

Instituto Tecnológico de Tláhuac

Carrera	Asignatura	Clave	No. Practica	Unidad	Tema	
Ing. Sistemas Computacionales	Graficación	SCC-1010	2	Figuras 3d graficacion	Representación y visualización De objetos en 3d	
Facilitador:	Ing. S.C. Erika Muciño Mancilla	Cal:	Grupo: 5S3	Nombre del Alumno:	Morua Bernabe Miguel Uriel	

INTRODUCCION

Las figuras tridimensionales (3D) son objetos que tienen tres dimensiones: ancho, largo y alto, lo que les permite tener profundidad y volumen. Estas figuras pueden ser poliedros, que están limitados por polígonos y no tienen superficies curvas, como el cubo y el tetraedro, o cuerpos redondos, que tienen superficies curvas, como la esfera y el cilindro.

Los poliedros tienen caras, aristas y vértices, y pueden ser regulares si todas sus caras son congruentes. Por otro lado, los cuerpos redondos, como la esfera, no tienen vértices y su superficie es completamente curva.

Las figuras 3D son esenciales en muchas disciplinas. En ingeniería, se utilizan para diseñar estructuras como edificios y puentes. En medicina, permiten la visualización de órganos y tejidos para diagnósticos y tratamientos. En educación, las impresoras 3D ayudan a enseñar conceptos complejos en ciencias y matemáticas.

Estas figuras son fundamentales para modelar y visualizar estructuras complejas con precisión, lo que las hace indispensables en diversas aplicaciones prácticas.

Realizo: Ing. S.C. Erika Muciño Mancilla

Instituto Tecnológico de Tláhuac

DESARROLLO

CUBO EN 3D

```
♦ CUBO.PY > ...

      # Importamos las bibliotecas necesarias
      import matplotlib.pyplot as plt
      from mpl_toolkits.mplot3d.art3d import Poly3DCollection
      import numpy as np
      # Definimos los vértices del cubo en un array numpy
      vertices = np.array([
 8
           [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], # Base inferior
           [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1] # Base superior
 10
 11
      # Definimos las caras del cubo (cada cara es una lista de índices de vértices)
12
 13
           [vertices[0], vertices[1], vertices[2], vertices[3]], # Cara inferior
14
           [vertices[4], vertices[5], vertices[6], vertices[7]], # Cara superior
15
16
           [vertices[0], vertices[3], vertices[7], vertices[4]], # Cara lateral izquierda
           [vertices[1], vertices[2], vertices[6], vertices[5]], # Cara lateral derecha
[vertices[0], vertices[1], vertices[5], vertices[4]], # Cara frontal
17
 18
           [vertices[3], vertices[2], vertices[6], vertices[7]] # Cara trasera
 19
 20
21
      # Creamos la figura y el objeto de ejes 3D
23
      fig = plt.figure()
      ax = fig.add_subplot(111, projection='3d')
24
25
      # Añadimos las caras al gráfico como una colección de polígonos
26
27
      ax.add\_collection3d(Poly3DCollection(caras, color='cyan', edgecolor='k', alpha=0.6))\\
28
 29
      ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
 30
      ax.set_zlim([0, 1])
 32
```

```
# Etiquetas de los ejes
ax.set_xlabel("Eje X")
ax.set_ylabel("Eje Y")
ax.set_zlabel("Eje Z")

# Mostramos el gráfico
plt.show()

41
```


Instituto Tecnológico de Tláhuac

TRIANGULO 3D

```
codificacion2.py 7
                              esfera.py 3
                                                     triangulo3d.py X CUBO.PY 3
 🕏 triangulo3d.py > ...
        # Importamos las bibliotecas necesarias
import matplotlib.pyplot as plt
         from mpl_toolkits.mplot3d.art3d import Poly3DCollection
         import numpy as np
         # Definimos los vértices del triángulo en un array numpy
         # Definition do Vertices del diagnostrovertices = np.array([
    [0, 0, 0], # Primer vértice en el origen
    [1, 0, 0], # Segundo vértice en el eje x
    [0.5, 1, 0.5] # Tercer vértice un poco elevado en z y desplazado en y
  10
 11
12
         # Creamos una figura y un eje 3D
         fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
         # Definimos la cara del triángulo usando los vértices
         caras = [[vertices[0], vertices[1], vertices[2]]]
 20
21
         # Creamos la colección de polígonos (caras) y la añadimos al eje ax.add_collection3d(Poly3DCollection(caras, color="cyan", edgecolor="k"))
 22
23
24
25
26
        # Configuramos los límites de los ejes para visualizar bien el triángulo ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) ax.set_zlim([0, 1])
  27
  28
         # Etiquetas de los ejes
         ax.set_xlabel("X")
ax.set_ylabel("Y")
  29
         ax.set_zlabel("Z
```


Instituto Tecnológico de Tláhuac

CIRCULO EN 3D

```
codificacion2.py 7
                     🕏 esfera.py 3 🗙
                                     triangulo3d.py
                                                        CUBO.PY 3
💠 esfera.py > ...
      import numpy as np
      import matplotlib.pyplot as plt
      from mpl_toolkits.mplot3d import Axes3D
      # Crear una figura
      fig = plt.figure()
      ax = fig.add_subplot(111, projection='3d')
  9
      # Crear datos para la esfera
      u = np.linspace(0, 2 * np.pi, 100) # Genera 100 puntos entre 0 y 2\pi
 10
      v = np.linspace(0, np.pi, 100) # Genera 100 puntos entre 0 y \pi
 11
      x = 10 * np.outer(np.cos(u), np.sin(v)) # Coordenada x de la esfera
      y = 10 * np.outer(np.sin(u), np.sin(v)) # Coordenada y de la esfera
 13
      z = 10 * np.outer(np.ones(np.size(u)), np.cos(v)) # Coordenada z de la esfera
 14
 15
 16
      # Dibujar la esfera
      ax.plot_surface(x, y, z, color='b') # Dibuja la superficie de la esfera en color azul
 17
 18
 19
      plt.show() # Muestra la figura en una ventana
```


Instituto Tecnológico de Tláhuac

CONCLUSION

La visualización de figuras geométricas en 3D con Python, usando la biblioteca matplotlib, es una técnica útil tanto para la educación como para proyectos de simulación y diseño. En esta serie de ejemplos, aprendimos a crear un cubo, un cono y un triángulo en el espacio tridimensional utilizando coordenadas y polígonos. Cada figura geométrica fue generada definiendo puntos específicos (vértices) y conectándolos para formar caras.

Crear y manipular figuras en 3D ayuda a comprender mejor las relaciones espaciales y las propiedades geométricas. También destaca cómo la programación permite automatizar visualizaciones complejas, simplificando tareas que serían difíciles de realizar a mano. En general, estos ejercicios demuestran que Python, con herramientas como matplotlib, es una poderosa opción para representar geometrías en 3D, apoyando áreas como la matemática, la física, la ingeniería y el diseño gráfico.

Instituto Tecnológico de Tláhuac

Evidencia de Aprendizaje	%	Indicador de Alcance			cance	!	Evaluación Formativa de la Competencia	
		Α	В	С	D	E	F	Instrumento
Evaluación Escrita	30%							Cuestionario

Nombre y firma del docente:	Ing. S.C. Erika Muciño Mancilla
Nombre y Firma del estudiante:	

Realizo: Ing. S.C. Erika Muciño Mancilla