COSC 290 Discrete Structures

Lecture 19: Proof review

Prof. Michael Hay Friday, Oct. 13, 2017

Colgate University

Proofs about binary trees

Plan for today

- 1. Proofs about binary trees
- 2. Structural induction on propositions
- 3. Discuss mid-semester feedback

Recall: Binary Tree

- A binary tree is either:
- a) (base case) an empty tree, denoted null
- b) (inductive case) a root node x, a left subtree T_ℓ , and a right subtree T_r where x is an arbitrary value and T_ℓ and T_r are both binary trees.

Height of a tree

The level of a node in T is the length of the path from it to the root of T. The height of a tree is the max level of any (leaf) node in T. (If a tree has zero nodes, we say the height is -1.)

We can also define height recursively: let h(T) denote the height of tree T.

- Base case: tree T is empty, h(T) = −1.
- Inductive case: T is non-empty, thus it consists a root node x, a left subtree T_t, and a right subtree T_t. Then, h(T) = 1 + max { h(T_t), h(T_t) }.

Poll: Lower bound?

- False Claim: nodes(T) > 2^{h(T)+1} − 1
- · Faulty proof by structural induction:
 - Base cases: T is empty, height is -1 and nodes(T) ≥ 2⁻¹⁺¹ 1 = 0.
 Inductive case: T is a non-empty tree of height h, consisting of node x and left and right subtrees T_L and T_L.

$$nodes(T) = 1 + nodes(T_c) + nodes(T_c)$$
 (a. +1 for root)
 $\geq 1 + (2^{k(T_c)+1} - 1) + (2^{k(T_c)+1} - 1)$ (b. ind. hypothesis)
 $\geq 1 + (2^{(b-1)+1} - 1) + (2^{(b-1)+1} - 1)$ (c. subtree heights)
 $= 2^{b+1} - 1 = 2^{k(T_c)+1} - 1$ (d. algebra)

Where's the flaw? A) Inductive case, first sentence; B) Inductive case, line a; C) Inductive case, line b; D) Inductive case, line c; E) Inductive case, line d.

Poll: Lower bound?

Last time we proved an upper bound on the number of nodes in T: $nodes(T) < 2^{h(T)+1} - 1$.

Can we use a similar proof to show a matching lower bound?

Possible Claim: $nodes(T) \ge 2^{h(T)+1} - 1$

Poll: number of leaves

We just showed an upper bound on the number of nodes in T: $nodes(T) \le 2^{h(T)+1} - 1$. What can we say about leaves(T), the number of leaves?

Give the *smallest* upper bound you can. (Hint: try some examples... then start sketching out a proof!)

Claim: $leaves(T) \le what goes here?$

- A) o
- B) 2^{h(T)-1}
- C) 2^{h(T)}
- D) 2^{h(T)+1}
- E) $2^{h(T)+1} 1$

5

Proof of claim

```
    Claim: leaves(T) < 2<sup>h(T)</sup>

· Proof by structural induction:
     • Base cases: T is empty, h(T) = -1 and leaves(T) = 0. Indeed
       leaves(T) \leq 2^{-1} = \frac{1}{2}.
```

 Inductive case: T is non-empty: root node x, subtrees T_c and T_c. $leaves(T) = leaves(T_{\ell}) + leaves(T_{\ell})$ (root is not a leaf) $\leq (2^{h(T_{\ell})}) + (2^{h(T_{\ell})})$ (ind. hypothesis) $\leq (2^{h(T)-1}) + (2^{h(T)-1})$ Why is this okay?

(algebra)

A) It's not okay, this is a flaw in the proof.

B) Because $h(T_f) = h(T) - 1$ (and same holds for T_f)

 $-2 \times 2^{h(T)-1} - 2^{h(T)}$

C) Because $h(T_{\ell}) \leq h(T) - 1$ (and same holds for T_r)

D) Because $h(T_{\ell}) > h(T) - 1$ (and same holds for T_{ℓ}) E) Because of the definition of height.

Propositions, recursively defined

A proposition φ is a well-formed formula (wff) over the variables in the set $P := \{ p_1, \dots, p_n \}$, is one of the following:

• (base case) $\varphi := p$ for some $p \in P$

· (inductive cases)

•
$$\varphi := \alpha \lor \beta$$

• $\varphi := \alpha \land \beta$
• $\varphi := \alpha \implies \beta$
• $\varphi := \neg \alpha$

where α and β are well-formed formulas

Structural induction on propositions

Negation Normal Form

Claim: For any wff φ , there exists a proposition φ' that is in negation normal form (NNF) and is logically equivalent to φ .

