FÍSICA 2N BATXILLERAT

Artur Arroyo i Pascual§

Col·legi Sant Josep Obrer
C. Covadonga, s/n 08906 L'Hospitalet del Llobregat

Resum

En aquest curs es presenten tot un seguit de temes nous que corresponen a la culminació del currículum de Batxillerat. En qualsevol cas, cal tenir una bona fonamentació dels continguts relatius al curs anterior de 1r de Batxillerat.

 $[\]S_{\text{artur.sjo@gmail.com}}$

${\rm \acute{I}ndex}$

1	El n	noviment harmònic simple	3
	1.1	Introducció	3
	1.2	Cinemàtica del moviment harmònic simple	3
		1.2.1 Deducció de l'equació del moviment	3
		1.2.2 Velocitat en el moviment harmònic simple	5
		1.2.3 Acceleració en el moviment harmònic simple	6
		1.2.4 Espai de fases per l'oscil·lador harmònic simple	6
		1.2.5 Valors màxims i mínims de les quantitats cinemàtiques	
		associades al MHS	7
	1.3	Dinàmica del moviment harmònic simple	8
	1.4	Energia en el moviment harmònic simple	9
2	One	S	11
_	2.1		11
	2.2		11
		2.2.1 Ones electromagnètiques	11
		2.2.2 Ones mecàniques	11
		2.2.3 Ones transversals	11
		2.2.4 Ones longitudinals	12
	2.3	Equació d'una ona harmònica. Magnituds que caracteritzen	
		una ona	12
	2.4	Diferència de fase	13
		2.4.1 Velocitat i acceleració en ones transversals	14
		2.4.2 Velocitat de fase	14
	2.5	Propagació de l'energia en el moviment ondulatori	14
		2.5.1 Front d'ona i raig	14
		2.5.2 Potència i intensitat d'una ona	15
	2.6	Atenuació i absorció	16
	2.7	Lleis d'Snell	17
	2.8	Interferències i difracció	18
	2.9	Ones estacionàries	19
			20
		2.9.2 Corda lligada per un extrem. Tub obert per un extrem	21
	2.10	~ <u>-</u>	21
			21
		2.10.2 Efecte Doppler	22

3	Camp gravitatori												
	3.1 Introducció												
	3.2 El concepte de camp gravitatori. Potencial gravitatori												
	3.3 El moviment dels cossos celestes												
	3.3.1 Pes d'un cos												
	3.3.2 Energia cinètica, potencial gravitatòria i mecànica												
	3.3.3 Orbites circulars estables												
	3.3.4 Orbites geoestacionàries												
	3.3.5 Canvis d'òrbita												
	3.3.6 Velocitat d'escapament												
	3.3.7 Caiguda lliure												
	3.4 Les lleis de Kepler												
4	Camp elèctric												
	4.1 Introducció												
	4.2 Camp elèctric creat per una càrrega												
	4.3 Principi de superposició												
	4.4 Potencial electroestàtic												
	4.5 Energia potencial electroestàtica												
	4.6 Energia de configuració d'un sistema de càrregues												
	4.7 Camps elèctrics uniformes												
	4.8 Moviment de càrregues en condensadors												
5	Camp magnètic												
	5.1 Introducció												
6	Inducció electromagnètica												
	6.1 Introducció												
7	Relativitat												
	7.1 Introducció												
8	Física quàntica												
	8.1 Introducció												
9	Física de partícules												
	9.1 Introducció												
10	Física nuclear												
	10.1 Introducció												

11 Història de l'univers														55											
11.1 Introducció																									55

1 El moviment harmònic simple

1.1 Introducció

La importància del moviment harmònic simple (o MHS), rau en que és un dels pocs sistemes dinàmics a Física, no trivials, que es pot resoldre exactament. En cursos posteriors es fa ús d'aquesta característica per aproximar el comportament de sistemes dinàmics més complexos al d'un oscil·lador i poder així obtenir solucions aproximades que poden suposar un punt de partida.

1.2 Cinemàtica del moviment harmònic simple

1.2.1 Deducció de l'equació del moviment

Suposem que tenim un punt que descriu un moviment circular de radi A amb velocitat angular constant ω . Llavors, la projecció sobre un eix horitzontal en un instant qualsevol del temps val

$$x = A\cos\varphi$$

on φ és l'angle que forma el radi vector que assenyala la posició del punt que es mou i l'eix horitzontal. Com és $\varphi = \omega t$, podem escriure

$$x(t) = A\cos\omega t$$

Podem presentar un resultat més general que permetrà fixar les condicions inicials, i tenim finalment, que l'equació de l'oscil·lador harmònic simple és

$$x(t) = A\cos(\omega t + \varphi_0)$$

on A s'anomena amplitud del moviment i es mesura en metres (m), ω s'anomena pulsació o freqüència angular, i es mesura en rad/s i φ_0 és l'anomenada fase inicial, mesurada en rad.

És important destacar que en la deducció anterior de l'equació de l'oscil·lador, el que segueix el moviment harmònic simple és la projecció del punt que es mou amb moviment circular sobre l'eix horitzontal. Alternativament, podríem haver considerat la projecció sobre un eix vertical, d'aquesta manera l'equació es podria escriure en funció del sinus enlloc del cosinus. En qualsevol cas, aquest detall és irrellevant, ja que ambdúes funcions estan relacionades per una fase de valor $\pi/2$.

En tot el que seguirà a continuació en aquest tema, és fonamental recordar les relacions $\omega = 2\pi f$ i $T = \frac{1}{f}$, on f (Hertz) és la freqüència i T (segons) el període del moviment.

Exemple 1

Trobeu l'equació d'un oscil·lador que té una amplitud de 2 m un període de 10 s i a l'instant inicial es troba en la posició d'equilibri (x = 0).

De l'enunciat sabem que $A=2\,m,$ i com $T=10\,s,$ tenim que $\omega=\frac{2\pi}{T}=\frac{2\pi}{10}=\frac{\pi}{5}\,rad/s.$ Amb aquesta informació podem escriure

$$x(t) = 2\cos\left(\frac{\pi}{5}t + \varphi_0\right)$$

Per una altra banda ha de ser x(0) = 0 de forma que tenim

$$0=2\cos(\varphi_0)$$

d'on

$$cos(\varphi_0) = 0 \longrightarrow \varphi_0 = \frac{\pi}{2}$$

llavors l'equació demanada és

$$x(t) = 2\cos\left(\frac{\pi}{5}t + \frac{\pi}{2}\right)$$

Notem que l'equació

$$cos(\varphi_0) = 0$$

té en realitat dues solucions, el valor principal $\frac{\pi}{2}$ i $\frac{3\pi}{2}$, amb les condicions inicials donades no podem fixar de forma única el valor de φ_0 . Sovint aquest serà el cas i prendrem el valor principal[†] com a solució.

[†]El valor principal del sinus és l'angle α tal que $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ i el del cosinus, l'angle α tal que $0 \le \alpha \le \pi$

1.2.2 Velocitat en el moviment harmònic simple

L'equació de la velocitat es pot obtenir a partir de la relació

$$v(t) = \dot{x}(t) = \frac{dx}{dt}$$

de forma que tenim

$$v(t) = -A\omega\sin(\omega t + \varphi_0)$$

Exemple 2

Trobeu l'equació d'un oscil·lador harmònic simple sabent que la seva amplitud és de 10 metres, la seva pulsació val $\pi rad/s$ i per t=0 la seva elongació val $x=5\,m$ i s'està movent cap a la dreta.

De les dades de l'enunciat es pot escriure

$$x(t) = 10\cos(\pi t + \varphi_0)$$

imposant condicions inicials

$$5 = 10\cos\varphi_0$$

d'on

$$\varphi_0 = \arccos \frac{1}{2} = \frac{\pi}{3} rad$$

com a valor principal, però també és solució de l'equació anterior

$$\varphi_0 = \frac{5\pi}{3} \, rad$$

a diferència de l'exemple 1, ara podem triar entre aquestes dues solucions.

L'equació de la velocitat és

$$v(t) = -10\pi \sin(\pi t + \varphi_0)$$

i per t = 0

$$v(0) = -10\pi \sin(\varphi_0)$$

Resultat que només és positiu si $\varphi_0 = \frac{5\pi}{3} rad$.

1.2.3 Acceleració en el moviment harmònic simple

A partir de la definició d'acceleració

$$a(t) = \dot{v}(t) = \frac{dv}{dt} = \ddot{x}(t) = \frac{d^2x}{dt^2}$$

tenim

$$a(t) = -A\omega^2 \cos(\omega t + \varphi_0) = -\omega^2 x(t)$$

Exemple 3

El moviment d'un determinat objecte obeeix l'equació

$$\ddot{x} + 169x = 0$$

Es demana mostrar que es tracta d'un oscil·lador harmònic simple i calcular el període del moviment.

L'equació es pot escriure com

$$a + 169x = 0 \longrightarrow a = -169x \longrightarrow a = -13^2x$$

que és clarament l'equació que relaciona l'acceleració i l'elongació d'un oscil·lador harmònic simple de freqüència $\omega = 13 \, rad/s$ i per tant, amb període

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{13} s$$

1.2.4 Espai de fases per l'oscil·lador harmònic simple

L'espai de fases d'un sistema dinàmic és una eina molt útil que relaciona la posició d'un objecte o partícula amb el seu moment lineal, en general o amb la seva velocitat, en particular. La relació entre l'elongació i la velocitat d'un oscil·lador harmònic simple es pot trobar de la següent manera, partint de les equacions de l'elongació i la velocitat i ignorant les dependències temporals per no sobrecarregar la notació

$$\begin{cases} x = A\cos(\omega t + \varphi_0) \\ v = -A\omega\sin(\omega t + \varphi_0) \end{cases}$$
$$\begin{cases} \frac{x}{A} = \cos(\omega t + \varphi_0) \\ \frac{v}{-A\omega} = \sin(\omega t + \varphi_0) \end{cases}$$

elevem al quadrat

$$\begin{cases} \left(\frac{x}{A}\right)^2 = \cos^2(\omega t + \varphi_0) \\ \left(\frac{v}{-A\omega}\right)^2 = \sin^2(\omega t + \varphi_0) \end{cases}$$

d'on

$$\frac{x^2}{A^2} + \frac{v^2}{(A\omega)^2} = 1$$

que és l'equació d'una el·lipse de semieixos A i $A\omega$ a l'espai de fases.

Exemple 4

Trobeu, en funció de A, ω la velocitat d'un oscil·lador harmònic simple quan la seva elongació val x=A/2 i es troba movent-se cap a l'esquerra.

A partir de

$$\frac{x^2}{A^2} + \frac{v^2}{(A\omega)^2} = 1$$

tenim

$$\frac{\left(\frac{A}{2}\right)^2}{A^2} + \frac{v^2}{(A\omega)^2} = 1$$

d'on simplificant

$$\frac{\frac{\lambda^2}{4}}{\lambda^2} + \frac{v^2}{(A\omega)^2} = 1$$

$$\frac{1}{4} + \frac{v^2}{(A\omega)^2} = 1 \longrightarrow \frac{v^2}{(A\omega)^2} = 1 - \frac{1}{4} \longrightarrow v = \pm \frac{\sqrt{3}}{2} A\omega$$

tenint en compte les condicions de l'enunciat, ens hem de quedar amb la solució negativa.

