Podstawy Analizy Statycznej

Analiza Malware - Sebastian Knap

Zadanie 1.1 Lab02-01.exe i Lab02-01.dll

1. Analiza sum kontrolnych, sygnatur plików

Plik: Lab02-01.dll

MD5: 290934c61de9176ad682ffdd65f0a669

SHA1: a4b35de71ca20fe776dc72d12fb2886736f43c22

SHA256: f50e42c8dfaab649bde0398867e930b86c2a599e8db83b8260393082268f2dba

Plik: Lab02-01.exe

MD5: bb7425b82141a1c0f7d60e5106676bb1

SHA1: 9dce39ac1bd36d877fdb0025ee88fdaff0627cdb

SHA256: 58898bd42c5bd3bf9b1389f0eee5b39cd59180e8370eb9ea838a0b327bd6fe47

Sumy kontrolne obu plików były już wcześniej poddawane analizie pod kątem szkodliwego oprogramowania, zostały uznane przez "security vendors" za złośliwe oprogramowanie.

50/69 oraz 44/69

2. Daty kompilacji:

Plik: Lab02-01..exe

Plik: Lab02-01.dll

3. Narzędzie PEiD wskazało, że pliki nie są spakowane.

.dll:

.exe:

4. .exe:

Warto zwrócić uwagę na importy z biblioteki KERNEL32.dll

File: C:/Users/sebuszgo/Desktop/binaries/Lab02-01.exe

- 1. **CreateFileA:** Funkcja ta tworzy lub otwiera plik i zwraca wskaźnik który może być używany do odczytu, zapisu i innych operacji wykonywanych na pliku. Funkcja ta jest używana w programowaniu systemowym w języku C i C++.
- 2. **CopyFileA:** Funkcja ta kopiuje istniejący plik do nowej lokalizacji i zwraca wartość logiczną, czy operacja kopiowania się powiodła czy nie. Funkcja ta jest używana w programowaniu systemowym w języku C i C++.
- 3. **CreateProcessA:** Funkcja ta tworzy nowy proces i zwraca wskaźnik do tego procesu, który może być używany do kontroli i komunikacji z nowo utworzonym procesem. Funkcja ta jest używana w programowaniu systemowym w jezyku C i C++.
- 4. Sleep: Funkcja ta zawiesza wykonywanie bieżącego wątku na określony czas (w milisekundach). Funkcja ta jest używana do opóźnienia działania programu, na przykład w celu symulowania procesów czasochłonnych lub do czasowego wstrzymania działania programu. Funkcja ta jest dostępna w języku C i C++.

Check for updates ...

5. Za co odpowiedzialna jest biblioteka WS2_32.dll (Lab02-01.dll)?

Biblioteka WS2_32.dll jest odpowiedzialna za obsługę gniazd sieciowych w systemie Windows. Jest to biblioteka dynamiczna (DLL), która udostępnia zestaw funkcji programistycznych do tworzenia, konfigurowania i zarządzania połączeniami sieciowymi, w tym protokołami takimi jak TCP/IP i UDP.

6.

0000304C	C:\windows\system32\kerne132.dll
00003070	Kernel32.
0000307C	Lab01-01.dll
0000308C	C:\Windows\System32\Kernel32.dll
000030B0	WARNING_THIS_WILL_DESTROY_YOUR_MACHINE

Dwa podobne rekordy mogą świadczyć o próbie ukrycia prawdziwej biblioteki "Kernel32.dll" poprzez zmianę jej nazwy na "kerne132.dll". Jest to częsty sposób, w jaki złośliwe oprogramowanie próbuje ukryć swoją aktywność przed systemem operacyjnym i programami antywirusowymi. Podmiana nazwy na podobną, ale z odmienną literą, może zmylić programy antywirusowe i uniemożliwić im wykrycie podejrzanych działań.

W przypadku podmiany nazwy pliku Kernel32.dll na kerne132.dll, program złośliwy może próbować wykorzystać zmodyfikowaną bibliotekę do wykonywania swojego kodu, jednocześnie udając, że korzysta z oryginalnej biblioteki Kernel32.dll.

7. Biblioteka zawiera adres IP na kóry prawdopodobnie została przypuszczona próba połączenia.

00026020	hello
00026028	127.26.152.13
00026038	SADFHUHF

8. Na podstawie importowanych funkcjonalności można przypuszczać, że plik .dll jest używany przez plik ..exe w celu nawiązaia połączenia z serwerem.

Można przypuszczać, że z tego serwera zostaje pobrany plik, który zostaje uruchomiony hint: plik ..exe importuje CreateProcessA - wskazywało by to na uruchomienie pobranego pliku.

