Probabilidade e Estatística

Professores:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

Probabilidade e Estatística

Livro Texto:

[1] "Noções de Probabilidade e Estatística"

Marcos Nascimento Magalhães e Antonio Carlos

Pedroso de Lima, Edusp (2005).

[2] "Probabilidade: Um Curso Introdutório" Carlos A. B. Dantas, Edusp (2004).

Aula 4

Professores:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

Probabilidades

Conteúdo:

- 4.1 Introdução
- 4.2 Conceitos Básicos
- 4.3 Probabilidade
- 4.4 Probabilidade Condicional e Independência

$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\sum_{i=1}^{n} Y_i$$

$$\sum_{i=1}^{n} Y_i$$

$$A \cap B = \emptyset$$

4.1 Introdução

Aulas anteriores

conjunto de dados.

Para extrairmos informações desses dados é necessário que tenhamos um conjunto de técnicas para organizar e resumir estes dados para que se transformem em infomações.

4.1 Introdução

Aulas anteriores

conjunto de dados.

Para extrairmos informações desses dados é necessário que tenhamos um conjunto de técnicas para organizar e resumir estes dados para que se transformem em infomações.

Introduzimos nessa aula a Teoria das Probabilidades, que fornece a base matemática para desenvolver nossas futuras análises.

4.2 Conceitos Básicos

4.2.1 Fenômeno Aleatório

Situação ou acontecimento cujos resultados não podem ser previstos com certeza.

4.2 Conceitos Básicos

4.2.1 Fenômeno Aleatório

Situação ou acontecimento cujos resultados não podem ser previstos com certeza.

Exemplos:

- → O resultado do lançamento de um dado.
- → O clima num determinado dia da semana que vem.
- → A média final que você tirará nesta disciplina.

4.2.2 Espaço amostral

O conjunto de todos os resultados possíveis de um certo fenômeno aleatório.

Denominaremos este espaço pela letra grega Ω (Ômega).

4.2.2 Espaço amostral

O conjunto de todos os resultados possíveis de um certo fenômeno aleatório.

Denominaremos este espaço pela letra grega Ω (Ômega).

Os subconjuntos do espaço amostral são chamados de eventos e são representados por letras latinas maúsculas (A, B, C, ...).

Exemplos:

→ Uma moeda é lançada duas vezes e observam-se as faces obtidas

$$\Omega = \{CC, CR, RC, RR\},\$$

onde aqui C é cara e R coroa.

Exemplos:

→ Uma moeda é lançada duas vezes e observam-se as faces obtidas

$$\Omega = \{CC, CR, RC, RR\},\$$

onde aqui C é cara e R coroa.

→ Uma moeda é lançada consecutivamente até o aparecimento da primeira cara

$$\Omega = \{C,RC,RRC,RRC,...\},$$

que contém um número infinito de elementos.

aula 4: Probabilidades
Conceitos Básicos

Lembrando da Teoria dos Conjuntos:

→ O conjunto vazio é denotado por Ø

Lembrando da Teoria dos Conjuntos:

O conjunto vazio é denotado por Ø

→ A união de dois eventos A e B representa a ocorrên-

cia de, pelo menos, um dos eventos A ou B.

Denotamos a união de A com B por $A \cup B$

Lembrando da Teoria dos Conjuntos:

O conjunto vazio é denotado por Ø.

A união de dois eventos A e B representa a ocorrência de, pelo menos, um dos eventos A ou B.

Denotamos a união de A com B por $A \cup B$.

→ A intersecção do evento A com B é a ocorrência simultânea de A e B.

Denotamos a intersecção de A com B por $A \cap B$.