1.2.5 Valors màxims i mínims de les quantitats cinemàtiques associades al MHS

Els valors màxims de l'elongació, velocitat i acceleració al MHS es troben molt fàcilment, ja que tant el sinus com el cosinus són funcions acotades, és a dir

$$-1 \le \sin \alpha \le 1$$
 $-1 \le \cos \alpha \le 1$, $\forall \alpha$

- L'elongació màxima $x_{max} = \pm A$ es dona als extrems del moviment. La mínima, $x_{min} = 0$ al punt d'equilibri.
- La velocitat màxima $v_{max} = \pm A\omega$ és dona al punt d'equilibri mentre que la mínima $v_{min} = 0$ es dona als extrems del moviment.
- L'acceleració màxima es dona quan l'elongació és màxima, i val $a_{max} = -A\omega^2$ i la mínima es dona al punt d'equilibri, i val $a_{min} = 0$

Exemple 5

Trobeu la distància total recorreguda per un oscil·lador harmònic simple d'amplitud A al llarg d'un període.

Si suposem que l'ocil·lador comença a l'esquerra de tot, és a dir a x = -A, ha de recorrer una distància 2A per arribar a l'altre extrem del moviment, a x = A i després tornar a la posició inicial per completar un període, de forma que en total ha recorregut una distància 4A.

Exemple 6

L'agulla d'una màquina de cosir oscil·la entre dos punts separats una distància vertical de $20 \, mm$. Suposant que descriu un moviment harmònic simple de freqüència $30 \, Hz$, quina és la seva acceleració màxima?

Tenim que

$$a_{max} = -A\omega^2 \longrightarrow a_{max} = -20 \cdot 10^{-3} (2\pi \cdot 30)^2 = 7, 1 \cdot 10^{-2} \, m/s^2$$

1.3 Dinàmica del moviment harmònic simple

Un exemple de MHS és el d'un objecte de massa m lligat a una molla de constant elàstica k. Recordem que la llei de Hooke relaciona la força que fa la molla amb l'elongació segons

$$F = -kx$$

aplicant la segona llei de Newton

$$F = ma \longrightarrow -kx = -m\omega^2 x$$

d'on es pot deduïr

$$\omega = \sqrt{\frac{k}{m}}$$

Amb un raonament semblant es pot provar que per un pèndol de longitud l en un lloc on la gravetat val g es té

$$\omega = \sqrt{\frac{g}{l}} \longrightarrow T = 2\pi \sqrt{\frac{l}{g}}$$

Exemple 7

Trobeu la constant elàstica d'una molla sabent que quan se li acopla una massa de 1,00 kg i es fa oscil·lar, ho fa amb pulsació $\omega = \sqrt{2\pi} \, rad/s$

A partir de

$$\omega = \sqrt{\frac{k}{m}} \longrightarrow k = m\omega^2$$

és fàcil calcular

$$k = 1 \cdot 2\pi = 2\pi = 6,28 \, N/m$$

1.4 Energia en el moviment harmònic simple

En el cas d'un objecte de massa m unit a una molla de constant elàstica k tenim per l'energia cinètica

$$E_c = \frac{1}{2}mv^2$$

i per l'energia potencial elàstica

$$E_p = \frac{1}{2}kx^2$$

L'energia total d'aquest sistema serà

$$E = E_c + E_p$$

el valor de l'energia total es pot deduir fàcilment, ja que per exemple, al punt d'equilibri, l'energia potencial elàstica val zero, mentre que la cinètica és màxima i val

$$E_{c_{max}} = \frac{1}{2}m(A\omega)^2$$

de forma que tenim

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}m(A\omega)^2$$

alternativament podem veure que als extrems la velocitat és zero i l'energia potencial elàstica és màxima, de forma que podem escriure

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

Exemple 8

L'amplitud en un moviment harmònic simple originat per una molla de constant recuperadora $k=500\,N/m$ és de $40,0\,cm$. Quina serà l'energia total del mòbil? Quant val la seva energia cinètica a l'instant en què l'elongació és de $30,0\,cm$?

Podem expresar l'energia total en funció de la potencial elàstisca com

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

de forma que tenim

$$E_c + E_{p_{el}} = \frac{1}{2}kA^2$$

i llavors, quan $x = 30 \, cm$

$$E_c = \frac{1}{2}kA^2 - \frac{1}{2}kx^2 = \frac{1}{2}k(A+x)(A-x) = \frac{1}{2}500(0,700)(0,100) = 17,5 J$$

2 Ones

2.1 Introducció

2.2 Tipus d'ones

2.2.1 Ones electromagnètiques

No necessiten cap medi material per a propagar-se. En el buit ho fan a la velocitat de la llum $c=3\cdot 10^8\,m/s$. La descripció clàssica considera aquestes ones formades per un camp elèctric i un camp magnètic que oscil·len perpendicularment. Només el camp elèctric condiciona les propietats òptiques en la interacció entre ones electromagnètiques i la matèria.

Amb

$$\frac{|\vec{E}_{max}|}{|\vec{B}_{max}|} = c$$

Per una altra banda, la teoria quàntica (que tractarem breument al Tema 8) considera que les ones electromagnètiques, i en particular la llum, es troben "empaquetades" en partícules anomenades fotons amb energia $E = h \cdot \nu$ on $h = 6,626 \cdot 10^{-34} \, Js$ és la constant de Planck, i $\nu \, (\equiv f)$, la freqüència. En tot aquest capítol estudiarem les ones segons la teoria clàssica.

2.2.2 Ones mecàniques

Necessiten un medi material per a propagar-se. La seva velocitat de propagació depèn de les característiques físiques del medi, i en general, disminueix amb la densitat d'aquest però per altra banda, és proporcional al grau de cohesió de les molècules del medi. Un exemple d'ona mecànica és el so, que més endevant tractarem amb més detall.

2.2.3 Ones transversals

La direcció de la vibració és perpendicular a la direcció de propagació. Per exemple, les ones electromagnètiques que hem vist abans, ones estacionàries en una corda de guitarra, etc.

2.2.4 Ones longitudinals

La direcció de propagació i vibració és la mateixa. Exemple, el so.

2.3 Equació d'una ona harmònica. Magnituds que caracteritzen una ona

L'equació d'una ona harmònica transversal unidimensional que es desplaça cap a la dreta es pot escriure com

$$y(x,t) = A\sin(kx - wt + \varphi_0)$$

on A és l'amplitud de l'ona (en metres), $k=2\pi/\lambda$ és el nombre d'ona (en rad/m), λ la longitud d'ona o minima distància entre dos punts que es troben al mateix estat de vibració (en metres) i φ_0 la fase inicial (en radians), que es fixa amb les condicions inicials. És habitual considerar per simplicitat $\varphi_0=0$ i així ho farem sovint en aquests apunts. Noteu que, fent servir relacions conegudes, podem escriure l'equació de l'ona de forma alternativa com

$$y(x,t) = A\sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)$$

ja que $\omega = 2\pi f = 2\pi/T$ i $k = 2\pi/\lambda$.

Exemple 1

L'equació d'una ona harmònica és

$$y(x,t) = 15\sin\pi(3x - 10t)$$

es demana trobar: amplitud, longitud d'ona i període.

Si reescrivim l'equació

$$y(x,t) = 15\sin 2\pi \left(\frac{3x}{2} - \frac{10t}{2}\right) = 15\sin 2\pi \left(\frac{x}{\frac{2}{3}} - \frac{t}{\frac{2}{10}}\right)$$

de forma que es poden identificar directament $A=15\,m,\ \lambda=\frac{2}{3}\,m$ i $T=\frac{2}{10}=\frac{1}{5}\,s.$

Alternativament podriem haver fet, a partir de l'equació proporcionada

$$y(x,t) = 15\sin\pi(3x - 10t) = 15\sin(3\pi x - 10\pi t)$$

d'on s'obté directament $A=15\,m,\,k=3\pi\,rad/m$ i $\omega=10\pi\,rad/s$ i indirectament, els valors trobats anteriorment de λ i T.

2.4 Diferència de fase

Anomenarem fase, φ a l'expressió $kx - \omega t + \varphi_0$. En general, la diferència de fase $\Delta \varphi$ entre dos punts x_1 , x_2 i dos temps t_1 , t_2 es calcula com

$$\Delta \varphi = \varphi_2 - \varphi_1 = kx_2 - \omega t_2 + \aleph_0 - (kx_1 - \omega t_1 + \aleph_0) = k(x_2 - x_1) - \omega(t_2 - t_1)$$

De manera que si volem calcular $\Delta \varphi$ entre dos punts diferents en el mateix instant del temps tindrem

$$\Delta \varphi = k(x_2 - x_1) - \omega(t_1 - t_1) = k(x_2 - x_1)$$

de forma que, en particular, si els punts estan separats un nombre n enter de longituds d'ona, direm que es troben en fase, ja que

$$\Delta \varphi = k(x_2 - x_1) = kn\lambda = \frac{2\pi}{\lambda}n\lambda = 2\pi n$$

i si ho estan un nombre semisenar de longitud
s d'ona, $\frac{2n+1}{2}$ direm que es troben en oposició de fase, ja que

$$\Delta \varphi = k(x_2 - x_1) = k \frac{2n+1}{2} \lambda = \frac{2\pi}{\lambda} \frac{2n+1}{2} \lambda = (2n+1)\pi$$

Un raonament semblant permet discutir els casos en que volem calcular $\Delta \varphi$ per un punt determinat en dos instants de temps diferents, quan aquests corresponen a múltiples enters o semisenars del període T de l'ona.

Exemple 2

L'equació d'una ona harmònica és

$$y(x,t) = 10\sin 2\pi \left(\frac{x}{4} - \frac{t}{20}\right)$$

es demana trobar la diferència de fase entre dos punts separats $2\,m$ en el mateix instant del temps.

Com que és $\lambda = 4 m$, per punts separats 2 m és trivial veure que la diferència de fase és π , és a dir es troben en oposició de fase.

2.4.1 Velocitat i acceleració en ones transversals

A partir de l'equació d'una ona transversal

$$y(x,t) = A\sin(kx - wt + \varphi_0)$$

es pot escriure la de la velocitat[†] dels seus punts

$$v_y = \frac{\partial y(x,t)}{\partial t} = -A\omega\cos(kx - wt + \varphi_0)$$

i la de l'acceleració com

$$a_y = \frac{\partial^2 y(x,t)}{\partial t^2} = \frac{\partial v_y(x,t)}{\partial t} = -A\omega^2 \sin(kx - wt + \varphi_0) = -\omega^2 y(x,t)$$

2.4.2 Velocitat de fase

En les ones harmòniques, anomenem la velocitat de fase o de grup, v a la velocitat amb que es desplaça l'ona, que no és la mateixa que la velocitat amb que vibra cada punt, material o no, de l'ona.

$$\lambda = vT$$

també pot ser útil el resultat

$$\omega = vk$$

2.5 Propagació de l'energia en el moviment ondulatori

2.5.1 Front d'ona i raig

Anomenem **front d'ona** el lloc geomètric dels punts de l'espai que estan en el mateix estat de vibració. Els **raigs** són línies vectorials perpendiculars als fronts d'ona i apunten en el sentit en què avança la pertorbació.

