CS6700 Reinforcement learning Assignment-2

Arulkumar S (CS15D202)

October 13, 2018

Question 1 solutions

Q 1.1) The implementation of the DP algorithm is submitted in Moodle

Q 1.2)

optimal policy for N=10

	A	В	C
0	123.0173	136.8492	124.1938
1	109.6728	123.5047	110.8493
2	96.3283	110.1602	97.5048
3	82.9838	96.8157	84.1602
4	69.6394	83.4711	70.8158
5	56.2960	70.1263	57.4727
6	42.9653	56.7798	44.1377
7	29.6641	43.4219	30.9062
8	17.7500	29.9375	17.8750
9	8.0000	16.0000	7.0000
10	0.0000	0.0000	0.0000

Table 1: $J_t(s)$ for $t = 0...9\&s \in [A, B, C]$. Rows correspond to timesteps and Columns correspond to states).

	0	1	2	3	$\mid 4$	5	6	7	8	9	10
A	2	2	2	2	2	2	2	2	1	1	-
В	2	2	2	2	2	2	2	2	2	1	-
\mathbf{C}	2	2	2	2	2	2	2	2	2	1	-

Table 2: optimal policy for N=10. Rows correspond to states and Columns correspond to timesteps (N).

optimal policy for N=20

 $J_0^*(A) = 256.44, J_0^*(B) = 270.27, J_0^*(C) = 257.62$

	A	В	C
0	256.4623	270.2942	257.6388
1	243.1178	256.9497	244.2943
2	229.7733	243.6052	230.9498
3	216.4288	230.2607	217.6053
4	203.0843	216.9162	204.2608
5	189.7398	203.5717	190.9163
6	176.3953	190.2272	177.5718
7	163.0508	176.8827	164.2273
8	149.7063	163.5382	150.8828
9	136.3618	150.1937	137.5383
10	123.0173	136.8492	124.1938
11	109.6728	123.5047	110.8493
12	96.3283	110.1602	97.5048
13	82.9838	96.8157	84.1602
14	69.6394	83.4711	70.8158
15	56.2960	70.1263	57.4727
16	42.9653	56.7798	44.1377
17	29.6641	43.4219	30.9062
18	17.7500	29.9375	17.8750
19	8.0000	16.0000	7.0000
20	0.0000	0.0000	0.0000

Table 3: $J_t(s)$ for $t = 0...19 \& s \in [A, B, C]$. Rows correspond to timesteps and Columns correspond to states).

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	- - -
$ \mathbf{B} $	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	-
\mathbf{C}	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	

Table 4: optimal policy for N=20. Rows correspond to states and Columns correspond to timesteps (N).

Q 1.3) When the policy is to force the driver to go to nearest taxi stand always (i.e., choose action 2 always):

When N = 10, the maximum rewards w.r.t., starting states A, B, C are $J_0^*(A) = 121.5$, $J_0^*(B) = 135.34$, $J_0^*(C) = 122.68$ respectively.

Ī		A	В	C
Ī	0	121.5003	135.3322	122.6768

Continued on next page

	A	В	C
1	108.1558	121.9877	109.3323
2	94.8113	108.6432	95.9878
3	81.4668	95.2987	82.6433
4	68.1223	81.9542	69.2988
5	54.7781	68.6096	55.9546
6	41.4360	55.2647	42.6124
7	28.1104	41.9170	29.2871
8	14.9219	28.5469	16.0938
9	2.7500	15.0000	4.0000
10	0.0000	0.0000	0.0000

Table 5: $J_t(s)$ for $t = 0...9\&s \in [A, B, C]$. Rows correspond to timesteps and Columns correspond to states).

When N = 20, the maximum rewards w.r.t., starting states A, B, C are $J_0^*(A) = 254.91$, $J_0^*(B) = 268.74$, $J_0^*(C) = 256.09$ respectively.

	A	В	C
0	254.9453	268.7772	256.1218
1	241.6008	255.4327	242.7773
2	228.2563	242.0882	229.4328
3	214.9118	228.7437	216.0883
4	201.5673	215.3992	202.7438
5	188.2228	202.0547	189.3993
6	174.8783	188.7102	176.0548
7	161.5338	175.3657	162.7103
8	148.1893	162.0212	149.3658
9	134.8448	148.6767	136.0213
10	121.5003	135.3322	122.6768
11	108.1558	121.9877	109.3323
12	94.8113	108.6432	95.9878
13	81.4668	95.2987	82.6433
14	68.1223	81.9542	69.2988
15	54.7781	68.6096	55.9546
16	41.4360	55.2647	42.6124
17	28.1104	41.9170	29.2871
18	14.9219	28.5469	16.0938
19	2.7500	15.0000	4.0000
20	0.0000	0.0000	0.0000

Table 6: $J_t(s)$ for $t = 0...19 \& s \in [A, B, C]$. Rows correspond to timesteps and Columns correspond to states).

