Beijing Normal University School of Mathematics

Template

app1eDog

2024年10月31日

目录

1	прр		U
	1.1	heading	6
	1.2	debug.h	7
	1.3	mod int	7
2	She	ll Scripts	9
	2.1	checker.sh	9
3	data	a structure	10
	3.1	stack	10
	3.2	queue	10
	3.3	DSU	10
	3.4	ST	10
	3.5	cartesian tree	11
	3.6	segement tree czr	11
	3.7	segment tree	13
	3.8	hjt segment tree	20
	3.9	LiChao Tree	22
	3.10	treap	23
	3.11	splay	28
	3.12	Link Cut Tree	31
	3.13	ODT	32
	3.14	tree in tree	32
	3.15	heap	38
4	stri	$\mathbf{n}\mathbf{g}$	39
	4.1	hash	39
	4.2	Cantor Expansion	39
	4.3	kmp	40
	4.4	z function	40
	4.5	Manacher	40
	4.6	AC automaton	41
	4.7	PAM	41
	4.8	Suffix Array	42

目录 3

	4.9	trie	42
5	mat	ch - number theory	45
	5.1	Eculid	45
	5.2	inverse	46
	5.3	sieve	47
	5.4	杜教筛	48
	5.5	extended Euler theorem	48
	5.6	block	48
	5.7	CRT & exCRT	49
	5.8	BSGS & exBSGS	50
	5.9	Miller Rabin	50
	5.10	Pollard Rho	51
	5.11	quadratic residu	52
	5.12	Lucas	52
	5.13	Wilson	54
	5.14	LTE	55
	5.15	Mobius inversion	56
6	mat	ch - polynomial	57
	6.1	FTT	57
	6.2	FWT and FMT	58
	6.3	class polynomial	60
	6.4	wsy poly	64
7	mat	sh - numerical analysis	71
	7.1	Simpson	71
8	mat	th - game theory	72
	8.1	nim game	72
	8.2	anti - nim game	72
9	mat	ch - linear algebra	73
	9.1	matrix	73
	9.2	matrix tree	74
	9.3	linear basis	75
	9.4	berlekamp massey	76
	9.5	linear programming	77

10	math - complex number	78
11	graph	79
	11.1 topsort	79
	11.2 shortest path	79
	11.3 minimum spanning tree	83
	11.4 SCC	83
	11.4.1 缩点	84
	11.5 DCC	84
	11.6 2 SAT	87
	11.7 minimum ring	88
	11.8 tree - center of gravity	88
	11.9 tree - DSU on tree	88
	11.10 tree - AHU	89
	11.11 tree - LCA	90
	11.12 tree - LLD	90
	11.13 tree - HLD	91
	11.14 tree - virtual tree	92
	11.15 tree - pseudo tree	93
	11.16 tree - prufer sequence	94
	11.17 tree - divide and conquer on tree	94
	11.18 network flow - maximal flow	96
	11.19 network flow - minimum cost flow	99
	11.20 network flow - minimal cut	101
	11.21 matching - matching on bipartite graph	102
	11.22 matching - matching on general graph	104
19	geometry	105
14	12.1 two demention	105
	12.2 convex	105
	12.2 Convex	100
13	sweep line	107
14	offline algorithm	108
	14.1 discretization	108
	14.2 Mo algorithm	108
	14.3 CDQ	109

14.4	线段树分治																						1	1	1

6 1 HPP

1 hpp

1.1 heading

```
#include <bits/stdc++.h>
 3
       // using namespace std;
 4
5
      #define typet typename T
#define typeu typename U
#define types typename... Ts
#define tempt template <typet>
#define tempu template <typeu>
#define temps template <typeu>
#define tandu template <typet, typeu>
 6
7
10
11
12
      using LL = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
13
14
15
16
      using UI = unsigned int;
17
18
      using ULL = unsigned long long;
using ULL = unsigned long long;
19
      using PIL = std::pair<int, LL>;
using PLI = std::pair<LL, int>;
20
\bar{2}
22
23
24
25
26
27
      using PLL = std::pair<LL, LL>;
      using vi = std::vector<int>;
using vvi = std::vector<vi>;
      using vl = std::vector<LL>;
using vvl = std::vector<vl>;
28
29
30
      using vpi = std::vector<PII>;
      #define ff first
31
      #define ss second
32
      #define all(v) v.begin(), v.end()
33
      #define rall(v) v.rbegin(), v.rend()
34
35
      #ifdef LOCAL
36
      #include "../debug.h"
37
      #define debug(...) \
    do {
38
39
40
            } while (false)
41
       #endif
42
      constexpr int mod = 998244353;
constexpr int inv2 = (mod + 1) / 2;
43
44
      constexpr int inf = 0x3f3f3f3f;
constexpr LL INF = 1e18;
45
46
      constexpr double pi = 3.141592653589793;
47
48
      constexpr double eps = 1e-6;
49
50
      constexpr int lowbit(int x) { return x & -x; }
51
      55
56
57
      constexpr int pow(int x, int y, int z = 1) {
  for (; y; y /= 2) {
    if (y & 1) Mul(z, x);
}
58
59
60
61
                  Mul(x, x);
62
63
            return z;
64
      temps constexpr int add(Ts... x) {
  int y = 0;
  (..., Add(y, x));
65
66
67
            return y;
68
69
70
71
72
73
74
75
76
77
      temps constexpr int mul(Ts... x) {
            int y = 1;
(..., Mul(y, x));
            return y;
      tandu bool Max(T& x, const U& y) { return x < y ? x = y, true : false; } tandu bool Min(T& x, const U& y) { return x > y ? x = y, true : false; }
```

1.2 debug.h

```
void solut() {
81
82
83
84
     int main() {
85
          std::ios::sync_with_stdio(false);
86
          std::cin.tie(0);
87
          std::cout.tie(0);
88
         int t = 1;
std::cin >> t;
while (t--) {
89
90
91
92
              solut();
93
94
          return 0;
     }
95
```

1.2 debug.h

```
template <typename T, typename U>
std::ostream& operator<<(std::ostream& os, const std::pair<T, U>& p) {
   return os << '<' << p.first << ',' << p.second << '>';
  \overline{3}
        }
 \begin{array}{c} 4\\5\\6\\7\\8\end{array}
         template <
         typename T, typename = decltype(std::begin(std::declval<T>())),
    typename = std::enable_if_t<!std::is_same_v<T, std::string>>>
std::ostream& operator<<(std::ostream& os, const T& c) {</pre>
  9
10
                 auto it = std::begin(c);
                 if (it == std::end(c)) return os << "{}";
for (os << '{' << *it; ++it != std::end(c); os << ',' << *it);
return os << '}';</pre>
11
13
14
         }
15
         #define debug(arg...)
16
                  do {
17
                          std::cerr << "[" #arg "] :";
18
19
                         dbg(arg);
20
21
22
23
                  } while (false)
        template <typename... Ts>
void dbg(Ts... args) {
    (..., (std::cerr << ' ' << args));
    std::cerr << std::endl;</pre>
24
25
26
         }
```

8 2 SHELL SCRIPTS

2 Shell Scripts

2.1 checker.sh

Linux version.

```
#!/bin/bash

cd "$1"

g++ -o main -02 -std=c++17 -DLOCAL main.cpp -ftrapv -fsanitize=address,undefined

for input in *.in; do
    output=${input%.*}.out
    answer=${input%.*}.ans

./main < $input > $ouput

echo "case ${input%.*}: "
    echo "My: "
    cat $output
    echo "Answer: "
    cat $answer

done
done
```

Windows version.

```
decho off

cd %1

del .\main.exe

g++ -o main.exe main.cpp -DLOCAL -std=c++17 -ftrapv

for %%i in (*.in) do (
    main.exe < %%i > %%-ni.out
    echo case %%-ni:
    echo My:
    type %%-ni.out
    echo Answer:
    type %%-ni.ans
)

cd ../shell
```

3 mod int

```
template <int P>
 3
      struct Mint {
            int v = 0;
 4
 5
            // reflection
 6
7
8
            template <typet = int>
            constexpr operator T() const {
                  return v;
 9
10
11
            // constructor //
            constexpr Mint() = default;
12
            template <typet>
13
            constexpr Mint(T x) : v(x % P) {}
constexpr int val() const { return v; }
14
15
            constexpr int mod() { return P; }
16
17
18
19
            friend std::istream& operator>>(std::istream& is, Mint& x) {

  \begin{array}{c}
    20 \\
    21 \\
    22
  \end{array}

                  LL y;
                  is >> y;
                  x = y;
23
                  return is;
24
25
            friend std::ostream& operator<<(std::ostream& os, Mint x) { return os << x.v; }
26
27
            // comparision //
28
            friend constexpr bool operator == (const Mint& lhs, const Mint& rhs) { return lhs.v == rhs.v; }
            friend constexpr bool operator!=(const mint& lns, const mint& lns) { return lns.v == rns.v; } friend constexpr bool operator!=(const Mint& lns, const Mint& rhs) { return lns.v != rhs.v; } friend constexpr bool operator<=(const Mint& lns, const Mint& rhs) { return lns.v <= rhs.v; } friend constexpr bool operator>=(const Mint& lns, const Mint& rhs) { return lns.v > rhs.v; } friend constexpr bool operator>=(const Mint& lns, const Mint& rhs) { return lns.v > rhs.v; }
29
30
31
32
33
34
            friend constexpr bool operator>=(const Mint& lhs, const Mint& rhs) { return lhs.v >= rhs.v; }
35
            // arithmetic /
36
            template <typet>
            friend constexpr Mint power(Mint a, T n) {
   Mint ans = 1;
37
38
                  while (n) {
39
40
                        if (n & 1) ans *= a;
41
                        a *= a;
42
                        n >>= 1;
43
                  }
44
                  return ans;
45
            friend constexpr Mint inv(const Mint& rhs) { return power(rhs, P - 2); }
friend constexpr Mint operator+(const Mint& lhs, const Mint& rhs) {
   return lhs.val() + rhs.val() < P ? lhs.val() + rhs.val() : lhs.val() - P + rhs.val();</pre>
46
47
48
49
            friend constexpr Mint operator-(const Mint& lhs, const Mint& rhs) {
   return lhs.val() < rhs.val() ? lhs.val() + P - rhs.val() : lhs.val() - rhs.val();</pre>
50
51
52
53
            friend constexpr Mint operator*(const Mint& lhs, const Mint& rhs) {
                  return static_cast<LL>(lhs.val()) * rhs.val() % P;
54
55
            friend constexpr Mint operator/(const Mint& lhs, const Mint& rhs) { return lhs * inv(rhs); }
Mint operator+() const { return *this; }
Mint operator() const { return Mint() - *this; }
56
57
58
59
            constexpr Mint& operator++() {
                  v++;
if (v == P) v = 0;
60
61
62
                  return *this;
63
64
            constexpr Mint& operator--() {
65
                  if (v == 0) v = P;
66
                  return *this;
67
68
69
            constexpr Mint& operator++(int) {
70
71
72
73
74
75
76
77
                  Mint ans = *this;
                  ++*this:
                  return ans;
            constexpr Mint operator--(int) {
                  Mint ans = *this;
                  --*this;
                  return ans;
78
79
            constexpr Mint& operator+=(const Mint& rhs) {
80
                  v = v + rhs;
81
                  return *this;
82
83
            constexpr Mint& operator-=(const Mint& rhs) {
```

```
84
            v = v - rhs;
85
            return *this;
86
87
        constexpr Mint& operator*=(const Mint& rhs) {
88
            v = v * rhs;
89
            return *this;
90
91
        constexpr Mint& operator/=(const Mint& rhs) {
92
            v = v / rhs;
93
            return *this;
94
95
    };
    using Z = Mint<998244353>;
96
```

4 data structure

4.1 stack

```
vi stk;
for (int i = 1; i <= n; i++){
    while (!stk.empty() and stk.back() > a[i]) {
        stk.pop_back();
    }
    stk.pop_back(a[i]);
}
```

4.2 queue

```
1 | std::deque<int> q;
2 | for (int i = 1; i <= n; i++) {
3 | while (!q.empty and a[q.back()] >= a[i]) p.pop_back();
4 | if (!q.empty() and i - q.front() >= k) q.pop_front();
5 | q.push_back(i);
6 | }
```

4.3 DSU

```
vi fa(n + 1);
std::iota(all(fa), 0);
std::function<void(int)> find = [&] (int x) -> int{
    return x == fa[x] ? x : fa[x] = find(fa[x]);
};
auto merge = [&] (int x, int y) -> void{
    x = find(x), y = find(y);
    if (x == y) return;
    /* operations */
    fa[y] = x;
};
```

4.4 ST

用于解决可重复问题的数据结构。

可重复问题是指对运算 opt,满足 x opt x = x。

一维

```
1  vvi f(n + 1, vi(30));
2  vi Log2(n + 1);
3  auto ST_init = [&]() -> void {
    for (int i = 1; i <= n; i++) {</pre>
```

4.5 cartesian tree

```
f[i][0] = a[i];
6
7
              if (i > 1) Log2[i] = Log2[i / 2] + 1;
8
         int t = Log2[n];
         for (int j = 1; j <= t; j++) {
    for (int i = 1; i <= n - (1 << j) + 1; i++) {
 9
10
                  f[i][j] = std::max(f[i][j-1], f[i+(1 << (j-1))][j-1]);
11
12
13
         }
    };
14
15
16
     auto ST_query = [&](int 1, int r) -> int {
         int t = Log2[r - 1 + 1];
return std::max(f[1][t], f[r - (1 << t) + 1][t]);
17
18
    };
```

二维

```
std::vector f(n + 1, std::vector < std::array < int, 30>, 30>> (m + 1));
     vi Log2(n + 1);
auto ST_init = [&]() -> void {
 3
          for (int i = 2; i <= std::max(n, m); i++) {</pre>
 4
              Log2[i] = Log2[i / 2] + 1;
 5
 6
          for (int i = 2; i <= n; i++) {
   for (int j = 2; j <= m; j++) {
     f[i][j][0][0] = a[i][j];
}</pre>
 7
 8
 9
10
11
         12
13
14
15
16
17
                                  f[i][j][ki][kj] =
18
19
                                      std: max(f[i][j][ki - 1][kj], f[i + (1 << (ki - 1))][j][ki - 1][kj]);
20
21
                                  f[i][j][ki][kj] =
22
                                       std::max(f[i][j][ki][kj - 1], f[i][j + (1 << (kj - 1))][ki][kj - 1]);
23
                             }
24
                        }
25
                   }
26
              }
\overline{27}
         }
28
     };
29
     auto ST_query = [&](int x1, int y1, int x2, int y2) -> int {
   int ki = Log2[x2 - x1 + 1], kj = Log2[y2 - y1 + 1];
30
          int t1 = f[x1][y1][ki][kj];
31
          int t2 = f[x2 - (1 << ki) + 1][y1][ki][kj];
32
          int t3 = f[x1][y2 - (1 << kj) + 1][ki][kj];
int t4 = f[x2 - (1 << ki) + 1][y2 - (1 << kj) + 1][ki][kj];
33
34
35
          return std::max({t1, t2, t3, t4});
36
     };
```

4.5 cartesian tree

一种特殊的平衡树,用元素的值作为平衡点节点的 val,元素的下标作为 key。

```
1  // cartesian tree //
2  vi ls(n + 1), rs(n + 1), stk(n + 1);
3  int top = 1;
4  for (int i = 1; i <= n; i++) {
5     int k = top;
6     while (k and a[stk[k]] > a[i]) k--;
7     if (k) rs[stk[k]] = i;
8     if (k < top) ls[i] = stk[k + 1];
9     stk[++k] = i;
10     top = k;
11 }</pre>
```

4.6 segement tree czr

区间加,区间赋值,区间求和,区间最大值

```
const int N = 100010;
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
      struct node {
            int 1, r;
             11 sum, maxn, add, set;
      bool addflag, setflag;
}tr[N << 2];</pre>
 6
7
 8 9
      void push_up(int u) {
            tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
10
             tr[u].maxn = max(tr[u << 1].maxn, tr[u << 1 | 1].maxn);
11
12
     // 2 6 2 2 2
|// 2 6 2 4 4
13
14
15
16
      void push_down(int u) {
   auto& root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
   if (root.setflag) {</pre>
17
18
19
                   assert(!root.addflag);
                  left.add = 0, left.set = root.set, left.addflag = false, left.setflag = true;
right.add = 0, right.set = root.set, right.addflag = false, right.setflag = true;
left.sum = root.set * (left.r - left.l + 1);
20
21
22
23
24
25
26
27
28
                   right.sum = root.set * (right.r - right.l + 1);
                  left.maxn = root.set;
                  right.maxn = root.set;
                   root.set = 0, root.setflag = false;
             if (root.addflag) {
29
                  assert(!root.setflag);
                  if (left.setflag) left.set += root.add;
else left.add += root.add, left.addflag = true;
30
31
                   if (right.setflag) right.set += root.add;
else right.add += root.add, right.addflag = true;
32
33
34
35
36
37
38
39
                  left.sum += root.add * (left.r - left.l + 1);
right.sum += root.add * (right.r - right.l + 1);
                  left.maxn += root.add;
right.maxn += root.add;
                   root.add = 0, root.addflag = false;
40
41
            assert(root.add == 0);
42
43
      void build(int u, int l, int r, vector<ll>& a) {
   if (l == r) {
44
45
                   tr[u].1 = tr[u].r = 1, tr[u].sum = tr[u].maxn = a[1];
46
                  tr[u].add = 0, tr[u].set = 0;
tr[u].addflag = tr[u].setflag = false;
47
48
49
            } else {
    tr[u].1 = 1, tr[u].r = r, tr[u].add = 0, tr[u].set = 0;
50
                   tr[u].addflag = tr[u].setflag = false;
int mid = 1 + r >> 1;
\frac{51}{52}
                  build(u << 1, 1, mid, a);
build(u << 1 | 1, mid + 1, r, a);
53
54
55
                  push_up(u);
56
57
      }
58
      // 区间加
59
      void modify(int u, int 1, int r, 11 d) {
   if (1 > r) return;
   if (tr[u].1 >= 1 && tr[u].r <= r) {</pre>
60
61
62
63
                   if (tr[u].setflag) tr[u].set += d;
                   else tr[u].add += d, tr[u].addflag = true;
tr[u].sum += d * (tr[u].r - tr[u].l + 1);
64
65
66
                   tr[u].maxn += d;
67
            } else {
68
                  push_down(u);
69
70
                   int mid = tr[u].l + tr[u].r >> 1;
if (1 <= mid) modify(u << 1, 1, r, d);
if (r > mid) modify(u << 1 | 1, 1, r, d);</pre>
\frac{71}{72}
                   push_up(u);
73
74
75
            }
76
77
      // 区间赋值
      void update(int u, int 1, int r, 11 x) {
78
79
            if (1 > r) return;
if (tr[u].1 >= 1 && tr[u].r <= r) {</pre>
                  tr[u].set = x, tr[u].setflag = true;
tr[u].add = 0, tr[u].addflag = false;
80
81
```

4.7 segment tree 13

```
82
                tr[u].sum = x * (tr[u].r - tr[u].l + 1);
 83
                tr[u].maxn = x;
 84
           } else {
 85
               push_down(u);
 86
                int mid = tr[u].l + tr[u].r >> 1;
                if (1 <= mid) update(u << 1, 1, r, x);
if (r > mid) update(u << 1 | 1, 1, r, x);</pre>
 87
 88
 89
                push_up(u);
 90
           }
      }
 91
 92
 93
      11 query_sum(int u, int 1, int r) {
           if (1 > r) return 0;
if (tr[u].1 >= 1 && tr[u].r <= r) return tr[u].sum;
 94
 95
 96
           else {
 97
                11 \text{ res} = 0;
                push_down(u);
 98
 99
                int mid = tr[u].l + tr[u].r >> 1;
                if (1 <= mid) res += query_sum(u << 1, 1, r);</pre>
100
                if (r > mid) res += query_sum(u << 1 | 1, 1, r);</pre>
101
102
                return res;
103
           }
      }
104
105
106
      11 query_maxn(int u, int 1, int r) {
           if (1 > r) return -1e18;
if (tr[u].1 >= 1 && tr[u].r <= r) return tr[u].maxn;</pre>
107
108
109
           else {
110
                11 \text{ res} = -1e18;
111
                push_down(u);
112
                int mid = tr[u].l + tr[u].r >> 1;
                if (1 <= mid) res = max(res, query_maxn(u << 1, 1, r));</pre>
113
                if (r > mid) res = max(res, query_maxn(u << 1 | 1, 1, r));</pre>
114
115
                return res;
           }
116
117
118
119
         找到最小 i 使得 sum(1, i) >= k
120
      11 find_presum_idx(int u, int 1, int r, int x) {
           if (tr[u].1 == tr[u].r) return tr[u].1;
121
122
           else {
123
                push_down(u);
124
                int mid = tr[u].l + tr[u].r >> 1;
125
                if (r <= mid) {</pre>
126
                     return find_presum_idx(u << 1, 1, r, x);</pre>
127
                } else if (1 > mid) {
128
                    return find_presum_idx(u << 1 | 1, 1, r, x);</pre>
129
                } else {
                     11 lsum = query_sum(u << 1, 1, r);
if (lsum >= x) return find_presum_idx(u << 1, 1, mid, x);
else return find_presum_idx(u << 1 | 1, mid + 1, r, x - lsum);</pre>
130
131
132
133
                }
134
           }
      }
135
```

4.7 segment tree

维护半群

```
struct Info {
2
3
        /* 重载 operator+ */
    };
 4
5
    struct Tag {
6
7
        /* 重载 operator== */
    };
8 9
    void infoApply(Info& a, int 1, int r, const Tag& tag) {}
10
11
    void tagApply(Tag& a, int 1, int r, const Tag& tag) {}
12
13
    template <class Info, class Tag>
14
    class segTree {
15
    #define ls i << 1
    #define rs i << 1 |
17
    #define mid ((1 + r) >> 1)
    #define lson ls, l, mid
19
    #define rson rs, mid + 1, r
20
21
22
        std::vector<Info> info;
```

```
23
24
25
26
            std::vector<Tag> tag;
            segTree(const std::vector<Info>& init) : n(init.size() - 1) {
27
                  assert(n > 0);
                 assert(n > 0);
info.resize(4 << std::__lg(n));
tag.resize(4 << std::__lg(n));
auto build = [&](auto dfs, int i, int l, int r) {
    if (1 == r) {
        info[i] = init[l];
        restrict.</pre>
28
29
30
31
32
33
34
35
36
                             return;
                        dfs(dfs, lson);
dfs(dfs, rson);
37
                       push_up(i);
38
39
                  build(build, 1, 1, n);
40
41
42
43
            private:
44
            void push_up(int i) { info[i] = info[ls] + info[rs]; }
45
\frac{46}{47}
            template <class... T>
            void apply(int i, int l, int r, const T&... val) {
    ::infoApply(info[i], l, r, val...);
    ::tagApply(tag[i], l, r, val...);
48
49
50
51
52
           void push_down(int i, int 1, int r) {
   if (tag[i] == Tag{}) return;
   apply(lson, tag[i]);
   apply(rson, tag[i]);
   tag[i] == {};
53
54
55
56
57
58
59
                  tag[i] = {\dot{j}};
60
            public:
           61
62
63
64
65
66
                              apply(i, 1, r, val...);
67
                              return;
68
69
                       push_down(i, 1, r);
                       dfs(dfs, lson);
dfs(dfs, rson);
70
71
72
73
74
75
76
77
78
                       push_up(i);
                  dfs(dfs, 1, 1, n);
            }
            Info rangeAsk(int ql, int qr) {
                  Info res{};
auto dfs = [&] (auto dfs, int i, int l, int r) {
                        if (qr < 1 or r < ql) return;
if (ql <= l and r <= qr) {
80
81
82
                             res = res + info[i];
83
                             return;
84
85
86
                        push_down(i, 1, r);
                        dfs(dfs, lson);
87
88
                        dfs(dfs, rson);
89
                  dfs(dfs, 1, 1, n);
90
                  return res;
91
            }
92
93
      #undef rson
94
      #undef lson
95
      #undef mid
      #undef rs
96
97
      #undef ls
98
      };
```

区间修改 (带 add 和 mul 的 lazy tag)

n 个数, m 次操作,操作分为

1. 1 x y k: 将区间 [x, y] 中的数每个乘以 k. 2. 2 x y k: 将区间 [x, y] 中的数每个加上 k. 3. 3 x y:

4.7 segment tree 15

输出区间 [x, y] 中数的和. (对 p 取模)

```
// Problem: P3373 【模板】线段树 2
 3
     struct Info {
 4
          LL sum = 0;
 5
 6
7
          Info(LL _sum = 0) : sum(_sum) {}
 8 9
          Info operator+(const Info& b) const { return Info(add(sum + b.sum)); }
     };
10
     struct Tag {
   LL add = 0, mul = 1;
11
12
13
14
          Tag(LL _add = 0, LL _mul = 1) : add(_add), mul(_mul) {}
15
          bool operator==(const Tag& b) const { return add == b.add and mul == b.mul; }
16
     };
17
18
19
     void infoApply(Info& a, int 1, int r, const Tag& tag) {
20
          a.sum = add(mul(a.sum, tag.mul), mul((r - l + 1), tag.add));
\frac{21}{22}
     }
     void tagApply(Tag& a, int 1, int r, const Tag& tag) {
   a.add = add(mul(a.add, tag.mul), tag.add);
23
24
25
          a.mul = mul(a.mul, tag.mul);
26
     }
28
     template <class Info, class Tag>
29
     class segTree {
     #define Is i << 1
30
     #define rs i << 1 | 1
31
\begin{array}{c} 32 \\ 33 \end{array}
     #define mid ((1 + r) >> 1)
     #define lson ls, l, mid
34
35
     #define rson rs, mid + 1, r
36
          int n;
37
          std::vector<Info> info;
38
          std::vector<Tag> tag;
39
         public:
40
          segTree(const std::vector<Info>& init) : n(init.size() - 1) {
41
42
               assert(n > 0);
               asset(1 > 0);
info.resize(4 << std::__lg(n));
tag.resize(4 << std::__lg(n));
auto build = [&](auto dfs, int i, int l, int r) {
    if (1 == r) {
        info[i] = init[l];
    }
}</pre>
43
44
45
46
47
48
                         return;
49
50
                    dfs(dfs, lson);
51
                    dfs(dfs, rson);
52
                    push_up(i);
53
54
               build(build, 1, 1, n);
55
56
57
58
59
          void push_up(int i) { info[i] = info[ls] + info[rs]; }
60
61
62
          template <class... T>
          void apply(int i, int 1, int r, const T&... val) {
    ::infoApply(info[i], l, r, val...);
    ::tagApply(tag[i], l, r, val...);
63
64
65
66
67
          void push_down(int i, int l, int r) {
   if (tag[i] == Tag{}) return;
68
69
70
71
               apply(Ison, tag[i]);
               apply(rson, tag[i]);
72
73
74
75
               tag[i] = {};
         public:
76
77
          template <class... T>
          78
79
80
81
                         apply(i, 1, r, val...);
82
                         return;
83
                    push_down(i, 1, r);
84
                    dfs(dfs, lson);
```

```
86
                       dfs(dfs, rson);
 87
                       push_up(i);
 88
 89
                  dfs(dfs, 1, 1, n);
 90
 91
            Info rangeQuery(int ql, int qr) {
 92
 93
                  Info res{};
                  auto dfs = [&] (auto dfs, int i, int l, int r) {
    if (qr < l or r < ql) return;
    if (ql <= l and r <= qr) {
 94
 95
 96
                             res = res + info[i];
 97
 98
                             return;
 99
100
                       push_down(i, 1, r);
                       dfs(dfs, lson);
dfs(dfs, rson);
101
102
103
104
                  dfs(dfs, 1, 1, n);
105
                  return res;
106
            }
107
       #undef rson
108
109
       #undef lson
#undef mid
110
111
      #undef rs
#undef ls
112
113
114
115
       int main() {
116
            std::ios::sync_with_stdio(false);
117
            std::cin.tie(0);
118
            std::cout.tie(0);
119
            int n, m, p;
std::cin >> n >> m >> p;
std::vector<Info> a(n + 1);
for (int i = 1; i <= n; i++) std::cin >> a[i].sum;
120
121
122
123
124
            static segTree<Info, Tag> tr(a);
125
            while (m--) {
   int op, k, 1, r;
   std::cin >> op >> 1 >> r;
   if (op == 1) {
126
127
128
129
                        std::cin >> k;
130
                  tr.rangeMerge(1, r, Tag(0, k));
} else if (op == 2) {
   std::cin >> k;
131
132
133
134
                        tr.rangeMerge(l, r, Tag(k, 1));
135
                  } else {
136
                       std::cout << tr.rangeQuery(1, r).sum << '\n';</pre>
137
138
139
140
            return 0;
141
      }
```

动态开点权值线段树

16

如果要实现 push up 记得先开点再 push.

```
// Problem: P3369 【模板】普通平衡树
 \frac{2}{3}
     struct node {
          int id, 1, r;
          int ls, rs;
 \begin{array}{c} 5 \\ 6 \\ 7 \end{array}
          int sum;
 8 9
         node(int _id, int _l, int _r) : id(_id), 1(_l), r(_r) {
    ls = rs = 0;
10
              sum = 0;
          }
11
12
    };
13
14
15
     // Segment tree //
16
     int idx = 1;
     std::vector<node> tree = {node{0, 0, 0}};
17
18
19
     auto new_node = [&](int 1, int r) -> int {
20
          tree.push_back(node(idx, 1, r));
21
          return idx++;
22
```

4.7 segment tree

```
23
24
     auto push_up = [&](int u) -> void {
25
         tree[u].sum = 0;
26
         if (tree[u].ls) tree[u].sum += tree[tree[u].ls].sum;
27
         if (tree[u].rs) tree[u].sum += tree[tree[u].rs].sum;
28
    }:
29
30
     auto build = [&]() { new_node(-10000000, 10000000); };
31
32
     std::function<void(int, int, int, int)> insert = [&](int u, int 1, int r, int x) {
33
         if (1 == r) {
34
             tree[u].sum++;
35
             return;
36
37
         int mid = (1 + r - 1) / 2;
38
         if (x <= mid) {</pre>
39
             if (!tree[u].ls) tree[u].ls = new_node(l, mid);
40
             insert(tree[u].ls, 1, mid, x);
41
         } else {
42
             if (!tree[u].rs) tree[u].rs = new_node(mid + 1, r);
43
             insert(tree[u].rs, mid + 1, r, x);
44
45
         push_up(u);
     };
46
47
48
     std::function<void(int, int, int, int)> remove = [&](int u, int 1, int r, int x) {
49
         if (1 == r)
             if (tree[u].sum) tree[u].sum--;
50
51
             return;
52
53
         int mid = (1 + r - 1) / 2;
         if (x <= mid) {</pre>
54
             if (!tree[u].ls) return;
55
56
             remove(tree[u].ls, 1, mid, x);
         } else {
57
58
             if (!tree[u].rs) return;
59
             remove(tree[u].rs, mid + 1, r, x);
60
61
         push_up(u);
     };
62
63
64
     std::function<int(int, int, int, int) > get_rank_by_key = [&](int u, int l, int r, int x) -> int {
65
         if (1 == r) {
66
             return 1;
67
         int mid = (1 + r - 1) / 2;
68
69
         int ans = 0;
70
71
         if (x <= mid) {</pre>
             if (!tree[u].ls) return 1;
             ans = get_rank_by_key(tree[u].ls, 1, mid, x);
 72
73
         } else {
74
75
             if (!tree[u].rs) return tree[tree[u].ls].sum + 1;
             if (!tree[u].ls) {
76
                 ans = get_rank_by_key(tree[u].rs, mid + 1, r, x);
 77
             } else {
78
                 ans = get_rank_by_key(tree[u].rs, mid + 1, r, x) + tree[tree[u].ls].sum;
 79
             }
80
81
         return ans;
    };
82
83
84
     std::function<int(int, int, int, int) > get_key_by_rank = [&](int u, int l, int r, int x) -> int {
85
         if (1 == r) {
86
             return 1;
87
         int mid = (1 + r - 1) / 2;
88
89
         if (tree[u].ls) {
90
             if (x <= tree[tree[u].ls].sum) {</pre>
91
                 return get_key_by_rank(tree[u].ls, 1, mid, x);
92
             } else {
93
                 return get_key_by_rank(tree[u].rs, mid + 1, r, x - tree[tree[u].ls].sum);
             }
94
95
         } else {
96
             return get_key_by_rank(tree[u].rs, mid + 1, r, x);
97
98
     };
99
100
     std::function<int(int)> get_prev = [&](int x) -> int {
         int rank = get_rank_by_key(1, -10000000, 10000000, x) - 1;
101
         debug(rank);
102
103
         return get_key_by_rank(1, -10000000, 10000000, rank);
104
    };
105
106
     std::function<int(int)> get_next = [&](int x) -> int {
         debug(x + 1);
int rank = get_rank_by_key(1, -10000000, 10000000, x + 1);
107
108
109
         debug(rank);
```

18

```
110 | return get_key_by_rank(1, -10000000, 10000000, rank);
111 |};
```

线段树上二分

```
int lc[M], rc[M], w[M], tot;
 3
     ll a[N];
     void ins(int& o, ll l, ll r, ll x) {
 4
           if (!o) o = ++tot;
 5
           ++w[o];
 6
7
           if (1 == r) return ;
           ll md = 1 + r >> 1;
if (x <= md) ins(lc[o], 1, md, x);
 8
 9
           else ins(rc[o], md + 1, r, x);
10
     };
11
     int ask(int o, 11 L, 11 R, 11 1, 11 r) {
           if (!o) return 0;
// assert(o);
12
13
14
            if (1 <= L && R <= r) return w[o];</pre>
           11 md = L + R >> 1; int z = 0;
if (r >= L) z += ask(lc[o], L, md, 1, r);
if (1 < R) z += ask(rc[o], md + 1, R, 1, r);</pre>
15
16
17
18
           return z;
19
     };
     auto bs(int o, ll l, ll r, int k) {
    // assert(k <= w[o]);</pre>
20
21
           if (1 == r) return std::make_pair(1, w[o] - k);
ll md = l + r >> 1;
\overline{22}
\frac{1}{23}
\overline{24}
           if (w[rc[o]] >= k) return bs(rc[o], md + 1, r, k);
\overline{25}
           else return bs(lc[o], l, md, k - w[rc[o]]);
26
     };
```

