Prácticas de Visión por Computador Grupo 2

Repaso de RANSAC

Pablo Mesejo

Universidad de Granada Departamento de Ciencias de la Computación e Inteligencia Artificial

Repaso de RANSAC

- Buena parte de las slides y explicaciones de este seminario provienen de
 - Cyrill Stachniss (University of Bonn):
 - https://www.ipb.uni-bonn.de/html/teaching/msr2-2020/sse2-11-ransac.pdf
 - https://www.youtube.com/watch?v=oT9c_LIFBqs
 - Silvio Savarese (University of Stanford):
 - https://cvgl.stanford.edu/teaching/cs231a_winter1415/lecture/lecture9_fitting_matching.pdf
- Otras referencias interesantes:
 - Daniel Huttenlocher (University of Cornell): http://www.cs.cornell.edu/courses/cs664/2008sp/handouts/cs664-20-robust-fitting.pdf
 - Robert Collins (The Pennsylvania State University):
 http://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf

Necesitamos alinear imágenes

CS 4495 Computer Vision – A. Bobick

Detectamos puntos en ambas imágenes

Encontramos pares correspondientes

Usamos dichos pares para alinear las imágenes

Inliers vs Outliers

¿Cómo sabemos si las correspondencias son correctas?

RANdom SAmple Consensus (RANSAC) (Fischler & Bolles, 1981)

- Método prueba-error (trial-and-error)
- Idea clave: encontrar la mejor partición de puntos en el conjunto de inliers y outliers, y estimar el modelo a partir de los inliers
- Aproximación estándar para tratar outliers (estadística robusta).

Fischler, M. A., and R. C. Bolles. "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography", Communications of the Association for Computing Machinery 24 (1981): 381-395.

- 1. Muestrear el número de puntos que requiere nuestro modelo
- 2. Calcular los parámetros de mi modelo usando los puntos muestreados
- 3. Calcular el soporte que tiene nuestro modelo en base a la cantidad de *inliers* que lo apoyan.

Repetir 1-3 hasta que hemos encontrado el mejor modelo con gran confianza

Sencillo ejemplo con regresión lineal.
 Queremos ajustar una línea a estos puntos

Nuestra hipótesis es una línea.

¿Cuántos puntos necesitamos para ajustar una línea?

2

En el caso de la homografía, ¿cuántos puntos en correspondencia necesitamos?

4 parejas de puntos en correspondencia

Sencillo ejemplo con regresión lineal.
 Queremos ajustar una línea a estos puntos

Seleccionamos el número de puntos necesarios para ajustar nuestro modelo (en este caso, 2 puntos)

Sencillo ejemplo con regresión lineal.
 Queremos ajustar una línea a estos puntos

Calculamos la recta que pasa por esos dos puntos.

Sencillo ejemplo con regresión lineal.
 Queremos ajustar una línea a estos puntos

Calculamos la cantidad de inliers con respecto a nuestro modelo empleando algún umbral predefinido.

#inliers: 4

Sencillo ejemplo con regresión lineal.
 Queremos ajustar una línea a estos puntos

Iteramos hasta que encontramos el mejor modelo.

#inliers: 12

- Ok, muy fácil, pero...
 - ¿Cuántas repeticiones del muestreo debo llevar a cabo?
- Número de puntos muestreados s (número mínimo de puntos necesarios para ajustar nuestro modelo)
 - Determinado por el modelo que queremos emplear
- Porcentaje de outliers e (e=#outliers/#datapoints)
 - No necesitamos el número exacto, basta una aproximación.
- Número de intentos (rounds/trials) T
 - Debemos escoger T, tal que, con probabilidad p, al menos un conjunto aleatorio esté libre de outliers

- Número de puntos muestreados **s** (número mínimo de puntos necesarios para ajustar nuestro modelo)
- Porcentaje de outliers e (e=#outliers/#datapoints)
- Número de intentos (rounds/trials) T
 - Debemos escoger T, tal que, con probabilidad p, al menos un conjunto aleatorio esté libre de *outliers*

¿Probabilidad de ser un outlier?

