Tarea 6 Propedéutico Electrodinámica 2020-04-26

Nombre:		
Entregar el viernes 2020-05-01		

Entregar el viernes 2020-05-01.

1. Considera un fragmento de un circuito consistente en un conductor en forma de cilindro sólido con longitud L y sección transversal A. Demuestra que en el mismo circula una corriente I=V/R donde V es el voltaje a través de los extremos del alambre, $R=L/A\sigma$ la resistencia del alambre y σ la conductividad.

Pistas:

- En una tarea previa vimos que en un conductor la densidad de corriente es $j = \sigma E$, y con un modelo simple obtuvimos $\sigma = ne^2\tau/m$, con n el número de electrones por unidad de volumen, e la carga del electrón, τ el tiempo que el electrón se mueve antes de chocar y m la masa electrónica.
- ullet La corriente I se puede escribir en términos de $oldsymbol{j}$ y la sección transversal A.
- El voltaje $V = \phi_a \phi_b$ es la caida de potencial ϕ entre los extremos a y b del alambre.
- \blacksquare El voltaje se puede escribir en términos del campo eléctrico E en el interior del alambre.

Notas:

- El campo eléctrico dentro de un conductor es cero en el caso estático.
- Argumenta por qué puede ser distinto de cero en el caso no estático.
- Argumenta por qué en este problema podemos considerar al campo eléctrico como uniforme en el interior del cilindro.
- La expresión V = RI se conoce como la Ley de Ohm.
- Para geometrías más complicadas se cumple la ley de Ohm, pues la densidad de corriente es lineal en el campo y el voltaje también, y $R \propto 1/\sigma$, pero la dependencia en los parámetros geométricos puede ser más compleja.
- Se conoce a $\rho = 1/\sigma$ como la resistividad. (No confunda estas ρ y σ con la densidad de carga volumetrica y superficial, aunque se suelan denotar con las mismas letras).
- Nota que a un material con una conductividad relativamente alta corresponde una resistencia relativamente baja.
- Un resistor suele consistir de un matrial de baja conductividad conectada a través de terminales metálicas de alta conductividad.
- Para efectos prácticos suele aproximarse a las terminales metálicas, buenos conductores, por elementos con resistencia nula, equipotenciales. Las caidas de potencial se dan, sobre todo, a través de los materiales de baja conductividad.
- 2. Considera un sistema formado por un cilindro metálico de radio a en contacto con un cilindro coaxial hueco de radio interior a y radio exterior b hecho de un material con conductividad σ en contacto con otro cilindro coaxial metálico de radio interior b, todos de altura $L \gg b$. Calcula la resistencia R entre el conductor interior y el exterior.

Pistas:

- Argumenta por qué podemos tomar a los dos cilindros metálicos como equipotenciales, con potenciales $\phi(a) = \phi_a$ y $\phi(b) = \phi_b$.
- Argumenta por qué el potencial $\phi(\mathbf{r})$ puede escribirse como $\phi(r)$, i.e., sin depender de la coordenada axial ni la coordenada angular.

- Demuestra que $\nabla^2 \phi = 0$ en a < r < b.
- Obtén el potencial $\phi(r)$ a partir de su ecuación diferencial y sus condiciones de contorno.
- lacksquare Obtén el campo eléctrico $oldsymbol{E}.$
- ullet Obtén la densidad de corriente j.
- Obtén la corriente total *I*.
- Obtén la resistencia.
- 3. Considera un circuito en el que varios conductores confluyen sobre cierto nodo. Llama I_n a la corriente que cada conductor lleva hacia dicho nodo. Demuestra la Ley de Kirchoff de los nodos, i.e., en el caso estacionario

$$\sum_{n} I_n = 0.$$

Pistas:

- ullet Encierra al nodo en el interior de una superficie cerrada \mathcal{S} .
- Argumenta por qué, en el caso estacionario,

$$\int_{\mathcal{S}} d\boldsymbol{a} \cdot \boldsymbol{j}(\boldsymbol{r}) = 0.$$

- Argumenta cómo se puede reescribir la integral anterior como una suma de integrales sobre secciones transversales de cada alambre que incide en dicho nodo.
- Relaciona cada una de estas integrales con la corriente I_n correspondiente.

