	HWI Problem la		Alonso B	uitano
	17		1.45	
	1	× 9	h(x)	11101
	" <u> </u>		0.847	7 -1, 12 8
	2 ÷ ·	2 4		3.718
	. . .	3 8		2 1.43 2
	• 1	5 11		1.868
	2 1 1 2 3 4 5	4 17	11. 150	-5.850
			seeming bol	XXXX
	4	6 A' B' 11		Jan W.
	at 1 country (5 chss): all	I MAH	S.S.E.: 7.	111/
	Normal Egant (transcar)	TXXVY	17	-
	Normal equation (from class): off	2) 1.1	a rula)	115/22.593
	A/I	12) + 1/1/ + /3/1/	LINITY IN	158 2 593
	Z (i) - (i) Y	N+ 8+8+30 +	Mi	
10	$\Theta_0 = \sum_{i=1}^{\infty} y^{(i)} - \Theta_i x^{(i)}$	V	1.11	
	= (0/(i) 0) 6 : 7-6	-1) + 4 - 201 + 8	-30, +11-50,	+171-401
D	$\Theta_{i} = \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{x'i'}(y')^{2}}_{i} - \theta_{0}}}_{\underbrace{\underbrace{z'}(x')^{2}}} \qquad \Theta_{i} = \underbrace{\underbrace{\underbrace{z'}_{i} - \theta_{0}}}_{\underbrace{\underbrace{z'}_{i} - \theta_{0}}} \qquad \Theta_{i} = \underbrace{\underbrace{\underbrace{z'}_{i} - \theta_{0}}}_{\underbrace{\underbrace{z'}_{i} - \theta_{0}}}$	5	260 0115	(11-0) + 4(17-0)
	$\mathcal{E}(x^{(1)})^{2} \qquad \qquad \mathcal{E}(x^{(1)})^{2}$	00) + 2 (4.00) +		(11 63) 1 1(14-03
	1=1		SZ	
	€ = 42 - 12€,	$\Theta_1 = \frac{151 - 126}{58}$	10	
	Do = 42 - 12 (151-12 O.)	12 <u>12 (</u>	151-1200)	
			5(58)	
	= -	$\frac{2}{s(ss)} = \frac{12(131)}{s(ss)}$	+ 144 Oo	
	(101)	5(58)	2(28)	
	(1) - 144 = 11 - 12(13)			
	B(1 3718) 3 3(30)			
	LIZ 12 (151) P.L	-6.248 =4	278	
D.	O = 5 - 5(58)	. so3		
	$ \frac{G(1 - \frac{144}{5(58)})}{5(58)} = \frac{112}{5} - \frac{12(151)}{5(58)} $ $ \frac{G(1 - \frac{144}{5(58)})}{5(58)} = \frac{12(151)}{5(58)} $ $ \frac{1 - \frac{144}{5(58)}}{1 - \frac{144}{5(58)}} $			activation and reserve and the second of the second and the second of th
	1 - 5(58)	= 4.278 + 1.71	8x	
	G = 1.718/	- 7.2 18 - 1.74		

Alonso Britano

MSE Loss function:

$$L = \frac{1}{2n} \sum_{i=1}^{n} (y^{(i)} - (b_i + b_i \times^{(i)}))^2$$

Decivation to obtain gradients:

$$\frac{\partial L}{\partial bo} = \frac{1}{z_n} \sum_{i=1}^{n} Z(y^{(i)} - (b_o + b_i x^{(i)})) \cdot (y^{(i)} - (b_o + b_i x^{(i)})) \cdot (y^{(i)} - (b_o + b_i x^{(i)})) = \frac{1}{n} \sum_{i=1}^{n} (b_o + b_i x^{(i)} - y^{(i)})$$

$$= \frac{1}{n} \sum_{i=1}^{n} -1(y^{(i)} - (b_o + b_i x^{(i)})) = \frac{1}{n} \sum_{i=1}^{n} (b_o + b_i x^{(i)} - y^{(i)})$$

$$\frac{\partial L}{\partial b_{1}} = \frac{1}{2n} \sum_{i=1}^{n} 2(y_{i}^{(i)} - (b_{0} + b_{1} x_{i}^{(i)})) \cdot (y_{i}^{(i)} - (b_{0} + b_{1} x_{i}^{(i)}))$$

