Logic Gates

Logic gates are the basic building blocks of any digital system. It is an electronic circuit having one or more than one input and only one output. The relationship between the input and the output is based on a **certain logic**. Based on this, logic gates are named as AND gate, OR gate, NOT gate etc.

AND Gate

A circuit which performs an AND operation is shown in figure. It has n input ($n \ge 2$) and one output.

```
Y = A AND B AND C ...... N
Y = A.B.C ...... N
Y = ABC ...... N
```

Logic diagram

Truth Table

Inpu	ts	Output
Α	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

A circuit which performs an OR operation is shown in figure. It has n input ($n \ge 2$) and one output.

```
Y = A OR B OR C ...... N
Y = A + B + C ...... N
```

Logic diagram

Truth Table

Inpu	Inputs Outpu	
Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

NOT gate is also known as **Inverter**. It has one input A and one output Y.

$$Y$$
 = NOT A \overline{A}

Logic diagram

Truth Table

Inputs	Output
Α	В
0	1
1	0

NAND Gate

A NOT-AND operation is known as NAND operation. It has n input (n \geq 2) and one output.

Logic diagram

Truth Table

Inpu	its	Output
Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

A NOT-OR operation is known as NOR operation. It has n input (n \geq 2) and one output.

Logic diagram

Truth Table

Inpu	Inputs (
А	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

XOR Gate

XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The exclusive-OR gate is abbreviated as EX-OR gate or sometime as X-OR gate. It has n input ($n \ge 2$) and one output.

Y = A XOR B XOR C N
Y = A
$$\bigoplus$$
B \bigoplus C N
Y = AB + AB

Logic diagram

Truth Table

Inputs		Output
Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate

XNOR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-NOR gate. It has n input ($n \ge 2$) and one output.

Logic diagram

Truth Table

Inputs		Output
Α	В	A B
0	0	1
0	1	0
1	0	0
1	1	1

<u>MCQs</u>
Q1. The universal gate is
 NAND gate OR gate AND gate None of the above
Ans. 1
Q2. The inverter is
 NOT gate OR gate AND gate None of the above
Ans. 1
Q3. The inputs of a NAND gate are connected together. The resulting
circuit is
1. OR gate2. AND gate3. NOT gate4. None of the above
Ans. 3
Q4. The NOR gate is OR gate followed by
 AND gate NAND gate NOT gate None of the above
Ans. 3
Q5. The NAND gate is AND gate followed by
1. NOT gate

2. OR gate

3. AND gate4. None of the above

Ans. 1

Q6. Digital circuit can be made by the repeated use of

OR gates
 NOT gates

3. NAND gates
4. None of the above
Ans. 3
Q7. The only function of NOT gate is to
 Stop signal Invert input signal Act as a universal gate None of the above
Ans. 2
Q8. When an input signal 1 is applied to a NOT gate, the output
is
Ans. 1
Q9. In Boolean algebra, the bar sign (-) indicates
 OR operation AND operation NOT operation None of the above
Ans. 3
Q10. An OR gate has 4 inputs. One input is high and the other three
are low. The output is
 Low High alternately high and low may be high or low depending on relative magnitude of inputs
Ans. 2
Q11. Both OR and AND gates can have only two inputs.
1. True 2. False Ans. 2

Q12. The output will be a LOW for any case when one or more
inputs are zero in a/an
 OR Gate NOT Gate AND Gate NAND Gate
Ans. 3
Q13. A single transistor can be used to build gates .
 OR Gate NOT Gate AND Gate NAND Gate
Ans. 3
Q14. The logic gate that will have HIGH or "1" at its output when
any one of its inputs is HIGH is a/an gate.
 OR Gate NOT Gate AND Gate NAND Gate
Ans. 1
Q15 NAND circuits are contained in a 7400 NAND IC.
1. 1 2. 2 3. 4 4. 8
Ans. 3
Q16. Exclusive-OR (XOR) logic gates can be constructed
fromlogic gates.
 OR gates only AND gates and NOT gates AND gates, OR gates, and NOT gates OR gates and NOT gates
Ans. 3
Q17 truth table entries are necessary for a four-input
circuit.

1.4
2. 8
3. 12
4. 16
Ans. 4
Q18. A NAND gate has inputs and output.
 LOW inputs and LOW outputs HIGH inputs and HIGH outputs LOW inputs and HIGH outputs None of these
Ans. 3
Q19. The basic logic gate whose output is the complement of the
input is
 OR gate AND gate INVERTER gate Comparator
Ans. 3
Q20 input values will cause an AND logic gate to produce a
HIGH output.
 At least one input is HIGH At least one input is LOW All inputs are HIGH All inputs are LOW

Ans. 3