Homework 6 solutions

1. Exercise T5.19.

Solution.

(a) For simplicity we assume that the elements of x are sorted:

$$x_1 \ge x_2 \ge \cdots \ge x_n$$
.

It is easy to see that the optimal value is

$$x_1 + x_2 + \cdots + x_r$$

and obtained by choosing $y_1 = y_2 = \cdots = y_r = 1$ and $y_{r+1} = \cdots = y_n = 0$.

(b) We first change the objective from maximization to minimization:

minimize
$$-x^T y$$

subject to $0 \le y \le 1$
 $\mathbf{1}^T y = r$.

We introduce a Lagrange multiplier λ for the lower bound, u for the upper bound, and t for the equality constraint. The Lagrangian is

$$L(y, \lambda, u, t) = -x^T y - \lambda^T y + u^T (y - \mathbf{1}) + t(\mathbf{1}^T y - r)$$
$$= -\mathbf{1}^T u - rt + (-x - \lambda + u + t\mathbf{1})^T y.$$

Minimizing over y yields the dual function

$$g(\lambda, u, t) = \begin{cases} -\mathbf{1}^T u - rt & -x - \lambda + u + t\mathbf{1} = 0\\ -\infty & \text{otherwise.} \end{cases}$$

The dual problem is to maximize $g(\lambda, u, t)$ subject to $\lambda \succeq 0$ and $u \succeq 0$:

maximize
$$-\mathbf{1}^T u - rt$$

subject to $-\lambda + u + t\mathbf{1} = x$
 $\lambda \succeq 0, \quad u \succeq 0,$

After changing the objective to minimization (*i.e.*, undoing the sign change we started with), we obtain

minimize
$$\mathbf{1}^T u + rt$$

subject to $u + t\mathbf{1} \succeq x$
 $u \succeq 0$.

We eliminated λ by noting that it acts as a slack variable in the first constraint.

(c) The problem is equivalent to the QP

$$\begin{array}{ll} \text{minimize} & x^T \Sigma x \\ \text{subject to} & \overline{p}^T x \geq r_{\min} \\ & \mathbf{1}^T x = 1, \quad x \succeq 0 \\ & \lfloor n/10 \rfloor t + \mathbf{1}^T u \leq 0.8 \\ & t \mathbf{1} + u \succeq x \\ & u \succeq 0, \end{array}$$

with variables x, u, t, v.

2. Exercise A5.20.

Solution. The Lagrangian is

$$L(x,z) = \sum_{i=1}^{n} (\phi(x_i) - x_i(a_i^T z)) + b^T z$$

where a_i is the *i*th column of A. The dual function is

$$g(z) = b^{T}z + \sum_{i=1}^{n} \inf_{x_{i}} (\phi(x_{i}) - x_{i}(a_{i}^{T}z))$$
$$= b^{T}z + \sum_{i=1}^{n} h(a_{i}^{T}z)$$

where $h(y) = \inf_{u} (\phi(u) - yu) = -\phi^{*}(y)$. With this notation, the dual problem can be written as

maximize
$$b^T z + \sum_{i=1}^n h(a_i^T z)$$
.

We now work out an expression for the function h. If $|y| \leq 1/c$, the minimizer in the definition of h is u = 0, and h(y) = 0. Otherwise, we find the minimum by setting the derivative equal to zero. If y > 1/c, we solve

$$\phi'(u) = \frac{c}{(c-u)^2} = y.$$

The solution is $u = c - (c/y)^{1/2}$ and we obtain $h(y) = -(1 - \sqrt{cy})^2$. If y < -1/c, we solve

$$\phi'(u) = -\frac{c}{(c+u)^2} = y.$$

The solution is $u = -c + (-c/y)^{1/2}$ and $h(y) = -(1 - \sqrt{-cy})^2$. Combining the different cases, we can write

$$h(u) = \begin{cases} -\left(1 - \sqrt{c|y|}\right)^2 & |y| > 1/c \\ 0 & \text{otherwise.} \end{cases}$$

The figure shows the function h for c = 1.

