Amplificatori operazionali con reazione

1 Introduzione

1.1 Scopo dell'esercitazione

Gli obiettivi di questa esercitazione sono:

- o Analizzare il comportamento di amplificatori operazionali (AO) reazionati
- o Misurare i parametri di amplificatori realizzati con AO
- o Verificare alcune deviazioni rispetto a quanto prevedibile con il modello di AO ideale

Come per l'esercitazione precedente è previsto il confronto tra i risultati di calcoli e le misure. In questo caso alcuni dei comportamenti rilevati sperimentalmente mettono in evidenza i limiti dei modelli semplificati utilizzati nelle lezioni.

Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera.

1.2 Moduli e strumenti da utilizzare

I circuiti richiesti sono premontati; durante l'esercitazione devono solo essere collegati gli strumenti sui punti di misura (alimentatore, generatore di segnale all'ingresso e oscilloscopio). Viene utilizzato solo il modulo A3 (AMPLIFICATORI); si veda a pagina 9 lo schema dettagliato del modulo.

Note

In questa guida gli spazi predisposti per i risultati delle misure sono presenti solo nel modulo finale per la relazione.

Per alcune misure occorre cambiare la componente continua del segnale di ingresso. Utilizzare nei generatori di segnale il comando "offset".

Alimentare i circuiti con tensioni di +12 V e -12 V.

Rivedere le avvertenze sull'uso degli alimentatori della esercitazione precedente.

1.3 Esecuzione delle misure

Per ciascuna misura viene utilizzato uno dei circuiti premontati sul modulo sperimentale, predisposto secondo la configurazione indicata.

In questa guida non viene indicato il collegamento degli strumenti; utilizzare quello visto per l'esercitazione precedente, con le varianti richieste (in alcuni casi sono richieste misure su nodi interni, anziché sui soli morsetti di ingresso/uscita).

Amplificatori operazionali con reazione

2 Misure

2.1 Amplificatore non invertente

2.1.1 Predisposizione del modulo

Utilizzare il modulo A3-1, e configurarlo come indicato nella tabella interruttori. Nel seguito (Figura 1) il termine "amplificatore" indica il circuito completo (parte entro il quadro tratteggiato).

Tabella interruttori

Interruttore	Posizione sulla basetta	Note
S1	1	aperto
S2	2	chiuso
co	1	R3 inserita
S3	2	R3 cortocircuitata
S4	2	chiuso
S5	1	aperto
S6	1	aperto
C7	1	R5 non inserita
S7	2	R5 inserita

2.1.2 Homework (DA FARE A CASA)

Calcolare il guadagno dell'amplificatore.

Se comsiderato ideal)
$$-A_V = \frac{V_u}{V_v} = D A_V = 1 + \frac{R_1}{R_2} = 11$$

2

Calcolare le resistenze equivalenti di ingresso e di uscita dell'amplificatore per i seguenti parametri relativi all'AO reale: $R_{id} = 1 \text{ M}\Omega$, $R_{o} = 100 \Omega$, $A_{d} = 200000$.

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{1N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{2N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

$$R_{2N} = \underbrace{R_{1N}, 0} \cdot \left(1 + A_{0}B^{1}\right) = 2 \cdot 10^{10} \Omega \stackrel{\sim}{=} 20 \text{ GA}$$

Amplificatori operazionali con reazione

2.1.3 Misure

Misurare il guadagno V_u/V_i . (V_s sia un segnale sinusoidale con ampiezza di picco = 0,5 V, f=2 kHz, utilizzare oscilloscopio o multimetro ACV – **Attenzione**: misurare V_u/V_i , non V_u/V_s). $V_{ii} = 10 \text{ V}$

$$i = 1.2 V S \frac{V_{1}}{V_{1}} = 8.33$$

Agendo su S3 e S7 verificare che la resistenza di ingresso sul morsetto V_i è molto alta, e che la resistenza di uscita sui morsetti V_u è molto bassa (si vedano i punti 2.1.4 e 2.1.5 della prima esercitazione di laboratorio).

