Discrete Mathematics Lecture Note

TaeYoung Rhee

October 2022

1 Introduction

1.1 Mobius Inversion

Let D_n = all divisor set of positive integer n.

$$a, b \in D_n, a \le b \Leftrightarrow a|b$$

Define $\mu: D_n \times D_n \to \mathbb{R}$

$$\mu(a,b) = \begin{cases} (-1)^r & \text{if } a \mid b \text{ and } \frac{b}{a} \text{ is the product of } k \text{ distinct primes} \\ 0 & \text{otherwise} \end{cases}$$

$$\mu(b) = \mu(1,b) = \begin{cases} (-1)^r & \text{square free} \\ 0 & \text{not square free} \end{cases}$$

Lemma 1. For m > 1,

$$\sum_{d \in D_m} \mu(d) = \begin{cases} 1 & (m=1) \\ 0 & (m \neq 0) \end{cases}$$

$$\sum_{a \le c \le b} \mu(a, c) = \begin{cases} 1 & (a = b) \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{d} \mu(d) = \sum_{i=0}^{r} {r \choose i} (-1)^{i} = 0$$

Theorem 1. For function $f, g: D_m \to \mathbb{R}$,

$$g(n) = \sum_{d \in D_n} f(d) \Leftrightarrow f(n) = \sum_{d \in D_n} \mu(d,n) \\ g(n) = \sum \mu(d) \\ g(\frac{n}{d})$$

Proof. (\Rightarrow)

$$\begin{split} &\sum_{d \in D_n} \mu(d,n) \sum_{e \in D_d} f(e) \\ &= \sum_{e \in D_n} \sum_{e \leq d \leq d_n} \mu(d,n) f(e) \\ &= \sum_{e \in D_n} f(e) \sum_{e \leq d \leq D_n} \mu(d,n) = f(n) \end{split}$$

Corollary 1.

$$\phi(n) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right) \Leftrightarrow n = \sum_{d \in D_n} \phi(d)$$

show that

$$\phi(n) = \sum_{d \in D_n} \mu(d) \frac{n}{d}$$

1.2 Generating Functions

Define power series ring $\mathbb{C}[[x]] = \left\{ \sum_{n \geq 0} a_n x^n | a_n \in \mathbb{C} \ \forall n \right\}$. 'Formal' means evalutation or radius of convergence is ignored. We call x^n is a 'placeholder' of a_n . $a_n = \text{coefficient of } x^n$

For a sequence $f: N_0 \to \mathbb{C}$ $(f \in \mathbb{C}[[x]])$

The ordinary generating function is

$$\sum f(n)x^n$$

The exponential generating function is

$$\sum f(n) \frac{x^n}{n!}$$

Let A(x), B(x) ordinary. Then AB = C is ordinary, where $c_n = \sum_{i=0}^n a_i b_{n-i}$ convolution.

Notation. Define $e^x = \sum_{n \geq 0} \frac{x^n}{n!}$ e.g.f for $(1,1,1,\cdots)$ Define $e^{-x} = \sum_{n \geq 0} (-1)^n \frac{x^n}{n!}$ Show that $e^x e^{-x} = \left(\sum_{n \geq 0} \frac{x^n}{n!}\right) \left(\sum_{n \geq 0} (-1)^n \frac{x^n}{n!}\right) = \sum_{n \geq 0} \left(\sum_{i=0}^n (-1)^i \binom{n}{i}\right) \frac{x^n}{n!} = 1.$ Define $\log 1 + x = \sum_{n \geq 1} (-1)^{n-1} \frac{x^n}{n}$

Example 1. Generating function for $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ with $H_0 = 0$

$$\sum_{n\geq 0} H_n x^n = \left(\sum_{n\geq 1} \frac{1}{n} x^n\right) \left(\sum_{n\geq 0} x^n\right)$$
$$= -\log(1-x) \cdot (1-x)^{-1}$$
$$= \frac{1}{1-x} \log \frac{1}{1-x}$$

