(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-16958

(43)公開日 平成11年(1999)1月22日

(51) Int.Cl. ⁶		識別配号	FΙ		
H01L	21/60	3 2 1	H01L	21/60	3 2 1 E
	23/48			23/48	v
	23/50			23/50	K

審査請求 未請求 請求項の数18 OL (全 10 頁)

(21)出願番号	特順平9 -163926	(71)出順人	000006013 三菱電機株式会社
(22)出順日	平成9年(1997)6月20日		東京都千代田区丸の内二丁目2番3号
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	堀部 裕史
			東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内
		(74)代理人	弁理士 大岩 増雄

(54) 【発明の名称】 半導体装置およびその製造方法並びに半導体装置の製造装置

(57)【要約】

【課題】 汎用性があり、高い信頼性を有する安価で小型な半導体装置と、これを製造するための製造装置および製造方法を提供する。

「解決手段」 本発明における半導体装置は、半導体素 子1九の電極パッド1aと外部との電気信号入力を、金 属リード2のみで行うことを特徴とする。金属リード2 の断面はほぼ円形であり、その直径は、電極パッド1a の間隔や所望のパッケージサイズに応じて、50~10 0 umのものを用いる。金属リード2の主材料には、A u、A 10 やにA g、C u を用いることができる。金属 リード2としては、金属リード単体のみでなく、金属 低融点ろう材を被覆したものや、金属リード2相互間お よび金属リード支と半導体素子1間の絶縁性を高めるた めに、金属リード表面に絶縁被覆材を施したものを用い でも良い。

【特許請求の範囲】

【請求項1】 電極パッドを有する半導体素子、 上記電極パッドに一端を接続された金属リード、 上記半導体素子、上記電極パッドおよび上記金属リード

上記半導体素子、上記電極パッドおよび上記金属リード の一部を覆う封止材を備え、上記金属リードにて外部と の電気的接続を行うことを特徴とする半導体装置。

【請求項2】 金属リードは、その断面がほぼ円形であることを特徴とする請求項1記載の半導体装置。

【請求項3】 金属リードは、高伝導率の金属芯線を低 融点ろう材で被覆したものであることを特徴とする請求 項1または請求項2記載の半導体装置。

【請求項4】 金属リードは、その最外層面が絶縁被覆 材で被覆されていることを特徴とする請求項1~請求項 3のいずれか一項に記載の半導体装置。

【請求項5】 金属リードの一部を、上記金属リードの 直径よりも大なる厚みの絶縁材で覆うことを特徴とする 請求項 ~請求項4のいずれか一項に記載の半導体装 署

[請求項6] 金属リードは、封止材の側面に沿って配置され、その一部が上記封止材に埋め込まれ固定されていることを特徴とする請求項1~請求項5のいずれか一項に記載の半導体装置。

[請求項7] 金属リードは、その先端に金属バンブを 有し、上記金属バンブが封止材から外部に露出している ことを特徴とする請求項1~請求項4のいずれか一項に 計載の半導体装置。

[請求項8] 電極パッドを有する半導体素子、 上記電極パッドに一端を接続された金属リード、 上記半導体素子、上記電極パッドおよび上記金属リード の一部を覆い、その側面に沿って上記金属リードが配置 された封止材、

上記半導体素子をはめ込み固定する穴を有する配線基 板、

上記配線基板の穴の側面に上記配線基板面に対して垂直 に配置され、上記金属リードと接続される端子部を備え たことを特徴とする半導体装置。

【請求項9】 配線基板は、低熱膨張率かつ高弾性率の 材料よりなる保持部材にて金属リードと端子部との接続 を保持していることを特徴とする請求項8記載の半導体 装置。

【請求項10】 保持部材は、配線基板および半導体素 子上に広く接続されていることを特徴とする請求項9記 載の半導体装置。

[請求項 1] 高伝導率の金属芯線を低離点ろう材で 被覆され、さらに最表面を絶縁被覆材で終覆されている 金属リードの一端に、上記記融点のう材および金属芯線 にダメージを与えない波長域のレーザを照射して上記絶 縁被覆材を除去する工程、上記金属リードの他の一端を 保持するろう付け可能を有するチップキャリアに電極 バッドを有する半導体素子を搭載し、上記金属リードの 絶縁被覆材が除去された一端と上記電極バッドをワイヤ ボンド装置にて接合する工程を含むことを特徴とする半 導体装置の製造方法。

