1.13

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-315295

(43)Date of publication of application: 16.11.1999

(51)Int.Cl.

C10M129/16 C10M107/24 C10M169/04 // C10N 30:06 C10N 40:30

(21)Application number: 10-121908

(71)Applicant: IDEMITSU KOSAN CO LTD

(22)Date of filing:

01.05.1998

(72)Inventor: TAKEI MASAHIKO

NAGAGAWA HIROSHI

(54) REFRIGERATOR OIL COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a composition which has excellent lubricating properties and which can reduce abrasion of lubricating parts using aluminum materials when hydrocarbon-based refrigerants are used by blending a glyceryl ether compound with a base oil comprising mineral oils and/or synthetic oils in a specific ratio.

SOLUTION: A compound of the formula: R1-OCH2CH (OH)CH2CH (wherein R1 is a 10-22C alkyl) is blended in an amount of 0.01-10 wt.% based on the total amount of the composition. As a base oil, synthetic oils are more preferred than mineral oils and especially oxygen—containing synthetic oils are suitable. Among them, polyvinyl ethers, polyol esters and polyalkylene glycols are suitable. Especially, a polyvinyl ether copolymer having a structural unit of formula I (wherein R42 is a 1-3C hydrocarbon which has or does not have an ether linkage) and a structural unit of formula II (wherein R43 is a 3-20C hydrocarbon which has or does not have an ether linkage) is suitable.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-315295

(43)公開日 平成11年(1999)11月16日

(51) Int.Cl. ⁶	識別記号	FΙ				
C 1 0 M 129/16		C 1 0 M 12	C 1 0 M 129/16			
107/24		107/24				
169/04		16	9/04			
// C10N 30:0	96					
40: 3	30					
		審查請求	未請求	請求項の数 5	OL	(全 17 頁)
(21)出願番号	特顧平 10-121908	(71)出顧人	0001836	346		
			出光興	全株式会社		
(22)出顧日	平成10年(1998) 5月1日	東京都千代田区丸の内3丁目1番1		1番1号		
		(72)発明者	武居 ī	E彦		
			千葉県市	市原市姉崎海岸2	4番地4	4
		(72)発明者	永川 渚	告		
			千葉県下	市原市姉崎海岸2	4番地4	4
		(74)代理人	弁理士	東平 正道		

(54) 【発明の名称】 冷凍機油組成物

(57)【要約】

冷媒として、ハイドロフルオロカーボン 【課題】 系,ハイドロカーボン系,エーテル系,二酸化炭素系又 はアンモニア系のものを用いた場合、優れた潤滑性能を R^{\perp} -OCH₂ CH (OH) CH₂ OH · · · (I)

(式中、R1 は炭素数10~22のアルキル基を示 す。)で表されるグリセリルエーテル化合物を、組成物 有し、特にアルミニウム材を用いる潤滑部分の摩耗を低 減できる冷凍機油組成物を提供する。

【解決手段】 鉱油及びご又は合成油からなる基油に、 下記一般式(I)

全量基準で0.01~10重量%配合する冷凍機油組成 物である。

【特許請求の範囲】

【請求項1】 鉱油及び/又は合成油からなる基油に、

R1 - OCH₂ CH (OH) CH₂ OH

(式中、R¹ は炭素数10~22のアルキル基を示す。)で表されるグリセリルエーテル化合物を、組成物全量基準で0.01~10重量%配合することを特徴とする冷凍機油組成物。

【請求項2】 基油が含酸素系合成油である請求項1記 載の冷凍機油組成物。

(式中、R⁴⁰は炭素数1~3の分子内にエーテル結合を 有するもしくは有しない炭化水素基を示す。)で表され

(式中、R43は炭素数3~20の分子内にエーテル結合 を有するもしくは有しない炭化水素基を示す。)で表さ れる構成単位(B)とを有するボリビニルエーテル共重

$$R^1$$
 -OCH₂ CH (OH) CH₂ OH

(式中、 R^1 は炭素数 $10 \sim 22$ のアルキル基を示す。)で表されるグリセリルエーテル化合物を、組成物全量基準で $0.01 \sim 10$ 重量%配合することを特徴とする冷凍機油組成物。

【請求項5】 構成単位(A)において、R42がエチル基であり、構成単位(B)において、R43がイソブチル基である請求項4記載の冷凍機油組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は冷凍機油組成物に関し、さらに詳しくは、冷媒として、ハイドロフルオロカーボン系、フルオロカーボン系、ハイドロカーボン系、エーテル系、二酸化炭素系又はアンモニア系のもの、好ましくは環境汚染で問題となっている冷媒のクロロフルオロカーボン系のものの代替となりうるハイドロフルオロカーボン系のものを用いた場合、優れた潤滑性能を有し、特にアルミニウム材を用いる潤滑部分の摩耗を低減できる冷凍機油組成物に関する。

[0002]

【従来の技術】一般に、圧縮型冷凍機は少なくとも圧縮機、凝縮器、膨張機構(膨張弁など)、蒸発器、あるいは更に乾燥器から構成され、冷媒と潤滑油の混合液体がこの密閉された系内を循環する構造となっている。従来、圧縮型冷凍機、特に空調器の冷媒としては、クロロジフルオロメタン(以下、R22と称する。)やクロロ

下記一般式(I)

. . . (1)

【請求項3】 含酸素系合成油がポリビニルエーテル、ポリオールエステル、ポリアルキレングリコールから選ばれる少なくとも一種である請求項2記載の冷凍機油組成物。

【請求項4】 下記一般式 (XVI) 【化1】

 $\cdot \cdot \cdot (XV1)$

る構成単位(A)と下記一般式(XVII) 【化2】

 $\cdot \cdot \cdot (XVII)$

合体 〔ただし、構成単位 (A) の R⁴² と構成単位 (B) の R⁴³ は同一ではない。〕を含む基油に、下記一般式 (1)

$\cdot \cdot \cdot (1)$

ジフルオロメタンとクロロペンタフルオロエタンの重量 比48.8:51.2の混合物(以下、R502と称す る。) が多く用いられ、また潤滑油としては、前記の要 求特性を満たす種々の鉱油や合成油が用いられてきた。 しかしながら、R22やR502は、成層圏に存在する オゾン層を破壊するなど環境汚染をもたらすおそれがあ ることから、世界的にその規制が厳しくなりつつある。 そのため、新しい冷媒として1,1,1,2-テトラフ ルオロエタン;ジフルオロメタン;ペンタフルオロエタ ン:1、1、1-トリフルオロエタン(以下、それぞれ R134a, R32, R125, R143aと称す る。) に代表されるハイドロフルオロカーボンが注目さ れ、それに代わりつつある。このハイドロフルオロカー ボン、特にR134a, R32, R125, R143a はオゾン層を破壊するおそれがなく、圧縮型冷凍機用冷 媒として好ましいものである。しかしながら、前記ハイ ドロフルオロカーボンを単独で使用する場合には問題が あり、例えば「エネルギー・資源」第16巻,第5号, 第474ページには、(1) R22の代替としてR13 4 aを空調機器に適応する場合、運転圧力が低く、R2 2に比べて能力が約40%、効率は約5%低下する。 (2) R32はR22に比べて効率は良いが、運転圧力 が高く、微燃性である、(3) R 1 2 5 は不燃性である が、臨界圧力が低く効率が低くなるなどが報告されてい る。また、R143aはR32と同様に可燃性の問題が

ある。

【0003】圧縮型冷凍機用冷媒としては、現状の冷凍装置の変更なしに使用できることが望ましいが、上記問題により、実際は前記のハイドロフルオロカーボンを混合した冷媒を使用すべきである。すなわち、現行のR22、R502冷媒を代替するためには、効率の面から、可燃性であるR32、R143aを使用し、冷媒全体として不燃性をもたせるため、R125、R134aを前者に混合することが望ましい。The International Symosium on R22 & R502 Alternative Refrigerants, 1994, 166 頁には、R32/R134a混合物の場合、R32の含有量が56重量%以上では可燃性であることが示されている。冷媒組成により一概に規定はできないが、不燃性の面から、R125やR134aなどの不燃性ハイドロフルオロカーボンを45重量%以上含む冷媒が好ましいといえる。

【0004】一方、冷媒は、冷凍システム内において様々な条件下で使用されるため、混合するハイドロフルオロカーボンの組成が、冷凍システム内各所において大きく異なることは好ましくない。冷凍システム内では、冷媒は気体、液体の両方の状態をとるため、混合するハイドロフルオロカーボン同士の沸点が大きく異なる場合には、混合冷媒の組成は、上記理由により冷凍システム内各所において、大きく異なる可能性がある。

【0005】R32、R143a、R125及びR134aの沸点は、それぞれ一51.7℃、一47.4℃、一48.5℃及び 26.3℃であり、ハイドロフルオロカーボン混合冷媒系にR134aを使用する場合には、この点で注意が必要である。したがって、R125使用混合冷媒においては、その含有量は20~80重量%、特に40~70重量%であることが好ましい。含有量が20重量%未満では不燃性をもたせるために、さらにR134aなどの沸点の大きく異なる冷媒を多量に必要とし、上記理由から好ましくない。また、R125の含有量が80重量%を超えると効率が低下するため好ましくない。

【0006】これらの点から、これまでのR22冷媒に対する代替としては、R32とR125とR134aとの重量比23:25:52の混合物(以下、R407Cと称する。),重量比25:15:60の混合物、R32とR125との重量比50:50の混合物(以下、R410Aと称する。),R32とR125との重量比45:55の混合物(以下、R410Bと称する。)が好

