SIM - Sistemi intonazione musicale

Documentazione Completa v1.0

Autore: LUCA BIMBI Data: 29 Agosto 2025

Versione: 1.0

Indice

1. Introduzione

- 2. Requisiti e Installazione
- 3. Caratteristiche Principali
- 4. Parametri della Riga di Comando
- 5. Sistemi di Accordatura
- 6. File di Output
- 7. Esempi di Utilizzo
- 8. Dettagli Tecnici
- 9. Formule Matematiche
- 10. Note e Limitazioni

Introduzione

SIM - Sistemi intonazione musicale è un generatore avanzato di parametri e rapporti per la costruzione di tabelle di intonazione musicale. Il programma è particolarmente utile per compositori e ricercatori che lavorano con sistemi di intonazione non standard in Csound attraverso l'opcode cpstun.

Scopo Principale

Il software genera: - Tabelle di accordatura per Csound (formato GEN -2 non normalizzato) - File TUN per software compatibili (AnaMark .TUN) - Tabelle comparative con 12-TET e serie armonica - Esportazioni in formato testo ed Excel

Sistemi Supportati

- 1. Temperamento Equabile (ET) Divisione personalizzabile di un in-
- 2. Sistema Geometrico Progressione geometrica basata su generatore
- 3. Intonazione Naturale (4:5:6) Sistema basato su rapporti armonici
- 4. Sistema Danielou Intonazione microtonale secondo Danielou (1907)

Requisiti e Installazione

Requisiti Minimi

- Python: 3.10 o superiore (richiesto per l'uso di | nelle annotazioni di tipo)
- Moduli Standard Python:
 - argparse
 - sys
 - math
 - fractions
 - re
 - os
 - typing

Nota: Per Python < 3.10, è necessario modificare le annotazioni di tipo sostituendo float | Fraction con Union[float, Fraction] e importando Union da typing.

Dipendenze Opzionali

```
pip install openpyxl
```

Installazione

- 1. Salvare il file sim.py in una directory locale
- 2. Rendere il file eseguibile (su sistemi Unix-like):

```
chmod +x sim.py
```

3. Installare le dipendenze opzionali se necessario

Caratteristiche Principali

1. Generazione Tabelle Csound

Crea automaticamente tabelle cpstun in formato GEN -2 con: - Numero di gradi (numgrades) - Intervallo di ripetizione (interval) - Frequenza base (basefreq) - Nota MIDI base (basekey) - Rapporti di frequenza (ratios)

2. Conversione Note

- Supporta nomi di nota (es. "A4", "F#2", "Bb3")
- Conversione automatica in frequenze Hz
- Diapason personalizzabile (default: 440 Hz)

3. Riduzione all'Ottava

- Opzione per ridurre i rapporti nell'intervallo [1, 2)
- Flag --no-reduce per mantenere rapporti non ridotti

4. Esportazione Multipla

- File .csd (Csound)
- File .tun (AnaMark TUN)
- Tabelle comparative .txt e .xlsx
- Tabelle di sistema con Step, MIDI, Ratio, Hz

5. Analisi Comparativa

Confronto automatico con: - 12-TET (temperamento equabile a 12 toni) - Serie armonica - Calcolo delle differenze in Hz - Evidenziazione delle prossimità (< 17 Hz)

Opzioni di confronto: - --compare-fund: imposta la fondamentale per la serie armonica e per l'ancoraggio della griglia 12TET (default: --basenote). --compare-tet-align {same, nearest}: - same: il 12TET parte dalla fondamentale di confronto e avanza di semitono in semitono (i = step). - nearest: per ogni valore Custom viene scelto il grado 12TET più vicino nella griglia ancorata alla fondamentale di confronto.

