Lecture notes Einführung in die Logik 2024W

This is a summary of the material discussed in the lecture "Mathematische Logik". It is still a work in progress and there **may me mistakes** in this work. If you find any, feel free to let me know and I will correct them

The content of this script is intended for educational purposes only. It relies on the book [1] for which all rights belong to their respective owners and I do not claim ownership over this content. However the LATEX code I wrote is entirely my own work and is open source under the MIT-Licence. Dieses Skript ist noch nicht vollständig und wird regelmäßig aktualisiert.

Contents

1	Pro	Propositional logic				
	1.1	Truth assignments				
	1.2	A parsing algorithm	4			
	1.3	Induction and recursion	Ę			
	1.4	Sentential connectives	8			
	1.5	Compactness Theorem	(
2	Predicate - / first order logic					
	2.1		12			
	2.2	Semantics of first order logic	13			
	2.3	Definition of truth	13			
	2.4	Logical implication	15			
	2.5	definability in a structure	15			
	2.6	Homomorphisms of structures	15			
	2.7	A parsing algorithm for first order logic	15			
	2.8	Unique readability for terms	15			
	2.9	Deductions (formal proofs)	15			
	2.10		15			
	Boolean Algebra					
3	Boo	olean Algebra	16			
3	Set	Theory	18			
	Set					
4	Set 4.1	Theory Axioms of ZFC	18			
4	Set 4.1	Theory	18			
4	Set 4.1	Theory Axioms of ZFC	18			
4	Set 4.1	Theory Axioms of ZFC	18			
4	Set 4.1 ist	Theory Axioms of ZFC of Abbreviations - propositional - expression(s)	18			
4	Set 4.1 ist property.	Theory Axioms of ZFC of Abbreviations - propositional - expression(s)	18			
4	Set 4.1 ist propexp. sent	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s)	18			
4	Set 4.1 ist prop exp. sent seq.	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s) - sequence	18			
4	set 4.1 ist propexp. sent seq. TA	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s) - sequence - truth assignment	18			
4	set 4.1 ist propexp. sent seq. TA fla.	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s) - sequence - truth assignment - formula - truth value	18			
	set 4.1 ist propexp. sent seq. TA fla. TV	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s) - sequence - truth assignment - formula - truth value	18			

Propositional logic

Language **Definition 1.1. Language of PL**: The Language of Propositional logic is a set containing

- logical symbols: consisting of the sentential connective symbols $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$ and parenthesis (,)
- non-logical symbols: A_1, A_2, A_3, \ldots (also called sentential atoms, variables)

from which we assume (for unique readability) that no symbol is a finite sequence of any other symbols.

Note:

- 1. The role of the logical symbols doesn't change, the sentential atoms we see as variables, they function as placeholders or variables.
- 2. we assumed the set of non-logical symbols is countable, for most of our conclusions you could use any set of prop. atoms of any size

expression

Definition 1.2. Expression / prop. sentence: An expression is a any finite sequence of symbols We define grammatically correct exp. recursive

- 1. every prop. atom is a prop. sentence
- 2. if α, β are prop. sentences, then also $\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \to \beta, \alpha \leftrightarrow \beta$
- 3. nothing else

prop. sentence prop. fla.

and call them **prop. sentences.** or **prop. fla.** Equivalently stated every prop. sentence is built up by applying finitly many operations TODO This allows us to symbolize the **expression tree**

construction sequence

Definition 1.3. Construction sequence: Given a prop. sentence α a construction sequence of α is a finite sequence $\langle \alpha_1, \dots \alpha_{n-1}, \alpha \rangle$ such that for all $i \leq n$ the following holds

- α_i is a sentential atom
- or $\alpha_i = \varepsilon_{\neg}(\alpha_i)$ for some j < i
- $\bullet \ \text{ or } \alpha_i = \varepsilon_\square(\alpha_j,\alpha_k) \text{ for some } j,k < i \text{ and } \square \in \{\land,\lor,\rightarrow,\leftrightarrow\}$

closure

Definition 1.4.: Let S be a set. We say S is **closed** under an n-ary operational symbol f iff for all $s_1, s_2, \ldots s_n \in S$ it holds $f(s_1, s_2, \ldots s_n) \in S$

Induction principle: Suppose S is a set of prop. sentences containing all prop. atoms and closed under the 5 formula building operations, then S is the set of all prop. sentences.

Proof. let PS = set of all prop. sent.

 $S \subseteq PS$: is clear

 $S \supseteq PS$: let $\alpha \in PS$ then α has a construction seq. $\langle \alpha_1, \dots \alpha_{n-1}, \alpha \rangle$ and $\alpha_1 \in S$ lets assume that α_i for $i \le k < n$ is in S then α_{k+1} is either an atom and therefore in S or its obtained by one of the formula building operations from the and therefore $\alpha_{k+1} \in S$

1.1 TRUTH ASSIGNMENTS

The interpretation of a prop. atom is either true or false, denoted by 0/1 or T/F. A truth assignment is simply any map $\nu: S \mapsto \{0,1\}$, where S is a map of prop. sent. Our goal is going to be to extend any truth assignment v to a function $\overline{v}: \overline{S} \mapsto \{0,1\}$, where \overline{S} is the closure of S under the 5 fla. building functions.

Definition 1.5. Truth assignment: Let $\{0,1\}$ be the set of truth values. A truth assignment (TA) for a set S of prop. atoms is a map $\nu: S \to \{0,1\}$

Truth assigment TA

We now want to extend ν to $\overline{\nu}: \overline{S} \to \{0,1\}$, where \overline{S} is the closure of S under the 5 fla. building operations such that for all propositional atoms $A \in S$ and propositional formulas α, β in \overline{S}

- 1. $\overline{\nu}(A) = \nu(A)$
- 2. $\overline{\nu}(\neg \alpha) = 1 \nu(\alpha)$
- 3. $\overline{\nu}(\alpha \wedge \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 1 = \overline{\nu}(\beta) \\ 0 & \text{otherwise} \end{cases}$
- 4. $\overline{\nu}(\alpha \vee \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 1 \text{ or } \overline{\nu}(\beta) = 1 \\ 0 & \text{otherwise} \end{cases}$
- 5. $\overline{\nu}(\alpha \to \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 0 \text{ or } \overline{\nu}(\beta) = 1 \\ 0 & \text{otherwise} \end{cases}$
- 6. $\overline{\nu}(\alpha \leftrightarrow \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = \overline{\nu}(\beta) \\ 0 & \text{otherwise} \end{cases}$

We also want the extention to be unique, that is

Theorem 1.1. Unique readability: For all TA ν for a set $S \exists ! \overline{\nu} : \overline{S} \to \{0,1\}$ satisfying the above properties

We will proof this later

We will be talking about TA satisfying prop. sent.

Definition 1.6. Satisfaction: A TA ν satisfies a prop. sent. α iff $\overline{\nu}(\alpha) = 1$ (that is, provided that everery atom of α is in the domain of ν). We call α satisfiable iff there exists a TA that satisfies it.

satisfy satisfiable

Definition 1.7. Tautological implication: Let Σ be a set of prop. sent. and α a prop. sent. then we say: Σ tautologically imlies α iff \forall TA that satisfies Σ then α is also satisfied and we write $\Sigma \models \alpha$

taut. implication

If $\Sigma = \{\beta\}$, we simply write $\beta \models \alpha$ If $\Sigma = \emptyset$ then we write $\models \alpha$ for $\emptyset \models \alpha$ and α is called a **tautology**

 α, β are called **tautologically equivalent** iff $\alpha \models \beta$ and $\beta \models \alpha$, we then write $\alpha = \models \beta$

Note: In other words, tautological implication $\Sigma \models \alpha$ means that you can not find a TA, that satisfy all members of Σ but not α . A tautology is satisfied by every TA. Suppose there is no TA that satisfies Σ , then we have $\Sigma \models \alpha$ for every prop. sent. α

Example 1.1.:
$$\{\neg A \lor B\} = \models A \to B$$

Note: In order to check if a prop. sent. is satisfiable we need to check 2^N TAs, where N=# of atoms. It is unknown if this can be done by an algorithm in polynomial time. Answering this would settle the debate whether P=NP

TODO: Add section here? However we can find a way to reduce satisfiability of an infinite set Σ of prop. sent. There later will be a more elementary proof of the compactness theorem, this proof is not part of the exam.

