Analiza podataka i obrada informacija

Nositelj: izv. prof. dr. sc. Siniša Sovilj **Asistent**: mag. inf. Alesandro Žužić

Ustanova: Sveučilište Jurja Dobrile u Puli, Fakultet informatike u Puli

[3] Korelacija i regresija, vremenski nizovi, klasifikacija i grupacija

Korelacija mjeri linearnu povezanost između varijabli. Regresija modelira odnose za predviđanje vrijednosti. Vremenski nizovi analiziraju podatke ovisne o vremenu. Klasifikacija dodjeljuje podatke unaprijed definiranim kategorijama, dok grupiranje (klasteriranje) automatski identificira prirodne grupe u podacima. U R-u se koriste funkcije poput cor(), lm(), forecast(), caret i kmeans(), a vizualizacija pomaže u interpretaciji rezultata.

Posljednje ažurirano: 11. travnja 2025.

- Analiza podataka i obrada informacija
- [3] Korelacija i regresija, vremenski nizovi, klasifikacija i grupacija
 - o Korelacija
 - Četiri osnovna tipa korelacijskih odnosa:
 - Koeficijenti korelacije
 - Pearsonov koeficijent korelacije
 - Spearmanov koeficijent korelacije
 - Matrica korelacije
 - Outlieri u korelacijskoj analizi
 - Kovarijanca
 - o Regresijska analiza
 - Linearna regresija
 - Logistička regresija

Korelacija

Korelacija kvantificira statističku povezanost između **dvije numeričke** varijable, pokazujući koliko se one zajedno mijenjaju. Povezanost znači da je vrijednost jedne varijable s nekom vjerojatnošću moguće predvidjeti na osnovi saznanja o vrijednosti druge varijable.

Promjena vrijednosti jedne varijable utječe na promjenu vrijednosti druge varijable. Varijabla koja svojom vrijednošću utječe na drugu varijablu naziva se **neovisna varijabla**. Varijabla na koju se utječe naziva se **ovisna varijabla**.

Mogući su slučajevi da dvije varijable istovremeno utječu jedna na drugu, pa su u tom slučaju obje varijable istovremeno i ovisne i neovisne.

U R-u korelacija se računa pomoću sljedeće funkcije:

Međusoban odnos između dvije varijable, grafički možemo prikazati pomoću dvodimenzionalnog grafa, tzv. **scatter dijagram** (dijagrama raspršenja).

Ovisno o međusobnom odnosu dvaju varijabli među kojima postoji korelacija, ona može biti **linearna** ili **nelinearna**.

- Kod **linearne korelacije**, točke su grupirane oko pravca.
- Kod nelinearne korelacije, točke su grupirane oko neke druge krivulje.

Četiri osnovna tipa korelacijskih odnosa:

1. Pozitivna korelacija (+)

- Karakteristike:
 - Mala vrijednost varijable X ↔ mala vrijednost varijable Y
 - Velika vrijednost varijable X ↔ velika vrijednost varijable Y
- o Grafički prikaz: Točke se koncentriraju oko uzlazne linije

2. Negativna korelacija (-)

- Karakteristike:
 - Mala vrijednost varijable X ↔ velika vrijednost varijable Y
 - Velika vrijednost varijable X ↔ mala vrijednost varijable Y
- o Grafički prikaz: Točke se koncentriraju oko silazne linije

3. Nemonotona korelacija (ciklička)

- Karakteristike:
 - Odnos se mijenja po intervalima
 - U nekim dijelovima može biti pozitivan, u drugima negativan
 - Ako se smjer mijenja više puta → ciklička korelacija
- Grafički prikaz: Točke slijede valoviti obrazac (npr. sinusoida)

4. Nul-korelacija (0)

- Karakteristike:
 - Nema vidljive veze između varijabli
 - Vrijednosti jedne varijable ne pružaju informaciju o vrijednostima druge
- o Grafički prikaz: Točke potpuno nasumično raspršene

Tip korelacije	Smjer	Snaga	Primjer vizualizacije
Pozitivna	7	Jaka do umjerena	Točke blisko uz uzlaznu liniju
Negativna	`	Jaka do umjerena	Točke blisko uz silaznu liniju
Nemonotona	Promjenjiv	Varira	Valoviti/periodični obrazac

