

Enrico Ribiani 3AUB

Esperienza laboratoriale bipolo ohmico-capacitivo

esperienza n°1

Indice

1	Scopo: Verificare il comportamento di un bipolo ohmico-capacitivo sperimental- mente.						
	1.1 1.2	Materiale					
2	Cen : 2.1 2.2	ni teorici 2 Generalità bipolo RC 2 Previsione comportamento 2					
3	Proc 3.1 3.2	cedimento/Analisi2Tabelle2Calcoli3					
4	Con 4.1	clusioni Diagramma vettoriale					
 1.1 	C	copo:Verificare il comportamento di un bipolo ohmico- apacitivo sperimentalmente. Materiale					
	• B1	readboard					
	• Co	ondensatore da 10nF					
	• Re	esistenza da $10k\Omega$					
	• B1	readboard					
1.2	2 S	strumenti					
	• G	eneratore di funzione					
	• Os	scilloscopio					

1.2.1 Schema

Il primo circuito verrà utilizzato per effettuare le misure su R mentre il secondo che è l'equivalente del primo solo con R e C invertiti per effettuare le misurazioni su C.

2. Cenni teorici

2.1 Generalità bipolo RC

2.2 Previsione comportamento

3. Procedimento/Analisi

3.1 Tabelle

	С		R		
Vpp	t±	φ	Vpp	t±	φ
6V	-90μs	-32,4°	3,56V	170µs	61,2°

3.2 Calcoli

Incognite: \vec{Z} , \vec{V} , $\vec{V_R}$, $\vec{V_C}$, \vec{I}

$$Vp = \frac{Vpp}{2} = \frac{7V}{2} = 3,5V$$

 $V = \frac{Vp}{\sqrt{2}} = \frac{3,50V}{\sqrt{2}} = 2,47V$

$$Vp_R = \frac{Vpp_R}{2} = \frac{3.56V}{2} = 1,78V$$

 $V_R = \frac{Vp_R}{\sqrt{2}} = \frac{1.78V}{\sqrt{2}} = 1,26V$

$$Vp_C = \frac{Vpp_C}{2} = \frac{6V}{2} = 3V$$

 $V_C = \frac{Vp_C}{\sqrt{2}} = \frac{3V}{\sqrt{2}} = 2,12V$

$$X_c = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \cdot 1000 \cdot 10^{-9}} = 159,15k\Omega$$

$$\varphi: 2\pi = -90 \cdot 10^{-6} : 0{,}001$$
$$\varphi = \frac{2\pi \cdot (-90 \cdot 10^{-6})}{0{,}001} = -32{,}4^{\circ}$$

$$\vec{Z} = (R - jX_C) = (10 - 159, 15)k\Omega$$

 $Z = \sqrt{10000^2 + 159150^2} = 159, 5k\Omega$

$$I = \frac{V}{Z} = \frac{2,47V}{159500\Omega} = 15\mu A$$

4. Conclusioni

4.1 Diagramma vettoriale

1