Chromatic profile of $\{C_3, \ldots, C_{2k-1}\}$

J. Böttcher, N. Frankl, D. Mergoni Cecchelli, O. Parczyk, J. Skokan

Proper colouring and chromatic number

Proper colouring and chromatic number

Proper colouring and chromatic number

Proper colouring and chromatic number

The chromatic number $\chi(G)$ is the number of colours needed to colour G.

Start point

Start point

Can we bound $\chi(G)$ if G avoids H?

Start point

Can we bound $\chi(G)$ if G avoids H?

Start point

Can we bound $\chi(G)$ if G avoids H?

Start point

Can we bound $\chi(G)$ if G avoids H?

Start point

Can we bound $\chi(G)$ if G avoids H?

• $H = K_{1,k} \checkmark \chi(G) \leq k$

Start point

•
$$H = K_{1,k}$$
 \checkmark • $H = \mathcal{C}^{\mathsf{Odd}}$

$$\bullet$$
 $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$

Start point

- $H = K_{1,k} \checkmark$ $H = \mathcal{C}^{\mathsf{Odd}} \checkmark \chi(G) \leq 2$

Start point

•
$$H = K_{1,k} \checkmark$$
 • $H = \mathcal{C}^{\mathsf{Odd}} \checkmark$ • $H = K_k$

$$H = \mathcal{C}^{\mathsf{Odd}}$$
 🗸

$$\bullet \ H = K_k$$

Start point

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$ \checkmark $H = K_k$

Start point

Can we bound $\chi(G)$ if G avoids H?

- $H = K_{1,k} \checkmark$ $H = \mathcal{C}^{\mathsf{Odd}} \checkmark$ $H = K_3 \checkmark$

Thm. (Tutte, 1940's). Mycielski, Burling, ...

There are K_3 -free graphs of arbitrarily high chromatic number.

Start point

- $H = K_{1.k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$ \checkmark $H = K_3$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}_{\leq 2k-1}$

Start point

Can we bound $\chi(G)$ if G avoids H?

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$ \checkmark $H = K_3$ X $H = \mathcal{C}^{\mathsf{Odd}}_{\leq 2k-1}$ X

Thm. (Erdős, 1959). Kneser+Lovász, Alon et al., ...

There are graphs with arbitrarily high chromatic number and girth.

Start point

Can we bound $\chi(G)$ if G avoids H?

- $H = K_{1,k}$ \checkmark $H = \mathcal{C}^{\mathsf{Odd}}$ \checkmark $H = K_3$ X $H = \mathcal{C}^{\mathsf{Odd}}_{\leq 2k-1}$ X

Thm. (Erdős, 1959). Kneser+Lovász, Alon et al., ...

There are graphs with arbitrarily high chromatic number and girth.

One of the first applications of the Probabilistic method.

Start point

Can we bound $\chi(G)$ if G avoids H?

•
$$H = K_{1,k}$$
 •

•
$$H = K_{1,k}$$
 \checkmark • $H = \mathcal{C}^{\mathsf{Odd}}$ \checkmark • $H = K_3$ X • $H = \mathcal{C}^{\mathsf{Odd}}_{\leq 2k-1}$ X

$$\bullet \ H = K_3$$

$$ullet H = \mathcal{C}^{\mathsf{Odd}}_{\leq 2k-1}$$
 $oldsymbol{\lambda}$

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Conj. (Erdős, Simonovits, 1973)

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Conj. (Erdős, Simonovits, 1973), Thm. (Häggkvist, 1982)

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Conj. (Erdős, Simonovits, 1973), Thm. (Häggkvist, 1982)

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Conj. (Erdős, Simonovits, 1973), Thm. (Häggkvist, 1982)

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Conj. (Erdős, Simonovits, 1973), Thm. (Häggkvist, 1982)

If G is K_3 -free and $\delta(G) > \frac{1}{8}^{\frac{\gamma}{29} \frac{10}{29}} |G|$, then $\chi(G) \leq 3$.

