Applications of Search

ndmarks

triangle inequality

 $\geq dist(a, w) - dist(a, v)$ $dist(v, w) \geq dist(v, b) - dist(w, b)$

W Publix

computation

er bounds (depending on landmark) than simple Euclidean

ance

ending on the landmark, heuristic cost can be 0!!

Images from Goldberg (2011), R

wen a vertex v, calculate all the shortest paths through it.

• For a shortest path P, the reach of the vertex:

$$r_P(v) = \min(cost(s, v), cost(v, t))$$

• Total reach across all paths: $r(v) = max_p(r_P)$

orces you to prioritize highways

Images from Goldberg (2011), R

ortcuts

1d in vertices to reduce the number of shortest paths through a le nodes

Reduces the Reach of intermediate nodes

an prune more paths as a result

Images from Goldberg (2011), R

ipact of Landmark, Reach and Shortcuts

vest (1.6M vertices), random queries, 16 landmarks.

	preprocessing	ing	dnery					
þ	minutes	MB	avgscan maxscan	ms.				
tional Dijkstra		28	28 518723 1197607 340.74	340.74				
	4	N _o	North America (30M vertices), random queries, 16 landma	√ vertice	es), ra	ndom queri	ies, 16 land	ä
	1 100	Ē	method	preprocessing hours GB	essing GB	avgscan	query maxscan	
+Short	17	Ö	Bidirectional Dijkstra		0.5	10255356	27 166 866	7(
+Short+ALT	21	١	ALT	1.6	2.3	250381	3 584 377	\$17
		~~	Reach	impractical	tical			
		8	Reach+Short	11.3	1.8	14684	24618	
		~~	Reach+Short+ALT	12.9	3.6	1 595	7 450	

dberg (2011), Reach for A*

ore Resources

test version of slides explaining Landmarks, Reach, and Shortcuts tp://www.columbia.edu/~cs2035/courses/ieor6614.S16/goldberg.pdf

tp://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/GH05.pdf iper Introducing Landmarks

Iper Introducing Reach (http://www.siam.org/meetings/alenex04/abstacts/rgutman1.p

iper Comparing all of these algorithms (https://www.microsoft.com/enresearch/wp-content/uploads/2004/07/tr-2004-24.pdf

oogle Maps – Transfer Patterns

d time dependent nodes to your graph and precompute lowest ost routes for disjoint subsets (http://ad-publications.informatik.uniiburg.de/ESA transferpatterns BCEGHRV 2010.pdf ncode time domain data in frequency space and modify Dijkstra to ork in that sparse representation (http://ad-publications.informatik.uniiburg.de/SIGSPATIAL frequency BS 2014.pdf uster nodes in subgraphs to minimize precomputation costs (http:, blications.informatik.uni-freiburg.de/ALENEX_scalable_tp_BHS_2016.pdf