INF01 118

Técnicas Digitais para Computação

Registradores

Aula 21

1. Introdução

Registrador = conjunto de FF's ou latches

+ lógica combinacional que perfaz uma dada função

Diferentes tipos de registradores

- Reg. de armazenamento
- Reg. de deslocamento
- Reg. contadores

Exemplo de registrador elementar (registrador de armazenamento)

Registrador Paralelo / Paralelo

Inicializar

Inicializar

- * "carga" operação de transferência de um novo valor E_0 $E_1...E_{n-2}$... E_{n-1} para o registrador
- carga paralela carga simultânea de todos os bits, sincronizada pelo clock
- problema e se não for desejada uma carga do registrador a cada pulso do clock ?

Solução 1 - desabilitar o clock

desvantagem : lógica com clock – atrasos variáveis – perda de sincronismo

Solução 2 - clock não é desabilitado

Se LOAD = 1 carrega novo valor Ei

Se LOAD = 0 carrega valor atual Si

Exercicio

Exercicio

2. Transferências entre registradores

Transferência paralela RB ← → RA

Uso de multiplexadores

2. Transferências entre registradores

Transferência paralela RB ← → RA

Uso de barramentos

3. Registradores de deslocamento

Aplicações

- a) operações de "shift" e "rotate" em processadores
- b) transferência serial entre registradores
- c) conversão série / paralelo
- d) conversão paralelo / série

Registradores Deslocamento

Registrador Deslocamento

Exemplo de Deslocamento

Para esquerda

Para direita

Registrador Deslocamento Esq e Direita

Shift left/ right register, left action

Registrador Deslocamento Esq e Direita

Shift left/ right, right action

a) Exemplo

FF mestre-escravo: amostra entradas enquanto o clock está em 1; muda saídas na borda descendente

Transferência Serial entre Registradores

Supondo registradores de 4 bits, após 4 pulsos de clock o conteúdo do registrador R1 foi transferido para o registrador R2

Registrador Conversão Serial / Paralelo

Após 4 pulsos do clock, o conteúdo do registrador está disponível em paralelo

Registrador Paralelo / Serial

Transmissão serial utilizando conversões paralelo-série e série-paralelo

Transmissão Serial

Registrador de deslocamento bidirecional

SEL = 0 mantém valor

SEL = 1 **SHIFT** para a esquerda (para baixo)

SEL = 2 SHIFT para a direita (para cima)

SEL = 3 carga paralela

Shift left/ right/ load

	mod	le		mux
activity	S1	s_0	clock	gate
hold	0	0	1	hold
shift left	0	1	Ť	L
shift right	1	0	T I	R
load	1	1	1	load

74ALS299 universal shift/ storage register with tri-state outputs

LFSR linear feedback shift register (8-bit)

LFSR

Exercicio:

• Determine os primeiros 10 valores da sequencia de valores gerada pelo seguinte LFSR com a sementre "10110000"

Exemplo de Registrador

FUNCTION TABLE

INPUTS					INTERNAL		CUTDUT	
CLR SH/LD		CLK INH	CLK	SER	PARALLEL	OUTPUTS		OUTPUT QH
CER	SHILD	CLK INH	CLK	SEK	A H	QA	QB	~п
L	Χ	Χ	X	X	Х	L	L	L
Н	Χ	L	L	Χ	Х	Q _{A0}	Q_{B0}	Q _{H0}
Н	L	L	1	Χ	ah	а	b	h
Н	Н	L	\uparrow	Н	Х	Н	Q_{An}	Q _{Gn}
Н	Н	L	1	L	Х	L	Q_{An}	Q _{Gn}
Н	Χ	Н	1	X	X	Q _{A0}	Q_{B0}	Q _{H0}

The SN74ALS166 parallel-load 8-bit shift register is compatible with most other TTL logic families. All inputs are buffered to lower the drive requirements. Input clamping diodes minimize switching transients and simplify system design.

