Sémantiky programovacích jazyků

Doporučená literatura

- Glynn Winskel: The Formal Semantics of Programming Languages
- Matthew Hennesy: The Semantics of Programming Languages

 PDF a PS soubor této prezentace je dostupný na http://www.fi.muni.cz/usr/kucera/teach.html

Definice programovacího jazyka

- Syntaxe definuje "správně utvořené" programy (akceptované překladačem).
 - ⋆ lexikální jednotky (klíčová slova, identifikátory, konstanty, operátory, . . .)
 - * frázová struktura (určuje jaké posloupnosti lexikálních jednotek jsou "přípustné"

- Sémantika popisuje chování programu (co program "dělá")
 - ⋆ neformální (učebnice programovacích jazyků)
 - * formální ("matematická")

Účel a použitelnost formální sémantiky

Korektnost implementace

- ⋆ překladač (co musí splňovat, aby byl "správný"?)
- ⋆ optimalizátor (jaké úpravy kódu jsou "přípustné"?)

Verifikace programů

- * vlastnosti programů (jak je vyjádřit, jak *dokázat* že daný program má danou vlastnost?)
- ⋆ ekvivalence programů (co znamená, že se dva programy "chovají stejně"?)
- * systémy, které jsou paralelní, distribuované, pracují s reálným časem, nebo jsou řízené událostmi, nelze "ladit"!

$$X := X + 1 \parallel X := X + 1$$

Návrh programovacích jazyků

Základní "styly" sémantik programovacích jazyků

- Operační sémantika definuje jak se program provádí
- Denotační sémantika definuje co program počítá
- Axiomatická sémantika umožňuje odvodit vlastnosti programu

Abstraktní syntax programovacích jazyků

Abstraktní syntaktická rovnice: rovnice tvaru

```
X \quad ::= \quad at_1 \mid \cdots \mid at_n \mid op_1(\alpha_{(1,1)}, \dots, \alpha_{(1,n_1)}) \mid \cdots \mid op_m(\alpha_{(m,1)}, \dots, \alpha_{(m,n_m)}) kde
```

- $\star at_1, \cdots, at_n$ jsou atomy.
- $\star op_1, \cdots, op_m$ jsou operace (které mohou mít i nulovou aritu pak jde o konstanty).
- \star $\alpha_{(i,j)}$ je buď X nebo atom (opakované výskyty jsou rozlišeny indexy).
- ⋆ Pro každý atom ati je dána jeho syntaktická doména (množina) Ai.

• Příklad:

$$X ::= num \mid \omega \mid X_0 + X_1 \mid X_0 - X_1$$

Syntaktickou doménou atomu num jsou dekadické zápisy celých čísel, ω je konstanta.

Syntaktické stromy

Uvažme abstraktní syntaktickou rovnici

```
X ::= at_1 | \cdots | at_n | op_1(\alpha_{(1,1)}, \ldots, \alpha_{(1,n_1)}) | \cdots | op_m(\alpha_{(m,1)}, \ldots, \alpha_{(m,n_m)})
```

- Množina syntaktických stromů pro X je definována induktivně:
 - \star Je-li α prvek syntaktické domény některého z atomů at_1, \dots, at_n , je strom s jediným uzlem α syntaktický strom pro X výšky 0.
 - ⋆ Je-li op konstanta, je strom s jediným uzlem op syntaktický strom pro X výšky 0.
 - * Je-li op operace arity $n \ge 1$ s argumenty $\alpha_1, \dots, \alpha_n$, je strom s kořenem op a n následníky, kde i-tý následník je buď
 - * kořen syntaktického stromu pro X, je-li $\alpha_i = X$,
 - * prvek syntaktické domény atomu at, je-li $\alpha_i = at$.

také syntaktickým stromem pro X výšky k+1, kde k je maximum z výšek následníků kořene (prvky syntaktických domén atomů mají výšku 0).

- U syntaktických stromů rozlišujeme pořadí následníků.
- Je možné definovat i systémy syntaktických rovnic, kde množina syntaktických stromů určená
 jednou rovnicí definuje syntaktickou doménu atomu jiné rovnice.

Příklad definice abstraktní syntaxe

- $X ::= num \mid X_0 + X_1 \mid X_0 X_1$ Syntaktickou doménou atomu num jsou dekadické zápisy celých čísel.
- $Y ::= color(X_0, X_1, X_2) \mid Y_0 \# Y_1 \mid Y_0 \& Y_1$ Syntaktickou doménou atomu X je množina všech syntaktických stromů pro X.

Konkrétní syntax programovacích jazyků

Určuje, jak jednoznačně zapisovat syntaktické stromy jako řetězce symbolů.

Aritmetické výrazy

Zápis 1-4+8 není jednoznačný.

- \star prefixová notace: + 148
- ⋆ postfixová notace: 8 4 1 − +
- \star závorky: (1-4)+8
- Volitelná else klauzule příkazu if − then − else
 - ⋆ závorky
 - * klíčové slovo fi

Odvozovací systémy, důkazy a dokazatelná tvrzení

• Odvozovací systém je dán konečnou množinou schémat axiomů a odvozovacích pravidel tvaru

$$\frac{\text{předpoklad}_1 \, \cdots \, \text{předpoklad}_n}{\text{závěr}} \, \, \text{podmínky}$$

- Důkaz je konečný strom, jehož listy jsou instance axiomů a vnitřní uzly instance pravidel.
- Tvrzení α je dokazatelné, jestliže existuje důkaz s kořenem α .
- Důkazové stromy je zvykem psát "kořenem dolů" (tj. "obráceně" než syntaktické stromy).

Odvozovací systém výrokové logiky

Abstraktní syntax formulí výrokové logiky:

$$\varphi ::= v\acute{y}rok \mid \varphi_0 \rightarrow \varphi_1 \mid \neg \varphi$$

kde syntaktická doména atomu *výrok* je spočetná množina atomických výroků {A, B, C . . .}.

Schémata axiomů odvozovacího systému výrokové logiky

$$\star \phi \rightarrow (\psi \rightarrow \phi)$$

$$\star (\phi \rightarrow (\psi \rightarrow \xi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \xi))$$

$$\star (\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$$

Odvozovací pravidlo modus ponens

$$\frac{\varphi \qquad \varphi \rightarrow \psi}{\psi}$$

Příklad: A → A je dokazatelná formule.

$$A \to ((A \to A) \to A) \qquad (A \to ((A \to A) \to A)) \to ((A \to (A \to A)) \to (A \to A))$$

$$(A \to (A \to A)) \to (A \to A)$$

$$A \to A$$

Indukce k výšce stromu

- Buď \mathcal{M} (nějaká) množina stromů konečné výšky a V (nějaká) vlastnost, která je pro každý strom $T \in \mathcal{M}$ buď pravdivá nebo nepravdivá.
- Tvrzení o indukci k výšce stromu: Nechť je splněna následující podmínka:
 - \star Pro každé n ∈ N₀:

Je-li V je pravdivá pro každé $T \in \mathcal{M}$ výšky menší než n, pak V je pravdivá pro každé $T' \in \mathcal{M}$ výšky právě n.

Pak V je pravdivá pro všechny stromy z \mathcal{M} .

- Strukturální indukce: indukce k výšce (syntaktického) stromu, kde \mathcal{M} je množina všech syntaktických stromů určená danou abstraktní syntaktickou rovnicí.
- Indukce k výšce odvození: indukce k výšce (důkazového) stromu, kde \mathcal{M} je množina všech důkazů daného odvozovacího systému.

Abstraktní syntaxe jazyka IMP

Základní syntaktické domény

Num =
$$\{0, 1, -1, 2, -2, ...\}$$

Bool = $\{tt, ff\}$
Var = $\{A, B, C, ...\}$

Aritmetické výrazy Aexp

$$a \quad ::= \quad n \mid X \mid \alpha_0 + \alpha_1 \mid \alpha_0 - \alpha_1 \mid \alpha_0 * \alpha_1$$
 kde $n \in \mathbf{Num} \ \mathbf{a} \ X \in \mathbf{Var}.$

Pravdivostní výrazy Bexp

```
b \quad ::= \quad t \mid a_0 = a_1 \mid a_0 \leq a_1 \mid \text{ not } b \mid b_0 \text{ and } b_1 \mid b_0 \text{ or } b_1 \text{kde } t \in \textbf{Bool a} \ a_0, \, a_1 \in \textbf{Aexp}.
```

Příkazy Com

```
c ::= skip | X := a \mid c_0; c_1 \mid if b then c_0 else c_1 \mid while b do c kde X \in Var, a \in Aexp a b \in Bexp.
```

Operační sémantika

- Programům v daném jazyce je přiřazen přechodový systém, který popisuje výpočetní procesy jednotlivých programů.
- Přechodový systém: trojice (S, A, \rightarrow) , kde
 - * S je množina konfigurací (ne nutně konečná!)
 - * A je množina akcí
 - $\star \to \subset S \times A \times S$ je přechodová relace
- Jednotlivé "typy" operační sémantiky se liší definicí množiny konfigurací a přechodové relace
 - ★ SMC stroj: Stack Memory Control stack
 - * λ-kalkul
 - ⋆ SOS: Strukturální Operační Sémantika

SOS sémantika IMP prvního typu ("big step")

- Stav je zobrazení $\sigma: \mathbf{Var} \to \mathbb{Z}$, množina všech stavů se značí Σ .
- Cílem je definovat přechodový systém, kde
 - množina konfigurací je Σ,
 - ⋆ množina akcí je Com,
 - \star přechodová relace odpovídá "výslednému efektu" programů, tj. $\sigma \stackrel{c}{\to} \sigma'$ právě když výpočet programu c zahájený ve stavu σ skončí a přejde do stavu σ' .
- Za tímto účelem definujeme odvozovací systémy pro tři relace:
 - $\star \to_A \subseteq \mathbf{Aexp} \times \Sigma \times \mathbb{Z}$; prvky zapisujeme ve tvaru $\langle a, \sigma \rangle \to_A \mathfrak{n}$.
 - $\star \to_B \subseteq \mathbf{Bexp} \times \Sigma \times \mathbb{T}$; prvky zapisujeme ve tvaru $\langle b, \sigma \rangle \to_B t$.
 - $\star \to_C \subseteq \mathbf{Com} \times \Sigma \times \Sigma$; prvky zapisujeme ve tvaru $\langle c, \sigma \rangle \to_C \sigma'$.

Indexy A, B, C budou obvykle vynechány.

• Pak již Ize definovat: $\sigma \xrightarrow{c} \sigma' \iff \langle c, \sigma \rangle \to \sigma'$

Aritmetické výrazy Aexp

$$\langle \alpha, \sigma \rangle \to n$$
 "aritmetický výraz α se ve stavu σ vyhodnotí na $n \in \mathbb{Z}$ "

•
$$\langle n, \sigma \rangle \rightarrow n$$

•
$$\langle X, \sigma \rangle \rightarrow \sigma(X)$$

$$\bullet \ \frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 + a_1, \sigma \rangle \to n} \ n = n_0 + n_1$$

$$\frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 - a_1, \sigma \rangle \to n} n = n_0 - n_1$$

$$\bullet \frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 * a_1, \sigma \rangle \to n} n = n_0 * n_1$$

Pravdivostní výrazy Bexp

 $\langle b,\sigma \rangle o t$ "pravdivostní výraz b se ve stavu σ vyhodnotí na $t \in \mathbb{T}$ "

•
$$\langle \mathbf{tt}, \sigma \rangle \rightarrow \mathbf{true}$$

•
$$\langle \mathbf{ff}, \sigma \rangle \rightarrow \mathbf{false}$$

•
$$\frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 = a_1, \sigma \rangle \to \mathbf{true}} n_0 = n_1$$

•
$$\frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 = a_1, \sigma \rangle \to \mathbf{false}} n_0 \neq n_1$$

•
$$\frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 \leq a_1, \sigma \rangle \to \mathbf{true}} n_0 \leq n_1$$

•
$$\frac{\langle a_0, \sigma \rangle \to n_0 \quad \langle a_1, \sigma \rangle \to n_1}{\langle a_0 \leq a_1, \sigma \rangle \to \mathbf{false}} n_0 > n_1$$

•
$$\frac{\langle b, \sigma \rangle \rightarrow false}{\langle not \ b, \sigma \rangle \rightarrow true}$$

•
$$\frac{\langle b, \sigma \rangle \rightarrow true}{\langle not b, \sigma \rangle \rightarrow false}$$

•
$$\frac{\langle b_0, \sigma \rangle \to t_0 \quad \langle b_1, \sigma \rangle \to t_1}{\langle b_0 \text{ and } b_1, \sigma \rangle \to \text{true}} t_0 = \text{true} \land t_1 = \text{true}$$

•
$$\frac{\langle b_0, \sigma \rangle \to t_0 \quad \langle b_1, \sigma \rangle \to t_1}{\langle b_0 \text{ and } b_1, \sigma \rangle \to \text{false}} t_0 = \text{false} \lor t_1 = \text{false}$$

•
$$\frac{\langle b_0, \sigma \rangle \to t_0 \quad \langle b_1, \sigma \rangle \to t_1}{\langle b_0 \text{ or } b_1, \sigma \rangle \to \text{true}} t_0 = \text{true} \lor t_1 = \text{true}$$

•
$$\frac{\langle b_0, \sigma \rangle \to t_0 \quad \langle b_1, \sigma \rangle \to t_1}{\langle b_0 \text{ or } b_1, \sigma \rangle \to \text{false}} t_0 = \text{false} \land t_1 = \text{false}$$

Příkazy Com

 $\langle c, \sigma \rangle \to \sigma'$ "příkaz c aktivovaný ve stavu σ skončí ve stavu σ' "

•
$$\langle skip, \sigma \rangle \rightarrow \sigma$$

•
$$\frac{\langle a, \sigma \rangle \to n}{\langle X := a, \sigma \rangle \to \sigma[n/X]}$$

$$\begin{array}{c|c} \bullet & \frac{\langle c_0,\sigma\rangle \to \sigma'' & \langle c_1,\sigma''\rangle \to \sigma'}{\langle c_0;c_1,\sigma\rangle \to \sigma'} \end{array}$$

•
$$\frac{\langle b, \sigma \rangle \to \text{true} \quad \langle c_0, \sigma \rangle \to \sigma'}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'}$$
 $\frac{\langle b, \sigma \rangle \to \text{false} \quad \langle c_1, \sigma \rangle \to \sigma'}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'}$

•
$$\frac{\langle b, \sigma \rangle \rightarrow \text{false}}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma}$$

$$\frac{\langle b, \sigma \rangle \to \mathbf{false} \quad \langle c_1, \sigma \rangle \to \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'}$$

$$\frac{\langle b,\sigma\rangle \to \text{true} \quad \langle c,\sigma\rangle \to \sigma'' \quad \langle \text{while} \ b \ \text{do} \ c,\sigma''\rangle \to \sigma'}{\langle \text{while} \ b \ \text{do} \ c,\sigma\rangle \to \sigma'}$$

Příklad důkazového stromu v SOS sémantice 1. typu

Uvažme program while $A \le 2$ do A := A + C

• Stav σ je definován takto: $\sigma(A) = 1$, $\sigma(C) = 2$, a pro $A \neq B \neq C$ je $\sigma(B) = 10$. Pak \langle while $A \leq 2$ do A := A + C, $\sigma\rangle \rightarrow \sigma[3/A]$, neboť

• Stav $\sigma' = \sigma[0/C]$. Důkazový strom s kořenem tvaru $\langle \mathbf{while} \ A \leq 2 \ \mathbf{do} \ A := A + C, \sigma' \rangle \to \sigma''$ sestrojit nelze (pro žádné σ'').

SOS sémantika prvního typu je deterministická

Věta 1.

- 1. Pro každé $a \in \mathbf{Aexp}$ a $\sigma \in \Sigma$ existuje právě jedno $n \in \mathbb{Z}$ takové, že $\langle a, \sigma \rangle \to n$.
- 2. Pro každé $b \in \mathbf{Bexp}$ a $\sigma \in \Sigma$ existuje právě jedno $t \in \mathbb{T}$ takové, že $\langle b, \sigma \rangle \to t$.
- 3. Pro každé $c \in \mathbf{Com} \ a \ \sigma \in \Sigma$ existuje nejvýše jedno $\sigma' \in \Sigma$ takové, že $\langle c, \sigma \rangle \to \sigma'$.

Důkaz. 1. a 2. indukcí ke struktuře a a b, 3. indukcí k výšce odvození $\langle c, \sigma \rangle \rightarrow \sigma'$. ad 1.

- $a \equiv n$. Pak $\langle n, \sigma \rangle \rightarrow n$ dle definice.
- $a \equiv X$. Pak $\langle X, \sigma \rangle \rightarrow \sigma(X)$ dle definice.
- $a \equiv a_0 + a_1$. Podle indukčního předpokladu existuje pravě jedno n_0 takové, že $\langle a_0, \sigma \rangle \to n_0$, a právě jedno n_1 takové, že $\langle a_1, \sigma \rangle \to n_1$. Proto $\langle a_0 + a_1, \sigma \rangle \to n$, kde $n = n_0 + n_1$.
- $a \equiv a_0 a_1$. Podobně.
- $a \equiv a_0 * a_1$. Podobně.

ad 3. Indukcí k výšce odvození ukážeme, že pokud pro dané c a σ existuje (nějaké) σ' takové, že $\langle c, \sigma \rangle \to \sigma'$, je toto σ' určeno jednoznačně.

Nechť $\langle c, \sigma \rangle \to \sigma'$ je kořen důkazového stromu výšky $n \in \mathbb{N}_0$. Uvážíme možné tvary c.

