Lecture 3

CS436/536: Introduction to Machine Learning

Zhaohan Xi Binghamton University

zxi1@binghamton.edu

Syllabus available on Brightspace

- Please review the syllabus
- Please read the CS department Academic Honesty letter to students
- Please review Watson College and University Academic Integrity policy

HW1

- Due Monday Feb/06 before the class starts
- -3% points for each day the submission is late
- 0 points, not graded if submitted more than 5 days late
- Late days include weekends or holidays
- To be released by end of the day
- Please watch for announcement on Brightspace
- Submission on Gradescope
- Please follow TA's instructions

Recap Quiz Question

The perceptron model can be described mathematically as the set of functions:

$$\mathcal{H} = \left\{ h: h(\mathbf{x}) = sign\left(\left(\sum_{i=1}^{d} w_i x_i \right) + w_0 1 \right) \right\}$$

Hoeffding's Inequality

Hoeffding / Chernoff proved that ν tends to be close to μ , most of the time

$$\mathbb{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
, for any $\epsilon > 0$

i.e. ν is approximately correct most of the time or in other words...

probably approximately correct (PAC) We can learn *something*!

The Error Function

Green:
$$h(x) = f(x)$$

Red: $h(x) \neq f(x)$

$$E_{out}(h) = \mathbb{P}_{\mathbf{x}}[h(\mathbf{x}) \neq f(\mathbf{x})]$$
(size of red region)

But this is UNKNOWN

Income

The Error Function

 $h(\mathbf{x}) = f(\mathbf{x})$ **Green:** $h(x) \neq f(x)$ Red:

 $E_{in}(h)$ = fraction of sampled data points in red region i.e. misclassified data points

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq f(\mathbf{x}_n)]$$

We know this

Income

Learning Problem Setup with Probability

Hoeffding's Inequality for Learning

For a *fixed* hypothesis h

$$\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
, for any $\epsilon > 0$

• If $E_{in} \approx 0$ then $E_{out} \approx 0$ i.e. $\mathbb{P}_x[h(x) \neq f(x)]$ with high probability i.e. $f \approx h$ over all of \mathcal{X}

Now: Given h, we can **verify** whether it is "good"

Hoeffding's Inequality for Learning Verification

For a *fixed* hypothesis h

$$\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
, for any $\epsilon > 0$

• If $E_{in} \approx 0$ then $E_{out} \approx 0$ i.e. $\mathbb{P}_x[h(x) \neq f(x)]$ with high probability i.e. $f \approx h$ over all of \mathcal{X}

Now: Given h, we can **verify** whether it is "good"

What about "Real Learning"?

• Want $g \approx f$ over all of \mathcal{X}

In other words: we want $g(x) \approx f(x)$ for any $x \in \mathcal{X}$ (even when $x \notin \mathcal{D}$)

Want: $E_{out}(g) \approx 0$

- $E_{in}(g) \approx E_{out}(g)$
- $E_{in}(g)$ is small -- Select g from $\mathcal H$ with minimum E_{in} on $\mathcal D$
- \bullet But Hoeffding's inequality only applies to a fixed hypothesis selected before seeing $\mathcal D$

• Will E_{out} be small?

What is Learning?

- Obtaining f
- Result of learning is an approximation of f $g: \mathcal{X} \to \mathcal{Y}$

• Want:

 $g \approx f$ i.e. $g(x_*) \approx f(x_*)$ where x_* is the next test data point

Selection Bias Illustrated with Coin Tossing

Statman, find me a coin guaranteed to turn up *Heads*

Run some experiments:

Say you only have one coin.

The probability of N Heads after N tosses is $\frac{1}{2^N}$

- Now, suppose you toss 100 coins, and at least one coin shows $N\ Heads$ after N tosses
- \circ Should we select the coin and conclude that $\mathbb{P}[Heads] \approx 1$ for the coin?

The probability that at least one among 100 coins turns up N Heads is $1 - \left(1 - \frac{1}{2^N}\right)^{100}$

Selection Bias Illustrated with Coin Tossing

- Say you only have one coin.
- The probability of N Heads after N tosses is $\frac{1}{2^N}$
- The probability of < N Heads after N tosses is $1 \frac{1}{2^N}$

• Now, suppose you toss 100 coins, and all coins show < N Heads after N tosses

$$\left(1-\frac{1}{2^N}\right)^{100}$$

- Also the probability that none of the coins shows $\,N\,$ heads in $\,N\,$ tosses
- The probability that one among 100 coins turns up N Heads is $1-\left(1-\frac{1}{2^N}\right)^{100}$

