

University of Chittagong

Department of Computer Science & Engineering
Database Systems Lab

Name of the assignment:

Task 3: Refinement, Normalization, and SQL-DDL

CSE 414

Medical Database Analysis

Submitted By:

Debashish Chakraborty

ID: 23701034

Submitted To:

Dr. Rudra Pratap Deb

Nath

Associate Professor

Contents

1	Introduction	2
2	Current Database Schema	2
3	Functional Dependencies Analysis 3.1 Identifying Functional Dependencies 3.1.1 Drug Relation 3.1.2 SideEffect Relation 3.1.3 Interaction Relation 3.1.4 Disease Relation 3.1.5 ClinicalTrial Relation 3.1.6 Drug_SideEffect Relation 3.1.7 Drug_Interaction Relation 3.1.8 Drug_Disease Relation 3.1.9 Drug_ClinicalTrial Relation	2 2 3 3 3 4 4 4 4
4	Lossless Decomposition Analysis	5
5	Dependency Preservation Analysis	5
6	Normal Form Analysis 6.1 First Normal Form (1NF)	7 7 7 8 8
7	Revised SQL DDL for 3NF/BCNF Schema 7.1 Product Table(New) 7.2 Drug Table 7.3 SideEffect Table 7.4 Interaction Table 7.5 Disease Table 7.6 ClinicalTrial Table 7.7 Drug_SideEffect Table 7.8 Drug_Interaction Table 7.9 Drug_Disease Table 7.10 Drug_ClinicalTrial Table	99 99 99 99 99 100 100 100
8	Revised ER Diagram	11
q	Comparison with Original Design	19

Introduction

This report analyzes the medical database schema created in previous tasks, focusing on functional dependencies, normalization theory, and the application of normal forms.

Current Database Schema

The current normalized schema consists of the following relations:

- 1. **Drug**(drug_name, drug_category, product_name, company_name)
- 2. **SideEffect**(name)
- 3. **Disease**(disease_name, disease_category)
- 4. ClinicalTrial(clinical_trial_title, clinical_trial_start_date, clinical_trial_completion_date, clinical_trial_participants, clinical_trial_status, clinical_trial_address, clinical_trial_institution, clinical_trial_address_1, clinical_trial_main_researcher)
- 5. ClinicalTrialCondition(name)
- 6. **Drug_SideEffect**(drug_name, side_effect_name)
- 7. **Drug_Interaction**(drug_name, interaction_name)
- 8. **Drug_Disease**(drug_name, disease_name)
- 9. **Drug_ClinicalTrial**(drug_name, clinical_trial_title)
- 10. ClinicalTrial_Condition(clinical_trial_title, condition_name)

Functional Dependencies Analysis

Identifying Functional Dependencies

For each relation, we identify the functional dependencies:

3.1.1 Drug Relation

Relation: Drug(drug_name, drug_category, product_name, company_name)

Functional Dependencies:

- 1. $drug_name \rightarrow drug_category$
- 2. product_name \rightarrow company_name
- 3. drug_name → product_name (assuming one product per drug)
- 4. drug_name → company_name (transitive through product_name)

Candidate Keys: {drug_name}

3.1.2 SideEffect Relation

Relation: SideEffect(name)

Functional Dependencies:

1. No non-trivial functional dependencies (single attribute relation)

Candidate Keys: {name}

3.1.3 Interaction Relation

Relation: Interaction(name)

Functional Dependencies:

1. No non-trivial functional dependencies (single attribute relation)

Candidate Keys: {name}

3.1.4 Disease Relation

Relation: Disease(disease_name, disease_category)

Functional Dependencies:

1. FD1: disease_name \rightarrow disease_category

Candidate Keys: {disease_name}

3.1.5 ClinicalTrial Relation

Relation: ClinicalTrial(clinical_trial_title, clinical_trial_start_date, clinical_trial_completion_date, clinical_trial_participants, clinical_trial_status, clinical_trial_address, clinical_trial_institution, clinical_trial_condition, clinical_trial_main_researcher)

Functional Dependencies:

- 1. clinical_trial_title \rightarrow clinical_trial_start_date
- 2. clinical_trial_title \rightarrow clinical_trial_completion_date
- 3. clinical_trial_title \rightarrow clinical_trial_participants
- 4. clinical_trial_title \rightarrow clinical_trial_status
- 5. clinical_trial_title \rightarrow clinical_trial_address
- 6. clinical_trial_title \rightarrow clinical_trial_institution
- 7. clinical_trial_title \rightarrow clinical_trial_comdition
- 8. clinical_trial_title \rightarrow clinical_trial_main_researcher

Candidate Keys: {clinical_trial_title}

3.1.6 Drug_SideEffect Relation

Relation: Drug_SideEffect(drug_name, side_effect_name)

Functional Dependencies:

- 1. FD1: $\{drug_name, side_effect_name\} \rightarrow \{drug_name, side_effect_name\}$ (trivial)
- 2. No non-trivial functional dependencies (all attributes form the composite primary key)

Candidate Keys: {drug_name, side_effect_name}

3.1.7 Drug_Interaction Relation

Relation: Drug_Interaction(drug_name, interaction_name)

Functional Dependencies:

- 1. FD1: $\{drug_name, interaction_name\} \rightarrow \{drug_name, interaction_name\}$ (trivial)
- 2. No non-trivial functional dependencies (all attributes form the composite primary key)

Candidate Keys: {drug_name, interaction_name}

3.1.8 Drug_Disease Relation

Relation: Drug_Disease(drug_name, disease_name)

Functional Dependencies:

- 1. FD1: $\{drug_name, disease_name\} \rightarrow \{drug_name, disease_name\}$ (trivial)
- 2. No non-trivial functional dependencies (all attributes form the composite primary key)

Candidate Keys: {drug_name, disease_name}

3.1.9 Drug_ClinicalTrial Relation

Relation: Drug_ClinicalTrial(drug_name, clinical_trial_title)

Functional Dependencies:

- 1. FD1: $\{drug_name, clinical_trial_title\} \rightarrow \{drug_name, clinical_trial_title\}$ (trivial)
- 2. No non-trivial functional dependencies (all attributes form the composite primary key)

Candidate Keys: {drug_name, clinical_trial_title}

Lossless Decomposition Analysis

Let R be the original relation and $\{R_1, R_2, \dots, R_n\}$ be our decomposition.

Theorem: The decomposition is lossless if and only if:

$$R = R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n$$

Let us define our decomposed relations:

$$R_1 = \text{Drug}(drug_name, drug_category, product_name, company_name)$$
 (1)

$$R_2 = \text{SideEffect}(name) \tag{2}$$

$$R_3 = \text{Disease}(disease_name, disease_category)$$
 (3)

$$R_4 = \text{ClinicalTrial(clinical trial attributes)}$$
 (4)

$$R_5 = \text{Drug_SideEffect}(drug_name, side_effect_name)$$
 (5)

$$R_6 = \text{Drug_Disease}(drug_name, disease_name)$$
 (6)

$$R_7 = \text{Drug_ClinicalTrial}(drug_name, clinical_trial_title)$$
 (7)

$$R_8 = \text{ClinicalTrial_Condition}(clinical_trial_tritle, condition_name)$$
 (8)

The total relation is:

$$R' = R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 \bowtie R_6 \bowtie R_7 \bowtie R_8$$

Union Verification:

$$\bigcup_{i=1}^{8} \operatorname{attributes}(R_i) = \operatorname{attributes}(R)$$

This confirms that all original attributes are preserved in the decomposition. So, it is a lossless decomposition.

Dependency Preservation Analysis

The decomposition preserves dependencies if and only if:

$$F^+ \equiv \left(\bigcup_{i=1}^n F_i\right)^+$$

For each relation R_i , we compute the attribute closure and verify functional dependencies:

Drug Relation:

$$F_1 = \{ \text{drug_name} \rightarrow \text{drug_category, product_name, company_name} \}$$
 (9)

$$\{drug_name\}^+ = \{drug_name, drug_category, product_name, company_name\}$$
 (10)

SideEffect Relation:

$$F_2 = \{\} \text{ (no non-trivial FDs)}$$
 (11)

$$\{name\}^+ = \{name\} \tag{12}$$

Disease Relation:

$$F_3 = \{ \text{disease_name} \to \text{disease_category} \}$$
 (13)

$${disease_name}^+ = {disease_name, disease_category}$$
 (14)

