Relačná algebra

1.1 Základné operácie

Základnými operáciami relačnej algebry sú:

- 1. výber 🖂
- 2. projekcia 🖂
- 3. kartézsky súčin 🖂
- 4. zjednotenie 🖂
- 5. rozdiel 🖂
- 6. prienik
- 7. delenie 🖂
- 8. spojenie 🔀

1.2 Klasifikácia operácií

Tieto operácie môžu byť klasifikované z rôznych pohľadov:

- 1. Podľa počtu zdrojových relácií
 - Unárne výber, projekcia
 - **Binárne** kartézsky súčin, prienik, rozdiel, zjednotenie, delenie, spojenie
- 2. Podľa typu operácií
 - Množinové operácie zjednotenie, prienik, kartézsky súčin, rozdiel
 - Relačné operácie spojenie, delenie, výber, projekcia

1.2.1 VÝBER - SELECTION

Definícia – Elementárna podmienka EC

Elementárnou podmienkou EC nazývame výraz v tvare: <**Atribút**> <**Operátor**> <**Hodnota**|**Výraz**|**Atribút**>, kde operátor je jeden z množiny relačných operátorov: {=, <, >, <=, >=, ≠}.

Poznámka: Hodnotu v podmienke môžeme vyjadriť konštantou, výrazom, alebo atribútom

Podmienkou C nazývame výraz v tvare: [NOT] EC_1 [{OR | AND |NOT} [[NOT] EC_2]...]

Operácia SELECTION (Výber) vytvorí z relácie $R_1(A_1,A_2,\,...,\,A_n)$ reláciu $R_2(A_1,A_2,\,...,\,A_n)$ takú, že pre každú n-ticu $t \in \mathbb{R}_2$ platí $t \in \mathbb{R}_1$ a je splnená podmienka C.

Označenie

a) grafické

- matematické a)
 - $R_2 = \sigma_c(R_1)$

ho $Príklad\ 1.1 - Výber$ Vypíšte všetky údaje o predmetoch, ktoré garantuje učiteľ s osobným číslom="KI001"

a) pomocou operácií relačnej algebry $\sigma_{\text{cis_ucitel="KI001"}}(\text{predmet})$

ы) pomocou SQL príkazu

SELECT * FROM predmet
WHERE cis_ucitel = "KI001";

cis_predmet	Nazov	kredity	cis_ucitel
P111	Základy informatiky 1	6	KI001
P211	Základy informatiky 2	6	KI001
A502	C-jazyk	8	KI001

Komutativita výberu

$$\sigma_{cond1}(\sigma_{cond2}(R)) = \sigma_{cond2}(\sigma_{cond1}(R))$$

Kaskáda výberu (pre konjunkciu)

$$\sigma_{cond1}(\sigma_{cond2}(...(\sigma_{condn}\;(R)))) = \sigma_{cond1\;AND\;cond2\;AND\;...AND\;condn}\;(R)$$

1.2.2 PROJEKCIA – PROJECTION

Definícia - Projection

Operácia PROJECTION (Projekcia) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ reláciu $R_2(B_1,B_2, ..., B_m)$ takú, že množina atribútov $(B_1,B_2, ..., B_m) \subset (A_1,A_2, ..., A_n)$ a pre stupeň relácie R_2 platí m < n a $card(R_2) = card(R_1)$.

Označenie

- b) matematické
 - $R_2 = \pi_{B1..Bm}(R_1)$

□ Príklad 1.2 - Projekcia

Vypíšte zoznam mien a priezvísk všetkých študentov

a) pomocou operácií relačnej algebry $\pi_{\text{meno,priezvisko}}(os_udaje)$

ы pomocou SQL príkazu

SELECT meno, priezvisko FROM os udaje;

meno priezvisko Peter Novák Steinmüller Stanislav János Tóth Marek Rátroch Bohuslav Biely Branislav Baláž Peter Kapustný Marek Ďurica Martin Kľúčiar Lukáš Satrapa Ján Krnáč Papún Juraj Andrej Janči Zdeno Svetkovský Stanislava Slámová Erika Lipovská Peter Malík

Kaskáda projekcií

Ak zoznam zoznam2 atribútov projekcie obsahuje zoznam atribútov zoznam1, tak môžeme písať:

 $\pi_{zoznam1}(R) = \pi_{zoznam1}(\pi_{zoznam2}(R))$

1.2.3 KARTÉZSKY SÚČIN – PRODUCT

Definícia - Product

Operácia PRODUCT (Karteziánsky súčin) vytvorí z relácie $R_1(A_1,A_2,...,A_n)$ a z relácie $R_2(B_1,B_2,...,B_m)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$ takú, že obsahuje všetky kombinácie n-tíc z R₁ a R₂, kde pre každú n-ticu t platí:

 $t \in \mathbb{R}_3$ a t je usporiadanou dvojicou $t = t_1, t_2$ ak $t_1 \in R_1$ a $t_2 \in R_2$.

