

Chapter 8 – Multiplexing

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Çoklama

Herkesin çok fazla konuştuğu ortamda, söyleşinin devam etmesi imkansızdı.

Yogi Berra

Coklama Ders 9

Çoklama

- Birden fazla iletim kaynağının geniş iletim kapasitesine sahip ortamı paylaşmasıdır.
- Yüksek hız ihtiyacı olan telekomünikasyon hatlarında kullanılır
- Uzun mesafeli iletişimde yüksek kapasite sağlar.
- Çok sayıda ses ve veri iletiminin aynı anda gerçekleşmesi sağlanır.
- En yaygın türleri: FDM, TDM, STDM dir.

Frekans Bölerek Çoklama Frequency Division Multiplexing

- FDM analog sinyaller için kullanılır
- Aynı iletim ortamında birden fazla sinyal aynı anda iletilir.
- Sinyallerin her biri farklı bir taşıyıcı sinyale modüle edilerek taşınır.
- Her bir sinyale merkezi taşıyıcı frekans olan farklı bir frekans bandı ayrılır.
- Her frekans bandına Kanal (channel) adı verilir.
- Giriş sinyali dijital veya analog olabilir ancak iletilen sinyal analog olmak zorundadır.
- Dijital sinyallerin iletiminde modem ile analog sinyale dönüşüm gereklidir.

Frekans Bölerek Çoklama Frequency Division Multiplexing

FDM Sistem İşleyişi

- n adet analog veya dijital sinyal aynı iletim ortamına çoklanır.
- Modülasyon cihazı ile her bir sinyal istenilen frekans bandına ayarlanır
- Çoklama cihazı ile de modüle edilen sinyaller bir araya toplanır.
- Her bir sinyali taşıyan frekansa alt taşıyıcı (subcarrier) denilir.
- Bir araya toplanan sinyal bütün olarak başka bir taşıyıcı sinyale yüklenerek modüle edilebilir.
- FDM sinyali s(t) nin toplam bandgenişliği

$$B = \operatorname{Sum} B_i \ (1 \le i \le n)$$

- Alınan sinyal n adet band geçiren filtre ile ayrıştırılır.
- Sinyaller demodülasyonla orijial sinyale dönüştürülür.
- Her bir sinyalin doğru olarak ayrıştırılabilmesi için alttaşıyıcı frekanslar çok uygun seçilmeli ki sinyaller üst üste gelmemelidir.

FDM Sistem İşleyişi

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

(c) Receiver

FDM Sesbandı - Örnek

- Ses sinyallerinin bant genişliği 4 kHz olarak alınır.
 Etkin spektrum 300 ila 3400 Hz dir.
- Bir ses sinyali genlik modülasyonu ile 64 kHz e yüklenirse oluşan modüle edilmiş sinyal 8 kHz bant genişliğine sahip olacaktır (60 kHz – 68 kHz)
- Bant genişliğini etkin kullanmak için iletimde sadece alt yanbant seçilir.
- Üç ses sinyali 64, 68 ve 72 kHz taşıyıcı sinyallerle modüle edilerek taşınabilir.
- FDM sistemlerinde iki problemle karşılaşılabilir:
 - Modüle edilen sinyallerin bandgenişliği uygun seçilmezse sinyaller arasında etkileşim (crosstalk) olabilir.
 - Uzun mesafeli iletimlerde yükseltme yapıldığında diğer sinyalleri etkileyecek frekans parçalarının oluşması.

FDM Sesbandı - Örnek

Analog Taşıyıcı Sistemler

- Dünyadaki uzun mesafeli iletimlerde ses sinyallerinin yüksek kapasiteli iletim hatlarından iletilmesine göre tasarım yapılır.
- Bu uygulamalarda en yaygın kullanılan teknik FDM'dir.
- FDM yapısı kullanılarak oluşturulan AT&T (Amerika) ve ITU-T (Uluslararası) değişik kapasitelerde iletimi sağlamaktadır.
- Kanallar grupları, gruplar supergrupları, supergruplar mastergrupları oluşturur.
- Group
 - Her biri 4kHz olan 12 ses kanalı toplam 48kHz bant genişliğinde olur.
 - Taşıyıcı bant aralığı 60kHz ile 108kHz arası
- Supergrup
 - 5 FDM grubu 60 kanalı destekleyecek şekilde tekrar gruplanır
 - Taşıyıcı bant aralığı 312 kHz ile 552 kHz arası (48 kHz artışlarla)
- Mastergrup
 - 10 FDM supergrubu 600 kanalı destekleyecek şekilde tekrar gruplanır
 - Taşıyıcı bant genişliği 2,52 MHz ile 612 kHz arası
- Orijinal ses sinyali her bir gruplamada yeniden modüle edilir. Modülatör ve çoklayıcı eğer nonlineer özellikler içerise her bir modülasyonda gürültü oluşabilir.

