

MA4112 Aljabar Linear Elementer

Invers Matriks

Salwa Nursyahida

Outline

- 1. Definisi Invers Matriks
- 2. Mencari Invers Matriks dengan Matriks Adjoin
- 3. Mencari Invers Matriks dengan Operasi Baris Elementer
- 4. Mencari Invers Matriks dengan Operasi Kolom Elementer
- 5. Sifat-sifat Matriks Invers

INVERS MATRIKS

Definisi:

Jika A dan B adalah sebarang matriks bujur sangkar sedemikian sehingga AB = BA = I. Maka B merupakan invers dari A atau A^{-1} dan sebaliknya. Matriks yang mempunyai invers disebut invertible atau non singular.

Untuk mendapatkan A^{-1} , dapat dilakukan dengan cara :

- 1. Metode Matriks Adjoint / Determinan
- 2. Metode Operasi Baris Elementer (OBE) atau Operasi Kolom Elementer (OKE)

Mencari Invers Matriks dengan Matriks Adjoin

Matriks adjoint adalah transpos dari matriks kofaktor, dengan matriks kofaktor didefinisikan

Sehingga
$$Adj(A) = \begin{bmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{bmatrix}^T = \begin{bmatrix} C_{11} & \cdots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{bmatrix}^T$$

Invers dari A,

$$A^{-1} = \frac{1}{\det(A)} Adj(A)$$

Mencari Invers Matriks dengan Matriks Adjoin

Carilah invers dari
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Solusi: $C_{11} = M_{11} = d$ $C_{21} = -M_{21} = -b$

$$C_{12} = -M_{12} = -c \qquad C_{22} = M_{22} = a$$

$$adj(A) = \begin{pmatrix} C_{11} & C_{21} \\ C_{12} & C_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$|A| = ad - bc$$

$$A^{-1} = \frac{adj(A)}{|A|} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Mencari Invers Matriks dengan Matriks Adjoin

Carilah invers dari
$$A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 2 \\ -1 & -2 & -3 \end{pmatrix}$$
 Solusi : $C_{11} = M_{11} = -5$ $C_{21} = -M_{21} = 4$ $C_{31} = M_{31} = -4$ $C_{12} = -M_{12} = 1$ $C_{22} = M_{22} = -2$ $C_{32} = -M_{32} = 0$ $C_{33} = M_{33} = 2$
$$C_{13} = M_{13} = 1$$
 $C_{21} = C_{21} = C_{31}$
$$C_{12} = C_{22} = C_{32} = C_{32}$$

$$C_{13} = C_{21} = C_{22} = C_{32}$$

$$C_{13} = C_{21} = C_{31} = C_{3$$

$$A^{-1} = \frac{adj(A)}{|A|} = -\frac{1}{2} \begin{pmatrix} -5 & 4 & -4 \\ 1 & -2 & 0 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{5}{2} & -2 & 2 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & -1 \end{pmatrix}$$

Mencari Invers Matriks dengan Operasi Baris Elementer

Jika A matriks persegi non singular, dengan OBE terhadap A dapat direduksi menjadi bentuk normal I sedemikian hingga :

$$PA = I$$

dengan P hasil penggandaan matriks elementer (baris).

Selanjutnya,
$$P A = I$$

 $P^{-1} P A = P^{-1} I$
 $I A = P^{-1}$
 $A = P^{-1}$

Ini berarti $A^{-1} = P$

Dengan demikian hasil penggandaan matriks elementer (baris) ini pada hakekatnya adalah invers dari matriks A.

Teknis pencarian invers dengan OBE:

$$(A | I) \sim (I | A^{-1})$$

Mencari Invers Matriks dengan Operasi Kolom Elementer

Jika A matriks persegi non singular, dengan OKE terhadap A dapat direduksi menjadi bentuk normal I sedemikian hingga :

dengan Q hasil penggandaan matriks elementer (kolom).

