Functional Forms and Dummies

Panel Data Econometrics
Prof. Alexandre Gori Maia
State University of Campinas

Topics

Functional Forms

Binary Variables

Binaries in logarithmic models

Reference

Maia, A. G. 2014. Econometria: conceitos e aplicações. Insittuto de Economica. Caps. 1 a 8.

Linear Relation

- When the relation between Y and X is non-linear, we can transform the variables to obtain a linear relation;
- The type of transformation (functional form) depends on the (i) theoretical assumptions; (ii) distribution of the variables;

Functional Forms - Examples

1) Linear model:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

2) Log-log model:

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + e_i$$

3) Log-lin model:

$$ln(Y_i) = \beta_0 + \beta_1 X_i + e_i$$

4) Lin-log model:

$$Y_i = \beta_0 + \beta_1 ln(X_i) + e_i$$

Linear Model - Interpretation

- The linear model assumes that absolute changes in X imply in absolute changes in Y;
- The marginal variation in Y is the same for all values of X;

$$E[Y/0] = \alpha + \beta(0) = \alpha$$

 α is the expected value of Y when X=0

$$\frac{\Delta Y}{\Delta X} = \frac{dY}{dX} = \frac{d(\alpha + \beta X)}{dX} = \beta$$

 β is the marginal variation in $Y(\Delta Y)$ for each unit variation in $X(\Delta X=1)$.

Log-lin Model - Interpretation

- The log-lin model assumes that absolute changes in X imply in relative changes (%) in Y;
- The absolute change in Y is different for each value of X;
- For example, a change of 0,01 in ln(Y) means a change of 1% in Y;

Log-Lin Model - Example

What is the marginal return of education?

Assuming that the wage (Y, in monthly R\$) grows exponentially with the years of education (X):

$$ln(Y_i) = \beta_0 + \beta_1 X_i + e_i$$

And a sample estimate:

$$ln(Y_i) = 6,006 + 0,121X_i + \hat{e}_i$$

We can expect that, for each additional year of education ($\Delta X=1$), the wage grows by 12,1% ($\Delta Y=0,121\ Y_i$).

Log-Log Model - Interpretation

- The log-log model assumes that relative changes (%) in X imply in relative changes (%) in Y;
- The beta coefficient can be interpreted as a constant elasticity between Y and X, i.e., the percentage change in Y for 1% change in X.

If
$$\Delta \ln(X) = \frac{\Delta X}{X_i}$$
 and $\Delta \ln(Y) = \frac{\Delta Y}{Y_i}$ then

$$\beta = \frac{\Delta \ln(Y)}{\Delta \ln(X)} = \frac{\Delta Y / Y_i}{\Delta X / X_i}$$

Example – Stata

Adjusting logarithmic models in Stata:

```
* create log variables
generate lnco2 = log(co2)
generate lngdp = log(gdp)

* linear regression
regress co2 gdp ind

* log-lin regression
regress lnco2 gdp ind

* lin-log regression
regress co2 lngdp ind

* log-log model
regress lnco2 lngdp ind
```

Example – R

Adjusting logarithmic models in R:

```
# create log variables
countries$1nco2 <- log(countries$co2)</pre>
countries$lngdp <- log(countries$gdp)</pre>
# linear model
linear <- lm(co2 ~ gdp + ind, data=countries)
summary(linear)
# log-lin model
loglin <- lm(lnco2 \sim gdp + ind, data=countries)
summary(loglin)
# lin-log model
linlog <- lm(co2 ~ lngdp + ind, data=countries)</pre>
summary(linlog)
# log-log model
loglog <- lm(lnco2 ~ lngdp + ind, data=countries)</pre>
summary(loglog)
```

Example - Python

Adjusting logarithmic models in Python:

```
# modeulo for mathematical (log) operations
import numpy as np
# creating log variables
countries['lnco2'] = countries['co2'].apply(np.log)
countries['lngdp'] = countries['gdp'].apply(np.log)
# linear model
x = countries[['qdp','ind']]
v = countries['co2']
x = sm.add constant(x)
linear = sm.OLS(y, x).fit()
print(linear.summary())
# log-lin model
x = countries[['qdp','ind']]
v = countries['lnco2']
x = sm.add constant(x)
loglin = sm.OLS(y, x).fit()
print(loglin.summary())
# lin-log model
x = countries[['lngdp','ind']]
v = countries['co2']
x = sm.add constant(x)
linlog = sm.OLS(y, x).fit()
print(linlog.summarv())
 # log-log model
x = countries[['lngdp','ind']]
y = countries['lnco2']
x = sm.add constant(x)
loglog = sm.OLS(y, x).fit()
print(loglog.summary())
```

Binary Variables – 2 Categories

- In order to represent two nominal categories (A and B) as independent variables in a regression, we only need one binary variable (D).
- The reference of analysis is given by D=0;

$$Y_i = \alpha + \beta_1 X_i + \beta_2 D_i + e_i$$

The coefficient β_2 shows the difference between the expected values of Y for the category A (D=1) and the reference category B (D=0).

Category	D_i
A	1
В	0

For A: $Y_i = (\alpha + \beta_2) + \beta_1 X_i + e_i$

For B: $Y_i = \alpha + \beta_1 X_i + e_i$

Binary Variables – k Categories

 In order to represent k nominal categories, we need k-1 binary variables.

The reference of analysis is the nominal category without a binary

variable;.

$$Y_{i} = \alpha + \beta_{1}X_{i} + \beta_{2}D_{1_{i}} + \beta_{3}D_{2_{i}} + e_{i}$$

The coefficient β_2 shows the difference between the expected values of Y for the category A $(D_I=1)$ and the reference category C $(D_I=0)$ and $D_2=0)$.

