

2. Arduino & Co

Ordnung im Chaos

- Formfaktor, Stromverbrauch
- CPU
 - Befehlssatz
 - MMU?
- I/O-Anschlüsse
- Systemsoftware
 - Reiner Boot Loader
 - Betriebssystem (Linux)

2.1 Nur Boot Loader

Sp	ecs UNO		
	Microcontroller	ATmega328P	
	Operating Voltage	5V	
	Input Voltage (recommended)	7-12V	
	Input Voltage (limit)	6-20V	
	Digital I/O Pins	14 (of which 6 provide PWM output)	
	PWM Digital I/O Pins	6	
	Analog Input Pins	6	
	DC Current per I/O Pin	20 mA	
	Flash Memory	32 KB (ATmega328P), 0.5 KB for bootloader	
	SRAM	2 KB (ATmega328P)	
	EEPROM	1 KB (ATmega328P)	
	Clock Speed	16 MHz	

Ein- und Ausgabe

- Digital
 - 0 und 1 = 0V und Vcc
- Analoger Eingang
 - ADC (Analog Digital Converter)
 - Spannung zwischen OV und einer Referenzspannung
 - Ausgabe uint
 - Präzision (10 Bit und mehr)
 - 10 Bit und Vref=5V: Auflösung 5/1024 = 4.88mV
- Analoger Ausgang
 - DAC (Digital Analog Converter)
 - PWM (Pulse Width Modulation)

Arduino Uno: "Hello World"

Blinkende LED

	Pins	Digital I/O Pins	14
Arduino Uno R4 Wifi	Pins	Analog input pins	6
Arduino ono k4 wiii		DAC	1
		PWM pins	6
	Communication	UART	Yes, 1x
		12C	Yes, 1x
		SPI	Yes, 1x
		CAN	Yes 1 CAN Bus
	Power	Circuit operating voltage	5 V (ESP32-S3 is 3.3 V)
		Input voltage (VIN)	6-24 V
		DC Current per I/O Pin	8 mA
	Clock speed	Main core	48 MHz
		ESP32-53	up to 240 MHz
	Memory	RA4M1	256 kB Flash, 32 kB RAM
		ESP32-S3	384 kB ROM, 512 kB SRAM

Arduino Due

Morsecode

Sp	ecs DUE		
	Microcontroller	AT91SAM3X8E	
	Operating Voltage Input Voltage (recommended)	3.3V 7-12V	
	Input Voltage (limits)	6-16V	
	Digital I/O Pins	54 (of which 12 provide PWM output)	
	Analog Input Pins	12	
	Analog Output Pins	2 (DAC)	
	Total DC Output Current on all I/O lines	130 mA	
	Flash Memory	512 KB all available for the user applications	
	SRAM	96 KB (two banks: 64KB and 32KB)	
	Clock Speed	84 MHz	

Pulsweitenmodulation (PWM)

Debugging

Optionen

- Logik-Analysatoren, Oszilloskop (Analog und Digital)
- In-Circuit-Emulatoren (ICE)
- Spezielle Low-Level Protokolle
 - JTAG (Joint Test Action Group)
 - SWD (Serial Wire Debug)
- "Printf"-Debugging
 - LED oder anderer Ausgabe-Pin
 - Serielle Konsole
- Remote Debugging
 - Runtime Support
 - JTAG Moderner ICE

3.

Erweiterbarkeit

39

Beispiele

- Kommunikation, Xbee, CAN, GPRS, LTE, ...
- Display, Graphikanschlüsse
- Batterie, USV, ...
- Motorsteuerung, relays
- Radio, Audio, ...
- Leere Shields

•

Kommunikation zwischen Chips

41

Aufwand minimieren

- Geringe Leitungszahl
- Serielle Ansätze
- Simple Realisierung
 - Also kein Ethernet o.ä.

