Notes on Linear Algebra

Sivmeng

November 14, 2021

Chapter 1

Preliminaries

1.1 Vector Spaces

Bases

Generating (span)

Independent System

Definition 1.1 (Independent). The system $\{v_1,v_2,v_3,\ldots,v_n\}$ are called "Independent" iff

$$\lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_n \mathbf{v_n} = \mathbf{0} \iff \lambda_i = 0$$

Definition 1.2 (Dependent). The system $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots, \mathbf{v_n}\}$ are called "Dependent" iff there exits some $\lambda_j \neq 0$ such that j < n and

$$\sum_{i=1}^n \lambda_i \mathbf{v_i} = \mathbf{0}$$

Proposition 1. The system $\{v_1, v_2, v_3, \dots, v_n\}$ are dependent iff there exits j such that \mathbf{v}_i is the linear combination of the other vectors.

Proof. There exits j < n such that $\lambda_j \neq 0$ and

$$\sum_{i=1}^{n} \lambda_{i} \mathbf{v_{i}} = \mathbf{0}$$

$$\implies \lambda_{j} \mathbf{v_{j}} + \sum_{i \neq j} \lambda_{i} \mathbf{v_{i}} = \mathbf{0}$$

$$\implies \mathbf{v_{j}} = \sum_{i \neq j} \frac{-\lambda_{i}}{\lambda_{j}} \mathbf{v_{i}}$$

And the converse is simple to prove.

Proposition 2. *If the system* $\{v_1, v_2, v_3, \dots, v_n\}$ *are both*

Proposition 3. *Bases* ← *Generating* + *Independent*