Projeto de um datalogger de baixo custo com interfaces Wi-Fi e Bluetooth

Otto Álan Pinto De Sousa

ottolopes20@gmail.com

Departamento de Engenharia de Teleinformática Universidade Federal do Ceará

15 de julho de 2022

Sumário

Introdução Metodologia Resultados Conclusão

Universidade Federal do Ceará

Introdução •000000

Introdução

Introdução

Definição

Um dispositivo *datalogger* é um sistema embarcado que realiza e leituras de um ambiente, por meio de sensores, e mantém esses dados armazenados para uso futuro.

Métodos de recuperação dos dados coletados:

- Manual Um operador deve ir ao local de instalação. Preço unitário acessível;
- Automatizada Envio de informações via interface sem fio. Eleva o preço unitário do datalogger.

Objetivo geral

Introdução 0000000

> Desenvolver os esquemáticos eletrônicos e leiaute da placa de circuito impresso de um datalogger de baixo custo, com interfaces Wi-Fi e Bluetooth, que possa realizar medições de temperatura, umidade e luminosidade.

Sistemas Embarcados

Definição

São sistemas computacionais que são parte integrante de um produto ou ferramenta e são limitados em tamanho, consumo, poder de processamento e custo.

Produtos que possuem um sistema embarcado são:

- Brinquedos;
- Eletrodomésticos;
- Automóveis;

Sistemas Embarcados

Estrutura básica:

- Unidade de fornecimento de energia elétrica;
- Interfaces de entrada e saída para interação;
- Memórias de dados e de programa;
- Interfaces de comunicação;
- Unidade de processamento;

Tecnologias de processadores

Definição

Introdução 0000000

> Maneira como a unidade de processamento é organizada para executar instruções.

- Processadores de Uso Geral
- Processadores Especializados
 - Microcontroladores:
 - DSPs.
- Processadores Dedicados
 - ASICs
 - FPGAs
- System-On-A-Chip

Desafios de Projeto

- Realizar uso eficiente dos recursos computacionais disponíveis;
- Um sistema embarcado deve atingir a dependabilidade;
 - Segurança da informação;
 - Confidencialidade;
 - Operação segura;
 - Confiabilidade;
 - Reparabilidade;

Metodologia

Soluções existentes

- Busca de dispositivos com as seguintes propriedades:
 - Leitura de umidade e temperatura;
 - Comunicação sem fio;
 - Opção de alimentação por bateria;
- Análise de custo e propriedades de soluções existentes.

Tabela: Dataloggers: Preços e Mercados

Modelo	Fabricante	Preço (R\$)	Mercado	Nível de Proteção	Interface sem Fio
RCW-360	Elitech	1.499,00	Nacional	IP64/IP65	WiFi
EL-WiFi-TH	Lascar Electronics	1.305,14	Estrangeiro	IP55	WiFi
TandD RTR-507B	TandD	2.242,57	Estrangeiro	IP64	Interface Própria
160 TH	testo	2.842,00	Nacional	IP20	WiFi

o autor

Tabela: Dataloggers: Propriedades

Modelo	Dimensões	Autonomia	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	Não informado	3 meses	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	82 x 70 x 23 mm	6 meses	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	62 x 47 x 19 mm	10 meses	-25 a 70	0,3	0 a 99	2,50
160 TH	76 x 64 x 22 mm	Não informado	-30 a 50	0,1	0 a 100	2
			o autor		Clin	

Especificações técnicas

- 1 Possuir a capacidade de ler de um ambiente:
 - Temperatura;
 - Umidade relativa;
 - Nível de luminosidade;
- Alimentação direta ou via conjunto de 4 pilhas AA;
- Leitura de sensores via interfaces ADC, I²C, SPI e/ou UART;
- Persistir os dados em um cartão SD;
- 5 Possuir interface de interação com o usuário;
- Permitir o envio de dados coletados via interface de comunicação sem fio;

Arquitetura de Hardware

Figura: Diagrama de blocos.

