Extract an unknown function in a non-parametric way

November 12, 2020

1 The standard Bayes approach already contains the "sequential" calibration of parameters.

3 A non-parametric way to parametrize the unknown functional of $\hat{q}(T)$.

The standard Bayes approach

Suppose the following dependence of two sets of observables y on parameters x.

- $\mathbf{y}_1 = \mathbf{y}_1(x_1)$ only depends on x_1 .
- $\mathbf{y}_2 = \mathbf{y}_2(x_1, x_2)$ depends on both x_1, x_2 .

Suppose, people have measured \mathbf{y}_1 long ago in the past: $\mathbf{y}_1^{\mathrm{exp}} \pm \delta \mathbf{y}_1^{\mathrm{exp}}$, and then someone used it to extract information of x_1 ,

$$P_1(x_1) = \operatorname{Prior}(x_1) \operatorname{Likelihood}\left(\frac{\mathbf{y}_1(x_1) - \mathbf{y}_1^{\exp}}{\delta \mathbf{y}_1^{\exp}}\right)$$

Few years later, $\mathbf{y}_2^{\mathrm{exp}} \pm \delta \mathbf{y}_2^{\mathrm{exp}}$ are measured, but we don't want to vary x_1 arbitrarily when extracting x_2 , so we use $P_1(x_1)$ as informative prior:

$$P_{12}(x_1, x_2) = P_1(x_1) \operatorname{Prior}(x_2) \operatorname{Likelihood} \left(\frac{\mathbf{y}_2(x_1, x_2) - \mathbf{y}_2^{\operatorname{exp}}}{\delta \mathbf{y}_2^{\operatorname{exp}}} \right)$$

$$= \operatorname{Prior}(x_1) \operatorname{Prior}(x_2) \operatorname{Likelihood} \left(\frac{\mathbf{y}_2(x_1, x_2) - \mathbf{y}_2^{\operatorname{exp}}}{\delta \mathbf{y}_2^{\operatorname{exp}}} \right) \operatorname{Likelihood} \left(\frac{\mathbf{y}_1(x_1) - \mathbf{y}_1^{\operatorname{exp}}}{\delta \mathbf{y}_1^{\operatorname{exp}}} \right)$$

The same as calibrated to both dataset simultaneously.

The subtly is in the parametrization of unknown functionals

For example, usually, we try temperature dependence of \hat{q}

$$\frac{\hat{q}}{T^3} = A + B \left(\frac{T}{T_c}\right)^C$$

The problem: A, B, and C controls the temperature dependence in a highly correlated manner \rightarrow May leads to correlated change of all parameters when we include new dataset.

Step-function like parameterization

$$\frac{\hat{q}}{T^3} = a_0(1 \sim 1.5 T_c) + a_1(1.5 \sim 2 T_c) + a_2(2 \sim 2.5 T_c) + a_3(2.5 \sim 3 T_c) + a_4(3 \sim 4 T_c)$$

Decorrelate from one temperature to another. Potential problem: lack of adjacent correlation:

To avoid the yellow case, we can manipulate the choice of prior in a correlated way! Not long range correlation, but finite-range correlation that $P_0(x \to x_1) = P_1(x_1)$. \to no need to change the model computation procedure, just need a carefully designed prior.

4/6

A proposed way to parametrize unknown functional form of \hat{q}/T^3

- Treat \hat{q}/T^3 as some unknown function in a functional space that:
 - ▶ If I know \hat{q}/T^3 at low temperature, I am still agnostic to its high-T behavior.
 - If I know \hat{q}/T^3 at T_1 , its value at adjacent temperature must be close to the value at T_1 .
- Easily modeled by a random function sampled by the Gaussian process.

$$P[\hat{q}(T)] \sim \mathcal{GP}\left(ext{mean} = \hat{q}_0, ext{cov} = Ce^{-rac{(\ln T - \ln T')^2}{2\sigma^2}}
ight)$$

14 12 10 10 15 20 25 30 35 40 10 15 20 25 30 35 40

"Infinitely" many points, but effectively only $\frac{\ln(T_{\text{max}}/T_{\text{min}})}{\sigma}$ d.o.f.. A smooth version of "independently vary" \hat{q} at temperature far apart with short-range correlation.

Workflow

Run physical model:

- Generate, e.g. 100, realization of $P[\hat{q}(T)]$.
- Model predictions: centrality, energy, collision system, p_T dependent.

The following jobs is purely statistical.

- The fact that the parameterization $\hat{q}(T)$ is uncorrelated from $\hat{q}(T')$ if T and T' are sufficently different prevents low-T-sensitive data from constraining high-T parameters.
- Use emulators to learn the mapping from $\hat{q}(T_i, i = 1, 2, 3 \cdots)$ to observables.
- Using Bayes theorem to get the posterior distribution of \hat{q} :

$$P(\hat{q}[T]) = \int D[\hat{q}(T)] P_{\mathcal{GP}}[\hat{q}(T)] \text{Likelihood}(\frac{\mathbf{y}_{\text{emulator}}[\hat{q}(T)] - \mathbf{y}^{\text{exp}}}{\delta \mathbf{y}^{\text{exp}}})$$

A non-parametric way to extract $\hat{q}(T)$

I do not know any application like this before in literature. We may need to use a "toy" model to evaluate its performance before using real model.