

Facultad de Ingeniería y Ciencias Agropecuarias Ingeniería en Sistemas de Computación e Informática

ACI650/Modelos y Simulación Período 2017-1

1. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 120

Créditos – malla actual: 3 Profesor: Mario González

Correo electrónico del docente (Udlanet): / mario.gonzalez.rodriguez@udlanet.ec

Director: Marco Galarza Castillo

Campus: Queri

Pre-requisito: MAT410

Co-requisito:

Paralelo:

Tipo de asignatura:

Optativa	
Obligatoria	Х
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	
Unidad 3: Titulación	X

Campo de formación:

	Campo de formación				
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes	
	X				

2. Descripción del curso

En este curso se estudia la descripción de fenómenos reales mediante modelos estocásticos que posteriormente podrán ser analizados mediante simulaciones de eventos discretos.

3. Objetivo del curso

Analizar sistemas reales mediante la implementación de modelos y simulaciones sustentados en adecuados conceptos matemáticos, con la finalidad de evaluar o resolver problemas en sistemas de servicios o producción.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Contrasta las principales características de los modelos y las simulaciones.	1. Aplica metodologías de investigación, pensamiento lógico, fundamentos matemáticos, principios algorítmicos y teorías de Ciencias de la Computación en la fundamentación, modelación y diseño de soluciones informáticas.	Inicial () Medio (X) Final ()
2 . Aplica modelos de simulación para resolver problemas reales.	Aplica metodologías de investigación, pensamiento lógico, fundamentos matemáticos, principios algorítmicos y teorías de Ciencias de la Computación en la fundamentación, modelación y diseño de soluciones informáticas.	Inicial () Medio () Final (X)

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1	35%
Asignación 1	10%
Asignación 2	10%
Examen de 1er. Progreso	15%
Reporte de progreso 2	35%
Asignación 3	10%
Asignación 4	10%
Examen de 2do. Progreso	15%
Evaluación final	30%
Asignación 5	15%
Examen final	15%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye.

Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% <u>del total</u> de las sesiones <u>programadas</u> de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

6.1. Escenario de aprendizaje presencial.

En el escenario de aprendizaje presencial se da énfasis a la enseñanza enfocada en el alumno mediante el uso de diferentes estrategias:

Instrucción directa:

En el escenario de aprendizaje presencial, se utilizará la instrucción directa para trasmitir a los estudiantes información de forma organizada y sistemática sobre los principales conceptos de cada unidad temática.

Prácticas de Laboratorio:

En el transcurso de la materia se realizarán ejercicios prácticos usando varias herramientas a fin de que los estudiantes apliquen y refuercen los conocimientos teóricos adquiridos en los diferentes tópicos.

Trabajo en grupo (colaborativo):

Se realizará actividades en grupo tales como investigaciones, exposiciones y talleres; donde cada miembro cumpla un rol y sea responsable por colaborar para cumplir un objetivo común.

Los mecanismos de evaluación utilizados serán todas las actividades realizadas por los estudiantes y que estarán subidos a la plataforma virtual. Los laboratorios y estudios de caso tendrán adjunto su respectivo informe donde se detalle y respalde las decisiones tomadas, los paradigmas analizados, el código y/o comandos utilizados, etc. Otra forma de evaluación son los exámenes teóricos y/o prácticos que permitirán evaluar el aprendizaje a través de preguntas de asociación, selección múltiple y el desarrollo de ejercicios prácticos.

6.2. Escenario de aprendizaje virtual.

Indagación en bases de datos:

El estudiante utilizará bases de datos a fin de investigar el estado del arte en los diferentes paradigmas usados en el Modelado y simulación de sistemas. Esta actividad puede ser parte de las prácticas de laboratorio y trabajos en grupo.

6.3. Escenario de aprendizaje autónomo.

En el escenario de aprendizaje autónomo los estudiantes deberán realizar actividades que les permitan complementar y profundizar los conocimientos adquiridos en el escenario de aprendizaje presencial.

