

Report No.: EED32L00193802 Page 1 of 47

TEST REPORT

Product Yanshee Robot

Trade mark **UBTCH** Model/Type reference ERHA101

Serial Number N/A

Report Number EED32L00193801 **FCC ID** : 2AHJX-YANSHEE-1

Date of Issue Aug. 26, 2019

Test Standards 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD 16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Report Seal

Alex Wu

Reviewed by:

Jay Zheng Whore Xm

Ware Xin

Date:

Aug. 26, 2019

Kevin Yang

Check No.:3096399624

Page 2 of 47

2 Version

Version No.	Date	Description Original			
00	Aug. 26, 2019				
	200	A*5	793	75	
((d)	(6,4,2)	(6/17)	

3 Test Summary

rest Guillillary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	N/A
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

4 Content

1 COVER PAGE				•••••		······································
2 VERSION						2
3 TEST SUMMARY.			•••••			3
4 CONTENT			•••••			
5 TEST REQUIREM	ENT	(3)				(637)
5.1.1 For Cond	ucted test setup ted Emissions test					
5.1.3 For Cond	ucted Emissions tes	st setup				6
	MENT DN					
6 GENERAL INFOR	MATION					7
6.2 GENERAL DESC 6.3 PRODUCT SPEC 6.4 DESCRIPTION OF 6.5 TEST LOCATION 6.6 DEVIATION FRO 6.7 ABNORMALITIES 6.8 OTHER INFORM 6.9 MEASUREMENT 7 EQUIPMENT LIST 8 RADIO TECHNICA \Appendix A): 6 Appendix B): C		VE TO THIS STANDAR CONDITIONS	S, K=2)			
Appendix D): R Appendix E): P Appendix F): A Appendix G): A Appendix H): R	F Conducted Spurion F Conducted Spurion F Conducted Spurion F Conducted Spurion F Conducted Spurious Emula Spurion F Conducted Spurious Emula Spurion F Conducted Spurious Emula Spu	ous Emissions ityt lucted Emission und fundamental fre	equency (Radia	ated)		2′ 25 27 28
PHOTOGRAPHS OI	TEST SETUP		•••••	•••••	•••••	45
PHOTOGRAPHS OI	EUT CONSTRUC	TIONAL DETAILS.	•••••			47

Report No. : EED32L00193802 Page 5 of 47

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(9)
Temperature:	24°C		
Humidity:	58 % RH	Daniel Canada	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)		
ŀ	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	
	1.00		1.00	1100	(L. 7.1)	

6 General Information

6.1 Client Information

Applicant	LIBTECH DOBOTICS CORD LTD	
Applicant:	UBTECH ROBOTICS CORP LTD	
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001	
-0-	Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA	-0-
Manufacturer:	UBTECH ROBOTICS CORP LTD	(20)
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001	100
	Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA	
Factory:	UBTECH ROBOTICS CORP LTD BAOAN BRANCH	
Address of Factory:	1-2Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan	
Audiess of Factory.	Street, Baoan District, Shenzhen City, P.R.CHINA	

6.2 General Description of EUT

Product Name:	Yanshee Robo	ot	
Model No.(EUT):	ERHA101		
Trade mark:	UBTCH		4
EUT Supports Radios application:	4.1 BT Dual m	node	٧
Power Supply:		MODEL:HKA03609640-8A	
	AC Adapter	INPUT:100-240V 1.5A,50/60Hz	
(0,0)	(0,)	OUTPUT:9.6V4.0A	
	.	Model: Yanshee 1.1-2S1P	
	Battery	Capacity: 7.4V, 3000mAh/ 22.2Wh	
Sample Received Date:	Jul. 22, 2019		1
Sample tested Date:	Jul. 22, 2019 t	to Aug. 23, 2019	U)

Report No. : EED32L00193802 Page 8 of 47

6.3 Product Specification subjective to this standard

Operation Frequency:		2402MH:	z~2480MHz	(6)	/	(0)	/
Bluetooth \	/ersion:	4.0					
Modulation	Technique:	DSSS					
Modulation	Type:	GFSK	(2)	\			(2)
Number of	Channel:	40	(0,		(0.)		10.
Test Power	Grade:	(manufac	cturer declare))			
Test Softwa	are of EUT:	(manufac	cturer declare))			
Antenna Ty	/pe and Gain:	Chip ante	enna; 1.5 dBi	13	\	13	A
Test Voltag	je:	DC 9.6V		(0)		(6))
Operation F	requency eac	h of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No.: EED32L00193802 Page 9 of 47

