NAME: PUNDLA ROOPA SUNDAR

REG NO: 21BEC7152

MAIL ID :roopasundar.21bec7152@vitapstudent.ac.in

IMPORT LIBRARIES

In [1]: import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns
from scipy import stats

IMPORT DATASET

In [3]: df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

In [4]: df

Out[4]:

:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	E
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	
	1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	

1470 rows × 35 columns

In [5]: df.head()

Out[5]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emp
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 35 columns

In [6]: df.tail()

Out[6]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	E
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	
	1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	

5 rows × 35 columns

In [7]: df.shape

(1470, 35)

Out[7]:

df.info() In [8]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
Column Non-Null Cou

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	0ver18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
ltvn	ac: int64(26) object(0)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

In [9]: df.describe()

Out[9]:		Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Environm
	count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	
	mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	
	std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	
	min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	
	25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	
	50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	
	75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	
	max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	

8 rows × 26 columns

```
In [10]: corr=df.corr()
corr
```

C:\Users\roopa\AppData\Local\Temp\ipykernel_22912\3182140910.py:1: FutureWarning: The de fault value of numeric_only in DataFrame.corr is deprecated. In a future version, it wil l default to False. Select only valid columns or specify the value of numeric_only to si lence this warning. corr=df.corr()

Out[10]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumbe
Age	1.000000	0.010661	-0.001686	0.208034	NaN	-0.01014
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN	-0.05099
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN	0.03291
Education	0.208034	-0.016806	0.021042	1.000000	NaN	0.04207
EmployeeCount	NaN	NaN	NaN	NaN	NaN	Nai
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN	1.00000
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN	0.01762
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN	0.03517
Jobinvolvement	0.029820	0.046135	0.008783	0.042438	NaN	-0.00688
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN	-0.01851
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN	-0.04624
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN	-0.01482
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN	0.01264
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN	-0.00125
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	NaN	-0.01294
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	NaN	-0.02035
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	NaN	-0.06986
StandardHours	NaN	NaN	NaN	NaN	NaN	Nai
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN	0.06222
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN	-0.01436
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN	0.02360
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN	0.01030
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN	-0.01124
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN	-0.00841
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN	-0.00901
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN	-0.00919

26 rows × 26 columns

```
In [11]: plt.subplots(figsize=(22,15))
    sns.heatmap(corr,annot=True,cmap="coolwarm")
```

Out[11]: <Axes: >

In [12]: df.Attrition.value_counts()

Out[12]: No 1233 Yes 237

Name: Attrition, dtype: int64

Checking for NULL Values

In [13]: df.isnull().any()

```
False
Age
Attrition
                             False
BusinessTravel
                             False
DailyRate
                             False
Department
                             False
DistanceFromHome
                             False
Education
                             False
EducationField
                             False
EmployeeCount
                             False
EmployeeNumber
                             False
EnvironmentSatisfaction
                             False
Gender
                             False
HourlyRate
                             False
JobInvolvement
                             False
JobLevel
                             False
JobRole
                             False
JobSatisfaction
                             False
MaritalStatus
                             False
MonthlyIncome
                             False
MonthlyRate
                             False
NumCompaniesWorked
                             False
0ver18
                             False
OverTime
                             False
PercentSalaryHike
                             False
                             False
PerformanceRating
RelationshipSatisfaction
                             False
StandardHours
                             False
StockOptionLevel
                             False
TotalWorkingYears
                             False
TrainingTimesLastYear
                             False
WorkLifeBalance
                             False
YearsAtCompany
                             False
YearsInCurrentRole
                             False
YearsSinceLastPromotion
                             False
YearsWithCurrManager
                             False
```

dtype: bool

Out[13]:

Data Visualization

```
In [14]: attrition_counts = df['Attrition'].value_counts()
   plt.figure(figsize=(6, 6))
   plt.pie(attrition_counts, labels=attrition_counts.index, autopct='%1.1f%%', startangle=9
   plt.title('Attrition Distribution')
   plt.axis('equal')

plt.show()
```

Attrition Distribution


```
In [15]: plt.figure(figsize=(8, 6))
    sns.countplot(x="Attrition", data=df)
    plt.title("Attrition Count")
    plt.show()
```

Attrition Count

No

```
In [16]: plt.figure(figsize=(8, 6))
    sns.histplot(data=df, x="Age", kde=True)
    plt.title("Distribution of Age")
    plt.show()
```

Attrition

Yes

1200

1000

800

600

400

200

0

count

Age

Outlier Detection

```
In [17]: plt.figure(figsize=(35, 8))
sns.boxplot(data=df)
plt.title('Box Plots for all the attributes')
plt.show()

**Total Conference States - Conference season - Co
```

Years In Current Role


```
In [19]: sns.boxplot(data=df, x='MonthlyIncome')
  plt.title('Monthly Income')
  plt.xlabel('Fare')
  plt.show()
```

Monthly Income


```
z_scores = stats.zscore(df['MonthlyIncome'])
z_score_threshold = 3
df_cleaned = df[(np.abs(z_scores) <= z_score_threshold)]

In [21]:
sns.boxplot(data=df_cleaned, x='MonthlyIncome')
plt.title('Monthly Income')
plt.xlabel('Fare')
plt.show()</pre>
```

