Td nº 1 Algébre 1

Exercice 1. Soient les quatre assertions suivantes :

$$(a)\exists x \in \mathbb{R} \forall y \in \mathbb{R} \quad x+y > 0 \quad (b)\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \quad x+y > 0$$
$$(c)\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}, x+y > 0 \quad (d)\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2 > x.$$

- 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
- 2. Donner leur négation.

Exercice 2. Soit f une application de \mathbb{R} dans \mathbb{R} . Nier, de la manière la plus précise possible, les énoncés qui suivent :

- 1. Pour tout $x \in \mathbb{R}$ $f(x) \leq 1$.
- 2. L'application f est croissante.
- 3. L'application f est croissante et positive.
- 4. Il existe $x \in \mathbb{R}^+$ tel que $f(x) \leq 0$.
- 5. Il existe $x \in \mathbb{R}$ tel que quel que soit $y \in \mathbb{R}$, si x < y alors f(x) > f(y).

On ne demande pas de démontrer quoi que ce soit, juste d'écrire le contraire d'un énoncé.

Exercice 3. Soit f, g deux fonctions de \mathbb{R} dans \mathbb{R} . Traduire en termes de quantificateurs les expressions suivantes :

- 1. f est majorée;
- 2. f est bornée;
- 3. f est paire;
- 4. f est impaire;
- 5. f ne s'annule jamais;
- 6. f est périodique;
- 7. f est croissante;
- 8. f est strictement décroissante;
- 9. f n'est pas la fonction nulle;
- 10. f n'a jamais les mêmes valeurs en deux points distcincts;
- 11. f atteint toutes les valeurs de \mathbb{N} ;
- 12. f est inférieure à g;
- 13. f n'est pas inférieure à g.

Exercice 4. Montrer par contraposition les assertions suivantes, E étant un ensemble :

1.
$$\forall A, B \in \mathcal{P}(E)(A \cap B = A \cup B) \Longrightarrow A = B$$
,

2.
$$\forall A, B, C \in \mathcal{P}(E)(A \cap B = A \cap C \ et \ A \cup B = A \cup C) \Longrightarrow B = C$$
.

Exercice 5 (Différences symétriques). Soit E un ensemble; A et B des sous-ensembles de E. On rappelle que $A \setminus B = A \cap B^c$ et on définit la différence symétrique de A et B par

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

- 1. Faire un dessin pour illustrer cette définition
- 2. Soient A, B, C, D des sous-ensembles de E. Prouver que

$$i) A^c \triangle B^c = A \triangle B$$

$$ii) \ A \triangle B = \emptyset \ ssi \ A = B$$

$$iii)$$
 Si $A \triangle B = A \triangle C$ alors $B = C$

iv) Si
$$A \triangle B = A \cap B$$
 alors $A = B = \emptyset$.

Exercice 6. Soient E et F deux ensembles, $f: E \longrightarrow F$. Démontrer que :

$$\forall A, B \in \mathcal{P}(E) (A \subset B) \Longrightarrow (f(A) \subset f(B)),$$

$$\forall A, B \in \mathcal{P}(E) f(A \cap B) \subset f(A) \cap f(B),$$

$$\forall A, B \in \mathcal{P}(E) f(A \cup B) = f(A) \cup f(B),$$

$$\forall A, B \in \mathcal{P}(F) f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B),$$

$$\forall A \in \mathcal{P}(F) \ f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

Exercice 7 (Injective, surjective, bijective). Dans chacun des cas suivants, l'application f est-elle injective, bijective, surjective?

