Shruti Hathwalia Int. Journal of Engineering Research and Applications ISSN: 2248-9622, Vol. 4, Issue 6(Version 6), June 2014, pp.99-102

www.ijera.com

# RESEARCH ARTICLE

**OPEN ACCESS** 

# Design and Analysis of a 32 Bit Linear Feedback Shift Register Using VHDL

Shruti Hathwalia Department of EECE, ITM University, Gurgaon Meenakshi Yadav

Assistant Professor, Department of EECE, ITM University, Gurgaon

#### Abstract

This paper proposes a 32 Bit Linear Feedback Shift Register which generates pseudo-random test patterns as the input bit is a linear function of its previous state. The total number of random state generated on LFSR depends on the feedback polynomial. As it is simple counter so it can count maximum of 2n -1 by using maximum feedback polynomial. Here in this paper we implemented 32-bit LFSR on FPGA by using VHDL to study the performance and analysis the behaviour of randomness. The analysis is conceded out to find number of gates, memory and speed requirement in FPGA as the number of bits is increased. Also, the simulation problem for long bit LFSR on FPGA is presented. The design is simulated and synthesized in Xilinx 14.5 ISE and Model Sim 10.1b.

Keywords- LFSR, FPGA, VHDL

#### I. INTRODUCTION

#### 1.1 Overview

The main challenging areas in VLSI are performance, cost, testing, area, reliability and power. The demand for portable computing devices and communications system are increasing rapidly. These applications require low power dissipation for VLSI circuits. The power dissipation during the test mode is 200% more than in normal mode. Hence it is important aspect to optimize power during testing. Power optimization is one of the main challenges. Linear feedback shift registers have multiple uses in digital systems design. Here we have implemented a 32 bit length sequence on FPGA using VHDL with maximum length feedback polynomial to understand the memory utilization and speed requirement. Also, we have presented the comparison of performance analysis based on synthesis and simulation result as well identify the simulation problem for long bit LFSR. The target device we have used Xilinx Spartan 3A and performed simulation and synthesis using Xilinx ISE. The HDLs are VHDL and Verilog. We prefer VHDL for programming because it is widely used.

# 1.2 Application

For generating data encryption keys, random numbers are very much useful in the various applications such as communication channel, bank security, etc. it is used to design encoder and decoder for sending and receiving data in noisy communication channel. They have also been used aesthetically, for example in literature and music, and are of course ever popular for games and gambling. Applications of LFSRs also include generating

pseudo-random numbers, pseudo-noise sequences, fast digital counters, and whitening sequences.

# II. LINEAR FEEDBACK SHIFT REGISTER

Linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value. An LFSR is a class of devices known as state machine. It is a shift register whose input bit is a linear function of its previous state. The only linear functions of single bits are XOR and XNOR. Thus it is a shift register whose input bit is driven by XOR or XNOR of some bits of overall shift register value.

# 2.1 Theory of Operation

Feedback around an LFSR's shift register comes from a selection of points (taps) in the register chain and constitutes XORing these taps to provide tap(s) back into the register. Register bits that do not need an input tap, operate as a standard shift register. It is this feedback that causes the register to loop through repetitive sequences of pseudo-random value. The choice of taps determines how many values there are in a given sequence before the sequence repeats. The implemented LFSR uses a one-to-many structure, rather than a many-to-one structure, since this structure always has the shortest clock-to-clock delay path.

www.ijera.com 99 | P a g e

Pseudo random number sequence generator is generated in VHDL according to the following circuit in Figure 1 based on the concept of shift register.



Figure 1 Basic block diagram of LFSR [2]

The bits in the LFSR state which influence the input are called taps. A maximum-length LFSR produces an m- sequence (i.e. it cycles through all possible 2n-1 state within the shift register except the state where all bits are zero), unless it contains all zeros, in which case it will never change. The sequence of numbers generated by this method is random. The period of the sequence is (2n - 1), where n is the number of shift registers used in the design.

## 1.3 Types of LFSR

There are two conventional forms of LFSR designs:

 Standard LFSR: Figure 2 shows an n-stage standard LFSR. It consists of n flip-flops and a number of XOR gates. Since XOR gates are placed on the external feedback path, the standard LFSR is also referred to as an external-XOR LFSR.