Selanjutnya, A Q = I
A Q
$$Q^{-1} = I Q^{-1}$$

A I = Q^{-1}
A = Q^{-1}
Ini berarti $A^{-1} = Q$

Dengan demikian hasil penggandaan matriks elementer (kolom) ini pada hakekatnya adalah invers dari matriks A.

Teknis pencarian invers dengan OKE:

$$\left(\frac{A}{I}\right)$$
 ~ $\left(\frac{I}{A^{-1}}\right)$

Mencari Invers Matriks dengan Operasi Baris

Elementer (2 4 4)
Carilah invers dari B =
$$\begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 2 \\ -1 & -2 & -3 \end{pmatrix}$$
 dengan melakukan OBE!

$$(B \mid I) = \begin{pmatrix} 2 & 4 & 4 & 1 & 0 & 0 \\ 1 & 3 & 2 & 0 & 1 & 0 \\ -1 & -2 & -3 & 0 & 0 & 1 \end{pmatrix} H_{13} \overset{-1}{\sim} \begin{pmatrix} -1 & -2 & -3 & 0 & 0 & 1 \\ 1 & 3 & 2 & 0 & 1 & 0 \\ 2 & 4 & 4 & 1 & 0 & 0 \end{pmatrix} H_{21(1)} \overset{-1}{\sim} \begin{pmatrix} -1 & -2 & -3 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & -2 & 1 & 0 & 2 \end{pmatrix} H_{1(-1)} \overset{-1}{\sim} H_{3(-1/2)}$$

$$= (I \mid B^{-1})$$

Jadi B⁻¹ =
$$\begin{pmatrix} \frac{5}{2} & -2 & 2 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & -1 \end{pmatrix}$$

Mencari Invers Matriks dengan Operasi Kolom

Elementer
Carilah invers dari $B = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 2 \\ -1 & -2 & -3 \end{pmatrix}$ dengan melakukan OKE!
Solusi:

$$\begin{pmatrix} \underline{B} \\ \overline{I} \end{pmatrix} = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 2 \\ \frac{-1}{1} & -2 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{matrix} \mathbf{K}_{21(-2)} \\ \sim \\ \mathbf{K}_{31(-2)} \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(-2)} \\ \sim \\ \mathbf{K}_{31(-2)} \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{12(-1)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & -1 \\ \frac{1}{3} & -2 & -2 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{matrix} \mathbf{K}_{13(-1)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ \frac{1}{5} & -2 & -2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ \frac{1}{5} & -2 & -2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 \\ \end{pmatrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 \\ \end{pmatrix} \end{matrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 \\ \end{pmatrix} \end{matrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 \\ \end{pmatrix} \end{matrix} \begin{matrix} \mathbf{K}_{11(1/2)} \\ \sim \\ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 \\ \end{matrix} \end{matrix} \begin{matrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{0}{2} & 0 & -1 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix} \quad \begin{matrix} \mathsf{K}_{3(-1)} \\ & & \\ & & \\ & & \\ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & -2 & 2 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & -1 \end{pmatrix} \quad = \quad \begin{pmatrix} \boldsymbol{I} \\ \boldsymbol{B}^{-1} \end{pmatrix}$$

Jadi B⁻¹ =
$$\begin{pmatrix} \frac{5}{2} & -2 & 2 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & -1 \end{pmatrix}$$

(1) Matriks invers (jika ada) adalah tunggal (*unique*)

```
Andaikan B dan C adalah invers dari matriks A, maka berlaku:

AB = BA = I, dan juga

AC = CA = I

Tetapi untuk: BAC = B(AC) = BI = B ......(*)

BAC = (BA)C = IC = C ......(**)

Dari (*) dan (**) haruslah B = C.
```

(2) Invers dari *matriks invers* adalah matriks itu sendiri.

```
Andaikan matriks C = A^{-1}, berarti berlaku : AC = CA = I (*)

Tetapi juga berlaku C C^{-1} = C^{-1} C = I (**)

Dari (*) dan (**) berarti : C^{-1} = A (A^{-1})-1 = A.
```

(3) Matriks invers bersifat nonsingular (determinannya tidak nol)

det (A A⁻¹) = det (A) det (A⁻¹)
det (I) = det (A) det (A⁻¹)
1 = det (A) det (A⁻¹) ; karena det (A)
$$\neq$$
 0 , maka :
$$\frac{1}{\det(A)}$$

ini berarti bahwa det (A-1) adalah tidak nol dan kebalikan dari det (A).

