建國中學 124 29 潘仰祐

自然科探究與實作 專題探究

同組組員07 李博宇

14 康恩杰

30 鄭鈞澤

指導老師

王慶豪

朱信翰

探究與實作期末海報

各要素對酵母繁殖/生長之影響

期末報告互評錄影 (06:44 ~ 16:38): http://tny.im/pRc

主題:各要素對酵母繁殖/生長之影響

124 班第四組—— 07 李博宇、 14 康恩杰、 29 潘仰祐、 30 鄭鈞澤

研究動機

麵包與啤酒 庶民與富貴 普遍級與限制級 他們幾乎相反,卻有著相同的靈魂——酵母 於是我們決定從此探索起

研究目的

嘗試擴大培養酵母, 並且試試看如果某些酵母繁殖的要素不同 (尤其是 07品種、14溫度、 29吉利丁/膠原蛋白、30酸鹼度), 他們的生長有沒有變化

文獻探討與採行方法

避免細菌汙染

- 1. 事先消毒:壓力鍋/蒸籠/ 擦酒精/滅菌釜
- => 因容器為紙/塑膠杯, 故採行酒精擦拭
- 2. 操作消毒:瓦斯爐熱空氣/ 無風處噴酒精
- 3. 培養液防菌:上方封口罩

供應充足氧氣

依照效果排序

- 單項透氣閥:自然溶氧
- ≤ 徒手猛搖
- ≤ 強迫打氧氣
- = 電磁攪拌器

概

=> 為安全方便,無風處噴酒精 氧氣取得不易,故採電磁攪拌器 部分組員時程問題,採徒手猛搖

培養基的配置

- 1. 使用各種配方調配
- 或者 2. 使用麥汁
- => 考慮執行難易程度, 故使用麥汁
- => 麥汁有黑白,考慮數據 記錄(光度計) 故特採用白麥汁

遠端交流,總是諸多不易

1. 活性乾酵母長最 該看看大家的成果了

快,而非速發酵母 2. 天然酵母活最久 3. 有乳化劑的酵母 粉,在短時間內成 長超群

07品種

Bonus: 電動&手動 之比較——結論: 差距不大

14温度

Among 15 | 25 | 35 | 45° C

1. 35° C長最快 2. 15° C長最慢

Bonus: 無

29吉利丁

實驗失敗,數據無 法解讀

Bonus: 研發全組

的自動攪拌器

1. 酸性比較適合酵 母菌生長

30酸鹼度

2. 鹼性較不適合

Bonus: 加強自動 攪拌器—Arduino 自動化定時攪拌

續落來,請看咱各自的海報

文獻參考1: Ethan Tso(2019)。酵母擴培入門。**ethanol 自釀筆記本**。於 2020-04-28 取自 https://github.com/ sakura26/ethano1/blob/cbf47424b9ac827e8edd023ddf70b2c30c3b66cd/酵母擴培入門.md

文獻參考2: 馬林靖(2008)。 酵母擴培的實驗室階段。**釀酒科技,10**,75-76。網路連結 https:// www.airitilibrary.com/Publication/alDetailedMesh?docid=10019286-200810-2008-10-75-76-a

文獻參考3: 宋培宏(2014)。酵母為什麼要擴培?。YES Yeast Company 葉氏液態釀酒酵母專賣。於 2021-04-28 取自 https://www.facebook.com/yehsyeastcompany/photos/a.604479632970412/610404209044621

依照**政府資料開放授權條款—第1版**進行顯名聲明,本海報以及後續數頁之楷體,有部分使用下述內容提供之全字庫正楷體

- 1. 中華民國國家發展委員會 2015~2021 CNS11643中文標準交換碼全字庫(版本 2021-03-30)
- 2. 此開放資料依政府資料開放授權條款進行公眾釋出,使用者於遵守本條款各項規定之前提下,得利用之。
- 3. 政府資料開放授權條款: https://data.gov.tw/license

124 班 29 潘仰祐

實驗三: 吉利丁對酵母生長的影響

實驗目的

測試吉利丁(膠原蛋白為主)對於酵母菌的生長曲線的影響,包含但不限於: 1. 存活時間 2. 存活巔峰 3. 到達巔峰時間

實驗設計

- 1. 每次抽定量稀釋,用光度計觀察其生長情形。
- 2. 為降低誤差,光度值換成對清水光度值的比例,繪製生長曲線
 - 3. 使用自製的磁力攪拌器,加速溶氧
- 4. 白麥汁 + 酵母 + 不同濃度的吉利丁液 (事先煮沸10min防凝結)