(請求項 2 2 金属リードを切断するための突起を有 するチップキャリアを用い、このチップキャリアに半導 体素子を搭載した状態で、一端が上記半導体素子の電極 パッドに、他端が上記チップキャリアのろう付け可能的 に接続された上記金属リードを、上記突起とフィヤボン ド装置に備えられた切断工具を用いて切断する工程を含 むことを特徴とする請求項 1 1 記載の半導体装置の製造 方法。

【請求項 1 3】 互いに分離可能な半導体搭載部とろう 付け可能部を有するチップキャリアを用い、上記チップ キャリアを使用後、上記ろう付け可能部のみを加熱し、 残存した金属リードの除去および上記ろう付け可能部の 平坦化を行い、さらにフラズマによる清浄化を行う工程 を含むことを特徴とする請求項 1 1 または請求項 1 2記 載の半選様送輩の製造方法。

【請求項14】 半導体票子上の電極バッドに金属リードを接続し、上記半導体票子上の電極バッドに金属リードを接続し、上記半導体票子、上記電極バッドおよび上記金属リードの一部を熱内塑性の樹脂である對止材にてを、金属リード曲げ加工金型にて、上記封止材の側面に沿うように成形する工程、上記金属リードの一部を、加熱可能な金型にて上記封止材中に埋め込み固定する工程を含むことを特徴とする半導体装置の製造方法。

[請求項 1 5] 半導体装置を実装する穴を有する配線 基板を加熱し、上部穴を拡水する工程、半導体装置を上 記穴に挿入し、上記穴の側面に配置された全層と上 導体装置の側面に配置された金属リードを接合する工 程、上記半導体装置実装後の上記配線基板を冷却し、上 記穴を収縮させる工程を含むことを特徴とする半導体装 簡の製造方法。

【請求項 16】 半導体素子の電極バッドに接合された 金属リードの先端に金属球を形成し、上記半導体素子、 上記電極バッドおよび上記金属リードを封止材で覆う工 程、上記封止材をレーザにて除去し上記金属リード先端 の金属球を露出させ、上記金属球表面を清浄化する工 程、レベリングツールを用いて上記金属球次高さをそろ える工程を含むことを特徴とする半導体装置の製造方 法。

【請求項17】 配線基板に設けられた穴に半導体装置 を挿入し、上記穴の側面に配置された端子と上記半導体 素子の側面に配置された金属リードを接合する装置であって

上記半導体装置を保持し、加熱、加圧、超音波印加機構 を有するボンディングヘッド、

上記配線基板を搭載して上記ポンディングヘッドとの位置決めを行い、上記配線基板の穴を拡大させるための加熱機構を有するステージを備えたことを特徴とする半導

体装置の製造装置。

【請求項18】 半導体素子を搭載するステージ、 上記半導体素子の電極パッドに金属リードを接合するボンディングツール、

上記金属リードを切断し、少なくとも上記半導体素子側 の切断端に金属球を形成するレーザを備えたことを特徴 とする半導体装置の製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 この発明は、QFP (Quad F lat Pack) に代表されるフラスチックバッケージ、特に 超小型の半導体装置およびその製造装置並びにその製造 方法に関する。

[0002]

【従来の技術】図21~図25は、従来の代表的なパッ ケージの構成を示す図である。図において、1は半導体 素子、3は封止材、28はインナーリード、29、31 は雷極パッド、30、36はリード、32はUBM (Un der Bump Metal) 、33、35、39はバンプ、34は 配線基板、37はダイボンディング部、38は金属ベー ス、Aは半導体素子の幅、Bはパッケージの幅をそれぞ れ示す。従来のリードフレームを用いるパッケージで は、図21に示すように、インナーリード28の加工限 界から、半導体素子1の幅Aに対してパッケージの幅B が大きくなる。また、図22は、TABテープを用いた パッケージであり、半導体素子1トの電極パッド29の 配置に応じてリード30のパターンが用意される。ま た、図23に示すように、めっきによりバンプ33を形 成するパッケージでは、電極パッド31上にUBM32 を形成した後にバンブ33を形成する必要がある。さら に、図24に示すように、バンブ35を用いる接続形態 では、配線基板34の熱膨張および収縮により、バンプ 35に応力が発生しやすい。また、特開平3-9445 9号公報では、図25に示すように、封止材3外部に形 成された金属ベース38上に配置されたバンプ39と半 導体素子1が、金属リード36で接続されるパッケージ 構造が提案されている。

