# Simplex Method

### 1. LP Model in Equation Form

- LP Model in Equation Form
  - Two requirements
    - 1. All the constraints (with the exception of the nonnegativity of the variables) are equations with nonnegative right-hand side.
    - 2. All the variables are nonnegative.
- Converting Inequalities into Equations with Nonnegative RHS
  - Slack Variable

$$6x_1 + 4x_2 \le 24$$
  $6x_1 + 4x_2 + s_1 = 24, s_1 \ge 0$ 

• Surplus Variable  $x_1 + x_2 \ge 800$   $x_1 + x_2 - S_1 = 800, S_1 \ge 0$ 

• Nonnegative RHS 
$$-x_1 + x_2 \le -3$$
  $-x_1 + x_2 + s_1 = -3, s_1 \ge 0$   $x_1 - x_2 - s_1 = 3$ 

### LP Model in Equation Form

Unrestricted Variable

$$y_{i+1} = y_{i+1}^- - y_{i+1}^+$$
, where  $y_{i+1}^- \ge 0$  and  $y_{i+1}^+ \ge 0$ 

Example

Maximize 
$$z = 2x_1 + 3x_2$$

$$2x_1 + x_2 \le 4$$

$$x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + 2x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

- m = 2 equations and n = 4 variables
- Corner points can be found by putting n-m = 2 variables zero.

# 2. Transition from Graphical to Algebraic Solution

- Put  $x_1 = 0$ ,  $x_2 = 0$ , and s1=4, s2 = 5 Point A \*2
- Put s1=0, s2=0, and  $x_1 = 1$ ,  $x_2 = 2$  Point C
- Basic variables = m,
- Nonbasic variables = n-m

$$2x_1 + x_2 + s_1 = 4$$
$$x_1 + 2x_2 + s_2 = 5$$

| Nonbasic (zero)<br>variables | Basic variables | Basic solution | Associated corner point | Feasible? | Objective<br>value, z |
|------------------------------|-----------------|----------------|-------------------------|-----------|-----------------------|
| $(x_1, x_2)$                 | $(s_1, s_2)$    | (4, 5)         |                         | Yes       | 0                     |



#### Maximum number of corner points

$$C_m^n = \frac{n!}{m!(n-m)!}$$

If m = 10, n = 20, then 184,756 corner points

### Simplex Method

- Selectively investigate few corner points and locate the optimum solution
- Reddy Mikks Model

Maximize 
$$z = 5x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4$$

• Rewrite objective function  $z - 5x_1 - 4x_2 = 0$ 

$$z - 5x_1 - 4x_2 = 0$$

Maximize 
$$z = 5x_1 + 4x_2$$

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$-x_1 + x_2 \le 1$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$6x_1 + 4x_2 + s_1$$

$$= 24 (Raw material M1)$$

$$x_1 + 2x_2 = 6 (Raw material M2)$$

$$+ s_3 = 1 (Market limit)$$

$$+ s_4 = 2 (Demand limit)$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

### Transition from Graphical to Algebraic Solution

| Basic | Z | <b>x1</b> | x2 | s1 | s2 | s3 | s4 | Solution | Ratio |
|-------|---|-----------|----|----|----|----|----|----------|-------|
| Z     | 1 | -5        | -4 | 0  | 0  | 0  | 0  | 0        |       |
| s1    | 0 | 6         | 4  | 1  | 0  | 0  | 0  | 24       |       |
| s2    | 0 | 1         | 2  | 0  | 1  | 0  | 0  | 6        |       |
| s3    | 0 | -1        | 1  | 0  | 0  | 1  | 0  | 1        |       |
| s4    | 0 | 0         | 1  | 0  | 0  | 0  | 1  | 2        |       |



Nonbasic (zero) variables: 
$$(x_1, x_2)$$
  $z = 0$   
Basic variables:  $(s_1, s_2, s_3, s_4)$   $s_1 = 24$   
 $s_2 = 6$   
nonbasic variables  $(x_1, x_2) = (0, 0)$   $s_3 = 1$   
 $s_4 = 2$ 

