

第九章 中断技术

张华平 副教授 博士

Email: kevinzhang@bit.edu.cn

Website: http://www.nlpir.org/

@ICTCLAS张华平博士

NIP

大数据搜索挖掘实验室 (wSMS@BIT)

- 7 (1) 【重点讲解】可编程控制器8259
- **1** (2) 【重点讲解】保护模式中断和异常的处理过程
- 7 (3) 【一般性讲解,概念为主】中断概述及实模式与保护模式的处理过程
- **1** (4) 【简单了解,不作要求】高级可编程中断控制器

- 7中断概述
- 7实模式的中断处理
- 7保护模式的中断处理
- 7可编程中断控制8259
- 7高级可编程中断控制器

7中断基本原理

- ■使CPU中止正在执行的程序而转去处理特殊事件的操作。这些引起中断的事件称为中断源。
- ■Intel系列微处理器的对外的中断引脚包括两个申请中断的硬件引脚(INTR和NMI),一个响应INTR中断的硬件引脚(INTA)。除此之外微处理器还有软件中断INT, INTO, INT3和BOUND。
- ■中断结构中的2个标志位IF(Interrupt Flag, 中断标志)和TF(Trap Flag, 陷阱标志)和一个特殊的返回指令IRET/IRETD。

7中断分类

- ■CPU把中断分为内部中断和外部中断两大类。为了支持多任务和虚拟存储器等功能,保护模式下,把外部中断称为"中断"(Interrupt),把内部中断称为"异常"(Exception)。通常在两条指令之间响应中断或异常。CPU最多处理256种中断或异常。
- ■中断可以分为可屏蔽中断和不可屏蔽中断。
 - ●INTR: 标志寄存器EFLAGS 中的IF 标志决定是否响应INTR 的中断请求
 - ●NMI: 不可屏蔽中断

刀异常

- ■异常是CPU在执行指令期间检测到不正常的或非法的操作所引起的。异常是不可屏蔽的,每一种异常类别具有不同的异常号码。
- ■软中断指令"INT n"和"INTO"执行时会导致CPU产生异常事件,也属于异常而不称为中断。
- ■异常分为故障(Fault)、陷阱(Trap)和中止(Abort)3种。

陷阱处理

程序

7异常分类

- ■故障:故障是在引起异常的指令之前,把异常情况通知给系统的一种情况。故障的特点是可排除。
- ■陷阱:陷阱是在引起异常的指令执行之后触发的一种情况。软中断指令"INT n"、单步异常等。
- ■终止:系统出现严重的不可恢复的事件时触发的一种异常,产生中止后,正执行的程序不能被恢复执行,系统要重新启动才能恢复正常运行状态。

大理工大学 NSTITUTE OF TECHNOLOGY

7异常类型

9.1 中断概述

表 9-1 异常的类型及其向量号

向量号	异常名称	异常类型	出错代码	相关指令
00H	除法出错	故障	无	DIV/IDIV
01H	单步/调试异常	故障/陷阱	无	任何指令
0 <mark>2</mark> H	NMI	中断	无	
03H	单字节 INT3	陷阱	无	INT 3
04H	溢出	陷阱	无	INTO
05H	边界检查	故障	无	BOUND
06H	非法操作码	故障	无	非法指令编码或操作数
07H	无浮点处理器	故障	无	浮点指令或 WAIT/FWAIT
08H	双重故障	中止	有	
09H	协处理器段越界	中止	无	访问存储器的浮点指令
0AH	无效 TSS 异常	故障	有	JMP、CALL、IRET 或中断
0BH	段不存在	故障	有	装载段寄存器的指令
0CH	堆栈段异常	故障	有	访问 SS 段的指令
0DH	通用保护异常	故障	有	特权指令、访问存储器的指令
0EH	页异常	故障	有	任何访问存储器的指令
10H	协处理器出错	故障	无	浮点指令或 WAIT/FWAIT
20H∼0FFH	软中断	陷阱	无	INT n
ZUIT ~UFFII	硬件中断	中断	无	11/1 11