$$= \left[\frac{1}{h} \sum_{i=1}^{p} \chi^{(i)} \left(b_o + b_i \chi^{(i)} - y^{(i)}\right)\right]$$

```
In [1]: import numpy as np
        import math
In [2]: x = np.array(input("Enter your x values separated by commas: ").split(','))
        y = np.array(input("Enter your y values separated by commas (should be same
        #Converting data arrays to numeric type.
        x = x.astype(np.int32)
        y = y.astype(np.int32)
        Enter your x values separated by commas: -2,2,3,5,4
        Enter your y values separated by commas (should be same size as x vector):
        2,4,8,11,17
In [3]: def normal_eq(x,y):
            # Function to find the values b0 and b1 from the normal equation seen in
            a = np.array([[x.size, np.sum(x)], [np.sum(x), np.sum(np.square(x))]])
            b = np.array([np.sum(y), np.dot(x,y)])
            [b0,b1] = np.linalg.solve(a,b)
            return b0, b1
In [4]: [b0,b1]=normal_eq(x,y)
In [5]: print("y-intercept is: ",b0)
        print("slope is: ",b1)
        y-intercept is: 4.273972602739727
```

slope is: 1.7191780821917806

```
In [1]: import numpy as np
        import math
In [2]: f = np.genfromtxt("p1_data.csv", delimiter = ',', skip_header=1)
        x = f[:,0]
        y = f[:,1]
        \#x = np.array(input("Enter your x values separated by commas: ").split(','))
        #y = np.array(input("Enter your y values separated by commas (should be same
        #Converting data arrays to numeric type.
        #x = x.astype(np.int32)
        #y = y.astype(np.int32)
In [3]: def normal_eq(x,y):
            # Function to find the values b0 and b1 from the normal equation seen in
            a = np.array([[x.size, np.sum(x)], [np.sum(x), np.sum(np.square(x))]])
            b = np.array([np.sum(y), np.dot(x,y)])
            [b0,b1] = np.linalg.solve(a,b)
            return b0, b1
In [4]: [b0,b1]=normal_eq(x,y)
In [5]: print("y-intercept: ",b0)
        print("slope: ",b1)
        y-intercept: 4.080657141894917
```

slope: -0.44236913850430776

```
In [1]: def includes(item, val, start_ind=None):
            if type(item) == dict:
                key = list(item.keys())
                for i in range(len(key)):
                    if item[key[i]] == val:
                        return True
            else:
                if start_ind == None:
                    if val in item:
                        return True
                else:
                    for i in range(start_ind, len(item)):
                        if item[i] == val:
                            return True
            return False
In [2]: includes([2, 3, 4], 2, 0) # True
Out[2]: True
In [3]: includes([2, 3, 4], 2, 1) # False
Out[3]: False
In [4]: includes([2, 3, 4], 4, 1) # True
Out[4]: True
In [5]: includes({'a':1,'b':2}, 1) # True
Out[5]: True
In [6]: includes({'a':1,'b':2}, 'a') # False
Out[6]: False
In [7]: includes('abcd', 'b') # True
Out[7]: True
```

```
In [1]: def moving_average():
    numbers = []
    def average(x):
        numbers.append(x)
        return round(sum(numbers)/len(numbers),1)
    return average

In [2]: mAvg = moving_average()
    print(mAvg(10)) #10.0
    print(mAvg(11)) #10.5
    print(mAvg(12)) #11.0
10.0
10.5
11.0
```

```
In [1]:     def same_frequency(num1, num2):
          item1, item2 = str(num1), str(num2)
          return sorted(item1) == sorted(item2)

In [2]:     same_frequency(551122,221515) # True

Out[2]:     True

In [31:     same_frequency(12345,31354) # False

Out[31:     False

In [4]:     same_frequency(321142,3212215) # False

Out[4]:     False

In [5]:     same_frequency(1212, 2211) # True
```

Out[5]: True

```
In [1]: import numpy as np
import matplotlib.pyplot as plt

In [2]: file = np.load('kmeans.npz')
    data = file['data']
    pred = file['pred']
    centers = file['centers']

In [3]: plt.scatter(data[:,0], data[:,1], c=pred, alpha=0.5)
    plt.scatter(centers[:,0], centers[:,1], c='r')
    plt.title("Fig. 1: Cluster assignment and centroids for Kmeans")
    plt.show()
```

