Rockin' World of Transistor Amplifiers ISTEM 2024

Assistant Professor Timothy S Leishman

College of Technology

Idaho State University

June 26, 2024

Rockin' World of Transistor Amplifiers ISTEM 2024

Contents

Course Description	3
Welcome	4
Project 1, Battery Powered Bluetooth Speaker	5
Battery Power Bluetooth Amplifier (The Benny Amp)	5
Downloadable parts list	5
3D printed parts	5
3D Printed Parts Prep	6
HiLetgo M38 Bluetooth Module Review	8
5-watt Speakers	9
Power Management	10
Final Schematic	11
Parts Assembly	11
Project 2, Amplifier Design and Development	19
Objectives:	19
Power Requirements	19
Voltage Requirements	20
Operational Amplifier	21
TL071 Operational Amplifier	22
M28 Bluetooth module	23
Schematic Review	24
Schematic	32

	PCB	33
10)-watt Amplifier, Assembly Instructions	34
	10-watt Amplifier Power Supply	34
	Pre-Amp Verification	43
	Push-Pull Amplifier	45
	Push-Pull Amplifier verification	49
	Load Testing	50
	Bluetooth Testing	52
	Speaker Test	54

Course Description

Welcome to the Rockin' World of Transistor Amplifiers Design! Get ready to turn up the educational volume in this electrifying strand where learning meets excitement! Unleash your inner engineer as we dive into the groove of transistor amplifiers, exploring everything from power supplies, transistor biasing, amplifier gain, and rocking measurements with an oscilloscope. Forget the snooze-fest lectures – our approach is hands-on and full of energy. Get your math mojo on for amplifier design, jam out on the breadboard prototyping, and fine-tune your soldering skills in our happening educational sessions. This isn't your typical classroom experience; it's a full-on amplifier party! By the end, you won't just be an amplifier expert you'll be a master of fun and engaging teaching strategies, ready to inspire the next generation of electronic rockstars. Join us, and let's crank up the volume and learning!

Keywords:

Electronics, Test Equipment, Bluetooth, Amplifier Design and Development, Bipolar Junction Transistor, Operational Amplifier, Push-Pull, Soldering.

Welcome

Welcome, esteemed educators, to the "Rockin' World of Transistor Amplifiers and Design"! We are thrilled to embark on this electrifying journey with you, where we'll delve into the dynamic realm of electronics and amplify our teaching prowess to new heights. Whether you're a seasoned veteran or just starting your adventure in electronics education, this course promises to invigorate your passion, expand your knowledge, and equip you with innovative pedagogical strategies to engage and inspire your students. Led by an experienced instructor with nearly three decades of expertise in electronics, including a decade of teaching at Idaho State University, this course is designed to provide you with a comprehensive understanding of transistor amplifiers and empower you to integrate this knowledge seamlessly into your curriculum. So, get ready to rock the classroom as we dive into the world of amplifiers, circuits, and hands-on learning experiences. Welcome aboard!

This course will focus on project-based learning. Project-based learning offers invaluable opportunities for students to actively engage in their education, fostering deep understanding and long-term retention of concepts. By immersing students in real-world, hands-on projects, they develop critical thinking, problem-solving, and collaboration skills essential for success in both academic and professional settings. Moreover, project-based learning promotes creativity and autonomy, empowering students to take ownership of their learning journey and cultivate a lifelong love for learning.

- **Project 1** will explore the creation of a Class D 3D-printed battery-powered Bluetooth speaker using readily available parts.
- **Project 2** will take things to the next level with the design and develop a Class AB amplifier. This project will require the use of test equipment to verify power and signal management. The student will further improve soldering skills while assembling a PCB (printed circuit board).

