FF – PRINCIPIOS

EN ESTE CIRCUITO NO HAY FORMA DE QUE LA SALIDA Q VUELVA A VALOR CERO "0", SIEMPRE QUEDA EN UNO "1". PROPONEMOS EL SIGUIENTE CIRCUITO EL CUAL PERMITE QUE LA SALIDA Q VAYA A CERO

MEMORIA CON BORRADO`-BIESTABLE

Pres	Fut
S R	Qt+1
0 0	Qt
0 1	0
1 0	1
1 1	NO

BIESTABLES

NAND

Pres	Fut
SR	Qt+1
0 0	NO
0 1	1
1 0	0
1 1	Qt

APLICACION

BIESTABLE SR SINCRONICO

t	t+1
Pres	Fut
S R	Qt+1
0 0	Qt
0 1	0
1 0	1
1 1	NO

BIESTABLE-TIMING

BIESTABLE SR SINCRONICO

BIESTABLE D SINCRONICO - LATCH

LATCH D CON MUX

Control	Z
0	A
1	В

 $Z = Control \cdot B + Control \cdot A$

LATCH POSITIVO

LATCH NEGATIVO

LATCH CON TG

Implementacion de un Latch con inversores y TG (Transmision Gate)

Como se observa ambas llaves trabajan en contraposición (L1: on, L2: off). Si L1 esta cerrada el dato de entrada se repite a la salida (L2: off), cuando se abre L1 y se cierra L2 el Dato queda memorizado En el dibujo que sigue observamos el diseño de un Latch con TG

FLIP-FLOPS SINCRONIZADO POR RELOJ

La mayoria dispara por flanco (borde) y el símbolo que los identifica es

Tiempos de establecimiento y retención (Setup, Hold Time)

Biestable SR disparado por flanco (Edge Triggered)

Circuito conformador/detector de flancos

Toggle Flip Flop

Salida	Salida	
Presente	Futura	
Qt	Qt+1	
0	1	
1	0	

Diagrama temporal Toggle FF

FLIP FLOP D y JK

FF D

Entrada Presente	Salida Futura
D	Qt+1
0	0
1	1

FF JK

Entrada		Salida	
Pres	sente	Futura	
J	K	Qt+1	
0	0	Qt	
0	1	0	
1	0	1	
1	1	Qt (negado)	

FF D vs LATCH D

FF - T

Entrada Presente	Salida Futura
T	Qt+1
0	Qt
1	Qt (negado)

ENTRADAS ASINCRONAS

Entra Asinc		l	rada sente	Salida Futura
S	R	J	K	Qt+1
1	1	0	0	Qt
1	1	0	1	0
1	1	1	0	1
1	1	1	1	Qt (negado)
0	1	X	X	1
1	0	X	X	0
0	0	X	X	No permitido

CONDICIONES INICIALES

ACTIVACION POR BAJO

ACTIVACION POR ALTO

TABLA Y DIAGRAMA DE ESTADO FFJK

ECUACION CARACTERISTICA

J K Qt	Qt+1
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	0
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	0

$$\mathbf{Q}t + 1 = \mathbf{J}\mathbf{Q}t + \mathbf{K}\mathbf{Q}t$$

TABLA DE ESTADOS

ESTADO PRESENTE	ESTADO FUTURO Qt + 1	ENTF	RADAS
Qt		J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

DIAGRAMA DE ESTADO O DIAGRAMA DE TRANSICIONES

CODIGO VHDL - LATCH D

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY latch IS
    PORT (D, Clk : IN STD_LOGIC;
              Q : OUT STD_LOGIC);
END latch;
ARCHITECTURE Behavior OF latch IS
BEGIN
    PROCESS (D, Clk)
    BEGIN
         IF Clk = '1' THEN
              \mathbf{Q} \leftarrow \mathbf{D};
         END IF,
    END PROCESS;
END Behavior;
Si Clk=0, no se especifica el valor de Q, y Q retiene el valor actual
```

Código para un latch D

CODIGO VHDL FF D

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
        PORT (D, Clock : IN STD_LOGIC;
                            : OUT STD_LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
    PROCESS (Clock)
    BEGIN
         IF Clock'EVENT AND Clock = '1' THEN (flanco positivo)
              \mathbf{Q} \leftarrow \mathbf{D};
         END IF,
    END PROCESS;
END Behavior;
```

