SISTEMÁTICA FILOGENÉTICA

MÓDULO INFERENCIA FILOGENÉTICA

Julián Aguirre-Santoro

Instituto de Ciencias Naturales Universidad Nacional de Colombia Oficina 223 Jaaguirresa@unal.edu.co

MATRICES PARA INFERENCIA FILOGENÉTICA

Comus	Transformation seriesa)														
Genus	A^{bj}	B _b)	Cp)	D	Е	F	G	Н	I	J	K	L	M	N	Op
Acuaria	2	0	0	0	0	0	0	1	0	1	0	0	0	0	0
Ancyracanthopsis	0	1	2	0	0	0	0	1	0	1	0	0	0	0	1
Cosmocephalus	4	0	0	0	1	0	1	1	0	0	0	0	0	0	0
Desportesius	3	0	0	0	1	0	1	1	0	0	2	1	0	0	0
Echinuria	3	0	0	0	0	1	0	1	0	0	2	0	0	0	0
Molinacuaria	0	0	2	0	0	0	0	1	2	0	0	0	0	0	1
Paracuaria	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0
Schistorophus	0	1	2	0	0	0	0	1	2	0	0	0	0	0	1
Sciadiocara	0	1	1	0	0	0	0	1	1	0	0	0	0	0	1
Seuratia	1	0	0	0	1	1	0	1	0	0	0	0	1	0	0
Skrjabinocerca	2	0	0	0	1	0	1	1	0	0	1	0	0	1	0
Skrjabinoclava	4	0	0	0	0	1	0	1	0	0	2	1	0	2	0
Sobolevicephalus	0	1	2	0	0	0	0	1	1	0	0	0	0	0	1
Stammerinema	3	0	0	0	0	1	0	1	0	0	1	0	0	0	0
Stegophorus	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0
Synhimantus	3	0	0	0	1	0	0	1	0	0	0	0	0	2	0
Tikusanema	1	0	0	1	1	0	0	1	0	0	0	0	1	2	0
Spiroxys ^{c)}	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1

Scarites	С	Т	Т	A	G	A	Т	С	G	Т	A	С	С	A	A	-	-	-	A	A	Т	A	Т	Т	A
Carenum	С	Т	Т	A	G	A	Т	c	G	Т	A	С	c	Ä	С	A	-	Т	A	С	-	Т	Т	т	A
Pasimachus	Α	т	Т	A	G	A	Т	С	G	Т	A	С	c	Ä	С	Т	A	Т	A	Ä	G	Т	Т	т	A
Pheropsophus	С	Т	Т	A	G	A	т	С	G	Т	Т	c	c	Ä	С	-	-	-	A	c	A	Т	A	Т	A
Brachinus armiger	Α	т	Т	A	G	A	Т	С	G	Т	A	c	c	A	С	-	-	-	A	Т	A	Т	A	Т	Т
Brachinus hirsutus	Α	Т	Т	A	G	A	Т	С	G	Т	A	c	c	A	С	-	-	-	A	Т	A	Т	A	Т	A
Aptinus	C	Т	Т	A	G	A	Т	С	G	Т	A	c	c	A	С	-	-	-	A	c	A	A	Т	Т	A
Pseudomorpha	c	Т	т	А	G	A	Т	c	G	Т	Α	c	c	_	_	_	_	-	A	c	А	А	A	Т	A

I. Selección de taxones

Pregunta I: ¿Cuales son las relaciones dentro de Carnivora?

Pregunta 2: ¿Los pinnipedos forman un grupo monofilético?