北京理工大学

7实模式下中断类型与类型号

图 9-3 CPU 的中断源

7中断服务程序

■ CPU响应中断时,CPU暂停当前正在执行的程序转而执行中断服务程序。中断服务程序包括保护现场、处理中断、发送中断结束命令、恢复现场、中断返回几个部分。

9.2 实模式的中断处理

- 7中断向量表
- 7中断处理过程
- 7写中断向量表

例 9.2 实模式下中断向量表实例。

0000:0000 68 10 A7 00 BB 13 73 05 - 16 00 98 03 B1 13 73 05

0000:0010 8B 01 70 00 B9 06 0E 02 - 40 07 0E 02 FF 03 0E 02

0000:0020 46 07 0E 02 0A 04 0E 02 – 3A 00 98 03 54 00 98 03

0000:0030 6E 00 98 03 88 00 98 03 - A2 00 98 03 FF 03 0E 02

INT 8H: 8*4=0020h 020E:0746

7中断描述符表

- ■保护模式下响应中断或者处理异常时,CPU根据中断/异常向量号执行对应的处理程序,把中断类型号作为中断描述符表IDT中描述符的索引,取得一个描述符,从中得到中断/异常处理程序的入口地址。
- 每个CPU核具有唯一的一个IDT。IDT的位置不定,中断描述符表寄存器IDTR指示IDT在内存中的位置。

图 9-4 中断门描述符、陷阱门描述符的格式

- 7中断和异常响应步骤
 - ■如果是异常处理,首先根据异常类型确定返回地址(CS:EIP),对于故障,CS:EIP指向引起故障的指令;对于陷阱,CS:EIP指向引起陷阱的指令的下一条指令。
 - ■判断中断类型号要索引的门描述符是否超出IDT的界限。
 - ■再从IDT中取得对应的门描述符,分解出选择符、偏移量和属性字节,并进行有关检查。
 - ■根据门描述符类型,分别转入中断或异常处理程序。

- 7跳转到中断服务程序的途径
 - ■通过中断门或者陷阱门的跳转

图 9-5 中断或异常后的堆栈

- ■通过任务门的跳转
- ■两种方式的比较

- 7中断或异常处理后的返回
 - ■中断返回指令IRET用于从中断或异常处理程序中返回。该指令的执行根据任务嵌套标志NT位是否为1分为两种情形。由任务门转入中断或异常处理程序时,NT位被置1;由中断门或陷阱门转入中断或异常处理程序时,NT位被清0。
 - ■NT位为1时,IRET执行的是嵌套任务的返回。
 - ■NT位为0时, IRET执行的是当前任务内的返回。

7任务切换

图 9-6 任务切换

图 9-7 任务内特权级的变换

图 9-8 任务内相同特权级的转移

78259

图 9-9 8259 的内部结构

78259中断过程

- ■当一条或多条中断请求线IRO~IR7变高时,设置相应的IRR位为1;
- ■然后PR对中断优先权和中断屏蔽寄存器的状态进行判断,请求中断服务:
- ■CPU响应中断时,送出中断响应信号INTA,响应第一个INTA信号时,将当前中断服务寄存器中相应位置位,并把IRR中相应位复位。第二个INTA负脉冲期间,中断类型码被读入CPU。

78259工作流程

- IR2出现中断请求,该引脚的对应的中断屏蔽字相应位为0,即没有被屏蔽。此时由于ISR全为0,没有比它的优先级更高的中断正在执行,IR2的请求被送往CPU。
- ■CPU响应中断时,8259将ISR的值变为00000100B,标志IR2正在被服务。
- ■假定IR7出现中断请求。由于IR2比IR7优先级更高,此请求暂时被忽略。
- ■假定IR1出现中断请求。由于IR1比IR2优先级更高,此请求被送往CPU。
- ■CPU响应中断时,8259将ISR的值变为00000110B,标志IR2被中断,IR1 正在被服务。

78259的级联

图 9-11 8259 的主从连接

78259的编程

- ■命令字分两类:初始化命令字(ICW1~ICW4)和操作命令字(OCW0~OCW4)。
- ■初始化命令字在系统启动时,由初始化程序设置,一旦设定, 一般在系统工作过程中就不再改变。
- ■操作命令字是在计算机系统运行过程中,由CPU利用这些控制字来控制8259执行不同的操作,如中断屏蔽、中断结束、优先权循环和中断状态的读出和查询等。
- OCW可在初始化之后的任何时刻写入8259, 并可多次设置。

