Resumen de teoremas para el final de Lenguajes Formales y Computabilidad

Agustín Curto, agucurto95@gmail.com Francisco Nievas, frannievas@gmail.com

2017

Contents

1	Notación y conceptos básicos	2
2	Procedimientos efectivos	3
3	Funciones Σ -recursivas	5
4	El lenguaje S^{Σ}	19
5	Máquinas de Turing	20

1 Notación y conceptos básicos

Lemma 1. Sea $S \subseteq \omega \times \Sigma^*$, entonces S es rectangular si y solo si se cumple la siguiente propiedad:

$$Si(x,\alpha), (y,\beta) \in S \Rightarrow (x,\beta) \in S$$

Lemma 2. La relación < es un orden total estricto sobre Σ^* .

Lemma 3. La función $s^{<}: \Sigma^{*} \to \Sigma^{*}$, definida recursivamente de la siguiente manera:

$$s^{<}(\varepsilon) = a_1$$

 $s^{<}(\alpha a_i) = \alpha a_{i+1}$ para $i < n$
 $s^{<}(\alpha a_n) = s^{<}(\alpha)a_1$

tiene la siquiente propiedad:

$$s^{<}(\alpha) = \min\{\beta \in \Sigma^* : \alpha < \beta\}$$

Corollary 4. $s^{<}$ es inyectiva.

Lemma 5. Se tiene que:

- 1. $s^{<}(\alpha) \neq \varepsilon$, para cada $\alpha \in \Sigma^*$.
- 2. Si $\alpha \neq \varepsilon$, entonces $\alpha = s^{<}(\beta)$ para algún β .
- 3. Si $S \subseteq \Sigma^* \neq \emptyset$, entonces $\exists \alpha \in S \text{ tal que } \alpha < \beta$, para cada $\beta \in S \{\alpha\}$.

Lemma 6. Tenemos que:

$$\Sigma^* = \{ * < (0), * < (1), \dots \}$$

Mas aún la función ∗ es biyectiva.

Lemma 7. Sea $n \ge 1$ fijo, entonces cada $x \ge 1$ se escribe en forma única de la siguiente manera:

$$x = i_0 n^0 + \ldots + i_{k-1} n^{k-1} + i_k n^k$$

 $con \ k \ge 0 \ y \ 1 \le i_0, \dots, i_{k-1}, i_k \le n.$

Lemma 8. La función #< es biyectiva.

Lemma 9. Las funciones $\#^{<}$ y $*^{<}$ son una inversa de la otra.

Lemma 10. Si p, p_1, \ldots, p_n son números primos y p divide a $\prod_{i=1}^n p_i$, entonces $p = p_i$, para algún i.

Theorem 11. Para cada $x \in \mathbb{N}$, hay una única sucesión $(s_1, s_2, \dots) \in \omega^{[\mathbb{N}]}$ tal que:

$$x = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

Notar que $\prod_{i=1}^{\infty} pr(i)^{s_i}$ tiene sentido ya que es un producto que solo tiene una cantidad finita de factores no iguales a 1.

Lemma 12. Las funciones:

$$\mathbb{N} \to \omega^{[\mathbb{N}]} \qquad \qquad \omega^{[\mathbb{N}]} \to \mathbb{N}$$
$$x \to ((x)_1, (x)_2, \dots) \qquad (s_1, s_2, \dots) \to \langle s_1, s_2, \dots \rangle$$

son biyecciones una inversa de la otra.

Lemma 13. Recordemos, para cada $x \in \mathbb{N}$ se define:

$$Lt(x) = \begin{cases} \max_{i} (x)_{i} \neq 0 & si \ x \neq 1 \\ 0 & si \ x = 1 \end{cases}$$

Luego, para cada $x \in \mathbb{N}$:

1.
$$Lt(x) = 0 \Leftrightarrow x = 1$$

2.
$$x = \prod_{i=1}^{Lt(x)} pr(i)^{(x)_i}$$

Cabe destacar entonces que la función $\lambda ix[(x)_i]$ tiene dominio igual a \mathbb{N}^2 y la función $\lambda ix[Lt(x)]$ tiene dominio igual a \mathbb{N} .

2 Procedimientos efectivos

Lemma 14. Sean $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ conjuntos Σ -efectivamente enumerables, entonces:

- a) $S_1 \cup S_2$ es Σ -efectivamente enumerable.
- b) $S_1 \cap S_2$ es Σ -efectivamente enumerable.

Proof. El caso en el que alguno de los conjuntos es vacío es trivial. Supongamos que $S_1, S_2 \neq \emptyset$ y sean \mathbb{P}_1 y \mathbb{P}_2 procedimientos que enumeran a S_1 y S_2 .

a) El siguiente procedimiento enumera al conjunto $S_1 \cup S_2$:

Si x es par: realizar \mathbb{P}_1 partiendo de x/2 y dar el elemento de S_1 obtenido como salida. Si x es impar: realizar \mathbb{P}_2 partiendo de (x-1)/2 y dar el elemento de S_2 obtenido como salida.

b) Veamos ahora que $S_1 \cap S_2$ es Σ -efectivamente enumerable:

Si $S_1 \cap S_2 = \emptyset$: entonces no hay nada que probar.

Si $S_1 \cap S_2 \neq \emptyset$: sea z_0 un elemento fijo de $S_1 \cap S_2$. Sea \mathbb{P} un procedimiento efectivo el cual enumere a $\omega \times \omega$.

El siguiente procedimiento enumera al conjunto $S_1 \cap S_2$:

Etapa 1: Realizar \mathbb{P} con dato de entrada x, para obtener un par $(x_1, x_2) \in \omega \times \omega$.

Etapa 2: Realizar \mathbb{P}_1 con dato de entrada x_1 para obtener un elemento $z_1 \in S_1$.

Etapa 3: Realizar \mathbb{P}_2 con dato de entrada x_2 para obtener un elemento $z_2 \in S_2$.

Etapa 4: Si $z_1 = z_2$, entonces dar como dato de salida z_1 . En caso contrario dar como dato de salida z_0 .

Lemma 15. Si $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable entonces S es Σ -efectivamente enumerable.

Proof. El caso en el que S es vacío es trivial. Supongamos $S \neq \emptyset$. Sea $(\vec{z}, \vec{\gamma}) \in S$, fijo. Recordemos que $\omega^n \times \Sigma^{*m}$ es Σ -efectivamente enumerable. Sean:

- \mathbb{P}_1 un procedimiento efectivo que enumere a $\omega^n \times \Sigma^{*m}$
- \mathbb{P}_2 un procedimiento efectivo que compute a χ_S .

El siguiente procedimiento enumera a S:

- **Etapa 1:** Realizar \mathbb{P}_1 con x de entrada para obtener $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$.
- **Etapa 2:** Realizar \mathbb{P}_2 con $(\vec{x}, \vec{\alpha})$ de entrada para obtener el valor *Booleano e* de salida.

Etapa 3: Si e = 1: dar como dato de salida $(\vec{x}, \vec{\alpha})$. Si e = 0: dar como dato de salida $(\vec{z}, \vec{\gamma})$.

Theorem 16. Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:

- a) S es Σ -efectivamente computable.
- b) $S \ y \ (\omega^n \times \Sigma^{*m}) S \ son \ \Sigma$ -efectivamente enumerables.

Proof. $(a) \Rightarrow (b)$ Si S es Σ-efectivamente computable, por el **Lemma 15** tenemos que S es Σ-efectivamente enumerable. Notese además que, dado que S es Σ-efectivamente computable, $(\omega^n \times \Sigma^{*m}) - S$ también lo es, es decir, que aplicando nuevamente el **Lemma 15** tenemos que $(\omega^n \times \Sigma^{*m}) - S$ es Σ-efectivamente enumerable.

$$(b) \Rightarrow (a)$$
 Sean:

- \mathbb{P}_1 un procedimiento efectivo que enumere a S.
- \mathbb{P}_2 un procedimiento efectivo que enumere a $(\omega^n \times \Sigma^{*m}) S$.

El siguiente procedimiento computa el predicado χ_S :

- **Etapa 1:** Darle a la variable T el valor 0.
- **Etapa 2:** Realizar \mathbb{P}_1 con el valor de T como entrada para obtener de salida la upla $(\vec{y}, \vec{\beta})$.
- **Etapa 3:** Realizar \mathbb{P}_2 con el valor de T como entrada para obtener de salida la upla $(\vec{z}, \vec{\gamma})$.
- Etapa 4: Si $(\vec{y}, \vec{\beta}) = (\vec{x}, \vec{\alpha})$: entonces detenerse y dar como dato de salida el valor 1. Si $(\vec{z}, \vec{\gamma}) = (\vec{x}, \vec{\alpha})$: entonces detenerse y dar como dato de salida el valor 0. Si no sucede ninguna de las dos posibilidades: aumentar en 1 el valor de la variable T y dirijirse a la Etapa 2.

Theorem 17. Dado $S \subseteq \omega^n \times \Sigma^{*m}$, son equivalentes:

- 1. S es Σ -efectivamente enumerable.
- 2. $S = \emptyset$ ó $S = I_F$, para alguna $F : \omega \to \omega^n \times \Sigma^{*m}$ tal que cada F_i es Σ -efectivamente computable.
- 3. $S = I_F$, para alguna $F : D_F \subseteq \omega^k \times \Sigma^{*l} \to \omega^n \times \Sigma^{*m}$ tal que cada F_i es Σ -efectivamente computable.
- 4. $S = D_f$, para alguna función f la cual es Σ -efectivamente computable.

3 Funciones Σ -recursivas

Lemma 18. Si f y g son Σ -efectivamente computables, entonces R(f,g) lo es.

Proof. Sean:

- \mathbb{P}_1 un procedimiento efectivo que compute a f.
- \mathbb{P}_2 un procedimiento efectivo que compute a g.

El siguiente procedimiento computa la función R(f,g):

Etapa 1: Darle a la variable T el valor 0.

Etapa 2: Realizar \mathbb{P}_1 con los valores $(\vec{x}, \vec{\alpha})$ como entrada para obtener de salida A.

Etapa 3: Si T = t: entonces detenerse y dar como dato de salida el valor de A. Si $T \neq t$: aumentar en 1 el valor de la variable T.

Etapa 4: Si $Im(f), Im(g) \subseteq \omega$: Realizar \mathbb{P}_2 con los valores $(A, T, \vec{x}, \vec{\alpha})$ y dirijirse a la Etapa 3.

Si $Im(f), Im(g) \subseteq \Sigma^*$: Realizar \mathbb{P}_2 con los valores $(T, \vec{x}, \vec{\alpha}, A)$ y dirijirse a la Etapa 3.

Lemma 19. Si f y cada \mathcal{G}_a son Σ -efectivamente computables, entonces $R(f,\mathcal{G})$ lo es.

