

Searches for invisible decays of the Higgs boson with the CMS detector

P. Dunne - Imperial College London on behalf of the CMS Collaboration

My thesis outline

- Theory
- Detector & physics objects
- Statistics
- CMS Prompt Higgs to invisible search
- CMS Parked Higgs to invisible search
- Combination with other searches
- Dark matter interpretrations
- Run II

Theory: Why look for invisibly decaying Higgs bosons?

- Introduce Standard Model Higgs mechanism
- Introduce Dark Matter
- Discuss why Higgs is a good place to look for dark matter
- Give model examples e.g. EFT, simplified models
- Discuss Higgs production and why VBF

Why look for invisibly decaying Higgs bosons?

- ▶ SM compatible 125 GeV Higgs boson observed by ATLAS and CMS
 - ▶ SM compatible does not mean BSM incompatible

- Many BSM theories predict Higgs to invisible, e.g. SUSY
 - ► Often provide good DM candidates

Detector & physics objects

▶ LHC overview, introduction to CMS subsystems and objects

Invisible signatures at CMS

- Which signatures do we see at CMS?
- ▶ Indirect: Look for effect of BSM Higgs decays on Higgs total width
- ▶ Direct: Use channels where the Higgs recoils against a visible system

Statistics

- A lot of my work has involved limit setting
- Short chapter with theory of CLs, nuisance parameter treatment etc.

CMS VBF History

- CMS ran two sets of triggers in 2012:
 - prompt: reconstructed immediately
 - parked: looser thresholds, reconstructed in long shutdown
- CMS published result using full run I prompt dataset
 - ▶ I did the limit setting and worked on the cross-check
- ► A CMS PAS was produced using the full run I parked dataset
 - ▶ I was the main analysis contact
 - ► This will be the main piece of work in my thesis

Prompt VBF

- Introduce analysis focusing on my work
- Background estimation, systematics, limits

Parked data VBF analysis

- ▶ I was the main contact for this analysis and it will be the main piece of work in my thesis
- Analysis reoptimised using new variables
- Target significant MET away from jets
- Trigger efficiency remeasured
- 3D characterisation to enable trigger turn on to be used
- Systematics and background estimations improved

Parked Triggers

- Parked triggers present for runs B, C and D
- Parked trigger cuts are looser so prompt trigger not used where parked trigger is available
- Two different triggers, one in runs B and C one in run D
- Looser thresholds allowed us to look at new regions of phase space and different analysis techniques

HLT

Run period	MET cut	dijet <i>p</i> ⊤ cut	dijet mass cut
А	METnoMuons>65 GeV	DiPFJet40	MJJ800
B&C	N/A	DiJet35	MJJ700
D	N/A	DiJet30	MJJ700

Trigger efficiency

- Variables used in triggers are highly correlated
- In prompt analysis correlations neglected
- cut tighter to ensure trigger is efficient
- For the parked analysis fit trigger turn on in each bin of a 2D grid
- Cuts can then be looser

VBF: selection

- Select events with two VBF jets + MET:
 - lacktriangleright no colour connection between jets means large η gap
- QCD background difficult to model:
 - ▶ use tight selection to remove
- ▶ Main backgrounds: $W \rightarrow \ell \nu/Z \rightarrow \nu \nu + \text{jets}$, QCD, top
 - Veto events with leptons present

VBF: background estimation

All major backgrounds have data driven normalisation

$$N_{bkg}^{sig} = rac{(N_{obs}^{control} - N_{other \, bkgs}^{control})}{N_{MC}^{control}} \cdot N_{MC}^{sig}$$

- Most backgrounds from missed lepton or misreconstructed jet
 - use control region where object is reconstructed

$$W \to \mu \nu$$
 control region
19.2 fb (8 TeV)
Data
 $V \to \mu \nu$ CMS-PAS-HIG-14-038
 $V \to \mu \nu$ CMS-PAS-HIG-14-038

 $Z \rightarrow \nu \nu$ control region

VBF results

Total background	$439.7 \pm 41.0(stat.) \pm 55.8(syst.)$		
VBF H(inv.) assuming B(H→inv)=100%	$273.4 \pm 31.2 (syst.)$		
ggF H(inv.) assuming B(H \rightarrow inv)=100%	$22.6 \pm 15.6 (syst.)$		
Observed data	508		

Compatible with the background hypothesis

19.2 fb⁻¹ (8 TeV)

Signal (x1)

 $gg \rightarrow H(x1)$

→ Data

Signal region

Events 100

60

40 20

Data/Bkg 2.02 2.03 0.5 0.5

VBF limits

- \blacktriangleright Perform a single bin counting experiment using CL_S method
- ▶ Observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for $m_H = 125$ GeV is 57(40)%

Combined Results

- ▶ I was responsible for combining the VBF search results with those in the ZH channels
- ▶ Separate limits on $\sigma \times B(H \rightarrow inv)$ are combined at 125 GeV
- ▶ Assume SM production cross-sections to interpret as a limit on $B(H\rightarrow inv)$

Prompt

Parked

Dark matter interpretations

- Completed: Parked result has been interpreted in a scalar EFT
- In progress: Replicating analysis in Delphes framework for phenomenology paper with other models

Run II

- Currently working on VBF Higgs to invisible Run II analysis
- Contribution to the thesis will depend on progress
- Plans:
 - ▶ Add γ+jets control region to improve Z estimation
 - Reoptimise analysis for new kinematics and trigger

Conclusions

- ► The thesis will focus on the parked data VBF Higgs to invisible analysis
- The majority of work is complete
- Items still in progress are:
 - Further work on interpretations
 - Aiming for a phenomenology paper by end of year
 - Run II
 - Dependent on progress
- On track to submit before funding runs out in March 2016

Backup

ZH: summary

- ▶ Search also performed in $ZH \to \ell\ell inv$ and $ZH \to b\bar{b}inv$ channels at CMS
- ▶ Observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for m_H =125 GeV is 81(83)%

References

- CMS Higgs combination CMS-HIG-14-009
- CMS VBF Higgs to invisible parked data PAS -CMS-PAS-HIG-14-038
- ► CMS Higgs to invisible paper Eur. Phys. J. C 74 (2014) 2980

Comparison to recent ATLAS result

- We see an excess where ATLAS see a deficit:
- observed can move the post-fit expected limit
- were we to see a similar deficit our expected limit improves by ${\sim}10\%$
- ATLAS use a single data driven normalisation factor for all V+jets backgrounds
- statistical uncertainty on the factor is therefore lower
- reducing our Z o
 u
 u statistical uncertainty to the level we see in $W o \mu
 u$ our expected limit improves by $\sim \! \! 10\%$

W+jets

- $W \to e/\mu \nu$ control region formed by swapping lepton veto for e/μ requirement
- W o au
 u control region formed by requiring a hadronic tau
- not many events with hadronic taus, need to loosen requirements
- assign a 20% systematic to W o au
 u to compensate

$$N_{bkg}^{sig} = (N_{obs}^{control} - N_{other \ bkgs}^{control}) \cdot \frac{N_{MC}^{sig}}{N_{MC}^{control}}$$

$$W \rightarrow \mu \nu \quad 102.5 \pm 6.2 \pm 11.7$$

$$W \rightarrow e \nu \quad 57.9 \pm 7.4 \pm 7.7$$

$$W \rightarrow \tau \nu \quad 94.6 \pm 13.1 \pm 23.8$$

Z+jets

- ▶ Use $Z \rightarrow \mu\mu$ MC ignoring muons to emulate $Z \rightarrow \nu\nu$
- Correct for difference in cross-section
- Efficiency correction takes into account EWK vs QCD difference

$$N_S^{Z \to \nu\nu} = \left(N_C^{Data} - N_C^{bkg}\right) \cdot \frac{\sigma(Z \to \nu\nu)}{\sigma(Z \to \mu\mu)} \cdot \frac{\epsilon_\zeta^{ZMC}}{\epsilon_\zeta^{ZMC}}$$

$$Z \to \nu\nu \mid 158.1 \pm 37.3 \pm 21.2$$

QCD

- ► Take shape from region with third jet near MET
- Normalise in sideband region
- normalisation highly selection dependent
- parameterise as function of selection and extrapolate
- ▶ Final estimate 17 ± 14

