

Department of Basic Sciences Functional Physics

Exam 1

Name:	Section:

Key Answers

Formula sheet

$v = \frac{dx}{dt}$	$a = \frac{dv}{dt}$	
$v_{avg} = \frac{\Delta x}{\Delta t}$	$a_{avg} = \frac{\Delta v}{\Delta t}$	
$v = v_0 + at$		
$v^2 = {v_0}^2 + 2a(x - x_0)$		
$x - x_0 = v_0 t + \frac{1}{2} a t^2$		
$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	$\vec{v} = \vec{v}_0 + \vec{a}t$	
$\vec{r} - \vec{r}_0 = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$		
$H = \frac{v_0^2 sin^2 \theta_0}{2g}$	$R = \frac{v_0^2 \sin 2\theta_0}{g}$	
$a_r = \frac{v^2}{r}$	$T = \frac{2\pi r}{v}$	

P

1)

The period in the uniform circular motion is giving by $T = \frac{2\pi R}{v}$, where **R** is the radius of the circle, and **v** the speed of the particle. Show that this equation is dimensionally correct.

$$[T] = \frac{[L]}{[L/T]} = \frac{[K]}{[K]} [T] \times \frac{5 \text{ points}}{P - \text{level}}$$

2)

7

A car is driving at 70 miles/hour. Express this speed in m/s, assuming that 1mile = 5280 ft, and 1m = 3.3 ft.

P-level

At time t = 0, a particle had a speed of 20 m/s in the positive x direction. At time t = 2.5 s, its speed was 40 m/s in the opposite direction. Find the average acceleration of the particle during the 2.5 s interval.

$$t_i = 0$$
 $V_i = 20 \text{ mL}$ $S - Points$
 $t_f = 2.5 \text{ sec}$ $V_f = -40 \text{ mls}$
 $P - 1 \text{ evel}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$
 $t_f = 2.5 \text{ sec}$ $t_f = -40 \text{ mls}$

or 24 Ws to the left

4)

A jet plane lands with a speed of 100 m/s and decelerates with $a = -5.00 \text{ m/s}^2$ as it comes to rest. From the instant it touches the runway; it moves a distance X and stops, as shown in **Figure 2**. What is the distance X, measured in meters?

Shown in Figure 2. What is the distance is, included in includes

Figure 2

$$X = \sqrt{100 \text{ m/s}}$$
 $A = -5.0 \text{ m/s}^2$
 $A = -5.0 \text$

A car is driven east for a distance of 50 km, then north for 30 km, and then in a direction 30° east of north for 25 km. Sketch the vector diagram and determine (a) the magnitude and (b) the angle of the car's total displacement from its starting point.

4)

10-Points M-level

b) $\vec{r} = 50 \hat{c} + 30 \hat{j} + 25 \sin 30 \hat{c} + 25 \cos 50 \hat{j}$ $= 50 \hat{c} + 30 \hat{j} + 12.5 \hat{c} + 21.7 \hat{j}$ $\vec{r} = 62.5 \hat{c} + 51.7 \hat{j} = 14 \cdot \sqrt{(62.5)^2 + (51.7)^2}$ = 81 km $\theta = + \sin \left(\frac{51.7}{62.5}\right) = 39.57$ North of East

Two vectors are given by

$$\vec{a} = (4.0 \text{ m})\hat{i} - (3.0 \text{ m})\hat{j} + (1.0 \text{ m})\hat{k}$$

$$\vec{b} = (-1.0 \text{ m})\hat{i} + (1.0 \text{ m})\hat{j} + (4.0 \text{ m})\hat{k}.$$

In unit-vector notations, find $\vec{a} - 2\vec{b}$?

$$2\vec{b} = -2\hat{i} + 2\hat{j} + 8\hat{k}$$

 $\vec{a} - 2\vec{b} = 6\hat{i} - 5\hat{j} - 7\hat{k}$

7)

A particle moves so that its position (in meters) as a function of time (in seconds) is $\vec{r} = \hat{\iota} + 4t^2\hat{\jmath} + t\hat{k}$. Find its acceleration when t = 2 second.

;;

5-Points

P-level

10 - points

D-level

A projectile's launch speed is five times its speed at maximum height. Find launch angle (θ_i) ?

$$b_i = 5b_{i,k}$$
 $b_i = 5b_{i,k}$
 $coso_i = \frac{1}{5}$
 $d_i = cos(\frac{1}{5}) = 78.5^\circ$

9)

You throw a ball toward a wall at speed 25.0 m/s and at angle $\theta_i = 40.0^\circ$ above the horizontal (Fig. 4-35). The wall is distance d = 22.0 m from the release point of the

ball. How far above the release point does the ball hit the wall?

ball hit the wall?

10 - Points

M - level

V;= 25 n/s

V;= 25 n/s

But t is unknown!! $X_1 - Y_1' = V_1' \cos \theta_1' t$ $t = \frac{X_1 - X_1'}{V_1' \cos \theta_1'} = \frac{22}{25 \cos 40} = 1.12 \sec 6$

J. - 4: = V; sino; t - 1 gt2

Jr-y; = 25 sin 40 x 1.12 - 1/2 × 9.8x (1.12)

A rotating fan completes 1200 revolutions every 60 second. Consider the tip of a blade, at a radius of 0.15 m. What is the magnitude of its acceleration?

forench rev

$$\alpha = \frac{\sqrt{3}}{r} = \frac{18.85}{6.15}$$
 Good Luck!