Solución ecuación Schrödinger 2D

PROYECTO FINAL FÍSICA COMPUTACIONAL II Juan Diego Garro Andrea Valencia Cortés Vamos a considerar una malla 2D de N puntos en la dirección x y y. consideraremos las componentes x y y de cada punto (x,y) de la malla estín dadas por $x=j\cdot \Delta x$ y $y=i\cdot \Delta y$ con i y j donde i y j son índices enteros ≥ 0 que toman valores de (i,j=0,1,2,...,N-1) y Δx y Δy son los espacios entre los puntos de la malla. con $\Delta x=\Delta y$. Tambiń vamos a considerar N_t puntos de tiempo y un paso de tamao Δt . De esta manera la duncin de onda ψ describe el sistema en un punto espacial dado en un instante de tiempo.

Método numérico de Crank-Nicolson

Considerando la derivada temporal de una función ψ como una función de F discretizada en el plano 2D la derivada será discretizada por los métodos de forward Euler y backward Euler como se sigue:

$$rac{\psi_{i,j}^{n+1}-\psi_{i,j}^n}{\Delta t}=F_{i,j}^n$$

$$rac{\psi_{i,j}^{n+1}-\psi_{i,j}^n}{\Delta t}=F_{i,j}^{n+1}$$

$$rac{\psi_{i,j}^{n+1} - \psi_{i,j}^n}{\Delta t} = rac{1}{2} \left[F_{i,j}^{n+1} + F_{i,j}^n
ight]$$

Discretización de la ecuación de Scrödinger dependiente del tiempo en 2D

Ahora vamos a considerar la ecuación de Schrodinger dependiente del tiempo 2D, donde $\frac{\hbar}{2m} = 1$.

$$irac{\partial \psi(x,y,t)}{\partial t} = -
abla^2 \psi(x,y,t) + V(x,y,t)\,\psi(x,y,t)$$

$$irac{\partial \psi(x,y,t)}{\partial t} = -\left(rac{\partial^2 \psi(x,y,t)}{\partial x^2} + rac{\partial^2 \psi(x,y,t)}{\partial y^2}
ight) + V(x,y,t)\,\psi(x,y,t)$$

El siguiente paso es tomar las expresiones de los promedios de las derivadas parciales de los métodos de diferencias finitas como se sigue

$$\begin{split} \frac{\partial \psi(x,y,t)}{\partial t} &= \frac{\psi_{i,j}^{n+1} - \psi_{i,j}^n}{\Delta t} \\ \frac{\partial^2 \psi(x,y,t)}{\partial x^2} &= \frac{1}{2(\Delta x)^2} \Big[(\psi_{i,j+1}^{n+1} - 2\psi_{i,j}^{n+1} + \psi_{i,j-1}^{n+1}) + (\psi_{i,j+1}^n - 2\psi_{i,j}^n + \psi_{i,j-1}^n) \Big] \\ \frac{\partial^2 \psi(x,y,t)}{\partial y^2} &= \frac{1}{2(\Delta y)^2} \Big[(\psi_{i-1,j}^{n+1} - 2\psi_{i,j}^{n+1} + \psi_{i+1,j}^{n+1}) + (\psi_{i-1,j}^n - 2\psi_{i,j}^n + \psi_{i+1,j}^n) \Big] \\ V(x,y,z) \, \psi(x,y,z) &= \frac{1}{2} \Big[V_{i,j}^{n+1} \psi_{i,j}^{n+1} + V_{i,j}^n \psi_{i,j}^n \Big] \end{split}$$

Sustituimos estas expresiones en la ecuación de Schrodinger y multiplicamos a ambos lados de la igualdad por $\frac{\Delta t}{i}$. Para simplificar la expresión definimos las siguientes constantes.

$$r_x = -rac{\Delta t}{2i(\Delta x)^2} \;, \quad r_y = -rac{\Delta t}{2i(\Delta y)^2}$$

