PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08309251 A

(43) Date of publication of application: 26.11.96

(51) Int. Cl

B05C 1/12

C09D133/02

C09D163/00

G02B 5/20

G03F 7/004

G03F 7/16

(21) Application number: 07122028

(22) Date of filing: 22.05.95

(71) Applicant:

HITACHI CHEM CO LTD

(72) Inventor:

FURUBAYASHI HIROMI SAITO MANABU

YAMAZAKI HIROSHI

(54) PRODUCTION OF EXTREMELY THIN PHOTOSENSITIVE FILM

(57) Abstract:

PURPOSE: To provide a method of producing an extremely thin photosensitive film in which when coating a support body film with a photosensitive resin composition solution, the coating is effectively performed without color irregularity, vertical streaks lateral streaks or the like

CONSTITUTION: In a method of producing an extremely

thin photosensitive film in which a photosensitive resin composition solution where a photosensitive resin composition is dissolved in an organic solvent is applied to a film support body and is dried to form an extremely thin photosensitive resin composition layer of $0.5\text{-}5\mu\text{m}$, a contact angle when the photosensitive resin composition solution is applied to the film support body is made 12-20°.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-309251

(43)公開日 平成8年(1996)11月26日

(51) Int.Cl. 6	識別記号	庁内整理番号	FΙ				技術表示箇所
B 0 5 C 1/12			B 0 5 C	1/12			
C 0 9 D 133/02	PFW		C 0 9 D 1	133/02		PFW	
163/00	PKS		1	163/00		PKS	
G 0 2 B 5/20	1 0 1		G 0 2 B	5/20		101	
G03F 7/004	5 1 2		G 0 3 F	7/004		512	
·		審查請求	未請求。請求	項の数4	OL	(全 7 頁)	最終頁に続く
(21)出願番号	特願平7 -122028		(71)出顧人	000004	455		
(,)				日立化	成工業	株式会社	
(22)出顧日	平成7年(1995)5月		東京都	新宿区	西新宿2丁目	1番1号	
(PR) ETRICH			(72)発明者 古林 寛巳				
				茨城県	日立市!	東町四丁目13年	番1号 日立化
				成工業	株式会	社山崎工場内	
			(72)発明者	斉藤	学		
				茨城県	日立市	東町四丁目13年	番1号 日立化
				成工業	株式会	社山崎工場内	
			(72)発明者	皆 山崎	宏		
				茨城県	日立市:	東町四丁目13年	番1号 日立化
				成工業	株式会	社山崎工場内	
			(74)代理/	人 弁理士	若林	邦彦	

(54) 【発明の名称】 極薄膜感光性フィルムの製造法

(57)【要約】

【目的】 感光性樹脂組成物溶液を支持体フィルムに塗布する際に、色ムラ、縦縞、横縞等がなく、収率良く塗布することができる極薄膜感光性フィルムの製造法を提供する。

【構成】 感光性樹脂組成物を有機溶剤に溶解した感光性樹脂組成物溶液を、フィルム性支持体上に塗布、乾燥して、膜厚 0.5~5μmの極薄膜の感光性樹脂組成物層を形成する極薄膜感光性フィルムの製造法において、前記感光性樹脂組成物溶液をフィルム性支持体上に塗布する際の接触角を、12~20度とすることを特徴とする極薄膜感光性フィルムの製造法。

【特許請求の範囲】

【請求項1】 感光性樹脂組成物を有機溶剤に溶解した感光性樹脂組成物溶液を、フィルム性支持体上に塗布、乾燥して、膜厚0.5~5μmの極薄膜の感光性樹脂組成物層を形成する極薄膜感光性フィルムの製造法において、前記感光性樹脂組成物溶液をフィルム性支持体上に塗布する際の接触角を、12~20度とすることを特徴とする極薄膜感光性フィルムの製造法。

