

Author Index to Volume 14

Åkesson, G., 301
Akuezue, H. C., 517
Allam, I. M., 517

Bastow, B. D., 263
Bottino, C., 15, 351

Calvert, J. M., 499
Caplan, D., 279
Carter, W. J., III, 415
Cathcart, J. V., 1
Chen, Y. S., 147, 167

Daniel, P. L., 85
Dannermann, K. A., 531
Deadmore, D. L., 325
de Asmundis, C., 15, 351

Elliott, P., 449
Espevik, S., 85
Evans, H. E., 235

Fountain, J. G., 31, 47, 135
Fryburg, G. C., 415

Gesmundo, F., 15, 351
Giggins, C. S., 363
Golightly, F. A., 217
Graham, M. J., 279

Hampton, H. M., 449
Hilton, D. A., 235
Hindam, H. M., 337
Hirth, J. P., 85
Hodgkiess, T., 263
Holm, R. A., 235
Huntz, A. M., 249, 471
Hussey, R. J., 279

Kofstad, P., 301
Kohl, F. J., 415
Laheij, M. A. J. Th., 207
Lees, D. G., 499
Lopes Gomes, J. E., 249, 471
Lowell, C. E., 325

Mateescu, G. C., 415
McKee, R. A., 1
Meadowcroft, D. B., 499
Metselaar, R., 207

Nagaraj, B. A., 109
Narita, T., 65
Nishida, K., 65
Notwotny, J., 437

Oblakowski, J., 437

Pawel, R. E., 1
Pettit, F. S., 363

Rapp, R. A., 85
Rawe, R. L., 549
Rosa, C. J., 147, 167, 549

Tani, T., 65
Taylor, M. R., 499

Sadowski, A., 437
Sasaki, G., 65
Shatynski, S. R., 531
Smeltzer, W. W., 337
Smith, G., 119
Smith, S. R., 415
Sproule, G. I., 279
Stearns, C. A., 415
Stott, F. H., 31, 47, 135, 187, 217
Stratford, K. N., 109, 119

Van Loo, F. J. J., 207

Wagner, J. B., Jr., 437
Webster, S. J., 235
Whittle, D. P., 263, 517
Wood, G. C., 31, 47, 135, 187, 217, 263

Subject Index to Volume 14

Adherence of Al_2O_3 scales, effect of Pt on, 517
 α - Al_2O_3 scales, development of on Fe-Cr-Al & Fe-Cr-Al- γ alloys, 217
 Al_2O_3 scale, adherence, effect of small Pt additions, 517
Aluminized coatings on Ni-Al-Cr₃C₂ eutectic alloy, oxidation of, 47
Annealing effect on oxidation of Cu & Ni, 187
Auger spectroscopy, use of to determine transport in scales, 337

Carbon dioxide, corrosion mechanism of Fe-9Cr in, 499
Carbon, effect of on cavity formation in Ni, 279
Cavity formation in Ni during oxidation, 279
Chromium, corrosion in SO_2 , 351
Co-base eutectics, hot corrosion, 531
Copper, effect of annealing on oxidation, 187
Cyclic oxidation, effect of ternary additions to Ni-10Cr, 449
Cyclic oxidation, thermal shock relation, 325

Directionally solidified Ni-Al-Cr₃C₂ eutectic, effect of yttrium on oxidation, 135
Directionally solidified Ni-AlCr₃C₂ eutectic, oxidation resistance of aluminized coatings on, 47
Directionally solidified Ni-Al-Cr₃C₂ eutectic, oxidation, 31
Diffusion couple, use of to determine phase relations in Fe-Cr-O system, 207
Diffusion, relationship to scale morphology on Ti, 249

ESCA, use of to study hot corrosion of nickel-base superalloys, 415
Eutectic alloys, Ni-Al-Cr₃C₂
effect of yttrium on oxidation, 135
oxidation, 31
oxidation of coating on, 47
Eutectic, Co-base, TaC-strengthened, hot corrosion, 531