Other backgrounds

► Taken from MC

top	5.5 ± 1.8
VV	3.9 ± 0.7

$Z(\ell\ell)H$ outline

Signal Topology and Selection

- ► Two same flavour opposite sign electrons or muons
- $p_T >$ 20 GeV, $|M_{\ell\ell} m_Z| <$ 15 GeV
- Large MET
- MET > 120 GeV

Backgrounds and Rejection Cuts

- ► $ZZ(\ell\ell\nu\nu)$ +jets, $WW(\ell\nu\ell\nu)$ +jets
- ▶ WZ($\ell\nu\ell\ell$)+jets
- Veto events with >3 leptons, $p_T >$ 10 GeV
- ightharpoonup $Z(\ell\ell)+jets$
- MET cut, MET-\(\ell\) balance requirement
- ▶ $t\bar{t}$, single top, W($\ell\nu$), QCD
- <1 jet, p_T>30 GeV
- no b-tagged jets, $p_T > 30 \text{ GeV}$

$Z(\ell\ell)H$ background estimation

$ZZ(\ell\ell\nu\nu)$ +jets and $WZ(\ell\nu\ell\ell$ +jets)

Estimated from MC prediction

$Z(\ell\ell)+jets$

- ► Estimated from photon + jets events
- Photon p_T spectrum reweighted to match Z spectrum

$\overline{\text{WW}(\ell\nu\ell\nu)}$ +jets, single top, $t\bar{t}$, $Z(\tau\tau)$

- **E**stimated from $e\mu$ events and Z peak sidebands:
 - $m_{\ell\ell}$ 40-70 and 110-200 GeV
- $N_{\ell\ell}^{sig} = N_{e\mu}^{sig} \cdot N_{\ell\ell}^{SB}/N_{e\mu}^{SB}$

$Z(\ell\ell)H$ results

=(00)111000100					
	Process	$\sqrt{s} = 7 \text{TeV}$		$\sqrt{s} = 8 \text{TeV}$	
		ee	$\mu\mu$	ee	$\mu\mu$
0 jets	Total backgrounds	8.7 ± 6.5	11.0 ± 3.3	37.4 ± 3.7	51.6 ± 4.8
	ZH(125)	2.3 ± 0.2	3.1 ± 0.3	10.3 ± 1.2	14.7 ± 1.5
	Observed data	9	10	36	46
	S/B for B(H→inv) 100%	0.26	0.28	0.28	0.24
1 jet	Total backgrounds	2.6 ± 0.7	2.8 ± 0.9	10.6 ± 4.2	13.8 ± 5.8
	ZH(125)	0.4 ± 0.1	0.5 ± 0.1	1.6 ± 0.2	2.5 ± 0.3
	Observed data	1	4	11	17
	S/B for B(H→inv) 100%	0.15	0.18	0.15	0.18

- lackbox Limits obtained from a 2D fit to m_T and $\Delta\phi(\ell\ell)$
- 1D fit to m_T for 7 TeV data
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for m_H =125 GeV is 83(86)%

Z(bb)H outline and backgrounds

Signal Topology and Selection

- ► Two b-tagged jets:
 - $p_T > 30/60$ GeV, $p_{Tjj} > 100-130$ GeV
- ► Three bins in MET
- 100-130, 130-170, > 170 GeV

Backgrounds and Rejection Cuts

- ► $Z(\nu\nu)$ +jets, $W(\ell\nu)$ +jets
- ► ZZ(ννb̄b)
- WZ($\ell \nu b \bar{b}$), $t \bar{t}$, single top
- Veto events with leptons, $p_T\!>\!15~{\rm GeV}$
- ▶ QCD
- MET quality requirements

Background estimation - data normalised MC

- Normalisation from a simultaneous fit in seven control regions:
 - Z+jets (0,1,2 b-jets), W+jets (0,1,2 b-jets), tt

$Z(b\bar{b})H$ results

Process	High $p_T(V)$	Intermediate $p_T(V)$	Low $p_T(V)$
Total backgrounds	181.3 ± 9.8	64.8 ± 4.1	40.5 ± 4.1
$Z(b\bar{b})H(inv)$	12.6 ± 1.1	3.6 ± 0.3	1.6 ± 0.1
Observed data	204	61	38

- Multivariate analysis (BDT):
- performed for each mass hypothesis and boost region
- Limits from a fit to the BDT output distribution
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \to inv)$ for $m_H{=}125$ GeV is 182(199)%