Theorem 1.2. Compactness theorem: Let Σ be an infinite set of prop. sent. such that

 $\forall \Sigma_0 \subseteq \Sigma, \Sigma_0 \text{finite} \exists \text{ TA satisfying every member of } \Sigma_0$ (finite satisfiability)

then there is a TA satisfying every member of Σ .

Proof. using topology: We have our infinite set of prop. sent. which satisfies above condition. One way to look at TA is as a sequence of 0, 1, Let $\mathcal{A} = \{A_0, A_1, \dots\}$ be the set of all prop. atoms. We are going to identify TAs with elements in $\{0, 1\}^{\mathcal{A}} := \{f : \mathcal{A} \to \{0, 1\}\}$ (set of all TAs) This is a topological space with product topology, which we will view The basic open sets (called cylinders) will be

- fix finitly many places and set TV on them,
- others beliebig

 $U \subseteq \{0,1\}^{\mathcal{A}}$ such that $p_n(U) = \{0,1\}$ for all but finite many n, where p_n is the n-th projection. Note: basic open sets are also closed. We now define the open sets as unions of basic open sets. The idea is to use Tychonoffs Thm. which tells us that $\{0,1\}^{\mathcal{A}}$ is compact. i.e. the intersection of a family of closed subsets $\mathbf{w}/$ the finite intersection property (FIP) is non-empty finite intersection property means the intersection of finitly many sets is non-empty.

For $\alpha \in \Sigma$ let $T_{\alpha} \subseteq \{0,1\}^{\mathcal{A}}$ be the set of TA that satisfy α . This T_{α} is a finite union of cylinders, bc. it only depends on finitly many assignments, hence closed. The family $\{T_{\alpha} : \alpha \in \Sigma\}$ of closed sets with FIP. Tychonoff tells us, that $\bigcup_{\alpha \in \Sigma} T_{\alpha} \neq \emptyset$ so there is a TA satisfying Σ .

useful might be book p. 26-27

1.2 A PARSING ALGORITHM

To prove Theorem 1.1 we essentially need to show that we have enough parenthesis to make the reading of a prop. sent. unique. TODO Bsp

Lemma 1.1. : Every prop. sent. has the same number of left and right parenthesis.

Proof. Let $M = \operatorname{set}$ of prop. sent. w/ # left parenthesis = # right parenthesis and $PS = \operatorname{set}$ of all prop. sent. We have $M \subseteq PS$. Since atoms have no parenthesis, they are in M, we just need to show that M is closed under the 5 construction operations. $\varepsilon_{\neg} = (\neg \alpha) \dots$

Lemma 1.2.: No proper initial segment of a prop. sent. is itself a prop. sent.

Proof. Let $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ be a prop. sent. By proper initial segment we understand $\beta = \alpha_1 \dots \alpha_i$ for $1 \leq i < n$. We will prove that every proper initial segment has an excess of left parenthesis, then we use the previous lemma. Let PS = set of all prop. sent. and PF = set of prop. sent. s.t. no proper initial segment has # left parenthesis = # right parenthesis, we will prove that these sets are the same.

Let $\alpha \in PF$. By induction over the fla. building operations

- Atoms: since the empty sequence is no prop. sent. they have no proper initial segment.
- If the above is true for α, β then the proper initial segments of $(\neg \alpha)$ are of the form

```
(\neg \alpha) (\neg \alpha' where \alpha' is a propper initial segment of \alpha) ( or (\neg)
```

Therefore ε_{\neg} preserves this property and under $\varepsilon_{\wedge}, \varepsilon_{\vee}, \varepsilon_{\rightarrow}, \varepsilon_{\leftrightarrow}$ this is also the case.

Parsing algorithm

We now give a parsing algorithm procedure. For input we take some expression τ and the algorithm will determine if τ is a prop. sent. If so, it will generate a unique construction tree (in form of a rooted tree) for τ . (i.e. the construction tree gives us a unique readability) That there is a unique way to perform the algorithm is implied by Lemma 1.2

- 0. create the root and label it τ
- 1. HALT if all leaves are labled w/ prop. atom and return: " τ is a prop. sent."
- 2. select a leaf of the graph which is not labled w/ prop. atom
- 3. if the first symbol of label under consideration is not a left parenthesis, then halt and return: " τ is not a prop. sent."
- 4. if the second symbol of the label is "¬" then GOTO 6.
- 5. scan the expression from left to right if we reach a proper initial segment of the form "(β " where $\#lp(\beta) = \#rp(\beta)$ and β is followed by one of thesection $\land, \lor, \rightarrow, \leftrightarrow$ and the remainder of the expression is of the form β'), where $\#lp(\beta') = \#rp(\beta')$

Then: create two child nodes (left,right) to the selected element and label them (left $:= \beta$, right $:= \beta'$) GOTO 1.

Else: HALT and return " τ is not a prop. sent."

6. if the expression is of the form $(\neg \beta)$ where $\#lp(\beta) = \#rp(\beta)$

Then: construct one childnode and label it β and GOTO 1.

Else: HALT and return: " τ is not a prop. sent."

Example 1.2.: TODO The parsing algorithm applied to $((\neg(A_1 \to A_2)) \lor A_3)$ returns the following construction tree.

Correctness of the parsing algorithm

- The algorithm always halts, because the length of a childs label is less than the label of a parent.
- If the algorithm halts with the conclusion that τ is a prop. sent. then we can prove inductively (starting from the leaves) that each label is a prop. sent
- Unique way to make choices in the algorithm: in particular β, β' in step 5. If there was a shorter choice for β it would be a proper initial segment of β but such prop. sent. can not exist. (This also works under the assumption that a longer choice exists).
- rejections are made correctly

Back to proving the existence and uniqueness of $\overline{\nu}$ in Theorem 1.1. Let α be a prop. sent. of \overline{S} . We apply the parsing algorithm to α to get a unique construction tree For the leaves, use ν go get the truth values then work our way up using the conditions (1-6) in Definition 1.5.

A more formal notation

TODO

1.3 INDUCTION AND RECURSION

Generalization of induction principle:

Let \mathcal{U} be a set and $B \subseteq \mathcal{U}$ our initial set. $\mathcal{F} = \{f, g\}$ a class of functions containing just f and g, where

$$f: \mathcal{U} \times \mathcal{U} \to \mathcal{U}, \qquad g: \mathcal{U} \to \mathcal{U}$$

We want to construct the smallest subset $\mathcal{C} \subseteq \mathcal{U}$ such that $B \subseteq \mathcal{C}$ and \mathcal{C} is closed under all elements of \mathcal{F} .

Definition 1.8. Closedness, Inductiveness: We say $S \subseteq \mathcal{U}$ is

- closed under f and g iff for all $x, y \in \mathcal{S}$ it holds $f(x, y) \in \mathcal{S}$ and $g(x) \in \mathcal{S}$
- inductive if $B \subseteq \mathcal{S}$ and \mathcal{S} is closed under \mathcal{F}

One way is from the top down $C^* := \bigcap_{Sinductive} S$ Another is from bottom up: We call $c_1 := \mathcal{B}$,

$$C_i := C_{i-1} \cup \{f(x,y) : x, y \in C_{i-1}\} \cup \{g(x) : x \in C_{i-1}\}$$

and $C_* := \bigcup_{n>1} C_n$ Exercise: show that $C^* = C_* =: C$. Example:

Example 1.3.:

- 1. Let \mathcal{U} be the set of all expressions, \mathcal{B} the set of atoms and $\mathcal{F} = \{\varepsilon_{\square} : \square in\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}\}$ Then \mathcal{C} would be the set of all propositional formulas.
- 2. Let \mathcal{U} be \mathbb{R} , \mathcal{B} the set containing 0 and $\mathcal{F} = \{S\}$, S(x) = x + 1 Then \mathcal{C} would be the set of the natural numbers.