Figure 2 An *n*-stage (external-XOR) standard LFSR [4]

2) Modular LFSR: Similarly, an n-stage modular LFSR with each XOR gate placed between two adjacent flip-flops, as shown in Figure 3, is referred to as an internal-XOR LFSR. This circuit runs faster than its corresponding standard LFSR, because each stage introduces at most one XOR-gate delay.



Figure 3 An n-stage (internal-XOR) Modular LFSR

Despite of different state trajectories, both structures are capable of generating an m-sequence for each stage output.

# 1.3.1 Types of LFSR depending on data length

a) 8-bit LFSR: 8-bit LFSR with maximum length feedback polynomial X<sup>8</sup> + X<sup>6</sup> + X<sup>5</sup> + X<sup>4</sup> + 1 generates 2<sup>8</sup> -1 = 255 random outputs, which is verified from the simulation waveform. The circuit diagram for 8-bit LFSR with maximum length polynomial is shown in Figure 4.



Figure 4 Circuit Diagram of 8- Bit LFSR with maximum length Feedback Polynomial  $X^8 + X^6 + X^5 + X^4 + 1$ 

b) 16-Bit LFSR: 16-bit LFSR with maximum length feedback polynomial X<sup>16</sup> + X<sup>14</sup> + X<sup>13</sup> + X<sup>11</sup> + 1 generates 2<sup>16</sup> -1 = 65535 random outputs, which is verified from the simulation waveform. The circuit diagram for 16-bit LFSR with maximum length polynomial is shown in Figure 5.



Figure 5 Circuit Diagram of 16- Bit LFSR with maximum length Feedback Polynomial  $X^{16} + X^{14} + X^{13} + X^{11} + 1$ 

c) 32-bit LFSR: 32-bit LFSR with maximum length feedback polynomial  $X^{32} + X^{22} + X^2 + X^1 + 1$  for which 232 -1 = 429, 49, 67,295 random outputs. The circuit diagram for 32-bit LFSR with maximum length polynomial is shown in Figure 6.



Figure 6 Circuit Diagram of 32- Bit LFSR for maximum length Feedback Polynomial  $X^{32} + X^{22} + X^2 + X^$ 

www.ijera.com 100 | P a g e

### 1.4 Comparison between 8, 16, 32 bit LFSR

The synthesis and simulation report for 8, 16 and 32 bit LFSR by using maximum length feedback polynomial are given in Table 1. Form the table we can find the total memory usage and simulation time of different length LFSR.

Table 1. Comparison between 8, 16 and 32 bit LFSR depending on the performance [2]

| Performance                              | 8 Bit                           | 16 Bit                                | 32 Bit                                   |  |
|------------------------------------------|---------------------------------|---------------------------------------|------------------------------------------|--|
| Time to complete the total states        | 40 ns to<br>5140 ns<br>=5100 ns | 20 ns to<br>1310720 ns<br>= 1310.7 us | 20 ns to<br>85899345920<br>ns = 85.9 sec |  |
| Total no. of Random<br>States generating | 255                             | 65535                                 | 429,49,67,295                            |  |
| Clock                                    | 20 ns                           | 20 ns                                 | 20 ns                                    |  |
| Shift Register                           | 08                              | 16                                    | 32                                       |  |
| Xor gate                                 | 01                              | 01                                    | 01                                       |  |
| Number of Slices                         | 04                              | 09                                    | 18                                       |  |
| No. of Slice Flip Flops                  | 08                              | 16                                    | 32                                       |  |
| No. of 4 i/p LUT                         | 01                              | 01                                    | 01                                       |  |
| Total memory usage                       | 185904 kb                       | 185904 kb                             | 185904 kb                                |  |
| GCLK                                     | 01                              | 01                                    | 01                                       |  |
| (Gate + Net) Delay                       | 7.271 ns                        | 7.271ns                               | 7.271ns                                  |  |
| Total pin                                | 10                              | 18                                    | 34                                       |  |

The memory utilization is found to be same for all three LFSR.

## 2.4 Optimum Tap Points

The choice of which taps to use determines how many values are included in a sequence of pseudorandom values before the sequence is repeated. Certain tap settings yield the maximal length sequences of (2<sup>N</sup>-1). The following table shows a minimum number of taps that yield maximal length sequences for LFSRs ranging from 2 to 32 bits.

