Groups as Fundamental Groups

Jarret Petrillo

Stony Brook University, Department of Applied Mathematics & Statistics

Main Theorem

Let G be a group. There exists a space X such that the fundamental group of X is precisely G.

Introduction

A non-empty set G with a binary operation is a **group**. $X \subset G$ **generates** G if every element in G is the product of elements in $X \cup X^{-1}$, where $X^{-1} = \{x^{-1} | x \in X\}$. A group F is **free** over X, a set, if

 $F = \{a_1 a_2 a_3 \dots a_m | a_i \in X \cup X^{-1}, a_i a_{i+1} \neq xx^{-1}\}$ with binary operation of left-juxtaposition-and-reduction, denoted *, the *free product*. A map $\phi: G \to H$ between groups is a **homomorphism** if $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$. Every group G is the homomorphic image of a free group.

Let \mathcal{A} be an indexing set and $n \geq 0$. Let $B^n(\mathcal{A}) = \coprod_{\alpha \in \mathcal{A}} B^n_{\alpha}$ where each $B^n_{\alpha} = B^n$. Let $S^n(\mathcal{A}) = \coprod_{\alpha \in \mathcal{A}} S^{n-1}_{\alpha}$ where $S^{n-1}_{\alpha} = S^{n-1}$. Then $B^n(\mathcal{A})$ is a topological collection of **n-balls** and $S^{n-1}(\mathcal{A})$ is a collection of their **boundaries**.

Let A be a topological space; let $f: S^{n-1}(A) \to A$ be a map. Let \sim be the minimum equivalence relation on $A \coprod B^n(A)$ such that $f(x) \sim x$ for $x \in S^{n-1}(A)$. Then $Y = (A \coprod B^n(A))/\sim$ is the space made by **attaching** $B^n(A)$ **to** A **via f**.

Let $q: B^n(\mathcal{A}) \to Y$ be the quotient map above. Then for $e_{\alpha}^n = q(B_{\alpha}^n)$ an n - cell, $q_{\alpha} = q|_{B_{\alpha}^n}$ is the characteristic map, $f_{\alpha} = f|_{B_{\alpha}^n}$ is the attaching map, and f the simultaneous attaching map. A **CW complex** is a topological space defined iteratively:

- (1) $X^0 = \{x_0\};$
- (2) for $n \ge 1$, X^n , the *n-skeleton*, is obtained by attaching n-balls to X^{n-1} via f^n , a simultaneous attaching map.

The dimension of X is the index of the largest skeleton. Note that a one-dimensional CW complex is called a graph.

Fundamental Group

++

Let X be a topological space and $x_0 \in X$. A continuous map $f:[0,1] \to X$ is called a **loop** at x_0 if $f(0) = f(1) = x_0$. Two loops f, g at x_0 are **homotopic** if there exists a continuous function $F:[0,1] \times [0,1] \to X$ such that F(0,t) = f(t) and F(1,t) = g(t). Such an F is called a **homotopy** of f and g. The collection of all homotopy classes of loops at x_0 with the group operation of path concatenation is a group and is called the **fundamental group of** X at x_0 denoted $\pi(X, x_0)$. If space is path connected all such are isomorphic, and the fundamental group of $X, \pi(X)$.

(proof: Free Group is Fund. Group of Graphs) Let $f:[0,1] \to X$ be a loop with base point x_0 the center of X; let \mathcal{O} be an open ball around x_0 . Then $A_i = X_i^1 \cup \mathcal{O}$ is open in X and $X = \bigcup_{j=1}^r A_j$, where X_i^1 is the *i*th one-ball in the 1-skeleton. Note first that $f([0,1]) \cap A_i \subset X$ is open $\Rightarrow f^{-1}(f([0,1]) \cap A_i) \subset [0,1]$ is open by f continuous. By open sets of \mathbb{R} a countable union of open intervals: $f^{-1}(f([0,1]) \cap A_i) = \bigcup_{k=1}^{n_i} (a_{ik}, b_{ik})$ and $\bigcup_{i=1}^n \{(a_{ik}, b_{ik})\}_{k=1}^{n_i}$ an open cover of [0,1] whence there exists a finite subcover. Let X be a CW complex.

