Nom:

Questions	Réponses
Quelle est la limite en	
-1^+ de $\frac{x^2+1}{x+1}$?	\Box $+\infty$
	\Box -2
	□ −1
Quelle est la limite en 0	
$\det \frac{e^x - 1}{x} ?$	$\Box + \frac{1}{2}$
	$\Box + \frac{1}{2}$ $\Box -\frac{1}{2}$
	□ −1
Quelle est la limite en 0	
$\det \frac{\sin(x)}{x}?$	\square $\frac{1}{2}$
	\square $-\frac{1}{2}$
	□ −1
Quelle est la limite en 0	
$\det \frac{\cos(x)-1}{\sin(x)}?$	\square $\frac{1}{2}$
	\square $-\frac{1}{2}$
	□ −1
Quelle est la limite en	
$0^+ \operatorname{de} x \ln(x)$?	\Box $-\infty$
	☐ La limite n'existe pas

Questions	Réponses
Quelle est la limite en	$\Box +\infty$
$+\infty \text{ de } \frac{-x^3+x^2-x}{(x+1)^2-3}$?	\Box $-\infty$
	□ La limite n'existe pas
Quelle est la limite en 0	
$de x^x$	
	\Box e
	$\Box e^{-1}$
	□ La limite n'existe pas
Quelle est la limite en	
$+\infty \operatorname{de} \left(1 - \frac{1}{x}\right)^x$	
	\square e
	$\Box e^{-1}$
	□ La limite n'existe pas
Quelle est la limite en	
$0^+ \text{ de } \frac{\ln\left((1+x)^2\right)}{x}$	\Box $+\infty$
	\square $\frac{1}{2}$
	\square 2
Quelle est la limite en	
$+\infty$ de $\exp\left(\frac{1}{1+x^2}\right)$	\Box $+\infty$
	\square $\frac{1}{2}$
	\Box e

Questions	Réponses
L'argument de $\frac{1}{1+e^{i\theta}}$ est	\square $\frac{\theta}{2}$
	$\square - \frac{\theta}{2}$
	$\square \frac{\theta}{2} + \pi$
	\Box cela dépend de θ
Si $n \in \mathbb{Z}$, que vaut	$\square (-1)^n$
$\sin\left(n\frac{\pi}{2}\right)?$	
	$\Box 0 \text{ si } n = 2k, \text{ et } (-1)^k \text{ si } n = 2k+1$
	$\Box \ (-1)^k \text{ si } n = 2k, \text{ et } 0 \text{ si } n = 2k+1$
Si $n \in \mathbb{Z}$, que vaut	$\square (-1)^n$
$\cos\left(n\frac{\pi}{2}\right)$?	
	$\Box 0 \text{ si } n = 2k, \text{ et } (-1)^k \text{ si } n = 2k+1$
	$\Box \ (-1)^k \text{ si } n = 2k, \text{ et } 0 \text{ si } n = 2k+1$
Si $x \in \mathbb{R}$, alors	$\square \sin(x)$
$\cos(x+\pi)$ vaut	$\Box - \sin(x)$
	$\square \cos(x)$
	$\Box - \cos(x)$
	$\hfill\Box$ cela dépend de x
Si $x \in \mathbb{R}$, alors $\cos^2(x)$	
vaut	$\Box 1 - \sin(x)\cos(x)$
	$\Box 1 + \cos(2x)$
	$\Box 1 - \cos(2x)$

