Truthful Auction for Dynamic Spectrum Acces

December 7, 2011

Static Spectrum allocation

Precious resource in wireless networks: Spectrum!

- Introduction
 - Static Spectrum allocation

Precious resource in wireless networks: Spectrum!

Some everyday uses of the radio frequency spectrum

Sources: New America Foundation, FCC

The Boston Globe

Figure: In 2007, \$19 billion for 700 MHZ!

- Introduction
 - Static Spectrum allocation

Precious resource in wireless networks: Spectrum!

Some everyday uses of the radio frequency spectrum

Figure: In 2007, \$19 billion for 700 MHZ!

Expensive?

Precious resource in wireless networks: Spectrum!

Some everyday uses of the radio frequency spectrum

Figure: In 2007, \$19 billion for 700 MHZ!

Expensive? Real bargin! In 2010, \$120 billion for 300 MHZ!

Why is spectrum so precious?

Static Spectrum allocation

Why is spectrum so precious? (Cont.)

Static spectrum allocation

Seller:

☐ Static Spectrum allocation

Static spectrum allocation

Static Spectrum allocation

Figure: Under-utilized spectrum of licensed users.

└ Static Spectrum allocation

Static Spectrum allocation

Current status: static spectrum allocation into two types,

■ Licensed spectrum, *e.g.*, reserved as military, TV and paging frequencies;

- Licensed spectrum, e.g., reserved as military, TV and paging frequencies;
- Unlicensed spectrum, *e.g.*, shared by computer networking, sensor networks, RFID and ultra-wideband devices.

- Licensed spectrum, e.g., reserved as military, TV and paging frequencies; Under-utilized!
- Unlicensed spectrum, *e.g.*, shared by computer networking, sensor networks, RFID and ultra-wideband devices.

- Licensed spectrum, e.g., reserved as military, TV and paging frequencies; Under-utilized!
- Unlicensed spectrum, e.g., shared by computer networking, sensor networks, RFID and ultra-wideband devices. Congested!

Dynamic spectrum access

Cognitive radio technology: dynamic spectrum access,

└─Dynamic spectrum access

Cognitive radio technology: dynamic spectrum access,

■ Let the secondary (unlicensed) user to get the licensed spectrum when the primary (licensed) users are idle;

Cognitive radio technology: dynamic spectrum access,

- Let the secondary (unlicensed) user to get the licensed spectrum when the primary (licensed) users are idle;
- Increase the efficiency of spectrum.

Dynamic spectrum access

Two types of dynamic spectrum access:

Opportunistic access: spectrum sensing;

└─Dynamic spectrum access

Two types of dynamic spectrum access:

- Opportunistic access: spectrum sensing;
- Negotiated access: *e.g.*, auction-based.

Figure: Spectrum Market Structure.

Spectrum auction:

 Incentives for primary users to share idle spectrum resource;

- Incentives for primary users to share idle spectrum resource;
- Fairness: each one has equal chance;

- Incentives for primary users to share idle spectrum resource;
- Fairness: each one has equal chance;
- Efficient: allocate the good to who value them most.

Dynamic spectrum access

Spectrum auction

lacksquare Per-channel true value v_i

- lacktriangle Per-channel true value v_i
- lacktriangle Channel request d_i

- lacktriangle Per-channel true value v_i
- lacksquare Channel request d_i
- lacksquare Per-channel bid b_i

- lacktriangle Per-channel true value v_i
- lacksquare Channel request d_i
- \blacksquare Per-channel bid b_i
- lacksquare Clearing price p_i

- lacktriangle Per-channel true value v_i
- lacksquare Channel request d_i
- lacksquare Per-channel bid b_i
- lacksquare Clearing price p_i
- Bidder utility $u_i = v_i \cdot d_i p_i$ if i win the auction, and 0 otherwise.

□ Dynamic spectrum access

Definition (Truthful Auction)

A truthful auction is on in which no bidder i can obtain higher utility u_i by setting $b_i \neq v_i$.

└─Dynamic spectrum access

Merits of truthfulness:

- To bidder:
 - Eliminate the expensive overhead of playing strategically with other bidders;
 - Prevent market manipulation.

└─Dynamic spectrum access

Merits of truthfulness:

- To bidder:
 - Eliminate the expensive overhead of playing strategically with other bidders;
 - Prevent market manipulation.
- To auctioneer:
 - Encourage bidders to reveal their true values;
 - Increase its revenue by assigning spectrum to bidders valuing it most.

Two conventional truthful auctions

Conventional truthful auctions are not suitable:

- Fail to be truthful;
- Or, computationally prohibitive.

Conventional truthful auctions are not suitable:

- Fail to be truthful;
- Or, computationally prohibitive.

Reason: unlike good (e.g., paintings, bonds, electricity), spectrum is reusable among non-conflicting bidders. Optimal channel allocation is a maximum-weighted independent set problem (NP-hard).

Figure: Example on spectrum allocations. (Left) The conflict graph with 3 bidders; (Right) The optimal spectrum allocation with 2 channels.

