1.1

1.2

Глава 1 Полупростые алгебры Хопфа

В.А. Артамонов, мех-мат МГУ

1 Введение

1.1 Основная проблема

Лекции посвящены проблеме классификации полупростых конечномерных алгебр Хопфа H над алгебраически замкнутым полем k в предположении, что либо $\mathrm{char}\,k=0$, либо $\mathrm{char}\,k>\mathrm{dim}\,H$.

Мы будет предполагать, что для любого натурального числа d>1 все неприводимые H-модули размерности d изоморфны.

Эти условия восходят к результатм G.M. Seitz , описавшем конечные группы G, у которых существует только одно неодномерное неприводимиое представление размерности d>1. Группа G с указанным свойством либо экстраспециальная 2-группа порядка 2^{2m+1} , причем $d=2^m$, либо порядок |G|=d(d+1), where $d+1=p^f$, и p— простое число.

2 Алгебры Хопфа

Алгеброй Хопфа называется ассоциативная алгебра H с единицей и умножением $\mu: H^2 \to H$, в которой заданы

- (i) гомоморфизм алгебр с единицей $\Delta: H \to H^{\otimes 2}$, называемый коумножением,
- (іі) гомоморфизм алгебр с единицей $\boldsymbol{\varepsilon}: H \to k$, называемый коединицей,
- (ііі) антигомоморфизм алгебр с единицей $S: H \to H$, называемый антиподом.

При этом требуется коммутативность следующих диаграмм:

2.1 Примеры алгебры Хопфа

Групповые алгебры

Первым важным примером алгебр Хопфа является групповая алгебра kG произвольной группы G. Коумножение, коединица и антипод для элементов из $g \in G$ определяются по правилам:

$$\Delta(g) = g \otimes g$$
, $\varepsilon(g) = 1$, $S(g) = g^{-1}$.

Универсальные обертывающие алгебры

Вторым примером алгебр Хопфа являются универсальные обертывающие алгебры U для алгебры Ли L. Коумножение, коединица и антипод для элементов из $g \in L$ определяются по правилам:

$$\Delta(g) = g \otimes 1 + 1 \otimes g, \quad \varepsilon(g) = 0, \quad S(g) = -g.$$

Алгебраические группы

Третью серию примеров дают алгебры регулярных функций $\mathcal{O}(G) = k[G]$ для алгебраической группы G над полем k. В этом примере коумножение, коединица и антипод определяются для функции $f \in \mathcal{O}(G)$ по правилам:

$$\Delta(f)(x,y) = f(xy), \quad \varepsilon(f) = f(1), \quad S(f)(g) = f\left(g^{-1}\right).$$

Здесь необходимо напомнить, что $\mathscr{O}(G)\otimes\mathscr{O}(G)\simeq\mathscr{O}(G\times G)$. Поэтому $\Delta:\mathscr{O}(G)\to\mathscr{O}(G\times G)$ двойственно отображению умножения $G\times G\to G$.

1.4

1.6

В частности, алгебра функций $\mathcal{O}(\mathrm{GL}(n,k))$ на общей линейной группе размера n является алгеброй многочленов от переменных $X_{ij},\ 1 \leqslant i,j \leqslant n$, локализованной по многочлену $\det X$, где X — квадратная матрица размера n, в которой на месте ij стоит переменная X_{ij} . Коумножение, коединица и антипод определяются по правилам:

$$\Delta(X_{ij}) = \sum_{t=1}^{n} X_{it} \otimes X_{tj}, \quad \varepsilon(X_{ij}) = \delta_{ij}, \quad S(X_{ij}) = \frac{A_{ji}}{\det X},$$

где A_{ji} — соответствующее алгебраическое дополнение в матрице X.

Алгебра функций $\mathcal{O}(\mathrm{SL}(n,k))$ на специальной линейной группе размера n является алгеброй многочленов от переменных X_{ij} , где $i,j=1,\ldots,n$, факторизованной по идеалу, порождаемому $\det X - 1$. Коумножение, коединица и антипод определяются как и в предыдущем примере.

