Logica e Modelli Computazionali

Problemi Difficili e Completi

Marco Console

Ingegneria Informatica e Automatica (Sapienza, Università di Roma)

La Quintessenza di una Classe di Complessità

- Una classe di complessità contiene solitamente un numero infinito di linguaggi e potrebbe contenere una o più sottoclassi di problemi interessanti
 - NP contiene P e EXPTIME contiene NP e P
- Alcuni linguaggi di una classe potrebbero non presentare tutte le caratteristiche della classe
 - I linguaggi in P non sono "caratteristici" della classe EXPTIME
 - Il linguaggio $PAL = \{s \in \Sigma^* \mid s \text{ è } palindroma\}$ è in **EXPTME** ma non presenta le stesse difficoltà di altri problemi all'interno della classe
- In generale, potrebbe non essere chiaro quali problemi sono davvero rappresentativi di una classe
- Le classi che abbiamo introdotto contengono tutte dei problemi speciali molto rappresentativi
 - Questi problemi presentano tutti i requisiti computazionali fondamentali di tale classe
 - È un sintomo della robustezza delle definizioni

Problemi Difficili e Completi – Intuizione

- Assumiamo una classe di linguaggi C qualunque
- Intuizione 1. Un problema P è C-hard se una MT che risolve P può risolvere ogni problema nella classe C se utilizzata come subroutine da altre macchine
 - \mathcal{P} è almeno tanto difficile quanto ogni altro problema in \mathbb{C} (se non di più)
- Intuizione 2. Un problema P è C-complete se è C-hard e appartiene a C
 - È tanto difficile quanto ogni altro problema in ℂ ma è anche in ℂ
 - Nota. Non "esattamente difficile quanto" ogni altro problema in C perché la classe può contenere un numero (infinito) di problemi facili (non C-hard)
- Intuizione 3. Una macchina per \mathcal{P} risolve ogni problema in \mathbb{C} se, per ogni problema \mathcal{P}' di \mathbb{C} esiste una riduzione da \mathcal{P}' a \mathcal{P}
 - Ma quale tipo di riduzione?

Problemi Difficili e Riduzioni – Intuizione

- **Definizione**. Siano A e B due linguaggi sugli alfabete Σ_A e Σ_B . A è *riducibile* a B ($A \leq_m B$), se esiste una funzione computabile $f: \Sigma^* \to \Sigma^*$ tale che, per ogni $x \in \Sigma^*$ $x \in A$ se e solo se $f(x) \in B$
- Potremmo essere tentati di utilizzare la nozione di riduzione di Karp per quella di C-hardness
- Definizione [Prova]. Un linguaggio \mathcal{L} è \mathbb{C} -hard se, per ogni $\mathcal{L}' \in \mathbb{C}$ abbiamo $\mathcal{L}' \leq_M \mathcal{L}$
 - Esiste una qualunque riduzione (funzione computable) da \mathcal{L}' ad \mathcal{L}
- Questa definizione non cattura però la nostra intuizione e da vita a comportamenti indesiderati
 - Perchè?

Problemi Difficili e Riduzioni – Intuizione – Esempio

- Prendiamo di nuovo l'esempio di PAL e la classe EXPTIME.
 - Intuitivamente, vorremmo affermare che PAL non è **EXPTIME**-hard visto che $PAL \in \mathbf{P}$
 - Non è almeno tanto difficile quanto simulare una Macchina di Turing per k passi ...
- Proposizione. PAL è EXPTIME-complete secondo la definizione di prova
- Dimostrazione. Chiaramente $PAL \in \mathbf{EXPTIME}$ perché $PAL \in \mathbf{P} \subseteq \mathbf{EXPTIME}$. Definiamo ora una riduzione da \mathcal{L} a PAL, per ogni problema $\mathcal{L} \in \mathbf{EXPTIME}$.
 - Sia f: Σ_L → Σ_{PAL} tale che f(x) = aa, se $x \in \mathcal{L}$, f(x) = ab altrimenti.
 - Chiaramente $f(x) \in PAL$ se e solo se $x \in \mathcal{L}$. Procediamo a dimostrare che f è computabile
 - $\mathcal{L} \in \mathbf{EXPTIME}$ implica l'esistenza di una macchina M che decide \mathcal{L}
 - Per calcolare f, una macchina M_f con input x simula M su x
 - Se M accetta x allora $M_f(x) = aa$
 - Altrimenti $M_f(x) = ab$