3. Exercise A5.30.

Solution.

(a) The Lagrangian is

$$L(x, y, z) = c^{T} x + \frac{1}{\mu} \sum_{i=1}^{m} \log(1 + e^{\mu y_{i}}) + z^{T} (Ax - b - y).$$

The minimum over x is unbounded below unless $A^Tz + c = 0$. To find the minimum over y we note the function is separable. Setting the derivative with respect to y_i to zero gives

$$\frac{e^{\mu y_i}}{1 + e^{\mu y_i}} = z_i, \qquad y_i = \frac{1}{\mu} \log \frac{z_i}{1 - z_i}$$

and

$$\inf_{y_i} \frac{1}{\mu} \log(1 + e^{\mu y_i}) - z_i y_i$$

$$= \begin{cases} -(1/\mu)(z_i \log z_i + (1 - z_i) \log(1 - z_i)) & 0 \le z_i \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

(with the interpretation $0 \log 0 = 0$). We therefore obtain the dual

maximize
$$-b^T z - \frac{1}{\mu} \sum_{i=1}^m (z_i \log z_i + (1 - z_i) \log(1 - z_i))$$

subject to $A^T z + c = 0$
 $0 \le z \le 1$.

(b) Plugging in the optimal primal solution x^* of the LP in the cost function (28) in the assignment gives

$$q^* \leq c^T x^* + \frac{1}{\mu} \sum_{i=1}^m \log(1 + e^{\mu(a_i^T x^* - b_i)})$$
$$\leq p^* + \frac{m \log 2}{\mu}$$

because $a_i^T x^* - b_i \leq 0$. Plugging in the optimal dual solution z^* of the LP in the dual of (28) gives

$$q^{\star} \geq -b^{T}z^{\star} - \frac{1}{\mu} \sum_{i=1}^{m} (z_{i}^{\star} \log z_{i}^{\star} + (1 - z_{i}^{\star}) \log(1 - z_{i}^{\star}))$$

 $\geq p^{\star}$

because $u \log u \leq 0$ on [0, 1].

4. Exercise A5.14.

Solution.

(a) The KKT conditions are

$$\frac{1}{a^T x} a + \frac{1}{b^T x} b \leq \nu \mathbf{1} \qquad x \succeq 0, \qquad \mathbf{1}^T x = 1,$$

plus the complementary slackness conditions

$$x_k \left(\nu - \frac{1}{a^T x} a_k - \frac{1}{b^T x} b_k \right) = 0, \quad k = 1, \dots, n.$$

We show that $x = (1/2, 0, \dots, 0, 1/2)$, $\nu = 2$ solve these equations, and hence are primal and dual optimal.

The feasibility conditions $x \succeq 0$, $\mathbf{1}^T x = 1$ obviously hold, and the complementary slackness conditions are satisfied for k = 2, ..., n - 2. It remains to verify the inequalities

$$\frac{a_k}{a^T x} + \frac{b_k}{b^T x} \le \nu, \quad k = 1, \dots, n, \tag{1}$$

and the complementary slackness condition

$$x_k \left(\nu - \frac{1}{a^T x} a_k - \frac{1}{b^T x} b_k \right) = 0, \quad k = 1, n.$$
 (2)

For x = (1/2, 0, ..., 0, 1/2), $\nu = 2$ the inequality (1) holds with equality for k = 1 and k = n, since

$$\frac{a_1}{a^T x} + \frac{b_1}{b^T x} = \frac{2a_1}{a_1 + a_n} + \frac{2/a_1}{1/a_1 + 1/a_n} = 2,$$

and

$$\frac{a_n}{a^T x} + \frac{b_n}{b^T x} = \frac{2a_n}{a_1 + a_n} + \frac{2/a_n}{1/a_1 + 1/a_n} = 2.$$

Therefore also (2) is satisfied. The remaining inequalities in (1) reduce to

$$\frac{a_k}{a^T x} + \frac{b_k}{b^T x} = 2 \frac{a_k + a_1 a_n / a_k}{a_1 + a_n} \le 2, \quad k = 2, \dots, n - 1.$$

This is valid, since it holds with equality for k = 1 and k = n, and the function $t + a_1 a_n / t$ is convex in t, so

$$\frac{t + a_1 a_n / t}{a_1 + a_n} \le 2$$

for all $t \in [a_n, a_1]$.

