CyberSecurity: Principle and Practice

BSc Degree in Computer Science 2024-2025

Lesson 5: Cryptographic Tools pt.2

Dr. Vinod P.

Department of Mathematics University of Padua pvinod21@gmail.com https://spritz.math.unipd.it/team.html

Prof. Mauro Conti

Department of Mathematics University of Padua conti@math.unipd.it http://www.math.unipd.it/~conti/

Teaching Assistants

Tommaso Bianchi tommaso.bianchi@phd.unipd.it Riccardo Preatoni riccardo.preatoni@studenti.unipd.it

Message Authentication

Message Authentication

- Protects against active attacks
- Verifies received message is authentic
 - Contents unaltered
 - From authentic source
 - Timely and in correct sequence
- Can use conventional encryption
 - Only sender & receiver have key needed
- Or a separate authentication mechanisms
 - Append authentication tag to clear text message

Message Authentication Code

Secure Hash Function

Hash Function Properties

- Applied to any size data
- H produces a fixed-length output.
- H(x) is relatively easy to compute for any given x
- One-way property
 - Computationally infeasible to find x such that
 H(x) = h
- Weak collision resistance
 - o (given x) computationally infeasible to find $y \neq x$ such that H(y) = H(x)
- Strong collision resistance
 - Computationally infeasible to find any pair (x, y) such that H(x) = H(y)

Hash under attack

- Two attack approaches
 - Cryptanalysis
 - Exploit logical weakness in algorithms
 - Brute-force attack
 - Trial many inputs
 - Strength proportional to size of hash code
- SHA most widely used hash algorithm
 - SHA-1 gives 160-bit hash
 - More recent SHA-256, SHA-384, SHA-512 provide improved size and security

Public-Key Encryption

Public-Key Authentication

Public-Key Requirements

- 1. Computationally easy to create key pairs
- 2. Computationally easy for sender knowing public key to encrypt messages
- 3. Computationally easy for receiver knowing private key to decrypt ciphertext
- 4. Computationally infeasible for opponent to determine private key from public key
- 5. Computationally infeasible for opponent to otherwise recover original message
- 6. Useful if either key can be used for each role

Public-Key Certificates

Signed certificate: Recipient can verify signature using CA's public key.

Random Numbers

- Random numbers have a range of uses
- Requirements:
 - Randomness
 - Based on statistical tests for uniform distribution and independence
 - Unpredictability
 - Successive values not related to previous
 - Clearly true for truly random numbers
 - But more commonly use generator

Random Numbers

- Often use algorithmic technique to create pseudorandom numbers
 - which satisfy statistical randomness tests
 - but likely to be predictable
- True random number generators use a nondeterministic source
 - e.g. radiation, gas discharge, leaky capacitors
 - increasingly provided on modern processors

Questions? Feedback? Suggestions?

