence injective.

Because the λ operator is linear, we may extend it to the case of any positive finitely supported function,

$$\lambda_{f}(\xi)(t) = \left(\sum_{s \in \Gamma} f(t)\lambda_{s}(\xi)\right)(t)$$
$$= \sum_{s \in \Gamma} f(s)\xi(s^{-1}t)$$

Note that the space of finitely supported functions on Γ , $\mathbb{C}[\Gamma]$, is a *-algebra, where multiplication is given by convolution:

$$f * g(t) = \sum_{s \in \Gamma} f(s)g(s^{-1}t)$$
$$= \sum_{r \in \Gamma} f(tr^{-1})g(r).$$

Note that we are using * both to refer to the involution (when as a superscript) as well as the group operation (when not a superscript). This is to maintain coherence with the traditional way that convolution is written. The involution on $\mathbb{C}[\Gamma]$ is given by

$$f^*(t) = \overline{f(t^{-1})}.$$

A Bit on Representations and C*-(Semi)norms

A C*-seminorm on a *-algebra is a seminorm such that defined by

- $||ab|| \le ||a|| ||b||$;
- $\|a^*\| = \|a\|$;
- $\|a^*a\| = \|a\|^2$.

If A_0 is a *-algebra, then a representation of A_0 is a pair (π_0, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $\pi: A_0 \to \mathbb{B}(\mathcal{H})$ is a *-homomorphism.

Additionally, if A_0 is a *-algebra with representation π_0 , then we have C*-seminorm

$$\|\mathbf{a}\|_{\pi_0} = \|\pi_0(\mathbf{a})\|_{\text{op}}.$$

If π_0 is injective, then $\|\cdot\|_{\pi_0}$ is a C^* -norm. If π_0 is a C^* -norm, then the completion of A_0 with respect to $\|\cdot\|_{\pi_0}$ is a C^* -algebra.

The universal norm on A_0 is defined as

$$\|\mathbf{a}\|_{\mathbf{u}} = \sup_{\mathbf{p} \in \mathcal{P}} \mathbf{p}(\mathbf{a}),$$

where \mathcal{P} is the collection of all C^* -seminorms on A_0 . If $\|\alpha\|_{\mathfrak{u}} < \infty$ for all $\alpha \in A_0$, then $\|\cdot\|_{\mathfrak{u}}$ is a C^* -seminorm on A_0 . Note that if one of $\mathfrak{p} \in \mathcal{P}$ is a norm, then $\|\cdot\|_{\mathfrak{u}}$ defines a C^* -norm on A_0 .

If we have the unitary representation $u: \mathbb{C}[\Gamma] \to \mathbb{B}(\mathcal{H})$, then

$$\pi_u(\mathfrak{a}) = \sum_{s \in \Gamma} \mathfrak{u}_s$$

^IAlso known as the free vector space over $\mathbb C$ with basis Γ .

is a representation of $\mathbb{C}[\Gamma]$. If $\lambda \colon \Gamma \to \mathcal{U}(\ell_2(\Gamma))$ is the left-regular representation, then the left-regular group C^* -algebra is the group *-algebra with C^* -norm defined by $\|a\| = \|\pi_\lambda(a)\|$.

The universal group C*-algebra is defined as the norm completion of

$$\|\mathbf{a}\|_{\mathbf{u}} = \sup \Big\{ \|\pi(\mathbf{a})\|_{\mathrm{op}} \ \Big| \ \pi \colon \mathbb{C}[\Gamma] \to \mathbb{B}(\mathcal{H}_{\pi}) \Big\}.$$

Note that

$$\|\pi(\alpha)\| = \left\|\pi\left(\sum_{s\in\Gamma} \alpha_s \delta_s\right)\right\|$$

$$= \left\|\sum_{s\in\Gamma} \alpha_s \pi(\delta_s)\right\|$$

$$\leq \sum_{s\in\Gamma} \|\alpha_s \pi(\delta_s)\|$$

$$= \sum_{s\in\Gamma} |\alpha_s|.$$

Note that since $\|\cdot\|_{\lambda}$ is a norm, we must have $\alpha = 0$ if and only if $\|\alpha\|_{u} = 0$. The full group C^* -algebra admits a universal property.

Proposition: Let Γ be a discrete group. If $\mathfrak{u}\colon \Gamma\to \mathcal{U}(\mathfrak{H})$, then there is a contractive *-homomorphism $\pi_\mathfrak{u}\colon C^*(\Gamma)\to \mathbb{B}(\mathfrak{H})$ that satisfies $\pi_\mathfrak{u}(\delta_s)=\mathfrak{u}(s)$.

