

Project Report CSE 231

Digital Logic Design Section 11 Workstation-08

Using combinational circuit print: **SASJ-G08** in 7 segment display

Spring 2020 North South University Submitted To: Tanjila Farah(TnF)

SL.	NAME:	Student ID:		
1.	S M Gazzali Arafat Nishan	1831513642		
2.	Rofiqul Alam Shehab	1831185042		
3. Sudipta Bhatta		1731194042		

Index	Α	B	C	a	Ь	c	d	Q	B	. 9	
0	0	0	0	1	0	ı	1	0	1	1	5
1	0	0	1	l	1	1	0	1	1	1	A
2	0		0	1	0	1	1	0	1	1	3
3	0	1	1	0	1	I	1	1	0	0	0
4	I	0	0	0	0	0	0	0	0	1	_
5	1	0	1	(0	l	1	(1	0	61
6	1	Ţ	0	(1	1	1	1	1	0	0
7	1	. 1	1	1	1	1	1	1	1	1	8

of Generalized Functions:

$$a = ABC + ABC + ABC + ABC + ABC + ABC = \Sigma(0,1,2,5,6,7)$$

$$c = ABC + ABC +$$

$$d = ABC + ABC +$$

$$e = \frac{1}{2}(0, 2, 5, 6, 7)$$

= $\frac{1}{2}(0, 2, 5, 6, 7)$
= $\frac{1}{2}(0, 2, 5, 6, 7)$

 $\theta = ABC + ABC + ABC + ABC + ABC + ABC$ $<math>\Sigma(0,1,2,5,6,7)$

 $g = ABC + ABC + ABC + ABC + ABC + ABC = \Sigma(0,1,2,4,7)$ $= \Sigma(0,1,2,4,7)$ = K-map for b

K-map fon a = 8

B'C' B'C BC BC

A' D D O D

A O D D

F=AB+BC+AC+AB+BC

F=AC+AB

F=C+B+AB+A'C'

F=B+AC+A'C'

弘 Simplification Bon 200

Generalized POS Function: $a = ABC' + ABC = (A'+B+e)(A+B'+e') = \sigma \pi - (3,9)$ b = ABC' + ABC' + ABC' + ABC = (A+B+e)(A+B'+e) (A'+B+e)(A'+B+e') $= (\pi(0, 2, 4, 5))$ $c = AB'C' = A'+B+C = \pi(4)$ $d = A'BC + ABC' = (A+B+e')(A'+B+e) = \pi(1, 4)$ e = A'BC' + A'BC' + ABC' = (A+B+e)(A+B'+e) $(A'+B+e) = \pi(0, 2,9)$ $f = ABC' + A'BC' = (A'+B+C)(A'+B'+e') = \pi(3,9)$

$$g = A'BC + AB'C + ABC' = (A+B'+C')(A'+B+C')$$

 $(A'+B'+C) = \pi (35,6)$

K-map for a=f

x-map yorz b

K-max	For	d
1)		

T	Bi	BC	BC	BC
A'	1	1	1 3	1
A	0		1	1
	7	5 A'+B	7	6

Fig: Greneralized sop Cincuit Diagram Using Basic gates.

Fig: Simplified SOP Cincuit Diagram your NAND gates.

Fig: Generalized pos circuit diagram ying togic gotes.

Fig: Simplified por circuit Diagram using basic gates

Fa: Generalized SOP Cincuit Diagram uping Decader and OR gate.

Fig. Circuit Diagram For Generalized SOP Equation

Fig. Project-Simplifeid SOP Circuit Diagram using basic gates

Fig. Circuit Diagram of SOP using only NAND Gates

Fig. Circuit Diagram of Generalized POS

Fig.Circuit Diagram for Simplified POS Using Basic Gates

Fig. Generalized SOP Using Decoder and OR Gates

