On some Krylov subspace methods tailored for large-scale block two-by-two linear systems

Kui Du

School of Mathematical Sciences, Xiamen University

https://kuidu.github.io

joint work with Jia-Jun Fan and Fang Wang

The 22nd Annual Meeting of CSIAM, Nanjing, 2024

Outline

- Block two-by-two linear systems
- 2 SPMR-SC, SPQMR-SC, nsLSQR
- GPMR
- A Randomized Gram-Schmidt process, randomized GMRES
- **5** Sketched GMRES + k-truncated Arnoldi
- Summary

Block two-by-two linear systems

• Nonsymmetric saddle-point linear systems of the form:

$$\begin{bmatrix} \mathbf{M} & \mathbf{A}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix},$$

where $\mathbf{M} \in \mathbb{R}^{m \times m}$ is invertible, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ are nonzero, and $\mathbf{b} \in \mathbb{R}^n$ is nonzero.

• Nonsymmetric partitioned linear systems of the form:

$$\begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, and $\mathbf{b} \in \mathbb{R}^m$, and $\mathbf{c} \in \mathbb{R}^n$. Note that λ and/or μ may be zero.

Review papers and books

 Michele Benzi, Gene H. Golub, and Jörg Liesen Numerical solution of saddle point problems.
 Acta Numerica (2005), pp. 1137.

Nonsymmetric saddle-point linear systems

Nonsymmetric saddle-point linear systems of the form:

$$\begin{bmatrix} \mathbf{M} & \mathbf{A}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix},$$

where $\mathbf{M} \in \mathbb{R}^{m \times m}$ is invertible.

 Monolithic methods: solving the system as a whole, for example, GMRES

Segregated methods: exploiting the block structure, excluding the preconditioning stage, for example, SPMR, SPQMR, nsLSQR

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC, Vol. 40, No. 3 (2018)

K. Du, J.-J. Fan, and F. Wang. nsLSQR: A quasi-minimum residual method for nonsymmetric saddle-point linear systems. (2024)

Simultaneous bidiagonalization via \mathbf{M} -conjugacy

Algorithm Simultaneous bidiagonalization via M-conjugacy

Require:
$$\mathbf{M} \in \mathbb{R}^{m \times m}$$
, \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{n \times m}$, and \mathbf{b} , $\mathbf{c} \in \mathbb{R}^n$

1:
$$\beta_1 \mathbf{v}_1 := \mathbf{c}, \ \delta_1 \mathbf{z}_1 := \mathbf{b}$$

2:
$$\mathbf{u} = \mathbf{A}^{\top} \mathbf{v}_1, \ \mathbf{w} = \mathbf{M}^{-\top} \mathbf{B}^{\top} \mathbf{z}_1$$

3:
$$\alpha_1 = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_1 = \mathbf{w}^\top \mathbf{u}/\alpha_1$$

4:
$$\mathbf{u}_1 = \mathbf{M}^{-1}\mathbf{u}/\alpha_1, \ \mathbf{w}_1 = \mathbf{w}/\gamma_1$$

5: **for**
$$k = 1, 2, \dots$$
 do

6:
$$\beta_{k+1}\mathbf{v}_{k+1} := \mathbf{A}\mathbf{w}_k - \alpha_k\mathbf{v}_k, \ \delta_{k+1}\mathbf{z}_{k+1} := \mathbf{B}\mathbf{u}_k - \gamma_k\mathbf{z}_k$$

7:
$$\mathbf{u} = \mathbf{A}^{\mathsf{T}} \mathbf{v}_{k+1} - \beta_{k+1} \mathbf{M} \mathbf{u}_k, \ \mathbf{w} = \mathbf{M}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{z}_{k+1} - \delta_{k+1} \mathbf{w}_k$$

8:
$$\alpha_{k+1} = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_{k+1} = \mathbf{w}^\top \mathbf{u}/\alpha_{k+1}$$

9:
$$\mathbf{u}_{k+1} = \mathbf{M}^{-1} \mathbf{u} / \alpha_{k+1}, \ \mathbf{w}_{k+1} = \mathbf{w} / \gamma_{k+1}$$

