

Fig. 1



Fig. 2

(us) Visneini langis

Fig. 3



Fig. 4



Fig. 5



<u>Fig. 6</u>



Fig. 7



Fig. 8a



Fig. 8b



Fig. 8c



Fig. 8d

| Modification                                          | Monoisotopic Mass | Average Mass |
|-------------------------------------------------------|-------------------|--------------|
| 4-Phosphopantetheine                                  | 839.078D          | 839,8294     |
| 5-Adenosylation                                       | 829.0525          | 319,2031     |
| Acetylation                                           | 42.0106           | 42.0878      |
| ADP-ribosylation (from NAD)                           | 541.0611          | 541.3052     |
| Biotinylation (amide bond to lysine)                  | 126.0776          | 226.1994     |
| Our bacyletion of Asp and Clu                         | 43.9898           | 44.0098      |
| C terminal anide formed from Cly                      | -0.9840           | O.9847       |
| Cysteinylation                                        | 119.0041          | 119.1442     |
| Deamidation of Asn and Cln                            | 0.9840            | 0.9847       |
| Decryhexoxs (Fug Rha)                                 | 146.0579          | 146.1430     |
| Disulphide bond formation                             | - <b>2.0157</b>   | 2.0159       |
| Fanesylation                                          | 204.1878          | 204.8556     |
| Formylation                                           | 27.9949           | 28.0104      |
| Ceranylation .                                        | 272.1504          | 272.4741     |
| Clurathionylation .                                   | <b>805.0682</b>   | 3CS.3117     |
| Hexosamines (Cally, Cickly                            | 161.0688          | 161.1577     |
| Hexoses (Fru, Cal, Clq Man)                           | 162.0529          | 162.1424     |
| Homoserine formed from Met by CNBr treatment          | -19.9918          | 30.0935      |
| Hydrocylation                                         | 15.9949           | 15.9994      |
| Lipoic acid (amide bond to lysine)                    | 188.0330          | 188.8147     |
| Methylstica                                           | 14.0157           | 140269 .     |
| Myristoylation                                        | 210.1984          | 210.8598     |
| N ao atylhoxozamines (CalNAq CldVAq)                  | 203.0794          | 20s.1950     |
| N soetylneursminic sold (Sislic add, NeuAc, NANA, SA) | 291.0954          | 191.2579     |
| N- Speciyineunaminic acid (NeuCd)                     | 807.0908          | 307,2573     |
| Oxideion of Met                                       | 15.9949           | 15,9994      |
| Palmitoyi ation                                       | 238.2297          | 288.4186     |
| Pentoses Ara, Rib, Xyli                               | 182,0428          | 132.1161     |
| Ph osphorylation .                                    | 79.9663           | 79.9799      |
| Protectysis of a single peptide bond                  | 18.0106           | 18.0158      |
| Pyrid coxel phosphate (Schilf Base formed to lysine)  | 281,0297          | 281.1449     |
| Pyroglutamic acid formed from Cln                     | -17.0265          | -17.0806     |
| Stearoglation                                         | 266.2610          | 266.4674     |
| Sulphation                                            | 79.9568           | 80.0641      |

Fig. 9

| Motif       | Enzyme/ Reaction | Mass difference( average mass) |
|-------------|------------------|--------------------------------|
| w           | photochemical    | +16                            |
| w           | photochemical    | +32                            |
| W           | photochemical    | +4                             |
| [ST]-X-[RK] | Protein kinase C | +79.9799                       |

Fig. 10

| Sym | b ols | Monoisotopic Mass | Average Mass |
|-----|-------|-------------------|--------------|
| Gly | G     | 57.02146          | 57.05        |
| Ala | A     | 71.03711          | 71.08        |
| Ser | S     | 87.03202          | 87.08        |
| Pro | P     | 97.05276          | 97.12        |
| Val | Ų     | 99.06841          | 99.07        |
| Thr | T     | 101.0476          | 101.1        |
| Сув | C     | 103.0091          | 103.1        |
| Leu | L     | 113.0840          | 113.2        |
| Пе  | ī     | 113.0840          | 113.2        |
| Asn | N     | 114.0429          | 114.1        |
| Asp | Ð     | 115.0269          | 115.1        |
| Gln | Q     | 128.0585          | 128.1        |
| Lys | K     | 128.0949          | 128.2        |
| Glu | E     | 129.0425          | 129.1        |
| Met | M     | 131.0404          | 131.2        |
| His | H     | 137.0589          | 137.1        |
| Phe | F     | 147.0684          | 147.2        |
| Arg | R     | 156.1011          | 156.2        |
| Tyr | Y     | 163.0633          | 163.2        |
| Trp | W     | 186.0793          | 186.2        |

Fig. 11

|                   | Composition | Monoisotopic<br>Mass | Average Mass |
|-------------------|-------------|----------------------|--------------|
| N-Terminal Groups |             |                      |              |
| Hydrogen          | H           | 1.00782              | 1.0079       |
| N-Formyl          | HCO         | 29.00274             | 29.0183      |
| N-Acetyl          | CH₃CO       | 43.01839             | 43.0452      |
| C-Terminal Groups |             |                      |              |
| Free acid         | OH .        | 17.00274             | 17.0073      |

