Аппаратные средства телекоммуникационных систем

Лекция 3. Модель памяти процессоров

Типы организации памяти процессора

Лекция 3. Модель памяти процессоров

Аппаратные средства телекоммуникационных систем

Модель памяти процессора

- Модель памяти процессора метод организации пространства ОЗУ (доступа к памяти) с аппаратной и/ или программной точки зрения.
- Плоская модель памяти это метод организации адресного пространства оперативной памяти, в котором программная память и память данных находятся в одном адресном пространстве (*Используется в современных ЭВМ*).
 - —Для 16-битных процессоров плоская модель памяти позволяет адресовать 64 кБ оперативной памяти; для 32-битных процессоров 4 ГБ, для 64-битных до 16 эксабайт (для amd64 размер ограничен 256 ТБ).
 - Например адресное пространство для 32 битного режима будет состоять из 2^32 ячеек памяти пронумерованных от 0 и до 2^32-1

Модель памяти процессора

- Сегментная модель памяти (модель адресации памяти) модель в которой память разбита на сегменты, каждый из которых характеризуется своим функционалом
- В общем случае каждый сегмент имеет свою цель: стек, данные, программы.
- Также память может быть разбита на сегменты по уровню доступа (ОС, приложения, драйвера и тп)
- Каждый такой сегмент имеет свои настройки и права доступа

Модель памяти процессора

- Виртуальная память модель памяти ПК, в которой процессор работает с виртуальной памятью, транслируемой в физические адреса устройством управления памятью (MMU).
 - Преимущество виртуальное расширение ОЗУ за счет файла подкачки.
- Страничная виртуальная модель памяти способ организации виртуального адресного пространства, в котором единицей отображения виртуального адреса в физический является область фиксированного размера (страница).
 - Страницы могут быть не только в ОЗУ, но и сброшены в файл подкачки на жесткий диск.
 - Физический адрес = адрес страницы + смещение внутри нее.
 - Организацией работы страниц занимается операционная система.

Модель памяти процессора. Особые виды памяти

- Регистровая память набор регистров процессора, ячейки памяти в самом процессоре.
 - Basic program registers (Основные программные регистры) это для обслуживания процессора и обработки целочисленных данных. Floating Point Unit registers (FPU, X87) это набор регистров для работы с данными в формате с плавающей точкой.
 - **MMX и XMM registers** это регистры для систематизированной обработки увеличенного количества операндов.
 - Когда процессор совершает какие-то операции со значением или с памятью, он берет эти значения непосредственно из регистров или из стека.
- **Стек** специальный раздел оперативной памяти, предназначенный для быстрого безадресного доступа к элементам (по принципу last input first output).

Особенности сегментов памяти

Лекция 3. Модель памяти процессоров

Аппаратные средства телекоммуникационных систем

Модель памяти процессора. Сегменты памяти

Логически память разделена на 3 основных сегмента памяти.

- **CS сегмент кода**, содержит машинные команды (проргамму);
- **DS сегмент данных** содержит данные, то есть константы и рабочие области, необходимые программе;
- **SS сегмент стека** содержит адреса возврата в точку вызова подпрограмм.
- адресу определенному ОС.

Модель памяти процессора. Сегменты памяти

 При записи команд на языке Ассемблера принято указывать адреса с помощью следующей конструкции:

<адрес сегмента>:<смещение> или <сегментный регистр>:<адресное выражение>

• За распределение сегментов, их начальный (базовый) адрес и их размер отвечает дескриптор сегментов — 64 бита памяти, расположенных по адресу определенному ОС.

• В современных системах базовые адреса всех сегментов могут быть одним нулевым адресом (то есть ОС сама распределяет где какой

сегмент будет сама).

Модель памяти процессора. Стек

- Стек располагается в оперативной памяти в сегменте стека, и поэтому адресуется относительно сегментного регистра SS.
- Ширина стека называется размер элементов, которые можно помещать в него или извлекать.
- Чаще всего ширина стека равна двум байтам 16 бит.
- Регистр SP (указатель стека) содержит адрес последнего добавленного элемента - вершина стека. Противоположный конец стека называется дном.
- Дно стека находится в верхних адресах памяти. При добавлении новых элементов в стек значение регистра SP уменьшается, то есть стек растёт в сторону младших адресов.
- При добавлении значения в стек регистр SP повышается на 2 при выборке значения понижается.

