Optimizacijske metode – vaje

Problem razvoza

27.3.2020

Naloga 1

Reši problem razvoza na grafu s simpleksno metodo za omrežje.

Rešitev

Najprej poiščemo drevesno dopustno rešitev.

Optimalna rešitev:

Cena razvoza: $2 \cdot 1 + 6 \cdot 6 + 8 \cdot 2 + 8 \cdot 2 + 5 \cdot 2 + 2 \cdot 1 + 2 \cdot 2 = 86$

Splošna rešitev $(0 \le x \le 2)$:

Cena razvoza: $(2-x)\cdot 1 + (6-x)\cdot 6 + 8\cdot 2 + 8\cdot 2 + x\cdot 2 + (5+x)\cdot 2 + (2+x)\cdot 1 + (2+x)\cdot 2 = 86$

Naloga 2

Reši problem razvoza na grafu s simpleksno metodo za omrežje. Pazi na skupno povpraševanje in ponudbo!

Rešitev

Ker je ponudba večja od povpraševanja, graf dopolnimo z novim vozliščem.

Optimalna rešitev:

Cena razvoza: $5 \cdot 0 + 5 \cdot 3 + 15 \cdot 2 + 15 \cdot 3 + 15 \cdot 2 + 15 \cdot 3 + 15 \cdot 3 + 5 \cdot 5 + 20 \cdot 1 + 10 \cdot 4 + 10 \cdot (-3) + 10 \cdot 2 = 285$

Naloga 3

Reši problem razvoza na grafu z dvofazno simpleksno metodo za omrežje.

Rešitev

Sestavimo omrežje prve faze, da poiščemo začetno dopustno rešitev.

Našli smo optimalno rešitev prve faze, uporabimo dobljeno drevo kot dopustno rešitev originalnega problema:

Optimalna rešitev:

Naloga 4

Reši problem razvoza na grafu s simpleksno metodo za omrežje v odvisnosti od parametra $\alpha.$

