Types of Multilevel Models

Multilevel Models & Timeseries Modeling

Types of Multilevel Models

Variable Intercept Models Useful with Group Level Predictors

$$y_i = \alpha_{j[i]} + \beta_i x_i + \epsilon_{ij}$$

$$\alpha_{j[i]} \sim N(\mu_{\alpha} + x_j, \sigma_{\alpha}^2)$$

$$\epsilon_{ij} \sim N(0, \sigma^2)$$

where i = individual sample, j = group

Each Site has a Unique Exposure - How does it Affect Species Richness?

Each Site has a Unique Exposure - How does it Affect Species Richness?

Data from Zuur et al. 2009

A Variable Intercept Model for Wave Exposure

Plot Fit Using Extracted Components

Plot Fit Using Extracted Components

Plot Fit Using Extracted Components

Plotting is a Wee Bit Tricksy...

Variable Slope-Intercept Model with No Group Level Predictors

$$y_i = \alpha_{j[i]} + \beta_{[j]i}X + \epsilon_{ij}$$

$$\begin{pmatrix} \alpha_{[i]j} \\ \beta_{[i]j} \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix}, \begin{pmatrix} \sigma_{\alpha}^2 & \rho \sigma_{\alpha} \sigma_{\beta} \\ \rho \sigma_{\alpha} \sigma_{\beta} & \sigma_{\beta}^2 \end{pmatrix} \right)$$

General Protocol for Model Fitting

Variable slope? Intercept? Slope-Intercept? Why do I evaluate Fixed Effects?

- 1. Start with model with all fixed and random effects that may be important. Evaluate with diagnostics.
- 2. Evaluate random effects with full model of fixed effects (AIC, χ^2)
- 3. Evaluate fixed effects with reduced random effects (F Tests)
- 4. Model diagnostics again...
- 5. Draw inference from model

How Important is Tide Height?

Three Models with Different Random Effects

Does Slope Vary Randomly?

```
ranef(varSlope)

# NAP

# 1 -4.921e-10

# 2 2.659e-09

# 3 2.901e-09

# 4 -3.136e-10

# 5 -7.361e-09

# 6 5.445e-09

# 7 -4.260e-09

# 8 2.708e-09

# 9 -1.288e-09
```

SD in Variable Slope Model is Small

```
summary(varSlope)
....
# Random effects:
# Formula: ~0 + NAP | Beach
# NAP Residual
# StdDev: 0.0001139   4.16
#
....
```

Evaluation of Different Random Effects Models

```
anova(varSlope, varSlopeInt)
            Model df AIC BIC logLik Test L.Ratio
# varSlope 1 4 260.2 267.2 -126.1
# varSlopeInt 2 6 244.4 254.9 -116.2 1 vs 2 19.82
#
            p-value
# varSlope
# varSlopeInt <.0001
anova(varSlopeInt, varInt)
            Model df AIC BIC logLik Test L.Ratio
# varSlopeInt 1 6 244.4 254.9 -116.2
# varInt
                2 4 247.5 254.5 -119.7 1 vs 2 7.096
            p-value
# varSlopeInt
# varInt
             0.0288
```

Evaluation of Fixed Effects

Final Model

Exercise: RIKZ Tide Height and Shoreline Angle

- Evaluate the effect of angle1 (sample angle) & NAP on Richness
- Note: You already know the slope of the NAP relationship doesn't vary randomly
- ► Check for a NAP*angle1 interaction

nlme versus lme4

- nlme can work like nls for flexible nonlinear specification
- nlme can accomodate specified correlation structures
- ▶ Imer can fit more complex models
- ► Imer can fit Generalized Linear Mixed Models (GLMM)

Imer for a GLMM

```
library(lme4)
angI_lmer <- lmer(Richness ~ angle1*NAP + (1 | Beach),
                 data=rikz, family=poisson(link="log"))
Anova(angI_lmer)
# Analysis of Deviance Table (Type II Wald chisquare tests)
#
# Response: Richness
            Chisq Df Pr(>Chisq)
# angle1 2.60 1 0.107
# NAP 41.36 1 1.3e-10
# angle1:NAP 4.95 1 0.026
#nestNest
data(Oats)
Oats$nitro <- ordered(Oats$nitro)</pre>
```

200

Modeling Error Structures with Generalized Least Squares

$$Y = \beta X + \epsilon$$

Mixed models can handle clustered data, but what about other violations assumptions about ϵ ?

- 1) Error variance is not constant
- 2) Error is temporally or spatially autocorrelated

Modeling Error Structures with Generalized Least Squares

$$Y = \beta X + \epsilon$$

Mixed models can handle clustered data, but what about other violations assumptions about ϵ ?

