Content Based Recommender System using Unsupervised Learning

Executive summary report for the Sales Marketing Team Prepared by Data Science

> ISSUE / PROBLEM

The challenge we encountered was defining a value to assign to the more engaging and relevant courses to learners. We also considered ethical consequences of building this model, particularly regarding the errors that we will encounter when the model is built.

RESPONSE

What's likely to give the best recommender system?

We built three different models **User Profile** and **Course Genres**, **Course Similarity** and **Clustering** compared results and parameters.

We used expertise, If the dataset contains detailed course attributes and user preferences, clustering-based approaches may provide more personalized recommendations. However, if the dataset is sparse or lacks detailed attributes, a course similarity approach might be more suitable.

This model helps predict courses that best suit the user profile and course profile. This recommendation can assist users in making decisions about their next courses, ultimately increasing engagement and revenue streams.

TITLE	COURSE_ID	rating	item	user	
using r with databases	RP0103	3.0	RP0103	733707	0
spark fundamentals ii	BD0212EN	3.0	BD0212EN	733707	1
spark fundamentals i	BD0211EN	3.0	BD0211EN	733707	2
statistics 101	ST0101EN	3.0	ST0101EN	733707	3
mapreduce and yarn	BD0115EN	3.0	BD0115EN	733707	4
data visualization with python	DV0101EN	3.0	DV0101EN	733707	18
data science with scala	SC0105EN	3.0	SC0105EN	733707	19
sql access for hadoop	BD0145EN	3.0	BD0145EN	733707	20
nosql and dbaas 101	DB0151EN	3.0	DB0151EN	733707	21
moving data into hadoop	BD0131EN	3.0	BD0131EN	733707	22

Table above shows the recommended courses for user 733707 using user profile and course genre

TITLE	SCORE	COURSE_ID	USER	
deep learning with tensorflow	1.000000	ML0120ENv3	733707	3870
deep learning with tensorflow	1.000000	ML0120ENv2	733707	3871
accelerating deep learning with gpu	0.982873	ML0122ENv1	733707	3872
data science with open data	0.732941	DS0110EN	733707	3873
introduction to big data	0.708214	excourse67	733707	3874
foundations for big data analysis with sql	0.703648	excourse72	733707	3875
a crash course in data science	0.694563	excourse63	733707	3876
machine learning	0.689253	excourse46	733707	3877
machine learning for all	0.680065	excourse47	733707	3878
machine learning with python	0.662622	ML0101ENv3	733707	3879

Table above shows the recommended courses for user 733707 using course similarity

	user	cluster	rec_1	rec_2	rec_3	title_1	title_2	title_3
102	1078030	1	PY0101EN	DA0101EN	DV0101EN	python for data science	data analysis with python	data visualization with python
151	674939	28	BD0111EN	BD0115EN	BD0211EN	hadoop 101	mapreduce and yarn	spark fundamentals i
221	2057052	16	DS0101EN	BD0101EN	PY0101EN	introduction to data science	big data 101	python for data science
298	733707	9	BD0111EN	PY0101EN	BD0211EN	hadoop 101	python for data science	spark fundamentals i

In the Clustering model above shows the recommendation results

NSIGHTS/NEXT STEPS

- If you're exploring the structure or patterns within the data without labeled examples, unsupervised learning is more appropriate. It can help in understanding the underlying structure of the data and finding hidden patterns.
- Unsupervised learning algorithms like k-means clustering can be useful for segmenting data into distinct groups based on similarities.
- Techniques like Principal Component Analysis (PCA) are used for dimensionality reduction and visualization, which can be valuable for understanding high-dimensional data.
- Unsupervised learning is often used for anomaly detection where the goal is to identify rare events or outliers in the data.
- Considering human suggestion (their level) and Hybrod models.