Project 1, Battery Powered Bluetooth Speaker

Battery Powered Bluetooth Speaker

Battery Power Bluetooth Amplifier (The Benny Amp)

Downloadable parts list

□ https://github.com/leistimo/2.1in_5watt_Bluetooth_Amp/raw/main/Parts.xlsx

3D printed parts

- □ https://github.com/leistimo/2.1in_5watt_Bluetooth_Amp/raw/main/2.1_Body.3mf
- □ https://github.com/leistimo/2.1in_5watt_Bluetooth_Amp/raw/main/2.1BackPlate.3mf

3D Printed Parts Prep

Bolt Locations and Sizes

On the front of the 3D-printed body, there are eight 6-32 bolt holes that hold the speakers in place. On the back of the 3D-printed body there are two 6-32 bolt holes that hold the back plate on and one 4-40 bolt hole that will hold the Bluetooth module in place. All of the holes will need to be taped to the proper size.

Clean up the eight front speaker holes with a 6-32 Tap.

The center hole is 4-40, and the outer two back-plate holes are 6-32.

- \Box Tap the ten 6-32 holes approximately 5/8" deep.
- \Box Tap the single 4-40 hole approximately 5/8" deep.
- \Box Clean up the two holes on the rear back plate.

HiLetgo M38 Bluetooth Module Review

(O	M18	M28	M38				
MICRO USB (power supply)	×	V	V				
Audio headphone jack	*:	√	×				
Built-in amplifier	×	×	√ (5W+5W)				
Lithium battery powered	.√	√	¥				
Support USB sound card(free drive)	*	×	✓				
Volume memory/adjustment	√	*	*				
MUTE interface	1	×	*				
Button extension	1	*	×				
Bluetooth version	Bluetooch V4.2						
Support Bluetooth protocol	HFPV1	1.7, A2DPV1.2	AVRCPV15, AVCTPV12, AVDTPV12				
Format support WAV/WMA/FLAC/APE/MP3 lossless decoding, stereo dual channel ou							
Operating Voltage							
Not connected broadcast status							
Connection work status	2007/7/						
Deep sleeping							
Transmission distance							
Operating temperature							
Sensitivity							

The M38 has built-in 5watt amplifiers.

M38 Module

5-watt Speakers

Gikfun 5-watt speakers

Gikfun 5-watt speaker Dimensions

Power Management

USBC Power Management 4056

Lithium polymer battery

Final Schematic

Benny Bluetooth Schematic

Parts Assembly

Electronic Parts

Solder the battery connector to the USBC 4056

- \square Solder the red wire of the battery connector to B+ of the USBC 4056 module.
- \square Solder the black wire of the battery connector to the B- of the USBC 4056 module.

Solder the speaker connectors on the M38

 \square Solder the white speaker connectors onto the M38 board as seen above.

Solder the speaker wires to speakers

 \square Solder the blue and yellow wires to both speakers as shown in the image.

Speaker mounting

 \Box Orient the speakers so the wires are opposite the center.

Speaker mounting front view

☐ Use eight 6/32 screws to secure the speakers from the front (**Do Not overtighten the screws!**).

Power switch installation

 \square Press-fit the switch into the back plate.

Switch solder connections

- □ Solder a 2-inch wire from one side of the switch to OUT+ of the 4056 module.
- □ Solder a 2-inch wire from the other side of the switch to VBAT of the M38.
- □ Solder Solder a 2-inch wire from OUT- of the TP4056 to GND of the M38.

Attach Velcro soft-side squares to the inside of the body

Attach Velcro hard-side to the Battery and the USBC module

☐ Attach Velcro pieces as seen above. The Velcro must be trimmed to size for the USBC 4056 module.

Speaker Connection and Wire Routing

- ☐ Connect the Left and Right speakers to the M38 PCB.
- \square Route and tuck wire down out of the way.

M38 and Battery Mount

- \square Gently use a nylon 4-40 screw to secure the M38 module.
- ☐ Ensuring the power switch is off (O position), connect the battery wire connector and secure the battery in place using the Velcro. Route the battery wires by tucking them down and around the speaker.

