1. The running time of the body of the for-loop on lines (1) and (2) is 0. The loop goes around at most 100 times. Hence the for-loop takes O(100) time, which is O(1). Line (3) takes O(1) time. Lines (4) and (5) take O(n) time. Lines (6) to (8) take O(1) time each. The while-loop on lines (9) to (12) goes around n-i times. But we know from line (8) that i=1. Thus it goes around n-1 times. The body of the loop is a block. Line (10) is an if-statement that takes O(1) time with no else-part. The if-part takes O(1) time. Line (12) also takes O(1) time. Thus the while-loop takes O(1+(3+1)(n-1)) time which is O(n). Line (13) takes O(1) time. Using the summation rule, we determine that the program takes O(n) time.

2.

- a) Line (3) goes around n-i times. Line (2) goes around n-i-1 times. Line (4) takes O(1) time. Thus lines (2) to (4) take O((n-i)(n-i-1)) time. We can neglect the lower order terms and say it is $O((n-i)^2)$.
- b) The loop starting on line (1) goes around n-1 times. Multiply this with $(n-i)^2$ to get $O(n^3)$ after dropping the lower order terms.

3.

- a) The while-loop goes around $\log i$ times. The running time of the body of the while-loop is O(1). Hence the while-loop takes $O(\log i)$ time.
- b) The for-loop runs ((n+1)-1) times and the body takes $O(\log i)$ time. But the upper bound of the for-loop has the while loop take $O(\log n)$ time. Therefore the entire program takes $O(n\log n)$ time.

4. Lines (1), (4), (5), and (6) are O(1). Line (3) is O(1) and both the if-part and else-part are O(1) hence the entire if-statement is O(1), which is the body of the loop. The loop goes around $(n+1)-i^2$ times, but we can also say it stops when $i^2 > n$, or $i > \sqrt{n}$. Hence the number of times the loop goes around has a limit of \sqrt{n} . Thus the function takes $O(\sqrt{n})$ time.

