Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Table des matières

Ι	Algèbre					
1	Str	ucture	de groupe	11		
	1.1	Préser	ntation	11		
		1.1.1	Exemple préliminaire	11		
		1.1.2	Définition générale	11		
		1.1.3	Exemples usuels	12		
		1.1.4	Compléments	12		
		1.1.5	Notations	13		
		1.1.6	Autres remarques	14		
	1.2	Sous-g	groupes	14		
		1.2.1	Définition	14		
		1.2.2	Caractérisations	15		
		1.2.3	Exemples usuels	15		
		1.2.4	Propriétés	15		
	1.3	Morph	nismes de groupes	16		
		1.3.1	Définition	16		
		1.3.2	Exemples usuels	16		
		1.3.3	Propriétés	16		
2	Str	ucture	d'anneau et de corps	17		
	2.1		cure d'anneau	18		
		2.1.1	Présentation	18		
		2.1.2	Propriétés	18		
		213	•	18		

	2.2	Struct	cure de corps	18
		2.2.1	Définition	18
		2.2.2	Exemples usuels	18
		2.2.3	Propriétés	18
		2.2.4	Sous-corps	18
3	Cor	ps des	nombres réels	19
	3.1	Génér	alités	20
	3.2	Borne	supérieure ou inférieure d'une partie de $\mathbb R$	20
		3.2.1	Définition	20
		3.2.2	Existence-unicité	20
		3.2.3	Mise en garde	20
		3.2.4	Caractérisation	20
	3.3	Valeur	rs approchées d'un réel à α près (où $\alpha \in \mathbb{Q}^{*+}$)	20
		3.3.1	Résultat et définition	20
		3.3.2	Cas où $\alpha = 1$	20
		3.3.3	Cas où $\alpha = \frac{1}{10^n} (n \in \mathbb{N})$	20
	3.4	Densit	té	20
		3.4.1	Définitions	20
		3.4.2	Caractérisation	20
		3.4.3	Compléments	20
4	Cor	ps des	nombres complexes	21
	4.1	Conju	gaison	21
		4.1.1	Définition	21
		4.1.2	Propriétés	21
	4.2	Modu	le	21
		4.2.1	Définition	21
		4.2.2	Propriétés	22
		4.2.3	Nombres complexes de module 1	22
	4.3	Forme	e trigonométrique	23
		4.3.1	Définition	23
		4.3.2	Premiers exemples	23

		4.3.3	Relations entre forme algébrique et trigonométrique	23
		4.3.4	Formules diverses	23
		4.3.5	Interprétation géométrique	23
	4.4	Équat	$z^n = a \text{ (où } n \in \mathbb{N}^*, a \in \mathbb{C}^*) \dots \dots \dots$	23
		4.4.1	Résolution	23
		4.4.2	1^{er} cas parrticulier : racines n'emes de l'unité	23
		4.4.3	Cas particulier des racines carrées d'un complexe	23
	4.5	Tradu	action complexe de transformations géométriques	23
		4.5.1	Symétries	23
		4.5.2	Translations	23
		4.5.3	Homothéties	23
		4.5.4	Rotations	23
		4.5.5	Similitudes directes	23
	4.6	Expor	nentielle complexe	23
		4.6.1	Définition	23
		4.6.2	Propriétés	23
_				
5			$\mathbb{K}[X]$ des polynômes à une indéterminée à coefficients corps \mathbb{K}	25
	5.1		ntation	26
		5.1.1	Définitions	26
		5.1.2	Opérations sur les polynômes	26
		5.1.3	Propriétés	26
		5.1.4	Structures	26
		5.1.5	Composée	26
	5.2		Composée	
	5.2		on euclidienne dans $\mathbb{K}[X]$	26
	5.2	Divisi	on euclidienne dans $\mathbb{K}[X]$	
	5.2	Divisi 5.2.1	on euclidienne dans $\mathbb{K}[X]$	26 26
	5.2	Divisi 5.2.1 5.2.2 5.2.3	on euclidienne dans $\mathbb{K}[X]$	26 26 26
		Divisi 5.2.1 5.2.2 5.2.3	on euclidienne dans $\mathbb{K}[X]$	26 26 26 26

