8주 1강. 광통신용 발광소자, 반도체의 특성

- 변조 속도
- 발광소자를 전기적 신호로 얼마나 빨리 점멸할 수 있는 지가 중요
- 전기적 신호는 정보를 싣고 있으므로, 전기적 신호에 따라 발광소자의 광 출력이 변할 수 있는 속도가 중요
- ▶ 일반적으로 LED보다 레이저다이오드의 변조 속도가 더 높음
- ➤ 전기적 신호에 따라 발광소자의 온/오프(On/Off)가 결정되는 것을 직접 변조(direct modulation)라고 함
- ➤ 직접 변조는 변조된 광신호의 주파수가 시간에 따라 변하는 처핑(chirping) 현상이 발생하여 수 Gb/s의 높은 비트율에서는 사용되지 않음

- 변조 속도
- ▶ 처핑 현상은 외부 변조기를 사용하면 제거 가능
 - 외부 변조기는 항상 켜진 발광소자로부터 일정한 광전 력을 받아 전기적 신호에 따라 광신호의 세기를 변화시 켜 출력 시킴

참고) 출력 파장, 출력 스펙트럼 폭 및 변조 속도 외에 온도와 같은 외부 환경이 변해도 안정적인 광 출력이 나오는 것도 중요

LED와 레이저다이오드의 일반적인 특성 비교

	<u> </u>	
	LED	레이저다이오드
특성	비간섭성(incoherent)	가간섭성(coherent)
	광공진기 구조가 없음	광공진기 구조를 갖춤
	다중모드 광섬유와 함께 사용	주로 단일모드 광섬유와 함께 사용
	최고 비트율 $B_{ m max}\sim$ 100Mbps	최고 비트율 $B_{ m max}\sim$ 수십 Gbps
	출력 방사 형태가 상대적으로 넓음	출력 방사 형태가 상대적으로 좁음
장점	제조가 쉬움	고속으로 변조 가능
	제조 비용이 낮음	스펙트럼 폭이 좁음
	송신기 회로가 단순함	광섬유와 결합 효율이 높음
	온도의 영향에 상대적으로 덜 민감	장거리 송신 가능
전형적인 출력 스펙트럼 모양과 스펙트럼 폭	전력 $\Delta \lambda = 30 \sim 120 \mathrm{nm}$	다중모드 LD $\Delta\lambda=3\sim10\mathrm{nm}$ 단일모드 LD Δ

- LED와 레이저다이오드의 일반적인 특성 비교
 - LED는 제조하기가 쉽고 값이 싸지만, 수십 km 이상의 장거리 광통신에는 적합하지 않음
 - 레이저다이오드는 가격이 비싸지만, 출력 스펙트럼 폭이 좁아 분산의 영향을 덜 받는다. 장거리 광통신에서 는 예외 없이 사용함

또한, 방향성이 좋아 광섬유로 결합하기가 쉬우므로, 단일모드 광섬유와 함께 사용함

- 에너지 밴드 다이어그램과 반도체
 - 반도체는 수많은 원자가 규칙적으로 촘촘히 배열된 고체
 - 각 원자에 속한 최외각전자 역시 무수히 많이 존재하므로, 이들 전자의 에너지 준위를 하나의 연속적인 에너지 값을 갖는 에너지 밴드(energy band)로 취급

예) 원자 간격에 따른 탄소의 에너지 다이어그램

- 다이아몬드 격자 간격에서는 외각의 에너지 상태가 전도대와 → 가전자대로 분리됨
 - 전도대와 가전자대 사이의 에너지 차를 에너지 갭 Eg라 함
 - 에너지 갭 E_g는 금지 밴드라고도 하며, 이 밴드에서는 에너지 상태가 존재하지 않음

- 도체, 부도체 및 반도체
 - 모든 고체는 전기적 특성에 따라 도체(conductor), 부도체(nonconductor), 반도체(semiconductor)로 분류
 - 전기적 특성은 에너지 갭 Eg에 의해 결정됨
 - 부도체의 Eq는 반도체의 Eq보다 훨씬 큼

▶ 반도체의 특성

- 반도체는 E_g 가 상대적으로 작아 외부에서 열이나 빛을 받으면 가전자대의 일부 전자가 전도대에 여기(excited)
 - → 반도체의 전도성이 크게 변화
- 도펀트(dopant)라 불리는 소량의 불순물을 첨가하 여 전도성을 쉽게 조절 가능
- 전도대에 도달한 전자는 어떤 원자에도 구속받지 않으므로 자유전자라 부름
- 가전자대에서 전자의 빈자리는 정공이라 하며, (+) 전하를 띄는 입자로 취급

 $[T>0 \mathrm{K}$ 에서 반도체의 에너지 밴드]

- 진성 반도체와 불순물 반도체
 - 진성반도체
 - 어떤 불순물도 첨가되지 않은 순수 반도체
 - 상온에서 발생하는 캐리어 수가 작아 전기 소자로 이용하기 어려움
 - 불순물 반도체
 - 도펀트라 불리는 소량의 불순물을 첨가하여 캐리어 수를 증가시킨 반도체
 - 캐리어 수는 첨가한 도펀트 수와 거의 동일
 - 도펀트의 종류에 따라 n형 또는 p형 반도체가 됨

- 진성 반도체와 불순물 반도체
 - n형 반도체
 - 자유전자가 진성 반도체보다 도펀트 수만큼 증가한 경우
 - 다수 캐리어는 전자, 소수 캐리어는 정공
 - p형 반도체
 - 정공이 진성 반도체보다 도펀트 수만큼 증가한 경우
 - 다수 캐리어는 정공, 소수 캐리어는 전자

- 캐리어 농도
 - 전도대의 자유전자가 에너지를 잃으면, 가전자대로 떨어지면서 정공과 재결합(recombination)
 되어 전자와 정공의 한 쌍이 사라짐
 - 열평형 상태에서는 가전자대의 전자가 전도대로 도달하는 비율과 재결합하는 비율이 일정하므로, 캐리어의 농도는 일정하게 유지

- 직접 밴드갭과 간접 밴드갭
 - 전자가 전도대에서 가전자대로, 또는 가전자대에서 전 도대로 천이하기 위해서는 에너지뿐만 아니라 운동량 (momentum)도 함께 보존되어야 함
 - 전자의 운동량은 파동-입자의 이중성에 의해 전자의 파수 k와 직접 비례
 - E-k 다이어그램 : 에너지와 파수와의 관계를 나타냄

