Association Rule Mining

王森 MG21370034

2021年11月7日

1 实验说明

1.1 任务

本次实验的主要任务是对给定数据集进行关联规则挖掘。通过改变 support 和 confidence 的值,比较 Aprioir、FP-growth 和最基本的穷举法之间的差别,在进行比较时,主要着眼于产生的频繁项集的数目,算法运行过程中的内存消耗和时间消耗。

1.2 数据集

本次实验的数据集总共有两个,分别是 GroceryStore 和 UNIX_usage。

GroceryStore 数据集包含某商店一个月内的交易记录,数据存储的格式为 csv,每一行是一条交易信息,购买的商品名称被"{"和"}"包围着。此数据集总共有 9835 条交易记录,涉及 169 种商品。

UNIX_usage 数据集总共包含 9 个文件,每个文件都是真实用户的命令行输入历史,其中第 0 个文件和第 1 个文件是同一用户在不同平台和项目中产生的命令行记录,其余的 7 个文件都是来自不同用户的命令行历史记录。出于保护隐私的考虑,移除了原始文件中的文件名、用户名、文件结构等所有可能暴漏个人信息的部分,而是用 <1> 来代替此部分。在一个 session 的开始和结束会包含 **SOF** 和 **EOF**,而之前在命令行中用空格分隔的参数部分,在此处会单独占据一行。下面是两个 session 的原始记录。

```
# Start session 1
cd ~/private/docs
ls -laF | more
cat foo.txt bar.txt zorch.txt > somewhere
exit
# End session 1

# Start session 2
cd ~/games/
xquake &
fg
vi scores.txt
mailx john_doe@somewhere.com
exit
# End session 2
```

在我们拿到的数据中,这两个 session 用如下形式来表示。

```
**SOF**
cd
<1>
         # one "file name" argument
ls
-laF
1
more
cat
<3>
        # three "file" arguments
>
<1>
exit
**EOF**
**SOF**
cd
<1>
xquake
```

```
fg
vi
<1>
mailx
<1>
exit
**EOF**
```

2 代码实现

2.1 Apriori

Apriori 算法的核心是对先验知识的运用,具体来说是利用"频繁项集的所有非空子集也一定是频繁的"这条规则来减少搜索空间。我们利用 k 频繁项集的集合 L_k 生成 k+1 频繁项集的集合 L_{k+1} ,在生成的过程中,会有一个中间步骤,即 k+1 频繁项集的候选集合 C_{k+1} 。按照常规的做法,此时应该扫描一遍数据库,判断 C_{k+1} 中的哪个项集是频繁的,哪个是非频繁的。但是我们现在考虑一下刚才提到的先验知识,如果 C_{k+1} 集合中的某个 k+1 项集 c 是频繁的,那么它的所有子集中长度为 k 的集合,即 k 项集,也一定是频繁的。所有的 k 频繁项集都在 L_k 中,因此可以通过判断 c 的子集中的 k 项集是否出现在 L_k 中来减少搜索空间。此算法的伪代码如 Algotithm1 所示。

整个算法在实现的时候,由四个函数构成。apriori 为主函数, $find_frequent_1_itemset$ 用于从原始数据库中寻找 1 频繁项集, $apriori_gen$ 用于从 k 频繁项集中生成 k+1 候选频繁项集,上文中提到过,生成的过程中会进行剪枝,而 $has_infrequent_subset$ 函数就是用于判断是否满足剪枝条件的。对候选集初步剪枝之后,需要去扫描一遍数据库,以找出那些真正的 k+1 项集,此操作由 subset 函数辅助完成。

对于计算出来的每个 k 频繁项集,都是用 list 对象进行存储。比如

[$item_1$, $item_2$, ..., $item_k$, frequency]

