

Trench™ HiperFET™ Power MOSFETs

IXFT120N25T IXFH120N25T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum	Ratings
V _{DSS}	T _J = 25°C to 150°C	250	V
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	250	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	120	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	300	Α
I _A E _{AS}	T _c = 25°C T _c = 25°C	60 500	A mJ
P_{D}	T _c = 25°C	890	W
dv/dt	$I_{\rm S} \le I_{\rm DM}, V_{\rm DD} \le V_{\rm DSS}, T_{\rm J} \le 150^{\circ}{\rm C}$	20	V/ns
T _J		-55 to +150	°C
T _{JM}		+150	°C
T _{stg}		-55 to +150	°C
T _L	1.6mm (0.063in) from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
M _d	Mounting Torque (TO-247)	1.13/10	Nm/lb.in.
Weight	TO-268 TO-247	4 6	g g

			cteristic Values Typ.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	250			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 125^{\circ}C$			1.5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			23	mΩ

 $V_{DSS} = 250V$ $I_{D25} = 120A$ $R_{DS(on)} \le 23m\Omega$

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- Avalanche Rated
- High Current Handling Capability
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

•	SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}\text{C}, \text{Unless Otherwise Specified})$ Min.		cteristic Values Typ. Max.		
g _{fs}		V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	65	105	S
C _{iss})			11.3	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1025	pF
\mathbf{C}_{rss}	J			136	pF
t _{d(on)})	Pagiativa Switching Times		32	ns
t,		Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D2S}$		16	ns
$\mathbf{t}_{d(off)}$	1	$R_{\rm G} = 2\Omega$ (External)		46	ns
$\mathbf{t}_{_{\mathrm{f}}}$)	Ti _G = 252 (External)		19	ns
Q _{g(on)})			180	nC
Q _{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		60	nC
\mathbf{Q}_{gd}	J			47	nC
R _{thJC}					0.14 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-247		0.21	°C/W

Source-Drain Diode

Symb	SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min		racteristic Values		
$T_{J} =$			Тур.	Max.	
Is	$V_{GS} = 0V$			120	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			480	Α
V _{SD}	$I_F = 100A$, $V_{GS} = 0V$, Note 1			1.4	٧
t _{rr} I _{RM} Q _{RM}	$ \begin{cases} I_F = 60A, -di/dt = 100A/\mu s, \\ V_R = 100V, V_{GS} = 0V \end{cases} $		108 21 1.1		ns A µC

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Terminals: 1 - Gate 2,4 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215 BSC		5.45 BSC	
Н	.736	.752	18.70	19.10
L	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4.10

Terminals: 1 - Gate 2 - Drain 3 - Source

Millimeter		Inches	
Min.	Max.	Min.	Max.
4.7	5.3	.185	.209
2.2	2.54	.087	.102
2.2	2.6	.059	.098
1.0	1.4	.040	.055
1.65	2.13	.065	.084
2.87	3.12	.113	.123
.4	.8	.016	.031
20.80	21.46	.819	.845
15.75	16.26	.610	.640
5.20	5.72	0.205	0.225
19.81	20.32	.780	.800
	4.50		.177
3.55	3.65	.140	.144
5.89	6.40	0.232	0.252
4.32	5.49	.170	.216
6.15	BSC	242	BSC
	Min. 4.7 2.2 2.2 1.0 1.65 2.87 .4 20.80 15.75 5.20 19.81 3.55 5.89 4.32	4.7 5.3 2.2 2.54 2.2 2.6 1.0 1.4 1.65 2.13 2.87 3.12 .4 8 20.80 21.46 15.75 16.26 5.20 5.72 19.81 20.32 4.50 3.55 3.65 5.89 6.40 4.32 5.49	Min. Max. Min. 4.7 5.3 .185 2.2 2.54 .087 2.2 2.6 .059 1.0 1.4 .040 1.65 2.13 .065 2.87 3.12 .113 .4 .8 .016 20.80 21.46 .819 15.75 16.26 .610 5.20 5.72 0.205 19.81 20.32 .780 4.50 3.55 3.65 .140 5.89 6.40 0.232 4.32 5.49 .170

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 125^{\circ}C$

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 60A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 60A Value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

