

IIT School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

information technology & management

529 Data Analytics

October 19th, 2016

Analysis on 2008–2010 DE-SynPUF

Submission Document

Submitted By Naveed UI Haq A20357084

Table of Content

♦ Business Scenario & Keywords	3-4
♦ Business Objective	5
♦ Selected Data	6
♦ Data Flow/Processing	7
♦ Project Overview	8
◆ Project Plan/Data Activities	9
♦ Exploratory Data Analysis Results	10-20
♦ Regression Modeling Results	21-26
♦ Summary/Conclusions	27

Business Scenario Inpatient and Medicare Claims Data Study

Inpatients and Benefit Claims

- Medicare is a healthcare product and is a vital Government Policy
- ◆ The analysis on data of inpatients(Patients Admitted) treated at the healthcare facility and the subsequent Medicare claims is a major source of healthcare information
- Advancements in electronic information interchange of healthcare data and explosion of analytics in this field has made it feasible to study patterns and findings to augment the patient recovery rate and reduce risk areas

Keywords/GlossaryInpatient and Medicare Claims Data Study

- ◆ Below listed are the Healthcare keywords/Terms used in this project
 - Inpatients: Patients admitted to the healthcare facility (e.g. hospital)
 - ➤ CLM_PMT_AMT: The Claim Payment Amount paid by the Medicare to the Healthcare Provider towards the service availed by the patient
 - > **DESYNPUF_ID:** Surrogate Key which joins Inpatient File and Claims File
 - ➤ **DEATH_IND:** Binary Variable added to indicate if the patient death occurs in the hospital. Inpatients with death date not null add to mortality.
 - ➤ LENGTH_STAY: Duration of Stay of Inpatients in the healthcare facility. Difference between Claim Start Date and Claim End Date

Business Objective Craft Data Story per

- ◆ The project is aimed at identifying health care related dependent and predictor attributes and modelling relationships between them
- The goal of this Project is to Build a Regression Model to predict Dependent
 Claim Payment Amount and Death Indicator
- Predictors:
 - > Age, Length of Stay
 - **Ethnicity, Gender**
 - Pre Ailments Disease Indicator (Cancer, Heart Failure, Diabetes etc.)
- Modelling decision tree to prove the hypothesis that a certain branch would have distinction in predicted attribute like death indicator based on different classifications of combination of dependent variables.

Details of Data Sample 2008-2010 DE-SynPUF

- PUFs data is synthetic data maintained by Medicare and Medicaid Centers:
 https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
- The entire population of data is sampled into 20 separate files, for ease of downloading the files, as the data is huge.
- ◆ The website stores Claims, Inpatient and Outpatient Data along with the other files available for public use.
- Disclaimer: This analysis is only for the purpose of research as part of educational program. The sample and population of data is presented to agree to the terms and condition of data usage.

Data Flow/Processing Steps Preparation Details of Data Solution

- ◆ The sample 'DE1_0_2008_to_2010_Inpatient_Claims_Sample_<1-20>.csv' and 'DE1_0_2009_Beneficiary_Summary_File_Sample_<1-20>.csv', each represent a 5% sample of the CMS PUFs synthetic data.
- ◆ The two sets of files are merged by the common field 'DESYNPUF_ID' and contain 112 columns and 657586 rows upon merge
- The input file is imported in R and SAS Applications as data.frame and SAS7BDAT files respectively. Reporting, Visualization in Tableau & Excel
- The csv file prepared upon merge is called DeSynPUF_Claim_Inpatient.csv. It is Merged, DeSynPUF, Med_Desynpuf in different iterartions
- Columns Added: Age, Death-Ind, Length_Stay

Project Overview Tool, Technology and Templates

- ◆ Platform/Language: R Studio 3.3.2, SAS Community Edition, Tableau
- SAS Procs: Means, Freq, SQL
- CRAN Packages/Libraries: rpart, rattle, tree, logicForest, party, ggplot2, plyr,
- Aim: Build a prediction model of survival for inpatients.
- ◆ Data Governance: Masking Compliance as per HIPAA Privacy Rule
- ◆ **Model:** Regressions, Predictions and Decision trees
- Statistical Method: Machine Learning random forest/recursive partitioning
- Learning: Unsupervised
- Approach: Iterative
- Predictors (X): Gender, age, reason of admission, length of stay and preconditions, ailments, health flags
- ◆ Modeled Dependent Variable (Y): A binary dependent Policy Holder Retention Indicator

Project Plan/Data Activities Stages of the Project

- Design:
 - ❖ Data considered only LA County Crime, Consumer Complaints
 - ❖ Basis of Selection Rich, Clean Data with many attributes
- ♦ Model Based / Data Driven:
 - Choice of Regression Model Logistic or Multi-variate
 - ❖ Based on the types of variables Binary, Continuous or Categorical
- Development:
 - The R Script and SAS Code is written, tested and output noted
- Result: Presentation, Visualization and Documentation

Exploratory Data Analysis ResultsMedical Conditions

Major Diseases

The most common major disease is Stroke and Cancer followed by Osteoporosis and Arthritis

Exploratory Data Analysis Results Patient Count vs Length of Stay in Hospital

Length of Stay of Patients
Most of the patients stay less than 10 days in hospital. The mean Length of Stay is 7 Days.