De esta manera obtenemos las siguientes expresiones:

$$-r_y\psi_{i+1,j}^{n+1}-r_y\psi_{i-1,j}^{n+1}+\left(1+2r_x+2r_y+rac{i\Delta t}{2}V_{i,j}^{n+1}
ight)\psi_{i,j}^{n+1}-r_x\psi_{i,j+1}^{n+1}-r_x\psi_{i,j-1}^{n+1}= \ =r_y\psi_{i+1,j}^n+r_y\psi_{i-1,j}^n+\left(1-2r_x-2r_y-rac{i\Delta t}{2}V_{i,j}^n
ight)\psi_{i,j}^n+r_x\psi_{i,j+1}^n+r_x\psi_{i,j-1}^n$$

Simplificamos aún más la expresión definiendo los valores

$$a_{ij} = \left(1+2r_x+2r_y+irac{\Delta t}{2}V_{i,j}^{n+1}
ight)$$

$$b_{ij} = \left(1-2r_x-2r_y-irac{\Delta t}{2}V_{i,j}^n
ight)$$

Entonces, hemos obtenido que la evolución de la función de onda puede estar dada por la fórmula

$$-r_y\psi_{i+1,j}^{n+1}-r_y\psi_{i-1,j}^{n+1}+a_{i,j}\psi_{i,j}^{n+1}-r_x\psi_{i,j+1}^{n+1}-r_x\psi_{i,j-1}^{n+1}=
onumber \ = r_y\psi_{i+1,j}^n+r_y\psi_{i-1,j}^n+b_{i,j}\psi_{i,j}^n+r_x\psi_{i,j+1}^n+r_x\psi_{i,j-1}^n$$

	$u_{i,j+1}$	
$\underbrace{u_{i-1,j}}$	$u_{i,j}$	$u_{i+1,j}$
	$u_{i,j-1}$	

Forma matricial

Basados en las fórmulas anteriores, construimos el sistema matricial $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ donde \mathbf{A} es una matriz constante, \mathbf{x} es el vector columna que respresenta la función de onda en el próximo paso de tiempo y \mathbf{b} es otro vector columna con los términos independientes que separaremos en dos elementos como $\mathbf{b} = \mathbf{M} \cdot \mathbf{y}$ con \mathbf{M} otra matriz constante y \mathbf{y} un vector columna que respresenta la función de onda en el paso de tiempo presente

$$\mathbf{A} \cdot \mathbf{x} = \begin{pmatrix} a_{00} & -r_x & 0 & 0 & \cdots & 0 & -r_y & 0 & 0 & \cdots & 0 \\ -r_x & a_{10} & -r_x & 0 & \cdots & 0 & -r_y & 0 & \cdots & 0 \\ 0 & -r_x & a_{20} & -r_x & & & & -r_y & & & \\ 0 & 0 & -r_x & \ddots & \ddots & & & & \ddots & \\ \vdots & \vdots & & \ddots & & & & \ddots & \\ 0 & & & & & & & & \\ -r_y & 0 & & & & & & & \\ 0 & -r_y & & & & & & & \\ \vdots & \vdots & & \ddots & & & & & \\ \vdots & \vdots & & \ddots & & & & & \\ -r_x & 0 & & & & & & \\ 0 & 0 & -r_y & & & & & & \\ \vdots & \vdots & & \ddots & & & & & \\ -r_x & a_{(N-1),(N-1)} \end{pmatrix} \begin{pmatrix} \psi_{0,0}^{n+1} \\ \psi_{1,0}^{n+1} \\ \psi_{1,0}^{n+1} \\ \vdots \\ \vdots \\ \psi_{n+1}^{n+1} \\ \psi_{(N-1),(N-1)} \end{pmatrix}$$

La matriz \boldsymbol{A} está compuesta por bloques tridiagonales de la forma:

Para j = 0, 1, 2, ..., N - 1 y bloques diagonales hay N elementos diagonales y son iguales a $-r_y$.

