Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas MA1116

Tercer Examen Parcial (Agosto-Septiembre 2006) Turno 10:30

1.- Sea $T: IR^5 \rightarrow IR^4$ la función que a cada $(x_1, x_2, x_3, x_4, x_5) \in IR^5$ asigna por imagen el vector

 $(x_1 - x_2 + x_3 - x_4 + x_5, x_2 - x_3 + 2x_4, -x_1 + x_2 - x_3 + x_4 - x_5, 3x_1 - 3x_2 + 3x_3 - 3x_4 + 3x_5) \in IR^4$ Encuentre una matriz A_{4x5} que satisfaga $T(u) = Au \ \forall \ u \in IR^5$, pruebe que T es una transformación lineal y calcule r(T) y r(T)

(12 puntos)

Respuesta:

$$\begin{cases} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{cases} \in IR^{5} \quad T \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} - x_{2} + x_{3} - x_{4} + x_{5} \\ x_{2} - x_{3} + 2x_{4} \\ -x_{1} + x_{2} - x_{3} + x_{4} - x_{5} \\ 3x_{1} - 3x_{2} + 3x_{3} - 3x_{4} + 3x_{5} \end{pmatrix} =$$

$$x_{1} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 3 \end{pmatrix} + x_{2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -3 \end{pmatrix} + x_{3} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 3 \end{pmatrix} + x_{4} \begin{pmatrix} -1 \\ 2 \\ 1 \\ -3 \end{pmatrix} + x_{5} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 3 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & -1 & 2 & 0 \\ -1 & 1 & -1 & 1 & -1 \\ 3 & -3 & 3 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}, \text{ de donde la matriz pedida es:}$$

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & -1 & 2 & 0 \\ -1 & 1 & -1 & 1 & -1 \\ 3 & -3 & 3 & 3 & 3 \end{pmatrix}$$

Dado que \forall u∈ IR⁵ T(u) = Au, se sigue que \forall ∈ u₁, u₂ ∈ IR⁵ y r∈ IR, T(u₁ + ru₂) = A(u₁ + ru₂) = Au₁ + r Au₂ = T(u₁) + rT(u₂) y T es una transformación lineal. (Resulta A = A_T)

r(t) = dim(IM(T)), pero IM(T) = IM(A), de donde $r(T) = r(A) = dim(IM(A)) = dim(C_A) = dim(F_A)$. Ahora bien, las dos primeras filas de A son I.i. (ninguna es múltiplo de la otra) pero el resto de las filas son todas múltiplos de la primera, así que $r(T) = dim(IR^5) = 5$ y r(T) = 2, se sigue que r(T) = 3

2.- Sea A =
$$\begin{pmatrix} 6 & -2 & -2 & 2 \\ -2 & 6 & -2 & 2 \\ -2 & -2 & 6 & 2 \\ 2 & 2 & 2 & 6 \end{pmatrix}$$

i) Verifique que $\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ son vectores propios de A estableciendo

el valor propio al que están asociados.

ii) Encuentre un vector ortogonal a $\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ y compruebe que éste

es un vector propio de A, estableciendo el valor propio al que está asociado.

- iii) Decida qué tipo de diagonalización admite A (ortogonal o no) y Diagonalice A, ortogonalmente, si es que A admite este tipo de diagonalización.
- iv) Escriba el polinomio característico de A.

(14 puntos)

Respuesta:

i) De
$$\begin{pmatrix} 6 & -2 & -2 & 2 \\ -2 & 6 & -2 & 2 \\ -2 & -2 & 6 & 2 \\ 2 & 2 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 8 \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ se sigue que los}$$

vectores en cuestión son vectores propios de A asociados al valor propio α_1 = 8.

ii) Un vector ortogonal a
$$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, es uno $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ ortogonal a cada uno de

los dados. Para que
$$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
 y $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ sean ortogonales, debe ser $x = y$ y z y w pueden

tomar cualquier valor.

Para que
$$\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$
 y $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ sean ortogonales, x = z e y y w pueden tomar cualquier

valor, así que para que
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 sea ortogonal a $\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$, debe ser $x = y = z$ y w

puede tomar cualquier valor. Finalmente, para que
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 sea ortogonal a $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, debe

ser x = -w (o w = -x). Así que para que
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 sea ortogonal a $\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$,

debe ser y = z = x y w = -x, de donde una base del complemento ortogonal de

$$\left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle \text{ es: } \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \right\} \text{ y dado que vectores propios asociados a}$$

valores propios diferentes de una matriz simétrica son ortogonales, el vector
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$

debe ser un vector propio de A y basta multiplicarlo por A para determinar el valor propio:

ii):
$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
 es ortogonnal a $\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ y es un vector propio de A asociado

al valor propio $\alpha_2 = 0$.

