Ingeniería Informática-CC.Matemáticas

ÁLGEBRA LINEAL Y GEOMETRÍA

Hoja 6: Geometría afín II. Referencias afines.

1. En \mathbb{A}^2_k considera los puntos $P_0, P_1, P_2, Q_0, Q_1, Q_2$ cuyas coordenadas cartesianas en el sistema de referencia cartesiano $\mathcal{R}_C = \{P_0, \overrightarrow{e}_1, \overrightarrow{e}_2\}$ son las siguientes:

$$P_0 = (0,0),$$
 $P_1 = (1,7),$ $P_2 = (1,1)$
 $Q_0 = (-1,1),$ $Q_1 = (1,4),$ $Q_2 = (3,0)$

- a) Demuestra los puntos en $\mathcal{R}' = \{P_0, P_1, P_2\}$ son afínmente independientes. Demuestra que los puntos en $\mathcal{R}'' = \{Q_0, Q_1, Q_2\}$ son afínmente independientes.
- b) Halla las coordenadas baricéntricas de P_0, P_1 y P_2 respecto a \mathcal{R}'' y las de Q_0, Q_1 y Q_2 respecto a \mathcal{R}' .
- c) Considera los sistemas de referencia cartesiana $\mathcal{R}'_C = \{P_0, \overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}\}\ y\ \mathcal{R}''_C = \{Q_0, \overrightarrow{Q_0Q_1}, \overrightarrow{Q_0Q_2}\}.$ Calcula las coordenadas cartesianas de Q_0, Q_1 y Q_2 respecto a \mathcal{R}'_C y las de P_0, P_1 y P_2 respecto a \mathcal{R}''_C .
 - d) Describe las ecuaciones generales de cambio de coordenadas cartesianas entre \mathcal{R}'_C y \mathcal{R}''_C .
 - e) Describe las ecuaciones generales de cambio de coordenadas baricéntricas entre \mathcal{R}' y \mathcal{R}'' .
- **2.** Sean A=(1,1,1), B=(1,2,3), C=(2,3,1) y D=(3,1,2) cuatro puntos en \mathbb{A}^3_k con coordenadas cartesianas respecto a un sistema de referencia \mathcal{R} .
 - a) Demuestra que $\mathcal{R}' = \{A, B, C, D\}$ es un sistema de referencia baricéntrico.
 - b) Calcula las coordenadas cartesianas respecto a \mathcal{R} del baricentro de A, B, C, D.
 - c) Si $\mathcal{R} = \{O, \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3\}$, halla las coordenadas baricéntricas de O respecto a \mathcal{R}' .
- 3. Sean $O \in \mathbb{A}^2_k$ un punto, y sean \overrightarrow{u} y $\overrightarrow{v} \in K^2$ dos vectores linealmente independientes. A todo escalar λ , se le asocian los puntos A y B tales que

$$\overrightarrow{OA} = \lambda \overrightarrow{u}, \quad \overrightarrow{OB} = \lambda \overrightarrow{v}.$$

Determina el baricentro de A y B en función de λ .

4. En \mathbb{A}^3_k se consideran las referencias cartesianas:

$$\mathcal{R} = \{O, \overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}, \text{ y } \mathcal{R}' = \{O', \overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}.$$

Sean $O_{\mathcal{R}}' = (-1,6,2), \ \overrightarrow{v}_1 = \overrightarrow{u}_1 + 3\overrightarrow{u}_2 + \overrightarrow{u}_3, \ \overrightarrow{v}_2 = -\overrightarrow{u}_1, \ \overrightarrow{v}_3 = 2\overrightarrow{u}_1 + 5\overrightarrow{u}_2 + 7\overrightarrow{u}_3$. Si un plano π tiene ecuación 2x - y + 3z = 0 en \mathcal{R} , halla su ecuación respecto a \mathcal{R}' .

5. Halla las ecuaciones baricéntricas del plano que pasa por la recta

$$r \equiv \frac{x-1}{3} = \frac{y+2}{-1} = z$$

y por el punto P = (-1, -2, 5).

6. Calcula las ecuaciones implícitas de la recta que corta a las rectas

$$s = \left\{ \begin{array}{l} x - y + z = 0 \\ x + 2y + 3z + 4 = 0 \end{array} \right., t = \left\{ \begin{array}{l} x + y + 3z - 1 = 0 \\ x + 2z - 5 = 0 \end{array} \right.$$

y pasa por P = (1, 6, -3).

- 7. Demuestra que en $\mathbb{A}^2_{\mathbb{R}}$ los puntos medios de cualquier cuadrilátero forman un paralelogramo.
- 8. En el espacio afín real se consideran tres rectas que se cruzan dos a dos y son paralelas a un plano. Demuestra que toda recta que corte a las tres es paralela a un plano fijo. Determina ese plano.