Matheschülerzirkel Universität Augsburg Schuljahr 2013/2013 Klasse 7./8. – Gruppe 3

Zirkelzettel vom 27. Juni 2014

Eine Menge ist eine Sammlung mathematischer Objekte. Eine Menge kann man durch Auflistung der enthaltenen Objekte angeben. Es gibt beispielsweise die Mengen

$$\mathbb{N} := \{1, 2, 3, \ldots\}$$
$$\mathbb{Z} := \{-2, -1, 0, 1, 2, \ldots\}$$

der natürlichen bzw. ganzen Zahlen. Die in einer Menge enthaltenen Objekte heißen Elemente der Menge. Diese müssen keine Zahlen sein: Wir können beispielsweise auch die Menge $M:=\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$ der Farben beim Kartenspiel bilden. Wenn ein mathematisches Objekt x ein Element einer Menge Y (Mengen werden üblicherweise mit Großbuchstaben bezeichnet) ist, dann schreiben wir $x\in Y$ (lies: "x ist ein Element von Y"). Beispielsweise gilt hier:

$$2 \in \mathbb{N}, \quad 6 \in \mathbb{Z}, \quad -313 \in \mathbb{Z}, \quad \heartsuit \in M, \quad 4 \notin M, \quad -3 \notin \mathbb{N}$$

Die beiden durchgestrichenen Symbole am Ende sollen andeuten, dass die Aussage gerade nicht, also dass 4 kein Element von M und -3 keine natürliche Zahl ist.

Für eine natürliche Zahl $n \in \mathbb{N}$ definieren wir die Menge [n] als die Menge aller natürlichen Zahlen, die kleiner oder gleich n sind, also

$$[1] = \{1\},$$

$$[3] = \{1, 2, 3\},$$

$$[n] = \{1, 2, 3, ..., n\}.$$

Eine Menge X heißt eine Teilmenge einer Menge Y (notiert $X \subseteq Y$), falls jedes Element aus X auch in Y enthalten ist. Jede natürliche Zahl ist auch eine ganze Zahl, also ist die Menge der natürlichen Zahlen eine Teilmenge der Menge der ganzen Zahlen ($\mathbb{N} \subseteq \mathbb{Z}$).

Die Menge [3] enthält folgende Teilmengen:

Das Symbol \emptyset bezeichnet die leere Menge, d. h. die Menge, die überhaupt keine Elemente enthält.

Teilmengen einer gegebenen Menge X sind selbst mathematische Objekte. Wir können daher die Menge aller Teilmengen von X bilden. Diese Menge wird die *Potenzmenge* von X genannt und mit $\mathcal{P}(X)$ bezeichnet. Wir haben oben alle Teilmengen der Menge [3] aufgelistet. Wir können daran sofort sehen, dass $\mathcal{P}([3])$ genau acht Elemente enthält.

Aufgabe 1.

Zähle nach, dass die Menge $M := \{ \clubsuit, \diamondsuit, \heartsuit, \spadesuit \}$ genau 16 Elemente enthält.

Seien X und Y Mengen. Eine Funktion $f: X \to Y$ von X nach Y ordnet jedem Element $x \in X$ genau ein Element $f(x) \in Y$ zu.

Eine Funktion $f: \mathbb{Z} \to \mathbb{N}$ aus der Menge der ganzen Zahlen in die Menge der natürlichen Zahlen ist die Funktion

$$f: \mathbb{Z} \to \mathbb{N}, \quad f(z) := \begin{cases} 1, & \text{falls } z < 1, \\ z, & \text{falls } z \ge 1. \end{cases}$$

Diese Funktion haben wir durch Fallunterscheidung definiert: Für Zahlen $z \in \mathbb{Z}$ kleiner 1 soll f(z) = 1, für Zahlen $z \in \mathbb{Z}$ größer gleich 1 soll f(z) = z sein (wenn $z \in \mathbb{Z}$ größer gleich 1 ist, so ist z ja eine natürliche Zahl). Ein anderes Beispiel ist die Funktion

$$g: [2] \to M$$
, $f(1) := \emptyset$, $f(2) := \emptyset$.

Nun kann es vorkommen, dass zwei eine Funktion zwei verschiedenen Elementen das gleiche Element zuordnet. Für f gilt beispielsweise f(-2) = 1 = f(1).

Jede natürliche Zahl $n \in \mathbb{N}$ ist auch eine ganze Zahl und f ist so definiert, dass f(n) = n gilt. Somit gibt es für jede natürliche Zahl $n \in \mathbb{Z}$ eine ganze Zahl $z \in \mathbb{Z}$ mit f(z) = n. Das muss aber nicht der Fall sein: Die Funktion g ordnet der Zahl 1 die Farbe \heartsuit und der Zahl 2 die Farbe \diamondsuit zu. Den Farben \spadesuit und \clubsuit wird keine Zahl zugeordnet.

Eine Bijektion zwischen Mengen X und Y ist eine Funktion $f: X \to Y$, bei die in den letzten beiden Absätze beschriebenen Phänomene nicht auftreten. Anders gesagt, jedem Element $x \in X$ wird genau ein Element $f(x) \in Y$ zugeordnet und zwar so, dass

- ullet unterschiedlichen Elementen aus X unterschiedliche Elemente aus Y zugeordnet werden und
- \bullet jedem Element aus Y ein Element aus X zugeordnet wird.

Wenn für zwei Mengen X und Y eine solche Bijektion existiert, dann nennen wir die Mengen zueinander *bijektiv*. Wir schreiben dann $X \cong Y$.

Aufgabe 2.

Zeige, dass $[4] \cong M$ gilt. Ist die Bijektion eindeutig oder gibt es mehrere Bijektionen von [4] nach M?

Aufgabe 3.

Mache dir klar: Jede Menge ist zu sich selbst bijektiv.

Aufgabe 4.

Es gelte $X \cong Y$. Warum gilt dann auch $Y \cong X$?

Bijektionen sind also Eins-zu-Eins-Beziehungen zwischen zwei Mengen. Jedes Element aus X steht in Beziehung zu genau einem Objekt aus Y und umgekehrt.

Seien X und Y zwei Mengen.

- Die Vereinigung $X \cup Y$ von X und Y ist die Menge, die alle Elemente von X und alle Elemente von Y enthält.
- Das Produkt $X \times Y$ von X und Y ist die Menge aller Paare mit einem Element aus X und einem Element aus Y.

Aufgabe 5.

Zeige: Für Mengen A,B,C,Dmit $A\cong B$ und $C\cong D$ gilt:

- $\bullet \ A \times C \cong B \times D$
- $\bullet \ A \coprod C \cong B \coprod D$

Aufgabe 6.

Zeige:

- $[n]\coprod[m]\cong[n+m]$
- $[n] \times [m]$

Aufgabe 7.

Benutze die beiden vorherigen Aufgaben, um eine natürliche Zahl $q \in \mathbb{N}$ anzugeben mit $M \times 3 \cong [q]!$