

Programacíon Paralela - CC332

2021-I

José Fiestas 28/04/21

Universidad Nacional de Ingeniería jose.fiestas@uni.edu.pe

Unidad 2: Metodos de paralelismo

Objetivos:

- 1. Velocidad, eficiencia, escalabilidad. Ley de Ahmdal
- 2. DAG (Directed Acyclic Graphs)
- 3. Modelos computacionales en paralelo (PRAM)
- 4. Operaciones basicas de paralelismo
- 5. Broadast/Reduccion

Unidad 2: Metodos de paralelismo

Al finalizar la unidad, los alumnos conocen:

- 1. Implicaciones de la ley de Amdahl para un algoritmo paralelo
- 2. Calcular el trabajo y el span, y determinar el camino crítico con respecto a un diagrama acíclico dirigido (DAG)
- Definir velocidad de un algoritmo paralelo, y explicar la noción de escalabilidad
- **4.** Identificar operaciones básicas (atómicas) en un algoritmo que debe ser paralelizado

escalabilidad. Ley de Ahmdal

Velocidad, eficiencia,

El tiempo de ejecución en paralelo (normalizado a la unidad) es:

$$T^s = s + p$$

Resolverlo en N procesadores, implica que:

$$T^p = s + \frac{p}{N}$$

strong scaling

Si definimos performance como trabajo por tiempo:

$$P^s = \frac{p+s}{T^s} = 1$$

mientras que en paralelo

$$P^p = \frac{p+s}{T^p} = \frac{p+s}{s+(1-s)/N} = \frac{1}{s+(1-s)/N}$$

Y midiendo la velocidad, como:

$$S = \frac{P^p}{P^s} = \frac{1}{s + p/N}$$

weak scaling

Si definimos el tiempo de ejecución para un problema variable, tenemos:

$$T^s = s + pN^{\alpha}$$

$$T^p = s + pN^{\alpha-1}$$

Siendo el performance:

$$P^s = \frac{s + pN^{\alpha}}{T^s} = 1$$

y en paralelo:

$$P^p = \frac{s+pN^{\alpha}}{T^p} = \frac{s+pN^{\alpha}}{s+pN^{\alpha-1}}$$

Siendo la velocidad:

$$S = \frac{P^p}{P^S} = \frac{s + pN^{\alpha}}{s + pN^{\alpha-1}} = P^p$$

Para $\alpha = 0$ obtenemos strong scaling

Eficiencia:

Se trata del poder computacional en paralelo

$$\epsilon = \frac{\text{performance N procesos}}{\text{N} \times \text{performance en 1 proceso}} = \frac{\text{speedup}}{N}$$

Considerando weak scaling, ya que en el límite $\alpha \to 0$ deriva en Amdahl.

Si el trabajo es $s + pN^{\alpha}$, obtenemos:

$$\epsilon = \frac{s}{N} = \frac{s + (1 - s)N^{\alpha}}{(s + (1 - s)N^{\alpha - 1}) \times N} = \frac{sN^{-\alpha} + (1 - s)}{sN^{1 - \alpha} + (1 - s)}$$

Para
$$\alpha=0$$
, $\epsilon=\frac{1}{sN+(1-s)}$
Para $\alpha=1$, $\epsilon=sN^{-1}+(1-s)$

En strong scaling, se deriva . . .

Ley de Amdahl

Intenta responder la pregunta sobre que tan rápido ejecuta un código en paralelo cuando utilizo N procesos. El speedup se incrementa con N.

$$S = \frac{1}{s + \frac{1-s}{N}}$$

Y la eficiencia $E = \frac{1}{N(s + \frac{1-s}{N})}$.

Para $N o \infty$, S = 1/s (limitado por la parte secuencial)

Figura 1: *

Scalability: strong and weak scaling. Xin Li, 2018

En weak scaling, se deriva ...

