Chapter 7 Hypothesis Testing

Daxiang Na (那达翔)

2022-10-15

Contents

1	Hypothesis Testing 假设检验	1
	1.1 Definition and Concepts 定义与概念	. 1
	1.2 Principle 原理	. 2
	1.3 Calculation of z-test and t-test 计算	. 3
	1.4 Steps to perform hypothesis testing 解题步骤	. 4
2	Hypothesis Testing and Confidence Interval 假设检验与置信区间	5
	2.1 Mathematically equivalent	. 5
3	Type I and Type II errors 一类错误与二类错误	5
	3.1 Definition	. 5
	3.2 Illustrated	. 5
4	Power	7
	4.1 Definition	. 7
	4.2 Calculation	. 7
	4.3 Power Curve	. 7
5	Sample Size Estimation	7
1	Hypothesis Testing 假设检验	
1.	1 Definition and Concepts 定义与概念	
	1. null hypothesis, H_0 : "no change"	
	2. We believe the null hypothesis to be true unless overwhelming evidence exists	to the
	contrary ("innocent until proven guilty")	
	3. The alternative hypothesis, H_1 , or H_A (in this class, we all use H_1), is a s	econd
	statement that contradicts H_0 .	
	4. Either H_0 or H_1 must be true (mutually exclusive, exhaustive).	

5. We need overwhelming evidence to conclude that H_1 is true. - That is why the alpha value, or the "threshold", should be very low, so the chance that H_0 is true is very low.

1.2 Principle 原理

- 1. Definition of p-value: We calculate the probability of H_0 is true, which is the probability that you get a mean value from samples that is as extreme or more extreme than \bar{X} if you assume that H_0 is true.
- 2. Significance: Given that H_0 is true, the probability of obtaining a sample statistic as or more extreme than the observed statistic is sufficiently small. In that case, we can reject H_0 , and our data is more supportive of H_1 . Such a test is statistically significant.
- 3. If p-value is less than the pre-specified **Significance level** α , then reject the null hypothesis
- 4. For One-sided, lower-tailed hypothesis $(H_0: \mu \ge \mu_0 \text{ and } H_1: \mu < \mu_0)$:

If the null hypothesis is that the true population mean is greater tham μ_0 , then the sampling mean can be close or less than μ_0 . Then the p-value should be $\Pr(x_bar \le \mu_0)$

Calculates the probability that x is equal or smaller than μ_0

5. For One-sided, upper-tailed hypothesis $(H_0: \mu \leq \mu_0 \text{ and } H_1: \mu > \mu_0)$:

If the null hypothesis is that the true population mean is less than μ_0 , then the sampling mean can be close or greater than μ_0 . Then the p-value should be $\Pr(x_\text{bar} >= \mu_0)$

Calculates the probability that x is equal or smaller than μ_0

1.3 Calculation of z-test and t-test 计算

- 1. For now, we assume the population show normal distribution.
- 2. z-test:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

- 3. Types of Hypotheses for z-test calculation:
 - Lower-tailed (true mean is less than hypothesized mean)
 - $-\ H_0: \mu \geq \mu_0$ and $H_1: \mu < \mu_0$
 - In R: pnorm(z)
 - Upper-tailed (true mean is greater than hypothesized mean)
 - $-\ H_0: \mu \le \mu_0 \ {\rm and} \ H_1: \mu > \mu_0$
 - In R: 1-pnorm(z)
 - Two-sided (true mean is not equal to the hypothesized mean)
 - $H_0: \mu = \mu_0 \text{ and } H_1: \mu \neq \mu_0$
 - if $z \le 0$: 2*pnorm(z)
 - if z > 0: 2*(1-pnorm(z))
- 4. t-test:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

- with degree of freedom = n-1
- 5. Types of hypothesis for t-test calculation:
 - Lower-tailed (true mean is less than hypothesized mean)
 - $-\ H_0: \mu \geq \mu_0$ and $H_1: \mu < \mu_0$
 - In R: pt(t, df)

- Upper-tailed (true mean is greater than hypothesized mean)
 - $-H_0: \mu \leq \mu_0 \text{ and } H_1: \mu > \mu_0$
 - In R: 1-pt(t, df)
- Two-sided (true mean is not equal to the hypothesized mean)
 - $H_0: \mu = \mu_0 \text{ and } H_1: \mu \neq \mu_0$
 - if $z \le 0$: 2*pt(t, df)
 - if z > 0: 2*(1-pt(t, df))
- 6. Notes for two sided hypothesis:

when z < 0, you get probability (pnorm(z)) like this:

when z > 0, you get probability (1 - pnorm(z)) like this:

1.4 Steps to perform hypothesis testing 解题步骤

- 1. Check the conditions required for the validity of the test
- 2. Define the parameter of interest in the context of the problem
- 3. State the desired significance level
- 4. State the null hypothesis
- 5. State the alternative hypothesis
- 6. Determine the proper test to use, and calculate the test statistic

- 7. Calculate the p-value or critical value
- 8. Make "reject/fail to reject" decision
- 9. State your conclusion in the context of the problem

2 Hypothesis Testing and Confidence Interval 假设检验与置信区间

2.1 Mathematically equivalent.

3 Type I and Type II errors 一类错误与二类错误

3.1 Definition

	$\mu = \mu_0$	$\mu \neq \mu_0$
Fail to reject	Correct	Incorrect(Type II)
Reject	Incorrect(Type I)	Correct

3.1.1 Type I error 一类错误

- Type I error occurs if we reject a true null hypothesis ("false positive")
 - $-H_0: \mu = \mu_0$ is true, but we reject it.
- The chance of Type I error is $\Pr(\text{reject } H_0|H_0 \text{ is true})$
- The significance level α is the probability of making a type I error. Thus we decide what α is for our best

3.1.2 Type II error 二类错误

- Type II error occurs if we fail to reject a false null hypothesis ("false negative")
 - $H_0: \mu = \mu_0$ is false, but we fail to reject it.
- The probability of making a type II error is denoted β
- The chance of Type II error is $\Pr(\text{do not reject } H_0|H_0 \text{ is false})$

3.2 Illustrated

Dr.Kahng's illustrations shown as below:

4 Power

4.1 Definition

• The power of a test is equal to $1-\beta$

4.2 Calculation

4.3 Power Curve

5 Sample Size Estimation