[0003]

【発明が解決しようとする課題】 上記のようは構成された従来のパッケージでは、以下のような問題点がある。まず、図21に示すリードフレームを用いるパッケージでは、インナーリード28の加工限界から、十分なパッケージの小型化が望めない。また、TABテープを用いるパッケージにおいては、図22(a)、(b)に示すように半導体来子1の電極パッド29の配置が異なる場する必要があり、汎用性に乏しい。また、図22に示すめっきによりパンプ33を形成する必要があり、一般100円であり、31表面にUBM32を形成する必要があり、一般100円であり、11表面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面にUBM32を形成する必要があり、一般15面に関係ないることができない。すら

に、バンブを用いる接続形態では、図24に示すように バンブ35に応力が発生しやすく、接続の安定性が低 く、信頼性に問題がある。また、特開平3994459 号公観で提案された図25に示すバッケージにおいて は、製造工程が従来に比べて複雑化しており、コスト低 流が困難であるという問題がある。

【0004】本発明は、上記のような問題点を解消する ためになされたもので、汎用性があり、高い信頼性を有 する安価で小型な半導体装置と、これを製造するための 製造装置および製造方法を提供するものである。

[0005]

【課題を解決するための手段】この発明に係わる半導体装置は、電機バッドを有する半導体素子、電機バッドをに、電機・大きないません。電側・ドと、半導体素子、電機バッドをおいるである。なり、一下に、外部との電気的接続を行うものである。をある。また、金属リードは、落伍導率の金属芯線を低融点ろう材で被覆したものである。さらに、金属リードは、高低でである。また、金属リードの一部を、金属リードの直径よりも大なる厚みの絶縁材で覆さものである。また、金属リードは、封止材の側面に沿って配置され、その一部が対し対しているものである。また、金属リードは、封止材の側面に沿って配置され、その一部が対し対しているものである。さらに、金属リードは、その先端に金属パンプを有し、金属バンプが封止材から外部に露出しているものである。あの

【0006】また、電優パッドを有する半導株素子と、 電極パッドに一端を接続された金属リードと、半導体素 子、電極パッドおよび金属リードの一部を覆い、その側 面に沿つて金属リードが配置された封止材と、半導体素 の穴の側面に配棒基板面に対して重直に配置され、金融基属 リードと機能される端子部を備えたものである。また、 配線基板は、低熱影揺率の一系微性率の材料とりなる保 持部材にて金属リードと端子部との接続を保持している ものである。さらに、保持部材は、配機基板および半導 体素子上に広く機能されているものである。さいに を展示して金属リードと場子部との接続を保持している ものである。さらに、保持部材は、配機基板および半導 体素子上に広く機能されているものである。

【0007】この発明に係わる半導体装置の製造方法 は、高伝導率の金属芯線を低融点ろう材で被覆され、さ らに最表面を絶縁被覆材で被覆されている金属リードの 一端に、低融点ろう材および金属芯線にダメージを与え ない波長域のレーザを照射して絶縁被覆材を除去する工 程と、金属リードの他の一機を検討するろうはです。 を有するチッフキャリアに電極バッドを有する半導体素 子を搭載し、金属リードの絶縁を置材が除去された一場 で製造するようにしたものである。また、金属リード を切断するための突起を有するチップキャリアを用い、 このサッフキャリアに半導体素子を搭載した状態で、 端が半導体素子の電極バッドに、他端がチップキャリア ・端が半導体素子の電極バッドに、他端がチップキャリア のろう付け可能部に接続された金属リードを、契起とワイヤボンド装置に備えられた切断工具を用いて切断する 工程を含んて製造するようにしたものである。さらに、 互いに分離可能な半導体搭載部とろう付け可能部を有す るチップキャリアを用い、チップキャリアを使用後、ろう付け可能部のみを加熱し、残存した金属リードの除去 およびろう付け可能部の平坦化を行い、さらにフラズマ による清浄化を行う工程を含んで製造するようにしたも のである。

