G m				(e) (s)	<u>(i)</u> (3)	<u> </u>	€ € - ; ©	<u> </u>	
		(DMHE ŇT.S	Rounding off to 2 s.f. not wear a decimal places.	this sign was a problem.	You must factorise sketch and solve the quadratic inequating from your sketch. It is informed to solve this way a +570 x-270 Ricase don't do it.	Students who sketched the parabola were the most successful in finding the ronge.			I mork to correct title of a log with
YR 12 : 2 UNIT	SOLUTIONS + MARKING SCALE	QUESTION : MF	(a) 7.26346 ±7.3 wreed to 2.5.f.	$\frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$ $= \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ $= \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$ $= \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	(c) x + 3x - 10 > 0 (x + 5)(x - 2) > 0 (x + 5)(x - 2) > 0	(d) y = (x - 1) + + + + + + + + + + + + + + + + + +	(e) 1 × 12 = 12	$\frac{1}{(1-\frac{1}{12})^2} = \frac{52}{2} + \frac{1(352+3)}{2}$ $= \frac{1}{2} \frac{1}{2} + \frac{1}{2}$	(f) $\log_{a} a^{2} - \log_{a} a^{-1} = 2 1$

COMMENTS		Grood	Grood	لامه مهر	Goost	Both graduats correct for 1 morti.	not well nove. A deagram would arrive the test problems
Question 2:	yx, -40, 38(8,12) x y h(12,4) y	(a) Cabe: $\left(\frac{2+9}{2}, \frac{4+11}{2}\right) = \left(\frac{5}{5}, \frac{8}{8}\right)$	(b) $A_{-1} \int (12 - 8)^{1} + (8 - 5)^{2}$ $= \int b + 4 $ $= S$	(c) Equation: (x-5) + (y-6) = 5	(4) when $x = S$: $(S-S)^2 + (y-8)^2 = S^2$ $0 + (y-8)^2 = 2S^2$ $0 + (y-8)^2 = 2S^2$	(e) $A_{AD} = \frac{13 - 4}{5 - 2} = \frac{9}{3} = 3$ $A_{BD} = \frac{13 - 12}{5 - 8} = -\frac{1}{3}$ $A_{AD} = \frac{13 - 4}{5 - 2} = -\frac{1}{3}$ $A_{AD} = \frac{13 - 4}{3 \cdot 4} = \frac{1}{3} = 3$	(f) $n \neq 6$ = $\frac{12^{-1}4}{5^{-2}4}$ = $\frac{1}{6}$ = $\frac{1}{3}$ $G_{res} \times \times$

CDRRENT S	edra mergester - 1 med	much count to nevert him.	(b) Calc /3		Severial strateurs failed to put ut in the action of the action of the actions of		(المحم الموادر المرابع المرابع المرابع المساء)	Well clane.
WUESTION 3: CALC 3 CB	(a) Rebries 130 b) Rebries 130 b) Rebries 130 b)	2 RBA = 70 SinSO	(b) (i) $y = 1 - (x^{2} + 1)$ $\int_{x}^{64y} - \frac{2x}{x^{3} + 1}$	(ii) y = 2x	$\frac{dy}{dx} = \frac{2e^{2x} \sin 3x - 3e^{3x} \cos 3x}{(\sin 3x)}$ $= \frac{e^{2x} (2\sin 3x - 3\cos 3x)}{(\sin 3x)}$	(c) $\frac{1}{1}$ $\frac{(x^{-3})(x+2)}{(x^{-3})(x+2)} = \frac{2}{5}$	(a) $\sin^2 \theta = \sin \theta - 1 = 0$ $(s_1 - \theta - 2)(s_1 - \theta + 1) = 0$ $s_1 - \theta = 2$ or $s_1 - \theta = -1$ no solution $\theta = -\frac{\pi}{2}$	$\frac{(e)}{(e)} \times \frac{1}{4} = 2$ $\frac{1}{4} + 1 = \frac{0.4 + 1}{4}$ $\frac{1}{4} = \frac{1}{3}$ $\frac{1}{4} + \frac{1}{4} = \frac{0.4 + 1}{4}$ $\frac{1}{4} = \frac{1}{3}$ $\frac{1}{4} = \frac{1}{3}$

the centre of the crick of radius

5, it is a thought to the weeks.

Since the line is 5 units from

(h) I dutane of line from centre: Centre: (5,8)

. Area = 1 x 10 x 4

. 20 = 4

= 20 c.

2×5 + 4×8 - 22

(g) XY = 10 units (diameter of circle).

Quicstion 2 (wat.)