Using the Left-Regular Representation to Establish Amenability

If $\pi: \Gamma \to \mathcal{U}(\mathcal{H})$ is a unitary representation of \mathcal{H} , then a vector $\xi \in \mathcal{H}$ is called invariant for π if $\pi(g)(\xi) = \xi$ for all $g \in \Gamma$.

Proposition: The left-regular representation for Γ admits an invariant vector if and only if Γ is finite.

Proof. Let Γ be finite. Since Γ is finite, all functions $\alpha \colon \Gamma \to \mathbb{C}$ are square-summable. Thus, $\xi = \mathbb{1}_{\Gamma}$ is square-summable, and since $s\Gamma = \Gamma$ for all $s \in \Gamma$, we have $\mathbb{1}_{\Gamma}$ is invariant for λ .

Now, let λ : $\Gamma \to \mathcal{U}(\ell_2(\Gamma))$ be the left-regular representation, and suppose there is $\xi \in \ell_2(\Gamma)$ such that for all $s \in \Gamma$, we have

$$\lambda_{c}(\xi) = \xi$$
.

In particular, this means that for any $t \in \Gamma$, we have

$$\lambda_s(\xi)(t) = \xi(s^{-1}t)$$

= $\xi(t)$.

Since this holds for all $s \in \Gamma$, we have that $\xi = c\mathbb{1}_{\Gamma}$ for some $c \in \mathbb{C}$. However, since $\xi \in \ell_2(\Gamma)$, we must have that $\sum_{t \in \Gamma} |c|^2 < \infty$, which only holds if Γ is finite.

An almost-invariant vector for a representation π : $\Gamma \to \mathcal{U}(\ell_2(\Gamma))$, as the name suggests, Π a sequence (or net) of unit vectors $(\xi_i)_{i \in I}$ such that

$$\lim_{i \in I} \|\pi(g)(\xi_i) - \xi_i\| = 0.$$

пІ'm only mostly being facetious here.

Theorem: A group Γ is amenable if and only if the left-regular representation has an almost-invariant vector.

Proof. Let Γ be amenable, and let F_i be a Følner sequence $-\frac{|sF_i \triangle F_i|}{|F_i|} \rightarrow 0$ for all $s \in \Gamma$. Define $\xi_i = \frac{1}{\sqrt{|F_i|}} \mathbb{1}_{F_i}$. Thus,

$$\begin{split} \|\lambda_s(\xi_i) - \xi_i\|^2 &= \sum_{t \in \Gamma} |\lambda_s(\xi_i)(t) - \xi_i(t)|^2 \\ &= \sum_{t \in \Gamma} \left|\lambda_s \left(\frac{1}{\sqrt{|F_i|}} \mathbb{1}_{F_i}\right)\!(t) - \frac{1}{\sqrt{|F_i|}} \mathbb{1}_{F_i}\right|^2 \\ &= \sum_{t \in \Gamma} \left|\frac{1}{\sqrt{|F_i|}} \mathbb{1}_{sF_i}(t) - \frac{1}{\sqrt{|F_i|}} \mathbb{1}_{sF_i}(t)\right|^2 \\ &= \frac{|sF_i \triangle F_i|}{|F_i|}. \end{split}$$

Thus, λ has an almost-invariant vector.

Suppose there exists an almost-invariant vector $(\xi_i)_i \in \ell_2(\Gamma)$. It is sufficient to construct an approximate mean. Since $\xi_i \in \ell_2(\Gamma)$, we have that $\xi_i^2 \in \ell_1(\Gamma)$. Setting $\mu_i = \xi_i^2$, we plug this into the expression for an approximate mean, and obtain

$$\begin{split} \|\lambda_s(u_i) - u_i\|_{\ell_1} &= \sum_{t \in \Gamma} \left| \lambda_s \left(\xi_i^2 \right) (t) - \xi_i^2 (t) \right| \\ &= \sum_{t \in \Gamma} \left| (\lambda_s (\xi_i) (t) - \xi_i (t)) (\lambda_s (\xi_i) (t) + \xi_i (t)) \right| \\ &= \| (\lambda_s (\xi_i) - \xi_i) (\lambda_s (\xi_i) + \xi_i) \|_{\ell_1} \\ &\leq \| \lambda_s (\xi_i) - \xi_i \|_{\ell_2} \| \lambda_s (\xi_i) + \xi_i \| \\ &\leq 2 \| \lambda_s (\xi_i) - \xi_i \| \\ &\rightarrow 0. \end{split}$$

Thus, μ_i is an approximate mean.