Алгебра Тафта

Приведем полезный пример четырехмерной алгебр Хопфа H_4 , построенный Е. Тафтом. Как алгебра она порождается двумя элементами x, g с определяющими соотношениями

$$g^2 = 1$$
, $x^2 = 0$, $xg = -gx$.

Коумножение, коединица и антипод определяются по правилам

$$\Delta(g) = g \otimes g, \quad \delta(x) = x \otimes 1 + g \otimes x, \quad \varepsilon(g) = 1, \quad \varepsilon(x) = 0,$$

 $S(g) = g^{-1} = g, \quad S(x) = -gx.$

Алгебра Г. Каца

Укажем еще один пример восьмимерной алгебры Хопфа H, принадлежащий Γ . Кацу. H как алгебра порождается элементами x,y,z. Определяющие соотношения, коумножение, коединица и антипод имеют вид

$$x^{2} = y^{2} = 1, \quad xy = yx, \quad zx = yz, \quad zy = xz,$$

$$z^{2} = \frac{1}{2}(1 + x + y - xy),$$

$$\Delta(z) = \frac{1}{2}((1 + y) \otimes 1 + (1 - y) \otimes x)(z \otimes z),$$

$$\Delta(x) = x \otimes x, \quad \Delta(y) = y \otimes y,$$

$$\varepsilon(x) = \varepsilon(y) = \varepsilon(z) = 1,$$

$$S(x) = x^{-1}, \quad S(y) = y^{-1}, \quad S(z) = z^{-1}.$$

1.7

3 Дуальные алгебры Хопфа

Пусть H — конечномерная алгебра Хопфа и H^* — дуальное пространство. Тогда H^* является алгеброй Хопфа относительно конволютивного умножения l_1*l_2 , коумножения Δ^* , коединицы $\boldsymbol{\mathcal{E}}^*$ и антипода S^* , которые задаются по правилам

$$l_1 * l_2 = \mu \cdot (l_1 \otimes l_2) \cdot \Delta, \quad \Delta^*(l)(x \otimes y) = l(xy),$$

$$(S^*l)(x) = l(S(x)), \quad \varepsilon^*(l) = l(1)$$
(1)

для любых $x,y \in H$. Другими словами, $l_1 * l_2$ является произведением отображений

$$H \xrightarrow{\Delta} H^{\otimes 2} \xrightarrow{l_1 \otimes l_2} k \otimes k \xrightarrow{\mu} k$$

В частности, если H=kG — групповая алгебра, и в H^* выбран дуальный базис $\{p_g\mid g\in G\}$ к базису $\{g\mid g\in G\}$ в H, то

$$p_g * p_h = \delta_{g,h} p_g, \quad \Delta^*(p_g) = \sum_{f \in G} p_f \otimes p_{f^{-1}g}, \quad \varepsilon(p_g) = \delta_{g,1}.$$

Таким образом, как алгебра H^* является прямой суммой

$$H^* = \bigoplus_{g \in G} k p_g$$

|G| копий поля k. Другими словами, $H^* = \mathscr{O}(G)$ — алгебра функций на G.

Если алгебра Хопфа H бесконечномерна, то под дуальной алгеброй Хопфа H^0 понимается подпространство в H^* , состоящее из всех линейных функционалов, ядро которых содержит идеал в H конечно коразмерности. В этом случае формулы (1) корректно определены и превращают H^0 в алгебру Хопфа.

Если H конечномерно, то $H^0 = H^*$.

Пример: рекуррентные последовательности

Пусть H — алгебра многочленов от n переменных. Тогда H является универсальной обертывающей алгеброй для абелевой алгебры Ли размерности n. В этом случае H^0 — алгебра Хопфа n-кратных рекуррентных последовательностей.

4 Специальные элементы в алгебрах Хопфа

Групповые элементы

Элемент $g \in H$ из алгебры Хопфа называется групповым, если

$$\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1.$$

Множество G(H) всех групповых элементов является мультипликативной подгруппой в группе всех обратимых элементов в H. При этом $S(g) = g^{-1}$ для всех $g \in G(H)$.

