Recall. Every infinite subset of the real numbers is either countable or bijective with the whole of \mathbb{R} .

Equivalently: $2^{\aleph_0} = \aleph_1$ i.e. $\mathcal{P}(\mathbb{N})$ has size the first uncountable cardinal.

CH was first advanced by Cantor 1878

ZFC ⊬ ¬ CH (Gödel 1940)

ZFC ⊬ CH (Cohen 1963)

Cannot do: ZFC \vdash "ZFC \nvdash CH" \longrightarrow find a model for ZFC $+\neg$ CH \iff Con(ZFC $+\neg$ CH) By Gödel's Second Incompleteness Theorem: If ZFC is consistent then ZFC \nvdash Con(ZFC). instead: Con(ZFC) \implies Con(ZFC $+\neg$ CH) which we will show using ZFC and Con(ZFC) \implies Con(ZFC $+ \neg$ CH)

Definition. The language of set theory (LST) is the first order predicate language \mathcal{L}_{\in} which consists of the logical connectives and quantifiers $(\neg, \Longrightarrow, \lor, \land, \exists, \forall)$, parentheses, variable symbols v_0, v_1, \ldots , a logical binary predicates "=" abd a single non-logical binary predicate " \in ".

 $\operatorname{Con}(\operatorname{ZFC}) \implies \operatorname{ZFC}$ is satisfiable, i.e. there is an \mathcal{L}_{\in} -structure $(X, \underbrace{E}_{\subseteq X \times X})$ s.t. $(X, E) \models$

ZFC. We want a "nicer" model of ZFC.

Method 1. Assume the existence of an inaccessible cardinal κ . Then $(V_{\kappa}, \in) \models ZFC$.

Method 2. To show ZFC $+\neg$ CH is consistent, it is enough to show every finite subset is consistent. For every $\Sigma \subset \text{ZFC}$ finite find $(X, \in) \models \Sigma + \text{enough of ZFC}$ to prove what we need (where X is transitive).

Transform this into a model of $\Sigma + \neg CH$.

For a set X and $E \subseteq X \times X$, φ a sentence of LST we know frmo logic how to define the satisfaction relation $(X, E) \models \varphi$. To define this we used:

- Symbol set of the language
- define by recursion terms and formulae, free variables etc. / satisfaction
- set D, relations / functions on D, elements of D
- interpretation function maps from non-logical symbols of \mathcal{L} to $D/\mathcal{P}(D\times D)$
- Variable assignment from symbols to D

Definition. We define the reletivization of formulae of LST to a set W by recursion on formulae.

1.
$$(x \in y)_W := x \in y$$
 $(x = y)_W := x = y$

$$2. \ (\neg \varphi)_W := \neg \varphi_W \qquad \qquad (\varphi \land \psi)_W := \varphi_W \land \psi_W$$

3.
$$(\exists x : \varphi)_W := \exists x : (x \in W \land \varphi_W)$$

$$(\forall x : \varphi)_W \iff (\neg \exists x : \neg \varphi)_W$$

$$= \neg (\exists x : \neg \varphi)_W$$

$$= \neg \exists x : (x \in W \land (\neg \varphi)_W)$$

$$= \neg \exists x : (x \in W \land \neg \varphi_W)$$

$$= \forall x : \neg (x \in W \land \neg \varphi_W)$$

$$= \forall x : \neg x \in W \lor \varphi_W = \forall x : x \in W \longrightarrow \varphi_W$$

We claim that $(W, \in \upharpoonright W \times W) \models \varphi$ iff φ_W . We write (W, \in) for $(W, \in \upharpoonright W \times W)$.

Example. Extensionality: $(W, \in) \models$ Axiom of Extensionality:

(Ax. Ext.)_W =
$$(\forall x : \forall y : (\forall z : z \in x \longleftrightarrow z \in y) \longrightarrow x = y)_W$$

= $\forall x \in W : \forall y \in W : (\forall z \in W : z \in x \longleftrightarrow z \in y) \longrightarrow x = y$

If $W = \{\emptyset, \{\{\emptyset\}\}\}\$ then $(W, \in) \nvDash Ax$. Ext.

Proposition. If W is transitive then $(W, \in) \models Ax$. Ext.

Proof. Let W be transitive, $x, y \in W$ with $x \neq y$. Then there is some set z with $z \in x \leftrightarrow z \in y$. Wlog assume $z \in x, z \notin y$. Then $z \in W$ by transitivity of W.

Example. Axiom Empty set:

$$(W, \in) \models Ax$$
. Exmpty set $\iff (\exists x : x = \emptyset)_W$
 $\iff (\exists x : \forall y : y \notin x)_W$
 $\iff \exists x \in W : \forall y \in W : y \notin x \iff \exists x \in W : x \cap W = \emptyset$

Example. $W = \{\{\emptyset\}\}\$ Then $(W, \in) \models Ax$. Empty set even though $\emptyset \notin W$.

Proposition. If $W \neq \emptyset$ then $(W, \in) \models Ax$. Empty Set.

Proof. By the Axiom of Foundation there is $y \in W$ with $y \cap W = \emptyset$.

Definition. We say a formula φ is absolute for W if $FV(\varphi) \subseteq \{x_1, \ldots, x_n\}$ and

$$\forall x_1 \in W, \dots, \forall x_n \in W : (\varphi_W \leftrightarrow \varphi)$$

Lemma. The following formule are absolute for any transitive set W

1.
$$z = \emptyset$$

2.
$$x \subseteq y$$

$$\beta. \ z = x \cap y$$

4.
$$z = x \cup y$$

5.
$$z = \bigcup x$$

6.
$$z = \{x, y\}$$

7.
$$z = (x, y)$$

Proof. Let W be transitive

1. Let $z \in W$

$$z = \emptyset \iff \forall x : x \notin z \implies \forall x \in W : x \notin z \iff (z = \emptyset)_W$$

Also $x \in z \implies x \in W$ as W is transitive so we must also have " $\Leftarrow=$ "

2.

