Porównanie wydajności chmur i superkomputerów

1. Model rzeczywistości

Dany jest system obsługi zadań. System ten pracuje w trybie online, obsługując strumień zadań przedkładanych przez użytkowników tego systemu. Zadania mają określony czas przedłożenia i rozmiar, zdefiniowany w jednostkach czasu niezbędnych do wykonania każdego z zadań przez system. Częstość przedkładania zadań i rozmiar zadań są wartościami losowymi.

Zmienność odstępów czasu między przedkładaniem kolejnych zadań ma być modelowana za pomocą fazowych rozkładów bimodalnych reprezentujących okresy dużych i małych obciążeń systemu. Rozkład bimodalny ma się składać z dwóch rozkładów wykładniczych różniących się wartościami średnimi. Fazowość ma symulować czasową rozdzielność okresów dużego (rozkład wykładniczy o małej średniej wielkości odstępów czasu) i małego obciążenia systemu (rozkład wykładniczy o dużej średniej wielkości odstępów czasu). Zmienność wielkości zadań ma być modelowana rozkładu bimodalnego. Rozkład bimodalny ma się składać z dwóch rozkładów Erlanga różniących się wartościami średnimi: rozkład z dużą wartością średnią dla dużych zadań i rozkład z małą wartością średnią dla małych zadań.

System obsługi zadań jest chmurą o danej liczbie węzłów N. Liczba węzłów jest zmiennym parametrem modelu. Eksperymenty mają być przeprowadzone dla wybranych wartości N z przedziału od 1 do 100. Eksperymenty maja przeprowadzone dla kilku protokołów obsługi zadań: JNQ (Join Null Queue) dla alokacji i FCFS dla szeregowania oraz JSQ (Join Shortest Queue) dla alokacji i PS dla szeregowania.

Wynikiem badań mają być wykresy średnich czasów odpowiedzi, ale również ich składowych średnich czasów przetwarzania i opóźnienia, w funkcji obciążenia systemu, współczynnika zmienności (odchylenie standardowe/wartość średnią) czasów między przedkładaniem zadań, współczynnika zmienności rozmiarów zadań oraz sposobu porządkowania w strumieniu wejściowym czasów między przedkładaniem zadań za pomocą generowania dwufazowych cykli zadań..

Dwie fazy cyklu mają różnić się poziomem "jednorodności". Poziom jednorodności ma być niezależnym zmiennym parametrem eksperymentów. Dla każdej z dwóch faz czasy między zadaniami są generowane z losowo wybranego rozkładu składowego rozkładu bimodalnego, czyli o mniejszej albo większej średniej wartości czasu. Dla całkowicie jednorodnych faz, czasy między zadaniami w pierwszej fazie są generowane z rozkładu o mniejszej średniej ze 100% pewnością, a z rozkładu o większej średniej z prawdopodobieństwem równym zero. Analogicznie czasy między zadaniami w drugiej fazie są generowane z rozkładu o mniejszej średniej z prawdopodobieństwem równym zero, a z rozkładu większej o średniej z prawdopodobieństwem równym jeden. Dla faz niejednorodnych, powyższe prawdopodobieństwa należą do przedziału <0.5; 1). Na przykład, w pierwszej fazie wybór pierwszego rozkładu 90%, a drugiego 10%, i wtedy w fazie drugiej wybór pierwszego rozkładu 10%, a drugiego 90%. Przypadek dla którego wartości wszystkich prawdopodobieństw są równe 0.5 odpowiada sytuacji braku faz.

Należy przeprowadzić eksperymenty dla kilku poziomów jednorodności grup z przedziału <0.5; 1>, np. dla 0.5; 0.6; 0.7; 0.8; 0.9 i 1 (przedział <0; 0.5) nie i jest przedmiotem naszego zainteresowania). Wymienione wartości odpowiadają prawdopodobieństwu generowania czasu z rozkładu o mniejszej średniej dla pierwszej fazy i jednocześnie prawdopodobieństwu generowania czasu z rozkładu o większej średniej dla drugiej fazy. Prawdopodobieństwa generowania czasu z rozkładu o większej

średniej dla pierwszej fazy i mniejszej średniej dla drugiej są wyznaczane jako uzupełnienie do jedynki.