Exploratory Data Analysis ResultsPatient Count By Ethnicity

Exploratory Data Analysis Results Inpatient Count Summary

Exploratory Data Analysis ResultsInpatient's Mean Age

- Inpatients Mean Age By Ethnicity and Gender
 - > The mean age of Inpatients for Male is lesser than the female
 - Mean age of African-American Inpatient is the least.
 - ➤ White Female are hospitalized at older age.

Exploratory Data Analysis ResultsCount Of Inpatients By Year over Year

Inpatients Count
 The Number of Inpatients witnessed a steep fall in 2009.

Exploratory Data Analysis ResultsInpatient's Count Summary

Inpatients Count By Ethnicity and Gender
 Clearly more female are admitted as compared to the male population.
 African American are hospitalized more in proportion to their population.

Exploratory Data Analysis ResultsInpatient's Count By State

Exploratory Data Analysis ResultsCorrelational Scatterplot and Diagnostics

◆ Claim Payment Amount, Length of Stay and Age

The Claim Payment Amount has positive correlation of 0.36 with length_Stay

(Claim Start date Through Claim End Date)

Exploratory Data Analysis ResultsScatterplot Matrix

Odds Ratio Ethnicity and Gender

Predicted Probability of Inpatient Deaths of Emergency Evidently Higher Odds Ratio of Hispanic vs White ethnicity & high variance

Regression Modeling Results Logistic Regression Plot

Predicted Probability of Inpatient Deaths of Emergency Inpatients
The Death Indicator is plotted by Age and categorical variables Ethnicity and Gender. Male and Female population have distinct behavior.

Regression Modeling Results Claim Payment Amount - Best Fit Model

 Linear Regression Model of Claim Payment Amount on continuous variables - Age and Length of Stay.

Root MSE	8231.53535	R-Square	0.1654
Dependent Mean	9655.00000	Adj R-Sq	0.1637
Coeff Var	85.25671		

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	95% Confid	ence Limits
Intercept	1	6232.47445	1536.75258	4.06	<.0001	0	3216.83381	9248.11510
length_stay	1	615.16508	43.86198	14.03	<.0001	0.40594	529.09268	701.23748
AGE	1	-11.12003	20.14489	-0.55	0.5811	-0.01598	-50.65129	28.41122

Regression Modeling Results Fit Diagnostics for Claim Payment Amount

Linear Regression with Diagnostic plots for Best Fit of Model
The regressors - Length of Stay and Age of patients are with residuals.

Multivariate Regression Claim Payment Amount & Death Indicator

Dependents: Age, Length_Stay, Ethnicity, gender, Cancer, Heart Failure
 Alzheimer, Kidney and Pulmonary Disease Indicator

	The GLM I ariate Ana	Procedure lysis of Varian	ce
	pe III SSCI	ctors of: E Inve P Matrix for A SCP Matrix	*
	Characteristic Vector V'EV=1		
Characteristic Root	Percent	Death_Ind	CLM_PMT_AMT
0.00005222	100.00	0.01704313	0.00000040
0.00000000	0.00	0.03619774	-0.00000019

Source		DF	Sum	of Squares	Mean Square	F Value	Pr > F
Model	odel		765	232298304	69566572573	924.65	<.0001
Error		66574	5.0	087514E12	75235848.405		
Correcte	d Total	66585	5.7	739837E12			

		Dependent	LM Proce Variable:			
Source	DI	F Sum of	Squares	Mean Squar	e F Value	Pr > F
Model	1	1 0.	3083725	0.028033	9 2.99	0.0006
Error	6657	4 624.	7119771	0.009383	7	
Corrected To	tal 6658	5 625.	0203496			
	R-Square	Coeff Var	Root M	SE Death_In	id Mean	,
	0.000493	1022.212	0.0968	70 0	.009476	

Regression Modeling Results Conditional Inferences Tree of Discharges

Critical Inpatients - Discharge Rate Partition Tree The tree nodes propagate without pruning. Distinct classification on Length of Stay than on age. N contribute to the Mortality and Y to Discharge Conditional Inferences Tree - Discharge on Length of Stay and Age ength_Str ength_Sta

Recursive Partition Tree For Prediction Discharge of Critical Inpatients

◆ Survival Prediction of Critical Patients: Discharge Rate of Emergency patients on dependent variables – Age, Gender, Race, Length of Stay. African-American Male of age greater than 88 have only 2% survival. Random Forest(Machine Learning) & Rattle-Rpart Package.

Note: Visual is distorted as Presentation View Limited. Partition Tree Document attached as Submission Deliverable.

Summary and Conclusion

- From 2008-2010 on an average YoY 221,963 or 0.21 Million Inpatients
 - Female population is more in numbers and exceed male by 13.0%
 - > The mean age of Female Inpatients is lesser than Male
- The mean age of African American Male availing Medicare Benefits is the least and claim amount/person do not vary much by state. White Female have best health conditions as their mean age is highest. But count of inpatients is also more in female.
- The mortality rate of critical inpatients is highest in Black African American Male of 80 years or more of age.
- The Death of Inpatients is dependent sparsely on age and length of stay in hospital.
- Claim Payment Amount is not dependent only on age, length of stay & pre-ailment only. It varies with facility, services, reason of admit, insurance policy product and likewise.

End of Slide

