PRUEBA DE EVALUACIÓN CONTINUA TOPOLOGÍA

Sea

$$\beta = \{(a,b) \subset \mathbb{R} \mid a < b\} \cup \{(a,b) - K \subset \mathbb{R} \mid a < b\}$$

donde

$$K = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^+ \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$$

- 1. Pruebe que β es base para una topología T en el conjunto \mathbb{R} de los números reales.
- 2. ¿Es K abierto en (\mathbb{R}, T) ? ¿Es K cerrado en (\mathbb{R}, T) ?
- 3. ¿Existen abiertos U y V en T tales que $0 \in U$, $K \subset V$ y $U \cap V = \emptyset$?

Solución:

1. Evidentemente, para cada $x \in \mathbb{R}$ es $x \in (x-1, x+1) \in \mathbb{B}$. Por tanto,

$$\mathbb{R} \subset \bigcup_{A \in \mathcal{B}} A \subset \mathbb{R} \quad \Rightarrow \quad \boxed{\bigcup_{A \in \mathcal{B}} A = \mathbb{R}}$$

Sean ahora $U, V \in B$ tales que $U \cap V \neq \emptyset$. Se tiene que

$$U \cap V = (p, q)$$
 para ciertos $p, q \in \mathbb{R}, p < q$

o bien

$$U \cap V = (p,q) - K$$
 para ciertos $p,q \in \mathbb{R}, p < q$

Por tanto, se tiene que $U \cap V \in B$, y por tanto se verifica trivialmente la segunda propiedad de las caracterizaciones de bases de una topología. Por tanto, β es base de una topología de \mathbb{R} .

2. Veamos que K no es abierto. Si lo fuese, existiría un elemento $A \in B$ tal que $1 \in A \subset K$. Por tanto, se tiene que A = (p,q) para ciertos $p,q \in \mathbb{R}, p < 1 < q$. De esta forma, A contiene reales mayores que 1, mientras que K no los contiene. Por tanto, $A \nsubseteq K$. Así, K no es abierto.

Veamos que K es cerrado, viendo que su complementario es abierto. Dado $x \in \mathbb{R} - K$, el entorno de x dado por V = (p,q) - K donde $p,q \in \mathbb{R}$, p < x < q, verifica que $V \cap K = \emptyset$. Por tanto $V \subset \mathbb{R} - K$. Así, se tiene que $\mathbb{R} - K$ es cerrado y por tanto que K es abierto.

3. Sea $U \subset T$ tal que $0 \in U$. Entonces, existe $\varepsilon > 0$ tal que $[0, \varepsilon) \subset U$. Si ahora es $V \in T$ tal que $U \cap V = \emptyset$, entonces $V \cap [0, \varepsilon) = \emptyset$, lo que está en contradicción con que $K \subset V$, ya que $K \cap [0, \varepsilon) \neq \emptyset$ para cualquier $\varepsilon > 0$. Por tanto, no pueden existir dichos conjuntos.