Title: SUMA'LUS'L'A'LLNS AND ME'LLODS

Applicant(s): Mark Sheridan et al.

Serial No.: Unassigned

Docket No.: 255.0004 0101

Filed: Herewith

the first term and the maje was true to the second of the first term that the second of the first term that the second of the se

Sheet 1 of 8

SS I mRNA

SS II' mRNA

SS II' mRNA

SS II'' mRNA

SS II'' mRNA

SS II'' mRNA

Preprosomatostatin | Preprosomatost

par 1 (1)

Applicant(s): Mark Sheridan et al.

Serial No.: Unassigned Docket No.: 255.0004 0101
Filed: Herewith Sheet 2 of 8

PPSS-I

SEG 10 No. 8 5. GGGGGGGGGAACAGGAGCAGGAACTCAAAGAGAAGCCAATCTCAACGATTGTCTGCCCAATTGAACCACCTTTATCC

ATCCTCTGCCTCCCCGAGAACAAGAAGAAG. ATG CTC TCG ACG CGT GTC CAG TGC GTC CTA GCA CTA CTA CTC

ATCCTCTGCCCCCGGGGCCCGGGGCCGGAGAGAAGAAG ATG CTC TCG ACG CGT GTC CAG TGC CCTA GCA CTA CTC SEQ 15 Met 3 Met Leu Ser Thr Arg Val Gln Cys Ala Leu Ala Leu Leu Leu -88 Met Leu Ser Thr Arg Val Gln Cys Ala Leu Ala Leu Leu Leu -88 TCC CTA GCC CTG GCC CTG GCC ATC CGC CAG CTG CTG GCC CTG GCC CTG GCC CAG CTG CTG GCC CTG GCC CTG CCG TCC CAA CTC CGC CAG CTG CTG GCC CAG CTG CTG CCA CGG TCC CTC CTC CAT GCC ATG GCC ATG GCC AAA CTC CGC CAG CTG CTC CAA CGG TCA CTC ATG GCA CCT GCA GGC AAA CAG GAG CTT GCC AGG AAT ACA CTC GTA GAG CTC CAA CGG TCA CTC ATG GCA CAT GTA GAG AAC CAG GCG ATT GAA TTG GAT GAC ATG TCT CAT GGC CTA CTC TCA GAG CTC GCA CAT GTA GAG AAC GAG GCG ATT GAA TTG GAT GAC ATG TCT CAT GGC 340 CTA CTC TCA GAG CTC GCA CAT GTA GAG AAC GAG GCG ATT GAA TTG GAT GAC ATG TCT CAT GGC 340 Leu Leu Ser Glu Leu Ala His Val Glu Asn Glu Ala Ile Glu Leu Asn Asn Met Ser His Gly -25 GTG GAG CAG GAG GAT GTG GAT CTC GAG CTG GAG CAG GAG CAG GAT GTG GAT CTC GAG CTG GAG CAG GAG CAG GAT GTG GAT CTC GAG CTG GAG CTG GAG CTG GAG CTG GAT CTG GCT CAA CTC TCA CTC TCA GAG CTC GAA CTC GTA CTG GCT CAA CTC TCA CTC T

Fig. a

Applicant(s): Mark Sheridan et al.

Serial No.: Unassigned

Docket No.: 255.0004 0101

Filed: Herewith

Sheet 3 of 8

PPSS-II' and PPSS-II"