Induction principle

 \mathcal{C} generated from \mathcal{B} by use of elements of \mathcal{F} if $S \subseteq C$ such that $\mathcal{B} \subseteq S$ and S is closed under all elements of \mathcal{F} , then S = C proof: $S \subseteq C$ is clear. S is inductive, so $C \subseteq S$. Question: under what conditions do we get "generalized unique readability?" The goal would be to define a function on \mathcal{C} recursively i.e. to have rules for computing $\overline{h}(x)$ for $x \in B$ with some rules of computing $\overline{h}(f(x,y))$ and $\overline{h}(g(x))$ from $\overline{h}(x)$ and $\overline{h}(y)$.

Example 1.4.: Suppose that G is some additive group, generated from \mathcal{B} (the set of generators), $h = \mathcal{B} \to H$ where $(H, \cdot, ^{-1}, 1)$ a group. When is there an extention \overline{h} of h s.th. $\overline{h}: G \to H$ is a grouphomomorphism.

- $\overline{h}(0) = 1$
- $\overline{h}(a+b) = \overline{h}(a) \cdot \overline{h}(b)$
- $\overline{h}(-a) = \overline{h}(a)^{-1}$

This is not always possible. **Note:** that it is possible if G is generated freely by the elements of \mathcal{B} and the set of atoms is independent (one element of \mathcal{B} cannot be generated in finitly many steps by other elements of \mathcal{B}).

Definition 1.9.: \mathcal{C} is freely generated from \mathcal{B} by f, g if

- \mathcal{C} is generated from \mathcal{B} by f, g
- $f|_{C^2}$ and $g|_C$ are such that
 - $-f|_{C^2}$ and $g|_C$ are one-to-one (injective)
 - $-rng(f|_{C^2})$ and $rng(g|_C)$ and \mathcal{B} are p.w. disjoint

Theorem 1.3. recursion Theorem: $C \subseteq U$ freely generated from B by f, g and V a set and $h: B \to V$, $F: V^2 \to V$, $G: V \to V$ Then $\exists ! \overline{h} : \mathcal{C} \to V$ s.that

- for all a in \mathcal{B} it holds $\overline{h}(a) = h(a)$
- for all x, y in \mathcal{C} it holds
 - 1. $\overline{h}(f(x,y)) = F(\overline{h}(x), \overline{h}(y))$
 - 2. $\overline{h}(g(x)) = G(\overline{h}(x))$

Note: if given conditions are satisfied then h extends uniquely to a homomorphism $(C, f, g) \rightarrow (V, F, G)$

Before we proof the recursion theorem, we will show how unique readability easily follows from it. Note: Recusion Theorem implies unique readability for propositional formulas. What we need to check is that **Claim:** The Assumptions of recursion theorem are satisfied.

proof of claim. \mathcal{F}_{\vee} is one to one, suppose $(\alpha \vee \beta) = (\delta \vee \gamma)$ then $\alpha \vee \beta) = \delta \vee \gamma$ And α, δ are prop. formulas, so they equal to each other (else one is an initial segment of the other, hence not a prop. fla.) By the same argument we get β is equal to γ .

Claim: Disjointment of ranges proof of claim. • if $(\alpha \vee \beta)$ is A then A starts with (

• if $(\alpha \vee \beta)$ is $(\gamma \to \delta)$ then by the same argument α is γ but \vee and \to are different

•

 \boxtimes

Proof of the Rec Thm.

 $v: C \to V$ TODO partial function pfeil nur oben is called acceptable if $\forall x, y \in C$

- 1. if $x \in B \cap dom(v)$ then v(x) = h(x)
- 2. if $f(x,y) \in dom(v)$ then $x,y \in dom(v)$ and similarly for g
 - v(f(x,y)) = F(v(x),v(y))
 - v(g(x)) = G(v(x))

And when $\mathcal{U} = \{\Gamma_v : vacceptable\}$, we define $\overline{h} := \text{function w/ graph} \bigcup \mathcal{U}$ Claim 1: \overline{h} is a function. proof of claim.

$$S := \{x \in \mathcal{C} : \exists \text{at most one } y \text{ w}/(x, y) \in \bigcup \mathcal{U} \}$$

We want S = C, we have $S \subseteq C$, it is enough to show that S is inductive.

- $x \in B \cap dom(v)$ for some v acceptable. then v(x) = h(x) by 1. also $x \notin rngf|_{C^2}$ and $x \notin rngg|_{C}$
- $x, yin\mathcal{S}$ We want $f(x, y), g(x) \in S$ there are v_1, v_2 acceptable s.t. $f(x, y) \in dom(v_1) \cap dom(v_2)$

 \boxtimes

Claim 2: \overline{h} is acceptable.

proof of claim. $\overline{h}: C \xrightarrow{\sim} V$ by definition. if $x \in B \cap dom\overline{h}$ then there is a v acceptable, s.t. $x \in dom(v)$ then $\overline{h}(x) = v(x) = h(x)$ if $f(x,y) \in dom\overline{h}$ then $f(x,y) \in dom(v)$ form some v acceptable. Hence $x, y \in dom(v)$ and therefore $x, y \in dom(\overline{h})$ and we have

$$\overline{h}(f(x,y)) = v(f(x,y)) = F(v(x),v(y)) = F(\overline{h}(x),\overline{h}(y))$$

 \boxtimes

Claim 3: The domain of \overline{h} equals C.

proof of claim. it is enough to show that the domain of \overline{h} is inductive. $B \subseteq dom(\overline{h})$ bc. $B \subseteq dom(h)$ where h is acceptable. Now we need to show closure under f, g. suppose $x', y' \in dom(\overline{h})$ then $x' \in dom(v_1)$ for some acceptable v_i lets assume $f(x', y') \notin dom(\overline{h})$ then we extend \overline{h} to a function with the same graph as \overline{h} . Then $\Gamma \cup \{(f(x', y'), F(\overline{x'}, \overline{y'}))\}$ is the graph of an acceptable function.

Claim 4: Suppose both $\overline{h}, \overline{\overline{h}}$ work, we schow that $S = \{x \in C : \overline{h}(x), \overline{\overline{h}}(x)\}$ is the whole set C. it is enough to show that S is inductive.

Let $x \in B$ then $\overline{h}(x) = h(x) = \overline{\overline{h}}(x)$. Then for $x, y \in S$

$$\overline{h}(f(x,y)) = F(\overline{h}(x), \overline{h}(y)) = F(\overline{\overline{h}}(x), \overline{\overline{h}}(y)) = \overline{\overline{h}} \dots$$

1.4 SENTENTIAL CONNECTIVES

Definition 1.10. Tautological equivalence relation: For α, β prop. sent. we define $\alpha \sim \beta$ iff $\alpha = \models \beta$. This defines an equivalent relation.

Example 1.5.: $A \rightarrow B = = \neg A \lor B$

Note: A k-place boolean function is a function of the form $f: \{0,1\}^k \to \{0,1\}$ and we define 0,1 as the 0-place boolean functions.