Exemplo

Sejam A, B e C três eventos do espaço amostral Ω :

$$\Omega = \{A,B,C\}$$

Exemplo

Sejam A, B e C três eventos do espaço amostral Ω :

$$\Omega = \{A,B,C\}$$

 $A \cup B$ Pelo menos um dos eventos ocorre

Exemplo

Sejam A, B e C três eventos do espaço amostral Ω :

$$\Omega = \{A,B,C\}$$

 $A \cup B$ Pelo menos um dos eventos ocorre

 $A \cap B$ Ambos os eventos ocorrem

→ Dois eventos A e B são disjuntos (ou mutuamente exclusivos) quando não têm elementos em comum, ou seja:

$$A \cap B = \emptyset$$

→ Dois eventos A e B são disjuntos (ou mutuamente exclusivos) quando não têm elementos em comum, ou seja:

$$A \cap B = \emptyset$$

→ Dois eventos A e B são complementares se sua união é o espaço amostral e sua intersecção é vazia, ou seja:

$$A \cup B = \Omega,$$

 $A \cap B = \emptyset.$

Exemplo:

Exemplo:

A e C: eventos disjuntos

Exemplo:

A e C: eventos disjuntos

 $A^C \to \text{ complementar de } A$

$$A \cap A^c = \emptyset$$
,

$$A \cup A^c = \Omega$$
.

aula 4: Probabilidades
Conceitos Básicos

Outros exemplos

→ Pelo menos um dos eventos ocorre

aula 4: Probabilidades
Conceitos Básicos

Outros exemplos

→ Pelo menos um dos eventos ocorre

 $A \cup B$

→ Pelo menos um dos eventos ocorre

 $A \cup B$

→ O evento A ocorre mas o evento B não

 \rightarrow Pelo menos um dos eventos ocorre $A \cup B$

 \rightarrow O evento A ocorre mas o evento B não $A \cap B^c$

→ Pelo menos um dos eventos ocorre

 $A \cup B$

→ O evento A ocorre mas o evento B não

 $A \cap B^c$

→ Nenhum deles ocorre

 \rightarrow Pelo menos um dos eventos ocorre $A \cup B$

 \rightarrow O evento A ocorre mas o evento B não $A \cap B^c$

 \rightarrow Nenhum deles ocorre $A^c \cap B^c$

→ Pelo menos um dos eventos ocorre

 $A \cup B$

→ O evento A ocorre mas o evento B não

 $A \cap B^c$

→ Nenhum deles ocorre

 $A^c \cap B^c$

→ Exatamente um dos eventos ocorre

→ Pelo menos um dos eventos ocorre

 $A \cup B$

→ O evento A ocorre mas o evento B não

 $A \cap B^c$

→ Nenhum deles ocorre

$$A^c \cap B^c$$

 \rightarrow Exatamente um dos eventos ocorre $(A^c \cap B) \cup (A \cap B^c)$

4.3 Probabilidade

Uma função P(.) é denominada probabilidade se satisfaz as condições:

4.3 Probabilidade

Uma função P(.) é denominada probabilidade se satisfaz as condições:

1.
$$0 \le P(A) \le 1, \forall A \subseteq \Omega;$$

2.
$$P(\Omega) = 1$$
;

3.
$$P(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} P(A_j)$$
, com todos os A_j distintos.

ou seja, probabilidade é a função que atribui valores numéricos aos eventos do espaço amostral.

Questão que se coloca:

como atribuir probabilidade aos elementos do espaço amostral?

Questão que se coloca:

como atribuir probabilidade aos elementos do espaço amostral?

- Baseado nas características teóricas da realização de um fenômeno;
- 2) Usando as freqüências de ocorrência.

→ Baseado nas características teóricas da realização de um fenômeno

→ Baseado nas características teóricas da realização de um fenômeno

Exemplo:

Lançamento de um dado cúbico perfeitamente homogêneo e simétrico com os lados numerados, teremos o espaço amostral:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

→ Baseado nas características teóricas da realização de um fenômeno

Exemplo:

Lançamento de um dado cúbico perfeitamente homogêneo e simétrico com os lados numerados, teremos o espaço amostral:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

E nesse caso a probabilidade de ocorrência de cada evento será:

$$P(1) = \dots = P(6) = \frac{1}{6}$$

→ Usando as freqüências de ocorrência

Exemplo:

Pegamos um dado e jogamos várias vezes.

Para *um número suficientemente grande de lançamentos*, podemos usar as freqüências de ocorrência como probabilidades. Mas

aula 4: Probabilidades
Probabilidade

O que quer dizer *número suficientemente grande de lançamentos*?

