V DATA ANALYSING

✓ 1. Load the file

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
hfa_df = pd.read_csv('/content/heart_failure_clinical_records_dataset.csv')

2. Print first 5 rows of data

hfa_df.head()

_		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium
	0	75.0	0	582	0	20	1	265000.00	1.9	130
	1	55.0	0	7861	0	38	0	263358.03	1.1	136
	2	65.0	0	146	0	20	0	162000.00	1.3	129
	3	50.0	1	111	0	20	0	210000.00	1.9	137
	4	65.0	1	160	1	20	0	327000.00	2.7	116

3. Print last 5 rows of data

hfa_df.tail()

$\overline{\Rightarrow}$		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium
	294	62.0	0	61	1	38	1	155000.0	1.1	143
	295	55.0	0	1820	0	38	0	270000.0	1.2	139
	296	45.0	0	2060	1	60	0	742000.0	0.8	138
	297	45.0	0	2413	0	38	0	140000.0	1.4	140
	298	50.0	0	196	0	45	0	395000.0	1.6	136

4. You have to do the basic cleaning of data for checking null values, missing values etc.

hfa_df.isnull().sum()

6. Get some info on the dataset

```
hfa_df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 299 entries, 0 to 298
     Data columns (total 13 columns):
                                   Non-Null Count Dtype
     # Column
     --- -----
     0
         age
                                   299 non-null
                                                   float64
         anaemia
                                   299 non-null
                                                   int64
         creatinine_phosphokinase 299 non-null
                                                   int64
                                                   int64
         diabetes
                                   299 non-null
        ejection_fraction
                                   299 non-null
                                                   int64
         high_blood_pressure
                                   299 non-null
                                                   int64
                                   299 non-null
                                                   float64
      6 platelets
         serum_creatinine
                                   299 non-null
                                                   float64
         serum_sodium
                                   299 non-null
                                   299 non-null
                                                   int64
         sex
     10 smoking
                                   299 non-null
                                                   int64
      11 time
                                   299 non-null
                                                   int64
     12 DEATH EVENT
                                   299 non-null
                                                   int64
     dtypes: float64(3), int64(10)
     memory usage: 30.5 KB
```

7. Remove un-needed data - time colum

```
hfa_df = hfa_df.drop('time', axis=1)
```

8. Get some description of the data.

hfa_df.describe()

 $\overline{\pm}$

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatini
count	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.000
mean	60.833893	0.431438	581.839465	0.418060	38.083612	0.351171	263358.029264	1.393
std	11.894809	0.496107	970.287881	0.494067	11.834841	0.478136	97804.236869	1.034
min	40.000000	0.000000	23.000000	0.000000	14.000000	0.000000	25100.000000	0.500
25%	51.000000	0.000000	116.500000	0.000000	30.000000	0.000000	212500.000000	0.900
50%	60.000000	0.000000	250.000000	0.000000	38.000000	0.000000	262000.000000	1.100
75%	70.000000	1.000000	582.000000	1.000000	45.000000	1.000000	303500.000000	1.400
max	95.000000	1.000000	7861.000000	1.000000	80.000000	1.000000	850000.000000	9.400

→ 9. Shape of the Dataset

```
hfa_df.shape

→ (299, 12)
```

10. Find how many gender, high blood pressure, diabetes, smoking, death_event records are there. (value_counts)

```
print(hfa_df['sex'].value_counts())
print(hfa_df['high_blood_pressure'].value_counts())
print(hfa_df['diabetes'].value_counts())
print(hfa_df['smoking'].value_counts())
print(hfa_df['DEATH_EVENT'].value_counts())
₹
    sex
         194
    Name: count, dtype: int64
    high_blood_pressure
        105
    Name: count, dtype: int64
     diabetes
         174
        125
    Name: count, dtype: int64
        203
          96
    Name: count, dtype: int64
    DEATH EVENT
         203
          96
     Name: count, dtype: int64
```

DATA VISUALIZATION

→ 1. Show the relationship of the whole dataset (with relation to death event) using pairplot.

```
plt.figure(figsize=(10, 6))
sns.pairplot(hfa_df, hue='DEATH_EVENT')
plt.title('Pairplot of Heart Failure Dataset')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
```


✓ 2. Showing the relationship between categoric variable "sex" and its frequency using bar plot.

```
plt.figure(figsize=(8, 6))
sns.countplot(x='sex', data=hfa_df)
plt.title('Frequency of Sex')
plt.xlabel('Sex (0: Female, 1: Male)')
plt.ylabel('Frequency')
plt.show()
```


3. Showing the relationship between categoric variable "death_event" and its frequency using bar plot.

```
plt.figure(figsize=(8, 6))
sns.countplot(x='DEATH_EVENT', data=hfa_df)
plt.title('Frequency of Death Event')
plt.xlabel('Death Event (0: No, 1: Yes)')
plt.ylabel('Frequency')
plt.show()
```


4. Death event per each sex using bar plot

```
plt.figure(figsize=(8, 6))
sns.countplot(x='sex', hue='DEATH_EVENT', data=hfa_df)
plt.title('Death Event per Sex')
plt.xlabel('Sex (0: Female, 1: Male)')
plt.ylabel('Count')
plt.legend(title='Death Event', loc='upper right')
plt.show()
```


5. Sex correlated with Death rate (use heatmap)

```
correlation_matrix = hfa_df[['sex', 'DEATH_EVENT']].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation between Sex and Death Rate')
plt.show()
```

 $\overline{\pm}$

6. Smoking against Death using bar plot

```
plt.figure(figsize=(8, 6))
sns.countplot(x='smoking', hue='DEATH_EVENT', data=hfa_df)
plt.title('Death Event per Smoking Habit')
plt.xlabel('Smoking (0: No, 1: Yes)')
plt.ylabel('Count')
plt.legend(title='Death Event', loc='upper right')
plt.show()
```


7. High blood pressure with age using catplot.