If α is a prop. sent. then it determines a k-place boolean function, where k is the number of atoms, α is built up from. If α is $A_1 \vee \neg A_2$ then $B_{\alpha} : \{0,1\}^2 \to \{0,1\}$ and asign its values corresponding a truth table. TODO extend / rearange function

Theorem 1.4.: If α, β are prop. sent. with at most n prop. Atoms (combined), then

- 1. $\alpha \models \beta$ iff $\forall x \in \{0,1\}^n$ it holds $B_{\alpha}(x) \leq B_{\beta}(x)$
- 2. $\alpha = \beta$ iff $\forall x \in \{0,1\}^n$ it holds $B_{\alpha}(x) = B_{\beta}(x)$
- 3. $\models \alpha \text{ iff } \forall x \in \{0,1\}^n \text{ it holds } B_{\alpha}(x) = 1$

Theorem 1.5. Realisation: Let G be an n-ary boolean function for $n \ge 1$. Then there is a prop. sent. α such that. $B_{\alpha} = G$. We say α realizes G.

Proof. 1. if G is constantly equal to 0 then set α to $A_1 \wedge \neg A_1$.

2. Otherwise the set of inputs $\{\vec{x}_1, \vec{x}_2, \dots \vec{x}_k\}$ for which $G(\vec{x}_i) = 1$ holds is not empty. We denote $\vec{x}_i = (x_{i1}, x_{i2}, \dots x_{in})$ and define a matrix $(x_{ij})_{k \times n}$ We further set $\beta_{ij} = \begin{cases} A_j & \text{iff } x_{ij} = 1 \\ \neg A_j & \text{iff } x_{ij} = 0 \end{cases}$ Example:

$$(x_{ij}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \leadsto \begin{pmatrix} \neg A_1 & A_2 & \neg A_3 \\ A_1 & A_2 & \neg A_3 \end{pmatrix} = (\beta_{ij})$$

We define γ_i as $\beta_{i1} \wedge \beta_{i2} \wedge \dots \beta_{in}$ for $1 \leq i \leq k$ and α as $\gamma_1 \vee \gamma_2 \vee \dots \gamma_k = \bigvee_{i=1}^k \gamma_i$ Then $B_{\alpha} = G$ is fulfilled.

Note: α as constructed in the proof is in the so-called Disjunctive normal form (DNF).

Corollary 1.5. Every prop. sent. is tautologically equivalent to a sentence in DNF

Corollary 1.5. $\{\neg, \land, \lor\}$ is a complete set of logical connectives, i.e. every prop. sent. is tautologically equivalent to a sentence built up from atoms and \neg, \land, \lor .

Theorem 1.6.: Both $\{\neg, \land\}$ and $\{\neg, \lor\}$ are complete.

Proof. Its sufficient to show that every k-place boolean function is realisable by a prop. sent. built up using only \neg and \wedge . This is, because $\alpha \wedge \beta = \models \neg(\neg \alpha \vee \neg \beta)$ We prove this by induction over the number of disjuctions of a prop. sent. α in DNF. Suppose the statement is true for $k \leq n$. For n+1 and $\alpha = \bigvee_{j=1}^{n+1} \gamma_j$ there exists an $\alpha' = \bigvee_{j=1}^n \gamma_j$ and

$$\alpha = \bigvee_{j=1}^{n+1} \gamma_j = \models \alpha' \vee \gamma_{n+1} = \models \neg(\neg \alpha' \wedge \neg \gamma_{n+1})$$

Note: We used the observation that, if $\alpha = \mid = \beta$ and we replace a subsequence of α by a so called tautological equivalence then the result is also tautologically equivalent to β TODO S.10

Example 1.6. $\{\rightarrow, \land\}$ is not complete.: Let $\alpha \in PS$ built up from only \rightarrow, \land from the atoms $A_1, \ldots A_n$ then we claim

$$A_1 \wedge A_2 \wedge \cdots \wedge A_n \models \alpha$$

We can also say $\{\rightarrow, \land\}$ is not complete bc. $\neg A$ is not tautological equivalent to a sent. built up from \rightarrow, \land

Seite 8 von 20

Proof. Let $C := \{ \alpha \in PS \text{ built up from } \to, \land \text{ and } A_1, \dots A_n \text{ for which } \bigwedge_{i=1}^n A_i \models \alpha \}$ we want to show that $C = \{ \alpha \in PS \text{ built up from } \to, \land \text{ and } A_1, \dots A_n \}$

- We have $\{A_1, A_2, \ldots, A_n\} \subseteq C$
- for $\alpha, \beta \in C$ it holds
 - (1) $A_1 \wedge \cdots \wedge A_n \models \alpha \rightarrow \beta$
 - (2) $A_1 \wedge \cdots \wedge A_n \models \alpha \wedge \beta$

Therefore C is closed under the fla. building operations and we have proven our claim. \square

Note: $\{\land, \lor, \rightarrow, \leftrightarrow\}$ is still not complete.

Note: The number of n-ary boolean functions existing is 2^{2^n} We define a notation for n=0: \bot (for TV = 0) and \top (for TV = 1) We can conclude that $\{\neg, \rightarrow\}$ and $\{\rightarrow, \bot\}$ are both complete, it holds $\neg A = \models A \rightarrow \bot$

Definition 1.11. Satisfiability:

A set of prop. sent. Σ is called satisfiable iff \exists TA that satisfies every member of Σ .

1.5 COMPACTNESS THEOREM

Theorem 1.7. Compactness Theorem: Σ is satisfiable iff every finite subset $\Sigma_0 \subseteq \Sigma$ is satisfiable. (i.e. Σ is finitely satisfied)

Proof. Let Σ be a finitely satisfiable set of prop. sent. Outline of the proof:

- 1. extend Σ to a maximal finitely satisfiable set Δ of prop. sent.
- 2. construct a thruth assignment using Δ
- 1. Let $\alpha_1, \alpha_2, \ldots$ be an enumeration of all prop. sent. and define Δ_n inductively by $\Delta_0 := \Sigma$

$$\Delta_{n+1} := \begin{cases} \Delta_n \cup \{\alpha_{n+1}\} & \text{if satisfiable} \\ \Delta_n \cup \{\neg \alpha_{n+1}\} & \text{otherwise} \end{cases}$$

Claim: Δ_n is finitely satisfiable for each n

proof of claim. By regular induction over n. Δ_0 is finitely satisfiable. Let us assume Δ_n is finitely satisfiable. If $\Delta_{n+1} = \Delta_n \cup \{\alpha_{n+1}\}$ then we are finished. Otherwise let $\Delta' \subseteq \Delta_n$ be a finite set that $\Delta' \cup \{\alpha_{n+1}\}$ is not satisfiable. It holds $\Delta' \models \neg \alpha_{n+1}$. We assume that $\Delta_n \cup \{\neg \alpha_{n+1}\}$ is not finitely satisfiable. Then there exists a finite subset $\Delta'' \subseteq \Delta_n$ such that $\Delta'' \cup \{\neg \alpha_{n+1}\}$ is (finite and) not satisfiable. It therefore holds $\Delta'' \models \alpha_{n+1}$ But $\Delta' \cup \Delta''$ is a finite subset of Δ_n and by above observations $\Delta' \cup \Delta'' \models \alpha_{n+1}$ and $\Delta' \cup \Delta'' \models \neg \alpha_{n+1}$ A contradiction to the assumption that Δ_n is finitely satisfiable.