Notas:

- Una corriente negativa hacia un nodo es una corriente positiva desde dicho nodo.
- 4. Considera un circuito y considera un bucle cerrado con N elementos $n=1\ldots N$ que van del nodos n-1 al nodo n, identificando al nodo N con el nodo 0. Denota con V_n la caida de potencial a través del nodo n yendo del nodo n-1 al n. Demuestra la ley de Kirchoff de los bucles

$$\sum_{n} V_n = 0$$

Pistas:

- Identifica $V_n = \phi_{n-1} \phi_n = \int_{\mathcal{C}_n} d\mathbf{l} \cdot \mathbf{E}(\mathbf{r})$, donde \mathcal{C}_n es una trayectoria que va del nodo n-1 al nodo n.
- Identifica $\sum_{n} V_n = \oint_{\mathcal{C}} d\mathbf{l} \cdot \mathbf{E}$ con una integral cerrada sobre una trayectoria cerrada $\mathcal{C} = \mathcal{C}_1$ seguida de \mathcal{C}_2 seguida de $\mathcal{C}_3 \dots \mathcal{C}_N$.
- El resultado se sigue de que el campo eléctrico es conservativo.

- Una caida de potencial negativa es una subida de potencial.
- Las dos leyes de Kirchoff pueden emplearse para plantear sistemas lineales de ecuaciones que describen las corrientes y caidas de potencial en circuitos arbitrarios formados por fuentes de voltaje (subidas de potencial por cantidades dadas) y resistencias (caidas de potenciales de acuerdo a las leyes de Ohm).
- También se pueden usar para plantear ecuaciones diferenciales que cumplen los voltajes y corrientes en circuitos con capacitancias e inductancias.

5. Considera un circuito que contiene N resistencias R_n , n=1...N conectadas en serie entre los nodos a y b, es decir, una detrás de otra, con R_n entre los nodos n-1 y n, identificando el nodo 0 con el nodo a y el nodo 0 con el nodo 0 y sin nada más conectado a los nodos intermedios n=1...N-1. Demuestra que este circuito es equivalente a otro circuito en el que las resistencias R_n son reemplazadas por una sola resistencia efectiva $R_{\rm ef}$ conectada entre a y b y dada por

$$R_{\rm ef} = \sum_{n} R_n.$$

6. Considera un circuito que contiene N resistencias R_n , $n=1\ldots N$ conectadas en paralelo entre los nodos a y b, es decir, todas con una terminal conectada al nodo a con y la otra terminal conectada al nodo b. Demuestra que es equivalente a otro circuito en el que las resistencias R_n son reemplazadas por una sola resistencia efectiva $R_{\rm ef}$ dada por

$$\frac{1}{R_{\rm ef}} = \sum_{n} \frac{1}{R_n}.$$

- 7. Considera un capacitor con capacitancia C cuyas terminales se conectan a las terminales de un resistor con resistencia R. Al tiempo t = 0 una placa (digamos a) del capacitor tiene carga Q_0 (y la otra, digamos b, tiene carga $-Q_0$).
 - (a) Calcula la carga Q(t) en la placa a del capacitor para tiempos subsecuentes t>0.
 - (b) Calcula la caida de potencial V(t) a través del capacitor.
 - (c) Calcula la corriente I(t) a través de la resistencia.

Pistas:

- Argumenta por qué la caida de potencial V = Q/C a través desde la terminal a a la terminal b del capacitor es la misma que la caida de potencial V = RI a través de las terminales correspondientes del resistor, donde convenimos que I es la corriente de a a b a través del resistor.
- Argumenta por qué con las definiciones arriba, I = -dQ/dt.
- Convierte la ley de Kirchoff en una ecuación diferencial.
- Resuélvela.
- Aplica condiciones iniciales.

Notas:

- La carga y corriente decaen exponencialmente con un tiempo característico $\tau = RC$, más largo mientras más capacitancia (más carga almacenada para un voltaje dado) y más resistencia (menos corriente para el mismo voltaje).
- 8. Considera un campo magnético $\mathbf{B}(\mathbf{r}) = \alpha x \hat{\mathbf{z}}$ que depende de x y apunta en dirección z, con α constante. Considera un circuito \mathcal{C} formado por un alambre en forma de espira cuadrada de lado L con lados paralelos a los ejes x y y y que se desplaza con velocidad $\mathbf{v} = v\hat{\mathbf{x}}$ constante en la dirección x. Calcula la fuerza electromotriz \mathcal{E} alrededor de este circuito.