Lecturas:

Todos los estudiantes deben realizar la lectura de capítulos específicos de la bibliografía que serán indicados por el profesor de acuerdo a cada tema. La lectura tiene como objetivo conocer, complementar o profundizar los contenidos del programa de la asignatura.

Portafolio de ejercicios:

El portafolio del estudiante recopilará evidencia del aprendizaje dentro del desarrollo del curso. A lo largo de toda la materia se realizarán varias actividades de aprendizaje autónomo:

Trabajo en grupo (colaborativo):

A lo largo de la materia, se realizarán trabajos grupales de búsqueda y análisis de información que serán evaluados en base a informes subidos al aula virtual y/o mediante exposiciones.

La prueba y examen de cada progreso, a más de evaluar el aprendizaje presencial, incluirán los temas desarrollados en el portafolio del estudiante y las lecturas.

Proyecto final:

Para la evaluación final se considera la realización de un proyecto en el que los estudiantes desarrollen un tema asignado en el cual puedan demostrar el aprendizaje de los conceptos revisados durante la materia. El proyecto final será evaluado por medio de una rúbrica.

7. Temas y subtemas del curso

RdA	Temas	Subtemas
1. Contrasta las principales características de los	1. Introducción	1.1. Definiciones básicas 1.2. Proceso de simulación 1.3. Ejemplos de simulaciones
modelos y las simulaciones.	2. Números aleatorios	2.1. Generación de números aleatorios 2.2. Pruebas estadísticas de números pseudo aleatorios.
	3. Generación de distribuciones comunes	 3.1. Probabilidad condicional 3.2. Variables aleatorias 3.3. Distribuciones de probabilidad comunes 3.4. Generación de variables aleatorias discretas 3.5. Generación de variables aleatorias continuas
2. Aplica modelos de simulación para resolver problemas reales.	4. Simulación de eventos discretos	4.1. Fases de una simulación discreta 4.2. Características de un sistema de colas 4.3. Parámetros de entrada y salida 4.4. Clasificación de los sistemas de colas 4.5. Colas con un único servidor

	4.6. Colas con múltiples servidores 4.7. Otros tipos de simulaciones
5. Análisis estadístico d simulaciones	le 5.1. Verificación de una simulación 5.2. Validación estadística de una simulación
6. Proyecto de simulaci real	6.1. Estado del arte de procesos de simulación 6.2. Selección de una aplicación a simular 6.3. Implementación de la simulación

8. Planificación secuencial del curso

Sema	Semana 1-2.						
#	Tema	Sub tema	Actividad/	Tarea/	MdE/Producto/		
RdA			metodología/clase	trabajo	fecha de entrega		
				autónomo			
1	1. Introducción	1.1. Definiciones básicas 1.2. Proceso de simulación 1.3. Ejemplos de simulaciones	(1)Sociabilización del sílabo e indicaciones generales. (1)Instrucción directa: Modelos y simulaciones. (1) (2) Consulta bibliográfica sobre simulaciones comunes en la industria. (1)Laboratorio sobre los	(3)Lectura de p. 3-12 de (Banks, 2009). (3)Resolución de ejercicios Cap. I de (Ross, 2013) (3) Asignación 1 (10%): Análisis de un sistema, sus componentes, interacciones	Ejercicios resueltos de Cap. I de (Ross, 2013) Trabajo autónomo. Informe de laboratorio Trabajo autónomo. Fecha de entrega A1:		
			fundamentos de la programación en	y posible implementaci			
			R/Python.	ón.			

