第2节 三角形的各种线 (★★★)

强化训练

1. (★★) 在 $\triangle ABC$ 中, a=4, $b=3\sqrt{3}$, c=5,则 BC 边上的中线 AD 的长为_____.

答案: √22

解法 1: 已知三边,可先在 $\triangle ABC$ 中算 $\cos B$,再到 $\triangle ABD$ 中由余弦定理算 AD,

在 ΔABC 中,由余弦定理推论,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{7}{20}$$
,

在 $\triangle ABD$ 中,由余弦定理, $AD^2 = AB^2 + BD^2 - 2AB \cdot BD \cdot \cos B = 22$, 所以 $AD = \sqrt{22}$.

解法 2:如图,所有线段中只有AD未知,可利用 $\angle ADB$ 与 $\angle ADC$ 互补,建立方程求AD,

设 AD = x, 由图可知 $\angle ADB = \pi - \angle ADC$, 所以 $\cos \angle ADB = \cos(\pi - \angle ADC) = -\cos \angle ADC$ ①,

在 Δ*ADB* 和 Δ*ADC* 中,由余弦定理推论,
$$\cos \angle ADB = \frac{x^2 + 4 - 25}{2 \times x \times 2} = \frac{x^2 - 21}{4x}$$
,

$$\cos \angle ADC = \frac{x^2 + 4 - 27}{2 \times x \times 2} = \frac{x^2 - 23}{4x}$$
, 代入①得: $\frac{x^2 - 21}{4x} = -\frac{x^2 - 23}{4x}$, 解得: $x = \sqrt{22}$.

《一数•高考数学核心方法》

2. (2022 • 福建厦门模拟 • ★★★)在 $\triangle ABC$ 中,内角 A,B,C 的对边分别为 a,b,c,若 $b\sin C + a\sin A = b\sin B + c\sin C$,则内角 $A = _____$;若 D 是边 BC 的中点,且 c = 2, $AD = \sqrt{13}$,则 $a = _____$. 答案: $\frac{\pi}{3}$; $2\sqrt{7}$

解法 1: 所给等式中齐次的内角正弦和齐次的边都有,但若边化角,则下一步按角化简不易,故角化边,

因为 $b\sin C + a\sin A = b\sin B + c\sin C$,所以 $bc + a^2 = b^2 + c^2$,故 $b^2 + c^2 - a^2 = bc$,

由余弦定理推论,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{bc}{2bc} = \frac{1}{2}$$
,结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{3}$;

如图 1,有a,b两个未知数,需建立两个方程求解,首先对A用余弦定理建立一个方程,

由余弦定理,
$$a^2 = b^2 + c^2 - 2bc\cos A$$
,将 $c = 2$ 和 $A = \frac{\pi}{3}$ 代入整理得: $a^2 = b^2 + 4 - 2b$ ①,

由 LADB与 LADC 互补,用双余弦法可建立第二个方程,

因为
$$\angle ADB = \pi - \angle ADC$$
,所以 $\cos \angle ADB = \cos(\pi - \angle ADC) = -\cos \angle ADC$,故 $\frac{a^2}{4} + 13 - 4 = -\frac{a^2}{4} + 13 - b^2}{2 \cdot \frac{a}{2} \cdot \sqrt{13}} = -\frac{a^2}{4} \cdot \sqrt{13}$,

整理得: $a^2 = 2b^2 - 44$,代入式①整理得: $b^2 + 2b - 48 = 0$,解得: b = 6或 -8 (舍去),代入式①可求得 $a = 2\sqrt{7}$.

解法 2: 求 A 的过程同解法 1, 也可将 \overrightarrow{AD} 用 \overrightarrow{AB} 和 \overrightarrow{AC} 表示, 借助向量的运算来求 b,

因为
$$D$$
 是 BC 中点,所以 $\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AB})$,从而 $\left|\overrightarrow{AD}\right|^2 = \frac{1}{4}(\left|\overrightarrow{AC}\right|^2 + \left|\overrightarrow{AB}\right|^2 + 2\overrightarrow{AC} \cdot \overrightarrow{AB})$,

故
$$13 = \frac{1}{4}(b^2 + 4 + 2b \cdot 2\cos\frac{\pi}{3})$$
,解得: $b = 6$ 或 -8 (舍去),

已知两边及夹角,可由余弦定理求第三边 a,

所以
$$a^2 = b^2 + c^2 - 2bc \cos A = 36 + 4 - 2 \times 6 \times 2 \times \cos \frac{\pi}{3} = 28$$
,故 $a = 2\sqrt{7}$.