Koeficijenti korelacije

Koeficijenti korelacije mjere povezanost između varijabli na standardiziranoj skali neovisnoj o mjernim jedinicama. Dva najčešća koeficijenta su:

- 1. **Pearsonov (r)** mjeri **linearnu** povezanost (-1 do +1), optimalan za normalno distribuirane podatke
- 2. **Spearmanov (ρ)** mjeri **monotonu** povezanost kroz rangove, robusniji na nelinearnosti i outlier-e

Pearson je osjetljiv na linearne odnose, dok Spearman hvata širi spektar monotonih veza (uključujući nelinearne). Oba koeficijenta eliminiraju utjecaj mjernih jedinica, omogućavajući usporedbu različitih varijabli.

Pearsonov koeficijent korelacije

Pearsonov koeficijent (r) mjeri **linearnu povezanost** između dvije numeričke varijable s normalnom distribucijom. Vrijednost Pearsonovog koeficijenta korelacije kreće se od +1 (savršena pozitivna korelacija) do -1 (savršena negativna korelacija). **Predznak** koeficijenta nas upućuje na **smjer korelacije** – je li pozitivna ili negativna, ali nas ne upućuje na snagu korelacije. Pearsonov koeficijent korelacije bazira se na usporedbi stvarnog utjecaja promatranih varijabli jedne na drugu u odnosu na maksimalni mogući utjecaj dviju varijabli. Vrijednosti:

- +1: savršena pozitivna korelacija
- -1: savršena negativna korelacija
- 0: nema linearne veze

Osjetljiv je na outlier-e te zahtijeva linearnost i normalnu distribuciju

cor() funkcija uvijek koristi Pearsonov koeficijent tako da se ne navodi kao argument:

Vrijednosti Pearsonovog koeficijenta korelacije:

Vrijednost (r)	Jakost veze	Smjer veze
-1.0	Funkcionalna veza	Negativan
-1.0 < r < -0.8	Jaka veza	Negativan
-0.8 ≤ r < -0.5	Umjerena veza	Negativan
-0.5 ≤ r < 0	Slaba veza	Negativan
0	Nema linearne veze	-
0 < r ≤ 0.5	Slaba veza	Pozitivan
0.5 < r ≤ 0.8	Umjerena veza	Pozitivan
0.8 < r < 1.0	Jaka veza	Pozitivan
1.0	Funkcionalna veza	Pozitivan

Spearmanov koeficijent korelacije

Spearmanov koeficijent (p) mjeri **monotonu povezanost** (linearne i nelinearne) kroz rangove vrijednosti. Koristi se za mjerenje povezanosti između varijabli u slučajevima kada nije moguće primijeniti Pearsonov koeficijent korelacije. Bazira se na tome da se izmjeri dosljednost povezanosti između poredanih varijabli, a oblik povezanosti (npr. linearni oblik koji je preduvjet za korištenje Pearsonovog koeficijenta) nije bitan.

Robusniji na odstupanja od normalnosti te detektira širi spektar veza

Da bi koristili **Spearmanov koeficijent** u cor() funkciji trebamo ga navesti kao metodu:

Matrica korelacije

Matrica korelacije je tabularni prikaz koeficijenata korelacije između svih parova varijabli u skupu podataka. Omogućuje:

- Simultani pregled međusobnih odnosa više varijabli
- Identifikaciju najjačih povezanosti
- Preliminarnu analizu prije složenijih statističkih modela

Dijagonala: Uvijek sadrži vrijednosti 1 (savršena korelacija varijable same sa sobom) **Simetričnost**: cor(X,Y) = cor(Y,X)

Izrada korelacijske matrice u R-u s pomoću corrplot() ili corrgram() funkcija:

```
#install.packages("corrplot")
#install.packages("corrgram)
library(corrplot)
library(corrgram)

par(mfrow = c(2, 3))
cor_matrix <- cor(quakes)

corrplot(cor_matrix) # method = "circle" - ako nije postavljeno
corrplot(cor_matrix, method = "color")
corrplot(cor_matrix, method = "number")
corrplot(cor_matrix, method = "square")
corrplot(cor_matrix, method = "ellipse")
corrplot(cor_matrix, method = "pie")</pre>
```


Izrada korelacijske matrice u R-u s pomoću pairs() funkcije:

Outlieri u korelacijskoj analizi

Outlieri su **ekstremne vrijednosti** koje značajno odstupaju od većine podataka i mogu dramatično utjecati na rezultate korelacijske analize. Budući da *Pearsonov koeficijent* koristi metode najmanjih kvadrata, samo nekoliko ekstremnih vrijednosti može potpuno iskriviti pravi odnos između varijabli. Vizualna detekcija s pomoću **boxplot**-a jedan je način za vizualnu identifikaciju outliera.

