INFORMATYKA

- 1. Wprowadzenie do R
- 1. Oblicz: $\sin(2\pi)$; $\cos\left(\frac{3}{4}\right)$; $tg(\pi)$; $\log(100)$; $\ln(15)$; $\log_7\left(\frac{1}{7}\right)$; e^3 ; $\sqrt[3]{64}$.
- 2. Utwórz wektor o składowych od 1 do 10. Zsumuj składowe wektora.
- 3. Utwórz wektor x którego składowymi są liczby parzyste od 2 to 20, a następnie
 - a) zweryfikuj liczbę składowych wektora **x**;
 - b) zdefiniuj nowy wektor, \mathbf{y} , którego składowe sa takie same jak wektora \mathbf{x} , tylko w odwrotnej kolejności;
 - c) sprawdź, czym jest wynik działania **x*****x** oraz **x**^2;
 - d) wyznacz długość (euklidesową) wektora x;
 - e) sprawdź, czym jest wynik mnożenia (macierzowego) transpozycji wektora **x** przez wektor **y** oraz wektora **x** przez transpozycję wektora **y**.
- 4. Utwórz wektor o 13 składowych, którego pierwsza składowa jest równa 5, ostatnia 10, natomiast wszystkie pozostałe są równo oddalone od siebie.
- 5. Utwórz wektory **z1** i **z2** będące odpowiednio 5-krotną replikacją wektora (1,2) i 5-krotną replikacją składowych wektora (1,2). Wykonaj polecenia:
 - a) dodaj 4 do każdej składowej wektora **z1**;
 - b) zdefiniuj nowy wektor, z3, przez usunięcie ostatniej składowej wektora z2;
 - c) zadeklaruj nowy wektor, c, jako sumę wektorów z1 i z3 i zweryfikuj wyniki;
 - d) zdefiniuj nowy wektor, którego składowe to elementy wektora z1, które są większe niż 1.
- 6. Utwórz wektor a, którego składowymi są: 1, 3, 6, 2, 7, 4.
 - a) Wskaż najmniejszy składnik a.
 - b) Wskaż indeks najmniejszego składnika a.
 - c) Podane indeksy wszystkich składników **a**, które są mniejsze lub równe 4.
 - d) Oblicz sumę elementów a.
 - e) Oblicz sumę kwadratów składników a.
 - f) Oblicz długość a.
 - g) Określ trzecią składową a.
 - h) Utwórz nowy wektor, **b**, równy wektorowi **a** bez czwartej składowej.
- 7. Utwórz macierz $\mathbf{A} = \begin{pmatrix} 2 & 3 & 0 \\ 1 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, a następnie:
 - a) sprawdź wynik działania **A**² oraz **A**%*%**A**;
 - b) wyznacz transpozycję, wyznacznik i odwrotność macierzy A;
 - c) zdefiniuj wektor **b**, będący trzecim wierszem macierzy **A**.
- 8. Utwórz dwa dowolne wektory **x** i **v** składające się z 10 składowych, a następnie:
 - a) Narysuj punkty (x, y) na wykresie (wykres punktowy).
 - b) Połącz wektory \mathbf{x} i \mathbf{y} za pomocą polecenia data.frame i narysuj powstały wykres.
 - c) Połącz wektory **x** i **y** za pomocą poleceń rbind i cbind i narysuj powstałe wykresy.
- 9. Narysuj funkcje $f(x) = x^2 + 3x 5$ na przedziale (-3, 4). Spróbuj narysować inne funkcje.