A 61 K 31/425

Offenlegungsschrift 26 14 189 1

Aktenzeichen:

P 26 14 189.9

Anmeldetag:

2. 4.76

Offenlegungstag:

20. 10. 77

30 Unionsprioritāt:

33 33 33

Bezeichnung:

Therapeutisch wirksame Ureido- und Semicarbazido-Derivate des

Tiazols und Verfahren zu ihrer Herstellung

(54)

Anmelder:

Hoechst AG, 6000 Frankfurt

Weber, Rolf-Ortwin, Dr., 6201 Naurod; Perrey, Klaus, Dr., 5300 Bonn; Wolf, Erhard, Dr., 6238 Hofheim; Gebert, Ulrich, Dr., 6233 Kelkheim

10.77 709 842/99

Patentansprüche

- 1. Therapeutisch wirksame Ureido- und Semicarbazido-Derivate des L'hiarols der Formel I (siehe Formelblatt), worin
- Wasserstoff oder ein einkerniger carbo- oder heterocyclischer Rest mit 3 bis 10 Atomen im Ringsystem und mindestens einem Schwefel- oder Stickstoffatom, vorzugsweise ein 5- oder 6-gliedriger Ring ist, der gegebenenfalls mindestens einen der Reste Halogen, wie Fluor, Chlor, oder Brom, Halogenalkyl mit 1 bis 3 C-Atomen, Alkyl mit 1 bis 6 C-Atomen oder Alkoxy mit 1 bis 3 C-Atomen trügt,
- ?2 Wasserstoff oder
- R¹ und R² zusammen den -CII=CII-CII=CII-Rest darstellen.
- Q einen NH- oder NH-NH-Rest bedeutet, der gegebenenfalls durch Alkylgruppen mit 1 oder 2 C-Atomen, vorzugsweise Kethyl, substituiert ist,
- und R⁴ unabhängig voneinander Wasserstoff, Aryl, insbesondere Phenyl, oder Alkyl mit 1 bis 3 C-Atomen, das gegebenenfalls mindestens einfach mit Halogen, wie Chlor oder Brom, einem gegebenenfalls höchstens zweifach alkylierten Aminorest mit jeweils 1 bis 3 C-Atomen je Alkylrest, oder mit einem heterocyclischen Rest mit lis zu 11 C-Atomen, wie N-Benzyl-piperazino, substituiert ist, und

f einen Rest - CH - oder eine Einfachbindung bedeutet, und

R⁵ einen Hydroxy-, Alkoxy-Rest mit 1 bis 6 C-Atomen oder einen gegebenenfalls mit einem oder zwei Alkylresten mit jeweils 1 bis 3 C-Atomen substituierten Amin-Rest oder einen 5- oder 6-gliedrigen heterocyclischen Aminrest mit einem oder 2 N-Atomen darstellt, dessen eines N-Atom gegebenenfalls mit einem Alkyl, Aryl oder Aralkyl substituiert ist und dessen weites N-Atom direkt

an die benachbarte CO-Gruppe gebunden ist.

- 2. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß sie Salze von Mineral- und Sulfonsäuren, und wenn in den Verbindungen der Formel I R⁵ = OH ist, statt dessen auch Alkali- oder Erdal-kalisalze sind.
- 3. Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie 3-(4-Aryl-2-thiazolylureido)-alkansäurealkylester sind, worin der Arlyrest Phenyl ist, das gegebenenfalls mit Halogen, vorwugsweise Fluor, Methoxy oder höchstens 2 Alkylresten substituiert ist, worin die Alkylenkomponente des Alkansäurerestes 3 bis 3 C-Atome und die Alkylgruppe im Alkoxyrest R⁵ 1 bis 3 C-Atome aufweisen.
- 4. 3- 4-(4-Fluorphenyl)-2-thiazolylureido -isovaleriansäuremethyl-ester und dessen Salze (siehe Tabelle 3, Nr. 17).
- 5. 3- 4-(2-Nethoxyphenyl)-2-thiazolylureido -isovaleriansäuremethyl-see ester und dessen Salle (siehe Tabelle 3, Nr. 23).
- Verfahren zur Herstellung von Verbindungen der Forzel I nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man-bevorzugt in Gegenwart eines Lösungsmittels-umsetzt:
- a) Thiazole der allgemeinen Formel II mit Isocyanaten der allgemeinen Formel III, wobei R¹ bis R⁴, Y und Q die im Anspruch 1
 angegebene Bedeutung haben und R⁵ eine Alkoxygruppe mit 1 bis
 6 C-Atomen ist, oder
- Anspruch 1 angegebene Bedeutung haben und 25 Alkoxy mit 1 die im 6 C-Atomen bedeutet, unter Verseifung im alkalischen Medium du einem Produkt der Formel I, worth R5 Mydroxy bedeutet oder
- c) eine Verbindung der Formel I, worin R¹ bis R⁴, Q und Y die im Anspruch 1 angegebene Bedeutung haben und R⁵ Hydroxy ist, mit einem Amin der Formel HR⁵ (IV) in Gegenvart geeigneter, die Amidbildung fürdernder Dehydratisierungsmittel zu einer Ger-