(权值) 线段树合并分裂

首先村落里的一共有 n 座房屋, 并形成一个树状结构. 然后救济粮分 m 次发放, 每次选择两个房屋 (x,y), 然后对于 x 到 y 的路径上每座房子里发放一袋 z 类型的救济粮. 查询所有的救济粮发放完毕后, 每座房子里存放的最多的是哪种救济粮.

```
// Problem: P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并
 2
 3
     struct node {
 4
5
          int 1, r, id;
int 1s, rs;
 6
7
          int cnt, ans;
          node(int _id, int _1, int _r) : id(_id), 1(_1), r(_r) {
   ls = rs = 0;
 9
10
               cnt = ans = 0;
11
          }
12
13
     };
14
     int main() {
15
          std::ios::sync_with_stdio(false);
16
          std::cin.tie(0)
17
          std::cout.tie(0);
18
\begin{array}{c} 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \end{array}
          int n, m;
          std::cin >> n >> m;
          vvi e(n + 1);
          vi ans(n + 1);
          for (int i = 1; i < n; i++) {</pre>
               int u, v;
               std::cin >> u >> v;
               e[u].push_back(v);
27
28
               e[v].push_back(u);
\overline{29}
30
31
32
33
34
          /* Segment tree */
          int idx = 1;
vi rt(n + 1);
          std::vector<node> tree = {node{0, 0, 0}};
35
          auto new_node = [&](int 1, int r) -> int {
36
               tree.push_back(node(idx, 1, r));
37
               return idx++;
38
```

4.7 segment tree 19

```
39
 40
           auto push_up = [&](int u) -> void {
 41
               if (!tree[u].ls) {
 42
                    tree[u].cnt = tree[tree[u].rs].cnt;
               tree[u].ans = tree[tree[u].rs].ans;
} else if (!tree[u].rs) {
 43
 44
                    tree[u].cnt = tree[tree[u].ls].cnt;
tree[u].ans = tree[tree[u].ls].ans;
 45
 46
 47
               } else {
                    if (tree[tree[u].rs].cnt > tree[tree[u].ls].cnt) {
 48
 49
                         tree[u].cnt = tree[tree[u].rs].cnt;
 50
                         tree[u].ans = tree[tree[u].rs].ans;
 51
                    } else {
 52
                         tree[u].cnt = tree[tree[u].ls].cnt;
 53
                         tree[u].ans = tree[tree[u].ls].ans;
 54
 55
               }
 56
          };
 57
 58
           std::function<void(int, int, int, int, int) > modify = [&](int u, int l, int r, int x, int k) {
 59
               if (1 == r) {
 60
                    tree[u].cnt += k;
 61
                    tree[u].ans = 1;
 62
                    return;
 63
               int mid = (1 + r) >> 1;
 64
               if (x <= mid) {</pre>
 65
                    if (!tree[u].ls) tree[u].ls = new_node(1, mid);
 66
                    modify(tree[u].ls, 1, mid, x, k);
 67
 68
               } else {
                    if (!tree[u].rs) tree[u].rs = new_node(mid + 1, r);
 69
 70
                    modify(tree[u].rs, mid + 1, r, x, k);
 71
 72
               push_up(u);
73
74
75
          };
           std::function<int(int, int, int, int)> merge = [&](int u, int v, int l, int r) -> int {
76
77
               /* v 的信息传递给 u */
               if (!u) return v;
               if (!v) return u;
if (1 == r) {
 78
 79
 80
                    tree[u].cnt += tree[v].cnt;
 81
                    return u;
 82
 83
               int mid = (1 + r) >> 1;
               tree[u].ls = merge(tree[u].ls, tree[v].ls, 1, mid);
 84
 85
               tree[u].rs = merge(tree[u].rs, tree[v].rs, mid + 1, r);
 86
               push_up(u);
 87
               return u;
 88
          };
 89
           /* LCA */
 90
 91
          for (int i = 1; i <= n; i++) {
   rt[i] = idx;</pre>
 92
 93
 94
               new_node(1, 100000);
 95
 96
 97
           for (int i = 1; i <= m; i++) {</pre>
 98
               int u, v, w;
99
               std::cin >> u >> v >> w;
               int lca = LCA(u, v);

modify(rt[u], 1, 100000, w, 1);

modify(rt[v], 1, 100000, w, 1);

modify(rt[lca], 1, 100000, w, -1);

if (father[lca][0]) {
100
101
102
103
104
105
                    modify(rt[father[lca][0]], 1, 100000, w, -1);
               }
106
          }
107
108
109
           /* dfs */
           std::function<void(int, int)> Dfs = [&](int u, int fa) {
   for (auto v : e[u]) {
110
111
112
                    if (v == fa) continue;
                    Dfs(v, u);
113
114
                    merge(rt[u], rt[v], 1, 100000);
115
               ans[u] = tree[rt[u]].ans;
116
               if (tree[rt[u]].cnt == 0) ans[u] = 0;
117
          };
118
119
120
          Dfs(1, 0);
121
122
           for (int i = 1; i <= n; i++) {
123
               std::cout << ans[i] << ' \n';
124
125
```

```
126 | return 0;
127 |}
```

```
#include<bits/stdc++.h>
 2
     using namespace std;
 3
     namespace Acc{
          using i64=int64_t;
          enum{N=200009,M=10000000};
 5
6
7
          i64 v[M];
          int lc[M],rc[M],tot,a[N],r[N];
 8
          auto up=[](int o){
    v[o]=v[lc[o]]+v[rc[o]];
 9
10
11
          void bd(int&o,int 1,int r){
12
               if(o=++tot,l==r)return cin>>v[o],void();
13
               int md=l+r>>1;
14
               bd(lc[o],1,md),bd(rc[o],md+1,r),up(o);
15
16
          void spl(int&o,int&x,int l,int r,int L,int R){
17
               if(1<=L&&R<=r)return o=x,x=0,void();</pre>
18
               int md=L+R>>1;
19
               o=++tot:
20
               if(l<=md)spl(lc[o],lc[x],l,r,L,md);</pre>
\overline{21}
               if(r>md)spl(rc[o],rc[x],1,r,md+1,R);
\begin{array}{c} 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \end{array}
               up(o),up(x);
          void mg(int&o,int x,int 1,int r){
               if(!o||!x)return o|=x,void();
               if(l==r)return v[o]+=v[x],void();
               int md=l+r>>1;
               mg(lc[o],lc[x],l,md);
29
               mg(rc[o],rc[x],md+1,r);
30
               up(o):
31
32
          void ins(int&o,int l,int r,int x,int k){
               if(!o)o=++tot;
33
34
35
36
37
               if(v[o]+=k,l==r)return;
               int md=l+r>>1;
               x \le md?ins(lc[o],l,md,x,k):ins(rc[o],md+1,r,x,k);
38
39
          i64 qry(int o,int 1,int r,int L,int R){
   if(!o)return 0;
40
               if(1<=L&&R<=r)return v[o];</pre>
41
               int md=L+R>>1;i64 z=0;
42
               if(l<=md)z=qry(lc[o],1,r,L,md);</pre>
43
               if(r>md)z+=qry(rc[o],1,r,md+1,R);
44
               return z;
45
46
          int kth(int o,int 1,int r,int k){
   if(1==r)return 1;
47
48
               if(k>v[o])return -1;
49
               int md=l+r>>1
50
               if(k<=v[lc[o]])return kth(lc[o],1,md,k);</pre>
51
               else return kth(rc[o],md+1,r,k-v[lc[o]]);
52
53
          auto work=[](){
54
               int n,m,i,x,y,o=1;
55
               for(cin>>n>>m,bd(r[1],1,n);m--;)switch(cin>>i,i){
                    case 0:cin>>i>>x>y,spl(r[++o],r[i],x,y,1,n);break;
case 1:cin>x>y,mg(r[x],r[y],1,n);break;
case 2:cin>i>>x>y,ins(r[i],1,n,y,x);break;
56
57
58
59
                    case 3:cin>>i>>x>>y,cout<<qry(r[i],x,y,1,n)<<'\n';break;
case 4:cin>>i>x,cout<<kth(r[i],1,n,x)<<'\n';break;</pre>
60
               }
61
62
          };
63
64
     int main(){
65
          ios::sync_with_stdio(0);
          cin.tie(0), Acc::work();
66
67
```

4.8 hjt segment tree

第1个例题

n 个数, m 次操作, 操作分别为

1. v_i 1 loc_i $value_i$: 将第 v_i 个版本的 $a[loc_i]$ 修改为 $value_i$,

4.8 hjt segment tree

2. v_i 2 loc_i : 拷贝第 v_i 个版本, 并查询该版本的 $a[loc_i]$.

```
// 洛谷 P3919 【模板】可持久化线段树 1 (可持久化数组)
 3
     struct node {
 4
         int 1, r, key;
 5
    };
 6
7
     int main() {
 8
         std::ios::sync_with_stdio(false);
std::cin.tie(0);
 9
10
         std::cout.tie(0);
11
12
         int n, m;
13
         std::cin >> n >> m;
         vi a(n + 1);
for (int i = 1; i <= n; i++) {</pre>
14
15
16
             std::cin >> a[i];
17
18
         /* hjt segment tree */
int idx = 0;
vi root(m + 1);
19
20
21
22
         std::vector<node> tr(n * 25);
23
24
         std::function<int(int, int)> build = [&](int 1, int r) -> int {
25
             int p = ++idx;
if (1 == r) {
26
27
                  tr[p].key = a[1];
28
                  return p;
29
30
             int mid = (1 + r) >> 1;
31
             tr[p].1 = build(1, mid);
32
              tr[\bar{p}].r = build(mid + 1, r);
33
             return p;
34
35
         36
37
38
             int q = ++idx;
tr[q].1 = tr[p].1, tr[q].r = tr[p].r;
if (tr[q].1 == tr[q].r) {
39
40
41
                  tr[q].key = x;
42
                  return q;
43
44
             int mid = (1 + r) >> 1;
45
             if (k <= mid) {</pre>
46
                  tr[q].1 = modify(tr[q].1, 1, mid, k, x);
             } else
47
48
                  tr[q].r = modify(tr[q].r, mid + 1, r, k, x);
49
             }
50
             return q;
51
         };
52
         std::function<int(int, int, int, int) > query = [&](int p, int l, int r, int k) -> int {
    if (tr[p].l == tr[p].r) {
53
54
55
                  return tr[p].key;
56
57
             int mid = (1 + r) >> 1;
              if (k <= mid) {</pre>
58
59
                  return query(tr[p].1, 1, mid, k);
60
61
                  return query(tr[p].r, mid + 1, r, k);
62
63
         };
64
65
         root[0] = build(1, n);
66
67
         for (int i = 1; i <= m; i++) {</pre>
             int op, ver, k, x;
std::cin >> ver >> op;
68
69
\frac{70}{71}
              if (op == 1) {
                  std::cin >> k >> x;
72
73
                  root[i] = modify(root[ver], 1, n, k, x);
             } else {
74
75
76
77
78
79
                  std::cin >> k;
                  root[i] = root[ver];
                  std::cout << query(root[ver], 1, n, k) << '\n';
         }
80
         return 0:
81
    }
```

第2个例题

长度为 n 的序列 a, m 次查询, 每次查询 [l,r] 中的第 k 小值.

```
// 洛谷P3834 【模板】可持久化线段树 2
  3
          struct node {
  4
                   int 1, r, cnt;
          };
  5
6
7
          int main() {
  8
                   std::ios::sync_with_stdio(false);
  9
                   std::cin.tie(0);
10
                   std::cout.tie(0);
11
12
                   int n, m;
                   std::cin >> n >> m;
13
14
                    vi a(n + 1), v;
15
                    for (int i = 1; i <= n; i++) {
16
                             std::cin >> a[i]
17
                             v.push_back(a[i]);
18
19
                   std::sort(all(v));
                   v.erase(unique(all(v)), v.end());
auto find = [&](int x) -> int { return std::lower_bound(all(v), x) - v.begin() + 1; };
20
\frac{21}{22}
23
24
25
26
27
28
29
30
31
                    /* hjt segment tree */
                    std::vector<node>(n * 25);
                   vi root(n + 1);
int idx = 0;
                    std::function<int(int, int)> build = [&](int 1, int r) -> int {
                             int p = ++idx;
if (1 == r) return p;
                              int mid = (1 + r) >> 1;
32
                             tr[p].l = build(l, mid), tr[p].r = build(mid + 1, r);
33
                             return p;
34
35
                   };
36
                   std::function<int(int, int, int, int) > modify = [&](int p, int l, int r, int x) -> int {
                             int q = ++idx;
tr[q] = tr[p];
if (tr[q].1 == tr[q].r) {
37
38
39
40
                                       tr[q].cnt++;
41
                                      return q;
42
                              int mid = (1 + r) >> 1;
43
44
                             if (x <= mid) {</pre>
45
                                       tr[q].l = modify(tr[q].l, l, mid, x);
46
47
                                       tr[q].r = modify(tr[q].r, mid + 1, r, x);
48
49
                              tr[q].cnt = tr[tr[q].1].cnt + tr[tr[q].r].cnt;
50
                             return q;
51
                   }:
52
53
54
55
                   std::function < int(int, int, int, int, int) > query = [&](int p, int q, int l, int r, int p, int q, int l, int r, int) > query = [&](int p, int q, int l, int r, int) > query = [&](int p, int q, int l, int r, int) > query = [&](int p, int q, int l, int r, int) > query = [&](int p, int q, int l, int r, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int l, int) > query = [&](int p, int q, int) > query = [&](int p, int q, int) > query = [&](int p, int) > query = [&](int) > quer
                                                                                                                                                            int x) -> int {
                              if (1 == r) return 1
                             int cnt = tr[tr[p].1].cnt - tr[tr[q].1].cnt;
int mid = (1 + r) >> 1;
56
57
58
                             if (x <= cnt) {
59
                                       return query(tr[p].1, tr[q].1, 1, mid, x);
60
                             } else {
61
                                       return query(tr[p].r, tr[q].r, mid + 1, r, x - cnt);
62
63
                   };
64
                   root[0] = build(1, v.size());
65
66
67
68
                   for (int i = 1; i <= n; i++) {
   root[i] = modify(root[i - 1], 1, v.size(), find(a[i]));</pre>
69
70
71
72
73
74
75
76
77
                   for (int i = 1; i <= m; i++) {</pre>
                              int 1, r, k;
                              std::cin >> 1 >> r >> k;
                             std::cout << v[query(root[r], root[l - 1], 1, v.size(), k) - 1] << '\n';
                   return 0:
78
         }
```

4.9 LiChao Tree

4.9 LiChao Tree

线段版本

```
#include<bits/stdc++.h>
     using namespace std;
 3
     namespace Acc{
     #define lc (o<<1)
     #define rc (o<<1|1)
 6
          const int N = 4e5+10;
          int v[N],n,1,r,z;
         double k[N],b[N];
inline void r1(int&x){x=(x+z-1)%39989+1;}
 9
10
          inline void r2(int&x){x=(x+z-1)%1000000000+1;}
11
          double f(int o,int x){
12
              return k[o]*x+b[o];
13
          int beat(int x,int a,int b){
    double u=f(a,x),v=f(b,x);
14
15
16
              return fabs(u-v)<=1e-8?a<b:u>v;
17
18
          void add(int o,int L,int R,int x){
19
               int md=L+R>>1;
20
               if(1<=L&&R<=r){</pre>
21
                   if(!v[o])return (void)(v[o]=x);
                   if(beat(L,v[o],x) && beat(R,v[o],x))return;
if(beat(L,x,v[o]) && beat(R,x,v[o]))return (void)(v[o]=x);
if(beat(md,x,v[o]))swap(x,v[o]);
22
\frac{-}{23}
24
25
                   if(beat(L,x,v[o]))add(lc,L,md,x);
26
                    else add(rc,md+1,R,x);
27
                   return;
28
29
              if(r>md)add(rc,md+1,R,x);
30
              if(l<=md)add(lc,L,md,x);</pre>
31
32
          int ask(int o,int L,int R){
              if(L==R)return v[o];
int md=L+R>>1,h=1<=md?ask(lc,L,md):ask(rc,md+1,R);</pre>
33
34
35
              return beat(1,h,v[o])?h:v[o];
36
37
          void work(){
38
              cin>>n;
39
              for(int op,y1,y2,c=0;n--;){
                    cin>>op;
40
41
                    if(op){
42
                         cin>>l>>y1>>r>>y2,++c,r1(l),r2(y1),r1(r),r2(y2);
43
                         if(l==r)k[c]=0,b[c]=max(y1,y2);
44
                         else {
                             if(l>r)swap(l,r),swap(y1,y2);
k[c]=(y2-y1+0.)/(r-1),b[c]=y1-k[c]*1;
45
46
47
48
                         add(1,1,4e4+10,c);
49
                   }else cin>>1,r1(1),cout<<(z=ask(1,1,4e4+10))<<'\n';
50
51
          }
     }
52
53
     int main(){
54
          return Acc::work(),0;
55
```

4.10 treap

旋转 treap

- n 次操作, 操作分为如下 6 种:
- 1. 插入数 x,
- 2. 删除数 x (若有多个相同的数,只删除一个),
- 3. 查询数 x 的排名 (排名定义为小于 x 的数的个数 + 1),
- 4. 查询排名为 x 的数,
- 5. 求 x 的前驱 (前驱定义为小于 x 的最大数),

6. 求 x 的后继 (后继定义为大于 x 的最小数).

24

```
// Problem: P3369 【模板】普通平衡树
 \bar{3}
     int n, root, idx;
 \begin{array}{c} 4\\5\\6\\7\end{array}
     struct node {
          int l, r;
int key, val;
 8
          int cnt, size;
 9
     } treap[N];
10
11
     void push_up(int p) {
12
          treap[p].size = treap[treap[p].l].size + treap[treap[p].r].size + treap[p].cnt;
13
14
     int get_node(int key) {
   treap[++idx].key = key;
   treap[idx].val = rand();
   treap[idx].cnt = treap[idx].size = 1;
15
16
17
18
19
          return idx;
20
     }
\bar{2}
22
     void zig(int &p) {
          // 右旋 //
int q = treap[p].1;
treap[p].1 = treap[q].r, treap[q].r = p, p = q;
23
24
25
          push_up(treap[p].r), push_up(p);
26
\overline{27}
28
29
     void zag(int &p) {
30
          // 左旋 //
          int q = treap[p].r;
treap[p].r = treap[q].l, treap[q].l = p, p = q;
31
32
33
          push_up(treap[p].1), push_up(p);
34
     }
35
36
     void build() {
37
38
          get_node(-inf), get_node(inf);
          root = 1, treap[1].r = 2;
39
          push_up(root);
40
           if (treap[1].val < treap[2].val) zag(root);</pre>
41
     }
42
     void insert(int &p, int key) {
43
44
          if (!p) {
45
          p = get_node(key);
} else if (treap[p].key == key) {
46
47
               treap[p].cnt++
          } else if (treap[p].key > key) {
  insert(treap[p].1, key);
  if (treap[treap[p].1].val > treap[p].val) zig(p);
48
49
50
51
          } else {
               insert(treap[p].r, key);
if (treap[treap[p].r].val > treap[p].val) zag(p);
52
53
54
55
          push_up(p);
56
57
     void remove(int &p, int key) {
   if (!p) return;
   if (treap[p].key == key) {
58
59
60
                if (treap[p].cnt > 1) {
61
62
                     treap[p].cnt--
63
                } else if (treap[p].1 || treap[p].r) {
64
                     if (!treap[p].r || treap[treap[p].1].val > treap[treap[p].r].val) {
65
                          zig(p);
66
                          remove(treap[p].r, key);
                     } else {
67
                          zag(p);
68
                          remove(treap[p].1, key);
69
70
71
72
73
74
75
76
77
78
                     }
               } else {
                    p = 0;
               }
          } else if {
                (treap[p].key > key) remove(treap[p].1, key);
               remove(treap[p].r, key);
          push_up(p);
80
     }
81
     int get_rank_by_key(int p, int key) {
82
          // 通过数值找排名 //
83
84
          if (!p) return 0;
```

4.10 treap 25

```
85
            if (treap[p].key == key) return treap[treap[p].1].size;
            if (treap[p].key > key return get_rank_by_key(treap[p].1, key);
return treap[treap[p].1].size + treap[p].cnt + get_rank_by_key(treap[p].r, key);
 86
 87
 88
      }
 89
 90
      int get_key_by_rank(int p, int rank) {
            // 通过排名找数值 //
 91
            if (!p) return inf;
 92
            if (treap[treap[p].1].size >= rank) return get_key_by_rank(treap[p].1, rank);
if (treap[treap[p].1].size + treap[p].cnt >= rank) return treap[p].key;
 93
 94
 95
            return get_key_by_rank(treap[p].r, rank - treap[treap[p].l].size - treap[p].cnt);
 96
 97
 98
      int get_prev(int p, int key) {
    // 找前驱 //
 99
            if (!p) return -inf;
100
            if (treap[p].key >= key) return get_prev(treap[p].l, key);
return max(treap[p].key, get_prev(treap[p].r, key));
101
102
103
       }
104
      int get_next(int p, int key) {
    // 找后继 //
105
106
107
            if (!p) return inf;
108
            if (treap[p].key <= key) return get_next(treap[p].r, key);</pre>
109
            return min(treap[p].key, get_next(treap[p].1, key));
110
       }
111
112
       int main() {
113
            ios::sync_with_stdio(false);
            cin.tie(0);
114
115
            cout.tie(0);
116
117
            cin >> n;
            build();
118
119
            rep(i, 1, n) {
                 int op, x;
cin >> op >> x;
if (op == 1) {
120
121
122
                 insert(root, x);
} else if (op == 2) {
123
124
                 remove(root, x);
} else if (op == 3) {
125
126
                 cout << get_rank_by_key(root, x) << '\n';
} else if (op == 4) {
127
128
                 cout << get_key_by_rank(root, x + 1) << '\n';
} else if (op == 5) {</pre>
129
130
                      cout << get_prev(root, x) << '\n';</pre>
131
132
                 } else {
133
                      cout << get_next(root, x) << '\n';</pre>
134
135
136
            return 0;
137
```

无旋 treap

与旋转 Treap 同一个题目

```
struct node {
 3
           node *ch[2];
           int key, val;
 4
           int cnt, size;
 5
          node(int _key) : key(_key), cnt(1), size(1) {
    ch[0] = ch[1] = nullptr;
 6
 7
 8 9
                val = rand();
10
11
           // node(node *_node) {
12
           // key = _node->key, val = _node->val, cnt = _node->cnt, size = _node->size;
13
14
           inline void push_up() {
15
                size = cnt;
if (ch[0] != nullptr) size += ch[0]->size;
if (ch[1] != nullptr) size += ch[1]->size;
16
17
18
19
20
     };
21
22
     struct treap {
     #define _2 second.first
#define _3 second.second
23
```

```
\frac{26}{27}
            node *root;
 28
            pair<node *, node *> split(node *p, int key) {
   if (p == nullptr) return {nullptr, nullptr};
 29
 30
                 if (p->key <= key) {
                      auto temp = split(p->ch[1], key);
p->ch[1] = temp.first;
 31
 32
 33
34
                       p->push_up();
                       return {p, temp.second};
 35
                 } else {
                       auto temp = split(p->ch[0], key);
p->ch[0] = temp.second;
 36
 37
 38
                       p->push_up();
 39
                       return {temp.first, p};
 40
 41
            }
 42
           pair<node *, pair<node *, node *> > split_by_rank(node *p, int rank) {
   if (p == nullptr) return {nullptr, {nullptr, nullptr}};
   int ls_size = p->ch[0] == nullptr ? 0 : p->ch[0]->size;
 43
 44
 45
                 if (rank <= ls_size) {</pre>
 46
                       auto temp = split_by_rank(p->ch[0], rank);
p->ch[0] = temp._3;
 47
 48
 49
                       p->push_up();
 50
                       return {temp.first, {temp._2, p}};
 51
                 } else if (rank <= ls_size + p->cnt) {
                       node *lt = p->ch[0];
 52
                       node *rt = p->ch[1];
p->ch[0] = p->ch[1] = nullptr;
 53
54
 55
56
                       return {lt, {p, rt}};
                 } else {
                       auto temp = split_by_rank(p->ch[1], rank - ls_size - p->cnt);
p->ch[1] = temp.first;
 57
 58
 59
                       p->push_up();
 60
                       return {p, {temp._2, temp._3}};
 61
                 }
 62
            }
 63
           node *merge(node *u, node *v) {
   if (u == nullptr && v == nullptr) return nullptr;
 64
 65
                 if (u != nullptr && v == nullptr) return u;
if (v != nullptr && u == nullptr) return v;
 66
 67
                 if (u->val < v->val) {
    u->ch[1] = merge(u->ch[1], v);
 68
 69
 70
71
72
73
74
75
76
77
78
                       u->push_up();
                       return u;
                 } else {
                       v->ch[0] = merge(u, v->ch[0]);
                       v->push_up();
                       return v;
                 }
            }
            void insert(int key) {
 80
                 auto temp = split(root, key);
auto l_tr = split(temp.first, key - 1);
 81
82
                 node *new_node;
 83
84
                 if (l_tr.second == nullptr) {
                      new_node = new node(key);
 85
86
                 } else {
                       1_tr.second->cnt++;
 87
                       1_tr.second->push_up();
 88
 89
                 node *l_tr_combined = merge(l_tr.first, l_tr.second == nullptr ? new_node : l_tr.second);
 90
                 root = merge(l_tr_combined, temp.second);
 91
 92
 93
            void remove(int key) {
                 auto temp = split(root, key);
auto l_tr = split(temp.first, key - 1);
if (l_tr.second->cnt > 1) {
 94
 95
 96
 97
                       1_tr.second->cnt--
 98
                       1_tr.second->push_up();
 99
                       l_tr.first = merge(l_tr.first, l_tr.second);
                 } else {
   if (temp.first == l_tr.second) temp.first = nullptr;
100
101
102
103
                       1_tr.second = nullptr;
104
105
                 root = merge(l_tr.first, temp.second);
106
107
108
            int get_rank_by_key(node *p, int key) {
109
                 auto temp = split(p, key - 1);
int ret = (temp.first == nullptr ? 0 : temp.first->size) + 1;
110
111
                 root = merge(temp.first, temp.second);
```

4.10 treap 27

```
112
                return ret;
113
           }
114
115
           int get_key_by_rank(node *p, int rank) {
                auto temp = split_by_rank(p, rank);
int ret = temp._2->key;
116
117
118
                root = merge(temp.first, merge(temp._2, temp._3));
119
                return ret;
           }
120
121
122
           int get_prev(int key) {
123
                auto temp = split(root, key - 1);
124
                int ret = get_key_by_rank(temp.first, temp.first->size);
125
                root = merge(temp.first, temp.second);
126
                return ret;
127
128
129
           int get_nex(int key) {
130
                auto temp = split(root, key);
                int ret = get_key_by_rank(temp.second, 1);
root = merge(temp.first, temp.second);
131
132
133
                return ret;
134
      };
135
136
137
      treap tr;
138
139
      int main() {
           ios::sync_with_stdio(false);
140
141
           cin.tie(0);
142
           cout.tie(0);
143
144
           srand(time(0));
145
146
           int n;
147
           cin >> n;
148
           while (n--) {
               int op, x;
cin >> op >> x;
if (op == 1) {
149
150
151
                tr.insert(x);
} else if (op == 2) {
152
153
                tr.remove(x);
} else if (op == 3) {
154
155
                cout << tr.get_rank_by_key(tr.root, x) << '\n';
} else if (op == 4) {</pre>
156
157
                cout << tr.get_key_by_rank(tr.root, x) << '\n';
} else if (op == 5) {</pre>
158
159
160
                     cout << tr.get_prev(x) << '\n';</pre>
161
                } else {
162
                     cout << tr.get_nex(x) << '\n';</pre>
163
164
165
           return 0;
      }
166
```

用 01 trie 实现的一种方式

同样的题目, 注意使用 01 trie 只能存在非负数.

速度能快不少, 但只能单点操作, 而且有点费空间.

```
// 洛谷 P3369 【模板】普通平衡树
 1 2
 3
      struct Treap {
   int id = 1, maxlog = 25;
   int ch[N * 25][2], siz[N * 25];
 4
 5
 6
7
           int newnode() {
 8
                 id++;
                 ch[id][0] = ch[id][1] = siz[id] = 0;
 9
10
                 return id;
11
12
13
           void merge(int key, int cnt) {
14
                 int u = 1;
                 for (int i = maxlog - 1; i >= 0; i--) {
   int v = (key >> i) & 1;
   if (!ch[u][v]) ch[u][v] = newnode();
15
16
17
18
                      u = ch[u][v];
19
                       siz[u] += cnt;
20
```

```
21 \\ 22 \\ 23 \\ 24
           }
           int get_key_by_rank(int rank) {
   int u = 1, key = 0;
   for (int i = maxlog - 1; i >= 0; i--) {
      if (siz[ch[u][0]] >= rank) {
25
26
27
                          u = ch[u][0];
28
                        else {
                          key |= (1 << i);
rank -= siz[ch[u][0]];
\frac{1}{29}
30
31
32
33
34
                           u = ch[u][1];
                     }
                return key;
35
36
           }
37
           int get_rank_by_key(int rank) {
38
39
                int key = 0;
int u = 1;
                for (int i = maxlog - 1; i >= 0; i--) {
   if ((rank >> i) & 1) {
40
41
                          key += siz[ch[u][0]];
u = ch[u][1];
42
43
44
                     } else {
45
                          u = ch[u][0];
46
47
                     if (!u) break;
48
                }
49
                return key;
50
           }
51
52
           int get_prev(int x) { return get_key_by_rank(get_rank_by_key(x)); }
53
           int get_next(int x) { return get_key_by_rank(get_rank_by_key(x + 1) + 1); }
54
     } treap;
55
56
     const int num = 1e7;
57
58
     int n, op, x;
59
     int main() {
60
           std::ios::sync_with_stdio(false);
61
           std::cin.tie(0)
62
           std::cout.tie(0);
6\overline{3}
64
           std::cin >> n;
           for (int i = 1; i <= n; i++) {</pre>
65
66
                std::cin >> op >> x;
67
                if (op == 1) {
                treap.merge(x + num, 1);
} else if (op == 2) {
68
69
                     treap.merge(x + num, -1);
70
71
72
73
74
75
76
77
78
                } else if (op == 3) {
    std::cout << trap.get_rank_by_key(x + num) + 1 << '\n';</pre>
                } else if (op == 4) {
                     std::cout << treap.get_key_by_rank(x) - num << '\n';
                  else if (op == 5) {
                     std::cout << treap.get_prev(x + num) - num << '\n';</pre>
                } else if (op == 6) {
                     std::cout << treap.get_next(x + num) - num << '\n';</pre>
                }
80
           return 0;
     }
```

4.11 splay

文艺平衡树

初始为 1 到 n 的序列, m 次操作, 每次将序列下标为 $[l \sim r]$ 的区间翻转.

