Занятие 1. Тема занятия: "Построение математической модели линейной резистивной цепи по общему алгоритму. Расчёт реакций цепи на ЭВМ. Расчёт реакций цепи методами: преобразований, суперпозиций, методом Нортона, методом Тевенена".

Целью занятия является определение уровня усвоения прочитанного материала, понимания терминов и физических законов, связывающих электрические величины между собой. Второй целью является изучение методики построения цепной модели устройства с использованием сосредоточенных параметров и анализ этой модели.

Занятие начинается с опроса студентов. Это позволит сразу определить уровень предшествующего образования в школе, лицее и в самом университете и в результате правильно согласовать имеющиеся знания в области электротехники и материал новой для студентов дисциплины.

На примере разветвлённой цепи с несколькими источниками изучается общая методика предварительного анализа цепи для любого из перечисленных способов расчёта, как аналитического (ручного), так и с помощью компьютера с применением одного из пакетов прикладных программ, например в системе Multisim. Предварительный анализ включает в себя следующие действия:

- определение количества узлов, их обозначение номерами или другими именами, выбор базового узла. Обратить внимание, что в пакетах программ базовый узел всегда обозначается нулём, так как его потенциал автоматически задаётся равным нулю;

-определение количества ветвей с разными токами. Обратить внимание, что в разных расчётах цепи под ветвью может пониматься как один элемент цепи, так и группа последовательно соединённых элементов. В первом случае узлами считаются все соединения включая соединение двух элементов между собой; во втором случае узлом будет называться соединение трёх и более элементов;

-определение количества контуров цепи. Из всех контуров выбираются главные контуры, для которых можно написать линейно независимые уравнения.

Линейно-независимый контур должен содержать хотя бы одну ветвь (элемент), не вошедшую в другие контуры схемы.

Линейно-независимое сечение (узел) должно содержать хотя бы одну ветвь с током, не вошедшую в другие сечения (узлы).

Система уравнений цепи составляется следующим образом:

- записываются уравнения всех элементов цепи;
- составляются уравнения соединений для линейно-независимых контуров и сечений (узлов):
 - выбираются искомые реакции (либо токи, либо напряжения).

Можно предложить следующую последовательность решения полученных уравнений:

- в уравнения соединений подставляются уравнения элементов, в соответствии с выбранными реакциями;
- результатом подстановки является система уравнений цепи для токов или напряжений. Для цепи, показанной на рис.1 запишем систему уравнений по законам Кирхгофа, выбрав в качестве искомых переменных токи ветвей.

Рис.1. Пример разветвлённой цепи с тремя источниками. Двумя источниками напряжения и одним источником тока.

$$R_1 i_1(t) - R_2 i_2(t) - R_3 i_3(t) = -V_2 + V_3, \tag{1}$$

$$R_2 i_2(t) - R_4 i_4(t) = V_2, (2)$$

$$i_1(t) + i_2(t) + i_4(t) = J_1,$$
 (3)

$$i_2(t) - i_3(t) + i_4(t) = 0.$$
 (4)

Система линейных алгебраических уравнений 1-4 является математической моделью линейной резистивной цепи (рис.1).

Анализ цепи методом суперпозиции проведём для более простой цепи с двумя источниками.

Свойство наложения: реакция в линейной цепи при одновременном действии нескольких независимых источников может быть определена, как суперпозиция реакций на действие каждого источника в отдельности (в предположении отсутствия других источников).

На основе этого свойства существует метод наложения, суть которого можно проиллюстрировать рис.2.

Рис. 2. Иллюстрация метода наложения

Выражения для токов имеют вид $i_1 = i_1' + i_1''$; $i_2 = i_2' + i_2''$.

Исключить решение системы высокого порядка позволяет метод расчёта с использованием методов эквивалентных преобразований.

Простейшими эквивалентными преобразованиями являются преобразования участков с последовательными и параллельными соединениями резисторов (рис.3).

Рис. 3. Преобразования последовательного (а) и параллельного (б) соединений

Условиями эквивалентности являются:

- для последовательного соединения

$$R_{\text{9KB}} = \sum_{1}^{n} R_k \; ; \tag{5}$$

- для параллельного соединения

$$g_{\text{ЭКВ}} = \sum_{1}^{n} g_k \quad , \tag{6}$$

где k = 1, 2, 3, ..., n.

Относительно просто преобразуются друг в друга трехлучевая звезда сопротивлений и треугольник сопротивлений (рис.4).

Рис. 4. Эквивалентное преобразование "звезда-треугольник"

Условия эквивалентности:

-для "звезды"

$$R_1 = R_{12}R_{31}/(R_{12} + R_{23} + R_{31}), (7)$$

$$R_2 = R_{12}R_{23}/(R_{12} + R_{23} + R_{31}), (8)$$

$$R_3 = R_{23}R_{31}/(R_{12} + R_{23} + R_{31}); (9)$$

Метод эквивалентного источника напряжения (Тевенена). Любая линейная цепь с рядом источников по отношению к одной из ветвей в виде двухполюсника (линейного или нелинейного) может быть заменена эквивалентным последовательным соединением идеального источника напряжения u_0 и линейного резистора R_0 . При этом напряжение эквивалентного источника u_0 равно напряжению холостого режима на рассматриваемой ветви, а сопротивление резистора R_0 равно входному сопротивлению в исходную цепь со стороны рассматриваемой ветви при замкнутых накоротко источниках напряжений и разомкнутых источниках токов исходной цепи.

