Advanced Engineering Mathematics Partial Differential Equations by Dennis G. Zill Notes

Chris Doble

November 2023

Contents

12	2 Orthogonal Functions and Fourier Series											1			
	12.1	Orthogonal Functions											 		1
	122	Fourier Series													9

12 Orthogonal Functions and Fourier Series

12.1 Orthogonal Functions

• The inner product of two functions f_1 and f_2 on an interval [a,b] is the number

$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx.$$

- Two functions f_1 and f_2 are said to be orthogonal on an interval if $(f_1, f_2) = 0$.
- A set of real-valued functions $\{\phi_1(x), \phi_2(x), \dots, \phi_n(x)\}$ is said to be **orthogonal** on an interval if

$$(\phi_i, \phi_j) = 0$$
 for $i \neq j$.

• The square norm of a function is

$$||\phi_n(x)||^2 = (\phi_n, \phi_n)$$

and thus its norm is

$$||\phi_n(x)|| = \sqrt{(\phi_n, \phi_n)}.$$

• An **orthonormal set** of functions is an orthogonal set of functions that all have a norm of 1.

- An orthogonal set can be made into an orthonormal set by dividing each member by its norm.
- If $\{\phi_n(x)\}$ is an infinite orthogonal set of functions on an interval [a,b] and f(x) is an arbitrary function, then it's possible to determine a set of coefficients $c_n, n = 0, 1, 2, \ldots$ such that

$$f(x) = \sum_{n=0}^{\infty} c_n \phi_n(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \dots + c_n \phi_n(x) + \dots$$

This is called an **orthogonal series expansion** of f or a **generalized** Fourier series where the coefficients are given by

$$c_n = \frac{(f, \phi_n)}{||\phi_n||^2}.$$

• A set of real-valued functions $\{\phi_n(x)\}$ is said to be **orthogonal with** respect to a weight function w(x) on the interval [a,b] if

$$\int_a^b w(x)\phi_m(x)\phi_n(x) dx = 0, \ m \neq n.$$

12.2 Fourier Series

• The Fourier series of a function f defined on the interval (-p, p) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{p} x + b_n \sin \frac{n\pi}{p} x \right)$$

where

$$a_0 = \frac{1}{p} \int_{-p}^p f(x) dx$$

$$a_n = \frac{1}{p} \int_{-p}^p f(x) \cos \frac{n\pi}{p} x dx$$

$$b_n = \frac{1}{p} \int_{-p}^p f(x) \sin \frac{n\pi}{p} x dx$$

- ullet At points of discontinuity in f, the Fourier series takes on the average of the values either side of it.
- The Fourier series of a function f gives a **periodic extension** of the function outside the interval (-p, p).