1.3 Infinite Sums and Products in $\mathbb{C}[[x]]$

Example 2. p(n) = # of partitions of n

$$\sum_{n\geq 0} p(n)x^n = \prod_{i\geq 1} \frac{1}{1-x^i}$$

$$= \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdots$$

$$= (1+x+x^2+\cdots)(1+x^2+x^4+\cdots)\cdots$$

Note that the coefficient of x^n in \mathfrak{Z} Um \mathfrak{Z} requires finite number of factors.

coefficient of
$$x^n$$

= #of solutions (a_1, a_2, \dots, a_n) to $n_1 + 2n_2 + \dots + = n$
= $p(n)$

Definition 1. Let $A_0, A_1, \dots \in \mathbb{C}[[x]]$

 $A \in \mathbb{C}[[x]], \deg(A) = \text{first power with nonzero coefficient.}$

The sum $\sum_{i>0} A_i$ exists iff $\deg A_i \to \infty$.

$$A_1 = (a_{10}, a_{11}, a_{12}, a_{13}, \cdots)$$

$$A_2 = (0, a_{21}, a_{22}, a_{23}, \cdots)$$

$$A_3 = (9, 0, a_{32}, a_{33}, \cdots)$$

We can make each row sum is finite.

Example 3. e^{1+x} is not well-defined.

$$e^{1+x} = 1 + (1+x) + \frac{(1+x)^2}{2!} + \frac{(1+x)^3}{3!} + \cdots$$

$$e^{e^x - 1} = \sum_{n \ge 0} B(n) \frac{x^n}{n!}$$

$$= 1 + \left(\sum_{n \ge 1} \frac{x^n}{n!}\right) + \frac{\left(\sum_{n \ge 1} \frac{x^n}{n!}\right)^2}{2!} + \cdots$$

Assume the constant term of each $A_i=1$. $\prod_{i\geq 1}A_i$ exists iff $\deg(A_i-1)\to\infty$

Example 4.
$$(1+x)(1+x^2)(1+x^3)\cdots$$
 is well defined. $=\sum_{n\geq 0} p_d(n)x^n$

Propositions

(1)
$$\prod_{i\geq 0} A_i$$
 and $\prod_{i\geq 0} B_i$ are well-defined $\Rightarrow \prod_{i\geq 0} A_i B_i = \left(\prod_{i\geq 0} A_i\right) \left(\prod_{i\geq 0} B_i\right)$

Proof. $\deg(AB-1) \ge \min\{\deg(A-1), \deg(B-1)\}$ The factors that contribute to x^n are the same on both sides

(2)
$$\left(\prod_{i\geq 0} A_i\right)^{-1} = \prod_{i\geq 0} A_i^{-1}$$

Proof. dhotldqkfs

$$\deg(A_i - 1) = \deg(A_i^{-1} - 1)$$

example

$$A = \prod_{i \ge 0} (i - x^i) \Rightarrow A^{-1} = \prod_{i \ge 0} \frac{1}{1 - x^i}$$

(3) $\frac{\prod_{i\geq 0} A_i}{\prod_{i\geq 0} B_i} = \prod_{i\geq 0} \frac{A_i}{B_i}$

Example 5. $\frac{\prod_{i\geq 1}(1-x^{2i})}{\prod_{i\geq 1}(1-z^i)} = \prod_{i\geq 1} = \prod_{i\geq 1}(1+z^i) = \sum_{n\geq 0} p_d(n)x^n = \prod_{i\geq 1} \frac{1}{1-z^{2i-1}} = \sum_{n\geq 0} p_0(n)x^n$

 $p_0(n)$ is number of partitions of n where parts are odd.

Compositions in $\mathbb{C}[[x]]$

 $A(x), B(x) \in \mathbb{C}[[x]]$

A(B(x)) is well-defined if either (1) A(x) is a polynomial or (2) the constant term in B(x) = 0

Example 6.

$$A(x) = e^x$$
$$B(x) = e^x - 1$$

 $A(B(x)) = e^{e^x - 1}.$

When C(x) = x + 1, $A(C(x)) = e^{x+1}$ is not well defined.

