1 Schwingungen & Wellen

1.1 Schwingungen

1.1.1 Harmonische Schwingung

Bewegungsgleichung: $\ddot{x} + \omega^2 x = 0$

Allg. Lösung: $x(t) = A\sin(\omega t + \phi)$

Frequenz: $f = \frac{1}{T} = \frac{\omega}{2\pi}$ (Fadenpendel: $w = \sqrt{\frac{g}{l}}$ Federpendel: $w = \sqrt{\frac{k}{m}}$)

Energie: $E_{tot} = E_{pot} + E_{kin} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\omega^2 x^2 = \frac{1}{2}m\omega^2 A^2$

 $\langle E_{kin} \rangle = \langle E_{pot} \rangle = \frac{1}{2} E_{tot}$

1.1.2 Gedämpfte Schwingung

Bewegungsgleichung: $\ddot{x} + 2\rho \dot{x} + \omega_0^2 x = 0$

Allg. Lösung:

Schwache Dämpfung $(p < w_0)$ $x(t) = Ae^{-\rho t} sin(\omega t + \delta), \omega = \sqrt{\omega_0^2 - \rho^2}$

 $E_{tot}(t) = E_0 e^{\frac{-t}{\tau}}, \tau = \frac{1}{2\rho}, \text{Gütefaktor } Q = 2\pi \frac{\tau}{T}$

Kritische Dämpfung $(p = w_0)$ $x(t) = (C_1 + C_2 t)e^{-\rho t}$

Starke Dämpfung $(p > w_0)$ $x(t) = C_1 e^{-\lambda_1 t} + C_2 e^{-\lambda_2 t}, \lambda_{1,2} = \rho \pm \sqrt{\rho^2 - \omega_0^2}$

Energie: $\frac{dE_{tot}}{dt} = P_R = -2\rho m\dot{x}^2$

1.1.3 Erzwungene Schwingung

Bewegungsgleichung: $\ddot{x} + 2\rho \dot{x} + \omega_0^2 x = \frac{F_0}{m} cos(\Omega t)$

Allg. Lösung: $x(t) = C_1 e^{-\rho t} \cos(\omega t + \delta) + C_2 \cos(\Omega t + \phi)$

 $\xrightarrow{t\gg 1/\rho} C_2\cos(\Omega t + \phi)$

 $\omega = \sqrt{\omega_0^2 - \rho^2} \qquad C_2 = \frac{F_0/m}{\sqrt{(w_0^2 - \Omega^2)^2 + 4\rho^2 \Omega^2}}; \phi = \arctan(\frac{-2\rho\Omega}{\omega_0^2 - \Omega^2})$

 $\Omega \ll \omega_0 \to C_2 = \frac{F_0/m}{\omega_0^2}; \phi = 0 \quad \Omega \approx \omega_0 \to C_2 = \frac{F_0/m}{2\rho\omega_0} = F_0/m \cdot \frac{Q}{\omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \gg \omega_0 \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega \to C_2 = \frac{F_0/m}{\Omega_0^2}; \phi = -\pi/2\Omega_0^2$

1.2 Überlagerung von Schwingungen

1.2.1 Gleicher Frequenz

allg. Lösung: $x(t) = x_1(t) + x_2(t)$

 $= A_1 \cos(\omega t + \phi_1) + A_2 \cos(\omega t + \phi_2)$

 $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\phi_1 - \phi_2)}$

 $\phi = \arctan\left(\frac{A_1\sin(\phi_1) + A_2\sin(\phi_2)}{A_1\cos(\phi_1) + A_2\cos(\phi_2)}\right)$

spezifische Phasenverschiebungen:

 $\phi_1 = \phi_2: \qquad \qquad A = A_1 + A_2$

 $\phi = \phi_1 = \phi_2$

 $\phi_1 = \phi_2 + \pi$: $A = A_1 - A_2$

 $\phi = \phi_1$

 $\phi_1 = \phi_2 + \frac{\pi}{2}$: $A = \sqrt{A_1^2 + A_2^2}$

 $\phi = \arctan\left(\frac{A_1 \sin(\phi_1) - A_2 \sin(\phi_2)}{A_1 \cos(\phi_1) + A_2 \cos(\phi_2)}\right)$

1.2.2 Unterschiedlicher Frequenz

allg. Lösung:

 $x(t) = x_1(t) + x_2(t)$ = $A[\cos(\omega_1 t) + \cos(\omega_2 t)]$

 $=2A\cos\left(\frac{\omega_1-\omega_2}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)$

Schwebungsfrequenz:

 $\nu_s = f_s = \frac{\omega_s}{2\pi} = \frac{1}{2\pi} \frac{|\omega_1 - \omega_2|}{2}$

1.3 Gekoppelte Schwingungen

 $\ddot{x}_1 + \frac{g}{l}x_1 + \frac{k}{m}(x_1 - x_2) = 0$

 $\ddot{x}_2 + \frac{g}{l}x_2 - \frac{k}{m}(x_1 - x_2) = 0$

Ansatz mit Normalkoordinaten:

i)
$$z_1 := x_1 - x_2$$
 $z_2 := x_1 + x_2$

ii) Zwei neue DGLs durch Summe und Differenz bilden.iii) Entkoppelte DGLs lösen und Rücktransformieren.

2 Wellen

2.1 Grundlagen

2.1.1 Wellengleichung

$$\frac{\partial^2 \xi(x,t)}{\partial t^2} - v^2 \frac{\partial^2 \xi(x,t)}{\partial x^2} = 0$$
allgemeine Lösung:
$$\xi(x,t) = f_1(x-vt) + f_2(x+vt)$$

2.1.2 Wellengeschwindigkeit

Saite:
$$v = \sqrt{\frac{\sigma}{\varrho}} = \sqrt{\frac{F}{\mu}}$$

$$\sigma \colon Zugspannung, \ F \colon Spannkraft, \ \varrho \colon Dichte,$$

$$\mu \colon Massendichte$$

$$Gase:
$$v = \sqrt{\kappa \frac{RT}{M}}$$

$$R \colon univ. \ Gaskonst., \ M \colon molare \ Masse,$$

$$T \colon Temperatur \ [\textbf{\textit{K}}], \ \kappa \colon \frac{c_p}{c_v}$$$$

$$T: \ Temperatur \ [\textbf{\textit{K}}], \ \kappa \colon \frac{c_p}{c_v}$$
 Flüssigkeiten:
$$v = \sqrt{\frac{1}{\varrho X}}$$

$$\varrho \colon Dichte, \ X \colon Kompressibilit \ddot{a}t$$
 Stab:
$$v = \sqrt{\frac{E}{\varrho}}$$

$$\varrho \colon Dichte, \ E \colon Elast.\text{-}modul([E] = \frac{N}{m^2} = Pa)$$

$$\sigma = \epsilon \cdot E = \frac{F}{A} \quad \epsilon = \frac{l - l_0}{l_0}$$

2.2 Periodische Harmonische Welle

2.2.1 Wellenfunktion

linear:	$\xi(x,t) = A\sin(kx \pm \omega t + \phi)$
radial:	$\xi(r,t) = \frac{A}{r}\sin(kr \pm \omega t + \phi)$
Phase:	ϕ

Frequenz:
$$\frac{\omega}{2\pi}$$
Kreisfrequenz:
$$\omega = v \cdot k = 2\pi f$$
Kreiswellenzahl:
$$k = \frac{2\pi}{\lambda} = \frac{\omega}{v} = \frac{2\pi f}{v}$$
Wellenlänge:
$$\lambda = |v| \cdot T = \frac{|v|}{f}$$
Geschwindigkeit:
$$|v| = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$$

Ableitungen:

$$\frac{\partial \xi}{\partial t} = \pm \omega \cdot A \cdot \cos(kx \pm \omega t + \phi)$$

$$\frac{\partial^2 \xi}{\partial t^2} = -\omega^2 \cdot A \cdot \sin(kx \pm \omega t + \phi)$$

$$\frac{\partial \xi}{\partial x} = \pm k \cdot A \cdot \cos(kx \pm \omega t + \phi)$$

$$\frac{\partial^2 \xi}{\partial x^2} = -k^2 \cdot A \cdot \sin(kx \pm \omega t + \phi)$$