Fe-9Cr, corrosion mechanism in carbon dioxide, 499
Fe-Cr-Al, development of α - Al_2O_3 scales, 217
Fe-Cr-Al- γ , development of α - Al_2O_3 scales, 217
Fe-Cr-O, phase relations, 207
FeMn alloys, sulfidation, 65

Gaseous pre-treatment, effect of on Ti-4.32Nb oxidation, 549

H₂-H₂S, environment, degradation of nickel alloys in, 109
Hot corrosion
Co-base eutectics, 531
nickel-base superalloys, 415

Inert markers, use of to determine transport in scales, 337

Localized pits, formation of on stainless steel during oxidation, 235

Manganese, SO_2 corrosion, 15
 Mixed oxidants corrosion, 363
 Morphology of scales on Ti, 249

Nickel-base alloys, degradation of in $\text{H}_2\text{-H}_2\text{S}$, 109
 Nickel-base superalloys, hot corrosion, 415
 Nickel, cavity formation during oxidation, 279
 Nickel, effect of intermediate annealing on oxidation, 187
 Nickel oxide, stress relief and plastic flow, 119
 Nickel, sulphate-induced corrosion at high temperature, 301
 Ni-Al-Cr₃C₂ eutectic
 effect of yttrium on oxidation, 135
 oxidation, 31
 oxidation of aluminized coatings on, 47
 Ni-Cr-W alloys, oxidation, 85
 Ni-10Cr, effect of ternary additions on oxidation, 449
 Ni-70Cr, oxidation, 263
 NiO-Cr₂O₃ solid solutions, reequilibrium kinetics, 437

Oxide sintering, effect of on Ti-4.32Nb oxidation, 549

Phase relations, Fe-Cr-O system, 207
 Pits, localized, formed on stainless steel during oxidation, 235
 Plastic flow, nickel oxide, 119
 Platinum, effect of on Al₂O₃ scale adherence, 517

Reequilibrium kinetics, NiO-Cr₂O₃, solid solutions, 437

SO₂, corrosion of manganese in, 15
 SO₂, corrosion of chromium in, 351
 Solid solutions, NiO-Cr₂O₃, reequilibrium kinetics, 437
 Stainless steel, formation of localized pits on during oxidation, 235
 Sulfidation, Fe-Mn alloys, 65
 Superalloys, nickel base, hot corrosion, 415

Ternary additions, effect of on cyclic oxidation of Ni-10Cr, 449
 Thermal shock, role of in cyclic oxidation, 325
 Titanium, kinetics-morphology relations, 471
 Titanium oxidation mechanism, 249
 Ti-1.5Ni, kinetics-morphology relations, 471
 Ti-2.5Cu, kinetics-morphology relations, 471
 Ti-4.32Nb, oxidation, 147
 Ti-4.32Nb, effect of gaseous pre-treatment on oxidation, 549
 Ti-4.37Ta, oxidation, 167
 Transient-temperature oxidation of Zircaloy-4, 1

Zircaloy-4, anomalous oxide growth during transient temperature oxidation, 1
 Zirconium, additions to nickel alloys, 109

Beryllium Science and Technology

Volume 1

edited by **D. Webster**

Lockheed Palo Alto Research Laboratory, California
and **Gilbert London**

Naval Air Development Center, Warminster, Pennsylvania

Volume 2

edited by **Dennis R. Floyd**

Atomics International, Golden, Colorado
and **John N. Lowe**

Atomic Weapons Research Establishment, England

These volumes provide, **for the first time in twenty years**, the most significant research advances in beryllium metallurgy and its engineering applications. The treatise covers the development of beryllium from a brittle glass-like solid to an engineering metal known for its low density, high elastic modulus, elevated melting point, high heat capacity, and unusual nuclear properties.

Preeminent in their technological specialties, the contributors present reviews designed to point out the most substantial work in the field, and, conversely, indicate those areas that are either inconclusive or erroneous. *Volume 1* is a comprehensive reference work for scientists, covering the theoretical background and recent advances of beryllium metallurgy. *Volume 2* is intended primarily for engineers, examining the production and subsequent fabrication of beryllium. Taken together, these volumes will enable metallurgists, industrialists, suppliers, and technologists to evaluate all significant work in beryllium research.

