Finite Element Methods

FEM for Poisson problem in 2D - Rectangular element

2016-2 CSE6820

Outline

Introduction

Affine mapping

Triangulation

Basis functions of V_h^k

Mass matrix and Stiffness matrix

Matlab codes

2D Poisson problem

Consider the two dimensional Poisson problem

$$-\Delta u = f \qquad \text{in } \Omega$$
$$u = u_D \qquad \text{on } \partial \Omega$$

Introduction

Weak formulation

Find $u(x, y) \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, d\boldsymbol{x} = \int_{\Omega} f v \, d\boldsymbol{x}, \qquad \forall v \in H^1_0(\Omega).$$

Variational formulation

Find $u_h \in V_h^k$ such that

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h \ d\mathbf{x} = \int_{\Omega} f v_h \ d\mathbf{x}, \qquad \forall v_h \in V_h^k$$

where

Introduction

$$V_h^k = \{ v_h \in H_0^1(\Omega) \mid v_h|_R \in Q_k(R), \ \forall R \in \mathcal{T}_h \},$$

and $Q_k(R)$ is the polynomial function space of degrees $\leq k$ in each variable.

Introduction

Affine mapping

Triangulation

Basis functions of V_h^k

Mass matrix and Stiffness matrix

Matlab codes

Affine mapping

Figure: An affine mapping from the reference rectangle R_Q to a rectangle Q.

Barycentric coordinates

Barycentric coordinates $\{\lambda_i\}_{i=1}^4$ have the properties

$$\begin{cases} 0 \le \lambda_i(\mathbf{x}) \le 1, & i = 1, 2, 3, 4 \\ \sum_{i=1}^4 \lambda_i(\mathbf{x}) = 1. \end{cases}$$

Then we have an affine mapping Φ such that

$$\Phi(\mathbf{r}) = \mathbf{v}_1 + \frac{r+1}{2}(\mathbf{v}_2 - \mathbf{v}_1) + \frac{s+1}{2}(\mathbf{v}_4 - \mathbf{v}_1) = \mathbf{x},$$

where x is a point in R.

Properties

1.
$$\widetilde{\lambda}_k(\mathbf{r}) = \widetilde{\lambda}_i^{1D}(r)\widetilde{\lambda}_i^{1D}(s), \qquad (k = 2(j-1) + i, \quad i, j = 1, 2)$$

2.
$$x_r = \frac{v_2^{(1)} - v_1^{(1)}}{2}$$
, $y_r = \frac{v_2^{(2)} - v_1^{(2)}}{2}$, $x_s = \frac{v_4^{(1)} - v_1^{(1)}}{2}$, $y_s = \frac{v_4^{(2)} - v_1^{(2)}}{2}$

3.
$$r_x = \frac{y_s}{I}$$
, $r_y = -\frac{x_s}{I}$, $s_x = -\frac{y_r}{I}$, $s_y = \frac{x_r}{I}$

4.
$$\lambda_{1}(\mathbf{x}) = \left(\frac{v_{2}^{(1)} - x}{v_{1}^{(1)} - v_{1}^{(1)}}\right) \left(\frac{v_{4}^{(2)} - y}{v_{4}^{(2)} - v_{1}^{(2)}}\right), \qquad \lambda_{2}(\mathbf{x}) = \left(\frac{x - v_{1}^{(1)}}{v_{2}^{(1)} - v_{1}^{(1)}}\right) \left(\frac{v_{4}^{(2)} - y}{v_{4}^{(2)} - v_{1}^{(2)}}\right)$$

$$\lambda_{3}(\mathbf{x}) = \left(\frac{x - v_{1}^{(1)}}{v_{2}^{(1)} - v_{1}^{(1)}}\right) \left(\frac{y - v_{1}^{(2)}}{v_{2}^{(2)} - v_{2}^{(2)}}\right), \qquad \lambda_{4}(\mathbf{x}) = \left(\frac{v_{2}^{(1)} - x}{v_{2}^{(1)} - v_{1}^{(1)}}\right) \left(\frac{y - v_{1}^{(2)}}{v_{2}^{(2)} - v_{2}^{(2)}}\right)$$

