Sections 8.1 & 8.3 - Differential Equations & Euler's Method

1. Confirm that $y = 3e^{x^3}$ is a solution of the initial-value problem $y' = 3x^2y$, y(0) = 3.

Verify that the functions are solutions of the differential equation by substituting the functions into the equation.

13.
$$y'' + 4y = 0$$

- a. $\sin 2x$ and $\cos 2x$
- b. $c_1 \sin 2x + c_2 \cos 2x$ (c_1 and c_2 are constants)

Use the result in #13 to find a solution to the initial-value problem.

19.
$$y'' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 2$

Find a solution to the initial-value problem.

21.
$$y' + 4x = 2$$
, $y(0) = 3$

- 25. $x^2y' + 2xy = 0$, y(1) = 2 [Hint: Interpret the left-hand side of the equation as the derivative of a product of two functions]
- A. Verify that $y = \frac{8}{1 + e^{-2t}}$ satisfies the logistic differential equation $\frac{dy}{dt} = ky \left(1 \frac{y}{L}\right)$.
- B. The logistic equation $y = \frac{2100}{1 + 29e^{-0.75t}}$ models the growth of a population.
 - i. Find the value of k
 - ii. Find the carrying capacity
 - iii. Find the initial population
 - iv. Determine when the population will reach 50% of its carrying capacity
 - v. Write the logistic differential equation that has the solution P(t)
- C. A conservation organization releases 25 Florida panthers into a game preserve. After 2 years, there are 39 panthers. The Florida preserve has a carrying capacity of 200 panthers.
 - a. Write a logistic equation that models the population of panthers in the preserve.
 - b. Find the population after 5 years.
 - c. When will the population reach 100?
 - d. Write a logistic differential equation that models the growth rate of the panther population. Then repeat part (b) using Euler's Method with a step size of 1. Compare the approximation with the exact answer.
 - e. After how many years is the panther population growing the most rapidly? Explain.
- 9. Use Euler's Method with the given step size to approximate the solution of the initial-value problem over the stated interval. Present your answer as a table.

$$\frac{dy}{dt} = \cos y$$
, $y(0) = 1$, $0 \le t \le 2$, $\Delta t = 0.5$

11. Consider the initial value problem $y' = \sin \pi t$, y(0) = 0. Use Euler's Method with five steps to approximate y(1).