Aula 10 Pilhas, Filas e Listas Biligadas

Programação II, 2018-2019

v1.2. 27-04-2018

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Sumário

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Contract Contract Contract

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

- 1 Pilhas e filas
 - Definições e tipos de dados abstratos Implementação em lista ligada Implementação em vector
- 2 Listas biligadas

Sumário

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

1 Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista ligada Implementação em vector

2 Listas biligadas

Pilha: definição

 É uma estrutura de dados que só pode ser modificada po uma das suas extremidades usualmente denominada como "topo".

 Estrutura com gestão LIFO: Last In First Out;

 O último elemento a entrar é o primeiro a sair.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilha: definição

 É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo".

 Estrutura com gestão LIFO: Last In First Out;

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilha: definição

 É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo".

 Estrutura com gestão LIFO: Last In First Out;

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Implementação em lista ligada

Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

 É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo".

- Estrutura com gestão LIFO: Last In First Out;
 - O último elemento a entrar é o primeiro a sair.

- Estrutura com gestão LIFO: Last In First Out;
 - O último elemento a entrar é o primeiro a sair.

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

...,

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

impiernentação em vecti

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

impiementação em vect

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

. .

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

implementação em veca

Listas biligadas

- Armazenamento de contextos de execução de subrotina
- Análise e avaliação de expressões matemáticas
- Travessia depth-first de árvores e grafos
- Algoritmos de tratamento de texto:
 - Deteoção de palindromo.
- •

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

ligada Implementação em vector

Implementação em vecto

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Armazenamento de contextos de execução de subrotinas.

- Análise e avaliação de expressões matemáticas
- Travessia depth-first de árvores e grafos
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres
 - Detecção de palíndromo

• . .

Definições e tipos de dados

abstratos Implementação em lista

Pilhas, Filas e Listas

Biligadas

ligada Implementação em vector

Listas biligadas

Pilhas e filas

- Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.

- · Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.
- Travessia depth-first de árvores e grafos.
- Algoritmos de tratamento de texto:
 Inversão de cadeias de caracteres

• ...

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

implementagae em veet

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

listas biligadas

Comparação entre diferentes tipos de listas ligadas

- Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.
- Travessia depth-first de árvores e grafos.
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres.
 - Detecção de palíndromo.

• . .

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

- Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.
- Travessia depth-first de árvores e grafos.
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres.
 - Deteccão de palíndromo.

• . .

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.
- Travessia depth-first de árvores e grafos.
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres.
 - Detecção de palíndromo.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.
- Travessia depth-first de árvores e grafos.
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres.
 - Detecção de palíndromo.

• . .

- · Nome do módulo
- Servicos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Implementação em vecto

Listas biligadas

Nome do módulo:

- · Stacl
- Serviços
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

ligada Implementação em vector

impiernentação em vecti

Listas biligadas

Nome do módulo:

- · Stack
- Serviços
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

ligada Implementação em vector

impiementação em veci

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

Nome do módulo:

· Stack

Serviços:

- push: insere (empilha) um elemento no topo da pilha
- pop: remove (desempilha) o elemento no topo da pilha
- top: devolve o elemento no topo da pilha
- 1sEmpty: Verifica se a plina esta vazia
- isFull: verifica se a pilha está cheia
- size: retorna a dimensão actual da pilha
- · clear: limpa a pilha (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

- · Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazi
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- · Nome do módulo:
 - · Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

- · Nome do módulo:
 - · Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

- · Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

- · Nome do módulo:
 - · Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

· Nome do módulo:

- · Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

-iotao biligadao

Pilha: semântica

- · push(e
- · pop
- · Pös-condicăa: Listulii (
- 103-0011010300. 12.31 01.11
- top(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

implementação em vecti

Listas biligadas

Pilha: semântica

• push(e)

• Pré-condição: !isFull()

Pós-condição: !isEmpty() && (top() == e

· pop(

• Pré-condição: !isEmpty()

Pós-condição: !isFull(

• top()

Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

· push(e)

Pré-condição: !isFull()

Pós-condição: !isEmpty() && (top() == e

· pop(

- Pré-condição: !isEmpty()
- Pós-condição: !isFull()

• top()

Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

....