- bindung der Formel I, worin R bis R, Q und y die im Anspruch 1 angeg bene, Bedeutung hab n und R eigen gegetenenfalls substituierten Aminrest oder einen gegebenenfalls 5- oder 6-gli drigen het rocyclischen Aminrest bedeutet, oder
- d) eine Verbindung der Formel I, in der R¹, R², R⁵, Q und Y die im Anspruch 1 angegebene Bedeutung haben, R³ und/oder R⁴ Halogen-alkyl bedeuten, mit einem Amin der Formel HR⁵ (IV).
- 7. Verfahren mach Amspruch 6, dadurch gekenmzeichnet, daß die Unsetzung a) in Gegenwart von tertiären Aminen erfolgt.
- 8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Umsetzung c) in inerten Lösungsmitteln, vorzugsweise Tetrahydrofuran,
 in Gegenwart von Dicyclohexylcarbodiimid erfolgt.
- 9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Umsetzung d) mit einem äquimolaren Überschuß des Amins HR⁵ (IV)
 erfelgt.
- 10. Verfahren zur Herstellung von Säureadditionssalzen von Verbindungen der Formel I, dadurch gekennzeichnet, daß die nach Ansprüchen 6 bis 9 erhaltenen Verbindungen mit geeigneten Säuren zu Säureadditionsverbindungen umgesetzt werden, oder wenn in den Produkten der Formel I R⁵ = Hydroxy ist, diese Verbindungen statt dessen gegebenenfalls mit Alkali- oder Erdalkaliverbindungen unter Salzbildung umgesetzt werden.
 - 11. Verfahren zur Herstellung von pharmameutischen Präparaten, dadurch gekennzeichnet, daß man mindestens eine Verbindung der allgemeinen Formel I gegebenenfalls zusammen mit mindestens einem festen oder flüssigen Hilfs- oder Trägerstoff und gegebenenfalls zusammen mit mindestens einem weiteren Wirkstoff in geeignete Dosierungsform bringt.
 - 12. Pharmazeutische Zubereitung, gekennzeichnet durch eine wirksame Dosis einer Verbindung der Formel I neben mindestens einem festen Träger- und/oder Zusatzstoff.

Dr. LG/Ka 25.3.1976

Formelblatt

2614189

4.

$$R^{1}$$
 N
 $Q-H$
 $Q-H$

 $H - R^5$ (IV)

HOECHST AKTIENGESELLSCHAFT, 6230 Frankfort/Main. 60)

Eustellungsadress: Hoechst Akti ages llschaft, Werk Albert
Postfach 129 101, 6200 Wiesbaden

2614189

• 5

Patentanmeldun G

Therapeutisch wirksame Ureido- und Semicarbazido-Derivate des Thiazols und Verfahren zur ihrer Herstellung

Die vorliegende Erfindung betrifft therapeutisch wirksame Ureidound Semicarbasido-Derivate des Thiazols, vorzugsweise solche mit aromatischem oder heteroaromatischem Rest am Thia. ol-Ring, wobei der zuerstgenannte gegebenenfalls auch anclliert sein kann, ihre Herstellung sowie ihre Verwendung.

Harnstoff-Abkömmlinge des Thiazols und ihre Anwendung als Chemotherapeutika sind bekannt. So wird 1-Athyl-3-(5-nitro-2-thia:olyl)harnstoff bei Trichomonaden-Infektionen eingesetzt. Auch in der Patentliteratur wird über substituierte Thiazolylharnstoffe und Thia:olylthioharnstoffe mit hemmendem Einfluß auf die Magensaftsekretion sowie antiinflammatorischer Wirkung berichtet.

Gegenstand der vorliegenden Erfindung sind therapeutisch wirksame Ureido- und Semicarbazido-Derivate des Thiazols der Formel I (siehe Formelblatt), worin

Rasserstoff oder ein einkerniger carbo- oder heterocyclischer Rest mit 3 bis 10 C-Atomen im Ringsystem und mindestens einem Schwefel- oder Stickstoffatom, vorzugsweise ein 5- oder 6-gliedriger Ring ist, der gegebenenfalls mindestens einen der Reste Halogen, wie Fluor, Chlor oder Brom, Halogenalkyl mit 1 bis 3 C-Atomen, Alkyl mit 1 bis 6 C-Atomen oder Alkoxy mit 1 bis 3 C-Atomen trägt.

