Parabéns! Você foi aprovado!

PARA SER APROVADO 75% ou superior

Continue aprendendo

100%

Practice quiz on the Cartesian Plane

NÚMERO TOTAL DE PONTOS 5

1.	Which	of the	following	points	in the	Cartesian	Plane	is on	the	ν-axis′	?
----	-------	--------	-----------	--------	--------	-----------	-------	-------	-----	---------	---

1 / 1 ponto

- \bigcirc (1,1)
- (0,-5)
- (-5,0)
- \bigcirc (5,0)

✓ Correto

The *y*-axis is defined to be all points in the Cartesian plane with zero as *x*-coordinate. The point (0, -5) meets that requirement.

2. Find the distance between the points A = (2, 2) and C = (3, 3):

1 / 1 ponto

- \bigcirc 0
- O 2
- $\sqrt{2}$
- 0 1

✓ Correto

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.

- 1 / 1 ponto
- 3. Find the point-slope form of the equation of the line that goes between A = (1, 1) and B = (5, 3):
 - $y-1 = \frac{1}{2}(x-1)$
 - $y-1 = \frac{1}{2}(x-5)$
 - $y-3 = \frac{1}{2}(x-1)$
 - $\bigcirc y = \frac{1}{2}x$
 - ✓ Correto

The point-slope form for the equation of a line with slope m that goes through the point (x_0, y_0) is $y - y_0 = m(x - x_0)$

In this case, the slope $m = \frac{3-1}{5-1} = \frac{1}{2}$

We can choose either $\cal A$ or $\cal B$ for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1 / 1 ponto

$$y-1=2(x-2)$$
?

- (2,1)
- \bigcirc (0,0)
- $\bigcirc (3,2)$
- \bigcirc (2,3)
 - ✓ Correto

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

- ^{5.} Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?
 - \bigcirc 1
 - 2
 - \bigcirc 0
 - \bigcirc -1

✓ Correto

Recall that the y-intercept of ℓ is the y-coordinate of where ℓ hits the y-axis.

Since $(-1,0) \in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y = 2 as the *y*-intercept.