Physics Lab

Teacher: Ms. Farzaneh Noor Mohammadi

Student: Mr. Ramtin Kosari

Introduction to Oscilloscope

November 17, 2024

Overview

Here is book of Physics Lab experiment 8, Introduction to Oscilloscope

Experiment Info

- Purpose > Viewing Sine Waves and Measure Frequency and Voltage
- Necessary Equipment > AC Power Source, Multimeter, Oscilloscope, Wires and Probes

Relations:

$$\Delta T = \frac{1}{2} \times Scale \times Div_{time}$$
 $\Delta V_{p-p} = \frac{1}{2} \times Scale \times Div_{volts}$

$$\Delta V_{p-p} = \frac{1}{2} \times Scale \times Div_{volts}$$

Where:

Oscilloscope Range Scale = 0.2

Test Probe via Oscilloscope

Sine Wave Frequency Measurement Table

Range _{Horizontal}	Time/Div	T	$f_{measured} = \frac{1}{T}$	$f_{_{real}}$
5	0. 2 <i>ms</i>	$\alpha_{1}: 1ms$	β_1 : 1.0000kHz	1. 1125 <i>kHz</i>
3	0. 2 <i>ms</i>	α ₂ : 0.6ms	β ₂ : 1.6667 <i>kHz</i>	1.7225 <i>kHz</i>

Calculations of α :

$$\alpha_{_1}: T = 0.2ms \times 5 = 1ms$$

$$\beta_1: f = \frac{1}{T} \Rightarrow f = 1kHz$$

$$\alpha_2$$
: $T = 0.2ms \times 3 = 0.6ms$

$$\beta_2$$
: $f = \frac{1}{T} \Rightarrow f = 1.6667kHz$

Oscilloscope Sine Wave Frequency - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **first experiment**:

from absolute formula:

$$Absolute\ Error = |real\ value\ -\ measured\ value|$$

We get this absolute error for $\boldsymbol{\beta}_1$:

$$\varepsilon_{abs_{\beta}} = |1112.5Hz - 1000.0Hz| = 112.5Hz$$

We get this absolute error for β_2 :

$$\varepsilon_{abs_{\beta_2}} = |1722.5Hz - 1666.7Hz| = 55.8Hz$$

from relative formula:

$$Relative\ Error = \frac{|real\ value - measured\ value|}{real\ value}$$

We get this absolute error for $\boldsymbol{\beta}_1$:

$$\varepsilon_{rel_{\alpha}} = \frac{112.5Hz}{1112.5Hz} \approx 0.10112$$

We get this absolute error for $\boldsymbol{\beta}_2$:

$$\varepsilon_{rel} = \frac{55.8Hz}{1722.5Hz} \approx 0.03239$$

for systematic formula, We must do several mathematics operations:

1. Consider we have formula $f = \frac{1}{T}$.

2. Take the *ln* from both sides.

3. Take the differential from both sides.

4. Convert differentials to delta (Δ).

5. Convert every - to +.

6. accuracy of **Analog Device** is equal to the lowest shown range on the device.

7. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.

8. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

9. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Now we can calculate systematic error using main formula:

Step 1:
$$f = \frac{1}{T}$$

for
$$V_{s_{\beta_1}}$$
 :

Step 2:
$$ln(f) = ln(1) - ln(T)$$

Step 2:
$$ln(f) = -ln(T)$$

Step 3:
$$\frac{df}{f} = -\frac{d(T)}{T}$$

Step 4:
$$\frac{\Delta f}{f} = -\frac{\Delta(T)}{T}$$

Step 5:
$$\frac{\Delta f}{f} = \frac{\Delta(T)}{T}$$

Step 6~:
$$\Delta T = 0.2 \times 0.2 \times \frac{1}{2}$$

Final:
$$\frac{\Delta f}{f} = \frac{0.02}{1} \Rightarrow \epsilon_{svs} = 0.02$$

for
$$V_{s_{\beta_2}}$$
:

Step 2:
$$ln(f) = ln(1) - ln(T)$$

Step 2:
$$ln(f) = -ln(T)$$

Step 3:
$$\frac{df}{f} = -\frac{d(T)}{T}$$

Step 4:
$$\frac{\Delta f}{f} = -\frac{\Delta(T)}{T}$$

Step 5:
$$\frac{\Delta f}{f} = \frac{\Delta(T)}{T}$$

Step 6~:
$$\Delta T = 0.2 \times 0.2 \times \frac{1}{2}$$

Final:
$$\frac{\Delta f}{f} = \frac{0.02}{0.6} \Rightarrow \epsilon_{sys} = 0.0333$$

