Week 8, Lecture 15

Database Systems Introduction to Databases and Data Warehouses

CHAPTER 2 - Database Requirements and ER Modeling (Part 2)

MAIN TOPICS

- Examples of Database requirements and ERD
- Composite Attributes
- Multiple Unique Attributes (Candidate keys)
- Multivalued attributes
- Derived Attributes
- Optional Attributes
- Example of entity with various types of attributes
- Exact Minimum, Maximum Cardinality in Relationships
- Relationship Degree
- Unary relationship and Relationship Role
- Multiple Relations between 2 entities
- Weak Entity
- Naming Conventions

SIMPLE SALES DB - REQUIREMENT IN ERD

ER diagram example: ZAGI Retail Company Sales Department Database

Composite attribute

- Attribute that is composed of several attributes
- Not an additional attribute of an entity
- Used to indicate:
 - A collection of attributes has an additional meaning, besides the individual meanings of each attribute

An entity CUSTOMER with a composite attribute (CustFullName)

Another entity STORE with a composite attribute (StoreAddress)

Composite attributes sharing components: Waist

COMPOSITE UNIQUE ATTRIBUTES

- Composite unique attribute
 - Composite attribute + unique attribute
 - Composed of several attributes
 - Unique value for each entity instance

COMPOSITE UNIQUE ATTRIBUTES

An entity with a unique composite attribute

ATTRIBUTES - Multiple Unique Attributes

- Multiple unique attributes (candidate keys)
 - More than one unique attribute in an entity
 - Each unique attribute is a candidate key
 - Candidate for a primary key (primary identifier)
 - One is chosen as the primary key of a table
 - * more in Chapter 3

ATTRIBUTES - Multiple Unique Attributes

An entity with multiple unique attributes (candidate keys)

EmpID, SSN

ATTRIBUTES - Multiple Unique Attributes

An entity with a regular and composite candidate key

ATTRIBUTES – Multi-Valued Attribute

Multivalued attribute

- Instances of an entity can have multiple values for the same attribute
- Used to
 - Assign a variable number of values to a particular attribute of an entity

ATTRIBUTES – Multi-Valued Attribute

A multivalued attribute

- Double-lined
- A variable number of phone numbers
 - 2, 3, etc
 - 1?

ATTRIBUTES – Multi-Valued Attribute

A scenario that does not use multivalued attributes

Exactly 2 phone numbers per employee

ATTRIBUTES - Derived Attribute

Derived attribute

- Attribute values are calculated from
 - Stored values of other attributes and/or additional available data
- Attribute values are not permanently stored in a database

ATTRIBUTES – Derived Attribute

A derived attribute example

Dash-lined

ATTRIBUTES – Derived Attribute

Another derived attribute example: NoOfStores

ATTRIBUTES – Optional Attribute

- Optional attribute
 - Attribute that is allowed to not have a value
 - Not the majority of attributes
 - Most attributes are required attributes
 - * Must have a value for each entity instance

ATTRIBUTES – Optional Attribute

An optional attribute example: Bonus (O)

ATTRIBUTES – Various Type Example

EXAMPLE: An entity with various types of attributes

RELATIONSHIPS – Exact Cardinality

- Exact minimum and maximum cardinality in relationships
 - In some cases the exact minimum and/or maximum cardinality in relationships is known in advance
 - Exact minimum/and or maximum cardinalities can be depicted in ER diagrams

RELATIONSHIPS – Exact Cardinality

A relationship with specific minimum and maximum cardinalities

(minimum, maximum)

RELATIONSHIPS – Exact Cardinality

A relationship with a mixture of specific and non-specific cardinalities

M: non-specific

RELATIONSHIPS - Degree

- Degree of a relationship
 - Reflects how many entities are involved in the relationship
- Binary relationship
 - Relationship between two entities
 - degree 2 relationship
 - Most relationships
- Unary relationship (recursive relationship)
 - An entity is involved in a relationship with itself
 - degree 1 relationship

RELATIONSHIPS – Unary Relationship

Unary relationship examples

RELATIONSHIPS - Relationship Role

Relationship roles

- Additional syntax used in ER diagrams at the discretion of a data modeler
- Used to clarify the role of each entity in a relationship
- Can be used in any relationship
- Typically most useful in unary relationships

RELATIONSHIPS - Relationship Role

Unary relationships with role names

RELATIONSHIPS - Relationship Role

A binary relationship with role names

Unnecessary role names

Multiple Relationships Between Same Entities

- Multiple relationships between same entities
 - More than one relationship between same entities in an ER diagram

Multiple Relationships Between Same Entities

Multiple relationships between the same entities

Weak entity

Entity that does not have a unique attribute of its own

Owner entity

Entity whose unique attribute provides a mechanism for identifying instances of a weak entity

Identifying relationship

- Relationship between a weak entity and its owner entity
 - Each instance of a weak entity is associated with exactly one instance of an owner entity
 - Each weak entity must be associated with its owner entity via an identifying relationship
 - Unique attribute from the owner entity uniquely identifies every instance of the weak entity via an identifying relationship

Partial key

- Attribute of a weak entity
- Combination of the partial key and the unique attribute from the owner entity uniquely identifies every instance of the weak entity

A weak entity example with entity instances

A weak entity versus a multivalued composite attribute

A weak entity with an identifying and regular relationship

- Identifying relationship is either 1:M or 1:1 relationship
 - In case of 1:M identifying relationship, a weak entity must have a partial key attribute
 - In case of 1:1 identifying relationship, a weak entity doesn't need to have a partial key attribute

A weak entity with a 1:1 identifying relationship

NAMING CONVENTIONS FOR ER DIAGRAMS

- Entities and attributes
 - Use singular (rather than plural) nouns
- Relationships
 - Use verbs or verb phrases, rather than nouns

NAMING CONVENTIONS FOR ER DIAGRAMS

- Names should be as brief as possible, without being too condensed as to obscure the meaning of the construct
- If possible, give all attributes in the entire ER diagram different names