APPENDIX

Table 1 Ideal-gas specific heats of various common gases at 300 K.

Gas	Formula	Gas constant R k.l/(kg.K)	kJ/(kg.K)	k.l/(kg.K)	4
	-	0.2870	1.005	0.718	1.400
All	Ar	0.2081	0.5203	0.3122	1,667
Argon	C4H10	0.1433	1.7164	1.5734	1.091
autanc movide	CO ₂	0.1889	0.846	0.657	1.289
when monoxide	CO	0.2968	1.040	0.744	1.400
whom more	C ₂ H ₆	0.2765	1.7662	1.4897	1.186
hane	C,H,	0.2964	1.5482	1.2518	1.237
hylene	He	2.0769	5.1926	3.1156	1.667
hum	H ₂	4.1240	14.307	10.183	1.405
drogen	CH ₄	0.5182	2.2537	1.7354	1.299
ethane	Ne	0.4119	1.0299	0.6179	1.667
on	N ₂	0.2968	1.039	0.743	1.400
rogen	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.04
tane		0.2598	0.918	0.658	The second second
ygen	02	0.1885		4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	1.395
pane	C ₃ H ₈	0.0000000000000000000000000000000000000	1.6794	1.4909	1.12
am	H ₂ O	0.4615	1.8723	1.4108	1.32

Table 2 Saturated Steam (temperature) table

-	Sat	Specific	Internal energy kJ/kg			Enthalpy kJ/kg			Entropy kJ/(kg K)			
Temp *C T		Sat. liquid	Sat. vapour v _g	Sat. liquid u _f	$Evap. \\ u_{fg}$	Sat. vapour u ₈	Sat liquid h _j	Evap. v	hg	Sat. liquid	Evap v	42
5 0 5	0.6113 0.8721 1.2276 1.7051 2.339 3.169 4.246 5.628 7.384 9.593 12.349 15.758 19.940 25.03 31.19 38.58 47.39 57.83 70.14	0.001000 0.001000 0.001000 0.001001 0.001002 0.001003 0.001004 0.001006 0.001008 0.001010 0.001012 0.001017 0.001020 0.001023 0.001026 0.001029 0.001033 0.001036	12.03 9.568 7.671 6.197 5.042 4.131 3.407 2.828	0.0 20.97 42.00 62.99 83.95 104.88 125.78 146.67 167.56 188.44 209.32 230.21 251.11 272.02 292.95 313.90 334.86 355.84	2375.3 2361.3 2347.2 2333.1 2319.0 2409.8 2290.8 2276.7 2262.6 2248.4 2234.2 2219.9 2205.5 2191.1 2176.6 2162.0 2147.4 2132.6 2117.7	2475.9 2482.2 2488.4	313.93 334.91 355.94	2382.7 2370.7 2358.5 2346.3 2333.3 2321 2308 2296.2 2283	2592.1 2600.9 2609.2 2618 8 2626.4 4 2635 8 2643 0 2651 2 2660	0.5053 0.5725 0.638 0.703 9 0.767 6 0.831 3 0.893 8 0.95 3 1.01 1.7 1.07	8.016 7.847 7.684 7.7526 8.7373 9.722 7.07 85 6.93 49 6.80 53 6.81 43 6.41	9.0257 8.9008 8.7814 8.6672 8.5580 4.8.4533 8.8.353 5.8.257 1.8.164 25.5807 1.8.164 25.5807 1.8.164 25.5807 26.757