4.11 splay 29

```
13
14
           bool get(int u) { return u == tr[tr[u].fa].ch[1]; }
15
16
           void pushup(int u) { tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + 1; }
18
           void pushdown(int u) {
19
                 if (tr[u].flag) {
                      std::swap(tr[u].ch[0], tr[u].ch[1]);
tr[tr[u].ch[0]].flag ^= 1, tr[tr[u].ch[1]].flag ^= 1;
20
21
22
                      tr[u].flag = 0;
23
                 }
24
25
           }
26
           void rotate(int x) {
27
                 int y = tr[x].fa, z = tr[y].fa;
28
                 int op = get(x);
                int op = get(x),
tr[y].ch[op] = tr[x].ch[op ^ 1];
if (tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
if (z) tr[z].ch[y == tr[z].ch[1]] = x;
pushur(x)
29
30
31
32
33
34
                 pushup(y), pushup(x);
35
36
           void opt(int u, int k) {
   for (int f = tr[u].fa; f = tr[u].fa, f != k; rotate(u)) {
      if (tr[f].fa != k) rotate(get(u) == get(f) ? f : u);
37
38
39
40
41
                 if (k == 0) root = u;
42
43
44
           void output(int u) {
45
                 pushdown(u);
                 if (tr[u].ch[0]) output(tr[u].ch[0]);
if (tr[u].key >= 1 && tr[u].key <= n) {
    std::cout << tr[u].key << ' ';</pre>
46
47
                      std::cout << tr[u].key <<
48
49
50
                 if (tr[u].ch[1]) output(tr[u].ch[1]);
51
52
53
           void insert(int key) {
54
                 idx++;
55
                 tr[idx].ch[0] = root;
                 tr[idx].init(0, key);
tr[root].fa = idx;
56
57
58
                root = idx;
                pushup(idx);
59
60
61
62
           int kth(int k) {
63
                 int u = root;
64
                 while (1) {
65
                      pushdown(u);
                      if (tr[u].ch[0] && k <= tr[tr[u].ch[0]].siz) {
66
67
                           u = tr[u].ch[0];
                      } else {
68
69
                            k -= tr[tr[u].ch[0]].siz + 1;
70
                            if (k <= 0) {
71
72
73
74
                                 opt(u, 0);
                                 return u;
                            } else {
                                 u = tr[u].ch[1];
                            }
75
76
                      }
77
78
                 }
79
80
      } splay;
81
      int n, m, l, r;
83
84
      int main() {
85
           std::ios::sync_with_stdio(false);
           std::cin.tie(0);
86
87
           std::cout.tie(0);
88
89
           std::cin >> n >> m;
90
           splay.n = n;
91
           splay.insert(-inf);
92
           rep(i, 1, n) splay.insert(i);
93
           splay.insert(inf);
94
           rep(i, 1, m) {
                 std::cin >> 1 >> r;
95
                 1 = splay.kth(1), r = splay.kth(r + 2);
splay.opt(1, 0), splay.opt(r, 1);
splay.tr[splay.tr[r].ch[0]].flag ^= 1;
96
97
98
99
```

```
100 | splay.output(splay.root);
101 |
102 | return 0;
103 |}
```

普通平衡树

- n 次操作, 操作分为如下 6 种:
- 1. 插入数 x 2. 删除数 x (若有多个相同的数,只删除一个) 3. 查询数 x 的排名 (排名定义为小于 x 的数的个数 + 1) 4. 查询排名为 x 的数 5. 求 x 的前驱 (前驱定义为小于 x 的最大数) 6. 求 x 的后继 (后继定义为大于 x 的最小数)

```
// 洛谷 P3369 【模板】普通平衡树
 2
 3
     struct node {
 4
5
          int ch[2], fa, key, siz, cnt;
 6
7
          void init(int _fa, int _key) { fa = _fa, key = _key, siz = cnt = 1; }
 8
          void clear() { ch[0] = ch[1] = fa = key = siz = cnt = 0; }
 9
     };
10
11
     struct splay {
12
13
          node tr[N];
          int n, root, idx;
14
15
          bool get(int u) { return u == tr[tr[u].fa].ch[1]; }
16
17
          void pushup(int u) { tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + tr[u].cnt; }
18
19
          void rotate(int x) {
\frac{20}{21}
               int y = tr[x].fa, z = tr[y].fa;
              int y = tr[x].1a, z = tr[y].1a;
int op = get(x);
tr[y].ch[op] = tr[x].ch[op ^ 1];
if (tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
if (z) tr[z].ch[y == tr[z].ch[1]] = x;
22
\frac{23}{24}
25
26
27
28
29
30
               pushup(y), pushup(x);
          }
          void opt(int u, int k) {
    for (int f = tr[u].fa; f = tr[u].fa, f != k; rotate(u)) {
31
32
                    if (tr[f].fa != k) {
33
34
                         rotate(get(u) == get(f) ? f : u);
35
36
37
38
39
               if (k == 0) root = u;
          void insert(int key) {
40
               if (!root) {
41
                    idx++
42
                    tr[idx].init(0, key);
                    root = idx;
43
44
                    return;
45
               }
46
               int u = root, f = 0;
               while (1) {
48
                    if (tr[u].key == key) {
49
                         tr[u].cnt++;
50
51
52
                         pushup(u), pushup(f);
                         opt(u, 0);
                         break
53
54
                    }
                    f = u, u = tr[u].ch[tr[u].key < key];
55
56
                    if (!u) {
                         idx++
57
                         tr[idx].init(f, key);
58
                         tr[f].ch[tr[f].key < key] = idx;
59
                         pushup(idx), pushup(f);
60
                         opt(idx, 0);
61
                         break;
                    }
62
63
               }
64
          }
65
          // 返回节点编号 //
66
67
          int kth(int rank) {
```

4.11 splay 31

```
68
               int u = root;
 69
               while (1) {
70
71
                    if (tr[u].ch[0] && rank <= tr[tr[u].ch[0]].siz) {</pre>
                        u = tr[u].ch[0];
72
73
74
75
76
77
                    } else {
                        rank -= tr[tr[u].ch[0]].siz + tr[u].cnt;
                        if (rank <= 0) {
    opt(u, 0);</pre>
                             return u;
                        } else {
 78
                             u = tr[u].ch[1];
                        }
 79
 80
                    }
 81
               }
 82
          }
 83
           // 返回排名 //
84
 85
           int nlt(int key) {
 86
               int rank = 0, u = root;
               while (1) {
 87
 88
                    if (tr[u].key > key) {
 89
                        u = tr[u].ch[0];
 90
                    } else {
                        rank += tr[tr[u].ch[0]].siz;
 91
                        if (tr[u].key == key) {
    opt(u, 0);
 92
 93
 94
                             return rank + 1;
 95
                        rank += tr[u].cnt;
 96
                         if (tr[u].ch[1])
97
                        u = tr[u].ch[1];
} else {
98
99
100
                             return rank + 1;
                        }
101
102
                   }
103
               }
104
          }
105
106
           int get_prev(int key) { return kth(nlt(key) - 1); }
107
108
           int get_next(int key) { return kth(nlt(key + 1)); }
109
           void remove(int key) {
110
111
               nlt(key);
               if (tr[root].cnt > 1) {
112
113
                    tr[root].cnt--;
114
                    pushup(root);
115
                    return;
116
               int u = root, l = get_prev(key);
tr[tr[u].ch[1]].fa = 1;
117
118
119
               tr[1].ch[1] = tr[u].ch[1];
120
               tr[u].clear();
121
               pushup(root);
122
          }
123
          void output(int u) {
   if (tr[u].ch[0]) output(tr[u].ch[0]);
124
125
126
               std::cout << tr[u].key << ' ';
127
               if (tr[u].ch[1]) output(tr[u].ch[1]);
128
129
130
      } splay;
131
132
      int n, op, x;
133
134
      int main() {
135
          std::ios::sync_with_stdio(false);
           std::cin.tie(0);
136
137
           std::cout.tie(0);
138
139
           splay.insert(-inf), splay.insert(inf);
140
           std::cin >> n;
141
           for (int i = 1; i <= n; i++) {</pre>
142
               std::cin >> op >> x;
if (op == 1) {
143
144
               splay.insert(x);
} else if (op == 2)
145
146
               splay.remove(x);
} else if (op == 3) {
147
148
149
                    std::cout << splay.nlt(x) - 1 << endl;</pre>
               } else if (op == 4) {
150
               std::cout << splay.tr[splay.kth(x + 1)].key << endl;
} else if (op == 5) {</pre>
151
152
                    std::cout << splay.tr[splay.get_prev(x)].key << endl;</pre>
153
               } else if (op == 6) {
154
```

```
155 | std::cout << splay.tr[splay.get_next(x)].key << endl;
156 | }
157 | }
158 |
159 | return 0;
160 |}
```

4.12 Link Cut Tree

```
struct LCT{
            int v[N],r[N],f[N],s[N][2],st[N],tp;
void pu(int x){v[x]=a[x]^v[s[x][0]]^v[s[x][1]];}
void flp(int x){r[x]^=1,std::swap(s[x][0],s[x][1]);}
 2
 \frac{1}{3}
 5
            void pd(int x){if(r[x])flp(s[x][0]),flp(s[x][1]),r[x]=0;}
 6
7
            bool isrt(int x){return s[f[x]][0]!=x&&s[f[x]][1]!=x;}
            void rtt(int x){
                  int y=f[x],z=f[y],k=(s[y][1]==x);if(!isrt(y)) s[z][y==s[z][1]]=x;
f[x]=z,f[y]=x,f[s[x][k^1]]=y,s[y][k]=s[x][k^1],s[x][k^1]=y,pu(y),pu(x);}
 9
10
            void spl(int x){
11
                  st[tp++]=x;for(int i=x;!isrt(i);i=f[i])st[tp++]=f[i];
12
                  while(tp)pd(st[--tp]);
13
                  while(!isrt(x))-
                        if(!isrt(f[x]))rtt((s[f[x]][0]==x)^(s[f[f[x]]][0]==f[x])?x:f[x]);
14
15
                        rtt(x);
16
                  }pu(x);
17
18
            void acc(int x){for(int y=0;x;y=x,x=f[x]) spl(x),s[x][1]=y,pu(x);}
19
            void mkrt(int x){acc(x),spl(x),flp(x);}
            int fdrt(int x){acc(x),spl(x);ifp(x),j
int fdrt(int x){acc(x),spl(x);while(s[x][0])x=s[x][0];spl(x);return x;}
void cut(int x,int y){mkrt(x);if(x==fdrt(y)&&f[y]==x&&!s[y][0])s[x][1]=f[y]=0,pu(x);}
void lk(int x,int y){mkrt(x);if(x!=fdrt(y))f[x]=y;}
20
21
22
23
      }t;
```

4.13 ODT

```
struct T{
 \frac{1}{2}
         int 1,r,v;
         T(int a,int b=-1,int c=-1):1(a),r(b),v(c){}
 4
         bool operator<(const T&_)const{return 1<_.1;}</pre>
 5
    };
 6
7
    set<T>s;
     auto spl(int p){
 8
         auto it=s.lower_bound(p);
 9
         if(it!=end(s) && it->l==p)return it;
10
11
         int l=it->1,r=it->r,v=it->v;
12
         s.erase(it),s.insert(T(1,p-1,v));
13
         return s.insert(T(p,r,v)).first;
14
15
    void asgn(int 1,int r,int v){
16
         auto ed=spl(r+1),bg=spl(l);
17
         s.erase(bg,ed);
18
         auto i=s.insert(T(1,r,v)).first,j=prev(i);
         if(i!=begin(s)&&j->v==v)l=j->1,s.erase(j);
if((j=next(i))!=end(s)&&j->v==v)r=j->r,s.erase(j);
19
20
21
         s.erase(i),s.insert(T(1,r,v));
22
```

4.14 tree in tree

线段树套线段树

n 个三维数对 (a_i, b_i, c_i) , 设 f(i) 表示 $a_j \leq a_i$ 且 $b_j \leq b_i$ 且 $c_j \leq c_i$ 且 $i \neq j$ 的个数. 输出 f(i) $(0 \leq i \leq n-1)$ 的值.

4.14 tree in tree 33

```
struct node2 {
          int ch[2], cnt;
     } tr2[N << 7];
10
11
     struct node {
12
          int x, y, z, cnt;
13
          bool operator==(const node& a) { return (x == a.x && y == a.y && z == a.z); }
14
15
16
     } data[N];
17
18
     bool cmp(node a, node b) {
          if (a.x != b.x) return a.x < b.x;
if (a.y != b.y) return a.y < b.y;</pre>
19
20
21
          return a.z < b.z;
22
23
     }
24
     int root_tot, n, m, ans[N], anss[N];
25
     void build(int u, int 1, int r) {
26
          tr1[u].1 = 1, tr1[u].r = r;
if (1 != r) {
27
28
29
               int mid = (1 + r) >> 1;
               build(u << 1, 1, mid);
build(u << 1 | 1, mid + 1, r);
30
31
          }
32
     }
33
34
35
     void modify_2(int& u, int 1, int r, int pos) {
36
          if (u == 0) u = ++root_tot;
          tr2[u].cnt++;
37
38
          if (1 == r) return;
39
          int mid = (1 + r) >> 1;
          if (pos <= mid) {</pre>
40
               modify_2(tr2[u].ch[0], 1, mid, pos);
41
42
          } else {
43
               modify_2(tr2[u].ch[1], mid + 1, r, pos);
44
45
     }
46
47
     int query_2(int& u, int 1, int r, int x, int y) {
48
          if (u == 0) return 0;
49
          if (x <= 1 && r <= y) return tr2[u].cnt;</pre>
50
          int mid = (1 + r) > 1, ans = 0;
          if (x <= mid) ans += query_2(tr2[u].ch[0], 1, mid, x, y);
if (mid < y) ans += query_2(tr2[u].ch[1], mid + 1, r, x, y);</pre>
51
52
53
          return ans;
54
     }
55
     void modify_1(int u, int l, int r, int t) {
    modify_2(tr1[u].root, 1, m, data[t].z);
    if (1 == r) return;
    int mid = (1 + r) >> 1;
56
57
58
59
          if (data[t].y <= mid) {
   modify_1(u << 1, 1, mid, t);</pre>
60
61
62
          } else {
63
               modify_1(u << 1 | 1, mid + 1, r, t);
64
65
     }
66
67
     int query_1(int u, int 1, int r, int t) {
          if (1 <= 1 && r <= data[t].y) return query_2(tr1[u].root, 1, m, 1, data[t].z);
int mid = (1 + r) >> 1, ans = 0;
68
69
70
          if (1 \le mid) ans += query_1(u << 1, 1, mid, t);
71
          if (mid < data[t].y) ans += query_1(u << 1 | 1, mid + 1, r, t);</pre>
72
          return ans;
     }
73
     int main() {
76
          std::ios::sync_with_stdio(false);
77
          std::cin.tie(0)
78
          std::cout.tie(0);
79
80
          std::cin >> n >> m;
81
          rep(i, 1, n) {
82
               int x, y, z;
std::cin >> x >> y >> z;
83
84
               data[i] = \{x, y, z\};
85
86
          std::sort(data + 1, data + n + 1, cmp);
87
          build(1, 1, m);
88
          rep(i, 1, n) {
               modify_1(1, 1, m, i);
ans[i] = query_1(1, 1, m, i);
89
90
91
92
          per(i, n - 1, 1) {
```

```
93 | if (data[i] == data[i + 1]) ans[i] = ans[i + 1];

94 | }

95 | rep(i, 1, n) anss[ans[i]]++;

96 | rep(i, 1, n) std::cout << anss[i] << endl;

97 | 98 | return 0;

99 |}
```

线段树套平衡树

长度为 n 的序列和 m 此操作, 包含 5 种操作:

- 1. l r k: 询问区间 $[l \sim r]$ 中数 k 的排名.
- 2. l r k: 询问区间 $[l \sim r]$ 中排名为 k 的数.
- 3. pos k: 将序列中 pos 位置的数修改为 k.
- 4. l r k: 询问区间 $[l \sim r]$ 中数 k 的前驱.
- 5. l r k: 询问区间 $[l \sim r]$ 中数 k 的后继.

treap 实现

```
// 洛谷 P3380 【模板】二逼平衡树(树套树)
 \begin{smallmatrix}3&4\\5&6\\7&8\\9\end{smallmatrix}
      int n, m, op, l, r, pos, key, root_tot;
      int a[N];
      struct node2 {
           node2 *ch[2];
            int key, val;
           int cnt, size;
10
           node2(int _key) : key(_key), cnt(1), size(1) {
    ch[0] = ch[1] = nullptr;
11
12
13
                 val = rand();
14
15
           // node2(node2 *_node2) {
// key = _node2->key, val = _node2->val, cnt = _node2->cnt, size = _node2->size;
// }
16
17
18
19
20
21
22
23
24
25
26
27
28
29
            inline void push_up() {
                 size = cnt;
if (ch[0] != nullptr) size += ch[0]->size;
if (ch[1] != nullptr) size += ch[1]->size;
      };
      struct treap {
30
31
32
      treap tr2[N << 4];
33
34
     struct node1 {
    int 1, r, root;
} tr1[N << 4];</pre>
35
36
37
38
39
      void build(int u, int 1, int r) {
           tr1[u] = \{1, r, u\};
           root_tot = std::max(root_tot, u);
40
            if (\bar{1} == r) return;
           int mid = (1 + r) >> 1;
build(u << 1, 1, mid), build(u << 1 | 1, mid + 1, r);</pre>
41
42
43
44
45
      void modify(int u, int pos, int key) {
46
           tr2[u].insert(key);
if (tr1[u].1 == tr1[u].r) return;
47
           int mid = (tr1[u].1 + tr1[u].r) >> 1;
if (pos <= mid){</pre>
48
49
50
                 modify(u << 1, pos, key);</pre>
51
52
53
                 modify(u \ll 1 \mid 1, pos, key);
```

4.14 tree in tree 35

```
54
 55
      }
 56
      int get_rank_by_key_in_interval(int u, int l, int r, int key) {
   if (1 <= tr1[u].1 && tr1[u].r <= r) return tr2[u].get_rank_by_key(tr2[u].root, key) - 2;</pre>
 57
 58
            int mid = (tr1[u].l + tr1[u].r) >> 1, ans = 0;
 59
            if (1 <= mid) ans += get_rank_by_key_in_interval(u << 1, 1, r, key);
if (mid < r) ans += get_rank_by_key_in_interval(u << 1 | 1, 1, r, key);</pre>
 60
 61
 62
            return ans;
      }
 63
 64
 65
       int get_key_by_rank_in_interval(int u, int 1, int r, int rank) {
            int L = 0, R = 1e8;
while (L < R) {
 66
 67
 68
                 int mid = (L + R + 1) / 2;
                 if (get_rank_by_key_in_interval(1, 1, r, mid) < rank){</pre>
 69
 70
 71
 72
73
                 else{
                      \tilde{R} = mid - 1;
 74
                 }
 75
76
            return L;
 77
78
      }
 79
       void change(int u, int pos, int pre_key, int key) {
 80
            tr2[u].remove(pre_key);
 81
            tr2[u].insert(key);
 82
            if (tr1[u].l == tr1[u].r) return;
 83
            int mid = (tr1[u].l + tr1[u].r) >> 1;
 84
            if (pos <= mid){</pre>
                 change(u << 1, pos, pre_key, key);
 85
 86
 87
            else{
 88
                 change(u << 1 | 1, pos, pre_key, key);
 89
 90
       }
 91
       int get_prev_in_interval(int u, int 1, int r, int key) {
   if (1 <= tr1[u].1 && tr1[u].r <= r) return tr2[u].get_prev(key);</pre>
 92
 93
            int mid = (tr1[u].l + tr1[u].r) >> 1, ans = -inf;
 94
            if (1 <= mid) ans = std::max(ans, get_prev_in_interval(u << 1, 1, r, key));
if (mid < r) ans = std::max(ans, get_prev_in_interval(u << 1 | 1, 1, r, key));</pre>
 95
 96
 97
            return ans;
 98
      }
 99
      int get_nex_in_interval(int u, int 1, int r, int key) {
   if (1 <= tr1[u].1 && tr1[u].r <= r) return tr2[u].get_nex(key);</pre>
100
101
            int mid = (tr1[u].l + tr1[u].r) >> 1, ans = inf;
102
            if (1 <= mid) ans = std::min(ans, get_nex_in_interval(u << 1, 1, r, key));
if (mid < r) ans = std::min(ans, get_nex_in_interval(u << 1 | 1, 1, r, key));</pre>
103
104
105
            return ans;
106
       }
107
108
       int main() {
109
            std::ios::sync_with_stdio(false);
110
            std::cin.tie(0);
111
            std::cout.tie(0);
112
113
            srand(time(0));
114
            std::cin >> n >> m;
115
116
            build(1, 1, n);
117
            rep(i, 1, n) {
118
                 std::cin >> a[i]
119
                 modify(1, i, a[i]);
120
121
            rep(i, 1, root_tot) { tr2[i].insert(inf), tr2[i].insert(-inf); }
122
            rep(i, 1, m) {
123
                 std::cin >> op;
124
                 if (op == 1) {
125
                      std::cin >> 1 >> r >> key;
126
                       std::cout << get_rank_by_key_in_interval(1, 1, r, key) + 1 << endl;</pre>
                 } else if (op == 2) {
   std::cin >> 1 >> r >> key;
127
128
                 std::cout << get_key_by_rank_in_interval(1, 1, r, key) << endl;
} else if (op == 3) {</pre>
129
130
                       std::cin >> pos >> key;
131
132
                 change(1, pos, a[pos], key);
  a[pos] = key;
} else if (op == 4) {
133
134
                       std::cin >> 1 >> r >> key;
135
                 std::cout << get_prev_in_interval(1, 1, r, key) << endl;
} else if (op == 5) {</pre>
136
137
138
                       std::cin >> 1 >> r >> key;
139
                       std::cout << get_nex_in_interval(1, 1, r, key) << endl;</pre>
140
```

```
141 | }
142 |
143 | return 0;
144 |}
```

然而洛谷上的会 T 两个点, Loj 和 ACwing 上的能过.

Splay 实现

```
// 洛谷 P3380 【模板】二逼平衡树(树套树)
 3
      int n, m, op, l, r, pos, key, root_tot;
 4
      int a[N];
 5
 6
7
8
      struct node{
            int ch[2], fa, key, siz, cnt;
            void init(int _fa, int _key){
   fa = _fa, key = _key, siz = cnt = 1;
 9
10
11
12
13
            void clear(){
                  ch[0] = ch[1] = fa = key = siz = cnt = 0;
14
15
      }tr[N * 30];
16
17
18
      struct splay{
19
20 \\ 21 \\ 22 \\ 23 \\ 24
            int idx;
            bool get(int u){
                 return u == tr[tr[u].fa].ch[1];
25
26
            void pushup(int u){
27
                  tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + tr[u].cnt;
\frac{1}{28}
\overline{29}
30
            void rotate(int x){
\begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \end{array}
                  int y = tr[x].fa, z = tr[y].fa;
                 int y - tr[x].ia, z = tr[y].ia;
int op = get(x);
tr[y].ch[op] = tr[x].ch[op ^ 1];
if(tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
if(x) tr[x].ch[x].fa = z;
35
36
37
                  if(z) tr[z].ch[y == tr[z].ch[1]] = x;
38
                 pushup(y), pushup(x);
39
            }
40
41
            void opt(int& root, int u, int k){
   for(int f = tr[u].fa; f = tr[u].fa, f != k; rotate(u)){
      if(tr[f].fa != k) rotate(get(u) == get(f) ? f : u);
42
43
44
                  if(k == 0) root = u;
45
46
            }
47
48
            void insert(int& root, int key){
49
                  if(tr[root].siz == 0){
50
                       idx++;
51
52
                       tr[idx].init(0, key);
                       root = idx;
53
54
                       return;
55
56
57
58
                  int u = root, f = 0;
                  while(1){
                       if(tr[u].key == key){
                             tr[u].cnt++;
59
                             pushup(u), pushup(f);
60
                              opt(root, u, 0);
61
                             break;
62
63
                       f = u, u = tr[u].ch[tr[u].key < key];
64
                        if(!u){
65
                             idx++;
                             tr[idx].init(f, key);
tr[f].ch[tr[f].key < key] = idx;</pre>
66
67
                             pushup(idx), pushup(f);
opt(root, idx, 0);
68
\begin{array}{c} 69 \\ 70 \\ 71 \\ 72 \\ 73 \\ 74 \end{array}
                              break:
                       }
                 }
            }
75
            int kth(int& root, int rank){
76
                  int u = root;
```

4.14 tree in tree 37

```
while(1){
 78
79
                     if(tr[u].ch[0] && rank <= tr[tr[u].ch[0]].siz) u = tr[u].ch[0];</pre>
                     else{
 80
                         rank -= tr[tr[u].ch[0]].siz + tr[u].cnt;
 81
                          if(rank \le 0){
 82
                              opt(root, u, 0);
 83
                              return u;
 84
 85
                          else u = tr[u].ch[1];
                    }
 86
                }
 87
 88
           }
 89
 90
           int nlt(int& root, int key){
 91
                int rank = 0, u = root;
 92
                while(1){
 93
                     if(tr[u].key > key) u = tr[u].ch[0];
 94
                     else{
 95
                         rank += tr[tr[u].ch[0]].siz;
                         if(tr[u].key == key){
    opt(root, u, 0);
 96
 97
 98
                              return rank + 1;
 99
100
                         rank += tr[u].cnt;
                          if(tr[u].ch[1]) u = tr[u].ch[1];
101
102
                          else return rank + 1;
                    }
103
104
                }
105
106
107
           int get_prev(int& root, int key){
108
                return kth(root, nlt(root, key) - 1);
109
110
111
           int get_next(int& root, int key){
                return kth(root, nlt(root, key + 1));
112
113
114
115
           void remove(int& root, int key){
116
                nlt(root, key);
117
                if(tr[root].cnt > 1){
118
                    tr[root].cnt--;
119
                    pushup(root);
120
                    return;
121
               int u = root, l = get_prev(root, key);
tr[tr[u].ch[1]].fa = l;
tr[l].ch[1] = tr[u].ch[1];
122
123
124
125
                tr[u].clear();
126
                pushup(root);
           }
127
128
129
           void output(int u){
130
                if(tr[u].ch[0]) output(tr[u].ch[0]);
131
                std::cout << tr[u].key << '
132
                if(tr[u].ch[1]) output(tr[u].ch[1]);
133
134
135
      }splay;
136
      struct node1{
   int 1, r, root;
}tr1[N * 4];
137
138
139
140
141
      void build(int u, int 1, int r){
142
           tr1[u] = \{1, r, u\};
           root_tot = splay.idx = std::max(root_tot, u);
143
144
           if(l == r) return;
           int mid = (1 + r) >> 1;
build(u << 1, 1, mid), build(u << 1 | 1, mid + 1, r);</pre>
145
146
      }
147
148
149
      void modify(int u, int pos, int key){
           splay.insert(tr1[u].root, key);
if(tr1[u].l == tr1[u].r) return
150
151
           int mid = (tr1[u].l + tr1[u].r) >> 1;
if(pos <= mid) modify(u << 1, pos, key);</pre>
152
153
           else modify(u << 1 | 1, pos, key);</pre>
154
      }
155
156
157
      int get_rank_by_key_in_interval(int u, int 1, int r, int key){
158
           if(1 <= tr1[u].1 && tr1[u].r <= r)
                return splay.nlt(tr1[u].root, key) - 2;
159
           int mid = (tr1[u].l + tr1[u].r) >> 1, ans = 0;
160
           if(1 <= mid) ans += get_rank_by_key_in_interval(u << 1, 1, r, key);
if(mid < r) ans += get_rank_by_key_in_interval(u << 1 | 1, 1, r, key);</pre>
161
162
163
           return ans:
```

```
164 | }
165
      int get_key_by_rank_in_interval(int u, int 1, int r, int rank){
   int L = 0, R = 1e8;
166
167
            while(L < R){</pre>
168
169
                 int mid = (L + R + 1) / 2;
                if(get_rank_by_key_in_interval(1, 1, r, mid) < rank) L = mid;
else R = mid - 1;</pre>
170
171
172
173
           return L:
174
175
      }
176
      void change(int u, int pos, int pre_key, int key){
            splay.remove(tr1[u].root, pre_key);
177
178
            splay.insert(tr1[u].root, key);
179
            if(tr1[u].l == tr1[u].r) return;
180
            int mid = (tr1[u].l + tr1[u].r) >> 1;
           if(pos <= mid) change(u << 1, pos, pre_key, key);
else change(u << 1 | 1, pos, pre_key, key);</pre>
181
182
183
184
185
      int get_prev_in_interval(int u, int 1, int r, int key){
   if(l <= tr1[u].1 && tr1[u].r <= r)</pre>
186
            return tr[splay.get_prev(tr1[u].root, key)].key;
int_mid = (tr1[u].l + tr1[u].r) >> 1, ans = -inf;
187
188
            if(1 <= mid) ans = std::max(ans, get_prev_in_interval(u << 1, 1, r, key));
if(mid < r) ans = std::max(ans, get_prev_in_interval(u << 1 | 1, 1, r, key));</pre>
189
190
191
192
193
      194
195
      int get_next_in_interval(int u, int l, int r, int key){
196
            if(1 <= tr1[u].1 && tr1[u].r <= r)
           return tr[splay.get_next(tr1[u].root, key)].key;
int mid = (tr1[u].l + tr1[u].r) >> 1, ans = inf;
197
198
199
            if(1 <= mid) ans = std::min(ans, get_next_in_interval(u << 1, 1, r, key));
if(mid < r) ans = std::min(ans, get_next_in_interval(u << 1 | 1, 1, r, key));</pre>
200
201
           return ans;
202
      }
203
204
      int main(){
205
206
            std::ios::sync_with_stdio(false);
207
            std::cin.tie(0)
208
           std::cout.tie(0);
209
210
            srand(time(0));
211
212
            std::cin >> n >> m;
213
           build(1, 1, n);
214
           rep(i, 1, n){
215
                std::cin >> a[i]
216
                modify(1, i, a[i]);
217
\bar{2}18
           rep(i, 1, root_tot){
219
                splay.insert(tr1[i].root, inf), splay.insert(tr1[i].root, -inf);
220
221
           rep(i, 1, m){
222
                 std::cin >> op;
223
                 if(op == 1){
224
                      std::cin >> 1 >> r >> key;
225
                      std::cout << get_rank_by_key_in_interval(1, 1, r, key) + 1 << endl;</pre>
226
227
                 else if(op == 2){
                      std::cin >> 1 >> r >> key;
\frac{1}{228}
229
                      std::cout << get_key_by_rank_in_interval(1, 1, r, key) << endl;</pre>
230
231
                 else if(op == 3){
232
                      std::cin >> pos >> key;
233
                      change(1, pos, a[pos], key);
\frac{1}{234}
                      a[pos] = key;
235
236
                 else if (op == 4){
237
                      std::cin >> 1 >> r >> key;
238
                      std::cout << get_prev_in_interval(1, 1, r, key) << endl;</pre>
239
\frac{1}{240}
                 else if(op == 5){
                      std::cin >> 1 >> r >> key;
241
242
                      std::cout << get_next_in_interval(1, 1, r, key) << endl;</pre>
243
                }
244
           }
245
246
           return 0;
247
      | }
```

4.15 heap 39

4.15 heap

左偏树

```
struct leftist{
 3
           int d[N],lc[N],rc[N],rt[N],val[N],vis[N];
           int find(int x){return rt[x]=rt[x]==x?x:find(rt[x]);}
int merge(int x,int y){
 4
                if(!x || !y)return x|y;
if(val[x]>val[y] || (val[x]==val[y] && x>y))swap(x,y);
rc[x]=merge(rc[x],y);
if(d[lc[x]]<d[rc[x]])swap(lc[x],rc[x]);</pre>
 5
 6
7
 8
 9
                d[x]=d[rc[x]]+1;
10
                return x;
11
           void onion(int x,int y){
   if(vis[x]||vis[y])return;
12
13
14
                x=find(x),y=find(y);
15
                if(x!=y)rt[x]=rt[y]=merge(x,y);
16
           int ask(int x){
   if(vis[x])return -1;
17
18
19
                x=find(x);
20
                vis[x]=1
                rt[lc[x]]=rt[rc[x]]=rt[x]=merge(lc[x],rc[x]);
21
22
                lc[x]=rc[x]=d[x]=0;
\frac{-2}{23}
                return val[x];
24
25
           void init(int* a){
26
                d[0]=-1;
27
                for(int i=1;i<=n;i++)val[i]=a[i];</pre>
28
                for(int i=1;i<=n;i++)rt[i]=i;</pre>
29
30
     }t;
```

5 string

5.1 hash

```
const int B1 = 3937;
const int B2 = 13331;
const int P = 1e9 + 7;
 4
5
    auto preHash = [&](const std::string& s, int B) {
6
7
         int n = s.size();
         std::vector<int> h(n + 1), p(n + 1);
         p[0] = 1;
        proj - 1,
for (int i = 1; i <= n; ++i) {
    p[i] = 111 * B * p[i - 1] % P;
    h[i] = (111 * B * h[i - 1] + s[i - 1]) % P;</pre>
 9
10
11
12
13
         return std::make_pair(h, p);
    };
14
    auto f = [&](const auto& o, int 1, int r){
15
16
         auto& [h, p] = o;
         return (h[r - 1] - 111 * p[r - 1 + 1] * h[1] % P + P) % P;
17
18
19
         return (h[r] - 111 * p[r - 1 + 1] * h[1 - 1] % P + P) % P;
20
21
22
    };
23
    24
25
29
    };
```

40 5 STRING

5.2 Cantor Expansion

一个排列 a_1, a_2, \cdots, a_n 的排名为

$$\sum_{i=1}^{n} \left((n-i)! \sum_{j=i}^{n} [a_j < a_i] \right)$$

```
std::cin >> n, fac[0] = 1;
    for (int i = 1; i <= n; ++i) {
    std::cin >> a[i];
 3
 4
         fac[i] = 111 * fac[i - 1] * i % P;
 5
    }
 67
     auto ins = [&](int x) {
         for (; x \le n; x += x & -x) ++t[x];
 8
 9
     auto ask = [\&] (int x) {
         int z = 0;
for (; x; x ^= x & -x) z += t[x];
10
11
12
         return z;
13
14
     int z = 0;
    for (int i = n; i; --i) {
   z = (z + 111 * fac[n - i] * ask(a[i])) % P;
15
16
17
         ins(a[i]);
18
    std::cout << ++z << '\n';
```

5.3 kmp

```
auto get_next = [&](const std::string& s) -> vi {
    int n = s.length();
    vi next(n);
    for (int i = 1; i < n; i++) {
        int j = next[i - 1];
        while (j > 0 and s[i] != s[j]) j = next[j - 1];
        if (s[i] == s[j]) j++;
        next[i] = j;
    }
    return next;
};
```

```
char s[N];
     int f[N][20],d[N];
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
     void work(){
          int n,i,j=0,q,x,y;
          for(cin>>s+1,n=strlen(s+1),i=2;i<=n;f[i][0]=j,d[i]=d[j]+1,++i){</pre>
 6
7
              while(j&&s[i]!=s[j+1])j=f[j][0];
               if(s[i]==s[j+1])++j;
 9
          for(j=1;j<20;++j)for(i=1;i<=n;++i)f[i][j]=f[f[i][j-1]][j-1];
          for(cin>>q;q--;cout<<f[x][0]<<'\n'){
10
              if(cin>>x>>y,d[x]<d[y])swap(x,y);
for(i=19;~i;--i)if(d[f[x][i])>=d[y])x=f[x][i];
11
12
               for(i=19;~i;--i)if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
13
          }
14
     }
15
```

5.4 z function

```
auto z_function = [&](const std::string& s) -> vi {
    int n = s.size();
    vi z(n);
    for (int i = 1, l = 0, r = 0; i < n; i++) {
        if (i <= r and z[i - 1] < r - i + 1) {
            z[i] = z[i - 1];
        } else {
            z[i] = std::max(0, r - i + 1);
            while (z[i] + i < n and s[z[i]] == s[z[i] + i]) z[i]++;
        }
        if (z[i] + i - 1 > r) {
            l = i;
            r = z[i] + i - 1;
        }
}
```

5.5 Manacher 41

```
15 | } return z; 17 |};
```

5.5 Manacher

p[i] - 1 为无 # 的回文直径, p[i] / 2 为无 # 的回文半径.

```
auto Manacher = [&](const std::string& t) {
    std::string s = "#";
    for (char c : t) s += c, s += '#';
    int i, o = 0, r = 0, n = s.size();
    std::vector<int> p(n, 1), q(n);
    for (i = 0; i < n; ++i) {
        if (i <= r) p[i] = std::min(r - i + 1, p[2 * o - i]);
        for (; p[i] <= i && s[i + p[i]] == s[i - p[i]]; ++p[i]);
        if (i + p[i] - 1 > r) r = i + p[i] - 1, o = i;
    }
}
return p;
};
```

5.6 AC automaton

fail[i] 表示结点 i 的最长真 border, t[i][c] 不存在时跳 fail.