Listas biligadas

• push(e)

• Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

· pop()

• Pré-condição: !isEmpty()

Pós-condição: !isFull()

top()

Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

. .

Listas biligadas

· push(e)

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

Pré-condição: !isEmpty()
 Pós-condição: !isEmpty()

top(

Pré-condição: !isEmpty(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

• push(e)

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

Pré-condição: !isEmpty()

Pós-condição: !isFull(

top(

Pré-condição: !isEmpty(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

· push(e)

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

Pré-condição: !isEmpty()Pós-condição: !isFull()

· top(

Pré-condição: !isEmpty(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

..

Listas biligadas

• push(e)

• Pré-condição: !isFull()

Pós-condição: !isEmpty() && (top() == e)

pop()

Pré-condição: !isEmpty()

• Pós-condição: !isFull()

top()

Pré-condição: !isEmpty(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

push(e)

• Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

• Pré-condição: !isEmpty()

Pós-condição: !isFull()

top()

Pré-condição: !isEmpty()

 É uma estrutura de dados cujo acesso é feito por ambas as extremidades:

Gerida segundo uma política FIFO (First In First Out)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

- Gerida segundo uma política FIFO (First In First Out)
 - extrai-se sempre o valor mais antigo primeiro.

Implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

- Gerida segundo uma política FIFO (First In First Out)
 - extrai-se sempre o valor mais antigo primeiro.

- · Nome do módulo
- Servicos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Nome do módulo:

- Queue
- Serviços
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - 4 cFull 1: varifica co a fila actá chaia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

ligada Implementação em vector

impiementação em ve

Listas biligadas

Nome do módulo:

- Queue
- Serviços
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - 4 cFull 1: varifica so a fila está choia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

ligada Implementação em vector

implementação em vecti

Listas biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

Pilhas, Filas e Listas

Biligadas

ligada Implementação em vector

Listas biligadas

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

Nome do módulo:

• Queue

· Serviços:

- in: insere um elemento no fim da fila
- · out: retira elemento do início da fila
- peek: retorna o elemento do inicio da fila
- isEmpty: verifica se a fila está vazia
- isFull: verifica se a fila está cheia
- size: retorna a dimensão actual da fila
- clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

Nome do módulo:

• Queue

Serviços:

- in: insere um elemento no fim da fila
- · out: retira elemento do início da fila
- peek: retorna o elemento do inicio da fila
- isEmpty: verifica se a fila está vazia
- isFull: verifica se a fila está cheja
- size: retorna a dimensão actual da fila
- clear: limpa a fila (retira todos os elementos

- Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheja
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- · Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheja
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Nome do módulo:
 - Oueue
- · Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - · isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheja
 - size: retorna a dimensão actual da fila
 - · clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

- Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

- Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligada:

- · Nome do módulo:
 - Queue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - · size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligada:

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty(

· out(

- Pré-condição: !isEmpty()
- Pós-condição: !isFull(

· peek()

Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

implementação em veci

Listas biligadas

- in(v)
 - Pré-condição: !isFull()
 - Pós-condição: !isEmpty(
- · out(
 - Pré-condição: !isEmptv()
 - Pós-condição: !isFull(
- peek(
 - Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty()

· out

• Pré-condição: !isEmpty()

• peek()

Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty()

out()

- Pré-condição: !isEmpty(
 Pós-condição: !isFull()
- peek(
 - Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- in(v)
 - Pré-condição: !isFull()Pós-condição: !isEmpty()
- out()
 - Pré-condição: !isEmpty()
 - Pós-condição: !isFull(
- · peek()
 - Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty()

out()

Pré-condição: !isEmpty()Pós-condição: !isFull()

• peek(

Pré-condição: !isEmptv(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligada

- in(v)
 - Pré-condição: !isFull()Pós-condição: !isEmpty()
- out()
 - Pré-condição: !isEmpty()
 - Pós-condição: !isFull()
- peek()
 - Pré-condição: !isEmpty(

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Comparação entre

diferentes tipos de listas ligadas

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty()

out()

Pré-condição: !isEmpty()Pós-condição: !isFull()

• peek()

• Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligada

Implementação em lista ligada

- Numa aula anterior, estudámos as listas ligadas
- Comparando com os vectores, vimos que
 - A grande vantagem das listas ligadas e serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade.
 - A grande desvantagem das listas ligadas é não facilitarem o acesso direto a cada elemento.
- No caso particular das pilhas e das filas
 - Pode ser difícil prever o número de elementos
 - Não há necessidade de aceder a elementos abaixo do topo da pilha.
 - Não há necessidade de aceder a elementos no meio da fila
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Numa aula anterior, estudámos as listas ligadas.