【請求項2】 感光性樹脂組成物が、(A) アクリル酸 又はメタクリル酸を17~30重量%共重合したフィル ム性付与ポリマ 45~70重量部、(B) エチレン性 不飽和化合物 30~55重量部(但し、(A) 成分及 び(B) 成分の総量を100重量部(但し、(A) 成分及 び(B) 成分の総量100重量部(但し、(A) 成分及 び(B) 成分の総量100重量部に対して)及び(D) 顔料又は染料 0.1~50重量部(但し、(A) 成分 及び(B) 成分の総量100重量部に対して)を含有す るものである請求項1記載の極薄膜感光性フィルムの製 造法。

【請求項3】 感光性樹脂組成物が、レヘリング剤を含有するものである請求項1又は2記載の極薄膜感光性フィルムの製造法。

【請求項4】 感光性樹脂組成物が、メラミン樹脂とエポキシ樹脂の少なくとも一種類の樹脂を、(A)成分及び(B)成分の総量100重量部に対して、1~20重量部含有するものである請求項1、2又は3記載の極薄膜感光性フィルムの製造法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は極薄膜感光性フィルムの 製造法に関する。更に詳しくは、カラーフィルタの作製 に好適なアルカリ現像型の極薄膜の感光性樹脂組成物層 を有する極薄膜感光性フィルムの製造法に関する。

[0002]

【従来の技術】カラーフィルタは、ガラス等の光学的に透明な基板の表面に、二種以上の色相を異にする極めて微細なストライプ状又はモザイク状のパターンを、一定の間隔を開けて、平行又は交差して並べた物である。これらのパターンは、色相を所定の順序に所定の間隔をおいて整然と配置し、しかも厚さムラの少ない均一な層とする必要があり、種々のカラーフィルタの製造法が提案されている。例えば、スクリーン印刷法では、低コストのカラーフィルタの形成が可能であり、また、フォトリソグラフィ技術を用いる方法、すなわち、カラーフィルタ用基板上に形成された透明膜に、所定のネガマスクを通して紫外線照射し、未露光部を除去した後、防染層を形成しながら染色する方法等がある。

【0003】前記の方法の改良法として、基板上に着色 した溶液状の感光性樹脂組成物を、塗布、乾燥した後、 露光、現像して一色のパターンを形成させる工程を、他 の色についても同様に繰り返し行うことによりカラーフィルタを形成する方法等がある。また、現在プリント配線板製造時のエッチングレジスト、めっきレジスト、ソルダレジスト等に一般に使用されている、透明支持体フィルム及び感光性樹脂層から成る感光性フィルムを使用した、多色の微細なストライプ状又はモザイク状のパターンを簡単に高精度で形成できるカラーフィルタの製造法等が知られている。

【0004】透明基板上に、支持体フィルムと一色に着色された感光性樹脂層とからなる感光性フィルムを、着色された感光性樹脂層が基板に面するように貼り合わせる工程、露光して所定のパターンを形成させる工程及び前記支持体フィルムを剥がして現像する工程を繰り返して、多色パターンを形成させてカラーフィルタが製造される。

【0005】例えば、一つの色相着色剤を含む感光性樹脂の層を、透明支持体フィルムに塗布、乾燥した感光性フィルムの感光性樹脂の層を、透明な板の上に転写して、所定のパターンのマスクを介して露光、現像してパターンを形成する方法(特開昭61-99102号公報)、前記フィルムに所定のパターンのマスクを介して露光、現像してパターンを形成した後に、透明な板の上に転写してカラーフィルタのパターンを形成する方法(特開昭61-99103号公報)、前記フィルムを透明な板の上に加熱、圧着して、所定のパターンのマスクを介して露光して、支持体フィルムを剥離し、現像して透明着色の画像パターンを形成する方法(特開昭63-187203号公報)等が知られている。

【0006】感光性フィルムは、透明なベースフィルム、例えば、ポリエチレンテレフタレート等のフィルム上に、赤、緑及び青にそれぞれ着色した感光性樹脂組成物を塗布し、乾燥させて各色に着色した着色感光性樹脂層を形成したものである。なお、感光性樹脂層の膜厚は、通常、0.5~5.0μmであり、好ましくは1.0~2.5μmである。着色感光性樹脂層は、未硬化であり、柔軟で、粘着性を有するため、この上に更にポリエチレンフィルム等の保護フィルムを貼り合わせて、外部からの損傷、異物の付着等を防止することが望ましい。感光性フィルムに形成された着色感光性樹脂層は、保護フィルムを剥しながら透明基板上に貼り合わされる。

