

Atividade Avaliativa 4 Cálculo II

1. (2,0) p. Transforme de Coordenadas Polares para Coordenadas Cartesianas:

a)
$$P = \left(3, \frac{7\pi}{6}\right)$$
 e $Q = \left(2, -\frac{\pi}{3}\right)$ c) $r = \frac{4}{3 - 2 \cos(\theta)}$

c)
$$r = \frac{4}{3 - 2 Cos(\theta)}$$

b)
$$R = \left(\sqrt{2}, -\frac{3\pi}{4}\right)$$
 e $S = \left(-4, \frac{2\pi}{3}\right)$ d) $r^2 \cos(2\theta) = 10$

d)
$$r^2 Cos(2 \theta) = 10$$

2. (2,0) p. Transforme de Coordenadas Cartesianas para Coordenadas Polares:

a)
$$P = (-2, -2\sqrt{3})$$
 e $Q = (-1, 1)$ c) $x^2 - y^2 = 16$

c)
$$x^2 - y^2 = 16$$

b)
$$R = (-\sqrt{3}, 1)$$
 e $S = (-1, \sqrt{3})$

d)
$$y = \frac{2x}{x^2 + 1}$$

3. (2,0) p. Considere a curva polar: $r^2 = 16 Cos(2 \theta)$

- a) Identifique a curva pelo seu nome, faça um estudo da curva (Simetria e Assítotas) e faça o esboço da curva.
- b) Calcule a área contida dentro da curva.

4. (2,0) p. Considere a curva polar: $r = -4 Sen(3 \theta)$

a) Identifique a curva pelo seu nome, faça um estudo da curva (Simetria e Assítotas) e faça o esboço da curva.

b) Calcule a área contida dentro da curva.

Universidade Federal de Roraima - UFRR Centro de Ciências e Tecnologia - CCT Departamento de Matemática - DMAT

- 5. (2,0) p. Considere as curvas polares: $\begin{cases} r = -2 \\ r = 4 \ Sen(2 \ \theta) \end{cases}$
- a) Faça um desenho de ambas curvas em um único plano polar, identifque-as pelo seu nome e calcule os pontos de intersecção.
- b) Calcule a área contida dentro da curva $r = 4 Sen(2 \theta)$ e fora da curva r = -2.

QUE JESUS OS ILUMINE!!!