

Epigenesis

http://www.hps.cam.ac.uk/visibleembryos/s1_3.html www.iep.utm.edu

Preformation

Ovist View Theodore Kerckring, late 1600s

The Human Lifecycle

Before implantation Degenerating Inner cell zona mass pellucida Blastocyst cavity Blastocyst Trophoblast (a) Zygote (b) 4-cell st (fertilized egg) 2 days (e) Implanting blastocyst (b) 4-cell stage -(c) Morula. (d) Early blastocyst 4 days 3 days 6 days Sperm Fertilization (a) (sperm meets egg) Uterine tube -Ovary Oocyte (egg) Uterus -**ZYGOTE** Ovulation Endometrium -BLASTOMERE Cavity of HOLOBLASTIC CLEAVAGE uterus Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

www.theglobaledition.com

5

Cell designation hypothesis

Cell designation hypothesis

Cell designation hypothesis

MORULA BLASTOCOEL BLASTOCYST TROPHOBLAST INNER CELL MASS

Cell designation hypothesis

TROPHOBLAST INNER CELL MASS

Variable Cleavage → Regulative Developmer Stepwise Approximation

Cell designation hypothesis

Development of germ layers

GASTRULATION
DELAMINATION
HYPOBLAST
YOLK SAC
AMNIOTIC ECTODERM
EMBRYONIC EPIBLAST

Ectoderm (outer layers)

skin, nervous system, pigment cells

Mesoderm (middle layer)

skeleton, muscle, kidney, heart, blood

Endoderm (inner layer)

gut, liver, lungs, thyroid

Control of Development

Stages of development in vertebrates (1)

Figure 6.2.6 Stages in the embryonic development of vertebrates

Stages of development in vertebrates (2)

Stages of development in vertebrates (3)

Fate Mapping (1)

Nature Reviews | Neuroscience

Fate Mapping (2)

Lee et al. 2007

Fate Mapping (3)

Genetic Inducible Fate Mapping

Cre-lox system

Genetic inducible fate mapping (GIFM)

Joyner and Zervas, 2006 https://research.brown.edu/myresearch/Mark_Zervas

Fate Mapping (4)

http://janelia.org/lab/keller-lab

Fate Mapping (5)

http://janelia.org/lab/keller-lab

Cell Potency

TOTIPOTENT

A cell that can produce a whole organism

PLURIPOTENT

A cell that can have more than one fate

UNIPOTENT

A cell that has only one fate

Cell Specification

 Autonomous Specification – all specification signals are contained within the cells cytoplasm

Cell Specification (cont)

- Autonomous Specification all specification signals are contained within the cells cytoplasm
- Conditional Specification specification depends on interactions with the environment and other cells

Positional cell fate control and limb regeneration

Positional cell fate control and limb regeneration (cont)

http://www.newscientist.com/gal lery/regeneration/2 Tissue Engineering, Saltzman

Genomic Equivalence

every cell has the same genes

Review of Part 1

Early transformation in the embryo Cleavage and Folding Germ layers

Amnion (cut edge)

Somite (mesoderm) Notochord

20 days Approx. 2.5 mm

Cell Fate Mapping Cell Potency Cell Specification

Next Lecture

Morphogenesis Part 2: Mechanisms of Development

