Discrete Mathematics (MAIR-24)

Unit-1: Discrete Probability
Topic covered- Set theory

BASIC CONCEPTS

- Set
- Set of sets
- Subset and Superset
- Properties of sets
- Power set
- Equal sets
- Union of sets
- Intersection of sets
- Venn Diagram

Reference- Elements of Discrete Mathematics - C. L. Liu.

SET

A **set** is a collection of well defined objects, or distinct objects. The objects in the set are also called as the members/elements of the set. For example,

- Set of all even numbers between 1 and 9 is $A = \{2,4,6,8\}.$
- Set of vowels V={a, e, i, o, u}
- Set of all odd numbers O={...-3,-1,1,3,5,...}
- Set of all natural numbers N={1,2,3,...}.

SET OF SETS

A **set of sets** is a set whose elements are itself sets. For example,

A={a, b}, B={a, b, c, {a, b}}, C= {{a}, {b}, {a, b, c, {a, b}}, {a, b}}, and C= {{a}, {b}, B, A}. Here C is the set of sets.

In addition, if $D = \{\{a, b\}\}, E = \{\{\{a, b\}\}\}\}, then$

- A∈B, A∈C, A∈C
- •A∉E, A∈D, D∈E.

SUBSET and SUPERSET

A **subset** of a set is the set having all the elements belonging to the set. For example,

- $A=\{1,2,3,4\}$, $B=\{1,3,4\}$ then $B\subseteq A$. Here B is a proper subset of A (containing less elements than A), and we write $B\subset A$.
- Then A is called the **superset** of B and $A \supseteq B$. For proper superset we write $A \supset B$.
- A={a, b, c} B={b, c}, C={a, b} D={a, b, d}
 then B⊆A, C⊆A, C⊆D, C⊈B, B⊈D.

Properties of SETS

- The empty set (null set or void set) denoted by $\{\}$ or Φ contains no elements. For example, the set of all positive even numbers less than 2.
- Empty set is the subset of every set, i.e. Φ ⊆A.
- •Every set is a subset of itself, i.e. $A\subseteq A$.
- For every set A, there are only two improper subsets, namely, A and Φ, rest of all subsets are proper.

POWER SET

The power set of a set A, denoted $\mathcal{P}(A)$, is the set that contains exactly all the subsets of A. Thus $\mathcal{P}(\{a,b\}) = \{\{\}\}, \{a\}, \{b\}, \{a,b\}\}, \text{ and } \mathcal{P}(\{\}\}) = \{\{\}\}\}$. Note that for any set $A, \{\} \in \mathcal{P}(A)$ as well as $\{\} \subseteq \mathcal{P}(A)$. For example, let $A = \{\text{novel}, \text{published-in-1975}, \text{paperback}\}$ be the three attributes concerning the books in the library in which we are interested. Then $\mathcal{P}(A)$ is the set of all possible combinations of these attributes the books might possess, ranging from books that have none of these attributes [the empty set in $\mathcal{P}(A)$] to books that have all three of these attributes [the set A in $\mathcal{P}(A)$].

EQUAL SETS

Two sets P and Q are said to be equal if they contain the same collection of elements. For example, the two sets

$$P = \{x | x \text{ is an even positive integer not larger than } 10\}$$

$$Q = \{x | x = y + z \text{ where } y \in \{1, 3, 5\}, z \in \{1, 3, 5\}\}$$

are equal. In a seemingly roundabout way, we can also say that two sets P and Q are equal if P is a subset of Q, and Q is a subset of P. We shall see later that on some occasions this is a convenient way to define the equality of two sets.

UNION OF SETS

The union of two sets P and Q denoted by $P \cup Q$ is the set containing all the elements that are either in P or Q, For example,

$$\{a, b\} \cup \{c, d\} = \{a, b, c, d\}$$

$$\{a, b\} \cup \{a, c\} = \{a, b, c\}$$

$$\{a, b\} \cup \phi = \{a, b\}$$

$$\{a, b\} \cup \{\{a, b\}\} = \{a, b, \{a, b\}\}$$

INTERSECTION OF SETS

The intersection of two sets P and Q denoted by $P \cap Q$ is the set containing all the elements that are both in P and in Q. For example,

$$\{a, b\} \cap \{a, c\} = \{a\}$$

$$\{a, b\} \cap \{c, d\} = \phi^{\dagger}$$

$$\{a, b\} \cap \phi = \phi$$

† Two sets are said to be disjoint if their intersection is the empty set.

DIFFERENCE OF SETS

The difference of two sets P and Q, denoted P - Q, is the set containing exactly those elements in P that are not in Q. For example,

$${a, b, c} - {a} = {b, c}$$

 ${a, b, c} - {a, d} = {b, c}$
 ${a, b, c} - {d, e} = {a, b, c}$

The difference of two sets P and Q denoted by P-Q is also called the *complement* of the set Q with respect to P. For example,

P= set of the students who appeared in an examination Q= set of the students who passed in that examination P-Q= set of the students who failed in that examination.

SYMMETRIC DIFFERENCE OF SETS

The symmetric difference of two sets P and Q, denoted $P \oplus Q$, is the set containing exactly all the elements that are in P or in Q but not in both. In other words, $P \oplus Q$ is the set $(P \cup Q) - (P \cap Q)$. For example,

$$\{a, b\} \oplus \{a, c\} = \{b, c\}$$
$$\{a, b\} \oplus \phi = \{a, b\}$$
$$\{a, b\} \oplus \{a, b\} = \phi$$

*Example-SYMMETRIC DIFFERENCE

If we let P denote the set of cars that have defective steering mechanisms and Q denote the set of cars that have defective transmission systems, then $P \oplus Q$ is the set of cars that have one but not both of these defects. Suppose that a student will get an A in a course if she did well in both quizzes, will get a B if she did well in one of the two quizzes, and will get a C if she did poorly in both quizzes. Let P be the set of students who did well in the first quiz and Q be the set of students who did well in the second quiz. Then $P \cap Q$ is the set of students who will get A's, $P \oplus Q$ is the set of students who will get B's, and $S - (P \cup Q)$ is the set of students who will get C's, where S is the set of all students in the course. We define $P_1 \oplus P_2 \oplus \cdots \oplus P_k$ to be the set of elements that are in an odd number of the sets P_1, P_2, \ldots, P_k .

Union, Intersection, Difference and symmetric difference using Venn Diagram

Thank You.