Модель памяти процессора. Стек

- Стек расположен в оперативной памяти, каждый элемент занимает одно слово
- ESP хранит адрес вершины стека
- ЕВР хранит адрес начала стекового фрейма
- SS регистр, хранит селектор стека
- Стек растет от старших адресов к младшим (LIFO)

Модель памяти процессора. Стек

- Стек служит для загрузки каких-то данных в процессе работы, например при вызове прерывания в стек помещают значения счетчика команд и последних операндах и результате работы АЛУ.
- Стек используется для организации многопоточной системы при переключении между потоками состояние каждого процесса (потока) сохраняется в стеке.
- Из сказанного очевидно, что стек позволяет организовать рекурсии, деревья, графы и т.д.
- В современных соглашениях о вызове подпрограмм (напр., fastcall и stdcall) стек используется для передачи большого числа аргументов в подпрограмму. В случае fastcall также и через регистры (1-4 аргументы для AMD64).

Особенности страничной организации виртуальной памяти

Лекция 3. Модель памяти процессоров

Аппаратные средства телекоммуникационных систем

- Страничная организация памяти способ организации виртуальной памяти, при котором единицей отображения (трансляции) виртуальных адресов на физические является регион постоянного размера (т. н. страница).
 - —Страничная организация включается/выключается в регистре CRO.
 - **в 32-х битных системах (т.н. защищенный режим)** доступ к 4 ГБ виртуальной памяти.
 - —**в 64-х битных системах (Расширенный режим)** доступ к 64 ГБ памяти.

- Типичные размеры страницы 4 кБ и 4 Мб, 2 Мб (в РАЕ), 1 ГБ (long-mode).
 - —Страницы по 4 кБ объединены в таблицу страниц (1024 таблиц), таблицы объединены в каталог страниц(1024 таблицы).
 - —Страницы по 4 МБ таблицы объединяются в каталог страниц.
 - Каталог страниц содержится в CS3 PDBR (Page Directory Base Register).
 - Адрес ячейки = 10(каталог)+10(таблица)+12=32 бита.
 - Режим со страницами по 4МБ PSE, включается отдельно в CS4.
 - <u>Адрес ячейки в РАЕ = 8(указатель</u> каталога)+9(каталог)+9(таблица)+12=36 бит.

Виртуальный адрес страницы и физический могут не совпадать.

- у одной страницы могут быть разные виртуальные адреса и один физический.
- При отсутствии ресурсов в ОЗУ часть страниц могу быть сброшены на жесткий диск пока память в ОЗУ не будет освобождена (файл подкачки).
- Страницы в файле подкачки будут отмечены как отсутствующие, обращение к ним выдаст исключение #PE, в котором ОС должна вернуть страницы в ОЗУ и перегрузить инструкцию обращения.

Модель памяти процессора. Виртуальная память

Устройство управления памятью –ММU – транслирует виртуальные адреса в физические.

- Трансляция полностью аппаратная.
- Виртуальная память как правило страничная.
- Трансляция адресов осуществляется через специальную кэш память TLB.
 - Данная память хранит адреса часто обращаемых виртуальных страниц.

Если адреса нет в TLB, то модуль ММО ищет адрес по всем таблицам страниц каждого процессора.

Для улучшения производительности ММИ таблицы страниц могут кэшироваться

Буфер ассоциативной трансляции

(англ. Translation lookaside buffer, TLB) спец. кэш центрального процессора, используемый для ускорения трансляции адреса виртуальной памяти в адрес физической памяти.

TLB вектор содержит
сопоставления физических и
виртуальных адресов для недавно
использовавшихся страниц и
атрибуты защиты каждой
страницы

Сгенерированный процессором виртуальный адрес

В результате кеширования исключается повторная трансляция страниц при обращении к одинаковым адресам.

