## Blind Source Separation of Fetal ECG

M.Sc. Project by:
Osher Tidhar
Supervisor:
Dr. Dan Raviv



## Agenda

**Objective** 

**Introduction** 

**Our Method** 

Results

**Conclusions** 

**Further Steps** 

## **Objective**

Separation of fetal ECG (FECG) signals from ECG signals recorded from pregnant women's abdomen.

## Introduction



#### **ECG**

- Non-invasive test
- Records heart's electrical activity
- Assesses heart health and detects any abnormalities

#### **Fetal ECG Monitoring**

- Tracks fetal heart activity during pregnancy
- Electrodes placed on mother's abdomen
- Provides more detailed and accurate information compared to other methods
  - accurate assessment of fetal heart rate, rhythm, and variability
- Typically used during high-risk pregnancies or during labor and delivery
  - detects potential problems



#### **Challenges in FECG Monitoring**

- Mixed with Maternal ECG signals and other noise sources
- Distinct morphological differences between FECG and Maternal ECG (MECG) signals:
  - FECG's smaller amplitude and wider cardiac cycle are the major morphology differences
  - Difficult to discern FECG in presence of larger and narrower cardiac cycle MECG
- Accurately analyzing raw FECG signals becomes a challenge due to these difficulties.
- Therefore, it is necessary to develop a method that can separate the FECG signals effectively



#### **FECG Separation for Cardiac MRI**

- A good separation of FECG signals improves the isolation of fetal cardiac features
- Can be used to accurately predict heartbeat's timing
- This assists medical imaging techniques like cardiac MRI
- Helps to synchronize the MRI sample with the fetal heartbeat



#### **Techniques for extracting FECG signals**

- There are several techniques in the literature for extracting FECG signals
- Within them are:
  - Wavelet Transform
  - Matched Filtering
  - Correlation Techniques
  - Blind Source Separation (BSS)
- Among them, BSS tends to perform better than most of the other signal processing techniques



#### **BSS**

- Used to separate mixed signals into their individual components
- Can be achieved through various methods, such as:
  - Independent Component Analysis (ICA)
  - non-negative matrix factorization (NMF)
  - o machine learning algorithms like neural networks
- Implementing by NN can help to learn the mapping between mixed signals and individual source signals

#### **BSS in Recent Studies**

- Recent works, however, still struggle to achieve accurate, high-quality BSS for FECG separation
- As a result some fetal cardiac conditions remain undetected until birth
- These conditions require further analysis after birth using tools like echocardiography or MRI

#### **Proposed Method:**

Hybrid training - Simulated data pre-training before real-world data training

Proposed Method: Simulated data pre-training before real-world data training

#### Motivation for the Proposed Method:

- As seen, achieving accurate and high-quality BSS for extracting FECG signals is challenging.
- A major factor for this challenge is the limited availability of real-world ECG data from pregnant women.
- The amount of available data is limited due to several reasons, including:
  - ethical considerations
  - low quality of real data
  - high diversity of real data
- As a result, obtaining diverse and representative training data is difficult
- This limits the performance of machine learning models and their prediction accuracy.

Proposed Method: Simulated data pre-training before real-world data training

#### Concept:

- To address this challenge we propose using a synthetic dataset of pregnant women's ECG signals
- This dataset is created using a designated simulator
- It will be used to pre-train our model before training on real ECG data.
- Hence, the training process will be divided into two phases:
  - 1. <u>Model pre-training on synthetic data:</u>
    - The model will initially learn how to extract FECG signals based on this data
    - Synthetic data can be generate as much as needed
    - Thus, the issue of limited data can be mitigated
  - 2. <u>Model fine-tune training real-world ECG data</u>
    - Continue to train this pre-trained model on real-world ECG data
    - This improves its ability to extract fetal ECG signals from real-world data.

**Learning Paradigms** 



#### **Learning Paradigms:**

#### Pre-training phase: Supervised learning

- In this phase, the model is trained on synthetic data
- Data is generated by combining MECG and FECG signals
- It allows us to use supervised learning, as we have labels for both MECG and FECG signals

#### Fine-tune training phase: Self-supervised learning

- In pregnant women's ECG tests, one electrode is sometimes placed on the mother's chest
- This produces a thoracic ECG (TECG) signal
- Meaning, we can obtain the mother's real ECG signal in addition to the mixed signal
- Thus, we can learn in a self-supervised manner its label

**Network Architecture** 

# **Our Method Network Architecture**

#### **Network Architecture:**

- Our network is based on ResNet architecture
- Inpununt Signals
  - o abdominal ECG (AECG) & thoracic ECG (TECG)
  - o divided into windows of 1024 samples
  - o fed into the ResNet encoder