Pistas:

- Se define la fuerza electromotriz como $\oint_{\mathcal{C}} d\mathbf{l} \cdot \mathbf{F}/q$ donde \mathbf{F} es la fuerza que sentiría una carga q en el circuito, i.e., es el trabajo virtual que el campo haría sobre una carga al dar una vuelta al circuito, por unidad de carga.
- En este caso la fuerza sería la fuerza de Lorentz producida por el campo magnético $F = qv \times B/c$.

Notas:

■ Si el circuito tuviera una resistencia R, la fuerza electromotriz establecería una corriente $I = \mathcal{E}/R$, como si el circuito se cerrara a través de una fuenta de voltaje $V = \mathcal{E}$.

9. Considera un campo magnético $\mathbf{B}(t) = \eta t \hat{\mathbf{z}}$ que apunta en dirección z y que depende del tiempo, donde η es constante. Considera un circuito \mathcal{C} formado por un alambre en forma de espira cuadrada de lado L que descanza sobre el plano xy con lados paralelos a los ejes x y y. Calcula la fuerza electromotriz.

Pistas:

■ De acuerdo a la Ley de Inducción de Faraday, alrededor de un circuito que no se mueve

$$\mathcal{E} = -\frac{1}{c} \frac{d}{dt} \Phi_B,$$

donde

$$\mathcal{E} = \int_{\partial A} d\boldsymbol{l} \cdot \boldsymbol{E}$$

es la fuerza electromotriz a lo largo de la frontera $\partial \mathcal{A}$ de una superficie orientable \mathcal{A} , y

$$\Phi_B = \int_{\mathcal{A}} dm{a} \cdot m{B}$$

es el flujo magnético a través de dicha superficie.

Not as:

- Compara la solución de los dos problemas anteriores en el caso $\eta = v\alpha$.
- ¿Cómo se vería el problema 8 en un sistema de referencia en que el circuito estuviera fijo? (suponiendo velocidades $v \ll c$ bajas).
- Einstein notó que la respuesta a la nota anterior es general. La fuerza electromotriz debida al movimiento de un circuito con fuentes fijas es igual a la fuerza electromotriz sobre un circuito fijo debida a una fuente en movimiento si la velocidad relativa es la misma en ambos casos. Einstein observó que esto no podía ser una coincidencia y por ello postuló el *Principio de Relatividad*.
- Es común resolver problemas que involucran a la fuerza de Lorentz como si fueran problemas que involucran inducción. Aunque no es del todo correcto, gracias al principio de relatividad lleva a la solución correcta.
- Un ejemplo puede ser el siguiente problema.
- 10. Considera dos barras b_1 y b_2 conductoras largas paralelas unidas entre sí por una barra b_3 conductora corta de longitud L formando una figura como la letra U. Se coloca b_3 horizontalmente y se inclinan las barras largas hasta que forman un ángulo θ con la vertical. Se cierra el circuito con una barra b_4 parcialmente conductora de longitud L, masa M y resistencia R colocada horizontalmente sobre las barras b_1 y b_2 con las que hace contacto eléctrico y sobre las que puede deslizar libremente. Calcula la velocidad a la que se desliza la barra b_4 bajo la acción de la gravedad g en presencia de un campo magnético vertical B.

Pistas:

- \blacksquare Cuando la barra b_4 se mueve, disminuye su energía potencial gravitacional y adquiere energía cinética.
- Cuando la barra se desliza con una velocidad v aparece una fuerza electromotriz \mathcal{E} que produce una corriente $I = \mathcal{E}/R$ en el circuito b_1 - b_3 - b_2 - b_4 proporcional a la v.
- Esta corriente disipa energía al atravesar la resistencia. La potencia disipada es $\mathcal{P} = RI$ y es mayor mientras más rápido baja la barra.
- Cuando la energía disipada por unidad de tiempo iguala a la energía potencial perdida por unidad de tiempo, la barra ya no puede incrementar su energía cinética y llega a una velocidad terminal.

11. Considera una bobina formada por un alambre enrollado uniformemente alrededor de un cilindro de radio a y longitud $\ell \gg a$ formado de un material con permeabilidad μ dando $N \gg 1$ vueltas. Se hace circular por el alambre una corriente I(t). Calcula la caida de potencial V a través de las terminales de la bobina.

