Kalkulus Első zárthelyi dolgozat

2023. január 27.

Név, Neptun-kód:

Kérem, hogy tegyen X-et a gyakorlatvezetője neve mellé.

Gselmann Eszter	
Kiss Tibor	
Nagy Gergő	
Tóth Mariann	
Tóth Norbert	
Tóth Péter	

Igaz-hamis kérdések

- 1. Van legalább egy szigorúan monoton csökkenő valós számsorozat.
- 2. Van olyan valós számsorozat, amelynek minden részsorozata monoton csökkenő.
- 3. Van legalább egy konvergens valós számsorozat.
- 4. Van legalább nyolcvannégy divergens valós számsorozat.
- 5. Ha az $(x_n)_{n\in\mathbb{N}}$ és $(y_n)_{n\in\mathbb{N}}$ sorozatok nullsorozatok, akkor az $(x_ny_n)_{n\in\mathbb{N}}$ sorozat is az.
- 6. Ha az $(x_n)_{n\in\mathbb{N}}$ és $(y_n)_{n\in\mathbb{N}}$ sorozatok nullsorozatok, akkor az $\left(\frac{x_n}{y_n}\right)_{n\in\mathbb{N}}$ sorozat is az.
- 7. Vannak olyan divergens $(x_n)_{n\in\mathbb{N}}$ és $(y_n)_{n\in\mathbb{N}}$ sorozatok, hogy az $(x_n+y_n)_{n\in\mathbb{N}}$ sorozat konvergens.
- 8. $\lim_{n\to\infty} \frac{1}{n} = 0$.
- 9. $\lim_{n\to\infty} (8n^3 + 7n^2 3n + 2) = -\infty$.
- 10. Van olyan $f: \mathbb{R} \to \mathbb{R}$ függvény, melynek pontosan harminchárom szakadási helye van.
- 11. $\lim_{x\to-\infty} 2x^3 + 8x^2 3 = +\infty$.
- 12. Ha az $f:]a, b[\to \mathbb{R}$ függvény folytonos az $x_0 \in]a, b[$ pontban, akkor az f függvény differenciálható is ebben a pontban.
- 13. Az exponenciális függvényre exp(1) = 0 teljesül.
- 14. Ha $f(x) = \sqrt{1-x}$, akkor $f'(x) = \frac{1}{2\sqrt{1-x}}$.
- 15. Ha $f(x) = \sin(x)$ $(x \in \mathbb{R})$, akkor $f'(x) = -\cos(x)$ $(x \in \mathbb{R})$.

Kérdés	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Válasz															

Helyes válasz 1 pont, helytelen válasz -1 pont, üresen hagyott mező 0 pont. Ez a pontozási módszer bünteti a tippelést. Kérem, hogy a saját érdekében ne tippeljen.

INBPM0207G

Kalkulus Első zárthelyi dolgozat

2023. január 27.

Feladatok

(b)

1. Számítsa ki az alábbi sorozatok határértékét.

(a) (d)

$$x_n = \frac{n^3 + 25n^2 + 3n + 2}{2n^3 - 17n^2 + 9n - 6} \qquad (n \in \mathbb{N})$$

$$x_n = \left(\frac{n+4}{n+1}\right)^{n+2} \qquad (n \in \mathbb{N})$$

 $x_n = \sqrt{n^2 + 3n + 2} - \sqrt{n^2 + n - 1}$ $(n \in \mathbb{N})$ (e)

(c) $x_n = \frac{2n^2 + 2\sin(n) + 1}{n^3 + 3\cos(n) + 5} \qquad (n \in \mathbb{N})$

$$x_n = \frac{5 \cdot 3^n + 4 \cdot 5^n + 9 \cdot 2^n}{7 \cdot 2^n - 9 \cdot 5^n + 2 \cdot 3^n} \qquad (n \in \mathbb{N})$$

(5-5 pont)

2. Döntse el, hogy konvergens-e a

$$\sum_{n=1}^{\infty} \frac{2n}{3^n}$$

sor.

(5 pont)

3. Számítsa ki a

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$$

határértéket.

(5 pont)

4. Számítsa ki az alábbi függvények differenciálhányadosfüggvényeit.

(a) (c)

$$f(x) = 12x^{12} + 3\sin(x) - 5\cos(x) + 10e^x + 28\ln(x) - 2$$

$$f(x) = \frac{\sin(x) - x\cos(x)}{\sinh(x) - x\cosh(x)}$$

(b)
$$f(x) = \left(1 - 2x + \frac{1}{x^3}\right) \left(\sqrt[3]{x} - \frac{2}{\sqrt{x}}\right)$$

$$f(x) = \ln\left(\frac{\sqrt{2x+1}}{\sin^2(x)}\right)$$

(5-5 pont)