Riduzioni Efficienti – Intuizione

- Per evitare i problemi evidenziati nel lucido precedente, dobbiamo limitare il potere delle riduzioni
 - In particolare, la complessità computazionale delle macchine necessarie per calcolarle!
- Intuizione. Un linguaggio \mathcal{L} è \mathbb{C} -hard se, per ogni $\mathcal{L}' \in \mathbb{C}$ esiste una MT M tale che
 - M definisce una riduzione da \mathcal{L}' a \mathcal{L} ($M(x) \in \mathcal{L} \leftrightarrow x \in \mathcal{L}'$)
 - − M ha complessità strettamente inferiore a quella necessaria per riconoscere i linguaggi di C
- Utilizzando la nuova intuizione non possiamo più nascondere la complessità di C nella riduzione!
 - Perché non possiamo più risolvere il problema di C utilizzando solo la riduzione
 - Come accadeva nell'esempio precedente

Riduzioni Efficienti – Intuizione

- Definizione 1. Siano A e B due linguaggi sugli alfabeti Σ_A e Σ_B . A è *riducibile* a B ($A \leq_m B$), se esiste una funzione computabile $f: \Sigma^* \to \Sigma^*$ tale che, per ogni $x \in \Sigma^*$ $x \in A$ se e solo se $f(x) \in B$
- Intuizione. Per definire problemi EXPTIME-hard imponiamo riduzioni calcolabili in tempo polinomiale
- Definizione 2. Un linguaggio \mathcal{L} è EXPTIME-hard se, per ogni $\mathcal{L}' \in \mathbb{C}$ esiste una Macchina di Turing M tale che $M(x) \in \mathcal{L} \leftrightarrow x \in \mathcal{L}'$, per ogni $x \in \mathcal{L}$, e M ha complessità temporale $f = O(n^k)$ con $k \in \mathbb{N}$
- Utilizzando Definizione 2 la prova precedente del fatto che *PAL* è **EXPTIME**-hard non è più valida
 - Non abbiamo più utilizzare la riduzione per risolvere i problemi in EXPTIME
 - In questo modo, un problema EXPTIME-hard cattura effettivamente l'intuizione desiderata
- Teorema. $H_b = \{ (e(M), e(\sigma), e(n)) \mid M \text{ termina dopo } n \text{ passi } su \text{ input } \sigma \}$ è **EXPTIME**-complete

NP-Completezza

Riduzioni per la Classe NP

- Come abbiamo discusso fino ad ora, prima di parlare di problemi difficili e completi per una classe, dobbiamo stabilire quali riduzioni ammettiamo nelle nostre dimostrazioni
 - Classi diverse potrebbero aver bisogno di riduzioni diverse, come discusso
- Per la classe NP convenzionalmente utilizziamo riduzioni polinomiali
 - Riduzioni calcolabili con Macchine di Turing la cui complessità temporale è $O(n^k)$ per $k \in \mathbb{N}$
- Il motivo per questa scelta è duplice
 - Congetturiamo che i problemi in NP siano strettamente più difficili di quelli in P (ma non sappiamo dimostrarlo)
 - Una macchina deterministica con complessità temporale $f = O(n^k)$ può essere simulata da una macchina non deterministica con la stessa complessità.