Comparing the maximum rewards calculated from Q 1.2, we can observe that always choosing action 2 is not optimal compared to allowing all the actions.

Question 2 solutions

Q 2.1) From the pseudocode give above, observe that for loop goes on till infinity, so when would you decide to stop value iteration?

Solution: We can track the maximum change between the value function of any state between each consecutive iterations $(max_s|J_{i+1}(s)-J_i(s)|)$. When the change is less than a certain threshold ϵ (for example, $\epsilon=1e^{-6}$, we can decide to stop the loop.

Figure 1: Maze diagram

iterations vs value difference difference between consecutive max values ò iterations

Figure 2: $\max_{s} |J_{i+1}(s) - J_i(s)|$ vs iterations graph for Goal-1

Figure 3: $\max_{s} |J_{i+1}(s) - J_i(s)|$ vs iterations graph for Goal-2

Q 2.3) J(s) and Greedy policy $\pi(s)$ after iterations 10, 25 and at the end of Value iteration (VI) algorithm

 ${f GOAL} ext{-}1:$ After 10th iteration

	0	1	2	3	4	5	6	7	8	9
0	15.891	44.016	62.157	79.675	87.545	93.277	95.970	98.004	99.548	GOAL
1	13.045	24.836	57.150	68.072	84.209	89.186	94.236	96.357	98.179	99.548
2	-10.000	18.976	27.795	60.511	69.198	84.860	89.437	94.294	96.357	98.004
3	-10.000	-10.000	-10.000	28.371	60.989	70.631	84.955	89.530	94.236	95.972
4	-10.000	-10.000	-10.000	20.803	37.731	62.474	73.794	84.920	89.411	93.279
5	-10.000	-10.000	-10.000	17.059	32.730	58.330	68.246	79.905	84.550	87.818
6	-10.000	-10.000	-10.000	26.198	56.655	67.517	82.594	86.576	83.714	81.228
7	-10.000	13.723	23.315	55.083	66.679	82.637	88.477	93.482	88.760	83.766
8	3.556	10.502	43.838	59.479	79.225	87.221	93.633	96.765	93.642	87.506
9	-10.000	13.723	34.965	61.018	75.106	85.595	90.353	93.793	90.355	85.607

Table 7: J(s) 10th iteration

	0	1	2	3	4	5	6	7	8	9
0	R	R	R	R	R	R	R	R	R	GOAL
1	R	R	R	R	R	R	R	R	U	U
2	U	R	U	R	R	R	R	U	U	U
3	U	U	U	R	R	R	R	U	U	U
4	U	U	U	R	R	R	R	R	U	U
5	D	R	U	R	R	R	D	D	U	U
6	D	D	U	R	R	R	D	D	D	U
7	R	R	R	R	R	R	D	D	D	L
8	R	R	R	R	R	R	R	U	L	L
9	R	R	R	R	R	R	R	U	L	L

Table 8: Greedy policy $\pi(s)$ after 10th iteration. U = Up, D = Down, R = Right, L = Left

GOAL-1: After 25th iteration

	0	1	2	3	4	5	6	7	8	9
0	88.650	90.029	91.392	92.744	94.098	95.457	96.825	98.203	99.594	GOAL
1	87.890	89.273	90.611	91.935	93.229	94.518	95.801	97.076	98.342	99.594
2	86.702	87.987	89.351	90.800	92.064	93.320	94.574	95.826	97.076	98.203
3	85.347	86.441	86.074	89.634	90.870	92.103	93.336	94.574	95.801	96.825
4	83.879	84.897	86.074	88.699	89.879	91.045	92.203	93.357	94.522	95.457
5	83.334	84.778	86.074	88.512	89.660	90.771	91.857	92.835	93.310	94.107
6	84.643	85.995	86.074	89.411	90.650	91.887	93.125	94.151	93.236	92.898
7	86.096	87.574	89.004	90.536	91.839	93.127	94.403	95.644	94.416	93.241
8	87.059	88.530	89.941	91.348	92.747	94.180	95.658	97.203	95.660	94.192
9	87.169	88.495	89.770	91.009	92.221	93.407	94.561	95.674	94.561	93.408