5.
$$\lambda_i(\mathbf{x}) = \widetilde{\lambda}_i(\Phi^{-1}(\mathbf{x}))$$
, $\widetilde{\lambda}_i(\mathbf{r}) = \lambda_i(\Phi(\mathbf{r}))$

5.
$$\lambda_i(\mathbf{x}) = \overline{\lambda}_i(\Phi^{-1}(\mathbf{x})), \qquad \overline{\lambda}_i(\mathbf{r}) = \lambda_i(\Phi(\mathbf{r}))$$
6. $\frac{d}{dx}\lambda_i(\mathbf{x}) = r_x \frac{d}{dx}\widetilde{\lambda}_i(\mathbf{r}), \qquad \frac{d}{dy}\lambda_i(\mathbf{x}) = s_y \frac{d}{ds}\widetilde{\lambda}_i(\mathbf{r})$

Introduction

Affine mapping

Triangulation

Basis functions of V_h^k

Mass matrix and Stiffness matrix

Matlab codes

Triangulation data (P_1)

If $\Omega = [0, 1]^2$, M = 2 and k = 1, data are stored as follows.

Triangulation data (P_1)

$$c4n = \begin{pmatrix} 0 & 1/2 & 1 & 0 & 1/2 & 1 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 1/2 & 1/2 & 1/2 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$n4e = \begin{pmatrix} 1 & 2 & 4 & 5 \\ 2 & 3 & 5 & 6 \\ 5 & 6 & 8 & 9 \\ 4 & 5 & 7 & 8 & 1 \end{pmatrix}$$

$$n4db = (1, 2, 3, 4, 6, 7, 8, 9)$$

$$ind4e = \begin{pmatrix} 1 & 2 & 4 & 5 \\ 2 & 3 & 5 & 6 \\ 4 & 5 & 7 & 8 \\ 5 & 6 & 8 & 9 \end{pmatrix}$$

Triangulation data (P_2)

If $\Omega = [0, 1]^2$, M = 2 and k = 2, data are stored as follows.

Triangulation data (P_2)

$$n4e = \begin{pmatrix} 1 & 3 & 11 & 13 \\ 3 & 5 & 13 & 15 \\ 13 & 15 & 23 & 25 \\ 11 & 13 & 21 & 23 \end{pmatrix}$$

n4db = (1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 22, 23, 24, 25)

$$ind4e = \left(\begin{array}{ccccc} 1 & 3 & 11 & 13 \\ 2 & 4 & 12 & 14 \\ 3 & 5 & 13 & 15 \\ 6 & 8 & 16 & 18 \\ 7 & 9 & 17 & 19 \\ 8 & 10 & 18 & 20 \\ 11 & 13 & 21 & 23 \\ 12 & 14 & 22 & 24 \\ 13 & 15 & 23 & 25 \\ \end{array} \right)$$

mesh FEM2D Rec

The following Matlab code generates an uniform rectangular mesh on the domain $[xl, xr] \times [yl, yr]$ in 2D with M_x elements along x-direction and M_y elements along y-direction. Also this code returns an index matrix for continuous k-th order polynomial approximations.

```
function [c4n,n4e,ind4e,inddb]=mesh_FEM2D_Rec(x1,xr,y1,yr,Mx,My,k)
ind4e = zeros((k+1)^2,Mx*My);
tmp = (1:k:k*Mx)' * ones(1,My) ...
    + ones(Mx,1) * (0:k*(k*Mx+1):((k*Mx+1)*((My-1)*k+1)-1));
tmp = tmp(:)':
for i=1:k+1
    ind4e((j-1)*(k+1)+(1:(k+1)), :) = repmat(tmp+(j-1)*(k*Mx+1),k+1,1) ...
        +repmat(0:k.Mx*Mv.1)':
end
n4e = ind4e([1 k+1 (k+1)^2 (k*(k+1)+1)],:);
inddb = unique([1:(k*Mx+1), (k*Mx+1):(k*Mx+1):(k*Mx+1)*(k*My+1), ...
(k*Mx+1)*(k*My+1):-1:(k*My*(k*Mx+1)+1), (k*My*(k*Mx+1)+1):-(k*Mx+1):1]);
x=linspace(xl,xr,k*Mx+1);
v=linspace(vl.vr.k*Mv+1):
y=repmat(y,k*Mx+1,1);
x=repmat(x,k*My+1,1)';
c4n = [x(:), y(:)]';
end
```

