Art Unit: 2419

**AMENDMENTS TO THE CLAIMS:** 

This listing of the claims will replace all prior versions, and listings, of the claims in this

application.

**Listing of Claims:** 

1. (Currently Amended) A method, comprising:

communicating through a dedicated channel comprising both an uplink and a plurality of

downlinks;

controlling a flow of data packets by at least one of a server function and a server in a core

network;

keeping up the dedicated channel after a last speech sample packet is sent downlink from the core

network by sending post-speech packets for a time of such duration that a new uplink can be

established utilizing at least one downlink from the core network; and

wherein the at least one of the server function and the server in the core network transmits the

post-speech packets to the plurality of downlinks after receiving responsive to a packet indicating

an end of speech samples from the uplink.

2. (Previously Presented) The method according to claim 1 wherein the keeping up of the

dedicated channel comprises:

the at least one of the server function and the server determining when the last speech sample

packet is sent;

the at least one of the server function and the server sending at least one post-speech packet

downlink to receiving terminals;

determining whether a terminal taking part in the session needs a new uplink; and

establishing said new uplink.

2

S.N.: 10/727,726 Art Unit: 2419

3. (Previously Presented) The method according to claim 2 wherein each of the receiving

terminals additionally signals the user of the terminal after receiving the last speech sample

packet.

4. (Original) The method according to claim 2 wherein said post-speech packets are sent

downlink 5 to 10 times at intervals of 500 ms at most.

5. (Previously Presented) The method according to claim 4 wherein after a last post-speech

packet the downlink used is released after a delay specific to a cellular network.

6. (Previously Presented) The method according to claim 4 wherein post-speech packets are also

sent to a terminal that used the uplink.

7. (Previously Presented) The method according to claim 1 wherein the dedicated channel used is

kept up in such a manner that at least one post-speech packet is appended to a last speech packet

received by the at least one of the server function and the server.

8. (Currently Amended) An apparatus, comprising:

a receiver configured to receive a last speech sample packet from an uplink;

a processing device configured to prolong an existence of downlinks by sending post-speech

packets to a plurality of downlinks for a time of such duration that at least one new uplink can be

established from a receiving terminal; and

wherein the apparatus is configured to transmit the post-speech packets to the plurality of

downlinks after receiving responsive to a packet indicating an end of speech sample from the

uplink.

9. (Previously Presented) The apparatus according to claim 8, configured to prolong the existence

of a downlink by sending the post-speech packets to at least one terminal connected to the

apparatus.

3

- 10. (Previously Presented) The apparatus according to claim 9, configured to send 5 to 10 post-speech packets at intervals of 500 ms at most.
- 11. (Previously Presented) The apparatus according to claim 10, configured to include in the post-speech packets, information intended for a user of the at least one terminal.
- 12. (Currently Amended) An apparatus, comprising a control unit configured to at least one of recognize or transmit post-speech packets which are transferable on a packet data channel responsive to a packet indicating an end of speech samples.
- 13. (Previously Presented) The apparatus according to claim 12, comprising the control unit further configured to perform signaling after receiving a last speech sample packet.
- 14. (Previously Presented) The apparatus according to claim 12, where the recognized post-speech packets are appended to speech sample packets.
- 15. (Currently Amended) A cellular network configured to maintain a dedicated channel between a sending terminal and a plurality of receiving terminals by sending after responsive to a last speech packet from the sending terminal, post speech packets to the plurality of receiving terminals for a time of such duration that a new dedicated channel can be established utilizing said earlier dedicated channel.
- 16. (Previously Presented) The cellular network according to claim 15, where said dedicated channel in the cellular network is maintained by sending the post-speech packets, after a last speech packet transmitted, to at least one terminal connected to the dedicated channel.
- 17. (Original) The cellular network according to claim 16, where an element for sending post-speech packets is a server operating in the network.
- 18. (Original) The cellular network according to claim 17, where the server sending post-speech packets is a router server.
- 19. (Original) The cellular network according to claim 16, where an element for sending post-speech packets is a terminal ending its transmission.

20. (Previously Presented) The cellular network according to claim 16 wherein the dedicated

channel is maintained by sending 5 to 10 post-speech packets at intervals of 500 ms at most.

21. (Previously Presented) The cellular network according to claim 20 wherein after a last post-

speech packet said earlier dedicated channel is arranged to be released after a delay specific to the

network.

22. (Currently Amended) A data storage medium encoded with software readable by a data

processing device for performing actions for continuing the existence of a dedicated channel in a

packet-switched cellular network, the actions comprising:

determining when a last speech sample packet is sent uplink,

sending at least one post-speech packet to a plurality of receiving terminals responsive to the last

speech sample packet,

determining whether a receiving terminal taking part in the session needs a new uplink, and

establishing said uplink.

23. (Cancelled)

24. (Currently Amended) A computer readable medium encoded with a computer program

executable to perform actions comprising:

communicating through a dedicated channel comprising both an uplink and a plurality of

downlinks;

controlling a flow of data packets by at least one of a server function and a server in a core

network;

keeping up the dedicated channel after responsive to a last speech sample packet is sent downlink

from the core network by sending post-speech packets for a time of such duration that a new

uplink can be established utilizing at least one downlink from the core network; and

transmitting the post-speech packets to the plurality of downlinks after receiving a packet

indicating an end of speech sample from the uplink.

5

25. (Previously Presented) The computer readable medium encoded with a computer program

according to claim 24, wherein the keeping up of the dedicated channel comprises:

determining when the last speech sample packet is sent;

sending at least one post-speech packet downlink to receiving terminals;

determining whether a terminal taking part in the session needs a new uplink; and

establishing said new uplink.

26. (Previously Presented) The computer readable medium encoded with a computer program

according to claim 25, wherein each of the receiving terminals additionally signals the user of the

terminal after receiving the last speech sample packet.

27. (Previously Presented) The computer readable medium encoded with a computer program

according to claim 25 wherein said post-speech packets are sent downlink 5 to 10 times at

intervals of 500 ms at most.

28. (Previously Presented) The computer readable medium encoded with a computer program

according to claim 27 wherein after a last post-speech packet the downlink used is released after

a delay specific to a cellular network.

29. (Previously Presented) The computer readable medium encoded with a computer program

according to claim 27 wherein post-speech packets are also sent to a terminal that used the

uplink.

30. (Previously Presented) The computer readable medium encoded with a computer program

according to claim 24 wherein the dedicated channel used is kept up in such a manner that at

least one post-speech packet is appended to a last speech packet received by the at least one of

the server function and the server.

6.