We set $\Delta := \bigcup_{i \in \mathbb{N}} \Delta_i$ and get

- (a) $\Sigma \subseteq \Delta$
- (b) (Maximality): for every prop. sent. α it holds $\alpha \in \Delta$ or $\neg \alpha \in \Delta$
- (c) (Satisfiability): Δ is finitely satisfiable. For every finite subset there exists a Δ_n which is a superset.
- 2. Let ν be a TA for the prop. atoms A_1, A_2, \ldots such that $\nu(A) = 1$ iff $A \in \Delta$ Claim: For every prop. sent. φ it holds $\overline{\nu}(\varphi) = 1$ iff $\varphi \in \Delta$. proof of claim. Let $S = \{ \varphi \in PS \text{ s.t. } \overline{\nu}(\varphi) = 1 \text{ iff } \varphi \in \Delta \}$.
 - $PS \supseteq S$ is clear.
 - $PS \subseteq S$
 - (a) $\{A_1, A_2 \dots\} \subseteq S$ by definition of ν

 \boxtimes

(b) closure under ϵ_{\neg} : Let $\varphi \in S$ then we get by maximality and satisfiability of Δ :

$$\begin{split} \overline{\nu}(\neg\varphi) &= 1\\ \text{iff} \quad \overline{\nu}(\varphi) &= 0\\ \text{iff} \quad \varphi \not\in \Delta\\ \text{iff} \quad (\neg\varphi) &\in \Delta \end{split}$$

closure under ϵ_{\rightarrow} : Let $\varphi_1, \varphi_2 \in S$ similarly

$$\begin{split} \overline{\nu}(\varphi_1 \to \varphi_2) &= 0\\ \text{iff} \quad \overline{\nu}(\varphi_1) &= 1 \text{ and } \overline{\nu}(\varphi_2) = 0\\ \text{iff} \quad \varphi_1 \in \Delta \text{ and } \varphi_2 \notin \Delta\\ \text{iff} \quad (\varphi_1 \to \varphi_2) \notin \Delta \end{split}$$

The closure under the other fla. building operations are similar.

By this claim $\overline{\nu}$ satisfies Σ .

Corollary 1.7. If $\Sigma \models \tau$ then there exists a finite subset $\Sigma' \subseteq \Sigma$ s.t. $\Sigma' \models \tau$

Proof. Recall: $\Sigma \models \tau$ iff $\Sigma \cup \{\neg \tau\}$ is not satisfiable. Suppose $\Sigma \models \tau$ but no finite subset does.

Then $\forall \Sigma' \subseteq \Sigma$ finite $\Sigma' \cup \{\neg \tau\}$ is satisfiable. By the compactness theorem $\Sigma \cup \{\neg \tau\}$ is satisfiable which is a contradiction to $\Sigma \models \tau$.

Note: Theorem 1.7 and Corollary 1.7 are equivalent.

Predicate - / first order logic

Definition 2.1. A First order Language: consists of infinetely many distinct symbols such that no symbol is a proper initial segment of another symbol and the symbols are divided into 2 groups:

1. logical symbols (These elements have a fixed meaning and the equivalence symbol = is optional)

$$(,),\neg,\rightarrow,v_1,v_2,\ldots,=$$

- 2. parameters
 - quantifier symbol: ∀ (the range is subject of interpretation)
 - predicate symbols: for every n > 0 we have a set of n-ary predicates P
 - constant symbols: Some set of constants (could also be \emptyset)
 - function symbols: for every n > 0 we have a set of n-ary function symbols

Note:

- We could drop constants and instead introduce 0-ary function symbols
- \bullet to specify language we need to specify the parameters and say if = is included

Example 2.1.:

- $\mathcal{L}_{set} = \{ \in \},$ = included and the binary predicate symbol \in "element in"
- $\mathcal{L}_{arith} = \{<, 0, S, E, +, \cdot\}$
 - = included
 - < is a binary rel. symbol
 - 0 is a constant
 - S is a unary function symbol
 - E exponentiation TODO
 - $+, \cdot$ binary function symbols
- $\mathcal{L}_{\mathrm{ring}} = \{=,+,\cdot,-,0,1\}$
 - = included
 - 0,1 are constants
 - is a unary function symbol (additive inverse)
 - +, · binary function symbols

2.1 FORMULAS

Definition 2.2. Expression: An expression is any finite sequence of symbols. There exist two kinds of expressions that makes sense "grammatically"

Terms: – points to an object

- they are built up from variables and constants using function symbols

Formulas: - They express assertions about objects,

- they are built up from atomic formulas
- atomic formulas these are built up from terms using predicate symbols and
 if included

Definition 2.3. Term Building Operations: For every n > 0 and for every n-place function symbol f let \mathcal{F}_f be an n-place term building operation, that is $\mathcal{F}_f(t_1, \dots t_n) := ft_1, \dots t_n$ (polish notation for $f(t_1, \dots t_n)$). The Set of Terms we then define as the set of expressions that are built up from variables and constants by applying the term building operations finitely many times.

Example 2.2.: Let $\mathcal{L} = \mathcal{L}_{arith}$ then the set of terms will contain 0, v_{42} , S0, SSS0, Sv_1 , $+SOv_1$

Definition 2.4. Atomic formula: Any expression of the form

 $= t_1 t_2$ or $P t_1, \ldots t_n$, where $t_1, \ldots t_n$ are terms and P is an n-ary predicate symbol

Note: Atomic formulas are not defined inductively.

Example 2.3.: cont. = v_1v_{42} , < S0SS0 are atomic formulas, but $\neg = v_1v_{42}$ is not.

Definition 2.5. Formulas: We define ε_{\neg} , $\varepsilon_{\rightarrow}$, Q_i to be the fla. building operations, defined as follows $\varepsilon_{\neg}(\alpha) := (\neg \alpha)$, $\varepsilon_{\rightarrow} := (\alpha \rightarrow \beta)$ and $Q_i(\gamma) := \forall v_i \gamma$. The set of formulas is the set of expressions built up from atomic formulas by applying the fla. building operations finitely many times.

Example 2.4.: cont. $\forall v_1 (= Sv_1 0)$ is a formula we get by applying Q_1 on the atomic formula $= Sv_1 0$.

Free variables

 \exists quantifier

bounded variable

Example 2.5.: We introduce the \exists quantifier by defining $\exists y \alpha$ means $\neg \forall y \neg \alpha$.

"Every non-zero natual number is a successor" $\forall x(x \neq 0 \to \exists y S(y) = x)$ is different then "if a number is not 0, then it is a successor" $x \neq 0 \to \exists y S(y) = x$. x occurs bounded in the first formula, for the latter x occurs free in the fla.

If you have an expression without free variables, it is either true or false, on the other hand if a variable occurs free in a formula, the truth value of it depends on the variable itself.

Definition 2.6. Free variables: Let x be a variable. x occurs free in φ is defined inductively as follows:

- 1. If φ is an atomic fla. then x occurs free in φ iff x occurs in φ
- 2. If $\varphi = (\neg \alpha)$ then x occurs free in φ iff x occurs free in α
- 3. If $\varphi = (\alpha \to \beta)$ then x occurs free in φ iff x occurs free in α or β
- 4. If $\varphi = \forall v_i \alpha$ then x occurs free in φ iff x occurs free in α and $x \neg v_i$

A formula α is called a sentence, if no variable occurs free in α

Seite 12 von 20

Note: The above definition makes sense thanks to the recursion theorem. def function h on the set of atoms: $h(\alpha) =$ the set of var occ in fla α , which is the set of all variables v_i that occur free in α . we now want to extend h to \overline{h} , which is the set of all formulas.

- $\overline{h}(\neg \alpha) = \overline{h}(\alpha)$
- $\overline{h}(\alpha \to \beta) = \overline{h}(\alpha) \cup \overline{h}(\beta)$
- $\overline{h}(Q_i(\alpha)) = \overline{h}(\alpha) \setminus \{v_i\}$

We say x occurs free in α iff $x \in \overline{h}(\alpha)$.

Note: We will now use $\neg, \land, \lor, \rightarrow, \leftrightarrow, \exists v_i$ (all can be expressed in terms of \neg, \rightarrow, Q_i .) We will sometimes drop the (,) and not always be using polish notation.

2.2 SEMANTICS OF FIRST ORDER LOGIC

The equivalent scheme to our TA in predicate logic. The meaning of formulas is given by structures, which also determine the scope of the quantifier \forall , the meaning of all parameters.