 Виртуального адреса в TLB нет для его поиска понадобится несколько обращений к памяти,

• Вирт. Адрес есть - обращение будет сразу.

• TLB может быть многоуровневый промах

 А также разный для разного размера страниц.

Модель памяти процессора. Виртуальная память

В случае нескольких ядер каждое ядро имеет свой TLB

Также возможны отдельные TLB для данных и команд.

Figure 9.21 The Core i7 memory system.

Особенности регистровой памяти

Лекция 3. Модель памяти процессоров

Аппаратные средства телекоммуникационных систем

Модель памяти процессора. Регистровая память IA-32 (X86).

- EAX, EBX, ECX и EDX 32 разрядные GPR
 - (GPR регистры общего назначения);
 - также допустимы регистры 8 и 16 бит
 - **EAX** основной арифметический регистр;
 - ЕВХ предназначен для хранения указателей (адресов памяти);
 - ЕСХ связан с организацией циклов;
 - **EDX** нужен для умножения и деления —вместе с EAX 64-разрядные произведения и делимые.
- ESI и EDI указатели строковых команд:
 - ESI указывает на исходную строку,
 - **EDI** на целевую.
- EBP предназначен для хранения указателей (указатель кадра).
- **ESP** это указатель стека
- EIP счетчик команд
- **EFLAGS** флаговый регистр.
- **CS-GS** сегментные регистры.

[.] Основные регистры процессора Core i7

Модель памяти процессора. Регистровая память. Регистр флагов. Операционные фалги

После выполнения очередной команды процессор сохраняет результат выполнения команды в регистре флагов

Регистр флагов служит для индикации процессору о результате выполнения каждой команды или текущем состоянии программы (напр. о прерываниях).

-EFLAG тоже, что и RFLAG но для 32 бит

- Флаг CF, Carry Flag (бит 0) (флаг переноса для без знаковых чисел)
- Флаг PF, Parity Flag (бит 2) 1 если значение результата АЛУ четное.
- •Флаг AF, Auxiliary Carry Flag (бит 4) перенос для двоично-десятичных чисел
- •Флаг ZF, Zero Flag (бит 6) 1, если результат последней операции 0
- Флаг SF, Sign Flag (бит 7) 1, если результат последней операции <0
- Флаг OF, Overflow Flag (бит 11) 1, если переполнение (перенос знаковых чисел)
- •Флаг DF, Direction Flag (бит 10) 1 авто-декремент (обрабатывать строки от верхнего адреса к нижнему), 0 наоборот.

Модель памяти процессора. Регистровая память. Регистр флагов. Системные флаги

- •Системные флаги не должны изменяться прикладными программами.
- •Флаг TF, Trap Flag (бит 8) 1 для дебага step-to-step.
- •Флаг IF, Interrupt enable flag (бит 9) 1 если процесс в прерывании
- •Поле IOPL, I/O privilege level field (биты 12 и 13) уровень приоритета обрабатываемого устройства В-В
- Флаг NT, Nested task flag (бит 14) 1 если текущая команда связана с предыдущей.
- •Флаг RF, Resume Flag (бит 16) 1 исключения в режиме дебага.
- •Флаг VM, Virtual-8086 mode flag (бит 17) 1 для виртуальной совместимости с 8086.
- •Флаг AC, Alignment check (or access control) flag (бит 18) режим выравнивания бит
- Флаг VIF, Virtual interrupt flag (бит 19) доп. Флаг порываний для предотвращения конфликта прерываний с разными приоритетами.
- •Флаг VIP, Virtual interrupt pending flag (бит 20) 1 если прерывание ожидает (напр. Окончания другого прерывания).
- •Флаг ID, Identification flag (бит 21) поддержка режима получения инф. О процессоре.

