Learning rate decay

Definition

• slowly reduce the learning rate over time

Why

- afford taking larger steps during the initial steps of learning
- take smaller steps as learning approaches convergence

Formulation

$$\alpha = \frac{1}{1 + decayrate * epochnum} * \alpha_0$$

Hyperparameters

- decayrate
- α₀

Variations

• exponential decay

$$\alpha = 0.95^{\,epochnum} \, * \alpha_0$$

• constant decay

$$\alpha \!=\! \frac{k}{\sqrt{epochnum}} * \alpha_0$$

$$\alpha = \frac{k}{\sqrt{t}} * \alpha_0$$

• discrete staircase decay