[†]El símbol ∂t denota la derivada parcial respecte el temps, que aquí cal especificar ja que y(x,t) és una funció de dues variables.

En una ona unidimensional (una corda vibrant, per exemple), el front d'ona és un punt, mentre que a una ona bidimensional (pertorbació en un estany al llençar una pedra, per exemple), el front d'ona és una línia (possiblement un cercle), i en una ona tridimensional (ona de xoc que es propaga en una explosió), el front d'ona és una superfície (possiblement una esfera).

2.5.2 Potència i intensitat d'una ona

Anomenem **potència** d'una ona a l'energia que transporta per unitat de temps. En el SI, la potència es mesura en watt (**W**). Recordem que 1W = 1 J/s. Definim **intensitat d'una ona (I)** com la potència per unitat de la magnitud que defineix el front d'ona. Segons aquesta definició tenim

1. Ones unidimensionals

$$I = P$$

per dos punts 1 i 2 diferents

$$P_1 = P_2 \longrightarrow I_1 = I_2$$

2. Ones bidimensionals

$$I = \frac{P}{L} \longrightarrow P = IL = I2\pi R$$

de forma que per dos punts 1 i 2 diferents

$$P_1 = P_2 \longrightarrow I_1 2\pi R_1 = I_2 2\pi R_2 \longrightarrow I_1 R_1 = I_2 R_2$$

3. Ones tridimensionals

$$I = \frac{P}{S} \longrightarrow P = IS = I4\pi R^2$$

per dos punts 1 i 2 diferents

$$P_1 = P_2 \longrightarrow I_1 4\pi R_1^2 = I_2 4\pi R_2^2 \longrightarrow I_1 R_1^2 = I_2 R_2^2$$

Per una altra banda, es pot comprovar que per qualsevol dels tres tipus d'ona es compleix que la intensitat és proporcional al quadrat de l'amplitud

$$I \propto A^2$$

de forma que podem afegir les relacions

$$I_1 = I_2 \longrightarrow A_1^2 = A_2^2 \longrightarrow A_1 = A_2$$

per ones unidimensionals, i

$$\frac{I_1}{I_2} = \frac{R_2}{R_1} \longrightarrow \frac{A_1^2}{A_2^2} = \frac{R_2}{R_1} \longrightarrow \frac{A_1}{A_2} = \sqrt{\frac{R_2}{R_1}}$$

per ones bidimensionals. Finalment, per ones tridimensionals tenim

$$\frac{I_1}{I_2} = \frac{R_2^2}{R_1^2} \longrightarrow \frac{A_1^2}{A_2^2} = \frac{R_2^2}{R_1^2} \longrightarrow \frac{A_1}{A_2} = \frac{R_2}{R_1}$$

Exemple 3

Una font sonora emet un so tal que a 1 metre de l'emissor la intensitat és $I_1 = 10^4 \, W/m^2$. A quina distància de la font aquesta intensitat s'haurà reduit fins a $I_2 = 10^{-12} \, W/m^2$?

Tenim

$$\frac{I_1}{I_2} = \frac{R_2^2}{R_1^2}$$

llavors

$$R_2 = R_1 \sqrt{\frac{I_1}{I_2}} = 1 \sqrt{\frac{10^4}{10^{-12}}} = 10^8 \, m$$

2.6 Atenuació i absorció

Com a conclusió fonamental del final de l'apartat anterior podem veure que en les ones bidimensionals i tridimensionals es produeix una disminució de l'amplitud de la pertorbació a mesura que el front d'ona s'allunya del focus. Aquest fenòmen s'anomena **atenuació**. A banda, quan les ones travessen un medi es produeix una pèrdua d'energia que fa disminuïr encara més la seva intensitat, ho anomenem **absorció**. L'absorció depèn de les característiques del medi i de la freqüència de l'ona. Es pot demostrar la relació

$$I = I_0 \cdot e^{-\beta x}$$

on I_0 és la intensitat que té l'ona abans d'entrar al medi, β l'anomenat coeficient d'absorció del medi, i x la distància recorregida dins el medi. Anomenem **gruix de semiabsorció** a la distància que ha de recórrer l'ona per tal que la intensitat es redueixi a la meitat

$$D_{1/2} = \frac{\ln 2}{\beta}$$

2.7 Lleis d'Snell

Diem que hi ha reflexió quan una ona xoca amb la superfície que separa dos medis diferents i es desvia avançant pel medi original. La refracció es produeix quan una ona arriba a la superfície que separa dos medis diferents i avança pel segon medi. En cadascun dels medis l'ona es mou amb velocitat diferent i canvia la direcció de propagació. És important constatar que la freqüència de l'ona no varia.

Les lleis d'Snell ens diuen com es comporta una ona al arribar a la interfície de separació de dos medis diferents. El curs passat es va tractar aquest tema en el context de les ones electromagnètiques. Aquest any, hem de parlar d'ones en general, i això fa que no podem fer servir l'índex de refracció, ja que aquest es definia només per aquell tipus d'ones. En qualsevol cas, segueixen sent vàlides les següents lleis:

- El raig incident, el reflectit i la normal estan continguts al mateix pla.
- L'angle que forma el raig incident (θ_1) amb la normal és igual al que forma el raig reflectit amb la normal.
- El raig incident, el refractat i la normal estan continguts en el mateix pla.
- Quant el raig incident es progaga a més velocitat que el refractat, l'angle d'incidència θ_1 és més gran que l'angle de refracció (θ_2) , en altres paraules, el raig refractat s'acosta a la normal.

Tenim que

$$\frac{\sin \theta_1}{v_{inci}} = \frac{\sin \theta_2}{v_{refr}}$$

És important establir que, quan una ona travessa la interfície de separació de dos medis, la freqüència no varia, i com la velocitat (en principi) sí ho fa, llavors es conclou que la longitud d'ona també varia.

Exemple 4

La velocitat del so en l'aire és d'uns $340 \, m/s$ metre que en aigua, és de $1600 \, m/s$ aproximadament. Si una ona sonora incideix sobre la superfície d'un estany desde dins de l'aigua amb un angle de 45° , amb quin angle es refractarà un cop surti de l'aigua?

A partir de

$$\frac{\sin \theta_1}{v_{inci}} = \frac{\sin \theta_2}{v_{refr}}$$

tenim

$$\sin \theta_2 = v_{refr} \frac{\sin \theta_1}{v_{inci}} = 340 \frac{\sin 45^o}{1600} = 0, 15$$

d'on

$$\theta_2 = \arcsin 0, 15 = 8,64^{\circ}$$

2.8 Interferències i difracció

Farem un estudi molt qualitatiu dels fenòmens de interferències i difracció d'ones. En quant a les interferències, ens interessa conèixer el que succeeix quan en un punt determinat es troben dues ones harmòniques. Per simplicitat suposarem que aquestes ones tenen la mateixa amplitud i frequència. Considerem doncs que un punt P rep la interferència de dues ones originades en punts S_1 i S_2 , tots dos a una distància x_1 i x_2 de P, respectivament. Llavors, anomenant x_2-x_1 la diferència de camí, tindrem interferència constructiva quan

$$x_2 - x_1 = n\lambda$$

i interferència destructiva quan

$$x_2 - x_1 = (2n+1)\frac{\lambda}{2}$$

En quant al fenòmen de difracció, ens interessa saber que es produeix quan una ona que es propaga en un medi troba obertures o obstacles de mida comparable a la seva longitud d'ona. Llavors, aquesta obertura o obstacle, es comporta com un emissor puntual.

2.9 Ones estacionàries

Per l'estudi de les ones estacionàries suposarem que resulten de la superposició de dues ones idèntiques que es propaguen en el mateix medi en sentits oposats. Llavors la seva suma

$$y = A\sin(kx + \omega t) + A\sin(kx - \omega t)$$

es pot reescriure fent ús de la relació trigonomètrica

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

per obtenir

$$y = 2A\sin(kx)\cos(\omega t)$$

El terme $2A\sin(kx)$ s'anomena amplitud efectiva, ja que en les ones estacionàries l'amplitud depèn de la posició, no només del temps. Els punts que els que l'amplitud val zero per qualsevol temps s'anomenen nodes. Els punts que assoleixen l'amplitud màxima de l'ona estacionària $(\pm 2A)$ s'anomenen ventres.

Per localitzar els nodes demanem

$$2A\sin(kx) = 0$$

d'on

$$kx = n\pi \longrightarrow \frac{2\pi}{\lambda}x = n\pi \longrightarrow x = n\frac{\lambda}{2}$$

Per localitzar els ventres, ha de ser

$$\sin(kx) = \pm 1$$

d'on

$$kx = (2n+1)\frac{\pi}{2} \longrightarrow \frac{2\pi}{\lambda}x = (2n+1)\frac{\pi}{2} \longrightarrow x = (2n+1)\frac{\lambda}{4}$$

En quant a la velocitat de fase de les ones estacionàries, l'expressió

$$\lambda = vT$$

segueix sent vàlida, però ara cal tenir present que la aquesta velocitat depèn de paràmetres físics del suport de l'ona i per tant, és constant. Llavors, al canviar la longitud d'ona, la freqüència canvia d'acord amb el la fórmula anterior. Noteu el contrast amb la situació que teníem quan una ona travessava la interfície de dos medis diferents.

Exemple 5

L'equació d'una ona estacionària és

$$y(x,t) = 6\cos\left(\frac{\pi}{2}x\right)\sin(100\pi t)$$

es demana trobar: amplitud de les ones components, longitud d'ona i periode.

L'amplitud de les ones components és $A=3\,m$. Com és $k=\pi/2$ es dedueix que $\lambda=4\,m$ i finalment, com és $\omega=100\pi$ es veu que $T=0,002\,s$.

2.9.1 Corda lligada pels extrems. Tub obert pels dos extrems

Els dos casos són semblants. La condició perquè es formi una ona estacionària és que en la longitud (de la corda o el tub) hi hagi un nombre semienter de longituds d'ona.

$$L = n\frac{\lambda}{2}$$

de forma que les diferents longituds d'ona que es poden donar són

$$\lambda = \frac{2L}{n} \qquad n = 1, 2, 3 \dots$$

Expressió que genera els diferents harmònics. Per n=1, l'harmònic corresponent rep el nom de fonamental.

Exemple 6

Una corda de longitud 2m lligada pels extems vibra en el segon harmònic amb una freqüència $f=440\,Hz$. Es demana calcular amb quina freqüència vibra el tercer harmònic i la velocitat de les ones estacionàries en aquesta corda.

Com que el segon harmònic *omple* amb una longitud d'ona la separació entre els punts de suport de la corda vibrant, podem deduir que $\lambda=2\,m$. Ara, fent servir les dades de l'enunciat

$$\lambda = vT = v/f \longrightarrow v = \lambda f = 2 \cdot 440 = 880 \, m/s$$

El tercer harmònic omple la separació entre extrems amb una longitud d'ona i mitja (d'on $\lambda = 2L/3 = 4/3$), i com la velocitat és la mateixa per tots els harmònics, la nova freqüència serà

$$f = v/\lambda = \frac{880}{4/3} = 660 \, Hz$$

2.9.2 Corda lligada per un extrem. Tub obert per un extrem

Els dos casos són semblants, ara la condició sobre la longitud (del tub o corda) per tal que s'estableixin ones estacionàries és

$$L = (2n+1)\frac{\lambda}{4}$$

d'on les longituds d'ona possibles són

$$\lambda = \frac{4L}{2n+1} \qquad n = 1, 2, 3 \dots$$

Exemple 7

Calculeu la freqüència que tindrà l'aire vibrant en el segon harmònic en un tub semi obert de 3 metres de longitud. Podeu considerar que la velocitat del so és de $340\,m/s$.

