

HY2RORESO: UN PLUGIN QGIS DÉDIÉ À LA HIÉRARCHISATION AUTOMATIQUE DE RÉSEAUX HYDROGRAPHIQUES

Alice Gonnaud, Michaël Gaudin, Guillaume Vasseur, Cécile Duchêne

Ecole Nationale des Sciences Géographiques (ENSG) prenom.nom@ensg.eu

CONTEXTE: BESOIN

Un besoin: hiérarchiser un réseau hydrographique. Pourquoi?

- Généralisation (simplification) de données géographiques
 - => garder les rivières les plus « importantes »
 - => un classique: ordre de Horton [Thomson & Brookes 2000]

[Thomson & Brookes 2000]

Contexte/Obj

Proposition

Résultats

Conclusion

CONTEXTE: BESOIN

Un besoin: hiérarchiser un réseau hydrographique. Pourquoi?

Projet ANR CHOUCAS

Intégration de données hétérogènes et raisonnement spatial pour l'aide à la localisation de victimes en montagne

« Je suis au fond de la vallée », « Je suis sur tel versant »: Où est-il/elle?

[Dillet & Dumontier 2018]

GÉOGRAPHIQUES

CONTEXTE: BESOIN

Un besoin: hiérarchiser un réseau hydrographique. Pourquoi?

D'autres besoins potentiels en hydrologie, environnement...

EXISTANT - MÉTHODES

Contexte/Obj

Proposition

Résultats

Conclusion

EXISTANT - MÉTHODES

EXISTANT - MÉTHODES

EXISTANT - MÉTHODES

Contexte/Obj Pro

Résultats

Conclusion

EXISTANT - MÉTHODES

Contexte/Obj

Proposition

Résultats

Conclusion

EXISTANT - MÉTHODES

Contexte/Obj Proposition Résultats Conclusion

EXISTANT - OUTILS IMPLÉMENTÉS

Il existe des implémentations:

- QGIS plugin « Strahler », GRASS v.stream.order
- ...Mais ne gèrent pas les cas complexes ni ordre de Horton

Plugin OpenJUMP, gère cas complexes mais pas ordre de Horton

OBJECTIF

Disposer d'un plugin QGIS

- o qui calcule les ordres de Strahler, Shreve, Horton + les « strokes »
- qui gère les cas complexes

© Entrée

- Une couche vectorielle linéaire de tronçons hydrographiques, topologiquement « propre » et planaire.
- Tronçons saisis dans le sens d'écoulement
- Les réseaux artificiels (irrigation...) sont à exclure cf. [Touya 2007]

Sortie

Attributs supplémentaires Strahler, Shreve, Horton, id. « stroke »

Contexte/Obj Proposition Résultats Conclusion

GÉOGRAPHIQUES

PLAN DE LA PRÉSENTATION

- Contexte et objectif
- Proposition
 - Choix opérés pour gérer les cas complexes
 - Algorithme
- Résultats
 - Plugin QGIS Hy2roresO
 - Test sur données réelles
- © Conclusion

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

CHOIX THÉORIQUES

- Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]
- Calcul des ordres

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

- Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]
- Calcul des ordres

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

- Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]
- © Calcul des ordres

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

- Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]
- Calcul des ordres

CHOIX THÉORIQUES

- Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]
- Calcul des ordres

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

CHOIX THÉORIQUES

Détection des îles et étiquetage des tronçons associés cf. [Touya 2007]

Contexte/Obj Proposition Résultats Conclusion

CHOIX THÉORIQUES

Construction des strokes cf. [Touya 2007]

CHOIX THÉORIQUES

Construction des strokes cf. [Touya 2007]

ALGORITHMIE

- Construction de réseau
- Détection des îles
- Détection de tronçons à sens d'écoulement « suspect »
- © Calcul des ordres hors îles
- © Calcul des strokes
- © Calcul des ordres dans les îles

LE PLUGIN HY2RORESO

ÉCOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES

Contexte/Obj | Proposition

Résultats

Conclusions

LE PLUGIN HY2RORESO

Contexte/Obj Proposition Résultats Conclusions

LE PLUGIN HY2RORESO

Contexte/Obj Proposition Résultats Conclusions

LE PLUGIN HY2RORESO

Contexte/Obj Proposition Résultats Conclusions

LE PLUGIN HY2RORESO

Contexte/Obj Proposition Résultats Conclusions

LE PLUGIN HY2RORESO

strahler	horton	id_stroke	shreve	reversed
2	2	829	4	0
2	2	829	4	0
4	4	1543	53	0
6	6	1391	1937	0
6	6	1391	1937	0
1	1	1367	1	1
1	1	1367	1	0
6	6	1391	1936	0
6	6	1391	1935	0
1	1	1364	1	0
1	1	1364	1	0
1	1	1364	1	0

Contexte/Obj Proposition Résultats Conclusions

TEST SUR DONNÉES RÉELLES (BD TOPO)

Contexte/Obj Proposition Résultats Conclusion

TEST SUR DONNÉES RÉELLES (BD TOPO)

TEST SUR DONNÉES RÉELLES (BD TOPO)

Contexte/Obj Proposition Résultats Conclusion

TEST SUR DONNÉES RÉELLES (BD TOPO)

Contexte/Obj Proposition Résultats Conclusion

TEST SUR DONNÉES RÉELLES (BD TOPO)

Strokes

GÉOGRAPHIQUES

CONCLUSION

- Nouveau plugin QGIS:
 - Gestion de cas complexes
 - Open source, licence BSD, documentation en ligne
 - Utilisateurs intéressés

- Perspectives :
 - Tests et identification de cas non gérés
 - Ouvert aux évolutions

Contexte/Obj Proposition Résultats Conclusion

CONCLUSION

CHOIX THÉORIQUES

Iles simples, îles complexes

Contexte/Obj Proposition Résultats Conclusion

MATRICES DE-91M

	Int(B)	Front(B)	Ext(B)
Int(A)	1	F	F
Front(A)	0	0	F
Ext(A)	2	1	2

	Int(B)	Front(B)	Ext(B)
Int(A)	1	F	F
Front(A)	F	0	F
Ext(A)	2	1	2

	Int(B)	Front(B)	Ext(B)
Int(A)	1	F	F
Front(A)	0	F	F
Ext(A)	2	1	2

	Int(B)	Front(B)	Ext(B)
Int(A)	F	1	F
Front(A)	F	0	F
Ext(A)	2	1	2

	Int(B)	Front(B)	Ext(B)
Int(A)	F	F	1
Front(A)	F	0	0
Ext(A)	1	0	2