Definition 2.7. structure: A structure \mathcal{A} for a first order language \mathcal{L} is a non-empty set set A called **universe** or **underlying set** of \mathcal{A} together with an interpretation of each parameters of \mathcal{L} i.e.

- \forall ranges over the universe A
- for an n-ary pred. symbol $P \in \mathcal{L}$ its interpretation $P^{\mathcal{A}}$ is a subset of A^n
- for a constant $c \in \mathcal{L}$ its interpretation $c^{\mathcal{A}}$ is an element of A
- for an *n*-ary function symbol $f \in \mathcal{L}$ its interpretation $f^{\mathcal{A}}$ is a total function $f^{\mathcal{A}}: A^n \to A$

Note: $A \neq \emptyset$, and all functions $f^{\mathcal{A}}$ are total.

Example 2.6.: Let $\mathcal{L} = \{\in\}$ where \in is a binary relation " An example of an \mathcal{L} structure is $(\mathbb{N}, \in^{\mathbb{N}})$ where $\in^{\mathbb{N}} = \{(x, y) \in \mathbb{N}^2 : x < y\}$

Definition 2.8.: Let φ be a \mathcal{L} -fla. and \mathcal{A} a \mathcal{L} -structure. Let V be the set of all variables in \mathcal{L} and $s:V\to A$ an assignment. We define the extention \overline{s} of s to the set of all \mathcal{L} -terms by

- $x \in V$ then $\overline{s}(x) := s(x)$
- $c \in \mathcal{L}$ a constant symbol, then $\overline{s}(c) := c^{\mathcal{A}}$
- $t_1, \ldots t_n$ \mathcal{L} -terms and $f \in \mathcal{L}$ an n-ary function symbol, then $\overline{s}(ft_1 \ldots t_n) := f^{\mathcal{A}}(\overline{s}(t_1), \ldots \overline{s}(t_n))$

Note: in the previous definition point 3. for n = 1 yields a commutative diagram.

Theorem 2.1.: For any given assignment s there exists a unique extention \overline{s} as in the previous definition.

Proof. will follow from recursion theorem and unique decomposition of terms. \Box

2.3 Definition of Truth

Definition 2.9.: We define ' \mathcal{A} satisfy φ with s' and write $\mathcal{A} \models \varphi[s]$ inductively over the complexity of the formula φ

- if φ is atomic:
 - $-\mathcal{A} \models = t_1, t_2[s]\overline{s}(t_1) = \overline{s}(t_2)$
 - $\mathcal{A} \models Pt_1, \dots t_n[s](\overline{s}(t_1), \dots \overline{s}(t_2)) \in P^{\mathcal{A}}$
- suppose $\mathcal{A} \models \varphi[s]$ and $\mathcal{A} \models \psi[s]$ are defined, then

- $-\mathcal{A} \models \neg \varphi[s] \text{ iff } \mathcal{A} \not\models \varphi[s]$
- $-\mathcal{A} \models \varphi \rightarrow \psi[s] \text{ iff } \mathcal{A} \models \psi[s] \text{ or } \mathcal{A} \nvDash \varphi[s]$
- $-\mathcal{A} \models \forall x \varphi[s] \text{ iff for all } a \in A \mathcal{A} \models \varphi[s(x|a)] \text{ where}$

$$s(x|a)(v) = \begin{cases} s(v) \text{ if } v \neq x \\ a \text{ if } v = x \end{cases}$$

Example 2.7.: $L = \{ \forall, \leq, S, 0 \}$ a L-structure then could be $\mathcal{N} = (\mathbb{N}, \leq^{\mathcal{N}}, S^{\mathcal{N}}, 0^{\mathcal{N}})$ and TODO $s : v_n \mapsto n - 1$ then $s(v_1) = 0$

- $\overline{s}(0) = 0^{\mathcal{N}}$ (a constant is always mapped to its realisation, the interpretation of constant 0 in the structure \mathcal{N})
- $\overline{s}(Sv_1) = S^{\mathcal{N}}(\overline{s}(v_1)) = S^{\mathcal{N}}(0) = 1$
- $\mathcal{N} \models \forall v_1(S(v_1) \neq v_1)[s]$ iff for all $a \in \mathbb{N}$ we have that $\mathcal{N} \models (S(v_1) \neq v_1)[s(v_1|a)]$ iff ...

iff for all $a \in \mathbb{N}$ we have $S^{\mathcal{A}}(a) \neq a$, which is true in our structure of the natural numbers

• Is it true in \mathcal{N} that $\mathcal{N} \models S(0) \leq S(v_1)[s]$? Yes because

$$\mathcal{N} \models S(0) \le S(v_1)[s]$$

 $iff1 \le 1$

Note: To know wheter $\mathcal{A} \models \varphi[s]$ it suffices to know where s maps the variables that are free in φ

Theorem 2.2.: Suppose $s_1, s_2: V \to A$ agree on all variables that occur free in ϕ then

$$\mathcal{A} \models \varphi[s_1] \text{iff } \mathcal{A} \models \varphi[s_2]$$

Proof. By complexity of φ

• if φ is $Pt_1, \ldots t_n$ note: any var that occur in φ occur free in φ , so s_1, s_2 agree on all variables that occur in the terms $t_1, \ldots t_n$.

So we Claim: for t a term, s_1, s_2 assignments that agree on all variables of t then $\overline{s}_1(t) = \overline{s}_2(t)$

 $proof\ of\ claim.$ By complexity of t

$$t = v_m$$
 then $\overline{s}_1(t) = s_1(v_m) = s_2(v_m) = \overline{s}_2(t)$
 $t = c$ then $\overline{s}_1(t) = c^{\mathcal{A}} = \overline{s}_2(t)$

 $t = ft_1 \dots t_n$ inductively, assume $\overline{s}_1(t_i) = \overline{s}_2(t_i)$ for all $1 \le i \le n$ then TODO

 \boxtimes

- $\varphi := t_1, t_2$ is similar
- $\varphi : \neg \alpha$ then $\mathcal{A} \models \neg \alpha[s_1]$ iff $\mathcal{A} \models \alpha[s_1]$ iff $\mathcal{A} \models \alpha[s_2]$ iff $\mathcal{A} \models \neg \alpha[s_1]$
- $\varphi: \alpha \to \beta$ then $\mathcal{A} \models \alpha \to \beta[s_1]$ iff .. or .. iff for s2 iff ... or ..
- φ : $\forall x \alpha$ then the assumption is that s_1, s_2 .. the free variables of α are the free variables of φ except for x. but because $s_1(x|a) = s_2(x|a)$ they both agree on all free variables of α .

$$\mathcal{A} \models \forall x \varphi[s_1] iff for all a \in \mathcal{A} \mathcal{A} \models \varphi[s_1(x|a)]$$
$$iff for all a \in \mathcal{A} \mathcal{A} \models \varphi[s_2(x|a)]$$
$$iff \mathcal{A} \models \forall x \varphi[s_2]$$

Notation: $\mathcal{A} \models \varphi \text{TODO}$ means that all free variables of φ are among $v_1, \ldots v_n$ and $\mathcal{A} \models \varphi[s]$ whenever $s(v_i) = a_i$ for all $1 \leq i \leq n$.

Corollary 2.2. If σ is a sentence then $\mathcal{A} \models \varphi[s]$ for all $s: V \to A$ or $\mathcal{A} \models \varphi[s]$ for all $s: V \to A$.

Notation: $\mathcal{A} \models \sigma$ " σ is true in \mathcal{A} , \mathcal{A} is a model of σ or σ holds in \mathcal{A} .

Note: If σ is a sentence then we can not have $\mathcal{A} \models \sigma$ and $\mathcal{A} \models \sigma$ because $A \neq \varnothing$.