【0007】上記のような感光性フィルムを用いる場合、その現像に用いる現像液は、作業環境面、ランニングコスト等の面から、有機溶剤ではなく、アルカリ水溶液を用いることが好ましい。アルカリ水溶液としては、通常、0.3~2.0重量%のNa₂CO₃水溶液が多く用いられる。アルカリ水溶液で現像されるアルカリ現像型の感光性樹脂組成物は、通常、アクリル酸又はメタクリル酸を共重合したパインダポリマ、エチレン性不飽和化合物、光重合開始剤、顔料又は染料等を含む。一般に

感光性フィルムを製造する際、感光性樹脂組成物を溶解するための溶剤としては、従来、アセトン、メチルエチルケトン、塩化メチレンプロビレングリコールメチルエーテル、トルエン等の有機溶剤が用いられており、プリント配線板に用いられる場合は、乾燥後の感光性樹脂層の膜厚が、 $25 \mu m \sim 100 \mu m$ である。

【0008】しかし、膜厚が5μm未満となるように塗布しようとする場合、乾燥性が良すぎること、樹脂の溶解性があまり良くないこと、感光性樹脂組成物溶液を支持体フィルムに塗布する際の接触角が小さすぎること等が、顕著に影響し易く、塗布外観が悪くなったり(色ムラができたり、縦縞・横縞が発生したりする)収率が悪くなるという問題が生じ、極薄膜感光性フィルムとして満足できるものが得られなかった。

[0009]

【発明が解決しようとする課題】本発明は、上述した従来の技術の問題点を解決し、感光性樹脂組成物溶液を支持体フィルムに達布する際に、色ムラ、縦縞、横縞等がなく、収率良く達布することができる極薄膜感光性フィルムの製造法を提供するものである。

[0010]

【課題を解決するための手段】本発明は、感光性樹脂組成物を有機溶剤に溶解した感光性樹脂組成物溶液を、フィルム性支持体上に塗布、乾燥して、膜厚 0.5~5 μ mの極薄膜の感光性樹脂組成物層を形成する極薄膜感光性フィルムの製造法において、前記感光性樹脂組成物溶液をフィルム性支持体上に塗布する際の接触角を、12~20度とすることを特徴とする極薄膜感光性フィルムの製造法関する。

【0011】本発明における感光性樹脂組成物としては、公知の種々の感光性樹脂組成物が利用でき、例えば、ネガ型感光性樹脂組成物やポジ型感光性樹脂組成物等が挙げられる。ネガ型感光性樹脂組成物としては、例えば、ポリケイ皮酸ビニル系樹脂組成物、芳香族ピスアジド化合物と環化ゴム(1,4-シスポリイソプレン)を含有する樹脂組成物、ポリビニルーpーアジドベンザルを含む樹脂組成物等が挙げられる。ポジ型感光性樹脂組成物としては、例えば、フェノールノボラック樹脂とナフトキノンジアジドスルホン酸を含む樹脂組成物等が挙げられる。

【0012】本発明の極薄膜感光性フィルムの製造法では、耐薬品性の点から、使用する感光性樹脂組成物としては、(A)アクリル酸又はメタクリル酸を共重合したフィルム性付与ポリマ、(B)エチレン性不飽和化合物、(C)光重合開始剤及び(D)顔料又は染料を含有するネガ型感光性樹脂組成物が好ましい。

【0013】(A) メタクリル酸又はアクリル酸を共重合したフィルム性付与ポリマとしては、特に制限はなく、公知のものが使用でき、メタクリル酸又はアクリル酸と共重合するモノマとしては、重合性、Tg調節等の