Introduction

Affine mapping

Triangulation

Basis functions of V_h^k

Mass matrix and Stiffness matrix

Matlab codes

Basis functions

Figure: Global basis functions of V_h^1 (left) and V_h^2 (others) on an interval.

$$\psi_i(\boldsymbol{\xi}_j) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$
$$\sum_{i=1}^{N} \psi_i(\boldsymbol{x}) = 1 \qquad \forall x \in \Omega$$

 $(\ell : \text{row number}, m : \text{column number})$

Figure: Node numbering in the *n*-th rectangular element

$$\psi_i^n(\mathbf{x}) = \phi_\ell(x)\phi_m(y)$$

$$\psi_i^n(\mathbf{x}) = 0 \quad \text{if } x \in \Omega \setminus R_n$$

$$\sum_{i=1}^{(k+1)^2} \psi_i^n(\mathbf{x}) = 1 \quad \forall x \in R_n.$$

Interpolation

Using these basis functions, the interpolate function of a function f(x) can be written as follows

$$If(\mathbf{x}) = \sum_{i=1}^{N} f_i \psi_i(\mathbf{x})$$

where $f_i = f(\boldsymbol{\xi}_i)$.

• Numerical solution

$$u_h = \sum_{i=1}^N u_i \psi_i$$

Local solution

$$u_h\Big|_{R_n} = \sum_{i=1}^{(k+1)^2} u_i^n \psi_i^n$$

Derivatives

$$\nabla u_h = \sum_{i=1}^{N} u_i \nabla \psi_i,$$

$$\nabla u_h \Big|_{R_n} = \sum_{i=1}^{(k+1)^2} u_i^n \nabla \psi_i^n.$$

Introduction

Affine mapping

Triangulation

Basis functions of V_h^k

Mass matrix and Stiffness matrix

Matlab codes

Variational formulation

For a test function $\psi_i(x) \in V_h^k$, the variational formulation can be rewritten as

$$\sum_{i=1}^{N} u_{i} \int_{\Omega} \nabla \psi_{i} \cdot \nabla \psi_{j} \, d\mathbf{x} = \int_{\Omega} f \psi_{i} \, d\mathbf{x}$$

Finite element system

$$Au = b$$

where

$$(A)_{ij} = \int_{\Omega} \nabla \psi_i \cdot \nabla \psi_j \, d\mathbf{x}$$
$$(\mathbf{b})_i = \int_{\Omega} f \psi_i \, d\mathbf{x}$$
$$(\mathbf{u})_j = u_j.$$

Finite element system

$$Au = Mf$$

where

$$(A)_{ij} = \int_{\Omega} \nabla \psi_i \cdot \nabla \psi_j \, d\mathbf{x}$$
$$(\mathbf{u})_j = u_j$$
$$(M)_{ij} = \int_{\Omega} \psi_i \psi_j \, d\mathbf{x}$$
$$(\mathbf{f})_j = f_j.$$

Matrices

$$A = \sum_{\ell=1}^{M} A_{R_n}$$

$$M = \sum_{\ell=1}^{M} M_{R_n}$$

where $(k + 1)^2$ -by- $(k + 1)^2$ matrices A_{R_n} and M_{R_n} are defined as

$$(A_{R_n})_{ij} = \int_{R_n} \nabla \psi_i^n(x) \cdot \nabla \psi_j^n \, dx$$
$$(M_{R_n})_{ij} = \int_{R_n} \psi_i^n \psi_j^n \, dx$$

where $1 \le i, j \le (k+1)^2$.