Definition 2.10. : \mathcal{A} is a model of a set of sentences Σ iff for every sentence $\sigma \in \Sigma$ it holds $\mathcal{A} \models \sigma$

Example 2.8. : $\mathcal{L} = \{0, 1, +, -, \cdot\}$ A realisation could be $\mathcal{R} = (\mathbb{R}, 0, 1, +, -, \cdot)$ or $\mathcal{C} = (\mathbb{C}, 0, 1, +, -, \cdot)$ then the sentence σ : $\exists x (x \cdot x = -1)$ then $\mathcal{R} \vDash \sigma$ but $\mathcal{C} \vDash \sigma$

Note: $\land, \lor, \leftrightarrow, \exists$ work as expected. That is $\mathcal{A} \models (\alpha \land \beta)[s]$ iff $\mathcal{A} \models \alpha[s]$ and $\mathcal{A} \models \beta[s]$ $\mathcal{A} \models (\alpha \lor \beta)[s]$ iff $\mathcal{A} \models \alpha[s]$ or $\mathcal{A} \models \beta[s]$ and $\mathcal{A} \models \beta[s]$ iff $\mathcal{A} \models \neg \forall x \neg \alpha[s]$ iff $\mathcal{A} \models \forall x \neg \alpha[s]$

iff it is not true that forall $a \in A$ $A \models \neg \alpha[s(x|a)]$

iff there is $a \in A$ such that $\mathcal{A} \models \alpha[s(x|a)]$

2.4 LOGICAL IMPLICATION

Let Γ be a set of \mathcal{L} -formulas, φ a \mathcal{L} -formula.

Definition 2.11. : $\Gamma \models \varphi$ " Γ logically implies φ " if for every L-structure \mathcal{A} and for every $s: V \to A$

if $\mathcal{A} \models \gamma[s]$ for every $\gamma \in \Gamma$ then $\mathcal{A} \models \varphi[s]$

Definition 2.12. : φ, ψ are called logically equivalent if $\varphi \models \psi$ and $\psi \models \varphi$.

Definition 2.13.: φ is called valid iff $\models \varphi$ i.e. $\varnothing \models \varphi$ i.e. for every \mathcal{L} -structure \mathcal{A} and every $s: V \to A$ it is $\mathcal{A} \models \varphi[s]$

Example 2.9.:

- 1. $\forall x_1 P x_1 \models P x_2$ Suppose $\mathcal{A} \models \forall x_1 P x_1[s]$. then for all $a \in A$ it is $\mathcal{A} \models P x_1[s(x_1|a)]$ in particular, $a \in P^{\mathcal{A}}$ for $a = s(x_2)$
- 2. $\forall Px_2 \vDash \forall x_1 Px_1$ We need a counterexample to $\forall Px_2 \vDash \forall x_1 Px_1$. Let $A = \{a_1, a_2\}$ $s(x_2) = a_1$ and $P^{\mathcal{A}} = \{a_1\}$ then $\mathcal{A} \vDash Px_2[s]$.
- 3. Is the following valid? $\models \exists x(Px \rightarrow \forall xPx)$
- 2.5 DEFINABILITY IN A STRUCTURE
- 2.6 Homomorphisms of structures
- 2.7 A PARSING ALGORITHM FOR FIRST ORDER LOGIC
- 2.8 Unique readability for terms
- 2.9 DEDUCTIONS (FORMAL PROOFS)

2.10 GENERALIZATION AND DEDUCTION THEOREM

TODO evt noch sectioons

Boolean Algebra

Definition 3.1. Boolean Algebra: A boolean algebra is a set B with

- distinguished elements 0, 1 (called zero and unit of B)
- a unary operation ' on B (called **complementation**)
- two binary operations \vee called **join** and \wedge called **meet** s.t. for all $x, y, z \in B$
 - $1. \ x \lor 0 = x \qquad x \land 1 = x$
 - $2. \ x \lor x' = 1 \qquad x \land x' = 0$
 - 3. $x \lor y = y \lor x$ $x \land y = y \land x$
 - 4. $(x \lor y) \lor z = x \lor (y \lor z)$ $(x \land y) \land z = x \land (y \land z)$
 - 5. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$

Example 3.1.: Let S be a set, $B := \mathcal{P}(S)$ the power set of $S, 0 := \emptyset$ and 1 := S,

$$': \mathcal{P}(S) \to \mathcal{P}(S), x' := S \setminus x \qquad x \vee y := x \cup y, \quad x \wedge y := x \cap y \text{ for } x, y \in \mathcal{P}(S)$$

Lemma 3.1.: Let $(B, ', \lor, \land, 0, 1)$ be a boolean algebra. Then it holds

- a) 0' = 1, 1' = 0
- b) $x \lor x = x, x \land x = x$
- c) (x')' = x
- d) $(x \lor y)' = x' \land y', (x \land y)' = x' \lor y'$
- e) $x \lor y = y$ iff $x \land y = x$

Lemma 3.2. :

- a) $x \leq y \Leftrightarrow x \vee y = y$ defines a partial ordering on B (inclusion) and it holds
- b) $x \lor y$ is the least upper bound of $\{x, y\}$ in B $x \land y$ is the greatest lower bound of $\{x, y\}$ in B
- c) $0 \le x \le 1$ for all $x \in B$

Note: A boolean algebra is a complemented distributive lattice.

Definition 3.2. Opposite of boolean algebra: Let $(B,',\vee,\wedge,0,1)$ be a boolean algebra. The boolean algebra B^{op} is defined by

$$B^{\mathrm{op}} := B, \quad 0^{\mathrm{op}} := 1, \quad 1^{\mathrm{op}} := 0, \quad \text{' stayes the same as for} B, \quad \vee^{\mathrm{op}} := \wedge, \quad \wedge^{\mathrm{op}} := \vee$$

Note: $(B^{op})^{op} = B$

Definition 3.3. Subalgebra: A subalgebra of B is a subset $A \subseteq B$ s.t. $0, 1 \in A$ and A is closed under $', \land, \lor$. The subalgebra generated by $P \subseteq B$ is defined to be the smallest subalgebra containing P. Equivalently it is the intersection of all Subalgebras of B that contain P.

Example 3.2. Power set algebra: Let S be a set then $\mathcal{P}(S)$ defines a boolean algebra on S. $B := \{x \in \mathcal{P}(S) : x \text{ is finite or cofinite}\}$ is a subalgebra of $\mathcal{P}(S)$ w/ set of generators $\{\{s\} : s \in S\}$

Note: We will prove the Tarski-Stone Theorem: every boolean algebra is isomorphic to an algebra on a set.

Example 3.3. Lindenbaum Algebra of Σ : Let A be a set of prop. atoms, $\operatorname{Prop}(A)$ the set of prop. generated by A. Further let $\Sigma \subseteq \operatorname{Prop}(A)$ and p,q,r range over $\operatorname{Prop}(A)$. We say p is Σ -equivalent to q iff $\Sigma \models_{\operatorname{taut}} p \leftrightarrow q \Sigma$ -Equivalence is an equivalent relation on $\operatorname{Prop}(A)$ and $\operatorname{Prop}(A)/\Sigma$ is a boolean algebra with

 $0 := \pm/\Sigma$, $1 := \top/\Sigma$, $(p/\Sigma)' := (\neg p)/\Sigma$, $(p/\Sigma \lor q/\Sigma) := (p \lor q)/\Sigma$, $(p/\Sigma \land q/\Sigma) := (p \land q)/\Sigma$ a set of generators is $\{a/\Sigma : a \in A\}$

Definition 3.4. Homomorphisms of boolean algebras: Let B, C be boolean algebras. A map $\phi: B \to C$ is a (homo)morphism of boolean algebras iff $\forall x, y \in B$ it holds

- $\phi(0_B) = 0_C$
- $\phi(x') = \phi(x)'$
- $\phi(x \vee y) = \phi(x) \vee \phi(y)$
- $\phi(x \wedge y) = \phi(x) \wedge \phi(y)$

If $\phi: B \to C$ is bijective too , we call ϕ an isomorphism and $\phi^{-1}: C \to B$ is also a morphism of boolean algebras.

