ANALYSIS OF ALGORITHMS

COMS2015

PRAVESH.RANCHOD@WITS.AC.ZA

COURSE STRUCTURE

- Lectures every Tuesday
- Labs and tutorials on Thursday and Friday
- Tutorials and labs will be mixed, and will be concurrent with Computer Networks
- Course will follow the structure laid out in the book

WHAT IS THIS COURSE ABOUT?

- Fundamentally a course on problem solving
- Logic Puzzle 1 Egg drop

You have two eggs of equal strength, and have access to a 100 storey building. You want to find out which floor is the highest one from which eggs can be dropped without breaking them. Can you come up with a strategy?

Now, try to do it using the least number of egg drops.

WHAT IS THIS COURSE ABOUT?

- Fundamentally a course on problem solving
- What constitutes a good solution to a problem?
 - Correctness
 - Efficiency
 - Generality
- Can we ensure these properties hold?

PROBLEM SOLVING

- Correctness
 - Proof Techniques
- Efficiency
 - Complexity Analysis
- Generality
 - Solve abstract rather than concrete problems

COURSE OUTLINE

- Complexity Analysis
- Graphs
- Problems
 - Scheduling
 - Matching
 - Path Planning
 - Project Planning
 - Fault Tolerance

COMPLEXITY ANALYSIS

- Relates problem size (n) to computation time
 - Why?
- Generally care about performance for large n
 - Why?
 - How does this affect analysis?
- How do we model:
 - Uncertainty?
 - Data characteristics?
- What data structures should we use? How do they affect complexity?

GRAPHS

- Made up of vertices (nodes) and edges
- What do they help with?
 - Examples of abstract solution
 - Colouring
 - Fault tolerance

IMPLEMENTATION

- You will be required to submit some of your tutorials online
- Labs will require you to implement solutions every week
 - Not a programming course, but lots of programming required
- Snake Assignment (http://snake.ms.wits.ac.za)
 - Competitive
 - Modified every year
 - Mark allocation
 - Templates provided for Java

TASK FOR NEXT WEEK

- Read Chapters 1 and 2
- Pay particular attention to Chapter 2
- If you don't fully understand them, that's ok, but read them anyway, as I will gloss over a lot of it in the next lecture assuming you have read it.