ClinicalTrial Relation:

$$F_4 = \{\text{clinical_trial_title} \rightarrow \text{all other clinical trial attributes}\}$$
 (15)

$$\{clinical_trial_title\}^+ = \{all\ clinical\ trial\ attributes\}$$
(16)

Junction Relations: For each junction relation R_i :

$$F_j = \{\text{composite key} \to \text{all attributes}\}\$$
 (17)

$$\{\text{composite key}\}^+ = \{\text{all attributes in } R_i\}$$
 (18)

Dependency Preservation Check:

Original Functional Dependencies:

$$F_{original} = \{ drug_name \rightarrow drug_category, product_name, company_name,$$
 (19)

$$product_name \to company_name, \tag{20}$$

$$disease_name \rightarrow disease_category,$$
 (21)

clinical_trial_title
$$\rightarrow$$
 all clinical trial attributes} (22)

Union of Decomposed Dependencies:

$$F_{decomposed} = F_1 \cup F_2 \cup F_3 \cup F_4 \cup F_5 \cup F_6 \cup F_7 \cup F_8$$

We need to show that, $F_{original}^+ = F_{decomposed}^+$.

- 1. drug_name \rightarrow drug_category: Preserved in F_1
- 2. product_name \rightarrow company_name: Preserved in F_1
- 3. disease_name \rightarrow disease_category: Preserved in F_3
- 4. clinical_trial_title \rightarrow clinical trial attributes: Preserved in F_4
- 5. All junction table dependencies: Preserved in F_5, F_6, F_7, F_8

Since every functional dependency from $F_{original}$ can be derived from $F_{decomposed}$, and vice versa, the decomposition is dependency-preserving.

Normal Form Analysis

First Normal Form (1NF)

Definition

A relation is in 1NF if:

- 1. All attributes contain atomic values.
- 2. No repeating groups exist.

All relations are in 1NF:

- 1. **Drug**: All attributes (drug_name, drug_category, product_name, company_name) are atomic
- 2. **SideEffect**: Single atomic attribute (name)
- 3. **Interaction**: Single atomic attribute (name)
- 4. **Disease**: Both attributes (disease_name, disease_category) are atomic
- 5. ClinicalTrial: All attributes are atomic values
- 6. ClinicalTrialCondition: Single atomic attribute (name)
- 7. Junction Relations: All contain atomic foreign key values

The original CSV data violated 1NF with repeating groups (side_effect_1, side_effect_2, etc.). This was resolved by creating separate junction tables.

Second Normal Form (2NF)

A relation is in 2NF if:

- 1. It is in 1NF
- 2. No non-prime attribute is partially dependent on any candidate key. Meaning no proper subset of candidate key attributes can determine a non-prime attribute.

All relations are in 2NF:

- 1. **Drug**: Primary key is {drug_name} (single attribute), so no partial dependencies possible
- 2. SideEffect, Interaction, ClinicalTrialCondition: Single attribute relations, automatically in 2NF
- 3. **Disease**: Primary key is {disease_name} (single attribute), so no partial dependencies possible
- 4. ClinicalTrial: Primary key is {clinical_trial_title} (single attribute), so no partial dependencies possible
- 5. **Junction Relations**: All non-prime attributes are part of the primary key, so no partial dependencies

Third Normal Form (3NF)

A relation is in 3NF if:

- 1. It is in 2NF
- 2. No non-prime attribute is transitively dependent on any non-prime attribute. except non-prime attribute can be transitively dependent on any prime attribute.

In the original relation schema, the Drug relation violates 3NF due to transitive dependency:

- 1. drug_name \rightarrow product_name
- 2. product_name \rightarrow company_name
- 3. Therefore: drug_name \rightarrow company_name (transitive)

To achieve 3NF, we need to decompose the Drug relation:

- 1. **Drug_New**(drug_name, drug_category, product_name)
- 2. **Product**(product_name, company_name)

Other Relations in 3NF:

- 1. SideEffect, Interaction, ClinicalTrialCondition: No transitive dependencies
- 2. **Disease**: No transitive dependencies
- 3. ClinicalTrial: No transitive dependencies (all attributes directly dependent on trial title)
- 4. **Junction Relations**: No non-prime attributes to create transitive dependencies

Boyce-Codd Normal Form (BCNF)

A relation is in BCNF if:

- 1. It is in 3NF
- 2. For every functional dependency $X \to Y$, X is a superkey
- 3. For $X \to Y$, X is a subset of Y(Trivial)
- 4. No transitive dependency is allowed.

