# ANTENNA THEORY AND SIMULATION (YAGI)

SSP MINI PROJECT
BY-VINEET GALA
(COMM SUBSYSTEM)

## Aim Of The Project





To simulate the Yagi antenna (ground station) for 145 Hz frequency and analyze results.

Study factors which antenna parameters depend on.

### Approach

- Read about antenna parameters and theory associated.
- Referred a couple of tutorials on HFSS.
- Got used to HFSS by making simple antenna models and proceed step by step.
- Structured and planned simulations for different configurations of antenna.

#### **About Antennas**



How antennas work?



#### Antenna parameters-

Gain
Radiation Pattern
Directivity
S11

#### More About Antennas

- Dipole antenna
- Yagi antenna
- Why use a Yagi antenna?



## Achieving The First Milestone

By the end of week 1, I made a simple dipole antenna powered by source via a coaxial cable.

I learnt how to simulate and how to view and analyse results of the simulation such as S11 for different antenna lengths (optimetrics), gain etc.

### Achieving The Second Milestone

By the end of second week, I made a simple Yagi antenna model and started simulations

What difference does a reflector and 1, 2, 3 directors make?

| Antenna                         | Maximum Gain (dB) |
|---------------------------------|-------------------|
| Dipole                          | 2.3805            |
| Yagi (1 reflector, 1 director)  | 7.1425            |
| Yagi (1 reflector, 2 directors) | 7.6902            |
| Yagi (1 reflector, 3 directors) | 8.0146            |



Dipole



Yagi – 1 ref, 2 dir

# Radiation Patterns



Yagi – 1 ref, 1 dir



Yagi – 1 ref, 3 dir

### Achieving The Final Milestone



Added the boom to the setup but faced problems (for later).

Simulated the antenna for different distances of reflector, directors from feed pole.

# Analysis

| Reflector Distance (mm) | Maximum Gain (dB) |
|-------------------------|-------------------|
| 735                     | 7.6799            |
| 740                     | 7.6902            |
| 745                     | 7.6485            |
| 750                     | 7.6324            |

| Dir 1 Distance (mm) | Dir 2 Distance (mm) | Maximum Gain (dB) |
|---------------------|---------------------|-------------------|
| 270                 | 680                 | 7.6687            |
| 250                 | 680                 | 7.6794            |
| 270                 | 660                 | 7.5824            |
| 250                 | 660                 | 7.5997            |
| 258.75              | 672.75              | 7.6120            |

#### Problems

- Unavailability of HFSS license initially.
- Unable to simulate the Aluminium Boom.
- Long time taken for simulating models with optimetrics which failed because I could not see the results for the concerned variable.
- Garbage reports popping up due to some small mistakes.

### Takeaway Lessons



Most of what I know about wireless communication.



Tracked satellites and received information.



Other subsystems' work.



Managing time, sleep and academics.



Working in a team and being answerable for my work – being consistent.

#### Feedback

#### The Mini Project and Recruitment Process:

- Busiest and most productive 3 weeks so far.
- A very good idea to introduce a newcomer to the ways of the team.

#### Mentor: Atharv Savarkar

- Go-to Person for any problems related to my Mini Project at anytime.
- Understanding and helpful.

# THANK YOU!

# APPENDIX





https://github.com/vineetgala/SSP\_Mini\_Project