		5.3.3	Polynômes premiers entre eux	26
		5.3.4	PPCM dans $\mathbb{K}[X]$	26
	5.4	Zéros	(ou racines) d'un polynôme $\dots \dots \dots \dots$	26
		5.4.1	Définitions	26
		5.4.2	Relation entre les racines et le degré d'un polynôme	26
		5.4.3	Polynôme dérivé	26
		5.4.4	Caractérisation d'un zéro d'ordre n	26
	5.5	Polyno	ômes irréductibles	26
		5.5.1	Présentation	26
		5.5.2	Décomposition générale	26
		5.5.3	Dans $\mathbb{C}[X]$	26
		5.5.4	Dans $\mathbb{R}[X]$	26
		5.5.5	Pratique de la décomposition en facteurs irréductibles	26
	5.6	Dolo#:	dans $\mathbb{R}[X]$	
	5.0	5.6.1	ons coefficients-racines	
			Données du problème	
		5.6.2	Résolution	
		5.6.3	Appplications	26
6	Frac	ctions	rationnelles	27
	6.1	Préser	ntation	28
		6.1.1	Définition	28
		6.1.2	Opérations	28
		6.1.3	Forme irréductible	28
	6.2	Décon	aposition en éléments simples de $F = \frac{A}{B}$ (irréductible)	28
		6.2.1	Première étape : partie entière	28
		6.2.2	Deuxième étape : décomposition de $\frac{R}{B}$	28
		6.2.3	Troisième étape : généralisation	28
		6.2.4	Conséquence	28
		6.2.5	Quatrième étape : décomposition de $\frac{R}{P^{\alpha}}$	28
		6.2.6	Conclusion	28
	6.3	Décon	aposition dans $\mathbb{C}(X)$	28

TI	ABLE	DES N	MATTERES	7
		6.3.1	Forme a priori	28
		6.3.2	Détermination pratique des λ, μ	28
		6.3.3	Exemple usuel particulier	28
		6.3.4	Exemple usuel général	28
	6.4	Dans l	$\mathbb{R}(X)$	28
		6.4.1	Forme a priori	28
		6.4.2	Détermination pratique des λ, α, β	28
		6.4.3	Exemple usuel	28
	6.5	Applio	eation principale : calculs de primitive de fonctions ra-	
		tionell		28
		6.5.1	Définition	28
		6.5.2	Méthode pour primitiver $f(x) = \frac{P(x)}{Q(x)} \in \mathbb{R}(x)$	28
			-	
7	C			20
7		- 0	zmétrique	29
7	Gro 7.1	Préser	ntation	30
7		- 0	-	
7		Préser	ntation	30
7		Préser 7.1.1 7.1.2	ntation	30 30
7	7.1	Préser 7.1.1 7.1.2	Définitions	30 30 30
7	7.1	Préser 7.1.1 7.1.2 Éléme	Définitions	30 30 30 30
7	7.1	Préser 7.1.1 7.1.2 Éléme 7.2.1 7.2.2	Définitions	30 30 30 30 30
7	7.1	Préser 7.1.1 7.1.2 Éléme 7.2.1 7.2.2	Définitions	30 30 30 30 30 30
7	7.1	Préser 7.1.1 7.1.2 Éléme 7.2.1 7.2.2 Signat	Définitions	30 30 30 30 30 30
7	7.1	Préser 7.1.1 7.1.2 Éléme 7.2.1 7.2.2 Signat 7.3.1	tation	30 30 30 30 30 30 30
7	7.1	Préser 7.1.1 7.1.2 Éléme 7.2.1 7.2.2 Signat 7.3.1 7.3.2	tation	30 30 30 30 30 30 30 30

Première partie Algèbre

Structure de groupe

1.1 Présentation

1.1.1 Exemple préliminaire

L'ensemble \mathbb{Z} pour l'addition + est tel que :

- 1. $\forall x, y \in \mathbb{Z}$
- 2. $\forall x, y, z \in \mathbb{Z}, (x + y) + z = x + (y + z)$
- 3. $\forall x \in \mathbb{Z}, x + 0 = 0 + x = x$
- 4. $\forall x \in \mathbb{Z}, x + (-x) = (-x) + x = 0$
- 5. et de plus $\forall x, y \in \mathbb{Z}, x + y = y + x$

Ainsi $(\mathbb{Z}, +)$ est un groupe abélien / groupe commutatif.