Fig. 12

| ·                    |
|----------------------|
| +/- Fraction numbers |
| + 0.47               |
| + 5.54               |
| -3.82                |
| + 2.86               |
| - 1.72               |
| + 5.15               |
| - 0.85               |
| - 0.45               |
| + 2.2                |
| + 5.35               |
| + 2.92               |
|                      |

Fig. 13

| AminoAcid Before First Cleavage              |     |            |           |      |  |
|----------------------------------------------|-----|------------|-----------|------|--|
|                                              |     | % Cleavage | % Present | Δ    |  |
| A                                            | 24  | 15.5%      | 8.4%      | 184% |  |
| R                                            | 32  | 20.6%      | 6.3%      | 329% |  |
| M                                            | 4   | 2.6%       | 1.5%      | 171% |  |
| ₩                                            | 3   | 1.9%       | 1.2%      | 168% |  |
| P                                            | 14  | 9.0%       | 6,2%      | 145% |  |
| N                                            | 7   | 4.5%       | 3,3%      | 135% |  |
| F                                            | 6   | 3.9%       | 3.2%      | 122% |  |
| К                                            | 10  | 6.5%       | 6.0%      | 107% |  |
| G                                            | 11  | 7.1%       | 6.6%      | 107% |  |
| L                                            | 12  | 7.7%       | 8.5%      | 91%  |  |
| Н                                            | 3   | 1.9%       | 2.7%      | 71%  |  |
| V                                            | 5   | 3.2%       | 5.3%      | 61%  |  |
| D                                            | 5   | 3.2%       | 5.5%      | 58%  |  |
| Q                                            | 3   | 1.9%       | 4.6%      | 42%  |  |
| С                                            | 1   | 0.6%       | 1.8%      | 36%  |  |
| <u>                                     </u> | 11_ | 0.6%       | 2.1%      | 31%  |  |
| T                                            | 2   | 1.3%       | 4.7%      | 27%  |  |
| S                                            | 3   | 1.9%       | 7.8%      | 25%  |  |
| E                                            | 4   | 2.6%       | 11.5%     | 22%  |  |
| Υ                                            | 0   | 0.0%       | 2.6%      | 0%   |  |
| PrecursorStart                               | . 5 | 3.2%       |           |      |  |

Fig. 14a

| AminoAcio               |    |            |           |      |
|-------------------------|----|------------|-----------|------|
|                         |    | % Cleavage | % Present | Δ    |
| S                       | 26 | 16.8%      | 7.8%      | 214% |
| S<br>D                  | 18 | 11.6%      | 5.5%      | 210% |
| V                       | 13 | 8.4%       | 5.3%      | 158% |
| H                       | 6  | . 3.9%     | 2.7%      | 143% |
| G<br>M                  | 14 | 9.0%       | 6.8%      | 136% |
| M                       | 3  | 1.9%       | 1.5%      | 128% |
| l                       | 4  | 2.6%       | 2.1%      | 124% |
| A                       | 16 | 10.3%      | 8.4%      | 122% |
| K<br>P                  | 9  | 5.8%       | 6.0%      | 97%  |
|                         | 9  | 5.8%       | 6.2%      | 93%  |
| Q                       | 6  | 3.9%       | 4.6%      | 84%  |
| L                       | 11 | 7.1%       | 8.5%      | 83%  |
| Ţ                       | 6  | 3.9%       | 4.7%      | 82%  |
| N                       | 3  | 1.9%       | 3.3%      | 58%  |
| Υ                       | 2  | 1.3%       | 2.6%      | 50%  |
| C                       | 1  | 0.6%       | 1.8%      | 36%  |
| C<br>E<br><b>R</b><br>F | 5  | 3.2%       | 11.5%     | 28%  |
| R                       | 2  | 1.3%       | 6.3%      | 21%  |
|                         | 1  | 0.6%       | 3.2%      | 20%  |
| W                       | 0  | 0.0%       | 1.2%      | 0%   |

Fig. 14b

| AminoAcid Before Last Cleavage |    |            |           |      |  |
|--------------------------------|----|------------|-----------|------|--|
|                                |    | % Cleavage | % Present | Δ    |  |
| R                              | 26 | 16.8%      | 6.3%      | 267% |  |
| E                              | 29 | 18.7%      | 11.5%     | 162% |  |
| N                              | 7  | 4.5%       | 3.3%      | 135% |  |
| D<br>A<br>Q                    | 11 | 7.1%       | 5.5%      | 128% |  |
| Α                              | 16 | 10.3%      | 8.4%      | 122% |  |
| Q                              | 8  | 5.2%       | 4.6%      | 111% |  |
| R<br>F                         | 10 | 6.5%       | 8.3%      | 103% |  |
| F                              | 5  | 3.2%       | 3.2%      | 102% |  |
| L                              | 13 | 8.4%       | 8.5%      | 98%  |  |
| G                              | 10 | 6.5%       | 6.6%      | 97%  |  |
| K                              | 9  | 5.8%       | 6.0%      | 97%  |  |
| M                              | 2  | 1.3%       | 1.5%      | 85%  |  |
| T                              | 6  | 3.9%       | 4.7%      | 82%  |  |
| 8<br>C                         | 9  | 5.8%       | . 7.8%    | 74%  |  |
| C                              | 2  | 1.3%       | 1.8%      | 72%  |  |
| V                              | 5  | 3.2%       | 5.3%      | 61%  |  |
| Υ                              | 2  | 1.3%       | 2.6%      | 50%  |  |
| Н                              | 2  | 1.3%       | 2.7%      | 48%  |  |
| p                              | 2  | 1.3%       | 6.2%      | 21%  |  |
| l                              | 0  | 0.0%       | 2.1%      | 0%   |  |

