MATH 131-HOMEWORK 6

Due on Wednesday, Feb 20, before class.

Please read section 3.B.

Question 1 (10 points) Prove that there does not exist a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ such that

range
$$T = \text{null } T$$
.

Question 2 (10 points) Prove or give a counterexample:

If $T:V\to W$ is a linear map and v_1,\ldots,v_n spans V, then $T(v_1),\ldots,T(v_n)$ spans range(T).

Question 3 (10 points) Prove or give a counterexample: Let $T: V \to W$ and $S: V \to W$ are two linear maps. If null T = null S, then T = S.

Question 4 (10 points) (10 points) Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if $\dim V \leq \dim W$.

Question 5 (10 points) Prove that there does not exist a linear map from \mathbb{F}^5 to \mathbb{F}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \mid x_1 = 3x_2; \ x_3 = x_4 = x_5\}.$$

Question 6 (10 points) Suppose $T \in \mathcal{L}(V, W)$ is injective and $\{v_1, \ldots, v_n\}$ is linearly independent in V. Prove or disprove that $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is linearly independent in W.