En un tub semiobert, el segon harmònic omple el tub amb $\frac{3}{4}\lambda,$ de forma que serà

$$\frac{3}{4}\lambda = L \longrightarrow \frac{3}{4}\lambda = 3 \longrightarrow \lambda = 4 m$$

$$f = \frac{v}{\lambda} = 85, Hz$$

i

2.10 El so

El so és una pertorbació que apareix quan es fan vibrar les partícules d'un medi elàstic de manera que s'hi produeixen variacions en la densitat o en la pressió i es propaga a través del medi en forma d'ones. El so és una ona mecànica longitudinal de caràcter tridimendional.

2.10.1 Qualitats del so

El to és la qualitat del so que permet distingir els sons aguts dels greus. Està relacionat amb la freqüència de l'ona sonora: els sons aguts corresponen a freqüències altes i els sons greus, a baixes. El timbre és la qualitat del so que permet distingir sons de la mateixa freqüència i amplitud produits per instruments musicals difefents. La intensitat és la qualitat del so que permet identificar-lo com fort o feble. Està relacionada amb l'amplitud de l'ona: els sons forts es corresponen amb amplituds elevades i els febles, amb baixes.

La resposta de l'oïda humana a la intensitat sonora és logarítmica, és a dir, per percebre un so el doble de fort, la seva intensitat s'ha de multiplicar per deu. Aquesta característica es fa servir per definir una magnitud anomenada nivell d'intensitat sonora o sonoritat d'un so:

$$\beta = 10 \log \frac{I}{I_0}$$

que es mesura en decibels (dB) i on $I_0 = 10^{-12} W/m^2$ és l'anomenada intensitat llindar.

Exemple 8

Suposant que una persona cridant pot arribar a produir una sonoritat de $70 \, dB$, calculeu la sonoritat d'un conjunt de $100 \, 000$ persones cridant en un estadi de futbol.

Per una sola persona podem escriure

$$70 = 10 \log \frac{I}{I_0}$$

si anomenem $I' = 10^5 I$ la intensitat del conjunt de l'estadi cridant, tenim

$$\beta' = 10 \log \frac{I'}{I_0} = 10 \log \frac{10^5 I}{I_0} = 10 \log 10^5 + 10 \log \frac{I}{I_0} = 50 + 70 = 120 dB$$

2.10.2 Efecte Doppler

Anomenem efecte Doppler el canvi que en la freqüència observada per un receptor com a conseqüèncoa del moviment de l'emisor, el receptor o tots dos.

Podem resumir la casuística amb la següent fórmula (suposem que la velocitat de l'ona en el medi és v, la freqüència de l'emissor és f_E i la freqüència observada pel receptor és f_R)

$$f_R = f_E \frac{v \pm v_R}{v + v_E}$$

Si el receptor s'acosta o allunya o l'emissor s'allunya o acosta amb velocitats v_R , v_E respectivament.

3 Camp gravitatori

3.1 Introducció

La coneguda anècdota que va protagonitzar Newton amb la poma va servir perquè s'adonés de quelcom que potser a nosaltres ens sembla trivial, però que llavors ningú havia pensat, que la força que goberna la dinàmica de l'univers i la que atrau els objectes cap al centre de la Terra són la mateixa. Així, Newton va escriure la que es coneix com llei de gravitació universal

$$F = G \frac{Mm}{r^2}$$

que descriu com calcular la força amb que s'atrauen dos objectes de masses M i m separats una distància r. La constant $G = 6,67 \cdot 10^{-11} Nm^2/kg^2$ es coneix com constant de gravitació universal.

3.2 El concepte de camp gravitatori. Potencial gravitatori

L'expressió de l'apartat anterior presenta un problema conceptual que és l'anomenada acció a distància, ja que se suposa que la força apareix de forma instantània entre dues masses independentment de la distància que les separa. Per tal de superar aquest detall, es va proposar descriure el concepte de **camp**, com una condició que crea un objecte, pel sol fet de tenir massa, al seu voltant i que després afecta a altres objectes fent que aparegui una força entre ells.

D'aquesta manera, el camp gravitatori que crea un objecte de massa M al seu voltant a una distància r es calcula com

$$\vec{g} = -G\frac{M}{r^3}\vec{r} = -G\frac{M}{r^2} \cdot \frac{\vec{r}}{r} = -G\frac{M}{r^2}\hat{r}$$

amb mòdul

$$|\vec{g}| = G \frac{M}{r^2}$$

i la força amb que s'atrauran M i una altra massa m situats a distància r valdrà

$$\vec{F} = m\vec{g} = -G\frac{Mm}{r^3}\vec{r}$$

amb mòdul

$$F = |\vec{F}| = mg = G\frac{Mm}{r^2}$$

Definim el potencial gravitatori que crea un objecte de massa M a una distància r d'ell com

 $V = -G\frac{M}{r}$

on hem suposat que el potencial gravitatori val zero a l'infinit.

Exemple 1

Considereu una massa $M_1 = 3 \cdot 10^{12} \, kg$ situada al punt $P_1 = (2,4)$ i una altra de valor $M_2 = 7 \cdot 10^{12} \, kg$ situada al punt $P_2 = (1,5)$. Es demana calcular el camp gravitatori que creen al punt Q = (5,8). Considereu tots els valors en metres.

Per calcular el camp total \vec{g}_T farem

$$\vec{g}_T = \vec{g}_1 + \vec{g}_2 = -G\frac{M_1}{r_1^3}\vec{r}_1 - G\frac{M_2}{r_2^3}\vec{r}_2$$

on
$$\vec{r_1} = \overrightarrow{P_1Q} = (3,4)$$
 i $\vec{r_2} = \overrightarrow{P_2Q} = (4,3)$, llavors

$$r_1 \equiv |\vec{r_1}| = |\overrightarrow{P_1Q}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \, m$$

i de forma semblant

$$r_2 \equiv |\vec{r_2}| = |\overrightarrow{P_2Q}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \, m$$

de forma que

$$\vec{g}_Q = \vec{g}_1 + \vec{g}_2 = -6,67 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{12}}{5^3} (3,4) - 6,67 \cdot 10^{-11} \cdot \frac{7 \cdot 10^{12}}{5^3} (4,3)$$

$$= -6,67 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{12}}{5^3} (3,4) - 6,67 \cdot 10^{-11} \cdot \frac{7 \cdot 10^{12}}{5^3} (4,3)$$

$$= \frac{-6,67 \cdot 10^{-11} \cdot 10^{12}}{5^3} \left(3(3,4) + 7(4,3) \right)$$

$$= (-19.74, -17.6) N/kg$$

Exemple 2

Feu servir les dades de l'exemple anterior per calcular el potencial gravitatori que creen les masses M_1 , M_2 en el punt Q.

Ara és

$$V_Q = V_1 + V_2 = -G \frac{M_1}{r_1} - G \frac{M_2}{r_2}$$

$$= -6,67 \cdot 10^{-11} \frac{3 \cdot 10^{12}}{5} - 6,67 \cdot 10^{-11} \frac{7 \cdot 10^{12}}{5}$$

$$= -\frac{6,67 \cdot 10^{-11} \cdot 10^{12}}{5} (3+7)$$

$$= -133,4 J/kq$$

3.3 El moviment dels cossos celestes

3.3.1 Pes d'un cos

Considerem ara un objecte de massa m situat sobre la superfície de la Terra. Amb quina força és atret tal objecte? El resultat de l'apartat anterior ens diu que hem d'aplicar la fórmula

$$F = G \frac{Mm}{r^2}$$

on com a r hem de considerar el radi de la Terra i no zero, ja que encara que l'objecte es trobi a la superfície (a distància zero de la Terra), en realitat hem considerar la situació com si la Terra fos un objecte puntual (amb la mateixa massa) que crearia al mateix camp. Així

$$F = G \frac{M_{\oplus} m}{R_{\oplus}^2}$$

Si avaluem la quantitat

$$G\frac{M_{\oplus}}{R_{\oplus}^2} = 6,67 \cdot 10^{-11} \frac{5,97 \cdot 10^{24}}{(6,37 \cdot 10^6)^2} = 9,81 \, m/s^2 \equiv g_0$$

llavors tenim

$$F = mg_0 = P$$

És a dir, la força amb que la Terra atrau un objecte de massa m coindideix amb el seu pes.

Del resultat anterior se'n deriva una relacio útil entre les constants que hi apareixen

$$GM_{\oplus} = g_0 R_{\oplus}^2$$

Per una altra banda, la variació de g amb l'altura sobre la superfície de la Terra es caracteritza per

$$g(h) = G \frac{M_{\oplus}}{\left(R_{\oplus} + h\right)^2}$$

Exemple 3

Trobeu a quina altura sobre la superfície terrestre el camp gravitatori s'ha reduït n vegades.

Hem de resoldre l'equació

$$\frac{GM_{\oplus}}{\left(R_{\oplus} + h\right)^2} = \frac{g_0}{n}$$

d'on

$$\frac{GM_{\oplus}}{\left(R_{\oplus}+h\right)^2} = \frac{GM_{\oplus}}{nR_{\oplus}^2}$$

i

$$nR_{\oplus}^2 = (R_{\oplus} + h)^2$$

fent l'arrel quadrada a banda i banda

$$\pm \sqrt{n}R_{\oplus} = R_{\oplus} + h$$

finalment

$$h = \pm \sqrt{n}R_{\oplus} - R_{\oplus} = R_{\oplus} \left(\pm \sqrt{n} - 1\right)$$

on, per les condicions del problema, és clar que les solucions admissibles són

$$h = R_{\oplus} \left(\sqrt{n} - 1 \right)$$

3.3.2 Energia cinètica, potencial gravitatòria i mecànica

Suposem un objecte de massa m que es troba en un tipus d'òrbita qualsevol al voltant d'un altre objecte de massa M. Definim l'energia cinètica de m com

$$E_c = \frac{1}{2}mv^2$$

i l'energia potencial gravitatòria com

$$E_{pg} = mV = -G\frac{Mm}{r}$$

L'energia mecànica és doncs

$$E_M = E_c + E_{pg} = \frac{1}{2}mv^2 - G\frac{Mm}{r}$$

Exemple 5

Considereu un objecte de massa $m=300\,kg$ que es troba en un moment donat a una altura sobre la superfície terrestre $h=2\,R_\oplus$ allunyant-se en direcció radial amb velocitat $v=200\,m/s$. Es demana calcular per aquest instant:

- 1. La seva energia cinètica.
- 2. La seva energia potencial gravitatòria.
- 3. La seva energia mecànica.