La Nozione di Riduzione di Karp – Definizione

- **Definizione.** Una funzione $f: \Sigma^* \to \Sigma^*$ (con Σ un alfabeto di simboli) è *computabile* se esiste una **MdT** M_f tale che, per ogni $x \in \Sigma^*$, esiste una sequenza di configurazioni $C_1, ..., C_n$ di M_f con $C_1 = (\epsilon, q_0, x), C_n = (\epsilon, q_{yes}, f(x))$ e $C_i \Rightarrow_M C_{i+1}, i = 1, ..., n-1$
- Definizione. Diciamo che la macchina M_f calcola f
 - Intuizione. Per ogni $x \in \Sigma^*$, M_f termina in una configurazione in cui il suo nastro contiene solo f(x), effettivamente calcolando $f: \Sigma^* \to \Sigma^*$
- Definizione. Siano A e B due linguaggi sugli alfabeti Σ_A e Σ_B (non necessariamente gli distinti). A è Karp-riducibile a B ($A \leq_m B$), se esiste una funzione computabile $f: \Sigma_A^* \to \Sigma_B^*$ tale che, per ogni $x \in \Sigma_A^*$, $x \in A$ se e solo se $f(x) \in B$
 - Anche detto riducibile molti-a-uno, oppure semplicemente riducibile
- Definizione. La funzione f viene chiamata Karp-Riduzione da A in B
 - Anche riduzione molti a uno oppure semplicemente riduzione

Riduzioni efficienti

- Definizione. Una funzione f: Σ* → Γ* è computabile in tempo polinomiale se esiste una macchina di Turing M tale che:
 - M calcola f
 - M ha complessità temporale $O(n^k)$ per un qualche $k \in N$
- Definizione. Siano $A \in B$ due linguaggi. Diremo che $A \in Karp$ -riducibile in tempo polinomiale a B (denotato con $A \leq_m^p B$) se esiste una funzione computabile in tempo polinomiale $f: \Sigma^* \to \Sigma^*$ tale che, per ogni $x \in \Sigma^*$, $x \in A$ se e solo se $f(x) \in B$
 - Riducibile molti-a-uno in tempo polinomiale, oppure semplicemente riducibile in tempo polinomiale
- Definizione. La funzione f viene chiamata Karp-riduzione in tempo polinomiale da A in B
 - Riduzione molti-a-uno polinomiale, oppure semplicemente riduzione polinomiale

Linguaggi Difficili e Completi Per NP

- Utilizzando le riduzioni polinomiali siamo pronti a definire i problemi NP-hard
- Definizione: Un linguaggio L si dice NP-hard sotto le riduzioni polinomiali se per ogni $L' \in \mathbb{NP}$ è tale che $L' \leq_m^p L$
 - Semplicemente NP-hard se questo non crea confusione
- Definizione : Un linguaggio L si dice NP-complete sotto le riduzioni in tempo polinomiale se: $L \in NP \in L$ è NP-hard sotto le riduzioni in tempo polinomiale
- Domanda. Esistono problemi NP-completi?

Linguaggi Difficili e Completi Per NP

- Fissiamo un alfabeto di variabili proposizionali V e un Encoding ragionevole e per le formule proposizionali su V
 - Possiamo utilizzare i simboli stessi delle formule nella macchina
- Definizione. L_{SAT} è il linguaggio di stringhe definito come segue $\{e(\varphi) \mid \varphi \text{ è una formula proposizionale soddisfacibile su } V\}$
- Teorema [Cook-Levin]: L_{SAT} è NP-hard (e quindi **NP-completo**).
- **Dimostrazione**. La dimostrazione (non banale) definisce una riduzione per ogni $L \in \mathbf{NP}$
- Se $L \in \mathbb{NP}$ allora esiste una MdT non-deterministica M_L che decide L in tempo polinomiale
- Definiamo una funzione e_M tale che, per ogni input x per M, $e_M(x)$ è una formula proposizionale e $e_M(x)$ è soddisfacibile se e solo se M accetta x
- Dimostriamo che e_M è una funzione calcolabile in tempo polinomiale (utilizzando M)
- Concludiamo che e_M è una riduzione polinomiale da L a L_{SAT}

Forma Normale Congiuntiva

- **Definizione.** Una formula della logica proposizionale φ è in Forma Normale Congiuntiva (CNF) se è nella forma $c_1 \land c_2 \land \cdots \land c_n$ dove ogni c_i è una formula della forma $(l_1 \lor l_2 \lor \cdots \lor l_k)$ e l_i è una variabile o una variabile negata.
 - Ogni c_i è una clausola di φ
- Esempi. Le seguenti formule sono in Forma Normale Congiuntiva
 - $(v_2) \land (v_1 \lor v_2) \land (v_1 \lor \neg v_3 \lor v_4) \land (v_4 \lor \neg v_4 \lor v_5 \lor v_6)$
 - $-(v_1) \wedge (v_2) \wedge (\neg v_3)$
 - $(v_1 \lor v_2 \lor v_3) \land (v_1 \lor \neg v_3 \lor v_4)$
- Esempi. Le seguenti formule NON sono in Forma Normale Congiuntiva
 - $(v_2) \land \neg (v_1 \lor v_2) \land (v_1 \lor \neg v_3 \lor v_4) \land (v_4 \lor \neg v_4 \lor v_5 \lor v_6)$
 - $-(v_1 \rightarrow v_2)$
 - $(v_1 \wedge v_2) \vee (\neg v_2 \wedge v_3)$

