Lecture 6 (22 August 2025)

Theorem.

(b)
$$\lim_{x \to -\infty} F_{x}(x) = 0$$
 $\lim_{x \to -\infty} F_{x}(x) = 1$,

(c)
$$F_{\chi}(x)$$
 is right continuous that is

$$\lim_{\epsilon \to 0^{+}} F_{\chi}(x+\epsilon) = F_{\chi}(x).$$

(d)
$$P(x>x) = 1 - F_x(x)$$
.

(e)
$$P(x_1 < x \le x_2) = F_x(x_2) - F_x(x_1)$$

$$(f) P(x=x) = F_x(x) - \lim_{z \to 0^+} F_x(x-z),$$

$$\frac{P_{xx}(x)}{F_{x}(x)} = P(x \le x)$$

$$= P(x \le y) \quad (\dots x < y)$$

$$= F_{x}(y),$$

(b) Let
$$A_n = \{x \le n\}$$

 $A_1 \subseteq A_2 \subseteq ----$
 $\lim_{n \to \infty} f_{\mathbf{x}}(n) = \lim_{n \to \infty} p(x \le n)$
 $= p(0) \{x \le n\}$
 $= p(-1) = 1$.
 $B_n = \{x \le -n\}$
 $B_1 \supseteq B_2 \supseteq ---$
 $\lim_{n \to -\infty} f_{\mathbf{x}}(n) = \lim_{n \to -\infty} p(x \le n)$
 $= \lim_{n \to -\infty} p(x \le -n)$
 $= p(\bigcap_{n = 1} \{x \le -n\})$
 $= p(\bigcap_{n = 1} \{x \le -n\})$

[The proof of (a) is exactly along the same

lines as a proof given in Lecture 1 in the discussion of mathematical induction. 7

(c)
$$\lim_{\epsilon \to 0^+} F_{\chi}(x+\epsilon)$$

$$= \lim_{n \to \infty} F_{x}(x+y_{n})$$

$$= \lim_{n \to \infty} P(x \leq x + t_n)$$

$$= P\left(\bigwedge_{n=1}^{\infty} \left\{ x \leq x + \frac{1}{n} \right\} \right)$$

$$= P(x \le x) = F_x(x)$$

$$(d) P(x>x) = 1-P(x \le x) = 1-f_x(x)$$

(e)
$$P(x_1 < x \leq x_2)$$

$$= P(\{x \leq x_1\} \setminus \{x \leq x_1\})$$

$$= P(x \leq x_2) - P(x \leq x_1)$$

$$= F_{\chi}(x_2) - F_{\chi}(x_i)$$

$$\frac{1}{x_1}$$

(f)
$$\lim_{\Sigma \to 0+} F_{\chi}(\chi - \Sigma)$$

$$=\lim_{n\to\infty} P(x \leq x - \frac{1}{n})$$

2-12-1-2

A, CA, C---

$$= p\left(\bigcup_{n=1}^{\infty} \left\{ x \leq x - \frac{1}{n} \right\} \right)$$

$$= P(x < x).$$

$$P(x \leq x) - P(x < x) = P(x = x).$$

- Actually the properties (a) (b) and (c) Completely characterize comulative distributive functions. That is F is the cop of some random variable if and only if it satisfies (a) (b) and (c)

Exercise Given a function of that satisfies (a) (b) and (c) construct a sample space of probability law and random variable s.t. its cop is equal to F.

Discrete Random Variable

A random rasiable x is called discrete if it takes values in some countable subset [x,x,---) of R,

A discrete random variable has an associated probability mass function (PMF) $P_X: X \to [0,1]$ given by

$$P_{X}(x) = P(x=x)$$

$$= P(\{\omega \in A; X(\omega) = x\}).$$

$$\int_{X} (x) = P(X \subseteq X)$$

$$= \sum_{i: x_{i} \le x} P_{x}(x_{i}).$$

Lemma. Let x be a discrete random variable and it takes values x, x, ---. Then

$$\leq l_{x}(x_{i}) = 1$$
.

Proof

$$\sum_{i=1}^{\infty} I_{x}(x_{i}) = \sum_{i=1}^{\infty} P(x=x_{i})$$

$$= P(\bigcup_{i=1}^{\infty} (x=x_{i})) \quad [br \ additivity]$$

$$= P(-1)$$

$$= 1.$$

Functions of Random Variable

Let x: 12 -> R be a random variable.

Consider a real function g:RNR.

$$y = g(x)$$
 i.e. $y(w) = g(x(w)), + w \in A$.

Is y a random rariable 2

$$\{\omega: \gamma(\omega) \leq y\} = \{\omega: \beta(\chi(\omega)) \leq y\}$$

$$= \{\omega: \chi(\omega) \in \mathbb{B} \text{ for some BeB}\}$$

where B is is Borel o-algebra - the smallest o-field that contains the sets (-ox) +xer,

$$\mathcal{B} = \left\{ \left(-\infty x \right) \left(-\infty x \right) \left(x_{1} x_{2} \right) \left[x_{1} x_{2} \right] - \cdots \right\},$$

Since x is a random variable

Expressed as a countable union of sets of the form (-oxx) and their complements, i, Y is also a random vaniable.

