CS 4072 - Topics in CS Process Mining

Lecture # 14

April 11, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

Today's Topics

- ► Heuristic Mining
 - Learning Dependency Graph
 - ► Learning Causal Nets and perform annotations

Heuristic Mining: two main phases

Relating C-nets to WF-nets

How many valid binding sequences?

12 valid sequences

abe ace abde adbe acde adce abcde abdce acbde acdbe adbce adcbe

Example valid binding sequence generating trace adce

Example invalid binding sequence

Running example of a C-net

L = [$(a, e)^5$, $(a, b, c, e)^{10}$, $(a, c, b, e)^{10}$, $(a, b, e)^1$, $(a, c, e)^1$, $(a, d, e)^{10}$, $(a, d, d, e)^2$, $(a, d, d, d, e)^1$]

Running example of a C-net

L = [$(a, e)^5$, $(a, b, c, e)^{10}$, $(a, c, b, e)^{10}$, $(a, b, e)^1$, $(a, c, e)^1$, $(a, d, e)^{10}$, $(a, d, d, e)^2$, $(a, d, d, d, e)^1$]

Limitations of the Alpha algorithm on such event logs

L = [$\langle a, e \rangle^5$, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

Limitations of the Alpha algorithm on such event logs

L = [
$$\langle a, e \rangle^5$$
, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

Learning Dependency Graph

First step in the Heuristic Mining

Frequencies matter!

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

Counting Direct Succession

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

L = [$\langle a, e \rangle^5$, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

$ >_L $	а	b	с	d	e
a	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Counting Direct Succession

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

L = [$\langle a, e \rangle^5$, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

Information when frequencies are ignored

$ >_L $	a	b	c	d	e
\overline{a}	0	11	11	true	5
b	0	0	10	false	11
c	0	10	0	false	11
d	0	0	0	true	13
e	0	0	0	false	0

Dependency measure: taking into account concurrency

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

Direct Succession

Dependency Measure

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

Two values

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

Both measures should be above some predefined thresholds!

Otherwise, no causality!

Sequence Pattern

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

 $\frac{Approved}{|a>_{L}b|} = 10$ $|a\Rightarrow_{L}b| = 10/11$

$$|b>_{L}a| = 0$$

 $|b\Rightarrow_{L}a| = -10/11$

Both measures need to be above a threshold to be included

Included arc (assuming thresholds >=1 and >=0.5)

XOR-split pattern (assuming thresholds >=1 and >=0.5)

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a >_L b| - |b >_L a|}{|a >_L b| + |b >_L a| + 1} & \text{if } a \neq b \\ \frac{|a >_L a|}{|a >_L a| + 1} & \text{if } a = b \end{cases}$$

Included arcs (assuming thresholds >=1 and >=0.5)

XOR-join pattern

XOR-join pattern

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

$$|a>_{L}b| = 0$$
 $|b>_{L}a| = 0$
 $|a\Rightarrow_{L}b| = 0/1$ $|b\Rightarrow_{L}a| = 0/1$
 $|a\Rightarrow_{L}b| = 8$
 $|a\Rightarrow_{L}c| = 8$
 $|a\Rightarrow_{L}c| = 8$
 $|a\Rightarrow_{L}c| = 8/9$ $|a\Rightarrow_{L}c| = 2$
 $|a\Rightarrow_{L}c| = 8/9$ $|b\Rightarrow_{L}c| = 2/3$
 $|c>_{L}a| = 0$ $|c>_{L}b| = 0$
 $|c\Rightarrow_{L}a| = -8/9$ $|c\Rightarrow_{L}b| = -2/3$

Included arcs (assuming thresholds >=1

AND-split pattern

Included arcs (assuming thresholds >=1 and >=0.5)

$$|a>_{L}b| = 5$$
 $|b>_{L}a| = 0$
 $|a\Rightarrow_{L}b| = 5/6$ $|b\Rightarrow_{L}a| = -5/6$
 $|a>_{L}c| = 5$ $|b>_{L}c| = 5$
 $|a\Rightarrow_{L}c| = 5/6$ $|b\Rightarrow_{L}c| = 0/11$

And-join pattern

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

And-join pattern

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

$$|a>_{L}b| = 5$$
 $|b>_{L}a| = 5$
 $|a\Rightarrow_{L}b| = 0/11$ $|b\Rightarrow_{L}a| = 0/11$

$$\begin{array}{ll} Approv_{|a\rangle_{L}c|=5} & Approv_{|a\rangle_{L}c|=5} \\ |a\Rightarrow_{L}c|=5/6 & Approv_{|a\rangle_{L}c|=5/6} \end{array}$$

$$|c>_L a| = 0$$

 $|c\Rightarrow_L a| = -5/6$

$$|c>_L b| = 0$$

$$|c\Rightarrow_{L}b| = -5/6$$

Included arcs (assuming thresholds >=1 and >=0.5)

29

Loop pattern

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

Included arcs (assuming thresholds >=1 and >=0.5)

Home Work

► Compute the dependency measures: $|a \Rightarrow L b|$ and $|d \Rightarrow L b|$ d| for the given event log.

L = [
$$\langle a, e \rangle^5$$
, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a >_L b| - |b >_L a|}{|a >_L b| + |b >_L a| + 1} & \text{if } a \neq b \\ \frac{|a >_L a|}{|a >_L a| + 1} & \text{if } a = b \end{cases}$$

Reading Material

► Chapter 3 & 7: Aalst