Converting Imperative Programs to Formulas

Viktor Kunčak

Verification-Condition Generation

Given:

- program and
- specification

how to express program correctness as a **verification condition**, a formula implying that program satisfies the specification?

Verification-Condition Generation

Given:

- program and
- specification

how to express program correctness as a **verification condition**, a formula implying that program satisfies the specification?

How to implement verification condition generation as an algorithm?

Verification-Condition Generation

Given:

- program and
- specification

how to express program correctness as a **verification condition**, a formula implying that program satisfies the specification?

How to implement verification condition generation as an algorithm?

```
Example program that verifies in Stainless:
```

```
import stainless.lang.*
import stainless.lang.StaticChecks.*
case class FirstExample(var x: BigInt, var y: BigInt):

def increase : Unit = {
    x = x + 2 // change the value of x
    y = x + 10 // refer to changed value
}.ensuring(_ => old(this).x > 0 ==> (x > 2 && y > 12)) // relates old and new values
```

stainless example.scala ——debug=smt ——solvers=smt—cvc5 ——vc—cache=false

Programs are Formulas. Specifications are Formulas

A program fragment can be represented by a formula relating initial and final state. Consider a program with variables x, y

program:
$$x = x + 2; y = x + 10$$

relation: $\{((x,y),(x',y')) | x' = x + 2 \land y' = x + 12\}$
formula: $x' = x + 2 \land y' = x + 12$

Specification was: $old(this).x > 0 \rightarrow (x > 2 \land y > 12)$ We express that program satisfies the postcondition using **relation subset**:

$$\{((x,y),(x',y')) \mid x' = x + 2 \land y' = x + 12\}$$

$$\subseteq \{((x,y),(x',y')) \mid x > 0 \rightarrow (x' > 2 \land y' > 12)\}$$

which reduces to the validity of the following implication:

$$x' = x + 2 \land y' = x + 12$$

 $\rightarrow (x > 0 \rightarrow (x' > 2 \land y' > 12))$

Simple Imperative Programs

F - formulas, t - terms (with only pure mathematical operations) Fixed number of mutable variables $V = \{x_1, \ldots, x_n\}$ Imperative statements:

- ▶ $\mathbf{x} = \mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \setminus \{x\}$ unchanged
- ▶ **if**(**F**) c_1 **else** c_2 : if *F* holds, execute c_1 else execute c_2
- $ightharpoonup c_1; c_2$: first execute c_1 , then execute c_2

Statements for introducing and restricting non-determinism:

- **havoc**(x): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \setminus \{x\}$ unchanged
- ▶ **if**(*) c_1 **else** c_2 : arbitrarily choose to run c_1 or c_2
- ▶ assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a polynomial-sized formula R(c) of form: $\exists \bar{z}. F(\bar{x}, \bar{z}, \bar{x}')$ describing relation between initial values of variables x_1, \ldots, x_n and final values of variables x_1', \ldots, x_n'

Construction Formula that Describe Relations

c - imperative command

$$R(c)$$
 - formula describing relation between initial and final states of execution of c

If ho(c) describes the relation, then R(c) is formula such that

$$\rho(c) = \{(\bar{x}, \bar{x}') \mid R(c)\}$$

R(c) is a formula between unprimed variables \bar{x} and primed variables \bar{x}'

Formula for Assignment

Formula for Assignment

$$x = t$$

$$R(x = t):$$

$$x' = t \land \bigwedge_{v \in V \setminus \{x\}} v' = v$$

Note that the formula must explicitly state which variables remain the same (here: all except x). Otherwise, those variables would not be constrained by the relation, so they could take arbitrary value in the state after the command.

Examples:

$$R(x=x+2) = x'=x+2 \land y'=y$$

 $R(y=x+10) = x'=x \land y'=x+10$

Formula for if-else

$$if(b) c_1 else c_2$$

Formula for if-else

$$if(b) \ c_1 \ else \ c_2$$
 $R(if(b) \ c_1 \ else \ c_2):$ $(b \land R(c_1)) \lor (\neg b \land R(c_2))$

 $c_1; c_2$

 $c_1; c_2$

Corresponds to relation composition:

$$r_1 \circ r_2 = \{(\bar{x}, \bar{x}') \mid \exists \bar{x}''.(\bar{x}, \bar{x}'') \in r_1 \land (\bar{x}'', \bar{x}') \in r_2\}$$

 $c_1; c_2$

Corresponds to relation composition:

$$r_1 \circ r_2 = \{(\bar{x}, \bar{x}') \mid \exists \bar{x}''. (\bar{x}, \bar{x}'') \in r_1 \land (\bar{x}'', \bar{x}') \in r_2\}$$

What are $R(c_1)$ and $R(c_2)$ and in terms of which variables they are expressed?

$$c_1; c_2$$

Corresponds to relation composition:

$$r_1 \circ r_2 = \{(\bar{x}, \bar{x}') \mid \exists \bar{x}''.(\bar{x}, \bar{x}'') \in r_1 \land (\bar{x}'', \bar{x}') \in r_2\}$$