Theorem 20. Si $f \in PR^{\Sigma}$, entonces f es Σ -efectivamente computable.

Proof. Recordemos que $PR^{\Sigma} = \bigcup_{k \geq 0} PR_k^{\Sigma}$. Supongamos que $f \in PR_k^{\Sigma}$, probaremos este teorema por inducción en k.

Caso Base: k = 0

Luego $f \in PR_0^{\Sigma}$, es decir $f \in \{Suc, Pred, C_0^{0,0}, C_{\varepsilon}^{0,0}\} \cup \{d_a : a \in \Sigma\} \cup \{p_j^{n,m} : 1 \leq j \geq n + m\}$. Por lo tanto, f es Σ -efectivamente computable.

Caso Inductivo: k > 0

Supongamos ahora que si $f \in PR_k^{\Sigma} \Rightarrow f$ es Σ -efectivamente computable, veamos que $f \in PR_{k+1}^{\Sigma} \Rightarrow f$ es Σ -efectivamente computable.

Dado que las funciones de PR_k^{Σ} son Σ -efectivamente computable por hipótesis inductiva, y que PR_{k+1}^{Σ} se contruye a partir de las mismas, a través de recursiones y/o composiciones, las cuales probamos son Σ -efectivamente computables en el **Lemma 18** y **Lemma 19**, entonces concluimos que f es Σ -efectivamente computable.

Lemma 21. $1. \emptyset \in PR^{\emptyset}$.

- 2. $\lambda xy [x+y] \in PR^{\emptyset}$.
- 3. $\lambda xy [x.y] \in PR^{\emptyset}$.
- 4. $\lambda x [x!] \in PR^{\emptyset}$.

Proof. 1. Notese que $\emptyset = Pred \circ C_0^{0,0} \in PR_1^{\emptyset}$, entonces $\emptyset \in PR^{\emptyset}$.

2. Notar que:

$$\lambda xy [x + y] (0, x_1) = x_1 = p_1^{1,0}(x_1)$$

$$\lambda xy [x + y] (t + 1, x_1) = \lambda xy [x + y] (t, x_1) + 1$$

$$= (Suc \circ p_1^{3,0})(\lambda xy [x + y] (t, x_1), t, x_1)$$

lo cual implica que $\lambda xy [x+y] = R(p_1^{1,0}, Suc \circ p_1^{3,0}) \in PR_2^{\emptyset}$, entonces $\lambda xy [x+y] \in PR^{\emptyset}$.

3. Primero note que:

$$C_0^{1,0}(0) = C_0^{0,0}(\lozenge)$$

 $C_0^{1,0}(t+1) = C_0^{1,0}(t)$

lo cual implica que $C_0^{1,0}=R(C_0^{0,0},p_1^{2,0})\in \mathrm{PR}_1^\emptyset.$

También note que:

$$\lambda xy [x.y] (0, x_1) = x_1 = p_1^{1,0}(x_1)$$

$$\lambda xy [x.y] (t+1, x_1) = \lambda xy [x.y] (t, x_1) + x_1$$

$$= \lambda xy [x+y] \circ (p_1^{3,0}, p_3^{3,0})$$

lo cual implica que $\lambda xy\left[x.y\right]=R(C_0^{1,0},\lambda xy\left[x+y\right]\circ(p_1^{3,0},p_3^{3,0})),$ lo cual por (1) implica que $\lambda xy\left[x.y\right]\in\mathrm{PR}_4^\emptyset,$ entonces $\lambda xy\left[x.y\right]\in\mathrm{PR}^\emptyset.$

4. Notar que:

$$\lambda x [x!] (0) = 1 = C_1^{0,0}(\lozenge)$$

 $\lambda x [x!] (t+1) = \lambda x [x!] (t).(t+1)$

lo cual implica que: $\lambda x\left[x!\right] = R(C_1^{0,0}, \lambda xy\left[x.y\right] \circ (p_1^{2,0}, Suc \circ p_2^{2,0}))$. Ya que $C_1^{0,0} = Suc \circ C_0^{0,0}$, tenemos que $C_1^{0,0} \in \operatorname{PR}_1^{\emptyset}$. Por (2), tenemos que $\lambda xy\left[x.y\right] \circ (p_1^{2,0}, Suc \circ p_2^{2,0}) \in \operatorname{PR}_4^{\emptyset}$, obteniendo que $\lambda x\left[x!\right] \in \operatorname{PR}_5^{\emptyset}$, entonces $\lambda x\left[x!\right] \in \operatorname{PR}^{\emptyset}$.

Lemma 22. Supongamos $\Sigma \neq \emptyset$.

- $a) \lambda \alpha \beta [\alpha \beta] \in PR^{\Sigma}.$
- b) $\lambda \alpha [|\alpha|] \in PR^{\Sigma}$.

Proof. a) Ya que:

$$\lambda \alpha \beta \left[\alpha \beta \right] (\alpha_1, \varepsilon) = \alpha_1 = p_1^{0,1}(\alpha_1)$$

$$\lambda \alpha \beta \left[\alpha \beta \right] (\alpha_1, \alpha a) = d_a(\lambda \alpha \beta \left[\alpha \beta \right] (\alpha_1, \alpha), \quad \text{para } a \in \Sigma$$

tenemos que $\lambda \alpha \beta \left[\alpha \beta\right] = R(p_1^{0,1}, \mathcal{G})$, donde $\mathcal{G}_a = d_a \circ p_3^{0,3}$, para cada $a \in \Sigma$. Luego, $\lambda \alpha \beta \left[\alpha \beta\right] \in PR^{\Sigma}$.

b) Ya que:

$$\lambda \alpha [|\alpha|] (\varepsilon) = 0 = C_0^{0,0}(\lozenge)$$
$$\lambda \alpha [|\alpha|] (\alpha a) = \lambda \alpha [|\alpha|] (\alpha) + 1$$

tenemos que $\lambda \alpha$ $[|\alpha|] = R(C_0^{0,0}, \mathcal{G})$, donde $\mathcal{G}_a = Suc \circ p_1^{1,1}$, para cada $a \in \Sigma$. Luego, $\lambda \alpha$ $[|\alpha|] \in PR^{\Sigma}$.

Lemma 23. a) $C_k^{n,m}, C_\alpha^{n,m} \in PR^{\Sigma}$, para $n, m, k \geq 0$, $y \alpha \in \Sigma^*$.

b) $C_k^{n,0} \in PR^{\emptyset}$, para $n, k \ge 0$.

Lemma 24. 1. $\lambda xy[x^y] \in PR^{\emptyset}$.

2. $\lambda t \alpha \left[\alpha^t \right] \in PR^{\Sigma}$.

Proof. a) Notar que:

$$\lambda tx \left[x^t \right] (0, x_1) = 0 = C_0^{1,0}(x_1)$$

$$\lambda tx \left[x^t \right] (t+1, x_1) = \lambda tx \left[x^t \right] (t, x_1) . x_1$$

$$= \lambda xy \left[x . y \right] \circ (p_1^{3,0}, p_3^{3,0})$$

Osea que $\lambda xy\left[x^{y}\right]=\lambda tx\left[x^{t}\right]\circ\left(p_{2}^{2,0},p_{1}^{2,0}\right)\in\mathsf{PR}^{\emptyset}.$

b) Notar que:

$$\begin{split} \lambda t \alpha \left[\alpha^t \right] (t, \varepsilon) &= \varepsilon = C_\varepsilon^{0,1}(t) \\ \lambda t \alpha \left[\alpha^t \right] (t, \alpha a) &= \lambda t \alpha \left[\alpha^t \right] (t, \alpha) \alpha \\ &= \lambda \alpha \beta \left[\alpha \beta \right] \circ \left(p_3^{1,2}, p_2^{1,2} \right) \end{split}$$

Por lo tanto, $\lambda t \alpha \left[\alpha^t\right] \in PR^{\Sigma}$.

Lemma 25. Si < es un orden total estricto sobre un alfabeto no vacío Σ , entonces:

- $a) \ s^{<} \in PR^{\Sigma}.$
- $b) \#^{<} \in \mathrm{PR}^{\Sigma}.$
- $c) * < \in PR^{\Sigma}.$

Proof. Supongamos $\Sigma = \{a_1, \ldots, a_k\}$ y < dado por $a_1 < \ldots < a_k$.

a) Ya que:

$$s^{<}(\varepsilon) = a_1$$

 $s^{<}(\alpha a_i) = \alpha a_{i+1}$, para $i < k$
 $s^{<}(\alpha a_k) = s^{<}(\alpha)a_1$

tenemos que $s^{<} = R(C_{a_1}^{0,0}, \mathcal{G})$, donde $\mathcal{G} = \{ (a_i, d_{a_{i+1}} \circ p_1^{0,2}), (a_k, d_{a_1} \circ p_2^{0,2}) \}$. Luego, $s^{<} \in PR^{\Sigma}$.

b) Ya que:

$$*^{<}(0) = \varepsilon$$

 $*^{<}(t+1) = s^{<}(*^{<}(t))$

tenemos que $*^< = R(C_\varepsilon^{0,0}, s^< \circ p_1^{2,0}).$ Luego, $*^< \in \mathrm{PR}^\Sigma.$

c) Ya que:

$$\#^{<}(\varepsilon) = 0$$

 $\#^{<}(\alpha a_i) = \#^{<}(\alpha).k + i$
para $i = 1, ..., k$

tenemos que $\#^{<} = R(C_0^{0,0}, \mathcal{G})$, donde $\mathcal{G}_{a_i} = \lambda xy [x+y] \circ (\lambda xy [x.y] \circ (p_1^{1,1}, C_k^{1,1}), C_i^{1,1})$, para $i = 1, \ldots, k$. Luego, $\#^{<} \in PR^{\Sigma}$.

Lemma 26. $a) \lambda xy [\dot{x-y}] \in PR^{\emptyset}$.

- b) $\lambda xy [\max(x, y)] \in PR^{\emptyset}$.
- c) $\lambda xy [x = y] \in PR^{\emptyset}$.
- $d) \lambda xy [x \le y] \in PR^{\emptyset}.$
- e) $Si \Sigma \neq \emptyset \Rightarrow \lambda \alpha \beta [\alpha = \beta] \in PR^{\Sigma}$.

Proof. a) Primero notar que:

$$\lambda x [x - 1] (0) = 0 = C_0^{0,0}$$

 $\lambda x [x - 1] (t + 1) = t$
 $= p_2^{2,0}$

es decir $\lambda x [\dot{x-1}] = R(C_0^{0,0}, p_2^{2,0}) \in PR^{\emptyset}$.