10: end for

Simultaneous bidiagonalization via M-conjugacy

• Simultaneous bidiagonalization via M-conjugacy:

$$\begin{split} \mathbf{A}\mathbf{W}_k &= \mathbf{V}_{k+1}\mathbf{C}_{k+1,k}, \quad \mathbf{A}^\top\mathbf{V}_{k+1} = \mathbf{M}\mathbf{U}_{k+1}\mathbf{C}_{k+1}^\top, \\ \mathbf{B}\mathbf{U}_k &= \mathbf{Z}_{k+1}\mathbf{F}_{k+1,k}, \quad \mathbf{B}^\top\mathbf{Z}_{k+1} = \mathbf{M}^\top\mathbf{W}_{k+1}\mathbf{F}_{k+1}^\top, \\ \mathbf{W}_k^\top\mathbf{M}\mathbf{U}_k &= \mathbf{V}_k^\top\mathbf{V}_k = \mathbf{Z}^\top\mathbf{Z}_k = \mathbf{I}_k, \end{split}$$

where

$$\mathbf{U}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \end{bmatrix}, \quad \mathbf{V}_{k} = \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \end{bmatrix},$$

$$\mathbf{W}_{k} = \begin{bmatrix} \mathbf{w}_{1} & \cdots & \mathbf{w}_{k} \end{bmatrix}, \quad \mathbf{Z}_{k} = \begin{bmatrix} \mathbf{z}_{1} & \cdots & \mathbf{z}_{k} \end{bmatrix},$$

$$\mathbf{C}_{k} = \operatorname{bidiag}(\beta_{i}, \alpha_{i}), \quad \mathbf{C}_{k+1,k} = \begin{bmatrix} \mathbf{C}_{k} \\ \beta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix},$$

$$\mathbf{F}_{k} = \operatorname{bidiag}(\delta_{i}, \gamma_{i}), \quad \mathbf{F}_{k+1,k} = \begin{bmatrix} \mathbf{F}_{k} \\ \delta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix}.$$

SPMR-SC

• The kth SPMR-SC iterate is $\mathbf{x}_k = \mathbf{U}_k \widetilde{\mathbf{x}}_k$, $\mathbf{y}_k = \mathbf{V}_k \widetilde{\mathbf{y}}_k$, where

$$\begin{bmatrix} \widetilde{\mathbf{x}}_k \\ \widetilde{\mathbf{y}}_k \end{bmatrix} = \operatorname*{argmin}_{\widetilde{\mathbf{x}} \in \mathbb{R}^k, \ \widetilde{\mathbf{y}} \in \mathbb{R}^k} \left\| \begin{bmatrix} \mathbf{0} \\ \delta_1 \mathbf{e}_1 \end{bmatrix} - \begin{bmatrix} \mathbf{I}_k & \mathbf{C}_k^\top \\ \mathbf{F}_{k+1,k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \end{bmatrix} \right\|_2.$$

 Equivalent to USYMQR applied to the Schur complement system:

$$-\mathbf{S}\mathbf{y} = \mathbf{b}, \quad \mathbf{S} = \mathbf{B}\mathbf{M}^{-1}\mathbf{A}^{\top}.$$

 SPMR-SC can be more numerically stable than USYMQR when the Schur complement is ill-conditioned.

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC, Vol. 40, No. 3 (2018)

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations. SINUM, Vol. 25, Iss. 4 (1988)

Example: an ill-conditioned Schur complement

 $cond(\mathbf{A}) \approx 10^5$, $cond(\mathbf{B}) \approx 10^5$, $cond(\mathbf{S}) \approx 10^8$

Simultaneous bidiagonalization via biorthogonality

Algorithm Simultaneous bidiagonalization via biorthogonality

Require:
$$\mathbf{M} \in \mathbb{R}^{m \times m}$$
, \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{n \times m}$, and \mathbf{b} , $\mathbf{c} \in \mathbb{R}^n$

1:
$$\delta_1 = |\mathbf{c}^\top \mathbf{b}|^{1/2}, \ \beta_1 = \mathbf{c}^\top \mathbf{b}/\beta_1$$

2:
$$\mathbf{v}_1 = \mathbf{b}/\delta_1, \ \mathbf{z}_1 = \mathbf{c}/\beta_1$$

3:
$$\mathbf{u} = \mathbf{A}^{\top} \mathbf{v}_1, \ \mathbf{w} = \mathbf{M}^{-\top} \mathbf{B}^{\top} \mathbf{z}_1$$

4:
$$\alpha_1 = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_1 = \mathbf{w}^\top \mathbf{u}/\alpha_1$$

