2021F

WU Xiaokan 吴晓莹

x hun. wu [af] guail

Course Information

课程简介

The objective of this course is to provide a complete introduction to deep machine learning. General artificial intelligence and machine learning techniques will be quickly reviewed in a historical connections fashion, but the focus of this course is machine karning. So the main theme here is to understand modern techniques that specifically handle deep neural network: how to design it, how to train it and how to evaluate it on real problems.

课程内容

The course aims at providing an overview of existing approaches and methods, at teaching how to design and train a deep neural network for a given task, and (depending on the audience) at providing the theoretical basis to go beyond the topics directly seen in the course.

- Drop-out, BatchNorm, ResNets.
- Deep models for computer vision.
- Deep models for sequence processing.
- Analysis and visualization of deep models, geometric explanation of deep learning.
- Auto-encoders, embeddings, and generative models.

Concepts will be illustrated with examples in the Tensor Flow and Keras framework.

Keywords: deep learning, neural networks, python, TensorFlow, Keras

先修课程

本课程建议掌握如下专业知识:

必修:

- Linear algebra (vector, matrix computation, Euclidean spaces).
- Differential calculus (Jacobian, Hessian, chain rule).
- Probabilities and statistics (common distributions, law of large numbers, conditional probabilities, Bayes)
- Python programming.

选修:

- Numerical optimization (notion of minima, gradient descent).
- Algorithm analysis (computational costs).
- Visual computing (image processing).

课程计划

课 课 程 名 称 授 運 时 间 The course will touch on the following topics: What is deep learning, and how is it derived from general artificial intelligence and machine learning. Tensors, multi-layer Perceptrons, gradient descent, back-propagation. 式 Generalized networks, automatic differentiation, batch processing, convolutional networks. Initialization, optimization, and regularization. 学 3

计算机科 学专业选 修课 人工智能 专业核心

深度

2021 年春

试/ 考查

名晓 者 楚

> 总 48学 计 肘

时 (12 长 周)

- 1. Introduction 导论: 什么是深度学习
- 2. 深度学习工作站的基本配置(实践)
- 3. 神经网络的数学基础
- 4. Python及深度学习编程基础(实践)
- 5. 神经网络入门
- 6. 二分类问题、多分类问题和回归问题(实践)
- 7. 机器学习基础
- 8. 过拟合与欠拟合(实践)
- 9. 深度学习用于计算机视觉
- 10. 卷积神经网络及其可视化 (实践)
- 11. 深度学习用于文本和序列
- 12. 用卷积神经网络处理序列 (实践)
- 13. 生成式深度学习
- 14. 深度学习的一些实践技巧与总结

Schedule

Week	D ate	Lecture	Handouts
1	2021/03/01	导言	slidespdf
2	2021/03/08	Tutorial: Getting started, MINIST classification	note s pdf code
3	2021/03/15	Math: tensor, geometric explaination; Tutorial: 2D affine transformation	slides pdf code
4	2021/03/22	Math: gradient descent, back-propagation, universal approximation theorem; Tutorial: basic activations	code
5	2021/03/29	Neuralmetwork; Tutorial binary classification	slides pdf code
б	2021/04/05	*	
7	2021/04/12	Tutorial: multi-class classification, regression	code
S	2021/04/19	Machine learning model evaluation, feature engineering, Tutorial: data fitting	slides pdf code
9	2021/04/26	Machine learning: pipeline, overfitting & underfitting; Tutorial: spot & counter overfitting	code
10	2021/05/03		•
11	2021/05/10	Application: computer vision	slides pdf code
12	2021/05/17	Application: sequence processing	shdespdf code
13	2021/05/24	Advanced practices, conclusion	

教学方法

Problem-solving oriented, equal emphasis on lecture and practice. 以解决实际问题为导向、数学与实践并重。

考核标准

Attendance & participation: 40%, final project: 50%, project (borus): 10%.

Finalproject: due 3 weeks after the last lecture.

选用教材

以《Python 深度学习》为主。其他辅助教材: 《深度学习》, 《机器学习》。

资源

- DeepLearning Tutorial @ GitHub¹
- Keras examples²
- Companion Appyter notebooks for the book "Deep Learning with Python"
- 1. https://github.com/Mikoto10032/DeepLeaming+
- 2. https://keras.io/examples+3
- 3. https://github.com/fchollet/deep-leanning-with-python-notebooks+