(4) Jika A dan B masing-masing adalah matriks persegi berdimensi n, dan berturut-turut A⁻¹ dan B⁻¹ adalah invers dari A dan B, maka berlaku hubungan : (AB)⁻¹ = B⁻¹ A⁻¹

(AB)
$$(AB)^{-1} = (AB)^{-1} (AB) = I$$
 (*)
di sisi lain :
 $(AB) (B^{-1} A^{-1}) = A(BB^{-1}) A^{-1} = A I A^{-1} = A A^{-1} = I$
 $(B^{-1} A^{-1}) (AB) = B^{-1}(A^{-1}A) B = B^{-1} I B = B^{-1} B = I$ (**)

Menurut sifat (1) di atas matriks invers bersifat uniqe (tunggal), karena itu dari (*) dan (**) dapatlah disimpulkan bahwa $(AB)^{-1} = B^{-1} A^{-1}$.

(5) Jika matriks persegi A berdimensi n adalah non singular, maka berlaku $(A^T)^{-1} = (A^{-1})^T$.

Menurut sifat determinan : $|A^T| = |A| \neq 0$, oleh sebab itu $(A^T)^{-1}$ ada, dan haruslah : $(A^T)^{-1} \ A^T = A^T \ (A^T)^{-1} = I \qquad \qquad (*)$ Di sisi lain menurut sifat transpose matriks : $(A \ A^{-1})^T = (A^{-1})^T \ A^T$ $I^T = (A^{-1})^T \ A^T$ $I^T = (A^{-1})^T \ A^T = I, \text{ hubungan ini berarti bahwa } (A^{-1})^T \text{ adalah juga invers dari } A^T.$ Padahal invers matriks bersifat tunggal, oleh karena itu memperhatikan (*), haruslah : $(A^{-1})^T = (A^T)^{-1} \ .$

Invers Matriks

Misalkan A adalah matriks bujur sangkar.

B dinamakan invers dari A jika dipenuhi

$$AB=I$$
 dan $BA=I$

Sebaliknya, A juga dinamakan invers dari B.

Notasi $A = B^{-1}$

Cara menentukan invers suatu matriks A adalah

$$(A \mid I)$$
 OBE $(I \mid A^{-1})$

Jika OBE dari A tidak dapat menghasilkan matriks identitas maka A dikatakan **tidak punya invers**

Contoh:

Tentukan matriks invers (jika ada) dari:

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{pmatrix}$$

Jawab:

$$\begin{pmatrix} 3 & 2 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -2 & -2 & 1 & 0 & 0 & 1 \end{pmatrix} \quad b_1 \leftrightarrow b_2 \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 3 & 2 & -1 & 1 & 0 & 0 \\ -2 & -2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 π

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 & -3 & 0 \\
0 & 0 & 1 & 0 & 2 & 1
\end{pmatrix}
-b_2$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 & 3 & 0 \\
0 & 0 & 1 & 0 & 2 & 1
\end{pmatrix}$$

Jadi Invers Matriks A adalah $A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$

Perhatikan bahwa:

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{pmatrix}$$
 dan
$$A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$$

$$AA^{-1} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Berikut ini adalah sifat-sifat matriks invers:

- i. $(A^{-1})^{-1} = A$
- ii. Jika A, B dapat dibalik atau memiliki invers maka $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$
- maka $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$ iii. Misal $k \in Riil$ maka $(kA)^{-1} = \frac{1}{k}A^{-1}$
- iv. Akibat dari (ii) maka $(A^n)^{-1} = (A^{-1})^n$