Označenie

a) grafické

b) matematické

 $R_3 = R_1 x R_2$

□ Príklad 1.3 – Kartézsky súčin

Vypíšte všetky kombinácie mien a priezvísk študentov a čísel predmetov, ktoré je možné si zapísať.

a) pomocou operácií relačnej algebry

```
a = \pi_{\text{meno,priezvisko}}(\text{os\_udaje}) \qquad \text{//vyber všetky mená a priezviská študentov} \\ b = \pi_{\text{cis\_predmet}}(\text{predmet}) \qquad \text{// vyber všetky čísla predmetov} \\ \text{Kartézsky\_súčin} = a \times b \qquad \text{// vytvor všetky kombinácie}
```

ы pomocou príkazov SQL

```
CREATE TABLE A
AS
SELECT meno, priezvisko FROM
os_udaje;

CREATE TABLE B
AS
SELECT cis_predmet FROM predmet;

SELECT meno, priezvisko, cis_predmet
FROM A,B;
```

Meno	priezvisko	cis_predmet
Peter	Novák	A501
Stanislav	Steinmüller	A501
János	Tóth	A501
	•••	•••
Peter	Novák	A901
Stanislav	Steinmüller	A901
János	Tóth	A901

1.2.4 ZJEDNOTENIE - UNION

Definícia - Union

Operácia UNION (zjednotenie) vytvorí z relácie $R_1(A_1, A_2, ..., A_n)$ a z relácie $R_2(A_1, A_2, ..., A_n)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

$$t \in \mathbb{R}_3$$
 ak $t \in \mathbb{R}_1$, alebo $t \in \mathbb{R}_2$

Označenie

a) grafické

b) matematické

 $R_3 = R_1 \cup R_2$

 $R_3 = UNION (R_1,R_2)$

 $R_3 = R1$ UNION R_2

Definícia – Union kompatibilita

Dve relácie \mathbf{R}_1 a \mathbf{R}_2 sú union kompatibilné, ak majú totožnú množinu atribútov.

♦

Príklad 1.4 – Union kompatibilné relácie

```
Ak máme reláciu
Študent_ZA(os_cislo,rod_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia)
a reláciu
študent_PD(os_cislo,rod_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia),
```

tak relácie sú union kompatibilné.

Príklad 1.5 – Union nekompatibilné relácie

Ak máme reláciu študent(os_cislo,rod_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia)

a reláciu

```
študenti(rod_cislo, os_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia),
```

tak relácie nie sú union kompatibilné, pretože poradie atribútov nie je totožné.

Príklad 1.6 – Union nekompatibilné relácie

Ak máme reláciu

```
študent(os_cislo,rod_cislo, st_zameranie,
st_odbor, rocnik, forma, stav, dat_1zapisu,
st_skupina, dat_ukoncenia)
```

a reláciu

```
študenti(os_cislo, rod_cislo,st_zameranie, st_odbor, rocnik),
```

tak relácie nie sú union kompatibilné, pretože počet atribútov nie je totožný.

□ Príklad 1.7 – Zjednotenie

Vytvorte dve relácie z relácie osobné údaje také, že prvá relácia bude obsahovať mená a priezviská všetkých žien a druhá relácia mená a priezviská všetkých mužov.

Potom napíšte príkaz pre zjednotenie oboch relácií.

a) pomocou operácií relačnej algebry

```
os_udaje_1=\pi_{meno,priezvisk}(os_udaje_skola)
```

os_udaje_
$$2 = \pi_{meno,priezvisko}$$
(os_udaje_primacky)

Zjednotenie = os_udaje_1 \cup os_udaje_2

ы pomocou príkazov SQL

CREATE TEMP TABLE os_udaje_1
AS SELECT meno, priezvisko
FROM os udaje skola;

CREATE TEMP TABLE os_udaje_2
AS SELECT meno, priezvisko
FROM os udaje primacky;

SELECT meno, priezvisko FROM os_udaje_1
UNION
SELECT meno, priezvisko FROM os udaje 2;

priezvisko meno Janči Andrej Bohuslav Biely Branislav Baláž Erika Lipovská František Murgaš Papún Juraj Ján Krnáč Tóth János Marek Rátroch Kľúčiar Martin Peter Kapustný Peter Malík Kontroš Rastislav Rudolf Kováč Stanislav Steinmüller Slámová Stanislava Zdeno Svetkovský Ľuboš Lehotský

Komutativita

$$R_1 \cup R_2 = R_2 \cup R_1$$

Asociativita

$$R_1 \cup (R_2 \cup R_3) = (R_1 \cup R_2) \cup R_3$$

1.2.5 ROZDIEL - DIFFERENCE

Definícia - Difference

Operácia DIFFERENCE (rozdiel) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ a z relácie $R_2(A_1,A_2,...,A_n)$, tretiu reláciu $R_3(A_1,A_2,...,A_n)$ takú, že pre každú n-ticu t platí:

 $t \in \mathbf{R}_3$ ak $t \in \mathbf{R}_1$ a $t \notin \mathbf{R}_2$.