- $\langle \mathbf{skip}, \sigma \rangle \rightarrow \sigma$.
- $c \equiv X := a$. Pak kořen $\langle X := a, \sigma \rangle \to \sigma'$ má následníka $\langle a, \sigma \rangle \to n$ a platí $\sigma' = \sigma[n/X]$. Podle 1. existuje přávě jedno takové n, proto σ' je určeno jednoznačně.
- $c \equiv c_0; c_1$. Pak kořen $\langle c_0; c_1, \sigma \rangle \to \sigma'$ má následníky $\langle c_0, \sigma \rangle \to \sigma''$ a $\langle c_1, \sigma'' \rangle \to \sigma'$. Podle indukčního předpokladu je σ'' i σ' určeno jednoznačně.
- $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Pak kořen $\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'$ má buď následníky $\langle b, \sigma \rangle \to \text{true a } \langle c_0, \sigma \rangle \to \sigma'$, nebo $\langle b, \sigma \rangle \to \text{false a } \langle c_1, \sigma \rangle \to \sigma'$. Podle 2. nastává právě jedna z těchto možností, proto je σ' určeno jednoznačně.
- $c \equiv \text{while } b \text{ do } c$. Pak kořen $\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$ má buď jediného následníka $\langle b, \sigma \rangle \rightarrow \text{false}$ a $\sigma' = \sigma$, nebo tři následníky $\langle b, \sigma \rangle \rightarrow \text{true}$, $\langle c, \sigma \rangle \rightarrow \sigma''$ a $\langle \text{while } b \text{ do } c, \sigma'' \rangle \rightarrow \sigma'$. Podle 2. nastává právě jedna z těchto možností. V prvním případě jsme hotovi ihned; v druhém použijeme indukční předpoklad podle něhož je σ'' a σ' určeno jednoznačně.

Sémantická ekvivalence výrazů a příkazů (I)

Aritmetické výrazy Aexp

$$a_0 \sim a_1 \quad \stackrel{\textit{def}}{\Longleftrightarrow} \quad (\forall n \in \mathbb{Z} \ \forall \sigma \in \Sigma : \ \langle a_0, \sigma \rangle \to n \ \iff \ \langle a_1, \sigma \rangle \to n)$$

Pravdivostní výrazy Bexp

$$b_0 \sim b_1 \quad \stackrel{\textit{def}}{\Longleftrightarrow} \quad (\forall t \in \mathbb{T} \ \forall \sigma \in \Sigma : \ \langle b_0, \sigma \rangle \to t \ \iff \ \langle b_1, \sigma \rangle \to t)$$

Příkazy Com

$$c_0 \sim c_1 \quad \stackrel{\textit{def}}{\Longleftrightarrow} \quad (\forall \sigma, \sigma' \in \Sigma : \ \langle c_0, \sigma \rangle \rightarrow \sigma' \ \iff \ \langle c_1, \sigma \rangle \rightarrow \sigma')$$

Příklad ekvivaletních programů

Dokážeme, že while b do $c \sim \text{if } b \text{ then } (c; \text{ while } b \text{ do } c) \text{ else skip}$

• \langle while b do c, $\sigma \rangle \to \sigma' \Rightarrow \langle$ if b then (c; while b do c) else skip, $\sigma \rangle \to \sigma'$ Jsou dvě možnosti:

Opačná implikace se ukáže podobně.

Operační sémantika IMP druhého typu ("small step")

- Cílem je definovat přechodový systém, kde
 - * množina konfigurací je Com $\times \Sigma$,
 - * množina akcí je $\{\tau\}$,
 - * přechodová relace odpovídá "kroku výpočtu" programů, tj. $\langle c, \sigma \rangle \stackrel{\tau}{\to} \langle c', \sigma' \rangle$ právě když program c přejde ze stavu σ vykonáním jedné instrukce do stavu σ' a z tohoto stavu se dále provádí program c'.
- Definujeme odvozovací systémy pro tři relace:
 - $\star \mapsto_{A} \subseteq (\mathbf{Aexp} \times \Sigma) \times (\mathbf{Aexp} \times \Sigma);$ prvky zapisujeme ve tvaru $\langle \alpha, \sigma \rangle \mapsto_{A} \langle \alpha', \sigma' \rangle.$
 - $\star \mapsto_B \subseteq (\textbf{Bexp} \times \Sigma) \times (\textbf{Bexp} \times \Sigma); \text{ prvky zapisujeme ve tvaru } \langle b, \sigma \rangle \mapsto_B \langle b', \sigma' \rangle.$
 - $\star \; \mapsto_{C} \; \subseteq \; (\textbf{Com} \times \Sigma) \times (\textbf{Com} \times \Sigma); \quad \text{prvky zapisujeme ve tvaru} \; \langle c, \sigma \rangle \; \mapsto_{C} \; \langle c', \sigma' \rangle.$

Indexy A, B, C budou obvykle vynechány.

• Pak již lze definovat: $\langle c, \sigma \rangle \stackrel{\tau}{\to} \langle c', \sigma' \rangle \iff \langle c, \sigma \rangle \mapsto_{\mathbb{C}} \langle c', \sigma' \rangle$

Aritmetické výrazy Aexp

- ⟨n, σ⟩ konečná konfigurace
- $\langle X, \sigma \rangle \mapsto \langle \sigma(X), \sigma \rangle$
- $\langle n_0 + n_1, \sigma \rangle \mapsto \langle m, \sigma \rangle$, kde $m = n_0 + n_1$
- $\frac{\langle a_0, \sigma \rangle \mapsto \langle a'_0, \sigma \rangle}{\langle a_0 + a_1, \sigma \rangle \mapsto \langle a'_0 + a_1, \sigma \rangle}$
- $\frac{\langle a_1, \sigma \rangle \mapsto \langle a_1', \sigma \rangle}{\langle n + a_1, \sigma \rangle \mapsto \langle n + a_1', \sigma \rangle}$
- podobně pro "–" a "*"

Příklad:

- Necht' $\sigma(X) = 1$, $\sigma(Y) = 2$
- $\langle (X+3) * Y, \sigma \rangle \mapsto \langle (1+3) * Y, \sigma \rangle \mapsto \langle 4 * Y, \sigma \rangle \mapsto \langle 4 * 2, \sigma \rangle \mapsto \langle 8, \sigma \rangle$

Pravdivostní výrazy Bexp

⟨tt, σ⟩ – konečná konfigurace

⟨ff, σ⟩ – konečná konfigurace

• $\langle n_0 = n_1, \sigma \rangle \mapsto \langle \mathbf{tt}, \sigma \rangle$, je-li $n_0 = n_1$

• $\langle n_0 = n_1, \sigma \rangle \mapsto \langle \mathbf{ff}, \sigma \rangle$, je-li $n_0 \neq n_1$

$$\bullet \quad \frac{\langle a_0, \sigma \rangle \mapsto \langle a'_0, \sigma \rangle}{\langle a_0 = a_1, \sigma \rangle \mapsto \langle a'_0 = a_1, \sigma \rangle}$$

$$\frac{\langle a_1, \sigma \rangle \mapsto \langle a'_1, \sigma \rangle}{\langle n = a_1, \sigma \rangle \mapsto \langle n = a'_1, \sigma \rangle}$$

podobně pro "<"

• $\langle \mathbf{not} \ \mathbf{tt}, \sigma \rangle \mapsto \langle \mathbf{ff}, \sigma \rangle$, $\langle \mathbf{not} \ \mathbf{ff}, \sigma \rangle \mapsto \langle \mathbf{tt}, \sigma \rangle$

•
$$\frac{\langle b, \sigma \rangle \mapsto \langle b', \sigma \rangle}{\langle \mathbf{not} \ b, \sigma \rangle \mapsto \langle \mathbf{not} \ b', \sigma \rangle}$$

• $\langle t_1 \text{ and } t_2, \sigma \rangle \mapsto \langle \mathbf{tt}, \sigma \rangle$ je-li $t_1 = \mathbf{tt}$ a $t_2 = \mathbf{tt}$

• $\langle t_1 \text{ and } t_2, \sigma \rangle \mapsto \langle \mathbf{ff}, \sigma \rangle \text{ je-li } t_1 = \mathbf{ff} \text{ nebo } t_2 = \mathbf{ff}$

$$\bullet \ \frac{\langle b_0, \sigma \rangle \mapsto \langle b_0', \sigma \rangle}{\langle b_0 \text{ and } b_1, \sigma \rangle \mapsto \langle b_0' \text{ and } b_1, \sigma \rangle}$$

•
$$\frac{\langle b_1, \sigma \rangle \mapsto \langle b_1', \sigma \rangle}{\langle t \text{ and } b_1, \sigma \rangle \mapsto \langle t \text{ and } b_1', \sigma \rangle} t \in \{\text{tt}, \text{ff}\}$$

podobně pro "or"

Příkazy Com

⟨skip, σ⟩ – konečná konfigurace

•
$$\langle X := n, \sigma \rangle \mapsto \langle \text{skip}, \sigma[n/X] \rangle$$

$$\frac{\langle a, \sigma \rangle \mapsto \langle a', \sigma \rangle}{\langle X := a, \sigma \rangle \mapsto \langle X := a', \sigma \rangle}$$

•
$$\langle \mathbf{skip}; \mathbf{c}, \sigma \rangle \mapsto \langle \mathbf{c}, \sigma \rangle$$

$$\frac{\langle c_0, \sigma \rangle \mapsto \langle c_0', \sigma' \rangle}{\langle c_0; c_1, \sigma \rangle \mapsto \langle c_0'; c_1, \sigma' \rangle}$$

• (if tt then
$$c_0$$
 else $c_1, \sigma \rangle \mapsto \langle c_0, \sigma \rangle$

(if ff then
$$c_0$$
 else $c_1, \sigma \rangle \mapsto \langle c_1, \sigma \rangle$

•
$$\frac{\langle b, \sigma \rangle \mapsto \langle b', \sigma \rangle}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \mapsto \langle \text{if } b' \text{ then } c_0 \text{ else } c_1, \sigma \rangle}$$

• \langle while b do c, $\sigma \rangle \mapsto \langle$ if b then (c; while b do c) else skip, $\sigma \rangle$

Sémantická ekvivalence výrazů a příkazů (II)

• Pro každé $k \in \mathbb{N}_0$ definujeme (induktivně) relaci $\mapsto^k \subseteq (\mathbf{Com} \times \Sigma) \times (\mathbf{Com} \times \Sigma)$:

$$\mapsto^0 = id_{\mathbf{Com} \times \Sigma}$$

 $\mapsto^{i+1} = \mapsto^i \circ \mapsto$

- Dále definujeme $\mapsto^* = \bigcup_{k=0}^{\infty} \mapsto^k$
- Aritmetické výrazy Aexp

$$a_0 \approx a_1 \quad \stackrel{\textit{def}}{\Longleftrightarrow} \quad (\forall n \in \mathbb{Z} \ \forall \sigma \in \Sigma : \ \langle a_0, \sigma \rangle \mapsto^* \langle n, \sigma \rangle \ \iff \ \langle a_1, \sigma \rangle \mapsto^* \langle n, \sigma \rangle)$$

Pravdivostní výrazy Bexp

$$b_0 \approx b_1 \quad \stackrel{\textit{def}}{\Longleftrightarrow} \quad (\forall t \in \mathbb{T} \ \forall \sigma \in \Sigma : \ \langle b_0, \sigma \rangle \mapsto^* \langle t, \sigma \rangle \ \iff \ \langle b_1, \sigma \rangle \mapsto^* \langle t, \sigma \rangle)$$

Příkazy Com

$$c_0 \approx c_1 \quad \stackrel{\textit{def}}{\Longleftrightarrow} \quad (\forall \sigma, \sigma' \in \Sigma : \ \langle c_0, \sigma \rangle \mapsto^* \langle \textbf{skip}, \sigma' \rangle \quad \Longleftrightarrow \quad \langle c_1, \sigma \rangle \mapsto^* \langle \textbf{skip}, \sigma' \rangle)$$

Ekvivalence SOS sémantik 1. a 2. typu

Lema 2.

- 1. Jestliže $\langle \alpha, \sigma \rangle \mapsto^k \langle \alpha', \sigma \rangle$, pak $\langle \alpha \odot \alpha_1, \sigma \rangle \mapsto^k \langle \alpha' \odot \alpha_1, \sigma \rangle$ a $\langle n \odot \alpha, \sigma \rangle \mapsto^k \langle n \odot \alpha', \sigma \rangle$ pro každé $\odot \in \{+, -, *\}$.
- 2. Jestliže $\langle \alpha, \sigma \rangle \mapsto^k \langle \alpha', \sigma \rangle$, pak $\langle X := \alpha, \sigma \rangle \mapsto^k \langle X := \alpha', \sigma \rangle$
- 3. Jestliže $\langle c, \sigma \rangle \mapsto^k \langle c', \sigma' \rangle$, pak $\langle c; c_1, \sigma \rangle \mapsto^k \langle c'; c_1, \sigma' \rangle$.
- 4. Jestliže $\langle b, \sigma \rangle \mapsto^k \langle b', \sigma \rangle$, pak $\langle if b then c_0 else c_1, \sigma \rangle \mapsto^k \langle if b' then c_0 else c_1, \sigma \rangle$

Důkaz. Indukcí ke k.

ad 1., první implikace.

- Báze (k = 0): $\langle a_0, \sigma \rangle \mapsto^0 \langle a_0', \sigma \rangle \iff a_0' = a_0 \iff \langle a_0 + a_1, \sigma \rangle \mapsto^0 \langle a_0' + a_1, \sigma \rangle$
- Indukční krok:

$$\begin{split} &\langle \alpha_0,\sigma\rangle \mapsto^{k+1} \langle \alpha_0',\sigma\rangle \Rightarrow \ \langle \alpha_0,\sigma\rangle \mapsto \langle \alpha_0'',\sigma\rangle \ \textbf{a} \ \langle \alpha_0'',\sigma\rangle \mapsto^k \langle \alpha_0',\sigma\rangle \Rightarrow \\ &\langle \alpha_0,\sigma\rangle \mapsto \langle \alpha_0'',\sigma\rangle \ \textbf{a} \ \langle \alpha_0''+\alpha_1,\sigma\rangle \mapsto^k \langle \alpha_0'+\alpha_1,\sigma\rangle \ \ \text{(podle I.P.)} \Rightarrow \\ &\langle \alpha_0+\alpha_1,\sigma\rangle \mapsto \langle \alpha_0''+\alpha_1,\sigma\rangle \ \textbf{a} \ \langle \alpha_0''+\alpha_1,\sigma\rangle \mapsto^k \langle \alpha_0'+\alpha_1,\sigma\rangle \Rightarrow \\ &\langle \alpha_0+\alpha_1,\sigma\rangle \mapsto^{k+1} \langle \alpha_0'+\alpha_1,\sigma\rangle \end{split}$$

ad 2.,3.,4. Podobně.

Lema 3.

- 1. Jestliže $\langle a_0 \odot a_1, \sigma \rangle \mapsto^k \langle n, \sigma \rangle$ kde $\odot \in \{+, -, *\}$, pak $\langle a_0 \odot a_1, \sigma \rangle \mapsto^l \langle n_0 \odot a_1, \sigma \rangle \mapsto^m \langle n_0 \odot n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle$, kde $n = n_0 \odot n_1$, $\langle a_0, \sigma \rangle \mapsto^l \langle n_0, \sigma \rangle$ a $\langle a_1, \sigma \rangle \mapsto^m \langle n_1, \sigma \rangle$.
- 2. Jestliže $\langle X := \alpha, \sigma \rangle \mapsto^k \langle \mathbf{skip}, \sigma' \rangle$, pak $\langle X := \alpha, \sigma \rangle \mapsto^{k-1} \langle X := n, \sigma \rangle \mapsto \langle \mathbf{skip}, \sigma[n/X] \rangle$, kde $\sigma' = \sigma[n/X] \ \mathbf{a} \ \langle \alpha, \sigma \rangle \mapsto^{k-1} \langle n, \sigma \rangle$.
- 3. Jestliže $\langle c_0; c_1, \sigma \rangle \mapsto^k \langle \mathbf{skip}, \sigma' \rangle$, pak $\langle c_0; c_1, \sigma \rangle \mapsto^l \langle \mathbf{skip}; c_1, \sigma'' \rangle \mapsto \langle c_1, \sigma'' \rangle \mapsto^m \langle \mathbf{skip}, \sigma' \rangle$, kde l, m < k a $\langle c_0, \sigma \rangle \mapsto^l \langle \mathbf{skip}, \sigma'' \rangle$.
- 4. Jestliže (if b then c_0 else $c_1, \sigma \mapsto^k \langle \mathbf{skip}, \sigma' \rangle$, pak platí jedna z následujících možností:
 - * \langle if b then c_0 else $c_1, \sigma \rangle \mapsto^{l} \langle$ if tt then c_0 else $c_1, \sigma \rangle \mapsto \langle c_0, \sigma \rangle \mapsto^{m} \langle$ skip, $\sigma' \rangle$, kde l, m < k a $\langle b, \sigma \rangle \mapsto^{l} \langle$ tt, $\sigma \rangle$.
 - * \langle if b then c_0 else $c_1, \sigma \rangle \mapsto^{l} \langle$ if ff then c_0 else $c_1, \sigma \rangle \mapsto \langle c_1, \sigma \rangle \mapsto^{m} \langle$ skip, $\sigma' \rangle$, kde l, m < k a $\langle b, \sigma \rangle \mapsto^{l} \langle$ ff, $\sigma \rangle$.

