A2: Optimization with Genetic Algorithms The Job Shop Problem or the Job-Shop Scheduling Problem

Peana Florin Cosmin

GitHub Repo: https://github.com/FlorinCP/JSSP

1. Chromosome Representation and Problem Translation:

Decoding Process: Simple Example Given Data: Job 0: [(M1,3), (M0,2)] Job 1: [(M0,4), (M1,2)] Each tuple is (Machine, Time) **Random Chromosome: Scheduling Steps:** Step 1: Process Job 0, Operation 1 machine_available = {M1: 3} Job 0 (3) job_available = {J0: 3} Step 2: Process Job 1, Operation 1 machine_available = {M1: 3, M0: 4} Job 1 (4) job_available = {J0: 3, J1: 4} **Final Schedule:** M0: Job 1 Op 1 (4) Job 0 Op 2 (2) Job 0 Op 1 (3) Job 1 Op 2 (2) 0 2 4 6 8

Selection Methods:

1. Tournament Selection:

2. Roulette Wheel Selection:

Mutation Methods:

1. Swap Mutation:

Swap Mutation Visualization

Number of swaps in this mutation: 3

Current chromosome state:

Swap history:

Current chromosome state:

Swap history:

Swap 1: Position 0 → Position 5

Current chromosome state:

Swap history:

Swap 1: Position 0 → Position 5
Swap 2: Position 4 → Position 7

Current chromosome state:

Swap history:

Swap 1: Position $0 \rightarrow$ Position 5

Swap 2: Position 4 → Position 7

Swap 3: Position 5 → Position 3

2. Inversion Mutation:

Before mutation, with the indexes for inversion selected.

After mutation, the elements from the prev. selected indexes were reversed.

Crossover Methods:

1. PPX (Precedence Preserving Crossover) [1 - Parent 1, 0 - Parent 2] [Convention]

Parent 1:								
0	1	2	0	1	2	0	1	2
Parent 2:								
1	2	0	2	0	1	0	2	1
Binary Te	emplate:							
0	0	1	0	0	1	0	0	1
Child:								
1	2	0	0	2	1			-
Parent 1:								
0	1	2	0	1	2	0	1	2
Parent 2:	:							
1	2	0	2	0	1	0	2	1
Binary Te	emplate:							
0	0	1	0	0	1	0	0	1
Child:								
1	2	0	0	2	1	0	1	2

2. One-Point Crossover

Population Size and Convergence Detection:

The population size is chosen based on practical considerations and theoretical guidelines:

- Default size of 100 provides a good balance between diversity and computational efficiency
- Large enough to maintain genetic diversity, out of my observations, smaller populations didn't get the optimum result but some bigger ones performed way better but took a long time to compute.
- Small enough to converge in reasonable time as the training took some time even for some medium problems, as

The system identifies convergence through several mechanisms:

- 1. Tracking population diversity using calculate_diversity method
- 2. Monitoring improvement rate in fitness values
- 3. Using a sophisticated convergence detection algorithm in GAStatisticsAnalyzer

The code uses an early stopping mechanism (MAX_STAGNANT_GENERATIONS_STOP = 30) that triggers when:

- No improvement in best fitness for 30 generations
- Population diversity falls below a threshold
- Rate of improvement becomes negligible

Elitism is implemented with an **elite_size** parameter (default 2), which preserves the best solutions across generations. This ensures that good solutions are not lost while still allowing for population evolution.

2. Results

2.1 Instance FT06 [6x6]

Parameter Combination	Selection Crossove		Mutation	Best Makespan	
tournament_ppx_swap	tournament	ppx	swap	70.0	
tournament_ppx_inversion	tournament	ppx	inversion	60.0	
tournament_simple_swap	tournament	simple	swap	59.0	
tournament_simple_inversion	tournament	simple	inversion	59.0	
roulette_ppx_swap	roulette	ppx	swap	64.0	
roulette_ppx_inversion	roulette	ppx	inversion	59.0	
roulette_simple_swap	roulette	simple	swap	59.0	
roulette_simple_inversion	roulette	simple	inversion	57.0	

2.2 Instance ABZ8 [20x15]

Parameter Combination	Selection	Crossover	Mutation	Best Makespan	
tournament_ppx_swap	tournament	ppx	swap	1220.0	
tournament_ppx_inversion	tournament	ppx	inversion	1239.0	
tournament_simple_swap	tournament	simple	swap	960.0	
tournament_simple_inversion	tournament	simple	inversion	1024.0	
roulette_ppx_swap	roulette	ppx	swap	1197.0	
roulette_ppx_inversion	roulette	ppx	inversion	1283.0	
roulette_simple_swap	roulette	simple	swap	921.0	
roulette_simple_inversion	roulette	simple	inversion	956.0	

Fitness Evolution Over Generations

2.3 Instance LA34 [30x10]

Parameter Combination	Selection	Crossover	Mutation	Best Makespan
tournament_ppx_swap	tournament	ppx	swap	2722.0
tournament_ppx_inversion	tournament	ppx	inversion	2715.0
tournament_simple_swap	tournament	simple	swap	2116.0
tournament_simple_inversion	tournament	simple	inversion	2139.0
roulette_ppx_swap	roulette	ppx	swap	2841.0
roulette_ppx_inversion	roulette	ppx	inversion	2882.0
roulette_simple_swap	roulette	simple	swap	2009.0
roulette_simple_inversion	roulette	simple	inversion	2045.0