点から、アクリル酸アルキルエステル及びメタクリル酸 アルキルエステル等が好ましい。アクリル酸アルキルエ ステルとしては、例えば、炭素数4~12のアクリル酸 アルキルエステル(アクリル酸メチル、アクリル酸エチ ル、アクリル酸ブチル、アクリル酸2-エチルペキシル 等)などが挙げられる。メタクリル酸アルキルエステル としては、例えば、炭素数4~12のメタクリル酸アル キルエステル (メタクリル酸メチル、メタクリル酸エチ ル、メタクリル酸プチル、メタクリル酸2-エチルヘキ シル等)などが挙げられる。また、これら以外でアクリ ル酸又はメタクリル酸と共重合するモノマとしては、例 えば、アクリル酸テトラヒドロフルフリル、メタクリル 酸テトラヒドロフルフリル、アクリル酸2,2,2-ト リフルオロエチル、メタクリル酸2,2,2ートリフル オロエチル、アクリル酸2,2,3,3-テトラフルオ ロプロピル、メタクリル酸2,2,3,3-テトラフル オロプロピル、アクリルアミド、ジアセトンアクリルア ミド、スチレン、ビニルトルエン等を使用することもて

【0014】(A) 成分におけるアクリル酸又はメタクリル酸の共重合の割合は、17~30重量%とすることが好ましい。この割合が、17重量%未満では、現像性が低下する傾向があり、30重量%を超えると、微細パターン部の欠落が発生する傾向がある。また、(A) 成分には、上記以外のフィルム性付与ポリマを併用することができる。上記以外のフィルム性付与ポリマとしては、例えば、ポリエステル、ポリアミド、ポリアミドイミド、ポリウレタン、ブタジエン/アクリロニトリル共重合体、セルロースアセテートブチレート等が挙げられる。

【0015】(A)成分の使用により、塗膜性、硬化物の膜特性等が向上し、その配合量は、(A)成分及び(B)成分の総量を100重量部として、45~70重量部とすることが好ましい。この配合量が、45重量部未満では、フィルム形成性が不足する傾向があり、70重量部を超えると、光硬化物が脆くなる傾向がある。また、(A)成分の重量平均分子量(ゲルパーミエーションクロマトグラフィー法により、標準ポリスチレンを用いて作成した検量線より算出した)は、50,000~150,000とすることが好ましい。この重量平均分子量が、50,000未満では、微細パターン部が欠落する傾向があり、150,000を超えると、現像性が低下する傾向がある。

【0016】(B) エチレン性不飽和化合物としては、例えば、多価アルコールに α 、 β -不飽和カルボン酸を付加して得られる化合物、グリシジル基含有化合物に α 、 β -不飽和カルボン酸を付加して得られる化合物、多価カルボン酸と水酸基及びエチレン性不飽和基を有する化合物とのエステル化物、アクリル酸アルキルエステル又はメタクリル酸アルキルエステル等がある。

【0017】多価アルコールに α 、 β ー不飽和カルボン酸を付加して得られる化合物としては、例えば、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペキサメタクリレート、ジペンタエリスリトールペキサメタクリレート、ジペンタエリスリトールペキサメタクリレート、シペンタエリスリトールペキサメタクリレート、シペンタエリスリトールペキサメタクリレート、ジペンタエリスリトールペキサメタクリレート、21、21 ービス(41 (21 ー)フェニル)プロパン、21 ー)フェニル)プロパン、22 ー ビス (33 ー)フェニル)プロパン、33 ー とりクリロールオキシエチルーの一フタレート等が挙げられる。

【0018】グリシジル基含有化合物にlpha、eta - 不飽和 カルボン酸を付加して得られる化台物としては、例え ば、トリメチロールプロパントリグリシジルエーテルト リアクリレート、ピスフェノールAジグリシジルエーデ ルジアクリレート、ピスフェノールAシグリンジルエー テルジメタクリレート等が挙げられる。多価カルボン酸 と水酸基及びエチレン性子飽和基を有する化合物とのエ ステル化物としては、例えば、無水フタル酸とガーヒト ロキシエチルアクリレート又はβーヒドロキシエチルく タクリレートとのエステル化物等が挙げられる。アクリ ル酸アルキルエステル又はメククリル酸アルキルエステ ルとしては、例えば、アクリル酸メチル、メタクリル酸 メチル、アクリル酸エチル、メタクリル酸エチル、アク リル酸ブチル、メタクリル酸ブチル、アクリル酸2-エ チルペキシル、メタクリル酸2-エチルペキシル等が挙 げられる。また、トリメチルハキサメチレンジイソシア ナートとジアルコールとβ-ヒドロキシエチルアクリレ ートとを反応させて得られるウレタンジアクリレート化 合物等も使用することができる。これらは単独で又は2 種類以上を組み合わせて使用される。