Parametri della Riga di Comando

Parametri Generali

Parametro	Tipo	Default	Descrizione
basenote	nota/Hz	440	Nota di riferimento (es. "A4") o frequenza in Hz
basekey	int	60	Nota MIDI base per tabella cpstum ($60 = C4$)
diapason	float	440	Diapason di riferimento in Hz
-v,version	-	-	Visualizza versione del programma
export-tun	flag	-	Esporta file .tun con 128 note MIDI
no-reduce	flag	-	Non riduce i rapporti all'ottava

Parametro	Tipo	Default	Descrizione
compare-fund	nota/Hz ignenum	basenote "same"	Fondamentale per confronto serie armonica e ancoraggio 12TET Allineamento 12TET: same dalla fondamentale o nearest nota più vicina
output_file	string	richiesto	Nome base per i file di output

Parametri Sistema

Temperamento Equabile

-et INDEX CENTS

- INDEX: Indice della radice (es. 12 per 12-TET)
- CENTS: Ampiezza in cents o frazione (es. 1200 o 3/2)

Sistema Geometrico

- --geometric GENERATORE PASSI
 - GENERATORE: Rapporto generatore (intero, frazione o float)
 - PASSI: Numero di passi (>0)

Sistema Naturale

- --natural A_MAX B_MAX
 - A_MAX: Esponente massimo per (3/2)^a
 - B_MAX: Esponente massimo per (5/4)^b

Sistema Danielou

Sistemi di Accordatura

1. Temperamento Equabile (ET)

Formula: $r = (2^(cents/1200))^(1/index)$

Divide un intervallo (solitamente l'ottava) in parti uguali su scala logaritmica.

Esempio 12-TET:

```
python3 sim.py -et 12 1200 output_12tet
```

2. Sistema Geometrico

Formula: ratio[i] = generatore^i

Genera una progressione geometrica basata su un rapporto generatore.

Caratteristiche: - Riduzione all'ottava attiva di default - Supporta generatori razionali (es. 3/2 per quinte) - Opzione --no-reduce per mantenere progressione crescente

Esempio Ciclo delle Quinte:

```
python3 sim.py --geometric 3/2 12 output_quinte
```

3. Sistema Naturale (4:5:6)

Formula: ratio = $((3/2)^a) * ((5/4)^b)$

Dove: - a
$$\rightarrow$$
 [-A_MAX, A_MAX] - b \rightarrow [-B_MAX, B_MAX]

Genera rapporti basati su terze maggiori (5/4) e quinte giuste (3/2).

Esempio:

python3 sim.py --natural 3 3 output_natural

4. Sistema Danielou

Formula: ratio =
$$((6/5)^a) * ((3/2)^b) * (2^c)$$

Dove c è usato per la riduzione all'ottava.

Due modalità:

- 1. Sottoinsieme (default):
 - Tonica (1/1)
 - Asse delle quinte (a=0, b=-5..5)
 - Tre terze minori armoniche successive
 - Tre seste maggiori armoniche successive
- 2. Griglia completa (--danielou-all):
 - a -> [-3, 3]
 - b -> [-5, 5]
 - Fino a 53 rapporti dopo riduzione

Esempio:

```
# Sottoinsieme
python3 sim.py --danielou output_danielou
# Griglia completa
python3 sim.py --danielou-all output_danielou_full
File di Output
1. File Csound (.csd)
Formato: <output_file>.csd
Contiene tabelle cpstun in formato GEN -2:
             numgrades basefreq rapporti-di-intonazione ......
                interval basekey
; tabella cpstun generata automaticamente | basekey=60 basefrequency=440.000000Hz
f 1 0 16 -2 12 2.0 440.0 60 1.0 1.059463 1.122462 ...
Struttura dati: - numgrades: numero di rapporti - interval: 2.0 per ottava,
0.0 se non definibile - basefreq: frequenza base in Hz - basekey: nota MIDI
di riferimento - ratios: lista dei rapporti di frequenza
2. File TUN (.tun)
Formato: <output_file>.tun
File AnaMark TUN con mappatura di tutte le 128 note MIDI:
[Tuning]
FormatVersion=1
Name=Generated by SIM - Sistemi intonazione musicale 1.0
[Exact Tuning]
; basekey=60 basefrequency=440.000000Hz
Note 0=8.1757989156 Hz
Note 1=8.6619572180 Hz
Note 127=12543.8539514 Hz
```

3. Tabelle di Sistema

File testo: <output_file>_system.txt

Step	MIDI	Ratio	Hz
0	60	1.000000000	440.000000
1	61	1.0594630944	466.163762

Nota: le colonne sono allineate a larghezza fissa (padding con spazi) per migliorare la leggibilità.