5.7 PAM

```
template<const int M = 26>
     struct PAM {
 3
          struct T {
 4
               int len, d, fa, ch[M];
 5
               T(): len(), d(), fa(), ch() {}
 6
7
          int las;
 8
          string s;
vector<T> t;
10
          vector<int> bl;
          size_t count() const {
11
12
               return t.size() - 2;
13
14
          const T& operator[](const size_t& p) const {
15
               return t[p];
16
17
          const T& ask(const_size_t& p) const {
18
               return t[bl[p]];
19
          int gf(int o, int p) {
   while (p - t[o].len - 1 < 0 || s[p - t[o].len - 1] != s[p]) o = t[o].fa;</pre>
20
21
22
23
24
          void append(int c) {
               int p = s.size(), o;
s += c, o = gf(las, p);
if (t[o].ch[c] == 0) {
25
26
\overline{27}
28
                    t.emplace_back();
\frac{1}{29}
                    t.back().len = t[o].len + 2;
                    t.back().fa = t[gf(t[o].fa, p)].ch[c];
t.back().d = t[t.back().fa].d + 1;
30
31
32
                    t[o].ch[c] = t.size() - 1;
33
```

42 5 STRING

```
34 | bl.emplace_back(las = t[o].ch[c]);
35 | }
36 | PAM() : las(), s(), t(2) {
        t[o].fa = t[1].fa = 1, t[1].len = -1;
38 | }
39 | PAM(const string& str, int h) : las(), s(), t(2) {
        t[o].fa = t[1].fa = 1, t[1].len = -1;
40 | t[o].fa = t[1].fa = 1, t[1].len = -1;
41 | for (char c : str) append(c - h);
42 | }
43 | };
```

5.8 Suffix Array

```
auto SA = [](std::string s) {
             int n = s.size(), m = 128, i, j, l;
std::vector<int> ct(m), sa(n), rk(n), h(n), a(n);
for (i = 0; i < n; ++i) ++ct[rk[i] = s[i]];
for (i = 1; i < m; ++i) ct[i] += ct[i - 1];
for (i = n - 1; ~i; --i) sa[--ct[rk[i]]] = i;
for (l = 1; l < n; l *= 2) {
   for (j = 0, i = n - 1; i >= n - 1; --i) a[j++] = i;
   for (i = 0; i < n; ++i) if (sa[i] >= 1) a[j++] = sa[i] - 1;
   ct = std::vector<int>(m):
 3
 \begin{array}{c} 4\\5\\6\\7\\8\end{array}
 9
10
                     ct = std::vector<int>(m);
11
                     for (i = 0; i < n; ++i) ++ct[rk[a[i]]];</pre>
                    for (i = 1; i < m; ++i) ct[i] += ct[i - 1];
for (i = n - 1; ~i; --i) sa[--ct[rk[a[i]]]] = a[i];
12
13
                    std::swap(rk, a), rk[sa[0]] = 0;
for (i = 1; i < n; ++i) {
14
15
                            rk[sa[i]] = rk[sa[i - 1]] + (a[sa[i]] != a[sa[i - 1]] || a[(sa[i] + 1) % n] != a[(sa[i - 1] +
16
                                  1) % n]);
17
                     if ((m = rk[sa[n - 1]] + 1) == n) break;
18
19
20
              for (i = j = 0; i + 1 < n; h[rk[i++]] = j) {
21
                     for (j ? --j : 0; s[i + j] == s[sa[rk[i] - 1] + j]; ++j);
22
23
             sa.erase(sa.begin());
\overline{24}
              rk.erase(rk.begin());
25
              h.erase(h.begin());
26
27
              return make_tuple(sa, rk, h);
28
      //h[i] : LCP(rk[i], rk[i - 1])
```

5.9 trie

普通字典树 (单词匹配)

```
int cnt;
     std::vector<std::array<int, 26>> trie(n + 1);
 3
4
     vi exist(n + 1);
 5
     auto insert = [&](const std::string& s) -> void {
 6
7
          int p = 0;
         for (const auto ch : s) {
              int c = ch - 'a';
if (!trie[p][c] = ++cnt;
 8
 9
10
              p = trie[p][c];
11
12
          exist[p] = true;
13
14
     auto find = [&](const string& s) -> bool {
15
         int p = 0;
for (const auto ch : s) {
  int c = ch - 'a';
  if (!trie[p][c]) return false;
16
17
18
19
20
              p = trie[p][c];
21
         return exist[p];
23
     };
```

5.9 trie 43

01 字典树 (求最大异或值)

给定 n 个数, 取两个数进行异或运算, 求最大异或值.

```
// trie //
     int cnt = 0;
 _{4}^{3}
     std::vector<std::array<int, 2>> trie(N);
     auto insert = [&](int x) -> void {
 5
 6
7
          int p = 0;
          for (int i = 30; i >= 0; i--) {
   int c = (x >> i) & 1;
 8 9
                if (!trie[p][c]) trie[p][c] = ++cnt;
10
                p = trie[p][c];
11
     };
13
14
     auto find = [&](int x) -> int {
          int sum = 0, p = 0;
for (int i = 30; i >= 0; i--) {
15
16
                int c = (x >> i) & 1;
if (trie[p][c ^ 1]) {
    p = trie[p][c ^ 1];
17
18
19
20
21
                     sum += (1 << i);
                } else {
22
                     p = trie[p][c];
23
24
25
          return sum;
     };
```

字典树合并

来自浙大城市学院 2023 校赛 E 题。

给定一棵根为 1 的树, 每个点的点权为 w_i . 一共 q 次询问, 每次给出一对 u,v,询问以 v 为根的子树上的点与 u 的权值最大异或值.

```
int main() {
 3
          std::ios::sync_with_stdio(false);
std::cin.tie(0);
 4
          std::cout.tie(0);
 5
 6
7
          int n, m;
std::cin >> n;
 8 9
          vi w(n + 1);
for (int i = 1; i <= n; i++) {</pre>
10
               std::cin >> w[i];
11
12
13
          vvi e(n + 1);
          for (int i = 1; i < n; i++) {
14
15
               int u, v;
16
               std::cin >> u >> v;
               e[u].push_back(v);
e[v].push_back(u);
18
19
20
          /* 离线询问 */
std::cin >> m;
\frac{21}{22}
\frac{1}{23}
          std::vector<vpi> q(n + 1);
24
          vi ans(m + 1);
25
          for (int i = 1; i <= m; i++) {</pre>
26
               int u, v;
27
               std::cin >> u >> v;
               q[v].emplace_back(u, i);
28
29
30
31
          /* 01 trie */
          std::vector<std::array<int, 2>> tr(1);
32
33
34
          auto new_node = [&]() -> int {
35
               tr.emplace_back();
return tr.size() - 1;
36
37
          };
38
39
          vi id(n + 1);
40
          auto insert = [&](int root, int x) {
```

5 STRING

```
int p = root;
for (int i = 29; i >= 0; i--) {
42
43
                            int c = x >> i & 1;
if (!tr[p][c]) tr[p][c] = new_node();
p = tr[p][c];
44
45
46
47
48
              };
49
50
51
52
53
54
55
56
57
58
              auto query = [&] (int root, int x) -> int {
   int ans = 0, p = root;
   for (int i = 29; i >= 0; i--) {
      int c = x >> i & 1;
      if (tr[p][c ^ 1]) {
        p = tr[p][c ^ 1];
        ans += (1 << i);
    }
}</pre>
                            } else {
                                   p = tr[p][c];
60
                     }
61
                     return ans;
62
              };
63
64
              std::function<int(int, int)> merge = [&](int a, int b) -> int {
                     // b 的信息挪到 a 上 //
65
66
                      if (!a) return b;
                     if (!a) return a;
if (!b) return a;
tr[a][0] = merge(tr[a][0], tr[b][0]);
tr[a][1] = merge(tr[a][1], tr[b][1]);
67
68
69
70
71
72
73
74
75
76
77
78
79
80
                     return a;
              };
              std::function<void(int, int)> dfs = [&](int u, int fa) {
                     id[u] = new_node();
                     insert(id[u], w[u]);
for (auto v : e[u]) {
   if (v == fa) continue;
                            dfs(v, u);
id[u] = merge(id[u], id[v]);
                     for (auto [v, i] : q[u]) {
   ans[i] = query(id[u], w[v]);
81
82
83
84
85
86
87
88
89
                     }
              };
              dfs(1, 0);
              for (int i = 1; i <= m; i++) std::cout << ans[i] << endl;</pre>
              return 0;
       }
90
```

6 math - number theory

6.1 Eculid

欧几里得算法

```
1 std::gcd(a, b)
```

扩展欧几里得算法

```
1 auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
2    if (!b) {
        x = 1, y = 0;
        return;
}
5    self(self, b, a % b, y, x);
    y -= a / b * x;
};
```

```
1 auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
2     if (!b) {
        x = 1, y = 0;
        return a;
}
LL d = self(self, b, a % b, y, x);
y -= a / b * x;
return d;
};
```

类欧几里得算法

```
一般形式: 求 f(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor
```

f(a,b,c,n) 可以单独求.

$$f(a, b, c, n) = nm - f(c, c - b - 1, a, m - 1)$$

```
LL f(LL a, LL b, LL c, LL n) {
    if (a == 0) return ((b / c) * (n + 1));
    if (a >= c || b >= c)
        return f(a % c, b % c, c, n) + (a / c) * n * (n + 1) / 2 + (b / c) * (n + 1);
    LL m = (a * n + b) / c;
    LL v = f(c, c - b - 1, a, m - 1);
    return n * m - v;
}
```

更进一步, 求:
$$g(a,b,c,n) = \sum\limits_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor$$
 以及 $h(a,b,c,n) = \sum\limits_{i=0}^n \left\lfloor \frac{ai+b}{c} \right\rfloor^2$

直接记吧.

$$g(a,b,c,n) = \lfloor \frac{mn(n+1) - f(c,c-b-1,a,m-1) - h(c,c-b-1,a,m-1)}{2} \rfloor$$

$$h(a,b,c,n) = nm(m+1) - 2f(c,c-b-1,a,m-1) - 2g(c,c-b-1,a,m-1) - f(a,b,c,n)$$

```
| const int inv2 = 499122177;
 2
3
       const int inv6 = 166374059;
       LL f(LL a, LL b, LL c, LL n);
LL g(LL a, LL b, LL c, LL n);
LL h(LL a, LL b, LL c, LL n);
 4
       struct data {
 9
              LL f, g, h;
10
11
       data calc(LL a, LL b, LL c, LL n) {
    LL ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + 1, n21 = n * 2 + 1;
12
13
14
               data d;
15
               if (a == 0) {
16
                       d.f = bc * n1 \% mod;
                       d.g = bc * n % mod * n1 % mod * inv2 % mod;
d.h = bc * bc % mod * n1 % mod;
17
18
19
                      return d;
20
21
               if (a >= c || b >= c) {
22
23
                      d.f = n * n1 % mod * inv2 % mod * ac % mod + bc * n1 % mod;
                      d.g =
                      a.g =
    ac * n % mod * n1 % mod * n21 % mod * inv6 % mod + bc * n % mod * n1 % mod * inv2 % mod;
d.h = ac * ac % mod * n % mod * n1 % mod * n21 % mod * inv6 % mod +
    bc * bc % mod * n1 % mod + ac * bc % mod * n % mod * n1 % mod;
d.f %= mod, d.g %= mod, d.h %= mod;
data e = calc(a % c, b % c, c, n);
d.h += e.h + 2 * bc % mod * e.f % mod + 2 * ac % mod * e.g % mod;
24
25
26
27
\frac{1}{28}
29
30
                      d.g += e.g, d.f += e.f;
d.f %= mod, d.g %= mod, d.h %= mod;
31
32
                      return d;
               }
33
              data e = calc(c, c - b - 1, a, m - 1);
d.f = n * m % mod - e.f, d.f = (d.f % mod + mod) % mod;
d.g = m * n % mod * n1 % mod - e.h - e.f, d.g = (d.g * inv2 % mod + mod) % mod;
d.h = n * m % mod * (m + 1) % mod - 2 * e.g - 2 * e.f - d.f;
34
36
37
38
               d.h = (d.h \% mod + mod) \% mod;
39
               return d;
       }
40
```

6.2 inverse

线性递推

```
a^{-1} \equiv -\lfloor \frac{p}{a} \rfloor \times (p\%a)^{-1}
\begin{array}{c} 1 \\ 2 \\ \text{auto sieve\_inv} = [\&] (\text{int n}) \\ 3 \\ inv[1] = 1; \\ 4 \\ \text{for (int i = 2; i <= n; i++)} \\ 5 \\ inv[i] = 111 * (p - p / i) * inv[p % i] % p; \\ 6 \\ 7 \\ \end{array}
```

求 n 个数的逆元

```
auto get_inv =[&](const vi& a) {
 23
            int n = a.size();
            vi b(n), f(n), ivf(n);
            f[0] = a[0];

for (int i = 1; i < n; i++) {

   f[i] = 111 * f[i - 1] * a[i] % p;
 4
 5
 \frac{\tilde{6}}{7}
            ivf.back() = quick_power(f.back(), p - 2, p);
for (int i = n - 1; i; i--) {
   ivf[i - 1] = 111 * ivf[i] * a[i] % p;
 8
 9
10
11
12
            b[0] = ivf[0];
13
            for (int i = 1; i < n; i++) {</pre>
14
                  b[i] = 111 * ivf[i] * f[i - 1] % p;
15
16
            return b:
     };
17
```

6.3 sieve 47

6.3 sieve

素数

```
vi prime, is_prime(n + 1, 1);
auto Euler_sieve = [&](int n){
    for (int i = 2; i <= n; i++) {
        if (is_prime[i]) prime.push_back(i);
        for (auto p: prime) {
            if (i * p > n) break;
            is_prime[i * p] = 0;
            if (i % p == 0) break;
        }
    }
}

10
};
```

欧拉函数

```
vi phi(n + 1), prime;
vi is_prime(n + 1, 1);
auto get_phi = [&](int n) {
                  int cnt = 0;
                 int cnc = 0,
phi[1] = 1;
for (int i = 2; i <= n; i++) {
    if (is_prime[i]) {
        rough back(i);
}</pre>
 5
 6
7
 8
                                   prime.push_back(i);
 9
                                   phi[i] = i - 1;
10
                          for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p) {
        phi[i * p] = phi[i] * phi[p];
    } else {
11
12
13
14
15
16
                                            phi[i * p] = phi[i] * p;
break;
17
18
19
                          }
20
\overline{21}
                 }
        };
```

约数和

$$d(n) = \sum_{k|n} k$$

```
3
 \begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \end{array}
 8 9
                                 prime.push_back(i);
d[i] = g[i] = i + 1;
10
                         for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p == 0) {
        g[i * p] = g[i] * p + 1;
        d[i * p] = d[i] / g[i] * g[i * p];
    }
}
11
12
13
14
15
16
                                          break;
17
18
                                  } else {
                                          d[i * p] = d[i] * d[p];
g[i * p] = 1 + p;
19
20
21
22
                         }
\frac{1}{23}
                }
        };
```

莫比乌斯函数

```
vi mu(n + 1), prime;
vi is_prime(n + 1, 1);
auto get_mu = [&](int n) {
    mu[1] = 1;

\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10
\end{array}

                     for (int i = 2; i <= n; i++) {
    if (is_prime[i]) {
                                          prime.push_back(i);
                                          mu[i] = -1;
                               for (auto p : prime) {
   if (i * p > n) break;
   is_prime[i * p] = 0;
   if (i % p == 0) {
      mu[i * p] = 0;
      break;
   }
}
11
12
13
14
                                                     break;
16
17
                                          mu[i * p] = -mu[i];
18
19
                     }
20
          };
```

6.4 杜教筛

$$g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} g(i)S\left(\left\lfloor \frac{n}{i} \right\rfloor\right).$$

6.5 extended Euler theorem

当 $gcd(a, p) \neq 1$ 时,有

$$a^{b} \equiv \begin{cases} a^{b} & b \leq \varphi(p) \\ a^{b \bmod \varphi(p) + \varphi(p)} & b > \varphi(p) \end{cases} \pmod{p}$$

6.6 block

分块的逻辑

下取整 $\lfloor \frac{n}{g} \rfloor = k$ 的分块 $()g \leqslant n)$

```
for(int l = 1, r, k; l <= n; l = r + 1){
    k = n / 1;
    r = n / (n / 1);
    debug(l, r, k);
}
</pre>
```

 $k = \lfloor \frac{n}{g} \rfloor$ 从大到小遍历 $\lfloor \frac{n}{g} \rfloor$ 的所有取值, [l, r] 对应的是 g 取值的区间.

```
1 // n = 11
```

 $6.7 \quad CRT \& exCRT$ 49

```
2 | [1, r, k] : 1 1 11 11 3 | [1, r, k] : 2 2 5 4 | [1, r, k] : 3 3 3 5 | [1, r, k] : 4 5 2 | [1, r, k] : 6 11 1
```

上取整 $\lceil \frac{n}{g} \rceil = k$ 的分块 (g < n)

```
1
2
    for(int l = 1, r, k; l < n; l = r + 1){
        k = (n + 1 - 1) / l;
        r = (n + k - 2) / (k - 1) - 1;
        debug(l, r, k);
}</pre>
```

 $k = \lceil \frac{n}{g} \rceil$ 从大到小遍历 $\lceil \frac{n}{g} \rceil$ 的所有取值, [l, r] 对应的是 g 取值的区间.

一般形式

 $\sum_{i=1}^{n} f(i) \lfloor \frac{n}{i} \rfloor$

设 s(i) 为 f(i) 的前缀和。

```
1 for (int l = 1, r; l <= n; l = r + 1) {
2     r = n / (n / 1);
3     ans += (s[r] - s[l - 1]) * (n / 1);
}</pre>
```

 $\sum_{i=1}^n f(i) \lfloor \frac{a}{i} \rfloor \lfloor \frac{b}{i} \rfloor$

```
for (int 1 = 1, r, r1, r2; 1 <= n; 1 = r + 1) {
    if (a / 1) {
        r1 = a / (a / 1);
    } else {
        r1 = n;
    }
    if (b / 1) {
        r2 = b / (b / 1);
    } else {
        r2 = n;
    }
    results for results f
```

6.7 CRT & exCRT

求解

$$\begin{cases}
N \equiv a_1 \mod m_1 \\
N \equiv a_2 \mod m_2 \\
\dots \\
N \equiv a_n \mod m_n
\end{cases}$$

有 $N \equiv \sum_{i=1}^{k} a_i \times \text{inv}\left(\frac{M}{m_i}, m_i\right) \times \left(\frac{M}{m_i}\right) \mod M$

```
6 | }
7 | return (ans % M + M) % M;
8 | };
```

扩展中国剩余定理

```
auto excrt = [&](int n, const vi& a, const vi& m) -> LL{
    LL A = a[1], M = m[1];
    for (int i = 2; i <= n; i++) {
        LL x, y, d = std::gcd(M, m[i]);
        exgcd(M, m[i], x, y);
        LL mod = M / d * m[i];
        x = x * (a[i] - A) / d % (m[i] / d);
        A = ((M * x + A) % mod + mod) % mod;
        M = mod;
    }
    return A;
};</pre>
```

6.8 BSGS & exBSGS

求解满足 $a^x \equiv b \mod p$ 的 x

```
/* return value = -1e18 means no solution */
          auto BSGS = [&] (LL a, LL b, LL p) {
    if (1 % p == b % p) return 011;

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9
    \end{array}

                   LL k = std::sqrt(p) + 1;
std::unordered_map<LL, LL> hash;
for (LL i = 0, j = b % p; i < k; i++) {
    hash[j] = i;</pre>
                              j = j * a % p;
10
                    LL ak = 1;
                    for (int i = 1; i <= k; i++) ak = ak * a % p;
for (int i = 1, j = ak; i <= k; i++) {
   if (hash.count(j)) return 1ll * i * k - hash[j];</pre>
11
12
13
14
                              j = 111 * j * ak % p;
\begin{array}{c} 15 \\ 16 \end{array}
                    return -INF;
17
         };
```

 $(a,p) \neq 1$ 的情形

```
/* return value < 0 means no solution */
auto exBSGS = [&](auto&& self, LL a, LL b, LL p) {
    b = (b % p + p) % p;
    if (111 % p == b % p) return 011;
    LL x, y, d = std::gcd(a, p);
    exgcd(exgcd, a, p, x, y);
    if (d > 1) {
        if (b % d != 0) return -INF;
        exgcd(exgcd, a / d, p / d, x, y);
        return self(self, a, b / d * x % (p / d), p / d) + 1;
}
return BSGS(a, b, p);
};
```

6.9 Miller Rabin

原理基于: 对奇素数 p, $a^2 \equiv 1 \mod p$ 的解为 $x \equiv 1 \mod p$ 或 $x \equiv p-1 \mod p$, 以及费马小定理.

随机一个底数 x, 将 a^{p-1} mod p 的指数 p-1 分解为 $a \times 2^b$, 计算出 x^a ,之后进行最多 b 次平方操作, 若发现非平凡平方根时即可判断出其不是素数, 否则通过此轮测试.

test time 为测试次数, 建议设为不小于 8 的整数以保证正确率, 但也不宜过大, 否则会影响效率.

6.10 Pollard Rho 51

```
for (j = 0; j < b; j++) {
    for (j = 0; j < b; j++) {
        if (v == n - 1) break;
        v = (i28) v * v % n;
    }
    if (j >= b) return false;
}
return true;
};
```

事实上底数没必要随机 10 次, 检验如下数即可. 快速幂记得要 i128.

- 1. int 范围: 2,7,61.
- 2. LL 范围: 2,325,9375,28178,450775,9780504,1795265022.

```
vl vv = {2, 3, 5, 7, 11, 13, 17, 23, 29};
auto miller_rabin = [&](LL n) -> bool {
 3
              auto test = [&](LL n, int a) {
                    if (n == a) return true;
if (n % 2 == 0) return false;
LL d = (n - 1) >> _builtin_ctzll(n - 1);
LL r = quick_power(a, d, n);
while (d < n - 1 and r != 1 and r != n - 1) {
    d <<= 1;
    r = (i128) r * r * n.</pre>
 4
 5
 6
 7
 8
                            r = (i128) r * r % n;
10
11
                     }
12
                     return r == n - 1 or d & 1;
             };
if (n == 2 or n == 3) return true;
13
14
15
              for (auto p : vv) {
16
                     if (test(n, p) == 0) return false;
17
18
              return true;
19
       }
```

6.10 Pollard Rho

能在 $O(n^{\frac{1}{4}})$ 的时间复杂度随机出一个 n 的非平凡因数.

```
3
4
5
6
7
8 9
                 LL d = std::gcd(val, x);
10
                 if(d > 1) return d;
11
12
          LL d = std::gcd(val, x);
if(d > 1) return d;
13
14
       }
15
   };
16
```

利用 Miller Rabin 和 Pollard Rho 进行素因数分解

```
auto factorize = [&](LL a) -> v1{
          vl ans, stk;
          for (auto p : prime) {
   if (p > 1000) break;
   while (a % p == 0) {
 3
4
5
                    ans.push_back(p);
 6
 7
                     a /= p;
 8
 9
               if (a == 1) return ans;
10
          /* 先筛小素数, 再跑 Pollard-Rho */
11
          stk.push_back(a);
12
          while (!stk.empty()) {
   LL b = stk.back();
13
14
15
               stk.pop_back();
                if (miller_rabin(b)) {
```

```
17 | ans.push_back(b);
18 | continue;
19 | }
20 | LL c = b;
21 | while (c >= b) c = pollard_rho(b);
22 | stk.push_back(c);
23 | stk.push_back(b / c);
24 | }
25 | return ans;
26 | };
```

6.11 quadratic residu

Cipolla 算法

```
auto cipolla = [&](int x) {
    std::srand(time(0));
 \frac{1}{2}\frac{3}{4}\frac{4}{5}\frac{6}{7}\frac{8}{9}
             auto check = [\&] (int x) -> bool { return pow(x, (mod - 1) / 2) == 1; };
             if (!x) return 0;
if (!check(x)) return -1;
             int a, b;
while (1) {
                    a = rand() % mod;
                    b = sub(mul(a, a), x);
if (!check(b)) break;
10
\frac{11}{12}
             PII t = {a, 1};
PII ans = {1, 0};
auto mulp = [&] (PII x, PII y) -> PII {
13
14
                   auto [x1, x2] = x;
auto [y1, y2] = y;
int c = add(mul(x1, y1), mul(x2, y2, b));
int d = add(mul(x1, y2), mul(x2, y1));
15
16
17
18
19
                    return {c, d};
20
21
22
23
24
25
26
             for (int i = (mod + 1) / 2; i; i >>= 1) {
                    if (i & 1) ans = mulp(ans, t);
                    t = mulp(t, t);
             return std::min(ans.ff, mod - ans.ff);
      }
```

6.12 Lucas

卢卡斯定理

用于求大组合数,并且模数是一个不大的素数.

```
\begin{pmatrix} n \\ m \end{pmatrix} \bmod p = \begin{pmatrix} \lfloor n/p \rfloor \\ \lfloor m/p \rfloor \end{pmatrix} \cdot \begin{pmatrix} n \bmod p \\ m \bmod p \end{pmatrix} \bmod p \begin{pmatrix} n \bmod p \\ m \bmod p \end{pmatrix} \text{ 可以直接计算, } \begin{pmatrix} \lfloor n/p \rfloor \\ \lfloor m/p \rfloor \end{pmatrix} \text{ 可以继续使用卢卡斯计算.} 递归至 m=0 的时候, 返回 1.
```

p 不太大, 一般在 105 左右.

```
auto C = [&](LL n, LL m, LL p) -> LL {
    if (n < m) return 0;
    if (m == 0) return 1;
    return fac[n] * inv_fac[m] % p * inv_fac[n - m] % p;
};

auto lucas = [&](auto&& self, LL n, LL m, LL p) -> LL {
    if (n < m) return 0;
    if (m == 0) return 1;
    return C(n % p, m % p, p) * self(self, n / p, m / p, p) % p;
}</pre>
```

6.12 Lucas 53

素数在组合数中的次数

Legengre 给出一种 n! 中素数 p 的幂次的计算方式为:

$$\sum_{1\leqslant j} \lfloor \frac{n}{p^j} \rfloor.$$

另一种计算方式利用 p 进制下各位数字和:

$$v_p(n!) = \frac{n - S_p(n)}{p - 1}.$$

则有

$$v_p(C_m^n) = \frac{S_p(n) + S_p(m-n) - S_p(m)}{p-1}.$$

扩展卢卡斯定理

计算

$$\left(\begin{array}{c} n \\ m \end{array}\right) \bmod p,$$

p 可能为合数.

第一部分: CRT.

原问题变成求

$$\begin{cases}
\begin{pmatrix} n \\ m \end{pmatrix} \equiv a_1 \bmod p_1^{\alpha_1} \\
\begin{pmatrix} n \\ m \end{pmatrix} \equiv a_2 \bmod p_2^{\alpha_2} \\
\dots \\
\begin{pmatrix} n \\ m \end{pmatrix} \equiv a_k \bmod p_k^{\alpha_k}
\end{cases}$$

在求出 a_i 之后就可以利用 CRT 求出答案.

第二部分: 移除分子分母中的素数

问题转换成求解

$$\left(\begin{array}{c} n\\m\end{array}\right)\bmod q^k.$$

等价于

$$\frac{\frac{n!}{q^x}}{\frac{m!}{q^y}\frac{(n-m)!}{q^z}}q^{x-y-z} \bmod q^k,$$

其中 x 表示 n! 中 q 的次数, y, z 同理.

第三部分: 威尔逊定理的推论

问题转换为求

$$\frac{n!}{a^x} \bmod q^k$$
.

可以利用威尔逊定理的推论.

```
auto exLucas = [&](LL n, LL m, LL p) {
    auto inv = [&](LL a, LL p) {
    LL x, y;
```

```
exgcd(a, p, x, y);
return (x % p + p) % p;
 4
 5
6
7
           auto func = [&](auto&& self, LL n, LL pi, LL pk) {
 9
                 if (!n) return 111;
                LL ans = 1;

for (LL i = 2; i <= pk; i++) {

    if (i % pi) ans = ans * i % p;
10
11
12
13
                ans = quick_power(ans, n / pk, pk);
for (LL i = 2; i <= n % pk; i++) {
   if (i % pi) ans = ans * i % pk;</pre>
14
15
16
17
18
                ans = ans * self(self, n / pi, pi, pk) % pk;
19
\begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \end{array}
           };
           auto multiLucas = [&](LL n, LL m, LL pi, LL pk) {
                LL cnt = 0;
                for (LL i = n; i; i /= pi) cnt += i / pi;
for (LL i = m; i; i /= pi) cnt -= i / pi;
for (LL i = n - m; i; i /= pi) cnt -= i / pi;
                LL ans = quick_power(pi, cnt, pk) * func(func, n, pi, pk) % pk;
                ans = ans * inv(func(func, m, pi, pk), pk) % pk;
                ans = ans * inv(func(func, n - m, pi, pk), pk) % pk;
                return ans;
           };
           auto crt = [&](const vl& a, const vl& m, int k) {
                LL ans = 0;
                for (int i = 0; i < k; i++) {</pre>
37
                      ans = (ans + a[i] * inv(p / m[i], m[i]) * (p / m[i])) % p;
38
39
                return (ans % p + p) % p;
40
           };
41
42
43
           vl a, prime;
           44
45
46
                prime.push_back(1);
47
                 while (pp \overline{\%} i == 0) {
48
                      prime.back() *= i;
                      pp /= i;
49
50
51
52
53
54
55
56
                a.push_back(multiLucas(n, m, i, prime.back()));
           if (pp > 1) {
                prime.push_back(pp);
                a.push_back(multiLucas(n, m, pp, pp));
57
           return crt(a, prime, a.size());
58
     };
```

6.13 Wilson

简单结论

对于素数 p 有

$$(p-1)! \equiv -1 \mod p$$
.

推论

令 $(n!)_p$ 表示不大于 n 且不被 p 整除的正整数的乘积.

特殊情形: n 为素数 p 时即为上述结论.

一般结论: 对素数 p 和正整数 q 有

$$((p^q)!)_p \equiv \pm 1 \bmod p^q$$
.

55

详细定义:

$$((p^q)!)_p = \begin{cases} 1 & \text{if } p = 2 \text{ and } q \geqslant 3, \\ -1 & \text{other wise.} \end{cases}$$

更进一步的推论

6.14 LTE

将素数 p 在整数 n 中的个数记为 $v_p(n)$.

(n, p) = 1

对所有素数 p 和满足 (n,p)=1 的整数 n, 有

1. 若 $p \mid x - y$, 则有

$$v_p(x^n - y^n) = v_p(x - y).$$

2. 若 $p \mid x - y$, 则对奇数 n 有

$$v_p(x^n + y^n) = v_p(x + y).$$

p 是奇素数

对所有奇素数 p 有

1. 若 $p \mid x - y$, 则有

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

2. 若 $p \mid x - y$, 则对奇数 n 有

$$v_p(x^n + y^n) = v_p(x + y) + v_p(n).$$

p = 2

对 p=2且 $p \mid x-y$ 有

1. 对奇数 n 有

$$v_2(x^n - y^n) = v_2(x - y).$$

2. 对偶数 n 有

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

除此之外, 对上述 x, y, n, 若 $4 \mid x - y$, 有

1. $v_2(x+y) = 1$.

2.
$$v_2(x^n - y^n) = v_2(x - y) + v_2(n)$$
.

6.15 Mobius inversion

莫比乌斯函数

$$\mu(n) = \begin{cases}
1 & n = 1, \\
0 & n 含有平方因子, \\
(-1)^k & k 为 n 的本质不同素因子个数.
\end{cases}$$

性质

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n = 1 \\ 0 & n \neq 1 \end{cases}.$$
$$\varphi(n) = \sum_{d|n} d \cdot \mu(\frac{n}{d}).$$

反演结论

$$[\gcd(i,j)=1] = \sum_{d|\gcd(i,j)} \mu(d).$$

 $O(n \log n)$ 求莫比乌斯函数

莫比乌斯变换

设 f(n), F(n).

1.
$$F(n) = \sum_{d|n} f(d)$$
, 则 $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$.

2.
$$F(n) = \sum_{n|d} f(d)$$
, $\mathbb{M} f(n) = \sum_{n|d} \mu\left(\frac{d}{n}\right) F(d)$.