3. Let $x, y, z \in W$

$$z = x \cap y \iff \forall u : u \in z \leftrightarrow (u \in x \land u \in y) \implies \forall u \in W : u \in z \leftrightarrow (u \in x \land u \in y) \iff (z = x \cap y)_W$$
"\(\infty\) "follows as $u \in z \implies u \in W, u \in x \land u \in y \implies u \in W$

4.

5.

6. Let $x, y, z \in W$

$$z = \{x, y\} \iff \forall u(u \in z \leftrightarrow (u = x \lor u = y))$$

$$\implies \forall u \in W(u \in z \leftrightarrow (u = x \lor u = y)) \iff (z = \{x, y\})_W$$

7. Let $x, y, z \in W$

$$z = (x,y) \iff \exists u,v: z = \{x,y\} \land u = \{x\} \land v = \{x,y\}$$

 $\overset{W \text{trans.}}{\Longrightarrow} \exists u \in W : \exists v \in W : z = \{x, y\} \land u = \{x\} \land v = \{x, y\} \overset{6}{\Longleftrightarrow} (z = (x, y))_W$

" $\Leftarrow=$ " follows simply.

Example. $z = \mathcal{P}(x)$ abd $z = x \times y$ are <u>not absolute</u> for transitive sets. Let $W = \omega, 2 \in \omega$. $(\omega, \in) \models 3 = \mathcal{P}(2)$

 $x \times y = \{(a,b) \mid a \in x, b \in y\}$. W transitive then $x,y \in W \implies \text{such } a,b \in W, z = (a,b)$ is absolute for W but not all such ordered pairs may be in W.

If $z = W \cap (x \times y)$, $z \in W$ then $(W, \in) \models z = x \times y$

Lemma. If W is transitive and non-empty then it satisfies the axioms of extensionality, empty set and foundation.

Proof. We just have to show

(Ax. Foundation)_W
$$\iff$$
 $(\forall x : x \neq \emptyset \longrightarrow \exists y : (y \in x \land x \cap y = \emptyset))_W$
 $\iff \forall x \in W : (x \neq \emptyset \longrightarrow \exists y \in W : (y \in x \land x \cap y = \emptyset))$

using the absoluteness of Empty set and $x \cap y$. Let $x \in W, x \neq \emptyset$. Then by the Axiom of Foundation $\exists y : y \in x \land x \cap y = \emptyset$ so $y \in W$ by transitivity so $\exists y \in W (y \in x \land x \cap y = \emptyset)$

Lemma. For a limit ordinal $\alpha, (V_{\alpha}, \in)$ satisfies the axioms of pairing, union, powerset and the axiom schema of separation. If additionally $\alpha > \omega, V_{\alpha}$ satisfies the axiom of infinity.

Proof. Pairing: $(\forall x : \forall y : \exists z : z = \{x, y\})_{V_{\alpha}}$ iff $\forall x \in V_{\alpha} : \forall y \in V_{\alpha} : \exists z \in V_{\alpha} : z = \{x, y\}$. Let $x, y \in V_{\alpha}$, $\operatorname{rk}(\{x, y\}) = \max(\operatorname{rk}(x), \operatorname{rk}(y)) + 1 < \alpha$ so $\{x, y\} \in V_{\alpha}$

<u>Union</u>: $(\forall x : \exists z : z = \bigcup x)_{V_{\alpha}}$ iff $\forall x \in V_{\alpha} : \exists z \in V_{\alpha} : z = \bigcup x$ so we just need $x \in V_{\alpha} \implies \bigcup x \in V_{\alpha}$ which is true as $\operatorname{rk}(\bigcup x) \leq \operatorname{rk}(x) < \alpha$.

Powerset: $(\forall x : \exists y : \forall z : (z \in y \longleftrightarrow z \subseteq x))_{V_{\alpha}}$ iff $\forall x \in V_{\alpha} : \exists y \in V_{\alpha} : \forall z \in V_{\alpha} : (z \in y \longleftrightarrow z \subseteq x)$. $\operatorname{rk}(\mathcal{P}(x)) = \operatorname{rk}(x) + 1$ so $x \in V_{\alpha} \implies \mathcal{P}(x) \in V_{\alpha}$. Let $x \in V_{\alpha}, y = \mathcal{P}(x) \in V_{\alpha}$ then $\forall z : z \in y \longleftrightarrow z \subseteq x$ so in particular $\forall z \in V_{\alpha} : (z \in y \leftrightarrow z \subseteq x)$ i.e. $(y = \mathcal{P}(x))_{V_{\alpha}}$.

