PRÁCTICA 0: NÚMEROS REALES

"Não se pode esperar aprender Matemática contemplativamente. Apelo, portanto, ao leitor para que tente resolver os exercícios que lhe pareçam mais atraentes e/ou desafiadores. [...]

Procure ler o enunciado de cada um. E boa sorte na viagem que ora inicia."

LAGES LIMA.

Ejercicio 1. Para cada $x \in \mathbb{R}$ se define $A_x = \{m \in \mathbb{Z} : m \leq x\}$.

- i) Verificar que $A_x \neq \emptyset$ y es acotado superiormente. Concluir que existe el máximo de A_x . Este número se llama la parte entera de x y se notará [x].
- ii) Demostrar que:
 - $a) \ 0 \le x [x] < 1 \ \forall x \in \mathbb{R}.$
 - b) $[x] = x \iff x \in \mathbb{Z}$.
 - c) $[x] = \min\{k \in \mathbb{Z} : x < k+1\}.$
 - d) $[x+y] \le [x] + [y] + 1$.
 - $e) \ x < y \Rightarrow [x] \le [y].$

Ejercicio 2.

- i) Sean $x, y \in \mathbb{R}$ tales que y x > 1. Mostrar que existe un entero k tal que x < k < y.
- ii) Sean $x, y \in \mathbb{R}$ tales que x < y. Mostrar que existe $r \in \mathbb{Q}$ tal que x < r < y.
- iii) Sean $r, s \in \mathbb{Q}$ tales que r > s. Mostrar que existe un número irracional entre r y s.
- iv) Sean $x, y \in \mathbb{R}$ tales que x < y. Mostrar que existe un número irracional entre $x \in y$.

Ejercicio 3.

- i) Probar que para cada $x \in \mathbb{R}$, existe una sucesión $(q_n)_{n \in \mathbb{N}} \subset \mathbb{Q}$ estrictamente decreciente tal que $q_n \geq x$ para todo $n \in \mathbb{N}$ y que $\lim_{n \to \infty} q_n = x$.
- ii) Enunciar y probar un enunciado análogo donde $(q_n)_{n\in\mathbb{N}}$ sea estrictamente creciente.

Ejercicio 4. Sean $x = (x_1, \dots, x_m) \in \mathbb{R}^m$ y $\varepsilon > 0$. Mostrar que existe $q = (q_1, \dots, q_m) \in \mathbb{Q}^m$ tal que $||x - q|| = \left(\sum_{i=1}^m (x_i - q_i)^2\right)^{1/2} < \varepsilon$.

Ejercicio 5. Sea $A = \left\{ \frac{m}{2^n} : m \in \mathbb{Z} , n \in \mathbb{N} \right\}$. Probar que A es denso en \mathbb{R} . Analizar la misma situación para el conjunto $B = \left\{ \frac{m}{b^n} : m \in \mathbb{Z} , n \in \mathbb{N} \right\}$, donde $b \in (1, +\infty)$.

Ejercicio 6. Sean $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ y $(c_n)_{n\in\mathbb{N}}$ sucesiones de números reales tales que:

- a) $\exists n_0 \in \mathbb{N} : \forall n \geq n_0, \ a_n \leq b_n \leq c_n;$
- b) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell$.

Probar que $\lim_{n\to\infty} b_n = \ell$.

Ejercicio 7.

- i) Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ una sucesión monótona. Probar que:
 - a) Si existe una subsucesión $(a_{n_k})_{k\in\mathbb{N}}$ convergente a $\ell\in\mathbb{R}$, entonces $(a_n)_{n\in\mathbb{N}}$ converge a ℓ . ¿Qué pasa si la subsucesión tiende a ∞ ?
 - b) $(a_n)_{n\in\mathbb{N}}$ converge \iff $(a_n)_{n\in\mathbb{N}}$ es acotada.
- ii) Demostrar que cualquier subsucesión de una sucesión convergente es también convergente.
- iii) Encontrar una sucesión **no** convergente $(a_n)_{n\in\mathbb{N}}$ que verifique que $\lim_{n\to\infty} |a_n-a_{n+1}|=0$.
- iv) Analizar la situación del inciso anterior pero con la condición: $\lim_{n\to\infty} |a_n a_{n+p}| = 0$ para todo $p \in \mathbb{N}$.

Ejercicio 8. Recordemos que una sucesión $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se dice de Cauchy si para todo $\varepsilon>0$, existe $n_0\in\mathbb{N}$ de manera que $|a_n-a_m|<\varepsilon$ siempre que $n,m\geq n_0$.

- i) Demostrar que si una subsucesión de una sucesión de Cauchy converge, entonces también lo hace la sucesión original.
- ii) Probar que toda sucesión de Cauchy es acotada.

Ejercicio 9. Mostrar que en un cuerpo totalmente ordenado arquimediano son equivalentes las afirmaciones siguientes:

- (1) toda sucesión acotada tiene una subsucesión convergente;
- (2) toda sucesión de Cauchy es convergente;
- (3) si $(I_n)_{n\geq 1}$ es un encaje de intervalos cerrados cuyas longitudes tienden a cero, entonces existe un único $x\in\bigcap_{n=1}^{\infty}I_n$;
- (4) todo conjunto acotado superiormente y no vacío tiene supremo;
- (5) toda sucesión monótona y acotada superiormente tiene límite.