Метод эквивалентного источника тока (Нортона). Любая линейная цепь с рядом источников по отношению к одной из своих ветвей в виде двухполюсника (линейного или нелинейного) может быть замена эквивалентным параллельным соединением идеального источника тока i_0 и линейного резистора (проводимости) g_0 . При этом ток эквивалентного источника i_0 равен току короткого замыкания в рассматриваемой ветви, а проводимость g_0 равна входной проводимости в исходную цепь со стороны рассматриваемой ветви при замкнутых накоротко источниках напряжений и разомкнутых источниках токов исходной пепи.

На основе этих методов существует способ расчета эквивалентного генератора (активного двухполюсника). Метод весьма эффективен при определении тока или напряжения в одной из ветвей схемы. Суть его проиллюстрирована на рис.5.

Эквивалентные генераторы (активные двухполюсники)

Рис.5. Метод эквивалентного генератора (активного двухполюсника)

На первом семинаре каждому студенту выдаётся индивидуальное задание для самостоятельной работы по темам 1-го и 2-го семинаров. Выполненные расчёты предъявляются при защите семинарских занятий.

" Метод узловых напряжений".

Целью занятия является изучение распределения потенциалов в разветвлённой цепи, зависимость потенциалов в узлах цепи от выбора базового узла и независимость напряжений на элементах цепи от выбора базового узла.

В качестве примера может быть рассмотрена одна из схем, предлагаемых для самостоятельной работы .

Защита темы проводится по результатам расчёта индивидуального задания.

Дана исходная схема и числовые значения резисторов и источников

Рис. 9.1. Индивидуальное задание студента

Все источники напряжений с последовательно соединёнными резисторами в исходной схеме для простоты записи узловых уравнений преобразуются в источники тока с параллельно подключенными к ним проводимостями G. В рассматриваемом примере источник V1 с напряжением 100В преобразуется в источник тока J6 с током 0.1786A, а сопротивление R6, равное 560 Ом, преобразуется в проводимость G6, равную 0.00179 Сим. В результате схема принимает вид.

Рис. 9.2. Преобразованная схема для упрощения составления системы уравнений для определения узловых потенциалов.

```
Сопротивления резисторов заменяются на их проводимости: G_1=0.01786 [Сим] ; G_2=0.002355 [Сим] ; G_3=0.00196 [Сим] ; G_4=0.00147 [Сим] ; G_5=0.00133 [Сим] ; G_6=0.001786 [Сим] ; G_7=0.00256 [Сим] ; G_8=0.010 [Сим]
```

и записываются 3 уравнения для трёх узлов.

Рис. 9.3. Расчёт цепи в системе Multisim для проверки аналитического расчёта токов в ветвях методом узловых потенциалов.

Варианты числовых значений элементов цепи,

	TR1	TR2	T Da	The	-							
N₂	OM		R3	R4	R5	R6	R7	RN	V1	V2	11.	12
-	+		-	Ом	Ом	OM	Ом	Ом	В	В	A	įΑ
1	10	20	20	30	30	40	40	50	60	10	1	5
2	11	30	40	20	20	30	40	50	120	20	2	5
3	12	40	30	40	30	20	20	50	180	30	2	5
4	13	50	60	40	20	80	60	50	240	40	3	5
5	14	80	40	20	50	60	20	50	300	50	3	5
6	15	150	160	180	200	220	160	50	60	60	4	3
7	16	160	180	200	220	160	100	50	120	70	4	3
18	18	180	200	220	160	150	60	50	180	80	5	3
9	20	200	220	160	150	180	40	50	240	90	5	3
10	22	220	150	150	180	200	40	50	300	100	5	3
11	24	130	240	100	50	50	120	100	50	10	2	4
12	27	100	100	50	80	80	160	100	100	20	2	4
13	30	150	50	30	30	20	180	100	150	30	2	4
14	33	30	360	390	270	240	200	100	200	40	3	4
15	36	360	360	100	180	200	240	100	250	50	3	4
16	39	120	150	68	75	68	75	100	50	60	3	2
17	43	100	100	50	120	40	82	100	100	70	4	2
18	47	120	50	100	30	40	91	100	150	80	4	2
19	51	82	240	220	200	180	160	100	200	90	4	2
20	56	430	510	680	750	560	390	100	250	100	5	2
21	62	18	39	70	100	40	50	150	6	10	5	4
22	68	40	91	100	70	50	40	150	12	20	5	4
23	75	50	90	30	50	70	100	150	24	30	2	4
24	82	60	100	90	30	50	70	150	48	40	2	4
25	91	70	120	100	90	30	50	150	60	50	2	4
26	100	80	40	50	60	80	150	150	12	60	3	5
27	110	90	180	200	180	240	60	150	24	70	3	5
28	120	100	200	240	270	180	150	150	48	80	3	5
29	130	130	240	180	200	200	270	150	60	90	4	
30	140	150	300	200	360	100	130	150	120	100	4	5