AUTONOMOUS ROBOTS FOR REAL-TIME MYCOTOXIN DETECTION IN GRAIN STORAGE UNITS

Presented By:

R.K.Sri Raaghavi Nandana Praveen Vullasa Thrishika

CB.SC.U4AIE23332 CB.SC.U4AIE23327 Sreeja Gurivisetty CB.SC.U4AIE23339

CB.SC.U4AIE23356

INTRODUCTION

- Mycotoxins, such as aflatoxins, pose significant health risks when present in stored grains, leading to food poisoning, economic losses, and compromised food security.
- Traditional detection methods rely on time-consuming laboratory analysis, making real-time monitoring challenging.
- To address this, we propose an autonomous robotic system integrated with an Overhead Conveyor System to navigate grain silos, detect mycotoxin contamination in real time, and ensure food safety.

OBJECTIVES

- Develop an autonomous robot for real-time mycotoxin detection in grain storage units.
- Integrate an Overhead Conveyor System for efficient movement across large grain silos.
- Utilize advanced mathematical models (Fourier Transform, Kalman Filter, Bayesian Models) for precise contamination detection.
- Improve food safety by minimizing manual sampling and lab dependency.

PROBLEM STATEMENT

- Grain Safety Challenge: High risk of mycotoxin contamination in stored grains, leading to severe health hazards and economic losses.
- Inefficient Traditional Methods: Manual sampling and lab analysis are timeconsuming, labor-intensive, and lack real-time monitoring capabilities.

Critical Gaps:

- No real-time detection system for immediate intervention.
- Lack of predictive models to track contamination spread.
- Difficulty inspecting large, confined grain silos efficiently.
- Need for Innovation: An autonomous, real-time detection system to identify mycotoxin contamination, predict its spread, and enhance food safety in grain storage units.

LITERATURE REVIEW

SL No	Title	Journal & Year	Authors	Outcomes	Limitations
1	Real-Time Detection of Aflatoxins Using Gas Sensors	Food Control, 2021	Zhang et al.	Demonstrated gas sensors' effectiveness in aflatoxin detection	Limited to lab conditions
2	Autonomous Robots in Agriculture: A Review	Robotics, 2020	Singh & Patel	Highlighted applications of robots in crop monitoring	Limited focus on grain storage
3	Fourier Transform Applications in Sensor Signal Processing	IEEE Sensors Journal, 2019	Kumar & Liu	Improved contamination detection via spectral analysis	High computational complexity
4	Kalman Filtering Techniques for Noisy Sensor Data	Sensors, 2022	Wang et al.	Enhanced data accuracy in volatile environments	
5	Bayesian Models for Predictive Analytics in Agriculture	AgriTech, 2020	Brown & Taylor	Improved prediction of crop diseases and contamination	Requires extensive historical data

LITERATURE REVIEW CONT

SL No	Title	Journal & Year	Authors	Outcomes	Limitations			
6	Overhead Conveyor Systems in Industrial Automation	Automation Today, 2018	Lopez et al.	Increased efficiency in material handling	High initial installation cost			
7	IoT-Based Grain Storage Monitoring Systems	Journal of IoT, 2021	Ahmed & Sharma	Enabled real-time monitoring of environmental factors	Limited to temperature and humidity data			
8	Robotic Systems for Hazard Detection in Confined Spaces	Robotics & Automation, 2020	Chen et al.	Successful navigation and detection in tight environments	Energy consumption issues			
9	Gas Sensor Networks for Environmental Monitoring	Environmental Sensors, 2019	Gupta & Rao	Effective in detecting air pollutants and toxins	Limited accuracy under fluctuating humidity levels			
10	Real-Time Food Safety Monitoring Using Robotics	Food Safety Journal, 2022	Johnson & Lee	Demonstrated real-time contamination detection	High maintenance requirements			

RESEARCH GAP

- Limited real-time monitoring solutions for mycotoxin detection in large-scale grain storage environments.
- Existing robotic systems are not optimized for confined silo spaces and lack integrated predictive models.
- Insufficient integration of advanced mathematical models (Fourier Transform, Kalman Filter, Bayesian Models) with autonomous systems for contamination analysis.
- Need for cost-effective, scalable solutions that combine automation with high detection accuracy.