Using the criterion of almost invariant vectors, we may show that a group is amenable if and only if the trivial representation — defined by $1_{\Gamma} \colon \Gamma \to \mathbb{C}$, $1_{\Gamma}(g) = 1$ is what is known as weakly contained in the left-regular representation.

П

A representation π : $\Gamma \to \mathcal{U}(\mathcal{H})$ is weakly contained in another representation ρ : $\Gamma \to \mathcal{U}(\mathcal{H})$, denoted $\pi < \rho$, if for every $\xi \in \mathcal{H}$, finite $E \subseteq \Gamma$, and $\varepsilon > 0$, then there are $\eta_1, \ldots, \eta_n \in \mathcal{K}$ such that

$$\left| \langle \pi(g)(\xi), \xi \rangle - \sum_{i=1}^{n} \langle \rho(g)(\eta_i), \eta_i \rangle \right| < \varepsilon.$$

Theorem: A discrete group Γ is amenable if and only if $1_{\Gamma} < \lambda$, where λ is the left-regular representation.

Proof. We show that $1_{\Gamma} < \lambda$ is equivalent to the existence of an almost invariant vector for λ . We assume λ admits an almost-invariant vector. It is sufficient to show that for every $\varepsilon > 0$ and every finite set $E \subseteq \Gamma$, there are $\eta_1, \ldots, \eta_n \in \ell_2(\Gamma)$ such that

$$\left|1 - \sum_{i=1}^n \left<\lambda_t(\eta_i), \eta_i\right>\right| < \epsilon$$

for every $t \in E$. If we take n=1 and $\eta_1=\xi$, where ξ is almost-invariant for all $g \in E$ — i.e., $\left\|\lambda_g(\xi)-\xi\right\|_{\ell_2}<\epsilon$ for all $g \in E$. Note that we have

$$\begin{split} \left\| \lambda_g(\xi) - \xi \right\|^2 &= \left\langle \lambda_g(\xi) - \xi, \lambda_g(\xi) - \xi \right\rangle \\ &= \left\langle \lambda_g(\xi), \lambda_g(\xi) \right\rangle + \left\langle \xi, \xi \right\rangle - 2 \operatorname{Re} \left(\left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &= 2 - 2 \operatorname{Re} \left(\left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &= 2 \operatorname{Re} \left(1 - \left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &\leq 2 \big| 1 - \left\langle \lambda_g(\xi), \xi \right\rangle \big|. \end{split}$$

Additionally,

$$\begin{split} \left|1 - \left\langle \lambda_g(\xi), \xi \right\rangle \right|^2 &= \left(1 - \left\langle \lambda_g(\xi), \xi \right\rangle \right) \left(1 - \overline{\left\langle \lambda_g(\xi), \xi \right\rangle} \right) \\ &= 1 - \overline{\left\langle \lambda_g(\xi), \xi \right\rangle} - \left\langle \lambda_g(\xi), \xi \right\rangle + \left| \left\langle \lambda_g(\xi), \xi \right\rangle \right|^2 \\ &\leqslant 2 - 2 \operatorname{Re} \left(\left\langle \lambda_g(\xi), \xi \right\rangle \right) \\ &= \left\| \lambda_g(\xi) - \xi \right\|^2. \end{split}$$

Thus, we have that

$$\left|1 - \left\langle \lambda_{g}(\xi), \xi \right\rangle \right| \leq \left\|\lambda_{g}(\xi) - \xi\right\|$$
 $\leq \varepsilon.$

Now, we suppose that $1_{\Gamma} < \lambda$. For every $\varepsilon > 0$ and finite subset $E \subseteq \Gamma$, there are $\eta_1, \dots, \eta_n \in \ell_2(\Gamma)$ such that

$$\left|1-\sum_{i=1}^{n}\langle\lambda_{t}(\eta_{i}),\eta_{i}\rangle\right|<\varepsilon.$$

for all $t \in E$. We may assume that $e_G \in E$, yielding

$$\left|1-\sum_{i=1}^n\|\eta_i\|^2\right|<\varepsilon.$$

Furthermore, we may assume that $\sum_{i=1}^{n} ||\eta_i||^2 = 1$.

Suppose toward contradiction that λ does not have an almost-invariant vector. Then, there exists C>0 and $S\subseteq \Gamma$ such that

$$\|\xi\|^2|S|-\sum_{\gamma\in S}\langle\lambda_\Gamma(\xi),\xi\rangle>C\|\xi\|^2.$$