Tree-Based Convolution and its Applications

Lili Mou, Ph.D. Candidate Software Institute, Peking University

doublepower.mou@gmail.com http://sei.pku.edu.cn/~moull12

Outline

- Introduction: Sentence Modeling
- Related Work: CNNs, RNNs, etc
- Tree-Based Convolution
- Conclusion and Discussion

Discriminative Sentence Modeling

- Sentence modeling
 - Capture the "meaning" of a sentence
- Discriminative sentence modeling
 - Classify a sentence according to a certain criterion
 - E.g., sentiment analysis, polarity classification

Discriminative Sentence Modeling

- Sentence modeling
 - Capture the "meaning" of a sentence
- Discriminative sentence modeling
 - Classify a sentence according to certain criterion
- Related to various NLP tasks
 - Sentence matching: QA [1], conversation [2]
 - Discourse analysis [3]
 - Extractive summarization [4]
 - Parsing [5]
 - Machine translation [6]

An Example: Sentiment Analysis

A movie review

An idealistic love story that brings out the latent 15-year-old romantic in everyone.

The sentiment?

Positive Neutral

Negative

Human Engineering

- Feature engineering
 - Bag-of-words, n-gram, sentiment lexicon [7]

However, sentence modeling is usually non-trivial [8]

white blood cells destroying an infection an infection destroying white blood cells

- Kernel machines, e.g., SVM
 - Circumvent explicit feature representation
 - The kernel is crucial as it fully summarizes data information

Neural Networks

- Automatic feature learning
 - Word embeddings [9]
 - Paragraph vectors [10]

- Prevailing neural sentence models
 - Convolutional neural networks (CNNs) [11]
 - © Capture invariant features
 - © Efficient feature extraction and learning
 - Structure insensitive
 - Recursive neural networks (RNNs) [8, 12, 13]
 - Structure sensitive
 - Cong propagation path

Our Intuition

- Can we combine?
 - Short propagation path like convolutional nets
 - Structure-sensitive like recursive nets

- Our solution: Tree-based convolution [14, 15, 16]
 - Design subtree convolutional kernel to extract invariant structural features

Outline

- Introduction: Sentence Modeling
- Related Work: CNNs, RNNs, etc
- Tree-Based Convolution
- Conclusion

Convolutional Neural Networks (CNNs)

- Convolution in signal processing: Linear time-invariant system
 - Flip, inner-product, and slide
- Convolution in the neural network regime
 - Sliding window

[17] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.

Convolutional Neural Networks (CNNs)

[11] Blunsom, Phil, Edward Grefenstette, and Nal Kalchbrenner. "A Convolutional Neural Network for Modelling Sentences." ACL, 2014.

Recurrent Nerual Networks (RNNs)

- A recurrent net keeps one or a few hidden layers as the state
- The state changes according to the discrete input

Problem

- Gradient vanishing or exploding
 - Backpropagation is a linear system
- Design long short term memory (LSTM) units or gate recurrent units (GRU) to alleviate the problem

(**N.B.**: Not completely solved)

$$i_{t} = \sigma(W_{i} \cdot x_{t} + U_{i} \cdot h_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{f} \cdot x_{t} + U_{f} \cdot h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{o} \cdot x_{t} + U_{o} \cdot h_{t-1} + b_{o})$$

$$g_{t} = \tanh(W_{g} \cdot x_{t} + U_{g} \cdot h_{t-1} + b_{g})$$

$$c_{t} = i_{t} \otimes g_{t} + f_{t} \otimes c_{t-1}$$

$$h_{t} = o_{t} \otimes \tanh(c_{t})$$

Example: Relation Classification

[18] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin. "Classifying relations via long short term memory networks along shortest dependency paths." In EMNLP, pages 1785--1794, 2015.

Recursive Neural Networks (RNNs again)

- Where does the tree come from?
 - Dynamically constructing a tree structure similar to constituency
 - Parsed by external parsers

Constituency tree

- Leaf nodes = words
- Interior nodes = abstractcomponents of a sentence(e.g., noun phrase)
- Root nodes = the whole sentence

Why parse trees may be important?

Tree structure

The dog the stick the fire burned beat bit the cat.

Convolution

[19] Pinker, Steven. The Language Instinct: The New Science of Language and Mind. Penguin UK, 1995.

