Séries e Equações Diferenciais

Marivaldo P Matos

Exercícios Complementares

1. Seqüências Numéricas

Exercícios Complementares 1.2

1.2A Dê exemplo de uma sequência $\{a_n\}$, não constante, para ilustrar cada situação abaixo:

- (a) limitada e crescente
- (b) limitada e decrescente
- (c) limitada e não monótona
- (d) não limitada e não crescente
- (e) não limitada e não monótona
- (f) monótona e não limitada.

1.2B Em cada caso abaixo, encontre os quatro primeiros termos da sequência:

(a)
$$a_n = \frac{1}{2n-1}$$
 (b) $b_n = \sqrt{n+1} - \sqrt{n}$ (c) $c_n = (-1)^n n$.

1.2C Esboce o gráfico da sequência de termo geral $a_n = \frac{n}{n+1}$ e verifique quantos pontos da forma (n, a_n) estão fora da faixa horizontal determinada pelas retas y = 4/5 e y = 6/5.

1.2D Dê exemplo de uma següência limitada e não monótona que possui uma subsegüência crescente.

1.2E Expresse pelo seu termo geral cada sequência dada abaixo:

- (a) $1, 1/2, 1/3, 1/4, \ldots$ (b) $1/2, 1/4, 1/8, 1/16, \ldots$ (c) $1, 0, 1, 0, 1, \ldots$

- (d) $0, 2, 0, 2, 0, 2, 0, \dots$ (e) $1, 9, 25, 49, 81, \dots$
- (f) $0, 3, 2, 5, 4, \dots$

- (g) $2, 1, 3/2, 1, 4/3, 1, \ldots$ (h) $0, 3/2, -2/3, 5/4, -4/5, \ldots$ (i) $1, 3/2, 2, 5/2, 3, \ldots$

- (j) $-4, -2, -4, -2, \dots$ (k) $1/2, -1/4, 1/6, -1/8, \dots$ (l) $1, 10, 2, 10^2, 3, 10^3, \dots$

1.2F Classifique as sequências do Exercício 1.2E quanto à limitação e monotonia e selecione de (e), (f) e (l) uma subsequência crescente. Qual daquelas sequências possui um subsequência constante? Recorde-se que: (i) toda seqüência é uma subseqüência dela própria e (ii) uma seqüência possui uma subsequência constante quando essa constante se repetir uma infinidade de vêzes!

1.2G Considere as funções $f(x) = \cos x$, $g(x) = \sin x$ e $h(x) = (1+x)^{-1}$. Encontre expressões para as derivadas de ordem n dessas funções, no ponto x=0.

1.2H Determine o sup e o inf das seguintes seqüências:

$$\left\{-n^2+n\right\}, \left\{\frac{2^n}{n!}\right\}, \left\{\frac{2}{3n-4}\right\}, \left\{1-\frac{1}{n}\right\}, \left\{\ln n\right\}, \left\{\frac{3n^2}{n^2+n}\right\}, \left\{(-2)^n\right\}.$$

- 1.2I Dê exemplo de uma sequência $\{a_n\}$ não constante, crescente e limitada superiormente. Por observação de seus termos, estude o comportamento da sequência quando $n \to \infty$. Faça a mesma análise com uma sequência decrescente e limitada inferiormente.
- **1.2J** Dê exemplo de uma seqüência $\{a_n\}$ cuja distância entre quaisquer dois termos consecutivos é igual 4.
- 1.2K Dê exemplo de uma seqüência $\{a_n\}$ com as seguintes características: os termos de ordem par estão entre 3 e 4, os termos de ordem ímpar estão entre 4 e 5, mas todos se aproximam do número 4, à medida que o índice n vai aumentando.
- **1.2L** Considere a sequência de termo geral $a_n = 1 + \frac{2}{\sqrt{3}} \operatorname{sen} \frac{(2n+2)\pi}{3}$. Escreva os 10 primeiros termos da sequência (a_n) e calcule a_{201} .