Označenie

a) grafické

Poznámka:

 $R_1-R_2 \neq R_2-R_1$

b) matematické

 $R_3 = R_1 - R_2$

 $R_3 = R_1$ DIFFERENCE R_2

 $R_3 = DIFFERENCE (R_1, R_2)$

 $R_3 = SUBTRACT (R_1, R_2)$

Príklad - Rozdiel

Pomocou operácie rozdiel vypíšte rodné čísla študentov z relácie osobné údaje, ktorí **nie sú** študentmi druhého ročníka.

a) pomocou operácií relačnej algebry

```
R_1 = \pi_{rod\_cislo}(os\_udaje)

R_2 = \pi_{rod\_cislo}(\sigma_{rocnik} = 2 \text{ (student)})

ROZDIEL = R_1 - R_2
```

ы pomocou príkazov SQL

```
CREATE TABLE R1
AS
SELECT rod_cislo FROM os_udaje;

CREATE TABLE R2
AS
SELECT rod_cislo FROM student
WHERE rocnik = 2;

SELECT * FROM R1
WHERE rod_cislo NOT IN
(SELECT rod_cislo FROM R2);
```

rod_cislo 755022/8569 760103/2238 770913/3326 771203/5472 781001/3623 781015/4431 781130/4454 781201/1248

1.2.6 PRIENIK – INTERSECTION

Definícia - Intersection

Operácia INTERSECTION (prienik) vytvorí z relácie $\mathbf{R}_1(\mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_n)$ a z relácie $\mathbf{R}_2(\mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_n)$ tretiu reláciu $\mathbf{R}_3(\mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_n)$ takú, že pre každú n-ticu t platí:

 $t \in \mathbf{R}_3$ ak $t \in \mathbf{R}_1$ a súčasne $t \in \mathbf{R}_2$.

Označenie

a) grafické

b) matematické

 $R_3 = R_1 \cap R_2$

 $R_3 = R_1$ INTERSECTION R_2

 $R_3 = INTERSECTION (R1, R_2)$

Operáciu relačnej algebry prienik je možné vyjadriť pomocou operácie rozdiel, potom pre prienik relácii R₁ a R₂ platí:

$$R_3 = R_1 - (R_1 - R_2)$$
, alebo
 $R_3 = R_2 - (R_2 - R_1)$

alebo

pomocou operácií zjednotenie a rozdiel

$$R_3 = (R_1 \cup R_2) - ((R_1 - R_2) \cup (R_2 - R_1))$$

Príklad 1.9 - Prienik

Pomocou operácie prienik vypíšte všetky rodné čísla študentov z relácie osobné údaje, ktorí **sú** študentmi druhého ročníka.

a) pomocou operácií relačnej algebry

```
R_1 = \pi_{rod\_cislo}(os\_udaje)

R_2 = \pi_{rod\_cislo}(\sigma_{rocnik=2}(student))

PRIENIK = R_1 \cap R_2
```

ы pomocou príkazov SQL

```
CREATE TABLE R1

AS SELECT rod_cislo FROM os_udaje
   INTO TEMP R1;

CREATE TABLE R2

AS SELECT rod_cislo FROM student
   WHERE rocnik = 2;

SELECT * FROM R1

WHERE EXISTS
   (SELECT 'x' FROM R2
   WHERE R1.rod cislo=R2.rod cislo);
```

rod_cislo 771124/3578 790907/1259 791229/5431 800312/7845

Komutativita

$$R_1 \cap R_2 = R_2 \cap R_1$$

Asociativita

$$R_1 \cap (R_2 \cap R_3) = (R_1 \cap R_2) \cap R_3$$

1.2.7 DELENIE – DIVISION

DELENE					
1512	P111	[P111]	1512		
1512	P102	P102	1319		
1512	P103	P103	<u>. </u>		
1319	P102				
1319	P103				
1319	P111				
1414	P111				

Definícia – Division

Operácia DIVISION (delenie) vytvorí z relácie $D(A_1,A_2, ..., A_p, A_{p+1},A_{p+2},...,A_n)$ delením reláciou $d(A_{p+1},A_{p+2},...,A_n)$ tretiu reláciu $Q(A_1,A_2, ..., A_p)$ takú, že konkatenáciou $t_Q \in Q$ a $t_d \in d$ dostaneme n-ticu $t_D \in D$.

$$(\mathbf{t}_{\mathbf{Q}},\,\mathbf{t}_{\mathbf{d}}=\mathbf{t}_{\mathbf{D}})$$

Definícia - Division

Nech $\mathbf{X} = (\mathbf{A_1, A_2, ..., A_p})$ a $\mathbf{Y} = (\mathbf{A_{p+1, A_{p+2, ..., A_n}})$ potom operácia DIVISION (delenie) vytvorí z binárnej relácie $\mathbf{D}(\mathbf{X, Y})$ delením unárnou reláciou $\mathbf{d}(\mathbf{Y})$ tretiu unárnu reláciu $\mathbf{Q}(\mathbf{X})$ takú, že konkatenáciou $\mathbf{t_Q} \in \mathbf{Q}$ a $\mathbf{t_d} \in \mathbf{d}$ dostaneme n-ticu

$$t_D \in D$$

$$(t_Q, t_d = t_D)$$

Veta

$$\mathbf{D} \dot{\mathbf{d}} = \mathbf{R}_1 - \mathbf{R}_2$$

kde

$$R_1 = \pi_{A1,A2,...,Ap}(D)$$

$$R_2 = \pi_{A1,A2,...,Ap}((R_1 \times d) - D)$$

Veta

$$\mathbf{D}_{\dot{\boldsymbol{+}}}\mathbf{d}=\mathbf{R}_1-\mathbf{R}_2$$

kde

$$R_1 = \pi_X(D)$$

$$R_2 = \pi_X((R_1 \times d) - D)$$

Označenie

a) grafické

b) matematické

$$Q = D \div d$$

- Príklad 1.10
 Vypíšte osobné čísla všetkých študentov, ktorí majú zapísané oba predmety: P202 a P301.
- a) riešenie číslo 1 pomocou príkazov SQL

