Влияние параметров электрода на сегнетоэлектрические свойства ячеек памяти на основе $\mathrm{Hf_{0.5}Zr_{0.5}O_2}$

Сергей Ильев, И.А. Мутаев, М.В. Спиридонов, А.А. Чуприк Московский физико-технический институт ilev.sv@phystech.edu

Аннотация

Тонкие сегнетоэлектрические (СЭ) пленки легированного оксида гафния являются перспективным материалом для разработки энергонезависимой памяти нового поколения.¹

Стабилизация СЭ свойств, а значит и эффективность устройств памяти определяется различными факторами: толщиной плёнки, материалами электродов, концентрацией легирующей примеси, концентрацией дефектов, длительностью и температурой отжига, используемого для кристаллизации плёнки.

Экспериментальная часть

Было изготовлено четыре типа структур $\mathrm{Si/W/Hf_{0.5}Zr_{0.5}O_2/Pt}$, отличающихся энергией импульса, использованного при напылении верхнего электрода $\mathrm{Pt.}$

Методы

- Магнетронное напыление нижний электрод W (40 нм)
- Атомно-слоевое осаждение функциональный слой $\mathrm{Hf_{0.5}Zr_{0.5}O_2}$ (10 нм)
- Импульсное лазерное осаждение верхний электрод Pt
- Электронно-лучевое напыление контакты Al

Электрофизическая характеризация

При увеличении энергии импульсов

- увеличивается величина остаточной поляризации
- уменьшается коэрцитивное напряжение
- увеличивается ток утечки

Рис. 1. P-V кривые ячеек памяти при различной энергии импульсов, используемых при напылении верхнего электрода

Анализ зёрен Pt электрода

Образуются более крупные зёрна Pt при использовании импульсов с большей энергией при напылении.

Рис. 2. РЭМ изображения поверхности Pt электродов

Микроскопия пьезоотклика

Увеличивается характерный размер доменов при увеличении энергии импульса.

Рис. 3. (A) Схема эксперимента по исследованию доменной структуры. (B) Карты фазы пьезоотклика в полидоменном состоянии.

Заключение

- Размер зёрен Pt определяет степень диффузии атомов O_2 , и, как следствие, различную плотность вакансий кислорода в $Hf_{0.5}Zr_{0.5}O_2$ стабилизируя СЭ фазу в оксиде гафния.
- Результаты указывают на возможность инжиниринга функциональных свойств ячеек сегнетоэлектрической памяти $\mathrm{Hf}_{0.5}\mathrm{Zr}_{0.5}\mathrm{O}_2$ путем оптимизации технологического процесса.

Библиография

1. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in Hafnium Oxide Thin Films. *Applied Physics Letters* **99**, 102903 (2011).