Fig. 14c

| AminoAcio     |     |            |           |       |
|---------------|-----|------------|-----------|-------|
|               |     | % Cleavage | % Present | Δ     |
| Precursor end | 30  | 19.4%      |           |       |
| R             | 26  | 16.8%      | 6.3%      | 267%  |
| K             | 19  | 12.3%      | 6.0%      | 204%  |
| W<br>F        | 3   | 1.9%       | 1.2%      | 168%  |
| F             | 8   | 5.2%       | 3.2%      | 162%  |
| G             | 12  | 7.7%       | 6.6%      | 117%  |
| ٧             | 9   | 5.8%       | 5.3%      | 110%  |
| T             | . 7 | 4.5%       | 4.7%      | 96%   |
| 1             | 2   | 1.3%       | 2.1%      | 62%   |
| A<br>P        | 7   | 4.5%       | 8.4%      | 54%   |
| P             | 5   | 3.2%       | 6.2%      | 52%   |
| Υ             | 2   | 1.3%       | 2.6%      | 50%   |
| M             | 1   | 0.6%       | 1.5%      | 43%   |
| Q             | 3   | 1.9%       | 4.6%      | 42%   |
| S             | 5   | 3.2%       | 7.8%      | 41%   |
| N             | 2   | 1.3%       | 3.3%      | 39%   |
| L             | 5   | 3.2%       | 8.5%      | . 38% |
| D             | 3   | 1.9%       | 5.5%      | 35%   |
| E .           | 6   | 3.9%       | 11.5%     | 34%   |
|               | 0   | 0.0%       | 1.8%      | 0%    |
| Н             | 0   | 0.0%       | 2.7%      | 0%    |

<u>Fig. 14d</u>



Fig. 15



Fig. 16



Fig. 17

| O 17-    | Fraction 54 m/z | Fraction 54 | Faction 56 | Fraction 20 m/z |          |
|----------|-----------------|-------------|------------|-----------------|----------|
| Case No. | 2743.0          | m/z 1371.5  | m/z 2927.2 | 11143           |          |
|          | k=20            | k=19        | k=16       | k=19            |          |
| l        | 21648           | 712         | 2620       | 1452            |          |
| 2        | 1830            | 1320        | 1199       | 2554            |          |
| 3        | 21353           | 2022        | 31.59      | 2139            |          |
| 4        | 24223           | 2454        | 2431       | 2169            |          |
| 5        | 3725            | 2719        | 982        | 1038            |          |
| 6        | 13548           | 2956        | 1689       | 1300            |          |
| 7        | 16606           | 3260        | 1402       | 2213            |          |
| 8        | 20902           | 3435        | 624        | 887             |          |
| 9        | 10321           | 3444        | 427        | 2145            |          |
| 10       | 31047           | 3498        | 2238       | 1516            |          |
| 11       | 31142           | 3592        | 4405       | 1255            |          |
| 12       | 37241           | 3745        | 2785       | 1739            |          |
| 13       | 22656           | 3822        | 2264       | 2576            |          |
| 14       | 24366           | 3852        | 1752       | 1139 .          |          |
| 15       | 16638           | 3935        | 1147       | 2182            |          |
| 16       | 37171           | 4092        | 2393       | 1069            |          |
| 17       | 33188           | 4115        | 1.578      | 1681            |          |
| 18       | 27.596          | 4127        | 3228       | 1463            |          |
| 19       | 39668           | 4348        | 3604       | 318             |          |
| 20       | 12983           | 4362        | 1048       | 3039            | •        |
| 21       | 14420           | 4488        | 899        | 2676            |          |
| 22       | 23261           | 4634        | 1965       | 3071            |          |
| 23       | 30.507          | 4710        | 2715       | 1247            |          |
| 24       | 41494           | 4928        | 5343       | 1238            |          |
| 25       | 36664           | 5107        | 3914       | 31.56           |          |
| 26       | 42465           | 5135        | 2729       | 1768            |          |
| 27       | 42551           | 5135        | 3010       | 2500            |          |
| 28       | 35473           | 5201        | 2242       | 1978            |          |
| 29       | 48611           | 5906        | 2381       | 1075            |          |
| 30       | 28413           | 5914        | 1855       | 3189            |          |
| 31       | 35258           | 5954        | 3368       | 2140            |          |
| 32       | 44374           | 6056        | 4167       | 670             |          |
| 33       | 46137           | 6465        | 7640       | 1719            |          |
| 34       | 40892           | 6531        | 1630       | 1241            |          |
| 35       | 48202           | 7076        | 11222      | 3826            |          |
| 36       | 43760           | 7183        | 4771       | 1565            |          |
| 37       | 50211           | 7316        | 5443       | 2060            | <u> </u> |

