Obstacle Avoidance System

Digital Logic & Design

Problem Statement

 Design and prototyping implementation of an obstacle avoiding vehicle through digital logic and design techniques.

Solution

- Obstacle Detection
 - Infrared Proximity Sensor
 - Sensible Range
 - Relatively Cheap hardware
- Smooth Turning
 - o 555 Timer
 - Monostable State
 - Sustains the obstacle detected logic

Infrared Proximity Sensor

- Working Principle
 - Transmit Infrared Light
 - Detect it using Photodiode
 - Compare through Comparator against a predefined intensity level

- Range
 - 5 cm to 30 cm

555 Timer

- Monostable State
 - The output voltage turns high for a set duration when a falling edge is detected
- Smoothens the turn

Circuit Design

Circuit Design (contd.)

Issues

- Power the mobile circuitry
- Understanding timer technology
- Scaling time according to requirement

Applications

- Line Following Transportation Safety
- Safety override for SLAM technologies
- Advanced form of this technique can even be implemented in Self-Driving Cars as well

Further Recommendations

• This project can be extended as a safety override for remotely controlled mobile IoT architectures. It will promote care-free environment for product damage.

