Computer Networks @CS.NCTU

Lecture 5: Network Layer: Control Plane

Instructor: Kate Ching-Ju Lin (林靖茹)

Outline

- Routing
 - Link-State Algorithm
 - Distance-Vector Algorithm
- Intra-AS Routing
- Inter-AP Routing
- SDN Control Plane
- ICMP
- SNMP

Centralized Control Plane

 A distinct (typically remote) controller interacts with local control agents (CAs)

SDN Characteristics

- Flow-based Forwarding
 - OpenFlow (now version 1.4): controller installs forwarding rules of a flow in certain OpenFlow switches
- Separation of data plane and control plane
 - Controller: do complex scheduling
 - Switch: "match plus action" (simple and fast)
- Controller is external to data-plane switches
 - Controller can be implemented on distributed servers → flexible, scalable
- Programmable network
 - Network becomes programmable as a controller is a "software" (e.g., use specific routing algorithm rather than Dijkstra's algorithm)

SDN Architecture

SDN Architecture: Data Plane

Data plane switches

- Fast, simple, commodity switches implementing generalized forwarding in hardware
- Switch flow table computed, installed by controller
- API for table-based switch control (e.g., OpenFlow)
 - define what is controllable and what is not
- Follow OpenFlow to communicate with controller

OpenFlow

- Standard for SDN data plane and controllers
 - Currently, version 1.4
- Match-plus-Action
 - Match
 - Look up the felids in each packet header
 - Hardware-based matching: performed in TCAM (fast, but expensive, power consuming)

Action

- Forwarding: to one ore more output port
- Load balancing
- Rewrite: rewrite header values (e.g., NAT)
- Blocking/dropping
- Further processing: send to the controller

Counter

Keep statistics (# bytes or # packets)

Packet Header Field

SDN Architecture: Controller

SDN controller (network OS):

- · Decision maker!
- Interact with network control applications via northbound API
- Interact with network switches via southbound API
- Implemented as distributed system for performance, scalability, fault-tolerance, robustness

SDN Architecture: Control App

network-control apps:

- "Brains" of control
- Implement control functions using lower-level services, API provided by SDN controller
- Unbundled: can be provided by 3rd party, distinct from routing vendor, or SDN controller

Components of SDN Controller

Interface layer to network control apps: abstractions API

network-wide state management layer: state of links, switches, services: a distributed database

communication layer:

communicate between SDN controller and controlled switches

OpenFlow

- A protocol defines operations between an SDN controller and an SDN-controlled switch
 - OpenFlow switch: follow OpenFlow protocol
 - legacy switch: does not understand OpenFlow
- Operate over TCP
- Default port: 6653
- Open Networking Foundation (ONF)
 - non-profit organization
 - promote networking through software-defined networking (SDN)
 - standardize the OpenFlow protocol and related technologies

OpenFlow Messages

- From controller to switch
 - Configuration: query and set a switch's parameter
 - Modify-State: add/delete/modify flowtable entries
 - Read-State: collect statistics and counter values
 - Send-Packet: send a specific packet out of a specified port at a requested switch
- From switch to controller
 - Flow-Removed: informs the controller of a missing flow (after a timeout)
 - Port-Status: inform the change in port status
 - Packet-In: send packets to the controller if it does not know how to handle it

SDN Control Example

- \$1, experiencing link failure using OpenFlow port status message to notify controller
- ② SDN controller receives OpenFlow message, updates link status info
- 3 Dijkstra's routing algorithm application has previously registered to be called when ever link status changes
- 4 Dijkstra's routing algorithm accesses network graph, link state in controller, computes new routes

SDN Control Example

- 5 link state routing app interacts with flow-table-computation component in SDN controller, which computes new flow tables needed
- 6 controller uses OpenFlow to install new tables in switches that need updating

Outline

- Routing
 - Link-State Algorithm
 - Distance-Vector Algorithm
- Intra-AS Routing
- Inter-AP Routing
- SDN Control Plane
- ICMP
- SNMP

ICMP

- Internet Control Message Protocol
 - RFC 792
 - Used by hosts and routers to exchange networklayer information, e.g., error reporting
- Part of IP, but, architecturally, lie above IP as it is embedded inside IP datagrams

Applications: ping, traceroute, etc.

ICMP Message types

Each ICMP message has a type and a code field

Type Code description		
hable		
Э		
nable		
Э		
n		
jestion		
raceroute)		

Traceroute and ICMP

- source sends series of UDP segments to destination
 - Set TTL to 1, 2, 3,
- when datagram in nth set arrives to nth router:
 - router discards datagram and sends source ICMP message (type 11, code 0)
 - ICMP message includes name of router & IP address
 - Source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Outline

- Routing
 - Link-State Algorithm
 - Distance-Vector Algorithm
- Intra-AS Routing
- Inter-AP Routing
- SDN Control Plane
- ICMP
- SNMP

Network Management

- Deployment, integration and coordination of the hardware, software and human elements
- Monitor, test, poll, configure, analyze, evaluate and control the network
- Required before SDN released
- Simple Network Management Protocol (SNMP)
 - Devices that typically support SNMP include cable modems, routers, switches, servers, workstations, printers, and more
 - Three components:
 - Managed device
 - Agent: software which runs on managed devices
 - Network management station (NMS): software which runs on the manager

Elements of Network Management

 managed devices contain managed objects

 their data are gathered into a Management Information Base (MIB)

SNMP Communications

Two ways to convey MIB info, commands:

SNMP Message Types

Message Type	Fuction
GetRequest GetNextRequest GetBulkRequest	manager-to-agent: "get me data" (data instance, next data in list, block of data)
InformRequest	manager-to-manager: here's MIB value
SetRequest	manager-to-agent: set MIB value
Response	Agent-to-manager: value, response to request
Trap	Agent-to-manager: inform manager of exceptional event

SNMP PDU Format

Usually run over UDP

