DIGITALNI VIDEO

Zadaci:

VLC:

amplituda	broj bita	VLC kod za broj bita	dodatni kod
0	0	100	
1	1	00	1
2-3	2	01	10-11
4-7	3	101	100-111
8-15	4	110	1000-1111
16-31	5	1110	10000-11111
32-63	6	11110	100000-111111
64-127	7	111110	1000000-1111111
128-255	8	1111110	10000000-11111111

Niz → sekvenca

-svaki broj se kodira – prvo VLC kod onda dodatni (sam broj binarno)

-npr. 17 – VLC 1110, dodatni 10001...

Sekvenca \rightarrow niz

-iščitaj VLC kod pa dodatni iz tablice

Entropija:

$$H(x) = -\sum_{x} P(x) \cdot \log_{x} P(x)$$

$$= \sum_{x} P(x) \cdot \log_{x} \left(\frac{1}{P(x)}\right)$$

Huffmanovo kodiranje u JPEG-u:

-koliko nula ima?

- Svaki AC koeficijent kodira se s dva simbola:
 - 1. Prvi simbol:
 - (RUNLENGTH, SIZE)
 - RUNLENGTH: Broj uzastopnih nula prije nenultog AC koeficijenta.
 - SIZE: Broj bita potreban za kodiranje amplitude nenultog AC koeficijenta.
 - Npr. (2, 3) dvije nule, a nakon toga tri bita za kodiranje drugog simbola (gledam binarno, tu je 7 111)
 - Za niz nula duži od 15 koristi se simbol (15,0) koji označava 16 nula.
 - 2. Drugi simbol:
 - AMPLITUDE: Kodira vrijednost amplitude nenultog AC koeficijenta

Odnos signal/šum u postupku digitalizacije videosignala:

 omjer vršne snage signala i efektivne snage šuma (PSNR, Peak Signal-to-Noise Ratio)

$$PSNR = 10\log \frac{(2^n - 1)^2}{MSE}$$

Mean squared error blok:

→ N² je broj elemenata

Izvorna monokromatska slika veličine 100x100 elemenata slike (piksela) kodirana je s 8 bita po uzorku (8 bpp). Nakon kompresije, slika na disku ima veličinu 1000 bajta. Postignuti stupanj kompresije iznosi:

Kompresija:

- \rightarrow monokromatska slika veličine 300x400 (8 bitova po pikselu): $400 \times 300 \times 8 = 960$ kbit (120 kB)
- \rightarrow slika u boji veličine 720x576 (za svaku boju po 8 bitova, zato 24): $720 \times 576 \times 24 = 9.95$ Mbit (1,24 MB)
- → televizija 1920x1152 (25 frameova u sekundi): $1920 \times 1152 \times 24 \times 25 = 1,327$ Gbit/s

Izračunati istosmjerni koeficijent DCT, amplituda 10, blok 8x8:

dosta je štur taj dokument, ali ak se misli na sliku koja je takva da je amplituda svugdje 10, to znači da će AC komponente sve biti nula, a sva informacija sadržana u DC komponenti. DC komponenta ti je jedna osmina zbroja svih amplituda u bloku, odnosno 10*64/8 = 80 (edited)

$$DC = F(0,0) = \frac{1}{8} \cdot \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y),$$

Brzine prijenosa kod digitalizacije komponentnog signala:

n - broj bita po uzorku signala

R - brzina prijenosa ($R = f_s \cdot n$)

-npr. 4:4:4 format:

$$f_S = 13.5$$
 $n = 8$

$$R = 13.5 * 8 * 3 = 324 \text{ Mbit/s}$$

→ puta 3 zato što računam za svaku komponentu posebno pa zbrajam

Kodiranje duljine niza

- -niz podataka istih vrijednosti zamjenjuje se "brojačem" , a iza "brojača" slijedi vrijednost podatka koji se ponavljao – mora biti dovoljan broj ponavljanja da se isplati
- -npr. a,a,a,e,e,e,e,e,e,i,i,o,o,o,u,u,u,u,u,u \rightarrow 4,a,5,e,2,i,3,o,6,u