2.2.2 longitudinal

$$\langle P \rangle = \frac{1}{2} \rho v_s \omega^2 A^2 A_F$$

$$= \frac{1}{2} \frac{E}{v_s} \omega^2 A^2 A_F$$

$$= \frac{1}{2} \rho v_s \omega^2 A^2$$

$$= \frac{1}{2} \frac{E}{v_s} \omega^2 A^2$$

$$\langle E_{kin} \rangle = \frac{1}{4} \rho \Delta V A^2 \omega^2$$

$$= \frac{1}{4} \rho \Delta V A^2 \omega^2$$

$$\langle E_{pot} \rangle = \frac{1}{4} \rho \Delta V A^2 \omega^2$$

$$= \frac{1}{4} \rho \Delta V A^2 \omega^2$$

$$= \frac{1}{2} \frac{\rho \Delta V A^2 \omega^2}{\Delta V}$$

$$= \frac{1}{2} \frac{\rho \Delta V A^2 \omega^2}{\Delta V}$$

2.2.3 transversal

$$\langle P \rangle = \frac{1}{2} \mu v_s \omega^2 A^2$$

$$\langle I \rangle = \frac{1}{2} \mu v_s \omega^2 A^2 \frac{1}{A_F}$$

$$E_{kin} = \int_0^L \frac{1}{2} \mu \left(\frac{\partial \xi}{\partial x} \right)^2 x$$

$$\langle E_{kin} \rangle = \frac{1}{4} \mu L A^2 \omega^2$$

$$E_{pot} = \frac{1}{2} \int_0^L F_T \left(\frac{\partial \xi}{\partial x} \right)^2 x$$

$$\langle E_{pot} \rangle = \frac{1}{4} \mu L A^2 \omega^2$$

$$U_{tot} = \frac{E_{tot}}{L} = \frac{1}{2} \frac{\mu L A^2 \omega^2}{L}$$

2.3 Intensität

allgemein: $I = \frac{\langle P \rangle}{A_F}$ Intensitätspegel: $IP = 10dB \cdot log_{10} \left(\frac{I}{I_0}\right)$ Hörschwelle: $I_0 = 10^{-12} \frac{W}{m^2}$ bei 1kHz, 0-128 dB

2.4 Dopplereffekt

$$f_e = f_s \cdot \left(\frac{c \pm v_e}{c \mp v_s}\right), \pm \text{bzw.} \mp = \frac{\text{n\"{a}hern}}{\text{entfernen}}$$

$$c = 343m/s$$

Empfänger \Sender	Ruhe	nähern	entfernen
Ruhe	f_s	$f_s \cdot \frac{c}{c - v_s}$	$f_s \cdot \frac{c}{c+v_s}$
nähern	$f_s \cdot \frac{c+v_e}{c}$	$f_s \cdot \frac{c+v_e}{c-v_s}$	$f_s \cdot \frac{c+v_e}{c+v_s}$
entfernen	$f_s \cdot \frac{c-v_e}{c}$	$f_s \cdot \frac{c-v_e}{c-v_s}$	$f_s \cdot \frac{c-v_e}{c+v_s}$

2.5 Überlagerung

2.5.1 Interferenz

zwei harm. Wellen mit identischem A, k, f

$$\xi_{tot}(x,t) = \xi_1 + \xi_2 \qquad = A\sin(kx - \omega t) + A\sin(kx - \omega t + \delta)$$
$$= 2A\cos\left(\frac{\delta}{2}\right)\sin\left(kx - \omega t + \frac{\delta}{2}\right)$$

Phasendiff::
$$\Delta \delta = 2\pi \frac{\Delta x}{\lambda} = 2\pi \Delta t f = k \Delta x$$
 Gangunterschied:
$$\Delta x = x_2 - x_1$$
 Laufzeitdiff.:
$$\Delta t = \frac{\Delta x}{\epsilon}$$

Konstruktive Interferenz

$$\delta = 2n\pi \qquad n \in \mathbb{Z}$$

$$\Delta x \qquad = n\lambda = \frac{\delta}{k} = \frac{\delta\lambda}{2\pi}$$

$$A' \qquad = 2A$$

Destruktive Interferenz

$$\delta = (2n+1)\pi \qquad n \in \mathbb{Z}$$

$$\Delta x \qquad = (2n+1)\frac{\lambda}{2} = \frac{\delta}{k} = \frac{\delta\lambda}{2\pi}$$

$$A' \qquad = 0$$

2.5.2 Schwebung

zwei harm. Wellen mit identischem A und $\omega_1 \approx \omega_2$

ξ_{tot}	$= A\sin(\omega_1 t) + A\sin(\omega_2 t)$
	$=2A\cos\left(2\pi\frac{\Delta f}{2}t\right)\sin\left(2\pi\overline{f}t\right)$

Amplitudenschwebung, hochfrequenz

Schwebungsfrequenz (Intensitätsschwankungen): $\Delta f = f_2 - f_1$ mittl. Frequenz (Einhüllende): $\overline{f} = \frac{f_1 + f_2}{2}$

mittl. Intensität:
$$\overline{I}(t) = \rho v \overline{\omega}^2 A^2 [1 + \cos(\Delta \omega t)]$$

2.6 Verhalten an Grenzflächen

2.6.1 Transmission

Koeff.: $t = \frac{2v_2}{v_1 + v_2}$ $\log .: \qquad \qquad t = \frac{2v_2\rho_2}{v_1\rho_1 + v_2\rho_2}$ t = 1 + r $Amplit.: \qquad \qquad A_t = \frac{2A}{1 + \alpha} = t \cdot A$

2.6.2 Reflexion

Koeff.: $r = \frac{v_2 - v_1}{v_1 + v_2}$ $\text{long.:} \qquad r = \frac{v_2 \rho_2 - v_1 \rho_1}{v_1 \rho_1 + v_2 \rho_2}$ $Amplit.: \qquad A_r = \pm \frac{1 - \alpha}{1 + \alpha} A = r \cdot A$

2.6.3 Brechung

Brechungsindex

$$n = \frac{c_{\text{Vakuum}}}{c_{Medium}}$$

Snellius'sches Brechungsgesetz:

$$\frac{\sin(\alpha_1)}{\sin(\alpha_2)} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

Fermat:

Eine Welle läuft zwischen zwei Punkten immer so, dass sie dazu möglichst wenig Zeit benötigt.

$$v_2 > v_1$$
 Brechung vom Lot weg $v_2 < v_1$ Brechung zum Lot hin

2.6.4 Totalreflexion

Bedingung:

$$v_2 > v_1$$
 und $\alpha_1 \ge \alpha_c = \arcsin\left(\frac{v_1}{v_2}\right)$

r=0 keine Reflexion

r = 1 Total reflexion

r = -1 Totalreflexion (invertierte Welle)

$$\phi_i = \alpha_1 = \phi_r$$
$$\phi_t = \alpha_2$$

einfallender Strahl Lot reflektierter Strahl $\alpha_1 \alpha_1$ Medium 1 α_2 Brechungswinkel α_2 gebrochener Strahl

2.6.5 Beugung

am Gitter: $\sin(\alpha_m) = m \frac{\lambda}{d}$

 $m = 0, \pm 1, \pm 2, \dots$

am Spalt: $\sin(\alpha_k) = k \frac{\lambda}{s}$

 $k = \pm 1, \pm 2, \pm 3, \dots$

am Loch: $\sin(\alpha_k) = z_k \frac{\lambda}{d}$

Einzelsp.: $\langle I \rangle = A^2 \frac{\sin^2\left(\frac{1}{2}\Delta\phi\right)}{\left(\frac{1}{2}\Delta\phi\right)^2}$

Intensitätsmaxima bei α_m

 $\operatorname{d} :$ Gitterkonstante

m: Beugungsordnung

Intensitätsminima bei α_k

s: Spaltbreite

d: Lochdurchmesser

 $d \ll \lambda$: In diesem Extremfall wird die Spaltöffnung zu einer Punktquelle für Kugelwellen.

 $d\lesssim \lambda$: Es gibt ein starkes Maximum bei $\Theta=0,$ aber auch weitere Maxima bei grösserern Winkel. (z.B. Schallwellen)

 $d \gg \lambda$: Es gibt ein scharfes Maximum bei $\Theta = 0$, welches dem geometrischen Schattenwurf entspricht. Die in eine andere Richtung laufenden Wellen löschen sich gegenseitig vollständig aus. (z.B. Schattenwurf bei Licht)

2.6.6 Huygen

Jeder Punkt einer Wellenfront ist Ausgangspunkt einer neuen kugelförmigen Elementarwelle, die sich mit derselben Geschwindigkeit und Wellenlänge wie die urspeüngliche Welle ausbreitet.