- · Comparando com os vectores, vimos que
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade.
 - A grande desvantagem das listas ligadas é não facilitarem o acesso direto a cada elemento.
- No caso particular das pilhas e das filas
 - Pode ser difícil prever o número de elementos
 - Não há necessidade de aceder a elementos abaixo do topo da pilha.
 - Não há necessidade de aceder a elementos no meio da fila.
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector.

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Listas biligadas

- Numa aula anterior, estudámos as listas ligadas.
- · Comparando com os vectores, vimos que:
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade.
 - A grande desvantagem das listas ligadas é não facilitarem o acesso direto a cada elemento.
- No caso particular das pilhas e das filas.
 - Pode ser difícil prever o número de elementos
 - Não há necessidade de aceder a elementos abaixo do topo da pilha.
 - Não há necessidade de aceder a elementos no meio da fila.
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector.

Listas biligadas

- Numa aula anterior, estudámos as listas ligadas.
- · Comparando com os vectores, vimos que:
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade.
 - A grande desvantagem das listas ligadas é não facilitarem o acesso direto a cada elemento.
- No caso particular das pilhas e das filas:
 - Pode ser difícil prever o número de elementos.
 - Não há necessidade de aceder a elementos abaixo do topo da pilha.
 - Não há necessidade de aceder a elementos no meio da fila.
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector.

- Numa aula anterior, estudámos as listas ligadas.
- · Comparando com os vectores, vimos que:
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade.
 - A grande desvantagem das listas ligadas é não facilitarem o acesso direto a cada elemento.
- No caso particular das pilhas e das filas:
 - Pode ser difícil prever o número de elementos.
 - Não há necessidade de aceder a elementos abaixo do topo da pilha.
 - Não há necessidade de aceder a elementos no meio da fila.
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector.

Relembrando: lista ligada simples

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- A lista possui acesso direto ao primeiro e últime elementos
- E simples acrescentar elementos no início e no fim da lista.
- É simples remover elementos do início da lista

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- A lista possui acesso direto ao primeiro e último elementos.
- É simples acrescentar elementos no início e no fim da lista.
- · É simples remover elementos do início da lista

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- A lista possui acesso direto ao primeiro e último elementos.
- É simples acrescentar elementos no início e no fim da lista.
- É simples remover elementos do início da lista

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- A lista possui acesso direto ao primeiro e último elementos.
- É simples acrescentar elementos no início e no fim da lista.
- É simples remover elementos do início da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo
- Serviços

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Nome do módulo:

LinkedList

Serviços

- addFirst: insere um elemento no início da list
- · addLast: insere um elemento no fim da lista
- first: retorna o primeiro elemento da lista
- last: retorna o último elemento lista
- removeFirst: retira o elemento no início da lista
- size: retorna a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Nome do módulo:

- LinkedList
- Serviços
 - addFirst: insere um elemento no início da list
 - · addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da list
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Nome do módulo:

LinkedList

Servicos:

Pilhas, Filas e Listas Biligadas

Pilhas e filas

abstratos

Definições e tipos de dados Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- Servicos:
 - addFirst: insere um elemento no início da lista

Pilhas, Filas e Listas Biligadas

Pilhas e filas

abstratos

Definições e tipos de dados Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - i sEmpt.v: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

> Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - i sEmpt.v: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- Servicos:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

abstratos

Definições e tipos de dados Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - · addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - · last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList.
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - · last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - · last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

abstratos

Implementação em lista ligada

Definições e tipos de dados

Implementação em vector

Listas biligadas

Nome do módulo:

LinkedList

· Serviços:

- · addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: retorna o primeiro elemento da lista
- · last: retorna o último elemento lista
- removeFirst: retira o elemento no início da lista
- size: retorna a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - Método puen corresponde a addreveu de lista ligada.
 Método pop corresponde a renover una de lista ligada.
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - · Método push corresponde a addFirst da lista ligadaaa
 - Método pop corresponde a removeFirst da lista ligada
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - · Método push corresponde a addFirst da lista ligada
 - Método pop corresponde a removeFirst da lista ligada
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - Método push corresponde a addFirst da lista ligada.
 - Método pop corresponde a removeFirst da lista ligada
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - Método push corresponde a addFirst da lista ligada.
 - Método pop corresponde a removeFirst da lista ligada.
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - Método push corresponde a addFirst da lista ligada.
 - Método pop corresponde a removeFirst da lista ligada.
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - Método push corresponde a addFirst da lista ligada.
 - Método pop corresponde a removeFirst da lista ligada.
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Stack<E> {
  private LinkedList<E> list = new LinkedList<E>();
   public void push(E element) {
      list.addFirst(element);
  public E top() {
      return list.first();
   public void pop() {
      list.removeFirst();
   public int size() {
      return list.size();
  public boolean isEmptv() {
      return list.isEmpty();
```

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão FIFO (First In First Out)
- O primeiro elemento introduzido é o primeiro a remover por isso tem que ficar no primeiro nó da lista.
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão FIFO (First In First Out).
- O primeiro elemento introduzido é o primeiro a remover por isso tem que ficar no primeiro nó da lista.
 - Método out corresponde a removeFirst da lista ligada
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.
 - Método in corresponde a addLast da lista ligada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- Usa uma gestão FIFO (First In First Out).
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista.
 - Método out corresponde a removeFirst da lista ligada
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.
 - Método in corresponde a addLast da lista ligada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão FIFO (First In First Out).
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista.
 - Método out corresponde a removeFirst da lista ligada.
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.
 - Método in corresponde a addLast da lista ligada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão FIFO (First In First Out).
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista.
 - Método out corresponde a removeFirst da lista ligada.
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.
 - · Método in corresponde a addLast da lista ligada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Usa uma gestão FIFO (First In First Out).
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista.
 - Método out corresponde a removeFirst da lista ligada.
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.
 - Método in corresponde a addLast da lista ligada.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Queue<E> {
  private LinkedList<E> list = new LinkedList<E>();
   public void in(E element) {
      list.addLast(element);
  public E peek() {
      return list.first();
   public void out() {
      list.removeFirst();
   public int size() {
      return list.size();
  public boolean isEmpty() {
      return list.isEmpty();
```

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Precisamos de dois atributos
 - O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
Pilhas, Filas e Listas
Biligadas
```

```
Pilhas e filas

Definições e tipos de dados abstratos
```

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Stack<E> {
  private E[] array;
  private int size;
  public Stack(int maxSize) {
     assert maxSize >= 0;
     array = (E[]) new Object[maxSize];
     size = 0;
  public void push(E e) {
     assert !isFull():
     array[size] = e;
     size++:
     assert !isEmpty() && top() == e;
  public void pop() {
     assert !isEmpty();
     size--:
     assert !isFull();
```

```
public E top() {
   assert !isEmpty();
   return array[size-1];
public boolean isEmpty() {
   return size == 0;
public boolean isFull() {
   return size == array.length;
public int size() {
   return size:
public void clear() {
   size = 0:
   assert isEmpty();
```

- A forma mais eficiente de implementar é uma estrutura conhecida como buffer circular.
- Requer 4 atributos
 - O vector que armazena os elementos
 - O número de elementos
 - O índice do próximo elemento a ser retirado (cabeça da fila).
 - O índice do próximo elemento a ser ocupado (cauda da fila).
- Sempre que se insere ou retira um elemento, incrementa-se o índice respetivo em aritmética modular
 - Ou seja, quando o índice atinge o limite, é reposto a zero.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- A forma mais eficiente de implementar é uma estrutura conhecida como buffer circular.
- Requer 4 atributos
 - O vector que armazena os elementos
 - O número de elementos
 - O índice do próximo elemento a ser retirado (cabeça da fila).
 - O índice do próximo elemento a ser ocupado (cauda da fila).
- Sempre que se insere ou retira um elemento, incrementa-se o índice respetivo em aritmética modular.
 - Ou seja, quando o índice atinge o limite, é reposto a zero

