Digital Signal Processing:

Part II

Professor Guan Cun Tai
School of Computer Science and Engineering

DSP: Part II

Lecture.1.1

Sampling and Reconstruction

Major Concepts in Part II

- Sampling and Reconstruction
- Digital Filters—FIR and IIR

Methodology/Logic for Sampling and Reconstruction

- A. Overview of sampling
- B. Sampling theorem & aliasing
- C. A mathematical model of sampling in frequency domain
- D. Reconstruction
- E. Discrete time processing of continuous time signals
- F. Up and down sampling
- G. Quantization

A. Why Sampling?

- In order to process analog signals digitally, three steps are involved:
 - Digitization: sampling (digitization of time axis) and quantization (digitization of amplitude axis); also known as Analog-to-Digital Conversion (A/D).
 - Processing: Digital samples are processed by a digital signal processor.
 - Reconstruction: Resultant digital signal is converted back into analog form by an analog reconstructor also known as *Digital-to-Analog Conversion* (D/A)
- Illustration in the next slide

A. Block diagram of a DSP system (3 steps)

- A/D (Analog/Digital) converts analog signal to discrete sequence using sampling rate F_s.
- A discrete time system processes the signal in the digital domain.
- D/A (Digital/Analog) converts the digital signal y[n] back to analog signal y(t) using F_s as a parameter.

B. Sampling Theorem & Aliasing

Nyquist Theorem

We can digitally represent only (analog) frequencies up to half the sampling rate

The sampling frequency should be at least twice the highest frequency contained in the signal

- Example:
 - CD recording with $F_s = 44,100$ Hz Maximum captured frequency = $F_s/2 = 22,050$ Hz
 - Telephone recording with $F_s = 8000 \text{ Hz}$ Maximum captured frequency = $F_s/2 = 4000 \text{ Hz}$

B. Terminologies

 The maximum (analog) frequency that can be reconstructed correctly (i.e., without aliasing) by a certain sampling rate is called Nyquist frequency

Nyquist frequency = ½ Sampling rate

 The Nyquist rate is the minimum sampling rate in order to represent digitally, an analog signal with maximum frequency F_{max}

Nyquist rate $(F_s) > 2 \times F_{max}$

- A signal is
 - under-sampled if sampled below the Nyquist rate
 - critically sampled if sampled at Nyquist rate!
 - over-sampled if sampled higher than the Nyquist rate

Sampling of Signal - over-sampled

Frequency of signal $f_{SIG} = 1 \text{ KHz}$

- 1 cycle in 1 msec
- Sampling frequency f_S = 12 KHz
- 12 samples in 1 msec

Ratio: $f_S/f_{SIG} = 12/1 = 12$

Sampling of Signal - over-sampled

(fewer samples per cycle)

Frequency of signal $f_{SIG} = 1 \text{ KHz}$

Sampling frequency $f_S = 6$ KHz (6 samples in 1 msec)

Observed frequency = 1 KHz (correct)

Ratio: $f_{S}/f_{SIG} = 6/1 = 6$

Sampling of Signal - over-sampled

(further reduced in samples per cycle)

Frequency of signal $f_{SIG} = 2 \text{ KHz}$

- 2 cycles in 1 msec
- Sampling frequency $f_S = 6 \text{ KHz}$
- 6 samples in 1 msec

Observed frequency = 2 KHz (correct)

Ratio: $f_{S}/f_{SIG} = 6/2 = 3$

Sampling of Signal - critically sampled

Frequency of signal f_{SIG} = 3 KHz

• (3 cycles in 1 msec)

Sampling frequency f_S = 6 KHz

Observed frequency = 3KHz (correct)

Ratio: $f_{S}/f_{SIG} = 6/3 = 2$

Minimum Sampling Frequency - critically sampled

Frequency of signal $f_{SIG} = 3$ KHz (3 cycles in 1 msec) Sampling frequency $f_{S} = 6$ KHz (6 samples in 1 msec)

Observed frequency = 3KHz

i.e. correct frequency but wrong amplitude & phase.

Ratio: $f_S/f_{SIG} = 6/3 = 2$

Minimum Sampling Frequency - critically sampled

Frequency of signal $f_{SIG} = 3$ KHz Sampling frequency $f_{S} = 6$ KHz

Observed frequency = 0Hz!

Ratio: $f_S/f_{SIG} = 6/3 = 2$

conclusion

- Nyquist sampling rate: the necessary (but not the sufficient) condition for signal reconstruction
 - It is desirable to use a sampling rate $F_s > 2*F_{max}$ (instead of $F_s = 2*F_{max}$).