¿Dónde se usa la arquimedianidad?¿Qué es la longitud de un intervalo en un cuerpo totalmente ordenado cualquiera?

Ejercicio 10. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión acotada de números reales. Para cada $n\in\mathbb{N}$ se considera $A_n=\{a_k:k\geq n\}$. Sean $\lambda_n=\sup A_n$ y $\gamma_n=\inf A_n$.

- i) Probar que $(\lambda_n)_{n\in\mathbb{N}}$ es decreciente y $(\gamma_n)_{n\in\mathbb{N}}$ es creciente. Concluir que $(\lambda_n)_{n\in\mathbb{N}}$ y $(\gamma_n)_{n\in\mathbb{N}}$ son sucesiones convergentes. Al límite de la sucesión $(\lambda_n)_{n\in\mathbb{N}}$ (resp. $(\gamma_n)_{n\in\mathbb{N}}$) lo llamaremos límite superior (resp. límite inferior) de $(a_n)_{n\in\mathbb{N}}$ y lo notaremos lím sup a_n (resp. líminf a_n).
- ii) Sean $\alpha = \liminf a_n \ y \ \beta = \limsup a_n$, y sea $\varepsilon > 0$. Probar que a la derecha de $\beta + \varepsilon$ y a la izquierda de $\alpha \varepsilon$ existen finitos términos de $(a_n)_{n \in \mathbb{N}}$. ¿Vale la recíproca?

Ejercicio 11. Hallar los límites superior e inferior de las siguientes sucesiones:

- i) $1, 3, -1, 1, 3, -1, 1, 3, -1, \dots$
- ii) $(-1)^n \left(2 + \frac{3}{n}\right)$.
- iii) $\left(1 \frac{1}{n}\right) \operatorname{sen}\left(n\frac{\pi}{2}\right)$.
- iv) $(s_n)_{n\in\mathbb{N}}$ definida por: $s_1 = 0$, $s_{2n} = \frac{s_{2n-1}}{2}$, $s_{2n+1} = \frac{1}{2} + s_{2n}$.
- v) $\frac{n}{3} \left[\frac{n}{3}\right]$.

Ejercicio 12.

- i) Encontrar una sucesión $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ tal que lím inf $x_n=-3$, lím sup $x_n=5$ y el conjunto $\{x_n:n\in\mathbb{N}\}$ sea infinito.
- ii) ¿Es cierto que
 - a) si lím sup $x_n = 2$, entonces existe $n_0 \in \mathbb{N}$ tal que $x_n > 1,99$ para todo $n \ge n_0$?
 - b) si lím sup $x_n = b$, entonces existe $n_0 \in \mathbb{N}$ tal que $x_n \leq b$ para todo $n \geq n_0$?

Ejercicio 13. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales acotada.

- i) Probar que $\alpha = \limsup a_n$ si y sólo si para cada $\varepsilon > 0$ se verifica:
 - a) $\exists n_0 \in \mathbb{N} \text{ tal que } \forall n \geq n_0, a_n < \alpha + \varepsilon;$
 - b) $\forall n \in \mathbb{N} \exists m \geq n \text{ tal que } a_m > \alpha \varepsilon.$
- ii) Demostrar que $\alpha = \limsup a_n$ si y sólo si se verifican las dos condiciones siguientes:
 - a) Existe una subsucesión $(a_{n_j})_{j\in\mathbb{N}}$ tal que $\lim_{j\to\infty}a_{n_j}=\alpha;$
 - b) si $(a_{n_j})_{j\in\mathbb{N}}$ es una subsucesión convergente, entonces $\lim_{n\to\infty} a_{n_j} \leq \alpha$.

Ejercicio 14. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Probar que $\lim_{n\to\infty}a_n=\ell$ si y sólo si $\limsup a_n=\liminf a_n=\ell$.

Ejercicio 15. Sean $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ sucesiones reales acotadas. Probar que:

- i) $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$.
- ii) $\limsup (a_n.b_n) \le \limsup a_n$. $\limsup b_n$, $\sin a_n, b_n \ge 0$.
- iii) Si c > 0 entonces, $\limsup_{n \to \infty} (c.a_n) = c. \limsup_{n \to \infty} a_n$.

Enunciar y probar resultados análogos para líminf.

Ejercicio 16. Sean $0 \le x, y < 1, x = x_1 x_2 \dots$ e $y = y_1 y_2 \dots$ sus desarrollos en base b > 1. Supongamos que el desarrollo de y es infinito, i.e., para todo $n \in \mathbb{N}$ existe i > n con $y_i > 0$.

i) Probar que si $x_i = y_i$ para todo $i \le n - 1$ y $x_n < y_n$, entonces x < y.

- ii) Deducir que el orden entre x e y es el mismo orden que el de los primeros términos en que difieren sus desarrollos.
- iii) Manteniendo las hipótesis de i), sea $z \in [x, y]$. Probar que entonces z tiene un desarrollo en base b con $z_i = x_i = y_i$ para todo $i \le n 1$.

Ejercicio 17. Hallar el desarrollo en base 2, 3 y 16 de los números 2,25; 10,7; 27 y 255.