Sine Wave Voltage Measurement Table

Range _{Horizontal}	Volt/Div	V_{p-p}	$V_{E-measured} = \frac{V_{p-p}}{2\sqrt{2}}$	V_{E-real}
4	0. 5 <i>V</i>	α_1 : 2V	$\beta_1: 0.7071V$	0.87 <i>V</i>
2.6	5 <i>V</i>	α_2 : 0.6ms	β ₂ : 4.5962V	4. 75 <i>V</i>

Calculations of α :

$$\alpha_1 : V_{p-p} = 0.5V \times 4 = 2V$$

$$\beta_1: V_E = \frac{V_{p-p}}{2\sqrt{2}} \implies V_E = 0.7071V$$

$$\alpha_2 : V_{p-p} = 5V \times 2.6 = 13V$$

$$\beta_2: V_E = \frac{V_{p-p}}{2\sqrt{2}} \implies V_E = 4.5962V$$

Oscilloscope Sine Wave Voltage - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **first experiment**:

from absolute formula:

$$Absolute\ Error = |real\ value\ -\ measured\ value|$$

We get this absolute error for
$$\beta_1$$
:

$$\varepsilon_{abs_{g}} = |0.87V - 0.7071V| = 0.1629V$$

We get this absolute error for
$$\boldsymbol{\beta}_2$$
 :

$$\varepsilon_{abs_{\beta_0}} = |4.75V - 4.5962V| = 0.1538V$$

from relative formula:

$$Relative\ Error = \frac{|real\ value - measured\ value|}{real\ value}$$

We get this absolute error for
$$\beta_1$$
:

$$\varepsilon_{rel} = \frac{0.1629V}{0.87V} \approx 0.1872$$

We get this absolute error for
$$\boldsymbol{\beta}_2$$
 :

$$\varepsilon_{rel} = \frac{0.1538V}{4.75V} \approx 0.03238$$

for systematic formula, We must do several mathematics operations:

- 10. Consider we have formula $V_E = \frac{V_{p-p}}{2\sqrt{2}}$.
- 11. Take the *ln* from both sides.
- 12. Take the differential from both sides.
- 13. Convert differentials to delta (Δ).
- 14. Convert every to +.
- 15. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 16. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.
- 17. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 18. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Now we can calculate systematic error using main formula:

Step 1:
$$V_E = \frac{V_{p-p}}{2\sqrt{2}}$$

for
$$V_{S_{\beta_1}}$$
:

Step 2:
$$ln(V_E) = ln(V_{p-p}) - ln(2\sqrt{2})$$

Step 3:
$$\frac{dV_E}{V_E} = \frac{d(V_{p-p})}{V_{p-p}}$$

Step 4:
$$\frac{\Delta V_E}{V_E} = \frac{\Delta (V_{p-p})}{V_{p-p}}$$

Step 5:
$$\frac{\Delta V_E}{V_E} = \frac{\Delta (V_{p-p})}{V_{p-p}}$$

Step 6~:
$$\Delta(V_{p-p}) = 0.2 \times 0.5 \times \frac{1}{2}$$

Final:
$$\frac{\Delta f}{f} = \frac{0.05}{1} \Rightarrow \epsilon_{sys} = 0.05$$

for $V_{_{S_{\beta_2}}}$:

Step 2:
$$ln(V_E) = ln(V_{p-p}) - ln(2\sqrt{2})$$

Step 3:
$$\frac{dV_E}{V_E} = \frac{d(V_{p-p})}{V_{p-p}}$$

Step 4:
$$\frac{\Delta V_E}{V_E} = \frac{\Delta (V_{p-p})}{V_{p-p}}$$

Step 5:
$$\frac{\Delta V_E}{V_E} = \frac{\Delta (V_{p-p})}{V_{p-p}}$$

Step 6~:
$$\Delta(V_{p-p}) = 0.2 \times 5 \times \frac{1}{2}$$

Final:
$$\frac{\Delta f}{f} = \frac{0.5}{1} \Rightarrow \epsilon_{sys} = 0.5$$