After 3NF Decomposition:

- 1. drug_name is a superkey \rightarrow **BCNF**
- 2. product_name is a superkey \rightarrow BCNF
- 3. SideEffect, Interaction, ClinicalTrialCondition: Trivially in BCNF.
- 4. disease_name is a superkey \rightarrow BCNF
- 5. clinical_trial_title a superkey \rightarrow **BCNF**
- 6. No functional dependencies beyond key constraints \rightarrow BCNF

Revised SQL DDL for 3NF/BCNF Schema

Product Table(New)

```
CREATE TABLE Product (
product_name VARCHAR(255) PRIMARY KEY,
company_name VARCHAR(255) NOT NULL

);
```

Drug Table

```
CREATE TABLE Drug (
drug_name VARCHAR(255) PRIMARY KEY,
drug_category VARCHAR(100),
product_name VARCHAR(255),
FOREIGN KEY (product_name) REFERENCES Product(product_name)
);
```

SideEffect Table

```
CREATE TABLE SideEffect (
name VARCHAR(255) PRIMARY KEY
);
```

Interaction Table

```
CREATE TABLE Interaction (
name VARCHAR(255) PRIMARY KEY
);
```

Disease Table

```
CREATE TABLE Disease (
disease_name VARCHAR(255) PRIMARY KEY,
disease_category VARCHAR(100)

);
```

ClinicalTrial Table

```
CREATE TABLE ClinicalTrial (
    clinical_trial_title VARCHAR(500) PRIMARY KEY,
    clinical_trial_start_date TEXT,
    clinical_trial_completion_date TEXT,
    clinical_trial_participants NUMERIC,
```

```
clinical_trial_status VARCHAR(50),
clinical_trial_address VARCHAR(500),
clinical_trial_institution VARCHAR(255),
clinical_trial_address_1 VARCHAR(500),
clinical_trial_conditions VARCHAR(255),
clinical_trial_main_researcher VARCHAR(255)
);
```

Drug_SideEffect Table

```
CREATE TABLE Drug_SideEffect (
    drug_name VARCHAR(255) REFERENCES Drug(drug_name),
    side_effect_name VARCHAR(255) REFERENCES SideEffect(name),
    PRIMARY KEY (drug_name, side_effect_name)

5);
```

Drug_Interaction Table

```
CREATE TABLE Drug_Interaction (
drug_name VARCHAR(255) REFERENCES Drug(drug_name),
interaction_name VARCHAR(255) REFERENCES Interaction(name),
PRIMARY KEY (drug_name, interaction_name)

);
```

Drug_Disease Table

```
CREATE TABLE Drug_Disease (
drug_name VARCHAR(255) REFERENCES Drug(drug_name),
disease_name VARCHAR(255) REFERENCES Disease(disease_name),
PRIMARY KEY (drug_name, disease_name)

);
```

$\mathbf{Drug}_{-}\mathbf{ClinicalTrial}$ \mathbf{Table}

```
CREATE TABLE Drug_ClinicalTrial (
drug_name VARCHAR(255) REFERENCES Drug(drug_name) ,
clinical_trial_title VARCHAR(500) REFERENCES
ClinicalTrial(clinical_trial_title) ,
PRIMARY KEY (drug_name, clinical_trial_title)

);
```

```
ALTER TABLE Product ADD CONSTRAINT unique_product_name UNIQUE (product_name);

ALTER TABLE Drug ADD CONSTRAINT fk_drug_product
```

```
FOREIGN KEY (product_name) REFERENCES Product(product_name);

ALTER TABLE Drug ALTER COLUMN drug_category SET NOT NULL;

ALTER TABLE Disease ALTER COLUMN disease_category SET NOT NULL;
```

Revised ER Diagram

Figure 1: Revised ER Diagram

Comparison with Original Design

- 1. Removed all Transitive Dependencies. Separated Product entity from Drug.
- 2. All relations now satisfy BCNF requirements.
- 3. Explicit foreign key constraints.
- 4. Reduced Redundancy.