(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-208089

(43)公開日 平成6年(1994)7月26日

(51) Int.Cl. ⁵ G 0 2 B 27/4 26/0 G 0 2 F 1/0	E		FΙ	技術表示箇所
1/1 1/1		9017-2K 7408-2K		
			未請求請求	頁の数1 OL (全 4 頁) 最終頁に続く
(21)出願番号	特願平5-185924		(71)出顧人	590000879
(22)出顧日	平成5年(1993)7	月28日		テキサス インスツルメンツ インコーポ レイテツド
(31)優先権主張番	921869			アメリカ合衆国テキサス州ダラス, ノース セントラルエクスプレスウエイ 13500
(32)優先日	1992年7月29日		(72)発明者	ジェームズ エム. フローレンス
(33)優先権主張国	米 国(US)			アメリカ合衆国テキサス州リチャードソ ン, ウオルナット クリーク プレース 4
			(74)代理人	弁理士 浅村 皓 (外3名)

(54) 【発明の名称】 コヒーレント光を用いる無スペックル・ディスプレイ装置

(57)【要約】

【目的】 コヒーレント光を用いる無スペックル・ディ スプレイ装置を開示する。

【構成】 コヒーレント光は、空間的光変調器28を照 明するために、回転する拡散素子22を通して送られ る。回転する拡散素子22は、干渉パターンを人の目に よって検出されえない速度でスクリーン32上において 動き回らせる。それによってスペックルは消失したよう に見え、鲜明なディスプレイ画像が観察されることにな る。拡散索子22は、大抵はすりガラスから構成され る。

-. :.

1

【特許請求の範囲】

【請求項1】 a. 少なくとも1つのコヒーレント光源 と、

b. 該少なくとも1つのコヒーレント光源からのコヒー レント光を画像形成装置を経て運動せしめ且つ拡散せし める拡散素子と、

- c. 前記画像形成装置からの光を受ける空間的光変調器 ٤.
- d. 該空間的光変調器によって作り出される画像をディ スプレイする観察面と、を含む無スペックル・ディスプ 10

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ディスプレイ装置に関 し、特にコヒーレント光源を用いるディスプレイ装置に 関する。

[0002]

【従来の技術】ディスプレイにおけるレーザ照明は、標 準的な照明方式の多くの利点を有し、特にカラーディス プレイにおいてそうである。レーザは、良好な色純度を 20 有する高電力の光を発生する。赤、緑、および青のレー ザ光の混合は、反射ミラーを含む標準的な光学的部材に よって比較的簡単に行われうる。しかしながら、1個の レーザを使用する場合は干渉問題を生じ、1つより多く のレーザを使用する場合にはその問題は複合的になる。

【0003】それぞれのレーザは、位相間に連続的な関 係を有してコヒーレントであるから、諸レーザがピーム スプリッタとレンズ系とを用いて拡散されると、位相バ ターンはスペックルと呼ばれる特殊な干渉パターンを生 じる。スペックルを有する画像は、もし見えたとして 30 も、極めて鮮明には見えない。そのわけは、干渉パター ンはしばしば互いに打ち消し合って雑音の多いぼけた画 像を生じるからである。 3 個のレーザをいっしょに配置 すると、この問題は、雑音がほとんど完全に所望の画像 を消失させるまでに大きくなる。

[0004]

【発明が解決しようとする課題】レーザは照明電力が大 きいために、通常は比較的に小さい作動面積を有する空 間的光変調器に対して用いるのに所望される。スペック よび多くの成分を有する極めて複雑な光学系によるなど の、多くの試みがこれまでになされてきた。これらの構 想は、極めて多くの経費または極めて複雑な装置を必要 とする。従って、ディスプレイにおけるレーザスペック ルを解消する経済的で簡単な解決法が求められている。

[0005]

【課題を解決するための手段】ここに開示される本発明 は、コヒーレント光を用いる無スペックル・ディスプレ イ装置を提供する。このディスプレイ装置は、1個のレ ーザまたはレーザの組合せをターンオンまたはオフし得 50