Модель памяти процессора. Регистровая память AMD64 (X64)

- 16 регистров общего назначения 64-битные (RAX-RDX~=EAX-EDX);
- 8 128-битных XMM регистров (SSE команды);
- 8 64-битных регистров MMX (3D Now команды)
- специальный режим "Long Mode":
 - до 64-бит виртуальных адресов;
 - 64-битные счетчик команд (RIP);
 - 64 битный регистр флагов RFLAGS

AMD64 имеет 3 режима доступа к памяти:

- реальный режим,
- защищённый режим
- 64-разрядный режим, или long mode

Модель памяти процессора. Виды команд X86-X64

- Команды общего назначения. Основные x86 целочисленные команды.
 - Большинство из них предназначены для загрузки, сохранения, обработки данных, расположенных в регистрах общего назначения или памяти. Некоторые из этих инструкций управляют потоком команд, обеспечивая переход к другому месту в программе.
- х87 команды. Обрабатывают данные в х87 регистрах (FUP сопроцессор).
 - Предназначены для работы с плавающей точкой в х87 приложениях.

Модель памяти процессора. Виды команд X86-X64

- 128-битные медиа-команды. SSE, SSE2 и SSE3 (streaming SIMD extension).
 - Команды предназначенные для загрузки, сохранения, или обработки данных, расположенных в 128-битных XMM регистрах.
 - Команды выполняют операции целочисленные или с плавающей точкой над векторными (упакованными) и скалярными типами данных.
 - Векторные инструкции могут независимо выполнять одну операцию над множеством данных (SIMD) командами.
 - Векторные команды используются для медиа- и научных приложений для обработки блоков данных.
- 64-битные медиа-команды. Multimedia extension (MMX) и 3DNow! команды.
 - Команды сохраняют, восстанавливают и обрабатывают данные, расположенные в 64-битных ММХ регистрах.
 - Команды выполняют операции целочисленные и с плавающей точкой надо векторными (упакованными) и скалярными данными как и XMM.

Режимы работы процессора по принципу организации памяти

Лекция 3. Модель памяти процессоров

Аппаратные средства телекоммуникационных систем

Модель памяти процессора. Режимы работы процессора.

Основные режимы

- **Реальный режим** (при включении, 64 кБ РАМ) и виртуальны 8086 для совместимости с 16 битными приложениями.
- **Защищенный режим** (32 битный, 4 ГБ РАМ) и расширенный (64 ГБ РАМ)
- **Длинный режим** (64 битный, 256 ТБ РАМ) и режим совместимости.

Режимы отличаются:

- методом и уровнями доступа к памяти,
- Допустимым объемом памяти
- Набором команд
- Размером слова

Модель памяти процессора. Виды адресов X86-X64

- Физический адрес это адрес в системной памяти компьютера, именно тот адрес, который выставляется на шину адреса.
- **Логический адрес** адрес с указанием сегмента в формате «сегмент: смещение»
 - сегмент указывается в сегментном регистре (cs, ds, ss) или непосредственно значением (это значение может быть только 16-битным), а адрес в обычном регистре или непосредственно значением (это значение может быть 16-, 32-, 64-битным в зависимости от режима).
 - способ преобразования логического адреса в физический зависит от режима процессора.

Модель памяти процессора. Виды адресов X86-X64

- **Линейный адрес** адрес полученный после преобразования логического адреса
 - После преобразования адреса получается абсолютный 20-, 32-, 64битный адрес (в зависимости от режима); этот адрес называется линейным.
 - В режиме реальных адресов физический адрес сразу выставляется на шину адреса.
- **Виртуальный адрес** линейный адрес, полученный в 64 совместимом режиме при помощи механизма трансляции. (Механизм задается ОС, при отсутствии механизма виртуальный адрес = линейный).

