画像情報研究室 個別ミーティング報告資料

氏名: 釜坂 一歩

報告日: 2015年5月19日

これまでの経緯 (今週の作業の背景)

・樽見さんプログラム引継ぎ

今週取り組んだこと

- ・樽見さんプログラム移植
 - -アルゴリズムについては完了
 - -訓練画像軍のデータベース化
 - →毎回同じ訓練画像軍に対してキーポイントと特徴量を取得するのは時間がかかるため,
 - キーポイントをテキストファイル,特徴量をバイナリファイルに書き出す.

各種ファイルが存在する場合はそちらを読み込むように変更.

- プログラム実行テスト
 - -query, train 共に 100 フレーム刻みの 30 枚の画像を使用する
 - 一結果

Figure 1 第1フレームのマッチング結果

- →同一地点のマッチングができている点とできていない点が混在する.
 - →マッチングが正常でない点の除去を考える.
 - ←キーポイントの距離を調べてみて閾値処理を行う.
 - ←使用するキーポイントを全訓練画像群から選別する
 - →特徴量をクラスタリングし、フレーム数の分散が大きいクラスに含まれるキーを除外する.
 - ←クロスチェックを行う.

Table 1 query と train の対応フレームとマッチ数

query	train	マッチ数	
100	100	45	
200	200	48	
300	300	27	
400	400	51	
500	500	28	
600	700	31	
700	800	33	
800	900	35	
900	1000	42	
1000	1100	43	
1100 1200	1200 1200	46	
1300	1400	43 40	
1400	1600	49	
1500	1600	69	
1600	1700	44	
1700	1700	57	0,500
1800	1900	50	3500
1900	2000	48	3000
2000	2100	64	© 2500
2100	2200	80	된 및 2000 -
2200	2300	143	E
2300	2300	36	train [Fram 6000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2400	2300	43	£ 1000
2500	2600	45	500
2600	2800	61	0
2700	2800	45	\$
2800	2900	66	\
2900	2900	47	
3000	3000	20	

Figure 2 フレーム対応グラフ

- →検索結果が線形となっているため、大雑把な検索としてはある程度の精度がみられる.
- -実行速度の検証
 - ←ノート PC の Linux 環境でテスト(corei7,8GB)
 - →cv2.CV_AA で AttributeError
 - ←int 型の数字(4)を代わりの引数とすることで解決
- -query3270 枚,train3450 枚のデータセットに対して,データベースの作成と画像の出力を含めて 1172.877 秒(20 分弱)
- ←元プログラムはグラフ作成用のファイル I/O がボトルネックだった?(未検証)
- データベースを読み込んだ場合キーポイントの読み込みで配列外参照のエラー

今週の疑問点

- ・研究の背景について
 - -GPS を用いないナビゲーションシステム
 - →一般的な DGPS による推定誤差の大きさ数メートルでは誤差が大きい
 - →室内外を問わない
 - ←これらのニーズは?
 - ←異なる地点での類似画像(例では室内の廊下)に弱い

今週の問題点

- ・SIFT 以外の特徴量に関して、FAST での実行を試みたが、Python ではうまくいかなかった(プログラム停止)
 - -FeatureDetector_create()にパラメータを渡すだけではダメ?
 - ←opencv2 系の FeatureDetector_create()で使用できるのは SIFT,SURF,BRIEF,BRISK,FREAK
 - →SIFT,SURF 以外で実行できない
 - →キーポイントの検出時点で失敗している模様
 - ←SIFTで十分な速度と精度が得られれば変更の必要はない?
 - →AKAZE に関しては python-opencv3.0 のドキュメントが充実したら試す

次週までの予定 (打合せの内容を反映して策定)

・所信表明の準備(5/27)