Back Plate

- □ Place the back plate into position, while lightly pressing the back plate into the USBC and Velcro, tighten the two 6-32 bolts to secure the back plate into the proper position. The gap between the back plate and the body should be uniform.
- ☐ Turn on and test. A blue LED should light and be visible on the M28 board and an audible "Bluetooth Mode" should be heard from the speakers. Pair with and test the Bluetooth audio using your phone.

Project 2, Amplifier Design and Development

Objectives:

- Design a Class AB stereo amplifier that will provide, at minimum, double the power to the speakers compared to Project 1 AND be loud enough, when playing Mr. Roboto by Styx, to hear down the hall at the principal's office.
- The amplifier will use Bluetooth for an input signal.
- Design for full visibility of all electronic parts will showcase the artistic nature of PCB design and component soldering skills.

Power Requirements

Class AB or Push-Pull amplifiers can achieve a maximum efficiency of 78.5%. However, I like to design at 50% efficiency which will result in components capable of handling more than what will be asked. The amplifier efficiency is equal to Power Out divided by Power Total.

$$Efficiency = \frac{P_{Out}}{P_{Total}}$$

$$0.5 = \frac{P_{Out}}{P_{Total}}$$

A stereo amplifier or two-channel amplifier, with a desired 10 watts of output power per channel will equal approximately 20 watts of needed power. Substituting the output power into the previous formula will allow us to calculate the approximate total power needed to run the amplifier.

$$0.5 = \frac{20w}{P_{Total}}$$

$$P_{Total} = \frac{20w}{0.5}$$

$$P_{Total} = 40w$$

40w represents the maximum power needed from our power supply.

Voltage Requirements

To find the needed voltage we must consider the load. Typically, speaker resistances are either 8Ω or 4Ω . For our example, we will use 4Ω speakers. The design power for each speaker is 10w.

$$Power(W) = Current(I) \times Voltage(V)$$

$$Current(I) = \frac{Voltage(V)}{Resistance(\Omega)}$$

$$Power(W) = \frac{Voltage(V)}{Resistance(\Omega)} \times Voltage(V)$$

$$Power(W) = \frac{Voltage(V) \times Voltage(V)}{Resistance(\Omega)}$$

$$Power(W) = \frac{Voltage(V) \times Voltage(V)}{Resistance(\Omega)}$$

$$Power(W) = \frac{Voltage^{2}(V)}{Resistance(\Omega)}$$

$$10W = \frac{Voltage^{2}(V)}{4\Omega}$$

$$10W \times 4\Omega = Voltage^{2}(V)$$

$$Voltage^{2}(V) = 10W \times 4\Omega$$

$$Voltage(V) = \sqrt{10W} \times 4\Omega$$

$$Voltage = 6.325v$$

The 6.325v is an RMS voltage. RMS voltage is required for calculating power. The Push-Pull amplifier will need to have the capability to swing the voltage to a positive and negative peak, this is known as Peak or Peak-to-Peak voltage. The RMS voltage must be converted to Peak to Peak voltage to determine the maximum DC voltage needed for the amplifier.

$$V_P = \frac{V_{RMS}}{0.707}$$
 OR $V_P = V_{RMS} \times \sqrt{2}$
$$V_P = \frac{6.325V}{0.707}$$
 OR $V_P = 6.325V \times \sqrt{2}$

$$V_P = 8.95vp \text{ OR } V_P = 8.95vp$$

$$V_P = 8.95 vp$$

$$V_{PP} = V_P \times 2$$

$$V_{PP} = 8.95vp \times 2$$

$$V_{PP} = 17.9vpp$$

With the output swing voltage 17.9*vpp*, we will need a minimum of 17.9 VDC for the amplifier. Using the minimum VDC will may cause distortion problems in the amplifier. Headroom provides more voltage swing potential than what will be needed, allowing the amplifier's voltage gain to control the maximum power out. This means that the power supply voltage for our amplifier will need to be 17.9V plus the headroom voltage.

$$VDC_{Supply} = 17.9V + V_{Headroom}$$

Operational Amplifier

Typically general-purpose operational amplifiers are capable of more than \pm 15V or 0 to 30V. Most operational amplifiers are not capable of providing peak voltage at the rails and will need an internal headroom of around 1.4v. This means that a general-purpose operational amplifier with +15V and -15V supplied will be capable of providing a maximum output of approximately 27.5vpp. This is more than enough headroom for our 10-watt amplifier. Additionally, we will have some space to raise the output power above 10 watts if needed.