5:
$$\mathbf{u}_1 = \mathbf{M}^{-1}\mathbf{u}/\alpha_1, \ \mathbf{w}_1 = \mathbf{w}/\gamma_1$$

6: **for**
$$k = 1, 2, \dots$$
 do

7:
$$\mathbf{v} = \mathbf{B}\mathbf{u}_k - \gamma_k \mathbf{v}_k, \ \mathbf{z} = \mathbf{A}\mathbf{w}_k - \alpha_k \mathbf{z}_k$$

8:
$$\delta_{k+1} = |\mathbf{z}^{\top} \mathbf{v}|^{1/2}, \ \beta_{k+1} = |\mathbf{z}^{\top} \mathbf{v}| / \delta_{k+1}$$

9:
$$\mathbf{v}_{k+1} = \mathbf{v}/\delta_{k+1}, \ \mathbf{z}_{k+1} = \mathbf{z}/\beta_{k+1}$$

10:
$$\mathbf{u} = \mathbf{A}^{\top} \mathbf{v}_{k+1} - \beta_{k+1} \mathbf{M} \mathbf{u}_k, \ \mathbf{w} = \mathbf{M}^{-\top} \mathbf{B}^{\top} \mathbf{z}_{k+1} - \delta_{k+1} \mathbf{w}_k$$

11:
$$\alpha_{k+1} = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_{k+1} = \mathbf{w}^\top \mathbf{u}/\alpha_{k+1}$$

12:
$$\mathbf{u}_{k+1} = \mathbf{M}^{-1} \mathbf{u} / \alpha_{k+1}, \ \mathbf{w}_{k+1} = \mathbf{w} / \gamma_{k+1}$$

13: end for

Simultaneous bidiagonalization via biorthogonality

• Simultaneous bidiagonalization via biorthogonality:

$$\begin{split} \mathbf{A}\mathbf{W}_k &= \mathbf{Z}_{k+1}\mathbf{C}_{k+1,k}, \quad \mathbf{A}^{\top}\mathbf{V}_{k+1} = \mathbf{M}\mathbf{U}_{k+1}\mathbf{C}_{k+1}^{\top}, \\ \mathbf{B}\mathbf{U}_k &= \mathbf{V}_{k+1}\mathbf{F}_{k+1,k}, \quad \mathbf{B}^{\top}\mathbf{Z}_{k+1} = \mathbf{M}^{\top}\mathbf{U}_{k+1}\mathbf{F}_{k+1}^{\top}, \\ \mathbf{W}_k^{\top}\mathbf{M}\mathbf{U}_k &= \mathbf{V}_k^{\top}\mathbf{Z}_k = \mathbf{I}_k, \end{split}$$

where

$$\mathbf{U}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \end{bmatrix}, \quad \mathbf{V}_{k} = \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \end{bmatrix},$$

$$\mathbf{W}_{k} = \begin{bmatrix} \mathbf{w}_{1} & \cdots & \mathbf{w}_{k} \end{bmatrix}, \quad \mathbf{Z}_{k} = \begin{bmatrix} \mathbf{z}_{1} & \cdots & \mathbf{z}_{k} \end{bmatrix},$$

$$\mathbf{C}_{k} = \operatorname{bidiag}(\beta_{i}, \alpha_{i}), \quad \mathbf{C}_{k+1,k} = \begin{bmatrix} \mathbf{C}_{k} \\ \beta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix},$$

$$\mathbf{F}_{k} = \operatorname{bidiag}(\delta_{i}, \gamma_{i}), \quad \mathbf{F}_{k+1,k} = \begin{bmatrix} \mathbf{F}_{k} \\ \delta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix}.$$

SPQMR-SC

• The kth SPQMR-SC iterate is $\mathbf{x}_k = \mathbf{U}_k \widetilde{\mathbf{x}}_k$, $\mathbf{y}_k = \mathbf{V}_k \widetilde{\mathbf{y}}_k$, where

$$\begin{bmatrix} \widetilde{\mathbf{x}}_k \\ \widetilde{\mathbf{y}}_k \end{bmatrix} = \operatorname*{argmin}_{\widetilde{\mathbf{x}} \in \mathbb{R}^k, \ \widetilde{\mathbf{y}} \in \mathbb{R}^k} \left\| \begin{bmatrix} \mathbf{0} \\ \delta_1 \mathbf{e}_1 \end{bmatrix} - \begin{bmatrix} \mathbf{I}_k & \mathbf{C}_k^\top \\ \mathbf{F}_{k+1,k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \end{bmatrix} \right\|_2.$$

 Equivalent to QMR applied to the Schur complement system:

$$-\mathbf{S}\mathbf{y} = \mathbf{b}, \quad \mathbf{S} = \mathbf{B}\mathbf{M}^{-1}\mathbf{A}^{\top}.$$

 The convergence of SPMR-SC is monotonic, while the convergence of SPQMR-SC is erratic.