 R^1 -OCH₂ CH (OH) CH₂ OH

(式中、R1 は炭素数10~22のアルキル基を示す。)で表されるグリセリルエーテル化合物を、組成物全量基準で0.01~10重量%配合することを特徴とする冷凍機油組成物。

(2)基油が含酸素系合成油である(1)記載の冷凍機油組成物。

ましく、一方、R502冷媒に対する代替としては、R125とR143aとR134aとの重量比44:52:4の混合物(以下、R404Aと称する。)やR125とR143aとの重量比50:50の混合物(以下、R507と称する。)が好ましい。

【0007】このハイドロフルオロカーボン系冷媒は、 従来の冷媒とは性質を異にし、それと併用される冷凍機 油としては、例えば特定の構造を有するポリアルキレン グリコール、ポリオールエステル、ポリビニルエーテル などの基油が検討され使用されている。しかしながら、 ハイドロフルオロカーボン系冷媒は、従来の冷媒に比べ 潤滑性能に劣るため、上記の基油に添加して潤滑性を向 上させる添加剤の開発が望まれている。従来から冷凍機 油に用いられる潤滑性向上剤としては、トリクレジルホ スフェート(以下、TCPという),トリフェニルホス フェート(以下、TPPという)などの中性リン酸エス テルが一般的であった。しかし、これらの添加剤は摩擦 部分の材料が鉄と鉄の組合せに対しては効果があるが、 アルミ材の場合には摩擦を低減させる効果はなかった。 【0008】したがって、冷媒のクロロフルオロカーボ ン系のものの代替となりうるハイドロフルオロカーボン 系のものを用いた場合、優れた潤滑性能を有し、特にア ルミニウム材を用いる潤滑部分の摩耗を低減できる冷凍

[0009]

機油組成物が望まれていた。

【発明が解決しようとする課題】本発明は、上記観点からなされたもので、冷媒として、ハイドロフルオロカーボン系、ハイドロカーボン系、エーテル系、二酸化炭素系又はアンモニア系のもの、好ましくは環境汚染で問題となっている冷媒のクロロフルオロカーボン系のものの代替となりうるハイドロフルオロカーボン系のものを用いた場合、優れた潤滑性能を有し、特にアルミニウム材を用いる潤滑部分の摩耗を低減できる冷凍機油組成物を提供することを目的とするものである。

[0010]

【課題を解決するための手段】本発明者らは鋭意研究を重ねた結果、基油に特定のグリセリルエーテル化合物を配合することにより、上記本発明の目的を効果的に達成しうることを見出し木発明を完成したものである。すなわち、本発明の要旨は下記の通りである。

(1)鉱油及びご又は合成油からなる基油に、下記一般式(I)

$\cdot \cdot \cdot \cdot (I)$

(3) 含酸素系合成油がポリビニルエーテル、ポリオールエステル、ポリアルキレングリコールから選ばれる少なくとも一種である(2)記載の冷凍機油組成物。

(4)下記一般式 (XVI)

[0011]

【化3】

【0012】(式中、R⁴²は炭素数1~3の分子内にエーテル結合を有するもしくは有しない炭化水素基を示す。)で表される構成単位(A)と下記一般式(XVII)

【0014】(式中、R⁴³は炭素数3~20の分子内に エーテル結合を有するもしくは有しない炭化水素基を示 す。)で表される構成単位(B)とを有するポリビニル

 $R^1 = OCH_2 CH (OH) CH_2 OH$

(式中、R1 は炭素数10~22のアルキル基を示す。)で表されるグリセリルエーテル化合物を、組成物全量基準で0.01~10重量%配合することを特徴とする冷凍機油組成物。

(5) 構成単位(A) において、 R^{42} がエチル基であり、構成単位(B) において、 R^{43} がイソブチル基である(4) 記載の冷凍機油組成物。

[0015]

【発明の実施の形態】以下に、本発明の実施の形態について説明する。本発明の冷凍機油組成物においては、基油として鉱油及び三又は合成油が用いられる。この鉱油や合成油については、一般に冷凍機油の基油として用いられているものであればよく、特に制限はないが、40℃における動粘度が2~500mm² /s、特に5~200mm² /s、とりわけ10~100mm² /sの範囲にあるものが好適である。また、この基油の低温流動性の指標である流動点については−10℃以下であるのが望ましい。

【0016】このような鉱油、合成油は各種のものがあり、用途などに応じて適宜選定すればよい。鉱油としては、鉱油としては、ケスを流油、中間基系鉱油などが挙げられ、一方合成油としては、含酸素系合成油及び炭化水素系合成油などが挙げられる。合成油の中で、含酸素系合成油としては、分子

R1 -OCH2 CH (OH) CH2 OH

で表され、R1 は炭素数10~22のアルキル基であり、直鎖状でも分岐鎖状どちらでもよい。炭素数が10以下であると、摩耗低減効果が小さく、22を超えると、摩擦低減効果が小さくなるとともに基油への溶解性が劣るので好ましくない。具体的には、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種インタデシル、各種へキサデシル基、各種へプタデシル基、各種オクタデシル

· · · (XVI)

【0013】 【化4】

 $\cdot \cdot \cdot (XVII)$

エーテル共重合体〔ただし、構成単位(A)の R^{42} と構成単位(B)の R^{43} は同一ではない。〕を含む基油に、下記一般式(I)

$\cdot \cdot \cdot \cdot (I)$

中にエーテル基、ケトン基、エステル基、カーボネート基、ヒドロキシル基などを含有する合成油、さらにはこれらの基とともにヘテロ原子(S、P、F、C1、Si、Nなど)を含有する合成油が挙げられ、具体的には、ポリビニルエーテル、ポリオールエステル、ポリアルキレングリコール、ポリエステル、カーボネート誘導体、ポリエーテルケトン、フッ素化油などである。

【0017】上記含酸素系合成油については、最後に詳細に説明する。炭化水素系合成油としては、例えばボリー α -オレフィンなどのオレフィン系重合物、アルキルベンゼン、アルキルナフタレンなどを挙げることができる。本発明の冷凍機油組成物においては、基油として前記鉱油を一種用いても二種以上を組み合わせて用いてもよく、また前記合成油を一種用いても二種以上を組み合わせて用いてもよく、あるいは鉱油一種以上と合成油一種以上を組み合わせて用いてもよい。合成油が鉱油よりも好ましいが、特に含酸素系合成油がR-134aなどのフロン冷媒との相溶性がよく、かつ潤滑性能に優れ好適である。中でも、ボリビニルエーテル、ボリオールエステル、ポリアルキレングリコールが好適である。

【0018】次に、基油に配合されるグリセリルエーテル化合物について説明する。グリセリルエーテル化合物は、下記一般式(I)

· · · (I)

基、各種ノナデシル基、各種エイコシル基、各種ヘンエイコシル基、各種ドコシル基を挙げることができ、中でもトリデシル基、イソペンタデシル基、イソオクタデシル基のものが好ましい。

【0019】上記のグリセリルエーテル化合物は、一種 又は二種以上を組み合わせて使用してもよい。グリセリ ルエーテル化合物の配合量は、組成物全量基準で0.0 1~10重量%である。この配合量が0.01重量%未 満では本発明の目的が充分に発揮されず、10重量%を超えるとその量の割には効果の向上がみられず、また基油に対する溶解性が低下する。好ましい配合量は0.1~3重量%の範囲である。

【0020】本発明の冷凍機油組成物には、必要に応じ公知の各種添加剤、例えばリン酸エステル、 亜リン酸エステルなどの極圧剤: フェノール系、アミン系の酸化防止剤: さらにはフェニルグリシジルエーテル、シクロヘキセンオキシド、エボキシ化大豆油などのエポキシ化合物などの安定剤: ベンゾトリアゾール, ベンゾトリアゾール誘導体などの銅不活性化剤:シリコーン油、フッ化シリコーン油などの消泡剤などを適宜配合することができる。

【0021】本発明の冷凍機油組成物が適用される冷凍機に用いられる冷媒としては、ハイドロフルオロカーボン系、フルオロカーボン系、ハイドロカーボン系、エーテル系、二酸化炭素系又はアンモニア系冷媒が用いられるが、これらの中でハイドロフルオロカーボン系冷媒が好ましい。このハイドロフルオロカーボン系冷媒としては、例えば1、1、1、2 テトラフルオロエタン(R134a)、ジフルオロメタン(R32)、ペンタフル

【0023】(式中、 $R^2 \sim R^4$ はそれぞれ水素原子又は炭素数 $1\sim8$ の炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、 R^5 は炭素数 $1\sim10$ の二価の炭化水素基又は炭素数 $2\sim20$ の二価のエーテル結合酸素含有炭化水素基、 R^6 は炭素数 $1\sim20$ の炭化水素基、aはその平均値が $0\sim10$ の数を示し、 $R^2\sim R^6$ は構成単位毎に同一でもそれぞれ異なっていてもよ

【0025】(式中、 $R^7 \sim R^{10}$ は、それぞれ水素原子又は炭素数 $1 \sim 20$ の炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、また $R^7 \sim R^{10}$ は構成単位毎に同一でもそれぞれ異なっていてもよい。)で表される構成単位とを有するブロック又はランダム共重合体からなるポリビニルエーテル化合物(2)も使用することができる。また、上記ポリビニルエーテル系化合物(1)とポリビニルエーテル系化合物(2)との混合物からなるポリビニルエーテル系化合物(3)も使用することができる。

