

COMP 9517 Computer Vision

Segmentation and Feature Tracking

Curve and Segmentation

- Curve corresponding to object boundaries are common, especially in natural environment
- One approach to segmentation is to locate object boundaries

Active Contours

- Aim: to locate boundary curves in images
- How: boundary detectors iteratively move towards their final solution under the combination of *image*, smoothness and optional user-guidance forces

Active Contours

- Examples of implementations:
 - Snakes
 - Level sets

 Active contours can also be used in a wide variety of object-tracking applications

Global Optimisation

- Formulate the goals of the desired transformation using some optimisation criterion, and then infer the solution that best meets this criterion
- Finding a smooth surface that passes through a set of measured data points
 - Ill-posed
 - · Many possible surfaces can fit this data
 - Ill-conditioned
 - Small changes in the input can sometimes lead to large changes in the fit
 - Inverse problems
 - Recover the unknown function form which data point were sampled
- Therefore, regularisation is needed
 - To fit models to data that badly underconstrained the solution space

Global Optimisation

- In order to quantify what it means to find a smooth solution, we can define a norm on the solution space
- The **derivative** is a measure of how a function changes as its input changes.

- a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity
- for example, the derivative of the position of a moving object with respect to time is the object's instaneous velocity

$$m = \frac{\Delta f(x)}{\Delta x} = \frac{f(x+h) - f(x)}{(x+h) - (x)} = \frac{f(x+h) - f(x)}{h}.$$

Global Optimisation

- For one dimensional function f(x), to find a smooth solution, we can
 - Integrate the squared first derivative of the function

$$\varepsilon_1 = \int f_x^2(x) dx$$

Integrate the squared second derivative

$$\varepsilon_2 = \int f_{xx}^2(x) dx$$

 For two dimensions(e.g. for images), the corresponding smoothness functions are (partial derivative)

$$\varepsilon_{1} = \int f_{x}^{2}(x, y) + f_{y}^{2}(x, y) dxdy = \int \|\nabla f(x, y)\|^{2} dxdy$$

$$\varepsilon_{2} = \int f_{xx}^{2}(x, y) + 2f_{xy}^{2}(x, y) + f_{yy}^{2}(x, y) dxdy$$

Snakes

Snakes are a two-dimensional generalisation of the
 1-D energy minimising splines

$$\varepsilon_{\text{int}} = \int \alpha(s) \|f_s(s)\|^2 + \beta(s) \|f_{ss}(s)\|^2 ds$$

Discretised version of the energy function

$$E_{\text{int}} = \int \alpha(s) \|f(i+1) - f(i)\|^2 / h^2 + \beta(s) \|f(i+1) - 2f(i) + f(i-1)\|^2 / h^4$$

 Additional external image-based and constraint -based potentials

$$\varepsilon_{image} = \omega_{line} \varepsilon_{line} + \omega_{edge} \varepsilon_{edge} + \omega_{term} \varepsilon_{term}$$

Snakes

- In practice, only the edge term is used
 - Directly proportional to the image gradients

$$E_{edge} = \sum_{i} - \left\| \nabla I(f(i)) \right\|^{2}$$

A smoothed version of the image Laplacian

$$E_{edge} = \sum_{i} - \left\| (G_{\delta} \circ \nabla^{2} I)(f(i)) \right\|^{2}$$

- A distance map to the edges
- User-placed constraints

$$E_{spring} = k_i ||f(i) - d(i)||^2$$

Snakes

Put them together

$$E = E_{\text{int}} + E_{image} + E_{spring}$$

 Let E to be zero, the energy E can be iteratively minimised by moving the curve

Dynamic Snakes

- When the object of interest is being tracked from frame to frame prediction of new estimates is needed
- How? Using dynamic models:
 - Kalman Filtering
 - Particle Filtering

Level Set Methods

- Limitations of active contours based on parametric curves:
 - It is challenging to change the topology of the curve as it evolves
 - Curve reparameterisation may be required when the shape changes dramatically
- Use the zero crossing of a signed distance function to define the curve

$$\frac{\partial \varphi}{\partial t} = v |\nabla \varphi|.$$

Level Set Methods

- Geodesic active contour use edge potential
- Recent approaches recast the problem in a segmentation framework where the energy measures the consistency of the image statistics inside and outside the segmented regions

Mean Shift and Model Finding

 How would you segment this image based on colour alone?

