Análisis Funcional - Notas de clase

Pablo Miralles González

Nov 2021

Índice

1.	\mathbf{Esp}	acios de Hilbert.	2
	1.1.	Dual de un espacio de Hilbert: teorema de Riesz-Fréchet	2
	1.2.	Problemas variacionales cuadráticos	2
	1.3.	Operadores diferenciales y soluciones débiles	3
	1.4.	El método de Galerkin	3
2.	Teoría espectral de operadores compactos autoadjuntos.		5
	2.1.	Inversión de operadores. Espectro	5
	2.2.	Adjunto de un operador en espacios de Hilbert	6
	2.3.	Operadores compactos	7
	2.4.	Teorema espectral para operadores compactos autoadjuntos	11
3.	Los principios fundamentales del Análisis Funcional: aplicaciones.		15
	3.1.	Teorema de Hahn-Banach	15
	3.2.	Teorema de Baire.	18
	3.3.	Teorema de la acotación uniforme o de Banach-Steinhaus	19
	3.4.	Teorema de la aplicación abierta y de la gráfica cerrada	19
Referencias			20

1. Espacios de Hilbert.

1.1. Dual de un espacio de Hilbert: teorema de Riesz-Fréchet.

Teorema 1.1 (F. Riesz - M. Fréchet). Sea un espacio de Hilbert H y una forma lineal $f: H \to \mathbb{K}$. Las siguientes afirmaciones son equivalentes:

- 1. La forma lineal f es continua.
- 2. Existe un único $y \in H$ tal que $f(x) = \langle x, y \rangle$ para cada $x \in H$, siendo además ||f|| = ||y||.

Definición 1.2. Sea X espacio vectorial sobre \mathbb{K} , $B: X \times X \to \mathbb{K}$.

- 1. Se dice que B es bilineal si fijados x, y respectivamente, $B(\cdot, y), B(x, \cdot)$ son lineales.
- 2. Se dice que B es sesquilineal si $B(\cdot,y)$ es lineal y $B(x,\cdot)$ es lineal conjugada, esto es, $B(x,ay) = \overline{a}B(x,y)$.
- 3. Se dice que B es simétrica si $B(x,y) = B(y,x) \ \forall x,y \in H$.
- 4. Se dice que B es positiva si $B(x,x) \ge 0$ para cada $x \in X$.

Si X es normado:

- 1. Se dice que B es acotada si $\exists M > 0$ tal que $|B(x,y)| \leq M||x|||y||$ para cada $x,y \in X$.
- 2. Se dice que B es fuertemente positiva si $\exists c > 0$ tal que $B(x,x) \ge c \|x\|^2$ para cada $x \in X$.

Teorema 1.3 (Lax-Milgram). Sea H espacio de Hilbert sobre \mathbb{K} y B una forma sesquilineal en H acotada y fuertemente positiva. Entonces existe un isomorfismo de espacios de Hilbert $T: H \to H$, univocamente determinado, tal que

$$B(x,y) = \langle x, Ty \rangle,$$

para cada $x, y \in H$.

1.2. Problemas variacionales cuadráticos.

Teorema 1.4 (Teorema principal de los problemas variacionales cuadráticos). Sea H espacio de Hilbert real y B una forma bilineal simétrica, acotada y fuertemente positiva definida en H. Sea b una forma lineal continua en H y sea $F: H \to \mathbb{R}$ definida mediante

$$F(x) := \frac{1}{2}B(x,x) - b(x).$$

Entonces:

1. Es condición necesaria y suficiente para que F alcance su mínimo en $w \in H$ que se verifique

$$B(w, y) = b(y)$$

para cada $y \in H$.

2. La función real F(x) alcanza un mínimo absoluto en H, que además es único.

1.3. Operadores diferenciales y soluciones débiles.

Definición 1.5. Dado $\Omega \subset \mathbb{R}^n$ abierto, se define

$$\mathcal{D}(\Omega) = \left\{g: \Omega \to \mathbb{R}: g \text{ de clase } C^{\infty}, sop(g) = \overline{\{x: g(x) \neq 0\}} \text{ compacto}\right\}.$$

Definición 1.6. Dado el operador diferencial lineal $L = \sum_{|\alpha| \leq n} a_{\alpha} \left(\frac{\partial}{\partial x}\right)^{\alpha}$, con los $a_{\alpha} \in \mathbb{K}$, se define el operador adjunto como $L^* := \sum_{|\alpha| \leq n} (-1)^{|\alpha|} \overline{a_{\alpha}} \left(\frac{\partial}{\partial x}\right)^{\alpha}$.

Lema 1.7 (Regularización). $\mathcal{D}(\Omega)$ es denso en $L^2(\Omega)$ para el producto escalar estándar.

Teorema 1.8 (Gauss). Dado $h \in C^{(\overline{\Omega})}$, si $\partial \Omega$ es suficientemente buena entonces

$$\int_{\Omega} \frac{\partial h}{\partial x_j}(x) dx = \int_{\partial \Omega} h \cdot n_j d\theta.$$

Proposición 1.9. $\langle L\phi, \psi \rangle = \langle \phi, L^*\psi \rangle \ \forall \phi, \psi \in \mathcal{D}(\Omega)$.

Demostración. Lo vemos para $L = \frac{\partial}{\partial x_j}$, bastando aplicar (1.8) a $h = \phi \cdot \psi$, observando que por tener estas soporte compacto valen 0 en la frontera, y que aunque la frontera de Ω no sea suficientemente buena, como el soporte es compacto siempre podemos tomar un abierto entre el soporte y Ω con frontera suficientemente buena.

Por inducción se generaliza a derivadas parciales de cualquier orden, y por las propiedades del producto escalar al caso general. \Box

Corolario 1.10. $\forall f \in L^2(\Omega)$, si u es suficientemente regular y verifica que Lu = f, entonces $\langle f, \phi \rangle = \langle u, L^*\phi \rangle \ \forall \phi \in \mathcal{D}(\Omega)$.

Definición 1.11. Si $u \in L^2(\Omega)$ verifica $\langle f, \phi \rangle = \langle u, L^* \phi \rangle$ para cada $\phi \in \mathcal{D}(\Omega)$, entonces decimos que es solución débil de la ecuación Lv = f.

1.4. El método de Galerkin.

Teorema 1.12. Sea $M_1 \subset M_2 \subset \ldots$ una sucesión de subespacios cerrados de un espacio de Hilbert H con unión densa. Sea $a: H \times H \to \mathbb{R}$ bilineal, simétrica, continua y fuertemente positiva y sea $b: H \to \mathbb{R}$ una forma lineal y continua. Consideramos el problema de minimización del funcional

$$J(x) := \frac{1}{2}a(x,x) - b(x)$$

 $sobre\ el\ subespacio\ M_n,\ y\ sea\ u_n\in M_n\ su\ soluci\'on,\ esto\ es,$

$$a(x, u_n) = b(x)$$

para todo $x \in M_n$. Entonces la sución $(u_n)_n$ converge hacia la solución u del problema de minimización de J en todo H.

