

再多一点,多层网络建模实现

输入层

隐藏层1

隐藏层2

输出层


```
H1_NN = 256 # 第1隐藏层神经元为 256 个
H2 NN = 64 # 第2隐藏层神经元为 64 个
```


输入层 - 第1隐藏层参数和偏置项

W1 = tf. Variable(tf. truncated normal([784, H1 NN], stddev=0.1))

b1 = tf. Variable(tf. zeros([H1 NN]))

第1隐藏层 - 第2隐藏层参数和偏置项

W2 = tf. Variable(tf. truncated normal([H1 NN, H2 NN], stddev=0.1))

b2 = tf. Variable(tf. zeros([H2 NN]))

第2隐藏层 - 输出层参数和偏置项

W3 = tf. Variable(tf. truncated normal([H2 NN, 10], stddev=0.1))

b3 = tf. Variable(tf. zeros([10]))

训练结果

Train Finished takes: 100.00

Train Epoch: 01 Loss= 0.155673772 Accuracy= 0.9586 Train Epoch: 02 Loss= 0.171394646 Accuracy= 0.9540 Train Epoch: 03 Loss= 0.143150017 Accuracy= 0.9606 Train Epoch: 04 Loss= 0.148644924 Accuracy= 0.9638 Train Epoch: 05 Loss= 0.126665384 Accuracy= 0.9678 Train Epoch: 06 Loss= 0.155957386 Accuracy= 0.9650 Train Epoch: 07 Loss= 0.177521363 Accuracy= 0.9594 Train Epoch: 08 Loss= 0.147528306 Accuracy= 0.9702

Train Epoch: 36 Loss= 0.371294141 Accuracy= 0.9628
Train Epoch: 37 Loss= 0.345369697 Accuracy= 0.9672
Train Epoch: 38 Loss= 0.337678194 Accuracy= 0.9728
Train Epoch: 39 Loss= 0.281204611 Accuracy= 0.9724
Train Epoch: 40 Loss= 0.313496113 Accuracy= 0.9734

评估模型

评估模型

Test Accuracy: 0.969

多层效果不一定就比单层网络效果好!

什么,还要再多一点?

构建模型

```
      H1_NN = 256
      # 第1隐藏层神经元为 256 个

      H2_NN = 64
      # 第2隐藏层神经元为 64 个

      H3_NN = 32
      # 第3隐藏层神经元为 32 个
```

```
# 输入层 - 第1隐藏层参数和偏置项
```

```
W1 = tf. Variable(tf. truncated_normal([784, H1_NN], stddev=0.1))
b1 = tf. Variable(tf.zeros([H1 NN]))
```

第1隐藏层 - 第2隐藏层参数和偏置项

W2 = tf. Variable(tf. truncated_normal([H1_NN, H2_NN], stddev=0.1))

b2 = tf. Variable(tf.zeros([H2_NN]))

第2隐藏层 - 第3隐藏层参数和偏置项

W3 = tf.Variable(tf.truncated_normal([H2_NN, H3_NN], stddev=0.1))

b3 = tf.Variable(tf.zeros([H3_NN]))

第3隐藏层 - 输出层参数和偏置项

W4 = tf. Variable(tf. truncated_normal([H3_NN, 10], stddev=0.1))

b4 = tf. Variable(tf. zeros([10]))


```
构建模型
```

```
# 计算第1隐藏层结果
Y1 = tf. nn. relu(tf. matmul(x, W1) + b1)
# 计算第2隐藏层结果
Y2 = tf. nn. relu(tf. matmul(Y1, W2) + b2)
# 计算第3隐藏层结果
Y3 = tf. nn. relu(tf. matmul(Y2, W3) + b3)
# 计算输出结果
forward = tf.matmul(Y3, W4) + b4
pred = tf.nn.softmax(forward)
```


训练结果

Train Epoch:	01 Loss=	0.144908100	Accuracy= 0.9624
Train Epoch:	02 Loss=	0. 150267839	Accuracy= 0.9638
Train Epoch:	03 Loss=	0. 124543823	Accuracy= 0.9696
Train Epoch:	04 Loss=	0. 151412591	Accuracy= 0.9656
Train Epoch:	05 Loss=	0. 169072613	Accuracy= 0.9660
Train Epoch:	06 Loss=	0. 138989180	Accuracy= 0.9726
Train Epoch:	07 Loss=	0. 141304657	Accuracy= 0.9718
Train Epoch:	08 Loss=	0. 153570235	Accuracy= 0.9668
Train Epoch:	35 Loss=	0. 286709249	Accuracy= 0.9696
Train Epoch:	36 Loss=	0. 312437803	Accuracy= 0.9758
Train Epoch:	37 Loss=	0. 240455911	Accuracy= 0.9736
Train Epoch:	38 Loss=	0. 268984914	Accuracy= 0.9714
Train Epoch:	39 Loss=	0. 206968024	Accuracy= 0.9736
Train Epoch:	40 Loss=	0.210474610	Accuracy= 0.9740
Train Finishe			

