2.4.8 Brückenschaltung

Eine Brückenschaltung besteht aus der Parallelschaltung zweier Spannungsteiler. Die Verbindung der Punkte A und B der Brücke nennt man Brückendiagonale. Teilt der Spannungsteiler $R_1 : R_2$ die Spannung des Spannungserzeugers im gleichen Verhältnis auf wie der Spannungsteiler $R_3 : R_4$, so besteht zwischen den Punkten A und B keine Spannung ($U_{AB} = 0 V$, Nullpunktmethode). Die Widerstände R_1 und R_2 stehen also im gleichen Verhältnis zueinander wie die Widerstände R_3 und R_4 . Man sagt, die Brücke ist abgeglichen.

Eine Brückenschaltung ist abgeglichen, wenn in der Brückendiagonalen kein Strom fließt (Abgleichbedingung), d.h. wenn das Widerstandsverhältnis der beiden Spannungsteiler gleich ist.

Abbildung 2.30: Grundschaltung von Messbrücken (Brückenschaltung)

Es gilt folgende Abgleichbedingung: Das Produkt der diagonal gegenüberliegenden Widerstände muss gleich groß sein.

$$U_{AB} = 0$$
, wenn $\frac{U_1}{U_2} = \frac{U_3}{U_4}$; $\frac{R_1}{R_2} = \frac{R_3}{R_4}$; $\frac{R_1}{R_2} = \frac{l_1}{l_2}$; (2.22)

Dabei sind U_1, U_2 Messbrückenspannungen, R_1 der unbekannte Widerstand, R_2 der Vergleichswiderstand, R_3, R_4 sind Brückenwiderstände und l_1, l_2 Drahtlängen einer Schleifdrahtmessbrücke (Beispiel 2).

Mithilfe einer abgeglichen Brückenschaltung kann man einen unbekannten Widerstand R_x bestimmen.

Zur Berechnung von R_1 genügt die Kenntnis von R_2 und dem Verhältnis von R_3 und R_4 . Man kann also die beiden Widerstände R_3 und R_4 durch einen stufenlos einstellbaren Widerstand (Potenziometer oder Schleifdraht mit Schleifer) ersetzen. Diese Brückenschaltung zur Messung von Widerständen nennt man wheatstonesche Messbrücke (benannt nach Charles Wheatstone, engl. Physiker, 1802-1875). Der Vergleichswiderstand R_2 (Normalwiderstand) ist zumeist umschaltbar. Damit kann man erreichen, dass sein Wert nicht zu stark vom Wert des unbekannten Widerstandes R_1 abweicht.

Abbildung 2.31: Wheatstonebrücke

Brückenschaltungen verwendet man vor allem in der Messtechnik, der Steuerungs- und Regelungstechnik. Mithilfe der Widerstandsmessbrücke können z.B. mit temperaturabhängigen Widerständen Temperaturen gemessen werden.

Aufgaben - Abgeglichene Brückenschaltung Fertigen Sie zu jeder Aufgabe eine Skizze an.

1. Eine Messbrücke hat die Brückenwiderstände $R_3 = 50 \Omega$ und $R_4 = 100 \Omega$. Zum Abgleich muss der Vergleichswiderstand R_2 auf 150Ω eingestellt werden. Berechnen Sie den Widerstand R_1 . (75 Ω)

- 2. Mit der Schleifdrahtmessbrücke soll der Widerstand R_1 bestimmt werden. Die Messbrücke ist abgeglichen, wenn $l_1=39\,cm$ und $l_2=61\,cm$ und $R_2=100\,\Omega$ ist. Berechnen Sie R_1 . $(63,93\,\Omega)$
- 3. Der Spannungsteiler aus R_1 und R_2 besteht aus einem $2,5\,k\Omega$ -Widerstand mit verschiebbarem Abgriff. Beim Abgleich ist R_1 auf $0,8\,k\Omega$ eingestellt. R_4 beträgt $2,2\,k\Omega$. Berechnen sie R_3 . $(1,035\,k\Omega)$

Aufgaben - Unabgeglichene Brückenschaltung Fertigen Sie zu jeder Aufgabe eine Skizze an.

