Applied Statistics - Notes 260236 March 2024

Preface

Every theory section in these notes has been taken from two sources:

- An Introduction to Statistical Learning [1]
- $\bullet\,$ Applied Multivariate Statistical Analysis (sixth edition). [2]

Contents

1	Sample Geometry				
	1.1	The Geometry of the Sample	4		
		1.1.1 Scatter plot	4		
		1.1.2 Geometrical representation	5		
		1.1.3 Geometrical interpretation of the process of finding a sam-			
		ple mean	5		
	1.2	Generalized Variance	9		
2	Sta	istical Learning	10		
	2.1	Introduction	10		
Tn	dex	-	12		

1 Sample Geometry

1.1 The Geometry of the Sample

A single multivariate observation is the collection of measurements on p different variables taken on the same item or trial. If n observations have been obtained, the entire data set can be placed in an $n \times p$ array (or matrix), also called data frame:

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$
(1)

Each **row** of **X** represents a **multivariate observation**. Since the entire data frame is often one particular realization of what might have been observed, we say that the data frame are a **sample of size** n **from a** p-**variate "population"**. The sample then consists of n measurements, each of which has p components.

Look at the matrix, n measurements (rows), each of which has p components (columns). In mathematics, each n row contains p columns and vice versa.

The data frame can be plotted in two different ways:

- 1. p-dimensional scatter plot, where the rows represent n points in p-dimensional space;
- 2. Geometrical representation, p vectors in n-dimensional space.

1.1.1 Scatter plot

For the p-dimensional scatter plot, the rows of X represent n points in p-dimensional space:

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} \leftarrow 1 \text{st (multivariate) observation}$$

$$\leftarrow n \text{th (multivariate) observation}$$
(2)

The row vector \mathbf{x}'_j , representing the *j*th observation, contains the coordinates of a point. The scatter plot of *n* points in *p*-dimensional space provides information on the locations and variability of the points.

<u>Note</u>: when p (dimensional space) is greater than 3, the scatter plot representation cannot actually be graphed. Yet the consideration of the data as n points in p dimensions provides insights that are not readily available from algebraic expressions.

1.1.2 Geometrical representation

The alternative **geometrical representation** is constructed by considering the data as p vectors in n-dimensional space. Here we take the elements of the columns of the data frame to be the coordinates of the vectors:

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1p} \\
x_{21} & x_{22} & \cdots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{np}
\end{bmatrix} = [\mathbf{y}_1 \mid \mathbf{y}_2 \mid \cdots \mid \mathbf{y}_p]$$
(3)

Then the **coordinates** of the first point $\mathbf{y}_1 = [x_{11}, x_{21}, \dots, x_{n1}]$ are the *n* measurements on the first variable.

In general, the *i*th point $\mathbf{y}_i = [x_{11}, x_{21}, \dots, x_{n1}]$ is determined by the *n*-tuple of all measurements on the *i*th variable.

Geometrical representations usually facilitate understanding and lead to further insights. The ability to relate algebraic expressions to the geometric concepts of length, angle and volume is therefore very important.

1.1.3 Geometrical interpretation of the process of finding a sample mean

Before starting the explanation, you need to understand a few things.

• The **length** of a vector $\mathbf{x}' = [x_1, x_2, \dots, x_n]$ with n components is defined by:

$$L_x = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \tag{4}$$

Multiplication of a vector \mathbf{x} by a scalar c changes the length:

$$L_{cx} = \sqrt{c^2 \cdot x_1^2 + c^2 \cdot x_2^2 + \dots + c^2 \cdot x_n^2}$$

$$= |c| \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$= |c| L_x$$

So, for example, in n=2 dimensions, the vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

The length of \mathbf{x} , written L_x , is defined to be:

$$L_x = \sqrt{x_1^2 + x_2^2}$$

• Another important concept is **angle**. Consider two vectors in a plane and the angle θ between them: The value θ can be represented as the

Figure 1: The angle θ between $\mathbf{x}' = [x_1, x_2]$ and $\mathbf{y}' = [y_1, y_2]$.

difference between the angles θ_1 and θ_2 formed by the two vectors and the first coordinate axis. Since, by definition:

$$\cos(\theta_1) = \frac{x_1}{L_x} \quad \cos(\theta_2) = \frac{y_1}{L_y}$$
$$\sin(\theta_1) = \frac{x_2}{L_x} \quad \sin(\theta_2) = \frac{y_2}{L_y}$$
$$\cos(\theta) = \cos(\theta_2 - \theta_1) = \cos(\theta_2)\cos(\theta_1) + \sin(\theta_2)\sin(\theta_1)$$