Demostración. (p.81, [1]). \Box

2. Teoría espectral de operadores compactos autoadjuntos.

2.1. Inversión de operadores. Espectro.

Definición 2.1. Un operador es una aplicación lineal y continua.

Teorema 2.2 (Von-Neumann). Sea X un espacio de Banach, $K \in \mathcal{L}(K)$ invertible y L := K - A. $Si \|A\| < \|K^{-1}\|^{-1}$ entonces L es invertible.

 $\begin{array}{l} \textit{Demostraci\'on}. \text{ Estudio primero el caso en el que } K = Id, \text{ se trata de ver que } Id - B \text{ con } \|B\| < 1 \text{ es invertible}. \\ \text{Defino } S = \sum_{n=0}^{\infty} B^n, \text{ refiri\'endose el exponente a la composici\'on}. \\ \sum_{n=0}^{\infty} \|B^n\| \leqslant \sum_{n=0}^{\infty} \|B\|^n \text{ convergente, as\'e que la serie converge y } S \in \mathcal{L}(X), \text{ que es de Banach por serlo } X. \end{array}$

Veamos que $S = (Id - B)^{-1}$.

■
$$B \circ S = B \circ \sum_{n=0}^{\infty} B^n$$
 = $\sum_{n=0}^{\infty} B^{n+1} = S - Id$ $\Longrightarrow (Id - B) \circ S = Id$.

■ Análogamente $S \circ (Id - B) = Id$.

En el caso general, $K-A=K\circ (Id-K^{-1}\circ A), \|K^{-1}\circ A\|\leqslant \|K^{-1}\|\|A\|<1$ por hipótesis, así que aplicando el primer caso $Id-K^{-1}A$ es invertible. Como K es invertible y la composición de invertibles es invertible ya lo tenemos.

Observación 2.3.
$$(K-A)^{-1} = (K \circ (Id-K^{-1}A))^{-1} = (Id-K^{-1}\circ A)^{-1}\circ K^{-1} = (\sum_{n=0}^{\infty} (K^{-1}\circ A)^n)\circ K^{-1} = \sum_{n=0}^{\infty} (K^{-1}\circ A)^n K^{-1}$$
.

Definición 2.4. Sea $M: X \to X$ un operador, se definen:

- $\bullet \ \rho(M) = \{ \lambda \in \mathbb{C} : (\lambda Id M) \ es \ invertible \}.$
- $\sigma(M) = \mathbb{C}\backslash \rho(M)$ es el espectro del operador.

Teorema 2.5. Dado M un operador:

- 1. $\rho(M)$ es abierto.
- 2. $\phi: \rho(M) \to \mathcal{L}(X)$, dada por $\phi(\lambda) = (\lambda Id M)^{-1}$ es analítica.

Demostración. 1. $\lambda \in \rho(M) \implies K = \lambda Id - M$ es invertible. Para $h \in \mathbb{C}$ con $|h| < \|K^{-1}\|^{-1}$, $(\lambda - h)Id - M = K - hId$, con $\|hId\| = |h|\|Id\| = |h| < \|k^{-1}\|^{-1}$, así que es invertible y $\lambda - h \in \rho(M)$.

2. Se tiene además por (2.3) lo siguiente:

$$\phi(\lambda - h) = ((\lambda - h)Id - M)^{-1} = \sum_{n=0}^{\infty} ((\lambda Id - M)^{-1} \cdot h)^n (\lambda Id - M)^{-1} = \sum_{n=0}^{\infty} ((\lambda Id - M)^{-1})^{n-1} h^n,$$

luego es analítica.

Teorema 2.6 (Gelfand). $\forall M \in \mathcal{L}(X), \ \sigma(M)$ es un compacto no vacío.

Demostración. $\rho(M)$ abierto implica $\sigma(M)$ cerrado, veamos que es acotado. Si $|\xi| > ||M||$, veamos que $\xi \notin \sigma(M)$, bastando aplicar (2.2) para $K = \xi Id$, A = M.

Además, aplicando (2.3):

$$\phi(\xi) = (\xi Id - M)^{-1} = \sum_{n=0}^{\infty} M^n \cdot \xi^{-(n+1)}.$$

Si fuese vacío $\sigma(M)$, entonces ϕ sería entera, tendría dominio \mathbb{C} . Se tiene también

$$\|\phi(\xi)\| \le \sum_{n=0}^{\infty} \|M\|^n |\xi|^{-(n+1)} = \frac{1}{|\xi| - \|M\|} \to 0$$

cuando $|\xi| \to \infty$. Por el teorema de Liouville ϕ es constante, pero $\phi'(\xi) = -(\xi Id - M)^{-2} \neq 0$, contradicción.

Proposición 2.7. Si M es un subespacio cerrado de H, $\langle P_M x, y \rangle = \langle x, P_M y \rangle$ para cada $x, y \in H$.

Demostración. Ejercicio.

2.2. Adjunto de un operador en espacios de Hilbert.

Observación 2.8. Dado un operador $T: H \to H$ y fijado $y \in H$,

$$\phi_y: H \longrightarrow \mathbb{K}$$

$$x \longmapsto \phi_y(x) = \langle Tx, y \rangle$$

es una forma lineal y continua, luego por el teorema de Riesz $\phi_y(x) = \langle x, w \rangle$ para cierto $w \in H$. Esto permite definir otro operador, que cumple $T^*y = w$.

Definición 2.9. El operador T^* se denomina adjunto de T, y viene dado por la ecuación $\langle Tx, y \rangle = \langle x, T^*y \rangle \ \forall x, y \in H$.

Definición 2.10. Si $T = T^*$, se dice que T es autoadjunto.

Observación 2.11. $\sup\{|\langle Tf,g\rangle|: \|f\|, \|g\| \le 1\} = \sup\{\sup\{|\langle Tf,g\rangle|: \|g\| \le 1\}: \|f\| \le 1\} = \sup\{\|Tf\|: \|f\| \le 1\} = \|T\|.$

Observación 2.12. Como $|\langle Tf, g \rangle| = |\langle f, T^*g \rangle| = |\langle T^*g, f \rangle|$, en vista de la observación anterior $||T|| = ||T^*||$.

Proposición 2.13. Si $T = T^*$, entonces $||T|| = \sup\{|\langle Tf, f \rangle| : ||f|| \le 1\}$.

