

Machine Learning

# Problem formulation

#### **Example: Predicting movie ratings**

User rates movies using one to five stars





Machine Learning

Content-based recommendations

**Content-based recommender systems** 

 $\Rightarrow$  For each user j, learn a parameter  $\underline{\theta^{(j)} \in \mathbb{R}^3}$ . Predict user j as rating rhovie  $(\theta \text{With} x^{(i)})$  stars.  $\subseteq \underline{\theta^{(j)}} \in \mathbb{R}^3$ .

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O \\ 1 \end{bmatrix} \longrightarrow \begin{array}{c} O \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O \\$$

#### **Problem formulation**

- $\rightarrow r(i,j) = 1$  if user j has rated movie i (0 otherwise)
- $\rightarrow$   $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$  = parameter vector for user j
- $\rightarrow$   $x^{(i)}$  = feature vector for movie i
- ightharpoonup For user j , movie i , predicted rating:  $(\theta^{(j)})^T(x^{(i)})$
- $m^{(j)} = \text{no. of movies rated by user } j$

To learn 
$$\underline{\theta^{(j)}}$$
:

$$\lim_{N \to \infty} \frac{1}{2^{N}} \sum_{i: \iota(i,i)=1}^{N} \left( (Q_{(i)})_{i}(x_{(i)}) - A_{(i,i)} \right)_{5} + \frac{1}{2^{N}} \sum_{i=1}^{N} (Q_{(i)}^{k})_{5}$$

#### **Optimization objective:**

To learn  $\theta^{(j)}$  (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left( (\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn  $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$ :

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left( (\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

#### **Optimization algorithm:**

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left( (\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

#### Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left( \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2(0(1) (Na))



Machine Learning

# Collaborative filtering

## **Problem motivation**





| Movie                | Alice (1) | Bob (2) | Carol (3) | Dave (4) | $x_1$ (romance) | $x_2$ (action) |
|----------------------|-----------|---------|-----------|----------|-----------------|----------------|
| Love at last         | 5         | 5       | 0         | 0        | 0.9             | 0              |
| Romance forever      | 5         | ?       | ?         | 0        | 1.0             | 0.01           |
| Cute puppies of love | ,         | 4       | 0         | ?        | 0.99            | 0              |
| Nonstop car chases   | 0         | 0       | 5         | 4        | 0.1             | 1.0            |
| Swords vs. karate    | 0         | 0       | 5         | ?        | 0               | 0.9            |

### **Problem motivation**

| i robiem n                           | , iotivat                       |                                                                 |                                                            |                  | <b>V</b>                                      |                | X <sub>0</sub> =                                                                |
|--------------------------------------|---------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|------------------|-----------------------------------------------|----------------|---------------------------------------------------------------------------------|
| Movie                                | Alice (1)                       | Bob (2)                                                         | Carol (3)                                                  | Dave (4)         | $x_1$ (romance)                               | $x_2$ (action) |                                                                                 |
| Love at last                         | <b>7</b> 5                      | <b>7</b> 5                                                      | <u> </u>                                                   | <b>7</b> 0       | 1.1.0                                         | A 0-1          | <u> </u>                                                                        |
| Romance forever                      | 5                               | ;                                                               | ;                                                          | 0                | ?                                             | ý              | x0= [10]                                                                        |
| Cute puppies of love                 | ?                               | 4                                                               | 0                                                          | ?                | ?                                             | ?              | (0.0)                                                                           |
| Nonstop car<br>chases                | 0                               | 0                                                               | 5                                                          | 4                | ?                                             | ?              | ~(1)                                                                            |
| Swords vs. karate                    | 0                               | 0                                                               | 5                                                          | ?                | ?                                             | ?              | ~1 (1)                                                                          |
| $\Rightarrow \boxed{\theta^{(1)} =}$ | $\theta^{(2)}$ , $\theta^{(2)}$ | $\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$ | $\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ | $\theta^{(4)} =$ | $= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$ | (e)<br>(e)     | (8)1,×(1,5)<br>(8,0)1,×(1,5)<br>(8,0)1,×(1,5)<br>(8,0)1,×(1,5)<br>(8,0)1,×(1,5) |

## **Optimization algorithm**

Given  $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$ , to learn  $\underline{x^{(i)}}$ :

Given  $\theta^{(1)}, \dots, \theta^{(n_u)}$ , to learn  $x^{(1)}, \dots, x^{(n_m)}$ :

