

VCM: The Vector-Based Coloring Method for Grid Wireless Ad Hoc and Sensor Networks

Cédric Adjih, Ichrak Amdouni, Pascale Minet

15th ACM International Conference On Modeling, Analysis And Simulation of Wireless And Mobile Systems — MSWiM 2012, Oct. 21-25, 2012

OUTLINE

- Context
- Problem Statement
- Our Approach: VCM Method
- VCM components
- Performance Evaluation
- Conclusion

1

Context & Problem Statement

Context

Wireless Ad Hoc and Sensor Networks

- Energy saving for nodes on batteries
- Signal interference
- ightharpoonup Close nodes should not transmit at the same time

Context

A Common Solution

- TDMA (Time Division Multiple Access)
- Nodes in the same area transmit each in turn
 - No collisions
 - Energy saving

An example of TDMA cycle

Context: Coloring Framework

TDMA with spatial reuse:

- "Coloring" (TDMA-ASAP, TRAMA, ZMAC, OSERENA, ...)
 - 1. No two interfering nodes have the same color
 - 2. A color is mapped to a time slot
 - 3. A node is awake in
 - its slot if it has a message to transmit
 - the slots of its neighbors if it has messages to receive
 - 4. And sleeps the remaining time

- ▶ Objective: minimum number of colors
 - Reduce activity duration and save energy
 - Reduce end to end delays

Context: Grid Topologies

Grid topologies

- Regular topologies easy to deploy
 - No localization required
- Suitable for WSNs (optimal coverage, e.g surveillance application)
- ▶ Also: infinite grid = first step towards random topologies

Assumption: network model & neighborhood

- ▶ Unit disk model: nodes u and v are 1-hop neighbors if they are at distance ≤ R (Note: R is not obligatory equal to the grid step)
- ▶ u and v are h-hop neighbors iff the shortest path between them has a length of h hops

- u and v_2 are 2-hop neighbors
- ▶ u and w are not.

- Approximation used for interference area:
 - ▶ Distance $h.R \approx h$ hops

Problem Statement

- ▶ Interferences are not limited to 2 hops
 - Because of acknowledgements

- 2-hop coloring is not sufficient
- ▶ In *h*-hop coloring, no two nodes that are at less than or equal to *h* hops away have the same color.

Problem Statement

- Our objective:
 - ▶ Perform efficient *h*-hop coloring of (infinite) grids
- ► The problems to solve:
 - 1. How to color them?
 - 2. How to obtain the optimum number of colors?
 - 3. How to generalize these results to any radio range?

 Many heuristics (priority choice that defines the coloring order)

Radio	Grid	Dens.	Optim	Prio1			Prio2	
range	size			line	random	line	random	
1	10x10	3.6	8C	8C	13.8C	8C	11.8C	
				58R	67.4R	54R	77.8R	
	20x20	3.8	8C	8C	15.4C	8C	14.8C	
				118R	82.4R	114R	110R	
	30x30	3.87	8C	8C	15.4C	8C	15.4C	
				178R	93R	174R	116.6R	
1.5	10x10	6.84	16C	16C	23.6C	16C	19.4C	
				67R	94.8R	65R	107.6R	
	20x20	7.41	16C	16C	27.6C	16C	26.6C	
				137R	144.6R	134R	166.6R	
	30x30	7.6	16C	16C	28.4C	16C	27.8C	
				207R	169.2R	204R	195.4R	
2	10x10	10.04	25C	30C	33.8C	30C	28.2C	
				85R	136.4R	123R	121.8R	
	20x20	11.01	25C	33C	41.8C	33C	36.4C	
				175R	236.6R	174R	282.4R	
	30x30	11.34	25C	33C	44.4C	34C	42.8C	
				265R	278R	264R	376.6R	
2.5	10x10	15.8	45C	52C	50.8C	49C	42.33C	
				94R	176.8R	105R	146.17R	
	20x20	17.85	45C	54C	66.8C	54C	64.8C	
				194R	348.2R	197R	359.8R	
	30x30	18.56	45C	55C	74C	58C	73.6C	
				294R	422.2R	297R	440.8R	
3	10x10	21.16	68C	70C	68C	71C	67.6C	
				112R	193R	116R	197.8R	
	20x20	24.49	68C	80C	93.4C	79C	93C	
				232R	449.4R	231R	451.4R	
	30x30	25.64	68C	83C	107.8C	81C	107.8C	
				352R	601.2R	351R	601.4R	

- Many heuristics (priority choice that defines the coloring order)
- OSERENA: number of colors increases with the grid size.

