

## 

Intégration numérique

Aéro. 3 Semestre : 2 A.U. : 2021-2022

**Prof.** H. El-Otmany

## Exercice n°1

1. Déterminer par la méthode des rectangles à droite puis celle des trapèzes la valeur de  $I = \int_{0}^{1/2} f(x)dx$ .

|   | x    | 0 | 0.1       | 0.2        | 0.3       | 0.4       | 0.5       |
|---|------|---|-----------|------------|-----------|-----------|-----------|
| Ī | f(x) | 1 | 1.1051709 | 1. 2214027 | 1.3498588 | 1.4918246 | 1.6487212 |

— **Rappel :** Pour tout cet exercice, découpons [a; b] en sous-intervalles à pas constant h ( $h \in R^{*+}$ ), notés  $[x_i, x_{i+1}]$ . Ainsi

$$x_0 = a; x_N = b; \forall i \in \{0, \dots, N-1\} : x_{i+1} - x_i = h.$$

d'où  $h = \frac{b-a}{N}$ . Par suite pour tout i de  $\{0, \dots, N\}$ :  $x_i = a + ih$ .

— L'approximation de l'intégrale  $\int_a^b f(x)dx$  par la formule des rectangles (à gauche et à droite) est

$$I_{RG}(f) \approx \frac{b-a}{N} \sum_{i=0}^{N-1} f(x_i) = h \sum_{i=0}^{N-1} f(x_i); \quad I_{RD}(f) \approx \frac{b-a}{N} \sum_{i=0}^{N-1} f(x_{i+1}) = h \sum_{i=0}^{N-1} f(x_{i+1})$$

Avec les valeurs de l'énoncé on a  $a=0, b=\frac{1}{2}$  et  $N=\frac{b-a}{x_{i+1}-x_i}=\frac{1/2-0}{0.1}=5$ , on obtient

$$I_{RG}(f) \approx 0.1 (f(0) + f(0.1) + f(0.2) + f(0.3) + f(0.4))$$
  
  $\approx 0.1 (1 + 1.1051709 + 1.2214027 + 1.3498588 + 1.4918246) \approx 0.61147951$ 

et

$$I_{RD}(f) \approx 0.1 (f(0.1) + f(0.2) + f(0.3) + f(0.4) + f(0.5))$$
  
  $\approx 0.1 (1.1051709 + 1.2214027 + 1.3498588 + 1.4918246 + 1.6487212) \approx 0.67635763$ 

— L'approximation de l'intégrale  $\int_a^b f(x)dx$  par la formule des trapèzes est

$$I_T(f) \approx \frac{b-a}{N} \left[ \frac{f(a) + f(b)}{2} + \sum_{i=1}^{N-1} f(x_i) \right] = h \left[ \frac{f(a) + f(b)}{2} + \sum_{i=1}^{N-1} f(x_i) \right]$$

Avec les valeurs de l'énoncé on a a=0,  $b=\frac{1}{2}$  et  $N=\frac{b-a}{h}=\frac{b-a}{x_{i+1}-x_i}=\frac{1/2-0}{0.1}=5$ , on obtient

$$I_T(f) \approx \frac{1/2 - 0}{5} \left[ \frac{f(0) + f(0.5)}{2} + f(0.1) + f(0.2) + f(0.3) + f(0.4) \right]$$
  
 
$$\approx 0.1 \left[ \frac{1 + 1.6487212}{2} + 1.1051709 + 1.2214027 + 1.3498588 + 1.4918246 \right] \approx 0.64926176.$$

2. Ces points sont ceux donnant  $f(x) = e^x$ . Comparer les résultats obtenus avec la valeur exacte. On  $I_{Exact} = \int_{0}^{1/2} e^x dx = [e^x]_{0}^{1/2} = e^{1/2} - 1 \approx 0.68472127$ . L'erreur réelle commise est ainsi égale à

$$\begin{split} |I_{Exact} - I_{RD}| &= |0.64872127 - 0.67635763| = 0.02763503, \\ |I_{Exact} - I_{RG}| &= |0.64872127 - 0.61147951| = 0.03724176, \\ |I_{Exact} - I_{T}| &= |0.64872127 - 0.64926176| = 0.00054049. \end{split}$$

