

RECAP

- Question: If there exists a mushroom that has never seen before, will it be edible or it is poisonous?
- Why important: Help them to identify if the mushroom is safe to consume; Reduce the risk of death and intoxication due to poisonous mushrooms.
- Problem type: Classification
- <u>Source:</u> Kaggle, collected from Patrick Hardin's Mushrooms & Toadstools, and inspired by Jeff Schlimmer's Mushroom Data Set. <u>kaggle</u>
- Preprocessing: Most features are categorical data, number of features changes from 20 to 124
- EDA: 100% of urban grown mushroom is edible and 100% of path grown mushroom is poisonous (fig1)

Urban habitat

Path habitat

SPLITTING

- <u>Data Splitting:</u> use general train_test_split to set 20% of the dataset as test set and the rest 80% as other set, then use Kfold with 4 splits for Cross Validation.
- Preprocessor: Standard Scalar & onehot encoder
- Chosen Models:
 - 1. Logistic Regression
 - 2. Random Forest
 - 3. KNN
 - 4. XGBoost
 - 5. Support Vector Classification

Model	Parameter(s)
Logistic Regression	C = 1/alpha: [1/0.001, 1/0.01, 1/0.1, 1/1.0]
Random Forest	max_depth: [5, 10, 20, 30] max_features: [0.25, 0.5, 0.75, 1.0] n_estimators: [20, 50, 100]
KNN	n_neighbors: [3,9,12,15,30,50,100]
XGBoost	max_depth: [3, 5, 7, 10] min_child_weight: [1, 3, 5] learning_rate: [0.1] lambda: [0.01, 0.1, 1] # reduce overfitting alpha: [0.01, 0.1, 1] # Used for high dimensionality
SVC	gamma: [1e-2, 1e-1, 1e1, 1e3] C: [1e-1, 1e0, 1e1, 1e2]

- Step 2: Use kfold with 4 splits to do cross validation on the other set
- Step 3: Loop through each possible combination of the parameters, and do CV with 4 splits on each combination
- Step 4: Find the Best Parameter(s) by evaluating the accuracy score
- Step 5: Save the Best Parameter(s) and the related test score for each random state

RESULTS

• Baseline Accuracy = 0.56001 (predicting all points as 1: poisonous)

BEST PARAMETER(S) AND TEST SCORES

Model	Best Parameter(s)	Mean Test Scores	Std of Test Scores
Logistic Regression	{'logisticregressionC': [100.0,1000.0]}	0.861978	0.001789
Random Forest	{'randomforestclassifiermax_depth': 20, 'randomforestclassifiermax_features': 0.25, 'randomforestclassifiern_estimators': [50,20]}	0.999951	0.000073
KNN	{'kneighborsclassifier_n_neighbors': 3}	0.999967	0.000045
XGBoost	{'xgbclassifiermax_depth': 10, 'xgbclassifiermin_child_weight': 1 'xgbclassifierlearning_rate': 0.1, 'xgbclassifierlambda': 1, 'xgbclassifieralpha': 1}	0.999689	0.000157
SVC	{'svcC': 10.0, 'svcgamma': 0.1}	0.999935	0.000131

CONFUSION MATRIX – (BEST MODEL)

- Baseline Accuracy: 0.56001
- KNN: n_neighbors=3
- Test_accuracy = 1.0 F1_score = 1.0

For safety, please do not pick and eat any mushroom you see in the nature!

IMPORTANCE FEATURES (GLOBAL)

- Permutation Importance
 - Stem-height
 - Stem-width
 - Cap-diameter
 - Gill-color: white
 - Gill-spacing: close
 - Stem-color: white, yellow

LOCAL FEATURE IMPORTANCE

Index=0

Index=99

OUTLOOKS

- Feature Selection
 - Reduce the number of features (124 features)
 - Less features, easier to interpret

THANKS FOR LISTENING!

APPENDIX.

• fig1

SHAP

RANDOM FOREST: FEATURE IMPORTANCE