Linguaggi Difficili e Completi Per NP

- Fissiamo un alfabeto di variabili proposizionali ${f V}$ e un Encoding ragionevole ${m e}$ per le formule proposizionali su ${m V}$
 - Possiamo utilizzare i simboli stessi delle formule nella macchina
- Definizione. CNF è il linguaggio di stringhe definito come segue $\{e(\varphi) \mid \varphi \text{ è una formula proposizionale in forma normale congiuntiva soddisfacibile su } V\}$
- Teorema: CNF è NP-hard (e quindi NP-completo).
- Dimostrazione. Le formule prodotte dalla dimostrazione del teorema di Cook e Levin possono essere trasformate in formule in CNF in tempo polinomiale.
- Tale prova è stata fornita nello stesso articolo scientifico in cui è stata dimostrata l'NP-completezza di ${\cal L}_{SAT}$

In P o NP-completo?

In P o NP-completo?

- La classe NP contiene una grande quantità di problemi computazionali naturali e di forte interesso pratico (molti dei problemi affrontati quotidianamente sono in NP)
- Quando ci troviamo di fronte ad uno di questi problemi, la cosa più naturale da fare è
 capire se il problema sia risolvibile in tempo polinomiale (e quindi il problema è in P)
 oppure dimostrare che il problema è NP-hard (e quindi NP-completo)
 - Tramite una riduzione da un altro problema che è già noto essere NP-difficile.
- Nel secondo caso, abbiamo appena dimostrato che molto probabilmente non esiste un algoritmo che risolva il problema in tempo polinomiale
 - Tale algoritmo esisterebbe solo se P = NP

3CNF

- **Definizione.** Una formula della logica proposizionale è kCNF se è nella forma $c_1 \land c_2 \land \cdots \land c_n$ dove ogni c_i è una formula della forma $(l_1 \lor l_2 \lor l_3)$ e l_i è una variabile o una variabile negata.
- Esempi. Le seguenti formule sono in Forma Normale Congiuntiva
 - $(v_1 \lor v_2 \lor v_3) \land (v_1 \lor \neg v_3 \lor v_4)$
- Esempi. Le seguenti formule NON sono in Forma Normale Congiuntiva
 - $(v_2) \land (v_1 \lor v_2) \land (v_1 \lor \neg v_3 \lor v_4) \land (v_4 \lor \neg v_4 \lor v_5 \lor v_6)$
 - $-(v_1) \wedge (v_2) \wedge (\neg v_3)$
 - $(v_2) \land \neg (v_1 \lor v_2) \land (v_1 \lor \neg v_3 \lor v_4) \land (v_4 \lor \neg v_4 \lor v_5 \lor v_6)$
 - $-(v_1 \to v_2)$
 - $(v_1 \wedge v_2) \vee (\neg v_2 \wedge v_3)$

