

Unveiling the potential of Graph Neural Networks

Prof. Albert Cabellos (acabello@ac.upc.edu)

bnn.upc.edu

Universitat Politècnica de Catalunya

FINE, December 2019

How we can apply ML techniques to Computer Networks?

Knowledge-Defined Networking

Goal

- Manage and control the network with ML techniques
- E.g., Chose optimal paths for a set of flows

• Why?

- Network optimization
- Self-driving networks
- Reduced operational costs

Mestres, Albert, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros, Eduard Alarcón, Marc Solé, Victor Muntés-Mulero et al. "Knowledge-defined networking." *ACM SIGCOMM Computer Communication Review* 47, no. 3 (2017): 2-10.

In this talk:

1.- How we can build a Network Model using ML?

2.- How we can optimize the network using ML?

1.- How we can build the Network Model using ML?

Network Model: A Digital Network Twin

- Three main approaches
 - Computational Models: Simulation
 - Analytical Models: Queueing Theory
 - Neural Networks Our approach

Let's use Neural Nets to build this Dataset Generation

Let's use Neural Nets to build this: Training of Neural Network

How we can represent the network topology?

- Networks configuration is a graph:
 - Routing
 - Topology
 - Etc.
- Use graphs as inputs of neural nets.
- Academics have repeatedly failed to achieve this

Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P. and Cabellos-Aparicio, A., 2019. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN. *In ACM SOSR 2019*

ML applied to Networking

- So far we have <u>failed</u> to learn Computer Networks (e.g)
 - Valadarsky, A., Schapira, M., Shahaf, D., & Tamar, A. (2017, November). Learning to route. In *Proceedings of the 16th ACM Workshop on Hot Topics in Networks* (pp. 185-191). ACM.
 - Chen, X., Guo, J., Zhu, Z., Proietti, R., Castro, A., & Yoo, S. J. B. (2018, March). Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks. In 2018 Optical Fiber Communications Conference and Exposition (OFC) (pp. 1-3). IEEE.
 - Poor performance, in some cases worse than simple well-known heuristics
 - Ad-hoc solutions tailored to specific problems, in some cases transforming the problem to prevent learning graphs

The main reason for this is that standard Neural Networks are not suited to learn information structured as a graph

What about other fields?

- Other research areas faced similar problems
 - E.g., molecule representation in chemistry
- Graph Neural Networks (GNN)
 - Neural Network architecture to learn graph representations more suitable for learning

What are Graph Neural Networks?

Graph Neural Networks (GNN)

 GNN have been recently proposed by DeepMind et al. to learn and model information structured as a graph

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

- Each application has developed their own NN architectures
 - Fully Connected = Units -> General application (non-linear regression)
 - CNN = Grid elements → Images
 - RNN = Sequences \rightarrow Text processing, Time-Series
 - GNN = Nodes + Edges → Networks

Overview of the most common NN architectures

Type of NN	Information Structure	
Fully Connected NN	Arbitrary	
Convolutional NN	Spatial	
Recurrent NN	Sequential	
Graph NN	Relational	

Classification, Unsupervised Learning

Images and video

Text and voice

Graphs (molecules, maps, networks)

RouteNet: The first GNN for Computer Networks

- RouteNet is the first Graph Neural Network for Computer Networks
- It learns the relationship between topology, traffic, routing and the resulting performance of the network
- Generalizes to unseen topologies, routings and traffics

Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P. and Cabellos-Aparicio, A., 2019. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN. *In ACM SOSR 2019*

How does RouteNet work?

- RoueNet models the relationship between links and paths
 - State of a links depends on the paths that traverse that link
 - State of a paths depends on the links of that path
- This is a circular dependency

```
Input: \mathbf{x}_p, \mathbf{x}_l,\mathcal{R}
      Output: \mathbf{h}_{p}^{T}, \mathbf{h}_{l}^{T}, \hat{\mathbf{y}}_{p}
 1 foreach p \in \mathcal{R} do
              \mathbf{h}_{p}^{0} \leftarrow [\mathbf{x}_{p}, 0 \dots, 0]
 4 foreach l \in \mathcal{N} do
             \mathbf{h}_{l}^{0} \leftarrow [\mathbf{x}_{l}, 0 \dots, 0]
 6 end
 7 for t = 1 to T do
               foreach p \in \mathcal{R} do
                        foreach l \in p do
                                \mathbf{h}_p^t \leftarrow RNN_t(\mathbf{h}_p^t, \mathbf{h}_i^t)
12
                       \mathbf{h}_{p}^{t+1} \leftarrow \mathbf{h}_{p}^{t}
13
               foreach l \in \mathcal{N} do
                        \mathbf{m}_{l}^{t+1} \leftarrow \sum_{p:l \in p} \tilde{\mathbf{m}}_{p,l}^{t+1}
                        \mathbf{h}_{I}^{t+1} \leftarrow U_{t} \left( \mathbf{h}_{I}^{t}, \mathbf{m}_{I}^{t+1} \right)
               end
18
19 end
```