EGIONO: 4 PPSS - II'N EGIONO: 20 PPSS - II'N	accaggcctgctcc	ataccgactga atatcaactga	sccagat acctagat	ccsác cásac	atagece acaecec	äärcc r ä äärcc r ä	ctcag	ctes cte*	tete	#CCG(cgtgo tgto	:ea	75 70
PPSS-III" PPSS-III"	tocotgc&&&C&&& tocotgc&&&&CG&	************	7550044n	A DTA	ÅG GTC	TUC CAA	ATC	CHC	10.7 c	~~ \	-10 0	~~	139/-91 134/-87
6622- 11,4 6622- 11,4	CTG CTG GGT TI CTG CTG GGT CT Leu Leu Gly Le	ואס פריר ריונים ו	ידידית מייני	TGC A	IGC CAA	GGA GCC	: GCC	TCG	CAD	CCV	GAC	CTG	196/-72 191/-68
PPSS-11"	GAC CTC CGC AC GAC CTC GCG AC Asp Leu Als Se	פכ כפר רפש	CTC CTC	CAG A	AGG GCC	CTG GCG	GCT	GCA	TTG	CCA	CAC	ACKi	253/-53 248/-49
PPSS-II"	AGT GGA GTA AG AGT GGA GTA AG Ser Gly Val Se	GC GAG CGA	TGG AGG	ACA T	TTC TAT	CCG AAG	TGT	CCL	TGC	CIG	AGG	7756	304/-35 305/-30
PPSS·II" PPSS·II"	AGG CCC AGG AN AGG CCC AGA AN AIG Pro Arg Ly	DAA DTD AA	GGT CCA	CAG C	CTG AAG	GCC AA	QAG	GAC	CLO	CGT	Val GTG	GAG	358/-18 350/-14
PSS-II"		CA GTG GGC CA GTG GAC	Asn Pro AAC CCC	AAC I	AAC CTT AAC CTT Asn Leu	CCC CC	c cac	GAG	CGC	AAA	GCT.	GGC	415/+2 398/+2
PPSS - II'	TGC AAG AAC T CYa Lya Aan Pl	TC TAC TGG	AAG GGA	TTC 2	ACT TCT	TGC ta	a ggg	aaga aaga	ataa; aaag	accga	accac	ectt	477 460
OPSS-II"	atgacatgacgcts atgacacaatgca	gccaatcacgt ttcaatcacat	cacaccg	ccaac	ttacacc cttcatc	tgacgaa tgactaa	tgcag tgtag	ccaa	tcaa tcag	cagt:	taget	igtg igtg	552 535
### (522-11%) # 6622-11.	cccgatgatggtt; cctgatgadaatt;	cttgaaatcaa atgattatgat	ıcagaatgı :gtacctgı	atgtad actaal	cctgtct tttaga <u>a</u>	aatttgt ataaaga	ga <u>aat</u> ga <u>aat</u>	8833 8336	ataa. agaa.	aataa ac(a)	attg)n	(a) n	

Serial No.: Unassigned

The first first of the first f

Docket No.: 255.0004 0101

Sheet 4 of 8 Filed: Herewith

> Phase I Phase II mRNA mRNA AAAAAA3' Reverse Transcription GSP2 Reverse Transcription Adapter Primer 3'_ PCR cycle 1 Tail 3' end with dCTP GSP1 3,CCCCC PCR cycle 1 PCR cycles 2-35 Anchor Primer 3,CCCCC NAP A PCR cycles 2-35 <u>GS</u>P2 GSP1 - 3' 3' — 5' Anchor Primer

Fig. 4

Applicant(s): Mark Sheridan et al.
Serial No.: Unassigned Dock
Filed: Herewith

Docket No.: 255.0004 0101

Sheet 5 of 8

Nucleotide Identity

TR II'	82.8	49.0	43.7	52.3	51.0	52.0	51.5	51.1	52.8	54.5
84.1	TR II"	48.2	39.1	44.9	50.0	50.0	49.5	48.0	49.8	52.5
45.5	43.9	TRI	58.1	77.0	67.7	68.9	67.9	69.4	69.4	72.5
35,6	35.6	52.3	AFI	60.1	58.8	55 1	53.8	55.3	56.8	56.8
44.7	40,9	73.5	52.3	CFI	65.7	68.7	67.7	68.4	67.7	72.2
47.7	44.7	70.5	49.2	64.4	FR(75.0	74.5	62.6	75.5	78.3
42.4	38.6	66.7	46.2	63.6	78.8	С	84.1	84.3	84.3	84.3
42.4	38.6	65 2	45.5	62.9	78.0	87.9	R	92.4	91.2	92.2
42.4	38.6	66.7	46.2	63.6	78.8	88.6	97.0	В	94.4	95.5
42.4	38.6	64.4	46.2	62.9	78.8	90.9	96.2	98.5	M	98.7
45.5	42.4	73.5	47.7	68 2	87.1	91.7	97.7	98.5	100	Н