此 list 对象共包含 k+1 个元素,前 k 个元素对应于 k 频繁项集,最后一个元素是此 k 频繁项集在数据库中出现的次数。

Algorithm 1 Apriori

Input: DB: database of transactions; min_sup: minimum support threshold; itemset: all the items occured in DBOutput: L: frequent itemsets in DB1: // 找到所有的频繁 1 项集 2: $L_k = \text{find_frequent_1_itemsets}(DB, itemset, min_sup)$ 3: while $len(L_k) > 0$ do $L.\operatorname{extend}(L_k)$ 4: // 由 k 频繁集生成 k+1 候选集 5: $C_{k+1} = \operatorname{apriori_gen}(L_k)$ Initialize c_count with 0 7: for t in DB do 8: $c_count = subset(C_{k+1}, t, c_count)$ 9: 10: $L_{k+1} = \{c \in C_{k+1} \mid c_count[c] \ge min_sup\}$ 11: $L_k = L_{k+1}$ 12: 13: end while 14: function apriori_gen (L_k) $size = len(L_k)$ 15: 16: for i = 0; i < size; i + + dofor j = i + 1; j < size; j + + do 17: if $L_k[i][0:-2] == L_k[j][0:-2]$ then 18: $c = L_k[i] \cup L_k[j]$ 19: if not has_infrequent_subset (c, L_k) then 20: C_{k+1} .append(c) 21: end if 22: end if 23: end for 24: end for 25: 26: return C_{k+1} 27: end function 28: function has_infrequent_subset(c, L_k) for each k - subset of c do 29: if $s \notin L_k$ then 30: return True 31: 32: end if end for 33: 34: return False 35: end function

2.2 Dummy

dummy 方法是一种穷尽搜索的方法,虽然使用起来效率低,但是实现较为简单。算法伪代码如 Algorithm2 所示。

Algorithm 2 Dummy

Input: DB: database of transactions; min_sup : minimum support threshold; itemset: all the items occured in DB

```
Output: L: frequent itemsets in DB
```

6: for t in DB do

```
7: c\_count = subset(C_k, t, c\_count)
```

8: end for

9: $L_k = \{c \in C_k \mid c_count[c] \ge min_sup\}$

10: if L_k is empty then

11: break

12: end if

13: $L = \cup L_k$

14: end for

15: return L

穷尽搜索,即尝试每一种可能的项集组合。先由 itemset 生成所有只含一个元素的子集,即 1 频繁候选项集,然后扫描数据库,找出 1 频繁项集;再由 itemset 生成所有只含两个元素的子集,即 2 频繁候选项集,然后扫描数据库,找出 2 频繁项集。依此类推,直到不能从 k 频繁候选项集中找出 k 频繁项集时结束。

2.3 FP-growth

FP-growth 方法比 Apriori 方法在空间消耗和时间消耗上都有所提升,尤其是当设定的支持度比较低时,这种提升尤为明显。

首先介绍一下 FP-Tree 的结构。FP-Tree 是一棵索引树,每个节点包含五个字段,name 字段表示项目的名称,frequency 字段表示此项目的频数,parent 字段表示此项

目的父节点索引, children 字段表示此项目的子节点索引,因为一个项目可能有多个子节点,所以 children 字段为 list 类型, nextit 字段表示下一个和此项目同名的节点索引号。

在 FPTree 这个类中,除了有 nodes 字段用来存储树的节点外,还有 headtables 字段用来存储每个项目的头节点索引。 headtables 是一个 dict 类型,每个元素的 key 为项目名称,value 是此项目第一次在 FPTree 中出现时的索引。 headtables 相当于一个头指针表,通过它,可以访问到某个项目在 FPTree 中的所有节点。

FP-growth 算法的伪代码如 Algorithm3 所示。

Algorithm 3 FP-growth

Input: DB: database of transactions; min_sup : minimum support threshold; itemset: all the items occured in DB