7 math - polynomial

7.1 FTT

FFT 与拆系数 FFT

```
const int sz = 1 \ll 23;
     int rev[sz];
 3
     int rev_n;
     void set_rev(int n) {
          if (n == rev_n) return;
 6
          for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] | (i & 1) * n) / 2;
 8
     }
 9
     tempt void butterfly(T* a, int n) {
10
         set_rev(n);
for (int i = 0; i < n; i++) {</pre>
11
12
              if (i < rev[i]) std::swap(a[i], a[rev[i]]);</pre>
13
14
     }
15
16
     namespace Comp {
18
     long double pi = 3.141592653589793238;
19
20
     tempt struct complex {
         T x, y;
complex(T x = 0, T y = 0) : x(x), y(y) {}
complex operator+(const complex& b) const { return complex(x + b.x, y + b.y); }
21
22
23
24
25
26
27
          complex operator*(const complex& b) const {
28
              return complex<T>(x * b.x - y * b.y, x * b.y + y * b.x);
29
30
          complex operator~() const { return complex(x, -y); }
31
          static complex unit(long double rad) { return complex(std::cos(rad), std::sin(rad)); }
    };
32
33
     }
34
           // namespace Comp
35
     struct fft_t {
    typedef Comp::complex<double> complex;
36
37
38
          complex wn[sz];
39
40
         fft_t() {
41
              for (int i = 0; i < sz / 2; i++) {
                   wn[sz / 2 + i] = complex::unit(2 * Comp::pi * i / sz);
42
43
44
              for (int i = sz / 2 - 1; i; i--) wn[i] = wn[i * 2];
45
46
47
          void operator()(complex* a, int n, int type) {
48
              if (type == -1) std::reverse(a + 1, a + n);
              butterfly(a, n);
for (int i = 1; i < n; i *= 2) {</pre>
49
50
                   const complex* w = wn + i;
51
                   for (complex *b = a, t; b != a + n; b += i + 1) {
52
53
                        t = b[i];
                       t - b[i] = *b - t;
*b = *b + t;
for (int j = 1; j < i; j++) {
    t = (++b)[i] * w[j];</pre>
54
55
56
57
                            b[i] = *b - t;
58
                            *b = *b + t;
59
60
                   }
61
62
63
              if (type == 1) return;
              for (int i = 0; i < n * 2; i++) ((double*) a)[i] /= n;</pre>
64
65
66
     } FFT;
67
68
     typedef decltype(FFT)::complex complex;
69
\frac{70}{71}
     vi fft(const vi& f, const vi& g) {
    static complex ff[sz];
72
          int n = f.size(), m = g.size();
73
          vi h(n + m - 1);
          if (std::min(n, m) <= 50) {</pre>
              for (int i = 0; i < n; i++) {</pre>
```

```
for (int j = 0; j < m; ++j) {
   h[i + j] += f[i] * g[j];</pre>
 76
 77
 78
 79
                 }
 80
                 return h;
 81
 82
            int c = 1:
            while (c + 1 < n + m) c *= 2;
 83
            std::memset(ff, 0, sizeof(decltype(*(ff))) * (c));
for (int i = 0; i < n; i++) ff[i].x = f[i];</pre>
 84
 85
 86
            for (int i = 0; i < m; i++) ff[i].y = g[i];
 87
            FFT(ff, c, 1);
            for (int i = 0; i < c; i++) ff[i] = ff[i] * ff[i];</pre>
 88
 89
            FFT(ff, c, -1);
 90
            for (int i = 0; i + 1 < n + m; i++) h[i] = std::llround(ff[i].y / 2);</pre>
 91
 92
 93
      vi mtt(const vi& f, const vi& g) {
    static complex ff[3][sz], gg[2][sz];
    static int s[3] = {1, 31623, 31623 * 31623};
 94
 95
 96
            int n = f.size(), m = g.size();
 97
 98
            vi h(n + m - 1);
 99
            if (std::min(n, m) <= 50) {</pre>
                 for (int i = 0; i < n; ++i) {
   for (int j = 0; j < m; ++j) {
     Add(h[i + j], mul(f[i], g[j]));
}</pre>
100
101
102
103
104
                 }
105
                 return h;
106
107
            int c = 1;
           108
109
110
111
112
113
114
                 FFT(ff[i], c, 1);
115
                 FFT(gg[i], c, 1);
116
117
            for (int i = 0; i < c; ++i) {
                 ff[2][i] = ff[1][i] * gg[1][i];
ff[1][i] = ff[1][i] * gg[0][i];
gg[1][i] = ff[0][i] * gg[1][i];
ff[0][i] = ff[0][i] * gg[0][i];
118
119
120
121
122
123
            for (int i = 0; i < 3; ++i) {</pre>
124
                 FFT(ff[i], c, -1);
for (int j = 0; j + 1 < n + m; ++j) {
125
126
                       Add(h[j], mul(std::llround(ff[i][j].x) % mod, s[i]));
127
128
            FFT(gg[1], c, -1);
for (int i = 0; i + 1 < n + m; ++i) {
129
130
                 Add(h[i], mul(std::llround(gg[1][i].x) % mod, s[1]));
131
132
133
            return h;
      }
134
```

7.2 FWT and FMT

```
void FMTor(int f[]) {
            for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j)
        if (j >> i & 1) f[j] = (f[j] + f[j ^ 1 << i]) % P;</pre>
 2
 3
 4
5
      void FMToriv(int f[]) {
            for (int i = 0; i < n; ++i)
  for (int j = 0; j < m; ++j)
    if (j >> i & 1) f[j] = (f[j] - f[j ^ 1 << i] + P) % P;</pre>
 9
10
11
      void FMTand(int f[]) {
            for (int i = 0; i < n; ++i)

for (int j = 0; j < m; ++j)

if (~j >> i & 1) f[j] = (f[j] + f[j ^ 1 << i]) % P;
12
13
14
15
      void FMTandiv(int f[]) {
16
17
            for (int i = 0; i < n; ++i)</pre>
                   for (int j = 0; j < m; ++j)
   if (-j >> i & 1) f[j] = (f[j] - f[j ^ 1 << i] + P) % P;</pre>
18
19
20
```

7.2 FWT and FMT 59

```
21
            void FWT(int f[]) {
22
23
24
                      for (int len = 1; len < m; len *= 2) {</pre>
                                 for (int i = 0; i < m; i += len *= 2) {
   for (int j = i; j < i + len; ++j) {
      int x = f[j], y = f[j + len];
      f[j] = (x + y) % P;
      f[j + len] = (x - y + P) % P;
}</pre>
25
\frac{1}{26}
27
28
\frac{1}{29}
                                 }
30
                      }
31
            }
32
            void FWTiv(int f[]) {
                      for (int len = 1; len < m; len *= 2) {
   for (int i = 0; i < m; i += len * 2) {
      for (int j = i; j < i + len; ++j) {
        int x = f[j], y = f[j + len];
        f[j] = 111 * (x + y) * iv2 % P;
        f[j + len] = 111 * (x - y + P) * iv2 % P;
}</pre>
33
34
35
36
37
38
39
                                            }
                                 }
40
                      }
41
            }
42
```

and

$$C_i = \sum_{i=j\&k} A_j B_k$$

分治过程

```
\begin{aligned} & \mathrm{FWT}[\mathrm{A}] = merge(\mathrm{FWT}[\mathrm{A}_0] + \mathrm{FWT}[\mathrm{A}_1], \mathrm{FWT}[\mathrm{A}_1]), \\ & \mathrm{UFWT}[\mathrm{A}'] = merge(\mathrm{UFWT}[\mathrm{A}'_0] - \mathrm{UFWT}[\mathrm{A}'_1], \mathrm{UFWT}[\mathrm{A}'_1]). \end{aligned}
```

```
/* mod 998244353 */
        auto FWT_and = [&](vi v, int type) -> vi {

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

               int \bar{n} = v.size();
               for (int mid = 1; mid < n; mid <<= 1) {
                      for (int block = mid << 1, j = 0; j < n; j += block) {
    for (int i = j; i < j + mid; i++) {
        LL x = v[i], y = v[i + mid];
        if (type == 1) {
                                              v[i] = add(x, y);
10
                                         else {
                                             v[i] = sub(x, y);
11
12
13
                              }
                       }
14
15
               }
16
               return v;
       };
```

or

$$C_i = \sum_{i=j|k} A_j B_k$$

分治过程

```
FWT[A] = merge(FWT[A_0], FWT[A_0] + FWT[A_1]),
```

 $UFWT[A'] = merge(UFWT[A'_0], -UFWT[A'_0] + UFWT[A'_1]).$

xor

$$C_i = \sum_{i=j \oplus k} A_j B_k$$

分治过程

$$\begin{aligned} & FWT[A] = merge(FWT[A_0] + FWT[A_1], FWT[A_0] - FWT[A_1]), \\ & UFWT[A'] = merge\left(\frac{UFWT[A'_0] + UFWT[A'_1]}{2}, \frac{UFWT[A'_0] - UFWT[A'_1]}{2}\right) \end{aligned}$$

```
/* mod 998244353 */
             auto FWT_xor = [&](vi v, int type) -> vi {

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9
    \end{array}

                       int n = v.size();
for (int mid = 1; mid < n; mid <<= 1) {
    for (int block = mid << 1, j = 0; j < n; j += block) {
        for (int i = j; i < j + mid; i++) {
            LL x = v[i], y = v[i + mid];
            v[i] = add(v v).</pre>
                                                           v[i] = add(x, y);
                                                           v[i = Add(x, y);
v[i + mid] = sub(x, y);
if (type == -1) {
   Mul(v[i], inv2);
   Mul(v[i + mid], inv2);
}
10
11
13
14
                                               }
15
                                   }
16
17
                        return v;
18
           };
```

统一地,

```
1    a = FWT(a, 1),    b = FWT(b, 1);
    for (int i = 0; i < (1 << n); i++) {
        c[i] = mul(a[i], b[i]);
    }
    c = FWT(c, -1);</pre>
```

7.3 class polynomial

```
class polynomial : public vi {
   public:

    \begin{array}{r}
      123456789
    \end{array}

           polynomial() = default;
           polynomial(const vi& v) : vi(v) {}
           polynomial(vi&& v) : vi(std::move(v)) {}
           int degree() { return size() - 1; }
           void clearzero() {
                while (size() && !back()) pop_back();
10
11
12
     };
13
14
15
     polynomial& operator+=(polynomial& a, const polynomial& b) {
\begin{array}{c} 16 \\ 17 \end{array}
           a.resize(std::max(a.size(), b.size()), 0);
for (int i = 0; i < b.size(); i++) {</pre>
18
19
                Add(a[i], b[i]);
20
21
           a.clearzero();
           return a;
22
     }
23
```

```
| polynomial operator+(const polynomial& a, const polynomial& b) {
25
           polynomial ans = a;
 26
           return ans += b;
27
      }
 28
 29
      polynomial& operator-=(polynomial& a, const polynomial& b) {
           a.resize(std::max(a.size(), b.size()), 0);
for (int i = 0; i < b.size(); i++) {
 30
 31
 32
                Sub(a[i], b[i]);
 33
 34
           a.clearzero();
 35
           return a;
 36
      }
 37
 38
      polynomial operator-(const polynomial& a, const polynomial& b) {
 39
           polynomial ans = a;
 40
           return ans -= b;
 41
 42
 43
      class ntt_t {
 44
          public:
 45
           static const int maxbit = 22;
 46
           static const int sz = 1 << maxbit;</pre>
 47
           static const int mod = 998244353;
 48
           static const int g = 3;
 49
 50
           std::array<int, sz + 10> w;
 51
           std::array<int, maxbit + 10> len_inv;
 52
 53
           ntt_t() {
 54
                int wn = pow(g, (mod - 1) >> maxbit);
                w[0] = 1;
 55
                for (int i = 1; i <= sz; i++) {
    w[i] = mul(w[i - 1], wn);</pre>
 56
 57
 58
                len_inv[maxbit] = pow(sz, mod - 2);
for (int i = maxbit - 1; ~i; i--) {
 59
 60
 61
                     len_inv[i] = add(len_inv[i + 1], len_inv[i + 1]);
 62
63
           }
 64
           void operator()(vi& v, int& n, int type) {
  int bit = 0;
  while ((1 << bit) < n) bit++;
  int tot = (1 << bit);</pre>
65
66
67
 68
69
                v.resize(tot, 0);
\frac{70}{71}
                vi rev(tot);
                n = tot;
72
73
74
75
                for (int i = 0; i < tot; i++) {</pre>
                     rev[i] = rev[i >> 1] >> 1;
                     if (i & 1) {
                          rev[i] |= tot >> 1;
76
77
78
79
                for (int i = 0; i < tot; i++) {
    if (i < rev[i]) {</pre>
 80
                           std::swap(v[i], v[rev[i]]);
                     }
 81
 82
 83
                for (int midd = 0; (1 << midd) < tot; midd++) {</pre>
 84
                      int mid = 1 << midd;</pre>
 85
                     int len = mid << 1;</pre>
 86
                      for (int i = 0; i < tot; i += len) {</pre>
                          for (int j = 0; j < mid; j++) {
  int w0 = v[i + j];</pre>
 87
 88
                                int w1 = mul(
 89
                                     w[type == 1 ? (j << maxbit - midd - 1) : (len - j << maxbit - midd - 1)],
 90
                               v[i + j + mid]);
v[i + j] = add(w0, w1);
v[i + j + mid] = sub(w0, w1);
 91
 92
 93
                          }
 94
                     }
 95
 96
                if (type == -1) {
   for (int i = 0; i < tot; i++) {</pre>
 97
 98
99
                          v[i] = mul(v[i], len_inv[bit]);
100
                }
101
102
      } NTT;
103
```

```
polynomial& operator*=(polynomial& a, const polynomial& b) {
           if (!a.size() || !b.size()) {
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
                 a.resize(0);
                return a;
           polynomial tmp = b;
int deg = a.size() + b.size() - 1;
 \frac{6}{7}
           int temp = deg;
 9
           // 项数较小直接硬算
10
11
12
           if ((LL) a.size() * (LL) b.size() <= (LL) deg * 50LL) {</pre>
13
                 tmp.resize(0);
                tmp.resize(deg, 0);
for (int i = 0; i < a.size(); i++) {
    for (int j = 0; j < b.size(); j++) {
        tmp[i + j] = add(tmp[i + j], mul(a[i], b[j]));
    }
}</pre>
14
15
16
17
18
19
                }
20
21
22
23
                 a = tmp;
                return a;
\frac{24}{25}
           // 项数较多跑 NTT
           NTT(a, deg, 1);
26
27
           NTT(tmp, deg, 1);
for (int i = 0; i < deg; i++) {
28
29
30
31
32
33
                Mul(a[i], tmp[i]);
           NTT(a, deg, -1);
           a.resize(temp);
           return a;
34
35
36
     polynomial operator*(const polynomial& a, const polynomial& b) {
37
           polynomial ans = a;
38
           return ans *= b;
39
```

逆

```
polynomial inverse(const polynomial& a) {
 3
           polynomial ans({pow(a[0], mod - 2)});
           polynomial temp;
 4
5
          polynomial tempa;
           int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {</pre>
 6
7
                tempa.resize(0);
                tempa.resize(1 << i << 1, 0);
for (int j = 0; j != tempa.size() and j != deg; j++) {
    tempa[j] = a[j];</pre>
 8 9
10
11
                temp = ans * (polynomial({2}) - tempa * ans);
if (temp.size() > (1 << i << 1)) {</pre>
12
13
14
                      temp.resize(1 << i << 1, 0);
15
16
                temp.clearzero();
17
                std::swap(temp, ans);
18
19
           ans.resize(deg);
20
           return ans;
21
     }
```

对数

```
polynomial diffrential(const polynomial& a) {
    if (!a.size()) {
        return a;
    }
    polynomial ans(vi(a.size() - 1));
    for (int i = 1; i < a.size(); i++) {
        ans[i - 1] = mul(a[i], i);
    }
    return ans;
}

polynomial integral(const polynomial& a) {</pre>
```

```
13
         polynomial ans(vi(a.size() + 1));
14
         for (int i = 0; i < a.size(); i++) {
15
             ans[i + 1] = mul(a[i], pow(i + 1, mod - 2));
16
         return ans;
    }
18
19
20
    polynomial ln(const polynomial& a) {
\overline{21}
         int deg = a.size();
22
         polynomial da = diffrential(a);
23
         polynomial inva = inverse(a);
\frac{24}{25}
         polynomial ans = integral(da * inva);
         ans.resize(deg);
26
         return ans;
```

指数

```
polynomial exp(const polynomial& a) {
    polynomial ans({1});
 3
            polynomial temp;
 4
            polynomial tempa;
 5
            polynomial tempaa;
            int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {
 6
7
 8
                  tempa.resize(0);
                  tempa.resize(0);
tempa.resize(1 << i << 1, 0);
for (int j = 0; j != tempa.size() and j != deg; j++) {
    tempa[j] = a[j];</pre>
 9
10
11
12
13
                  tempaa = ans;
                  \texttt{tempaa.resize}(1 << \texttt{i} << \texttt{1});
14
                  temp = ans * (tempa + polynomial({1}) - ln(tempaa));
if (temp.size() > (1 << i << 1)) {</pre>
15
16
17
                        temp.resize(1 << i << 1, 0);
19
                  temp.clearzero();
20
                  std::swap(temp, ans);
21
22
            ans.resize(deg);
\frac{-}{23}
            return ans;
      }
```

根号

```
polynomial sqrt(polynomial& a)
           polynomial ans({cipolla(a[0])});
if (ans[0] == -1) return ans;
 3
 4
           polynomial temp;
 5
           polynomial tempa;
 67
           polynomial tempaa
           int deg = a.size();
 8
           for (int i = 0; (1 << i) < deg; i++) {</pre>
                tempa.resize(0);
tempa.resize(1 << i << 1, 0);</pre>
 9
10
                for (int j = 0; j != tempa.size() and j != deg; j++) {
   tempa[j] = a[j];
11
13
14
                tempaa = ans;
                tempaa.resize(1 << i << 1);
15
                temp = (tempa * inverse(tempaa) + ans) * inv2;
if (temp.size() > (1 << i << 1)) {
    temp.resize(1 << i << 1, 0);</pre>
16
17
18
19
20
                temp.clearzero();
21
                std::swap(temp, ans);
22
23
           ans.resize(deg);
24
           return ans;
25
26
      // 特判 //
27
28
29
      int cnt = 0;
     for (int i = 0; i < a.size(); i++) {
    if (a[i] == 0) {</pre>
30
31
32
                cnt++;
33
           } else {
```

```
34
              break;
35
          }
36
37
    if (cnt) {
         if (cnt == n) {
38
              for (int i = 0; i < n; i++) {
    std::cout << "0";
39
40
41
42
               std::cout << endl;</pre>
43
              return 0;
44
          if (cnt & 1) {
45
               std::cout << "-1" << endl;
46
47
               return 0;
48
49
          polynomial b(vi(a.size() - cnt));
50
          for (int i = cnt; i < a.size(); i++) {</pre>
51
              b[i - cnt] = a[i];
52
\overline{53}
          a = b;
54
55
    a.resize(n - cnt / 2);
    a = sqrt(a);
if (a[0] == -1) {
    std::cout << "-1" << endl;</pre>
56
57
58
59
          return 0;
    }
60
61
    reverse(all(a));
62
     a.resize(n);
    reverse(all(a));
```

```
#include <bits/stdc++.h>
 3
     using ul = std::uint32_t;
 4
     using li = std::int32_t;
     using ll = std::int64_t;
    using ull = std::uint64_t;
using llf = long double;
using lf = double;
 9
     using vul = std::vector;
10
     using vvul = std::vector<vul>;
     using pulb = std::pair<ul, bool>;
11
    using vpulb = std::vector<pulb>;
using vvpulb = std::vector<vpulb>;
13
14
     using vb = std::vector<bool>;
15
16
     const ul base = 998244353;
17
18
     std::mt19937 rnd;
19
\frac{20}{21}
     ul plus(ul a, ul b) { return a + b < base ? a + b : a + b - base; }
22
     ul minus(ul a, ul b) { return a < b ? a + base - b : a - b; }
23
24
     ul mul(ul a, ul b) { return ull(a) * ull(b) % base; }
25
     void exgcd(li a, li b, li& x, li& y) {
26
\overline{27}
          if (b) {
28
              exgcd(b, a % b, y, x);
y -= x * (a / b);
29
30
31
          } else {
              x = 1;
y = 0;
32
33
34
    }
35
36
     ul inverse(ul a) {
         li x, y;
exgcd(a, base, x, y);
return x < 0 ? x + li(base) : x;
37
38
39
40
41
     ul pow(ul a, ul b) {
42
         ul ret = 1;
ul temp = a;
43
44
          while (b) {
45
               if (b & 1) {
46
47
                   ret = mul(ret, temp);
48
49
               temp = mul(temp, temp);
50
               b > = 1;
```

```
52
            return ret;
 53
      }
 54
 55
 56
       ul sqrt(ul x) {
 57
            ul a;
 58
            ul w2;
 59
            while (true) {
                 a = rnd() % base;
 60
                 w2 = minus(mul(a, a), x);
if (pow(w2, base - 1 >> 1) == base - 1) {
 61
 62
 63
                       break;
                 }
 64
 65
            ul b = base + 1 >> 1;
 66
            ul rs = 1, rt = 0;
ul as = a, at = 1;
 67
 68
 69
            ul qs, qt;
while (b) {
 70
 71
72
73
74
                 if (b & 1) {
                      qs = plus(mul(rs, as), mul(mul(rt, at), w2));
qt = plus(mul(rs, at), mul(rt, as));
                      rs = qs;
                      rt = qt;
 75
 76
77
 78
79
                 qs = plus(mul(as, as), mul(mul(at, at), w2));
qt = plus(mul(as, at), mul(as, at));
                 as = qs;
 80
 81
                 at = qt;
 82
 83
            return rs + rs < base ? rs : base - rs;</pre>
 84
      }
 85
 86
       ul log(ul x, ul y, bool inited = false) {
 87
            static std::map<ul, ul> bs;
 88
            const ul d = std::round(std::sqrt(lf(base - 1)));
 89
            if (!inited) {
 90
                 bs.clear();
                 for (ul i = 0, j = 1; i != d; ++i, j = mul(j, x)) {
   bs[j] = i;
 91
 92
 93
 94
            ul temp = inverse(pow(x, d));
for (ul i = 0, j = 1;; i += d, j = auto it = bs.find(mul(y, j));
 95
                                                     j = mul(j, temp)) {
 96
 97
 98
                 if (it != bs.end()) {
 99
                      return it->second + i;
100
101
            }
102
       }
103
      ul powroot(ul x, ul y, bool inited = false) {
   const ul g = 3;
   ul lgx = log(g, x, inited);
104
105
106
            li s, t;
107
            exgcd(y, base - 1, s, t);
if (s < 0) {
108
109
110
                 s += base - 1;
111
            return pow(g, ull(s) * ull(lgx) % (base - 1));
112
113
114
115
       class polynomial : public vul {
116
            public:
117
            void clearzero() {
118
                 while (size() && !back()) {
119
                      pop_back();
120
121
            polynomial() = default;
polynomial(const vul& a) : vul(a) {}
polynomial(vul&& a) : vul(std::move(a)) {}
ul degree() const { return size() - 1; }
122
123
124
125
126
            ul operator()(ul x) const {
                 ul ret = 0;
for (ul i = size() - 1; ~i; --i) {
127
128
129
                      ret = mul(ret, x);
130
                      ret = plus(ret, vul::operator[](i));
131
132
                 return ret;
133
      };
134
135
      polynomial& operator+=(polynomial& a, const polynomial& b) {
136
            a.resize(std::max(a.size(), b.size()), 0);
137
```

```
138
           for (ul i = 0; i != b.size(); ++i) {
139
               a[i] = plus(a[i], b[i]);
140
141
           a.clearzero();
142
           return a;
143
144
145
      polynomial operator+(const polynomial& a, const polynomial& b) {
146
          polynomial ret = a;
147
           return ret += b;
148
      }
149
150
      polynomial& operator-=(polynomial& a, const polynomial& b) {
           a.resize(std::max(a.size(), b.size()), 0);
for (ul i = 0; i != b.size(); ++i) {
151
152
153
               a[i] = minus(a[i], b[i]);
154
155
           a.clearzero();
156
           return a:
157
158
159
      polynomial operator-(const polynomial& a, const polynomial& b) {
          polynomial ret = a;
160
161
           return ret -= b;
162
163
164
      class ntt_t {
165
           public:
166
           static const ul lgsz = 20;
           static const ul sz = 1 << lgsz;
167
168
           static const ul g = 3;
169
           ul w[sz + 1];
170
           ul leninv[lgsz + 1];
171
           ntt_t() {
172
                ul wn = pow(g, (base - 1) >> lgsz);
               w[0] = 1;
for (ul i = 1; i <= sz; ++i) {
173
174
175
                    w[i] = mul(w[i - 1], wn);
176
177
                leninv[lgsz] = inverse(sz);
               for (ul i = lgsz - 1; ~i; --i) {
    leninv[i] = plus(leninv[i + 1], leninv[i + 1]);
\begin{array}{c} 178 \\ 179 \end{array}
180
181
182
           void operator()(vul& v, ul& n, bool inv) {
               ul lgn = 0;
while ((1 << lgn) < n) {
183
184
185
                    ++lgn;
186
187
               n = 1 \ll lgn;
188
               v.resize(n, 0);
for (ul i = 0, j = 0; i != n; ++i) {
   if (i < j) {</pre>
189
190
                         std::swap(v[i], v[j]);
191
192
                    ul k = n >> 1;
while (k & j) {
193
194
                         j &= ~k;
195
196
                         k >>= 1;
197
                    }
198
                    j |= k;
199
200
                for (ul lgmid = 0; (1 << lgmid) != n; ++lgmid) {</pre>
                    ul mid = 1 << lgmid;
201
202
                    ul len = mid << 1;</pre>
                    for (ul i = 0; i != n; i += len) {
    for (ul j = 0; j != mid; ++j) {
        ul t0 = v[i + j];
    }
203
204
205
206
                              ul t1 =
207
                                  mul(w[inv ? (len - j << lgsz - lgmid - 1) : (j << lgsz - lgmid - 1)],
208
                                       v[i + j + mid]);
209
                              v[i + j] = plus(t0, t1);
210
                              v[i + j + mid] = minus(t0, t1);
211
                         }
212
                    }
213
214
                if (inv) {
215
                    for (ul i = 0; i != n; ++i) {
216
                         v[i] = mul(v[i], leninv[lgn]);
217
218
               }
219
           }
220
     } ntt;
221
222
      polynomial& operator*=(polynomial& a, const polynomial& b) {
223
           if (!b.size() || !a.size()) {
224
                a.resize(0);
```

```
225
                return a;
226
227
           polynomial temp = b;
ul npmp1 = a.size() + b.size() - 1;
228
229
            if (ull(a.size()) * ull(b.size()) <= ull(npmp1) * ull(50)) {</pre>
230
                temp.resize(0);
                temp.resize(npmp1, 0);
for (ul i = 0; i != a.size(); ++i) {
   for (ul j = 0; j != b.size(); ++j) {
      temp[i + j] = plus(temp[i + j], mul(a[i], b[j]));
}
231
232
233
234
235
                     }
236
                }
237
                a = temp;
238
                a.clearzero();
239
                return a;
240
241
           ntt(a, npmp1, false);
           ntt(temp, npmp1, false);
for (ul i = 0; i != npmp1; ++i) {
242
243
244
                a[i] = mul(a[i], temp[i]);
245
246
           ntt(a, npmp1, true);
247
            a.clearzero();
\bar{2}48
            return a;
249
      }
250
251
      polynomial operator*(const polynomial& a, const polynomial& b) {
252
           polynomial ret = a;
253
            return ret *= b;
254
      }
255
256
      polynomial& operator*=(polynomial& a, ul b) {
257
           if (!b) {
258
                a.resize(0);
259
                return a;
260
           for (ul i = 0; i != a.size(); ++i) {
   a[i] = mul(a[i], b);
261
262
            }
263
264
           return a;
265
      }
266
267
      polynomial operator*(const polynomial& a, ul b) {
268
           polynomial ret = a;
269
            return ret *= b;
270
271
272
      polynomial inverse(const polynomial& a, ul lgdeg) {
           polynomial ret({inverse(a[0])});
273
274
            polynomial temp;
275
            polynomial tempa;
            for (ul i = 0; i != lgdeg; ++i) {
276
                tempa.resize(0);
tempa.resize(1 << i << 1, 0);
for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
    tempa[j] = a[j];
}</pre>
277
278
279
280
281
                temp = ret * (polynomial({2}) - tempa * ret);
if (temp.size() > (1 << i << 1)) {
   temp.resize(1 << i << 1, 0);</pre>
282
283
284
285
286
                temp.clearzero();
287
                std::swap(temp, ret);
288
289
           return ret;
290
      }
\frac{1}{291}
292
      void quotientremain(const polynomial& a, polynomial b, polynomial& q, polynomial& r) {
293
            if (a.size() < b.size()) {</pre>
294
                q = polynomial();
r = std::move(a);
295
296
                return;
297
298
            std::reverse(b.begin(), b.end());
299
            auto ta = a;
300
            std::reverse(ta.begin(), ta.end());
301
            ul n = a.size() - \bar{1};
302
            ul m = b.size() - 1;
303
            ta.resize(n - m + 1);
            ul lgnmmp1 = 0;
304
           while ((1 << lgnmmp1) < n - m + 1) {
305
306
                ++lgnmmp1;
307
308
            q = ta * inverse(b, lgnmmp1);
309
            q.resize(n - m + 1);
            std::reverse(b.begin(), b.end());
310
311
            std::reverse(q.begin(), q.end());
```

```
312
          r = a - b * q;
313 }
314
315
     polynomial mod(const polynomial& a, const polynomial& b) {
316
          polynomial q, r;
317
           quotientremain(a, b, q, r);
318
          return r;
319
320
321
      polynomial quotient(const polynomial& a, const polynomial& b) {
322
          polynomial q, r;
323
           quotientremain(a, b, q, r);
324
          return q;
325
326
327
      polynomial sqrt(const polynomial& a, ul lgdeg) {
328
          polynomial ret({sqrt(a[0])});
329
          polynomial temp;
          polynomial tempa;
for (ul i = 0; i != lgdeg; ++i) {
330
331
332
               tempa.resize(0);
               tempa.resize(1 << i << 1, 0);
for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
   tempa[j] = a[j];</pre>
333
334
335
336
               temp = (tempa * inverse(ret, i + 1) + ret) * (base + 1 >> 1);
if (temp.size() > (1 << i << 1)) {</pre>
337
338
                    temp.resize(1 << i << 1, 0);
339
340
341
               temp.clearzero();
342
               std::swap(temp, ret);
343
344
          return ret;
345 }
346
     polynomial diffrential(const polynomial& a) {
347
348
          if (!a.size()) {
349
               return a:
350
351
          polynomial ret(vul(a.size() - 1, 0));
           for (ul i = 1; i != a.size(); ++i) {
    ret[i - 1] = mul(a[i], i);
352
353
354
355
          return ret;
356
     | }
357
358
     polynomial integral(const polynomial& a) {
359
          polynomial ret(vul(a.size() + 1, 0));
360
           for (ul i = 0; i != a.size(); ++i) {
               ret[i + 1] = mul(a[i], inverse(i + 1));
361
362
363
          return ret;
364
     }
365
366
      polynomial ln(const polynomial& a, ul lgdeg) {
367
          polynomial da = diffrential(a);
368
          polynomial inva = inverse(a, lgdeg);
          polynomial ret = integral(da * inva);
if (ret.size() > (1 << lgdeg)) {
   ret.resize(1 << lgdeg);</pre>
369
370
371
372
               ret.clearzero();
373
374
          return ret;
375
376
377
      polynomial exp(const polynomial& a, ul lgdeg) {
378
          polynomial ret({1});
379
          polynomial temp;
380
          polynomial tempa;
381
           for (ul i = 0; i != lgdeg; ++i) {
               tempa.resize(0);
382
383
               tempa.resize(1 << i << 1, 0);
384
               for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
385
                    tempa[j] = a[j];
386
               temp = ret * (polynomial({1}) - ln(ret, i + 1) + tempa);
if (temp.size() > (1 << i << 1)) {</pre>
387
388
                    temp.resize(1 << i << 1, 0);
389
390
391
               temp.clearzero();
392
               std::swap(temp, ret);
393
394
          return ret;
395
396
397
     polynomial pow(const polynomial& a, ul k, ul lgdeg) { return exp(ln(a, lgdeg) * k, lgdeg); }
398
```

```
399
    |polynomial alpi[1 << 16][17];
400
401
     polynomial getalpi(const ul x[], ul l, ul lgrml) {
402
          if (lgrml == 0)
              return alpi[l][lgrml] = vul({minus(0, x[1]), 1});
403
404
          return alpi[1][lgrml] = getalpi(x, 1, lgrml - 1) * getalpi(x, 1 + (1 << lgrml - 1), lgrml - 1);</pre>
405
     }
406
407
      void multians(const polynomial& f, const ul x[], ul y[], ul l, ul lgrml) {
408
          if (f.size() <= 700) {
   for (ul_i = 1; i_! = 1 + (1 << lgrml); ++i) {</pre>
409
410
                   y[i] = f(x[i]);
411
412
413
               return;
414
415
          if (lgrml == 0) {
              y[1] = f(x[1]);
416
417
              return:
418
          multians(mod(f, alpi[1][lgrml - 1]), x, y, 1, lgrml - 1);
multians(mod(f, alpi[1 + (1 << lgrml - 1)][lgrml - 1]), x, y, 1 + (1 << lgrml - 1), lgrml - 1);
419
420
421
      }
422
423
      ul sqrt(ul x) {
          ūl a;
424
425
          ul w2;
426
          while (true) {
427
               a = rnd() % base;
428
               w2 = minus(mul(a, a), x);
               if (pow(w2, base - 1 >> 1) == base - 1) {
    break;
429
430
431
               }
432
433
          ul b = base + 1 >> 1;
434
          ul rs = 1, rt = 0;
          ul as = a, at = 1;
435
          ul qs, qt;
while (b) {
436
437
438
               if (b & 1) {
439
                   qs = plus(mul(rs, as), mul(mul(rt, at), w2));
440
                   qt = plus(mul(rs, at), mul(rt, as));
441
                   rs = qs;
                   rt = qt;
442
443
444
               b >>= 1;
445
               qs = plus(mul(as, as), mul(mul(at, at), w2));
               qt = plus(mul(as, at), mul(as, at));
as = qs;
446
447
               at = qt;
448
449
450
          return rs + rs < base ? rs : base - rs;</pre>
     }
451
452
453
      ul log(ul x, ul y, bool inited = false) {
454
          static std::map<ul, ul> bs;
455
          const ul d = std::round(std::sqrt(lf(base - 1)));
456
          if (!inited) {
457
               bs.clear();
               for (ul i = 0, j = 1; i != d; ++i, j = mul(j, x)) {
458
459
                   bs[j] = i;
460
461
          ul temp = inverse(pow(x, d));
462
463
          for (ul i = 0, j = 1;; i += d,
                                             j = mul(j, temp)) {
               auto it = bs.find(mul(y, j));
464
               if (it != bs.end()) {
465
466
                   return it->second + i;
467
468
469
      }
470
471
      ul powroot(ul x, ul y, bool inited = false) {
   const ul g = 3;
   ul lgx = log(g, x, inited);
472
473
474
          li s, t;
475
          exgcd(y, base - 1, s, t);
476
          if (s < 0) {
477
               s += base - 1;
478
479
          return pow(g, ull(s) * ull(lgx) % (base - 1));
480
     }
481
482
     ul n;
483
      int main() {
485
          std::scanf("%u", &n);
```

```
486
           polynomial f;
487
           for (ul i = 0; i <= n; ++i) {
488
                std::scanf("%u", &t);
489
                f.push_back(t % base);
490
491
           polynomial g = \exp(\ln(f * inverse(f[0]), 17) * inverse(3), 17) * powroot(f[0], 3); while <math>(g.size() \le n) {
492
493
               g.push_back(0);
494
495
           for (ul i = 0; i <= n; ++i) {
    if (i) {</pre>
496
497
                    std::putchar(' ');
498
499
500
                std::printf("%u", g[i]);
501
           std::putchar('\n');
return 0;
502
503
504
      }
```

Lagrange interpolation

一般的插值

给出一个多项式 f(x) 上的 n 个点 (x_i, y_i) , 求 f(k).

插值的结果是

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j},$$

直接带入 k 并且取模即可, 时间复杂度 $O(n^2)$.

坐标连续的插值

给出的点是 (i, y_i) .

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

$$= \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - j}{i - j}$$

$$= \sum_{i=1}^{n} y_i \cdot \frac{\prod_{j=1}^{n} (x - j)}{(x - i)(-1)^{n+1-i}(i - 1)!(n + 1 - i)!}$$

$$= \left(\prod_{j=1}^{n} (x - j)\right) \left(\sum_{i=1}^{n} \frac{(-1)^{n+1-i}y_i}{(x - i)(i - 1)!(n + 1 - i)!}\right),$$

时间复杂度为 O(n).