Amino Acid Identity

Fig. 5

affert felfet i figure of the construction of

Title: SOMATOSTATINS AND METHODS
Applicant(s): Mark Sheridan et al.
Serial No.: Unassigned Docket No.: 255.0004 0101
Filed: Herewith Sheet 6 of

Sheet 6 of 8

Comparison of Amino Acid Sequences of Peptides Derived from Preprosomatostatin \mathbb{I}^a

	-20	-10	+1	+10 +14
Rainbow trout ^b	A	PG * * PVLAPRE	RKAGCKNFF	7.00 OH OHV J OH A H A M
Hagfish ^d	AVERPRO	DGQVHEPPGRE	KNFF	KTFTSCSE
Lamprey ^d			AGCKNFF	TSCSFORE
$ ext{Torpedo}^d$			AGCKNFF	SOC 40
Ratfish ^d			AGCKSFF	CSEQIO
Bowfin ^d	S	AN * * PALAPRE	RKAGCKNFF	WKTFTSCSEQID NO: 29
Sturgeon			APCKNFF	HO NO:
Catflish d			AGCKNFF	WKTFTSCSEQID NO: ;
Salmon ^d			AGCKNFF	SEQ YO
Anglerfish¢	¥	ASGGPLLAPRE	RKAGCKNFF	
Eel d			AGCKNFF	
Flounder ^d			AGCKNFY	SIL
Sculpin			AGCKNFY	WKGFTSCHAP NO No. A
Froge			AGCKNFF	WKTFTSCSEGIO NO: 1
Salamander ^d			AGCKNFF	WKTFTSC SGOTONO:
Alligator			AGCKNFF	WKTFTSCSEQ IO NO: 1
Pigeon d			AGCKNFF	WKTFTSCSECATONO; 1
$Ovine^d$	ഗ	ANSNPAMAPRE	RKAGCKNFFI	WKTFTSCSECO ZONO, 32

Applicant(s): Mark Sheridan et al.

Serial No.: Unassigned Docket No.: 255.0004 0101

Filed: Herewith Sheet 7 of 8

SEQUENCE COMPARISON

_	<u> </u>	
SEQID NO: 9	TRII'	MKVCRTHCALATTGLALAICSOGAASQPDIDIRSRRILORARAAAWPHRSGVSER
SEWIO NO; 15	TRII"	mrysothcataticgtataticsogaasordidiasrettoralaaalphesgyser
SEQIONO: 36	CFII	MSSSPLRLALALMCIVSAVGVISCGRPHVVLNSALEEABNVPFGEEVPERLT
SEQIONO: 37	AFII	MOCTREPATHALLATIVLEGPSVSSQLDREQSDMQDLDTETROHWITTERARSAGLLSQEWSKRA
SEWEDNO; 38	GFII	MRLGELHCYEATIGESDVLCGRCANSQLEFDHDFRHHRILDERSATGQATQDFTKRD
SER ED NO. 39	GFIII	PVEERNPAOSRELSKE-RKELILKL
SEW TO NO! 40	FRII	PDDNRITTGRNQDLNAIQQDLLLKL
SEQIONO: 3	TRI	MLSTRVQCATATESTATATSSVSAAPSDAKLRQLTQRSLMAPAGKQELARNT
SEQIONO: 41	CFI	MPSTRTOGATATUAVALSVCSVSGAPSDAKLROFTORSILAPSVKQELTRYT
SEQIONO; 42	AFI	MKMVSSSRLRCLLVLTLSLTASISCSFAGQRDSKLRLLLHRYPLQGS-KQDMTRSA
SEGIONO: 43	GFI	MLSTRIQCATATUSLALAVCSVSAAPTDAKLRQLHQRSLLNPAGKQELARYT
SEW IN NO. 44	FRI	MOSERVOCALITILISLALAINSISAAPTPPRLRQFLQKSLASAG-KQELAKYF
SEQIONO; 45	С	MLSCRLOCATATUSIALAVGTVSAAPSDPRLROFTOKSLAAAAGKQELAKYF
SEQ IO NO: 46	R	MLSCRLOCATAALCIVLALGGVTGAPSDPRLROFLOKSLAAATGKQELAKYF
SECTIONS: 47	В	MLSCRLODATAADSIVHALGGVTGAPSDPRLROFTOKSLAAAAGKQELAKYF
SEQIONO, 48	М	MLSERLQCATAALSIVLALGCVTGAPSPPRLRQFLQKSLAAAAGKQELAKYF
SEQ LONG 49	Н	WLSCRLOCALAADSIVLALGCVTGAPSDPRLRQFLQKSLAAAAGKQELAKYF