Volume 1: 348 pp., illus., 1979, \$35.00

Volume 2: approx. 435 pp., illus., 1979, \$49.50

Prices slightly higher outside the U.S.

227 West 17th Street, New York, N.Y. 10011

Tungsten

Sources, Metallurgy, Properties, and Applications

By Stephen W. H. Yih and Chun T. Wang

This volume serves as a comprehensive handbook for scientists and engineers working in the exploration, mining, extraction, reduction, consolidation, and fabrication of tungsten and its alloys, and as an excellent resource for students and end users interested in the properties of tungsten production.

Contents

Occurrence, geology, mining, and beneficiation of tungsten. Extractive metallurgy of tungsten. Reduction of tungsten oxides, halides, and ores. Consolidation of tungsten. Fabrication of tungsten. Physical and mechanical properties of tungsten. Chemical properties of tungsten and tungsten compounds. Tungsten alloys, composites, and tungsten used as an alloying element. Tungsten carbides and the hard metal industry. Applications of tungsten. Industry and future outlook of tungsten. Appendices. Index.

516 pages, 1979, \$47.50

227 West 17th Street, New York, N.Y. 10011

Instructions to Contributors

1. Manuscripts should be sent to:

Prof. D. L. Douglass
Materials Department
Room 6531, Boelter Hall
University of California at Los Angeles
Los Angeles, California 90024
2. Submission is a representation that the manuscript has not been published previously and is not currently under consideration for publication elsewhere. A statement transferring copyright from the authors (or their employers, if they hold the copyright) to Plenum Publishing Corporation will be required before the manuscript can be accepted for publication. The Editor will supply the necessary forms for this transfer. Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript, is necessary under the new U.S. Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effectively as possible.
3. Type double-spaced, and submit the original and two copies (including, where possible, copies of all illustrations and tables).
4. An abstract of 150 words or less is to be provided.
5. A list of 4-5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes, both internal and external.
6. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed on a separate sheet of paper. Photographs should be large, glossy prints, showing high contrast. Drawings should be prepared with india ink. Either the original drawings or good-quality photographic prints are acceptable. Identify figures on the back with author's name and number of the illustration.
7. Tables should be numbered and referred to by number in the text. Each table should be typed on a separate sheet of paper.
8. References should be made by using superscript Arabic numerals, and the full references should be given in a list at the end of the paper. For maximum clarity, abbreviations should be avoided in the references. Whenever a book is cited, the number of the relevant chapter should be given.
9. In general, *Oxidation of Metals* follows the recommendations of the American Institute of Physics in their *Style Manual*, and it is suggested that contributors refer to this publication.
10. **The journal makes no page charges.** Reprints are available to authors, and order forms are sent with proofs.

OXIDATION OF METALS

Vol. 14, No. 6

December 1980

CONTENTS

Comparison of the Kinetics and Morphologic Properties of Titanium, Ti-1.5Ni and Ti-2.5Cu During Oxidation in Pure Oxygen Between 600 and 820°C	471
<i>J. E. Lopes Gomes and A. M. Huntz</i>	
The Mechanism of Corrosion of Fe-9% Cr Alloys in Carbon Dioxide	499
<i>M. R. Taylor, J. M. Calvert, D. G. Lees, and D. B. Meadowcroft</i>	
Influence of Small Pt Additions on Al_2O_3 Scale Adherence	517
<i>I. M. Allam, H. C. Akuezue, and D. P. Whittle</i>	
Hot Corrosion of an Aligned Co-Based, TaC-Strengthened Eutectic Alloy	531
<i>S. R. Shatynski and K. A. Dannemann</i>	
Effects of Gaseous Pretreatment and Oxide Sintering on Oxidation of Ti-4.32 wt.% Nb Alloy	549
<i>Richard L. Rawe and Casimir J. Rosa</i>	
Author Index to Volume 14	567
Subject Index to Volume 14	569