Differentiation matrix

$$(Dx)_{ij} = \frac{\partial \psi_j}{\partial x}(\boldsymbol{\xi}_i), \qquad (Dy)_{ij} = \frac{\partial \psi_j}{\partial y}(\boldsymbol{\xi}_i).$$

$$\frac{\partial}{\partial x}\psi_i(\mathbf{x}) = \sum_{j=1}^N \frac{\partial \psi_i}{\partial x}(\boldsymbol{\xi}_j)\psi_j(\mathbf{x}) = (Dx^t)_i \boldsymbol{\psi}$$

$$\frac{\partial}{\partial y}\psi_i(x) = \sum_{i=1}^N \frac{\partial \psi_i}{\partial y}(\boldsymbol{\xi}_j)\psi_j(x) = (Dy^t)_i \boldsymbol{\psi}$$

where

$$(Dx^{t})_{i} = \left[\frac{\partial \psi_{i}}{\partial x}(\xi_{1}) \cdots \frac{\partial \psi_{i}}{\partial x}(\xi_{N})\right]$$
$$(Dy^{t})_{i} = \left[\frac{\partial \psi_{i}}{\partial y}(\xi_{1}) \cdots \frac{\partial \psi_{i}}{\partial y}(\xi_{N})\right]$$
$$\psi = \left[\psi_{1}(x) \cdots \psi_{N}(x)\right]^{t}$$

Properties of D

•
$$Dx = \sum_{n=1}^{M^2} Dx_{R_n}, \qquad (Dx_{R_n})_{ij} = \frac{\partial \psi_j^n}{\partial x} (\boldsymbol{\xi}_i^n)$$

•
$$Dy = \sum_{n=1}^{M^2} Dx_{R_n}, \qquad (Dy_{R_n})_{ij} = \frac{\partial \psi_j^n}{\partial y} (\boldsymbol{\xi}_i^n)$$

•
$$\nabla \psi_i^n(\mathbf{x}) = \left((Dx_{R_n}^t)_i \boldsymbol{\psi}^n, \ (Dy_{R_n}^t)_i \boldsymbol{\psi}^n \right)$$

•
$$\nabla u_h(\boldsymbol{\xi}_m) = ((Dx)_m \boldsymbol{u}, (Dy)_m \boldsymbol{u})$$

•
$$\nabla u_h(\boldsymbol{\xi}_m^n) = ((Dx_{R_n})_m \boldsymbol{u}, (Dy_{R_n})_m \boldsymbol{u})$$

Mass matrix

$$(M)_{ij} = \int_{R_n} \psi_i(\mathbf{x}) \psi_j(\mathbf{x}) \ d\mathbf{x} = J \int_{R_R} \widetilde{\psi}_i(\mathbf{r}) \widetilde{\psi}_j(\mathbf{r}) \ d\mathbf{r} = J(M_R)_{ij}$$

$$\Rightarrow M = JM_R$$

Stiffness matrix

$$(S)_{ij} = J\Big(r_x^2(S_R^{rr})_{ij} + s_y^2(S_R^{ss})_{ij}\Big)$$

where

$$(S_R^{rr})_{ij} = (Dr_R^t M_R Dr_R)_{ij}$$

$$(S_R^{ss})_{ij} = (Ds_R^t M_R Ds_R)_{ij}$$

$$\Rightarrow \qquad S = J(r_x^2 S_R^{rr} + s_y^2 S_R^{ss})$$

$$\begin{split} \widetilde{\psi}_{1}(\boldsymbol{r}) &= \widetilde{\phi}_{1}(r)\widetilde{\phi}_{1}(s) = \widetilde{\lambda}_{1}^{1D}(r)\widetilde{\lambda}_{1}^{1D}(s), & \nabla \widetilde{\psi}_{1}(\boldsymbol{r}) = \left(-\frac{1}{2}\widetilde{\lambda}_{1}^{1D}(s), -\frac{1}{2}\widetilde{\lambda}_{1}^{1D}(r)\right), \\ \widetilde{\psi}_{2}(\boldsymbol{r}) &= \widetilde{\phi}_{2}(r)\widetilde{\phi}_{1}(s) = \widetilde{\lambda}_{2}^{1D}(r)\widetilde{\lambda}_{1}^{1D}(s), & \nabla \widetilde{\psi}_{2}(\boldsymbol{r}) = \left(\frac{1}{2}\widetilde{\lambda}_{1}^{1D}(s), -\frac{1}{2}\widetilde{\lambda}_{2}^{1D}(r)\right), \\ \widetilde{\psi}_{3}(\boldsymbol{r}) &= \widetilde{\phi}_{1}(r)\widetilde{\phi}_{2}(s) = \widetilde{\lambda}_{1}^{1D}(r)\widetilde{\lambda}_{2}^{1D}(s), & \nabla \widetilde{\psi}_{3}(\boldsymbol{r}) = \left(-\frac{1}{2}\widetilde{\lambda}_{2}^{1D}(s), \frac{1}{2}\widetilde{\lambda}_{1}^{1D}(r)\right), \\ \widetilde{\psi}_{4}(\boldsymbol{r}) &= \widetilde{\phi}_{2}(r)\widetilde{\phi}_{2}(s) = \widetilde{\lambda}_{2}^{1D}(r)\widetilde{\lambda}_{2}^{1D}(s), & \nabla \widetilde{\psi}_{4}(\boldsymbol{r}) = \left(\frac{1}{2}\widetilde{\lambda}_{2}^{1D}(s), \frac{1}{2}\widetilde{\lambda}_{2}^{1D}(r)\right), \end{split}$$