【0008】また、半導体素子上の電極パッドに金属リ ードを接続し、半導体素子、電極パッドおよび金属リー ドの一部を熱可塑性の樹脂である封止材にて封止する工 程と、封止材外部にある金属リードを、金属リード曲げ 加工金型にて封止材の側面に沿うように成形する工程 と、金属リードの一部を、加熱可能な金型にて封止材中 に埋め込み固定する工程を含んで製造するようにしたも のである。また、半導体装置を実装する穴を有する配線 基板を加熱し、穴を拡大する工程と、半導体装置を穴に 挿入し、穴の側面に配置された端子と半導体装置の側面 に配置された金属リードを接合する工程と、半導体装置 実装後の配線基板を冷却し、穴を収縮させる工程を含ん で製造するようにしたものである。さらに、半導体素子 の電極パッドに接合された金属リードの先端に金属球を 形成し、半導体素子、電極パッドおよび金属リードを封 止材で覆う工程と、封止材をレーザにて除去し金属リー ド先端の金属球を露出させ、金属球表面を清浄化する工 程と、レベリングツールを用いて金属球の高さをそろえ る工程を含んで製造するようにしたものである。

【0009】 この発明に係わる半導体装置の製造装置 は、配線基板に設けられた穴に半導体装置を挿入し、穴 の側面に配置された端子と半導体業子の側面に配置され た金属リードを接合する装置であって、半導体装置を保 特し、加熱、加圧、超音波印加機構を有するポンディン グヘッドと、面線基板を搭載してポンディングヘッドと の位置決めを行い、配線基板の穴を拡大させるための加 熱機構を有するステージを備えたものである。また、 学体素子を搭載するステージを備えたものである。また、 ドに金属リードを接合するポンティングツールと、金属 リードを切断し、少なくとも半導体素子側の切断端に金 風球を形成するレーザを備えたものである。 最限な手板するカンーザを備えたものである。 風球を形成するカンサがを備えたものである。 風球を形成するカンサがを備えたものである。

[0010]

【発明の実施の形態】

実施の形態1. 図1は、本発明の実施の形態1における は一般に用いられる半導体素子、1 aは半導体素子1上 に形成された電極パッド、2 は金属リード、3 は対止が をそれぞれ方。本実施の形態による半導体差値は、従 来用いられてきたリードフレームやTABテーブを用い ることなく、半導体素子1上の電極パッド1aと外部と の電気信号人力を、金属リード2のみで行うことを特徴 とするものである。

【0011】以下に、本発明の実施の形態1による半導 体装置の構成および製造方法について説明する。金属リ ード2の断面はほぼ円形であり、その直径は、電極パッ ド1aの間隔や所望のバッケージサイズに応じて、50 ~100 umのものを用いることができる。接続方法と しては、ワイヤのままで接合するウェッジボンド技術 や、ワイヤ先端にボールを形成するボールボンド技術等 のワイヤボンド技術を用いる。 金属リード2の主材料に は、Au、AIの他にAg、Cuを用いることができ る。さらに、半導体素子1を樹脂材料等の封止材3を用 いて封止し、図1に示す半導体装置を製造することがで きる。金属リード2としては、金属リード単体のみでな く、図2すように表面に低融点ろう材2aを被覆した金 属リード2を用いても良い。この場合の金属リード2の 接合方法としては、上述のワイヤボンド技術以外に、金 属の溶融現象を利用するマイクロソルダリング技術を用 いることができる。さらに、金属リード2相互間および 金属リード2と半導体素子1間の絶縁性を高めるため に、図3に示すような絶縁被覆材2bを最外層面に施し た金属リード2を用いても良い。この場合、絶縁被覆材 2 b を除去するために、レーザを搭載したワイヤボンド 装置を用いる。レーザの波長は絶縁被覆材2bを除去で き、かつ、低融点ろう材2aおよび金属リード2に影響 を及ぼさない範囲から選択する。この波長域のレーザを 用いて、図4に示すように、電極パッド1aへの接合前 に絶縁被覆材2bの除去を行うことにより、電極バッド 1 a と金属リード2の接合の安定化が図られ、信頼性が 向上する。