解法 3: 求 A 的过程同解法 1, 也可将 $\triangle ABC$ 补全为如图 2 所示的平行四边形 ABEC, 先在 $\triangle ABE$ 中算 b,

如图 2,
$$BE = AC = b$$
, $AE = 2AD = 2\sqrt{13}$, $\angle ABE = \pi - A = \frac{2\pi}{3}$,

在 $\triangle ABE$ 中,由余弦定理, $AE^2 = AB^2 + BE^2 - 2AB \cdot BE \cdot \cos \angle ABE$,

所以 $52 = 4 + b^2 - 2 \times 2 \times b \times \cos \frac{2\pi}{3}$,解得: b = 6 或 -8 (舍去),接下来求 a 的过程同解法 2.

【反思】后续多道题都有多种解法,为了篇幅简洁,我们以双余弦法(解法1)为主.

3. (★★★) 在 $\triangle ABC$ 中, b=4, c=2,则 BC 边上的中线 AD 的长的取值范围是____.

答案: (1,3)

解法 1: 可选择 a 作为变量,利用 $\angle ADB$ 与 $\angle ADC$ 互补建立等量关系,把中线 AD 用 a 表示,再求范围,如图, $\angle ADB = \pi - \angle ADC$,所以 $\cos \angle ADB = \cos(\pi - \angle ADC) = -\cos \angle ADC$,

从而
$$\frac{AD^2 + BD^2 - AB^2}{2AD \cdot BD} = -\frac{AD^2 + CD^2 - AC^2}{2AD \cdot CD}$$
, 故 $\frac{AD^2 + \frac{a^2}{4} - 4}{2AD \cdot \frac{a}{2}} = -\frac{AD^2 + \frac{a^2}{4} - 16}{2AD \cdot \frac{a}{2}}$, 所以 $AD = \sqrt{10 - \frac{a^2}{4}}$ ①,

还需要 a 的范围,才能求 AD 的范围,可由三角形任意两边之和大于第三边来求,

因为
$$\begin{cases} a+b>c \\ a+c>b \end{cases}$$
 所以 $\begin{cases} a+4>2 \\ a+2>4 \end{cases}$ 故 $2 < a < 6 \end{cases}$ 结合式①可得 $1 < AD < 3$. $2 < a < 6 \end{cases}$

解法 2: $\triangle ABC$ 已知两边,可引入夹角为变量,那么 \overrightarrow{AB} 和 \overrightarrow{AC} 就知道长度和夹角,用向量求 \overrightarrow{AD} 很方便,

设
$$\angle BAC = \theta(0 < \theta < \pi)$$
,由题意, $\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$,

所以
$$\overrightarrow{AD}^2 = \frac{1}{4}(\overrightarrow{AB}^2 + \overrightarrow{AC}^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AC}) = \frac{1}{4}(2^2 + 4^2 + 2 \times 2 \times 4 \times \cos\theta) = 5 + 4\cos\theta$$
,

因为 $0<\theta<\pi$,所以 $-1<\cos\theta<1$,从而 $1<\overrightarrow{AD}^2=5+4\cos\theta<9$,故 $1<|\overrightarrow{AD}|<3$.

4. (★★★) 在 Δ*ABC* 中,内角 *A*, *B*, *C* 的对边分别为 *a*, *b*, *c*,已知 *b* = 4, $c = \sqrt{10}$, *D* 为 *BC* 边上一点, CD = 2BD,若 AD = 2,则 a =____.

答案: 6

解析:如图,所有线段中,只有BD和CD未知,可设它们为未知数,用双余弦法建立方程求解,

设 BD = x ,则 CD = 2x ,因为 $\angle ADC = \pi - \angle ADB$,所以 $\cos \angle ADC = \cos(\pi - \angle ADB) = -\cos \angle ADB$,

从而
$$\frac{4+4x^2-16}{2\times2\times2x} = -\frac{4+x^2-10}{2\times2\times x}$$
,故 $x=2$,所以 $a=3x=6$.

5. $(2023 \cdot 全国甲卷 \cdot ★★★)$ $\triangle ABC$ 中, $\angle BAC = 60^{\circ}$,AB = 2, $BC = \sqrt{6}$,AD 平分 $\angle BAC$ 交 BC 于点 D,则 $AD = _____$.

答案: 2

解析:如图,只要求出AC,就能利用等面积法建立方程求AD,已知两边一角,可用余弦定理求第三边,由余弦定理, $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos \angle BAC$,

将已知条件代入可得 $6=4+AC^2-2\times2\times AC\times\cos60^\circ$,

解得: $AC = 1 + \sqrt{3}$ 或 $1 - \sqrt{3}$ (舍去),

因为 $S_{\triangle ABD} + S_{\triangle ACD} = S_{\triangle ABC}$,所以 $\frac{1}{2} \times 2 \times AD \times \sin 30^{\circ} + \frac{1}{2} \times (1 + \sqrt{3}) \times AD \times \sin 30^{\circ} = \frac{1}{2} \times 2 \times (1 + \sqrt{3}) \times \sin 60^{\circ}$,解得: AD = 2.