Dalgaboyu Bölerek Çoklama Wavelength Division Multiplexing (WDM)

- Birden çok ışık yayımının aynı fiber optik hat üzerinden iletilmesi sağlanır.
- WDM, gerçek bir FDM uygulama tipidir.
- Farklı dalgaboyları farklı veri kanalı olarak kullanılır
 - Ticari uygulamalarda 160 kanal ile 10 Gbps kullanılmaktadır
 - Laboratuar denemelerinde 256 kanal ile 39.8 Gbps e erişilmiştir.
- Yapısı FDM sistemleri ile aynıdır
 - Her bir kaynak farklı dalga boylarında lazer yayımı yapar.
 - WDM çoğunlukla 1550nm aralığında iletim yapar.
 - Çoklayıcı her bir kaynaktan gelen ışınları birleştirir.
 - 10 km aralıklarla yerleştirilen optik güçlendiricilerle dalgaboyları güçlendirilir.
 - Demultiplexurlarla varış noktasında dalgaboyları ayrıştırılır.
- Dense Wavelength Division Multiplexing (DWDM) daha yakın olarak birleştirilen dalgaboyları için kullanılır.

Senkron Zaman Bölümlü Çoklama (Synchronous Time Division Multiplexing)

Senkron Zaman Bölümlü Çoklama (Synchronous Time Division Multiplexing)

- Dijital veri taşıyan dijital veya analog sinyallerde kullanılabilir.
- Farklı kaynaklardan alınan veriler arka arkaya gelen çerçevelerde çoklanır.
- Her bir çerçeve zaman dilimlerinden (time slots) oluşmaktadır ve her bir kaynağa bir ya da birkaç zaman dilimi atanır.
- Her bir kaynaktan bit veya blok seviyesinde alınan verilerin aralıklı olarak birleştirilmesi sağlanır.
- Örneğin 9,6 kbps veri hızındaki 6 giriş çoklanarak
 57,6 kbps kapasitesindeki tek hattan iletilebilir.
- Zaman dilimleri önceden her bir kaynağa atandığı için senkron TDM olarak adlandırılır.

TDM System Overview

TDM Sistem İşleyişi

- n Adet sinyal aynı iletim ortamına çoklanır.
- Sinyaller çoğunlukla dijital veri taşıyan dijital sinyallerdir.
- Farklı kaynaklardan alınan veriler tampon alanlarda birikir.
- Her bir tampon alanı bir bit veya bir karakter uzunluğundadır.
- Tampon alanları taranarak birleşik dijital veri katarı oluşturulur.
- Tampon alanları yeterince hızlı taranarak bir sonraki veri erişmeden boşaltılır.
- Birleşik sinyalin veri hızı her bir sinyalin veri hızının toplamına eşittir.
- Birleşik sinyal ya dijital olarak iletilir ya da modem üzerinden dönüştürülerek analog olarak iletilebilir.
- Veriler çerçevelere dönüştürülür. Her bir çerçeve zaman dilimlerinin bir çevrimini içerir.
- Zaman dilimi iletim tampon alanın uzunluğuna eşittir.
- Alıcı destelenen veriyi ayrıştırarak ilgili tampon alana yönlendirilir.
- Her alıcı ilgili göndericinin hızında alım yapabilecek şekildedir.

TDM Link Kontrol

- İletilen veri katarı başlık ve artbilgi içermez
- Veri link kontrol protokolü ihtiyacı yoktur
- Akış Kontrolü (flow control)
 - Çoklanan veri iletim hızı sabittir
 - Eğer bir kanal veri iletimi gerçekleştiremeyecek olsa, diğerleri iletime devam etmelidir
 - Problemli kanalın zaman dilimi boş olarak geçecek ancak toplam veri iletim hızı aynı kalacaktır.
- Hata Kontrolü (error control)
 - Bir kanalda oluşan hata için bütün çerçeve tekrardan gönderilmez.
 - He bir kanal için tek olarak hata kontrolü gerçekleştirilir.