Модель памяти процессора. Режимы работы x86-x64. Реальный режим

- Реальный режим это режим, в который переходит процессор после включения или перезагрузки.
 - -Стандартный 16-разрядный режим,
 - доступно 1 Мб физической памяти и возможности процессора почти не используются
 - —все адреса, к которым обращаются программы, являются физическими, т. е. без какого-либо преобразования будут выставлены на шину адреса.
 - -Размер слова 2 байта (WORD);
 - Вся память делится на сегменты размером 64 Кб;
 - физический_адрес = сегмент * 10h + смещение
 - Смещение 16-бит значение в РОН или const.
 - Первые 1024 байт заняты таблицей порываний (256 адресов подпрограмм прерываний) с нулевого адреса.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим

- Защищённый режим (protected mode, или legacy mode (AMD))— это 32разрядный режим (X86);
 - доступ к 4-гигабайтному адресному пространству,
 - при включении механизма трансляции адресов можно получить доступ к 64 Гб памяти.
 - —В защищённый режим можно перейти только из реального режима (CRO:0).
 - —Размер слова 4 байта, или двойное слово (DWORD double word).
 - —Все операнды, которые выступают как адреса, должны быть 32битными;
 - —Защищенный режим использует страничную модель памяти.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим

- **Защищённый режим (protected mode, или legacy mode (AMD))** это 32-разрядный режим (X86);
 - -За работу защищенного режима отвечает операционная система (OC);
 - —Защищённый режим называется так потому, что позволяет защитить данные операционной системы от приложений,
 - Например часть памяти резервируется по привилегированные данные ОС.
 - В режиме возможна многозадачность.
 - Для каждой задачи выделяется отдельная область виртуальной памяти описываемая дескриптором (адрес начала, размер, особенности доступа).
 - —Если в защищённом режиме происходит нарушение условий защиты, то процессор генерирует специальное прерывание исключение.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим

Особенности защищенного режима:

- Сегментная и страничная адресация памяти. Поддержка динамического размещения процессов в памяти (виртуальной памяти).
- Организация многозадачности аппаратное переключение контекстов процессов при смене процессов операционной системой.
- Защита памяти и программ:
 - контроль обращения программ к памяти и портам ввода-вывода в соответствии с назначенным им операционной системой «уровнем привилегий»;
 - контроль недопустимости использования в прикладных программах «привилегированных команд», разрешенных только для операционной системы;
 - разделение адресных пространств загруженных процессов
 - контроль попыток прикладных программ выйти за пределы своего сегмента;
 - контроль попыток чтения или записи в запрещенные операционной системой сегменты памяти.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим

Защита сегментов памяти обеспечивается следующими аппаратно-программными мерами:

- изолирование операционной системой адресных пространств задач с помощью Локальных дескрипторных таблиц;
- контроль попыток программного «выхода за границы сегмента» по величине смещения, выполняемый процессором;
- наложение операционной системой на сегменты или страницы ограничений на чтение и запись и контроль попыток их нарушения со стороны процессора;
- назначение операционной системой сегментам различных «уровней привилегий» и контроль программного обращения по соответствию этому уровню со стороны процессора.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим

Защищенный режим допускает два распределения адресного пространства между задачами. Эти решения принимает операционная система:

- а) единое адресное пространство для всех задач (как в реальном режиме). Для этого операционной системе достаточно создать только Глобальную дескрипторную таблицу (GDT), где содержится описание всех сегментов. Локальные дескрипторные таблицы не создаются. Тогда регистр-селектор локальной дескрипторной таблицы LDTR должен содержать пустой селектор 0.
- Такая структура распределения памяти удобна для «перевода» программных систем, написанных для реального режима, в защищенный режим. Однако, здесь могут быть проблемы с защитой сегментов задач в памяти, так как они используют единое адресное пространство. Это скажется на устойчивости операционной системы в целом.
- б) собственное адресное пространство для каждой задачи. Операционная система создает отдельную Локальную дескрипторную таблицу (LDT) для каждой задачи. В LDT описываются сегменты памяти, которые будут доступны только этой задаче. Необходимое общее адресное пространство обеспечивается через глобальную дескрипторную таблицу GDT.
- Такая реализация требует больших затрат от операционной системы, но обеспечивает максимальную защиту адресных пространств отдельных задач.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим. Уровни привилегий