【0012】電極パッド1aへ金属リード2を接続する 工程では、図5に示すチップキャリア4を用いる。チッ プキャリア4は、一個以上の半導体素子1を搭載するこ とができる。また、チップキャリア4は、ろう付け可能 部4aを有し、金属リード2の一端を接続、保持するこ とができ、ワイヤボンド装置が有する高度な位置決め精 度で金属リード2を成形できる。さらに、チップキャリ ア4に、図6に示すような突起4bを設けることによ り、金属リード2をワイヤボンド装置に備えられた切断 工具5を用いて切断する工程を容易に実現できる。ま た、チップキャリア4は、図7に示すように、半導体素 子1を保持するメインキャリア4cと、ろう付け可能部 を有するサブキャリア4dに分離できるように構成して も良い。この場合、サブキャリア4dのみをチップキャ リア清浄化装置に投入し、図8に示すように、ろう付け 可能部4aに残存する金属リード2を除去し、さらにろ う付け可能部4a表面の平坦化、清浄化を行うことがで きる。金属リード2の除去には、ヒーター6による接触 および雰囲気加熱により、金属リード2をろう付け可能 部4aから溶解、離脱させる技術を用いる。この時同時 に、ろう付け可能部 4 a 表面の平坦化を行うことができ る。また、ろう付け可能部4aの表面の清浄化には、プラズマ7を用いることができる。

【0013】また、本実施の形態における半単体装置 は、図9に示すように絶縁材8を有する形態をとることもできる。このとき、絶縁材8の厚みは、金属リード2の直径よりも大きくすることが望ましい。絶縁材8により、金属リード2相互間の絶性が高まり、偏頼性が向上する。絶縁材8を有する半導体装置の製造工程を図10に示す。まず、金سリード2を接続した半導体素子15に増製した半導体素子10目の(2010(a)、上部から絶縁材8を保持した圧着ツール9を下降させ、圧着ステージ10と圧着ツール9の間に金属リード2と絶縁材8を保持した圧着ツール9の間に金属リード2と絶縁材を保持した19の間に金属リード2と絶縁材を保持さなまらにして加熱。加圧を行い、図10

(し))、金属リード2を機縁材8で包み込むことができる。絵練材8としては、加熱により容易に軟化する熱
可塑性の樹脂を用いることができる。その形態としてき
る。また、液状の樹脂を用いることができる。その形態としてき
る。また、液状の樹脂を用いることができる。その形態といてき
のまた、液状の樹脂を用いることもでき、別途供給装
質(図示せず)により供給するか、もしくは圧着ツール
りから供給する。なお、本例では、半導体来等
パッド1aを上部に有する場合の製造工程について示し
たが、下部または側面に有する場合についても同様の方
たが、下部または側面に有する場合についても同様の方
たが、下部または側面に有する場合についても同様の方
とがて実力のパッケージと同様に、従来装面
リードフレームタイプのパッケージと同様に、従来装面
リードフレームタイプのパッケージと同様に、従来装有
に関示せず)を用いることができる。また、リード加工
工程は、予め金属リード2分切断されており、余分な支持部材がないため、従来よりも簡略化することができ

[0014]以上のように、本実施の形態によれば、半 導体素子1上の電極パッド1aと外部との電気信号入力 を、金属リード2のみで行うようにしたので、汎用性が 高く、超小型な半導体装置を提供することが可能であ る。また、従来の製造装置を用いることができ、さらに 耐なれる工程もあるため、製造コストが抑えられ、 安価に製造することができる。