iii) A es simétrica, luego ortogonalmente diagonalizable. Para encontrar la matriz ortogonal $\,$ Q, se debe primero ortonormalizar según $\,$ G.-Sch. la base de vectores de $\,$ E $_{8}$

formada por los vectores
$$u_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ y $u_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

$$v_1 = u_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

$$v_{2} = u_{2} - \left(\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ -1 \\ 0 \end{pmatrix}, \text{ se puede tomar } v_{2} = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix}$$

$$v_3 = u_3 - \left(\frac{u_3 \cdot v_1}{v_1 \cdot v_1}\right) v_1 - \left(\frac{u_3 \cdot v_2}{v_2 \cdot v_2}\right) v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1 \end{pmatrix}, \text{ se puede}$$

$$tomar \ v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \ resulta \ \begin{cases} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix} \ una \ base \ ortogonal \ de \ IR^4$$

compuesta por vectores propios de A y dividiendo cada vector de esta base entre su norma se obtiene una base ortonormal de IR⁴ compuesta por vectores propios de A:

$$\left\{ \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/2\sqrt{3} \\ 1/2\sqrt{3} \\ 1/2\sqrt{3} \\ 3/2\sqrt{3} \end{pmatrix} \right\} , \text{ tomando los vectores de esta base se}$$

construye la matriz
$$\ Q = \begin{pmatrix} 1/2 & 1/\sqrt{2} & 1/\sqrt{6} & 1/2\sqrt{3} \\ 1/2 & -1/\sqrt{2} & 1/\sqrt{6} & 1/2\sqrt{3} \\ 1/2 & 0 & -2/\sqrt{6} & 1/2\sqrt{3} \\ -1/2 & 0 & 0 & 3/2\sqrt{3} \end{pmatrix} \ y \ con \ ésta$$

$$Q^{t}AQ = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

- iv) Por varias razones el polinomio característico de A es $p_A(x) = x (x-8)^3$. Quizás la más simple es que hemos encontrado una base de IR^4 compuesta por un vector propio de A asociado al valor propio $\alpha_1 = 0$ y tres vectores propios de A asociados al valor propio $\alpha_2 = 8$.
- 3.- Sean $H = \{ (x, y, z) \in IR^3 / x = r, y = -r, z = 2r, r \in IR \}, u = (-1, 1, 1) y v = (1, -1, -2) vectores de <math>IR^3$.
 - i) Calcule Proy_⊔ v
 - ii) Exprese $u = Proy_{H^{\perp}}u + Proy_{H^{\perp}}u$

(10 puntos)

Respuesta:

$$H = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
. Como dim (H) = 1 y dim(H^{\perp}) = 2, es siempre más fácil proyectar sobre

H y despejar $Proy_{H^{\perp}}u$ de la igualdad $u = Proy_{H}u + Proy_{H^{\perp}}u$ cuando sea necesario.

i)
$$\text{Proy}_{H^{\perp}} \mathbf{v} = \mathbf{v} - \text{Proy}_{H} \mathbf{v}$$
 y, denotando al generador de H con la letra $\mathbf{h} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$,

se tiene
$$\operatorname{Proy}_{H}v = \left(\frac{v \cdot h}{h \cdot h}\right)h = \frac{-2}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1/3 \\ -2/3 \end{pmatrix}$$
 y $\operatorname{Proy}_{H^{\perp}}v = v \cdot \operatorname{Proy}_{H}v = 1$

$$\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} - \begin{pmatrix} -1/3 \\ 1/3 \\ -2/3 \end{pmatrix} = \begin{pmatrix} 4/3 \\ -4/3 \\ -4/3 \end{pmatrix}$$

ii)
$$u \cdot (1, -1, 2) = (-1 \ 1 \ 1) \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = 0$$
, de donde $u \in H^{\perp}$, $Proy_H u = 0_{3x1}$ y

 $Proy_{H^{\perp}}u = u - Proy_{H}u = u$ y la descomposición $u = Proy_{H}u + Proy_{H^{\perp}}u$, no es otra sino $u = 0_{3x1} + u$.

- 4.- Sea A una matriz nxn. Pruebe que las siguientes proposiciones son equivalentes:
 - i) Cero no es valor propio de A.
 - ii) El sistema A $x = 0_{nx1}$ tiene sólo la solución trivial.

(4 puntos)

Respuesta:

Primero recordamos la definición de valor propio de una matriz: Un escalar α es valor propio de una matriz cuadrada A_{nxn} , si existe un vector no nulo en IR^n tal que $Av = \alpha v$. Cero no es valor propio de $A \Leftrightarrow \forall v \in IR^n \setminus \{0_{nx1}\}$ $Av \neq 0v = 0_{nx1} \Leftrightarrow El sistema <math>Ax = 0_{nx1}$ tiene sólo la solución trivial.