3CNF rimane NP-completo - I

- Definizione. 3CNF è il linguaggio di stringhe definito come segue $\{e(\varphi) \mid \varphi \text{ è una formula proposizionale in 3CNF soddisfacibile su }V\}$
- Teorema. $CNF \leq_m^p 3CNF$
- **Dimostrazione**. Dimostriamo l'esistenza di una funzione computabile in tempo polinomiale f che, data $\phi \in CNF$, restituisce una $f(\phi)$ in 3CNF tale che ϕ è soddisfacibile se e solo se lo è $f(\phi)$
- Considera ogni clausola $c_i = l_{i,1} \vee \cdots \vee l_{i,p_i}$ di ϕ . Abbiamo 4 possibili cai -1) $p_i = 1, 2$) $p_i = 2, 3$) $p_i = 3, 4$) $p_i > 3$
- Nel caso 1), introduciamo due nuove variabili $x'_{i,1}$ e $x'_{i,2}$ e $f(\phi)$ produce le clausole: $(l_{i,1} \lor x'_{i,1} \lor x'_{i,2}) \land (l_{i,1} \lor \neg x'_{i,1} \lor x'_{i,2}) \land (l_{i,1} \lor x'_{i,1} \lor \neg x'_{i,2}) \land (l_{i,1} \lor \neg x'_{i,2})$
- Per costruzione, se un'assegnazione T rende vera $f(\phi)$, allora il letterale $l_{i,1}$ deve necessariamente essere vero (ovvero, se $l_{i,1} = x$, allora T(x) = 1; altrimenti, T(x) = 0)

3CNF rimane NP-completo - II

- Nel caso 2), si introduce una nuova variabile $x'_{i,1}$ e $f(\phi)$ produce le seguenti clausole: $(l_{i,1} \lor l_{i,2} \lor x'_{i,1}) \land (l_{i,1} \lor l_{i,2} \lor \neg x'_{i,1})$
- Per costruzione, se un'assegnazione T rende vera $f(\phi)$, allora uno dei due letterali tra $l_{i,1}$ e $l_{i,2}$ deve necessariamente essere vero
- Nel caso 3), $f(\phi)$ copia semplicemente la clausola c_i così com'è
- Nel caso 4), si riduce la dimensione della clausola $c_i = (l_{i,1} \lor \cdots \lor l_{i,p_i})$ come segue: $(\boldsymbol{l_{i,1}} \lor \boldsymbol{l_{i,2}} \lor \boldsymbol{x_i'}) \land (\neg \boldsymbol{x_i'} \lor \boldsymbol{l_{i,3}} \lor \cdots \lor \boldsymbol{l_{i,p_i}})$, dove $\boldsymbol{x_i'}$ è una nuova variabile
- Quindi $f(\phi)$ aggiunge la clausola $(l_{i,1} \lor l_{i,2} \lor x_i')$ di tre letterali e passa poi a ridurre (se necessario) la rimanente clausula $(\neg x_i' \lor l_{i,3} \lor \cdots \lor l_{i,p_i})$

3CNF rimane NP-completo - III

```
Esempio: Se c_4 = (x_1 \vee \neg x_3 \vee x_7 \vee \neg x_8 \vee \neg x_6), allora f(\phi) prima sostituisce c_4 con: (x_1 \vee \neg x_3 \vee x_{4,1}') \wedge (\neg x_{4,1}' \vee x_7 \vee \neg x_8 \vee \neg x_6)
Poi sostituisce (\neg x_{4,1}' \vee x_7 \vee \neg x_8 \vee \neg x_6) con: (\neg x_{4,1}' \vee x_7 \vee x_{4,2}') \wedge (\neg x_{4,2}' \vee \neg x_8 \vee \neg x_6)
```

- Chiaramente, f costruisce una 3CNF in tempo polinomiale
- Dobbiamo dimostrare che $f(\varphi) \in 3CNF$ se e solo se $\varphi \in CNF$.
 - Per farlo possiamo dimostrare il seguente risultato
- Lemma. Sia c una clasola di $\varphi \in CNF$ e sia I una interpretazione per le variabili in φ . Allora $I \models c$ se e solo se $I' \models f(c)$, dove I' è l'interpretazione per le variabili di $f(\varphi)$ definita come segue
 - I'(v) = I(v) per ogni variabile v in φ
 - I'(v) = 0 per ogni variabile v di $f(\varphi)$ che non compare in φ