Demostración. Llamo $M = \sup\{|\langle Tf, f \rangle| : ||f|| \leq 1\}$, es obvio que $M \leq ||T||$ por (2.11). Veamos la desigualdad contraria.

$$\langle T(f+g), f+g \rangle - \langle T(f-g), f-g \rangle = \\ \langle Tf, f \rangle + \langle Tf, g \rangle + \langle Tg, f \rangle + \langle Tg, g \rangle - \langle Tf, f \rangle + \langle Tf, g \rangle + \langle Tg, f \rangle - \langle Tg, g \rangle = \\ 2 \cdot \langle Tf, g \rangle + 2 \cdot \langle Tg, f \rangle = 2 \cdot \langle Tf, g \rangle + 2 \cdot \langle g, T^*f \rangle = 2 \cdot \langle Tf, g \rangle + 2 \cdot \langle g, Tf \rangle = \\ 4 \cdot Re(\langle Tf, g \rangle),$$

en el caso $\mathbb{K} = \mathbb{R}$ se tiene $\langle Tf, g \rangle = \frac{1}{4} \left(\langle T(f+g), f+g \rangle - \langle T(f-g), f-g \rangle \right)$, de donde:

$$\begin{split} |\langle Tf,g\rangle| &\leqslant \frac{1}{4} \left[|\langle T(f+g),f+g\rangle| + |\langle T(f-g),f-g\rangle| \right] \\ &= \frac{1}{4} \left[\left| \left\langle T(\frac{f+g}{\|f+g\|}),\frac{f+g}{\|f+g\|} \right\rangle \right| \|f+g\|^2 + \left| \left\langle T(\frac{f-g}{\|f-g\|}),\frac{f-g}{\|f-g\|} \right\rangle \|f-g\|^2 \right| \right] \\ &\leqslant \frac{M}{4} \left[\|f+g\|^2 + \|f-g\|^2 \right] \\ &= \frac{M}{2} \left[\|f\|^2 + \|g\|^2 \right], \end{split}$$

siendo la última igualdad por la ley del paralelogramo. Si f, g tienen norma no superior a 1 llegamos a $|\langle Tf, g \rangle| \leq M$, y tomando supremos en f, g se tiene $||T|| \leq M$ por (2.11).

2.3. Operadores compactos.

Definición 2.14. Dado X espacio topológico, $Y \subset X$ es relativamente compacto si su clausura es compacta.

Definición 2.15. Un operador es compacto si la imagen de la bola unidad es relativamente compacta.

Observación 2.16. En espacios métricos, y en concreto en espacios normados, la compacidad relativa equivale a que cualquier sucesión contenga una subsucesión convergente (en el espacio X, no en Y).

Lema 2.17. Si $K: H \to H$ es un operador de rango finito en H Hilbert, entonces su adjunto es de rango finito (p. 162, [1]).

Demostración. Si el rango de K es $span\{v_1, \ldots, v_n\}$, con los v_i ortonormales, y P_i es la proyección de H en $span\{v_i\}$, entonces $P_i \circ K$ son formas lineales continuas, $\exists ! u_i$ tal que $P_i \circ Kx = \langle x, u_i \rangle v_i$ para cada $x \in H$. Se tiene entonces:

$$Kx = \sum_{i=1}^{n} \langle x, u_i \rangle v_i$$

para cada $x \in H$. Pero entonces para $x, y \in H$ arbitrarios:

$$\langle x, K^*y \rangle = \langle Kx, y \rangle = \sum_{i=1}^n \langle x, u_i \rangle \langle v_i, y \rangle = \left\langle x, \sum_{i=1}^n \langle y, v_i \rangle u_i \right\rangle,$$

y $K^*y = \sum_{i=1}^n \langle y, v_i \rangle u_i$ para cada $y \in H$, tiene rango finito.

Teorema 2.18. Sea H Hilbert separable, $T: H \to H$ lineal y continua, entonces:

- 1. $S: H \to H$ compacto implica que $S \circ T, T \circ S$ compactos.
- 2. $T_n: H \to H, n = 1, 2, \ldots$ compactos y $\lim_{n \to \infty} ||T_n T|| = 0$ implica T compacto.
- 3. T compacto implica que $\exists T_n: H \to H$ operadores de rango finito con $\lim_{n \to \infty} ||T_n T|| = 0$.
- 4. T compacto si y solo si T* compacto.

Demostración.

- 1. Sea $(x_k)_k \subset B_H$, $(Sx_k)_k$ tiene una subsucesión convergente $Sx_{k_i} \to y$, por continuidad $TSx_{k_i} \to Ty$. Considero ahora $(Tx_k)_k$, como T operador $||T|| < \infty$, $\left(\frac{Tx_k}{||T||}\right)_k \subset B_H$, luego $\left(\frac{STx_k}{||T||}\right)_k$ tiene una subsucesión convergente $\frac{STx_{k_i}}{||T||} \to y$, con lo que $STx_{k_i} \to ||T||y$.
- 2. Sea $(f_k^0)_k \subset B_H$, para cada $n \in \mathbb{N}$, como T_n compacto, $\exists (f_k^n)_k$ subsucesión de $(f_k^{n-1})_k$ tal que $(T_n f_k^n)_k$ es convergente. Considero ahora $(T f_k^k)_k$, veamos que es de Cauchy (y por lo tanto convergente en H completo).

$$\begin{split} \|Tf_k^k - Tf_l^l\| &\leqslant \|Tf_k^k - T_m f_k^k\| + \|T_m f_k^k - T_m f_l^l\| + \|T_m f_l^l - Tf_l^l\| \\ &\leqslant \|T - T_m\| (\|f_k^k\| + \|f_l^l\|) + \|T_m f_k^k - T_m f_l^l\| \\ &\leqslant \|T - T_m\| \cdot 2 + \|T_m f_k^k - T_m f_l^l\| \end{split}$$

Dado $\varepsilon > 0$, tomo m_0 tal que $\|T - T_{m_0}\| < \frac{\varepsilon}{4}$, y como para $k \ge m_0$ $(f_k^k)_k$ es subsucesión de $(f_k^{m_0})_k$, cuya imagen por T_{m_0} converge, puedo tomar l,k suficientemente grandes para que $\|T_{m_0}f_k^k - T_{m_0}f_l^l\| < \frac{\varepsilon}{2}$.

3. Tomo $\{e_k\}_1^{\infty}$ base hilbertiana. Para $H_n := span\{e_1, e_2, \dots, e_n\}, \ P_n := P_{H_n}, \ P_n + Q_n = Id, \ P_n \circ T$ tiene rango en H_n finito-dimensional. Basta ver que $\|T - P_n \circ T\| = \|Q_n \circ T\| \to 0$. $\|Q_n T\| = \sup\{\|Q_n Tf\| : \|f\| \le 1\} = \sup\{\|Q_n g\| : g \in T(B_H)\}$. Pero $T(B_H)$ es relativamente compacto, y $\{Q_n\}_{n \in \mathbb{N}}$ es equicontinua, $\|Q_n\| = 1$ para cada $n \in \mathbb{N}$, así que por el teorema de Ascoli la convergencia puntual y la uniforme son equivalente. Basta ver entonces que $\|Q_n g\| \to 0$ para cada $g \in T(B_H)$.

$$||Q_n g||^2 = \sum_{i=n+1}^{\infty} |\langle g, e_i \rangle|^2 \to 0,$$

pues la serie $\sum_{i=1}^{\infty} |\langle g, e_i \rangle|^2 = ||g||$ converge.