- Número de puntos muestreados s (número mínimo de puntos necesarios para ajustar nuestro modelo)
- Porcentaje de outliers e (e=#outliers/#datapoints)
- Número de intentos (rounds/trials) T
 - Debemos escoger T, tal que, con probabilidad p, al menos un conjunto aleatorio esté libre de *outliers*

Probabilidad de ser un *outlier*: **e**

¿Probabilidad de ser un inlier?

- Número de puntos muestreados s (número mínimo de puntos necesarios para ajustar nuestro modelo)
- Porcentaje de outliers e (e=#outliers/#datapoints)
- Número de intentos (rounds/trials) T
 - Debemos escoger T, tal que, con probabilidad p, al menos un conjunto aleatorio esté libre de *outliers*

```
Probabilidad de ser un outlier: e

Probabilidad de ser un inlier (s=1): (1-e)

¿Probabilidad de extraer s>1 inliers?
```

- Número de puntos muestreados **s** (número mínimo de puntos necesarios para ajustar nuestro modelo)
- Porcentaje de outliers e (e=#outliers/#datapoints)
- Número de intentos (rounds/trials) T
 - Debemos escoger T, tal que, con probabilidad p, al menos un conjunto aleatorio esté libre de *outliers*

Probabilidad de ser un *outlier*: **e**

Probabilidad de ser un *inlier* (s=1): (1-e)

Probabilidad de extraer s>1 inliers: (1-e)s

p: Probabilidad de extraer s puntos y que ninguno de ellos sea un *outlier*

Probability of s samples all being inliers

$$\prod_{i=0}^{s-1} \frac{I-i}{D-i}$$

D data points and I inliers

Probabilidad de ser un *outlier*: **e**

Probabilidad de ser un *inlier* (s=1): (1-e)

Probabilidad de extraer s>1 inliers, es decir, probabilidad de éxito $p = (1-e)^s$

¿Probabilidad de extraer s>1 puntos y que alguno sea un *outlier*? Es decir, ¿cuál es nuestra probabilidad de fracaso?

p: Probabilidad de extraer s puntos y

que ninguno de ellos sea un outlier

Probabilidad de ser un *outlier*: **e**

Probabilidad de ser un *inlier* (s=1): **(1-e)**

Probabilidad de extraer s>1 inliers, es decir, probabilidad de éxito $p = (1-e)^s$

¿Cuál es la probabilidad de fallar T veces?

Probabilidad de fallar <u>una vez</u>. Es decir, no seleccionar solo *inliers*. Al menos un *outlier* está ahí.

p: Probabilidad de extraer s puntos v

que ninguno de ellos sea un *outlier*

Probabilidad de ser un *outlier*: **e**

Probabilidad de ser un *inlier* (s=1): (1-e)

Probabilidad de extraer s>1 inliers, es decir, probabilidad de éxito $p = (1-e)^s$

Probabilidad de extraer s>1 puntos y que alguno sea un outlier, es decir, probabilidad

de fracaso **1-p = 1-(1-e)**^s <

Probabilidad de fallar T veces: $1-p = (1-(1-e)^s)^T$

Probabilidad de fallar <u>una vez</u>. Es decir, no seleccionar solo *inliers*.

p: Probabilidad de extraer s puntos y

que ninguno de ellos sea un *outlier*

Probabilidad de <u>seleccionar al</u> <u>menos un outlier en cada uno de</u> <u>los T intentos</u>.