$$\mathbf{h}_{l_i} = f(\mathbf{h}_{p_1}, \dots, \mathbf{h}_{p_j}), \quad l_i \in p_k, k = 1, \dots, j$$

$$\mathbf{h}_{p_k} = g(\mathbf{h}_{l_{k(0)}}, \dots, \mathbf{h}_{l_{k(|p_k|)}})$$

A Traffic
Matrix: Source
to Destination

A Traffic
Matrix: Source
to Destination

A Traffic **Matrix: Source** to Destination

Performance

- RoueNet models the relationship between links and paths
 - State of a links depends on the paths that traverse that link
 - State of a paths depends on the links of that path
- This is a circular dependency

```
Input: \mathbf{x}_p, \mathbf{x}_l,\mathcal{R}
       Output: \mathbf{h}_{p}^{T}, \mathbf{h}_{l}^{T}, \hat{\mathbf{y}}_{p}
 1 foreach p \in \mathcal{R} do
              \mathbf{h}_{p}^{0} \leftarrow [\mathbf{x}_{p}, 0 \dots, 0]
 4 foreach l \in \mathcal{N} do
              \mathbf{h}_{l}^{0} \leftarrow [\mathbf{x}_{l}, 0 \dots, 0]
 6 end
 7 for t = 1 to T do
                foreach p \in \mathcal{R} do
                        foreach l \in p do
                                 \mathbf{h}_{p}^{t} \leftarrow RNN_{t}(\mathbf{h}_{p}^{t}, \mathbf{h}_{t}^{t})
12
                       \mathbf{h}_{p}^{t+1} \leftarrow \mathbf{h}_{p}^{t}
13
               foreach l \in \mathcal{N} do
                        \mathbf{m}_{l}^{t+1} \leftarrow \sum_{p:l \in p} \tilde{\mathbf{m}}_{p,l}^{t+1}
                        \mathbf{h}_{I}^{t+1} \leftarrow U_{t} \left( \mathbf{h}_{I}^{t}, \mathbf{m}_{I}^{t+1} \right)
               end
18
19 end
```

$$\mathbf{h}_{l_i} = f(\mathbf{h}_{p_1}, \dots, \mathbf{h}_{p_j}), \quad l_i \in p_k, k = 1, \dots, j$$

$$\mathbf{h}_{p_k} = g(\mathbf{h}_{l_{k(0)}}, \dots, \mathbf{h}_{l_{k(|p_k|)}})$$

RouteNet: A working example

RouteNet Architecture


```
Input: x_p, x_l, \mathcal{R}
       Output: \mathbf{h}_{p}^{T}, \mathbf{h}_{l}^{T}, \hat{\mathbf{y}}_{p}
  1 foreach p \in \mathcal{R} do
               \mathbf{h}_{p}^{0} \leftarrow [\mathbf{x}_{p}, 0 \dots, 0]
  4 foreach l \in \mathcal{N} do
              \mathbf{h}_{l}^{0} \leftarrow [\mathbf{x}_{l}, 0 \dots, 0]
  6 end
  7 for t = 1 to T do
                foreach p \in \mathcal{R} do
                        foreach l \in p do
                                 \mathbf{h}_p^t \leftarrow RNN_t(\mathbf{h}_p^t, \mathbf{h}_i^t)
                       \mathbf{h}_{p}^{t+1} \leftarrow \mathbf{h}_{p}^{t}
                foreach l \in \mathcal{N} do
                         \mathbf{m}_{l}^{t+1} \leftarrow \sum_{p:l \in p} \tilde{\mathbf{m}}_{p,l}^{t+1}
                        \mathbf{h}_{I}^{t+1} \leftarrow U_{t} \left( \mathbf{h}_{I}^{t}, \mathbf{m}_{I}^{t+1} \right)
               end
19 end
20 \hat{\mathbf{y}}_p \leftarrow F_p(\mathbf{h}_p)
```