8 math - numerical analysis

8.1 Simpson

```
#include <bits/stdc++.h>
        using namespace std;
const double eps = 1e-8;
        double a, b, c, d, l, r;
double f(double x) {
   return pow(x, (a / x) - x);
        double simpson(double 1, double r) {
   double mid = (1 + r) / 2.0;
   return (f(1) + 4.0 * f(mid) + f(r)) * (r - 1) / 6.0;
  8
9
10
11
        double asr(double 1, double r, double eps, double ans) {
    double mid = (1 + r) / 2.0, 1_ = simpson(1, mid), r_ = simpson(mid, r);
    if (fabs(1_ + r_ - ans) <= 15.0 * eps) return 1_ + r_ + (1_ + r_ - ans) / 15.0;
    return asr(1, mid, eps / 2.0, 1_) + asr(mid, r, eps / 2.0, r_);</pre>
12
13
14
15
17
                ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
cin >> a;
18
19
20
21
                if (a < 0) return cout << "orz", 0;
cout << fixed << setprecision(5) << asr(eps, 15.0, eps, simpson(1, r));</pre>
\overline{22}
        }
```

9 math - game theory

9.1 nim game

若 nim 和为 0, 则先手必败.

暴力打表.

```
vi SG(21, -1); /* 记忆化 */
std::function<int(int, int)> sg = [&](int x) -> int {
    if (/* 为最终态 */) return SG[x] = 0;
    if (SG[x] != -1) return SG[x];
    vi st;
    for (/* 枚举所有可到达的状态 y */) {
        st.push_back(sg(y));
    }
    std::sort(all(st));
    for (int i = 0; i < st.size(); i++) {
        if (st[i] != i) return SG[x] = i;
    }
    return SG[x] = st.size();
```

9.2 anti - nim game

若

- 1. 所有堆的石子均为一个, 且 nim 和不为 0,
- 2. 至少有一堆石子超过一个, 且 nim 和为 0,

则先手必败.

10 math - linear algebra

10.1 matrix

Gauss Elimination

```
using db = double;
const int N = 109;
       const db eps = 1e-6;
       db a[N][N];
       auto work = []() {
             int n;
             cin >> n;
            for (int i = 1; i <= n; ++i) {
    for (int j = 1; j <= n + 1; ++j) {
        cin >> a[i][j];
 9
10
11
12
            13
14
15
16
17
18
                                             swap(a[i][k], a[j][k]);
19
20
                                       break;
21
22
                         }
23
                   }
\overline{24}
                   if (fabs(a[i][i]) < eps) {</pre>
25
                         cout << "No Solution\n";
return ;</pre>
\frac{1}{26}
27
                   for (int j = 1; j <= n; ++j) if (i != j) {
   db d = -a[j][i] / a[i][i];
   for (int k = 1; k <= n + 1; ++k) {
      a[j][k] += a[i][k] * d;
}</pre>
28
29
30
31
32
33
                   }
34
            }
            cout << fixed << setprecision(2);
for (int i = 1; i <= n; ++i) {
    cout << a[i][n + 1] / a[i][i] << '\n';</pre>
35
36
37
38
39
      };
```

determinant mod non-prime

```
int a[609][609];
          int main() {
 \bar{3}
                  int n, P, z = 1;
std::cin >> n >> P;
  4
                  for (int i = 1; i <= n; ++i) {
   for (int j = 1; j <= n; ++j) std::cin >> a[i][j];
 5
 6
                  }
for (int i = 1; i <= n; ++i) {
    for (int j = i + 1; j <= n; ++j) {
        while (a[j][i]) {
            z = -z;
            int d = a[i][i] / a[j][i];
            for (int k = i; k <= n; ++k) {
                int x = (a[i][k] - 111 * d * a[j][k]) % P;
                a[i][k] = a[j][k], a[j][k] = x;
            }
}</pre>
 9
10
11
12
13
14
15
16
                                     }
17
18
19
                            z = 111 * z * a[i][i] % P;
20
21
                  std::cout << (z + P) % P;
         }
```

```
auto det = [&](int n, vvi e) -> int {

    \begin{array}{r}
      123456789
    \end{array}

            int ans = 1;
for (int i =
                                1; i <= n; i++) {
                   if (a[i][i] == 0) {
                        for (int j = i + 1; j <= n; j++) {
    if (a[j][i] != 0) {
                                     for (int k = i; k <= n; k++)
                                           std::swap(a[i][k], a[j][k]);
10
                                     ans = sub(mod, ans);
11
                                     break;
12
                               }
13
                        }
14
                   }
15
                   if (a[i][i] == 0) return 0;
                  Mul(ans, a[i][i]);
16
                  int x = pow(a[i][i], mod - 2);
for (int k = i; k <= n; k++) {
    Mul(a[i][k], x);</pre>
17
18
19
20
21
22
23
24
25
                   for (int j = i + 1; j <= n; j++) {
   int x = a[j][i];</pre>
                         for (int k = i; k <= n; k++) {</pre>
                               Sub(a[j][k], mul(a[i][k], x));
\overline{26}
                  }
27
\frac{1}{28}
            return ans:
29
      };
```

matrix multiplication

 $A_{n \times m}$ 与 $B_{m \times k}$ 相乘并模 998244353.

```
1
     auto matrix_mul = [&](int n, int m, int k, const vvi& a, const vvi& b) -> vvi {
 2 3
          vvi c(n + 1, vi(k + 1));
          for (int i = 1; i <= n; i++) {</pre>
 4
               for (int 1 = 1; 1 <= m; 1++) {</pre>
                   int x = a[i][1];
 5
                   for (int j = 1; j <= k; j++) {
   Add(c[i][j], mul(x, b[l][j]));
 6
7
 8
 9
              }
10
         }
11
         return c;
    };
12
```

10.2 matrix tree

```
const int N=33,M=152599,P=998244353;
   2 3
               int qpow(int a,int b=P-2){
                                int r=1;for(;b;b>>=1,a=1ll*a*a%P)if(b&1)r=1ll*r*a%P;return r;
   4
   5
               struct T\{int x,y,z;T(int a=0,int b=0,int c=0):x(a),y(b),z(c)\}\}e[N*N];
   6
7
                struct F{
                               int a,b;
   8
                               F():a(),b(){}
                              F():a(),b();

F(int x,int y):a(x),b(y){}

F operator+(const F&_)const{return F((a+_.a)%P,(b+_.b)%P);}

F operator+=(const F&_){return *this=*this+_;}

F operator-(const F&_)const{return F((a-_.a+P)%P,(b-_.b+P)%P);}

F operator-=(const F&_){return *this=*this-_;}

F operator-=(const F&_) repetator-froture F((11)**this-_;)*P 113**this-_;

F operator-froture F((11)**this-_;)*P 113**this-_;

F operator-froture F((11)**this-_;)*P 113**this-_;

F operator-froture F((11)**this-_;)*P 113**this-_;

F operator-froture F((11)**this-_;

F o
   9
10
11
12
13
                               F operator*(const F&_)const{return F((111*a*_.b+111*b*_.a)%P,111*b*_.b%P);}
14
15
                               F operator*=(const F&_){return *this=*this*_;}
16
                               int operator&()const{return b?2:(a?1:0);}
17
                                bool operator!()const{return !a&&!b;}
                               F operator~()const{
18
19
                                               int d=qpow(b);
20
                                              return F((P-111*a*d%P*d%P)%P,d);
\frac{21}{22}
\frac{22}{23} 24
               int fa[N],phi[M],n,m;
               int gf(int x){return x==fa[x]?x:fa[x]=gf(fa[x]);}
int cal(int p){
    F a[N][N],d,iv,z=F(0,1);
25
26
27
                                int i,j,k,l,x=0;iota(fa,fa+n+1,0);
28
                               for(i=1;i<=m;++i)if(e[i].z%p==0){</pre>
```

10.3 linear basis 75

```
29
                 if((j=gf(e[i].x))!=(k=gf(e[i].y)))fa[j]=k;
                 j=e[i].x,k=e[i].y,l=e[i].z,++x;
a[j][k]-=F(1,1),a[k][j]-=F(1,1);
a[j][j]+=F(1,1),a[k][k]+=F(1,1);
30
31
32
33
           for(j=0,i=1;i<=n;++i)if(fa[i]==i)++j;
if(j>1 || x<n-1)return 0;</pre>
34
35
36
           for(i=1;i<n;++i){</pre>
                 for(k=i,j=i+1;j<n;++j)if(&a[j][i]>&a[k][i])k=j;
if(k!=i)swap(a[i],a[k]),z*=F(0,P-1);
37
38
39
                 if(!a[i][i])return 0;
                 for(z*=a[i][i],iv=~a[i][i],j=i;j<n;++j)a[i][j]*=iv;
for(j=i+1;j<n;++j)for(d=a[j][i],k=i;k<n;++k)a[j][k]-=a[i][k]*d;</pre>
40
41
42
43
           return z.a;
44
45
      void work(){
           int h=0,i,j,x,y,z;
for(cin>>n>>m,i=1;i<=m;++i)cin>>x>>y>>z,e[i]=T(x,y,z),h=max(h,z);
46
47
            iota(phi+1,phi+h+1,1);
48
49
            for(i=1;i<=h;++i)for(j=i<<1;j<=h;j+=i)phi[j]=(phi[j]-phi[i]+P)%P;</pre>
            for(z=0,i=1;i<=h;++i)z=(z+1ll*phi[i]*cal(i)%P)%P;</pre>
50
51
            cout<<z<'\n';
52
      }
```

10.3 linear basis

```
template<typename T, const int M = sizeof(T) * 8>
struct Liner_Basis {
 3
          T a[M];
 4
           size_t sz;
 5
          Liner_Basis() : a(), sz() {}
           size_t size() const {
 6
               return sz;
 8
 9
          void clear() {
               memset(a, 0, sizeof a);
10
11
12
           bool ins(T x) {
               for (size_t i = M - 1; ~i && x; --i)
    if (x >> i & 1) {
        if (a[i]) x ^= a[i];
13
14
15
                          else return a[i] = x, true;
16
17
18
               return false;
19
20
           Liner_Basis& operator+=(const Liner_Basis&_) {
               for (T x : _.a) if (x) this->ins(x);
return *this;
21
22
23
24
          Liner_Basis operator+(const Liner_Basis&_) {
25
               Liner_Basis z = *this;
\overline{26}
                return z += _;
\overline{27}
28
          T qry(T x = 0) {
29
                for (size_t i = M - 1; ~i; --i)
    if ((x ^ a[i]) > x) x ^= a[i];
30
31
                return x;
32
          }
33
     template<typename T>
using LB = Liner_Basis<T>;
34
35
```

```
struct Liner_Basis {
      using u64 = unsigned long long;
 3
      static const size_t M = 60;
      u64 a[M + 1];
 5
      size_t sz;
 6
7
      size_t size() {
       return sz;
      Liner_Basis& operator+=(u64 x) {
for (size_t i = M; ~i && x; --i)
 9
10
        if (x >> i & 1)
if (a[i]) x ^= a[i];
11
12
          else return a[i] = x, ++sz, *this;
13
14
       return *this;
15
16
      Liner_Basis& operator+=(const Liner_Basis&_) {
       for (u64 x : _.a) if (x) *this += x; return *this;
```

```
19
20
      Liner_Basis operator+(u64 x) {
21
        Liner_Basis z = *this;
22
        return z += x;
23
24
      Liner_Basis operator+(const Liner_Basis&_) {
\frac{25}{26}
       Liner_Basis z = *this;
        return z += _;
27
      id4 qry(u64 x = 0) {
  for (size_t i = M; ~i; --i)
    if ((x ^ a[i]) > x) x ^= a[i];
28
29
30
31
        return x;
32
33
34
      u64 rank(u64 x) {
        u64 h = 1, z = 0;
        for (size_t i = 0; i <= M; ++i)
  if (a[i]) {</pre>
35
36
         if (x >> i \& 1) z += h;
37
38
          h <<= 1;
39
40
        return z;
41
42
      u64 kth(u64 x) {
43
       u64 z = 0;
        for (size_t i = M; ~i; --i)
  if (x >> i & 1) z ^= a[i];
44
45
46
        return z;
47
48
49
     using LB = Liner_Basis;
```

10.4 berlekamp massey

```
const int p = 998244353;
 3
      auto power = [] (int a, int b = p - 2) {
           int z = 1;
           while (b) {
   if (b & 1) z = 111 * z * a % p;
 4
 5
 6
7
                a = 111 * a * a % p, b >>= 1;
 8
           return z:
 9
10
     vector<int> berlekamp_massey(const vector<int> &a) {
        vector<int> v, last; // v is the answer, 0-based, p is the module int k = -1, delta = 0;
11
12
13
14
        for (int i = 0; i < (int)a.size(); i++) {</pre>
           int tmp = 0;
for (int j = 0; j < (int)v.size(); j++)
  tmp = (tmp + (long long)a[i - j - 1] * v[j]) % p;</pre>
15
16
17
18
19
           if (a[i] == tmp) continue;
20
21
           if (k < 0) {
             k = i;

delta = (a[i] - tmp + p) % p;

v = vector<int>(i + 1);
\overline{22}
\begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}
              continue;
           vector < int > u = v;
           int val = (long long)(a[i] - tmp + p) * power(delta, p - 2) % p;
31
32
           if (v.size() < last.size() + i - k) v.resize(last.size() + i - k);</pre>
33
34
           (v[i - k - 1] += val) \% = p;
35
           for (int j = 0; j < (int)last.size(); j++) {
  v[i - k + j] = (v[i - k + j] - (long long)val * last[j]) % p;
  if (v[i - k + j] < 0) v[i - k + j] += p;</pre>
36
37
38
39
40
41
           if ((int)u.size() - i < (int)last.size() - k) {</pre>
42
              last = u;
43
              k = i;
              delta = a[i] - tmp;
44
              if (delta < 0) delta += p;</pre>
45
46
47
48
49
        for (auto &x : v) x = (p - x) \% p;
```

10.5 linear programming

11 math - complex number

```
tandu struct Comp {
1
2
3
4
5
6
7
8
9
10
          T a, b;
          Comp(T _a = 0, T _b = 0) { a = _a, b = _b; }
          Comp operator+(const Comp& x) const { return Comp(a + x.a, b + x.b); }
          Comp operator-(const Comp& x) const { return Comp(a - x.a, b - x.b); }
          Comp operator*(const Comp& x) const { return Comp(a * x.a - b * x.b, a * x.b + b * x.a); }
11
12
13
          bool operator==(const Comp& x) const { return a == x.a and b == x.b; }
14
15
          T real() { return a; }
16
17
          T imag() { return b; }
18
19
          U norm() { return (U) a * a + (U) b * b; }
20
21
22
23
24
25
26
27
28
29
30
31
          Comp conj() { return Comp(a, -b); }
          Comp operator/(const Comp& x) const {
               Comp y = x;
Comp c = Comp(a, b) * y.conj();
               T d = y.norm();
return Comp(c.a / d, c.b / d);
     };
     typedef Comp<LL, LL> complex;
     complex gcd(complex a, complex b) {
  LL d = b.norm();
  if (d == 0) return a;
32
\frac{33}{34}
35
36
37
38
39
          std::vector<complex> v(4);
          complex c = a * b.conj();
auto fdiv = [&](LL a, LL b) -> LL { return a / b - ((a ^ b) < 0 && (a % b)); };
v[0] = complex(fdiv(c.real(), d), fdiv(c.imag(), d));</pre>
          v[1] = v[0] + complex(1, 0);

v[2] = v[0] + complex(0, 1);
40
41
          v[3] = v[0] + complex(1, 1);
42
          for (auto& x : v) {
43
               x = a - x * b;
44
45
          std::sort(all(v), [&](complex a, complex b) { return a.norm() < b.norm(); });</pre>
46
          return gcd(b, v[0]);
     };
```

12 graph

12.1 topsort

```
vi top;
 1
2
3
      auto top_sort = [&]() -> bool {
            vi d(n + 1);
           std::queue<int> q;
for (int i = 1; i <= n; i++) {
    d[i] = e[i].size();</pre>
 4
 5
 6
7
                 if (!d[i]) q.push(i);
 8 9
           while (!q.empty()) {
   int u = q.front();
   q.pop();
10
11
                 top.push_back(u);
for (auto v : e[u]) {
12
13
                       d[v]--
14
15
                       if (!d[v]) q.push(v);
16
17
18
            if (top.size() != n) return false;
19
           return true;
20
     };
```

12.2 shortest path

Floyd

```
auto floyd = [&]() -> vvi {
 2
             vvi dist(n + 1, vi(n + 1, inf));
 3
             for (int i = 1; i <= n; i++) {
   for (int j = 1; j <= n; j++) {
      Min(dist[i][j], e[i][j]);
   }</pre>
 4
 5
 6
7
                    dist[i][i] = 0;
 8
 9
             for (int k = 1; k \le n; k++) {
                   for (int i = 1; i <= n; i++) {
   for (int j = 1; j <= n; j++) {
      Min(dist[i][j], dist[i][k] + dist[k][j]);
}</pre>
10
11
12
13
14
                    }
15
16
             return dist;
      };
17
```

Dijkstra

```
auto dijkstra = [&](int s) -> vl {
           vl dist(n + 1, INF);
 2
 3
           vi vis(n + 1, 0);
 4
           dist[s] = 0;
           dist[s] = 0,
std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(OLL, s);
while (!q.empty()) {
    auto [dis, u] = q.top();
}
 5
 6
7
 8
 9
                 q.pop();
if (vis[u]) continue;
10
                 vis[u] = 1;
11
                 for (const auto& [v, w] : e[u]) {
12
                      if (dist[v] > dis + w) {
    dist[v] = dis + w;
13
14
                            q.emplace(dist[v], v);
15
16
17
                 }
18
19
           return dist;
20
     };
```

Bellman - Fold

```
int n, m, s;
         int dist[N];
  \overline{3}
         struct node{
  4
                 int from, to, w;
        }edge[M];
  6
7
         void bellman_fold(int s){
               memset(dist, uxor, dist[s] = 0;
for(int i = 1; i <= n; i++){
   bool flag = true;
   for(int j = 1; j <= m; j++){
      int a = edge[j].from, b = edge[j].to, w = edge[j].w;
      if(dist[a] == 0x3f3f3f3f3f) continue;
      if(dist[b] > dist[a] + w){
            dist[b] = dist[a] + w;
            flag = false;
                 memset(dist, 0x3f, sizeof(dist));
  8
  9
10
11
12
13
14
15
16
17
18
19
                          if(flag) break;
20
21
        }
```

SPFA

```
int n, m, s;
      vl dist(n + 1, INF);
      std::vector<bool> vis(n + 1);
 4
     std::vector<PLI > e(n + 1);
 6
      void spfa(int s){
           rep(i, 1, n) dist[i] = INF;
dist[s] = 0;
 8
 9
           std::queue<int> q;
10
            q.push(s);
11
            vis[s] = true;
           while(q.size()){
12
13
                 auto u = q.front();
                 q.pop();
vis[u] = false;
14
15
                 vis[u] = idlse,
for(auto j : e[u]){
   int v = j.ff; LL w = j.ss;
   if(dist[v] > dist[u] + w){
      dist[v] = dist[u] + w;
}
16
17
18
19
20
                             if(!vis[v]){
\overline{21}
                                   q.push(v);
22
23
24
25
                                   vis[v] = true;
                             }
                       }
                 }
26
           }
27
      }
```

Johnson

```
auto johnson = [&]() -> vvl {
 2
            /* 负环 */
           vl dist1(n + 1);
vi vis(n + 1), cnt(n + 1);
auto spfa = [&]() -> bool {
    std::queu<int> q;
 \frac{1}{3}
 5
 7
8
                  for (int u = 1; u <= n; u++) {
                        q.push(u);
vis[u] = false;
 9
10
                  while (!q.empty()) {
    auto u = q.front();
11
13
                        q.pop();
                       14
15
16
17
                                   Max(cnt[v], cnt[u] + 1);
if (cnt[v] >= n) return true;
if (!vis[v]) {
18
19
20
21
                                          q.push(v);
```

12.2 shortest path 81

```
22
                                       vis[v] = true;
23
24
25
                      }
26
\overline{27}
                 return false;
28
           }:
29
30
           /* dijkstra */
31
           vl dist2(n + 1);
           auto dijkstra = [&](int s) {
32
                 for (int u = 1; u <= n; u++) {
    dist2[u] = 1e9;</pre>
33
34
35
                       vis[u] = false;
36
37
                 dist2[s] = 0;
                 std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(0, s);
38
39
                 while (!q.empty()) {
    auto [d, u] = q.top();
40
41
42
                       q.pop();
43
                       if (vis[u]) continue;
44
                      vis[u] = true;
                      for (const auto& [v, w] : e[u]) {
   if (dist2[v] > d + w) {
45
46
                                  dist2[v] = d + w;
47
48
                                  q.emplace(dist2[v], v);
49
50
                      }
51
                 }
52
53
           };
           if (spfa()) return vvl{};
for (int u = 1; u <= n; u++) {
   for (auto& [v, w] : e[u]) {
        w += dist1[u] - dist1[v];
}</pre>
54
55
56
57
58
59
60
           vvl dist(n + 1, vl(n + 1));
61
           for (int u; u <= n; u++) {</pre>
                 dijkstra(u);
62
63
                 for (int v = 1; v <= n; v++) {
   if (dist2[v] == 1e9) {</pre>
64
                            dist[u][v] = INF;
65
                       } else {
66
                            dist[u][v] = dist2[v] + dist1[v] - dist1[u];
67
68
69
                 }
70
           return dist;
72
      };
```

最短路计数 - Dijkstra

```
auto dijkstra = [&](int s) -> std::pair<vl, vi> {
          vl dist(n + 1, INF);
vi cnt(n + 1), vis(n + 1);
 3
          dist[s] = 0;
cnt[s] = 1;
 4
 5
 67
          std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(OLL, s);
 8
          while (!q.empty()) {
 9
               auto [dis, u] = q.top();
               q.pop();
if (vis[u]) continue;
10
11
12
               vis[u] = 1;
13
               for (const auto& [v, w] : e[u]) {
14
                    if (dist[v] > dis + w) {
                         dist[v] = dis + w;
cnt[v] = cnt[u];
15
16
                          q.push({dist[v], v});
17
                    } else if (dist[v] == dis + w) {
18
                          // cnt[v] += cnt[u];
cnt[v] += cnt[u];
cnt[v] %= 100003;
19
20
21
22
23
24
25
          return {dist, cnt};
     };
26
```

最短路计数 - Floyd

```
auto floyd() = [&] -> std::pair<vvi, vvi> {
 \frac{2}{3}
                vvi dist(n + 1, vi(n + 1, inf));
                vvi dist(n + 1, vi(n + 1, inf)),
vvi cnt(n + 1, vi(n + 1));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], e[i][j]);
    }</pre>
 5
 6
7
 8
                        dist[i][i] = 0;
 9
10
                for (int k = 1; k <= n; k++) {
                        for (int i = 1; i <= n; i++) {</pre>
11
                               for (int j = 1; j <= n; j++) {
   if (dist[i][j] == dist[i][k] + dist[k][j]) {
      cnt[i][j] += cnt[i][k] * cnt[k][j];
   }
}</pre>
12
13
14
                                       } else if (dist[i][j] > dist[i][k] + dist[k][j]) {
   cnt[i][j] = cnt[i][k] * cnt[k][j];
   dist[i][j] = dist[i][k] + dist[k][j];
15
16
17
18
                                       }
19
                               }
20
                       }
21
22
                return {dist, cnt};
23
        };
```

负环

判断的是最短路长度.

```
auto spfa = [&]() -> bool {
    std::queue<int> q;
  \bar{2}
  \frac{3}{4} \\ \frac{5}{6} \\ 7
                vi vis(n + 1), cnt(n + 1);
for (int i = 1; i <= n; i++) {
                         q.push(i);
                         vis[i] = true;
                while (!q.empty()) {
  9
                        auto u = q.front();
                        auto u = q.front(),
q.pop();
vis[u] = false;
for (const auto& [v, w] : e[u]) {
    if (dist[v] > dist[u] + w) {
        dist[v] = cnt[u] + 1;
        cnt[v] >= n) return to
10
11
12
13
14
15
                                        if (cnt[v] >= n) return true;
if (!vis[v]) {
16
17
18
                                                 q.push(v);
19
                                                 vis[v] = true;
20
21
                                }
22
                        }
\frac{-}{23}
\overline{24}
                return false;
25
        }
```

分层最短路

有一个 n 个点 m 条边的无向图,你可以选择 k 条道路以零代价通行,求 s 到 t 的最小花费。

```
int main() {
 3
            std::ios::sync_with_stdio(false);
            std::cin.tie(0);
 \frac{4}{5} \frac{6}{7}
            std::cout.tie(0);
            int n, m, k, s, t;
std::cin >> n >> m >> k;
std::cin >> s >> t;
 8
 9
            std::vector<std::vector<PIL>> e(n * (k + 1) + 1);
10
            for (int i = 1; i <= m; i++) {
                 int a, b, c;
std::cin >> a >> b >> c;
11
12
13
                  e[a].emplace_back(b, c);
                  e[b].emplace_back(a, c);
for (int j = 1; j <= k; j++) {
    e[a + (j - 1) * n].emplace_back(b + j * n, 0);</pre>
14
15
16
```

```
17
                        e[b + (j - 1) * n].emplace_back(a + j * n, 0);
                        e[a + j * n].emplace_back(b + j * n, c);

e[b + j * n].emplace_back(a + j * n, c);
18
19
20
                  }
21
22
23
            auto dijkstra = [&](int s) -> vl {};
24
\overline{25}
            vl dist = dijkstra(s);
LL ans = INF;
for (int i = t; i <= n * (k + 1); i += n) {</pre>
26
27
28
                  Min(ans, dist[i]);
\frac{1}{29}
30
\frac{31}{32}
            std::cout << ans << endl;
33
            return 0;
34
```

12.3 minimum spanning tree

Kruskal

```
std::vector<std::tuple<int, int, int>> edge;
auto kruskal = [&]() -> int {
    std::sort(all(edge), [&](std::tuple<int, int, int> a, std::tuple<int, int, int> b) {
        auto [x1, y1, w1] = a;
        auto [x2, y2, w2] = b;
        return w1 < w2;
    }):</pre>
 3
 4
 5
 7
               });
               int res = 0, cnt = 0;
for (int i = 0; i < m; i++) {</pre>
 8
 9
                       auto [a, b, w] = edge[i];
a = find(a), b = find(b);
if (a != b) {
10
11
13
                              fa[a] = b;
                              res += w;
14
                               /* res = std::max(res, w); */
15
16
                              cnt++;
                       }
17
18
19
               if (cnt < n - 1) return -1;
20
               return res;
21
```

12.4 SCC

Tarjan

```
vi dfn(n + 1), low(n + 1), stk(n + 1), belong(n + 1);
int timestamp = 0, top = 0, scc_cnt = 0;
std::vector<bool> in_stk(n + 1);
auto tarjan = [&](auto&& self, int u) -> void {
 3
 4
             dfn[u] = low[u] = ++timestamp;
 5
 6
             stk[++top] = u;
             in_stk[u] = true;
 7
 8
             for (const auto& v : e[u]) {
 9
                    if (!dfn[v]) {
                         self(self, v);
Min(low[u], low[v]);
10
11
                   } else if (in_stk[v]) {
   Min(low[u], dfn[v]);
12
13
14
15
             if (dfn[u] == low[u]) {
16
17
                   scc_cnt++;
18
                   int v;
19
                          v = stk[top--];
in_stk[v] = false;
belong[v] = scc_cnt;
20
21
22
23
                   } while (v != u);
24
             }
25
      };
```

12.4.1 缩点

12.5 DCC

点双连通分量

求点双连通分量.

```
vi dfn(n + 1), low(n + 1), is_bcc(n + 1), stk;
 2 3
     int timestamp = 0, bcc_cnt = 0, root = 0;
vvi bcc(2 * n + 1);
std::function<void(int, int)> tarjan = [&](int u, int fa) {
 4
 5
          dfn[u] = low[u] = ++timestamp;
 6
7
          int child = 0;
          stk.push_back(u);
 8
          if (u == root and e[u].empty()) {
               bcc_cnt++;
10
               bcc[bcc_cnt].push_back(u);
11
               return;
12
13
          for (auto v : e[u]) {
    if (!dfn[v]) {
14
15
                    tarjan(v, u);
low[u] = std::min(low[u], low[v]);
16
                     if (low[v] >= dfn[u]) {
17
18
                          child++;
19
                          if (u != root or child > 1) {
20
21
22
23
24
25
                              is_bcc[u] = 1;
                         bcc_cnt++;
                          int z;
                          do {
                              z = stk.back();
\frac{26}{27}
                              stk.pop_back();
bcc[bcc_cnt].push_back(z);
28
                          } while (z != v);
29
30
31
                         bcc[bcc_cnt].push_back(u);
                    }
               } else if (v != fa) {
32
                    low[u] = std::min(low[u], dfn[v]);
33
34
35
36
     for (int i = 1; i <= n; i++) {
          if (!dfn[i]) {
    root = i;
37
38
39
               tarjan(i, i);
40
     }
41
```

求割点.

```
vi dfn(n + 1), low(n + 1), is_bcc(n + 1);
int timestamp = 0, bcc = 0, root = 0;
std::function<void(int, int)> tarjan = [&](int u, int fa) {
 3
4
5
6
           dfn[u] = low[u] = ++timestamp;
           int child = 0;
           for (auto v : e[u]) {
 7
8
                 if (!dfn[v]) {
                      tarjan(v, u);
low[u] = std::min(low[u], low[v]);
 9
10
                       if (low[v] >= dfn[u]) {
11
                            child++;
                            if ((u != root or child > 1) and !is_bcc[u]) {
13
                                  bcc++;
14
                                  is_bcc[u] = 1;
15
                            }
16
17
                } else if (v != fa) {
18
                      low[u] = std::min(low[u], dfn[v]);
19
\begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \end{array}
           }
     for (int i = 1; i <= n; i++) {</pre>
           if (!dfn[i]) {
                root = i;
25
                 tarjan(i, i);
26
     }
```

12.5 DCC 85

边双连通分量

求边双连通分量.

```
std::vector<vpi> e(n + 1);
for (int i = 1; i <= m; i++) {</pre>
           int u, v;
 4
           std::cin >> u >> v;
           e[u].emplace_back(v, i);
e[v].emplace_back(u, i);
 5
 6
 7
 8
     vi dfn(n + 1), low(n + 1), is_ecc(n + 1), fa(n + 1), stk;

int timestamp = 0, ecc_ent = 0;
 9
      vvi ecc(2 * n + 1);
10
      std::function<void(int, int)> tarjan = [&](int u, int id) {
11
           low[u] = dfn[u] = ++timestamp;
12
13
           stk.push_back(u);
14
           for (auto [v, idx] : e[u]) {
15
                 if (!dfn[v]) {
                 tarjan(v, idx);
low[u] = std::min(low[u], low[v]);
} else if (idx != id) {
16
17
18
                      low[u] = std::min(low[u], dfn[v]);
19
20
21
22
           if (dfn[u] == low[u]) {
\frac{22}{23}
                 ecc_cnt++;
\overline{24}
                 int v;
25
26
                      v = stk.back();
                 stk.pop_back();
  ecc[ecc_cnt].push_back(v);
} while (v != u);
27
28
29
30
           }
     };
31
32
33
     for (int i = 1; i <= n; i++) {
    if (!dfn[i]) {</pre>
34
                 tarjan(i, 0);
35
36
      }
```

求桥. (可能有诈)

```
vi dfn(n + 1), low(n + 1), is_ecc(n + 1), fa(n + 1);
int timestamp = 0, ecc = 0;
3
     std::function<void(int, int)> tarjan = [&](int u, int faa) {
 4
         fa[u] = faa;
5
         low[u] = dfn[u] = ++timestamp;
6
         for (auto v : e[u]) {
              if (!dfn[v]) {
                  tarjan(v, u);
low[u] = std::min(low[u], low[v]);
 9
                   if (low[v] > dfn[u]) {
10
                       is_{ecc}[v] = 1;
11
12
                       ecc++;
13
14
              } else if (dfn[v] < dfn[u] && v != faa) {</pre>
15
                  low[u] = std::min(low[u], dfn[v]);
16
17
         }
18
19
     for (int i = 1; i <= n; i++) {</pre>
         if (!dfn[i]) {
20
21
              tarjan(i, i);
23
     }
```

```
|// 割点
     std::vector<int> G[N];
     int dfn[N], low[N], is_cut[N], tm, rt;
     void tar(int u) {
          int c = 0;

dfn[u] = low[u] = ++tm;

for (int v : G[u]) {
 6
 7
 8
                if (!dfn[v]) {
                     ++c, tar(v);
low[u] = std::min(low[u], low[v]);
if (low[v] == dfn[u]) is_cut[u] = 1
 9
10
11
                } else low[u] = std::min(low[u], dfn[v]);
12
13
14
           if (u == rt) is_cut[u] = c > 1;
```

```
16
      int main() {
 17
            int n, m;
 18
            std::cin >> n >> m;
            for (int x, y; m--; ) {
   std::cin >> x >> y;
 19
 20
 21
                  G[x].emplace_back(y);
 22
                 G[y].emplace_back(x);
 23
 24
            for (rt = 1; rt <= n; ++rt) {</pre>
 \overline{25}
                  if (!dfn[rt]) tar(rt);
 26
27
            std::vector<int> cut_v;
for (int i = 1; i <= n; ++i) {</pre>
 28
29
30
                  if (is_cut[i]) cut_v.emplace_back(i);
 31
            std::cout << cut_v.size() << '\n';
 32
            for (int x : cut_v) std::cout << x << ' ';</pre>
 33
 34
 35
 36
      std::vector<std::pair<int, int>> G[N], brg;
int dfn[N], low[N], rt, tm;
void tar(int u, int fa, int fr) {
 37
 38
 39
            dfn[u] = low[u] = ++tm;
for (auto[v, i] : G[u]) {
 40
 41
 42
                 if (!dfn[v]) {
                 tar(v, u, i), low[u] = std::min(low[u], low[v]);
} else if (i != fr) {
 43
 44
 45
                       low[u] = std::min(low[u], dfn[v]);
 46
 47
            if (u != rt && dfn[u] == low[u]) {
 48
 49
                  brg.emplace_back(std::minmax(u, fa));
 50
 51
 52
53
      int main() {
            int n, m;
 54
            std::cin >> n >> m;
            for (int i = 1, x, y; i <= m; ++i) {
    std::cin >> x >> y;
    G[x].emplace_back(y, i);
    G[y].emplace_back(x, i);
 55
 56
 57
 58
 59
            for (rt = 1; rt <= n; ++rt) {
   if (!dfn[rt]) tar(rt, -1, -1);</pre>
 60
 61
 62
            std::sort(begin(brg), end(brg));
for (auto[u, v] : brg) {
    std::cout << u << ' ' << v << '\n';</pre>
 63
 64
 65
 66
 67
 68
 69
 70
      // 点双
 71
      std::vector<int> G[N];
 72
73
74
      std::vector<std::vector<int>> bcc;
      int dfn[N], low[N], tm, st[N], tp, rt;
      void tar(int u) {
            dfn[u] = low[u] = ++tm, st[++tp] = u;
 75
76
77
78
79
80
            if (G[u].empty()) bcc.push_back({u});
for (int v : G[u]) {
    if (!dfn[v]) {
                       tar(v), low[u] = std::min(low[u], low[v]);
if (low[v] == dfn[u]) {
 81
                            bcc.push_back({u});
 82
 83
                                  bcc.back().emplace_back(st[tp]);
 84
                            } while(st[tp--] != v);
 85
 86
                 } else low[u] = std::min(low[u], dfn[v]);
 87
 88
 89
      int main() {
 90
            std::ios::sync_with_stdio(0);
 91
            std::cin.tie(0);
 92
            int n, m;
 93
            std::cin >> n >> m;
            for (int x, y; m--; ) {
    std::cin >> x >> y;
 94
 95
 96
                  G[x].emplace_back(y);
 97
                  G[y].emplace_back(x);
 98
            for (int i = 0; i < n; ++i) tar(i);</pre>
 99
            std::cout << bcc.size() << '\n';</pre>
100
            for (auto v : bcc) {
101
                 std::cout << v.size() << ' ';
102
```

12.6 2 SAT

```
103
                  for (int x : v) std::cout << x << ' ';</pre>
104
                  std::cout << '\n';
105
106
       }
107
108
       // 边双
109
110
       std::vector<std::pair<int, int>> G[N];
111
       std::vector<std::vector<int>> becc;
       int dfn[N], low[N], tm, st[N], tp;
void tar(int u, int fr) {
    dfn[u] = low[u] = ++tm, st[++tp] = u;
    for (auto[v, i] : G[u]) {
112
113
114
115
                  if (!dfn[v]) {
116
                  tar(v, i), low[u] = std::min(low[u], low[v]);
} else if (i != fr) {
117
118
119
                        low[u] = std::min(low[u], dfn[v]);
120
121
             if (dfn[u] == low[u]) {
122
123
                  becc.emplace_back();
124
                  becc.back().emplace_back(st[tp]);
} while (st[tp--] != u);
125
126
127
            }
128
      }
       int main() {
129
            int n, m;
std::cin >> n >> m;
for (int i = 1, x, y; i <= m; ++i) {
    std::cin >> x >> y;
    G[x].emplace_back(y, i);
    C[x].emplace_back(x, i);
130
131
132
133
134
135
                  G[y].emplace_back(x, i);
136
137
            for (int i = 0; i < n; ++i) {</pre>
138
                  if (!dfn[i]) tar(i, -1);
139
140
             std::cout << becc.size() << '\n';
141
            for (auto& v : becc) {
                  std::cout << v.size() << ' ':
142
                  for (int x : v) std::cout << x << ' ';
std::cout << '\n';</pre>
143
144
            }
145
146
       }
```

12.6 2 SAT

给出 n 个集合,每个集合有 2 个元素,已知若干个数对 (a,b),表示 a 与 b 矛盾.要从每个集合各选择一个元素,判断能否一共选 n 个两两不矛盾的元素.

```
auto twoSat = [&](int n, const vpi& v) -> vi {
 2
          /* tarjan */
 3
          vvi e(2 * n);
          vi dfn(2 * n), low(2 * n), stk(2 * n), belong(2 * n);
int timestamp = 0, top = 0, scc_cnt = 0;
std::vector<bool> in_stk(2 * n);
 5
 6
7
 8 9
          auto tarjan = [&](auto&& self, int u) -> void {
               dfn[u] = low[u] = ++timestamp;
               10
11
12
13
14
                         self(self, v);
15
                         Min(low[u], low[v]);
16
                    } else if (in_stk[v]) {
                         Min(low[u], dfn[v]);
17
18
19
20
               if (dfn[u] == low[u]) {
21
                    scc_cnt++;
                    int v;
22
\frac{1}{23}
                    do {
                         v = stk[top--];
24
                         in_stk[v] = false;
belong[v] = scc_cnt;
\overline{25}
26
\frac{20}{27}
                    } while (v != u);
28
               }
29
30
          /* end tarjan */
```

```
for (const auto& [a, b] : v) {
    e[a].push_back(b ^ 1);
    e[b].push_back(a ^ 1);
32
33
34
35
             for (int i = 0; i < 2 * n; i++) {
   if (!dfn[i]) tarjan(tarjan, i);</pre>
36
37
38
39
              vi ans:
40
41
             for (int i = 0; i < 2 * n; i += 2) {
    if (belong[i] == belong[i + 1]) return vi{};</pre>
42
                    ans.push_back(belong[i] > belong[i + 1] ? i + 1 : i);
43
44
             return ans;
45
      };
```

上述将i与i+1作为一个集合里的元素, 编号为0至2n-1.

