Generación de Código 1

Generación de Código

1. Suponga una sentencia que calcula el promedio de una lista de expresiones y se lo asigna a un identificador y cuya sintaxis está representada con las siguiente reglas gramaticales:

a. Representar la sentencia a:=prom ([a+b, 3, c*(d-a)]) en polaca inversa de manera que toda la semántica sea resuelta en la notación intermedia

Algoritmo Promedio

$$(a_n+b_n+...+w_n+z_n)$$

b d) := ([а C) а р а Árbol id / @n + + id cte id id id id

Reglas
R11, R10, R07, R11, R10, R05, R04, R12, R10, R07, R03, R11, R10, R11, R10, R07, R11, R10, R06, R13, R08, R07, R03, R02, R01, R00

	Polaca (operando, operador)																
а	a b + 3 + c d a - * + @a = @a @n / id @a =																
R11	R11	RØ5	R12	RØ3	R11	R11	R11	R06	R08	R03			R02			R01	
R10	R10	R04	R10		R10	R10	R10	R13	R07							OK	
R07			R07			R07											

b. Escribir las acciones semánticas en cada regla para generar código en polaca inversa para cualquier sentencia con el formato indicado.

R00 A´-> A	{ generar_(polaca) }
R01 A -> id := P	{ insertar_pol(@acum); insertar_pol(id); insertar_pol(=) }
R02 P -> prom (L)	<pre>{ insertar_pol(@acum); insertar_pol(=); insertar_pol(@acum); insertar_pol(@n),insertar_pol(/) }</pre>
R03 L -> L , E	{ insertar_pol(+);@n++ }
R04 L -> E	{ @n=1 }
R05 E -> E + T	{ insertar_pol(+) }
R06 E -> E - T	{ insertar_pol(-) }
R07 E -> T	
R08 T -> T * F	{ insertar_pol(*) }
R09 T -> T / F	{ insertar_pol(/) }
R10 T -> F	
R11 F -> id	{ insertar_pol(id) }
R12 F -> cte	{ insertar_pol(cte) }
R13 F -> (E)	

	Test Bison
insertar_pol(a)	<pre>insertar_pol(*)</pre>
<pre>insertar_pol(b)</pre>	insertar_pol(+)
<pre>insertar_pol(+)</pre>	insertar_pol(@acum)
<pre>insertar_pol(3)</pre>	insertar_pol(=)
<pre>insertar_pol(+)</pre>	insertar_pol(3)
<pre>insertar_pol(c)</pre>	insertar_pol(/)
<pre>insertar_pol(d)</pre>	insertar_pol(a)
insertar_pol(a)	insertar_pol(=)
insertar_pol(-)	generar_(polaca) OK

- 2. Para la sentencia del ejercicio anterior , $\$
 - a. Representar la sentencia a:=prom ([a+b, 3, c*(d-a)]) en árbol sintáctico de manera que toda la semántica sea resuelta en la notación intermedia

а	:=	р	([a	+	b	,	3	,	С	*	(d	-	а)])
	Árbol																		
	-=																		
id												/							
										+				n					
								+				*							
						+			cte		id				-				
					id		id							id		id			

b. Escribir las acciones semánticas en cada regla para generar código en árbol sintáctico para cualquier sentencia con el formato indicado.

R00 A´-> A	Sp=Ap
R01 A -> id := P	Ap=crearNodo("=",crearHoja(id),Pp);
R02 P -> prom (L)	Pp=crearNodo("/",Lp,crearHoja(@n));
R03 L -> L , E	Lp=crearNodo("+",Lp,Ep); n++;
R04 L -> E	Lp=Ep;n=1;
R05 E -> E + T	Ep=crearNodo("+",Ep,Tp);

R06 E -> E - T	<pre>Ep=crearNodo("-",Ep,Tp);</pre>
R07 E -> T	Ep=Tp;
R08 T -> T * F	Tp=crearNodo("*",Tp,Fp);
R09 T -> T / F	Tp=crearNodo("/",Tp,Fp);
R10 T -> F	Tp=Fp;
R11 F -> id	<pre>Fp=crearHoja(id);</pre>
R12 F -> cte	<pre>Fp=crearHoja(cte);</pre>
R13 F -> (E)	Fp=Ep;

```
Test Bison y Representación
Fp = crearHoja(a)
                                                     Fp = crearHoja(d)
Tp = Fp
                                                     Tp = Fp
Ep = Tp
                                                     Ep = Tp
Fp = crearHoja(b)
                                                     Fp = crearHoja(a)
Tp = Fp
                                                     Tp = Fp
Ep = crearNodo('+', Ep, Tp)
                                                     Ep = crearNodo('-', Ep, Tp)
Lp = Ep
                                                     Tp = crearNodo('*', Tp, Fp)
Fp = crearHoja(3)
Tp = Fp
                                                     Ep = Tp
                                                     Lp = crearNodo('+', Lp, Ep)
Pp = crearNodo('/', Lp, crearHoja(3))
Ep = Tp
Lp = crearNodo('+', Lp, Ep)
Fp = crearHoja(c)
                                                     Ap = crearNodo(':=', crearHoja(a), Pp)
Tp = Fp
                                                     Sp = Ap OK
```

