

Chapitre 1

Préliminaires

Dans ce chapitre nous rappelons quelques définitions et propriétés nécessaires pour la compréhension des autres chapitres.

1.1 Notion de filtration sur un anneau

Définition 1.1

Soit A un anneau commutatif unitaire. On appelle filtration de A toute famille $f = (I_n)_{n \in \mathbb{Z}}$ d'idéaux de A telle que :

- *i*) $I_0 = A$;
- ii) $I_{n+1} \subseteq I_n$, pour tout n dans \mathbb{Z} ;
- iii) Pour tous p, q appartenant à \mathbb{Z} , $I_pI_q \subseteq I_{p+q}$.

Conséquence : $I_n = \Lambda$ pour tout $n \leq 0$.

Exemple 1.1

- 1) Soit I un idéal de l'anneau A, la famille $f = (I^n)_{n \in \mathbb{Z}}$ est une filtration de Λ . Cette filtration est dite filtration I-adique de Λ . Elle est notée f_I .
- 2) Si $f = (I_n)_{n \in \mathbb{Z}}$ est une filtration de l'anneau A alors pour tout $k \geq 1$, $f^{(k)} = (I_{kn})_{n \in \mathbb{Z}}$ est une filtration de A.

3) Si $f = (I_n)_{n \in \mathbb{Z}}$ est une filtration de l'anneau A alors $f^k = (I_n^k)_{n \in \mathbb{Z}}$ est une filtration.

4) $f_A = (\ldots, A, A, \ldots)$ et $f_0 = (\ldots, A, A, (0), (0), \ldots)$ sont aussi des filtrations de l'anneau A.

L'ensemble des filtrations de l'anneau A est noté $\mathcal{F}(A)$. $\mathcal{F}(A)$ est ordonné par $f = (I_n)_{n \in \mathbb{Z}} \leq g = (J_n)_{n \in \mathbb{Z}}$ si $I_n \subseteq J_n$ pour deux éléments f, g de $\mathcal{F}(A)$.

Opération sur $\mathcal{F}(A)$

Soient $f = (I_n)_{n \in \mathbb{Z}}$ et $g = (J_n)_{n \in \mathbb{Z}}$ deux filtrations sur l'anneau A.

- Le produit de f et g est la filtration $fg = (I_n J_n)_{n \in \mathbb{Z}}$.
- La somme de f et g est la filtration $f + g = \left(\sum_{k=0}^{n} I_k J_{n-k}\right)_{n \in \mathbb{Z}}$.
- L'intersection de f et g est la filtration $f \cap g = (I_n \cap J_n)_{n \in \mathbb{Z}}$.

1.2 Notion de filtration sur un module

Définition 1.2

Soit M un A-module. On appelle filtration de M toute famille $\Phi = (N_n)_{n \in \mathbb{Z}}$ de sous-modules de M vérifiant

- $i) N_0 = M,$
- ii) $N_{n+1} \subseteq N_n$, pour tout $n \in \mathbb{Z}$.

La filtration $f = (I_n)_{n \in \mathbb{Z}}$ de A et la filtration $\Phi = (N_n)_{n \in \mathbb{Z}}$ de M sont dites compatibles si

iii) pour tous $m, n \in \mathbb{Z}$, $I_m N_n \subseteq N_{m+n}$.

L'ensemble des filtrations du module M est noté $\mathcal{F}(M)$. $\mathcal{F}(M)$ est ordonné par $\Phi = (N_n)_{n \in \mathbb{Z}} \leq \Psi = (V_n)_{n \in \mathbb{Z}}$ si $N_n \subseteq V_n$ pour deux éléments Φ, Ψ de $\mathcal{F}(M)$.

Opération sur $\mathcal{F}(M)$

Soient $f = (I_n)_{n \in \mathbb{Z}}$ une filtration de A, et $\Phi = (N_n)_{n \in \mathbb{Z}}$ et $\Psi = (V_n)_{n \in \mathbb{Z}}$ deux filtrations de M.

- Le produit externe de f et Φ est la filtration $f\Phi = (I_n N_n)_{n \in \mathbb{Z}}$ de M.
- L'intersection de Φ et Ψ est la filtration $\Phi \cap \Psi = (N_n \cap V_n)$ de M.

Exemple 1.2 (Filtration induite et filtration quotient).