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
2	Dadieted Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
***	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		
	/ ANI	1 4 3 1		

7 Equipment List

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	152394	03-01-2019	02-28-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

	3M 9	Semi/full-anecho	ic Chamber	,	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-10-2020
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	3	01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
Signal Generator	Agilent	E4438C	MY450957 44	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY534011 06	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB470505 34	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32L00193802 Page 13 of 47

		*****		10.	- 638	7
		3M full-a	nechoic Cham		Col det-	Cal Due det
	Equipment PSE Automatic test coffuers	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
	RSE Automatic test software	JS Tonscend	JS36-RSE	10166 MY5729013	06-18-2019	06-17-2020
	Receiver	Keysight	N9038A	6	03-27-2019	03-25-2020
)	Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
	Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
	TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
	Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
	Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
	Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
1	Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
	Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
	Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020
	Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
	Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020
	Preamplifier	Agilent	8449B	3008A0242 5	07-12-2019	07-10-2020
Т	emperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
	Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
1	Fully Anechoic Chamber	TDK	FAC-3	()	01-17-2018	01-15-2021
1	Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020
1	Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020
	Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
)	Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 15 of 47

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7050	1.0868	PASS
BLE	MCH	0.7092	1.0849	PASS
BLE	HCH	0.7072	1.0863	PASS

Page 17 of 47

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	1.14	PASS
BLE	MCH	3.44	PASS
BLE	HCH	5.389	PASS

Appendix C): Band-edge for RF Conducted Emissions

Result Table

M	ode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
В	BLE	LCH	0.468	-59.541	-19.53	PASS
В	BLE	HCH	4.898	-56.659	-15.1	PASS

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.267	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.51	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	4.631	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32L00193802 Page 22 of 47

Page 23 of 47

Page 24 of 47

Page 25 of 47

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-12.884	PASS
BLE	MCH	-10.531	PASS
BLE	HCH	-8.648	PASS

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 28 of 47

Appendix G):	AC Power Line Conducted Emission
Test Procedure:	Test frequency range :150KHz-30MHz
) (The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
Cil	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the
(FI)	LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Limit:	Limit (dBµV)

Limit (c	lBμV)
Quasi-peak	Average
66 to 56*	56 to 46*
56	46
60	50
	66 to 56* 56

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : Yanshee Robot Model/Type reference : ERHA101

Temperature : 24° **Humidity** : 52%

Live line:

MHz dBuV dB dBuV dB uV dB uV<	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
2 0.1500 12.98 9.97 22.95 56.00 -33.05 AVG 3 0.1725 33.04 10.00 43.04 64.84 -21.80 peak 4 0.1725 5.80 10.00 15.80 54.84 -39.04 AVG 5 0.2580 22.13 10.07 32.20 61.50 -29.30 peak 6 0.2580 0.27 10.07 10.34 51.50 -41.16 AVG 7 0.3525 16.64 10.05 26.69 58.90 -32.21 peak 8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak			MHz	dBu∀	dB	dBuV	dBuV	dB	Detector	Comment
3 0.1725 33.04 10.00 43.04 64.84 -21.80 peak 4 0.1725 5.80 10.00 15.80 54.84 -39.04 AVG 5 0.2580 22.13 10.07 32.20 61.50 -29.30 peak 6 0.2580 0.27 10.07 10.34 51.50 -41.16 AVG 7 0.3525 16.64 10.05 26.69 58.90 -32.21 peak 8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	1	*	0.1500	35.65	9.97	45.62	66.00	-20.38	peak	
4 0.1725 5.80 10.00 15.80 54.84 -39.04 AVG 5 0.2580 22.13 10.07 32.20 61.50 -29.30 peak 6 0.2580 0.27 10.07 10.34 51.50 -41.16 AVG 7 0.3525 16.64 10.05 26.69 58.90 -32.21 peak 8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	2		0.1500	12.98	9.97	22.95	56.00	-33.05	AVG	
5 0.2580 22.13 10.07 32.20 61.50 -29.30 peak 6 0.2580 0.27 10.07 10.34 51.50 -41.16 AVG 7 0.3525 16.64 10.05 26.69 58.90 -32.21 peak 8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	3		0.1725	33.04	10.00	43.04	64.84	-21.80	peak	
6 0.2580 0.27 10.07 10.34 51.50 -41.16 AVG 7 0.3525 16.64 10.05 26.69 58.90 -32.21 peak 8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	4		0.1725	5.80	10.00	15.80	54.84	-39.04	AVG	
7 0.3525 16.64 10.05 26.69 58.90 -32.21 peak 8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	5		0.2580	22.13	10.07	32.20	61.50	-29.30	peak	
8 0.3660 -1.98 10.03 8.05 48.59 -40.54 AVG 9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	6		0.2580	0.27	10.07	10.34	51.50	-41.16	AVG	
9 2.8545 18.98 9.83 28.81 56.00 -27.19 peak 10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	7		0.3525	16.64	10.05	26.69	58.90	-32.21	peak	
10 3.0705 -0.26 9.83 9.57 46.00 -36.43 AVG 11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	8		0.3660	-1.98	10.03	8.05	48.59	-40.54	AVG	
11 10.1625 11.76 9.96 21.72 60.00 -38.28 peak	9		2.8545	18.98	9.83	28.81	56.00	-27.19	peak	
· · · · · · · · · · · · · · · · · · ·	10		3.0705	-0.26	9.83	9.57	46.00	-36.43	AVG	
12 10.5405 -3.53 9.96 6.43 50.00 -43.57 AVG	11		10.1625	11.76	9.96	21.72	60.00	-38.28	peak	
	12		10.5405	-3.53	9.96	6.43	50.00	-43.57	AVG	

Page 30 of 47

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	0.1500	12.82	9.97	22.79	56.00	-33.21	AVG	
2	0.1590	32.47	9.98	42.45	65.52	-23.07	peak	
3 *	0.1860	31.62	10.01	41.63	64.21	-22.58	peak	
4	0.1860	3.33	10.01	13.34	54.21	-40.87	AVG	
5	0.2985	-0.70	10.10	9.40	50.28	-40.88	AVG	
6	0.3075	23.21	10.09	33.30	60.04	-26.74	peak	
7	0.4335	15.14	10.00	25.14	57.19	-32.05	peak	
8	0.4335	-1.92	10.00	8.08	47.19	-39.11	AVG	
9	2.9985	19.57	9.83	29.40	56.00	-26.60	peak	
10	3.0975	-0.03	9.83	9.80	46.00	-36.20	AVG	
11	10.1175	-2.21	9.96	7.75	50.00	-42.25	AVG	
12	10.1535	12.43	9.96	22.39	60.00	-37.61	peak	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 4011-	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proceds a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was turned from 0 degree. The test-receiver systems Bandwidth with Maximular and the systems of the systems of the antenna was turned from the systems of the	on the top of a rot choic camber. The of the highest ra- eters away from to op of a variable-hi- varied from one re- m value of the fiel tenna are set to re- mission, the EUT of to heights from the term was set to Pea	tating table te table wa diation. he interfere eight anter meter to fo eld strength make the n was arran 1 meter to ees to find	e 0.8 meters rotated 3 ence-receinna tower. ur meters n. Both horneasuremeged to its value at meters at the maxim	rs above the gas above the grant and vent. worst case are and the rotate and reading.	to , which ound t ertical nd the
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	npliance. Also me rum analyzer plo	easure any	emissions	s in the restric	
	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about fully Anechoic Chan 18GHz the distance is h. Test the EUT in the left. The radiation measure Transmitting mode, and	npliance. Also me rum analyzer plochannel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axis	easure any t. Repeat f , change fr n table 0.8 e is 1.5 med he Highest med in X, is positioni	or each portion of each portion Semi- meter to 1 ter). It channel Y, Z axis p	Anechoic Ch .5 meter(Abo	ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chanas 18GHz the distance is h. Test the EUT in the left. The radiation measure Transmitting mode, and j. Repeat above procedure.	npliance. Also me rum analyzer plochannel ure as below: we is the test site, aber change form 1 meter and table towest channel, the ments are performed found the X axiones until all frequents.	easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni	emissions or each por com Semi- meter to 1 der). channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo	ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about fully Anechoic Chan 18GHz the distance is h. Test the EUT in the left. The radiation measure Transmitting mode, and	npliance. Also me rum analyzer plochannel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axis	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni lencies me	emissions for each portion Semi-meter to 1 ter). I channel Y, Z axis programming which it easured ware recorded to the control of the control	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about fully Anechoic Chan 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, an j. Repeat above procedure.	npliance. Also me rum analyzer plochannel ure as below: ve is the test site of the change form 1 meter and table towest channel, the ments are performed found the X axiones until all frequences.	t. Repeat f change from table 0.8 de is 1.5 met the Highest de med in X, is positioni dencies med m @3m)	remissions for each por each por each por meter to 1 fer). It channel Y, Z axis programming which it easured was red was red was red Quasi-per each por each	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete.	ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lei. The radiation measure Transmitting mode, and j. Repeat above procedure. Frequency 30MHz-88MHz	npliance. Also me rum analyzer plochannel ure as below: we is the test site of the change form 1 meter and table owest channel, the ments are performed found the X axiones until all frequences. Limit (dBµV/iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	easure any t. Repeat f n table 0.8 e is 1.5 met he Highest med in X, is positioni iencies me m @3m)	or each portions or each portion Semi-meter to 1 ter). It channel Y, Z axis programming which it easured was red was red was red Quasi-per Quasi-per red was red quasi-per red was red	Anechoic Ch. 5 meter (Aboresitioning for t is worse cases complete.	ambe ove
_imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the leteral in the radiation measure Transmitting mode, and j. Repeat above procedus Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also me rum analyzer plochannel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are performed found the X axiones until all frequences. Limit (dBµV/140.043.5	easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni iencies me m @3m)	remissions for each por each p	Anechoic Ch .5 meter(Abo ossitioning for t is worse cas as complete. mark eak Value	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also me rum analyzer plochannel ure as below: ve is the test site of the change form 1 meter and table towest channel, the ments are performed found the X axiones until all frequences. Limit (dBµV/1040.0) 43.5	easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni iencies me m @3m)	emissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch.5 meter(Above cositioning for t is worse cases complete. mark eak Value eak Value	ambe ove

