

Coupling in the Navy Earth System Prediction Capability (Navy-ESPC) global coupled model

Neil Barton

NRL Marine Meteorology, Monterey, CA, USA

Acknowledgements: This work was supported under the N2N6E/ONR Navy Earth System Prediction Capability Program, and the NOAA MAPP Subx Project. Computing support was provided by the Navy DoD Supercomputing Resource Center.

Contact email: neil.barton@nrlmry.navy.mil

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Acknowledgements

model development team:

Carolyn Reynolds¹, E. Joseph Metzger², William Crawford¹, Ole Martin Smedstad³, Fei Lui⁴, Maria Flatau¹, James Richman⁵, Sergey Frolov⁶, Patrick Hogan⁷, Gregg Jacobs², Matthew Janiga¹, Justin McLay¹, James Ridout¹, Clark Rowley², Benjamin Ruston¹, Timothy Whitcomb¹, Andrew Huang⁸, and others

¹NRL Marine Meteorology, Monterey, CA, USA, ²NRL Oceanography, Stennis Space Center, MS, USA, ³Perspecta, Stennis Space Center, ⁴ESMF, ⁵Florida State University, Tallahassee, FL, USA, ⁶Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA, ⁷National Oceanic and Atmospheric Administration, National Centers for Environmental Information, ⁸SAIC, Monterey, CA USA

Acknowledgements: This work was supported under the N2N6E/ONR Navy Earth System Prediction Capability Program, and the NOAA MAPP Subx Project. Computing support was provided by the Navy DoD Supercomputing Resource Center.

Contact email: neil.barton@nrlmry.navy.mil

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Navy-ESPC Configuration

Weakly Coupled Data Assimilation

Model Modifications For S2S Forecasting and Results

Navy-ESPC Configuration

Weakly Coupled Data Assimilation

Model Modifications For S2S Forecasting and Results

Navy-ESPC Built Upon Stand-Alone Operational Systems

Navy-ESPC Built Upon Stand-Alone Operational Systems

US Naval Research Lab Barton, Navy-ESPC | 6

Full Schematic of Navy-ESPC

* Multiple Versions of NAVGEM, HYCOM, and CICE

- Model can be compiled with combinations of colors. (NAVGEM and data atmosphere cannot be compiled together)
- CICE resolution is compiled dependent
- Script selects components and writes compile namelists, including CICE resolution, before compile
- Ensemble and deterministic configurations are compiled separately
- Script also selects if non ESMF tools need to be compiled
 - Data assimilation (atmosphere and ocean)
 - Post and pre processing tools

Navy-ESPC v1 Operational Capability

Forecast	Time Range, Frequency	Atmosphere NAVGEM	Ocean HYCOM	Ice CICE
Ensemble long term (S2S)	0-45 days 16 members, Sundays at 12Z	T359L60 (37 km) 60 levels	1/12° (9 km) 41 layers	1/12° (9 km)
Deterministic short term	0-16 days, Daily	T681L60 (19 km) 60 levels	1/25° (4.5 km) 41 layers	1/25° (4.5 km)

Very high resolution ocean and ice components compared to other systems

Navy-ESPC v1 Operational Capability

Forecast	Time Range,	Atmosphere	Ocean	Ice
	Frequency	NAVGEM	HYCOM	CICE
Ensemble long term (S2S)	0-45 days 16 members, Sundays at 12Z	T359L60 (37 km) 60 levels	1/12° (9 km) 41 layers	1/12° (9 km)

Navy-ESPC Ensemble is currently operational at Fleet Numerical Meteorology and **Oceanography Center (FNMOC)**

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Very high resolution ocean and ice components compared to other systems

Uniqueness of Navy-ESPC: Global High Ocean Resolution

High fidelity forecasts needed for Atmosphere, Ocean, and Sea Ice

Uniqueness of Navy-ESPC: Global High Ocean Resolution

Creep and Fill Extrapolation

Issue: definition of coastlines is different between the atmosphere and ocean grids.

- Atmosphere defines coastline where water begins
- Ocean defines coastline where water reaches certain depth

Results: Many prepackaged interpolation routines results in not interpolating many grid points near coastlines

Solution: Extrapolation being using creep/fill method. Initial implementation in ESMFv8

Creep – Fill Solution:

- define a stencil size of source grid. i.e., enlarge source domain.
- use stencil size on source and destination grid to fill (creep) values at missing destination grid

Holes (undefined interpolation) on Atmosphere Grid

Variables Exchanged in Navy-ESPC

Each Component Computes Its Own Fluxes

Computational Considerations with High Resolution Ocean

Example of Timings: Multiple Core Configurations Tested

Configuration	NAVGEM HYC		OM CICE		Total	Time to Completion (10 Day		
oomigaradon	Cores	%	Cores	%	Cores	%	Cores	Forecast)
Ensemble	111	25%	1005	44%	180	29%	1296	2.38 hours
Deterministic	96	16%	2314	45%	360	38%	2770	10.3 hours

Currently Running a 16 member ensemble: 1296 * 16 = 20,720 cores

~ 70% of machine currently in use

Navy-ESPC Configuration

Weakly Coupled Data Assimilation

Model Modifications For S2S Forecasting and Results

Weakly Coupled DA System Based on Current Systems (NAVDAS-AR/NCODA)

Atmosphere and Ocean Stand-Alone DA Systems

	NAVGEM/ NAVDAS-AR	GOFS 3.1/ NCODA
Method:	4DVar Hybrid	3DVar FGAT
Assimilation Window:	6 hours	24 hours
Insertion:	direct Insertion	6 hour incremental analysis update

Weakly Coupled DA System Based on Current Systems (NAVDAS-AR/NCODA)

Atmosphere and Ocean Stand-Alone DA Systems

	NAVGEM/ NAVDAS-AR	GOFS 3.1/ NCODA
Method:	4DVar Hybrid	3DVar FGAT
Assimilation Window:	6 hours	24 hours
Insertion:	direct Insertion	6 hour incremental analysis update

Weakly Coupled Configuration:

- Keep Method and Update Windows for Each System
- Use 3 hour insertion of incremental analysis update (IAU)

Weakly Coupled DA Schematic

Weakly Coupled DA: Task Management with cylc

to the applications it manages.