R² Wasserstoff oder

- R¹ und R² zusammen den -CH=CH-CH=CH-Rest darstellen,
- Q einen NH- oder NH-NH-Rest bedeutet, der gegebenenfalls durch Alkylgruppen mit 1 oder 2 C-Atomen, vorzugsweise Methyl, substituiert ist,
- und R⁴ unabhängig voneinander Wasserstoff, Aryl, .E. Phenyl oder Alkyl mit 1 bis 3 C-Atomen, das gegebenenfalls mindestens einfach mit Halogen, wie Chlor oder Brom, einem gegebenenfalls höchstens zweifach alkylierten Aminorest mit jeweils 1 bis 3 C-Atomen je Alkylrest oder mit einem heterocyclischen Rest mit bis zu 11 C-Atomen, wie N-Benzylpiperazino, substituiert ist und
- Y einen Rest -CH- oder eine Einfachbindung bedeutet, und
- einen Hydroxy-, Alkoxy-Rest mit 1 bis 6 C-Atomen oder einen gegebenenfalls mit einem oder 2 Alkylresten mit jeweils 1 bis
 3 C-Atomen substituierten Amin-Rest oder einen 5- oder 6-gliedrigen heterocyclischen Aminrest mit einem oder 2 N-Atomen darstellt, dessen eines N-Atom gegebenenfalls mit einem Alkyl,
 Aryl oder Aralkyl substituiert ist und dessen zweites N-Atom
 direkt an die benachbarte CO-Gruppe gebunden ist.

Die Verbindungen gemäß der Erfindung können auch in Form ihrer Salze mit geeigneten Mineral- und Sulfonsäuren vorliegen. Geeignete Säuren sind beispielsweise Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Benzolsulfonsäure, Methansulfonsäure, p-Toluolsulfonsäure und Cyclohexylsulfaminsäure.

Wenn in den Verbindungen der Formel I R⁵ eine Hydroxylgruppe ist, können sie statt dessen auch in Form von Alkali- oder Erdalkali- salzen vorliegen.

Die erfindungsgemäßen Verbindungen und ihre Salze besitzen wertvolle therapeutische, vor allem analgetische Eigenschaften.

7.

In den Verbindungen der Formel I sind geeignete Reste R¹ b ispielsweise Phenyl, 3,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 4-t rt.Butylphenyl, 4-Fluorphenyl, 3-Trifluormethylphenyl, 4-Chlorphenyl,
4-Bromphenyl, 2,4-Diäthylphenyl, 3,4-Dichlorphenyl, 2-Methoxyphenyl,
3-Methoxyphenyl, 4-Methoxyphenyl, 2-Thienyl, 2,5-Dimethylthienyl-(3),
2,5-Dichlorthienyl-(3), 2-Pyridyl, 3-Pyridyl sowie 4-Pyridyl.

Für den Fall, daß R¹ und R² zusammen den -CH=CH-CH=CH-Rest darstellen, sind der Benzothiazol- und 6-Methoxybenzothiazolrest bevorzugt.

Geeignete Reste R³ und R⁴ sind z.B. Wasserstoff, Methyl, Chlormethyl, Phenyl und N-Benzylpiperazinomethyl.

Geeignete Reste R⁵ sind Hydroxy, Methoxy, Athoxy, Propoxy, Butoxy, Amino, Diäthylamino, Pyrrolidino, Piperidino und N-Benzylpiperazino...

Besonders interessante Verwindungen der Formel I sind 3-(4-Aryl-2-thiazolyl-ureido)-alkansäurealkylester, worin der Arylrest R¹ Phenylist, das gegebenenfalls mit Halogen, vorzugsweise Fluor, Methoxy oder höchstens 2 Alkylresten substituiert ist, worin die Alkylen-komponente

- C - Y des Alkansäureesters 3 bis 8 C-Atome und die Alkylgruppe

im Alkoxyrest R⁵ 1 bis 3 C-Atome aufweisen, beispielsweise 3-(4-Phenyl-2-thiazolylureido)-isovalerianskuremethylester (Nr. 4, siehe Tabelle 3), 2-Methyl-3- [4-(4-fluorphenyl)-2-thiazolylureido] -buttersäuremethylester (Nr. 40, siehe Tabelle 3), 3- [4-(4-Fluorphenyl)-2-thiazolylureido] -isovaleriansäuremethylester (Nr. 17, siehe Tabelle 3), 3-Phenyl-3- [4-(4-fluorphenyl)-2-thiazolylureido] -propionsäuremethylester (Nr. 41, siehe Tabelle 3) und 2-(4-Phenyl-2-thiazolyl-

.P.

ureido)-isobuttersäuremethylester (Nr. 39, siehe Tabelle 3), vorzugsweise jedoch 3- [4-(2,5-Dimethylphenyl)-2-thiazolylureido]-isovaleriansäuremethylester (Nr. 14, siehe Tabelle 3) und 3- [4-(2-Methoxyphenyl)2-thiazolylureido]-isovaleriansäuremethylester (Nr. 23, siehe Tabelle 3).