1.5 **General Powers**

Propositions. Given any $\lambda \in \mathbb{C}$, define $\binom{\lambda}{n} = \frac{\lambda(\lambda-1)\cdots(\lambda-n+1)}{n!}$ with $\binom{\lambda}{0} = 1$ Define $(1+x)^{\lambda} = \sum_{n>0} {\lambda \choose x^n} \in \mathbb{C}[[x]]$

If λ is a positive integer, this is just the binomial theorem.

If $A(x) \in \mathbb{C}[[x]]$ with A(0) = 0, then $(1 + A(x))^{\lambda} = \sum_{n \geq 0} {\lambda \choose n} A(x)$.

Example 7.

$$(1-x)^{-k} \stackrel{?}{=} \frac{1}{(1-x)^k}$$

Note that

$${\binom{-k}{n}} = \frac{-k(-k-1)(-k-2)\cdots(-k-n+1)}{n!}$$

$$= \frac{(-1)^n(n+k-1)_n}{n!}$$

$$= (-1)^n {\binom{n+k-1}{n}} = (-1)^n {\binom{n+k-1}{k-1}}$$

$$(1-x)^{-k} = \sum_{n\geq 0} {\binom{-k}{n}} (-1)^n x^n$$
$$= \sum_{n\geq 0} {\binom{n+k-1}{k-1}} x^n = \frac{1}{(1-x)^k}$$

Proposition. $(1+x)^{\lambda}(1+x)^{\mu} = (1+x)^{\lambda+\mu}$

Example 8.

$$(1+x)^{\frac{1}{2}}(1+x)^{\frac{1}{2}} = 1+x$$

Proof. Need to show

$$\sum_{i=0}^{n} \binom{\lambda}{i} \binom{\mu}{n-i} = \binom{\lambda+\mu}{\mu} \text{ for all } n \ge 0$$

We can prove it in algebra. Otherwise, we can show it by proving coefficient of x^n for LHS = coefficient of x^n for RHS.

Check that

$$\binom{x+y}{n} = \sum_{i=0}^{n} \binom{x}{i} \binom{y}{n-i}$$
 for all positive integers x, y

Let LHS = f(x, y) and RHS = g(x, y). f(x, y) = g(x, y) for infinitely many x, yf = g as polynomials.

1.6 Catalan Numbers

$$c_0 = 0, c_1 = 1, c_2 = 1, c_3 = 2, c_4 = 5$$

 $c_5 = c_1c_4 + c_2c_3 + c_3c_3 + c_4c_1$

$$c_n = \sum_{i=1}^{n-1} c_i c_{n-i}$$

Let $C(x) = \sum_{n>0} c_n x^n$.

$$\begin{split} C(x) &= C(x)^2 + x \\ \Rightarrow C(x)^2 - C(x) &= -x \\ \Rightarrow C(x)^2 - C(x) + \frac{1}{4} = \frac{1}{4} - x \\ \Rightarrow \left(C(x) - \frac{1}{2}\right)^2 = \frac{1}{4} - x \\ \Rightarrow C(x) - \frac{1}{2} = \pm \frac{1}{2}(1 - 4x)^{\frac{1}{2}} \end{split}$$

Since $C(x) = c_0 = 0$, we get

$$C(x) - \frac{1}{2} = -\frac{1}{2}(1 - 4x)^{\frac{1}{2}}$$
$$\therefore C(x) = \frac{1}{2} - \frac{1}{2}(1 - 4x)^{\frac{1}{2}}$$

$$(1 - 4x)^{\frac{1}{2}} = 1 + \sum_{n \ge 1} {1 \choose n} (-1)^n 4^n x^n$$
$$= 1 - 2 \sum_{n \ge 1} \frac{1}{n} {2n - 2 \choose n - 1} x^n$$

Check that

$$\binom{1\frac{1}{2}}{n} = \frac{(-1)^{n-1}}{2^{2n-1}} \frac{1}{n} \binom{2n-2}{n-1}$$

Thus

$$c_n = \frac{1}{n} \binom{2n-2}{n-1}$$

Other interpretations of Catalan Number 1.7

 c_n = number of ways to parenthesize a product $x_1x_2\cdots x_n$

Example 9. For $x_1x_2x_3x_4$, there are 5 ways.