Fig. 1: Cluster assignment and centroids for Kmeans


```
In [1]:
        import numpy as np
In [2]: def NUMPY_outer(X,Y):
            outer=np.zeros((len(X),len(Y)), dtype=int)
            for i in range(len(X)):
                for j in range(len(Y)):
                    outer[i][j] = X[i]*Y[j]
            return outer
In [3]: np.random.seed(24787)
        X = np.random.randint(-1000, 1000, size=3000)
        Y = np.random.randint(-1000, 1000, size=3000)
In [4]: np.outer(X,Y)
Out[4]: array([[ 288116, 433466, 322354, ..., 234498,
                                                         459306.
               [ 214972, 323422, 240518, ..., 174966,
                                                         342702,
                                                                  241482],
               [-312200, -469700, -349300, \ldots, -254100, -497700, -350700],
               [ 180184,
                          271084, 201596, ..., 146652,
                                                         287244,
                                                                  202404],
               [-66454, -99979, -74351, \dots, -54087, -105939,
                                                                  -74649],
               [ 203376, 305976, 227544, ..., 165528, 324216,
                                                                  22845611)
In [5]: NUMPY_outer(X,Y)
Out[5]: array([[ 288116, 433466, 322354, ..., 234498,
                                                         459306.
                                                                  3236461.
               [ 214972, 323422, 240518, ..., 174966,
                                                         342702,
                                                                   241482],
               [-312200, -469700, -349300, \ldots, -254100, -497700, -350700],
                                  201596, ..., 146652,
               [ 180184,
                          271084,
                                                         287244,
                                                                  2024041.
               [-66454, -99979, -74351, \dots, -54087, -105939,
                                                                  -74649],
               [ 203376, 305976, 227544, ..., 165528,
                                                         324216,
                                                                  228456]])
In [6]: NUMPY_outer(X,Y)==np.outer(X,Y)
Out[6]: array([[ True, True,
                              True, ..., True,
                                                 True,
                                                        True],
               [ True,
                        True,
                               True, ...,
                                           True,
                                                  True,
                                                        True],
               [ True, True,
                              True, ...,
                                          True,
                                                  True,
                                                        True],
               . . . ,
                              True, ...,
               [ True,
                       True,
                                          True,
                                                 True,
                                                        True],
               [ True, True,
                              True, ...,
                                                        True],
                                          True,
                                                  True,
               [ True, True, True, True,
                                                 True,
                                                        True]])
```

The built-in implementation by numpy is much faster because of how numpy manages its arrays, with homogeneous data types stored together in memory. Also due to how it integrates C/C++ code, which are faster than normal python. It also breaks down tasks into fragments and executes in parallel, so each row would be calculated in parallel in this excercise.

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
In [2]: def MSE(x, y, b0, b1):
            # Function to obtain the loss and the gradients using Mean Squared Error
            pred = np.multiply(b1, x) + b0
            loss = 0.5 * np.mean(np.power((y - pred), 2))
            gradient0 = np.mean(pred - y)
            gradient1 = np.mean(x * (pred - y))
            return loss, gradient0, gradient1
In [3]: def gradient_descent(data, init_b0, init_b1, lr, num_epochs):
            x = data[:,0]
            y = data[:,1]
            b0 = init_b0 # Starting with initial guess for b0
            b1 = init_b1 # Starting with initial guess for b1
            b_list = []
            loss list = []
            for i in range(num_epochs):
                b_list.append((b0,b1)) # Adds current (b0, b1) to the list
                # Compute loss and gradients
                loss, grad0, grad1 = MSE(x, y, b0, b1)
                loss_list.append(loss) # Adds current loss to the list
                # Update model parameters
                b0 = (lr * grad0)
                b1 -= (lr * grad1)
            #Add final (b0, b1) and loss values to their list.
            b_list.append((b0,b1))
            loss, grad0, grad1 = MSE(x, y, b0, b1)
            loss_list.append(loss)
            return b_list, loss_list
In [4]: data = np.load('p3 data.npy')
In [5]: B, loss = gradient_descent(data, 18, 5, 0.0001, 1000)
In [6]:
        print("Final b0 and b1 values are: ", B[-1])
        print("Final loss value is: ", loss[-1])
        plt.plot(data[:,0], data[:,1], '.', c='g', label = "Data")
        plt.plot(data[:,0], B[-1][0] + data[:,0]*B[-1][1], c='r', label = "fitted li
        plt.legend()
        plt.show()
        Final b0 and b1 values are: (17.93432667747319, 0.9618342679700583)
        Final loss value is: 3.097854325598297
```



```
In [7]: for lr in [0.0002, 0.0006, 0.01, 10]:
    B, loss = gradient_descent(data, 18, 5, lr, 1000)
    print("Final loss and B values are: ", loss[-1], ", ", B[-1])

    plt.plot(loss)
    plt.xlabel("Iteration")
    plt.ylabel("Cost")
    plt.title(f"LR is {lr}")
    plt.show()
```

Final loss and B values are: 3.0978541866329126 , (17.934444545603046, 0.96183234761207)

Final loss and B values are: 1.4073988952349527e+165 , (1.426267297867182 e+79, 8.75417292526297e+80)


```
Final loss and B values are: nan , (nan, nan)
```

```
/var/folders/9_/zlyt_0jn1cj4plrbb7kf80d80000gn/T/ipykernel_36279/400944365
6.py:4: RuntimeWarning: overflow encountered in power
  loss = 0.5 * np.mean(np.power((y - pred), 2))
/Users/abuitano/miniforge3/lib/python3.10/site-packages/numpy/core/_method
s.py:179: RuntimeWarning: overflow encountered in reduce
  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
/var/folders/9_/zlyt_0jn1cj4plrbb7kf80d80000gn/T/ipykernel_36279/272358059
7.py:16: RuntimeWarning: invalid value encountered in double_scalars
  b1 -= (lr * grad1)
```


Final loss and B values are: nan , (nan, nan)

```
/var/folders/9_/zlyt_0jn1cj4plrbb7kf80d80000gn/T/ipykernel_36279/400944365
6.py:3: RuntimeWarning: overflow encountered in multiply
    pred = np.multiply(b1, x) + b0
/var/folders/9_/zlyt_0jn1cj4plrbb7kf80d80000gn/T/ipykernel_36279/400944365
6.py:6: RuntimeWarning: overflow encountered in multiply
    gradient1 = np.mean(x * (pred - y))
/var/folders/9_/zlyt_0jn1cj4plrbb7kf80d80000gn/T/ipykernel_36279/272358059
7.py:15: RuntimeWarning: invalid value encountered in double_scalars
    b0 -= (lr * grad0)
```


I think the best learning rate out of the ones tested is 0.0002, as this will still converge and in less iterations than 0.0001. The other larger learning rates start diverging, so they are not good for this model.

Normal equation derivation is in handwritten notes

Gradient descent is an iterative method to optimize a function, or to find a local minimum by moving in the direction of steepest descent, using the gradient. We use it to find the parameters (b0, b1,..., bn) of our hypothesis function in order to minimize the loss we get vs the ground truths.

Three types of gradient descent:

- Batch gradient descent: in this type of GD, we process all of the data with the current parameters before updating.
- Stochastic gradient descent: here, we update the parameters for every sample, at every step (slow)
- Mini-batch gradient descent: A trade-off of the last two types of GD, where we update after a specified subset of the data (a batch) is processed, at each step.

```
In [8]: lr = 0.0005447
B, loss = gradient_descent(data, 18, 5, lr, 10000)
```

```
In [9]: plt.plot(loss)
  plt.xlabel("Iteration")
  plt.ylabel("Cost")
  plt.title(f"LR is {lr}")
  plt.show()
```


The upper bound of learning rate for this model seems to be just under 0.000545. Divergence occurs starting at a learning rate of 0.0005447.

```
In [10]: def mini GD(data, init b0, init b1, lr, num iterations, batch size):
             # Function for mini-batch gradient descent
             x = data[:,0]
             y = data[:,1]
             b0 = init_b0
             b1 = init_b1
             b_list = []
             loss list = []
             num_batches = len(x) // batch_size
             num_epochs = num_iterations // num_batches
             for epoch in range(num_epochs):
                 for b in range(num_batches):
                     b_list.append((b0,b1)) # Adds current (b0, b1) to the list
                     # Compute loss and gradients
                     pred = np.multiply(b1, x[b*batch_size: (b+1)*batch_size]) + b0
                     loss = 0.5 * np.mean(np.power((y[b*batch_size: (b+1)*batch_size])
                     gradient0 = np.mean(pred - y[b*batch_size: (b+1)*batch_size])
                     gradient1 = np.mean(x[b*batch size: (b+1)*batch size] * (pred -
                     loss, grad0, grad1 = MSE(x, y, b0, b1)
                     loss_list.append(loss) # Adds current loss to the list
                     # Update model parameters
                     b0 = (lr * grad0)
                     b1 = (lr * grad1)
             #Add final (b0, b1) and loss values to their list.
             b_list.append((b0,b1))
             loss, grad0, grad1 = MSE(x, y, b0, b1)
             loss_list.append(loss)
             return b_list, loss_list
In [11]: B, loss = mini_GD(data, 18, 5, 0.0005, 100, 20)
In [12]: plt.plot(loss)
         plt.xlabel("Batch")
         plt.ylabel("Cost")
         plt.title("Cost using Mini-Batch")
         plt.show()
```


Using mini-batch GD, the cost decreases much faster. It converges with less iterations than the batch GD done previously.