Důkaz. Indukcí ke k.

- ad 1. Báze indukce (k = 0)
 - Jelikož $\langle a_0 \odot a_1, \sigma \rangle \not\mapsto^0 \langle n, \sigma \rangle$, implikace platí.

Indukční krok:

- Jestliže $a_0 \not\in \textbf{Num}$, pak $\langle a_0 \odot a_1, \sigma \rangle \mapsto \langle a_0' \odot a_1, \sigma \rangle \mapsto^{k-1} \langle n, \sigma \rangle$, kde $\langle a_0, \sigma \rangle \mapsto \langle a_0', \sigma \rangle$. Podle I.P. platí $\langle a_0' \odot a_1, \sigma \rangle \mapsto^l \langle n_0 \odot a_1, \sigma \rangle \mapsto^m \langle n_0 \odot n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle$, kde l, m < k 1, $\langle a_0', \sigma \rangle \mapsto^l \langle n_0, \sigma \rangle$ a $\langle a_1, \sigma \rangle \mapsto^m \langle n_1, \sigma \rangle$. Proto také $\langle a_0 \odot a_1, \sigma \rangle \mapsto^{l+1} \langle n_0 \odot a_1, \sigma \rangle \mapsto^m \langle n_0 \odot n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle$, kde l + 1, m < k a $\langle a_0, \sigma \rangle \mapsto^{l+1} \langle n_0, \sigma \rangle$.
- Jestliže $a_0 \equiv n_0$ a $a_1 \not\in \textbf{Num}$, pak $\langle n_0 \odot a_1, \sigma \rangle \mapsto \langle n_0 \odot a_1', \sigma \rangle \mapsto^{k-1} \langle n, \sigma \rangle$, kde $\langle a_1, \sigma \rangle \mapsto \langle a_1', \sigma \rangle$. Podle I.P. platí $\langle n_0 \odot a_1', \sigma \rangle \mapsto^l \langle n_0 \odot a_1', \sigma \rangle \mapsto^m \langle n_0 \odot n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle$, kde l, m < k-1 (v tomto případě l = 0) a $\langle a_1', \sigma \rangle \mapsto^m \langle n_1, \sigma \rangle$. Zbytek důkazu je podobný jako výše.
- Jestliže $a_0 \equiv n_0$ a $a_1 \equiv n_1$, stačí položit l = m = 0.

Věta 4.

- 1. Pro každé a, σ a n platí: $\langle a, \sigma \rangle \to n \iff \langle a, \sigma \rangle \mapsto^* \langle n, \sigma \rangle$
- 2. Pro každé b a σ platí:
 - $\langle b, \sigma \rangle \to \mathbf{true} \iff \langle b, \sigma \rangle \mapsto^* \langle \mathbf{tt}, \sigma \rangle$
 - $\langle b, \sigma \rangle \rightarrow \mathbf{false} \iff \langle b, \sigma \rangle \mapsto^* \langle \mathbf{ff}, \sigma \rangle$
- 3. Pro každé c a σ , σ' platí: $\langle c, \sigma \rangle \to \sigma' \iff \langle c, \sigma \rangle \mapsto^* \langle \mathbf{skip}, \sigma' \rangle$

Důkaz. 1. a 2. indukcí ke struktuře a a b.

ad 1.

- $a \equiv n$. Pak $\langle n, \sigma \rangle \rightarrow n$ a $\langle n, \sigma \rangle \mapsto^{0} \langle n, \sigma \rangle$ dle definice.
- $a \equiv X$. Pak $\langle X, \sigma \rangle \to \sigma(X)$ a $\langle X, \sigma \rangle \mapsto \langle \sigma(X), \sigma \rangle$ dle definice.

• $a \equiv a_0 + a_1$. Podle I.P. platí

$$\star \ \langle a_0, \sigma \rangle \to n_0 \quad \Longleftrightarrow \quad \langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle$$

$$\star \ \langle a_1, \sigma \rangle \to n_1 \quad \Longleftrightarrow \quad \langle a_1, \sigma \rangle \mapsto^* \langle n_1, \sigma \rangle$$

Dále

$$\langle a_0 + a_1, \sigma \rangle \rightarrow n \iff \\ \langle a_0, \sigma \rangle \rightarrow n_0 \text{ a } \langle a_1, \sigma \rangle \rightarrow n_1 \text{ kde } n = n_0 + n_1 \iff \\ \langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle \text{ a } \langle a_1, \sigma \rangle \mapsto^* \langle n_1, \sigma \rangle \text{ kde } n = n_0 + n_1 \text{ (podle I.P.)} \iff \\ \langle a_0 + a_1, \sigma \rangle \mapsto^* \langle n_0 + a_1 \rangle \mapsto^* \langle n_0 + n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle \text{ kde } n = n_0 + n_1 \text{ (lema 2 (1))} \iff \\ \langle a_0 + a_1, \sigma \rangle \mapsto^* \langle n, \sigma \rangle \text{ (podle lematu 3 (1))}$$

- $a \equiv a_0 a_1$. Podobně.
- $a \equiv a_0 * a_1$. Podobně.

ad 3.

- (\Rightarrow) Indukcí k výšce odvození $\langle c, \sigma \rangle \to \sigma'$. Uvážíme možné tvary c.
 - $\langle \mathbf{skip}, \sigma \rangle \to \sigma$. Platí $\langle \mathbf{skip}, \sigma \rangle \mapsto^0 \langle \mathbf{skip}, \sigma \rangle$
 - $c \equiv X := \alpha$. Pak kořen $\langle X := \alpha, \sigma \rangle \to \sigma'$ má následníka $\langle \alpha, \sigma \rangle \to n$ a platí $\sigma' = \sigma[n/X]$. Podle 1. $\langle \alpha, \sigma \rangle \mapsto^* \langle n, \sigma \rangle$, proto $\langle X := \alpha, \sigma \rangle \mapsto^* \langle X := n, \sigma \rangle \mapsto^* \langle \mathbf{skip}, \sigma[n/X] \rangle$ podle lematu 2 (2).

- $c \equiv c_0; c_1$. Pak kořen $\langle c_0; c_1, \sigma \rangle \to \sigma'$ má následníky $\langle c_0, \sigma \rangle \to \sigma''$ a $\langle c_1, \sigma'' \rangle \to \sigma'$. Podle indukčního předpokladu $\langle c_0, \sigma \rangle \mapsto^* \langle \mathbf{skip}, \sigma'' \rangle$ a $\langle c_1, \sigma'' \rangle \mapsto^* \langle \mathbf{skip}, \sigma' \rangle$. Podle lematu 2 (3) platí $\langle c_0; c_1, \sigma \rangle \mapsto^* \langle \mathbf{skip}; c_1, \sigma'' \rangle \mapsto \langle c_1, \sigma'' \rangle \mapsto^* \langle \mathbf{skip}, \sigma' \rangle$.
- $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Pak kořen $\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'$ má buď následníky $\langle b, \sigma \rangle \to \text{true a } \langle c_0, \sigma \rangle \to \sigma'$, nebo $\langle b, \sigma \rangle \to \text{false a } \langle c_1, \sigma \rangle \to \sigma'$. V prvém případě $\langle b, \sigma \rangle \mapsto^* \langle \text{tt}, \sigma \rangle$ a $\langle c_0, \sigma \rangle \mapsto^* \langle \text{skip}, \sigma' \rangle$ (podle I.P. a 2.), tedy $\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \mapsto^* \langle \text{if tt then } c_0 \text{ else } c_1, \sigma \rangle \mapsto \langle c_0, \sigma \rangle \mapsto^* \langle \text{skip}, \sigma' \rangle$ podle lematu 2 (4). Druhý případ se dokáže podobně.
- $c \equiv \text{ while } b \text{ do } c$. Pak kořen $\langle \text{while } b \text{ do } c, \sigma \rangle \to \sigma'$ má buď jediného následníka $\langle b, \sigma \rangle \to \text{ false } a \sigma' = \sigma$, nebo tři následníky $\langle b, \sigma \rangle \to \text{ true}$, $\langle c, \sigma \rangle \to \sigma''$ a $\langle \text{while } b \text{ do } c, \sigma'' \rangle \to \sigma'$. V prvním případě $\langle b, \sigma \rangle \mapsto^* \langle \text{ff}, \sigma \rangle$ podle 2., proto $\langle \text{while } b \text{ do } c, \sigma \rangle \mapsto \langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle \mapsto^* \langle \text{if ff then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle \mapsto \langle \text{skip}, \sigma \rangle$ podle lematu 2 (4). V druhém případě $\langle b, \sigma \rangle \mapsto^* \langle \text{tt}, \sigma \rangle$, $\langle c, \sigma \rangle \mapsto^* \langle \text{skip}, \sigma'' \rangle$ a $\langle \text{while } b \text{ do } c, \sigma'' \rangle \mapsto^* \langle \text{skip}, \sigma' \rangle$ podle 2. a l.P. Proto také $\langle \text{while } b \text{ do } c, \sigma \rangle \mapsto \langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle \mapsto^* \langle \text{if tt then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle \mapsto \langle c; \text{while } b \text{ do } c, \sigma \rangle \mapsto^* \langle \text{while } b \text{ do } c, \sigma'' \rangle \mapsto^* \langle \text{skip}, \sigma' \rangle$ podle lematu 2.
- (\Leftarrow) Indukcí ke k pro které $\langle c, \sigma \rangle \mapsto^k \langle \mathbf{skip}, \sigma' \rangle$.

Báze indukce:

• $\langle \mathbf{skip}, \sigma \rangle \mapsto^0 \langle \mathbf{skip}, \sigma \rangle$. Platí $\langle \mathbf{skip}, \sigma \rangle \to \sigma$.

Indukční krok: Nechť $\langle c, \sigma \rangle \mapsto^k \langle \mathbf{skip}, \sigma' \rangle$ kde $k \geq 1$. Uvážíme možné tvary c.

- $c \equiv X := \alpha$. Pak $\langle X := \alpha, \sigma \rangle \mapsto^{k-1} \langle X := n, \sigma \rangle \mapsto \langle \mathbf{skip}, \sigma[n/X] \rangle$, kde $\langle \alpha, \sigma \rangle \mapsto^{k-1} \langle n, \sigma \rangle$ (podle lematu 3 (2)). Proto také $\langle \alpha, \sigma \rangle \to n$ podle 1. Tedy $\langle X := \alpha, \sigma \rangle \to \sigma[n/X]$.
- $c \equiv c_0; c_1$. Pak $\langle c_0; c_1, \sigma \rangle \mapsto^l \langle \mathbf{skip}; c_1, \sigma'' \rangle \mapsto \langle c_1, \sigma'' \rangle \mapsto^m \langle \mathbf{skip}, \sigma' \rangle$ kde l, m < k a $\langle c_0, \sigma \rangle \mapsto^l \langle \mathbf{skip}, \sigma'' \rangle$ podle lematu 3 (3). Podle I.P. $\langle c_0, \sigma \rangle \mapsto \sigma''$ a $\langle c_1, \sigma'' \rangle \mapsto \sigma'$, tedy $\langle c_0; c_1, \sigma \rangle \mapsto \sigma'$.
- $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Podle lematu 3 (4) jsou dvě možnosti:
 - * \langle if b then c_0 else $c_1, \sigma \rangle \mapsto^{l} \langle$ if tt then c_0 else $c_1, \sigma \rangle \mapsto \langle c_0, \sigma \rangle \mapsto^{m} \langle$ skip, $\sigma' \rangle$, kde l, m < k a $\langle b, \sigma \rangle \mapsto^{l} \langle$ tt, $\sigma \rangle$ (podle lematu 3 (4)). Dále podle 2. a l.P. platí $\langle b, \sigma \rangle \to$ true a $\langle c_0, \sigma \rangle \to \sigma'$, tedy také \langle if b then c_0 else $c_1, \sigma \rangle \to \sigma'$.
 - ⋆ Druhá možnost se ověří podobně.
- $c \equiv \text{while } b \text{ do } c$. Pak $\langle \text{while } b \text{ do } c, \sigma \rangle \mapsto \langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle$. Podle lematu 3 (4) jsou dvě možnosti:
 - * (if b then (c; while b do c) else skip, σ) \mapsto (if tt then (c; while b do c) else skip, σ) \mapsto (c; while b do c, σ) \mapsto " (skip, σ'), kde l, m < k a (b, σ) \mapsto (tt, σ). Opětovným použitím lematu 3 (3) dostáváme (c; while b do c, σ) \mapsto (skip; while b do c, σ'') \mapsto (while b do c, σ'') \mapsto " (skip, σ'), kde l', m' < m < k a (c, σ) \mapsto l' (skip, σ''). Podle 2. a l.P. dostáváme (b, σ) \mapsto true, (c, σ) \mapsto σ'' a (while b do c, σ'') \mapsto σ' , proto (while b do c, σ) \mapsto σ' .

* \langle if b then (c; while b do c) else skip, $\sigma\rangle \mapsto^l \langle$ if ff then (c; while b do c) else skip, $\sigma\rangle \mapsto \langle$ skip, $\sigma'\rangle \mapsto^m \langle$ skip, $\sigma'\rangle$, kde l, m < k a $\langle b, \sigma\rangle \mapsto^l \langle$ ff, $\sigma\rangle$ (v tomto případě je m = 0 a $\sigma' = \sigma$). Podle 2. platí $\langle b, \sigma\rangle \to$ false a tedy \langle while b do $c, \sigma\rangle \to \sigma$.

Denotační sémantika IMP

•
$$\mathcal{A}$$
: **Aexp** \rightarrow ($\Sigma \rightarrow \mathbb{Z}$)

•
$$\mathcal{B}$$
: **Bexp** \rightarrow ($\Sigma \rightarrow \mathbb{T}$)

•
$$\mathcal{C}$$
 : Com $\rightarrow (\Sigma \rightarrow \Sigma)$

Argumenty funkcí $\mathcal{A}, \mathcal{B}, \mathcal{C}$ se píší do "sémantických" závorek []

Aritmetické výrazy Aexp

•
$$\mathcal{A}[n]\sigma$$
 = n

$$\bullet \ \mathcal{A}\llbracket X \rrbracket \sigma = \sigma(X)$$

$$\bullet \ \mathcal{A}\llbracket a_0 + a_1 \rrbracket \sigma \ = \mathcal{A}\llbracket a_0 \rrbracket \sigma + \mathcal{A}\llbracket a_1 \rrbracket \sigma$$

•
$$\mathcal{A}\llbracket a_0 - a_1 \rrbracket \sigma = \mathcal{A}\llbracket a_0 \rrbracket \sigma - \mathcal{A}\llbracket a_1 \rrbracket \sigma$$

•
$$\mathcal{A}\llbracket a_0 * a_1 \rrbracket \sigma = \mathcal{A}\llbracket a_0 \rrbracket \sigma * \mathcal{A}\llbracket a_1 \rrbracket \sigma$$

Pravdivostní výrazy Bexp

- $\mathcal{B}[tt]\sigma$ = true
- $\mathcal{B}[\![ff]\!]\sigma$ = false
- $\bullet \ \mathcal{B}\llbracket a_0 = a_1 \rrbracket \sigma \ = \mathcal{A}\llbracket a_0 \rrbracket \sigma = \mathcal{A}\llbracket a_1 \rrbracket \sigma$
- $\mathcal{B}\llbracket a_0 \leq a_1 \rrbracket \sigma = \mathcal{A}\llbracket a_0 \rrbracket \sigma \leq \mathcal{A}\llbracket a_1 \rrbracket \sigma$
- $\mathcal{B}[\![\mathbf{not}\,\mathbf{b}]\!]\sigma = \neg \mathcal{B}[\![\mathbf{b}]\!]\sigma$
- $\mathcal{B}[b_0 \text{ and } b_1]\sigma = \mathcal{B}[b_0]\sigma \wedge \mathcal{B}[b_1]\sigma$
- $\mathcal{B}[\![b_0 \mathbf{or} b_1]\!] \sigma = \mathcal{B}[\![b_0]\!] \sigma \vee \mathcal{B}[\![b_1]\!] \sigma$

Příkazy Com

•
$$\mathcal{C}[\![\mathbf{skip}]\!]\sigma$$
 = σ

$$\bullet \ \mathcal{C} \llbracket X := \mathfrak{a} \rrbracket \sigma \qquad \qquad = \sigma [\mathcal{A} \llbracket \mathfrak{a} \rrbracket \sigma / X]$$

$$\bullet \ \mathcal{C} \llbracket c_0; c_1 \rrbracket \sigma \\ = \mathcal{C} \llbracket c_1 \rrbracket (\mathcal{C} \llbracket c_0 \rrbracket \sigma) = (\mathcal{C} \llbracket c_1 \rrbracket \circ \mathcal{C} \llbracket c_0 \rrbracket) \sigma$$

$$\bullet \ \, \mathcal{C}[\![\![\text{if } b \text{ then } c_0 \text{ else } c_1]\!] \sigma \quad = \left\{ \begin{array}{ll} \mathcal{C}[\![\![c_0]\!] \sigma & \text{jestliže } \mathcal{B}[\![\![b]\!] \sigma = \text{true} \\ \\ \mathcal{C}[\![\![c_1]\!] \sigma & \text{jestliže } \mathcal{B}[\![\![b]\!] \sigma = \text{false} \end{array} \right.$$

•
$$\mathcal{C}[\mathbf{while} \ \mathbf{b} \ \mathbf{do} \ \mathbf{c}] \sigma = ???$$

Úplné částečné uspořádání (CPO)

Uspořádaná množina (D, ⊑) je CPO, pokud každý nekonečný řetěz

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq d_3 \cdots$$

prvků z D má v D suprémum.