Die Erfindung betrifft auch ein Verfahren zur Herstellung von Verbindungen der Formel I, bei dem man - bevorzugt in Gegenwart eines Lösungsmittels - umsetzt:

- a) Thiazole der allgemeinen Formel II mit Isocyanaten der allgemeinen Formel III, wobei R¹ bis R⁴, Y und Q die im Anspruch 1 angegebenef Bedeutung haben und R⁵ eine Alkoxygruppe mit 1 bis 6 C-Atomen ist, oder
- b) eine Verbindung der Formel I, worin R¹ bis R⁴, Q und Y die im Anspruch 1 angegebene Bedeutung haben und R⁵ Alkoxy mit 1 bis 6 C-Atomen bedeutet, unter Verseigung im alkalischen Medium zu einem Produkt der Formel I, worin R⁵ Hydroxy bedeutet, oder
- c) eine Verbindung der Formel I, worin R¹ bis R⁴, Q und Y die im Anspruch 1 angegebene Bedeutung haben und R⁵ Hydroxy ist, mit einem Amin der Formel HR⁵ (IV) in Gegenwart geeigneter die Amidbildung fördernder Dehydratisierungsmittel zu einer Verbindung der Formel (I), worin R¹ bis R⁴, Q und Y die im Anspruch 1 angegebene Bedeutung haben und R⁵ einen gegebenenfalls substituierten Aminrest oder einen gegebenenfalls 5- oder 6-gliedrigen heterocyclischen Aminrest bedeutet, oder
- d) eine Verbindung der Formel I, in der R¹, R², R⁵! Q und Y die im Anspruch 1 angegebene

 Bedeutung haben, R³ und/oder R⁴ Halogenalkyl bedeuten, mit einem Amin der Formel HR⁵ (IV).

Geeignete Lösungsmittel für das Verfahren a) und d) sind z.B. Xylol, Toluol, Mesitylen, Benzol, Dioxan, Tetrahydrofuran, Dimethylsulfoxyd, Dimethylformamid, Athylenglykoldimethyläther. Für Verfahren c) werden inerte Lösungsmittel, insbesondere Tetrahydrofuran, eingesetzt. Nach Verfahren d) können auch Alkohole als Lösungsmittel eingesetzt werden, di möglichst mit d m Alkohol identisch sind, d r mit dem R st R⁵

die Estergruppe bildet. Abweich nd von d n übrigen Verfahren läßt sich die Umsetzung b) bevorzugt in einem Aceton-Wasser-Gemisch in Gegenwart äquimolarer Hengen Alkalilauge bei Raumtemperatur oder wenig erhöhter Temperatur durchführen. Verfahren b) läßt sich gegebenenfalls auch in wäßrig-alkoholischer Lösung, gegebenenfalls bei etwas erhöhter Temperatur durchführen, wobei die erhöhte Temperatur maximal jeweils durch den Siedepunkt des jeweiligen Lösungsmittelgemischs bestimmt ist.

Zweckmäßig arbeitet man nach Verfahren a) bei der Siedetemperatur des betreffenden Lösungsmittels. Zuweilen ist es möglich, die Umsetzung schon bei Raumtemperatur durchzuführen, insbesondere bei den Verfahren b) und c), oder bei wenig erhöhter Temperatur, wie bei Verfahren d). Nach Verfahren d) kann die Reaktion z.B. bei 50 bis 150°C, vorzugsweise jedoch am Siedepunkt des Lösungsmittels, durchgeführt werden. Es ist jedoch auch möglich, Verfahren a) ohne Lösungsmittel, z.B. in der Schmelze durchzuführen.

Gegebenenfalls kann die Umsetzung nach dem Verfahren a) auch in Gegenwart von tertiären Aminen, beispielsweise Triäthylamin, Diisopropyläthylamin, Dimethylanilin, Pyridin, Picolin, erfolgen.

Diese Amine können auch als Lösungsmittel dienen. Der Anteil dieser Amine kann beispielsweise auch nur 5 bis 10 Gew.-% - in Einzelfällen auch weniger -, bezogen auf die Menge der Reaktionsteilnehmer, betragen. Die tertiären Amine wirken als Reaktionsbeschleuniger und erhöhen die Ausbeute.

Bei Verfahren c) wird als Dehydratisierungsmittel, z.B. Dicyclohexyl-carbodiimid, 1-Cyclohexyl-3-(2-morpholinomethyl)-carbodiimid, N-(3-Dimethyl-aminopropyl)-N'-äthylcarbodiimid-hydrochlorid, Di-p-tolyl-carbodiimid oder Diisopropylcarbodiimid, vorzugsweise in Tetrahydrofuran als Lösungsmittel, verwendet.