Debido a que las condiciones de contorno se establecen en cero en todos los pasos de tiempo, restringimos los cálculos a los índices i, j = 1, 2, ..., N - 2. Por lo tanto redefinimos los elementos del vector columna x en función de un nuevo índice k Así que $\psi_{i,j}^n = \psi_k^n$.

$$\mathbf{A} \cdot \mathbf{x} = \begin{pmatrix} a_0 & -r_x & 0 & 0 & \cdots & 0 & -r_y & 0 & 0 & \cdots & 0 \\ -r_x & a_1 & -r_x & 0 & \cdots & 0 & -r_y & 0 & \cdots & 0 \\ 0 & -r_x & a_2 & -r_x & & & -r_y & & & \\ 0 & 0 & -r_x & \ddots & \ddots & & & \ddots & \\ \vdots & \vdots & & \ddots & & & & \ddots & \\ 0 & & & & & & & \\ -r_y & 0 & & & & & & \\ 0 & -r_y & & & & & & \\ \vdots & \vdots & & \ddots & & & & & \\ -r_y & 0 & & & & & & \\ 0 & 0 & -r_y & & & & & \\ \vdots & \vdots & & \ddots & & & & \\ -r_x & a_{(N-3)(N-1)} \end{pmatrix} \begin{pmatrix} \psi_0^{n+1} \\ \psi_1^{n+1} \\ \psi_2^{n+1} \\ \vdots \\ \psi_n^{n+1} \\ \vdots \\ \psi_{(N-3)(N-1)} \end{pmatrix}$$

De igual manera obtenemos la expresión para \boldsymbol{M} y \boldsymbol{y} de manera que obtenemos \boldsymbol{b} así:

$$\mathbf{b} = \mathbf{M} \cdot \mathbf{y} = \begin{pmatrix} b_0 & r_x & 0 & 0 & \cdots & 0 & r_y & 0 & 0 & \cdots & 0 \\ r_x & b_1 & r_x & 0 & \cdots & 0 & r_y & 0 & \cdots & 0 \\ 0 & r_x & b_2 & r_x & & & & r_y & & & \\ 0 & 0 & r_x & \ddots & \ddots & & & & \ddots & \\ \vdots & \vdots & & \ddots & & & & & \ddots & \\ 0 & & & & & & & & & \\ r_y & 0 & & & & & & & & \\ 0 & r_y & & & & & & & & \\ \vdots & \vdots & & \ddots & & & & & & \\ \vdots & \vdots & & \ddots & & & & & & \\ \vdots & \vdots & & \ddots & & & & & & \\ 0 & 0 & r_y & & & & & & & \\ \vdots & \vdots & & \ddots & & & & & & \\ r_x & b_{(N-3)(N-1)} \end{pmatrix} \begin{pmatrix} \psi_0^n \\ \psi_1^n \\ \psi_2^n \\ \vdots \\ \psi_k^n \\ \vdots \\ \psi_{(N-3)(N-1)}^n \end{pmatrix}$$

Teniendo las expresiones para A, x, M y y, podemos resolver la ecuación $A \cdot x = M \cdot y$ para x se obtiene la función de onda ψ , en el siguiente paso de tiempo a partir de la funcion de onda en el paso de tiempo presente.

Finalmente resolvemos el sistema matricial por el método numérico de SOR.

Método Succesive Over-Relaxation

Se considera un sistema lineal cuadrado, Ax = b de n ecuaciones, con variable desconocida x:

$$\hat{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

La matriz A se puede escribir como la suma de: su componente diagonal D y sus componentes estrictamente triangular inferior y superior, L y U respectivamente: A = D + L + U; donde:

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}, \quad L = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

De esta forma, el sistema de ecuaciones lineales puede ser escrito como: $(D + \omega L)\mathbf{x} = \omega \mathbf{b} - [\omega U + (\omega - 1)D]\mathbf{x};$ para cualquier constante $\omega > 1$, denominada factor de relajación.

Analíticamente, esto puede ser escrito como: $\boldsymbol{x}^{k+1} = (D+\omega L)^{-1}(-[\omega U + (\omega-1)D]\boldsymbol{x}^k + \omega \boldsymbol{b}) = C_\omega x^k + c;$ donde \boldsymbol{x}^k es la k-ésima aproximación de \boldsymbol{x} , y $\boldsymbol{x}^{(k+1)}$ es la nueva estimación que se quiere determinar. Como se puede ver, la matriz de iteración del método es: $C_\omega = -(D+\omega L)^{-1}(\omega U + (\omega-1)D)$

Problema de la doble rendija

Con el fin de parametrizar las rendijas y poner las condiciones de frontera al problema, consideramos una caja de lados L y paredes de potencial infinita ($\psi = 0$) en los bordes.

Definimos las doble rendija con los siguientes parámetros: Sea ω el ancho de las rendijas, s la separación de las rendijas y a su apertura.