Fig. 18a

|            | Fraction 54 m/z | Fraction 54 |            |     | Fraction 20 |   |
|------------|-----------------|-------------|------------|-----|-------------|---|
| Case No.   | 2743.0          | m/z 1371.5  | m/z 2927.2 | 111 | m/z 1114.3  |   |
| 38         | 49824           | 7410        | 3084       |     | 1113        |   |
| 39         | 50785           | 7752        | 6412       |     | 1616        |   |
| <b>4</b> D | 46200           | 7821        | 3689       |     | 3725        |   |
| 41         | 52471           | 7949        | 5395       |     | 1837        |   |
| 42         | 49299           | B280        | 4623       |     | 1207        |   |
| 43         | 45032           | 8483        | 4881       | -   | 1566        |   |
| 44         | 51224           | 8562        | 6481       |     | 2194        |   |
| 45         | 51901           | 863B        | 10081      |     | 2047        | İ |
| 46         | 51084           | 8776        | 14193      |     | 1478        |   |
| 47         | 50928           | 8852        | 6635       |     | 287         |   |
| 48         | 50707           | 10097       | 8877       |     | 1458        |   |
| 49         | 52304           | 10259       | 6244       |     | 1860        |   |
| 50         | 48355           | 10661       | 5195       |     | 3695        |   |
| 51         | 51363           | 10685       | 11403      |     | 1261        |   |
| 52         | 54423           | 10846       | 11299      |     | 2067        |   |
| 53         | 55167           | 11041       | 12868      |     | 1545        |   |
| 54         | 55091           | 11539       | 5597       |     | 2381        |   |
| 55         | 56825           | 11912       | 7718       | -   | 2409        |   |
| 56         | 53173           | 12022       | 8865       |     | 1969        |   |
| 57         | 51649           | 12057       | 7855       |     | 1295        |   |
| 58         | 51328           | 12095       | 9035       |     | 2043        |   |
| 59         | 53464           | 12641       | 6408       |     | 856         |   |
| 60         | 54542           | 12891       | 10363      |     | 1858        |   |
| 61         | 56950           | 13172       | 7586       |     | 1802        | • |
| 62         | 43273           | 14559       | 20080      |     | 596         |   |
| 63         | 57335           | 14922       | 12288      |     | 2916        |   |
| 64         | 551 <b>18</b>   | 14997       | 10078      |     | 1761        |   |
| 65         | 57147           | 16164       | 7726       |     | 2626        |   |
| 6 <b>6</b> | 55584           | 16216       | 17106      |     | 2623        |   |
| 67         | 59414           | 16550       | 15122      |     | 539         |   |
| 68         | 57093           | 16689       | 19689      |     | 2078        |   |
| 69         | 57841           | 18254       | 16079      |     | 1659        |   |
| 70         | 54084           | 18734       | 19524      |     | 395         |   |
| 71         | 56325           | 22730       | 10828      |     | 2326        |   |
| 72         | 58386           | 24159       | 16681      |     | 1631        |   |
| 73         | 54843           | 26671       | 44356      |     | 3183        |   |
| 74         | 53935           | 27937       | 30189      |     | 1403        |   |

Fig. 18b

|                                               | Fraction 54 m/z 2743.0 and |                          |                           |  |
|-----------------------------------------------|----------------------------|--------------------------|---------------------------|--|
| Measure of<br>Association                     | Fraction 54 m/z<br>1371.5  | Fraction 56 m/<br>2927.2 | Fraction 20 m/z<br>1114.3 |  |
| Spearman's rank order correlation             | 0.9298                     | 0.8761                   | -0.0044                   |  |
| Pearson's<br>product<br>moment<br>correlation | 0.7318                     | 0.5855                   | -0.0781                   |  |
| Kendall's rank<br>correlation tau             | 0.7704                     | 0.6919                   | 0.0107                    |  |
| MST diameter                                  | 50                         | 40                       | 29                        |  |

Fig. 19



Fig. 20

|                         | Corre- | Related peptide          | Relative Mono- isotopic mass [Da] | Amino Acid Sequence                                   |  |
|-------------------------|--------|--------------------------|-----------------------------------|-------------------------------------------------------|--|
| Chromogranin A 97 - 131 |        |                          | 3905.764                          | HSGF EDELSEVLEN<br>QSSQAELKEA VEEPSSKDVM<br>E         |  |
|                         | r=0.67 | Secretogramin I 88-132   | 4605.025                          | DPADASEAHESSSRGEAGAP<br>GEEDIQGPTKADTEKWAEGG<br>GHSRE |  |
|                         | r=0.71 | Secretogranin II 529-566 | 4152.921                          | G QGSSEDDLQEE<br>EQIEQAIKEH LNQGSSQETD<br>KLAPVS      |  |
|                         | r=0.72 | Secretogranin V 181-202  | 2448.334                          | SVNPYLQGQRLDNVVAKKSV<br>PH                            |  |