Output: L: frequent itemsets in DB

- 1: // 找出所有的频繁 1 项集
- 2: $tree_items = find_frequent_1_itemsets(database, itemsets, min_sup)$
- 3: // 将这些频繁 1 项集按照出现的次数逆序排序
- 4: tree items.sort()
- 5: // 再扫描一遍数据库,将每条交易中的 item 按照 *tree_items* 中的顺序排序,并移 除没有出现在 *tree_items* 中的 item
- 6: database = sort_frequent_item(database, tree_items)
- 7: // 创建 FP 树
- 8: fptree.create tree(database, False)
- 9: // 由 fp 树生成频繁项集,结果存放在 freq_list 中
- 10: generate_fre_itemset(fptree, min_sup, [100000], freq_list, tree_items)
- 11: return fre_list

按照 FP-growth 算法,首先需要扫描一遍数据库,找出所有的频繁 1 项集,然后再按照每个项集出现的次数逆序排序。之后再扫描一遍数据库,此时需要对数据库中的数据做一些修改,首先将那些没有出现在频繁 1 项集中的 item 从数据库中移除,再按照频繁 1 项集中每个 item 的顺序,对数据库中的每条 transaction 进行排序。上述操作完成之后,就可以用数据库中的数据来构建 FP-Tree 了。构建树的过程,其实就是把一个个结点插入到树中的过程。为了表述方便,假设现在我们要把一条包含 n 个 item 的交易记录 t 插入到 FP 树中,因为 t 有 n 个 item,所以相当于是要插入 n 个结点。为了找到插入的位置,我们首先需要对现在的 FP 树进行递归搜索。搜索过程从根节点开始,

即最初把根节点当作当前结点。如果根节点存在与 t[0](交易记录中的第一个 item) 相同的子节点 n_0 ,则递归的去搜索 n_0 是否存在与 t[1] 相同的子节点,依此类推,直到找不到相同的子节点或 t 中的所有 item 在 FP 树中都有相同的结点。找到插入的位置之后,插入操作相对比较简单,只是需要注意一下,在插入结点的同时要构建 headtables。

到目前为止,关于数据库的 FP 树已经构建出来了,接下来要做的是根据 FP 树生成所有的频繁项集。将 FP 树中出现的所有的 item 按照频数升序排序,然后遍历这些item,遍历过程由 for 循环完成,每当遍历到一个 item 时,将当前的 item 加入到前缀序列中,然后将此前缀序列作为频繁项集加入到总的频繁项集集合 L 中。之后计算当前 item 所对应的条件模式基,若此条件模式基不为空,则由其继续构造 FP 树,然后递归的由此 FP 树生成所有的频繁项集。

利用 FP-growth 方法生成的频繁项集和用 Apriori 方法生成的相比,在表示形式上是相同,都是用 list 存储,前 n-1 个元素表示频繁项集中的 item,最后一个元素表示此频繁项集的频数。

2.4 Association Rule

按照上述的方法,已经把所有的频繁项集都找出来了,接下来要做的就是从这些频繁项集中挖掘关联规则。对于一个频繁项集 fi 来说,我们需要计算出它所有的非空真子集,然后遍历这些集合,对于 fi 的某个真子集 s 来说,如果满足:

$$\frac{support(l)}{support(s)} \geq confidence$$

则输出规则 $s \Rightarrow (l - s)$

3 三、实验方案

在进行实验设计时, 主要从四个方面切入。

- 1. 比较不同的数据集产生的频繁项集的数量有什么特点。
- 2. 对于相同的数据集,使用不同的频繁项集生成算法,在时间消耗上各自的表现如何。
- 3. 对于相同的数据集,使用不同的频繁项集生成算法,在空间消耗上各自的表现如何。
- 4. 寻找一些有趣的关联规则,并对这些规则进行讨论。

对于第一个方面,我们可以变换不同的 support, 然后用本次实验提供的 Groceries 和 UNIX_usage 这两个数据集进行实验。

对于第二个方面,我们可以使用同一数据集(我选用的是 Groceries),变换不同的 support, 分别使用 dummy、Aprioir、FP-growth 算法进行实验,来查看不同算法上的 时间消耗。

