ECE216: Digital Electronics Laboratory

Exp -7

Table of Content

	Task	Title	Page No.
1	Experiment 1	Understanding the combinational logic by implementing the	1
		boolean function using basic logic gates	
1	Experiment 2	To design and analyze the circuit for Full adder and Full	6
		subtractor using Logic Gates.	
	Practical work	Practical work evaluation based on Experiment 1 and	9
	evaluation 1 CA/	Experiment 2.	
سا	Experiment 3	Understanding the combinational logic by implementing the	12
		boolean function using multiplexer	
	Experiment 4	Understanding the combinational logic by implementing the	16
		boolean function using decoder	
	Practical work	Practical work evaluation based on Experiment 3 and	20
	evaluation 2	Experiment 4.	
A	Project evaluation 1	Design and Implementation of application-based projects-1	23
•	wy		

	Experiment 5	Understanding the sequential logic by implementing the flip	26
		flop with the help of logic gates	
	Experiment 6	Understanding the sequential logic by implementing the	28
		counter with flip flop.	
	Practical work	Practical work evaluation based on Experiment 5 and	31
	evaluation 3	Experiment 6.	
1	Experiment 7	To visualize the output of decade counter on seven segment.	34
		display Asyn-	
	Experiment 8	To implement and simulate combinational and sequential	37
		circuit using DSCH/Proteus.	
	Practical work	Practical work evaluation based on Experiment 7 and	41
	evaluation 4	Experiment 8.	
	Project evaluation 2	Design and Implementation of application-based projects-2	44

A Decode Counter (MOD 10) Q: How many ff reguín Dec. numbe Counter to melse er deleake d 9000 000 00/0 0/00 0/0/ 0/1 000 00 1 96 FFD8B

A Seven Segment Plopley

Type of 7-Seg. Actic loss
A Common Anode (Actic loss)
A Common (Alada (Actic ligh)

ATC 7447 (7-Sg dans IC)

Ach lan

MSB

#IC7493

NC! Not connected

4. Procedure:

Pin configuration of ICs:

HIS MODIO

MOD 9 County

MOD 8

MOD 7

MOD 7

MOD 6

MOD 11

- mop 5