### 3. Simplex Tableau

- Entering variable
  - Which nonbasic variable  $(x_1 \text{ or } x_2)$  should enter such that the objective function should improve maximally?
  - Most negative coefficient of the maximization objective function
    - Optimality condition

| Basic | Z | <b>x1</b> | x2 | s1 | s2 | s3 | s4 | Solution | Ratio |
|-------|---|-----------|----|----|----|----|----|----------|-------|
| Z     | 1 | -5        | -4 | 0  | 0  | 0  | 0  | 0        |       |
| s1    | 0 | 6         | 4  | 1  | 0  | 0  | 0  | 24       |       |
| s2    | 0 | 1         | 2  | 0  | 1  | 0  | 0  | 6        |       |
| s3    | 0 | -1        | 1  | 0  | 0  | 1  | 0  | 1        |       |
| s4    | 0 | 0         | 1  | 0  | 0  | 0  | 1  | 2        |       |

### Simplex Tableau

- Leaving variable
  - Minimum nonnegative ratio of RHS of the equation to the corresponding constraint coefficient under the entering variable
    - Feasible condition



| Basic | Z | <b>x1</b> | x2 | s1 | s2 | s3 | s4 | Solution | Ratio   |
|-------|---|-----------|----|----|----|----|----|----------|---------|
| Z     | 1 | -5        | -4 | 0  | 0  | 0  | 0  | 0        |         |
| s1    | 0 | 6         | 4  | 1  | 0  | 0  | 0  | 24       | 24/6=4  |
| s2    | 0 | 1         | 2  | 0  | 1  | 0  | 0  | 6        | 6/1=6   |
| s3    | 0 | -1        | 1  | 0  | 0  | 1  | 0  | 1        | 1/-1=-1 |
| s4    | 0 | 0         | 1  | 0  | 0  | 0  | 1  | 2        | 2/0     |



Nonbasic (zero) variables at  $B: (s_1, x_2)$ 

Basic variables at  $B: (x_1, s_2, s_3, s_4)$ 



Leaving Variables s<sub>1</sub>

# **Simplex Tableau**

Entering Variable Pivot element

Leaving variable

|   | Basic | Z | <b>x1</b> | / x2 | s1 | s2 | s3 | s4 | Solution | Ratio     |
|---|-------|---|-----------|------|----|----|----|----|----------|-----------|
|   | Z     | 1 | -5        | -4   | 0  | 0  | 0  | 0  | 0        | D: .      |
| 2 | s1    | 0 | 6         | 4    | 1  | 0  | 0  | 0  | 24       | Pivot row |
|   | s2    | 0 | 1         | 2    | 0  | 1  | 0  | 0  | 6        |           |
|   | s3    | 0 | -1        | 1    | 0  | 0  | 1  | 0  | 1        |           |
|   | s4    | 0 | 0         | 1    | 0  | 0  | 0  | 1  | 2        |           |

Pivot column

#### 1. Pivot row

- a. Replace the leaving variable in the Basic column with the entering variable.
- **b.** New pivot row = Current pivot row  $\div$  Pivot element

| Basic     | Z | <b>x1</b> | x2  | s1  | s2 | s3 | s4 | Solution | Ratio |
|-----------|---|-----------|-----|-----|----|----|----|----------|-------|
| Z         | 1 | -5        | -4  | 0   | 0  | 0  | 0  | 0        |       |
| <b>x1</b> | 0 | 1         | 2/3 | 1/6 | 0  | 0  | 0  | 4        |       |
| s2        | 0 | 1         | 2   | 0   | 1  | 0  | 0  | 6        |       |
| s3        | 0 | -1        | 1   | 0   | 0  | 1  | 0  | 1        |       |
| s4        | 0 | 0         | 1   | 0   | 0  | 0  | 1  | 2        |       |

