Thomas DESROSIERS

Intégration de systèmes 247GE4LG 000001

Rapport Laboratoire 4 Les Capteurs

Travail présenté à Monsieur Marc JUNEAU

Collège Lionel-Groulx Date de remise du travail: jeudi, 11 mars 2021

1 Description des circuits

1.1 Capteur de température

Figure 1 Circuit de mesure de température et son amplificateur.

Le LM35 retourne $10\text{mV/}^{\circ}\text{C}$ pour un maximum de 150°C ce qui donnerait un maximum de 1.5V en sortie. Comme notre ADC mesure de 0V à 5V et que la tension de sortie maximale du LM35 est de 1.5V, nous utilisons donc seulement $\frac{1}{3}$ de notre plage d'échantillonnage. C'est pour cette raison que le signal est amplifié avec un gain de 11. Ainsi, le signal fait maintenant 0V - 5V. Cependant, le gain en précision qu'amène l'amplification se traduit aussi par une réduction de notre plage d'échantillonnage. Pour le signal de 5V amplifié avec un gain de 11 avec $10\text{mV/}^{\circ}\text{C}$ à la sortie du LM35 on obtient donc $\frac{5V \div 11}{10mV} = 45^{\circ}\text{C}$ Comme température maximale mesurée une fois le signal amplifié. La plage de température mesurable une fois le signal amplifié représente le tiers de celle non amplifiée. Puisque l'application de notre montage est la mesure de température intérieure d'une pièce, on ne dépassera probablement jamais les 45°C .

1.2 Photorésistance

LUX _{MAX}	=	6000 LUX		
R _{MIN}	=	208Ω		
LUX _{MIN}	=	1 LUX		

Environnement	Signification	LUX	Ω	V _{OUT} ¹	
Obscurité totale	LUX _{MIN} / R _{MAX}	1	117470	0,042	Calculé
		50	6300	0,585	Mesuré
		125	1700	0,955	Mesuré
		775	750	2,195	Mesuré
Lumière du jour	LUX _{MAX} / R _{MIN}	6000	208	4,139	Calculé

Le choix d'une résistance de $1k\Omega$ plutôt qu'une résistance de $10k\Omega$ nous permet d'avoir une plus grande précision lorsque la valeur de la photorésistance avoisine les $1k\Omega$ ce qui correspond à la valeur en LUX mesurée à l'intérieur d'une pièce durant le jour soit 500LUX environ.

3

.

 $^{^{1}}$ La formule de V_{OUT} est la même que pour un diviseur de tension soit $V_{OUT}=rac{V_{CC} imes R_{1}}{R_{1}+R_{PHOTO}}$