Progress and Preservation Proofs for the Expressions "iszero" and "pred" in the Arith Language

Zayd Hammoudeh (zayd.hammoudeh@sjsu.edu)

April 16, 2016

Contents

List	of Figu	res	ii
1	Arith	Language	1
2	Progre	ess in the Arith Language	4
	2.1	Proving Progress for Boolean and Integer Values	4
	2.2	Proving Progress for the if Expression	4
	2.3	Proving Progress for the succ Expression	5
	2.4	Proving Progress for the pred Expression	5
	2.5	Proving Progress for the iszero Expression	5
3	Preser	vation in the Arith Language	6
	3.1	Proving Preservation for Boolean and Integer Values	7
	3.2	Proving Preservation for the if Expression	7
	3.3	Proving Preservation for the succ Expression	8
	3.4	Proving Preservation for the pred Expression	8
	3.5	Proving Preservation for the iszero Expression	8

List of Figures

1	The Arith language	1
2	Small-Step, Evaluation Order Semantics Rules for the Arith Language	2
3	Type Rules for the Arith Language	3
4	Formal Definition of the Progress Theorem	4
5	Proof of Progress for the if Expression	4
6	Proof of Progress for the succ Expression	1
7	Proof of Progress for the pred Expression	6
8	Proof of Progress for the iszero Expression	6
9	Formal Definition of the Preservation Theorem	7
10	Proof of Preservation for the if Expression	7
11	Proof of Preservation for the succ Expression	8
12	Definition of Lemma Int	8
13	Proof of Preservation for the pred Expression	ę
14	Proof of Preservation for the iszero Expression	Ç

1 Arith Language

Arith is a basic language; its expressions, values, and types are enumerated in figure 1. Arith's small-step, evaluation order semantics are defined in figure 2, and Arith's type rules are enumerated in figure 3.

```
Expressions \\
e ::=
                                                Boolean True
      true
      false
                                                Boolean False
                                            Integer Value "0"
      0
      succ(e)
                                        Successor Expressions
      pred(e)
                                      Predecessor Expressions
                                Zero Value Check Expressions
      iszero(e)
      if (e) then (e) else (e)
                                      Conditional Expressions
v ::=
                                                       Values
                                                integer values
      i
      b
                                               boolean values
T ::=
                                                        Types
      Bool
                                                Boolean Type
      Int
                                                 Integer Type
```

Figure 1: The Arith language

$$\begin{array}{lll} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Figure 2: Small-Step, Evaluation Order Semantics Rules for the Arith Language

Type Rules:	e:T	
	[T-TRUE]	true: Bool
	[T-FALSE]	false: Bool
	[T-Int]	$i: { t Int}$
	[T-Succ]	$\frac{e_1: \mathtt{Int}}{\mathtt{succ}\ (e_1): \mathtt{Int}}$
	[T-Pred]	$\frac{e_1: \mathtt{Int}}{\mathtt{pred}\; (e_1): \mathtt{Int}}$
	[T-IsZero]	$rac{e_1: exttt{Int}}{ exttt{iszero}\left(e_1 ight): exttt{Bool}}$
	$[T-I_F]$	$\frac{e_1: \texttt{Bool}, \ e_2: T, \ e_3: T}{\texttt{if} \ (e_1) \ \texttt{then} \ (e_2) \ \texttt{else} \ (e_3): T}$

Figure 3: Type Rules for the Arith Language

2 Progress in the Arith Language

In a type system, "progress" entails that a well-type expression will not "get stuck." Figure 4 is the formal, theoretical definition of progress.

Given e:T, then either:

- 1. e is a value.
- 2. There exists an e' such that: $e \to e'$.

Figure 4: Formal Definition of the Progress Theorem

The following subsections are the formal progress proofs for the type rules in figure 3.

2.1 Proving Progress for Boolean and Integer Values

Figure 4 establish that progress is achieved if an expression "e" is a value. Hence, by this criterion, type rules [T-True], [T-False], and [T-Int] are all valid for the progress theorem.