H. Oliver et al., "Workflow Automation for Cycling Systems: The Cylc Workflow Engine", Computing in Science & Engineering Vol 21, Issue 4, July/Aug 2019. DOI: 10.1109/MCSE.2019.2906593

Cylc Does Cycling Properly

Cylc does not merely repeat-run a workflow (immediately, or on a real time schedule). It "unwinds the loop" to create a single potentially infinite non-cycling workflow composed of repeating tasks. Consequently:

- Cylc can interleave cycles for fast catch-up from delays, and sustained high-throughput off the clock
- It seamlessly transitions between fast catch-up and clock-limited
- It supports multiple cycle intervals within a single workflow U.S. Naval Research Laboratory

cylc

- Task manager to handle dependencies
- Designed with cycling in mind Navy-ESPC Use
- **Data Assimilation**
 - Task dependencies/ cycling in (previous plot)
- Long forecasting (> 45 Days)
 - Separate suite for task dependencies for long forecasts
 - Post processing is performed while the model is running
- **Ensembles**
 - Each member has its own suite and there is currently no interdependencies between members/suites

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Weakly Coupled DA System Tasks

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Weakly Coupled DA System Tasks

Navy-ESPC Configuration

Weakly Coupled Data Assimilation

Model Modifications For S2S Forecasting and Results

NAVGEM model updates in Navy-ESPC

	NAVGEM v1.4	Navy-ESPC
Convection Parameterization:	SAS (Moorthi et al. 2001)	Modified Kain-Fritz (Ridout et al. 2005)
Boundary Layer Scheme:	Louis et al. (1982)	COARE 3 (Kara et al. 2005)

US Naval Research Lab

NAVGEM model updates in Navy-ESPC

MJO Subseasonal Forecasting

	NAVGEM v1.4	Navy-ESPC
Convection Parameterization:	SAS (Moorthi et al. 2001)	Modified Kain-Fritz (Ridout et al. 2005)
Boundary Layer Scheme:	Louis et al. (1982)	COARE 3 (Kara et al. 2005)

(greater) flux consistency between atmosphere and ocean

Barton, Navy-ESPC | 24

NAVGEM model updates in Navy-ESPC

Forecast starting on 2011-11-01

Update convection parameterization aids in capturing first and second MJO

Results: MJO

Conclusions: Navy ESPC

Navy's Earth System Model (Navy ESPC)

- Configuration
 - Atmosphere and Ocean Centric Model
 - High resolution ocean and sea ice model, eddy resolving
 - Miss-match in atmosphere and ocean grid/coastline
 - Development of Creep-Fill Method (implemented in ESMF8)
 - Ocean is more computationally expensive than atmosphere
- Weakly Couple DA
 - 4DVar atmosphere with 3Dvar ocean
 - Use of cylc in task management
 - Data Assimilation, ensembles, long forecasting
- Forecast Modifications
 - Convection Modifications for MJO forecasting
 - Initial results (MJO, PNA, NAO, Sea Ice) are encouraging, SSTs out to 60 days, Sea ice extent until 45 days
- Future work for Version 2:
 - ESMF8, NAVGEM2 (meshgrid, inline aerosols, middle atmosphere), tides in HYCOM, Wave Watch 3, CICE6, Ensembles

Barton et al. (in press):
The Navy's Earth System
Prediction Capability: a new
global coupled-atmosphereocean-sea ice prediction
system designed for daily to
subseasonal forecasting.
Earth and Space Sciences

Questions?

NEIL.BARTON@NRLMRY.NAVY.MIL

Ensemble Results Design

Ensemble Configuration:

- T359 (37km) NAVGEM, 1/12° HYCOM, CICV v4
- Data assimilative ensemble from Feb. 2017 to Jan. 2018
- Forecast Frequency: every Wednesday at 12Z
- Forecast Length: 60 Days
- Members: 16
 - 15 perturbed runs
 - 1 control run
- Model Comparisons:
 - Compared to other S2S and SubX systems
 - GOFS 3.1 (1/12° HYCOM/CICE)
 - Observations
 - Generalized Digital Environmental Model (GDEM4) climatology
 - Persistence

Results: AO, AAO, NAO, PNA

- Correlation above 0.6 for 8 to 10 days depending on metric
- Navy ESPC is Comparable with other centers

Results: Sea Ice

Comparison Between

- climatology (10 year) → grey
- ensemble → marron
- persistence → pink

Time Period

February 2017 to August 2017

Navy-ESPC exhibits skill out to 6.5 weeks compared to climatology

Integrated Ice **Edge Error:**

Goessling et al. (2016) GRL

Overestimate (blue)

Results: Ocean Temperatures

Results: Ocean Temperatures

Last Day Ensemble Root Mean Square Error (RMSE) of ensemble Forecast is below RMSE of Climatology

Variables Exchanged in Navy-ESPC

Each Component Computes Its Own Fluxes