Układy dynamiczne

Układem dynamicznym będziemy nazywali deterministyczną receptę

na dokonanie ewolucji w czasie stanu danego układu.

Czas może być albo dyskretny albo wielkością ciągłą:

- odwzorowania dyskretne (mapy) są przykładem układów z dyskretnym czasem
- autonomiczne równania różniczkowe zwyczajne pierwszego rzędu przykładem układów z czasem jako zmienną ciągłą

$$\frac{d\vec{x}}{dt} = \vec{F} \left[\vec{x} (t) \right]$$

Układy równań nieautonomicznych można zamienić na równania autonomiczne poprzez dodanie odpowiedniego równania do układu.

<u>Uwagi:</u>

a) W większości podręczników w części "teoretycznej" rozpatruje się albo odwzorowania dyskretne albo **tylko** równania różniczkowe **zwyczajne**. Wynika to raczej z ograniczeń matematyki niż realnej sytuacji w przyrodzie!

W tych samych podręcznikach analizuje się wiele doświadczeń, które ewidentnie nie mogą być opisane równania różniczkowymi zwyczajnymi (konwekcja, przepływ hydrodynamiczny, zmienność rytmu serca i inne).

b) żeby rozwiązania były nieregularne w czasie (chaos deterministyczny) układ dynamiczny musi być odpowiednio wielowymiarowy:

- w przypadku układów dyskretnych już jednowymiarowe zagadnienia mogą dawać zachowania nieregularne (chaotyczne)
- w przypadku układów opisywanych układem równań różniczkowych liczba tych równań musi być conajmniej 3

<u>Pytanie:</u> dlaczego w takim razie równanie różniczkowe 2-giego rzędu dla wahadła daje odpowiedź chaotyczną?

- c) przestrzeń fazowa: przestrzeń wektorów **x**(t)
- nie mylić z przestrzenią fazową z fizyki statystycznej: tam jest to przestrzeń $\{\mathbf{x}(t), \mathbf{v}(t)\}$ co wynika z 2-giego rzędu równań ruchu natomiast tu są one 1-szego rzędu.

Dyskretne odwzorowania jednowymiarowe

Odwzorowania odcinkami liniowe:

Najprostszym odwzorowanie tego typu jest odwzorowanie Bernoulliego:

n-krotne iterowanie odwzorowania jednowymiarowego:

$$\chi_{n+1} = \sigma(\chi_n) = 2\chi_n \mod I$$

poczynając od warunku początkowego x₀

$$x_1 = \sigma(x_0), x_2 = \sigma(\sigma(x_0)), ..., x_n = \sigma(....\sigma(\sigma(x_0)))$$

2

Wprowadzimy oznaczenie: n-krotne wykonanie odwzorowania (n-krotne złożenie odwzorowania) będzie oznaczone przez górny indeks *n*.

<u>Uwaga</u>: n-krotne złożenie odwzorowania σ oznaczamy σ^{n} .

Przykład: program Modmap;

- a) przyjąć parametry:
 - parametr kontrolny 1.999999;
 - warunek początkowy dowolny z zakresu (0,1);
 - argument modulo 100;
 - rząd złożenia 1
- b) przyjąć parametry:
 - parametr kontrolny 1.999999;
 - warunek początkowy dowolny z zakresu (0,1);
 - argument modulo 1;
 - rząd złożenia 1

Definicja:

Punkt x* jest **punktem stałym** odwzorowania σ jeżeli

$$x^* = \sigma(x^*)$$

tzn. punkty stałe leżą na przecięciu wykresu $\sigma(x)$ z dwusieczną kąta prostego.

Przedstawimy teraz warunek początkowy w postaci binarnej:

$$x_0 = \sum_{\nu=1}^{\infty} a_{\nu} 2^{-\nu}$$

tzn w postaci:

$$x_0 = 0, a_1 a_2 a_3 a_4...$$

gdzie a_v przyjmują wartości 0 lub 1.

