DMA: Properties of integers

Laura Mančinska, Institut for Matematiske Fag

UNIVERSITY OF COPENHAGEN

Plan for today

- Quotients, remainders, mod-d function
- Divisors and multiples
- Greatest common divisor (GCD)
- Euclidean Algorithm
- Least common multiple (LCM)
- Primes
- Prime factorization
- Base-b expansion

Reading: Section 1.4 from KBR

Quotient and remainder

Thm. Let $m \in \mathbb{Z}$ be an integer and $d \in \mathbb{Z}^+$ be a positive integer. Then there exists $0 \le r < d$ and $q \in \mathbb{Z}$ such that

$$m = qd + r$$

q is called the quotient

r is called the remainder

Examples

$$m = 12, d = 5$$

$$m = 5, d = 12$$

$$m = -12, d = 5$$

$$m = -5, d = 12$$

Quotient and remainder

Thm. Let $m \in \mathbb{Z}$ be an integer and $d \in \mathbb{Z}^+$ be a positive integer. Then there exists $0 \le r < d$ and $q \in \mathbb{Z}$ such that

$$m = qd + r$$

q is called the quotient

r is called the remainder

Examples

$$m = 12, d = 5$$
 $12 = 2 \cdot 5 + 2$
 $m = 5, d = 12$ $5 = 0 \cdot 12 + 5$
 $m = -12, d = 5$ $-12 = (-3) \cdot 5 + 3$
 $m = -5, d = 12$ $-5 = (-1) \cdot 12 + 7$

The mod-d function

Let
$$m \in \mathbb{Z}^+$$
, $d \in \mathbb{Z}^+$. Suppose $0 \le r < d, q \in \mathbb{Z}$ and we have $m = qd + r$

Def. The mod-d function returns the remainder. That is $m \mod d \stackrel{\text{def}}{=} r$

- mod-d function is implemented in most programming languages
- In F#, python, C: m % d
- Functionality for $m, d \leq 0$ can differ

Examples: the mod-d function

Def. The mod-d function returns the remainder. That is $m \mod d \stackrel{\text{def}}{=} r$

Where $0 \le r < d$, $q \in \mathbb{Z}$ and m = qd + r.

Compute the following

- 3 mod 2
- $2n \mod 2$, where $n \in \mathbb{Z}^+$
- Express the solution using the appropriate mod-d function.
 - It is 9:00am. What time will it be in 100 hours?
 - What day of the week will it be in 26 days?

Divisors

Let
$$m \in \mathbb{Z}$$
, $d \in \mathbb{Z}^+$. Suppose $0 \le r < d, q \in \mathbb{Z}$ and we have $m = qd + r$

Def. (terminology) If r = 0, we say that

- m is a multiple of d and
- d is a divisor of m.
- We write $d \mid m$; pronounced "d divides m"
- If $r \neq 0$, we write $d \nmid m$; pronounced "d does not divide m"

Properties of divisors

Let $m, n \in \mathbb{Z}$, $d \in \mathbb{Z}^+$.

- 1. m|m, 1|m and d|0
- 2. If d|m or d|n then d|(mn)
- 3. If d|m and d|n then d|(m+n)
- 4. If $d \mid m$ and $d \mid n$ then $d \mid (m n)$
- 5. (generalizes 3. and 4.)

If d|m and d|n then d|(m-qn) for any $q \in \mathbb{Z}$

6. (transitivity) If $d \mid m$ and $m \mid n$ then $d \mid n$

Greatest common divisor (GCD)

Let $a, b, d \in \mathbb{Z}^+$. Integer d is a common divisor of a and b if d|a and d|b.

Def.(GCD) We say that d is the greatest common divisor of a and b, denoted GCD(a, b), if d is the largest of the common divisors of a and b.

Determine GCD(36,30)

Euclidean algorithm provides a very efficient method for finding GCD(a, b).

Finding GCD(a, b) (warm-up to Euclidean algorithm)

Let $a, b \in \mathbb{Z}^+$ and $a \ge b$.

- Recall: $a \mod b = r$, where a = qb + r and $0 \le r < b$.
- If d|a and d|b then $d|(a \mod b)$
 - Since $a \mod b = r = a qb$ (use Property 5)
- If d|b and $d|(a \mod b)$ then d|a
 - Since $a = qb + (a \mod b) = (a \mod b) (-q)b$ (use Prop. 5)
- Common_divisors(a, b) = Common_divisors($a \mod b, b$)
 - $GCD(a, b) = GCD(b, a \mod b)$

Euclidean algorithm

Let $a, b \in \mathbb{Z}^+$ and $a \geq b$.

Step 1:
$$GCD(a, b) = GCD(b, a \mod b)$$
 $a = q_1b + r_1$

Step 2:
$$GCD(b, r_1) = GCD(r_1, b \mod r_1)$$
 $b = q_2r_1 + r_2$

Step 3:
$$GCD(r_1, r_2) = GCD(r_2, r_1 \mod r_2)$$
 $r_1 = q_3 r_2 + r_3$

. . .

Stop when
$$r_k = 0$$

$$GCD(a,b)=r_{k-1}$$

Properties of GCD

Thm. Let $a, b \in \mathbb{Z}^+$. If d = GCD(a, b) then there exist $s, t \in \mathbb{Z}$ such that

$$d = sa + tb$$

• Extended version of Euclidean algorithm finds s, t.