實驗結果失敗!數據難以解讀,無法看出生長之曲線。

設

計

概念

置

自動攪拌器的製作

製作目的

- 1. 保持長時間的攪動,以幫助氧氣融入培養液之中
 - 2. 避免不斷用手搖晃而導致手痠
 - 3. 盡可能代替市售之高價磁力攪拌器

製作概述

- 1. 大多數使用紙板,製作底座、馬達支架、環壁、置放於環壁之上的蓋板 2. 馬達塞入支架,並固定於底座中間。使用兩個AA電池供應3V電壓
- 3. 使用冰棒棍上粘著兩個磁鐵,中央鑿孔,插於馬達之上;吸力帶動杯中攪拌子,造成龍捲

猶待改進

- 1. 電池消耗快,因而十分浪費。又轉速受電壓影響大,故新電池易使攪拌子不跟,舊者不轉
 - 2. 馬達容易發熱,不能運行太久 => 可嘗試使用鋁罐作為底座
 - 3. 由於上述兩點,因此運行數十分鐘便須暫停數十分鐘

四驅車馬達 記錄 http://tny.im/pRf

一般的馬達 記錄 http://tny.im/pRg

紙版基本組件終版設計圖,取得位置: http://tny.im/oZs

124 班 07 李博宇

實驗一:不同酵母菌種的生長情形比較

實驗目的

觀察各種酵母生長的速率,並找出他們的特色。 另外,由於天然酵母為三者中,唯一無添加**乳化劑**者, 可探討乳化劑添加與否對酵母菌生長的影響。

實驗設計

三種酵母:活性乾酵母粉(嘉德堡牌)、塊狀天然酵母(醱寶牌)、速發乾酵母粉(日正牌)

* 操作環境會事先噴灑酒精

取 4.5g 酵母及← 150g 的白麥汁加入杯中,← 放在家中無陽光曝曬的地方←

取 0.1 毫升混合液及← 3 毫升純水滴入樣品槽中← 將樣品槽放進自製的光度計中, 在光度約 400LUX 的環境中測量↔

紀錄測得數值↔ <mark>驗</mark> 每六小時做一次,一天最多四次↔ <mark>程</mark> 驗

此外,本組組員富有創意地在家中自製了電動磁石攪拌器,但由於我取貨時間較晚, 只來得及將其應用在天然酵母的實驗上,為求公平起見,我替自己另闢了一條支線, 做了兩組天然酵母的實驗,一為手動攪拌,一為使用攪拌器, 在每次測量前開始運轉,持續半小時,測量方法同上。

上:攪拌中的擴培液. 下:電動磁石攪拌器

實驗結果

四種酵母菌隨時間變化的穿透光光度

活性乾酵母:初期穿透光度變化最劇烈,但數值在第三天半夜便達到最底端

天然酵母:初期光度變化平緩,但數值持續穩健成長至第六天開頭 速發酵母:初期光度變化及數值達到底端所耗時間,皆置於中間程度

三者數據皆在達到底部後回彈

結論與討論

首先,與預料的不同,**最速發的不是速發酵母,而是乾酵母 而天然酵母則是續航力最高**。

第二,**電動與手動攪拌的差距並不明顯**,唯電動初期變化較

劇烈,此後雙方的曲線變化趨勢一致。

最後,我們可以得知:**添有乳化劑的酵母粉,能在較短時間** 內完成一定程度的成長。

未來展望

受制於時間因素,未能使用電動攪拌器處理活性乾酵母及速發酵母,有機會需再做一輪。

此外,這次實驗用到的酵母菌只有三種,看似不太夠若能將第四種酵母(如釀酒酵母)投入實驗,實驗的內容可以更豐富。

124 班 14 康恩杰

實驗4:溫度對酵母生長的影響

實驗目的

測試酵母菌液溫度對於酵母菌的生長曲線的影響,包含但不限於: 1.存活時間 2.存活巔峰 3.到達顛峰時間

實驗設計

1.用30克白麥汁+2克酵母粉,在15/25/35/45度下培養 2.使用光度計觀察其生長情形,以繪製生長曲線

觀察結果

實驗反思

從數據可看出:

- 1.15度菌液中的酵母初期生長最慢,
 - 35度菌液中的酵母初期生長最快。
- 2.四者在最後都會趨近一值,可能代表生長已飽和。

這次實驗可說是一波三折,中間遇到了很多意料之外的事,讓實驗得多次重做,最後總算是及時交出了數據。

124 班 30 鄭鈞澤

實驗二:環境酸鹼度對酵母菌擴培之影響

實驗目的

探討酵母菌在不同酸鹼環境中的生長情形。

實驗設計

準備三組相同的容器且裡面擁有定量酵母及麥汁,另外一杯加醋酸、一杯加碳酸氫鈉而另一 杯則兩者皆不加,且搭配自製攪拌器使溶液均勻分布及提供酵母所需氧氣,並藉由arduino自 動控制馬達定時開關以防溶液因轉速過快濺出及馬達過熱。此外,為了隔絕外來的異物如細菌 和孢子而剪裁口罩已取得其中層來當作保護膜封住容器開口。在接下來的時間定時取樣並使用 自製光度計測量其穿透光及散射光以記錄酵母菌之生長情形。

實驗反思

- 1. 使用測量光度之手機APP數值不夠細緻,導致無法察覺酵母菌成長的細微變化。
- 2. 身邊無石蕊試紙等能夠得知溶液PH值的器材,故無法精確調配環境酸鹼度
- 3. 酵母成長所需之麥汁有限,加上容器底盤過大,導致攪拌子難以置中,酵母容易在角落沉澱
- ,故可以嘗試稀釋麥汁及更改容器。

全民防疫,台灣加油

環境鹼					
穿透光	散射光				
37	49				
49	49				
49	49				
49	49				
49	49				
27	49				
39	37				
37	37				

實驗結果分析

由以下圖表可知,酵母菌在不同環境之下,穿透及散射光皆有所不同。而我們知道當穿透光越低時 代表酵母菌成長的狀況是較好的,散射光則相反。而根據數據,酸性環境下的酵母菌穿透光較其他 實驗組來的快降到200勒克斯,散射光也有類似的現象,因此可以推斷酵母菌比起在正常環境下其 較適合在酸性環境生存。至於鹼性環境的麥汁因意外發臭生黴,導致沒能做出完整的實驗,不過根 據之前的實驗數據來看,酵母菌是難以在鹼性環境中生存的(參見圖一)。

實驗圖表

酵母菌擴培溶液

麥汁生黴狀況

馬達與基座

探究與實作期中報告

文獻探討暨實驗規劃

期中報告試講錄影:http://tny.im/pPH

建國中學 一年 24 班 第四組 07 李博宇、14 康恩杰、29 潘仰祐、30 鄭鈞澤

壹、研究主題:

嘗試擴大培養酵母,並且試試看如果修改某些酵母繁殖的要素,會不會有什麼變化。

貳、研究動機:

走進便利商店,映入眼簾的是膨鬆、雲朵般的麵包;卻看一旁飲料架,各種水果口味的啤酒。一個是對許多民族來說自古不可或缺的主食,另一個則是以前只有豐收時期才有多餘稻穀能奢侈的酒類;一個是不分年齡的普遍級,另一個則是對身為高一生的我們來說,是大人滋味的限制級。這兩種幾乎相反的食物,卻有著一樣的靈魂——酵母!想瞭解我們天天吃下的東西,想一瞥禁果的樣貌,我們決定從養酵母探索起。

叄、文獻探討:

一、文獻摘要

- 1. 〈酵母擴培入門〉摘要
 - a. 概要:使用電磁攪拌器,將培養基與酵母攪拌 1~3 日,看到其增生(顏 色白濁化)
 - b. 如何避免汙染:

器材預先消毒(擇一):

- 滅菌釜 132°C 下 20min
- 壓力鍋 15psi (120.5°C) 下 20min
- 蒸籠蒸一小時
- 煮沸 5 分鐘(不推薦)

投入酵母過程(擇一):

- 瓦斯爐旁邊製造上升氣流
- 移步至無風處,四周噴 75% 酒精
- C. 配置營養劑 (培養基):
 - 基本:乾麥芽精、酵母萃取物
 - 可有: WhiteLab Yeast Nutrient WLN1000、B 群、鋅

也可直接用麥汁

(Ethen Tso, 2019¹)

//github.com/sakura26/ethanol/blob/cbf47424b9ac827e8edd023ddf70b2c30c3b66cd/酵母擴培入