1.1.2 Définition générale

Soit un ensemble G muni d'une loi *. Dès lors, (G,*) a une structure de groupe si et seulement si :

- 1. * est une Loi de Composition Interne (LCI) sur G. C'est-à-dire $\forall x,y \in G, x*y \in G$.
- 2. * est associative. C'est-à-dire $\forall x, y, z \in G, (x * y) * z = x * (y * z).$
- 3. G a un élément neutre e pour *. $\exists e \in G$ tel que $\forall x \in G, x*e = e*x = x$.
- 4. Tout élément de G a un symétrique dans G. $\forall x \in G, \exists x' \in G$ tel que x*x'=x'*x=e.

Si, de plus, * est commutative sur G, c'est-à-dire $\forall x, y \in G, x * y = y * x$, alors G est un groupe commutatif (ou abélien).

Remarques concernant la définition :

- a) attention à la place des quantificateurs : pour l'élément neutre (3.) c'est \exists puis \forall et pour le symétrique c'est \forall puis \exists .
- b) attention aux 2 égalités dans la définition de l'élément neutre et des symétriques d'un élément car * ne commute pas forcément.

1.1.3 Exemples usuels

Ensembles de nombres

 $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+),(\mathbb{Q}^*,+),(\mathbb{R}_+^*,\times),(\mathbb{R}^*,\times),(\mathbb{C}^*,\times)$ Sont tous des groupes commutatifs.

Ensemble des bijections

Soit E un ensemble et $\mathcal{B}(E)$ l'ensemble des bijections de E vers E.

$$(\mathscr{B}(E), \circ)$$
 est un groupe non commutatif.

Le neutre pour \circ est : Id_E et le symétrique de f pour \circ est f^{-1}

Ensemble des parties

Soit E un ensemble et $\mathscr{P}(E)$ l'ensemble des parties de E.

$$(\mathscr{P}(E), \Delta)$$
 est un groupe commutatif.

Le neutre pour Δ est : \emptyset car $\forall A \subset E : A\Delta\emptyset = \emptyset\Delta A = A$ Et le symétrique de A pour Δ est A car $A\Delta A = \emptyset$

1.1.4 Compléments

Unicité

Sont uniques l'élément neutre et le symétrique de tout élément.

Formules concernant le symétrique

a) $\forall x, y \in G : (x * y)' = y' * x'$ (avec 'pour symétrique) Attention à l'ordre car le groupe n'est pas forcément commutatif. b) $\forall x \in G(x')' = x$

Régularité de tout élément

$$\forall x,y,z \in G: \boxed{x*z=y*z \implies x=y \text{ et } z*x=z*y \implies x=y}$$

Ainsi on traduit que tout élément z est régulier dans le groupe (G, *) c'est à dire dans un groupe, on peut "simplifier par tout élément".

13

Plus généralement : résolution d'équation

$$\forall x, y, z \in G : x * y = z$$
 $\implies x' * (x * y) = x' * z$
 $\implies (x' * x) * y = x' * z \text{ car }^* \text{ est associative}$
 $\implies e * y = x' * z \text{ car } x' \text{ est symétrique de x pour }^*$
 $\implies y = x' * z \text{ car e neutre pour }^*$

Dans un groupe : tout élément peut, dans une égalité, "passer dans l'autre membre" sous la forme de son symétrique ... en tenant compte de l'ordre car * ne commute pas forcément.

1.1.5 Notations

En pratique, un groupe est noté : (G, +), même si + n'est pas l'addition classique (notation <u>additive</u>) ou (G, \cdot) , même si · n'est pas la multiplication classique (notation multiplicative) On définit alors :

En notation additive

$$\forall x \in G, \forall n \in \mathbb{Z}$$

- 1. si n = 0: $0x = 0_G$ neutre de G pour +.
- 2. si $n \in \mathbb{N}^*$: $nx = x + x + \cdots + x$ (n fois).
- 3. $\underline{\text{si } n \in \mathbb{Z}_{-}^{*}} : nx = (-x) + \cdots + (-x)$ (-n fois) où -x est le symétrique de x pour +.

