MATH 6337: Homework 9 Solutions

8.1. For complex-valued, measurable f, $f = f_1 + if_2$ with f_1 and f_2 real-valued and measurable, we have $\int_E f = \int_E f_1 + i \int_E f_2$. Prove that $\int_E f$ is finite if and only if $\int_E |f|$ is finite, and $|\int_E f| \le \int_E |f|$. [Hint: Note that $|\int_E f| = \left[\left(\int_E f_1\right)^2 + \left(\int_E f_2\right)^2\right]^{1/2}$, and use the fact that $(a^2 + b^2)^{1/2} = a\cos(\alpha) + b\sin(\alpha)$ for an appropriate α , while $(a^2 + b^2)^{1/2} \ge |a\cos(\alpha) + b\sin(\alpha)|$ for all α .]

Solution. If $\int_E f$ is finite, then both $\int_E f_1$ and $\int_E f_2$ are finite, so $\int_E |f_1|$ and $\int_E |f_2|$ are finite. Thus,

$$\int_{E} |f| = \int_{E} |f_1 + if_2| \le \int_{E} |f_1| + \int_{E} |f_2| < +\infty.$$

Conversely, if $\int_{E} |f|$ is finite, then so are $\int_{E} |f_{1}|$ and $\int_{E} |f_{2}|$ since $|f_{1}|, |f_{2}| \leq |f|$. Thus, $\int_{E} f_{1}$ and $\int_{E} f_{2}$ are finite, so $\int_{E} f = \int_{E} f_{1} + i f_{2}$ is also finite.

Following the hint, choose α such that

$$\left[\left(\int_E f_1 \right)^2 + \left(\int_E f_2 \right)^2 \right]^{1/2} = \cos(\alpha) \int_E f_1 + \sin(\alpha) \int_E f_2.$$

Then

$$\left| \int_{E} f \right| = \left[\left(\int_{E} f_{1} \right)^{2} + \left(\int_{E} f_{2} \right)^{2} \right]^{1/2} = \cos(\alpha) \int_{E} f_{1} + \sin(\alpha) \int_{E} f_{2} = \int_{E} \left| f_{1} \cos(\alpha) + f_{2} \sin(\alpha) \right| \le \int_{E} \left| f_{1} \cos(\alpha) + f_{2} \sin(\alpha) \right| \le \int_{E} \sqrt{f_{1}^{2} + f_{2}^{2}} = \int_{E} \left| f \right|.$$

8.6. Prove the following generalization of Hölder's inequality: if $\sum_{i=1}^{k} 1/p_i = 1/r$ and $p_i, r \ge 1$, then

$$||f_1 \cdots f_k||_r \leq ||f_1||_{p_1} \cdots ||f_k||_{p_k}$$
.

[See also Exercise 12 of Chapter 7.]

Solution. We prove this by induction. The k=2 case is a consequence of Hölder's inequality: if $1/p_1 + 1/p_2 = 1/r$, then $r/p_1 + r/p_2 = 1$, so

$$||fg||_r^r = ||f^rg^r||_1 \le ||f^r||_{p_1/r} ||g^r||_{p_2/r} = ||f||_{p_1}^r ||g||_{p_2}^r$$

Now if $1/p_1 + \cdots + 1/p_k = 1/r$ for k > 2, we have

$$||f_1 \cdots f_k||_r \le ||f_1 \cdots f_{k-1}||_s ||f_k||_{p_k} \le ||f_1||_{p_1} \cdots ||f_k||_{p_k}$$

where
$$1/s = 1/r - 1/p_k = 1/p_1 + \cdots + 1/p_{k-1}$$
.

8.7. Show that when $0 , the neighborhoods <math>\{f : ||f||_p < \varepsilon\}$ of zero in $L^p(0,1)$ are not convex. [Hint: Let $f = \chi_{(0,\varepsilon^p)}$ and $g = \chi_{(\varepsilon^p,2\varepsilon^p)}$. Show that $||f||_p = ||g||_p = \varepsilon$ but that $||f/2 + g/2||_p > \varepsilon$.]

Solution.

$$||f||_p = \left(\int_{(0,\varepsilon^p)} |1|^p\right)^{1/p} = \varepsilon$$

and similarly $||g||_p = \varepsilon$. However,

$$||f/2 + g/2||_p = \left(\int_{(0.2\varepsilon^p)} |1/2|^p\right)^{1/p} = \left(2\varepsilon^p 2^{-p}\right)^{1/p} = 2^{1/p-1}\varepsilon > \varepsilon$$

since 1/p > 1. So the neighborhood $B_{\varepsilon+\eta}(0)$ is not convex for sufficiently small $\eta = \eta(p)$.