Można dodatkowo zauważyć na podstawie podobnych rekordów, że infekowana zostaje bilbioteka **Kernel32**, a jej oryginalna wersja prawdopodobnie zostaje zapisana w postaci **kerne123**

Zadanie 1.2 Lab02-02..exe

1. Analiza sum kontrolnych, sygnatury pliku

MD5: 8363436878404da0ae3e46991e355b83

SHA256: c876a332d7dd8da331cb8eee7ab7bf32752834d4b2b54eaa362674a2a48f64a6

Sygnatura analizowanego pliku była już wcześniej poddawana analizie, została oznaczona jako "malicious". (51/69 narzdzędzi)

2.

Program jest spakowany.

Używam UPX do rozpakowania

Spakowany:

Rozpakowany:

Jak widać program tworzy między innymi wątki, usługi oraz wykonuje zapytania na adresy internetowe.

InternetOpenUrlA: Jest to funkcja, która umożliwia programowi otwarcie połączenia z adresem URL w celu pobrania zawartości strony internetowej lub pliku. Funkcja zwraca wskaźnik do otwartego połączenia, który może być następnie wykorzystany do pobrania zawartości za pomocą innych funkcji.

Obie funkcje, InternetOpenA i InternetOpenUrlA, są funkcjami z biblioteki WinINet.dll, które umożliwiają programiście nawiązanie połączenia z internetem i pobieranie danych z serwera. Różnią się jednak sposobem, w jaki są wykorzystywane w aplikacji.

Funkcja InternetOpenA służy do utworzenia sesji internetowej. Musi ona zostać utworzona przed rozpoczęciem komunikacji z internetem. Funkcja ta tworzy wskaźnik do nowej sesji internetowej i zwraca ten wskaźnik do programisty. Programista może następnie użyć tego wskaźniku w innych funkcjach WinINet, np. InternetConnect czy HttpOpenRequest.

Z kolei funkcja InternetOpenUrlA jest używana, gdy programista chce otworzyć konkretne połączenie z serwerem i pobrać dane z określonego zasobu. Funkcja ta wymaga podania wskaźnika do sesji internetowej (który został utworzony za pomocą funkcji InternetOpenA) oraz adres URL, na który ma zostać wykonane zapytanie.

ExitProcess: Jest to funkcja, która zamyka bieżący proces i zwraca kontrolę do systemu operacyjnego. Funkcja przyjmuje jeden parametr - kod wyjścia, który jest zwracany do systemu operacyjnego i może być wykorzystany przez proces nadrzędny.

CreateMutexA: Jest to funkcja, która tworzy nowy obiekt mutexa systemowego, który może być wykorzystywany do synchronizacji dostępu do współdzielonych zasobów przez różne procesy. Funkcja zwraca wskaźnik do nowo utworzonego mutexa, który może być następnie wykorzystany do dostępu do zasobów.

- **4.** Informacje świadczące o połączeniach programu z internetem
 - link url z którym prawdopodobnie łączy się program
 - InternetOpenUrlA oraz InternetOpenA tuż przed podaniem url
 - Internet Explorer 8.0 wersja przeglądarki

0000230E	_except_handler3
00002320	_controlfp
0000232C	InternetOpenUrlA
0000233E	InternetOpenA
00003010	MalService
0000301C	Malservice
00003028	HGL345
00003030	http://www.malwareanalysisbook.com
00003054	Internet Explorer 8.0

Zadanie 1.3 Lab02-03..exe

1. Analiza sum kontrolnych, sygnatury pliku

Filename:	Lab02-03.exe
MD5:	9c5c27494c28ed0b14853b346b113145
SHA1:	290ab6f431f46547db2628c494ce615d6061ceb8
CRC32:	b2164101
SHA-256:	7983a582939924c70e3da2da80fd3352ebc90de7b8c4c427d484ff4f050f0aec
SHA-512:	38741bd024904f21d424254c1fbb3c16c6925d60b34d85f9cecff5d973c6c823b6b5e5e61
SHA-384:	[19779784317b2e88af7db0a67d48c14433f42b453d0fbd851b4a43a14e35d774fcc47e6c1]
Full Path:	C:\Users\sebuszqo\Desktop\binaries\Lab02-03.exe
Modified Time:	3/16/2023 3:05:14 PM
Created Time:	3/26/2011 7:54:40 AM
Entry Modified Time:	3/16/2023 3:05:14 PM

MD5: 9c5c27494c28ed0b14853b346b113145

SHA256:

7983a582939924c70e3da2da80fd3352ebc90de7b8c4c427d484ff4f050f0aec

Sygnatura analizowanego pliku była już wcześniej poddawana analizie, została oznaczona jako "malicious". (58/69 narzdzędzi)

2.

Program jest spakowany.

Niestety wszystkie próby rozpakowania, nie powiodły się.

Próba za pomocą UPX → brak powodzenia, nie został spakowany przy użyciu UPX

3. Tak, data kompilacji pliku:

4.

Niestety nie jestem w stanie sprawdzić funkcjonalność badanego pliku. Jedynie widać, że program ładuje jakąś bibliotekę.

5. Żaden ze stringów nie wskazuje na żadną próbę połączenia z siecią internet.