Infinity: Let $\alpha > \omega$. $(\exists x : (\emptyset \in x \land \forall y : (y \in x \longrightarrow y \cup \{y\} \in x)))_{V_{\alpha}}$ iff $\exists x \in V_{\alpha} : (\emptyset \in x \land \forall y \in V_{\alpha} : (y \in x \longrightarrow y \cup \{y\} \in x))$. Let $x = \omega$ then $x \in V_{\alpha}, \emptyset \in V_{\alpha}, \forall y : (y \in x \longrightarrow y \cup \{y\} \in x)$ so in particular $\forall y \in V_{\alpha} : (y \in x \longrightarrow y \cup \{y\} \in x)$

Separation: Let φ be a formula of LST with $x, y \notin FV(\varphi)$. Then

$$(\forall x : \exists y : y = x \cap \{z : \varphi\})_{V_{\alpha}} \iff (\forall x : \exists y : \forall z : z \in y \longleftrightarrow (\varphi \land z \in x))_{V_{\alpha}}$$
$$\iff \forall x \in V_{\alpha} : \exists y \in V_{\alpha} : \forall z \in V_{\alpha} : z \in y \longleftrightarrow \underbrace{(\varphi_{V_{\alpha}} \land z \in x)}_{\psi}$$

Let $x \in V_{\alpha}$. By the Axiom of Separation for $\psi \exists y : y = x \cap \{z : \varphi_{V_{\alpha}}\}$. Then $y \subseteq x$ so $\mathrm{rk}(y) \leq \mathrm{rk}(x) \implies y \in V_{\alpha}$ i.e. $\exists y \in V_{\alpha} : \forall z \in V_{\alpha} : (z \in y \longleftrightarrow (\varphi_{V_{\alpha}} \land z \in x))$

Proof. Axiom of Choice for a limit ordinal α . TODO

Theorem. For any inaccessiable cardinal κ $(V_{\kappa}, \in) \models ZFC$.

Proof. We've shown that for any limit ordinal $\alpha > \omega$ $(V_{\alpha}, \in) \models \text{All Axioms of ZFC except}$ Replacement. So we need to show $(V_{\kappa}, \in) \models \text{Ax. of Replacement.}$

Proposition (1). If κ is inaccessible $x \in V_{\kappa} \implies |x| < \kappa$.

Proposition (2). If κ is regular $x \subseteq V_{\kappa} \wedge |x| < \kappa \implies x \in V_{\kappa}$.

Recall that the Axiom of Replacement is actually an axiom schema, so fix $\varphi \in LST$ with $x, y \in FV(\varphi)$. We need to show ... TODO

Definition. Let $W \subseteq Z$ be sets or class terms and $\varphi \in \operatorname{Fml}_{\mathcal{L}_{\in}}$ with $\operatorname{FV}(\varphi) = \{x_1, \dots, x_n\}$. We say φ is upward (downward) absolute between W, Z if $\forall x_1, \dots, x_n \in W : (\varphi_W \longleftrightarrow \varphi_Z)$

Compare in model theory if \mathcal{N}, \mathcal{M} are \mathcal{L} -structures \mathcal{N} is a substructure of $\mathcal{M}, \mathcal{N} \subseteq \mathcal{M}$ iff $N \subseteq M$ and the interpretation function for \mathcal{N} is the restriction of the interpretation function of \mathcal{M} .

For $\varphi \in \mathcal{L}$, $FV(\varphi) = \{x_1, \dots, x_n\}$ $\mathcal{N} \leq_{\varphi} \mathcal{M}$ if $\forall a_1, \dots, a_m \in \mathbb{N} : \mathcal{N} \vDash \varphi(a_1, \dots, a_n) \iff \mathcal{M} \vDash \varphi(a_1, \dots, a_n)$

Definition. $\mathcal{N} \preceq \mathcal{M}$ is an elementary substructure of \mathcal{M} iff for all $\varphi \in \mathcal{L} : \mathcal{N} \preceq_{\varphi} \mathcal{M}$ In other context this says $(W, \in) \preceq (Z, \in)$ iff all $\varphi \in \text{Lst}$ are absolute between W, Z.

Definition. A list of formulae $\varphi_0, \varphi_1, \ldots$ is <u>subformula closed</u> if every subformula of a formula on the list is on the list.

Lemma (1). Let $\vec{\varphi}$ be a subformula closed list, $W \subseteq Z$. The following are equivalent:

- (i) $\vec{\varphi}$ are absolute for W, Z
- (ii) Whenever φ_i is of the form $\exists x : \varphi_j(x, \vec{y})$ with $\mathrm{FV}(\varphi_j) \subseteq \{\vec{y}\}$ then $\forall \vec{y} \in W : (\exists x \in Z : \varphi_j(x, \vec{y})_Z \longrightarrow \exists x \in W : \varphi_j(x, \vec{y})_W)$ i.e. φ_i is downward absolute between W, Z.

Proof. $(i) \implies (ii)$ is clear: Fix $\vec{y} \in W$ and assume $\varphi_i(\vec{y})_Z$ i.e. $(\exists x : \varphi_j(x, \vec{y}))_Z \iff \exists x \in Z : \varphi_j(x, \vec{y})$. Then by absoluteness of φ_i , $(\varphi_i(\vec{y}))_W$ so $\exists x \in W : (\varphi_j(x, \vec{y})_W)$. $(ii) \implies (i)$ by induction on the length of φ_i : so we assume as the lefthand side that absoluteness holds for subformulae.

- φ_i atomic by definition of absolute
- $\varphi_i = \varphi_j \wedge \varphi_k$ by IH φ_j, φ_k are absolute so by relativization φ_i is absolute. $\varphi_i = \neg \varphi_j$ similarly.
- $\varphi_i = \exists x : \varphi_j(x, \vec{y})$. Fix $\vec{y} \in W$. $\varphi_i(\vec{y})_W \iff^{def} \exists x \in W : \varphi_j(x, \vec{y})_W \iff^{IH} \exists x \in W : \varphi_j(x, \vec{y})_Z \iff \exists x \in Z : \varphi_j(x, \vec{y})_Z \iff \varphi_i(\vec{y})_Z$

Definition. A formula of \mathcal{L}_{\in} is Δ_0 iff it only uses bounded quantifiers i.e.

- $x \in y, x = y \text{ are } \Delta_0$
- If φ, ψ are Δ_0 so are $\neg \varphi, \varphi \wedge \psi$
- If φ is Δ_0 so is $\exists x \in y : \varphi$

Lemma (2). Let W be a transitive set. Then any Δ_0 formula is absolute for W.