Note: $\phi(B)$ is subalgebra of C

Example 3.4.: Let S,T be sets then a function $f:S\to T$ induces a morphism of boolean algebras $\mathcal{P}(T)\to\mathcal{P}(S):y\mapsto f^{-1}(y)$ If $S\subseteq T$ and f the inclusion map $S\hookrightarrow T$ then we get a boolean algebra morphism $Y\to Y\cap S$.

• $id_B: B \to B$ • $x \mapsto x': B \to B^{\mathrm{op}}$ are both isomorphism

Note: A boolean algebra morphism $\phi: B \to C$ is injective iff ker $f = 0_B$

Lemma 3.3.: Let $X_1, ... X_m \subseteq S$ and \mathcal{A} a boolean algebra on S generated by $\{X_1, ... X_m\}$. Then \mathcal{A} is finite and isomorphic to $\mathcal{P}(\{1, 2, ... n\})$ for some $n \leq 2^m$.

Proof. TODO

Definition 3.5. Trivial algebras:

- B is trivial if |B| = 1 (equivalently $0 = 1 \in B$) according to Lemma 3.3 B is isomorphic to $\mathcal{P}(\emptyset)$
- If |S| = 1 then $|\mathcal{P}(S)| = 2$ TODO

Definition 3.6. Ideal: An ideal of B is a subset of $I \subseteq B$ s.t.

- (I1) $0 \in I$
- (I2) $\forall a, b \in B$ it holds $a \leq b$ and $b \in I \implies a \in I$ and $a, b \in I \implies a \vee b \in I$

Example 3.5.: $F_{\text{in}} = \{ F \subseteq S : F \text{ finite} \} \text{ is ideal in } \mathcal{P}(S).$

Note: If I is an ideal of B then $I \vee b := \{x \in B : x = a \vee b \text{ for some } a \in I\}$ is the smallest ideal w/ respect of \subseteq of B that contains $I \cup \{b\}$.

Example 3.6.:

- For a boolean algebra morphism $\phi: B \to C$ the kernel $\ker(\phi)$ is an ideal in B.
- If I is an ideal in B then $a =_I b :\Leftrightarrow a \vee x = b \vee x$ for some $x \in I$ defines an equivalent relation and $B/_{=_I}$ is a boolean algebra w/

$$0 := 0/_{=_I} \quad 1 := 1/_{=_I} \quad (a/_{=_I})' := a'/_{=_I} \quad a/_{=_I} \lor b/_{=_I} := (a \lor b)/_{=_I} \quad a/_{=_I} \lor b/_{=_I} := (a \land b)/_{=_I}$$

Then $\phi: B \to B/_{=_I}: b \mapsto b/_{=_I}$ is a boolean algebra morphism w/ $\ker(\phi) = I$

Set Theory

Example 4.1. Russel's paradox: Let $A = \{a : a \notin a\}$. If any collection of elements is a set, then A would be a set. Question: is $A \in A$? if yes, then $A \notin A$, if not then $A \in A$

Trying to resolve this, we will introduce the ZFC (Zermelo-Frankel axioms w/ choice) System. Let $\mathcal{L} = \{\in\}$ be a Language of first order, where \in ... binary relation "beeing element of" For (\mathcal{U}, \in) If $(\mathcal{U}, \in) \models$ ZFC, then the elements of the universe \mathcal{U} are called sets. TODO

4.1 AXIOMS OF ZFC

Definition 4.1. Axiom of extensionality:

$$\forall x \forall y (x = y \leftrightarrow \forall u (u \in x \leftrightarrow u \in y))$$

Definition 4.2. Pairing Axiom: for any two sets a, b one can form a set whose elements are precicely a, b

$$\forall x \forall y \exists z (u \in z \leftrightarrow (u = x \lor u = y))$$

Our notation will be $z = \{x, y\}$

Note: $\{x,y\}$ is unique by Definition 4.1

Lemma 4.1.: Let x, y be sets. We define $(x, y) := \{\{x\}, \{x, y\}\}$. Then it holds (x, y) = (a, b) iff x = a and y = b

Proof. • if x = y, then $(x, y) = \{\{x\}\}$ therefore a = b and by Definition 4.1 it holds x = a.

• if $x \neq y$, then $\{\{x\}, \{x, y\}\} = \{\{a\}, \{a, b\}\}$ iff $\{x\} = \{a\}$ and $\{x, y\} = \{a, b\}$. That is, iff x = a and y = b.

TODO oredered n-tuples

Definition 4.3. Union Axiom: For every set x there is a set z consisting of all elements of the elements of x.

$$\forall x \exists z \forall y (y \in z \leftrightarrow (\exists uu \in x \land y \in u))$$

We call z the union of x, notation: $\bigcup_x := z$

Definition 4.4. Power set Axiom: Let $x \subseteq y$ be the abbreviation for $\forall z (z \in x \to z \in y)$ The **Powerset Axiom** states, that for every set x there exists a set z consisting of all subsetes $y \subseteq x$ that are themselve sets.

$$\forall x \exists z \forall y (y \in z \leftrightarrow y \subseteq x)$$

Notation: $\mathcal{P}(x) := z$.

TODO class relations

Definition 4.5. Axiom of replacement / substitution: Let $\varphi(x, y, \underline{\mathbf{a}})$ a \mathcal{L} -fla., w/ free variables among x, y and set-parameters $\underline{\mathbf{a}}$. Suppose φ defines a class function on \mathcal{U} , than the following is an axiom:

$$\forall u \exists z \forall y (y \in z \leftrightarrow \exists x (x \in u \land \varphi(x, y, \mathbf{a})))$$

i.e. the image of a set under a class function is a set.

Definition 4.6. Axiom scheme of comprehension: TODO

Seite 18 von 20 J.Petermann: LogicNotes [V0.3-2024-10-22 at 12:45:53]

List of definitions

Dennition 1.1	Language of PL	4
Definition 1.2	Expression / prop. sentence	2
Definition 1.3	Construction sequence	2
Definition 1.4		2
Definition 1.5	Truth assignment	3
Definition 1.6	Satisfaction	3
Definition 1.7	Tautological implication	3
Definition 1.8	Closedness, Inductiveness	6
Definition 1.9		6
Definition 1.10	Tautological equivalence relation	8
Definition 1.11	Satisfiability	Ć
Definition 2.1	A First order Language	
Definition 2.2	Expression	12
Definition 2.3	Term Building Operations	12
Definition 2.4	Atomic formula	12
Definition 2.5	Formulas	12
Definition 2.6	Free variables	12
Definition 2.7	structure	13
Definition 2.8		13
Definition 2.9		13
Definition 2.10		15
Definition 2.11		15
Definition 2.12	!	15
Definition 2.13		15
Definition 3.1	Boolean Algebra	16
Definition 3.2	Opposite of boolean algebra	16
Definition 3.3	Subalgebra	16
Definition 3.4	Homomorphisms of boolean algebras	
Definition 3.5	Trivial algebras	17
Definition 3.6	Ideal	17
Definition 4.1	Axiom of extensionality	18
Definition 4.2	Pairing Axiom	18
Definition 4.3	Union Axiom	
Definition 4.4	Power set Axiom	18
Definition 4.5	Axiom of replacement / substitution	18
Definition 4.6	Axiom scheme of comprehension	18

Bibliography

[1] Herbert B Enderton and Herbert Enderton. A Mathematical Introduction to Logic. eng. United States: Elsevier Science and Technology, 2001. ISBN: 0122384520.