ASEN 5044, Fall 2018

Statistical Estimation for Dynamical Systems

Lecture 29: Chi-square NEES/NIS Consistency Tests; KF Tuning

Prof. Nisar Ahmed (<u>Nisar.Ahmed@Colorado.edu</u>)
Thurs 11/15/2018

Announcements

- Midterm 2 due now
- Final project groups now finalized (no changes possible from now on)
- Next steps for HW 8 and final project:
 - O HW 8 [due 12/4] = group assignment (do a KF on common system, then pick your final project system and do some initial deterministic stuff with it)
 - Final project report [due by Tue 12/18] = non-linear filtering and filter consistency analysis
 - Final description of candidate systems to be posted

Overview

Last Time:

- How to tell if your (linear) KF is <u>actually</u> working correctly?
- Dynamic consistency conditions
- Normalized estimation error squared (NEES) and normalized innovation squared (NIS)
- Chi-squared pdfs for linear KF NEES and NIS statistics

Today:

- KF dynamic consistency analysis and "Truth Model Testing" (TMT)
- Chi-square tests for NEES & NIS check if KF's state errors/measurement residuals make sense for given system + measurement + noise models
 - O Do actual state errors/meas. residuals agree with KF's estimated error covariances?
 - o Formal statistical tests to examine this question
- **KF Tuning**: how to pick/adjust Q_{KF} (KF's guess of process noise)?

READ SIMON BOOK, CHAPTERS 13.1-13.2 (nonlinear KFs)

Optional: read Chapter 6.3-6.5, Chapter 7.1-7.6

From Last Time: Theoretical KF NEES and NIS PDFs

• So, combining Facts #1 and #2, we deduce the following must be true:

If the KF works properly as per our DT state space model and noise specs (i.e. if it meets the consistency criteria #1-#3 laid out earlier), then we must have:

I. if
$$e_{x,k} (= x_k - \hat{x}_k^+) \sim \mathcal{N}(0, P_k^+)$$
 and $\epsilon_{x,k} = e_{x,k}^T (P_k^+)^{-1} e_{x,k}$ (NEES)

$$\rightarrow$$
 then $\epsilon_{x,k} \sim \chi_n^2 \ \forall k$, where $E[\epsilon_{x,k}] = n$, $var(\epsilon_{x,k}) = 2n$

II. if
$$e_{y,k} (= y_k - \hat{y}_k^-) \sim \mathcal{N}(0, S_k)$$
 and $\epsilon_{y,k} = e_{y,k}^T (S_k)^{-1} e_{y,k}$ (NIS) $\zeta_k = \mu_k r^+ r^-$

$$\rightarrow$$
 then $\epsilon_{y,k} \sim \chi_p^2 \ \forall k$, where $E[\epsilon_{y,k}] = p$, $var(\epsilon_{y,k}) = 2p$

Practical Upshot: We can use "truth model testing" (TMT) with NEES and use real/simulated sensor data with NIS to see if these pdfs actually show up with our KFs!

→ if NOT, then we did something wrong!! (necessary but not sufficient conditions)

1st Statistical Test for KF Performance: NEES Chi-square

• Use "truth model test" (TMT) simulation to assess validity of NEES at every time step over N Monte Carlo runs

TM = High-fidelity system dynamics + sensor model: can include all

model: can include all kinds of non-linearities and other perversions of the actual physical system that we want to consider

Compute NEES $\epsilon_{x,k}$ and assess dynamical consistency conditions (1)-(3): do results look right?

Statistical consistency can be assessed formally via hypothesis teority:

"pull hypothesis": IF Ki works properly, then Exk ~ X2n => E[Exx]=n + k time steps

[n = # steps in x

-> It we do N Houte Coulo sims of TH&KF (as depicted above):

Does the sample average of $E_{K,K} = E_{K}(K)$ AT EVERY SINGLE TIME STEPK Agree ω / $= \frac{1}{2} \sum_{k=1}^{N} e^{ik}$ $= \frac{1}{2} \sum_{k=1}^{N} e^{ik}$