Table 9: J(s) after 25th iteration

	0	1	2	3	4	5	6	7	8	9
0	R	R	R	R	R	R	R	R	R	GOAL
1	R	R	R	R	R	R	R	R	U	U
2	U	R	U	R	R	R	R	U	U	U
3	U	U	U	R	R	R	R	U	U	U
4	U	U	U	R	R	R	R	R	U	U
5	D	R	U	R	R	R	D	D	U	U
6	D	D	U	R	R	R	D	D	D	U
7	R	R	R	R	R	R	D	D	D	L
8	R	R	R	R	R	R	R	U	L	L
9	R	R	R	R	R	R	R	U	L	L

Table 10: Greedy policy $\pi(s)$ after 25th iteration. U = Up, D = Down, R = Right, L = Left

GOAL-1: After stopping value iteration (after 67th iteration)

	0	1	2	3	4	5	6	7	8	9
0	88.723	90.060	91.402	92.748	94.099	95.457	96.825	98.203	99.594	GOAL
1	88.025	89.326	90.634	91.942	93.232	94.519	95.801	97.076	98.342	99.594
2	86.925	88.124	89.401	90.816	92.070	93.323	94.575	95.826	97.076	98.203
3	85.790	86.708	86.294	89.663	90.884	92.108	93.338	94.575	95.801	96.825
4	84.642	85.460	86.294	88.745	89.902	91.056	92.208	93.359	94.523	95.458
5	84.219	85.218	86.294	88.569	89.687	90.787	91.865	92.840	93.313	94.108
6	85.344	86.369	86.294	89.448	90.669	91.895	93.128	94.152	93.239	92.901
7	86.466	87.757	89.073	90.558	91.847	93.131	94.405	95.644	94.417	93.243
8	87.263	88.609	89.974	91.359	92.752	94.181	95.659	97.203	95.660	94.193
9	87.294	88.548	89.790	91.017	92.224	93.408	94.562	95.675	94.562	93.410

Table 11: J(s) after 67th iteration (after VI stops)

	0	1	2	3	4	5	6	7	8	9
0	R	R	R	R	R	R	R	R	R	GOAL
1	R	R	R	R	R	R	R	R	U	U
2	U	R	U	R	R	R	R	U	U	U
3	U	U	U	R	R	R	R	U	U	U
4	U	U	U	R	R	R	R	R	U	U
5	D	R	U	R	R	R	D	D	U	U
6	D	D	U	R	R	R	D	D	D	U
7	R	R	R	R	R	R	D	D	D	L
8	R	R	R	R	R	R	R	U	L	L
9	R	R	R	R	R	R	R	U	L	L

Table 12: Greedy policy $\pi(s)$ after 67th iteration (after VI stops). $U = Up, \ D = Down, \ R = Right, \ L = Left$

GOAL-2: After 10th iteration

	0	1	2	3	4	5	6	7	8	9
0	33.800	54.360	59.901	54.389	29.286	14.067	-10.000	-10.000	-10.000	-10.000
1	57.935	69.377	79.490	68.973	55.677	28.046	13.935	-10.000	-10.000	-10.000
2	71.730	83.352	88.425	83.338	69.571	55.395	27.756	12.028	-10.000	-10.000
3	82.675	89.794	94.507	89.841	82.759	68.464	51.047	25.464	3.556	-10.000
4	85.145	91.061	94.507	91.148	86.297	75.900	62.608	36.618	20.775	-10.000
5	86.113	91.274	94.507	92.870	88.639	84.692	69.561	60.786	27.827	20.559
6	87.600	91.604	94.507	95.251	94.066	89.116	84.755	67.940	59.309	29.089
7	91.449	94.378	96.303	97.678	96.242	94.230	89.144	74.996	59.989	51.912
8	94.328	96.355	98.153	99.382	98.152	96.293	94.178	-10.000	62.634	59.353
9	96.029	97.993	99.543	GOAL	99.542	97.991	95.927	82.604	77.080	69.757

Table 13: J(s) after 10th iteration

	0	1	2	3	4	5	6	7	8	9
0	D	D	D	D	L	D	U	U	U	U
1	D	D	D	D	D	L	L	U	U	U
2	D	D	D	D	L	L	L	L	U	U
3	R	R	U	L	L	L	L	L	L	U
4	R	R	U	L	L	L	L	L	L	U
5	R	R	U	D	D	D	L	L	L	L
6	D	R	U	D	D	D	L	L	L	D
7	D	D	D	D	D	D	L	L	L	L
8	R	R	D	D	D	L	L	U	D	D
9	R	R	R	GOAL	L	L	L	L	L	L