Lemma. Let x be a discrete random vasicable with PMF P_x and y=g(x). Then $P_y(y)=\sum_{x\in x}P_x(x)$, $x\in x$:

where x takes values in x,

 $\frac{P_{300}f}{=P(Y=y)}$

$$= P(g(x) = y)$$

$$= P(((\omega); g(x(\omega)) = y))$$

$$= P(((\omega); \chi(\omega) = x \text{ for some})$$

=
$$P(\{\omega; \chi(\omega)=\chi \text{ for some } \chi s,t. g(\chi)=\gamma\})$$

$$= P(\bigcup_{x \in \mathcal{K}: \\ \mathcal{I}^{(x)} = \mathcal{I}} \{x(\omega) = x \})$$

$$= \sum_{x \in x} P(x = x) = \sum_{x \in x} P_{x}(x) = \sum_{x$$

$$P_{\times}(x) = \int_{0}^{\pi} e^{-if} x \in \{-4, -3, -1, 0\} = \int_{0}^{\pi} e^{-if} x \in \{-4, -3, -1$$

$$P_{y}(y) = \int_{x}^{y} |y| + P_{x}(-y) = \frac{1}{4} + y \in [1:4]$$

Suppose we have a collection of numbers a an another that describer the whole collection. Now consider a random variable x. We would like to define a similar notion.

Let x be a discrete random variable that takes values in x. The expectation or expected value or mean of x is defined as

$$E[x) = \sum_{x \in x} x P_{x}(x).$$

Interpretation. Consider a discrete RV that takes values I, x2---xm. This rendom variable is a result of a random experiment. Suppose we repeat this experiment a very large number of times N, and that the trials are independent

dent. Let x; occors N; number of times for ie [1:m]. We consider the average of all the observed values:

$$\frac{Z}{N}, x;$$

$$= \sum_{i=1}^{N} \left(\frac{N;}{N}\right), x;$$

$$\sum_{i=1}^{N} \left(\frac{X;}{N}\right), x;$$

$$\sum_{i=1}^{N} \left(\frac{X;}{N}\right), x;$$

Example.
$$P_{x}(1) = P = 1 - P_{x}(0)$$
.
 $E[x] = P.1 + (1-P).0 = P.$

Expectation of a function of RV

Let x be a discrete random vaniable and g:R+R, then y=g(x) is a RV.

To calculate its expectation it may appear that we first need to find its pmf py and compute Zyly(y). Mexis an easier way to do this without finding py.

Law of the Unconscious Statistician

$$E[g(x)] = \underbrace{g(x)}_{x}(x).$$

$$y=g(x)$$

$$E[\gamma] = \underbrace{\forall l_{\gamma}(\gamma)}_{\mathcal{J} \in \mathcal{J}}$$

$$= \underbrace{\sum_{y \in \mathcal{Y}} \underbrace{y!_{x}(x)}_{x \in \mathcal{X};}}_{g(x)=y}$$

$$= \underbrace{\leq}_{\mathcal{F}(x)} \underbrace{f(x)}_{\chi}(x)$$

$$\underbrace{f(x)}_{\chi}(x)$$

$$= \leq \mathcal{G}(x) /_{\chi}(x),$$

$$x \in \chi$$

$$P_{x}(x) = \int_{0}^{\pi} e^{-if} x \in \{-4, -3, -1, 0\} = \int_{0}^{\pi} e^{-if} x \in \{-4, -3, -1$$

$$E[\gamma] = E[|\chi|] = \frac{2}{9} \times (1+2+3+4) + 0$$

$$= \frac{20}{9}.$$

Moments: $E[x\eta] = \sum_{x} x^{n} P_{x}(x)$.

Variance.

$$Var(x) = E[(x-E[x])^{2}],$$

measures the amount by which x tends to deviate from mean,

Let M=E[x].

$$\mathbb{E}\left[\left(x-M\right)^{2}\right]=\sum_{\chi}\left(x-M\right)^{\chi}\rho_{\chi}(\chi)$$

$$= \sum_{\chi} \left(\chi^{2} + M^{2} - 2\chi M \right) P_{\chi}(\chi)$$

$$= \underbrace{\sum_{x} f_{x}(x) + M^{2} - 2M \underbrace{\sum_{x} \chi(x)}_{x}}_{x}$$

$$= \sum_{\alpha} \chi^{\gamma} \rho_{\chi}(\alpha) + M^{\gamma} - 2M^{\gamma}$$

$$= \leq \chi^{2} P_{\chi}(\chi) - H^{2}$$

$$= E[x^{2}] - E[x]^{2}.$$

Examples of Discrete Rvs

Bemoulli Random Variable

Consider a coin toss which comes up a head with probability p and a tail with probability 1-p.

$$\chi(H) = \frac{1}{2} \chi(T) = 0.$$

$$P_{\times}(i) = P_{\times}(0) = I - P_{\times}$$

Exercise, XNBe(P). show that

Binomial Random Variable

A coin is tossed n times independently,

Let x be the total no. of heads in the n-toss sequence. X f [0:n]

$$P_{\times}(\kappa) = \binom{n}{k} p^{k} (-p)^{k}, \quad \kappa \in [0:n]$$

Geometric Random Variable

Toss a coin independently until we get a heads.

 $P(\{H\}) = P = 1 - P(\{T\}).$

X = No. of (oin tosses required to get a heads $P_{X}(K) = (I-P)^{K-1}P \qquad K = 123---.$

Exercise. Let $x \sim Geometric(p)$. Show that $E[x] = 1/p - Van(x) = \frac{1-p}{p^2}$.

Poisson Random Variable

A Poisson random variable takes values
012--- with PMF
0121 --- k

 $P_{\chi}(k) = e^{-\frac{1}{4}k}$ k = 0.12 - --, for 4>0

In practice a Poisson random variable can be viewed as a limiting case of a binomial random variable.

Exercise Let $x \sim loisson(1)$. Show that E[x] = Ver[x] = 1.