Als Säureakzeptoren bei Verfahren d) dienen entweder die Endprodukte selbst oder Alkali-, Erdalkalicarbonate, organische Basen, wie Tri-

16

-10-

äthylamin, Picolin, Pyridin oder aber ein äquimolarer Überschuß des als Reaktionspartner teingesetzten Amins HR⁵ (IV).

Bei dem Merfahren b) fallen die Produkte zum Beispiel als Alkalisalze an. Falls es erwünscht ist, die Grundverbindung wieder aus den Salzen frejzusetzen, kann dies auf übliche Weise geschehen, z.B. mit äquimolaren Mengen der obigen Mineral- oder Sulfonsäuren.

Im allgeminen werden bei dem erfindungsgemäßen Verfahren die Reaktionspartner in stöchiometrischen Mengen zur Umsetzung gebracht. Der Verlauf der Umsetzung läßt sich z.B. dünnschichtchromatographisch verfolgen. In der Regel ist sie spätestens nach etwa einer Stunde beendet.

Die erfindungsgemäßen Verbindungen zwigen insbesondere eine analgetische, antiphlogistische und antipyretische Wirkung, wobei die analgetische Aktivität im Vordergrund steht. Sie besitzen eine erheblich geringere Toxizität als die Vergleichssubstanz Aminophenazon, und sind frei von zentralen, vegetativen und kardiovaskulären Mebenwirkungen. Die analgetische Wirkung der beanspruchten Verbindungen ließ sich unter Verwendung von Aminophenazon als Vergleichssubstanz in verschiedenen Versuchsanordnungen nachweisen. Dabei erwiesen sie sich hinsichtlich ihrer Wirkunsstärke dem Standardpräparat gleich oder sogar überlegen. Außerdem ist ihre Verträglichkeit wesentlich besser als die der Vergleichssubstanz. Hieraus ergibt sich die deutliche Überlegenheit der erfindungsgemäßen Substanzen.

Pharmakologische Prüfung

Es wurden folgende Prüfungen durchgefWirt.

a) Druckschmerztest an der Ratte nach Randall und Selitto (Arch. int. Pharmacodyn. 111, 409 (1957)). Als ED₅₀ wird die Dosis bezeichnet, die bei den behandelten Tieren 60 min post appl. die Reizschwelle um 50% erhöht.

- 9...

- b) Brennstrahlversuch an der Ratte nach Wolff, Hardy und Goodell (J. clin. Invest. 19, 659 (1940)). Die Reaktionszeit unbehandelter Tiere liegt zwischen 4 und 6 sec. Als ED gilt diejenige Dosis, die bei den behandelten Tieren 60 min post appl. die Reaktionszeit um durchschnittlich 50% verlängert.
- c) Hot-plate-Test an der Maus nach Chen und Beckman (Science 113, 631 (1951)). Die Reaktionszeit unbehandelter Tiere beträgt 6 bis 8 sec. Unter der ED₅₀ versteht man die Dosis, bei der die behandelten Tiere 15 bis 60 min post appl. eine Reaktionszeitverlängerung von durchschnittlich 50% zeigen.
- d) Toxizität an der Maus nach Litchfield und Vilcoxon (J.Pharmacol. exp. Ther. 96, (1949) 99).

Die Prüfergebnisse sind aus Tabelle 1 und 2 ersichtlich.

and the state of t

. / 8 ·

12.

Tabelle 1: Analgetische Wirkung in verschiedenen Tests

Test	Verbindung Nr.	ED ₅₀ in mg/kg per os	., n	
				
	4	69	24	
	14	80	24	
	17	52	24	
а	23	73	24	
	39	49	24	
	40	61	24.	
	. 41	38	24	
	Aminophenazon (Vergleich)	48	24	
	17	65	30	
	23	. 92	30	
b	41	104	30	
** \$	Aminophenazon (Vergleich)	210	30	
	17	77	30	
	23	110	30	
	39	129	30	
С	40	106	30	
•	Aminophenazon (Vergleich)	126	30	

- 43

Tabelle 2: Akute Toxizität an der Maus

Verbindung aus Beispiel	LD ₅₀ in mg/kg i.p.	n
4	750 - 1000	12
14	> 1000	6
17	>1000	6
23	> 1000	
	>1000 per os	10
39	400 - 800	9
40	400 - 800	9
41	400 - 800	9
Aminophenazon (Vergleich)	2981)	40

Berechnung nach Litchfield und Wilcoxon, J. Pharmacol. exp. Ther. 96, 99 (1949)

Aufgrund der Indikation bekannter Substanzen Ehnlicher Struktur war nicht zu erwarten, daß die erfindungsgemäßen Verbindungen analgetisch wirken. Außerden war es überraschend, daß die erfindungsgemäßen Substanzen im Vergleich mit Aminophenazon eine mindestens gleich gute analgetische Wirkung bei niedrigerer Toxizität zeigen und daß neben dieser günstigen Wirkung keine zentralen, vegetativen und cardiovaskulären Nebenwirkungen auftreten.