## **Remarques:**

— L'erreur commise par la formule des rectangles composite est

$$E_N^R = \frac{(b-a)^2}{2N} f'(\xi), \quad \xi \in [a,b]$$

On peut écrire aussi  $E_N^R \leqslant \frac{(b-a)^2}{2N} \sup_{a \leqslant x \leqslant b} |f'(x)|$ . Pour se faire, il faut vérifier que f est de classe  $C^1$  sur  $[0; 1/2], x \mapsto e^x$  est une fonction de classe  $C^\infty$  et  $f'(x) = e^x$ . La fonction  $x \mapsto e^x$  étant croissante, donc

$$E_N^R \leqslant \frac{(1/2-0)^2}{2\times 5}e^{1/2} = \frac{e^{1/2}}{40} \approx 0.04121803177.$$

— L'erreur commise par la formule des trapèzes est  $E_N^T = \frac{(b-a)^3}{12N^2}f''(\xi), \quad \xi \in [a,b]$ . On peut écrire aussi  $E_N^T \leqslant \frac{(b-a)^3}{12N^2} \sup_{a \leqslant x \leqslant b} |f''(x)|$ .

On a  $f''(x) = e^x$  et croissante sur [0;1/2], donc  $E_N^T \leqslant \frac{(1/2-0)^3}{12\times 5^2}e^{1/2} = \frac{e^{1/2}}{2400} \approx 6.869672 \cdot 10^{-4}$ 

(partiel du 09 avril 2018) Voici le relevé de la vitesse d'écoulement de l'eau v dans un conduit cylindrique en fonction du temps t:

| t(s)   |   |      |     |      |      |      |      |
|--------|---|------|-----|------|------|------|------|
| v(m/s) | 2 | 1.98 | 1.7 | 1.44 | 1.32 | 1.20 | 1.02 |

La vitesse moyenne de l'eau en écoulement dans le conduit cylindrique peut être calculée par la relation suivante:

$$\bar{v} = v_{moy} = \frac{1}{60} \int_0^{60} v(t)dt.$$

- 1. Calculer la vitesse moyenne de l'eau  $v_{moy}$  par la méthode des rectangles à droite.

   On applique la méthode des rectangles à droite avec  $a=0,\,b=60$  et  $N=\frac{b-a}{h}=\frac{b-a}{t_{i+1}-t_i}=\frac{b-a}{t_{i+1}-t_i}$  $\frac{60-0}{10} = 6$ . D'où

$$\bar{v}_{RD} \approx \frac{1}{60} \times 10 \left( v(10) + v(20) + v(30) + v(40) + v(50) + v(60) \right)$$
  
 $\approx \frac{1}{6} \left( 1.98 + 1.7 + 1.44 + 1.32 + 1.20 + 1.02 \right) \approx 1.113498333 m/s.$ 

2. Calculer la vitesse moyenne de l'eau  $v_{mou}$  par la méthode des trapèzes.

— On applique la méthode des trapèzes avec  $a=0,\,b=60$  et  $N=\frac{b-a}{h}=\frac{b-a}{t_{i+1}-t_i}=\frac{60-0}{10}=6$ . D'où

$$\bar{v}_T \approx \frac{1}{60} \times 10 \left( \frac{v(0) + v(60)}{2} + v(10) + v(20) + v(30) + v(40) + v(50) \right)$$

$$\approx \frac{1}{6} \left( \frac{2 + 1.02}{2} + 1.98 + 1.7 + 1.44 + 1.32 + 1.20 \right) \approx 1.113498333m/s.$$

3. Peut-on déterminer la vitesse moyenne de l'eau  $v_{moy}$  par la méthode de Simpson? Justifier rigoureusement votre réponse. Oui, il suffit d'appliquer cette méthode avec a=0, b=60 sur l'intervalle  $[t_i,t_{i+2}]$ . On a  $h=\frac{b-a}{N}=10$  donc N=6.