- 1) Soient B un anneau, A un sous-anneau de B. Soit $g = (J_n)_{n \in \mathbb{Z}}$ une filtration de B. On pose $I_n = J_n \cap \Lambda$ pour tout $n \in \mathbb{Z}$ et $f = (I_n)_{n \in \mathbb{Z}}$. f est une filtration de A dite induite par g sur Λ .
- 2) Soit I un idéal de A et $f = (I_n)_{n \in \mathbb{Z}}$ une filtration de A. On pose $g = (J_n)_{n \in \mathbb{Z}}$ où $J_n = \frac{I_n + I}{I}$ pour tout $n \in \mathbb{Z}$. g est une filtration de A/I. Elle est appelée filtration quotient et est notée $g = \frac{f}{I}$.

1.3 Anneau de Rees d'une filtration

Soit $f=(I_n)_{n\in\mathbb{Z}}$ une filtration de A. On appelle anneau de Rees de la filtration f, l'anneau gradué $\mathrm{R}(A,f)=\bigoplus_{n\in\mathbb{N}}I_nX^n$ où X est une indéterminée et $I_nX^n=\{aX^n:a\in I_n\}$ pour tout $n\geq 0$. $\mathrm{R}(A,f)$ est un sous anneau gradué de l'anneau des polynômes A[X].

On appelle anneau de Rees généralisé de la filtration f de A, l'anneau gradué $\mathcal{R}(A, f) = \bigoplus_{n \in \mathbb{Z}} I_n X^n$. Posons $u = \frac{1}{X}$, alors $\mathcal{R}(A, f)$ est un sous anneau gradué de A[X, u].

En particulier si I est un idéal de A et si $f = f_I$, alors $R(A, f_I) = R(A, I) = \bigoplus_{n \in \mathbb{N}} I^n X^n$.

Proposition 1.1

Si $f = (I_n)_{n \in \mathbb{Z}}$ est une filtration de A, alors pour tout n, $u^n \mathcal{R}(A, f) \cap A = I_n$.

1.4 Classification et comparaison des filtrations

Dans cette partie nous allons rappeler les définitions de certaines filtrations particulières et donner quelques propriétés qui les lient.

1.4.1 Filtration I-adique, filtration I-bonne

Définition 1.3

- Soient I un idéal de l'anneau A, $f = (I^n)_{n \in \mathbb{Z}}$ une filtration sur l'anneau A. Cette filtration est appelée filtration I-adique de l'anneau A.
 - $f = (I_n)_{n \in \mathbb{Z}}$ est dite I-bonne si
- i) Pour tout $n \geq 0$, $I.I_n \subseteq I_{n+1}$;
- ii) Il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$, $I.I_n = I_{n+1}$.

Conséquence :

 $I.I_{n_0}=I_{n_0+1}$, en multipliant par I on a $I^2I_{n_0}=I.I_{n_0+1}$ et $I.I_{n_0+1}=I_{n_0+2}$. Par récurrence on obtient $I^nI_{n_0}=I_{n_0+n}$, pour tout $n\geq 1$.

Proposition 1.2

Toute filtration I-adique est I-bonne.

1.4.2 Filtration approximable par des puissances d'idéaux

Définition 1.4

Soit A un anneau commutatif unitaire. Une filtration $f = (I_n)_{n \in \mathbb{Z}}$ de A est dite AP (approximable par des puissances d'idéaux) s'il existe une suite $(k_n)_{n \in \mathbb{N}}$ d'entiers naturels telle que :

i)
$$\lim_{n\to+\infty}\frac{k_n}{n}=1$$
;

ii) Pour tous m, n appartenant à $\mathbb{N}, I_{k_n m} \subseteq I_n^m$.

La filtration $f = (I_n)_{n \in \mathbb{Z}}$ est dite fortement AP (fortement approximable par des puissances d'idéaux), s'il existe un entier $k \geq 1$ tel que pour tout n

appartenant à \mathbb{N} , $I_{nk} = I_k^n$.

Ainsi si p = qk alors $I_{pn} = (I_p)^n$, pour tous p, q appartenant à \mathbb{N} . Si on pose $f^{(k)} = (I_{nk})_{n \in \mathbb{Z}}$ alors f est fortement AP si et seulement si il existe $k \geq 1$ tel que $f^{(k)} = f_{I_k}$. Dans ce cas f est fortement AP de rang k.

Exemple 1.3

- 1) Soit A = k[X] où k est un corps, soit I = (X), soit $f = (I_n)$ telle que $I_{2n} = I^n$ et $I_{2n+1} = I^{n+1}$. On vérifie que f est une filtration de A. $f = (I_n)_{n \in \mathbb{N}}$ est une filtration fortement AP car : $f = (A, I, I, I^2, I^2, I^3, I^3, ...) = (A = I_0, I_1, I_2, I_3, I_4, I_5, I_6, ...)$ et on voit que $I_{2n} = I_2^n$ pour tout n, donc f est fortement approximable par des puissances d'idéaux de rang 2.
- 2) Les filtrations I-adiques et les filtrations I-bonnes font partie des filtrations fortement approximables par des puissances d'idéaux.

