

Atividade: Cálculos com régua

Habilidades

EM13MAT305 Resolver e elaborar problemas com funções logarítmicas nos quais seja necessário compreender e interpretar a variação das grandezas envolvidas, em contextos como os de abalos sísmicos, pH, radioatividade, Matemática Financeira, entre outros.

Para o professor

Objetivos específicos

- OE1 Desenvolver operações de multiplicação e divisão utilizando a soma de logaritmos.
- OE2 Efetuar cálculos de multiplicação e divisão utilizando a régua de cálculo.

Observações e recomendações

Recomenda-se que se destaque um problema na utilização da régua em base dois: os números crescem rápido demais. Aqui seria possível questionar aos alunos como esse problema poderia ser resolvido, antes de apresentar a resposta: tomar uma base menor (mas que ainda precisará ser maior do que 1, caso contrário teríamos uma escala decrescente na régua).

Recomenda-se então que os estudantes utilizem, em grupos, as réguas disponíveis com o material para efetuar as operações indicadas. O/A professor/a pode tirar cópias das réguas no anexo, recortá-las e entregar aos alunos para que não sejam removidas do material.

Atividade

Em pequenos grupos, vamos utilizar as réguas de cálculo para efetuar os seguintes cálculos:

a)	9	Χ	7.	

b) 3,5 x 4.

c) 2,8 x 2,5.

d) 28 x 25.

e) 3,2 x 3,1.

f) 5,8 x 9,3.

g) 583 x 93.

h) 78326 x 648.

i) $56 \div 7$.

j) $58 \div 4$.

k) $93 \div 5$.

I) 476 ÷ 93.

m) $7345 \div 57$.

Patrocínio:

Solução:

Nessas atividades basta deslizar a metade superior de modo que o número 1 esteja sobre o primeiro dos fatores e observar a resposta abaixo do segundo fator na régua superior.

- a) $9 \times 7 = 63$.
- b) $3.5 \times 4 = 14$.
- c) $2.8 \times 2.5 = 7.$
- d) $28 \times 25 = 700$. Apesar dos números 28 e 25 estarem nas duas metades da régua, a posição onde estaria a reposta fica além do comprimento da régua, mas podemos realizar esse cálculo lembrando que $28 \times 25 = 2.8 \times 2.5 \times 10^2 = 7 \times 10^2 = 700$.
- e) $3.2 \times 3.1 \approx 9.9$. Ao aplicarmos o procedimento a resposta parece dar 9.9. Isso ocorre pois há um limite para a escala de graduações escrita na régua, que tem precisão máxima de uma casa decimal para números menores do que 10 e precisão apenas da parte inteira para números maiores do que 10. A resposta exata seria 9.92 e a resposta 9.92 é uma aproximação para ela.
- f) $5.8 \times 9.3 \approx 54$. A régua mostra a aproximação 54, que está bastante próxima da resposta exata 53.94.
- g) $583 \times 93 \approx 54000$. $583 \times 93 = 5,83 \times 9,3 \times 10^3 \approx 54 \times 10^3 = 54000$, que é uma aproximação para a resposta exata 54219.
- h) $78326 \times 648 \approx 51000000$. $78326 \times 648 = 7,8326 \times 6,48 \times 10^6 \approx 51 \times 10^6 = 51000000$, que é uma aproximação para a resposta exata 50755248.
- i) $56 \div 7 = 8$.
- j) $58 \div 4 = 14,5$. A régua mostra um valor entre 14 e 15, nesses casos podemos tomar a média entre eles, 14,5, que, por acaso, acaba coincidindo com a resposta exata.
- k) $93 \div 5 \approx 18,6$. A régua mostra um valor entre 18 e 19, nesses casos podemos tomar a média entre eles, 18,5, que aproxima resposta exata 18,6.
- l) $476 \div 93 \approx 5.1$. $476 \div 93 = 47.6 \div 9.3 \approx 5.1$, que é uma aproximação para a resposta dada pela calculadora 5.11827957 (que é apenas uma aproximação...).
- m) $7345 \div 57 \approx 125$. $7345 \div 57 = 73, 45 \div 5, 7 \times 10 \approx 12, 5 \times 10 = 125$, que é uma aproximação para a resposta dada pela calculadora 128,859649123 (que é apenas uma aproximação...).

Patrocínio:

90 BASE 1,0471		80		70	60	50	40	30	[0 20	0
60 70 80 90	50	40	30	20		8 9	6		2	-
60 70 80 90	50	40	30	20	- - - -	8 9 10	5 6 7	3 4	- - - - - - - - - -	 - - - -
90 BASE 1,0471		80)	70	60	50	40	30	10 20	0
90 BASE 1,0471	-	80	- - - -	70	60	50	40	30	10 20 20	0-
60 70 80 90	50	40	30	20		8 9	6	3 -	2	
60 70 80 90	50	40	30	20	 	8 9	5 6 7		2	- -
90 BASE 1,0471	_ _ _ _	80	- - - - -	70	60	50	40	30	10 20	0
90 BASE 1,0471	_	80	- - - -	70	60	50	40	- - -	10 20	0
60 70 80 90	50	40	30	20	- - - - - -	8 9	6	3 -	2	——————————————————————————————————————
60 70 80 90	50	40	30	20		8 9	5 6 7		_	1
90 BASE 1,0471	_	80	_ _ _ _ _	70	60	50	_ _ _	30	10 20	0
BASE 1,0471	_ _ _ _	80	- - - -	70	60	- - - -	40	- - - -	10 20	0
60 70 80 90	50	40	30	20		8 9 8 9	5 6 7	3 4	2	1
60 70 80 90	50	40	30	20		8 9	=	3 4	2	
90 BASE 1,0471	_	80	_ - - - -	70	60	50	40	30	10 20	0
$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	_ _ _ _	80	_ _ _ _ _	70	60	50	40	30	10 20	0
60 70 80 90	50	40	30	20	-	=		3 4	2	1 -
60 70 80 90	50	40	30	20		8 9	5 6 7		2	1
90 BASE 1,0471	_	- 80	_ - - - -	70	60	50	- - -	30	10 20	0
BASE 1,0471	- - -	80	- - - -	70	60	50	40	30	10 20	0
60 70 80 90	50	40	30	20		8 9	Ξ	3 4	2	1
60 70 80 90	50	40	30	20	_ _ _ _ _	8 9	5 6 7	3 4	2	1
90 BASE 1,0471		- 80	_ _ _ _	70	60	50	40	30	10 20	0