7控制信号操作

■8259也是依靠CS、AO、RD、WR等信号的组合来实现和CPU的数据交互的,包括由CPU向8259写入命令字(ICW和OCW)、从8259读出各种状态等。

表 9-2 8259 控制信号对应的操作表

CS	WR	RD	A0	读写操作		
0	0	1	0	写 ICW1、OCW2、OCW3		
0	0	1	1	写 ICW2、ICW3、ICW4、OCW1		
0	1	0	0	读IRR、ISR、查询字		
0	1	0	1	读 IMR		

7初始化命令字

9.4 可编程中断控制器8259

7初始化命令字ICW1

■例9.6 某系统使用单片8259,中断请求信号为上升沿触发,需要设置ICW4,该片8259的端口地址为20H和21H,则ICW1应为多少?

7	6	5	4	3	2	1	0
D7	D6	D5	1	LTIM	D2	SNGL	IC4

D7~D5	当 8259 与 8086/8088/Pentium 连接时,此位无意义
D4	必须为 1。表示这是一个 ICW1 命令字
LTIM	=0, 边沿触发; =1, 电平触发
D2	无意义
SNGL	=1, 系统中只有 1 片 8259, 单片使用; =0, 多片 8259 级联使用
IC4	=0, 不需要写入 ICW4; =1,需要写入 ICW4

→初始化命令字 ICW2

■例9.7 假设系统中使用单片8259,该片8259的端口地址为20H和21H,8 个中断源的中断类型码为08H~0FH(00001000B~00001111B),则应如何初始化ICW2?

. 7	6	5	4	3	2	1	0
T7	T6	T5	T4	Т3	0	0	0

	<u> </u>	
$T7 \sim T3$	中断响应码的高 5 位	
870.8 F003	1 41.13/4.14 - 14	

图 9-14 ICW2 的格式

7初始化命令字ICW3

■例9.8 系统中,使用两片8259,主片8259的端口地址为20H和21H . 从片8259的端口地址为0A0H和0A1H, 从片8259的INT连接到主片 的IR2上,则应如何初始化ICW3?

7	6	5	4	3	2	1	0
S7	S6	S5	S4	S3	S2	S1	S0

S7~S0	Si 位等于 0 时,IRi 不连接从片;等于 1 时,IRi 连接从片。i=0~7	Š
-------	--	---

图 9-15 主片 ICW3 的格式

7	6	5	4	3	2	1	0
0	0	0	0	0	ID2	ID1	ID0

 $ID2 \sim ID0$ 从片的标识码 $(0\sim7)$, 即从片连接到主片的 IRi。 $i=0\sim7$

→初始化命令字ICW4

■例9.9 假定包含两片8259。主片地址为20H和21H,从片的地址为A0H和A1H;两片都工作在特殊嵌套方式、非缓冲模式,采用非自动中断结束。写出主片和从片的ICW4初始化程序。

7	6	5	4	3	2	1	0
0	0	0	SFNM	BUF	M/S	AEOI	uPM

SFNM	=0,普通全嵌套方式; =1,特殊全嵌套方式
BUF	=0,非缓冲模式; =1,缓冲模式
M/S	=0, 从片; =1, 主片。BUF=0时, 此位无意义
AEOI	=0, 非自动结束方式; =1, 中断自动结束方式
uPM	=0,用于 8080/8085 等 8 位 CPU 系统; =1,用于 8088/8086/Pentium

- 7中断屏蔽操作命令字OCWI
 - ■例9.10 8259的端口地址为20H和21H, 试编写程序屏蔽IR2、IR5两个中断源。

 7	6	5	4	3	2	1	0
M7	M6	M5	M4	M3	M2	M1	M0

M7~M0 Mi 位等于 0 时,该中断源 IRi 不会被屏蔽;等于 1 时; IRi 被屏蔽

图 9-18 OCW1 的格式

- ♂优先级循环方式和中断结束方式操作命令字OCW2
 - ■例9.11 8259地址为20H和21H, 编写程序完成如下操作:
 - ① 清除IR2对应的ISR
 - ② 设置IR4为最高优先级

