

Master Thesis

DeepFake Detection Exploiting Self-Attention Maps

Supervisor: Prof. Lorenzo Seidenari

Co-supervisor: Luca Cultrera, PhD

Gianmarco Santoro

24/04/2024

università degli studi FIRENZE

REAL or FAKE?

Benefit → **Special effects**

Problem \rightarrow **Disinformation**

Supervised methods

- **Trained on specific forgeries** → **cannot detect unseen ones**
- Very high accuracy in detection

DeepFakes

FaceShifter

Face2Face

NeuralTextures

Out-of-Distribution Detection

- Identifying data different from training distribution
- In this case between 2 classes
 - \circ Real images \rightarrow In-Distribution
 - \circ Fake images \rightarrow Out-of-Distribution

FIRENZE

Unsupervised method

- → extract Attention
- Conv-AE → discern between In-distribution and Out-of-Distribution images

ViT Face-Transformer

- Originally → Face recognition: identity
- Out method → Feature extraction: Attention

Example - Vision Attention in Vision Transformer

Architecture

- → Original ViT
- Vision Attention → from this research

Transformer Encoder Lx MLP Norm Multi-Head Attention Norm Embedded Patches

Attention Heatmap

Heatmap on Frame

Conv-AE

- Architecture trained to reconstruct its input accurately
- How:
 - Encoder compresses input in lower-dimensional latent space
 - Decoder reconstruct original input from compressed representation

$Data \to ViT \to Attention \ extraction \to HeatMaps \ Dataset \to$

- \rightarrow Train Conv-AE on REALs \rightarrow Test on All Images \rightarrow
- → Reconstruction Error: Real or Fake

Trained on In-Distribution images only

FaceForensics++ dataset

- 1000 videos from YouTube
 - 1 person per video
- ~ 100 frames per video
- 5 Forgeries + Real
- Dataset split on videos
 - \circ Train \rightarrow 80 %
 - Validation \rightarrow 10 %
 - $\circ \quad \textbf{Test} \qquad \rightarrow \textbf{10 \%}$

11	EGEND:	DATASETS		
	IN DISTRIBUTION OUT-OF-DISTRIBUTION	TRAINING	VALIDATION	TEST
	REAL	79′954	9'995	10'000
	DEEPFAKES	*	*	10'000
I M A G E S	FACE2FACE	*	*	10'000
	FACESHIFTER	*	*	10'000
3	FACESWAP	*	*	10'000
	NEURAL TEXTURES	*	*	10'000

SCHOOL FOR ADVANCED LUCCA

FIRENZE

AUROC \rightarrow **AUC** calculated on ROCs

False Positive Rate

On the method proposed

- **Validated**
- Independent from specific forgery
 - Transfer learning to new forgeries
- **Performance**
 - Better than RGB-based random chance
 - Minor than Supervised SotA methods

AUROC Real vs Forged Images Models Detection Ability					
Forgery	Attention-based	RGB-based			
Deepfakes	0.62	0.51			
Face2Face	0.62	0.51			
FaceShifter	0.59	0.58			
FaceSwap	0.61	0.50			
NeuralTextures	0.54	0.50			
All forgeries	\rightarrow 0.60	> 0.49			

Future advancements

- Try on ViT for demographic classification
 - E.g. MiVOLO: Multi-input Transformer for Age and Gender Estimation

UNIVERSITÀ DEGLI STUDI FIRENZE

Thanks for your Attention

UNIVERSITÀ DEGLI STUDI FIRENZE

REFERENCES:

- 1. Luca Cultrera, Lorenzo Seidenari, and Alberto Del Bimbo | "Leveraging Visual Attention for out-of-Distribution Detection" | Proceedings of the IEEE/CVF International Conference on Computer Vision | 2023
- 2. Zhong, Yaoyao, and Weihong Deng | "Face transformer for recognition" | arXiv preprint arXiv:2103.14803 | 2021
- 3. Kuprashevich, Maksim, and Irina Tolstykh | "MiVOLO: Multi-input Transformer for Age and Gender Estimation" | arXiv preprint arXiv:2307.04616 | 2023
- 4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. | 2017 | "Attention is All You Need" | In Advances in Neural Information Processing Systems (pp. 5998-6008)
- 5. Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,† * equal technical contribution, † equal advising Google Research, Brain Team | "An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale" | at ICLR 2021
- 6. https://niessnerlab.org/projects/roessler2018faceforensics.html
- 7. https://medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
- 8. https://seeflection.com/22579/viral-deepfake-on-tiktok-causes-outrage/
- $9. \qquad \underline{https://towardsdatascience.com/using-transformers-for-computer-vision-6f764c5a078b}$
- 10. https://encord.com/blog/what-is-out-of-distribution-ood-detection/