WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016

MATEMATYKA

Informacje dla ucznia

- 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 8 stron (zadania 1-13).
- 3. Czytaj uważnie wszystkie teksty i zadania.
- **4.** Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem ⊗ i zaznacz inną odpowiedź znakiem "X".
- **6.** W zadaniach typu PRAWDA/FAŁSZ oceń, czy podane zdania są prawdziwe, czy fałszywe. Zaznacz właściwą odpowiedź.
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 9. Podczas rozwiązywania zadań nie wolno Ci korzystać z kalkulatora.

KOD	UCZNIA
-----	---------------

Etap: wojewódzki

Czas pracy: 120 minut

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	Razem
Liczba punktów możliwych do zdobycia	20	3	3	3	3	3	3	3	3	4	4	4	4	60
Liczba punktów uzyskanych przez uczestnika konkursu														

Liczba punktów umożliwiająca uzyskanie tytułu laureata: 54

Podpisy członków komisji:

- 1. Przewodniczący
- 2. Członek komisji sprawdzający pracę
- 3. Członek komisji weryfikujący pracę

Zadanie 1. (0-20)

Rozwiąż krzyżówkę. Hasło w zacieniowanych kratkach, to miejsce spotkań znanych polskich matematyków okresu międzywojennego. Hasło nie jest oceniane, ale może zweryfikować Twoje odpowiedzi.

- 1) Czworokat posiadający 4 osie symetrii.
- 2) Jeden z dwóch równoległych boków trapezu.
- 3) Bryła obrotowa powstała na skutek obrotu prostokąta wokół jednego z jego boków.
- 4) Liczba 8 w ułamku, który powstaje po skróceniu liczby 0,125 zapisanej w postaci ułamka zwykłego.
- 5) Bryła, która powstaje w wyniku obrotu koła wokół jego średnicy.
- 6) Jeden z dwóch wielokątów, które powstają po przecięciu trójkąta prostą równoległą do jego podstawy, nieprzechodzącą przez wierzchołek tego trójkąta.
- 7) W kwadracie o boku $a\sqrt{10}$ długość tego odcinka wynosi $2a\sqrt{5}$.
- 8) Najdłuższa cięciwa okręgu.
- 9) Milion gramów.

- Bryła obrotowa, której objętość stanowi
 1/3 objętości walca o takiej samej podstawie i wysokości.
- 11) Prosta, której każdy punkt odpowiada pewnej liczbie rzeczywistej.
- 12) Przyporządkowanie każdemu elementowi jednego zbioru dokładnie jednego elementu drugiego zbioru.
- 13) Średnia arytmetyczna dwóch liczb przeciwnych.
- 14) Słownie wynik dzielenia liczby *XL* przez *X*.
- 15) Stosunek drogi do czasu w ruchu jednostajnym.
- 16) 0,01 hektara.
- 17) Działanie zapisywane w postaci ułamka.
- 18) Geometryczna interpretacja funkcji.
- 19) Równość dwóch wyrażeń algebraicznych.
- 20) Odcinek łączący wierzchołek stożka z punktem na okręgu jego podstawy.

W zadaniach od 2. do 9. oceń, czy podane zdania są prawdziwe, czy falszywe. Zaznacz właściwą odpowiedź.								
Zadanie 2. (0-3) W trójkąt prostokątny <i>ABC</i> wpisano okrąg o środku <i>S</i> . Kąt <i>CAB</i> tego trójkąta jest kątem prostym.								
I.	Kat <i>CSB</i> ma miarę 135°.	□ PRAWDA	□ FAŁSZ					
II.	Kąt <i>CSA</i> ma miarę 135°.	□ PRAWDA	□ FAŁSZ					
III.	Nie można obliczyć miary kąta ASB.	\square PRAWDA	□ FAŁSZ					
	anie 3. (0-3) oznacza sumę cyfr liczby naturalnej	<i>n</i> .						
I.	4 jest najmniejszą liczbą n taką, że $S(n)$	n = 4.						
		□ PRAWDA	□ FAŁSZ					
II.	Nie istnieje największa liczba <i>n</i> taka,	$\dot{z}e\ S(n)=5.$						
		□ PRAWDA	□ FAŁSZ					
III.	$S(S(20002^2)) = 7.$							
		\square PRAWDA	□ FAŁSZ					
Zadanie 4. (0-3) Spośród 24 uczniów pewnej klasy 16 lubi pływać, 18 lubi słuchać muzyki, a 20 lubi jeździć na rowerze. Jest co najwyżej								
I.	 I. 4 takich uczniów, którzy nie lubią żadnej z tych czynności. □ PRAWDA □ FAŁSZ 							
II.	20 takich uczniów, którzy lubią przyn	ajmniej jedną z t □ PRAWDA	•					
III.	15 takich uczniów, którzy lubią wszys	stkie te czynności	i.					
		□ PRAWDA	□ FAŁSZ					
Zad	anie 5. (0-3)							
Jeżeli n jest liczbą naturalną podzielną przez 9, to każda liczba postaci								
I.	2 <i>n</i> jest podzielna przez 6 i 18.	□ PRAWDA	□ FAŁSZ					
	n+1 jest podzielna przez 10.	□ PRAWDA	□ FAŁSZ					
	3n-1 jest liczbą nieparzystą.	□ PRAWDA	□ FAŁSZ					
Zadanie 6. (0-3)								
W pewnym trójkącie jeden z boków ma długość $8+8\sqrt{3}$, a kąty do niego								
przyległe mają miary 45° i 30°.								
	Obwód tego trójkąta wynosi $24 + 12$	$\sqrt{3} + 4\sqrt{2}$. \square PRAWDA	□ FAŁSZ					
II.	Pole tego trójkąta wynosi $32(1+\sqrt{3})$.	□ PRAWDA	□ FAŁSZ					
III.	Jedna z wysokości tego trójkąta ma dł	tugość $4 + 4\sqrt{3}$. \Box PRAWDA	□ FAŁSZ					