Pistas:

- Utiliza la ley de Ampère para obtener el campo magnético H(t) en el interior del cilindro ignorando efectos de borde.
- ullet Calcula la densidad de flujo magnético $oldsymbol{B}$ en el interior del cilindro.
- Considera un circuito que va de un punto a en una terminal de la bobina a través del alambre y siguiendo a la corriente hasta un punto b en la terminal opuesta y regresa al punto a cerrando el circuito a través del espacio vacío por fuera de la bobina.
- lacktriangle Calcula el flujo magnético Φ_B a través de este circuito.
- lacktriangle Calcula la fuerza electromotriz $\mathcal E$ a lo largo de este circuito.
- Argumenta que el campo eléctrico en el interior del alambre es nulo, por ser buen conductor.
- Por tanto podemos identificar $\mathcal{E} = \int_b^a d\mathbf{l} \cdot \mathbf{E}$ con la contribución a la integral cerrada del tramo entre terminales, afuera de la bobina y afuera del alambre.
- Afuera de la bobina el campo magnético es (prácticamente) nulo.
- Por tanto, afuera de la bobina el campo eléctrico es conservativo y
- se puede definir un potencial.
- lacktriangle Compara la integral anterior con la caida de potencial V.
- lacksquare Obtén V.

Notas:

■ Podemos escribir V = LdI/dt con

$$L = \frac{4\pi^2}{c^2} \mu a^2 \frac{N^2}{L}$$

la autoinductancia de la bobina.

- Para otras geometrías también tendríamos V = LdI/dt, pero con otras expresiones para la inductancia.
- Las unidades de la inductancia son aceleración inversa.
- 12. Considera un inductor con autoinductancia L en el que circula una corriente I. Demuestra que la energía que almacena es

$$U = \frac{1}{2}LI^2.$$

Pistas:

- Cuando una carga δq pasa de una terminal a a la otra terminal b de un inductor a través del cual hay una caida de potencial V, pierde una energía $\delta U = V \delta q$. Esta energía se almacena en la bobina como energía magnética.
- La potencia transferida a la bobina es entonces $\mathcal{P} = VI$ donde $I = \delta q/\delta t$ es la carga que circula por unidad de tiempo.
- Como V = LdI/dt, $\mathcal{P} = LIdI/dt$.
- La energía almacenada es $U(t) = \int_{t_0}^t dt' \, \mathcal{P}(t')$ inciando la integral cuando la corriente es nula.

- Para un sistema con muchos circuitos podemos generalizar los resultados anteriores y escribir $V_n = \sum_m L_{nm} dI_m/dt$ donde L_{nm} es la autoinductancia del circuito n si n=m y la inductancia mutua entre los circuitos n y m si $n \neq m$.
- La inductancia mutua se debe a que una corriente I_m en el circuito m produce en general un campo B_m que puede atravesar al circuito n.
- La energía total de un sistema de inductores es

$$U = \frac{1}{2} L_{nm} I_n I_m.$$

- Podemos invertir nuestro razonamiento y emplear esta ecuación para definir la autoinductancia y la inductancia mutua y de aquí concluir que $V_n = \sum_m L_{nm} dI_m/dt$.
- 13. Muestra que la energía en el inductor del problema 11 puede escribirse como

$$U = \int_{V} d^3 r \, u(\mathbf{r}),$$

donde u(r) es la densidad de energía magnética

$$u = \frac{\boldsymbol{B} \cdot \boldsymbol{H}}{8\pi}.$$

Pistas:

- lacktriangle Obtén U en términos de la corriente I empleando la autoinductancia.
- \blacksquare Escribe la corriente en términos de B.
- Escribe la energía total en términos de B.
- Divide entre el volumen de la bobina $\Omega = \ell \pi a^2$.

Notas:

- Esta demostración es muy limitada, pero el resultado es totalmente general.
- Una forma de calcular la inductancia de un circuito es primero calcular la energía a partir de su densidad y después escribirla en términos de la corriente.
- 14. Considera un cable coaxial de longitud ℓ formado por un cilindro hueco de paredes delgadas y de radio $a \ll \ell$ en el que va una corriente I rodeado por otro cilindro delgado coaxial de radio b > a, $b \ll \ell$ por el que va la corriente de retorno -I. Calcula la autoinductancia L del sistema.

Pistas:

- \blacksquare Calcula el campo B(r) entre ambos cilindros ignorando efectos de borde.
- Argumenta por qué se puede ignorar el campo en el resto del espacio.
- Calcula la densidad de energía u(r) = u(r).
- \blacksquare Integrala sobre el volumen entre los cilindros para obtener la energía total U.
- lacksquare Identifica la autoinductancia L.
- 15. Considera un circuito formado por un capacitor con capacitancia C cuyas terminales a y b están conectadas a las terminales de un inductor con autoinductancia L. Al tiempo t=0 la carga en el electrodo a del capacitor es $Q(0)=Q_0$ (y en el electrodo b es $-Q_0$) y la corriente a través del inductor de a hacia b es $I(0)=I_0=0$.
 - (a) Calcula la carga Q(t) en el electrodo a.
 - (b) Calcula la corriente I(t) de a a b a través del inductor.