Pivot

• Pivot element = 6

2. All other rows, including z

```
New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)
```

• For row z: current row coefficient (1, -5, -4, 0, 0, 0, 0, 0); pivot column coefficient= -5; ( ) new pivot row coefficient (0, 1, 2/3, 1/6, 0, 0, 0, 4)

| Basic     | Z | <b>x1</b> | x2  | s1  | s2 | s3 | s4 | Solution | Ratio |
|-----------|---|-----------|-----|-----|----|----|----|----------|-------|
| Z         | 1 | -5        | -4  | 0   | 0  | 0  | 0  | 0        |       |
| <b>x1</b> | 0 | 1         | 2/3 | 1/6 | 0  | 0  | 0  | 4        |       |
| s2        | 0 | 1         | 2   | 0   | 1  | 0  | 0  | 6        |       |
| s3        | 0 | -1        | 1   | 0   | 0  | 1  | 0  | 1        |       |
| s4        | 0 | 0         | 1   | 0   | 0  | 0  | 1  | 2        |       |

• New z-row is (1, 0, -2/3, 5/6, 0, 0, 0, 20)

2. All other rows, including z

• For row s2: current row coefficient (0, 1, 2, 0, 1, 0, 0, 6); pivot column coefficient= 1; \\_\_\_\_\_ new pivot row coefficient (0, 1, 2/3, 1/6, 0, 0, 0, 4)

| Basic     | Z | <b>x1</b> | x2   | s1  | s2 | s3 | s4 | Solution | Ratio |
|-----------|---|-----------|------|-----|----|----|----|----------|-------|
| Z         | 1 | 0         | -2/3 | 5/6 | 0  | 0  | 0  | 20       |       |
| <b>x1</b> | 0 | 1         | 2/3  | 1/6 | 0  | 0  | 0  | 4        |       |
| s2        | 0 | 1         | 2    | 0   | 1  | 0  | 0  | 6        |       |
| s3        | 0 | -1        | 1    | 0   | 0  | 1  | 0  | 1        |       |
| s4        | 0 | 0         | 1    | 0   | 0  | 0  | 1  | 2        |       |

• For row s2: new row (0, 0, 4/3, -1/6, 1, 0, 0, 2)

2. All other rows, including z

```
New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)
```

• For row s3: current row coefficient (0, -1, 1, 0, 0, 1, 0, 1); pivot column coefficient= -1; \\_\_\_\_\_\_ new pivot row coefficient (0, 0, 1, 2/3, 1/6, 0, 0, 0, 4)

| Basic     | Z | <b>x1</b> | x2   | s1   | s2 | s3 | s4 | Solution | Ratio |
|-----------|---|-----------|------|------|----|----|----|----------|-------|
| Z         | 1 | 0         | -2/3 | 5/6  | 0  | 0  | 0  | 20       |       |
| <b>x1</b> | 0 | 1         | 2/3  | 1/6  | 0  | 0  | 0  | 4        |       |
| s2        | 0 | 0         | 4/3  | -1/6 | 1  | 0  | 0  | 2        |       |
| s3        | 0 | -1        | 1    | 0    | 0  | 1  | 0  | 1        |       |
| s4        | 0 | 0         | 1    | 0    | 0  | 0  | 1  | 2        |       |

• For row s3: new row (0, 0, 5/3, 1/6, 0, 1, 0, 5)

2. All other rows, including z

```
New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)
```

| Basic     | Z | <b>x1</b> | x2   | s1   | s2 | s3 | s4 | Solution | Ratio |
|-----------|---|-----------|------|------|----|----|----|----------|-------|
| Z         | 1 | 0         | -2/3 | 5/6  | 0  | 0  | 0  | 20       |       |
| <b>x1</b> | 0 | 1         | 2/3  | 1/6  | 0  | 0  | 0  | 4        |       |
| s2        | 0 | 0         | 4/3  | -1/6 | 1  | 0  | 0  | 2        |       |
| s3        | 0 | 0         | 5/3  | 1/6  | 0  | 1  | 0  | 5        |       |
| s4        | 0 | 0         | 1    | 0    | 0  | 0  | 1  | 2        |       |

• For row s3: new row (0, 0, 1, 0, 0, 0, 1, 2)