Radio	Grid	Dens.	Optim	Prio1		F	rio2
range	size			line	random	line	random
1	10x10	3.6	8C	8C	13.8C	8C	11.8C
				58R	67.4R	54R	77.8R
	20x20	3.8	8C	8C	15.4C	8C	14.8C
				118R	82.4R	114R	110R
	30x30	3.87	8C	8C	15.4C	8C	15.4C
				178R	93R	174R	116.6R
1.5	10x10	6.84	16C	16C	23.6C	16C	19.4C
				67R	94.8R	65R	107.6R
	20x20	7.41	16C	16C	27.6C	16C	26.6C
				137R	144.6R	134R	166.6R
	30x30	7.6	16C	16C	28.4C	16C	27.8C
				207R	169.2R	204R	195.4R
2	10x10	10.04	25C	30C	33.8C	30C	28.2C
				85R	136.4R	123R	121.8R
	20x20	11.01	25C	33C	41.8C	33C	36.4C
				175R	236.6R	174R	282.4R
	30x30	11.34	25C	33C	44.4C	34C	42.8C
				265R	278R	264R	376.6R
2.5	10x10	15.8	45C	52C	50.8C	49C	42.33C
				94R	176.8R	105R	146.17R
	20x20	17.85	45C	54C	66.8C	54C	64.8C
				194R	348.2R	197R	359.8R
	30x30	18.56	45C	55C	74C	58C	73.6C
				294R	422.2R	297R	440.8R
3	10x10	21.16	68C	70C	68C	71C	67.6C
				112R	193R	116R	197.8R
	20x20	24.49	68C	80C	93.4C	79C	93C
				232R	449.4R	231R	451.4R
	30x30	25.64	68C	83C	107.8C	81C	107.8C
				352R	601.2R	351R	601.4R

- Many heuristics (priority choice that defines the coloring order)
- OSERENA: number of colors increases with the grid size.
- ► For random priority assignement, number of colors is 15.4 for 30x30 grid
 - Not always optimal

Radio	Grid	Dens.	Optim	P	rio1	Prio2	
range	size			line	random	line	random
1	10x10	3.6	8C	8C	13.8C	8C	11.8C
				58R	67.4R	54R	77.8R
	20x20	3.8	8C	8C	15.4C	8C	14.8C
				118R	82.4R	114R	110R
	30x30	3.87	8C	8C	15.4C	8C	15.4C
				178R	93R	174R	116.6R
1.5	10x10	6.84	16C	16C	23.6C	16C	19.4C
				67R	94.8R	65R	107.6R
	20x20	7.41	16C	16C	27.6C	16C	26.6C
				137R	144.6R	134R	166.6R
	30x30	7.6	16C	16C	28.4C	16C	27.8C
				207R	169.2R	204R	195.4R
2	10x10	10.04	25C	30C	33.8C	30C	28.2C
				85R	136.4R	123R	121.8R
	20x20	11.01	25C	33C	41.8C	33C	36.4C
				175R	236.6R	174R	282.4R
	30x30	11.34	25C	33C	44.4C	34C	42.8C
				265R	278R	264R	376.6R
2.5	10x10	15.8	45C	52C	50.8C	49C	42.33C
				94R	176.8R	105R	146.17R
	20x20	17.85	45C	54C	66.8C	54C	64.8C
				194R	348.2R	197R	359.8R
	30x30	18.56	45C	55C	74C	58C	73.6C
				294R	422.2R	297R	440.8R
3	10x10	21.16	68C	70C	68C	71C	67.6C
				112R	193R	116R	197.8R
	20x20	24.49	68C	80C	93.4C	79C	93C
				232R	449.4R	231R	451.4R
	30x30	25.64	68C	83C	107.8C	81C	107.8C
				352R	601.2R	351R	601.4R

