Exercises in Marine Ecological Genetics

03. Genetic drift and effective population size

- Heterozygosity-based tests continued
- Simulate genetic drift
- Estimate N_e from genetic data
- Model the effect of a bottleneck on N_e

Martin Helmkampf

Download course materials using git

Go to project directory and check contents

```
cd dir # e.g. Documents/meg23_exercises
ls -l # -l: long format
```


Download course materials using git

Go to project directory and check contents

```
cd dir # e.g. Documents/meg23_exercises
ls -l # -l: long format
```

Update course repository

```
cd meg23_repo
git pull
```


Please do not save over files in the course repository. Instead, save your own scripts to the local subdirectory (including copies of course scripts you would like to edit), e.g with

```
cp code/03_drift.R ../local/03_drift_lc.R # cp [source] [destination]
```

In case of an error message ...

Delete old repository and re-download from GitHub

```
rm -rf meg23_repo
git clone https://github.com/mhelmkampf/meg23_repo.git
```


Oldenburg

Useful R functions for population genetics

Recap

Import Genepop file as genind object

Locus statistics (e.g. no. of alleles, heterozygosity, evenness)

locus_table(*genind*) # poppr package

Useful R functions for population genetics

Recap

Test for departure from Hardy-Weinberg equilibrium

```
hw.test(genind)  # quick summary (pegas package)

test_HW(file, outputFile = new_file)  # detailed (genepop package)
```

03. Genetic drift and effective population size

Barred hamlet (H. puella) microsatellite dataset

Recap

Ecology, 90(11), 2009, pp. 3087–3098 © 2009 by the Ecological Society of America

Estimating dispersal from genetic isolation by distance in a coral reef fish (*Hypoplectrus puella*)

Oscar Puebla, 1,2,3 Eldredge Bermingham, 1,2 and Frédéric Guichard 2

- 10 highly variable microsatellite loci
- 854 individuals
- 15 Caribbean locations

Barred hamlet (H. puella) microsatellite dataset

Hamlets are simultaneous hermaphrodites with external fertilization.

Barred hamlet (H. puella) microsatellite dataset

Hamlets are simultaneous hermaphrodites with external fertilization.

Test whether self-fertilization occurs regularly using population genetic data

HETEROZYGOSITY

In one population

 H_o = proportion of heterozygote individuals, observed heterozygosity

$$H_e = 2pq = 1 - p^2 - q^2$$
, expected heterozygosity (assuming HW equilibrium)

$$F = \frac{H_e - H_o}{H_e}$$

Fixation index: proportion by which heterozygosity is reduced or $F = \frac{H_e - H_o}{H_e}$ increased relative to the heterozygosity of a population at HW equilibrium with the same allele frequencies. equilibrium with the same allele frequencies.

Divided by $H_e \rightarrow proportion$ (of expected heterozygosity)

Varies between -1 and 1

F < 0: heterozygote excess

F > 0 heterozygote deficit (homozygote excess)

May be averaged over several loci -> reduces bias

May be extended to *k* alleles

HETEROZYGOSITY

In one population

$$H_e = 2pq = 1 - p^2 - q^2$$
, expected heterozygosity (assuming HW equilibrium)

$$F = \frac{H_e - H_o}{H_e}$$

Fixation index: proportion by which heterozygosity is reduced or $F = \frac{H_e - H_o}{H_e}$ increased relative to the heterozygosity of a population at HW equilibrium with the same allele frequencies. equilibrium with the same allele frequencies.

Divided by $H_e \rightarrow proportion$ (of expected heterozygosity)

Varies between -1 and 1

F < 0: heterozygote excess

F > 0 heterozygote deficit (homozygote excess)

May be averaged over several loci -> reduces bias

May be extended to *k* alleles

$$\frac{0.445 - 0.1}{0.445} = 0.78$$

Simulate genetic drift

http://evolutiongenetics.georgetown.edu/simulations/

Genetic drift

What do you observe when

- Ne is high / low
- Initial allele frequency is low / medium / high
- you run one or many replicate populations?