TL071 Operational Amplifier

1 Features

- High slew rate: 20 V/µs (TL07xH, typ)
- Low offset voltage: 1 mV (TL07xH, typ)
- Low offset voltage drift: 2 µV/°C
- Low power consumption: 940 µA/ch (TL07xH, typ)
- Wide common-mode and differential voltage ranges
 - Common-mode input voltage range includes V_{CC+}
- · Low input bias and offset currents
- Low noise:
 - $V_n = 18 \text{ nV/}\sqrt{\text{Hz}} \text{ (typ) at f} = 1 \text{ kHz}$
- Output short-circuit protection
- Low total harmonic distortion: 0.003% (typ)
- Wide supply voltage: ±2.25 V to ±20 V, 4.5 V to 40 V

TL071 Data Sheet Excerpt

Observe the supply voltage can be up to $\pm 20V$ or 40V. This means that the plus supply can be set to +20V while the minus supply is at -20V <u>OR</u> the plus supply can be set to 40V as long as the minus supply is at 0V. Operationally, the plus and minus supply differential voltage cannot exceed 40V.

M28 Bluetooth module

	M18	M28		M38	3		
MICRO USB (power supply)	×	V		V			
Audio headphone jack	*:			×			
Built-in amplifier	×	×		√ (5W+5W)			
Lithium battery powered	1 1		V				
Support USB sound card(free drive)	*	×		V			
Volume memory/adjustment	me memory/adjustment		*				
MUTE interface				*			
Button extension	1	*		×			
Bluetooth version		/4.2					
Support Bluetooth protocol	HFPV1	1.7, A2DPV1.2	AVRCPV1.5	AVCTPV1.2	AVDTPV1.2		
Format support	WAV/WM/	vflac/ape/mp	3 lossless deco	oding, stereo di	ual channel output		
Operating Voltage			5V/3.7V-4	1.2V			
Not connected broadcast status			5.5MA	V.			
Connection work status	Connection work status 20MA						
Deep sleeping	3UA 20M (MAX) "-40°C-+85°C						
Transmission distance							
Operating temperature							
Sensitivity "-87dbm							

M28 Features

M28 PCB

Schematic Review

30VDC Voltage Regulation circuit

Power for this project is supplied via a 36V DC wall adapter power supply using a center pin positive barrel jack connector.

SW1 is the power on/off switch.

Fuse **F1** provides primary current protection for the circuit.

Diode **D1** protects the circuit if someone uses the wrong polarity barrel jack power supply.

V_PP is the supply voltage for the Push-Pull amplifier $\approx 35.3VDC$.

C1, C3, and C6 are filter capacitors.

U2 LM317 is a linear voltage regulator. **R2 and R3** are used to set the regulation voltage as follows.

The LM317 will do whatever it can to keep 1.25VDC from pin2 to pin1.

No output current flows into pin 1 ADJ of the LM317.

The voltage at pin2 can be calculated using Ohm's Law.

$$V_{R2} = 1.25V$$
 $I_{R2} = \frac{V_{R2}}{R2} = \frac{1.25V}{100\Omega} = 12.5mA$
 $I_{R3} = I_{R2}$
 $V_{R3} = I_{R3} \times R3 = 12.5mA \times 2.4K\Omega = 30VDC$
 $VO_{Pin2} = V_{R2} + V_{R3} = 1.25V + 30V = 31.25VDC$
 $VCC = VO_{Pin2} = 31.25VDC$

D3 is the green power on VCC LED indicator.

