TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2019

The Evidence Lower Bound (the ELBO)

Variational Autoencoders

Big Picture: Latent Variables

We are often interested in models of the form

$$P_{\Phi}(y) = \sum_{z} P_{\Phi}(z) P_{\Phi}(y|z).$$

Note that CTC has this form.

Probabilistic grammar models also have this form where y is a sentence and z is a parse tree.

Rate-Distortion Autoencoders also have this form where z is the compression of y.

In the first two cases, and for lossless compression, the sum over z can be computed exactly.

Big Picture: Friendly Distributions

A distribution P(u) will be called **friendly** if we can both draw samples from it and compute P(u) for any value u.

$$P_{\Phi}(y) = \sum_{z} P_{\Phi}(z) P_{\Phi}(y|z).$$

It is often the case that $P_{\Phi}(z)$ is friendly, and $P_{\Phi}(y|z)$ is friendly, but $P_{\Phi}(y)$ is not friendly (the sum over z is intractible).

For example z might be an assignment of truth values to Boolean variables and y might be the value of a fixed Boolean formula Φ . In this case determining if $P_{\Phi}(y) > 0$ is the SAT problem which is NP hard.

Colorization

 \boldsymbol{x} is a black and white image, \boldsymbol{y} a color image, and \boldsymbol{z} a semantic segmentation.

$$P_{\Phi}(y|x) = \sum_{z} P_{\Phi}(z|x) P_{\Phi}(y|z,x).$$

Colorization

 $P_{\Phi}(z|x)$ is defined by a deep network computing a friendly graphical model on semantic segmentations – perhaps each pixel is assigned a distribution over material categories such as "face", "shirt", "shirt-color1" or "shirt-color2".

 $P_{\Phi}(y|z,x)$ is a deep network taking a particular semantic segmentation (a particular semantic material label at each pixel) and computing a distribution on a discrete color space for each material label.

Although P(z|x) is friendly, and $P_{\Phi}(y|z,x)$ is friendly, P(y|x) not friendly (similar to the SAT example).

Big Picture: ELBO Replaces Search with Generation

$$\begin{split} P_{\Phi}(y) &= E_{z \sim P_{\Phi}(z)} P_{\Phi}(y|z) \quad \text{sampling } z \text{ is ineffective} \\ & \ln P_{\Phi}(y) = E_{z \sim P_{\Psi}(z|y)} \ln P_{\Phi}(y) \quad \text{introduce } z \text{ generator using } y \\ &= E_{z \sim P_{\Psi}(z|y)} \left(\ln P_{\Phi}(y) P_{\Phi}(z|y) + \ln \frac{P_{\Psi}(z|y)}{P_{\Phi}(z|y)} + \ln \frac{1}{P_{\Psi}(z|y)} \right) \\ &= \left(E_{z \sim P_{\Psi}(z|y)} \, \ln \, P_{\Phi}(z,y) \right) + KL(P_{\Psi}(z|y), P_{\Phi}(z|y)) + H(P_{\Psi}(z|y)) \\ &\geq E_{z \sim P_{\Psi}(z|y)} \, \left(\ln \, P_{\Phi}(z) P_{\Phi}(y|z) - \ln P_{\Psi}(z|y) \right) \quad \text{ELBO} \end{split}$$

Measuring the ELBO

ELBO
$$(y, \Phi, \Psi) = E_{z \sim P_{\Psi}(y)} \ln P_{\Phi}(z) P_{\Phi}(y|z) - \ln P_{\Psi}(z)$$

If $P_{\Phi}(z)$, $P_{\Phi}(y|z)$, and $P_{\Psi}(z|y)$ are friendly (even whwn when $P_{\Phi}(y)$ is not friendly) we can measure ELBO loss through sampling.

If we can measure it, we can do gradient descent on it (but perhaps with difficulty).

Colorization

x is a black and white image, y a color image, and z a semantic segmentation.

 $P_{\Phi}(z|x)$ is friendly and $P_{\Phi}(y|z,x)$ is friendly but P(y|x) is not friendly.

 $P_{\Psi}(z|y,x)$ computes a friendly graphical model for z given y.