What are $R(c_1)$ and $R(c_2)$ and in terms of which variables they are expressed? Each in terms of \bar{x} and \bar{x}' .

```
Let r_1 = \{(\bar{x}, \bar{x}') \mid R(c_1)\}, \ r_2 = \{(\bar{x}, \bar{x}') \mid R(c_2)\}

Thus, (\bar{x}, \bar{x}'') \in r_1 \longleftrightarrow (\bar{x}, \bar{x}'') \in \{(\bar{x}, \bar{x}') \mid R(c_1)\} \longleftrightarrow R(c_1)[\bar{x}' := \bar{x}'']

Similarly, (\bar{x}'', \bar{x}') \in r_2 \longleftrightarrow R(c_2)[\bar{x}' := \bar{x}'']
```

$$c_1; c_2$$

Corresponds to relation composition:

$$r_1 \circ r_2 = \{(\bar{x}, \bar{x}') \mid \exists \bar{x}''.(\bar{x}, \bar{x}'') \in r_1 \land (\bar{x}'', \bar{x}') \in r_2\}$$

What are $R(c_1)$ and $R(c_2)$ and in terms of which variables they are expressed? Each in terms of \bar{x} and \bar{x}' .

Let
$$r_1 = \{(\bar{x}, \bar{x}') \mid R(c_1)\}, r_2 = \{(\bar{x}, \bar{x}') \mid R(c_2)\}$$

Thus, $(\bar{x}, \bar{x}'') \in r_1 \longleftrightarrow (\bar{x}, \bar{x}'') \in \{(\bar{x}, \bar{x}') \mid R(c_1)\} \longleftrightarrow R(c_1)[\bar{x}' := \bar{x}'']$
Similarly, $(\bar{x}'', \bar{x}') \in r_2 \longleftrightarrow R(c_2)[\bar{x}' := \bar{x}'']$
 $R(c_1; c_2) \longleftrightarrow (\bar{x}, \bar{x}') \in r_1 \circ r_2 \longleftrightarrow$

$$\exists \bar{x}''$$
. $R(c_1)[\bar{x}' := \bar{x}''] \land R(c_2)[\bar{x} := \bar{x}'']$

where \bar{x}'' are freshly picked names of intermediate states.

ightharpoonup a useful convention: \bar{x}'' refer to position in program source code, \bar{x}^i

Computing relation for the example from before

$$R(x = x + 2; y = x + 10) = \exists \bar{x}''. \quad R(c_1)[\bar{x}' := \bar{x}''] \land R(c_2)[\bar{x} := \bar{x}'']$$

$$= \exists x'', y''. \quad (x' = x + 2 \land y' = y)[x' := x'', y' := y''] \land (x' = x \land y' = x + 10)[x := x'', y := y'']$$

$$= \exists x'', y''. \quad (x'' = x + 2 \land y'' = y) \land (x' = x'' \land y' = x'' + 10) \qquad (*)$$

$$\longleftrightarrow \quad (x' = x + 2 \land y' = x + 2 + 10)$$

$$\longleftrightarrow \quad (x' = x + 2 \land y' = x + 12)$$

Where at step (*) we used (twice) the "one-point rule" of logic with equality:

$$(\exists u.(u=t \land F)) \longleftrightarrow F[u:=t]$$

if $u \notin FV(t)$.

havoc

Definition of HAVOC

- 1. wide and general destruction: devastation
- 2. great confusion and disorder

Example of use:

$$y = 12$$
; havoc(x); assume(x + x = y)

ends up dividing y by two and assigning result to x.

Translation, R(havoc(x)):

havoc

Definition of HAVOC

- 1. wide and general destruction: devastation
- 2. great confusion and disorder

Example of use:

$$y = 12$$
; $havoc(x)$; $assume(x + x = y)$

ends up dividing y by two and assigning result to x.

Translation, R(havoc(x)):

$$\bigwedge_{v \in V \setminus \{v\}} v' = v$$

This again illustrates "politically correct" approach to describing the destruction of values of variables: just do not mention them.

Non-deterministic choice

$$if(*)$$
 c_1 else c_2

Non-deterministic choice

$$if(*) \ c_1 \ else \ c_2$$

$$R(if(*) \ c_1 \ else \ c_2):$$

$$R(c_1) \vee R(c_2)$$

- translation is simply a disjunction this is why construct is interesting
- corresponds to branching in control-flow graphs

assume(F)

assume(F)

R(assume(F)):

 $F \wedge \bigwedge_{v \in V} v' = v$

R(assume(F)):

$$F \wedge \bigwedge_{v \in V} v' = v$$

▶ This command does not change any state.

R(assume(F)):

$$F \wedge \bigwedge_{v \in V} v' = v$$

- ▶ This command does not change any state.
- ▶ If F does not hold, it stops with "instantaneous success".