Fonte: Elaborado pelo autor (2022)

Seleção de Componentes

Critérios

Foram definidos alguns critérios para se escolher um componente:

- Tempo de suporte de ciclo de vida maior 10 anos p/ componentes ativos;
- Selecionar componentes passivos com propriedades que facilitem sua substituição;
- 3 Possuir mais de uma solução para cada componente passivo;

Microcontrolador

Definição

- ESP32-S3-WROOM-1-N8
 - Baixo custo unitário;
 - 8MB de Flash e 36 GPIOs;
 - Wi-Fi 2.4GHz e BLE Radio;
 - ADC 10-bits;
 - 12 anos de suporte de ciclo de vida.

Figura: Diagrama de blocos do módulo

Fonte: Espressif Systems

Microcontrolador

Esquemático

Sensores

HDC1080

TI HDC1080

- ±2% de precisão de umidade relativa;
- ±0.2 °C precisão de temperatura;
- 1.3 μA p/ leitura e 100 nA hibernação;

Sensores LDR

- Light Dependant Resistor (LDR)
 - Baixo custo;
 - 10 a 10.000 lux;
 - Necessita de ADC;

Interface de usuário e suporte MicroSD

- LEDs e botões táteis
 - LEDs genéricos vermelho e verde;
 - Dois botões táteis;

Suporte microSD

Fonte de alimentação

- Circuito "chaveador" pilha-alimentação direta:
 - MOSFET Canal P;
 - Resistor 10kΩ;
 - Diodo schottky;
- Schottky ON NSR0320MW2T1
 - Tensão direta típica: 0,3 V;

Fonte de alimentação

Regulação de tensão

Quatro pilhas do tipo AA fornecem até 6V de tensão. É preciso reduzi-lá para 3,3 V, nível de tensão operacional dos demais componentes.

- LDO Diodes AP2114HA-3.3TRG1
 - Suporta até 6,5 V de entrada;
 - 3,3 V fixo como saída;
 - Queda típica de 0,1 V;

Stackup PCI

Define características e parâmetros do cobre e dielétrico de uma PCI.

Impedância típica: 50Ω

Particionamento Funcional

- Posição de componentes;
- Auxílio de roteamento;
- Redução EMI;

Roteamento

- Somente sinais inicialmente;
- Largura 10 mil;

Roteamento

- Evita ciclos;
- Largura 20 mil;

Plano de Terra

Propicia o menor caminho de retorno possível

Figura: Top Plane

Figura: Bottom Plane

Resultados 0000000

Resultados

Propriedades e Design finais

Propriedades:

- Temperaturas de -20 °C a 80 °C;
 - Precisão de ± 0,4 °C.
- Umidade relativa de 0% a 99%;
 - Precisão de ± 2%.
- Luminosidade de 10 lux a 10.000 lux.
- *microSD* de até 4GB;
- Wi-Fi ou Bluetooth:

Resultados

Propriedades e Design finais

Figura: Visualização 3D da PCI

- 3,3 V a 6,5 V;
- 39 componentes;
- 51 x 53 mm;

Produção

Materiais

- Fornecedor de Componentes
 - LCSC Electronics
- Fabricação e Montagem PCI
 - JLCPCB

Tabela: Custo de materiais por unidades

Quantidade	Custo de Materiais
50	US\$ 502,60
100	US\$ 938,41
1000	US\$ 8.736,80

Produção

Fabricação e Montagem

Tabela: Custos de Fabricação e Montagem

Quantidade	Fabricação	Montagem	Total
50	US\$ 22,4	US\$ 64,47	US\$ 86,87
100	US\$ 34,4	US\$ 96,97	US\$ 131,37
1000	US\$ 249,70	US\$ 447,92	US\$ 667,62

Fonte: o autor.

