Systèmes d'équations linéaires

Méthode de résolution

 Ramener le calcul d'une ER décrivant le langage reconnu à la résolution d'un système d'équations linéaires (à droite) dont les inconnues sont des langages.

2

Résolution

 $Z_1 = \varepsilon + Z_2 b + Z_3 b$

- On cherche une ER pour Z₃ i.e. les étiquettes qui conduisent de l'état initial à l'état terminal
- Il faut savoir résoudre Z=ZA+B

pour A et B des langages

Ceci correspond à une résolution «classique» : Z(1-A)=B

ďoù

 $Z=B \cdot 1/(1-A) = B \cdot A^*$

Résolution de Z=ZA+B

- Le langage BA* est une solution de Z=ZA+B
- X=BA* est la plus petite solution. Alors,
 BA*=BA*.A+B=BA+B=B.(A+ε)=BA*
- Si X solution de Z=ZA+B, alors BA*⊆ X (plus petite solution); induction sur i: BAⁱ⊆ X
 - i=0, $BA^0=B \subseteq X$ car X=XA+B

$\varepsilon \notin A \Rightarrow BA^*$ unique solution

- Si ε∉A, BA* unique solution de Z=ZA+B
- Supposons la non unicité de la solution et soit X une solution autre que BA*.

Soit $w \in X \setminus BA^*$ (BA* est la plus petite solution) t.q. w est de longueur minimale.

X solution \Rightarrow w=v.u pour $v \in X$ et $u \in A$

 $(car w \notin BA^* \Rightarrow w \notin B)$

 $v \notin BA^*$ (sinon $w \in BA^*$) donc $v \in X \backslash BA^*$ |v|=|w|-|u|<|w|, contradiction.

$\varepsilon \notin A \Rightarrow BA^*$ unique solution

Si $\varepsilon \in A$, alors pour tout $C \subseteq \Sigma^*$, une autre solution

X=BA*+CA*

■ XA+B = (BA*+CA*)A+B=BA++CA++B=BA*+ CA+=X (car $\varepsilon \in A \Rightarrow A^+ = A^*$)

Exemple (suite)

 $Z_1 = \varepsilon + Z_2 b + Z_3 b$ $Z_2 = Z_1 b$ $Z_3 = Z_1 a + Z_2 a + Z_3 a$ $\mathbb{Z}_3 = (\varepsilon + Z_3 b)(bb)^* (a+ba) + Z_3 a$

 $\{ Z_3 = Z_3(b(bb)*(a+ba)+a)+(bb)*(a+ba) \}$

 $\{ Z_3 = (bb)*(a+ba)(b(bb)*(a+ba)+a)* \}$

Exemple (revisité)

 $Z_1 = \varepsilon + Z_2 b + Z_3 b$

 $Z_2 = Z_1b$

 $Z_3 = Z_1 a + Z_2 a + Z_3 a$

 ${Z_2 = b + Z_2 bb + Z_3 bb}$ ${Z_3 = a + Z_2 ba + Z_3 ba + ba + Z_2 bba + Z_3 bba + Z_3 a}$

 \P Z_3 = a+ba+ (b+ Z_3 bb)(bb)*(ba+bba)+ Z_3 (a+ba+bba)

 \P $Z_3 = Z_3((bb)^*(ba+bba)+a+ba+bba)+b(bb)*(ba+bba)+ba+a$

 $\{ Z_3 = Z_3 b^* a + b^* a \}$

 $\{ Z_3 = (b*a)*b*a = (b*a)*$

Méthode de résolution (bis)

■ Ramener le calcul d'une ER décrivant le langage reconnu à la résolution d'un système d'équations linéaires (à gauche) dont les inconnues sont des langages.

Exemple

 Y_i ={étiquettes des chemins reliant i à un état d'acceptation} $Y_i = \{ w \in \Sigma^* : \delta(i, w) \in F \}$

On prend en compte tous les arcs sortants

On cherche à résoudre pour l'état initial C

11

Exemple

 Y_i ={étiquettes des chemins reliant i à un état d'acceptation} Y_i ={ $w \in \Sigma^* : \delta(i, w) \in F$ }

On prend en compte tous les arcs sortants On cherche à résoudre pour l'état initial \mathcal{C}

Résolution

 On cherche une ER pour Y₁ i.e. les étiquettes qui conduisent de l'état initial à l'état terminal

 Il faut savoir résoudre Y=AY+B

pour A et B des langages

$$\begin{cases} Y_1 = bY_2 + aY_3 \\ Y_2 = bY_1 + aY_3 \\ Y_3 = bY_1 + aY_3 + \varepsilon \end{cases}$$

14

Résolution de Y=AY+B

- Le langage A*B est une solution de Y=AY+B
- X=A*B est la plus petite solution. Alors, A*B=A A*B+B=A*B+B=A*B
- Si X solution de Y=AY+B, alors A*B⊆ X (plus petite solution); induction sur i: AiB⊆ X
 - i=0, $A^0B=B \subset X$ car X=AX+B

 $\varepsilon \notin A \Rightarrow A^*B$ unique solution

- Si ε∉A, A*B unique solution de Y=AY+B
- Supposons la non unicité de la solution et soit X une solution autre que A*B.