2.2 Amplificatore invertente

$R_3 = 4.72 \text{ K.R.} - D \text{ Vin} = \frac{R \text{ in}}{R \text{ in} + R_3} \text{ Vs} = D$ $= D R \text{ in} = \frac{157 \text{ mV}}{R \text{ in} + R_3} \text{ Colcobs}$

2.2.1 Predisposizione del modulo

Utilizzare il modulo A3-2, e configurarlo (Figura 2) come indicato nella tabella interruttori seguente.

Figura 2: Schema dell'amplificatore invertente

Tabella interruttori

Interruttore	Posizione sulla basetta	Note
S8	1	aperto
S9	1	aperto
S10	2	chiuso
S11	1	aperto
S12	1	aperto
S13	1	R11 non inserita
S14	1	R12 non inserita

Amplificatori operazionali con reazione

7 222 Homework

Calcolare il guadagno, la resistenza di ingresso e quella di uscita. Per i parametri utilizzare i dati del circuito precedente.

NON ho le formule - NON spiegate

2.2.3 Misure

Applicare all'ingresso un segnale triangolare con ampiezza picco picco Vpp = 2 V e frequenza 300 Hz; in queste condizioni:

- a) Determinare il guadagno misurando il segnale in ingresso e in uscita.
- b) Verificare che il morsetto non invertente (+) dell'amplificatore operazionale sia a potenziale prossimo a zero (multimetro o oscilloscopio).
- c) Verificare che la tensione continua e quella di segnale sul morsetto invertente (-) dell'amplificatore operazionale sia prossima a zero (oscilloscopio).
- d) Aumentare l'ampiezza del segnale di ingresso fino a ottenere evidente distorsione (tosatura o clipping) nel segnale di uscita (Vpp = 5 V circa).

$$V_{IN} = 2.08$$
 $A_{V} = 0.60$

Amplificatori operazionali con reazione

$\sqrt{}$

2.3 Amplificatore differenziale

2.3.1 Predisposizione del modulo

Utilizzare il modulo A3-2, e configurarlo come indicato nello schema di Figura 3.

Figura 3: Schema dell'amplificatore differenziale

Gli interruttori permettono di ottenere come V_2 una tensione corrispondente a frazioni della V_i attraverso il partitore formato da R6, R7 e R8. Occorre chiudere un solo interruttore per volta del gruppo S8, S9, S10 e S11, lasciando aperti gli altri. La presenza di V_i e V_2 permette di verificare il funzionamento dell'amplificatore differenziale partendo da un singolo segnale.

Tabella interruttori

$$S_{8} = \frac{R_{40}}{R_{9}} \cdot (V_{2} - V_{1}) = 0$$

$$S_{9} = \frac{R_{10}}{R_{9}} \cdot (V_{2} - V_{1}) = 0$$

$$S_{9} = \frac{R_{10}}{R_{9}} \cdot (\frac{2}{3}V_{1} - V_{1})$$

$$-\frac{1}{3}V_{1}$$

$$V_{11} = \frac{R_{10}}{R_{9}} \cdot (\frac{1}{3}V_{1} - V_{1})$$

$$V_{12} = \frac{R_{10}}{R_{9}} \cdot (\frac{1}{3}V_{1} - V_{1})$$

$$-\frac{2}{3}V_{1}$$

Interruttore	Posizione sulla basetta	Note
S8	1	aperto
36	2	chiuso, V ₂ =V _i
S9	1	aperto
39	2	chiuso, $V_2=2/3 V_i$
S10	1	aperto
	2	chiuso, $V_2=1/3 V_i$
S11	1	aperto
311	2	chiuso, V ₂ =0
S12	2	chiuso
S13	1	R11 non inserita
S14	1	R12 non inserita

In general
$$V_{OUT} = \frac{R_A}{R_B} \cdot (V^+ - V^-)$$

$$S_{11}$$
 chiuso: $V_z = 0$
 $V_m = \frac{R_{10}}{R_9} \cdot (0 - V_c)$

2.3.2 Homework

Calcolare $V_{\rm u}(V_{\rm i})$ per le varie configurazioni degli SW S8, S9, S10 e S11 (chiusi solo uno per volta).

