Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 12 de septiembre de 2024

Auxiliar 4

Profesores: Rayssa Cajú y Claudio Muñoz Auxiliares Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

- **P1.** El objetivo de este problema es demostrar que para s > d/2 el espacio $H^s(\mathbb{R}^d)$ es un álgebra de Banach con respecto al producto de funciones. Para ello:
 - a) Demuestre que para todo $\xi, \eta \in \mathbb{R}^d$ se cumple:

$$(1+|\xi|^2)^{s/2} \le 4^{s/2} \left((1+|\xi-\eta|^2)^{s/2} + (1+|\eta|^2)^{s/2} \right).$$

b) Verifique que si $u \in H^s(\mathbb{R}^d)$ y s > d/2 entonces $\hat{u} \in L^1(\mathbb{R}^d)$ y además

$$\|\hat{u}\|_{L^1(\mathbb{R}^d)} \le \tilde{C} \|u\|_{H^s(\mathbb{R}^d)}.$$

c) Verifique que si $f \in L^2(\mathbb{R}^d)$ y $g \in L^1(\mathbb{R}^d)$ entonces

$$||f * g||_{L^2(\mathbb{R}^d)} \le ||f||_{L^2(\mathbb{R}^d)} ||g||_{L^1(\mathbb{R}^d)}.$$

d) Demuestre que $uv \in H^s(\mathbb{R}^d)$ y además existe C>0 tal que:

$$||uv||_{H^{s}(\mathbb{R}^{d})} \le C ||u||_{H^{s}(\mathbb{R}^{d})} ||v||_{H^{s}(\mathbb{R}^{d})}.$$

P2. Probar que si s > d/2 + k, entonces

$$H^s(\mathbb{R}^d) \hookrightarrow \{u \in C^k(\mathbb{R}^d) \text{ tal que } u \to 0 \text{ cuando } |x| \to \infty\}.$$

Para ello, verifique primero que si $s>d/2,\,H^s(\mathbb{R}^d)\hookrightarrow C(\mathbb{R}^d)$ y nula al infinito.

P3. [Calor en S'] Sea $(t, x) \in (0, \infty) \times \mathbb{R}^d$. Para $u = u(t, x) \in \mathbb{R}$, consideraremos la siguiente ecuación del calor en S'

(H)
$$\begin{cases} \partial_t u(t,x) - \Delta u(t,x) = 0, & (t,x) \in (0,\infty) \times \mathbb{R}^d, \\ u(t=0,x) = \partial_{x_1} \delta_0(x). \end{cases}$$

- a) Suponga que $u(t) \in \mathcal{S}'(\mathbb{R}^d)$ para cada t > 0 y $\partial_t u(t)$ (como $\lim_{h \to 0} \frac{u(t+h)-u(t)}{h}$) existe. Muestre que $\partial_t u(t)$ está bien definida en $\mathcal{S}'(\mathbb{R}^d)$ y que $\mathcal{F}(\partial_t u)(t,\xi) = \partial_t \hat{u}(t,\xi)$, donde $\hat{u}(t,\xi) := \mathcal{F}u(t,\xi)$.
- b) Encuentre u(t) y verifique que efectivamente no solo está en \mathcal{S}' para cada t>0, sino que también es función, y está en $\mathcal{S}(\mathbb{R}^d)$.

Recuerdos

• Transformada de Fourier y convoluciones

Se define la transformada de Fourier \mathcal{F} y su respectiva anti transformada \mathcal{F}^* en $\mathcal{S} \to \mathcal{S}$ como:

$$\mathcal{F}f(k) = \int_{\mathbb{R}^d} e^{-i2\pi kx} f(x) dx \qquad \mathcal{F}^*f(x) = \int_{\mathbb{R}^d} e^{i2\pi kx} f(k) dk$$

Además se define como operador de $\mathcal{S}' \to \mathcal{S}'$ como:

$$\langle \mathcal{F}T, \varphi \rangle = \langle T, \mathcal{F}\varphi \rangle \qquad \forall \varphi \in \mathcal{S}$$

Proposición.

Si φ , $\psi \in \mathcal{S}(\mathbb{R}^d)$ entonces $\varphi * \psi \in \mathcal{S}(\mathbb{R}^d)$.

Proposición.

Para $\varphi \in \mathcal{S}(\mathbb{R}^d)$, $(\varphi *)$ extiende a una operación continua de \mathcal{S}' en \mathcal{S}' definida por:

$$\langle \varphi * T, \psi \rangle := \langle T, \varphi * \psi \rangle$$

además, cumple:

1.
$$\mathcal{F}(\varphi * T) = \mathcal{F}(\varphi)\mathcal{F}(T)$$
.

$$2. \ \partial^{\alpha}(\varphi*T) = \partial^{\alpha}\varphi*T = \varphi*\partial^{\alpha}T.$$

■ Espacios de Sobolev

Definición. Se define, para s > 0,

$$H^s(\mathbb{R}^d) = \{ f \in L^2(\mathbb{R}^d) : (1 + |k|^2)^{s/2} \hat{f}(k) \in L^2(\mathbb{R}^d) \}$$

Con la norma:

$$||f||_{H^s}^2 = \int_{\mathbb{R}^d} |\hat{f}(k)|^2 (1+|k|^2)^s dk$$