2. Lista de caracteres y estados de caracter

No.	Caracter	Estados
I	Ramificación de los maxiloturbinales	(0): Poco ramificado (1): Altamente ramificado
2	Forma del proceso paroccipital	(0): Erecto, (1): Convexo
3	# de incisivos inferiores	(0): 2, (1): 3:
4	Molar superior # I	(0): presente, (1): ausente
5	Baculum (hueso peniano)	(0): presente, (1): ausente
6	Cola	(0): Larga, (1): corta
7	Halux (quinto dígito en la parte trasera de la pierna)	(0): prominente, (1): reducido o ausente
8	Garras	(0): No retraíbles, (1): retraíbles
9	Glándula prostática	(0): pequeño y simple, (1): grande, bilobado
10	Estructura del riñón	(0): simple, (1): conglomerado
11	Orejas externas	(0): presente, (1): ausente
12	Posición de los testículos	(0): escrotal, (1): abdominal

3. Matriz morfológica codificada

	1 (4)	(21)	3 (32)	4 (45)	5 (52)	6 (54)	7 (56)	8	9 (59)	10 (60)	11 (61)	12 (62)	13 (40)	14 (50)	15 (51)	16 (1)	17 (2)	18	19 (24)	20 (26)
Outgroup	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cat	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	0
Hyena	0	1	0	1	0	0	1	0	1	0	0	0	1	1	1	1	0	0	0	0
Civet	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0
Dog	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Raccoon	1	0	0	0	1	0	0	0	0	0	0	0	0	.0	1	0	1	0	0	0
Bear	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	1
Otter	1	0	0	0	1	0	0	0	0	1	0	0	1	0	1	1	1	0	0	0
Seal	1	0	1	0	1	1	0	0	0	1	1	1	0	1	1	1	1	0	1	1
Walrus	1	0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	0	1	1	1
Sea lion	1	0	1	0	1	1	0	0	0	1	0	0	0	1	1	1	0	1	-1	1

Codificación de los caracteres

Codificación de los caracteres

Codificación de los caracteres

Codificación compuesta multiestado con una sola serie de transformación

1 ausente

2 redondo negro

3 redondo rojo

4 triángulo negro

5 triángulo rojo

A 1

3 2

3

) 4

E 5

Codificación de los caracteres

Codificación intermedia dos doble estado y uno de presencia

1 Presencia del atributo: (0) ausente, (1) presente

2 Color: rojo (0), negro (1)

3 Forma: circular (0), triangular (1)

_ _ A

3 1 1 0

C 1 0 1

D 1 1 0

E 1 0 1

Codificación de los caracteres

Codificación reductiva presencia ausencia de todas las condiciones

1 características presente (0), ausente (1)

2 rojo presente (0), ausente (1)

3 negro presente (0), ausente (1)

4 triángulo presente (0), ausente (1)

5 círculo presente (0), ausente (1)

1 2 3 4 5

B 0 0 1 1 0

0 1 0 1 0

D 0 0 1 0 1

E 01001

3. Matriz morfológica codificada

OTROS CÓDIGOS:

- Polimorfismos (12) o [12], (A)
- No aplicable: (–) o (9) o (?)
- Gap: (–); solo para ADN o
 AAs
- Faltante: (-) o (9) o (?)
- Ambiguedad (ADN): Código IUPAC

IUPAC Code	Mnemonic	Meaning	Complement
Α	Adenine	Α	Т
С	C ytosine	C	G
G	Guanine	G	С
T/U	Thymidine	Τ	Α
K	Keto	G or T	M
M	A m ino	AorC	K
S	S trong	CorG	S
W	W eak	A or T	W
R	Purine	AorG	Υ
Υ	P y rimidine	C or T	R
В	not A	CorGorT	\vee
D	not C	AorGorT	Н
Н	not G	AorCorT	D
V	not T and not U	JA or C or G	В
N	a n y	GorAorTorC	:N

```
#NEXUS
[
Data from:

Hayasaka, K., T. Gojobori, and S. Horai. 1988. Molecular phylogeny
    and evolution of primate mitochondrial DNA. Mol. Biol. Evol.
    5:626-644.
]
```

```
begin data;
  dimensions ntax=12 nchar=898;
  format datatype=dna interleave=no qap=-;
  matrix
```