Příklady:

- Každá konečná uspořádaná množina je CPO.
- Každá množina M uspořádaná identitou je CPO (tzv. diskrétní CPO).
- Je-li M množina, je $(2^M, \subseteq)$ CPO.
- Každý úplný svaz je CPO.
- $(\Sigma \to \Sigma, \subseteq)$ je CPO.
 - \star f \subseteq g je-li g "více definovaná" než f.

Monotónní a spojité funkce

Nechť (D, ⊑), (E, ≼) jsou CPO, f : D → E totální funkce. f je monotónní, jestliže pro každé a, b ∈ D platí:

$$a \sqsubseteq b \Rightarrow f(a) \leq f(b)$$
.

f je spojitá, je-li monotónní a pro každý nekonečný řetěz

$$a_0 \sqsubseteq a_1 \sqsubseteq a_2 \sqsubseteq a_3 \cdots$$

prvků z D platí

$$\bigvee_{i\in\mathbb{N}} f(\alpha_i) = f(\bigsqcup_{i\in\mathbb{N}} \alpha_i)$$

Příklad:

Každá funkce z diskrétního CPO je spojitá.

Postačující podmínka spojitosti

Věta 5. Buď M množina, $f: 2^M \rightarrow 2^M$ taková, že pro každé $A \subseteq M$ platí

$$f(A) = \bigcup_{\alpha \in A} f(\{\alpha\})$$

Pak f je spojitá funkce na CPO $(2^{M}, \subseteq)$.

Důkaz.

• Monotonie: Nechť $A \subseteq B$. Pak

$$\mathsf{f}(A) \quad = \quad \bigcup_{\alpha \in A} \mathsf{f}(\{\alpha\}) \quad \subseteq \quad \bigcup_{\alpha \in B} \mathsf{f}(\{\alpha\}) \quad = \quad \mathsf{f}(B).$$

• Spojitost: Buď $A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 \cdots$ nekonečný řetěz podmnožin M. Pak

$$\bigcup_{i\in\mathbb{N}} f(A_i) \quad = \quad \bigcup_{i\in\mathbb{N}} \bigcup_{\alpha\in A_i} f(\{\alpha\}) \quad = \quad f(\bigcup_{i\in\mathbb{N}} A_i).$$

Věta o pevném bodě

Věta 6. Buď (D, \sqsubseteq) CPO mající nejmenší prvek \perp a Γ spojitá funkce na D. Položme

$$\mu\Gamma = \bigsqcup_{i \in \mathbb{N}_0} \Gamma^i(\perp).$$

Pak $\mu\Gamma$ je nejmenší pevný bod Γ .

Důkaz.

• $\mu\Gamma$ je pevný bod Γ : Pro každé $i\in\mathbb{N}_0$ platí $\Gamma^i(\bot)\sqsubseteq\Gamma^{i+1}(\bot)$ (snadno indukcí k i, použije se monotonie Γ). Dále

$$\Gamma(\mu\Gamma) \quad = \quad \Gamma(\bigsqcup_{i\in\mathbb{N}_0}\Gamma^i(\bot)) \quad = \quad \bigsqcup_{i\in\mathbb{N}_0}\Gamma^{i+1}(\bot) \quad = \quad \bigsqcup_{i\in\mathbb{N}_0}\Gamma^i(\bot) \quad = \quad \mu\Gamma$$

• $\mu\Gamma$ je nejmenší pevný bod Γ : Buď d pevný bod Γ (tj. $\Gamma(d)=d$). Stačí ukázat, že d je horní závora množiny $\{\Gamma^i(\bot) \mid i \in \mathbb{N}_0\}$. Pak $\mu\Gamma \sqsubseteq d$ podle definice supréma.

Indukcí k i dokážeme, že $\Gamma^i(\bot) \sqsubseteq d$ pro každé $i \in \mathbb{N}_0$. Zřejmě $\Gamma^0(\bot) = \bot \sqsubseteq d$; a platí-li $\Gamma^i(\bot) \sqsubseteq d$, pak také $\Gamma^{i+1}(\bot) \sqsubseteq \Gamma(d) = d$ neboť Γ je monotónní a d je pevný bod.

Denotační sémantika while cyklu

- Označme $w \equiv \text{while b do c.}$
- Platí $w \sim \text{if } b \text{ then } c; w \text{ else skip}$ (viz strana 22).
- Proto by mělo platit také C[w] = C[if b then c; w else skip]
- Tedy

```
\mathcal{C}[[w]] = \{(\sigma, \sigma') \mid \mathcal{B}[[b]]\sigma = \mathbf{true} \land (\sigma, \sigma') \in \mathcal{C}[[c; w]]\} \\
\cup \{(\sigma, \sigma) \mid \mathcal{B}[[b]]\sigma = \mathbf{false}\} \\
= \{(\sigma, \sigma') \mid \mathcal{B}[[b]]\sigma = \mathbf{true} \land (\sigma, \sigma') \in \mathcal{C}[[w]] \circ \mathcal{C}[[c]]\} \\
\cup \{(\sigma, \sigma) \mid \mathcal{B}[[b]]\sigma = \mathbf{false}\}
```

- Tuto rovnost nelze chápat definitoricky, ale lze na ni nahlížet jako na "návod", jak pro danou aproximaci C[w] spočítat "lepší" aproximaci.
- Definujeme funkci $\Gamma: (\Sigma \to \Sigma) \to (\Sigma \to \Sigma)$ předpisem

$$\begin{split} \Gamma(\phi) &= & \{(\sigma,\sigma') \mid \mathcal{B}[\![b]\!] \sigma = \textbf{true} \ \land \ (\sigma,\sigma') \in \phi \circ \mathcal{C}[\![c]\!] \} \\ & \cup & \{(\sigma,\sigma) \mid \mathcal{B}[\![b]\!] \sigma = \textbf{false} \} \end{split}$$

• Γ je totální a spojitá funkce na CPO ($\Sigma \to \Sigma, \subseteq$), neboť

$$\Gamma(\varphi) = \bigcup_{(\sigma,\sigma')\in\varphi} \{\Gamma(\{(\sigma,\sigma')\})\}$$

a lze tedy aplikovat větu 5.

- $\mathcal{C}[w]$ by mělo být pevným bodem funkce Γ , tj. $\Gamma(\mathcal{C}[w]) = \mathcal{C}[w]$.
- Γ může mít více pevných bodů; má-li však $\mathcal{C}[w]$ odpovídat intuitivnímu významu while cyklu, je třeba definovat

$$\mathcal{C}\llbracket w \rrbracket = \mu \Gamma$$

Nejmenší pevný bod Γ existuje podle věty 6 a vypadá takto:

$$\mu\Gamma = \bigcup_{i \in \mathbb{N}_0} \Gamma^i(\emptyset)$$

• Pozorování: $(\sigma, \sigma') \in \Gamma^i(\emptyset)$ právě když while b do c aktivovaný ve stavu σ skončí po nejvýše i-1 iteracích ve stavu σ' .

Denotační sémantika while cyklu – příklady

• while $X \le 1$ do X := X + 1

$$\begin{array}{lll} \Gamma^0(\emptyset) & = & \emptyset \\ \Gamma^1(\emptyset) & = & \{(\sigma,\sigma) \mid \sigma(X) > 1\} \\ \Gamma^2(\emptyset) & = & \Gamma^1(\emptyset) \cup \{(\sigma,\sigma[2/X]) \mid \sigma(X) = 1\} \\ \Gamma^3(\emptyset) & = & \Gamma^2(\emptyset) \cup \{(\sigma,\sigma[2/X]) \mid \sigma(X) = 0\} \\ \Gamma^4(\emptyset) & = & \Gamma^3(\emptyset) \cup \{(\sigma,\sigma[2/X]) \mid \sigma(X) = -1\} \\ & \vdots \end{array}$$

Obecně $\Gamma^{i+1}(\emptyset) = \Gamma^i(\emptyset) \cup \{(\sigma, \sigma[2/X]) \mid \sigma(X) = 2 - i\}$ pro každé $i \geq 1$.

• while tt do X := X + 1

$$\Gamma^{0}(\emptyset) = \emptyset$$
 $\Gamma^{1}(\emptyset) = \emptyset$

V tomto případě tedy $\mu\Gamma=\Gamma^0(\emptyset)=\emptyset.$

• while ff do X := X + 1

$$\Gamma^{0}(\emptyset) = \emptyset$$

$$\Gamma^{1}(\emptyset) = \{(\sigma, \sigma) \mid \sigma \in \Sigma\}$$

$$\Gamma^{2}(\emptyset) = \{(\sigma, \sigma) \mid \sigma \in \Sigma\}$$

V tomto případě tedy $\mu\Gamma = \Gamma^1(\emptyset)$.

Ekvivalence operační a denotační sémantiky

Věta 7.

- 1. Pro každé a, σ a n platí: $\langle a, \sigma \rangle \to n \iff \mathcal{A}[\![a]\!] \sigma = n$
- 2. Pro každé b, σ a t platí: $\langle b, \sigma \rangle \to t \iff \mathcal{B}[\![b]\!] \sigma = t$
- 3. Pro každé c a σ , σ' platí: $\langle c, \sigma \rangle \to \sigma' \iff \mathcal{C}[\![c]\!] \sigma = \sigma'$

Důkaz. 1. a 2. indukcí ke struktuře a a b.

ad 3., " \Rightarrow " Indukcí k výšce odvození $\langle c, \sigma \rangle \to \sigma'$. Uvážíme možné tvary c.

- $\langle \mathbf{skip}, \sigma \rangle \to \sigma$. Platí $\mathcal{C}[\![\mathbf{skip}]\!]\sigma = \sigma$ podle definice.
- $c \equiv X := a$. Pak kořen $\langle X := a, \sigma \rangle \to \sigma'$ má následníka $\langle a, \sigma \rangle \to n$ a platí $\sigma' = \sigma[n/X]$. Podle 1. $\mathcal{A}\llbracket a \rrbracket \sigma = n$ a $\mathcal{C}\llbracket X := a \rrbracket \sigma = \sigma[n/X]$ dle definice.
- $c \equiv c_0; c_1$. Pak kořen $\langle c_0; c_1, \sigma \rangle \to \sigma'$ má následníky $\langle c_0, \sigma \rangle \to \sigma''$ a $\langle c_1, \sigma'' \rangle \to \sigma'$. Podle I.P. $\mathcal{C}[\![c_0]\!]\sigma = \sigma''$ a $\mathcal{C}[\![c_1]\!]\sigma'' = \sigma'$, proto $(\sigma, \sigma') \in \mathcal{C}[\![c_1]\!] \circ \mathcal{C}[\![c_0]\!] = \mathcal{C}[\![c_0; c_1]\!]$.
- $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Pak kořen $\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'$ má buď následníky $\langle b, \sigma \rangle \to \text{true a } \langle c_0, \sigma \rangle \to \sigma'$, nebo $\langle b, \sigma \rangle \to \text{false a } \langle c_1, \sigma \rangle \to \sigma'$. V prvém případě $\mathcal{B}[\![b]\!]\sigma = \text{true a } \mathcal{C}[\![c_0]\!]\sigma = \sigma'$ (podle I.P. a 2.), tedy $(\sigma, \sigma') \in \mathcal{C}[\![\text{if } b \text{ then } c_0 \text{ else } c_1]\!]$ podle definice. Druhý případ se dokáže podobně.
- $c \equiv$ while bdo c. Pak kořen \langle while bdo c, $\sigma \rangle \rightarrow \sigma'$ má buď

- \star jediného následníka $\langle b, \sigma \rangle \to$ false a platí $\sigma' = \sigma$. Pak $\mathcal{B}[\![b]\!] \sigma =$ false podle 2., proto $(\sigma, \sigma) \in \Gamma(\emptyset) \subseteq \mu\Gamma;$
- * nebo tři následníky $\langle b, \sigma \rangle \to \text{true}$, $\langle c, \sigma \rangle \to \sigma''$ a $\langle \text{while } b \text{ do } c, \sigma'' \rangle \to \sigma'$. Pak $\mathcal{B}[\![b]\!] \sigma = \text{true}$ podle 2. a $(\sigma, \sigma'') \in \mathcal{C}[\![c]\!]$, $(\sigma'', \sigma') \in \mathcal{C}[\![\text{while } b \text{ do } c]\!]$ podle I.P. Podle definice $\mu\Gamma$ existuje $k \in \mathbb{N}_0$ takové, že $(\sigma'', \sigma') \in \Gamma^k(\emptyset)$. Dále podle definice Γ dostáváme, že $(\sigma, \sigma') \in \Gamma^{k+1}(\emptyset)$, tedy $(\sigma, \sigma') \in \mu\Gamma$.

"←" Indukcí ke struktuře c.

- $c \equiv \text{skip}$. Platí $\mathcal{C}[\![\text{skip}]\!]\sigma = \sigma$ a $\langle \text{skip}, \sigma \rangle \to \sigma$ podle definice.
- $c \equiv X := a$. Platí $\mathcal{C}[X := a] \sigma = \sigma[n/X]$ kde $\mathcal{A}[a] \sigma = n$. Podle 1. $\langle a, \sigma \rangle \to n$, proto $\langle X := a, \sigma \rangle \to \sigma[n/X]$.
- $c \equiv c_0; c_1$. Jestliže $(\sigma, \sigma') \in \mathcal{C}[\![c_0; c_1]\!] = \mathcal{C}[\![c_1]\!] \circ \mathcal{C}[\![c_0]\!]$, existuje σ'' takové, že $(\sigma, \sigma'') \in \mathcal{C}[\![c_0]\!]$ a $(\sigma'', \sigma') \in \mathcal{C}[\![c_1]\!]$. Podle I.P. platí $\langle c_0, \sigma \rangle \to \sigma''$ a $\langle c_1, \sigma'' \rangle \to \sigma'$, tedy $\langle c_0; c_1, \sigma \rangle \to \sigma'$.
- $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Jestliže $(\sigma, \sigma') \in \mathcal{C}[\text{if } b \text{ then } c_0 \text{ else } c_1]$, jsou dvě možnosti:
 - * $\mathcal{B}[\![b]\!]\sigma = \text{true a } (\sigma, \sigma') \in \mathcal{C}[\![c_0]\!]$. Podle 2. a I.P. platí $\langle b, \sigma \rangle \to \text{true a } \langle c_0, \sigma \rangle \to \sigma'$, proto $\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'$.
 - * Druhá možnost se ověří podobně.
- $c \equiv \text{while } b \text{ do } c$. Jestliže $(\sigma, \sigma') \in \mathcal{C}[\text{while } b \text{ do } c] = \mu\Gamma$, existuje $k \in \mathbb{N}_0$ takové, že $(\sigma, \sigma') \in \Gamma^k(\emptyset)$. Indukcí ke k dokážeme, že jestliže $(\sigma, \sigma') \in \Gamma^k(\emptyset)$, pak $\langle \text{while } b \text{ do } c, \sigma \rangle \to \sigma'$. k = 0. Jelikož $(\sigma, \sigma') \not\in \Gamma^0(\emptyset) = \emptyset$, dokazovaná implikace platí.

Indukční krok: Nechť tedy $(\sigma, \sigma') \in \Gamma^{k+1}(\emptyset)$. Podle definice Γ jsou dvě možnosti:

- * $\mathcal{B}\llbracket b \rrbracket \sigma = \mathbf{true} \ a \ (\sigma, \sigma') \in \Gamma^k(\emptyset) \circ \mathcal{C}\llbracket c \rrbracket$. Podle 2. $\langle b, \sigma \rangle \to \mathbf{true}$. Navíc existuje σ'' takové, že $(\sigma, \sigma'') \in \mathcal{C}\llbracket c \rrbracket \ a \ (\sigma'', \sigma') \in \Gamma^k(\emptyset)$. Podle I.P. $\langle c, \sigma \rangle \to \sigma'' \ a \ \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \to \sigma'$, tedy $\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \to \sigma'$.
- $\star \mathcal{B}[\![b]\!]\sigma =$ false a $\sigma = \sigma'$. Pak $\langle b, \sigma \rangle \to$ false podle 2., proto \langle while b do $c, \sigma \rangle \to \sigma.$

Axiomatická sémantika IMP

- Uvažme program $P \equiv \text{while } X < 0 \text{ do } (X := X + 1; Y := Y 1); Z := Z (X + Y)$
- Jestliže před spuštěním P platí X + Y = i a Z = j, pak po dokončení P platí Z = j i.
- Jak to dokázat?
 - ⋆ pomocí operační nebo denotační sémantiky problematické.
 - ⋆ Hoare: do P doplníme "tvrzení" (pravdivá v "místě" jejich výskytu) a podáme odvozovací systém, který umožní jejich platnost dokázat.

Příklad:

```
{X + Y = i \land Z = j}

while X < 0 do (X := X + 1; Y := Y - 1);

{Z - (X + Y) = j - i}

Z := Z - (X + Y)

{Z = j - i}
```

Cílem je definovat odvozovací systém pro trojice tvaru

$$\{A\}$$
 c $\{B\}$

kde $c \in \mathbf{Com}$ a A, B jsou "tvrzení". $\{A\}$ c $\{B\}$ říká, že pro každý stav $\sigma \in \Sigma$ platí následující: Jestliže $\sigma \models A$, pak pokud c spuštěný ve stavu σ skončí ve stavu σ' , platí $\sigma' \models B$.

