

INSPIRING CREATIVE AND INNOVATIVE MINDS

Definition

- A graph G is a triple (V, E, f), where
 - V is a finite nonempty set, called the set of vertices
 - E is a finite set (may be empty), called the set of edges
 - f is a function, called an incidence function, that assign to each edge, e∈E, a one-element subset {v} or a two-element subset {v,w}, where v and w are vertices.
- We can write G as (V,E,f) or (V,E) or simply as G.

www.utm.my

- Let,
 - $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$
 - $E=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- and f be defined by

•
$$f(e_1) = f(e_2) = \{v_1, v_2\}$$

•
$$f(e_3) = \{v_4, v_3\}$$

•
$$f(e_4) = f(e_6) = f(e_7) = \{v_6, v_3\}$$

•
$$f(e_5) = \{v_2, v_4\}$$

Then G=(V,E,f) is a graph

- Let $V=\{v_1, v_2, v_3, v_4\}, E=\{e_1, e_2, e_3\}$ and
 - $f(e_1)=\{v_1, v_2\}$
 - $f(e_2) = \{v_3, v_3\}$
 - $f(e_3) = \{v_3, v_4\}$
- Then G=(V,E,f) is a graph

www.utm.my

Characteristics of Graph

Adjacent Vertices

- An edge e in a graph that is associated with the pair of vertices v and w is said to be incident on v and w, and v and w are said to be incident on e and to be adjacent vertices.
- A vertex that is an endpoint of a loop is said to be adjacent to itself.

Isolated Vertex

- Let G be a graph and v be a vertex in G.
- We say that v is an isolated vertex if it is not incident with any edge.

www.utm.my

v5 and v7 are isolated vertices.

11

Loop

www.utm.my

An edge incident on a single vertex is called a loop.
Example: e₂ is a loop

Parallel Edges

www.utm.my

Two or more distinct edges with the same set of endpoints are said to be parallel.

• e_1 and e_2 are parallel.

Example

www.utm.my

Given a graph as shown below,

- a) Write a vertex set and the edge set, and give a table showing the edgeendpoint function.
- b) Find all edges that are incident on a, all vertices that are adjacent to a, all edges that are adjacent to e_2 , all loops, all parallel edges, all vertices that are adjacent to themselves and all isolated vertices.

Example 1 - Solution

Solution:

a) Vertex set, $V = \{a, b, c, d, e, f, i, h\}$ and the set of edges, $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$

Edge	Endpoints
e_1	{ a , b }
€ 2	{ a , c }
e3	{ b , e}
€ 4	{ c , d }
€5	{d, e}
€6	{ a , b }
<u>e</u> z	{ d }
<u>e</u> 8	{ i, h }
<u>e</u> 9	{h}
€10	{ i }

www.utm.my

b)

```
incident on a, e1, e2, e6 adjacent to a, c, b adjacent to e_2, e1, e4, e6 loops, e7, e9, e10 parallel edges, e1, e6 adjacent to themselves, i, h, d isolated vertices,
```


www.utm.my

The Concept of Degree

Degree of a vertex

- Let G be a graph and v be a vertex of G.
- The degree of v, written deg(v) or d(v) is the number of edges incident with v.
- Each loop on a vertex v contributes 2 to the degree of v.

www.utm.my

 $\deg(v_1) = 1$; $\deg(v_2) = 2$; $\deg(v_3) = 3$; $\deg(v_4) = 2$

exercise

www.utm.my

Find the degree of each vertex in the graph.

solution

www.utm.my

Find the degree of each vertex in the graph.

Solution: $deg(v_1) = 1$; $deg(v_2) = 4$; $deg(v_3) = 4$; $deg(v_4) = 5$

www.utm.my

Types of Graphs

Simple Graphs

- A graph G is called a simple graph if G does not contain any parallel edges and any loops.
- Example

Connected Graph

- A graph G is connected if given any vertices v and w in G, there is a path from v to w.
- Example:

www.utm.my

not connected

Regular Graphs

www.utm.my

- Let G be a graph and k be a nonnegative integer.
- G is called a k-regular graph if the degree of each vertex of G is k.