Questions	Réponses
Si $f(x) = e^{x^2}$ pour tout	$\Box e^{2x}$
$x \in \mathbb{R}$, alors $f'(x)$ est égal à	$\square \ln(x^2)$
	$\square 2xe^{x^2}$
	$\square xe^{x^2}$
Si $f(x) = u(x)v(x)$ pour	
tout $x \in \mathbb{R}$, alors $f'(x)$	$\square u'(x)v(x) - v'(x)u(x)$
est égal à	$ \Box \ u(x)v(x) - v'(x)u'(x) $
	$\square \ u(x)v(x) + v'(x)u'(x)$
	$\Box u'(x)v'(x)$
Si $f(x) = 2\cos(3x)$ pour tout $x \in \mathbb{R}$, alors $f'(x)$ est égal à	$ \Box \frac{2}{3}\sin(3x) $
	$\Box -6\sin(3x)$
	$\Box -\frac{2}{3}\sin(3x)$
	$\Box 2\sin(3x)$
Si $f(x) = e^{e^{-x}}$ pour tout	$\Box e^{-x}e^{e^{-x}}$
$x \in \mathbb{R}$, alors $f'(x)$ est égal à	$\Box -e^{-x}e^{e^{-x}}$
	$\Box -e^{-x}e^{e^{-x}}$ $\Box e^{-x}e^{-e^{-x}}$
	$\Box -e^{-x}e^{-e^{-x}}$
Si $f(x) = \frac{2}{1+e^x}$ pour tout $x \in \mathbb{R}$, alors $f'(x)$ est égal à	$\Box -\frac{1}{\sinh(x)-1}$
	$\Box -\frac{1}{\operatorname{sh}(x)+1}$
	$\Box -\frac{1}{\operatorname{ch}(x)-1}$
	\Box $-\frac{1}{\operatorname{ch}(x)+1}$

Questions	Réponses
Si $f(x) = -\frac{1}{x}$ pour tout	$\Box \frac{1}{x^2}$
$x \in \mathbb{R}^*$, alors $f'(x)$ vaut	$\square \ln(x)$
	$\Box -\frac{1}{x}$
	$\Box -\frac{1}{x^2}$
Si $f(x) = e^{u(x)}$ pour tout	$\Box e^{u'(x)}$
$x \in \mathbb{R}$, alors $f'(x)$ vaut	$\square u'(x)e^{u'(x)}$
	$\square u'(x)e^{u(x)}$
	$\Box e^{u(x)}$
Si $f(x) = \int_2^{\cos x} \sin t dt$	$\Box -\sin^2(x)$
pour tout $x \in \mathbb{R}$, alors $f'(x)$ vaut	$\Box - \sin(x) \cdot \sin(\cos(x))$
	$\square \cos(x) \cdot \cos(\sin(x))$
	$\Box - \cos^2(x)$
Si $f_1(x) = \cos(x)$,	$\Box -\sin(x)e^{\cos x}\cos(e^{\cos x})$
$f_2(x) = e^x$ et $f_3(x) = \sin(x)$, alors $(f_1 \circ f_2 \circ f_3)'(x)$ vaut	$\Box -\cos(x)e^{\cos x}\sin\left(e^{\sin x}\right)$
	$\Box -\sin(x)e^{\sin x}\sin(e^{\cos x})$
	$\Box -\cos(x)e^{\sin x}\sin\left(e^{\sin x}\right)$
Si $y : \mathbb{R} \to \mathbb{R}$ est solution de l'équation différentielle $y' + y = 0$ avec $y(0) = 2$, alors	$\square \ y(x) = 2e^{-x}$
	$\square \ y(x) = e^{2x}$
	$\square \ y(x) = 2e^x$
	$\Box \ y(x) = e^{x + \ln 2}$