2.7 Stehende Wellen

Überlagerung zweier harmonischer Wellen mit gleichem ω und k bei entgegengesetzter Ausbreitungsrichtung.

$$\xi_{tot} = A\sin(kx + \omega t) + A\sin(kx - \omega t)$$
$$= 2A\sin(kx)\cos(\omega t)$$

2.7.1 zwei fixe oder zwei lose Enden

Resonanzfrequenz:	$f_n = n \frac{v}{2l}$	$n \in \mathbb{N}$
Wellenlänge:	$\lambda_n = \frac{2l}{n}$	$n \in \mathbb{N}$
diskr. Werte:	$k_n = \frac{n\pi}{l}$	$n\in\mathbb{N}$
Resonanzbed.:	$l = \frac{n\lambda_n}{2}$	$n \in \mathbb{N}$
Randbed. fix:	$\xi(0,t) = \xi(l,t) = 0$	$\forall t$
Randbed. lose:	$\xi(0,t) = \xi(l,t) = A_{max}$	$\forall t$

2.7.2 ein fixes und ein loses Ende

Resonanzfrequenz:
$$f_n = \frac{(2n+1)v}{4l} \qquad n \in \mathbb{N}$$
 Wellenlänge:
$$\lambda_n = \frac{4l}{2n+1} \qquad n \in \mathbb{N}$$

diskr. Werte:
$$k_n = \frac{2n-1}{2} \frac{\pi}{l} \qquad n \in \mathbb{N}$$
 Resonanzbed.:
$$l = \frac{(2n-1)\lambda_n}{4} \qquad n \in \mathbb{N}$$
 Randbedingung:
$$\xi(0,t) = 0; \xi(l,t) = A_m ax \qquad \forall t$$

2.7.3 Harmonische:

n. Harmonische = (n-1)te Oberschwingung 1. Harmonische = Grundschwingung

2.7.4 Skizze

2.7.5 Überlagerung von stehenden Wellen

$$\xi(x,t) = \sum_{n=0}^{\infty} A_n \cdot \sin(k_n x) \cdot \cos(\omega_n t + \delta_n)$$
$$k_n, \omega_n \text{ bestimmt durch Randbedingung}$$

3 Thermodynamik

3.1 Temperatur und Gastheorie

Druck $p = \frac{F}{A} = p_0 + \rho g \Delta h$ [1bar = 100 · 10³ Pa] Auftriebskraft $F_A = -pV \cdot g$

3.1.1 Gay-Lussac, Boyle-Marriot

$$V = c_p T$$
 Druck p const.
 $p = c_V T$ Volumen V const.

3.1.2 Ideale Gase

- Atome oder Moleküle, die nicht miteinander wechselwirken
- kein Eigenvolumen \rightarrow punktförmige Teilchen
- $E_{pot} = 0 \rightarrow$ keine Phasenübergänge

$$p \cdot V = \frac{m}{M} n_A \cdot k_B \cdot T = \tilde{n}R \cdot T$$

3.1.3 kinetische Gastheorie

mittl. kin. Energie: $\langle E_{kin} \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T$

mittl. Geschw.: $\langle v^2 \rangle = \frac{3k_BT}{m} = \frac{3RT}{m_{mol}}$

 $ideales\ Gas$

innere Energie: $U = \sum_i E_i = n \langle E_{kin} \rangle = n \frac{3}{2} k_B T$

allg. Gas

innere Energie: $U = \tilde{n}C_V T = \frac{f}{2}pV$

mittl. kin. Energie: $\frac{f}{2}k_BT$

Atomzahl	f	C_V	C_p	γ
1	3	$\frac{3}{2}R$	$\frac{5}{2}R$	<u>5</u> 3
2	5	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{7}{5}$
mehr	6	3R	4R	$\frac{4}{3}$

1. Hauptsatz $dU = \delta W^{\checkmark} + \delta Q^{\checkmark} = 0$ im abg. System

W: am System verrichtete Arbeit

Q: dem System zugeführte Wärme

- 2. Hauptsatz Man kann mechanische Energie restlos in Wärme umwandeln, aber man kann unmöglich Wärme restlos in Arbeit umwandeln.
- \rightarrow irreversibel
- \rightarrow kein Prozess, durch den Entropie des Universums abnimmt
- \rightarrow ideale Wärmekraftmaschine (wandelt Wärme komplett in Arbeit) und ideale Kältemaschine (führt entzogene Wärme komplett anderem Reservoir zu) sind **nicht realisierbar!**

3.4 Zustandsänderungen

$$T = (T_C + 273.15)K$$

Uhrzeigersinn:

System gibt Arbeit ab z.B.: Wärmekraftmaschine

Gegenuhrzeigersinn:

System nimmt Arbeit auf

z.B.: Kältemaschine

3.2 Wärmekapazität

Die Wärme Q ist die Energie, welche alleine aufgrund einer Temperaturdifferenz zwischen zwei Körpern ausgetauscht wird.

$Q = mC_m \Delta T = \tilde{n}C_{mol} \Delta T$	$=m\lambda_{S,D}$	$\lambda = \text{spez. W\"{a}rme}$
$C_m = \frac{1}{m} \frac{\Delta Q}{\Delta T}$	$C_{mol} = \frac{1}{\tilde{n}} \frac{\Delta Q}{\Delta T}$ $m_1 C_1 T_1 + m_2 C_2 T_2$	$C_m M = C_{mol}$

Austausch: $T_{end} = \frac{m_1 C_1 T_1 + m_2 C_2 T_2}{m_1 C_1 + m_2 T_2}$

 $\mbox{Volumen const.:} \ C_V = \frac{f}{2} R \quad \mbox{Druck const.:} \ C_p = \frac{f+2}{2} R \quad [C_{mol}] = \frac{J}{mol \ K}$

Äquipartitions gesetz: $U = \tilde{n} \frac{f}{2} RT$

3.3 Hauptsätze

0. Hauptsatz Befinden sich zwei Körper in thermischem Gleichgewicht mit einem dritten, so befinden sie sich auch untereinander in thermischem Gleichgewicht.

3.4.1 freie Expansion

irreversibel, T = const.

innere Energie:
$$\Delta U = 0$$
zugeführte Wärme: $Q = 0$
zugeführte Vol.-arbeit: $W = 0$
für ideale Gase: $T_E = T_A$ $p_E = p_A \frac{V_A}{V_E}$

3.4.2 isobar

p = const.

innere Energie:	ΔU	$= W + Q = \tilde{n}C_V \Delta T$
zugeführte Wärme:	Q	$= \tilde{n}C_p \Delta T$
zugeführte Volarbeit:	W	$= -p\Delta V = -\tilde{n}R\Delta T$

3.4.3 isochor

V = const.

innere Energie: $\Delta U = Q$ zugeführte Wärme: $Q = \tilde{n}c_V \Delta T$ zugeführte Vol.-arbeit: W = 0

3.4.4 isotherm

T = const.

innere Energie: $\Delta U = 0$ zugeführte Wärme: Q = -W zugeführte Vol.-arbeit: $W = -\tilde{n}RT\ln\left(\frac{V_E}{V_A}\right) = -\int_{V_A}^{V_E}\frac{\tilde{n}RT}{V}dV$ für ideale Gase: $W = -p_AV_A\ln\left(\frac{V_E}{V_A}\right)$

3.4.5 adiabatisch

kein Wärmetausch mit der Umgebung: $\Delta Q=0$

innere Energie: ΔU = Wzugeführte Wärme: Q= 0zugeführte Vol.-arbeit: W $= \tilde{n}C_V \Delta T$ $=\frac{p_E V_E - p_A V_A}{\gamma - 1}$ $=\frac{c_p}{c_V}$ adiabatische Exponent: γ $T \cdot V^{\gamma-1}$ Poissonsche Gl.: = const. $p \cdot V^{\gamma}$ = const. $T^{\gamma} \cdot p^{1-\gamma}$ = const.

3.4.6 linear

Gerade: $p(V) = p_1 + \frac{p_2 - p_1}{V_2 - V_1} \cdot (V - V_1)$

zugeführte Vol.-arbeit
$$-W = \bar{p}\cdot(V_2-V_1)$$

$$=\frac{1}{2}(p_1+p_2)\cdot(V_2-V_1)$$

$$=p_1\cdot(V_2-V_1)$$

$$+\frac{1}{2}(p_2-p_1)\cdot(V_2-V_1)$$

3.5 Thermodynamische Kreisprozesse

Ein Zyklus (Kreisprozess) ist ein Vorgang, dessen Endzustand seinem Anfangszustand entspricht ($\Delta U=0$).