Tabela: Custo Unitário

Quantidade	Custo Total	Custo Unitário
50	US\$ 582,42	US\$ 11,65
100	US\$ 1048,93	US\$ 10,49
1000	US\$ 9261,29	US\$ 9,26

Custos de Importação

Fatores considerados durante o cálculo dos custos de importação:

- Cotação: R\$5,13 p/ cada Dólar;
- Imposto de importação zerado;
- ICMS para o estado do Ceará.

Tabela: Custos de importação para o Brasil

Quantidade	Valor	Frete	IPI	PIS	COFINS	ICMS	Total	Valor Unitário
50	2.576,22	412,35	38,85	62,76	288,40	741,64	4.120,22	82,40
100	4.815,26	567,11	69,97	113,03	519,40	1.335,68	7.420,46	74,20
1000	44.831,14	2.691,32	617,79	997,97	4.585,92	11.793,10	65.517,24	65,52

Energia

Consumo por modo de operação

Tabela: Consumo por circuito em uso ativo

Circuito	Consumo
Controle	30 mA
Sensores	27 mA
Circuito microSD	100 mA
Interface de Usuário	60 mA
Total	217 mA

Fonte: o autor.

Tabela: Consumo por circuito em sono profundo

Circuito	Consumo
Controle	8 μΑ
Sensores	0,2 μΑ
Regulador de tensão	65 μA
Circuito microSD	450μA
Interface de Usuário	$0 \mu A$
Total	523,2 μA

Energia

Autonomia

O datalogger possui autonomia de até dois meses, de acordo com as seguintes condições:

- Considerado intervalo de 30 minutos;
- Duração em modo ativo: 10 segundos;
- Duração em modo sono profundo: 29m 50s;
- Quatro pilhas AA de 2500 mAh cada.

Comparativo de mercado

Dimensões e Autonomia

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informado
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

Fonte: o autor.

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (°C)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	-25 a 70	0,3	0 a 99	2,50
160 TH	-30 a 50	0,1	0 a 100	/ 2 - /
Hardware Proposto	-20 a 85	0,4	0 a 100	2

Comparativo de mercado

Dimensões e Autonomia

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informado
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

Fonte: o autor.

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	-25 a 70	0,3	0 a 99	2,50
160 TH	-30 a 50	0,1	0 a 100	/ 2 -
Hardware Proposto	-20 a 85	0,4	0 a 100	2

Comparativo de mercado

Dimensões e Autonomia

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informado
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

Fonte: o autor.

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	-20 a 60	0,3	0 a 100	2
TandD RTR-507E	3 -25 a 70	0,3	0 a 99	2,50
160 TH	-30 a 50	0,1	0 a 100	/ 1 2 -
Hardware Propos	to -20 a 85	0,4	0 a 100	2

Comparativo

Custo Unitário

Custos não considerados:

- Desenvolvimento de firmware;
- Invólucro de proteção;
- Homologação em órgãos competentes;

Tabela: Comparativo: Custo Unitário

Modelo	Valor (R\$)	
RCW-360	1.499,00	
EL-WiFi-TH	1.305,14	
TandD RTR-507B	2.242,57	
160 TH	2.842,00	
Hardware Proposto	65,52	

Comparativo

Revisão de Custo

Estimativas de custo

- Firmware
 - Salário desenvolvedor pleno: R\$ 7919,00
 - Três meses de projeto com dois profissionais: R\$47.514,00
- Invólucro IP65
 - Custo unitário: R\$20,00;
 - Custo com retrabalho: R\$50,00;
- Homologação ANATEL.
 - A verificar.

Revisão de Custo

Tabela: Comparativo: Custo unitário revisado

Modelo	Valor (R\$)
RCW-360	1.499,00
EL-WiFi-TH	1.305,14
TandD RTR-507B	2.242,57
160 TH	2.842,00
Hardware Proposto	142,35

Conclusão

Objetivos

Objetivos atingidos

Trabalhos Futuros

- Desenvolvimento de firmware que faça uso dos recursos de hardware do dispositivo e do módulo microcontrolador;
- Testes com protótipos para verificar o consumo energético real do dispositivo.