- * {A} c {B} je tedy tvrzení o částečné korektnosti programu c; neříká nic o tom, co platí, jestliže c ve stavu σ neskončí.
- ★ Platí tedy např. {true} while tt do skip {false}
- Pro zjednodušení notace zavedeme speciální "stav" ⊥:

$$\star \Sigma_{\perp} = \Sigma \cup \{\perp\}$$

 \star Dále zavedeme funkci $\mathcal{C}_{\perp}:\mathbf{Com}\to(\Sigma_{\perp}\to\Sigma_{\perp})$:

```
* \mathcal{C}_{\perp} \llbracket c \rrbracket \bot = \bot pro každé c \in \mathbf{Com};
```

- * $\mathcal{C}_{\perp}[\![c]\!]\sigma = \mathcal{C}[\![c]\!]\sigma$ pro každé $c \in \mathbf{Com}$ a $\sigma \in \Sigma$, kde $\mathcal{C}[\![c]\!]\sigma$ je definováno;
- * $\mathcal{C}_{\perp}[\![c]\!]\sigma = \perp$ pro každé $c \in \mathbf{Com}$ a $\sigma \in \Sigma$, kde $\mathcal{C}[\![c]\!]\sigma$ je nedefinováno.
- Význam {A} c {B} pak lze vyjádřit takto:

$$\{A\} \quad c \quad \{B\} \qquad \iff \qquad \forall \sigma \in \Sigma: \quad \sigma \models A \quad \Rightarrow \quad \mathcal{C}_{\perp} \llbracket c \rrbracket \sigma \models B$$

Syntaxe a sémantika tvrzení o programech

- Buď IntVar = {i, j, k, . . .} spočetná množina celočíselných proměnných.
- Rozšířené aritmetické výrazy Aexpv

$$a := n \mid X \mid i \mid a_0 + a_1 \mid a_0 - a_1 \mid a_0 * a_1$$

kde $n \in Num$, $X \in Var$ a $i \in IntVar$.

Tvrzení o programech ("assertions") Assn

$$\begin{array}{lll} A & ::= & \textbf{true} & | & \textbf{false} & | & \alpha_0 = \alpha_1 & | & \alpha_0 \leq \alpha_1 & | & A_0 \land A_1 & | & A_0 \lor A_1 & | & \neg A & | & \forall i.A & | & \exists i.A \\ \\ \textbf{kde} & \alpha_0, \alpha_1 \in \textbf{Aexpv} & \textbf{a} & \textbf{i} \in \textbf{IntVar}. \end{array}$$

• Interpretace je funkce I : IntVar $\to \mathbb{Z}$. Množinu všech interpretací značíme \mathcal{I} .

• Definujeme funkci $\mathcal{E}: \mathbf{Aexpv} \to (\mathcal{I} \to (\Sigma \to \mathbb{Z}))$

```
\star \mathcal{E}[n]I\sigma = n
```

$$\star \mathcal{E}[X] I \sigma = \sigma(X)$$

$$\star \ \mathcal{E}[i]I\sigma = I(i)$$

$$\star \mathcal{E}[a_0 + a_1]I\sigma = \mathcal{E}[a_0]I\sigma + \mathcal{E}[a_1]I\sigma$$
 (podobně pro "–" a "*")

• A je splněno ve stavu $\sigma \in \Sigma_{\perp}$ za interpretace $I \in \mathcal{I}$ (psáno $\sigma \models^{I} A$)

*
$$\bot \models^{I} A$$
 pro každé $A \in Assn$; je-li $\sigma \neq \bot$, uplatníme následující pravidla:

$$\star \sigma \models^{I} true$$

$$\star \ \sigma \models^{\mathrm{I}} a_0 = a_1 \iff \mathcal{E}[\![a_0]\!]\mathrm{I}\sigma = \mathcal{E}[\![a_1]\!]\mathrm{I}\sigma$$

$$\star \ \sigma \models^{\mathrm{I}} \alpha_0 \leq \alpha_1 \iff \mathcal{E}[\![\alpha_0]\!]\mathrm{I}\sigma \leq \mathcal{E}[\![\alpha_1]\!]\mathrm{I}\sigma$$

$$\star \sigma \models^{I} A_{0} \wedge A_{1} \iff \sigma \models^{I} A_{0} \wedge \sigma \models^{I} A_{1}$$

$$\star \sigma \models^{I} A_{0} \vee A_{1} \iff \sigma \models^{I} A_{0} \vee \sigma \models^{I} A_{1}$$

$$\star \ \sigma \models^{I} \neg A \iff \ \sigma \not\models^{I} A$$

$$\star \ \sigma \models^I \forall i.A \qquad \Longleftrightarrow \quad \sigma \models^{I[\mathfrak{n}/\mathfrak{i}]} A \quad \text{pro každ\'e } \mathfrak{n} \in \mathbb{Z}$$

$$\star \ \sigma \models^I \exists i.A \qquad \Longleftrightarrow \quad \sigma \models^{I[\mathfrak{n}/i]} A \quad \text{pro nějaké } \mathfrak{n} \in \mathbb{Z}$$

• $A \in \mathbf{Assn}$ je platné, psáno $\models A$, pokud $\sigma \models^{\mathrm{I}} A$ pro každé $\sigma \in \Sigma$ a $\mathrm{I} \in \mathcal{I}$.

Tvrzení o částečné korektnosti programů

Tvrzení o částečné korektnosti programu c ∈ Com je trojice tvaru

$$\{A\}$$
 c $\{B\}$

 $kde A, B \in Assn.$

- $\bullet \quad \sigma \models^{I} \{A\} \ c \ \{B\} \quad \Longleftrightarrow \quad (\sigma \models^{I} A \quad \Longrightarrow \quad \mathcal{C}_{\perp} \llbracket c \rrbracket \sigma \models^{I} B)$
- $\models^{I} \{A\} \ c \ \{B\}$ \iff $\forall \sigma \in \Sigma_{\perp} : \sigma \models^{I} \{A\} \ c \ \{B\}$
 - \star Platí $\bot \models^{I} \{A\} \ c \ \{B\}$ pro každé $I \in \mathcal{I}$, $A, B \in \mathbf{Assn}$, $c \in \mathbf{Com}$.
 - \star Proto $\models^{I} \{A\} \ c \ \{B\} \iff \forall \sigma \in \Sigma : \sigma \models^{I} \{A\} \ c \ \{B\}$ (Ize využít v důkazech).
- $\bullet \; \models \{A\} \; c \; \{B\} \qquad \iff \qquad \forall I \in \mathcal{I} : \models^I \{A\} \; c \; \{B\}$
- Tvrzení $\{A\}$ c $\{B\}$ pro které platí $\models \{A\}$ c $\{B\}$ nazýváme platné.

Hoareův odvozovací systém pro tvrzení o částečné korektnosti

- Axiom pro skip: $\{A\}$ skip $\{A\}$
- Axiom pro přiřazení: $\{B[\alpha/X]\} X := \alpha \{B\}$
- Pravidlo pro sekvenční kompozici:

$$\frac{\{A\}\ c_0\ \{C\}\ \ \{C\}\ c_1\ \{B\}}{\{A\}\ c_0; c_1\ \{B\}}$$

Pravidlo pro větvení:

$$\frac{\{A \land b\} c_0 \{B\} \qquad \{A \land \neg b\} c_1 \{B\}}{\{A\} \text{ if } b \text{ then } c_0 \text{ else } c_1 \{B\}}$$

Pravidlo pro cyklus:

$$\frac{\{A \land b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \land \neg b\}}$$

Pravidlo důsledku:

$$\frac{\models (A \Rightarrow A') \qquad \{A'\} \ c \ \{B'\} \qquad \models (B' \Rightarrow B)}{\{A\} \ c \ \{B\}}$$

- Tvrzení {A} c {B} je dokazatelné, psáno ⊢ {A} c {B}, je-li odvoditelné v Hoarově odvozovacím systému.
- Tvrzení A pro které platí $\models \{A \land b\} \ c \ \{A\}$ se nazývá invariant cyklu while b do c.

Příklad: $\vdash \{X=5\}$ if X = 5 then Y := X - 2 else $X := Y + 5 \{X=5\}$

•
$$\frac{\models (X=5 \land X=5) \Rightarrow X=5}{\{X=5\} \land X=5\}} \quad Y := X-2 \quad \{X=5\} \quad \models X=5 \Rightarrow X=5}{\{X=5 \land X=5\}} \quad Y := X-2 \quad \{X=5\}$$

Příklad: $\vdash \{X+Y=i \land Z=j\}$ **while** X<0 **do** (X:=X+1;Y:=Y-1);Z:=Z-(X+Y) $\{Z=j-i\}$

$$\frac{\{Z-(X+1+Y-1)=j-i\}\quad X:=X+1\quad \{Z-(X+Y-1)=j-i\}\quad \{Z-(X+Y-1)=j-i\}\quad Y:=Y-1\quad \{Z-(X+Y)=j-i\}\}}{\alpha \equiv \{Z-(X+1+Y-1)=j-i\}\quad X:=X+1; Y:=Y-1\quad \{Z-(X+Y)=j-i\}}$$

$$\frac{ | (Z-(X+Y) = j-i \land X < 0) \Rightarrow (Z-(X+1+Y-1) = j-i) \quad \alpha \quad | (Z-(X+Y) = j-i) \Rightarrow (Z-(X+Y) = j-i)}{\{Z-(X+Y) = j-i \land X < 0\} \quad X := X+1; Y := Y-1 \quad \{Z-(X+Y) = j-i \land \neg X < 0\}}{\beta \equiv \{Z-(X+Y) = j-i\} \quad \text{while } X < 0 \text{ do } X := X+1; Y := Y-1 \quad \{Z-(X+Y) = j-i \land \neg X < 0\}}$$

$$\frac{ \models (X+Y=i \land Z=j) \Rightarrow Z-(X+Y)=j-i \quad \beta \quad \models (Z-(X+Y)=j-i \land \neg X<0) \Rightarrow Z-(X+Y)=j-i}{\gamma \equiv \{X+Y=i \land Z=j\} \quad \text{while } X<0 \text{ do } X:=X+1; Y:=Y-1 \quad \{Z-(X+Y)=j-i\} }$$

Korektnost Hoareova odvozovacího systému

Lema 9. Nechť $I \in \mathcal{I}$, $X \in \text{Var}$, $a_0, a_1 \in \text{Aexpv}$, $a \in \text{Aexp}$ $a \in Aexp$ $a \in Aex$

- $\mathcal{E}[\alpha_0[\alpha_1/X]] I \sigma = \mathcal{E}[\alpha_0] I \sigma [\mathcal{E}[\alpha_1]] I \sigma/X$
- $\sigma \models^{\mathrm{I}} \mathrm{B}[\mathfrak{a}/\mathrm{X}] \iff \sigma[\mathcal{A}[\![\mathfrak{a}]\!]\sigma/\mathrm{X}] \models^{\mathrm{I}} \mathrm{B}$

Důkaz. Indukcí ke struktuře a_0 , resp. B.

Věta 10 (o korektnosti). *Jestliže* $\vdash \{A\} \ c \ \{B\}$, $pak \models \{A\} \ c \ \{B\}$.

 $D\mathring{u}kaz$. Indukcí k výšce odvozovacího stromu pro $\{A\}$ c $\{B\}$.

Uvážíme, jaké pravidlo bylo použito pro odvození kořene:

- Axiom pro skip. Pak je kořen tvaru $\{A\}$ skip $\{A\}$. Toto tvrzení je zjevně platné.
- Axiom pro $X := \alpha$. Pak je kořen tvaru $\{B[\alpha/X]\}\ X := \alpha\ \{B\}$. Nechť $I \in \mathcal{I}$ a $\sigma \in \Sigma$. Podle lematu 9 platí $\sigma \models^I B[\alpha/X] \iff \sigma[\mathcal{A}[\![\![\alpha]\!]\!]\sigma/X] \models^I B$. Jelikož $\sigma[\mathcal{A}[\![\![\alpha]\!]\!]\sigma/X] = \mathcal{C}[\![\![X := \alpha]\!]\sigma$, dostáváme

$$\sigma \models^{I} B[\alpha/X] \quad \Rightarrow \quad \mathcal{C}\llbracket X := \alpha \rrbracket \sigma \models^{I} B,$$

$$\mathsf{tedy} \models \{B[\alpha/X]\} \ X := \alpha \ \{B\}.$$

- Pravidlo pro sekvenční kompozici. Pak je kořen tvaru $\{A\}$ c_0 ; c_1 $\{B\}$ a má následníky $\{A\}$ c_0 $\{C\}$ a $\{C\}$ c_1 $\{B\}$, což jsou podle I.P. platná tvrzení. Nechť $I \in \mathcal{I}$ a $\sigma \in \Sigma$. Předpokládejme, že $\sigma \models^I A$. Platí $\mathcal{C}_{\perp} \llbracket c_0 \rrbracket \sigma \models^I C$ (neboť $\models \{A\}$ c_0 $\{C\}$) a $\mathcal{C}_{\perp} \llbracket c_1 \rrbracket (\mathcal{C}_{\perp} \llbracket c_0 \rrbracket \sigma) \models^I B$, protože $\models \{C\}$ c_1 $\{B\}$ a $\mathcal{C}_{\perp} \llbracket c_0 \rrbracket \sigma \models^I C$. Tedy $\models \{A\}$ c_0 ; c_1 $\{B\}$.
- Pravidlo pro větvení. Pak kořen $\{A\}$ if b then c_0 else c_1 $\{B\}$ má následníky $\{A \land b\}$ c_0 $\{B\}$ a $\{A \land \neg b\}$ c_1 $\{B\}$, což jsou podle I.P. platná tvrzení. Nechť $I \in \mathcal{I}$ a $\sigma \in \Sigma$. Předpokládejme, že $\sigma \models^I A$. Dále buď $\sigma \models^I b$, nebo $\sigma \models^I \neg b$. V prvém případě $\sigma \models^I A \land b$, tedy $\mathcal{C}_{\perp} \llbracket c_0 \rrbracket \sigma \models^I B$, neboť $\models \{A \land b\}$ c_0 $\{B\}$. V druhém případě $\sigma \models^I A \land \neg b$, tedy $\mathcal{C}_{\perp} \llbracket c_1 \rrbracket \sigma \models^I B$. Celkem $\models \{A\}$ if b then c_0 else c_1 $\{B\}$ (užitím lematu 8).
- Pravidlo pro cyklus. Pak kořen $\{A\}$ while b do c $\{A \land \neg b\}$ má následníka $\{A \land b\}$ c $\{A\}$, který je podle I.P. platným tvrzením. Nechť $I \in \mathcal{I}$ a $\sigma \in \Sigma$. Potřebujeme ukázat, že

$$\sigma \models^I A \quad \Rightarrow \quad \mathcal{C}_{\perp} \llbracket \textbf{while} \ b \ \textbf{do} \ c \rrbracket \sigma \models^I A \wedge \neg b$$

Mějme tedy σ a I takové, že $\sigma \models^I A$. Označme $\sigma' = \mathcal{C}_{\perp}$ [while b do c] σ . Pokud $\sigma' = \bot$, jsme hotovi. Jinak $\sigma' = \mathcal{C}$ [while b do c] σ (podle definice \mathcal{C}_{\perp}), proto $(\sigma, \sigma') \in \Gamma^{j}(\emptyset)$ pro nějaké $j \in \mathbb{N}_{0}$ (jelikož \mathcal{C} [while b do c] = $\bigcup_{i=0}^{\infty} \Gamma^{i}(\emptyset)$). K tomu, že $\sigma' \models^I A \land \neg b$, stačí ukázat, že pro každé $j \in \mathbb{N}_{0}$ platí

$$D(\mathfrak{j}) \quad \equiv \quad \forall \sigma, \sigma' \in \Sigma, \forall I \in \mathcal{I} : \quad ((\sigma, \sigma') \in \Gamma^{\mathfrak{j}}(\emptyset) \wedge \sigma \models^{I} A) \quad \Rightarrow \quad \sigma' \models^{I} A \wedge \neg b$$

Indukcí vzhledem k j.

 $\star j = 0$. Jelikož $\Gamma^0(\emptyset) = \emptyset$, neplatí antecedent dokazované implikace.

- * Indukční krok: Předpokládejme, že D(j) platí. Dokážeme, že platí D(j+1). Nechť tedy $(\sigma, \sigma') \in \Gamma^{j+1}(\emptyset)$ a $\sigma \models^I A$. Podle definice Γ jsou dvě možnosti:
 - * $\mathcal{B}[\![b]\!]\sigma = \mathbf{true} \ \mathbf{a} \ (\sigma, \sigma') \in \Gamma^{j}(\emptyset) \circ \mathcal{C}[\![c]\!]$. Pak $\sigma \models^{\mathrm{I}} b$ (užitím lematu 8), tedy $\sigma \models^{\mathrm{I}} A \wedge b$. Dále existuje σ'' takové, že $(\sigma, \sigma'') \in \mathcal{C}[\![c]\!] \ \mathbf{a} \ (\sigma'', \sigma') \in \Gamma^{j}(\emptyset)$. Jelikož $\models \{A \wedge b\} \ c \ \{A\}$, platí $\sigma'' \models^{\mathrm{I}} A$. Nyní podle D(j) dostáváme $\sigma' \models^{\mathrm{I}} A \wedge \neg b$, tedy D(j+1) platí.
 - * $\mathcal{B}[\![b]\!]\sigma =$ false a $\sigma' = \sigma$. Platí $\sigma \models^{\mathrm{I}} \neg b$ a tedy $\sigma \models^{\mathrm{I}} A \wedge \neg b$, což bylo dokázat.
- Pravidlo důsledku. Pak kořen $\{A\}$ c $\{B\}$ má následníky $\models (A \Rightarrow A'), \{A'\}$ c $\{B'\}$ $a \models (B' \Rightarrow B)$. Podle I.P. je $\{A'\}$ c $\{B'\}$ platné tvrzení. Nechť $I \in \mathcal{I}$ a $\sigma \in \Sigma$. Jestliže $\sigma \models^I A$, platí také $\sigma \models^I A'$, proto $\mathcal{C}_{\perp} \llbracket c \rrbracket \sigma \models^I B'$ a tudíž i $\mathcal{C}_{\perp} \llbracket c \rrbracket \sigma \models^I B$.