The angle θ between the two vectors $\mathbf{x}' = [x_1, x_2]$ and $\mathbf{y}' = [y_1, y_2]$ is specified by:

$$\cos(\theta) = \cos(\theta_2 - \theta_1) = \left(\frac{y_1}{L_y}\right) \left(\frac{x_1}{L_x}\right) + \left(\frac{y_2}{L_y}\right) \left(\frac{x^2}{L_x}\right) = \frac{x_1 y_1 + x_2 y_2}{L_x L_y}$$
(5)

With the angle equation 5, it's convenient to introduce the inner product
of two vectors:

$$\mathbf{x}\mathbf{y}' = x_1y_1 + x_2y_2$$

So let us rewrite:

- The **length** equation 4:

$$\mathbf{x}'\mathbf{x} = x_1x_1 + x_1x_1 = x_1^2 + x_2^2 \longrightarrow L_x = \sqrt{x_1^2 + x_2^2} \Longrightarrow L_x = \sqrt{\mathbf{x}'\mathbf{x}}$$
(6)

- The **angle** equation 5:

$$\cos(\theta) = \frac{x_1 y_1 + x_2 y_2}{L_x L_y} \Longrightarrow \cos(\theta) = \frac{\mathbf{x}' \mathbf{y}}{L_x L_y}$$

And using the rewritten length equation:

$$\cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{L_x L_y} \Longrightarrow \cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{\sqrt{\mathbf{x}'\mathbf{x}} \cdot \sqrt{\mathbf{y}'\mathbf{y}}}$$

• The **projection** (or shadown) of a vector \mathbf{x} on a vector \mathbf{y} is:

$$\frac{(\mathbf{x}'\mathbf{y})}{\mathbf{y}'\mathbf{y}}\mathbf{y} = \frac{(\mathbf{x}'\mathbf{y})}{L_y} \frac{1}{L_y}\mathbf{y}$$
 (7)

Where the vector $\frac{1}{L_y}$ **y** has unit length. The **length of the projection** is:

$$\frac{|\mathbf{x}'\mathbf{y}|}{L_y} = L_x \left| \frac{\mathbf{x}'\mathbf{y}}{L_x L_y} \right| = L_x \left| \cos\left(\theta\right) \right| \tag{8}$$

Where θ is the angle between **x** and **y**:

Figure 2: The projection of \mathbf{x} on \mathbf{y} .

Start by defining the $n \times 1$ vector $\mathbf{1}'_n = [1, 1, \dots, 1]$. The vector $\mathbf{1}$ forms equal angles with each of the n coordinates axes, so the vector $\left(\frac{1}{\sqrt{n}}\right)\mathbf{1}$ has unit length in the equal-angle direction. Consider the vector $\mathbf{y}'_i = [x_{1i}, x_{2i}, \dots, x_{ni}]$. The projection of \mathbf{y}_i on the unit vector $\left(\frac{1}{\sqrt{n}}\right)\mathbf{1}$ is:

$$\mathbf{y}_{i}'\left(\frac{1}{\sqrt{n}}\mathbf{1}\right)\frac{1}{\sqrt{n}}\mathbf{1} = \frac{x_{1i} + x_{2i} + \dots + x_{ni}}{n}\mathbf{1} = \overline{x}_{i}\mathbf{1}$$
(9)

Although it may seem like a complex equation at first glance, it is nothing more than the mean! In fact, the **sample mean** $\overline{\mathbf{x}}_i = \frac{(x_{1i} + x_{2i} + \dots + x_{ni})}{n} = \frac{\mathbf{y}_i'\mathbf{1}}{n}$ corresponds to the multiple of **1** required to give the projection of \mathbf{y}_i onto the line determined by **1**.

Furthermore, using the projection, you can obtain the **deviation** (mean corrected). For each y_i we have the decomposition:

Where $\overline{x}_i \mathbf{1}$ is perpendicular to $y_i - \overline{x}_i \mathbf{1}$. The **deviation**, or **mean corrected**, vector is:

$$\mathbf{d}_{i} = \mathbf{y}_{i} - \overline{x}_{i} \mathbf{1} = \begin{bmatrix} x_{1i} - \overline{x}_{i} \\ x_{2i} - \overline{x}_{i} \\ \vdots \\ x_{ni} - \overline{x}_{i} \end{bmatrix}$$

$$(10)$$

The elements of d_i are the deviations of the measurements on the *i*th variable from their sample mean.