Die Stabilität der erfindungsgemäßen kristallinen Verbindungen erlaubt die Herstellung von Arzneimittelzubereitungen für orale, parenterale und rectale Verabreichung. Die Herstellung dieser Zubereitungen kann nach der üblichen Praxis unter Zumischen passender und verträglicher Hilfsstoffe, wie Stärke, Milchzucker, Zellulosederivate, Stearinsäure oder ihre Salze, Lösungsmittel, Lösungsvermittler, Läpfchenmasse, Trägerstoffen wie Chloriden, Phsophaten und Carponaten, Matriumcarbonat, erfolgen, und zwar in an sich bekannter Weise zu Pulvern, Tabletten, Dragees, Kapseln, Zäpfchen, Lösungen, Pasten oder Suspensionen.

Beispiele

- 1) 3-(4-Phenyl-2-thiazofureido)-isovaleriansäuremethylester-hydrochlorid (Nr. 4, siehe Tabelle 3).
- 17,6 g 2-Amino-4-phenylthiazol werden in 30 ml Pyridin gelöst und mit 15,7 g 3-Isocyanato-isovaleriansäuremethylester versetzt. Nach gutem

Durchmischen erhitzt man das Gemisch zum Sieden und kühlt es dann sofort in Eiswasser auf 20°C ab. Man dampft im Wasserstrahl-Vakuum ein, reibt das verbleibende Öl mit Wasser an und schüttelt mit Äther aus. Die ätherische Lösung wird über wasserfreiem Natriumsulfat getrocknet und nach dem Filtrieren mit ätherischer Salzsäure angesäuert. Das Festprodukt wird isoliert und aus Hetahnol umkristallisiert. Nach mehrmaligem Umkristallisieren aus Methanol erhält man 17.0 g produkt (46% der Theorie). Durch Aufarbeiten der Mutterlauge kann noch weitere Substanz isoliert werden.

 $c_{16}H_{20}cln_3o_3s$ (369,87) * 1/2 H_2o

Analyse: ber;: C 50,72 H 5,58 Cl 9,36 N 11,09 gef.: C 50,97 H 5,58 Cl 9,64 N 11,04

2) 3- [4-(2-Thienyl)-2-thiazolylureido] -isovaleriansäuremethylcster (Nr. 9, siehe Tabelle 3).

18,0 g 2-Amino-4-(2-thienyl)-thiazol werden in 70 ml Dioxan gelöst und mit 15,5 g 3-Isocyanato-isovaleriansäuremethylester versetzt. Nach gutem Umschütteln wird 45 min. am Rückfluß erhitzt. Man dampft im Wasserstrahl-Vakuum ein und digeriert den öligen Rückstand mit Petroläther. Anschließend nimmt man das Öl in Äther auf. Nach dem Anreiben mit einem Glasstab erhält man 16,2 g Produkt (48,2% d. Th.). Aus der Mutterlauge läßt sich noch weiteres Produkt isolieren.

 $c_{14}^{H}_{17}^{N}_{3}^{0}_{3}^{s}_{2}^{s}_{2}^{(339,44)}$

Analyse: ber.: C 49,54 H 5,05 N 12,38 S 18,89 gef.: C 49,73 H 5,00 N 12,25 S 18,90

3) 3-(4-Phenyl-2-thiazolylureido)-isovaleriansäure (Nr. 8, siehe Tabelle 3).

46.

62,3 g 3-(4-Phenyl-2-thiazolyl-ureido)-isovaleriansäuremethylester (siehe Beispiel 1) werden in 1870 ml Azeton gelöst und unter starkem Rühren mit 187,0 ml 1n-Natronlauge versetzt. Das Reaktionsgemisch wird 20 Stunden bei Raumtemperatur gerührt, im Wasserstrahl-Vakuum bei maximal 30°C eingeengt und mit 300 ml Wasser versetzt. Nach Zusatz von 187 ml 1 n-Salzsäure fällt ein zähes Ül aus, das in Methylenchlorid aufgenommen wird. Nach dem Trocknen über Natriumsulfat wird die Methylenchlorid-Phase eingeengt. Man erhält einen kristallinen Rückstand, der aus Äthenol umkristallisiert wird. Ausbeute: 34,2 g (57% d. Th.). Aus der Mutterlauge kann noch weiteres Produkt isoliert werden.

