Projekt z Modelo	Rok akademicki 2019/2020		
Mateusz Kowal		284529	
Temat nr 6	Parking pod Blokiem	Ocena:	

1. Cel projektu

Celem projektu jest zbadanie problemu parkingu równoległego, na którym parkują samochody o długości losowanej z rozkładu o skończonym pierwszym momencie. Odległości między samochodami są losowane z rozkładu jednostajnego U(0, 1). Należy znaleźć granicę ciągu $\lim_{x\to\infty} \frac{N(x)}{x}$, gdzie x jest odległością od początku parkingu, a N jest liczbą zaparkowanych samochodów od początku parkingu do x. Następnie należy sprawdzić wyniki symulacyjnie oraz sprawdzić co się stanie, gdy długości samochodów będą losowane z rozkładu o nieskończonym pierwszym momencie.

2. Obliczenia analityczne

Poniżej na Rys. 1 przedstawiono szkic parkingu:

Rys 1. Szkic parkingu

Czarną linią na rysunku zaznaczono odległość od początku parkingu, który znajduje się z lewej strony. Czerwonymi liniami zaznaczono zaparkowane samochody, a niebieskimi liniami zaznaczono odstępy między nimi. Założono, że od punktu początku parkingu do pierwszego samochodu znajduje się pierwszy odstęp. Zielonym odcinkiem zaznaczono przedział wyboru punktu x, do którego badamy odległość. $x \in (x_1, x_2)$.

Celem poniższych przekształceń jest otrzymanie wyrażenia na N(x) w celu obliczenia granicy. Odległość od początku parkingu do x można zapisać jako:

$$x = \sum_{k=1}^{N(x)} d_k + \sum_{k=1}^{N(x)} L_k + r$$

gdzie $r \in (0, d_{N+1} + L_{N+1})$ to odległość od końca N-tego samochodu do punktu x. Po podstawieniu wzoru za średnią arytmetyczną otrzymujemy:

$$x = N(x) \cdot (d_{\pm r} + L_{\pm r}) + r$$

i stąd otrzymujemy wzór na średnią ilość samochodów na parkingu w zależności od x:

$$N(x) = \frac{x - r}{d_{\leq r} + L_{\leq r}}$$

Wykorzystując, że średnia z rozkładu jednostajnego U(0, 1) = 0,5, możemy policzyć granicę $\lim_{x\to\infty}\frac{N(x)}{x}$:

$$\lim_{x \to \infty} \frac{N(x)}{x} = \lim_{x \to \infty} \frac{\frac{x - r}{d_{\S r} + L_{\S r}}}{x} = \lim_{x \to \infty} \frac{1 - \frac{r}{x}}{d_{\S r} + L_{\S r}} = \frac{1}{d_{\S r} + L_{\S r}} = \frac{1}{L_{\S r} + 0.5}$$

3. Wyniki symulacji

W programie przeprowadzono symulację dla N samochodów. Założono, że rozkładem, o skończonym pierwszym momencie będzie rozkład normalny $\mathcal{N}(4,0.5)$, a rozkładem o nieskończonym pierwszym momencie będzie rozkład Cauchy'ego o takich samych parametrach. Poniżej na Rys. 2-4 przedstawiono symulacje dla N=1000, N=10000 oraz N=100000. Dla każdego N przedstawiono obliczoną granicę dla danego kroku. Na wykresach pomarańczową linią zaznaczono też granicę obliczoną w sposób analityczny, która dla $d_{\pm r}=0.5$ wynosi 0,(2). Ponadto w tabeli przedstawiono obliczone wartości średniej długości samochodu $L_{\pm r}$ i oraz granicy $\lim_{x\to\infty}\frac{N(x)}{x}$ po ostatnim kroku dla różnych N.

Rys. 2: Wyliczona granica $\lim_{x\to\infty}\frac{N(x)}{x}$ dla obu rozkładów dla $N=10^3$.

Rys. 3: Wyliczona granica $\lim_{x \to \infty} \frac{N(x)}{x}$ dla obu rozkładów dla $N=10^4$.

Rys. 3: Wyliczona granica $\lim_{x \to \infty} \frac{N(x)}{x}$ dla obu rozkładów dla $N=10^5$.

	Rozkład normalny		Rozkład Cauchy'ego	
N	$L_{\pm r}$ po N krokach	Granica po N krokach	$L_{\pm r}$ po N krokach	Granica po N krokach
10^{3}	4.0042	0.222	6.7353	0.1382
10^{4}	3.9969	0.2223	6.6425	0.14
10^{5}	3.999	0.2222	5.2778	0.1730

4. Wnioski

Z wykresów wynika, że dla rozkładu normalnego wyliczone $L_{\pm r}$ oraz granica $\lim_{x \to \infty} \frac{N(x)}{x}$ zbiegają do wartości wyliczonej analitycznie, tj. 4 oraz 0,(2). Dla rozkładu Cauchy'ego o nieskończonym pierwszym momencie wartości te nie stabilizują się. W przypadku rozkładu normalnego, dla coraz większego N można zaobserwować coraz to większą dokładność otrzymanych wartości.