U praksi se koriste **kvantitativne metode** za identifikaciju outliera, poput:

- Uklanjanja vrijednosti izvan ±2 standardne devijacije
- IQR metode (vrijednosti izvan 1.5×IQR od kvartila)

Ključni izazov je razlikovati prave outliere od rijetkih ali autentičnih vrijednosti. U velikim uzorcima s malim brojem outliera, njihovo uklanjanje je opravdano. Međutim, u malim uzorcima ili kada outlieri predstavljaju važne biološke/prirodne pojave, njihovo uklanjanje može dovesti do gubitka ključnih informacija.

Kovarijanca

Kovarijanca mjeri zajedničku varijabilnost dviju numeričkih varijabli, pokazujući kako se jedna mijenja u odnosu na drugu. Za razliku od korelacije koja je standardizirana, kovarijanca ovisi o mjernim jedinicama varijabli što otežava izravnu usporedbu između različitih studija. Računa se kao prosječni umnožak odstupanja svake varijable od svoje srednje vrijednosti.

Pozitivna vrijednost ukazuje da se veće vrijednosti jedne varijable obično javljaju uz veće vrijednosti druge, dok **negativna pokazuje** suprotan odnos. **Nulta vrijednost** sugerira odsutnost linearne povezanosti.

- Pozitivna kovarijanca: Veće vrijednosti X tendiraju uz veće vrijednosti Y
- Negativna kovarijanca: Veće vrijednosti X tendiraju uz manje vrijednosti Y
- Nula: Nema linearne povezanosti

U R-u kovarijanca se računa pomoću sljedeće funkcije:

cov(x, y)

Korelacija je standardizirana verzija kovarijance:
[\rho = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}]
Dok kovarijanca može biti bilo koji realan broj, korelacija je uvijek između -1 i 1.

Multikolearnost

Multikolinearnost nastaje kada su dva ili više prediktora u regresijskom modelu visoko međusobno korelirana, što otežava pouzdano procjenjivanje njihovih pojedinačnih utjecaja.

Zašto je problematična:

- Koeficijenti postaju nestabilni i osjetljivi na male promjene u podacima
- Standardne pogreške rastu → p-vrijednosti mogu postati nenamjerno visoke
- Teže je interpretirati doprinos pojedinih varijabli

Kako otkriti:

- Korelacijska matrica: Pogledati visoke korelacije između prediktora (npr. > 0.8)
- VIF (Variance Inflation Factor): Ako je VIF > 5 (ili 10), postoji jaka multikolinearnost

```
library(car)
vif(model)
```

Rješenja:

- Ukloniti jedan od koreliranih prediktora
- Kombinirati varijable (npr. PCA)
- Korištenje regularizacije (npr. Ridge, Lasso regresija)

```
sqrt(vif(model))>2
# Ako je sve false neme problema multikolinearnosti
```

Regresijska analiza

Regresijska analiza omogućuje kvantificiranje veze između promatranih pojava kroz matematički model.

- 1. **Objašnjenje odnosa**: Utvrđivanje kako nezavisne varijable utječu na zavisnu varijablu
- 2. **Predviđanje vrijednosti**: Procjena budućih vrijednosti zavisne varijable na temelju poznatih vrijednosti nezavisnih varijabli

Tipovi regresije:

Тір	Formula	Primjena
Linearna	$(Y = \beta_0 + \beta_1 X + \epsilon)$	Kontinuirani odnosi
Logistička	$(ln(frac{p}{1-p}) = \beta X)$	Binarni ishodi
Polinomska	$(Y = \beta_0 + \beta_1 X + \beta_2 X^2)$	Nelinearni trendovi

Linearna regresija

Primjer:

```
# Linearna regresija
model <- lm(mpg ~ wt + hp, data = mtcars)
summary(model)</pre>
```

Output:

Ova naredba u R-u:

```
lm(formula = mpg ~ wt + hp, data = mtcars)
```

pokreće **linearnu regresiju** gdje je cilj predvidjeti **potrošnju goriva u miljama po galonu (mpg)** na temelju dvaju prediktora:

- wt: težina automobila (u tisućama funti),
- hp: konjske snage automobila.