 CREATE TABLE menovatel

 AS SELECT cis_predmet FROM predmet

 WHERE predmet.cis_predmet = "P202"

 OR

predmet.cis predmet = "P301";

CREATE TABLE pocet_v_menovateli
AS
SELECT COUNT(*) pocet FROM
menovatel;

CREATE TABLE pocet_st_pr AS
SELECT os_cislo, COUNT(*) pocet
FROM st_pr
GROUP BY os cislo;

SELECT os_cislo
 FROM pocet_st_pr z JOIN
 pocet_v_menovateli y
 ON(z.pocet = y.pocet);

b) riešenie číslo 2 - pomocou príkazov relačnej algebry

menovatel =
$$\sigma_{cis_predmet="P202" OR cis_predmet="P301"}(\pi_{cis_predmet}(predmet))$$

R1 = $\sigma_{unique}(\pi_{os_cislo,cis_predmet}(zap_predmety \bowtie_{cis_predmet}menovatel))$

R = $\sigma_{unique}(\pi_{os_cislo}(R1))$

R2 = $\pi_{os_cislo}((R \times menovatel) - R1)$

PODIEL =R - R2

```
c) riešenie číslo 2 - pomocou príkazov SQL
 SELECT cis predmet FROM predmet
   WHERE cis predmet = "P202"
      OR cis predmet = "P301"
   INTO TEMP menovatel;
 SELECT UNIQUE os cislo , cis predmet
   FROM zap predmety
   WHERE cis predmet IN
  (SELECT cis predmet FROM menovatel)
   INTO TEMP R1;
 SELECT unique os cislo FROM R1
   INTO TEMP R;
 SELECT os cislo FROM R, menovatel
   WHERE cis predmet NOT IN
(SELECT cis predmet FROM R1)
   INTO TEMP R2;
 SELECT os cislo FROM R
   WHERE os cislo NOT IN
      (SELECT os cislo FROM R2);
```

os_cislo 1402 1555

1.2.8 SPOJENIE – JOIN

SPOJENE				
1512 P103	P102 Algebra	1512 P103 P103 Matematická analýz		
1512 P102	P103 Matematická analýza 1	1512 P102 P102 Algebra		
1319 P103	P111 Základy informatiky 1	1319 P103 P103 Matematická analýz		

Definícia – Join

Operácia JOIN (spojenie) vytvorí z relácie $R_1(X, A_1,A_2, ..., A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu $R_3(X,A_1,A_2,...,A_n, X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ a pre hodnoty atribútov X platí $t_1.X=t_2.X$, potom n-tica $t \in R_3$ má atribúty $t=t_1.X$, $t_1.A_1$, $t_1.A_2$, ..., $t_1.A_n$, $t_2.X$, $t_2.B_1$, $t_2.B_2$, ..., $t_2.B_m$.

Pri operácii spojenie si je potrebné uvedomiť, že množiny atribútov, cez ktoré sa spojenie realizuje môžu, ale nemusia mať rovnaké mená, ale vždy musia mať rovnakú doménu.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_c R_2$$

$$R_3 = R_1 \text{ JOIN}_C R_2$$

$$R_3 = \text{JOIN} (R_1,R_2,C)$$

Poznámka

V prípade, že množiny atribútov, cez ktoré sa realizuje spojenie majú rovnaké mená, nie je nutné pri operátore spojenia uvádzať podmienku vyjadrujúcu spojenie atribútov dvoch relácií.

Označenie v prípade rovnakých mien atribútov

a) grafické

b) matematické

 $R_3 = R_1 \bowtie R_2$

 $R_3 = R_1 \text{ JOIN } R_2$

 $R_3 = JOIN (R_1, R_2)$

Operáciu relačnej algebry spojenie je možné vyjadriť pomocou operácií kartézsky súčin a výber. V tom prípade pre spojenie $R_3 = R_1 \bowtie_{\mathbb{C}} R_2$ platí:

 $R_3 = \sigma_C(R_1 \times R_2)$

□ Príklad 1.11 – Spojenie s použitím rovnakých mien atribútov

```
SELECT os_udaje.*,student.* FROM
os_udaje JOIN student ON
(os udaje.rod cislo=student.rod cislo)
```

Príklad 1.12 - Spojenie s použitím rôznych mien atribútov
V prípade, že by v relácii študent atribút, v ktorom bude uložené rodné číslo mal meno RC, príklad spojenia by vyzeral nasledovne:

```
SELECT os_udaje.*,student.* FROM
os_udaje JOIN student ON
(os_udaje.rod_cislo=student.rc)
```

□ Príklad 1.13 - Spojenie

Pomocou operácie spojenie, spojte nasledovné relácie R₁ a R₂.