En quant a l'energia cinètica, tenim

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}300 \cdot 200^2 = 6 \cdot 10^6 J$$

L'energia potencial gravitatòria es calcula com

$$E_{pg} = -\frac{GM_{\oplus}m}{R_{\oplus} + h} = -\frac{6,67 \cdot 10^{-11} \cdot 5,97 \cdot 10^{24} \cdot 300}{6,37 \cdot 10^{6} + 2 \cdot 6,37 \cdot 10^{6}} = -6,25 \cdot 10^{9} J$$

Llavors, l'energia mecànica val

$$E_M = E_c + E_{pg} = 6 \cdot 10^6 - 6,25 \cdot 10^6 = -2,5 \cdot 10^5 J$$

3.3.3 Òrbites circulars estables

Les òrbites circulars estables d'un objecte de massa m al voltant d'un cos celest de massa M i radi R, a una alçada h sobre la superfície d'aquest es poden trobar per aplicació de la segona llei de Newton

$$F = ma_c$$

$$\frac{GMm}{\left(R+h\right)^2} = m\frac{v^2}{R+h}$$

d'on

$$v = \sqrt{\frac{GM}{R+h}}$$

Notem que aquesta velocitat no depèn de la massa de l'objecte en òrbita i que **disminueix** amb la distància al centre de forces.

Al calcular l'energia mecànica d'un objecte en una òrbita d'aquestes característiques tenim

$$E_{M} = \frac{1}{2}mv^{2} - G\frac{Mm}{r} = \frac{1}{2}m\frac{GM}{r} - G\frac{Mm}{r} = -\frac{1}{2}G\frac{Mm}{r}$$

Noteu que l'energia mecànica és negativa, com correspon als sistemes lligats. Cal insistir en que l'expressió obtinguda només és vàlida per les òrbites circulars estables. En qualsevol altre situació, caldrà usar l'expressió més general de l'apartat **4.3.2**

Noteu les relacions

$$E_M = -E_c$$

i

$$E_c = -\frac{1}{2}E_{pg}$$
 (Teorema del virial)

Exemple 7

Considereu un objecte de massa $m=100\,kg$ que es troba en una òrbita circular estable a una altura sobre la superfície de la Terra $h=15R_{\oplus}$. Es demana calcular l'energia cinètica, potencial gravitatòria i mecànica. Dada: $R_{\oplus}=6,37\cdot 10^6\,m$.

Tenim

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\sqrt{\frac{GM_{\oplus}}{R_{\oplus} + 15R_{\oplus}}}\right)^2 = \frac{1}{32}\frac{GM_{\oplus}}{R_{\oplus}} = \frac{1}{32}\frac{g_0R_{\oplus}^2}{R_{\oplus}} = 1,95 \cdot 10^6 J$$

En quant a l'energia potencial gravitatòria, del teorema del virial sabem que és

$$E_{pq} = -2E_c = -3,90 \cdot 10^6 J$$

i finalment, per l'energia mecànica tenim

$$E_M = -E_c = -1,95 \cdot 10^6 J$$

Exemple 8

Raoneu què passarà amb l'objecte de l'exemple anterior si la seva velocitat es redueix un 1%.

Tant és quina sigui la disminució de la velocitat. Si aquesta disminueix, l'òrbita circular estable que correspon a aquell valor estarà *per sobre* de l'òrbita actual, i per accedir-hi, hauria d'augmentar la seva energia potencial gravitatòria. Si no té mitjans autònoms per fer-ho, llavors caurà cap a la Terra seguint una trajectòria en espiral.

3.3.4 Orbites geoestacionàries

Per determinats usos civils, comercials, científics o fins i tot militars, cal tenir un satèl·lit en una òrbita tal que estogui permanentment sobre un punt de la superfície terrestre. Aquestes òrbites s'anomenen geoestaciònàries. Per poder caracteritzar-les hem de demanat que el període de translació del satèl·lit sigui el mateix que el de rotació terrestre, 24 hores. Com que les òrbites (en aquest curs les considerarem així per simplicitat) són circulars, la relació entre l'espai recorregut en una volta, el temps i la velocitat s'escriu com

$$2\pi r = vT$$

on $r = R_{\oplus} + h$ és el radi de l'òrbita, v la velocitat i T el període del moviment. Llavors, fent servir el resultat de l'apartat **4.3.3** per la velocitat de les òrbites circulars estables tenim,

$$2\pi(R_{\oplus} + h) = \sqrt{\frac{GM_{\oplus}}{R_{\oplus} + h}} \cdot T$$

d'on

$$4\pi^{2}(R_{\oplus} + h)^{2} = \frac{GM_{\oplus}}{R_{\oplus} + h}T^{2}$$

reordenant termes

$$(R_{\oplus} + h)^3 = \frac{GM_{\oplus}T^2}{4\pi^2}$$

i finalment

$$h = \sqrt[3]{\frac{GM_{\oplus}T^2}{4\pi^2}} - R_{\oplus}$$

Es deixa com a exercici calcular el valor numèric amb les dades proporcionades al llarg del tema.

És important adonar-se que les òrbites circulars estables que estiguin *per sota* de les geoestacionàries tindran una velocitat de translació més gran que la de la rotació terrestre, i que les que estan *per sobre*, tindran una velocitat menor que la de la rotació terrestre.

Exemple 8

Estem a la vora del mar i volem llançar una pedra horitzontalment a un metre sobre la superfície de l'aigua de forma que descrigui una òrbita circular estable. Es demana calcular la velocitat a la que cal llançar-la. Compareu-la amb la velocitat de rotació terrestre.

A partir de la fórmula

$$v = \sqrt{\frac{GM_{\oplus}}{R_{\oplus} + h}}$$

tenim

$$v = \sqrt{\frac{6,67 \cdot 10^{-11} \cdot 5,97 \cdot 10^{24}}{6,37 \cdot 10^6 + 1}} = 7,91 \cdot 10^3 \, m/s$$

Per una altra banda, la velocitat de rotació terrestre es pot calcular a partir de $2\pi R_{\oplus} = vT_{\oplus}$ d'on

$$v = \frac{2\pi R_{\oplus}}{T_{\oplus}} = \frac{2\pi \cdot 6,37 \cdot 10^6}{24 \cdot 3600} = 463,24 \, m/s$$

de manera que la velocitat de l'òrbita és

$$\frac{7,91 \cdot 10^3}{463,24} \approx 17$$

vegades més gran que la de la rotació terrestre.

3.3.5 Canvis d'òrbita

En qualsevol exercici de canvi d'òrbita és convenient treballar mitjançant balanços d'energia. Vegem uns quants exemples.

Exemple 9

Calculeu el treball que s'ha de proporcionar a un satèl·lit de massa m que es troba en una òrbita circular estable a distància h_1 sobre la superfície terrestre si el volem situar en una altra òrbita més llunyana a altura h_2 .

El treball demanat coincideix amb la diferència d'energia mecànica del satèl·lit al canviar d'òrbita. Així

$$\begin{split} W_{h_1 \to h_2} &= -\frac{1}{2} G \frac{M_{\oplus} m}{R_{\oplus} + h_2} - \left(-\frac{1}{2} G \frac{M_{\oplus} m}{R_{\oplus} + h_1} \right) \\ &= -\frac{1}{2} G M_{\oplus} m \left(\frac{1}{R_{\oplus} + h_2} - \frac{1}{R_{\oplus} + h_1} \right) \\ &= -\frac{1}{2} G M_{\oplus} m \frac{R_{\oplus} + h_1 - R_{\oplus} - h_2}{(R_{\oplus} + h_2)(R_{\oplus} + h_1)} \\ &= -\frac{1}{2} G M_{\oplus} m \frac{h_1 - h_2}{(R_{\oplus} + h_2)(R_{\oplus} + h_1)} \\ &= \frac{1}{2} G M_{\oplus} m \frac{h_2 - h_1}{(R_{\oplus} + h_2)(R_{\oplus} + h_1)} \end{split}$$

que com es pot veure fàcilment, és una quantitat positiva sempre que $h_2 > h_1$. És a dir, encara que l'energia potencial gravitatòria sempre pren valors negatius, quan ens allunyem del centre de forces, l'energia potencial gravitatòria augmenta. Recordem que el zero és a l'infinit.

Exemple 10

Calculeu el treball que cal fer per tal de posar en òrbita un satèl·lit des de la superfície terrestre fins a una altura h.

Suposarem sempre, si no es diu el contrari, que les objectes quan es llencen des de la superfície d'un planeta, només tenen energia potencial gravitatòria, és a dir, ignorarem l'energia cinètica que poguéssin tenir per efecte de la rotació del planeta. Aquesta energia cinètica que estem ignorant, depèn de la latitud del lloc de llançament, ja que a l'equador la velocitat de rotació és màxima, i als pols, zero. Així, per calcular el treball demanat calcularem la diferència d'energia mecànica entre el punt de destinació del satèl·lit, i el de partida. S'ha de tenir present que la destinació del satèl·lit **no** té perquè ser en general una òrbita circular estable, (en aquest exemple sí ho és). En definitiva, en el cas que ens ocupa podem escriure

$$\begin{split} W_{R_{\oplus} \to h} &= -\frac{1}{2} G \frac{M_{\oplus} m}{R_{\oplus} + h} - \left(-G \frac{M_{\oplus} m}{R_{\oplus}} \right) \\ &= -G M_{\oplus} m \left(\frac{1}{2(R_{\oplus} + h)} - \frac{1}{R_{\oplus}} \right) \\ &= -G M_{\oplus} m \frac{R_{\oplus} - 2(R_{\oplus} + h)}{(R_{\oplus} + h)R_{\oplus}} \\ &= G M_{\oplus} m \frac{2(R_{\oplus} + h) - R_{\oplus}}{(R_{\oplus} + h)R_{\oplus}} \\ &= G M_{\oplus} m \frac{R_{\oplus} + 2h}{(R_{\oplus} + h)R_{\oplus}} \end{split}$$

3.3.6 Velocitat d'escapament

Suposem que volem llançar un objecte de massa m des d'una altura h sobre la superfície terrestre amb prou velocitat perquè no torni més. Per calcular aquesta velocitat, anomenada velocitat d'escapament v_e , demanarem que l'energia mecànica valgui zero, que és la condició perquè deixi d'estar lligat a la terra gravitatòriament.

$$0 = E_M = \frac{1}{2}mv^2 - \frac{GM_{\oplus}m}{R_{\oplus} + h}$$

d'on sobté fàcilment

$$v_e = \sqrt{\frac{2GM_{\oplus}}{R_{\oplus} + h}}$$

En el cas que la velocitat d'escapament d'un objecte estelar arribi a assolir a un valor tant gran com $v_e = 3 \cdot 10^8 \, m/s \equiv c$, llavors ni tan sols la llum pot sortir de la seva superfície i podem identificar-lo com un forat negre. Anomenem radi d'Schwarzschild R_S , d'un cos celest al radi que haria de tenir per tal que la seva velocitat d'escapament fos la de la llum, suposant que la seva massa no varia.

Exemple 11

Calculeu el radi d'Schwarzschild de la Terra. Podeu considerar conegut el resultat $R_{\oplus}=6,37\cdot 10^6\,m$.