TDM'de Veri Hat Kontrolü

(b) Input data streams

```
\cdots \ f_2 \ F_1 \ d_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ d_1 \ A_2 \ C_1 \ F_2 \ A_1 \ f_2 \ F_1 \ f_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ C_1 \ A_2 \ A_1 \ F_2 \ F_1
```

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data field

A = address field f = one octet of FCS field

C = control field

TDM'de Veri Hat Kontrolü

- Her bir kanal için HDCL gibi veri bağlantı kontrolü ayrık olarak gerçekleştirilebilir.
- 3 bytelik HDLC çerçeveleri içeren bir veri kaynağı ile 4 bytelik HDLC çerçevesi içeren 2. kaynak byte olarak birleştirildiğinde iki kaynaktan alınan bytelar destelenerek çoklama yapılır.
- İletim sırasında bir kanal için bütünlük kaybolsa da alım sonrası veriler birleştirilerek bütünlük sağlanır.
- Çoklama ve ayrıştırma işlemleri ile her bir iletimin sanki ayrılmış bir hat üzerinden gerçekleştirilmiş gibi bir izlenim sağlanır.

Çerçeveleme

- TDM hattının bütününün yönetimi için hat kontrol protokolü gerekmez.
- Herhangi bir bayrak veya SYNC karakterleri kullanılmadığından çerçeve senkronizasyonuna ihtiyaç vardır.
- Verici ile alıcının kontrolden çıkmaması ve kanallardaki verilerin kaybolmaması için senkronizasyon gereklidir.
- En yaygın yöntem çerçeveye bir bit eklenmesidir.
 - Kanal kontrolü için çerçeveden çerçeveye değişen bit örüntüsü kullanılır
 - "0" "1" şeklinde her bir çerçevede değişen bit örüntüsünün veri kanalında rastlanması zordur
 - Gelen bitler karşılaştırılarak bir sonraki çerçevenin bulunması sağlanır

Pulse Ekleme

- Senkron TDM tasarımında farklı veri kaynaklarının senkronizasyonu en önemli problemdir.
- Her bir kaynak ayrı bir saat kullanırsa saatler arasındaki farklılıklar senkronizasyonun kaybına sebep olacaktır.
- Bazen farklı kaynaklarının veri hızı basit bir rasyonel sayı ile ilişkilendirilemez.
- Bu gibi durumlar için Pulse Ekleme uygun bir çözümdür
 - Çıkış çerçeve veri hızı (çerçevelem biti hariç) giriş veri hızlarının toplamından büyüktür.
 - Her bir giriş sinyaline ilave bitler veya pulse ekelenrek saat sinyali seviyesine ulaşması sağlanır.
 - Sabit pozisyonlara ilave edilen pulslar ayrıştırma sırasında çıkarılarak orijinal sinyal elde edilir.

TDM Örnek

TDM Örnek

- Örnekte dijital ve analog kaynakların senkron TDM ile çoklanması gösterilmektedir.
- Aynı hat üzerinde 11 kaynak çoklanmaktadır.
 - Kaynak-1: 2 kHz Analog
 - Kaynak-2: 4 kHz Analog
 - Kaynak-3: 2 kHz Analog
 - Kaynak-4-11: 7200 bps Dijital
- Analog kaynaklar PCM ile dijital hale dönüştürülür.
 - 1 ve 3. Kaynaklar 4000 örnekleme, 2. Kaynak 8000 örnekleme
 - 4 bitlik kodlama ile dijital veriye dönüştürülür.
 - 4 kHzlik tarama ile 1 ve 3 . Kaynaktan "1" 2. kaynaktan "2" örnek alınır
 - Saniyede 4000 kez 16 bit ile 64 kbps veri hızı oluşur.
- Dijital kaynaklara pulse ilavesi ile her bir kaynak 8 kbps ve toplamda 64 kbps veri hızına yükseltilir.
- Bir çerçevede her biri 16 PCM biti ve her bir dijital kaynaktan 2 bit içeren 32 bitlik çevrimin katları yer alabilir.

Dijital Taşıyıcı Sistemleri

- Uzun mesafeli iletimlerde TDM yapısı kullanılır
- Yüksek kapasiteli iletim hatlarıyla ses iletimi için Amerika, Japonya ve Kanada da AT&T kullanılırken uluslararası bir yapı olarak yine ITU-T kullanılır.
- Amerika ve Japonya DS-1 iletim formatını kullanır.
- DS-1 formatı ile ses ve dijital veri çoklama ile taşınır.
- 24 kanal ile toplam 1.544Mbps hızına erişilir.
- Her bir kanal bir word uzunluğundaki dijitalleştirilen veriden oluşur (PCM, saniyede 8000 örnek ile)
- Dijital veri için de aynı formatla 56kbps
- DS-1 kanallarının birleşimi ile yüksek veri hızlarına erişilir.
 - 4 Adet DS-1 ile oluşturulan DS-2 de 6.312Mbps veri hızı
 - 1,544 x 4 = 6,176 Mbps. Kalan kapasite çerçeveleme ve kontrol bitleri için kullanılır.