(continued)

WRTEYPNCECLR - PRKVKCP-AGAKE-DLR - VELERSVGN-PNNLPRERKAGCKNFYWKGETSC
WRTEYPNCECLRWRPRKVKGPOLKAKE-DL-----ERSV-----DNIPPRERKAGCKNFYWKGETSC
LPELQW-MLSNNELTPVQVEEAPRS----------RLEDVRRDN-----T-VTSKPLNEMNYFWKSREAG
VEELLAQMSLPEATFQREAEDASHATE-G---RMNLERSVGS-TNNUPERFKAGCKNFYWKGFTSC
VEKLLSLISIPEMEMR--EKGLSMAGE-SEDLRLEQERSAES-SNQLPTRVKEGFKNFYWKGFTSC
USGLLD--GVDNSVLDGEIAPVPFDAEEFLESRLE-ERAVYNRLSQLPQRORKAPEKNFYWKGFTSC
LSGWTD--S-RESNLVEVERNVPDPPE-P-----KIPPSVK--FPRUSLRERKAPCKNFFWKTFTSC
LVELLS-ELAHVENEAIELDDMSHGVE-QEDVOLELERAPG---PVLAPRERKAGCKNFFWKTFTSC
LAELLA-ELAEAENEVLDSDEVSRAAE-SEGARLEMERAAG---PNILAPRERKAGCKNFFWKTFTSC
LAELLS-ELAEVQAENEALEEENFPLAEGGPEDAHADEERAASG-GPLLAPRERKAGCKNFFWKTFTSC
LAELLS-ELVQAENEALESDDLPRGAE-QDEVRLELERSANS-SPALAPRERKAGCKNFFWKTFTSC
LAELLS-EPSOTENEALESDDLPRGAE-QDEVRLELERSANS-SPALAPRERKAGCKNFFWKTFTSC
LAELLS-EPSOTENEALESDDLPRGAE-QDEVRLELERSANS-NPAHAPRERKAGCKNFFWKTFTSC
LAELLS-EPNOTENDALEPEDLSQAAE-QDEMRLELQRSANS-NPAMAPRERKAGGKNFFWKTFTSC
LAELLS-EPNOTENDALEPEDLSQAAE-QDEMRLELQRSANS-NPAMAPRERKAGGKNFFWKTFTSC
LAELLS-EPNOTENDALEPEDLSQAAE-QDEMRLELQRSANS-NPAMAPRERKAGGKNEFWKTFTSC
LAELLS-ERNOTENDALEPEDLSQAAE-QDEMRLELQRSANS-NPAMAPRERKAGGKNEFWKTFTSC
LAELLS-ERNOTENDALEPEDLSQAAE-QDEMRLELQRSANS-NPAMAPRERKAGGKNEFWKTETSC
LAELLS-ERNOTENDALEPEDLSQAAE-QDEMRLELQRSANS-NPAMAPRERKAGGKNEFWKTETSC

Fig. 7

The state of the s

Docket No.: 255.0004 0101 Sheet 8 of 8

Title: SOMATOSTATINS AND METHODS Applicant(s): Mark Sheridan et al. Serial No.: Unassigned Docket No.: 255.0 Filed: Herewith

Fig. 8