

PROYEK AKHIR

RANCANG BANGUN MOBILE ROBOT PENATA BUKU PERPUSTAKAAN OTOMATIS BERBASIS RFID

DESIGN OF LIBRARY BOOK ARRANGER MOBILE ROBOT BASED ON RFID

Oleh:

Heri Nur Alim NRP. 1110181013

Dosen Pembimbing:

Ni'am Tamami, S.ST., M.T. NIP. 199010102015041002

Ali Husein Alasiry, S.T., M.Eng. NIP. 197310272000031001

PROGRAM STUDI D4 TEKNIK ELEKTRONIKA DEPARTEMEN TEKNIK ELEKTRO POLITEKNIK ELEKTRONIKA NEGERI SURABAYA 2022

PROYEK AKHIR

RANCANG BANGUN MOBILE ROBOT PENATA BUKU PERPUSTAKAAN OTOMATIS BERBASIS RFID

DESIGN OF LIBRARY BOOK ARRANGER MOBILE ROBOT BASED ON RFID

> Heri Nur Alim NRP. 1110 181 013

Dosen Pembimbing:

Ni'am Tamami, S.ST., M.T. NIP. 199010102015041002

Ali Husein Alasiry, S.T., M.Eng. NIP. 197310272000031001

PROGRAM STUDI D4 TEKNIK ELEKTRONIKA DEPARTEMEN TEKNIK ELEKTRO POLITEKNIK ELEKTRONIKA NEGERI SURABAYA 2022

PERNYATAAN ORISINILITAS

Saya selaku penulis menyatakan bahwa Proyek Akhir ini adalah benar-benar hasil karya saya sendiri, dan semua sumber/referensi baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Surabaya, 01 Agustus 2022 Penulis yang menyatakan,

> Heri Nur Alim NRP. 1110181013

Rancang Bangun Mobile Robot Penata Buku Otomatis Berbasis RFID

Oleh:

Heri Nur Alim NRP. 1110 181 013

Proyek Akhir ini diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Terapan Teknik (S.Tr.T.) di

Program Studi D4 Teknik Elektronika

Departemen Teknik Elektro Politeknik Elektronika Negeri Surabaya

Disetujui dan disahkan pada tanggal 01 Agustus 2022 oleh :

Dosen Pembimbing

- Ni'am Tamami, S.ST., M.T. NIP. 199010102015041002
- 2. Ali Husein Alasiry, S.T., M.Eng. NIP. 197310272000031001

Dosen Penguji

- Dr. Bambang Sumantri, S.T., M.Sc. NIP. 197812102003121002
- 2. Eru Puspita, S.T., M.Kom. NIP. 196912311995011001

 Hendhi Hermawan, S.ST., M.T. NIP. 198802152020121002

> Mengetahui, Ketua Program Studi D4 Teknik Elektronika

Dr. -Ing. Arif Irwansyah, S.T., M.Eng. NIP. 197703182001121002

ABSTRAK

Saat ini, perpustakaan telah merealisasikan banyak aspek teknologi informasi seperti pengembalian buku, koleksi buku, RFID, database dan teknologi lainnya yang meningkatkan manajemen perpustakaan dan tingkat layanan. Salah satu teknologi yang digunakan adalah robot perpustakaan. Robot perpustakaan merupakan integrasi otomatisasi dan informasi dalam aplikasi perpustakaan sehari-hari, yang dapat meningkatkan tingkat otomatisasi perpustakaan, Penataan buku pada rak buku sangat penting, sehingga pencarian buku dapat dilakukan dengan cepat dan mudah. Contohnya adalah di perpustakaan dimana buku harus disusun menurut kategori atau judulnya, sehingga pembaca dapat dengan mudah menemukan buku. Namun jika seseorang telah selesai membaca sebuah buku, terkadang seseorang lupa untuk mengembalikan buku tersebut pada tempatnya. Menempatkan buku pada tempat yang salah dapat mempersulit seseorang untuk mencari buku, hal ini juga akan menambah pekerjaan petugas perpustakaan. Untuk itu, sistem manajemen perpustakaan memerlukan sistem mobile robot otomatis untuk menyelesaikan permasalahan di atas dengan menggunakan RFID untuk mengenali judul buku dan robot akan otomatis mengantarkan buku ke dalam rak secara otomatis. Hasil akhir dari sistem robot ini adalah didapatkan bahwa hasil dari pergerakan robot dengan line follower berjalan dengan baik dan dapat menuju ke lokasi rak buku yang telah ditentukan dengan tingkat keberhasilan 95%. Dan dari pergerakan mekanik naik dan turun didapatkan hasil yang baik dan dapat melakukan pekerjaan menata buku pada rak nya dengan tingkat keberhasilan 97%.