Sema	Semana 3-4.						
# RdA	Tema	Sub tema	Actividad/ metodología/clas	Tarea/ trabajo	MdE/Producto/ fecha de entrega		
			e	autónomo			
1	2. Números aleatorios	2.1. Generación de números aleatorios (pseudo aleatorios)	(1) Instrucción directa: Métodos de generación de números pseudo aleatorios.	(3)Lectura de p. 39-44 de (Ross, 2013). (3)Preparació n de presentación	Presentación de pruebas de uniformidad y aleatoriedad de números aleatorios. Trabajo autónomo.		
		2.2. Pruebas estadísticas de números	Investigación sobre pruebas de uniformidad y	de pruebas de uniformidad y aleatoriedad	Ejercicios resueltos de Cap. III de (Ross, 2013)		

pseudo aleatorios	aleatoriedad de números pseudo aleatorios. (1) Taller sobre la generación y pruebas de uniformidad y aleatoriedad de números pseudo aleatorios (1) Laboratorio	de números aleatorios (3)Resolución de ejercicios Cap. III de (Ross, 2013) (3) Asignación 2 (10%): Resolución de un problema	Trabajo autónomo. Informe de laboratorio Trabajo autónomo. Fecha de entrega A2:
	números pseudo aleatorios	Asignación 2 (10%): Resolución de	

# RdA	Tema	Sub tema	Actividad/ metodología/clas e	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	3. Generación de distribucione s comunes	3.1. Probabilidad condicional 3.2. Variables aleatorias 3.3. Distribuciones de probabilidad comunes 3.4. Generación de variables aleatorias discretas 3.5. Generación de variables aleatorias continuas	(1) Instrucción directa: Probabilidad y variables aleatorias. (1) Laboratorio sobre cálculos estadísticos en R. (1) Instrucción directa: Distribuciones de probabilidad. (1) (2)Trabajo en grupo para resumir los algoritmos de generación de distribuciones comunes.	(3)Lectura de p. 5-33 de (Ross, 2013). (3)Elaboració n de informe de laboratorio (3)Resolución de ejercicios Cap. II de (Ross, 2013). (3)Lectura de p. 47-58 de (Ross, 2013). (3)Lectura de p. 69-83 de (Ross, 2013). (3)Resolución de ejercicios Cap. IV y V de (Ross, 2013) (3)Asignació n 3 (10%): Demostración	Informe de laboratorio Trabajo autónomo. Prueba progreso 1 Fecha de aplicación: 20/04/2016. Ejercicios resueltos de Cap. II de (Ross, 2013) Trabajo autónomo. Presentación en grupo algoritmos de generación de distribuciones comunes. Trabajo autónomo. Ejercicios resueltos de Cap. IV y V de (Russell, 2010) Trabajo autónomo Fecha de entrega A3:
				del teorema del límite central por	

		simulación numérica.	

Semana 9-10.						
# RdA	Tema	Sub tema	Actividad/ metodología/clas e	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega	
2	4. Simulación de eventos discretos	4.1. Fases de una simulación discreta 4.2. Características de un sistema de colas 4.3. Parámetros de	(1) Instrucción directa: Sistemas de colas/filas. (1) (2)Taller, elaboración mapa mental sobre los diferentes tipos de sistemas con colas. (1)Instrucción directa: Simulación	(3)Lectura de p. 19-51 de (Banks, 2009). (3)Resolución de ejercicios Cap. II de (Banks, 2009) (3)Lectura de p. 111-129 de	Ejercicios resueltos de Cap. II de (Banks 2009) Trabajo autónomo. Ejercicios resueltos de Cap. VII de (Ross 2013) Trabajo autónomo. Informe de laboratorio	
		entrada y salida	de eventos discretos.	(Ross, 2013). (3)Resolución de ejercicios	Trabajo autónomo. Fecha de entrega A4	
		Clasificación de los sistemas de colas	Presentaciones en grupo por parte de los estudiantes sobre las diferentes	Cap. VII de (Ross, 2013)		
		4.5. Colas con un único servidor	simulaciones de sistemas de colas	n del informe de laboratorio		
		4.6. Colas con múltiples servidores	sobre la simulación de un sistema de colas.	(3)Asignació n 4: Implementac ión de un sistema de		
		4.7. Otros tipos de simulaciones		colas con múltiples servidores.		