$$f: \mathbb{R} \to \mathbb{R} \qquad \qquad f: \mathbb{R}^+ \to \mathbb{R}^+ \qquad \qquad f: \mathbb{R}^+ \to \mathbb{R} \qquad \qquad f: \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto x^2 \qquad \qquad x \mapsto x^2 \qquad \qquad x \mapsto x^2 \qquad \qquad x \mapsto x^2$$

$$f: \mathbb{N} \to \mathbb{N} \qquad \qquad f: \mathbb{Q}^* \to \mathbb{Q}^* \qquad \qquad g: \mathbb{R}^* \to \mathbb{R}$$
$$x \mapsto x^2 \qquad \qquad x \mapsto \frac{1}{x} \qquad \qquad x \mapsto \frac{1}{x}$$

$$f: \mathbb{N} \to \mathbb{N}$$
 $f: \mathbb{Z} \to \mathbb{Z}$ $f: \mathbb{N} \to \mathbb{N}$ $f: \mathbb{N} \to \mathbb{N}$
$$n \mapsto n+1 \qquad n \mapsto n+1 \qquad n \mapsto 2n \qquad n \mapsto \begin{cases} \frac{n}{2} & \text{si n pair} \\ \frac{n+1}{2} & \text{si n impair} \end{cases}$$

Exercice 8. Soit X un ensemble. Pour $f \in \mathcal{F}(X,X)$, on définit $f^0 = id$ et par récurrence pour $n \in \mathbb{N}$ $f^{n+1} = f^n \circ f$.

- 1. Montrer que $\forall n \in \mathbb{N} \ f^{n+1} = f \circ f^n$.
- 2. Montrer que si f est bijective alors $\forall n \in \mathbb{N} \ (f^{-1})^n = (f^n)^{-1}$.

Exercice 9 (Application caractéristique). On définit, pour E ensemble, et A partie de E, l'application caractéristique de A par :

$$\chi_A : E \longrightarrow \{0, 1\}$$

$$x \longmapsto \begin{cases} 1 & si \ x \in A \\ 0 & sinon \end{cases}$$

Montrer les propriétés suivantes :

1. L'application $\mathcal{P}(E) \longrightarrow \mathcal{F}(E, \{0, 1\})$ définie par $A \longmapsto \chi_A$ est bijective.

2.
$$A \subset B \Longrightarrow \chi_A \leq \chi_B$$

3.
$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$$

4.
$$\chi_{\bar{A}} = 1 - \chi_A$$

5.
$$\chi_{A \cap B} = \chi_A \chi_B$$

6.
$$\chi_{A \setminus B} = \chi_A (1 - \chi_B)$$

7.
$$\chi_{A\Delta B} = \chi_A + \chi_B - 2\chi_A \chi_B = (\chi_A - \chi_B)^2 = |\chi_A - \chi_B|$$

Exercice 10. Soient E, F et G trois ensembles. Soient deux applications $f: E \to F$ et $g: F \to G$.

- 1. Montrer que : $g \circ f$ surjective $\Rightarrow g$ surjective
- 2. Montrer que : $g \circ f$ injective $\Rightarrow f$ injective

Exercice 11. Soit E un ensemble et f une application injective de E dans E, c'est à dire une application vérifiant :

$$\forall x_1, x_2 \in E, \ f(x_1) = f(x_2) \iff x_1 = x_2.$$

On définit par récurrence sur $n \ge 1$ des applications f^n par

$$f^1 = f f^n = f \circ f^{n-1}$$

où $f \circ g$ désigne la fonction composé de g par f définie par

$$f \circ g(x) = f(g(x))$$

pour tout $x \in E$ et toute application $g: E \longrightarrow E$.

- 1) Montrer que pour tout $n \ge 1$ l'application f^n est injective.
- 2) Montrer que si f surjective, on a de même pour tout $n \ge 1$ l'application f^n est surjective.

Exercice 12. On définit sur \mathbb{R} la relation $x\mathcal{R}y$ si et seulement si $x^2 - y^2 = x - y$.

- 1) Montrer que \mathcal{R} est une relation d'équivalence.
- 2) Calculer la classe d'équivalence d'un élément x de \mathbb{R} . Combien y-a-t-il d'éléments dans cette classe ?

Exercice 13. Soit E un ensemble. On définit sur $\mathcal{P}(E)$, l'ensemble des parties de E, la relation suivante :

$$ARB \ si \ A = B \ ou \ A = \bar{B}.$$

où \bar{B} est le complémentaire de B (dans E). Démontrer que R est une relation d'équivalence.

Exercice 14. Soit E un ensemble et $A \in \mathcal{P}(E)$. Deux parties B et C de E sont en relation, noté BRC, si $B\Delta C \subset A$.

