Applications linéaires

Jérémy Meynier

Exercice 1

Soit E un espace vectoriel de dimension finie, et u et v deux endomorphismes de E. Montrer que $|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v)$

Exercice 2

Soit E un \mathbb{K} -ev, f et g deux endomorphismes de E tel que $f \circ g = id$

- 1. Démontrer que $Ker(g \circ f) = Ker(f)$
- 2. Démontrer que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$
- 3. Démontrer que $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g)$

Exercice 3

Soit f un endomorphisme d'un espace vectoriel E de dimension n.

- 1. Démontrer que $E = \text{Ker}(f) \oplus \text{Im}(f) \Rightarrow \text{Im}(f) = \text{Im}(f^2)$
- 2. (a) Démontrer que $\mathrm{Im}(f)=\mathrm{Im}(f^2)\Leftrightarrow \mathrm{Ker}(f)=\mathrm{Ker}(f^2)$
 - (b) En déduire $\operatorname{Im}(f) = \operatorname{Im}(f^2) \Leftrightarrow E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$

Exercice 4

Soit E un \mathbb{K} espace vectoriel de dimension $n \geq 1$ et f un endomorphisme nilpotent d'indice p $(f^p = 0, f^{p-1} \neq 0)$

- 1. Montrer que $\exists x \in E$ tel que $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ soit libre.
- 2. En déduire $f^n = 0$

Exercice 5

Soit E un \mathbb{K} espace vectoriel de dimension finie n, et f un endomorphisme de E. Montrer que $Ker(f) = Im(f) \Leftrightarrow f^2 = 0$ et $n = 2\operatorname{rg}(f)$

Exercice 6

Soit E = Im(u) + Im(v) = Ker(u) + Ker(v), E de dimension finie n. Montrer que Im(u) et Im(v) sont supplémentaires dans E, tout comme Ker(u) et Ker(v).

Jérémy Meynier 2

Exercice 7

Soient E, F, G trois \mathbb{K} espaces vectoriels, et $u \in L(E, F)$, $v \in L(F, G)$ et $w = v \circ u$. Montrer que w est un isomorphisme $\Leftrightarrow u$ est injective, v est surjective et $Im(u) \oplus Ker(v) = F$

Exercice 8

Soit E un \mathbb{K} espace vectoriel, $f \in L(E)$, p un projecteur. Montrer $p \circ f = f \circ p \Leftrightarrow Im(p)$ et Ker(p) sont stables par f

Exercice 9

Soit E un \mathbb{K} espace vectoriel de dimension $n, u, v \in L(E)$. Montrer que $\operatorname{rg}(u) + \operatorname{rg}(v) - n \le \operatorname{rg}(u \circ v) \le \min(\operatorname{rg}(u), \operatorname{rg}(v))$

Exercice 10

Soit
$$f: \begin{cases} \mathbb{R}_n[X] \to \mathbb{R}^{n+1} \\ P \to (P(1), P'(1), \cdots, P^{(n)}(1)) \end{cases}$$

Montrer qu'il s'agit d'un isomorphisme.

Exercice 11

Soit E un \mathbb{K} espace vectoriel, p et q deux projecteurs de E

- 1. Montrer que $Im(p) = Im(q) \Leftrightarrow p \circ q = q$ et $q \circ p = p$
- 2. Donner une condition nécessaire et suffisante pour que Ker(p) = Ker(q)
- 3. Montrer que p+q est un projecteur $\Leftrightarrow p \circ q = q \circ p = 0$
- 4. Montrer alors, si p+q est un projecteur, que $Im(p+q)=Im(p)\oplus Im(q)$ et $Ker(p+q)=Ker(p)\cap Ker(q)$

Exercice 12

Soit E un \mathbb{K} espace vectoriel et $f \in L(E)$ vérifiant $f^2 - 5f + 6Id_E = 0$. Montrer que $Ker(f - 2Id) \oplus Ker(f - 3Id) = E$

Exercice 13

Soit E un espace vectoriel de dimension finie, $p, q \in L(E)$ tel que p + q = Id et $rg(p) + rg(q) \le dim(E)$. Montrer que p et q sont des projecteurs.