- 3. Para la sentencia del ejercicio anterior,
 - a. Representar la sentencia a:= prom ([a+b, 3, c*(d-a)]) en tercetos de manera que toda la semántica sea resuelta en la notación intermedia

а	:=	р	([а	+	b	,	3	,	С	*	(d	-	а)])
	Árbol																		
	-=																		
id												/							
										+				n					
								+				*							
						+			cte		id				-				
					id		id							id		id			

b. Escribir las acciones semánticas en cada regla para generar código en tercetos para cualquier sentencia con el formato indicado

R00 A´-> A	Ai=Ap
R01 A -> id := P	Ai=crearTerceto("=",crearTerceto(id),Pi)
R02 P -> prom (L)	Pi=crearTerceto("/",Li,crearTerceto(@n))
R03 L -> L , E	Li=crearTerceto("+",Li,Ei);n++
R04 L -> E	Li=Ei;n=1
R05 E -> E + T	Ei=crearTerceto("+",Ei,Ti)
R06 E -> E - T	Ei=crearTerceto("-",Ei,Ti)
R07 E -> T	Ei=Tp
R08 T -> T * F	Ti=crearTerceto("*",Ti,Fi)
R09 T -> T / F	Ti=crearTerceto("/",Ti,Fi)

R10 T -> F	Ti=Fi
R11 F -> id	Fi=crearTerceto(id)
R12 F -> cte	Fi=crearTerceto(cte)
R13 F -> (E)	Fi=Ei

```
Test Bison y Representación
Fi=crearTerceto(a)
                                                  Fi=crearTerceto(d)
Ti = Fi
                                                  Ti = Fi
Ei = Ti
                                                  Ei = Ti
Fi=crearTerceto(b)
                                                  Fi=crearTerceto(a)
Ti = Fi
                                                  Ti = Fi
Ei = crearTerceto('+', Ei, Ti)
                                                  Ei = crearTerceto('-', Ei, Ti)
Li = Ei
Fi = crearTerceto(3)
                                                  Ti = crearTerceto('*', Ti, Fi)
Ti = Fi
                                                  Ei = Ti
Ei = Ti
                                                  Li = crearTerceto('+', Li, Ei)
                                                  Pi = crearTerceto('/', Li, crearTerceto(3))
Li = crearTerceto('+', Li, Ei)
                                                  Ai = crearTerceto(':=', crearTerceto(a), Pi)
Fi=crearTerceto(c)
Ti = Fi
                                                  Ap = Ai OK
```

- 4. Sea la gramática del ejercicio 9 de la práctica 1 que resuelve la asignación múltiple.
 - a. Representar la sentencia actual:=promedio:=contador:= promedio/ 342 + (contador*contador); en polaca inversa de manera que toda la semántica sea resuelta en la notación intermedia

```
Gramatica

S -> P

P -> id = P |d = E;

E -> E + T | E - T | T

T -> T * F | T / F | F

F -> id | cte | ( E )
```

actual:=promedio:=contador:= promedio/ 342 + (contador*contador);

	detail promote to the detail of the detail o														
id	=	id	=	id	=	id	/	cte	+	(id	*	id)	;
							Árt	ool							
	=														
id		Р													
			=												
		id		Р											
					=										
				id		E									;
									+						
						E						Т			
						Т						F			
							/			(E)	
						Т		F				F			
						F		cte				Т			
						id						*			
											Т		F		
											F		cte		
											id				

R00 S -> P	{ generar_(polaca) }
R01 P -> id = P	{ insertar_pol(=) }
R02 P -> id = E ;	{ insertar_pol(=) }
R03 E -> E + T	{ insertar_pol(+) }
R04 E -> E - T	{ insertar_pol(-) }
R05 E -> T	
R06 T -> T * F	{ insertar_pol(*) }
R07 T -> T / F	{ insertar_pol(/) }
R08 T -> F	
R09 F -> id	{ insertar_pol(id) }
R10 F -> cte	{ insertar_pol(cte) }
R11 F -> (E)	

b. Escribir las acciones semánticas en cada regla para generar código en polaca inversa para cualquier sentencia con el formato indicado.

id	id	id	id	cte	/	id	id	*	+	=	=	=	
	Reglas												
RØ9	R09	R09	R09 R08	R09	R07 R05	R09 R08	R09	R06	R03	R02	R01	R01 OK	