 $c_{15}^{H}_{17}^{N}_{3}^{O}_{3}^{S}$ (319,38)

Analyse: ber.: C 56,41 H 5,37 N 13,16 S 10,04 gef.: C 56,18 H 5,23 N 13,00 S 10,10

4) 3-(4-Phenyl-2-thiazolylureido)-isovaleriansäure-pyrrolidid-hydro-chlorid (Er. 26, siehe Tabelle 3).

12,8 g 3-(4-Phenyl-2-thiazolyl-ureido)-isovaleriansäure (siehe Beispiel 3) werden in 70 ml Tetrahydrofuran suspendiert und mit 2,9 g Pyrrolidin versetzt. Nach Umschütteln entsteht eine klare Lösung, der 8,3 g N,N'-Dicyclohexylcarbodiimid zugesetzt werden. Nach erneutem Umschütteln läßt man das Reaktionsgemisch über Nacht bei Raumtemperatur stehen und trennt dann den inzwischen ausgefallenen Niederschlag von N,N'-Dicyclohexylharnstoff ab. Die Lösung wird im Wasserstrahl-Vakuum eingeengt, der Rückstand in Äthanol aufgenommen und mit alkoholischer Salzsäure angesäuert. Nach Zusatz von Äther wird der Niederschlag gefällt, abgesaugt und aus Äthanol umkristallisiert. Die Substanz kirstallisiert mit 1,5 Nol Kristallwasser.

 $c_{19}^{H}_{25}c_{1}^{1}N_{4}o_{2}^{1}s_{4}^{1$

Analyse: ber.: C 52,35 H 6,47 Cl 8,13 N 12,85 S 7,35 gef.: C 52,03 H 6,57 Cl 8,05 N 12,31 S 7,48

- 12

2614189

- 5) 1-(N-Benzylpiperazino)-2-methoxycarbonylmethyl-2-(4-phenyl-2-thiazolylureido)-propan-trihydrochl rid (Nr. 5, siehe Tabelle 3).
- 16,3 g 1- Chlor -2-methoxycarbonylmethyl -2-(4-phenyl-2-thiacolyl-ureido)-propan werden in 1000 ml Xylol gelöst und mit 21,3 g N-Eenzyl-piperazin versetzt. Man erhitzt so lange am Rückfluß, bis die düńnschichtchromatographische Untersuchung einer Probe das Ende der Reaktion anzeigt. Nun wird der Säureakzeptor abgetrennt und die Lösung eingeengt. Nach dem Aufnehmen in Äthanol wird mit alkoholischer Salzsäure stark angesäuert, das langsam ausfallende Trihydrochlorid abgemaugt und zweimal aus Methanol umkristallisiert.

C₂₇H₃₆Cl₃N₅O₃S (617,04)

Analyse: ber.: C 52,56 H 5,88 N 11,35 gef.: C 52,58 H 5,77 N 11,62

- 6) 3-(Benzthiazol-2-yl-amino-carbamoyl-amino)-isovaleriansäuremethylesterhydrochlorid (= Nr. 29, siehe Tabelle 3).
- 16,5 g 2 Hydrazinobenzthiazol werden in der Würme in etwa 200 ml Dioxan gelöst. Anschließend fügt man eine Lösung von 15,7 g C-Isocyanatoisovaleriansäuremethylester in 50 ml Dioxan hinzu und kocht 20 Min.

 am Rückfluß. Man dampft ein, kristallisiert den Rückstand aus Äthanol,
 nimmt das Produkt in Methylenchlorid auf, behandelt die Lösung mit
 ätherischer Salzsäure und wäscht die ausgefallenen Kristalle mit
 Diäthyläther nach. Das Produkt wird aus Methanol mit Diäthyläther
 ausgefällt.
- 7) 1-(4-Phenylthiazol-2-yl-methyl amino)-isovaleriansäure (= Nr. 28, siehe Tabelle 3)
- 19 g 2-Methylamino-4-phenylthiazol und 16,5 g B-Isocyanato-isovalerian-säuremethylester werden auf dem Wasserbad erhitzt, bis eine homogene Schmelze entstanden ist. Man hält den Ansatz unter

- 10 -

häufigem Umrühren etwa 45 Minuten auf dem siedenden Masserbad, 18st das Produkt anschließend in Diäthyläther, filtriert von den ange-fallenen Trütungen ab und fügt ätherische Salusäure hinzu. Das Chlorhydrat fällt als schmieriges Produkt aus und kristallisiert nach einiger Zeit beim Reiben mit dem Glasstab. Es wird aus Methylen-chlorid und Diisopropyläther umkristallisiert.

Ton diesem Produkt suspendiert man 1,3 g in 75 ml Aceton, fügt 3,2 ml 1 n-Natronlauge und weitere 75 ml Aceton himmu und rührt 12 Munden. Anschließend wird abfiltriert. Das Filtrat wird eingeengt, der Nückstand im Wasser gelöst und anschließend mit 3,2 ml 1 n-Salmsäure versetzt. Es fällt ein weißer Niederschlag aus, der aus Nethanol/ Wasser umkristallisiert wird. Ausbeute: 0,77 g (69, d. Th.).

