Name: [IIT Kanpu	
Roll No		Dont	CS771A (IML) Quiz-3
KOII INO	:	Dept.:	Date: October 18, 2023
Instruc	tions:		Total: 30 marks
	Ouration is 60 minutes. Please wr Write your answers clearly in the		
Section	I (Short/medium-length answer qu	estions: 30 marks)	
a h the	eads outcome, the MLE solution	n is $\theta_{MLE} = \frac{\sum_{n=1}^{N} y_n}{N}$. Further $\frac{y_n + \alpha - 1}{\alpha + \beta - 2}$. Comparing these results	Bernoulli $(y_n \theta)$, with $y_n = 1$ denoting assuming a Beta $(\theta \alpha,\beta)$ prior on θ lts, briefly describe what the prior's s)
of a		perparameters $oldsymbol{w}_0, oldsymbol{\Sigma}$ to be know	$\{ \Sigma^{-1}(\boldsymbol{w} - \boldsymbol{w}_0) \}$ on the weight vector $\{ \boldsymbol{w} \in \boldsymbol{w} \}$ what does this specific prior say clarizer on \boldsymbol{w} . (2 marks)
	ogistic regression a generative mod stion for probabilistic linear regre		Briefly explain. Also answer the same for the responses. (2 marks)
to e	estimate? Also write down the exp	pression, in terms of these parameters	what are the parameters that we need meters, for probability of a test input tionality constant is fine). (2 marks)

Page 2

IIT Kanpu CS771A (IML		e:	Vame
Quiz-3 Date: October 18, 202	Dept.:	No.:	Roll I
	learned means $\mu_1, \mu_2, \dots, \mu_K$ from a K -means clustering m for input \boldsymbol{x}_n . Write your answer in terms of the precise materials \boldsymbol{x}_n .		
e same as what you would have in	on a Gaussian mixture model (assuming K Gaussians) using for the hard guess of the cluster id \mathbf{z}_n for an input \mathbf{x}_n be the clustering algorithm? Briefly explain your answer. (2 mark	expression f	(
	aussian posterior distribution $\mathcal{N}(\theta \mu,\sigma^2)$ for some parameter Gaussian posterior, can you obtain the MLE solution? Brief		
y is MDS not suitable for getting	plain the basic idea of multi-dimensional scaling (MDS). Wasple embedding? (2 marks)		

Page 3

Nam	ie:							C	IIT Kanpuı S771A (IML)
Roll	No). :			Dept.:				Quiz-3 tober 18, 2023
10.	In I	PCA, what to	pp-most eigenve	ector (i.e.	, which corr	esponds to t	the larges	t eigenvalue) means	s? (2 marks)
11.								on method if our evel ed by PCA? (2 mag)	_
12.	Brie	iefly explain t	he basic idea o	of K -mear	ns++. (2 m	uarks)			
13.			what is semi-suing. (2 marks		learning ar	nd how can	we use a	latent variable m	odel for semi-
14.								ne latent variables z_n is discrete.	
15.			ality reduction for? (2 marks		briefly expl	ain what th	ne encoder	r and decoder comp	ponents of the

Page 4

IIT Kanpur CS771A (IML) Quiz-3

Date: October 18, 2023

Name:

Roll No.:

Dept.:

FOR ROUGH WORK ONLY