Problema 1

DATI: $R_1 = 300k\Omega$, $R_2 = 200k\Omega$, $R_4 = 16 k\Omega$, $R_5 = 1.5k\Omega$, $R_i = 40k\Omega$, $R_L = 1.2k\Omega$, $V_{DD} = 5V$

Parametrati dei MOS: M₁: $k_{n1} = 2mA/V^2$, $V_{TN1} = 0.5V$, $\lambda_{n1} = 0$

$$M_2$$
: $k_{n2} = 6mA/V^2$, $V_{TN2} = 0.5V$, $\lambda_{n2} = 0$

Dato il circuito in figura, calcolare:

- 1. Il valore delle resistenze R_3 sapendo che la corrente attraverso il MOSFET M_1 è I_{DS1} = 0.25mA.
- 2. La polarizzazione di tutti i transistor identificando la regione di funzionamento e i valori delle tensioni V_{GS} e V_{DS} e della corrente I_{DS} .
- 3. Disegnare il modello ai piccoli segnali e calcolare la transconduttanza g_{m1} e g_{m2} di M_1 e M_2 . Dal modello ai piccoli segnali calcolare:
- 4. La resistenza di ingresso R_{IN}
- 5. La resistenza di uscita R_{OUT}
- 6. Il guadagno di tensione da vi a vo.

$$V_{S_{1}} = V_{G_{1}} - V_{G_{3}} = -2V$$

$$V_{R_{3}} = V_{S_{1}} - (-V_{00}) = 3V$$

$$V_{R_{3}} = V_{S_{1}} - \frac{3V}{O_{1}25mA} = 12 \text{ K/2}$$

$$V_{R_{3}} = V_{0_{1}} - V_{S_{1}} = 1V - (-2V) = 3V$$

$$V_{R_{3}} > V_{R_{3}} - U_{TR_{1}} = O_{1}SV$$

$$V_{R_{3}} > V_{R_{3}} - V_{TR_{1}} = O_{1}SV$$

$$V_{R_{3}} > V_{R_{3}} - V_{TR_{1}} = O_{1}SV$$

$$V_{R_{3}} = V_{R_{3}} + V_{R_{$$

H(1:
$$101 = 0.25 \text{ m/s}$$
, $101 = 3 \text{ m/s}$, 101

$$A_{V} = \frac{v_{0}}{v_{0}} = \frac{v_{0}}{v_{0}} \cdot \frac{$$

Problema 2

DATI: $R_1 = 100k\Omega$, $C_1 = 1\mu F$, $R_2 = 90k\Omega$, $R_3 = 10k\Omega$, $C_3 = 1nF$, $R_4 = 990k\Omega$, $R_5 = 1k\Omega$, $C_5 = 1nF$ Dato il filtro in figura realizzato con un amplificatore operazionale ideale:

- 1. Trovare la funzione di trasferimento del filtro $W(\omega) = v_0 / v_s$.
- 2. Tracciare il diagramma asintotico di Bode del modulo e della fase
- 3. Stimare modulo e fase della funzione di trasferimento dal <u>diagramma asintotico di bode</u> per ω =0 e ω = 10^5 rad/s

N.B. SU R₂ NON PASSA CORRENTE =
$$V_{R_2} = 0$$
 $V_{T_1} = V_{S_1}$
 $V_{T_2} = V_{S_3}$
 $V_{T_4} = V_{S_4}$
 $V_{T_5} = V_{S_5}$
 $V_{T_6} = V_{S_6}$
 $V_{T_6} = V_{S_6}$
 $V_{T_6} = V_{S_6}$
 $V_{T_6} = V_{T_6}$
 $V_{T_6} = V_{T_6}$

Problema 3

DATI: $R_1 = 30k\Omega$, $R_2 = 150k\Omega$

Sia dato il circuito in figura realizzato con un amplificatore operazionale reale con una tensione di offset $V_{OS} = 2mV$ e correnti di bias $I_{BP} = 100$ nA e $I_{BN} = 80$ nA.

- 1. Assumendo $R_3 = 100 \text{ k}\Omega$ e $v_S = 20 \text{mV}$, calcolare la tensione v_O .
- 2. Quanto deve valere R₃ per annullare l'effetto delle correnti di bias?
- 3. Esiste un valore di R₃ che permette di annullare sia le correnti di bias che la tensione di offset? Se si calcolarlo.

 v_0

$$\Rightarrow \text{Efferso in' Vos + Ibn + Ibp:} \\ V_{01} + V_{02} + V_{03} = -36 \text{ mV}$$

$$\text{Efferso dela Sola Ns} = 20 \text{ mV}$$

$$V_{04} = -V_{S} \left(\frac{R_{2}}{R_{1}}\right) = -5V_{S} = 20 \text{ mV}$$

$$V_{04} = -V_{S} \left(\frac{R_{2}}{R_{1}}\right) = -5V_{S} = 20 \text{ mV}$$

$$\text{Efferso delege solve:} \\ \Rightarrow V_{0} = V_{01} + V_{02} + V_{03} + V_{04} = -136 \text{ mV}$$

$$2) \text{ Per Annous reflees solve:} \\ Q_{2} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{3} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{4} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{5} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{6} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{6} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{7} = \frac{1}{100} \text{ Reflee solve:} \\ Q_{8} = \frac{1}{100$$