Предложение 1. Элемент $f \in H^0$ лежит в $G(H^0)$ в том и только в том случае, если $f: H \to k$ является гомоморфизмом алгебр с единицей.

Следствие 1. Пусть $H = \mathcal{O}(G)$ — алгебра регулярных функций на алгебраической группе G. Тогда $G(H^0)$ — группа k-точек группы G.

Примитивные элементы

Элемент z из алгебры Хопфа H называется примитивным, если

$$\Delta(z) = z \otimes 1 + 1 \otimes z.$$

Нетрудно показать, что $\varepsilon(z)=0, S(z)=-z.$

Предложение 2. Множество P(H) всех примитивных элементов является алгеброй Ли относительно лиевского умножения

$$[x,y] = xy - yx.$$

Если основное поле имеет характеристику p>0, и $x\in P(H)$, то $x^p\in P(H)$.

Теорема 1. Если $\operatorname{char} k = 0$, то подалгебра в H, порожденная P(H), является универсальной обертывающей алгеброй для алгебры Ли P(H).

Если $\operatorname{char} k = p > 0$, то подалгебра в H, порожденная P(H), является ограниченной универсальной обертывающей алгеброй для ограниченной алгебры Ли P(H).

Теорема 2. Пусть $H = \mathcal{O}(G)$ — регулярные функции на алгебраической группе G. Тогда алгебра Ли

$$P(H^0) \simeq \left[\ker \varepsilon / (\ker \varepsilon)^2\right]^*$$

изоморфна алгебре Ли группы G.

5 (Ко)действия алгебр Хопфа и (ко)модульные алгебры

5.1 Комодульные алгебры и кодействия

Пусть H — алгебра Хопфа и A — ассоциативная алгебра с единицей. Скажем, что H кодействует слева на A или A является левой H-комодульной алгеброй, если задан такой гомоморфизм алгебр $\rho: A \to H \otimes A$, что коммутативны диаграммы

Аналогично определяется правое кодействие и правая комодульная алгебра.

5.2 Примеры

Действия алгебраических групп

Пусть задано действие алгебраической группы G на алгебраическом многообразии X. Тогда возникает гомоморфизм алгебр регулярных функций

$$\rho: \mathscr{O}(G) \to \mathscr{O}(G) \otimes \mathscr{O}(X) \simeq \mathscr{O}(G \times X).$$

Тем самым $\mathcal{O}(X)$ является левой $\mathcal{O}(G)$ -комодульной алгеброй над $\mathcal{O}(G)$.

Градуировки

Пусть G — группа и задано кодействие G на алгебре A. Для элемента $g \in G$ через A_g обозначим множество всех таких элементов $a \in A$, что $\rho(a) = g \otimes a$. Тогда A является G-градуированной алгеброй. Обратно, любая G-градуировка превращает A в левую комодульную алгебру над групповой алгеброй kG.

1.13

5.3 Модульные алгебры и действия

Пусть H — алгебра Хопфа и A — ассоциативная алгебра с единицей. Скажем, что H действует слева на A или A является левой H-модульной алгеброй, если A является левым H-модулем, причем

(i) для любых $h \in H$ и $a,b \in A$ выполнено равенство

$$h(ab) = \sum_{h} \left(h_{(1)} a \right) \left(h_{(2)} b \right),$$

где

$$\Delta(h) = \sum_{h} h_{(1)} \otimes h_{(2)} \in H^{\otimes 2}; \tag{2}$$

(ii) если $h \in H$, то $h1 = \varepsilon(h)1 \in A$.

Аналогично определяется правое действие и правая H-модульная алгебра.

Предложение 3. Пусть A является левой H-модульной алгеброй. Тогда группа G(H) групповых элементов действует в A как группа автоморфизмов. Алгебра Ли P(H) примитивных элементов действует как алгебра Ли дифференцирований в A.

Если H конечномерная алгебра Хопфа, то ассоциативная алгебра A является левой H-комодульной в том и только в том случае, если A является левой H^* -модульной алгеброй.

