

Analisis Multivariat – Materi 01

Introduction to Multivariate Analysis

Prodi S1 Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya

Assessment Ratio

Komponen	Ratio
Partisipasi+Tugas	20%
Tes (UTS)	30%
Project	50%
Total	100

Class Rule

- **Attendance** calculated at a minimum of 80% of the total class
- Permission Must contact the lecturer before the class
- **Plagiarism prohibited** (grade E who violate this rule)
- Make-up exams

students can submit a follow-up request to the lecturer if students cannot attend a quiz, assignment, mid-exam, or final exam at a predetermined time

Reference

- Joseph F. Hair, Multivariate Data Analysis, 8th Ed. Cengage, 2018
- Härdle, Wolfgang Karl, and Léopold Simar. Applied multivariate statistical analysis. Springer Nature, 2019.

Univariate Analysis

Univariate Analysis

■ Laki-laki ■ Perempuan

Table 1: Frequency distribution of research variables (n = 30133)

Variables	n (%)	Mean
Status of diabetes mellitus		
Suffering from diabetes mellitus	229 (0.8)	
Not suffering from diabetes mellitus	29904 (99.2)	
Cholesterol level status		
High cholesterol	236 (0.8)	
Normal cholesterol	29897 (99.2)	
Gender		
Man	14118 (46.9)	
Women	16015 (53.1)	
Hypertension status		
Hypertension	2371 (7.9)	
Not hypertension	27762 (92.1)	
Overweight		
Overweight/ Obesity	6536 (21.7)	21.03 Kg/m ²
Non-overweight	23597 (78.3)	
Age		
≥ 40 years old	12275 (40.7)	
<40 years	17858 (59.3)	26.05 years

Bivariate Analysis

Bivariate Analysis

Favorite Flavor	Boys		Girls	
Vanilla	8	32%	9	26%
Chocolate	10	40%	6	17%
Strawberry	5	20%	14	40%
Mint Chip	2	8%	6	17%
Total	25	100%	35	100%

Variables		of diabetes ellitus	p value	OR **
variables	Sick n (%)	Painless n (%)	*	(95% CI)
Cholesterol status High cholesterol Normal cholesterol	52 (22.0) 177 (0.6)	184 (78.0) 29720 (99.4)	0.000	47.453 (33.727 - 66.765)
Gender Man Women	108 (0.8) 121 (0.8)	14010 (99.2) 15894 (99.2)	0.925	-
Hypertension status Hypertension Not hypertension	57 (2.4) 172 (0.6)	2314 (97.6) 27590 (99.4)	0.000	3.951 (2.920 - 5.347)
Overweight Overweight/obese Non-overweight	110 (1.7) 119 (0.5)	6426 (98.3) 23478 (99.5)	0.000	3.377 (2.602 - 4.383)
Age ≥ 40 years old <40 years	97 (0.8) 132 (0.7)	12178 (99.2) 17726 (99.3)	0.664	

A dataset

Fisher's iris flower data set:

This famous dataset was collected to quantify the morphologic variation of iris flowers of three species - setosa, versicolor, virginica.

Sepal length +	Sepal width -	Petal length \$	Petal width +	Species +
5.0	2.0	3.5	1.0	I. versicolor
6.2	2.2	4.5	1.5	I. versicolor
6.0	2.2	5.0	1.5	I. virginica
6.0	2.2	4.0	1.0	I. versicolor
6.3	2.3	4.4	1.3	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
5.0	2.3	3.3	1.0	I. versicolor
4.5	2.3	1.3	0.3	I. setosa
5.5	2.4	3.8	1.1	I. versicolor
5.5	2.4	3.7	1.0	I. versicolor
4.9	2.4	3.3	1.0	I. versicolor
6.7	2.5	5.8	1.8	I. virginica
6.3	2.5	5.0	1.9	I. virginica

What is Multivariate Analysis?

how do you predict the weather?

- humidity
- pollution
- precipitation

Multivariate Analysis

Multivariate Analysis

Multivariate Analysis

- Multivariate analysis involves evaluating multiple variables (more than two) to identify any possible association among them. Key takeaways: Multivariate analysis offers a more complete examination of data by looking at all possible independent variables and their relationships to one another.
- Multivariate analysis refers to all statistical techniques that simultaneously analyze multiple measurements on individuals or objects under investigation. Thus, any simultaneous analysis of more than two variables can be loosely considered multivariate analysis

Why we learn Multivariate Analysis?

x1	3	4	2	6	8	2	5
x2	5	5,5	4	7	10	5	7,5

x1	5	4	6	2	2	8	3
x2	5	5,5	4	7	10	5	7,5

Basic Concept

- The Variate
 - Dependent vs independent variables
- Measurement Scales
 - Nominal
 - Ordinal
 - Interval
 - Ratio
- Measurement error and Multivariate measurement
 - Validity and reliability

