Codage et modulations adaptatives : une introduction

C. Poulliat

9 novembre 2011

Plan

Capacités pour les canaux à évanouissements

Modulation adaptative

Motivations

comment s'adapter au mieux aux conditions de transmissions?

CQI index	Modulation	Approximate code rate	Efficiency (information bits per symbol)
0	No transmission	_	_
1	QPSK	0.076	0.1523
2	QPSK	0.12	0.2344
3	QPSK	0.19	0.3770
4	QPSK	0.3	0.6016
5	QPSK	0.44	0.8770
6	QPSK	0.59	1.1758
1	16QAM	0.37	1.4766
8	16QAM	0.48	1.9141
9	16QAM	0.6	2.4063
10	64QAM	0.45	2.7305
11	64QAM	0.55	3.3223
12	64QAM	0.65	3.9023
13	64QAM	0.75	45234
14	64QAM	0.85	5.1152
15	64QAM	0.93	5.5547

Limites fondamentales et méthodes d'adaptation résultantes

Capacité d'un canal Gaussien

$$y[n] = x[n] + b[n]$$

$$C(\gamma) = B \log_2(1 + \gamma)$$

avec

- B bande passante,
- $b[n] \sim \mathcal{N}(0, N_0 B)$,
- $\gamma = P_X/N_0B$

Adaptation de rendement pour communication sans erreur

• Choisir rendement *R* tel que *R* < *C*

Limites fondamentales et méthodes d'adaptation résultantes

Capacité ergodic d'un canal de Rayleigh à évanouissements "rapides" sans connaissance à l'émetteur

$$y[n] = \sqrt{g[n]}x[n] + b[n]$$
 $C = B \int_0^{+\infty} \log_2(1+\gamma)p(\gamma)d\gamma \le B \log_2(1+\overline{\gamma})$

avec

- B bande passante,
- $b[n] \sim \mathcal{N}(0, N_0 B), g[n] \sim p(g),$
- $\gamma[n] = \overline{P}g[n]/N_0B$, $\overline{\gamma} = \overline{P}\overline{g}/N_0B$,

Adaptation de rendement pour communication sans erreur

- Choisir rendement R tel que R < C,
- si le gain reste constant sur quelques symboles, après entrelacement *C* représente le débit long-terme.

Limites fondamentales et méthodes d'adaptation résultantes

Probabilité de coupure d'un canal de Rayleigh à évanouissements "lents" sans connaissance à l'émetteur

$$y[n] = \sqrt{g[n]}x[n] + b[n]$$

 $R = B \log_2(1 + \gamma_{\min})$

$$P_{out} = p(\gamma < \gamma_{\mathsf{min}})$$

avec

- B bande passante,
- $b[n] \sim \mathcal{N}(0, N_0 B), g[n] \sim p(g),$
- le récepteur reçoit correctement si $\gamma[n] < \gamma_{\min}$

Débit moyen d'un canal de Rayleigh à évanouissements "lents" sans connaissance à l'émetteur

$$C_{out} = (1 - P_{out})B \log_2(1 + \gamma_{\min})$$

Limites fondamentales et méthodes d'adaptation résultantes

Capacité d'un canal de Rayleigh à évanouissements "rapides" avec connaissance à l'émetteur et au récepteur

$$y[n] = \sqrt{P(\gamma[n])}\sqrt{g[n]}x[n] + b[n]$$

avec

$$\int_0^{+\infty} P(\gamma) p(\gamma) d\gamma \leq \overline{P}$$

alors

$$C = \max_{P(\gamma): \int_{0}^{+\infty} P(\gamma)p(\gamma)d\gamma \leq \overline{P}} \int_{0}^{+\infty} B \log_{2}(1 + \frac{P(\gamma)\gamma}{\overline{P}})p(\gamma)d\gamma$$

Limites fondamentales et méthodes d'adaptation résultantes

Allocation de puissance résultante

$$\frac{P(\gamma)}{\overline{P}} = \left\{ \begin{array}{cc} 1/\gamma_0 - 1/\gamma & \gamma \ge \gamma_0 \\ 0 & \gamma < \gamma_0 \end{array} \right.$$

avec

$$\int_{\gamma_0}^{+\infty} \left(\frac{1}{\gamma_0} - \frac{1}{\gamma}\right) p(\gamma) d\gamma = 1$$

alors

$$C^* = \int_{\gamma_0}^{+\infty} B \log_2{(rac{\gamma}{\gamma_0})} d\gamma$$

⇒ water-filling en temps

Modulations adaptatives

Allocation de puissance et d'ordre de modulation MQAM

$$P_b(\gamma) \leq 0.2 \exp\left(\frac{-1.5\gamma P(\gamma)}{(M-1)\overline{P}}\right)$$

alors pour P_b cible donné, on a

$$M(\gamma) = 1 + K\gamma \frac{P(\gamma)}{\overline{P}}$$

On veut trouver

$$\eta^{*} = \max_{P(\gamma): \int_{0}^{+\infty} P(\gamma)p(\gamma)d\gamma \leq \overline{P}} \int_{0}^{+\infty} \log_{2}(1 + K\gamma \frac{P(\gamma)}{\overline{P}})p(\gamma)d\gamma$$

$$= \max_{P(\gamma): E(P(\gamma)) \leq \overline{P}} E(\log_{2}(M(\gamma)))$$
(1)

Modulations adaptatives

Allocation de puissance résultante

$$\frac{KP(\gamma)}{\overline{P}} = \left\{ \begin{array}{cc} 1/\gamma_K - 1/\gamma & \gamma \ge \gamma_K \\ 0 & \gamma < \gamma_k \end{array} \right.$$

avec $\gamma_K = \gamma_0/K$ et

$$\int_{\gamma_K}^{+\infty} \left(\frac{1}{\gamma_K} - \frac{1}{\gamma}\right) p(\gamma) d\gamma = K$$

alors l'efficacité spectrale moyenne est donnée par

$$\eta^* = \int_{\gamma_{\mathcal{K}}}^{+\infty} \log_2{(rac{\gamma}{\gamma_{\mathcal{K}}})} d\gamma$$

avec

$$\log_2(\textit{M}(\gamma)) = \log_2(\frac{\gamma}{\gamma_K})$$