3.5.1 Wärmekraftmaschine

 $\begin{array}{ll} Q_w: & \text{Zugef\"{u}hrte W\"{a}rme aus w\"{a}rmerem Reservoir} \\ |Q_k|: & \text{Abgegebene W\"{a}rme in k\"{a}lteres Reservoir} \\ |W|: & \text{In einem Zyklus netto verrichtete Arbeit} \\ & = Q_w - |Q_k| \\ \eta & \text{Wirkungsgrad} \\ & = \frac{|W_{out}|}{Q_w} = 1 - \frac{|Q_k|}{Q_w} \end{array}$

3.5.2 Kältekraftmaschine

 $\begin{array}{ll} Q_k: & \text{K\"{a}lterem Reservoir entnommene W\"{a}rme} \\ |Q_w|: & \text{W\"{a}rmerem Reservoir zugef\"{u}hrte W\"{a}rme} \\ W: & \text{In einem Zyklus netto verrichtete Arbeit} \\ & = |Q_w| - Q_k \\ \eta & \text{W\"{i}rkungsgrad W\"{a}rmepumpe} \\ & = \frac{|Q_w|}{W} = \frac{|Q_w|}{|Q_w| - Q_k} \\ & \text{W\"{i}rkungsgrad K\"{a}ltemaschine} \\ & = \frac{Q_k}{W} = \frac{Q_k}{|Q_w| - Q_k} \end{array}$

3.5.3 Carnot-Maschine

Merkmale:

- 1. Reversible isotherme Aufnahme von Wärme aus einem wärmeren Reservoir (T=const.)
- 2. Reversible adiabatische Expansion, bei der die tiefere Temperatur erreicht wird $(\Delta Q = 0)$
- 3. Reversible isotherme Abgabe von Wärme an ein kälteres Reservoir (T = const.)
- 4. Reversible adiabatische Kompression, wieder zurück in den Anfangszustand $(\Delta Q = 0)$

Zwischen zwei gegebenen Wärmereservoiren hat die reversibel arbeitende Wärmekraftmaschine den höchstmöglichen Wirkungsgrad.

Wärmemaschine: $\eta_{carnot} = \frac{T_w - T_k}{T_w} \qquad \qquad Uhrzeigersinn$ Wärmepumpe: $\eta_w = \frac{T_w}{T_w - T_k} \qquad \qquad Gegenuhrzeigersinn$

Kältemaschine: $\eta_k = \frac{T_k}{T_w - T_k}$ Gegenuhrzeigersinn

3.6 Entropie

Durch irreversible Prozesse geht die Gesamtheit aus System und Umgebung in einen Zustand geringerer Ordnung über. Ein Mass für diese Unordnung ist die Entropie S.

3.6.1 Entropie

Für die Entropie des Universums gilt:

immer:	$\Delta S \geq O$
reversible Prozesse:	$\Delta S = O$
irreversible Prozesse:	$\Delta S > O$

 \rightarrow Die Entropie des Universums (des Systems und seiner Umgebung) kann niemals abnehmen.

- Nur Vorgänge, bei denen die Entropie wächst, verlaufen von selbst
- Entropie hängt vom Zustand des Systems ab, nicht vom Weg
- Ist ein System nicht abgeschlossen, so kann $\Delta S < 0$

Bemerkung: Bei einem idealisierten (reversibler) Kreisprozess: $\Delta S = 0$

3.6.2 Entropieänderung für reversible Prozesse

- Keine Umsetzung von mechanischer Energie in Wärme aufgrund von Reibung, viskosen Kräften oder anderen dissipativen Effekten.
- Wärmeübertragung darf nur zw. Gegenständen mit gleicher Temperatur oder aufgrund eines infinitesimalen Temperaturdifferenz auftreten.
- Der Prozess muss quasistatisch ablaufen, sodass sich das System stets in einem Gleichgewichtszustand befindet.

$$dS = \frac{dQ_{rev}}{T} \qquad \qquad \rightarrow \qquad \qquad \Delta S = \int \frac{dQ_{rev}}{T}$$

3.6.3 Entropieänderung für irreversible Prozesse

- 1. finde reversiblen Prozess mit gleichen Anfangs- und Endzustand
- 2. Berechne dessen Entropieänderung

Energieentwertung: $W_{ent} = T\Delta S_U$

3.6.4 Entropieänderung für Kreisprozesse / Zustandsänderungen

	ΔS_{sys}	ΔS_{umg}
Allgemein	$\int \frac{dQ(T_{sys})}{T_{sys}}$	$-\frac{1}{T_{umg}} \int dQ (T_{umg})$
freie Exp.	$\tilde{n}R\ln\left(\frac{V_2}{V_1}\right)$	$-\tilde{n}R\ln\left(\frac{V_2}{V_1}\right)$
isobar	$\tilde{n}c_p \ln \left(\frac{T_2}{T_1}\right)$	$-\tilde{n}c_p \frac{T_2 - T_1}{T_2}$
isochor	$\tilde{n}c_V \ln \left(\frac{T_2}{T_1}\right)$	$-\tilde{n}c_V \frac{T_2 - T_1}{T_2}$
isotherm	$\tilde{n}R\ln\left(\frac{V_2}{V_1}\right)$	$-\tilde{n}R\ln\left(\frac{V_2}{V_1}\right)$
adiabatisch	0	0
Carnot	0	0

3.6.5 S-T-Diagramm

3.6.6 statistische Definition

$$S = k_B \ln(\Omega_{NA})$$

$$\Omega_{NA} = \binom{N}{N_A} = \frac{N!}{N_A!(N - N_A)!}$$

Anzahl von Mikrozuständen für einen Makrozustand

- i) Das Volumen V_a unterteilen in N_a Zellen: $v = \frac{V_A}{N_A}$
 - ii) Anzahl Gasteilchen v_a im Volumen V_A sind:

$$v_a = \frac{pV_A}{k_B T}$$
 Annahme: $N_A \gg v_a$

iii) Die Anzahl Konfigurationen (oder Mikrozustände) mit Mehrfachbesetzung, die denselben Makrozustand beschreiben, sind:

$$\Omega_A = (N_A)^{v_a}$$

Kombinatorisch gesehen verteilt man v_a Objekte auf N_A Behältnisse.

iv) Die Entropie von Gas A ist:

$$S_A = k_B \ln(\Omega_A) = k_B \ln(N_A^{v_a}) = v_A k_B \ln(N_A)$$

Sei S_A die Entropie vom Anfangszustand und S'_A die Entropie vom Endzustand (mit Volumen V'_A). Dann gilt:

$$\Delta S = S_A' - S_A = v_a k_B \ln \left(\frac{N_A'}{N_A} \right) = n_a R \ln \left(\frac{V_A'/v}{V_A/v} \right) = n_a R \ln \left(\frac{V_A'}{V_A} \right)$$

wobei n_a die Anzahl Teilchen in mol ist $(v_a = n_a \cdot n_A)$.

3.7 Thermische Vorgänge

3.7.1 Van-der-Waals

$$\left(p + a\frac{\tilde{n}^2}{V^2}\right)(V - b\tilde{n}) = \tilde{n}RT$$

$$\Leftrightarrow p = \frac{RT}{\frac{V}{\tilde{n}} - b} - a\frac{n^2}{V^2}$$

$$a = \text{Kohäsionsdruck} \qquad [a] = \frac{Pa, m^6}{mol^2}$$

$$b = \text{Kovolumen} \qquad [b] = \frac{m^3}{mol}$$

$$V = V_{mol} \cdot \tilde{n}$$

3.7.2 PV-Isothermen Realer Gase

Isothermen für CO_2 nach van der Waals im pV_M -Diagramm.

- 1. Für $T > T_k$ kann ein Gas nicht verflüssigt werden. Die Van-der-Waals Gleichung beschreibt sein verhalten.
- 2. Für $T < T_k$ kann VdW das Verhalten nur für ein grosses Volumen bei geringem Druck beschreiben.

Für hohe Temperaturen (T>340) verhält sich das reale Gas wie ein ideales Gas. Bei niedrigeren Temperaturen ergeben sich jedoch deutliche Abweichungen. Unterhalb des kritischen Punkt \mathbf{K} $(T< T_K)$, beginnt sich das Gas ab einer gewissen Kompression zu verflüssigen. Nachdem 100% vom Gas verflüssigt ist, steigt bei weiterer Kompression die Isotherme steil an, da sich Flüssigkeiten nur geringfügig komprimieren lassen.

3.7.3 Phasendiagramm

V = const.

Triplepunkt:

Alle drei Phasen im Gleichgewicht miteinander.

Kritischer Punkt:

Ab hier sind Flüssigkeiten nicht mehr zu unterscheiden (überkritische Flüssigkeit)

Sättigungsdampfdruck

Druck, bei dem Gas und Flüssigkeit bei einer bestimmten Temperatur im Gleichgewicht stehen.

Normaler Siedepunkt: Temp. bei der der Sättigungsdampfdruck gerade 1 bar ist.