评估模型

评估模型

Test Accuracy: 0.9744

试着修改超参数,看看准确率的变换

重构建模过程

构建模型

```
      H1_NN = 256
      # 第1隐藏层神经元为 256 个

      H2_NN = 64
      # 第2隐藏层神经元为 64 个

      H3_NN = 32
      # 第3隐藏层神经元为 32 个
```

```
# 输入层 - 第1隐藏层参数和偏置项
```

```
W1 = tf. Variable(tf. truncated_normal([784, H1_NN], stddev=0.1))
b1 = tf. Variable(tf.zeros([H1_NN]))
```

第1隐藏层 - 第2隐藏层参数和偏置项

W2 = tf. Variable(tf. truncated_normal([H1_NN, H2_NN], stddev=0.1))

b2 = tf. Variable(tf.zeros([H2_NN]))

第2隐藏层 - 第3隐藏层参数和偏置项

W3 = tf. Variable(tf. truncated_normal([H2_NN, H3_NN], stddev=0.1))

b3 = tf. Variable(tf.zeros([H3_NN]))

第3隐藏层 - 输出层参数和偏置项

W4 = tf. Variable(tf. truncated_normal([H3_NN, 10], stddev=0.1))

b4 = tf. Variable(tf. zeros([10]))

计算第1隐藏层结果

Y1 = tf. nn. relu(tf. matmul(x, W1) + b1)

计算第2隐藏层结果

Y2 = tf.nn.relu(tf.matmul(Y1, W2) + b2)

计算第3隐藏层结果

Y3 = tf. nn. relu(tf. matmul(Y2, W3) + b3)

计算输出结果

forward = tf. matmul(Y3, W4) + b4 pred = tf. nn. softmax(forward)

定义全连接层函数


```
# 定义全连接层函数
def fcn layer(inputs, # 输入数据
           input_dim, # 输入神经元数量
           output_dim, # 输出神经元数量
           activation=None): #激活函数
   W = tf. Variable(tf. truncated normal([input dim, output dim], stddev=0.1))
                            # 以截断正态分布的随机数初始化 \ \
   b = tf. Variable(tf. zeros([output dim]))
                            #以0初始化的
   XWb = tf. matmul(inputs, W) + b # 建立表达式: inputs * W + b
   if activation is None: #默认不使用激活函数
      outputs = XWb
            # 若传入激活函数,则用其对输出结果进行变换
   else:
      outputs = activation(XWb)
   return outputs
```


单隐层模型

构建输入层

x = tf.placeholder(tf.float32, [None, 784], name="X")

构建隐藏层

隐藏层包含256个神经元 h1=fcn layer(inputs=x,

input_dim=784, output_dim=256,

activation=tf.nn.relu)

构建输出层

forward=fcn_layer(inputs=h1, input_dim=256, output_dim=10, activation=None)

pred = tf.nn.softmax(forward)

双隐层模型

构建输入层

```
x = tf.placeholder(tf.float32, [None, 784], name="X")
```

```
H1_NN = 256 # 第1隐藏层神经元为 256 个
H2_NN = 64 # 第2隐藏层神经元为 64 个
```


构建输出层

pred = tf.nn.softmax(forward)

构建隐藏层1

构建隐藏层2

h2=fcn_layer(inputs=h1, input_dim=H1_NN, output_dim=H2_NN, activation=tf.nn.relu)

构建输入层

```
x = tf.placeholder(tf.float32, [None, 784], name="X")
```

```
H1_NN = 256  # 第1隐藏层神经元为 256 个 H2_NN = 64  # 第2隐藏层神经元为 64 个 H3 NN = 32  # 第3隐藏层神经元为 32 个
```


构建隐藏层1

构建隐藏层2

h2=fcn_layer(inputs=h1, input_dim=H1_NN, output_dim=H2_NN, activation=tf.nn.relu)

构建输出层

forward=fcn_layer(inputs=h3, input_dim=H3_NN, output_dim=10, activation=None)

pred = tf.nn.softmax(forward)

构建隐藏层3

h3=fcn_layer(inputs=h2, input_dim=H2_NN, output_dim=H3_NN, activation=tf.nn.relu)

训练模型的保存

初始化参数和文件目录

```
がジスタ城市学院
ZHEJIANG UNIVERSITY CITY COLLEGE
```

```
# 存储模型的粒度
save_step=5

# 创建保存模型文件的目录
import os
ckpt_dir = "./ckpt_dir/"
if not os.path.exists(ckpt_dir):
    os.makedirs(ckpt_dir)
```