Nejslabší vstupní podmínka

- Chceme-li odvodit tvrzení $\{A\}$ c_0 ; c_1 $\{B\}$, lze to podle pravidla pro sekvenční kompozici provést tak, že pro vhodně zvolené $C \in \mathbf{Assn}$ odvodíme tvrzení $\{A\}$ c_0 $\{C\}$ a $\{C\}$ c_1 $\{B\}$.
- Dokážeme, že takové C existuje pro libovolné A, B, c_0 , c_1 ; tímto C bude tzv. nejslabší vstupní podmínka pro c_1 a B (vyjádřená v Assn).
- Nechť $c \in \mathbf{Com}$, $B \in \mathbf{Assn}$ a $I \in \mathcal{I}$. Nejslabší vstupní podmínka pro B vzhledem k c a I, označovaná $wp^I \llbracket c, B \rrbracket$, je definovaná takto:

$$wp^{\mathrm{I}}\llbracket \mathbf{c}, \mathbf{B} \rrbracket = \{ \mathbf{\sigma} \in \Sigma_{\perp} \mid \mathcal{C}_{\perp} \llbracket \mathbf{c} \rrbracket \mathbf{\sigma} \models^{\mathrm{I}} \mathbf{B} \}.$$

- Zavedeme značení $A^{I} = \{ \sigma \in \Sigma_{\perp} \mid \sigma \models^{I} A \}.$
- Dané $A \in \mathbf{Assn}$ vyjadřuje nejslabší vstupní podmínku pro B a c, pokud pro každé $I \in \mathcal{I}$ platí $A^{I} = wp^{I}[\![c, B]\!].$
- Platí $\models^{I} \{A\} \ c \ \{B\}$ \iff $A^{I} \subseteq wp^{I} \llbracket c, B \rrbracket$.
- Předpokládejme, že $A_0 \in \mathbf{Assn}$ vyjadřuje nejslabší vstupní podmínku pro B a c. Pak výše uvedenou ekvivalenci lze přepsat na $\models^{\mathrm{I}} \{A\} \ c \ \{B\} \iff A^{\mathrm{I}} \subseteq A_0^{\mathrm{I}} \iff \models^{\mathrm{I}} (A \Rightarrow A_0)$, což platí pro libovolné I, tedy $\models \{A\} \ c \ \{B\} \iff \models (A \Rightarrow A_0)$ (odtud přívlastek "nejslabší").

Nejslabší vstupní podmínka – příklady

- $wp^{I}[skip, false] = \{\bot\}$. Vyjádřitelné jako false.
- Obecně $wp^{I}[skip, B] = B^{I}$.
- wp^{I} [while true do skip, true] = Σ_{\perp} . Vyjádřitelné jako true.
- wp^{I} [while true do skip, false] = Σ_{\perp} . Vyjádřitelné jako true.
- $wp^{I}[X := 2; Y := 4, X = 3]$ = $\{\bot\}$.
- $wp^I[X:=X+1;Y:=Y-1,\ X=3\land Y=6]$ = $\{\bot\}\ \cup\ \{\sigma\in\Sigma\ |\ \sigma(X)=2\land\sigma(Y)=7\}.$ Vyjádřitelné jako $X=2\land Y=7.$
- $wp^{\mathrm{I}}[\![X:=Y,\ \mathfrak{i}=X]\!] = \{\bot\} \cup \{\sigma \in \Sigma \mid \sigma(Y)=\mathrm{I}(\mathfrak{i})\}.$ Vyjádřitelné jako $Y=\mathfrak{i}.$

Gödelův predikát β

Definujeme 4-ární predikát β na nezáporných celých číslech předpisem

$$\beta(a, b, i, x) \iff x = a \operatorname{mod}(1 + b(1 + i))$$

- Buď S nekonečná posloupnost nezáporných celých čísel, $a, b \in \mathbb{N}_0$. Řekneme, že S splňuje β (pro dané a b), jestliže pro každé $i \in \mathbb{N}_0$ platí $\beta(a, b, i, S(i))$.
- Pro každé $a, b \in \mathbb{N}_0$ existuje jediná posloupnost splňující β ; tou je posloupnost $S_{a,b}$ daná předpisem $S_{a,b}(i) = a \mod(1 + b(1 + i))$.
- Predikát β je vyjádřitelný v **Assn**, neboť $x = a \mod b$ lze napsat jako

$$a \ge 0 \land b \ge 0 \land$$

 $\exists k: (k \ge 0 \land k*b \le a \land (k+1)*b > a \land x = a - (k*b))$

Věta 11. Pro každou konečnou posloupnost n_0, \cdots, n_k nezáporných celých čísel existují $n, m \in \mathbb{N}_0$ taková, že $n_j = \mathcal{S}_{n,m}(j)$ pro každé $0 \le j \le k$. To znamená, že pro každé $0 \le j \le k$ platí

$$\beta(n, m, j, x) \iff x = n_j.$$

Důkaz. (osnova)

Nechť

$$\mathbf{m} = (\max\{\mathbf{k}, \mathbf{n}_0, \cdots, \mathbf{n}_k\})!$$

Čísla

$$p_i = 1 + m(1 + i), \quad 0 \le i \le k$$

jsou navzájem nesoudělná a $n_i < p_i$ pro každé $0 \le i \le k$.

• Dále pro každé $0 \le i \le k$ definujeme

$$c_i = p_0 \cdot \ldots \cdot p_k/p_i$$
.

Nyní pro každé $0 \leq i \leq k$ existuje přesně jedno $d_i, 0 \leq d_i \leq p_i$, takové, že $(c_i \cdot d_i)$ mod $p_i = 1$

Definujeme

$$n = \sum_{i=0}^{k} c_i \cdot d_i \cdot n_i.$$

Pro každé $0 \le i \le k$ platí $n_i = n \mod p_i$, což je tvrzení věty.

Rozšířený predikát β[±]

- Cílem je vytvořit prostředek pro kódování konečných posloupností hodnot proměnných jazyka
 IMP, tj. konečných posloupností celých čísel.
- Celá čísla lze seřadit do posloupnosti 0, 0, 1, -1, 2, -2, 3, -3, · · · . Každé celé číslo je pak "kódováno" pozicí v této posloupnosti, což je nezáporné celé číslo (0 má dokonce dva kódy, 0 a 1).
- Definujeme binární predikát F(x, y) ("x je kódem y") na celých číslech předpisem

$$F(x,y) \iff x \ge 0 \land \exists z : (x = 2 * z \Rightarrow y = z) \land (x = 2 * z + 1 \Rightarrow y = -z)$$

• Nyní lze definovat 4-ární predikát β^{\pm} na celých číslech (vyjádřitelný v Assn) předpisem

$$\beta^{\pm}(n, m, j, y) \iff \exists x : \beta(n, m, j, x) \land F(x, y)$$

• Analogicky jako pro β definujeme posloupnost splňující β^{\pm} a posloupnost $\mathcal{S}_{n,m}^{\pm}$, která je jedinou posloupností splňující β^{\pm} (pro dané $n, m \in \mathbb{N}_0$).

Věta 12. Pro každou konečnou posloupnost n_0, \dots, n_k celých čísel existují $n, m \in \mathbb{N}_0$ taková, že $n_j = \mathcal{S}_{n,m}^{\pm}(j)$ pro každé $0 \leq j \leq k$. To znamená, že pro každé $0 \leq j \leq k$ platí

$$\beta^{\pm}(n, m, j, x) \iff x = n_j.$$

Příklad užití predikátu β[±]

- Lze v Assn vyjádřit $X \ge 0 \land Y = X!$?
- "Zakódujeme" posloupnost 1, 1, 2, 6, 24, · · · , X!

$$\star Y = X!$$

$$\begin{array}{c} \star \ \exists n \ . \exists m \ . \ \beta^{\pm}(n,m,0,1) \\ \ \, \wedge \ \ \, \forall l \ . \ \ \, 1 \leq l \leq X \quad \Rightarrow \quad (\forall u. \ \forall v. \ \beta^{\pm}(n,m,l,u) \ \, \wedge \ \, \beta^{\pm}(n,m,l-1,v) \quad \Rightarrow \\ \ \, u = v * l) \\ \ \, \wedge \ \ \, \beta^{\pm}(n,m,X,Y) \end{array}$$

Vyjádřitelnost nejslabší vstupní podmínky v Assn

Věta 13. Pro každé $c \in \mathbf{Com} \ a \ B \in \mathbf{Assn} \ existuje \ A[[c, B]] \in \mathbf{Assn} \ takové, že pro každé <math>I \in \mathcal{I}$ platí $A[[c, B]]^I = wp^I[[c, B]].$

Důkaz. Je dobré si znovu uvědomit, že

$$A\llbracket c,B\rrbracket^I = wp^I \llbracket c,B\rrbracket \quad \iff \quad \forall \sigma \in \Sigma : (\sigma \models^I A\llbracket c,B\rrbracket \quad \iff \quad \mathcal{C}_\bot \llbracket c\rrbracket \sigma \models^I B).$$

Důkaz je veden indukcí ke struktuře c.

- $c \equiv skip$. Stačí položit A[skip, B] = B. Pro každé $I \in \mathcal{I}$ a $\sigma \in \Sigma$ platí $\sigma \in wp^I$ [skip, B]
 - $\iff \mathcal{C}_{\perp} \llbracket \mathbf{skip} \rrbracket \sigma \models^{\mathrm{I}} \mathrm{B}$
 - $\iff \sigma \models^I B$
 - $\iff \sigma \models^{I} A \llbracket \mathbf{skip}, B \rrbracket.$
- $c \equiv X := \alpha$. Definujeme $A[X := \alpha, B] = B[\alpha/X]$. Pak pro každé $I \in \mathcal{I}$ a $\sigma \in \Sigma$ platí

$$\sigma \in wp^{\mathrm{I}}[X := \mathfrak{a}, B]$$

$$\iff \ \sigma[\mathcal{A}[\![\mathfrak{a}]\!]\sigma/X] \models^I B$$

$$\iff \sigma \models^{\mathrm{I}} \mathrm{B}[\mathfrak{a}/\mathrm{X}] \text{ (užitím lematu 9)} \\ \iff \sigma \models^{\mathrm{I}} \mathrm{A} [\![\mathrm{X} := \mathfrak{a}, \mathrm{B}]\!].$$

• $c \equiv c_0; c_1$. Definujeme $A[c_0; c_1, B] = A[c_0, A[c_1, B]]$. Pro každé $I \in \mathcal{I}$ a $\sigma \in \Sigma$ platí

$$\sigma \in wp^{\mathrm{I}} \llbracket c_{0}; c_{1}, B \rrbracket$$

$$\iff \mathcal{C}_{\perp} \llbracket c_{0}; c_{1} \rrbracket \sigma \models^{\mathrm{I}} B$$

$$\iff \mathcal{C} \llbracket c_{0} \rrbracket \sigma \models^{\mathrm{I}} A \llbracket c_{1}, B \rrbracket \text{ (podle I.P.)}$$

$$\iff \sigma \models^{\mathrm{I}} A \llbracket c_{0}, A \llbracket c_{1}, B \rrbracket \rrbracket \text{ (podle I.P.)}$$

$$\iff \sigma \models^{\mathrm{I}} A \llbracket c_{0}; c_{1}, B \rrbracket.$$

• $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Definujeme A[[if $b \text{ then } c_0 \text{ else } c_1, B]] = (b \land A[[c_0, B]]) \lor (\neg b \land A[[c_1, B]])$. Pak pro každé $I \in \mathcal{I}$ a $\sigma \in \Sigma$ platí

$$\sigma \in wp^{\mathrm{I}}[\![\mathbf{c}, \mathbf{B}]\!]$$

$$\iff \mathcal{C}_{\perp}[\![\mathbf{c}]\!]\sigma \models^{\mathrm{I}} \mathbf{B}$$

$$\iff (\mathcal{B}[\![\mathbf{b}]\!] = \mathbf{true} \land \mathcal{C}_{\perp}[\![\mathbf{c}_{0}]\!]\sigma \models^{\mathrm{I}} \mathbf{B}) \lor (\mathcal{B}[\![\mathbf{b}]\!] = \mathbf{false} \land \mathcal{C}_{\perp}[\![\mathbf{c}_{1}]\!]\sigma \models^{\mathrm{I}} \mathbf{B})$$

$$\iff (\sigma \models^{\mathrm{I}} \mathbf{b} \land \sigma \models^{\mathrm{I}} \mathbf{A}[\![\mathbf{c}_{0}, \mathbf{B}]\!]) \lor (\sigma \models^{\mathrm{I}} \neg \mathbf{b} \land \sigma \models^{\mathrm{I}} \mathbf{A}[\![\mathbf{c}_{1}, \mathbf{B}]\!]) \text{ podle I.P.}$$

$$\iff \sigma \models^{\mathrm{I}} (\mathbf{b} \land \mathcal{A}[\![\mathbf{c}_{0}, \mathbf{B}]\!]) \lor (\neg \mathbf{b} \land \mathcal{A}[\![\mathbf{c}_{1}, \mathbf{B}]\!]) \iff \sigma \models^{\mathrm{I}} \mathcal{A}[\![\mathbf{c}, \mathbf{B}]\!].$$

• $c \equiv$ while b do c_0 . Platí $\sigma \in wp^I$ [while b do c_0 , B] \iff

$$\forall k \ \forall \sigma_0, \cdots . \sigma_k \in \Sigma :$$

$$(\sigma = \sigma_0 \quad \land \quad \forall i (0 \le i < k) : (\sigma_i \models^I b \ \land \ \mathcal{C}[\![c_0]\!] \sigma_i = \sigma_{i+1})) \quad \Rightarrow \quad (\sigma_k \models^I b \lor B) \text{(1)}$$

Stačí tedy výše uvedené tvrzení "přeložit" do \mathbf{Assn} . K tomu využijeme následující pozorování: Buď $A \in \mathbf{Assn}$ takové, že všechny proměnné vyskytující se v A jsou mezi X_1, \cdots, X_l (místo X_1, \cdots, X_l budeme psát také \vec{X}). Pro každé $\sigma \in \Sigma$ lze nyní definovat l-tici \vec{s} , kde $\vec{s}(i) = \sigma(X_i)$. Pro každé $I \in I$ platí

$$\sigma \models^{\mathrm{I}} A \iff \models^{\mathrm{I}} A[\vec{s}/\vec{X}] \tag{*}$$

což lze snadno ukázat strukturální indukcí. Nechť X_1, \dots, X_l jsou všechny proměnné, které se vyskytují v c a B. Nyní lze (1) přepsat na

$$\forall k \ \forall \vec{s}_{0}, \cdots . \vec{s}_{k} \in \mathbb{Z} :$$

$$(\sigma \models^{I} \vec{X} = \vec{s}_{0} \quad \land$$

$$\forall i (0 \leq i < k) : (\models^{I} b[\vec{s}_{i}/\vec{X}] \land \models^{I} (A[\![c_{0}, \vec{X} = \vec{s}_{i+1}]\!] \land \neg A[\![c_{0}, \mathbf{false}]\!])[\vec{s}_{i}/\vec{X}]))$$

$$\Rightarrow \ \models^{I} (b \lor B)[\vec{s}_{k}/\vec{X}]$$

$$(2)$$

Ukážeme, že (1) a (2) jsou ekvivalentní. K tomu je (zejména) třeba dokázat, že pokud σ_i resp. σ_{i+1} mají na \vec{X} hodnoty $\vec{s_i}$ resp. $\vec{s_{i+1}}$ a jinde jsou stejné, platí

$$\mathcal{C}\llbracket c_0 \rrbracket \sigma_i = \sigma_{i+1} \quad \Longleftrightarrow \quad \models^{\mathrm{I}} (A\llbracket c_0, \vec{X} = \vec{s}_{i+1} \rrbracket \ \land \ \neg A\llbracket c_0, \mathbf{false} \rrbracket) [\vec{s}_i / \vec{X}]$$

pro každé $I \in \mathcal{I}$. Snadno se vidí, že

$$\mathcal{C}[\![c_0]\!]\sigma_i = \sigma_{i+1} \quad \Longleftrightarrow \quad \sigma_i \in \mathit{wp}^I[\![c_0, \vec{X} = \vec{s}_{i+1}]\!] \quad \land \quad \mathcal{C}[\![c_0]\!]\sigma_i \text{ je definováno.}$$