## Simplex Tableau

1<sup>st</sup> iteration is over

**Entering variable:** Most negative coefficient for maximization problem





Leaving variable: minimum nonnegative ratio

| Basic     | Z | <b>x1</b> | x2   | s1   | s2 | s3 | s4 | Solution | Ratio |
|-----------|---|-----------|------|------|----|----|----|----------|-------|
| Z         | 1 | 0         | -2/3 | 5/6  | 0  | 0  | 0  | 20       |       |
| <b>x1</b> | 0 | 1         | 2/3  | 1/6  | 0  | 0  | 0  | 4        | 6     |
| s2        | 0 | 0         | 4/3  | -1/6 | 1  | 0  | 0  | 2        | 3/2   |
| s3        | 0 | 0         | 5/3  | 1/6  | 0  | 1  | 0  | 5        | 3     |
| s4        | 0 | 0         | 1    | 0    | 0  | 0  | 1  | 2        | 2     |

#### **Pivot Row and Column**

Gauss-Jordon Row operations

- 1. New pivot  $x_2$ -row = Current  $s_2$ -row ÷  $\frac{4}{3}$
- 2. New z-row = Current z-row  $\left(-\frac{2}{3}\right)$  × New  $x_2$ -row
- 3. New  $x_1$ -row = Current  $x_1$ -row  $-\left(\frac{2}{3}\right) \times \text{New } x_2$ -row
- 4. New  $s_3$ -row = Current  $s_3$ -row  $-\binom{5}{3} \times \text{New } x_2$ -row
- 5. New  $s_4$ -row = Current  $s_4$ -row (1) × New  $x_2$ -row

# **Simplex Tableau**

| Basic                 | z | $x_1$ | <i>x</i> <sub>2</sub> | $s_1$          | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> | <i>S</i> <sub>4</sub> | Solution      |
|-----------------------|---|-------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|---------------|
| z                     | 1 | 0     | 0                     | <u>3</u>       | 1 2                   | 0                     | 0                     | 21            |
| <i>x</i> <sub>1</sub> | 0 | 1     | 0                     | 1/4            | <u>_1</u>             | 0                     | 0                     | 3             |
| $x_2$                 | 0 | 0     | 1                     | $-\frac{1}{8}$ | 3<br>4                | 0                     | 0                     | <u>3</u><br>2 |
| $s_3$                 | 0 | 0     | 0                     | 3<br>8         | <u>5</u>              | 1                     | 0                     | <u>5</u><br>2 |
| S <sub>4</sub>        | 0 | 0     | 0                     | 18             | $-\frac{3}{4}$        | 0                     | 1                     | $\frac{1}{2}$ |

Any entering Variable?

| Decision variable | Optimum value | Recommendation                           |
|-------------------|---------------|------------------------------------------|
| x <sub>1</sub>    | 3             | Produce 3 tons of exterior paint daily   |
| x <sub>2</sub>    | 3             | Produce 1.5 tons of interior paint daily |
| z                 | 21            | Daily profit is \$21,000                 |

### **Constraints**

| Resource                                                    | Slack value                                                 | Status                                   |
|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| Raw material, M1 Raw material, M2 Market limit Demand limit | $s_1 = 0$ $s_2 = 0$ $s_3 = \frac{5}{2}$ $s_4 = \frac{1}{2}$ | Scarce<br>Scarce<br>Abundant<br>Abundant |

### **Steps of Simplex Method**

| Optimality condition                           |                                                |  |  |  |  |  |
|------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| Maximization problem Minimization problem      |                                                |  |  |  |  |  |
| Most negative coefficient of nonbasic variable | Most positive coefficient of nonbasic variable |  |  |  |  |  |
| Feasibility condition                          |                                                |  |  |  |  |  |
| Smallest nonnegative ratio                     | Smallest nonnegative ratio                     |  |  |  |  |  |

#### Gauss-Jordan row operations.

- 1. Pivot row
  - a. Replace the leaving variable in the *Basic* column with the entering variable.
  - **b.** New pivot row = Current pivot row ÷ Pivot element
- 2. All other rows, including z New row = (Current row) - (pivot column coefficient)  $\times$  (New pivot row)

### **Steps of Simplex Method**

Step 1. Determine a starting basic feasible solution.