- Many heuristics (priority choice that defines the coloring order)
- OSERENA: number of colors increases with the grid size.
- For random priority assignement, number of colors is 15.4 for 30x30 grid
 - Not always optimal
- Number of colors is 8 if the priority is given by the line position
 - Regularity of the grid must be taken into
 account

Radio	Grid	Dens.	Optim		rio1	Prio2	
range	size			line	random	line	randor
1	10x10	3.6	8C	8C	13.8C	8C	11.8C
				58R	67.4R	54R	77.8R
	20x20	3.8	8C	8C	15.4C	8C	14.8C
				118R	82.4R	114R	110R
	30x30	3.87	8C	8C	15.4C	8C	15.40
				178R	93R	174R	116.6
1.5	10x10	6.84	16C	16C	23.6C	16C	19.40
				67R	94.8R	65R	107.6
	20x20	7.41	16C	16C	27.6C	16C	26.60
				137R	144.6R	134R	166.6
	30x30	7.6	16C	16C	28.4C	16C	27.80
				207R	169.2R	204R	195.4
2	10x10	10.04	25C	30C	33.8C	30C	28.20
				85R	136.4R	123R	121.8
	20x20	11.01	25C	33C	41.8C	33C	36.40
				175R	236.6R	174R	282.4
	30x30	11.34	25C	33C	44.4C	34C	42.80
				265R	278R	264R	376.6
2.5	10x10	15.8	45C	52C	50.8C	49C	42.33
				94R	176.8R	105R	146.17
	20x20	17.85	45C	54C	66.8C	54C	64.80
				194R	348.2R	197R	359.8
	30x30	18.56	45C	55C	74C	58C	73.60
				294R	422.2R	297R	440.8
3	10x10	21.16	68C	70C	68C	71C	67.60
				112R	193R	116R	197.8
	20x20	24.49	68C	80C	93.4C	79C	93C
				232R	449.4R	231R	451.4
	30x30	25.64	68C	83C	107.8C	81C	107.8
				352R	601.2R	351R	601.4

Our Approach: VCM

Method & VCM components

Our Approach

- Profit from the regularity of the grid topology
 - Periodic coloring
 - Color pattern
 - Periodic Coloring
 - Generator vectors
 - Color unicity inside the parallelogram
 - ► Lattice color repetition: nodes with the same color form a lattice of generator vectors
 - ► Coordinate-based color computation

Periodic coloring: challenges

- Generator vectors
 - What are the best vectors?
 - Where/How to find them?
- Color computation
 - How to compute colors?
- Wireless communications constraints
 - Is the coloring valid? (no color conflict)?
 - ► Color reuse?
 - Optimal number of colors?

VCM (Vector-based Coloring Method) components

- ▶ Optimal h-hop periodic coloring for any h and any radio range R
 - 1. VCM-OVS: Optimal Vector search
 - 2. VCM-NCC: Node Color Computation
 - 3. VCM-VC: Validity Check

- ▶ For VCM, the number of colors is entirely defined by the two generator vectors (u_1, u_2)
 - ▶ The number of colors = scalar product of the generator vectors
 - Optimal vectors are those providing the smallest number of colors
- Try all possible vectors (infinite space)
 - Reduce the search space

Method

- 1. Bounds on the optimal number of colors
 - ▶ Number of colors = $|\det(u_1, u_2)|$

Bounds on the optimal number of colors gives

- \rightarrow bounds on the coordinates of the optimal vectors
- 2. Usage of reduced vectors

Result 1: A lower bound of the number of colors.

Theorem 1

The number of colors required to color an infinite grid with $R>\sqrt{2}$ is at least $\frac{\sqrt{3}}{2}h^2(R-\sqrt{2})^2$

Result 2: An upper bound of the number of colors.

Theorem 2

The number of colors required to color an infinite grid is at most $\frac{\sqrt{3}}{2}h^2R^2 + 2hR + (2+hR)\sqrt{2}$

Result 3: Asymptotic number of colors.