Rezultat koji dobivamo sastoji se od nekoliko dijelova:

1. Reziduali (Residuals):

```
Min 1Q Median 3Q Max
-3.941 -1.600 -0.182 1.050 5.854
```

Reziduali su razlike između stvarnih vrijednosti (mpg) i onih predviđenih modelom:

- Min: Najveća negativna pogreška
- 1Q: Donji kvartil (25% podataka ima manji rezidual)
- Median: Srednja vrijednost reziduala (idealno blizu 0)
- 3Q: Gornji kvartil (25% podataka ima veći rezidual)

• Max: Najveća pozitivna pogreška

2. Koeficijenti regresije (Coefficients):

Predictor	Estimate	Std. Error	t value	Pr(>t)	Signif. code
Intercept	37.227	1.599	23.285	< 2e-16	***
wt	-3.878	0.633	-6.129	1.12e-06	***
hp	-0.03177	0.00903	-3.519	0.00145	**

- Intercept (presjek): Kada su težina i snaga 0, očekivana vrijednost mpg je 37.23 (tehnički, nije realna situacija, ali služi kao referentna točka).
- wt: Svako povećanje težine za 1 (tj. 1000 funti) smanjuje mpg za 3.88 jedinica, pod uvjetom da su ostali prediktori konstantni.
- hp: Svako povećanje snage za 1 konjsku snagu smanjuje mpg za oko 0.032 jedinice.

Std. Error (standardna pogreška): Predstavlja procjenu nesigurnosti oko vrijednosti koeficijenta. Manja vrijednost znači veću pouzdanost.

• standardna pogreška za wt iznosi 0.633, što ukazuje na relativno stabilnu i pouzdanu procjenu njegovog utjecaja na mpg

t value (t-vrijednost): Pokazuje koliko je procijenjeni koeficijent udaljen od nule u jedinicama svoje standardne pogreške. Što je t-vrijednost veća (pozitivno ili negativno), veća je vjerojatnost da koeficijent **nije slučajan**, već ima stvarni utjecaj na zavisnu varijablu (mpg).

• t-vrijednost -6.129 za wt znači da je koeficijent vrlo značajan

Pr(>|t|) prikazuje **p-vrijednosti** – sve su značajno manje od 0.05 → svi koeficijenti su statistički značajni.

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Oznake govore koliko je prediktor statistički značajan:

- *** → vrlo značajan (p < 0.001)
- | ** → značajan (p < 0.01)
- * → umjereno značajan (p < 0.05)
- . → slabo značajan (p < 0.1)
- (prazno) → nije značajan (p ≥ 0.1)

3. Ostale statističke vrijednosti modela:

Residual standard error: 2.593 on 29 degrees of freedom

Multiple R-squared: 0.8268 Adjusted R-squared: 0.8148

F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12

- **Residual standard error**: Prosječna udaljenost stvarnih vrijednosti mpg od vrijednosti predviđenih modelom. Niža vrijednost znači da su predikcije bliže stvarnim podacima (ovdje: 2.593).
- **Multiple R-squared**: Postotak varijance u mpg koji model objašnjava pomoću prediktora wt i hp. Vrijednost 0.8268 znači da model objašnjava 82.68% ukupne varijacije.
- **Adjusted R-squared**: Kao R-squared, ali uzima u obzir broj prediktora. Koristi se kako bi se izbjegla umjetna inflacija R-squared vrijednosti kod dodavanja irelevantnih varijabli. Ovdje: 81.48%.
- **F-statistic**: Testira cijeli model provjerava je li barem jedan prediktor značajan. Visoka vrijednost (69.21) i vrlo mala p-vrijednost (9.109e-12) ukazuju da je model statistički značajno bolji od modela bez prediktora.

Logistička regresija

Logistička regresija se koristi za predviđanje binarnih ishoda, tj. kada zavisna varijabla ima dvije kategorije (npr. da/ne, uspješno/neuspješno). U R-u, za izvođenje logističke regresije koristi se funkcija glm(), a rezultati se analiziraju kroz koeficijente, standardne pogreške, p-vrijednosti i druge metrike.