En notation multiplicative

Les puissances d'un selon : $\forall x \in G, \forall n \in \mathbb{Z}$

- 1. $\underline{\text{si } n=0}: x^0=1_G \text{ neutre de } G \text{ pour } \cdot .$
- 2. si $n \in \mathbb{N}^*$: $x^n = x \cdot x \cdot \cdots \cdot x$ (n fois).
- 3. $\underline{\text{si } n \in \mathbb{Z}_{-}^{*}} : x^{n} = (x^{-1}) \cdot \cdots \cdot (x^{-1})$ (-n fois) où x^{-1} est le symétrique de x pour \cdot .

Propriétés des multiples d'un élément

$$\forall x \in G, \forall m, n \in \mathbb{Z}$$

- 1. (m+n)x = mx + nx (additivité classique dans \mathbb{Z} qui devient une loi de groupe sur G)
- 2. -(nx) = (-n)x = n(-x) (-n est l'opposé classique dans \mathbb{Z} et (-x) symétrique de x dans G)
- 3. $m(nx) = (m \times n)x$ (× produit classique dans \mathbb{Z} et loi de groupe sur G)

Propriétés des puissances d'un élément

 $\forall x \in G, \forall m, n \in \mathbb{Z}$

- $1. \ x^{m+n} = x^m \cdot x^n$
- 2. $(x^m)^{-1} = (x^{-1})^m = x^{-m}$
- 3. $x^{mn} = (x^m)^n = (x^n)^m$

1.1.6 Autres remarques

Concernant les propriétés des puissances ou des multiples précédents

Parmis toute les propriétés citées, on a pas cité $(x \cdot y)^n = x^n \cdot y^n$ car c'est faux si · ne commute pas forcément. $(x \cdot y)^n = (x \cdot y) \cdot (x \cdot y) \cdot ... \cdot (n \text{ fois}) \cdot (x \cdot y)$ $\neq x^n \cdot y^n = x \cdot ... \cdot (n \text{ fois}) \cdot x \cdot y \cdot ... \cdot (n \text{ fois}) \cdot y$

Concernant les produits cartésien de groupes

Soit (G, +) et (G', \cdot) 2 groupes. $G \times G'$ est un groupe pour * tel que $(x, x')^*(y, y') = (x + y, x' \cdot y')$.

Le neutre de G \times G' pour * est : $(0_G, 1_{G'})$.

Le symétrique de (x, x') dans $G \times G'$ pour * est : $(-x, x'^{-1})$

1.2 Sous-groupes

1.2.1 Définition

Soit (G,\cdot) un groupe et $H\subset G$, H est un sous-groupe de G pour \cdot si et seulement si la restriction de \cdot avec les éléments de H est muni d'une structure de groupe

15

1.2.2 Caractérisations

Remarque : Dans la majorité des cas dans la suite on montrera que (H, \cdot) est un groupe en montrant que c'est un sous-groupe d'un groupe usuel.

1.2.3 Exemples usuels

Exemple général

Les puissances d'un élément.

Soit (G, \cdot) un groupe et $a \in G$, $H = \{a^z \mid z \in \mathbb{Z}\}$ est un sous-groupe de G pour \cdot .

Les multiples d'un élément.

Soit (G, +) un groupe et $a \in G$, $H = \{za \mid z \in \mathbb{Z}\}$ est un sous-groupe de G pour +.

Exemples particuliers

$$(\mathbb{U}, \times)$$
est un groupe. Car sous-groupe de (\mathbb{C}^*, \times) $(\mathbb{U}n, \times)$ est un groupe. Car sous-groupe de (\mathbb{C}^*, \times)

Sous-groupes de $(\mathbb{Z},+)$

Les sous-groupes de $\mathbb Z$ pour + sont les ensembles de la forme $n\mathbb Z=nz\mid z\in\mathbb Z$

1.2.4 Propriétés

Intersection

"Toute intersection de sous-groupes est un sous-groupe."