Dla
$$x_0 < 0.5$$
 mamy $a_1 = 0$

Dla
$$x_0 > 0.5$$
 mamy $a_1 = 1$

Pierwsza iteracja odwzorowania $\sigma(x_0)$ oznacza przesunięcie ciągu reprezentacji binarnej o 1 miejsce w lewo (mnożenie wielkości binarnej przez 2) oraz usunięciu pierwszej cyfry ciągu (modulo 1).

tzn.

$$x_1 = 0, a_2 a_3 a_4...$$

Przy każdej iteracji σ realizuje się więc

przesunięcie Bernoulliego

Ma ono następujące własności:

1) Czułość na warunki początkowe

Jeśli dwa warunki początkowe różnią się od siebie tylko na n-tym miejscu po przecinku to różnica jest powiększana przez działanie σ (2 krotnie z każdą iteracją)

2) Ciąg iteracji σ^n jest w takim samym stopniu ciągiem losowym jak ciąg rzutów monetą: zawsze można tak dobrać x_0 aby 0 i 1 w zapisie binarnym odpowiadały kolejnym orłom i reszkom rzutu monetą

(te ciągi są wtedy izomorficzne)

3) chociaż badany układ jest deterministyczny i rozpoczyna ruch się z warunku początkowego $x_0 \in [0,1]$

na skutek kolejnych iteracji odwzorowania dyskretnego stan jest ergodyczny.

Oznacza to:

obrazy dowolnego $x_0 \in [0,1]$ zbliżają się na odległość $\varepsilon = 2^{-n}$ do każdego punktu odcinka [0,1] nieskończenie wiele razy.

Przykład: program Modmap;

przyjąć parametry:

- parametr kontrolny 1.999999;
- warunek początkowy dowolny z zakresu (0,1);
- argument modulo 1;
- rząd złożenia 1 a następnie 2, 4, 8,.....

Przesunięcie Bernoulliego jest bezpośrednim powodem pojawiania się orbit periodycznych:

Przykład:

$$x_0 = 0.1010101010...$$
 (= 2/3)

$$x_1 = \sigma(x_0) = 0.0101010...$$
 (= 1/3)

$$x_2 = \sigma(x_1) = 0.101010...$$
 (= 2/3)

Mamy więc orbitę periodyczną o okresie p

gdy dobierzemy warunek początkowy tak aby jego zapis binarny $x_0 = 0, a_1 a_2 ... a_p a_1 a_2 ... a_p a_1 a_2 ... a_p a_1 a_2 ... a_p$ itd.

Przykład: program Modmap;

przyjąć parametry:

- parametr kontrolny 1.999999;
- warunek początkowy 0.666666 a następnie 0.333333333
- argument modulo 1;
- rząd złożenia 1

Punkt y na orbicie o okresie p jest również punktem stałym mapy p-krotnie złożonej tj.

$$y = \sigma^p(y)$$

Mechanizm powstawania chaosu deterministycznego w postaci przesunięcia Bernoulliego jest całkowicie uniwersalny:

- we wszystkich nieliniowych układach dynamicznych pojawia się rozciąganie a następnie składanie

Dla naszego jednowymiarowego odwzorowania σ :

- Początkowo dla $x_0 < 0.5$ odwzorowanie σ rozciąga odcinek $(0,x_0]$ o czynnik 2
- Następnie, gdy $n > n_0$ gdzie n_0 takie, że 2^{n_0} $x_0 \ge 1$ zaczyna odgrywać rolę funkcja modulo:

odwzorowuje ona x₀ z powrotem w odcinek jednostkowy.

Innych możliwości nie ma: bez modulo nie byłoby rozwiązań ograniczonych do jakiegoś skończonego obszaru przestrzeni fazowej.

Wykładnik Lapunowa

Rozciąganie powoduje, że blisko siebie leżące punkty pod wpływem odwzorowania nieliniowego $f(x_n)$ oddalają się od siebie:

$$x_0$$
 $x_0^+ \varepsilon$ $f^N(x_0^-)$ $f^N(x_0^-)$

gdzie λ jest wykładnikiem Lapunowa.

N pełni rolę czasu o wartościach dyskretnych a więc λ jest (średnią prędkością oddalania się (zbliżania) trajektorii.

Jak widać:

$$\varepsilon \exp(N\lambda(x_0)) = /f^N(x_0 + \varepsilon) - f^N(x_0)/$$

W granicy otrzymuje się ścisłe wyrażenie na wykładnik Lapunowa $\lambda(x_0)$:

$$\lambda(x_0) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \ln \left| \frac{F^N(x_0 + \varepsilon) - f^N(x_0)}{\varepsilon} \right|$$

$$= \lim_{N \to \infty} \frac{1}{N} \ln \left| \frac{df^N(x_0)}{dx_0} \right|$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| f(x_i) \right|$$

Dynamika Układów Nieliniowych 2009 Wykład 2 9

Wykladnik Lapunowa mierzy średni ubytek informacji o położeniu punktu na odcinku [0,1) po jednej iteracji odwzorowania.