对于第三个方面,实验方案与探究时间消耗的方案大致相同,只不过我们用 mprof run 命令代替 python 命令来记录内存使用情况,当程序运行结束之后,会在当前目录下 生成 mprofile_xxxxxxxxxxxx.data 文件,里面存储了相同时间跨度的时间点上内存的使用情况,使用 mprof list 可以查看文件对应的索引 (0,1,2...),然后通过执行 mprof plot file_index 加载对应文件数据来绘制图形

mprof plot 0

对于第四个方面,我们可以变换不同的 support 和 confidence,并且根据 lift 来查看生成的关联规则。

4 四、实验结果

4.1 频繁项集的数量

在 support 设置为 0.01 的情况下,在两个数据集上进行频繁项集数量的比较。 对于 Groceries 数据集,不同的频繁项集的数量如表 1 所示。

表 1: Groceries 数据集

k	1	2	3	4
数量	88	213	32	0

对于 UNIX usage 数据集,不同的频繁项集的数量如表 2 所示

表 2: UNIX_usage 数据集

k	1	2	3	4	5	6	7	8	9	10	11
数量	61	329	781	1086	1004	635	289	91	19	2	0

1 61 2 329 3 781 4 1086 5 1004 6 635 7 289 8 91 9 19 10 2

Groceries 数据集中共有 9835 条 transaction,UNIX_usage 数据集中共有 5058 条 session。从表 1 和表 2 的对比中可以看出,UNIX_usage 数据集最多可以产生 10 频繁项集,而 Groceries 数据集最多只能产生 3 频繁项集。从数量关系上来看,虽然 UNIX_usage 的数据要比 Groceries 少,但是前者的 k 频繁项集的数目要远多于后者。出现这种现象的原因,与两个数据集本身的特性有关。UNIX_usage 数据集是由真实用户的命令行记录构成的,我们在输入 cd < 1 > 命令后,可能会习惯性的再输入 ls 命令查看当前目录的所有文件。

4.2 频繁项集生成算法的时间性能

用 Groceries 数据进行实验,来评判 dummy、Apriori、FP-growth 这三个频繁项集生成算法的时间性能。进行实验的设备为个人笔记本电脑,重要参数为: 2 GHz 4 核 Intel Core i5 处理器,16 GB 3733 MHz LPDDR4X 内存。分别设置 support 为 0.1, 0.01 和 0.001,生成所有频繁项集所用的时间如表 3 所示。

dummy 算法进行的是穷尽搜索,假设数据集中总共有 n 种不同的 item,那么总共有 C_n^k 个候选 k 频繁项集,因此要想找到所有的 k 频繁项集,需要扫描数据库 C_n^k 遍。在进行实验时,发现对于三种不同的 support,dummy 算法都无法在 20 分钟内结束,因

表 3: 不同算法的时间性能

support 算法	0.1	0.01	0.001
FP-growth	0.03549 s	$0.71302 \mathrm{\ s}$	$1.70202 \mathrm{\ s}$
Aprioir	0.05842 s	$7.29286 \ s$	172.11253 s
dummy	-	-	-

此表 3 中 dummy 算法的执行时间用 - 代替,表示未测得其执行时间。

Apriori 算法相较于 dummy 算法在时间性能上有了很大的提升。相较于 dummy 的 穷尽搜索,Apriori 用了一些剪枝的方法,因此减少了搜索空间,提高了执行效率。根据 先验知识,"k 频繁项集的所有非空子集也是频繁的",我们可以由 k 频繁项集生成候选 (k+1) 频繁项集,相较于 dummy 算法会产生 C_n^{k+1} 个候选 (k+1) 频繁项集,此方法会减少候选频繁项集的数量。除此之外,我们还可以再做一次剪枝操作。如果一个 (k+1) 项集是频繁的,那么它的所有 k 子集也一定是频繁的,也就是说它的所有 k 子集一定在 k 频繁项集的集合里面,假若存在某个 k 子集不满足此条件,那么这个候选 (k+1) 频繁 项集也一定不是频繁的。通过这两步剪枝操作,可以尽可能的减少候选频繁项集的数目,从而减少扫描数据库的次数(扫描数据库非常耗时)。

