

RIGOROUS REGRESSION

BY - SLT VIGHNESH TIWARI

COURSE: 15 'X' IT

SCHOOL: INFORMATION TECHNOLOGY SCHOOL

Github Repository Link: https://github.com/halfbloodprince16/ITS-ML-Challenge

Problem Statement - I

The dataset consist of two column (X,Y), this is a univariate regression problem statement where model will train itself on X while predicting Y.

Since we have only one independent variable and one dependent variable, I will begin with my analysis.

Problem Statement I - (Data Description)

_				
Data	columns	(total 2 column	s):	
#	Column	Non-Null Count	Dtype	
0	X	350 non-null	float64	
1	Υ	350 non-null	float64	
dtypes: float64(2)				
memory usage: 5.6 KB				

- Train set consist of 350 records.
- Test set consist 100 records.

	Х	Υ
count	350.000000	350.000000
mean	63.912880	69.001553
std	11.855688	7.494282
min	0.000000	35.000000
25%	57.500000	65.511811
50%	65.039370	69.921260
75%	72.500000	73.385827
max	87.500000	90.000000

Problem Statement I - (Exploratory Data Analysis)

- Our dependent variable is clustered around values between 60-80.
- Very few values are around for X < 40.

 Another very smart representation of Box Plot in seaborn gives exact representation that values are clustered around 60-80.

Problem Statement I - (Exploratory Data Analysis)

 The correlation between X and Y is around 0.058 which tells us that there correlation is quite useful.

 The Box Plot for X, Y also tells same that the values for X are correlated with Y.

Problem Statement I - (Model Validation Report)

Model Name	RMSE Score	Ranking	Code Notebook and Submission File
Linear Regression	8.086785	3	
Random Forest	8.024946	2	itsc-ml-P.ipynb
LightGBM	8.217616	4	Code Notebook
GradientBoosting	9.897876	5	P1.zip Submission File
RANSAC	7.824255	1	

Problem Statement I - (Model Performance Report)

Model Name	RMSE Score	Ranking	Code Notebook and Submission File
Linear Regression	7.695102	3	
Random Forest	7.697825	4	itsc-ml-P.ipynb
LightGBM	7.523122	1	Code Notebook
GradientBoosting	8.191966	5	P1.zip
RANSAC	7.635156	2	Submission File

Problem Statement I - (Model Performance Report)

Problem Statement - II

The dataset consist of two column (X,Y), this is a univariate regression problem statement where model will train itself on X while predicting Y.

Since we have only one independent variable and one dependent variable, I will begin with my analysis.

Problem Statement II - (Data Description)

		(total 2 column Non-Null Count	
0	Х	350 non-null	float64
1	Υ	350 non-null	float64
dtype	es: float	t64(2)	
memor	ry usage	: 5.6 KB	

- Train set consist of 350 records.
- Test set consist 100 records.

	Х	Υ
count	350.000000	350.000000
mean	61.080000	70.677355
std	11.408005	5.447000
min	20.000000	57.586207
25%	52.000000	67.825093
50%	60.000000	70.000000
75%	68.000000	73.793103
max	92.000000	87.878788

Problem Statement II - (Exploratory Data Analysis)

- Our dependent variable is clustered around values between 50-70.
- Very few values are around for X < 50.

 Another very smart representation of Box Plot in seaborn gives exact representation that values are clustered around 50-70.

Problem Statement II - (Exploratory Data Analysis)

 The correlation between X and Y is around 0.23 which tells us that there correlation is quite useful.

 The Box Plot for X, Y also tells same that the values for X are near to correlated with Y.

Problem Statement II - (Model Validation Report)

Model Name	RMSE Score	Ranking	Code Notebook and Submission File
Linear Regression	5.265927	1	
Random Forest	5.348536	2	itsc-ml-R.ipynb
LightGBM	5.492377	4	Code Notebook
GradientBoosting	5.610987	5	P2.zip
RANSAC	5.374011	3	Submission File

Problem Statement II - (Model Performance Report)

Model Name	RMSE Score	Ranking	Code Notebook and Submission File
Linear Regression	7.695102	5	
Random Forest	5.319863	2	itsc-ml-R.ipynb
LightGBM	5.505367	3	Code Notebook
GradientBoosting	6.287577	4	P2.zip
RANSAC	5.296517	1	Submission File

Problem Statement II - (Model Performance Report)