2.2 Proving Progress for the if Expression

Figure 5 is the proof of progress for the if expression in the Arith Language.

Given:

$$e = \text{if } (e_1) \text{ then } (e_2) \text{ else } (e_3)$$

 $e_1 : \text{Bool}, \ e_2 : T, \ e_3 : T$

Then:

e:T

By induction, an expression e_1 must be a value or $\exists e_1$ such that:

- 1. If e_1 is a value, then either [E-IF-TRUE] or [E-IF-FALSE] applies since e_1 : Bool. Hence, an expression e' exists for both cases.
- 2. Otherwise, $e_1 \to e_1'$ which means that [E-IF-CTXT] applies. This satisfies by induction the progress theorem.

Figure 5: Proof of Progress for the if Expression

2.3 Proving Progress for the succ Expression

Figure 3 shows the type rule for the succ expression. The proof of progress for this expression is shown in figure 6.

Given:

$$e = \mathtt{succ}\ (e_1)$$

 $e_1 : \mathtt{Int}$

Then:

$$T = {\tt Int}$$

By induction, e_1 must either be a value or $\exists e'_1$ such that:

- 1. If e_1 is a value (i.e. "i"), then: $e \to i'$ where i' = i + 1 using the small-step rule [E-Succ] since it was given that e_1 : Int.
- 2. Otherwise, $e_1 \to e_1'$ in which case [E-Succ-Ctxt] applies (as shown below). Hence, progress holds by induction.

$$e o \mathtt{succ}\; (e_1')$$

Figure 6: Proof of Progress for the succ Expression

2.4 Proving Progress for the pred Expression

Figure 3 shows the type rule for the pred expression. The proof of progress for this expression is shown in figure 7.

2.5 Proving Progress for the iszero Expression

Figure 3 shows the type rule for the iszero expression. The proof of progress for this expression is shown in figure 8.

Given:

$$e = \mathtt{pred}\ (e_1)$$
 $e_1 : \mathtt{Int}$

Then:

$$T = \mathtt{Int}$$

By induction, e_1 must either be a value or $\exists e'_1$ such that:

- 1. If e_1 is a value (i.e. "i"), then: $e \to i'$ where i' = i 1 using the small-step rule [E-PRED] since it was given that e_1 : Int.
- 2. Otherwise, $e_1 \to e'_1$ in which case [E-Pred-Ctxt] applies (as shown below). Hence, progress holds by induction

$$e \to \mathtt{pred}\ (e_1')$$

Figure 7: Proof of Progress for the pred Expression

Given:

$$e = \mathtt{iszero}\ (e_1)$$

 $e_1 : \mathtt{Int}$

Then:

$$T = {\tt Bool}$$

By induction, e_1 must either be a value or $\exists e'_1$ such that:

- 1. If e_1 is a value (i.e. "i") in which case either rule [E-IsZero-Z] or [E-IsZero-NZ] applies since e_1 : Int.
- 2. Otherwise, $e_1 \to e_1'$ in which case [E-IsZero-CTXT] applies (as shown below). Hence, progress holds by induction.

$$e o \mathtt{iszero}\; (e_1')$$

Figure 8: Proof of Progress for the iszero Expression

3 Preservation in the Arith Language

Preservation entails that a well-typed expression will not change its type during evaluation. Figure 9 is the formal, theoretical definition of preservation.

```
Given e: T and that e \to e',
then e': T.
```

Figure 9: Formal Definition of the Preservation Theorem

The following subsections are the formal proofs of preservation for the type rules in figure 3.

3.1 Proving Preservation for Boolean and Integer Values

For type rules [T-TRUE], [T-FALSE], and [T-INT], preservation holds vacuously as it is not possible to evaluate these expressions given that they are in normal form.

3.2 Proving Preservation for the if Expression

Figure 10 is the proof of preservation for the if expression in the Arith Language.