Proof. By induction on the length of formulae using lemma 1. We just need to show that if φ is of the form $\exists x : (x \in a \land \psi(x, \vec{y}, a))$ then $\forall a \in W : \forall \vec{y} \in W : (\exists x : (x \in a \land \psi(x, \vec{y}, a)))_W$

So let $a, \vec{y} \in W$ and suppose $\exists x \in a : \psi(x, \vec{y}, a)$. ψ is Δ_0 as φ is Δ_0 and of length less than φ so by IH ψ is absolute for W i.e. $\psi(x, \vec{y}, a) \longrightarrow \psi(x, \vec{y}, a)_W$. Further as $a \in W, a \subseteq W$ so $x \in a \longleftrightarrow x \in W \cap a$. Thus $\exists x \in a : \psi(x, \vec{y}, a) \Longrightarrow \exists x \in W : (x \in a \land \psi(x, \vec{y}, a))$

Theorem (Downward Löwenheim-Skolem Theorem). Let \mathcal{M} be an infinite \mathcal{L} -structure. Fix a cardinal κ with $\max(|\mathcal{L}|, \aleph_0) \leq \kappa \leq |M|$ and let $S \subseteq M$ with $|S| \leq \kappa$. Then there is an $\mathcal{N} \preceq \mathcal{M}$ s.t. $S \subseteq N$ and $|N| = \kappa$.

Proof. We prove this for $\mathcal{L} = \mathcal{L}_{\in}$ and \in -models.

Fix M an infinite set and $\kappa \leq |M|$ and infinite cardinal and $S \subseteq M$ with $|S| \leq \kappa$. If $|S| < \kappa$ let $S' \subseteq M$ with $S \subseteq S'$ and $|S'| = \kappa$.

We use Lemma 1 to build up $S' \subseteq N \subseteq M$ with $(N, \in) \preceq (M, \in)$. Clearly, a list of all formulae in \mathcal{L}_{\in} is subformula closed. Let R be a well-ordering on M. For any existential formula $\varphi = \exists x : \psi$ let n_{φ} be $|\operatorname{FV}(\varphi)|$. We define a Skolem-function $f_{\varphi} : M^{n_{\varphi}} \to M$ as follows.

For $\vec{y} \in M^{n_{\varphi}}$, if $(M, \in) \models \exists x : \psi(x, \vec{y})$ then let $f_{\varphi}(\vec{y})$ be the R-least in M s.t. $(M, \in) \models \psi(f_{\varphi}(\vec{y}), \vec{y})$. If $(M, \in) \nvDash \exists x : \psi(x, \vec{y})$ set $f_{\varphi}(\vec{y}) = 0$. Now set $N_0 = S'$ and define by recursion $N_{i+1} = N_i \cup \{f''_{\varphi}N_i^{n_{\varphi}} \mid \varphi \in \mathcal{L}_{\in} \text{ s.t. } \varphi = \exists x : \psi \text{ for some } \psi\}$. Set $N = \bigcup_{i \in \omega} N_i$ Claim 1: $|N| = \kappa$. Clearly $|N| \ge \kappa$ as $|N_0| = \kappa$.

$$|N_1| \le |N_0| \oplus \sup_{n \in \omega} |N_0^n| \otimes \aleph_0 \le \kappa \otimes (\underbrace{\kappa \otimes \ldots \kappa}_n) \otimes \aleph_0$$

Similarly $|N_i| = |N_0| = \kappa$. Thus $|N| \le |N_0| \oplus |N_1| \oplus \cdots = \kappa \otimes \aleph_0 = \kappa$

Claim 2: $(N, \in) \preceq (M, \in)$: By Lemma 1 we just need to show that for any $\varphi = \exists x : \psi \forall y_1, \ldots, y_{n_{\varphi}} \in N : (\exists x \in M : \psi(x, \vec{y}))_M \longrightarrow \exists x \in N : \psi(x, \vec{y}_N)$. By induction on the length of formulae assume that ψ is absolute for M, N so let $\vec{y} \in N$ and assume $\exists x \in M : \psi(x, \vec{y})_M$. Then there must be some i s.t. $\vec{y} \in N_i$. Thus $f_{\varphi}(\vec{y}) \in N_{i+1} \subseteq N$ so $\psi(f_{\varphi}(\vec{y}), \vec{y})_M$ and by IH $\psi(f_{\varphi}(\vec{y}), \vec{y})_N$ Thus $\exists x \in N : \psi(x, \vec{y})_N$. Such an N is called a Skolem Hull of M. N is not transitive.

Definition. Let \mathcal{M} be an \mathcal{L} -structure, $X \subseteq M^n$ is <u>definable in \mathcal{M} </u> iff there is an \mathcal{L} -formula φ with n free variables s.t. for $a_1, \ldots, a_n \in M$ $\mathcal{M} \models \varphi(a_1, \ldots, a_n) \iff (a_1, \ldots, a_n) \in X$

 $\{\emptyset\}$ is definable in V_{λ} ; any hereditary finite set is definable in V_{λ}

Theorem (Montague-Levy Reflection Theorem). Let $\varphi_1, \ldots, \varphi_n$ be any finite list of formulae. Then ZFC $\vdash \forall \alpha : \exists \beta > \alpha(\vec{\varphi} \text{ are absolute for } V_{\beta})$

This is a theorem schema

If $\vec{\varphi}$ are all axioms of ZFC then ZFC $\vdash \forall \alpha : \exists \beta > \alpha : (\land \vec{\varphi})_{V_{\beta}}$

Proof. By lengthening the list if necessary assume it is subformula closed. For each $i \le n$ s.t. $\varphi_i = \exists x : \varphi_i$ define

$$F_i: V \to \text{On}$$

$$F_i(\vec{y}) = \begin{cases} 0 & \text{if } \neg \exists x : \varphi_j(x, \vec{y}) \\ \eta & \text{where } \eta \text{ is least s.t. } \exists x \in V_\eta : \varphi_i(x, \vec{y}) \end{cases}$$

Now define $G_i: \text{On} \to \text{On by } G_i(\gamma) = \sup\{F_i(\vec{y}) \mid \vec{y} \in V_\gamma\}$. G_i is well-defined by the Axiom of replacement $F_i''V_\gamma$ is a set of ordinals so its supremum is an ordinal.