26

Complete Graph

- A simple graph with n vertices in which there is an edge between every pair of distinct vertices is called a complete graph on n vertices.
- This is denoted by K_n .
- Example

Subgraph

- Let G=(V,E) be a graph.
- H=(U,D) is a subgraph of G if
 - *U*⊆ *V* and *D*⊆ *E*
 - for every edge $e \in D$, if e is incident on v and w, then $v, w \in V$.

யயய.utm.my

www.utm.my

Graph Representation

Matrix Representation of a Graph

- To write programs that process and manipulate graphs, the graphs must be stored, that is, represented in computer memory.
- A graph can be represented (in computer memory) in several ways.
- 2-dimensional array: adjacency matrix and incidence matrix.

Adjacency Matrices

www.utm.my

- Let *G* be a graph with *n* vertices.
- The adjacency matrix, A_G is an $n \times n$ matrix $[a_{ij}]$ such that,

```
a_{ij}= the number of edges from v_i to v_j, {undirected G} or,
```

 a_{ij} = the number of arrows from v_i to v_j , {directed G}

for all i, j = 1, 2, ..., n.

யயய.utm.my

யயய.utm.my

$$A_G = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$A_G = egin{bmatrix} 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 2 & 0 & 1 \ 1 & 2 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Adjacency Matrices

www.utm.my

Notice that the matrix A_G is a symmetric matrix if it is representing an undirected graph, where

$$a_{ij} = a_{ji}$$

If G is a directed graph (digraph), then A_G need not be a symmetric matrix.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

Incidence Matrices

- Let G be a graph with n vertices and m edges.
- The incidence matrix I_G is an $n \times m$ matrix $[a_{ij}]$ such that,

$$a_{ij} = \begin{cases} 0 & \text{if } v_i \text{ is not an end vertex of } e_j, \\ 1 & \text{if } v_i \text{ is an end vertex of } e_j, \text{ but } e_j \text{ is not a loop} \\ 2 & \text{if } e_j \text{ is a loop at } v_i \end{cases}$$

யயய்.utm.my

Notice that the sum of the *i*th row is the degree of v_i

exercise

www.utm.my

Find the adjacency matrix and the incidence matrix of the graph.

Exercise Past Year 2015/2016

www.utm.my

A cat show is being judged from pictures of the cats. The judges would like to see pictures of the following pairs of cats next to each other for their final decision: Fifi and Putih, Fifi and Suri, Fifi and Bob, Bob and Cheta, Bob and Didi, Bob and Suri, Cheta and Didi, Didi and Suri, Didi and Putih, Suri and Putih, Putih and Jeep, Jeep and Didi.

Draw a graph modeling this situation. (3 marks)

Exercise Past Year 2015/2016

www.utm.my

Given a graph as shown in Figure 1.

Figure 1

i. Find the incidence matrix of the graph.

(4 marks)

ii. Find the adjacency matrix of the graph.

(3 marks)

www.utm.my

Isomorphisms

- Are these 2 graphs the same?
- When we say that 2 graphs are the same mean they are isomorphic to each other.

www.utm.my

Graphs G_1 and G_2 are isomorphic if there is a one-to-one, onto function f from the vertices of G_1 to the vertices of G_2 and

a one-to-one, onto function g from the edges of G_1 to the edges of G_2

- An edge e is incident on v and w in G_1 if and only if the edge g(e) is incident on f(v) and f(w) in G_2 .
- The pair of functions f and g is called an isomorphism of G_1 onto G_2 .
- Graphs G₁ and G₂ are isomorphic if and only if for some ordering of their vertices, their adjacency matrices are equal.

Definition

யயய.utm.my

Let $G = \{V, E\}$ and $G' = \{V', E'\}$ be graphs. G and G' are said to be isomorphic if there exist a pair of functions $f: V \to V'$ and $g: E \to E'$ such that f associates each element in V with exactly one element in V' and vice versa; g associates each element in E with exactly one element in E' and vice versa, and for each $v \in V$, and each $e \in E$, if v is an endpoint of the edge e, then f(v) is an endpoint of the edge g(e).