【0019】(B) 成分の配合量は、(A) 成分及び (B) 成分の総量を100重量部として、30~55重量部とするのが好ましい。この配合量が、30重量部未満では、得られた極薄膜感光性フィルムの粘着性が低下する傾向があり、55重量部を超えると、極薄膜感光性フィルムの粘着性が強くなりすぎてしまい、カラーフィルタ作製時にフィルム性支持体を除去するのが困難となる傾向がある。

【0020】(C) 光重合開始剤としては、例えば、芳香族ケトン(ペンゾフェノン、N, N' - テトラメチル -4, 4' - ジアミノベンゾフェノン(ミヒラーケトン)、N, N' - テトラメチル -4, 4' - ジアミノベンゾフェノン、4 - メトキシ -4' - ジメチルアミノベンゾフェノン、4, 4' - ジエチルアミノベンゾフェノン、5 、ベンゾインエーテル(ベンゾインメチルエーテ

ル、ペンゾインエチルエーテル、ペンゾインフェニルエ ーテル等)、ベンゾイン(メチルベンゾイン、エチルベ ン ゾイン等)、2,4,5-トリアリールイミダゾール 二量体(2-(o-クロロフェニル)-4,5-ジフェ ニルイミダソール 二量体、2-(o-クロロフェニル) ュニルイミダゾール二量体、2-(o-フルオロフェニ ル) - 4, 5 - ジフェニルイミダゾール 二量体、2 -(ローメトキシフェニル) -4,5-ジフェニルイミダ ゾール二量体、2-(p-メトキシフェニル)-4,5 ージフェニルイミダゾール二量体、2,4-ジ(p-メ トキシフェニル) -5-フェニルイミダゾール二量体、 2 - (2, 4 - i) + iニルイミダゾール二量体、2-(p-メチルメルカプト フェニル) - 4, 5-ジフェニルイミダゾール二量体 等)などが挙げられる。これらは単独で又は2種類以上 を組み合わせて使用される。

【0021】(C)成分の配合量は、(A)成分及ひ(B)成分の総量100重量部に対して、0.1~10重量部とするのが好ましい。この配合量が、0.1重量部未満では、光感度が不十分となる傾向があり、10重量部を超えると、露光の際に組成物の表面での光吸収が増大し、内部の光硬化が不十分となる傾向がある。

【0022】(D)顔料又は染料としては、公知の着色剤が使用でき、感光性樹脂層の成分、特にエチレン性不飽和化合物又はカルボキシル基含有フィルム性付与ポリマに対する相溶性、目標とする色相、光透過性等を考慮して選択することができ、例えば、Colortex Red UEM、Colortex Blue UEM、Colortex Green UE-1203 (いずれも山陽色素(株)製)等が挙げられる。

(D) 成分の配合量は、(A) 成分及び(B) 成分の総 量100重量部に対して、0.1~40重量部とするこ とが好ましい。この配合量が、0.1重量部未満では、 着色が不充分となる傾向があり、40重量部を超える と、光透過率が低下する傾向がある。

【0023】本発明における感光性樹脂組成物は、上記成分の他に、レベリング剤を含有することが好ましい。レベリング剤としては、特に制限はなく、公知のものが使用でき、例えば、シリコン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤等が挙げられる。シリコン系レベリング剤としては、例えば、1個以上のSiO単位が連続して結合した鎖に、エチレンオキサイド又はプロピレンオキサイドとアルキル基を含む長鎖が1個以上結合した化合物等が挙げられ、具体例としては、例えば、東レ・ダウコーニング・シリコーン(株)製のSH-193、SH-7PA等やピック・ケミー社製のBYK-333、BYK-344等が挙げられる。【0024】本発明における感光性樹脂組成物は、上記