Least common multiple (LCM)

Let $a, b, m \in \mathbb{Z}^+$. Integer m is a common multiple of a and b if a|m and b|m.

Def.(LCM) We say that m is the least common multiple of a and b, denoted LCM(a, b), if m is the smallest of all the common multiples of a and b.

Determine LCM(12,15)

Thm. Let $a, b \in \mathbb{Z}^+$. Then

$$LCM(a,b) = \frac{ab}{GCD(a,b)}$$

How to find LCM(a, b)?

Primes

Primes

Def. We say that a positive integer p > 1 is a prime, if the only divisors of p are p and 1. Otherwise, we say that p is composite.

Determine which ones are primes: 1, 2, 3, 12, 13, 37, 51.

How to test if $m \in \mathbb{Z}^+$ is a prime?

```
Test(m)
    If (m=1) then
        return False
    For d=2 thru m-1
        if (m % d) = 0 then
        return False
    return True
```

- Worst case complexity $\Theta(m)$.
- If m is not a prime we can factor it as $m=d_1d_2$, where $d_1\geq d_2\geq 2$. Note that $d_2\leq \sqrt{m}$.

How to test if $m \in \mathbb{Z}^+$ is a prime?

```
Test(m)

If (m=1) then

return False

For d=2 thru Floor(Sqrt(m))

if (m % d) = 0 then

return False

return True
```

- Worst case complexity $\Theta(\sqrt{m})$. Not efficient.
- If $2 \nmid n$, only need to check odd numbers.
- Suffices to check only primes $\leq \sqrt{m}$ (Sieve of Eratosthenes)

How to test if $m \in \mathbb{Z}^+$ is a prime?

- Suffices to check only primes $\leq \sqrt{m}$ (Sieve of Eratosthenes)
 - This requires pre-computation of primes
- There exist efficient probabilistic algorithms based on number-theoretic properties.
 - These can yield inconclusive or potentially wrong answer.
- In 2002, Agrawal, Kayal, and Saxena came up with an efficient deterministic test.

Not currently used in practice.

Prime factorization

Thm. (prime factorization) Any $m \in \mathbb{Z}^+$ can be uniquely expressed as

$$m = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} = \prod_{i=1}^k p_i^{a_i}$$

Where $p_1 < p_2 < \cdots < p_k$ are primes and all the a_i 's are positive integers.

Thm. If d is a divisor of m, then $d = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$, where $0 \le b_i \le a_i$ for all i.

Prime factorization and GCD/LCM

Thm. Let $a, b \in \mathbb{Z}^+$ and let

$$p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$$
 and $p_1^{b_1}p_2^{b_2}\cdots p_k^{b_k}$

be their prime factorizations* with $a_i, b_i \in \mathbb{Z}$. Then

GCD(
$$a, b$$
) = $p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_k^{\min(a_k, b_k)}$

LCM
$$(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_k^{\max(a_k,b_k)}$$

Representing integers in different bases

Base-b expansion

Commonly use decimal (base-10) expansion:

$$726 = 7 \cdot 10^2 + 2 \cdot 10 + 6 \cdot 10^0$$

Thm. Let b > 1 be an integer. Any $n \in \mathbb{Z}^+$ can be uniquely expressed as

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_1 b^1 + d_0 b^0$$

where $d_k \neq 0$ and $0 \leq d_i < b$ for all i.

We call

$$d_k d_{k-1} \dots d_1 d_0$$

the base-b expansion of n.

• Sometimes we write $(d_k d_{k-1} \dots d_1 d_0)_b$ to indicate that base-b is used.

Digits in base-b expansion

- Each of the digits d_i in $(d_k d_{k-1} \dots d_1 d_0)_b$ take one out of b different values
- In decimal: $d_i \in \{0,1,2,...,9\}$
- Common bases are 2(binary), 8(octal), 16(hexadecimal)
 - In binary: $d_i \in \{0,1\}$
 - In base-3: $d_i \in \{0,1,2\}$
 - In octal (base-8): $d_i \in \{0,1,...,7\}$
 - In hex: $d_i \in \{0,1,...,8,9,a,b,c,d,e,f\}$

Find the decimal expansion of the following

- $(101)_2$
- $(101)_3$
- $(102)_3$
- $(102)_2$
- $(1a)_{16}$
- $(1f)_{16}$
- $(1g)_{16}$

Find the decimal expansion of the following

- $(101)_2$
- $(101)_3$
- $(102)_3$
- (102)₂ not valid!
- $(1a)_{16}$
- $(1f)_{16}$
- $(1g)_{16}$ not valid!

Finding base-b expansion

Let $n \in \mathbb{Z}^+$ and b > 1.

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_1 b^1 + d_0$$

= $(d_k b^{k-1} + d_{k-1} b^{k-2} + \dots + d_1 b^0) b + d_0$

 $d_0 = n \mod b$

$$q_1 = d_k b^{k-1} + d_{k-1} b^{k-2} + \cdots + d_2 b^1 + d_1$$
$$= (d_k b^{k-2} + d_{k-1} b^{k-3} + \cdots + d_2) b + d_1$$

 $d_1 = q_1 \mod b$

. . .

Keep going until $q_i = 0$

How to find base-b expansion?

```
Expand(n)
  quotient ← n
  k ← 0

While quotient≠0
   d_k = quotient % B
   quotient ← (quotient - d_k)/B
   k ← k+1

return [d {k-1},...,d 1,d 0]
```