

Classification Methods

- Classification is the process of categorizing the data into some known class-labels.
- It is a supervised process since the class labels are known in advance
- Some major classification algorithms are as follows:
 - Decision Tree classifier
 - Nearest Neighbor Classifier
 - Naïve Bayes Classifier
 - Artificial Neural Network (ANN) Based Classifier
 - Support Vector Machine (SVM)
 - Ensemble Based Classifiers

Measures for Performance Evaluation

Accuracy, sensitivity and specificity

Confusion matrix

		Predicted Class		
		Yes	No	
Actual Class	Yes	TP	FN	
	No	FP	TN	

The true positives (TP) and true negatives (TN) are the correct classifications

A false positive (FP) is when a 'no' sample of a class is incorrectly classified as a 'yes' sample

A false negative (FN) is when a 'yes' sample of a class is classified as 'no' sample.

Measures for Performance Evaluation

We define the following measures:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

K-Nearest Neighbor Classifier

- This approach requires proximity measure and a classification function that gives the predicted class based on the proximity
- The class label of a test example is computed on the bases of its proximity to the data points in the training dataset
- The K-Nearest Neighbors are chosen for this purpose

The K-Nearest Neighbor Example

Consider the following data concerning credit default. Age and Loan are two numerical variables (predictors) and Default is the target.

The K-Nearest Neighbor Example

We can now use the training set to classify an unknown case (Age=48 and Loan=\$142,000) using Euclidean distance. If K=1 then the nearest neighbor is the last case in the training set with Default=Y.

$$D = Sqrt[(48-33)^2 + (142000-150000)^2] = 8000.01 >> Default=Y$$

	Age	Loan	Default	Distance					
	25	\$40,000	N	102000					
	35	\$60,000	N	82000					
	45	\$80,000	N	62000					
	20	\$20,000	N	122000					
	35	\$120,000	N	22000	2				
	52	\$18,000	N	124000					
	23	\$95,000	Υ	47000					
	40	\$62,000	Υ	80000					
	60	\$100,000	Υ	42000	3				
	48	\$220,000	Υ	78000					
	33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000	1				
			Ţ						
	48	\$142,000	?						
1	$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Euclidean Distance								

The K-Nearest Neighbor Example

With K=3, there are two Default=Y and one Default=N out of three closest neighbors. The prediction for the unknown case is again Default=Y.

	Age	Loan	Default	Distance				
	25	\$40,000	N	102000				
	35	\$60,000	N	82000				
	45	\$80,000	N	62000				
	20	\$20,000	N	122000				
	35	\$120,000	N	22000	2			
	52	\$18,000	N	124000				
	23	\$95,000	Υ	47000				
	40	\$62,000	Υ	80000				
	60	\$100,000	Υ	42000	3			
	48	\$220,000	Υ	78000				
	33	\$150,000	Υ —	8000	1			
			Ţ					
	48	\$142,000	?					
1	$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Euclidean Distance							

Pros and Cons

Pros:

- Simple to implement
- Flexible to feature / distance choices
- Naturally handles multi-class cases
- Can do well in practice with enough representative data

Cons:

- Large search problem to find nearest neighbours
- We must have a meaningful distance function