Given:

$$\begin{array}{c} e = \mathtt{if}\ (e_1)\ \mathtt{then}\ (e_2)\ \mathtt{else}\ (e_3) \\ e_1 : \mathtt{Bool},\ e_2 : T,\ e_3 : T \end{array}$$

For the if expression, three evaluation rules may apply.

- 1. If [E-IFTRUE] applies, then $e_1 = \text{true}$. Hence, $e' = e_2$. This proof holds since by definition $e_2 : T$.
- 2. If [E-IFFALSE] applies, then $e_1 = false$. Hence, $e' = e_3$. This proof holds since by definition $e_3 : T$.
- 3. If [E-IF-CTXT] applies, then $e_1 \to e'_1$. What is more, by induction e'_1 : Bool (this can be assumed by induction since e_1 is a subcase of e). Then using [T-IF]:

$$e' = \text{if } (e'_1) \text{ then } (e_2) \text{ else } (e_3) \to T$$

Figure 10: Proof of Preservation for the if Expression

3.3 Proving Preservation for the succ Expression

Figure 11 is the proof of preservation for the succ expression in the Arith Language.

Given:

$$e = \mathtt{succ}\ (e_1)$$
 $e_1 : \mathtt{Int}$

Then:

$$T = Int$$

For the succ expression, two evaluation rules may apply.

1. If [E-Succ-Ctxt] applies, then $e_1 \to e_1'$. What is more, by induction e_1' : Int. Using type rule [T-Succ],

$$e' = \mathtt{succ}\ (e'_1) o \mathtt{Int}$$

2. If [E-Succ] applies, then $e_1 = i$. Hence, $e = \mathtt{succ}(i) \to i'$ where i' = i + 1. Therefore, $e' : \mathtt{Int}$ using Lemma-Int defined in Figure 12.

Figure 11: Proof of Preservation for the succ Expression

The preservation proof for successor relies on a lemma defining integer arithmetic; it is shown in Figure 12.

Lemma Int

If i: Int and either:

- 1. i' = i + 1
- 2. i' = i 1

then i': Int.

Figure 12: Definition of Lemma Int

3.4 Proving Preservation for the pred Expression

Figure 13 is the proof of preservation for the pred expression in the Arith Language.

3.5 Proving Preservation for the iszero Expression

Figure 14 is the proof of preservation for the iszero expression in the Arith Language.

Given:

$$e = \mathtt{pred}\ (e_1)$$
 $e_1 : \mathtt{Int}$

Then:

$$T = \mathtt{Int}$$

For the pred expression, two evaluation rules may apply.

1. If [E-Pred-Ctxt] applies, then $e_1 \to e_1'$ since by induction e_1' : Int. Using type rule [T-Pred],

$$e' = \mathtt{pred}\ (e_1') \to \mathtt{Int}$$

2. If [E-PRED] applies, then $e_1 = i$. Hence, $e = \text{pred}(i) \rightarrow i'$ where i' = i - 1. Therefore, e' : Int using Lemma-Int defined in Figure 12.

Figure 13: Proof of Preservation for the pred Expression

Given:

$$e = \mathtt{iszero}\ (e_1)$$
 $e_1 : \mathtt{Int}$

Then:

$$T = \mathtt{Bool}$$

For the iszero expression, three evaluation rules may apply.

- 1. If [E-IsZero-Z] applies, then $e_1 = 0$. Hence, e' = true which holds using type rule [T-True].
- 2. If [E-IsZero-NZ] applies, then e_1 is an integer value such that $e_1 \neq 0$. Hence, e' = false which holds using type rule [T-FALSE].
- 3. If [E-ISZERO-CTXT] applies, then $e_1 \to e'_1$ since by induction e'_1 : Bool (this can be assumed by induction since e_1 is a subcase of e). Then using [T-ISZERO]:

$$e' = \mathtt{iszero}\; (e'_1) \to \mathtt{Bool}$$

Figure 14: Proof of Preservation for the iszero Expression