### 4. Artificial Starting Solution

- Constraints are (≤) with nonnegative right hand sides offers a convenient all-slack starting basic feasible solution.
- Models with ≥ or = constraints do not.
- Artificial Variable: Starting "ill-behaved" LPs with ≥ or = constraints
  is to use artificial variable that play the role of slacks at the first
  iteration, and then dispose them legitimately at a later iteration.
- Two methods
  - M-method
  - Two phase method

Use x<sub>3</sub> surplus with constraint 2 and slack variable x<sub>4</sub> with constraint 3

$$Minimize z = 4x_1 + x_2$$

 $Minimize z = 4x_1 + x_2$ 

$$3x_1 + x_2 = 3$$
  
 $4x_1 + 3x_2 \ge 6$   
 $x_1 + 2x_2 \le 4$   
 $x_1, x_2 \ge 0$   
 $3x_1 + x_2 = 3$   
 $4x_1 + 3x_2 - x_3 = 6$   
 $x_1 + 2x_2 + x_4 = 4$ 

- Constraint 1 and constraint 2 do not have slack variable
- Add artificial variable  $R_1$  and  $R_2$  and penalize them in the objective function

Minimize 
$$z = 4x_1 + x_2 + MR_1 + MR_2$$
  $Z - 4x_1 - x_2 - MR_1 - MR_2 = 0$ 

$$3x_1 + x_2 + R_1 = 3$$

$$4x_1 + 3x_2 - x_3 + R_2 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$$
Minimization problem:
Add MR<sub>i</sub>

Minimization problem: Add MR;

- Basic variables: (R<sub>1</sub>, R<sub>2</sub>, x<sub>4</sub>)
- What should be the value of M?
  - It should be large enough relative to the original objective coefficient
  - For the given problem, M = 100

| Basic          | x <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | R <sub>1</sub> | $R_2$ | X <sub>4</sub> | Solution |
|----------------|----------------|----------------|-----------------------|----------------|-------|----------------|----------|
| Z              | -4             | -1             | 0                     | -100           | -100  | 0              | 0        |
| R <sub>1</sub> | 3              | 1              | 0                     | 1              | 0     | 0              | 3        |
| $R_2$          | 4              | 3              | -1                    | 0              | 1     | 0              | 6        |
| X <sub>4</sub> | 1              | 2              | 0                     | 0              | 0     | 1              | 4        |

Non zero coefficient of R<sub>1</sub> and R<sub>2</sub>

- Substitution such that coefficient of R<sub>1</sub> and R<sub>2</sub> becomes zero
  - For the given problem:

New z-row = Old z-row + 
$$(100 \times R_1\text{-row} + 100 \times R_2\text{-row})$$

Pivot column

Minimization problem

Pivot row

|   | Basic          | <b>x</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | R <sub>1</sub> | $R_2$ | <b>X</b> <sub>4</sub> | Solution | Ratio |
|---|----------------|-----------------------|----------------|-----------------------|----------------|-------|-----------------------|----------|-------|
|   | Z              | 696                   | 399            | -100                  | 0              | 0     | 0                     | 900      |       |
| ۷ | $R_1$          | 3                     | 1              | 0                     | 1              | 0     | 0                     | З        | 1     |
|   | $R_2$          | 4                     | 3              | -1                    | 0              | 1     | 0                     | 6        | 3/2   |
|   | X <sub>4</sub> | 1                     | 2              | 0                     | 0              | 0     | 1                     | 4        | 4     |

- Apply simplex method steps
  - Entering variable:
    - x<sub>1</sub> (most positive coefficient in z for minimization objective function)
  - Leaving variable:
    - R<sub>1</sub> (Minimum nonnegative ratio)

Apply Gauss-Jordon row operations

Pivot column

|           | Basic                 | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | R <sub>1</sub> | $R_2$ | <b>X</b> <sub>4</sub> | Solution | Ratio |
|-----------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-------|-----------------------|----------|-------|
|           | Z                     | 0                     | 167                   | -100                  | -232           | 0     | 0                     | 204      |       |
|           | <b>X</b> <sub>1</sub> | 1                     | 1/3                   | 0                     | 1/3            | 0     | 0                     | 1        | 3     |
| Pivot row | $R_2$                 | 0                     | 5/3                   | -1                    | -4/3           | 1     | 0                     | 2        | 6/5   |
|           | X <sub>4</sub>        | 0                     | 5/3                   | 0                     | -1/3           | 0     | 1                     | 3        | 9/5   |

