6	Scientific Computing and Numerical Methods	4
5	Statistical Estimation	4
4	Discrete Math and Probability Distributions	4
3	Optimization	4
2	Linear Algebra	4
1	Calculus	2

Calculus

Partial Differentiation (MATH2014)

Prove continuity via polar coordinates

Q-type: Let $f(x,y) = \begin{cases} ? & \text{if } (x,y) \neq (0,0) \\ const. & \text{if } (x,y) = (0,0) \end{cases}$. Is f continuous?

To prove a function is **continuous**, a strategy is:

- 1. Change to polar: $\begin{cases} x = r \cdot \cos\theta \\ y = r \cdot \sin\theta \end{cases}$
- 2. Prove $sin\theta$ and $cos\theta$ is bounded, e.g. via sandwich thm.
 - $\lim_{r\to 0} |f(\theta)| \le |c|$

To prove a function is **discontinuous**, some strategies are:

- (A) Change to polar, set $\lim_{x\to 0}$, then choose two θ where value of f(x,y) is different under limit.
- (B) Fix x=0 or y=0, then set $\lim_{(x,y)\to(0,0)}$ "along the half line of y=0,x>0 (or some other half-axis)", and compare this with true value of f(0,0) without limit.

Partial derivatives

To partial d. on x, perform d. as normal on x while treating others (y, z) as constants.

Notation: $f_x = \frac{\partial f}{\partial x}$

Mixed partial derivatives: $f_x y = (f_x)_y = \frac{\partial^2 f}{\partial y \partial x}$ (order of fraction is inverted!)

If f_{xy} is continuous in a neighbourhood of a point, then $f_{yx} = f_{xy}$.

Chain rule

$$\frac{\partial z}{\partial ?} = \underbrace{\frac{\partial z}{\partial u} \frac{\partial u}{\partial ?} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial ?}}_{\text{For each input}(u, v) \text{ one by one}}$$

Recommend: Calculate each $\frac{\partial z}{\partial u}$ individually, then combine and sub.

Special: $(a^x)' = a^x - ln(a)$

Total differential

Linear approximation for Δw when (x, y) changes from (x_0, y_0) to $(x_0 + \Delta x, y_0 + \Delta y)$

• Useful for approximating functions where the input value deviates little from another value where computation is easier (e.g. 3.95 vs 4).

$$\Delta w \approx dw = w_x(x_0, y_0)\Delta x + w_y(x_0, y_0)\Delta y$$

Q-type: Given maximum relative errors of each input value, find the maximum relative error of the function output value:

A: Still write the above equation, but divide whole equation by w, then rearrange to plug in inequalities. i.e. $\frac{\Delta w}{w} \approx \frac{w_x \Delta x}{w} + \frac{w_y \Delta y}{w}$

Taylor's formula (Second order)

Quadratic approximation

$$f(x,y) \approx f(x_0, y_0) + \left[\Delta x f_x(x_0, y_0) + \Delta y f_y(x_0, y_0)\right] + \frac{1}{2!} \left[\left[\Delta x \right]^2 f_{xx}(x_0, y_0) + 2\Delta x \Delta y f_{xy}(x_0, y_0) + \left[\Delta y \right]^2 f_{yy}(x_0, y_0) \right]$$

Recommend: Calculate partials separately first!

Newton-Raphson Method (finding solutions via iterations)

- (A) Root estimation: Start from some x_0 , then $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- (B) Simul. eqt: $\begin{cases} f(x,y) &= \ldots = 0 \\ g(x,y) &= \ldots = 0 \end{cases}, \begin{cases} f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y = -f(x_0,y_0) \\ g_x(x_0,y_0)\Delta x + g_y(x_0,y_0)\Delta y = -g(x_0,y_0) \end{cases}$

Relative extrema

- 1. Solve $\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$
- 2. Let $A = f_{xx}, B = f_{xy}, C = f_{yy}, H = AC B^2$ (draw a table!)
 - H > 0, A > 0: Relative minima
- H < 0: Saddle point
- H > 0, A < 0: Relative maxima H = 0: Inconclusive
- 3. Find extrema on the "boundary": x-axis, y-axis, (0,0), (∞,∞)

Beware of missing roots! e.g. $\div 0$, \pm

Case 1: Normal • When dividing by a variable, split into two cases: Case 2:

Lagrange multiplier (Optimization with constraints)

Optimize f(x, y, z) with constraints g(x, y, z) = 0 and h(x, y, z) = 0. For optimization within a region, find all relative extrema in range, then use Lagrange on the boundary.

1. Solve
$$\begin{cases} f_x &= \lambda g_x + \mu h_x \\ f_y &= \lambda g_y + \mu h_y \\ f_z &= \lambda g_z + \mu h_z \\ g &= 0 \\ h &= 0 \end{cases}$$

- Use two equations at a time!
- Divide by variable! (consider = 0 and \neq 0)
- 2. Determine minimum/maximum for each root
- 3. Determine if global minimum/maximum exits
 - Think: Can you make the function infinitely small/large?
 - E.g. Let $x = a, \lim_{a \to \infty}$

Tip: For optimization of distance, optimize without $\sqrt{\dots}$ first, add it back at the end.

1.2 Multiple Integrals (MATH2014)

Volume of a region

For area, treat $f(x, y) \equiv 1$

$$\int_{lb_x}^{ub_x} \int_{lb_y}^{ub_y} f(x, y) \ dy \ dx$$

Order can be changed for more convenient calculation

- 1. Draw boundary
- 2. Choose which way to integrate (order of x/y) (for $y \to x$, write dy dx)
- 3. y bounds (in terms of x): Shoot an arrow ||y| to the graph, write intersects
- 4. x bounds (constant): Move arrow from left to right, just covering whole graph
 - Remember the sorting sound effect?

Integrating process: Like partial differentiation, treat irrelevant variables as const.

Misc. tricks in multiple integration

(A) Separable function: The function can be represented as $f(x) \cdot g(y)$ Seems no need constant boundary?

$$\int_b^a \int_d^c f(x) \cdot g(y) \ dy \ dx = \int_b^a f(x) \int_d^c g(y) \ dy \ dx$$

(B)
$$\iint c f(x,y) dA = c \iint f(x,y) dA,$$
$$\iint f(x,y) \pm g(x,y) dA = \iint f(x,y) dA \pm \iint g(x,y) dA$$

(C) Odd/even function, period

Change of variables

- 1. Define u, v
- 2.
- 3.

Polar coordinates

Common polar graphs

2 Linear Algebra

- 3 Optimization
- 4 Discrete Math and Probability Distributions
- 5 Statistical Estimation
- 6 Scientific Computing and Numerical Methods