Audio-Visual-Emotion-and-Sentiment-Research

Members:

Audio parts: Enis Berk Çoban and Yunhua Zhao

Video parts: Patrick Jean-Baptiste

Goal

Use DL or ML methods to detect the emotion from people's speech, song or facial emotions.

Dataset:

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)

Overview of the dataset:

24 People: 12 male, 12 female:

- Speech 60 trials per actor x 24 actors = 1440
- Song 44 trials per actor x 23 actors = 1012

https://zenodo.org/record/1188976#.XrRhU6hKg2y

Dataset and Prediction Baseline

Baseline is 12.5%, 8 categories

Human Prediction Scores:

- 80% for audio-video
- 75% for video-only
- 60% for audio-only

Happy Song

Emotion classification

Audio part

- 1. Models:
 - VGGish
 - **♦** LSTM
- 2. Train data set
 - Song only
 - Speech only
 - ❖ Song + Speech
- 3. Data split

Train: val: tese = 0.6:0.2:0.2

VGGish model layers

Vggish Model Output

Embeddings shared as dropbox link at assets/readMe.md

VGGish model

LSTM model structure

Audio Part Accuracy Results

models	Song	Speech	Song+Speech
VGGish-Deep	49%	%48	62%
VGGish-ML	47%	%51	54%
LSTM	67%	66%	75%

Result Visualision(Speech)

4. Result Visualision(Song)

4. Result Visualision(Speech+Song)

Visual Part

The objective was to create a model for recognizing emotions from images.

Process:

- 1. Initial Video Preprocessing
- 2. Face Detection
- 3. Face Extraction
- 4. Visual Model
- 5. Results
- 6. Evaluations

1. Initial Video Preprocessing

Extract video frames and convert them to grayscale.

2. Face Detection

Detect the actor's face.

3. Face Extraction

Extract the actor's face from the image.

4. Visual Model - Architecture

Model: "sequential"				
Layer (type)	Output	Shape		Param #
conv2d (Conv2D)	(None,	126, 126,	64)	1792
max_pooling2d (MaxPooling2D)	(None,	125, 125,	64)	0
conv2d_1 (Conv2D)	(None,	123, 123,	32)	18464
max_pooling2d_1 (MaxPooling2	(None,	122, 122,	32)	0
conv2d_2 (Conv2D)	(None,	120, 120,	16)	4624
max_pooling2d_2 (MaxPooling2	(None,	119, 119,	16)	0
flatten (Flatten)	(None,	226576)		0
dense (Dense)	(None,	8)		1812616
Total params: 1,837,496 Trainable params: 1,837,496 Non-trainable params: 0				

4. Visual Model - Training Parameters

Parameters:

- Loss Function Mean Squared Error
- Optimizer SGD
- Learning Rate 0.01
- Epochs 5
- Batch Size 150
- Training Data 2824 images
- Validation Data 942 images

4. Visual Model - Training Issues

Accuracy is very low and does not improve.

5. Results - Misclassifications

Label: Happy

Predicted: Surprised

Label: Neutral

Predicted: Sad

Label: Angry

Predicted: Surprised

Label: Surprised

Predicted: Fearful

Label: Calm

Predicted: Happy

Label: Fearful

Predicted: Sad

Label: Disgust

Predicted: Angry

Label: Sad

Predicted: Neutral

6. Evaluations

Test Data - 948 images

Emotion recognition accuracy was 16.5%.

Used different models to attempt to improve accuracy:

- Different numbers of convolutional layers.
- Different number of nodes.
- VGG16 pre-trained on ImageNet.

Accuracy did not improve for training or testing.

Similarity between distinct emotion classes could have also led to misclassifications.

Dataset Split

- We wanted to use same dataset distribution in all experiments to make sure all experiments are compatible, and we can merge our models later.
- We created a csv file with Train/Dev/Test set of filenames and shared it with each other.

Merging Audio and Images

- Combining inputs for single model
- Training two models together

Combining inputs for single model

Output of Combining inputs model

Training two models together

Tianyu

Deep Audio-Visual Speech Recognition

Conclusions

Audio part:

- Google Audioset representations are not related to this task
- More data is better, Classic ML models as good as DL when data is small

Video part:

 A model trained in very few epochs using a small number of images for each class was a reason for the poor visual emotion recognition performance..

Merge audio and images part:

Images caused noise, preventing model to learn

Github

Github

References

Dataset Paper:

 Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. *PloS one*, 13(5).

Dataset Link:

https://zenodo.org/record/1188976#.Xr2Cum5Fw2y

Thank you!