August 2012 QE

Problem 1. (40 points) The real baseband received signal r(t) is given by

$$r(t) = s_i(t) + n(t); i = 0, 1,$$

where $\Pr\{i=0\} = \Pr\{i=1\} = 1/2$, and n(t) is an additive white Gaussian noise process with two-sided power spectral density $N_0/2$. The two real signals $s_0(t)$ and $s_1(t)$ are illustrated in the following figure.

Suppose that the receiver structure is given as shown below. The received signal is processed

with a linear time-invariant filter with impulse response h(t), and the output of that filter is sampled at time t=T to produce the statistic z_i . If $z_i > \gamma$, i=0 is decided. If $z_i < \gamma$, i=1 is decided.

(When necessary, express answers in terms of $\Phi(x)$, the cumulative distribution function of a zero-mean, unit-variance Gaussian random variable, or in terms of $Q(x) = 1 - \Phi(x)$.)

- (a) First, suppose $h(t) = p_T(t)$, that is, h(t) = 1 for $0 \le t < T$, and h(t) = 0, elsewhere. Find the minimax threshold, that is, the threshold that minimizes the maximum of the probability of error given that $s_0(t)$ is sent and the probability of error given that $s_1(t)$ is sent. Also, find the corresponding average probability of decision error in terms of N_0 and T.
- (b) Now, suppose the impulse response h(t) can be adjusted. Find and sketch the impulse response of the matched filter for this signal set. Label key values in your sketch.
- (c) Find the average error probability when the matched filter and the minimax threshold are used in terms of N_0 and T.

Wille in Exam Book Only

Problem 2. (30 points) Suppose that $s_0(t)$ and $s_1(t)$ are real baseband, orthonormal signals on the interval [0, T]. These signals are used to transmit an equi-probable data bit $b \in \{0, 1\}$ through an RF channel.

The received signal is given by

$$r(t) = \begin{cases} \sqrt{A}s_0(t)\cos(2\pi f_c t + \theta_0) + n(t), & \text{when } b = 0, \\ \sqrt{B}s_1(t)\cos(2\pi f_c t + \theta_1) + n(t), & \text{when } b = 1, \end{cases}$$

where n(t) is a real AWGN process with two-sided power spectral density $N_0/2$ and f_c is the carrier frequency, which is much larger than the bandwidth of $s_i(t)$. The parameters θ_0 and θ_1 are unknown carrier phases.

The receiver block diagram is given below. In one branch, the received signal is processed with a filter with impulse response $s_0(T-t)cos(2\pi f_c t)$ and passed through an envelope detector. The output of that envelope detector is sampled at t=T to produce the statistic z_0 . In another branch, the received signal is processed with a filter with impulse response $s_1(T-t)cos(2\pi f_c t)$ and passed through an envelope detector. The output of that envelope detector is sampled at t=T to produce the statistic z_1 . If $z_0 > z_1$, b=0 is decided. If $z_1 > z_0$, b=1 is decided.

Find the average probability of bit error as a function of A, B, and N_0 .

Problem 3. (30 points) Thermal noise with two-sided spectral density $N_0/2 = 7 \times 10^{-6}$ W/Hz is the input to a linear time-invariant filter with transfer function $H(f) = f^2$ for $|f| \le 10$ Hz.

- (a) Find the power spectral density at the output of the filter.
- (b) Determine how much of the output power resides in the frequency range described by $1 Hz \le |f| \le 2 Hz$.
- (c) What is the total output power?

Write in Exam Book Only