Exercícios Complementares 1.4

- 1.4A Falso ou verdadeiro? Procure justificar as afirmações falsas com um contra-exemplo.
- (a) toda sequência convergente é limitada;
- (b) toda sequência limitada é convergente;
- (c) toda sequência limitada é monótona;
- (d) toda sequência monótona é convergente;
- (e) a soma de duas sequências divergentes é divergente;
- (f) toda sequência divergente é não monótona;
- (g) se uma sequência convergente possui uma infinidade de termos nulos, seu limite é zero;
- (h) toda sequência divergente é não limitada;
- (i) se uma sequência possui uma subsequência convergente, ela própria converge;
- (j) toda sequência alternada é divergente;

- (k) toda sequência decrescente limitada é convergente e seu limite é zero;
- (l) se uma seqüência $\{a_n\}$ diverge, então $\{|a_n|\}$ também diverge;
- (m) se a sequência $\{|a_n|\}$ converge então $\{a_n\}$ também converge;
- (n) se a sequência $\{|a_n|\}$ converge para zero, então $\{a_n\}$ também converge para zero;
- (o) se $a_n \leq b_n, \, \forall n, \, \{a_n\}$ crescente e $\{b_n\}$ convergente, então $\{a_n\}$ converge;
- (p) se $\{a_n\}$ é convergente, então $\{(-1)^n a_n\}$ também converge;
- (q) a seqüência $\{a_n\}$ definida por $a_1 = 1$ e $a_{n+1} = \frac{na_n}{n+1}$ é convergente;
- (r) a seqüência $\{a_n\}$ definida por $a_1=1$ e $a_{n+1}=1-a_n$ é convergente;
- (s) se $a_n \neq 0$, $\forall n$, e $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = l < 1$, então $\lim_{n \to \infty} a_n = 0$.
- **1.4B** Dê exemplo de duas seqüências $\{a_n\}$ e $\{b_n\}$ tais que $\lim_{n\to\infty}a_n=0$ e $\{a_nb_n\}$ seja divergente. Por que isso não contradiz o Critério 1.3.9?
 - **1.4C** Usando a definição de limite, prove que:

(a)
$$\lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2}$$
 (b) $\lim_{n \to \infty} \frac{\sin(n^5 + n)}{n} = 0$ (c) $\lim_{n \to \infty} \frac{3n^2 + 1}{n^2} = 3$

(d)
$$\lim_{n \to \infty} \frac{5+n}{2+3n} = \frac{1}{3}$$
 (e) $\lim_{n \to \infty} \frac{5}{2+3n} = 0$ (f) $\lim_{n \to \infty} \left(2 + \frac{1}{n}\right) = 2$.

1.4D Calcule o limite das seguintes seqüências:

(a)
$$\frac{n-1}{n+1}$$
 (b) $n \operatorname{sen}\left(\frac{\pi}{n}\right)$ (c) $\frac{\ln n}{e^n}$ (d) $\frac{4n^2 - 3n}{n^2 + 5n - 6}$ (e) $\frac{n^2}{n+1} - \frac{n^2}{n+2}$

(f)
$$\left(1 + \frac{1}{3n}\right)^n$$
 (g) $\frac{\sqrt{n!} + e^{2n}}{5\sqrt{n!} - e^n}$ (h) $\frac{n}{e^n}$ (i) $\frac{3n\sqrt{n} + 1}{7 - 2n\sqrt{n}}$ (j) $\left(1 + \frac{2}{n}\right)^n$

(k)
$$n^{\frac{1}{n}}$$
 (l) $\frac{1}{3^{n+1}} + \left(\frac{3}{4}\right)^{n-3}$ (m) $\frac{2^n}{e^n}$ (n) $\sqrt[n]{n^2 + n}$ (o) $\sqrt{n+1} - \sqrt{n}$

(p)
$$\sqrt[n]{a}, a > 0$$
 (q) $\frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}}$ (r) $\frac{n!}{3^{n+1}}$ (s) $\frac{(n+1)^n}{n^{n+1}}$ (t) $\frac{\sqrt[3]{n^2} \operatorname{sen}(n^2)}{n+2}$

1.4E Em cada caso verifique se a sequência é convergente ou divergente:

(a)
$$\sqrt{n^2 + 1} - \sqrt{n}$$

(b)
$$\frac{2^n}{n!}$$

(a)
$$\sqrt{n^2 + 1} - \sqrt{n}$$
 (b) $\frac{2^n}{n!}$ (c) $\frac{1}{\sqrt{n^2 + 1} - \sqrt{n}}$ (d) $\frac{2^n}{1 + 2^n}$

$$(d) \frac{2^n}{1+2^n}$$

(e)
$$\frac{1}{2n-1}$$

(f)
$$\frac{(-1)}{n}$$

(e)
$$\frac{n^2}{2n-1} - \frac{n^2}{2n+1}$$
 (f) $\frac{(-1)^n}{n}$ (g) $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!2^n}$ (h) $\frac{n}{2^n} + \frac{(-1)^n}{n}$