Table 2. Number of taps depending on the length of the loop

| Number of Bits | Length of Loop | Taps     |
|----------------|----------------|----------|
| 2              | 3              | 0,1      |
| 3              | 7              | 0,2      |
| 4              | 15             | 0,3      |
| 5              | 31             | 1,4      |
| 6              | 63             | 0,5      |
| 7              | 127            | 0,6      |
| 8              | 255            | 1,2,3,7  |
| 9              | 511            | 3,8      |
| 10             | 1023           | 2,9      |
| 11             | 2047           | 1,10     |
| 12             | 4095           | 0,3,5,11 |
| 13             | 8191           | 0,2,3,12 |
| 14             | 16383          | 0,2,4,13 |
| 15             | 32767          | 0,14     |
| 16             | 65535          | 1,2,4,15 |

| 17 | 131071     | 2,16     |
|----|------------|----------|
| 18 | 262143     | 6,17     |
| 19 | 524287     | 0,1,4,18 |
| 20 | 1048575    | 2,19     |
| 21 | 2097151    | 1,20     |
| 22 | 4194303    | 0,21     |
| 23 | 8388607    | 4,22     |
| 24 | 16777215   | 0,2,3,23 |
| 25 | 33554431   | 2,24     |
| 26 | 67108863   | 0,1,5,25 |
| 27 | 134217727  | 0,1,4,26 |
| 28 | 268435455  | 2,27     |
| 29 | 536870911  | 1,28     |
| 30 | 1073741823 | 0.3,5,29 |
| 31 | 2147483647 | 2,30     |
| 32 | 4294967295 | 1,5,6,31 |
|    |            |          |

# III. SIMULATIONS RESULTS



Figure 7 RTL Schematic of the System Design



Figure 8 Simulation Results of Test Generator

www.ijera.com 101 | P a g e



Figure 9 Synthesis Result

#### Device utilization

Number of Slices: 18 out of 5888 Number of Slice Flip Flops: 32out of 11776 Number of 4 input LUTs: 2 out of 11776 Number of IOs:

Number of bonded IOBs: 34 out of 372 Number of GCLKs: 1 out of 24

Total memory usage is 257916 kilobytes

### **Timing Summary**

Minimum period: 2.097ns

Maximum Frequency: 476.872MHz

Minimum input arrival time before clock: 3.491ns Maximum output required time after clock: 5.642ns Maximum combinational path delay: No path found

### IV. CONCLUSION

Design of a random testing circuit based on LFSR for the external memory interface is discussed in this paper. The random test patterns can improve testing efficiency, and reduce the artificial dependence in testing process in any circuit. Definitely 32 bit LFSR with maximum length feedback polynomial will generate large sequence which is more secure than other but because of simulation difficulties modification in long bit LFSR is needed. In the practical use 8-bit and 16-bit LFSR is sufficient for different cryptographic applications.

## REFRENCES

- [1] Janick Bergeron. Writing testbenches functional verification of HDL Models(2nd Edition). Springer- Verlag-2003.
- Kumar Panda et.al, "FPGA[2] Amit Implementation of 8, 16 and 32 Bit LFSR with Maximum Length Feedback Polynomial using VHDL," International Conference on Communication Systems and Network Technologies, 2012.

- Madhusudan Dey, Abhishek Singh, "Design [3] and IP core based implementation of a programmable 8-bits random sequence "In generator, Proceedings of the International Symposium Nuclear on Physics, 2009, pp.678-679.
- [4] Mohammed Gazi.J et.al, "Design of Random Testing Circuit Based on LFSR for the External Memory Interface," International Journal of Application or Innovation in Engineering & Management (IJAIEM), vol. 2, issue 3, , pp.145-150, March 2013.
- [5] P.Bhanuchander et.al, "BIST architecture Implementation Based on Advanced LFSR for testing EMIFs for SRAM," International Journal of Industrial Electrical, Electronics, Control and Robotics (IISRC), vol. 3, issue 5, pp. 1-8 August 2013.
- Panda Amit K, Rajput P, Shukla B, "Design of Multi Bit LFSR PNRG and Performance comparison on FPGA using VHDL", International Journal of Advances in Engineering & Technology(IJAET), vol. 3, issue 1, pp. 566-571, March 2013

www.ijera.com 102 | Page