Del resultat

$$c = \sqrt{\frac{2GM_{\oplus}}{R_S}}$$

tenim

$$R_S = \frac{2GM_{\oplus}}{c^2} = \frac{2g_0R_{\oplus}^2}{c^2} = 8,884 \cdot 10^{-3} \, m \approx 9 \, mm$$

Noteu que estem parlant de que tota la massa de la Terra estigui concentrada en una esfera de $9\,mm$ de radi. Com es veu, els valors de la densitat que s'assoleixen en els forats negres són elevadíssims. La distorsió que produeixen al seu voltant en l'espai-temps és tant gran, que de les tres dimensions espacials i una temporal que es tenen ordinàriament, es passa a tres temporals i una espacial.

3.3.7 Caiguda lliure

Els problemes de moviment vertical no es poden resoldre, tal i com s'ha vist al llarg del capítol, amb els resultats del curs de Física de primer de Batxillerat. La raó fonamental és que per variacions d'altura prou grans, el fet que la g no sigui constant s'ha de tenir en compte. Aquest advertiment ha de quedar molt clar, especialment en els exercicis de caiguda lliure. De tota manera s'ha de fer servir el sentit comú, i és possible trobar exercicis en els que sí poguem fer servir la coneguda relació

$$mgh = \frac{1}{2}mv^2$$

Exemple 12

Un objecte de massa m cau amb velocitat v des d'una altura h sobre la superfície terrestre. Calculeu amb quina velocitat arriba al terra.

Suposem que la velocitat amb que arriba és v' i plantegem un balanç d'energia per resoldre la qüestió,

$$\begin{split} \frac{1}{2}mv^2 - G\frac{M_{\oplus}m}{R_{\oplus} + h} &= \frac{1}{2}mv'^2 - G\frac{M_{\oplus}m}{R_{\oplus}} \\ \frac{1}{2}mv'^2 &= \frac{1}{2}mv^2 - G\frac{M_{\oplus}m}{R_{\oplus} + h} + G\frac{M_{\oplus}m}{R_{\oplus}} \\ mv'^2 &= mv^2 - 2G\frac{M_{\oplus}m}{R_{\oplus} + h} + 2G\frac{M_{\oplus}m}{R_{\oplus}} \\ \\ v' &= \sqrt{v^2 - 2GM_{\oplus}\left(\frac{1}{R_{\oplus} + h} - \frac{1}{R_{\oplus}}\right)} \\ \\ v' &= \sqrt{v^2 - 2GM_{\oplus}\frac{R_{\oplus} - R_{\oplus} - h}{(R_{\oplus} + h)R_{\oplus}}} \\ \end{split}$$

Exemple 13

Un objecte de massa m cau amb velocitat v des d'una altura $h=100\,m$ sobre la superfície terrestre. Calculeu amb quina velocitat arriba al terra.

Ara plantegem el balanç

$$\frac{1}{2}mv^2 + mgh = \frac{1}{2}mv'^2$$

d'on s'arriba fàcilment a un resultat conegut en cursos anteriors (estem suposant $g = g_0 = 9,81 \, m/s^2$)

$$v' = \sqrt{v + 2gh}$$

3.4 Les lleis de Kepler

Les lleis de Kepler van ser obtenides experimentalment per Johannes Kepler uns 80 anys abans que Newton formulés la llei de gravitació universal i les seves lleis del moviment. Les lleis de Kepler milloren radicalment el model heliocentrista de Copèrnic, vigent fins llavors i que presentava nombroses complicacions degut a que bàsicament, era incorrecte. Aquí convé recordar el criteri d'Occam "Pluralitas non est ponenda sine neccesitate".

Les tres lleis de Kepler són

- 1. Els planetes es mouen en òrbites el·líptiques al voltant del Sol amb aquest situat en un dels focus de l'el·lipse.
- 2. Les òrbites dels planetes són planes i la corda que uneix la posició d'un planeta i el Sol escombra àrees iguals en temps iguals.
- 3. La relació entre el periode de translació dels planetes al voltant del Sol i el radi mitjà de la seva òrbita és

$$T^2 = \frac{4\pi^2}{GM_{\odot}}r^3$$

on $G=6,67\cdot 10^{-11}\frac{Nm^2}{kg^2}$ és l'anomenada constant universal de gravitació.

- Consequència important de la segona és que la velocitat dels planetes és més gran al *periheli* (punt de l'òrbita més proper al Sol) que l'afeli (punt més llunyà).
- La tercera llei es pot aplicar a qualsevol parell d'objects estel·lars sotmesos a la força gravitatòria, només cal posar a l'expressió la massa del que es considera el centre de forces. La quantitat r es considera típicament la distància entre centres.

Exemple 14

Sabent que el període orbital de Júpiter és de 12 anys (terrestres), trobeu a quina distància del Sol es troba, en funció de la distància Terra-Sol (r_{\oplus}) .

Escrivim la tercera llei de Kepler per les parelles Terra-Sol, Júpiter-Sol, ja que en aquest cas el Sol és el centre de forces i considerem que la Terra i Júpiter orbiten al seu voltant

$$T_{\oplus}^2 = \frac{4\pi^2}{GM_{\odot}}r_{\oplus}^3$$

$$T_J^2 = \frac{4\pi^2}{GM_{\odot}} r_J^3$$

dividim les equacions d'abaix a dalt

$$\frac{T_J^2}{T_{\oplus}^2} = \frac{r_J^3}{r_{\oplus}^3}$$

d'on

$$r_J = r_{\oplus} \sqrt[3]{\frac{T_J^2}{T_{\oplus}^2}} = r_{\oplus} \sqrt[3]{\left(\frac{T_J}{T_{\oplus}}\right)^2} = r_{\oplus} \sqrt[3]{12^2} \approx 5,24r_{\oplus}$$

Aquesta idea de dividir les equacions que representen la tercera llei de Kepler aplicada a dos objectes diferents (per exemple planetes), es fa servir molt. Cal però, tenir cura de no confondre la distància dels planetes al centre de forces amb el seu radi. També cal tenir clar *qui és* el centre de forces en cada exercici.

4 Camp elèctric

4.1 Introducció

4.2 Camp elèctric creat per una càrrega

Sigui una càrrega q situada en un punt P del pla cartesià llavors, el camp que crea en un altre punt P' es pot calcular com

$$\vec{E} = \frac{1}{4\pi\epsilon_0 \epsilon_r} \frac{q}{r^3} \vec{r}$$

amb $\vec{r} = \overrightarrow{PP'}$, $\epsilon_0 = 8.85 \cdot 10^{-12} \frac{C^2}{Nm^2}$, la permitivitat o constant dielèctrica del buit i ϵ_r permitivitat relativa del medi. Per calcular el mòdul del camp elèctric fem

$$\vec{E} = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^3} \vec{r} = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2} \vec{r} = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2} \vec{r}$$

de forma que queda

$$|\vec{E}| = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2} |\hat{r}|$$

$$E = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2}$$

4.3 Principi de superposició

Si tenim n càrregues situades en punts diferents, llavors el camp total sobre un determinat punt el calcularem com la suma **vectorial** dels camps elèctrics individuals, és a dir

$$\vec{E}_{total} = \sum_{i=1}^{n} \vec{E}_{i}$$

Cal notar que al ser el camp elèctric un vector, no es pot aplicar el principi de superposició amb els mòduls dels camps elèctric creats per cada càrrega individual.

4.4 Potencial electroestàtic

Per calcular el potencial que crea una càrrega q situada en un punt P del pla cartesià sobre un altre punt P', farem servir el següent resultat

$$V = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r}$$

on s'ha triat l'origen de potencial a infinit i $\vec{r} = \overrightarrow{PP'}$. Notem que el potencial hereta el signe de la càrrega que el crea i que es tracta d'un escalar. D'aquesta manera, per calcular el potencial que crea un sistema de càrregues en un cert punt, n'hi haurà prou de sumar els potencials (escalars) que crea cadascuna individualment.

4.5 Energia potencial electroestàtica

L'energia potencial electrostàtica que adquireix una càrrega Q situada en un punt on existeix un potencial es calcula com

$$E_p = Q \cdot V$$

i coincideix amb el treball que s'ha de fer per dur-la desde l'infinit fins el punt en qüestió. En general, per calcular el treball que cal fer per moure una càrrega Q d'un punt A a un punt B en el si d'un camp elèctric farem

$$W_{A\to B} = Q(V_B - V_A)$$

4.6 Energia de configuració d'un sistema de càrregues

Per calcular el treball que cal fer per obtenir una determinada configuració de càrregues el que farem és calcular el treball necessari per portar-les d'una en una desde l'infinit fins el seu lloc de destí. Aquest treball no depèn de l'ordre escollit.

4.7 Camps elèctrics uniformes

4.8 Moviment de càrregues en condensadors

5 Camp magnètic

5.1 Introducció

1. Característiques. Comportament de la matèria davant el magnetisme.

La majoria dels materials responen a l'aplicació d'un camp magnètic \vec{B} extern produïnt la seva pròpia magnetització, i per tant, el seu propi camp magnètic al seu interior. Segons el seu comportament magnètic els materials es poden classificar en

- Ferromagnètics: produeixen una magnetització, (que pot romandre al desactivar el camp extern), en el mateix sentit que el camp extern, de forma que fan augmentar el valor total del camp en el seu interior. Per exemple, el μ -metall pot multiplicar per un factor 10^5 el camp aplicat. Això es degut a la seva alta permeabilitat magnètica i el fa molt útil com a escut magnètic ja que condueix el camp extern pel seu interior, aconseguint així un efecte d'apantallament, que no és possible d'una altra manera pel fet que no existeixen monopols magnètics.
- Paramagnètics: produeixen una magnetització lleu en el mateix sentit que el camp aplicat.
- Diamagnètics: produeixen una magnetització que s'oposa al camp aplicat extern.
- 2. Efecte del camp magnètic sobre una càrrega en moviment. Llei de Lorentz. Una partícula amb càrrega q que es mou amb velocitat \vec{v} en el si d'un camp magnètic \vec{B} sentirà una força donada per

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

amb mòdul

$$|\vec{F}| = |q||\vec{v}||\vec{B}|\sin\alpha$$

$$F = |q|vB\sin\alpha$$

on |q| és el valor absolut de la càrrega elèctrica, i α l'angle que formen la velocitat i el camp magnètic. La direcció de la força és perpendicular al pla que formen \vec{v} i \vec{B} i el sentit ve donat per l'anomenada regla de la mà dreta, tal com es veu a continuació

De l'expressió de la llei de Lorentz es pot definir la unitat de camp magnètic, Tesla

$$[B] = \frac{[F]}{[q] \cdot [v]} = \frac{N}{C \cdot m/s} = \frac{N}{A \cdot m} \equiv T$$

una altra unitat que no és del Sistema Internacional però que s'utilitza sovint és el Gauss, ${\cal G}$

$$1T = 10^4 G$$

Una conseqüència molt important de la Llei de Lorentz és que, al ser la força magnètica sempre perpendicular a la velocitat de la càrrega, el camp magnètic *no fa treball*.

6 Inducció electromagnètica

6.1 Introducció

Tema 5 La inducció electromagnètica

1. Les experiències de Faraday.

En el seu afany per produïr corrent a partir d'un camp elèctric, Faraday va fer un sèrie d'experiments que es poden resumir en els següents.

1a experiència

Faraday va disposar una espira conductora connectada a un galvanòmetre. Com que no hi hi ha cap generador al circuit, el galvanòmetre no marca pas de corrent. Ara bé, al acostar o allunyar un imant a l'espira, llavors l'agulla del galvanòmetre es desvia, assenyalant el pas de corrent per l'espira.

