CNN L convolutional Meural N/W/

Convolution + ANN, Arhitecture

1) weight Initializing Technics

key point for weight initializing

- (b) weight should be small (b) weight should not be same
- @ weight should have good variance

$$0.05$$
 0.06 0.07

0.05

0-15 0.1 0.05

$$\frac{\partial w_1}{\partial w_2} = \frac{\partial w_1}{\partial w_2} = \frac{\partial w_3}{\partial w_2} = \frac{\partial w_3}{\partial w_2} = \frac{\partial w_3}{\partial w_3} = \frac{\partial w_3}{\partial$$

1 Uniform Distribution -

wij
$$\approx$$
 uniform Dist- $\left[\frac{-1}{\ln 0.0f}, \frac{1}{\ln 0.0f}\right]$
 $1/p$ 1

$$= \sqrt{\frac{1}{2}} / \sqrt{\frac{1}{2}}$$

1 Xavior/ Glorot Initialization

$$O = \int \frac{2}{\sqrt{k \cdot of} + no \cdot of}$$

$$I/P \quad O/P$$

(b)
$$\times$$
 UI

wij \approx uniform $\left[-\int_{6}^{6}\right]_{1/p+0/p}$, $\frac{\int_{6}^{6}}{\int_{1/p+0/p}^{1/p+0/p}}$

$$w_{ij} \approx \lambda(0,\sigma)$$

$$w_{ij} \approx u_{ni} \left[- \frac{6}{1/p}, \frac{6}{1/p} \right]$$

$$\sigma = \sqrt{\frac{2}{no.of 1/p}}$$

In the CNN we used most of the time xavior globot initialization tech.

Dropout Layer Used to prevent
from overfilting.

PHL, = 0.5, PHL = 0.35, PHL = 6.25

epoch = In every epoch random neuron will be drop.

CNN

visual cortex -

$$(V_1 - V_5)$$

VI - primary visualization (orientantian, edges, Lines)

V2 = Diff. in color, complex recognition

V3 V4 V5

convolution operation

			_ /
+1	0	-1	
12	0	-2	-vertical edge
+1	0	-1	filter
3	×3		
			< filter

				_	\	
	1	2	1		Horizonfal	edge
4	G	0	6	†	C 111'	
	-1	-2	_1	<u> </u>	tiltei.	
•				(

stride (shift)

$$(n-t)+1 = 4$$

we have 6x6 metrics with tilter image by 3x3 metrics but getting final image by 4x4,

So we are loosing some information.

To overcome this we use another techniq called padding

3 × 3

6×6

8 x 8

6 x 6

$$n-f+2p+1=6$$
 $6-3+2p+1=6$
 $2p=6-4$

 $\mathcal{P} = 2/2 = \boxed{1}$

\Box	4	6
	6	5

Strids jump = 2

min pulling

1	12	Ī	2	Ī
3	4	4	5	I
4	5	5	4	
G	2	3	1	_

		$\overline{/}$
2	1	

Smoothning of image for its use mm and max pooling

mean pulling

-				
1	3	2	1	
3	4	3	9	
2_	1	2_	7	7
3	2	4	1	

2.9	2.9
2	2.1