(b) Diagonalize A using its eigenvalue decomposition $A = Q\Lambda Q^T$, and define $a_k = \lambda_k$, $b_k = 1/\lambda_k$, $x_k = (Q^T u)_k^2$. From part (a), $Q^T u = (1/\sqrt{2}, 0, \dots, 1/\sqrt{2})$ is optimal. Therefore,

$$(u^T A u)(u^T A^{-1} u) \leq \frac{1}{4} (\lambda_1 + \lambda_n)(\lambda_1^{-1} + \lambda_n^{-1})$$
$$= \frac{1}{4} \left(\sqrt{\frac{\lambda_1}{\lambda_n}} + \sqrt{\frac{\lambda_n}{\lambda_1}} \right)^2.$$

5. Exercise T5.29.

Solution. The Lagrangian is

$$L(x,\nu) = (-3+\nu)x_1^2 + (1+\nu)x_2^2 + (2+\nu)x_3^2 + 2(x_1+x_2+x_3) - \nu.$$

The optimality conditions, as stated on page 5–22 of the lectures, are:

1. Primal feasibility:

$$x_1^2 + x_2^2 + x_3^2 = 1. (3)$$

4. x is a minimizer of the Lagrangian. The Lagrangian is a quadratic function of x, so we can apply the results on lecture 5, page 17: x is a minimizer of $L(\cdot, \nu)$ if and only if

$$\nabla_{xx}^{2}L(x,\nu) = 2 \begin{bmatrix} -3+\nu & 0 & 0\\ 0 & 1+\nu & 0\\ 0 & 0 & 2+\nu \end{bmatrix} \succeq 0, \tag{4}$$

the vector (2,2,2) is in the range of $\nabla^2_{xx}L(x,\nu)$, so the linear equations

$$\nabla_x L(x,\nu) = 2 \begin{bmatrix} (-3+\nu)x_1 + 1\\ (1+\nu)x_2 + 1\\ (2+\nu)x_3 + 1 \end{bmatrix} = 0$$
 (5)

are solvable, and x is any solution of this equation.

Since strong duality holds, these conditions are necessary and sufficient conditions for optimality of x, ν (see page 243). The equation (5) is solvable if $\nu \neq 2, \nu \neq -1$, $\nu \neq 3$:

$$x_1 = \frac{-1}{\nu - 3}, \qquad x_2 = \frac{-1}{\nu + 1}, \qquad x_3 = \frac{-1}{\nu + 2}.$$

Substituting this in (3) gives a nonlinear equation in ν :

$$\frac{1}{(-3+\nu)^2} + \frac{1}{(1+\nu)^2} + \frac{1}{(2+\nu)^2} = 1.$$

The left-hand side is plotted in the figure. The nonlinear equation has four solutions. To satisfy (4) we must have $\nu > 3$. The correct solution is therefore $\nu = 4.0352$. Substituting in the expression for x gives

$$x = (-0.9660, -0.1986, -0.1657).$$

6. Exercise T5.21(a,b,c).

Solution.

- (a) $p^* = 1$.
- (b) The Lagrangian is $L(x, y, \lambda) = e^{-x} + \lambda x^2/y$. The dual function is

$$g(\lambda) = \inf_{x,y>0} (e^{-x} + \lambda x^2/y)$$
$$= \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$$

The dual problem is

The dual optimal value is $d^* = 0$.

- (c) Slater's condition is not satisfied.
- 7. Exercise T5.17.

- 8. Exercise A5.3.
- 9. Exercise A5.32. Also explain how the answers change if the Euclidean norm in the first constraint is replaced by the ℓ_1 -norm, *i.e.*, for the problem

minimize
$$x_1$$

subject to $|x_1| + |x_2| \le x_2$
 $-x_1 \le 1$.

10. Excercise A5.26.