Fig. 21



Signal intensity [au] of peptide coordinate Chromogranin A 97-131

Fig. 22

|         | Fraction 54 m/z<br>2743.9 | Faction 54 m/z<br>1371 5 | Fraction 56 m/z 2927.2 | Fraction 20 m/z |          |
|---------|---------------------------|--------------------------|------------------------|-----------------|----------|
|         |                           |                          |                        | 1114.3          |          |
|         | k=0                       | k=1                      | k=2                    | k=19            |          |
| ese 1   | 21648                     | 3747                     | 7051                   | 1452            |          |
| ase 2   | 1830                      | 4355                     | 5630                   | 2554            |          |
| :ese 3  | 21:353                    | 5057                     | 7590                   | 2139            |          |
| ese 4   | 24223                     | 5489                     | 6862                   | 2169            |          |
| asa 5   | 3725-                     | 5754                     | 5413                   | 1038            |          |
| : හු ර  | 13548                     | 5991                     | 6120                   | 1300            |          |
| :ese 7  | 16606                     | 6295                     | 5833                   | 2213            |          |
| :858 8  | 28982                     | 6470                     | 5055                   | 887             |          |
| case 9  | 10321                     | 6479                     | 4858                   | 2145            |          |
| case 10 | 31047                     | 6533                     | 6669                   | 1516            |          |
| case 11 | 31142                     | 6627                     | 8836                   | 1255            |          |
| case 12 | 3724t                     | 6780                     | 7216                   | 1739            |          |
| case 13 | 22656                     | 6857                     | 6695                   | 2576            | <u>.</u> |
| case 14 | 24366                     | 6887                     | 6183                   | 1139            |          |
| case 15 | 16638                     | 6970                     | 5578                   | 2182            |          |
| case 16 | 37171                     | 7127                     | 6824                   | 10 <i>6</i> 9   |          |
| case 17 | <del>33188</del>          | 7150                     | 6009                   | 1681            |          |
| case 18 | 27596                     | 7162                     | 7659                   | 1463            |          |
| case 19 | 39668                     | 7383                     | 8035                   | 318             |          |
| case 20 | 12983                     | 7397                     | 5479                   | 3039            | <u> </u> |
| case 21 | 14420                     | 7523                     | 5330                   | 2676            |          |
| case 22 | 23261                     | 7669                     | 6396                   | 3071            |          |
| case 23 | 38587                     | 7745                     | 7146                   | 1247            |          |
| case 24 | 41-49-4                   | 7963                     | 9774                   | 1238            |          |
| case 25 | 36664                     | 8142                     | 8345                   | 3156            |          |
| case 26 | 42465                     | 8170                     | 7160                   | 1768            |          |
| case 27 | <del>12551</del>          | 8170                     | 7441                   | 2500            |          |
| case 28 | 35473                     | 8236                     | 6673                   | 1978            |          |
| case 29 | 48611                     | 8941                     | 6812                   | 1075            |          |
| case 30 | 28413                     | 8949                     | 6286                   | 3189            |          |
| cese 31 | 35258                     | 8989                     | 7799                   | 2140            |          |
| case 32 | 44774                     | 9091                     | 8.598                  | 670             |          |
| case 33 | 46137                     | 9500                     | 12071                  | 1719            |          |
| cese 34 | 40892                     | 9566                     | 6061                   | 1241            |          |
| case 35 | 48202                     | 10111                    | 15653                  | 3826            |          |
| case 36 | 43768                     | 10218                    | 9202                   | 1565            |          |

Fig. 23a

|          | Fraction 54 m/z    | Fraction 54 m/z | Fraction 56 m/z | Fraction 20 m/z |                                              |
|----------|--------------------|-----------------|-----------------|-----------------|----------------------------------------------|
|          | 2743.0             | 1371.5          | 2927.2          | 11143           |                                              |
| case 37  | 50211              | 10351           | 9874            | 1113            |                                              |
| casa 38  | 4992.4             | 10445           | 7435            | 1616            |                                              |
| case 39  | <del>58785</del>   | 10787           | 10843           | 3725            |                                              |
| case 40  | 46208              | 10856           | 8120            | 1837            |                                              |
| case 41  | 52471              | 10984           | 9826            | 1207            |                                              |
| case 42  | 49299              | 11315           | 9054            | 1566            |                                              |
| case 43  | 45032              | 11518           | 9312            | 2194            |                                              |
| case 44  | 51224              | 11597           | 10912           | 2047            | <u>.                                    </u> |
| case 45  | <del>51901</del>   | 11673           | 14512           | 1478            |                                              |
| c ase 46 | 51084              | 11811           | 18624           |                 |                                              |
| case 47  | 50928              | 11887           | 11066           |                 |                                              |
| cese 48  | <del>59707</del>   | 13132           | 13308           |                 |                                              |
| casa 49  | 52304              | 13294           | 10675           |                 |                                              |
| case 50  | 48355              | 13696           | 9626            | 1261            |                                              |
| case 51  | <del>51363</del>   | 13720           | 15834           | 2067            |                                              |
| case 52  | 54422              | 13881           | 15730           | 1545            |                                              |
| case 53  | 55167              | 14076           | 17299           | 2381            |                                              |
| case 54  | 55091              | 14574           | 10028           | 2409            |                                              |
| case 55  | -56824             | 14941           | 12149           |                 |                                              |
| case 56  | 53172              | 1505            | 13296           | 1295            |                                              |
| casa 57  | <del>5164</del> 5  | 15092           | 12286           | 2043            |                                              |
| cese 58  | 51328              | 15130           | 13466           | 856             |                                              |
| Case 59  | 53-46-             | 15670           | 10839           |                 |                                              |
| case 60  | <del>5454</del> 5  | 15920           | 14794           |                 |                                              |
| case 61  | <del>56950</del>   | 1620            | 7 12017         |                 |                                              |
| case 62  | 4827               | 1759-           | 4 24511         | 2916            |                                              |
| case 63  | <del>5733</del> :  | 1795            | 7 16719         | 1761            |                                              |
| case 64  | 55116              | 1803            | 2 14509         | 2628            |                                              |
| case 65  | 5714               | 1919            | 12157           |                 |                                              |
| case 66  | <del>55.58</del> - | 1925            |                 |                 |                                              |
| case 67  | <del>5941</del> -  | 4 1958.         |                 |                 |                                              |
| case 68  | <del>5700</del> :  |                 |                 |                 |                                              |
| case 69  | 5784               | 2128            | 9 20510         |                 |                                              |
| case 70  | 5408               | 4 2176          | 9 23955         |                 |                                              |
| case 71  | 5632               | 5 2576          | 5 15259         |                 |                                              |
| case 72  | <del>5838</del>    | 5 2719          | 4 21112         |                 |                                              |
| casa 73  | 5484               | 3 2970          |                 |                 |                                              |
| case 74  | 5393               | \$ 3097         | 2 34620         | 1113            |                                              |