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC, Vol. 40, No. 3 (2018)

R. W. Freund and N. M. Nachtigal. *QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear-Systems.* NM, Vol. 60, lss. 3 (1991)

Bidiagonal-Hessenberg reduction

Algorithm Bidiagonal-Hessenberg reduction

Require: $\mathbf{M} \in \mathbb{R}^{m \times m}$, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{b} \in \mathbb{R}^n$

1:
$$\mathbf{u}_1 = \mathbf{b}/\beta_1 \text{ with } \beta_1 = \|\mathbf{b}\|_2$$

2:
$$\mathbf{v} = \mathbf{A}^{\top} \mathbf{u}_1$$
, $\mathbf{v}_1 = \mathbf{M}^{-1} \mathbf{v}$, $\alpha_1 = \begin{cases} |\mathbf{v}_1^{\top} \mathbf{v}|^{1/2} & \text{if } \mathbf{v}_1^{\top} \mathbf{v} \neq 0 \\ \|\mathbf{v}_1\|_2 & \text{if } \mathbf{v}_1^{\top} \mathbf{v} = 0 \end{cases}$

3:
$$\mathbf{v}_1 = \mathbf{v}_1/\alpha_1$$

4: **for**
$$k = 1, 2, \dots$$
 do

5:
$$\mathbf{u} = \mathbf{B}\mathbf{v}_k$$

6: **for**
$$i = 1, 2, ..., k$$
 do

7:
$$h_{ik} = \mathbf{u}_i^{\top} \mathbf{u}$$

8:
$$\mathbf{u} = \mathbf{u} - h_{ik}\mathbf{u}_i$$

10:
$$\mathbf{u}_{k+1} = \mathbf{u}/\beta_{k+1} \text{ with } \beta_{k+1} = \|\mathbf{u}\|_2$$

11:
$$\mathbf{v} = \mathbf{A}^{\top} \mathbf{u}_{k+1} - \beta_{k+1} \mathbf{M} \mathbf{v}_k, \ \mathbf{v}_{k+1} = \mathbf{M}^{-1} \mathbf{v}, \ \alpha_{k+1} = \begin{cases} |\mathbf{v}_{k+1}^{\top} \mathbf{v}|^{1/2} & \text{if } \mathbf{v}_{k+1}^{\top} \mathbf{v} \neq 0 \\ \|\mathbf{v}_{k+1}\|_2 & \text{if } \mathbf{v}_{k+1}^{\top} \mathbf{v} = 0 \end{cases}$$

12:
$$\mathbf{v}_{k+1} = \mathbf{v}_{k+1}/\alpha_{k+1}$$

13: **end for**

Bidiagonal-Hessenberg reduction

Bidiagonal-Hessenberg reduction:

$$\begin{split} \mathbf{A}^{\top}\mathbf{U}_k &= \mathbf{M}\mathbf{V}_k\mathbf{C}_k^{\top}, \qquad \mathbf{U}_{k+1}^{\top}\mathbf{U}_{k+1} = \mathbf{I}_{k+1}, \\ \mathbf{B}\mathbf{V}_k &= \mathbf{U}_{k+1}\mathbf{H}_{k+1,k} = \mathbf{U}_k\mathbf{H}_k + \beta_{k+1}\mathbf{u}_{k+1}\mathbf{e}_k^{\top}, \end{split}$$

where

$$\mathbf{U}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \end{bmatrix}, \quad \mathbf{V}_{k} = \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \end{bmatrix},$$