In der folgenden Tabelle 3 sind die Formeln der erfindungsgemäßen Verbindungen, ihre Schmelzpunkte und dünnschichtchromatographisch ermittelten R_f-Werte in drei verschiedenen Fließmitteln wiedergegeben. Darüberhinaus wurde die Zusammensetzung und Struktur dieser Verbindungen durch Elementaranalyse, sowie UV-, IR- und Kernresonanzspektrographie belegt.

<u>Dünnschichtchromat ographie der in der Tabelle 3 angeführten</u> Substanzen

Sorptionsmittel: Kieselgel F₂₅₄ (Fertigplatten der Firma Merck AG, Darmstadt)

Platte:

5 x 20 cm

Fließmittel:

I Chlorofrom-Methanol-konz. Ammoniak (Volumenverhältnis 85 + 14 + 1) (Kammersättigung)

II Chloroform-Methanol-85 %ige Ameisensäure

(Volumenverhältnis 85 + 10 + 5)(Kammersättigung)

III Chloroform-Methanol (Volumenverhältnis 90 + 10)

(Kammersättigung)

Laufstrecke:

10 cm

Tabelle 3

2614189 Schmp.Rf_I Of_{II} f_{III} Formel Hr. II-C-II-CI'₂-C:₂-C-C-C_hii₉ 121° 0,93 0,77 0,85 N = 11-C-11-C-C112-C-C-C113 175° C, 0,30 0,89 2 . HCl H-C-N-C-CH₃

II II CH₃

III II CH₃

IIIII 165° 0,95 0,75 0,30 1, 2

6 N-C-N-CII-CII₂-C-C-C₄!!₉ 121° 0,93 0,77 0,85 2

709842/0099

Nr.

Formel

20 - Schmp. Pf Rf II Rf III Hers

2614189

9
$$\frac{C}{N-C-N-C-CH_2-C-O-CH_3}$$
 150° 0,94 0,82 0,90 1, 2

10
$$N = \frac{0 \text{ CH}_3}{10 \text{ N-C-N-C-CH}_2 - \text{C-CH}} = \frac{0}{200^{\circ}} \text{ 0.04 0.52 0.37}$$

12
$$N = \frac{0}{11} = \frac{$$

2614189 - 47 -

Formel

Nr.

Schmp. Pf Rf II FfIII Herstellung gemäß Ceispiel

O CII₃ C

N-C-N-C-CH₂-C-OH

113 C

CII₃ C

CII₃ C

CII₃ C

CII₃ C

14 O CH₃ O O O,95 O,82 O,85 2

CH₃ II II CH₃ III III CH₃ III II CH₃ III II CH₃ III II CH₃ III II CH₃ II CH₃ III II CH₃ II

15 O CII₃ O O CII₃ O O O,70 O,49 3

16 $II_3^{C} = \left(\begin{array}{c} CII_3 \\ \\ \\ \\ CII_3 \end{array}\right)$ 0 CII_3 0
0 CII_3 0
0 CII_3 0
0 0.98 0,92 0,95 3
0 0.98 0,92 0,95 3
0 0.98 0,92 0,95 3

0 CH₃ 0

N — C-N-C-CH₂-C-C-CH₃ 270 0,93 0,82 0,89 7

HC1

18 . N-C-N-C-CH₂-C-O-CH₃ 145 0,95 0,74 0,86 2:

IN H CH₃ . 11C1

2614189

22.

Herstellung gemäß Bei-

Nr.

Formel

Schmp. Rf Rf Rf III spiel gemäß Bei-

.HC1

-23-

Nr.

Formel

Schmp. Rf Rf II Rf III gemäß Beispiel

30 Br
$$=$$

N-C-N-C-CH₂-C-O-CH₃ . HCl 167° 0,97 0,75 0,85 2

- 24.

Nr. Formel

Schmp Rf Rf Rf III Rf III gemäß Bei-

709842/0099

36

2614189

Ilr.

Formel

Schmp. Rf Rf II Pf III gemäß Beispiel

170° 0,07 0,51 0,28

. HCl

. HCl

$$F = \begin{bmatrix} 0 & \text{CH}_3\text{CH}_3 & 0 \\ & \text{II-C-N-CH-CH-CH-C-C-C-CH}_3 & 160^{\circ} & 0,92 & 0,78 & 0,79 \\ & & \text{II} & \text{II} & \text{II} & \text{II} \end{bmatrix}$$

HCl

_ 22 _

Ur.

Formel

. 26.

2614189 Herstellg Schmp. Rf Rf Rf III gemäß Beispiel

44

/23

THIS PAGE BLANK (USPTO)

.