Data Structures

Midterm Exam. Fall 2005

01. (30%) Explain the following terms and terms comparisons:

(a) Complete binary trees

(b) Binary search trees

(c) FIFO lists vs. LIFO lists

(d) Doubly linked lists

(e) Min heaps vs. Min trees

(f) AVL trees

(g) Performance analysis

Tree traversal **(h)**

Activation records (i)

Indirect recursion (j)

02. (8%) Prove or disprove the following statements:

$$(\mathbf{a}) \quad \sum_{i=0}^{n} i^3 = \Theta(n^4)$$

(c) $n^2 / \log n = \Theta(n^2)$

(d)
$$n! = O(n^n)$$

(b)
$$n^{1.001} + n \log n = \Theta(n^{1.001})$$

03. (9%) Assume that it takes two units of memory location to store an integer and row major order is adopted. Consider the following array declaration:

- (a) If A[0][0][0] is stored at address 2000, calculate the memory address of A[2][3][7].
- (b) If A[0][0][0] is stored at address 2000, indicate which array element is at the location 2300.
- (c) If A[3][0][0] is stored at address 2000, calculate the memory address of A[1][5][9].
- **04.** (5%) For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 is the number of nodes of degree 2, prove that $n_0 = n_2 + 1$.
- 05. (a) (8%) How to represent sparse matrices as linked lists? Your answer should include the node structure and a pseudo code to read in a matrix and set up its linked representation.
 - (b) (3%) Assume that the given argument of the sparse matrix read-in is an $m \times n$ matrix with k non-zero entries. Determine the time complexity of your pseudo code answered in (a).
- **06.** (4%) Given an in-order sequence BAECDJHFGI and a post-order sequence ABCDEFGHIJ, can you derive a unique binary tree? If yes, draw the binary tree; or you have to give two distinct binary trees which can generate above sequences.

07. (6%) Write the postfix form of the following expressions:

(a)
$$A - B * D + E / F + A * D + C$$

(b)
$$(A-B)*D+E/(F+A*D)+C$$

08. (3%) Derive the worst case time complexity of the binary search function
binsearch as follows. (Assume that there are n elements in the array list.)
int binsearch(int list[], int searchnum, int left, int right) {
 int middle;
 while (left to might) {

```
int middle;
while (left <= right) {
    middle = (left + right) / 2;
    if (list[middle] < searchnum)
        left = middle + 1;
    else if (list[middle] == searchnum)
        return middle;
    else
        right = middle - 1;
}
return -1;
}</pre>
```

- **09.** (a) (8%) Describe how to delete an element from a binary search tree. Calculate the time complexity of the deletion operation.
 - (b) (8%) Describe how to insert an element into a min heap. Calculate the time complexity of the insertion operation.
- 10. (a) (8%) Explain how to implement a circular queue by using an array.
 - (b) (8%) Explain how to implement a doubly linked circular list.
 - (c) (2%) Give two applications of stacks.