3CNF rimane NP-completo – Esempio Riduzione

- Consideriamo $\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (x_1) \land (x_2 \lor x_3)$
- La formula $f(\varphi)$ è definita come segue
 - $(x_1 \lor \neg x_2 \lor \neg x_3)$ rimane invariato
 - $(x_1 \lor \neg x_2 \lor \neg x_3)$
 - $(x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4)$ viene spezzato in due clausole
 - $(x_1 \lor \neg x_2 \lor V_1) \land (\neg V_1 \lor \neg x_3 \lor x_4)$
 - $-(x_1)$ subisce un padding con 2 altre variabili
 - $\bullet \ \ (x_1 \vee V_2 \vee V_3) \wedge (x_1 \vee \neg V_2 \vee V_3) \wedge (x_1 \vee V_2 \vee \neg V_3) \wedge (x_1 \vee \neg V_2 \vee \neg V_3)$
 - $(x_2 \lor x_3)$ subject un padding con 1 altra variabile
 - $(x_2 \lor x_3 \lor V_4) \land (x_2 \lor x_3 \lor \neg V_4)$
- La formula $f(\varphi)$ è la congiunzione delle clausole in verde

- Definizione Un independent set I di un grafo G = (V, E) è un insieme \mathcal{I} di nodi tale che
 - $-\mathcal{I}\subseteq V$;
 - Per ogni coppia di nodi $(i,j) \in V^2$, abbiamo che $(i,j) \notin E$
- Definizione. IndSet è il linguaggio di stringhe definito come segue $\{e(G,k) \mid \text{Esiste un independent set } I \text{ di } G \text{ con } |I| = k\}$
- Proposizione. IndSet è NP-completo
- Dimostrazione. IndSet \in NP è ovvio. Dimostriamo che 3CNF \leq_m^p IndSet, e che quindi IndSet è anche NP-hard

Non è un Indiendent set

Un grafo della forma (a, b), (b, c), (c, d)
 è detto un triangolo

- Osservazione 1: Dato un triangolo *G*, ogni Independent Set di *G* può contenere al massimo un nodo
- Osservazione 2: Dato un triangolo *G'* in cui *G* è un sottografo, ogni Independent Set di *G'* può contenere al massimo un nodo da *G*

IndSet è NP-completo - Il

- Data una formula ϕ in 3CNF contenente m clausole, f costruisce un grafo $G(\phi)$ sui nodi $V(\phi) = \{v_{i,j} \mid 1 \le i \le m, \ 1 \le j \le 3\}$ e un valore k_{ϕ} nel seguente modo:
 - Ogni clausola di ϕ corrisponde ad un triangolo in $G(\phi)$: per ogni clausola $c_i = (l_{i,1} \lor l_{i,2} \lor l_{i,3})$ di ϕ , f aggiunge in $G(\phi)$ i seguenti archi: $(v_{i,1}, v_{i,2})$, $(v_{i,1}, v_{i,3})$, $(v_{i,2}, v_{i,1})$, $(v_{i,2}, v_{i,3})$, $(v_{i,3}, v_{i,1})$ e $(v_{i,3}, v_{i,2})$
 - Due nodi in triangoli diversi sono connessi se e solo se i corrispondenti letterali l, l' sono tali che $l = \neg l'$ (cioè se e solo se corrispondono a letterali opposti): $G(\phi)$ contiene anche i seguenti archi:

$$\{(v_{i,j}, v_{p,k}) \mid i \neq p \land l_{i,j} = \neg l_{p,k}\} \cup \{(v_{p,k}, v_{i,j}) \mid i \neq p \land l_{i,j} = \neg l_{p,k}\}$$

- Definiamo $k(\phi) = m$ (numero di clausola)

IndSet è NP-completo – Esempio Effetto Riduzione

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

IndSet è NP-completo – Esempio Effetto Riduzione

IndSet è NP-completo - III

- La funzione f trasforma d_{ϕ} in d_{G} , d_{k} , è una funzione computabile in tempo polinomiale.
 - Semplicemente, scorre la formula e costruisce le componenti (gadget) della riduzioen
- Lemma. $f(x) \in IndSet$ se e solo se $x \in 3CNF$.
- Assumiamo $f(x) \in IndSet$, dimostriamo $x \in 3CNF$.
 - Se $f(x) \in IndSet$, allora $G(\phi)$ ha un I.S. \mathcal{I} tale che $|\mathcal{I}| = m$ pari al numero di clausole in x
 - Come abbiamo osservato, all'interno di un "triangolo", un I.S. può contenere un solo nodo
 - 1. Affinché un \mathcal{I} abbia dimensione m, quindi, \mathcal{I} deve contenere un nodo per ogni triangolo di $G(\phi)$
 - Non ci sono altri nodi disponibili all'interno di G
 - 2. Inoltre \mathcal{I} non può contenere nodi che rappresentano $x \in \neg x$ (per qualunque $x \in Var(\phi)$)
 - 1. Tali nodi sono collegati in $G(\phi)$ e non sarebbe un Independent Set
 - Consideriamo ora $J: Var(\phi) \rightarrow \{0,1\}$ tale che
 - J(v) = 1 se un nodo che rappresenta il letterale v (v positivo) è in \mathcal{I} ,
 - J(v) = 0 altrimenti, $\forall v \in Var(\phi)$
 - J è una interpretazione per ϕ (non assegna la stessa variabile a due valori di verità a causa di 2)
 - Inoltre J soddisfa ϕ (soddisfa un letterale per clausola a causa di 1)