1. height is dust of D Gar X4:

3146

STA BEAGO.	(a) Calc (5)		First mark given for knewing to take logs both sides and using a log-law.	The leg-law used here should really be shown in working. No students did this so the mark was awarded for naving the required answer.	(b) Reas 3	Note Very important. Angle must be in radians	Required Area = Circle - Minor Segment = Circle - (Sector - triagale)	(z) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x	(9)
GUESTION S:	III	(ii) when the 0, 77 at 40 40 = C C	(iii) when the sity, $T = 24$ $\therefore 24 = 40$ c $\frac{2}{5} = c$ $\frac{2}{5} = c$ $\frac{2}{5} = -174$	(\$0.00) (\$\frac{4}{4} = \frac{4}{4} \\ \(\frac{4}{4}\) \cdot \frac{4}{4} = \frac{4}{4} \\ \(\frac{4}\) \\ \(\frac{4}\) \\ \(\frac{4}{4}\) \\ \(\frac{4}\) \\ \((b) A B	1 = 0 tas	6 406 = 11.	Acc must seg : \$ x20* (21 - 5-25) 2 200 (21 - 52) (= 245.7)	Area of nagor seg = 11 × 20 - 200(11 - 2) 8001 + 100(3

(SHMBN15	. Some students forget to add!	. Learn index rules earefully. Little simplification and required	3 mr. (ii)Poorly &	Enplayed - poor for the forth	e mut show evidence of whithhy x=0.	(c) Rens 3 Many students gave factorise up after factoring.	substitute big expetitions (\$x\$ student may use course)	الما المساء	period (1) com 2 , compliment . Well done.	(or chpt)
Colc / HG	"	35x + x 4 2 2 3 x 4 x 4 2 2 3 x 4 x 4 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3		$\int_{0}^{1} e^{-i0x} + 2 + e^{-i0x} dx$ $\int_{1}^{1} e^{-i0x} + 2 + e^{-i0x} dx$	+ +	(c) L_{H5} : $L_{G1} \otimes (L_{G1}^2 \otimes - s_1^{-12})$	$= \frac{\cos \theta \left(2 \cos^2 \theta - 1 \right)}{\cos^2 \theta}$	= (1) 000 = (1)	d) (:)	(ii) it solutions to the equation.

9	(a) (j)		(H)	 	. (j	(E)	+, 8	
	· 							
STABENG)	Some students added the fractions, you must multiply the successive events probabilities together.	(iii) Q.c. 12	These events in iii) are not mutually exclusive. They have something in common	P(4.3 or L) = P(4.3) + P(L) - P(4.3 out L) = $\frac{4}{5} + \frac{2}{5} - \frac{2}{5} \times \frac{2}{5}$ = $\frac{12}{25} + \frac{12}{25} - \frac{2}{25} \times \frac{2}{5}$	의 (전 의 (전			29 (22°) 4 (1 - 1) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
(Austin S (cat.)	Ţ .	* 4	2.5.5	•				

COMMENTS	(a) lon '3 VVV add fn 4 correct derivative showing horiz. P.O.I.	decivative with no indication at heriz. P.O.I. o, o)	show clear formulae, setting ent + working.	(ii) Acas 3	
QUESTION 6 Get 14	(a) (b)	(ii)	(a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(ii) $S_n = \frac{n}{2} \left(12000 + (n-1) 9000 \right)$ = $10000 + 10000^2 - 1000$ = $10000 + 1000$	present of great

(DMMENTS	. Many shuders tried to foodge it!	et and then (ii), (ii), (i).	(ar by 2nd deinatue) $f''(3e) = \frac{2x-6}{3e^4}$	
Question 7; Kom 34.	$(x+1)(x-1)^{2}$ $(x-1)(x-1)^{2}$ (x-1)(x-1)	$\begin{cases} \text{or by factoring LH3} \\ \text{(b) (i) } f(x) = \frac{x-1}{x^2} \\ f'(x) = \frac{x^{-1}}{x^2} \end{cases}$	(ii) Shift ph \Rightarrow + (x) = 0 $\frac{2-x}{x^3} = 0$ $2-x = 0$ $x = 2 x = 2$ $x = 2 x = 2$ $f'(x) = 4\pi = 0$ $-\pi = 2$	(iii) $f(x) = 0$ $\frac{x-1}{x^2} = 0$ $\frac{x-1}{x^2} = 0$ $\frac{x-1}{x^2} = 0$ $\frac{x-1}{x^2} = 0$ $\frac{x-1}{x^2} = 0$

LOMMENTS	O Cala 4	substitution of h must be clearly shown.	Students found it difficult to soive this sort of equadron.	Must give both seth whites.
Question 6 (wont.)	(c) (i) $Volu_{-c} = 32$ x = 1 = 32 x = 1 = 32 x = 1 = 32	S. A = $x^{4} + 4x^{4}$ $x^{2} + 4x \cdot 32$ $x^{2} + 128$ $x^{2} + 128 \cdot x^{-1}$ (i) $S = x^{2} + 128 \cdot x^{-1}$		Directions are 4×4×2

