CVXPY Exercises

Steven Diamond

TCMM 2014

1. Hello world. Solve the following optimization problem using CVXPY:

minimize
$$x^2 - 2\sqrt{y}$$

subject to $2 \ge e^x$
 $x + y = 5$,

where $x, y \in \mathbf{R}$ are variables.

Find the optimal values of x and y.

2. Non-negative least squares. We wish to recover a sparse, non-negative vector $x \in \mathbf{R}^n$ from measurements $y \in \mathbf{R}^m$. Our measurement model tells us that

$$y = Ax + v$$

where $A \in \mathbf{R}^{n \times m}$ is a known matrix and $v \in \mathbf{R}^m$ is unknown measurement error. The entries of v are drawn IID from the distribution $\mathcal{N}(0, \sigma^2)$.

We can recover a good estimate of x by solving the optimization problem

minimize
$$||Ax - y||^2$$

subject to $x \ge 0$.

This problem is called non-negative least squares.

The file nnls.py defines n, m, A, x, and y. Use CVXPY to estimate x from y. First try standard regression, *i.e.*, solve

minimize
$$||Ax - y||^2$$
.

Use the plotting code in nnls.py to compare the estimated x with the true x. Add the constraint $x \ge 0$ and see how it affects the estimate.

How many measurements n are needed for standard regression to find an accurate x? How about non-negative least squares?

- 3. Isotonic regression. isotonic least squares
- 4. Power grid optimization.