External Validity and Meta-Analysis

Tara Slough | NYU

Scott A. Tyson | Rochester

Motivation

- ► Evidence in Governance and Politics (EGAP) **Metaketa** initiative.
 - ▶ **Prospective meta-analysis** of coordinated field experiments
 - ► Goals: "accumulation" and to address "crisis of external validity."

The challenge of meta-studies

- Any two experiments on a phenomenon will produce different estimates of treatment effects.
- ► Three possible explanations for different estimates:
 - 1. **Statistical noise**, i.e., sampling variability.
 - 2. Differences in **experiment**, i.e., different outcome measures.
 - 3. Phenomenon is not **generalizable**.
- ► The challenge:
 - Noise is always present, limits our ability to assess #2 and #3.
 - ► A focus on estimation (in meta-analysis) largely focuses on #1.
 - Our focus: A (more) systematic treatment of #2 and #3.

This paper

► Conceptual **framework** for meta-studies

This paper

► Conceptual **framework** for meta-studies

This paper

Conceptual framework for meta-studies

- Objective: Understand the conditions under which multiple internally valid experiments produce comparable estimands
 - Design features: harmonization
 - Assumptions within and across constituent studies

External Validity

What is external validity?

- ► Many views.
- We classify existing accounts into:
 - Projective concepts
 - External validity as a property of a single study (or estimate).
 - Deductive concepts
 - External validity as a relational property between a cross-section of studies.

Projective concepts of external validity

- External validity is a property of a **study** (or estimate):
 - Extrapolation of estimates to different settings, samples, outcomes, or treatments. Shadish, Cook, and Campbell (2002); Fariss and Jones (2018)
 - 2. **Transportability** of estimates to a different setting. Pearl and Bareinboim (2014)
 - 3. **Sample** → **population** estimands. Egami and Hartman (2020); Findley, Kikuta, and Denly (2021)
 - Parallelism between findings in artificial (lab) and natural (field) settings, also between methods. Smith (1982); Guala (2005); Pritchett and Sandefur (2015)

Deductive concepts of external validity

- ► External validity as a **relational** property between a cross-section of studies. Lucas (2003); Gailmard (2021)
 - No specific definitions in the literature.
- Meta-study practitioners seem to invoke a deductive concept of external validity:
 - If not, why spend the money/time to do multiple studies?
 - Much cheaper, easier, to extrapolate from a single study.

Framework: Constituent Studies

Studies, Meta-Analyses

- ► The objective:
 - of a study: measure the effect of a mechanism where it may be present.
 - of a meta-analysis: combine the findings from different studies that pertain to the same mechanism in multiple contexts or samples.

Building blocks: individual studies

- ► Three elements in a study designed by the researcher:
 - 1. A **setting**, $\theta \in \Theta$
 - O represents settings where a mechanism could operative, or within "scope conditions" of theory/argument
 - 2. A set of measurement strategies, M
 - ► Set of outcome measures that (may) reveal presence of mechanism.
 - 3. A contrast, $C = \{(\omega', \omega'') | \omega', \omega'' \in \Omega\}$
 - $ightharpoonup \Omega \in \mathbb{R}$ is the set of possible instruments
 - Think of ω' as control. ω'' as treatment.
- ▶ Definitions:
 - ► A **study** is a triple, $\mathcal{E} = \{m, (\omega', \omega''), \theta\} \in M \times C \times \Theta$.
 - ▶ A **meta-study** is a collection of studies, $\mathcal{M}(I) = \{\mathcal{E}_i\}_{i \in I}$.

Treatment Effects

- ► Each study estimand is some **treatment effect**:
 - For a study $\mathcal{E} = \{m, (\omega', \omega''), \theta\}$, a treatment effect is a smooth mapping $\tau_m(\omega', \omega'' \mid \theta) : M \times C \times \Theta \to \mathbb{R}$.
 - We assume that the derivative of T has full rank for almost all contrasts.
- ► Relationship to potential outcomes:

$$\tau_{m}(\omega',\omega''\mid\theta)=f(Y_{m}(\omega'')|\mathcal{D},\theta)-f(Y_{m}(\omega')|\mathcal{D},\theta)$$

- $ightharpoonup f(\cdot)$: some operator, usually expectation or quantile function.
- D: set of units for which (investigator thinks) the mechanism is operative.