Using the length rewritten with inner product (equation 6) and the deviation (equation 10), we obtain:

$$L_{\mathbf{d}_i}^2 = \mathbf{d}_i' \mathbf{d}_i = \sum_{j=1}^n \left(x_{ji} - \overline{x}_i \right)^2 \tag{11}$$

 $(Length of deviation vector)^2 = sum of squared deviations$

From the sample standard deviation, we see that the **squared length is proportional to the variance** of the measurements on the *i*th variable. Equivalently, the **length is proportional to the standard deviation**. So longer vectors represent more variability than shorter vectors.

Furthermore, for any two deviation vectors \mathbf{d}_i and \mathbf{d}_k :

$$\mathbf{d}_{i}'\mathbf{d}_{k} = \sum_{j=1}^{n} (x_{ji} - \overline{x}_{i})(x_{jk} - \overline{x}_{k})$$
(12)

And with a few mathematical operations, we can get it:

$$r_{ik} = \frac{s_{ik}}{\sqrt{s_{ii}}\sqrt{s_{kk}}} = \cos\left(\theta_{ik}\right) \tag{13}$$

Where the **cosine** of the angle is the **sample correlation coefficient**. Note: s_{ik} is the **sample covariance**:

$$s_{ik} = \frac{1}{n} \sum_{j=1}^{n} (x_{ji} - \overline{x}_i) (x_{jk} - \overline{x}_k)$$
 $i = 1, 2, ..., p, \quad k = 1, 2, ..., p$ (14)

Thus:

• If the two deviation vectors have **nearly the same orientation**, the sample correlation will be close to 1;

- If the two vectors are **nearly perpendicular**, the sample correlation will be approximately zero;
- If the two vectors are oriented in **nearly opposite directions**, the sample correlation will be close to -1.

1.2 Generalized Variance

Before starting the explanation, you need to understand what is a sample variance.

A **sample variance** is defined as:

$$s_k^2 = s_{kk} = \frac{1}{n-1} \sum_{j=1}^n (x_{jk} - \overline{x}_k)^2 \qquad k = 1, 2, \dots, p$$
 (15)

With a single variable, the sample variance is often used to describe the amount of variation in the measurements on that variable. When p variables are observed on each unit, the variation is described by the sample variance-covariance matrix:

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} = \left\{ s_{ik} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{ji} - \overline{x}_i) (x_{jk} - \overline{x}_k) \right\}$$
(16)

The sample covariance matrix contains p variances and $\frac{1}{2}p(p-1)$ potentially different covariances. Sometimes it's desirable to **assign a single numerical** value for the variation expressed by S. One choice for a value is the determinant of S, which reduces to the usual sample variance of a single characteristic when p=1. This determinant is called the **generalized sample variance**:

Generalized sample variance =
$$\det(\mathbf{S}) = |\mathbf{S}|$$
 (17)

2 Statistical Learning

2.1 Introduction

Suppose that we observe a quantitative response Y and p different predictors, X_1, X_2, \ldots, X_p . We assume that there is some relationship between Y and $X = (X_1, X_2, \ldots, X_p)$, which can be written in the general form:

$$Y = f(X) + \varepsilon \tag{18}$$

Where ε is an **error term**, which is **independent** of X and has **mean zero**. The function f represents the **systematic information** that X provides about Y. The **function** f that connects the input variables to the output variable **is in general unknown**.

For example, on the left-hand panel of figure 3, a plot income versus years of education for 30 individuals in the Income data set.

Figure 3: The Income data set. [1]

As you can see, the plot suggests that one might be able to predict income using years of education. Since Income is a simulated data set, the function f is known and is shown by the blue curve in the right-hand panel. The vertical lines represent the error terms ε . We note that some of the 30 observations lie above the blue curve and some lie below it; overall, the errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimating f. In this chapter we outline some of the key theoretical concepts that arise in estimating f.

References

- [1] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer New York, 2013.
- [2] R.A. Johnson and D.W. Wichern. *Applied Multivariate Statistical Analysis*. Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007.

\mathbf{Index}

Symbols		${f L}$	
p-dimensional scatter plot	4	length	5
$f{A}$ angle $f{D}$	6	M mean corrected multivariate observation	8 4
data frame deviation E	4 8	P projection	7
error term ${f G}$ generalized sample variance geometrical representation	10 9 5	S sample correlation coefficient sample covariance sample variance sample variance-covariance mat	8 8 9
I inner product	6	9 systematic information	10