A General ELBO Architecture

```
P_{\Phi}(y|x) P_{\Psi}(z|y,x) intput x : z = \operatorname{expsoftmax} \dots intput x,y : z = \operatorname{expsoftmax} \dots : z = \operatorname{expsoftmax} \dots
```

The exponential softmaxes are friendly (they produce a friendly graphical model).

Two Expressions for the ELBO

$$\ln P_{\Phi}(y) = ELBO(y, \Phi, \Psi) + KL(P_{\Psi}(z|y), P_{\Phi}(z|y))$$

$$ELBO = E_{z \sim P_{\Psi}(z|y)} \ln P_{\Phi}(z, y) + H(P_{\Psi}(z|y)) \quad (1)$$

$$= \ln P_{\Phi}(y) - KL(P_{\Psi}(z|y), P_{\Phi}(z|y)) \quad (2)$$

EM is Alternating Maximization of the ELBO

Forward-backward EM for HMMs and inside-outside EM for PCFGs (or any EM) can be written as

$$ELBO = E_{z \sim P_{\Psi}(z|y)} \ln P_{\Phi}(z,y) + H(P_{\Psi}(z|y)) \quad (1)$$

=
$$\ln P_{\Phi}(y) - KL(P_{\Psi}(z|y), P_{\Phi}(z|y))$$
 (2)

by (2)
$$\Psi^{t+1} = \underset{\Psi}{\operatorname{argmin}} E_{y \sim \operatorname{Train}} KL(P_{\Psi}(z|y), P_{\Phi^t}(z|y)) = \Phi^t$$

by (1)
$$\Phi^{t+1} = \underset{\Phi}{\operatorname{argmax}} E_{y \sim \operatorname{Train}} E_{z \sim P_{\Phi^t}(z|y)} \ln P_{\Phi}(z, y)$$

We want Ψ to adapt to Φ

$$\mathcal{L}_{\text{ELBO}}(y, \Phi, \Psi) = KL(P_{\Psi}(z|y), P_{\Phi}(z|y)) - \ln P_{\Phi}(y)$$

$$Q^*(z|y) = P_{\Phi}(z|y)$$

$$E_{y \sim \text{Pop}} \mathcal{L}_{\text{ELBO}}(y, \Phi, Q^*) = H(\text{Pop}, P_{\Phi})$$

However, Φ can ignore Ψ

$$\mathcal{L}_{\text{ELBO}}(y, \Phi, \Psi) = KL(P_{\Psi}(z|y), P_{\Phi}(z|y)) - \ln P_{\Phi}(y)$$

$$P^*(z) = P_{\Psi}(z)$$
$$P^*(y|z) = P_{\Phi}(y)$$

$$E_{y \sim \text{Pop}} \mathcal{L}_{\text{ELBO}}(y, P^*, \Psi) = H(\text{Pop}, P_{\Phi})$$

It seems important that $P_{\Phi}(y|z)$ have limited expressive power.

Hard ELBO

Hard ELBO is to ELBO as hard EM is to EM.

$$\mathcal{L}_{\text{ELBO}}(y, \Phi, \Psi) = KL(P_{\Psi}(z|y), P_{\Phi}(z|y)) - \ln P_{\Phi}(y)$$

$$\mathcal{L}_{\text{ELBO}}(y, \Phi, \Psi) = E_{z \sim P_{\Psi}(z|y)} - \ln P_{\Phi}(z, y) + \ln P_{\Psi}(z|y)$$

$$\mathcal{L}_{\text{HELBO}}(y, \Phi, \Psi) = E_{z \sim P_{\Psi}(z|y)} - \ln P_{\Phi}(z, y)$$

Hard ELBO and Rate-Distortion Autoencoding

$$\mathcal{L}_{\text{HELBO}}(y, \Phi, \Psi) = E_{z \sim P_{\Psi}(z|y)} - \ln P_{\Phi}(z, y)$$

$$\min_{P,Q} E_{y \sim \text{Pop}} \mathcal{L}_{\text{HELBO}}(y, P, Q) \le H(\text{Pop}) + \ln 2$$

This can be proved from Shannon's source coding theorem where z is the code for y.

A VAE for Images

Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling, 2013.