Key observation is the outermost parenthesis multiples two terms. The first is a product involving $x_1, x_2, \dots, x_r \to a_r$ ways to do this. The second is a product involving $x_r + 1, x_r + 2, \dots, x_n \to a_{n-r}$ ways.

number of binary trees with n leaves and 1 root. A tree is binary if every vertex has degree 1 or 3.

A bijections among these sets (triangulations of n+1-gon, parenthesized prod-

Figure 1: binary tree

ucts of n variables, binary trees with n leaves)

Example 10. Figure 2 is the bijection between the sets.

Product of exponential generating functions 1.8

$$A(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}$$
$$B(x) = \sum_{n \ge 0} b_n \frac{x^n}{n!}$$

$$B(x) = \sum_{n > 0} b_n \frac{x^n}{n!}$$

Figure 2: bijections

$$A(x)B(x) = \sum_{n>0} c_n \frac{x^n}{n!}$$
 where $c_n = \sum_{i=0}^n \binom{n}{i} a_i b_{n-i}$

It means number of ways to partition on n-set into two ordered blocks and create structure "A" in the first block and structure "B" in the second block.

Remark If "A" = "B", then $\frac{A(x)^2}{2!}$ = e.g.f for the number of ways to create two unordered blocks in an n-set and create structure "A" in each block.

Remark If both blocks of an *n*-set has to be non-empty then let $a_0 = b_0 = 0$

Example 11. c_n = number of ways to color n labeled balls with red and blue so that an even number of balls are colored red and an odd number of balls are colored blue.

$$c_n = 0$$
 if n is even. $c_n = 2^{n-1}$ if n is odd.

$$R(x) = \text{e.g.f for } (1, 0, 1, 0, \dots) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} = \frac{e^x + e^{-x}}{2}$$

$$B(x) = \text{e.g.f for } (0, 1, 0, 1, \dots) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \frac{e^x - e^{-x}}{2}$$

$$B(x) = \text{e.g.f for } (0, 1, 0, 1, \dots) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \frac{e^x - e^{-x}}{2}$$

$$\sum_{n\geq 0} c_n \frac{x^n}{n!} = C(x) = R(x) \cdot B(x)$$

$$= \frac{e^{2x} - e^{-2x}}{4}$$

$$= \frac{1}{4} \left[\left(1 + 2x + \frac{(2x)^2}{2!} + \cdots \right) - \left(1 - 2x + \frac{(2x)^2}{2!} - \cdots \right) \right]$$

$$= \sum_{n\geq 0} 2^{n-1} \frac{x^n}{n!}$$

Example 12. Dearangement (revisited)

$$P(x) = \sum_{n>0} n! \frac{x^n}{n!} = \sum_{n>0} x^n = \frac{1}{1-x} = \text{ e.g.f for } \{|S_n| = n!\}$$

$$I(X) = \sum_{n>0} 1 \frac{x^n}{n!} = e^x$$

= e.g.f for the number of identity permutations on an n-set

= e.g.f for the sequence $(1, 1, 1, \cdots)$

$$D(x) = \sum_{n \ge 0} d_n \frac{x^n}{n!}$$
 where $d_n =$ number of dearangements on an *n*-set

P(x) = I(x)D(x) because a permutations on an n-set is obtained by

- 1. partitioning the n-set into two ordered blocks.
- 2. create the identity permutations on the first block and create a dearangement on the second block.

$$\therefore D(x) = P(x)I(x)^{-1} = \frac{e^{-x}}{1-x}$$

PS3 #7

number of involutions in S_n = number of partial matchings with n vertices = a_n

partial matching = degree 1 graphs = collection of disjoint edges and vertices. $\sigma \in S_n$ is an involution if $\sigma = id$, i.e., σ is a product of disjoint transpositions cycles of length 2.

partial matchings is

- 1. Split [n] into two blocks.
- 2. Create a perfect matching in the first block and leave the second block untouched.

