ISLR | Chapter 8 Exercises

Marshall McQuillen
10/15/2018

Conceptual

1

(sketch on following page)

$\mathbf{2}$

Consider the regression setting; when each tree has depth one (meaning there is only one split), each tree will only consist of one split on one attribute, and the predicted response for those two groups will be the mean response (of the training data) of those two groups. Therefore, the base model will take the form $f_j(x_j) = \beta_j I(x_{ji} \le t) + \beta'_j I(x_{ji} > t)$, where t is the value in the range of x_j that dictates the split (in order to minimize the RSS). Knowing this, one can walk through algorithm 8.2, as shown below:

$$f(\hat{x}) = 0 \tag{1}$$

$$f_1(x_1) = \beta_1 I(x_{1i} \le t) + \beta_1' I(x_{1i} > t)$$
(2)

$$\hat{f(x)} = \hat{f(x)} + \lambda f_1(x_1) \tag{3}$$

$$r_i = r_i - \lambda f_1(x_i) \tag{4}$$

$$f_2(x_2) = \beta_2 I(x_{2i} \le t) + \beta_2' I(x_{2i} > t)$$
(5)

$$\hat{f(x)} = \hat{f(x)} + \lambda f_2(x_2) \tag{6}$$

$$r_i = r_i - \lambda f_2(x_i) \tag{7}$$

$$\vdots$$
 (8)

$$f_i(x_i) = \beta_i I(x_{ii} \le t) + \beta_i' I(x_{ii} > t) \tag{9}$$

$$\hat{f(x)} = \hat{f(x)} + \lambda f_i(x_i) \tag{10}$$

$$r_i = r_i - \lambda f_i(x_i) \tag{11}$$

$$\vdots (12)$$

$$f(x) = \sum_{j=1}^{P} f_j(X_j) \quad where \quad f_j(X_j) = \beta_j I(x_{ji} \le t) + \beta'_j I(x_{ji} > t)$$
 (13)

(14)

Note that β_j is the mean of the response for all values of x_j that are less than or equal to t, and β'_j is the mean response for all values of x_j that are greater than t.

Figure 1: "Conceptual Exercise 1" $\stackrel{}{2}$

```
suppressPackageStartupMessages(library(ggplot2))
pm1 \leftarrow seq(0.01, 0.99, 0.01)
# defining functions
two class gini <- function(prob) {</pre>
    return((prob * (1-prob)) + (prob * (1-prob)))
two_class_entropy <- function(prob) {</pre>
    return(-1*(prob*log(prob) + (1 - prob)*log(1 - prob)))
}
class_error <- function(prob) {</pre>
    return(1 - pmax(prob, (1 - prob)))
# error calculation
classification_error <- class_error(pm1)</pre>
gini_error <- two_class_gini(pm1)</pre>
entropy_error <- two_class_entropy(pm1)</pre>
# bring all data together for plotting
error_df <- data.frame(x = pm1,</pre>
                        gini = gini_error,
                        class = classification_error,
                        entropy = entropy_error)
# error plot
ggplot(error_df, aes(x = x, y = gini)) +
    geom_line(aes(color = 'Gini Index')) +
    geom_line(aes(y = entropy, color = 'Cross Entropy')) +
    geom_line(aes(y = class, color = 'Classification Error')) +
    guides(color = guide_legend(title = "Metric")) +
    ggtitle("Classification Error Rates with Varying Node Purity") +
    ylab("Error Rate") +
    xlab("Node Purity (P)")
```

Classification Error Rates with Varying Node Purity

4

(sketch on following page)

5

```
probs <- c(0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7, 0.75)

# majority vote chooses red
majority_vote <- ifelse(probs >= 0.5, 'red', 'green')
table(majority_vote)

## majority_vote
## green red
## 4 6

# average chooses green
ifelse(mean(probs) >= 0.5, 'red', 'green')

## [1] "green"
```


Figure 2: "Conceptual Exercise 4" 5

Broad Strokes - Use recursive binary splitting to continually split the data until there are fewer than x training observations in each terminal node, where x is predefined. The prediction for each terminal node will be the average of the response values of the training observations in that terminal node.

Detail - Starting with all the observations in the training set in one group, choose **the** value that, when split on, produces the lowest RSS among the two groups dictated by that split value.

- When the data set is split into two groups, the **single prediction** for the observations that are in group A will be the mean of the response values of the observations that are in group A, and the **single prediction** for the observations that are in group B will be the mean of the response values of the observations that are in group B.
- To calculate the (training) RSS of a particular split, sum the squared differences between the predicted value and the actual value of the response for all observations.

Now the data is parititioned into two groups. Repeat the same process again, treating each of those two groups as the parent group, which will be split into two child groups, leading to four total groups/divisions of the data set. Repeating again would lead to eight total division of the data set. Repeat this process until there are less than x training observations in each terminal node. Note that if only one of the parent groups has more than x training observations in it, but the other has less than x, only the group with more than x would be split further (in other words, the tree doesn't have to split evenly all the way down).