O que quer dizer *número suficientemente grande de lança-mentos*?

Geralmente a medida que o número de repetições aumenta, as frequências relativas vão se estabilizando em um número que chamaremos de probabilidade.

O que quer dizer *número suficientemente grande de lança-mentos*?

Geralmente a medida que o número de repetições aumenta, as frequências relativas vão se estabilizando em um número que chamaremos de probabilidade.

Este é um procedimento comum em ciências biológicas e humanas.

Veremos esta questão mais profundamente em Inferência Estatística.

Exemplo:

Usemos a tabela utilizada na Aula 1 (referência 1) que mostra o número de alunos de cada sexo numa escola:

Sexo	n	f
F	37	0,74
M	13	0,26
Total	50	1

Sabendo que 52% dos alunos estão na turma A e 48% na turma B, escolhemos um estudante ao acaso.

Qual a probabilidade de escolhermos um estudante do sexo feminino ou alguém da turma B?

Tabela

Sexo	n	f
F	37	0,74
M	13	0,26
Total	50	1

Da tabela e das características das turmas A e B temos

$$P(F) = 0.74; P(M) = 0.26;$$

$$P(A) = 0.52; P(B) = 0.48.$$

Pergunta colocada:

"Qual a probabilidade de escolhermos um estudante do sexo feminino ou alguém da turma B?"

$$P(F) = 0.74; P(M) = 0.26;$$

$$P(A) = 0.52; P(B) = 0.48.$$

Queremos $P(F \cup B)$.

Não podemos simplesmente somar P(F) com P(B) já que teríamos probabilidade maior que 1.

Estamos somando duas vezes alguns elementos pois há mulheres em ambas as turmas

Temos que $P(F \cap B)$ é igual ao número de estudantes do sexo feminino e da turma B.

Assim, para obter a probabilidade correta temos que somar as probabilidades P(F) com P(B) e, então subtrair deste valor $P(F \cap B)$

ou seja,
$$P(F \cup B) = P(F) + P(B) - P(F \cap B)$$

Para o caso geral, temos que a regra da adição de probabilidades, a probabilidade da união de dois eventos A e B, é dada por

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Para o caso geral, temos que a regra da adição de probabilidades, a probabilidade da união de dois eventos A e B, é dada por

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

observe que se os eventos A e B forem disjuntos (e somente neste caso), a probabilidade da união de A com B é nula e temos que a união é igual a soma das probabilidades dos dois eventos.

Esta regra pode ser estendida para soma de três ou mais termos.

Observe que

$$P(A \cup A^c) = P(A) + P(A^c) - P(A \cap A^c)$$
$$= P(A) + P(A^c) - P(\emptyset)$$
$$= P(A) + P(A^c) - 0$$

Observe que

$$P(A \cup A^c) = P(A) + P(A^c) - P(A \cap A^c)$$
$$= P(A) + P(A^c) - P(\emptyset)$$
$$= P(A) + P(A^c) - 0$$

e que

$$P(A \cup A^c) = P(\Omega) = 1$$

Observe que

$$P(A \cup A^c) = P(A) + P(A^c) - P(A \cap A^c)$$
$$= P(A) + P(A^c) - P(\emptyset)$$
$$= P(A) + P(A^c) - 0$$

e que

$$P(A \cup A^c) = P(\Omega) = 1$$

Logo,

$$P(A) = 1 - P(A^c)$$

4.4 Probabilidade Condicional e Independência

É comum o fenômeno aleatório poder ser separado em etapas.

Neste caso a informação obtida numa etapa pode influenciar etapas sucessivas.

Assim, vamos ganhando informações e podemos recalcular as probabilidades associadas aos fenômenos.

Esta probabilidade recalculada chamamos Probabilidade Condicional.

Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é representada por P(A|B) e dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0.$$

Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é representada por P(A|B) e dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0.$$

Caso P(B) = 0, P(A|B) pode ser definido arbitrariamente. Aqui usaremos se P(B) = 0, então P(A|B) = P(A).