Page 32 of 47

Test plot as follows:

١	Mode:	GFSK Transmitting	Channel:	2402
	Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.47	52.65	74.00	21.35	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	97.60	100.74	74.00	-26.74	Pass	Horizontal

2019	18.3	125.75	16.7
Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK	·	

Test Graph

ı	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	49.51	52.69	74.00	21.31	Pass	Vertical
	2	2401.7897	32.26	13.31	-42.43	97.16	100.30	74.00	-26.30	Pass	Vertical

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page	34	of 47	
------	----	-------	--

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.27	41.45	54.00	12.55	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	71.14	74.28	54.00	-20.28	Pass	Horizontal

0.7 1	10.7	*178 I	1637
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.26	41.44	54.00	12.56	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	70.91	74.05	54.00	-20.05	Pass	Vertical

_			
Page	36	of 47	

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2479.6871	32.37	13.39	-42.39	93.53	96.90	74.00	-22.90	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	59.68	63.04	74.00	10.96	Pass	Horizontal

6.31	1.65.75	6.79	1.6.34
Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	93.53	96.90	74.00	-22.90	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	59.06	62.42	74.00	11.58	Pass	Vertical

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	72.78	76.15	54.00	-22.15	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	40.80	44.16	54.00	9.84	Pass	Horizontal
3	2483.7171	32.38	13.37	-42.40	41.73	45.08	54.00	8.92	Pass	Horizontal

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32L00193802 Page 39 of 47

2000	10.5	26.76	16.7
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2480.0375	32.37	13.39	-42.39	72.75	76.12	54.00	-22.12	Pass	Vertical
Ī	2	2483.5000	32.38	13.38	-42.40	40.44	43.80	54.00	10.20	Pass	Vertical
1	3	2483.7171	32.38	13.37	-42.40	41.52	44.87	54.00	9.13	Pass	Vertical

Note

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 10Uz	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

			٠.	
	11	m	11	•
_	.!!		ш	٠.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/05	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32L00193802 Page 41 of 47

Radiated Spurious Emissions test Data:

Product : Yanshee Robot Model/Type reference : ERHA101

Temperature : 23℃ Humidity : 54%

Radiated Emission below 1GHz

Mode	e :	BLE GFSK Transmitting				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	84.5195	8.14	1.06	-32.08	46.43	23.55	40.00	16.45	Pass	Н
2	143.9864	7.34	1.41	-31.99	46.61	23.37	43.50	20.13	Pass	Н
3	208.8859	11.13	1.71	-31.94	47.63	28.53	43.50	14.97	Pass	Н
4	258.0698	12.36	1.91	-31.87	47.59	29.99	46.00	16.01	Pass	Н
5	437.7318	16.00	2.47	-31.86	38.13	24.74	46.00	21.26	Pass	Н
6	875.0515	21.80	3.55	-31.70	44.09	37.74	46.00	8.26	Pass	Η
7	109.0629	10.91	1.23	-32.07	38.40	18.47	43.50	25.03	Pass	V
8	208.8859	11.13	1.71	-31.94	53.67	34.57	43.50	8.93	Pass	V
9	267.2857	12.55	1.95	-31.88	48.06	30.68	46.00	15.32	Pass	٧
10	403.1963	15.45	2.39	-31.78	42.16	28.22	46.00	17.78	Pass	V
11	532.9953	17.66	2.77	-31.92	38.29	26.80	46.00	19.20	Pass	V
12	875.0515	21.80	3.55	-31.70	45.09	38.74	46.00	7.26	Pass	V

Mode	e:	BLE GF	SK Tran	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	208.8859	11.13	1.71	-31.94	48.65	29.55	43.50	13.95	Pass	Н
2	254.9655	12.30	1.90	-31.89	45.07	27.38	46.00	18.62	Pass	Н
3	437.7318	16.00	2.47	-31.86	38.36	24.97	46.00	21.03	Pass	Н
4	532.9953	17.66	2.77	-31.92	37.30	25.81	46.00	20.19	Pass	Н
5	687.5318	19.70	3.14	-32.06	38.62	29.40	46.00	16.60	Pass	Н
6	874.9545	21.80	3.54	-31.70	43.33	36.97	46.00	9.03	Pass	Н
7	208.8859	11.13	1.71	-31.94	52.56	33.46	43.50	10.04	Pass	V
8	270.2930	12.61	1.96	-31.88	46.95	29.64	46.00	16.36	Pass	V
9	437.7318	16.00	2.47	-31.86	40.78	27.39	46.00	18.61	Pass	V
10	536.0996	17.72	2.78	-31.93	40.65	29.22	46.00	16.78	Pass	V
11	758.8339	20.45	3.31	-32.05	37.19	28.90	46.00	17.10	Pass	٧
12	875.0515	21.80	3.55	-31.70	44.59	38.24	46.00	7.76	Pass	V

Page 42 of 47

Mode:		BLE GF	SK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	81.4151	7.43	1.05	-32.08	46.24	22.64	40.00	17.36	Pass	Н
2	141.3671	7.25	1.40	-32.00	44.38	21.03	43.50	22.47	Pass	Н
3	176.6787	8.82	1.56	-31.98	45.36	23.76	43.50	19.74	Pass	Н
4	208.8859	11.13	1.71	-31.94	46.41	27.31	43.50	16.19	Pass	Н
5	539.2039	17.78	2.79	-31.95	37.75	26.37	46.00	19.63	Pass	Н
6	875.0515	21.80	3.55	-31.70	43.58	37.23	46.00	8.77	Pass	Н
7	176.5817	8.81	1.56	-31.97	50.14	28.54	43.50	14.96	Pass	V
8	208.8859	11.13	1.71	-31.94	53.60	34.50	43.50	9.00	Pass	V
9	254.9655	12.30	1.90	-31.89	47.64	29.95	46.00	16.05	Pass	V
10	431.6202	15.91	2.45	-31.83	41.64	28.17	46.00	17.83	Pass	V
11	549.9720	18.00	2.79	-31.96	38.57	27.40	46.00	18.60	Pass	V
12	875.0515	21.80	3.55	-31.70	45.07	38.72	46.00	7.28	Pass	V