- Уровни привилегий доступа к памяти:
 - уровень 0: ядро операционной системы;
 - уровень 1: драйверы ОС;
 - уровень 2: интерфейс ОС;
 - уровень 3: прикладные программы.
 - В современных ОС уровни 0 2 могут иметь одинаковые привилегии уровня 0, но уровень 3 в защищённом режиме всегда имеет привилегии ниже чем другие.
 - Программы и данные ограничены внутри своих уровней привилегий.
- Каждый уровень привилегий имеет свой сегмент в памяти
 - размер сегмента может быть от 0 до 4ГБ.
 - Первые 256 байт каждого сегмента резервируются под служебную информацию.
 - Адрес сегмента слектор (16 бит).
 - логический адрес адрес внутри сегмента

Модель памяти процессора. Режимы работы x86-x64.

Защищенный режим. Сегменты памяти

- Каждый сегмент и объект в памяти, который управляется процессором описываются в выделенной отдельно области памяти дескрипторе (8 байт),
 - Дескрипторы объединяются в таблицы декскрипторов.
 - Дескриптор описывает адресацию сегмента и уровни доступа.
 - Существуют
 - глобальная таблица декскрипторов (GDT);
 - локальная таблица декскрипторов (LDT);
 - таблица векторов прерываний (IDT);
 - Отдельная область памяти шлюз вызовов (call gates)
 - Также отдельно может быть выделен сегмент задач TSS (Task state segment)
 - Механизм дескрипторов позволяет организовать многозадачность в защищенном режиме.
 - в защищенном режиме регистры селекторы содержат *номер дескриптора сегмента. Например,* во время исполнения текущего процесса регистр CS содержит селектор сегмента кода, а регистр DS селектор сегмента данных

Модель памяти процессора. Режимы работы x86-x64.

Защищенный режим. Сегменты памяти

Адрес каждого дескриптора содержится с специальных регистрах процессора – т.н. сегментных регистрах (доступны только ОС):

- **Регистр GDTR** 48-разрядный регистр адреса глобальной дескрипторной таблицы (GDT). Содержит полный 32-разрядный адрес начала размещения сегмента глобальной дескрипторной таблицы в памяти и ее размер (предел смещения).
- **Регистр IDTR** 48-разрядный регистр адреса таблицы дескрипторов прерываний (IDT). Содержит 32- разрядный адрес сегмента таблицы дескрипторов прерываний в памяти и предел смещения в ней.
- **Peructp LDTR** 16-разрядный регистр селектор сегмента локальной дескрипторной таблицы (LDT). Используется для определения адреса размещения в памяти локальной дескрипторной таблицы.
- **Регистр TR** 16-разрядный регистр селектор сегмента состояния задачи (TSS). Используется при переключении задач.
- Также для управления работой ОС используются системные регистры CR0,CR1,... в которых содержаться специальные флаги для ОС и регистра DR0,.. отдладки.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим. Дескрипторы

- Глобальные дескрипторы (таблица *GDT, ее адрес в регистре* GDTR).
- предназначена для описания сегментов операционной системы и общих сегментов для всех прикладных процессов, например сегментов межпроцессного взаимодействия (шлюзов); сегментов состояния процессора (TSS);
- Таблица GDT наряду с записями об специальных сегментах содержит запись о самой себе, а также обо всех таблицах LDT.
- GDTR не может меняться в ходе работы ОС (устанавливается при переходе в защищённый режим; LDTR меняется для каждой текущей задачи (LDT), выполняемой ОС.

•

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим. Дескрипторы

- **Локальные дескрипторы (таблица LDT,** *адрес* в LDTR**)** дескрипторы, создаваемые ОС под каждый пользовательский процесс (задачу).
 - Главное отличие LDT от GDT в ней нельзя определять дескрипторы системных объектов объектов, которые использует процессор.
 - Для передачи данных между дескрипторами используется особая область памяти – шлюз, которая описывается локальным дескриптором шлюзов.
 - В GDT можно определить несколько таблиц LDT, но только один является текущим в любой момент времени: обычно он связан с текущей Задачей.
 - LDT создаются операционной системой динамически под конкретные задачи адрес-сегектор текущая LDT хранится в LDTR.