Test Bison							
<pre>insertar_pol(actual)</pre>	<pre>insertar_pol(contador)</pre>						
<pre>insertar_pol(promedio)</pre>	<pre>insertar_pol(*)</pre>						
<pre>insertar_pol(contador)</pre>	<pre>insertar_pol(+)</pre>						
<pre>insertar_pol(promedio)</pre>	<pre>insertar_pol(=)</pre>						
<pre>insertar_pol(342)</pre>	<pre>insertar_pol(=)</pre>						
<pre>insertar_pol(/)</pre>	<pre>insertar_pol(=)</pre>						
<pre>insertar_pol(contador)</pre>	ок						

- 5. Sea la gramática del ejercicio 9 de la práctica 1 que resuelve la asignación múltiple.
 - a. Representar la sentencia actual:=promedio:=contador:= promedio/ 342 + (contador*contador); en árbol sintáctico de manera que toda la semántica sea resuelta en la notación intermedia

actual:=promedio:=contador:= promedio/ 342 + (contador*contador);

id	=	id	=	id	=	id	/	cte	+	(id	*	id)	;
							Árl	ool							
	=														
id		Р													
			=												
		id		Р											
					=										
				id		E									;
									+						
						E						Т			
						T						F			
							/			(E)	

			T	F			F		
			F	cte			T		
			id				*		
						T		F	
						F		cte	
						id			

b. Escribir las acciones semánticas en cada regla para generar código en árbol sintáctico para cualquier sentencia con el formato indicado.

R00 S -> P	Sp=Pp
R01 P -> id = P	Pp=crearNodo(crearHoja(id),"=",Pp);
R02 P -> id = E ;	Pp=crearNodo(crearHoja(id),"=",Ep);
R03 E -> E + T	Ep=crearNodo("+",Ep,Tp);
R04 E -> E - T	Ep=crearNodo("-",Ep,Tp);
R05 E -> T	Ep=Tp;
R06 T -> T * F	Tp=crearNodo("*",Tp,Fp);
R07 T -> T / F	Tp=crearNodo("/",Tp,Fp);
R08 T -> F	Tp=Fp;
R09 F -> id	<pre>Fp=crearHoja(id);</pre>
R10 F -> cte	Fp=crearHoja(cte);
R11 F -> (E)	Fp=Ep;

6. Suponga la siguiente gramática que representa la sintaxis de un lenguaje que solo permite que sus programas tengan sentencias de selección.

```
START -> PROGRAMA

PROGRAMA -> PROGRAMA SENT

PROGRAMA -> SENT

SENT -> SEL | ASIG

ASIG -> ID := EXP

SEL -> IF COND THEN PROGRAMA ENDIF

SEL -> IF COND THEN PROGRAMA ELSE PROGRAMA ENDIF

COND -> IF < CTE

EXP -> EXP + TERM

EXP -> TERM

TERM -> TERM * FACTOR

TERM -> FACTOR

FACTOR -> ID
```

a. Representar la siguiente sentencia en polaca inversa de manera que toda la semántica sea resuelta en la notación intermedia

IF	IF ELSE	WHILE
li ld op cmp bgx xx sentencias_then xx	li ld op cmp bgx xx sentencias_then bi zz sentencias_else	zz li ld op cmp bgx xx sentencias bi zz

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
а	3	стр	bge	<u>16</u>	С	1	+	b	=	28	а	=	bi	<u>28</u>	b	245	стр	bge	<u>28</u>
														>					
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
67	b	*	С	+	а	ш													
						>													
						>													_

b. Escribir las acciones semánticas en cada regla para generar código en **polaca inversa** para cualquier sentencia con el formato indicado.

R00 START-> PRG	
R01 PRG -> PRG STC	
R02 PRG -> STC	
R03 STC -> SLC	
R04 STC -> ASG	
R05 ASG -> id = EXP	pol(id), pol(=)
R06 SLC -> if CND then PRG endif	<pre>pol(cmp), pol(bge), apilar(x), avanzar(), PRG y=desapilar(x), x=y</pre>
R07 SLC -> if CND then PRG else PRG endif	<pre>pol(cmp), pol(bge), apilar(x), avanzar(), PRG, pol(bi), y=desapilar(x), x=y+1, apilar(x), avanzar(), PRG, desapilar(x), x=y</pre>
R08 CND -> id < cte	pol(id), pol(cte)
R09 EXP -> EXP + TER	pol(+)
R10 EXP -> TER	
R11 TER -> TER * FAC	pol(*)
R12 TER -> FAC	
R13 FAC -> id	pol(id)
R14 FAC -> cte	pol(cte)

c. Testear con las acciones escritas en el punto b), el resultado del punto a)