Soit $w \in X \setminus A^*B$ (A^*B est la plus petite solution) t.q. w est de longueur minimale.

X solution \Rightarrow w=v.u pour $v \in X$ et $u \in A$

 $(car w \notin A^*B \Rightarrow w \notin B)$

 $v \notin A*B$ (sinon $w \in A*B$) donc $v \in X \setminus A*B$ |v|=|w|-|u|<|w|, contradiction.

10

$\varepsilon \notin A \Rightarrow A^*B$ unique solution

Si $\epsilon \in A$, alors pour tout $C \subseteq \Sigma^*$, une autre solution est

X=A*B+A*C

■ AX+B = A(A*B+A*C)+B=A*B+A*C+B=A*B+A*C=X(car $\varepsilon \in A \Rightarrow A*=A*$) Exemple (suite)

 $\begin{cases} Y_1 = bY_2 + aY_3 \\ Y_2 = bY_1 + aY_3 \\ Y_3 = bY_1 + aY_3 + \varepsilon \end{cases}$

15

17

 $\begin{cases} Y_1 = bbY_1 + baY_3 + aY_3 \\ Y_3 = bY_1 + aY_3 + \varepsilon \end{cases}$

 $\begin{cases} Y_1 = bbY_1 + (ba+a)Y_3 \\ Y_3 = a*(bY_1 + \varepsilon) \end{cases}$

 $Y_1 = bbY_1 + (ba+a)a*(bY_1 + \varepsilon)$

 \P Y₁ = (bb+(ba+a)a*b)Y₁+(ba+a)a*

 $\{ Y_1 = (bb+(ba+a)a*b)*(ba+a)a* \}$

18

Comparaison des méthodes

Les trois méthodes donnent respectivement :

(b*a)+

(bb)*(a+ba)(b(bb)*(a+ba)+a)* (bb+(ba+a)a*b)*(ba+a)a* (bb+(b+\varepsilon)*(b+\varepsilon)*

A-t-on fait une erreur de résolution ?

Les deux expressions rationnelles sont-elles identiques ? A-t-on unicité de l'expression rationnelle décrivant un langage?

Les prochains cours vont répondre à ces questions.

20

Automate minimal

* la minimalité porte sur le nombre d'états de l'automate

Automate réduit & minimal

- un automate déterministe A est réduit si pour tout couple d'états distincts p et q de A, p et q ne sont pas équivalents
- un automate (déterministe) réduit A est minimal s'il n'existe pas d'automate reconnaissant le même langage avec moins d'états.

Langage associé à un état

• soit un AFD $A = (\Sigma, Q, \delta, q_o, F)$, on appelle langage associé à q de Q et on note $L_q(A)$ le langage :

$$\mathsf{L}_{q}(A) = \{w \in \Sigma^{\star}, \, \delta^{\star}(q, w) \in F\}$$

 L_q(A) est le langage reconnu par un automate dont l'état initial serait q et qui aurait F comme ensemble d'états finals.

$$L(A) = L_{q_0}(A)$$

25

Problème 1

- Donnée : une expression rationnelle E
- Problème : construire un AFD minimal qui reconnaisse le langage décrit par E
- Idée : *les quotients gauches ...*

26

Quotients gauches

>obtenir les suffixes d'un mot

■ Pour deux **mots** $u, v \in \Sigma^*$.

$$u^{-1}v = \{w \in \Sigma^* \mid u.w = v\}$$

■ Pour deux **langages** $X,Y \subseteq \Sigma^*$,

$$X^{-1}Y = \bigcup_{x \in X} \bigcup_{y \in Y} x^{-1}y$$

On va utiliser le quotient d'un langage L par un mot u:

$$u^1 \mathcal{L} = \{ w \in \Sigma^* \mid u.w \in \mathcal{L} \}$$

Propriétés

- ε⁻¹L = L, ∀L ⊆Σ*
- a-1Ø = a-1ε = Ø
- a⁻¹a = ε
- a-1b = Ø pour a ≠ b

- $(u.v)^{-1} L = v^{-1}(u^{-1}L)$, $\forall L \subseteq \Sigma^*$
- $a^{-1}(X+Y) = a^{-1}X + a^{-1}Y$
- a⁻¹X* = (a⁻¹X). X*
- $a^{-1}(X,Y) = (a^{-1}X) \cdot Y + (X \cap \{\epsilon\}) \cdot a^{-1}Y$

٦,

Fondement de la minimisation

Théorème: si L est un langage rationnel, alors l'ensemble de ses quotients gauches

Q(
$$L$$
) = { $u^{-1}L \mid u \in \Sigma^*$ } est fini.