• Entering variable: x<sub>2</sub>

• Leaving variable: R<sub>2</sub>

Apply Gauss-Jordon row operations

Pivot column

|           | Basic                 | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | $R_1$  | $R_2$  | <b>X</b> <sub>4</sub> | Solution | Ratio |
|-----------|-----------------------|-----------------------|-----------------------|-----------------------|--------|--------|-----------------------|----------|-------|
|           | Z                     | 0                     | 0                     | 1/5                   | -492/5 | -501/5 | 0                     | 18/5     |       |
|           | <b>X</b> <sub>1</sub> | 1                     | 0                     | 1/5                   | 3/5    | -1/5   | 0                     | 3/5      | 3     |
|           | $X_2$                 | 0                     | 1                     | -3/5                  | -4/5   | 3/5    | 0                     | 6/5      | -2    |
| Pivot row | X <sub>4</sub>        | 0                     | 0                     | 1                     | 1      | -1     | 1                     | 1        | 1     |

Entering variable: x<sub>3</sub>

Leaving variable: X<sub>4</sub>

Apply Gauss-Jordon row operations

Any entering Variable?

| Basic                 | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | R <sub>1</sub> | $R_2$ | <b>X</b> <sub>4</sub> | Solution |
|-----------------------|----------------|----------------|-----------------------|----------------|-------|-----------------------|----------|
| Z                     | 0              | 0              | 0                     | -493/5         | -100  | -1/5                  | 17/5     |
| X <sub>1</sub>        | 1              | 0              | 0                     | 2/5            | 0     | -1/5                  | 2/5      |
| <b>X</b> <sub>2</sub> | 0              | 1              | 0                     | -1/5           | 0     | 3/5                   | 9/5      |
| х <sub>3</sub>        | 0              | 0              | 1                     | 1              | -1    | 1                     | 1        |

• 
$$x_1 = 2/5$$
,  $x_2 = 9/5$  and  $z = 17/5$ 

#### **Two Phase Method**

- M-method uses penalty M
  - Possibility of round-off error that may impair the accuracy of simplex calculations
- Two phase method
  - Phase I attempts to find starting basic feasible solution
  - Phase II is invoked to solve the original problem
- Problem solved in the last section

$$Minimize z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$
  
 $4x_1 + 3x_2 \ge 6$   
 $x_1 + 2x_2 \le 4$   
 $x_1, x_2 \ge 0$ 

#### **Phase-I of Two Phase Method**

$$Minimize r = R_1 + R_2$$

$$3x_1 + x_2 + R_1 = 3$$
  
 $4x_1 + 3x_2 - x_3 + R_2 = 6$   
 $x_1 + 2x_2 + x_4 = 4$   
 $x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$ 

• Simplex tableau

| Basic | $x_1$ | $x_2$ | $x_3$ | $R_1$ | $R_2$ | $x_4$ | Solution |
|-------|-------|-------|-------|-------|-------|-------|----------|
| r     | 0     | 0     | 0     |       | 1     | 0     | 0        |
| $R_1$ | 3     | 1     | 0     |       | 0     | 0     | 3        |
| $R_2$ | 4     | 3     | -1    | 0     |       | 0     | 6        |
| $x_4$ | 1     | 2     | 0     | 0     | 0     | 1     | 4        |

Inconsistence

#### Phase-I of Two Phase Method

- Substitution New r-row = Old r-row +  $(1 \times R_1$ -row +  $1 \times R_2$ -row)
- Apply simplex steps and Gauss-Jordon row operation
- The optimum solution of Phase I is

| Basic                 | $x_1$ | $x_2$ | $x_3$          | $R_1$ $R_2$                             | <i>x</i> <sub>4</sub> | Solution      |
|-----------------------|-------|-------|----------------|-----------------------------------------|-----------------------|---------------|
| r                     | 0 -   | 0     | 0              |                                         | 0                     | 0             |
| $x_1$                 | 1     | 0     | 1/5            | THE RESERVE WAS A SECOND                | 0                     | <u>3</u> 5    |
| $x_2$                 | 0     | 1     | $-\frac{3}{5}$ | 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0                     | <u>6</u><br>5 |
| <i>x</i> <sub>4</sub> | 0     | 0     | 1              | 1 1 1                                   | 1                     | 1             |