【0024】本発明における感光性樹脂組成物は、上記成分の他に、加熱硬化性を高める点から、メラミン樹脂とエポキシ樹脂の少なくとも一種類の樹脂を含有するこ

とが好ましい。メラミン樹脂及びエポキシ樹脂は、

(A) 成分中にあるカルボキシル基と熱反応するものが好まして、例えば、ヘキサメトキシメチルメラミン等が挙げられる。メラミン樹脂及びエポキシ樹脂の配合量は、(A) 成分及び(B) 成分の総量100重量部に対して、1~20重量部とすることが好ましい。上記樹脂を含む感光性樹脂組成物を用いて感光性フィルムを作製し、露光、現像した後、130~200℃で30~60分加熱することにより、架橋密度が向上し、耐熱性が著しく向上させることができる。

【0025】本発明の極薄膜感光性フィルムの製造法は、前記感光性樹脂組成物の溶液を、フィルム性支持体上に塗布する際の接触角を、12~20度とすることに特徴がある。接触角が12度未満であると、得られる極薄膜感光性フィルムに厚さムラが生じ、連続的に安定して一定の膜厚が得られない。また、接触角が20度を超えると、塗面にはじきやムラ等が生じる。従って、接触角が12~20度の範囲外であると、得られた極薄膜感光性フィルムの外観や収率が悪くなる。

【0026】本発明における感光性樹脂組成物は、接触角を容易に、しかも精密に制御できる点等から、前記レスリング剤を含有するものであることが好ましい。接触角は、例えば、前記感光性樹脂組成物に含有させるレベリング剤と感光性樹脂組成物を溶解するための有機溶剤との組合せ等により調整することができる。

【0027】有機溶剤としては、特に制限はなく、公知のものが使用でき、例えば、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、シクロヘキサノン、イソアミルアルコール等が挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。

【0028】前記レベリング剤の配合量は、接触角の調整効果の点から、感光性樹脂組成物中の(A)成分及び(B)成分の総量100重量部に対して、0.01~1重量部とすることが好ましく、0.1~0.6重量部とすることが特に好ましい。この配合量が、0.01重量部未満では、接触角を12~20度とすることが難しくなる傾向があり、1重量部を超えると、カラーフィルタの製造の際、感光性樹脂組成物のガラス板等への密着性が低下して像が流れてしまう傾向がある。

【0029】有機溶剤の配合量は、塗液の流れを抑える目的から感光性樹脂組成物溶液の粘度を20cps(200Pa·s)となるようにすることが好ましく、さらに、溶液中の固形分濃度を、 $15\sim25$ 重量%とすることが好ましい。

【0030】接触角は、種々の方法で測定することができるが、投影法で測定することが好ましく、例えば、協和界面科学(株)製の接触角計CA-D型等を使用して測

定することができる。

【0031】フィルム性支持体としては、例えば、ポリエチレンテレフタレート、配向ポリプロピレン(OPP)、無延伸ポリプロピレン、離型処理ポリエステス、硬質ポリ塩化ピニル、アセテート(セルローストリアセテート)、2軸延伸ナイロン、無延伸ナイロン、ポリイミド、2軸延伸ポリナフタレート等が挙げられ、配向ポリプロピレンとしては、例えば、2軸延伸ポリプロピレン等が挙げられる。フィルム性支持体の厚さは、3~100 μ mとすることが好ましい。この厚さが、3 μ m未満では、製造が困難となる傾向があり、100 μ mを超えると、フィルムとしての柔軟性が低下する傾向がある。

