Transparent TVM Backend Acceleration

Boost ML Upstream Frameworks

Tiejun Chen VMware OCTO, ATG 11/17/2021

Agenda

Transparent TVM Backend Acceleration

- Background
- Project MLInferBooster Introduction
- Summary

Background Why

- TVM A compiler stack for deep learning systems
 - Open source
 - TVM supports most AI/ML frameworks
 - TVM targets various types of AI accelerators
 - Including CPU
 - Cross-compiling
 - Host =! Target
 - Good ML inference performance

- Learn TVM
- Inspect pre-trained ML
- Get Al Acceleration info
- Call TVM APIs
- Build into your platform
 - Relay cache
 - Scheduler
 - AutoTVM

· ...

Our solution

- Target
 - Power ML upstream frameworks by means of TVM
- Goal
 - Build a TVM Serving System
 - Backend
 - Automated
 - Unified server architecture
- How
 - Interpose ML framework python API
 - Built-in TVM processing Auto {detecting, compiling, scheduling, inferencing, etc}
 - Cache
 - Scheduler

mware

Others

- Auto-detecting Al accelerator
- Scheduler
 - Infer task <-> Al accelerator
- Autotvm
 - Flexibility
- Model cache
 - Cache the compiled model information
 - Mapping mechanism
 - Least Frequently Used (LFU) cache replacement policy

mware[®]

Demo

vmware[®]

Summary

- Supported
 - Tensorflow/Pytorch/ONNX
 - {Nvidia, AMD} GPU, Xilinx FPGA, CPU
- Plan
 - Interpose C++ runtime
 - ML Serving system

Thank you!

@Tiejun_Chen
<tiejunc@vmware.com>