Claim: $\forall \alpha : \exists \beta > \alpha : \lim(\beta) \land \forall \gamma < \beta : \forall i \leq n : G_i(\gamma) \leq \beta.$

Define by recursion $\lambda_0 = \alpha$, $\lambda_{k+1} = \max \{\lambda_k + 1, G_1(\lambda_k), \dots, G_n(\lambda_k)\}$, $\beta := \sup \{\lambda_k \mid k \in \omega\}$. Then $\lim(\beta)$ and if $\gamma < \beta$ then $\gamma < \lambda_k$ for some $k \in \omega$. Hence $G_i(\gamma) \leq G_i(\lambda_k) \leq \lambda_{k+1} < \beta$. Then apply Lemma 1 to V_{β} .

Theorem (Mostowski-Shepherdson Collapsing Lemma). Let W be a set and $R \subseteq W \times W$ be wellfounded s.t. $(W,R) \vDash Ax$. of Ext. i.e. $u,v \in W, u \neq W \longrightarrow \exists z \in W : zRu \longleftrightarrow \neg zRv$

Then there is a unique transitive set M and unique isomorphism $\pi:(W,R)\cong(M,\in)$ Additionally, if $Z\subseteq W$ with $R\upharpoonright W\times Z=\in \upharpoonright W\times Z$ and $v\in Z, u\in W$ with $uRv\longrightarrow u\in Z$ and Z is transitive then $\pi\upharpoonright Z=id\upharpoonright Z$

Proof. Claim 1: If π exists, it is unique.

Suppose we have π, M as above. Let $u, v \in W$. If uRv then $\pi(u) \in \pi(v)$ as π is an isomorphism. Then $\{\pi(u) \mid u \in W, uRv\} \subseteq \pi(v)$.

Further if $z \in \pi(v)$ then $z \in M$ by transitivitiy hence $z = \pi(x)$ for some $x \in W$ with xRv thus $\pi(v) \subseteq \{\pi(u) \mid u \in W, uRv\}$. Taken together $\pi(v) = \{\pi(u) \mid u \in W, uRv\}$, so if the isomrphism exists it must take this form.

Claim 2: Such a π exists.

Define by recursion on R

$$\pi(v) = \{\pi(u) \mid u \in W, uRv\} \tag{1}$$

Whis is this well defined? A R is wellfounded there is $x \in W$ s.t. $\forall y \in W : \neg yRx$. For such an x we have $\pi(x) = \emptyset$. Further for $W \setminus \{x\}$ there is $x' \in W \setminus \{x\}$ with $\forall y \in W \setminus \{x\} : \neg yRx'$ so $\pi(x') = \{\pi(u) \mid u \in W, uRx'\} = \{\pi(u) \mid u = x, uRx'\}$. π is clearly surjective.

Claim 3: π is injective:

Assume not and take $t \in$ -minimal s.t. there are $u \neq v \in W$ with $t = \pi(u) = \pi(v)$. As $u \neq v$ there is some $x \in W$ with $xRu \longleftrightarrow \neg xRv$. Wlog assume $xRu \land \neg xRv$. Then $\pi(x) \in \pi(u) = t$. So we must have that for some y with yRv $\pi(y) = \pi(x)$. But this contradicts the minimality of t.

Claim 4: π is orderpreserving

" \Longrightarrow " By (1) if uRv then $\pi(u) \in \pi(v)$.

" $\Leftarrow=$ " If $\pi(u) \in \pi(v)$ then for some $z \in W$ with $zRv \ \pi(z) = \pi(u)$. As π is injective z = u.

<u>Claim 5</u> (Also): Suppose for some $u \in X$ $\pi(u) \neq u$ and take $v \in$ -minimal such. Then

$$\pi(v) = \{\pi(u) \mid u \in W, uRv\}$$

$$= \{\pi(u) \mid u \in W, u \in v\}$$

$$= \{u \mid u \in v\} = v$$

Example. $(N, \in) \leq (V_{\kappa}, \in)$ with κ inaccessible, N countable. M is the collapse of (N, \in) . $\pi(\omega_1) = \omega_1^{ck}$ the least non-definable countable ordinal. $P(\omega) \in N : \pi(\mathcal{P}(\omega)) = {\pi(y) \mid y \in \mathcal{P}(\omega) \cap N} = \mathcal{P}(\omega) \cap N$

Example. If X, R is a wellorder then its transitive collapse is ot((X, R))

Example. We can code V_{ω} as a subset of ω i.e. there is $E \subseteq \omega^2$ s.t. $(\omega, E) \cong (V_{\omega}, \in)$ $M \vDash x = \mathcal{P}(\omega), \ x = \mathcal{P}(\omega)^M, \ M \vDash x$ is uncountable $\implies \pi(y) = y$. Let o(m) denote $Ord \cap M$ then $o(M) \in Ord$ is countable.

