IMEC: A Memory-Efficient Convolution Algorithm For Quantised Neural Network Accelerators

Eashan Wadhwa, Shashwat Khandelwal, Shreejith Shanker

Trinity College Dublin Presentation for ASAP'22 14th July 2022

Overview

- 1 Introduction
- 2 Algorithims
- 3 FINN (IMEC) Framework
- 4 Results
- 5 Future Work

Neural Networks and their parameters

NNs are modelled after the human brain and are designed to recognize patterns by assigning each feature weights

How does it work?:

- Training / Learning
- Inference

Factors:

- Accuracy
- Throughput
- Latency
- Power Requirements

Source: [1]

Convolution Neural Networks

Since NNs don't scale up well with images, CNN architectures constrain the 3D model into differentialable functions to make the model simpler

Source: [2]

Convolution Neural Networks

FPGAs provide flexibility, high throughput, fine- grain parallelism, and energy efficiency

- Diminishing effects from technology scaling
- Research now focuses on specialised acclerators
- FPGAs provide efficiency of general-purpose acclerators

Convolution Neural Networks

Source: [4]

Why CNNs are **not** hardware-friendly?

- AlexNet has 650M parameters occupying 240MB (3:1 ratio)
- Inexpensive FPGAs have 1MB On-Chip-Memory

type	m	r	n	p	q	Par.	Mult.	
conv	20	8	64	1	3	10.2K	27.7M	
conv	10	4	64	1	1	164K	95.7M	
lin	-	-	32	-	-	1.20M	1.20M	
dnn	-	-	128	-	-	4.1K	4.1K	
softmax	-	-	$n_{ m labels}$	-	-	1.54K	1.54K	
Total	-	-	-	-	-	1.37M	125M	

Source: [4]

Prerequisite

A few assumptions to make discussions simpler

■ Stride: 1

■ Precision: 4

■ Number of channels : 1

How Convolution works in the training phase

Standard convolution algorithm

How Convolution works in the inference phase

Memory Efficient Convolution

Source [5]

Inverse Memory Efficient Convolution

Verification

- Implementation in Vivado HLS
- The modifier headers are then used as part of the FINN library
- by changing the input and output dimenstions of the dataflow convolver we implemented in this in the larger BNN-PYNQ framework

Sliding window with matrix-accumulate in IMEC

Matrix-accumulate datapath

Source: [6]

BNN-PYNQ (IMEC) Framework

Results

Accelerator	Framework	Model	Platform	Frequency (MHz)	Resource consumption				Resource saving v/s corr. FINN				Power
					LUTs	LUTRAMs	FFs	DSPs	LUTs	LUTRAMs	FFs	DSPs	(Watt)
LUTNET [9]	Tiled-LUTNET	CNV	Kintex XCKU115	200	106,776	3,786	216,513	184	-	-		-	6
FINN (1-bit) [11]	BNN-PYNQ	CNV	Zynq XC7Z020	200	29,635	2,438	42,053	24	1.0	1.0	1.0	1.0	1.793
This Work (1-bit)	BNN-PYNQ	CNV	Zynq XC7Z020	200	23,744	2,322	38,110	24	0.8	0.95	0.91	1.0	1.764
FINN (2-bit) [11]	BNN-PYNQ	CNV	Zynq XC7Z020	200	40,022	7,598	51,321	32	1.0	1.0	1.0	1.0	1.863
This Work (2-bit)	BNN-PYNQ	CNV	Zynq XC7Z020	200	35,001	7,273	43,738	32	0.87	0.96	0.85	1.0	1.828

Resource level comparasion for convolution layers

Quantisation w.r.t. LUTRAMs (single layer only!)

Future work

- There could be even more massive gains compared to the vanilla im2col implementations, given we find a compute-intensive application/framework for it (currently limited to only BNN-PYNQ)
- Implement a simpler framework to test such algorithms
- Implement the IMEC algorithm in GPUs to see performance

Always open to any other suggestions / questions (email me wadhwae@ieee.org or any of the other authors)!

Bibliography

- Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. "CIFAR-10 (Canadian Institute for Advanced Research)".
 In: (). URL: http://www.cs.toronto.edu/~kriz/cifar.html (cit. on p. 3).
- Adit Deshpande. Convolution Neural Network. 2015. URL: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/ (visited on 2020) (cit. on p. 4).
- [3] URL: https://www.missinglinkelectronics.com/www/www/index.php?option=com_content&view=category&layout=blog&id=141&Itemid=310 (visited on 2022) (cit. on p. 5).
- [4] Raphael Tang et al. "An Experimental Analysis of the Power Consumption of Convolutional Neural Networks for Keyword Spotting". In: CoRR abs/1711.00333 (2017). arXiv: 1711.00333. URL: http://arxiv.org/abs/1711.00333 (cit. on p. 6).
- [5] Minsik Cho and Daniel Brand. "MEC: Memory-efficient Convolution for Deep Neural Network". In: CoRR abs/1706.06873 (2017). arXiv: 1706.06873. URL: http://arxiv.org/abs/1706.06873 (cit. on p. 10).
- [6] Yaman Umuroglu et al. "Finn: A framework for fast, scalable binarized neural network inference". In: Proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays. 2017, pp. 65–74 (cit. on p. 12).