WEEKLY TEST - 03

Subject: Theory of Computation

Topic: NFA and Regular Language

Maximum Marks 15

Q.1 to 5 Carry ONE Mark Each

[MCQ]

- 1. Which of the following is a regular language?
 - (a) $L = \left\{ a^{n^n} \mid n \ge 1 \right\}$
 - (b) $L = \left\{a^{m^n} \mid n \ge 1, m = n^2\right\}$
 - (c) $L = \left\{a^{m^n} \mid n \ge 1, m > n\right\}$
 - (d) None of these

[MCQ]

- 2. Which of the following is a non-regular language?
 - (a) $L = \{wxwy \mid x,y,w \in (a+b)^+\}.$
 - (b) $L = \{xwyw \mid x,y,w \in (a+b)^+\}.$
 - (c) $L = \{wxyw \mid x,y,w \in (a+b)^+\}.$
 - (d) All of the above.

[MCQ]

- 3. Let L be any formal language. If L^* is regular language then what is L?
 - (a) L is regular.
 - (b) L is non-regular.
 - (c) L is CFL.
 - (d) None of these.

[MCQ]

- **4.** Consider the following two statements:
 - [I]: There exist a regular language L_1 , such that for all language L_2 , $L_1 \cup L_2$ is always regular.
 - **[II]:** If all states of deterministic finite automata (DFA) except start state are final states then language accepted by DFA is Σ^+ .

Which of the following is correct?

- (a) S_1 only.
- (b) S_2 only.
- (c) Both S_1 and S_2 are true.
- (d) None of these.

[MCQ]

5. Consider the following DFA:

The correct transition of $\delta^*(S, abaab)$ is?

- (a) {D}
- (b) $\{S, A, B, D\}$
- (c) $\{A, B, A, D, D\}$
- (d) {B, D}

Q.6 to 10 Carry TWO Mark Each

[MCQ]

- **6.** Assume R_1 , R_2 and R_3 are three regular expressions. Given, $R_1 + R_2R_3 = (R_1 + R_2) (R_1 + R_3)$ for any R_2 and R_3 . Which of the following could be correct condition which always satisfies the above equation?
- (i) $R_1 = R_2$
- (ii) $R_1 = R_3$
- (iii) $R_1 = \phi$
- (a) Only (i) and (ii) are correct.
- (b) Only (i) and (iii) are correct.
- (c) Only (ii) and (iii) are correct.
- (d) (i), (ii) and (iii) are correct.

[MCQ]

- 7. Consider the following statements:
 - [I]: Concatenation of two finite language cannot be commutative until at least one of them is empty or null.
 - [II]: Let L be language, reversal of L does not contain any string present in language L except \in .

Which of the following is correct?

- (a) (I) only.
- (b) (II) only.
- (c) Both (I) and (II) are correct.
- (d) None of these.

[NAT]

8. Let us consider the following regular expression $R = a^*b^* + b^*a^*$.

How many equivalence classes of expression that represent language are equivalent to regular expression R?

[MSQ]

9. Consider the following languages:

$$L_1 = \{a^m b^n c^p \mid m, n, p \ge 0\}.$$

$$L_2 = \{a^m b^m c^p \mid m, p \ge 0\}.$$

$$L_3 = \{a^{2m}b^{2m}c^p \mid m, p \ge 0\}.$$

Which of the following is/are correct?

- (a) $L_1 \subseteq L_2$ and $L_2 \subseteq L_1$.
- (b) $L_2 \subseteq L_1$ and $L_3 \subseteq L_1$.
- (c) $L_3 \subseteq L_2$ and $L_2 \subseteq L_1$.
- (d) $L_2 \subseteq L_3$ and $L_3 \subseteq L_1$.

[MCQ]

10. Consider the following languages L_1 and L_2 :

$$L_1 = \{0^m 1^n \mid m = n, m, n \ge 0\}$$

$$L_2 = \{0^m 1^n \mid m, n \ge 0\}$$

Let, $L = L_2 - L_1$, then what is the language L?

- (a) $L = \{0^m 1^n \mid m, n \ge 0\}.$
- (b) L is regular.
- (c) $L = \{0^m 1^n \mid m \neq n\}$, non-regular.
- (d) $L = \{0^m 1^n \mid m \neq n \}$, regular.

Answer Key

(c) 1.

2. (c)

3. (d)

4. (a)

5. (c)

6. (d)
7. (d)
8. (6)
9. (b, c)
10. (c)

Hints and Solutions

1. (c)

$$L = \left\{ a^{m^n} \mid n \ge 1, m > n \right\}$$

$$\Rightarrow L = \left\{a^{m^1} \mid m \ge 2\right\} \cup \left\{a^{m^2} \mid m \ge 3\right\} \cup ...$$

 \Rightarrow L = $\{a^i | i \ge 2\}$ is a regular language.

