Programação Linear - IME/UERJ Lista de Exercícios Extra nº 3 Situações que podem ocorrer no Método Simplex

1. (Solução básica viável inexistente) Resolva pelo Método das Duas Fases

min
$$z = -3x_1 + 4x_2$$

s.a. $x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \ge 18$
 $x_1, x_2 \ge 0$

2. (Problema ilimitado) Resolva pelo Método Simplex

min
$$z = -x_1 - 3x_2$$

s.a. $x_1 - 2x_2 \le 4$
 $-x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

3. (Múltiplas soluções ótimas) Resolva pelo Método Simplex

$$\min z = -2x_1 - 4x_2$$
s.a.
$$x_1 + 2x_2 + x_3 = 4$$

$$-x_1 + x_2 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Obs.: Neste exercício, quando há uma solução ótima alternativa, definimos a solução ótima geral como

$$\alpha X_a + (1 - \alpha)X_b \quad , \quad 0 \le \alpha \le 1,$$

onde $X_a = \begin{bmatrix} x_{1a} & x_{2a} & x_{3a} & x_{4a} \end{bmatrix}^T$ é a primeira solução ótima encontrada pelo método Simplex e $X_b = \begin{bmatrix} x_{1b} & x_{2b} & x_{3b} & x_{4b} \end{bmatrix}^T$ é a solução ótima alternativa quando a variável não básica x_j com $z_j - c_j = 0$ entra na base no tableau final do Simplex.

4. Seja um PPL dado por:

$$\max z = 11x_1 + 2x_2 - x_3 + 3x_4 + 4x_5 + x_6$$
s.a.
$$5x_1 + x_2 - x_3 + 2x_4 + x_5 = 12$$

$$-14x_1 - 3x_2 + 3x_3 - 5x_4 + x_6 = 2$$

$$2x_1 + 0.5x_2 - 0.5x_3 + 0.5x_4 \leq 2.5$$

$$3x_1 + 0.5x_2 + 0.5x_3 + 1.5x_4 \leq 3$$

$$x_1 + 0.5x_2 + 0.5x_3 + 1.5x_4 \leq 3$$

- (a) Encontre uma solução ótima pelo método Simplex.
- (b) Existe uma solução ótima alternativa para o problema? Justifique.
- 5. Os tableaus abaixo representam soluções ótimas para a Fase I de dois PPLs com a mesma função objetiva (F.O.): $\min z = -2x_1 x_2 + x_3$, mas com diferentes conjuntos de restrições. As variáveis x_5 e x_6 são variáveis artificiais.

Em cada caso, caracterize o PPL original como inviável, ilimitado ou possuindo solução ótima. Quando for o último caso, explicite a solução.

Obs.: x_1^B e x_2^B representam as variáveis básicas que você terá que deduzir quais são do conjunto $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ através da análise do tableau.

(a)

	z^a	x_1	x_2	x_3	x_4	x_5	x_6	
								$0 = \bar{z}^a$
x_1^B	0	0	1	1	-1	-1	1	4 8
x_2^B	0	1	-1	0	-2	1	1	8

(b)

(c)

(d)

	z^a	x_1	x_2	x_3	x_4	x_5	x_6	
	l							$-2 = \bar{z}^a$
x_1^B	0	0	-1	-1	-2	1	-1	2 2
x_2^B	0	1	0	0	1	0	1	2