Stat 8003, HW3

Due: Thursday, Sep 18th, 2014

1. The covariance of X and Y is Cov(X,Y) = E[X - E(X)(Y - E(Y))] and the correlation coefficient of X and Y is

 $\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.$

Consider a bivariate distribution with P(X = 1, Y = 2) = 0.4, P(X = 2, Y = 3) = 0.6. Find the correlation coefficient between X and Y.

- **2.** Find two random variables X and Y, such that Cov(X,Y) = 0 but X and Y are not independent.
- **3.** In the Example of GDP. Assume that the data follows a gamma distribution $\Gamma(\alpha, \beta)$.
 - a. Derive the estimator of α , β using the methods of moments;
 - b. Compare the density of the data vs the fitted curve.
- **4.** For any random variable X, let $M_X(t) = E \exp(Xt)$ and $S_X(t) = \log(M_X(t))$. $M_X(t)$ is called the moment generating function and $S_X(t)$ is the cumulant generating function. It is known that (Can you prove it? Not required.)

$$\frac{d}{dt}S_X(t)|_{t=0} = EX \quad \text{and} \quad \frac{d^2}{dt^2}S_X(t)|_{t=0} = Var(X).$$

Use this fact to answer the following questions.

- a. Assume that X follows a Gamma distribution with parameter α and β . Calculate the cumulant generating function;
- b. Calculate $E \ln X$ and $Var(\ln X)$. Write your final result by using the digamma function $\psi(x)$ and trigamma function $\psi_1(x)$ where $\psi(x) = (\ln \Gamma(x))'$ and $\psi_1(x) = (\ln \Gamma(x))''$.
- c. Match the first and second moment of $\log(X)$, and derive the MOM estimator of α and β . (Hint: in R, you can use digamma(x), trigamma(x), and limma::trigammaInverse(x).)

1

d. Apply your estimator to the GDP dataset and estimate the parameter of α and β .