CAPSTONE PROJECT

SENTIMENT ANALYSIS OF RESTAURANT REVIEWS

Presented By:

Student Name: Mudgolwad Ravi

College Name & Department: JNTUH COLLEGE OF ENGINEERING SULTANPUR

CSE(AI&ML)

OUTLINE

- Problem Statement
- Technology used
- Wow factor
- End users
- Result
- Conclusion
- Git-hub Link
- Future scope

PROBLEM STATEMENT

- Analyzing customer reviews of restaurants to determine sentiments as positive or negative.
- This helps businesses identify areas of improvement and strengths based on feedback.
- Efficient sentiment analysis can improve customer satisfaction and loyalty.
- The aim is to automate the process using machine learning techniques

TECHNOLOGY USED

- Programming Language: Python
- IDE: Google Collab
- Libraries:
- pandas for data handling
- nltk for text preprocessing
- scikit-learn for machine learning models

WOW FACTORS

- Comparison of multiple machine learning algorithms: Naive Bayes, Logistic Regression, Random Forest, and SVM.
- Text preprocessing techniques, including stemming and stopword removal.
- Implementation of TF-IDF for vectorizing text data.
- PCA for dimensionality reduction and standardization of features.

END USERS

- Restaurant owners and managers for understanding customer feedback.
- Data analysts for deriving insights from textual data.
- Researchers working on natural language processing.

RESULTS

GaussianNB Accuracy: 0.69					
GaussianNB		ication ecision		f1-score	support
	0 1	0.73 0.67	0.56 0.81	0.64 0.73	96 104
accura macro a weighted a	vg	0.70 0.70	0.69 0.69	0.69 0.68 0.68	200 200 200

BernoulliNB Accuracy: 0.745					
BernoulliNB Classification Report: precision recall f1-score support					
0 1	0.73 0.76	0.74 0.75	0.74 0.75	96 104	
accuracy macro avg weighted avg	0.74 0.75	0.74 0.74	0.74 0.74 0.75	200 200 200	

MultinomialNB Accuracy: 0.745					
MultinomialNB Classification Report: precision recall f1-score support					
0 1	0.72 0.77	0.76 0.73	0.74 0.75	96 104	
accuracy macro avg weighted avg	0.75 0.75	0.75 0.74	0.74 0.74 0.75	200 200 200	

Logistic Regression Accuracy: 0.74					
Logistic Regression Classification Report: precision recall f1-score support					
	0	0.68	0.85	0.76	96
	1	0.82	0.63	0.72	104
accur	1	. 75		0.74	200
macro	_	0.75	0.74	0.74	200
weighted	avg	0.76	0.74	0.74	200

- Accuracy Comparisons:
- 1. GaussianNB: 69%
- 2. MultinomialNB: 74.5%
- 3. BernoulliNB: 74.5%
- 4. Logistic Regression: 74%
- 5. Random Forest: 70%
- 6. SVM: 74%
- Conclusion: MultinomialNB and BernoulliNB outperform other classifiers in this scenario.

CONCLUSION

- Sentiment analysis effectively identifies positive and negative reviews, aiding restaurants in understanding customer sentiment.
- The best-performing models (MultinomialNB and BernoulliNB) provide a balanced approach to accuracy and generalizability.

GITHUB LINK

Link: https://github.com/mudgolwadravi/IBM-EduNet-DGT-NLP-Al-.git

FUTURE SCOPE(OPTIONAL)

- Integrating deep learning models such as BERT for better accuracy.
- Expanding the dataset to include multi-language reviews.
- Real-time sentiment analysis for immediate feedback.

THANK YOU