CODIGO VHDL FF D (alternativo)

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
        PORT (D, Clock : IN STD_LOGIC;
                 Q : OUT STD_LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
    PROCESS
    BEGIN
        WAIT UNTIL Clock'EVENT AND Clock = '1';
             \mathbf{Q} \leftarrow \mathbf{D};
     END PROCESS;
END Behavior;
```

CODIGO VHDL FFD CON CLEAR ASINCRONICO

Se describe un FFD con una entrada reset (clear) asíncrono que se activa por nivel bajo. Cuando *Resetn*, la entrada reset es igual a 0 y la salida del FF va a 0 (Q=0)

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
       PORT (D, Resetn, Clock: IN STD_LOGIC;
                                : OUT STD_LOGIC);
                 Q
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
    PROCESS (Resetn, Clock)
    BEGIN
        IF Resetn = '0' THEN
            Q \le '0';
        ELSIF Clock'EVENT AND Clock = '1' THEN
             O \leq D:
        END IF;
    END PROCESS;
END Behavior:
```

CODIGO VHDL FF D CLEAR SINCRONICO

En este caso la señal de reset (clear) solamente actua cuando llega un flanco positivo de Clock. Este código VHDL genera el circuito que se muestra a continuación

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD_LOGIC ;
                           : OUT STD_LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
     PROCESS (Resetn, Clock)
                                                Resetn
                                                                     ŒT
     BEGIN
         WAIT UNTIL Clock = '1';
          IF Resetn = '0' THEN
              Q <= '0':
                                                    Clock
          ELSE
              Q \leq D:
          END IF;
     END PROCESS:
END Behavior:
```

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY muxdff IS
   PORT ( D0, D1, Sel, Clock : IN STD_LOGIC ;
                           : OUT STD_LOGIC);
           Q
END muxdff;
ARCHITECTURE Behavior OF muxdff IS
BEGIN
   PROCESS
   BEGIN
       WAIT UNTIL Clock'EVENT AND Clock = '1';
       IF Sel = '0' THEN
           Q \leq D0;
       ELSE
           Q \leq D1;
       END IF;
   END PROCESS;
END Behavior;
```

Figure 7.48 Code for a D flip-flop with a 2-to-1 multiplexer on the *D* input

FLIP`FLOP EN CASCADA

Condiciones Iniciales: CI: Q1 = 1; Q2 = 0

El funcionamiento correcto es el indicado en la siguiente figura

Para que ello ocurra tpHL debe ser mayor a th, tiempo de retención, (tpHL > th) de Q2, cosa que ciertamente se cumple, si ello no ocurriera la respuesta de Q2 seria incierta. Los FFs actuales tienen un th < 5 nseg., tendiendo a 0 nseg

EJERCICIOS - 1

1-REALIZAR EL DIAGRAMA TEMPORAL DEL CIRCUITO DE LA FIGURA

2-REALIZAR EL DIAGRAMA TEMPORAL DEL CIRCUITO DE LA FIGURA

EJERCICIOS – 2

3-REALIZAR EL DIAGRAMA TEMPORAL DEL CIRCUITO DE LA FIGURA

COMO PUEDE VERSE LA SALIDA Q RESPONDE A UN FF T

Registros y "latches" de varios bits

- 74x175
- Dispone de una señal de "clear" asíncrono CLR_L

Registro de 8 bits (octal)

- 74x374
- Salida triestado controlada por OE_L