(h)
$$\frac{n}{2^n} + \frac{(-1)^n}{n}$$

(i)
$$\frac{n^n}{n!}$$

(j)
$$\frac{n}{2^n}$$

(j)
$$\frac{n}{2^n}$$
 (k) $\frac{n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}$ (l) $\frac{n^2}{\ln(n+1)}$

$$(1) \frac{n^2}{\ln(n+1)}$$

(m)
$$\ln (e^n - 1) - n$$

(n)
$$1 + (-1)^r$$

(m)
$$\ln(e^n - 1) - n$$
 (n) $1 + (-1)^n$ (o) $\sqrt[8]{n^2 + 1} - \sqrt[4]{n + 1}$ (p) $\sin(n\pi/2)$

(p) sen
$$(n\pi/2)$$

- **1.4F** Prove que $\lim_{n \to \infty} (3^n + 4^n)^{1/n} = 4$. Se $a, b \ge 0$, mostre que $\lim_{n \to \infty} (a^n + b^n)^{1/n} = \max\{a, b\}$.
- **1.4G** Se |r| < 1, use o Critério da Razão 1.3.17 para mostrar que $\lim_{n \to \infty} nr^n = 0$. Se r > 1, mostre que $\lim_{n\to\infty} r^n = \infty$. E se r < -1?
- **1.4H** Mostre que $(1+r+r^2+\cdots+r^{n-1})(1-r)=1-r^n$. Se |r|<1, use essa relação e deduza que

$$\lim_{n\to\infty} \left(1+r+\cdots+r^{n-1}\right) = \frac{1}{1-r}.$$

Agora, identifique a seqüência $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$ com aquela de termo geral $a_n = 2^{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}}$ e calcule seu limite.

- **1.4I** Seja $\{b_n\}$ uma seqüência convergente, com $b_n \neq 0$, $\forall n$, e $\lim_{n \to \infty} b_n \neq 0$. A partir da definição de limite, mostre que a sequência $\{1/b_n\}$ é limitada. Isto foi usado na demonstração da Propriedade 1.3.7(e).
- **1.4J** Mostre que $\lim_{n\to\infty} \left[\operatorname{sen}(\frac{\pi}{2^2}) \cdot \operatorname{sen}(\frac{\pi}{4^2}) \cdot \ldots \cdot \operatorname{sen}(\frac{\pi}{n^2}) \right] = 0$. (não use o produto de limites!)
- **1.4K** Considere a sequência cujos termos são definidos pela recorrência: $a_1 = 5$ e $a_{n+1} = \sqrt{a_n}$. Estes termos podem ser gerados em uma calculadora, introduzindo-se o número 5 e pressionando-se a tecla $|\sqrt{x}|$.
 - (a) Descreva o comportamento de $\{a_n\}$ quando n aumenta;
 - (b) Convença-se de que $a_n = 5^{1/2^n}$ e calcule $\lim_{n \to \infty} a_n$.
- 1.4L Em uma calculadora uma sequência é gerada introduzindo-se um número e pressionandose a tecla |1/x|. Em que condições a seqüência tem limite?

- **1.4M** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável com f(0) = 0. Calcule $\lim_{n \to \infty} n f(\frac{1}{n})$. Quanto vale $\lim_{n \to \infty} n \arctan(\frac{1}{n})$?
- **1.4N** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável tal que f(x) > -1, $\forall x$, e $\lim_{x \to \infty} f(x) = 0$. Dê exemplo de uma tal função e calcule o limite da sequência $a_n = \frac{\ln(1+f(n))}{f(n)}$.
- **1.40** Considere a sequência (a_n) definida pela recorrência: $a_1 = 1$ e $a_n = a_{n-1} + \cos a_{n-1}$, para $n \ge 2$. Mostre que (a_n) é monótona limitada e, portanto, convergente e que $\lim a_n = \pi/2$.
- 1.4P Uma população estável de 35.000 pássaros vive em três ilhas. Cada ano, 10% da população da ilha A migra para ilha B, 20% da população da ilha B migra para a ilha C e 5% da população da ilha B migra para ilha B. Denotando por B0, respectivamente, os números de pássaros nas ilhas B0, no B1, B2, and ano antes da ocorrência da migração e admitindo a convergência das seqüências B3, B4, B5, dê uma aproximação do número de pássaros em cada ilha após muitos anos.

Exercícios Complementares 1.6

1.6A Use o Método de Indução Finita para provar as seguintes relações:

(a)
$$1+3+5+...+(2n-1)=n^2$$
;

(b)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1);$$

(c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
;

(d)
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}(4n^3 - n);$$

(e)
$$(1+x)(1+x^2)(1+x^4) \cdot \dots \cdot (1+x^{2^n}) = \frac{1-x^{2^{n+1}}}{1-x}$$
, o ponto de partida é $n=0$;

(f)
$$\sum_{k=1}^{n} \ln \left[\frac{(k+1)^2}{k(k+2)} \right] = \ln 2 + \ln \left(\frac{n+1}{n+2} \right).$$

1.6B Mostre que $n(n^2 + 5)$ é divisível por 6. (sug. use o Exemplo 1.5.3).

