CS170 Discussion Section 10: 4/5

Duality

Consider the following linear program:

$$\max 4x_1 + 7x_2$$

$$x_1 + 2x_2 \le 10$$

$$3x_1 + x_2 \le 14$$

$$2x_1 + 3x_2 \le 11$$

$$x_1, x_2 \ge 0$$

Construct the dual of the above linear program.

Solution: If we scale the first constraint by $y_1 \ge 0$, the second by $y_2 \ge 0$, the third by $y_3 \ge 0$, and we add them up, we get an upperbound of $(y_1 + 3y_2 + 2y_3)x_1 + (2y_1 + y_2 + 3y_3)x_2 \le (10y_1 + 14y_2 + 11y_3)$. Minimizing for a bound for $4x_1 + 7x_2$, we get the tightest possible upperbound by

$$\min 10y_1 + 14y_2 + 11y_3$$

$$y_1 + 3y_2 + 2y_3 \ge 4$$

$$2y_1 + y_2 + 3y_3 \ge 7$$

$$y_1, y_2, y_3 \ge 0$$

Remark: It would be instructive to check how the generic duality for linear programme is reflected in this example:

$$\max \begin{bmatrix} 4 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \min \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 10 \\ 14 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 10 \\ 14 \\ 11 \end{bmatrix} \qquad \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 3 \end{bmatrix} \ge \begin{bmatrix} 4 & 7 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \ge \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

The above can be recast as

$$egin{aligned} \max \mathbf{c}^T \mathbf{x} & \min \mathbf{y}^T \mathbf{b} \\ \mathbf{A} \mathbf{x} &\leq \mathbf{b} & \mathbf{y}^T \mathbf{A} &\geq \mathbf{c}^T \\ \mathbf{x} &\geq \mathbf{0} & \mathbf{y}^T &\geq \mathbf{0}^T. \end{aligned}$$

In this concise form, weak duality (that every feasible primal solution has value bounded by every feasible dual solution) is easy to show:

$$\mathbf{c}^T \mathbf{x} \le (\mathbf{y}^T \mathbf{A}) \mathbf{x} = \mathbf{y}^T (\mathbf{A} \mathbf{x}) \le \mathbf{y}^T \mathbf{b}.$$

Note that the first inequality follows from $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$, and the second inequality follows from $\mathbf{y}^T \geq \mathbf{0}^T$ and $\mathbf{A}\mathbf{x} \leq \mathbf{b}$.

Zero-sum Games

Consider a two-player, zero-sum game with the following pay-off matrix (by the column player to the row player):

1. Assume that you are the row player, and play strategies a and b with probabilities x_1 and x_2 respectively, where x_1 and x_2 are known to the column player. What is your optimal return? Formulate this as a linear program.

Solution: For given x_1 and x_2 , the column player chooses $\min\{4x_1 - 3x_2, -2x_1 + x_2\}$, which the row player wants to maximize over feasible x_1 and x_2 . (Note how the first three lines below are equivalent to $\min\{4x_1 - 3x_2, -2x_1 + x_2\}$.)

$$\max w$$

$$w \le 4x_1 - 3x_2$$

$$w \le -2x_1 + x_2$$

$$x_1 + x_2 = 1$$

$$x_1, x_2 \ge 0$$

2. Assume that you are the column player, and play strategies A and B with probabilities y_1 and y_2 respectively, where y_1 and y_2 are known to the row player. What is your optimal return? Formulate this as a linear program.

Solution: For given y_1 and y_2 , the row player chooses $\max\{4y_1 - 2y_2, -3y_1 + y_2\}$, which the column player wants to minimize over feasible y_1 and y_2 . (Note how the first three lines below are equivalent to $\max\{4y_1 - 2y_2, -3y_1 + y_2\}$.)

$$\min z \\ z \ge 4y_1 - 2y_2 \\ z \ge -3y_1 + y_2 \\ y_1 + y_2 = 1 \\ y_1, y_2 \ge 0$$

Max of min

Argue that these two problems have the same optimal value:

Solution:

Call the first problem P_0 and the second P_1 , and call their optimal values V_0 and V_1 .

