COMP2120B Computer organization

Assignment 1 Solution

a) K-maps:

X ₁ X ₀ Y ₂ X ₃ X ₂ 00	00	01	11	10
00				
01	1	1	1	1
11				
10	1	1	1	1
$y_2 = x_3\overline{x_2} + \overline{x_3}x_2$				

X ₁ X ₁ Y ₁ X ₃ X ₂ 00	00	01	11	10	
00			1	1	
01	1	1			
11	1	1			
10			1	1	
$y_1 = x_2\overline{x_1} + \overline{x_2}x_1$					

X ₁ X ₀ Y ₀ X ₃ X ₂ 00	00	01	11	10
00		1		1
01		1		1
11		1		1
10		1		1
y_0	$_{0}=$	$x_1\overline{x_0}$	+ 2	$\overline{x_1}x_0$

Using XOR only:

$$\begin{array}{l} y_3 = x_3 \\ y_2 = x_3 \overline{x_2} + \overline{x_3} x_2 = x_3 \oplus x_2 \\ y_1 = x_2 \overline{x_1} + \overline{x_2} x_1 = x_2 \oplus x_1 \\ y_0 = x_1 \overline{x_0} + \overline{x_1} x_0 = x_1 \oplus x_0 \end{array}$$

Logic circuit:

b) Truth table:

Inputs			Outputs				
y_3	y_2	y_1	y_0	x_3	x_2	x_1	x_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

K-maps:

<i>X</i> ₁ <i>X</i> ₀ <i>Y</i> ₂	00	01	11	10	
<i>Y</i> ₃ <i>X</i> ₂ 00					
01	1	1	1	1	
11					
10	1	1	1	1	
$y_2 = x_3 \overline{x_2} + \overline{x_3} x_2$					

	00	01	11	10
<i>X</i> ₃ <i>X</i> ₂ 00			1	1
01	1	1		
11			1	1
10	1	1		

$$y_1 = x_3 x_2 x_1 + x_3 \overline{x_2} \, \overline{x_1} + \overline{x_3} x_2 \overline{x_1} + \overline{x_3} \, \overline{x_2} x_1$$

$$y_0 = x_3 x_2 x_1 \overline{x_0} + x_3 x_2 \overline{x_1} x_0 + x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} \overline{x_0} + \overline{x_3} x_2 x_1 x_0 + \overline{x_3} \overline{x_2} x_1 \overline{x_0} + \overline{x_3} \overline{x_2} x_1 x_0$$

Using XOR only:

$$y_3 = x_3$$

$$y_2 = x_3\overline{x_2} + \overline{x_3}x_2 = x_3 \oplus x_2$$

$$y_1 = x_3 x_2 x_1 + x_3 \overline{x_2} \overline{x_1} + \overline{x_3} x_2 \overline{x_1} + \overline{x_3} \overline{x_2} x_1 = (x_3 x_2 + \overline{x_3} \overline{x_2}) x_1 + (x_3 \overline{x_2} + \overline{x_3} x_2) \overline{x_1}$$

Observe that $(x_3x_2 + \overline{x_3} \overline{x_2}) + (x_3\overline{x_2} + \overline{x_3}x_2) = 1$ and $x_3\overline{x_2} + \overline{x_3}x_2 = y_2$, so $x_3x_2 + \overline{x_3} \overline{x_2} = \overline{y_2}$.

Therefore, $y_1 = \overline{y_2}x_1 + y_2\overline{x_1} = y_2 \oplus x_1$

$$y_{0} = x_{3}x_{2}x_{1}\overline{x_{0}} + x_{3}x_{2}\overline{x_{1}}x_{0} + x_{3}\overline{x_{2}}x_{1}x_{0} + x_{3}\overline{x_{2}}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}x_{2}x_{1}x_{0} + \overline{x_{3}}x_{2}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}\overline{x_{2}}x_{1}\overline{x_{0}} + \overline{x_{3}}\overline{x_{2}}x_{1}\overline{x_{0}} + \overline{x_{3}}\overline{x_{2}}\overline{x_{1}}x_{0} \\ = (x_{3}x_{2}\overline{x_{1}} + x_{3}\overline{x_{2}}x_{1} + \overline{x_{3}}x_{2}x_{1} + \overline{x_{3}}\overline{x_{2}}x_{1} + \overline{x_{3}}\overline{x_{2}}x_{1} + \overline{x_{3}}\overline{x_{2}}x_{1} + \overline{x_{3}}\overline{x_{2}}x_{1} + \overline{x_{3}}\overline{x_{2}}x_{1} + \overline{x_{3}}\overline{x_{2}}x_{1})\overline{x_{0}}$$

Observe that $(x_3x_2\overline{x_1} + x_3\overline{x_2}x_1 + \overline{x_3}x_2\overline{x_1} + \overline{x_3}\overline{x_2}x_1 + \overline{x_3}\overline{x_2}\overline{x_1}) + (x_3x_2x_1 + x_3\overline{x_2}\overline{x_1} + \overline{x_3}x_2\overline{x_1} + \overline{x_3}\overline{x_2}x_1) = 1$ and $x_3x_2x_1 + x_3\overline{x_2}\overline{x_1} + \overline{x_3}\overline{x_2}\overline{x_1} + \overline{x_3}\overline{x_2}x_1 + \overline{x_3}\overline{x_2}x_1$

Therefore, $y_0 = \overline{y_1}x_0 + y_1\overline{x_0} = y_1 \oplus x_0$

Logic circuit:

