ooked Example 1	4. CPEZSP, VALI FAZA, Instanctors Rahul BladamP
Q1. Find the discrete-	even and odd components of the following fine Signal?
	$Y[n] = \begin{cases} 3+n & 0 \leq n \leq 3 \\ 0, & 0 \neq \text{there is e} \end{cases}$
	L 0, 0 theresise
Solution	Xe [n] = 0.5 (x[n] + x[-n])
	fr n=0 xe [0] = 0.5 (x[0] + x[0]) = x(0] = 3+n =3
C.	= %(6] = 3 + % = 3
Fig.	3>n>1 ye[n] = 0.5 (x[n] + x[-n])
	= 0.5 (xCnI) - redices
	= 1.5 + 0.5n (otherwise)
fis -	-1>n>-3 ne (n)= 0.5 (x[n]+x[-n])
	as belone negetive
	$= 0.5 \times [-n]$ $= 0.5(3-n) = 1.5-0.5n$
	xe(n) =0, otherwise

Thus,
$$x \in [n] = \begin{cases} 1.5 - 0.5N, -1 > N^2 - 3 \\ 1.5 + 0.5N, & 3 > 1 > 1 \end{cases}$$

Odd Components

 $x_0 [n] = 0.5 (x_0] - x_0 - x_0 = 0$

On therwise

$$\begin{cases} x_0 [n] = 0.5 (x_0] - x_0 - x_0 = 0 \end{cases}$$

And $x_0 [n] = 0.5 (x_0] - x_0 = 0$

And $x_0 [n] = 0.5 (x_0] - x_0 - x_0 = 0$

And $x_0 [n] = 0.5 (x_0) - x_0 = 0$

Considering the second of the secon

Henu, 10 [N] = Q2. A discrete time signal is shown below: Sketch (a) x[3n] (5) x [n] u[3-n] M3n) Only every third sample appers. Solution $\{0\}$.: $\{u[3-n]=u[-(n-3)]=\{0, m>3\}$

[-1] \times [-1] \times [-1] \times [-1] [-0 for 1 1>3 Sketch will look Same. Hence