

Carrera: Telecomunicaciones Materia: Electrónica microcontrolada Grupo: N°3

Docentes: Jorge Morales – Gonzalo Vera

Alumnos: Carolina Nis - Fernando Vexenat - Rodolfo Paz – Andres Montaño - Juan Diego González Antoniazzi - Leonardo González

Ejercicio #2

d) Que es el mcp3304(spi) y como lo utilizaría para hacer una shield que controle 8 sensores?

El MCP3304 es un convertidor A/D (analógico/digital) de baja potencia, con interfaz serial SPI.

PDIP, SOIC

Características

- Entradas diferenciales completas
- ±1 LSB máx DNL
- ±1 LSB máx. INL (MCP3302/04-B)
- ±2 LSB máx. INL (MCP3302/04-C)
- Operación de suministro único: 2.7V a 5.5V
- Frecuencia de muestreo de 100 ksps con tensión de alimentación de 5 V
- Frecuencia de muestreo de 50 ksps con tensión de alimentación de 2,7 V
- Corriente de espera típica de 50 nA, 1μ A m á x .
- 4 5 0 μA corriente máxima activa a 5V
- Rango de temperatura industrial: -40 °C a +85 °C
- Paquetes PDIP, SOIC y TSSOP de 14 y 16 pines
- Kit de evaluación MXDEV TM disponible

Aplicaciones

- Sensores Remotos
- Sistemas operados por batería
- Interfaz del transductor

Descripción general

Los convertidores A/D de 13 bits MCP3302/04 de Microchip Technology Inc. cuentan con entradas diferenciales completas y bajo consumo de energía en un paquete pequeño que es ideal para sistemas alimentados por batería y aplicaciones de adquisición remota de datos.

El MCP3304 es programable y proporciona cuatro pares de entradas diferenciales u ocho entradas de un solo extremo.

Estos convertidores A/D de 13 bits, que incorporan una arquitectura de aproximación sucesiva con circuitos integrados de muestreo y retención, están especificados para tener una no linealidad diferencial (DNL) de ±1 LSB; ±1 LSB de no linealidad integral (INL) para dispositivos de grado B y ±2 LSB para dispositivos de grado C. La interfaz serial SPITM estándar de la industria permite agregar capacidad de convertidor A/D de 13 bits a cualquier microcontrolador PICmicro.

Los dispositivos MCP3302/04 cuentan con un diseño de baja corriente que permite el funcionamiento con corrientes típicas en espera y activas de solo 50 nA y 300 µA, respectivamente. Los dispositivos funcionan en un amplio rango de voltaje de 2,7 V a 5,5 V y son capaces de tasas de

<u>Carrera:</u> Telecomunicaciones <u>Materia:</u> Electrónica microcontrolada <u>Grupo:</u> N°3

Docentes: Jorge Morales – Gonzalo Vera

Alumnos: Carolina Nis - Fernando Vexenat - Rodolfo Paz - Andres Montaño - Juan Diego González Antoniazzi - Leonardo González

conversión de hasta 100 ksps. El voltaje de referencia se puede variar de 400 mV a 5 V, lo que produce una resolución referida a la entrada entre 98 μ V y 1,22 mV.

El MCP3304 está disponible en paquetes PDIP de 16 pines y SOIC de 150 mil. Las entradas diferenciales completas de este dispositivo permite el uso de una amplia variedad de señales en aplicaciones tales como adquisición remota de datos, instrumentación portátil y aplicaciones que funcionan con baterías

Al Shield lo podriamos implementar como en la siguente imagen, en donde cada potenciometro representaria un sensor conectado a cada pin del MCP3304.

En donde deberíamos especificar luego del bit de inicio si queremos realizar una lectura sigle-ended (lectura de un solo canal) o pseudo-diferencial (lectura compuesta por dos canales), para la primera deberíamos poner el primer bit en 1, y para la segunda este debe estar en 0, luego de esto seleccionar el canal Ej. Lectura de canal 0 = 000, quedando así para single-ended 1000.

Carrera: Telecomunicaciones Materia: Electrónica microcontrolada Grupo: N°3

Docentes: Jorge Morales – Gonzalo Vera

<u>Alumnos:</u> Carolina Nis - Fernando Vexenat - Rodolfo Paz – Andres Montaño - Juan Diego González Antoniazzi - Leonardo González

Como podemos observar en la imagen, enviamos (DOUT) los ultimos 4 bits en 0, luego el tercer bit en 1 (estos 5bit conforman la trama de inicio). En el bit 2 enviado en 1 le decimos al micro que queremos hacer la lectura en modo single, luego en el bit 1, 2, y 7 del segundo octeto le especificamos el canal, en este caso el 0 (000). Luego los demás bit no interesan por eso los coloco todos en cero.

Aquí vemos lo que nos responde el micro (DIN), vemos que nos ha respondido 10100011111 = 1311.

Si hacemos 1311*((2*Vref)/8192)

8192 = Resolución del micro

1311*((2*5)/8192 = 1.6v

Nos da la tensión que marca la sonda (circulo amarillo)en la imagen anterior de Proteus.

Se dejan precargados los bytes para poder leer el canal 0 en el archivo de Proteus

<u>Carrera:</u> Telecomunicaciones <u>Materia:</u> Electrónica microcontrolada <u>Grupo:</u> N°3

Docentes: Jorge Morales – Gonzalo Vera

Alumnos: Carolina Nis - Fernando Vexenat - Rodolfo Paz - Andres Montaño - Juan Diego González Antoniazzi - Leonardo González

Explicación de las tramas a enviar al micro para poder realizar la comunicación.

<u>Carrera:</u> Telecomunicaciones <u>Materia:</u> Electrónica microcontrolada <u>Grupo:</u> N°3

Docentes: Jorge Morales – Gonzalo Vera

<u>Alumnos:</u> Carolina Nis - Fernando Vexenat - Rodolfo Paz – Andres Montaño - Juan Diego González Antoniazzi - Leonardo González

Tabla de selección de modo de lectura y canal a leer.

Control Bit Selections				Input	Channel
S <u>ingl</u> e /Diff	D2	D1	D0	Configuration	Selection
1	0	0	0	single-ended	CH0
1	0	0	1	single-ended	CH1
1	0	1	0	single-ended	CH2
1	0	1	1	single-ended	CH3
1	1	0	0	single-ended	CH4
1	1	0	1	single-ended	CH5
1	1	1	0	single-ended	CH6
1	1	1	1	single-ended	CH7
0	0	0	0	differential	CH0 = IN+ CH1 = IN-
0	0	0	1	differential	CH0 = IN- CH1 = IN+
0	0	1	0	differential	CH2 = IN+ CH3 = IN-
0	0	1	1	differential	CH2 = IN- CH3 = IN+
0	1	0	0	differential	CH4 = IN+ CH5 = IN-
0	1	0	1	differential	CH4 = IN- CH5 = IN+
0	1	1	0	differential	CH6 = IN+ CH7 = IN-
0	1	1	1	differential	CH6 = IN- CH7 = IN+

Hoja de datos del MCP3304

https://html.alldatasheet.com/html-pdf/98036/MICROCHIP/MCP3304/406/1/MCP3304.html