- **1.** Eine unabgeglichene Brückenschaltung liegt an $U=12\,V$ und hat die Widerstände $R_1=4,7\,k\Omega,\,R_2=8,2\,k\Omega,\,R_3=5,6\,k\Omega,\,R_4=6,8\,k\Omega.$ Berechnen Sie die Spannung zwischen den Punkten A und B. $(1,047\,V)$
- 2. Eine unabgeglichene Brückenschaltung liegt an $U=12\,V$ und hat die Widerstände $R_1=100\,\Omega,\,R_3=220\,\Omega,\,R_4=390\,\Omega.$ Der Widerstand R_2 kann so verändert werden, dass die Spannung zwischen den Punkten A und B zwischen $+1\,V$ und $-1\,V$ einzustellen ist. Berechnen Sie R_2 für
 - (a) $U_{AB} = +1 V (R_2 = 260, 59 \Omega)$
 - (b) $U_{AB} = -1 V (R_2 = 125, 23 \Omega)$
- 3. Eine unabgeglichene Brückenschaltung hat die Widerstände $R_1=8,2\,k\Omega,\ R_2=5,6\,k\Omega,\ R_3=2,7\,k\Omega,\ R_4=3,9\,k\Omega.$ Sie ist an eine Spannung von 5 V angeschlossen.
 - (a) Welche Spannung liegt zwischen den Punkten A und B? (-0,926 V)
 - (b) Welchen Widerstandswert muss R_2 haben, damit zwischen den Punkten A und B keine Spannung besteht? $(11,844\,k\Omega)$

2.4.9 Innenwiderstand von Spannungsquellen

An einer Spannungsquelle liegt im Leerlauf ohne angeschlossenen Verbraucher an den Anschlussklemmen die Quellenspannung an. Diese nennt man Leerlaufspannung U_0 . Schließt man an eine reale Spannungsquelle einen Verbraucher an, durch den ein elektrischer Strom fließt, sinkt aufgrund innerer Verluste der Quelle im Betrieb die Klemmenspannung U unter diesen Wert der Leerlaufspannung.

Wie stark die Klemmenspannung U mit steigendem Strom I sinkt, kann durch eine Funktion beschrieben werden. Diese entspricht im unteren Diagramm einer Strecke: Anfangspunkt ist die Leerlaufspannung U_0 an der Spannungsachse, Endpunkt ist der Kurzschlussstrom I_k auf der Stromachse. Die Steigung dieser Kennlinie entspricht dem Innenwiderstand $R_i = \Delta U/\Delta I$ der Quelle. Den Schnittpunkt der Funktion mit der Lastwiderstandskennlinie nennt man Arbeitspunkt A. Die sich dabei einstellende Stromstärke und Klemmenspannung können aus dem Diagramm direkt abgelesen werden:

Abbildung 2.32: Kennlinien einer realen Spannungsquelle mit Lastwiderstand

Belastungsfälle

- Im Leerlauf $(R_L = \infty)$ ist kein Verbraucher angeschlossen. Die Quelle wird nicht belastet. Deswegen fließt kein Strom, die Spannungsquelle gibt die größtmögliche Spannung ab. Diese wird als Leerlaufspannung U_0 bezeichnet.
- Im normalerweise unerwünschten Falle eines Kurzschlusses $(R_L = 0 \Omega)$ fließt der maximale Strom I_k aus der Quelle. Die Klemmenspannung U geht dabei auf Null zurück. Beachten Sie, dass Batterien, Akkus, Steckdosen usw. nicht kurzgeschlossen werden dürfen!
- Bei **Belastung** $(0 \Omega < R_L < \infty)$ zwischen Leerlauf und Kurzschluss gibt die Spannungsquelle eine **Leistung** P an den **Lastwiderstand** R_L ab. Im oberen Diagramm entspricht die Leistung der grün eingezeichneten und von den Achsen begrenzten Rechtecksfläche.

Betrachtet man nun die die Belastung der Spannungsquelle von Null weg in Richtung steigender Ströme, so wächst zunächst die abgegebene Leistung P. Bei $R_L = R_i$ erreicht Sie Ihren Maximalwert P_{max} , danach sinkt sie wieder ab. Im Leerlauf und im Kurzschluss ist die an den Verbraucher abgegebene Leistung jeweils Null. Die Kurve entspricht einer Parabel:

Abbildung 2.33: Leistungsabgabe einer Spannungsquelle

Das Verhalten eines Bauelements oder eines Gerätes, dessen Klemmenspannung U in dem Maße zurückgeht, wie die entnommene Stromstärke ansteigt, kann man oft durch eine Ersatzspannungsquelle oder durch eine Ersatzstromquelle deuten:

Die **Ersatzspannungsquelle** liefert eine Leerlaufspannung U_0 . Diese teilt sich bei Belastung auf den Lastwiderstand R_L und den in Serie geschalteten Innenwiderstand R_i auf.