Theorem 3

The number of colors $n_c(R)$ of an optimal periodic h-hop coloring for a fixed h verifies: $n_c(R) = \frac{\sqrt{3}}{2}h^2R^2(1+O(\frac{1}{R}))$

Result 4: Optimality of VCM.

Theorem 4

VCM is asymptotically optimal even considering all possible valid colorings.

In other terms, VCM is a (1+g(R))-approximation of the optimal coloring of the grid with some g verifying $g(R) \to 0$

- Search space reduction:
 - ► For any couple of vectors, reduced vectors (smaller vectors) generating the same lattice exist (Gauss Lattice Reduction)
 - ▶ → Search in the space of reduced vectors

$$u_1 \le u_2$$

$$2u_1.u_2 \le u_1u_2$$

- Using bounds and reduction:
 - ▶ Possible reduced vector space is finite $(\Theta(R^4))$
 - ► Exhaustive search in a reduced space of optimal vectors

For
$$R > \sqrt{2}$$
 $I_{1min} < |u_1| \le I_{1max} \text{ and } I_{2min} < |u_2| < I_{2max} \text{ with:}$

$$\begin{cases} I_{1min} = h(R - \sqrt{2}) \\ I_{1max} = \sqrt{\frac{2}{\sqrt{3}}}S_h \\ I_{2min} = h(R - \sqrt{2}) \\ I_{2max} = \frac{2}{\sqrt{3}}\frac{S_h}{h(R - \sqrt{2})} \end{cases}$$

$$\begin{cases} 0 < |u_1| \le hR + 1 \\ |u_1| \le |u_2| \le \frac{2\sqrt{3}(hR + 1)^2}{3|u_1|} \end{cases}$$

VCM-NCC: Node Color Computation

Periodic coloring

- ► A color is unique inside the parallelogram
- All nodes having the same relative coordinates in their parallelogram share the same color
 - Coordinates-based colors
 - Bijection between relatives coordinates in the parallelogram and colors

VCM-NCC: Node Color Computation

Method

▶ The coordinates of any node W of coordinates (x, y) in the basis $(u_1 = (x_1, y_1), u_2 = (x_2, y_2))$ in the parallelogram generated by the two generator vectors are given by:

$$\begin{cases} c_1(W) = (xy_2 - yx_2) \text{ modulo } d \\ c_2(W) = (-xy_1 + yx_1) \text{ modulo } d \end{cases}$$

- ▶ Construct a bijection between $(c_1(W), c_2(W))$ and the colors in [0, |d| 1]
 - Example:
 - 1. sort these couples
 - 2. the colors of the correspondent node is its index-1

VCM-VC: Validity check

- h-hop coloring
 - ▶ Validity: any two nodes $\leq h$ hops have different colors
 - ▶ → Check the validity of the coloring
- Finite check (periodic)
- Method
 - Reduction on the number of verifications based on:
 Theorem 4: If none of the nodes inside the h-hop neighborhood of the origin node O(0,0) has the same color as O itself, then the coloring is valid
 - ightharpoonup Check colors of all h-hop neighbors of O
- ► Further optimizations (geometry, lattice reduction) when *R* sufficiently large:
 - Checking colors of a few points
 - ► Checking colors of 4 points

VCM: how to apply it?

- Finding the optimal vectors using VCM-OVS
- ▶ Filtering of these vectors to keep only valid vectors
- The optimal vectors are those with the smallest absolute value of their determinant
- Color computing
 - Computation of the couple c₁, c₂
 - Applying a bijection to compute the color