¹ Ethan Tso (2019)。酵母擴培入門。**ethanol 自釀筆記本**。於 2020-04-28 取自 <u>https:</u>

- 2. 〈酵母擴培的實驗室階段〉摘要
 - a. 消毒步驟

實驗場地應先消毒,而後使用高錳酸鉀薰蒸。清洗試管、三角瓶。確認無菌後,方可投入實驗。

b. 澄清麥汁的方法

可使用矽藻土或蛋清,使麥汁澄清透明。殺菌前可加入蒸餾水,以 補充在殺菌時遺失的水分。

c. 通入空氣的注意事項

擴培實驗裝量不宜超過瓶子的 1/2,適時通入無菌空氣,才能使酵母健康成長。

(馬林靖,2008²)

- 3. 〈酵母為什麼要擴培?〉摘要
 - a. 氧氣的重要性
 - i. 有氧時,多行出芽生殖(繁殖)
 - ii. 無氧時,多行酒精發酵(無氧呼吸)
 - b. 繁殖需要營養素
 - i. 磷酸鹽類氨鹽基
 - ii. 胺基酸

雖然可以買酵母萃取物,然而為省錢,已知上述營養素都含在麥汁中, 故可以用以取代。

c. 擴培溫度

過高溫下擴培,酵母活性稍低——建議室溫 25°C

d. 常見擴培(增加溶氧)方法

方法	效果	執行難易
單項透氣閥:自然溶氧	差	易
徒手猛搖	中	中等
強迫打氣:防汙染麻煩	佳	難
電磁攪拌器	佳	易

(宋培弘,20143)

二、文獻縱觀與整理

參考上述文獻,可知「避免(細菌)汙染」一事乃擴培過程中,最應當注意的部分。若未注意,或許會使之完全走樣。以下是我們的應對措施:

- 器材預處理:採用壓力鍋或者蒸籠,以盡可能地殺菌。又已知酒精易揮發,故將其噴灑於實驗器材中殺菌或許是另一個方案。
- 2. 環境預處理:噴灑濃度 75% 之酒精於四周 (無明火,故較使用瓦斯爐之 高熱空氣形成無菌罩安全,惟需注意四周不得有高溫物體,以免造成氣

 $^{^2}$ 馬林靖(2008)。 酵母擴培的實驗室階段。**釀酒科技,10**,75-76。

³ 宋培宏 (2014)。酵母為什麼要擴培?。**YES Yeast Company 葉氏液態釀酒酵母專賣**。於 2021-04-28 取自 https://www.facebook.com/yehsyeastcompany/photos/a.604479632970412/610404209044621

爆),並噴灑於手部以消毒。

3. 器材防護:使用口罩(尤其中層之濾菌不纖布)封口,以在維持空氣流通之餘,避免外界汙染。

參考上述文獻,可知「充足氧氣」也是一大重點。若不足,則繁殖效率低下、酒精發酵開始。上述文獻提供了許多方法應對,其中既簡單、效果又不錯的方法,便是使用電磁攪拌器。然而網路上所售之實驗室等級器材,其價格昂貴(數千至數萬元不等),非我們學生所負擔得起。經過了一番調查,我們發現了一種原理、效果理當相近,價格卻低(低於兩百元)的替代方案:電動磁石攪拌馬克杯。若有餘力,仿製一個應該也不是問題。

參考上述文獻,可知「培養基」的配置,可以大費周章購買各式材料來調和,也可以簡易地直接使用麥汁。我們這一組應當會購買在外現成的麥汁:不只較易保存,品質應當也比較穩定。然而要是之後發現有不妥之處(例如:黑麥汁其中加入了吸引人的口味,卻對酵母毫無易處),我們便會自行煮製麥汁,抑或是購買材料調和。

肆、酵母擴培裝置的設計圖:

- 1. 下方為電動磁石攪拌器,自行製作。透過電池供電,驅動馬達旋轉。而馬達上方裝有磁鐵,故旋轉時會有磁場變化。
- 2. 容器內部放有攪拌子。隨著磁場的變化,開始旋轉,並帶動容器中的酵母菌液轉動,形成類似旋渦狀,幫助氧氣融入酵母菌液之中。
- 3. 最上方放有口罩內層濾菌不纖布,或許以橡皮筋固定,以便 在每日的測量的開關。
- ==> 萬一沒有時間,則下方的「電磁攪拌器+容器」直接由電動磁石攪拌馬克杯代替。

伍、研究架構(皆使用光度計作為測量器材):

主題<一>:

研究人員: 李博宇

操縱變因:不同種類的酵母粉

應變變因:光度值的變化

實驗材料:活性乾酵母粉(白玫瑰牌)、天然酵母(日本白神小玉)、

速發乾酵母粉 (伯爵牌)

