Modelos de Computação CC1004

2015/2016

2º Teste – 1 de Junho 2016

duração	: 3	h
civil ciç cic	•	

N.º		Nome	
-----	--	------	--

- 1. Seja L a linguagem das palavras de $\{a,b\}^*$ que têm bb como subpalavra ou não terminam em a.
- a) Indique uma expressão regular (abreviada) que descreva a linguagem L.

1

b) Defina uma GIC G que gere L. Indique a linguagem que é gerada a partir de cada variável de G.

0.5

c) Desenhe o diagrama de transição do AFD mínimo que aceita L.

2

2. Seja A o AFND- ε representado pelo diagrama de transição seguinte.

a) Desenhe o diagrama de transição do AFD equivalente que se obtém pelo método de conversão (baseado em subconjuntos).

1.5

b) Indique $\mathcal{L}(A)$. 1

c) Suponha que na aplicação do método de eliminação de estados ao AFND- ε A, o primeiro estado eliminado é s_3 . Represente o diagrama imediatamente *antes* e *após* a eliminação de s_3 .

1

1

2º Teste de Modelos de Computação CC1004

2015/2016

3. Considere a linguagem $L=\{\mathtt{a}^{2k+1}\mathtt{bba}^{2p}\mid k,p\in\mathbb{N}\ \mathtt{e}\ p\geq k\geq 0\}\cup \{\mathtt{a}^{2q}\mathtt{bba}^{2r+1}\mid q,r\in\mathbb{N}\ \mathtt{e}\ q\geq r\geq 0\}$ de alfabeto $\Sigma=\{\mathtt{a},\mathtt{b}\}.$

a) Assuma que existe um AFD que reconhece L. Que estados do AFD mínimo (para L) seriam visitados na análise das palavras abb, abbaa e aaabbaaaaaa? Desenhe essa parte do diagrama de transição e justifique a construção usando o corolário do teorema de Myhill-Nerode.

0.5

b) Use o teorema de Myhill-Nerode ou o lema da repetição, para concluir que tal AFD não existe.

1

c) Apresente uma GIC $\mathbf{n}\mathbf{\tilde{a}o}$ ambígua que gere L.

1.5

d) Apresente um autómato de pilha que reconheça $\{a^{2q}bba^{2r+1} \mid q,r \in \mathbb{N} \text{ e } q \geq r \geq 0\}$ por pilha vazia. Usando a relação de mudança de configuração \vdash , averigue se aabbaaaa é aceite.

2 0.5

(Continua)

2º Teste de Modelos de Computação CC1004

2015/2016

Resolva apenas uma das duas alíneas e) e f).

e) [*] Defina o **fecho de Kleene** de L por uma GIC G não ambígua. Explique sucintamente como garante a não ambiguidade e a correção da gramática.

f) [*] Defina uma máquina de Turing que, dada uma palavra de L^* , substitui cada sequência de b's por um único b e cada par de a's por um só a. Por exemplo, para aaabbaaaabbbaaaaabbaaa deveria ficar aabaabaaaabaa na fita, com o cursor no início. Comente alguns blocos, para explicar a *ideia subjacente*.

1.5

4. Considere a GIC $G = (\{A, B, C\}, \{a, b\}, P, A)$ com P dado por:

1

a) Prove que a gramática G é ambígua.

 $A \rightarrow bC \mid aBA \mid ba$ $C \rightarrow bC \mid b$ $B \rightarrow aBbB \mid b \mid bA \mid a$

b) Indique uma GIC G' na forma normal de Chomsky equivalente a G e, por aplicação do algoritmo CYK, verifique que aabbb $\in \mathcal{L}(G')$.

1

1.5