【0032】本発明における極薄膜感光性フィルムは、 前記感光性樹脂組成物を有機溶剤に溶解して感光性樹脂 組成物溶液を調製し、これをフィルム性支持体上に塗布 し、加熱して乾燥することにより製造される。塗布方法 としては、例えば、ロールコーター法、グラビアコータ 一法、スプレーコーター法、ナイフコーター法等が挙げ られる。加熱温度は、50~175℃とすることが好ま しく、70~150°Cとすることがより好ましい。この 加熱温度が、50℃未満では、塗膜中に溶剤が残って膜 がべたつく傾向があり、175℃を超えると、光重合モ ノマの硬化が始まって解像度が低下する傾向がある。加 熱時間は、30~900秒とすることが好ましく、30 ~600秒とすることがより好ましい。この加熱時間 が、30秒未満では、塗膜中に溶剤が残って膜がべたつ く傾向があり、900秒を超えると、光重合モノマの硬 化が始まって解像度が低下する傾向がある。

【0033】本発明における極薄膜感光性フィルムには、感光性樹脂組成物層に対する外部からの損傷や異物の付着等を防止するため、感光性樹脂組成物層に、さらに保護フィルムを積層させることが好ましい。保護フィルムとしては、例えば、ポリエステルフィルム、ポリオレフィンフィルム等が挙げられ、価格、柔軟性、強度、硬度等の面から、ポリオレフィンフィルムが好ましく、中でもポリエチレンフィルムがより好ましい。また、保護フィルムの厚さは、 $10\sim40\mu$ mであることが好ましい。この厚さが、 10μ m未満では、取扱い性が劣る傾向があり、 40μ mを超えると、フィルムとしての柔軟性が低下する傾向がある。

【0034】本発明の極薄膜感光性フィルムの製造法を用いて、カラーフィルタを製造することができる。カラーフィルタの製造法としては、透明基板上に保護フィルムをはがしながら着色された感光性樹脂組成物層をラミネート(貼り合わせ)し、着色された感光性樹脂組成物層の表面の透明なフィルム性支持体上に、所定パターンのネガマスクを乗せて露光した後、透明なフィルム性支持体を除去し、次いで、未露光部分を現像液で現像し、着色パターンを形成する工程を、色の異なる感光性フィ

ルムを用いて、所定回数繰り返し行い、他色のパターン を形成させることによりカラーフィルタが得られる。

【0035】ラミネート工程としては、通常、ホットロールと呼ばれる加熱可能なロール又はヒートシューと呼ばれる加熱用ジャケットとラミネートロールと呼ばれるロールにより、感光性樹脂組成物層を加熱、軟化しながら行うことができる。

【0036】露光工程としては、通常、専用の露光機があり、接触又は非接触型のものを用いて行い、ランプとしては、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、キセノンランプ灯等の紫外線を有効に放射するものを使用することができる。

【0037】 現像方法としては、通常、デイップ法、スプレー法等が挙げられ、高解像度化の点で、高圧スプレ

一法が好ましい。現像液としては、溶剤現像型とアルカリ現像型があり、溶剤現像型では、1,1,1ートリクロロエタン等が挙げられ、アルカリ現像型では、1重量%の炭酸ナトリウムと0.1重量部ホウ砂を含む水溶液等が挙げられる。

[0038]

【実施例】以下、実施例により本発明を説明する。

実施例1~4及び比較例1、2

塗工液の調製

表1の材料を均一に溶解した溶液(粘度20cps(200Pa·s))を調製し、着色された感光性樹脂層用の塗工液を得た。

[0039]

【表1】

表 1

材 料	配合量
材 料	
2,2'-ビス(4-(メタクリロキシペンタエトキシ)フェニル) プロパン	35重量部
γ ークロロー β ーヒドロキシプロピルー β' ーメタクリロイル オキシエチルー α ーフタレート	15重量部
メタクリル酸メチル/メタクリル酸/アクリル酸2-エチルヘキシル(60/20/20(重量比))の共重合体	50重量部
ベンゾフェノン/4, $4'$ $-$ ジェチルアミノベンゾフェノン $(20/1(重量比))$	6重量部
ヘキサメトキシメチルメラミン	6重量重
Colortex Blue UEM(山陽色素(株)製)(青)	1.8重量部
レベリング剤	表2参照
Colortex Blue UEM(山陽色素(株)製)(青)	18重量部
エチレングリコールモノエチルエーテルアセテート	750重量部