Recursive Propagation

Perception-like interaction [8]

$$p = f(W[c_1 c_2]^T)$$

Matrix-vector interaction [12]

$$p_1 = f\left(W \begin{bmatrix} Cb \\ Bc \end{bmatrix}\right), P_1 = f\left(W_M \begin{bmatrix} B \\ C \end{bmatrix}\right)$$

Tensor interaction [13]

$$p_1 = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

- [8] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. EMNLP, 2011
- [12] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces." EMNLP-CoNLL, 2012.
- [13] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." EMNLP, 2013.

Word embeddings

Recursive Propagation

Perception-like interaction [8]

$$p = f(W[c_1 c_2]^T)$$

Matrix-vector interaction [12]

$$p_1 = f\left(W \begin{bmatrix} Cb \\ Bc \end{bmatrix}\right), P_1 = f\left(W_M \begin{bmatrix} B \\ C \end{bmatrix}\right)$$

Tensor interaction [13]

$$p_1 = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

[8] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. EMNLP, 2011

[12] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces." EMNLP-CoNLL, 2012.

[13] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." EMNLP, 2013.

Word embeddings

Even More Interaction

• LSTM interaction [18, 19, 20]

[18] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from tree-structured long short-term memory networks." ACL, 2015

[19] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive structures." ICML, 2015.

[20] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short term memory." arXiv:1503.02510 (2015).

$$\begin{split} \tilde{h}_j &= \sum_{k \in C(j)} h_k, \\ i_j &= \sigma \left(W^{(i)} x_j + U^{(i)} \tilde{h}_j + b^{(i)} \right), \\ f_{jk} &= \sigma \left(W^{(f)} x_j + U^{(f)} h_k + b^{(f)} \right), \\ o_j &= \sigma \left(W^{(o)} x_j + U^{(o)} \tilde{h}_j + b^{(o)} \right), \\ u_j &= \tanh \left(W^{(u)} x_j + U^{(u)} \tilde{h}_j + b^{(u)} \right), \\ c_j &= i_j \odot u_j + \sum_{k \in C(j)} f_{jk} \odot c_k, \\ h_j &= o_j \odot \tanh(c_j), \end{split}$$

Outline

- Introduction: Sentence Modeling
- Related Work: CNNs, RNNs, etc
- Tree-Based Convolution
- Discussion
- Conclusion

Tree-Based Convolutional Neural Network (TBCNN)

- CNNs
 - © Efficient feature learning and extraction

The propagation path is irrelevant to the length of a sentence

- Structure-insensitive
- Recursive networks
 - Structure-sensitive
 - Long propagation path

The problem of "gradient vanishing or explosion"

Our intuition

- Can we combine?
 - Structure-sensitive as recursive neural networks
 - Short propagation path as convolutional neural networks
- Solution
 - The tree-based convolutional neural network (TBCNN)
 - Recall convolution = sliding window in the NN regime
 - Tree-based convolution = sliding window of a subtree

Tree-Based Convolution

Technical Difficulties

- How to represent nodes as vectors?
- How to determine weights?
- How to aggregate information?

$$y = f\left(\sum_{i=1}^{t} W_i \cdot x_i + b\right)$$

Technical Difficulties

- How to represent nodes as vectors?
- How to determine weights?
- How to aggregate information?

$$y = f\left(\sum_{i=1}^{t} W_i\right) x_i + b$$

Technical Difficulties

- How to represent nodes as vectors?
- How to determine weights?

$$oldsymbol{y} = f\left(\sum_{i=1}^t W_i \cdot oldsymbol{x}_i + oldsymbol{b}\right)$$

How to aggregate information?

A Few Variants

- Constituency tree-based convolutional neural network (c-TBCNN) [15]
- Dependency tree-based convolutional neural network (d-TBCNN) [15]
- Abstract syntrax tree-based convolutional neural network (asTBCNN) [14]

c-TBCNN: constituency tree

- How to represent nodes as vectors?
- Pretrain a recursive net

$$\mathbf{y} = f\left(\sum_{i=1}^t W_i \cdot \mathbf{x}_i + \mathbf{b}\right)$$

c-TBCNN: constituency tree

- How to determine weights?
- 3 matrices as parameters
 - Parent, left child, and right child

$$y = f\left(\sum_{i=1}^{t} W_i\right) x_i + b$$

c-TBCNN: constituency tree

- How to aggregate information?
- Dynamic pooling: 1-way v.s. 3-way

$$y = f\left(\sum_{i=1}^{t} W_i \cdot x_i + b\right)$$

d-TBCNN: dependency tree

- How to represent nodes as vectors?
- Word embeddings

$$\mathbf{y} = f\left(\sum_{i=1}^t W_i \cdot \mathbf{x}_i + \mathbf{b}\right)$$

d-TBCNN: dependency tree

How to determine weights?