Amplificatori operazionali con reazione

2.3.3 Misure

Applicare all'ingresso un segnale sinusoidale con Vpp = 1,6 V e frequenza 200 Hz.

Misurare il valore del guadagno $A_v = V_u/V_i$ per le varie configurazioni (chiudere solo uno degli SW S8, S9, S10 e S11 per volta). Per le misure di tensione usare l'oscilloscopio o il multimetro ACV.

Confrontare i risultati delle misure con quanto calcolato nell'homework.

2.4 - Amplificatore AC/DC

2.3.4 Predisposizione del modulo

Utilizzare il modulo A3-1, e configurarlo come indicato nello schema di Figura 4.

Figura 4: Schema dell'amplificatore AC/DC

Gli interruttori permettono di configurare il circuito come amplificatore DC o come amplificatore AC con variazioni di guadagno e di banda.

Amplificatori operazionali con reazione

Tabella interruttori

Interruttore	Posizione sulla basetta	Note
S1	1	aperto, C3 non inserito
31	2	chiuso, C3 inserito
S2	* Z	aperto, C4 non inserito
32	2 1	chiuso, C4 inserito
S3	2	chiuso
S4	1	aperto, C5 inserito
34	2	chiuso, C5 cortocircuitato
S5	2	chiuso
S6	1	aperto

2.3.5 Homework

Valutare l'effetto delle operazioni e) ed f) nella sezione "Misure".

2.3.6 Misure

Configurare il circuito come amplificatore DC con S4 chiuso, S2 chiuso, S1 aperto,

- Al Misurare il guadagno per segnali sinusoidali con frequenze di: 100 Hz, 1 kHz, 10 kHz, 100 kHz.

 Attenzione: Nelle misure a frequenza elevata può intervenire, oltre al limite di banda dell'A.O., anche il limite da slew rate. In questo caso la forma d'onda in uscita è distorta, e da sinusoidale diventa triangolare. Per effettuare misure della banda passante verificare la forma d'onda in uscita; se triangolare abbassare il livello di ingresso fino a riportarla a sinusoidale.
- b) Determinare a quale frequenza la risposta dell'amplificatore scende di 3 dB (cioè la posizione del polo verso le frequenze alte mantenere il segnale in uscita a livello basso, tale da non causare distorsione visibile).

Per questa misura conviene portarsi nella zona di banda passante (guadagno massimo), impostare il livello di segnale ad un valore tale da ottenere sull'oscilloscopio una traccia che sfrutta tutta o quasi l'ampiezza verticale dello schermo, e variare la frequenza fino a quando l'ampiezza misurata in uscita scende di 3 dB (fattore 0,707).

- e) Applicare offset dal generatore e verificare che viene riportato amplificato in uscita.
- d) Inserire C3 (chiudere S1; mantenere S4 chiuso e S2 chiuso) e verificare che C3 introduce un limite superiore di banda valutando la nuova frequenza di taglio superiore.

Per verificare il valore del guadagno in continua, si ricordi che la componente continua (DC) in uscita dipende, oltre che dalla componente continua all'ingresso, anche da altri fattori (offset, sbilanciamento delle alimentazioni, ...). Per misurare il guadagno in continua conviene imporre variazioni della DC

Amplificatori operazionali con reazione

all'ingresso (usando il comando "offset" del generatore), verificare le corrispondenti variazioni in uscita, e calcolare il rapporto.