【0040】得られた溶液を、グラビアコーター法でポリエチレンテレフタレートフィルム(透明支持体フィルム(帝人(株)製GSタイプ、厚み:6μm))上に、表2に示す接触角で塗布し、100℃の熱風対流式乾燥器で10分間乾燥し、着色された感光性樹脂組成物層を形成した後、30μm厚のポリエチレンフィルムを保護フィルムとして積層し、極薄膜感光性フィルムを得た。着

色された感光性樹脂組成物層の乾燥後の膜厚は、1.8 μ mであった。得られた極薄膜感光性フィルムのフィルム外観を目視にて観察し、フィルム収率(%)と合わせて、結果を表 2 に示した。なお、接触角は、協和界面科学(株)製の接触角計 CA-D型で測定した。

[0041]

【表2】

表 2

24 2											
		実		施例		比集	烫 例				
		1	2	3	4	1	2				
レベリ	」品 名	SH-193	SH-7PA	BYK-333	BYK-344		SH-193				
ング育	配合量(重量部)	0.6	0.6	0.6	0.6	_	1.2				
接角	角(度)	17.3	12.0	16.8	20.0	9.0	21.0				
フィ	色ムラ	なし	なし	なし	なし	あり	あり				
外観	縦縞・横縞	なし	なし	なし	なし	あり	あり				
フィルム収率(%)		90	85	90	85	30	70				

【0042】表2から、接触角が12~20度である本発明の範囲内の実施例1~4では、得られた感光性フィ

ルムには色ムラも縦縞・横縞もなく、かつ、フィルム収 率が高かった。これに対し、接触角が9度及び12度で 本発明の範囲外である比較例1及び2では、得られた感 光性フィルムには色ムラや縦縞・横縞があり、さらに、 フィルム収率も低かった。

【0043】また、実施例1及び実施例3の結果から、レベリング剤としてSH-193を0.6重量部配合した感光性樹脂組成物を用いて作製した極薄膜感光性フィルムと、レベリング剤としてBYK-333を0.6重量部配合した感光性樹脂組成物を用いて作製した極薄膜感光性フィルムは、いずれも感光性樹脂組成物溶液を透明支持体フィルム上に塗布する際の接触角が17度前後であり、色ムラも縦縞・横縞もなく、かつ高いフィルム収率で製造することができた。さらに、実施例2及び実施例4の結果から、レベリング剤としてSH-7PAを0.6重量部配合した感光性樹脂組成物を用いて作製した極薄膜感光性フィルムと、レベリング剤としてBYK-344を0.6重量部配合した感光性樹脂組成物を用いて作製した極薄膜感光性フィルムは、それぞれ、感光性樹脂組成物溶液を透明支持体フィルム上に塗布する際

の接触角が12.0度及び20.0度であり、いずれも 色ムラも縦縞・横縞もなく、フィルム収率は比較的高か った。

[0044]

【発明の効果】請求項1記載の極薄膜感光性フィルムの製造法は、感光性樹脂組成物溶液を支持体フィルムに色ムラ・縦縞・横縞がなく、さらに収率良く塗布するのに好適である。請求項2記載の極薄膜感光性フィルムの製造法は、請求項1記載の極薄膜感光性フィルムの製造法の効果を奏し、さらに、耐薬品性に優れる。請求項3記載の極薄膜感光性フィルムの製造法は、請求項1又は2に記載の極薄膜感光性フィルムの製造法の効果を奏し、さらに得られたフィルムの収率が極めて高い。請求項4記載の極薄膜感光性フィルムの製造法は、請求項1、2又は3に記載の極薄膜感光性フィルムの製造法は、請求項1、2又は3に記載の極薄膜感光性フィルムの製造法の効果を奏し、さらに加熱硬化性に優れた極薄膜感光性フィルムの製造に好適である。

フロントページの続き

G 0 3 F 7/16

(51)Int.Cl.⁶

識別記号 广内整理番号

FI G03F 7/16 技術表示箇所