R6 is the current limiting resistor for the LED.

$$V_{R6} = VCC - V_{D3}$$

 $V_{D3} \approx 3V$
 $V_{R6} = 31.25VDC - 3VDC = 28.25VDC$
 $I_{R6} = \frac{V_{R6}}{R6} = \frac{28.25VDC}{12K\Omega} = 2.354mA$
 $I_{D3} = I_{R6} = 2.354mA$

5VDC Voltage Regulation and Level Shift circuits

The M28 Bluetooth module requires 5VDC to operate. The LM7805 is a 5V linear regulator. The maximum differential voltage between pin1 and pin3 is 30V. This means that the maximum input voltage on pin 3 is 35VDC. VCC is regulated at 31.25VDC, just under the maximum specification.

U1 is a linear 5VDC Regulator.

C2 is a filtering capacitor.

D2 is the green power on 5V LED indicator.

R1 is the current limiting resistor for the LED.

$$V_{R1} = 5V - V_{D2}$$

$$V_{D2} \approx 3V$$

$$V_{R1} = 5VDC - 3VDC = 2VDC$$

$$I_{R1} = \frac{V_{R1}}{R1} = \frac{2VDC}{1K\Omega} = 2mA$$

$$I_{D3} = I_{R1} = 2mA$$

The Op_Amp DC Level Shift will provide a DC level for the input analog signal to for the Operational Amplifier. The V_Ref voltage is equal to VCC divided by two.

C7 is a filtering capacitor.

R7 & R8 form a voltage divider network.

$$V_{Ref} = \frac{VCC}{2} = \frac{31.25VDC}{2} = 15.625VDC$$

Bluetooth Power and Audio, plus the Heat-sinks for the Push-Pull amplifier

The Bluetooth M28 module is powered with the 5VDC and ground and will provide the low-level analog audio signal to the left and right channel pre-amps. The Heat-sinks are used to dissipate heat from the Push-Pull amplifier power transistors Q5-Q8.

C4 & C5 are coupling capacitors. Coupling capacitors will block DC voltages and pass AC signals. The value of the capacitance will determine the Low Critical Frequency.

R4 & R5 represent the input impedance of the operational amplifiers U3 and U4. Additionally, R4 and R5 will be used to calculate the gain of the Operational amplifiers.

Left Channel Operational Amplifier

The TL071 is an operational amplifier used to amplify the signal voltage coming from the Bluetooth module. Our desired maximum output signal amplitude is 8.95vp. The Bluetooth M28 module has an approximate maximum output amplitude of 0.6vp. This means the Operational Amplifier should have a gain $\Delta V = \frac{8.95vp}{0.6vp} = 14.916$.

Left is the left channel signal coming from the M28 Bluetooth module.

V_Ref is the reference voltage for the input signal which is necessary to lift the signal reference DC voltage because pin 7 is set to 30VDC and pin 4 is set to ground.

R9 is the Feedback resistor used to control the gain of the operational amplifier.

C8 is a bypass capacitor which is used to reduce the gain of the amplifier at frequencies above the audio range. This helps prevent high-frequency oscillations which could damage the Push-Pull amplifier.

C11 is a coupling capacitor.

U3 Voltage Gain ΔV

$$\Delta V_{U3} = \frac{R9}{R5} = \frac{75K\Omega}{5.1K\Omega} = 14.706$$

$$\Delta V_{U4} = \Delta V_{U3} = 14.706$$

Left Channel Push-Pull Amplifier

The maximum current that the op-amp can supply is around 30-50mA. This is not enough current to drive our 4Ω speaker. We will need a peak current of $\frac{Vp}{R}=\frac{8.95vp}{4\Omega}=2.238Ap$

The Push-Pull amplifier is used to provide current gain.

R17 & R18 are biasing resistors.

