

ECM253 – Linguagens Formais, Autômatos e Compiladores

Exemplo detalhado

Algoritmos de um scanner

Marco Furlan

Agosto/2018

1 Problema

Considerar o autômato não determinístico apresentado na figura a seguir:

Pede-se:

- (a) Aplicar o algoritmo de para calcular o fechamento- ϵ e determinar o fechamento fechamento- ϵ de cada estado do autômato apresentado.
- (b) Com o resultado obtido no item anterior, aplicar o algoritmo de construção por subconjunto para determinar os estados do autômato determinístico equivalente.

(c) Aplicar o algoritmo de Hopcroft para minimizar o autômato não determinístico obtido anteriormente. Desenhar o autômato obtido.

2 Solução

(a)

Algorithm 1 Algoritmo para calcular o fechamento-e

```
1: for cada estado n \in N do
                                                                     ⊳ N é o conjunto de estados
         E(n) \leftarrow \{n\}
                                      \triangleright E(n) é o fechamento-\epsilon de n – a resposta desejada
2:
3: end for
 4: WorkList \leftarrow N
5: while WorkList \neq \emptyset do
        remover n de WorkList
        t \leftarrow \{n\} \cup \bigcup_{n \stackrel{\epsilon}{\to} p \in \delta_N} E(p)
                                                          ⊳ formar em t um conjunto de todos

ightharpoonup os estados alcançáveis por transições \epsilon
        if t \neq E(n) then
             E(n) \leftarrow t
 9:
             WorkList \leftarrow WorkList \cup \{m | m \xrightarrow{\epsilon} n \in \delta_N\} > adiciona os estados m
10:
    que possuem

ightharpoonup transição \epsilon para o estado n em questão
11:
        end if
12: end while
```

Simulação

linhas 1–4 Calcula-se E(n) e Worklist assim:

Elemento	Valor
E(1)	{1}
E(2)	{2}
E(3)	{3}
E(4)	{4}
WorkList	{1,2,3,4}

linha 5 – iteração 1 O teste é verdadeiro

linhas 6–7 Atualiza n, $t \in WorkList$:

Elemento	Valor
E(1)	{1}
E(2)	{2}
E(3)	{3}
E(4)	{4}
n	1
t	{1, 4}
WorkList	{2,3,4}

linhas 8 O teste é verdadeiro

linhas 9–10 Atualiza E(1) e WorkList:

Elemento	Valor
E(1)	{1,4}
E(2)	{2}
E(3)	{3}
E(4)	{4}
n	1
t	{1, 4}
WorkList	{2,3,4}

linha 5 – iteração 2 O teste é verdadeiro

linhas 6–7 Atualiza *n*, *t* e *WorkList*:

Elemento	Valor
E(1)	{1, 4}
E(2)	{2}
E(3)	{3}
E(4)	{4}
n	2
t	{2}
WorkList	{3,4}

linhas 8 O teste é falso

linha 5 – iteração 3 O teste é verdadeiro

linhas 6–7 Atualiza *n*, *t* e *WorkList*:

Elemento	Valor
E(1)	{1, 4}
E(2)	{2}
E(3)	{3}
E(4)	{4}
n	3
t	{3,4}
WorkList	{4}

linhas 8 O teste é verdadeiro

linhas 9–10 Atualiza E(3) e WorkList:

Elemento	Valor
E(1)	{1,4}
E(2)	{2}
E(3)	{3, 4}
E(4)	{4}
n	3
t	{3, 4}
WorkList	{4}

linha 5 – iteração 4 O teste é verdadeiro

linhas 6–7 Atualiza *n*, *t* e *WorkList*:

Elemento	Valor
E(1)	{1, 4}
E(2)	{2}
E(3)	${3, 4}$
E(4)	{4}
n	4
t	{2,4}
WorkList	Ø

linhas 8 O teste é verdadeiro

linhas 9–10 Atualiza E(4) e WorkList:

Elemento	Valor
E(1)	{1, 4}
E(2)	{2}
E(3)	{3, 4}
E(4)	{2, 4}
n	4
t	{2,4}
WorkList	{1,3}

linha 5 – iteração 5 O teste é verdadeiro

linhas 6–7 Atualiza n, $t \in WorkList$:

Elemento	Valor
E(1)	{1, 4}
E(2)	{2}
E(3)	{3, 4}
E(4)	{2, 4}
n	1
t	{1, 2, 4}
WorkList	{3}

linhas 8 O teste é verdadeiro

linhas 9–10 Atualiza E(1) e WorkList:

Elemento	Valor
E(1)	{1, 2, 4}
E(2)	{2}
E(3)	{3, 4}
E(4)	{2, 4}
n	1
t	{1, 2, 4}
WorkList	{3}

linha 5 – iteração 5 O teste é verdadeiro

linhas 6–7 Atualiza n, $t \in WorkList$:

Elemento	Valor
E(1)	{1, 2, 4}
E(2)	{2}
E(3)	{3, 4}
E(4)	{2, 4}
n	3
t	{2, 3, 4}
WorkList	Ø

linhas 8 O teste é verdadeiro

linhas 9–10 Atualiza E(3) e WorkList:

Elemento	Valor
E(1)	{1, 2, 4}
E(2)	{2}
E(3)	{2, 3, 4}
E(4)	{2, 4}
n	3
t	{2, 3, 4}
WorkList	Ø

linha 5 O teste é falso. Sair do laço. O resultado é:

Elemento	Valor
E(1)	{1, 2, 4}
E(2)	{2}
E(3)	{2, 3, 4}
E(4)	{2, 4}

(b)