$$\bar{v}_{S} \approx \frac{1}{60} \times \frac{b-a}{6N} \sum_{i=0}^{N-1} \left[ v(t_{i}) + 4v \left( \frac{t_{i} + t_{i+1}}{2} \right) + v(t_{i+1}) \right]$$

$$\approx \frac{1}{60} \times \frac{b-a}{6N} \sum_{i=0}^{N-1} \left[ v(a+ih) + 4f \left( a + h(i+\frac{1}{2}) \right) + v(a+(i+1)h) \right]$$

$$\approx \frac{1}{60} \times \frac{h}{3} \left[ v(a) + v(b) + 4 \sum_{i=1, i \text{ impair}}^{N-1} v(t_{i}) + 2 \sum_{i=2, i \text{ pair}}^{N-2} v(t_{i}) \right]$$

$$\approx \frac{1}{60} \times \frac{h}{3} \left[ v(a) + v(b) + 4 \sum_{i=1}^{N/2} v(t_{2i-1}) + 2 \sum_{i=1}^{N/2-1} v(t_{2i}) \right]$$

Numériquement, on a

$$\bar{v}_S \approx \frac{1}{60} \times \frac{10}{3} \left[ v(0) + v(60) + 4 \left( v(10) + v(30) + v(50) \right) + 2 \left( v(20) + v(40) \right) \right]$$

$$\approx \frac{1}{18} \left[ 2 + 1.02 + 4 \left( 1.98 + 1.44 + 1.20 \right) + 2 \left( 1.7 + 1.32 \right) \right] \approx 1.53 m/s.$$

**Exercice n°3** On souhaite déterminer une valeur approchée de  $I = \int_0^1 e^{-x^2} dx$ , en subdivisant l'intervalle [0; 1] en N = 10 sous-intervalles.

1. Majorer l'erreur commise en utilisant les différentes méthodes usuelles (rectangle à gauche, rectangle à droite, point milieu, trapèzes, Simpson). Pour répondre à cette question, on commence d'abord par donner la formule d'erreur associée à chaque méthode d'approximation. Ensuite, on vérifie que la fonction f est de classe  $C^2$ . Enfin, on majore la valeur absolue de  $f'(\xi)$ ,  $f''(\xi)$  et  $f^{(4)}(\xi)$  par le maximum de la valeur absolue de la dérivée correspondante. La  $x\mapsto e^{-x^2}$  est de classe  $C^\infty$  sur [0;1]. On a donc

$$f'(x) = -2xe^{-x^2}; f^{(2)}(x) = (4x^2 - 2)e^{-x^2}; f^{(3)}(x) = (12x - 8x^3)e^{-x^2}; f^{(4)}(x) = (12 - 48x^2 + 16x^4)e^{-x^2}$$

Pour  $\xi \in [0; 1]$ , on a:

- L'erreur de la méthode des rectangles à droite est  $E_{RD}=\frac{(b-a)^2}{2}f'(\xi)$ , c-à-d : $E_{RD}\leqslant\frac{(b-a)^2}{2}\sup_{0\leqslant x\leqslant 1}|f'(x)|$ . Nous avons le choix entre deux méthodes :
  - 1ère méthode : on utilise le tableau de variation pour trouver le maximum de f'. Pour se faire, on calcule f''(x) puis on dresse son tableau de variation. On a  $f^{(2)}(x)=(4x^2-2)e^{-x^2}=0$ , nous donne  $2x^2-1=0$ , d'où  $x=\pm\frac{\sqrt{2}}{2}$ .

| x            | $-\infty$ | $-\sqrt{2}/2$      |         | $\sqrt{2}/2$      | 1          | $\infty$ |
|--------------|-----------|--------------------|---------|-------------------|------------|----------|
| $f^{(2)}(x)$ | +         | 0                  | _       | 0                 | +          |          |
| f'(x)        |           | $\sqrt{2}e^{-1/2}$ | <u></u> | $-\sqrt{2}e^{-1}$ | $-2e^{-1}$ |          |

Comme  $x \in [0; 1]$ , on en déduit que |f'| admet un maximum en x = 1 et  $\sup_{0 \le x \le 1} |f'(x)|$  $|f'(1)| = 2e^{-1}$ . Par conséquent

$$|E_{RD}| \le \frac{(1-0)^2}{2} \times 2e^{-1} = e^{-1} \approx 0.3787944.$$

**Remarque :** nous pouvons aussi prendre le maximum de la fonction |f'| au point  $\sqrt{2}/2$  en utilisant sa convexité.