- ◆ If two graphs is isomorphic, they must have:
 - the same number of vertices and edges,
 - the same degrees for corresponding vertices,
 - the same number of connected components,
 - the same number of loops and parallel edges,
 - both graphs are connected or both graph are not connected,
 - pairs of connected vertices must have the corresponding pair of vertices connected.
- In general, it is easier to prove two graphs are not isomorphic by proving that one of the above properties fails.

www.utm.my

Determine whether G is isomorphic to H.

www.utm.my

Both graphs are simple and have the same number of vertices and the same number of edges.

www.utm.my

All the vertices of both graphs have degree 2.

www.utm.my

Define $f: U \rightarrow V$, where $U=\{u_1, u_2, u_3, u_4\}$ and $V=\{v_1, v_2, v_3, v_4\}$

$$f(u_1)=v_1$$
, $f(u_2)=v_4$, $f(u_3)=v_3$, $f(u_4)=v_2$

www.utm.my

To verify whether G and H are isomorphic, we examine the adjacency matrix A_G with rows and columns labeled in the order u_1, u_2, u_3, u_4 and

the adjacency matrix A_H with rows and columns labeled in the order v_1 , v_4 , v_3 , v_2 .

55

www.utm.my

 A_G and A_H are the same, G and H are isomorphic.

$$A_{G} = u_{2} \begin{pmatrix} u_{1} & u_{2} & u_{3} & u_{4} \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ u_{3} & 1 & 0 & 0 & 1 \\ u_{4} & 0 & 1 & 1 & 0 \end{pmatrix} \qquad V_{1} \begin{pmatrix} v_{1} & v_{4} & v_{3} & v_{2} \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ v_{3} & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Exercise

www.utm.my

Q: Show that the following two graphs are isomorphic.

Exercise

www.utm.my

Q: Is these two graphs are isomorphic?

G:

H:

Exercise Past Year 2015/2016

www.utm.my

Determine whether the graphs in Figure 2 (A and B) are isomorphic. If the graphs are isomorphic, find their adjacency matrices; otherwise, give an invariant that the graphs do not share.

(6 marks)

www.utm.my

Trails, Paths & Circuits

Term and Description

www.utm.my

 A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G. Thus a walk has the form

$$(v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n)$$

where the v's represent vertices, the e's represent edges, $v = v_0$, $w = v_n$, and for i = 1, 2, ..., n. v_{i-1} and v_i are the endpoints of e_i .

- A trivial walk from v to w consist of the single vertex v. The walk contains zero edges (has length zero)
- The length of a walk is the number of edges it has.

Term and Description (cont.)

- A trail from v to w is a walk from v to w that does not contain a repeated edge.
- A path from v to w is a trail from v to w that does not contain a repeated vertex.
- A closed walk is a walk that start and ends at the same vertex.
- A circuit/cycle is a closed walk that contains at least one edge and does not contain a repeated edge.
- A simple circuit is a circuit that does not have any other repeated vertex except the first and the last.

www.utm.my

(1, a, 2, b, 3, c, 4, d, 2) is a walk of length 4 from vertex 1 to vertex 2.

யயய்.utm.my

• (1, a, 2, b, 3, c, 4, d, 2, e, 5) is a trail.

Note:

Trail: No repeated edge (can repeat vertex).

www.utm.my

(6, g, 5, e, 2, d, 4) is a path.

Note:

Path: No repeated vertex and edge.

www.utm.my

(2, f, 6, g, 5, e, 2, d, 4, c, 3, b, 2) is a circuit/cycle.

Note: circuit \rightarrow start and end at same vertex, no repeated edge.

www.utm.my

(5, g, 6, f, 2, e, 5) is a simple circuit.