Wasser	273.16K	6.105mbar
CO_2	216.55K	5.17bar

3.7.4 Wärmeübertragung

k: Wärmeleitfähigkeit [k] = $\frac{W}{mK}$, e: Emissivität \in [0, 1], A: Querschnitt Rohr, Δx : Distanz zw. Wärmetanks

Temperaturgradient:	∂T	$=rac{\Delta T}{\Delta x}$
Wärmestrom:	I	$= \frac{\Delta Q}{\Delta t} = \dot{Q} = k \cdot A \cdot \frac{\Delta T}{\Delta x}$
Wärmeleitwiderstand:	R	$= \frac{\Delta x}{k \cdot A}$
\rightarrow	ΔT	$= R \cdot I = T_h - T_k$
Wärmestrahlung:	P_e	$= e \cdot \sigma \cdot A \cdot T^4$

4 Addendum

4.1 Sammlungen

4.1.1 Konstanten

Grösse	Symbol	Wert		Einheit
Fallbeschleunigung	g	9.81		$\frac{m}{s^2}$
Lichtgeschw.	c	2.998	$\cdot10^8$	$\frac{m}{s}$
Schallgeschw.	c_s	343.2		$\frac{m}{s}$
Normaltemperatur	T	273.15		$\overset{\circ}{K}$
Avogadro-Konst.	N_A	6.022	$\cdot 10^{23}$	mol^{-1}
Boltzmann-Konst.	K_B	1.381	$\cdot10^{-23}$	$\frac{J}{K}$
univ. Gaskonst.	R	8.315		$\frac{J}{mol \cdot K}$
StefBoltzKonst.	σ	5.67	$\cdot10^{-8}$	$\frac{W}{m^2 \cdot K^4}$
Wärmekap. Wasser	c_{Wasser}	4.18	$\cdot 10^3$	$\frac{J}{kg \cdot K}$
Wärmekap. Luft	c_{Luft}	1.01	$\cdot 10^3$	$\frac{J}{kg \cdot K}$
Dichte Wasser	$ ho_{Wasser}$	1	$\cdot 10^3$	$\frac{kg}{m^3}$
mol. Masse Luft	M_{Luft}	29	$\cdot 10^{-3}$	$\frac{kg}{mol}$
Triplepunkt Wasser	T_{Tr}	273.16		K
Dampfwärme Wasser	λ_D	2257	$\cdot 10^3$	$rac{J}{kg}$
Schmelzwärme Wasser	λ_S	333.5	$\cdot 10^3$	$\frac{J}{kg}$
Schmelzwärme Wasser	λ_S	333.5	$\cdot 10^3$	$\frac{J}{}$

4.1.2 Einheiten

$\mathbf{Gr\ddot{o}sse}$	Einheit	Basiseinheit
Volumen	Liter [l]	$10^{-3}m^3$
Geschwindigkeit	$[\mathrm{km/h}]$	$\frac{1}{3.6}\frac{m}{s}$

Frequenz	Hertz [Hz]	s^{-1}
Kraft	Newton [N]	$\frac{kg \cdot m}{s^2}$
Druck	Pascal [Pa]	$\frac{kg}{m \cdot s^2}$
	Bar [bar]	$10^5 Pa$
Temperatur	Celsius [C]	+273K
Energie	Joule [J]	$\frac{kg \cdot m^2}{s^2}$
	Kalorie [cal]	4.1868J
Leistung	Watt [W]	$\frac{kg \cdot m^2}{s^3}$
Entropie	Siemens [S]	$\frac{kg \cdot m^2}{s^2 \cdot K}$

Umrechnungen

$1mm^2$	$=10^{-2}cm^2$	$=10^{-6}m^2$
$1mm^3$	$=10^{-3}cm^3$	$=10^{-9}m^3$

Vorsatz	Kürzel	Potenz
Deka	da	10^1
Hekto	h	10^{2}
Kilo	k	10^{3}
Mega	\mathbf{M}	10^{6}
Giga	G	10^{9}
Tera	${ m T}$	10^{12}
Peta	Р	10^{15}
Exa	${ m E}$	10^{18}
Zetta	${f Z}$	10^{21}
Yotta	Y	10^{24}

Vorsatz	Kürzel	Potenz
Dezi	d	10^{-1}
Centi	\mathbf{c}	10^{-2}
Milli	\mathbf{m}	10^{-3}
Mikro	μ	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}
Femto	\mathbf{f}	10^{-15}
Atto	\mathbf{a}	10^{-18}
Zepto	${f z}$	10^{-21}
Yokto	У	10^{-24}

4.1.3 Griechisch

Alpha	\overline{A}	α	Ny	N	ν
Beta	B	β	Xi	Ξ	ξ
Gamma	Γ	γ	Omikron	0	0
Delta	Δ	δ	Pi	П	π
Epsilon	E	ϵ	Rho	P	ρ/ϱ
Zeta	Z	ζ	Sigma	Σ	σ
Eta	H	η	Tau	T	τ
Theta	Θ	θ	Ypsilon	\overline{Y}	v
Iota	I	ι	Phi	Φ	ϕ/φ
Kappa	K	κ	Chi	X	χ
Lambda	Λ	λ	Psi	Ψ	ψ
My	M	μ	Omega	Ω	ω

4.2 Trigonometrische Grössen

Grad	0°	30°	45°	60°	90°	120°	135°	150°	180°
φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin(\varphi)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos(\varphi)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan(\varphi)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

4.3 Identitäten

sin(x) =
$$\frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin(\arccos(x)) = \sqrt{1 - x^2}$$

$$\cos(\arcsin(x)) = \sqrt{1 - x^2}$$

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\sin(x) + \sin(y) = 2\sin\left(\frac{1}{2}(x + y)\right)\cos\left(\frac{1}{2}(x - y)\right)$$

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\sin(x)\cos(y) = \frac{1}{2}(\sin(x-y) + \sin(x+y))$$

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2x))$$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2x))$$

$$1 + \tan^{2}(x) = \frac{1}{\cos^{2}(x)}$$

$$\sinh(x) = -i\sin(ix) = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh(x) = \cos(ix) = \frac{e^{x} + e^{-x}}{2}$$

$$\cosh^{2}(x) - \sinh^{2}(x) = 1$$

$$\sinh(\operatorname{arcosh}(x)) = \sqrt{x^{2} - 1}$$

$$\cosh(\operatorname{arsinh}(x)) = \sqrt{x^{2} + 1}$$

$$\sinh^{2}(x) = \frac{\cosh(2x) - 1}{2}$$

$$\cosh^{2}(x) = \frac{\cosh(2x) + 1}{2}$$

$$1 - \tanh^{2}(x) = \frac{1}{\cosh^{2}(x)}$$

4.4 Wichtige Ableitungen

$$(\log x)' = \frac{1}{x}$$

$$\arctan' x = 1 + \tan^2 x$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arctan' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arctan' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\sinh' x = \cosh x$$

$$\tanh' x = \frac{1}{\cosh^2 x}$$

$$\arcsin' x = \frac{1}{\sqrt{1 + x^2}}$$

$$\arcsin' x = \frac{1}{\sqrt{x^2 - 1}}$$

4.5 Mitternachtsformel

$$ax^{2} + bx + c = 0$$
 $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

4.6 Logarithmus

$$\ln(1) = 0$$

$$\ln_u(v) = \frac{\ln(v)}{\ln(u)}$$

$$\ln(u \cdot v) = \ln(u) + \ln(v)$$

$$\ln\left(\frac{u}{v}\right) = \ln(u) - \ln(v) = -\ln\left(\frac{v}{u}\right)$$

$$\ln(u^v) = v \cdot \ln(u)$$

$$\ln\left(\sqrt[v]{u}\right) = \frac{1}{v} \cdot \ln(u)$$

4.7 Polynomdivision

- Meistens durch NST des Polynoms teilen, da kein Rest übrig bleibt
- NST durch raten (Ordnung +2) bzw. Mitternachtsformel bestimmen

4.8 Partialbruchzerlegung

Bruch der Form $\int \frac{P_n(z)}{Q_m(z)} dz$:

- 1. Polynomdivision (falls n > m) mit Rest (ganzrational + echt gebrochen)
- 2. Nullstellen von $Q_m(z)$ berechnen
- 3. Nullstellen ihrem Partialbruch zuordnen
 - reelle r-fache Nullstelle z_0 :

$$\frac{A_1(z-z_0)^{r-1} + A_2(z-z_0)^{r-2} + \ldots + A_r}{(z-z_0)^r}$$

• komplexe r-fache Nullstelle z_0 :

$$\frac{A_1z + B_1}{(z^2 + 2az + b)} + \frac{A_2z + B_2}{(z^2 + 2az + b)^2} + \ldots + \frac{A_rz + B_r}{(x^2 + 2az + b)^r}$$

