

Relacion-4.pdf

Pucherillos

Lógica y Métodos Discretos

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Inteligencia Artificial & Data Management

MADRID

academia DOS MOTIVOS


```
Pablo Vega Romero
  Logica y Métodos Discretos
                                                          Grupo A1
  Relación 4.1: Lógica Proposicional
                                         de las siguientes fórmulas:
  Ejercicio 4.1. Halla las subformulas
   1. and > cv (ena):
   {antb-cv(ena), antb, cv(ena), ena, a, tb, b, c, e}
  2. cn(avb) - ravb:
  {cx(avb) → ¬avb, cx(avb), ¬avb, avb, ¬a, a, b, c}
  3. ¬(a→b) → a x ¬ (a x b):
  [7(a + b) +an - (anb), - (a + b), an - (anb), (a + b), - (anb), anb, a, b]
  4. an (avb → d) n (d → 7a):
  [an(avbad) n(dara), an(avbad), (dara), avbad, avb, ra, a, b, d}
 {(anc)vbadn(dara), (anc)vb, dn(dara), anc, dara, ana, a, b, c, d}
  5. (anc) vb -> dn (d -> a):
  6, 7a → (b+a) ~ (a ~ b):
 [-a -> (b -a) η-(a nb), -a -> (b-a), -(a nb), -a, b-a, a n b, a, b)
 [(an-1(bacve)) va, an-1(bacve), a, -(bacve), bacve, cve, b, c, e)
 (br(avb) - dr (d - a), br(avb), dr (dara), avb, - (dara), dara, -a, a, b, d)
 9. bna - (-b-) dh-(d---a));
 (bra) (76 -) dr - (d-) - (d-), bra) - brad - (d-), - b, - (d-), d -> a, -a,
 , a, b, d)
10.7(b-a) ~ (anb) - avb:
 (7(b-a) 17 (anb) -7 avb, -(b+a)17 (anb), 7 (avb, 7 (b-a), 7 (anb) b-a)
→ anb, ¬a, a, b)
```

Ejercicio 4.2: Construye el aubol de formación de las formulas del gercicio 4.1.

1. and sev (ena):

3.7(a-16) - an- (anb):

5. (anc) vb -> dn (d -> 7a):

7. (an- (b → cve)) va:

2 CA (avb) -Tavb

4. an(avb -> d) n(d -> -a)

6.7a -> (b -> a) 17 (a 16)

8 ha (avb) -> da -> (d -> -a)

10. ¬ (b→a),¬ (a,b) → ¬av b:

Ejercicio 4.3: Si en un determinado mundo v, a y \beta son verdaderas y \beta es falsa, d'cuál es el valor de verdad en dicho mundo de las siquientes proposiciones?

7.
$$(\beta \leftrightarrow \neg \alpha) \leftrightarrow (\alpha \leftrightarrow \delta) = (1 \leftrightarrow \neg 1) \leftrightarrow (1 \leftrightarrow 0) = (1 \leftrightarrow 0) \leftrightarrow (1 \leftrightarrow 0) = 0 \leftrightarrow 0 = 1$$

Ejercicio 4.4: Si a > B es verdadera en un mundo v-, à que puedes decir sobre el valor de verdad en dicho mundo de las siguientes proposiciones?

Esto no son apuntes pero tiene un 10 **asegurado** (y lo vas a disfrutar igual).

Abre la Cuenta NoCuenta con el código WUOLAH10, haz tu primer pago y llévate 10 €.

Me interesa

Ejercicio 4.5: Si a es p es falsa en un mundo v, à que puedes deducir sobre el valor de verdad en dicho mundo de las siguientes proposiciones? d = 0 = 0 = 1 . B=0

1. a A B:

· 1 10 = 0

· 0 × 1 = 0

2. 2 v B:

. 1.0=1

- 0v1=1

3. a -> B

 $-0 \rightarrow 1 = 1$

-1-0:0

4. and + pnr - 8=0,8=1.

- On 0 + 1 NO = 0 +0=1

- OAA + AA1 = O + 1= 0

-1 A O GOAG = O GO = 1

Ejercicio 4.6: [1 mismo ejercicio anterior superiendo a > p verdadera: a - B=1 = a=0, B=1

7 a = 1 , B = 1

1. an B:

2. XVB:

- On 0 = 0

- 0 V 0: 0

- 0 1 1 = 0

-111=1

- Verdadera Siempre en

este mundo.