$$\mathbf{C}_{k} = \begin{bmatrix} \alpha_{1} & & & \\ \beta_{2} & \alpha_{2} & & \\ & \ddots & \ddots & \\ & & \beta_{k} & \alpha_{k} \end{bmatrix}, \quad \mathbf{H}_{k+1,k} = \begin{bmatrix} h_{11} & \cdots & h_{1k} \\ h_{21} & \ddots & \vdots \\ & & \ddots & h_{kk} \\ & & & h_{k+1,k} \end{bmatrix}.$$

nsLSQR

• The kth nsLSQR iterate is $\mathbf{x}_k = \mathbf{V}_k \widetilde{\mathbf{x}}_k$, $\mathbf{y}_k \mathbf{U}_k \widetilde{\mathbf{y}}_k$, where

$$\begin{bmatrix} \widetilde{\mathbf{x}}_k \\ \widetilde{\mathbf{y}}_k \end{bmatrix} = \operatorname*{argmin}_{\widetilde{\mathbf{x}} \in \mathbb{R}^k, \ \widetilde{\mathbf{y}} \in \mathbb{R}^k} \left\| \begin{bmatrix} \mathbf{0} \\ \beta_1 \mathbf{e}_1 \end{bmatrix} - \begin{bmatrix} \mathbf{I}_k & \mathbf{C}_k^\top \\ \mathbf{H}_{k+1,k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \end{bmatrix} \right\|_2.$$

 Equivalent to GMRES applied to the Schur complement system:

$$-\mathbf{S}\mathbf{y} = \mathbf{b}, \quad \mathbf{S} = \mathbf{B}\mathbf{M}^{-1}\mathbf{A}^{\top}.$$

 nsLSQR can be more numerically stable than GMRES when the Schur complement is ill-conditioned.

K. Du, J.-J. Fan, and F. Wang. nsLSQR: A quasi-minimum residual method for nonsymmetric saddle-point linear systems. (2024)

Example: an ill-conditioned Schur complement

 $cond(\mathbf{A}) \approx 7 \times 10^3$, $cond(\mathbf{B}) \approx 7 \times 10^3$, $cond(\mathbf{S}) \approx 5 \times 10^7$

Example: Flow over an obstacle (IFISS)

Nonsymmetric partitioned linear systems

Nonsymmetric partitioned linear systems of the form

$$\begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix}.$$

Note that λ and/or μ may be zero.

 Monolithic methods: solving the system as a whole, for example, GMRES

Segregated methods: exploiting the block structure, excluding the preconditioning stage, for example, GPMR, GPBiLQ, GPQMR

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol. 44, No. 1 (2023)

K. Du, J.-J. Fan, and F. Wang. GPBiLQ and GPQMR: Two iterative methods for unsymmetric partitioned linear systems. arXiv:2401.02608 (2024)

Simultaneous orthogonal Hessenberg reduction

Algorithm Simultaneous orthogonal Hessenberg reduction

Require: A, B, b, c, all nonzero

1:
$$\beta \mathbf{v}_1 := \mathbf{b}, \ \gamma \mathbf{u}_1 := \mathbf{c}$$

2: **for**
$$k = 1, 2, \cdots$$
 do

3: **for**
$$i = 1, 2, \dots, k$$
 do

4:
$$h_{ik} = \mathbf{v}_i^{\top} \mathbf{A} \mathbf{u}_k$$

5:
$$f_{ik} = \mathbf{u}_i^{\top} \mathbf{B} \mathbf{v}_k$$

6: end for

7:
$$h_{k+1,k}\mathbf{v}_{k+1} = \mathbf{A}\mathbf{u}_k - \sum_{i=1}^k h_{ik}\mathbf{v}_i$$

8:
$$f_{k+1,k}\mathbf{u}_{k+1} = \mathbf{B}\mathbf{v}_k - \sum_{i=1}^k f_{ik}\mathbf{u}_i$$

9: end for

Simultaneous orthogonal Hessenberg reduction

Simultaneous orthogonal Hessenberg reduction

$$\mathbf{A}\mathbf{U}_k = \mathbf{V}_k \mathbf{H}_k + h_{k+1,k} \mathbf{v}_{k+1} \mathbf{e}_k^{\top} = \mathbf{V}_{k+1} \mathbf{H}_{k+1,k},$$

$$\mathbf{B}\mathbf{V}_k = \mathbf{U}_k \mathbf{F}_k + f_{k+1,k} \mathbf{u}_{k+1} \mathbf{e}_k^{\top} = \mathbf{U}_{k+1} \mathbf{F}_{k+1,k},$$