(c) Calcula la caida de potencial V(t) de a a b.

Pistas:

- Argumenta mediante la ley de Kirchoff que la caida de potencial V(t) de a a b a través del capacitor es la misma que a través del inductor.
- Relaciona dicha caida con la carga Q(t) e I(t).
- Escribe I(t) en términos de Q(t) (ojo con los signos y la dirección de la corriente).
- \blacksquare Escribe una ecuación diferencial para Q.
- Resuelvela imponiendo condiciones iniciales.

Notas:

- Este circuito es un oscilador. La energía electrica almacenada en el capacitor cargado se convierte en energía magnética almacenada en el inductor conforme la carga disminuye y la corriente aumenta, y luego regresa al capacitor cuando se vuelve a cargar con signo opuesto y disminuye la corriente.
- La frecuencia de oscilación de la carga, corriente y voltaje es $\omega = 1/\sqrt{LC}$.
- La frecuencia con que se intercambia la energía es el doble.
- 16. Demuestra que en un circuito en que todos los voltajes, cargas y corrientes oscilan con una misma frecuencia ω podemos reemplazar las resistencias R, capacitancias C e inductancias L por impedancias Z que cumplen una ley de Ohm generalizada V = ZI, donde
 - (a) $Z_R = R$,
 - (b) $Z_C = i/\omega C$,
 - (c) $Z_L = -i\omega L$.

Pistas:

- Escribe el voltaje, carga y corriente como $V(t) = \operatorname{Re} \tilde{V}(t) = \operatorname{Re} V_0 \exp(-i\omega t), \ Q(t) = \operatorname{Re} \tilde{Q}(t) = \operatorname{Re} Q_0 \exp(-i\omega t), \ I(t) = \operatorname{Re} \tilde{I}(t) = \operatorname{Re} I_0 \exp(-i\omega t).$
- La corriente I(t) que entra a un capacitor se relaciona con la carga Q almacenada en el electrodo correspondiente I = dQ/dt.
- Luego, $\tilde{Q} = i\tilde{I}/\omega = C\tilde{V} \Rightarrow \tilde{V} = Z_C\tilde{I}$.
- Similarmente, V=LdI/dt se puede escribir como $\tilde{V}=Z_L\tilde{I}$.

- La solución estacionaria a las ecuaciones correspondientes a un circuito con fuentes de poder oscilatorias con frecuencia ω , resistencias, capcitancias e inductancias se puede obtener de un circuito con fuentes e impedancias.
- Cada impedancia se puede tratar como si fuese una simple resistencia, pero con valores complejos.
- En particular, se pueden sumar impedancias en serie y en paralelo.
- Como resultado, se pueden obtener impedancias complejas.
- La parte real de una impedancia es la parte disipativa y la parte imaginaria es la parte reactiva; una produce disipación de energía y la otra un defasamiento entre voltaje y corriente.
- 17. Demuestra que un conjunto de capacitores con impedancias C_n , n=1...N se pueden cambiar,
 - (a) si están conectadas en paralelo, por una capacitancia efectiva

$$C_{\text{ef}} = \sum_{n} C_n;$$

(b) si están conectadas en serie, por una capacitancia efectiva C_{ef} donde

$$\frac{1}{C_{\rm ef}} = \sum_{n} \frac{1}{C_n}.$$

Pistas:

- Suma las impedancias en serie y en paralelo como si fueran resistencias.
- Escribelas en términos de la capacitancia.
- 18. ¿Cómo se suman inductancias en serie y en paralelo?
- 19. Considera una fuente de voltaje $V_e(t) = V_0 \cos \omega t$ conectada a través de una resistencia R a un capacitor con capacitancia C. Encuentra el voltaje de salida $V_s(t)$ a través del capacitor a tiempos largos.