Oldenburg

Simulate genetic drift

Probability of fixation = initial allele frequency *p* (over unlimited time)

Time to fixation:

$$ar{T}_{ ext{fixed}} = rac{-4N_e(1-p)\ln(1-p)}{p}$$

Compared with an infinitely large population at Hardy–Weinberg equilibrium, a population generated from a number of N_m male parents and a number of N_f female parents is expected to show a deficit of homozygotes and an excess of heterozygotes at a neutral locus when N_m , N_f or both are small. This is because male and female parents are expected to have different allele frequencies owing to drift. The smaller the value of N_m or N_f the greater the difference between paternal and maternal allele frequencies and thus the greater the excess in heterozygosity of the offspring population. There is a simple functional relationship between the N_e of the parental population and the amount of heterozygosity excess in the offspring population

- Wang et al. 2016, Heredity

Equation (23) suggests that measuring the heterozygosity excess, D, at a number of marker loci in a population yields an estimate of the parental population effective size. Pudovkin *et al.* (1996) proposed such a N_e estimator by accounting for the sampling effect,

$$\hat{N}_e = \frac{1}{2\hat{D}} + \frac{1}{2(\hat{D}+1)},$$
 — Wang et al. 2016, Heredity

Equation (23) suggests that measuring the heterozygosity excess, D, at a number of marker loci in a population yields an estimate of the parental population effective size. Pudovkin *et al.* (1996) proposed such a N_e estimator by accounting for the sampling effect,

$$\hat{N}_e = \frac{1}{2\hat{D}} + \frac{1}{2(\hat{D}+1)},$$
 — Wang et al. 2016, Heredity

$$D_{j}(i) = \frac{H_{j}^{obs}(i) - H_{j}^{exp}(i)}{H_{j}^{exp}(i)}$$

Index of heterozygote excess

 $H_j(i)$: observed / expected frequency of heterozygotes having allele i at locus j

How reliable do you think the results are?

"This method has enough power and precision to detect a finite Nb when the number of breeders is 30 or less, the progeny sampled numbers 200 or more, and the cumulative number of independent alleles exceeds 80. The method is applicable for situations in which progeny generation is produced by only a small number of parents (as might be the case in highly fecund marine species like mussels, oysters or some fish), ..."

Zhdanova & Pudovkin 2008, J Hered

"All these methods have rather low precision, though they are nevertheless often the only means available for inferring Ne or Nb. As they have different advantages and disadvantages, it seems advisable to use them in conjunction and to integrate the estimates thereby obtained."

- Wang et al. 2016, Heredity

 $N_{\rm e}$ for fluctuating population = harmonic mean of population size over time

Harmonic mean = reciprocal of the arithmetic mean of reciprocals

$$H=rac{1}{rac{1}{x_1}+rac{1}{x_2}+\cdots+rac{1}{x_n}}$$

Course outline

Class	Date	Topics	Script
01	Apr 14	Introduction, software installation	01_intro.R
02	Apr 21	Hardy-Weinberg equilibrium	02_hwe.R
03	Apr 28	Genetic drift and effective population size	03_drift.R
04	May 05	Population structure and gene flow	04_structure.R
05	May 12	Isolation by distance (lecture online, exercises in person)	05_ibd.R
_	May 19	Himmelfahrt break	-
06	May 26	Whole-genome sequencing and genome assembly	06_genseq.sh
07	Jun 02	Genotyping, SNPs and population genomics	07_snps.R
08	Jun 09	Recombination and linkage disequilibrium	08_linkage.R
_	Jun 16	Student presentations	_
09	Jun 23	Selection and mutation	09_selection.R
10	Jun 30	DNA barcoding	10_barcode.sh
11	Jul 07	Metabarcoding	11_meta.sh
_	Jul 14	To be determined	_