- r=0, basic feasible solution  $x_1 = 3/5$ ,  $x_2 = 6/5$ ,  $x_4 = 1$
- Eliminate columns of artificial variables for Phase II

### Phase-II of Two Phase Method

Phase II problem

 $Minimize z = 4x_1 + x_2$ 

$$x_{1} + \frac{1}{5}x_{3} = \frac{3}{5}$$

$$x_{2} - \frac{3}{5}x_{3} = \frac{6}{5}$$

$$x_{3} + x_{4} = 1$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

Simplex tableau

| Basic                 | <b>1</b> | $x_2$ | <i>x</i> <sub>3</sub> | <b>x</b> <sub>4</sub> | Solution      |
|-----------------------|----------|-------|-----------------------|-----------------------|---------------|
| z                     |          | i     | 0                     | 0                     | 0             |
| $x_1$                 |          | 0     | 1/5                   | 0                     | 3 5           |
| $x_2$                 | 0        |       | $-\frac{3}{5}$        | 0                     | <u>6</u><br>5 |
| <i>X</i> <sub>4</sub> | 0        | 0     | 1                     | 1                     | 1             |

#### Phase-II of Two Phase Method

• Substitution to make coefficient of basic variables  $x_1$  and  $x_2$  zero

New z-row = Old z-row + 
$$(4 \times x_1$$
-row +  $1 \times x_2$ -row)

Simplex tableau

| Basic | $\overline{x_1}$ | $\overline{x_2}$ |                | x <sub>4</sub> | Solution       |
|-------|------------------|------------------|----------------|----------------|----------------|
| z     | 0                | 0                |                | 0              | <u>18</u><br>5 |
| $x_1$ | 1                | 0                | 1/5            | 0              | <u>3</u><br>5  |
| $x_2$ | 0                | 1                | $-\frac{3}{5}$ | 0              | <u>6</u><br>5  |
| $x_4$ | U _              | U                | 1              | 1              | 1              |

- Apply simplex method steps and Gauss-Jordon row operation to include x<sub>3</sub>
- Widely used method.

#### Phase-II of Two Phase Method

The removal of the artificial variables and their columns at the end of Phase I can take place only when they are all *nonbasic* (as Example 3.4-2 illustrates). If one or more artificial variables are *basic* (at *zero* level) at the end of Phase I, then the following additional steps must be undertaken to remove them prior to the start of Phase II.

- Step 1. Select a zero artificial variable to leave the basic solution and designate its row as the pivot row. The entering variable can be any nonbasic (nonartificial) variable with a nonzero (positive or negative) coefficient in the pivot row. Perform the associated simplex iteration.
- Step 2. Remove the column of the (just-leaving) artificial variable from the tableau. If all the zero artificial variables have been removed, go to Phase II. Otherwise, go back to Step 1.

The logic behind Step 1 is that the feasibility of the remaining basic variables will not be affected when a zero artificial variable is made nonbasic regardless of whether the pivot element is positive or negative. Problems 5 and 6, Set 3.4b illustrate this situation. Problem 7 provides an additional detail about Phase I calculations.

### 5. Special Cases in Simplex Method

- Degeneracy
- Alternative Optima
- Unbounded Solution
- Nonexistence (or infeasible) solution

### **Degeneracy**

- A tie at minimum ratio (leaving variable)
  - Choose arbitrarily
  - One basic variable become zero in the next iteration (Degeneracy)
- One constraint is redundant
- Example Maximize  $z = 3x_1 + 9x_2$

$$x_1 + 4x_2 \le 8$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Use x<sub>3</sub> and x<sub>4</sub> as slack variables