Модель памяти процессора. Режимы работы x86-x64. Защищенный режим. Дескрипторы

- Таблица векторов прерываний (таблица IDT, размер в IDTR) дескрипторы адресов и настроек (шлюз порывания).
 - —Адрес соответствует подпрограмме прерываний (действиям в ответ на вызов прерывания, напр. обработка нажатия клавиши на клавиатуре).
 - —Прерывания могут быть аппаратные, исключения и программные.
 - —Прерывания находят на 0 уровне привилегий, поэтому обращение к ним через «шлюз».
- Шлюз вызовов это область памяти через которую может быть произведен обмен данными между разными процессами (например, глобальные переменные)
- TSS (Сегмент состояний задач) специальный сегмент, выделены в качестве стека сохранения состояния процессора при переключении на обработку прерываний и исключений.

Модель памяти процессора. Режимы работы x86-x64. Длинный режим

- long mode («длинный режим», или IA-32e по документации Intel) это 64-разрядный режим.
 - По принципу работы он почти полностью сходен с защищённым режимом.
 - В 64-разрядный режим можно перейти только из защищённого режима.
 - Размеры слов это двойное слово (DWORD), но можно оперировать данными размером в 8 байт (QWORD). Размер адреса всегда 8-байтовый.

Модель памяти процессора. Дополнительные режимы x86-x64

- Режим системного управления (System Management Mode) режим в который процессор переходит при получении специального прерывания SMI.
 - Режим предназначен для выполнения некоторых действий с возможностью их полной изоляции от прикладного программного обеспечения и даже операционной системы. Например использоваться для реализации системы управления энергосбережением компьютера или функций безопасности и контроля доступа.
 - Переход в этот режим возможен только аппаратно.
- Режим виртуального процессора 8086 это подрежим защищённого режима для поддержки старых 16-разрядных приложений.
 - Его можно включить для отдельной задачи в многозадачной операционной системе защищённого режима;
- **Режим совместимости для long mode.** В режиме совместимости приложениям доступны 4 Гб памяти и полная поддержка 32-разрядного и 16-разрядного кода;
 - Размер слова двойное. Размер адреса 32- битный, а размер операнда не может быть 8-байтовым.
 - Режим совместимости можно включить для отдельной задачи в многозадачной 64- битной операционной системе.

Модель памяти процессора. Сравнение работы процессоров в защищенном и длинном режимах

Operating Mode		Operating System Required	Application Recompile Required	Defaults		Register	Typical
				Address Size (bits)	Operand Size (bits)	Extensions	GPR Width (bits)
Long Mode	64-Bit Mode		yes	64	32	yes	64
	Compatibility Mode	New 64-bit OS	no	32		no	32
				16	16		16
	Protected Mode	Legacy 32-bit OS	no	32	32		32
Legacy Mode				16	16		
	Virtual-8086 Mode			16	16	no	16
	Real Mode	Legacy 16-bit OS					

Register	Legacy and C	ompatibility	Modes	64-Bit Mode		
or Stack	Name	Number	Size (bits)	Name	Number	Size (bits)
General-Purpose Registers (GPRs)	EAX, EBX, ECX, EDX, EBP, ESI, EDI, ESP	8	32	RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, R8-R15	16	64
128-Bit XMM Registers	XMM0-XMM7	8	128	XMM0-XMM15	16	128
64-Bit MMX Registers	MMX0-MMX7	8	64	MMX0-MMX7	8	64
x87 Registers	FPR0-FPR7	8	80	FPR0-FPR7	8	80
Instruction Pointer	EIP	1	32	RIP	1	64
Flags	EFLAGS	1	32	RFLAGS	1	64
Stack	-		16 or 32	-		64

Особенности организации прерываний

Лекция 3. Модель памяти процессоров

Аппаратные средства телекоммуникационных систем

Модель памяти Х86-Х64, Прерывания

Прерывание (от англ. interrupt) - это прекращение выполнения текущей команды или текущей последовательности команд для обработки некоторого события специальной программой — обработчиком прерывания, с последующим возвратом к выполнению прерванной программы.