1.4.3 Filtration noethérienne

Définition 1.5

Soient A un anneau commutatif unitaire et $f = (I_n)_{n \in \mathbb{Z}}$ une filtration de A.

1) f est dite noethérienne si l'anneau de Rees généralisé $\mathcal{R}(A,f)=\bigoplus_{n\in\mathbb{Z}}I_nX^n$ est noethérien.

Cette terminologie est introduite par D. Rees [22].

2) f est dite fortement noethérienne si A est noethérien et si il existe un entier $k \geq 1$ tel que $I_m I_n = I_{m+n}$ pour tous $m, n \geq k$ (voir [13]).

De tout ce qui précède on a les résultats suivants :

Proposition 1.3

Dans tout anneau commutatif unitaire A on a les implications suivantes :

 $f \ I - adique \Rightarrow f \ I - bonne \Rightarrow f \ fortement \ AP \Rightarrow f \ AP$

où I est un idéal de l'anneau A et f une filtration sur A.

Dans tout ce qui va suivre nous allons considérer l'anneau A noethérien.

Proposition 1.4

Soient A un anneau noethérien et I un idéal de A. Si f est I-bonne, alors f est fortement noethérienne.

En outre il est facile de voir que toute filtration fortement noethérienne est noethérienne. Par ailleurs chaque filtration noethérienne est fortement AP (voir [17,2]). Ainsi dans un anneau noethérien A nous avons le diagramme suivante, pour toute filtration f sur A:

1.5 Exemples [5]

Soit A = k[X], où k est un corps et X une indéterminée. A est alors un anneau noethérien.

1) Soit
$$p$$
 un entier ≥ 2 et soit $f = (I_n)$ où $I_0 = A$, et $I_n = \begin{cases} (X^n), & \text{si} \quad n \geq p+1, \\ (X^p), & \text{si} \quad 1 \leq n \leq p. \end{cases}$

Montrons que f est une filtration de A.

- $I_0 = A$ par hypothèse.
- $\forall n \geq 0 \quad I_{n+1} \subseteq I_n \text{ car } :$

- Si
$$n \ge p+1$$
 $I_n = (X^n)$ ainsi $n+1 \ge p+1$ et $I_{n+1} = (X^{n+1}) = (X)(X^n) \subseteq (X^n) = I_n$.

- Si
$$1 \le n = p$$
 alors $I_n = (X^p)$, et $n + 1 > p$ alors $I_{n+1} = (X^{n+1})$ ainsi $I_{n+1} = (X^{n+1}) \subseteq (X^n) = (X^p) = I_n$ et $I_{n+1} \subseteq I_n$.

- Si
$$1 \le n < p$$
 alors $I_n = (X^p)$, et $n+1 \le p$ alors $I_{n+1} \stackrel{\rightharpoonup}{\Rightarrow} (X^p)$ ainsi $I_{n+1} = (X^p) = I_n$.

-n=0, n+1=1 et $I_0=A$ et $I_1=(X^p)$. Comme $I_1=(X^p)\subseteq A=I_{0p}$ alors $I_{n+1} \subseteq I_0$.

Dans tous les cas $I_{n+1} \subseteq I_n \quad \forall n \geq 0$.

• $\forall n \geq 0, \quad \forall m \geq 0 \quad I_n I_m \subseteq I_{n+m}$

- Si $n \ge p+1$ et $m \ge p+1$, alors $I_n = (X^n)$ et $I_m = (X^m)$, $I_n I_m = (X^{n+m}) = I_{n+m}$ car $n+m \ge p+1$.

- Si $n \ge p+1$ et m=p, $I_n=(X^n)$ et $I_m=(X^p)$, ainsi $I_nI_m=(X^n)(X^p)=(X^{n+p})=I_{n+m}$ car $n+p=n+m\ge p+1$.

 $\begin{cases}
- & \text{Si } n \geq p+1 \text{ et } 1 \leq m p+1 \text{ et } p > m.
\end{cases}$ $\begin{cases}
- & \text{Si } n = p \text{ et } m = p, \text{ alors } I_n = (X^p) \text{ et } I_m = (X^p), \text{ ainsi } I_n I_m = (X^{n+m}) = I_{n+m}.
\end{cases}$

- Si $1 \le n < p$ et si $1 \le m < p$, alors $I_n = (X^p)$ et $I_m = (X^p)$ ainsi $I_n I_m = (X^{p+p}) = I_{p+p} \subseteq I_{n+m}$ à cause de la décroissance de (I_n) et du fait que $p + p \ge p + 1$.