- 1) Montrer que \mathcal{R} est une relation d'équivalence.
- 2) Soit $B \in \mathcal{P}(E)$. Montrer que la classe de B est $\{(B \cap A^c) \cup K; K \in \mathcal{P}(A)\}$.

Exercice 15. Effectuer les divisions euclidiennes de

$$3X^5 + 4X^2 + 1$$
 par $X^2 + 2X + 3$,

$$3X^5 + 2X^4 - X^2 + 1$$
 par $X^3 + X + 2$,

$$X^4 - X^3 + X - 2$$
 par $X^2 - 2X + 4$.

Exercice 16. Effectuer la division selon les puissances croissantes de :

$$X^4 + X^3 - 2X + 1$$
 par $X^2 + X + 1$ à l'ordre 2.

Exercice 17. Calculer pqcd(P,Q) lorsque:

1.
$$P = X^3 - X^2 - X - 2$$
 et $Q = X^5 - 2X^4 + X^2 - X - 2$,

2.
$$P = X^4 + X^3 - 2X + 1$$
 et $Q = X^3 + X + 1$.

Exercice 18. Dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$, décomposer les polynomes suivants en facteurs irréductibles.

- 1. $X^3 3$.
- 2. $X^{12} 1$.

1. Décomposer $\frac{X^3-3X^2+X-4}{X-1}$ en éléments simples sur \mathbb{R} . Exercice 19.

- 2. Décomposer $\frac{2X^3+X^2-X+1}{X^2-3X+2}$ en éléments simples sur \mathbb{R} .
- 3. Décomposer $\frac{2X^3+X^2-X+1}{X^2-2X+1}$ en éléments simples sur \mathbb{R} .
- 4. Décomposer $\frac{X^4+2X^2+1}{X^2-1}$ en éléments simples sur \mathbb{R} .
- 5. Décomposer $\frac{X}{X^2-4}$ en éléments simples sur \mathbb{R} .
- 6. Décomposer $\frac{X^5+X^4+1}{X^3-X}$ en éléments simples sur \mathbb{R} .
- 7. Décomposer $\frac{X^5+X^4+1}{X(X-1)^4}$ en éléments simples sur \mathbb{R} .
- 8. Décomposer $\frac{X^5+X^4+1}{(X-1)^3(X+1)^2}$ en éléments simples sur \mathbb{R} .
- 9. Décomposer $\frac{X^7+3}{(X^2+X+2)^3}$ en éléments simples sur \mathbb{R} .
- 10. Décomposer $\frac{(3-2i)X-5+3i}{X^2+iX+2}$ en éléments simples sur \mathbb{C} .
- 11. Décomposer $\frac{X+i}{X^2+i}$ en éléments simples sur \mathbb{C} .
- 12. Décomposer $\frac{X}{(X+i)^2}$ en éléments simples sur \mathbb{C} .
- 13. Décomposer $\frac{X^2+1}{X^4+1}$ en éléments simples sur \mathbb{R} et sur \mathbb{C} .
- 14. Décomposer $\frac{X}{X^4+1}$ en éléments simples sur $\mathbb R$ et sur $\mathbb C$.
- 15. Décomposer $\frac{X^2+X+1}{X^4+1}$ en éléments simples sur $\mathbb R$ et sur $\mathbb C$. 16. Décomposer $\frac{X^5+X+1}{X^4-1}$ en éléments simples sur $\mathbb R$ et sur $\mathbb C$.
- 17. Décomposer $\frac{X^5+X+1}{X^6-1}$ en éléments simples sur \mathbb{R} et sur \mathbb{C} .
- 18. Décomposer $\frac{X^3-2}{X^4(X^2+X+1)^2}$ en éléments simples sur $\mathbb R$ et sur $\mathbb C$.
- 19. Décomposer $\frac{X}{(X^2+1)(X^2+4)}$ en éléments simples sur \mathbb{R} et sur \mathbb{C} .
- 20. Décomposer $\frac{X^2-3}{(X^2+1)(X^2+4)}$ en éléments simples sur \mathbb{R} et sur \mathbb{C} .