- 4. Gleichung aufstellen
- 5. Trick: Nullstellen einsetzen und so die Zähler einfacher Nullstellen bzw. höchster Nullstellen berechnen

Beispiel

$$f(x) = \frac{x}{(x^2 - 1)} \qquad x = A(x - 1) + B(x + 1)$$
$$(x_0 = 1) \quad 1 = 0 + 2B \to B = \frac{1}{2}$$
$$(x_1 = -1) \quad -1 = -2A + 0 \to A = \frac{1}{2}$$

6. Koeffizientenvergleich

4.9 Differential rechnung

4.9.1 Regeln

• Produktregel

$$(f \cdot h)' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

• Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2}$$

• Kettenregel

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

• Umkehrregel

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

• Integral ableiten

$$\frac{\partial}{\partial x} \int_{a}^{x} f(t)t = \frac{\partial F(x)}{\partial x} - \frac{\partial F(a)}{\partial x} = \frac{\partial F(x)}{\partial x} = f(x)$$

4.10 Separierbare Differentialgleichung

Falls eine DGL folgende Form hat, dann gilt

$$y' = p(y)q(x) \to \int \frac{1}{p(y)} dy = \int q(x) dx$$

Wenn man die Integrale löst, erhält man eine implizite Gleichung. y explizit darzustellen kann schwierig sein, zumal man die Lösungsmenge nicht verändern darf

Beispiel

$$yy' + 2 = 0 \rightarrow \int y dy = \int -2 dx$$
$$\frac{y^2}{2} = -2x + C_1 \quad C_1 \in \mathbb{R}$$
$$y = \pm \sqrt{-4x + C_2}$$

4.11 Lineare Differentialgleichung

Eine lineare DGL der n-ten Ordnung hat folgende Form

$$a_0 y^{(0)} + \dots + a_n y^{(n)} = q(x)$$

Anmerkung

- i) q(x) bezeichnet die Inhomogenität
- ii) Da die DGL linear ist, gilt für die Lösung

$$y(x) = y_h(x) + y_p(x)$$

wobei y_h die homogene und y_p die partikuläre Lösung ist

4.11.1 Homogene Lösung (q(x) = 0)

1. Man setzt die Inhomogenität 0

$$a_0 y^{(0)} + \dots + a_n y^{(n)} = 0$$

2. Mit dem Ansatz $y(x) = e^{\lambda x}$ folgt das charakteristische Polynom

$$Chp(\lambda) = a_0\lambda^0 + a_1\lambda^1 + \dots + a_n\lambda^n = 0$$

- 3. Nullstellen in den Ansatz einsetzen
 - λ_i k-fache reelle Nullstelle

$$y_i(x) = x^0 e^{\lambda_i x}, \dots, \ y_{i+k}(x) = x^{k-1} e^{\lambda_i x}$$

• λ_i und λ_i reelle betragsmässig gleiche Nullstelle ($\lambda = \pm a$)

$$y_i(x) = \cosh(ax), \ y_i(x) = \sinh(ax)$$

• λ_i und λ_j komplexe Nullstelle ($\lambda = a \pm bi$)

$$y_i(x) = e^{ax}\cos(bx), \ y_j(x) = e^{ax}\sin(bx)$$

4. Die einzelnen Teillösungen zusammensetzen $(C_i \in \mathbb{R})$

$$y_h(x) = \sum_{i=1}^n C_i y_i(x)$$

4.11.2 Partikuläre Lösung

• Ansatztabelle

Rechte Seite $q(x)$	Ansatz für $y_p(x)$
Ce^{ax}	Ae^{ax}
$C\cos(bx)$	$A\sin(bx) + B\cos(bx)$
$C\sin(bx)$	$A\sin(bx) + B\cos(bx)$
$C\cos(bx)e^{ax}$	$(A\sin(bx) + B\cos(bx))e^{ax}$
$C\sin(bx)e^{ax}$	$(A\sin(bx) + B\cos(bx))e^{ax}$
$a_n x^n + \dots + a_1 x + a_0$	$A_n x^n + \dots + A_1 x + A_0$
$(a_n x^n + \dots + a_1 x + a_0)e^{ax}$	$(A_n x^n + \dots + A_1 x + A_0)e^{ax}$
$(a_n x^n + \dots + a_0) \sin(bx)$	$(A_n x^n + \dots + A_0) \sin(bx)$
	$+(B_nx^n+\ldots+B_0)\cos(bx)$
$(a_n x^n + \dots + a_0) \cos(bx)$	$(A_n x^n + \dots + A_0) \sin(bx)$
	$+(B_nx^n+\ldots+B_0)\cos(bx)$
$(a_n x^n + \dots + a_0)e^{ax}\sin(bx)$	$(A_n x^n + \dots + A_0)e^{ax}\sin(bx)$
	$+(B_nx^n+\ldots+B_0)e^{ax}\cos(bx)$
$(a_n x^n + \dots + a_0)e^{ax}\cos(bx)$	$(A_n x^n + \dots + A_0)e^{ax}\sin(bx)$
	$+(B_nx^n + \dots + B_0)e^{ax}\cos(bx)$

Setze den Ansatz für $y_p(x)$ in die Gleichung ein, und mache ein Koeffizientenvgl. um die Parameter A, B, A_n, B_n, \ldots in $y_p(x)$ zu finden $\to y_p(x)$

An mer kungen

- i) Falls man zwei Störterme hat, also $b(x) = b_1(x) + b_2(x)$, macht man zwei Ansätze und man bekommt <u>zwei</u> part. Lösungen $y_{p_1}(x), y_{p_2}(x)$
- ii) Falls der Ansatz y_p ein Term hat, welcher bereits in $y_h(x)$ vorkommt, muss der Ansatz mit x multipliziert werden

• Ansatz vom Typ der rechten Seite

q(x) muss folgende Form haben $(\mu \in \mathbb{R})$

$$q(x) = (b_0 + b_1 x + \dots + b_m x^m) e^{\mu x}$$

dann ist der Ansatz für die partikuläre Lösung

$$y_p(x) = \begin{cases} \frac{b_0}{\text{Chp}^{(k)}(\mu)} x^k e^{\mu x} & m = 0\\ (C_0 + \dots + C_m x^m) x^k e^{\mu x} & m \neq 0 \end{cases}$$

Der Ansatz $(m \neq 0)$ in die DGL einsetzen und mit einem Koeffizientenvergleich, die Koeffizienten C_0, \ldots, C_m berechnen

Anmerkungen

i) k bezeichnet die Ordnung der NST von λ , falls $\lambda = \mu$

- ii) Falls die Inhomogenität $q(x) = q_1(x) + \cdots + q_r(x)$ aus mehreren Termen besteht, kann man die einzelnen Lösungen der Terme berechnen und diese dann zusammenaddieren $y_p(x) = y_1(x) + \cdots + y_r(x)$
- iii) Man kann q(x) komplexifizieren $(q(x) = cos(x) \rightarrow \mu = i)$ für die partikuläre Lösung gilt $y_p(x) = Re(z_p(x))$ oder $Im(z_p(x))$
- iv) Wenn möglich der Ansatz vom Typ der rechten Seite anwenden (oder Ansatztabelle), sonst Variation der Konstanten

• Variation der Konstanten

Zuerst das folgende Gleichungssystem lösen

$$\begin{pmatrix} y_1^{(0)} & \cdots & y_n^{(0)} \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ q(x) \end{pmatrix}$$

danach die Integrale ausrechnen (Konstanten nicht vergessen)

$$U_i = \int u_i(x) \mathrm{d}x$$

und zum Schluss die Lösung für die inhomogene Gleichung bilden

$$y(x) = \sum_{i=1}^{n} U_i(x)y_i(x)$$

An merkung

i) Die $y_i(x)$ sind die Einheitsvektoren des n-dimensionalen Lösungsraum der DGL (ohne Konstanten)

Beispiel

$$y''(x) + y = \frac{1}{\cos(x)} \qquad \to y_h(x) = C_1 \cos(x) + C_2 \sin(x)$$

$$\begin{pmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{\cos(x)} \end{pmatrix}$$

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \frac{1}{\cos(x)} \end{pmatrix}$$

$$\to u_1 = \frac{-\sin(x)}{\cos(x)} \quad u_2 = 1$$

$$U_1 = \int -\frac{\sin(x)}{\cos(x)} dx = \ln|\cos(x)| + C_1$$

$$U_2 = \int 1 dx = x + C_2$$

$$y(x) = C_1 \cos(x) + C_2 \sin(x) + \ln|\cos(x)| \cos(x) + x \sin(x)$$

• Verfahren von Lagrange

Nehme $y_h(x)$ und ersetze C mit C(x)

 $\rightarrow y_p(x)$

Setze dieses in die Ausgangs-DGL ein und löse nach C(x) auf.

