student Name:_____

Reg. No. 0019-EF-383

EE110 Circuit Analysis and Design

Fall 2022, Session 2021 (3rd Semester)
Final Exams

All the related parts of a question must be solved together.
 Understanding of question is part of exam.

Time Allowed: 90 Minutes

Total Marks: 40

1.(Analyze the circuit in figure below and use Laplase/Inverse Laplase to find v _e (t).	10	
	$V_{S}(t) = V_{A}e^{-iAt} u(t) V$		CLOZ
2.2	Evaluate the circuit in figure below and:		-
	100 mfl 100 V		
	$V_1(t)$ 100 $\Omega \geqslant V_2(t)$		
	0		(LU3
	A Find the transfer function $T_V(s) = V_2(s)/V_1(s)$	1	12
	B Find the DC gain, infinity frequency gain, and cut-off frequency. Identify the type of response.	gain 4	
	C Sketch the straight line approximations of the gain and phase responses (Bode plots).	4	
name.	D Calculate the gain at $\omega = 0.5\omega_c$ and $2\omega_c$	1	
.3	The switch in circuit of figure below has been closed for a long time. At $t = 0$ the s	witch is	1
	suddenly opened.		
	$T_{A} = 0$ $R \geq C = V(t)$		

Department of Electrical, Electronics & Telecom Engineering UET (Lahore) Faisalabad Campus

A Evaluate the circuit to find the transform $I_R(s)$ for the current through the resistor (Use 7 Circuit Transformation) B Select values of R. L and C so that the current reaches at least 63% of its final value in 3 100ms or less. Q.4 The turns ratio of the ideal transformer in figure below in $n = 5$. The source and load 10 impedances are $Z_S = 2.5 + j1.5 \Omega$ and $Z_L = 7.5 + j1.0 \Omega$. Analyze the circuit to find I_1 , V_1 , I_2 and V_2 when the input is $V_S = 2.20 \angle 0^0 V$.
Problem or less. Q.4 The turns ratio of the ideal transformer in figure below in $n = 5$. The source and load impedances are $Z_s = 2.5 + j1.5 \Omega$ and $Z_L = 7.5 + j10 \Omega$. Analyze the circuit to find I_1 , V_1 , I_2 and V_2 when the input is $V_s = 220 \angle 0^0 V$.
impedances are $Z_s = 2.5 + j1.5 \Omega$ and $Z_L = 7.5 + j10 \Omega$. Analyze the circuit to find I_1 , V_1 , I_2 and V_2 when the input is $V_s = 220 \angle 0^0 V$.
ZIN