Die Klemmenspannung U ist um die Spannungsdifferenz $U_i = I \cdot R_i$ kleiner als die Leerlaufspannung U_0 .

$$U_0 = U + U_i$$

$$U = I \cdot R_L$$

$$U_i = I \cdot R_i$$

$$U = U_0 - I \cdot R_i$$
(2.23)

Abbildung 2.34: Ersatzspannungsquelle

Ersatzstromquellen erweisen sich als zweckmäßig, wenn der Innenwiderstand wesentlich größer als der Lastwiderstand ist, und werden später im Rahmen von Transistoren näher besprochen.

Aufgaben zum Thema Innenwiderstand

1. Eine Spannungsquelle hat eine Quellenspannung von $12\,V$ und einen Innenwiderstand von $100\,\Omega$. Wie groß wird die Klemmenspannung bei Anschluss eines Lastwiderstandes von $220\,\Omega$? $(8,25\,V)$

- 2. Die Leerlaufspannung einer Spannungsquelle beträgt 15 V, der Innenwiderstand 50Ω . Welchen Widerstandswert hat der Lastwiderstand R_L , wenn durch seinen Anschluss die Klemmensspannung den Wert 14 V annimmt? (700Ω)
- 3. Eine Spannungsquelle hat die Kennwerte $U_0=10\,V$ und $R_i=75\,\Omega$. Ein Verbraucher $R_L=600\,\Omega$ wird über eine $200\,m$ lange zweiadrige Kupferleitung angeschlossen. Wie groß ist die Spannung U am Verbraucher, wenn der Drahtdurchmesser einer Kupferader $d=1\,mm$ beträgt $(\varrho=0,01786\frac{\Omega\cdot mm^2}{m})$? $(8,77\,V)$
- 4. Eine Monozelle (Typ D) hat eine Quellenspannung von $U_0=1,5\,V$. Ihr Kurzschlussstrom beträgt $I_k=1\,A$. Wie groß ist der Innenwiderstand? Skizzieren Sie das U/I Diagramm.
- 5. Die Leerlaufspannung (Quellenspannung) einer Batterie beträgt $U_0 = 5\,V$. Schließt man einen Widerstand von $1,2\,\Omega$ an, verringert sich die Klemmenspannung der Batterie auf $U=4,8\,V$. Berechnen Sie den Innenwiderstand der Batterie. $(0,05\,\Omega)$

${\bf 2.4.10} \quad {\bf Aufgabensammlung: \ Gruppenschaltung, \ Br\"{u}ckenschaltung, \ Spannungsteiler \ und \ Innenwiderstand}$

Gemischte Schaltung: Bestimmen Sie von dieser Schaltung

- 1. den Gesamtstrom I, (1,605 A)
- 2. die Teilströme I_2 , I_6 und I_7 (1,358 A; 135 mA; 112 mA). (Hinweis: Index des Teilstromes entspricht dabei jenem Index des Widerstandes, durch welchen dieser Teilstrom fließt.)

Brückenschaltung

- 1. In einer Brückenschaltung haben die Widerstände folgende Werte: $R_1 = 40 \,\Omega$, $R_2 = 5 \,\Omega$, $R_3 = 20 \,\Omega$ und $R_4 = 20 \,\Omega$. Der in diese Brücke hineinfließende Strom beträgt 6 A.
 - (a) Skizzieren Sie die Brückenschaltung.
 - (b) Berechnen Sie
 - i. die Ströme I_{12} und I_{34} , (2,824 A; 3,176 A)
 - ii. die Spannungsdifferenz U_{AB} in der Brückendiagnole. (49,4 V)