Fig. 23b



Fig. 24a



Fig. 24b



Fig. 24c



Fig. 25a



Fig. 25b



studentized signal intensity of peptide coordinate in fraction 54 and m/z 2743.0

Fig. 25c

|        |         | n      |        |        |
|--------|---------|--------|--------|--------|
| m/z    | 1       | 2      | 3      | 4      |
| 1371.5 | -1371.5 | 0.0    | 1371.5 | 2743.0 |
| 2927.3 | 183.3   | 3109.6 | 6035.9 | 8962.2 |

Fig. 26

39/52



Fig. 27



Fig. 28



Fig. 29



**QTPENGPEAS DPSEELEALA** SLLQELRDFS PSSAKRQQET AAAETETRTH TLTRVNLESP GPERVWRASW GEFQARVPER APLPPPAPSQ FQARMPDSGP ALAAVILQAL DRPASPPAPS GSQQGPEEEA AEALLIETVR SQIHSLPAPE SPEPAAPPRP # 2 VGF 177-191, r=0.74 161

**AEATROAAAQ** BAEEAERARO ----#12 VGF 373-417, r=0.73-----#13 VGF 373-417, r=0.68----#14 VGF 373-417, r=0.76-RPESALLGGS EAGERLLQQG LAQVEAGRRQ AREEEEARQE RRGGEERVGE EDEEAARAEA LPETHKRGEG VSSPKTHLGE ALAPLSKAYQ GVAAPFPKAR BERLADLASD LLLQYLLQGG ARQRGLGGRG LQEAAEERES # 3 VGF 350-370, r=0.76 + 241 321

TIDSLIELST KLHLPADDVV SIIEEVEEKR GEAGAEDKRS QEETPGHRK BARGIBEGGE BEDDEEMDPQ NALLEAEED 401

481 KRKKNAPPEP VPPPRAAPAP THVRSPOPPP PAPAPARDEL PDWNEVLPPW DREEDEVYPP GPYHPFPNYI RPRITLOPPSA 561 LRRRHYHHAL PPSRHYPGRE AQARRAQEEA EAEERRLQEQ EELENYIEHV LLRRP #12 VGF 485-522, r=0.81-

Fig. 30



Fig. 31

|      |                               | Number of                      |                 | <b>D</b> ( C                            |
|------|-------------------------------|--------------------------------|-----------------|-----------------------------------------|
| r  ≥ | Correct Precursor Predictions | False Precursor<br>Predictions | All Predictions | Percentage of<br>Correct<br>Predictions |
| 0.95 | 18                            | 0                              | 18              | 100%                                    |
| 0.90 | 40                            | 4                              | 44              | 91%                                     |
| 0.85 | 58                            | 10                             | 68              | 85%                                     |
| 0.80 | 104                           | 26                             | 130             | 80%                                     |
| 0.75 | · 178                         | 76                             | 256             | 70%                                     |
| 0.70 | 314                           | 192                            | 506             | 62%                                     |
| 0.65 | 512                           | 456                            | 968             | 53%                                     |
| 0.60 | 756                           | 990                            | 1746            | 43%                                     |
| 0.55 | 964                           | 1872                           | 2836            | 34%                                     |
| 0.50 | 1186                          | 3086                           | 4272            | 28%                                     |