Sampling of Signal - under-sampled

Frequency of signal $f_{SIG} = 4$ KHz (4 cycles in 1 msec)

Sampling frequency $f_S = 6$ KHz (6 samples in 1 msec)

Observed frequency = 2 KHz! (wrong!)

Ratio: $f_S/f_{SIG} = 6/4 = 1.5$

Sampling of Signal - under-sampled

Frequency of signal $f_{SIG} = 7 \text{ KHz}$ (7 cycles in 1 msec)

Sampling frequency f_S = 6 KHz (6 samples in 1 msec)

Observed frequency = 1KHz (wrong)

Ratio: $f_S/f_{SIG} = 6/7 = 0.86$

B. Aliasing

- What happens when sampling rate is too slow?
 - The frequency of reconstructed signal will be not the same as frequency of original signal → ALIASING phenomenon

B. Effect of Aliasing

- An aliased signal provides a poor representation of the analog signal
- Aliasing is an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled.
- Aliasing causes false frequency component to appear in the reconstructed signal (as examples above and to be further explored next)

B. Avoid Aliasing

- Approach 1: Increasing sampling rate at least twice the highest frequency component in the signal regarding to Nyquist theorem
- Approach 2: Use an anti-aliasing analog lowpass filter before the A/D converter to remove frequencies higher than the Nyquist frequency

Ideal Anti-alias Filter:

- F₁ is maximum input frequency
- Frequencies < F₁ are desired frequencies
- Frequencies > F₁ are undesired frequencies

B. Avoid Aliasing

The block diagram of a DSP system with a prefilter to avoid aliasing

Signal is pre-filtered to limit highest frequency –
band-limiting the signal so that A/D conversion would not have
aliasing. Pre-filter is a typically a Low Pass filter with cutoff freq
uency = ½ Fs

C. A mathematical model of sampling in frequency domain

 A sampling model: input is continuous signal and output is a sequence of discrete time samples

C. Sampling in frequency domain

• Multiply in time between input and impulse train period T_s

C. Sampling impulse train

Periodic Impulse Signal

- Recap:
 - Fourier transform $F(\Omega)$ of real function f(t):

$$F(\Omega) = \int_{-\infty}^{\infty} f(x)e^{-j\Omega t}dt \qquad \text{(or } F(j\Omega)\text{)}$$

Fourier series of a periodic signal

$$f(t)=\sum_{k=-\infty}^{\infty}c_ke^{jk\Omega_St}$$
 which $c_k=\frac{1}{T_S}\int_{-T_S/2}^{T_S/2}f(t)e^{-jk\Omega_St}$ and $\Omega_S=2\pi/T_S$

C. Sampling pulse train

Fourier Transform of a periodic impulse train

Fourier Transform of a periodic impulse train is a periodic impulse train

$$S(j\Omega) = \frac{2\pi}{T_S} \sum_{k=-\infty}^{\infty} \delta(\Omega - k \frac{2\pi}{T_S})$$
(can be proved)

$$\Omega_s(rad/sec) = 2\pi/T_s$$

C. Sampled signal in Frequency domain

Fourier Transform of sampled signal

In a case where we do not know the spectrum, we can specify as this in general.

Using $f_1(t)f_2(t) \stackrel{Fourier}{\longleftrightarrow} \frac{1}{2\pi}F_1(\omega)^*F_2(\omega)$

Show that
$$X_s(j\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$
 in the previous slide.

TABLE 5.1 Fourier Transform Properties

Operation	Time Function	Fourier Transform
Linearity	$af_1(t) + bf_2(t)$	$aF_1(\omega) + bF_2(\omega)$
Time shift	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
Time scaling	f(at)	$\frac{1}{ a } F\left(\frac{\omega}{a}\right)$
Time transformation	$f(at-t_0)$	$\frac{1}{ a } F\left(\frac{\omega}{a}\right) e^{-j\omega t_0/a}$
Duality	F(t)	$2\pi f(-\omega)$
Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
Convolution	$f_1(t)*f_2(t)$	$F_1(\omega)F_2(\omega)$
	$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)^*F_2(\omega)$
Differentiation	$\frac{d^{n}[f(t)]}{dt^{n}}$	$(j\omega)^n F(\omega)$
	$(-jt)^n f(t)$	$\frac{d^{n}[F(\omega)]}{d\omega^{n}}$
Integration	$\int_{-\infty}^{\iota} f(au) d au$	$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)$

C. Sampled impulse train to discretetime sequence

Recap: C/D Block

C. Sampled impulse train to discrete-time sequence

Example:

Given the continuous time signal $x_a(t)$ is sampled at $F_s = 1/T_s$

$$x_a(t) = A \sin(2\pi F t) = A \sin(\Omega t)$$

Sampling sequence:

$$x[n] = A \sin(2\pi F nT_s)$$

$$= A \sin\left(2\pi \frac{F}{F_s} n\right)$$

$$= A \sin\left(\frac{\Omega}{F_s} n\right)$$

$$= A \sin(\omega n)$$

What is the difference between F, Ω and ω ?