Spannungsteiler

- 1. Liegt ein Verbraucher R an $126\,V$, so fließt durch ihn ein Strom von $6\,mA$. Diese Teilspannung wird durch einen Spannungsteiler R_1/R_2 , der an $250\,V$ Gesamtspannung liegt, eingestellt. Der Strom durch R_2 soll 5 mal so groß wie der Verbraucherstrom sein.
 - (a) Skizzieren Sie den belasteten Spannungsteiler.
 - (b) Berechnen Sie die Werte von R_1 und R_2 . $(3, 4 k\Omega; 4, 2 k\Omega)$
- 2. Ein Spannungsteiler mit den Widerständen $R_1 = 28 \, k\Omega$ und $R_2 = 12 \, k\Omega$, liegt an $80 \, V$. Berechnen Sie, um wieviel Prozent sich die Spannung an R_2 ändert, wenn der Belastungswiderstand $18 \, k\Omega$ beträgt. $(7,64 \, V; 31,83 \, \%)$
- 3. Ein Spannungsteiler mit dem Gesamtwiderstand $280\,\Omega$ liegt an einer Gesamtspannung von $24\,V$. Er soll so eingestellt werden, dass sich die Widerstände R_1 und R_2 wie 3:1 verhalten.
 - (a) Skizzieren Sie den belasteten Spannungsteiler.
 - (b) Berechnen Sie
 - i. die Teilwiderstände R_1 und R_2 , $(210 \Omega; 70 \Omega)$
 - ii. die Spannung U_{20} an R_2 beim unbelasteten Spannungsteiler, (6V)
 - iii. die Spannung U_2 bei Belastung mit $R_L=200\,\Omega,\,(4,75\,V)$
 - iv. den Querstrom und $(67, 89 \, mA)$
 - v. den Laststrom. $(23, 76 \, mA)$

Innenwiderstand - Klemmenspannung

- 1. Ein Mikrofon hat einen Innenwiderstand von $200\,\Omega$ und liefert eine Leerlaufspannung von $5,5\,mV$
 - (a) Skizzieren Sie die Schaltung.
 - (b) Welche Klemmenspannung stellt sich bei einem Verbraucher mit $R_L = 860\,\Omega$ ein? $(4,46\,mV)$
- 2. Eine Batterie hat bei einer Belastung von $1,5\,k\Omega$ eine Klemmenspannung von $22,5\,V$. Bei einer Belastung von $500\,\Omega$ sinkt die Klemmenspannung auf $15\,V$. Berechnen Sie U_0 und R_i . $(30\,V;\,500\,\Omega)$

2.4.11 Vertiefende Aufgaben zu den gemischten Schaltungen

Beachten Sie die dabei die Regeln der Parallel-, Reihenschaltung sowie die Kirchhoffschen Gesetze.

- 1. Die Widerstände R_1 bis R_6 sind nach folgender Abbildung geschaltet. Berechnen Sie
 - (a) die Gesamtspannung, (207, 24V)
 - (b) die Spannung an R_5 , (57, 24 V)
 - (c) den Strom durch den Widerstand R_4 . (715, 55 mA)

Abbildung 2.35: Gemischte Schaltung

- 2. Ermitteln Sie für die Schaltung folgender Abbildung (Hinweis: R_3 , R_4 , R_5 , R_6 sind parallel geschaltet.)
 - (a) den Ersatzwiderstand $(306, 24\,\Omega)$
 - (b) den Strom durch R_5 , (7, 1 mA)
 - (c) die Spannung an R_2 . (2,94 V)

Abbildung 2.36: Netzwerk

- 3. Berechnen Sie für die Schaltung folgender Abbildung
 - (a) den Ersatzwiderstand, $(39,07\,\Omega)$
 - (b) die Teilspannungen, $(U_1=9,21\,V,\,U_2=13,82\,V,\,U_3=12,97\,V,\,U_4=6,83\,V,\,U_5=6,14\,V,\,U_6=2,73\,V,\,U_7=3,41\,V)$

(c) die Teilströme. $(I_1 = I_2 = 921, 3\,mA, I_3 = 648, 3\,mA, I_4 = 273\,mA, I_5 = 204, 7\,mA, I_6 = I_7 = 68, 2\,mA)$

Abbildung 2.37: Netzwerk

- 4. Die 10 Widerstände eines Netzwerkes sind nach folgender Abbildung geschaltet. Die Schaltung ist an 220 V Gleichspannung angeschlossen. Berechnen Sie
 - (a) den Ersatzwiderstand, $(730, 9\,\Omega)$
 - (b) die Teilspannung an R_4 , (17,63 V)
 - (c) die Stromstärke in R_7 . (7, 1 mA)

Abbildung 2.38: Netzwerk

- 5. The equivalent resistance of two identical resistors in parallel is 10Ω . The equivalent resistance of the same resistors in series would be
 - (a) 10Ω
 - (b) 20 Ω
 - (c) 40Ω
 - (d) $100\,\Omega$
- 6. A network of three 5- Ω resistors cannot have an equivalent resistance of
 - (a) $1,6667 \Omega$
 - (b) $2,5\Omega$
 - (c) $7,5\Omega$
 - (d) 15Ω