Recall: a proposition φ is in negation normal form if the negation connective is applied only to variables and not to more complex expressions, and furthermore, the only connectives allowed are in the set $\{\land,\lor,\neg\}$.

Restating claim

Notation:

- isNNF(φ) denotes the predicate: φ is in NNF.
- $hasNNF(\varphi)$ denotes the predicate: there exists a proposition φ' that is in NNF and $\varphi' \equiv \varphi$.
- · W denotes the set of all well-formed formulae.

Thus, our claim can be restated as $\forall \varphi \in W : hasNNF(\varphi)$.

10

Proof

Claim A: $\forall \varphi \in W : hasNNF(\varphi)$.

We will instead prove the stronger claim:

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

How is this "stronger?"

11

Poll: base case

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

We will do a proof by structural induction.

How should we structure the base case(s)?

- A) Two base cases: $\varphi \coloneqq p$ and $\varphi \coloneqq \neg p$. In each, want to show $\mathit{hasNNF}(\varphi)$.
- B) One base cases: $\varphi := p$, want to show: $hasNNF(p) \land hasNNF(\neg p)$
- C) Either of above is acceptable.
- D) Base cases? We don't need no stinkin' base cases.

Inductive cases

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

We will do a proof by structural induction. How many inductive cases? One case for each case in the recursive definition of WFF:

- 1. AND: $\varphi := \alpha \wedge \beta$
- 2. OR: $\varphi := \alpha \vee \beta$
- 3. NOT: $\varphi := \neg \alpha$
- 4. IMPLIES: $\varphi \coloneqq \alpha \implies \beta$.

Poll: Inductive case 1

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Proof continued...

Inductive cases: We focus on case 1: $\varphi \coloneqq \alpha \wedge \beta.$ What do we want to show?

- A) $hasNNF(\alpha)$
- B) hasNNF($\alpha \land \beta$)
- C) $hasNNF(\neg(\alpha \land \beta))$
- D) $hasNNF(\neg \alpha \lor \neg \beta)$
- E) More than one / None of the above

Proof for inductive case 1

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$.

Assume by inductive hypothesis:

• $hasNNF(\alpha)$, $hasNNF(\beta)$, $hasNNF(\neg \alpha)$, $hasNNF(\neg \beta)$

Part 1: Since $hasNNF(\alpha)$, there exists α' such that $\alpha'\equiv\alpha$ and $isNNF(\alpha')$. Similarly for β . Let $\varphi':=\alpha'\wedge\beta'$. We have $isNNF(\varphi')$ and $\varphi'\equiv\alpha\wedge\beta$. Thus $hasNNF(\alpha\wedge\beta)$.

Part 2: $\neg \varphi = \neg (\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta$ by DeMorgan's law. Since hasNNF($\neg \alpha$), there exists $\bar{\alpha}$ such that $\bar{\alpha} \equiv \neg \alpha$ and isNNF($\bar{\alpha}$). Similarly for β . Thus, let $\bar{\varphi} := \bar{\alpha} \vee \bar{\beta}$. We have isNNF($\bar{\varphi}$) and $\bar{\varphi} \equiv \neg (\alpha \wedge \beta)$. Thus hasNNF($\neg (\alpha \wedge \beta)$).

Poll: Inductive case 1

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Proof continued...

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$. Which of the following can we assume is true (by the inductive hypothesis)?

- A) $hasNNF(\alpha)$
- B) $hasNNF(\neg \alpha)$
- C) $isNNF(\alpha)$... recall this means that α is in NNF.
- D) A and B
- E) A, B, and C

Poll: proof for inductive case 3

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 3: $\varphi \coloneqq \neg \alpha$.

What do we want to show?

- A) $hasNNF(\alpha)$
- B) $hasNNF(\neg \alpha)$
- C) hasNNF($\neg\neg\alpha$)
- D) A and B
- E) A. B. and C

Proof for inductive case 3

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 3: $\varphi := \neg \alpha$.

Want to show: $hasNNF(\neg \alpha) \land hasNNF(\neg \neg \alpha)$.

Assume by inductive hypothesis:

hasNNF(α), hasNNF(¬α)

Still need to show: $hasNNF(\neg \neg \alpha)$.

Since $\neg \neg \alpha \equiv \alpha$ and $hasNNF(\alpha)$, then let α' be such that $\alpha' \equiv \alpha$ and $isNNF(\alpha')$. Let $\bar{\varphi} := \alpha'$. Since $\bar{\varphi} \equiv \neg \neg \alpha$ and $isNNF(\bar{\varphi})$, thus $hasNNF(\neg\neg\alpha)$.

Discuss mid-semester feedback