Fig. 32



Fig. 33

|               | N   |       |     | Percent<br>at Positi |     |           |     | .cid |       |                    | of A   | d Change<br>mino Acie<br>General ( | d Compa | red to |
|---------------|-----|-------|-----|----------------------|-----|-----------|-----|------|-------|--------------------|--------|------------------------------------|---------|--------|
| Amino<br>Acid | n   | (N-1) | n(  | N+1)                 | n(  | C-1)<br>_ | n(  | C+1) | (A    | n<br>Iny<br>ition) | x(N-1) | x(N+1)                             | x(C-1)  | x(C+1) |
| A             | 16  | 12%   | 18  | 13%                  | 16  | 12%       | 5   | 5%   | 5612  | 8.2%               | 1.4    | 1.6                                | 1.4     | 0.6    |
| C             | 1   | 1%    | 1   | 1%                   | 2   | 1%        | 0   | 0%   | 1109  | 1.6%               | 0.4    | 0.4                                | 0.9     | 0.0    |
| <b>D</b> .    | 5   | 4%    | 22  | 16%                  | 8   | 6%        | 4   | 4%   | 3994  | 5.8%               | 0.6    | 2.8                                | 1.0     | 0.6    |
| E             | 4   | 3%    | 5   | 4%                   | 30  | 22%       | 3   | 3%   | 8069  | 11.8%              | 0.2    | 0.3                                | 1.8     | 0.2    |
| k             | 5   | 4%    | 4   | 3%                   | 3   | 2%        | 7   | 7%   | 2195  | 3.2%               | 1.1    | 0.9                                | 0.7     | 2.0    |
| G             | 6   | 4%    | 12  | 9%                   | 7   | 5%        | 7   | 7%   | 4171  | 6.1%               | 0.7    | 1.4                                | 0.8     | 1.1    |
| $\mathbf{H}$  | 3   | 2%    | 4   | 3%.                  | 2   | 1%        | 1   | 1%   | 1955  | 2.9%               | 0.8    | 1.0                                | 0.5     | 0.3    |
| 1             | 0   | 0%    | 1   | 1%                   | 3   | 2%        | 2   | 2%   | 1592  | 2.3%               | 0.0    | 0.3                                | 0.9     | 0.8    |
| K             | 7   | 5%    | 8   | 6%                   | 12  | 9%        | 22  | 21%  | 4235  | 6.2%               | 0.8    | 0.9                                | 1.4     | 3.4    |
| L             | 9   | 7%    | 11  | 8%                   | 10  | 7%        | 8   | 8%   | 5982  | 8.7%               | 0.7    | 0.9                                | 0.8     | 0.9    |
| M             | 5   | 4%    | 5   | 4%                   | 0   | 0%        | 0   | 0%   | 1120  | 1.6%               | 2.2    | 2,2                                | 0.0     | 0.0    |
| N             | 4   | 3%    | 4   | 3%                   | 8   | 6%        | 0   | 0%   | 2365  | 3.5%               | 0.8    | 0.8                                | 1.7     | 0.0    |
| P             | 15  | 11%   | 9   | 6%                   | 1   | 1%        | 1   | 1%   | 4310  | 6.3%               | 1.7    | 1.0                                | 0.1     | 0.1    |
| Q             | 0   | 0%    | 7   | 5%                   | 5   | 4%        | 3   | 3%   | 3334  | 4.9%               | 0.0    | 1.0                                | 0.7     | 0.6    |
| . <b>R</b>    | 42  | 31%   | 0   | 0%                   | 9   | 6%        | 28  | 27%  | 4142  | 6.0%               | 5.1    | 0.0                                | 1.1     | 4.4    |
| S             | 4   | 3%    | 20  | . 14%                | 10  | 7%        | 3   | 3%   | 5154  | 7.5%               | 0.4    | 1.9                                | 1.0     | 0.4    |
| T             | 4   | 3%    | 3   | 2%                   | 4   | 3%        | 3   | 3%   | 3150  | 4.6%               | 0.6    | 0.5                                | 0.6     | 0.6    |
| $\mathbf{v}$  | 5   | 4%    | 3   | 2%                   | 6   | 4%        | 5   | 5%   | 3581  | 5.2%               | 0.7    | 0.4                                | 0.8     | 0.9    |
| W             | 1   | 1%    | 2   | 1%                   | 1   | 1%        | 3   | 3%   | 720   | 1.1%               | 0.7    | 1.4                                | 0.7     | 2.7    |
| Y             | 0   | 0%    | 0   | .0%                  | 2   | 1%        | 0   | 0%   | 1726  | 2.5%               | 0.0    | 0.0                                | 0.6     | 0.0    |
| Sum           | 136 | 100 % | 139 | 100 %                | 139 | 100%      | 105 | 100% | 68516 | 100%               |        |                                    |         |        |