IndSet è NP-completo - III

- La funzione f trasforma d_{ϕ} in d_{G} , d_{k} , è una funzione computabile in tempo polinomiale.
 - Semplicemente, scorre la formula e costruisce le componenti (gadget) della riduzioen
- Lemma. $f(x) \in IndSet$ se e solo se $x \in 3CNF$.
- Assumiamo $x \in 3CNF$ dimostriamo che $f(x) \in IndSet$
 - Se $x \in 3CNF$ allora esiste un assegnamento J che soddisfa ϕ
 - 1. Chiaramente, J soddisfa almeno 1 letterale per ogni clausola di ϕ
 - 2. Sia $\mathcal I$ l'insieme dei nodi di $G(\phi)$ tale che, per ogni clausola di ϕ , $\mathcal I$ contiene esattamente 1 nodo che rappresenta un letterale soddisfatto da J
 - Procediamo a dimostrare che \mathcal{I} è un Independent Set di dimensione m
 - La dimensione di \mathcal{I} è m per costruzione (ci sono m clausole nella formula)
 - Per ogni triangolo di $G(\phi)$, \mathcal{I} contiene esattamente 1 nodo (il letterale soddisfatto da J Punto 1)
 - Inoltre, \mathcal{I} non contiene nodi che rappresentano un variabile e la sua negazione (Punto 2)
 - Visto che gli archi di $G(\phi)$ provengono dai triangoli o dai letterali inversi, concludiamo che \mathcal{I} è un IS

VertexCover è NP-completo - I

- Definizione Un Vertex Cover C di un grafo $G = \langle V, E \rangle$ è un insieme di nodi tale che per ogni arco $(a,b) \in E$, $a \in C$ oppure $b \in C$
- Definizione. VC è il linguaggio di stringhe definito come segue $\{e(G,k) \mid \text{Esiste un Vertex Cover } C \text{ di } G \text{ con } |C|=k\}$
- Proposizione. VC è NP-completo
- Dimostrazione. VC \in NP è ovvio. Dimostriamo che $IndSet \leq_m^p VC$, e che quindi VC è anche NP-hard. Per dimostrare la proprietà desiderata passiamo per il seguente lemma
- Lemma. Sia $G = \langle V, E \rangle$ un grafo. \mathcal{I} è un Independent Set di G se e solo se $V \setminus \mathcal{I}$ è un Vertex Cover di G

VertexCover è NP-completo - I

- Lemma. Sia $G = \langle V, E \rangle$ un grafo. \mathcal{I} è un Independent Set di G se e solo se $V \setminus \mathcal{I}$ è un Vertex Cover di G
- Dimostrazione. Dividiamo la dimostrazione in due casi.
- Assumiamo che \mathcal{I} sia un Independent Set di G. Non esiste nessun arco $e \in E$ tale che e = (a, b) e $a, b \in \mathcal{I}$, altrimenti \mathcal{I} non sarebbe un IS a causa di e. Quindi $V \setminus S$ contiene a oppure b per ogni $(a, b) \in E$. Concludiamo che tale insieme è un Vertex Cover.
- Assumiamo che V \ J sia un Vertex Cover di G. Allora, per ogni arco di e ∈ E tale che e = (a, b) abbiamo a ∈ V \ J oppure b ∈ V \ J. In questo caso, J non può contenere alcuna coppia a, b ∈ V tale che (a, b) ∈ E. Concludiamo che tale J è un Independent Set di G

