Sufficient Statistic

- Intuitively, a sufficient statistic for a parameter is a statistic that captures all the information about a given parameter contained in the sample.
- Sufficiency Principle: If $T(\mathbf{X})$ is a sufficient statistic for θ , then any inference about θ should depend on the sample \mathbf{X} only through the value of $T(\mathbf{X})$.
- That is, if \mathbf{x} and \mathbf{y} are two sample points such that $T(\mathbf{x}) = T(\mathbf{y})$, then the inference about θ should be the same whether $\mathbf{X} = \mathbf{x}$ or $\mathbf{X} = \mathbf{y}$.
- Definition: A statistic $T(\mathbf{x})$ is a sufficient statistic for θ if the conditional distribution of the sample \mathbf{X} given $T(\mathbf{x})$ does not depend on θ .

• Definition: Let $X_1, X_2, ... X_n$ denote a random sample of size n from a distribution that has a pdf $f(x,\theta)$, $\theta \in \Omega$. Let $Y_1=u_1(X_1, X_2, ... X_n)$ be a statistic whose pdf or pmf is $f_{Y_1}(y_1,\theta)$. Then Y_1 is a sufficient statistic for θ if and only if

$$\frac{f(x_1;\theta)f(x_2;\theta)\cdots f(x_n;\theta)}{f_{Y_1}\left[u_1(x_1,x_2,\ldots x_n);\theta\right]} = H(x_1,x_2,\ldots x_n)$$

• Example: Normal sufficient statistic: Let $X_1, X_2, ..., X_n$ be independently and identically distributed $N(\mu, \sigma^2)$ where the variance is known. The sample mean

$$T(\underline{X}) = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

is the sufficient statistic for μ .

Starting with the joint distribution function

$$f\left(\underline{x}|\mu\right) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{\left(x_{i} - \mu\right)^{2}}{2\sigma^{2}}\right]$$
$$= \frac{1}{\left(2\pi\sigma^{2}\right)^{n/2}} \exp\left[-\sum_{i=1}^{n} \frac{\left(x_{i} - \mu\right)^{2}}{2\sigma^{2}}\right]$$

 Next, we add and subtract the sample average yielding

$$f\left(\underline{x}|\mu\right) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left[-\sum_{i=1}^{n} \frac{\left(x_i - \overline{x} + \overline{x} - \mu\right)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left[-\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2 + n\left(\overline{x} - \mu\right)^2\right]$$
$$= \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left[-\frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2 + n\left(\overline{x} - \mu\right)^2}{2\sigma^2}\right]$$

Where the last equality derives from

$$\sum_{i=1}^{n} \left(x_i - \overline{x} \right) \left(\overline{x} - \mu \right) = \left(\overline{x} - \mu \right) \sum_{i=1}^{n} \left(x_i - \overline{x} \right) = 0$$

Given that the distribution of the sample mean is

$$q(T(\underline{X})|\theta) = \frac{1}{(2\pi\sigma^2/n)^{1/2}} \exp\left[-\frac{n(\overline{x}-\mu)^2}{2\sigma^2}\right]$$

 The ratio of the information in the sample to the information in the statistic becomes

$$\frac{f\left(\underline{x}|\theta\right)}{q\left(T\left(\underline{x}\right)|\theta\right)} = \frac{\frac{1}{\left(2\pi\sigma^{2}\right)^{\frac{n}{2}}} \exp\left[-\frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2} + n\left(\overline{x} - \mu\right)^{2}}{2\sigma^{2}}\right]}{\frac{1}{\left(2\pi\sigma^{2}/n\right)^{\frac{1}{2}}} \exp\left[-\frac{n\left(\overline{x} - \mu\right)^{2}}{2\sigma^{2}}\right]}$$

$$\frac{f(\underline{x}|\theta)}{q(T(\underline{x})|\theta)} = \frac{1}{n^{\frac{1}{2}}(2\pi\sigma^2)^{\frac{n-1}{2}}} \exp\left[-\frac{\sum_{i=1}^{n}(x_i - \overline{x})^2}{2\sigma^2}\right]$$

which is a function of the data X_1 , X_2 , ... X_n only, and does not depend on μ . Thus we have shown that the sample mean is a sufficient statistic for μ .

• Theorem (**Factorization Theorem**) Let $f(\mathbf{x}|\theta)$ denote the joint pdf or pmf of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exists functions $g(t|\theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ

$$f(\underline{x}|\theta) = g(T(\underline{x})|\theta)h(\underline{x})$$

Posterior Distribution Through Sufficient Statistics

Theorem: The posterior distribution depends only on sufficient statistics.

Proof: let $T(\mathbf{X})$ be a sufficient statistic for θ , then $f(\mathbf{x} | \theta) = f(T(\mathbf{x}) | \theta) H(\mathbf{x})$

$$f(\theta \mid \mathbf{x}) = \frac{f(\theta)f(\mathbf{x} \mid \theta)}{\int f(\theta)f(\mathbf{x} \mid \theta)d\theta} = \frac{f(\theta)f(T(\mathbf{x}) \mid \theta)H(\mathbf{x})}{\int f(\theta)f(T(\mathbf{x}) \mid \theta)d\theta}$$
$$= \frac{f(\theta)f(T(\mathbf{x}) \mid \theta)}{\int f(\theta)f(T(\mathbf{x}) \mid \theta)d\theta} = f(\theta \mid T(\mathbf{x}))$$

Posterior Distribution Through Sufficient Statistics

Example: Posterior for Normal distribution mean (with known variance)

Now, instead of using the entire sample, we can derive the posterior distribution using the sufficient statistic

$$T(\mathbf{x}) = \overline{\mathbf{x}}$$

Exercise: Please derive the posterior distribution using this approach.