$$M_R = \frac{1}{9} \begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 2 & 1 & 4 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix}.$$

$$Dr_R = \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$Ds_R = \frac{1}{2} \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

$$S_R^{rr} = Dr_R^t M_R Dr_R = \frac{1}{6} \begin{pmatrix} 2 & -2 & 1 & -1 \\ -2 & 2 & -1 & 1 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \end{pmatrix}$$
$$S_R^{ss} = Ds_R^t M_R Ds_R = \frac{1}{6} \begin{pmatrix} 2 & 1 & -2 & -1 \\ 1 & 2 & -1 & -2 \\ -2 & -1 & 2 & 1 \\ -1 & -2 & 1 & 2 \end{pmatrix}.$$

P_2 matrices

$$\begin{split} \widetilde{\psi}_{1}(\boldsymbol{r}) &= \widetilde{\phi}_{1}(r)\widetilde{\phi}_{1}(s), & \nabla \widetilde{\psi}_{1}(\boldsymbol{r}) = \left((-2\widetilde{\lambda}_{1}^{1D}(r) + \frac{1}{2})\widetilde{\phi}_{1}(s), \ (-2\widetilde{\lambda}_{1}^{1D}(s) + \frac{1}{2})\widetilde{\phi}_{1}(r) \right), \\ \widetilde{\psi}_{2}(\boldsymbol{r}) &= \widetilde{\phi}_{2}(r)\widetilde{\phi}_{1}(s), & \nabla \widetilde{\psi}_{2}(\boldsymbol{r}) = \left((2\widetilde{\lambda}_{1}^{1D}(r) - 2\widetilde{\lambda}_{2}^{1D}(r))\widetilde{\phi}_{1}(s), \ (-2\widetilde{\lambda}_{1}^{1D}(s) + \frac{1}{2})\widetilde{\phi}_{2}(r) \right), \\ \widetilde{\psi}_{3}(\boldsymbol{r}) &= \widetilde{\phi}_{3}(r)\widetilde{\phi}_{1}(s), & \nabla \widetilde{\psi}_{3}(\boldsymbol{r}) = \left((2\widetilde{\lambda}_{2}^{1D}(r) - \frac{1}{2})\widetilde{\phi}_{1}(s), \ (-2\widetilde{\lambda}_{1}^{1D}(s) + \frac{1}{2})\widetilde{\phi}_{3}(r) \right), \\ \widetilde{\psi}_{4}(\boldsymbol{r}) &= \widetilde{\phi}_{1}(r)\widetilde{\phi}_{2}(s), & \nabla \widetilde{\psi}_{4}(\boldsymbol{r}) = \left((-2\widetilde{\lambda}_{1}^{1D}(r) + \frac{1}{2})\widetilde{\phi}_{2}(s), \ (2\widetilde{\lambda}_{1}^{1D}(s) - 2\widetilde{\lambda}_{2}^{1D}(s))\widetilde{\phi}_{1}(r) \right), \\ \widetilde{\psi}_{5}(\boldsymbol{r}) &= \widetilde{\phi}_{2}(r)\widetilde{\phi}_{2}(s), & \nabla \widetilde{\psi}_{5}(\boldsymbol{r}) = \left((2\widetilde{\lambda}_{1}^{1D}(r) - 2\widetilde{\lambda}_{2}^{1D}(r))\widetilde{\phi}_{2}(s), \ (2\widetilde{\lambda}_{1}^{1D}(s) - 2\widetilde{\lambda}_{2}^{1D}(s))\widetilde{\phi}_{3}(r) \right), \\ \widetilde{\psi}_{6}(\boldsymbol{r}) &= \widetilde{\phi}_{3}(r)\widetilde{\phi}_{2}(s), & \nabla \widetilde{\psi}_{6}(\boldsymbol{r}) = \left((2\widetilde{\lambda}_{2}^{1D}(r) - \frac{1}{2})\widetilde{\phi}_{2}(s), \ (2\widetilde{\lambda}_{1}^{1D}(s) - 2\widetilde{\lambda}_{2}^{1D}(s))\widetilde{\phi}_{3}(r) \right), \\ \widetilde{\psi}_{7}(\boldsymbol{r}) &= \widetilde{\phi}_{1}(r)\widetilde{\phi}_{3}(s), & \nabla \widetilde{\psi}_{7}(\boldsymbol{r}) = \left((-2\widetilde{\lambda}_{1}^{1D}(r) + \frac{1}{2})\widetilde{\phi}_{3}(s), \ (2\widetilde{\lambda}_{2}^{1D}(s) - \frac{1}{2})\widetilde{\phi}_{1}(r) \right), \\ \widetilde{\psi}_{8}(\boldsymbol{r}) &= \widetilde{\phi}_{2}(r)\widetilde{\phi}_{3}(s), & \nabla \widetilde{\psi}_{8}(\boldsymbol{r}) = \left((2\widetilde{\lambda}_{1}^{1D}(r) - 2\widetilde{\lambda}_{2}^{1D}(r))\widetilde{\phi}_{3}(s), \ (2\widetilde{\lambda}_{2}^{1D}(s) - \frac{1}{2})\widetilde{\phi}_{2}(r) \right), \\ \widetilde{\psi}_{9}(\boldsymbol{r}) &= \widetilde{\phi}_{3}(r)\widetilde{\phi}_{3}(s), & \nabla \widetilde{\psi}_{9}(\boldsymbol{r}) = \left((2\widetilde{\lambda}_{1}^{1D}(r) - 2\widetilde{\lambda}_{2}^{1D}(r))\widetilde{\phi}_{3}(s), \ (2\widetilde{\lambda}_{2}^{1D}(s) - \frac{1}{2})\widetilde{\phi}_{3}(r) \right), \end{aligned}$$