2a experiència

Ara Faraday va usar un solenoide en lloc d'un imant, amb resultats semblants (ja que el solenoide crea un camp magnètic con l'imant.)

3a experiència

En aquesta experiència, Faraday va col·locar dues espires enfrontades, una connectada a un galvanòmetre i l'altra connectada a una bateria amb un iterruptor. Al accionar l'interruptor el galvanòmetre marcava pas de corrent per l'espira.

Faraday es va adonar que el que hi havia en comú era que sempre que apareixia corrent induit hi havia una variació de flux del camp magnètic.

2. El flux magnètic. Donat un camp magnètic \vec{B} i una superfície, es defineix el flux magnètic Φ_B que travessa la superfície, com

$$\Phi_B = \vec{B} \cdot \vec{S} = B \cdot S \cos \theta$$

on \vec{S} és un vector normal a la superfície i θ , l'angle que formen \vec{B} i \vec{S} . El mòdul de \vec{S} és l'àrea de la superfície. Les unitats del flux magnètic són tesles per metre quadrat, i s'anomenen **weber** (**Wb**)

$$1 Wb = 1 T \cdot 1 m^2$$

3. Lleis de la inducció electromagnètica

- Llei de Lenz (indica el sentit del corrent induit): el sentit de la intensitat que s'indueix en els experiments de Farady és tal que crea un camp magnètic que s'oposa a l'aplicat externament. L'acció en la figura a) indueix un corrent en l'espira. Aquest corrent crea un camp tal i com es mostra en la figura b). Clarament, aquest camp s'oposa a la variació de flux que s'observava en la figura a). Una cosa semblant succeeix en les figures c) i d).
- Llei de Faraday (indica el valor de la força electromotriu induïda ε)

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

Si no coneixem la dependència de B amb el temps, podem usar

$$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$$

i gràcies a la llei d'Ohm podem relacionar la intensitat induïda I amb aquesta força electromotriu ε i la resistència R de l'espira

$$\varepsilon = I \cdot R$$

7 Relativitat

7.1 Introducció

- 8 Física quàntica
- 8.1 Introducció

9 Física de partícules

9.1 Introducció

LES PARTÍCULES ELEMENTALS

1. Introducció. No qualsevol reacció entre partícules elementals que poguem escriure té perquè donar-se en la natura. L'energia, el moment lineal i l'angular, i la càrrega electrica, per exemple, s'han de conservar. La importància d'aquestes lleis de conservació ja s'havia establert a escala macroscòpica i la seva validesa s'ha d'estendre al nivell de les partícules elementals també. Per exemple, considerem la hipotètica reacció següent

$$p \Rightarrow n$$

aquesta reacció viola la conservació de la càrrega (a banda de la conservació del moment angular i l'energia, com ja veurem), de forma que no es pot donar per cap dels canals permesos; força nuclear forta, nuclear feble o electromagnètica.

Hi ha reaccions que aparentment no violen les lleis de conservació abans esmentades, per exemple

$$n \Rightarrow e^+ + e^-$$

o

$$p + e^- \Rightarrow \gamma + \gamma$$

O

$$p \Rightarrow \pi^+ + \pi^0$$

Considerem per exemple la darrera. Es veu que la càrrega es conserva, el moment també i l'energia es pot conservar. De tota manera, totes les partícules són hadrons (senten la força nuclear forta) i per tant les reaccions haurien de donar-se amb un temps $\approx 10^{-23}$ segons. Ara bé, la nostra mateixa existència és testimoni de que aquesta reacció no és

dóna, com a mínim a aquesta velocitat, els protons no es desintegren espontàniament, de fet es considera que la seva vida mitja és infinita ($\approx 10^{31}$ anys, comparada amb edat de l'univers $\approx 4 \cdot 10^{9}$ anys). Tot això suggereix que hi ha d'haver altres lleis de conservació a aquesta escala que no eren evidents a escala macroscòpica.

2. Nombres quantics.

• Conservació del nombre bariònic. Una llei de conservació que explica l'estabilitat del protó és la conservació del nombre bariònic, B. Això també explica que el neutró i totes altres partícules elementals més pesades, els barions, es desintegren de manera que el resultat final és el protó. De la mateixa manera que les partícules poden tenir càrrega elèctrica amb valors $0, \pm 1$ o ± 2 , etc., en unitats de la càrrega elemental (la del protó), cada partícula posseeix un valor de la çàrrega bariònica", B=0, B=+1 o B=-1. Més encara, el nombre bariònic s'ha de conservar en totes les reaccions. El protó és la partícula més lleugera amb nombre bariònic +1, cosa que explica la seva estabilitat. Tots els barions tenen B=1, les seves antipartícules B=-1, i tots els mesons, leptons i fotons tenen B=0. D'aquesta manera

$$p \Rightarrow \pi^+ + \pi^0$$

és una reacció prohibida perque el nombre bariònic no es conserva mentre que, per exemple

$$\Delta^{++} \Rightarrow p + \pi^{+}$$

respecta la conservació del nombre bariònic. Aquesta reacció involucra només hadrons i es dóna amb temps típics de $\approx 10^{23}$ segons. De forma semblant, l'anomenada desintegració β , que retrobarem al tema següent de desintegració radioactiva,

$$n \Rightarrow p + e^- + \bar{\nu}_e$$

també és permesa per la conservació del nombre bariònic. De tota manera, com involucra leptons, aquest procés es dóna a una velocitat molt més lenta ≈ 1000 segons.

• Conservació del nombre leptònic. La descripció relativista de les interaccions implica que cada interacció porta associada l'intercanvi d'una partícula, que ha de ser un bosó (el valor de l'spin ha de ser un nombre sencer). En el cas de la interacció electromagnètica la partícula intercanviada és un fotó (spin zero). En quant a la interacció entre partícules de massa M, generada per missatgers de massa $m \ll M$, el potencial és de la forma

$$V(r) = V_0 \frac{e^{\frac{r}{\lambda}}}{\frac{r}{\lambda}}$$

on
$$\lambda = \frac{\hbar}{mc}$$

L'expressió anterior, que es demostra estrictament en Teoria Quàntica de Camps, es pot interpretar de la següent forma. Per crear una partícula de massa m cal una energia mc^2 . D'acord amb el principi d'indeterminació de Heisenberg, aquesta energia es pot crear durant un temps prou curt $\tau = \hbar/(mc^2)$ i durant aquest temps, la partícula viatja una distància donada per $\lambda = \tau c = \hbar/(mc^2)$, que és l'abast de la interacció. Com la interacció forta té un abast $\lambda \simeq 1$ fm, ha de tenir associada una partícula de massa $mc^2 \simeq 200$ MeV. Aquest argument, plantejat per Yukawa, va dur a la recerca de partícules de massa intermitja entre el protó i l'electró, i a partir d'aquí es van començar a trobar moltes més partícules noves.

Hideki Yukawa prediu l'any 1935 l'existència d'una partícula que actuaria com a missatger en la interacció forta, el valor de la seva massa essent inversament proporcional al rang de la interacció $m=\frac{\hbar c}{a}$. Com que aquest rang és d' 1 fm, aquestes partícules han de tenir una massa d'uns 200 MeV. Els anomena mesons. L'any 1937, tenim el decobriment del muó, de massa 107 MeV. No és la partícula de Yukawa perque no interacciona amb la materia fortament. Al 1947, tenim el descobriment dels pions, de massa 140 MeV. Sí corresponen a la partícula de Yukawa. Més endevant, es van trobar partícules de masses intermitges entre els pions i els protons, com els mesons K (m= 500 MeV), i d'altres més pesants que el protó, anomenades hiperons, com la Λ (m=1110 MeV). Aquestes partícules són inestables i es descomposen en temps de l'ordre de 10⁻⁸ segons per donar protons, neutros, electrons i neutrins. Posteriorment, amb el desenvolupament dels acceleradors de partícules, es produeixen moltes més partícules, de vida cada cop més curta.

• Conservació del nombre leptònic. Els leptons es caracteritzen perque no senten la interacció forta. L'electró, el muó i el

tau tenen càrrega elèctrica negativa. Els neutrins tenen càrrega elèctrica nul·la. Tots tenen spin 1/2, i per tant, són fermions. Les partícules que tenen spin enter s'anomenen bosons. Per cada partícula existeix la seva antipartícula. Els leptons es consideren partícules elementals. Els neutrins només senten la interacció feble. L'electró és la partícula més lleugera amb càrrega elèctrica. La conservació de la càrrega obliga a que l'electró sigui estable.

- **Muó**: El muó es desintegra per interacció feble en $e^- + \bar{\nu}_e + \nu_\mu$. El procés $\mu^- \to e^- + \gamma$ no s'observa experimentalment. Si aquest procés fos el més important, hauriem de pensar que el muó és un estat excitat de l'electró.
- Tau: el tau, al tenir una massa relativament gran, pot desintegrarse, per interacció feble, en moltes combinacions de partícules, encara que sempre apareix un ν_{τ} .

Als processos d'interacció feble, quan desapareix un electró, un muó o un tau, apareix el neutrí corresponent. Per una altra banda, també existeixen processos (com la desintegració beta) en els que es crea un electró, muó o tau i l'antineutrí corresponent, això va portar a introduir un nombre quàntic leptònic, que es conserva en la interacció feble.

- Nombre leptònic electrònic (L_e): val 1 per a e^- i ν_e , -1 per a e^+ i $\bar{\nu}_e$, i zero per la resta de partícules.
- Nombre leptònic muónic (L_{μ}) : val 1 per a μ^- i ν_{μ} , -1 per a μ^+ i $\bar{\nu}_{\mu}$, i zero per la resta de partícules.
- Nombre leptònic tauónic (L_{τ}) : val 1 per a τ^- i ν_{τ} , -1 per a τ^+ i $\bar{\nu}_{\tau}$, i zero per la resta de partícules.

La interacció electromagnètica no afecta als neutrins, però pot aniquilar o crear parells leptó-antileptó, de manera que es conservan els nombres leptònics. La interacció forta no actua sobre els leptons.

• Estranyesa.

L'estranesa s'introdueix per explicar el fet que alguns hadrons $(K, \Lambda, \Sigma, \ldots)$, tinguin vides relativament llargues, el que implica que no decauen a altres hadrons més lleugers (p, π) per la interacció forta o la electromagnètica, sinó per la feble. Als experiments en la cambra de boira es va observar una paradoxa, ja que aquestes partícules sentien la interacció forta quan eren produides, però no quan es desintegraven. La solució de la paradoxa va sorgir

de l'observació que les partícules estranyes sempre apareixien per parelles. Es va introduir un nombre quàntic S, que havia de ser conservat per les interaccions forta i electromagnètica, però podia ser violat per la interacció feble. L'estranyesa S val zero pels hadrons "normals" (p, n, π) , i es va assignar el valor S=1 pels kaons K^0 i K^+ . Degut a la conservació de S per la interacció forta, en els processos de col·lisió entre hadrons normals que produeixen K^0 o K^+ , l'altre partícula estranya ha de tenir S=1. Així, es va assignar S=-1 per a \bar{K}^0 , K^- , Λ , Σ^+ , Σ^- , Σ^0 . Les partícules anomenades "cascades" Ξ^0 , Ξ^- tenen S=-2. Les antipartícules tenen estranyesa oposada a les partícules, per a que puguin aniquilar-se sense violació de S.