An **edge** is a non-degenerate one-cell e_{γ}^1 with characteristic map $q_{\gamma}: B_{\gamma}^1 \to e_{\gamma}^1$. An **edge loop** is a finite non-empty sequence of edges $\tau = (\tau_1 \tau_2 \tau_3 \dots \tau_n)$. The **inverse** of an edge τ_{γ}^{-1} is the same one-cell e_{γ}^1 together with the characteristic map $q_{\gamma}^{-1}(x) = q_{\gamma}(-x)$. The *inverse* of an edge loop is $\tau^{-1} = (\tau_n^{-1} \dots \tau_1^{-1})$. An edge loop is **reduced** if it has no adjacent pairs $\tau_i \tau_i^{-1}$ or $\tau_i^{-1} \tau_i$. Note that a two-cell e_{α}^2 is attached to one-cells by the attaching map $f_{\alpha}: S_{\alpha}^1 \to X^1$. If we start at $f_{\alpha}(1)$ and list the edges in clock-wise order we have a unique edge path called the **homotopical boundary** of e_{α}^2 , denoted $\Delta e_{\alpha}^2 = (u_1 u_2 \dots u_m)$.

Theorem: Let X be a CW complex and let σ, ϕ be edge loops. Let $\sigma \sim \phi$ if either one is a reduction of the other, or if $\sigma \phi^{-1}$ is a reduction of $\tau \Delta e_{\alpha}^2 \tau^{-1}$ for some two-cell e_{α}^2 and any edge loop τ . Then \sim is an equivalence relation on edge loops of X. (proof) applications of definitions

The collection of all equivalence classes of edge loops forms a group together with the operation of edge product and is called the **fundamental group of** X denoted $\pi(X)$.

Free Groups are Fundamental Groups of Graphs

Let F_n be free over $\{x_1, x_2, \dots x_n\}$. Then the graph X with 1 - skeleton of n one-balls has fundamental group isomorphic to F_n .

Let $0 = s_0 < s_1 < \cdots < s_m = 1$ be a partition of [0,1] with reordering and relabeling of the subcover interval's endpoints so that $(s_i,s_{i+1}) \subset (a_{ik},b_{ik})$. Then $f(s_i,s_{i+1}) \subset A_i$ for some i.

Let f_n be the path obtained by restricting f to $[s_n, s_{n+1}]$. We note any loop in \mathcal{O} is homotopic to the constant loop at x_0 . It follows that f is the composition of f_1, f_2, \ldots, f_p each f_i homotopic to $\hat{f}_i \subset X_i^1$ for some i.

It follows that f is homotopic to $\hat{f}_1\hat{f}_2\dots\hat{f}_p$. Then every f has an expression as the composition of paths uniquely in some A_i .

This shows that $\pi(X) \leq *_{i=1}^r X_i^1$ the free product. Note that $\cap_i^r X_i^1 = \{x_0\}$ the center of X. Whence f_i in A_i and f_{i+1} in A_{i+1} gives no alternative representation for $f_i f_{i+1}$ contained in other X_j unless $f_i f_{i+1}$ is homotopic to the constant loop. It follows that if f is homotopic to $\hat{f}_1 \hat{f}_2 \dots \hat{f}_p$ each loop non-trivial and adjacent to loops in different A_k then $[\hat{f}_1][\hat{f}_2]\dots[\hat{f}_p]$ is necessarily a reduced word $\Rightarrow *_{i=1}^r \pi(X_i^1) \leq \pi(X)$. Thus $\pi(X) \cong *_{i=1}^r \pi(X_i^1) \cong F_n$, the free group on n generators by $\pi(X_i^1) = \pi(S^1) \cong \mathbb{Z}$.

(proof: Free Groups... Graphs) Note that X is a CW-complex with no 2-skeleton $\Rightarrow \pi(X)$ is the group of reduced edge loops under edge concatenation. By reduced loops over n one-balls isomorphic to reduced words over n generators $\pi(X) \cong F_n$.

References

- [1] A. Hatcher, Algebraic

 Topology, Cambridge

 University Press, 2002.
- [2] R. Geoghegan, Topological

 Methods in Group

 Theory, Springer, 2008.
- [3] T. W. Hungerford,

 Algebra, Holt Winehart
 Winston, 1974.
- [4] W. Massey, A Basic
 Course in Algebraic
 Topology, Springer-Verlag,
 1991.

Acknowledgements

Thank you, Alina Vdovina!

homology.io

- Web: http://homology.io
- Online resources for applied topology.
- @homology.io email addresses!
- jarret@homology.io