2023 Spring《数理统计》课程大作业

2023年5月6日

问题: 已知利用加噪的正弦函数 $y_i = f(x_i) + \epsilon_i = 10\sin(0.3x_i) + \epsilon_i$ 在区间 [0,20] 内生成了一组由 100 个数据对 (x_i,y_i) 构成的数据,其中 ϵ_i 表示数据噪声. 现在我们利用多项式回归模型

$$y_i = \boldsymbol{w}^{\top} \boldsymbol{x}_i + \epsilon_i, \quad \boldsymbol{x}_i = [1, x_i, \cdots, x_i^m]^{\top}$$

来建模该组数据,其中 \boldsymbol{w} 表示模型参数, \boldsymbol{x}_i 表示模型的第 i 个输入, y_i 表示对应的观测值,而噪声 ϵ_i 服从高斯分布 $\mathcal{N}(\epsilon_i;0,\sigma_0^2)$ ($\sigma_0^2=5.0$),m 表示多项式的次数. 若假设模型参数 \boldsymbol{w} 的先验分布为

$$p(\boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}; \boldsymbol{0}, \sigma_w^2 \mathbf{I}),$$

试求模型参数 w 的最大似然估计和贝叶斯估计.

数据下载地址:

github.com/Mephestopheles/Mathematical-Statistics-2023Spring/tree/main/Assignment1 训练数据由 data.csv 给出,其中数据形式如下表所示:

No	x	у
1	1.6302148253728963	6.241160657344439
2	0.8351081552813885	4.0151310636573365
÷	i:	:
99	17.60037082165521	-9.361072876930848
100	18.97287441658695	-8.612303468512675

作业要求:

1) 分别给出模型参数 w 的最大似然估计和贝叶斯估计的理论结果;

- 2) 实现最大似然估计和贝叶斯估计的代码,要求只调用 Numpy 软件包中的基本运算以及必要的数据读取工具(如 pandas 库)和绘图工具(如 matplotlib 库);
- 3) 探索多项式次数 m 对最大似然估计和贝叶斯估计的影响(可分别取 m = 1, 2, 3, 4, 5 等);
- 4) 在贝叶斯估计的实验中,探索采用不同的 σ_w 取值对实验结果的影响.

实验报告需包含(但不限于):

- 1) 分别对单数据点和多数据点的情形,给出模型参数 w 最大似然估计和贝叶斯估计的理论推导;
- 2) 分别为最大似然估计和贝叶斯估计绘制如下所示的曲线图(包括 yi 的观测值、真实值、最大似然估计值、贝叶斯估计均值和贝叶斯估计不确定性):

- 最大似然估计: 先利用上述观测数据计算出模型参数 \boldsymbol{w} 的最大似然估计值 \boldsymbol{w}^* ,再使用 Numpy 中的 linspace 函数均匀采样测试数据 x_i ,并计算去噪后 的对应真实值 $f(x_i)$ 和最大似然估计值 $y_i = (\boldsymbol{w}^*)^{\top} \boldsymbol{x}_i$
- **贝叶斯估计**: 先利用上述观测数据计算出模型参数 \boldsymbol{w} 的后验分布 $p(\boldsymbol{w}|\mathbf{X},\boldsymbol{y})$ 并得到其均值 $\boldsymbol{\mu}$ 和协方差矩阵 $\boldsymbol{\Sigma}$,并利用 $\boldsymbol{\mu}$ 来绘制测试数据 x_i 所对应 的贝叶斯均值 $y_i = \boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{x}_i$ 曲线;另外,可以通过 Numpy 库中的 random. multivariate_normal 函数对该后验分布进行采样得到一系列模型参数 $\{\boldsymbol{w}_i\}$,

再利用测试数据 x_i 和采样得到的模型参数来计算相应的贝叶斯估计值 $y_i = \boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{x}_i$,并根据 y_i 的范围(如 75% 或 100% 范围)来绘制贝叶斯不确定性范围(可以使用 matplotlib.pyplot 库中的 fill_between 函数进行绘图);

- 3) 通过观察实验结果,结合理论知识,说明最大似然估计与贝叶斯估计之间的关系;
- 4) 结合实验结果,分析并比较最大似然估计值、贝叶斯均值和贝叶斯不确定性之间的优劣(可从计算复杂度和模型不确定性等方面进行讨论).

作业提交:

将实验报告(.doc 或.pdf)和代码打包成 zip 文件,文件包的命名规则为: 学号 + 姓名.zip,并提交到助教邮箱: xjxtech@126.com

提交截止时间:

2023年5月28日0:00