Implementing the Core Chase for the Description Logic ALC

Maël Abily

29 avril 2021

1 Introduction

Definition 1. We define a first-order language as a set of constants (often noted a, b, c, c_1, \ldots), predicates (P, Q, R, P_1, \ldots) and variables (x, y, x_1, \ldots) .

A <u>term</u> is a variable or a constant (often noted $t,t_1,...$). We note $\underline{Ar(P)}$ the arity of P.

 $P(t_1,...,t_n)$ is an <u>atom</u>.

A fact is a variable-free atom.

A <u>factbase</u> $F := \exists x_1, ..., x_n. P_1(t_1^1, ..., t_{k_1}^1) \land ... \land P_m(t_1^m, ..., t_{k_m}^m)$ is a existentially quantified conjunctions of atoms which is closed (it means that every variable of F is quantified). $\underline{var(F)}$ (respectively $\underline{cst(F)}$ and $\underline{term(F)}$ is the set of variables (resp. constants and \underline{terms}) that occur in F.

Remark We will often see factbases as sets of atoms. For example, the factbase $\exists x, x_1, x_2, x_3. P(x) \land Q(x, a) \land R(x_1, x_2, x_3, b)$ can be represented by $\{P(x), Q(x, a), R(x_1, x_2, x_3, b)\}.$

Definition 2. A <u>substitution</u> $\sigma: X \to Terms$ is a function where X is a set of variables. For example $\{x \mapsto z, y \mapsto a\}$ is a substitution from $\{x,y\}$ to Terms. A <u>homomorphism</u> from F to F' is a substitution $\sigma: var(F) \to term(F')$ where $\sigma(F) \subseteq F'$

Proposal 1. A factbase F entails a factbase F' (often noted $F \to F'$) \Leftrightarrow there exists a homomorphism from F' to F.

For example, $F = \{P(b,a), Q(x)\}$ entails $F' = \{P(x,a)\}$ thanks to the homomorphism $\{x \mapsto b\}$

Definition 3. An isomorphism is a bijective homomorphism.

A subset $F' \subseteq F$ is a <u>retract</u> of F if there exists a substitution σ such that $\sigma(F) = F'$ and $\sigma_{|F'} = id$ (σ is called a <u>retractation</u> from F to F').

A factbase is a <u>core</u> if its strict subset are not retracts.

A \underline{core} of a factbase F is a minimal subset of F that is a core.

Proposal 2. A factbase F is a core \Leftrightarrow every homomorphism $\sigma: F \to F$ is a bijection.

Example $F = \{R(a, x)\}$ is the core of $F' = \{R(a, x), R(y, z)\}$

Definition 4. An (existential) rule R is a first-order formula of the form : $\forall \vec{x}. \forall \vec{y}. A(\vec{x}, \vec{y}) \rightarrow \exists \vec{z}. \overline{B(\vec{x}, \vec{z})}$ where A and B are conjonctions of atoms. We define body(R) = A, head(R) = B and the frontier of R $\underline{fr(R)} = \vec{x}$ (the set of variables shared by the \overline{body} and the head of R).

An <u>ontology</u> O is a pair (T,F) where T is a set of existential rules and F is a fact \overline{base} .

Definition 5. Let T be a ruleset, α be a rule, σ be a substitution and F be a factbase.

The tuple (α, σ) is a trigger for F if:

- the domain of σ is the set of all variables occurring in $Body(\alpha)$.
- $-\sigma(Body(\alpha)) \subseteq F.$
- For all $\hat{\sigma}$ which extends σ and has its domain equals to the set of all variables occurring in $Body(\alpha)$ and $Head(\alpha)$, $\hat{\sigma}(Head(\alpha)) \nsubseteq F$

 $Tr_{\alpha}(F)$ is the set of all trigers (α, σ) for F.

 $\overline{Tr_T(F)}$ is the set of all trigers for F.

The rule α is satisfied by F if $Tr_{\alpha}(F) = \emptyset$.

T is satisfied $\overline{by} \ \overline{F} \ if \ Tr_T(F) = \emptyset$.

Example If $\alpha = A(x,y) \to B(x,z)$, $F = \{A(b,c)\}$ and $\sigma = \{x \mapsto b, y \mapsto c\}$ then (α,σ) is a trigger for F.

Definition 6. a ruleset T is <u>satisfied</u> by a factbase M if every rule of T is satisfied by M.

A factset M is a <u>model</u> for an ontology O = (T,F) if $F \subset M$ and T is satisfied by M.

A Boolean conjunctive query (BCQ) is a closed formula of the form $\exists x_1,...,x_n.F(x_1,...,x_n)$ where F is a conjunction of atoms.

A fact set F entails a BCQ $B = \exists x_1, ..., x_n.F(x_1, ..., x_n)$ (noted $F \models B$) if there exists a substitution σ such that $\sigma(B) \subset F$. An ontology O entails a BCQ $B = \exists x_1, ..., x_n.F(x_1, ..., x_n)$ (noted $O \models B$) if for every model M of O, $M \models B$. A model U for an ontology O is universal if for every model M of O, there exists an homomorphism $h: U \to M$.