 $R_1 = \pi_{rod_cislo, meno, priezvisko}(os_udaje)$

 $R_2 = \pi_{\text{os_cislo,rod_cislo, rocnik, st_skupina}}(\text{student})$

a) pomocou operácií relačnej algebry:

SPOJENIE = $R_1 \bowtie R_2$

b) pomocou príkazov SQL

```
SELECT ou.rod_cislo,

meno,

priezvisko,

os_cislo,

st.rod_cislo,

rocnik,

st_skupina

FROM os_udaje ou,

JOIN student st

ON(Ou.rod_cislo=st.

rod cislo);
```

r1.rod_cislo	Meno	priezvisko	os_cislo	r2.rod_cislo	rocnik	st_skupina
801106/3456	Peter	Novák	1512	801106/3456	1	5Z012
800312/7845	Stanislav	Steinmüller	1469	800312/7845	2	5Z021
810514/5341	Branislav	Baláž	1567	810514/5341	1	5Z013
781015/4431	Peter	Kapustný	1319	781015/4431	3	5ZA31
800407/3522	Marek	Ďurica	1555	800407/3522	2	5Z022
791229/5431	Martin	Kľúčiar	1402	791229/5431	2	5Z023
771124/3578	Lukáš	Satrapa	1096	771124/3578	2	5Z023
771203/5472	Ján	Krnáč	1103	771203/5472	4	5ZI41
790310/2145	Juraj	Papún	1333	790310/2145	3	5ZA32
791225/7452	Rastislav	Kontroš	1448	791225/7452	1	5P011
755022/8569	Erika	Lipovská	807	755022/8569	1	5Z013
		·				

SQL 99

SELECT

```
ou.rod_cislo, meno, priezvisko,
os_cislo, st.rod_cislo,rocnik,
st_skupina
FROM os_udaje as ou,
INNER JOIN student as st
ON(ou.rod_cislo=st.rod_cislo);
```

1.3 Ďalšie varianty operácie spojenia

V literatúre sa môžeme stretnúť s ďalšími operáciami relačnej algebry, ktoré sú rozšírením základných operácií relačnej algebry a sú to:

- a) prirodzené spojenie
- b) theta spojenie
- c) equi spojenie
- d) inequi spojenie
- e) externé spojenie
- f) polospojenie (semi spojenie)

1.3.1 PRIRODZENÉ SPOJENIE - NATURAL JOIN

Definícia – Prirodzené spojenie - Natural join

Operácia NATURAL JOIN (prirodzené spojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X, tretiu reláciu

 $R_3(X,A_1,A_2,...,A_n,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ a pre hodnoty atribútov X platí

$$t_1.X=t_2.X$$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ má atribúty $\mathbf{t} = \mathbf{t}_1..X$, $\mathbf{t}_1..A_1$, $\mathbf{t}_1..A_2$, ..., $\mathbf{t}_1..A_n$, $\mathbf{t}_2..B_1$, $\mathbf{t}_2..B_2$, ..., $\mathbf{t}_2..B_m$, pričom atribúty s rovnakými menami *sa neopakujú*.

Označenie

a) grafické

b) matematické

 $R_3 = R_1 \bowtie_N R_2$

 $R_3 = R_1 \text{ JOIN}_N R_2$

 $R_3 = JOIN (R_1, R_2, N)$

Príklad 1.15 - Prirodzené spojenie
 Vypíšte pre každého študenta nasledovné údaje:
 rodné číslo, meno, priezvisko, osobné číslo, ročník, študijná skupina
 (Spravte teda to isté, čo v príklade 1.11, ale s potlačením duplicity stĺpca rodné číslo).

a) pomocou operácií relačnej algebry

 $\begin{array}{lll} R_1 = \pi_{\text{rod_cislo, meno, priezvisko}}(\text{os_udaje}) \\ R_2 = \pi_{\text{os_cislo,rod_cislo, rocnik, st_skupina}}(\text{student}) \\ \text{SPOJENIE} = R_1 \ M_N \ R_2 \end{array}$

b) pomocou SQL príkazov

```
SELECT rod_cislo, meno,
    priezvisko
    FROM os_udaje
    INTO TEMP r1;

SELECT os_cislo, rod_cislo,
    rocnik, st_skupina
    FROM student
    INTO TEMP r2;

SELECT r1.*,r2.os_cislo,
    r2.rocnik, r2.st_skupina
    FROM r1 JOIN r2
    ON
    r1.rod_cislo = r2.rod_cislo;
```

SELECT ou.rod_cislo, meno,
 priezvisko,os_cislo, rocnik,
 st_skupina
FROM os_udaje ou JOIN student st
ON ou.rod cislo=st.rod cislo;

rod_cislo	meno	priezvisko	os_cislo	rocnik	st_skupina
801106/3456	Peter	Novák	1512	1	5Z012
800312/7845	Stanislav	Steinmüller	1469	2	5Z021
790907/1259	János	Tóth	1414	2	5Z021
755022/8569	Erika	Lipovská	807	1	5Z013