Dla zmienianych wartości jednego z parametrów np. obciążenia, pozostałe parametry mają być stałe.

Jak zachować średnią wartość przy zmianach odchylenia standardowego czasów przedkładania zadań? Czyli np. stałe obciążenie, przy zmianach współczynnika zmienności czasów przedkładania zadań.

Rozwiązanie nr 1 – Symetrycznie rozsuwać/zsuwać wartości średnie rozkładów składowych rozkładu bimodalnego względem wspólnej średniej wartości czasu, tak żeby po rozsunięciu zachować tę wartość średnią:

$$\mu = \%1*\mu_1 + \%2*\mu_2 = \%1'*\mu_1' + \%2'*2\mu_2'$$

gdzie: wartości %1 i %2 odpowiadają względnej liczebności wartości należących do rozkładów składowych – rozkładu bimodalnego. Dla równolicznych podzbiorów %1 = %2 = 50%:

$$\mu = 0.5\mu_1 + 0.5\mu_2 = 0.5\mu_1' + 0.5\mu_2' = ((\mu_1 + \Delta) + (\mu_2 - \Delta))/2 = (1/\lambda'_1 + 1/\lambda'_2)/2 = ((1/\lambda_1 + \Delta) + (1/\lambda_2 - \Delta)/2)$$

gdzie: Δ jest zmianą wartości średniej rozkładów składowych rozkładu bimodalnego i Δ < 1/ λ_2 (obydwie średnie muszą być dodatnie).

Stąd
$$\lambda'_1 = 1/(1/\lambda_1 + \Delta) \Rightarrow \lambda'_2 = 1/(1/\lambda_2 - \Delta)$$
.

Ten sposób zmiany współczynnika zmienności ogranicza mocno zakres tych zmian do przedziału: <1; $\sim1.75>$.

1a. Bardziej ogólnie dla nierównolicznych podzbiorów, tj. %1 \neq %2 i %1 = 1 - %2, rozsunięcie średnich nie będzie symetryczne, ale jeżeli %1 >> %2 rozsunięcie może być większe:

$$\mu = \%1*\mu_1 + \%2*\mu_2 = \%1*\mu_1' + \%2*\mu_2' = \%1*(\mu_1 + \Delta_1) + \%2*(\mu_2 - \Delta_2)$$

gdzie: $\Delta_1 = \%1/\%2 * \Delta_2$

Rozwiązanie nr 2 – Przesuwać przez zmianę wartości średniej tylko jeden z rozkładów składowych modyfikując rozmiary podzbiorów: $\%1' \neq \%1$ i $\%2' \neq \%2$, tj.:

$$\mu = \%1*\mu_1 + \%2*\mu_2 = \%1'*\mu_1 + \%2'*\mu_2' = \%1'*\mu_1 + \%2'*(\mu_2 + \Delta)$$

$$%1'*\mu_1 + %2'*(\mu_2 + \Delta) = %1*\mu_1 + %2*\mu_2$$

$$%1'*\mu_1 + (1 - %1')*(\mu_2 + \Delta) = %1*\mu_1 + %2*\mu_2$$

$$%1'*(\mu_1 - \mu_2 - \Delta) = %1*\mu_1 + %2*\mu_2 - \mu_2 - \Delta$$

$$%1' = (%1*\mu_1 + (%2 - 1)*\mu_2 - \Delta)/(\mu_1 - \mu_2 - \Delta)$$

Interesujące wartości parametrów λ - średnia liczba zadań przedkładanych w jednostce czasu i μ - średnia liczba zadań, które może obsłużyć dany system

Interesującym zakresem powyższych zmiennych jest przypadek, w którym dla fazy krótkich czasów $\lambda_1 > \mu_1$, a dla długich czasów $\lambda_2 < \mu_2$, oczywiście przy zachowaniu warunku, że $\lambda_{\text{średnie}} < \mu_{\text{średnie}}$, żeby system pracował stabilnie.