Mean Shift and Model Finding

- K-means use a parametric model of the density function to answer this question
 - Assume the density is the superposition of a small number of simple distributions (e.g., Guassians) whose locations(centres) and shape(covariance) can be estimated
- Mean shift smoothes the distribution and finds its peaks as well as the regions of feature space that correspond to each peak (non-parametric)

K-mean Clustering

K-mean

- Models the probability density as a superposition of spherically symmetric distributions
- Given the number of clusters k
- Randomly initialises sampling centres
- Iteratively updates the cluster centre location based on the samples that are closest to each centre
- Techniques exist for splitting or merging cluster centres to accelerating the process

K-means Clustering

- Iterative K-means clustering
 - Set iteration count ic to 1
 - Randomly choose a set of K means $m_1(1)$, $m_2(1)$,..., $m_K(1)$
 - For each vector x_i compute distance $D(x_i, m_k(ic))$ for each k = 1,...,K and assign x_i to the cluster C_j with the nearest mean
 - Increment ic by 1 and update the means to get a new set m₁(ic), m₂(ic),...,m_K(ic)
 - Repeat step 3 and 4 until $C_k(ic) = C_k(ic + 1)$ for all k

K-means Clustering

Iterative K-means clustering

K-means and Mixtures of Gaussians

Mixtures of Gaussians

- Beside means, each cluster centre is augmented by a covariance matrix re-estimated from the corresponding samples
- Instead of using nearest neighbours to associate input samples with cluster centres, a Mahalanobis distance is used

$$d(x_i, \mu_k; \Sigma_k) = ||x_i - \mu_i||_{\Sigma_k^{-1}} = (x_i - \mu_k)^T \sum_k^{-1} (x_i - \mu_k)$$

- Assassinated with the nearest cluster centre
- Softly assigned to several nearby clusters
- Corresponding to iteratively re-estimating the parameters for a mixture of Gaussians density function

$$p(x | \{x_i, \mu_k, \Sigma_k\}) = \sum_k \pi_k N(x | \mu_k, \Sigma_k)$$
$$N(x | \mu_k, \Sigma_k) = \frac{1}{|\Sigma_k|} e^{-d(x_i, \mu_k; \Sigma_k)}$$

K-means and Mixtures of Gaussians

- Mixtures of Gaussians
 - Expectation maximisation (EM) can be used to iteratively compute maximum likely estimate for the unknown mixture parameters
 - The expectation stage (E step) estimates the responsibilities

$$z_{ik} = \frac{1}{Z_i} \pi_k N(x_i \mid \mu_k, \Sigma_k)$$
 How likely a sample was generated from cluster k
$$\sum_{k} z_{ik} = 1$$

• The maximisation stage (M step) updates the parameter values

$$\mu_k = \frac{1}{N_k} \sum_i z_{ik} x_i$$

$$\Sigma_k = \frac{1}{N_k} \sum_i z_{ik} (x_i - \mu_k) (x_i - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

$$N_k = \sum_i z_{ik} \text{ No of samples in cluster k}$$

6/9/17 COMP 9517 S2, 2017 20

- A procedure for locating the maxima of a density function given discrete data sampled from that function
- Using a smooth continuous non-parametric model to models the probability density function being segmented
- Efficiently finding peaks in this high-dimensional data distribution without ever computing the complete function explicitly

Mean Shift

Convolving with a fixed kernel function (kernel density estimation)

$$f(x) = \sum_{i} K(x - x_i) = \sum_{i} k(\frac{\|x - x_i\|^2}{h^2})$$

Calculate the gradient

$$\nabla f(x) = \sum_{i} (x_i - x)g(\frac{\|x - x_i\|^2}{h^2}) = \sum_{i} (x_i - x)G(x - x_i), g(r) = -k'(r) \Rightarrow$$

$$\nabla f(x) = \left[\sum_{i} G(x - x_i)\right] m(x), G = Deviative Kernel$$

where the vector $m(x) = \frac{\sum_{i} x_{i}G(x-x_{i})}{\sum_{i} G(x-x_{i})} - x$ is called **mean shift**, which is the difference between the weighted mean of the neighbours x_{i} around x and the current value of x

- The current estimate
$$y_{k+1} = y_k + m(y_k) = \frac{\sum_{i} x_i G(y_k - x_i)}{\sum_{i} G(y_k - x_i)}$$

- Mean Shift
 - the weighted nearby points for re-estimation of the mean

- Mean Shift for Visual Tracking
 - The mean shift algorithm can be used for visual tracking
 - Create a confidence map in the new image based on colour histogram of the object in the previous image
 - Tracking target object in sequence by matching colour density
 - Use mean shift to find the peak of a confidence map near the object's old position

References and Acknowledgements

- Chapter 3, 5 Szeliski 2010
- Shapiro and Stockman 2001
- Some images drawn from Szeliski 2010 and web
- Other references:
 - T.F. Cootes and C.J. Taylor and D.H. Cooper and J. Graham.
 "Active shape models their training and application".
 CVIU, 1995.
 - D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. CVPR, 2000