FP-growth 算法和 Apriori 算法的思想不同,它通过"树"这种数据结构,使得在生成频繁项集的时候,只需要扫描两次数据库即可。第一次扫描数据库,找出所有的 1 频繁项集,第二次扫描数据库,构建 FP 树,之后的所有操作,都是针对 FP 树进行的。

FP-growth 算法克服了 Apriori 算法需要多次扫描数据库的缺点,因此当生成的频繁项集较多时,FP-growth 的执行时间要远少于 Apriori。从表 3 中可以看出,当 support 为 0.1 时,FP-growth 算法和 Apriori 算法的执行时间都是毫秒级的,且两者的差异不明显。当 support 减小为 0.01 时,生成的频繁项集的数量会增加,此时就能看出 FFP-growth 算法的优势了,它的时间消耗仅为 Apriori 算法的 $\frac{1}{10}$ 。当 support 继续减小到 0.001 时,FP-growth 算法的优势表现的更为明显,生成同样的频繁项集,FP-growth 算法的时间消耗仅为 Apriori 算法的 $\frac{1}{100}$,时间性能上提升了两个数量级。

当 support 减小时,生成的频繁项集的数量会增多。对于 Apriori 算法来说,它的时间主要是消耗在频繁扫描数据库上,而对于 FP-growth 算法来说,它的时间主要是消耗在递归构建 FP 树上。因为扫描数据库是一件非常耗时的工作,所以 FP-grow 算法的执行时间要远小于 Apriori。

4.3 频繁项集生成算法的空间性能

与时间性能的实验类似,仍然使用 Groceries 数据集评估不同算法的空间性能。由之前的实验已经知道,dummy 算法即使在 support 较小的情况下也很难在短时间内终止,因此本实验只考虑 Apriori 和 FP-growth 算法的空间性能。对于不同的 support,两种算法占用内存的峰值如表 4 所示。

support 算法	0.1	0.01	0.001
FP-growth	$15.707~\mathrm{MiB}$	27.031 MiB	30.688 MiB
Aprioir	$15.551~\mathrm{MiB}$	21.527 MiB	43.516 MiB

表 4: 不同算法的空间性能

从表 4 中可以看出,随着 support 的减小,两种算法所占用的内存都在增加。对于 Apriori 算法,当 support 减小时,需要更多的内存空间来存储候选频繁项集。对于 FP-growth 算法,当 support 减小时,需要更多的内存空间来递归生成 FP 树。从实验结果中可以发现一个有趣的现象,当 support 较大时,FP-growth 算法的空间效率要低于 Apriori,但是当 support 较小时,前者的空间效率却又优于后者。

4.4 挖掘关联规则

4.4.1 挖掘 Groceries

在进行关联规则挖掘时,首先需要选择合适的 support 和 confidence。若参数的值设的太小,则容易产生大量的关联规则,从而很难从中发现有价值的规则。同理,若参数的值设的太大,则可能会忽略掉一些有意义的关联规则。经过多次尝试,发现对于 Groceries 数据, support=0.01, confidence=0.5 可以产生 15 条关联规则。所有的这些规则如表 5 所示。

在表 5 中,除了我们熟悉的 support 和 confidence 之外,还引入了一个新的指标: lift。lift 指标的计算公式为:

$$lift(A \rightarrow B) = \frac{p(B|A)}{p(B)} = \frac{confidence}{support}$$

它的含义是:在已知 A 的前提下 B 发生的概率,和没有先验条件时 B 单独发生的概率之间的相对关系。若 lift<1,则说明 A 的发生对 B 的发生起着抑制作用;若 lift=1,则说明 A 的发生对 B 是否发生没有任何影响,即 A 和 B 相互独立;若 lift>1,则说明 A 的发生对 B 的发生起着促进作用。

