Lec 3: Linear Regression

Ailin Zhang

2022-09-19

Agenda

- Multiple Regression and Least Square
- Maximum Likelihood Estimation
- Gauss Jordan Elimination
- The Sweep Operator

The dataset of linear regression consists of an $n \times p$ matrix $\mathbf{X} = (x_{ij})$, and a $n \times 1$ vector $\mathbf{Y} = (y_i)$.

The dataset of linear regression consists of an $n \times p$ matrix $\mathbf{X} = (x_{ij})$, and a $n \times 1$ vector $\mathbf{Y} = (y_i)$.

$$y_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i,$$

for i=1,...,n, where $\epsilon_i \sim \mathrm{N}(0,\sigma^2)$ independently for i=1,...,n.

The dataset of linear regression consists of an $n \times p$ matrix $\mathbf{X} = (x_{ij})$, and a $n \times 1$ vector $\mathbf{Y} = (y_i)$.

$$y_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i,$$

for i=1,...,n, where $\epsilon_i \sim \mathrm{N}(0,\sigma^2)$ independently for i=1,...,n. Ambiguous about the intercept term.

The dataset of linear regression consists of an $n \times p$ matrix $\mathbf{X} = (x_{ij})$, and a $n \times 1$ vector $\mathbf{Y} = (y_i)$.

$$y_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i,$$

for i=1,...,n, where $\epsilon_i \sim \mathrm{N}(0,\sigma^2)$ independently for i=1,...,n. Ambiguous about the intercept term.

- [X, Y] is called the training data
- \bullet y_i is called response variable, outcome, dependent variable.
- x_{ij} is called predictor, regressor, covariate, independent variable, or simple variable.
- In the experimental design setting, X is called the design matrix.

obs	$X_{n \times p}$	$\mathbf{Y}_{n\times 1}$
1	$x_{11}, x_{12},, x_{1p}$	<i>y</i> 1
2	$x_{21}, x_{22},, x_{2p}$	<i>y</i> ₂
n	$x_{n1}, x_{n2},, x_{np}$	Уn

- **1** Explanation: understanding the relationship between y_i and $(x_{ij}, j = 1, ..., p)$.
- ② Prediction: learn to predict y_i based on $(x_{ij}, j = 1, ..., p)$, so that in the testing stage, if we are given the predictor variables, we should be able to predict the outcome.

Row Vector treatment

obs	$X_{n\times p}$	$\mathbf{Y}_{n\times 1}$
1	$X_1^{ op}$	<i>y</i> ₁
2	X_2^{\top}	<i>y</i> ₂
	_	
n	X_n^{\top}	Уn

$$X_i^{\top} = (x_{ij}, j = 1, ..., p)$$

where X_i^{\top} is the *i*-th row of **X** .

Here X_i is not in bold font.

We can write the model as $y_i = \langle X_i, \beta \rangle + \epsilon_i = X_i^{\top} \beta + \epsilon_i$, where $\beta = (\beta_j, j = 1, ..., p)^{\top}$.

Least Square Method

Least square loss function: $Loss(\beta) = \frac{1}{2} \sum_{i=1}^{n} \epsilon_i^2$ $\epsilon_i = y_i - s_i$, where $s_i = \sum_{j=1}^{p} x_{ij}\beta_j$

$$\frac{\partial Loss(\beta)}{\partial \beta_k} = \sum_{i=1}^n \epsilon_i \frac{\partial \epsilon_i}{\partial s_i} \frac{\partial s_i}{\partial \beta_k} = -\sum_{i=1}^n \epsilon_i x_{ik}$$

Least Square Method

Least square loss function: $Loss(\beta) = \frac{1}{2} \sum_{i=1}^{n} \epsilon_i^2$

$$\epsilon_i = y_i - s_i$$
, where $s_i = \sum_{j=1}^p x_{ij}\beta_j$

$$\frac{\partial Loss(\beta)}{\partial \beta_k} = \sum_{i=1}^n \epsilon_i \frac{\partial \epsilon_i}{\partial s_i} \frac{\partial s_i}{\partial \beta_k} = -\sum_{i=1}^n \epsilon_i x_{ik}$$

$$\frac{\partial Loss(\beta)}{\partial \beta_k} = -\sum_{i=1}^n X_i (y_i - X_i^{\top} \beta) = 0$$

Question: what is the dimensionality of $X_i y_i$ and $X_i X_i^T$?