SQL99

Špeciálny prípad

Ak relácie R a S sú UNION kompatibilné tak:

$$R \cap S = R \bowtie S$$

1.3.2 THETA JOIN

Definícia –Theta join

Operácia THETA JOIN (Θ - spojenie) vytvorí z relácie $\mathbf{R_1}(\mathbf{X}, \mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_n})$ a z relácie $\mathbf{R_2}(\mathbf{X}, \mathbf{B_1}, \mathbf{B_2}, \dots, \mathbf{B_m})$, ktoré majú spoločnú množinu atribútov X tretiu reláciu $\mathbf{R_3}(\mathbf{X}, \mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_n}, \mathbf{X}, \mathbf{B_1}, \mathbf{B_2}, \dots, \mathbf{B_m})$ takú, že

ak $t_1 \in \mathbf{R}_1$ a ak $t_2 \in \mathbf{R}_2$ a pre hodnoty atribútov \mathbf{X} platí $t_1.\mathbf{X} \odot t_2.\mathbf{X}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ má atribúty $\mathbf{t} = \mathbf{t}_1...\mathbf{X}$, $\mathbf{t}_1...\mathbf{A}_1$, $\mathbf{t}_1...\mathbf{A}_2$, ..., $\mathbf{t}_1...\mathbf{A}_n$, $\mathbf{t}_2...\mathbf{X}$ $\mathbf{t}_2...\mathbf{B}_1$, $\mathbf{t}_2...\mathbf{B}_2$,..., $\mathbf{t}_2...\mathbf{B}_m$, pričom *operátor* $\mathbf{0}$ nadobúda hodnotu z množiny relačných operátorov $\{=,<,>,<=,>=,\neq\}$.

Označenie

a) grafické

b) matematické

 $R_3 = R_1 \bowtie_{\theta} R_2$ $R_3 = R_1 \text{ JOIN}_{\theta} R_2$

 $R_3 = JOIN(R_1,R_2,\theta)$

□ *Príklad 1.16 [Codd90]*

Predpokladajme, že máme reláciu Výrobok (cis_vyrobku, nazov, mnozstvo) a reláciu Objednávka (cis_odberatela, cis_vyrobku, poz_mnostvo).

V prípade, že požiadavka je formulovaná nasledovne:

SELECT vyrobok.*, objednavka.*
FROM vyrobok JOIN objednavka
ON
vyrobok.mnozstvo<objednavka.poz_mnozstvo

Výsledná relácia bude obsahovať atribúty z oboch relácií a tie n-tice, kde požadované množstvo je väčšie ako množstvo vyrobených výrobkov.

1.3.3 **EQUI JOIN**

Definícia – Equi join

Operácia EQUI JOIN je takou *operáciou o spojenia*, kde operátor o nadobúda hodnotu relačného operátora =.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_E R_2$$

$$R_3 = R_1 \text{ JOIN}_E R_2$$

$$R_3 = JOIN (R_1, R_2, E)$$

1.3.4 INEQUI JOIN

Definícia – Inequi join

Operácia INEQUI JOIN je takou *operáciou ⊕-spojenia*, kde operátor ⊕ nadobúda hodnotu z množiny relačných operátorov {<,>,<=,>=,≠}.

Označenie

a) grafické

b) matematické

$$\begin{split} R_3 &= R_1 \bowtie_{\bar{E}} R_2 \\ R_3 &= R_1 \ JOIN_{\bar{E}} \ R_2 \\ R_3 &= JOIN \ (R_1,R_2,\bar{E}) \end{split}$$

1.3.5 EXTERNAL JOIN

Definícia – External join - FULL

Operácia EXTERNAL JOIN – FULL (Vonkajšie spojenie - úplné) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,\!A_1,\!A_2,\!\dots,\!A_a,\!X,\!B_1,\!B_2,\!\dots,\!B_m)$ takú, že ak $t_1\in R_1$ a ak $t_2\in R_2$

potom n-tica $t \in R_3$ má atribúty $t=t_1..X$, $t_1..A_1$, $t_1..A_2$, ..., $t_1..A_a$, $t_2.X$, $t_2..B_1$, $t_2..B_2$, ..., $t_2..B_m$. a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota $t_1.X \notin \{hodnôt \ t_2.X\}$
- alebo hodnota $t_2.X \notin \{\text{hodnôt } t_1.X\}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ nadobúda **NULL** hodnoty pre chýbajúce atribúty n-tice \mathbf{t} .


```
Príklad 1.17 – External join FULL
  Pomocou príkazov SQL realizujte úplné vonkajšie spojenie relácií r1 a r2 definovaných
  nasledovnými SELECT-ami:
  CREATE TABLE R1 AS
  SELECT UNIQUE os cislo , cis predmet
  FROM zap predmety;
  CREATE TABLE R2 AS
  SELECT cis predmet, nazov
  FROM predmet;
SQL99
  SELECT r1.*, r2.*
    FROM r1 FULL OUTER JOIN r2
    ON r1.cis predmet = r2.cis predmet
Oracle
  SELECT r1.*, r2.*
    FROM r1+, r2
    WHERE r1.cis predmet = r2.cis predmet
  UNION
  SELECT r1.*,r2.*
    FROM r1, r2+
    WHERE r1.cis predmet = r2.cis predmet;
  Riešenie
  SELECT r1.*, r2.*
  FROM r1, OUTER r2
  WHERE r1.cis predmet=r2.cis predmet
  UNION
  SELECT r1.*, r2.*
  FROM OUTER r1, r2
  WHERE r1.cis predmet=r2.cis predmet;
```

i e			
os_cislo	r1.cis_predmet	r2.cis_predmet	nazov
		A502	C-jazyk
		A506	Časti elektronických systémov
		A601	Matematické programovanie
 807	 P202	 P202	 Matematická analýza 2
807	P203	1 202	watematicka anaryza z
807	P211	P211	Základy informatiky 2
807	V101	V101	Praktikum z programovania 1