12C

- Inter-Integrated Circuit
- Kommunikation zwischen ICs und Schaltungsteilen
- Maximal 1008 Geräte anschließbar
- Taktraten
 - 0.1 3.4 Mbit/s (bidirektional)
 - 5 Mbit/s (unidirektional)
- Spielart: 1-Wire (Data, Ground)
 - Master liefert Strom

43

Aufbau

- Master initiiert Senden und Empfangen
- Geräte haben Adresse

SPI

- Serial Peripheral Interface
- 4 Leitungen statt 2
- Bidirektional bis 10 MBit/s

UART to USB

- Günstige Wandlerchips
- Häufig auf dem Host Treiber nötig

51

Teensy 3.6, GPS

Beispiel: Teensy 3.6, GPS

NL-852ETTL

Spezifikation

- Anschluss: WTB seriell TTL
- u-blox 8 UBX-M8030-KT Chipsatz
- Frequenzen:

GPS: L1, 1575,4200 MHz

GLONASS: L1, 1602 (k x 0,5625) MHz BEIDOU COMPASS: B1, 1561,0980 MHz

GALILEO E1, 1575,4200 MHz

- QZSS L1, 1575,4200 MHz

 Verarbeitet die Signale von bis zu 72 Satelliten gleichzeitig
- Unterstützt AssistNow online/offline, SBAS (WAAS, EGNOS, QZSS und MSAS)
- Unterstützt NMEA 0183 Protokolle: GGA, GSA, GSV, RMC, VTG
- · Auto Baud Rate bis zu 115200 bps
- · Update Rate:

einfach GNSS: 18 Hz (z. B. GPS solo)

mehrfach GNSS: 10 Hz (z. B. GPS+GLONASS)

- Empfindlichkeit max. –167 dBm
- LED-Anzeige f
 ür GPS-Status
- Betriebstemperatur: -40°C ~ 85°C ohne Akku

-20°C ~ 60°C mit Akku

- Spannungsversorgung: 5 V DC
- Stromaufnahme: max. 45 mA
- Kaltstart in ca. 26 Sekunden
- Heißstart in ca. 1 Sekunde
- Positionsgenauigkeit: 2,5 m CEP (Circular Error Probable) und 2 m CEP mit SBAS
- Maße: 30 x30 x 7,90 mm

Teensy 3.6

55

Specs Teensy 3.6

- Microcontroller Chip MK66FX1M0VMD18
- 180 MHz ARM Cortex-M4 with Floating Point Unit
- 1M Flash, 256K RAM, 4K EEPROM
- 22 PWM Outputs
- 62 I/O Pins (42 breadboard friendly)
- 25 Analog Inputs to 2 ADCs with 13 bits resolution
- 2 Analog Outputs (DACs) with 12 bit resolution
- Ethernet mac, capable of full 100 Mbit/sec speed

More Teensy 3.6 Specs

- 4 I2C Ports
- 11 Touch Sensing Inputs
- 2 CAN Bus Ports
- 32 General Purpose DMA Channels
- Native (4 bit SDIO) micro SD card port
- I2S Audio Port, 4 Channel Digital Audio Input & Output
- 14 Hardware Timers
- Cryptographic Acceleration Unit
- Random Number Generator
- CRC Computation Unit
- 6 Serial Ports (2 with FIFO & Fast Baud Rates)
- 3 SPI Ports (1 with FIFO)
- 3 I2C Ports (Teensy 3.6 has a 4th I2C port)
- Real Time Clock

	RI	ИC				
	Alless	nage RMC				
	Oren	pour S	Recommended N	Minimum dat	a	
NME 0183	7,04	Tipe Output Message				
INIVIL 0105	Com	1	The output of this message is dependent on the currently selected datum (Default: WGS84) The Recommended Minimum sentence defined by NMEA for GPS/Transit system data			
			D Har CFG-MEIG N	umber of feets		
	Adequ	west.	0x50 0x04 1	5		
	Mes	sage Structure:				
	ecas	oc, thenes, etati	e,intitude,W.le	ngitude, f. sp	d.cog.	ddmeyy,ev,evE,mode*es <cs><lf></lf></cs>
	Exa	nple:				
	1127	ONC. 003559.00.A	4717-11477-0-01	es).91922.8.	0.004	77.52,075202,,,A*57
	Aicht No	Example	Formal	Name	Uhah	Desirgina
	0	\$GPRMC	string	SGPRING	-	Message ID, RMC protocol header
	1	083559.00	hhmmss.sss	hhmmas.		L/TC Time, Time of position fix
	2	A	character	Status		Status, V + Navigation receiver warning, A + Data valid, see Position Fix Flags description
	3	4717.11437	ddmm.mmmm	Latitude	-	Latitude, Degrees + minutes, see Format description
	4	N	character	H		N/S Indicator, hemisphere N+north or S+south
	5	00833.91522	dddmm. mmmm	Longitud e		Longitude, Degrees + minutes, see Format description
	6	E	character	E	+	E/W indicator, Exeast or Wavvest
	7	0.004	numeric	spd	knot	Speed over ground
	8	77.52	numeric	Cog	degr	Coune over ground
	9	091202	ddmmyy	date	-	Date in day, month, year format
	10		numeric	307	degr ees	Magnetic variation value, not being output by receiver
	11		character	mvE		Magnetic variation E/W indicator, not being output by receiver
	12	A102	character	node	-	Mode Indicator, see Fasition Fix Flags description
	13	*57	hexadecimal	C#	+.	Checksum
	14	+	character:	<cr><lf></lf></cr>	4	Carriage Return and Line Feed