Logistička regresija se koristi za predviđanje binarne varijable — u ovom slučaju: ima li osoba prihod veći od *50k USD* ili *ne*. Zavisna varijabla je income, s vrijednostima <=50K i >50K.

Primjer.

Output:

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 35948 on 32560 degrees of freedom Residual deviance: 30231 on 32558 degrees of freedom

AIC: 30237

Number of Fisher Scoring iterations: 5

Predictor	Estimate	Std. Error	z value	Pr(>z)	Signif. code
Intercept	-6.7481	0.0886	-76.14	< 2e-16	***
age	0.0435	0.0011	39.87	< 2e-16	***
education.num	0.3621	0.0064	56.89	< 2e-16	***

- (Intercept): Logaritamski omjer vjerojatnosti da osoba zarađuje >50k USD kada su age i education.num jednaki 0. lako ta situacija nije realna (osoba stara 0 godina s obrazovanjem 0), presjek služi kao referentna točka u modelu.
- **age**: Koeficijent 0.0435 znači da svaka dodatna godina starosti povećava log-odds za zaradu veću od 50k za 0.0435. Budući da je pozitivan, stariji ljudi imaju veću vjerojatnost da imaju veće prihode uz pretpostavku da je education.num konstantan.
- **education.num**: Koeficijent 0.3621 znači da svaka dodatna razina obrazovanja (npr. prelazak s 10 na 11 godina formalnog obrazovanja) povećava log-odds za visoku zaradu za 0.3621. Dakle, veće obrazovanje snažno utječe na vjerojatnost veće plaće.

Izračunavanje vjerojatnosti

Za predviđanje vjerojatnosti određenog ishoda (npr. outcome = 1), koristimo funkciju predict():

```
prob <- predict(model, type = "response")</pre>
```

Ova funkcija vraća vjerojatnosti (između 0 i 1) za svaki primjerak u datasetu. Ako želimo pretvoriti te vjerojatnosti u kategorije (npr. 1 ako je vjerojatnost veća od 0.5, inače 0), možemo to napraviti ovako:

```
pred_class <- ifelse(prob > 0.5, 1, 0)
```

Za procjenu kvalitete modela možemo koristiti nekoliko metrika, uključujući **točnost (accuracy)**, **preciznost (precision)**, **osjetljivost (recall)** i **F1-score**. Također, često se koristi **confusion matrix** za vizualizaciju performansi modela:

```
table(Predicted = pred_class, Actual = adult$income_bin)
```

Dobivena matrica:

	Actual 0 (<=50K)	Actual 1 (>50K)
Predicted 0	23,286 (TN)	5,656 (FN)
Predicted 1	1,434 (FP)	2,185 (TP)

- TN (True Negative) = 23,286 → Model je točno predvidio da osoba *nema visoki prihod* (<=50K)
- **TP (True Positive)** = 2,185 → Model je točno predvidio da osoba *ima visoki prihod* (>50K)
- FN (False Negative) = 5,656 → Model je krivo predvidio da osoba nema visoki prihod, iako zapravo ima (>50K)
- FP (False Positive) = 1,434 → Model je krivo predvidio da osoba ima visoki prihod, iako zapravo nema (<=50K)

Izračun metrika:

```
# Vrijednosti iz confusion matrice
TP <- 2185
TN <- 23286
FP <- 1434
FN <- 5656
# Ukupno primjera
total <- TP + TN + FP + FN # = 32361
# Izračun metrika
accuracy <- (TP + TN) / total
                                    # Točnost
precision <- TP / (TP + FP)
                                     # Preciznost
recall <- TP / (TP + FN)
                                     # Osjetljivost (Recall)
specificity <- TN / (TN + FP)</pre>
                                     # Specifičnost
f1_score <- 2 * (precision * recall) / (precision + recall) # F1-score
```

Rezultati:

Metrika	Vrijednost	Objašnjenje
Točnost	0.7822	78.22% ispravnih predikcija
Preciznost	0.6037	Od svih za koje je model rekao >50K, točno je 60.37%
Osjetljivost	0.2786	Od svih koji stvarno imaju >50K, uhvaćeno je 27.86%
Specifičnost	0.9419	Od svih koji stvarno imaju <=50K, točno klasificirano 94.19%
F1-score	0.3813	Harmonična sredina preciznosti i osjetljivosti (za >50K)