CSC311 – Spring 2017 Designand Analysis of Algorithms 2. Growth of Functions

(Chap. 3 – Introduction to Algorithms (3rd edition) by Cormen, Leiserson, Rivest & Stein)

Prof. Mohamed Menai
Department of Computer Science
King Saud University

Outline

- Asymptotic notation
- The *O*-notation
- The Θ-notation
- The Ω -notation
- The *o*-notation
- The ω -notation

Overview

- Order of growth of functions provides a simple characterization of efficiency
- Allows for comparison of relative performance between alternative algorithms
- Concerned with *asymptotic* efficiency of algorithms
- Best asymptotic efficiency usually is best choice except for smaller inputs
- Several standard methods to simplify asymptotic analysis of algorithms

1

Asymptotic Notation

- Applies to functions whose domains are the set of natural numbers N = {0,1,2,...}
- If time resource T(n) is being analyzed, the function's range is usually the set of nonnegative real numbers: $T(n) \in \mathbb{R}^+$
- If space resource S(n) is being analyzed, the function's range is usually also the set of natural numbers: $S(n) \in \mathbb{N}$

The *O*-Notation

- The *O*-notation is an asymptotic upper bound.
- f(n) = O(g(n)) pronounced "f of n is big-oh of g of n":

$$O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that}$$

 $\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

5

The *O*-Notation

$$O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that}$$

 $\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

Using the Definition of the *O*-Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$. Solution: Since when x > 1, $x < x^2$ and $1 < x^2$

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

- Can take c = 4 and $n_0 = 1$ as witnesses to show that f(x) is $O(x^2)$
- Alternatively, when x > 2, we have $2x \le x^2$ and $1 < x^2$. Hence, $0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$ when x > 2.
 - Can take c = 3 and $n_0 = 2$ as witnesses instead.

7

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.
 - See next slide for proof
- If $f_1(x)$ and $f_2(x)$ are both O(g(x)) then $(f_1 + f_2)(x)$ is O(g(x)).
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.
- $f(n) = O(g(n)) \Rightarrow f(n) + g(n) = O(g(n))$

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$.
 - By the definition of *O*-notation, there are constants c_1, c_2, k_1, k_2 such that $f_1(x) \le c_1 \cdot g_1(x)$ when $x > k_1$ and $f_2(x) \le c_2 \cdot g_2(x)$ when $x > k_2$.
 - $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
 - $f_1(x) + f_2(x) \le c_1 \cdot g_1(x) + c_2 \cdot g_2(x) \le c_1 \cdot g(x) + c_2 \cdot g(x)$

where $g(x) = \max(g_1(x), g_2(x))$

 $= (c_1 + c_2).g(x)$

= c.g(x) where $c = c_1 + c_2$

- Therefore $(f_1 + f_2)(x) \le c \cdot g(x)$ whenever x > k, where $k = \max(k_1, k_2)$

9

The Θ-Notation

- The Θ -notation is an asymptotically tight bound on f(n).
- Θ -notation is a stronger notion than O-notation. $\Theta(g(n))$ is a sub-set of O(g(n))

The Θ-Notation

- $\Theta(g(n))$ is the set of functions: $\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 > 0, n_0 > 0 \text{ so that } \forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$
- A function f(n) belongs to the set $\Theta(g(n))$ if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1 \cdot g(n)$ and $c_2 \cdot g(n)$, for sufficiently large n.
- Notation: $f(n) = \Theta(g(n))$ even if f(n) is a member of $\Theta(g(n))$.

11

The Θ-Notation

 $f(n) = \Theta(g(n))$: g(n) asymptotically bounds a function from above and below.

The Θ-Notation Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then f(x) is of order x^n (or $\Theta(x^n)$).

Example:

The polynomial $f(x) = 8x^5 + 5x^2 + 10$ is order of x^5 (or $\Theta(x^5)$).

The polynomial $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is order of x^{199} (or $\Theta(x^{199})$).

13

The Ω -Notation

- The *O*-notation provides an asymptotic upper bound on a function.
- The Ω -notation provides an asymptotic lower bound on a function.
- $f(n) = \Omega(g(n))$ pronounced "f of n is bigomega of g of n":

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that}$$

$$\forall n \ge n_0 : f(n) \ge c \cdot g(n) \ge 0 \}$$

The Ω -Notation

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that}$$

 $\forall n \ge n_0 : f(n) \ge c \cdot g(n) \ge 0 \}$

15

The Ω -Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$

Solution: $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$ for all positive real numbers x.

Is it also the case that $g(x) = x^3$ is $O(8x^3 + 5x^2 + 7)$?

Theorem

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

17

Example

Show that the sum of the first n positive integers is $\Theta(n^2)$. **Solution**: Let $f(n) = 1 + 2 + \cdots + n$.