¡Queremos resolver para T! ¿Cómo lo hacemos?

$$1-p = (1-(1-e)^s)^T$$

p: Probabilidad de extraer s puntos y que ninguno de ellos sea un *outlier*.La fijamos nosotros. Por ejemplo,99%

s viene determinada por nuestro modelo (una línea, s=2; una homografía, s=4 puntos en correspondencia)

$$log(1-p) = log((1-(1-e)^s)^T)$$

 $log(1-p) = T \cdot log(1-(1-e)^s)$

$$T = \frac{log(1-p)}{log(1-(1-e)^s)}$$

$$T = \frac{log(1-p)}{log(1-(1-e)^s)}$$

Elemento crítico: s → Si crece mucho, es decir, si nuestro modelo necesita muchos puntos, tengo que muestrear muchísimo

¡RANSAC funciona bien con modelos sencillos!

p s	2	3	4	5	10	15	20
0,1	1	1	1	1	1	1	1
0,5	1	1	1	1	2	4	6
0,75	1	2	2	2	4	7	11
0,9	2	2	3	3	6	10	18
0,95	2	3	3	4	7	13	24
0,99	3	4	5	6	11	20	36
0,999	5	6	7	8	17	30	54
0,9999	6	8	9	11	22	40	72
0,1	Outlier Ratio						

p s	2	3	4	5	10	15	20
0,1	1	1	1	1	4	23	132
0,5	2	2	3	4	25	146	869
0,75	3	4	6	8	49	292	1737
0,9	4	6	9	13	81	484	2885
0,95	5	8	11	17	105	630	3753
0,99	7	11	17	26	161	968	5770
0,999	11	17	26	38	242	1452	8654
0,9999	14	22	34	51	322	1936	11539
0,3 0	Outlier Ratio						

p s	2	3	4	5	10	15	20
0,1	1	1	2	4	108	3453	110479
0,5	3	6	11	22	710	22713	726818
0,75	5	11	22	44	1419	45426	1453635
0,9	9	18	36	73	2357	75450	2414435
0,95	11	23	47	95	3067	98163	3141252
0,99	17	35	72	146	4714	150900	4828869
0,999	25	52	108	218	7071	226350	7243303
0,9999	33	69	143	291	9427	301800	9657738
0,5	Outlier Ratio						

p s	2	3	4	5	10	15	20
0,1	3	14	66	330	1028912	3,215E+09	1,01E+13
0,5	17	87	433	2166	6769016	2,115E+10	6,642E+13
0,75	34	173	866	4332	13538031	4,231E+10	1,328E+14
0,9	57	287	1438	7195	22486182	7,027E+10	2,206E+14
0,95	74	373	1871	9361	29255197	9,142E+10	2,871E+14
0,99	113	574	2876	14389	44972363	1,405E+11	4,413E+14
0,999	170	861	4314	21584	67458545	2,108E+11	6,619E+14
0,9999	226	1147	5752	28778	89944726	2,811E+11	8,825E+14
0,8	Outlier Ratio	1					

RANSAC y el cálculo de homografías

RANSAC loop:

- Escoger 4 puntos en correspondencia aleatoriamente
- Calcular H usando DLT (Direct Linear Transformation)
- Contar inliers
- Guardar H con el mayor número de inliers

RANSAC en OpenCV

- cv2.findHomography(srcPoints, dstPoints, cv2.RANSAC)
- https://docs.opencv.org/4.5.4/d9/d0c/group calib3d.html#ga4abc2ece9fab9
 398f2e560d53c8c9780
- Valores por defecto en OpenCV
 - p = 0.995
 - T = 2000
 - «RansacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier. That is, if
 - || dstPoints_i convertPointsToHomogeneous(H*srcPoints_i) ||₂ > RansacReprojThreshold then the point i is considered as an outlier.» 3 píxeles

Conclusiones

RANSAC es

- Un algoritmo muy sencillo (fácil de entender e implementar)
- Robusto a outliers
- Funciona bien si tu modelo necesita hasta 10 parámetros
 - De lo contrario el porcentaje de *outliers* debe ser bajo
- Relativamente sensible a la selección del umbral
 - Si es demasiado grande, todas las hipótesis serán valoradas de modo similar
- Pero, jel tiempo de cálculo computacional crece rápidamente con la fracción de *outliers* y el número de parámetros necesarios para ajustar el modelo!

Prácticas de Visión por Computador Grupo 2

Repaso de RANSAC

Pablo Mesejo

Universidad de Granada Departamento de Ciencias de la Computación e Inteligencia Artificial