Proposition: soit $A = (\Sigma, Q, \delta, q_0, F)$ un AFD complet et dont tous les états sont accessibles, on a :

$$Q(L) = \{ L_a(A), q \in Q \}$$

29

Fondement de la minimisation

Le cardinal de l'ensemble des résiduels est borné par celui du nombre d'états.

- Pour $L \subseteq \Sigma^*$, on définit $A(L) = (Q(L), \Sigma, \delta, \{L\}, F(L))$, l'automate minimal* de L où
 - $F(L) = \{u^{-1}L \mid \{\epsilon\} \in u^{-1}L\}$
 - $\delta(Y,a) = a^{-1}Y$ pour $Y \in Q(L)$, $a \in \Sigma$
 - * La minimalité sera justifiée plus tard ...

$$Q(L) = \{L_q(A) \mid q \in Q\}$$

$$Q(L) \subseteq \{L_q(A) \mid q \in \mathbb{Q}\}$$

Soit $u \in \Sigma^*$ et $q = \delta(i, u)$.

• q existe toujours (A complet et tous ses états sont accessibles).

$$u.w \in L \Leftrightarrow w \in u^{1}L \Leftrightarrow w \in Q(L) \Leftrightarrow \delta(i,u.w) \in F$$
$$\Leftrightarrow \delta(q,w) \in F \Leftrightarrow w \in L_{q}(A)$$

Donc $u^1L \subseteq L_a(A)$

 $Q(L) = \{L_q(A) \mid q \in Q\}$

$$\blacksquare \{L_q(A) \mid q \in \mathbb{Q}\} \subseteq \mathbb{Q}(L)$$

Soit $q \in Q$ et $u \in \Sigma^*$ tels que $\delta(i,u) = q$. $u \in \Sigma^*$ existe toujours (A complet et tous ses états

$$L_q(A) \subseteq u^{-1}L$$

Tout ce qui est reconnu en partant de q correspond aux suffixes de mots de L.

Exemple : $Q(\Sigma^*ab\Sigma^*)$

• $a^{-1}L = a^{-1}(\Sigma^*ab \Sigma^*)$

=
$$(a^{-1}\Sigma^*)$$
 ab Σ^* + a^{-1} (ab Σ^*)

=
$$(a^{-1}\Sigma) \Sigma^*$$
 ab Σ^* + $(a^{-1}a)b \Sigma^*$ + \varnothing
 $a^{-1}L = \Sigma^*$ ab Σ^* + $b \Sigma^*$ = $L + b \Sigma^*$ (nouveau)

= (b⁻¹
$$\Sigma$$
*) ab Σ *+ b⁻¹ (ab Σ *)

= (b⁻¹
$$\Sigma$$
) Σ * ab Σ *+ (b⁻¹ a)b Σ *+ \varnothing

$$b^{-1}L = \Sigma^* ab \Sigma^* = L$$
(pas nouveau)

Exemple : $Q(\Sigma^*ab\Sigma^*)$

• $a^{-1}(a^{-1}L) = a^{-1}(L + b \Sigma^*) =$

=
$$a^{-1}L + a^{-1}$$
 (b Σ^*) = L + b Σ^* + a^{-1} b Σ^* + \emptyset = $a^{-1}L$

$$a^{-1}(a^{-1}L) = a^{-1}L$$
 (pas nouveau)

$$\bullet$$
 b⁻¹(a⁻¹L) = b⁻¹(L + b Σ *) =

=
$$b^{-1}L + b^{-1} (b \Sigma^*) = L + \Sigma^* = \Sigma^*$$

$$b^{-1}(a^{-1}L) = \Sigma^* \text{ (nouveau)}$$

•
$$a^{-1}(b^{-1}(a^{-1}L)) = a^{-1}(\Sigma^*) = \Sigma^*$$

■
$$b^{-1}(b^{-1}(a^{-1}L)) = b^{-1}(\Sigma^*) = \Sigma^*$$

$Q(\Sigma^*ab\Sigma^*)$		
• $a^{-1}L = L + b \Sigma^*$ • $b^{-1}L = \Sigma^* ab \Sigma^* = L$	δ	α
	\rightarrow L	α⁻¹L

• a⁻¹(a⁻¹L) = a⁻¹L

b

■ $b^{-1}(a^{-1}L) = \Sigma^*$

Σ*

■ $a^{-1}(b^{-1}(a^{-1}L)) = \Sigma^*$ ■ $b^{-1}(b^{-1}(a^{-1}L)) = \Sigma^*$

