1. Foundations	. 1
Motivation	. 2
New Life for Old Techniques	. 3
Perceptrons and Linear Separability	. 4
Neural Network Capabilities	
Basic Structure of a Neural Network	
Training	9
Validation	10
Leave-k-out Method	12
2. Classification	15
	16
Making the Decision.	17
Multiple Classes.	18
Reject Category.	18
Making the Decision.	19
Other Encoding Schemes	19
Supervised versus Unsupervised Training	21
Supervised versus emsupervised frammig	4 1
3. Autoassociation	23
Autoassociative Filtering	24
Code for Autoassociative Filtering	28
Noise Reduction	29
Learning a Prototype from Exemplars	31
Exposing Isolated Events	32
Pattern Completion	40
Error Correction	41
Encoding Words	42
Data Compression.	44
4. Time-Series Prediction	47
The Basic Model	49
Input Data	50
Trend Elimination	51
Code for Detrending and Retrending	55
Seasonal Variation	58
Differencing	60
Scaling	60
Multiple Prediction	61
Multiple Predictors	62
Measuring Prediction Error	64

5. Function Approximation	67
Univariate Function Approximation	68
Inverse Modeling	72
Multiple Regression	74
6. Multilayer Feedforward Networks	77
Basic Architecture	78
Activation Functions	80
Example Network	82
Linear Output Neurons	84
Theoretical Discussion	85
Bibliography of Feedforward Network Theory	88
Algorithms for Executing the Network	90
Training the Network	94
Training by Backpropagation of Errors	100
Training by Conjugate Gradients	105
Minimizing along a Direction	106
Choosing the Direction for Minimization	
Eluding Local Minima in Learning	111
Local Minima Happen Easily	112
Mistaken Minima	114
Other Means of Escape	115
When to Use a Multiple-Layer Feedforward Network	116
7. Eluding Local Minima I: Simulated Annealing	117
Overview.	
Choosing the Annealing Parameters.	
Implementation in Feedforward Network Learning	
A Sample Program	
A Sample Function.	
Random Number Generation	
Going on from Here	132

8. Eluding Local Minima II: Genetic Optimization	135
Overview	136
Designing the Genetic Structure	138
Evaluation	140
Parent Selection	
Reproduction	147
Mutation	
A Genetic Minimization Subroutine	
Some Functions for Genetic Optimization	
Advanced Topics in Genetic Optimization	
Gray Codes	
Overinitialization	
Two-Point Crossover	159
9. Regression and Neural Networks	165
Overview	166
Singular-Value Decomposition	167
Regression in Neural Networks	169
10. Designing Feedforward Network Architectures	173
How Many Hidden Layers?	
How Many Hidden Neurons?	
How Long Do I Train This Thing???	
11. Interpreting Weights: How Does This Thing Work?	187
Features Used by Networks in General	
Features Used by a Particular Network	
Examination of Weight Vectors	
Hinton Diagrams	
Clustering	194
Sensitivity Analysis	195
Stereotypical Inputs	197
12. Probabilistic Neural Networks	201
Overview	202
Computational Aspects	
Optimizing Sigma	
Related Models	210
A Sample Program	
Optimizing Sigma	
Other Optimization Criteria	
Bayesian Confidence Measures	219
Autoassociative Versions	
When to Use a Probabilistic Neural Network	221

13. Functional Link Networks	
Mathematics of the Functional Link Network	
When to Use a Functional Link Network	
When to Ose a functional Link Network.	. 22)
14. Hybrid Networks	. 231
Functional Link Net as a Hidden Layer	
Fast Bayesian Confidences	. 235
Training	
Attention-based Processing	
Factorable Problems	
Training the Data Reduction Networks	
Splitting Is Not Always Effective	
15. Designing the Training Set	. 245
Number of Samples	. 246
Communal Random Errors	. 247
Overfitting	. 247
Network Size Affects Training Set Size	. 248
Stratified Training Data	
Borderline Cases	. 249
Hidden Bias	. 250
Balancing the Classes	. 251
Fudging Cases	
16. Preparing Input Data	
General Considerations	
Types of Measurements	. 255
Nominal Variables	. 255
Ordinal Variables	. 259
Interval Variables	. 262
Ratio Variables	. 266
Is Scaling Always Necessary?	. 266
Transformations	. 267
Circular Discontinuity	. 270
View Angles	. 271
Hue	. 272
Outliers	. 274
Discarding Data	. 275
Missing Data	. 276

17. Fuzzy Data and Processing	. 279
Treating Fuzzy Values as Nominal and Ordinal	
Advantages of Fuzzy Set Processing	
The Neural Network – Fuzzy Set Interface	. 283
Membership Functions	
Continuous Variables	. 287
Multivariate Domains	. 288
Discrete Variables	. 289
Hedges	. 289
Negation, Conjunction, and Disjunction	. 290
Modus Ponens	. 292
Combining Operations	. 295
Defuzzification	. 299
Maximum Height Method	. 300
Centroid Method	. 301
Code for Fuzzy Set Operations	. 303
Constructors	. 303
Negation and Scaling	. 307
Conjunction and Disjunction	. 308
Centroid	. 314
Examples of Neural Network Fuzzy Preprocessing	
Simplifying Interactions	
Fuzzy One-of- <i>n</i> Coding	
Examples of Neural Network Fuzzy Postprocessing	. 319
Simple Membership Output	
Postprocessing with Defuzzification	. 320
18. Unsupervised Training	. 327
Input Normalization	
Z-Axis Normalization	. 331
Training the Kohonen Network	. 332
Updating the Weights	. 334
Learning Rate	. 336
Measuring Network Error	. 337
Determining Convergence	
Neurons That Refuse to Learn	. 339
Self-Organization	. 340

9. Evaluating Performance of Neural Networks	343
Overview	344
Mean Square Error	344
Problems with Mean Square Error	345
Relatives of Mean Square Error	346
Cost Functions	347
Confusion Matrix	348
ROC (Receiver Operating Characteristic) Curves	351
Computing the ROC Curve Area	
Cost Functions and ROC Curves	
Signal-to-Noise Ratio	
20. Confidence Measures	
Testing Individual Hypotheses	
Computing Confidence	
Confidence in the Null Hypothesis	368
Multiple Classes	
Confidence in the Confidence	370
Example Programs	371
Sorting	
Estimating the Distribution	
Estimating Confidences	
Bayesian Methods	
Example Program	381
Multiple Classes	
Hypothesis Testing versus Bayes' Method	
21. Optimizing the Decision Threshold	389
22. Using the NEURAL Program	403
Output Models	
CLASSIFY Model.	
AUTO Model.	
GENERAL Model.	
Building the Training Set	
The LAYER Network Model	
Initialization by Simulated Annealing	
Initialization by Genetic Optimization	
Learning	
The KOHONEN Network Model.	
Initialization and Learning	
Confusion Matrices	
Saving Weights and Execution Results	
Alphabetical Glossary of Commands	
Impiniocatou Grossiny or Communico	