También notar que:

$$\lambda tx [x - t] (0, x_1) = x_1 = p_1^{1,0}(x_1)$$

$$\lambda tx [x - t] (t + 1, x_1) = \lambda tx [x - t] (t, x_1) - 1$$

$$= \lambda x [x - 1] \circ p_1^{3,0}$$

es decir, $\lambda tx [x \dot{-} t] = R(p_1^{1,0}, \lambda x [x \dot{-} 1] \circ p_1^{3,0}) \in PR^{\emptyset}$. Por lo tanto, $\lambda xy [x \dot{-} y] = \lambda tx [x \dot{-} t] \circ (p_2^{2,0}, p_1^{2,0}) \in PR^{\emptyset}$.

b) Notar que:

$$\lambda xy \left[\max(x, y) \right] = \lambda xy \left[(x + (y - x)) \right] = \lambda xy \left[x + y \right] \circ \left(p_1^{2,0}, \lambda xy \left[x - y \right] \circ (p_2^{2,0}, p_1^{2,0}) \right)$$

Por lo tanto, $\lambda xy [\max(x, y)] \in PR^{\emptyset}$.

c) Note que:

$$\begin{array}{lll} \lambda xy \left[x = y \right] & = & \lambda xy \left[\dot{1-} ((\dot{x-y}) + (\dot{y-x})) \right] \\ & = & \lambda xy \left[\dot{x-y} \right] \circ (C_1^{2,0}, \lambda xy \left[x + y \right] \circ (\lambda xy \left[\dot{x-y} \right] \circ p_1^{2,0}, p_2^{2,0}, \lambda xy \left[\dot{x-y} \right] \circ p_2^{2,0}, p_1^{2,0})) \end{array}$$

Por lo tanto, $\lambda xy [x = y] \in PR^{\emptyset}$.

d) Note que:

$$\begin{array}{lcl} \lambda xy \, [x \leq y] & = & \lambda xy \, [\dot{1-}(\dot{x-}y)] \\ & = & \lambda xy \, [\dot{x-}y] \circ (C_1^{2,0}, \lambda xy \, [\dot{x-}y] \circ p_1^{2,0}, p_2^{2,0})) \end{array}$$

Por lo tanto, $\lambda xy [x \leq y] \in PR^{\emptyset}$.

e) Sea < un orden total estricto sobre Σ . Ya que:

$$\alpha = \beta \Leftrightarrow \#^{<}(\alpha) = \#^{<}(\beta)$$

tenemos que:

$$\lambda \alpha \beta [\alpha = \beta] = \lambda xy [x = y] \circ (\#^{<} \circ p_1^{0,2}, \#^{<} \circ p_2^{0,2})$$

Luego, utilizando el inciso (c) y el **Lemma 28** obtenemos que $\lambda \alpha \beta [\alpha = \beta] \in PR^{\Sigma}$.

Lemma 27. Si $P: S \subseteq \omega^n \times \Sigma^{*m} \to \omega$ y $Q: S \subseteq \omega^n \times \Sigma^{*m} \to \omega$ son predicados Σ -PR, entonces $(P \vee Q), (P \wedge Q)$ y $\neg P$ lo son también.

Proof. Notar que:

$$\neg P = \lambda xy \left[\dot{x-y} \right] \circ (C_1^{n,m}, P)
(P \wedge Q) = \lambda xt \left[x.y \right] \circ (P, Q)
(P \vee Q) = \neg (\neg P \wedge \neg Q)$$

Lemma 28. Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son Σ -PR, entonces $S_1 \cup S_2$, $S_1 \cap S_2$ y $S_1 - S_2$ lo son.

Proof. Notar que:

$$\chi_{S_1 \cup S_2} = (\chi_{S_1} \vee \chi_{S_2})$$

$$\chi_{S_1 \cap S_2} = (\chi_{S_1} \wedge \chi_{S_2})$$

$$\chi_{S_1 - S_2} = \lambda [x \dot{-} y] \circ (\chi_{S_1}, \chi_{S_2})$$

Corollary 29. Si $S \subseteq \omega^n \times \Sigma^{*m}$ es finito, entonces S es Σ -PR.

Proof. Se probará el caso n=m=1, es decir, $S\subseteq\omega\times\Sigma^*$. Supongamos, sin pérdida de generalidad, utilizando el **Lemma 29** que:

$$S = \{(z, \gamma)\}$$

Notar que χ_S es el siguiente predicado:

$$\left(\chi_z \circ p_1^{1,1} \wedge \chi_\gamma \circ p_2^{1,1}\right)$$

Ya que los predicados:

$$\chi_z = \lambda xy \left[x = y \right] \circ \left(p_1^{1,0}, C_z^{1,0} \right)$$
$$\chi_\gamma = \lambda \alpha \beta \left[\alpha = \beta \right] \circ \left(p_1^{0,1}, C_\gamma^{0,1} \right)$$

son Σ -PR, el **Lema 28** implica que χ_S es Σ -PR, por lo tanto S es Σ -PR.

Lemma 30. Supongamos $S_1, \ldots, S_n \subseteq \omega, L_1, \ldots, L_m \subseteq \Sigma^*$ son conjuntos no vacíos, entonces $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ es Σ -PR $\Leftrightarrow S_1, \ldots, S_n, L_1, \ldots, L_m$ son Σ -PR.

Proof. Se probará el caso n=m=1, es decir, $S\subseteq\omega,\,L\subseteq\Sigma^*$.

 \Rightarrow Veremos que L_1, S_1 es Σ -PR. Sea (z_1, γ_1) un elemento fijo de $S_1 \times L_1$. Notar que:

$$x \in S_1 \Leftrightarrow (x, \gamma_1) \in S_1 \times L_1$$

 $\alpha \in L_1 \Leftrightarrow (z_1, \alpha) \in S_1 \times L_1$

lo cual implica que:

$$\chi_{S_1} = \chi_{S_1 \times L_1} \circ \left(p_1^{1,0}, C_{\gamma_1}^{0,1} \right)$$
$$\chi_{L_1} = \chi_{S_1 \times L_1} \circ \left(C_{z_1}^{0,1}, p_1^{0,1} \right)$$

por lo tanto, L_1, S_1 es Σ -PR.

← Notar que:

$$\chi_{S_1 \times L_1} = \left(\chi_{S_1} \circ p_1^{1,1} \wedge \chi_{L_1} \circ p_2^{1,1} \right)$$

luego, por el **Lemma 28**, $S_1 \times L_1$ son Σ -PR.

Lemma 31. Supongamos $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -PR, donde $O \in \{\omega, \Sigma^*\}$. Si $S \subseteq D_f$ es Σ -PR, entonces $f|_S$ es Σ -PR.

Proof. $O = \Sigma^*$ Notar que:

$$f\mid_{S} = \lambda x \alpha \left[\alpha^{x}\right] \circ \left(Suc \circ Pred \circ \chi_{S}, f\right)$$

luego f es Σ -PR.

 $O = \omega$ Notar que:

$$f \mid_{S} = \lambda xy [x^y] \circ (f, Suc \circ Pred \circ \chi_S)$$

luego f es Σ -PR.

Notar que $Suc \circ Pred \circ \chi_S$ funciona como un interruptor que evalua f, si el elemento pertenece a S, y que no evalua en caso contrario.

Lemma 32. Si $f: D_f \subseteq \omega^n \times \Sigma^* \to O$ es Σ -PR, entonces existe una función Σ -PR $\bar{f}: \omega^n \times \Sigma^{*m} \to O$, tal que $f = \bar{f}|_{D_f}$.

Proposition 33. Un conjunto S es Σ - $PR \Leftrightarrow S$ es el dominio de una función Σ -PR.

Proof. \Rightarrow Notar que $S = D_{Pred \circ \chi_S}$.

 \leftarrow Probaremos por inducción en k que D_F es Σ -PR para cada $F \in PR_k^{\Sigma}$.

<u>Caso Base:</u> k = 0 es decir, $F \in PR_0^{\Sigma}$. Luego:

$$F \in \{Suc, Pred, C_0^{0,0}, C_{\varepsilon}^{0,0}\} \cup \{d_a : a \in \Sigma\} \cup \{p_j^{n,m} : 1 \le j \ge n + m\}$$
$$D_F \in \{\omega, \mathbb{N}\}$$

luego, S es Σ -PR.

<u>Caso Inductivo</u>: Supongamos el resultado vale para un k fijo y supongamos $F \in PR_{k+1}^{\Sigma}$, veremos entonces que D_F es Σ -PR. Existen varios casos, analizaremos cada uno por separado.

- 1. F = R(f, g)
 - Recursión primitiva sobre variable numérica.
 - (a) Caso 1:

$$f : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

$$g : \omega \times \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

$$F = \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

(b) Caso 2:

$$f : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$$

$$g : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \Sigma^*$$

$$F = \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$$

- Recursión primitiva sobre variable alfabética.
 - (a) Caso 1:

$$f : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

$$\mathcal{G}_a : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \omega$$

$$F = S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \omega$$

(b) Caso 2:

$$f : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$$

$$\mathcal{G}_a : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \times \Sigma^* \to \Sigma^*$$

$$F = S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \Sigma^*$$

con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$ conjuntos no vacíos y $f, g \in PR_k^{\Sigma}$, para todos los casos anteriores.

Por hipótesis inductiva tenemos que $D_f = S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ es Σ -PR, lo cual por el **Lemma 31** nos dice que los conjuntos $S_1, \ldots, S_n, L_1, \ldots, L_m$ son Σ -PR. Ya que ω es Σ -PR, el **Lemma 31** nos dice que D_F es Σ -PR.

2. $F = g \circ (g_1, \ldots, g_{n+m})$ donde:

$$g: D_g \subseteq \omega^n \times \Sigma^{*m} \to O$$

$$g_i: D_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \omega \qquad i = 1, \dots, n$$

$$g_i: D_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \Sigma^* \qquad i = n + 1, \dots, n + m$$

están en $\operatorname{PR}_k^{\Sigma}$. Por **Lemma 33**, hay funciones $\Sigma\operatorname{-PR} \bar{g}_1,\ldots,\bar{g}_{n+m}$ las cuales son $\Sigma\operatorname{-totales}$ y cumplen:

$$g_i = \bar{g}_i \mid_{D_{g_i}}$$
 para $i = 1, \dots, n+m$

Por hipótesis inductiva, los conjuntos D_g , D_{g_i} , para $i=1,\ldots,n+m$, son Σ -PR y por lo tanto:

$$S = \bigcap_{i=1}^{n+m} D_{g_i}$$

lo es. Notese además, que:

$$\chi_{D_F} = \left((\chi_{D_g} \circ (\bar{g}_1, \dots, \bar{g}_{n+m})) \wedge \chi_S \right)$$

lo cual nos dice que D_F es Σ -PR.

Lemma 34. Supongamos $f_i: D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O, i = 1, ..., k$, son funciones Σ -PR tales que $D_{f_i} \cap D_{f_j} = \emptyset$ para $i \neq j$, entonces $f_1 \cup ... \cup f_k$ es Σ -PR.