Podle I.P. $\sigma_i \in wp^I[\![c_0, \vec{X} = \vec{s}_{i+1}]\!] \iff \sigma_i \models^I A[\![c_0, \vec{X} = \vec{s}_{i+1}]\!]$. Dále $\mathcal{C}[\![c_0]\!]\sigma_i$ je definováno právě když $\sigma_i \models^I \neg A[\![c_0, \mathbf{false}]\!]$). Nyní již stačí aplikovat (*) a dostaneme tvar použitý v (2). Formuli (2) lze nyní transformovat na výraz jazyka **Assn** pomocí predikátu β^{\pm} . Nejprve "zakódujeme" jednotlivá \vec{s}_i jako dvojice nezáporných celých čísel:

$$\begin{split} \forall k, n_0, m_0, \cdots, n_k, m_k &\geq 0 : \\ (\bigwedge_{j=0}^l \beta^{\pm}(n_0, m_0, j, X_j) & \wedge \\ \forall i (0 \leq i < k) : ((\forall x_0, \cdots, x_l : \bigwedge_{j=0}^l \beta^{\pm}(n_i, m_i, j, x_j) \Rightarrow b[\vec{x}/\vec{X}]) & \wedge \\ (\forall x_0, \cdots, x_l, y_0, \cdots, y_l : (\bigwedge_{j=0}^l \beta^{\pm}(n_i, m_i, j, x_j) \wedge \beta^{\pm}(n_{i+1}, m_{i+1}, j, y_j)) \\ &\Rightarrow (A[\![c_0, \vec{X} = \vec{y}]\!] & \wedge \neg A[\![c_0, \textbf{false}]\!])[\vec{x}/\vec{X}]))) \\ &\Rightarrow (\forall x_0, \cdots, x_l : \bigwedge_{j=0}^l \beta^{\pm}(n_k, m_k, j, x_j) \Rightarrow (b \vee B)[\vec{x}/\vec{X}]) \end{split}$$

$$(3)$$

Zbývá zakódovat posloupnost $n_0, m_0, \dots, n_k, m_k$ do jediné dvojice čísel. Získané tvrzení bude kvantifikováno takto:

$$\forall k, n, m \geq 0$$
:

Dále provedeme tato nahrazení:

 $\star \bigwedge_{i=0}^{l} \beta^{\pm}(n_0, m_0, j, X_j)$ nahradíme výrazem

$$\forall \mathfrak{p},\mathfrak{q} : (\beta^{\pm}(\mathfrak{n},\mathfrak{m},0,\mathfrak{p}) \wedge \beta^{\pm}(\mathfrak{n},\mathfrak{m},1,\mathfrak{q})) \quad \Rightarrow \quad \bigwedge_{\mathfrak{j}=0}^{\mathfrak{l}} \beta^{\pm}(\mathfrak{p},\mathfrak{q},\mathfrak{j},X_{\mathfrak{j}})$$

 $\star \ \forall x_0, \cdots, x_l : \bigwedge_{j=0}^l \beta^{\pm}(n_i, m_i, j, x_j) \ \Rightarrow \ b[\vec{x}/\vec{X}])$ nahradíme výrazem

$$\forall p, q : (\beta^{\pm}(n, m, 2 * i, p) \land \beta^{\pm}(n, m, 2 * i + 1, q)) \Rightarrow (\forall x_0, \dots, x_l : \bigwedge_{j=0}^{l} \beta^{\pm}(p, q, j, x_j) \Rightarrow b[\vec{x}/\vec{X}]))$$

 $\star \ (\forall x_0,\cdots,x_l,y_0,\cdots,y_l \ : \ (\bigwedge_{j=0}^l \beta^\pm(n_i,m_i,j,x_j) \ \land \ \beta^\pm(n_{i+1},m_{i+1},j,y_j)) \ \ \text{nahradime}$ výrazem

$$\forall p, q, u, v : \qquad (\beta^{\pm}(n, m, 2 * i, p) \land \beta^{\pm}(n, m, 2 * i + 1, q) \land \\ \beta^{\pm}(n, m, 2 * i + 2, u) \land \beta^{\pm}(n, m, 2 * i + 3, v)) \Rightarrow \\ (\forall x_0, \dots, x_l, y_0, \dots, y_l : (\bigwedge_{j=0}^l \beta^{\pm}(p, q, j, x_j) \land \beta^{\pm}(u, v, j, y_j)))$$

 $\star \ \forall x_0, \cdots, x_l \ : \ \textstyle \bigwedge_{i=0}^l \beta^\pm(n_k, m_k, j, x_j) \ \Rightarrow \ (b \lor B)[\vec{x}/\vec{X}] \quad \text{nahradime výrazem}$

$$\forall \mathfrak{p}, \mathfrak{q} : (\beta^{\pm}(\mathfrak{n}, \mathfrak{m}, 2 * k, \mathfrak{p}) \wedge \beta^{\pm}(\mathfrak{n}, \mathfrak{m}, 2 * k + 1, \mathfrak{q}) \Rightarrow (\forall x_0, \cdots, x_l : \bigwedge_{j=0}^{l} \beta^{\pm}(\mathfrak{p}, \mathfrak{q}, j, x_j) \Rightarrow (\mathfrak{b} \vee B)[\vec{x}/\vec{X}].$$

Získaná formule již patří do Assn.

Úplnost Hoareova odvozovacího systému

Lema 14. Necht' $c \in Com \ a \ B \in Assn.$ Dále necht' $A[c, B] \in Assn \ vyjadřuje nejslabší vstupní podmínku pro <math>c \ a \ B.$ Pak $\vdash \{A[c, B]\} \ c \ \{B\}.$

Důkaz. Indukcí ke struktuře c (využijeme poznatků z důkazu věty 13).

- $c \equiv \text{skip}$. $A[\![\text{skip}, B]\!]$ je ekvivalentní B, zejména tedy $\models A[\![\text{skip}, B]\!] \Rightarrow B$. Proto $\vdash \{A[\![\text{skip}, B]\!]\} \text{skip} \{B\}$ (užitím axiomu pro skip a pravidla důsledku).
- $c \equiv X := a$. Pak A[X := a, B] je ekvivalentní B[a/X]. Užitím axiomu pro přiřazení a pravidla důsledku dostáváme $\vdash \{A[X := a, B]\} X := a\{B\}$.
- $c \equiv c_0; c_1$. Pak $A[\![c_0; c_1, B]\!]$ je ekvivalentní $A[\![c_0, A[\![c_1, B]\!]\!]$, kde $A[\![c_1, B]\!]$ vyjadřuje nejslabší vstupní podmínku pro c_1 a B, a $A[\![c_0, A[\![c_1, B]\!]\!]]$ vyjadřuje nejslabší vstupní podmínku pro c_0 a $A[\![c_1, B]\!]$. Podle I.P. $\vdash \{A[\![c_1, B]\!]\} c_1 \{B\}$ a $\vdash \{A[\![c_0, A[\![c_1, B]\!]]\} c_0 \{A[\![c_1, B]\!]\}$. Podle pravidla pro sekvenční kompozici $\vdash \{A[\![c_0, A[\![c_1, B]\!]\!]\} c_0; c_1 \{B\}$, proto také $\vdash \{A[\![c_0; c_1, B]\!]\} c_0; c_1 \{B\}$ užitím pravidla důsledku.
- $c \equiv \text{if } b \text{ then } c_0 \text{ else } c_1$. Pak A[[c, B]] je ekvivalentní ($b \land A[[c_0, B]]) \lor (\neg b \land A[[c_1, B]])$, kde A[[c_0, B]] resp. A[[c_1, B]] vyjadřuje nejslabší vstupní podmínku pro c_0 resp. c_1 a B. Podle I.P. $\vdash \{A[[c_0, B]]\} c_0 \{B\}$ a $\vdash \{A[[c_1, B]]\} c_1 \{B\}$. Jelikož $\models (A[[c, B]] \land b) \Rightarrow A[[c_0, B]]$, užitím pravidla důsledku dostáváme $\vdash \{A[[c, B]] \land b\} c_0 \{B\}$. Podobně $\vdash \{A[[c, B]] \land \neg b\} c_1 \{B\}$, můžeme tedy použít pravidlo pro větvení čímž obdržíme $\vdash \{A[[c, B]]\} c \{B\}$.

- $c \equiv$ while bdo c_0 . Dokážeme, že
 - a) $\models \{A[[c, B]] \land b\} c_0 \{A[[c, B]]\},$
 - b) $\models (A[[c, B]] \land \neg b) \Rightarrow B$.

Vyjadřuje-li $A[c_0, A[c, B]]$ nejslabší vstupní podmínku pro c_0 a A[c, B], pak podle I.P. $\vdash \{A[c_0, A[c, B]]\} c_0 \{A[c, B]\}$. Podle a) pak platí $\models (A[c, B] \land b) \Rightarrow A[c_0, A[c, B]]$, proto $\vdash \{A[c, B] \land b\} c_0 \{A[c, B]\}$ užitím pravidla důsledku. Dále podle pravidla pro while dostáváme $\vdash \{A[c, B]\} c \{A[c, B]\} \land \neg b\}$ a pomocí b) a pravidla důsledku konečně $\vdash \{A[c, B]\} c \{B\}$.

ad a) Nechť $\sigma \in \Sigma$ a $I \in \mathcal{I}$. Jestliže $\sigma \models^I A \llbracket c, B \rrbracket \wedge b$, platí $\sigma \models^I A \llbracket c, B \rrbracket$ a $\sigma \models^I b$, tj. $\mathcal{C}_{\perp} \llbracket c \rrbracket \sigma \models^I B$ a $\sigma \models^I b$. Denotační sémantika byla definována tak, že platí:

$$\mathcal{C}_{\perp}[\![c]\!] = \mathcal{C}_{\perp}[\![if\ b\ then\ c_0; c\ else\ skip]\!]$$

To znamená, že $\mathcal{C}_{\perp}[\![c_0; c]\!]\sigma \models^I B$, tedy $\mathcal{C}_{\perp}[\![c]\!](\mathcal{C}_{\perp}[\![c_0]\!]\sigma) \models^I B$. Proto $\mathcal{C}_{\perp}[\![c_0]\!]\sigma \models^I A[\![c, B]\!]$, tedy $\models \{A[\![c, B]\!] \land b\} c_0 \{A[\![c, B]\!]\}$.

ad b) Nechť $\sigma \in \Sigma$ a $I \in \mathcal{I}$. Jestliže $\sigma \models^I A[\![c,B]\!] \land \neg b$, pak $\sigma \models^I A[\![c,B]\!]$ a $\sigma \models^I \neg b$. Jelikož $\mathcal{C}_{\perp}[\![c]\!] = \mathcal{C}_{\perp}[\![if\ b\ then\ c_0; c\ else\ skip]\!]$,

dostáváme $\mathcal{C}_{\perp}\llbracket c \rrbracket \sigma = \sigma$, proto $\sigma \models^{I} B$. Tedy $\models (A \llbracket c, B \rrbracket \land \neg b) \Rightarrow B$.

Věta 15 (o úplnosti). *Jestliže* \models {A} c {B}, $pak \vdash$ {A} c {B}.

Důkaz. Předpokládejme, že \models {A} c {B}. Podle věty 13 existuje A[[c, B]] \in **Assn**, které vyjadřuje nejslabší vstupní podmínku pro c a B. Platí tedy \models (A \Rightarrow A[[c, B]]). Podle lematu 14 platí \models {A[[c, B]]} c {B} a tedy \vdash {A} c {B} užitím pravidla důsledku.

Ekvivalence axiomatické a denotační sémantiky

ullet Axiomatická sémantika přirozeným způsobem definuje sémantickou ekvivalenci \simeq na příkazech:

$$c_0 \simeq c_1 \iff \forall A, B \in Assn : (\models \{A\} c_0 \{B\} \iff \models \{A\} c_1 \{B\})$$

Věta 16. *Pro každé* $c_0, c_1 \in \mathbf{Com} \ \mathit{plati}: \ \mathcal{C}[\![c_0]\!] = \mathcal{C}[\![c_1]\!] \iff c_0 \simeq c_1$ Důkaz.

"
$$\Rightarrow$$
" Buďte $\sigma \in \Sigma$ a I $\in \mathcal{I}$ takové, že $\sigma \models^{I} A$. Jelikož $\mathcal{C}_{\perp} \llbracket c_{0} \rrbracket \sigma = \mathcal{C}_{\perp} \llbracket c_{1} \rrbracket \sigma$, platí $\mathcal{C}_{\perp} \llbracket c_{0} \rrbracket \sigma \models^{I} B \iff \mathcal{C}_{\perp} \llbracket c_{1} \rrbracket \sigma \models^{I} B$

" \Leftarrow " Ukážeme, že pokud $\mathcal{C}[\![c_0]\!] \neq \mathcal{C}[\![c_1]\!]$, pak existuje $\sigma \in \Sigma$ a $A, B \in \mathbf{Assn}$ takové, že $\models \{A\} c_0 \{B\} \iff \models \{A\} c_1 \{B\}$

Jestliže $C[[c_0]] \neq C[[c_1]]$, existuje $\sigma \in \Sigma$ takové, že $C_{\perp}[[c_0]] \sigma \neq C_{\perp}[[c_1]] \sigma$. Nechť \mathcal{X} je množina všech proměnných, které se vyskytují v c_0 a c_1 . Definujeme

$$A \equiv \bigwedge_{Y \in \mathcal{X}} Y = \mathfrak{n}_Y$$

kde n_Y je hodnota proměnné Y ve stavu σ . Dále označme $\sigma_0 = \mathcal{C}_{\perp} \llbracket c_0 \rrbracket \sigma$ a $\sigma_1 = \mathcal{C}_{\perp} \llbracket c_1 \rrbracket \sigma$. Rozlišíme tři možnosti:

- $\sigma_0 \neq \bot \neq \sigma_1$. Jelikož $\sigma_0 \neq \sigma_1$, existuje $X \in \mathcal{X}$ takové, že $\sigma_0(X) \neq \sigma_1(X)$. Definujeme $B \equiv X=m$, kde m je hodnota proměnné X ve stavu σ_0 . Pak $\models \{A\} c_0 \{B\}$, zatímco $\not\models \{A\} c_1 \{B\}$ (neboť $\sigma \not\models^I \{A\} c_1 \{B\}$ pro libovolné $I \in \mathcal{I}$).
- $\sigma_0 = \bot$. Pak $\sigma_1 \neq \bot$. Proto $\models \{A\} c_0 \{\text{false}\}\$, zatímco $\not\models \{A\} c_1 \{\text{false}\}\$.
- $\sigma_1 = \bot$. Podobně.

Označkované příkazy

- Platnost tvrzení $\{A\}$ c $\{B\}$ o částečné korektnosti lze (efektivně) redukovat na platnost tvrzení $A \Rightarrow A[\![c,B]\!]$, kde $A[\![c,B]\!]$ vyjadřuje nejslabší vstupní podmínku pro c a B.
- Pokud bychom měli k dispozici program, který rozhoduje platnost tvrzení z Assn, bylo by možné
 algoritmicky ověřit i platnost tvrzení o částečné korektnosti.
- Takový program z principielních důvodů neexistuje; existují ale "dokazovače vět" (theorem provers), které umožňují efektivně dokázat platnost určitých podtříd platných tvrzení **Assn**.
- Tyto nástroje mohou být velmi užitečné, pokud se kombinují s lidskou inteligencí.
- Myšlenka: místo konstrukce nejslabší vstupní podmínky doplníme prvky Assn přímo do příkazu (programu), čímž vznikne označkovaný příkaz. Pak algoritmicky sestavíme množinu tvrzení z Assn (tzv. verifikačních podmínek), jejichž platnost je postačující podmínkou pro korektnost daného označkovaní.
- Označkované příkazy ACom
 - $c ::= skip \mid X := a \mid c_0; X := a \mid c_0; \{D\}\bar{c} \mid if b then c_0 else c_1 \mid while b do \{D\}c$ kde $X \in Var$, $a \in Aexp$, $b \in Bexp$, $D \in Assn a \bar{c}$ je označkovaný příkaz který není přiřazením.
- Označkované tvrzení o částečné korektnosti je trojice tvaru $\{A\}c\{B\}$, kde $A, B \in \mathbf{Assn}$ a $c \in \mathbf{ACom}$. Toto tvrzení je platné, je-li platné tvrzení $\{A\}c'\{B\}$ kde $c' \in \mathbf{Com}$ vznikne z c vynecháním všech prvků \mathbf{Assn} .

Verifikační podmínky

Označkovaný while-cyklus

$$\{A\}$$
 while b do $\{D\}c$ $\{B\}$

obsahuje $D \in \mathbf{Assn}$, které by mělo být invariantem, což znamená že $\{D \land b\} c \{D\}$ je platné tvrzení. Pokud už víme, že D je invariant, stačí pro platnost (*) dokázat platnost tvrzení $A \Rightarrow D$ a $D \land \neg b \Rightarrow B$.

• Množina verifikačních podmínek pro označkované tvrzení $\{A\} c \{B\}$, psáno $\mathcal{V}(\{A\} c \{B\})$, je definována induktivně takto:

Věta 17. Nechť $\{A\}$ c $\{B\}$ je označkované tvrzení o částečné korektnosti. Jestliže všechny prvky $\mathcal{V}(\{A\}$ c $\{B\})$ jsou platná tvrzení, je i $\{A\}$ c $\{B\}$ platné.

Důkaz. Indukcí ke struktuře c.

Příklad:

- {true} while false do {false} skip {true}
- Toto označkované tvrzení o částečné korektnosti je platné.
- $\mathcal{V}(\{\text{true}\}\ \text{while false do } \{\text{false}\}\ \text{skip } \{\text{true}\}) =$ $\mathcal{V}(\{\text{false} \land \text{false}\}\ \text{skip } \{\text{false}\}) \cup \{\text{true} \Rightarrow \text{false}\} \cup \{(\text{false} \land \neg \text{false}) \Rightarrow \text{true}\}$
- true \Rightarrow false $\in \mathcal{V}(\{\text{true}\}\ \text{while false do } \{\text{false}\}\ \text{skip } \{\text{true}\})$ platné není; platnost prvků $\mathcal{V}(\{A\}\ c\ \{B\})$ je tedy pouze postačující, nikoliv nutná podmínka platnosti $\{A\}\ c\ \{B\}$.

