LTL Model Checking

Problem 2. Consider the following transition system, $\mathcal{M} = (S, \to, L)$, where

- $S = \{0, 1\}$ is the set of states,
- $I = \{0\}$ is the set of initial states,
- $\rightarrow = \{(0,0), (0,1), (1,0)\}$ defines the transition relation,
- $AP = \{p, q\}$ is the set of atomic propositions, and
- $L: S \to 2^{AP}$ is the labeling function where $L(0) = \{p, q\}$ and $L(1) = \{p\}$.

Check the property always, if p holds, then in the next state q holds, which can be written in LTL as a formula ϕ , where $\phi = G(p \to X q)$, by performing the following:

- a. Convert $\neg \phi$ to a transition system using the online tool located at http://www.lsv.fr/~gastin/ltl2ba/index.php
- b. Draw the transition system for $\neg \phi$ as a Büchi Automaton $A_{\neg \phi}$ as described in class, where transitions are labeled with subsets of the atomic propositions AP.
- c. Draw the transition diagram for \mathcal{M} .
- d. Convert the transition diagram \mathcal{M} into a Büchi Automaton $A_{\mathcal{M}}$ by adding the extra initial state and putting the labels, as subsets of AP, on the appropriate transitions.
- e. Construct the product automaton $A_{\mathcal{M}} \times A_{\neg \phi}$.
- f. Determine if there is an infinite path in the product automaton that visits an accepting state infinitely often. If so, give an example of this path, and in addition, give a path in the original transition system \mathcal{M} that corresponds to this counter example. If there is no such accepting path in the product automaton, simply state this fact.