Fachprojekt 1

Phil Seißelberg, Gajann Sivarajah, Jan Schulte

Table of Contents

- Foundation
- Algorithm 1 : kWPO-JointHeur
- Algorithm 2 : Topo_kWP-JointHeur
- Algorithm 3 : Nodes_kWP-JointHeur
- Conclusion
- Replication: Other Group

Foundation

- Network Instance: $\aleph = \{V, E, W, D\}$
 - V := Nodes, E := Edges(with Capacity),W := Weight Setting, D := Demands

- Base-Algorithm: JointHeur [1]
- Target: Minimize MLU

• Our Focus: Control amount of generated waypoints

kWPO-JointHeur: Iterate GreedyWPO

kWPO-JointHeur: Iterate GreedyWPO

Motivation:

Allow multiple waypoints per demand

kWPO-JointHeur: Iterate GreedyWPO

kWPO-JointHeur: Sort by Capacity

```
GreedyWPO(V,E,D,W):
U_{min} \leftarrow MLU(V, E, D, W)
D_{WP} \leftarrow D sorted by demand value
for demand \psi = (s, t, d) \in D_{WP} do
     wp_{\psi} \leftarrow None
     for node w \in V do
          D' \leftarrow D_{WP} \backslash \psi \cup \{(s, w, d), (w, t, d)\}
          U \leftarrow MLU(V, E, D', W)
          if U < U_{min} then
               wp_{\psi} \leftarrow w
               U_{min} \leftarrow U
for each wp_{\psi} \neq None do
    D_{WP} \leftarrow D_{WP} \setminus \psi \cup \{(s, wp_{\psi}, d), (wp_{\psi}, t, d)\}
return D_{WP}
```

Motivation:

- Order of demands influences performance
- Use topology-dependent criteria

kWPO-JointHeur: Sort by Capacity

```
GreedyWPO(V,E,D,W):
U_{min} \leftarrow MLU(V, E, D, W)
D_{WP} \leftarrow D sorted by demand value
for demand \psi = (s, t, d) \in D_{WP} do
     wp_{\psi} \leftarrow None
     for node w \in V do
          D' \leftarrow D_{WP} \setminus \psi \cup \{(s, w, d), (w, t, d)\}
          U \leftarrow MLU(V, E, D', W)
          if U < U_{min} then
               wp_{\psi} \leftarrow w
               U_{min} \leftarrow U
for each wp_{\psi} \neq None do
    D_{WP} \leftarrow D_{WP} \setminus \psi \cup \{(s, wp_{\psi}, d), (wp_{\psi}, t, d)\}
return D_{WP}
```


kWPO-JointHeur: Sort by Capacity

GreedyWPO(V,E,D,W):

```
U_{min} \leftarrow MLU(V, E, D, W)
```

$D_{WP} \leftarrow D$ sorted by demand value

```
for demand \psi = (s,t,d) \in D_{WP} do wp_{\psi} \leftarrow None for node w \in V do D' \leftarrow D_{WP} \setminus \psi \cup \{(s,w,d),(w,t,d)\} U \leftarrow MLU(V,E,D',W) if U < U_{min} then wp_{\psi} \leftarrow w U_{min} \leftarrow U for each wp_{\psi} \neq None do D_{WP} \leftarrow D_{WP} \setminus \psi \cup \{(s,wp_{\psi},d),(wp_{\psi},t,d)\} return D_{WP}
```

$$D_{WP} \leftarrow D \text{ sorted by } C(\psi) = (C_s + C_t)$$

Node-Capacity C_v :

$$C_v = \sum_{e_{vi} \in E} c(e_{vi})$$

= sum of connected edge – capacities

kWPO-JointHeur: Results

kWPO-JointHeur: Results

kWP per Topology: Concept

Idea: Limit the number of usable waypoints throughout the complete run of the algorithm for a topology to $k \in \mathbb{N}$

Actions:

- Implement parameter k as a counter in the algorithms
- Check out results for different values for k and different topologies

Why could this be interesting? - Answers for the questions:

- What number of waypoints are useful for such a restriction?
- What influence do waypoints actually have on the performance?