5.4 Действия H^* на H

Действия группы $G(H^*)$

Имеются левое и правое действия $H^* \rightharpoonup H$, $H \leftharpoonup H^*$ дуальной алгебры Хопфа H^* на алгебре H. Они определяются следующим способом. Пусть $f \in H^*$, $h \in H$. В обозначениях (2) имеем

$$f \rightharpoonup h = \sum_{h} h_{(1)} \langle f, h_{(2)} \rangle, \quad h \leftharpoonup f = \sum_{h} \langle f, h_{(1)} \rangle h_{(2)}$$

В частности, если $g \in G(H^*)$, то $g \rightharpoonup$, $\leftharpoonup g$ являются автоморфизмами алгебры H.

5.5 (Ко)инварианты

Предположим, что ассоциативная алгебра с единицей является левой H-комодульной алгеброй. Элемент $a \in A$ называется коинвариантом, если $\rho(a) = 1 \otimes a$.

Если ассоциативная алгебра A с единицей является левой H-модульной алгеброй, то элемент $a \in A$ называется инвариантом, если $ha = \varepsilon(h)a$ для всех $h \in H$. Все инварианты образуют подалгебру A^H в A. В частности, если $h \in G(H)$, $d \in P(H)$, то ha = a, da = 0 для любого инварианта a.

6 Категории модулей

Если H — произвольная алгебра Хопфа, то тензорное произведение $M \otimes N$ над полем k любых двух левых H модулей M,N снова является левым H-модулем. Действительно, если $h \in H$ и $x \in M$, $y \in N$, то, пользуюсь (2) положим

$$h(x \otimes y) = \sum_{h} h_{(1)} x \otimes h_{(2)} y.$$

Тем самым категория HM всех левых H-модулей является моноидальной.

Кроме того, для каждого H-модуля $M \in {}_H\mathcal{M}$ дуальное пространство M^* также является левым H-модулем. Структура модуля вводится следующим образом. Если $f:M\to k$ — линейный функционал, $x\in M$ и $h\in H$, то $(hf)(x)=f\left((Sh)(x)\right)$, где S — антипод.

Предложение 4. Если H-модуль M неприводим, то M^* также неприводим.

Алгебра Хопфа H', определенная на той же алгебре H с помощью коумножения Δ' , коединицы \mathcal{E}' и антипода S' называется деформацией алгебры Хопфа H, если существует такой обратимый элемент

$$J = \sum J_i \otimes J_i' \in H \otimes H, \quad J_i, J_i' \in H,$$

ЧТО

$$\left[\sum_{i} (\Delta(J_i) \otimes J_i') (J \otimes 1) = \left[\sum_{i} J_i \otimes \Delta(J_i')\right] (1 \otimes J) \in H^{\otimes 3},$$
$$\sum_{i} \varepsilon(J_i) J_i' = \sum_{i} J_i \varepsilon(J_i') = 1 \in H.$$

Кроме того, $\varepsilon' = \varepsilon$ и

$$\Delta'(h) = J^{-1}\Delta(h)J \in H \otimes H, \quad h \in H,$$

$$S'(h) = v^{-1}S(h)v \in H, \ h \in H, \quad v = \sum_{i} S(J_i)J'_i \in H.$$

Теорема 3. Две моноидальные категории HM и H'M модулей над алгебрами Хопфа H, H' эквивалентны как моноидальные категории в том и только в том случае, если H изоморфно деформации H'.

7 Полупростые алгебры Хопфа

Алгебра Хопфа полупроста, если ее радикал Джекобсона равен нулю. Для произвольной конечномерной ассоциативной алгебры A с единицей следующие условия эквивалентны:

- (i) алгебра A полупроста;
- (ii) любой *А*-модуль является прямой суммой неприводимых;
- (iii) алгебра A как левый A-модуль является прямой суммой неприводимых модулей (минимальных левых идеалов).

Теорема 4 (R. Larson, D.Radford, 1988). Если H — конечномерная алгебра Хопфа над алгебраически замкнутым полем нулевой характеристики. Следующие условия эквивалентны:

- a) H полупросто;
- b) дуальная алгебра H^* полупроста;
- с) $S^2 = 1$, где S антипод.