Escaneado con CamScanner

Ejercicio 4.7: Clasifica las siguientes proposiciones:

La + ava:

Q. I	a Hava	a 2-1 &
0	1	1
1	1	1.

Es una tautología

 $\lambda. (a \rightarrow \beta) \wedge (\beta \rightarrow \delta) \rightarrow (a \rightarrow \delta)$

{a + ava, a +a, a}

d	B	8	(d-b) (b-b) - (n-b)	(0+B) n(B+8)	$a \rightarrow \beta$	β → 8	$\alpha \rightarrow \delta$
0	0	ပ	4	1	1	1 .	1
0	0	4	1	1	1	1	1
0	1	0	4	0	1	0	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0		1
1	0	1	1	O	0	1	O
1	1	0	1	0		1	1
4	4	1	٨		2	0	0
				1	1	1	1

Es una tantología

3. (a→β) A β → a

d	B	(a→B)A B → a	a -> B	p - a
0	0	1	1	1
0	1	0	1	0
1	0	0	0	1
1	1	1	1	1

Es una tautología

4. Ta SanB

d	B	TandAB	70	DAAB
0	0	0	1	0
0	1	0	1	0
1	0	1	0	
1	1	1	0	

No es una tautología

ING BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandés con una garantía de hasta 100.000 euros por depositante. Consulta más información en ing.es

Que te den **10 € para gastar** es una fantasía. ING lo hace realidad.

Abre la **Cuenta NoCuenta** con el código **WUOLAH10**, haz tu primer pago y llévate 10 €.

Quiero el cash

Consulta condiciones aquí

5 x 1 - (x v p)

~ (av p)	0
0	1
0	1
0	1
	0

No es una tautología

6. 7 a + (a -> 7a)

ø	7d + (a -> 7a)	A-Td	70
0	1	4	4
1	1	0	0

Es una tautología.

7. (a + B) + TavB

ď	P	(G-B) A TavB	a → B	-Tav B	170
0	0	1	1	1	1
0	1	4	1	1	1
1	0	1	0	0	0
1	1	4	1	1	0

Es una tautología

8. (a→B) + ¬(a ∧¬B)

α	B	(d+B) +> 7 (d 17B)	a -> B	[7(an 7B)]	d 17B	ΙΠβ
0	C	1	4	1	0	1
0	1	1	4	1	0	10
4	0	1	. 0	0	1	1
1	1	1	1	1	0	0

No es una tautología

tjercicio 4.8:

A, a= "A es veraz", a - enunciado dicho por A

Veraz: a=a -> 1=1

Mendaz: a= x -> 0 = 0

1. "Ambos somos embusteros".

h: hombre warat

m: mujer veraz

h= 7h ~7m = (1.h) (1+m) = 1+m · h + mh -> h= 1+m+ h+mh -> 1=m+mh ->

→ 1=m (1+h) = h=0 -> hombre mendar

academia DOS MOTIVOS

2. "Por lo menos uno de nosotros es embustero": h=7hv7m = (1+h)+(1+m)+ (1+h). (1+m) = K+m+ 1+m+K+hm -> > h=1+hm → 1= h+hm > m=0 - mujer mendar 3. Si yo soy veraz, mi mujer también lo es ". h=h-m=1+h+hm-1=1+K+hm-1=hm 2m=1-mujer veraz 4. Ye soy to mismo que mi mujer" h=h+m=1+h+m -> K=1+H+m -> 1=m -> myer bepat h=0 a 1 Ejercicio 4.9:

x = "Pedro está en la isla"

1. A: Si B y Jo somos veraces, entonces ledro esta en la isla. B: Si A y so somos veraces, entonces Pedro está en la isla. $a = b \wedge a \rightarrow x = 1 + b \wedge a + (b \wedge a) \cdot x \rightarrow a = 1 + ab + ab \times$ $b = a \wedge b \rightarrow x = 1 + a \wedge b + (a \wedge b) \cdot x \rightarrow b = 1 + ab + ab \times$ a= 1+a+ax - 1=ax >x=1=b

Pedro esta en la isla.

2. A: Si alguno de los dos es veraz, entonces Pedro está en la isla. a= avb →x ⇒ 1+ avb + (avb)x ⇒ a=1+a+b+ab+ax + bx+abx) a= b =>
b= avb →x ⇒ 1+ avb + (avb)x ⇒ b= 1+a+b+ab+ax + bx+abx B: Esc es verdad.