Soit (G, \cdot) un groupe. $(H_i)_{i \in \Delta}$ une famille de sous-groupes de G pour \cdot . Alors $H = \bigcap_{i \in \Delta} H_i$ est un sous-groupe de G pour \cdot .

Faux pour la réunion ∪

a) contre-exemple : dans (Z, +)

Soit
$$H_1 = 2\mathbb{Z} = \{2z \mid z \in \mathbb{Z}\} \text{ et } H_2 = 3\mathbb{Z} = \{3z \mid z \in \mathbb{Z}\}.$$

Mais $H = 2\mathbb{Z} \cup 3\mathbb{Z}$ n'est pas un sous-groupe de \nvDash pour + car :

$$2 \in 2\mathbb{Z} \subset 2\mathbb{Z} \cup 3\mathbb{Z} = H \text{ et } 3 \in 3\mathbb{Z} \subset 2\mathbb{Z} \cup 3\mathbb{Z} = H$$

Mais
$$2+3=5 \notin H$$

b) "sous conditions"

Soit G_1, G_2 sous groupes de G pour \cdot .

$$G_1 \cup G_2$$
 est un sous-groupe de G pour $\cdot \Leftrightarrow G_1 \subset G_2$ ou $G_2 \subset G_1$

1.3 Morphismes de groupes

- 1.3.1 Définition
- 1.3.2 Exemples usuels
- 1.3.3 Propriétés

Structure d'anneau et de corps

2.1 Structure d'anneau

2.1.1 Présentation

Exemple préliminaire

Définition générale

Notations

Intégrité

Exemples usuels

2.1.2 Propriétés

Élément absorbant

Ensemble des inversibles

"Opposé" d'un produit

Loi "soustraction"

Formule du binôme de Newton

Formule de factorisation

2.1.3 Sous-anneau

Caractérisation

Exemple usuel : sous-anneau des décimaux

2.2 Structure de corps

- 2.2.1 Définition
- 2.2.2 Exemples usuels
- 2.2.3 Propriétés

Intégrité

Commutativité

2.2.4 Sous-corps

Corps des nombres réels

- 3.1 Généralités
- 3.2 Borne supérieure ou inférieure d'une partie de \mathbb{R}
- 3.2.1 Définition
- 3.2.2 Existence-unicité

Existence

Unicité

- 3.2.3 Mise en garde
- 3.2.4 Caractérisation
- 3.3 Valeurs approchées d'un réel à α près (où $\alpha \in \mathbb{Q}^{*+}$)
- 3.3.1 Résultat et définition
- **3.3.2** Cas où $\alpha = 1$
- **3.3.3** Cas où $\alpha = \frac{1}{10^n} (n \in \mathbb{N})$

Énoncé

Convergence

3.4 Densité

3.4.1 Définitions

Intervalle

Densité

3.4.2 Caractérisation

Générale

Plus précisément

ъ

Corps des nombres complexes

4.1 Conjugaison

4.1.1 Définition

4.1.2 Propriétés

Formules

iiiiiiii HEAD
$$\forall z \in \mathbb{C}, \ z + \bar{z} = 2\text{Re}(z), \ z - \bar{z} = 2i\text{Im}(z)$$

Caractérisation

$$z \in \mathbb{R} \Leftrightarrow z = \bar{z}$$

$$z \in i\mathbb{R} \Leftrightarrow z = -\bar{z}$$
(4.1)

Caractérisation

======

Pratique

Quand un nombre complexe est écrit au dénominateur, on le multiplie par son conjugué.

4.2 Module

4.2.1 Définition

 $\forall z \in \mathbb{C}$, le module de z est $|z| = \sqrt{z\overline{z}}$

Pratique

Pour
$$z = a + ib$$
, on a $|z| = \sqrt{a^2 + b^2}$

Lien avec la valeur absolue

Le module dans \mathbb{C} prolonge la valeur absolue dans \mathbb{R} .

