1994031906

N94-36413

427455 - 30.

NEW DEVELOPMENTS IN ALUMINUM FOR AIRCRAFT AND AUTOMOBILES

Jocelyn I. Petit

Alcoa Technical Center Alloy Technology Division 100 Technical Drive Alcoa Center, Pennsylvania 15069

Telephone 412-337-5922

Common bond for aircraft and automobiles is need for cost-efficient, lightweight structure.

Aluminum base materials

New Developments in Aluminum for Aircraft and Automobiles

- Automotive
 - Needs
 - Developments
 - Directions
- Aircraft
 - Needs
 - Developments
 - Directions

Forces Shaping Future Automotive Materials Needs

- Need for fuel efficiency
- Changing consumer preferences
- Growing environmental awareness
- Globalization of market

BACKGROUND, AUTOMOTIVE

1975 TO 1991 - SOURCES OF REDUCTION IN FUEL CONSUMPTION

POWER TRAIN	10.7
AERODRAG	34.7
WEIGHT	32.2
TIRES	22.4

Source: U.S. Environmental Protection Agency

1046jsb10624

Why use aluminum?

- Weight reduction
 - Increased fuel economy
 - Decreased emissions
 - Increased performance
 - Increased cargo capacity
- · Longer vehicle life
- Recycling capacity

Energy Cycle

LOWER WEIGHT = HIGHER MPG

CAR WEIGHT/EMISSIONS

LESS WEIGHT = LOWER EMISSIONS

Aluminum Strength/Weakness versus Competitive Materials

Al Strength vs Steel

- Lightweight effectiveness
- · Corrosion Resistance

Al Weakness vs Steel

- Stiffness
- · Ease of manufacturing
- Cost

Al Strength vs Plastic

- · Lightweight effectiveness
- Stiffness
- Recyclable
- · Ease of repair

Al Weakness vs Plastic

- · Design options
- Corrosion resistance
- Dent resistance

Automotive Hang-on components

Hang-on components Outer panels Class A surface Corrosion resistant Y.S. U.S. and Europe: > 207 MPa Japan: 138 MPa < Y.S. < 172 MPa Formable Stretchable Drawable Hemmable Alloys 2XXX 6XXX

Emerging materials for hang-on components

- Near term
 - 2XXX and 6XXX low bake temperature
 - 5XXX Luder-free

Emerging materials for hang-on components

Long term
Low cost
Formability, strength, weldability, and finish
of best DQ steel
Corrosion resistance of best Al sheet

Automotive

Bumper components

This rendering of a generic spaceframe illustrates the use of less than 100 aluminum extrusions and interconnecting aluminum die cast nodes which are robotically welded to form the car body. A limited number of aluminum sheet components (i.e. inner fenders, floor pan) are then attached to complete the body.

Automotive

- Space Frame components

 - StrongToughCorrosion resistant
 - SCC resistant

- Space Frame components

 - Extrusions
 - Close tolerance 6XXX

 - Press quenched
 Formed in T4
 Aged to ~ 230 MPa YS
 Crushable

Space Frame components

- Strong

- - Close tolerance 6XXX
- Die castings
 - Proprietary vacuum casting
 - < 5 ml gas/100g metal</p>
 - Low porosityHigh Si, low Mg
 - Fe to reduce die erosion and welding
 - SHT aged to T6
 - ~ YS 115 to 140 MPa
 - 18 to 22% elongation
 - Crushable

Evolution of Aluminum Aerospace Alloys

New aluminum base alloys continue to be introduced

- 1920's 2017, 2014
 - 1930's 2024
 - 1940's 7075
 - 1950's 7178, 7079, X2020
 - 1960's 7175, 7475, 2124
 - 1970's 7050, 7150, 2324
 - 1980's 2034, 2090, 8090, 2091
 - 1990's 7055, C188, ???
 - 2000's -???

Forces Shaping Future Aircraft Materials Needs

Many factors are driving change in 1990's:

- Aging commercial fleet
 - stigue, corrosion
- Attention to cost effectiveness
 - procurement, inventory, manufacturing, operating
- Fuel prices ???

 - radical design/material changes
- Future supersonic commercial aircraft
 - radical design change, high temperature
- New competition

Property Requirements for Jetliner and Military Transport Applications

Fuselage

Skin

Commercial and Transport

7475-T76 (thick)

High Performance

Standard:

2024-T3

7475-T76

Newly used:

2XXX-T3

Being evaluated:

6013-T6

2091

8090

GLARE®

Toughness vs. Yield Strength:

Strength/toughness relationship for C188-T3 and 2024-T3 alclad sheet, 0.100 in. thick, T-L orientation. Toughness measured using 16 in. wide M(T) specimens.

Constant AK Test:

Fatigue crack growth rate vs. crack length for C188-T3 and 2024-T3 alclad sheet tested at constant ΔK =25 ksi \sqrt{in} ., R=0.1, T-L, high humidity (R.H.>90%) air.

Fiber/Metal Structural Laminates (Typical 3/2 Lay-Up Shown)

Fiber-Metal Laminates

Benefit: Weight Reduction Application: Fuselage Skin

Target: 20 - 25%

Weight Reduction Because of:

- Density Reduction (10 15%)
- Downgaging Sheet Thickness (10%)
- Part Elimination (Doublers, Tear Straps)

Downgaging Possible Because of:

- Superior Fatigue Properties
- Excellent Damage Tolerance (Residual Strength, Fracture Toughness)

Property Requirements for Jetliner and Military Transport Applications

Wing		
Upper Cover		
	Commercial and Transport	High Performance
Standard:	7150-T6	7475-T73
	7150- T 61	7050- T 76
		2124-T8
Newly used:	7150- T 77	
	7055-T77	
Candidates		
for development:	DRA	DRA
	Al-Gr	Al-Gr
	Al-Be	Al-Be
		CRA

Upper Wing Skin Plate Alloy/Temper Chronology

Schematic Illustration of Strength/Corrosion Resistance Improvements of the New Alcoa Aluminum Alloy 7055 Compared to Aluminum Alloys 7150 and 7050

Wing

Lower Cover

Commercial and Transport High Performance

Standard: 2024-T3 7475-T73

2324-T39 2419-T8

2224-T3

Being evaluated: 8090-T8

7475-T76

Possible candidates: ARALL X7093-T73

Al-Li

Property Requirements for Jetliner and Military Transport Applications