Разложение Н

В дальнейшем мы будем предполагать, что конечномерная алгебра Хопфа H полупроста и для каждой размерности d>1 существует с точностью до изоморфизма не более одного неприводимого H-модуля размерности d.

В этом случае, H как полупростая k-алгебра имеет разложение в прямую сумму простых идеалов

$$H = (\bigoplus_{g \in G} ke_g) \oplus \operatorname{Mat}(d_1, k) \oplus \cdots \oplus \operatorname{Mat}(d_n, k),$$

$$1 < d_1 < \cdots < d_n.$$
(3)

Здесь $\{e_g \mid g \in G\}$ — система центральных ортогональных идемпотентов.

Так как антипод S является инволюцией в H, то каждая матричная компонента $\mathrm{Mat}(d_i,k)$ в H инвариантна относительно S.

Неприводимые H-модули

Пусть E_g , $g \in G$, — одномерный H-модуль, соответствующие элементу $g \in G$. Это означает, что $hx = \langle h, g \rangle x$ для $h \in H$ и $x \in E_g$.

Число неизоморфных H-модулей $E_g,\ g\in G,$ равно порядку группы G.

Пусть M_1, \ldots, M_n — неприводимые H-модули размерностей $1 < d_1 < \cdots < d_n$. Они существуют в силу разложения (3).

В силу предложения 4 из изоморфизма $M_i \simeq M_i^*$ вытекает существование на каждом M_i такой невырожденной (косо)симметричной билинейной функции $\langle x,y\rangle_i$, что $\langle hx,y\rangle_i=\langle x,S(h)y\rangle_i$ для всех $x,y\in M$ и для любого $h\in H$. Пусть U_i — матрица Грама билинейной функции $\langle x,y\rangle$ в некотором базисе модуля M_i .

Предложение 5. Справедливо равенство $S(x) = U_i^t x U_i^{-1}$ для всех $x \in \operatorname{Mat}(d_i, k)$.

Предложение 6. Для каждого индекса i имеется такое проективное представление Φ_i группы G в пространстве M_i , что

$$g \rightharpoonup h = \Phi_i(g)h\Phi_i(g)^{-1}, \quad h \leftharpoonup g = S(\Phi_i(g))hS(\Phi_i(g))^{-1}$$

для произвольного $h \in \operatorname{Mat}(d_i, k)$. При этом

$$[\Phi_i(g), S(\Phi_i(f))] = 1$$

в группе $\operatorname{PGL}(M_i)$ для любых $f,g \in G$.

Предложение 7. Для любого $g \in G$ имеется изоморфизм H-модулей

$$E_g \otimes M_i \simeq M_i \otimes E_g \simeq M_i, \quad E_f \otimes E_g \simeq E_{fg},$$

 $M_i \otimes M_j \simeq \delta_{ij} \left(\bigoplus_{g \in G} E_g \right) \oplus \left(\bigoplus_{t=1}^n m_{ij}^t M_t \right),$

где $m_{ij}^t = \dim_k \operatorname{Hom}_H(M_i \otimes M_j, M_t)$. При этом

$$d_i d_j = \delta_{ij} |G| + \sum_t m_{ij}^t d_t, \quad |G| \leqslant d_1^2, \quad m_{ij}^s = m_{js}^i.$$

1.17

Пусть R_t — квадратная матрица размера n, в которой на месте i,j стоит m_{ij}^t . Тогда из ассоциативность тензорного произведения модулей означает, что каждая матрица R_i симметрична и

$$[R_i, R_j] = |G| (E_{ji} - E_{ij}),$$

$$d_1 R_1 + \dots + R_n d_n = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix} (d_1 \dots d_n) - |G| E.)$$

Теорема 5 (В.А. Артамонов, Р.Б. Мухатов, R. Wisbauer). Предположим, что существует индекс $1 \le i \le n$ со следующим свойством: для любого индекса $j \ne i$ найдется такой индекс t, что $M_i \otimes M_j \simeq m_{ij}^t M_t$. Тогда $m_{ij}^t = \min(\dim M_i, \dim M_j)$ и $t = \max(i, j)$.