kWP per Topology: Prototype

```
GreedyWPO(V,E,D,W,K):
k \leftarrow K
U_{min} \leftarrow MLU(V, E, D, W)
D_{WP} \leftarrow D sorted by demand value
for demand \psi = (s, t, d) \in D_{WP} do
     wp_{\psi} \leftarrow None
     if k \leq 0 then break
     for node w \in V do
         D' \leftarrow D_{WP} \backslash \psi \cup \{(s, w, d), (w, t, d)\}
         U \leftarrow MLU(V, E, D', W)
         if U < U_{min} then
               wp_{\psi} \leftarrow w
               U_{min} \leftarrow U
    if wp_{\psi} \neq None then k \leftarrow k-1
for each wp_{\psi} \neq None do
    D_{WP} \leftarrow D_{WP} \setminus \psi \cup \{(s, wp_{\psi}, d), (wp_{\psi}, t, d)\}
return D_{WP}
```

Impressions:

- The Limitation of the usable Waypoints cannot improve MLU
 - $MLU_k \ge MLU$
- The impact of WP-limit depends on the topology
- (Scaled-)Real demands show greater reaction to WP-restraints in JointHeur

Synthetic Demands:

Limitation seems to not affect MLU

Real Demands:

- MLU improves with each waypoint
- → JointHeur shows measurable reaction to limit

Interpretation:

- \longrightarrow most Topologies create $\leq 3 WP$
- others are clearly missing useful WPs

kWP per Node: Concept

Idea: Each Node can only be used as a waypoint a finite number of times. Counter k for each Node can be defined homogene or heterogene

Strategy:

- Create $K = \{k_v \in \mathbb{N} | v \in V \ and k_v \coloneqq Counter \ of \ node \ v\}$
- Check out results for different distributions for K and different topologies

Why could this be interesting? - Answers for the questions:

- What influence do certain distributions of K have on performance?
- Can you enforce a certain distribution of waypoints using K?
 - Ban nodes based on reliability or security (k = 0)

kWP per Node: Practical

- Issue: How to define K for multiple Topologies in our experiment?
- Solution: Generate K using common rules for all Topologies
 - \longrightarrow Choose key-value $c_{gen} \in \mathbb{N}$

Let
$$K = \{k_v \in \mathbb{N} \mid k_v = \begin{cases} \infty \text{ , if } c_{gen} \mid v \\ 0 \text{ , else} \end{cases} \}$$

- \leftrightarrow Only every c_{gen} -th node is allowed as a waypoint
- Example: $c_{gen} = 2 \rightarrow 50\%$ of the nodes are banned

kWP per Node: Prototype

```
GreedyWPO(V,E,D,W,K):
U_{min} \leftarrow MLU(V, E, D, W)
D_{WP} \leftarrow D sorted by demand value
for demand \psi = (s, t, d) \in D_{WP} do
     wp_{\psi} \leftarrow None
    for node w \in V do
          if K[w] \leq 0 then continue
         D' \leftarrow D_{WP} \setminus \psi \cup \{(s, w, d), (w, t, d)\}
         U \leftarrow MLU(V, E, D', W)
         if U < U_{min} then
              wp_{\psi} \leftarrow w
               U_{min} \leftarrow U
    if wp_{\psi} \neq None then K[wp_{\psi}] \leftarrow K[wp_{\psi}] - 1
for each wp_{\psi} \neq None do
    D_{WP} \leftarrow D_{WP} \setminus \psi \cup \{(s, wp_{\psi}, d), (wp_{\psi}, t, d)\}
return D_{WP}
```

kWP per Node: Results

kWP per Node: Results

Interpretation:

- c_{gen} defines a subset of V as a WP-Pool
 - $\uparrow c_{gen} \Longrightarrow \downarrow |V_{WP-Pool}|$
- A smaller WP-Pool isn't necessarily worse, because the elements are different
 - $\uparrow c_{gen} \Rightarrow \uparrow MLU$

kWP per Node: Results

Conclusion

- Topology's susceptibility towards waypoints determines whether our constraints have a measurable influence
 - Some topologies didn't react to our algorithms at all

- Future Idea
 - Combine all algorithms and constraints

Future Idea - Combination

Replication – Code

- Distribution
 - Public Repository on Github
 - Additional preconfigured VM-Image
- Execution
 - No errors
 - high(to be expected) runtime
- Results
 - Additional algorithms were added to existing plots
 - Plots illustrating processing time

Replication - Plots

Sources

- [1]: Thomas Fenz, Klaus-Tycho Förster, Mahmoud Parham, Stefan Schmid, Nikolaus Süß: Traffic Engineering with Joint Link Weight and Segment Opitmization: Algorithm 2
- [2]: Thomas Fenz, Klaus-Tycho Förster, Mahmoud Parham, Stefan Schmid, Nikolaus Süß: Traffic Engineering with Joint Link Weight and Segment Opitmization: Algorithm 3