Here: (M, \in) countable transitive model of ZFC (ctm). Assume $M \models CH$

Definition (Poset). A forcing Poset is a triple $(\mathbb{P}, \leq, \mathbb{1})$ where \mathbb{P} is a set, \leq is a pre-order on \mathbb{P} i.e. transitive and reflexive and $\mathbb{1} \in \mathbb{P}$ is a largest element: $\forall p \in \mathbb{P} : p \leq \mathbb{1}$. Elements of \mathbb{P} are called forcing conditions.

 $p \leq q$: "p extends q"

Abuse notation: and use \mathbb{P} to refer to $(\mathbb{P}, \leq, 1)$.

Example. Normally we use partial orders \mathbb{P} . $\mathbb{1}$ ensures the ordering is connected. If it is a partial ordering then $\mathbb{1}$ is unique.

Definition. $p, q \in \mathbb{P}$ are compatible $(p \not\perp q)$ if $\exists r \in \mathbb{P}$ s.t. $r \leq p \land r \leq q$ i.e. they have a common extension.

 $p, q \in \mathbb{P}$ are incompatible $(p \perp q)$ iff they are not compatible.

Example. In a tree any two elements not along a branch are incompatible. In trees $(p \nleq q \land q \nleq p) \implies p \perp q$. This is not true in general.

Example. $(\mathcal{P}(\omega), \supseteq, \emptyset)$

Example. (Infinite subsetsets of $\omega, \subseteq^*, \omega$) with $p \subseteq^* q : \iff p \setminus q$ is finite. This is not a partial order e.g. $\omega \subseteq^* \{42, 43, \dots\}$ and $\omega \supseteq^* \{42, 43, \dots\}$. $p \perp q$ iff $p \cap q$ is finite

There is no least element.

Definition. Fn(I,J) for sets I,J is the set of all finite partial functions from I to J i.e. $\{p \subseteq I \times J \mid |p| < \omega, \operatorname{func}(p)\}$

The associated forcing poset has the order \supseteq and $\mathbb{1} = \emptyset$. $p \le q \iff p \supseteq q$ i.e. p extends q as a function.

 $p \not\perp q$ iff they have a common extension iff they are the same on $dom(p) \cap dom(q)$ iff $p \cup q \in Fn(I, J)$ and if so $p \cup q \leq p, p \cup q \leq q$.

 $p \in Fn(I,J) \longrightarrow$ a finite approximation of $f:I \to J$, p is a condition such an f must satisfy.

Definition. Let \mathbb{P} be a forcing poset. Then $D \subseteq \mathbb{P}$ is <u>dense</u> in \mathbb{P} if $\forall p \in \mathbb{P} : \exists q \in D : q \leq p$.

Example. Let I be infinite, $J \neq \emptyset$ then for $i \in I$ then $D_i := \{q \in Fn(I, J) \mid i \in \text{dom}(q)\}$ is dense.

Let $p \in Fn(I, J), i \in I$. If $i \in \text{dom}(p)$ then $p \in D_i$ otherwise set $q = p \cup \{(i, j)\}$ where $j \in J$ is arbitrary. Then $q \in Fn(I, J)$ and $q \leq p$ and $q \in D_i$.

Also for $j \in J$ the set $\{q \in Fn(I, J) \mid j \in ran(q)\}$ is dense.

not dense: $L = \{q \in Fn(I,J) \mid (i,j) \in q\}$ if $|J| \ge 2$. $j' \ne j, p = \{(i,j')\} \in Fn(I,J)$ and $\neg \exists q : q \le p$ and $q \in L$.

Definition. Let \mathbb{P} be a forcing proof. Then $G \subseteq \mathbb{P}$ is a <u>filter</u> on \mathbb{P} iff

- 1. $1 \in G$
- 2. $\forall p, q \in G : \exists r \in G : r \leq p \land r \leq q$
- 3. $\forall p \in G : \forall q \in \mathbb{P} : p \leq q \implies q \in G$

Note: If $G \neq \emptyset$ then $3 \implies 1$.

Example. $\{1\}$ is a filter if \mathbb{P} is a partial order

Example. $A \neq \emptyset, \mathbb{P} = \mathcal{P}(A) \setminus \{\emptyset\}, \leq = \subseteq. \mathbb{1} = A.$ $F \subseteq A$ is a filter:

- 1. $\iff A \in F$
- 2. \iff F closed under intersections
- 3. \iff F closed under superset

Example. For a tree, a filter is a line from the root that stops somewhere

Example. $\mathbb{P} = Fn(I, J), I$ infinite, $J \neq \emptyset$. If G is a filter on \mathcal{P} then any $p, q \in G$ agree on $dom(p) \cap dom(q)$ so setting $f_G := \bigcup G$ is a function with $dom(f_G) \subseteq I, ran(f_G) \subseteq J$. $D_i = \{p \in Fn(I, J) \mid i \in dom(p)\}$ is dense in \mathbb{P} so if $\forall i \in I : G \cap D_i \neq \emptyset$ then $f_G : I \to J$.

Notation. M is ctm (of ZFC), $\mathbb{P} \in M$ we write to mean $(\mathbb{P}, \leq, 1) \in M$.

Example. If $I, J \in M, M$ transitive and $M \models \text{ZFC}$ then $Fn(I, J) \in M$ as well as the ordering on this poset.

Definition. For a forcing poset \mathbb{P}, G is $\underline{\mathbb{P}}$ -generic over M iff G is a filter on \mathbb{P} and $G \cap D \neq \emptyset$ for all dense $D \subseteq \mathbb{P}$ s.t. $D \in M$.

Example. $Fn(\omega, 2), M$ a ctm for ZFC. Suppose G is \mathbb{P} -generic for M: $\omega \in M, 2 \in M, Fn(\omega, 2) \in M$. $D_i \in M$ for $i \in \omega$ thus $f_G : \omega \to 2$.