Q	· · · · · · · · · · · · · · · · · · ·		-
(DMM€~JTS	V-max V-asymphex=0 Vin x+100 Many sheeles duchit elucial the court for x<0.	Reas 2 (1) Parly above many studenth about not wer the hirth to will part (0).	
QUESTION 7 (cat.)	(i) † (2, ¹ 4)	(v) $f'(x) = \frac{2-x}{x^3}$ At $P(y_0)$, $f'(x) = 1$ $y = 0 = 1(x^{-1})$ $y = 0 = 1(x^{-1})$ $y = x^{-1}$ $\begin{cases} y = x^{-1} \\ y = x^{-1} \end{cases}$ $\begin{cases} y = x^{-1} \\ y = x^{-1} \end{cases}$ $\begin{cases} y = x^{-1} \\ y = x^{-1} \end{cases}$ $x = 1 = x^{-1}$ $x = x^3 = x^2 = x^{-1}$ $x = x^3 = x^2 = x^2 = x^2 = x^2$ $x = x^3 = x^2 = x^2 = x^2 = x^2$ $x = x^3 = x^2 = x^2 = x^2 = x^2 = x^2$ $x = x^3 = x^2 = x^2 = x^2 = x^2 = x^2 = x^2 = x^2$ $x = x^3 = x^2 = $	•

COHMENTS	Several statements those in=5 rather than w=4 and several confused the formula.		tenerally well done by these who used the appropriate substitution.	Go. 1 Mayby Well understood.	
QUESTION B CON (SM 1 CB	(a) $\int_{1}^{S} \frac{2}{\kappa(\kappa+1)} d\kappa$ $= \frac{1}{3} \left(1 + 4 \left(\frac{1}{3} + \frac{1}{13} \right) + 2 \left(\frac{1}{6} \right) + \frac{1}{15} \right)$	3 × 3 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	(ii) $\int_{1}^{S} \frac{2}{x(x+i)} dx$ $= \int_{1}^{S} \frac{2}{x} - \frac{2}{x+i} dx$ $= \left[2 \ln x - 2\ln(x+i) \right]_{1}^{S}$ $= 2 \ln S - 2\ln 6 - 2k(1 + 2\ln 2)$	= 2 ln 5 1.022 (iii) Simpsons rule is an appliazimation for the integral (viry pambolic ars) where as (ii) calculated the exact value of the integral.	

3 G	(e)		(9)			
				er Sylvanier (S. 1985). Million (S. 1986).	L.	
CONNENTS	(1) Calc 6			Only a few soudeuts were able to manage this question.		
Question 8 (w.t.)	(b) v = 4 - 2t	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	(ii) Rest => v=0 0 = 4 - 2t . t= 2 a = -2 at all thin, t.	(iii) At $t = 0$, $x = 1$ $t = 2$, $x = 5$ $t = 4$, $x = 1$ \vdots Distance travelled = 4+4		

COMMENTS	students did not generally know the condidon for a fimility sum will several incorrectly stativing that Irls! that Irls! and not unterpret/read the question and substituted restured of So=\$	Several Shidents failed to recognize that the problem could be solved by mere substitution of a point into the equation	(ii) Reas 4 Product rule does nect apply to wiseyrahon!	Few sindends were which to travide this integration
QUESTION 9 km & CB	(a) If a = 4 and Son = 3 then $\frac{2}{3} = \frac{4}{1-r}$ 2-2r = 12 $r = -5$ But $ r < 1$ for So to exist.	(b) (i) The parabola must pass though (2,2) 2 = a × 2 (4-2) 2 = 4a a = 1 a = 1 A = 2		In to I is the street of the s

STNEWNO

(.t.a.)

ď

QUESTION

West dove

Laun = 1800 Area = 40 x10

eo# =

66681 = d...

иla

1 TOO I

1 = 100 T

Law = 1803 Area = 11.10

(E)

(c) Rear 4

COMMENTS	less /s . Many attempt at fudging - not very successful.		economy structures will got 2 (") is given 2 (") of graph structures (").
QUESTION 10 (un.t.)		$A_{3} = B_{2} \times (101) - M$ $= 500 \cos (101)^{3} - M(101)^{3} - M(101)^{4} - M(101)^$	$ \frac{1 - 10 \cdot 1}{1 - 10 \cdot 1} \times H \times \frac{1 \cdot 01 - 1}{1 - 10 \cdot 1} \times H \times \frac{1 \cdot 01 - 1}{1 - 10 \cdot 1} $ $ = Sooon = 100 \times Soc - 1 \cdot 01 \times 100 \times 100 = 100 \times 100 $