Kata kunci: Perpustakaan, mobile robot

ABSTRACT

libraries have realized many aspects of information technology such as book returns, book collections, RFID, databases and other technologies that improve library management and service levels. One of the technologies used is a library robot. The library robot is an integration of automation and information in daily library applications, which can increase the level of library automation. Organizing books on bookshelves is very important, so that book searches can be done quickly and easily. An example is in a library where books must be arranged by category or title, so that readers can easily find books. But if someone has finished reading a book, sometimes someone forgets to return the book to its place. Placing books in the wrong place can make it difficult for someone to find books, this will also increase the work of librarian. For this reason, the library management system requires an automatic mobile robot system to solve the above problems by using RFID to recognize book titles and the robot will automatically deliver books to the shelves automatically. The final result of this robotic system is that the results of the movement of the robot with a line follower run well and can go to the predetermined bookshelf location with a 95% success rate. And from the mechanical movement up and down, good results are obtained and can do the work of arranging books on the shelves with a success rate of 97%.

Keywords: library, mobile robot

KATA PENGANTAR

Alhamdulillahirobbil'alamin. Segala puji bagi Allah SWT atas rahmat dan karunia-Nya dan semoga sholawat serta salam selalu tercurahkan kepada nabi besar Muhammad SAW. Penulis ucapkan terima kasih kepada semua pihak yang telah membantu, sehingga Tugas Akhir yang berjudul:

"RANCANG BANGUN MOBILE ROBOT PENATA BUKU PERPUSTAKAAN OTOMATIS BERBASIS RFID"

Buku Proyek Akhir ini disusun sebagai syarat menyelesaikan studi Diploma IV serta memperoleh gelar Sarjana Terapan Teknik di jurusan Elektronika Politeknik Elektronika Negeri Surabaya (PENS).

Terdapat beberapa literatur dan teori baik yang diperoleh dalam perkuliahan maupun dari luar perkuliahan yang digunakan dalam penyelesaian proyek akhir ini dan juga tidak lepas dari dukungan dosen pembimbing serta pihak-pihak lain yang telah banyak memberikan semangat dan bantuan. Penulis menyadari bahwa buku proyek akhir ini masih memiliki banyak kekurangan. Untuk itu penulis memohon maaf sebesar-besarnya atas segala kekurangan dalam penyusunannya. Penulis juga mengharapkan saran dan kritik dari semua pihak demi kesempurnaan buku ini.

Akhirnya, penulis berharap semoga buku proyek akhir ini memiliki kemanfaatan yang besar khususnya bagi penulis dan pembaca pada umumnya sebagai sarana ilmu, wawasan, dan pengetahuan.

Surabaya, 29 Juli 2022

Penulis

UCAPAN TERIMA KASIH

Dengan penuh rasa syukur kehadirat Allah S.W.T dan tanpa menghilangkan rasa hormat yang mendalam, saya selaku penyusun dan penulis mengucapkan terima kasih yang sebesar-besarnya kepada pihakpihak yang telah membantu penulis untuk menyelesaikan proyek akhir ini, penulis mengucapkan terima kasih kepada:

- Allah SWT yang telah meridihoi penulis dalam mengerjakan tugas akhir.
- Kedua orang tua dan kakak yang selalu memberikan doa restu, pendengar baik dan pendukung terbesar dalam penyelasaian tugas akhir.
- 3. Bapak Ni'am Tamami, S.ST., M.T. selaku dosen pembimbing I yang telah bersedia membimbing dengan sabar dan mengarahkan penulis hingga terselesaikan tugas akhir.
- 4. Bapak Ali Husein Alasiry, S.T., M.Eng selaku dosen pembimbimbing II yang telah bersedia membimbing dan mengajari kapanpun penulis bertanya serta berdiskusi sehingga terselesaikan tugas akhir.
- Teman-teman perjuangan D4 Teknik Elektronika 2018, Terimakasih dan sukses untuk kalian semua

PERSETUJUAN PUBLIKASI TERBATAS

Sebagai civitas akademik Politeknik Elektronika Negeri Surabaya, saya yang bertanda tangan di bawah ini:

Nama : Heri Nur Alim NRP : 1110181013

Program Studi : D4 Teknik Elektronika

Departmen : Teknik Elektro

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Politeknik Elektronika Negeri Surabaya Hak Bebas Royalti Non-eksklusif (Non-exclusive Royalty-Free Right) atas proyek akhir saya yang berjudul:

RANCANG BANGUN MOBILE ROBOT PENATA BUKU PERPUSTAKAAN OTOMATIS BERBASIS RFID

beserta perangkat yang ada (jika diperlukan), yang oleh karenanya Politeknik Elektronika Negeri Surabaya dengan ini berhak menyimpan, mengalih-media-kan atau mengalih-format-kan, mengelola dalam pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Surabaya, 29 Juli 2022 Penulis

<u>Heri Nur Alim</u> NRP : 1110181013

DAFTAR ISI

Halaman Jud	ul	. iii
ABSTRAK		v
ABSTRACT		. vi
KATA PENO	GANTAR	vii
	ERIMA KASIHv	
PERSETUJU	JAN PUBLIKASI TERBATAS	. ix
DAFTAR IS	I	X
DAFTAR TA	ABEL	kiii
	AMBAR	
BAB I PEND	DAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Tujuan Penelitian	3
1.4	Luaran Yang Diharapkan	
1.5	Manfaat Penelitian	3
1.6	Batasan Masalah	4
1.7	Metodologi	4
1.7	.1 Studi Literatur	4
1.7	.2 Perancangan dan Pembuatan Desain Mekanik	4
	.3 Perancangan dan Pembuatan Hardware dan Software	
	.4 Pengujian Alat	
1.7	.5 Evaluasi Alat	4
1.8	Sistematika Penulisan	4
BAB II TIN.	JAUAN PUSTAKA	6
2.1	Pengertian Perpustakaan Umum	6
2.2	Pelayanan pada Perpustakan Umum	
2.3	RFID (Radio Frequency Identification)	7
2.4	Mobile Robot	
2.5	Kontroller PD (Proportional–Derivative)	
2.6	Metode A-Star	
2.7	Driver motor BTS7960	
2.8	Motor Stepper	
2.9	Arduino Nano	
2.9	ESP32 Microcontroller	16
2.10	REST API	
2.11	My SQL Database	
2.12	Flutter Framework	
BAR III PER	ANCANGAN DAN PEMBUATAN SISTEM	6

3.1 Studi Literatur	20
3.2 Perancangan Sistem	20
3.2.1 Flowchart Keseluruhan Sistem	22
3.3 Perancangan dan pembuatan mekanik	25
3.3.1 Perancangan dan pembuatan mobile robot	26
3.3.2 Perancangan dan pembuatan mekanik atas	27
3.4 Perancangan hardware	28
3.4.1 Perancangan hardware mobile robot	28
3.4.2 Perancangan hardware mekanik atas	
3.4.3 Perancangan Sensor Garis	30
3.5 Perancangan perangkat lunak	32
3.5.1 Perancangan perangkat lunak line follower	32
3.5.2 Perancangan perangkat lunak mekanik atas	36
3.5.3 Perancangan perangkat lunak request server	
3.5.4 Perancangan REST API	
3.5.5 Perancangan pembuatan Aplikasi Android	
management	39
3.5 Pembuatan Alat	42
3.6 Pengujian Alat	
3.6.1.Pengujian blok system	
3.6.2.Pengujian keseluruhan	
3.7.Analisis dan Kesimpulan	
BAB IV PENGUJIAN DAN ANALISA	
4.1 Pengujian nilai ADC sensor infrared	
4.1.1 Tujuan	
4.1.2 Setting Pengujian	
4.1.3 Prosedur Pengujian	
4.1.4 Hasil dan Analisa	
4.2 Pengujian Motor Penggerak	
4.2.1 Tujuan	
4.2.2 Setting Pengujian	
4.2.3 Prosedur Pengujian	
4.3 Pengujian Motor Stepper	
4.3.1 Tujuan	
4.3.2 Setting Pengujian	
4.2.3 Prosedur Pengujian	
4.4 Pengujian RFID	
4.4.1 Tujuan	
4. 4. 2 Setting Pengujian	51

