Тема 1

Абсолютная погрешность - Δx - разница между измерением и точным значением величины. $\Delta x = |x - \bar{x}|$.

Относительная погрешность - δx - отношение абсолютной погрешности к точному значению. $\delta = \frac{\Delta x}{|x|}$

Абсолютная погрешность функции одной переменной - $\Delta f(x) = |f'(x)| * \Delta x$ Относительная погрешность ф-ции одной переменной - $\delta f(x) = |\frac{f'(x)*\Delta x}{f(x)}|$

Абсолютная погрешность функции нескольких переменных:

$$\Delta f(x_1,x_2,x_3,\ldots,x_n) = \sum_{i=1}^{\infty} |rac{df}{dx_i}|\Delta x_i$$

Относительная погрешность ф-ции нескольких перменных:

$$\delta f(x_1,x_2,x_3,\ldots,x_n) = \sum_{i=1}^\infty |rac{df}{dx_i}*rac{1}{f(x_1,x_2,x_3,\ldots,x_n)}|\Delta x_i$$

Тема 2

Интерполяционный полином - полином, который проходит через все интерполяционные узлы

Интерполяционный узел - точки, через которые должна проходить интерполяционная фция

Интерполяционный полином Лагранжа

Развернутая формула:

$$L = \sum_{i=0}^n f(x_i) rac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)}$$

Аппроксимация - процесс приближения сложной ф-ции к более простой.

Метод наименьших квадратов - минимизация суммы квадратов отклонений значений от соответствующих, предложенных моделью

$$S(a,b) = \sum_{i=0}^n (y_i - (y(x_i)))^2
ightarrow min.$$

Тема 3

Отделение корней - это определение наличия, количества и нахождение для каждого области, которому он принадлежит.

Есть несколько методов отделения:

Аналитический - Если на отрезке [a; b] ф-ция непрерывна и монотонна, а ее значения на концах отрезка имеют разные знаки, то на рассматриваевом числовом множестве существует один и только один корень уравнения

Графический - Рисуем график и смотрим на пересечения с 0 епт.

Метод половинного деления -

$$\Delta c = rac{a+b}{2}$$
Условие точности

Если $f(a)*f(c)>0 o x\epsilon[x,b]->a=c,$ иначе если $f(a)*f(c)<0 o x\epsilon[a,x]->b=c$

Метод простых итераций -

Приводим уравнение к рекурсивному виду $x_i = \dots x_{i-1}$

И туп считаем. Погрешность это разность нынешнего и прошлого корня.

Метод Ньютона -

$$x_i = x_{i-1} - rac{f(x_{i-1})}{f'(x_{i-1})}$$

И так, пока разница между х не будет удовлетворять (хехе)

Метод хорд - чет заморочено

Тема 4

Определенный интеграл - Интеграл является пределом суммы бесконечно большого участка слагаемых, которые стремятся к 0.

$$\int_a^b f(x)\,dx = \lim_{n o\infty} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

Геометрический смысл - Интеграл от неотрицательной ф-ции это площадь криволинейной трапеции ограниченной сверху графиком y=f(x)

Метод прямоугольников -

$$h=rac{b-a}{n}$$
 $\int_a^b f(x)\,dx=h\sum_{i=0}^{n-1}f(x_i)$ — левые прямоугольники $\int_a^b f(x)\,dx=h\sum_{i=1}^nf(x_i)$ — правые прямоугольники $\int_a^b f(x)\,dx=h\sum_{i=0}^{n-1}f\left(rac{x_i+x_{i+1}}{2}
ight)$ — левые прямоугольники

Метод трапеций -

$$\int_a^b f(x)\,dx = h\left(rac{f(x_0)+f(x_n)}{2}+\sum_{i=1}^{n-1}f(x_i)
ight)$$

Метод симпсона -

$$\int_a^b f(x)\,dx = rac{h}{3}$$
 (Первое и последнее у без коэффицентов, далее чередование $4,2)$

Метод Гаусса - я хз вообще

Тема 5

Плохообусловленные системы линейных алгебраических уравнений -

СЛАУ считается таковой, если малые изменения коэффициентов матрица A и/или компонент вектора свободных членов b вызывают существенное изменение системы.

Число обусловленности - это матрица, $cond(A) = ||A|| * ||A^{-1}||$

Метод Гаусса - решаем как обычно.

Обратный ход - находим из последней строки x_n затем с конца до начала по цепочке находим остальное.