表 5: Groceries 的规则

Rule	support	confidence	lift
yogurt, curd \Rightarrow whole milk	0.0101	0.5824	57.8529
root vegetables, citrus fruit \Rightarrow other vegetables	0.0104	0.5862	56.5230
other vegetables, butter \Rightarrow whole milk	0.0115	0.5736	49.9239
yogurt, whipped/sour cream \Rightarrow whole milk	0.0109	0.5245	48.2108
root vegetables, tropical fruit \Rightarrow other vegetables	0.0123	0.5845	47.5121
root vegetables, tropical fruit \Rightarrow whole milk	0.0120	0.5700	47.5121
other vegetables, domestic eggs \Rightarrow whole milk	0.0123	0.5525	44.9087
rolls/buns, root vegetables \Rightarrow other vegetables	0.0122	0.5021	41.1506
$rolls/buns$, root vegetables \Rightarrow whole milk	0.0127	0.5230	41.1506
yogurt, root vegetables \Rightarrow other vegetables	0.0129	0.5000	38.7205
yogurt, root vegetables \Rightarrow whole milk	0.0145	0.5630	38.7205
other vegetables, pip fruit \Rightarrow whole milk	0.0135	0.5175	38.2685
other vegetables, whipped/sour cream \Rightarrow whole milk	0.0146	0.5070	34.6303
yogurt, tropical fruit \Rightarrow whole milk	0.0151	0.5174	34.1493
other vegetables, yogurt \Rightarrow whole milk	0.0223	0.5129	23.0328

从表 5 中可以看出,每一条强关联规则的 lift 都大于 1,且都大于 20,这说明这些规则的关联性较强。在后续进行商品布局时,可以参考上述规则设计每种商品的摆放位置。比如说将 yogurt、curd 和 whole milk 摆放在一起,根据过往的统计规律,当顾客购买了 yogurt 和 curd 之后,有 58.24% 的概率会购买 whole milk。

观察挖掘出来的所有关联规则,可以发现规则的左部出现最频繁的是 root/other vegetables,规则的右部出现最频繁的是 whole milk,但是强关联规则中却没有 vegetables—>whole milk 这条规则。另一个有趣的现象是,挖掘出来的这些规则都是来自 3 频繁项集,由表 1 可知,当 support 为 0.01 时,有 221 个 2 频繁项集,有 32 个 3 频繁项集,也就是说 2 频繁项集的数目要远多于 3 频繁项集,但是却不能从 2 频繁项集中挖掘出强关联规则。

4.4.2 挖掘 UNIX_usage

在 1.2 节中, 我们对 UNIX_usage 数据集进行了介绍。每个 session 相当于 Groceries 数据集的一个 transaction, 但是每行数据却不能等同于 Groceries 中的一个 item。

UNIX_usage 数据集文件中的每行数据是一个 unix 命令或者命令的参数,如果我们直接对原始的数据集进行挖掘,那么可能会挖掘到一些含有参数的规则,而这种规则是没有实际意义的,因为我们要找的是命令于命令之间的联系。为了避免这种现象的发生,在数据挖掘之前,首先对原始数据集进行清洗,即把那些命令参数过滤掉,只保留真正的命令。

同 Groceries 数据集一样,我们首先需要找到合适的 support 和 confidence, 经过多次尝试,最终选定 support=0.1, confidence=0.8。UNIX_usage 数据集的关联性比较高,即便选择了限制性比较强的参数,得到的关联规则的 confidence 仍较高。在此设定下,总共有 11 条关联规则,如表 6 所示。

ls, fg \Rightarrow elm	0.1121	0.9844	8.7812
$exit, fg \Rightarrow elm$	0.1174	1.0000	8.5152
$cd, exit, vi \Rightarrow ls$	0.1121	0.9403	8.3881
finger, fg \Rightarrow elm	0.1174	0.9851	8.3881
$elm, vi \Rightarrow ls$	0.1068	0.8824	8.2647
ls, exit, vi \Rightarrow cd	0.1121	0.8514	7.5946
$cd, elm \Rightarrow ls$	0.1281	0.9600	7.4933
$exit, vi \Rightarrow ls$	0.1317	0.8222	6.2444
$cd, vi \Rightarrow ls$	0.1601	0.9574	5.9787
$cd, exit \Rightarrow ls$	0.1779	0.9434	5.3019
$ls, vi \Rightarrow cd$	0.1601	0.8333	5.2037