File Excel: <output_file>_system.xlsx (se openpyxl installato) - Formattazione con header in grassetto - Sfondo grigio per intestazioni

4. Tabelle Comparative

File testo: <output_file>_compare.txt

Step	MIDI	Ratio	Custom_Hz	${\tt Harmonic_Hz}$	DeltaHz_Harm	$\mathtt{TET}_{\mathtt{Hz}}$	Delta
0	60	1.0000000000	440.000000	440.000000	0.000000	440.000	0.0000

Nota: anche per il confronto le colonne sono allineate a larghezza fissa (padding con spazi) e quando Custom e Harmonic sono molto vicini viene aggiunto il simbolo " ".

File Excel: <output_file>_compare.xlsx (se openpyxl installato) - Colori distintivi: - Rosso chiaro: Custom - Verde chiaro: Harmonic - Blu chiaro: TET - Grassetto per differenze < 1 Hz tra Custom e Harmonic

Esempi di Utilizzo

Esempio 1: 12-TET Standard

```
python3 sim.py \
    --basekey 60 \
    --basenote A4 \
    --diapason 440 \
    -et 12 1200 \
    output_12tet
```

Esempio 2: Scala Pitagorica (12 quinte)

```
python3 sim.py \
    --basekey 60 \
    --basenote 261.63 \
    --geometric 3/2 12 \
    output_pythagorean
```

Esempio 3: Sistema Naturale Esteso

```
python3 sim.py \
    --basekey 48 \
    --basenote C3 \
    --natural 5 5 \
```

```
--export-tun \
output_natural_extended
```

Esempio 4: Danielou con Export Completo

```
python3 sim.py \
    --basekey 60 \
    --basenote 440 \
    --danielou-all \
    --export-tun \
    output_danielou_complete
```

Esempio 5: Progressione Geometrica Non Ridotta

```
python3 sim.py \
    --basekey 60 \
    --basenote 440 \
    --geometric 4/3 8 \
    --no-reduce \
    output_fourths_unreduced
```

Dettagli Tecnici

Conversione Note-MIDI

Il programma converte automaticamente i nomi delle note in valori MIDI:

Nota	MIDI	Frequenza (A4=440)
C4	60	$261.63~\mathrm{Hz}$
A4	69	$440.00~\mathrm{Hz}$
C5	72	$523.25~\mathrm{Hz}$

Formato supportato: - Note naturali: C, D, E, F, G, A, B - Alterazioni: # (diesis), b (bemolle) - Ottave: 0-9

Conversione Cents-Rapporti

```
Da rapporto a cents:
```

```
cents = log(ratio) * 1200 / log(2)
```

Da cents a rapporto:

ratio = $2^(cents/1200)$

Riduzione all'Ottava

Algoritmo per ridurre un rapporto nell'intervallo [1, 2):

while ratio >= 2.0:
 ratio /= 2.0
while ratio < 1.0:
 ratio *= 2.0</pre>

Gestione Frazioni

Il programma supporta l'input di frazioni razionali: - Input: 3/2, 7/4, 16/9 - Conversione automatica in float per calcoli - Precisione mantenuta dove possibile

Formule Matematiche

Temperamento Equabile

Per un temperamento a n divisioni di un intervallo di c cents:

$$r_k = 2^{\frac{k \cdot c}{n \cdot 1200}}$$

dove k è l'indice del grado (0 k < n).

Sistema Geometrico

Per un generatore g e n passi:

$$r_k = g^k$$

Con riduzione all'ottava:

$$r_k' = g^k \cdot 2^{-\lfloor \log_2(g^k) \rfloor}$$

Sistema Naturale

$$r_{a,b} = \left(\frac{3}{2}\right)^a \cdot \left(\frac{5}{4}\right)^b$$

dove: - a -> [-A_max, A_max] - b -> [-B_max, B_max]

Sistema Danielou

$$r_{a,b} = \left(\frac{6}{5}\right)^a \cdot \left(\frac{3}{2}\right)^b \cdot 2^c$$

dove c è scelto per mantenere r nell'intervallo [1, 2).