DS-1 İletim Formatı

Notes:

- The first bit is a framing bit, used for synchronization.
- Voice channels:
 - •8-bit PCM used on five of six frames.
 - 7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- 3. Data channels:
 - Channel 24 is used for signaling only in some schemes.
 - •Bits 1-7 used for 56 kbps service
 - •Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

DS-1 İletim Formatı

- DS-1 24 kanalı çoklar.
- Her çerçevede kanal başına 8 bit (24x8 = 192 bit) ve bir bit çerçeve biti bulunur.
- PCM ile dijitalleştireme sonucu 8000 örnek/sn ile ses sinyali (8000 x 193 bit = 1.544 Mbps) hıza erişilir.
- 6 çerçevenin her 5 çerçevesi 8 bit PCM örnekleri kullanılır.
- Her 6. çerçevede her bir kanal 7 bit PCM word u ve 1 sinyal biti içerir.
 Sinyal biti ağ kontrolü ve yönlendirme için kullanılır.
- Dijital veri transferinde de DS-1 formatı kullanılır.
- Bu durumda 23 kanal veri için 24. kanal ise senkronizayon amaçlı kullanılır.
- Veri kanallarının 7 biti veri için kullanılır. 8. bit ise kanalın veri mi yoksa sistem kontrol bilgisi için mi kullanıldığını belirler.
- Saniyede 8000 örnek ile 7 bitlik kanallarda 56 kbps veri hızı elde edilir.
- Daha düşük hızlar alt çoklamalarla sağlanır. Bunun için her kanaldan bir bit bu amaç için kullanılır.
- Toplam kapasite bu durumda 6 x 8000 = 48 kbps olur. Bu da 5adet 9,6 kbps, 10 adet 4,8 kbps veya 20 adet 2,4 kbps lik kanallar elde edilebilir.

SONET/SDH

- Senkron Optik Ağ (Synchronous Optical Network SONET)
 ANSI tarafından standart hale getirilmiştir.
- Senkron Dijital Hiyerarşi (Synchronous Digital Hierarchy) ise ITU-T tarafından oluşturulmuştur.
- SONET standart veri iletim oranlarının hiyerarşisini belirler
 - Senkron İletim Sinyal Seviyesi -1 (Synchronous Transport Signal level 1, STS-1) veya Optik Taşıyıcı Seviyesi (Optical Carrier level 1, OC-1) hızı 51.84Mbps
 - STS-1 bir adet DS-3 veya DS1 DS1C DS2 sinyallerinin grubunu taşıyabilir. (Örneğin. 2.048Mbps)
 - STS-1 sinyalleri bir araya toplanarak STS-N sinyali oluşturulur.
 - En düşük ITU-T hızı 155.52Mbps (STM-1) dir. Bu sinyal STS-3'e karşılık düşer.

Çoklama Ders 9

SONET Çerçeve Formatı

SONET Çerçeve Formatı

- SONET'in en temel bloğu STS-1 çerçevesidir.
- STS-1, 810 byte içerir ve iletim süresi 125 μs dir. Toplam veri hızı 51,84 Mbps olur.
- Yapı mantıksal olarak 90 byte lık 9 satırdan oluşan bir matris gibi görülebilir.
- İlk üç sütun (3 x 9 satır = 27 byte) genel amaç için kullanılır.
- Bunun 9 byetı bölümler 19 byeı ise hatta yöneliktir.
- Diğer alanlar taşınan veriyi içerir.

İstatistiksel TDM

- Senkron TDM'de pek çok zaman dilimi (slot) boşa harcanır.
- İstatistiksel TDM daha verimli şekilde zaman dilimlerini kullanır.
- İstatistiksel TDM zaman dilimlerini isteğe bağlı olarak dinamik olarak atar.
- Dilimler baştan herhangi bir kaynağa atanmaz.
- Çoklayıcı, tamponları tarayarak hazır olan dilimlerdeki verileri alıp iletir.
- Hattın veri hızı giriş hatlarının toplam hızından düşüktür (bir anda maksimum kapasiteden daha az dilim hazır olduğundan)
- İstatistikesl TDM daha düşük veri hızlarını destekler ancak her kanal ilave adres ve uzunluk bilgilerini içerir.
- Yoğunluk anında problem olabilir.
 - Cözüm olarak çoklayıcı tampon alanına sahip olmalı. (optimum nokta bulunmalı)

İstatistiksel TDM Çerçeve Formatı

İstatistiksel TDM Çerçeve Formatı

- İstatistiksel çoklamanın çerçeve yapısının performansa olumlu etkisi vardır
- Genel amaçlı bitlerin azaltılması ile çıktının iyileştirilmesi sağlanır.
- İki format kullanımı söz konusu olabilir
 - 1. Format:
 - Her çerçevede sadece tek bir kaynaktan veriler yer alır
 - Kaynak adresi ile belirlenir
 - Veri uzunluğu değişkendir ve çerçeve sonu ile sonlanır
 - Yoğun yüklerde düşük performans
 - 2. Format:
 - Her bir çerçevede çok kaynaktan veriler yer alır
 - Kaynak adresi ile beraber veri uzunluğu da belirtilmelidir
 - Etkinliği artırmak için önceki kaynağa göre adresleme yapılabilir.

