Python

nella

PUBBLICA AMMINISTRAZIONE

e nella

FORMAZIONE

by

Andrea Biancini

Informatico e psicologo, appassionato di tecnologia mi occupo di formazione, educazione e sviluppo del capitale umano

Un percorso di carriera poliedrico...

Why Python?

1

OSS

Python è un linguaggio di programmazione Open Source La collaborazione nella ricerca

0

Innovare la pubblica amministrazione

PA seems inexorable

- You often feel impotent confronted to the mechanisms of the PA.
- 2. Nothing really seems to change, year after year.

PA is entangled with politics

- 1. PA is exposed to politics.
- Decisions seem to value more non technical aspects.
- Dealing with PA seems to be serious stuff: no more brock!

We are building the Country's "operating system":

- → National Resident Population Register (ANPR)
- → Digital Administration Code (CAD)
- → Data & Analytics Framework (DAF)
- → Designers Italia
- → Developers Italia
- → Docs Italia
- → API Ecosystem
- → Public Digital Identity System (SPID)
- → Project IO Digital Citizenship
- → PagoPA Digital Payments

The barriers to the Sharing and reuse of IT solutions

4 groups of barriers to sharing and/or reusing IT solutions have been identified:

Organisational e.g. Limited awareness of similar needs across sectors, fragmented IT infrastructures.

Legal e.g. Uncertainty regarding limitation of, or exceptions to, IPR.

Technical e.g. Difficulty adapting legacy systems.

Communication e.g. Lack of awareness about existing solutions.

2

Community

Python ha una community viva e attiva, che dialoga e interagisce

We didn't want to run alone!

Developers Italia

Designers Italia

Docs Italia

Forum Italia

Piattaforme Software API Come lo uso Come partecipo News Contatti

Software

Il catalogo del software open source a disposizione della Pubblica Amministrazione.

Questo è il catalogo previsto dalle Linee Guida per l'Acquisizione e il Riuso del Software, che include le soluzioni messe a riuso dalla Pubblica Amministrazione ai sensi dell'art. 69 e il software open source di terze parti destinato alla PA.

Maggiori informazioni

FAQ

Software a riuso

Soluzioni e programmi informatici messi a riuso dalla Pubblica Amministrazione

Esplora

Open source di terze parti

Software open source di interesse per la Pubblica Amministrazione

Esplora

3

Easy

Python è un linguaggio molto semplice da usare, anche per non *IT-guys*

Teaching and learning

Make Code permette una programmazione a blocchi che può essere tradotta in python!

Per bambini alla scuola primaria...

Con Forge è possibile scriptare da python Minecraft.

Questa è l'attività perfetta per ragazzi delle medie o dei primi anni delle superiori!

Fino all'università...

```
from sklearn.metrics import roc_curve, auc, roc_auc_score
import matplotlib.pyplot as pit

def draw_roc_curve(descr, Y, Y_pred_proba, ax):
    fpr, fpr, _= roc_curve(Y, Y_pred_proba)
        ror, fpr, _= roc_curve(Y, Y_pred_proba)
        ror, fir, _= roc_curve(Y, Y_pred_proba)
        ax.plot(fpr, tpr, label="80c curve")
        ax.plot(fpr, tpr, label="80c curve")
        ax.set_ylabel("Ture positive Rate")
        ax.set_ylabel("Ture positive Rate")
        ax.set_ylabel("Ture positive Rate")
        ax.set_ylabel("Ture positive Rate")
        ax.legend(loc="lower right")

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
        draw_roc_curve("text", Y_text, Y_text_pred_proba[:,1], ax2)
        plt.show()

The computed training AUC is: 1.000
```


[] import shap
shap_values = shap.TreeExplainer(model).shap_values(X_train)
shap.sumary_plot(shap_values, X_train, plot_type="bar", class_names=['Sane', 'Diabetis'])


```
from sklearn.cluster import DBSCAN
from sklearn.metrics import v measure score
import seaborn as sns
dbscan cluster = DBSCAN(eps=eps, min samples=10)
dbscan_cluster.fit(df)
labels=dbscan_cluster.labels_
# Visualizing DBSCAN
plt.scatter(df['X1'], df['X2'], c=dbscan_cluster.labels_, label=labels)
plt_xlabel("$x 1$")
plt.ylabel("$x 2$")
# Number of Clusters
N_clus=len(set(labels))-(1 if -1 in labels else 0)
print('Estimated no. of clusters: %d' % N_clus)
# Identify Noise
n_noise = list(dbscan_cluster.labels_).count(-1)
print('Estimated no. of noise points: %d' % n_noise)
```

E> Estimated no. of clusters: 2
 Estimated no. of noise points: 6

from statsmodels.tsa.seasonal import seasonal_decompose
result_mul = seasonal_decompose(df['value'], model='multiplicative', e
plt.rcParams.update({'figure.figsize': (10, 10)})
result_mul.plot()
plt.show()

Le mie conclusioni...

Gli elementi di successo di un tool in campo IT

- 1. Open-source e Community
- 2. L'IT è un mezzo e non un fine
- 3. L'eccellenza dell'ordinario: non facciamo solo cose fancy

Andrea Biancini <andrea.biancini@gmail.com>