Exemplo

Uma região de cem quilômetros quadrados (100 km²) contém um reservatório de água subterrâneo com área igual a dois quilômetros (2 km²) quadrados de distribuição desconhecida.

Depois de um ano de pesquisas, 20 quilômetros quadrados (20 km²) foram perfurados sem encontrar água.

Qual a probabilidade de, agora num furo ao acaso, encontrarmos água?

<u>aula 4: Probabilidades</u> Probabilidade Condicional e Independência

Consideremos

H é o evento de encontrar água, logo,

Consideremos

H é o evento de encontrar água, logo,

$$P(H) = 2 / 100 = 0.02$$

onde usamos a área total como espaço amostral.

Consideremos

H é o evento de encontrar água, logo,

$$P(H) = 2 / 100 = 0.02$$
 onde usamos a área total como espaço amostral.

P(H | I) é a probabilidade depois das perfurações iniciais, chamando de la informação conhecida. Como a área ficou reduzida a 80 quilômetros quadrados, temos:

Consideremos

H é o evento de encontrar água, logo,

$$P(H) = 2 / 100 = 0.02$$
 onde usamos a área total como espaço amostral.

P(H | I) é a probabilidade depois das perfurações iniciais, chamando de la informação conhecida. Como a área ficou reduzida a 80 quilômetros quadrados, temos:

$$P(H | I) = 2 / 80 = 0.025$$

Calculando pela fórmula da probabilidade condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0.$$

Calculando pela fórmula da probabilidade condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0.$$

Seja B a nova região a se procurar. Então P(B) = 0.8Como H está contido em B então H \cap B, logo, $P(H \cap B) = P(H) = 0.02$ e:

$$P(H|B) = \frac{P(H \cap B)}{P(B)} = \frac{0,02}{0,8} = 0,025$$

Independência de eventos

Dois eventos A e B são <u>independentes</u>, se a informação da ocorrência ou não de B não altera a probabilidade da ocorrência de A. Isto é

$$P(A|B) = P(A), P(B) > 0.$$

OU

$$P(A \cap B) = P(A)P(B)$$

Exemplos:

- → O Flamengo ganhar um jogo no Brasil é independente do Milan ganhar um jogo na Itália
- → As condições meterolológicas de Marte são independentes das da Terra

Partição do espaço amostral

Os eventos C₁, C₂, ..., C_k formam uma partição do espaço amostral, se elas não têm intersecção entre si e se a união é igual ao espaço amostral.

Formalmente,

$$C_i \cap C_j = \emptyset, \ \forall \ i \neq j$$

$$\bigcup_{i=1}^k C_i = \Omega$$

Partição do espaço amostral

Partição para k = 6

Exemplo

Um fabricante de sorvete compra frutas de três fazendas:

20% da fazenda F₁, 30% da fazenda F₂, 50% da fazenda F₃.

20% da produção de frutas da fazenda F_1 veio com algum problema, 5% da produção da F_2 também e F_3 tinha 2% de frutas com problemas.

Todas as frutas, depois que chegam na fábrica, são guardadas em cestos sem identificação. Quer se saber:

- a) Escolhendo uma fruta ao acaso, qual a probabilidade dela ser uma das frutas com problemas?
- b) Se uma fruta com problemas for extraída, qual a probabilidade dela ser da fazenda F1? E da F2? E da F3?

Chamando de A é o evento "fruta com algum problema" Temos que:

- 1) F₁, F₂ e F₃ formam uma partição do espaço amostral
- 2) $P(A | F_1) = 0.20;$ $P(A | F_2) = 0.05;$ $P(A | F_3) = 0.02.$

A é o evento "fruta com algum problema"

Temos que:

- 1) F₁, F₂ e F₃ formam uma partição do espaço amostral
- 2) $P(A | F_1) = 0.20;$

$$P(A | F_2) = 0.05;$$

$$P(A | F_3) = 0.02.$$

Assim, A pode ser descrito em termos da intersecções de A com os eventos F_1 , F_2 e F_3 .

Graficamente....

<u>aula 4: Probabilidades</u> Probabilidade Condicional e Independência

Mas ainda não conseguimos determinar a solução. Temos que ter mais algumas ferramentas.

