Perceptron Convergence theorem: If samples given are linearly separable, then the fixed-increment perceptron algorithm terminates after a finite number of weight vector updates.

Proof: we can prove this theorem by showing the number updations on weight vector is bounded by a finite number.

For ease of computation let us make some assumptions without loosing any generality.

Assumption 1: Take zero vector (all elements are zero valued) as initial weight vector instead of choosing it randomly.

Assumption 2: Learning rate is fixed and valued as unity.

Assumption 3: All feature vectors are augmented.

Assumption 4: As we have two classes $\{+1,-1\}$, multiply the feature vectors by -1, whose class is -1. so that a weight vector W represents a separating hyperplane if $W^T.X_i > 0$, \forall i

So the new update rule can be written as

$$W(k+1) = W(k) + X(K)$$
, \forall k such that $W(k)^T . X(k) \le 0$

from above

|| W(K+1) ||
2
 = || W(k) + X(k) || 2 = || W(k) || 2 + || X(k) || 2 + 2 W(k)T X(k)
≤ || W(k) || 2 + || X(k) || 2 (because W(k)^T.X(k)≤ 0 for all misclassified samples)

If we recurse on it we can get

$$\| W(K+1) \|^2 \le \| W(0) \|^2 + \sum_{i=0}^{k} \| X(i) \|^2$$

Here, W(0) is zero vector from our assumption 1 and let M is MAX_i (|| X(i) ||²) , then above equation becomes || W(K+1) ||² \leq kM -----(1)

From update rule we can say that W(K+1) is linear combination of misclassified samples feature vectors and initial weight vector i.e W(k+1) = W(0)+ $\sum_{i=0}^{k} X(i)$

W(k+1) =
$$\sum_{i=0}^{k} X(i)$$
 -----(2)

Now consider a weight vector W^* from solution space such that $X_i^T W^* > 0$, \forall i (because W^* separates all samples correctly)

consider N = MIN_i $(X_i^TW^*)$, note that N>0

from equation 2 we have

$$W(K+1).W^* = \sum_{i=0}^{k} X(i) \ge kN > 0$$

$$k^2N^2 \le ||W(K+1).W^*||^2$$

From Cauchy - Schwarz inequality

$$|K^2N^2| \le ||W(K+1)||^2 ||W^*||^2$$

 $\le |KM| \cdot ||W^*||^2$ from(1)

i.e $k \le ||W^*||^2$. M / N^2

Here W* is finite vector if given samples are linearly separable and from above M and N are finite values obtained from feature vectors(samples)

So k is bounded by a finite value, from this we can infer that perceptron algorithm stops after some finite number of steps i.e Perceptron algorithm finds a separating hyperplane with in the finite number of steps.