Tutorial #05

AC analysis of the transistor:

- 1. For a given circuit in Fig.1
 - a) Determine the lowest frequency (in Hz) of ac signal at which good coupling exist.
 - b) What would be the lowest frequency (in Hz) when the load resistance is reduced to $1k\Omega$?
 - c) What would be the lowest frequency (in Hz) when the capacitor is changed to $100\mu F$?
 - d) What would be the choice of resistor and capacitor if you would like to couple ac signal at 100Hz?
- 2. For a given circuit in Fig.2
 - a) Discuss the condition at which terminal A appears to be ac ground.
 - b) If R_1 =600 Ω and R_2 =1 $k\Omega$, determine C for which terminal A appears to be ac ground.
 - c) For R_1 =2.2 $k\Omega$, R_2 =10 $k\Omega$ and C=220 μ F, determine the lowest frequency at which terminal A appears ac ground.
- 3. For the given VDB amplifier in Fig.3
 - a) Draw dc equivalent circuit and determine I_B , I_E , I_C , V_B , V_C , V_E and V_{CE} . (Assume dc current gain is β_{dc} and V_{BE} =0.7V)
 - b) Draw ac equivalent circuit considering (i) T-model of the transistor and (ii) π -model of the transistor.
 - c) Determine the emitter ac resistance r_e' for R₁=10k Ω , R2=2.2k Ω , R_C=3.6k Ω , R_E=1k Ω and V_{CC}=10V.
 - d) Using the result of (c) determine input impedance at base, i.e., $z_{in(base)}$. (use β =100)
 - e) Determine the voltage gain Av, if $R_L=10k\Omega$. [use the value of other elements from (c) and (d)]
- 4. For the given circuit in Fig.4
 - a) Draw ac equivalent circuit. (use π -model of the transistor)
 - b) Determine $z_{in(stage)}$.
 - c) Determine v_{in} .
 - d) Draw dc equivalent circuit and determine r_e' and hence calculate voltage gain A_v .
 - e) Using the result of part (c) and (d) determine v_{out} .
- 5. For the given two stage amplifier in Fig. 5
 - a) Draw dc and ac equivalent circuits.
 - b) Determine r_e' , $z_{in(stage)}$ and v_{in} .
 - c) Calculate A_{v1} , A_{v2} , and A_{v} .
- 6. For the given swamped amplifier in Fig.6, use T-model of the transistor to determine voltage gain A_v and $z_{\text{in}(\text{base})}$.
- 7. Using ac equivalent circuit of Fig.7, determine the output voltage. (use β =200 and ignore r_e')

Fig.5

Fig.7