Beispiel

NMEA Sequence:

\$GPRMC,105155.750,A,4944.8626,N,00640.5507,E,0.41,0.00,170418,,,A*65

• Uhrzeit 10:51:55 UTC (war 12:51 MESZ)

• Position: 4944.8626,N,00640.5507,E

• Speed over Ground (Knoten): 0.41

• Course over Ground: 0.00

• Datum: 17.4.2018

Technical Specifications

- · ARM Cortex-M7 at 600 MHz
- · 1024K RAM (512K is tightly coupled)
- 2048K Flash (64K reserved for recovery & EEPROM emulation)
- · 2 USB ports, both 480 MBit/sec
- 3 CAN Bus (1 with CAN FD)
- · 2 I2S Digital Audio
- 1 S/PDIF Digital Audio
- 1 SDIO (4 bit) native SD
- · 3 SPI, all with 16 word FIFO
- · 3 I2C, all with 4 byte FIFO
- · 7 Serial, all with 4 byte FIFO
- · 32 general purpose DMA channels
- 31 PWM pins
- · 40 digital pins, all interrrupt capable
- · 14 analog pins, 2 ADCs on chip
- · Cryptographic Acceleration
- · Random Number Generator
- · RTC for date/time
- Programmable FlexIO
- · Pixel Processing Pipeline
- · Peripheral cross triggering
- · Power On/Off management

-

Arduino API

ESP32

Specs

- 2.4 GHz Wifi
- Bluetooth v4.2 BR/EDR and BLE
- Xtensa Dual-Core 32-bit LX6 Mikroprozessor (240 MHz)
- 4 MB Flash
- 520 KB RAM
- 16 KB SRAM in RTC

- 34 × programmable GPIOs
- 12-bit SAR ADC up to 18 channels

1/0

- 2 × 8-bit DAC
- 10 × touch sensors
- 4 × SPI
- $2 \times I^2S$
- $2 \times I^2C$
- 3 × UART
- 1 host (SD/eMMC/SDIO)
- 1 slave (SDIO/SPI)
- Ethernet MAC interface with dedicated DMA and IEEE 1588 support
- CAN 2.0
- IR (TX/RX)
- Motor PWM
- LED PWM up to 16 channels
- Hall sensor

ESP32 (EzSBC)