On majore directement la fonction  $f'(x) = -2xe^{-x^2}$  pour  $x \in [0, 1]$ . Si bien que  $|f'(x)| \le 2$  $2|x|e^{-x^2}\leqslant 2e^{-x^2}$ . Par combinaison de la croissance de la fonction exponentielle et  $0\leqslant x\leqslant 1$ , on a  $-1\leqslant -x^2\leqslant 0$ , donc  $e^{-1}\leqslant e^{-x^2}\leqslant e^{-0^2}=1$ . Soit donc  $|f'(x)|\leqslant 2$ . Par conséquent :

$$|E_{RD}| \leqslant \frac{(1-0)^2}{2} \times 2 = 1.$$

Mais, cette erreur est grossière et nous ne permet de prendre des décisions.

- L'erreur de la méthode des rectangles à gauche est  $E_{RG}=\frac{(b-a)^2}{2}f'(\xi)$ , c-à-d :  $E_{RD}\leqslant$  $\frac{(b-a)^2}{2} \sup_{0 \leqslant x \leqslant 1} |f'(x)|.$
- L'erreur de la méthode du point milieu est  $E_{PM}=\frac{(b-a)^3}{24}f''(\xi)$ , c-à-d : $E_{PM}$  $\frac{(b-a)^3}{24} \sup_{0 \leqslant x \leqslant 1} |f''(x)|.$
- L'erreur de la méthode des trapèzes est  $E_T = -\frac{(b-a)^3}{12} f''(\xi)$ , c-à-d : $E_T \leqslant \frac{(b-a)^3}{12} \sup_{0 \leqslant x \leqslant 1} |f''(x)|$ .

   L'erreur de la méthode de Simpson est  $E_S = -\frac{(b-a)^5}{90 \times 2^5} f^{(4)}(\xi)$ , c-à-d : $E_S \leqslant \frac{(b-a)^5}{90 \times 2^5} \sup_{0 \leqslant x \leqslant 1} |f^{(4)}(x)|$ .

**Remarques:** Pour majorer grossièrement l'erreur, on utilise la relation :  $|a + b| \le |a| + |b|$ . Cependant, on cherche le maximum de la fonction souhaitée sur [a;b] via son tableau de variation pour avoir une majoration minimale.

2. Proposer une approche permettant de déterminer une valeur approchée de I à  $10^{-10}$  près. (On pourra envisager une autre valeur de N). voir l'exercice 4 où  $f(x) = e^{-x^2}$ .

Exercice n°4 On rappelle que l'erreur commise par la méthode des trapèzes pour une fonction f de classe  $C^2([a;b])$  est majorée ainsi :

$$|I(f, a, b) - I_N(f, a, b)| \le \frac{b - a}{12} h^2 \sup_{a \le x \le b} |f''(x)| = \frac{(b - a)^3}{12N^2} \sup_{a \le x \le b} |f''(x)|$$

Combien faut-il de subdivisions de [0;1] pour évaluer l'intégrale  $I=\int_0^1 xe^{-x}dx$  à  $10^{-6}$  près ?

— Il s'agit ici de déterminer le nombre de points minimum pour satisfaire la tolérance  $\varepsilon=10^{-6}$  donnée. Pour se faire, on vérifie d'abord que la fonction f est de classe  $C^2$ , puis on majore la valeur absolue de  $f''(\xi)$  par le maximum de la valeur absolue de la dérivée correspondante. f est de classe  $C^2$  car c'est le produit de fonction de classe  $C^2$  sur [a;b]. On a a=0, b=1 et  $f(x)=xe^{-x}$  pour  $x\in[0;1]$ . Alors :

$$f'(x) = e^{-x}(1-x);$$
  $f''(x) = (x-2)e^{-x}$ 

— 1ère méthode : on dresse le tableau de variation de la fonction f'' en calculant  $f^{(3)}$  et on cherche ses racines ( $f^{(3)}(x) = 0$ ). On a  $f^{(3)}(x) = (3-x)e^{-x} = 0$ , donne x = 3.