Ley de Gustafson

Intenta responder la pregunta sobre que tan rápido ejecuta un código en paralelo cuando ejecuto un problema de tamaño variable (creciente) en N procesos.

$$S = \frac{P^P}{P^S} = \frac{s + pN^{\alpha}}{s + pN^{\alpha - 1}}$$

La fracción en paralelo escala con el número de procesos N.

Para
$$\alpha=$$
 0, $S=\frac{s+p}{s+p/N}=\frac{1}{s+p/N}$, (Ley de Amdahl) Para $\alpha=$ 1, $S=\frac{s+pN}{s+p}=s+pN$

Figura 2: *

Scalability: strong and weak scaling. Xin Li, 2018

DAG (Directed Acyclic Graphs)

Modelo DAG (Directed Acyclic Graph)

- vértices representan operaciones (instrucciones simples o en bloques)
- aristas representan dependencias (precedencia)

Podemos clasificar a los algoritmos de la siguiente forma:

• **Secuenciales**, no pueden ser paralelizados porque todas las tareas tienen dependencias en tareas previas

 Paralelos, donde todas las tareas pueden ser ejecutadas simultáneamente

• **SPA** (Secuencial-Paralelo) El algoritmo está separado en niveles, que se ejecutan en paralelo, pero los cuales tienen una forma secuencial de ejecución.

• NSPA (No-Secuencial-Paralelo) El algoritmo no contiene ninguno

de los patrones anteriores

Modelo de costo DAG

El **scheduling** o 'plan de ejecución' de un DAG (V,E), asigna a cada nodo v un tiempo de ejecución t_v y un procesador p_v , implementando, de esta manera, el algoritmo paralelo correspondiente. I.e.

-
$$p_v \in \{1, ..., p\}, t_v \in \{1, ..., p\}$$

- $t_u = t_v, \rightarrow p_u \neq p_v$
- $(u, v) \in E \rightarrow t_u = t_v + 1$

donde, $t_x = 0$ para los nodos de input.

T es la longitud del plan de ejecución

Se busca que el algoritmo en paralelo tenga un **trabajo** eficiente (mínimo) y una profundidad (**span**) mínima

Modelo de costo DAG

Considere la función :

$$f(x)=x$$
, si $x \le 1$
 $f(x)=f(x-1)+f(x-2)$, i.e. $(a,b)=(f(x-1) || f(x-2))$

Entonces, el trabajo (W)

W(n)=1, si
$$n \le 1$$

$$W(n) = W(n-1) + W(n-2) + 1$$

La profundidad (span)

S(n)=1, si
$$n \le 1$$

$$S(n) = MAX(S(n-1),S(n-2))+1$$

Importancia del paralelismo y estrategias.

- paralelismo debe enfocarse a todo nivel: algoritmo, código, sistema operativo, compilador, hardware
- Se debe considerar el tiempo de comunicación entre procesos asi como de proceso a memoria. Se diferencian entonces algoritmos limitados por tiempo de ejecución por proceso, de los limitados por comunicación entre procesos
- por razones prácticas, el software se adapta al hardware

Bibliografía i

- David B. Kirk and Wen-mei W. Hwu *Programming Massively Parallel Processors: A Hands-on Approach*. 2nd. Morgan Kaufmann, 2013. isbn: 978-0-12-415992-1.
- Norm Matloff. *Programming on Parallel Machines*. University of California, Davis, 2014.
- Peter S. Pacheco. *An Introduction to Parallel Programming*. 1st. Morgan Kaufmann, 2011. isbn: 978-0-12-374260- 5.
- Michael J. Quinn. *Parallel Programming in C with MPI and OpenMP*. 1st. McGraw-Hill Education Group, 2003. isbn: 0071232656.
- Jason Sanders and Edward Kandrot. *CUDA by Example: An Introduction to General-Purpose GPU Program- ming.* 1st. Addison-Wesley Professional, 2010. isbn: 0131387685, 9780131387683.

17 / 17