Cryptanalyse — 4TCY902U Responsable : G. Castagnos

Devoir surveillé — 25 octobre 2016

Durée 1h30
accès aux fonctions programmées en TP, aux énoncés des TP et à la fiche d'initiation à Sage
autorisés, autres documents non autorisés
Les deux exercices sont indépendants.

Exercice théorique

Soit n > 1 un entier. Soit L un réseau de dimension n de R^n et soit B une matrice $n \times n$ à coefficients entiers dont les lignes constituent une base de L. Soit P une matrice $n \times n$ à coefficients entiers telle que $\det P = \pm 1$. On note B' = PB une autre base de L. On note σ un petit entier.

On considère le chiffrement à clef publique suivant. La clef publique est la base B', la clef privée la base B.

Pour chiffrer m un vecteur de \mathbb{Z}^n avec la clef publique B', on tire au hasard un vecteur $e \in \mathbb{Z}^n$, dont les coordonnées sont $\pm \sigma$. Le chiffré c de m est le vecteur c = mB' + e.

Pour déchiffrer c avec la clef privée B, on calcule le vecteur $v = cB^{-1} \in \mathbf{Q}^n$, puis on ressort $\lfloor v \rfloor P^{-1}$, où $\lfloor v \rfloor$ désigne le vecteur de \mathbf{Z}^n , où chaque coordonnée de v a été arrondie à l'entier le plus proche.

- (a) Soit c = mB' + e un chiffré de m. On note $u = (u_1, ..., u_n) = eB^{-1} \in \mathbf{Q}^n$. Montrer que si pour tout $i \in \{1, ..., n\}, |u_i| < 1/2$ alors le déchiffrement de c retourne bien m.
- **(b)** On note ρ le maximum des normes 1 des colonnes de B⁻¹ : $\rho = \max_{1 \le j \le n} \sum_{i=1}^{n} |x_{i,j}|$ où les $x_{i,j}$ sont les coefficients de la matrice B⁻¹. Déduire de la question précédente que si $\sigma < 1/(2\rho)$ alors le déchiffrement de c = mB' + e retourne bien m.
- (c) Soit c un chiffré avec la clef publique B'. Expliquer comment décrypter c sans connaître la clef secrète en utilisant le réseau engendré par la matrice $(n + 1) \times (n + 1)$:

$$\mathbf{M} := \begin{pmatrix} & & 0 \\ & \mathbf{B'} & \vdots \\ & & 0 \\ & c & 1 \end{pmatrix}$$

(d) On pose $s = (\sigma, ... \sigma) \in \mathbb{Z}^n$. Soit c un chiffré de m avec la clef publique B'. Que vaut c + s $(mod 2\sigma)$ (c'est à dire le vecteur dont toutes les coordonnées sont modulo 2σ)? En supposant que B' est inversible modulo 2σ , montrer que l'on peut obtenir de l'information sur m et améliorer l'attaque de la question précédente.

2 Exercice pratique (à part la première question)

On considère le générateur de suite chiffrante suivant. On utilise deux LFSR : LFSR $_P$ et LFSR $_Q$ de longueurs respectives ℓ_P et ℓ_Q . Les états initiaux des deux LFSR notés K_P et K_Q constituent la clef secrète. Les rétroactions de ces deux LFSR sont publiques, on note P (resp. Q) le polynôme de rétroaction du LFSR $_P$ (resp. du LFSR $_Q$).

Après avoir chargées les clefs, on met à jour les deux LFSR 100 fois sans produire de suite chiffrante. Puis à chaque tour,

- 1. Les LFSR_P et LFSR_O sont mis à jour, produisant deux bits p et q;
- 2. Si p = 1 alors le bit de sortie du générateur est q,
- 3. Sinon si p = 0, alors le bit de sortie du générateur est $1 \oplus q$.

Par exemple, avec le LFSR_P, de longueur $\ell_P=2$, de polynôme de rétroaction $P=1+X+X^2$ initialisé par $K_P=[0,1]$ et le LFSR_Q de longueur $\ell_Q=3$ de polynôme de rétroaction $Q=1+X+X^3$ initialisé par $K_Q=[0,1,1]$, la suite produite par le générateur est 1,1,1,1,0,1,1,1,0,0 ...

- (a) Expliquer comment Alice et Bob peuvent utiliser ce générateur afin de s'échanger N bits de manière confidentielle.
- **(b)** Donner le code d'une fonction qui produit N bits par ce générateur. Elle doit prendre en entrée les clefs K_P et K_Q , et les polynômes de rétroaction P et Q des LFSR $_P$ et LFSR $_Q$ et l'entier N. Donner les 5 premiers bits produits par le générateur avec : $\ell_P = 4$, $K_P = [1, 1, 1, 0]$, $P = 1 + X + X^4$, $\ell_Q = 6$, $K_Q = [1, 0, 1, 1, 1, 0]$, $Q = 1 + X + X^3 + X^4 + X^6$.
- (c) Avec $\ell_P = 4$, $K_P = [0,0,0,1]$, $P = 1 + X + X^4$, $\ell_Q = 6$, $Q = 1 + X + X^3 + X^4 + X^6$, les 10 premiers bits du générateur sont 0, 1, 1, 1, 0, 1, 1, 0, 1, 1. Quel est la valeur de la clef K_Q ? Expliquer la méthode utilisée, pas forcément tout le code.

Indication: Il pourra être utile d'utiliser la matrice de rétroaction d'un LFSR : Pour un LFSR de longueur ℓ et de polynôme de rétroaction $f(X) = 1 + c_1 X + c_2 X^2 + \dots + c_\ell X^\ell$ c'est la matrice $\ell \times \ell$ à coefficients dans \mathbf{F}_2 :

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \\ c_{\ell} & c_{\ell-1} & \dots & c_3 & c_2 & c_1 \end{pmatrix}$$

Quelles sont les valeurs des clefs K_P et K_Q ? Expliquer la méthode utilisée, pas forcément tout le code.