Description	Notation	Unit
Continuous signal	$x_a(t)$	
Sampled signal	$x_a(nT)$	
Discrete-time signal	x[n] or $x(n)$	
Analog frequency	F	Hz
Analog frequency	$\Omega = 2\pi F$	rad/sec
Digital Frequency	$\omega = \frac{2\pi F}{F_S}$	rad/sam ple
FT of $x_a(t)$	$X_a(\Omega)$ or $X_a(G)$	(Ω)
DTFT of $x(n)$	$X(e^{j\omega})$ or $X(e^{j\omega})$	

C. Sampled impulse train to discrete-time sequence

• Spectrum of sampled impulse train $x_s(t)$ and discrete-time sequence x(n) $X_s(j\Omega)$

Note: the change in x-axis from Ω to ω can be considered as a change signal x(t) from x(t) to x(at) where a == Fs. The y-axis scale remains the SAME.

C. Effect of sampling rate on discrete-time signal

C. Sampling Frequency Effect on Reconstruction

Filter away replicated frequencies

Compare with original signal (in time & frequency domain)

Observation: Sampling at an insufficient rate precludes perfect reconstruction and introduces aliasing

C. Example: A single sine wave example of without & with aliasing

Given a sine wave with amplitude A at frequency Ω_0 , Its frequency representation $X_c(j\Omega)$ is given on the left.

D. Reconstruction

Recap: a DSP system

 Reconstruction: given a discrete signal y[n], we wish to get back continuous time signal y(t)

- E.g, play mp3 files into the speaker
- One of functions of the sound card

Assuming the D/C is a perfect re-constructor, i.e., it has an ideal LPF with cut-off frequency Ω = πF_S (1/2 sampling frequency in radian/sec), then the LPF basically removes all replicas of Y($j\Omega$) above Ω = π F_S . In the time domain, the LPF interpolates to smooth the discrete sequence into a continuous sequence.

D. Ideal Reconstruction from a continuous time sampled sequence

D. Ideal reconstruction of a band-limited signal from its samples

Ideal low pass filter

Frequency domain

Note: you should be able to derive these FT pair.

Time domain

Note: the x-axis above is continuous time.

Ideal Low pass filter impulse response

$$h_r(t) = \frac{\sin\left(\frac{\pi t}{T_s}\right)}{\left(\frac{\pi t}{T_s}\right)}$$

D. More on the ideal reconstruction of a band-limited signal from its samples

Multiply in frequency domain → Convolution in time

D. Let's examine the reconstruction filter in some detail (2 samples in the input of D/C)

The above sketch shows (blue) response due to $2\delta(0)$ and (red) due to $1\delta(t-T_s)$

The red response is the sinc function centered at $(1 T_s)$

$$h_r(t - 1T_s) = \frac{\sin\left(\frac{\pi(t - 1T_s)}{T_s}\right)}{\left(\frac{\pi(t - 1T_s)}{T_s}\right)}$$

E. Recap C/D and D/C blocks

Time	Freq
$x_c(t)$	$X_c(j\Omega)$
$x_s(t)$	$X_s(j\Omega)$
x[n]	$X(e^{j\omega})$
y[n]	$Y(e^{j\omega})$
$y_s(t)$	$Y_{S}(j\Omega)$
y(t)	$Y(j\Omega)$

- We have studied Sampling Theorem
 - If we can sample at least twice the sampling frequency, then we may reconstruct the original signal (ignoring quantization at the moment)
- We showed why we need $F_s > 2^*F_{max}$ in frequency domain. The key is to understand that sampling causes convolution of original signal spectrum with impulse train spectrum.
- To reconstruct, we pass it through an ideal LPF to remove the repeated images at the higher frequencies (multiple of F_s)

- Sampling to discrete domain
 By-product: repeated images at the higher frequencies (multiple of F_s)
- Reconstruction to remove the repeated images at the higher frequencies; also to continuous domain