Two conventional truthful auctions

Secondary pricing spectrum auction:

Allocation:

- Allocation:
 - Step 1:
 - Sort the bids in descending order;

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - lacksquare Set each bidder's available channel set as 1 to k.

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - \blacksquare Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If non-empty available channel set at the first bidder i in the sorted list, allocate one channel to i;

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - \blacksquare Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If non-empty available channel set at the first bidder i in the sorted list, allocate one channel to i;
 - The allocated channel is the lowest indexed one in *i*'s available channel set:

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - \blacksquare Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If non-empty available channel set at the first bidder i in the sorted list, allocate one channel to i;
 - The allocated channel is the lowest indexed one in i's available channel set:
 - Remove i from the list, remove m from i's conflicting neighbors' available channel sets.

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - \blacksquare Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If non-empty available channel set at the first bidder i in the sorted list, allocate one channel to i;
 - The allocated channel is the lowest indexed one in i's available channel set:
 - Remove i from the list, remove m from i's conflicting neighbors' available channel sets.
 - Repeat 2 until all bidders are considered.

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If non-empty available channel set at the first bidder i in the sorted list, allocate one channel to i;
 - The allocated channel is the lowest indexed one in i's available channel set:
 - Remove i from the list, remove m from i's conflicting neighbors' available channel sets.
 - Repeat 2 until all bidders are considered.
- Pricing for winner *i*: the highest price of its unallocated conflicting neighbors. 0 if there is no such neighbor.

					b: СН2		
O			—	<u> </u>			—
u=5	u=3	u=0	u=1	u=5	u=4	u=1	u=2
b=5	b=4	b=1	b=2	b=5	b=4	b=3	b=2
v=5	v=4	v=1	v=2	v=5	v=4	v=1	v=2

Figure: Example with secondary pricing. (Left) All bidders truthfully bid; (Right) Bidder c improves its utility by bidding higher than its true value.

Two conventional truthful auctions

VCG-style spectrum auction:

■ Allocation: the same with seconday pricing spectrum auction.

Two conventional truthful auctions

VCG-style spectrum auction:

- Allocation: the same with seconday pricing spectrum auction.
- Pricing for winner i: the bid of its first rejected neighbor who would have been allocated if i were absent from the auction.
 0 if there is no such neighbor.

Figure: Example with VCG. (Left) All bidders truthfully bid; (Right) Bidder c improves its utility by bidding higher than its true value.

-Auction Design

VERITAS 1

Allocation:

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If size of available channel set is larger than d_i at the first bidder i in the sorted list, allocate d_i channels to i;

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If size of available channel set is larger than d_i at the first bidder i in the sorted list, allocate d_i channels to i;
 - The allocated channels are the lowest indexed ones in i's available channel set;

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If size of available channel set is larger than d_i at the first bidder i in the sorted list, allocate d_i channels to i;
 - The allocated channels are the lowest indexed ones in i's available channel set;
 - Remove i from the list, remove allocated channels from i's conflicting neighbors' available channel sets.

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If size of available channel set is larger than d_i at the first bidder i in the sorted list, allocate d_i channels to i;
 - The allocated channels are the lowest indexed ones in i's available channel set;
 - Remove i from the list, remove allocated channels from i's conflicting neighbors' available channel sets.
 - Repeat 2 until all bidders are considered.

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*

- Allocation:
 - Step 1:
 - Sort the bids in descending order;
 - Set each bidder's available channel set as 1 to k.
 - Step 2:
 - If size of available channel set is larger than d_i at the first bidder i in the sorted list, allocate d_i channels to i;
 - The allocated channels are the lowest indexed ones in i's available channel set:
 - Remove i from the list, remove allocated channels from i's conflicting neighbors' available channel sets.
 - Repeat 2 until all bidders are considered.
- Pricing for winner i: the bid of its *critical neighbor* multiplied by d_i . 0 if there is no such neighbor.

¹X. Zhou, S. Gandhi, S. Suri and H. Zheng. *eBay in the Sky:*Strategy-Proof Wireless Spectrum Auctions. In Proc. of ACM MobiCom'08.

Definition (Critical Neighbor)

Given $\{B/b_i\}^2$, a critical neighbor C(i) of bidder i is a bidder in N(i) where if i bids lower than C(i), i will not be allocated, and if i bids higher than C(i), i will be allocated.

☐ Truthfulness

Lemma (Monotonic Allocation 1)

If any bidder i is allocated by bidding b_i^1 , it will also be allocated if it bids b_i^2 , where $b_i^2 > b_i^1$ (provided all the other bids and channel demands remain the same).

└─VERITAS Auction
└─Truthfulness

└─ Truthfulness

Lemma (Monotonic Allocation 2)

If any bidder i is rejected by bidding b_i^2 , it will also be rejected if it bids b_i^1 , where $b_i^2 > b_i^1$ (provided all the other bids and channel demands remain the same).

__ Truthfulness

Lemma (Critical Neighbor/Value)

For any bidder i, if i would be rejected by bidding some value, then there exists a unique position in the sorted bid list, such that if i's bid is placed before that position i will win, and if i's bid is placed after that position it will lose. Moreover, that position is occupied by one of i's neighbors in $N(i)^3$.