R13 & R14 are also biasing resistors. Ideally, the Push-Pull will have a very small amount of shoot-through *mA* to avoid cross-over distortion. However, too much shoot-through will cause circuit problems (blown fuse, damage to Q7 and Q8). If the circuit is experiencing too much shoot-through, R13 and R14 values can be lowered. If the circuit is experiencing cross-over distortion R13 and R14 values can be raised.

D8, D9, D10, D11 diodes are used to set a maximum bias voltage of 1.4V for the Darlington Pair and Swamper resistor. These are used to prevent shoot-through current run away.

V_PP is our 36VDC input which provides even more headroom.

Q3 & Q7 are a NPN Darlington Pair. Together, these two transistors will provide current gain for the upper or positive portion of the signal. Q3 is a 2N3904 and Q7 is a TIP41, both are general-purpose bipolar junction transistors. Beta is the ratio of the transistor's collector current (Ic) to its base current (Ib). The Beta of the 2N3904 is \approx 200 and the Beta for the TIP41 is \approx 40. This means the Darlington Pair will have a potential current amplification capability of \approx 200 \times 40 \approx 8000.

Q4 & Q8 are a PNP Darlington Pair. Together, these two transistors will provide current gain for the lower or negative portion of the signal. Q4 is a 2N3906 and Q8 is a TIP42, both are general-purpose bipolar junction transistors. Beta is the ratio of the transistor's collector current (Ic) to its base current (Ib). The Beta of the 2N3906 is \approx 200 and the Beta for the TIP42 is \approx 40. This means the Darlington Pair will have a potential current amplification capability of \approx 200 \times 40 \approx 8000.

R21 & R22 are Swamping resistors used to limit shoot-through current. These resistors are small because they are in series with the 4Ω load (speaker), ideally $R_{Swamp} \le 4\Omega$.

C13 is a coupling capacitor. To accomplish full-range frequency amplification, the Critical Frequency for the amplifier will be below 20hz.

Frequency Response for C13

$$X_{C13} = \frac{1}{2\pi \times F \times C}$$
at Critical Frequency (FC), $X_{C13} = Rth_{C13}$

$$Rth_{C13} = R_{Swamp} + RL = 0.27\Omega + 4\Omega = 4.27\Omega$$

$$Rth_{C13} = \frac{1}{2\pi \times FC_{C13} \times C}$$

$$FC_{C13} = \frac{1}{2\pi \times Rth_{C13} \times C} = \frac{1}{2\pi \times 4.27\Omega \times 2200\mu F} = 16.942hz$$

Schematic

Full Schematic

PCB

PCB Design

PCB 3D Top View

PCB 3D Bottom View

10-watt Amplifier, Assembly Instructions

10-watt Amplifier Power Supply

Standoffs

 $[\]square$ Install stand-offs at the four corners of the PCB.

☐ Solder the Barrel Jack Connector J7 onto the PCB.

DC voltage test - test point Center to test point GND

□ Plug in the 36V power adapter into the Barrel Jack Connector. Using a DMM, verify the voltage at the test points labeled Center (red lead) and Outer & GND (black lead).

Fuse Holder F1 and Diode D1

- □ Solder the Fuse Holder F1.
- □ Solder Diode D1, this part is polarity-sensitive! Make sure the anode and cathode (k) are properly oriented.

100uF & 10uF capacitors, LM317 U2

- Solder all seven of the 100uF capacitors. The electrolytic capacitors are polarity-sensitive!
 Make sure the + and are properly aligned.
 Solder the two 10uF capacitors. Make sure the + and are properly aligned.
 Solder the LM317 U2. The part faces out away from the PCB, the back metal part is toward the capacitor C6.
 Solder the 100Ω resistor R2. For uniform aesthetics, all horizontal resistors should be oriented in the same direction with the gold band to the right. Orient the vertical resistors with the gold band down.
- \square Solder the 2.4K Ω resistor R3 with the same orientation as R2.

□ Solder the LM7805 5V linear regulator U1. The orientation should match the silkscreen.