	4.4.3 Prosedur Pengujian5	52
	4.4.4 Hasil dan Analisa5	52
4	4.5 Pengujian Keakuratan Pergerakan Motor Stepper5	54
	4.5.1 Tujuan5	54
	4. 5. 2 Setting Pengujian5	54
	4.5.3 Prosedur Pengujian5	54
	4.5.4 Hasil dan Analisa5	55
4	4.6 Pengujian Motor Stepper dengan beban5	56
	4.6.1 Tujuan5	
	4. 6. 2 Setting Pengujian5	56
	4.6.3 Prosedur Pengujian5	57
	4.6.4 Hasil dan Analisa5	57
4	4.7 Pengujian Tuning PID5	57
	4.7.1 Tujuan5	57
	4.7.2 Setting Pengujian5	57
	4.7.3 Prosedur Pengujian5	
	4.7.4 Hasil dan Analisa5	
4	4.8 Pengujian <i>Line Follower</i> mendeteksi simpangan5	59
	4.8.1 Tujuan5	
	4.8.2 Setting Pengujian5	59
	4.8.3 Prosedur Pengujian6	51
	4.8.4 Hasil dan Analisa6	51
]	Line Follower Detect Cross Test	51
BAB	V PENUTUP	45
	5.1 Kesimpulan6	52
	5.2 Saran6	52

DAFTAR TABEL

Tabel 4. 1 Data pembacaan sensor infraed	41
Tabel 4. 2 Data pengujian motor	44
Tabel 4. 3 Data pengujian motor stepper	46
Tabel 4. 4 Data pengujian pergerakan motor stepper	
Tabel 4. 5 Data pengujian motor stepper dengan beban	53
Tabel 4. 6 Data hasil pengujian tuning PID	54
Tabel 4. 7 Data pengujian mendeteksi simpangan	57

DAFTAR GAMBAR

Gambar 2. 1 Perpustakaan umum	7
Gambar 2. 2 Pelayanan Perpustakaan umum	8
Gambar 2. 3 Bagian bagian RFID	8
Gambar 2. 4 Mobile Robot	9
Gambar 2. 5 Automatic Mobile Robot	9
Gambar 2. 6 Diagram blok pengendali PID	12
Gambar 2. 7 Algoritma A-Star	14
Gambar 2. 8 Driver Motor BTS760	15
Gambar 2. 9 Spesifikasi Driver Motor BTS760	. 15
Gambar 2 .10 Stepper Motor	
Gambar 2 .11 Arduino Nano	
Gambar 2 .12 ESP32 Wifi Module	18
Gambar 2 .13 Rest Api	19
Gambar 2 .14 My Sql Database	21
Gambar 2 .15 Flutter Framework	21
Gambar 3 .2 Blok diagram sistem	22
Gambar 3 .3 Flowchart sistem	25
Gambar 3 .4 Request id ke server	
Gambar 3 .5 Robot berjalan mengikuti garis	
Gambar 3 .6 Robot mendorong buku ke dalam rak	27
Gambar 3 .7 Desain Mekanik Robot	
Gambar 3. 8 Mobile Robot	. 28
Gambar 3 .9 Mekanik Atas	. 29
Gambar 3 .10 Mekanik Pendorong	30
Gambar 3. 11 Blok diagram hardware mobile robot	
Gambar 3. 12 Desain PCB board	30
Gambar 3. 13 Hasil Akhir hardwre	
Gambar 3. 14 Blok diagram hardware mekanik atas	
Gambar 3. 15 Hasil pcb desain mekanik atas	
Gambar 3. 16 Flowchart line follower dengan PID	32
Gambar 3. 17 Program mencari case error dari sensor	33
Gambar 3. 18 Program logika line follower dengan PID	
Gambar 3. 19 Flowchart mekanik atas	35
Gambar 3. 20 Flowchart request server	
Gambar 3. 21 Hasil REST API	37
Gambar 3. 22 List buku pada aplikasi android	38
Gambar 3 22 Menambahkan huku baru pada datahase	

Gambar 3. 23 Melakukan update buku pada database	. 40
Gambar 3. 24 Desain Mekanik Awal	. 41
Gambar 4. 1 Rangkaian Sensor Infrared	. 43
Gambar 4. 2 Dokumentasi pembacaan sensor infrared	. 43
Gambar 4. 3 Dokumentasi pengujian motor	. 44
Gambar 4. 4 Grafik hasil pengujian motor	. 45
Gambar 4. 5 Dokumentasi pengujian RFID	. 46
Gambar 4. 6 Dokumentasi pengujian Pergerakan Motor Stepper	. 50
Gambar 4. 7 Dokumentasi Motor Stepper dengan beban	. 52
Gambar 4. 8 Dokumentasi Tuning PID	. 54
Gambar 4. 9 Dokumentasi mendeteksi simpangan	. 56