Если i=1, то $\oplus_{j\geqslant 2}\operatorname{Mat}(d_j,k)$ является идеалом Хопфа в H.

Если i = n, то n = 1.

Теорема 6 (В.А. Артамонов, Р.Б. Мухатов, R. Wisbauer). Пусть H — полупростая биалгебра с разложением (3), причем $n \ge 2$. Тогда $m_{n-1,n}^t \ge 2$ для некоторого индекса $t = 1, \ldots, n$.

1.21

1.20

Обозначим через χ_i характер модуля M_i . Это означает, что $\langle \chi_i, h \rangle$ — след оператора умножения на элемент h в M_i . Элемент $h \in H$ называется кокоммутативным, если

$$\Delta(h) = \sum_{h} h_{(1)} \otimes h_{(2)} = \sum_{h} h_{(2)} \otimes h_{(1)} \in H \otimes H.$$

Подмножество $\operatorname{Cocom}(H^*)$ в H^* всех кокоммутативных элементов является подалгеброй в H^* . Элемент Λ в алгебре Хопфа H называется левым (правым) интегралом, если $h\Lambda = \varepsilon(h)\Lambda$ (соответственно, $\Lambda h = \varepsilon(h)\Lambda$). В полупростой алгебра Хопфа H пространство \int левых и правых интегралов совпадают и имеют размерность 1.

Предложение 8 (S. Deascalescu, C. Năstăsescu, Ş. Rainau, Hopf algebras: an inroduction, Marcel Dekker, Inc, NY, BASEL, Pure and Applied Mathematics: a series of Monographs and Textbooks/235, 2000. § 7.5). Множество χ_1, \ldots, χ_n и множество элементов $g \in G$ составляют базис пространства $\mathbf{Cocom}(H^*)$. При этом

$$g * \chi_i = \chi_i * g = \chi_i, \quad g * f = gf, \quad \chi_i * \chi_j = \delta_{ij} \sum_{g \in G} g + \sum_t m_{ij}^t \chi_t.$$

В частности, $\mathsf{Cocom}(H^*)$ является подалгеброй в H^* , изоморфной $k \otimes_{\mathbb{Z}} K_0(H)$.

Если Λ — интеграл в H, то соотношения ортогональности для характеров имеют вид $\langle \Lambda, \chi_i S^* (\chi_j) \rangle = \delta_{ij} \langle \Lambda, \varepsilon \rangle$. Здесь S^* — антипод в дуальной алгебре Хопфа H^* .

1.24

1.22

8 Классификация

Антипод S

Каждая матричная компонента $\mathbf{Mat}(d_q,k)$ в разлдожении (3) инвариантна относительно S. Кроме того, как отмечалось, $S^2=1$ и $S(e_g)=e_{g^{-1}}$ для любого центрального идемпотента e_g из (3).

Теорема 7. Если группа G нильпотентна, то, беря изоморфную копию каждой матричной компоненты в (3), можно считать, что все матрицы $\Phi_i(g)$, $S(\Phi_i(g))$ мономиальны.

Теорема 8. Пусть H — полупростая алгебра Хопфа с разложением (3).

Предположим, что одна матричная компонента $\mathbf{Mat}(d_i,k)$ является идеалом Хопфа в H. Тогда n=1.

Элементы \mathcal{R}_q

Обозначим через \mathscr{R}_q элемент

$$\mathscr{R}_q = \frac{1}{d_q} \sum_{i,j=1}^{d_q} E_{ij} \otimes E_{ji}$$

из $\mathrm{Mat}(d_q,k)^{\otimes 2}$. Это единственный с точностью до скалярного множителя такой элемент из $\mathrm{Mat}(d_q,k)^{\otimes 2},$ что

$$(A \otimes B)\mathscr{R}_q = \mathscr{R}_q(B \otimes A)$$

для любых матриц $A, B \in \operatorname{Mat}(d_q, k)$.