Sema	Semana 11.						
#	Tema	Sub tema	Actividad/	Tarea/	MdE/Producto/		
RdA			metodología/clas	trabajo	fecha de entrega		
			e	autónomo			
2	5. Análisis	5.1.	(1) Instrucción	(3)Lectura de	Prueba progreso 2		
	estadístico	Verificación de	directa:	p. 135-150 de	Fecha de aplicación:		
	de	una	Verificación y	(Ross, 2013).			
	simulacione	simulación	validación de		Ejercicios resueltos		
	s		simulaciones.	(3)Resolució	de Cap. VIII de (Ross,		
		5.2. Validación		n de	2013)		
		estadística de	(1) (2) Consulta en	ejercicios	Trabajo autónomo.		
		una	grupo sobre	Cap. VIII de			
		simulación	técnicas de	(Ross, 2013)			
			reducción de				

	varianza	

Sema	Semana 12-16.						
# Rd A	Tema	Sub tema	Actividad/ metodología/clas e	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega		
3	6. Tópicos Avanzados de Simulación	6.1. Redes de Petri Blanco y Negro. 6.2. Redes complejas. 6.3. Autómatas Celulares Elementales.	(1)Instrucción directa: Simulaciones en la vida real.	(3)Lectura de p. 247-254 de (Ross, 2013). (3) Asignación 5: Implementación de una simulación de un proceso real (proyecto final).	Fecha entrega A5: Examen final Fecha de aplicación:		

9. Normas y procedimientos para el aula

- 1. Se permitirá entregar una tarea hasta con 24 horas de retraso con una penalidad del 50% de la nota asignada.
- 2. Se tomará lista dentro de los primero 10 minutos luego de iniciado cada módulo, si el estudiante llega después, podrá ingresar de forma silenciosa, pero no se registrará la asistencia.
- 3. Los estudiantes deberán practicar la honestidad académica para todas las actividades de esta asignatura. La copia de ejercicios, exámenes, proyectos, y todas las actividades de aprendizaje solicitadas por el docente, y se calificará con la mínima calificación (cero).
- 4. El uso de cualquier dispositivo electrónico se aceptará en la clase solo para fines académicos. El uso para fines no académicos equivaldrá a una inasistencia.
- 5. Todas las actividades serán receptadas únicamente a través del aula virtual.
- 6. El estudiante puede acceder a tutoría personal en los horarios establecidos por el docente.
- 7. En el caso de inasistencia es responsabilidad del estudiante igualarse en los contenidos de la materia dictada en dicha clase.
- 8. En el caso de que un estudiante falte a una sesión en la que se realicen pruebas o prácticas de laboratorio, se podrán recuperar las calificaciones únicamente con justificación debidamente respaldada.

10. Referencias bibliográficas

10.1. Principales.

Ross, M. (2013). Simulation. (5th ed). San Diego, Estados Unidos: Elsevier.

10.2. Referencias complementarias.

Banks, J. (2009). *Discrete-event System Simulation*. (5th ed). New York, Estados Unidos: Prentice Hall.

García, E. (2010). Simulación y análisis de sistemas con ProModel. (1 ra ed). México DF, México: Pearson Educación.

11. Perfil del docente

Ing. Mario González, PhD.

Obtuvo el grado de Ingeniero Industrial en la Universidad Nacional de Ingeniería, Managua, Nicaragua (2004). Recibió su doctorado en Ingeniería Informática en la Universidad Autónoma de Madrid, España (2012). Hizo una estancia doctoral en la Facultad de Ingeniería de la Universidad de Oporto (FEUP), Portugal, financiado por el programa Erasmus Mundus ECW Lot 20. Actualmente es Profesor Investigador vinculado a Universidad de las Américas, Quito, Ecuador, donde desempeña labores de docencia e investigación. Ha colaborado como investigador asociado en proyectos financiados por el Ministerio de Educación y Ciencia, España. Ha publicado en revistas de Inteligencia Artificial, y revistas multidisciplinares de física, en el área de sistemas complejos y procesamiento de información usando redes neuronales atractoras.