 $^{^{3}}N(i)$ is the neighbor of i in the conflict graph

Lemma

For each winner i in VERITAS, its clearing price is less than (or equal to) its submitted bid b_i multiplied by the number of requested channels d_i .

☐ Truthfulness

Lemma

For each winner i in VERITAS, its clearing price is less than (or equal to) its submitted bid b_i multiplied by the number of requested channels d_i .

Proof by two cases:

- *i* always win: charged by 0;
- Otherwise: charged by critical value, $\leq b_i$.

Theorem (Truthfulness)

VERITAS spectrum auction is truthful.

Cases	1	2	3	4
i bids b_i	Х	X		
i bids v_i	Χ		X	

If
$$b_i > v_i$$
:

If
$$b_i < v_i$$
:

Cases	1	2	3	4
i bids b_i	X	X		$ \sqrt{ }$
i bids v_i	Χ		X	

Table: Four possible allocation results.

If
$$b_i > v_i$$
:

If
$$b_i < v_i$$
:

• Case 1: Both bids lose; $u_i^t = u_i^d = 0$.

Cases	1	2	3	4
i bids b_i	X	X		
i bids v_i	Χ		X	

If
$$b_i > v_i$$
:

If
$$b_i < v_i$$
:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: Not happen based on Lemma Monotonic Allocation.

Cases	1	2	3	4
i bids b_i	Х	X		
i bids v_i	Χ		Χ	

If
$$b_i > v_i$$
:

If
$$b_i < v_i$$
:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: Not happen based on Lemma Monotonic Allocation.
- Case 3: i's critical value is larger than v_i ; so $u_i^d < 0 = u_i^t$.

Cases	1	2	3	4
i bids b_i	X	X		
i bids v_i	Χ		X	

If
$$b_i > v_i$$
:

If
$$b_i < v_i$$
:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: Not happen based on Lemma Monotonic Allocation.
- Case 3: i's critical value is larger than v_i ; so $u_i^d < 0 = u_i^t$.
- Case 4: Both bids win and are charged with critical value; so u^d_i = u^t_i.

Cases	1	2	3	4
i bids b_i	X	X		
i bids v_i	Χ		Χ	

Table: Four possible allocation results.

If
$$b_i > v_i$$
:

■ Case 1: Both bids lose;
$$u_i^t = u_i^d = 0$$
.

- Case 2: Not happen based on Lemma Monotonic Allocation.
- Case 3: i's critical value is larger than v_i ; so $u_i^d < 0 = u_i^t$.
- Case 4: Both bids win and are charged with critical value; so u^d_i = u^t_i.

If
$$b_i < v_i$$
:

■ Case 1: Both bids lose; $u_i^t = u_i^d = 0$.

Cases	1	2	3	4
i bids b_i	Х	X		
i bids v_i	Χ		Χ	

Table: Four possible allocation results.

If $b_i > v_i$:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: Not happen based on Lemma Monotonic Allocation.
- Case 3: i's critical value is larger than v_i ; so $u_i^d < 0 = u_i^t$.
- Case 4: Both bids win and are charged with critical value; so u^d_i = u^t_i.

If $b_i < v_i$:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: i's critical value is lower than v_i ; so $0 = u_i^d \le u_i^t$.

Cases	1	2	3	4
i bids b_i	Х	Х		
i bids v_i	Χ		X	

Table: Four possible allocation results.

If $b_i > v_i$:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: Not happen based on Lemma Monotonic Allocation.
- Case 3: i's critical value is larger than v_i ; so $u_i^d < 0 = u_i^t$.
- Case 4: Both bids win and are charged with critical value; so u^d_i = u^t_i.

If $b_i < v_i$:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: i's critical value is lower than v_i ; so $0 = u_i^d \le u_i^t$.
- Case 3: Not happen based on Lemma Monotonic Allocation.

Cases	1	2	3	4
$i \text{ bids } b_i$	X	X	1/	1/
i bids v_i	Χ		X	$\sqrt{}$

Table: Four possible allocation results.

If $b_i > v_i$:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: Not happen based on Lemma Monotonic Allocation.
- Case 3: i's critical value is larger than v_i ; so $u_i^d < 0 = u_i^t$.
- Case 4: Both bids win and are charged with critical value; so u^d_i = u^t_i.

If $b_i < v_i$:

- Case 1: Both bids lose; $u_i^t = u_i^d = 0$.
- Case 2: i's critical value is lower than v_i ; so $0 = u_i^d \le u_i^t$.
- Case 3: Not happen based on Lemma Monotonic Allocation.
- Case 4: Both bids win and are charged with critical value; so $u_i^d = u_i^t$.

Summary

One way to design truthful auction for dynamic spectrum access:

■ Monotonic Allocation;

__ Truthfulness

Summary

One way to design truthful auction for dynamic spectrum access:

- Monotonic Allocation;
- Critical Neighbor/ Value.

___ Truthfulness

Thank You!

Q&A