VertexCover è NP-completo - I

- Proposizione. VC è NP-completo
- Dimostrazione. $VC \in NP$ è ovvio. Dimostriamo che $IndSet \leq_m^p VC$, e che quindi VC è anche NP-hard. Per dimostrare la proprietà desiderata passiamo per il seguente lemma
- Lemma 1. Sia $G = \langle V, E \rangle$ un grafo. \mathcal{I} è un Independent Set di G se e solo se $V \setminus \mathcal{I}$ è un Vertex Cover di G
- Definiamo f(G, k) = (G, |V| k).
 - La computabilità in tempo polinomiale è ovvia
- Dimostriamo la (semplicissima) correttezza applicando Lemma 1
- Se $(G, |V| k) \in VC$ allora esiste un Vertex Cover C= $V \setminus I$ di dimensione |V| k (Lemma 1)
 - Possiamo concludere che $(G, k) \in IndSet$ essendo \mathcal{I} un Independent Set di dimensione k
- Se $(G, k) \in IndeSet$ allora esiste un Independent set \mathcal{I} di dimensione k.
 - Possiamo concludere che $(G, |V| k) \in VC$ perché $V \setminus \mathcal{I}$ (la cui dimensione è k) è un vertex cover (Lemma 1)

SetCover è NP-completo - I

- Definizione Un Set Cover C di una famiglia di insiemi U è una famiglia $C \subseteq U$ tale che la sua unione è uguale all'unione U
- Esempio: $U = \{1, 2, 3, 4, 5\}$, $C = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}\}$, k = 2. In questo caso, abbiamo $\{1, 2, 3\} \cup \{4, 5\} = U$
- **Esempio**: $U = \{1, 2, 3, 4, 5\}$, $C = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{5\}\}$, k = 2. In questo caso, non esistono due insiemi in C la cui unione fa U
- Definizione. SC è il linguaggio di stringhe definito come segue $\{e(U,k) \mid \text{Esiste un Set Cover } C \text{ di } U \text{ con } |C| = k\}$
- Proposizione. SC è NP-completo
- Dimostrazione. $SC \in NP$ è ovvio. Possiamo dimostrare che $VC \leq_m^p SC$.

Hamiltonian Path è NP-completo

- Definizione Un Set Cover C di una famiglia di insiemi U è una famiglia $C \subseteq U$ tale che la sua unione è uguale all'unione U
- Esempio: $U = \{1, 2, 3, 4, 5\}, C = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}, k = 2$. In questo caso, abbiamo $\{1, 2, 3\} \cup \{4, 5\} = U$
- **Esempio**: $U = \{1, 2, 3, 4, 5\}$, $C = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{5\}\}$, k = 2. In questo caso, non esistono due insiemi in C la cui unione fa U
- Definizione. SC è il linguaggio di stringhe definito come segue $\{e(U,k) \mid \text{Esiste un Set Cover } C \text{ di } U \text{ con } |C| = k\}$
- Proposizione. SC è NP-completo
- Dimostrazione. $SC \in NP$ è ovvio. Possiamo dimostrare che $VC \leq_m^p SC$.

Linguaggi NP-Complete Visti Fino a Ora

Hamiltonian Path è NP-Completo

- **Definizione.** Un grafo è una coppia $\langle V, E \rangle$ dove V è un insieme (nodi) e E è un insieme di coppie non ordinate di elementi di V (archi)
- **Definizione.** Un cammino (path) p in un grafo G è una sequenza di archi $e_1, e_2, ..., e_n$ di G tale che $e_i \cap e_{i+1} \neq \emptyset$, per i = 1, ..., n e ogni nodo compare in al più un arco della sequenza.
- **Definizione.** Un cammino (path) p in un grafo G è Hamiltoniano se ogni nodo del grafo G compare in almeno (esattamente) un arco della sequenza
- Fissiamo un Encoding ragionevole *e* per i grafi non orientati
 - Simboli per i nodi e coppie per gli archi oppure matrice di incidenza
- Definizione. Il linguaggio di stringhe P_H è definito come segue $\{e(G) \mid G \text{ contiene un cammino hamiltoniano}\}$
- Proposizione. P_H è in NP completo