Example of Translation

```
(if (b) x = x + 1 else y = x + 2);

x = x + 5;

(if (*) y = y + 1 else x = y)
```

becomes

$$\exists x_1, y_1, x_2, y_2. \ ((b \land x_1 = x + 1 \land y_1 = y) \lor (\neg b \land x_1 = x \land y_1 = x + 2)) \\ \land (x_2 = x_1 + 5 \land y_2 = y_1) \\ \land ((x' = x_2 \land y' = y_2 + 1) \lor (x' = y_2 \land y' = y_2))$$

Think of execution trace $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$ where

- (x_0, y_0) is denoted by (x, y)
- \triangleright (x_3, y_3) is denoted by (x', y')

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. R(assume(F); c)

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

- 1. $R(assume(F); c) = F \wedge R(c)$
- 2. R(c; assume(F))

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

- 1. $R(assume(F); c) = F \wedge R(c)$
- 2. $R(c; assume(F)) = R(c) \land F[\bar{x} := \bar{x}']$ where $F[\bar{x} := \bar{x}']$ denotes F with all variables replaced with primed versions

Expressing ${\it if}$ through non-deterministic choice and assume

```
if (b) c1 else c2
if (*) {
  assume(b);
  c1
} else {
  assume(!b);
  c2
Indeed, apply translation to both sides and observe that generated formulas are
equivalent.
```


Expressing assignment through havoc and assume

```
|||
havoc(x);
```

assume(x == e)

x = e

Under what conditions this holds?

Expressing assignment through havoc and assume

```
x = e
havoc(x);
assume(x == e)
Under what conditions this holds?
x \notin FV(e)
Illustration of the problem: havoc(x); assume(x == x + 1)
```

Expressing assignment through havoc and assume

```
x = e
havoc(x);
assume(x == e)
Under what conditions this holds?
x \notin FV(e)
Illustration of the problem: havoc(x); assume(x == x + 1)
Luckily, we can rewrite it into x_{fresh} = x + 1; x = x_{fresh}
```

Loop-Free Programs as Relations: Summary

command	R(c)	ho(c)
$\overline{(x=t)}$	/ \v \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	$\exists \bar{z}. \ R(c_1)[\bar{x}':=\bar{z}] \land R(c_2)[\bar{x}:=\bar{z}]$	
$if(*)\ c_1\ else\ c_2$	$R(c_1) \vee R(c_2)$	$\rho(\mathit{c}_1) \cup \rho(\mathit{c}_2)$
assume(F	$F \wedge \bigwedge_{v \in V} v' = v$	$\Delta_{S(F)}$
$\rho(x_i = t) = \{((x_1,, x_i,, x_n), (x_1,, x_i',, x_n) \mid x_i' = t\}$		
$S(F) = \{\bar{x} \mid F\}, \Delta_A = \{(\bar{x}, \bar{x}) \mid \bar{x} \in A\} \text{ (diagonal relation on } A)$		
Δ (without subscript) is identity on entire set of states (no-op)		
We always have: $\rho(c) = \{(\bar{x}, \bar{x}') \mid R(c)\}$		

 $\frac{\mathsf{if}(*) \ c_1 \ \mathsf{else} \ c_2 \ | \ c_1 \, | \, c_2}{\mathsf{assume}(F)} \quad | \ [F]$

Examples:

Shorthands:

es:
$$\mathbf{if}(F) \ c_1 \ \mathbf{else} \ c_2 \ \equiv \ [F]; c_1 \ [\ [\neg F]; c_2 \\ \mathbf{if}(F) \ c \ \equiv \ [F]; c \ [\ [\neg F]$$

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c_1, \ldots, c_n

The relation $\rho(c)$ is of the form $E(\rho(c_1),...,\rho(c_n))$; it composes meanings of $c_1,...,c_n$ using union (\cup) and composition (\circ)

```
(if (x > 0)
                                   \left|\begin{array}{c} ([\mathsf{x}>0];\,\mathsf{x}=\mathsf{x}-1) \end{array}\right|
                                                                                     \bigcup_{0}^{(\Delta_{S(x>0)})} \circ \rho(x=x-1)
     x = x - 1
 else
\Delta_{S(\neg(x>0))} \circ \rho(x=0)
)
(\Delta_{S(y>0)} \circ \rho(y=y-1)
U
\Delta_{S(\neg(y>0))} \circ \rho(y=x+1)
```

Note: \circ binds stronger than \cup , so $r \circ s \cup t = (r \circ s) \cup t$

Normal Form for Loop-Free Programs

Composition distributes through union:

$$(r_1 \cup r_2) \circ (s_1 \cup s_2) = r_1 \circ s_1 \cup r_1 \circ s_2 \cup r_2 \circ s_1 \cup r_2 \circ s_2$$

Example corresponding to two if-else statements one after another:

Sequential composition of basic statements is called basic path. Loop-free code describes finitely many (exponentially many) paths.