For PS3 #7 (a), check that $a_n = a_{n-1} + (n-1)a_{n-2}$ with $a_0 = a_1 = 1$. (b)

$$f(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!} = e^{x + \frac{x^2}{2}}$$

$$= 1 + (x + \frac{x^2}{2}) + \frac{\left(x + \frac{x^2}{2}\right)}{2!} + \cdots$$

$$= 1 + x + \sum_{n \ge 2} (a_{n-1} + (n-1)a_{n-2}) \frac{x^n}{n!}$$

$$f'(x) = 1 + \sum_{n \ge 2} a_{n-1} \frac{x^{n-1}}{(n-1)!} + \sum_{n \ge 2} a_{n-2} \frac{x^{n-1}}{(n-2)!}$$

$$= 1 + (f(x) - 1) + xf(x)$$

$$\Rightarrow f'(x) = (1+x)f(x)$$

$$\Rightarrow \frac{f'(x)}{f(x)} = 1 + x$$

$$\Rightarrow f(x) = e^{x + \frac{x^2}{2}}$$

Let
$$g(x) = e^{x + \frac{x^2}{2}} = \sum_{n \ge 0} b_n \frac{x^n}{n!}$$
.

Since g'(x) = (1 + x)g(x).

We can check that $b_n = b_{n-1} + (n-1)b_{n-2}$ with $b_0 = b_1 = 1$.

Then $\{a_n\}$ and $\{b_n\}$ satisfies the same recurrence relations

$$\therefore \forall n \ a_n = b_n$$

Review: S(n,k)= Stirling numbers of the second kind. k!S(n,k)= number of all surjective functions $f:[n]\to k$ (k fixed) $=\sum_{(n_1,n_2,\cdots,n_k)}\binom{n}{n_1,n_2,\cdots,n_k}$ where the sum is over all compositions (n_1,\cdots,n_k)

of n.

$$\Rightarrow S(n,k) = \frac{1}{k!} \sum_{(n_1, \dots, n_k)} \binom{n}{n_1, n_2, \dots, n_k}$$

$$= \frac{1}{k!} \times \left(\text{coefficient of } \frac{x^n}{n!} \text{ in } (e^x - 1)^k \right)$$

$$= \frac{1}{k!} \sum_{(n_1, \dots, n_k)} \binom{n}{n_1, n_2, \dots, n_k} \underbrace{1 \cdot 1 \cdot \dots 1}_{k \text{ times}}$$

$$\sum_{n>0} S(n,k) \frac{x^n}{n!} = \frac{(e^x - 1)^k}{k!}$$

Corollary 2.

$$f_n = \text{ number of surjections } [n] \to [k]$$

$$\sum_{n>0} f_n \frac{x^n}{n!} = (e^x - 1)^k$$

Exercise. Let g_n = number of surjections with $|f^{-1}(i)| \ge 3 \ \forall i \in [k]$. Find $sum_{n\ge 0}g_n\frac{x^n}{n!}$.

Proposition 1. Let $A(x) = \sum_{n\geq 0} a_n \frac{x^n}{n!}$ where $a_n =$ number of ways to create structure "A" on an *n*-set.

Then

$$\frac{A(x)^k}{k!} = \sum_{n>0} b_n \frac{x^n}{n!}$$

where b_n = number of ways to

- 1. partition an n-set into unordered k blocks
- 2. create structure "A" in each block.