Operační sémantika paralelních programů

Syntaxi jazyka IMP rozšíříme o paralelní operátor ||; paralelní příkazy PCom jsou definovány rovnicí

c ::= skip |
$$X := a | c_0; c_1 |$$
 if b then c_0 else $c_1 |$ while b do $c | c_0 || c_1$

SOS sémantiku II. typu rozšíříme o pravidla

$$\frac{\langle c_0, \sigma \rangle \mapsto \langle c_0', \sigma' \rangle}{\langle c_0 || c_1, \sigma \rangle \mapsto \langle c_0' || c_1, \sigma' \rangle} \qquad \frac{\langle c_1, \sigma \rangle \mapsto \langle c_1', \sigma' \rangle}{\langle c_0 || c_1, \sigma \rangle \mapsto \langle c_0 || c_1', \sigma' \rangle}$$

Podle stávajících pravidel např.

$$\langle (X := 1 || X := 2); X := 3, \sigma \rangle \mapsto$$

 $\langle (\mathbf{skip} || X := 2); X := 3, \sigma[1/X] \rangle \mapsto$
 $\langle (\mathbf{skip} || \mathbf{skip}); X := 3, \sigma[2/X] \rangle$

Z konfigurace $\langle (\mathbf{skip} || \mathbf{skip}); X := 3, \sigma[2/X] \rangle$ není možné odvodit žádný přechod, ačkoliv příkaz X := 3 je v této konfiguraci proveditelný (podle intuitivního chápání významu ";" a "||").

• Zavedeme predikát IsSkip předpisem

```
\begin{array}{rcl} \textbf{IsSkip}(\textbf{skip}) & = & \textbf{true} \\ \\ \textbf{IsSkip}(\textbf{X} := \textbf{a}) & = & \textbf{false} \\ \\ \textbf{IsSkip}(\textbf{c}_0; \textbf{c}_1) & = & \textbf{IsSkip}(\textbf{c}_0) \land \textbf{IsSkip}(\textbf{c}_1) \\ \\ \textbf{IsSkip}(\textbf{if b then } \textbf{c}_0 \textbf{ else } \textbf{c}_1) & = & \textbf{false} \\ \\ \textbf{IsSkip}(\textbf{while b do c}) & = & \textbf{false} \\ \\ \textbf{IsSkip}(\textbf{c}_0 || \textbf{c}_1) & = & \textbf{IsSkip}(\textbf{c}_0) \land \textbf{IsSkip}(\textbf{c}_1) \end{array}
```

• Pravidlo $\langle \mathbf{skip}; c, \sigma \rangle \mapsto \langle c, \sigma \rangle$ nahradíme pravidlem

$$\frac{}{\langle c_0;c_1,\sigma\rangle\mapsto\langle c_1,\sigma\rangle}\text{ IsSkip}(c_0)$$

- Nyní je již odvoditelný přechod $\langle (\mathbf{skip} || \mathbf{skip}); X := 3, \sigma[2/X] \rangle \mapsto \langle X := 3, \sigma[2/X] \rangle$
- Paralelní programy mohou být nedeterministické.

Verifikace paralelních a neukončených programů

- Ověření sémantické ekvivalence.
 - * Specifikace i skutečná implementace se popíše ve vhodném "vyšším" jazyce (CCS, Petriho sítě, apod.) s dobře definovanou operační sémantikou.
 - Dokáže se, že specifikace a implementace jsou ekvivalentní.
 - * V tomto kontextu je formalizace pojmu sémantické ekvivalence netriviální problém (bisimulační ekvivalence apod.)
- Ověření platnosti formule vhodné logiky.
 - * "Vhodnou" logikou je v tomto případě obvykle nějaký typ modální (temporální) logiky.
 - ⋆ temporální logiky lze klasifikovat z mnoha hledisek, např.
 - * "state-based" × "action-based"
 - * "linear-time" × "branching-time"
- Z praktického hlediska je hlavní omezující faktor velikost množiny konfigurací.

"Obecná" definice LTL

Syntaxe LTL

• Buď $At = \{p, q, r, ...\}$ spočetná množina atomických výroků.

```
\varphi ::= \mathbf{true} \mid \mathfrak{p} \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \mathcal{X} \varphi \mid \varphi_1 \mathcal{U} \varphi_2
```

Dále definujeme $\mathcal{F}\varphi \equiv \mathbf{true}\,\mathcal{U}\,\varphi$ a $\mathcal{G}\varphi \equiv \neg\mathcal{F}\neg\varphi$

- Buď φ LTL formule.
 - $\star At(\varphi)$ označuje množinu všech atomických výroků, které se vyskytují ve φ ;
 - * charakteristická abeceda formule φ je množina $\Sigma_{\varphi} = 2^{At(\varphi)}$;
 - * Σ_{ω}^{ω} označuje množinu všech nekonečných slov nad abecedou Σ_{ϕ} ;
 - * nechť $w \in \Sigma_{\varphi}^{\omega}$. Symbol w(i) označuje i-tý znak slova w; symbol w_i označuje i-tý sufix slova w pro každé $i \in \mathbb{N}_0$.

Příklad:

- $\bullet \ \varphi = (p \lor q) \mathcal{U} (p \land q)$
- $At(\varphi) = \{p, q\}$
- $\Sigma_{\varphi} = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}\$
- je-li $w = \emptyset \{p\} \emptyset \{q\} \{q\} \{p, q\} \cdots$, platí $w(2) = \emptyset$, $w(3) = \{q\}$, $w_2 = \emptyset \{q\} \{q\} \{p, q\} \cdots$

Sémantika LTL

• Buď φ LTL formule. Platnost φ pro dané $w \in \Sigma_{\varphi}^{\omega}$ je definována indukcí ke struktuře φ :

```
w \models \mathbf{true}
w \models p \iff p \in w(0)
w \models \neg \varphi \iff w \not\models \varphi
w \models \varphi_1 \land \varphi_2 \iff w \models \varphi_1 \land w \models \varphi_2
w \models \mathcal{X}\varphi \iff w_1 \models \varphi
w \models \varphi_1 \mathcal{U} \varphi_2 \iff \exists j : w_j \models \varphi_2 \land \forall i < j : w_i \models \varphi_1
```

• Charakteristický jazyk LTL formule ϕ je množina nekonečných slov $L_{\phi} = \{w \in \Sigma_{\phi}^{\omega} \mid w \models \phi\}$

LTL jako jazyk vlastností paralelních a neukončených programů

• Uvážíme "instanci" LTL logiky, kde At = Assn, tj.

$$\varphi ::= true \mid A \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathcal{X} \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

$$kde A \in Assn.$$

• Nechť $c \in \mathbf{PCom}$ a $\sigma \in \Sigma$. Běh programu c ze stavu σ je nekonečná posloupnost konfigurací

$$\alpha = \langle c_0, \sigma_0 \rangle \langle c_1, \sigma_1 \rangle \langle c_2, \sigma_2 \rangle \langle c_3, \sigma_3 \rangle \cdots,$$

kde $c_0 = c$, $\sigma_0 = \sigma$ a $\langle c_i, \sigma_i \rangle \mapsto \langle c_{i+1}, \sigma_{i+1} \rangle$ pro každé $i \in \mathbb{N}_0$.

- Buď φ LTL formule, I interpretace a α běh. Charakteristické slovo běhu α vzhledem k formuli φ a interpretaci I je slovo $\alpha_{\varphi}^{I} \in \Sigma_{\varphi}^{\omega}$, kde $\alpha_{\varphi}^{I}(\mathfrak{i}) = \{A \in \mathbf{Assn}(\varphi) \mid \sigma_{\mathfrak{i}} \models^{I} A\}$.
- Běh α splňuje LTL formuli φ při interpretaci I, psáno $\alpha \models^{I} \varphi$, jestliže $\alpha_{\varphi}^{I} \models \varphi$.
- Konfigurace $\langle c, \sigma \rangle$ splňuje LTL formuli φ při interpretaci I, psáno $\langle c, \sigma \rangle \models^{I} \varphi$, jestliže pro každý běh α začínající v $\langle c, \sigma \rangle$ platí $\alpha \models^{I} \varphi$.
- Množina vlastností běhů vyjádřitelných v LTL je uzavřená na negaci. Množina vlastností konfigurací vyjádřitelných v LTL na negaci uzavřená není (v důsledku "vestavěné" univerzální kvantifikace přes běhy)!

Příklady:

- $c \equiv \text{while tt do } X := X + 1$. Pak $\langle c, \sigma \rangle \models^{I} \mathcal{F}(X > 5)$ pro každé σ a I.
- $c \equiv X := 2$. Pak $\langle c, \sigma \rangle \models^I \mathcal{G}(X = 3)$ pro každé σ a I, neboť neexistuje žádný běh začínající v $\langle c, \sigma \rangle$.
- $c \equiv X := 2 \parallel$ while tt do skip. Pak $\langle c, \sigma \rangle \not\models^I \mathcal{G}(X = 3)$ pro každé σ a I. Např. ale platí $\langle c, \sigma \rangle \models^I (X = 2) \Rightarrow \mathcal{G}(X = 2)$
- c \equiv X := 2 || X := 3 || while tt do skip. Uvažme stav σ kde $\sigma(X) = 2$. Pak $\langle c, \sigma \rangle \not\models^{I} \mathcal{F}(X = 3)$ a $\langle c, \sigma \rangle \not\models^{I} \mathcal{G}(X \neq 3)$ pro každé I.

Problém: Jak efektivně ověřit, zda $\langle c, \sigma \rangle \models^{I} \phi$?

ω-regulární jazyky a Büchiho automaty

- Büchiho automat je pětice $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, kde
 - ⋆ Q je konečná množina stavů;
 - * Σ je konečná abeceda;
 - $\star \delta \subseteq Q \times \Sigma \times Q$ je přechodová relace (místo $(p, a, q) \in \delta$ budeme psát $p \stackrel{a}{\to} q$);
 - * $q_0 \in Q$ je počáteční stav;
 - \star F \subseteq Q je množina koncových stavů.
- Výpočet automatu \mathcal{A} na slově $w \in \Sigma^{\omega}$ je nekonečná posloupnost stavů $\mathfrak{p}_0 \, \mathfrak{p}_1 \, \mathfrak{p}_2 \, \cdots$ taková, že $\mathfrak{p}_0 = \mathfrak{q}_0$ a $\mathfrak{p}_i \stackrel{w(i)}{\to} \mathfrak{p}_{i+1}$ pro každé $i \in \mathbb{N}_0$. Výpočet je akceptující, jestliže se v něm některý koncový stav vyskytuje ∞ -krát.
- Automat \mathcal{A} akceptuje jazyk $L(\mathcal{A}) \subseteq \Sigma^{\omega}$ složený ze slov, pro která existuje akceptující výpočet.
- Buď Σ konečná abeceda. L $\subseteq \Sigma^{\omega}$ je ω -regulární. pokud existuje Büchiho automat \mathcal{A} takový, že L(\mathcal{A}) = L.

Příklad: Uvažme následující Büchiho automat A:

Pak L(A) obsahuje právě ta nekonečná slova nad abecedou 0, 1, ve kterých se 0 vyskytuje konečně-krát.

Vlastnosti Büchiho automatů a ω-regulárních jazyků

Věta 18. Nechť L_1, L_2 jsou ω -regulární jazyky nad abecedou Σ . Pak $L_1 \cup L_2$ a $L_1 \cap L_2$ jsou také ω -regulární jazyky.

Důkaz. Nechť $L_1 = L(\mathcal{A}_1)$ a $L_2 = L(\mathcal{A}_2)$, kde $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ a $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Bez újmy na obecnosti můžeme předpokládat, že $Q_1 \cap Q_2 = \emptyset$. Zřejmě $L_1 \cup L_2 = L(\mathcal{A}^{\cup})$, kde

$$\mathcal{A}^{\cup} = (Q_1 \cup Q_2 \cup \{q_0\}, \quad \Sigma, \quad \delta_1 \cup \delta_2 \cup \{(q_0, \alpha, q) \mid q_1 \stackrel{\alpha}{\rightarrow} q \lor q_2 \stackrel{\alpha}{\rightarrow} q\}, \quad q_0, \quad F_1 \cup F_2)$$

kde $q_0 \not\in Q_1 \cup Q_2$. Dále $L_1 \cap L_2 = L(\mathcal{A}^{\cap})$, kde

$$\mathcal{A}^{\cap} = (Q_1 \times Q_2 \times \{1, 2\}, \quad \Sigma, \quad \delta^{\cap}, \quad (q_1, q_2, 1), \quad F_1 \times Q_2 \times \{1\})$$

a δ^{\cap} je určena předpisem

- $(p,q,1) \stackrel{\alpha}{\to} (p',q',1)$, jestliže $p \stackrel{\alpha}{\to} p'$, $q \stackrel{\alpha}{\to} q'$ a $p \not\in F_1$;
- $(p, q, 1) \stackrel{\alpha}{\rightarrow} (p', q', 2)$, jestliže $p \stackrel{\alpha}{\rightarrow} p'$, $q \stackrel{\alpha}{\rightarrow} q'$ a $p \in F_1$;
- $(p, q, 2) \stackrel{\alpha}{\rightarrow} (p', q', 2)$, jestliže $p \stackrel{\alpha}{\rightarrow} p'$, $q \stackrel{\alpha}{\rightarrow} q'$ a $q \notin F_2$;
- $(p, q, 2) \stackrel{\alpha}{\to} (p', q', 1)$, jestliže $p \stackrel{\alpha}{\to} p'$, $q \stackrel{\alpha}{\to} q'$ a $q \in F_2$.

Věta 19. Nechť \mathcal{A} je Büchiho automat. Problém, zda $L(\mathcal{A}) = \emptyset$ je rozhodnutelný (v polynomiálním čase).

Důkaz. Nechť $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$. Stačí si uvědomit, že $L(\mathcal{A}) \neq \emptyset$ právě když existuje $f \in F$ takový, že f je v (grafu) automatu \mathcal{A} dosažitelný z q_0 a existuje cesta z f do f délky alespoň 1. Oba tyto (grafové) problémy jsou snadno rozhodnutelné v polynomiálním čase (dokonce v nedeterministickém logaritmickém prostoru).

Vztah LTL a Büchiho automatů

Věta 20. Buď φ LTL formule. Jazyk L_{φ} je ω -regulární a lze algoritmicky sestrojit Büchiho automat \mathcal{A}_{φ} velikosti $\mathcal{O}(2^{|\varphi|})$, který akceptuje L_{φ} .

Příklad: Uvažme formuli $\varphi = \mathcal{F}(\mathfrak{m} \wedge \mathcal{G} \neg c)$. Pak jazyk L_{φ} (nad abecedou $\Sigma_{\varphi} = \{\emptyset, \{\mathfrak{m}\}, \{c\}, \{\mathfrak{m}, c\}\}$) je akceptován Büchiho automatem

Ověřování platnosti LTL formulí

- Buď $c \in \mathbf{PCom}$ a $\sigma \in \Sigma$ takové, že přechodový systém $(S, \{\tau\}, \mapsto)$, kde $S = \{\langle c', \sigma' \rangle \mid \langle c, \sigma \rangle \rightarrow^* \langle c', \sigma' \rangle \}$, má konečně mnoho konfigurací.
- Nechť φ je LTL formule a I interpretace. Definujeme Büchiho automat $\mathcal{A} = (S, \Sigma_{\varphi}, \delta, \langle c, \sigma \rangle, S)$, kde $\langle c', \sigma' \rangle \stackrel{M}{\to} \langle c'', \sigma'' \rangle$ právě když $\mathcal{M} = \{A \in \mathbf{Assn}(\varphi) \mid \sigma' \models^{\mathrm{I}} \varphi\}$.
- Platí $\langle c, \sigma \rangle \models^{I} \phi$ právě když $L(A) \cap L(A_{\neg \phi}) = \emptyset$.

Příklad:

- Nechť $c \equiv \text{ while tt do } (X := 1; X := 2), \ \phi \equiv \mathcal{G}(X = 1) \Rightarrow \mathcal{F}(X = 2), \ I \in \mathcal{I} \text{ a } \sigma \in \Sigma \text{ kde } \sigma(X) = 2.$
- Označíme-li $w \equiv$ while tt do (X := 1; X := 2), platí

$$\langle w, \sigma \rangle \mapsto$$

 $\langle \mathbf{if} \ \mathbf{tt} \ \mathbf{then} \ (X := 1; X := 2; w) \ \mathbf{else} \ \mathbf{skip}, \ \sigma \rangle \mapsto$
 $\langle X := 1; X := 2; w, \ \sigma \rangle \mapsto$
 $\langle \mathbf{skip}; X := 2; w, \ \sigma [1/X] \rangle \mapsto$
 $\langle X := 2; w, \ \sigma [1/X] \rangle \mapsto$
 $\langle \mathbf{skip}; w, \ \sigma \rangle \mapsto$
 $\langle w, \ \sigma \rangle$

Automat A tedy vypadá následovně:

- Dále $\neg \phi \equiv \mathcal{F}(X=1 \land \mathcal{G}(\neg(X=2))$, lze tedy použít (mírně modifikovaný) automat z předchozího příkladu.
- Nyní stačí sestrojit automat \mathcal{A}^{\cap} z důkazu věty 18 a ověřit, zda $L(\mathcal{A}^{\cap}) = \emptyset$ (což lze rovněž provést algoritmicky podle věty 19).