1448	P111	P111	Základy informatiky 1
1448	P202	P202	Matematická analýza 2
1448	P203		·
1469	P203		
1469	P301	P301	Pravdepodobnosť
1469	P303	P303	Matematická analýza 3
1512	P102	P102	Algebra
1512	P103	P103	Matematická analýza 1
1512	P111	P111	Základy informatiky 1
1545	P103	P103	Matematická analýza 1
1545	P202	P202	Matematická analýza 2
1545	P203		
1555	P202	P202	Matematická analýza 2
1555	P203		
1555	P301	P301	Pravdepodobnosť
1555	P303	P303	Matematická analýza 3
1559	P201		
1559	P203		

Definícia – External join - LEFT

Operácia EXTERNAL JOIN – LEFT (vonkajšie spojenie - ľavé) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,...,A_a,X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ potom n-tica $t \in R_3$ má atribúty

 $t=t_1.X$, $t_1.A_1$, $t_1.A_2$,..., $t_1.A_a$, $t_2.X$, $t_2.B_1$, $t_2.B_2$,..., $t_2.B_m$. a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota t₂.X ∉ {hodnôt t₁.X}
 potom n-tica t ∈ R₃ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice t.

□ Príklad 1.18 – Externé spojenie LEFT

Pomocou príkazov SQL realizujte ľavé vonkajšie spojenie relácií r1 a r2 definovaných

v predchádzajúcom príklade 1.17:

SQL99

```
SELECT r1.*,r2.*
FROM r1 LEFT OUTER JOIN r2
ON r1.cis predmet = r2.cis predmet;
```

ORACLE

```
SELECT r1.*,r2.*
FROM r1+, r2
WHERE r1.cis predmet = r2.cis predmet;
```

INFORMIX

SELECT R1.*,R2.*
FROM OUTER R1, R2
WHERE R1.CIS_PREDMET=R2.CIS_PREDMET;

os_cislo	r1.cis_predmet	r2.cis_predmet	nazov
807	P202	P202	Matematická analýza 2
807	P203		
807	P211	P211	Základy informatiky 2
807	V101	V101	Praktikum z programovania 1
1545	P103	P103	Matematická analýza 1
1545	P202	P202	Matematická analýza 2
1545	P203		
1555	P202	P202	Matematická analýza 2
1555	P203		
1555	P301	P301	Pravdepodobnosť
1555	P303	P303	Matematická analýza 3
1559	P201		·
1559	P203		
1567	P202	P202	Matematická analýza 2
1567	P203		
1567	V201	V201	Praktikum z programovania 2

Definícia – External join - RIGHT

Operácia EXTERNAL JOIN - RIGHT(vonkajšie spojenie - pravé) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,...,A_n,X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ potom n-tica $t \in R_3$ má atribúty

 $t=t_1..X,t_1..A_1,t_1..A_2,...,t_1..A_n, t_2.X, t_2..B_1, t_2..B_2,...,t_2..B_m$ a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota t₁.X ∉ {hodnôt t₂.X}
 potom n-tica t ∈ R₃ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice t.

П

```
Príklad 1.19 - OUTER RIGHT
Pomocou príkazov SQL realizujte úplné vonkajšie spojenie relácií r1 a r2 definovaných
v príklade 1.17:

SQL99

SELECT r1.*,r2.*
FROM r1 RIGHT OUTER JOIN r2
ON r1.cis_predmet = r2.cis_predmet;

ORACLE
SELECT r1.*,r2.*
FROM r1, r2+
WHERE r1.cis_predmet = r2.cis_predmet;

INFORMIX

SELECT r1.*, r2.*
FROM r1, OUTER r2
```

WHERE r1.cis predmet=r2.cis_predmet;

Os_cislo	r1.cis_predmet	r2.cis_predmet	nazov
945	P111	P111	Základy informatiky 1
1381	P111	P111	Základy informatiky 1
1414	P111	P111	Základy informatiky 1
1448	P111	P111	Základy informatiky 1
1512	P111	P111	Základy informatiky 1
 1333	 P602	 P602	 Číslicové počítače
			Manažment
1381	P609	P609	
		A601	Matematické programovanie
1333	A602	A602	Databázové systémy
1381	A602	A602	Databázové systémy
1612	A602	A602	Databázové systémy
		V502	Právo 1
		V601	Právo 2
		A702	Operačné systémy*
		A709	%Marketing
1103	A806	A806	Riadenie počítačom
		V719	Základy programovania vo Win.
 945	A904	A904	Prognostika

1.3.6 SEMI JOIN

Definícia – Semi join

Operácia SEMI JOIN (polospojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$ tretiu reláciu $R_3(X,A_1,A_2,...,A_n)$ takú,

$\check{z}e\ t_1\in R_1\ a\ t_2\in R_2$

ak pre n-ticu $\mathbf{t_1} \in \mathbf{R_1}$ existuje spojenie *aspoň* s jednou n-ticou $\mathbf{t_2} \in \mathbf{R_2}$, potom $\mathbf{t_1} \in \mathbf{R_3}$.