Monthly Income

So the outliers are in large quantity, and they are inside the threshold, so let us not remove the outliers

SPLITTING INDEPENDENT AND DEPENDENT VARIABLES

In [22]:			drop(columns=[["Attrition"]	"Attritio	on"])				
In [23]:	X	head	()						
Out[23]:		Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCour
	0	41	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 34 columns

```
In [24]: y.head()
                Yes
Out[24]:
                 No
          2
                Yes
          3
                 No
          4
                 No
          Name: Attrition, dtype: object
          ENCODING
          categorical_features = x.select_dtypes(include=['object']).columns.tolist()
In [25]:
          x_encoded = pd.get_dummies(x, columns=categorical_features, drop_first=True)
In [26]:
          x_encoded.head()
Out[26]:
             Age DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber EnvironmentSatisfaction
          0
              41
                      1102
                                                                    1
                                                                                                          2
                                           1
                                                     2
                                                                                    1
          1
              49
                       279
                                           8
                                                     1
                                                                    1
                                                                                    2
                                                                                                          3
                                           2
                                                                    1
                                                                                                          4
          2
              37
                      1373
                                                     2
                                                                                    4
                      1392
                                           3
                                                                    1
                                                                                    5
          3
              33
                                                     4
                                                                                    7
              27
                       591
                                           2
                                                     1
                                                                    1
                                                                                                          1
         5 rows × 47 columns
          FEATURE SCALING
          from sklearn.preprocessing import StandardScaler
In [27]:
          scaler = StandardScaler()
          x_scaled = pd.DataFrame(scaler.fit_transform(x_encoded), columns=x_encoded.columns)
In [28]:
          x_scaled.head()
Out[28]:
                 Age DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber EnvironmentSatisfact
             0.446350
                       0.742527
                                         -1.010909
                                                  -0.891688
                                                                       0.0
                                                                                  -1.701283
                                                                                                        -0.660!
          1 1.322365 -1.297775
                                         -0.147150
                                                  -1.868426
                                                                       0.0
                                                                                  -1.699621
                                                                                                        0.2546
             0.008343
                       1.414363
                                         -0.887515
                                                  -0.891688
                                                                       0.0
                                                                                  -1.696298
                                                                                                        1.1697
          3 -0.429664
                      1.461466
                                         -0.764121
                                                   1.061787
                                                                                  -1.694636
                                                                                                        1.169
                                                                       0.0
          4 -1.086676 -0.524295
                                         -0.887515 -1.868426
                                                                       0.0
                                                                                  -1.691313
                                                                                                        -1.5756
         5 rows × 47 columns
In [29]:
          x=x_scaled
          Train and test split
In [30]:
          from sklearn.model_selection import train_test_split
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42
```

```
In [31]: # Import the necessary libraries
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         from joblib import dump
         logreg_model = LogisticRegression(random_state=42)
In [32]:
         dt_model = DecisionTreeClassifier(random_state=42)
         logreg_model.fit(x_train, y_train)
In [33]:
         dt_model.fit(x_train, y_train)
Out[33]:
                   DecisionTreeClassifier
         DecisionTreeClassifier(random state=42)
In [34]: logreg_predictions = logreg_model.predict(x_test)
         dt_predictions = dt_model.predict(x_test)
         logreq_accuracy = accuracy_score(y_test, logreq_predictions)
         print("Logistic Regression Accuracy:", logreg_accuracy)
         dt_accuracy = accuracy_score(y_test, dt_predictions)
         print("Decision Tree Accuracy:", dt_accuracy)
         logreg_report = classification_report(y_test, logreg_predictions)
         print("Classification Report for Logistic Regression:\n", logreg_report)
         dt_report = classification_report(y_test, dt_predictions)
         print("Classification Report for Decision Tree Classifier:\n", dt_report)
         logreg_conf_matrix = confusion_matrix(y_test, logreg_predictions)
```

print("Confusion Matrix for Logistic Regression:\n", logreg_conf_matrix)

print("Confusion Matrix for Decision Tree Classifier:\n", dt_conf_matrix)

dt_conf_matrix = confusion_matrix(y_test, dt_predictions)

	Logistic Regression Accuracy: 0.8809523809523809 Decision Tree Accuracy: 0.7721088435374149									
	Classification	•			<u>.</u>					
	GIGGII IGGEIGI	precision		f1-score	support					
	No	0.92	0.95	0.93	255					
	Yes	0.56	0.46	0.51	39					
	accuracy			0.88	294					
	macro avg	0.74	0.70	0.72	294					
	weighted avg	0.87	0.88	0.88	294					
	Classification									
		precision	recall	f1-score	support					
	No	0.87	0.86	0.87	255					
	Yes	0.17	0.18	0.17	39					
	accuracy			0.77	294					
	macro avg	0.52	0.52	0.52	294					
	weighted avg	0.78	0.77	0.78	294					
	weighted avg 0.78 0.77 0.78 294 Confusion Matrix for Logistic Regression: [[241 14] [21 18]] Confusion Matrix for Decision Tree Classifier: [[220 35] [32 7]]									
In []:										
In []:										
In []:										
TH [].										