4. Para la necesidad basta aplicar (2.17) y el apartado (2), junto con que $(T_n - T)^* = T_n^* - T^*$. La suficiencia se sigue de que $T = T^{**}$.

Observación 2.19. Si $T: H \to H$ es un operador de rango finito, entonces es compacto, pues la imagen está contenida en una bola de un espacio de dimensión finita, que es compacta,

Proposición 2.20. Sea H Hilbert separable, $\{e_k\}_1^{\infty}$ base ortonormal, $(\lambda_k)_k \subset \mathbb{C}$ acotada. Defino $Te_k := \lambda_k e_k$, luego en general $Tx = \sum_{n=1}^{\infty} \lambda_k \langle x, e_k \rangle e_k$. Entonces:

- 1. $||T|| = \sup\{|\lambda_k| : k = 1, 2, \ldots\}.$
- 2. $T^*e_k = \overline{\lambda_k}e_k$.
- 3. $T = T^* \iff (\lambda_k)_k \subset \mathbb{R}$.
- 4. T es un proyector si y solo si $(\lambda_k)_k \subset \{0,1\}$.
- 5. T es compacto si y solo si $\lim_{k\to\infty} \lambda_k = 0$.

Demostración.

1. Para $||x|| \le 1$,

$$||Tx|| \leqslant \sum_{n=1}^{\infty} |\lambda_k| |\langle x, e_k \rangle| ||e_k||$$

$$\leqslant \sup\{|\lambda_k| : k = 1, 2, \ldots\} \sum_{n=1}^{\infty} |\langle x, e_k \rangle|$$

$$= \sup\{|\lambda_k| : k = 1, 2, \ldots\} ||x||$$

$$= \sup\{|\lambda_k| : k = 1, 2, \ldots\}.$$

- $2. \ \langle T^*e_k, e_i \rangle = \overline{\langle e_i, T^*e_k \rangle} = \overline{\langle Te_i, e_k \rangle} = \overline{\langle \lambda_i e_i, e_k \rangle} = \overline{\lambda_i} \delta_{i,k}.$
- 3. Evidente por el apartado anterior.

- 4. Si la definición de proyector es que $\exists M \subset H$ subespacio cerrado tal que $T = P_M$ es evidente.
- 5. Comienzo por la necesidad. Si lím $_{k\to\infty}$ $\lambda_k\neq 0$, puedo tomar una subsucesión $(\lambda_{k_i})_i$ con $|\lambda_{k_i}|\geqslant \varepsilon$ para cierto $\varepsilon>0$. Si $i\neq j$, $\|Te_{j_i}-Te_{k_j}\|=\sqrt{|\lambda_{k_i}|^2+|\lambda_{k_j}|^2}\geqslant \varepsilon$, luego no puede tener ninguna subsucesión de Cauchy ni convergente.

Para la suficiencia, por el apartado (2) de (2.18) y que los operadores de rango finito son compactos, basta ver que $\|P_nT - T\| = \|Q_nT\|$, donde $H_n := span\{e_1, e_2, \dots, e_n\}$, $P_n := P_{H_n}$, $P_n + Q_n = Id$. Para $x \in H$ con $\|x\| \leq 1$:

$$\begin{aligned} \|Q_n Tx\|^2 &= \sum_{i=n+1}^{\infty} |\lambda_k| |\langle x, e_k \rangle| \\ &\leqslant \sup\{|\lambda_k| : k > n\} \sum_{i=n+1}^{\infty} |\langle x, e_k \rangle| \\ &\leqslant \sup\{|\lambda_k| : k > n\} \|x\| \\ &\leqslant \sup\{|\lambda_k| : k > n\} \to 0, \end{aligned}$$

cuando $n \to \infty$, uniformemente en B_H .

Ejemplo 2.21. $k:[a,b]\times[a,b]\to\mathbb{R}$ continua,

$$K: L^1[a, b] \longrightarrow C[a, b]$$

$$f \longmapsto K(f)(s) = \int_a^b k(s, t) f(t) dt,$$

es compacto (p.178, [1]).

Ejemplo 2.22. Si $\Omega \subset \mathbb{R}^n$ suficientemente regular, $\forall f \in L^2(\Omega)$ existe un único $u \in H = \overline{C_0^{\infty}(\Omega)}$ con $\langle u, v \rangle = \int_{\Omega} uv + \int_{\Omega} \sum u_j v_j$.

$$S: L^2(\Omega) \longrightarrow H \hookrightarrow L^2(\Omega)$$

 $f \longmapsto u$

es compacto por el teorema de Rellich (2.23).

Teorema 2.23 (Rellich). Sea $\Omega \subset \mathbb{R}^n$ abierto con frontera suficientemente regular, $y \in L^2(\Omega)$ tal que para cierto K > 0, $\forall g \in L^2(\Omega)$:

1.
$$g_j = \frac{\partial g}{\partial x_j} \in L^2(\Omega) \ \forall j = 1, \dots, n.$$

2.
$$||g||_{L^2}, ||g_j||_{L^2} \leq K \ \forall j = 1, \dots, n.$$

Entonces \mathcal{F} es relativamente compacto en $L^2(\Omega)$.

Demostración. Tarea.

2.4. Teorema espectral para operadores compactos autoadjuntos.

Proposición 2.24. Si $T = T^*$ y $Tv = \lambda v$ con $v \neq 0$, entonces $\lambda \in \mathbb{R}$.

Demostración. $\lambda \langle v, v \rangle = \langle Tv, v \rangle = \langle v, T^*v \rangle = \langle v, Tv \rangle = \overline{\lambda} \langle v, v \rangle$. Como $v \neq 0$ se da $\lambda = \overline{\lambda}$.

Proposición 2.25. Si T es compacto, $\forall \lambda \neq 0$ se tiene que $Ker(T - \lambda Id)$ es de dimensión finita.

Demostración. Si no es de dimensión finita, podemos tomar $(\phi_n)_n$ ortonormal e infinita en $Ker(T - \lambda Id)$ (espacio cerrado en un Hilbert, pues es preimagen de un $\{0\}$ por una función continua).

Como T es compacto, $(T\phi_n)_n$ debe tener una subsucesión convergente, pero como $T\phi_n = \lambda\phi_n$ $\forall n \in \mathbb{N}, \|T\phi_{n_j} - T\phi_{n_k}\| = |\lambda| \|\phi_{n_j} - \phi_{n_k}\| = |\lambda| \sqrt{2}$, así que ninguna subsucesión es de Cauchy, y no pueden ser convergentes.

Proposición 2.26. Si T es un operador compacto y autoadjunto, entonces o bien ||T|| o bien -||T|| es un valor propio.

Demostración. Sabemos que $||T|| = \sup\{|\langle Tf, f \rangle| : ||f|| = 1\}$ por ser $T = T^*$. La idea es encontrar un máximo.