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

## **Collaborative filtering**

Given 
$$\underline{x^{(1)},\dots,x^{(n_m)}}$$
 (and movie ratings), can estimate  $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$ 

Given 
$$\theta^{(1)},\ldots,\theta^{(n_u)}$$
, can estimate  $x^{(1)},\ldots,x^{(n_m)}$ 



**Machine Learning** 

Collaborative filtering algorithm

Minimizing  $x^{(1)}, \dots, x^{(n_m)}$  and  $\theta^{(1)}, \dots, \theta^{(n_u)}$  simultaneously:

$$(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ \text{min}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{($$

- Xoel XERN, OERN
- $\rightarrow$  1. Initialize  $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$  to small random values.
- ⇒ 2. Minimize  $J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$  using gradient descent (or an advanced optimization algorithm). E.g. for every  $j = 1, \dots, n_u, i = 1, \dots, n_m$ :

every 
$$j = 1, \dots, n_u, i = 1, \dots, n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left( \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left( \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters  $\underline{\theta}$  and a movie with (learned) features  $\underline{x}$ , predict a star rating of  $\underline{\theta}^T \underline{x}$ .



Machine Learning

Vectorization:
Low rank matrix
factorization

#### **Collaborative filtering**

| Movie                | Alice (1) | Bob (2) | Carol (3) | Dave (4) |
|----------------------|-----------|---------|-----------|----------|
| Love at last         | 5         | 5       | 0         | 0        |
| Romance forever      | 5 ? ?     |         | ?         | 0        |
| Cute puppies of love | ?         | 4       | 0         | ?        |
| Nonstop car chases   | 0         | 0       | 5         | 4        |
| Swords vs. karate    | 0         | 0       | 5         | ?        |
|                      | <b>^</b>  | ^       | 1         | 1        |

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

## Collaborative filtering / X (ii) ' <

$$(Q_{\partial J})_{\underline{A}}(x_{(U)})$$

ings: 
$$(\theta^{(2)})^T(x^{(1)})$$
 ...  $(\theta^{(n_u)})^T(x^{(1)})$   $(\theta^{(2)})^T(x^{(2)})$  ...  $(\theta^{(n_u)})^T(x^{(2)})$ 

$$\begin{bmatrix} 1 & 4 & 0 & 1 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} \\ -(x^{(2)})^{T} \end{bmatrix}$$

$$\Box = \begin{bmatrix} -(\phi^{(1)})^{T} - (\phi^{(2)})^{T} - (\phi^{($$

#### **Finding related movies**

For each product i, we learn a feature vector  $x^{(i)} \in \mathbb{R}^n$ .

How to find 
$$\underline{\text{movies } j}$$
 related to  $\underline{\text{movie } i}$ ?

Small  $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$  and  $i$  are "similar"

5 most similar movies to movie i: Find the 5 movies j with the smallest  $||x^{(i)} - x^{(j)}||$ .



Machine Learning

Implementational detail: Mean normalization

#### Users who have not rated any movies

|                      | •         |         | -         |          | V          |     |                                        |   |        |        |        |
|----------------------|-----------|---------|-----------|----------|------------|-----|----------------------------------------|---|--------|--------|--------|
| Movie                | Alice (1) | Bob (2) | Carol (3) | Dave (4) | Eve (5)    | _   | Γ⊷                                     | _ | 0      | 0      |        |
| → Love at last       | _5        | 5       | 0         | 0        | 30         |     | 5                                      | 5 | 0      | 0      | ?      |
| Romance forever      | 5         | ?       | ?         | 0        | Ş <b>(</b> | V   | $\begin{vmatrix} 5 \\ 2 \end{vmatrix}$ |   |        | 0      | 9      |
| Cute puppies of love | ?         | 4       | 0         | ?        | 3 <b>D</b> | Y = | (                                      | 4 | U      | :<br>1 |        |
| Nonstop car chases   | 0         | 0       | 5         | 4        | . □        |     |                                        | 0 | 6<br>5 | 4<br>0 | ;<br>2 |
| Swords vs. karate    | 0         | 0       | 5         | ?        | ? <b>D</b> |     | $\Gamma_{\Omega}$                      | U | 9      | U      |        |

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ \text{off}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ \hline 0 & 0 & 5 & 0 \\ \end{bmatrix}$$

$$\mu = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 0$$

$$\begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

$$\Rightarrow (Q_{(i)})_{i}(x_{(i)}) + \mu_{i}$$



User 5 (Eve):