DS-GA 1008: Deep Learning, Spring 2019 Homework Assignment 1 Yves Greatti - yg390

1 Backpropagation

Backpropagation or "backward propagation through errors" is a method which calculates the gradient of the loss function of a neural network with respect to its weights.

1.1 Warm-up

The chain rule is at the heart of backpropagation. Assume you are given input x and output y, both in \mathbb{R}^2 , and the error backpropagated to the output is $\frac{\partial L}{\partial y}$. In particular, let

$$y = Wx + b$$

where $m{W} \in \mathbb{R}^{2x2}$ and $m{x}, m{b} \in \mathbb{R}^2$. Give an expression for $\frac{\partial L}{\partial m{W}}$ and $\frac{\partial L}{\partial m{b}}$ in terns of $\frac{\partial L}{\partial m{y}}$ and $m{x}$ using the chain rule.

$$\begin{split} \frac{\partial L}{\partial \boldsymbol{W}} &= \frac{\partial L}{\partial \boldsymbol{y}} \cdot \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{W}} \\ &= \sum_{i=1}^{2} \left(\frac{\partial L}{\partial \boldsymbol{y}} \right)_{i} \frac{\partial y_{i}}{\partial \boldsymbol{W}} \\ &= \boldsymbol{x} \frac{\partial L}{\partial \boldsymbol{y}} \end{split}$$

We can write this as an outer product:

$$rac{\partial L}{\partial oldsymbol{W}}^{ op} = rac{\partial L}{\partial oldsymbol{y}}^{ op} \, oldsymbol{x}^{ op}$$

Now we have for $\frac{\partial L}{\partial h}$:

$$\begin{split} \frac{\partial L}{\partial \boldsymbol{b}} &= \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{y}} \cdot \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{b}} \\ &= \sum_{i=1}^{2} \left(\frac{\partial L}{\partial \boldsymbol{y}} \right)_{i} \frac{\partial y_{i}}{\partial \boldsymbol{b}} \\ &= \frac{\partial L}{\partial \boldsymbol{y}} \end{split}$$

1.2 Softmax

Multinomial logistic regression is a generalization of logistic regression into multiple classes. The softmax expression is at the crux of this technique. After receiving n unconstrained values, the softmax function normalizes these values to n values that all sum to 1. This can then be perceived as probabilities attributed to the various classes by a classifier. Your task here is to back-propagate error through this module. The softmax expression which indicates the probability of the j-th class is as follows:

$$\mathbb{P}(z = j \mid \boldsymbol{x}) = y_j = \frac{\exp(\beta x_j)}{\sum_i \exp(\beta x_i)}$$

What is the expression for $\frac{\partial y_j}{x_i}$? (Hint: Answer differs when i=j and $i\neq j$) Note that the variables \boldsymbol{x} and \boldsymbol{y} aren't scalars but vectors. While \boldsymbol{x} represents the n values input to the system, \boldsymbol{y} represents the n probabilities output from the system. Therefore, the expression y_j represents the j-th element of \boldsymbol{y} .

Solution: From the quotient rule for differential functions, we have:

$$\frac{\partial y_j}{\partial x_i} = \frac{\sum_k \exp(\beta x_k) \cdot \frac{\partial e^{\beta x_j}}{\partial x_i} - e^{\beta x_j} \frac{\partial \sum_k \exp(\beta x_k)}{\partial x_i}}{\left(\sum_k \exp(\beta x_k)\right)^2}$$

if i = j then:

$$\frac{\partial e^{\beta x_j}}{\partial x_i} = \beta e^{\beta x_i}$$
$$\frac{\partial \sum_k \exp(\beta x_k)}{\partial x_i} = \beta e^{\beta x_i}$$

Thus

$$\frac{\partial y_i}{\partial x_i} = \frac{\sum_k \exp(\beta x_k) \cdot \beta e^{\beta x_i} - \beta e^{\beta x_i} e^{\beta x_i}}{\left(\sum_k \exp(\beta x_k)\right)^2}$$
$$= \beta \frac{\exp(\beta x_i)}{\sum_k \exp(\beta x_k)} \left(1 - \frac{\exp(\beta x_i)}{\sum_k \exp(\beta x_k)}\right)$$

if $i \neq j$: $\frac{\partial e^{\beta x_j}}{\partial x_i} = 0$ then:

$$\frac{\partial y_j}{\partial x_i} = -\frac{\beta e^{\beta x_i} e^{\beta x_j}}{\left(\sum_k \exp(\beta x_k)\right)^2}$$

So the backpropagation of the error through softmax is:

$$\frac{\partial y_j}{\partial x_i} = \begin{cases} \beta \ p_i \ (1 - p_i) \ \text{if } i = j \\ -\beta \ p_i \ p_j \ \text{otherwise} \end{cases} \quad \text{where } p_j = y_j = \frac{\exp(\beta x_j)}{\sum_i \exp(\beta x_i)}$$
 (1)

Or using Kronecker delta δ_{ij} :

$$\frac{\partial y_j}{\partial x_i} = \beta \ p_i \ (\delta_{ij} - p_j) \tag{2}$$