1.6C Uma função $f: \mathbb{R} \to \mathbb{R}$ satisfaz a: f(xy) = f(x) + f(y), $\forall x, y$. Prove que $f(a^n) = nf(a)$.

1.6D Represente por $\binom{n}{k}$ o coeficiente binomial $\frac{n!}{k!(n-k)!}$, onde k e n são números inteiros positivos e $k \le n$. Mostre que:

(a)
$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$
;

(b)
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
.

1.6E Demonstre a seguinte regra de Leibniz para derivação:

$$[fg]^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}.$$

- **1.6F** Seja $r \ge 0$ um número real. Mostre que $(1+r)^n \ge 1 + nr + \frac{n(n-1)}{2}r^2$ e deduza a partir daí a desigualdade de Bernoulli: $(1+r)^n \ge 1 + nr$.
- **1.6G** Se r é um número real $\neq 1$, mostre que $1 + r + r^2 + ... + r^{n-1} = \frac{1 r^n}{1 r}$. De forma mais geral, você pode demonstrar que se x e y são números reais, então:

$$x^{n} - y^{n} = (x - y) (x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}), n \in \mathbb{N}.$$

- **1.6H** Mostre que $\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n)} \ge \frac{1}{2n}, \ \forall n \in \mathbb{N}.$
- **1.6I** Mostre que $\lim_{x\to\infty} \frac{x}{(\ln x)^n} = \infty, \ \forall n=0,1,2,3,\ldots$
- **1.6J** Uma seqüência $\{b_n\}$ é definida por: $b_1 = -1$ e $b_n = \frac{(1-n)\,b_{n-1}}{n^2}, \ n \ge 2$. Use o Método de Indução Finita e prove que $b_n = \frac{(-1)^n}{n!n}$.
- **1.6K** Considere a sequência de Fibonacci: $a_1=1,\ a_2=1$ e $a_n=a_{n-1}+a_{n-2},$ para $n\geq 3.$ Mostre que

$$a_n = \frac{1}{2^n \sqrt{5}} \left[\left(1 + \sqrt{5} \right)^n - \left(1 - \sqrt{5} \right)^n \right].$$

1.6L Considere a sequência $a_n = \frac{n}{(n+1)!}$ e mostre por indução que

$$a_1 + a_2 + a_3 + \ldots + a_n = 1 - \frac{1}{(n+1)!}$$

1.6M Em cada caso abaixo, encontre o primeiro inteiro positivo n_0 para o qual a sentença é verdadeira e, usando a extensão do Método de Indução, prove que a sentença matemática é verdadeira para qualquer número inteiro maior do que n_0 :

(a)
$$10^n \le n^n$$
 (b) $n^2 + 18 \le n^3$ (c) $5 + \log_2 n \le n$ (d) $2n + 2 \le 2^n$

(e)
$$2^n \le n!$$
 (f) $n + 12 \le n^2$ (g) $n \log_2 n + 9 \le n^2$ (h) $n^2 \le 2^n$.

Respostas e Sugestões

Exercícios 1.2

1.2A (a)
$$\left\{\frac{n}{n+1}\right\}$$
 (b) $\left\{\frac{1}{n}\right\}$ (c) $\left\{(-1)^n\right\}$ (d) $\left\{-n\right\}$ (e) $\left\{(-1)^n n\right\}$ (f) $\left\{n\right\}$

1.2B

(a)
$$1, 1/3, 1/5, 1/7$$
 (b) $\sqrt{2} - 1, \sqrt{3} - \sqrt{2}, 2 - \sqrt{3}, \sqrt{5} - 2$ (c) $-1, 2, -3, 4$

- **1.2C** Os termos a_1, a_2 e a_3 estão fora da faixa; o termo a_4 está na fronteira e a partir do quinto todos os termos estão dentro da faixa.
- **1.2D** A sequência $a_n = \frac{(-1)^n}{n}$ é limitada e não monótona e a subsequência $a_{2n-1} = \frac{-1}{2n-1}$ é crescente.