4.2.2 Propriétés

Diverses

$$\forall z \in \mathbb{C}, |z| \geqslant 0 \text{ et } |z| = 0 \Leftrightarrow z = 0$$

$$|z| = |\bar{z}|$$

$$\forall z, z' \in \mathbb{C}, |zz'| = |z| |z'|$$

(Double) inégalité triangulaire

$$\forall z, z' \in \mathbb{C}, \ ||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

4.2.3 Nombres complexes de module 1

Description

 $U=\{z\in\mathbb{C},\ |z|=1\}$. Les complexes de module 1 s'écrivent $z=\cos(\theta)+i\sin(\theta)$, ce qu'on note : $e^{i\theta}$ où $\theta\in\mathbb{R}\cdot \backslash 2\pi\mathbb{Z}$

Remarque sur l'écriture $e^{i\theta}$

$$\forall \theta, \ e^{-i\theta} = e^{i\theta} = \frac{1}{e^{i\theta}}$$

Produit

$$\forall \theta, \theta', e^{i\theta}e^{i\theta'} = e^{i(\theta+\theta')}$$

Formule de Moivre

Formules à savoir

4.3 Forme trigonométrique

4.3.1 Définition

Résultat préliminaire

Conséquence

4.3.2 Premiers exemples

Divers

Caractérisations

4.3.3 Relations entre forme algébrique et trigonométrique

Sens direct

Sens réciproque

4.3.4 Formules diverses

4.3.5 Interprétation géométrique

4.4 Équation $z^n = a$ (où $n \in \mathbb{N}^*, a \in \mathbb{C}^*$)

4.4.1 Résolution

Solutions confondues

Plus précisément

Ces n solutions sont bien distinctes

Conclusion

Géométriquememnt

4.4.2 1er cas parrticulier : racines nèmes de l'unité

Définitionn

Description

Propriétés

Interprétation géométrique

Cas n=3

4.4.3 Cas particulier des racines carrées d'un complexe

Énoncé

Obtention pratique

Équation de d°2 dans $\mathbb C$

4.5 Traduction complexe de transformations géométriques

4.5.1 Symétries

Anneau $\mathbb{K}[X]$ des polynômes à une indéterminée à coefficients dans un corps \mathbb{K}

5.1 Présentation

5.1.1 Définitions

5.1.2 Opérations sur les polynômes

Somme

Multiplication par un élément de \mathbb{K}

Multiplication

5.1.3 Propriétés

Pour la multiplication

Pour la somme

5.1.4 Structures

Neutres

Intégrité

Inversibles

5.1.5 Composée

Définition

Degré

5.2 Division euclidienne dans $\mathbb{K}[X]$

5.2.1 Énoncé

Unicité

Existence

5.2.2 Exemples

5.2.3 Divisibilité

Fractions rationnelles

C	1	 D	'	4-	. 4.5		_
n	.1	Рr	ése	nta	a T . 1	M	1

- 6.1.1 Définition
- 6.1.2 Opérations

Somme

Produit

Structure

- 6.1.3 Forme irréductible
- 6.2 Décomposition en éléments simples de $F = \frac{A}{B}$ (irréductible)
- 6.2.1 Première étape : partie entière

Énoncé

Démonstration par Analyse-Synthèse

6.2.2 Deuxième étape : décomposition de $\frac{R}{B}$

Énoncé

Démonstration

- 6.2.3 Troisième étape : généralisation
- 6.2.4 Conséquence
- 6.2.5 Quatrième étape : décomposition de $\frac{R}{P^{\alpha}}$

Résultat général

Démonstration

- 6.2.6 Conclusion
- **6.3** Décomposition dans $\mathbb{C}(X)$
- 6.3.1 Forme a priori
- 6.3.2 Détermination pratique des λ . μ

Groupe symétrique

7.1 Présentation

7.1.1 Définitions

Permutation

Groupe symétrique

Cardinal

7.1.2 Exemples

Généraux

Particulier

7.2 Éléments générateurs

7.2.1 Transpositions

Énoncé

Exemples

7.2.2 Cycles à supports disjoints

Résultat admis

Exemple

Pratique

7.3 Signature d'une permutation

- 7.3.1 Inversions
- 7.3.2 Définitions
- 7.3.3 Cas d'une transposition
- 7.3.4 Cas d'un cycle
- 7.3.5 Morphisme signature