- A forma mais eficiente de implementar é uma estrutura conhecida como buffer circular.
- Requer 4 atributos:
 - O vector que armazena os elementos.
 - O número de elementos.
 - O índice do próximo elemento a ser retirado (cabeça da fila).
 - O índice do próximo elemento a ser ocupado (cauda da fila).
- Sempre que se insere ou retira um elemento, incrementa-se o índice respetivo em aritmética modular
 - Ou seja, quando o índice atinge o limite, é reposto a zero.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

ligada Implementação em vector

Listas biligadas

Comparação entre

diferentes tipos de listas ligadas

- A forma mais eficiente de implementar é uma estrutura conhecida como buffer circular.
- Requer 4 atributos:
 - O vector que armazena os elementos.
 - O número de elementos
 - O índice do próximo elemento a ser retirado (cabeça da fila).
 - O índice do próximo elemento a ser ocupado (cauda da fila).
- Sempre que se insere ou retira um elemento, incrementa-se o índice respetivo em aritmética modular.
 - Ou seja, quando o índice atinge o limite, é reposto a zero.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Fila: exemplo - empty/full

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Fila: exemplo - empty/full

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Fila: exemplo - empty/full

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Oueue<E> {
  private E[] array;
  private int size;
  private int head;
  private int tail;
  public Queue(int maxSize) {
      assert maxSize >= 0:
     array = (T[]) new Object[maxSize];
     size = head = tail = 0;
  public void in(E e) {
     assert !isFull();
     array[tail] = e;
     tail = nextPosition(tail);
     size++:
  public void out() {
     assert !isEmpty();
     head = nextPosition(head);
     size--:
```