$$\mathbf{V}_{k+1}^{\top} \mathbf{V}_{k+1} = \mathbf{U}_{k+1}^{\top} \mathbf{U}_{k+1} = \mathbf{I}_{k+1},$$

where

$$\mathbf{U}_k = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}, \quad \mathbf{V}_k = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \end{bmatrix},$$

and

$$\mathbf{H}_{k+1,k} = \begin{bmatrix} h_{11} & \cdots & h_{1k} \\ h_{21} & \ddots & \vdots \\ & \ddots & h_{kk} \\ & & h_{k+1,k} \end{bmatrix}, \mathbf{F}_{k+1,k} = \begin{bmatrix} f_{11} & \cdots & f_{1k} \\ f_{21} & \ddots & \vdots \\ & \ddots & f_{kk} \\ & & f_{k+1,k} \end{bmatrix}.$$

GPMR

The kth GPMR iterate is

$$\begin{bmatrix} \mathbf{x}_k \\ \mathbf{y}_k \end{bmatrix} = \underset{\mathbf{x} \in \text{range}(\mathbf{V}_k), \ \mathbf{y} \in \text{range}(\mathbf{U}_k)}{\operatorname{argmin}} \left\| \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix} - \begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \right\|_2.$$

Equivalent to Block-GMRES:

$$\begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^1 & \mathbf{x}^2 \\ \mathbf{y}^1 & \mathbf{y}^2 \end{bmatrix} = \begin{bmatrix} \mathbf{b} & \mathbf{0} \\ \mathbf{0} & \mathbf{c} \end{bmatrix}.$$

 GPMR terminates significantly earlier than GMRES on a residual-based stopping criterion with an improvement up to 50% in terms of number of iterations.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol. 44, No. 1 (2023)

Example: A = well1850, B = illc1850

Randomized Numerical Linear Algebra +

- Arguably, the most exciting recent development in NLA is the advent of new randomized algorithms that are fast, scalable, robust, and reliable.
- Intelligent solvers.

M. Dereziński, Michael W. Mahoney. Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning. arXiv:2406.11151 (2024)

A. Kireeva and J. A. Tropp. Randomized matrix computations: Themes and variations. arXiv:2402.17873 (2024)

J. A. Tropp and R. J. Webber. Randomized algorithms for low-rank matrix approximation: Design, analysis, and applications. arXiv:2306.12418 (2023)

R. Murray et al. Randomized Numerical Linear Algebra: A perspective on the field with an eye to software, arXiv:2302.11474 (2023)

Haifeng Zou, Xiaowen Xu, Chen-Song Zhang. A Survey on Intelligent Iterative Methods for Solving Sparse Linear Algebraic Equations. arXiv:2310.06630 (2023)

Randomized Gram-Schmidt process

Algorithm 2.1. RGS algorithm

```
Given: n \times m matrix W and k \times n matrix \Theta, m < k \ll n.
Output: n \times m factor Q and m \times m upper triangular factor R.
for i = 1 : m do
   1. Sketch \mathbf{w}_i: \mathbf{p}_i = \mathbf{\Theta} \mathbf{w}_i.
                                                                                                   # macheps: u_{fine}
   2. Solve k \times (i-1) least-squares problem:
                                [\mathbf{R}]_{(1:i-1,i)} = \arg\min_{\mathbf{y}} \|\mathbf{S}_{i-1}\mathbf{y} - \mathbf{p}_i\|.
                                                                                                   # macheps: u_{fine}
   3. Compute projection of \mathbf{w}_i: \mathbf{q}'_i = \mathbf{w}_i - \mathbf{Q}_{i-1}[\mathbf{R}]_{(1:i-1,i)}.
                                                                                                   # macheps: u_{crs}
   4. Sketch \mathbf{q}_i': \mathbf{s}_i' = \mathbf{\Theta} \mathbf{q}_i'.
                                                                                                   # macheps: u_{fine}
   5. Compute the sketched norm r_{i,i} = ||\mathbf{s}_i'||.
                                                                                                   # macheps: u_{fine}
   6. Scale vector \mathbf{s}_i = \mathbf{s}'_i/r_{i,i}.
                                                                                                   # macheps: u_{fine}
   7. Scale vector \mathbf{q}_i = \mathbf{q}'_i/r_{i,i}.
                                                                                                   # macheps: u_{fine}
end for
```

