

Contrato nº: 2019-1-RO01-KA202-063965

Plano de aula - Ciência da Computação

Sujeito:Instrução alternativa IF - aplicação na programação de um sistema de segurança ultrassônico

Grupo alvo:Alunos do 9º ano (iniciantes)

Objetivos / Habilidades

- Obj1. Explicação da operação da instrução alternativa IF e IFs aninhados
- Obj2. Construindo o dispositivo Arduino
- Obj3. Implemente o código do dispositivo usando a instrução IF
- Obj4. Teste de funcionalidade do dispositivo

Métodos de ensino:conversação, explicação, resolução de problemas, projeto de algoritmo, demonstração

Meios Educativos / Ferramentas / Tecnologias

Calculadora, Internet, editor Arduino online,

Componentes do projeto (Arduino Uno x 1, breadboard x 1, sensor ultrassônico x 1, vermelho x 1 LEDs, amarelo x 1, verde 1 x 1, resistor x 1, cabos x 10)

Projetando a atividade

Os alunos serão divididos em 3 equipes que farão o dispositivo em paralelo e o apresentarão. Em cada equipe de 10 alunos haverá alunos que construirão o dispositivo e alunos que o programarão.

Duração	Atividade	Métodos/meios
5 minutos	Introdução da instrução alternativa IF. Explicar a sintaxe	Explicação,
	C++ e o princípio de execução. IFs aninhados, regras de associação ELSE.	conversa
5 minutos	Apresentação do dispositivo de segurança ultrassônico	Resolução de
	(Passo 1 - apêndice)	problemas,
		explicação,
		conversa
20 minutos	Construção do dispositivo (Apêndice da Etapa 2 - Etapa 6)	Resolução de
		problemas,
		explicação,
		conversa
15 minutos	Programação do dispositivo	Projeto de
		algoritmo

Contrato nº: 2019-1-RO01-KA202-063965

5 minutos	Testando a funcionalidade do dispositivo	Demonstração
-----------	--	--------------

Avaliação/Comentários:

Teste a funcionalidade do dispositivo para cada situação implementada pelas instruções IF (posicionamento a diferentes distâncias e verificação dos sinais luminosos e sonoros).

Bibliografia/Webografia:

https://create.arduino.cc/projecthub/Krepak/ultrasonic-security-system 3afe13?ref=tag&ref_id=kids&offset=3

Anexo 1

Passo 1: Apresentando o dispositivo

Contrato nº: 2019-1-RO01-KA202-063965

Passo 2:Conectar:

- O cabo vermelho do pino 5V para o canal positivo na placa de ensaio
- O cabo preto do pino GND no Arduino para o canal negativo da placa de ensaio
- Campainha = pino 7
- Sensor ultrasônico:
 - \circ Eco = pino 3
 - \circ Trig = pino 2
- LEDs:
 - o LED vermelho = pino 4
 - o LED amarelo = pino 5
 - o LED verde = pino 6

Os cabos verdes conectam os LEDs em linha da seguinte forma: LED positivo com LED negativo ao canal negativo da placa de ensaio, usando um resistor de 220 ohms

Contrato nº: 2019-1-RO01-KA202-063965

Passo 3: Montar a tábua de pão

Primeiro pino de 5V e GND do Arduino para a placa de ensaio.

Etapa 4: Montagem - Sensor Ultrassônico

Sensor ultrassônico HC-SRO4! Coloque o sensor ultrassônico voltado para cima o mais à direita possível.

Conectar:

- pino GND do sensor ultrassônico para o canal negativo na placa de ensaio.
- Trig pino no sensor para pino 2 do Arduino

Contrato nº: 2019-1-RO01-KA202-063965

- Echo pino no sensor para pino 3 no Arduino.
- Pino VCC no sensor ultrassônico para o canal positivo na placa de ensaio.

Etapa 5: Montagem - LEDs

Passo 6: Montagem - Campainha

Contrato nº: 2019-1-RO01-KA202-063965


```
const int trigPin = 2;
const int echoPin = 3;
const int LEDlampRed = 4;
const int LEDlampYellow = 5;
const int LEDlampGreen = 6;
const int buzzer = 7;
int sound = 500;
void setup() {
  Serial.begin (9600);
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  pinMode(LEDlampRed, OUTPUT);
  pinMode(LEDlampYellow, OUTPUT);
  pinMode(LEDlampGreen, OUTPUT);
  pinMode(buzzer, OUTPUT);
void loop() {
  long durationindigit, distanceincm;
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
```


Contrato nº: 2019-1-RO01-KA202-063965

```
digitalWrite(trigPin, LOW);
  durationindigit = pulseIn(echoPin, HIGH);
  distanceincm = (durationindigit * 0.034) / 2;
  if (distanceincm > 50) {
    digitalWrite(LEDlampGreen, LOW);
    digitalWrite(LEDlampYellow, LOW);
    digitalWrite(LEDlampRed, LOW);
    noTone(buzzer);
  }
  else if (distanceincm <= 50 && distanceincm > 20) {
    digitalWrite(LEDlampGreen, HIGH);
    digitalWrite(LEDlampYellow, LOW);
    digitalWrite(LEDlampRed, LOW);
    noTone(buzzer);
  }
  else if (distanceincm <= 20 && distanceincm > 5) {
    digitalWrite(LEDlampYellow, HIGH);
    digitalWrite(LEDlampGreen, HIGH);
    digitalWrite(LEDlampRed, LOW);
    tone(buzzer, 500);
  }
  else if (distanceincm <= 0) {</pre>
    digitalWrite(LEDlampGreen, LOW);
    digitalWrite(LEDlampYellow, HIGH);
    digitalWrite(LEDlampRed, LOW);
    noTone(buzzer);
  else {
    digitalWrite(LEDlampGreen, HIGH);
    digitalWrite(LEDlampYellow, HIGH);
    tone(buzzer, 1000);
    digitalWrite(LEDlampRed, HIGH);
    delay(300);
    digitalWrite(LEDlampRed, LOW);
  Serial.print(distanceincm);
  Serial.println(" cm");
  delay(300);
}
```