Applying Multivariate Techniques to MRI Scans of Individuals With and Without Alzheimers

BY MICHAEL SEEBREGTS

Overview

01
Introduction

02
Description of Data

03 Methodology

04 Results

05 Conclusion

Introduction

- Neurodegenerative disease
- characterized by damage to the neurons in the brain
 - particularly in hippocampus
 - responsible for talking, walking and thinking
- Significant changes to the brain as it progresses
- Accounts for estimated 60%-80% of all dementia cases
- particularly affects those 65 and over
- incidence rates projected to double by 2050
- early prediction of Alzheimer's allows steps to be taken to minimize or stop progression

Age Range	65-74	75-84	85+
Incidence Rate	0.4%	3.2%	7.6%

Data Description

- Dataset comes from OASIS1 Opensource MRI Imaging
 - 400 individuals
 - Clinical Dementia Rating can be: No dementia = 0,
 mild dementia = 0.5, moderate dementia = 1 and
 severe dementia = 2
 - Missing observations removed
 - Grouping CDR = 2 with CDR = 1

Table 1: Table of number of indiviuals with different levels of CDR

CDR = NA	CDR = 0	CDR = 0.5	CDR = 1	$\mathrm{CDR} = 2$
176	130	67	25	2

Data Given

- 1: session ID
- 2: Age of individual
- 3: Male/ Female
- 4: Dominant Hand
- 5: Education Level
- 6: Social Economic Status
- 7: Clinical Dementia Rating
- 8: Mini Mental State Examination
- 9: Total Volume of the Skull
- 10: Normalization Factor
- 11: Total Brain Volume

FRONT SCAN
FOR INDIVIDUAL 58

SIDE SCAN
FOR INDIVIDUAL 58

TOP SCAN
FOR INDIVIDUAL 58

Methodology

Dimension Reduction

	Pro's	Con's
Locally Linear Embedding (LLE)	 Able to keep local structure of brain in lower dimensions Allows non linear relationships 	 Does not keep global structure of brain very impacted by choice of neighborhood size
Auto Encoder	 Capable of Non-Linear dimension reduction Especially useful for anomaly detection (reconstruction error will be high) Flexibility in model design 	 Too complex model leads to overfitting Too simple model leads to not enough variation being explained Large data requirements
Convolutional Auto Encoder (CAE)	 Filters allow extraction of information from pixels values, e.g. edge detection Capable of Non-Linear dimension reduction Flexibility in model design 	 Too complex model leads to overfitting Too simple model leads to not enough variation being explained Large data requirements

Methodology

Clustering

	Pro's	Con's
K-Means	 Popular due to speed and ability to differentiate brain tissue and diagnose neurodegenerative diseases 	 Requires you to predefine number of clusters Struggles with non-spherical data
Density Based Clustering (DBScan)	 Able to detect arbitrarily shaped clusters Doesn't need to predefine number of clusters 	 Sensitive to epsilon and minimum points chosen Assumes clusters have similar density

Results From LLE

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	72	28	13
1	44	34	13
2	14	5	1

Table 2: K-Means Clustering with 3 Clusters for LLE on Front MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	69	41	13
1	61	26	14

Table 3: K-Means Clustering with 2 Clusters for LLE on Front MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	52	30	13
1	78	37	14

Table 4: DBScan Clustering for LLE on Front MRI Scans

Cluster	CDR = 0	$\mathrm{CDR} = 0.5$	CDR = 1
0	40	23	6
1	20	11	10
2	70	33	11

Table 5: K-Means Clustering with 3 Clusters for LLE on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	80	47	19
1	50	20	8

Table 6: K-Means Clustering with 2 Clusters for LLE on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	59	23	12
1	71	44	15

Table 7: DBScan Clustering for LLE on Top MRI Scans

Cluster	CDR = 0	$\mathrm{CDR} = 0.5$	CDR = 1
0	40	27	8
1	59	20	6
2	31	20	13

Table 8: K-Means Clustering with 3 Clusters for LLE on Side MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	101	54	24
1	29	13	3

Table 9: K-Means Clustering with 2 Clusters for LLE on Side MRI Scans

Cluster	$\mathrm{CDR} = 0$	CDR = 0.5	$\mathrm{CDR}=1$
0	75	35	12
1	55	32	15

Table 10: DBScan Clustering for LLE on Side MRI Scans

Results From Auto Encoder

Cluster	CDR = 0	CDR = 0.5	$\mathrm{CDR}=1$
0	41	22	6
1	40	29	6
2	49	16	15

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	75	42	11
1	55	25	16

Table 11: K-Means Clustering with 3 Clusters for AutoEncoder on Front MRI Scans Table 12: K-Means Clustering with 2 Clusters for AutoEncoder on Front MRI Scans

Cluster	CDR = 0	CDR = 0.5	$\mathrm{CDR} = 1$
0	130	67	27

Table 13: DBScan Clustering for AutoEncoder on Front MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	52	29	18
1	68	25	5
2	10	13	4

Table 14: K-Means Clustering with 3 Clusters for AutoEncoder on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	95	41	11
1	35	26	16

Table 15: K-Means Clustering with 2 Clusters for AutoEncoder on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	$\mathrm{CDR} = 1$
0	0	2	0
1	130	65	27

Table 16: DBScan Clustering for AutoEncoder on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	43	28	13
1	72	28	7
2	15	11	7

Cluster	$\mathrm{CDR} = 0$	CDR = 0.5	$\mathrm{CDR} = 1$
0	89	37	11
1	41	30	16

Table 17: K-Means Clustering with 3 Clusters for AutoEncoder on Side MRI Scans Table 18: K-Means Clustering with 2 Clusters for AutoEncoder on Side MRI Scans

Cluster	$\mathrm{CDR} = 0$	CDR = 0.5	$\mathrm{CDR} = 1$
0	24	20	7
1	106	47	20

Table 19: DBScan Clustering for AutoEncoder on Side MRI Scans

Results From Convolutional AE

Cluster	CDR = 0	$\mathrm{CDR} = 0.5$	$\mathrm{CDR} = 1$
0	63	33	7
1	37	13	6
2	30	21	14

Table 20: K-Means Clustering with 3 Clusters for CAE on Front MRI Scans Table 21: K-Means Clustering with 2 Clusters for CAE on Front MRI Scans

Cluster	$\mathrm{CDR} = 0$	CDR = 0.5	$\mathrm{CDR} = 1$
0	35	23	12
1	95	44	15

Table 22: DBScan Clustering for CAE on Front MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	72	36	16
1	46	24	11
2	12	7	0

Table 23: K-Means Clustering with 3 Clusters for CAE on Top MRI Scans Table 24: K-Means Clustering with 2 Clusters for CAE on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	2	2	0
1	128	65	27

Table 25: DBScan Clustering for CAE on Top MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	55	17	6
1	49	29	9
2	26	21	12

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	62	22	6
1	68	45	21

Table 26: K-Means Clustering with 3 Clusters for CAE on Side MRI Scans Table 27: K-Means Clustering with 2 Clusters for CAE on Side MRI Scans

Cluster	CDR = 0	CDR = 0.5	CDR = 1
0	130	67	27

Table 28: DBScan Clustering for CAE on Side MRI Scans

Conclusion

- Neither K-Means nor DBScan was able to identify distinct clusters
- DBScan consistently predicted 2 clusters
- Methods in this report unable to confidently detect differences in brain structure for Alzheimer's and Non-Alzheimer's patients.
 - may be due to lack of data
 - may be due to inability to train sufficiently deep models due to processing power restrictions