#### **Equation form**

$$z - 3x_1 - 9x_2 = 0$$

$$x_1 + 4x_2 + x_3 = 8$$
  
 $x_1 + 2x_2 + x_4 = 4$   
 $x_1, x_2 \ge 0$ 

### **Degeneracy**

| Iteration | Basic | $x_1$ | $x_2$ | $x_3$ | $x_4$ | Solution | Ratio |
|-----------|-------|-------|-------|-------|-------|----------|-------|
| 0         | z     | -3    |       | 0     | 0     | 0        |       |
|           | $x_3$ | 1     | 4     | 1     | 0     | 8        | 8/4=2 |
|           | $x_4$ | 1     | 2     | 0     | 1     | 4        | 4/2=2 |

Cycling

Or

Circling

- Can we stop at iteration 1? No.
  - Temporally degenerate

### **Degeneracy**



### **Alternate Optima**

- Objective function is parallel to nonredundant binding constraint
- Binding constraint: A constraint that is satisfied as an equation at the optimal solution.
- | Maximize  $z = 2x_1 + 4x_2$

$$x_1 + 2x_2 \le 5$$

$$x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$



### **Alternate Optima**

| Iteration    | Basic | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | Solution |
|--------------|-------|-------|-------|-----------------------|-----------------------|----------|
| 0            | z     | -2    | -4    | 0                     | Ö                     | 0        |
| $x_2$ enters | $x_3$ | 1     | 2     | 1                     | 0                     | 5        |
| $x_3$ leaves | $x_4$ | 1     | 1     | 0                     | 1                     | 4        |

- Already get the optima
- Point B in graph

$$z = 0, x_2 = \frac{5}{2}, \text{ and } z = 10,$$

- Optima
- Point C in graph
- Nonzero x<sub>1</sub>

$$x_1 = 3, x_2 = 1, z = 10$$

All solutions along line BC are optimal.

#### **Unbounded Solution**

- Objective function value keeps on improving infinitely without violating any constraint
  - At least one variable is unbounded
  - Leads to the conclusion that the model is poorly constructed
- Example

Maximize 
$$z = 2x_1 + x_2$$

$$x_1 - x_2 \le 10$$

$$2x_1 \le 40$$

$$x_1, x_2 \ge 0$$



#### **Unbounded Solution**

| Iteration | Basic | X1 | X2 | ХЗ | X4 | Solution | Ratio |
|-----------|-------|----|----|----|----|----------|-------|
| 0         | Z     | -2 | -1 | 0  | 0  | 0        |       |
| X1 enters | Х3    | 1  | -1 | 1  | 0  | 10       | 10    |
| X3 leaves | X4    | 2  | 0  | 0  | 1  | 40       | 20    |

- All constraint coefficients under x<sub>3</sub> are either 0 or negative
  - Means no leaving variable and that  $x_3$  can be increased infinitely without violating any constraints.
  - Unbounded problem.

#### Infeasible Solution

- LP model with inconsistence constraints has no feasible solution.
- This situation will never occur for ≤ type constraints because we can start with slack variables as our basic feasible solutions.
- For other type of constraints, we use artificial variables
  - These artificial variables are forced to become zero at the optima if the model has feasible solution.
  - Otherwise at least one artificial variable will be positive in the optimum iteration

### Infeasible Solution

• Example

 $Maximize z = 3x_1 + 2x_2$ 

• Using M-method with M = 100

$$2x_1 + x_2 \le 2$$
$$3x_1 + 4x_2 \ge 12$$
$$x_1, x_2 \ge 0$$

| Iteration    | Basic | $x_1$ | <i>x</i> <sub>2</sub> | $x_4$          | $x_3$ | R  | Solution |
|--------------|-------|-------|-----------------------|----------------|-------|----|----------|
| 0            | Z     | -303  | -402                  | 100            | 0     | 0  | -1200    |
| $x_2$ enters | $x_3$ | 2     | 1 .                   | 0              | 1     | 0  | 2        |
| $x_3$ leaves | R     | 3     | 4                     | <del>~</del> 1 | 0     | 1. | 12       |

#### Infeasible Solution

 By allowing R to be positive, the simplex method in essence, has reversed the direction of the inequality from

$$3x_1 + 4x_2 \ge 12$$
 to  $3x_1 + 4x_2 \le 12$ 

• The result is pseudo-optimal solution.