Lecture Notes on Sets and Maps

1 Sets

The following are common sets in mathematics.

$$\mathbb{N} = \{0,1,2,\ldots\} \\ \mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\} \\ \mathbb{Q} = \left\{\frac{k}{n} \mid k,n\in\mathbb{N},n\neq0\right\} \\ \mathbb{R} = \\ \mathbb{C} = \{a+ib\mid a,b\in\mathbb{R}\} \\ \text{where $*i$* is the *imaginary unit* characterized by $i^2=-1$.} \\ \mathbb{R}^d = \{(a_1,\ldots,a_d)\mid a_i\in\mathbb{R}\} \\ \mathbb{R}^\infty = \{(a_0,a_1,a_2,\ldots)\mid a_i\in\mathbb{R}\} \\ \text{*space of infinite sequences of reals*} \\ \text{*space of infinite sequ$$

2 Set Operations

Let A, B be *sets*. The following are the common set operations:

$$\begin{split} A \cup B &= \{c \mid c \in A \text{ or } c \in B\} \\ A \cap B &= \{c \mid c \in A \text{ and } c \in B\} \\ A \backslash B &= \{c \in A \mid c \notin B\} \end{split} \qquad \text{*intersection*} \\ A \triangle B &= A \backslash B \cup B \backslash A \end{cases}$$
 symmetric difference

3 Indexed Families of Sets

Let $(A_{\alpha})_{{\alpha}\in I}$ be an *indexed family of sets* (index set I).

- **Example 1:** Let $I = \mathbb{N}$ and $A_{\alpha} := \{\alpha, \alpha + 1\}$.
- **Example 2:** Let $I = \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$ and $A_\alpha := [\alpha, \infty)$.

The following operations are useful when working with indexed families of sets:

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \}$$

$$= \{ a \mid \exists \alpha \in I \text{ such that } a \in A_{\alpha} \}$$
union
$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \}$$
intersection

4 Maps

A *map* (or *function* or *mapping* or *transformation*) is an assignment from one set to another.

• Let A, B be sets. A map f is an assignment:

$$f: A \to B$$

 $a \mapsto f(a).$

For each $a \in A$, f assigns a unique $b \in B$ which is called the *value* of f at a and is denoted by f(a).

- *Note:* f assigns to each $a \in A$ a value, but there may exist $b \in B$ that is not equal to f(a) for any $a \in A$.
- A is called the *domain* (of definition) of f.
- B is called the *target space* of f.
- **Example 1:** Let $f : \mathbb{R} \to \mathbb{R}$ be the *sine function*:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sin(x)$$

• **Example 2:** Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be the function

$$f: \mathbb{R} \backslash \{0\} \to \mathbb{R}$$
$$x \mapsto 1/x$$

• **Example 3:** Let $g: \mathbb{R} \to \mathbb{R}$ be the function

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1/x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

• **Example 4:** Let $f: V \to \text{set of subspaces of } V = S$ be the function

$$f: V \to S$$
$$v \mapsto \operatorname{span}(v)$$

where V is a vector space.

• **Example 5:** Let $D: P(\mathbb{R}) \to P(\mathbb{R})$ be the *derivative function*

$$D: P(\mathbb{R}) \to P(\mathbb{R})$$

 $p(x) \mapsto p'(x).$

5 Restriction

If $A' \subset A$, then the map f'

$$f': A' \to B$$

 $a \mapsto f'(a) := f(a)$

is called the *restriction* of f to A' (denoted by $f' = f|_{A'}$).