=> a=1+ a + ax + 1= ax = b=1

B: "A es un embotero y Pedro no está en la isla". O A es un embotero y Pedro está en la isla". 3. A: "B es veraz y Pedro esta en la isla". $a = b \times \begin{cases} a = b \times \\ b = 1 + x + b \times \end{cases} \rightarrow \begin{cases} a = b \times \\ b = 1 + x \end{cases} \begin{cases} a = b \times \\ b = 1 + x \end{cases} \begin{cases} a = b \times \\ b = 1 + x \end{cases}$

a=b.x = (a=bx) = a=b - a=0=b -> x=0 Pedro no esta en la isla

Escaneado con CamScanner

```
4. q=x
   b=7x =1+x
   c = 9
    d= 7x 17q = (1+x). (1+q) - 1+ q+x+xq
   e= - dvc=(1+d)+c+(1+d).c=1+d+e+ x+ed=1+d+ed
   a= Tevc = 1+e+ce - a= 1+x+ q/+ xq + xq+ q+ xq => xq-1 - x= q-1
  → a=1; b=0; c=1; d=0; e=1
    Pedro está en la isla.
 Ejeració 4.10: Estudia si las signientes equivalencias son ciertas
  Justifica la respuesta.
   1: a -> b= 7a -> 7 b
     a -> b = 1+a+ab
    70 ->76= x. x+0 + (1+a) (1+b) = a+1+b+ x+ab = 1+b+ab
     No es cierta.
   1 2: a ↔ b = 7a ↔ b
     a +> b = 1+ a+ b
                                     Si es cierta
    Tattb= K+ K+a+1+b=1+a+b
    3: (avb) → c = (a → c) v(b → c)
      (avb) = c = 1+ avb+ (avb) c = 1+a+b+ab+(a+b+ab) c = 1+a+b+ab+ac+bc+abc
    (a→c) v(b→c) = (a →c) + (b→c) + (a→c). (b→c) = x+a+ac+ x+b+bc+(3+a+ac)(3+b+bc)
    -> x+ac+6+bc+1+ b+bc+d+ab+ abc+dc+abc+abc=1+ab+abc
       No es cierta
    4: (avb) →c = (a→c) ∧ (b→c)
      (avb) → c = 1 + a+b + ab+ ac+ bc+abc
     (a → c) ∧ (b → c) = (1+ a+ac). (1+b+bc) = 1+b+bc+a+ ab+abc+ac+abc+ac+abc
     -> = 1+ a+b+ab+ ac + bc +abc
      Si es cierta.
       a -> (bvc) = 1+a+a (bvc) = 1+a+a (b+c+bc) = 1+a+ab+ac+abc
      5: a → (bvc)= (a → b) v (a → c)
       (a>b) v (a>e) = a>b+ a>c+ (a>b).(a>c)=1/10+ab+1/+a+ac+(1+a+ab).(1+a+ac)
     == ab+ac+ + ++ x+ ac+a+ a+ac+ab+ ab+ abc = 1+ a +ac+ab+abc
          si es cierta.
```

```
6: a→(b→c)=(anb)→c
   a - (b - c) = 1+a+a(b - c) = 1+a+a(1+b+bc) = 1+a+a+ab+abc
                                                   si es cierta
   (anb) - c = 1+ (anb) + (anb) c = 1+ ab + abc
 Ejercicio 4.11. Estudia si el siguiente conjunto de proposiciones
 satisfacible o insatisfacible:
   [= (c → (avb), b → (c → a), dn ¬ (c → a)}
   Los resolveremos por producto de polinamios:
   C-> (avb) = 1+c + c (avb) = 1+c+c (a+b+ab) = 1+c+ac+bc +abc
   b → (c → a) = 1 + b + b (c → a) = 1+ b + b (1+c+ac) = 1+6+6+6+ bc + abc
   d ~ 7 (c→a) = d. (1+(1+c+ac)) = d+d+ cd+ acd = cd + acd
   ->= 1+ bc + abc
(1+c+ac+bc+ abc). (1+bc+abc). (cd + acd) =
-= (11 be abetc+ betabe + actabetabetbetbetbetabetabetabetabe) (cd+acd) =
->= (1+c+ac) (ed+acd)= od+acd+cd+odd+acd+acd=0 -> Es insatisfacible
Ejercicio 4.12: Determina utilizando el teorema de la deducción y polinomics
 de Gegalkine si son o no tantologías las siguientes formulas.
 1. (B→ av 8) → ((d→B) → ((r→B) → 8)))
  ⊨ (β→ανχ) → ((α→β)→ (α→((δ→β)→δ))) ⇒(β→2νδ) ⊨(α→β)→(α→((δ→β)→δ))
> Badub, a>B = da((rab)ab) => Badub, a>B, d= (b>B) -> b)
=> B>avo,a>B,a, 8>B= 8 => {B>avo,a>B,a,8>B,78} es insatisfaible.
B-du8=1+B+B(x+8+d.8)=1+B+aB+B8+aB8
a → B = 1+ x + aB
8-18 = 1+0+ BB
78 = 1+8
```

Esto no son apuntes pero tiene un 10 asegurado (y lo vas a disfrutar igual).