Switch S1

- ☐ Mount the switch to measure continuity (zero resistance) (on position) when the switch is away from the PCB.
- ☐ On the underside of the board solder small 1" wire jumps from the switch to SW1. Use heat shrink to protect the switch contacts.

 $VCC \approx 30VDC$

5VDC

With the switch in the off position, install the Fuse F1 and connect power to the PCB. Using a DMM measure the test points labeled VCC (red) and GND (black). First, verify that there is no voltage and switch the power on. Verify that VCC is $\approx 30VDC$. Move the red lead to 5V and verify the voltage is 5VDC.

- \square Switch OFF, no voltage at test points.
- \square Switch ON, ≈ 30 V measured at 30V test point.
- ☐ Switch ON, 5V measured at 5V test point.

LED Test (Light Emitting Diode)

Remove power and solder the 1KΩ resistor R1.
 Solder the 12KΩ reistor R6.
 Solder the LED diodes D2 and D3. These parts are polarity-sensitive, the flat part of the LED goes toward the square pad.
 Connect power to the PCB. Observe that the VCC and 5V LEDs light and turn off when the switch is turned on and off.

M28 Bluetooth Module

Locate the M28 Bluetooth module and the, two each, 2.54mm Header Pins and Header
Receptacles.
Attach the M3 10mm stand-off support to the PCB for the M28.
Without soldering! Place the female 2.54 header receptacles into J3 (Bluetooth) and
J4(Audio In). Press the long end of the male 2.54mm header pins into the female 2.54
receptacles. Place the M28 Bluetooth module onto the smaller side of the 2.54 male header
pins that are pressed into the female 2,54 header receptacle.
Verify the alignment of the M28 Bluetooth module is square. Solder the M28 to the header
pins. Finally, solder the female receptacle pins to the PCB.
☐ Remove the M28 Bluetooth module and set it aside for later.

R4, R5, C8, C9, U4 and U5 DIP sockets, R9, and R10

- \square Solder the two 5.1K Ω resistors R4 and R5.
- \square Solder the two 33pF capacitors C8 and C9.
- \square Solder the two DIP sockets at U4 and U5.
- \square Solder the two 75K Ω resistors for R9 and R10.

U3, U4, R7, and R8

- □ Verify the correct orientation and press fit the two TL071 operational amplifiers into the U3 and U4 sockets.
- \square Solder the two 10K Ω resistors R7 and R8.
- □ Solder the GND test point at the board's end between the two Bengal heads.

Pre-Amp Verification

200mvpp 1Khz

☐ Set the function generator to produce a 200mVpp, 1Khz sine-wave output waveform.

Pre-Amp Test - function generator connection

□ Verify that the amplifier is off. Connect the red lead of the function generator to the audio left and audio right of J4 Audio In. Connect the black lead to GND.

Pre-Amp Test - oscilloscope connection

Pre-Amp Test - oscilloscope measurement

□ Set CH1 of the Oscilloscope to 500mV per division and 250uS per division. Connect an Oscilloscope CH1 probe to GND. Turn on the amplifier and measure the waveforms at OpA_L and OpA_R.

 \Box Verify the operational amplifier's voltage gain:

Calculated
$$\Delta V_{OpAmp} = \frac{Rf}{Ri} = \frac{R9}{R4} = \frac{75K\Omega}{5.1K\Omega} = 14.706$$

Measured
$$\Delta V_{OpAmp} = \frac{Vout}{Vin} = \frac{2.90vpp}{200mvpp} = 14.5$$

Push-Pull Amplifier

R15, R16, R17, R18, Q1, Q3, Q2, and Q4

 \square Solder 10KΩ resistors R15, R16, R17, R18, the 2N3904s Q1, Q3, and the 2N3906s Q2, Q4 (match the silk screen for transistor orientation.

D4-D11

□ Solder diodes D4-D11, note the cathode (k) has a black stripe.