Gaussian Distributions

$$p_{\Phi}(z) \propto \exp\left(\sum_{i} (z[i] - \mu[i])^{2} / (2\sigma[i]^{2})\right)$$

$$p_{\Phi}(y|z) \propto \exp\left(\sum_{j} (y[j] - y_{\Phi}(z)[j])^{2} / (2\gamma[j]^{2})\right)$$

$$p_{\Psi}(z|y) \propto \exp\left(\sum_{i} (z[i] - z_{\Psi}(y)[i])^{2} / (2\sigma_{\Psi}(y)[i]^{2})\right)$$

KL-Divergence Form for the ELBO

$$E_{z \in p_{\Psi}(z|y)} \ln p_{\Psi}(z|y) - \ln p_{\Phi}(z)p_{\Phi}(y|z)$$
 $\mathcal{L}_{\text{ELBO}}$

$$= KL(p_{\Psi}(z|y), p_{\Phi}(z)) + E_{z \in P_{\Psi}(z|y)} - \ln p_{\Phi}(y|z)$$

The ELBO is a KL-divergence + a cross entropy

Continuous KL-divergence is ok.

Continuous cross-entropy has issues — we will come back to that later.

Closed Form KL-Divergence

$$KL(p_{\Psi}(z|y), p_{\Phi}(z))$$

$$= \sum_{i} \frac{\sigma_{\Psi}(y)[i]^{2} + (z_{\Psi}(y)[i] - \mu[i])^{2}}{2\sigma[i]^{2}} + \ln \frac{\sigma[i]}{\sigma_{\Psi}(y)[i]} - \frac{1}{2}$$

Standardizing $p_{\Phi}(z)$

The KL-divergence term is

$$\sum_{i} \frac{\sigma_{\Psi}(y)[i]^{2} + (\boldsymbol{z}_{\Psi}(y)[i] - \boldsymbol{\mu}[i])^{2}}{2\boldsymbol{\sigma}[i]^{2}} + \ln \frac{\boldsymbol{\sigma}[i]}{\boldsymbol{\sigma}_{\Psi}(y)[i]} - \frac{1}{2}$$

We can adjust Ψ to Ψ' such that

$$z_{\Psi'}(y)[i] = z_{\Psi}(y)[i]/\sigma[i] + \mu[i]$$

$$\sigma_{\Psi'}(y)[i] = \sigma_{\Psi}(y)/\sigma[i]$$

We then get $KL(p_{\Psi}(z|y), p_{\Phi}(z)) = KL(p_{\Psi'}(z|y), \mathcal{N}(0, I)).$

Standardizing $p_{\Phi}(z)$

Without loss of generality the VAE becomes.

$$\min_{\Phi, \Psi} E_y KL(P_{\Psi}(z|y), \mathcal{N}(0, I)) + E_{z \in P_{\Psi}(z|y)} - \ln p_{\Phi}(y|z)$$

Reparameterization Trick for the Cross-Entropy

$$p_{\Psi}(z|y) \propto \exp\left(\sum_{i} (z[i] - z_{\Psi}(y)[i])^2 / (2\sigma_{\Psi}(y)[i]^2)\right)$$

$$E_{z \in p_{\Psi}(z|y)} \ln p_{\Phi}(y|z)$$

$$= E_{\epsilon \sim \mathcal{N}(0,I)} z[i] = z_{\Psi}(y)[i] + \sigma_{\Psi}(y)[i]\epsilon[i]; \quad \ln p_{\Phi}(y|z)$$

Sampling

[Hyeonwoo Noh et al.]

Sampling uses just the second half $P_{\Phi}(z, y)$.

Sampling

[Alec Radford]

Why Blurry?

A common explanation for the blurryness of images generated from VAEs is the use of L_2 as the distortion measure.

It does seem that L_1 works better.

However, training on L_2 distortion can produce sharp images in rate-distortion autoencoders.

Noisy-Channel Rate-Distortion Autoencoders

The twilight zone is material for which I do not know of a reference.

Differential Entropy and Cross-Entropy are Ill-Defined

$$\mathcal{L}_{\text{VAE}} = \sum_{j} \frac{E_{z \sim P_{\Psi}(z|y)} \left(\mathbf{y}[j] - \hat{\mathbf{y}}_{\Phi}(z)[j] \right)^{2}}{2 \gamma[j]^{2}} + \ln \gamma[j]$$
$$+ KL(p_{\Psi}(z|y), p_{\Phi}(z))$$

Consider a probability density on light intensity.

While the first term is dimensionless, $\gamma[j]$ is an intensity.