Note e Limitazioni

Limitazioni Correnti

- 1. Python 3.10+: Richiesto per le annotazioni di tipo con | (union types)
- 2. Range MIDI: 0-127 (standard MIDI)
- 3. Precisione: Float a 64 bit per i calcoli
- 4. Tolleranza duplicati: 1e-9 per confronto rapporti
- 5. File Excel: Richiede installazione separata di openpyxl

Considerazioni per l'Uso

- 1. File esistenti: Il programma appende nuove tabelle ai file .csd esistenti
- 2. Normalizzazione: I rapporti sono sempre ordinati in modo crescente
- 3. **Deduplicazione:** Rapporti molto vicini (< 1e-9) vengono considerati identici

Compatibilità

- Python: 3.10+ richiesto (3.6+ con modifiche al codice)
- Csound: Compatibile con tutte le versioni che supportano cpstun
- AnaMark: File .tun compatibili con AnaMark 3.0+
- Excel: Richiede Excel 2007+ per file .xlsx

Compatibilità con Python < 3.10 Per utilizzare il programma con versioni di Python precedenti alla 3.10, è necessario modificare le annotazioni di tipo:

```
# Python 3.10+
from fractions import Fraction

def reduce_to_octave(value: Fraction | float):
    pass

# Python 3.6-3.9
from typing import Union

def reduce_to_octave(value: Union[Fraction, float]):
    pass
```

Le funzioni da modificare sono: - normalize_ratios() - pow_fraction() - reduce_to_octave() - build_natural_ratios() - build_danielou_ratios() - ratio_et()

Best Practices

- 1. Backup: Sempre fare backup dei file .csd prima di appendere nuove tabelle
- 2. Naming: Usare nomi descrittivi per i file di output
- 3. Documentazione: Annotare i parametri usati per ogni generazione

Risoluzione Problemi

Errori Comuni

"TypeError: unsupported operand type(s) for |" - Python < 3.10 rilevato - Aggiornare a Python 3.10+ o modificare le annotazioni di tipo (vedi sezione Compatibilità)

"Nome nota non valido" - Verificare formato: nota + alterazione + ottava (es. "C#4")

"File non trovato" - Verificare percorso e permessi di scrittura

"openpyxl non installato" - Installare con: pip install openpyxl

Debug

Per debug dettagliato, modificare il codice aggiungendo:

import logging
logging.basicConfig(level=logging.DEBUG)

Changelog

Versione 1.0 (29 Agosto 2025)

- Release iniziale
- Supporto per ET, geometrico, naturale, Danielou
- Export multi-formato
- Tabelle comparative
- Documentazione completa
- Requisiti: Python 3.10+ per le annotazioni di tipo con |

11

Licenza e Crediti

Autore: LUCA BIMBI Email: [contatto autore]

Anno: 2025

Il software è fornito "così com'è" per scopi educativi e di ricerca nel campo della musica microtonale e della composizione assistita dal computer.

Riferimenti

- 1. Csound Reference Manual Documentazione opcode cpstun
- 2. The Csound Book Capitoli su sintesi e accordature
- 3. Genesis of a Music Harry Partch
- 4. Tuning, Timbre, Spectrum, Scale William Sethares
- 5. La Sémantique Musicale Alain Daniélou

Appendice: Quick Reference

Comandi Rapidi

```
# 12-TET standard
./sim.py -et 12 1200 out

# Scala pitagorica
./sim.py --geometric 3/2 12 out

# Sistema naturale 4:5:6
./sim.py --natural 3 3 out

# Danielou completo con TUN
./sim.py --danielou-all --export-tun out

# 19-TET
./sim.py -et 19 1200 out

# Serie armonica (primi 16)
./sim.py --geometric 1 16 --no-reduce out
```

Tabella Rapporti Comuni

Sistema	Rapporto	Cents	Intervallo
Ottava	2/1	1200	P8

~		~	
Sistema	Rapporto	Cents	Intervallo
Quinta giusta	3/2	701.96	P5
Quarta giusta	4/3	498.04	P4
Terza maggiore	5/4	386.31	M3
Terza minore	6/5	315.64	m3
Tono maggiore	9/8	203.91	M2
Tono minore	10/9	182.40	m2
Semitono diatonico	16/15	111.73	m2
Comma sintonico	81/80	21.51	-

 $Fine\ documentazione\ SIM\ -\ Sistemi\ intonazione\ musicale\ v1.0$