$$y = f\left(\sum_{i=1}^{t} W_i\right) x_i + b$$

Assign weight by dependency type

(e.g., nsubj)

$$oldsymbol{y} = f\left(W_p^{(d)} \cdot oldsymbol{p} + \sum_{i=1}^n W_{r[c_i]}^{(d)} \cdot oldsymbol{c}_i + oldsymbol{b}^{(d)}
ight)$$

d-TBCNN: dependency tree

- How to aggregate information?
- *k*-way pooling

asTBCNN: abstract syntax tree

Programming language processing

VS

Natural language processing

Abstract syntax tree of "int a = b + 3"

asTBCNN: abstract syntax tree

- How to represent nodes as vectors?
- Pretrain or random initialization (44 AST symbols)

$$\mathbf{y} = f\left(\sum_{i=1}^{t} W_i \cdot \mathbf{x}_i + \mathbf{b}\right)$$

asTBCNN: abstract syntax tree

- How to determine weights?
- Continuous binary tree

$$y = f\left(\sum_{i=1}^{t} W_i x_i + b\right)$$

asTBCNN: abstract syntax tree

- How to aggregate information?
- Global pooling or 3-way pooling

$$oldsymbol{y} = f\left(\sum_{i=1}^t W_i \!\cdot\! oldsymbol{x}_i + oldsymbol{b}\right)$$

• Sentiment analysis [15]

Group	Method	5-class accuracy	2-class accuracy	Reported in
Baseline	SVM	40.7	79.4	Socher et al. (2013)
Daseille	Naïve Bayes	41.0	81.8	Socher et al. (2013)
	1-layer convolution	37.4	77.1	Blunsom et al. (2014)
CNNs	Deep CNN	48.5	86.8	Blunsom et al. (2014)
CIVINS	Non-static	48.0	87.2	Kim (2014)
	Multichannel	47.4	88.1	Kim (2014)
	Basic	43.2	82.4	Socher et al. (2013)
	Matrix-vector	44.4	82.9	Socher et al. (2013)
RNNs	Tensor	45.7	85.4	Socher et al. (2013)
KININS	Tree LSTM (variant 1)	48.0	_	Zhu et al. (2015)
	Tree LSTM (variant 2)	51.0	88.0	Tai et al. (2015)
	Tree LSTM (variant 3)	49.9	88.0	Le and Zuidema (2015)
	Deep RNN	49.8	86.6 [†]	Irsoy and Cardie (2014)
Recurrent	LSTM	45.8	86.7	Tai et al. (2015)
Recuirent	bi-LSTM	49.1	86.8	Tai et al. (2015)
Vector	Word vector avg.	32.7	80.1	Socher et al. (2013)
vector	Paragraph vector	48.7	87.8	Le and Mikolov (2014)
TBCNNs	c-TBCNN	50.4	86.8 [†]	Our implementation
IDCININS	d-TBCNN	51.4	87.9 [†]	Our implementation

Question classification [15]

Method	Acc. (%)	Reported in	
SVM	95.0	Silva et al. (2011)	
10k features + 60 rules	75.0	511va et al. (2011)	
CNN-non-static	93.6	Kim (2014)	
CNN-mutlichannel	92.2	Kim (2014)	
RNN	90.2	Zhao et al. (2015)	
Deep-CNN	93.0	Blunsom et al. (2014)	
Ada-CNN	92.4	Zhao et al. (2015)	
c-TBCNN	94.8	Our implementation	
d-TBCNN	96.0	Our implementation	

Natural language inference [16]
 (entailment and contradiction recognition)

Model	Test acc.	Matching
Widdel	(%)	complexity
Unlexicalized features ^b	50.4	
Lexicalized features ^b	78.2	
Vector sum $+$ MLP b	75.3	
Vanilla RNN + MLP^b	72.2	
$LSTM RNN + MLP^b$	77.6	$\mathcal{O}(1)$
CNN + cat	77.0	0(1)
GRU w/ skip-thought pretrainin	$g^v 81.4$	
TBCNN-pair + cat	79.3	
TBCNN-pair + cat,∘,-	82.1	
Single-chain LSTM RNNs ^r	81.4	$\mathcal{O}(n)$
+ static attention ^r	82.4	$\mathcal{O}(n)$
LSTM + word-by-word attention	on ^r 83.5	$\mathcal{O}(n^2)$

. . .