Теорема 9. Пусть G — конечная группа , порядок которой взаимно прост с $\mathrm{char}\,k$. Проективное представление $\Omega:G\to \mathrm{PGL}(d,k)$ с условиеми $\Omega(g^{-1})=\Omega(g)^{-1},\ \Omega(E)=E$, неприводимо в том и только в том случае, если

$$\mathscr{R}_q = \frac{1}{|G|} \sum_{g \in G} \Omega(g^{-1}) \otimes \Omega(g).$$

1.25

1.26

1.27

Теорема 10. Пусть $g \in G = G(H)$ и $x \in \mathrm{Mat}(d_r,k)$. Положим $\Delta_q = (1 \otimes S)\mathscr{R}_q$. Тогда $\varepsilon(e_g) = \delta_{1,g}, \ \varepsilon(x) = 0$ и

$$\Delta(e_g) = \sum_{f \in G} e_f \otimes e_{f^{-1}g} + \sum_{t=1,\dots,n} (1 \otimes (g \rightharpoonup)) \Delta_t,$$

$$\Delta(x) = \sum_{g \in G} \left[(g \rightharpoonup x) \otimes e_g + e_g \otimes (x \leftharpoonup g) \right] + \sum_{i,j=1}^n \Delta_{ij}^r(x),$$

где $\Delta_{ij}^r(x)\in \mathrm{Mat}(d_i,k)\otimes \mathrm{Mat}(d_j,k)$ и E_{**} – матричные единицы из $\mathrm{Mat}(d_i,k)$.

9 Случай n = 1, обзор

Алгебры Хопфа с разложением (3) при n=1 рассматривались рядом авторов. Если группа G имеет максимальный возможный порядок, равный d_1^2 , то группа G абелева, Tambara D., Yamagami S., J.Algebra 209 (1998), 692-707, Corollary 3.3. В этой работе дается классификация моноидальной категории модулей над H в терминах бихарактеров группы G. Размерность H в этом случае равна $2d_1^2$.

Если $d_1 = 2$, то с точностью до эквивалентности имеется 4 класса алгебр Хопфа. Все они имеют размерностью 8. Это либо групповые алгебры группы диэдра D_4 , группы кватернионов Q_8 , абелевой группы порядка 8, либо алгебра Γ . Каца.

В работе

ullet Tambara D., Israel J. Math. 118(2000), 29-60, найден явный вид коумножения в H в случае, если порядок G равен d_1^2 , либо группа G — элементарная абелева 2-группа.

В работе

• Masuoka A., Some further classification results on semisimple Hopf algebras, Commun. Algebra, 24(1996),307-329

доказан следующий факт. Пусть H — полупростая алгебра Хопфа размерности $2p^2$ для некоторого простого нечентного числа p. Тогда либо H имеет разложение (3) с n=1, $d_1=p$ и $|G|=p^2$, либо H дуально к этой алгебре. В последнем случае, H имеет полупростое разложение 2p одномерными слагаемыми и с $\frac{p(p-1)}{2}$ компонентами, каждая из которых изоморфна $\mathrm{Mat}(2,k)$.

1.29

1.30

1.31

1.32

10 Случай n = 1, результаты

Теорема 11 (В.А. Артамонов 2009 — 2010). Пусть H имеет разложенеие (3), где n=1 и $G=G(H^*)$. Порядок группы G делится на d_1 и делит d_1^2 .

Следующие условия эквивалентны: Т

- (i) Порядок группы G равен d_1^2 .
- (ii) $\Delta_{11}^1 = 0$ в теореме 10.
- (iii) Φ_1 неприводимое проективное точное представление группы G в M_1 .

При этих условиях любые две алгебры Хопфа одной размерности $2d_1^2$ являются деформациями друг друга.

Теорема 12 (В.А. Артамонов, И.А. Чубаров, Р.Б. Мухатов, 2007-2009). Пусть H имеет разложение (3) с n=1 и $G=G(H^*)$. Если $\Delta^1_{11}=0$, то $G=A\times A$ для некоторой абелевой группы A порядка d_1 .