【0015】実施の形態2.図11は、本発明の実施の

形態 2 における半導体装置の構成を示す断面図である。 図中、同一、相当部分には同一符号を付し、説明を省略 する。本実施の形態による半導体装置は、金属リード2 が封止材3の側面に沿って配置され、金属リード2の一 能が封止材中に埋め込まれ、固定されていることを特徴 とする。以下に、図12を用いて製造工程を制即する。 上記実施の形態1と同様に、電極バッド1aに絶縁材8 を有する金属リード2が接続された半導体素子1を、熱 可塑性の樹脂である封止材3にて封止する(図12 (a)、(b))。これをステージ12に搭載し、第1 金型11および第2金型13により金属リード2をおお よそ封止材3の外形に沿うように成形する(図12 (c)、(d))。その後、加熱、加圧金型14を用い て金属リード2を封止材3中に埋め込み固定する(図1 2(e))。以上の工程により、図11に示す半導体装置が製造できる。

【0016】本実施の形態による半導体装置は、通常の 配線基板上に表面実装することも可能であるが、図13 に示す配線基板15を用いることにより、さらに薄型の 製品となる。図13(a)は、配線基板15の平面図、 図13(b)は、そのA-B断面図である。配線基板1 5は、半導体装置を実装するための穴である半導体装置 実装部15aを有し、その側面に配線基板15面と垂直 に配置された端子部である配線15bを有する。本実施 の形態による半導体装置は、図14に示す実装装置を用 いて、配線基板15に実装することができる。本実装装 置は、加熱、加圧、超音波振動印加が可能な半導体装置 実装ヘッド16を搭載していることが望ましい。半導体 装置実装ヘッド16は、半導体装置保持部16a、超音 波ホーン16b、超音波振動子16c、ヒーター16 d、加圧機構17からなり、外部にヒーター16d用の 電源19および真空吸着用の真空発生装置20を具備す る。また、配線基板15を保持するステージ18側にも ヒーター18aを具備し、外部にヒーター18a用の電 源19と基板保持用の真空発生装置20を具備する。図 14では、半導体装置実装ヘッド16とステージ18が 電源19および真空発生装置20を共有している例を示 したが、別個に用意しても良い。

【0017】この半導体装置実装ヘッド16を用いるこ とにより、半導体装置を容易に配線基板15の半導体装 置実装部15aに挿入でき、また、配線15bと金属リ ード2の接触、接続を行うことができる。この時、半導 体装置の実装中には配線基板15を十分に加熱すること により半導体装置実装部15aを拡大しておき(図15 (a))、実装後に冷却することにより半導体装置実装 部15aが収縮し、配線15bと金属リード2の電気的 接続が保たれる。このようにして、図15(b)に示す ようなきわめて薄型の製品ができる。この時、図16に 示すように、半導体装置実装部15aの膨張による配線 15bと金属リード2の接続部の劣化を防止するため に、低熱膨張率かつ高弾性率の材料よりなる保持部材2 1を配線基板15に接続してもよい。接続層22には、 接着剤を用いるか、または機械的な固定でもよい。さら に、半導体装置からの発熱を外部に放散する効率を高め るために、図17に示すように、保持部材21を配線基 板15および半導体素子1上に広く接続してもよい。保 持部材21の材料としては、例えばMo等を主材料とす ることが望ましい。さらに、熱伝導率を高めるために、 Cu等の熱伝導率の高い材料と積層してもよく、また、 Cu等が分散された材料を用いてもよい。

【0018】実施の形態3.図18は、本発明の実施の 形態3における半導体装置の構成を示す断面図である。 図中、同一、相当部分には同一符号を付し、説明を省略 する。本実施の形態による半導体装置は、金属リード2 を半導体素子1の電極パッド1aが配置されている面か ら垂直に封止材3を通して外部に出し、金属リード2の 外部端に金属バンプ2cを形成したことを特徴とする。 【0019】図19、図20は、本実施の形態の半導体 装置の製造方法を示す図であり、図において23は後に 金属パンプ2cとなる金属球、24は通常のボンディン グツール、25はボンディングステージ、26はレベリ ングツール、27はレベリングステージである。まず、 図19に示すように、ボンディングツール24を用いて ワイヤボンドを行う工程において、金属リード2の切断 時にレーザを用い、所望の高さで金属リード2を切断す るとともに、少なくとも金属リード2の半導体素子1側 の切断端に金属球23を形成できるワイヤボンド装置を 用いる。この工程の後に、封止材3で全体を包み、図2 0に示す用にレーザにて表面の封止材3を除去して金属 球23を露出させると同時に金属球23表面を清浄化す る(図20(a)、(b))。続いて、レベリングステ ージ27上でレベリングツール26を用いて金属球23 の高さをそろえ(図20(c))、これを金属バンプ2 cとする(図20(d))。以上の方法により、超小型 で金属バンプ2 c が面配置となる半導体装置を容易に得 ることができる。