P_2 matrices

$$M_R = \frac{1}{225} \begin{pmatrix} 16 & 8 & -4 & 8 & 4 & -2 & -4 & -2 & 1 \\ 8 & 64 & 8 & 4 & 32 & 4 & -2 & -16 & -2 \\ -4 & 8 & 16 & -2 & 4 & 8 & 1 & -2 & -4 \\ 8 & 4 & -2 & 64 & 32 & -16 & 8 & 4 & -2 \\ 4 & 32 & 4 & 32 & 256 & 32 & 4 & 32 & 4 \\ -2 & 4 & 8 & -16 & 32 & 64 & -2 & 4 & 8 \\ -4 & -2 & 1 & 8 & 4 & -2 & 16 & 8 & -4 \\ -2 & -16 & -2 & 4 & 32 & 4 & 8 & 64 & 8 \\ 1 & -2 & -4 & -2 & 4 & 8 & -4 & 8 & 16 \end{pmatrix}$$

P_2 matrices

$$Dr_R = \frac{1}{2} \begin{pmatrix} -3 & 4 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 4 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -4 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -3 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -4 & 3 \end{pmatrix}$$

$$Ds_R = \frac{1}{2} \begin{pmatrix} -3 & 0 & 0 & 4 & 0 & 0 & -1 & 0 & 0 \\ 0 & -3 & 0 & 0 & 4 & 0 & 0 & -1 & 0 \\ 0 & 0 & -3 & 0 & 0 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -4 & 0 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & -4 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 0 & -4 & 0 & 0 & 3 \end{pmatrix}$$

P₂ matrices

P₂ matrices

MatrixforPoisson_2D_Rec

This Matlab code generates the mass matrix M_R , the stiffness matrices Srr_R , Sss_R and the differentiation matrices Dr_R , Ds_R for continuous k-th order polynomial approximations on the reference rectangle R_R .