Proof. clear.
$$\Box$$

Example 13.
$$c(n,k) = \text{number of ways to create } k \text{ cycles on } [n].$$

Let $A(x) = \sum_{n \geq 1} (n-1)! \frac{x^n}{n!} = \sum_{n \geq 1} \frac{x^n}{n} = -\log(1-x) = \log(\frac{1}{1-x}).$

(n-1)! is the number of ways to create one cycle of length n

$$\therefore \sum_{n>0} c(n,k) \frac{x^n}{n!} = \frac{\log\left(\frac{1}{1-x}\right)^k}{k!}$$

Theorem 2. Let $A(x) = \sum_{n \geq 1} a_n \frac{x^n}{n!} \ (n \geq 1)$

$$e^{A(x)} = \exp\left(\sum_{n\geq 1} a_n \frac{x^n}{n!}\right) = \sum_{n\geq 0} b_n \frac{x^n}{n!} \ (b_0 = 1)$$

where b_n = number of ways to partition an n-set into unordered non-empty blocks and create structure "A" in each block.

Proof.

$$e^{A(x)} = 1 + A(x) + \frac{A(x)^2}{2!} + \dots + \frac{A(x)^k}{k!} + \dots$$

coefficient of $\frac{x^n}{n!}$ in $e^{A(x)} = \sum_{k \geq 1}$ coefficient of $\frac{x^n}{n!}$ in $\frac{A(x)^k}{k!}$ which means the number of ways to partition an n-set into unordered non-empty blocks and create structure "A" in each block.

Example 14.

$$\sum_{n\geq 0} B(n) \frac{x^n}{n!} = \sum_{n\geq 0} \left(\sum_{k\geq 0} S(n,k) \right) \frac{x^n}{n!}$$
$$= \sum_{k\geq 0} \left(\sum_{n\geq 0} S(n,k) \frac{x^n}{n!} \right)$$
$$= \sum_{k\geq 0} \frac{(e^x - 1)^k}{k!} = e^{e^x - 1}$$

where B(n) is Bell number.

Example 15.

$$A(x) = \sum_{n \ge 1} \frac{x^n}{n!} = \log\left(\frac{1}{1-x}\right)$$

$$\frac{1}{1-x} = \sum_{n \ge 0} n! \frac{x^n}{n!}$$
$$= \sum_{n \ge 0} |S_n| \frac{x^n}{n!}$$
$$= e^{A(x)} = e^{\log\left(\frac{1}{1-x}\right)} = \frac{1}{1-x}$$

Example 16. number of simple graphs on the vertext set $[n] = 2^{\binom{n}{2}}$. Simple graph is a compound structure given by connected graphs. graph figre

Let $f(x) = \sum_{n \geq 1} d_n \frac{x^n}{n!}$ where $d_n =$ number of connected graphs on an *n*-vertext set.

We know that $2^{\binom{n}{2}}$ = number of simple graphs on *n*-vertices.

$$e^{f(x)} = \sum_{n \ge 0} 2^{\binom{n}{2}} \frac{x^n}{n!} \left(\binom{0}{2} = \binom{1}{2} = 0 \right)$$
$$f(x) = \log \left(\sum_{n \ge 0} 2^{\binom{n}{2}} \frac{x^n}{n!} \right)$$
$$\stackrel{diff}{\Rightarrow} f'(x) = \frac{\text{aaa'}}{\text{aaa}}$$

$$\left(\sum_{n\geq 1} n d_n \frac{x^{n-1}}{n!}\right) \left(\sum_{n\geq 0} 2^{\binom{n}{2}} \frac{x^{n-1}}{n!}\right) = \sum_{n\geq 0} n 2^{\binom{n}{2}} \frac{x^n}{n!}$$

By comparing the coefficient of $\frac{x^n}{n!}$ on both sides.