[0 0 2 0]

である。

【発明の効果】以上のように、この発明によれば、半導体素子の電極バッドと外部との電気信号入力を、金属リードのみで行うようにしたので、汎用性が高く、超小型な半導体装置を安価に提供することが可能である。

【図面の簡単な説明】

【図1】 この発明の実施の形態1である半導体装置を 示す断面図である。

【図2】 この発明の実施の形態1である半導体装置の 金属リードを示す断面図である。

【図3】 この発明の実施の形態1である半導体装置の 金属リードを示す断面図である。

【図4】 この発明の実施の形態1である半導体装置の 金属リード表面の絶縁被覆膜除去工程を示す断面図であ る。

【図5】 この発明の実施の形態1である半導体装置の 製造に用いるチップキャリアを示す断面図である。

【図6】 この発明の実施の形態1である半導体装置の 製造に用いるチップキャリアを示す断面図である

製造に用いるチップキャリアを示す断面図である。 【図7】 この発明の実施の形態1である半導体装置の

製造に用いるチップキャリアを示す断面図である。 【図8】 この発明の実施の形態1である半導体装置の 製造に用いるチップキャリアの清浄化方法を示す断面図

【図9】 この発明の実施の形態1である半導体装置を 示す断面図である。

【図10】 この発明の実施の形態1である半導体装置

の製造方法を示す断面図である。

【図11】 この発明の実施の形態2である半導体装置 を示す断面図である。

【図12】 この発明の実施の形態2である半導体装置の製造方法を示す断面図である。

【図13】 この発明の実施の形態2である半導体装置を実装する配線基板を示す平面図および断面図である。

を実装する記録型板をバット回回のより前回回とのる。 【図14】 この発明の実施の形態2である半導体装置を実装するための実装装置を示す図である。

【図15】 この発明の実施の形態2である半導体装置 の実装工程を説明するための図である。

【図16】 この発明の実施の形態2である、配線基板に実装後の半導体装置を示す断面図である。

【図17】 この発明の実施の形態2である、配線基板 に実装後の半導体装置を示す断面図である。

【図18】 この発明の実施の形態3である半導体装置を示す断面図である。

【図19】 この発明の実施の形態3である半導体装置の製造装置を示す断面図である。

【図20】 この発明の実施の形態3である半導体装置の製造工程を示す断面図である。

【図21】 従来のリードフレームを用いた半導体装置 を示す平面図である。

【図22】 従来のTABテーブを用いた半導体装置を 示す平面図である。 【図23】 従来の半導体装置の電極パッドを示す断面

図である。

【図24】 従来の半導体装置を示す断面図である。 【図25】 従来の半導体装置を示す断面図である。

【符号の部列】

1 半導体系子、1 a 電極バッド、2 金属リード、2 a 低融点ろう材、2 b 絶縁被覆材、2 c 金属バンブ、3 封止材、4 チップキャリア、4 a ろうスマ、3 封止材、4 チップキャリア、4 a ろうズマ、8 絶縁材、9 圧着ツール、10 圧着 第2 元マ、8 絶縁材、9 圧着ツール、10 圧着 第2 元マ、8 絶縁材、9 圧着ツール、10 圧積 第2 元マ、15 配線基板、15 a 型、14 加熱、加圧金型、15 配線基板、15 a 半導体装置実装部、15 b 配線、16 は 16 均 超等なッド、16 a 半導体装置保持部、16 d ヒーター、17 加圧機構、18 ステージ、18 a ヒーター、19 電源、2 0 真空発生装置、2 1 保持部材、2 2

接続層。23 金属駅。24 ボンディングツール、25 ボンディングステージ、26 レベリングツール、27 レベリングステージ、28 インナーリード、29、31 電極パッド、30、36 リード、3 2 UBM、33、35、39 バンブ、38 金属ベース。