Tarsius_syrichta
Lemur_catta
Homo_sapiens
Pan
Gorilla
Pongo
Hylobates
Macaca_fuscata
M_mulatta
M_fascicularis
M_sylvanus
Saimiri_sciureus

AAGCTTCACCGGCGCAACCACTCTTATAATTGCCCATGGCCTCACCTCCCCTATTATTTTTGCCTAGCA
AAGCTTCATAGGAGCAACCATTCTAATAATCGCCCACGGGCTTACATCATCCATATTATTTTTGCCTAGCC
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATTCTGCCTAGCA
AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCATCATTATTATTCTGCCTAGCA
AAGCTTCACCGGCGCAACCACCCCTCATGATTGCCCACGGACTTACATCATCATCATTATTATTCTGCCTAGCA
AAGCTTTACAGGTGCAACCACCCTCATGATTGCCCACGGACTCACCATCCTCCCTACTGTTCTGCCTAGCA
AAGCTTTTCCGGCGCAACCATCCTTATGATCGCCCACGGACTCACCTCTTCCATATATTTCTGCCTAGCC
AAGCTTTTCTGGCGCAACCATCCTTATGATTGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCC
AAGCTTCTCCGGCGCAACCACCCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTTCTGCCTAGCC
AAGCTTCTCCGGCGCAACCACCCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTTCTGCTTGGCC
AAGCTTCTCCGGCGCAACCACCCCTTATAATCGCCCACGGGCTCACCTCTTCCATATATTTCTGCTTGGCC
AAGCTTCTCCGGCGCAATGATCCTTATAATCGCCCACGGGCTTTACTTCCATATATTTCTGCCTAGCC
AAGCTTCCCCGGCGCAATGATCCTTATAATCGCCCACGGGTTTACTTCCCTTATACTTCTGCCTAGCA

end;

```
#NEXUS
[written Tue Mar 14 20:37:25 COT 2017 by Mesquite version 3.2 (build 801) at
Julians-MacBook-Pro.local/192.168.0.6]
BEGIN TAXA;
   TITLE Taxa;
   DIMENSIONS NTAX=12:
   TAXLABELS
      Tarsius_syrichta Lemur_catta Homo_sapiens Pan Gorilla Pongo Hylobates
Macaca fuscata M mulatta M fascicularis M sylvanus Saimiri sciureus
END;
BEGIN CHARACTERS;
   TITLE Character_Matrix;
   DIMENSIONS NCHAR=897;
   FORMAT DATATYPE = DNA GAP = - MISSING = ?;
   MATRIX
   Tarsius syrichta
```

```
#NEXUS
BEGIN DATA;
  DIMENSIONS NTAX=12 NCHAR=897;
  FORMAT DATATYPE = DNA GAP = - MISSING = ?;
  MATRIX
  Lemurcatta
              Homosapiens
              AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATTCTGCCTAGCAAACTCAAACTACGAACGCACT
              AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCATTATTATTCTGCCTAGCAAACTCAAATTATGAACGCACC
  Pan
              Gorilla
  Pongo
              Hylobates
              Macacafuscata
              AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCCAATTCAAACTATGAACGCACT
  Mmulatta
              AAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCCAATTCAAACTATGAACGCACT
  Mfascicularis
              AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTTCTGCTTGGCCAATTCAAACTATGAGCGCACT
  Msylvanus
              AAGCTTCTCCGGTGCAACTATCCTTATAGTTGCCCATGGACTCACCTCTTCCATATACTTCTGCTTGGCCAACTCAAACTACGAACGCACC
  ;
END:
begin mrbayes;
  set autoclose=yes nowarn=yes;
  lset nst=6 rates=invgamma;
  unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all);
  prset applyto=(all) ratepr=variable;
  mcmcp ngen= 10000000 relburnin=yes burninfrac=0.25 printfreq=1000 samplefreq=1000 nchains=4 savebrlens=yes;
  mcmc:
  sumt:
end;
```

