CHEM 1C – GENERAL CHEMISTRY

Worksheet 5

- 1. Hydroxylamine (HONH₂) is a weak base with $K_b = 1.1 \times 10^{-8}$.
 - (a) Write the formula for the conjugate acid of hydroxylamine.
 - (b) What is the value of the acid ionization constant, K_a , for the conjugate acid?
 - (c) Write the equation for the reaction between hydroxylamine and water.
 - (d) Calculate the concentrations of all species in solution, and the pOH and pH of a 1.0 M aqueous solution of hydroxylamine.
 - (e) Calculate the percent ionization of the hydroxylamine solution from part (d).
- 2. Write the reaction equations describing what happens when ammonium chloride is added to water, and calculate the pH of a 0.25 M solution of NH₄Cl in water at 25 °C. For NH₃, $K_b = 1.8 \times 10^{-5}$.
- 3. What is the pH of a buffer solution that is initially 0.75 M NH₃ and 0.225 M NH₄Cl? For NH₃, $K_b = 1.8 \times 10^{-5}$.
- 4. A buffer is 0.100 M in NH₄Cl and 0.100 M in NH₃. When a small amount of HNO₃(aq) is added to this buffer, which buffer component neutralizes the added acid.
- 5. What is the pH of a buffer solution that is 0.120 M in formic acid (HCO₂H) and 0.080 M in potassium formate (HCO₂K). For formic acid, $K_a = 1.8 \times 10^{-4}$.
- 6. A 500.0 mL buffer solution is 0.10 M in benzoic acid and 0.10 M in sodium benzoate and has an initial pH of 4.19. What is the pH of the buffer upon addition of 0.010 mol of NaOH?
- 7. Calculate the pH after 0.015 mole of gaseous HCl is added to 250.0 mL of a buffer that initially is 0.75 M NH₃ and 0.225 M NH₄Cl. For NH₃, $K_b = 1.8 \times 10^{-5}$.
- 8. Which combination is the best choice to use to prepare a buffer with a pH of 9.0?
 - (a) NH₃; NH₄Cl (p K_b for NH₃ = 4.75)
 - (b) C_5H_5N ; C_5H_5NHCl (p K_b for $C_5H_5N = 8.76$)
 - (c) HNO₂; NaNO₂ (p K_a for HNO₂ = 3.33)
 - (d) HCHO₂; NaCHO₂ (p K_a for C₅H₅N = 3.74)
 - (e) CH_3NH_2 ; CH_3NH_3Cl (p K_b for $CH_3NH_2 = 3.36$)
- 9. Identify which of the following result in buffer solutions when the two solutions are mixed.
 - (a) 100.0 mL 0.10 M NH₃ and 100.0 mL 0.10 M NH₄Cl
 - (b) 50.0 mL 0.10 M NaNO₂ and 50.0 mL 0.10 M HNO₂
 - (c) 50.0 mL 0.10 M HCl and 35.0 mL 0.15 M NaOH
 - (d) 175.0 mL 0.10 M NH₃ and 150.0 mL 0.12 M NaOH
 - (e) 100.0 mL 0.10 M HCl and 100.0 mL 0.20 M NH₃