Prbl. (Erdős, Simonovits, 1973; insp. Hajnal)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Conj. (Erdős, Simonovits, 1973), Thm. (Häggkvist, 1982)

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Thm. (Andrásfai, 1964)

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Thm. (Häggkvist, 1982)

- If G is K_3 -free and $\delta(G)>\frac{2}{5}|G|$, then $\chi(G)\leq 2$;
- If G is K_3 -free and $\delta(G) > \frac{3}{8}^{\frac{7}{29}\frac{10}{29}} |G|$, then $\chi(G) \leq 3$;

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Thm. (Jin, 1995)

- If G is K_3 -free and $\delta(G)>\frac{2}{5}|G|$, then $\chi(G)\leq 2$;
- If G is K_3 -free and $\delta(G) > \frac{10}{29} |G|$, then $\chi(G) \leq 3$;

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Thm. (Thomassen, 2002)

- If G is K_3 -free and $\delta(G)>\frac{2}{5}|G|$, then $\chi(G)\leq 2$;
- If G is K_3 -free and $\delta(G)>\frac{10}{29}|G|$, then $\chi(G)\leq 3$;
- If G is K_3 -free and $\delta(G) > (\frac{1}{3} + \varepsilon)|G|$ then $\chi(G) \leq C_{\varepsilon}$;

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Thm. (Brandt, Thomassé, 2005)

- If G is K_3 -free and $\delta(G)>\frac{2}{5}|G|$, then $\chi(G)\leq 2$;
- If G is K_3 -free and $\delta(G)>\frac{10}{29}|G|$, then $\chi(G)\leq 3$;
- If G is K_3 -free and $\delta(G) > \frac{1}{3}|G|$ then $\chi(G) \leq 4$;

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Thm. (Hajnal graphs)

- If G is K_3 -free and $\delta(G)>\frac{2}{5}|G|$, then $\chi(G)\leq 2$;
- If G is K_3 -free and $\delta(G)>\frac{10}{29}|G|$, then $\chi(G)\leq 3$;
- If G is K_3 -free and $\delta(G) > \frac{1}{3}|G|$ then $\chi(G) \le 4$;
- $\forall k, \varepsilon > 0, \ \exists \text{ a } K_3\text{-free } G \text{ with: } \chi(G) \geq k \text{ and } \delta(G) \geq (\frac{1}{3} \varepsilon)|G|.$

Prbl. (Erdős, Simonovits, 1973)

What can we say if G is K_3 -free and $\delta(G) \geq \alpha |G|$?

Summary (VV.AA., '70s - 2005)

Let G be a K_3 -free graph on n vertices.

$\delta(G) >$	$\frac{2}{5}n$	$\frac{10}{29}n$	$\frac{1}{3}n$	$(\frac{1}{3} - \varepsilon)n$
$\chi(G) \le$	2	3	4	∞

Summary (VV.AA., '70s - 2005)

Let G be a K_3 -free graph on n vertices.

$\delta(G) >$	$\frac{1}{2}n$	$\frac{2}{5}n$	$\frac{10}{29}n$	$\frac{1}{3}n$	$(\frac{1}{3} - \varepsilon)n$
$\chi(G) \leq$	8	2	3	4	∞

Summary (VV.AA., '70s - 2005)

Let G be a K_3 -free graph on n vertices.

$\delta(G) >$	$\frac{1}{2}n$	$\frac{2}{5}n$	$\frac{10}{29}n$	$\frac{1}{3}n$	$\left(\frac{1}{3} - \varepsilon\right)n$
$\chi(G) \leq$	8	2	3	4	∞

Thm. (Allen, Böttcher, Griffiths, Kohayakawa, Morris, 2013)

If G is H-free and $\delta(G)>(f(H)+\varepsilon)\,|G|$, then $\chi(G)\leq C_{\varepsilon,H}$ (optimal)

Our result

Conj. (Letzter, Snyder, '19; Ebsen, Schacht, '20)

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Our result

For k large enough (≥ 600)

Thm. (Böttcher, Frankl, M., Parczyk, Skokan, '23)

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Thm. (Böttcher, Frankl, M., Parczyk, Skokan, '23)

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

Thm. (Böttcher, Frankl, M., Parczyk, Skokan, '23)

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

Thm. (Böttcher, Frankl, M., Parczyk, Skokan, '23)

If
$$G$$
 is $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

Let
$$G$$
 be a $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free graph with $\delta(G)\geq \frac{1}{2k-1}|G|$.

