CS161 Discussion 5

Shirley Chen

Constraint Satisfaction Problem

X is a set of variables, $\{X_1, \ldots, X_n\}$. D is a set of domains, $\{D_1, \ldots, D_n\}$, one for each variable. C is a set of constraints that specify allowable combinations of values.

- A state in CSP: an assignment of values to some or all variables
 - Consistent/Legal assignment: an assignment that does not violate any constraints
 - Complete assignment: every variable is assigned (otherwise partial assignment)
- A **solution** in CSP: a consistent, complete assignment

Constraint Graph

Exercise – CSP Formulations

- Class scheduling
 - A fixed number of professors
 - A fixed number of classrooms
 - A list of classes to be offered
 - A list of possible time slots for classes.
 - Each professor has a set of classes that he or she can teach.

Exercise – CSP Formulations

- Hamiltonian tour
 - Given a network of cities connected by roads, choose an order to visit all cities in a country without repeating any.

Backtracking DFS

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow Select-Unassigned-Variable(csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
     if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
         if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
           if result \neq failure then
              return result
     remove \{var = value\} and inferences from assignment
  return failure
```

Variable and Value Ordering

- How to select unassigned variable?
 - Minimum-remaining-values (MRV) heuristic
 - a.k.a. "most constrained variable", or "fail-first"
 - If no legal values left, fail immediately
 - Degree heuristic
 - Attempt to reduce branching factor on future choice
 - Useful as a tie-breaker
- In order what should its values be tried?
 - Least-constraining-value
 - Leave the maximum flexibility for subsequent variable assignments

Arc Consistency

• Is it possible to reduce variable domains before search?

Arc consistency

- Variable is arc consistent: Every value in its domain satisfies the variable's binary constraints
 - X_i is arc-consistent with respect to another variable X_j if for every value in the current domain D_i there is some value in the domain D_j that satisfies the binary constraint on the arc (X_i, X_j)
- Network is arc consistent: every variable is arc consistent with every other variable

Example – Arc Consistency

- $Y = X^2$
- The domain of both X and Y is the set of digits (0^{9}) .

- Write it explicitly:
- $\bullet < (X, Y), \{(0, 0), (1, 1), (2, 4), (3, 9))\}>$

Exercise – Constraints Conversion

- Turn the ternary constraint "A+B=C" into three binary constraints. (Assume finite domains)
- Turn any ternary constraint into binary constraints.
- Eliminate unary constraints by altering domains of variables.

Conclusion:

Any CSP can be transformed into a CSP with only binary constraints.

Arc Consistency Algorithm: AC-3

- Maintains a queue (set) of arcs
- Pop an arbitrary arc (X_i, X_i)
 - D_i unchanged
 - Move to next
 - D_i becomes smaller
 - Add to queue all $arcs(X_k, X_i)$ where X_k is a neighbor
 - D_i is empty
 - Fail!

Finally, we get an CSP that is equivalent to the original CSP(with same solutions).

But now variables have smaller domains!

Arc Consistency Algorithm: AC-3

return revised

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \mathsf{REMOVE}\text{-}\mathsf{FIRST}(queue)
     if REVISE(csp, X_i, X_j) then
       if size of D_i = 0 then return false
       for each X_k in X_i.NEIGHBORS - \{X_j\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
       delete x from D_i
        revised \leftarrow true
```

Complexity of AC-3

- *n* variables
- d: largest domain size
- c binary constraints
- Each arc (X_k, X_i) can be inserted at most d times
 - Xi has at most d values to delete
- Checking consistency of one arc: $O(d^2)$
- $O(cd^3)$

Forward Checking

- AC-3: infer domain reductions before search
- Can we do infer domain reductions in search?
 - And detect inevitable failure early

- Forward checking
 - Keep track of remaining legal values for unassigned variables that are connected to current variable. (Arc consistency)
 - Terminate search when any variable has no legal values

Example – Map Coloring

Maintaining Arc Consistency (MAC)

• Forward checking only makes current variable arc-consistent

Maintaining Arc Consistency (MAC)

- After X_i is assigned a value
- Call AC-3 with $(X_i, X_i) =>$ constraint propagation
 - X_i : neighbor of X_i , unassigned

MAC is strictly more powerful than forward checking Which one to pop? MRV

Exercise

 Use the AC-3 algorithm to show that arc consistency can detect the inconsistency of the partial assignment {WA = green, V = red}

Exercise – Solve CSP

- The domain for every variable is [1,2,3,4].
- 2 unary constraints:
 - variable "a" cannot take values 3 and 4.
 - variable "b" cannot take value 4.
- Variables connected by an edge cannot have the same value.

Heuristics: MRV, degree heuristic, forward checking

Find solution for this CSP. Show each step and explain.

Exercise – Solve CSP

Connected variables cannot share color

Solve this CSP and explain each step

Use all heuristics

Local Search

- Sometimes the path to the goal is irrelevant
- Only final configuration matters
 - n-queens, circuit design, road network,

Local Search

- Start from a single node
- Move to neighbors
- No need to keep paths

Local Search

Advantages:

- Little memory
- Find reasonable solution in large or infinite state spaces
 - Good for optimization problems (Find best state according to an objective function)

Optimization Problem

Hill-climbing search

- Greedy local search
 - Grabs a good neighbor state without thinking ahead about where to go next.

- Check all neighbors of current state
- choose the one with the highest value (lowest cost)
- Terminate when no neighbor has a higher value

Example – 8-queens

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14		13	16	13	16
W	14	17	15		14	16	16
17		16	18		₩	15	
18	14	¥	15	15	14	W	16
14	14	13	17	12	14	12	18

Hill-climbing search

- Advantage
 - Easy to improve a bad state (rapid progress)
- Disadvantage
 - Get stuck in
 - local optimal
 - Ridges
 - Plateau

Example – 8-queens

The state has h = 1 but every successor has a higher cost.

Hill-climbing search

- Disadvantage
 - Get stuck in
 - local optimal
 - Ridges
 - Plateau

The success of hill climbing depends very much on the shape of the statespace landscape!

NP-hard problems typically have an exponential number of local maxima to get stuck on.

Metropolis Methods

 $\alpha(x,y)=1, \quad \text{if } \Delta E < 0, \quad i.e. \ y \ \text{is a lower energy state (better) than } x$ $\alpha(x,y)=e^{-\Delta E} < 1, \quad \text{if } \Delta E > 0, \quad i.e. \ y \ \text{is a higher energy state (worse) than } x$

Simulated Annealing

- Hill-climbing algorithms never move towards state with lower value
 - May result in local optimal

Simulated Annealing: an analogy of metropolis methods

- Randomly select candidate successor
- Go there if better
- Else go there with probability (Why?)
 function of "energy" and "temperature"

Example