7	6	5	4	3	2	1	0
R	SL	EOI	0	0	L2	L1	L0

R	=1, 优先级循环
SL	=1,特定优先级,L2~L0有效; =0时,L2~L0不起作用
EOI	=1,中断结束命令,使中断服务寄存器 ISR 中的某一位清 0
L2~L0	三位二进制编码,代表 0~7 共 8 种中断源

图 9-19 OCW2 的格式

→特殊屏蔽方式和中断查询方式操作命令OCW3

例9.12 编写程序段 读取8259中IRR和ISR 的值。

7	6	5	4	3	2	1	0	
0	ESMM	SMM	0	1	P	RR	RIS]

ESMM SMM	ESMM=1且SMM=0时,退出特殊屏蔽方式。 ESMM=1且SMM=1时,进入特殊屏蔽方式。 ESMM=0时,SMM位无效
P	=1 时,执行中断查询命令
RR	=0 时, RIS 位无效; =1 时, 由 RIS 来确定读取 IRR 还是 ISR
RIS	RR=1 且 RIS=0 时,下一次读取的是 IRR(中断请求寄存器)。
RIS	RR=1 且 RIS=1 时,下一次读取的是 ISR(中断服务寄存器)

		冬	9-20 C	CW3 的格	各式		
7	6	5	4	3	2	1	0
I	0	0	0	0	W2	W1	W0

I	=0 时,没有中断请求; =1 时,有中断请求	-00
W2W1W0	有效中断请求 (IR0~IR7) 中优先级最高的中断源的编号	

7命令字小结

■8259一共有7个命令字: ICW1~ICW4、OCW1~OCW3。ICW1、OCW2、OCW3 写入偶地址端口(AO=0)。标志位D4、D3对它们进行区分,

表 9-3 写入偶地址控制字表示

D4	D3	控制字
1	X	ICW1
0	0	OCW2
0	1	OCW3

- ■例9.13 8259 初始化举例。
 - ■假定两片8259级联使用,从片连接在主片的IR2 引脚,主片端口地址为20H、21H,从片端口地址为A0H、A1H,要求主片中断向量号设置为20H~27H,从片中断向量号设置为28H~2FH。中断向量采用边沿触发的方式,主片采用特殊嵌套方式,从片采用普通嵌套方式,仅仅开启定时中断,屏蔽其他中断。

■参考程序P355

78259的应用

9.4 可编程中断控制器8259

≯APIC概述

- ■标准PC上两片级联的8259提供了理论上15个中断输入源,但实际系统中这些中断源远远不够用。从Pentium 开始,微机系统中引入了高级可编程中断控制器APIC。
- ■APIC可以用于单CPU和多CPU系统。
- ■APIC系统可以分为两大部分: LAPIC (Local APIC) 和IO APIC。

7APIC的组成

- **7LAPIC:** LAPIC (本地APIC)包含了8259和8254的功能。它能响应以下几种中断:
 - ■系统中断: 10 APIC送来的系统中断请求,由10 APIC 交给中断请求指定的目标处理器处理。
 - ■处理器间中断: 经APIC 总线(或系统总线)送来的处理器间中断请求(IPI)。
 - ■本地中断:本地APIC产生的系统中断请求(计时器、LINTO/LINT1、性能监控、温度传感器、错误)。本地中断只能由该CPU处理。

7 IO APIC

■10 APIC用来替代传统的8259中断控制器,一般集成在ICH芯片组中。

表 9-7 IO APIC 的 IRQ 源

IRQ	来自 SERIRQ	来自引脚	来自 MSI	说明	中断向量号
0	No	No	No	8254 计数器 0、高精度定时器 HPETO	FFh
1	Yes	No	Yes		B3h
2	No	No	No	用于 8259 级联	FFh
3	Yes	No	Yes		51h
4	Yes	No	Yes		A2h
5	Yes	No	Yes		FFh
6	Yes	No	Yes		FFh
7	Yes	No	Yes		FFh
8	No	No	No	实时钟、高精度定时器 HPET1	D1h
9	Yes	No	Yes	系统控制中断 SCI、总体拥有成本控制 TCO	Blh
10	Yes	No	Yes		FFh
11	Yes	No	Yes		FFh

京理工大学

感谢关注聆听!

张华平

Email: kevinzhang@bit.edu.cn

微博: @ICTCLAS张华平博士

实验室官网:

http://www.nlpir.org

大数据千人会