- We easily show that f(n) is $O(n^2)$.
- To show that f(n) is $\Omega(n^2)$, we need a positive constant c such that $f(n) > cn^2$ for sufficiently large n. Summing only the terms greater than n/2 we obtain the inequality

$$1 + 2 + \dots + n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \dots + n$$

$$\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \dots + \lceil n/2 \rceil$$

$$= (n - \lceil n/2 \rceil + 1) \lceil n/2 \rceil$$

$$\ge (n/2)(n/2) = n^2/4$$

- Taking $c = \frac{1}{4}$, $f(n) > cn^2$ for all positive integers n. Hence, f(n) is $\Omega(n^2)$, and we can conclude that f(n) is $\Theta(n^2)$.

The *o*-Notation

- The asymptotic upper bound provided by the *O*-notation may or may not be asymptotically tight:
 - The bound $2n^2 = O(n^2)$ is asymptotically tight.
 - The bound $2n = O(n^2)$ is not.
- The *o*-notation is used to denote an upper bound that is not asymptotically tight.
 - f(n) = o(g(n)) pronounced "f of n is little-oh of g of n": $o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \text{ so that } \forall n \ge n_0 : 0 \le f(n) \le c : g(n) \}$
- For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$

10

The o-Notation

$$o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \text{ so that}$$

$$\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

- In f(n) = O(g(n)), the bound $f(n) \le c \cdot g(n)$ holds for some constant c > 0.
- In f(n) = o(g(n)), the bound $f(n) \le c \cdot g(n)$ holds for all constants c > 0.
- Intuitively, the function f(n) becomes insignificant relative to g(n), as n approaches infinity: $\lim_{n \to \infty} \frac{f(n)}{n} = 0$

The o-Notation

 $o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \text{ so that}$ $\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

21

The ω-Notation

- The ω -notation is to Ω -notation, as the α -notation is to Ω -notation.
- The ω-notation is used to denote a lower bound that is not asymptotically tight.
- $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$
- pronounced "f of n is little-omega of g of n".
- $f(n) \in \omega(g(n))$ implies that: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

The ω-Notation

 $\omega(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \text{ so that}$ $\forall n \ge n_0 : f(n) \ge c \cdot g(n) \ge 0 \}$

23

Running Times

- "Running time is O(f(n))" \Rightarrow Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time \Rightarrow O(f(n)) bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time $\not \Rightarrow$ $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$

Comparison of Functions

Transitivity

- f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

Reflexivity

• f(n) = O(f(n)) $f(n) = \Omega(f(n))$ $f(n) = \Theta(f(n))$

20

Comparison of Functions

Symmetry

• $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

Transpose Symmetry

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$

Asymptotic Analysis and Limits

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = o(g(n))$.
if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$, for some constant $c > 0$, then $f(n) = \Theta(g(n))$.

if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $a^{f(n)} = o(a^{g(n)})$, for any $a > 1$.

$$f(n) = o(g(n)) \Rightarrow a^{f(n)} = o(a^{g(n)})$$
, for any $a > 1$.

$$f(n) = \Theta(g(n)) \not\Rightarrow a^{f(n)} = \Theta(a^{g(n)})$$

31

Standard Notation and Common Functions

- Important relationships
 - For all real constants a and b such that a > 1, $n^b = o(a^n)$

that is, any exponential function with a base strictly greater than unity grows faster than any polynomial function.

- For all real constants a and b such that a > 0, $\log^b n = o(n^a)$

that is, any positive polynomial function grows faster than any polylogarithmic function.

Standard Notation and Common Functions

- Factorials
 - For all *n* the function n! or "*n* factorial" is given by $n! = n \times (n-1) \times (n-2) \times (n-3) \times ... \times 2 \times 1$
 - It can be established that $n! = o(n^n)$ $n! = \omega(2^n)$ $\log(n!) = \Theta(n \log n)$

3

Asymptotic Running Time of Algorithms

 We consider algorithm A better than algorithm B if:

$$T_{\Delta}(n) = o(T_{R}(n))$$

- Why is it acceptable to ignore the behavior of algorithms for small inputs?
- Why is it acceptable to ignore the constants?
- What do we gain by using asymptotic notation?

Things to Remember

- Asymptotic analysis studies how the values of functions compare as their arguments grow without bounds.
- Ignores constants and the behavior of the function for small arguments.
- Acceptable because all algorithms are fast for small inputs and growth of running time is more important than constant factors.

35

Things to Remember

• Ignoring the usually unimportant details, we obtain a representation that succinctly describes the growth of a function as its argument grows and thus allows us to make comparisons between algorithms in terms of their efficiency.

Reading

Chapter 3

Cormen, Leiserson, Rivest, & Stein, Introduction to Algorithms (Third Edition), The MIT Press, 2009.