Fair Canonical Correlation Analysis

Zhuoping Zhou¹, Davoud Atee Tarzanagh¹, Bojian Hou¹ Boning Tong, Jia Xu, Yanbo Feng, Qi Long², Li Shen²

University of Pennsylvania

BIOSTATISTICS
EPIDEMIOLOGY &
INFORMATICS

¹Equal contribution

²Corresponding authors

Canonical Correlation Analysis (CCA)

Given datasets $\mathbf{X} \in \mathbb{R}^{N \times D_x}$ and $\mathbf{Y} \in \mathbb{R}^{N \times D_y}$, CCA seeks the *R*-dimensional subspaces where the projections of \mathbf{X} and \mathbf{Y} are maximally correlated.

Optimization Problem: Find $\mathbf{U} \in \mathbb{R}^{\mathcal{D}_x imes R}$ and $\mathbf{V} \in \mathbb{R}^{\mathcal{D}_y imes R}$ such that

$$\label{eq:maximize} \begin{array}{ll} \text{maximize} & \text{trace}(\mathbf{U}^{\top}\mathbf{X}^{\top}\mathbf{Y}\mathbf{V}) \\ \text{subject to} & \mathbf{U}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{U} = \mathbf{V}^{\top}\mathbf{Y}^{\top}\mathbf{Y}\mathbf{V} = \mathbf{I}_{\text{R}}. \end{array} \tag{CCA}$$

Applications:

• Economics, Psychology, Biology, Neuroscience,

Limitation:

• CCA can exhibit unfair/biased behavior analyzing data with protected attributes.

Disparity Error for Multiple Groups

Given $\{(\mathbf{X}^k, \mathbf{Y}^k)\}_{k=1}^K$, for each group $k \in \{1, \dots, K\}$:

· Group-Wise CCA:

Find canonical weights $\mathbf{U}^{k,\star} \in \mathbb{R}^{D_x \times R}$ and $\mathbf{V}^{k,\star} \in \mathbb{R}^{D_y \times R}$ as the solutions to (CCA) for the datasets $\mathbf{X}^k \in \mathbb{R}^{N_k \times D_x}$ and $\mathbf{Y}^k \in \mathbb{R}^{N_k \times D_y}$.

Correlation Disparity Error:

$$\mathcal{E}^k\left(\mathbf{U},\mathbf{V}\right) := \mathsf{trace}\left(\mathbf{U}^{k,\star^{\top}}\mathbf{X}^{k^{\top}}\mathbf{Y}^k\mathbf{V}^{k,\star}\right) - \mathsf{trace}\left(\mathbf{U}^{\top}\mathbf{X}^{k^{\top}}\mathbf{Y}^k\mathbf{V}\right),$$

• Pairwise Correlation Disparity Error:

$$\Delta^{k,s}\left(\mathbf{U},\mathbf{V}\right):=\phi\left(\mathcal{E}^{k}\left(\mathbf{U},\mathbf{V}\right)-\mathcal{E}^{s}\left(\mathbf{U},\mathbf{V}\right)\right),\ \forall k\neq s,\ s\in[\mathit{K}].$$

Here, $\phi: \mathbb{R} \to \mathbb{R}_+$ is a penalty function such as $\phi(x) = \exp(x)$ or $\phi(x) = x^2$.

Fair CCA

Fair CCA aims to discover linear transformations ${\bf U}$ and ${\bf V}$ which project ${\bf X}$ and ${\bf Y}$ to a ${\it R}$ -dimensional subspace where

- XU and YV are maximally correlated,
- pairwise correlation disparity errors are minimized.

Fair CCA Optimization

- Goal 1: Maximize the correlation
- · Goal 2: Minimize the pairwise correlation disparity error

Multi-Objective Fair CCA (MF-CCA):

$$\begin{array}{l} \text{minimize } \mathbf{F}(\mathbf{U},\mathbf{V}) := \left[-\text{trace} \left(\mathbf{U}^{\top} \mathbf{X}^{\top} \mathbf{Y} \mathbf{V} \right), \Delta^{1,2} \left(\mathbf{U},\mathbf{V} \right), \ldots, \Delta^{\textit{K}-1,\textit{K}} \left(\mathbf{U},\mathbf{V} \right) \right] \\ \text{subj. to } \mathbf{U}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{U} = \mathbf{V}^{\top} \mathbf{Y}^{\top} \mathbf{Y} \mathbf{V} = \mathbf{I}_{\textit{R}}. \end{array}$$

Single-Objective Fair CCA (SF-CCA):

• Requires a tuning parameter $\lambda > 0$.

Datasets

The datasets used in experiments include synthetic data and real data which is obtained from the fields of health and education.

Database	Modalities	Sensitive Attribute
Synthetic Data	old X and $old Y$ are generated using a	5 groups
	Gaussian distribution	
National Health and Nutrition	${f X}$: Phenotypic Measure	Education (3 groups)
Examination Survey (NHANES)	\mathbf{Y} : Environmental Measure	Education (5 groups)
Mental Health and Academic	${f X}$: Psychological Performance	Sex (2 groups)
Performance Survey (MHAAPS)	\mathbf{Y} : Academical Performance	Sex (2 groups)
Alzheimer's Disease	${f X}$: Amyloid PET Scan	Sov (2 groups)
Neuroimaging Initiative (ADNI)	\mathbf{Y} : Tau PET Scan	Sex (2 groups)

Table 1: Dataset Descriptions

Evaluation Criteria

For each projection dimension $r \in \{1, \dots, R\}$:

· Correlation:

$$\rho_r = \frac{\mathbf{u}_r^\top \mathbf{X}^\top \mathbf{Y} \mathbf{v}_r}{\sqrt{\mathbf{u}_r^\top \mathbf{X}^\top \mathbf{X} \mathbf{u}_r \mathbf{v}_r^\top \mathbf{Y}^\top \mathbf{Y} \mathbf{v}_r}},$$

Maximum Gap of Correlation Disparity Error:

$$\Delta_{\mathsf{max},r} = \max_{i,j \in [K]} |\mathcal{E}^i(\mathbf{u}_r, \mathbf{v}_r) - \mathcal{E}^j(\mathbf{u}_r, \mathbf{v}_r)|,$$

Aggregate Correlation Disparity Error:

$$\Delta_{\mathsf{sum},r} = \sum_{i,j \in [K]} |\mathcal{E}^i(\mathbf{u}_r, \mathbf{v}_r) - \mathcal{E}^j(\mathbf{u}_r, \mathbf{v}_r)|.$$

Aggregate Disparity Performance

- SF-CCA outperforms MF-CCA in terms of aggregate disparity error $\Delta_{\mathsf{sum},r}$.
- Fair CCA outperforms CCA across all datasets on each projection dimension.

Percentage Changes Performance

- Percentage changes of ρ_r (P_{ρ_r}) are slight.
- Percentage changes of $\Delta_{\max,r}$ and $\Delta_{\text{sum},r}$ ($P_{\Delta_{\max,r}}$ and $P_{\Delta_{\sum,r}}$) are substantial.
- Fairness improvement is signified without significant correlation sacrifice.

Thank You!

- This work was supported by the NIH grants U01 AG066833, U01 AG068057, RF1 AG063481, R01 LM013463, P30 AG073105, and U01 CA274576, and the NSF grant IIS 1837964.
- NHANES data were sourced from https://www.cdc.gov/nchs/nhanes.
- ADNI data were obtained from https://adni.loni.usc.edu, funded by NIH U01 AG024904.