PROPOSED METHOD

- Robotic Platform: An autonomous robot mounted on an Overhead Conveyor System for flexible movement across silo sections.
- Detection Mechanism: Equipped with gas sensors to detect volatile compounds emitted by contaminated grains.
- Data Analysis:
 - ^o Fourier Transform: Analyzes variations in sensor data to identify contamination patterns.
 - Calman Filter: Reduces noise and ensures accurate sensor readings.
 - O Bayesian Probability Model: Predicts the potential spread of contamination within the silo.
- Automation: Real-time data processing and automated alerts for detected contamination.

HARDWARE REQUIREMENTS

1.Main Controller/Processor

- ° Raspberry Pi 4 or NVIDIA Jetson Nano for running AI algorithms and real-time processing.
- O Arduino Uno or ESP32 for handling sensor data acquisition and motor control.

2. Motors and Movement Components

- O DC Motors for controlling movement along the conveyor system.
- Servo Motors for precise control of sensor positioning and robotic arms.
- O Stepper Motors for accurate positioning on the conveyor tracks.
- O Motor Drivers (L298N, L293D) to interface motors with microcontrollers.
- Overhead Conveyor System:
 - Conveyor Belts/Rails for smooth movement across grain silos.
 - Pulley System for tension control and directional changes.
 - Trolley/Carriage Mechanism to mount the robot for flexible overhead movement.
- ^o Chassis Frame to mount components securely.

3. Power Supply

- LiPo or Li-ion Batteries for portable power.
- Power Distribution Board for efficient power management.
- Battery Charger compatible with the power system.

4. Sensors for Mycotoxin Detection

- Gas Sensors (e.g., MQ-135, MQ-7) for detecting VOCs linked to mycotoxins.
- ^o Electrochemical Sensors for specific gas detection like ammonia or ethanol.
- Analog-to-Digital Converter (ADC) for processing analog sensor outputs.

5. Navigation and Obstacle Detection

- ^o Ultrasonic Sensors (HC-SR04) for obstacle avoidance along the conveyor path.
- Infrared Sensors for line-following and edge detection.
- ^o IMU (Inertial Measurement Unit) for stability and orientation control.
- Limit Switches to detect the endpoints of conveyor movement.

HARDWARE REQUIREMENTS

6. Communication Modules

- Wi-Fi (ESP32) or Bluetooth for short-range communication.
- LoRa Module for long-range communication inside large silos.
- GSM Module for remote alerts and system updates.

7. AI and Signal Processing Hardware

- $^{\circ}$ Edge AI Devices like NVIDIA Jetson Xavier for real-time AI model execution.
- FPGA Module for ultra-fast data processing (optional).

8. Display and User Interface

- Touchscreen Display for monitoring system performance and alerts.
- LED Indicators for quick visual status updates.

9. Camera and Imaging System

- Raspberry Pi Camera Module V2 for visual inspection of grains.
- LED Lights for enhanced visibility in low-light silo conditions.

10. Sensor Data Processing and Calibration

- Control of the second of th
- $^{\circ}~$ AI-Based Algorithms for real-time contamination prediction and decision-making.

11. Robot Control and Navigation

- PID Controllers for precise control of the conveyor's movement and robot stability.
- Wheel Encoders (if mobile platform used in addition to conveyor) for accurate distance tracking.
- O Motor Shields for managing multiple motor operations effectively.

12. Additional Components

- O Buzzer/Vibration Motor for immediate contamination alerts.
- ° Relay Modules for controlling additional devices, like external alarms or ventilation systems.