6. $(2022 \cdot$ 陕西渭南模拟 $\cdot \star \star \star \star \star$)在 ΔABC 中,角 A, B, C 的对边分别为 a, b, c,点 D 在边 BC 上,且 AD 平分 $\angle BAC$, $AD = \sqrt{3}$, $b\sin B - a\sin A = c(\sin B - \sin C)$, $\sin C = 3\sin B$,则 ΔABC 的面积为_____.

答案: $\frac{4\sqrt{3}}{3}$

解析: 若将 $b\sin B - a\sin A = c(\sin B - \sin C)$ 边化角,则下一步按角化简不易,故角化边,

因为 $b\sin B - a\sin A = c(\sin B - \sin C)$,所以 $b\cdot b - a\cdot a = c(b-c)$,故 $b^2 + c^2 - a^2 = bc$,

由余弦定理推论, $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{bc}{2bc} = \frac{1}{2}$,

结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{3}$;

因为 $\sin C = 3\sin B$, 所以c = 3b;

接下来只要求出 b, 就能求得面积, 考虑到这是已知顶角的角平分线问题, 故可用等面积法建立方程,

因为
$$AD$$
 是 $\angle BAC$ 的平分线,且 $A = \frac{\pi}{3}$,所以 $\angle CAD = \angle BAD = \frac{\pi}{6}$,

因为
$$S_{\Delta ACD} + S_{\Delta ABD} = S_{\Delta ABC}$$
,所以 $\frac{1}{2} \times \sqrt{3} \times b \times \sin \frac{\pi}{6} + \frac{1}{2} \times \sqrt{3} \times 3b \times \sin \frac{\pi}{6} = \frac{1}{2} \times b \times 3b \times \sin \frac{\pi}{3}$,故 $b = \frac{4}{3}$, $c = 4$,

所以
$$S_{\Delta ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times \frac{4}{3} \times 4 \times \sin \frac{\pi}{3} = \frac{4\sqrt{3}}{3}$$
.

- 7. $(2021 \cdot 新高考 I 卷 \cdot ★★★)$ 记 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $b^2 = ac$, 点 D 在边 AC 上, $BD\sin \angle ABC = a\sin C$.
- (1) 证明: BD = b;

解: (1) 因为 $BD\sin \angle ABC = a\sin C$,所以 $BD\cdot b = ac$,又 $b^2 = ac$,所以 $BD\cdot b = b^2$,故BD = b.

(2)(如图,在 ΔBCD 和 ΔABC 中分别计算 $\cos C$ 可建立一个边的方程,结合题干的 $b^2=ac$,可找到三边的比例关系,由余弦定理推论求得 $\cos \angle ABC$)

因为
$$AD = 2DC$$
,所以 $AD = \frac{2b}{3}$, $CD = \frac{b}{3}$,由(1)知 $BD = b$,

在 ΔBCD 中,
$$\cos C = \frac{CD^2 + BC^2 - BD^2}{2CD \cdot BC} = \frac{\frac{b^2}{9} + a^2 - b^2}{2 \cdot \frac{b}{3} \cdot a} = \frac{9a^2 - 8b^2}{6ab}$$
,

在
$$\Delta ABC$$
 中, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$, 所以 $\frac{9a^2 - 8b^2}{6ab} = \frac{a^2 + b^2 - c^2}{2ab}$, 整理得: $6a^2 - 11b^2 + 3c^2 = 0$,

将
$$b^2 = ac$$
代入上式整理得: $6a^2 - 11ac + 3c^2 = 0$,故 $(3a - c)(2a - 3c) = 0$,所以 $a = \frac{c}{3}$ 或 $a = \frac{3}{2}c$,

(需检验上述两种情况是否都满足题意,可用较小的两边之和大于最长边来检验)

若
$$a = \frac{c}{3}$$
,则 $b = \sqrt{ac} = \frac{\sqrt{3}}{3}c$,此时 $a + b = \frac{1 + \sqrt{3}}{3}c < c$,不合题意,所以 $a = \frac{3}{2}c$, $b = \sqrt{ac} = \frac{\sqrt{6}}{2}c$,

故
$$\cos \angle ABC = \frac{a^2 + c^2 - b^2}{2ac} = \frac{\frac{9}{4}c^2 + c^2 - \frac{3}{2}c^2}{2 \cdot \frac{3}{2}c \cdot c} = \frac{7}{12}.$$