Tomo $(f_n)_n$ con $||f_n|| = 1$ y $\langle Tf_n, f_n \rangle \to \lambda$ para $|\lambda| = ||T||$. Como T es compacto, $(Tf_n)_n$ tiene una subsucesión $(Tf_{n_k})_k$ convergente en H, y llamo al límite $g \in H$.

Afirmo entonces que g es vector propio de T con valor propio λ , lo que terminaría la prueba.

$$0 \leqslant \|Tf_{n_k} - \lambda f_{n_k}\|^2 = \langle Tf_{n_k}, Tf_{n_k} \rangle - 2\lambda \langle f_{n_k}, Tf_{n_k} \rangle + \lambda^2 \langle f_{n_k}, f_{n_k} \rangle =$$
$$\|Tf_{n_k}\|^2 - 2\lambda \langle Tf_{n_k}, f_{n_k} \rangle + \lambda^2 \|f_{n_k}\|^2.$$

Tomando límites, por la continuidad de la norma:

$$0 \le \|g - \lambda \lim_{k \to \infty} f_{n_k}\|^2 \le \|g\|^2 - 2\lambda \cdot \lambda + \lambda^2 = \|g\|^2 - \lambda^2 \le 0.$$

Se tiene entonces que $g = \lim_{k\to\infty} \lambda f_{n_k}$, y por lo tanto

$$Tg = T(\lim_{k \to \infty} \lambda f_{n_k}) = \lambda T(\lim_{k \to \infty} f_{n_k}) = \lambda g,$$

quedando demostrada la afirmación.

Observación 2.27. En l^2 , el operador T que actua $(\psi_n)_n \to (0, \psi_1, \psi_2, ...)$ no es invertible (no es sobreyectiva), esto es, $T - 0 \cdot Id$ no es invertible, y sin embargo 0 no es valor propio. Por eso el concepto de espectro es más general que el de valores propios, y por eso el teorema que dice que el espectro no es vacío no nos sirve para demostrar que existe un valor propio. En este contexto se introduce la siquiente notación.

Definición 2.28. Dado T operador, llamamos $\sigma_p(T)$ al conjunto de los valores propios de T.

Teorema 2.29 (Hilbert-Schmidt). Sea H espacio de Hilbert separable, $T: H \to H$ un operador compacto y autoadjunto. Entonces existe una base hilbertiana $\{v_k\}_{k=1}^{\infty}$ de H con $Tv_k = \lambda_k v_k$ para $\lambda_k \in \mathbb{R} \ \forall k = 1, 2, \ldots \ y \ \text{lim}_{k \to \infty} \ \lambda_k = 0$.

Demostración. Llamo $S = \overline{span}\{v : v \text{ es vector propio de } T\} \subset H$.

Afirmo que si $KerT = \{0\}$ entonces S = H. Para demostrarlo, supongamos lo contrario, esto es, $S \neq H = S \oplus S^{\perp}$. $T(S) \subset S$ claramente, así que si $g \in S^{\perp}$ entonces $\langle Tg, f \rangle = \langle g, Tf \rangle = 0 \ \forall f \in S$, y por lo tanto $Tg \in S^{\perp}$. Puedo entonces considerar el operador $T|_{S^{\perp}}$ tiene un vector propio $v \in S^{\perp}$ (2.26), que también lo será de T, contradicción¹.

Si además $Tv_k = \lambda_k$ para $k = 1, 2, \ldots$ para $\{v_k\}_{k=1}^{\infty}$ base hilbertiana, veamos que $\lim_{k \to \infty} \lambda_k = 0$. Si no fuese así, existiría una subsucesión $(\lambda_{k_i})_i$ con $|\lambda_{k_i}| \ge \varepsilon \ \forall i \in \mathbb{N}$. Se tiene entonces:

$$\|\lambda_{k_i}v_{k_i} - \lambda_{k_j}v_{k_j}\| = \lambda_{k_i}^2 + \lambda_{k_j}^2 > 2 \cdot \varepsilon,$$

y la sucesión $(TV_k)_k$ no puede tener subsucesiones convergentes, que contradice que el operador sea compacto.

Falta ver el caso no inyectivo. Si $KerT \neq 0$, como $H = KerT \oplus (KerT)^{\perp}$ y KerT es el espacio propio asociado al valor propio 0, aplicando el caso inyectivo a $T|_{(KerT)^{\perp}}$ ya lo tenemos, solo hay que ver que $Tg \in (KerT)^{\perp}$ para cada $g \in (KerT)^{\perp}$. Pero si $x \in KerT$, $\langle x, Tg \rangle = \langle Tx, g \rangle = \langle 0, g \rangle = 0$. \square

Observación 2.30. En ese caso $Tx = \sum_{n=1}^{\infty} \lambda_k \langle x, v_k \rangle v_k$ por ser el operador continuo.

Observación 2.31. $H = \bigoplus_{i=1}^{\infty} Ker(T - \lambda_i Id) \ con \ \lambda_i \to 0.$

Definición 2.32. Un operador T es normal si $T^*T = TT^*$.

El teorema es cierto también para operadores normales, no hace falta que sean autoadjuntos.

Definición 2.33. Sea $T: H \to H$ operador, con H Hilbert, y sean $b \in H$ y $\lambda \in \mathbb{K} - \{0\}$. Queremos encontrar $u \in H$ tal que $\lambda u - Tu = b$ (P). Llamamos problema homogéneo (P_h) al caso b = 0.

Teorema 2.34 (Alternativa de Fredholm). Dado T operador compacto y autoadjunto en un espacio H de Hilbert separable, con una base ortonormal de vectores propios $\{e_n\}_{n=1}^{\infty}$, $Te_n = \lambda_n e_n$,

1. Si $\lambda \notin \sigma_p(T) \cup \{0\}$, el problema (P) tiene una única solución dada por:

$$u = \lambda^{-1} \left(b + \sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda - \lambda_n} \langle b, e_n \rangle e_n \right).$$

 $^{^1\}mathrm{Creo}$ que no se usa que sea inyectivo y que esto termina la prueba en el caso general.

2. Si $\lambda \in \sigma_p(T) \setminus \{0\}$, entonces (P) tiene solución si y solo si $\langle b, v \rangle = 0 \ \forall v$ solución de (P_h) . En ese caso, si $\lambda = \lambda_i$, entonces las soluciones vienen dadas por:

$$u = z + \lambda^{-1} \left(b + \sum_{n=1, n \neq i}^{\infty} \frac{\lambda_n}{\lambda - \lambda_n} \langle b, e_n \rangle e_n \right),$$

para z solución de (P_h) .

Demostración.