Pistas:

- ullet Argumenta por qué a tiempo largos t>RC la solución es una simple oscilación con frecuencia ω .
- ullet Reemplaza el circuito por un divisor de voltaje formado por una fuente y dos impedancias Z_R y Z_C .
- Por tanto el voltaje complejo de salida es

$$\tilde{V}_s = \frac{Z_C}{Z_C + Z_R} \tilde{V}_e.$$

Notas:

- Nota que a frecuencias bajas $\omega \ll 1/RC$ el voltaje de salida es igual al de entrada $V_s = V_e$.
- Nota que a frecuencias altas el voltaje de salida es muy pequeño y decae en proporción inversa a la frecuencia

 $\tilde{V}_s = \frac{i}{\omega RC} \tilde{V}_e.$

- Este circuito se conoce como filtro pasabajos.
- Análogamente se pueden diseñar filtros pasabajos, pasaaltos y pasabandas con redes de resistencias, capacitores y/o inductores.
- 20. Considera un dipolo magnético $m(t) = m(\cos \omega t, \sin \omega t, 0)$ que gira alrededor del eje z. Considera una espira circular de radio a colocada paralela al plano yz y centrada alrededor del eje x a una distancia $x = d \gg a$ del origen.
 - (a) Calcula la fuerza electromotriz $\mathcal{E}(t)$ alrededor de la espira.
 - (b) Supón que se abre la espira y se conectan sus extremos a través de una resistencia R. Calcula, la corriente eléctrica a través de la resistencia.
 - (c) Calcula la potencia disipada en la resistencia.
 - (d) Calcula la torca sobre el dipolo rotante.
 - (e) Calcula la potencia que se le debe proporcionar para mantener su rotación.

Pistas:

- Usa la condición $a \ll d$ para simplificar el cálculo.
- La corriente en la espira produce un dipolo inducido orientado en x que varía en el tiempo.
- Este dipolo genera un campo magnético que interacciona con el dipolo rotatorio en el centro.

- Este es una versión simplificada de un generador de voltaje de corriente alterna.
- Una variante es que sea la espira la que gira alrededor del dipolo y que sus extremos se conmuten, para generar una contribución de corriente directa.
- La condición $a \ll d$ no es esencial, pero simplifica el cálculo.
- Se verifica la conservación de la energía, i.e., la energía disipada en la resistencia iguala a la energía propocionada al dipolo rotante mediante la torca que se le debe aplicar para evitar que se frene.
- 21. Considera tres pares de bobinas de Helmholtz idénticas centradas en el origen con ejes en el plano xy, formando ángulos de $\theta_1 = 0^{\circ}$, $\theta_2 = 120^{\circ}$ y $\theta_3 = 240^{\circ}$ con respecto al eje x. Se excitan dichas bobinas con corrientes $I_1 = A\cos(\omega t)$, $I_2 = A\cos(\omega t 2\pi/3)$ e $I_3 = A\cos(\omega t + 2\pi/3)$. En el origen se coloca un pequeño imán con momento magnético m en el plano xy y libre de girar alrededor del eje z sujeto a un poco de fricción.
 - (a) Muestra que cerca del origen el campo $\boldsymbol{B}(t)$ que producen las bobinas en el origen tiene magnitud constante y rota con velocidad angular constante ω alrededor del eje z.
 - (b) Muestra que el dipolo giraría a tiempos largos con la misma velocidad angular ω y alineado con el campo magnético.
 - (c) Muestra que si aplicamos una torca externa τ constante y no demasiado grande al dipolo para intentar frenar su rotación, este seguiría rotando con la misma velocidad angular pero su dirección formaría un ángulo de retraso con respecto a B.
 - (d) Para este caso, calcula la energía que el campo magnético $\boldsymbol{B}(t)$ proporciona al dipolo para conservar su rotación.
 - (e) Calcula la fuerza electromotriz que el campo producido por el dipolo produce en las bobinas.
 - (f) Calcula la potencia que es necesario proporcionar a las bobinas para conservar la corriente eléctrica en ellas.

Pistas:

■ La torca sobre un dipolo fue calculada en una tarea previa.

- Esta es una versión simplificada de un motor eléctrico trifásico de velocidad constante.
- La energía se conserva. La potencia eléctrica que se transmite a las bobinas es igual a la potencia que se transmite al dipolo rotatorio y es igual al trabajo mecánico que dicho dipolo ejerce sobre los dispositivos sujetos al eje de giro.
- La aproximación dipolar no es esencial, pero simplifica los cálculos.
- El generador (problema anterior) y el motor eléctrico (este problema) forman la base de la enorme industria electromecánica en que se ha sustentado el desarrollo industrial del último siglo.