$\mathbf{W} = \mathbf{Q}\mathbf{R}$, $\mathbf{\Theta}\mathbf{W} = \mathbf{\Theta}\mathbf{Q}\mathbf{R}$, $(\mathbf{\Theta}\mathbf{Q})^{\top}(\mathbf{\Theta}\mathbf{Q}) = \mathbf{I}_m$, $\operatorname{cond}(\mathbf{Q})$ is small

8. (Optional) compute $\Delta_m = \|\mathbf{I}_{m \times m} - \mathbf{S}_m^T \mathbf{S}_m\|_F$ and $\tilde{\Delta}_m = \frac{\|\mathbf{P}_m - \mathbf{S}_m \mathbf{R}_m\|_F}{\|\mathbf{P}_m\|_F}$.

Use Theorem 3.2 to certify the output.

macheps: u_{fine}

O. Balabanov and L. Grigori. Randomized Gram-Schmidt process with application to GM-RES. SISC, Vol. 44, No. 3 (2022)

Randomized GMRES (rGMRES) for Ax = b

Algorithm 4.1. RGS-Arnoldi algorithm

Given: $n \times n$ matrix **A**, $n \times 1$ vector **b**, $k \times n$ matrix **\Theta** with $k \ll n$, parameter m. **Output:** $n \times m$ factor \mathbf{Q}_m and $m \times m$ upper triangular factor \mathbf{R}_m .

- 1. Set $w_1 = b$.
- 2. Perform 1st iteration of Algorithm 2.1.

for i=2:m do

- 3. Compute $\mathbf{w}_i = \mathbf{A}\mathbf{q}_{i-1}$.
- # macheps: u_{fine} 4. Perform *i*th iteration of Algorithm 2.1.

end for

5. (Optional) Compute Δ_m and Δ_m . Use Proposition 4.1 to certify the output.

macheps: u_{fine}

- $(\mathbf{\Theta}\mathbf{Q}_m)^{\top}(\mathbf{\Theta}\mathbf{Q}_m) = \mathbf{I}_m$ and \mathbf{Q}_m is nonorthogonal.
- rGMRES: $\mathbf{x}_m = \mathbf{Q}_m \mathbf{y}_m$, where \mathbf{y}_m solves

$$\min_{\mathbf{y}} \|\mathbf{H}_{m+1,m}\mathbf{y} - r_{11}\mathbf{e}_1\|_2.$$

• $\|\mathbf{r}^{\text{GMRES}}\|_{2} < \|\mathbf{r}^{\text{rGMRES}}\|_{2} < \text{const} \cdot \|\mathbf{r}^{\text{GMRES}}\|_{2}$ whp.

Sketched GMRES (sGMRES) for $\mathbf{A}\mathbf{x} = \mathbf{b}$

- Columns of ${\bf B}$ form a basis of the Krylov subspace ${\cal K}_j({\bf A},{\bf b}).$
- GMRES: $\mathbf{x_B} = \mathbf{B}\mathbf{y_{\star}}$, where Arnoldi process is used for \mathbf{B} and $\mathbf{y_{\star}}$ solves the overdetermined least-squares problem

$$\min_{\mathbf{y}} \|\mathbf{A}\mathbf{B}\mathbf{y} - \mathbf{b}\|_2.$$

• sGMRES uses "skecth-and-solve" and is faster: $\hat{\mathbf{x}} = \mathbf{B}\hat{\mathbf{y}}$, where \mathbf{B} can be a nonorthogonal basis (for example, using k-truncated Arnoldi) and $\hat{\mathbf{y}}$ solves the sketched problem

$$\min_{\mathbf{y}} \|\mathbf{S}(\mathbf{A}\mathbf{B}\mathbf{y} - \mathbf{b})\|_2.$$

• $\|\mathbf{r}^{\text{GMRES}}\|_2 \le \|\mathbf{r}^{\text{sGMRES}}\|_2 \le \text{const} \cdot \|\mathbf{r}^{\text{GMRES}}\|_2$ whp.