1. La base $\{e_n\}_{n=1}^{\infty}$ cumple $\lim_n \lambda_n = 0$ (2.20). Supongamos que u es solución de (P), observamos que

$$\begin{split} (\lambda - \lambda_n) \langle u, e_n \rangle &= \langle \lambda u, e_n \rangle - \langle u, \bar{\lambda_n} e_n \rangle \\ &= \langle \lambda u, e_n \rangle - \langle u, \lambda_n e_n \rangle \\ &= \langle \lambda I du, e_n \rangle - \langle u, Te_n \rangle \\ &= \langle \lambda I du, e_n \rangle - \langle Tu, e_n \rangle \\ &= \langle (\lambda I d - T)u, e_n \rangle \\ &= \langle b, e_n \rangle \,. \end{split}$$

Como $\lambda \neq \lambda_n \ \forall n \in \mathbb{N}$:

$$u = \lambda^{-1}(b + Tu) = \lambda^{-1}\left(b + \sum_{n=1}^{\infty} \lambda_n \langle u, e_n \rangle e_n\right) = \lambda^{-1}\left(b + \sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda - \lambda_n} \langle b, e_n \rangle e_n\right).$$

Considero $\alpha_n = \frac{\lambda_n}{\lambda - \lambda_n}$, y estudiemos la serie $\sum_{n=1}^{\infty} |\alpha_n|^2 |\langle b, e_n \rangle|^2$. Como los $\lambda_n \to 0 \neq \lambda$, $|\alpha_n| < C \in \mathbb{R} \ \forall n \in \mathbb{N}$, y por lo tanto la serie queda acotada por $C^2 ||b||^2$ y converge, y dicho $u \in H$ existe. Además, por continuidad de T:

$$\begin{split} Tu &= \lambda^{-1} \left(Tb + \sum_{n=1}^{\infty} \alpha_n \lambda_n \langle b, e_n \rangle e_n \right) = \lambda^{-1} \left(\sum_{n=1}^{\infty} \lambda_n \langle b, e_n \rangle e_n + \sum_{n=1}^{\infty} \alpha_n \lambda_n \langle b, e_n \rangle e_n \right) \\ &= \left(\sum_{n=1}^{\infty} \lambda^{-1} \lambda_n (1 + \alpha_n) \langle b, e_n \rangle e_n \right) = \left(\sum_{n=1}^{\infty} \lambda^{-1} \lambda_n \frac{\lambda}{\lambda - \lambda_n} \langle b, e_n \rangle e_n \right) \\ &= \left(\sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda - \lambda_n} \langle b, e_n \rangle e_n \right). \end{split}$$

Es obvio entonces que u cumple la ecuación.

2. Para la necesidad, sean u, v soluciones de $(P), (P_h)$ respectivamente. Como $\lambda \in \sigma_p(T) \subset \mathbb{R}$, $(\lambda Id - T)$ es autoadjunto, y por lo tanto:

$$\langle b, v \rangle = \langle \lambda u - Tu, v \rangle = \langle (\lambda Id - T)u, v \rangle = \langle u, (\lambda Id - T)v \rangle = 0.$$

Para la suficiencia, es evidente que si a una solución le sumas otra de la homogénea sigue siendo solución, así que bastará ver que la expresión con z=0 es solución. El argumento de convergencia y la comprobación de la igualdad se hacen exactamente igual que en el caso anterior, salvo por el siguiente detalle. e_i es solución de la homogénea, así que al calcular Tb, el coeficiente i-ésimo $\langle Tb, e_i \rangle = \langle b, Te_i \rangle = \lambda_i \langle b, e_i \rangle = 0$ no aparece.

Corolario 2.35. Fijado $\lambda \in \mathbb{K} - \{0\}$, si (P) tiene a lo más una solución $\forall b \in H$, entonces se verifica que el operador lineal y continuo $(\lambda Id - T)^{-1} : H \to H$ queda bien definido. Además, la ecuación (P) tiene como solución $u = (\lambda Id - T)^{-1}b$.

3. Los principios fundamentales del Análisis Funcional: aplicaciones.

3.1. Teorema de Hahn-Banach.

Definición 3.1. Un espacio vectorial topológico es un espacio vectorial con una topología en la que el producto por escalares y la suma de vectores son aplicaciones continuas.

Ejemplo 3.2. $\Omega \subset \mathbb{R}^n$ abierto, $C_0^{\infty}(\Omega) = \mathcal{D}(\Omega)$ son las funciones C^{∞} con soporte compacto. Fijado un compacto $K \subset \Omega$, se puede fijar la topología de la convergencia uniforme sobre K sobre el espacio $\mathcal{D}_K(\Omega) \subset \mathcal{D}(\Omega)$ de las funciones con soporte contenido en K.

Cualquier abierto de \mathbb{R}^n se puede poner como unión numerable de compactos crecientes, de forma que $\mathcal{D}(\Omega) = \cup \mathcal{D}_{K_n}(\Omega)$. Cada \mathcal{D}_{K_n} es un espacio de Banach con la topología anterior, y se puede construir en $\mathcal{D}(\Omega)$ la topología límite inductivo, que es la más fina tal que las inclusiones de los $\mathcal{D}_{K_n}(\Omega)$ son continuas. Este espacio es localmente convexo, y además se puede definir un dual $\mathcal{D}(\Omega)^*$.

Teorema 3.3 (Hahn-Banach, versión geométrica). Dado X espacio de Banach, $A \subset X$ convexo y cerrado, $x_0 \notin A$, entonces existe $f \in X^*$ $y : H = \{x \in E : f(x) = \lambda\}$ separa A de x_0 .

Corolario 3.4. Todo conjunto cerrado y convexo en un espacio de Banach es intersección de semiplanos.

Teorema 3.5 (Hahn-Banach, versión analítica en un espacio de Hilbert). Sea H espacio de Hilbert, $y \ F \subset H$ subespacio cerrado. Sea $f : F \to \mathbb{K}$ lineal y continua, entonces existe una única $\tilde{f} : H \to \mathbb{K}$ una aplicación lineal y continua extensión de f.

Demostración. F cerrado en Hilbert implica Hilbert, por el teorema de Riesz $\exists v_f \in F$ tal que $f(x) = \langle x, v_f \rangle \ \forall x \in F$, y $\|v_f\| = \|f\|$. Definiendo $\tilde{f}(x) = \langle x, v_f \rangle \ \forall x \in H$ es fácil comprobar la veracidad de las afirmaciones.

Teorema 3.6 (Hahn-Banach, versión geométrica en un espacio de Hilbert real). Sea H espacio de Hilbert real, $y \in C \subset H$ convexo cerrado $y \in C$. Entonces $\exists f : H \to \mathbb{R}$ lineal y continua tal que $f(x_0) > \alpha > f(c) \ \forall c \in C$.

Demostración. El problema 1.52 dice que $y \in C$ cumple que $||x_0 - y|| = dist(x_0, C)$ si y solo si $Re(\langle x_0 - y, w - y \rangle) \le 0$ para cada $w \in C$. En el caso real no hace falta usar la parte real. Llamo y_0 al vector que cumple eso, y defino $f: H \to \mathbb{R}$ dada por $\langle \cdot, x_0 - y_0 \rangle$, se deja como ejercicio comprobar las afirmaciones.