Note: Simple circuit →start and end at same vertex, no repeated edge or vertex except for the start and end vertex.

exercise

- Tell whether the following is either a walk, trail, path, circuit, simple circuit, closed walk or none of these.
 - v_1, e_1, v_2
 - v_2 , v_2 , v_3 , v_3 , v_4 , v_4 , v_3
 - v_4 , v_7 , v_5 , v_6 , v_1 , v_1 , v_2 , v_2 , v_2 , v_3 , v_4
 - $(v_4, e_4, v_3, e_3, v_4, e_5, v_2, e_1, v_1, e_6, v_5, e_7, v_4)$

www.utm.my

Euler Trail & Circuit

Euler Circuits

- A circuit in a graph that includes all the edges of the graph is called an Euler circuit.
- Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and every edges of G. That is, an Euler circuit for G is a sequence of adjacent vertices and edges in G that has at least one edges, starts and ends at the same vertex, uses every vertex of G at least once, and uses every edge of G exactly once.

www.utm.my

(**1**, *a*, 2, *c*, 5, *e*, 5, *d*, 4, *f*, 3, *g*, 2, *b*, **1**) is an Euler circuit

Euler Trail

- A trail from v to w (v≠w) with no repeated edges is called an Euler trail if it contains all the edges and all the vertices.
- Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail from v to w is a sequence of adjacent vertices and edges that starts at v and ends at w, passes through every **vertex** of G at least once, and traverses every **edge** of G exactly once.

www.utm.my

(1, a, 2, c, 5, e, 5, d, 4, f, 3, b, 2) is an Euler trail

Theorem

- If G is a connected graph and every vertex has even degree, then G has an Euler circuit.
- A graph has an Euler trail from v to w (v≠w) if and only if it is connected and v and w are the only vertices having odd degree.

Königsberg Bridge Problem

www.utm.my

Starting at one land area, is it possible to walk across all of the bridges exactly once and return to the starting land area?

Königsberg Bridge Problem

www.utm.my

Graph of the Königsberg Bridge Problem

Königsberg Bridge Problem

www.utm.my

 Since 1736, two additional bridges have been constructed on the Pregel river.

www.utm.my

Vertex	1	2	3	4	5	6	7
Degree	2	4	4	4	2	2	4

This graph has an Euler circuit

Vertex	1	2	3	4	5	6
Degree	2	4	2	4	2	2

This graph has an Euler circuit

Vertex	1	2	3	4	5	6
Degree	2	3	3	2	2	2

exercise

www.utm.my

Decide whether the graph has an Euler circuit. If the graph has an Euler circuit, exhibit one.

exercise

www.utm.my

Q: Which of the following graphs has Euler circuit? Justify your answer.

Exercise Past Year 2015/2016

www.utm.my

Determine whether the graph in Figure 3 has an Euler cycle or Euler path. If the graph has an Euler cycle or Euler path, exhibit one; otherwise, give an argument that shows there is no Euler path.

(4 marks)

Figure 3

www.utm.my

Hamilton Circuits

Hamiltonian Circuit

- A circuit in a graph G is called a Hamiltonian circuit if it contains each vertex of G.
- Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex of G (but doesn't need to include all edges). That is, a Hamiltonian circuit for G is a sequence of adjacent vertices and distinct edges in which every vertex of G appears exactly once, except for the first and the last, which are the same.

Around the world game

www.utm.my

Sir William Rowan
Hamilton marketed
a puzzle in the mid1800s in the form of
dedocahedron

Around the world game

www.utm.my

Each corner bore the name of a city

87

Around the world game

www.utm.my

The problem was to start at any city, travel along the edges, visit each city exactly one time and return to the initial city

The graph

Hamiltonian Circuit

www.utm.my \boldsymbol{a} qn m

a-f-g-p-q-r-s-t-o-n-m-l-k-j-i-h-b-c-d-e-a

www.utm.my

This graph has a Hamiltonian circuit

1-a-2-b-3-f-5-e-4-k-6-I-7-m-1

www.utm.my

1-j-6-k-4-e-5-f-3-b-2-i-7-m-1

www.utm.my

no Hamiltonion circuit

93

www.utm.my

This graph has a Hamiltonian circuit

1-2-6-4-3-5-7-1

94

1-6-4-2-3-5-7-1

www.utm.my

This graph has a Hamiltonian circuit

1-2-3-4-5-1

Hamiltonian Path

- A path in a graph G is called a Hamiltonian path if it contains each vertex of G.
- Example:

exercise

www.utm.my

Find a Hamiltonian circuit in this graph.

Exercise

www.utm.my

Determine whether the graph in Figure 4 has an Hamiltonian cycle. If yes, exhibit one. (3 marks)

Figure 4