Algorithm 2 Algoritmo de construção de subconjuntos

```
\triangleright E(n) é calculado pelo algoritmo anterior
 1: q_0 \leftarrow E(n_0)
 2: Q \leftarrow \{q_0\}
3: WorkList \leftarrow \{q_0\}
 4: while WorkList \neq \emptyset do
5:
        remover q de WorkList
        for cada caractere c \in \Sigma do
 6:
                                                                             ⊳ próximo estado
 7:
            t \leftarrow E(\delta(q,c))
            T[q,c] \leftarrow t
                                                        > atualiza a tabela de estados final
 8:
9:
            if t \notin Q then
                adicione t a Q e também a WorkList
10:
11:
        end for
12:
13: end while
```

Simulação

linhas 1-3 Valores iniciais

Elemento	Valor
q_0	$\{1, 2, 4\}$
Q	{{1, 2, 4}}
WorkList	{{1, 2, 4}}

linha 4 – iteração 1 O teste é verdadeiro

linha 5 Atualiza *q* e *WorkList*:

Elemento	Valor
q	{1, 2, 4}
Q	{{1, 2, 4}}
WorkList	Ø

linhas 6–12 Atualiza *T*, *Q* e *WorkList*:

Elemento	Valor
q	{1, 2, 4}
$T[\{1,2,4\},a]$	{{2}}
$T[\{1,2,4\},b]$	{{2,4}}
Q	{{1, 2, 4},{2},{2, 4}}
WorkList	{{2},{2, 4}}

linha 4 – iteração 2 O teste é verdadeiro

linha 5 Atualiza *q* e *WorkList*:

Elemento	Valor
q	{2}
Q	{{1, 2, 4},{2},{2, 4}}
WorkList	{{2, 4}}

linhas 6–12 Atualiza T, Q e WorkList:

Elemento	Valor
q	{2}
$T[\{1,2,4\},a]$	{{2}}
$T[\{1,2,4\},b]$	{{2,4}}
$T[\{2\}, a]$	Ø
$T[{2}, b]$	{{2,4}}
Q	{{1, 2, 4},{2},{2, 4}}
WorkList	{{2, 4}}

linha 4 – iteração 3 O teste é verdadeiro

linha 5 Atualiza q e WorkList:

Elemento	Valor
q	{2, 4}
Q	{{1, 2, 4},{2},{2, 4}}
WorkList	Ø

linhas 6–12 Atualiza *T*, *Q* e *WorkList*:

Elemento	Valor
q	{2, 4}
$T[\{1,2,4\},a]$	{{2}}
$T[\{1,2,4\},b]$	{{2,4}}
$T[\{2\}, a]$	Ø
$T[{2}, b]$	{{2,4}}
$T[\{2,4\},a]$	Ø
$T[\{2,4\},b]$	{{2,4}}
Q	{{1, 2, 4},{2},{2, 4}}
WorkList	Ø

linha 4 O teste é falso. O resultado está na tabela de transição para o DFA equivalente:

Elemento	Valor
$T[\{1,2,4\},a]$	{{2}}
$T[\{1,2,4\},b]$	{{2,4}}
$T[\{2\}, a]$	Ø
$T[\{2\}, b]$	{{2,4}}
$T[\{2,4\},a]$	Ø
$T[\{2,4\},b]$	{{2,4}}

Denominando $q_0 = \{1, 2, 4\}, q_1 = \{2\}$ e $q_2 = \{2, 4\}$, tem-se o DFA:

(c)

Algorithm 3 Algoritmo de separação (split) de partição

```
    function SPLIT(S) > S é um conjunto de conjuntos que define uma partição de estados
    for cada c ∈ Σ do
    if c separa S em s₁ e s₂ then
    return {s₁, s₂}
    end if
    end for
    return S > se não houve separação retorna S original
    end function
```

Nota: Se o símbolo c separa S em $\{s_1, s_2\}$ é porque existe um rótulo c na transição de um ou mais estados de S de modo seu(s) próximo(s) estados não estão na mesma partição que os demais. Daí o algoritmo retorna um conjunto de dois conjuntos de estados no lugar de S.

Algorithm 4 Algoritmo de Hopcroft

```
1: T \leftarrow \{D_A, D - D_A\}

2: P \leftarrow \emptyset

3: while P \neq T do

4: P \leftarrow T

5: T \leftarrow \emptyset

6: for cada conjunto p \in P do

7: T \leftarrow T \cup Split(p)

8: end for

9: end while
```

Simulação: utiliza o DFA do item anterior.

linhas 1–2 Inicializar $T \in P$

Elemento	Valor
T	$\{\{q_0,q_2\},\{q_1\}\}$
P	Ø

linha 3 - iteração 1 O teste é verdadeiro

linhas 4–5 Atualizar $P \in T$

Elemento	Valor
T	Ø
P	$\{\{q_0,q_2\},\{q_1\}\}$

linhas 6–8 – iteração 1 Atualizar T

Elemento	Valor
T	$\{\{q_0\},\{q_2\}\}$
p	$\{q_0, q_2\}$
P	$\{\{q_0,q_2\},\{q_1\}\}$

linhas 6–8 – iteração 2 Atualizar T

Elemento	Valor
T	$\{\{q_0\},\{q_1\},\{q_2\}\}$
p	$\{q_1\}$
P	$\{\{q_0,q_2\},\{q_1\}\}$

linha 3 - iteração 2 O teste é verdadeiro

linhas 4–5 Atualizar *P* e *T*

Elemento	Valor
T	Ø
P	$\{\{q_0\},\{q_1\},\{q_2\}\}$

linhas 6–8 – iterações 1, 2 e 3 Atualizar T

Elemento	Valor
T	$\{\{q_0\},\{q_1\},\{q_2\}\}$
P	$\{\{q_0\},\{q_1\},\{q_2\}\}$

linha 3 O teste é falso. O DFA já estava minimizado pois não houve alteração nas partições iniciais.