CHƯƠNG 5 : DÒNG CHẢY LỚN NHẤT

Một mạng vận tải (mạng) là đồ thị G đơn giản, có trọng số.

5.1 Dòng chảy lớn nhất:

5.1.1 Định nghĩa:

Một mạng vận tải (mạng) là đồ thị G đơn giản, có trọng số, có hướng thỏa:

- Có đúng 1 đỉnh, được gọi là *nguồn*, không có cạnh vào, đỉnh **a**.
- Có đúng 1 đỉnh, được gọi là đích, không có cạnh ra,
 đỉnh z.
- Trọng số C_{ij} của cạnh có hướng (i, j), được gọi *sức* chứa, là một số không âm.
- Đồ thị G không hướng là liên thông.

Ví dụ:

-
$$F_{bj} \ge 0$$

-
$$F_{bj} \le C_{bj}$$

$$-j \not \in \{ a, z \} \Longrightarrow F_{bj} + F_{cj} = F_{jd} + F_{je} + F_{jf}$$

Ví dụ:

 $-F_{bj} \ge 0$

 $-F_{bi} \le C_{bi}$

5.1.2 Định nghĩa:

Cho G là một mạng vận tải. Một *dòng chảy F* trong G gán cho mỗi cạnh có hướng (i, j) một số không âm F_{ii} sao cho:

a)
$$F_{ij} \le C_{ij}$$
.

F_{ii} được gọi là dòng chảy trong cạnh (i, j).

b) Mỗi đỉnh j, không là nguồn hay đích,

$$\sum_{i} F_{ij} = \sum_{i} F_{ji} \tag{1}$$

[Nếu (i, j) ∉ E ta cho F_{ii} = 0]

Đẳng thức (1) được gọi là sự bảo toàn của dòng chảy.

5.1.3 Định lý: Cho F là dòng chảy trong G. Ta có

$$\sum_{i} F_{ai} = \sum_{i} F_{iz}$$

Giá trị $\sum_i F_{iz}$ được gọi là giá trị của dòng chảy F.

5.1.4 Định nghĩa: Cho G là mạng xét một đường đi không hướng

$$P = (v_0, v_1, ..., v_n), v_0 = a, v_n = z.$$

Nếu e trong P được định hướng từ v_{i-1} đến v_i (theo G)ta nói e được **định hướng đúng đối với P**, ngược lại e là **không định hướng đúng đối với P**.

5.2 Thuật toán tìm dòng chảy lớn nhất – Thuật toán đánh nhãn:

Input: $a=v_0$, v_1 , ..., $v_n = z$.

- 1. $F_{ij} = 0$, với $(i, j) \in E$.
- 2. Gán nhãn $(, \infty)$ cho a.
- 3. Nếu z đã được gán nhãn, GOTO bước 6.
- 4. Chọn đỉnh v_i , *đã gán nhãn*, chưa duyệt, với chỉ số i bé nhất. Nếu không có v_i như vậy thì STOP (F là

dòng chảy lớn nhất); ngược lại, $v = v_i$ (v_i đã duyệt).

- 5. Gọi (α, Δ) là nhãn của v. Duyệt mỗi cạnh có dạng (v, w), (w, v) [theo thứ tự (v, v_0) , (v_0, v) , (v, v_1) , (v_1, v) , ...], với w **chưa có nhãn**.
- Với cạnh dạng (v, w), Nếu F_{vw} < C_{vw} , gán nhãn cho w là (v, min{ Δ , C_{vw} F_{vw} }) . Nếu F_{vw} = C_{vw} , không gán nhãn cho w.

- Với cạnh dạng (w, v), nếu $F_{wv} > 0$, gán nhãn cho w là (v, min{ Δ , F_{wv} }) . Nếu $F_{wv} = 0$, không đánh nhãn w.

GOTO bước 3.

6. Gọi (γ, Δ) là nhãn của z. Gán $w_0 = z$, $w_1 = \gamma$. Nếu nhãn của w_i là (γ', Δ') , gán $w_{i+1} = \gamma'$. Tiếp tục cho đến khi $w_k = a$. Ta có

P:
$$a = w_k, w_{k-1}, ..., w_1, w_0 = z$$

là một đường đi từ a đến z.

- Thay đổi dòng chảy ở mỗi cạnh trong P như sau: Nếu cạnh e trong P là định hướng đúng tăng dòng chảy của e lên Δ ; ngược lại giảm dòng chảy của e Δ .
- Xóa các nhãn của các đỉnh.
- GOTO bước 2.

Ví dụ 1: Các đỉnh sắp theo thứ tự a, b, c, d, e, z.

Bước	V	а	b	С	d	е	Z
2		(,∞)					
4	а		(a, 3)		(a,5)		
4	b			(b, 2)			
4	С						(c, 2)
2		(,∞)					

Fab	Fad	Fbc	Fdc	Fde	Fcz	Fez
2	0	2	0	0	2	0

Ví dụ 2: Các đỉnh sắp theo thứ tự a, b, c, d, e, f, z.

5.3 Bài toán ghép đôi:

- **5.3.1 Định nghĩa :** Cho G = (V, E) là đồ thị có hướng, lưỡng phân với hai tập đỉnh V và W rời nhau. Mỗi cạnh hướng từ V đến W.
- Một ghép đôi trong G là một tập E' ⊆ E các cạnh không có đỉnh chung.
- Một ghép đôi lớn nhất trong G là một ghép đôi E' với số cạnh lớn nhất.
- Một ghép đôi đầy đủ trong G là ghép đôi E với tính chất nếu v ∈ V thì có w ∈ W, cạnh (v, w) ∈ E'.

Ví dụ: Tìm một ghép đôi của đồ thị sau:

Giải:

- Gán mỗi cạnh sức chứa bằng 1.
- Thêm nguồn, đích.

Đồ thị vừa được xây dựng được gọi là **matching network**.

- 5.3.2 Định lý: Cho G có hướng, lưỡng phân với hai tập đỉnh V và W rời nhau, cạnh hướng từ V tới W.
- a) Một dòng chảy trong matching network cho một ghép đôi trong G. $v \in V$ ghép với $w \in W$ khi và chỉ khi dòng chảy trong cạnh (F_{vw}) bằng 1.

 b) Một dòng chảy lớn nhất tương ứng với một ghép đôi lớn nhất.

c) Một dòng chảy có giá trị bằng |V| tương ứng với một ghép đôi đầy đủ.

Tài liệu tham khảo:

- 1. Discrete Mathematics, Richard Johnsonbaugh
- 2. Algorithms, Thomas h. Cormen
- 3. Toán Rời Rạc Nâng Cao, Trần Ngọc Danh, ĐHQG TP HCM
- 4. Lý Thuyết Đồ Thị, Đặng Trường Sơn, Lê văn Vinh, ĐHSP Kỹ Thuật TP HCM