Section 4.2 - Exponential Functions

Definition

The exponential function f with base b is defined by

$$f(x) = b^{x}$$
 or $y = b^{x}$

where b > 0, $b \ne 1$ and \boldsymbol{x} is any real number.

$$f(x) = 2^x$$
 $f(x) = \left(\frac{1}{2}\right)^{2x+1}$ $f(x) = 3^{-x}$ $f(x) = (-2)^{x}$

Example

Given: $f(x) = 13.49 (0.967)^{x} - 1$, find f(60)

Solution

$$f(60) = 13.49 (0.967)^{60} - 1$$
$$= 0.8014$$

Example

If $f(x) = 2^x$, find each of the following. f(-1), f(3), $f\left(\frac{5}{2}\right)$

Solution

a)
$$f(-1) = 2^{-1} = 0.5$$

b)
$$f(3) = 2^3 = 8$$

c)
$$f\left(\frac{5}{2}\right) = 2^{\frac{5}{2}} = 5.6569$$

Graphing Exponential

1. Define the Horizontal Asymptote $f(x) = b^{x} \pm d$

$$y = 0 \pm d$$

Example

$$f(x) = 3^x$$

Asymptote: y = 0

The exponential function always equals to 0

$$x \to \infty \text{ or } x \to -\infty \Rightarrow f(x) \to 0$$

2. Define/Make a table

(Force your exponential to = 0, then solve for x)

x	f(x)
x-2	
x-1	
 \boldsymbol{x}	
x + 1	
x + 2	

х	f(x)
-2	1/9
-1	1/3
0	1
1	3
2	9

Domain: $(-\infty, \infty)$

Range: (d, ∞)

Example

$$f(x) = \left(\frac{1}{3}\right)^{x}$$
$$= \left(3^{-1}\right)^{x}$$
$$= 3^{-x}$$

Reflected across y-axis

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Example

 $f(x) = 3^{x-1}$

Shift right 1 unit

Asymptote: y = 0

Domain: $(-\infty,\infty)$

Range: $(0,\infty)$

Example

 $f(x) = 2^{x} + 1$

Shift up 1 unit

Asymptote: y = 1

Domain: $(-\infty, \infty)$

Range: $(1,\infty)$

 $f(x) = 5 - 2^{-x}$

Shifted up 5 units

Reflected across x-axis and y-axis

Asymptote: y = 5

Example

Give the domain and range.

a) $f(x) = -2^x$

Reflected across x-axis

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(-\infty,0)$

b) $f(x) = 2^{x+3}$

Shifted left 3 units

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

 $c) f(x) = 2^x + 3$

Shifted up 3 units

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(3,\infty)$

Natural Base e

The irrational number e is called natural base

 $f(x) = e^{x}$ is called natural exponential function

$$e^{0} = 1$$

$$e^0 = 1$$
 $e \approx 2.7183$

$$e^2 \approx 7.3891$$

$$e^2 \approx 7.3891$$
 $e^{-1} \approx 0.3679$

Example

The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in billions, x years after 1978. Project the gray population in the recovery area in 2012.

Solution

$$x = 2012 - 1978 = 34$$

 $f(x = 34) = 1066e^{0.042(34)}$
 $= 4445.6$
 ≈ 4446

Example

Graph

$$f(x) = e^{x}$$

Solution

Asymptote: y = 0

x	f(x)
-2	.14
-1	.4
0	1
1	2.7
2	7.4

Example

$$f(x) = e^{x+3}$$

Solution

Shifted left 3 units

Asymptote: y = 0

Formulas for Compound Interest

1. For *n* compounding per year: $A = P(1 + \frac{r}{n})^{nt}$

2. For Continuous compounding: $A = Pe^{rt}$

P: Principal, initial value

n: number of period per year

t: number of years r: interest rate

A is also called Future value

P is also called Present value

Example

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to quarterly compounding

Solution

Given:

$$P = $10,000$$

$$r = 8\% = 0.08$$

Quarterly
$$n = 4 \Rightarrow A = P\left(1 + \frac{r}{n}\right)^{nt} = 10000\left(1 + \frac{0.08}{4}\right)^{4(5)}$$

$$= $14,859.47$$

Example

Suppose \$5000 is deposited in an account paying 3% interest compounded continuously for 5 yrs. Find the total amount on deposit at the end of 5 yrs.

Solution

$$A = Pe^{rt} = 5000e^{.03(5)} \approx \$5,809.17$$
 5000 $e(.03*5)$

Exercises Section 4.2 - Exponential Functions

Find

2.
$$5\sqrt{3}$$

$$6^{-1.2}$$

Evaluate to four decimal places using a calculator

4.
$$e^{-0.75}$$

5.
$$e^{2.3}$$

6.
$$e^{-0.95}$$

Sketch the graph

7.
$$f(x) = 2^x + 3$$

9.
$$f(x) = \left(\frac{2}{5}\right)^{-x}$$

11.
$$f(x) = e^{x+4}$$

8.
$$f(x) = 2^{3-x}$$

10.
$$f(x) = -\left(\frac{1}{2}\right)^x + 4$$

- 12. The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in billions, x years after 1978. Project the gray population in the recovery area in 2012.
- 13. The function $f(x) = 6.4e^{0.0123x}$ describes world population, f(x), in billions, x years after 2004 subject to a growth rate of 1.23% annually. Use the function to predict world population in 2050.
- **14.** Find the accumulated value of an investment of \$10,000 for 5 years at an interest rate of 5.5% if the money is
 - a) Compounded semiannually
 - b) Compounded quarterly
 - c) Compounded monthly
- **15.** Suppose \$1000 is deposited in an account paying 4% interest per year compounded quarterly.
 - a) Find the amount in the account after 10 years with no withdraws.
 - b) How much interest is earned over the 10 years period?
- **16.** An investment of 1,000 increased to \$13,464 in 20 years. If the interest was compounded continuously, find the interest rate.
- **17.** Becky must pay a lump sum of \$6000 in 5 yrs.
 - a) What amount deposited today at 3.1% compounded annually will grow to \$6000 in 5 yrs.?
 - b) If only \$5000 is available to deposit now, what annual interest rate is necessary for the money to increase to \$6000 in 5 yrs.?
- **18.** Find the present value of \$4,000 if the annual interest rate is 3.5% compounded quarterly for 6 years.

- **19.** How much money will there be in an account at the end of 8 years if \$18,000 is deposited at 3% interest compounded semi-annually?
- **20.** The function defined by $P(x) = 908e^{-0.0001348x}$ approximates the atmospheric pressure (in millibars) at an altitude of x meters. Use P to predict the pressure:
 - a) At 0 meters
 - b) At 12,000 meters