Proof. Vamos a probar solo el caso en que k=2 y $O=\omega$. Sean:

$$\begin{split} \bar{f}_1 : \omega^n \times \Sigma^{*m} \to \Sigma^* & \text{tal que } \bar{f}_1 \mid_{D_{f_1}} = f_1 \\ \bar{f}_2 : \omega^n \times \Sigma^{*m} \to \Sigma^* & \text{tal que } \bar{f}_2 \mid_{D_{f_2}} = f_2 \end{split}$$

funciones Σ -PR por Lemma 33). Luego, por el Lemma 34 los conjuntos D_{f_1} y D_{f_2} son Σ -PR y por lo tanto lo es $D_{f_1} \cup D_{f_2}$. Ya que:

$$f_{1} \cup f_{2} = \left(\bar{f}_{1}^{\chi_{D_{f_{1}}}}.\bar{f}_{2}^{\chi_{D_{f_{2}}}}\right)|_{D_{f_{1}} \cup D_{f_{2}}}$$

$$= \lambda xy \left[x.y\right] \circ \left(\lambda xy \left[x^{y}\right] \circ (\bar{f}_{1}, \chi_{D_{f_{1}}}), \lambda xy \left[x^{y}\right] \circ (\bar{f}_{2}, \chi_{D_{f_{2}}})\right)|_{D_{f_{1}} \cup D_{f_{2}}}$$

Por lo tanto, $f_1 \cup f_2$ es Σ -PR.

Corollary 35. Supongamos f es una función Σ -mixta cuyo dominio es finito, entonces f es Σ -PR.

Lemma 36. $\lambda i \alpha [[\alpha]_i]$ es Σ -PR.

Lemma 37. Sean $n, m \geq 0$.

a) Si $f: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ es Σ -PR, con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$ no vacíos, entonces lo son las funciones:

$$\lambda xy\vec{x}\vec{\alpha} \left[\sum_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha}) \right]$$
$$\lambda xy\vec{x}\vec{\alpha} \left[\prod_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha}) \right]$$

b) Si $f: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$ es Σ -PR, con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$ no vacíos, entonces lo es la función:

$$\lambda x y \vec{x} \vec{\alpha} \left[\subset_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha}) \right]$$

Proof. Se probará solamente el inciso (a). Sea $G = \lambda t x \vec{x} \vec{\alpha} \left[\sum_{i=x}^{i=t} f(i, \vec{x}, \vec{\alpha}) \right]$. Ya que:

$$\lambda x y \vec{x} \vec{\alpha} \left[\sum_{i=x}^{i=y} f(i, \vec{x}, \vec{\alpha}) \right] = G \circ \left(p_2^{n+2, m}, p_1^{n+2, m}, p_3^{n+2, m}, \dots, p_{n+m+2}^{n+2, m} \right)$$

solo tenemos que probar que G es Σ -PR. Primero note que:

$$G(0, x, \vec{x}, \vec{\alpha}) = \begin{cases} 0 & \text{si } x > 0 \\ f(0, \vec{x}, \vec{\alpha}) & \text{si } x = 0 \end{cases}$$

$$G(t+1, x, \vec{x}, \vec{\alpha}) = \begin{cases} 0 & \text{si } x > t+1 \\ G(t, x, \vec{x}, \vec{\alpha}) + f(t+1, \vec{x}, \vec{\alpha}) & \text{si } x \leq t+1 \end{cases}$$

Sean:

$$P_{1} = \{(x, \vec{x}, \vec{\alpha}) \in \omega \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x > 0\}$$

$$P_{2} = \{(x, \vec{x}, \vec{\alpha}) \in \omega \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x = 0\}$$

$$Q_{1} = \{(z, t, x, \vec{x}, \vec{\alpha}) \in \omega^{3} \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x > t + 1\}$$

$$Q_{2} = \{(z, t, x, \vec{x}, \vec{\alpha}) \in \omega^{3} \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x \leq t + 1\}$$

Notar que P_1, P_2, Q_1, Q_2 son conjuntos Σ -PR, probaremos solo P_1 . Debemos ver que χ_{P_1} es Σ -PR.

$$f \text{ es } \Sigma - PR \implies D_f = \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \text{ es } \Sigma - PR$$
 Proposition 34
 $\Rightarrow S_1, \ldots, S_n, L_1, \ldots, L_m \text{ son } \Sigma - PR$ Lemma 31

$$\omega \text{ es } \Sigma - PR \implies R = \omega^3 \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \text{ es } \Sigma - PR$$

Notar que:

$$\chi_{P_1} = (\chi_R \wedge \lambda z t x \vec{x} \vec{\alpha} [x > t + 1])$$

por cual χ_{P_1} es Σ-PR ya que es la conjunción de dos predicados Σ-PR. Además notar que G = R(g, h), donde:

$$g = C_0^{n+1,m} |_{P_1} \cup \lambda x \vec{x} \vec{\alpha} [f(0, \vec{x}, \vec{\alpha})] |_{P_2}$$

$$h = C_0^{n+3,m} |_{Q_1} \cup \lambda z t x \vec{x} \vec{\alpha} [z + f(t+1, \vec{x}, \vec{\alpha})] |_{Q_2}$$

Por lo tanto, el **Lemma 35** y el **Lemma 32** garantizan que G es Σ -PR.

Lemma 38. $Sean \ n, m \geq 0$.

a) Sea $P: S \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ un predicado Σ -PR y supongamos $\bar{S} \subseteq S$ es Σ -PR, entonces:

$$\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \le x} P(t, \vec{x}, \vec{\alpha}) \right]$$
$$\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \bar{S})_{t \le x} P(t, \vec{x}, \vec{\alpha}) \right]$$

son predicados Σ -PR.

b) Sea $P: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times L \to \omega$ un predicado Σ -PR y supongamos $\bar{L} \subseteq L$ es Σ -PR, entonces:

$$\lambda x \vec{x} \vec{\alpha} \left[(\forall \alpha \in \bar{L})_{|\alpha| \le x} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$
$$\lambda x \vec{x} \vec{\alpha} \left[(\exists \alpha \in \bar{L})_{|\alpha| \le x} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$

son predicados Σ -PR.

Proof. Se probará solamente el inciso (a). Sea:

$$\bar{P} = P \mid_{\bar{S} \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m} \cup C_1^{1+n,m} \mid_{(\omega - \bar{S}) \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m}$$

Notese que \bar{P} es Σ -PR. Ya que:

$$\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \le x} P(t, \vec{x}, \vec{\alpha}) \right] = \lambda x \vec{x} \vec{\alpha} \left[\prod_{t=0}^{t=x} \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$$

$$= \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{t=y} \bar{P}(t, \vec{x}, \vec{\alpha}) \right] \circ \left(C_0^{1+n,m}, p_1^{1+n,m}, \dots, p_{1+n+m}^{1+n,m} \right)$$

el **Lemma 38** implica que $\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -PR. Finalmente note que:

$$\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \bar{S})_{t \le x} \ P(t, \vec{x}, \vec{\alpha}) \right] = \neg \lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \le x} \ \neg P(t, \vec{x}, \vec{\alpha}) \right]$$
es Σ -PR.

Lemma 39. a) El predicado $\lambda xy [x \ divide \ y]$ es \emptyset -PR.

b) El predicado $\lambda x [x \ es \ primo] \ es \emptyset -PR$.

c) El predicado $\lambda \alpha \beta$ [α inicial β] es Σ -PR.

Proof. a) Si tomamos $P = \lambda t x_1 x_2 [x_2 = t.x_1] \in PR^{\emptyset}$, tenemos que:

$$\lambda x_1 x_2 [x_1 \text{ divide } x_2] = \lambda x_1 x_2 [(\exists t \in \omega)_{t \le x_2} P(t, x_1, x_2)]$$

$$= \lambda x_1 x_2 [(\exists t \in \omega)_{t \le x} P(t, x_1, x_2)] \circ (p_2^{2,0}, p_1^{2,0}, p_2^{2,0})$$

por el **Lemma 39**, $\lambda xy [x \text{ divide } y] \text{ es } \emptyset\text{-PR}.$

b) Ya que:

$$x$$
 es primo sii $x > 1 \land ((\forall t \in \omega)_{t \le x} \ t = 1 \lor t = x \lor \neg (t \text{ divide } x))$

tomamos $P = \lambda tx [t = 1 \lor t = x \lor (t \text{ divide } x)]$. Luego, tenemos que:

$$\lambda x \left[x \text{ es primo} \right] = \lambda x \left[x > 1 \right] \wedge \lambda x \left[(\forall t \in \omega)_{t \le x} P(t, x) \right]$$
$$= \lambda x \left[x > 1 \right] \wedge \lambda x_1 x_2 \left[(\forall t \in \omega)_{t \le x_1} P(t, x_2) \right] \circ (p_1^{1,0}, p_1^{1,0})$$

por lo tanto, $\lambda x [x \text{ es primo}] \text{ es } \emptyset\text{-PR}.$

c) Sea $P = \lambda \alpha \beta \gamma [\beta = \alpha \gamma]$, entonces:

$$\lambda \alpha \beta \left[\alpha \text{ inicial } \beta \right] = \lambda \alpha \beta \left[(\exists \gamma \in \Sigma^*)_{|\gamma| \le |\beta|} P(\alpha, \beta, \gamma) \right]$$

luego, $\lambda \alpha \beta [\alpha \text{ inicial } \beta]$ es Σ -PR.

Lemma 40. Si $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ es un predicado Σ -EC y D_P es Σ -EC, entonces la función M(P) es Σ -EC.

Proof. Sea \mathbb{P} un procedimiento efectivo que compute al predicado P. El siguiente procedimiento computa M(P):

Etapa 1: Darle a la variable T el valor 0.

Etapa 2: Si $T \in D_P$: entonces realizar \mathbb{P} con el valor de T como entrada para obtener el valor $Booleano\ e$ de salida.

Etapa 3: Si $T \notin D_P$: entonces aumentar en 1 el valor de T, y dirigirse a la Etapa 2.

Etapa 4: Si e = 1: dar como dato de salida T. **Si** e = 0: aumentar en 1 el valor de T, y dirigirse a la Etapa 2.

Theorem 41. Si $f \in \mathbb{R}^{\Sigma}$, entonces f es Σ -efectivamente computable.

Proof. Recordemos que $R^{\Sigma} = \bigcup_{k \geq 0} R_k^{\Sigma}$. Supongamos que $f \in R_k^{\Sigma}$, probaremos este teorema por inducción en k.