Oder direktes einsetzen, aber aufpassen, dass q(x) sauber definiert!

$$C(x) = \int \frac{q(x)}{y_h(x)} x$$

4.11.3 Anfangswertproblem (AWP)

Damit die Lösung der DGL eindeutig ist, müssen n-Anfangswerte für n-Freiheitsgrade gegeben sein \to Konstanten C_1, \dots, C_n bestimmen

An merkung

i) Die Konstanten erst mit der kompletten Lösung y(x) bestimmen (mit partikulärer Lösung)

4.12 Kleinwinkelnäherung

Für $x \le 10^{\circ}$ ist der Fehler durch folgende Näherung auf 1.5% beschränkt:

$$\sin(x) \approx x$$
 $\tan(x) \approx x$ $\cos(x) \approx 1$

4.13 Integration

4.13.1 Partielle Integration

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Anmerkung

- i) "Im Kreis" integrieren und dann nach ursprünglichem Integral auflösen. (tw. trig. Identitäten verwenden)
- ii) Mit g'(x) = 1 verwenden, um z.B. $\int ln(x)dx$ auszurechnen.

4.13.2 Substitution

$$\int_{a}^{b} f(x) dx = \int_{u(a)}^{u(b)} \frac{f(u)}{u'(x)} du \qquad \frac{du}{dx} = u'(x)$$

Anmerkungen

i) Wenn die Stammfunktion gesucht ist, dann wird am Schluss wieder rücksubstituiert

4.13.3 logarithmische Integration

$$\int_{a}^{b} \frac{f'(x)}{f(x)} x = [\log(|f(x)|)]_{a}^{b}$$

4.13.4 Abschätzungen

$$\left| \int_{a}^{b} f(x)x \right| \le \int_{a}^{b} |f(x)|x$$

$$m \cdot (b-a) \le \int_{a}^{b} f(x)x \le \mu \cdot (b-a)$$

Anmerkung

- $m \le f(x) \le \mu, \forall x \in [a, b]$
- (b-a) ist die "Länge der Kurve"

4.14 Integrale

4.14.1 Substitutionen

$$\int \frac{g'(x)}{g(x)} dx \qquad u(x) = g(x) \qquad dx = \frac{du}{g'(x)}$$

$$\int f(g(x)) \cdot g'(x) dx \qquad u(x) = g(x) \qquad dx = \frac{du}{g'(x)}$$

$$\int f(e^x, \sinh(x), \cosh(x)) dx \qquad u(x) = e^x \qquad dx = \frac{du}{e^x}$$

$$\int f(x, \sqrt{1 - x^2}) dx \qquad x = \sin(u) \qquad dx = \cos(u) du$$

$$\int f(x, \sqrt{1 + x^2}) dx \qquad x = \sinh(u) \qquad dx = \cosh(u) du$$

$$\int f(x, \sqrt{x^2 - 1}) dx \qquad x = \cosh(u) \qquad dx = \sinh(u) du$$

$$\int f\left(\frac{1}{\sqrt{a^2 - x^2}}\right) dx \qquad u(x) = \frac{x}{a} \qquad dx = a du$$

$$\int f\left(\sqrt{1 + \frac{1}{x^2}}\right) dx \qquad u(x) = \sqrt{x^2 - 1} \qquad dx = \frac{\sqrt{x^2 - 1}}{x} du$$

$$\int R(\sin(x), \cos(x)) dx \qquad u(x) = \tan\left(\frac{x}{2}\right) \qquad dx = \frac{2}{1 + u^2} du$$

$$\Rightarrow \sin(x) = \frac{2u}{1 + u^2} \qquad \Rightarrow \cos(x) = \frac{1 - u^2}{1 + u^2}$$

4.14.2 Potenzen und Wurzeln

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C \qquad n \neq -1$$

$$\int \sqrt{x} dx = \frac{2}{3}x^{\frac{3}{2}} + C$$

$$\int \sqrt{1 - x^2} dx = \frac{1}{2} \left(x\sqrt{1 - x^2} + \arcsin(x) \right) + C$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin(x) + C$$

$$\int -\frac{1}{\sqrt{1 - x^2}} dx = \arccos(x) + C$$

$$\int \frac{1}{1 + x^2} dx = \arctan(x) + C$$

$$\int \frac{1}{\sqrt{a - x^2}} dx = \arctan\left(\frac{x}{\sqrt{a - x^2}}\right) + C$$

$$\int \frac{x}{ax^2 + b} dx = \frac{1}{2a} \ln|ax^2 + b| + C$$

$$\int \frac{x}{(x^2 + a^2)^n} dx = -\frac{1}{2(n - 1)(a^2 + x^2)^{n - 1}} + C$$

$$\int \frac{x}{(a^2 - x^2)^n} dx = \frac{1}{2(n - 1)(a^2 - x^2)^{n - 1}} + C$$

$$\int \sqrt{a^2 + x^2} dx = \frac{1}{2} \left(x\sqrt{a^2 + x^2} + a^2 \log\left(\sqrt{a^2 + x^2} + x\right) \right) + C$$

4.14.3 Exponential- und Logarithmusfunktionen

$$\int e^x dx = e^x + C$$

$$\int \ln(x) dx = x \left(\ln|x| - 1\right) + C$$

$$\int \frac{\ln(x)}{x} dx = \frac{1}{2} (\ln|x|)^2 + C$$

$$\int x^s \ln(x) dx = \frac{x^{s+1}}{s+1} \left(\ln|x| - \frac{1}{s+1}\right)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \frac{1}{x \pm a} dx = \ln|x \pm a| + C$$

$$\int \frac{1}{e^x + a} dx = \frac{x - \ln|a + e^x|}{a} + C$$

$$\int \frac{1}{e^x - a} dx = \frac{\ln|e^x - a| - x}{a} + C$$

$$\int \frac{1}{x^2 + x} dx = \ln(x) - \ln(x + 1) + C$$

$$\int a^{kx} dx = \frac{a^{kx}}{k \ln |a|} + C \qquad \frac{d}{dx} a^{kx} = ka^{kx} \ln(a) \qquad a > 1$$

$$\int x^n e^{ax} dx = e^{ax} \sum_{k=0}^n (-1)^k \frac{n!}{(n-k)!} \frac{x^{n-k}}{a^{k+1}} + C$$

4.14.4 Hyperbolische Funktionen

$$\int \cosh(x) dx = \sinh(x) + C$$

$$\int \sinh(x) dx = \cosh(x) + C$$

$$\int \tanh(x) dx = \ln |e^{2x} + 1| - x + C$$

$$\int \frac{1}{\cosh^2(x)} dx = \tanh(x) + C$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \operatorname{arsinh}(x) + C$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcosh}(x) + C \qquad x > 1$$

$$\int \frac{1}{1 - x^2} dx = \operatorname{artanh}(x) + C$$

$$\int \frac{1}{\sinh(x)} dx = \ln (e^x - 1) - \ln (e^x + 1) + C$$

$$\int \sinh^{-1}(x) dx = x \sinh^{-1}(x) - \sqrt{1 + x^2} + C$$

$$\int \cosh^{-1}(x) dx = x \cosh^{-1}(x) - \sqrt{x^2 - 1} + C$$

$$\int \tanh^{-1}(x) dx = x \tanh^{-1}(x) + \frac{1}{2} \ln (1 - x^2) + C$$

$$\int \tanh^2(x) dx = x - \tanh(x) + C$$

$$\int \sinh^2(x) dx = \frac{1}{4} (\sinh(2x) - 2x) + C$$

4.14.5 Trigonometrische Funktionen

$$\int \sin(x) dx = -\cos(x) + C$$
$$\int \cos(x) dx = \sin(x) + C$$

$$\int \tan(x) dx = -\ln|\cos(x)| + C$$

$$\int \frac{1}{\sin(x)} dx = \ln|\frac{\sin(x)}{\cos(x) + 1}| + C$$

$$\int \frac{1}{\cos(x)} dx = \ln|\frac{-\cos(x)}{\sin(x) - 1}| + C$$

$$\int \frac{1}{\tan(x)} dx = \ln|\sin(x)| + C$$

$$\int \frac{1}{\cos^2(x)} dx = \tan(x) + C$$

$$\int \frac{1}{\sin^2(x)} dx = -\frac{1}{\tan(x)} + C$$

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{\sin(x)\cos(x)}{2} + C$$

$$\int \cos^2(x) dx = \frac{x}{2} + \frac{\sin(x)\cos(x)}{2} + C$$

$$\int \sin(x)\cos(x) dx = \frac{1}{2}\sin^2(x) + C$$

$$\int \sin^2(x)\cos(x) dx = \frac{1}{3}\sin^3(x) + C$$

$$\int \sin(x)\cos^2(x) dx = -\frac{1}{3}\cos^3(x) + C$$

$$\int \sin^2(x)\cos^2(x) dx = \frac{1}{32}(4x - \sin(4x)) + C$$

$$\int \sin^n(ax)\cos(ax) dx = \frac{\sin^{n+1}(ax)}{(n+1)a} + C$$

$$\int \sin^n(x) dx = \frac{n-1}{n} \int \sin^{n-2}(x) dx - \frac{\sin^{n-1}(x)\cos(x)}{n}$$