| x            | $-\infty$ |   | 3        |   | $+\infty$  |
|--------------|-----------|---|----------|---|------------|
| $f^{(3)}(x)$ |           | + | 0        | _ |            |
| $f^{(2)}(x)$ |           |   | $e^{-3}$ |   | $-2e^{-1}$ |

Or  $x \in [0;1]$ , donc  $\sup_{0 \leqslant x \leqslant 1} |f^{(2)}(x)| \leqslant e^{-3}$ . Par conséquent :

$$|I(f,0,1) - I_N(f,0,1)| \le e^{-3} \frac{(1-0)^3}{12N^2} \le \varepsilon.$$

Soit  $N^2\geqslant \frac{e^{-3}}{12\varepsilon}$ , si bien que  $N\geqslant \sqrt{\frac{e^{-3}}{12\varepsilon}}$ . il suffit donc de choisir  $N=\lfloor\sqrt{\frac{3}{12\varepsilon}}\rfloor$  où  $\lfloor X\rfloor$  est le plus petit entier supérieur ou égal X.

Numériquement, on a donc en utilisant  $\varepsilon=10^{-6}$ . On trouve  $N=\lfloor\sqrt{\frac{e^{-3}}{12\times10^{-6}}}\rfloor=\lfloor64.41\rfloor\approx65$ .

— 2ème méthode : La fonction  $x\mapsto e^{-x}$  étant croissante sur [0;1], on a sur  $[0;1]:e^{-1}\leqslant e^{-x}\leqslant e^{-0}=1$ .

Sur [0;1], on a également  $|x-2|\leqslant |x|+2\leqslant 3$ . Donc  $|f''(x)|\leqslant 3$  pour  $x\in [0;1]$ . Avec  $a=0,\,b=1$  et  $h=\frac{b-a}{N}=\frac{1}{n},$  on trouve finalement

$$|I(f,0,1) - I_N(f,0,1)| \le 3\frac{(1-0)^3}{12N^2} \le \varepsilon.$$

Soit  $N^2\geqslant \frac{3}{12\varepsilon}$ . Soit encore,  $N\geqslant \sqrt{\frac{3}{12\varepsilon}}$ . Par conséquent, il suffit donc de choisir  $N=\lfloor\sqrt{\frac{3}{12\varepsilon}}\rfloor$ . Numériquement, on a donc, en utilisant  $\varepsilon=10^{-6}$ ,

$$N = \lfloor \sqrt{\frac{3}{12 \times 10^{-6}}} \rfloor = [500] = 500.$$

Exercice n°5 On considère f une fonction de classe  $C^2$  sur un intervalle J=[a;b], que l'on subdivise en N sous-intervalles. On note respectivement  $I_{RG}$ ;  $I_{RD}$ ,  $I_{T}$ ,  $I_{PM}$ ,  $I_{S}$  les approximations données par les méthodes usuelles (rectangles à gauche, rectangle à droite, trapèzes, point milieu, Simpson) de l'intégrale  $I=\int_{-b}^{b}f(x)dx$ .

1. Montrer que  $I_T=\frac{I_{RD}+I_{RG}}{2}$ . Pour démontrer ce résultat, on découpe l'intervalle [a;b] en N sous intervalles de même longueur  $\frac{b-a}{N}$ :  $[x_0;x_1],[x_1;x_2],\ldots,[x_{N-1},x_N]$  avec  $x_0=a$  et  $x_N=b$ . On a par la relation de Chasles :

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

La méthode des trapèzes consiste à remplacer ces n intégrales par la somme suivante : ( correspondant à la somme des aires algébriques des trapèzes de hauteur  $(x_{i+1} - x_i)$  et de bases  $f(x_{i+1})$  et  $f(x_i)$ .

$$I_T(f) \approx \sum_{i=0}^{N-1} \frac{(x_{i+1} - x_i)(f(x_{i+1}) + f(x_i))}{2} \approx \sum_{i=0}^{N-1} \frac{b - a}{N} \frac{(f(x_{i+1}) + f(x_i))}{2}$$
$$\approx \frac{b - a}{N} \left[ \frac{f(a) + f(b) + 2\sum_{i=1}^{N-1} f(x_i)}{2} \right] = \frac{I_{RG}(f) + I_{RD}(f)}{2}$$

On dit que la méthode des trapèzes est une combinaison linéaire des méthodes des rectangles à droite et à gauche.