るある種のシャッタによって制御される、該1個のレー ザまたはレーザの組合せにより照明される。レーザ光ま たは混合されたレーザ光がいっしょにされて、空間的光 変調器またはピーム上へ送られる時、それは回転する拡 散素子を通過せしめられる。この拡散素子は、観察者の 目が全くスペックルを視覚に留めず、鮮明で色彩に富ん だ画像を見るように、スペックルパターンをスクリーン 上で動き回らせる。

[0006]

【実施例】本発明およびその他の利点のさらに完全な理 解は、添付図面と共に以下の詳細な説明を参照すること によって得られる。図1には、空間的光変調器ディスプ レイのための照明装置が示されている。この実施例にお ける光源は、たいていはレーザである3つのコヒーレン ト光源から成り、その1つは赤のもの10、1つは青の もの12、また1つは緑のもの14で、これらは順次ゲ ート作用を受け、完全なカラーディスプレイを発生せし める。もう1つの可能な光源は、同調せしめられたとき 3色すべてを発生し得る同調可能レーザであり得る。例 えば、もしレーザ14が同調レーザとして選択されたも のであり、素子20がミラーであれば、レーザ12およ び10とそれらの付属装置とは破線19で示されている ように省かれ得る。異なる色のレーザは、1つの色の光 は通過させるが、他の色の光は反射するダイクロイック ・ピームスプリッタを用いて組み合わされる。素子16 は、レーザ10からの赤色光を反射するダイクロイック ・ピームスプリッタであるか、またはミラーであり得、 ダイクロイック・ピームスプリッタ18は、赤色光は通 過させるが、レーザ12からの青色光は反射する。同様 にして、ダイクロイック・ピームスプリッタ20は、レ ーザ14から反射される緑色光以外の全ての光を通過さ せる。もう1つの可能な選択は半銀付けミラーであり、 これはレーザ側からの光は反射するが、他の側からの光 は通過せしめる。ビームは次に拡散素子22を通過し、 拡散素子22は、これを回転させるためのコイルまたは モータ24から動力を受ける。

【0007】以前の発明においては、レンズまたは拡散 素子は単にビームを、空間的光変調器28をより完全に **照明するように拡大するために用いられた。これは、従** ル問題を克服するために、スクリーンの振動、音波、お 40 来の技術の項に前述されているように、コヒーレント光 の干渉パターンに起因するスペックルを解消しない。も し拡散素子が軸上に取付けられ、空間的光変調器上へ光 を集束させるレンズ26より手前で回転せしめられれ ば、観察面32上のスペックルは消失する。もう1つの 可能性として、拡散素子を振動させることもできる。観 察面32は、空間的光変調器28によって画像に変換さ れた光を受ける。観察者または観察装置は、観察面32 のいずれの側に存在してもよい。この実施例における空 間的光変調器は、ディジタル・マイクロミラーデバイス (DMD、すなわち変形可能ミラーデパイス)、または

反射モードで動作する液晶などの、反射性の変調器であ る。拡散素子は、さまざまな強誘電体および液晶セルの ような透過性変調器に対しても同様に役立つ。

【0008】スペックルはなお存在しているのである が、運動する拡散素子は干渉パターンを分裂させ、これ らのパターンすなわちスペックルをスクリーン上で動き 回らせるのである。もし拡散素子が十分に速く回転せし められれば、スペックルは消失したように見える。この 現象を生ぜしめる背後の原動力になっているのは、人の 目の運動画像に対する統合時間である。もし目が検出し 10 うるよりも速くスペックルが運動すれば、それは消失し たように見えるのである。

【0009】上述の実施例を用い、前記素子を1回転毎 分 (rpm) から約100rpmまでで回転させること により実験が行われた。スペックルは、30-40rp mの範囲において全ての観察者に対して消失することが わかった。本発明者は、100 r pmで素子を回転させ てもなんら追加の利点は得られず、単により多くの電力 を消費するのみであることを見出した。

