QUIZ

- 1. Name three properties of a tree.
 - connected
 - acyclic (no cycle)
 - undirected
- 2. Is a tree a forest?

Yes, but a forest is not a tree because it is not connected.

- 3. What do you call the special designated node in a tree?
 - root
- 4. What is the minimum number of nodes in a tree?
 - 1 node
- 5. Can a tree have no subtrees at all?
 - Yes

Given the three, identify the following:

- 6. Children of node 16
 - 13,6,60
- 7. Parent of node 1
 - 7
- 8. Siblings of 23
 - None

- 9. Ancestors of 9
 - 4, 12, 7, 22
- 10. Descendants of 16
 - 13, 6, 60
- 11. Leaves
 - 1, 23, 21, 9, 6, 20
- 12. Non-leaves
 - 22, 16, 7, 13, 60, 12, 4

Given the tree, identify the following:

- 13. Depth of node 4
 - Depth 3
- 14. Degree of the tree
 - Degree 3
- 15. Height of the tree
 - Height 4
- 16. Weight of the tree
 - 6
- 17. Is the tree a binary tree?
 - No

Given the tree, identify the following:

- 18. Removing 6, is the tree a full binary tree?
 - No
- 19. Removing 6, is the tree a complete binary tree?
 - No
- 20. Is a full binary tree complete?
 - No
- 21. Is a complete binary tree full?
 - Yes
- 22. How many leaves does a complete n-ary tree of height h have?
 - n^h
- 23. What is the height of a complete n-ary tree with m leaves?
 - $log_n m$
- 24. What is the number of internal nodes of a complete n-ary tree of height h?

-
$$1 + n + n^2 + ... + n^{h-1} = \sum_{i=0}^{h-1} = \frac{n^{h-1}}{n-1}$$

25. What is the total number of nodes a complete n-ary tree of height h have?

$$- n^h - 1$$

Kruskal

Edge(b,c) $w(b,c)=1$
Edge (m,n) $w(m,n) = 1$
Edge (g,i) $w(g,i) = 5$
Edge (d,l) $w(d,l) = 6$
Edge c,m) $w(c,m) = 8$
Edge (f,i) $w(f,i) = 9$
Edge (f,g) $w(f,g) = 10$
Edge (a,b) $w(a,b) = 11$
Edge $(d.k)$ $w(d.k) = 13$

Edge (c,e)
$$w(c,e) = 42$$

Edge (n,o) $w(n,o) = 50$
Edge (l,p) $w(l,p) = 51$
Edge (o,p) $w(o,p) = 52$
Edge (l,m) $w(l,m) = 60$
Edge (b,e) $w(b,e) = 85$
Edge (b,f) $w(b,f) = 90$
Edge (i,k) $w(i,k) = 99$

Total: 197

Prim's

Edge(b,c) $w(b,c)=1$
Edge (m,n) $w(m,n) = 1$
Edge (g,i) $w(g,i) = 5$
Edge (d,l) $w(d,l) = 6$
Edge (c,m) $w(c,m) = 8$
Edge (f,i) $w(f,i) = 9$
Edge (a,b) $w(a,b) = 11$
Edge (d,k) $w(d,k) = 13$
Edge (c,d) $w(c,d) = 14$

Total: 197