Poznámka

Základná operácia Polospojenia predpokladá, že výsledná relácia bude obsahovať n-tice len z prvej z relácií, ktoré sú operandami. Ale podobne ako pri Vonkajšom spojení aj pri polospojení rozlišujeme pravé, alebo ľavé polospojenie, z čoho vyplýva, že výsledná relácia je tvorená len výskytmi n-tíc tej relácie, ktorá je vo výraze umiestnená vpravo (pravé polospojenie), resp. vľavo (ľavé polospojenie). Z toho vyplýva, že základná operácia Polospojenia je vlastne definovaná ako Ľavé polospojenie.

Označenie – grafické

a) Semi join – LEFT

b) Semi join – RIGHT

Príklad 1.20 – Ľavé polospojenie

SELECT UNIQUE os_udaje.* FROM os_udaje JOIN student ON

os_udaje.rod_cislo=student.rod_cislo

□ Príklad 1.21 – Pravé polospojenie

SELECT UNIQUE student.*

FROM os_udaje JOIN student

ON

os_udaje.rod_cislo=student.rod_cislo

1.4 Ďalšie operácie relačnej algebry

V literatúre sa môžeme stretnúť s ďalšími operáciami relačnej algebry, ktoré sú rozšírením základných operácií relačnej algebry a sú to:

- a) Doplnok (Complement)
- b) Rozdelenie (Split)

1.4.1 COMPLEMENT

Definícia - Complement

Operácia COMPLEMENT (doplnok) vytvorí z relácie $\mathbf{R}_1(\mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_n)$ reláciu $\mathbf{R}_2(\mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_a)$ takú, že $\mathbf{t}_2 \in \mathbf{R}_2$ obsahuje *všetky* n-tice, ktoré patria do Kartézskeho súčinu hodnôt domén atribútov relácie \mathbf{R}_1 a $\mathbf{t}_2 \notin \mathbf{R}_1$.

Označenie

a) grafické

b) matematické

$$R_2 = NOT (R_1)$$

$$R_2 = COMP (R_1)$$

$$R_2 = \neg R_1$$

□ Príklad 1.22

Nech existuje relácia R(A,B), pričom doména atribútu $A = \{1,2,3\}$ a doména atribútu $B = \{x,y,z,w\}$ a nech relácia R má nasledovné n-tice:

Α	В
1	Χ
1	у
1	Z
2	W

Potom výsledok operácie doplnok je relácia, ktorá má nasledovné n-tice:

В
W
Χ
Υ
Z X
Υ
Z W
W

1.4.2 **SPLIT**

Definícia - Split

Operácia split vytvorí z relácie $R_1(A_1,A_2...A_n)$ dve relácie $R_2(A_1,A_2...A_n)$ a $R_3(A_1,A_2...A_n)$ také, že pre každé $t \in R_1$ platí:

- t patrí do práve jednej z relácií R₂ a R₃
- ak pre t je splnená podmienka C, potom $t \in \mathbb{R}_2$
- ak pre t nie je splnená podmienka C, potom t∈R₃

Označenie

a) grafické

b) matematické

 $R_2 = \sigma_c R_1$

 $R_3 = \sigma_{\neg c} R_1$

Rælačná algebra a kalkul

□ Príklad 1.14 - Split

Vytvorte reláciu, ktorá obsahuje zoznam mien, priezvísk a rodných čísel všetkých osôb z relácie osobné údaje. Potom ju pomocou operácie split rozdeľte na dve relácie – muži a ženy.

a) pomocou operácií relačnej algebry

```
\begin{array}{lll} R_1 = & \pi_{meno,\;priezvisko,rod\_cislo}(os\_udaje) \\ R_2 = & \sigma_{\;rod\_cislo[3,3]>4} & R_1 & //ženy \\ R_3 = & \sigma_{\neg\;rod\_cislo[3,3]>4} & R_1 & //muži \end{array}
```

b) pomocou SQL príkazov

```
CREATE TABLE R1 AS
SELECT meno, priezvisko, rod_cislo FROM os_udaje;

CREATE TABLE R2 AS
SELECT * FROM r1
WHERE rod cislo[3,3]>4; //ženy
```

meno	priezvisko	rod_cislo
meno Stanislava	Slámová	796123/5471
Erika	Lipovská	755022/8569

```
SELECT * FROM r1
    WHERE rod cislo[3,3]<=4;    //muži</pre>
```

meno	priezvisko	rod_cislo
Peter	Novák	801106/3456
Stanislav	Steinmüller	800312/7845
János	Tóth	790907/1259
Marek	Rátroch	810130/3695
Bohuslav	Biely	781201/1248
Branislav	Baláž	810514/5341
Peter	Kapustný	781015/4431
Marek	Ďurica	800407/3522
Martin	Kľúčiar	791229/5431
Ján	Krnáč	771203/5472