R11-R14, R19-R22 and C12-C13

 \square Solder the 820Ω resistors R11-R14, the 0.27Ω resistors R19-R22, and the 2200uF capacitors C12 and C13 with proper polarity (negative to white silk screen).

Heat Sink Compound Application

Heat Sink

□ Locate the two each, TIP41 and TIP42 transistors and the four heat sinks. using a Q-tip apply heat sink compound to the back of each transistor. Bolt the transistor to the heat sinks using the nylon 4-40 hardware.

TIP41s and TIP42s

□ Solder the TIP41s Q5 and Q7 and the TIP42s Q6 and Q8, the transistors face out and away from the center of the PCB.

Banana Socket Connectors

 \Box Connect the banana socket connectors, red to + and black to -.

Push-Pull Amplifier verification

Output Measurement

□ With power off, connect the function generator to the PCB as previously done when testing the op-amps. Connect an oscilloscope probe to the left channel banana sockets. Turn on the function generator. Switch the toggle switch S1 to the on position and measure the output waveform.

Un-Loaded Output Oscope Measurement

☐ The output should have no cross-over distortion and the amplitude should be the same as the previously measured op-amp amplitude. Repeat the test for the right channel output.

Load Testing

1A External Fuse to allow with Current Meter connected

☐ Remove the fuse from the fuse holder. Use a jumper wire to the DC side of the PCB fuse holder to a 1A external fuse. Connect the other side of the external fuse in series with a current meter and the PCB fuse holder (ask for help if needed).

Initial 8Ω Load Test with a 200mVpp input

Connect two $8-\Omega$ dummy loads to the speaker out banana sockets.
Connect the 200mVpp function generator signal to the audio left and right in.
Connect the oscilloscope probes across the 8Ω dummy loads.
Turn on the function generator and the amplifier toggle switch SW1.

Table 8Ω Load Test Data

Input Voltage	Current Measured	Output Voltage Measured
200mVpp	124mA	2.4Vpp
300mVpp	174mA	3.68Vpp
400mVpp	222mA	4.92Vpp
500mVpp	271mA	6.24Vpp
600mVpp	320mA	7.52Vpp
700mVpp	374mA	8.64Vpp
800mVpp	426mA	10Vpp

Bluetooth Testing

Unloaded Bluetooth Audio Test

Remove power by switching SW1 to the off position. Also, turn off the function generator
and remove the wires connecting to the audio-in.
Remove the 8Ω loads from the left and right outputs.
Connect an oscilloscope probe to one of the outputs.
Install the M28 Bluetooth module and turn on power.
Verify the blue light on the M28 Bluetooth module will initially turn on and then flash. Pair
your phone or device with the M28. Once a device is connected to the M28, the blue light
will stop flashing and remain on

Cursors Represent Extreme Audio Peaks

- □ Once paired, play a song (no actual sound will be heard). Turn up the volume to the max and measure the extreme peak voltages using the oscilloscope. (set the scope to 5V/Div and 250mS)
- \square Calculate the output power using the measured extreme peak-to-peak audio voltage and a 4Ω load:

Convert peak to peak voltage to rms voltage:

$$v_{RMS} = \frac{Vpp}{2 \times \sqrt{2}} = \frac{18vpp}{2 \times \sqrt{2}} = 6.364v_{RMS}$$

Calculate the output power:

$$P_{OUT} = \frac{(V_{RMS})^2}{R} = \frac{(6.364V_{RMS})^2}{4\Omega} = 10.125W$$

Speaker Test

Audio Test with Speakers

- \square Remove power from the circuit and connect the 4Ω speakers to the Left and Right outputs.
- ☐ Turn the volume down to a moderate level on your phone and switch SW1 to the on position. The M28 should pair and play audio. Listen to your favorite song and observe the current meter at various volume levels.
- ☐ Turn SW1 to the off position and remove the current meter from the circuit. Install F1 into the fuse holder. Switch SW1 to the on position and test the amplifier at moderate volumes.