<u>Caso Base:</u> k = 0Luego $f \in R_0^{\Sigma} = PR_0^{\Sigma}$, es decir $f \in \{Suc, Pred, C_0^{0,0}, C_{\varepsilon}^{0,0}\} \cup \{d_a : a \in \Sigma\} \cup \{p_j^{n,m} : 1 \leq j \geq n + m\}$. Por lo tanto, f es Σ -efectivamente computable. Caso Inductivo: k > 0

Supongamos ahora que si $f \in \mathbb{R}^{\Sigma}_k \Rightarrow f$ es Σ -efectivamente computable, veamos que $f \in \mathbb{R}^{\Sigma}_{k+1} \Rightarrow f$ es Σ -efectivamente computable.

Dado que las funciones de R_k^{Σ} son Σ -efectivamente computable por hipótesis inductiva, y que R_{k+1}^{Σ} se contruye a partir de las mismas, a través de recursiones, composiciones y/o minimizaciones, las cuales probamos son Σ -efectivamente computables en el **Lemma 18**, **Lemma 19**, y **Lemma 41** respectivamente, entonces concluimos que f es Σ -efectivamente computable. \square

Lemma 42. Sean $n, m \geq 0$. Sea $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ un predicado Σ -PR, entonces:

- a) M(P) es Σ -R.
- b) Si hay una función Σ -PR $f: \omega^n \times \Sigma^{*m} \to \omega$ tal que:

$$M(P)(\vec{x}, \vec{\alpha}) = \min_{t} P(t, \vec{x}, \vec{\alpha}) \le f(\vec{x}, \vec{\alpha}), \text{ para cada } (\vec{x}, \vec{\alpha}) \in D_{M(P)}$$

entonces M(P) es Σ -PR.

Proof. a) Sea
$$\bar{P} = P \mid_{D_P} \cup C_0^{n+1,m} \mid_{(\omega^{n+1} \times \Sigma^{*m}) - D_P}$$
.

Veamos primero que $M(P)=M(\bar{P})$, es decir, que los dominios y las reglas de asignación son las mismas.

$$D_{M_P} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : (\exists t \in \omega) \ P(t, \vec{x}, \vec{\alpha}) \}$$

$$D_{M_{\bar{P}}} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : (\exists t \in \omega) \ \bar{P}(t, \vec{x}, \vec{\alpha}) \}$$

notar que:

$$\bar{P}(t, \vec{x}, \vec{\alpha}) = 1 \Leftrightarrow P \mid_{D_P} = 1 \quad (\star)$$

Luego, $D_{M(P)} = D_{M(\bar{P})}$ y $M(P) = M(\bar{P})$. Veamos ahora que $M(\bar{P})$ es Σ -R.

Sea k tal que $\bar{P} \in \mathrm{PR}_k^{\Sigma}$, ya que \bar{P} es Σ -total y $\bar{P} \in \mathrm{PR}_k^{\Sigma} \subseteq \mathrm{R}_k^{\Sigma}$, tenemos que $M(\bar{P}) \in \mathrm{R}_{k+1}^{\Sigma}$ y por lo tanto $M(\bar{P}) \in \mathrm{R}^{\Sigma}$.

b) Primero veremos que $D_{M(\bar{P})}$ es un conjunto Σ -PR. Notese que:

$$\chi_{D_{M(\bar{P})}} = \lambda \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \le f(\vec{x}, \vec{\alpha})} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$$

lo cual nos dice que:

$$\chi_{D_{M(\bar{P})}} = \lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \le x} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right] \circ (f, p_1^{n,m}, \dots, p_{n+m}^{n,m})$$

pero el **Lemma 39** nos dice que $\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq x} \, \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$ es Σ-PR por lo cual tenemos que $\chi_{D_{M(\bar{P})}}$ lo es.

Sea:

$$Q = \lambda t \vec{x} \vec{\alpha} \left[\bar{P}(t, \vec{x}, \vec{\alpha}) \wedge (\forall j \in \omega)_{j \le t} \ j = t \vee \neg \bar{P}(j, \vec{x}, \vec{\alpha}) \right]$$

notar que Q es Σ -total, veamos que es Σ -PR. Sea:

$$R = \lambda j t \vec{x} \vec{\alpha} \left[j = t \ \lor \neg \bar{P}(j, \vec{x}, \vec{\alpha}) \right]$$

luego, por el Lemma 39:

$$\lambda t \vec{x} \vec{\alpha} \left[(\forall j \in \omega)_{j < t} R(j, t, \vec{x}, \vec{\alpha}) \right]$$

es Σ -PR y por lo tanto Q es Σ -PR. Además notese que para cada $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ tenemos:

$$Q(t, \vec{x}, \vec{\alpha}) = 1 \Leftrightarrow t = M(\bar{P})(\vec{x}, \vec{\alpha})$$

Esto nos dice que

$$M(\bar{P}) = \left(\lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right] \right) |_{D_{M(\bar{P})}}$$

por lo cual para probar que $M(\bar{P})$ es Σ -PR solo nos resta probar que

$$F = \lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right]$$

es Σ -PR. Pero

$$F = \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{y} t^{P_1(t, \vec{x}, \vec{\alpha})} \right] \circ (C_0^{n, m}, f, p_1^{n, m}, \dots, p_{n+m}^{n, m})$$

y por lo tanto el **Lemma 38** nos dice que F es Σ -PR. De esta manera hemos probado que $M(\bar{P})$ es Σ -PR y por lo tanto M(P) lo es.

Lemma 43. Las siguientes funciones son \emptyset -PR:

 $a) \quad \begin{array}{ccc} Q:\omega\times\mathbb{N} & \to & \omega \\ (x,y) & \to & cociente \ de \ la \ division \ de \ x \ por \ y \end{array}$

 $b) \begin{array}{ccc} R: \omega \times \mathbb{N} & \to & \omega \\ (x,y) & \to & resto \ de \ la \ division \ de \ x \ por \ y \end{array}$

Proof. a) Veamos primero veamos que Q = M(P), donde $P = \lambda txy [(t+1).y > x]$. Notar que:

$$D_{M(P)} = \{(x,y) : (\exists t \in \omega) \ P(t,x,y) = 1\}$$
$$= \{(x,y) : (\exists t \in \omega) \ (t+1).y > x\}$$
$$= \omega \times \mathbb{N}$$
$$= D_Q$$

Luego, para cada $(x,y) \in \omega \times \mathbb{N}$, se tiene que:

$$Q(x,y) = M(P)(x,y) = \min_{t} (t+1).y > x$$

esto prueba que Q=M(P). Ya que P es \emptyset -PR y además:

$$Q(x,y) \leq p_1^{2,0}(x,y)$$
, para cada $(x,y) \in \omega \times \mathbb{N}$

el inciso (b) del **Lemma 43** implica que $Q \in PR^{\emptyset}$.

b) Notese que:

$$R = \lambda xy \left[\dot{x-Q}(x,y).y \right]$$

= $\lambda xy \left[\dot{x-y} \right] \circ (p_1^{2,0}, \lambda xy \left[x.y \right] \circ (Q \circ (p_1^{2,0}, p_2^{2,0}), p_2^{2,0}))$

y por lo tanto $R \in PR^{\emptyset}$.

c) Para ver que pr es \emptyset -PR, veremos que la extensión $h:\omega\to\omega$, dada por h(0)=0 y $h(n)=pr(n),\,n\geq 1,$ es \emptyset -PR. Primero notar que:

$$\begin{array}{rcl} h(0) & = & 0 \\ h(x+1) & = & \min_t \left(t \text{ es primo} \wedge t > h(x) \right) \end{array}$$

Osea que $h = R\left(C_0^{0,0}, M(P)\right)$, donde:

$$P = \lambda t z x [t \text{ es primo } \wedge t > z]$$

Es decir que solo nos resta ver que M(P) es \emptyset -PR, veamos esto:

$$M(P) = \lambda x_1 x_2 [(\exists t \in \omega)_{t \le x_1} P(t, X_2)] \circ (p_1^{1,0}, p_1^{1,0})$$

por lo tanto, por el **Lemma 39** M(P) es \emptyset -PR.

Veamos que para cada $(z, x) \in \omega^2$, tenemos que:

$$M(P)(z,x) = \min_t (t \text{ es primo } \land t > z) \le z! + 1$$

Sea p primo tal que p divide a z! + 1, luego p > z. Esto nos dice que:

$$\min_{t} (t \text{ es primo } \land t > z) \le p \le z! + 1$$

Luego, $f = \lambda zx [z! + 1]$ y utilizando el **Lemma 43** tenemos que M(P) es \emptyset -PR.

Lemma 44. Las funciones $\lambda xi[(x)_i]$ y $\lambda x[Lt(x)]$ son \emptyset -PR.

Lemma 45. Este lema no se evalua.

Lemma 46. Supongamos que $\Sigma \neq \emptyset$. Sea < un orden total estricto sobre Σ . Sean $n, m \geq 0$ y sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado Σ -PR, entonces:

- a) $M^{<}(P)$ es Σ -R.
- b) Si existe una función Σ -PR $f: \omega^n \times \Sigma^{*m} \to \omega$ tal que:

$$|M^{<}(P)(\vec{x},\vec{\alpha})| = |\min_{\alpha}^{<} P(\vec{x},\vec{\alpha},\alpha)| \le f(\vec{x},\vec{\alpha})$$

para cada $(\vec{x}, \vec{\alpha}) \in D_{M^{\leq}(P)}$ entonces $M^{\leq}(P)$ es Σ -PR.

Lemma 47. Este lema no se evalua.

Lemma 48. Este lema no se evalua.

Lemma 49. Este lema no se evalua.

Theorem 50. Sean Σ y Γ alfabetos cualesquiera.

- a) Supongamos una función f es Σ -mixta y Γ -mixta, entonces f es Σ -R (respectivamente Σ -PR) sii f es Γ -R (respectivamente Γ -PR).
- b) Supongamos un conjunto S es Σ -mixto y Γ -mixto, entonces S es Σ -PR sii S es Γ -PR.

4 El lenguaje S^{Σ}

Theorem 51. Sea $S \subseteq \omega^n \times \Sigma^{*m}$, entonces S es Σ -efectivamente enumerable $\Leftrightarrow S$ es Σ -recursivamente enumerable.

 $Proof. \implies$ Use la Tesis de Church.

Use el Theorem 42. □

Corollary 52. Supongamos $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva $y S \subseteq D_f$ es Σ -RE, entonces $f|_S$ es Σ -recursiva.

Proof. Supongamos $O = \Sigma^*$. Por el **Teorema 71** $S = D_g$, para alguna función Σ-recursiva g. Nótese que componiendo adecuadamente podemos suponer que $I_g = \{\varepsilon\}$. O sea que tenemos $f \mid_{S} = \lambda \alpha \beta \mid \alpha \beta \mid \circ (f, g)$.

Corollary 53. Este corolario no se evalua.

Corollary 54. Supongamos $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son conjuntos Σ -RE, entonces $S_1 \cap S_2$ es Σ -RE.

