The School of XXXXXX

Scotland Water - XXXXX

by

 $XXXX\ XXXX,\ 000001$

June 2020

Supervised by Dr ??? ???

Own Work Declaration

Here comes your own work declaration

Contents

1	Introduction	2	
2	Background	3	
3	Exploratory & initial data analysis 3.1 Models		
4	Technical Stuff 4.1 Important Things	7	
5	Conclusions	7	
Aj	Appendices		
A	An Appendix	9	
В	Another Appendix	10	

Executive summary

Here I will write a very good, precise and brief executive summary.

1 Introduction

2 Background

3 Exploratory & initial data analysis

3.1 Models

Models are very helpful because.

- They're good.
- They're helpful.

3.2 Techniques

Techniques even better because.

- 1. They're magnificent.
- 2. If they work.

4 Technical Stuff

Now it's getting very technical ... I will cite Shiina & Birge (2004) Gröwe-Kuska & Römisch (2001).

4.1 Important Things

Finally we should have a nice picture like this one. However, I won't forget that figures and table are environments which float around in my document. So LaTeX will place them wherever it thinks they fit well with the surrounding text. I can try to change that with a float specifier, e.g..

Figure 1: Look at this scenario tree with funny times t_1 and scenarios s_1 etc.

Now I want to use one of my own environments. I want to define something. I definitely need some good tables, so I do this. I should really refer to Table 1.

Case	Generators	Therm. Units	Lines	Peak load: [MW]	[MVar]
6 bus	3 at 3 buses	2	11	210	210
9 bus	3 at 3 buses	3	9	315	115
24 bus	33 at 11 buses	26	38	2850	580
30 bus	6 at 6 buses	5	41	189.2	107.2
39 bus	10 at 10 buses	7	46	6254.2	1387.1
57 bus	7 at 7 buses	7	80	1250.8	336.4

Table 1: Something that doesn't make sense.

5 Conclusions

I have no idea how to conclude, so I don't write much. But the stuff that follows is important.

References

Gröwe-Kuska, N. & Römisch, W. (2001), Stochastic unit commitment in hydro-thermal power production planning, Preprints aus dem Institut für Mathematik, Humboldt-Universität zu Berlin, Institut für Mathematik.

Shiina, T. & Birge, J. R. (2004), 'Stochastic unit commitment problem', *International Transactions in Operational Research* 11(1), 19–32.

Appendices

A An Appendix

Some stuff.

B Another Appendix

Some other stuff.