Robotics Assignment #03

Paul Bienkowski, Konstantin Kobs

18. Mai 2015

Task 3.1. 1)

2)

Task 3.2. 1) The coordinate frames of the manipulator are chosen with respect to the modified Denavit-Hartenberg-convention.

Link i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0

2)

Task 3.3. 1) To calculate $^{base}T_{object}$, we need to invert the transformation $^{camera}T_{base}$. Then we can determine the desired transformation by computing

$$T_{object} = {}^{camera}T_{base}^{-1} \cdot {}^{camera}T_{object}$$

= ${}^{base}T_{camera} \cdot {}^{camera}T_{object}$

The inverse of $^{camera}T_{base}$ is

$$\begin{pmatrix}
0 & -1 & 0 & 25 \\
-1 & 0 & 0 & 15 \\
0 & 0 & -1 & 20 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

so we can compute the resulting matrix now

$$\begin{split} ^{base}T_{object} &= ^{camera}T_{base}^{-1} \cdot ^{camera}T_{object} \\ &= \begin{pmatrix} 0 & -1 & 0 & 25 \\ -1 & 0 & 0 & 15 \\ 0 & 0 & -1 & 20 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & -5 \\ 0 & 0 & -1 & 19 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 30 \\ 0 & 1 & 0 & 15 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

We can see, that the resulting homogeneous transformation is only a translation. This makes sense, because both the coordinate frame axes of the base and the part are parallel to each other.

2) We assume, that the front surface of the object is the surface in the figure, that we can see in front. Further we assume, that the robot will grasp the object by rotating its tool tip by -90° around the z^t -axis. Then, when grasping the object, x^t and x^p are aligned. To align the other axes, we need to have a transformation by 180° around the x^p -axis. We already now the transformation $^{base}T_{object}$, and we can determine $^{object}T_{tool}$ with the given rotation. Then we can compute the resulting transformation

$$\begin{aligned} base T_{tool} &= base T_{object} \cdot {}^{object} T_{tool} \\ &= \begin{pmatrix} 1 & 0 & 0 & 30 \\ 0 & 1 & 0 & 15 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(180^\circ) & -\sin(180^\circ) & 0 \\ 0 & \sin(180^\circ) & \cos(180^\circ) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 30 \\ 0 & \cos(180^\circ) & -\sin(180^\circ) & 15 \\ 0 & \sin(180^\circ) & \cos(180^\circ) & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 30 \\ 0 & -1 & 0 & 15 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

3)

4)

Task 3.4. The positioning accuracy depends on several things. These are for example:

- Calibration of the camera system: If the camera can't accuratly determine every position in the space, there won't be an accurate positioning.
- Joint position accuracy: If the joints are not precise in achieving their position, then the overall positioning is not very accurate.
- Temperature differences: If the temperature varies, the metal of the links (if metal is used) varies in its length and therefore leads to a more unprecise positioning of the endeffector.
- Position of the base: If the base is not properly positioned in space, then the endeffector won't be very accurate.
- Calculation impreciseness: The homogeneous transformation $^{Base}T_{Tooltip}$ can't be precise to 100%, because most of the sine- and cosine-calculations have irrational numbers as results. This leads to the questions, how many decimal places are required to satisfy the calculation results.
- Sensor noise: If sensors are giving the wrong signals, the system could calculate with the wrong numbers and would assume a false position, which will be "corrected". his would lead to a wrong position at the end.