Some Analysis Things

ARTHUR CONMY*

Part IB, Lent Term 2021

In these notes, I make some brief comments on the IB Analysis courses¹ Credit is due to Evan Chen for the style file for these notes².

§1 Integration

Theorem 1.1 (Interchanging Differentiation and Integration)

Let $f: \mathbb{R} \times [0,1] \to \mathbb{R}$ be a cts function of θ and t, and suppose $\frac{\partial f}{\partial \theta}$ is also cts. Then

$$\frac{d}{d\theta} \int_0^1 f(\theta, t) dt = \int_0^1 \frac{\partial f}{\partial \theta}(\theta, t) dt. \tag{1}$$

Proof. The key idea is that differentiability is a local property, so we can force the domain of $\frac{\partial f}{\partial \theta}$ to be compact.

 $\forall \varepsilon > 0$, pick $\delta > 0$ so that $\delta \left| \frac{\partial f}{\partial \theta} \right| < \varepsilon$ on $[-\delta, \delta] \times [0, 1]$. Then let

$$F(\theta) = \int_0^1 f(\theta, t)dt. \tag{2}$$

Then we can directly calculate (for $|h| < \delta$)

$$\frac{1}{h}(F(h) - F(0))) = \int_0^1 \frac{f(t,h) - f(t,0)}{h} dt = \int_0^1 \frac{\partial f}{\partial \theta}(t,\theta_t) dt.$$
 (3)

where the last equality follows from the mean value theorem. θ_t is a cts function of t, by the continuity of $\frac{\partial f}{\partial \theta}$.

But our choice of delta means that this differs by at most ε from

$$\int_{0}^{1} \frac{\partial f}{\partial \theta}(\theta, t) dt,\tag{4}$$

so we're done.

^{*}Please send any corrections and/or feedback to asc70@cam.ac.uk.

¹strictly, just Analysis and Topology and Complex Analysis, but I hoep that the reader agrees that Analysis and Topology is ... more than one courses worth of material!

²Available here: https://github.com/vEnhance/dotfiles/blob/master/texmf/tex/latex/evan/evan.sty.

Theorem 1.2 (CIF for Derivatives)

Let U be a domain and $f: U \to \mathbb{C}$ holomorphic. Let $0 \in U$ and $w \in D(0,1)$. Then

$$f^{(n)}(w) = \frac{1}{n!} \oint_{\partial D(0,1)} \frac{f(z)}{(z-w)^{n+1}} dz.$$
 (5)

Proof. Case n=1 is the ordinary integral formula, and we show how the n=2 arises by applying $(\ref{eq:n})$. The higher order cases arise similarly.

We can write the n = 1 case as

$$\oint_{\partial D(0,1)} \frac{f(z)}{z-w} dz = \int_0^1 \frac{f(\gamma(t))\gamma'(t)}{\gamma(t)-w} dt.$$
 (6)

where $\gamma(t) = e^{2\pi it}$. We can now directly apply the previous result, since the integrand's partial w derivative is indeed cts, provided we localise to a ball around w.

§2 Differentiation

I don't think this part of the course needs to be anywhere near as feared as it is currently.

Definition 2.1 (Norm).

§3 Notation and Glossary

- §3.1 Notation
- §3.2 Glossary
 - Cts: continuous.