Proof. Por el **Teorema 71** $S_i = D_{g_i}$, con g_1, g_2 funciones Σ -recursivas. Nótese que podemos suponer que $I_{g_1}, I_{g_2} \subseteq \Sigma^*$ por lo que $S_1 \cap S_2 = D_{\lambda \alpha \beta [\alpha \beta] \circ (g_1, g_2)}$ es Σ -r.e..

Corollary 55. Supongamos $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son conjuntos Σ -RE, entonces $S_1 \cup S_2$ es Σ -RE.

Proof. Supongamos $S_1 \neq \emptyset \neq S_2$. Sean $F,G: \omega \to \omega^n \times \Sigma^{*m}$ tales que $I_F = S_1$, $I_G = S_2$ y las funciones F_i 's y G_i 's son Σ -recursivas. Sean $f = \lambda x [Q(x,2)]$ y $g = \lambda x [Q(x-1,2)]$. Sea $H: \omega \to \omega^n \times \Sigma^{*m}$ dada por

$$H_i = (F_i \circ f)|_{\{x:x \text{ es par}\}} \cup (G_i \circ g)|_{\{x:x \text{ es impar}\}}$$

Por el Corollary 72 (restriccion de una funcion) y el Lemma 68 (union de funciones), cada H_i es Σ -recursiva. Ya que $I_H = S_1 \cup S_2$. tenemos que $S_1 \cup S_2$ es Σ -r.e.

Theorem 56. Sea $S \subseteq \omega^n \times \Sigma^{*m}$, entonces S es Σ -efectivamente computable $\Leftrightarrow S$ es Σ recursivo.

Proof. (\Rightarrow) Use la Tesis de Church.

$$(\Leftarrow)$$
 Use el Teorema 42. □

Theorem 57. Sea $S \subseteq \omega^n \times \Sigma^{*m}$, son equivalentes:

- a) S es Σ -recursivo.
- b) $S y (\omega^n \times \Sigma^{*m}) S son \Sigma$ -recursivamente enumerables.

Proof. (a) \Rightarrow (b). Note que $S = D_{Pred \circ \chi_S}$. Luego, por **Teorema 71** S es Σ -recursivamente enumerable. De igual manera podemos ver que $(\omega^n \times \Sigma^{*m}) - S = D_{Pred} \circ \chi_{(\omega^n \times \Sigma^{*m}) - S}$ es Σ recursivamente enumerable. Donde $\chi_{(\omega^n \times \Sigma^{*m})-S} = \lambda xy [x - y] \circ (C_1^{1,0}, \chi_S)$ (b) \Rightarrow (a). Note que $\chi_S = C_1^{n,m}|_S \cup C_0^{n,m}|_{\omega^n \times \Sigma^{*m}-S}$.

(b)
$$\Rightarrow$$
(a). Note que $\chi_S = C_1^{n,m}|_S \cup C_0^{n,m}|_{\omega^n \times \Sigma^{*m} - S}$.

Lemma 58. Supongamos que $\Sigma_p \subseteq \Sigma$, entonces:

$$A = \left\{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : Halt^{\Sigma}(\mathcal{P}) \right\}$$

es Σ -RE y no es Σ -recursivo. Más aán el conjunto:

$$N = \left\{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : \neg Halt^{\Sigma}(\mathcal{P}) \right\}$$

no es Σ -RE.

Proof. Sea $P = \lambda t \mathcal{P}[i^{0,1}(t,\mathcal{P},\mathcal{P}) = n(\mathcal{P}) + 1]$. Note que P es Σ -PR. por lo que M(P) es Σ -r.. Ademas note que $D_{M(P)} = A$, lo cual implica que A es Σ -r.e.. Ya que $Halt^{\Sigma}$ es no Σ -recursivo por **Lemma 69** y

$$Halt^{\Sigma} = C_1^{0,1} \mid_A \cup C_0^{0,1} \mid_N$$

el Lemma 68 nos dice que N no es Σ -r.e.. Finalmente supongamos A es Σ -recursivo. Entonces el conjunto

$$N = (\Sigma^* - A) \cap \operatorname{Pro}^{\Sigma}$$

debería serlo, lo cual es absurdo.

Máquinas de Turing 5

Lemma 59. Este lemma no se evalua.

Lemma 60. El predicado $\lambda ndd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR.

Proof. Note que $D_{\lambda dd'[d \vdash d']} = Des \times Des$. También nótese que los predicados

$$\lambda q \sigma p \gamma [(q, \sigma, L) \in \delta(p, \gamma)]$$
$$\lambda q \sigma p \gamma [(q, \sigma, R) \in \delta(p, \gamma)]$$
$$\lambda q \sigma p \gamma [(q, \sigma, K) \in \delta(p, \gamma)]$$

son $(\Gamma \cup Q)$ -PR. ya que los tres tienen dominio igual a $Q \times \Gamma \times Q \times \Gamma$ el cual es finito por **Corolario 36**. Sea $P_R: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$ definido por $P_R(d, d', \sigma, \alpha, \beta, p, q) = 1$ sii

$$d = \alpha p \beta \wedge (q, \sigma, R) \in \delta \left(p, [\beta B]_1 \right) \wedge d' = \alpha \sigma q^{\smallfrown} \beta$$

Sea $P_L: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$ definido por $P_L(d, d', \sigma, \alpha, \beta, p, q) = 1$ sii $d = \alpha p \beta \wedge (q, \sigma, L) \in \delta(p, \lceil \beta B \rceil_1) \wedge \alpha \neq \varepsilon \wedge d' = \left| \alpha {}^{\frown} q \lceil \alpha \rceil_{|\alpha|} \sigma {}^{\frown} \beta \right|$

$$(\alpha \quad \alpha p p \land (q, \sigma, D) \subset \sigma(p, [pD]]) \land (\alpha \land \sigma \land \sigma \land \alpha \land [\alpha \mid q \mid \alpha \mid |\alpha| \mid \sigma \mid p)]$$

Sea $P_K: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$ definido por $P_K(d, d', \sigma, \alpha, \beta, p, q) = 1$ sii

$$d = \alpha p \beta \wedge (q, \sigma, K) \in \delta \left(p, \left[\beta B \right]_1 \right) \wedge d' = \left\lfloor \alpha q \sigma^{\smallfrown} \beta \right\rfloor$$

Veamos que P_L es $(\Gamma \cup Q)$ -PR. Notar que

$$P_L = P_1 \wedge P_2 \wedge P_3 \wedge P_4$$

donde P_1, P_2, P_3, P_4 son los siguientes predicados

$$\begin{split} P_1 &= \lambda dd' \sigma \alpha \beta pq \left[d = \alpha p \beta \right] \\ &= \lambda \alpha \beta \left[\alpha = \beta \right] \circ \left(p_1^{0,7}, \lambda \alpha_1 \alpha_2 \alpha_3 \left[\alpha_1 \alpha_2 \alpha_3 \right] \circ \left(p_4^{0,7}, p_6^{0,7}, p_5^{0,7} \right) \right) \end{split}$$

$$\begin{split} P_{2} &= \lambda dd' \sigma \alpha \beta pq \left[(q, \sigma, L) \in \delta \left(p, [\beta B]_{1} \right) \right] \\ &= \lambda q \sigma p\gamma \left[(q, \sigma, L) \in \delta (p, \gamma) \right] \circ \left(p_{7}^{0,7}, p_{3}^{0,7}, p_{6}^{0,7}, \lambda i\alpha \left[[\alpha]_{i} \right] \circ \left(C_{1}^{0,7}, \lambda \alpha \beta \left[\alpha \beta \right] \circ \left(p_{5}^{0,7}, C_{B}^{0,7} \right) \right)) \end{split}$$

$$P_{3} = \lambda dd' \sigma \alpha \beta pq \left[\alpha \neq \varepsilon\right]$$
$$= \neg \lambda \alpha \beta \left[\alpha = \beta\right] \circ (p_{4}^{0,7}, C_{\varepsilon}^{0,7})$$

$$P_{4} = \lambda dd' \sigma \alpha \beta pq \left[d' = \left[\alpha ^{\curvearrowleft} q \left[\alpha \right]_{|\alpha|} \sigma ^{\curvearrowright} \beta \right] \right]$$
$$= \lambda \alpha \beta \left[\alpha = \beta \right] \circ (p_{2}^{0,7}, \lambda \alpha \left[\left[\alpha \right] \right] \circ f)$$

donde

$$f = \lambda \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \left[\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5\right] \circ \left(\lambda \alpha \left[\alpha^{\curvearrowleft}\right] \circ p_4^{0,7}, p_7^{0,7}, \lambda i \alpha \left[\left[\alpha\right]_i\right] \circ \left(\lambda \alpha \left[\left|\alpha\right|\right] \circ p_4^{0,7}, p_4^{0,7}, p_3^{0,7}, \lambda \alpha \left[^{\curvearrowright}\alpha\right] \circ p_5^{0,7}\right)$$

Luego, es facil ver que P_1, P_2, P_3, P_4 son $(\Gamma \cup Q)$ -PR, por lo tanto P_L es $(\Gamma \cup Q)$ -PR. De manera similar, podemos ver que P_K y P_R son $(\Gamma \cup Q)$ -PR.

Tomemos el siguiente predicado

$$P = (P_R \vee P_L \vee P_K)$$

Tenemos que P es $(\Gamma \cup Q)$ -PR. Nótese que $\lambda dd' [d \vdash d']$ es igual al predicado

$$\lambda dd' \left[(\exists \sigma \in \Gamma)(\exists \alpha, \beta \in \Gamma^*)(\exists p, q \in Q)(P_R \vee P_L \vee P_K)(d, d', \sigma, \alpha, \beta, p, q) \right]$$

lo cual aplicando 5 veces el **Lema 39** nos dice que $\lambda dd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR. Veamos como El **Lema 39** nos dice que

$$L_1 = \lambda x dd' \sigma \alpha \beta p \left[(\exists q \in Q)_{|q| \le x} P(d, d', \sigma, \alpha, \beta, p, q) \right]$$

es $(\Gamma \cup Q)$ -PR. Como $\beta, \alpha, \sigma, p, q$ son subpalabras de d y d' respectivamente tenemos que $|\beta|, |\alpha|, |p|, |q| \leq |d| + |d'|$. Lo cual nos dice que el predicado Q_1 es $(\Gamma \cup Q)$ -PR.

$$Q_{1} = \lambda dd' \sigma \alpha \beta p \left[(\exists q \in Q)_{|q| \leq |d| + |d'|} P(d, d', \sigma, \alpha, \beta, p, q) \right]$$

$$= L_{1} \circ (\lambda xy \left[x + y \right] \circ (\lambda \alpha \left[|\alpha| \right] \circ (p_{1}^{0,6}), \lambda \alpha \left[|\alpha| \right] \circ (p_{2}^{0,6})), p_{1}^{0,6}, p_{2}^{0,6}, p_{3}^{0,6}, p_{4}^{0,6}, p_{5}^{0,6}, p_{6}^{0,6})$$