- 8. $(2022 \cdot 江苏南京模拟 \cdot \star \star \star \star)$ 在 ΔABC 中,角 A,B,C 的对边分别为 a,b,c,已知 $2a\cos A + b\cos C + c\cos B = 0$.
 - (1) 求角 A;

解: (1) 因为 $2a\cos A + b\cos C + c\cos B = 0$,所以 $2\sin A\cos A + \sin B\cos C + \sin C\cos B = 0$ ①,

又 $\sin B \cos C + \sin C \cos B = \sin(B+C) = \sin(\pi-A) = \sin A$,代入式①可得 $2\sin A \cos A + \sin A = 0$ ②,

因为 $0 < A < \pi$,所以 $\sin A > 0$,故在式②中约去 $\sin A$ 可得 $2\cos A + 1 = 0$,所以 $\cos A = -\frac{1}{2}$,故 $A = \frac{2\pi}{3}$.

(2)(如图,已知A和a,可由余弦定理建立b,c的关系,故用双余弦法把AD用b,c表示)

因为 $\angle ADB = \pi - \angle ADC$, 所以 $\cos \angle ADB = \cos(\pi - \angle ADC) = -\cos \angle ADC$,

故
$$\frac{AD^2 + BD^2 - AB^2}{2AD \cdot BD} = -\frac{AD^2 + CD^2 - AC^2}{2AD \cdot CD}$$
, 所以 $\frac{AD^2 + 3 - c^2}{2\sqrt{3}AD} = -\frac{AD^2 + 3 - b^2}{2\sqrt{3}AD}$, 故 $AD^2 = \frac{b^2 + c^2}{2} - 3$ ③,

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$,将 $a = 2\sqrt{3}$ 和 $A = \frac{2\pi}{3}$ 代入可得 $12 = b^2 + c^2 + bc$ ④,

(要求 b^2+c^2 的最小值,故在式④中,将bc向 b^2+c^2 转化)

由式④可得
$$12 = b^2 + c^2 + bc \le b^2 + c^2 + \frac{b^2 + c^2}{2} = \frac{3}{2}(b^2 + c^2)$$
,所以 $b^2 + c^2 \ge 8$,

结合式③可得 $AD^2 \ge 1$,所以 $AD \ge 1$,当且仅当 b = c = 2 时取等号,故 $AD_{min} = 1$.

- 9. (2022 湖南岳阳模拟 ★★★)在 $\triangle ABC$ 中,角 A,B,C 的对边分别为 a,b,c,且 $\sqrt{3}a$ $2b\sin A$ = 0. (1) 求 B;
 - (2) 若 B 为钝角,且角 B 的平分线与 AC 交于点 D, $BD = \sqrt{2}$,求 ΔABC 的面积的最小值.

解: (1) (所给等式边齐次,角不齐次,故边化角)

因为 $\sqrt{3}a-2b\sin A=0$,所以 $\sqrt{3}\sin A-2\sin B\sin A=0$ ①,

又 $0 < A < \pi$, 所以 $\sin A > 0$, 故在式①中约去 $\sin A$ 可得 $\sqrt{3} - 2\sin B = 0$, 所以 $\sin B = \frac{\sqrt{3}}{2}$,

结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$ 或 $\frac{2\pi}{3}$.

(2) 由 (1) 知若
$$B$$
 为钝角,则 $B = \frac{2\pi}{3}$,所以 $S_{\Delta ABC} = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}ac$,

(要求上式的最小值,需先寻找a,c的关系,这是已知顶角的角平分线问题,可用等面积法建立方程)

因为 BD 是角 B 的平分线,所以 $\angle ABD = \angle CBD = \frac{\pi}{3}$,

由 $S_{\Delta ABD} + S_{\Delta CBD} = S_{\Delta ABC}$ 可得 $\frac{1}{2}c \cdot \sqrt{2} \cdot \sin \frac{\pi}{3} + \frac{1}{2}a \cdot \sqrt{2} \cdot \sin \frac{\pi}{3} = \frac{\sqrt{3}}{4}ac$,整理得: $\sqrt{2}(a+c) = ac$,

(为了求 ac 的最小值,可将上式中的 a+c 变成 ac) 所以 $ac=\sqrt{2}(a+c) \ge \sqrt{2} \times 2\sqrt{ac}$,故 $ac \ge 8$,

当且仅当 $a=c=2\sqrt{2}$ 时取等号,所以 $S_{\Delta ABC}=\frac{\sqrt{3}}{4}ac\geq \frac{\sqrt{3}}{4}\times 8=2\sqrt{3}$,故 $(S_{\Delta ABC})_{\min}=2\sqrt{3}$.

《一数•高考数学核心方法》