8.8. Prove the following integral version of Minkowski's inequality for $1 \le p < \infty$:

$$\left(\int \left|\int f(x,y) dx\right|^p dy\right)^{1/p} \le \int \left(\int \left|f(x,y)\right|^p dy\right)^{1/p} dx.$$

In other words,

$$\left| \left| \int f(x,y) \, dx \right| \right|_p \le \int \left| \left| f(x,y) \right| \right|_p \, dx.$$

Solution. For p = 1, this is just Tonelli's theorem. For p > 1, we have

$$\int \left| \int f(x,y) \, dx \right|^p \, dy = \int \left| \int f(z,y) \, dz \right|^{p-1} \left| \int f(x,y) \, dx \right| \, dy$$

$$= \int \left| \int f(x,y) \left(\int f(z,y) \, dz \right)^{p-1} \, dx \right| \, dy$$

$$\leq \int \left[\int |f(x,y)| \left| \int f(z,y) \, dz \right|^{p-1} \, dx \right] \, dy$$

$$\stackrel{\text{Tonelli}}{=} \int \left[\int |f(x,y)| \left| \int f(z,y) \, dz \right|^{p-1} \, dy \right] \, dx$$

$$\stackrel{\text{H\"older}}{\leq} \int \left(\int |f(x,y)|^p \, dy \right)^{1/p} \left(\left| \int f(z,y) \, dz \right|^{(p-1)p'} \, dy \right)^{1/p'} \, dx$$

$$= \left(\int \left(\int |f(x,y)|^p \, dy \right)^{1/p} \, dx \right) \left(\int \left| \int f(z,y) \, dz \right|^p \, dy \right)^{1/p'}.$$

Thus,

$$\int \left| \int f(x,y) \, dx \right|^p \, dy \le \left(\int \left(\int \left| f(x,y) \right|^p \, dy \right)^{1/p} \, dx \right) \left(\int \left| \int f(z,y) \, dz \right|^p \, dy \right)^{1/p'},$$

or

$$\left(\int \left|\int f(x,y)\,dx\right|^p\,dy\right)^{1-1/p'} = \left(\int \left|\int f(x,y)\,dx\right|^p\,dy\right)^{1/p} \le \int \left(\int \left|f(x,y)\right|^p\,dy\right)^{1/p}\,dx,$$

assuming $\int f(x,y) dy \in L^p(x)$. If $\int f(x,y) dy \notin L^p(x)$, then use the above result to show that $\left|\left|\int f_k(x,y) dy\right|\right|_p \leq \int \left|\left|f_k(x,y)\right|\right|_p dy$, $f_k = f\mathbb{1}_{||(x,y)||\leq k}$. Since $f_k \nearrow f$, by the monotone convergence theorem it follows that

$$\lim \left| \left| \int f_k(x,y) \, dy \right| \right|_p = \left| \left| \int f(x,y) \, dy \right| \right|_p \le \int \left| \left| f(x,y) \right| \right|_p \, dy = \lim \int \left| \left| f_k(x,y) \right| \right|_p \, dy,$$
so $\int \left| \left| f(x,y) \right| \right|_p \, dy = +\infty$ too.

8.9. If f is real-valued and measurable on E, define its essential infimum on E by

$$\operatorname*{ess\,inf}_{E}f=\sup\left\{ \alpha:\left|\left\{ x\in E:f(x)<\alpha\right\} \right|=0\right\} .$$

If $f \ge 0$, show that $\operatorname{ess\,inf}_E f = (\operatorname{ess\,sup}_E 1/f)^{-1}$.

Solution. Suppose ess $\inf_E f = 0$. Then for every $\alpha > 0$ we have $|\{x \in E : f(x) > \alpha\}| > 0$; thus, for every $0 < \beta < +\infty$ we have $|\{x \in E : 1/f(x) < \beta\}| > 0$, so $\operatorname{ess\,sup}_E 1/f = +\infty$. Interpreting $+\infty^{-1} = 0$, the proposition holds.

Now suppose $\operatorname{ess\,inf}_E f > 0$, so there exists $\alpha > 0$ such that $|\{x \in E : f(x) < \alpha\}| = 0$. Then

$$\begin{aligned} & \operatorname*{ess\,inf} f = \sup \left\{ \alpha > 0 : | \{ x \in E : f(x) < \alpha \} | = 0 \right\} \\ & = \sup \left\{ 1/\beta : | \{ x \in E : f(x) < 1/\beta \} | = 0 \right\} \\ & = \sup \left\{ 1/\beta : | \{ x \in E : 1/f(x) > \beta \} | = 0 \right\} \\ & = \left(\inf \left\{ \beta : | \{ x \in E : 1/f(x) > \beta \} | = 0 \right\} \right)^{-1} \\ & = \left(\operatorname*{ess\,sup} 1/f \right)^{-1}. \end{aligned}$$