SOFTWARE REQUIREMENTS

1. Operating Systems & Programming:

- Raspberry Pi OS/Ubuntu for robot control, Arduino IDE for microcontroller programming.
- Python, C/C++ for AI algorithms, data processing, and hardware interfacing.

2.AI & Data Processing:

- [©] TensorFlow/PyTorch for deep learning-based contamination prediction.
- MATLAB/OpenCV for Fourier Transform analysis and image processing.

3.Robot Control & Automation:

- ° ROS for autonomous navigation and sensor integration.
- $^{\circ}$ Kalman Filter & PID controllers for noise reduction and precise movement control.

4. Communication Protocols:

- O MQTT for IoT-based communication, I2C/SPI/UART for sensor data exchange.
- O Wi-Fi/Bluetooth integration for real-time data transmission.

5.Data Storage & Cloud Integration:

- SQLite/MySQL for local data storage, Firebase/AWS IoT for remote monitoring.
- Cloud dashboards for real-time contamination alerts.

6. Visualization & User Interface:

- Dash/Plotly for real-time data visualization dashboards.
- Mobile/Web interfaces for remote robot monitoring and control.

7.Simulation & Testing:

- Gazebo for robot movement simulation in virtual environments.
- ^o Proteus for circuit simulation and testing before hardware implementation.

8. Version Control:

- Git/GitHub for code version control and team collaboration.
- Ensures project consistency across development phases.

Mathematical Models in Contamination Detection

- 1. Fourier Transform (Signal Analysis):
 - Purpose: Converts time-domain sensor data to the frequency domain to identify contamination patterns.
 - Equation:

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

- Application: Detects frequency signatures of VOCs (Volatile Organic Compounds) emitted by contaminated grains.
- 2. Kalman Filter (Noise Reduction):
 - Purpose: Filters out noise from real-time sensor data, providing accurate contamination readings.
 - Equations:
 - Prediction Step:

$$\hat{x}_{k|k-1} = A\hat{x}_{k-1|k-1} + Bu_k$$
 $P_{k|k-1} = AP_{k-1|k-1}A^T + Q$

• Update K_k Step: $P_{k|k-1}H^T(HP_{k|k-1}H^T+R)^{-1}$

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(z_k - H\hat{x}_{k|k-1})$$

Application: Smoothens noisy gas sensor data for precise detection.

MATHEMATICS CONT

- 3. Bayesian Probability Model (Contamination Prediction):
 - Purpose: Predicts the spread of mycotoxin contamination within the grain silo.
 - Equation:

$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

- Application: Estimates contamination risk in untested silo areas based on sensor readings.
- 4. PID Controller (Robot Navigation):
 - Purpose: Ensures stable and precise movement of the robot on the conveyor system.
 - Equation:

$$u(t) = K_p e(t) + K_i \int_0^t e(au) d au + K_d rac{de(t)}{dt}$$

- Application: Maintains accurate positioning for sensor data collection.
- 5. Data Fusion Algorithms:
 - Purpose: Combines data from multiple sensors for more accurate contamination detection.
 - Equation (Weighted Average Fusion):

$$X_f = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

• Application: Increases reliability of contamination detection by integrating gas, motion, and environmental data.

PHASES AND TIMELINE

Month 1: Research, Design & Development

- Conduct literature review on mycotoxin detection and robotic systems
- Design the robot and Overhead Conveyor System architecture
- Select sensors and hardware components
- Assemble hardware and integrate components
- Develop software algorithms (Fourier Transform, Kalman Filter, Bayesian Models) Deliverable:
 - System Architecture & Prototype

Month 2: Integration, Testing & Evaluation

- Calibrate sensors and fine-tune hardware for optimal performance
- Integrate AI models with real-time data processing
- Test the system in controlled grain storage environments
- Analyze data, optimize models, and evaluate performance
- Final adjustments and preparation for project presentation/publication

Deliverable:

Working Model & Research Paper