De misma manera podemos que el predicado Q_2 es $(\Gamma \cup Q)$ -PR.

$$L_2 = \lambda x dd' \sigma \alpha \beta \left[(\exists p \in Q)_{|p| \le x} Q_1(d, d', \sigma, \alpha, \beta, p) \right]$$

$$Q_{2} = \lambda dd' \sigma \alpha \beta \left[(\exists p \in Q)_{|p| \leq |d| + |d'|} Q_{1}(d, d', \sigma, \alpha, \beta, p) \right]$$

= $L_{2} \circ (\lambda xy \left[x + y \right] \circ (\lambda \alpha \left[|\alpha| \right] \circ (p_{1}^{0,5}), \lambda \alpha \left[|\alpha| \right] \circ (p_{2}^{0,5})), p_{1}^{0,5}, p_{2}^{0,5}, p_{3}^{0,5}, p_{4}^{0,5}, p_{5}^{0,5})$

finalmente, tenemos que Q_3, Q_4, Q_5 es $(\Gamma \cup Q)$ -PR

$$L_3 = \lambda x dd' \sigma \alpha \left[(\exists \beta \in \Gamma^*)_{|\beta| \le x} Q_2(d, d', \sigma, \alpha, \beta) \right]$$

$$Q_{3} = \lambda dd' \sigma \alpha \left[(\exists \beta \in \Gamma^{*})_{|\beta| \leq |d| + |d'|} Q_{2}(d, d', \sigma, \alpha, \beta) \right]$$

= $L_{3} \circ (\lambda xy \left[x + y \right] \circ (\lambda \alpha \left[|\alpha| \right] \circ (p_{1}^{0,4}), \lambda \alpha \left[|\alpha| \right] \circ (p_{2}^{0,4})), p_{1}^{0,4}, p_{2}^{0,4}, p_{3}^{0,4}, p_{4}^{0,4})$

$$L_4 = \lambda x dd' \sigma \left[(\exists \alpha \in \Gamma^*)_{|\alpha| \le x} Q_3(d, d', \sigma, \alpha) \right]$$

$$Q_4 = \lambda dd' \sigma \left[(\exists \alpha \in \Gamma^*)_{|\alpha| \le |d| + |d'|} Q_3(d, d', \sigma, \alpha) \right]$$

= $L_4 \circ (\lambda xy [x + y] \circ (\lambda \alpha [|\alpha|] \circ (p_1^{0,3}), \lambda \alpha [|\alpha|] \circ (p_2^{0,3})), p_1^{0,3}, p_2^{0,3}, p_3^{0,3})$

$$L_5 = \lambda x dd' \left[(\exists \sigma \in \Gamma)_{|\sigma| \le x} Q_4(d, d', \sigma) \right]$$

$$Q_{5} = \lambda dd' \left[(\exists \sigma \in \Gamma)_{|\sigma| \leq |d| + |d'|} Q_{4}(d, d', \sigma) \right]$$

= $L_{5} \circ (\lambda xy [x + y] \circ (\lambda \alpha [|\alpha|] \circ (p_{1}^{0,2}), \lambda \alpha [|\alpha|] \circ (p_{2}^{0,2})), p_{1}^{0,2}, p_{2}^{0,2},)$

Notar que $Q_5 = \lambda dd' [d \vdash d']$. Por lo tanto, $\lambda dd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR.

Proposition 61. $\lambda ndd' \left[d \stackrel{n}{\vdash} d' \right] es (\Gamma \cup Q)-PR.$

Theorem 62. Sea $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ una máquina de Turing, entonces L(M) es Σ -recursivamente enumerable.

Proof. Sea P el siguiente predicado $(\Gamma \cup Q)$ -mixto

$$P = \lambda n\alpha \left[(\exists d \in Des) \ \lfloor q_0 B\alpha \rfloor \stackrel{n}{\vdash} d \wedge St(d) \in F \right]$$

Nótese que $D_P = \omega \times \Gamma^*$. Veamos que P es $(\Gamma \cup Q)$ -PR. Para ello definamos

$$P = P_1 \wedge P_2$$

donde P_1 y P_2

$$P_1 = \lambda n\alpha [(\exists d \in Des) \ Q(n, \alpha, d)]$$

$$Q = \lambda n\alpha d \left[\lfloor q_0 B\alpha \rfloor \stackrel{n}{\vdash} d \right]$$

$$= \lambda ndd' \left[d \stackrel{n}{\vdash} d \right] \circ (\lambda \alpha \left[\lfloor \alpha \rfloor \right] \circ (\lambda \alpha \beta \left[\alpha \beta \right] \circ (C_{q_0 B}^{1,2}, p_2^{1,2})), p_1^{1,2})$$

$$P_2 = \lambda n\alpha \left[St(d) \in F \right]$$

Sabemos que el conjunto F es finito, por Corollary 30 (finito es PR), F es $(\Gamma \cup Q)$ -PR. Tambien sabemos que χ_F es $(\Gamma \cup Q)$ -PR, por lo tanto el predicado P_2 es $(\Gamma \cup Q)$ -PR. Por Lema 39 sabemos que

$$L = \lambda x n \alpha \left[(\exists d \in Des)_{|d| \le x} \ Q(n, \alpha, d) \right]$$

es $(\Gamma \cup Q)$ -PR. Es decir que solo nos falta acotar el cuantificador existencial, para poder aplicar el **Lema 39** de cuantificación acotada. Ya que cuando $d_1, ..., d_{n+1} \in Des$ son tales que $d_1 \vdash d_2 \vdash ... \vdash d_{n+1}$ tenemos que

$$|d_i| \le |d_1| + n$$
, para $i = 1, ..., n$

una posible cota para dicho cuantificador es

$$|d| < ||q_0 B\alpha|| + n$$

O sea que, por el **Lema 39** de cuantificacion acotada, tenemos que el predicado P_1 es $(\Gamma \cup Q)$ -PR. En definitiva P es $(\Gamma \cup Q)$ -PR. Sea

$$P' = P \mid_{\omega \times \Sigma^*}$$
.

Nótese que $P'(n,\alpha) = 1$ sii $\alpha \in L(M)$ atestiguado por una computación de longitud n. Por **Corollary 72** (restriccion de una funcion) P' es $(\Gamma \cup Q)$ -PR, y ademas es Σ -mixto. El **Teorema 51** (independencia del alfabeto) nos dice que P' es Σ -PR. Ya que $L(M) = D_{M(P')}$, el **Teorema 71** nos dice que L(M) es Σ -r.e.

Theorem 63. Supongamos $f: S \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -Turing computable, entonces f es Σ -recursiva.

Proof. Supongamos $O=\Sigma^*$ y sea $M=(Q,\Sigma,\Gamma,\delta,q_0,B,\iota,F)$ una máquina de Turing determinística con unit la cual compute a f. Sea < un orden total estricto sobre $\Gamma\cup Q$. Sea $P:\mathbf{N}\times\omega^n\times\Sigma^{*m}\to\omega$ dado por $P(x,\vec{x},\vec{\alpha})=1$ sii

$$(\exists q \in Q) \ \lfloor q_0 B \mid^{x_1} \dots B \mid^{x_n} B\alpha_1 \dots B\alpha_m \rfloor \stackrel{(x)_1}{\vdash} \lfloor q B *^{<} ((x)_2) \rfloor \land (\forall d \in Des)_{|d| \leq |*^{<} ((x)_2)| + 2} \ \lfloor q B *^{<} ((x)_2) \rfloor \not\vdash d$$

Es fácil ver que P es $(\Gamma \cup Q)$ -PR. Tomemos predicados P_1 y P_2 tales que

$$P = P_1 \wedge P_2$$

$$P_{1} = \lambda x \vec{x} \vec{\alpha} \left[(\exists q \in Q) \left\lfloor q_{0} B \right\rfloor^{x_{1}} \dots B \right\rfloor^{x_{n}} B \alpha_{1} \dots B \alpha_{m} \right] \vdash \left\lfloor q B *^{<} ((x)_{2}) \right\rfloor \right]$$

$$P_{2} = \lambda x \vec{x} \vec{\alpha} \left[(\forall d \in Des)_{|d| \leq |*^{<} ((x)_{2})| + 2} \left\lfloor q B *^{<} ((x)_{2}) \right\rfloor \not\vdash d \right]$$

Si tomamos Q_1 y Q_2 como

$$Q_1 = \lambda x \vec{x} \vec{\alpha} q \left[\left[q_0 B \right]^{x_1} \dots B \right]^{x_n} B \alpha_1 \dots B \alpha_m \right] \stackrel{(x)_1}{\vdash} \left[q B *^< ((x)_2) \right]$$

$$Q_2 = \lambda x \vec{x} \vec{\alpha} d \left[\left| q B *^< ((x)_2) \right| \not\vdash d \right]$$

Tenemos que

$$P_1 = \lambda x \vec{x} \vec{\alpha} \left[(\exists q \in Q) \ Q_1(x, \vec{x}, \vec{\alpha}, q) \right]$$

$$P_2 = \lambda x \vec{x} \vec{\alpha} \left[(\forall d \in Des)_{|d| \le |*^<((x)_2)|+2} \ Q_2(x, \vec{x}, \vec{\alpha}, d) \right]$$

Es facil ver que Q_1 y Q_2 son $(\Gamma \cup Q)$ -PR.

Aplicando el **Lema 39** de cuantificación acotada tenemos que P_1 y P_2 son $(\Gamma \cup Q)$ -PR. Finalmente, P es $(\Gamma \cup Q)$ -PR.