-> = ab+ ab+ abc + abc = 0

Abre la **Cuenta NoCuenta** con el código <u>WUOLAH10</u>, haz tu primer pago y llévate 10 €.

Este número es indicativo del riesgo del producto, siendo 1/6 indicativo de menor riesgo y 6/6 de mayor riesgo.

NG BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandes con una garantía de hasta 100.000 euros por depositante.

Me interesa

(b+bc+abc+ab+abc+abc) (a+c+ac)= (b+bc+abc+ab) (a+c+ac)= ->

```
2. {¬(anb),¬cva,b} = ¬a→¬c
  [-(anb), -cva, b, -(-a->-c)]
* 7 (anb) = 1+ab
 + TCVA = 4+C+ a+ (1+c). a = 1+C+ ac = C->a
*- (7a -> 7c) = 7 (av - c) = 7anc = (1+a). c = c+ ac
  (1+ab). (1+c+ac).(b).(c+ac)=(1+c+ac+ab+abc+abc).(bc+abc)=(1+c+ac+ab).(bc+abc)=
->= bc+akc+bc+akc+akc+akc+akc+akc=0 - insatisfacible, portanto,
3. (¬(anb), ¬eva, b) = a↔¬b
 {¬(anb),¬cva,b,¬(a↔¬b)}
 47 (anb) = 1+ab
 4-1 CVa = 1+ C+ ac
 * 7 (a+ 76) = 7 (x+a+ N+ b) = 7 (a+ b) = 1+ a+ b
  (1+ab). (1+c+ac). b. (1+a+b) = (1+c+ac+ab). (b+ab+b)=(1+c+ac+ab). ab =
 ->= ab+ abc+ abc+ ab= 0 -> insatisfacible, por fanto, es ciuta
 4. {¬(anb),¬cva, b} = b→c
  [- (anb),- (va, b, 7(b→c)]
* 7 (anb) = 1+ab
e Cva= A+c+ac
* 7 (b-c) = 7 (76vc) = bx7c = b.(1+c) = b+bc
 (1+ab) . (1+c+ac). 6. (b+bc) = (1+c+ac+ab). (b+bc) = ----
-> (b+ bc+abc+ab+ bc+ bc+ abc+ abc = b+ab+ bc+abe -> no es satisfacille,
```

```
Ejeracio 4.14:
1. = (B→ av8) → ((a→B) → (a→((b→B)→8)))
  (β→aνδ, α→β,α,γ→β) = > (β→aνγ,α→β,α,δ→β,7δ)
   { TABWAY , TAVB, A, T 8 V B, T 8 }
             (β, ¬δνβ, ¬δ)
                 1 8=0
2. (Bind) - ((na - n(a-p)) - d)
                                          7a -> (a-> B) = ~~ (a-> B) = -->
                                         -= av- (-avB) = av(ax-B) = -
   (β→7α, 7α→7 (α→β)) = x
  {β→7α, 7α→7(α→β), 7α}
                                        -> (ava) n (avab) = aln (avab)
  f1βν 7α, α, ανηβ, 7α}
    (TB, []) -> Insatisfacible
3. (a > p) -> ((p - d) -> (a -> r))
 [ a - B , B - 8 , a] = 8
 far B, 7 Bu &, a, 78}
      [Tarp, a, []] -> Insatisfacible.
4. ((a > B) - a) - a.
  (x → B, a) = a
  {70 MB, 0,70}
     ) d=1
       {B, []} -> Insadistacible
                                                一(スーな) ニュ(コスンな) シー
5. (B-1) - (- (a-1) - 7a-1)
(B-8,7(X-18),7a3 = B
fβ~8, α, ¬δ, ¬κ, ¬β}
    fipvo, -o, [], ¬β} → Insatistacible
```


academia DOS MOTIVOS

Ejercicio 4.15.

1. fr (anb), rcya, b) = ranze

* 7 (anb) = 7av7b

* T CVG

+ 6

* 7 (Tanto): avc

{Tavab, acva, b, ave}

Tova ave

{7av7b,7cva,b,ave} \$\delta \b:1 {7a,7cva,ave} \$\delta = 0 {7c, c}

\(c - \(\)

2. (-(anb),-cva, b)=-a->-c

Tance avac -T (avac)= Tanc

(7) avab, 70 va, 6, 70 vc)

| b=1 { ¬a, ¬eva, ¬ave} | b=1 | (¬a, a) | b=1 | (□)

Tova Ta

Ejercicio 1.16:

1. (a → b, a → 7 b) = 7a

{a - b, a - 7 b, a}

{7avb, 7avab, a}

Tavb D Tavab

WUOLAH

1-11-1

(a++16) + (a+16) + (a

{co}