Graph Neural Networks are **not a black-box** and require a **custom architecture** for each problem we are modeling. This needs to be done by a **ML & Networking expert.**

$$\mathbf{h}_{l_i} = f(\mathbf{h}_{p_1}, \dots, \mathbf{h}_{p_j}), \quad l_i \in p_k, k = 1, \dots, j$$

 $\mathbf{h}_{p_k} = g(\mathbf{h}_{l_{k(0)}}, \dots, \mathbf{h}_{l_{k(|p_k|)}})$

How accurate is RouteNet?

RouteNet: Dataset

- Dataset obtained with simulation
 - Omnet++
 - Event per-packet simulator that considers queuing
- Trained with the NSFnet 14-node topology
- 260k samples of random (uniform)
 - Traffic Matrices
 - Routing Configurations
 - Resulting per-packet average delay, jitter and losses

NSFnet Topology

RouteNet: Accuracy

	NSF		
	Delay	Jitter	
R^2	0.99	0.98	
ρ	0.998	0.993	

- RouteNet achieves good accuracy (R²~99)
- The Readout is used as dropout to prevent overfitting
- Transfer learning is used to improve learning for jitter and drops.

Can RouteNet generalize to unseen topologies?

RouteNet: Generalization

	NSF		Geant2	
	Delay	Jitter	Delay	Jitter
R^2	0.99	0.98	0.97	0.86
ρ	0.998	0.993	0.991	0.942

Geant Topology

- What happens when we evaluate RouteNet with an unseen topology?
- We tested RouteNet with the 24node Geant topology
- RouteNet produces accurate estimates for an unseen topologies.

RouteNet can *generalize* to unseen topologies, routings and traffic matrices.

RouteNet: Generalization

- RouteNet trained with a 24-node topology
- Evaluated in unseen 14node and 50-node topology
- RouteNet achieves consistent accuracy

2.- How we can optimize the network using ML?

Network Optimization

- Traditional optimization techniques:
 - Heuristics
 - Routing algorithms (e.g., Shortest path)
 - General-purpose optimization algorithms (e.g., hill climbing)
- Possibility to optimize with

Deep Reinforcement Learning (DRL)

DRL vs Traditional Optimization

- Traditional optimization techniques have some limitations:
 - Simple heuristics offer suboptimal performance (e.g., shortest path, ECMP...)
 - Compute the optimal solution is too costly
 (e.g., evaluate all the possible routing configurations)
- Deep Reinforcement Learning (DRL):
 - In other fields is showing outstanding performance in decision making and automated control problems
 - Fast operation (1-step decision making)

Deep Reinforcement Learning (DRL)

- The DRL agent is modeled by neural networks that learn the target policy
- No domain-specific knowledge (tabula rasa learning)
- The agent only knows the basic rules of the environment (possible actions)

Deep Reinforcement Learning (DRL)

- Training (offline):
 - The learning is achieved by iteratively exploring states and actions (trial and error process)
 - Reward function → Defines the optimization objective
 - Objective

 Maximize the cumulative reward (long-term strategy)
 - Smart exploration strategies leveraging the Neural Network models

Deep Reinforcement Learning (DRL)

• Operation (online): 1-step decision making

Input state → Output action

The main challenge of DRL for Computer Networks: Generalization

Generalization of DRL

Trained DRL Agent

Operation

Generalization of DRL

How can we use DRL techniques with GNN?

DRL+GNN: A network optimization architecture

Almasan, P., Suárez-Varela, J., Badia-Sampera, A., Rusek, K., Barlet-Ros, P., & Cabellos-Aparicio, A. (2019). Deep Reinforcement Learning meets Graph Neural Networks: An optical network routing use case. *arXiv* preprint arXiv:1910.07421.