This accepts L.

2. (c)

- (a) $L = \{wxwy \mid x, y, w \in (a+b)^+\}$ $L = [a(a+b)^+ a(a+b)^+] + [b(a+b)^+ b(a+b)^+]$ $\Rightarrow L$ is regular language.
- (b) $L = \{xwyw \mid x,y,w \in (a+b)^+\}$ $L = [(a+b)^+ a(a+b)^+ a] + [(a+b)^+ b(a+b)^+ b]$ $\Rightarrow L$ is regular language.
- (c) $L = \{wxyw \mid x,y,w \in (a+b)^+\}$ $\Rightarrow L \text{ is non-regular language.}$

3. (d)

If L^* is regular, L may or may not be a regular.

Example 1: $L^* = (a + b)^*$ is regular, L = (a + b) is regular.

Example 2: $L^* = \{(a^P)^* \mid P \text{ is prime}\}\$ is regular but $L = \{a^P \mid P \text{ is prime}\}\$ is non-regular.

:. Option (d) is correct.

4. (a)

S₁ True:

$$L_1 = \sum^*$$

$$L_1 \cup L_2 = \sum^* \cup L_2 = \sum^*$$
 (Regular)

S₂ False:

May or may not be Σ^+

For example: DFA for language ending with "a" on alphabet {a, b}.

5. (c)

$$\delta$$
*(S, abaab) = a b a a b

So, answer will be (c)

6. (d)

$$R_1 + R_2R_3 = (R_1 + R_2)(R_1 + R_3)$$

(i) If
$$R_1 = R_2$$
,

$$R_1 + R_2R_3 = (R_1 + R_2)(R_1 + R_3)$$

$$R_2 + R_2 R_3 = (R_2 + R_2)(R_2 + R_3)$$

$$R_2 + R_2 R_3 = R_2 (R_2 + R_3)$$

$$= R_2 + R_2R_3$$
 is correct.

(ii) If
$$R_1 = R_3$$
,

$$R_1 + R_2R_3 = (R_1 + R_2)(R_1 + R_3)$$

$$R_3 + R_2R_3 = (R_3 + R_2)(R_3 + R_3)$$

$$= (R_2 + R_3)R_3$$

 $= R_3 + R_2R_3$ is correct.

(iii) If $R_1 = \phi$,

$$R_1 + R_2 R_3 = (R_1 + R_2)(R_1 + R_3)$$

$$\phi + R_2 R_3 = (\phi + R_2)(\phi + R_3)$$

$$R_2R_3 = R_2 R_3$$
 is correct.

∴ (i), (ii) and (iii) conditions are correct.

7. (d)

[I]:
$$L_1 = \{a\}$$

$$L_2 = \{a\}$$

$$L_1{\cdot}L_2=a{\cdot}a$$

$$L_2 \cdot L_1 = a \cdot a$$

Commutative

[II]:
$$L = (a + b)^*$$

$$L^{R} = (a + b)^*$$

Hence, option (d) is correct.

$$R = a^*b^* + b^*a^*$$

$$R = a^*b^* + b^*a^*$$
= $(\in + aa^*) = (\in + bb^*) + (\in + bb^*) (\in + aa^*)$
= $\in + aa^* + bb^* + aa^* bb^* + bb^* aa^*$
[: $a^* = (\in + aa^*)$]

Number of equivalence classes are equivalent to minimum number of states in DFA.

Regular expression for each state represents each equivalence class.

So,

$$[q_0] = \in$$

$$[q_1] = aa^*$$

$$[q_2] = bb^*$$

$$[q_3] = aa^* + bb^*$$

$$[q_4] = bb^* aa^*$$

 $[q_5] = (aa^*bb^*a + bb^*aa^*b) (a + b)^*$

9. (b, c)

•
$$L_3 \subseteq L_1$$
 True

•
$$L_2 \subseteq L_1$$
 True

•
$$L_3 \subseteq L_2$$
 True

10. (c)

$$L_1 = \{0^m1^n \mid m=n,\, m,\, n\geq 0\}$$

$$L_2 = \{0^m1^n \mid m,\, n \geq 0\}$$

$$L = L_2 - L_1$$

$$=L_2 \cap \overline{L_1}$$

$$= (0^*1^*) \cap \{0^m1^n \mid m \neq n\}$$

$$= \{0^m1^n \mid m \neq n\} \text{ non-regular (CFL)}$$

For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if