Lema 3.7. Sea X espacio vectorial real y $p: X \to \mathbb{R}$ un funcional subaditivo y positivamente homogeneo $(p(\lambda x) = \lambda p(x); \forall \lambda > 0, x \in X)$. Sea Y subespacio de X de codimensión 1, y sea $f: Y \to \mathbb{R}$ lineal tal que $f(x) \leq p(x) \ \forall x \in Y$. Entonces podemos extender f a $\tilde{f}(x): X \to \mathbb{R}$ tal que $\tilde{f}(x) \leq p(x) \ \forall x \in X$.

Demostración. $X = Y \oplus span\{x_0\}$. Solo hace falta definir $f(x_0)$ de forma que se mantenga la acotación. Cualquier extensión será de la forma

$$\tilde{f}(x) = \tilde{f}(y + \alpha x_0) = f(y) + \alpha \tilde{f}(x_0),$$

y debe cumplirse:

$$\sup_{w \in Y} \{ f(w) - p(w - x_0) \} \leqslant \tilde{f}(x_0) \leqslant \inf_{z \in Y} \{ -f(z) + p(z + x_0) \}. \tag{1}$$

Hace falta comprobar que ese intervalo no es vacío. Observamos que

$$f(z) + f(w) = f(z+w) \le p(z+w) = p(z+x_0+w-x_0) \le p(z+x_0) + p(w-x_0), \forall z, w \in Y,$$

de donde $f(w) - p(w - x_0) \leq -f(z) + (p(z + x_0) \ \forall w, z \in Y$, de donde el intervalo de los posibles valores $\tilde{f}(x_0)$ es no vacío. Definimos entonces $\tilde{f}(x_0)$ en ese intervalo, queda solo ver que $\tilde{f}(y + \alpha x_0) \leq p(y + \alpha x_0) \ \forall y \in Y, \alpha \in \mathbb{R}$. Basta trabajar por casos en el signo de α .

Corolario 3.8. Si p es una seminorma (subaditiva y $p(\lambda x) = |\lambda|p(x)$), si $|f(x)| \le p(x) \ \forall x \in Y$, entonces $|\tilde{f}(x)| \le p(x) \ \forall x \in X$.

Observación 3.9. Si p es una norma, esa condición se traduce en la acotación, y por lo tanto en la continuidad de la aplicación.

Teorema 3.10 (Hahn-Banach versión analítica). Sea X un espacio de Banach, Y subespacio cerrado de X, y $X = \overline{span}\{x_n : n = 1, 2, ...\}$. Considero $f: Y \to \mathbb{R}$ lineal y continua, entonces $|f(y)| \le ||f|||y||$ y se puede construir una extensión con $|\tilde{f}(x)| \le ||x|||f||$

Demostración. Si $Y_0 := Y$, $f_0 = f$, defino $Y_n := Y_{n-1} \oplus span\{x_n\}$, entonces para cada $n \in \mathbb{N}$ se puede extender f_{n-1} a $f_n : Y_n \to \mathbb{R}$ tal que $|f_n(x)| \le ||f_{n-1}|| ||x|| = \ldots = ||f|| ||x||$.

Defino entonces

$$\tilde{f}: Z := \bigcup_{n=1}^{\infty} Y_n \longrightarrow \mathbb{R}$$

$$z \longmapsto \tilde{f}(z) = f_n(z) \text{ si } z \in Y_n,$$

es fácil ver que está bien definida, y que $|\tilde{f}(z)| \leq ||f|||x|| \ \forall z \in Z$. Pero además es lineal, así que es uniformemente continua y se puede extender a la clausura de Z que es X.

Trabajamos ahora en un espacio vectorial E general.

Definición 3.11. Cuando $\forall x \ existe \ \lambda_0 > 0 \ tal \ que \ x \in \lambda A \ si \ \lambda > \lambda_0$, se dice que A es absorbente.

Definición 3.12. Dado A absorbente con 0 en el interior de A, defino $P_A(x) := \inf\{\lambda > 0 : x \in \lambda A\}$. A esta aplicación se le llama el funcional de Minkowski.

Proposición 3.13. Las siguientes propiedades son ciertas:

- 1. $P_A \geqslant 0$ y positivamente homogéneo.
- 2. Si A convexo, P_A es subaditiva.
- 3. $\{x: P_A(x) < 1\} \subset A \subset \{x: P_A(x) \le 1\}$.

Demostración. (Proposición 3.5.9., [1]).

Teorema 3.14 (Mazur). Sea $E[\tau]$ un espacio vectorial topológico, $M \subset E$ una variedad afín y $A \subset E$ no vacío, abierto y convexo. Si $A \cap M = \emptyset$, entonces existe un hiperplano afín cerrado H en $E[\tau]$ tal que $A \cap H = \emptyset$ y $M \subset H$.

Demostración. $M=x_0+F$ con $F\subset E$ subespacio vectorial. Podemos suponer sin pérdida de generalidad que $0\in A$, pues se puede trasladar el problema. Como A es abierto, A es absorbente, y se comprueba además que $A=\{x\in E: P_A(x)<1\}$, y aplicando que $A\cap M=\varnothing P_A(x_0+y)\geqslant 1, \forall y\in F$. Defino

$$u: F \oplus span\{x_0\} \longrightarrow \mathbb{R}$$

 $(y, \lambda x_0) \longmapsto u((y, \lambda x_0)) = \lambda.$

u es lineal, y $u(y + \lambda x_0) \leq P_A(y + \lambda x_0) \ \forall \lambda \in \mathbb{R}, y \in F$, pues:

- si $\lambda < 0$, $u(y + \lambda x_0) = \lambda \leq 0 \leq P_A(x_0 + y)$;
- si $\lambda > 0$, $u(y + \lambda x_0) = \lambda \cdot 1 \leq \lambda P_A(\frac{1}{\lambda}y + x_0) = P_A(y + \lambda x_0)$.

Aplicando a u la forma analítica de Hahn-Banach, u se extiende a $\tilde{u}: E \to \mathbb{R}$ tal que $\tilde{u}(x) \leq P_A(x)$ para cada $x \in E$. Al ser A un abierto, esa última desigualdad implica que \tilde{u} es continua (comprobar el límite en 0), y definiendo

$$H = \{x \in E : \tilde{u}(x) = 1\},\$$

se tiene
$$M \subset H$$
 y $A \cap H = \emptyset$ $(x \in H \implies P_A(x) \ge \tilde{u}(x) = 1 \implies x \notin A).$

Corolario 3.15 (1er Teorema de Separación). Sea $E[\tau]$ espacio vectorial topológico, A y B subconjuntos convexos no vacíos y abiertos, con $A \cap B = \emptyset$. Entonces existe un hiperplano H real cerrado que separa estrictamente A y B, esto es, existe $f: E \to \mathbb{R}$ lineal y continua, $H = \{x \in E: f(x) = \xi\}$ y $A \subset \{x \in E: f(x) < \xi\}$, $B \subset \{x \in E: f(x) > \xi\}$.