12.7 minimum ring

Floyd

```
auto min_circle = [&]() -> int {
                  vvi dist(n + 1, vi(n + 1, inf));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], g[i][j]);
    }</pre>
  \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
  \frac{6}{7} \frac{8}{9}
                            dist[i][i] = 0;
                   for (int k = 1; k <= n; k++) {
    for (int i = 1; i < k; i++) {
        for (int j = 1; j < i; j++) {
            Min(ans, dist[i][j] + g[i][k] + g[k][j]);
        }
}</pre>
10
11
12
13
14
15
                             for (int i = 1; i <= n; i++) {</pre>
                                     for (int j = 1; j <= n; j++) {
    Min(dist[i][j], dist[i][k] + dist[k][j]);</pre>
16
17
18
19
                            }
20
21
                   }
                   return ans;
22
         };
```

tree - diameter

12.8 tree - center of gravity

```
/* 点权和 */
      int sum;
      vi size(n + 1), weight(n + 1), w(n + 1), depth(n + 1);
std::array<int, 2> centroid = {0, 0};
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
       auto get_centroid = [&](auto&& self, int u, int fa) -> void {
             size[u] = w[u];
 6
7
             weight[u] = 0;
             for (auto v : e[u]) {
   if (v == fa) continue;
                    self(self, v, u);
size[u] += size[v];
 9
10
                    Max(weight[u], size[v]);
11
12
13
             Max(weight[u], sum - size[u]);
if (weight[u] <= sum / 2) {
   centroid[centroid[0] != 0] = u;</pre>
14
15
16
      };
```

12.9 tree - DSU on tree

给出一课 n 个节点以 1 为根的树, 每个节点染上一种颜色, 询问以 u 为节点的子树中有多少种颜色.

12.10 tree - AHU 89

```
// Problem: U41492 树上数颜色
 \overline{2}
 3
     int main() {
 4
          std::ios::sync_with_stdio(false);
 5
          std::cin.tie(0);
 6
          std::cout.tie(0);
 8
          int n, m, dfn = 0, cnttot = 0;
 9
          std::cin >> n;
         vvi e(n + 1);
vi siz(n + 1), col(n + 1), son(n + 1), dfnl(n + 1), dfnr(n + 1), rank(n + 1);
10
11
          vi ans(n + 1), cnt(n + 1);
13
14
         for (int i = 1; i < n; i++) {</pre>
              int u, v;
std::cin >> u >> v;
15
16
17
              e[u].push_back(v);
18
              e[v].push_back(u);
19
20
         for (int i = 1; i <= n; i++) {
    std::cin >> col[i];
\frac{1}{21}
22
23
          auto add = [&](int u) -> void {
24
              if (cnt[col[u]] == 0) cnttot++;
25
              cnt[col[u]]++;
26
27
          auto del = [&](int u) -> void {
28
              cnt[col[u]]--
              if (cnt[col[u]] == 0) cnttot--;
29
30
          auto dfs1 = [&](auto&& self, int u, int fa) -> void {
   dfnl[u] = ++dfn;
31
32
33
              rank[dfn] = u;
34
              siz[u] = 1;
35
              for (auto v : e[u]) {
36
                   if (v == fa) continue;
                   self(self, v, u);
siz[u] += siz[v];
37
38
                   if (!son[u] or siz[son[u]] < siz[v]) son[u] = v;</pre>
39
40
              dfnr[u] = dfn;
41
42
         };
43
          auto dfs2 = [&](auto&& self, int u, int fa, bool op) -> void {
44
              for (auto v : e[u]) {
45
                   if (v == fa or v == son[u]) continue;
46
                   self(self, v, u, false);
47
48
              if (son[u]) self(self, son[u], u, true);
              for (auto v : e[u]) {
    if (v == fa or v == son[u]) continue;
    if (v == fa or v == son[u]) continue;
49
50
51
                   rep(i, dfnl[v], dfnr[v]) { add(rank[i]); }
              }
52
53
              add(u);
              ans[u] = cnttot;
54
55
              if (op == false)
56
                   rep(i, dfnl[u], dfnr[u]) { del(rank[i]); }
57
58
59
         dfs1(dfs1, 1, 0);
         dfs2(dfs2, 1, 0, false);
std::cin >> m;
60
61
62
          for (int i = 1; i <= m; i++) {</pre>
63
              int u;
64
              std::cin >> u;
65
              std::cout << ans[u] << endl;
66
67
         return 0;
68
     }
```

12.10 tree - AHU

```
std::map<vi, int> mapple;
std::function<int(vvi&, int, int)> tree_hash = [&](vvi& e, int u, int fa) -> int {
    vi code;
    if (u == 0) code.push_back(-1);
    for (auto v : e[u]) {
        if (v == fa) continue;
            code.push_back(tree_hash(e, v, u));
    }
    std::sort(all(code));
    int id = mapple.size();
```

12.11 tree - LCA

```
vvi e(n + 1), fa(n + 1, vi(50));
vi dep(n + 1);
 \bar{3}
 \begin{array}{c} 4 \\ 5 \\ 6 \end{array}
      auto dfs = [&](auto&& self, int u) -> void {
            for (auto v : e[u]) {
   if (v == fa[u][0]) continue;
                   dep[v] = dep[u] + 1;
 7
 8
                   fa[v][0] = u;
 9
                  self(self, v);
10
11
12
      auto init = [&]() -> void {
13
14
            dep[root] = 1;
15
            dfs(dfs, root);
            for (int j = 1; j <= 30; j++) {
    for (int i = 1; i <= n; i++) {</pre>
16
17
18
                         fa[i][j] = fa[fa[i][j-1]][j-1];
19
\frac{20}{21}
            }
22
      init();
23
24
      auto LCA = [&](int a, int b) -> int {
            if (dep[a] > dep[b]) std::swap(a, b);
int d = dep[b] - dep[a];
for (int i = 0; (1 << i) <= d; i++) {
    if (d & (1 << i)) b = fa[b][i];</pre>
25
26
\overline{27}
\frac{1}{28}
\overline{29}
30
            if (a == b) return a;
for (int i = 30; i >= 0 and a != b; i--) {
    if (fa[a][i] == fa[b][i]) continue;
31
32
33
                   a = fa[a][i];
34
                  b = fa[b][i];
35
36
            return fa[a][0];
37
      };
38
39
      auto dist = [&](int a, int b) -> int { return dep[a] + dep[b] - dep[LCA(a, b)] * 2; };
```

12.12 tree - LLD

```
const int N = 5e5 + 7; int n, q, rt, g[N], d[N], f[N][21], son[N], dep[N], top[N], ans; vi e[N], u[N], v[N];
 \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}
     ui s;
      ll Ans:
      inline ui get(ui x) {
   return x ^= x << 13, x ^= x >> 17, x ^= x << 5, s = x;</pre>
10
11
      void dfs(int x) {
           dep[x] = d[x] = d[f[x][0]] + 1;
for (auto y : e[x]) {
   f[y][0] = x;
12
13
14
                  for (int i = 0; f[y][i]; i++) f[y][i+1] = f[f[y][i]][i];
15
16
                  dfs(v);
17
                  if (dep[y] > dep[x]) dep[x] = dep[y], son[x] = y;
18
19
     }
20
21
      void dfs(int x, int p) {
22
23
24
           top[x] = p;
if (x == p) {
for (int i = 0, o = x; i <= dep[x] - d[x]; i++)
25
                       u[x].pb(o), o = f[o][0];
```

12.13 tree - HLD 91

```
26
                         for (int i = 0, o = x; i <= dep[x] - d[x]; i++)</pre>
27
                                 v[x].pb(o), o = son[o];
28
                if (son[x]) dfs(son[x], p);
for (auto y : e[x]) if (y != son[x]) dfs(y, y);
29
30
31
        }
32
33
        inline int ask(int x, int k) {
34
35
                if (!k) return x;
x = f[x][g[k]], k -= 1 << g[k], k -= d[x] - d[top[x]], x = top[x];
return k >= 0 ? u[x][k] : v[x][-k];
36
37
38
39
         int main() {
                main() {
  rd(n), rd(q), rd(s), g[0] = -1;
  for (int i = 1; i <= n; i++)
      rd(f[i][0]), e[f[i][0]].pb(i), g[i] = g[i>>1] + 1;
  rt = e[0][0], dfs(rt), dfs(rt, rt);
  for (int i = 1, x, k; i <= q; i++) {
      x = (get(s) ^ ans) % n + 1;
      k = (get(s) ^ ans) % d[x];
      Ans ^= 111 * i * (ans = ask(x, k));
}</pre>
40
41
42
43
44
45
46
47
48
                print(Ans);
49
50
                 return 0;
```

12.13 tree - HLD

对一棵有根树进行如下 4 种操作:

- 1. $1 \times y z$: 将节点 x 到节点 y 的最短路径上所有节点的值加上 z.
- 2. 2 x y: 查询节点 x 到节点 y 的最短路径上所有节点的值的和.
- 3. 3 x z: 将以节点 x 为根的子树上所有节点的值加上 z.
- 4. 4 x: 查询以节点 x 为根的子树上所有节点的值的和.

```
int cnt = 0;
     vi son(n + 1), fa(n + 1), siz(n + 1), depth(n + 1);
vi dfn(n + 1), rank(n + 1), top(n + 1), botton(n + 1);
 3
 6
      auto dfs1 = [&](auto&& self, int u) -> void {
           son[u] = -1, siz[u] = 1;

for (auto v : e[u]) = 6;

if (depth[v] != 0) continue;
 7
 8
 9
10
                 depth[v] = depth[u] + 1;
11
                 fa[v] = u;
12
                 self(self, v)
13
                 siz[u] += siz[v];
14
                 if (son[u] == -1 or siz[v] > siz[son[u]]) son[u] = v;
15
     };
16
17
18
      auto dfs2 = [&](auto&& self, int u, int t) -> void {
           top[u] = t;
dfn[u] = ++cnt;
19
20
           rank[cnt] = u;
botton[u] = dfn[u];
\overline{21}
22
\overline{23}
            if (son[u] == -1) return;
self(self, son[u], t);
24
25
           Max(botton[u], botton[son[u]]);
26
           for (auto v : e[u]) {
                 if (v != son[u] and v != fa[u]) {
    self(self, v, v);
    Max(botton[u], botton[v]);
27
29
30
                 }
31
           }
32
33
     };
34
      depth[root] = 1;
35
     dfs1(dfs1, root);
36
     dfs2(dfs2, root, root);
37
38
39
```

```
40
            /* 求 LCA */
            auto LCA = [&](int a, int b) -> int {
   while (top[a] != top[b]) {
      if (depth[top[a]] < depth[top[b]]) std::swap(a, b);</pre>
 41
 42
 43
 44
                       a = fa[top[a]];
 45
                 return (depth[a] > depth[b] ? b : a);
 46
 47
 48
 49
            /* 维护 u 到 v 的路径 */
 50
            while (top[u] != top[v]) {
 51
                 if (depth[top[u]] < depth[top[v]]) std::swap(u, v);
opt(dfn[top[u]], dfn[u]);
u = fa[top[u]];</pre>
 52
 53
 54
 55
            if (dfn[u] > dfn[v]) std::swap(u, v);
 56
            opt(dfn[u], dfn[v]);
 57
            /* 维护 u 为根的子树 */opt(dfn[u], botton[u]);
 58
 59
 60
 61
            线段树的 build() 函数中
 62
 63
            if(1 == r) tree[u] = {1, 1, w[rank[1]], 0};
 64
 65
 66
      build(1, 1, n);
 67
 68
 69
       for (int i = 1; i <= m; i++) {</pre>
 70
71
72
73
74
75
76
77
78
79
            int op, u, v;
            LL k;
            std::cin >> op;
            if (op == 1) {
    std::cin >> u >> v >> k;
    while (top[u] != top[v]) {
                       if (depth[top[u]] < depth[top[v]]) std::swap(u, v);</pre>
                       modify(1, dfn[top[u]], dfn[u], k);
                       u = fa[top[u]];
 80
                 if (dfn[u] > dfn[v]) std::swap(u, v);
            modify(1, dfn[u], dfn[v], k);
} else if (op == 2) {
   std::cin >> u >> v;
 81
 82
 83
 84
                 LL ans = 0;
                 while (top[u] != top[v]) {
   if (depth[top[u]] < depth[top[v]]) std::swap(u, v);
   ans = (ans + query(1, dfn[top[u]], dfn[u])) % p;</pre>
 85
 86
 87
                       u = fa[top[u]];
 88
 89
                  if (dfn[u] > dfn[v]) std::swap(u, v);
 90
                 ans = (ans + query(1, dfn[u], dfn[v])) % p;
std::cout << ans << endl;</pre>
 91
 92
 93
            } else if (op == 3) {
 94
                 std::cin >> u >> k;
 95
                 modify(1, dfn[u], botton[u], k);
 96
            } else {
 97
                 std::cin >> u;
 98
                 std::cout << query(1, dfn[u], botton[u]) % p << endl;</pre>
 99
            }
      | }
100
```

12.14 tree - virtual tree

```
auto build_vtree = [&](vi ver) -> void {
 2
          std::sort(all(ver), [&](int x, int y) { return dfn[x] < dfn[y]; });</pre>
 \overline{3}
          vi stk = {1};
 4
          for (auto v : ver) {
 5
               int u = stk.back()
 6
7
               int lca = LCA(v, u);
               if (lca != u)
                    while (dfn[lca] < dfn[stk.end()[-2]]) {
   g[stk.end()[-2]] .push_back(stk.back());</pre>
 9
10
                         stk.pop_back();
11
                    u = stk.back();
if (dfn[lca] != dfn[stk.end()[-2]]) {
12
13
                         g[lca].push_back(u);
14
15
                         stk.pop_back();
16
                         stk.push_back(lca);
17
                    } else {
18
                         g[lca].push_back(u);
```

```
19
                           stk.pop_back();
\frac{20}{21}
                      }
                stk.push_back(v);
23
\overline{24}
           while (stk.size() > 1) {
                int u = stk.end()[-2];
int v = stk.back();
25
26
27
                g[u].push_back(v);
28
                stk.pop_back();
29
           }
30
     };
```

12.15 tree - pseudo tree

```
/* ring detection (directed) */
     vi vis(n + 1), fa(n + 1), ring;
auto dfs = [&](auto&& self, int u) -> bool {
 3
          vis[u] = 1;
 4
 5
          for (const auto& v : e[u]) {
 6
              if (!vis[v]) {
                   fa[v] = u;
                   if (self(self, v)) {
 9
                       return true;
10
              } else if (vis[v] == 1) {
11
12
                   ring.push_back(v);
                   for (auto x = u; x != v; x = fa[x]) {
13
14
                       ring.push_back(x);
15
16
                   reverse(all(ring));
17
                   return true;
18
              }
19
20
          vis[u] = 2;
21
         return false;
22
    };
    for (int i = 1; i <= n; i++) {
   if (!vis[i]) {</pre>
23
24
25
              if (dfs(dfs, i)) {
\frac{1}{26}
                   // operations //
\frac{1}{27}
28
         }
29
     }
30
31
     /* cycle detection (undirected) */
32
     vi vis(n + 1), ring;
33
    vpi fa(n + 1);
     auto dfs = [&](auto&& self, int u, int from) -> bool {
34
35
         vis[u] = 1;
         for (const auto& [v, id] : e[u]) {
   if (id == from) continue;
36
37
              if (!vis[v]) {
   fa[v] = {u, id};
38
39
                   if (self(self, v, id)) {
40
41
                        return true;
                   }
42
43
              } else if (vis[v] == 1) {
44
                   ring.push_back(v);
45
                   for (auto x = u; x != v; x = fa[x].ff) {
46
                       ring.push_back(x);
47
48
                   return true;
49
              }
50
         vis[u] = 2;
51
52
         return false;
53
    for (int i = 1; i <= n; i++) {
    if (!vis[i]) {</pre>
54
55
56
              if (dfs(dfs, i, 0)) {
57
                   // operations //
58
59
         }
     }
60
```

12.16 tree - prufer sequence

prufer 序列:每次选择一个编号最小的叶节点并删掉它,然后在序列中记录下它连接到的那个节点.

```
for(int i=1;i<n;i++)cin>>fa[i],d[fa[i]]++;
for(int i=1,j=1;i<n-1;i++,j++){
    while(d[j])j++;
    p[i]=fa[j];
    while(i<n-1&&!--d[p[i]]&&j>p[i])p[i+1]=fa[p[i]],i++;
}
```

```
for(int i=1;i<n-1;i++)cin>>p[i],d[p[i]]++;
p[n-1]=n;
for(int i=1,j=1;i<n;i++,j++){
    while(d[j])j++;
    fa[j]=p[i];
    while(i<n&&!--d[p[i]]&&j>p[i])fa[p[i]]=p[i+1],i++;
}
```

12.17 tree - divide and conquer on tree

点分治

第一个题

一棵 $n \le 10^4$ 个点的树, 边权 $w \le 10^4$. $m \le 100$ 次询问树上是否存在长度为 $k \le 10^7$ 的路径.

```
// 洛谷 P3806 【模板】点分治1

  \begin{array}{c}
    2 & 3 & 4 \\
    3 & 4 & 5 \\
    6 & 7 & 8 & 9
  \end{array}

      int main() {
            std::ios::sync_with_stdio(false);
            std::cin.tie(0)
            std::cout.tie(0);
            int n, m, k;
            std::cin >> n >> m;
10
            std::vector\langle vpi \rangle_e(n + 1);
11
12
13
14
            std::map<int, PII> mp;
            for (int i = 1; i < n; i++) {</pre>
15
16
                  int u, v, w;
std::cin >> u >> v >> w;
17
                   e[u].emplace_back(v, w);
18
                   e[v].emplace_back(u, w);
19
            for (int i = 1; i <= m; i++) {
    std::cin >> k;
\begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \end{array}
                  mp[i] = \{k, 0\};
            /* centroid decomposition */
int top1 = 0, top2 = 0, root;
vi len1(n + 1), len2(n + 1), vis(n + 1);
static std::array<int, 20000010> cnt;
             std::function<int(int, int)> get_size = [&](int u, int fa) -> int {
                   if (vis[u]) return 0;
                   int ans = 1;
                   for (auto [v, w] : e[u]) {
                         if (v == fa) continue;
                         ans += get_size(v, u);
36
37
                   }
                  return ans;
38
39
40
            std::function<int(int, int, int, int&)> get_root = [&](int u, int fa, int tot,
41
                                                                                                  int& root) -> int {
\overline{42}
                   if (vis[u]) return 0;
                  int sum = 1, maxx = 0;
for (auto [v, w] : e[u]) {
    if (v == fa) continue;
43
44
45
                        int tmp = get_root(v, u, tot, root);
Max(maxx, tmp);
46
47
                         sum += tmp;
48
49
50
                   Max(maxx, tot - sum);
```

```
51
                 if (2 * maxx <= tot) root = u;</pre>
52
                 return sum;
 53
 54
 55
            std::function<void(int, int, int)> get_dist = [&](int u, int fa, int dist) -> void {
                 if (dist <= 10000000) len1[++top1] = dist;</pre>
 56
                 for (auto [v, w] : e[u]) {
   if (v == fa or vis[v]) continue;
 57
 58
 59
                      get_dist(v, u, dist + w);
 60
                 }
 61
           };
62
63
            auto solve = [&](int u, int dist) -> void {
                 top2 = 0;
 64
                 for (auto [v, w] : e[u]) {
   if (vis[v]) continue;
65
 66
 67
                      top1 = 0;
                      get_dist(v, u, w);
for (int i = 1; i <= top1; i++) {</pre>
 68
69
70
71
72
73
74
75
                           for (int tt = 1; tt <= m; tt++) {
                                int k = mp[tt].ff;
                                 if (k >= len1[i]) mp[tt].ss |= cnt[k - len1[i]];
                           }
                      }
                      for (int i = 1; i <= top1; i++) {
    len2[++top2] = len1[i];
    cnt[len1[i]] = 1;</pre>
76
77
 78
 79
 80
                 for (int i = 1; i <= top2; i++) cnt[len2[i]] = 0;</pre>
 81
 82
 83
            std::function<void(int)> divide = [&](int u) -> void {
                 vis[u] = cnt[0] = 1;
 84
 85
                 solve(u, 0);
                 for (auto [v, w] : e[u]) {
   if (vis[v]) continue;
   get_root(v, u, get_size(v, u), root);
 86
 87
 88
 89
                      divide(root);
 90
                 }
 91
           };
 92
 93
           get_root(1, 0, get_size(1, 0), root);
divide(root);
 94
 95
 96
           for (int i = 1; i <= m; i++) {
   if (mp[i].ss == 0) {</pre>
97
                      std::cout << "NAY" << endl;
98
99
                 } else {
                      std::cout << "AYE" << endl;
100
101
102
            }
103
104
           return 0;
105
      }
```

第二个题

一棵 $n \le 4 \times 10^4$ 个点的树, 边权 $w \le 10^3$. 询问树上长度不超过 $k \le 2 \times 10^4$ 的路径的数量.

```
// 洛谷 P4178 Tree
\overline{2}
3
     int main() {
4
         std::ios::sync_with_stdio(false);
5
         std::cin.tie(0);
6
7
         std::cout.tie(0);
8 9
         int n, k;
         std::cin >> n;
         std::vector<vpi> e(n + 1);
for (int i = 1; i < n; i++) {
10
11
12
              int u, v, w;
std::cin >> u >> v >> w;
13
              e[u].emplace_back(v, w);
14
15
              e[v].emplace_back(u, w);
16
         std::cin >> k;
17
18
19
         /* centroid decomposition */
20
         int root;
21
         vi len, vis(n + 1);
22
23
         std::function<int(int, int)> get_size = [&](int u, int fa) -> int {
24
              if (vis[u]) return 0;
25
              int ans = 1;
```

```
26
27
28
               for (auto [v, w] : e[u]) {
   if (v == fa) continue;
                    ans += get_size(v, u);
29
               }
30
               return ans;
31
          };
\begin{array}{c} 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ \end{array}
          std::function<int(int, int, int, int&)> get_root = [&](int u, int fa, int tot,
                                                                              int& root) -> int {
              if (vis[u]) return 0;
int sum = 1, maxx = 0;
               for (auto [v, w] : e[u]) {
                    if (v == fa) continue;
                    int tmp = get_root(v, u, tot, root);
40
                    maxx = std::max(maxx, tmp);
41
                    sum += tmp;
42
43
              maxx = std::max(maxx, tot - sum);
44
              if (2 * maxx <= tot) root = u;
45
              return sum;
46
          }:
47
          std::function<void(int, int, int)> get_dist = [&](int u, int fa, int dist) -> void {
48
49
50
               len.push_back(dist);
              for (auto [v, w] : e[u]) {
    if (v == fa || vis[v]) continue;
51
52
53
54
                    get_dist(v, u, dist + w);
          };
55
56
          auto solve = [&](int u, int dist) -> int {
               len.clear();
57
               get_dist(u, 0, dist);
std::sort(all(len));
58
59
              60
61
62
63
                   } else {
64
65
                        r--;
                   }
66
67
               }
68
              return ans;
69
          };
70
71
72
73
74
75
76
77
78
79
80
          std::function<int(int)> divide = [&](int u) -> int {
               vis[u] = true;
              int ans = solve(u, 0);
for (auto [v, w] : e[u]) {
   if (vis[v]) continue;
                    ans -= solve(v, w);
                    get_root(v, u, get_size(v, u), root);
                    ans += divide(root);
               }
               return ans;
81
82
          };
83
84
          get_root(1, 0, get_size(1, 0), root);
          std::cout << divide(root) << endl;
85
86
          return 0;
    }
```

12.18 network flow - maximal flow

Dinic

理论

通过 BFS 将网络根据点到原点的距离 (每条边长度定义为 1) 分层, 然后通过 DFS 暴力地在有效的网络中寻找增广路, 不断循环上述步骤直至图中不存在增广路.

BFS 逻辑:

 $u \rightarrow v$ 的条件满足下面两条:

1. v 未必走过;

2. $e: u \to v$ 上还有残余流量, 即当前 e 的流量未达到其上限.

DFS 逻辑:

维护两个值: u: 当前搜索到哪个点; now: 可以增加的流量. $u \to v$ 的条件:

- 1. 在上一次 BFS 时, v 在 u 下面一层, 即 $d_v = d_u + 1$.
- 2. 递归 dfs(v, now), 这时可增加的流量上限要与 $e: u \to v$ 中可增加的流量上限取最小值, 递归结果大于零才意味着可以增加流量.

优化:

- 1. 一次可以处理多条增广路.
- 2. 每一条有向边事实上只会增加一次流量, 引入 cur 记录处理到了每个点的哪一条边以加快 DFS.

```
struct edge {
 1
2
3
4
          int from, to;
          LL cap, flow;
 5
          edge(int u, int v, LL c, LL f) : from(u), to(v), cap(c), flow(f) {}
 6
7
     };
     struct Dinic {
   int n, m = 0, s, t;
   std::vector<edge> e;
 8 9
10
11
          vi g[N];
          int d[N], cur[N], vis[N];
12
13
          void init(int n) {
14
               for (int i = 0; i < n; i++) g[i].clear();</pre>
15
               e.clear();
16
17
               m = 0;
18
          }
19
20
21
          void add(int from, int to, LL cap) {
   e.push_back(edge(from, to, cap, 0));
   e.push_back(edge(to, from, 0, 0));
22
               g[from].push_back(m++);
g[to].push_back(m++);
23
\overline{24}
25
          }
\overline{26}
27
          bool bfs() {
   for (int i = 1; i <= n; i++) {
      vis[i] = 0;
}</pre>
28
29
30
               std::queue<int> q;
q.push(s), d[s] = 0, vis[s] = 1;
while (!q.empty()) {
31
32
33
                    int u = q.front();
34
35
                     q.pop();
                    36
37
38
39
                               vis[ee.to] = 1;
d[ee.to] = d[u] + 1;
40
41
                               q.push(ee.to);
                          }
42
                    }
43
44
               }
45
               return vis[t];
46
47
          48
49
50
51
52
53
54
                          ee.flow += f, er.flow -= f;
flow += f, now -= f;
if (now == 0) break;
55
56
57
58
                    }
59
               return flow;
```

```
61
         }
62
63
         LL dinic() {
             LL ans = 0;
64
65
             while (bfs()) {
                 for (int i = 1; i <= n; i++) cur[i] = 0;</pre>
66
67
                 ans += dfs(s, INF);
68
69
             return ans:
70
         }
71
    } maxf;
```

HLPP

抄板子吧,别管原理了,留一个图吧.

```
struct HLPP {
 \frac{1}{2}
            int n, m = 0, s, t;
 3
                                                    /* 边 */
            std::vector<edge> e;
                                                    /* 点 */
 4
            std::vector<node> nd;
            std::vector<int> g[N]; /*
std::priority_queue<node> q;
std::queue<int> qq;
bool vis[N];
 5
                                                    /* 点的连边编号 */
 6
7
 9
            int cnt[N];
10
11
            void init() {
12
                   e.clear();
13
                  nd.clear();
                   for (int i = 0; i <= n + 1; i++) {</pre>
14
15
                        nd.pushback(node(inf, i, 0));
16
                         g[i].clear();
17
                         vis[i] = false;
18
19
            }
20
            void add(int u, int v, LL w) {
    e.pushback(edge(u, v, w));
    e.pushback(edge(v, u, 0));
21
22
23
24
25
26
27
28
29
                   g[u].pushback(m++);
                  g[v].pushback(m++);
            void bfs() {
                  nd[t].hight = 0;
                   qq.push(t);
30
                   while (!qq.empty()) {
    int u = qq.front();
31
32
                         qq.pop();
vis[u] = false;
33
34
35
36
                         for (auto j : g[u]) {
   int v = e[j].to;
   if (e[j].cap == 0 && nd[v].hight > nd[u].hight + 1) {
37
                                     nd[v].hight = nd[u].hight + 1;
if (vis[v] == false) {
38
39
                                           qq.push(v);
vis[v] = true;
40
41
42
                                     }
43
                              }
44
                        }
45
                  }
46
                  return;
47
48
49
            void _push(int u) {
                  for (auto j : g[u]) {
   edge &ee = e[j], &er = e[j ^ 1];
50
51
52
                         int v = ee.to;
                         node &nu = nd[u], &nv = nd[v];
if (ee.cap && nv.hight + 1 == nu.hight) {
53
54
                              LL flow = std::min(ee.cap, nu.flow);
ee.cap -= flow, er.cap += flow;
nu.flow -= flow, nv.flow += flow;
if (vis[v] == false && v != t && v != s) {
55
56
57
58
59
                                     q.push(nv);
60
                                     vis[v] = true;
61
                               if (nu.flow == 0) break;
62
                        }
63
64
                  }
            }
```

```
67
            void relabel(int u) {
 68
                 nd[u].hight = inf;
                 for (auto j : g[u]) {
   int v = e[j].to;
 69
 70
 71
72
73
74
75
76
                      if (e[j].cap && nd[v].hight + 1 < nd[u].hight) {</pre>
                           nd[u].hight = nd[v].hight + 1;
                 }
            }
 77
            LL hlpp() {
 78
                 bfs();
 79
                 if (nd[s].hight == inf) return 0;
                 nd[s].hight = n;
for (int i = 1; i <= n; i++) {
 80
 81
 82
                      if (nd[i].hight < inf) cnt[nd[i].hight]++;</pre>
 83
                 for (auto j : g[s]) {
   int v = e[j].to;
 84
 85
                      int flow = e[j].cap;
 86
                      if (flow) {
 87
                            e[j].cap -= flow, e[j ^ 1].cap += flow;
 88
                           nd[s].flow -= flow, nd[v].flow += flow;
if (vis[v] == false && v != s && v != t) {
 89
 90
 91
                                 q.push(nd[v]);
 92
                                 vis[v] = true;
 93
                           }
                      }
 94
 95
 96
                 while (!q.empty()) {
                      int u = q.top().id;
q.pop();
 97
 98
 99
                      vis[u] = false;
100
                       _push(u);
101
                      if (nd[u].flow) {
                           ind[u].hight]--;
if (cnt[nd[u].hight] == 0) {
    for (int i = 1; i <= n; i++) {
        if (i != s && i != t && nd[i].hight > nd[u].hight && nd[i].hight < n + 1) {</pre>
102
103
104
105
106
                                           nd[i].hight = n + 1;
107
                                 }
108
                           }
109
110
                           relabel(u);
111
                            cnt[nd[u].hight]++;
112
                            q.push(nd[u]);
113
                            vis[u] = true;
114
                      }
115
116
                 return nd[t].flow;
           }
117
      } maxf;
118
```

12.19 network flow - minimum cost flow

在网络中获得最大流的同时要求费用最小.

