Skeleton Technique

Kaur Jaakma 13.9.2020

Traditional Assembly

Assembly order follows mainly installation order

Frame → Connector

Parts are referred to each other

Traditional Assembly

How to change parts "from the middle"?

- · Challenge in bigger assemblies
- Replace Component tool in CAD

Missing information or shape flow between parts

Shaft's diameter → bearing's inner diameter → ...

Traditional Assembly

Structure

Traditional Assembly

Information flow between parts

Skeleton Technique

To handle big assemblies
To transfer shape information
between parts

Part's geometries are independent to eachother

· Parts can be easily change

Skeleton Technique

All parts (geometries) refer to skeleton

Locations of the joints, main dimensions, interfaces

Concept design

Space reservations for future parts

Execution mostly depends on CAD software

Skeleton Technique

Similar to method utilized in product design

- · Top-down approach
- Traditional assembly is bottom-up

Laakko, T. et al. 1998. Tuotteen 3D-CAD-suunnittelu. WSOY.

Skeleton layout

Location of parts and subassemblies are referred to skeleton, not attached to each other