Demostración. A-B (diferencia algebraica, no de conjuntos) es convexo, abierto, no vacío y $0 \notin A-B$, por Mazur $\exists f: E \to \mathbb{R}$ lineal y continua con $0 \in H = \{x \in E: f(x) = 0\}$ y $H \cap (A-B)$, de donde f(A-B) será conexo en \mathbb{R} , es decir, un intervalo, con $0 \notin f(A-B)$, luego f separa estrictamente A y B.

Corolario 3.16 (2º Teorema de Separación). Sea $E[\tau]$ e.v.t. localmente convexo, K, F subconjuntos convexos disjuntos de E, con K compacto y F cerrado. Entonces existe un hiperaplano real cerrado que separa estrictamente K y F.

Demostración. Si K es compacto, $\exists W$ entorno del origen convexo (por ser localmente convexo) tal que $(K + W) \cap (F + W) = \emptyset$ (ejercicio), bastantado entonces aplicar el resultado anterior.

Teorema 3.17 (Hahn-Banach, versión geométrica). Dados dos conjuntos A y B convexos y cerrados, existe $H = \{x \in E : f(x) = \lambda\}$ que separa A y B, donde $f : E \to \mathbb{R}$ es lineal y continua.

3.2. Teorema de Baire.

Definición 3.18. Un conjunto es nunca-denso si el interior de su clausura es vacío.

Definición 3.19. Los conjuntos de primera categoría son las uniones numerables de conjuntos nunca-densos, y los de segunda categoría los que no son de primera.

Definición 3.20. Un espacio topológico se llama de Baire si la intersección de cualquier sucesión de abiertos densos es un conjunto denso.

Teorema 3.21 (Baire). Si(M,d) es un espacio métrico completo, entonces M es de Baire.

Demostración. (p. 263, [1]).

Sea $(G_n)_n$ una sucesión de abiertos densos. Para demostrar que $\cap_{n\in\mathbb{N}}G_n$ es denso, veamos que para cualquier abierto $\emptyset\neq V\subset M$ se tiene que $V\cap (\cap_{n\in\mathbb{N}}G_n)\neq\emptyset$. Construyo inductivamente sucesiones $(x_n)_n\subset M$, $(r_n)_n\subset\mathbb{R}^+$ de forma que $B[x_n,r_n]\subset G_n\cap B(x_{n-1},r_{n-1})\subset G_n\cap G_{n-1}\cap\ldots\cap G_1\cap V$ y $r_n<\frac{1}{n}$.

- Como G_1 denso en M, $\exists x_1 \in G_1 \cap V \neq \emptyset$, y por ser abierto $\exists r_1 \in (0,1)$ con $B[x_1,r_1] \subset V \cap G_1$.
- Como G_n denso en M, $\exists x_n \in G_n \cap B(x_{n-1}, r_{n-1}) \neq \emptyset$, y por ser abierto $\exists r_n \in (0, \frac{1}{n})$ con $B[x_n, r_n] \subset G_n \cap B(x_{n-1}, r_{n-1}) \subset G_n \cap G_{n-1} \cap \ldots \cap G_1 \cap V$.

 $(x_n)_n$ es de Cauchy, pues para cada m > n $x_m \in B(x_m, r_m) \subset B(x_{m-1}, r_{m-1}) \subset \ldots \subset B(x_n, r_n)$, y $r_n \to 0$. Como el espacio es completo existe $x = \lim_{n \to \infty} x_n$, debe ser $x \in B[x_n, r_n]$ para cada $n \in \mathbb{N}$, pues ya hemos visto que $\forall m > n$ $x_m \in B(x_n, r_n) \subset B[x_n, r_n]$, y este es cerrado, basta tomar límites en m. Se tiene por construcción entonces que $x \in G_n \cap G_{n-1} \cap \ldots \cap G_1 \cap V$ para cada $n \in \mathbb{N}$, y por lo tanto $x \in V \cap (\bigcap_{n \in \mathbb{N}} G_n)$

Corolario 3.22. Si X es un espacio de Banach, entonces su dimensión algebraica o es finita o es no numerable.

Demostración. (p. 264, [1]). □

3.3. Teorema de la acotación uniforme o de Banach-Steinhaus.

Teorema 3.23 (Banach-Steinhaus, de la acotación uniforme). Sea $\{A_i : i \in I\}$ una familia de aplicaciones lineales continuas del espacio normado X en el espacio normado Y y sea

$$D = \{ x \in X : \sup_{i \in I} ||A_i(x)|| = \infty \}.$$

Entonces:

- 1. Si D^c es de segunda categoría, entonces $\sup_{i \in I} ||A_i|| < \infty$ y D es vacío.
- 2. Si X es de Banach, entonces, o bien $\sup_{i \in I} ||A_i|| < \infty$, o bien D es un G_δ denso en X.

Otra versión más sencilla, que es la que puede preguntar en el examen de teoría:

Teorema 3.24 (Banach-Steinhaus, de la acotación uniforme). Dada una familia de aplicaciones lineales y continuas $\{A_i\}_{i\in I}$ entre un espacio de Banach X y un espacio normado Y, si $\forall x\in X$ $\sup_{i\in I}\|A_i(x)\|<\infty$, entonces $\sup_{i\in I}\|A_i\|<\infty$.

Demostración. (p.265-266, [1])

Considero los conjuntos

$$D = \{ x \in X : \sup_{i \in I} ||A_i(x)|| = \infty \},$$

$$D_n = \bigcup_{i \in I} \{ x \in X : ||A_i(x)|| > n \}.$$

Los D_n son abiertos porque cada A_i y la norma son continuas, y $D = \bigcap_{n \in \mathbb{N}} D_n$. Por hipótesis $D = \emptyset$, y si cada D_n fuese denso D también lo sería (3.21, pues X es Banach), así que algún D_n no es denso, y $\exists m \in \mathbb{N}$ con $Int(D_m^c) \neq \emptyset$. Considero $x \in Int(D_m^c)$, y r > 0 con $B(x, r) \subset D_m^c$, de forma que $\forall y \in B(x, r)$ se tiene $||A_iy|| \leq m$. Considero además $C = \sup_{i \in I} ||A_ix|| < \infty$. Se puede comprobar entonces, para $y \in B(0, r)$:

$$||A_iy|| = ||(A_iy - A_ix) + A_ix|| \le ||A_i(x - y)|| + ||A_ix|| \le m + C,$$

y por lo tanto $\forall y \in B[0,1], i \in I$ se da $||A_iy|| \leq 2r(m+C)$, con lo que $\sup_{i \in I} ||A_i|| < \infty$.

3.4. Teorema de la aplicación abierta y de la gráfica cerrada.

Referencias

[1] J. Orihuela, B. Cascales, M. Raja y J. M. Mira, *Análisis funcional*. Murcia: Electolibris, 2012, OCLC: 864356789, ISBN: 978-84-940688-2-9.