For each $h \in M$ with $h : \omega \to 2$ let $E_h = \{q \in \mathbb{P} \mid \exists n \in \omega \cap \operatorname{dom}(q) : q(n) \neq h(n)\}$. Then E_h is dense: Let $p \in \mathbb{P}$ with $h \upharpoonright \operatorname{dom}(p) = p$. $\operatorname{dom}(p)$ is finite, so we can pick $n \notin \operatorname{dom}(p)$ and set $q = p \cup \{(n, \neg h(n))\}$. Then $q \leq p$ and $q \in E_h$. Also $E_h \in M$ so $G \cap E_h \neq \emptyset$. Thus $f_G \neq h$. Thus $f_G \notin M$.

Lemma (Generic Filter existance). Let \mathbb{P} be any forcing poset, let $\{D_i \mid i \in \omega\}$ be a countable family of dense subsets of \mathbb{P} and $p \in \mathbb{P}$. Then there is a filter G on \mathbb{P} s.t. $p \in G$ and $G \cap D_i \neq \emptyset$ for $i \in \omega$.

Thus for any ctm M with $\mathbb{P} \in M$ and any $p \in \mathbb{P}$ there is a \mathbb{P} -generic filter G over M with $p \in G$.

Proof. By recurion and AC for each $n \in \omega$ choose $r_{n+1} \in \mathbb{P}$ s.t. $r_0 = p$ and $r_{n+1} \leq r_n$ and $r_{n+1} \in D_n$. At each step such r_{n+1} must exists as D_n is dense.

Set $G = \{q \in \mathbb{P} \mid \exists n \in \omega r_n \leq q\}$ then G is a filter: 1,3 are easy. For 2 let $p, q \in G$ then $\exists n, m \in \omega : p \geq r_n, q \geq r_m \text{ so } p \geq r_{max\{m,n\}} \in G, \ q \geq r_{max\{m,n\}} \in G$. Also $p \in G$, each $r_n \in G$ so $r_{n+1} \in G \cap D_n \neq \emptyset$.

Definition. $r \in \mathbb{P}$ is an atom of \mathbb{P} there are no $p, q \in r$ s.t. $p \perp q$. \mathbb{P} is atomless iff there are no atoms.

Example. $r \in \mathbb{P}$ with no extension is an atom

 $(\mathcal{P}(\omega),\subseteq,\omega)$ every element is an atom

linear order: all elements are atoms

A tree with branches at every node is atomless

 $Fn(I,J), J \neq \emptyset$ if I is finite has atoms. If I is infinite and $|J| \geq 2$ then Fn(I,J) is atomless

Lemma. If $\mathbb{P} \in M, M$ a ctm of ZFC, \mathbb{P} atomless and G is \mathbb{P} -generic over M then $G \notin M$

Proof. Let $D = \mathbb{P} \setminus G$. Then D is dense as if $r \in \mathbb{P}$ there are $p, q \leq r : p \perp q$. Then at least one of these must be in D.

If $G \in M$ then $D \in M$ by the axiom of separation in M. But as G is \mathbb{P} -generic over M we would have $D \cap G \neq \emptyset$.

Definition. τ is a $\underline{\mathbb{P}\text{-name}}$ iff τ is a set of ordered pairs s.t. $\forall (\sigma, p) \in \tau$ we have that σ is a \mathbb{P} -name and $p \in \mathbb{P}$ (Definition by recursion). $V^{\mathbb{P}}$ denotes the class of all \mathbb{P} -names.

 \emptyset is a \mathbb{P} -name, $\{(\emptyset, p), (\emptyset, 1)\}$ is a \mathbb{P} -name $(p, q \in \mathbb{P})$

For any set x look at the associated graph. Label each node in the tree with some element.

If M is a transitive model of ZFC with $\mathbb{P} \in M$ then $M^{\mathbb{P}} := V^{\mathbb{P}} \cap M = \{ \tau \in M \mid (\tau \text{ is a } \mathbb{P}\text{-name})_M \}$

Definition. For a \mathbb{P} -name τ and $G \subseteq \mathbb{P}$ define by recursion

$$val(\tau, G) = \tau_G := \{val(\sigma, G) \mid \exists p \in G : (\sigma, p) \in \tau\}$$

Then $M[G] := \{ \tau_G \mid \tau \in M^{\mathbb{P}} \}$ for a ctm M with $\mathbb{P} \in M$.

Example. $\emptyset_G = \emptyset$

If G is a filter, $\mathbb{1} \in G$, let $\tau = \{(\sigma, \mathbb{1}), (\theta, \mathbb{1})\}$ then $\tau_G = \{val(\sigma, G), val(\theta, G)\} = \{\sigma_G, \theta_G\}$. $\tau = \{(\emptyset, p), (\{\emptyset, q\}, r)\}, p, r \in G, q \notin G$ then $\tau_G = \{\emptyset_G, \{(\emptyset, q)\}_G\} = \{\emptyset, \emptyset\} = \{\emptyset\}$ $p, r \notin G, q$ does not matter: $\tau_G = \emptyset$ $p \notin G, r, q \in G$: $\tau_G = \{\{\emptyset\}\}$

We want to show that M[G] is the desired extension of M which contains G and everything else needed to ensure $M[G] \models \text{ZFC}$. More precisely we will show:

- (1) $M \subseteq M[G]$
- (2) $G \in M[G]$
- (3) M[G] is transitive and countable
- (4) $M[G] \models ZFC$
- (5) For any N with the above properties $N \supseteq M[G]$

For (i) we find for each $x \in M$ a name $\tau \in M^{\mathbb{P}}$, which for any filter G on \mathbb{P} satisfies $\tau_G = x$