【0026】前記一般式 (II) における $R^2 \sim R^4$ はそれぞれ水素原子又は炭素数 $1\sim 8$ 、好ましくは $1\sim 4$ の

オロエタン(R125)及び1,1,1-トリフルオロ エタン(R143a)が好ましく、これらは単独で用い てもよく、二種以上を組み合わせて用いてもよい。これ らのハイドロフルオロカーボンは、オゾン層を破壊する おそれがなく、圧縮冷凍機用冷媒として好ましいもので ある。また、混合冷媒の例としては、R32とR125 とR134aとの重量比23:25:52の混合物(以 下、R407Cと称する。), 重量比25:15:60 の混合物, R32とR125との重量比50:50の混 合物(以下、R410Aと称する。), R32とR12 5との重量比45:55の混合物(以下、R410Bと 称する。), R125とR143aとR134aとの重 量比44:52:4の混合物(以下、R404Aと称す る。), R125とR143aとの重量比50:50の 混合物(以下、R507と称する。)などが挙げられ る。最後に、基油として使用する含酸素系合成油につい て詳述する。前記のポリビニルエーテルとしては、例 えば一般式(II)

[0022]

【化5】

く、またR⁵ Oが複数ある場合には、複数のR⁵ Oは同一でも異なっていてもよい。)で表される構成単位を有するポリビニルエーテル系化合物(1)が挙げられる。また、上記一般式(II)で表される構成単位と、下記一般式(III)

[0024]

【化6】

炭化水素基を示す。ここで炭化水素基とは、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種へキシル基、各種へアチル基、各種オクチル基のアルキル基、シクロペンチル基、シクロペキシル基、各種メチルシクロペキシル基、各種ジメチルシクロペキシル基などのシクロアルキル基、フェニル基、各種メチルフェニル基、各種ジメチルフェニル基、各種ジメチルフェニル基、各種ジメチルフェニル基、各種ジメチルフェニル基のアリール基、ベンジル基、各種フェニルエチル基、各種メチルベンジル基のアリールアルキル基を挙げることができる。なお、これらのR² ~R⁴としては、特に水素原子が好ましい。

【0027】一方、一般式(II)中のR⁵ は、炭素数1 ~10、好ましくは2~10の二価の炭化水素基又は炭 素数2~20の二価のエーテル結合酸素含有炭化水素基 を示すが、ここで炭素数1~10の二価の炭化水素基と は、具体的にはメチレン基; エチレン基; フェニルエチ レン基;1,2-プロピレン基;2-フェニル-1,2 - プロピレン基; 1, 3 - プロピレン基; 各種ブチレン 基;各種ペンチレン基;各種ヘキシレン基;各種ヘプチ レン基;各種オクチレン基;各種ノニレン基;各種デシ レン基の二価の脂肪族基、シクロヘキサン:メチルシク ロヘキサン;エチルシクロヘキサン;ジメチルシクロヘ キサン:プロピルシクロヘキサンなどの脂環式炭化水素 に2個の結合部位を有する脂環式基、各種フェニレン 基;各種メチルフェニレン基;各種エチルフェニレン 基:各種ジメチルフェニレン基:各種ナフチレン基など の二価の芳香族炭化水素基、トルエン;キシレン;エチ ルベンゼンなどのアルキル芳香族炭化水素のアルキル基 部分と芳香族部分にそれぞれ一価の結合部位を有するア ルキル芳香族基、キシレン;ジエチルベンゼンなどのポ リアルキル芳香族炭化水素のアルキル基部分に結合部位 を有するアルキル芳香族基などを挙げることができる。 これらの中で炭化数2~4の脂肪族基が特に好ましい。 【0028】また、炭素数2~20の二価のエーテル結 合酸素含有炭化水素基の具体例としては、メトキシメチ レン基;メトキシエチレン基;メトキシメチルエチレン 基:1,1-ビスメトキシメチルエチレン基:1,2-ビスメトキシメチルエチレン基;エトキシメチルエチレ ン基; (2-メトキシエトキシ)メチルエチレン基; (1-メチル-2-メトキシ)メチルエチレン基などを 好適に挙げることができる。なお、一般式(11)におけ るaはR⁵ Oの繰り返し数を示し、その平均値がO~1 O、好ましくはO~5の範囲の数である。R5 Oが複数 ある場合には、複数のR® Oは同一でも異なっていても よい。

【0029】さらに、一般式(II)におけるR⁶ は炭素数1~20、好ましくは1~10の炭化水素基を示すが、この炭化水素基とは、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ペキシル基、各種ペプチル基、各種イクチル基、各種ノニル基、各種デシル基のアルキル基、シクロペナチル基、シクロペキシル基、各種エチルシクロペキシル基、各種ブスチルシクロペキシル基、各種ブスチルシクロペキシル基、各種ブメチルフェニル基、各種ブスチルフェニル基、各種ブスチルフェニル基、各種ブロピルフェニル基、各種ブスチルフェニル基、各種ブロピルフェニル基、各種アロピルフェニル基、各種アロピルフェニル基、各種アロピルフェニル基、各種アロピルフェニル基、各種アロピルフェニル基、各種トリメチルフェニル基、各種アロピルフェニル基、各種トリメチルフェ

ニル基、各種ブチルフェニル基、各種ナフチル基などの アリール基、ベンジル基、各種フェニルエチル基、各種 メチルベンジル基、各種フェニルプロピル基、各種フェ ニルブチル基のアリールアルキル基などを挙げることが できる。

【0030】このポリビニルエーテル系化合物(1)は、前記一般式(II)で表される構成単位を有するものであるが、その繰り返し数(重合度)は、所望する動粘度に応じ適宜選択すればよい、また、該ポリビニルエーテル系化合物は、その炭素、酸素モル比が4.2~7.0の範囲にあるものが好ましい。該モル比が4.2未満では、吸湿性が高くなる場合があり、また7.0を超えると、冷媒との相溶性が低下する場合がある。

【0031】また、ポリビニルエーテル系化合物(2)は、前記一般式(III)で表される構成単位と前記一般式(III)で表される構成単位とを有するプロック又はランダム共重合体からなるものであって、該一般式(III)において、 $R^7 \sim R^{10}$ は、それぞれ水素原子又は炭素数1~20の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。ここで、炭素数1~20の炭化水素基としては、上記一般式(II)における R^6 の説明において例示したものと同じものを挙げることができる。なお、 $R^7 \sim R^{10}$ は構成単位毎に同一でもそれぞれ異なっていてもよい。

【0032】該一般式(II)で表される構成単位と一般式(III)で表される構成単位とを有するブロックまたはランダム共重合体からなるポリビニルエーテル系化合物(2)の重合度は、所望する動粘度に応じて適宜選択すればよい。また、このポリビニルエーテル系化合物は、その炭素/酸素モル比が4.2~7.0の範囲にあるものが好ましい。該モル比が4.2未満では、吸湿性が高くなる場合があり、また7.0を超えると、冷媒との相溶性が低下する場合がある。

【0033】さらに、ポリビニルエーテル化合物(3)は、前記ポリビニルエーテル系化合物(1)と前記ポリビニルエーテル系化合物(1)と前記ポリビニルエーテル系化合物(2)との混合物からなるものであるが、その混合割合については特に制限はない。本発明に用いられるポリビニルエーテル系化合物(1)及び(2)は、それぞれ対応するビニルエーテル系モノマーの重合、及び対応するオレフィン性二重結合を有する炭化水素モノマーと、対応するビニルエーテル系モノマーとの共重合により製造することができる。ここで用いることができるビニルエーテル系モノマーは、下記一般式(IV)

【0034】

【化7】

$$R^{2} R^{4}$$

$$C = C$$

$$R^{3} O (R^{5} O) A R^{6}$$

$$\cdot \cdot \cdot (IV)$$

【0035】(式中、R2~R6及びaは、前記と同じ である。) で表されるものである。このビニルエーテル 系モノマーとしては、上記ポリビニルエーテル系化合物 (1), (2)に対応する各種のものがあるが、例えば ビニルメチルエーテル: ビニルエチルエーテル: ビニル -n-プロピルエーテル;ビニル-イソプロピルエーテ ル:ビニルー n - ブチルエーテル:ビニルーイソブチル エーテル: ビニル sec ブチルエーテル: ビニルー tert - ブチルエーテル; ビニルーnーペンチルエー テル; ビニルー nーヘキシルエーテル; ビニルー2ーメ トキシエチルエーテル; ビニルー2-エトキシエチルエ ーテル;ビニルー2-メトキシー1-メチルエチルエー テル; ビニルー2ーメトキシー2ーメチルエーテル; ビ ニルー3,6 ジオキサヘプチルエーテル;ビニルー 3, 6, 9-トリオキサデシルエーテル; ビニルー1, 4-ジメチル-3,6-ジオキサヘプチルエーテル;ビ $2\nu - 1$, 4, $7 - \nu + \nu - 3$, 6, $9 - \nu + \nu + 3$ サデシルエーテル;ビニル-2,6-ジオキサ-4-ヘ プチルエーテル; ビニルー2.6.9ートリオキサー4 ーデシルエーテル: 1 - メトキシブロペン: 1 - エトキ シプロペン:1-n-プロポキシプロペン:1-イソプ ロポキシプロペン; 1-n-ブトキシプロペン; 1-イ ソブトキシプロペン;1-sec-ブトキシプロペン; 1-tert-ブトキシプロペン; 2-メトキシプロペ

$$\begin{array}{cccc}
R^{7} & R^{8} \\
 & \downarrow \\
C & = C \\
 & \downarrow \\
R^{9} & R^{+0}
\end{array}$$