Algorithm 2 DRL Agent operation

```
1: s, src, dst, bw \leftarrow env.init env()
 2: reward \leftarrow 0
 3: k \leftarrow 4
 4: agt.mem \leftarrow \{\}
 5: Done \leftarrow False
 6: while not Done do
         k \neq values \leftarrow \{\}
         k shortest paths \leftarrow compute k paths(k, src, dst)
         for i in 0, ..., k do
             p' \leftarrow get \ path(i, k \ shortest \ paths)
             s' \leftarrow env.alloc\_demand(s, p', src, dst, dem)
11:
              k \neq values[i] \leftarrow compute \neq value(s', p')
12:
         q value \leftarrow epsilon greedy(k \ q \ values, \epsilon)
13:
         a \leftarrow get\_action(q\_value, k\_shortest\_paths, s)
         r, Done, s', src', dst', bw' \leftarrow env.step(s, a)
15:
         agt.rmb(s, src, dst, bw, a, r, s', src', dst', bw')
16:
         reward \leftarrow reward + r
17:
         If training steps \% M == 0: agt.replay()
         src \leftarrow src'; dst \leftarrow dst'; bw \leftarrow bw', s \leftarrow s'
19:
```

What is the performance of DRL+GNN wrt. the state-of-the-art?

DRL+GNN vs. State-of-the-art

- We compare DRL+GNN against state-of-the-art DRL and heuristics
- DRL+GNN outperforms traditional heuristics
- DRL+GNN achieves similar performance to the DRL state-of-the-art algorithms

What happens when we apply DRL+GNN in unseen networks?

Generalization capabilities of DRL+GNN

- DRL+GNN is trained in one network and applied to a different unseen network
- DRL+GNN keeps the same level of performance, even if has never seen this network during training

Generalization capabilities of DRL+GNN

- We test DRL+GNN in 100+ unseen random network topologies
- DRL+GNN achieves consistent performance in unseen networks

Conclusions

Conclusions

- Graph Neural Network is an efficient tool to accurately model computer networks
- GNN-based models can generalize to unseen computer networks
- DRL+GNN looks as a promising technique to build selfdriving networks

GNNs are as important to Computer Networks as CNNs to Computer Vision

Learn about GNN: All papers are free online github.com/knowledgedefinednetworking/Papers/wiki

Play with GNN: Code and Datasets open-source github.com/knowledgedefinednetworking/demo-routenet knowledgedefinednetworking.org

Challenge yourself!
Participate in the GNN BNN 2020 Challenge bnn.upc.edu/challenge2020

Join us - Barcelona Neural Networking

Prof. Albert Cabellos Director

Prof. Pere Barlet **Scientific Director**

Albert López **Head of Engineering Post-Doc (Dec 2019)**

Jose Suárez

Dr. Sergi Abadal **Post-Doc**

Dr. Kryztof Rusek **Data Scientist**

Paul Almasan **PhD Student**

Maria Gkotsopoulou **MSc Student**

Sergi Carol **MSc Student**

Albert Canyelles **BSc Student**

Backup - AlphaZero

AlphaZero

- In late 2017, Google DeepMind presented AlphaGo Zero
- Super-human performance in the Go board game
- AlphaZero is a generalization of AlphaGo Zero that beated all the world-champion programs in the games of Chess (after 4 hours of training), Shogi (after 2 hours) and Go

To learn each game, an untrained neural network (tabula rasa) plays

millions of games against

itself (self-play)

Source: https://deepmind.com/blog/

AlphaZero

AlphaZero

- Main features of AlphaZero:
 - Monte Carlo Tree Search (MCTS) → Smart exploration
 - Combination of Deep Neural Network models:
 - Actor NN → Predicts the target policy
 - Critic NN → Predicts the value of states (potential reward at the end of the episode)
 - Self-play from tabula rasa → No human bias

Toy example: Tic-Tac-Toe game

- Monte Carlo Tree Search (MCTS)
 - Tree expansion:

N: Node visit count

W: State value (potential reward)

Toy example: Tic-Tac-Toe game

- Monte Carlo Tree Search (MCTS)
 - Exploration:

- Monte Carlo Tree Search (MCTS)
 - Backpropagation:

- Monte Carlo Tree Search (MCTS):
 - Smart exploration:

- Monte Carlo Tree Search (MCTS):
 - Smart exploration:

- Monte Carlo Tree Search (MCTS):
 - Smart exploration with actor-critic NN models:

