#### **CS217 - Data Structures & Algorithm Analysis (DSAA)**

Lecture #8



Prof. Pietro S. Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading: Part III Introduction & Chapter 10

#### Aims of this lecture

- To introduce data structures and their typical operations.
- Stacks, queues, priority queues and linked lists.
- To work out the running time for operations on these data structures.
- To identify pros and cons for data structures in terms of efficiency.

#### Data Structures

- Dynamic sets that can store and retrieve elements.
- Data structures are techniques for representing finite dynamic sets of elements
- Each element can contain:
  - a key, used to identify the element
  - Satellite data, carried around but unused by the data structure
  - Attributes, that are manipulated by the data structure eg., pointers to other objects
- Often keys stem from a totally ordered set (e. g. numbers)
  - Allows to define the minimum, successor and predecessor

## **▶** Data Structure Operations

- Operations on a dynamic sets S can be grouped into queries and modifying operations:
- Typical operations:
  - Search(S, k): returns a pointer x to the element with key k, or NIL
  - Insert(S, x): given a pointer x to an element adds the element to S
  - Delete(S, x): given a pointer x to an element removes it from S
  - Minimum(S), Maximum(S): return pointer x resp. with smallest or largest key
  - Successor(S, x), Predecessor(S, x): next larger (smaller) than Key(x)
- Time often measured using n as the number of elements in S.

#### **▶** Data Structure Operations

- What's the runtime of each operation on an array?
- Search(S, k): returns a pointer x to the element with key k, or NIL  $\Theta(n)$
- Insert(S, x): given a pointer x to an element adds the element to S
- **Delete(S, x):** given a pointer **x** to an element removes it from S
- Minimum(S), Maximum(S): return pointer x resp. with smallest or largest key  $\Theta(n)$
- Successor(S, x), Predecessor(S, x): next larger (smaller) than  $\Theta(n)$ Key(x)

 $\Theta(1)$ 

 $\Theta(1)$ 

#### **▶** Data Structure Operations

What's the runtime of each operation on a sorted array?

- $\Theta\left(\log n\right)$
- Search(S, k): returns a pointer x to the element with key k, or NIL
- Insert(S, x): given a pointer x to an element adds the element to S  $\Theta(n)$
- Delete(S, x): given a pointer x to an element removes it from S  $\Theta(n)$
- Minimum(S), Maximum(S): return pointer x resp. with smallest  $\Theta(1)$  or largest key
- Successor(S, x), Predecessor(S, x): next larger (smaller) than Key(x)

We'll now see some data structures that improve on the array implementation for many of the dynamic-set operations.

 $\Theta(1)$ 

# ► Roadmap for the next lectures

- Simple data structures
  - Stacks
  - Queues
  - Linked lists
  - Binary search trees
  - Graphs
- Advanced data structures
  - Balanced trees
  - Priority queues

#### Stacks



6

8



- Only the top element is accessible in a stack.
  - Last-in, first-out policy (LIFO)
- Insert is usually called Push, and Delete is called Pop.



-

## Stacks implemented using arrays

• Stacks can be implemented as an array S with attribute S.top.

```
PUSH(S, x)

1 if S.top == S.size

2 error "overflow"

3 else S.top = S.top + 1

4 S[S.top] = x
```

```
STACK-EMPTY(S)
```

- 1 **if** S.top == 0
- 2 **return** TRUE
- 3 **else return** FALSE

| F | POP(S)                   |
|---|--------------------------|
| 1 | if STACK-EMPTY $(S)$     |
| 2 | error "underflow"        |
| 3 | else $S.top = S.top - 1$ |
| 4 | return $S[S.top + 1]$    |







• All stack operations take time O(1).

# Stacks Application (1): Bracket Balance Checking

- $1 + \{2 * [x + (4y z)] * [5x (5y + z)] 5t \}$
- {[()][()]}
- Are the brackets correctly balanced or not?
- Read the expression: Push each opening bracket and pop for each closing bracket
- If the type of popped bracket always matches return true, else return false
- What's the runtime of the algorithm?

# Stacks Application (2): Postfix expression

- 5\*((9+3)\*(4\*2)+7) (infix expression)
- 5 9 3 + 4 2 \* \* 7 + \* (postfix expression)
- Parsing postfix expressions is somewhat easier than infix expressions. Why?
- Read the tokens one at a time:
  - If it is an operand, push it on the stack
  - If it is a binary operator pop twice, apply the operator, and push the result back on the stack
- What is the runtime of the algorithm?

# Stacks Application (2): Postfix expression

• 
$$5*((9+3)*(4*2)+7)$$
 (infix expression)

| Stack operations               | Stack elements |  |  |
|--------------------------------|----------------|--|--|
| <pre>push(5)</pre>             | 5              |  |  |
| push(9)                        | 5 9            |  |  |
| <pre>push(3)</pre>             | 593            |  |  |
| <pre>push(pop() + pop())</pre> | 5 12           |  |  |
| push(4)                        | 5 12 4         |  |  |
| <pre>push(2)</pre>             | 5 12 4 2       |  |  |
| <pre>push(pop() * pop())</pre> | 5 12 8         |  |  |
| <pre>push(pop() * pop())</pre> | 5 96           |  |  |
| push(7)                        | 5 96 7         |  |  |
| <pre>push(pop() + pop())</pre> | 5 103          |  |  |
| <pre>push(pop() * pop())</pre> | 515            |  |  |

#### Queues





head 3 6 8 tail

- The British love them ©
- The first element in a queue is accessible.
  - First-in, first-out policy (FIFO)
- Insert is called Enqueue, Delete is called Dequeue.
- Queues have a head and a tail, like in a supermarket
  - Elements are added to the tail
  - Elements are extracted from the head

#### Queues implemented using arrays

Queues can be stored in an array "wrapped around".

```
ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.tail == Q.size

3 Q.tail = 1

4 else Q.tail = Q.tail + 1
```

```
DEQUEUE(Q)

1  x = Q[Q.head]

2  if Q.head == Q.size

3  Q.head = 1

4  else Q.head = Q.head + 1

5  return x
```



• All queue operations take time O(1).

## Queues: Applications

- Playlists (eg., iTunes)
- Dispensing requests on a shared resource (eg., a printer, a server, a processor etc.,)
- Data buffers (eg., streaming services)
- What if I have priorities on the use of the resource?

## Priority Queues: Motivation

- Schedule jobs on a computer shared among multiple users
- A max-priority queue keeps track of the jobs to be performed and their relative priorities
- When a job is finished the scheduler selects the job with highest priority from those pending
- Jobs can be added to the scheduler at any time

| Job    | Owner          | Priority (key) |
|--------|----------------|----------------|
| Job 1  | Yao Xin        | 35             |
| Job 12 | Oliveto Pietro | 2              |
| Job 24 | Hao Qi         | 22             |
| Job 25 | Yu Shiqi       | 18             |
| Job 72 | Yao Xin        | 30             |
|        |                |                |

#### Use a heap!

#### Heap Properties

- Max-heap property: for every node other than the root, the parent is no smaller than the node,  $A[Parent(i)] \ge A[i]$ .
- In a max-heap, the root always stores a largest element.



• Min-heap property: for every node other than the root, the parent is no larger than the node,  $A[Parent(i)] \leq A[i]$ .

#### Priority Queue based on max-heap

• A data structure for maintaining a set S of elements with an associated element called key (the priority).

| Operation                                                                                                  | Time |
|------------------------------------------------------------------------------------------------------------|------|
| Insert(S, x, k) – inserts $x$ with key $k$ into $S$                                                        |      |
| Maximum (S) – returns the element in $S$ with the largest key                                              |      |
| Extract-Max(S) – removes and returns element in <i>S</i> with the largest key                              |      |
| Increase-Key(S, x, k) – increases they key of $x$ to a larger value $k$ (element may float up in the heap) |      |

#### Priority Queue based on max-heap

 A data structure for maintaining a set S of elements with an associated element called key (the priority).

| Operation                                                                                                  | Time        |
|------------------------------------------------------------------------------------------------------------|-------------|
| Insert(S, x, k) – inserts $x$ with key $k$ into $S$                                                        | $O(\log n)$ |
| Maximum (S) $-$ returns the element in $S$ with the largest key                                            | 0(1)        |
| Extract-Max(S) – removes and returns element in S with the largest key                                     | $O(\log n)$ |
| Increase-Key(S, x, k) – increases they key of $x$ to a larger value $k$ (element may float up in the heap) | $O(\log n)$ |

Job x: x.satellite\_data; x.job\_address x.priority (key)

To increase priorities: we need a way to map the position of job x in the heap (and update it as it moves in the heap) to the position in our set of jobs )

Min-priority queue based on min-heap also exist: we will use them in graph algorithms (eg., Djikstra, Prim)

