

2389.ST25
SEQUENCE LISTING

<110> Waldman, Scott A.
Park, Jason
Schulz, Stephanie

<120> Compositions And Methods For Identifying And Targeting Cancer Cells Of Alimentary Canal Origin

<130> TJU2389

<150> 60/192,229
<151> 2000-03-27

<160> 2

<170> PatentIn version 3.0

<210> 1
<211> 1745
<212> DNA
<213> Homo sapiens

<400> 1

gcgccttgg cagcattcaa cgtcggtccc caggcagcat ggtgaggct gtcggac	60
cctcgccacc atgtacgtga gctacccct ggacaaggac gtgagcatgt accctagctc	120
cgtgcgccac tctggcggcc tcaacctggc gccgcagaac ttctcagcc ccccgagta	180
cccgactac ggcggttacc acgtggcgcc cgcaactgca gcgcagaact tggacagcgc	240
gcagttccccg gggccatctt ggccggcagc gtatggcgcc ccactccggg aggactggaa	300
tggctacgct cccggaggcg cggccggcc caacgcgtg gtcacgcgc tcaacgggtgg	360
ctccccggcc gcagccatgg gctacagcag cccgcagac taccatccgc accaccaccc	420
gcatcaccac ccgcaccacc cggccggccgc gccttcctgc gcttctggc tgctgaaac	480
gctcaacccc ggccctccctt ggccggccgc caccgctgcc gccgagcagc tgtctccgg	540
cggccagcgg cggAACCTGT gcgagtggat gcggaaagccg gcgcagcagt ccctggcag	600
ccaagtgaaa accaggacga aagacaaaata tcgagtggtg tacacggacc accagcggct	660
ggagctggag aaggagttt actacagtcg ctacatcacc atccggagga aagccgagct	720
agccgccacg ctggggctct ctgagaggca ggttaaaatc tggtttcaga accgcagagc	780
aaaggagagg aaaatcaaca agaagaagtt gcagcagcaa cagcagcagc agccaccaca	840
gccgcctccg cggccaccac agcctccca gcctcagcca ggtctctga gaagtgtccc	900
agagcccttg agtccggtgt ctccctgca agcctcagtg tctggctctg tccctgggt	960
tctggggcca actggggggg tgctaaaccc caccgtcacc cagtgaccca ccggggcttg	1020
cagcggcaga gcaattccag gctgagccat gaggagcgtg gactctgcta gactcctcag	1080
gagagacccc tcccctccca cccacagcca tagacctaca gacctggctc tcagaggaaa	1140
aatgggagcc aggagtaaga caagtggat ttggggctc aagaaatata ctctccaga	1200
tttttacttt ttccatctgg cttttctgc cactgaggag acagaaagcc tccgctggc	1260

ttcattccgg actggcagaa gcattgcctg gactgaccac accaaccaggc ttcatctatc	1320
cgactcttct cttccttagat ctgcaggctg cacctctggc tagagccgag gggagagagg	1380
gactcaaggaa aaggcaagc ttgaggccaa gatggctgct gcctgctcat ggccctcgga	1440
ggtccagctg gcctcctgc ctccggcag caaggttac actgcggaac gcaaaggcag	1500
ctaagataga aagctggact gaccaaagac tgcaaaaaacc ccaggtggcc ctgcgtctt	1560
tttctcttcc ctttcccaga ccagggaaagg cttggctggt gtatgcacag ggtgtggtat	1620
gaggggggtgg ttattggact ccaggcctga ccagggggcc cgaacaggac ttgttagaga	1680
gcctgtcacc agagcttctc tgggctgaat gtatgtcagt gctataaatg ccagagccaa	1740
cctgg	1745

<210> 2
<211> 311
<212> PRT
<213> Homo sapiens

Met Tyr Val Ser Tyr Leu Leu Asp. Lys Asp Val Ser Met Tyr Pro Ser	
1 5 10 15	
Ser Val Arg His Ser Gly Gly Leu Asn Leu Ala Pro Gln Asn Phe Val	
20 25 30	
Ser Pro Pro Gln Tyr Pro Asp Tyr Gly Gly Tyr His Val Ala Ala Ala	
35 40 45	
Ala Ala Ala Gln Asn Leu Asp Ser Ala Gln Ser Pro Gly Pro Ser Trp	
50 55 60	
Pro Ala Ala Tyr Gly Ala Pro Leu Arg Glu Asp Trp Asn Gly Tyr Ala	
65 70 75 80	
Pro Gly Gly Ala Ala Ala Ala Asn Ala Val Ala His Ala Leu Asn Gly	
85 90 95	
Gly Ser Pro Ala Ala Ala Met Gly Tyr Ser Ser Pro Ala Asp Tyr His	
100 105 110	
Pro His His His Pro His His Pro His His Pro Ala Ala Ala Pro	
115 120 125	
Ser Cys Ala Ser Gly Leu Leu Gln Thr Leu Asn Pro Gly Pro Pro Gly	
130 135 140	
Pro Ala Ala Thr Ala Ala Ala Glu Gln Leu Ser Pro Gly Gly Gln Arg	
145 150 155 160	
Arg Asn Leu Cys Glu Trp Met Arg Lys Pro Ala Gln Gln Ser Leu Gly	
165 170 175	
Ser Gln Val Lys Thr Arg Thr Lys Asp Lys Tyr Arg Val Val Tyr Thr	
180 185 190	
Asp His Gln Arg Leu Glu Leu Glu Lys Glu Phe His Tyr Ser Arg Tyr	
195 200 205	

2389.ST25

Ile Thr Ile Arg Arg Lys Ala Glu Leu Ala Ala Thr Leu Gly Leu Ser
210 215 220

Glu Arg Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Ala Lys Glu Arg
225 230 235 240

Lys Ile Asn Lys Lys Lys Leu Gln Gln Gln Gln Gln Pro Pro
245 250 255

Gln Pro Pro Pro Pro Pro Gln Pro Pro Gln Pro Gln Pro Gly Pro
260 265 270

Leu Arg Ser Val Pro Glu Pro Leu Ser Pro Val Ser Ser Leu Gln Ala
275 280 285

Ser Val Ser Gly Ser Val Pro Gly Val Leu Gly Pro Thr Gly Gly Val
290 295 300

Leu Asn Pro Thr Val Thr Gln
305 310