• 104-label program classification [14]

Group	Method	Test Accuracy (%	
Terror & Lancon	linear SVM+BoW	52.0	
Surface	RBF SVM+BoW	83.9	
features	linear SVM+BoT	72.5	
	RBF SVM+BoT	88.2	
	DNN+BoW	76.0	
NN-based	DNN+BoT	89.7	
approaches	Vector avg.	53.2	
	RNN	84.8	
Our method TBCNN		94.0	

Model Analysis

TBCNN is not sensitive to pooling

Model	Pooling method	5-class accuracy (%)
c-TBCNN	Global	48.48 ± 0.54
C-IBCNN	3-slot	48.69 ± 0.40
d-TBCNN	Global	49.39 ± 0.24
u-1BCNN	2-slot	49.94 ± 0.63

TBCNN is less sensitive to length vis-a-vis recursive nets

Visualization

TBCNN does mix information

Outline

- Introduction: Sentence Modeling
- Related Work: CNNs, RNNs, etc
- Tree-Based Convolution
- Conclusion and Discussion

Conclusion

- A new neural model: Tree-based convolution
- Applications
 - constituency trees, dependency tree, abstract syntax trees

		Way of information propagation		
		Iterative	Sliding	
cture	Flat	Recurrent	Convolution	
Strue	Tree	Recursive	Tree-base convolution	

Discussion

• Is it possible for a neural network to "automatically" focus on relevant (e.g., tree-dependent) information by some attention mechanisms?

Yes, but...

Discussion

Challenge of end-to-end learning:

	avg	sum	max	attention	argmax
Differentiability	9	©	©		
Supervision					
Scalability					

Recall sentence generation

Intuition

- Using external information to guide an NN instead of designing end-to-end machines
 - Better performance in short term
 - May or may not conform to the goal of AI,
 depending on how strict the external information is

	Hard mechanism
Differentiability	©
Supervision	©
Scalability	

Thanks for listening!

Q&A?

References

- [1] Chen K, Wang J, Chen LC, Gao H, Xu W, Nevatia R. ABC-CNN: An Attention Based Convolutional Neural Network for Visual Question Answering. arXiv:1511.05960, 2015.
- [2] Rui Yan, Yiping Song, Hua Wu. Learning to Respond with Deep Neural Networks for Retrieval based Human-Computer Conversation System. In SIGIR, 2016.
- [3] Liu Y, Li S, Zhang X, Sui Z. Implicit discourse relation classification via multi-task neural networks. In AAAI, 2016.
- [4] Cao Z, Wei F, Dong L, Li S, Zhou M. Ranking with Recursive Neural Networks and Its Application to Multi-Document Summarization. In AAAI, 2015.
- [5] Pei W, Ge T, Chang B. An effective neural network model for graph-based dependency parsing. In ACL, 2015.
- [6] Meng F, Lu Z, Wang M, Li H, Jiang W, Liu Q. Encoding source language with convolutional neural network for machine translation. In ACL, 2015.
- [7] Qiu G, Liu B, Bu J, Chen C. Expanding Domain Sentiment Lexicon through Double Propagation. In IJCAI, 2009.

- [8] Socher R., et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. EMNLP, 2011.
- [9] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
- [10] Le QV, Mikolov T. Distributed representations of sentences and documents. In ICML, 2014.
- [11] Blunsom, Phil, Edward Grefenstette, and Nal Kalchbrenner. "A Convolutional Neural Network for Modelling Sentences." ACL, 2014.
- [12] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces." EMNLP-CoNLL, 2012.
- [13] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." EMNLP, 2013.
- [14] Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin. "Convolutional neural networks over tree structures for programming language processing." In AAAI, pages 1287--1293, 2016.
- [15] Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, Zhi Jin. "Discriminative neural sentence modeling by tree-based convolution." In EMNLP, pages 2315--2325, 2015.
- [16] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, Zhi Jin. "Natural language inference by tree-based convolution and heuristic matching." ACL(2), 2016.

- [17] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.
- [18] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin. "Classifying relations via long short term memory networks along shortest dependency paths." In EMNLP, 2015.
- [19] Pinker, Steven. The Language Instinct: The New Science of Language and Mind. Penguin UK, 1995.
- [20] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from tree-structured long short-term memory networks." ACL, 2015
- [21] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive structures." ICML, 2015.
- [22] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short term memory." arXiv:1503.02510 (2015).