VIP Cheatsheet: Meo và thủ thuật

Afshine Amidi và Shervine Amidi Ngày 17 tháng 5 năm 2020

Dịch bởi Trần Tuấn Anh, Nguyễn Trí Minh, Vinh Pham và Đàm Minh Tiến

Độ đo phân loại

Đối với phân loại nhị phân (binary classification) là các độ đo chính, chúng khá quan trọng để theo dõi (track), qua đó đánh giá hiệu năng của mô hình (model).

Ma trận nhằm lẫn (Confusion matrix) – Confusion matrix được sử dụng để có kết quả hoàn chỉnh hơn khi đánh giá hiệu năng của model. Nó được định nghĩa như sau:

 $\hfill \hfill \hfill$

Độ đo	Công thức	Diễn giải
chính xác	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Hiệu năng tổng thể của mô hình
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Độ chính xác của các dự đoán positive
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Bao phủ các mẫu thử chính xác (positive) thực sự
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Bao phủ các mẫu thử sai (negative) thực sự
Điểm F1	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Độ đo Hybrid hữu ích cho các lớp không cân bằng (unbalanced classes)

□ ROC – Đường cong thao tác nhận, được kí hiệu là ROC, là minh hoạ của TPR với FPR bằng việc thay đổi ngưỡng (threshold). Các đô đo này được tổng kết ở bảng bên dưới:

Độ đo	Công thức	Tương đương
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN} + \mathrm{FP}}$	1-specificity

□ AUC – Khu vực phía dưới đường cong thao tác nhận, còn được gọi tắt là AUC hoặc AUROC, là khu vực phía dưới ROC như hình minh hoạ phía dưới:

Độ đo hồi quy

 $\hfill \hfill \hfill$ Độ đo cơ bản – Cho trước mô hình hồi quy f, độ đo sau được sử dụng phổ biến để đánh giá hiệu năng của mô hình:

Tổng của tổng các bình phương		Mô hình tổng bình phương	Tổng bình phương dư
	$SS_{tot} = \sum_{i=1}^{m} (y_i - \overline{y})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	$SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$

 $\hfill \hfill \hfill$ Hệ số quyết định – Hệ số quyết định, thường được kí hiệu là R^2 hoặc r^2 , cung cấp độ đo mức độ tốt của kết quả quan sát đầu ra (được nhân rộng bởi mô hình), và được định nghĩa như sau:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

 $\hfill \hfill \hfill$

Mal	low's Cp	AIC	BIC	Adjusted R^2
SS _{res} -	$\frac{+2(n+1)\widehat{\sigma}^2}{m}$	$2\left[(n+2)-\log(L)\right]$	$\log(m)(n+2) - 2\log(L)$	$1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$

trong đó L là khả năng và $\widehat{\sigma}^2$ là giá trị ước tính của phương sai tương ứng với mỗi response (hồi đáp).

Lựa chọn model (mô hình)

□ Vocabulary – Khi lưa chon mô hình, chúng ta chia tập dữ liêu thành 3 tập con như sau:

Tập huấn luyện	Tập xác thực	Tập kiểm tra (testing)
- Mô hình được huấn luyện	 mô hình được xác thực Thường là 20% tập dữ liệu Cũng được gọi là hold-out	- mô hình đưa ra dự đoán
- Thường là 80% tập dữ liệu	hoặc development set (tập phát triển)	- Dữ liệu chưa được biết

Khi mô hình đã được chọn, nó sẽ được huấn luyện trên tập dữ liệu đầu vào và được test trên tập dữ liệu test hoàn toàn khác. Tất cả được minh hoạ ở hình bên dưới:

Cross-validation – Cross-validation, còn được gọi là CV, một phương thức được sử dụng để chọn ra một mô hình không dựa quá nhiều vào tập dữ liệu huấn luyện ban đầu. Các loại khác nhau được tổng kết ở bảng bên dưới:

k-fold	Leave-p-out
- Huấn luyện trên $k-1$ phần và đánh giá trên 1 phần còn lại - Thường thì $k=5$ hoặc 10	- Huấn luyện trên $n-p$ phần và đánh giá trên p phần còn lại - Trường hợp $p=1$ được gọi là leave-one-out

Phương thức hay được sử dụng được gọi là k-fold cross-validation và chia dữ liệu huấn luyện thành k phần, đánh giá mô hình trên 1 phần trong khi huấn luyện mô hình trên k-1 phần còn lại, tất cả k lần. Lỗi sau đó được tính trung bình trên k phần và được đặt tên là cross-validation error.

Phần	Tập dữ liệu	Lỗi xác thực	Lỗi cross-xác thực
1		ϵ_1	
2		ϵ_2	$\underline{\epsilon_1 + + \epsilon_k}$
:	;	÷	k
k		ϵ_k	
	Huấn luyên Xác thực		

□ Chuẩn hoá – Mục đích của thủ tục chuẩn hoá là tránh cho mô hình bị overfit với dữ liệu, do đó gặp phải vấn đề phương sai lớn. Bảng sau đây sẽ tổng kết các loại kĩ thuật chuẩn hoá khác nhau hay được sử dung:

LASSO	Ridge	Elastic Net
- Giảm hệ số xuống còn 0	Làm cho hệ số nhỏ hơn	Thay đổi giữa chọn biến và hệ số nhỏ hơn
- Tốt cho việc lựa chọn biến		
$ \theta _1 \leqslant 1$	$ \theta _2 \leqslant 1$	$(1-\alpha) \theta _1 + \alpha \theta _2^2 \leqslant 1$
$ + \lambda \theta _1$	$\ldots + \lambda \theta _2^2$	$ \dots + \lambda \left[(1 - \alpha) \theta _1 + \alpha \theta _2^2 \right] $ $ \lambda \in \mathbb{R}, \alpha \in [0, 1] $
$\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}, \alpha \in [0,1]$

Dự đoán

- $\hfill \Box$ Bias Bias của mô hình là sai số giữa dự đo
án mong đợi và dự đoán của mô hình trên các điểm dữ liệu cho trước.
- $\hfill \Box$ Phương sai Phương sai của một mô hình là sự thay đổi dự đoán của mô hình trên các điểm dữ liệu cho trước.
- $\hfill \mbox{$\square$}$ Sự đánh đổi bias/phương sai Mô hình càng đơn giản bias càng lớn, mô hình càng phức tạp phương sai càng cao.

	Underfitting	Just right	Overfitting
	- Lỗi huấn luyện cao	 Lỗi huấn luyện thấp hơn một chút so với lỗi test 	- Lỗi huấn luyện rất thấp
Symptoms	- Lỗi huấn luyện tiến gần tới lỗi test - Bias cao		- Lỗi huấn luyện thấp hơn lỗi test rất nhiều - Phương sai cao
Minh hoạ hồi quy			

 \blacksquare Phân tích lỗi – Phân tích lỗi là phân tích nguyên nhân của sự khác biệt trong hiệu năng giữa mô hình hiện tại và mô hình lí tưởng.

Phân tích Ablative – Phân tích Ablative là phân tích nguyên nhân của sự khác biệt giữa hiệu năng của mô hình hiện tại và mô hình cơ sở.