人工智能编程5

彭程 2020011075 清华大学 自动化系 自 02 班

日期: 2022年12月20日

摘要

本文为 2022 秋《人工智能基础》编程 5 的实验报告。本次作业使用强化学习方法完成游戏迷宫求解。

关键词: RL, Q-Learning, Sarsa

1 问题建模

1.1 状态空间

利用老鼠所在的格子定义状态, 所给问题中共有25个格子, 故状态空间:

$$S = \{(x, y) | 0 \le x \le 4, 0 \le y \le 4\}$$

1.2 行动集合

根据题意,行动集合为 $A = \{up, down, left, right\}$

1.3 状态转移概率

当老鼠在状态 s_t 采取动作 a 时,将根据动作对应的方向 (向上、向下、向左、向右),以概率 1 转移 到 s_{t+1} 中,需要注意的是,如果动作 a 会使老鼠移出环境方格,则老鼠的状态保持不变。若向上、向下、向左、向右的概率分别为 p1、p2、p3、p4,则向对应状态转移的概率也对应为 p1、p2、p3、p4。 $p_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$,当状态和行动指定时,状态转移概率是确定的。

1.4 回报

定义老鼠移动一步的回报 $R_t = -1$,老鼠到达陷阱的回报 $R_t = -5$,老鼠撞墙获得的回报 $R_t = -2$,老鼠到达终点的回报 $R_t = 10$ 。

2 编程求解

2.1 Q-Leaning

Q-Leaning 方法的行动价值递推公式为:

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha \left(R_{t+1} + \gamma \max_{a} Q\left(S_{t+1}, a\right) - Q\left(S_{t}, A_{t}\right)\right)$$

利用 ϵ – greedy 算法选择行为策略, 公式为:

$$\left\{ \begin{array}{l} \pi(a\mid s) = 1 - \epsilon + \frac{\epsilon}{m}, \quad \text{ if } a = \operatorname{argmax}_{a \in A} Q(s, a) \\ \pi(a\mid s) = \frac{\epsilon}{m}, \quad \text{ otherwise} \end{array} \right.$$

接下来编程实现 ϵ – greedy 的 Q-Leaning 算法。定义折现因子 γ = 0.5, ϵ = 0.01, $lr(\alpha)$ = 0.1,运行 100 个 episode 的结果如下 (纵列 0123 分别代表上下右左,横排坐标为状态(x,y)):

表 1: Q-Learning 行动价值表

	0	1	2	3
(0,0)	-1.837978	-1.733839	-1.752091	-1.838560
(0,1)	-1.601735	-1.574143	-1.571919	-1.585546
(0,2)	-1.346318	-1.355000	-1.143002	-1.252222
(0,3)	-0.741975	0.040822	-0.752725	-0.754186
(0,4)	-0.570500	-0.567380	-0.570500	-0.638154
(1,3)	-0.301156	3.046926	-0.285500	-0.500000
(1,0)	-1.564576	-1.418010	-1.559048	-1.603054
(2,0)	-1.162537	-0.703059	-1.355000	-1.206651
(2,2)	0.000000	0.000000	0.000000	0.000000
(1,1)	-1.543758	-1.719500	-1.719500	-1.553839
(1,4)	-0.393233	-0.348900	-0.390000	-0.356430
(2,4)	-0.199500	-0.190000	-0.200000	-0.095000
(3,0)	-0.598374	-0.640006	0.819091	-0.741975
(4,0)	-0.469564	-0.570500	-0.498877	-0.570500
(4,1)	-0.318554	-0.390000	-0.280500	-0.290060
(3,1)	-0.500000	-0.199500	3.894217	-0.109500
(3,2)	9.969567	-0.100000	0.000000	0.000000
(4,2)	0.044280	-0.200000	-0.100000	-0.195000
(4,3)	-0.100000	0.000000	-0.100000	-0.100000
(3,3)	-0.100000	-0.100000	0.000000	-0.050000
(2,3)	-0.105000	-0.100000	-0.100000	9.528987
(3,4)	-0.105000	-0.100000	-0.200000	-0.100000
(4,4)	-0.100000	-0.200000	-0.200000	-0.100000

图 1: Q-Learning 最优行动序列

2.2 Sarsa

Sarsa 方法的行动价值递推公式为:

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha \left(R_{t+1} + \gamma Q\left(S', A'\right) - Q_{S_{t}, A_{t}}\right)$$

利用 ϵ – greedy 算法选择行为策略, 公式为:

$$\left\{ \begin{array}{l} \pi(a\mid s) = 1 - \epsilon + \frac{\epsilon}{m}, \quad \text{ if } a = \operatorname{argmax}_{a \in A} Q(s, a) \\ \pi(a\mid s) = \frac{\epsilon}{m}, \quad \text{ otherwise} \end{array} \right.$$

接下来编程实现 ϵ – greedy 的 Sarsa 算法。定义折现因子 γ = 0.5, ϵ = 0.01, $lr(\alpha)$ = 0.1,运行 100 个 episode 的结果如下 (纵列 0123 分别代表上下右左,横排坐标为状态(x,y)):

表 2: Sarsa 行动价值表

	0	1	2	3
(0,0)	-1.837746	-1.751700	-1.759316	-1.838560
(0,1)	-1.599047	-1.562262	-1.546094	-1.585078
(0,2)	-1.206651	-1.355000	-1.013137	-1.205571
(1,0)	-1.594765	-1.466272	-1.556852	-1.605052
(1,1)	-1.539618	-1.719500	-1.719500	-1.529736
(2,0)	-1.215911	-0.789449	-1.355000	-1.206651
(3,0)	-0.772834	-0.697010	0.702922	-0.741975
(3,1)	-0.500000	-0.100000	3.800872	-0.109750
(4,1)	-0.260731	-0.390000	-0.280500	-0.304224
(4,2)	-0.100000	-0.200000	-0.190000	-0.200000
(3,2)	9.929303	-0.100000	-0.091957	0.000000
(4,3)	-0.190000	-0.200000	-0.100000	-0.100000
(2,2)	0.000000	0.000000	0.000000	0.000000
(0,3)	-0.741975	0.344538	-0.701937	-0.681059
(0,4)	-0.570500	-0.498877	-0.570500	-0.556076
(1,4)	-0.290058	-0.357450	-0.390000	-0.281645
(1,3)	-0.208750	3.453045	-0.195000	-0.500000
(2,3)	-0.100000	0.000000	-0.100000	9.797244
(2,4)	-0.199750	-0.190000	-0.200000	-0.140000
(3,4)	-0.100000	0.000000	-0.200000	-0.100000
(4,0)	-0.568269	-0.570500	-0.498514	-0.570500
(3,3)	0.530860	-0.100000	0.000000	-0.050000
(4,4)	0.000000	0.000000	0.000000	-0.105000

图 2: Sarsa 最优行动序列

3 思考题

如果环境是动态的,例如老鼠夹的个数和位置会随时间变化,该如何求解这个问题?请简述你的想法,本问无需编程实现。

- 1. 可以考虑增大折现因子和学习率,使得后续训练过程中环境的更新对 Q 表的影响更大;
- 2. 可以采用蒙特卡洛或者时序差分,从经验中去学习,做实验模拟得到样本的状态、动作和奖励序列,通过平均所有样本的回报得到行动价值,并更新策略。
- 3. 传统算法的状态空间的大小将急剧增大,可以考虑采用 DQN 等深度强化学习网络进行学习