Objectives of Multivariate Analysis

- Data reduction
- Grouping
- Relationship Among Variables
- Prediction
- Hypothesis Construction & Testing

Managing the Multivariate Model

Managing the Variate

Managing the Dependence Model

Statistical Significance vs Statistical Power

		R	Reality		
		No Difference	Difference		
Statistical	H ₀ : No Difference	$1 - \alpha$	β		
Decision			Type II error		
	»	α	$1 - \beta$		
	H _a : Difference	Type I error	Power		

Figure 1.4
Relationship of Error
Probabilities in Statistical
Inference

Figure 1.5
Power Levels for the Comparison of Two Means: Variations by Sample Size, Significance Level, and Effect Size

	alpha ($lpha$) = .05		alpha	$\alpha(\alpha) = .01$
	Effect Size (ES)		Effec	t Size (ES)
Sample Size	Small (.2)	Moderate (.5)	Small (.2)	Moderate (.5)
20	.095	.338	.025	.144
40	.143	.598	.045	.349
60	.192	.775	.067	.549
80	.242	.882	.092	.709
100	.290	.940	.120	.823
150	.411	.990	.201	.959
200	.516	.998	.284	.992

A Classification of Multivariate Techniques

A Classification of Multivariate Techniques

- This classification is based on three judgments the researcher must make about the research objective and nature of the data:
- 1. Can the variables be divided into independent and dependent classifications based on some theory?
- If they can, how many variables are treated as dependent in a single analysis?
- 3. How are the variables, both dependent and independent, measured?

Canonical Correlation

$$Y_1 + Y_2 + Y_3 + \cdots + Y_n = X_1 + X_2 + X_3 + \cdots + X_n$$

(metric, nonmetric) (metric, nonmetric)

Multivariate Analysis of Variance

$$Y_1 + Y_2 + Y_3 + \cdots + Y_n = X_1 + X_2 + X_3 + \cdots + X_n$$
 (metric) (nonmetric)

Analysis of Variance

$$Y_1 = X_1 + X_2 + X_3 + \cdots + X$$
 (metric) (nonmetric)

Multiple Discriminant Analysis

$$Y_1 = X_1 + X_2 + X \cdot \cdot \cdot + X_n$$
 (nonmetric) (m tric)

Multiple Regression alysis

$$Y_1 = X_1 + X_2 + X_3 + \cdots + X_n$$
 (metric, nonmetric)

Conjoint Analysis

$$Y_1 = X_1 + X_2 + X_3 + \cdots + X_n$$
 (nonmetric, metric) (nonmetric)

St uctural Equation Modeling

$$Y_1$$
 = $X_{11} + X_{12} + X_{13} + \cdots + X_{1n}$
 Y_2 = $X_{21} + X_{22} + X_{23} + \cdots + X_{2n}$
 Y_m = $X_{m1} + X_{m2} + X_{m3} + \cdots + X_{mn}$
(metric) (metric, nonmetric)

Guidelines for Multivariate Analyses and Interpretation

- Establish practical significance as well as statistical significance
- Recognize that sample size affects all results
- Know your data
- Strive for model parsimony
- Look at your errors
- Simplify your models by separation
- Validate your results

A Structured Approach to Multivariate Model Building

S1 Sains Data FMIPA UNESA

Multivariate Analysis Application

- Marketing
- Banking
- Finance
- Insurance

- Healthcare
- Molecular biology
- Astronomy
- Sports

Multivariate Analysis Application

- Marketing: Predict new purchasing trends. Identify "loyal" customers. Detect potential customers. Segment markets. Precise marketing.
- Banking: Evaluate loan policies using customer characteristics. Predict credit card switch.
- Finance: Identify relationships between financial indicators. Track changes in an investment portfolio and predict price turning points. Analyze volatility patterns in high-frequency stock transactions.
- Insurance: Identify characteristics of buyers of new policies. Find unusual claim patterns. Identify "risky" customers.

Multivariate Analysis Application

- **Healthcare:** Early warning of diseases. Predict doctor visits from patient characteristics. Precise medical care.
- Molecular Biology: Gene detection. Analyze DNA microarrays. Characterize biological function. Predict protein structure.
- Astronomy: Catalogue (as stars, galaxies, etc.) objects in the sky. Identify patterns and relationships of objects.
- Forensic Accounting: Detect fraud in insurance, credit card and medical claims. Identify instances of tax evasion. Identify insider-trading behaviors in stock market.
- Sports: Identify most effective stretagies. Discover hidden game patterns.

Next

- Multivariate normal distribution
- Canonical correlation
- Factor analysis
- ANOVA, ANCOVA, MANOVA, MANCOVA
- Clustering
- Conjoint analysis
- Multidimensional Scaling
- Discriminant analysis
- Logistic regression
- •SEM dan PLS

Thank you