Para responder ao item a:

"Escolhendo uma fruta ao acaso, qual a probabilidade dela ser uma das frutas com problemas?"

Teorema da probabilidade total

Sejam F₁,F₂,...,F_n os eventos que formam uma partição do espaço amostral e seja A um evento desse espaço. Então:

$$P(A) = \sum_{i=1}^{n} P(F_i).P(A|F_i)$$

Assim, para se responder ao "item a" temos:

$$P(A) = \sum_{i=1}^{3} P(F_i) \cdot P(A|F_i)$$

= 0, 20 \times 0, 20 + 0, 30 \times 0, 05 + 0, 50 \times 0, 02

 $= 0.040 + 0.015 + 0.010 \neq 0.065$

ou:

ou:

Para responder ao ítem b:

"Se uma fruta com problemas for extraída, qual a probabilidade dela ser da fazenda F₁? "

Teorema de Bayes

Suponha que C_1 , C_2 , ..., C_K formem uma partição do espaço amostral e que suas probabilidades são conhecidas. Suponha, adicionalmente, que para um evento A, se conheçam as probabilidades $P(A|C_i)$ para todos os valores de i. Então, para qualquer j vale

$$P(C_{j}|A) = \frac{P(A|C_{j})P(C_{j})}{\sum_{i=1}^{k} P(A|C_{i})P(C_{i})}, j=1,2,....,k$$

Voltemos agora ao nosso exemplo para responder:

"Se a fruta escolhida estiver com problemas, qual a probabilidade dela ser da fazenda F₁?" usando o Teorema de Bayes para calcular:

$$P(F_1 \mid A);$$

$$P(F_2 \mid A);$$

$$P(F_3 \mid A)$$
.

Probabilidade de que a fruta com algum problema seja da fazenda F₁:

$$P(F_1 \mid A) = \frac{P(A \mid F_1)P(F_1)}{P(A \mid F_1)P(F_1) + P(A \mid F_2)P(F_2) + P(A \mid F_3)P(F_3)}$$

Probabilidade de que a fruta com algum problema seja da fazenda F₁:

$$P(F_1 \mid A) = \frac{P(A \mid F_1)P(F_1)}{P(A \mid F_1)P(F_1) + P(A \mid F_2)P(F_2) + P(A \mid F_3)P(F_3)}$$

$$P(F_1 \mid A) = \frac{0, 2 \cdot 0, 2}{0, 2 \cdot 0, 2 + 0, 3 \cdot 0, 05 + 0, 5 \cdot 0, 02} = 0,615$$

Consorcio Cedel

Probabilidade condicional

$$P(F_1|A) = \frac{P(A \cap F_1)}{P(A)} = \frac{0,040}{0,065} = 0,615$$

Probabilidade de que a fruta com algum problema seja da fazenda F₂:

$$P(F_2 \mid A) = \frac{P(A \mid F_2)P(F_2)}{P(A \mid F_1)P(F_1) + P(A \mid F_2)P(F_2) + P(A \mid F_3)P(F_3)}$$

$$P(F_2 \mid A) = \frac{0.3 \cdot 0.05}{0.2 \cdot 0.2 + 0.3 \cdot 0.05 + 0.5 \cdot 0.02} = 0.231$$

Probabilidade de que a fruta com algum problema seja da fazenda F₃:

$$P(F_3|A) = \frac{P(A|F_3)P(F_3)}{P(A|F_1)P(F_1) + P(A|F_2)P(F_2) + P(A|F_3)P(F_3)}$$

$$P(F_3|A) = \frac{0, 5 \cdot 0, 02}{0, 2 \cdot 0, 2 + 0, 3 \cdot 0, 05 + 0, 5 \cdot 0, 02} = 0, 154$$

Aula 4

Professores:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

Probabilidades

Conteúdo:

- 4.1 Introdução
- 4.2 Conceitos Básicos
- 4.3 Probabilidade
- 4.4 Probabilidade Condicional e Independência

$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\sum_{i=1}^{n} Y_i$$

$$\sum_{i=1}^{n} Y_i$$

$$A \cap B = \emptyset$$

