

CURSO:

TECNOLOGIA EM TELEMÁTICA

Escalonamento com OS Simulator

DATA:

04/03/24

2024.1

PROFESSOR:

DOMINGOS SÁVIO SOARES FELIPE

Prática – Políticas de escalonamento de processos utilizando o OS *Simulator* Alunos: Carla Beatriz da Silva Teixeira | Anderson Kleber Santos Da Silva

Considerando os processos da tabela abaixo, configure o OSSIM, em momentos diferentes, evidentemente, para escalonar de acordo com FCFC, SJF, RR (quantum 1 e 3) e por prioridade e faça o que é pedido nos itens logo após a tabela.

Processo	Burst (processo)	CPU bound/ IO bound	Prioridade	Tempo de Chegada
p1	3	3	0	2
p2	6	4/2	2	3
р3	9	6/3	0	1
p4	2	2	1	1
p5	10	8/2	4	2

1. Insira aqui as telas de informações de cada um dos escalonamentos dos processos (opção Data and Statistics

FCFC

SJF

RR QUANTUM 1

RR QUANTUM 3

i loccs.	s Scheduling In	formation								×										
Efficiency (%)			1,00							Ģ										
Throughput (processes/time unit) Avg. Turnaround Time (time) Avg. Waiting Time (time)		0,17 17,4(11,4(
										Avy. vvaiuii	ig fille (ulle)		11,40							
											onse Time (time)		5,80							
				Periodic	CPU	Response	Waiting	Turnaround	% CPU	% IO										
Avg. Respo	onse Time (tim	e)	5,80	Periodic -	CPU 3	Response 0	Waiting 0	Turnaround	% CPU	% IO 0.0										
Avg. Respo	nse Time (tim	Priority	5,80 Submission		10.77			_												
Avg. Respo	Name Proc1	Priority	5,80 Submission 0	-	3	0	0	3	1.0	0.0										
Avg. Respo	Name Proc1 Proc4	Priority 1 2	5,80 Submission 0	-	3	0 9	0	3 11	1.0 0.1818181	0.0										

2. O que é possível inferir, em termos comparativos, quanto às políticas/algoritmos de escalonamento, considerando os critérios utilização da CPU, tempo de *turnaround* médio, tempo médio de espera e tempo médio de resposta? Justifique.

É possível observar através dos testes que as configurações feitas em cada processo dentro de cada tipo de escalonamento definem diretamente como o processo vai ser executado, em que momento e qual o tempo que levará para se concluir cada processo (throughput) e em geral, o processo todo do início ao fim (nesse caso, os 5 processos inseridos e configurados no programa). Outro ponto muito interessante é a questão da eficiência de cada processo que é interferido diretamente pelo tipo de escalonamento que está sendo usado e quantos processos vão ter que rodar até que se finalize todos os processos em espera.

3. A partir do que foi observado, em qual contexto ou cenário (caracterização de processos – cpu e/ou io bound e quantidade de bursts) cada algoritmo parece ser mais apropriado? Justifique.

Em minha análise a partir dessa atividade, o escalonamento FCFS se enquadra menor quando se tem menos processos e estes não possuem um certo nível de categorização e prioridade que possam afetar diretamente o processo do sistema em geral. Para sistemas que usam e recebem muitos processos ao mesmo tempo, o mais adequado seria o SFJ onde pode-se definir as prioridades e as mesmas são respeitadas mediante a configuração feita no programa.

Já o RR, seja do tipo quantum 1 ou 3, possuem as configurações diretas de prioridades, porém elas sofrem alterações diretas e automáticas caso o sistema julgue necessário, não seguindo de fato as prioridades estipuladas, mas sim a categorização que o processo define.

Desta forma, percebe-se que cada processo tem sua devida funcionalidade e que o "melhor cenário" varia dependendo da necessidade do usuário final, a quantidade de processos que ele terá no sistema em uso e quais são suas prioridades de controle e de efetividade.