CNTK 101: Lab

Mithun Prasad, PhD miprasad@Microsoft.com

Goals

- Train a simple machine learning model using CNTK
- Create a random dataset
- Learn how to setup a network
- Configure training
- Perform training / evaluation

Problem

- Determine if a patient has a fatal <u>malignant</u> cancer vs. a benign growth.
- Given age and the size of the tumor.

Aim - Learn a classifier to label any patient into either benign or malignant category given two features (age and tumor size)

Data Generation

- Generate synthetic data emulating the cancer example using numpy.
- Each observation in the training data has a label (blue or red) corresponding to each observation.

numpy.random.randint(low, high=None, size=None, dtype='l')
Return random integers from low (inclusive) to high (exclusive).

Sigmoid Function

- A mathematical function having an "S" shaped curve (sigmoid curve).
- Special case of the logistic function.

$$S(t) = \frac{1}{1 + e^{-t}}$$

Score	-∞	-2	0.0	+2	+∞
Sigmoid (Score)	$\frac{1}{1+e^{\infty}}$ $=\frac{1}{1+\infty}$ $=0$	0.12	Sigmoid(0) $= \frac{1}{1+e^0}$ $= \frac{1}{1+1}$ $= 0.5$	0.88	$\frac{1}{1+e^{-\infty}}$ $= 1$

Logistic Regression

- Logistic regression is actually a classification method.
- LR introduces an extra non-linearity over a linear classifier, $f(x) = w^T X + b$, by using a logistic (or sigmoid) function, σ ().
- The LR classifier is defined as

$$\sigma(f(x_i)) \begin{cases} \ge 0.5y_i = +1 \\ < 0.5y_i = -1 \end{cases}$$

where
$$\sigma(f(x)) = \frac{1}{1+e^{-f(x)}}$$

The logistic function or sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- As z goes from $-\infty$ to ∞ , $\sigma(z)$ goes from 0 to 1, a "squashing function".
- It has a "sigmoid" shape (i.e. S-like shape)
- $\sigma(0)=0.5$, and if $z=w^Tx+b$ then $\left\|\frac{d\sigma(z)}{dx}\right\|z=0=\frac{1}{4}\|w\|$