<u>Teorija:</u>

- **Broj kompozicija** je broj slika na dijagonali umanjen za 1

negativ

postavljanje praga

redukcija broja razina sivog

povećanje/smanjenje svjetline

povećanje/smanjenje kontrasta

1	Na hoje prostorne Frehencije je ljudski vizualni sustav osjetljiviji? NISKE
2.	OPTIMACNA TRANSFORMACIJA (KLT) > potpuno uklanja horelaciju izmetu uzovaka > daje minimalnu pogrežku rekonstrukcije > složeno proračunavanje > samo teorijski značaj
	NIJE TOENO: KOEF, TRANSFORMA CIJE SU STATISTIČKI OVISNJI
	DISKRETNA KUSINUSNIA TRANSFORHACIJA (DCT) > najbliže optimalnoj transformaciji > brzi algoritmi za prorazumovanje > temelj normi za bodiranje slika i videosignala
8.	Koli ha kompresija se ostvaruje upotrebom DCT-a? NEMA KOMPRESIJE
	što se dogata sa složenošću izračuna Povećavanjem broja dekompozicija? Povećava SE
14	Noje ovojstvo neće negativno utjecati na raspoznavanje lica? BOJA OKIJU
15	Sustan za raspoznavanje li ca Točnost na 1. rangu iznosi 85%. Što to znači? sustan će na prvom MJESTU po sličnosti točno RASPOZNATI 85%.

Betacam / Betacam SP (Sony 1982. / 1986.)

7.	Fasto	se	prenosi	lumi	nantna	komp	onenta?
-	odredi	ije s	zetlosnu	10201	u	nelsin	
->	bolia	Konn	resija	(prilag)	odba raz svjetlost	lučivo	shi
->	Gudsk	i vid	osjetlyiv	ivi ma	svietlost	nego	boj w

19	Kc	Ja	tv	ran	ya	vinc		ocno			00				7			-
20	PC	voje Valv	je	tex	nel	no vos	Cg	RI	ice BA	nje B	LOK	OVA	U	SI	-10	٨		
- 1				1 1			1 1				HAC				uls.		29-	
22	7	PON	roa vak aljer	POS	PO K	RE thi	r A h o'	ojek	ato	regi	zme	edu po	slil druč	(a)	(31	nje	~	1
	315						100	Description 1	09			Slore Ver	5.50					
22	5.	Tabl	ice	K	van	השי	ranj	2	za	Lu	mino	nthi	bla	sk	1	kro	mir	lan

Slika sučelja:

DVI ⇔ HDMI

SDI kabel s konektorom

HDMI

DVI

DisplayPort

USB IEEE

Pitanja iz prošlogodišnjeg ispita:

1. Na čemu se temelji JPEG?

JPEG se temelji na diskretnoj kosinusnoj transformaciji (DCT), koja omogućava učinkovitu kompresiju eliminacijom redundantnih informacija u slikovnim podacima

2. H.264/AVC i H.265/HEVC ostvaruju...?

Ovi standardi ostvaruju kompresiju videosignala, smanjujući potrebnu širinu pojasa za prijenos i veličinu za pohranu videosadržaja uz očuvanje visoke kvalitete slike

3. Koja je optimalna transformacija?

Optimalna transformacija je Karhunen-Loèveova transformacija (KLT), koja pruža maksimalno uklanjanje redundantnosti između uzoraka

4. Što je vektor pokreta?

Vektor pokreta predstavlja pomak između odgovarajućih elemenata slike u susjednim okvirima videozapisa, korišten za predikciju i smanjenje redundancije u kompresiji

5. Zašto je ljudsko oko osjetljivije na luminantnu komponentu?

Zbog većeg broja štapića u mrežnici oka, koji su osjetljiviji na svjetlinu (luminanciju), dok čunjići više reagiraju na boje

6. Koja je mana DCT-a?

Glavna mana DCT-a je pojava vidljivih rubova između blokova kod visoke kompresije, što se naziva "blokovski efekt"

7. Koliki je E'_Y za bijelu boju?

Za bijelu boju E'_Yje 1, što znači da je luminancija na maksimalnoj razini

8. Što je na x i y osi vektorskog prikaza krominantnih signala?