2. Exprimer  $I_S$  en fonction de  $I_{PM}$  et  $I_T$ . On utilise la même démarche de la question 1., on a

$$3I_S(f) \approx \frac{b-a}{2N} \sum_{i=0}^{N-1} \left[ f(x_i) + 4f\left(\frac{x_i + x_{i+1}}{2}\right) + f(x_{i+1}) \right]$$

$$\approx \frac{b-a}{N} \sum_{i=0}^{N-1} \frac{f(x_i) + f(x_{i+1})}{2} + \frac{b-a}{2N} \sum_{i=0}^{N-1} 4f\left(\frac{x_i + x_{i+1}}{2}\right) \approx I_T(f) + 2I_{PM}(f)$$

Par conséquent,

$$I_S(f) = \frac{I_T(f) + 2I_{PM}(f)}{3}$$

On dit alors que la méthode de Simpson est une combinaison linéaire de la méthode des trapèzes et du point milieu,

3. Lorsque l'on connaître  $I_{RG}(f)$  comment calculer rapidement  $I_{RT}(f)$ ? En utilisant l'expression de  $I_{RG}(f)$  et celle de  $I_{RD}(f)$ , on obtient la relation suivante :

$$I_{RD}(f) = I_{RG}(f) + \frac{b-a}{N} [f(b) - f(a)].$$

4. On suppose que f est une fonction croissante. Montrer que l'on a les inégalités  $I_{RG}(f) \leqslant I_T(f) \leqslant I_{RD}(f)$ . En utilisant la croissance de f sur [a;b], on obtient  $f(a) \leqslant f(b)$ . D'où  $\frac{b-a}{N} \left[ f(b) - f(a) \right] \leqslant 0$ . Par conséquent

$$I_{RD}(f) \geqslant I_{RG}(f)$$
.

En utilisant  $I_T(f) = \frac{I_{RG}(f) + I_{RD}(f)}{2}$ , il vient que

$$I_{RG}(f) = \frac{I_{RG}(f) + I_{RG}(f)}{2} \leqslant I_{T}(f) = \frac{I_{RG}(f) + I_{RD}(f)}{2} \leqslant \frac{I_{RD}(f) + I_{RD}(f)}{2} = I_{RD}(f).$$
 (CQFD)

5. On suppose maintenant que f est une fonction convexe. Montrer que  $I_{PM}(f) \leq I(f) \leq I_T(f)$ . On dit que f est convexe s'il existe  $t \in [0; 1]$  tel que

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Par définition, on a  $I_{PM}(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(d^{\frac{x_i+x_{i+1}}{2}}\right)$ . Pour  $t=\frac{1}{2}$  et f convexe, il vient que

$$I_{PM}(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(d\frac{x_i + x_{i+1}}{2}\right) \leqslant \frac{b-a}{n} \sum_{i=0}^{n} \frac{1}{2} \left[f(x_i) + f(x_{i+1})\right]$$

$$\leqslant \frac{b-a}{n} \left(\frac{f(x_0)}{2} + \frac{1}{2} \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} \sum_{i=0}^{n-1} f(x_i)\right)$$

$$\leqslant \frac{b-a}{n} \left(\frac{f(a)}{2} + \frac{1}{2} \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} \sum_{i=1}^{n-1} f(x_i) + \frac{f(x_n)}{2}\right) \leqslant I_T(f)$$

Par combinaison de  $I_{PM}(f)=\frac{I_{PM}(f)+2I_{PM}}{3}$ , et  $I_{PM}(f)\leqslant I_{T}(f)$  on aboutit à  $I_{PM}(f)\leqslant \frac{I_{T}(f)+2I_{PM}}{3}=I_{S}(f)=I\leqslant \frac{I_{T}(f)+2I_{T}}{3}=I_{T}(f)$ .