Applied

7

Looking at the plot below, it is clear that the testing error rate levels off after around 100 trees. Notably, as is characteristic of Random Forests, the classic "U" shape of the testing error is not present, showing a lack of overfitting as the number of trees in the ensemble increases.

```
# load libraries
suppressPackageStartupMessages(library(ISLR))
suppressPackageStartupMessages(library(MASS))
suppressPackageStartupMessages(library(randomForest))
attach(Boston)
set.seed(5)
# train test split
train <- sample(c(TRUE, FALSE), nrow(Boston), replace = TRUE)</pre>
X.train <- Boston[train, -14]</pre>
X.test <- Boston[-train, - 14]</pre>
y.train <- Boston[train, 14]</pre>
y.test <- Boston[-train, 14]</pre>
# modeling
rf.model.p <- randomForest(x = X.train,</pre>
                           y = y.train,
                           xtest = X.test,
                           ytest = y.test,
                           mtry = ncol(Boston) - 1,
```

```
ntree = 500)
rf.model.half_p <- randomForest(x = X.train,</pre>
                         y = y.train,
                         xtest = X.test,
                         ytest = y.test,
                         mtry = ceiling(ncol(Boston)/2),
                         ntree = 500)
rf.model.sqrt_p <- randomForest(x = X.train,</pre>
                         y = y.train,
                         xtest = X.test,
                         ytest = y.test,
                         mtry = ceiling(sqrt(ncol(Boston))),
                         ntree = 500)
rf.model.2 <- randomForest(x = X.train,</pre>
                         y = y.train,
                         xtest = X.test,
                         ytest = y.test,
                         mtry = 2,
                         ntree = 500)
# create dataframe
model.df <- data.frame(x = 1:500,
                       model_2 = rf.model.2$test$mse,
                       model_sqrt_p = rf.model.sqrt_p$test$mse,
                       model_half_p = rf.model.half_p$test$mse,
                       model_p = rf.model.p$test$mse)
# plot errors
ggplot(model.df, aes(x = x, y = model_2)) +
    geom_line(aes(y = sqrt(model_2), color = '2')) +
    geom_line(aes(y = sqrt(model_sqrt_p), color = 'sqrt(p)')) +
    geom_line(aes(y = sqrt(model_half_p), color = 'p/2')) +
    geom_line(aes(y = sqrt(model_p), color = 'p')) +
    guides(color = guide_legend(title = "No. Variables Considered")) +
    ggtitle("Predicting Median Owner-Occupied Homes") +
    xlab("Number of Trees per Model") +
    ylab("RMSE (in $1,000's")
```

Predicting Median Owner-Occupied Homes

8

• A.

```
detach(Boston)
attach(Carseats)

# train test split
set.seed(5)
train <- sample(c(TRUE, FALSE), nrow(Carseats), replace = TRUE)
carseats.train <- Carseats[train,]
carseats.test <- Carseats[-train,]</pre>
```

• B.


```
# predict with the model tree
y_hat <- predict(model.tree, newdata = carseats.test)
mse <- mean((carseats.test$Sales - y_hat)^2)
print(paste("Test MSE =", round(mse, 4)))</pre>
```

```
## [1] "Test MSE = 3.2113"
```

• C. Looking at the plot of the cross validated error against tree size below, it appears that pruning the tree would help, albiet minorly.

CV Error for Varying Tree Sizes

• **D**. The variable importance plot shown below indicates which variables were "most useful" in reducing child node impurity. In this case (regression), the *Increase in Node Purity* is calculated by finding the reduction in the RSS from splitting on that variable. For every split *in every tree* where x variable is split on, the reduction in the RSS is recorded, and then this is averaged over all trees.

```
# bagged decision trees
bag.model <- randomForest(Sales ~ .,</pre>
                           data = carseats.train,
                           mtry = ncol(carseats.train) - 1,
                           importance = TRUE)
y_hat <- predict(bag.model, newdata = carseats.test)</pre>
mse <- mean((carseats.test$Sales - y_hat)^2)</pre>
print(paste("Test MSE =", round(mse, 4)))
## [1] "Test MSE = 1.4539"
# variable importance plot
var imp df <- data.frame(importance(bag.model))</pre>
ggplot(var_imp_df, aes(x = reorder(row.names(var_imp_df),
                                     IncNodePurity),
                        y = IncNodePurity,
                        fill = IncNodePurity)) +
    geom_bar(stat = 'identity') +
    coord_flip() +
    ggtitle("Variable Importances for Bagged Decision Trees") +
    ylab("Mean Reduction in RSS Across all Trees") +
```

xlab("Variable")

Variable Importances for Bagged Decision Trees

• E. Looking at the first plot below, it is clear that as the number of variables considered at each split increases, the testing MSE decreases up to a point (8, in this forest) and then increases again (although minorly).

```
# test various number of attributes considered at each split
set.seed(2)
m \leftarrow c(2, 4, 6, 8, 9, 10)
errors <- rep(0, length(m))
for (i in 1:length(m)) {
    rf.model <- randomForest(Sales ~ .,</pre>
                                data = carseats.train,
                                ntree = 500,
                                mtry = m[i],
                                importance = TRUE)
    y hat <- predict(rf.model, newdata = carseats.test)</pre>
    errors[i] <- mean((carseats.test$Sales - y_hat)^2)</pre>
}
# plot various errors
ggplot(data.frame(x = m,
                   y = errors), aes(x, y)) +
    geom_point() +
    geom_point(x = m[which.min(errors)],
```

Testing MSE for Various M

Variable Importances for Random Forest