2) This can be shown in an auxiliary graph; (Thomassen, 2007)

Thm. (Böttcher, Frankl, M., Parczyk, Skokan, '23)

If
$$G$$
 is $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

Let
$$G$$
 be a $\{C_3, C_5, \dots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 2) This can be shown in an auxiliary graph; (Thomassen, 2007)
- 3) Work in the auxiliary graph.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

1) Sufficient condition for $\chi(G) \leq 3$;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;

- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \ge \frac{1}{2k-1}|G|$, then $\chi(G) \le 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- $2) \ \ \text{This property can be shown in an auxiliary (edge-weighted) graph;}$
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \ge \frac{1}{2k-1}|G|$, then $\chi(G) \le 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) This property can be shown in an auxiliary (edge-weighted) graph;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=(\{v_1,\ldots,v_h\}\,,\{v_iv_j:d(v_i,v_j)\leq 5\});$
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \ge \frac{1}{2k-1}|G|$, then $\chi(G) \le 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right)$;
- 3) Work in the auxiliary graph.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Work in the auxiliary graph.
 - a) $|H| \le 2k 2$;

If
$$G$$
 is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right)$;
- 3) Work in the auxiliary graph.
 - a) $|H| \leq 2k 2$;
 - b) $\operatorname{girth}_{w}^{\overline{\mathsf{Odd}}}(H) \geq 2k-1;$

If
$$G$$
 is $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=(\{v_1,\ldots,v_h\}\,,\{v_iv_j:d(v_i,v_j)\leq 5\});$
- 3) Work in the auxiliary graph.
 - a) $|H| \leq 2k 2$;
 - b) $\operatorname{girth}_{w}^{\overline{\mathsf{O}}\mathsf{dd}}(H) \geq 2k-1;$
 - c) Spanning 3-tree T.

If
$$G$$
 is $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

Let G be a $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right)$;
- 3) Work in the auxiliary graph.
 - a) $|H| \le 2k 2$;
 - b) $\operatorname{girth}_{w}^{\overline{\mathsf{O}}\mathsf{dd}}(H) \geq 2k-1;$
 - c) Spanning 3-tree T.

Want: Good partition of V(H).

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \, {\sf Connected}; \qquad \bullet \ \, H[A \cup \{v\}] \ \, {\sf weigh. \ \, bipartite}; \qquad \bullet \ \, H[V \setminus A] \ \, {\sf weigh. \ \, bipartite}.$

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \textbf{\{3\}}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \, {\sf Connected}; \qquad \bullet \ \, H[A \cup \{v\}] \ \, {\sf weigh.} \ \, {\sf bipartite}; \qquad \bullet \ \, H[V \setminus A] \ \, {\sf weigh.} \ \, {\sf bipartite}.$

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ {\sf Connected}; \qquad \bullet \ H[A \cup \{v\}] \ \ {\sf weigh.} \ \ {\sf bipartite}; \qquad \bullet \ H[V \setminus A] \ \ {\sf weigh.} \ \ {\sf bipartite}.$

 \circ t

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \, {\sf Connected}; \qquad \bullet \ \, H[A \cup \{v\}] \ \, {\sf weigh.} \ \, {\sf bipartite}; \qquad \bullet \ \, H[V \setminus A] \ \, {\sf weigh.} \ \, {\sf bipartite}.$

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ \, {\sf Connected}; \qquad \bullet \ \, H[A \cup \{v\}] \ \, {\sf weigh.} \ \, {\sf bipartite}; \qquad \bullet \ \, H[V \setminus A] \ \, {\sf weigh.} \ \, {\sf bipartite}.$

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \ge \frac{1}{2k-1} |G|$, then $\chi(G) \le 3$.

Let H be:

- $\{3\}$ -weighted; $|H| \le 2k-2$; $girth_w^{Odd}(H) \ge 2k-1$.

Want $A \subseteq V(H)$:

- Connected; $H[A \cup \{v\}]$ weigh. bipartite; $H[V \setminus A]$ weigh. bipartite.

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \ge \frac{1}{2k-1} |G|$, then $\chi(G) \le 3$.

Let H be:

- $\{3\}$ -weighted; $|H| \le 2k-2$; $girth_w^{Odd}(H) \ge 2k-1$.