Least Square Method

Least square loss function: $Loss(\beta) = \frac{1}{2} \sum_{i=1}^{n} \epsilon_i^2$

$$\epsilon_i = y_i - s_i$$
, where $s_i = \sum_{j=1}^p x_{ij}\beta_j$

$$\frac{\partial Loss(\beta)}{\partial \beta_k} = \sum_{i=1}^n \epsilon_i \frac{\partial \epsilon_i}{\partial s_i} \frac{\partial s_i}{\partial \beta_k} = -\sum_{i=1}^n \epsilon_i x_{ik}$$

$$\frac{\partial Loss(\beta)}{\partial \beta_k} = -\sum_{i=1}^n X_i (y_i - X_i^{\top} \beta) = 0$$

Question: what is the dimensionality of $X_i y_i$ and $X_i X_i^T$?

Maximum Likelihood

More general than least square $\epsilon_i \sim \textit{N}(0, \sigma^2)$

$$likelihood(\beta) = \prod_{i=1}^{n} p(y_i|s_i)$$

Since
$$y_i = s_i + \epsilon_i$$
, $[y_i|s_i] \sim N(s_i, \sigma^2)$

Column Vector Treatment

obs	$X_{n \times p}$	$Y_{n\times 1}$
1		
2	$X_1, X_2,, X_p$	_
	$\lambda_1, \lambda_2,, \lambda_p$	'
n		

Geometric Explaination

Figure 1: Least squares projection

Summary: Solve
$$\beta$$
 from $(\mathbf{X}^{\top}\mathbf{X})\beta = \mathbf{X}^{\top}\mathbf{Y}$
$$\beta = (\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{Y})$$

Gauss Jordan Elimination - Example

$$\begin{cases} x_1 + x_2 + x_3 = 5 \\ 2x_1 + 3x_2 + 5x_3 = 9 \\ 4x_1 + 5x_3 = 2 \end{cases}$$

Gauss Jordan Elimination

GJ[1:
$$n$$
][$A|b$] = [$I|A^{-1}b$] = $A^{-1}[A|b]$,
GJ[1: n][$A|I$] = [$I|A^{-1}$] = $A^{-1}[A|I]$.

Gauss Jordan Elimination

For a system of linear equations Ax = b

$$A = (a_{ij})$$
 is $n \times n$, $x = (x_i)$ is $n \times 1$, and $b = (b_i)$ is $n \times 1$

we can solve $x = A^{-1}b$ by Gauss-Jordan elimination.

Specifically, for any matrix A (any $n \times N$ matrix)

let $\tilde{A} = GJ[k]A$, then

$$\tilde{A}_k = A_k/a_{kk},$$
 $\tilde{A}_i = A_i - a_{ik}\tilde{A}_k, i \neq k,$

 A_k is the k-th row of A. $\tilde{a}_{kk} = 1$, and $\tilde{a}_{ik} = 0$ for $i \neq k$.

- Apply Gauss-Jordan sequentially: GJ[1:m] means we apply Gauss-Jordan for k=1:m.
- Gauss-Jordan is linear: $\tilde{A} = \operatorname{GJ}[k]A \to \tilde{A} = G_kA$ for a matrix G_k .

R code for Gauss Jordan

R code for Gauss Jordan

```
myGaussJordan <- function(A, m)
n \leftarrow dim(A)[1]
B <- cbind(A, diag(rep(1, n)))</pre>
for (k in 1:m)
  a \leftarrow B[k, k]
  for (j in 1:(n*2))
     B[k, j] \leftarrow B[k, j]/a
  for (i in 1:n)
     if (i != k)
         a \leftarrow B[i, k]
         for (j in 1:(n*2))
            B[i, j] \leftarrow B[i, j] - B[k, j]*a;
    }
return(B)
}
A = matrix(c(1,2,3,7,11,13,17,21,23), 3,3)
myGaussJordan(A,3)
         [,1] [,2] [,3] [,4] [,5] [,6]
   [1,]
                     0 1.00 -3.0 2.00
   [2,]
                        0 - 0.85
                                 1.4 - 0.65
   [3,]
                           0.35 - 0.4
```

Computing Efficiency

What is the time complexity?

Can we get rid of any loop?

```
myGaussJordan <- function(A, m)
n \leftarrow dim(A)[1]
B <- cbind(A, diag(rep(1, n)))</pre>
for (k in 1:m)
  a \leftarrow B[k, k]
  for (j in 1:(n*2))
      B[k, j] \leftarrow B[k, j]/a
  for (i in 1:n)
      if (i != k)
         a <- B[i, k]
         for (j in 1:(n*2))
             B[i, j] \leftarrow B[i, j] - B[k, j]*a;
return(B)
```