1.Oliczanie całki.

a)calkampi.c	iest to wersia	a wvkorzy	stuiaca MPI
o., o o	1001 10 110.010	,,	• • • • • • • • • • • • • • • • • • •

*time mpirun -np 4 calkampi 512	Czas to 1.260s
*time mpirun -np 4 calkampi 5120	Czas to 1.269s
*time mpirun -np 4 calkampi 51200	Czas to 1.271s
*time mpirun -np 4 calkampi 512000	Czas to 1.292s
*time mpirun -np 4 calkampi 5120000	Czas to 1.559s
*time mpirun -np 4 calkampi 51200000	Czas to 4.303s
*time mpirun -np 4 calkampi 512000000	Czas to 31.682s

b)calka.c jest to wersja nie wykorzystująca MPI

*time ./calka 512	Czas to 0.005s
*time ./calka 5120	Czas to 0.006s
*time ./calka 51200	Czas to 0.007s
*time ./calka 512000	Czas to 0.014s
*time ./calka 5120000	Czas to 0.918s
*time ./calka 51200000	Czas to 9.017s
*time ./calka 512000000	Czas to 1m30.665s

Obliczanie Całki

2. Algorytmu Monte Carlo

a)montecarlompi.c jest to wersja wykorzystująca MPI

*time mpirun -np 4 calkampi 1	Czas to 1.264s
*time mpirun -np 4 calkampi 10	Czas to 1.265s
*time mpirun -np 4 calkampi 100	Czas to 1.267s
*time mpirun -np 4 calkampi 1000	Czas to 1.268s
*time mpirun -np 4 calkampi 10000	Czas to 1.270s
*time mpirun -np 4 calkampi 100000	Czas to 1.279s
*time mpirun -np 4 calkampi 1000000	Czas to 1.340s
*time mpirun -np 4 calkampi 10000000	Czas to 1.882s
*time mpirun -np 4 calkampi 100000000	Czas to 7.310s
*time mpirun -np 4 calkampi 1000000000	Czas to 46.321s
*time mpirun -np 4 calkampi 10000000000	Czas to 47.321s

b)montecarlo.c jest to wersja nie wykorzystująca MPI

*./montecarlo 1	Czas to 0.004
*./montecarlo 10	Czas to 0.005s
*./montecarlo 100	Czas to 0.005s
*./montecarlo 1000	Czas to 0.005s
*./montecarlo 10000	Czas to 0.006s
*./montecarlo 100000	Czas to 0.008s
*./montecarlo 1000000	Czas to 0.036s
*./montecarlo 10000000	Czas to 0.360s
*./montecarlo 100000000	Czas to 3.346s
*./montecarlo 1000000000	Czas to 33.773s
*./montecarlo 10000000000	Czas to 48.773s

Monte Carlo

3. Mnożenia macierzy przez wektor.

a)mnozmacmpi.c jest to wersja wykorzystująca MPI

*time mpirun -np 4 mnozmacmpi 4 Czas to ok 1.264s *time mpirun -np 4 mnozmacmpi 40 Czas to ok 1.274s *time mpirun -np 4 mnozmacmpi 400 Czas to ok 1.275s *time mpirun -np 4 mnozmacmpi 4000 Czas to ok 1.475s

b)mnozmac.c jest to wersja bez MPI

Mnożenie macierzy przez wektor [V]

Moje obserwację z powyższych zadań.

Zauważyłem że im mniej jest obliczeń tym wersja bez MPI jest znacznie szybszy. Do pewnej granicy ilości obliczeń wersja z MPI jest znacznie szybsza, lecz po przekroczeniu tej granicy szybsza staje się wersja z MPI. Zauważyłem również że długość wersji bez MPI jest wprost proporcjonalna do ilości obliczeń.

*Opis

Podejrzewam że wersja z MPI jest wolniejsza ponieważ sporo czasu marnuję się na dostawianie zer tak aby macierz mogła się podzielić na równe części