Dans tous les cas $I_n I_m \subseteq I_{n+m}$, $\forall n \geq 0$ et $\forall m \geq 0$. On conclut alors que $f = (I_n)_{n \in \mathbb{N}}$ est une filtration de A.

Montrons que $f = (I_n)_{n \in \mathbb{N}}$ est fortement noethérienne.

Posons k = p + 1, pour tous $n \ge p + 1$, $m \ge p + 1$, $n + m \ge p + 1$ et on a $I_n I_m = (X^n)(X^m) = (X^{n+m}) = I_{n+m}$ donc $I_n I_m = I_{n+m}$ et puisque l'anneau A = k[X] est noethérien, on conclut que la filtration $f = (I_n)_{n \in \mathbb{N}}$ est fortement noethérienne. Donc f est noethérienne, ce qui implique que fest fortement approximable par des puissances d'idéaux.

2) Soit
$$f = (I_n)$$
 où $I_0 = A$ et $I_n = (X^{n+1})$ pour $n \ge 1$.

• Montrons que f est une filtration sur A.

$$I_0 = A$$
.

- $I_{n+1} = (X^{n+1+1}) \subseteq (X^{n+1}) = I_n$, d'où $I_{n+1} \subseteq I_n \ \forall n \ge 1$.
- Pour tous $n, m \ge 0$ on a $I_n = (X^{n+1}), I_m = (X^{m+1})$ donc $I_n I_m = (X^{n+1+m+1}) = (X^{(n+m+1)+1}) \subseteq (X^{(n+m)+1}) = I_{n+m}$ donc $I_n I_m \subseteq I_{n+m}$ $\forall n, m \ge 0$, d'où f est une filtration de A.
- f est une filtration approximable par des puissances d'idéaux car : Posons $k_n = n+1$, $\forall n \geq 0$ alors $\lim_{n \to +\infty} \frac{k_n}{n} = 1$ et $I_{k_n m} = (X^{k_n m}) = (X^{(n+1)m}) = (X^{n+1})^m = (I_n)^m = I_n^m$, donc $I_{k_n m} = I_n^m \ \forall n, m \geq 0$.

En conclusion f est AP.

3) Soit
$$I = (X)$$
 $I_n = \begin{cases} I^n, & \text{si } n \text{ } est \text{ } pair. \\ I^{n+1}, & \text{si } n \text{ } est \text{ } impair. \end{cases}$

Soit $f = (I_n)_{n \ge 0}$, f est une filtration sur A. En effet :

-
$$I_0 = I^0 = A$$
.

- Si n est pair, alors n+1 est impair. $I_{n+1}=I^{n+2}=(X^{n+2})\subseteq (X^{n+1})\subseteq (X^n)=I_n$.

Si n est impair, alors n+1 est pair. $I_{n+1}=I^{n+1}=I_n$ car n est impair d'où $I_{n+1}=I_n$.

On voit que quelle que soit la parité de n, $I_{n+1} \subseteq I_n$ pour tout $n \ge 0$.

- Montrons que pour tous $n, m \ge 0$ $I_n I_m \subseteq I_{n+m}$.
- Si n est pair et m pair, alors n+m est pair et on a $I_nI_m=I^nI^m=I^{n+m}=I_{n+m}$.
- Si n est pair et m est impair, alors n+m est impair, $I_nI_m=I^nI^{m+1}=I^{(n+m)+1}=I_{n+m}$.
- Si n est impair et m est impair, alors n+m est pair, $I_nI_m=I^{n+1}I^{m+1}=I^{n+m+1+1}\subseteq I^{n+m}=I_{n+m}$.

Dans tous les cas $I_n I_m \subseteq I_{n+m}$ pour tous $n, m \ge 0$. Donc $f = (I_n)$ est une filtration sur A. ì

De plus f est fortement approximable par des puissances d'idéaux. On voit que $I_0=A$, $I_1=I^2$, $I_2=I^2$, $I_3=I^4$, $I_4=I^4$, $I_5=I^6$,... . Posons k=2 ainsi $\forall n\geq 0$ $I_{kn}=I_{2n}=(I^2)^n=(I_2)^n=I_k^n$, donc f est fortement AP dans l'anneau A=k[X] qui est noethérien donc f est noethérien. On conclut que f est une filtration noethérienne sur A.