PROBLEM SHEET 6: CURVES IN POLAR COORDINATES

- 1. Plot the curve $r = 2(1 + \cos(\theta))$ from $\theta = 0$ to $\theta = 2\pi$ using $\frac{\pi}{6}$ intervals. (This curve is called a *cardioid*.)
- 2. Plot the following rose curves from $\theta = 0$ to $\theta = 2\pi$ using $\frac{\pi}{8}$ or $\frac{\pi}{6}$ intervals.

$$(i) r = \sin(2\theta);$$
 $(ii) r = \sin(3\theta);$ $(iii) r = \sin(4\theta)$

- 3. Plot the snail curve $r=2+3\sin(\theta)$) from $\theta=0$ to $\theta=2\pi$ using $\frac{\pi}{6}$ intervals.
- 4. Plot the double rose curve $r=1-2\sin(3\theta)$ from $\theta=0$ to $\theta=2\pi$ using $\frac{\pi}{6}$ intervals.
- 5. Using double integrals, calculate the area enclosed by each of the curves above.