Example

- ► Lind: A Treatise on the Scurvy (1753)
 - ► Early medical experiment on the effects of citrus (lemon + orange) on scurvy on ailing seamen.
 - ► Noted for clarity of the mechanism, Vitamin C.

Building blocks: Example

- ► Simplifying Lind's original study:
 - ► Setting: the **ship** upon which the experiment was conducted in 1747.
 - ► Contrast: **lemon + orange treatment** vs. **pure control** ("do nothing").
 - Measurement strategy: indicator for the incidence of any scurvy symptom.
- ▶ Treatment effects:
 - Experiment was conditioned on seamen having scurvy symptoms.
 - ightharpoonup We would expect the treatment to work on all participants, thus ${\cal D}$ includes all units.
 - ▶ If we care about averages, then $\tau_m(\omega', \omega'' \mid \theta)$ is the **ATE**.

Divergent Validity

▶ **Divergent validity** holds between measurement strategies $m \in M$ and $m' \in M$, if

$$\tau_m(\omega',\omega''\mid\theta)\neq\tau_{m'}(\omega',\omega''\mid\theta).$$

- ► Important if we want to **combine** studies.
- Concretely, if divergent validity holds, we should expect different treatment effects if we use different measurement strategies, i.e.:
 - Any scurvy symptom
 - Bloody gums

Framework: Combining Studies

The Goal: Comparability

▶ Studies $\mathcal{E}_1 = \{m_1, (\omega_1', \omega_1''), \theta_1\}$ and $\mathcal{E}_2 = \{m_2, (\omega_2', \omega_2''), \theta_2\}$, are **comparable** if:

$$\tau_{m_1}(\omega_1',\omega_1''\mid\theta_1)=\tau_{m_2}(\omega_2',\omega_2''\mid\theta_2).$$

A meta-study has **constituent comparability** if all constituent studies i in $\mathcal{M}(\mathcal{I})$ are comparable.

► Summary: two studies are comparable when they allow us to make apples-to-apples comparisons.

Comparability involves:

- 1. Cross-study design decisions: **harmonization**.
- 2. Assumptions about the manifestation of the mechanism as a treatment effect: **external validity**.

Design Elements: Harmonization

- ► Two forms of design **harmonization**
 - 1. Studies \mathcal{E}_1 and \mathcal{E}_2 are **contrast harmonized** if $(\omega_1', \omega_1'') = (\omega_2', \omega_2'')$ in almost every setting.
 - Metaketas focus only on treatment harmonization, or ensuring that $\omega_1'' = \omega_2''$.
 - 2. Studies \mathcal{E}_1 and \mathcal{E}_2 are **measurement harmonized** if $m_1 = m_2$ for almost every contrast and at almost every setting.
 - Measurement harmonization is a more fundamental issue than current treatments of rescaling/normalizing outcomes across sites.
- ▶ A meta-study $\mathcal{M}(I)$ is **harmonized** if every constituent study is contrast and measurement harmonized.

Harmonization Examples

► These two experiments are **not** contrast harmonized:

► These two experiments are not measurement harmonized:

 \mathcal{E}_1 : m_1 : incidence of any scurvy symptom

 \mathcal{E}_2 : m_2 : incidence of bloody gums (one scurvy symptom)

External Validity

▶ A mechanism has **external validity** from setting θ to setting θ' if for every measurement strategy, $m \in M$, and almost every contrast, (ω', ω'') ,

$$\tau_m(\omega', \omega'' \mid \theta) = \tau_m(\omega', \omega'' \mid \theta').$$

A mechanism is **externally valid** if it has external validity across almost all settings $\theta \in \Theta$.

► Summary: A mechanism has external validity if it produces the same effect in two different settings with otherwise identical experimental conditions.

