PROBLEME

- 1. Verifică dacă un număr natural n este prim.
- 2. Se consideră o aplicație care realizează managementul quiz-urilor efectuate de un student. Punctajul unui quiz este o valoare de la 0 la 30. Lista de quiz-uri poate să conțină până la 100 quiz-uri. Lista de funcționalități conține:
 - **F12.** Să se determine numărul de quiz-uri (**maxCounter**) pentru care studentul a obținut cel mai mare punctaj al său. Dacă nu s-au efectuat quiz-uri atunci **maxCounter** este 0. Dacă punctajul obținut pentru fiecare quiz este 0 atunci **maxCounter** este 0.

Clasa Service conţine o metodă pentru această funcţionalitate, care primeşte la intrare o listă cu valori întregi ce reprezintă punctajele testelor efectuate şi returnează o valoare întreagă ce reprezintă **maxCounter**. Pentru situaţiile excepţionale se returnează un mesaj de eroare.

CERINȚE

- I. Să se specifice metodele descrise de funcționalitățile de mai sus $(X, Z, \varphi(X), \Psi(X, Z))$.
- II. Să se proiecteze cazuri de testare folosind tehnicile de testare black-box ECP şi BVA.
- III. Să se determine acoperirea pentru tehnicile de testare folosite.

Etape de aplicare a ECP:

- 1. identificarea ECs valide/non-valide pentru datele de intrare/ieşire;
- 2. proiectarea TCs pentru ECs identificate;

Etape de aplicare a BVA:

- 1. identificarea condițiilor BVA pentru ECs valide existente;
- 2. proiectarea TCs pentru condițiile BVA identificate.

ECP. <u>Proiectarea cazurilor</u> de <u>testare</u>. <u>Reguli</u> 1

- 1. dacă o condiție de intrare precizează apartenența la un interval de valori [a,b]:
- ==> 1 EC validă, 2 EC non-valide;
 - E.g.: luna, o valoare intervalul [1, 12];
- 2. dacă o condiție de intrare precizează o mulțime finită de valori de intrare:
- ==> 1 EC validă pentru fiecare valoare, 1 EC non-validă;
 - E.g.: tip curs ∈ CourseType = {optional, obligatoriu, facultativ};
 - 1 EC validă pentru fiecare element din CourseType:
 - EC₁: {optional}, EC₂: {obligatoriu}, EC₃: {facultativ} ===> 3 ECs valide;
 - 1 EC non-validă: EC₄: M= {e | e ∉ CourseType};

ECP. Proiectarea cazurilor de testare. Reguli

- 3. dacă o condiție de intrare precizează numărul de valori:
- ==> 1 EC validă, 2 EC non-valide;
 - E.g.: "de la 1 până la 5 studenți";
 - 1 EC validă: EC₁: D=[1,5]; 2 EC non-<u>valide</u>: EC₂: <u>nici</u> un student; EC₃: <u>mai mult</u> de 5 <u>studenți</u>;
- 4. dacă o condiție de intrare precizează o situație de tipul "must be":
- ==> 1 EC validă, 1 EC non-validă.
 - E.g.,: "primul caracter din parolă trebuie să fie un simbol numeric";
 - 1 EC validă:
 - EC1: primul caracter este un simbol numeric;
 - 1 EC non-validă:
 - EC2: primul caracter nu este un simbol numeric.

ECP. Algoritm

- Algoritm de aplicare a ECP (identificarea ECs şi proiectarea TCs):
 - 1. se identifică clasele de echivalență pe baza condițiilor de intrare/ieşire;
 - 2. se clasifică clasele de echivalență în:
 - valide formate din datele de intrare/jesire valide pentru program;
 - non-valide formate din datele de intrare/ieşire eronate, corespunzătoare tuturor celorlalte stări ale condiției de intrare/ieşire.
 - 3. se asociază un identificator unic fiecărei clase de echivalență (e.g., EC₁, EC₂, etc.);
 - câttimp (nu au fost descrise cazuri de testare pentru toate clasele de echivalență valide/non-valide):
 - scrie (un nou caz de testare care corespunde la cât mai multe clase de echivalență valide încă neacoperite);
 - scrie (un nou caz de testare care corespunde doar uneia dintre clasele de echivalență de non-valide încă neacoperite).

ECP. Acoperirea testării ECs

calculul acoperirii (engl. coverage) testării ECs pentru tehnica de testare ECP:

4

Acoperirea ECs =

numărul de ECs testate

x 100

BVA. Proiectarea cazurilor de testare. Reguli

- dacă o condiţie de intrare/ieşire precizează apartenenţa la un interval de valori [a,b]:
- ==> cazuri de testare pentru:
 - (1) condiții BVA valide limitele intervalului (e.g., a, a+1; b-1, b);
 - (2) condiții BVA non-valide valori aflate în afara intervalului (e.g., a-1, b+1);

- ==> <u>cazuri</u> de <u>testare pentru</u>:
 - (1) condiții BVA valide primul și ultimul element din mulțime;
 - (2) <u>condiț</u>ii BVA non-<u>valide</u> <u>valo</u>area imediat mai mică decât cea mai mică valoare din <u>mulț</u>ime și valoarea imediat mai mare decât cea mai mare valoare in mulțime;
- 3. dacă o <u>condiție</u> de <u>intrare</u>/ieșire <u>precizează numărul</u> de <u>valori</u> (e.g., "de la 1 până la 5 <u>studenți</u>"):
- ==> <u>cazuri</u> de <u>testare pentru</u>:
 - (1) $\underline{\text{condi}}$ ții BVA $\underline{\text{valide}}$ $\underline{\text{num}}$ ărul minim și maxim de $\underline{\text{valori}}$, i.e., 1 și 5;
 - * (2) condiții BVA non-valide valoarea imediat mai mică și imediat mai mare, i.e. 0 și 6;

Condiții BVA. Sumar

6

Tip ECs	Există limite
interval de valori	da
număr de valori	da
mulţime valori neordonate	nu
mulţime valori ordonate	da
valoare "must be"	nu
secvenţă	da
ECs dependente	da
variabile multiple dependente	nu

BVA. Acoperirea testării condițiilor BVA

calculul acoperirii (engl. coverage) testării condițiilor BVA:

Acoperirea BVAs =

numărul de condiții BVA testate numărul de condiții BVA identificate

7

x 100

8

BVA. Algoritm

- se identifică limitele tuturor ECs valide de intrare/ieşire;
 - 2. se scriu condiții BVA pentru fiecare limită a fiecărei EC identificate, astfel încât:
 - valoarea să fie sub limită (mai mică decât limita), e.g., x < 2;
 - valoarea să fie pe limită (egală cu limita) , e.g., x = 2;
 - valoarea să fie deasupra limitei (mai mare decât limita), e.g., x > 2;
 - 3. se clasifică conditiile BVA în
 - valide corespund unor date de intrare/ieşire valide pentru program;
 - non-valide corespund unor date de intrare/ieşire non-valide pentru program.
 - se asociază un identificator unic fiecărei condiţii BVA (e.g., c1, c2, etc.);
 - 5. câttimp (nu au fost descrise cazuri de testare pentru toate condițiile BVA <u>valide</u>/non-<u>valide</u>):
 - scrie (un caz de testare nou, care corespunde la cât mai multe condiții BVA valide încă neacoperite):
 - scrie (un caz de testare nou, care corespunde doar uneia dintre condițiile BVA non-valide încă neacoperite).