【0037】(式中、R7~R10は前記と同じである。)で表されるものであり、該モノマーとしては、例えばエチレン、プロピレン、各種プテン、各種ペンテン、各種ペキセン、各種ペプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、各種アルキル置換スチレンなどを挙げることができる。本発明に用

ン;2-エトキシプロペン;2-n-プロポキシプロペ ン:2-イソプロポキシプロペン:2-n-ブトキシプ ロペン; 2-イソブトキシプロペン; 2-sec-ブト キシプロペン: 2-tert-ブトキシプロペン: 1-メトキシー1ーブテン;1-エトキシー1ーブテン;1 -n-プロポキシ-1-ブテン;1-イソプロポキシー ブトキシ 1 ブテン: 1 sec ブトキシ・1 ブ テン; 1-tert-ブトキシ-1-ブテン; 2-メト ープロポキシー1 ブテン;2。イソプロボキシー1ー ブテン:2-n-ブトキシ-1-ブテン:2-イソブト ン;2-tert-ブトキシー1-ブテン;2-メトキ シー2-ブテン; 2-エトキシー2-ブテン; 2-n-プロポキシー2ーブテン;2ーイソプロポキシー2ーブ テン:2-n-ブトキシ-2-ブテン:2-イソブトキ $\hat{y} - 2 - \vec{y} + \hat{y} + \hat{z} - \hat{z} = \hat{z} + \hat{z$ 2-tertーブトキシー2-ブテンなどが挙げられ る。これらのビニルエーテル系モノマーは公知の方法に より製造することができる。また、オレフィン性二重結 合を有する炭化水素モノマーは、下記一般式(V)

[0036]

【化8】

· · · (V)

いられるボリビニルエーテル系化合物としては、次の末端構造を有するもの、すなわちその一つの末端が、一般式(VI) Xは(VII)

[0038]

【化9】

【0039】(式中、 $R^{11} \sim R^{13}$ は、それぞれ水素原子 又は炭素数 $1 \sim 8$ の炭化水素基を示し、 $R^{11} \sim R^{13}$ はた がいに同一でも異なっていてもよく、 $R^{16} \sim R^{19}$ は、そ れぞれ水素原子又は炭素数 $1 \sim 20$ の炭化水素基を示 し、 $R^{16} \sim R^{19}$ はたがいに同一でも異なっていてもよ い。 R^{14} は炭素数 $1 \sim 10$ の二価の炭化水素基又は炭素 数 $2 \sim 20$ の二価のエーテル結合酸素含有炭化水素基、

【0041】(式中、R²⁶~R²²は、それぞれ水素原子 又は炭素数1~8の炭化水素基を示し、R²⁶~R²²はた がいに同一でも異なっていてもよく、R²⁵~R²⁸は、そ れぞれ水素原子又は炭素数1~20の炭化水素基を示 し、R²⁵~R²⁸はたがいに同一でも異なっていてもよ い。R²³は炭素数1~10の二価の炭化水素基又は炭素 数2~20の二価のエーテル結合酸素含有炭化水素基、 R²⁴は炭素数1~20の炭化水素基、c はその平均値が

【0043】(式中、R²⁸~R³¹は、それぞれ水素原子 又は炭素数1~8の炭化水素基を示し、それらはたがい に同一でも異なっていてもよい。)で表される構造を有 するものが好ましい。このようなポリビニルエーテル系 化合物の中で、特に次に挙げるものが本発明の冷凍機油 組成物の基油として好適である。

- (1) その一つの末端が一般式 (VI) Xは (VII)で表され、かつ残りの末端が一般式 (VIII) 又は (IX) で表される構造を有し、一般式 (II) における $R^2 \sim R^4$ が共に水素原子、aが $0 \sim 4$ の数、 R^5 が炭素数 $2 \sim 4$ の二価の炭化水素基及び R^6 が炭素数 $1 \sim 2$ のの炭化水素基であるもの。
- (2)一般式(II)で表される構成単位のみを有するものであって、その一つの末端が一般式(VI)で表され、かつ残りの末端が一般式(VIII)で表される構造を有し、一般式(II)における $R^2 \sim R^4$ が共に水素原子、aが $0 \sim 4$ の数、 R^6 が炭素数 $2 \sim 4$ の二価の炭化水素基及U R^6 が炭素数 $1 \sim 20$ の炭化水素基であるもの。

 R^{15} は炭素数 $1\sim 20$ の炭化水素基、bはその平均値が $0\sim 10$ の数を示し、 R^{14} Oが複数ある場合には、複数 OR^{14} Oは同一でも異なっていてもよい。)で表され、かつ残りの末端が一般式(VIII)又は(IX)

【0040】 【化10】

○~10の数を示し、R≅Oが複数ある場合には、複数のR²³Oは同一でも異なっていてもよい。)で表される構造を有するもの、及びその一つの末端が、上記一般式 (VI)又は (VII)で表され、かつ残りの末端が一般式 (X)

【0042】 【化11】

 $\cdot \cdot \cdot (X)$

【0044】(3)その一つの末端が一般式(VI)又は(VII)で表され、かつ残りの末端が一般式(X)で表される構造を有し、一般式(II)におけるR²~R⁴が共に水素原子、aが0~4の数、R⁵が炭素数2~4の二価の炭化水素基及びR⁶が炭素数1~20の炭化水素基であるもの。

(4) 一般式(II) で表される構成単位のみを有するものであって、その一つの末端が一般式(VI) で表され、かつ残りの末端が一般式(IX) で表される構造を有し、一般式(II) における $R^2 \sim R^4$ が共に水素原子、aが $0\sim 4$ の数、 R^5 が炭素数 $2\sim 4$ の二価の炭化水素基及 V R⁶ が炭素数 $1\sim 2$ 0 の炭化水素基であるもの。また、本発明においては、前記一般式(II) で表される構成単位を有し、その一つの末端が一般式(VI) で表され、かつ残りの末端が一般式(XI)

[0045]

【化12】

【0046】(式中、R3%~R34は、それぞれ水素原子 又は炭素数1~8の炭化水素基を示し、それらはたがい に同一でも異なっていてもよく、R3b及びR37はそれぞ れ炭素数2~10の二価の炭化水素基を示し、それらは たがいに同一でも異なっていてもよく、R36及びR38は それぞれ炭素数1~10の炭化水素基を示し、それらは たがいに同一でも異なっていてもよく、d及びeはそれ ぞれその平均値が0~10の数を示し、それらはたがい

【0048】(式中、R39は炭素数1~8の炭化水素基 を示す。)で表される構成単位からなり、かつ重量平均 分子量が300~3,000(好ましくは300~2, 〇〇〇)であって、片方の末端が一般式 (XIV)又は (X

【0050】(式中、R4Cは炭素数1~3のアルキル 基、R41は炭素数1~8の炭化水素基を示す。) で表さ れる構造を有するアルキルビニルエーテルの単独重合物 又は共重合物からなるポリビニルエーテル系化合物も使

【0052】(式中、R42は炭素数1~3の分子内にエ ーテル 結合を有するもしくは有しない炭化水素基を示 す。)で表される構成単位(A)と下記一般式(XVII)

【0054】(式中、R43は炭素数3~20の分子内に エーテル結合を有するもしくは有しない炭化水素基を示 す。)で表される構成単位(B)とを有するポリビニル

に同一でも異なっていてもよく、また複数のR35 Oがあ る場合には複数のR35Oは同一でも異なっていてもよい し、複数のR³⁷Oがある場合には複数のR³⁷Oは同一で も異なっていてもよい。) で表される構造を有するポリ ビニルエーテル系化合物も使用することができる。さら に、本発明においては、下記一般式 (XII)又は (XIII) [0047]

【化13】

V)

[0049] 【化14】

$$\cdot \cdot \cdot (XIV)$$

$$\cdot \cdot \cdot (XV)$$

用することができる。また、下記一般式 (XVI) [0051] 【化15】

[0053] 【化16】

エーテル共重合体〔但し、構成単位(A)のR42及び (B)のR43は同一ではない。〕が特に好適に使用され る。R⁴²が炭素数1~3のアルキル基、R⁴³炭素数3~

20のアルキル基の場合が、より好ましく、特にR4⁴がメチル基又はエチル基、R4⁴が炭素数3~6のアルキル基の場合のポリビニルエーテル共重合体の場合が好適で、中でもR4²がエチル基、R⁴³がイソブチル基の場合のポリビニルエーテル共重合体が最適で、その場合構成単位(A)と構成単位(B)との割合は、モル比で95:5~50:50の範囲が好ましく、95:5~70:30の範囲がより好ましい。なお、該共重合体は、ランダム体でもブロック体でもよい。

【〇〇55】前記のポリビニルエーテル系化合物は、前 記したモノマーをラジカル重合、カチオン重合、放射線 重合などによって製造することができる。例えばビニル エーテル系モノマーについては、以下に示す方法を用い て重合することにより、所望の粘度の重合物が得られ る。重合の開始には、ブレンステッド酸類、ルイス酸類 又は有機金属化合物類に対して、水、アルコール類、フ ェノール類、アセタール類又はビニルエーテル類とカル ボン酸との付加物を組み合わせたものを使用することが できる。ブレンステッド酸類としては、例えばフッ化水 素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硝酸、 硫酸、トリクロロ酢酸、トリフルオロ酢酸などが挙げら れる。ルイス酸類としては、例えば三フッ化ホウ素、三 塩化アルミニウム、三臭化アルミニウム、四塩化スズ、 二塩化亜鉛、塩化第二鉄などが挙げられ、これらのルイ ス酸類の中では、特に三フッ化ホウ素が好適である。ま た、有機金属化合物としては、例えばジエチル塩化アル ミニウム、エチル塩化アルミニウム、ジエチル亜鉛など が挙げられる。