LEDs über Threads ansteuern


```
void app_main()
   gpio_pad_select_gpio(LED_R);
                                                                                          Threads
   gpio_set_direction(LED_R, GPI0_MODE_OUTPUT);
   gpio_pad_select_gpio(LED_G);
   gpio_set_direction(LED_G, GPIO_MODE_OUTPUT);
   gpio_pad_select_gpio(LED_B);
   gpio_set_direction(LED_B, GPIO_MODE_OUTPUT);
   gpio_pad_select_gpio(LED_BLUE);
   gpio_set_direction(LED_BLUE, GPIO_MODE_OUTPUT);
   // Wait 2 secs for console to connect
   sleep_ms(2000);
   printf("FreeRTOS experiments ...!\n");
   print_chip_info();
   BaseType_t ret = xTaskCreate(blinkLED,"LED_R",2048,(void *) LED_R, 5, NULL);
   if (ret != pdPASS) PANIC("create task LED_R");
   ret = xTaskCreate(blinkLED, "LED_G", 2048, (void *) LED_G, 5, NULL);
                                                                                void blinkLED ( void *param ) {
   if (ret != pdPASS) PANIC("create task LED_G");
                                                                                    int led = (int) param;
   ret = xTaskCreate(blinkLED, "LED_B", 2048, (void *) LED_B, 5, NULL);
   if (ret != pdPASS) PANIC("create task LED_B");
                                                                                    while (1) {
                                                                                        gpio_set_level(led, 0);
   while(1) {
                                                                                        sleep_ms(20); // rand()
       gpio_set_level(LED_BLUE, 0);
                                                                                        gpio_set_level(led, 1);
       sleep_ms(50);
                                                                                         sleep_ms(980);
       gpio_set_level(LED_BLUE, 1);
       sleep_ms(950);
```

```
void print_chip_info () {
   esp_chip_info_t chip_info;
   esp_chip_info(&chip_info);
   printf("This is a ESP32 chip with %d CPU cores, WiFi%s%s, ",
       chip_info.cores,
       (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
       (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
   printf("silicon revision %d, ", chip_info.revision);
   printf("%dMB %s flash\n", spi_flash_get_chip_size() / 1024 / 1024,
        (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
   // printf("portTICK_PERIOD_MS == %d\n",portTICK_PERIOD_MS);
   printf("Version of the ESP-IDF framework: %s\n",esp_get_idf_version());
   printf("FreeRTOS version is %s\n",tskKERNEL_VERSION_NUMBER);
   printf("configMAX_PRIORITIES=%d\n",configMAX_PRIORITIES);
   // printf("configCPU_CLOCK_HZ=%d\n",configCPU_CLOCK_HZ);
   printf("configTICK_RATE_HZ=%d\n",configTICK_RATE_HZ);
   printf("configMINIMAL_STACK_SIZE=%d\n", configMINIMAL_STACK_SIZE);
   // printf("configTOTAL_HEAP_SIZE=%ld\n",configTOTAL_HEAP_SIZE);
   printf("Free heap size is %d\n",esp_get_free_heap_size());
   fflush(stdout);
```

```
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_spi_flash.h"
#include "esp_wifi.h"
#include "esp_event_loop.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "driver/gpio.h"
#include "time.h"
#include "lwip/err.h"
#include "lwip/sys.h"
#include "sdkconfig.h"
// Config section
// **** Hardware
#define LED_R GPIO_NUM_16
#define LED_G GPI0_NUM_17
#define LED_B GPI0_NUM_18
#define LED_BLUE GPIO_NUM_19
                                                                                 79
```

ESP32 (EzSBC)

Stack Overflow

```
void app_main()
   gpio_pad_select_gpio(LED_R);
gpio_set_direction(LED_R, GPIO_MODE_OUTPUT);
   gpio_pad_select_gpio(LEO_G);
   gpio_set_direction(LED_G, GPIO_MODE_OUTPUT);
    gpio_pad_select_gpio(LED_B);
    gpio_set_direction(LED_B, GPIO_MODE_OUTPUT);
   gpio_pad_select_gpio(LED_BLUE);
   gpio_set_direction(LED_BLUE, GPIO_MODE_OUTPUT);
   // Wait 2 secs for console to connect
   sleep_ms(2000);
   printf("FreeRTOS experiments ...!\n");
   print_chip_info();
   BaseType_t ret = xTaskCreate(blinkLED,"LED_R",2848,(void *) LED_R, 5, NULL);
    if (ret != pdPASS) PANIC("create task LED_R");
    ret = xTaskCreate(blinkLED,"LED_G",2848,(void *) LED_G, 5, NULL);
   if (ret != pdPASS) PANIC("create task LED_B");
ret = xTaskCreate(blinkLED,"LED_B",2048,(void *) LED_B, 5, NULL);
    if (ret != pdPASS) PANIC("create task LED_B");
    // vTaskStartScheduler();
                                                                                int go_down_stack ( int v ) {
    int seconds = 0;
    while(1) {
                                                                                      int result = v;
       gpio_set_level(LED_BLUE, 0);
                                                                                      if(v > 1)
        sleep_ms(50);
       gpio_set_level(LED_BLUE, 1);
sleep_ms(950);
                                                                                            result += go_down_stack(v-1);
                                                                                      return result;
        if (seconds > 5)
           go_down_stack(1000);
                                                                                                                                         81
```