Introduction

Affine mapping

Triangulation

Basis functions of V_h^k

Mass matrix and Stiffness matrix

Matlab codes

FEMforPoisson 2D Rec

The following Matlab code solves the Poisson problem. In order to use this code, mesh information (c4n, n4e, n4db, ind4e), matrices $(M_R, S_P^{rr}, S_P^{ss})$, the source f, and the boundary condition u_D. Then the results of this code are the numerical solution u, the global stiffness matrix A, the global load vector b and the freenodes.

```
function [u, A, b, fns] = ...
    FEMforPoisson_2D_Rec(c4n,n4e,n4db,ind4e,M_R,Srr_R,Sss_R,f,u_D)
A = sparse(length(c4n).length(c4n)):
b = zeros(length(c4n),1);
u = b:
for j=1:length(n4e)
    xr = (c4n(1,n4e(2,j))-c4n(1,n4e(1,j)))/2;
    ys = (c4n(2,n4e(4,j))-c4n(2,n4e(1,j)))/2;
    J = xr*vs:
    rx=ys/J; sy=xr/J;
    A(ind4e(:,j),ind4e(:,j)) = A(ind4e(:,j),ind4e(:,j)) ...
        + J*(rx^2*Srr_R + sy^2*Sss_R);
    b(ind4e(:,j)) = b(ind4e(:,j)) + J*M_R*f(c4n(:,ind4e(:,j))');
end
fns = setdiff(1:length(c4n), n4db);
u(fns) = A(fns.fns) \setminus b(fns):
end
```

ComputeErrorFEM_2D_Rec

The following Matlab code computes the semi H1 error between the exact solution and the numerical solution.

```
function error = ...
    ComputeErrorFEM_2D_Rec(c4n,n4e,ind4e,M_R,Dr_R,Ds_R,u,ux,uy)
error = 0:
for j=1:size(ind4e,2)
   xr = (c4n(1.n4e(2.i))-c4n(1.n4e(1.i)))/2:
    vs = (c4n(2,n4e(4,i))-c4n(2,n4e(1,i)))/2;
   J = xr*vs:
   rx=vs/J; sy=xr/J;
    Dex=ux(c4n(:,ind4e(:,j))') - rx*Dr_R*u(ind4e(:,j));
    Dev=uv(c4n(:,ind4e(:,j))') - sy*Ds_R*u(ind4e(:,j));
    error=error+J*(Dex'*M_R*Dex+Dey'*M_R*Dey);
end
error=sqrt(error);
end
```

main_FEMforPoisson_2D_Rec

The following Matlab code solves the Poisson problem by using several matlab codes such as mesh_FEM2D_Rec_rectangle, MatrixforPoisson_2D_Rec, FEMforPoisson_2D_Rec and ComputeErrorFEM_2D_Rec.

```
iter = 10:
xl = 0; xr = 1; yl = 0; yr = 1; k = 2; M = 2.^(1:iter);
f=@(x) 2*pi^2*sin(pi*x(:,1)).*sin(pi*x(:,2));
u D=0(x) x(:.1)*0:
ux=@(x) pi*cos(pi*x(:.1)).*sin(pi*x(:.2)):
uy=@(x) pi*sin(pi*x(:,1)).*cos(pi*x(:,2));
error=zeros(1.iter):
h=1./M;
for j=1:iter
    [c4n, n4e, ind4e, n4db] = ...
        mesh_FEM2D_Rec_rectangle(xl, xr, yl, yr, M(j), M(j), k);
    [M_R, Srr_R, Sss_R, Dr_R, Ds_R] = MatrixforPoisson_2D_Rec(k);
    u = FEMforPoisson_2D_Rec(c4n,n4e,n4db,ind4e,M_R,Srr_R,Sss_R,f,u_D);
    error(j) = ComputeErrorFEM_2D_Rec(c4n,n4e,ind4e,M_R,Dr_R,Ds_R,u,ux,uy);
end
```

Example

Consider the domain $\Omega = [0, 1]^2$. The source term f is chosen such that

$$u = \sin(\pi x)\sin(\pi y)$$

is the analytical solution to the Poisson problem.

Convergence history

Figure: Convergence history for Example