Total No. of Questions : 8]	9	SEAT No. :	
P-9700		[Total No. of Pages	: 4

[6179]-229A S.E. (E & TC/Electronics) DATA STRUCTURES

(2019 Pattern) (Semester - III) (204184)

Time: 2½ Hours] [Max. Marks: 70 Instructions to the condidates:

- 1) Answer QI or Q2, Q3 or Q4, Q5 or Q6 and Q7 or Q8.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- 4) Near diagrams must be drawn wherever necessary.
- Q1) a) Write a 'C' function to Push and POP elements from a stack of characters using an array.[6]
 - b) What are the disadvantages of the linear queue? Suggest a suitable method to overcome them. [6]
 - c) Convert the given infix expression to a postfix expression using stack : (a^b)*c-d/d [5]

Note: ^=Exponent operator.

OR

Q2) a) Identify the expression and convert them into the remaining two forms:

i)
$$AB + C * DE - FG + + $$$

ii) -A/B * C \$DE

Note \$ = Exponent operator

- b) Write a 'C' function to insert and delete element from queue using an array. [6]
- c) Define Queue. What are conditions for 'Queue empty' and 'Queue full' when queue is implemented using Array? Explain. [5]

[6]

Q3) a	Explain traversal operations in a singly linked list. [6]
b)	A doubly linked list with numbers to be created. Write node structure and
	a 'C' function to create a double linked list. [6]
c)	Draw and explain the circular anked list. State the limitations of a singly
	linked list. [6]
	OR
Q4) a)	Write limitations of arrays over linked list? Represent the following
	polynomial using a singly linked list. [6]
	$23x^9 + 18x^7 + 41x^6 + 16x^4 + 3$
b)	What is a singly linked list? Write C function for inserting a node at a given
	location into a singly linked list. [6]
c)	Write a'c function for Inserting a number at the front of the circular linked list. [6]
	iniked hist.
(05) a)	Write are cursive 'C' function for inorder and preorder traversal of Binary
Q 5) a)	Search Tree. [6]
b) \	Explain with suitable example how binary tree can be represented using:
9)	i) Array
	ii) Linked List
	[6]
c)	Write an algorithm to insert an element in a binary search tree implemented
,	using linked representation. [5]
	OR
Q6) a)	Construct the Binary Search Tree (BST) from the following data: [6]
	5, 2, 8, 4, 1, 9, 7
	Also show preorder, postorder and inorder traversal for the same.
b)	Explain basic concept of AVL tree. Also explain four rotations in AVL tree.
	[6]
c)	Define the following terms with respect to Trees [5]
	i) Root
	ii) Subtree
	iii) Level of node
	iv) Depth of Tree
	v) Siblings
	iii) Level of node iv) Depth of Tree

Q7) a) Represent the following graph using the adjacency matrix and adjacency list.

Fig. 1

b) Define indegree and outdegree of a vertex in graph. Find the indegree and outdegree of following graph. [6]

Fig. 2

c) Define with an examples.

[6]

- i) Undirected Graph
- ii) Directed Graph
- iii) Weighted Graph

OR

Q8) a) Find out Minimum spanning Tree of the following graph (figure 3) using Kruskal's algorithm.[6]

Fig. 3

b) Explain with suitable example, DFS and BFS traversal of a graph. [6]

Find the shortest path from node 'a'to all nodes in the graph shown in c) fig. 4 using Dijkstra's algorithm. **[6]** 100 10 30 е 10 60

[6179]-229A