4. Nombres complexes

Exercice 1. © Mettre sous forme algébrique les nombres complexes suivants et déterminer leur module :

$$z_1 = \frac{3+6i}{3-4i}$$
, $z_2 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$ et $z_3 = \left(\frac{1+i}{2-i}\right)^2$.

Exercice 2. (m) Résoudre les équations suivantes dans $\mathbb C$:

- 1) $3z (3-i)\bar{z} = 1-2i$.
- 2) $(3+4i)z 5\bar{z} = 2i$.

Exercice 3. (m) Résoudre dans $\mathbb C$ le système $\left\{ \begin{array}{l} |1+z| \leq 1 \\ |1-z| \leq 1 \end{array} \right.$

Exercice 4. (i) A-t-on $\exists a, b \in \mathbb{C} / \forall z \in \mathbb{C}, \ \bar{z} = az + b$?

Exercice 5. $\boxed{\mathbf{m}}$ Déterminer les $z \in \mathbb{C}^*$ tels que les modules de $z, \frac{1}{z}$ et z-1 soient égaux.

Exercice 6. (m) Soient $z_1, z_2 \in \mathbb{U}$ tels que $z_1 z_2 \neq -1$. Montrer que $\frac{z_1 + z_2}{1 + z_1 z_2} \in \mathbb{R}$.

Exercice 7. m Mettre sous forme exponentielle les nombres complexes suivants et en déduire leur forme algébrique :

$$z_1 = \frac{2}{1 - i\sqrt{3}}, \ z_2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 \text{ et } z_3 = \frac{(1 - i)^9}{(1 + i)^7}.$$

Exercice 8. (m) Écrire $(1+i)(\sqrt{3}-i)$ sous forme algébrique et exponentielle. En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et de $\sin\left(\frac{\pi}{12}\right)$.

Exercice 9. © Soit $n \in \mathbb{N}$. Simplifier $z = (1 + i\sqrt{3})^n + (1 - i\sqrt{3})^n$.

Exercice 10. © Calculer les puissances *n*-ièmes des nombres complexes (on fixe $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$):

$$z_1 = \frac{1 + i\sqrt{3}}{1 + i}$$
, $z_2 = \frac{1 + i\tan(\theta)}{1 - i\tan(\theta)}$ et $z_3 = 1 + j$ où $j = e^{2i\pi/3}$.

Exercice 11. (m) Soit $\theta \in [0, 2\pi[$. Mettre sous forme exponentielle les complexes :

$$z_1 = e^{e^{i\theta}}, \ z_2 = e^{i\theta} + e^{2i\theta} \text{ et } z_3 = 1 + e^{i\theta} + e^{2i\theta}.$$

Exercice 12. (m) Résoudre les équations d'inconnue $z \in \mathbb{C}$:

1)
$$e^z = i$$
.

2)
$$e^z = 1 + i$$
.

3)
$$e^z + e^{-z} = 1$$
.

Exercice 13. (m) Dans C, résoudre l'équation $z^8 = \frac{1+i}{\sqrt{3}-i}$.

Exercice 14. (i) Dans \mathbb{C} , résoudre l'équation $\bar{z}^7 = \frac{1}{2}$.

Exercice 15. (i) Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation $(1+z)^n = (1-z)^n$.

Exercice 16. $\boxed{\mathbf{m}}$ Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$ de deux manières. En déduire $\sin\left(\frac{\pi}{8}\right)$.

Exercice 17. (m) Résoudre dans \mathbb{C} les équations :

1)
$$z^2 - 2iz + 2 - 4i = 0$$

$$2) \quad z^2 - 2iz - 1 + 2i = 0$$

3)
$$4z^2 - 16z + 11 - 12i = 0$$

4)
$$z^2 - 2e^{i\theta}z + 2i\sin(\theta)e^{i\theta} = 0$$
 où $\theta \in \mathbb{R}$

Exercice 18. (m) Soit $\theta \in \mathbb{R}$. Résoudre l'équation $z^{2n} - 2\cos(n\theta)z^n + 1 = 0$ d'inconnue $z \in \mathbb{C}$.

Exercice 19. (m) On pose $\omega = e^{\frac{2i\pi}{7}}$, $S = \omega + \omega^2 + \omega^4$ et $T = \omega^3 + \omega^5 + \omega^6$

- 1) Montrer que S et T sont conjugués et que la partie imaginaire de S est positive.
- 2) Calculer S + T et ST. En déduire S et T.

Exercice 20. (i) Soient $u, v \in \mathbb{C}$. Montrer que $|u| + |v| \le |u + v| + |u - v|$.

Exercice 21. (i) Soient $\theta_1, \ldots, \theta_n \in \mathbb{R}$. Montrer que $\sum_{k=0}^{n} \frac{e^{i\theta_k}}{2^{k-1}} \neq 0$.

Exercice 22. m Déterminer et représenter graphiquement les $z \in \mathbb{C}^*$ tels que $z + \frac{1}{z} \in \mathbb{R}$.

Exercice 23. (m) Déterminer et représenter graphiquement l'ensemble des points M d'affixe z tels que:

$$1) \quad \frac{1+z}{1-z} \in i\mathbb{R}.$$

$$2) \quad \left| \frac{z-3}{z-5} \right| = 1$$

$$3) \quad \left| \frac{z-2}{z+1} \right| = 2.$$

2)
$$\left| \frac{z-3}{z-5} \right| = 1.$$

4) $\operatorname{Re}\left(\frac{z-1}{z-i} \right) = 0.$

Exercice 24. (*) Soit $z \in \mathbb{C}$.

- 1) Déterminer une condition nécessaire et suffisante sur z pour que z, z^2 et z^3 soient trois complexes distincts. On suppose ceci vérifié et on note T_z le triangle de sommets z, z^2 et z^3 .
- 2) Donner une condition nécessaire et suffisante pour que T_z soit plat. Même question avec rectangle en z. Même question avec équilatéral.

Exercice 25. (c) Déterminer l'écriture complexe des transformations ou identifier les transformations du plan complexe suivantes :

2

- 1) La rotation r de centre 1+i et d'angle $\frac{\pi}{4}$ et l'homothétie h de centre 1 et de rapport $\sqrt{2}$.
- 2) $f: z \mapsto 2z + i \text{ et } g: z \mapsto (1+i)z + 2 i$.