1.2E

(a)
$$1/n$$
 (b) $1/2^n$ (c) $[1 + (-1)^{n+1}]/2$ (d) $1 + (-1)^n$ (e) $(2n-1)^2$ (f) $(-1)^n + n$ (g) $\frac{(-1)^{n-1} + n + 2}{n+1}$ (h) $(-1)^n + 1/n$ (i) $\frac{n+1}{2}$ (j) $-3 + (-1)^n$ (k) $\frac{(-1)^{n+1}}{2n}$ (l) $[1 + (-1)^n] \frac{10^{n/2}}{2} + [1 + (-1)^{n+1}] \frac{n+1}{4}$

1.2F Limitada: (a), (b), (c), (d), (g), (j) e (k); Crescente: (d); Decrescente: (a) e (b). Em (e), (f) e (l) as subseqüências pares são crescentes e (c), (d), (g) e (j) são as únicas que possuem subseqüências constantes.

1.2G
$$f^{(n)}(0) = \cos(n\pi/2); \quad g^{(n)}(0) = \sin(n\pi/2); \quad h^{(n)}(0) = (-1)^n n!$$

1.2H $-n^2 + n \mid 2^n/n! \mid 2/(3n-4) \mid (-2)^n \mid 1 - 1/n \mid \ln n \mid 3n^2/(n^2 + n)$

1.2H	$-n^2+n$	$2^n/n!$	2/(3n-4)	$(-2)^n$	1 - 1/n	$\ln n$	$3n^2/\left(n^2+n\right)$
sup	0	2	1	∞	1	∞	3
inf	$-\infty$	0	-2	$-\infty$	0	0	3/2

1.2I A sequência de termo geral $a_n = \frac{n}{n+1}$ é crescente limitada e seus termos se aproximam de 1, quando n tende para ∞ .

1.2J
$$a_n = 2(-1)^n$$
 1.2K $a_n = 4 + (-1)^{n+1}/n$.

Exercícios 1.4

$$\textbf{1.4A} \text{ (a) } V \text{ (b) } F \text{ (c) } F \text{ (d) } F \text{ (e) } F \text{ (f) } F \text{ (g) } V \text{ (h) } F \text{ (i) } F \text{ (k) } F \text{ (l) } F \text{ (m) } F \text{ (n) } V \text{ (o) } V \text{ (p) } F \text{ (q) } V \text{ (r) } F \text{ (s) } V$$

- **1.4B** Considerando as sequências $a_n = 1/n$ e $b_n = n^2$, então a sequência $a_n b_n = n$ é divergente com limite ∞ . Nesse caso, a sequência b_n não é limitada, como exige o Teorema 1.2.9.
- **1.4D** (a) 1 (b) π (c) 0 (d) 4 (e) 1 (f) $\sqrt[3]{e}$ (g) 1/5 (h) 0 (i) -3/2 (j) e^2 (k) 1 (l) 0 (m) 0 (n) 1 (o) 0 (p) 1 (q) 1/3 (r) ∞ (s) 0 (t) 0
- **1.4E** (a) D (b) C (c) C (d) C (e) C (f) C (g) C (h) C (i) D (j) C (k) C (l) D (m) C (n) C (o) D
- **1.4H** Para comprovar a relação $(1 + r + r + \cdots + r^{n-1})(1 r) = 1 r^n$ é suficiente distribuir o produto do lado esquerdo. Se |r|<1, então $r^n\to 0$ e, sendo assim, $\lim \left(r+r^2+\cdots+r^n\right)=1$ $\frac{r}{1-r}$. Para r=1/2, obtemos $\lim \left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}\right)=1$ e, consequentemente, $\lim a_n=2$.
 - **1.4L** A sequência convergirá se o número r introduzido na calculadora for igual a ± 1 .
- **1.4M** Usando a definição de derivada, é fácil deduzir que $\lim_{n\to\infty} nf'(1/n) = f'(0)$. Para f(x) = f'(x) $\operatorname{arctg} x$, temos $f'(x) = \frac{1}{1+x^2}$ e daí f'(0) = 1. Assim, $\lim_{n \to \infty} n \operatorname{arctg}(1/n) = 1$.
- **1.4N** A função $f(x) = -\exp(-1/x^2)$, para $x \neq 0$ e f(0) = 0 atende às condições exigidas e $\lim a_n = 1.$
- **1.4P** Temos que $A_{n+1} = 0.9A_n + 0.05C_n$, $B_{n+1} = 0.1A_n + 0.8B_n$ e $C_{n+1} = 0.95C_n + 0.2B_n$. Denotando, respectivamente, por A,B e C os limites das seqüências $\{A_n\}$, $\{B_n\}$ e $\{C_n\}$, encontramos 10.000 na ilha A, 5.000 na ilha B e 20.000 na ilha C.