Wykładnik Lapunowa a stabilność punktu stałego

Definicja:

Punkt stały x* jest lokalnie stabilny, jeśli wszystkie punkty x₀ w pewnym otoczeniu x* są do niego przyciągane: inaczej jeśli ciąg iteracji

$$x_0, x_1, x_2, ..., x_n, ... \to x^*$$

Analityczne kryterium lokalnej stabilności jest spełnione dla warunku:

$$/\frac{d}{dx} f(x^*)/<1$$

dlatego, że odległość od punktu stałego:

$$\delta_{n+1} = |x_{n+1} - x^*| = |f(x^* + \delta_n) - x^*|$$

$$\approx |\frac{d}{dx^*} f(x^*)| \delta_n$$

Widzimy związek pomiędzy wykładnikiem Lapunowa a stabilnością punktu stałego odwzorowania. Własność ta może być uogólniona:

dodatni wykładnik Lapunowa świadczy o niestabilności rozwiązania (ale nie o braku rozwiązania).

Przykład:

Odwzorowanie trójkątne ("mapa namiotowa"):

$$\Delta(x) = a(1-2/\frac{1}{2}-x/)$$

Dla a < 0.5 punkt stały $x^* = 0$ jest jedynym punktem stabilnym całego odcinka [0,1)

Dla a > 0.5 są dwa niestabilne punkty stałe: 0 i 2a/(1+2a).

Weźmy $\Delta^n(x_n)$ dla a=1. Jest ono też kawałkami liniowe.

Przykład: program TentMap

Przyjmując dowolny warunek początkowy obszaru basenu atrakcji (0,1) oraz rząd złożenia 1

Prześledzić zachowanie odwzorowania namiotowego dla 0< a < 0.5 oraz 0.5 <a < 0.99999999.

Dla
$$0.5 < a < 0.99999999$$
 $x^* = 2a/(1+2a)$

11 Dynamika Układów Nieliniowych 2009 Wykład 2

Wszędzie poza przeliczalnym zbiorem punktów: j·2⁻ⁿ gdzie j=0,1,2,...,2ⁿ

$$j \cdot 2^{-n}$$
 gdzie $j = 0, 1, 2, ..., 2^{n}$

$$/\frac{d}{dx}\Delta^n(x)/=2^n$$

Pochodna ta jest miara stabilności rozwiązania.

Widzimy więc, że odległość (prawie) każdej pary punktów x_0 , $x_0+\varepsilon$ rośnie wykładniczo z n.

Stąd wykładnik Lapunowa jest nie zależny od warunku początkowego x₀

$$\lambda = \ln 2$$

Dla dowolnej wartości parametru kontrolnego a

$$\lambda = \ln 2a$$

i zmienia znak dla wartości krytycznej $a_c = 1/2$

Pokaz: Wykładnik Lagunowa w funkcji parametry kontrolnego dla różnych odwzorowań

Analogia do zjawisk krytycznych fizyki statystycznej:

W pobliżu punktu krytycznego a_c wykładnik Lapunowa zmienia się zgodnie z prawem:

$$\lambda \propto (r - r_c)$$

Wykładnik Lapunowa spełnia więc rolę parametru porządku w analogii do przejść fazowych fizyki statystycznej stanów równowagi.

Miara niezmiennicza

Na początek:

Gęstość niezmiennicza $\rho(x)$ odwzorowania jednowymiarowego

$$x_{n+1} = f(x_n)$$
, dla $x_n \in [0,1]$, $n=1,2,...$

określa asymptotyczną gęstość iteracji na odcinku jednostkowym (naturalna gęstość niezmiennicza):

$$\rho(x) \equiv \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} \delta[x - f^{i}(x_{0})]$$

Układ jest ergodyczny jeśli $\rho(x)$ nie zależy od warunku początkowego x_0 .

Pokaz: Miara naturalna dla różnych odwzorowań jednowymiarowych

W takim przypadku - podobnie jak w fizyce statystycznej - średnie po czasie funkcji g(x) można wyrazić jako średnie z gęstością niezmienniczą:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} g(x_i) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} g[f^i(x_0)] = \int_{0}^{1} \rho(x) g(x) dx$$

Dynamika Układów Nieliniowych 2009 Wykład 2 13

Jest to jednowymiarowy odpowiednik termodynamicznego uśredniania z klasycznej fizyki statystycznej:

$$\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}A[x(t)] dt = \int \rho(x) A(x) dx$$

gdzie

- $\circ \quad \mathbf{x} = [\mathbf{p}(\mathbf{t}), \mathbf{q}(\mathbf{t})],$
- o A(x) jest dowolną funkcją
- o współrzędne uogólnione **q** i pędy uogólnione **p** spełniają równania Hamiltona.

