LINEAR REGRESSION/LOGISTIC REGRESSION

Linear Regression

Do you remember main assumptions of linear regression?

Main Assumption of Linear Regression

- Linear regression analysis makes several key assumptions
 - Linear relationship
 - Homoscedasticity
 - Normality
 - No or little multicollinearity

- Normality
 - Errors should follow normal distribution
 - Calculate errors (residuals) and check normality

$$e_i = y_i - \hat{y}_i$$

Histogram

Histogram

- Q-Q plot
 - A probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other
 - Quantiles are cutpoints dividing a set of observations into equal sized groups
 - = q-Quantiles are values that partition a finite set of values into q subsets of (nearly) equal sizes
 - Median is 2-quartile, 0.5 quantile and 50 percentile

Jarque-Bera test

- Jarque-Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution
 - Test statistic

$$JB = \frac{n-k}{6} \left(S^2 + \frac{1}{4} (C-3)^2 \right)$$

- $S = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2\right)^{\frac{3}{2}}} : \text{sample skewness}$
- $C = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2\right)^{\frac{4}{2}}} : \text{sample kurtosis}$
- k: the number of input variables
- If the data comes from a normal distribution, JB statistic asymptotically has a chi-squared distribution with two degrees of freedom

$$H_0$$
: $S = C - 3 = 0$

*** Skewness**

right-skewed, right-tailed, or skewed to the right,

left-skewed, left-tailed, or *skewed to the left*

*** Kurtosis**

Probability density functions for selected distributions with mean 0,
 variance 1 and different excess kurtosis

- □ Homoscedasticity → Heteoscedasticity
 - Check whether all random variables in the sequence or vector have the same finite variance

- Breusch-Pagan test
 - Test of the hypothesis that the independent variables have no explanatory power on the squared errors
- Procedure of Breusch-Pagan test
 - ① Apply linear regression in the model and compute the regression residuals $y = X\beta + \epsilon$
 - 2 Perform the auxiliary regression

$$e^2 = \gamma_0 + \gamma_1 x_1 + \dots + \gamma_p x_p + \eta$$

③ Apply F-test on auxiliary regression

$$H_0: \gamma_1 = \gamma_2 = \dots = \gamma_p = 0$$

 $H_a: all \ \gamma_i \ is \ not \ 0$

Alternative test statistics

③ Use Lagrange multiplier statistic

$$LM = nR^2$$

• The test statistic is asymptotically distributed as χ_p^2 under the null hypothesis of homoskedasticity

Residual plot

Interpretation & Prediction

- If the fitted regression model is appropriate and significant you can use the model for future use
 - Linear regression models have strength in interpretation
 - Each coefficient explains relationship between each explanatory variable and the target variable
 - Based on the fitted model, predict the target on test samples

Overall Process for Linear Regression

Regression Model Linearity Multicolinearity Validity of Normality Homoscedasticity Significance of model Goodness-of-fit **Model Utilization** Figure out significant input variables Figure out relations between input variables and target variable → Interpretation Predict target with respect to new observations

Feature Scaling

- Predict consumption of petrol
 - Linear model by least square method $y = -34.8x_1 0.0666x_2 0.002x_3 + 1336x_4 + 377.3$

Petrol Tax(\$)	Average Income (\$)	Paved Highways (miles)	Proportion of population with driver's license	Consumption of petrol (M of gallons)
9	3571	1976	0.525	541
9	4092	1250	0.572	524
9	3865	1586	0.58	561
7.5	4870	2351	0.529	414
	•••			

How about changing scale of variable?

Feature Scaling

Change unit of paved highways from mile to cm
 1mile=160934.4cm

Petrol Tax(\$)	Average Income (\$)	Paved Highways (cm)	Proportion of population with driver's license	Consumption of petrol (M of gallons)
9	3571	31683974.4	0.525	541
9	4092	20043000	0.572	524
9	3865	25430558.4	0.58	561
7.5	4870	37696874.4	0.529	414
	•••	•••		•••

■ Linear regression on new data $y = -34.8x_1 - 0.0666x_2 - 1.5 \times 10^{-7}x_3 + 1336x_4 + 377.3$

Feature Scaling

- Scale change only affects on the changed variable
 - Coefficients of other variables are not changed
 - If variable x is replaced with ax, coefficient of x, β by linear regression is changed to β/a
 - If scale of certain variable is too large, coefficient of the variable might be too small
 - → It is better to change scale

Variable Transformation

- Linear regression algorithm is quite simple, but it can be extended using transformation
 - $\mathbf{x} \to x^2$
 - $x \rightarrow \log x$
 - $x \to \sqrt{x}$

Logistic Regression

Topics Covered in This Class

CLASSICAL MACHINE LEARNING

Supervised: Classification

- Classification problem
 - Output is categorical variable
 - Spam/Non Spam
 - Male/Female
 - Long/Medium/Short
 - O/X
- Binary classification problem
 - The number of categories is 2
 - Generally, these two categories are denoted as 0 and 1
 - 0 and 1 are not integer in this case

$$y \in \{0,1\}$$

- Multi-class classification problem
 - More than two classes

$$y \in \{1, 2, ..., C\}, C > 2$$

Supervised: Classification

Types of Classifiers

- A classifier is a function that assigns to a sample, \mathbf{x} a class label \hat{y} $\hat{y} = f(\mathbf{x})$
- A probabilistic classifier obtains conditional distributions $\Pr(Y|\mathbf{x})$, meaning that for a given $\mathbf{x} \in X$, they assign probabilities to all $y \in Y$
 - Hard classification

$$\hat{y} = \arg\max_{y} \Pr(Y = y | \mathbf{x})$$

The Decision Boundary of Classifiers

Decision boundary

$$y = f(X), y \in \{1, 2, ..., C\}$$

Logistic Regression

- Logistic regression
 - Regression model where the dependent variable is categorical
 - The probabilities describing the possible outcomes is modeled as explanatory variables

$$f(x) = P(Y|X)$$

Logistic regression is a linear classification algorithm

$$f(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p) = f(\boldsymbol{\beta} \cdot \mathbf{x})$$

• f(x) should be $0 \le f(x) \le 1$

How to confine outcome of f(x) within [0,1]?

Logistic Regression: Logistic function

 Logistic function is the function that can take an input with any value from negative to positive infinity, whereas the output always takes values between zero and one

$$\sigma(t) = \frac{e^t}{e^{t+1}} = \frac{1}{1+e^{-t}}$$

 \Box In logistic regression, t is determined by explanatory variables

Logistic Regression

 \Box t is determined by linear combination of explanatory variables

$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$f(x) = P(Y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}$$

Logistic Regression

- Determine class
 - Set class boundary
 - Without any prior knowledge about class, set 0.5

 If you have some knowledge about class distribution, class boundary can be determined based on the knowledge