Równanie (m-3n+1)x-2m+4n-1=0

- I. ma jedno rozwiazanie, gdy m = 0 i n = 0.
 - □ PRAWDA □ FAŁSZ
- II. nie ma rozwiązań, gdy m = 7 i n = 3.
- □ PRAWDA □ FAŁSZ
- III. ma nieskończoną liczbę rozwiązań, gdy $m = \frac{1}{2}$ i $n = \frac{1}{2}$.
 - □ PRAWDA □ FAŁSZ

Zadanie 8. (0-3)

Stożek S przecięto w połowie jego wysokości płaszczyzną równoległą do podstawy. Otrzymano w ten sposób dwie nowe bryły, w tym stożek S'.

I. Tworząca stożka S' jest 4 razy krótsza niż tworząca stożka S.

□ PRAWDA □ FAŁSZ

II. Pole powierzchni bocznej stożka S' stanowi 25% pola powierzchni bocznej stożka *S*.

□ PRAWDA □ FAŁSZ

III. Stosunek objętości otrzymanych brył wynosi 1:7.

□ PRAWDA □ FAŁSZ

Zadanie 9. (0-3)

Na rysunku przedstawiono wykres funkcji f.

I. Zbiorem wartości funkcji f jest zbiór wszystkich liczb y spełniających warunek: -2 < y < 4.

□ PRAWDA □ FAŁSZ

II. Dziedziną funkcji f jest zbiór wszystkich liczb x spełniających warunek: $-4 \le x \le 6$.

□ PRAWDA □ FAŁSZ

III. Funkcja jest malejąca tylko dla liczb x spełniających warunek: $1 \le x \le 4$.

□ PRAWDA □ FAŁSZ

Zadanie 10. (0-4)

BRUDNOPIS

Środkowa trójkąta, to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku. Środkowe przecinają się w jednym punkcie, który dzieli każdą z nich w stosunku 2: 1, licząc od wierzchołka trójkąta. Oblicz długości środkowych trójkąta o bokach długości: 10, 10, 12.

Zadanie 11. (0-4)

BRUDNOPIS

W dwóch urnach znajdują się kule białe i czarne. W pierwszej urnie jest 15 kul, w tym 5 białych, w drugiej – 25 kul, w tym 18 czarnych. Do obu urn należy dołożyć w sumie 16 białych kul. Oblicz, po ile kul należy dołożyć do każdej urny, aby prawdopodobieństwa wylosowania kuli białej z każdej nich były równe?

Zadanie 12. (0-4)

BRUDNOPIS

Do sklepu dostarczono 18 skrzynek z owocami. W każdej skrzynce była taka sama liczba owoców. Z części skrzynek sprzedano połowę owoców, z części $\frac{1}{3}$, a w części skrzynek pozostały wszystkie owoce. W sumie sprzedano $\frac{1}{9}$ liczby dostarczonych owoców. Oblicz, w ilu skrzynkach pozostały wszystkie owoce.

Zadanie 13. (0-4)

BRUDNOPIS

Dany jest trójkąt równoramienny ABC o podstawie AB i kącie przy podstawie równym 50°. Wewnątrz trójkąta obrano punkt K taki, że $|\angle KAB| = 30$ ° i $|\angle KBA| = 10$ °. Na półprostej AK wybrano taki punkt L, że $|\angle ABL| = 30$ °. Uzasadnij, że trójkąty BCL i BKL są przystające.