Variational Autoencoders for Sparse and Overdispersed Discrete Data

He Zhao¹, Piyush Rai², Lan Du¹, Wray Buntine¹, Dinh Phung¹, Mingyuan Zhou³

¹Monash University, Australia

²IIT Kanpur, India

³The University of Texas at Austin, USA

- 1. Background and motivations
- 2. Proposed approaches
- 3. Experimental results
- 4. Conclusion

1. Background and motivations

- 2. Proposed approaches
- 3. Experimental results
- 4. Conclusion

Background and motivations: Variational autoencoders

VAEs for images

 $z \sim \mathcal{N}(\mu, \sigma^2)$

Decodei

Image from: https://www.insider.com/most-popular-dog-breeds-2019-google-search

Large-scale sparse discrete data

Count-valued data

$$[0,\cdots,0,0,10,0,3,\cdots,0,5,\cdots]$$

E.g., word occurrences for a document

Binary data

$$[0,\cdots,1,1,0,1,\cdots,0]$$

E.g., a user's buying history

VAEs for discrete data [1,2,3]

- [1] Neural variational inference for text processing, ICML 2016
- [2] Variational autoencoders for collaborative filtering, WWW 2018
- [3] On the chal-lenges of learning with inference networks on sparse, AISTATS 2018

Background and motivations: Issues with the multinomial likelihood for VAEs

Insufficient capability of modelling overdispersion in count-valued data

Overdispersion: the sample variance exceeds the sample mean in the data distribution

Example: Word burstness in documents

- A few bursty words occur multiple times while other words only show up once or never
 - high variance in the word counts of the document
- Multinomial models usually have insufficient capability of modelling self- and cross-excitations

Model misspecification for binary data

$$[0, \cdots, 0, 0, 10, 0, 3, \cdots, 0, 5, \cdots]$$

$$[0, \cdots, 1, 1, 0, 1, \cdots, 0]$$

Both issues can be tackled by replacing the multinomial likelihood with the negative binomial likelihood

Background and motivations: Multinomial V.S. Negative-Binomial

Multinomial distribution

$$y \sim \text{Multinomial}(\boldsymbol{\theta})$$

$$p(\mathbf{y}) = \frac{\Gamma(\sum_{v} y_v + 1)}{\prod_{v} \Gamma(y_v + 1)} \prod_{v} \theta_v^{y_v}$$

- θ is normalised
- Multinomial is a joint multivariate distribution
 - The dimensions of it are tied up

(Multivariate) Negative-Binomial distribution

$$y \sim \text{NegativeBinomial}(r, p)$$

$$p(\mathbf{y}) = \prod_{v} \frac{\Gamma(r_v + y_v)}{y_v! \Gamma(r_v)} p_v^{y_v} (1 - p_v)^{r_v}$$

- r is positive but unnormalised
- $p_v \in (0,1)$
- Each dimension of (Multivariate) Negative-Binomial is independent

- 1. Background and motivations
- 2. Proposed approaches
- 3. Experimental results
- 4. Conclusion

Proposed approach that models overdispersion for count-valued data

Predictive probability of a word in a document, given \boldsymbol{z} e.g., the probability of a word being "dog" given the content of document

Better capacity of handling self- and cross excitations

Better capacity of handling overdispersion

NBVAE for binary data

$$[0,\cdots,1,1,0,1,\cdots,0]$$

Example: A user's buying history of items

- m_v can be interpreted as the latent interest of the user on item v
- The user will buy this item if and only if $m_{v}>0$

NBVAE in supervised cases: Multilabel learning as an example

Feature vector of a data sample

$${m x} = [0.02, \cdots, -0.58, 0.75, 0.04, 0.11, \cdots, -0.89]$$
 Label vector of the data sample

$$y = [0, \cdots, 1, 1, 0, 1, \cdots, 0]$$

- 1. Background and motivations
- 2. Proposed approaches
- 3. Experimental results
- 4. Conclusion

Experiments on count-valued data: Text analysis as an example

- Task: predict the heldout words of a test document
- Metric: Perplexity
 - Similar to inverse model likelihood
 - Lower is better

Model	Inference	Layers	20NG	RCV	Wiki	▶ 10 million documents
DLDA	TLASGR	128-64-32	757	815	786	
DLDA	Gibbs	128-64-32	752	802	-	
DPFM	SVI	128-64	818	961	791	
DPFM	MCMC	128-64	780	908	783	
DPFA-SBN	Gibbs	128-64-32	827	-	-	
DPFA-SBN	SGNHT	128-64-32	846	1143	876	
DPFA-RBM	SGNHT	128-64-32	896	920	942	
NBFA	Gibbs	128	690	702	_	
MultiVAE	VAE	128-64	746	632	629	
MultiVAE	VAE	128	772	786	756	
NBVAE	VAE	128-64	688	579	464	
NBVAE	VAE	128	714	694	529	

Experiments on binary data: Collaborative filtering as an example

- Task: recommend items to users using their clicking history
- Metric: Recall@R and the truncated normalized discounted cumulative gain (NDCG@R)
 - Widely-used in information retrieval and collaborative filtering
 - Higher is better

Netflix data with 0.3 million users and 40 thousand movies

Experiments on discrete data with supervisions: Multilabel learning as an example

Task: predict a data sample's labels given its features

Metric: Precision@R

• Widely-used in multilabel learning

Higher is better

Num of unique labels	Datasets	Metric	LEML	PfastreXML	PD-Sparse	GenEML	$\mathrm{NBVAE_{c}}$
983	Delicious	P@1	65.67	67.13	51.82	-	68.49 ± 0.39
		P@3	60.55	63.48	46.00	-	$62.83{\pm}0.47$
		P@5	56.08	$\boldsymbol{60.74}$	42.02	-	58.04 ± 0.31
101	Mediamill	P@1	84.01	83.98	81.86	87.15	88.27 ± 0.24
		P@3	67.20	67.37	62.52	69.9	71.47 ± 0.18
		P@5	52.80	53.02	45.11	55.21	56.76 ± 0.26
3993	EURLex	P@1	63.40	75.45	76.43	77.75	78.28 ±0.49
		P@3	50.35	62.70	60.37	63.98	66.09 ± 0.17
		P@5	41.28	52.51	49.72	53.24	55.47 ± 0.15

Scalability

Table 2: Statistics of the datasets in collaborative filtering. N_{train} : number of training instances, N_{test} : number of test instances. The number of nonzeros and density are computed of each whole dataset.

Dataset	$N_{ m train}$	$N_{ m test}$	V	#Nonzeros	Density
ML-10M	49,167	10,000	10,066	4,131,372	0.0059
ML-20M	$116,\!677$	10,000	$20,\!108$	$9,\!128,\!733$	0.0033
Netflix	$383,\!435$	40,000	17,769	50,980,816	0.0062
MSD	$459,\!330$	50,000	36,716	29,138,887	0.0014

Table 5: Running time (seconds) per iteration on the collaborative filtering datasets.

Model	ML-10M	ML-20M	Netflix	MSD
MultiVAE	2.91	14.79	46.90	105.33
NBVAE	3.47	17.54	52.12	124.43

Figure 1: Performance of NBVAE and MultiVAE on the validation set during training.

- 1. Background and motivations
- 2. Proposed approaches
- 3. Experimental results
- 4. Conclusion

Conclusion

- Simple approach to boost the performance of VAEs on discrete data
- Can be used in many applications: text analysis, collaborative filtering, multi-label learning, ...

https://github.com/ethanhezhao/NBVAE

Thanks for watching!