預期結果:天然酵母成長最快速,活性乾酵母成長最緩慢。

操作流程:使用同質量、不同種酵母粉培育>每日9、12、15點,抽取 2mL 加入

樣 品槽內,利用光度計測其光度>紀錄數值,繪製成圖表分析

附 註:每種酵母粉都應於使用完畢後,迅速密封並冷藏。

主題<二>:

研究人員:康恩杰 操縱變因:水溫

應變變因:光度值的變化

實驗材料:15°C、25°C、35°C、45°C、55°C水、營養物質。

預期結果:35°C 時成長速度最快,15°C 時成長最慢。

操作流程:在同質量、不同水溫的營養液中培養同質量的酵母(使用溫度控制器)。每日8、12、16點,取樣放入光度計測其光度並紀錄數值,再繪製成圖表分析

附 註:水必須保持恆溫。

主題〈三〉:

研究人員:潘仰祐

操縱變因:吉利丁之濃度 應變變因:光度值的變化

實驗材料:吉利丁、其餘必備的營養物質

流程概述:1. 進行器材預處理、環境預處理。

2. 秤量定量吉利丁以及水,使用瓦斯爐將其煮沸,再將其放涼

3. 將酵母、吉利丁液與培養液配置好,放入攪拌杯中

4. 以口罩(或中層之濾菌不織布)封口,並啟動攪拌程序

5. 每日定時(可能 3~5 次)暫停攪拌,以針筒自其中採樣,並按一定比例稀釋,使用光度計測量光度值並記錄,直到連續多次測量皆未發現數值明顯改變為止。

預期結果:由於吉利丁之組成,主要為蛋白質或胺基酸,而這又是多數生物的能量來源之一,故可以預期在某一區間內,其成長會更佳;然而給予過量後,或許會造成負面影響。

附 註:調製吉利丁溶液時,應該要維持在不能結凍的濃度,或者加溫到 90°C 以上,使其分裂為更小物質(應為胺基酸)而冷卻後不會凝固。

主題(四):

研究人員:鄭鈞澤 操作變因:酸鹼度

應變變因:光度值的變化

實驗材料:碳酸氫鈉及酵母菌擴培裝置、pH計或廣用試紙。

操作流程:首先使用電子天秤量取碳酸氫鈉(重量持續累加),並加入酵母菌擴培

裝置中,每隔一段時間使用顯微鏡或光度計測量並紀錄酵母菌之增長

情況,幾個禮拜過後再將數據統整成圖表並對其進行分析。

預期結果:當酵母菌暴露在鹼性物質中時,會減少其生存機率。

附 註:碳酸氫鈉取自於敝舍廚房。

柒、實驗記錄表:詳見附錄一

主題<一>:不同種類的酵母粉

稀釋比例:

^{希釋比例:_} 日期	時刻	光度值(lx)					
1 切 旳 刈	品種	品種	品種	品種	品種		
/	:						
/	:						
/	:						
/	:						
/	:						
/	•						
/	•						
/	:						
/	•						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						

/	•			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	•			
/	••			
/	:			
/	:			
/	••			
/	••			
/	••			
/	•			
/	:			
/	•			
/	:			

主題<二>:水溫

稀釋比例:

日期 時刻	吃剂	光度值(lx)					
	温度	溫度	温度	溫度	溫度		
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	•						
/	:						
/	•						
/	•						
/	•						
/	:						

/	•			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	•			
/	••			
/	:			
/	:			
/	••			
/	••			
/	••			
/	•			
/	•			
/	•			
/	:			

主題<三>:吉利丁之濃度

稀釋比例:___

^{稀釋比例·} _ 日期	時刻	光度值(lx)						
H 391	7) "(7)	濃度	濃度	濃度	濃度	濃度		
/	•							
/	•							
/	:							
/	•							
/	:							
/	:							
/	•							
/	•							
/	:							
/	•							
/	•							
/	•							
/	•							
/	•							
/	•							
/	•							
/	•							

/	•			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	•			
/	••			
/	:			
/	:			
/	••			
/	••			
/	••			
/	•			
/	•			
/	•			
/	:			

主題〈三〉:酸鹼度

稀釋比例:

稀釋比例: <u>.</u> 日期	時刻	光度值(lx)					
口别	口知 时刻	酸鹼度	酸鹼度	酸鹼度	酸鹼度	酸鹼度	
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						
/	:						

/	•			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	:			
/	•			
/	••			
/	:			
/	:			
/	••			
/	••			
/	••			
/	•			
/	•			
/	•			
/	:			