Want $A \subseteq V(H)$:

- Connected; $H[A \cup \{v\}]$ weigh. bipartite; $H[V \setminus A]$ weigh. bipartite.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ {\sf Connected}; \qquad \bullet \ H[A \cup \{v\}] \ \ {\sf weigh.} \ \ {\sf bipartite}; \qquad \bullet \ |A| \geq \tfrac{4k}{3}.$

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ {\sf Connected}; \qquad \bullet \ H[A \cup \{v\}] \ \ {\sf weigh.} \ \ {\sf bipartite}; \qquad \bullet \ |A| \geq \tfrac{4k}{3}.$

Case A: Two odd cycles C and D do not intersect.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ {\sf Connected}; \qquad \bullet \ H[A \cup \{v\}] \ \ {\sf weigh.} \ \ {\sf bipartite}; \qquad \bullet \ |A| \geq \tfrac{4k}{3}.$

Case A: Two odd cycles C and D do not intersect.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

• Connected; • $H[A \cup \{v\}]$ weigh. bipartite; • $|A| \ge \frac{4k}{3}$.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

• Connected; • $H[A \cup \{v\}]$ weigh. bipartite; • $|A| \ge \frac{4k}{3}$.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

ullet Connected; ullet $H[A \cup \{v\}]$ weigh. bipartite; ullet $|A| \geq \frac{4k}{3}$.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ {\sf Connected}; \qquad \bullet \ H[A \cup \{v\}] \ \ {\sf weigh.} \ \ {\sf bipartite}; \qquad \bullet \ |A| \geq \tfrac{4k}{3}.$

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

 $\bullet \ \ {\sf Connected}; \qquad \bullet \ H[A \cup \{v\}] \ \ {\sf weigh.} \ \ {\sf bipartite}; \qquad \bullet \ |A| \geq \tfrac{4k}{3}.$

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

• Connected; • $H[A \cup \{v\}]$ weigh. bipartite; • $|A| \ge \frac{4k}{3}$.

If G is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let H be:

 $\bullet \ \ \{3\}\text{-weighted}; \qquad \bullet \ |H| \leq 2k-2; \qquad \bullet \ \text{girth}^{\mathsf{Odd}}_w(H) \geq 2k-1.$

Want $A \subseteq V(H)$:

• Connected; • $H[A \cup \{v\}]$ weigh. bipartite; • $|A| \ge \frac{4k}{3}$.

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H = (\{v_1, \dots, v_h\}, \{v_i v_j : d(v_i, v_j) \le 5\});$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

If
$$G$$
 is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=(\{v_1,\ldots,v_h\}\,,\{v_iv_j:d(v_i,v_j)\leq 5\});$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=(\{v_1,\ldots,v_h\}\,,\{v_iv_j:d(v_i,v_j)\leq 5\});$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

If
$$G$$
 is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let G be a $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let G be a $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

Open problems:

What happens for small k?

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let G be a $\{C_3, C_5, \dots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

- ullet What happens for small k?
- Lower bounds? Explicit constructions?

If
$$G$$
 is $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free and $\delta(G)\geq \frac{1}{2k-1}|G|$, then $\chi(G)\leq 3$.

Let G be a $\{C_3, C_5, \dots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H=\left(\left\{v_1,\ldots,v_h\right\},\left\{v_iv_j:d(v_i,v_j)\leq 5\right\}\right);$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

- ullet What happens for small k?
- Lower bounds? Explicit constructions?
- What about C_{2k-1} -free graphs?

If G is $\{C_3, C_5, \ldots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

Let G be a $\{C_3, C_5, \dots, C_{2k-1}\}$ -free graph with $\delta(G) \geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, \ G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H = (\{v_1, \dots, v_h\}, \{v_i v_j : d(v_i, v_j) \le 5\});$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

- ullet What happens for small k?
- Lower bounds? Explicit constructions?
- What about C_{2k-1} -free graphs?

If G is $\{C_3, C_5, \dots, C_{2k-1}\}$ -free and $\delta(G) \geq \frac{1}{2k-1}|G|$, then $\chi(G) \leq 3$.

Let G be a $\{C_3,C_5,\ldots,C_{2k-1}\}$ -free graph with $\delta(G)\geq \frac{1}{2k-1}|G|$.

- 1) Find a connected A s.t. $\forall v, G[A \cup \{v\}]$ and $G[V \setminus A]$ are bipartite;
- 2) Consider the weighted $H = (\{v_1, ..., v_h\}, \{v_i v_j : d(v_i, v_j) \le 5\});$
- 3) Find a ball of size $\geq \frac{4}{3}k$ in H;

- ullet What happens for small k?
- Lower bounds? Explicit constructions?
- What about C_{2k-1} -free graphs?