表 6: UNIX_usage 的规则

从表 6 中,我们可以看到一些符合事实的关联规则,比如 cd, vi \Rightarrow ls,它表示在一个 session 中,如果执行了 cd 和 vi 命令,那么有 95.74% 的概率也执行了 ls 命令。这是非常符合人的直觉的,首先用 cd 命令进入某个指定的文件夹,然后用 vi 命令编辑文件,最后用 ls 命令查看一下这个文件。

如果将 UNIX_usage 的关联规则和 Groceries 的关联规则做类比,那么会发现一些违反事实的规则。比如 cd, exit \Rightarrow ls, 按照之前的理解,这条关联规则应该解释成执行了 cd 和 exit 这两条命令之后,在后续的过程中执行 ls 的概率为 94.34%,但是这一解释显然不符合常识。在执行 exit 之后,当前 session 就已经结束了,后续也不会再执行其他命令,当然也不可能执行 ls 命令了。

出现上述现象的原因是 UNIX_usage 数据集和 Groceries 数据集本质上并不相同。

Groceries 数据集是 transaction 的集合,每个 transaction 由若干商品名构成,且若干商品名之间是无序的; UNIX_usage 数据集是 session 的集合,每个 session 由若干命令构成,且若干命令之间是有序的,可以先执行 ls 再执行 exit,但是反过来却不行。

5 总结

关联规则的挖掘过程分为两步:第一步找到所有的频繁项集,第二步从这些频繁项集中生成强关联规则。第二步相对来说比较简单,只需要遍历每个频繁项集的所有非空子集,然后判断 confidence 是否满足要求即可。第一步要困难许多,这种困难也在本次实验中有所体现。当用 dummy 方法找所有的频繁项集时,即使是 support 设置成 0.1,也无法在规定的时间内完成。为了应对这种挑战,人们发明了各种各样的方法来寻找频繁项集,其中最具代表性的便是 Apriori 算法和 FP-growth 算法。Apriori 算法的精髓是运用先验知识来减少搜索空间,从而提高执行效率,相比于 dummy 算法,它有了质的提升。但是人们对于这种算法仍然不是特别满意,这主要归因于它的两个最主要的缺点:当 support 较小时会生成大量的候选频繁项集和多次重复扫描数据库。为了克服这两个缺点,人们提出了 FP-growth 算法。这种方法无论 support 多小,都只需要扫描两遍数据库,且不会产生候选频繁项集。FP-growth 算法的核心思想是用到了"树"这种数据结构,将原始数据库构建成一棵树,这样后续的所有操作都只需在这棵树上进行。

穷尽搜索方法 dummy 在实际场景中的应用性不强,因为它会暴力穷举所有可能的 候选频繁项集。对于含有 n 种 item 的数据集,至多可以产生 2^n-1 个候选项集,所以 dummy 方法的时间复杂度是 $O(2^n)$ 级别的。同时由于穷举所有的候选频繁项集,所以 空间复杂度也很高。Apriori 方法相较于 dummy 方法,减少了候选频繁项集的数目,因 此提高了时间和空间的效率。FP-growth 算法没有从候选频繁项集的角度考虑,而是直接生成频繁项集,因此又进一步地提高了时空效率。

Groceries 数据集来自于真实顾客的购物记录,它的关联规则的置信度(confidence)并不算特别高,但是由于 support 也较小,所以 lift 较大,也就是说如果购买了关联规则左边的商品,那么对关联规则右边的商品的销售也有极大的促进作用。UNIX_usage 数据集来自于真实用户的命令行历史记录,处于隐私保护的需求,替换了一些敏感内容。这个数据集的关联性比较高,置信度(confidence)最高可达 1.0,但是因为 support 也较高,所以 lift 整体上不如 Groceries。在用程序挖掘出关联规则之后,并不能直接应用这些规则来解决现实问题,因为有部分规则并不符合实际情况,所以还需要再人工筛选一次。