## Find and extract next job

```
Max-Heap-Maximum(A)
```

- 1 **if** A. heap-size < 1
- 2 **error** "heap underflow"
- 3 return A[1]

#### Max-Heap-Extract-Max(A)

- 1 max = MAX-HEAP-MAXIMUM(A)
- $2 \quad A[1] = A[A.heap-size]$
- A.heap-size = A.heap-size 1
- 4 Max-Heapify (A, 1)
- 5 **return** max

| Job | Owner   | Priority<br>(key) | Handle | Handle<br>after Build-<br>Heap |   |   |
|-----|---------|-------------------|--------|--------------------------------|---|---|
| 1   | Yao     | 35                | 1      |                                | 1 |   |
| 12  | Oliveto | 2                 | 2      |                                | 5 | / |
| 24  | Нао     | 22                | 3      |                                | 3 | / |
| 25  | Yu      | 18                | 4      |                                | 4 |   |
| 72  | Yao     | 30                | 5      |                                | 2 |   |
|     |         |                   |        |                                |   |   |



## Increase job priority

```
MAX-HEAP-INCREASE-KEY (A, x, k)
   if k < x.key
       error "new key is smaller than current key"
   x.key = k
   find the index i in array A where object x occurs
   while i > 1 and A[PARENT(i)].key < A[i].key
       exchange A[i] with A[PARENT(i)], updating the information that maps
6
            priority queue objects to array indices
       i = PARENT(i)
                                                                                 16
                                                                      15
                                                                                           10
                                                  14
            14
                                                                14
                                           15
                           8
                              15
                                                                                 (d)
```

#### Insert new job

```
MAX-HEAP-INSERT (A, x, n)

1 if A.heap-size == n

2 error "heap overflow"

3 A.heap-size = A.heap-size + 1

4 k = x.key

5 x.key = -\infty

6 A[A.heap-size] = x

7 map x to index heap-size in the array

8 MAX-HEAP-INCREASE-KEY (A, x, k)
```

- Put the new object at the bottom of the heap (end of array)
- Save priority k
- Set its priority to minimum  $(-\infty)$  to preserve heap properties
- Call Max-Increase-Heap-Key (A, x, k)

## Linked Lists: Array Disadvantages

- You need to specify an initial size
- Changing the size of an array is troublesome
- Inserting and deleting elements in specific positions is difficult
- Let's say we want to delete 10 and keep the order of the rest:



What's the time complexity?

#### Linked Lists

- Objects are linked using pointers to the next element.
- Linked lists can be singly linked or doubly linked: pointers to next and previous elements.
- Each element x has attributes
  - x.key the key used to identify the element
  - x.next a pointer to the next element
  - x.prev a pointer to the previous element
  - Optional: further satellite data



# Linked Lists: Searching



 Search inspects all elements in sequence and stops when the key has been found or the end of the list is reached.

LIST-SEARCH
$$(L, k)$$

1:  $x = L$ .head

2: while  $x \neq \text{NIL}$  and  $x.\text{key} \neq k$  do

3:  $x = x.\text{next}$ 

4: return  $x$ 

• The worst-case time is  $\Theta(n)$ , since it may have to search the entire list.

# Linked Lists: Inserting at the front



New elements are added to the front of the list.

LIST-PREPEND 
$$(L, x)$$

1  $x.next = L.head$ 

2  $x.prev = NIL$ 

3 **if**  $L.head \neq NIL$ 

4  $L.head.prev = x$ 

5  $L.head = x$ 

• The time for an insertion is O(1).

## Linked Lists: Inserting after element x



New element added after element y.

```
LIST-INSERT (x, y)

1  x.next = y.next

2  x.prev = y

3  if y.next \neq NIL

4  y.next.prev = x

5  y.next = x
```

• The time for an insertion is O(1) if you know the pointer to y

## Linked Lists: Deleting



If element x is known, update pointers to take it out.



• The time for a deletion is O(1). But if we only have the key and need to search the element x, it's time  $\Theta(n)$  in the worst case.

# Summary

- Stacks and Queues are simple data structures that can
  - be implemented efficiently in arrays (modulo space issues)
  - Have a restricted set of operations, but these run in time O(1).
- Priority Queues: all operations in at most  $O(\log n)$  time
- Linked lists form an unordered list of elements
  - **Insertion** is fast if not important where it occurs: time O(1).
  - **Searching** takes worst-case time  $\Theta(n)$ .
  - **Deletion** runs in time O(1) if the element is known, otherwise we need to run a search beforehand and incur time  $\Theta(n)$ .