Aggregation MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Exploring the data

```
import pandas as pd

# Load novelty gift data.
gifts = pd.read_csv('datasets/novelty_gifts.csv')

# Preview data with head() method.
print(gifts.head())
```

```
InvoiceNo Description

0 562583 IVORY STRING CURTAIN WITH POLE

1 562583 PINK AND BLACK STRING CURTAIN

2 562583 PSYCHEDELIC TILE HOOK

3 562583 ENAMEL COLANDER CREAM

4 562583 SMALL FOLDING SCISSOR(POINTED EDGE)
```

Exploring the data

```
# Print number of transactions.
print(len(gifts['InvoiceNo'].unique()))
```

9709

```
# Print number of items.
print(len(gifts['Description'].unique()))
```

3461

Pruning and aggregation

Pruning

Big Box Red Bag Purple Candle Cloth Bag Metal Sign Neon Sign **Brown Box Large Candle Medium Bag** Wooden Sign

Aggregation


```
# Load one-hot encoded data
onehot = pd.read_csv('datasets/online_retail_onehot.csv')

# Print preview of DataFrame
print(onehot.head(2))
```

```
50'S CHRISTMAS GIFT BAG LARGE DOLLY GIRL BEAKER ... ZINC WILLIE WINKIE CANDLE STICK

False False False True
```



```
# Select the column names for bags and boxes
bag_headers = [i for i in onehot.columns if i.lower().find('bag')>=0]
box_headers = [i for i in onehot.columns if i.lower().find('box')>=0]
```

```
# Identify column headers
bags = onehot[bag_headers]
boxes = onehot[box_headers]
print(bags)
```

```
50'S CHRISTMAS GIFT BAG LARGE RED SPOT GIFT BAG LARGE

False
False
False

...
```

```
# Sum over columns
bags = (bags.sum(axis=1) > 0.0).values
boxes = (boxes.sum(axis=1) > 0.0).values
print(bags)
```

[False True False ... False True False]

```
# Add results to DataFrame
aggregated = pd.DataFrame(np.vstack([bags, boxes]).T, columns = ['bags', 'boxes'])

print(aggregated.head())

bags boxes
0 False False
1 True False
2 False False
3 False False
4 True False
```


Market basket analysis with aggregates

- Aggregation process:
 - Items -> Categories
 - Compute metrics
 - Identify rules

```
# Compute support
print(aggregated.mean())
```

```
bags 0.130075
boxes 0.071429
```


Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Counting itemsets

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n!}{(n-k)!k!}$$

Item Count	Itemset Size	Combinations
3461	0	1
3461	1	3461
3461	2	5,987,530
3461	3	6,903,622,090
3461	4	5,968,181,296,805

Counting itemsets

$$\sum_{k=0}^n inom{n}{k} = 2^n$$

•
$$n = 3461 \rightarrow 2^{3461}$$

•
$$2^{3461} >> 10^{82}$$

• Number of atoms in universe: 10^{82} .

Reducing the number of itemsets

- Not possible to consider all itemsets.
 - Not even possible to enumerate them.
- How do we remove an itemset without even evaluating it?
 - Could set maximum k value.
- Apriori algorithm offers alternative.
 - Doesn't require enumeration of all itemsets.
 - Sensible rule for pruning.

The Apriori principle

- Apriori principle.
 - Subsets of frequent sets are frequent.
 - Retain sets known to be frequent.
 - Prune sets not known to be frequent.

- Candles = Infrequent
 - -> {Candles, Signs} = Infrequent
- {Candles, Signs} = Infrequent
 - -> {Candles, Signs Boxes} = Infrequent
- {Candles, Signs, Boxes} = Infrequent
 - -> {Candles, Signs, Boxes, Bags} =Infrequent

Apriori implementation

```
# Import Apriori algorithm
from mlxtend.frequent_patterns import apriori

# Load one-hot encoded novelty gifts data
onehot = pd.read_csv('datasets/online_retail_onehot.csv')

# Print header.
print(onehot.head())
```

```
50'S CHRISTMAS GIFT BAG LARGE ... ZINC WILLIE WINKIE CANDLE STICK \

0 False ... False

1 False ... False

2 False ... False

4 False ... False
```

Apriori implementation

3652

Apriori implementation

```
# Print itemsets
print(frequent_itemsets.head())
```

```
support itemsets

0 0.000752 (50'S CHRISTMAS GIFT BAG LARGE)

1 0.001504 (DOLLY GIRL BEAKER)

...

1500 0.000752 (PING MICROWAVE APRON, FOOD CONTAINER SET 3 LO...

1501 0.000752 (WOOD 2 DRAWER CABINET WHITE FINISH, FOOD CONT...
```

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

Basic Apriori results pruning

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Apriori and association rules

- Apriori prunes itemsets.
 - Applies minimum support threshold.
 - Modified version can prune by number of items.
 - Doesn't tell us about association rules.
- Association rules.
 - Many more association rules than itemsets.
 - {Bags, Boxes}: Bags -> Boxes OR Boxes -> Bags.

How to compute association rules

- Computing rules from Apriori results.
 - Difficult to enumerate for high n and k.
 - Could undo itemset pruning by Apriori.

- Reducing number of association rules.
 - mlxtend module offers means of pruning association rules.
 - association_rules() takes frequent items, metric, and threshold.