The basic idea is that in P_1 , the optimal solution will always set $s = \min\{a + b, b + c\}$. We will prove $V_0 = V_1$ by showing $V_0 \leq V_1$ and $V_0 \geq V_1$.

Any feasible solution to P_0 can be converted to a feasible solution to P_1 by keeping the values for a, b and c the same, and setting $s = \min\{a + b, b + c\}$. Therefore the optimal solution to P_1 will be at least as good as V_0 : $V_1 \ge V_0$.

Conversely, consider any optimal solution to P_1 . It must be the case that in this optimal solution, $s = \min\{a+b, b+c\}$ — the constraints enforce that s is no larger than this, and if s is smaller, the solution can be improved by increasing s. Therefore if we keep the values of a, b and c the same, we will get a solution to P_0 with the same value. So $V_0 \ge V_1$.

Bipartite Vertex Cover

A vertex cover of an undirected graph G = (V, E) is a subset of the vertices which touches every edge. In other words, a subset $S \subset V$ such that for each edge $\{u, v\} \in E$, one or both of u, v are in S.

Show that the problem of finding the minimum vertex cover in a bipartite graph reduces to maximum flow. Prove that your reduction is correct.

Solution: Let $G' = (s \cup t \cup V_1 \cup V_2, E')$ be the bipartition of the graph G. Construct a network by adding a dummy source node s, with edges going out to every vertex of V_1 , and a dummy target node t, with edges coming in from every vertex of V_2 . Direct the remaining original edges so that they go from V_1 to V_2 . Let the edges adjacent to s or t have capacity 1 and the original edges have infinite capacity.

Consider now a (s,t)-cut (S,\bar{S}) in this network, such that S only cuts edges adjacent to s or t. We claim that the set C_S of original vertices at the end of the edges cut by S must constitute a vertex cover of G. Suppose this is not the case and there exists an edge (u,v) between V_1 and V_2 not covered by C_S . Then s-u-v-t is a path from s to t which is not cut by S. This is a contradiction. Hence, every cut S produces a vertex cover C_S of cardinality $|E(S,\bar{S})|$. Hence, the mincut must yield the minimum vertex cover.

More detailed proof:

We want proof the following:

1. For every (s,t)-cut $(S,\bar{S}) < \infty$ in G', let

$$X = \{v_1 \in V_1 : v_1 \in \bar{S}\} \cup \{v_2 \in V_2 : v_2 \in S\}$$

X is a vertex cover of G and $|X| = capacity(S, \bar{S})$.

Proof.

Because the (S, S) has finite capacity, there is no edge from V_1 to V_2 that crosses the cut. Thus for all edges e from V_1 to V_2 , they either start from V_1 part of \bar{S} , end in the

 V_2 part of S or both. Thus all edges in G have either have an endpoint in V_1 part of X or V_2 part of X. Hence $|X| = capacity(S, \bar{S})$.

2. For every vertex cover X of G, let the cut (S, \bar{S}) be

$$S = \{v_1 \in V_1 : v_1 \notin X\} \cup \{v_2 \in V_2 : v_2 \in X\} \cup \{s\}$$
$$\bar{S} = \{v_1 \in V_1 : v_1 \in X\} \cup \{v_2 \in V_2 : v_2 \notin X\} \cup \{t\}$$

 (S, \bar{S}) has finite capacity and $capacity(S, \bar{S}) = |X|$.

Proof.

With a vertex cover X, the s-t cut (S,\bar{S}) will not contain an edge of infinite capacity. Assume for the sake of contradiction that we have an edge e=(u,w) going from V_1 to V_2 in the cut. Thus u will be in the V_1 side of S and w will be in the V_2 side of \bar{S} . This implies that neither u nor w are in X. Since there is an edge between u and w, X cannot be a vertex cover and we have a contradiction. Thus all edges in (S,\bar{S}) has finite capacities. In this case, only edges with capacity of 1 will be in the cut and the capacity of the cut is |X|.

Now we show that X is the minimum vertex cover. Since $|X| = capacity(S, \bar{S})$ and $capacity(S, \bar{S})$ is the minimum s - t cut from max flow, |X| is the smallest as it is the smallest cut.