WARTO nadmienić i pamiętać, że dany plik nie został rozpakowany.

Offset	Strings recognized ASCII
00000000	MZ
0000004D	!Windows Program
0000005F	\$PE
00000184	ta
000001D6	b!@
0000020F	`.rdata
00000237	@.data
00000E0C	@@
00000E28	\$s
00000E2F	\$s
00000E36	\$s!
00000E45	u?
00000E5D	tA
00000E7F	AA
00000E94	TS
00000E9A	TS
00000EA0	1
00000EA4	;Ot
00000EA8	Ot
00000EB7	cc
00000EC0	(Q@
00000EE7	WU
00000F00	4Q
00000F04	(Q
00000F1C	@Q
00000F20	NQ
00000F28	@Q
00000F2C	NQ
00000F34	KERNEL32.dll
00000F42	LoadLibraryA
00000F50	GetProcAddress
00001003	Sj
00001008	H @
0000100F	lv
00001015	Ph8
0000101C	0[X
00001020	":LI
00001025	3Bt> O
0000102E	VQ(8
0000103A	48
00001043	2]<,M
00001059	VP
0000105C	:R,
00001060	P@M^
00001066	3
00001076	hx
00001070	w(
00001089	S>VW
00001009	OY
00001033 000010A4	u*
000010A4 000010A9	c
000010A9	p1
000010B7 000010BE	· -
000010BE	AQ=h
	"Z,
000010D1	5h
000010D5	3T

Zadanie 1.4 Lab02-04.exe

1. Analiza sum kontrolnych, sygnatury pliku

MD5: 625AC05FD47ADC3C63700C3B30DE79AB

SHA 256: 0fa1498340fca6c562cfa389ad3e93395f44c72fd128d7ba08579a69aaf3b126

Sygnatura analizowanego pliku była już wcześniej poddawana analizie, została oznaczona jako "malicious". (52/66 narzdzędzi)

2. Narzędzie PEiD wskazało stan "Not Packed"

3. Data kompilacji: 2019/08/30

pFile	Data	Description	Value
000000EC	014C	Machine	IMAGE_FILE_MACHINE_I386
000000EE	0004	Number of Sections	
000000F0	5D69A2B3	Time Date Stamp	2019/08/30 Fri 22:26:59 UTC
000000F4	00000000	Pointer to Symbol Table	
000000F8	00000000	Number of Symbols	
000000FC	00E0	Size of Optional Header	
000000FE	010F	Characteristics	

4.

ADVAPI32.dll [3 entries]						
Call via	Name	Ordinal	Original Thunk	Thunk	Forwarder	Hint
2000	OpenProcessTo	-	22CC	22CC	-	142
2004	LookupPrivileg	- "	22B4	22B4	-	F5
2008	AdjustTokenPri	-	229C	229C	-	17

4. Tak jestem w stanie sprawdzić funkcjonalność badanego pliku. Program ładuje bilbioteki, wykonuje również operacje na plikach i katalogach (m.in. tworzenie, zapis, przenoszenie, odczyt ścieżki). Co więcej wchodzi też w interakcję z innymi procesami.

Można by przypuszczać, że program zapisuje bilbiotekę w folderze Windows tudzież innych podfolderach, a następnie ustawia jej odpowiednie uprawnienia i ją uruchamia. Wspomniana bilblioteka, może być wewnętrzną zawartością pliku ..exe, lub może być pobierana z interentu, jednakże ad. pkt 6 - brak importów świadczących o próbie komunikacji z internetem.

- 5. W strings, można odszukać następne informacje dot. połączenia z internetem
 - http://www.practicalmalwareanalysis.com/updater..exe

00007070	\winup.exe
0000707C	%s%s
00007084	\system32\wupdmgrd.exe
0000709C	%s%s
000070A4	http://www.practicalmalwareanalysis.com/updater.exe

- **6.** Poruszone w podpunkcie 4, brak importów świadczących o potencjalnych importach dotyczących połączenia z siecią internet.
- 7. Użycie Reasource Hacker, wyodrębnienie zasobu oraz jego analiza:

00007070	\winup.exe
0000707C	%s%s
00007084	\system32\wupdmgrd.exe
0000709C	%s%s
000070A4	http://www.practicalmalwareanalysis.com/updater.exe

Po użyciu programu Resource Haker, i analizie wyodrębionego zasobu. Można dojść do wniosku, że plik ten jest zapisywany, a następnie wykorzystywany do pobrania pliku wykonawczegom który zostaje uruchomiony (ze wcześniejszej analizy mamy informację, że importowoany jest Win.exec). Znaleziony wcześniej url znajduje się wewnątrz "wypakowanego" pliku. Możemy uznać, że plik jest dropperem.

(plik jest przeznaczony do instalowania i uruchamiania innych złośliwych plików na komputerze, nazywa się "dropperem". Dropper może być częścią szkodliwego oprogramowania lub sam w sobie może być złośliwy.)