ESP32

Ultraschall

Abstandsmessung

• ... mittels Ultraschall

83

Abstandsmessung

• ... mittels Ultraschall

- Zeitmessung
- Schallgeschwindigkeit -> Abstand


```
int64_t check_distance ( gpio_num_t trigger, gpio_num_t echo ) {
   static int max_count = 100000;
   gpio_set_level(trigger,1);
                                                 Abstandsmessung
   ets_delay_us(100);
   gpio_set_level(trigger,0);
   int count_0 = 0;
   while ((gpio_get_level(echo) == 0) && (count_0<max_count))</pre>
        count_0++;
   if (count_0 == max_count)
        return -1;
   // printf("count_0 == %d\n",count_0);
   int64_t start = esp_timer_get_time();
   int count_1 = 0;
   while ((gpio_get_level(echo) == 1) && (count_1<max_count))</pre>
        count_1++;
   int64_t stop = esp_timer_get_time();
   if (count_1 == max_count)
        return -1;
   // printf("count_1 == %d\n",count_1);
   return stop-start;
                                                                                   87
```

```
void task_check_distance ( void *params ) {
   double last_distance = 0.0;
   struct timeval now;
   while (true) {
       gettimeofday(&now,NULL);
       time_t seconds_passed = now.tv_sec;
       int samples = 0;
       double echo_usecs = 0.0;
       for (int m=0; m<N_SAMPLES; m++) {
           int64_t usecs = check_distance(HCSR04_TRIGGER,HCSR04_ECH0);
           if (usecs > 0) {
               echo_usecs += ((double) usecs);
               samples += 1;
           sleep_ms(100);
       if (samples == 0)
           printf("%10ld: No object detectable\n", seconds_passed);
       else {
           echo_usecs /= ((double) samples);
           double distance = (echo_usecs * sonicspeed) / 2.0;
           printf("%10ld: object at distance %f cm\n", seconds_passed, distance);
           double change = absolute(last_distance - distance);
           if (change > 1.0) {
               printf("--
                                 -: Distance change > 10mm: %f at time %d\n",distance,(int) now.tv_sec);
           last_distance = distance;
           show_value(LED,1,(int) distance);
       vTaskDelay(SAMPLE_PERIOD_IN_SECS * 1000 / portTICK_PERIOD_MS);
                                                                                                                          88
```

```
Ausgabe ;-)

void show_value ( gpio_num_t led, int active, int v ) {
    // printf("Show value: ");
    bool leading_blank = true;
    for (int i=15; i>=0; i--) {
        bool digit = (v >> i) & 0x1;
        if (leading_blank & !digit) continue; else leading_blank = false;
        // if (digit) printf("1"); else printf("0");
        gpio_set_level(led, active);
        sleep_ms(digit ? 400 : 100);
        gpio_set_level(led, 1-active);
        sleep_ms(200);
    }
    // printf("\n");
}
```

```
void app_main()
   // Immediate I/O configuration
                                                                                   main
    // HC-SR04
    gpio_pad_select_gpio(HCSR04_TRIGGER);
    gpio_set_direction(HCSR04_TRIGGER, GPI0_MODE_OUTPUT);
    gpio_pad_select_gpio(HCSR04_ECH0);
   gpio_set_direction(HCSR04_ECH0, GPI0_MODE_INPUT);
   // RGB LED
    gpio_pad_select_gpio(LED);
    gpio_set_direction(LED, GPIO_MODE_OUTPUT);
    // Wait 2 secs for console to connect
    sleep_ms(2000);
    printf("Cistern Water Level ...!\n");
    print_chip_info();
    printf("sonic speed is %f cm/usec\n", sonicspeed);
    xTaskCreate(&task_check_distance, "Task_Check_Distance", 2048, NULL, 5, NULL);
    while(1) {
        sleep_ms(5000);
```

Hype?

Programmierung

- Verschiedene Lager
- C/C++
- Python, Skratch
- C# (.NET Micro Framework)
 - Netduino
- JavaScript
 - Tessel

... Und viele viele mehr

- Flashgröße
- RAM-Größe
- EEPROM? Wenn ja, wie groß?
- Taktfrequenz
- Formfaktor
- Softwareumfeld

•

Raspberry Pi

Specs

- Quad Core ARM Cortex-A72 (ARM v8), 1.5 GHz
- 1-4 GB LPDDR4-3200 SDRAM
- 2.4 GHz und 5.0 GHz Wifi
- Bluetooth 5.0
- 1 GBit Ethernet
- HDMI-, Display-, Camera-Ports
- Audio

Raspberry Pi

- Raspberry Pi Foundation
- Preisgünstiger Rechner in Cambridge
 - Reaktion auf sinkende Studentenzahlen
- erster Prototyp 2006
- 2000 Geräte erwartet
- > 2 Millionen Geräte (Anfang 2014)

