

STORE SALES - TIME SERIES FORECASTING

USE MACHINE LEARNING TO PREDICT GROCERY SALES

Diego Alfonso Ramirez Montes A

Jose Angel Garcia Lopez

Javier Suarez Duran

Emiliano Mendoza Nieto

A01707596

A01275108

A01707380

A01706083

CONTENTS

- o INTRODUCCIÓN
- o ETL
- o ANALISIS MODELOS
- o METRICAS
- o RESULTADOS

	date	type	locale	locale_name	description	transferred
345	2017-12-22	Additional	National	Ecuador	Navidad-3	False
346	2017-12-23	Additional	National	Ecuador	Navidad-2	False
347	2017-12-24	Additional	National	Ecuador	Navidad-1	False
348	2017-12-25	Holiday	National	Ecuador	Navidad	False
349	2017-12-26	Additional	National	Ecuador	Navidad+1	False

INTRODUCTION

- Goal of Competition
 - Description Dataset

	id	date	store_nbr	family	sales	onpromotion
3000883	3000883	2017-08-15	9	POULTRY	438.133	0
3000884	3000884	2017-08-15	9	PREPARED FOODS	154.553	1
3000885	3000885	2017-08-15	9	PRODUCE	2419.729	148
3000886	3000886	2017-08-15	9	SCHOOL AND OFFICE SUPPLIES	121.000	8
3000887	3000887	2017-08-15	9	SEAFOOD	16.000	0

holidays_events.csv (22.31 kB)

Detail Compact Column

date =	▲ type =	▲ locale =	▲ locale_name =	▲ description =	✓ transferred =
2012-03-02	Holiday	Local	Manta	Fundacion de Manta	False
2012-04-01	Holiday	Regional	Cotopaxi	Provincializaci on de Cotopaxi	False
2012-04-12	Holiday	Local	Cuenca	Fundacion de Cuenca	False
2012-04-14	Holiday	Local	Libertad	Cantonizacion de Libertad	False

stores.csv	(1.39)	kB)
------------	--------	-----

Detail Compact Column

# store_nbr =	▲ city =	▲ state =	▲ type =	# cluster =
1	Quito	Pichincha	D	13
2	Quito	Pichincha	D	13
3	Quito	Pichincha	D	8
4	Quito	Pichincha	D	9
5	Santo Domingo	Santo Domingo de los Tsachilas	D	4

oil.csv (20.58 kB)

Detail Compact Column

date date	=	# dcoilwtico	=
2013-01-01			
2013-01-02		93.14	
2013-01-03		92.97	
2013-01-04		93.12	
2013-01-07		93.2	

train.csv (121.8 MB)

Detail Compact Column

⇔ id	=	□ date =	# store_nbr =	▲ family =	# sales =	# onpromoti 🖃
0		2013-01-01	1	AUTOMOTIVE	0.0	0
1		2013-01-01	1	BABY CARE	0.0	0
2		2013-01-01	1	BEAUTY	0.0	0
3		2013-01-01	1	BEVERAGES	0.0	0

test.csv (1.02 MB)

Detail Compact Column

∞ id	F	□ date =	# store_nbr =	▲ family =	# onpromoti =
3000888		2017-08-16	1	AUTOMOTIVE	0
3000889		2017-08-16	1	BABY CARE	0
3000890		2017-08-16	1	BEAUTY	2
3000891		2017-08-16	1	BEVERAGES	20

transactions.csv (1.55 MB)

Detail Compact Column

# store_nbr =	# transactions ≡
25	770
1	2111
2	2358
3	3487
4	1922
	25 1 2 3

EXTRACT TRANSFORM LOAD

CRITTERIOS A SEGUIR

- Lo realizado en *train*, aplicaria tambien a *test*.
- Elegimos que variables parecen afectar mas a la variable a predecir *"sales"*
- Tomamos los datos que cambian atraves del tiempo
- Eliminar columnas con grandes cantidades datos faltantes
- Imputar datos de las columnas con pocos datos faltantes