$$\sum_{i=1}^{n} \binom{n}{i} i \cdot d_i 2^{\binom{n-i}{2}} = n2^{\binom{n}{2}}$$

$$n = 1 : d_1 = 1$$

 $n = 2 : {2 \choose 1} d_1 + {2 \choose 2} d_2 = 2 \cdot 2$
 $\Rightarrow d_2 = 1, d_3 = 4$

Definition 2. Tree = a connected acyclic group

Cayley: number of spanning trees in $K_n = n^{n-2}$

Example 17. $n = 3:3^1 = 3$

3 spanning tree grim

$$n=4:4^2=16$$

4 spanning tree grim

Definition 3. Forest = a disjoint union of trees

Example 18. For n = 3,

forest grim

Define tree generating function.

$$T(x) = \sum_{n \ge 1} n^{n-2} \frac{x^n}{n!}$$

$$e^{T(x)} = \sum_{n \ge 0} r_n \frac{x^n}{n!}$$

where r_n is the number of spanning forests in K_n

$$e^{T(x)} = 1 + T(x) + \frac{T(x)^2}{2!} + \cdots$$

We can think coefficient of $\frac{x^n}{n!}$ in $\frac{T(x)^k}{k!}$ $(k \ge 0)$ coef pyo

Define f-vector of K_n

$$\begin{split} f_{K_n} &= (f_0, f_1, \cdots, f_{n-1}) \\ f_{K_4} &= (1, 6, 15, 16) \ (15^2 \ge 6 \cdot 16) \\ f_{K_5} &= (1, 10, 45, 110, 123) \ (45^2 \ge 10 \cdot 110) \\ f_{K_6} &= (1, 15, 105, 435, 1080, 1296) \end{split}$$

Log-cocavity of f_{K_n} (proved by Heo)

Define an alternating sum

$$\alpha(K_n) = f_{n-1} - f_{n-2} + f_{n-3} - \dots \pm f_0$$

$$-e^{-T(x)} = 1 - T(x) + \frac{T(x)^2}{2!} - \dots = \sum_{n>0} \alpha(K_n) \frac{x^n}{n!}$$

1.9 Generating Functions for Number Partitons

We know p(n) = number of partitions $\lambda = \lambda_1 \ge \lambda_2 \ge \cdots$ of n = number of weak solutions to $a_1 + 2a_2 + 3a_3 + \cdots + na_n = n$

Theorem 3.

$$\sum_{n\geq 0} p(n)x^n = \prod_{i\geq 1} \frac{1}{1-x^i}$$

Proof.

$$\prod_{i \ge 1} \frac{1}{1 - x^i} = \frac{1}{1 - x} \cdot \frac{1}{1 - x^2} \cdots$$
$$= (1 + x + x^2 + \cdots)(1 + x^2 + x^4 + \cdots) \cdots$$

coefficient of x^n = number of sequence (a_1, a_2, \dots, a_n) satisfying $a_1 + 2a_2 + \dots + na_n = n$ is p(n)

 $p_d(n)$ = number of partitions of n with distinct part.

$$\sum_{n\geq 0} p_d(n)x^n = \prod_{i\geq 1} (1+x^i)$$

 $p_o(n)$ = number of partitions of n with parts that are odd only.

$$\sum_{n\geq 0} p_o(n)x^n = \prod_{n\geq 0} i \geq 1 \frac{1}{1 - x^{2i-1}}$$

Euler. $p_d(n) = p_o(n)$

Proof.

Proof.

$$\prod_{i\geq 1} (1+x^i) = (1+x)(1+x^2)(1+x^3)\cdots$$

$$= \frac{1-x^2}{1-x} \frac{1-x^4}{1-x^2} \frac{1-x^6}{1-x^3}\cdots$$

$$= \prod_{i\geq 1} \frac{1}{1-x^{2i-1}}$$

Combinativocial proof of $p_d(n) = p_o(n)$

Lemma 2. t_n = number of partitions of n into distinct powers of $2 = 1 \ \forall n$

$$(1+x)(1+x^2)(1+x^4)(1+x^8)\cdots = 1+x+x^2+\cdots$$