• L'isospín.

S'introdueix a partir del fet que els hadrons apareixen en grups de partícules, anomenats multiplets, amb massa i propietats molt semblants (mateix spin, nombre bariónic, estranyesa), llevat que tenen càrrega elèctrica que varia d'un en un. Per exemple, tenim el neutró i el protó, els pions (π^+, π^-, π^0) , etc. Per descriure aquest fet s'introdueix l'isospín com $I_3 = -Y/2 + Q/e$, on Y és una constant per a cada multiplet, anomenada hipercàrrega, que és dues vegades la càrrega mitja del multiplet. Gell-Mann i Nishijima van trobar experimentalment que la hipercàrrega estava relacionada amb l'estranyesa i el nombre bariónic a través de la relació Y = B + S. D'aquesta manera pels nucleons, Y = 1, $I_3 = 1/2$ pel protó i -1/2 pel neutró. Pels pions, Y = 0 i $I_3 = +1$ pel π^+ , 0 pel π^0 i -1 pel π^- .

10 Física nuclear

10.1 Introducció

FÍSICA NUCLEAR

1. Propietats dels nuclis

Tots els nuclis es troben formats per dos tipus de partícules: protons i neutrons. El nucli atòmic es descriu amb el nombre de protons i neutrons que conté, fent servir les següents quantitats:

- el nombre atòmic Z, que és igual al nombre de protons al nucli
- el **nombre de neutrons N**, que és igual al nombre de neutrons al nucli
- el **nombre màssic A**, A = Z + N que és igual al nombre de nucleons al nucli

Quan representem nuclis, resulta convenient fer servir el símbol ${}_Z^AX$ per a mostrar quants protons i neutrons hi són presents, on X representa el símbol químic de l'element. Per exemple, ${}^{56}_{26}Fe$ té nombre màssic 56 i nombre atòmic 26; per tant, conté 26 protons i 30 neutrons. Els nuclis de tots els àtoms d'un element particular contenen el mateix nombre de protons, però poden tenir diferent nombre de neutrons. Els nuclis relacionats així s'anomenen isòtops. Els isòtops d'un element tenen el mateix valor de Z, però diferent valor de A. L'abundància natural d'isòtops pot variar molt. Per exemple, ${}^{11}_6C$, ${}^{12}_6C$, ${}^{13}_6C$ i ${}^{14}_6C$ són alguns dels isòtops del carboni. L'abundància relativa de l'isòtop $\frac{12}{6}$ és d'aproximadament 98,9%, en tant que la de l'isòtop ${}_{6}^{13}C$ és només del 1,1%. L'isòtop ${}_{6}^{11}C$ es produeix artificialment fent servir reaccions nuclears i es fa servir en mètodes de diagnòstic per la imatge, en particular en l'anomenada TEP (tomografia per emissió de positrons). L'isòtop ${}^{14}_{6}C$ es forma contínuament en l'atmòsfera per interacció dels raigs còsmics amb $\frac{14}{7}N$, component majoritari de l'aire. La radiació còsmica està formada per protons, partícules alfa, partícules beta i radiació electromagnètica. Quan els raigs còsmics penetren a l'atmosfera pateixen diverses transformacions, entre elles la producció de neutrons, que interaccionen amb el nitrogen present de la manera següent

$${}^{1}_{0}n + {}^{14}_{7}N \rightarrow {}^{14}_{6}C + {}^{1}_{1}H$$

la vida mitja del $^{14}_{7}C$ és de 5730 anys, i es desintegra mitjançant la interacció feble

$$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e^{-} + \bar{\nu_{e}}$$

Càrrega i massa.

El protó té una càrrega positiva individual e igual en magnitud a la càrrega -e, de l'electró ($e=1,6\cdot 10^{-19}\,C$). El neutró és elèctricament neutre. És possible mesurar amb gran precissió les masses nuclears fent servir espectròmetres de masses. El protó té aproximadament una massa 1836 vegades la de l'electró i les masses del protó i el neutró són molt semblants. La **unitat de massa atòmica** u, es defineix de tal forma que la massa d'un àtom de ${}^{12}_6C$ és exactament $12\,u$, amb $1\,u=1,660\,539\cdot 10^{-27}\,kg$. Sovint convé expressar la massa d'una partícula o nucli en funció de l'equivalent a l'energia en repòs. Per la unitat de massa atòmica

$$E = mc^2 = (1,660\,539 \cdot 10^{-27}\,kg)(2,997\,92 \cdot 10^8\,m/s)^2 = 931,494\,MeV$$

on

$$1 \, eV = 1,602\,176 \cdot 10^{-19} \, J$$

El tamany i l'estructura dels nuclis.

Als experiments de dispersió de Rutherford es llançaven nuclis d'àtoms d'Heli (partícules alfa) contra una làmina molt prima de metall. Suposant que l'energia cinètica de les partícules alfa s'invertia en potencial electroestàtica al acostar-se als nuclis del metall, podem escriure

$$\frac{1}{2}mv^2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{d}$$

aïllant la d obtenim

$$d = 2\frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{mv^2} = 2\frac{1}{4\pi\varepsilon_0} \frac{(2e)(Ze)}{mv^2} = \frac{1}{\pi\varepsilon_0} \frac{Ze^2}{mv^2}$$

on Z és el nombre atòmic del nucli objectiu. D'aquesta expressió, Rutherford va descobrir que les partícules alfa s'acostaven als nuclis a

una distància de $3, 2 \cdot 10^{-14} \, m$ quan el metall era or. Dels resultats dels seus experiments de dispersió, Rutherford va arribar a la conclusió que la càrrega positiva d'un àtom es trovaba concentrada en una petita regió que ell va anomenar nucli i que tenia un radi aproximat de $10^{-14} \, m$. Com en física nuclear aquestes dimensions són habituals, es fa servir amb freqüència el femtòmetre (fm), també anomenat **fermi** i que es defineix com

$$1 fm \equiv 10^{-15} m$$

Per explicar la massa nuclear, Rutherford va propossar que cada nucli havia de tenir també A-Z partícules neutres, que va anomenar neutrons. En l'any 1932, el físic James Chadwick va descobrir el neutró, raó per la qual va ser mereixedor del premi Nobel. A partir dels experiments de Rutherford i d'altres, s'ha demostrat que la major part dels nuclis són aproximadament esfèrics i tenen un radi promig donat per

$$r = r_0 A^{1/3}$$

on r_0 és una constant de valor $1, 2 \cdot 10^{-15} \, m$ i A és el nombre màssic.

Energia d'enllaç nuclear.

Experimentalment s'observa que la massa total d'un nucli és inferior a la suma de les masses dels seus nucleons individuals. Aquesta diferència d'energia es coneix com l'energia d'enllaç del nucli i es pot interpretar com l'energia que cal donar per separar els constituents del nucli. A aquesta diferència de massa entre els nucleons per separat i una vegada units al nucli se l'anomena defecte de massa Δm i es pot calcular en general com

$$\Delta m = Zm_p + (A - Z)m_n - m_{nucli}$$

A partir de la relació entre massa i energia proposada per Einstein

$$E = mc^2$$

podem calcular l'energia d'enllaç coneixent el defecte de massa. Per caracteritzar l'energia d'enllaç podem fer servir la lletra B, enlloc de la E habitual.

Exemple Calculeu el defecte de massa i l'energia d'enllaç per nucleó del nucli ${}_{6}^{12}C$. Dades: $m_p = 1,0076 u, m_n = 1,0089 u$.

Recordem que la massa de ${}^{12}_6C$ era $12\,u$, per definició d'unitat de massa atòmica. Llavors en quant al defecte de massa

$$\Delta m = Zm_p + (A - Z)m_n - m_{nucli}$$

$$= 6 \cdot 1,0076 + (12 - 6) \cdot 1,0089 - 12$$

$$= 12,099 - 12$$

$$= 0,099 u \cdot \frac{1,66 \cdot 10^{-27} kg}{1 u} = 1,64 \cdot 10^{-28} kg$$

ara, per calcular l'energia d'enllaç

$$B = mc^2 = 1,64 \cdot 10^{-28} (3 \cdot 10^8)^2 = 1,48 \cdot 10^{-11} J$$

També, recordant l'equivalència entre unitats de massa atòmica i electronvolts,

$$B = 0,099 u \cdot \frac{931 \, MeV}{1 \, u} = 92,169 \, MeV$$

i

$$92,169\,MeV\cdot\frac{10^6\,eV}{1\,MeV}\cdot\frac{1,6\cdot10^{-19}\,J}{1\,eV}=1,47\cdot10^{-11}\,J$$

Finalment, l'energia d'enllaç per nucleó serà

$$B/A = \frac{92,169}{12} = 8,01 \, MeV/nucleó$$

Aquesta darrera dada és la que caracteritza adequadament l'energia d'enllaç dels nuclis atòmics.

Notem que estem ignorant l'energia d'enllaç dels electrons del àtom, donat que aquestes són típicament de l'ordre del eV, mentre que les energies d'enllaç dels nuclis són, com hem vist, de l'ordre dels MeV.

Corba d'estabilitat nuclear.

Si es representa l'energia d'enllaç per nucleó en funció del nombre màssic per tots els elements de la taula periòdica s'observa que la corba que s'obté presenta un màxim al voltant de A = 60. D'aquesta manera, els elements que tenen nombre màssic majors que 60 alliberaran energia quan es divideixin o *fisionin* en elements més lleugers, ja que els nuclis fills són més estables, mentre que els que tenen nombre màssic més petits que 60 alliberen energia si es fusionen, ja que el nucli resultant és més estable que els de partida. D'aquesta manera, els estels produeixen la seva energia per fusió dels nuclis atòmics presents, comencen cremant hidrògen i la majoria arribarà com a molt a produir ferro. El núclid ${}^{62}_{28}Ni$ és el que té l'energia d'enllaç més gran per nucleó, però rarament s'arriba a produir als estels. Per crear elements amb nombre màssic superior a 62 es necessita energia addicional, que s'obté quan al final de la seva vida alguns estels exploten en forma de supernova. D'aquesta manera, tots els àtoms pesats que existeixen a la natura tenen el seu origen en l'explosió d'estels, per aixó es diu que som pols d'estels.

2. Radioactivitat

En les substàncies radioactives es presenten tres tipus de desintegració

- (a) Desintegració alfa (α): les partícules emeses són nuclis d'heli ${}_{2}^{4}He$.
- (b) Desintegració beta (β) : les partícules emeses són electrons (β^-) o positrons (β^+) d'alta energia.
- (c) Desintegració gamma (γ): les partícules emeses són fotons d'alta energia.

En tots els casos el procés de desintegració és totalment aleatori, no se sap quan es desintegrarà un nucli, el que es coneix amb exactitud és la quantitat de nuclis que queden sense desintegrar en funció del temps

$$N(t) = N_0 e^{-\lambda t}$$

On N_0 és el nombre de nuclis presents inicialment, t és el temps transcorregut, i λ és

- 11 Història de l'univers
- 11.1 Introducció