【0056】これらと組み合わせる水、アルコール類、フェノール類、アセタール類又はビニルエーテル類とカルボン酸との付加物は任意のものを選択することができる。ここで、アルコール類としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ちゃて一ブタノール、しゃ rtーブタノール、各種ペンタノール、各種ペキサノール、各種ペプタノール、各種ペンタノールなどの炭素数1~20の飽和脂肪族アルコール、アリルアルコールなどの炭素数3~10の不飽和脂肪族アルコールなどが挙げられる。

【0057】ビニルエーテル類とカルボン酸との付加物を使用する場合のカルボン酸としては、例えば酢酸;プロピオン酸:n 酪酸;イソ酪酸;n 吉草酸;イソ吉草酸:2 メチル酪酸;ビバル酸;n-カプロン酸;2、2-ジメチル酪酸;2-メチル吉草酸;3-メチル吉草酸;4-メチル吉草酸;エナント酸;2-メチルカプロン酸;カプリル酸;2 エチルカプロン酸;カプリル酸;2 エチルカプロン酸;カプリル酸;カプリル酸;3、5、5-トリメチルカプロン酸;カプリル酸;ウンデカン酸などが挙げられる。

【0058】また、ビニルエーテル類は重合に用いるも

のと同一のものであってもよいし、異なるものであってもよい。このビニルエーテル類と該カルボン酸との付加物は、両者を混合して0~100℃程度の温度で反応させることにより得られ、蒸留などにより分離し、反応に用いることができるが、そのまま分離することなく反応に用いることもできる。

【0059】ポリマーの重合開始末端は、水,アルコール類、フェノール類を使用した場合は水素が結合し、アセタール類を使用した場合は水素又は使用したアセタール類から一方のアルコキシ基が脱離したものとなる。またビニルエーテル類とカルボン酸との付加物を使用した場合には、ビニルエーテル類とカルボン酸との付加物からカルボン酸部分由来のアルキルカルボニルオキシ基が脱離したものとなる。

【0060】一方、停止末端は、水、アルコール類、フェノール類、アセタール類を使用した場合には、アセタール、オレフィン又はアルデヒドとなる。またビニルエーテル類とカルボン酸との付加物の場合は、ヘミアセタールのカルボン酸エステルとなる。このようにして得られたポリマーの末端は、公知の方法により所望の基に変換することができる。この所望の基としては、例えば飽和の炭化水素、エーテル、アルコール、ケトン、ニトリル、アミドなどの残基を挙げることができるが、飽和の炭化水素、エーテル及びアルコールの残基が好ましい。

【0061】一般式(IV)で表されるビニルエーテル系モノマーの重合は、原料や開始剤の種類にもよるが、-80~150℃の間で開始することができ、通常は-80~50℃の範囲の温度で行うことができる。また、重合反応は反応開始後10秒から10時間程度で終了する。この重合反応における分子量の調節については、前記一般式(IV)で表されるビニルエーテル系モノマーに対し、水、アルコール類、フェノール類、アセタール類及びビニルエーテル類とカルボン酸との付加物の量を多くすることで平均分子量の低いポリマーが得られる。さらに上記ブレンステッド酸類やルイス酸類の量を多くすることで平均分子量の低いポリマーが得られる。

【0062】この重合反応は、通常溶媒の存在下に行われる。該溶媒については、反応原料を必要量溶解し、かつ反応に不活性なものであればよく特に制限はないが、例えばヘキサン、ベンゼン、トルエンなどの炭化水素系、及びエチルエーテル、1、2ージメトキシエタン、テトラヒドロフランなどのエーテル系の溶媒を好適に使用することができる。なお、この重合反応はアルカリを加えることによって停止することができる。重合反応終了後、必要に応じて通常の分離・精製方法を施すことにより、目的とする一般式(II)で表される構成単位を有するボリビニルエーテル系化合物が得られる。

【0063】本発明に用いるポリビニルエーテル系化合物は、前記したように炭素/酸素モル比が4.2~7. 0の範囲にあるのが好ましいが、原料モノマーの炭素/ 酸素モル比を調節することにより、該モル比が前記範囲 にあるボリマーを製造することができる。すなわち、炭素 酸素モル比が大きいモノマーの比率が大きければ、 炭素・酸素モル比の大きなボリマーが得られ、炭素/酸素モル比の小さいモノマーの比率が大きければ、炭素/酸素モル比の小さなポリマーが得られる。

【0064】また、上記ビニルエーテル系モノマーの重合方法で示したように、開始剤として使用する水、アルコール類、フェノール類、アセタール類及びビニルエーテル類とカルボン酸との付加物と、モノマー類との組合せによっても可能である。重合するモノマーより炭素で酸素モル比が大きいアルコール類、フェノール類などを開始剤として使用すれば、原料モノマーより炭素で酸素モル比の大きなボリマーが得られ、一方、メタノールやメトキシエタノールなどの炭素で酸素モル比の小さなアルコール類を用いれば、原料モノマーより炭素/酸素モル比の小さなポリマーが得られる。

【0065】さらに、ビニルエーテル系モノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合させる場合には、ビニルエーテル系モノマーの炭素/酸素モル比より炭素、酸素モル比の大きなボリマーが得られるが、その割合は、使用するオレフィン性二重結合を有する炭化水素モノマーの比率やその炭素数により調節することができる。

【 0 0 6 6 】前記のボリオールエステルとしては、少なくとも2個の水酸基を含む多価ヒドロキシ化合物のカルボン酸エステルが挙げられ、例えば一般式 (XVIII) R⁴⁴ { O C O R⁴⁵ } f + · · · · (XVIII)

(式中、R44は炭化水素基、R45は水素原子又は炭素数 1~22の炭化水素基、fは2~6の整数を示し、複数 の-OCOR45は同一でも異なっていてもよい。)で表 されるものを用いることができる。

【〇〇67】上記一般式 (XVIII)において、R44は炭化水素基を示し、直鎖状、分岐鎖状のいずれでもよく、好ましくは炭素数2~1〇のアルキル基である。R45は水素原子又は炭素数1~22の炭化水素基であり、好ましくは炭素数2~16のアルキル基である。上記一般式 (XVIII)で表されるボリオールエステルは、一般式 (XI X)

 R^{44} (OH) _f $\cdot \cdot \cdot (XIX)$

(式中、R44及びfは前記と同じである。)で表される 多価アルコールと、一般式(XX)

 $R^{45}COOH \qquad \cdots (XX)$

(式中、R4⁴は前記と同じである。)で表されるカルボン酸又はそのエステルや酸ハライドなどの反応性誘導体とを反応させることにより得ることができる。

【0068】上記一般式 (XIX)で表される多価アルコールとしては、例えばエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、

グリセリン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトールなどを挙げることができる。一方、(XX)で表されるカルボン酸としては、例えばプロピオン酸、酪酸、ピバリン酸、吉草酸、カプロン酸、ヘプタン酸、3ーメチルヘキサン酸、2ーエチルヘキサン酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸などを挙げることができる。

【 0 0 6 9 】前記のポリアルキレングリコールとして は、下記の一般式 (XXI)

R⁴⁶- $\{(OR^{47})_8 - OR^{48}\}_b$ · · · · (XXI) (式中、R⁴⁶は水素原子、炭素数 $1 \sim 10$ のアルキル基、炭素数 $2 \sim 10$ のアシル基又は結合部 $2 \sim 6$ 個を有する炭素数 $1 \sim 10$ の脂肪族炭化水素基、R⁴⁷は炭素数 $2 \sim 4$ のアルキレン基、R⁴⁸は水素原子、炭素数 $1 \sim 10$ のアルキル基又は炭素数 $2 \sim 10$ のアシル基、hは $1 \sim 10$ 0を数、gはg×hの平均値が $10 \sim 10$ 0をなる数を示す。)で表される化合物を挙げることができる。

【0070】上記一般式 (XXI)において、R⁴⁶、R⁴⁷におけるアルキル基は直鎖状,分岐鎖状,環状のいずれであってもよい。該アルキル基の具体例としては、メチル基、エチル基、n プロピル基、各種ペンプロピル基、各種ペンチル基、各種ペンチル基、各種ペンチル基、各種ペンチル基、各種ペンチル基、各種グロペンチル基、シクロペンチル基、シクロペンチル基の炭素数が10を超えると冷媒との相溶性が低下し、相分離を生じる場合がある。好ましいアルキル基の炭素数は1~6である。

【0071】また、R⁴⁶, R⁴⁸における該アシル基のアルキル基部分は直鎖状、分岐鎖状、環状のいずれであってもよい。該アシル基のアルキル基部分の具体例としては、上記アルキル基の具体例として挙げた炭素数1~9の種々の基を同様に挙げることができる。該アシル基の炭素数が10を超えると冷媒との相溶性が低下し、相分離を生じる場合がある。好ましいアシル基の炭素数は2~6である。

【0072】R⁴⁶及びR⁴⁸が、いずれもアルキル基乂はアシル基である場合には、R⁴⁶とR⁴⁸はたがいに同一でも異なっていてもよい。さらにhが2以上の場合には、1分子中の複数のR⁴⁸は同一でも異なっていてもよい。R⁴⁶が結合部位2~6個を有する炭素数1~10の脂肪族炭化水素基である場合、この脂肪族炭化水素基は鎖状のものでも環状のものであってもよい。結合部位2個を有する脂肪族炭化水素基としては、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、ペンチレン基、ボシレン基、カクロペンチレン基、シクロペキシレン基、デシレン基、シクロペンチレン基、シクロペキシレンを挙げることができる。また、結合部位3~6個を有する脂肪族炭化水素基としては、例えばトリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトー

 μ : 1, 2, 3 - トリヒドロキシシクロヘキサン: 1, 3、5-トリヒドロキシシクロヘキサンなどの多価アル コールから水酸基を除いた残基を挙げることができる。 【0073】この脂肪族炭化水素基の炭素数が10を超 えると冷媒との相溶性が低下し、相分離が生じる場合が ある。好ましい炭素数は2~6である。前記一般式(XX 1)中のR47は炭素数2~4のアルキレン基であり、繰り 返し単位のオキシアルキレン基としては、オキシエチレ ン基、オキシプロピレン基、オキシブチレン基を挙げる ことができる。1分子中のオキシアルキレン基は同一で あってもよいし、2個以上のオキシアルキレン基が含ま れていてもよいが、1分子中に少なくともオキシプロピ レン単位を含むものが好ましく、特にオキシアルキレン 単位中に50モル%以上のオキシプロピレン単位を含む ものが好適である。なお、2個以上のオキシアルキレン 基が含まれる場合はランダム共重合体でもブロック共重 合体でもよい。

【0074】前記一般式 (XXI)中のhは1~6の整数で、R⁴⁶の結合部位の数に応じて定められる。例えばR ⁴⁶がアルキル基やアシル基の場合、hは1であり、R⁴⁶が結合部位2,3,4,5及び6個を有する脂肪族炭化水素基である場合、hはそれぞれ2,3,4,5及び6となる。また、gはg×hの平均値が6~80となる数

【0078】(式中、 R^{49} は炭素数 1×100 アルキレン基, R^{50} は炭素数 2×100 アルキレン基又は炭素数 $4 \sim 200$ のオキサアルキレン基を示す。)で表される構成単位を有し、かつ分子量が $300 \sim 2$ 、000である脂肪族ポリエステル誘導体を挙げることができる。

【0079】この一般式(XXII)中のR49は炭素数1~ 10のアルキレン基を示すが、具体的にはメチレン基, エチレン基、プロピレン基、エチルメチレン基、1、1 - ジメチルエチレン基、1、2-ジメチルエチレン基、 n ブチルエチレン基、イソブチルエチレン基、1-エ チル-2-メチルエチレン基、1-エチル-1-メチル エチレン基、トリメチレン基、テトラメチレン基、ペン タメチレン基などを挙げることができるが、好ましくは 炭素数6以下のアルキレン基である。また、R50は炭素 数2~10のアルキレン基又は炭素数4~20のオキサ アルキレン基を示す。アルキレン基は、具体的にはR49 の具体例(但し、メチレン基を除く)と同様であり、好 ましくは炭素数2~6のアルキレン基であり、オキサア ルキレン基は具体的には、3-オキサー1,5-ペンチ レン基:3,6-ジオキサー1,8-オクチレン基: 3, 6, 9 トリオキサ 1, 11-ウンデシレン基: 3-オキサ 1、4 ジメチルー1、5ーペンチレン 基;3,6、ジオキサー1,4、7ートリメチルー1、 8-オクチレン基; 3, 6, 9-トリオキサー1, 4,

であり、g×hの平均値が前記範囲を逸脱すると本発明の目的は十分に達せられない場合がある。

【0075】前記一般式 (XXI)で表されるボリアルキレングリコールは、末端に水酸基を有するボリアルキレングリコールを包含するものであり、該水酸基の含有量が全末端基に対して、50モル%以下になるような割合であれば、含有していても好適に使用することができる。この水酸基の含有量が50モル%を超えると吸湿性が増大し、粘度指数が低下する場合がある。

【0076】一般式 (XXI)で表されるポリアルキレングリコールとしては、ポリオキシプロピレングリコールジメチルエーテル、ポリオキシエチレンポリオキシプロピレングリコールモノメチルエーテル、ポリオキシプロピレングリコールジメチルエーテル、ポリオキシエチレンポリオキシプロピレングリコールモノブチルエーテル、及びボリオキシプロピレングリコールモノブチルエーテル、さらにはポリオキシプロピレングリコール・ジアセテートなどが、経済性及び効果の点で好適である。前記のポリエステルとしては、例えば一般式 (XXII)

【0077】 【化17】

7,10-テトラメチル-1,11 ウンデシレン基: 3-オキサ-1,4-ジエチル-1,5-ペンチレン 基:3,6-ジオキサ-1,4,7-トリエチル-1, 8-オクチレン基; 3, 6, 9-トリオキサー1, 4,7,10-テトラエチル-1,11-ウンデシレン基; 3-オキサ-1,1,4,4-テトラメチル-1,5-ペンチレン基;3,6-ジオキサ-1,1,4,4, 7,7-ヘキサメチル-1,8-オクチレン基;3, 6. 9-トリオキサー1, 1, 4, 4, 7, 7, 10. 10-オクタメチルー1,11-ウンデシレン基;3-オキサー1,2,4,5ーテトラメチルー1,5ーペン チレン基; 3, 6 -- ジオキサー1, 2, 4, 5, 7, 8 -ヘキサメチル・1,8-オクチレン基;3,6,9-トリオキサー1, 2, 4, 5, 7, 8, 10, 11-オ クタメチルー1、11-ウンデシレン基;3-オキサー 1 - メチル - 1, 5 ペンチレン基: 3 オキサー1 エチルー1,5-ペンチレン基;3-オキサー1,2-ジメチルー1,5-ペンチレン基:3-オキサー1 メ チルー4-エチルー1,5-ペンチレン基;4-オキサ -2,2,6,6・テトラメチル-1,7ーヘプチレン 基;4,8-ジオキサー2,2,6,6,10,10-ヘキサメチル-1,11-ウンデシレン基などを挙げる ことができる。なお、R49、R50は構成単位毎に同じで も異なっていてもよい。

【0080】さらに、上記一般式 (XXII) で表される脂肪族ポリエステル誘導体は、分子量 (GPCによる測定値)が300~2,000であることが望ましい。ここで分子量が300未満のものでは、動粘度が小さすぎ、また2,000を超えるものではワックス状となり、いずれも冷凍機油として好ましくない。このようなポリエ

【0082】(式中、REI及びRE®は、それぞれ炭素数30以下の炭化水素基又は炭素数2~30のエーテル結合を有する炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、RE2は炭素数2~24のアルキレン基、iは1~10の整数、jは1~10の整数を示す。)で表されるポリカーボネートを挙げることができる。

【0083】上記一般式 (XXIII)において、R⁵¹及びR 53は、それぞれ炭素数30以下の炭化水素基又は炭素数 2~30のエーテル結合を有する炭化水素基であって、 炭素数30以下の炭化水素基の具体例としては、メチル 基, エチル基, n プロビル基, イソプロビル基, 各種 ブチル基, 各種ペンチル基, 各種ヘキシル基, 各種ヘプ チル基,各種オクチル基;各種ノニル基;各種デシル 基;各種ウンデシル基;各種ドデシル基,各種トリデシ ル基、各種テトラデシル基、各種ペンタデシル基、各種 ヘキサデシル基、各種ヘプタデシル基、各種オクタデシ ル基、各種ノナデシル基、各種エイコシル基などの脂肪 族炭化水素基、シクロヘキシル基、1 ーシクロヘキセニ ル基、メチルシクロヘキシル基、ジメチルシクロヘキシ ル基、デカヒドロナフチル基、トリシクロデカニル基な どの脂環式炭化水素基、フェニル基、各種トリル基、各 種キシリル基、メシチル基、各種ナフチル基などの芳香 族炭化水素基、ベンジル基、メチルベンジル基、フェニ ルエチル基、1-メチル-1-フェニルエチル基、スチ リル基、シンナミル基などの芳香脂肪族炭化水素基など を挙げることができる。

【① ○ 84】また、炭素数2~30のエーテル結合を有する炭化水素基としては、例えば一般式(XXIV)

--
$$(R^{54} - O)_k = R^{58} + \cdots + (XXIV)$$

し式中、R54は炭素数2又は3のアルキレン基(エチレン基、プロピレン基、トリメチレン基)、R55は炭素数28以下の脂肪族、脂環式又は芳香族炭化水素基(R51及びR53の具体例で挙げた基と同様のもの)、kは1~20の整数を示す。〕で表されるグリコールエーテル基、具体的にはエチレングリコールモノメチルエーテル基、エチレングリコールモノブチルエーテル基、トリエチレングリコールモノエチルエーテル基、プロピレングリコールモノブチルエーテル基、プロピレングリコールモノブチルエーテル基、ジプロピレングリコールモノブチルエーテル基、ジプロピレングリコールモノエチルブチルエーテル基、ジプロピレングリコールモノエチル

ステルについては、国際公開公報WO91/07479 号公報に詳細に記載されたものをいずれも使用することができる。前記のカーボネート誘導体としては、例えば一般式 (XXIII)

【0081】 【化18】

 $R^{53} \cdots (XXIII)$

エーテル基、トリプロビレングリコールモノn・ブチルエーテル基などを挙げることができる。R⁵¹及びR⁵³については、これらの中では、nーブチル基;イソブチル基;イソアミル基;シクロヘキシル基;イソヘプチル基;3ーメチルヘキシル基;1、3ージメチルブチル基;3ーメチルへキシル基;2ーエチルヘキシル基などのアルキル基、エチレングリコールモノメチルエーテル基、ジプロピレングリコールモノメチルエーテル基、プロピレングリコールモノメチルエーテル基、プロピレングリコールモノメチルエーテル基、ジプロピレングリコールモノブチルエーテル基、ジプロピレングリコールモノアルギルエーテル基、シブロピレングリコールモノアルエーテル基、シブロピレングリコールモノアルエーテル基などのアルキレングリコールモノアルキルエーテル基などのアルキレングリコールモノアルキルエーテル基などが好ましい。

【0085】また、上記一般式(XXIII)において、R⁵² は炭素数2~24のアルキレン基であり、具体例としてはエチレン基、プロピレン基、ブチレン基、アミレン基、メチルアミレン基、エチルアミレン基、ヘキシレン基、メチルへキシレン基、エチルへキシレン基、オクタメチレン基、ナトラデカメチレン基などを挙げることができる。R⁵²Oが複数ある場合は、複数のR⁵²は同一でも異なっていてもよい。

【0086】この一般式 (XXIII)で表されるポリカーボネートは、分子量(重量平均分子量)が300~3,000、好ましくは400~1,500のものが好適である。分子量が300未満のものでは、動粘度が小さすぎて潤滑油として不適当であり、逆に3,000を超えるものでは、ワックス状となり潤滑油としての使用が困難となり好ましくない。

【0087】このポリカーボネートは、各種の方法により製造することができるが、通常は炭酸ジエステルあるいはホスゲンなどの炭酸エステル形成性誘導体と脂肪族二価アルコールを原料として製造される。これらを用いてポリカーボネートを製造するには、通常のポリカーボネートの製造法に従えばよく、一般にはエステル交換法やホスゲン法によればよい。

【0088】上記ポリカーボネートは特開平3-217495号公報に詳細に記載されるものをいずれも使用することができる。さらに、カーボネート誘導体として、

一般式 (XXV)

$$R^{56}-O-(R^{58}O)_{p}-CO-(OR^{59})_{q}-O-R^{57}$$
 · · · (XXV)

(式中、 R^{56} 及び R^{57} は、それぞれ炭素数 $1\sim20$ の脂肪族、脂環式、芳香族又は芳香脂肪族炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、 R^{58} 及び R^{59} は、それぞれエチレン基又はイソプロピレン基を示し、それらはたがいに同一でも異なっていてもよく、P 及びP は、それぞれP へ P しの数を示す。)で表されるグリコールエーテルカーボネートを使用することができる。

【0089】上記一般式 (XXV)において、R56及びR57における脂肪族炭化水素基の具体例としては、メチル基、エチル基、n・プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ペキシル基、各種デシル基、各種デシル基、各種デシル基、各種デシル基、各種アテジル基、各種アラデシル基、各種ペンタデシル基、各種ペンタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オクタデシル基、各種オーシクロペキセニル基、メチルシシクロペキシル基、メチルシ

$$R^{60}O - \left\{ \begin{array}{c} C - O - R^{62} - O \\ \parallel \\ O \end{array} \right.$$

【0092】(式中、 R^{60} 及び R^{61} は、それぞれ炭素数 $1\sim15$ のアルキル基又は炭素数 $2\sim12$ の1 価のアルコール残基を示し、それらはたがいに同一でも異なっていてもよく、 R^{62} は炭素数 $2\sim12$ のアルキレン基を示し、rは $0\sim30$ の整数を示す。)で表される炭酸エステルを使用することもできる。

【0093】上記一般式 (XXVI) において、R⁶⁰及びR 61は、それぞれ炭素数1~15、好ましくは炭素数2~ 9のアルキル基又は炭素数2~12、好ましくは2~9 の1価アルコール残基を示し、R62は炭素数2~12、 好ましくは2~9のアルキレン基を示し、rは0~3 ○、好ましくは1~30の整数を示す。上記条件を満た さない炭酸エステルを使用すると、冷媒との相溶性など の各種性能が劣るため好ましくない。R60及びR61にお ける炭素数1~15のアルキル基としては、具体的に は、メチル基、エチル基、n プロピル基、n-ブチル 基、n-ペンチル基、n-ヘキシル基、n-ヘプチル 基、n オクチル基、n ノニル基、n デシル基、n ウンデシル基、nェドデシル基、nートリデシル基、 n-テトラデシル基, n-ペンタデシル基, イソプロピ ル基、イソブチル基、tertーブチル基、イソペンチ ル基、イソヘキシル基、イソヘプチル基、イソオクチル 基、イソノニル基、イソデシル基、イソウンデシル基、 イソドデシル基、イソトリデシル基、イソテトラドシル 基、イソペンタデシル基などを挙げることができる。 【0094】また、炭素数2~12の2価のアルコール

クロヘキシル基、ジメチルシクロヘキシル基、デカヒドロナフチル基、トリシクロデカニル基などを挙げることができる。芳香族炭化水素の具体例としては、フェニル基、各種トリル基、各種キシリル基、メシチル基、各種ナフチル基などを挙げることができる。芳香脂肪族炭化水素基の具体例としては、ベンジル基、メチルベンジル基、フェニルエチル基、スチリル基、シンナミル基などを挙げることができる。

【0090】上記一般式 (XXV)で表されるグリコールエーテルカーボネートは、例えばポリアルキレングリコールモノアルキルエーテルを、比較的低沸点のアルコールの炭酸エステルの過剰存在下でエステル交換させることによって製造することができる。上記のグリコールエーテルカーボネートについては、特開平3-149295号公報に詳細に記載されているものをいずれも使用することができる。さらに、カーボネート誘導体として、一般式 (XXVI)

[0091]

残基としては、具体的には、エチレングリコール;1、3ープロパンジオール;プロピレングリコール;1、4ーブタンジオール;1、2ーブタンジオール;8ーメチルー1、3ープロパンジオール;1、5ーペンタンジオール;ネオペンチレングリコール;1、6ーヘキサンジオール;2ーエチルー2ーメチルー1、3ープロパンジオール;2、2ージエチルー1、3ープロパンジオール;2、2ージエチルー1、3ープロパンジオール;1、8ーオクタンジオール;1、9ーノナンジオール;1、10ーデカンジオール;1、11ーウンデカンジオール;1、12ードデカンジオールなどの残基を挙げることができる。

【0095】さらに、R⁶²で表される炭素数2~12のアルキレン基としては、具体的には、エチレン基;トリメチレン基;プロピレン基;テトラメチレン基;ブチレン基;2-メチルトリメチレン基;ペンタメチレン基;2・エチル 2 メチルトリメチレン基;ヘキサメチレン基;2・エチル 2 メチルトリメチレン基;ヘプタメチレン基;2ージエチルトリメチレン基;オクタメチレン基;ドブメチレン基;デカメチレン基;ドデカメチレン基などの直鎖構造や分岐構造を有するものを挙げることができる。

【0096】上記炭酸エステルの分子量は特に限定されるものでないが、圧縮機の密封性をより向上させるなどの点から、数平均分子量が200~3,000のものが

好適に使用され、数平均分子量が300~2,000の ものがより好適に使用される。上記炭酸エステルについ ては、特開平4-63893号公報に詳細に記載されて いるものをいずれも使用することができる。前記のポ

$$T \xrightarrow{\{O \ (R^{63}O) \xrightarrow{\epsilon} (C H_2 C H O) \xrightarrow{u} C H} C H_2 C H_3 O \xrightarrow{v} R^{65}$$

【0098】(式中、Tは1~8価のアルコール残基、 R63は炭素数2~4のアルキレン基。R64はメチル基又 はエチル基、R65及びR67は、それぞれ水素原子、炭素 数20以下の脂肪族、芳香族又は芳香脂肪族炭化水素基 で、それらはたがいに同一でも異なっていてもよく、R 66は炭素数20以下の脂肪族、芳香族又は芳香脂肪族炭 化水素基を示し、s及びuは0~30の数、wは1~8 の数、xは $0\sim7$ の数、かつw+xは $1\sim8$ を満たし、 vは0又は1を示す。)で表される化合物を挙げること ができる。

【0099】上記一般式 (XXVII)において、Tは1~8 価のアルコール残基であり、丁を残基とするアルコール としては、1個アルコールとして、例えばメチルアルコ ール、エチルアルコール、直鎖又は分岐のプロピルアル コール,直鎖または分岐のブチルアルコール,直鎖又は 分岐のペンチルアルコール、直鎖又は分岐のヘキシルア ルコール、直鎖又は分岐のヘプチルアルコール、直鎖又 は分岐のオクチルアルコール、直鎖又は分岐のノニルア ルコール、直鎖又は分岐のデシルアルコール、直鎖又は 分岐のウンデシルアルコール、直鎖又は分岐のドデシル アルコール、直鎖又は分岐のトリデシルアルコール、直 鎖又は分岐のテトラデシルアルコール、直鎖又は分岐の ペンタデシルアルコール、直鎖又は分岐のヘキサデシル アルコール、直鎖又は分岐のヘプタデシルアルコール、 直鎖又は分岐のオクタデシルアルコール、直鎖又は分岐 のノナデシルアルコール、直鎖又は分岐のエイコシルア ルコールなどの脂肪族1価アルコール;フェノール、メ チルフェノール、ノニルフェノール、オクチルフェノー ル、ナフトールなどの芳香族アルコール;ベンジルアル コール、フェニルエチルアルコールなどの芳香脂肪族ア ルコール;及びこれらの部分エーテル化物などを、2価 アルコールとして、例えばエチレングリコール、プロピ レングリコール、ブチレングリコール、ネオペンチレン グリコール、テトラメチレングリコールなどの直鎖又は 分岐の脂肪族アルコール、カテコール、レゾルシノー ル, ビスフェノールA, ビスフェニルジオールなどの芳 香族アルコール、及びこれらの部分エーテル化物など を、3個アルコールとして、例えばグリセリン;トリメ チロールプロパン;トリメチロールエタン;トリメチロ ールブタン:1,3,5-ペンタントリオールなどの直 $\cdot \cdot \cdot (XXVII)$