Y. Nakatsukasa and J. A. Tropp. Fast and accurate randomized algorithms for linear systems and eigenvalue problems. SIMAX, Vol. 45, No. 2 (2024)

sGMRES + k-truncated Arnoldi

Algorithm 1.1. sGMRES + k-truncated Arnoldi. **Input:** Matrix $A \in \mathbb{C}^{n \times n}$, right-hand side $f \in \mathbb{C}^n$, initial guess $x \in \mathbb{C}^n$, basis dimension d, number k of vectors for truncated orthogonalization, stability tolerance tol = $O(u^{-1})$. **Output:** Approximate solution $\hat{x} \in \mathbb{C}^n$ to linear system (1.5) and estimated residual norm \hat{r}_{ost} 1 function sGMRES Draw subspace embedding $S \in \mathbb{C}^{s \times n}$ with s = 2(d+1)⊳ See subsection 2.4 Form residual and sketch: r = f - Ax and g = SrNormalize basis vector $\boldsymbol{b}_1 = \boldsymbol{r}/\|\boldsymbol{r}\|_2$ and apply matrix $\boldsymbol{m}_1 = \boldsymbol{A}\boldsymbol{b}_1$ for j = 2, 3, 4, ..., d do See also subsection 5.2 6 Truncated Arnoldi: $\mathbf{w}_i = (\mathbf{I} - \mathbf{b}_{i-1} \mathbf{b}_{i-1}^* - \dots - \mathbf{b}_{i-k} \mathbf{b}_{i-k}^*) \mathbf{m}_{i-1} \quad \triangleright \mathbf{b}_{-i} = \mathbf{0}$ for i > 0Normalize basis vector $\boldsymbol{b}_i = \boldsymbol{w}_i / \|\boldsymbol{w}_i\|_2$ and apply matrix $\boldsymbol{m}_i = \boldsymbol{A}\boldsymbol{b}_i$ 7 Sketch reduced matrix: $C = S[m_1, ..., m_d]$ Thin QR factorization: C = UTif condition number $\kappa_2(T) > \text{tol then warning...}$ 10 Either whiten $B \leftarrow BT^{-1}$ or form new residual and restart 11 ▷ See subsection 5.3Solve least-squares problem: $\hat{\mathbf{y}} = \mathbf{T}^{-1}(\mathbf{U}^*\mathbf{g})$ 12 See (3.7) 13 Residual estimate: $\hat{r}_{est} = ||(\mathbf{I} - UU^*)g||_2$ See (3.8) Construct solution: $\hat{\boldsymbol{x}} = \boldsymbol{x} + [\boldsymbol{b}_1, \dots, \boldsymbol{b}_d] \hat{\boldsymbol{y}}$

Implementation: In line 6, use double Gram–Schmidt for stability. In line 9, the QR factorization may require pivoting. In lines 11–12, apply \boldsymbol{T}^{-1} via triangular substitution.

rGMRES vs sGMRES

- rGMRES uses sketching to reduce the orthogonalization cost.
- sGMRES uses "sketch-and-solve" to reduce computational cost, is asymptotically faster, and has more flexibility.
- O. Balabanov and L. Grigori. Randomized Gram-Schmidt process with application to GM-RES. SISC, Vol. 44, No. 3 (2022)
- Y. Jang, L. Grigori, E. Martin, and C. Content. *Randomized flexible GMRES with deflated restarting.* Numer. Algorithms (2024)
- Y. Nakatsukasa and J. A. Tropp. Fast and accurate randomized algorithms for linear systems and eigenvalue problems. SIMAX, Vol. 45, No. 2 (2024)
- S. Güttel and I. Simunec. A sketch-and-select Arnoldi process. SISC, Vol. 46, No. 4 (2024)
- L. Burke, S. Güttel, and K. Soodhalter. *GMRES with randomized sketching and deflated restarting.* arXiv:2311.14206 (2023)
- D. Palitta, M. Schweitzer, and V. Simoncini. Sketched and truncated polynomial Krylov subspace methods Matrix Sylvester equations. Math. Comp., (2024)

Summary

- We have presented nsLSQR for nonsymmetric saddle-point linear systems.
- nsLSQR is mathematically equivalent to GMRES applied to the corresponding Schur complement system, but may be numerically superior.
- nsLSQR usually is faster than SPMR-SC and SPQMR-SC in terms of the number of iterations, and if the iteration cost is dominated by the M-solve rather than reorthogonalization, then nsLSQR should be the preferred method.
- The ideas of rGMRES and sGMRES can be used for GPMR and nsLSQR.
- Intelligent iterative methods for block two-by-two linear systems?

Thanks!