Table 14: Greedy policy $\pi(s)$ after 10th iteration. U = Up, D = Down, R = Right, L = Left

GOAN-2: After 25th iteration

	0	1	2	3	4	5	6	7	8	9
0	89.702	90.620	91.362	90.574	89.455	88.303	87.113	85.846	84.467	82.846
1	90.845	91.899	92.809	91.876	90.641	89.390	88.118	86.812	85.399	83.841
2	91.967	93.169	94.291	93.168	91.904	90.629	89.341	88.019	86.649	85.132
3	93.069	94.430	95.822	94.437	93.084	91.754	90.434	89.113	87.760	86.349
4	93.289	94.559	95.822	94.627	93.454	92.266	91.059	89.830	88.569	87.252
5	93.353	94.583	95.822	95.259	94.447	93.290	92.066	90.822	89.555	88.235
6	93.582	94.698	95.822	96.540	95.741	94.551	93.301	91.943	90.564	89.150
7	94.693	95.824	97.041	97.980	97.040	95.809	94.555	92.272	90.833	89.360
8	95.802	97.063	98.326	99.465	98.326	97.062	95.787	84.674	90.338	89.439
9	96.822	98.200	99.592	GOAL	99.592	98.200	96.820	94.318	92.662	90.970

Table 15: J(s) after 25th iteration

	0	1	2	3	4	5	6	7	8	9
0	D	D	D	D	L	L	L	L	L	L
1	D	D	D	D	D	L	L	L	L	L
2	D	D	D	D	L	L	L	L	L	L
3	R	R	U	L	L	L	L	L	L	L
4	R	R	U	L	L	L	L	L	L	L
5	R	R	U	D	D	D	L	L	L	L
6	D	R	U	D	D	D	L	L	L	L
7	D	D	D	D	D	D	L	L	L	L
8	R	R	D	D	D	L	L	U	D	D
9	R	R	R	GOAL	L	L	L	L	L	L

Table 16: Greedy policy $\pi(s)$ after 25th iteration. U = Up, D = Down, R = Right, L = Left

GOAL-2: After the execution of full value iteration (after 67th iteration)

	0	1	2	3	4	5	6	7	8	9
0	89.717	90.631	91.372	90.593	89.489	88.372	87.242	86.103	84.955	83.800
1	90.852	91.903	92.812	91.884	90.660	89.430	88.207	86.988	85.772	84.558
2	91.971	93.171	94.292	93.170	91.911	90.648	89.384	88.122	86.863	85.607
3	93.071	94.431	95.822	94.438	93.087	91.761	90.454	89.161	87.878	86.603
4	93.290	94.559	95.822	94.628	93.456	92.270	91.069	89.855	88.632	87.401
5	93.354	94.584	95.822	95.260	94.448	93.293	92.072	90.839	89.598	88.350
6	93.583	94.699	95.822	96.541	95.741	94.552	93.304	91.962	90.633	89.320
7	94.694	95.824	97.042	97.980	97.040	95.809	94.556	92.352	91.031	89.789
8	95.802	97.063	98.326	99.465	98.326	97.062	95.787	85.103	90.865	90.323
9	96.822	98.200	99.592	GOAL	99.592	98.200	96.820	94.407	92.903	91.505

Table 17: J(s) after 67th iteration (after VI stops)

	0	1	2	3	4	5	6	7	8	9
0	D	D	D	D	L	L	L	L	L	L
1	D	D	D	D	D	L	L	L	L	L
2	D	D	D	D	L	L	L	L	L	L
3	R	R	U	L	L	L	L	L	L	L
4	R	R	U	L	L	L	L	L	L	L
5	R	R	U	D	D	D	L	L	L	L
6	D	R	U	D	D	D	L	L	L	L
7	D	D	D	D	D	D	L	L	L	L
8	R	R	D	D	D	L	L	U	D	D
9	R	R	R	GOAL	L	L	L	L	L	L

Table 18: Greedy policy $\pi(s)$ after 67th iteration (after VI stops) . U = Up, D = Down, R = Right, L = Left

Q 2.4) The behavior of J and Greedy policy π

Observing the tables 18, 12, we can observe the following behavior of the greedy policy:

- In the states far away from the GOAL, but nearby to IN states, the greedy policy chooses to reach IN states as soon as possible (that have connection to the state nearest to the GOAL), so that the reward is maximized.
- In the states near the GOAL and far away from IN states, the greedy policy chooses to directly move towards GOAL withput going to IN states (which is intuitive to maximize the return)
- The states nearby the GOAL state has the highest reward among other states.