Transmitter Emission above 1GHz

	1 /0 /0 /1			~ 1		300 . 101 . 1		11 20 7	b) []	
Mode):	BLE GFSK Transmitting				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2899.1899	33.04	4.38	-42.18	50.81	46.05	74.00	27.95	Pass	Н
2	4804.0000	34.50	4.55	-40.66	54.96	53.35	74.00	20.65	Pass	I
3	7206.0000	36.31	5.81	-41.02	43.53	44.63	74.00	29.37	Pass	Н
4	9608.0000	37.64	6.63	-40.76	42.44	45.95	74.00	28.05	Pass	Н
5	12010.0000	39.31	7.60	-41.21	42.73	48.43	74.00	25.57	Pass	Η
6	13729.7153	39.54	8.33	-41.22	46.65	53.30	74.00	20.70	Pass	Н
7	2780.3780	32.85	4.20	-42.24	51.36	46.17	74.00	27.83	Pass	٧
8	4804.0000	34.50	4.55	-40.66	51.63	50.02	74.00	23.98	Pass	٧
9	7206.0000	36.31	5.81	-41.02	43.01	44.11	74.00	29.89	Pass	V
10	9608.0000	37.64	6.63	-40.76	41.83	45.34	74.00	28.66	Pass	V
11	12010.0000	39.31	7.60	-41.21	42.68	48.38	74.00	25.62	Pass	V
12	14911.7941	40.36	9.16	-42.31	45.83	53.04	74.00	20.96	Pass	V

Mode:		BLE GF	SK Tran	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2707.1707	32.73	4.12	-42.27	52.02	46.60	74.00	27.40	Pass	Н
2	4880.0000	34.50	4.80	-40.60	42.72	41.42	74.00	32.58	Pass	Н
3	7320.0000	36.42	5.85	-40.92	42.47	43.82	74.00	30.18	Pass	Н
4	9760.0000	37.70	6.73	-40.62	40.96	44.77	74.00	29.23	Pass	Н
5	12200.0000	39.42	7.67	-41.17	43.44	49.36	74.00	24.64	Pass	Н
6	15446.8298	40.85	9.11	-42.92	46.35	53.39	74.00	20.61	Pass	Н
7	2821.9822	32.92	4.24	-42.23	51.42	46.35	74.00	27.65	Pass	V
8	4880.0000	34.50	4.80	-40.60	43.96	42.66	74.00	31.34	Pass	V
9	7320.0000	36.42	5.85	-40.92	42.52	43.87	74.00	30.13	Pass	V
10	9760.0000	37.70	6.73	-40.62	41.19	45.00	74.00	29.00	Pass	V
11	12200.0000	39.42	7.67	-41.17	44.30	50.22	74.00	23.78	Pass	V
12	15038.8026	40.44	9.37	-42.38	45.79	53.22	74.00	20.78	Pass	V

Page 44 of 47

						70				
Mode:		BLE GFSK Transmitting				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1208.8209	28.11	2.66	-42.88	59.25	47.14	74.00	26.86	Pass	Н
2	2821.7822	32.91	4.24	-42.22	52.35	47.28	74.00	26.72	Pass	Н
3	4960.0000	34.50	4.82	-40.53	44.14	42.93	74.00	31.07	Pass	Н
4	7440.0000	36.54	5.85	-40.82	43.21	44.78	74.00	29.22	Pass	Н
5	10506.5004	38.50	7.06	-41.18	45.35	49.73	74.00	24.27	Pass	Н
6	13730.7154	39.54	8.33	-41.22	45.51	52.16	74.00	21.84	Pass	Н
7	3226.0151	33.29	4.55	-41.99	50.42	46.27	74.00	27.73	Pass	V
8	4960.0000	34.50	4.82	-40.53	43.83	42.62	74.00	31.38	Pass	V
9	7440.0000	36.54	5.85	-40.82	43.59	45.16	74.00	28.84	Pass	V
10	9920.0000	37.77	6.79	-40.48	41.95	46.03	74.00	27.97	Pass	V
11	12400.0000	39.54	7.86	-41.12	43.66	49.94	74.00	24.06	Pass	V
12	14950.7967	40.38	9.06	-42.31	46.48	53.61	74.00	20.39	Pass	V

Note

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.:ERHA101

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Report No.: EED32L00193802 Page 46 of 47

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32L00193802 Page 47 of 47

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32L00193801 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