```
public E peek() {
   assert !isEmpty();
   return array[head];
public int size() {
   return size:
public boolean isEmpty() {
   return size == 0;
public boolean isFull() {
   return size == array.length;
public void clear() {
   head = tail = size = 0:
private int nextPosition(int p) {
   return (p + 1) % array.length;
```

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Correspondência entre listas, pilhas e filas

	Pilha	Fila
addLast		
addFirst		
first	top	peek
		out

- Os tipos de dados abstratos das pilhas e filas correspondem a subconjuntos do tipo de dados abstrato da lista ligada.
- Podemos dizer que os tipos de dados abstratos das pilhas e filas são açúcar sintático para certos perfis de utilização das listas.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista ligada

Implementação em vector

Listas biligadas

Correspondência entre listas, pilhas e filas

Lista	descrição	Pilha	Fila
addLast	acrescenta um elemento no fim da lista	-	in
addFirst	acrescenta um elemento no início da lista	push	-
first	devolve o primeiro elemento da lista remove o primeiro elemento da lista	top	peek
removeFirst		pop	out

- Os tipos de dados abstratos das pilhas e filas correspondem a subconjuntos do tipo de dados abstrato da lista ligada.
- Podemos dizer que os tipos de dados abstratos das pilhas e filas são açúcar sintático para certos perfis de utilização das listas.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Pilhas e filas: complexidade

· Implementação em lista ligada

- · Implementação em vector com dimensão fixa
- Implementação em vector com re-dimensionamento;

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas e filas: complexidade

· Implementação em lista ligada:

- Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- · Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- · Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes metodos do tipo de dados abstrato tem complexidade constante (O(1)).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

- Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento
 - Sempre que a pilna ou fila encne, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

- · Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Comparação entre

diferentes tipos de listas ligadas

Implementação em lista ligada

Implementação em vector

Listas biligadas

- Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Lista biligada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior.
 - Cada uma dessas referências terá o valor null caso elemento a que se refere não exista.
- Ao contrário da lista ligada, permite um acesso sequencial do fim para o início.
- Facilita a remoção do último elemento (removeLast)

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior.
 - Cada uma dessas referências terá o valor null caso o elemento a que se refere não exista.
- Ao contrário da lista ligada, permite um acesso sequencial do fim para o início.
- Facilita a remoção do último elemento (removeLast)

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Charles Million des

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior.
 - Cada uma dessas referências terá o valor null caso o elemento a que se refere não exista.
- Ao contrário da lista ligada, permite um acesso sequencial do fim para o início.
- Facilita a remoção do último elemento (removeLast)

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Lietae biligadae

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior.
 - Cada uma dessas referências terá o valor null caso o elemento a que se refere não exista.
- Ao contrário da lista ligada, permite um acesso sequencial do fim para o início.
- Facilita a remoção do último elemento (removeLast).

Lista biligada: nós e ligações

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Lietae biligada

Lista biligada: nós e ligações

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

etae hilinadae

Lista biligada: nós e ligações

Pilhas, Filas e Listas **Biligadas**

Pilhas e filas abstratos

Definições e tipos de dados

Implementação em lista ligada

Implementação em vector

Lista biligada: primeiro e último elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Lietae biligadae

- Nome do módulo
- Serviços

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Nome do módulo:

• LinkedList

Serviços

- addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: devolve o primeiro elemento da lista
- last: devolve o último elemento lista
- removeFirst: retira o elemento no inicio da lista.
- removeLast: retira o elemento no início da lista.
- size: devolve a dimensão actual da lista
- isEmpty: verifica se a lista está vazia.
- clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Nome do módulo:

- LinkedList
- Serviços
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: devolve o primeiro elemento da lista
 - last: devolve o último elemento lista.
 - removeFirst: retira o elemento no inicio da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Nome do módulo:

LinkedList

· Serviços:

- addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: devolve o primeiro elemento da lista.
- last: devolve o último elemento lista
- removeFirst: retira o elemento no início da lista
- removeLast: retira o elemento no início da lista.
- size: devolve a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

- -

∟istas biligadas

Nome do módulo:

- LinkedList
- · Servicos:
 - · addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista
 - first: devolve o primeiro elemento da lista
 - last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - · isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Character State and a second

Nome do módulo:

- LinkedList
- · Servicos:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista
 - last: devolve o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - · isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - last: devolve o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - · isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

istas biligadas.

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista
 - removeTast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - · isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeTast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - · isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Lietae biligadae

Nome do módulo:

- LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeTast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista.
 - isEmpty: verifica se a lista está vazia.
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Charles Street,

Nome do módulo:

- LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista.
 - isEmpty: verifica se a lista está vazia.
 - clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Charles (1995) and a

Listas biligadas

Nome do módulo:

- LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista.
 - isEmpty: verifica se a lista está vazia.
 - clear: limpa a lista (remove todos os elementos).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

addLast(1)

size == 0

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

istas hilinadas

addLast(1)

size == 0

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinadas

addLast(8)

size > 0

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

stas hilinadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

etae hilinadae

Pilhas, Filas e Listas Biligadas

Pilhas e filas abstratos

Definições e tipos de dados

Implementação em lista ligada

Implementação em vector

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Lista biligada: remoção do último elemento

removeFirst()

size == 1

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Lietae biligada

Comparação entre diferentes tipos de listas ligadas

13

Lista biligada: remoção do último elemento

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

otoo biliaadaa

Lista biligada: remoção do último elemento

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas hilinadas

removeFirst()

size > 1

Pilhas, Filas e Listas **Biligadas**

Pilhas e filas abstratos

Definições e tipos de dados

Implementação em lista ligada

Implementação em vector

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

etae hilinadae

removeFirst() size > 1

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

etae hilinadae

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

otoo biliaadaa

Tipos de Listas Ligadas

Tipo de Lista				
Atributos Operações	first	first last	first last	first (last)
insert first				
remove first				
insert last				
remove last				
scan forward				
scan backward				
insert middle				
remove middle				

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista ligada

Implementação em vector

Listas biligadas

Pil	hae	ם f	ilae

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

omparação entre ierentes tipos de

Tipo de Lista	Simples	Simples	Circular Simples	Biligada	Circular Biligada
Atributos Operações	first	first last	last	first last	first (last)
insert first	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
remove first	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
insert last	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
remove last	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)
scan forward	O(n)	<i>O</i> (<i>n</i>)	O(n)	<i>O</i> (<i>n</i>)	O(n)
scan backward	$O(n^2)$	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)	O(n)
insert middle	O(n)	O(n)	O(n)	O(n)	O(n)
remove middle	O(n)	<i>O</i> (<i>n</i>)	O(n)	<i>O</i> (<i>n</i>)	O(n)