Прерывания имеют наибольший приоритет среди задач процессора.

Модель памяти Х86-Х64, Прерывания

Прерывание используется для быстрой реакции процессора на особые ситуации, возникающие при выполнении программы и взаимодействии с внешними устройствами.

Модель памяти X86-X64. Исключения.

Исключения генерируются процессором, когда какая-либо программа пытается нарушать ограничения защиты.

- Повлиять на исключения прикладные программы (работающие даже на нулевом уровне привилегий) не могут, замаскировать тоже.
- Исключения процессора генерируются вне зависимости от флага IF.
- 1. Ошибка возникает в ситуации ошибочных действий программы
 - (подразумевается, что такую ошибку можно исправить).
 - допускает рестарт команды, которая вызвала исключение после исправления ситуации
 - в стеке обработчика адрес возврата из прерывания указывает на команду, вызвавшую исключение.
 - Примером -исключение отсутствующей страницы-механизм виртуальной памяти.

Модель памяти X86-X64. Исключения.

Исключения генерируются процессором, когда какая-либо программа пытается нарушать ограничения защиты.

- **2. Ловушка** это исключение, возникающее сразу после выполнения «отлавливаемой» команды.
 - исключение позволяет продолжить выполнение программы со следующей команды.
 - На ловушках строится механизм отладки программ.
- **3. Авария** это исключение, которое не позволяет продолжить выполнение прерванной программы и сигнализирует о серьёзных нарушениях целостности системы.
 - Пример исключение двойного нарушения (прерывание 8), когда сама попытка обработки одного исключения вызывает другое исключение.

Модель памяти X86-X64. Исключения.

Исключения — прерывания 0-31 Примеры исключений

Номер вектора	Название	Описание	Тип	Код ошибки	Источник
0	#DE	Ошибка деления	Ошибка	Нет	Команды DIV и IDIV
1	#DB	Отладка	Ошибка или ло- вушка	Нет	Любая команда или команда INT 1
2	_	Прерывание NMI	Прерывание		Немаскируемое внешнее прерывание
3	#BP	Точка останова	Ловушка	Нет	Команда Int3
4	#OF	Переполнение	Ловушка	Нет	Команда INTO
5	#BR	Превышение предела	Ошибка	Нет	Команда BOUND
6	#UD	Недопустимая ко- манда	Ошибка	Нет	Недопустимая коман- да или команда UD2
7	#NM	Устройство недо- ступно	Ошибка	Нет	Команды плавающей точки или команда WAIT/FWAIT
8	#DF	Двойная ошибка	Авария	Всегда ноль	Любая команда

прерывание 2 является единственным немаскируемым прерыванием, возникает, напр. при сбое чтения памяти.

Модель памяти X86-X64. Прерывания. Программные прерывания.

- Прерывания можно генерировать программно командами INT.
 - Команда INT3 генерирует системное прерывание, которое вызывает прерывание 3.
 - Например.
 - Int16h обработчик ввода-вывода клавиатуры,
 - Int3h точка остановки.
 - Int17h принтер
 - Int11h список оборудования.
 - Int4h переполнение
 - Команда INTO вызывает прерывание 4, если установлен флаг OF.
 - Программные прерывания это наиболее простой из методов вызова привилегированного кода для программ, которые работают на нулевом уровне привилегий.
 - В современных операционных системах программные прерывания запрещены для пользователя – доступ к предоставляемому ими функционалу осуществляется через драйвера и операционную систему.

Прерывания. Аппаратные прерывания

Аппаратные прерывания (англ. hardware interrput) — это сигнал от любого устройства системы для процессора, который по этому сигналу должен обслужить данное устройство.

- Маскируемые аппаратные прерывания
 - можно запрещать в соответствующих регистрах (бит IF).
- Немаскируемые аппаратные прерывания
 - обязательные к исполнению (напр. Обработка ошибки)

Аппаратные прерывания имеют свой уровень приоритета

В случае нескольких прерываний с одним уровнем приоритета Они будут поставлены в очередь.

