

CSCI 3022: Intro to Data Science Spring 2019 **not** Tony Wong

Lecture 9: Continuous Random Variables and Their Distributions

Dan Larremore ... again. dancel. bremore @ coda ta. colo modo. edu. Tues 5 PM

taking a random sample of sheep.

Announcements and reminders

- HW 2 due Friday at 5 PM
- Quizlet 04 due Monday at 10 AM
 Weds.
- · Practicum #1 posted Fri.

Previously, on CSCI 3022...

Definition: A <u>discrete random variable</u> (r.v.) X is a function that maps the elements of the sample space Ω to a finite number of values a_1, a_2, \ldots, a_n or an infinite number of values a_1, a_2, \ldots

Definition: A <u>probability mass function</u> (pmf) is the map between the random variable's values and the probabilities of those values.

$$f(a) = P(X=a)$$

Definition: A <u>cumulative distribution function</u> (cdf) is a function whose value at a point *a* is the cumulative sum of probability masses up until *a*

$$F(a) = P(X \le a) = \sum_{x \le a} f(x)$$

Many real-life random processes must be modeled by random variables that can take on continuous (i.e., not discrete) values. Some examples:

- Peoples' heights: $X \in (0, \infty)$
- Final grades in a class: X ∈ [0, los]
- Time between people checking out in a line at the store: $X \in (0, \infty)$

Other examples?

Example: S'pose your friend asks you what the temperature will be like today. Specifically, they want to know what the probability that the temperature is between 70 and 80 °F, so they can decide whether or not to wear shorts.

How would you calculate your response?

Example: S'pose your friend asks you what the temperature will be like today. Specifically, they want to know what the probability that the temperature is between 70 and 80 °F, so they can decide whether or not to wear shorts. (70.5×5.6)

How would you calculate your response?

Example: S'pose your friend asks you what the temperature will be like today. Specifically, they want to know what the probability that the temperature is between 70 and 80 °F, so they can decide whether or not to wear shorts.

R ($70 \le 8 \le 80$)

How would you calculate your response?

7

Example: S'pose your friend asks you what the temperature will be like today. Specifically, they want to know what the probability that the temperature is between 70 and 80 °F, so they can decide whether or not to wear shorts.

How would you calculate your response?

Example: S'pose your friend asks you what the temperature will be like today. Specifically, they want to know what the probability that the temperature is between 70 and 80 °F, so they

can decide whether or not to wear shorts. How would you calculate your response? P(70 = X = 80) = \int f(x) dx 0.040 0.035 0.030 0.015 0.010 0.005 0.000

Definition: A random variable X is **continuous** if for some function $f : \mathbb{R} \to \mathbb{R}$ and for any numbers a and b with $a \le b$,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \ dx$$

The function *f* must satisfy:

1) $f(x) \ge 0$ for all x, and

$$2) \quad \int_{-\infty}^{\infty} f(x) \ dx = 1$$

We call *f* the **probability density function** (pdf) of X.

Example: S'pose you have some reason to believe that the temperature is equally likely to be anywhere between 55 and 81 °F. Find the probability density function (pdf) for X.

Example: S'pose you have some reason to believe that the temperature is equally likely to be anywhere between 55 and 81 °F. Find the probability density function (pdf) for X.

Equally likely
$$\Rightarrow f(x) = \begin{cases} C & 55 \le x \le 81 \\ 0 & \text{otherwise} \end{cases}$$

But the "sum to 1" condition means:
$$1 \stackrel{\heartsuit}{=} \int_{-\infty}^{\infty} f(x) \ dx = \int_{55}^{81} C \ dx = (81 - 55)C = 26C$$
 $\Rightarrow C = \frac{1}{26}$

and:
$$f(x) = \begin{cases} \frac{1}{26} & 55 \le x \le 81\\ 0 & \text{otherwise} \end{cases}$$

Example: S'pose you have some reason to believe that the temperature is equally likely to be anywhere between 55 and 81 °F. Find the probability density function (pdf) for X.

Definition: A continuous random variable has a <u>uniform distribution</u> on the interval $[\alpha, \beta]$ if its probability density function f is given by f(x) = 0 if x is not in $[\alpha, \beta]$ and

$$f(x) = \frac{1}{\beta - \alpha}$$
 for $\alpha \le x \le \beta$

We say $X \sim U(\alpha, \beta)$

Example: S'pose you have some reason to believe that the temperature is equally likely to be anywhere between 55 and 81 °F. Find the probability density function (pdf) for X.

Question: What distribution does temperature follow in the example?

Follow-up question, getting to what we might actually care about:

What is the probability that temperature is between 75 and 81 °F?

$$\int \frac{81}{81-55} dx = \frac{1}{81-55} \times \begin{vmatrix} 81 - 75 \\ 81 - 55 \end{vmatrix} = \frac{6}{81-55} = \frac{3}{26} = \frac{3}{13} = \cdots$$

Example: S'pose you have some reason to believe that the temperature is equally likely to be anywhere between 55 and 81 °F. Find the probability density function (pdf) for X.