Definition. For a forcing poset $(\mathbb{P}, \leq, \mathbb{1})$ and any set x define $\check{x} := \{(\check{y}, \mathbb{1}) \mid y \in x\}$ (definition by recursion)

Clearly \hat{x} is a \mathbb{P} -name

$$\check{2} = \{(\check{0}, 1), (\check{1}, 1)\} = \{(\emptyset, 1), (\{(\emptyset, 1)\}, 1)\}\$$

Lemma (1). Let G be a filter on $\mathbb{1}$. Then

- (i) $\forall x \in M : \check{x} \in M^{\mathbb{P}} \ and \ val(\check{x}, G) = x$
- (ii) $M[G] \supseteq M$

Proof. (ii) follows by definition from (i)

For (i) $\check{x} \in M$ by absoluteness and $val(\check{x}, G) = x$ by induction as $val(\check{x}, G) = \{val(\check{y}, G) \mid y \in x\}$

Lemma (3). For any filter G on \mathbb{P} , M[G] is transitive and countable.

Proof. Transitive: $x \in M[G]$ then $x = \tau_G$ for some $\tau \in M^{\mathbb{P}}$ so $\forall y \in x : y = \sigma_G$ for some $\sigma \in M^{\mathbb{P}}$ thus $y \in M^{\mathbb{P}}$

Countable:
$$|M[G]| \le |M^{\mathbb{P}}| \le |M| \le |M[G]|$$

Definition. Given \mathbb{P} , define $\Gamma := \{(\check{p}, p) \mid p \in \mathbb{P}\}$

$$\Gamma_G = \{ \check{p} \mid p \in G \} \stackrel{\text{lem 1}}{=} \{ p \mid p \in G \} = G$$

Hence we have

Lemma (2). $\Gamma \in M$ is a \mathbb{P} -name and $\Gamma_G = G$ hence $G \in M[G]$.

Proof. Γ is definable within M and clearly a \mathbb{P} -name.

Definition (Names for unordered and ordered pairs). $up(\sigma,\tau) := \{(\sigma,1),(\tau,1)\}$ $op(\sigma,\tau) := up(up(\sigma,\sigma),up(\sigma,\tau))$ Observe: $\sigma,\tau \in M^{\mathbb{P}} \implies up(\sigma,\tau),op(\sigma,\tau) \in M^{\mathbb{P}}$

Lemma (4). Let M, \mathbb{P} be as above and G a filter on \mathbb{P} . Then M[G] is a ctm of the axioms of Extenionality, Emptyset, Foundation, Pairing, Infinity and Union.

Proof. We have seen all transitive non-empty sets satisfy Emptyset, Extensionality and Foundation.

M[G] satisfies pairing by observing as $a, b \in M[G] \implies$ there is $\sigma, \tau \in M^{\mathbb{P}}$ s.t. $\tau_G = a, \sigma_G = b$. Then by above $up(\sigma, \tau) \in M^{\mathbb{P}}$ and $(up(\sigma, \tau))_G = {\sigma_G, \tau_G} = {a, b}$.

M[G] satisfies the Axiom of Infinity as $\omega \in M[G]$ and absoluteness.

Union: Let $a \in M[G]$. Fix $\tau \in M^{\mathbb{P}}$ s.t. $a = \tau_G$.

set $\pi = \{(\theta, p) \mid \exists (\sigma, q) \in \tau, \exists r \in \mathbb{P} : ((\theta, r) \in \sigma \land p \le r \land p \le q)\}$

Claim. $\bigcup a = b := \pi_G$

 \subseteq : Let $d \in \bigcup a$ then $\exists q \in G : \exists \sigma : (\sigma, q) \in \tau$ and $d \in \sigma_G$. Thus there is also $r \in G, \theta$ s.t. $(\theta, r) \in \sigma$ and $\theta_G = d \in \pi_G$

 \supseteq : Let $d \in \pi_G$. Then $\exists p \in G, \exists \theta \text{ s.t. } (\theta, p) \in \pi \text{ and } \theta_G = d, p \leq r, p \leq q \implies \theta_G \in \sigma_G$ and $\sigma_G \in \tau_G = a \implies \theta_G \in \bigcup a$

Example. $\mathbb{P} = Fn(I,J), I, J \in M, G$ a filter then $\bigcup G$ is a function. We have a name Γ for G so we cann write a name for $\bigcup G$ as above. But there is a much more natural name for $\bigcup G$.

$$\mathring{f} = \left\{ (op(\check{(i)},\check{(j)}),p) \mid p \in \mathbb{P} \land (i,j) \in p \right\}$$

We have seen $P, G \in M[G]$. What about $\mathbb{P} \setminus G =: C$?

Candidate name $\check{C} = \{(\check{p}, q) \mid p, q \in \mathbb{P}, p \perp q\}$

 $\mathring{C}_G = \{ p \in \mathbb{P} \mid \exists q \in G : p \perp q \}.$ As all elements of a filter aare compatible: $\mathring{C}_G \cap G = \emptyset$ Do we have $G \cup \mathring{C}_G = \mathbb{P}$?

Let $p \in \mathbb{P}$ set $D_p = \{q \in \mathbb{P} \mid p \perp q \lor q \leq p\}$. $D_p \in M$ and D_p is dense $(r \in \mathbb{P}, r \perp p \implies r \in D_p$ otherwise $\exists q \in \mathbb{P} : q \leq r, q \leq p \implies q \in D_p)$

If G is generic we find $q \in G \cap D_p \implies q \in D_p$

If $q \perp p$ then $p \in \mathring{C}_G$. If $q \leq p$ then $p \in G \longrightarrow$ is complement.