Questions	Réponses
Les solutions réelles de l'équation différentielle $y'+4y=0$ sont de la forme	$\square \ y(x) = Ce^{-4x}$, avec $C \in \mathbb{R}$
	$\square \ y(x) = Ce^{4x}, \text{ avec } C \in \mathbb{R}$
	$\square \ y(x) = C + e^{-4x}, \text{ avec } C \in \mathbb{R}$
	$\square \ y(x) = C + e^{4x}, \text{ avec } C \in \mathbb{R}$
Si $y: \mathbb{R} \to \mathbb{R}$ est solution	$\square y(x) = e^{3x} + 2e^{-x}$
de l'équation différentielle $y'' + 2y' - 3y = 0 \text{ avec}$ $y(0) = -y'(0) = 2, \text{ alors}$	$\square \ y(x) = 2e^x + e^{-3x}$
	$\square \ y(x) = e^x + e^{-3x}$
Laquelle de ces fonctions est une primitive de	$\square \sin(x)$
	$\Box - \sin(x)$
$x \mapsto \cos(x) \text{ sur } \mathbb{R}$?	$\square \cos(x)$
	$\Box - \cos(x)$
Soit $n \in \mathbb{N}$. Laquelle de	$\square x \mapsto nx^{n-1}$
ces fonctions est une	$\square x \mapsto \frac{x^{n+1}}{n+1}$
primitive de $x \mapsto x^n$ sur \mathbb{R} ?	$\square x \mapsto nx^{n+1}$
	$\square x \mapsto \frac{x^n}{n+1}$
	$\square x \mapsto \frac{x^{n-1}}{n+1}$
Laquelle de ces fonctions est une primitive de $x \mapsto \frac{x-1}{x+1} \text{ sur }]-1, +\infty[?]$	$\square (x-1)\ln(x+1)$
	$\Box \ln \left(\frac{x-1}{x+1} \right)$
	$\square x - 2\ln(x+1)$
	$\square (x-1) \ln x+1 $
	□ aucune des réponses au-dessus

Questions	Réponses
Le domaine de définition	\square $[-1,1]$
de $x \mapsto \sqrt{1+x}$ est	
	\square $[-1,+\infty[$
	$\square]-\infty,1]$
Le domaine de définition	□ R*
de $x \mapsto \ln(x-2)$ est	$\square]2,+\infty[$
	$\square]-2,+\infty[$
	\square] $-\infty$, 2[
	$\square]-\infty,-2[$
Le domaine de définition	$\square \ \mathbb{R} \setminus \{1, -2\}$
$de x \mapsto \frac{3x+2}{x^2-3x+2} est$	\square \mathbb{R}^*
	$\square \mathbb{R} \setminus \{-1, -2\}$
	$\square]-1,+\infty[$
	$\square \ \mathbb{R} \setminus \{1,2\}$
Si $x > 0$ et $y > 0$, alors	$\square \ln(x)\ln(y)$
$\ln(xy)$ est égal à	$\square \ln(x) - \ln(y)$
	$\square \frac{\ln(x)}{\ln(y)}$
	$\Box \ln(x) + \ln(y)$
Si $x, y \in \mathbb{R}$, alors e^{x+y}	$\Box e^x + e^y$
est égal à	$\Box e^x e^y$
	$\square (e^x)^y$
	$\Box \frac{e^x}{e^y}$

Questions	Réponses
Si $x, y \in \mathbb{R}$, alors $(e^x)^y$	$\Box e^x + e^y$
est égal à	$\Box \ e^x e^y$
	$\Box e^{xy}$
	$\square \; rac{e^x}{e^y}$
Si $x > 0$ et $y > 0$, alors	$\Box \ln(x)\ln(y)$
$\ln(x+y)$ est égal à	$\Box \ln(x) - \ln(y)$
	$\square \frac{\ln(x)}{\ln(y)}$
	$\Box \ln(x) + \ln(y)$
	□ aucune des réponses au-dessus
Quelle est la valeur de	
$\ln(e^3) - 2?$	
	\square 2
Quelle est la valeur de	
$\ln\left(\frac{1}{\sqrt{e}}\right)$?	\square $\frac{1}{2}$
	\Box $-\frac{1}{2}$
	\square 2
	\Box -2
Quelle est la valeur de	
$\ln\left(3^{\frac{1}{2}}\right)?$	$\square \frac{\ln(3)}{2}$
	$\Box \frac{\ln(2)}{3}$
	$\square \ln \left(\frac{2}{3}\right)$
	$\square \ln \left(\frac{3}{2}\right)$