	Test Bison								
а	1	28	с						
3	+	b	67						
CMP BGE	=	245	b						
BGE	a	CMP	*						
16	28	BGE	+						
b	=	28	=						
c	BI	a	ок						

01	02	03	04	05	96	07	08	09	10	11	12	13	14	15	16	17	18	19	20
а	3	cmp	bge	<u>16</u>	b	С	1	+	=	а	28	=	bi	<u>28</u>	b	245	cmp	bge	<u>28</u>
														>					
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	С	67	b	*	+	=													
						>					·								
						>													

- 7. Suponga la gramática del ejercicio anterior
 - a. Representar el siguiente programa en **tercetos** de manera que toda la semántica sea resuelta en la notación intermedia

```
IF a < 3 THEN
    b:= c+1
    a:= 28
    ELSE
    IF b < 245 THEN
    a:= c+ 67 * b
    ENDIF
```

ENDIF

	Tercetos									
а	1	28	с							
3	+	b	67							
CMP	=	245	b							
BGE	a	CMP	*							
16	28	BGE	+							
Ь	=	28	=							
С	ві	a	ок							

b. Escribir las acciones semánticas en cada regla para generar código en tercetos para cualquier sentencia con el formato indicado.

R00 START-> PRG	Si=Pi
R01 PRG -> PRG STC	Pi=crearTerceto(,Pi,Sti)
R02 PRG -> STC	Pi=Sti
R03 STC -> SLC	Sti=Sli
R04 STC -> ASG	Sti=Ai
R05 ASG -> id = EXP	Ai=crearTerceto("=",crearTerceto(id),Ei)
R06 SLC -> if CND then PRG endif	Sli=crearTerceto("IF",Ci,Then) Then=crearTerceto(Prgi)
R07 SLC -> if CND then PRG else PRG endif	Sli=crearTerceto("IF",Ci,Cpo) Cpo=crearTerceto(,Then,Else) Then=crearTerceto(Prgi) Else=crearTerceto(Prgi)
R08 CND -> id < cte	Ci=crearTerceto(crearTerceto(id),"<",crearTerceto(cte))
R09 EXP -> EXP + TER	Ei=crearTerceto("+",Ei,Ti)
R10 EXP -> TER	Ei=Ti
R11 TER -> TER * FAC	Ti=crearTerceto("*",Ti,Fi)

R12 TER -> FAC	Ti=Fi
R13 FAC -> id	Fi=crearTerceto(id)
R14 FAC -> cte	Fi=crearTerceto(cte)

- c. Testear con las acciones escritas en el punto b), el resultado del punto a)
- 8. Suponga la gramática de un lenguaje que solo soporta sentencias de ciclos (del tipo FOR) y sentencias de asignación

```
START -> PROGRAMA

PROGRAMA -> PROGRAMA SENT

PROGRAMA -> SENT

SENT -> CICLO | ASIG

ASIG -> ID := EXP

CICLO -> FOR INICIO { PROGRAMA } FOREND

INICIO -> ID = CTE TO CTE

EXP -> EXP + TERM

EXP -> TERM

TERM -> TERM * FACTOR

TERM -> FACTOR

FACTOR -> ID
```

a. Representar el siguiente programa en tercetos de manera que toda la semántica sea resuelta en la notación intermedia

```
c:=0
FOR i:=1 TO 20
{
      a:= c+ 67 * b
      b:=b+1
      c:=c+1
}
FOREND
```

- b. Escribir las acciones semánticas en cada regla para generar código en tercetos para cualquier sentencia con el formato indicado.
- c. Testear con las acciones escritas en el punto b), el resultado del punto a)
- 9. Suponga la siguiente gramática que representa la sintaxis de un lenguaje que solo permite que sus programas tengan sentencias de ciclos del tipo "while".

```
START -> PROGRAMA
PROGRAMA -> PROGRAMA SENT
PROGRAMA -> SENT
SENT -> ASIG | CICLO
CICLO -> WHILE COND PROGRAMA END
COND -> EXP <= EXP
ASIG -> ID := EXP
EXP -> EXP + TERM
EXP -> EXP - TERM
EXP -> TERM
```

```
TERM -> TERM * FACTOR
TERM -> FACTOR
FACTOR -> CTE
FACTOR -> ID
```

a. Representar la siguiente sentencia en polaca inversa de manera que toda la semántica sea resuelta en la notación intermedia

```
WHILE a*3 <= b
    a:= a+2
    b:= 5
    WHILE b <= 5
    a:= a+1
    END
```

- b. Escribir las acciones semánticas en cada regla para generar código en árbol sintáctico para cualquier sentencia con el formato indicado.
- c. Testear con las acciones escritas en el punto b), el resultado del punto a)