VCM complexity

▶ Theorem: VCM complexity is $\Theta(R^4)$

3
Performance Evaluation & Conclusion

VCM: Results

Radio	2-h	op colorin	ıg	3-hop coloring			
range	vector1	vector2	colors	vector1	vector2	colors	
1	(2,1)	(-1,2)	5*	(2,2)	(-2,2)	8*	
1.5	(-3,0)	(0,3)	9*	(4,0)	(0,4)	16*	
2	(3,2)	(-2,3)	13*	(4,3)	(-3,4)	25*	
2.5	(4,3)	(-1,5)	23*	(5,5)	(-7,2)	45*	
3	(5,3)	(-1,6)	33*	(7,5)	(-8,4)	68*	
3.5	(5,4)	(-6,3)	39*	(8,5)	(-8,5)	80*	
4	(7,3)	(-6,5)	53*	(8,8)	(-11,3)	112*	
4.5	(9,2)	(-6,7)	75*	(13,3)	(-9,10)	157*	
5	(9,4)	(-1,10)	94*	(14,4)	(3,15)	198*	
5.5	(9,6)	(-1,11)	105*	(16,0)	(8,14)	224*	
6	(11,4)	(-9,8)	124*	(17,4)	(-12,13)	269*	
6.5	(13,1)	(-7,11)	150*	(-19,0)	(9,17)	323*	
7	(10,9)	(-4,13)	166*	(15,13)	(-19, 7)	352*	

Figures see: http://hipercom.inria.fr/SensorNet/VCM/

VCM: Example of grid coloring

- r = 2.5
- ► *h* = 3
- ► *col* = 45

http://hipercom.inria.fr/SensorNet/VCM/

VCM: Comparison with OSERENA

Radio	Grid size	Colors		
range		VCM	line/column	
1	10×10	8*	8*	
	20×20	8*	8*	
	30×30	8*	8*	
1.5	10×10	16*	16*	
	20×20	16*	16*	
	30×30	16*	16*	
2	10×10	25*	30	
	20×20	25*	33	
	30×30	25*	33	
3	20×20	68*	80	
	30×30	68*	83	
3.5	20×20	80*	91	
	30×30	80*	91	

Conclusion and future works

- A method for grid h-hop coloring for any h and any radio range R.
- Optimal number of colors
 - Does not depend on the size of the grid
- Property on number of colors:
 - The optimal number of colors in h-hop coloring for a fixed h and when R grows to infinity is $\frac{\sqrt{3}}{2}h^2R^2$
- Apply this method to random topologies by mapping random topologies to the grid

http://hipercom.inria.fr/SensorNet/VCM/

Thank You!

ichrak.amdouni@inria.fr

Annex

VCM and real wireless networks

- ▶ A neighbor may be at a distance $\leq R$
 - ▶ Should start by selecting the right value of *R*:
 - ▶ No two nodes that are at distance greater than *R* are neighbors.
- Radio links disappearance
 - Coloring remains valid
- Radio links appearance
 - The coloring still be acceptable by the appplication if the percentage of the additional links is below specific threshold.

Problem Statement

- Grids with various transmission ranges? Can we simplify?
 - ▶ Is 1-hop coloring of a grid with R = 6 the same as 3-hop coloring of the grid with R = 2, is it the same as 2-hop coloring of the grid with R = 3?

Fig. 2. Nodes having a color different from u: (a) 1-hop coloring R=6; (b) 2-hop coloring R=3 and (c) 3-hop coloring R=2.

- The answer is NO!
 - ▶ h and k integers such that $hR_1 = kR_2$
 - ▶ *h*-hop coloring of *G* with $R = R_1 \neq k$ -hop coloring of *G* with $R = R_2$

Examples of valid vectors: Near hexagonal vectors (upper bound)

$$|AV_1| = 2x_2 - hR$$

$$= 2(hR\cos(\frac{\Pi}{3}) + \gamma) - hR, \text{ with } \gamma \le 1$$

$$\le 2$$

$$\begin{split} n_c &= \det(\overrightarrow{UV_1}, \overrightarrow{UV_2}), \\ &= \det(\overrightarrow{UA}, \overrightarrow{UB}) + \det(\overrightarrow{AV_1}, \overrightarrow{UB}) + \det(\overrightarrow{UV_1}, \overrightarrow{BV_2}) \\ &\leq \det(\overrightarrow{UA}, \overrightarrow{UB}) + \left|\overrightarrow{AV_1}\right| \left| \overrightarrow{UB} \right| + \left| \overrightarrow{UV_1} \right| \left| \overrightarrow{BV_2} \right| \\ &\leq \frac{\sqrt{3}}{2} h^2 R^2 + 2hR + (hR + 2)\sqrt{2}; \end{split}$$