

Slides adapted from Liang Huang

Structure Learning

Jordan Boyd-Graber University of Colorado Boulder

8. DECEMBER 2014

Roadmap

- Structured learning
- Alternative to generative models

Jordan Boyd-Graber | Boulder Structure Learning |

3 of 14

4 of 14

Jordan Boyd-Graber | Boulder Structure Learning

Jordan Boyd-Graber | Boulder Structure Learning |

multiclass perceptron (Freund/Schapire, 1999)

6 of 14

structured perceptron (Collins, 2002)

6 of 14

Generic Perceptron

- perceptron is the simplest machine learning algorithm
- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes

Structured Perceptron

Jordan Boyd-Graber Boulder Structure Learning

Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: W = 0

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$

 $z_i = F(x_i)$

If $(z_i \neq y_i)$ $\mathbf{W} \leftarrow \mathbf{W} + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$

9 of 14

Output: Parameters W

POS Example

- DT NN VBD gold-standard: $\Phi(x,y)$ the bit man the dog \boldsymbol{x} current output: DT NN NN NN z $\Phi(x,z)$ bit the the dog man
- assume only two feature classes
 - tag bigrams ti-1 word/tag pairs Wi
- weights ++: (NN,VBD) (VBD, DT) $(VBD \rightarrow bit)$
- weights --: (NN, NN) (NN, DT) $(NN \rightarrow bit)$

What must be true?

- Finding highest scoring structure must be really fast (you'll do it often)
- Requires some sort of dynamic programming algorithm
- For tagging: features must be local to y (but can be global to x)

Averaging is Good

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $W_0 = 0$

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$

 $z_i = F(x_i)$

If $(z_i \neq y_i)$ $\mathbf{W}_{j+1} \leftarrow \mathbf{W}_j + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$

12 of 14

Output: Parameters $\mathbf{W} = \sum_{i} \mathbf{W}_{j}$

Jordan Boyd-Graber Boulder Structure Learning

Smoothing

- Must include subset templates for features
- For example, if you have feature (t_0, w_0, w_{-1}) , you must also have

 \circ $(t_0, w_0); (t_0, w_{-1}); (w_0, w_{-1})$

- Sometimes search is too hard
- So we use beam search instead
- How to create algorithms that respect this relaxation: track when right answer falls off the beam

Jordan Boyd-Graber | Boulder Structure Learning |

Structured Learning

- Sometimes you want discriminative method for complex y
- · Learning those models are difficult
- Need to be scalable

Jordan Boyd-Graber Boulder Structure Learning