W klasycznej fizyce statystycznej operator Liouville'a *L* określa ewolucję w czasie gęstości prawdopodobieństwa w wyrażeniu na średnią po zespole statystycznym:

$$\dot{\rho}(x,t) = -i L \rho(x,t)$$

gdzie operator Liouville'a:

$$L = i \left[\frac{\partial H}{\partial p} \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial}{\partial p} \right]$$

Ewolucję w czasie gęstości iteracji $\rho(x)$ odwzorowania dyskretnego określa operator Frobenius-Perona:

$$\rho_{n+1}(x) = \int \rho_n(y) \, \delta \left[x - f(y) \right] \, dy$$

<u>Przykład:</u> Operator Frobeniusa-Perona dla odwzorowania namiotowego Dane jest odwzorowanie:

$$\Delta(x) = \begin{cases} 2x, & 0 \le x < \frac{1}{2} \\ 2(1-x), \frac{1}{2} \le x \le 1 \end{cases}$$

tak, że $x_{i+1} = \Delta(x_i)$, i=0,1,2,...

Zamiast analizować jak odwzorowanie Δ działa na pojedyńczy punkt 0.8 odcinka (0,1), rozpatrzmy gęstość początkową ρ .

Gdy Δ działa na ρ otrzymujemy pewną nowa gęstośc P ρ .

Ułamek gęstości Po na odcinku [0,x] jest

$$\int_{0}^{x} P\rho(s)ds$$

Po jednej iteracji odwzorowania Δ :

punkty w [0,x] pochodzą z przeciwobrazu $\Delta^{-1}([0,x])$ odwzorowania

$$\Delta^{-1}([0,x]) = \{y : \Delta(y) \in [0,x]\}$$

14

Dynamika Układów Nieliniowych 2009 Wykład 2 15

Łatwo obliczyć, że

$$\Delta^{-1}([0,x]) = [0,\frac{1}{2}x] \cap [1-\frac{1}{2}x,1]$$

Stąd

$$\int_{0}^{x} P\rho(s)ds = \int_{0}^{\frac{x}{2}} \rho(s) \, ds + \int_{1-\frac{x}{2}}^{1} \rho(s) \, ds$$

Jeśli tą funkcję górnej granicy całkowania zróżniczkować po x otrzymuje się jawną postać operatora Frobeniusa-Perona dla odwzorowania namiotowego:

$$P\rho(x) = \frac{1}{2} [\rho(\frac{x}{2}) + \rho(1 - \frac{x}{2})]$$

Gęstość niezmiennicza ma tę własność, że:

$$\rho(x) = \int \rho(y) \delta[x - f(y)] dy$$

Rozwiązaniem tego ostatniego równania są również niestabilne punkty stałe odwzorowania.

Jednakże przy obliczeniach numerycznych (zaokrąglenia)

jak rówież na skutek fluktuacji w układach rzeczywistych

prawdopodobieństwo trafienia w taki niestabilny punkt stały jest nieistotne.

Przykład:

Dla odwzorowania "namiotowego" $\Delta(x)$ z parametrem a = 1 równanie na gęstość niezmienniczą:

$$\rho(x) = \frac{1}{2} \left[\rho \left(\frac{x}{2} \right) + \rho \left(1 - \frac{x}{2} \right) \right]$$

i ma rozwiązanie: $\rho(x) = 1$ a więc jest stała na całym odcinku [0,1].

Odwzorowanie to jest więc ergodyczne.

W wielu wypadkach naturalna gęstość niezmiennicza nie istnieje.

Np wtedy gdy w wyniku działania odwzorowania dyskretnego f(x) otrzymuje się asymptotycznie zbiór fraktalny (np. zbiór Cantora).

Wtedy wprowadza się (ogólniejszą) gęstość iteracji μ posługując się pojęciem przeciwobrazu $f^{-1}(x)$ odwzorowania f(x).

Podobnie postąpiliśmy w przykładzie wyprowadzenia operatora Frobeniusa-Perona dla odwzorowania namiotowego.

Wtedy mówimy, że miara µ jest niezmiennicza gdy

$$\mu(S) = \mu(f^{-1}(S))$$

gdzie S jest zbiorem, na który działa dane odwzorowanie.

Przykład: Dyfuzja deterministyczna.

Program: dyfuzja

Uwaga: program wymaga DOS-extendera DOS4GW.EXE w tym samym katalogu lub na ścieżce.

Parametry:

Parametr kontrolny 1.05

Przyjmij warunek początkowy: $x_0 = 2.155$

Iterując krok po kroku zaobserwuj, w którą stronę trajektoria opuści wykres.

Zmień warunek początkowy (klawisz "i") na 2.16 i zaobserwuj w którą stronę teraz trajektoria opuści wykres.