The Union Bound

For any random events $A_1, A_2, ..., A_n$

$$\Pr(A_1 \cup A_2 \cup \cdots A_n) \leq \Pr(A_1) + \Pr(A_2) + \cdots + \Pr(A_n)$$

$$\text{Also accepted: } \Pr(A_1 \cup A_2 \cup \cdots A_n) = \sum_{i=1}^n \Pr(A_i) - \sum_{i < j} \Pr(A_i \cap A_j) + \sum_{i < j < k} \Pr(A_i \cap A_j \cap A_k) - \cdots + (-1)^n \Pr(\bigcap_{i=1}^n A_i)$$

Implication Rule

For any random events A, B, If A implies B $(A \Rightarrow B)$, then

$$\Pr(A) \leq \Pr(B)$$

Hoeffding's Inequality for Learning (from finite ${\cal H}$)

Bound $\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon]$ no matter which g is picked from \mathcal{H}

$$|E_{in}(g)-E_{out}(g)|>\epsilon \Rightarrow \qquad |E_{in}(h_1)-E_{out}(h_1)|>\epsilon$$
 or $|E_{in}(h_2)-E_{out}(h_2)|>\epsilon$...
$$|E_{in}(h_M)-E_{out}(h_M)|>\epsilon$$

Implication Rule: If $A \Rightarrow B$, then $\mathbb{P}[A] \leq \mathbb{P}[B]$

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq \mathbb{P}[OR_{m=1}^{M} |E_{in}(h_m) - E_{out}(h_m)| > \epsilon]$$

Hoeffding's Inequality for Learning (from finite ${\cal H}$)

Union Bound: $\mathbb{P}[A \text{ or } B] = \mathbb{P}[A \cup B] \leq \mathbb{P}[A] + \mathbb{P}[B]$

So long as g is picked from \mathcal{H} , where $|\mathcal{H}| = M$:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq \mathbb{P}[\mathrm{OR}_{m=1}^{M} | E_{in}(h_m) - E_{out}(h_m)| > \epsilon]$$

$$\leq \sum_{m=1}^{M} \mathbb{P}[|E_{in}(h_m) - E_{out}(h_m)| > \epsilon]$$

$$\leq M2e^{-2\epsilon^2 N}$$

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2|\mathcal{H}|e^{-2\epsilon^2 N}, \quad \text{for any } \epsilon > 0$$

Interpreting Hoeffding's Bound for Finite ${\cal H}$

So long as g is picked from \mathcal{H} ,

Theorem. With probability at least $1 - \delta$,

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

where $\delta = 2|\mathcal{H}|e^{-2\epsilon^2N}$

Real Learning is Feasible

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}} = O\left(\sqrt{\frac{\log |\mathcal{H}|}{N}}\right)$$

If $N \gg \log |\mathcal{H}|$, then $E_{out}(g) \approx E_{in}(g)$

- No matter how g is selected
- Does not depend on \mathcal{X} , P(x), or the target function f
- Only requires that the data set \mathcal{D} and the test point can be generated independently from P(x)

Achieving Learning: $E_{out} \approx 0$

2 Conditions:

$$(1) E_{in}(g) \approx E_{out}(g) \qquad \Rightarrow \qquad E_{out}(g) \approx 0$$

(2) $E_{in}(g) \approx 0$

How to ensure that (1) is satisfied? We cannot compute $E_{out}(g)$

Must be ensured theoretically (e.g. using Hoeffding's inequality)

How to ensure (2) is satisfied? Use a good learning algorithm (e.g. PLA)

But... There is a Tradeoff: The Complexity of ${\cal H}$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

- Smaller $|\mathcal{H}|$
- Larger $|\mathcal{H}|$

- $\Rightarrow E_{out}(g) \approx E_{in}(g)$
- $\Rightarrow E_{in}(g) \approx 0$

For Fixed N, δ :

Feasibility of Learning (with Finite Models)

- No Free Lunch: Cannot learn f exactly from $\mathcal D$ over all $\mathcal X$
- But, Can learn f with high probability due to Hoeffding, if:
 - \mathcal{D} and the test data point are drawn i.i.d. from P(x)
 - ${\mathcal H}$ is fixed and g is selected from ${\mathcal H}$

To achieve learning: i.e. select g from \mathcal{H} so that $E_{out}(g) \approx 0$, we must ensure:

(Step 1) $E_{out}(g) \approx E_{in}(g)$ -- Ensure $|\mathcal{H}|$ is small

Theorem. With probability at least
$$1-\delta$$
, $E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N}\log\frac{2|\mathcal{H}|}{\delta}}$

(Step 2) $E_{in}(g) \approx 0$ -- Learning algorithm \mathcal{A}

The complexity of f

More complex target functions are harder to learn

- Simple $f \Rightarrow \text{can use small } \mathcal{H} \text{ to get } E_{in}(g) \approx 0 \text{ using smaller } N$
- Complex $f \Rightarrow$ need large \mathcal{H} to get $E_{in}(g) \approx 0$ and need larger N