Kablolu Modemler

- Kablolu TV sağlayıcıları veri iletimi için iki kanal (her biri bir yönde iletim için) ayrılır.
- Her kanal pekçok abone tarafından paylaşılır.
- İstatistiksel TDM kullanılır.
- Alış (Downstream)
 - Kablo iş düzenleyicisi verileri küçük paketler halinde dağıtır.
 - Aktif olan aboneler indirme kapasitesini bölüşür
 - Gönderiş için zaman dilimi ayırma için de kullanılır.
- Gönderiş (Upstream)
 - Kullanıcılar paylaşılan kanal üzerinde zaman dilimi talebinde bulunur
 - İş düzenleyicisi aboneye zaman dilimi kullanımı konusunda onay bilgisi verir.

Cable Modem Scheme

Asimetrik Dijital Abone Hattı (ADSL) Asymmetrical Digital Subscriber Line

- Aboneler ve ortak dijital ağ arasındaki en yaygın kullanılan modem teknolojisi ADSL'dir.
- Mevcut telefon altyapısını kullanır
- Asimetrik kavramı alış kapasitesinin gönderiş kapasitesine göre daha fazla olması için kullanılır
- FDM tekniği kullanılır
 - Düşük 25kHz'lik kıısm ses için ayrılmıştır (POTS). 4 kHzlik ses bandının dışında kalan kısım etkileşimi önlemek içindir.
 - 25 200 kHz gönderiş (upstream) için
 - 250 1000 kHz alış (downstream) için
 - "echo cancellation" ile alış ve gönderiş bandları üstüste getirilerek 2 adet band kullanılır.
 - Kablo özelliğine bağlı olarak 5,5km lik mesafeye ulaşılabilir.

ADSL Kanal Konfigürasyonu

(a) Frequency-division multiplexing

Ayrık Çokluton Discrete Multitone (DMT)

- DMT faarklı taşıyıcı frekansları kullanılarak her bir kanaldan verinin bir kısmını göndermek için kullanılır.
- İetim bandı (alış vey gönderiş) 4kHz alt kanallarına bölünür.
- Her bir kanal başlangıçta test edilerek SNR (signal-to-noise ratio) özelliği belirlenir
- Daha iyi SNR özelliğine sahip kanallara daha çok bit olacak şekilde atama yapılır.
- Daha yüksek frkanslarda zayıflama sonucu daha düşük SNR oluşur. Bu nedenle yüksek frekanslar daha az veri taşır
- ADSL/DMT her biri 4kHz (60kbps) olan 256 alış alt kanalını içerir.
 - Teorik olarak 15,36Mbps, pratik olaraksa 1,5-9Mbps veri iletim hızına erişilir.

DMT İleticisi

XDSL

- ADSL hızlı veri iletimi sağlayan ve xDSL olarak ifade edilen tekniğin bir tanesidir. Diğerleri;
- Yüksek Veri Hızlı DSL (High data rate DSL -HDSL)
 - OÇift bükümlü kabloyla ve 2B1Q kodlama ile işlem görür (T1)
 - 196 kHz bant genişliği ile 2Mbps veri hızına 3,7km mesafeye kadar erişilir.
- Tek Hatlı DSL (Single line DSL SDSL)
 - O Tek bükümlü kablo üzerinden 2B1Q kodlama ve "echo cancelling" kullanılır
 - 2Mbps veri hızına 3,7km mesafeye kadar erişilir.
- Çok Yüksek Veri Hızlı DSL (Very high data rate DSL VDSL)
 - DMT/QAM tekniği ile çok yüksek hız erişimi sağlanır
 - Farklı servisler farklı bandlarda bulunur
 - \nearrow POTS: 0-4 kHz, ISDN: 4-80 kHz, Upstream: 300-700 kHz, Downstream: ≥ 1 MHz

Özet

- Tek hatta çoklanmış çoklu kanallar
- FDM
- TDM
- İstatistiksel TDM
- ADSL ve xDSL