Ya que es Σ -mixto, el **Teorema 51** (independencia del alfabeto) nos dice que es Σ -PR. Nótese que

$$f = \lambda \vec{x} \vec{\alpha} \left[\left(\min_{x} P(x, \vec{x}, \vec{\alpha}) \right)_{2} \right],$$

lo cual nos dice que f es $\Sigma\text{-recursiva}.$

Lemma 64. Sea $\mathcal{P} \in \operatorname{Pro}^{\Sigma} y$ sea k tal que las variables que ocurren en \mathcal{P} están todas en la lista $N1, \ldots, N\bar{k}, P1, \ldots, P\bar{k}$. Para cada $a \in \Sigma \cup \{i\}$, sean:

- ã un nuevo símbolo
- $\Gamma = \Sigma \cup \{B, I\} \cup \{\tilde{a} : a \in \Sigma \cup \{I\}\}\$

entonces hay una máquina de Turing determinística con unit $M=(Q,\Gamma,\Sigma,\delta,q_0,B,I,\{q_f\})$ la cual satisface:

- 1. $\delta(q_f, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$.
- 2. Cualesquiera sean $x_1, \ldots, x_k \in \omega$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$, el programa \mathcal{P} se detiene partiendo del estado:

$$((x_1,\ldots,x_k,0,\ldots),(\alpha_1,\ldots,\alpha_k,\varepsilon,\ldots))$$

sii M se detiene partiendo de la descripción instantánea:

$$|q_0B|^{x_1}B\dots B|^{x_k}B\alpha_1B\dots B\alpha_kB|$$

3. Si $x_1, \ldots, x_k \in \omega$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$ son tales que \mathcal{P} se detiene partiendo del estado:

$$((x_1,\ldots,x_k,0,\ldots),(\alpha_1,\ldots,\alpha_k,\varepsilon,\ldots))$$

y llega al estado

$$((y_1,\ldots,y_k,0,\ldots),(\beta_1,\ldots,\beta_k,\varepsilon,\ldots))$$

entonces

$$\lfloor q_0 B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k B \rfloor \stackrel{*}{\vdash} \lfloor q_f B \mid^{y_1} B \dots B \mid^{y_k} B \beta_1 B \dots B \beta_k B \rfloor$$

Proof. Dado un estado $((x_1, ..., x_k, 0, ...), (\alpha_1, ..., \alpha_k, \varepsilon, ...))$ lo representaremos en la cinta de la siguiente manera

$$B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_k BBBB \dots$$

A continuación describiremos una serie de maquinas las cuales simularan, vía la representación anterior, las distintas clases de instrucciones que pueden ocurrir en \mathcal{P} . Todas las maquinas definidas tendrán a Γ como unit y a Γ como blanco, tendrán a Γ como su alfabeto terminal y su alfabeto mayor sera $\Gamma = \Gamma \cup \{B, I\} \cup \{\tilde{a} : a \in \Gamma \cup \{I\}\}\}$. Ademas tendrán uno o dos estados finales con la propiedad de que si Γ es un estado final, entonces Γ 0, para cada Γ 1. Esta propiedad es importante ya que nos permitirá concatenar pares de dichas maquinas identificando algún estado final de la primera con el inicial de la segunda.

Para $1 \le i \le k$, sea M_i^+ una máquina tal que

Es claro que la máquina M_i^+ simula la instrucción $N\bar{\imath} \leftarrow N\bar{\imath} + 1$.

Para $1 \leq i \leq k$, sea M_i^- una máquina tal que

Para $1 \leq i \leq k$ y $a \in \Sigma$, sea M_i^a una máquina tal que

Para $1 \leq i \leq k$, sea M_i^{\frown} una máquina tal que

Para j=1,...,k, y $a\in\Sigma,$ sea IF_j^a una máquina con dos estados finales q_{si} y q_{no} tal que si α_j comienza con a, entonces

y en caso contrario

Análogamente para j = 1, ..., k, sea IF_j una máquina tal que si $x_j \neq 0$, entonces

y si $x_j = 0$, entonces

Para $1 \leq i, j \leq k$, sea $M^*_{i \leftarrow j}$ una máquina tal que

Para $1 \leq i, j \leq k$, sea $M_{i \leftarrow j}^{\#}$ una máquina tal que

Para $1 \le i \le k$, sea $M_{i \leftarrow 0}$ una máquina tal que

Para $1 \le i \le k$, sea $M_{i \leftarrow \varepsilon}$ una máquina tal que

Sea

$$M_{\text{SKIP}} = (\{q_0, q_f\}, \Gamma, \Sigma, \delta, q_0, B, I, \{q_f\}),$$
 con $\delta(q_0, B) = \{(q_f, B, K)\}$ y $\delta = \emptyset$ en cualquier otro caso.

Finalmente sea

$$M_{\text{GOTO}} = \left(\{q_0, q_{si}, q_{no}\}, \Gamma, \Sigma, \delta, q_0, B, \mathbf{1}, \{q_{si}, q_{no}\}\right),$$

con $\delta(q_0, B) = \{(q_{si}, B, K)\}$ y $\delta = \emptyset$ en cualquier otro caso.

Para poder hacer concretamente las maquinas recién descriptas deberemos diseñar antes algunas máquinas auxiliares. Para cada $j \geq 1$, sea D_j la máquina descripta en la Figura 1. Notese que

$$\alpha B \beta_1 B \beta_2 B ... B \beta_j B \gamma \stackrel{*}{\vdash} \alpha B \beta_1 B \beta_2 B ... B \beta_j B \gamma
\uparrow \qquad \uparrow \qquad \qquad \uparrow
q_0 \qquad q_f$$

siempre que $\alpha, \gamma \in \Gamma^*$, $\beta_1, ..., \beta_j \in (\Gamma - \{B\})^*$. Analogamente tenemos definidas las maquinas I_i .

Para $j\geq 1,$ sea TD_j una máquina con un solo estado final q_f y tal que

$$\begin{array}{ccc}
\alpha B \gamma & \stackrel{*}{\vdash} & \alpha B B \gamma \\
\uparrow & & \uparrow \\
q_0 & q_f
\end{array}$$

cada vez que $\alpha, \gamma \in \Gamma^*$ y γ tiene exactamente j ocurrencias de B. Es decir la máquina TD_j corre un espacio a la derecha todo el bloque γ y agrega un blanco en el espacio que se genera a la izquierda de dicho bloque. Por ejemplo, para el caso de $\Sigma = \{\&\}$ podemos tomar TD_3 igual a la máquina de la Figura 3.

Análogamente, para $j \geq 1$, sea TI_j una máquina tal que

$$\begin{array}{cccc}
\alpha B \sigma \gamma & \stackrel{*}{\vdash} & \alpha B \gamma \\
\uparrow & & \uparrow \\
q_0 & & q_f
\end{array}$$

cada vez que $\alpha \in \Gamma^*$, $\sigma \in \Gamma$ y γ tiene exactamente j ocurrencias de B. Es decir la máquina TI_j corre un espacio a la izquierda todo el bloque γ (por lo cual en el lugar de σ queda el primer símbolo de γ). Teniendo las maquinas auxiliares antes definidas podemos combinarlas para obtener las maquinas simuladoras de instrucciones. Por ejemplo M_i^a puede ser la máquina descripta en la Figura 4. En la Figura 2 tenemos una posible forma de diseñar la máquina IF_i^a . En la Figura 7 tenemos una posible forma de diseñar la máquina $M_{i \leftarrow j}^*$ para el caso $\Sigma = \{a, b\}$ y i < j.

Supongamos ahora que $\mathcal{P} = I_1...I_n$. Para cada i = 1,...,n, definiremos una máquina M_i que simulara la instrucción I_i . Luego uniremos adecuadamente estas maquinas para formar la máquina que simulara a \mathcal{P}

- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{j} + 1$ tomaremos $M_i = M_j^+$
- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{j} 1$ tomaremos $M_i = M_j^-$
- Si $Bas(I_i) = N\bar{j} \leftarrow 0$ tomaremos $M_i = M_{j \leftarrow 0}$.
- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{m}$ tomaremos $M_i = M_{i \leftarrow m}^{\#}$.
- Si $Bas(I_i) = \text{IF N}\bar{j} \neq 0 \text{ GOTO L}\bar{m} \text{ tomaremos } M_i = IF_j.$
- Si $Bas(I_i) = P\bar{j} \leftarrow P\bar{j}.a$ tomaremos $M_i = M_i^a$.
- Si $Bas(I_i) = P\bar{j} \leftarrow {}^{\smallfrown} P\bar{j}$ tomaremos $M_i = M_i^{\smallfrown}$.
- $Bas(I_i) = P\bar{j} \leftarrow \varepsilon$ tomaremos $M_i = M_{j \leftarrow \varepsilon}$.
- $Bas(I_i) = P\bar{j} \leftarrow P\bar{m} \text{ tomaremos } M_i = M_{i \leftarrow m}^*$.
- $Bas(I_i) = \text{IF P}\bar{j} \text{ BEGINS } a \text{ GOTO L}\bar{m} \text{ tomaremos } M_i = IF_j^a$.
- $Bas(I_i) = SKIP \text{ tomaremos } M_i = M_{SKIP}.$
- $Bas(I_i) = GOTO L\bar{m} \text{ tomaremos } M_i = M_{GOTO}.$

Ya que la máquina M_i puede tener uno o dos estados finales, la representaremos como se muestra en la Figura 5, entendiendo que en el caso en que M_i tiene un solo estado final, este esta representado por el circulo de abajo a la izquierda y en el caso en que M_i tiene dos estados

finales, el estado final representado con lineas punteadas corresponde al estado q_{si} y el otro al estado q_{no} .

Para armar la máquina que simulara a \mathcal{P} hacemos lo siguiente. Primero unimos las maquinas $M_1, ..., M_n$ como lo muestra la Figura 6. Luego para cada i tal que $Bas(I_i)$ es de la forma α GOTO $L\bar{m}$, ligamos con una flecha de la forma

el estado final q_{si} de la M_i con el estado inicial de la M_h , donde h es tal que I_h es la primer instrucción que tiene label $L\bar{m}$. Es intuitivamente claro que la máquina así obtenida cumple con lo requerido aunque una Proof formal de esto puede resultar extremadamente tediosa.

Theorem 65. Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva, entonces f es Σ -Turing computable.

Proof. Supongamos $O = \Sigma^*$. Ya que f es Σ -computable, existe $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ el cual computa f. Note que podemos suponer que \mathcal{P} tiene la propiedad de que cuando \mathcal{P} termina, en el estado alcanzado las variables numéricas tienen todas el valor 0 y las alfabéticas distintas de P1 todas el valor ε . Sea M la máquina de Turing con unit dada por el lema anterior, donde elegimos el numero k con la propiedad adicional de ser mayor que n y m. Sea M_1 una máquina tal que para cada $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$,

$$\lfloor q_0 B \mid^{x_1} B...B \mid^{x_n} B\alpha_1 B...B\alpha_n B \rfloor \stackrel{*}{\vdash} \lfloor q B \mid^{x_1} B...B \mid^{x_n} B^{k-n} B\alpha_1 B...B\alpha_m B \rfloor$$

donde q_0 es el estado inicial de M_1 y q es un estado tal que $\delta(q, \sigma) = \emptyset$, para cada σ . Sea M_2 una máquina tal que para cada $\alpha \in \Sigma^*$,

$$|q_0B^{k+1}\alpha| \stackrel{*}{\vdash} \lfloor qB\alpha \rfloor$$

donde q_0 es el estado inicial de M_2 y q es un estado tal que $\delta(q,\sigma)=\emptyset$, para cada σ . Note que la concatenación de M_1 , M y M_2 (en ese orden) produce una máquina de Turing la cual computa f.

Theorem 66. Este teorema no se evalua.

References

- [1] DIEGO VAGGIONE, «Apunte de Clase, 2017», FaMAF, UNC.
- [2] AGUSTÍN CURTO, «Carpeta de Clase, 2017», FaMAF, UNC.

Por favor, mejorá este documento en github https://github.com/acurto714/resumenLengForm