The cross-entropy term can be assigned any numerical value depending on the choice units (metric, English, or martian).

Differential Entropy and Cross-Entropy are Ill-Defined

There are also other problems with continuous entropy and cross-entropy.

- Finite continuous entropy violates the source coding theorem it takes an infinite number of bits to code a real number.
- Finite continuous entropy violates the data processing inequality that $H(f(x)) \leq H(x)$. For a continuous random variable x under finite continuous entropy we can have H(f(x)) > H(x).

For these reasons it seems best to avoid using finite continuous entropy and finite continuous cross entropy.

Distortion

A stochastic encoder $p_{\Phi}(z|y)$, a decoder $y_{\Phi}(z)$, and distortion function D define a quantity of distortion.

$$E_{y \sim \text{Pop}, z \sim p_{\Phi}(z|y)} D(y, y_{\Phi}(z))$$

For L_2 distortion we can use

$$D(y, y') = ||y - y'||_2$$

Distortion can typically be given the same units as y.

Rate

A stochastic encoder defines a rate.

$$p_{\Phi}(z) \doteq \sum_{y} \operatorname{Pop}(y) p_{\Phi}(z|y)$$

$$I_{\Phi}(y,z) = E_y KL(p_{\Phi}(z|y), p_{\Phi}(z))$$

By Shannon's channel capacity theorem, $I_{\Phi}(y, z)$ is the channel capacity when sending y across the noisy channel z.

For z continuous, a deterministic encoder has an infinite rate.

Here $p_{\Phi}(z)$ is not friendly.

Bounding the Rate

$$\begin{split} I_{\Phi}(y,z) &= E_{y \sim \text{Pop}} \ KL(p_{\Phi}(z|y), p_{\Phi}(z)) \\ &= E_{y,z} \ln p_{\Phi}(z|y) - \ln p_{\Psi}(z) + \ln p_{\Psi}(z) - \ln p_{\Phi}(z) \\ &= E_{y} \ KL(p_{\Phi}(z|y), p_{\Psi}(z)) - KL(p_{\Phi}(z), p_{\Psi}(z)) \\ &\leq E_{y} \ KL(p_{\Phi}(z|y), p_{\Psi}(z)) \end{split}$$

We can take $p_{\Psi}(z)$ to be friendly, and WLOG, fixed at $\mathcal{N}(0, I)$.

The Noisy-Channel Rate-Distortion Autoencoder

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ E_y \ KL(p_{\Phi}(z|y), \mathcal{N}(0, I)) + \frac{1}{\gamma} \ E_{z \sim p_{\Phi}(z|y)} \ D(y, \ y_{\Phi}(z))$$

Here γ has the same units as distortion and controls the tradeoff between rate and distortion.

Summary: Rate-Distortion

Rate-Distortion: y, continuous, \tilde{z} a bit string,

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_y |\tilde{z}_{\Phi}(y)| + \lambda D(y, y_{\Phi}(\tilde{z}_{\Phi}(y)))$$

Noisy Channel:
$$\tilde{z} = z_{\Phi}(y) + \sigma_{\Phi}(y) \odot \epsilon$$
, $\epsilon \sim \mathcal{N}(0, I)$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_y \ KL(p_{\Phi}(\tilde{z}|y), \mathcal{N}(0, I)) + E_{\tilde{z} \sim p_{\Phi}(\tilde{z}|y)} \ \lambda D(y, y_{\Phi}(\tilde{z}))$$

Summary: ELBO and VAE

ELBO: $P_{\Phi}(z)$, $P_{\Phi}(y|z)$, $P_{\Psi}(z|y)$ friendly graphical models:

$$\Phi^*, \Psi^* = \underset{\Phi, \Psi}{\operatorname{argmin}} \ E_{y \sim \operatorname{Pop}, \ z \sim P_{\Psi}(z|y)} \ \ln P_{\Psi}(z|y) - \ln P_{\Phi}(z) P_{\Phi}(y|z)$$

VAE: $p_{\Phi}(z|y)$, $p_{\Phi}(y|z)$ Gaussian:

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} KL(p_{\Phi}(z|y), \mathcal{N}(0, I)) - E_{z \sim p_{\Phi}(z|y)} \ln p_{\Phi}(y|z)$$

\mathbf{END}