Phyllip

12 897 Tarsius_sy AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCCCTATTATTTTTGCCTAGCAAATACAAAC Lemur_catt AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCCATATTATTCTGTCTAGCCAACTCTAAC Homo_sapie AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATTCTGCCTAGCAAACTCAAAC Pan AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCATTATTATTCTGCCTAGCAAACTCAAAT Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCATTATTATTCTGCCTAGCAAACTCAAACT AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCCCTACTGTTCTGCCTAGCAAACTCAAACT Pongo Hylobates AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCCCTGCTATTCTGCCTTGCAAACTCAAACT Macaca_fus AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCCAATTCAAAC M_mulatta AAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCCAATTCAAAC M_fascicul AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTTCTGCTTGGCCAATTCAAAC M_sylvanus AAGCTTCTCCGGTGCAACTATCCTTATAGTTGCCCATGGACTCACCTCTTCCATATACTTCTGCTTGGCCAACTCAAAC Saimiri sc AAGCTTCACCGGCGCAATGATCCTAATAATCGCTCACGGGTTTACTTCGTCTATGCTATTCTGCCTAGCAAACTCAAAT

```
xread
897 12
Tarsius_syrichta
                    AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCTCCCTATTATTTTTGCCTAGCA
Lemur_catta AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCATCCATATTATTCTGTCTAGCCAACTCTAA
Homo sapiens
                AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATTCTGCCTAGCAAACT
Pan AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCATTATTATTCTGCCTAGCAAACTCAAATTATGAAC
Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCATTATTATTCTGCCTAGCAAACTCAAACTAC
Pongo
        AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCCCTACTGTTCTGCCTAGCAAACTCAAACTAC
Hylobates
            AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCCCTGCTATTCTGCCTTGCAAACTCAAA
Macaca fuscata
               AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCCAATT
M mulatta
            AAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCATATATTTCTGCCTAGCCAATTCAAA
M fascicularis AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTTCTGCTTGGCCAATT
M_sylvanus AAGCTTCTCCGGTGCAACTATCCTTATAGTTGCCCATGGACTCACCTCTTCCATATACTTCTGCTTGGCCAACTCAAA
Saimiri sciureus
                    AAGCTTCACCGGCGCAATGATCCTAATAATCGCTCACGGGTTTACTTCGTCTATGCTATTCTGCCTAGCA
```

```
proc /;
comments 0
;
```

nstates dna;

XREAD O TNT

```
xread
'indel characters coded using 2xread using the "simple gap coding" method of SIMMONS, M. P
5800 168
A acicu J1
                        2-31302-1232210100232221232-312012212013122-----
A_allen_J68
                        2-31302-1232210100232221232-312012012013123-----
                        A_altoc_J80
A_amori_J2
                        2-31302-1232210100232221232-312010212013122-
A_amori_J81
                        2-31302-1232210100232221232-312010212013122-----01-002011032
A_ander_J147_T
                        ----02-1232210100232221232-312010212013122-----01-002011032
R_sp_no_J139
                        ----302-1232210100232221232-312012212013122-----01-002011032
cc - .;
proc/;
#
$
cn {0 sequence_1 A C G T /;
{1 sequence_2 A C G T /;
{2 sequence_3 A C G T /;
{3 sequence_4 A C G T /;
{4 sequence_5 A C G T /;
{5 sequence_6 A C G T /;
{6 sequence_7 A C G T /;
{7 sequence_8 A C G T /;
{8 sequence_9 A C G T /;
{9 sequence_10 A C G T /;
{10 sequence_11 A C G T /;
{11 sequence_12 A C G T /;
{12 sequence_13 A C G T /;
{13 sequence_14 A C G T /;
{14 sequence_15 A C G T /;
{15 sequence_16 A C G T /;
```