训练模型

训练并存储模型

声明完所有变量后,调用tf. train. Saver saver = tf. train. Saver()

训练模型

print("Train Finished takes:", "{:.2f}".format(duration))


```
if (epoch+1) % display step == 0:
        print("Train Epoch:", '%02d' % (epoch+1),
              "Loss=", "\{:.9f\}". format(loss), " Accuracy=", "\{:.4f\}". format(acc))
    if (epoch+1) % save step == 0:
            saver. save (sess, os. path. join (ckpt dir,
                                           'mnist h256 model {:06d}.ckpt'.format(epoch+1)))#存储模型
            print ('mnist h256 model {:06d}.ckpt saved'.format(epoch+1))
saver.save(sess, os.path.join(ckpt_dir, 'mnist_h256_model.ckpt'))
print("Model saved!")
# 显示运行总时间
duration =time()-startTime
```

```
改
后
的
练过程
```

```
saver = tf. train. Saver()
# 记录训练开始时间
from time import time
startTime=time()
sess = tf. Session()
sess.run(tf.global variables initializer())
for epoch in range (train epochs):
   for batch in range (total batch):
       xs, ys = mnist. train. next batch(batch size) # 读取批次数据
       sess.run(optimizer,feed_dict={x: xs,y: ys}) # 执行批次训练
    #total batch个批次训练完成后,使用验证数据计算误差与准确率
    loss, acc = sess.run([loss function, accuracy],
                       feed dict={x: mnist.validation.images,
                                  v: mnist.validation.labels})
    if (epoch+1) % display step == 0:
       print ("Train Epoch:", '%02d' % (epoch+1),
             "Loss=", "{:.9f}". format(loss), " Accuracy=", "{:.4f}". format(acc))
   if (epoch+1) % save_step == 0:
           saver. save (sess, os. path. join (ckpt dir,
                                         'mnist h256 model {:06d}.ckpt'.format(epoch+1)))#存储模型
           print('mnist h256 model {:06d}.ckpt saved'.format(epoch+1))
saver. save(sess, os. path. join(ckpt_dir, 'mnist_h256_model. ckpt'))
print("Model saved!")
# 显示运行总时间
duration =time()-startTime
```

#声明完所有变量后,调用tf. train. Saver

print("Train Finished takes:","{:.2f}".format(duration))

训练模型

des >	TF ZUCC	C6_MNIST	H256 >	ckpt dir

名称	修改日期	类型	大小
checkpoint	2018/11/8 19:59	文件	1 KB
mnist_h256_model.ckpt.data-00000-of-000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000040.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000040.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000040.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000035.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000035.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000035.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000030.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000030.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000030.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000025.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000025.ckpt.index	2018/11/8 19:59	INDEX 文件	4 I/D
mnist_h256_model_000025.ckpt.meta	2018/11/8 19:59	META 文件	缺省最多

快省最多保留最近5次的

训练模型的还原与应用

定义相同结构的模型

构建输入层

x = tf.placeholder(tf.float32, [None, 784], name="X")

构建隐藏层

隐藏层包含256个神经元

h1=fcn_layer(inputs=x, input_dim=784, output_dim=256, activation=tf.nn.relu)

构建输出层

pred = tf.nn.softmax(forward)

设置目录

必须指定为模型文件的存放目录 ckpt_dir = "./ckpt_dir/"

des > TF_ZUCC_6_MNIST_H256 > ckpt_dir			
名称	修改日期	类型	大小
checkpoint	2018/11/8 19:59	文件	1 KB
mnist_h256_model.ckpt.data-00000-of-000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000040.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000040.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000040.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000035.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000035.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000035.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000030.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000030.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000030.ckpt.meta	2018/11/8 19:59	META 文件	40 KB
mnist_h256_model_000025.ckpt.data-0000	2018/11/8 19:59	DATA-00000-OF-0	2,386 KB
mnist_h256_model_000025.ckpt.index	2018/11/8 19:59	INDEX 文件	1 KB
mnist_h256_model_000025.ckpt.meta	2018/11/8 19:59	META 文件	40 KB

缺省最多保留最近5份

读取还原模型

读取模型

```
# 创建saver
saver = tf. train. Saver()
sess = tf. Session()
init = tf.global variables initializer()
sess.run(init)
ckpt = tf. train.get checkpoint state(ckpt dir)
if ckpt and ckpt.model_checkpoint path:
    saver.restore(sess, ckpt.model checkpoint path)#从已保存的模型中读取参数
   print("Restore model from "+ckpt. model_checkpoint_path)
```


输出还原模型的准确率

输出模型准确率

Accuracy: 0.9755