přednáška 11

- Volba apriorní hustoty pravděpodobnosti
- MMSE vs. MAP
- Wienerův filtr

Volba apriorní hustoty

Připomenutí: aposteriorní hustota pravděpodobnosti má tvar

$$p(A|x) = \frac{p(x|A)p(A)}{p(x)} = \frac{p(x|A)p(A)}{\int p(x|A)p(A)dA}$$

Kde hustota p(A) je apriorní hustota pravděpodobnosti.

Nejběžnější volby pro p(A) jsou uniformní a normální pdf.

- 1. Pokud p(x|A) modelujeme jako hustotu normálního rozdělení, pak díky volbě $A \sim U(a,b)$ nebo $A \sim N(\mu_A, \sigma_A^2)$ bude i aposteriorní hustota p(A|x) normální.
- 2. Tomuto odpovídá např. model dat x=A+w, kde $w\sim N(\mu,\sigma^2)$. Pro odhady \hat{A} se dá ukázat, že

a)
$$\hat{A} = \frac{\frac{N}{\sigma^2}\bar{x} + \frac{\mu_A}{\sigma_A^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_A^2}}$$
, pokud $A \sim N(\mu_A, \sigma_A^2)$.

- b) Aposteriorní rozptyl je dán jako $var(A|x) = \sigma_{A|x}^2 = \frac{1}{\frac{N}{\sigma^2} + \frac{1}{\sigma_A^2}}$.
- c) $BMSE(\hat{A}) < \frac{\sigma^2}{N}$

Metody bayesovských odhadů

Minimum Mean Square Error

$$Bmse(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = \int \left[\int \left(\hat{\theta} - \theta\right)^{2} p(\theta|x) d\theta\right] p(x) dx$$

$$\hat{\theta} = E[\theta|x] = \int \theta p(\theta|x) d\theta$$

Maximum A posteriori Estimators

$$\hat{\theta} = \arg \max_{\theta} p(\theta|x)$$

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

$$\hat{\theta} = \arg\max_{\theta} p(x|\theta)p(\theta)$$

Příklad: Odhad parametru θ exponenciálního rozdělení, pokud předpokládáme apriorní hustotu jako $p(\theta) = \lambda e^{-\lambda \theta}$, pro $\theta > 0$ a $p(\theta) = 0$ jinak.

Lineární bayesovský odhad

Linear minimum MSE (LMMSE):

$$\hat{\theta} = \sum_{k=1}^{N} a_k x_k + a_0$$

- Založeno na korelaci mezi odhadovaným parametrem θ a daty x_k , k=1,...,N. Parametr nekorelovaný s daty nemůže být takto odhadován.
- Není potřeba znát pdf $p(x, \theta)$.
- a_0 je potřeba pouze pokud x, θ mají nenulové střední hodnoty.
- Pouze suboptimální v případě nelineárních modelů.
- Koeficienty a_k nalezneme minimalizací $\mathrm{Bmse}(\hat{\theta}) = E\left[\left(\theta \hat{\theta}\right)^2\right]$.

Příklad:

Odhadujeme θ pouze z jediného pozorování $x_1\sim N(0,\sigma^2)$, skutečná hodnota je $\theta=x_1^2$, tudíž nejlepší odhad by byl $\hat{\theta}=x_1^2$.

LMMSE bude $\hat{\theta} = a_0 + a_1 x_1$, ale ...

Lineární bayesovský odhad

Optimální volba koeficientů dává LMMSE ve tvaru:

$$\hat{\theta} = E[\theta] + \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} (x - E[x])$$

- C_{xx} je $N \times N$ kovarianční matice náhodné veličiny x
- $C_{\theta x} = C_{x\theta}^T$ je $1 \times N$ kovariance mezi θ a x

Vektorová verze:

- Koeficienty hledáme tak, aby minimalizovali $\operatorname{Bmse}(\hat{\theta}_i) = E\left[\left(\theta_i \hat{\theta}_i\right)^2\right]$ pro všechny prvky vektorového parametru θ $(i=1,\ldots,d)$.
- LMMSE je tedy tvaru:

$$\widehat{\boldsymbol{\theta}} = E[\boldsymbol{\theta}] + \mathbf{C}_{\boldsymbol{\theta}x} \mathbf{C}_{xx}^{-1} (x - E[x])$$

- Kde C_{xx} je $N \times N$ kovarianční matice náhodné veličiny x
- $C_{\theta x} = C_{x\theta}^T$ je d × N kovariance mezi θ a x

Signal processing – Wiener filter

Uvažujme x = [x[1], x[2], ..., x[N]] náhodný vektor s nulovou střední hodnotou a kovariancí

$$\boldsymbol{C}_{xx} = \begin{bmatrix} r_{xx}[1] & \cdots & r_{xx}[N] \\ \vdots & \ddots & \vdots \\ r_{xx}[N] & \cdots & r_{xx}[1] \end{bmatrix}$$

Tedy r_k je ACF (autocorrelation function) procesu x[N+1] a ${\it C}_{xx}$ je jeho autokorelační matice.

Wienerovými filtry nazveme 3 základní aplikace toho problému:

- 1. Filtrování = odhadujeme signál $\theta = s[N]$ v modelu x[k] = s[k] + w[k], k = 1, ... N (pro odhad používáme pouze data přítomná a minulá (pro odhad s[2] mohu využít jen x[1], x[2])
- 2. Vyhlazování (smoothing) = stejné jako filtrování, ale nad celými daty.
- 3. Predikce = odhadujeme $\theta = s[N+k]$ na základě x[1], x[2], ..., x[N]

Ve všech případech uvažujeme $E[\theta] = E[x] = 0$, tedy

$$\widehat{\boldsymbol{\theta}} = \mathbf{C}_{\boldsymbol{\theta}\boldsymbol{x}} \mathbf{C}_{\boldsymbol{x}\boldsymbol{x}}^{-1} \boldsymbol{x}$$

cvičení 11

- Házejte mincí a odhadujte z dat pravděpodobnost, že padne orel.
- Majitel e-shopu má data o denních prodejích za prvních 290 dní v roce. Přijde mu, že za posledních 16 dní jdou prodeje nahoru a chtěl by na základě této hypotézy odhadnout, kolik bude mít prodejů do konce roku.