$$\int \cos^n(x) dx = \frac{n-1}{n} \int \cos^{n-2}(x) dx + \frac{\cos^{n-1}(x)\sin(x)}{n}$$

$$\int \cot(x) dx = \ln|\sin(x)| + C$$

$$\int \sec(x) dx = \ln|\sec(x) + \cot(x)| + C$$

$$\int \sec(x) dx = \ln|\sec(x) + \cot(x)| + C$$

$$\int \arcsin(x) \mathrm{d}x = x \cdot \arcsin(x) + \sqrt{1 - x^2} + C$$

$$\int \arccos(x) \mathrm{d}x = x \cdot \arccos(x) - \sqrt{1 - x^2} + C$$

$$\int \arctan(x) \mathrm{d}x = x \cdot \arctan(x) - \frac{1}{2} \ln |x^2 + 1| + C$$

$$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x) + C$$

$$\int x^2 \sin(x) \mathrm{d}x = 2x \sin(x) - (x^2 - 2) \cos(x) + C$$

$$\int x^3 \sin(x) \mathrm{d}x = 3(x^2 - 2) \sin(x) - x(x^2 - 6) \cos(x) + C$$

$$\int x \cos(x) \mathrm{d}x = x \sin(x) + \cos(x) + C$$

$$\int x^2 \cos(x) \mathrm{d}x = (x^2 - 2) \sin(x) + 2x \cos(x) + C$$

$$\int x^3 \cos(x) \mathrm{d}x = x(x^2 - 6) \sin(x) + 3(x^2 - 2) \cos(x) + C$$

$$\int \sin(ax) \sin(bx) \mathrm{d}x = \frac{\sin((a - b)x)}{2(a - b)} - \frac{\sin((a + b)x)}{2(a + b)} + C$$

$$\int \sin(ax) \cos(bx) \mathrm{d}x = -\frac{\cos((a + b)x)}{2(a + b)} - \frac{\cos((a - b)x)}{2(a - b)} + C$$

$$\int x \sin(\alpha x) \mathrm{d}x = \frac{\sin(\alpha x) - \alpha x \cos(\alpha x)}{\alpha^2} + C$$

$$\int x^2 \sin(\alpha x) \mathrm{d}x = \frac{(2 - \alpha^2 x^2) \cos(\alpha x) + 2\alpha x \sin(\alpha x)}{\alpha^3} + C$$

$$\int x \cos(\alpha x) \mathrm{d}x = \frac{(\alpha^2 x^2 - 2) \sin(\alpha x) + 2\alpha x \cos(\alpha x)}{\alpha^3} + C$$

$$\int x e^{\alpha x} \mathrm{d}x = \frac{e^{\alpha x} (\alpha x - 1)}{\alpha^2} + C$$

$$\int x^2 e^{\alpha x} \mathrm{d}x = \frac{e^{\alpha x} (\alpha^2 x^2 - 2\alpha x + 2)}{\alpha^3} + C$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \mathrm{d}x = \frac{e^{\alpha x} (\alpha^2 x^2 - 2\alpha x + 2)}{\alpha^3} + C$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{\sqrt{\alpha}} \quad \text{Re}(\alpha) > 0$$

$$\int_{0}^{2\pi} \cos^4(t) \mathrm{d}t = \int_{0}^{2\pi} \sin^4(t) dt = \frac{3\pi}{4}$$

$$\int_{0}^{2\pi} \cos^{3}(t) dt = \int_{0}^{2\pi} \sin^{3}(t) dt = 0$$

$$\int_{0}^{2\pi} \cos^{2}(t) dt = \int_{0}^{2\pi} \sin^{2}(t) dt = \pi$$

$$\int_{0}^{2\pi} \sin(t) \cos^{2}(t) dt = \int_{0}^{2\pi} \cos(t) \sin^{2}(t) dt = 0$$

$$\int_{0}^{2\pi} \sin(t) \cos(t) dt = 0$$

$$\int_{-\infty}^{\infty} e^{-x^{2}} dx = \sqrt{\pi}$$

4.14.6 Bestimmte trigonometrische Integrale

	$\int_0^{\frac{\pi}{4}}$	$\int_0^{\frac{\pi}{2}}$	\int_0^{π}	$\int_0^{2\pi}$	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$	$\int_{-\pi}^{\pi}$
\sin	$\frac{\sqrt{2}-1}{\sqrt{2}}$	1	2	0	0	0	0
\sin^2	$\frac{\sqrt{2}}{8}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{\pi-2}{4}$	$\frac{\pi}{2}$	π
\sin^3	$\frac{8-5\sqrt{2}}{12}$	$\frac{\frac{\pi}{4}}{\frac{2}{3}}$	$\frac{4}{3}$	0	0	0	0
cos	$\frac{1}{\sqrt{2}}$	1	0	0	$\sqrt{2}$	2	0
\cos^2	$\frac{2+\pi}{8}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{2+\pi}{4}$	$\frac{\pi}{2}$	π
\cos^3	$\frac{5}{6\sqrt{2}}$	$\frac{\frac{\pi}{4}}{\frac{2}{3}}$	0	0	$\frac{5}{3\sqrt{2}}$	$\frac{4}{3}$	0
$\sin \cdot \cos$	$\frac{1}{4}$	$\frac{1}{2}$	0	0	0	0	0
$\sin^2 \cdot \cos$	$\frac{1}{6\sqrt{2}}$	$\frac{\overline{1}}{3}$	0	0	$\frac{1}{3\sqrt{2}}$	$\frac{2}{3}$	0
$\sin \cdot \cos^2$	$\frac{4-\sqrt{2}}{12}$	$\frac{1}{3}$	$\frac{2}{3}$	0	0	0	0

4.14.7 Additions theoreme

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \qquad \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \qquad \cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

$$\cos(\arcsin(x)) = \sin(\arccos(x)) = \sqrt{1 - x^2} \qquad \cos(2\alpha) = 2\cos^2(\alpha) - 1$$

4.15 Punktmengen

4.15.1 Kreis

Fläche:
$$A = \pi r^2$$
 Umfang: $U = 2r\pi$

$$K = \{(x, y) \in \mathbb{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 = r^2\}$$

 $r \in \mathbb{R}^{>0}$ ist der Radius des Kreises Parametrisierung:

$$\gamma(t) = (r\cos(2\pi t), r\sin(2\pi t)), t \in [0, 1]$$

4.15.2 Kugel

Volumen: $V = \frac{4}{3}\pi r^3$ Oberfläche: $S = 4\pi r^2$

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2\}$$

 $r \in \mathbb{R}^{>0}$ ist der Radius des Kreises

4.15.3 Kreiszylinder

Volumen: $V = \pi r^2 h$ Mantelfläche: $M = 2\pi r h$

Oberfläche: $S = M + 2 \cdot G = 2\pi rh + 2\pi r^2$

$$Z = \{(x, y, z) \in \mathbb{R}^3 | (x - x_0)^2 + (y - y_0)^2 = r^2, \ 0 \le z \le h \}$$

 $r \in \mathbb{R}^{>0}$ ist der Radius des Kreiszylinders

4.15.4 Kegel

Volumen: $V = \frac{1}{3}\pi r^2 h$ Oberfläche: $S = \pi r^2 + \pi r \sqrt{h^2 + r^2}$

$$K = \left\{ (x, y, z) \in \mathbb{R}^3 \left| x^2 + y^2 = \frac{r^2}{h^2} (h - z)^2 \right. \right\}$$

 $r,h\in\mathbb{R}^{>0}$ ist der Radius bzw. die Höhe des Kegels

4.15.5 Ellipse

 $a,b \in \mathbb{R}^{>0}$ bezeichnet die Halbachsen der Ellipse

Fläche: $A = \pi \cdot a \cdot b$

$$E = \left\{ (x, y) \in \mathbb{R}^2 \left| \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} \right| = 1 \right\}$$

Parametrisierung:

$$\gamma(t) = (a\cos(2\pi t), b\sin(2\pi t)), t \in [0, 1]$$