Results, Applications

Strategy

- We want to understand when meta-studies are constituent comparable.
- ► Two assumptions:
 - 1. **Divergent** validity (DV)
 - 2. **External** validity (EV)
- ► Allows us to ask: When are treatment effects produced by an externally valid mechanism comparable?
 - By extension, what quantity are we estimating in meta-analysis?

Result 1: given contrast harmonization

Theorem

Let \mathcal{E}_1 and \mathcal{E}_2 be contrast harmonized + EV + DV \to \mathcal{E}_1 and \mathcal{E}_2 comparable iff **measurement harmonized**.

- ► Intuition: if two contrast-harmonized studies are comparable, either:
 - 1. Measurement strategies are harmonized.
 - Two measurement strategies produce the same treatment effect → contradicts divergent validity.

Result 2: given measurement harmonization

Theorem

Let \mathcal{E}_1 and \mathcal{E}_2 be measurement harmonized + EV + DV $\rightarrow \mathcal{E}_1$ and \mathcal{E}_2 comparable iff **contrast harmonized**.

- ▶ Intuition: suppose Lind had treated scurvy with a lime + orange on a different ship (\mathcal{E}_2) .
 - How likely is it that a lemon + orange generated a comparable treatment effect to a lime + orange?
 - Limes contain less Vitamin C than lemons.
 - What is the likelihood that oranges on the lime ship precisely offset this difference in Vitamin C intake?
 - Exceedingly unlikely.

Result 3: When are studies comparable?

Theorem

A meta-study is **constituent comparable** iff: EV + DV + measurement harmonization + contrast harmonization

- ► Intuition: Follows directly from Theorems 1 and 2.
- ► Implication: Non-harmonized studies will not necessarily detect an externally valid mechanism even when that substantive mechanism is present in all the settings comprising the meta-analysis.

Application: Meta-Analysis

- Using meta-analysis on multiple experiments:
 - ► Treatment effects estimates are **reduced-form** estimates.
 - ► Standard meta-analysis estimators are **structural** estimators.
- ► **Fixed-effects** meta-analysis estimator:

$$\hat{t}_i = \mu + \epsilon_i$$

- In the experimental context we examine, $\mu = \tau_m(\omega', \omega'' \mid \theta)$.
- ▶ **Implication**: The structural parameter μ is identified in a fixed effects meta-analysis iff:
 - Each measurement strategy satisfies divergent validity.
 - Mechanism is externally valid.
 - Every study in M(I) is both contrast and measurement harmonized.

Conclusion

- Causal meta-analyses often viewed as agnostic ways to cumulate knowledge.
- In additional to standard identification assumptions, for comparability of causal effects, we must:
 - Invoke additional within-site and between-site assumptions (divergent and external validity, respectively)
 - Pursue design **harmonization** beyond what is done in existing applications
- Limits to the agnosticism in the cumulation of evidence in meta-studies.

Thank you!

References

- Egami, Naoki, and Erin Hartman. 2020. "Elements of External Validity: Framework, Design, and Analysis." Working paper.
- Fariss, Christopher J, and Zachary M Jones. 2018. "Enhancing validity in observational settings when replication is not possible." Political Science Research and Methods 6 (2): 365–380.
- Findley, Michael G, Kyosuke Kikuta, and Michael Denly. 2021. "External Validity." Annual Review of Political Science forthcomin pp. 1–51.
- Gailmard, Sean. 2021. "Theory, History, and Political Economy." Journal of Historical Political Economy 1 (1): 69-104.
- Guala, Francesco. 2005. The methodology of experimental economics. Cambridge University Press.
- Lucas, Jeffrey W. 2003. "Theory-testing, generalization, and the problem of external validity." Sociological Theory 21 (3): 236-253.
- Pearl, Judea, and Elias Bareinboim. 2014. "External validity: From do-calculus to transportability across populations." Statistical Science 29 (4): 579–595.
- Pritchett, Lant, and Justin Sandefur. 2015. "Learning from experiments when context matters." American Economic Review 105 (5): 471–75.
- Shadish, William, Thomas D Cook, and Donald T. Campbell. 2002. Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin Boston, MA.
- Smith, Vernon L. 1982. "Microeconomic systems as an experimental science." The American Economic Review 72 (5): 923-955.