Теорема 13 (В.А. Артамонов , И.А. Чубаров, Р.Б. Мухатов, С. Спиридонова, 2007-2010). Пусть абелева группа G абелева, имеет порядок d^2 и является прямым произведением $G \simeq A \times A$ для некоторой абелевой группы A порядка d. Тогда группа G имеет точное неприводимое проективное представление Φ размерности d.

Существует такая (косо)симметичная матрица $U \in GL(d,k)$, что $[\Phi(g), S(\Phi(f))] = 1$ в группе PGL(d,k) для всех $f, g \in G$, где $S(x) = U^t x U^{-1}$ для $x \in Mat(d,k)$. Тогда алгеба H с прямым разложением (3) допускает структуру алгебры Хопфа как и в теореме 10.

Имеется изоморфизм групп $G \simeq G(H^*)$.

1.34

1.35

Теорема 14 (В.А. Артамонов, 2007). Предположим, что H из теоремы 12. Элемент

$$w = \sum_{g \in G} \chi_{g,w} e_g + Z_w \in H,$$

где $\chi_{g,w} \in k$, $Z_w \in \text{Mat}(d_1,k)$, является групповым в H в том и только в том случае, если выполнены следующие условия:

- 1) $\chi_{gh,w} = \chi_{g,w} \chi_{h,w}$ при любых $g,h \in G$, т.е. $\chi_{*,w}$ является одномерным характером группы G;
- 2) $g \rightharpoonup Z_w = \chi_{g,w} Z_w = Z_w \leftharpoonup g$ для всех $g \in G$.
- 3) $Z_w U^t Z_w = U$.

Теорема 15 (Е. Пунинский, 2009). В условиях теоремы 12 порядок G(H) равен $2d_1$, если d_1 нечетное простое число. Группа G(H) циклична.

Пусть H имеет разложение (3). Пространство $\mathrm{Mat}(d_i,k)$ обладает невырожденной билинейной функцией

$$\langle A, B \rangle = \operatorname{tr}(A \cdot S(B)) = \operatorname{tr}(A \cdot U_i^{\ t} B U_i^{-1})$$
 (4)

где S — антипод. Поэтому с помощью этой функции дуальное пространство отождествляется с пространством матриц.

Предложение 9. Пусть $g \in G$ и $X,Y \in Mat(d_i,k)$. Функция (4)симметрична и $\langle X,Y \leftarrow g \rangle = \langle g \rightharpoonup X,Y \rangle$ Это означает, что операторы $g \rightharpoonup , \leftarrow g$ сопряжены относительно функции (4).

Следствие 2 (В.А. Артамонов, И.А. Чубаров, 2008). Пусть n=1, и $w,w'\in G(H)$ из теоремы 14. В обозначениях этой теоремы положим $K=\{w\in G(H)\mid \chi_{w,g}=1\ \forall g\in G\}$. Если $w\notin w'K$, то $\langle Z_w,Z_w'\rangle=0$. Кроме того, $\langle Z_w,Z_w\rangle=d_1$.

Пусть a*b - конволютивное умножением в дуальной алгебре Хопфа H^* . Заметим, что коединица ε является единичным элементом в H^* .

Предложение 10 (В.А. Артамонов, И.А. Чубаров, 2008). Пусть H — алгебра Хопфа из теоремы 12. Если $g,h \in G$ и $X,Y \in \text{Mat}(d_1,k)^*$, то

$$g*h = gh, \quad g*X = g \rightharpoonup X, \quad X*g = X \leftharpoonup g,$$

$$X*Y = \frac{1}{d_1} \sum_{g \in G} \langle Y \leftharpoonup g^{-1}, X \rangle g.$$

1.37

1.38

1.39

1.40

Следствие 3. Пусть H — алгебра Хопфа из теоремы 12. Тогда H^* является \mathbb{Z}_2 -градуированной алгеброй, $H^* = H_0^* \oplus H_1^*$,, где $H_0^* = kG$ и $H_1^* = \operatorname{Mat}(d_1,k)$.

Теорема 16 (В.А. Артамонов, И.А. Чубаров, 2008). Пусть n=1, $d_1>2$ и H из теоремы 12. Тогда H^* не изоморфна никакой алгбре Хопфа из теоремы 12.

1.44

20