The coefficient β_3 shows the difference between the expected values of Y for the category B $(D_2=1)$ and the reference category C.

Category	D_{1i}	D _{2i}
A	1	0
В	0	1
С	0	0

For A: $Y_i = (\alpha + \beta_2) + \beta_1 X_i + e_i$

For B: $Y_i = (\alpha + \beta_3) + \beta_1 X_i + e_i$

For C: $Y_i = \alpha + \beta_1 X_i + e_i$

Binary Variables – Example

The sample refers to the 164 thousand labors in Brazil in 2011:

Root MSE	1960.28180	R-Square	0.1549
Dependent Mean	1294.58777	Adj R-Sq	0.1548
Coeff Var	151.42131		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-1340.83445	28.34673	-47.30	<.0001
anosest	1	164.28765	1.23027	133.54	<.0001
idade	1	33.83255	0.40005	84.57	<.0001
feminino	1	-616.38468	10.41720	-59.17	<.0001
branca	1	367.53558	18.00818	20.41	<.0001
parda	1	38.28339	17.67321	2.17	0.0303
amarela	1	618.12772	73.00807	8.47	<.0001
no	1	-18.11296	18.86931	-0.96	0.3371
ne	1	-149.30862	16.49369	-9.05	<.0001
se	1	64.90085	15.35264	4.23	<.0001
со	1	325.01732	19.36538	16.78	<.0001

Suppose the initial model

$$renda_i = \alpha + \beta_1 anosest_i + \beta_2 idade_i + e_i$$

Including a binary for sex:

feminino = 1, se mulher; 0 se homen

Including binaries for race (black is the reference):

branca = 1, $se\ cor\ branca$; 0 c.c.

parda = 1, se cor parda; 0 c.c.

amarela = 1, se cor amarela; 0 c.c.

Including binaries for region (South is the reference):

no = 1, se região norte; 0 c.c.

ne = 1, se região nordeste; 0 c.c.

se = 1, se região sudeste; 0 c.c.

co = 1, se região centro – oeste; 0 c.c.

Binaries in Logarithimic Models

Suppose the log-lin model:

- Where Y_1 is the expected value of Y when D=1 and Y_0 when D=0;
- The interpretation of β is now given by:

For
$$D=0$$
: Then:
 $\ln(Y_0) = \alpha$ $\ln(Y_1) = \alpha + \beta$ $\frac{Y_1 - Y_0}{Y_0} = \frac{e^{\alpha}e^{\beta} - e^{\alpha}}{e^{\alpha}}$ \longrightarrow $\frac{\Delta Y}{Y} = \frac{Y_1 - Y_0}{Y_0} = e^{\beta} - 1$
 $Y_0 = e^{\alpha}$ $Y_1 = e^{\alpha + \beta}$ $Y_0 = \frac{e^{\alpha}e^{\beta} - e^{\alpha}}{e^{\alpha}}$

14

Binary in Log-Lin – Example

The sample refers to the 164 thousand labors in Brazil in 2011:

Root MSE	0.72061	R-Square	0.3600
Dependent Mean	6.71768	Adj R-Sq	0.3600
Coeff Var	10.72700		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	5.45369	0.01042	523.37	<.0001
anosest	1	0.10421	0.00045225	230.41	<.0001
idade	1	0.01596	0.00014706	108.55	<.0001
feminino	1	-0.44332	0.00383	-115.77	<.0001
branca	1	0.14130	0.00662	21.34	<.0001
parda	1	-0.00863	0.00650	-1.33	0.1841
amarela	1	0.22277	0.02684	8.30	<.0001
no	1	-0.16213	0.00694	-23.37	<.0001
ne	1	-0.37063	0.00606	-61.13	<.0001
se	1	-0.00458	0.00564	-0.81	0.4174
со	1	0.07583	0.00712	10.65	<.0001

Supposing the model:

$$\ln(renda_i) = \alpha + \beta_1 anosest_i + \beta_2 idade_i + e_i$$

In relation the male workers, the expected difference in % for sex is:

$$e^{-0.44332} - 1 = -0.3581$$

In relation to black workers, the expected differences in % for race are:

branca: $e^{0.14130} - 1 = 0.1518$

parda: $e^{-0.0086} - 1 = -0.0086$

amarela: $e^{0.2228} - 1 = 0.2495$

In relation to where workers in the South, the expected differences in (%) are:

NO: $e^{-0.1621} - 1 = -0.1497$

NE: $e^{-0.3706} - 1 = -0.3097$

SE: $e^{-0.0046} - 1 = -0.0046$

CO: $e^{0.0758} - 1 = 0.0788$

Example – Stata and R

Model with binary variable in Stata:

Model with binary variable in R:

Example - Python

Model with binary variable in Python:

Exercise

- 1) The dataset *Data_TravelCosts.csv* contains information on travel costs from several municipalities to a national park in Brazil (see MAIA, A. G., ROMEIRO, A. . Validade e confiabilidade do método de custo de viagem: um estudo aplicado ao Parque Nacional da Serra Geral. Revista de Economia Aplicada, v. 12, p. 103-123, 2008):
 - a) Which functional form presents the best goodness of fit measures?
 - b) Create a binary variable *RS* that assumes 1 when the municipality is in the state of Rio Grande do Sul (the two first digits of the variable *code* must be equal to 43). Add this variable in the model. Is there any signficant change?