Odgovor: Na x-osi nalazi se E'_B - E'_Y, a na y-osi E'_R- E_Y

Pitanja otvorenog odgovora

1. Objasni kodiranje s nadomještanjem pokreta.

Kodiranje s nadomještanjem pokreta temelji se na analizi uzastopnih okvira videozapisa, gdje se za svaki blok izračunava vektor pokreta. Taj vektor pokazuje pomak bloka u odnosu na prethodni okvir, a razlika (rezidual) se dodatno komprimira. To značajno smanjuje količinu podataka jer koristi sličnosti između okvira

2. Razlika između JPEG-a i MPEG-a.

JPEG je standard za kompresiju statičnih slika, dok MPEG obuhvaća kompresiju videozapisa, uključujući dinamičke informacije kroz vremenske dimenzije (kao što su nadomještanje pokreta i ključni okviri)

3. Skiciraj luminantnu i kromatsku komponentu za formate 4:4:4, 4:2:2 i 4:1:1.

U formatu 4:4:4 (Y:), luminantne (Y) i kromatske komponente(boje) imaju jednaku prostornu rezoluciju (jednak broj elemenata slike). U 4:2:2, kromatske komponente imaju polovinu horizontalne rezolucije u odnosu na luminantnu. U 4:1:1, horizontalna rezolucija kromatskih komponenti je četvrtina one luminantne

Struktura uzorkovanja u 4:2:2 formatu

Struktura uzorkovanja u 4:1:1 formatu

4. Razlika između BT.601, BT.709 i BT.2020.

BT.601, BT.709 i BT.2020 razlikuju se prema ciljanim razlučivostima koje podržavaju: BT.601 je namijenjen za SDTV, BT.709 za HDTV, a BT.2020 za UHDTV. U spektru boja, BT.601 ima uži raspon, BT.709 ga proširuje za HD sadržaje, dok BT.2020 uvodi još širi spektar boja (WCG) za realističniji prikaz. Također, BT.2020 podržava veće dubine boja (10-bitne i 12-bitne) te visok dinamički raspon (HDR), što omogućava superiornu kvalitetu slike u odnosu na prethodne standarde.

5. Nabroji nekoliko modernih medija za pohranu (tapeless).

Moderni mediji za pohranu uključuju SSD, SD kartice, Blu-ray diskove, USB memorije i mrežna pohrana (NAS ili cloud)

6. Što je standardni promatrač?

Standardni promatrač je neizravna veza između svjetlosti kao podražaja i doživljaja viđenog. Rezultat je ispitivanja ljudskog vizualnog sustava na velikom broju ljudi, gdje su prosječne vrijednosti utvrđene kao standard reakcije na svjetlosne podražaje.

Pitanja na zaokruživanje:

Za bijelu prugu u ispitnom signalu kromatske pruge ("Color-Bar") signali E'_R - E_Y ' i E'_B - E_Y iznose:

$$E_{R}^{-} = 0$$

 $E_{B}^{-} = 0$

Sustavi kromatske televizije

- zbog potrebne širine kanala signali se prenose kao razlike (potrebna je četiri puta manja širina zato što su razlike općenito manje nego apsolutne vrijednosti boja pa je prijenos učinkovitiji)
- E'_{Y} , $(E'_{R}-E'_{Y})$ i $(E'_{B}-E'_{Y})$.
- $E'_{Y}=0.3 \cdot E'_{R}+0.59 \cdot E'_{G}+0.11 \cdot E'_{B}$

Boja	E' _R	E' _G	E' _B	E' _Y	E' _R -E' _Y	E' _B - E' _Y	E' _B - E' _Y
Bijela	1	1	1	1	0	0	0
Žuta	1	1	0	0.89	0.11	-0.89	0.11
Cijan	0	1	1	0.70	-0.70	0.30	0.30
Zelena	0	1	0	0.59	-0.59	-0.59	0.41
Purpurna	1	0	1	0.41	0.59	0.59	-0.41
Crvena	1	0	0	0.30	0.70	-0.30	-0.30
Plava	0	0	1	0.11	-0.11	0.89	-0.11
Crna	0	0	0	0	0	0	0

JPEG2000 norma temelji se na primjeni diskretne wavelet transformacije (DWT)

Koder koristi vektor pokreta za **pomak elemenata slike prethodne slike i dobivanje tzv. predviđene slike prije nego što je oduzme od trenutno procesirane slike**

Signal E'_Y se u sustavima televizije u boji formira radi: **kompatibilnosti s akromatskom televizijom**

Kod ekscesne kompresije videozapisa koristi se za komprimiranje: **uz redundaciju odbacuje i dio entropije**

Za tv sustav koji koristi analiziranje s proredom na slici dolje prilazan je monogram jedne linije:

 parametri 625/50 (Europa) i 525/59,94 (SAD) televizijskih sustava:

Parametar sustava	625/50	525/59,94
Broj linija po slici	625	525
Frekvencija izmjene slika [Hz]	25	29,97
Frekvencija izmjene poluslika [Hz]	50	59,94
Broj linija po poluslici	312 1/2	262 1/2
Širina pojasa videosignala [MHz]	5	4,2
Trajanje linije - T _H [μs]	64	63,5566
Frekvencija izmjene linija [Hz]	15625	15734,264
Trajanje horizontalnog potisnog intervala - T _{HP} [µs]	12	10,7+11,1
Trajanje horiz. sinkronizacijskog impulsa - T _{HS} [μs]	4,5+4,9	4,6+4,8
Trajanje poluslike - T _V [ms]	20	16,683

Dodatna teorija s githuba:

Što je boja?

Nije svojstvo fizičkog svijeta već je psihički doživljaj izazvan fizikalnim uzrokom koji ovisi o fiziološkim procesima u organizmu i različitim psihološkim faktorima.

Objasnite psihofizičke i njima pripadne psihološke veličine koje određuju boju.

Psihofizičke veličine su dominantna valna duljina, čistoća pobude, luminancija Psihološke veličine boje: ton boje, zasićenje, svjetlina

Preko koje komponente se najčešće izračunava vektor pomaka, R,G,B,Y,U ili V?

Najčešće, vektor pomaka računa se za luminantnu (Y) komponentu.

Što označava MC i ME kod MPEG kodera?

ME (PROCJENA POKRETA) - dio procesa nadomještanja pokreta predviđanjem u kojem se određuju vektori pokreta

MC (NADOMJEŠTANJE POKRETA) – koristi vektore pokreta dobivene u procesu EC, za dobivanje trenutne slike.

Objasnite temeljne elemente postupka kodiranja unutar slike.

Intraframe coding – slika se obrađuje neovisno o ostalim slikama u slijedu slika, a uklanja se prostorna i statistička redundancija – najčešće se rabi transformacijsko kodiranje

Objasnite temeljne elemente postupka kodiranja između slika.

Interframe coding – kodira se razlika slika i uklanja vremenska redundancija – do dekodera se prenosi slika A i slika C=(A-B) Razlika između uzastopnih slika se smanjuje postupkom predviđanja i nadomještanja pokreta (motion compensation).

Prostorna redundancija – javlja se kao posljedica postojanja korelacije (međuovisnosti ili sličnosti) između elemenata slike u pojedinoj slici

Vremenska redundancija – javlja se kao posljedica postojanja korelacije između uzastopnih slika u videosignalu

Kako je definirana horizontalna, a kako vertikalna rezolucija te čime su one ograničene u TV sustavu?

Horizontalna rezolucija – broj crnih i bijelih vertikalnih linija koje se uzastopno izmjenjuju po širini slike (W) pri čemu širina slike na kojoj se mjeri rezolucija mora biti jednaka visini slike. Vertikalna rezolucija – broj crnih i bijelih horizontalnih linija koje se uzastopno izmjenjuju po visini slike, a mogu biti međusobno razlikovane od strane ljudskog vizualnog sustava

Objasnite kako se u CIE dijagramu kromatičnosti određuje vrsta i zasićenje boje.

VRSTA: povučemo polupravac od točke referentnog bijelog (E) kroz nepoznatu boju (C) i na mjestu gdje polupravac siječe spektralnu krivulju očitavamo valnu duljinu λ C pa time i vrstu boje $C\lambda$

ZASIĆENJE: ovisi o duljini dužine EC ,što je ta duljina veća, to je i zasićenje veće

Objasnite razliku između aditivnog i suptraktivnog miješanja boja te kako su definirani CIE primari.

Aditivno miješanje: miješanje obojenih svjetlosti – miješanjem primarnih boja mogu se postići sve ostale boje iz spektra bijele svjetlosti, ali i ostale boje kojih nema u spektru Suptraktivno miješanje: miješanje obojenih pigmenata CIE primari: temeljni uvjet za odabir sustava triju primarnih boja je da zbroj dva primara ne daje treći primar – kao primarne boje odabrane su: crvena ($\lambda R = 700$ nm), zelena ($\lambda G = 546,1$ nm) i plava ($\lambda B = 435,8$ nm)