- 1) Error variance is not constant
- 2) Error is temporally or spatially autocorrelated

Generalized Least Squares - (of which OLS is a special case)

What's in that Epsilon?

$$\epsilon \sim N(0, \sigma^2)$$

What's in that Epsilon?

$$\epsilon \sim N(0, \sigma^2)$$

$$\epsilon \sim N \left(0, \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix} \right)$$

What if $sigma^2$ is not Constant?

$$\epsilon \sim N \left(0, \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix} \right)$$

for n=3

Commonly, we weight by 1/SD of a response variable when we know something about measurement precision. E.g. in R $lm(y\sim x$, weight=1/sd(y)). Other options include modeling σ^2 explicitly as a response. In R we use varFixed or other functions in conjunction with the weights argument with gls or lme.

What if the off diagonals are not 0?

$$\epsilon \sim N \left(0, \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix} \right)$$

- ► Temporal or Physical distance between sampling points can induce correlation between data points.
- ▶ If we have measured EVERY relevant variable, we may account for this, but not always.

Enter Repeated Measures & Time Series

Data from Zuur et al. 2009

If this was Just Repeated Measures...

```
allbirds_repeated <- lme(Birds ~ Rainfall, random= ~1|Site, data=allbirds)
```

No temporal autocorrelation. No effect of time. Assumes variation in time is purely random.

But, We Want to Look for a Temporal Trend

Note: Time could have had a nonlinear effect, could have interacted with Rainfall, and could have been a factor if we didn't want to assume a functional form to the time effect.

Temporal Autocorrelation in the Residuals

Need to examine $cor(X, X_t - \tau)$ to be certain.

Autocorrelation of Residuals

acf(residuals(allbirds_lme))

Series residuals(allbirds_lme)

We Must Incorporate Autcorrelation into ϵ

$$cor(\epsilon) \sim N \left(0, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$$

Alternatives?

We Must Incorporate Autcorrelation into ϵ

$$cor(\epsilon) \sim N \left(0, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$$

Alternatives?

$$\epsilon \sim N \left(0, \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix} \right)$$

Compound Symmetric Structure - often too simple

Autoregressive Error Structure - AR1

$$\epsilon_t = \rho \epsilon_{t-1} + \zeta_t$$

which produces

$$\epsilon \sim N \left(0, \begin{pmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{pmatrix} \right)$$

for n=3 time steps Other structures as well (AutoRegressive Moving Average, etc.)

Implementing an AR1 Structure with the Birds Time Series

Does AR1 Improve Fit?

But - SS of Predictors Decreased

Predictions Capture Major Trend...

 $\# [1] \ "R^2 = 1 - RSS/TSS = 0.47"$

Predictions Capture Major Trend...

```
allbirds$fit <- predict(allbirds_lme_ar)
birdPlot + geom_line(color="red", data=allbirds, mapping=aes(y=fit))
r2 <- 1-sum(residuals(allbirds_lme_ar)^2)/sum((allbirds$Birds - mean(allpaste("R^2 = 1 - RSS/TSS = ",round(r2,2), sep="")</pre>
```

Exercise: Model DIN, DIP, or CHLFa in the Plankton Data Set

How well can you model the time series with the measurements at hand? Data extrapolated from Zuur et al. 2009

Example: DIN T + SAL + Year

Variable Slope Intercept Model

```
anova(plankLME_nocorr, plankLME)
                Model df AIC BIC logLik Test L.Ratio
# plankLME_nocorr 1 6 3654 3679 -1821
# plankLME
               2 7 3546 3575 -1766 1 vs 2 109.2
#
              p-value
# plankLME_nocorr
# plankLME <.0001</pre>
anova(plankLME, plankLME_IS)
            Model df AIC BIC logLik Test L.Ratio
# plankLME 1 7 3546 3575 -1766
# plankLME_IS 2 9 3532 3569 -1757 1 vs 2 18.6
            p-value
# plankLME
# plankLME_IS 1e-04
```

4□ > 4□ > 4 = > 4 = > = 90

All Predictors Important

```
summary(plankLME_IS)
# Correlation Structure: ARMA(1,0)
# Formula: "Year | Station
# Parameter estimate(s):
# Phi1
# 0.615
# Fixed effects: DIN ~ Year + SAL + T
             Value Std.Error DF t-value p-value
# (Intercept) 1504.3 353.6 438 4.254
                                        0e+00
# Year
           -0.6 0.2 438 -3.554 4e-04
# SAT.
             -6.3 0.4 438 -16.747 0e+00
             -2.4 0.5 438 -5.089 0e+00
# T
```

All Predictors Important