How to compute association rules

```
# Import Apriori algorithm
from mlxtend.frequent_patterns import apriori, association_rules
# Load one-hot encoded novelty gifts data
onehot = pd.read_csv('datasets/online_retail_onehot.csv')
# Apply Apriori algorithm
frequent_itemsets = apriori(onehot,
                            use_colnames=True,
                            min_support=0.0001)
```


The importance of pruning

```
# Print the rules.
print(rules)
```

```
antecedents ... conviction

0 (CARDHOLDER GINGHAM CHRISTMAS TREE) ... inf
...

79505 (SET OF 3 HEART COOKIE CUTTERS) ... 1.998496
```

```
# Print the frequent itemsets.
print(frequent_itemsets)
```

```
        support
        itemsets

        0 0.000752
        (50'S CHRISTMAS GIFT BAG LARGE)

        ...
        4707 0.000752
        (PIZZA PLATE IN BOX, CHRISTMAS ...
```


The importance of pruning

```
antecedents conviction
0 (BIRTHDAY CARD, RETRO SPOT) ... 2.977444
1 (JUMBO BAG RED RETROSPOT) ... 1.247180
```

Exploring the set of rules

```
print(rules.columns)
```

```
print(rules[['antecedents','consequents']])
```

```
antecedents consequents

O (JUMBO BAG RED RETROSPOT) (BIRTHDAY CARD, RETRO SPOT)

1 (BIRTHDAY CARD, RETRO SPOT) (JUMBO BAG RED RETROSPOT)
```

Pruning with other metrics

3899

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

Advanced Apriori results pruning

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Applications

Cross-Promotion

Aggregation

List of Lists

```
[['box'],
  ['box'],
  ['box'],
  ['box'],
  ['bag', 'box', 'sign'],
  ['sign', 'bag', 'candle'],
  ['bag'],
  ['bag'],
  ['bag'],
  ['bag'],
  ['candle']
```

Apriori Algorithm

One-Hot Encoding

	bag	box	candle	sign
0	False	True	False	False
1	False	True	False	False
2	False	True	False	False
3	False	True	False	False
4	False	True	False	False
14458	True	True	True	False
14459	False	True	False	True
14460	True	False	False	False
14461	True	False	False	False

```
import pandas as pd
import numpy as np
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
itemsets = np.load('itemsets.npy')
print(itemsets)
[['EASTER CRAFT 4 CHICKS'],
['CERAMIC CAKE DESIGN SPOTTED MUG', 'CHARLOTTE BAG APPLES DESIGN'],
['SET 12 COLOUR PENCILS DOLLY GIRL'],
['JUMBO BAG RED RETROSPOT', ... 'LIPSTICK PEN FUSCHIA']]
```



```
# One-hot encode data
encoder = TransactionEncoder()
onehot = encoder.fit(itemsets).transform(itemsets)
onehot = pd.DataFrame(onehot, columns = encoder.columns_)
# Apply Apriori algorithm and print
frequent_itemsets = apriori(onehot, use_colnames=True, min_support=0.001)
print(frequent_itemsets)
                                                         itemsets
      support
                                             ( DOLLY GIRL BEAKER)
     0.001504
                                       ( RED SPOT GIFT BAG LARGE)
     0.002256
```

(BIRTHDAY CARD, RETRO SPOT, JUMBO BAG RED RETR...

0.001504

Apriori algorithm results

```
print(len(data.columns))
```

4201

```
print(len(frequent_itemsets))
```

2328

```
rules = association_rules(frequent_itemsets)
```


Association rules

```
print(rules['consequents'])
```

```
0 (DOTCOM POSTAGE)
...
9 (HERB MARKER THYME)
...
234 (JUMBO BAG RED RETROSPOT)
235 (WOODLAND CHARLOTTE BAG)
236 (RED RETROSPOT CHARLOTTE BAG)
237 (STRAWBERRY CHARLOTTE BAG)
238 (CHARLOTTE BAG SUKI DESIGN)
Name: consequents, Length: 239, dtype: object
```

Filtering with multiple metrics

```
targeted_rules = rules[rules['consequents'] == {'HERB MARKER THYME'}].copy()
filtered_rules = targeted_rules[(targeted_rules['antecedent support'] > 0.01) &
                        (targeted_rules['support'] > 0.009) &
                        (targeted_rules['confidence'] > 0.85) &
                        (targeted_rules['lift'] > 1.00)]
print(filtered_rules['antecedents'])
9
         (HERB MARKER BASIL)
       (HERB MARKER PARSLEY)
25
      (HERB MARKER ROSEMARY)
27
Name: antecedents, dtype: object
```


Grouping products

Boxes	Candles	
Signs	Bags	

Aggregation and dissociation

```
# Load aggregated data
aggregated = pd.read_csv('datasets/online_retail_aggregated.csv')
# Compute frequent itemsets
onehot = encoder.fit(aggregated).transform(aggregated)
data = pd.DataFrame(onehot, columns = encoder.columns_)
frequent_itemsets = apriori(data, use_colnames=True)
# Compute standard metrics
rules = association_rules(frequent_itemsets)
# Compute Zhang's rule
rules['zhang'] = zhangs_rule(rules)
```


Zhang's rule

```
# Print rules that indicate dissociation
print(rules[rules['zhang'] < 0][['antecedents','consequents']])</pre>
```

```
antecedents consequents
2 (bag) (candle)
3 (candle) (bag)
4 (sign) (bag)
5 (bag) (sign)
```

Selecting a floorplan

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