Fig. 34

| Pair of Amino Acid                  | ls | # of<br>Peptides | % of<br>Peptides | # of Amino Acid<br>pairs in all<br>Precursors | % of Amino<br>Acid pairs in all<br>Precursors | x-fold<br>Increase |
|-------------------------------------|----|------------------|------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| Before Amino-                       | RR | 18               | 12.9%            | 398                                           | 0.58%                                         | 22.2               |
| Terminal Cleavage                   | KR | 13               | 9.4%             | 351                                           | 0.51%                                         | 18.2               |
| After Amino-                        | DA | 15               | 10.8%            | 170                                           | 0.25%                                         | 43.4               |
| Terminal Cleavage                   | GR | 5                | 3.6%             | 215                                           | 0.31%                                         | 11.4               |
| Before Carboxy-                     | QK | 7                | 5.0%             | 169                                           | 0.25%                                         | 20.4               |
| Terminal Cleavage                   | VN | 6                | 4.3%             | 188                                           | 0.27%                                         | 15.7               |
| 1 ci minai Cleavage                 | GA | 6                | 4.3%             | 293                                           | 0.43%                                         | 10.1               |
| After Carboxy-<br>Terminal Cleavage | KR | . 16             | 11.5%            | 351                                           | 0.51%                                         | 22,4               |

Fig. 35

## Hub peptide VGF 26-58

- \* predicts unknown peptide with m/z = 3688.03 as VGF 26-62
  - + calculated m/z matches found m/z (prerequisite condition)
  - + same start position as hub peptide (+ 69 bonus points)
  - + R as amino acid after end position (+ 4 bonus points)
- \* predicts unknown peptide with m/z = 2419.41 as VGF 350-370
  - + calculated m/z matches found m/z (prerequisite condition)
  - + R as amino acid before start position (+ 5 bonus points)
  - + RR as amino acids before start position (+22 bonus points)

Fig. 36



Fig. 37

| ·                                                                                                    |                         |                                     | Any j                 | proposa                                              | ıl                |                                                   | Pro              | oposal V                                     | With ]               | Most B                                       | onus : | Points                                      |
|------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|-----------------------|------------------------------------------------------|-------------------|---------------------------------------------------|------------------|----------------------------------------------|----------------------|----------------------------------------------|--------|---------------------------------------------|
| [r] ≥ 0.75                                                                                           | Con<br>Star<br>E<br>Pos | cursor rrect rt- or and ition rrect | Co<br>Sta<br>I<br>Po: | cursor<br>orrect<br>ort- or<br>End<br>sition<br>alse | Sta<br>Sta<br>Pos | cursor<br>alse<br>rt- or<br>and<br>sition<br>alse | Co<br>Sta<br>Fos | cursor<br>errect<br>ert- or<br>End<br>sition | Co<br>Sta<br>I<br>Po | cursor<br>errect<br>ert- or<br>End<br>sition | Str.   | cursor<br>False<br>art- or<br>End<br>sition |
| Model 1: No rules                                                                                    | 5                       | 6%                                  | 61                    | 75%                                                  | 15                | 19%                                               | 3                | 11%                                          | 19                   | 70%                                          | 5      | 19%                                         |
| Model 2: Only<br>Rules Considering<br>Single Amino Acids<br>at Cleavage Sites                        | 13                      | 16%                                 | 58                    | 72%                                                  | 10                | 12%                                               | 10               | 37%                                          | 14                   | 52%                                          | 3      | 11%                                         |
| Model 3: Only<br>Rules Considering<br>Pairs of Amino<br>Acid Pairs                                   | 18                      | 22%                                 | 54                    | 67%                                                  | 11                | 14%                                               | 15               | 56%                                          | 9                    | 33%                                          | 3      | 11%                                         |
| Model 4: Only<br>Rules Considering<br>Common Start- or<br>End Position                               | 17                      | 21%                                 | 51                    | 63%                                                  | 13                | 16%                                               | 13               | 48%                                          | 11                   | 41%                                          | 3      | 11%                                         |
| Model 5:<br>Combination: Only<br>Rules Considering<br>Single Amino Acids<br>& Pairs of Amino<br>Acid | 19                      | 23%                                 | 54                    | 67%                                                  | 8                 | 10%                                               | 18               | 67%                                          | 6                    | 22%                                          | 3      | 11%                                         |
| Model 6:<br>Combination: all<br>rules                                                                | 28                      | 35%                                 | 45                    | 56%                                                  | 8                 | 10%                                               | 23               | 85%                                          | 1                    | 4%                                           | 3      | 11%                                         |

Fig. 38

| Correl  | Correlation to:    |                                    | , ,                 |                                               |
|---------|--------------------|------------------------------------|---------------------|-----------------------------------------------|
| Albumin | Albumin Alb. 25-48 | Hub:                               | Monoisotop.<br>Mass | Sequence                                      |
| r=0.73  |                    | Albumin 25-48                      | 2752.4              | Albumin 25-48 2752.4 DAHKSEVAHRFKDLGEENFKALVL |
|         |                    | related Peptide<br>to Alb. 25-48:  |                     |                                               |
| r=0.80  | 1=0.77             | Albumin 27-50                      | 2750.5              | HKSEVAHRFKDLGEENFKALVLIA                      |
| r=0.76  | r=0.75             | Albumin 25-50                      | 2936.6              | DAHKSEVAHRFKDLGEENFKALVLIA                    |
| 1=0.76  | r=0.75             | Albumin 25-51                      | 3085.5              | DAHKSEVAHRFKDLGEENFKALVLIAF                   |
| r=0.83  | r=0.75             | alpha-1-<br>Antitrypsin<br>397-418 | 2502.3              | LMIEQNTKSPLFMGKVVNPTQK                        |

Fig. 39



Fig. 40

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.