Computer Architecture (CS F342) Test-2 Date: 09 October 2020 (Friday) Weightage: 15% Mode: Open Book

The question paper contains a total of 14 questions. The duration of the test is 30 minutes. The exam will start at 4:10 PM and end at 4:40 PM.

Each question carries different points and is mentioned beside each question. Each wrong answer will be awarded a negative of 25%. Please fill in the student information in the first section and then start answering the questions.

* Required

1.	Email address *	
S	tudent Information	
2.	Write your name: *	
3.	Institute Id: *	
4.	Declaration: I declare that I have not const have maintained academic honesty. I am I Write your name below to agree: *	
G	uestions	

5.	Q1. Assume that the number 12.125 is represented using the conventional IEEE-754 standard. Which of the following operations below converts the number +12.125 to +2.25 x 2^(-108).	4 points
	Mark only one oval.	
	left shift by 1 position	
	left shift by 3 position	
	right shift by 2 position	
	Arithmetic shift right by 2 position	
6.	Q2. In a multi-cycled architecture, the sequence of micro-instructions (RTL) that are triggered when the following instructions get executed are: add \$1,\$2,\$3. (i) Reg1 <- \$2, Reg2 <- \$3 (ii) PC <- PC +4 (iii) IR <- MEM[PC] (iv) \$3 <- Reg1 + Reg2	1 point
	Mark only one oval.	
	(i)->(ii)->(iv) (ii)->(ii)->(iv)	
	(i)->(ii)->(iv)	
	(iii)->(ii)->(iv)	
7.	Q3. The number and type of multiplexers that will be required to select registers (from a register file) for a system with a register file of 16 registers and that supports only single operand instructions are (e.g. Accumulator based systems)	1 point
	Mark only one oval.	
	1, 4X1	
	1, 16X1	

8.	Q4. Assuming that memory read operations take 5ns, ALU operation takes 3ns, shift operation takes 1ns, sign-extend operation takes 1ns, register read operation takes 2ns, and register write takes 2ns, then the total time to execute a 'lw' operation in MIPS is	2 points
	Mark only one oval.	
	11sec	
	13sec	
	14sec	
	9sec	
9.	Q5. What will be the size of a MIPS instruction, if the number of (programmer visible) registers in MIPS is changed to 40.	1 point
	Mark only one oval.	
	30	
	32	
	35	
	36	
10.	Q6. If the number of (programmer visible) registers in MIPS is changed to 40 what is the range of displacement for a conditional branch instruction, if the size of instruction remains unchanged?	, 1 point
	Mark only one oval.	
	+-8kbytes	
	+-32kbytes	
	+-64kbytes	
	+-16kbytes	

11.	Q7. What will be the error if you perform the standard default rounding for the number 0.17 represented using 1 bit of sign, 3 bits of exponent, and 5 bits of mantissa?	4 points
	Mark only one oval.	
	1.375X10^(-2)	
	1.875X10^(-3)	
	9.6875X10^(-3)	
	1.25X10^(-3)	
12.	Q8. How many normalized floating point numbers can be represented using 1 bit for sign, 3 bits for exponent and 5 bits for mantissa.	1 point
	Mark only one oval.	
	384	
	448	
	<u></u>	
	508	
13.	Q9. The number of different operations possible when two signed numbers are added or subtracted are	1 point
	Mark only one oval.	
	4	
	8	
	10	
	<u> </u>	

14.	Q10. If a (\alpha) is the % of a program code which can be executed simultaneously by n processors in a computer system. The remaining code can be executed sequentially by a single processor. Each processor has an execution rate of x MIPS and all the processors are of equal capacity. The effective MIPS rate when the code is executed using n processors is	2 points
	Mark only one oval.	
	$x/[(1-\alpha)+\alpha/n]$	
	$x/[(1-\alpha)+n]$	
	x/(1-n)	
	$x/(1-\alpha)$	
15.	Q11. Add the following floating point numbers A and B in IEEE-754 single precision format. A=0000011000100000000000000000000000000	2 points
	Mark only one oval.	
	o	
	positive overflow	
	positive underflow	

NaN

16.	Q12. Assume two registers \$t2 and \$t3 contain 0x80000000 and 0xD0000000, respectively. Consider the following two MIPS instructions to be executed independently. add \$t1, \$t2, \$t3, sub \$t1, \$t2, \$t3. What will be the output?			
	Mark only one oval.			
	overflow, no overflow no overflow			
	no overflow, overflow			
	overflow, overflow			
17.	Q13. Mr. Singh is entrusted to write a code that can provide a speedup of 1.6 by his manager. He achieves 95% optimization with CPI=1, while the rest is executed with previous (original) CPI =1.5, and returns home dreaming of a big appraisal. If the code is executed for 1 sec, on the processors with a clock cycle of 100 nsec and CPI = 1.5, what will be the new throughput after speedup?	4 points		
	Mark only one oval.			
	9.76 MIPS			
	6.76 MIPS			
	7.25 MIPS			
	8.0 MIPS			

18. Q14. Assume that a certain floating point representation has 1 sign bit, 4 bits 4 points for the exponent and 7 bits for the significand. What is value where positive underflow occurs and what is the maximum error that can occur while representing a floating point number?
Mark only one oval.
2^(-6)-2^(-13) and 1
2^(-7)-2^(-14) and 0.0000001
2^(-7)-2^(-13) and 0.000001
2^(-7) and 0.0000001

This content is neither created nor endorsed by Google.

Google Forms