Question: What distribution does temperature follow in the example?

$$X \sim U(55, 81)$$

Follow-up question, getting to what we might actually care about:

What is the probability that temperature is between 75 and 81 °F?

$$P(75 \le X) = P(75 \le X \le 81)$$
 b/c $U(55, 81)$
= $\int_{75}^{81} \frac{1}{26} dx$
= $\frac{81 - 75}{26} = \frac{6}{26} \approx 0.23$

Example, follow-up: What is the probability that it is exactly 75 °F?

$$P_{r}(75.2 \le K \le 75.18) = \int_{75}^{75.18} f(x) dx$$

$$75.2 \le \int_{75}^{75.2} f(x) dx = 0$$
If $E \rightarrow 0$, then $\int_{75}^{75} f(x) dx = 0$

What if we want to compute things like $P(X \le a)$?

Is there an analog for the **cumulative distribution function** from the discrete case?

$$F(x) = P(X \le x) = \sum_{k \le x} f(k)$$

Question: What would the continuous analog of this sum be?

Note:

Discrete

Cont.

What if we want to compute things like $P(X \le a)$?

PMF CDF PDF

Is there an analog for the cumulative distribution function from the discrete case?

$$F(x) = P(X \le x) = \sum_{k \le x} f(k)$$

Question: What would the continuous analog of this sum be?

Answer: For continuous r.v., we **also** have a

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

Can we use the cdf to compute things like $P(a \le X \le b)$?

Can we use the cdf to compute things like $P(a \le X \le b)$?

Example: What is the shaded region, in terms of the cdf?

Example: What is the shaded region, in terms of the cdf? Fun damental Theorem of Calculus. More generally:
$$P(a \le X \le b) = \int_a^b f(t) \ dt = F(b) - F(a)$$

Fantiderivative of f

Can we use the cdf to compute things like $P(a \le X \le b)$?

Example: What if we viewed the cdf as a function of x?

See annotated states later!

F.T. C.

Can we use the cdf to compute things like $P(a \le X \le b)$?

Example: What if we viewed the cdf as a function of x?

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

$$\frac{d}{dx}F(x) = \frac{d}{dx} \int_{-\infty}^{x} f(t) dt = f(x) - "f(-\infty)" = f(x)$$

$$\frac{d}{dx}F(x) = f(x)$$

THIS is a wildly important and useful relationship between F(x) and f(x)

The Normal distribution [List of Common Misconceptions] Gauss.

Definition: A continuous random variable X has a <u>normal (or Gaussian) distribution</u> with parameters μ and σ^2 if its probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

We say $X \sim N(\mu, \sigma^2)$

Let's play around with this distribution: https://academo.org/demos/gaussian-distribution/

texts during class.

Sometimes it's easier to first find the cdf and then derive the pdf by taking a derivative.

Example: Recall that the <u>Poisson distribution</u> describes the number of arrivals (or hits), assuming some constant average rate of arrivals per time period.

A Poisson random variable is discrete because we're counting things (e.g., number of cars entering a parking garage)

But s'pose each arrival is someone finishing checking out in a grocery store line?

Warting times = cont. r.v. Exponential Dist. Discrete Poisson = how many things

ont Exponential = how low between "events"

Sometimes it's easier to first find the **cdf** and then derive the **pdf** by taking a derivative.

Example: Recall that the Poisson distribution describes the number of arrivals (or hits), assuming some constant average rate of arrivals per time period.

A Poisson random variable is discrete because we're counting things (e.g., number of cars entering a parking garage)

But s'pose each arrival is someone finishing checking out in a grocery store line?

Now, we are interested in the **amount of time between each arrival** (so we can choose which line will be the shortest!)

S'pose the # arrivals follows a Poisson distribution (process) with rate λ arrivals/minute

- Start from t = 0 and let T be the random variable describing the first arrival
- What is the probability that the first arrival does not occur in the first t minutes?

S'pose the # arrivals follows a Poisson distribution (process) with rate λ arrivals/minute

- Start from *t* = 0 and let *T* be the random variable describing the first arrival
- What is the probability that the first arrival does not occur in the first t minutes?

$$P(T > t) = P(\text{no hits in } \le t)$$

= $\frac{(\lambda t)^0 e^{-\lambda t}}{0!} = e^{-\lambda t}$

$$P(T \le t) = 1 - P(T > t) = 1 - e^{-\lambda t}$$

 $F(t) = 1 - e^{-\lambda t}$

$$f(t) = \frac{d}{dt}F(t) = \frac{d}{dt}(1 - e^{-\lambda t})$$
$$= \begin{cases} \lambda e^{-\lambda t} & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

Definition: A continuous random variable X has an <u>exponential distribution</u> with <u>rate</u> parameter $\lambda > 0$ if its probability density function is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

We say $X \sim Exp(\lambda)$

Now hang on a second!

- That works for the **first** arrival. But what about the second? Or third?
- We wanted the distribution of time between all arrivals

Now hang on a second!

- That works for the **first** arrival. But what about the second? Or third?
- We wanted the distribution of time between all arrivals

Fun fact:

It turns out the Exponential distribution has something called the **memoryless property**

Theorem: (memoryless property)

If
$$T \sim Exp(\lambda)$$
, then $P(T > t + t_0 | T > t_0) = P(T > t)$

Quartiles and Percentiles

Given everything we have learned since Week 1, consider the following...

Question: How can we compute an x such that, say, $P(X \le x)$ 75% of the time?

What just happened?

- We learned about probability density functions and continuous density functions!
 (pdfs)
 (cdfs)
- We learned about some important continuous distributions!
 - Normal distribution:
 - Exponential distribution:
- How are the exponential and Poisson distributions related?

Next time: Great **expectations!**