【0010】図2は、無スペックル・ディスプレイを実 20 現するための別の方法を示す。それぞれの光源は、自身 の拡散案子および空間的光変調器を有する。例えば、コ ヒーレント赤色光源10は、モータまたはコイル24A を備えた拡散素子22Aと、集束レンズ26Aと、空間 的光変調器28Aとを有する。得られる赤色画像はダイ クロイック・ピームスプリッタ16へ送られる。次に、 青色および緑色レーザ12および14からのコヒーレン ト光は、拡散素子22Bおよび22Cと、モータまたは コイル24Bおよび24Cと、集束レンズ26Bおよび 26 Cと、空間的光変調器 28 B および 28 Cと、によ 30 ける、第1 項記載の装置。 って示されているように、同様に処理される。このよう に、赤、緑、および青の光源は、図1に示されているよ うに順次によりも、並列に動作せしめる方が容易であ る。点34における最終画像は、次に観察面上へ投射さ れる.

【0011】図3Aおよび図3Bは、拡散素子の相異な る可能性を示す。図3Aは、素子22とそれに取付けら れたモータまたはコイル24との側面図である。図3A においては、素子が利得をもたないものと仮定されてい る。空間的光変調器から違い側から送られた光は、光が 40 全ての方向に等しく広がるランベルトパターンをなして 拡散案子を通過する。図3Bの素子22は、素子の曲率 から生じる利得を有する。この場合の光は、曲面の中央 に向かいより集中するように、素子を通過する。素子の 利得は、光を空間的光変調器上へ集束せしめるために用 いられるレンズの開口数をより完全に満たして、装置を 光学的により効率的にする。いずれの素子も、大抵は透 明でない、すりガラスなどの拡散材料から作られ、任意 の形状を有しうる。

【0012】これまで、コヒーレント光を用いる無スペ 50:-22: 拡散素子:...・

ックル・ディスプレイの特定の実施例を説明してきた が、その特定の内容は、特許請求の範囲の記載を除いて 本発明の範囲を限定するものと考えてはならない。

【0013】以上の説明に関して更に以下の項を開示す る。

- (1) a. 少なくとも1つのコヒーレント光源と、
- b. 該少なくとも1つのコヒーレント光源からのコヒー レント光を画像形成装置を経て運動せしめ且つ拡散せし める拡散素子と、
- c. 前記画像形成装置からの光を受ける空間的光変調器 ٤,
 - d. 該空間的光変調器によって作り出される画像をディ スプレイする観察面と、を含む無スペックル・ディスプ

【0014】(2)前記少なくとも1つのコヒーレント 光源がさらに、1つは赤色光レーザ、1つは緑色光レー ザ、1つは育色光レーザである3レーザから構成されて いる、第1項記載の装置。

【0015】(3)前配少なくとも1つのコヒーレント 光源がさらに、同調可能レーザから構成されている、第 1項記載の装置。

(4) 前記拡散素子が利得をもたない、第1項記載の装

【0016】(5)前記拡散素子が、前記空間的光変調 器より手前に置かれた画像形成用レンズの開口をより良 く満たすための利得を有する、第1項記載の装置。

(6) 前記拡散素子がすりガラスから構成されている、 第1項記載の装置。

【0017】(7)前記拡散素子がモータから動力を受

(8) 前記拡散素子がコイルから動力を受ける、第1項 記載の装置。

【0018】(9)コヒーレント光を用いる無スペック ル・ディスプレイ装置が開示される。該光は、空間的光 変調器を照明するために、回転する拡散素子を通して送 られる。該回転素子は、干渉パターンを人の目によって 検出されえない速度でスクリーン上において動き回らせ る。拡散素子は大抵はすりガラスから構成される。

【図面の簡単な説明】

【図1】拡散素子を有するコヒーレント光ディスプレイ 装置を示す図。

【図2】コヒーレント光ディスプレイ装置の別の実施例 を示す図。

【図3】AおよびBは、拡散素子の可能な実施例を示す

and the second control of the second control

【符号の説明】

- 10 赤色レーザ
- 12 青色レーザ
- 14 緑色レーザ

(4)

特開平6-208089

24 コイルまたはモータ

26 集束レンズ

28 空間的光変調器

3 2 観察面

【図1】

【図3】

フロントページの続き

(51) Int. Cl. 5 H O 1 S 3/00 識別記号

庁内整理番号 A 8934-4M

FΙ

技術表示箇所