Dinic + SPFA

```
struct edge {
3
         int from, to;
         LL cap, cost;
5
         edge(int u, int v, LL c, LL w) : from(u), to(v), cap(c), cost(w) {}
6
    };
 7
8 9
     struct MCMF {
         int n, m = 0, s, t;
std::vector<edge> e;
10
         vi g[N];
int cur[N], vis[N];
11
12
13
         LL dist[N], minc;
14
15
         void init(int n) {
16
              for (int i = 0; i < n; i++) g[i].clear();</pre>
              e.clear();
17
18
              minc = m = 0;
19
20
```

```
21
           void add(int from, int to, LL cap, LL cost) {
22
                 e.push_back(edge(from, to, cap, cost));
                e.push_back(edge(to, from, 0, -cost));
g[from].push_back(m++);
23
24
25
                 g[to].push_back(m++);
\frac{1}{26}
27
28
           bool spfa() {
                rep(i, 1, n) { dist[i] = INF, cur[i] = 0; } std::queue<int> q; q.push(s), dist[s] = 0, vis[s] = 1;
29
30
31
32
33
34
                 while (!q.empty()) {
                      int u = q.front();
                      q.pop();
vis[u] = 0;
35
                      for (int j = cur[u]; j < g[u].size(); j++) {
   edge& ee = e[g[u][j]];</pre>
36
37
                           int v = ee.to;
if (ee.cap && dist[v] > dist[u] + ee.cost) {
    dist[v] = dist[u] + ee.cost;
    if (!vis[v]) {
38
39
40
41
42
                                       q.push(v);
43
                                       vis[v] = 1;
                                 }
44
45
                            }
46
                      }
47
48
                return dist[t] != INF;
49
50
           LL dfs(int u, LL now) {
   if (u == t) return now;
51
52
53
54
55
56
                vis[u] = 1;
                LL ans = 0;
                for (int& i = cur[u]; i < g[u].size() && ans < now; i++) {
   edge &ee = e[g[u][i]], &er = e[g[u][i] ^ 1];</pre>
57
                      int v = ee.to;
58
                      if (!vis[v] && ee.cap && dist[v] == dist[u] + ee.cost) {
59
                            LL f = dfs(v, std::min(ee.cap, now - ans));
60
                            if (f) {
61
                                 minc += f * ee.cost, ans += f;
62
                                 ee.cap -= f;
63
                                 er.cap += f;
64
                            }
65
                      }
66
                 }
67
                 vis[u] = 0;
68
                return ans;
69
70
71
72
73
74
75
76
77
           PLL mcmf() {
                 LL maxf = 0;
                 while (spfa()) {
                      LL tmp;
                      while ((tmp = dfs(s, INF))) maxf += tmp;
                return std::makepair(maxf, minc);
78
     } minc_maxf;
```

Primal-Dual 原始对偶算法

```
struct edge {
 23
         int from, to;
 4
 5
         edge(int u, int v, LL c, LL w) : from(u), to(v), cap(c), cost(w) {}
 6
7
    };
 8 9
    struct node {
        int v, e;
10
11
        node(int _v = 0, int _e = 0) : v(_v), e(_e) {}
12
    };
13
14
    const int maxn = 5000 + 10;
15
    struct MCMF {
16
        int n, m = 0, s, t;
17
18
        std::vector<edge> e;
19
        vi g[maxn];
20
        int dis[maxn], vis[maxn], h[maxn];
21
        node p[maxn * 2];
```

```
22
23
          void add(int from, int to, LL cap, LL cost) {
              e.push_back(edge(from, to, cap, cost));
e.push_back(edge(to, from, 0, -cost));
24
25
26
              g[from].push_back(m++);
\overline{27}
              g[to].push_back(m++);
28
         }
\overline{29}
\frac{30}{31}
         bool dijkstra() {
              32
33
34
                   vis[i] = 0;
35
36
              dis[s] = 0;
              q.push({0, s});
37
              while (!q.empty()) {
38
39
                   int u = q.top().ss;
                   q.pop();
40
41
                   if (vis[u]) continue;
42
                   vis[u] = 1;
43
                   for (auto i : g[u]) {
44
                        edge ee = e[i];
45
                        int v = ee.to, nc = ee.cost + h[u] - h[v];
46
                        if (ee.cap and dis[v] > dis[u] + nc) {
47
                            dis[v] = dis[u] + nc;
                            p[v] = node(u, i);
48
49
                             if (!vis[v]) q.push({dis[v], v});
50
                        }
51
                   }
52
              }
53
              return dis[t] != inf;
          }
54
55
56
          void spfa() {
              std::queu<<int> q;
for (int i = 1; i <= n; i++) h[i] = inf;</pre>
57
58
              h[s] = 0, vis[s] = 1;
59
60
              q.push(s);
61
              while (!q.empty()) {
                   int u = q.front();
62
                   q.pop();
vis[u] = 0;
63
64
                   for (auto i : g[u]) {
65
66
                        edge ee = e[i];
67
                        int v = ee.to;
                        if (ee.cap and h[v] > h[u] + ee.cost) {
   h[v] = h[u] + ee.cost;
   if (!vis[v]) {
68
69
70
\frac{71}{72}
                                 vis[v] = 1;
                                 q.push(v);
73
74
75
                       }
                   }
76
77
              }
         }
78
79
         PLL mcmf() {
80
              LL maxf = 0, minc = 0;
81
              spfa();
82
              while (dijkstra()) {
83
                   LL minf = INF;
84
                   for (int i = 1; i <= n; i++) h[i] += dis[i];</pre>
                   for (int i = t; i != s; i = p[i].v) minf = std::min(minf, e[p[i].e].cap);
for (int i = t; i != s; i = p[i].v) {
85
86
                       e[p[i].e].cap -= minf;
e[p[i].e ^ 1].cap += minf;
87
88
89
                   }
90
                   maxf += minf;
91
                   minc += minf * h[t];
92
93
              return std::make_pair(maxf, minc);
         }
94
95
     } minc_maxf;
```

存在负环的网络

12.20 network flow - minimal cut

最小割解决的问题是将图中的点集 V 划分成 S 与 T, 使得 S 与 T 之间的连边的容量总和最小.

最大流最小割定理

网络中s到t的最大流流量的值等于所要求的最小割的值, 所以求最小割只需要跑 Dinic 即可.

获得 S 中的所有点

在 Dinic 的 bfs 函数中, 每次将所有点的 d 数组值改为无穷大, 最后跑完最大流之后 d 数组不为无穷大的就是和源点一起在 S 集合中的点.

例子

最小割的本质是对图中点集进行 2-划分, 网络流只是求解答案的手段.

- 1. 在图中花费最小的代价断开一些边使得源点 s 无法流到汇点 t. 直接跑最大流就得到了答案.
- 2. 在图中删除最少的点使得源点 s 无法流到汇点 t. 对每个点进行拆点, 在 i 与 i' 之间建立容量为 1 的有向边.

12.21 matching - matching on bipartite graph

二分图最大匹配

Kuhn-Munkres

时间复杂度: $O(n^3)$.

```
auto KM = [&](int n1, int n2, vvi e) -> std::pair<vi, vi> {
              vi vis(n2 + 1);
vi l(n1 + 1, -1), r(n2 + 1, -1);
std::function<bool(int)> dfs = [&](int u) -> bool {

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9
    \end{array}

                      for (auto v : e[u]) {
                              if (!vis[v]) {
                                     vis[v] = 1;
if (r[v] == -1 or dfs(r[v])) {
                                            r[v] = u;
10
                                             return true;
11
                                     }
\overline{12}
                             }
13
14
                      }
                      return false;
15
               for (int i = 1; i <= n1; i++) {
    std::fill(all(vis), 0);</pre>
16
17
18
                      dfs(i);
19
\frac{1}{20}
               for (int i = 1; i <= n2; i++) {
   if (r[i] == -1) continue;</pre>
22
23
                      l[r[i]] = i;
24
25
               return {1, r};
\frac{1}{26}
       auto [mchl, mchr] = KM(n1, n2, e);
std::cout << mchl.size() - std::count(all(mchl), -1) << endl;</pre>
```

Hopcroft-Karp

据说时间复杂度是 $O(m\sqrt{n})$ 的, 但是快的飞起.

```
vpi e(m);
auto hopcroft_karp = [&](int n, int m, vpi& e) -> std::pair<vi, vi> {
```

```
vi g(e.size()), l(n + 1, -1), r(m + 1, -1), d(n + 2); for (auto [u, v] : e) d[u]++;
 4
          for (auto [u, v] : e) g[--d[u]] = v;
for (auto [u, v] : e) g[--d[u]] = v;
for (vi a, p, q(n + 1);;) {
    a.assign(n + 1, -1);
}
 5
 6
 7
 8
                p.assign(n + 1, -1);
int t = 1;
 9
10
                for (int i = 1; i <= n; i++) {
    if (1[i] == -1) {
11
12
                          q[t++] = a[i] = p[i] = i;
13
14
15
16
                bool match = false;
                for (int i = 1; i < t; i++) {</pre>
                     int u = q[i];
                     if (l[a[u]] != -1) continue;
19
                     20
21
\overline{22}
23
24
                                     r[v] = u;
\frac{1}{25}
                                     std::swap(l[u], v);
26
                                     u = p[u];
27
28
29
                                match = true;
                                break;
30
31
                           if (p[r[v]] == -1) {
                                q[t++] = v = r[v];
32
                                p[v] = u;
33
34
                                a[v] = a[u];
35
                          }
36
                     }
                }
37
38
                if (!match) break;
39
40
           return {1, r};
     };
```

二分图最大权匹配

Kuhn-Munkres

注意是否为完美匹配, 非完美选 0, 完美选 -INF. (存疑)

```
auto KM = [&](int n, vvl e) -> std::tuple<LL, vi, vi> {
   vl la(n + 1), lb(n + 1), pp(n + 1), vx(n + 1);
   vi l(n + 1, -1), r(n + 1, -1);
 3
 4
5
               vi va(n + 1), vb(n + 1);
              LL delta;

auto bfs = [&](int x) -> void {

   int a, y = 0, y1 = 0;

   std::fill(all(pp), 0);

   std::fill(all(vx), INF);
 6
7
 8
 9
10
                     r[y] = x;
11
                      do {
                            a = r[y], delta = INF, vb[y] = 1;
for (int b = 1; b <= n; b++) {
    if (!vb[b]) {</pre>
12
13
14
                                          if (vx[b] > la[a] + lb[b] - e[a][b]) {
    vx[b] = la[a] + lb[b] - e[a][b];
15
16
                                                  pp[b] = y;
17
18
19
                                           if (vx[b] < delta) {</pre>
20
21
                                                  delta = vx[b];
                                                  y1 = b;
22
23
                                    }
24
                             for (int b = 0; b <= n; b++) {
25
                                    if (vb[b]) {
    la[r[b]] -= delta;
26
\overline{27}
28
                                           lb[b] += delta;
29
                                    } else
30
                                           vx[b] -= delta;
                            }
31
                     y = y1;
} while (r[y] != -1);
while (y) {
32
33
34
                            r[y] = r[pp[y]];
```

12.22 matching - matching on general graph

13 geometry

13.1 two demention

点与向量

```
tandu struct pnt {
 3
        T x, y;
 4
        pnt(T_x = 0, T_y = 0) \{ x = _x, y = _y; \}
 5
 6
7
        pnt operator+(const pnt& a) const { return pnt(x + a.x, y + a.y); }
 8 9
        pnt operator-(const pnt& a) const { return pnt(x - a.x, y - a.y); }
10
        bool operator<(const pnt& a) const {</pre>
11
12
            if (std::is_same<T, double>::value) {
13
                if (fabs(x - a.x) < eps) return y < a.y;
14
15
                if (x == a.x) return y < a.y;
16
17
            return x < a.x;
18
19
        */
20
        /* 注意数乘会不会爆 int */
21
22
        pnt operator*(const T k) const { return pnt(k * x, k * y); }
23
\frac{24}{25}
        U operator*(const pnt& a) const { return (U) x * a.x + (U) y * a.y; }
26
        U operator^(const pnt& a) const { return (U) x * a.y - (U) y * a.x; }
27
28
        U dist(const pnt a) { return ((U) a.x - x) * ((U) a.x - x) + ((U) a.y - y) * ((U) a.y - y); }
29
30
        U len() { return dist(pnt(0, 0)); }
31
32
        /* a, b, c 成逆时针 */
33
        friend U area(pnt a, pnt b, pnt c) { return (b - a) ^ (c - a); }
34
35
        /* 两向量夹角, 返回 cos 值 */
36
        double get_angle(pnt a) {
37
            return (double) (pnt(x, y) * a) / sqrt((double) pnt(x, y).len() * (double) a.len());
38
39
    };
```

线段

```
1 2
     struct line {
         point a, b;
 3
 4
5
          line(point _a = {}, point _b = {}) { a = _a, b = _b; }
          /* 交点类型为 double */
 6
7
8
          friend point iPoint(line p, line q) {
              point v1 = p.b - p.a;
point v2 = q.b - q.a;
 9
              point u = q.a - p.a;
10
              return q.a + (q.b - q.a) * ((u ^ v1) * 1. / (v1 ^ v2));
11
13
          /* 极角排序 */
14
          bool operator<(const line& p) const {
   double t1 = std::atan2((b - a).y, (b - a).x);</pre>
15
16
17
               double t2 = std::atan2((p.b - p.a).y, (p.b - p.a).x);
              if (fabs(t1 - t2) > eps) {
    return t1 < t2;</pre>
18
19
20
21
              return ((p.a - a) ^ (p.b - a)) > eps;
22
         }
23
     };
```

106 13 GEOMETRY

13.2 convex

2D

```
auto andrew = [&](std::vector<point>& v) -> std::vector<point> {
 2
          std::sort(all(v));
 \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8}
          std::vector<point> stk;
for (int i = 0; i < n; i++) {</pre>
              point x = v[i];
               \hat{\mathbf{w}} thile (stk.size() > 1 and ((stk.end()[-1] - stk.end()[-2]) ^ (x - stk.end()[-2])) <= 0) {
                    stk.pop_back();
 9
               stk.push_back(x);
10
          }
11
          int tmp = stk.size();
12
          for (int i = n - 2; i >= 0; i--) {
13
              point x = v[i];
               while (stk.size() > tmp and ((stk.end()[-1] - stk.end()[-2]) ^ (x - stk.end()[-2])) <= 0) {
14
15
                    stk.pop_back();
16
17
               stk.push_back(x);
18
19
          return stk;
20
    };
```

旋转卡壳

```
#include<cstdio>
                             #include<algorithm>
      \overline{3}
                            #define db double
      4
                            namespace Acc{
      5
                                                       const int N = 5e4+10;
      6
7
                                                      struct node{
                                                                               int x,y
                                                       }a[N],stk[N];
      9
                                                       db cmp(node a,node b,node c){return 1.*(c.x-a.x)*(c.y-b.y)-1.*(c.x-b.x)*(c.y-a.y);}
 10
                                                       int dis(node a,node b){return ((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
 11
                                                       int n,tp,ans;
                                                      void work(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);
    if in the following state of the follow
 12
13
14
15
                                                                                 std::sort(a+1,a+n+1,[=](node a,node b)->bool{return a.x<b.x || (a.x==b.x && a.y<b.y);});
16
                                                                                 stk[1]=a[1],tp=1;
 17
                                                                                 for(int i=2;i<=n;i++){</pre>
18
                                                                                                          while(tp>1 && cmp(stk[tp-1],stk[tp],a[i])<=0)tp--;</pre>
 19
                                                                                                          stk[++tp]=a[i];
20
\frac{1}{21}
                                                                                 int tmp=tp;
                                                                                for(int i=n-1;i>=1;i--){
\frac{23}{24}
                                                                                                          while(tp>tmp && cmp(stk[tp-1],stk[tp],a[i])<=0)tp--;
stk[++tp]=a[i];</pre>
\begin{array}{c} 25 \\ 26 \\ 27 \\ 28 \\ 29 \end{array}
                                                                                for(int i=1,j=3;i<tp;i++){</pre>
                                                                                                          \label{lem:while} \\ \textbf{while}(\texttt{cmp}(\texttt{stk[i]},\texttt{stk[i+1]},\texttt{stk[j]}) < \texttt{cmp}(\texttt{stk[i]},\texttt{stk[i+1]},\texttt{stk[j+1]})) \\ \\ j = j\%(\texttt{tp-1}) + 1; \\ \\ \textbf{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk[i+1]},\texttt{stk
                                                                                                            ans=std::max(ans,std::max(dis(stk[i],stk[j]),dis(stk[i+1],stk[j])));
                                                                                 }
30
                                                                               printf("%d",ans);
 31
                                                      }
 32
33
                          int main(){
34
                                                    return Acc::work(),0;
35
                           }
```

half plane

```
auto halfPlane = [&](std::vector<line>& ln) -> std::vector<point> {
    std::sort(all(ln));
    ln.erase(
        unique(
        all(ln),
        [](line& p, line& q) {
            double t1 = std::atan2((p.b - p.a).y, (p.b - p.a).x);
            double t2 = std::atan2((q.b - q.a).y, (q.b - q.a).x);
            return fabs((t1 - t2)) < eps;</pre>
```

```
10
                              }),
11
                      ln.end());
12
               auto check = [&](line p, line q, line r) -> bool {
                      point a = iPoint(p, q);
return ((r.b - r.a) ^ (a - r.a)) < -eps;
13
14
15
               ine q[ln.size() + 2];
int hh = 1, tt = 0;
q[++tt] = ln[0];
q[++tt] = ln[1];
16
17
18
19
20
21
               for (int i = 2; i < (int) ln.size(); i++) {
    while (hh < tt and check(q[tt - 1], q[tt], ln[i])) tt--;
    while (hh < tt and check(q[hh + 1], q[hh], ln[i])) hh++;</pre>
22
23
                       q[++tt] = ln[i];
24
               while (hh < tt and check(q[tt - 1], q[tt], q[hh])) tt--;
while (hh < tt and check(q[hh + 1], q[hh], q[tt])) hh++;</pre>
25
26
               q[tt + 1] = q[hh];
std::vector<point> ans;
27
28
29
               for (int i = hh; i <= tt; i++) {
    ans.push_back(iPoint(q[i], q[i + 1]));</pre>
30
\frac{31}{32}
               return ans;
33
       };
```

14 sweep line

矩形面积并

```
#define int long long
const int N = 2e5+10;
     int b[N<<1],n,len,ans;</pre>
     struct node{
          int_y1,y2,x,k;
     }a[N<<1];
 6
     struct Seg{
     #define lc (o<<1)</pre>
     #define rc (o<<1|1)
    static const int N = 5e6+10;</pre>
 9
10
          int sum[N],cnt[N],tag[N];
11
          void push_up(int o,int l,int r){
   if(sum[o])cnt[o]=b[r+1]-b[l];
12
13
14
               else cnt[o]=cnt[lc]+cnt[rc];
15
16
          void add(int o,int l,int r,int L,int R,int k){
               if(r<L || 1>R)return;
17
               if(l==L && r==R)return (void)(sum[o]+=k,push_up(o,1,r));
18
19
               int mid=L+R>>1;
               if(r<=mid)add(lc,l,r,L,mid,k);
else if(l>mid)add(rc,l,r,mid+1,R,k);
20
21
22
               else add(lc,1,mid,L,mid,k),add(rc,mid+1,r,mid+1,R,k);
23
               push_up(o,L,R);
24
25
     #undef lc
26
     #undef rc
\overline{27}
     }t;
28
     void work(){
29
          cin>>n;
30
          for(int i=1,x1,y1,x2,y2;i<=n;i++){</pre>
31
               cin>>x1>>y1>>x2>>y2;
32
               b[i*2-1]=y1, b[i*2]=y2, a[i*2-1]={y1, y2, x1, 1}, a[i*2]={y1, y2, x2, -1};
33
34
         n <<=1;
35
          sort(b+1,b+n+1),len=unique(b+1,b+n+1)-b-1;
          for(int i=1;i<=n;i++)a[i].y1=lower_bound(b+1,b+len+1,a[i].y1)-b,a[i].y2=lower_bound(b+1,b+len+1,a[i].
36
               y2)-b;
37
          sort(a+1,a+n+1,[](node a,node b)->bool{return a.x<b.x;});</pre>
          for(int i=1;i<n;i++){
    t.add(1,a[i].y1,a[i].y2-1,1,len-1,a[i].k);</pre>
38
39
40
               ans+=t.cnt[1]*(a[i+1].x-a[i].x);
41
42
          cout<<ans;
43
     #undef int
```

15 offline algorithm

15.1 discretization

```
1 | std::sort(all(a));
2 | a.erase(unique(all(a)), a.end());
3 | auto get_id = [&](const int& x) -> int { return lower_bound(all(a), x) - a.begin() + 1; };
```

15.2 Mo algorithm

普通莫队

```
int block = n / sqrt(2 * m / 3);
    std::sort(all(q), [&](node a, node b) {
    return a.l / block == b.l / block ? (a.r == b.r ? 0 : ((a.l / block) & 1) ^ (a.r < b.r))</pre>
 2
3
4
                                                      : a.l < b.l;
 5
6
7
     });
     auto move = [&](int x, int op) -> void {
          if (op == 1) {
 9
              /* operations */
10
          } else {
              /* operations */
11
12
          }
13
    };
14
    for (int k = 1, l = 1, r = 0; k \le m; k++) { node Q = q[k];
15
16
          while (1 > Q.1) {
17
18
              move(--1, 1);
19
20
          while (r < Q.r) {
              move(++r, 1);
21
22
23
          while (1 < Q.1) {</pre>
24
25
26
27
28
              move(1++, -1);
          while (r > Q.r) {
              move(r--, -1);
29
```

回滚莫队

例题: P5906 给定一个序列,多次询问一个区间中相同数的最远间隔距离.

```
#include<bits/stdc++.h>
       namespace Acc {
    const int N = 200009;

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7
  \end{array}

              int a[N], b[N], id[N], f[N], g[N], p[N], z[N];
              std::pair<int, int> st[N];
              struct T {
                     int 1, r, o;
 8
9
              }q[N];
              auto work = []() {
10
                     int n, m;
                     std::cin >> n;
12
                    for (int i = 1; i <= n; ++i) {
13
                           std::cin >> a[i], b[i] = a[i];
14
                    std::sort(b + 1, b + n + 1);
int ct = std::unique(b + 1, b + n + 1) - b - 1;
for (int i = 1; i <= n; ++i) {
    a[i] = std::lower_bound(b + 1, b + ct + 1, a[i]) - b;</pre>
15
16
17
18
19
20
                    std::cin >> m;
for (int i = 1; i <= m; ++i) {
    auto&[1, r, o] = q[i];
    std::cin >> 1 >> r, o = i;
21
22
23
24
25
                     int B = ceil(n / sqrt(m));
26
                     for (int i = 1; i <= n; ++i) {
```

 $15.3 ext{ } CDQ$

```
27
                           id[i] = (i - 1) / B + 1;
28
                     std::sort(q + 1, q + m + 1, [](T a, T b) {
    return id[a.l] == id[b.l] ? a.r < b.r : a.l < b.l;</pre>
29
30
31
                     });
                    fir ans = 0, L = 1, R = 0;
for (int i = 1; i <= m; ++i) {
    auto[l, r, o] = q[i];
    if (id[l] != id[q[i - 1].l]) {
        ans = 0;
    }</pre>
32
33
34
35
36
                                  R = std::min(n, id[l] * B), L = R + 1;
memset(f + 1, 0, ct << 2);
37
38
                                  memset(g + 1, 0, ct << 2);
39
40
                            if (id[l] == id[r]) {
41
                                  for (int j = 1; j <= r; ++j) {
   if (p[a[j]] == 0) p[a[j]] = j;
   else ans = std::max(ans, j - p[a[j]]);</pre>
42
43
44
45
46
                                  for (int j = 1; j <= r; ++j) p[a[j]] = 0; z[o] = ans, ans = 0;
47
                           } else {
48
                                  while (R < r) {</pre>
49
                                         ++R, g[a[R]] = R;
if (f[a[R]] == 0) f[a[R]] = R;
50
51
52
                                         else ans = std::max(ans, R - f[a[R]]);
53
                                  int las = ans, t = L;
while (1 < L) {</pre>
54
55
                                         --L;
56
                                         int x = f[a[L]], y = g[a[L]];
st[L] = std::make_pair(x, y);
f[a[L]] = L;
if (g[a[L]] == 0) g[a[L]] = L;
57
58
59
60
61
                                         else ans = std::max(ans, g[a[L]] - L);
62
63
                                   z[o] = ans;
                                  for (int j = 1; j < t; ++j) {
    auto[x, y] = st[j];
    f[a[j]] = x, g[a[j]] = y;</pre>
64
65
66
67
68
                                   ans = las, L = t;
                           }
69
70
71
                    for (int i = 1; i <= m; ++i) {
   std::cout << z[i] << '\n';</pre>
72
                     }
73
74
             };
75
       }
       int main() {
              std::ios::sync_with_stdio(0);
              std::cin.tie(0), Acc::work();
```

15.3 CDQ

n 个三维数对 (a_i,b_i,c_i) , 设 f(i) 表示 $a_j \leq a_i,b_j \leq b_i,c_j \leq c_i (i \neq j)$ 的个数. 输出 f(i) $(0 \leq i \leq n-1)$ 的值.

```
// 洛谷 P3810 【模板】三维偏序(陌上花开)
 12
3
    struct data {
 4
        int a, b, c, cnt, ans;
 5
 6
7
         data(int _a = 0, int _b = 0, int _c = 0, int _cnt = 0, int _ans = 0) {
             a = _a, b = _b, c = _c, cnt = _cnt, ans = _ans;
8 9
10
        bool operator!=(data x) {
             if (a != x.a) return true;
if (b != x.b) return true;
11
12
             if (c != x.c) return true;
13
             return false;
14
        }
15
    };
16
17
18
    int main() {
19
         std::ios::sync_with_stdio(false);
20
         std::cin.tie(0);
21
         std::cout.tie(0);
22
```

```
23
 \frac{24}{25}
             int n, k;
             std::cin >> n >> k;
 26
             static data v1[N], v2[N];
for (int i = 1; i <= n; i++) {
    std::cin >> v1[i].a >> v1[i].b >> v1[i].c;
 27
 28
 29
 30
             std::sort(v1 + 1, v1 + n + 1, [&](data x, data y) {
 31
                  if (x.a != y.a) return x.a < y.a;
if (x.b != y.b) return x.b < y.b;
return x.c < y.c;</pre>

    \begin{array}{r}
      32 \\
      33 \\
      34 \\
      35 \\
      36
    \end{array}

             int t = 0, top = 0;
for (int i = 1; i <= n; i++) {</pre>
 37
 38
 39
                  t++;
                   if (v1[i] != v1[i + 1]) {
 40
                        v2[++top] = v1[i];
 41
 42
                        v2[top].cnt = t;
 43
 44
                  }
 45
 46
 47
             vi tr(N);
 48
49
             auto add = [&](int pos, int val) -> void {
   while (pos <= k) {</pre>
 50
51
                        tr[pos] += val;
 52
                        pos += lowbit(pos);
 53
 54
 55
 56
             auto query = [&](int pos) -> int {
 57
                   int ans = 0;
                  while (pos > 0) {
 58
                        ans += tr[pos];
pos -= lowbit(pos);
 59
 60
 61
                  }
 62
                  return ans;
 63
             };
 64
 65
             std::function<void(int, int)> CDQ = [&](int 1, int r) -> void {
 66
                   if (1 == r) return;
 67
                   int mid = (1 + r) >> 1;
                  CDQ(1, mid), CDQ(mid + 1, r);
std::sort(v2 + 1, v2 + mid + 1, [&](data x, data y) {
 68
 69
                        if (x.b != y.b) return x.b < y.b;
return x.c < y.c;</pre>
 70
71
72
73
74
75
76
77
78
79
                  });
                  std::sort(v2 + mid + 1, v2 + r + 1, [&](data x, data y) {
    if (x.b != y.b) return x.b < y.b;
    return x.c < y.c;
}</pre>
                  });
                  int i = 1, j = mid + 1;
while (j <= r) {</pre>
                        while (i <= mid && v2[i].b <= v2[j].b) {</pre>
 80
81
                              add(v2[i].c, v2[i].cnt);
 82
 83
                         v2[j].ans += query(v2[j].c);
 84
                        j++;
 85
 86
                  for (int ii = 1; ii < i; ii++) {</pre>
 87
                        add(v2[ii].c, -v2[ii].cnt);
 88
                  }
 89
                  return;
 90
 91
 92
            CDQ(1, top);
             vi ans(n + 1);
for (int i = 1; i <= top; i++) {
 93
 94
 95
                   ans[v2[i].ans + v2[i].cnt] += v2[i].cnt;
 96
 97
             for (int i = 1; i <= n; i++) {</pre>
                  std::cout << ans[i] << endl;
 98
 99
100
101
             return 0;
102
```

```
#include<bits/stdc++.h>
using namespace std;
namespace Acc {
    const int N = 2e5 + 9;
    struct T {
```

15.4 线段树分治 111

```
int x, y, z, o;
                bool operator==(const T& b) const {
                     return x == b.x && y == b.y && z == b.z;
 9
10
                bool operator<(const T& b) const {</pre>
                      if (x != b.x) return x < b.x;</pre>
11
                     if (y != b.y) return y < b.y;
return z < b.z;</pre>
12
13
14
           }a[N];
15
           long long z[N];
int m, t[N], f[N];
auto ins = [](int x, int k) {
16
17
18
19
                for (; x <= m; x += x & -x) t[x] += k;</pre>
20
21
           auto ask = [](int x) {
22
                int z = 0;
                for (; x; x ^= x & -x) z += t[x];
23
24
                return z;
25
           void CDQ(int 1, int r) {
    if (1 == r) return;
    int md = 1 + r >> 1;
26
27
\frac{1}{28}
29
                CDQ(1, md), CDQ(md + 1, r);
                for (i = 1, j = md + 1; j <= r; ++j) {
   for (; i <= md && a[i].y <= a[j].y; ++i) ins(a[i].z, 1);
   f[a[j].o] += ask(a[j].z);</pre>
30
31
32
33
34
35
                for (--i; i >= 1; --i) ins(a[i].z, -1);
36
                inplace_merge(a + 1, a + md + 1, a + r + 1, [](T a, T b) {
                    return a.y < b.y;</pre>
37
38
39
40
           auto work = []() {
41
                int n;
cin >> n >> m;
42
                for (int i = 1; i <= n; ++i) {
    auto&[x, y, z, o] = a[i];
    cin >> x >> y >> z;
43
44
45
46
47
                sort(a + 1, a + n + 1);
48
                for (int i = 1; i <= n; ++i) a[i].o = i;</pre>
                CDQ(1, n);
49
                sort(a + 1, a + n + 1);
for (int i = n - 1; i; --i) {
   if (a[i] == a[i + 1]) f[i] = f[i + 1];
50
51
52
53
54
                for (int i = 1; i <= n; ++i) ++z[f[i]];</pre>
                for (int i = 0; i < n; ++i) cout << z[i] << '\n';
55
56
          };
57
58
     int main() {
59
           ios::sync_with_stdio(0);
60
           cin.tie(0), Acc::work();
61
```

15.4 线段树分治

```
#include<bits/stdc++.h>
      using namespace std;
 3
      namespace Acc {
  const int N = 1e5;
  pair<int, int> q[N * 2];
 4
 5
 6
            vector<int> v[N * 4];
            int n, 1, r, p;
int fa[N * 2], sz[N * 2];
pair<int, int> st[N * 2];
 8
 9
10
            int tp;
            void ins(int o, int L, int R) {
   if (r < L || 1 > R) return ;
   if (1 <= L && R <= r) {</pre>
11
12
13
                        v[o].emplace_back(p);
14
15
                        return ;
16
                  int md = L + R >> 1;
17
                  ins(o << 1, L, md);
ins(o << 1 | 1, md + 1, R);
18
19
20
21
            auto gf = [](int x) {
22
                  while (x != fa[x]) x = fa[x];
23
                  return x;
```

```
};
auto mg = [](int x, int y) {
    x = gf(x), y = gf(y);
    if (x != y) {
        if (sz[x] < sz[y]) swap(x, y);
        fa[y] = x, sz[x] += sz[y];
        st[++tp] = {x, y};
}</pre>
24
25
26
27
28
29
30
31
32
33
34
35
36
                37
38
39
40
41
42
                                            goto _;
43
44
                                   }
                          }
                           if (L == R) {
    cout << "Yes\n";</pre>
45
46
47
                           } else {
                                   int md = L + R >> 1;
dfs(o << 1, L, md);
dfs(o << 1 | 1, md + 1, R);</pre>
48
49
50
51
52
53
54
55
56
57
                          }
                          for (; tp > lastp; --tp) {
    auto[x, y] = st[tp];
    fa[y] = y, sz[x] -= sz[y];
                  auto work = []() {
  int m, k;
  cin >> n >> m >> k;
  for (int i = 1; i <= m; ++i) {</pre>
58
59
60
61
                                   int x, y;

cin >> x >> y >> 1 >> r;

if (++1 <= r) {

    q[p = i] = {x, y}, ins(1, 1, k);
62
63
64
65
66
67
                          iota(fa + 1, fa + n * 2 + 1, 1);
fill(sz + 1, sz + n * 2 + 1, 1);
dfs(1, 1, k);
68
69
70
71
72
73
74
75
                  };
         int main() {
                  ios::sync_with_stdio(0);
cin.tie(0), Acc::work();
```