鎖又は分岐の脂肪族アルコール、ピロガロール、メチル ピロガロール, 5-sec-ブチルピロガロールなどの 芳香族アル コール及びこれらの部分エーテル 化物など を、4個~8個のアルコールとして、例えばペンタエリ スリトール、ジグリセリン、ソルビタン、トリグリセリ ン、ソルビトール、ジペンタエリスリトール、テトラグ リセリン、ペンタグリセリン、ヘキサグリセリン、トリ ペンタエリスリトールなどの脂肪族アルコール及びこれ らの部分エーテル化物などを挙げることができる。

【0100】また、上記一般式 (XXVII)において、R63 で示される炭素数2~4のアルキレン基は直鎖状、分岐 状のいずれであってもよく、具体例としては、エチレン 基;プロピレン基;エチルエチレン基;1,1-ジメチ ルエチレン基;1,2-ジメチルエチレン基などを挙げ ることができる。また、R⁶⁵~R⁶⁷で示される炭素数2 〇以下の脂肪族、芳香族又は芳香脂肪族炭化水素基とし ては、例えばメチル基;エチル基;プロピル基;ブチル 基:ペンチル基:ヘプチル基:オクチル基:ノニル基: デシル基;ウンデシル基;ラウリル基;ミリスチル基; パルミチル基;ステアリル基などの直鎖アルキル基、イ ソプロピル基;イソブチル基;イソアミル基;2-エチ ルヘキシル基;イソステアリル基;2-ヘプチルウンデ シル基などの分岐鎖アルキル基、フェニル基;メチルフ ェニル基などのアリール基、ベンジル基などのアリール アルキル基などを挙げることができる。

【0101】一般式 (XXVII)において、s及びuは0~ 30の数を示し、s, uが30を超えると分子内におけ るエーテル基の寄与が増し、冷媒との相溶性、電気絶縁 性,吸湿性の面で好ましくない。また、wは1~8の 数、xは0~7の数であって、w+xは1~8の関係を 満たし、これらの数は平均値を示し、整数には限られな い。vは0又は1である。また、s×w個のR63はそれ ぞれ同一でも異なっていてもよく、u ~w個のR64はそ れぞれ同一でも異なっていてもよい。wが2以上の場 合、w個のs, u, v, R⁶⁵及びR⁶⁶はそれぞれ同一で も異なっていてもよく、さらにxが2以上の場合、x個 のR⁶⁷はそれぞれ同一でも異なっていてもよい。

【O102】上記一般式 (XXVII)で表されるポリエーテ ルケトンを製造する方法としては、公知の方法を採用す ることができる。例えば、二級のアルキルオキシアルコ

ールを次亜塩素酸塩と酢酸によって酸化する方法(特開 平4 126716号公報)、あるいは水酸化ジルコニ ウムとケトンを用いて酸化する方法(特開平3-167 149号公報)を用いることができる。

【0103】前記のフッ素化油としては、例えばフッ 化シリコーン油、パーフルオロポリエーテル、アルカン とパーフルオロアルキルビニルエーテルとの反応化物な どを挙げることができる。アルカンとパーフルオロアル キルビニルエーテルとの反応化物の例としては、一般式

 $C_n H_{(2n+2-y)} (CF_2 - CFHOC_m F_{2m+1})_y \cdot \cdot \cdot (XXX)$

(式中、yは1~4の整数を示し、n及びmは前記と同 じである。)で表される化合物を挙げることができる。 【O1O4】上記一般式(XXVIII)で表されるアルカン は直鎖状、分岐鎖状、環状のいずれであってもよく、そ の具体例としては、n‐オクタン;n‐デカン;n-ド デカン;シクロオクタン;シクロドデカン;2,2,4 - トリメチルペンタンなどを挙げることができ、一方、 一般式(XXIX)で表されるパーフルオロアルキルビニル エーテルの具体例としては、パーフルオロメチルビニル エーテル, パーフルオロエチルビニルエーテル, パーフ ルオロ n ープロピルビニルエーテル,パーフルオロ n ー ブチルビニルエーテルなどを挙げることができる。本発 明の冷凍機油組成物は、優れた潤滑性能を有し、特にア ルミニウム材を用いる潤滑部分の摩耗を低減できる。ま た、本発明において、添加剤として、酸化安定性の高い ものを使用しているので、冷凍機油組成物の酸化安定性 も高いものである。

[0105]

【実施例】次に、本発明を実施例によりさらに詳しく説 明するが、本発明はこれらの例によってなんら限定され るものではない。

〔実施例1,2、参考例1,2及び比較例1〕基油とし

(XXVIII)

 $\cdot \cdot \cdot (XXVIII)$ $C_n H_{2n+2}$

(式中、nは6~20の整数を示す。)で表されるアル カンに、一般式 (XXIX)

 $CF_2 = CFOC_m F_{2m+1} \cdots (XXIX)$

(式中、mは1~4の整数を示す。)で表されるパーフ ルオロアルキルビニルエーテルを反応させて得られる一 般式 (XXX)

て、ポリビニルエチルエーテル(a)・ポリイソブチル エーテル(b)ランダム共重合体 [a単位/b単位=9 ✓1,動粘度68mm²/s(40℃),数平均分子量 720、PVEと略す。〕及びペンタエリスリトールと 2-エチルヘキサン酸、イソノナン酸とのエステル (P OEと略す。)を使用し、添加剤として、組成物全量基 準で1重量%のグリセリルエーテル(イソオクタデシル グリセリルエーテル)又はTCPを使用して冷凍機油組 成物を調製した。その組成物について、冷媒密封式プロ ックオンリング試験機を用いて、下記の要領で耐摩耗性 能を評価した。その結果を第1表に示す。

〔評価条件〕

材料:アルミニウム(A-4032) アルミニウム(A-4032) の組合せ

油 温 :50℃ 荷 重 :50N

滑り速度: 0.6m/sec

実験時間:20min

雰囲気 : R134a封入、0.5MPa

[0106] 【表1】

第	1	悪	
777	1	-ex	

		アルミブロック摩耗幅(nm)
実施例1	PVE+グリセリルエーテル(lwt¾)	0.91
比較例 1	PVE+TCP (lwt%)	1. 25
参考例 1	PVE(添加剤なし)	1. 34
実施例2	POE+グリセリルエーテル (lwt%)	3. 88
参考例2	POE (添加剤なし)	7. 94

【0107】〔実施例3、参考例3及び比較例2〕基油 として、ボリビニルエチルエーテル(a)・ボリイソブ チルエーテル (b) ランダム共重合体 [a単位:b単位 = 9 1,動粘度 6 8 m m (s (40°),数平均分 子量720、PVEと略す。〕を使用し、添加剤とし て、組成物全量基準で1重量%のグリセリルエーテル (イソオクタデシルグリセリルエーテル)又はTCPを

使用して冷凍機油組成物を調製した。その組成物につい て、冷媒密封式ブロックオンリング試験機を用いて、下 記の要領で耐摩耗性能を評価した。その結果を第2表に 亦す。

〔評価条件〕

材 料 : アルミニウム (A-4032) / 鋳鉄の組合せ (ブ ロック;アルミニウム リング;鋳鉄)

荷 重 :100N 【0108】 滑り速度:0.6m/sec 【表2】

実験時間: 20min

第2表

		アルミブロック摩耗幅(mm)
実施例3	PVE+グリセリルエーテル(lwt%)	1. 36
比較例2	PVE+TCP (lwt%)	1. 55
参考例3	PVE (添加剤なし)	1. 65

【0109】〔実施例3、参考例4及び比較例3〕基油として、ポリビニルエチルエーテル(a)・ポリイソブチルエーテル(b)ランダム共重合体〔a単位/b単位 = 9 1、動粘度68mm² s(40℃)、数平均分子量720、PVEと略す。〕を使用し、添加剤として、組成物全量基準で1重量%のグリセリルエーテル(イソオクタデシルグリセリルエーテル)又はTCPを使用して冷凍機油組成物を調製した。その組成物について、冷媒密封式ブロックオンリング試験機を用いて、下記の要領で耐摩耗性能を評価した。その結果を第3表に示す。

〔評価条件〕

材料:鋳鉄/高速度鋼の組合せ(ブロック;高速度

鋼 リング;鋳鉄) 油 温 : 100℃ 荷 重 : 1200N 滑り速度: 0.4m/sec 実験時間: 120min

雰囲気 : R134a封入 0.5MPa

【0110】 【表3】

第3表

		鋳鉄リング摩耗量(mg)
実施例 4	PVE+グリセリルエーテル(lwt%)	0. 6
比較例3	PVE+TCP (Iwt%)	0. 4
参考例 4	PVE (添加剤なし)	1. 6

[0111]

【発明の効果】本発明によれば、冷媒として、ハイドロフルオロカーボン系、ハイドロカーボン系、エーテル系、二酸化炭素系又はアンモニア系のもの、好ましくは環境汚染で問題となっている冷媒のクロロフルオロカー

ボン系のものの代替となりうるハイドロフルオロカーボン系のものを用いた場合、優れた潤滑性能を有し、特にアルミニウム材を用いる潤滑部分の摩耗を低減できる冷凍機油組成物を提供することができる。