Table 4 Superheated steam table

				Ean	and the state of		Addition		- 115	11.	h	77
T	T 10	"	h.	S. C.	v m³/kv	kJ/kg	AJ/KR I	5 U/(kg K)	m³/kg	kJ/kg	kJ/kg kJ	
8ar 225 250 300 350 400 450 500	0.07998 0.08027 0.08700 0.09890 0.10976 0.12010 0.13014 0.13993	2 50 AIP 2603.1 2605.6 2602.6 2761.6 2851.9 2939.1 3025.5 3112.1	A.//kg a (223.5 2803.1 2806.3 2880.1 3008.8 3126.3 3239.3 3350.8 3462.1	6.2575 6.2639 6.4085 6.6438 6.8403 7.0148 7.1746 7.3234		2644.0 2750.1 2843.7 2932.8 3020.4	2804.2 2804.2 2855.8 2993.5 3115.3 3230.9 3344.0 3456.5	6.1869 6.2872 6.5390 6.7428 6.9212	P = 0.05707 0.05872 0.06842 0.07678 0.08453 0.09196 0.09918 0.11324	3.50 M 2603.7 2623.7 2738.0 2835.3 2926.4 3015.3 3103.0 3282.1	2829.2 2877.5 3104.0 3222.3 3337.2 3450.9 3678.4	6.1749 6.4461 6.6579 6.8405 7.0052 7.1572 7.4339
600 700 800 900 1000 1100 1200 1300	0.15930 0.17832 0.19716 0.21590 0.2346 0.2532 0.2718 0.2905	3288.0 3468.7 3655.3 3847.9 4046.7 4251.5 4462.1 4677.8	3686.3 3914.5 4148.2 4387.6 4633.1 4884.6 5141.7 5404.0	7.5960 7.8435 8.0720 8.2853 8.4861 8.6762 8.8569 9.0291	0.13243 0.14838 0.16414 0.17980 0.19541 0.21098 0.22652 0.24206	3466.5 3653.5 3846.5 4045.4 4250.3	3911.7 4145.9 4385.9 4631.6 4883.3 5140.5	7,7571 7,9862 8,1999 8,4009 8,5912 8,7720	0.16743 0.18080 0.19415	3464.3 3651.8 3845.0 4044.1 4249.2 4459.8 4675.5	5139.3	8.1276 8.3288 8.5192 8.7000

Table 4 Superheated steam table

T	v m³/kg	u kJ/kg	h kJ/kg	kJ/(kg·K)	v m³/kg	u kJ/kg	h kJ/kg k	s J/(kg-K)	w m³/kg	u kJ/kg	h kJ/kg kJ	1 (kg K)
	P =				P = .		100	260	P =	5.0 MF	a (263.9	9 "()
Sar	0.04978	2602.3	2801.4	6.0701	0.04406	2600.1	2798.3	6.0198	0.03944	2597,1	27943	5.9734
275	0.05457	2667.9	2886.2	6.2285	0.04730	2650.3	2863.2	6.1401	0.04141	2631.3	2838.3	6.0544
100000	0.05884	2725.3	2960.7	6.3615	0.05135	2712.0	2943.1	6.2828	0.04532	2698.0	2924.5	6.2084
350	0.06645	2826.7	3092.5	6,5821	0.05840	2817.8	3080.6	6.5131	0.05194	2808.7	3068.4	6.4493
400	0.07341	2919.9	3213.6	6,7690	0.06475	2913.3	3204.7	6.7047	0.05781	2906.6	3195.7	6.6459
450	0.08002	3010.2	3330.3	6.9363	0.07074	3005.0	3323.3	6.8746	0.06330	2999.7	3316.2	6.8186
500	0.08643	3099.5	3445.3	7.0901	0.07651	3095.3	3439.6	7.0301	0.06857	3091.0	3433.8	6.9759
600	0.09885	3279.1	3674.4	7.3688	0.08765	3276.0	3670.5	7.3110	0.07869	3273.0	3666.5	7.2589
700	0.11095	3462.1	3905.9	7.6198	0.09847	3459.9	3903.0	7.5631	0.08849	3457.6	3900.1	75122
800	0.12287	3650.0	4141.5	7.8502	0.10911	3648.3	4139.3		0.09811			7.7440
900	0.13469	3843.6	4382.3	8.0647	0.11965	3842.2	4380.6		0.10762			7.9591
1000.	0.14645	4042.9	4628.7	8.2662	0.13013	4041.6	4627.2		0.11707			8.1612
100	0.15817	4248.0	4880.6	8.4567	0.14056	4246.8	4879.3		0.12648			B.352
200	0.16987	4458.6	5138.1	8.6376	0.15098	4457.5	5136.9		0.13587			1 8.533
	0.18156	4674.3	5400.5	8.8100	0.16139	4673.1	5399.4		0.1452			1 1 705