Queremos estudiar el casos en que las paredes de doble rendija son paredes de potencial infinito.

Paquete de onda Gaussiana

Supongamos una función de onda que en el estado incial tenga la forma de un paquete de ondas gaussianas 1D, no normalizado, centrado en x_0 .

$$e^{-rac{1}{2\sigma^2}(x-x_0)^2}$$

Para nuestro caso 2D, vamos a considerar un paquete de ondas gaussianas centradas en (x_0, y_0) como nuestra función de onda. sea $(\sigma = \sigma_x = \sigma_y)$ la misma en la dirección x y y.

$$\psi(x,y,t=0) = e^{-rac{1}{2\sigma^2}\left[(x-x_0)^2+(y-y_0)^2
ight]}\cdot e^{-ik(x-x_0)}$$

añadiendo un término de fase adicional, con el propósito de dar movimiento inicial al paquete de ondas en las dirección x.

multiplicamos q ambos lados de la ec.
$$\Delta t$$

in the sum of $\left(\frac{h+1}{\psi_{i,q+1}} - 2\psi_{i,j}^{h+1} + \psi_{i,j-1}^{h+1}\right) - \left(\psi_{i,q+1}^{h-2} - 2\psi_{i,j-1}^{h+1}\right)$

$$\begin{aligned} \psi_{i,J}^{N+1} - \psi_{i,J}^{N} &= -\frac{1}{2(\Delta X)^{2}} \left[\left(\psi_{i,J+1}^{N+1} - 2 \psi_{i,J}^{N+1} + \psi_{i,J-1}^{N+1} \right) - \left(\psi_{i,J+1}^{N} - 2 \psi_{i,J+1}^{N} + \psi_{i,J-1}^{N} + \psi_{i,J-1}^{N} \right) \right] \\ &+ \frac{1}{2(\Delta y)^{2}} \left[\left(\psi_{i-1}^{N+1} - 2 \psi_{i,J}^{N+1} + \psi_{i+1}^{N} \right) + \left(\psi_{i-1}^{N} - 2 \psi_{i,J}^{N} + \psi_{i+1,J}^{N} \right) \right] \end{aligned}$$

haciendo $-1x = -\frac{A(t)}{2i(\Delta x)^2}$ y $-\sqrt{y} = -\frac{At}{2i(\Delta y)^2}$

Reemplazamos y expandimos el laco de la expresión $= -iy \, \psi_{i+1}^{n+1} - iy \, \psi_{i-1,j}^{n+1} + \psi_{i,j}^{n+1} + 2iy \, \psi_{i,j}^{n+1} + 2ix \, \psi_{i,j}^{n+1} + \frac{i\Delta t}{2} \, V_{i,j}^{n+1} \, \psi_{i,j}^{n+1} - 6 \times \psi_{i,j+1}^{n+1} - 1 \times \psi_{i,j-1}^{n+1}$ $= 4y \psi_{i+1}^{n} - 4y \psi_{i-1,j}^{n} + \psi_{i,j}^{n} - 21x \psi_{i,j}^{n} - 21y \psi_{i,j}^{n} - \frac{int}{2} V_{i,j}^{n} + 4x \psi_{i,j+1}^{n} + 1x \psi_{i,j-1}^{n}$ Sacando factor comón

Para resolver una ecuación matricial con matrices complejas generamos una ecuación matricial con matrices reales

Yes, you can do this. You have to remember that C_Iq_I contributes to m_R . You are essentially writing C as a $2n \times 2n$ (real) matrix and q, m as (real) vectors of length 2n and solving that. It partitions as

$$\begin{pmatrix} C_R & -C_I \\ C_I & C_R \end{pmatrix} \begin{pmatrix} q_R \\ q_I \end{pmatrix} = \begin{pmatrix} m_R \\ m_I \end{pmatrix}$$

in analogy with representing complex
$$a+bi$$
 as $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

Referencias

[1] Mena Arturo, Solving the 2D Schrödinger equation using the Crank-Nicolson method, https://artmenlope.github.io/solving-the-2d-schrodinger-equation-using-the-crank-nicolson-method/

[2] Burden L. Richard, Faires J. Douglas, Numerical Analysis, ninth edition (2010)

iGracias!