	id	date	store nbr	family	sales	onpromotion	city	state	store type	store cluster	holiday type	holiday scope	holiday r
0		2013- 01-01	Victorial Indiana Control	AUTOMOTIVE	0.000		Quito	Pichincha	D	13	Holiday	National	Ec
1		2013- 01-01	1	BABY CARE	0.000	0	Quito	Pichincha	D	13	Holiday	National	Ec
2	2	2013- 01-01		BEAUTY	0.000		Quito	Pichincha	D	13	Holiday	National	Ec
3	3	2013- 01-01	1	BEVERAGES	0.000		Quito	Pichincha	D	13	Holiday	National	Ec
4	4	2013- 01-01		BOOKS	0.000		Quito	Pichincha	D	13	Holiday	National	Ec
3000883	3000883	2017- 08-15	9	POULTRY	438.133		Quito	Pichincha	В	6	Holiday	Local	Riob
3000884	3000884	2017- 08-15	9	PREPARED FOODS	154.553	1	Quito	Pichincha	В	6	Holiday	Local	Riob
3000885	3000885	2017- 08-15	9	PRODUCE	2419.729	148	Quito	Pichincha	В		Holiday	Local	Riob
3000886	3000886	2017- 08-15	9	SCHOOL AND OFFICE SUPPLIES	121.000	8	Quito	Pichincha	В	6	Holiday	Local	Riob

color	
red	
green	
blue	
red	

color_red	color_blue	color_green		
1	0	0		
0	0	1		
0	1	0		
1	0	0		

ANALISIS MODELOS

Caracteristicas 💌	Regresion Lineal 💌	Regresion Logistica 💌	Redes Neuronales 💌	Arboles ~	RandomForests ~	Clustering
Tipos de Problema	Regresion	Clasificacion	Ambos	Ambos	Ambos	Agrupamiento
Salida	Valor Continuo	Probabilidad	Variable	Clases	Clases	Grupos
Interpretabilidad	Alta	Alta	Baja	Alta	Alta	Moderada
Resistencia Overfitting	Ваја	Moderada	Baja(sin regular)	Ваја	Alta	Variable
Capacidad Capturar Relaciones NO LINEALES	Ваја	Baja	Alta	Alta	Alta	Moderada
Tiempo Entrenamiento	Rápido	Rápido	Varía	Rápido	Moderado	Varía
Requiere Escalado Datos	Sí	Sí	Sí	No	No	A menudo sí
Robustez	No	Moderada	Depende de la arquitectura	No	Sí	Depende del método

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Métrica	Problema de Regresión	Problema de Clasificación	Descripción	
Mean Absolute Error (MAE)	Sí	No	Promedio de los errores absolutos entre las predicciones y los verdaderos valores.	
Mean Squared Error (MSE)	Sí	No	Promedio de los errores cuadrados entre las predicciones y los verdaderos valores.	
Root Mean Squared Error (RMSE)	Sí	No	Raíz cuadrada del MSE.	
R^2 (Coeficient e de determinaci ón)	Sí	No	Mide cuánta de la variabilidad en el objetivo puede ser explicada por las características.	
Accuracy	No	Sí	Proporción de predicciones correctas sobre el total.	
Precision	No	Sí	Proporción de verdaderos positivos entre todos los positivos predichos.	
Recall (Sensibilida d)	No	Sí	Proporción de verdaderos positivos entre todos los positivos reales.	
F1-Score	No	Sí	Media armónica de precisión y recall.	
Root Mean Squared Logarithmic Error (RMSLE)	Sí	No	Es útil cuando los errores en las predicciones de valores bajos y altos son igualmente importantes.	
Log Loss	Sí (especialmente No para clasificación binaria)		Penaliza las clasificaciones incorrectas en función de la confianza del modelo.	

Es esencial elegir la métrica correcta según el problema .

¿Por qué RMSLE?

errores grandes en las predicciones en comparación con el RMSE.

 Adaptado para Valores Grandes: Evita penalizaciones excesivas cuando ambos, real y predicho, son números grandes.

PORQUE REESTRUCTURAMOS, EL DATAFRAMES?

Durante las pruebas notamos cambios relevantes al reducir la información por lo tanto empezamos a dirigir el modelo hacia esta nueva idea, cosa que al final logro mejorar los resultados obtenidos

Eficiencia con Grandes Datos: Puede manejar conjuntos de datos extensos rápidamente.

Regularización Integrada: Reduce el sobreajuste, mejorando la generalización.

Optimiza el RMSLE: Entrena el modelo específicamente para la métrica clave de la competencia.

Maneja Valores Faltantes: No requiere imputación previa. Flexibilidad: Compatible con múltiples bibliotecas y tipos de problemas.

Poda de Árboles: Construye árboles más óptimos evitando excesiva profundidad.

Paralelización: Usa técnicas de paralelización para una construcción de árboles más rápida.

POR ESO...

XGBOOST

Parámetro	Valor		
Objective	reg:squarederror		
Eval_metric	rmse		
Learning rate	0.1		
Subsample	0.8		
Colsample_bytree	0.8		
Reg_alpha	0.01		
Reg_lambda	1		
Max_depth	10		
N_estimators	200		
Min_child_weight	47		
Random_state	42		

RESULTADOS

0.59469

Version 1

INTERFAZ

FLASK API

Sales Prediction

THANK YOU