Formula Cheat Sheet

Velocity

Rate at which a particle moves with per unit per second

One dimension

Formula: $V = V_o + at$

Usage: Find the velocity of a particle in one dimensional space

Example: A ball is thrown from the top of a six story building, find the velocity of the particle when it hits the ground after 10 seconds. Assume no air resistance and no terminal velocity.

- a = 9.8m/s
- t = 10s
- $v_{\rm o} = 0$

 $v = 0 + 9.8(10) = 98m/s^2$

Free Fall Acceleration

Formula: $y = y_0 + v_0 t + \frac{1}{2}at^2$

Usage:

Example: A ball is thrown from the top of a building 90 meters above the ground as a *projectile*. It takes 10 seconds for the ball to hit the ground. What was the initial velocity of the ball?

- a = -g = -9.81m/s
- t = 10s
- y = 90 m

$$0 = 90 + (10)V_{o} - 490.5$$

$$0 = -400.5 + 10V_{o}$$

$$400.5 = 10V_{\rm o}$$

$$V_0 = 40.05$$

Apply velocity formula: V = 40.05 - 9.81(10)

$$V = -58.05 m/s$$

This is downward speed

Vectors

Addition and Subtraction

It is commutative and associative.

$$\vec{S} = \vec{A} + \vec{B} = \vec{B} + \vec{A}$$

$$(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$$

Example:

$$\vec{A} = <1, 2, 3>$$

$$\vec{B} = <4, 5, 6>$$

$$\vec{C} = \vec{A} + \vec{B} = \langle (1+4), (2+5), (3+6) \rangle$$

$$\vec{C} = <5, 7, 9>$$

Multiplication

Dot/Scalar Product

$$\vec{A} \bullet \vec{B} = \cos \phi$$

Result is a scalar and is commutative.

Example:

$$\vec{A} = <1, 2, 3>$$

$$\vec{B} = <4, 5, 6>$$

$$\phi = 45$$

$$|\vec{A}| = \sqrt{13}$$

$$|\vec{B}| = \sqrt{77}$$

$$\vec{A} \bullet \vec{B} = \sqrt{13} * \sqrt{77} * \cos(45)$$

Cross/Vector Product

$$\vec{A} = <1, 2, 3>$$

$$\vec{B} = <4, 5, 6>$$

$$\vec{A}\times\vec{B}$$

Produces an orthogonal (perpendicular) vector to both \vec{A} and \vec{B}

\mathbf{Misc}

$$a_{\rm x} = a\cos\theta$$

$$a_{\rm y} = a \sin \theta$$

$$|a| = \sqrt{a((\cos\theta)^2 + (\sin\theta)^2)}$$

$$arctan(\frac{a_{\mathbf{X}}}{a_{\mathbf{Y}}}) = \theta$$

$$\cos \phi = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| * |\vec{B}|}$$

Magnitude of $\vec{A} \times \vec{B} = |\vec{A}| * |\vec{B}| * \sin \phi$

Projectile Motion (Two Dimensions)

Tracking a particle that has parabolic motion. This is the positive half of angular motion.

Velocity

Components

- $\begin{array}{ll} \bullet & V_{\,\mathrm{ox}} = V_{\,\mathrm{o}} \cos(\theta_{\,\mathrm{o}}) \\ \bullet & V_{\,\mathrm{oy}} = V_{\,\mathrm{o}} \sin(\theta_{\,\mathrm{o}}) \end{array}$

Instantaneous

- $V_x = x_0 + V_{ox}t$ $V_y = V_o y gt$

Range

Horizontal

Description: track how far a particle will land when used as a projectile

Formula: $R = \frac{V_o^2 \sin(2\theta_o)}{q}$

Vertical

Description: track how high a particle will achieve when used as a projectile

Formula: $VR = \frac{V_0^2 \sin^2 \theta}{2g}$

Position in space

X Coordinate

Formula: $x = x_0 + V_{ox}t$

Y Coordinate

Formula: $y = y_0 + V_{oy}t - \frac{1}{2}gt^2$

Equation of the path of motion

Description: use this when the component of time is unknown

Formula: $\Delta y = \tan \theta_0 \Delta x - \frac{g\Delta x^2}{2V_0^2 \cos^2 \theta}$

Angular Motion

Polar Coordinates

Positions along the circle given a radius $|\vec{r}|$ and an angle denoted as θ Formula(s):

- $x = r \cos \theta$
- $y = r \sin \theta$

The above assumes that $|\vec{r}|$ does **not** change

Uniform Circular Motion

Description: constant angular velocity (ω)

Formula: $\theta = \theta_0 + \omega t$

Vector representing uniform circular motion: $\vec{r}(t) = \langle x(t), y(t) \rangle$

Where the components are:

- $x(t) = r\cos(\theta_o + \omega t)$
- $y(t) = r \sin(\theta_0 + \omega t)$

Misc information

- $\omega = 2\pi f$ (f being the cycles per second = Hertz)
- $f = \frac{1}{T}$ (rotation period)

Velocity for Uniform Circular Motion

Description: velocity in polar coordinates

Formula: $\frac{d\vec{r}}{dt}(\vec{r}) = < -\omega r \sin(\theta_o + \omega t), \omega r \cos(\theta_o + \omega t) >$

Magnitude of velocity: $|\vec{v}(t)| = \sqrt{v_x^2 + v_y^2} = \omega r$

Acceleration for Uniform Circular Motion

Description: acceleration in polar coordinates

Formula: $\frac{d^2 \tilde{r}(t)}{dt} = <-\omega^2 r \cos(\theta_{\rm o} + \omega t), -\omega^2 r \sin(\theta_{\rm o} + \omega t)>$

The above formula will decay to:

$$\vec{a} = -\omega^2 \vec{r}(t)$$

Pull out the negative and the components of the vector are $\vec{r}(t)$

4

Magnitude of acceleration is: $|\vec{a}(t)| = \omega^2 r = \frac{V^2}{r}$