- e) Inserire C4 (aprire S2; mantenere S4 chiuso e S1 aperto) e verificare l'influenza sulla risposta in frequenza
- f) Inserire C5 (aprire S4; mantenere S2 chiuso e S1 aperto) e verificare l'influenza sulla risposta in frequenza

e)
$$100 \text{ Hz} - 0 \text{ Var} = 10.2 \text{ V}$$

 $V_{1} = 1.2 \text{ V}$ $A_{1} = 1.2 \text{ V}$

NON Vezia fino

$$1 \text{ kHz} - 0 \text{ Var} = 10 \text{ V}$$

$$V_{2} = 1.2 \text{ V}$$

$$A \text{ V} = 1.2 \text{ V}$$

$$10 \text{ kHz} - 0 \text{ Var} = 10 \text{ V}$$

 $V_{n} = 1.2 \text{ V}$ $A_{v} = 1.2 \text{ V}$

$$100 \text{ KHz} - 0 \quad \text{Var} = 9.36 \text{ V}$$

 $\text{Var} = 1.2 \text{ V}$ $\text{Av} = 1.2 \text{ V}$

$$300 \text{ KHz} - 0 \text{ V}_{m} = 6.8 \text{ V}$$

$$V_{i} = 1.2 \text{ V}$$

Amplificatori operazionali con reazione

Schema completo della piastra di misura A-3

Modulo A3 – 1.

Amplificatori operazionali con reazione

3 Traccia per la relazione

Fsercitazione 2.	Amplificatori	onerazionali	con reazione

Data:			

3.1.1 Gruppo; composizione:

Nome	Cognome	Firma	

3.1.2 Strumenti utilizzati

strumento	Marca e modello	caratteristiche
Generatore di segnali:		
Contended at Cognam		
Oscilloscopio		
Alimentatore		
Allinentatore		
Circuito premontato		
·		

Amplificatori operazionali con reazione

3.1.3 Descrizione sintetica degli obiettivi

Guadagno $V_{\rm u}/V_{\rm i}$

3.1.4 Amplificatore non invertente Homework
Guadagno dell'amplificatore:
Designation of the second of t
Resistenze equivalenti di ingresso e di uscita (valori calcolati)
Misure

Amplificatori operazionali con reazione

Resistenze equivalenti

	S3 chiuso	S3 aperto	$R_{\rm i}$ (da R3 e misure di $V_{\rm i}$)
Valori misurati per V _i			

	S7 chiuso	S7 aperto	$R_{\rm u}$ (da R5 e misure di $V_{\rm u}$)
Valori misurati per $V_{\rm u}$			

(eventuale commento sui risultati delle misure)

Confronto con i risultati dell'homework

	Calcolato	Misurato
Guadagno A _v		
Guadagno A _v (dB)		
Valore di R _i		
Valore di R _u		

Amplificatori operazionali con reazione

3.1.5 Amplificatore invertente

Homework
Guadagno
Resistenza di ingresso
Resistenza di uscita
<i>Misure</i> Guadagno
Guadagno
Tensione sul morsetto invertente dell'amplificatore operazionale

Amplificatori operazionali con reazione

Livello di ingresso per cui si verifica distorsione (tosatura o clipping) nel segnale di uscita Comportamento del segnale differenziale di ingresso $V_{\rm d}$ quando l'uscita presenta distorsione (tracciato qualitativo di V_d e V_u).

Amplificatori operazionali con reazione

3.1.6 Amplificatore differenziale *Homework*

 $V_{u}(V_{i})$ per le varie configurazioni degli SW (uno SW chiuso per volta)

Misure

Guadagno $A_v = V_u/V_i$ misurato per le varie configurazioni, e confronto con i valori calcolati

53 57 510

	Guadagno calcolato		Guadagno misurato	
configurazione	rapporto	dB	rapporto	dB
Solo S8				
50lo 59				

506 S10

5060 S11

$$V_{00T} = 1.60 \text{ V}$$

 $V_{1N} = 1.76 \text{ V}$

Amplificatori operazionali con reazione

3.1.7 Amplificatore AC/DC

Misure
Circuito configurato come amplificatore DC
Guadagno per segnali sinusoidali con frequenze di: 100, 1.000, 10.000, 100.000 Hz;
Frequenza di taglio superiore
Relazione tra offset del generatore e offset di uscita
Circuito con C3 inserito:
Guadagno in continua
Limite superiore di banda

Amplificatori operazionali con reazione

Circuito con C4 inserito	
	١.

Limite inferiore di banda

Circuito con C5 inserito:

Guadagno in continua