## **Our Method Network Architecture**

#### **Network Architecture:**

- ResNet Encoder
  - composed of 14 ResNet basic blocks
  - extracts deep features from both maternal and fetal ECG signals
  - o resulting in a 2048-channel latent variable vector
- Disentangled Representation
  - used to separate maternal and fetal features
  - o maternal features in the first half of the vector
  - fetal features in the second half



# **Our Method Network Architecture**

#### **Network Architecture:**

- Two ResNet Decoders (Maternal & Fetal)
  - fed with the separated maternal and fetal features
  - each composed of 14 ResNet basic blocks
  - o reconstruct maternal and fetal ECG signals separately
- The output of the maternal decoder is added to the TECG input signal
- This allows the ResNet-based network to learn the difference between TECG and the maternal part in AECG



**Model Training** 

**Model Training** 

First Training Phase: Model Pre-Training on Simulated Data

Model Training
First Training Phase: Model Pre-Training on
Simulated Data

#### **Simulated AECG Input Signal**

- Since data is simulated, MECG and FECG labels are available
- Simulated AECG signal is created by combining them

#### **Simulated TECG Input Signal**

- Should be slightly different from the MECG label provided by the simulator
- This is necessary to ensure the model handles differences between the maternal part of AECG and TECG
- This is also necessary to prevent the model from being limited to learning <u>only</u> subtraction between input signals
- Thus, simulated TECG signal is created by one of the following:
  - adding noise to the MECG label
  - shifting it by a period or two

Model Training
First Training Phase: Model Pre-Training on
Simulated Data

#### **Training Process**

- While model is trained, it produces MECG and FECG outputs
- Both are compared to their labels using an L1 loss function
- Model is validated using validation set to:
  - adjust hyperparameters
  - provide unbiased evaluation of performance on training set
- Model is tested using test set to provide unbiased evaluation of performance on training set

#### **Saving Best Model**

- During this phase, parameters of the best model saved for using later at the second phase:
  - there, the best model will be used to fine-tune the training on real-world data
- best model chosen based on average correlation between outputs and corresponding labels

**Model Training** 

Second Training Phase: Model Fine-Tune Training on Real-World Data

Model Training Second Training Phase: Model Fine-Tune Training on Real-World Data

#### **Training Process**

- Now, we take the best model from the first phase
- We continue training it to fit a specific pair of real-world ECG signals, AECG and TECG
- This pair was taken from a particular pregnant woman

#### Parameters' Adjustment During Model Training

- "Freeze" the parameters of the FECG Decoder
  - By keeping their values fixed, as taken from the best model from the first phase
- Update remaining parameters using only maternal part:
  - by comparing the final reconstructed MECG signal to the TECG signal
  - o done using an L1 loss function
- This process is self-supervised, as explicit labels are not available

## Results



Results were separated for:

- .. Inference results on Simulated Data
- 2. Inference results on Real-World ECG Data

## Results

Simulated ECG Data

## Results Simulated ECG Data



An example of FECG and MECG extracted from <u>synthetic</u> signals; We can see a very high correlation between the model output signals, the extracted *FECG* and *MECG* (2<sup>nd</sup> and 4<sup>th</sup> rows, respectively), and their respective label signals (3<sup>rd</sup> and 5<sup>th</sup> rows). The model has some difficulties to be precise the signals' amplitudes.



Another example of FECG and MECG extracted from <u>synthetic</u> signals; Although the input signal *ECG* in this example is more noisy than the one before, we can still see a very high correlation between the model output signals and their respective label signals.

## Results

**Real-World ECG Data** 



An example of FECG and MECG extracted from <u>real-world</u> signals; By comparing *AECG(in)* and *FECG(out)* signals (last two rows), we can see that our model succeeded to reconstruct time positions and the majority of the PQRST morphology features of the FECG signal.



addition to a successful reconstruction of time positions and PQRST morphology, as before, our model was also able to process a FECG signal with relatively small amplitudes, rather than treating it as a noise. And vice versa, meaning, no noises from the input signal were added to the extracted FECG signal.

## **Conclusions**



- This project proposes a deep learning-based approach to separate FECG signals from MECG signals
- Consists of a two-step self-supervised training process
- Results show the model is effective in separating FECG signals from MECG signals for real ECG data
- It succeeded in FECG reconstruction of most cardiac features
- Among them, an accurate prediction of heartbeat's time positions
- Which is the most important aspect of our project

## **Further Steps**



- One potential future direction for this work is to develop an "end-to-end" system
- Such system can perform real-time separation of FECG signals
- It would refine the pre-trained model during the process of recording the fetal ECG signal
- Instead of a posteriori, after the recording is complete
- As a result, the process will be more efficient and streamlined

## **Questions?**

## **Questions?**