Problem

Consider the languages C_k defined in Problem 1.60. Prove that for each k, no DFA can recognize C_k with fewer than 2_k states.

Step-by-step solution

Step 1 of 2

Consider the language $C_k = \sum *a \sum^{k-1}$ for each $k \ge 1$, over the alphabet $\sum = \{a,b\}$. C_k be the language consisting of all strings that contain an 'a' exactly k places from the right-hand end.

Comment

Step 2 of 2

Now it is required to prove that, no DFA (Deterministic finite automation) can recognize C_k with fewer than 2^k states.

If a DFA enters two different states after reading two different strings lz and mz with same suffix z, then the DFA enters two different states after reading the strings l and m. Take two different strings of length k such that $l = l_1, \dots, l_k$ and $m = m_1, \dots, m_k$. Let i be some position such that $l_i \neq m_i$. One of the strings contains a in its ith position and the other string contains b in its ith position.

Consider the suffix string $z = b^{i-1}$. In this case, either the string lz or mz has the k^{th} bit from the end as a. The total number of strings of length k over the input alphabet $\{a,b\}$ is 2^k . Thus, the DFA needs 2^k states in order to distinguish 2^k strings.

Therefore, the DFA that recognizes the language C_k has at least 2^k states.

Comment