-> let $\vec{\epsilon}_{x,k} = \frac{1}{N} \sum_{i=1}^{N} \vec{\epsilon}_{x,k}$, where $\vec{\epsilon}_{x,k}$ is NEES for Monte Coulo sim i @ time step ke [empirical sample average]

(if Null typ me)
$$E_{x,k} \rightarrow n$$
 as $N \rightarrow \infty$, of KF is working properly

NEES Chi-square Hypothesis Test

Example: 1D Robot Part 4: Piece de Consistance

Same DT model as before:

• Same DT model as before:
$$x(k+1) = Fx(k) + Gu(k) + w(k)$$

$$x(k) = [\xi(k), \xi(k)]^T$$

$$u(k) = 2\cos(0.75t_k) \text{ (ZOH)}$$

$$w(k) \sim \mathcal{N}(0, Q) \text{ (AWGN)}$$

$$x(0) \sim \mathcal{N}(\mu_0, P_0)$$
, where $\mu_0 = [0, 0]^T$, $P_0 = 2I_{2\times 2}$

$$F = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \quad G = \begin{bmatrix} 0.5\Delta t^2 \\ \Delta t \end{bmatrix} \quad \Delta t = 0.1 \text{ sec}$$

$$W = 1 \text{ (m/s)}^2, V = 0.5 \text{ m}^2$$

Use the NEES chi-square test to compare effect of using different matrices for true process noise Q vs. $Q_{KF} = KF's$ "guess" of Q

Truth model:
$$Q = \begin{bmatrix} 3 \times 10^{-4} & 5 \times 10^{-3} \\ 5 \times 10^{-3} & 0.1 \end{bmatrix}$$

Case 1: Q_{KF} = true Q for system for W=1

Case 2: $Q_{KF} = diag([0.5, 1])$ (much larger than Q_{true})

Case 3: $Q_{KF} = diag([5e-3, 1e-3])$ (smaller than Q_{true})

2nd Statistical Test for KF Performance: NIS

• Similar test exists for looking at multiple runs of simulated or real data with NIS – useful if truth model is unavailable (i.e. only real data at hand)

Kalman Filter Tuning Procedure

- What to do if your KF fails NEES/NIS chi-square consistency tests?
- Assume you've eliminated possibility of coding errors → then inconsistency must be explained by some error in formulation of stochastic state space model.

Strategy: Assume F, G, H, R, u (input vector) all correct (i.e. double-check these first).

Then we focus on tuning elements of Q_{KF} to pass consistency test.

(since we often know the least about Q in DT LTI model)

• If $\bar{\epsilon}_{y,k}$ 'too small' $\to Q_{KF}$ probably 'too big':

recall: NIS =
$$e_{y,k}^T(S_k)^{-1}e_{y,k}$$
, where $S_k = HP_k^-H^T + R$
 $f_k = F_k^-H^T + S_k^ f_k = F_k^- + S_k^ f_k = F_k^- + S_k^ f$

→ estimate fits data 'too well': KF not trusting dynamics model enough

 \rightarrow KF adjusting \hat{x}_k^- too much in response to meas. innovation $e_{y,k}$

also recall: $P_k^- = F P_{k-1}^+ F^T + Q_{KF} \to \text{if } Q_{KF} \text{ too large, } P_k^- \text{ will be too large}$

Tuning the KF: How to Select Q_{KF} (KF guess of Q)

• So, if $\bar{\epsilon}_{y,k}$ too small (i.e. KF too conservative/pessimistic), try decreasing Q_{KF}

- What if $\bar{\epsilon}_{y,k}$ too big?
 - \rightarrow by similar logic, KF is too optimistic/overconfident
 - $\rightarrow Q_{KF}$ too small (not enough prediction/model uncertainty)
 - \rightarrow KF does not update \hat{x}_k^- enough in response to $e_{y,k}$
 - \rightarrow KF constantly 'too surprised' by new data y_k , but KF gain K_k too small
 - \Rightarrow In this case, try increasing Q_{KF} eq. $Q_{KF}^{New} = 10$. Q_{KF}^{Old} ("course a) in the first)
 - In either case: after adjusting Q_{KF} by overall factor, go in and tweak individual elements of Q_{KF} based on knowledge of system (e.g. which states you think are noisiest, most poorly modeled, etc.)