

Report No. :EED32I00318003 Page 1 of 56

TEST REPORT

Product : L400, S400, S500, TS-400, IP400

Trade mark : AIPTEK/iBeamBLOCK/hp

Model/Type reference : L400 PAD

Serial Number : N/A

Report Number : EED32l00318003

FCC ID : 2AHTC-IBBL4

Date of Issue : Jul. 14, 2017

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Global Aiptek Corporation 5F, No. 550, Xianzheng 2nd Rd., Zhubei City, Hsinchu County, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

pproved by

Tested By:

Tom chen (Test Project)

Kevin lan(Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Jul. 14, 2017

Check No.:2402615206

Page 2 of 56

2 Version

Version No.	Date	Description
00	Jul. 14, 2017	Original
,		

Page 3 of 56

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

	GE						
2 VERSION			•••••		•••••		2
3 TEST SUM	MARY		•••••	•••••	•••••		3
4 CONTENT.		•••••	•••••	•••••	•••••	••••••	4
5 TEST REQ	JIREMENT					•••••	5
5.1.1 Fo 5.1.2 Fo 5.1.3 Fo 5.2 TEST E	ETUPr Conducted test r Radiated Emiss r Conducted Emis	setupions test setu ssions test se	ptup				5 6 6
	ONDITIONINFORMATION						
6.2 GENER/ 6.3 PRODUC 6.4 DESCRI 6.5 TEST LC 6.6 DEVIATI 6.7 ABNORI 6.8 OTHER	INFORMATION AL DESCRIPTION O CT SPECIFICATION PTION OF SUPPOR DCATION ON FROM STANDA MALITIES FROM STA INFORMATION REG REMENT UNCERTAL	F EUTSUBJECTIVE TO SUBJECTIVE TO TO SUBJECTIVE TO TO SUBJECT SUBJ	O THIS STANDAR	RD			
	T LIST			F 100 100 100 100 100 100 100 100 100 10			
	CHNICAL REQUI						
Appendi Appendi Appendi Appendi Appendi Appendi Appendi	x A): Conducted I x B): 6dB Occupion x C): Band-edge x D): RF Conduct x E): Power Spec x F): Antenna Re x G): AC Power L x H): Restricted b x I): Radiated Spi	ed Bandwidth for RF Condu ted Spurious I tral Density quirement tine Conducte ands around	cted Emissions Emissions ed Emission fundamental frons	equency (Ra	diated)		
PHOTOGRAF	PHS OF TEST SE	TUP					54
PHOTOGRAF	PHS OF EUT CO	NSTRUCTIO	NAL DETAILS	•••••	••••••	•••••	56

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 3. Above 1GHz

5.2 Test Environment

Operating Environment:		(22)	(8)	(2)
Temperature:	25.0 °C		6	(6)
Humidity:	53 % RH			
Atmospheric Pressure:	1010mbar		1890	

5.3 Test Condition

Test channel:

o				
Test Mode	Ty/Dy		RF Channel	
rest wode	Tx/Rx	Low(L)	Middle(M)	High(H)
902 11b/g/p/UT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11
802.11b/g/n(HT20)	24 12IVID2 ~2402 IVID2	2412MHz	2437MHz	2462MHz
Transmitting mode:	Keep the EUT in transmi data rate.	tting mode with all	kind of modulation	and all kind of

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			160	302	.11b						
Data Rate		1Mbps	s 2Mb _l	วร	5.5Mbps	11Mbp	s				
Power(dBm)		21.27	21.3	3	21.41	21.50			26%		
Mode	(4	(11)			(3	80	2.11g		(41)		- (,
Data Rate	100	6Mbp	s 9Mb	os	12Mbps	18Mbps	241	Mbps	36Mbps	48Mbps	54Mbps
Power(dBm)	22.84	22.7	9	22.68	22.60	22	2.51	22.44	22.37	22.29
Mode						802.11n	(HT2	0)			-
Data Rate	6.5N	lbps	13Mbps	19	9.5Mbps	26Mbps	39Mb	ps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	21	.94	21.87	1	22.79	21.70	21.6	66	21.81	21.78	21.89

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);

6 General Information

6.1 Client Information

Applicant:	Global Aiptek Corporation
Address of Applicant:	5F, No. 550, Xianzheng 2nd Rd., Zhubei City, Hsinchu County, Taiwan
Manufacturer:	Global Aiptek Corporation
Address of Manufacturer:	5F, No. 550, Xianzheng 2nd Rd., Zhubei City, Hsinchu County, Taiwan
Factory:	Shenzhen ACT Industrial Co., Ltd
Address of Factory:	1~8F, No. 5 Building, Beishan Industrial Park, No. 146 Beishan Avenue, Yantian District, Shenzhen City

6.2 General Description of EUT

Product Name:	L400, S400, S500, TS-400, IP400	G:
Model No.(EUT):	L400 PAD	
Trade Mark:	AIPTEK/iBeamBLOCK/hp	
EUT Supports Radios application:	WIFI 2.4GHz 802.11b/g/n(HT20), BT4.0 Dual mode	
AC adapter:	MODEL: DSA-42PFB-12 1 120350; Input: 100-240V~50/60Hz, 1.2A; Output: 12V==-3.5A	Cil
Sample Received Date:	Dec. 16, 2016	tain.
Sample tested Date:	Dec. 16, 2016 to Jun. 23, 2017	

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	~0~
Channel Separation:	5MHz	(30)
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)	
Sample Type:	mobile production	
Test Power Grade:	N/A	
Test Software of EUT:	N/A	
Antenna Type and Gain:	PIFA Antenna and -4.5dBi	
Test Voltage:	AC 120V/60Hz	-0-

Operation	Frequency ea	ch of channe	el(802.11b/g/n l	HT20)	(0,	/	(0,)
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	6	

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associate	ed equipment name	Manufacture	model	Supplied by
AE1	Projector	Global Aiptek Corporation	L400	Client
AE2	Mobile Power	Global Aiptek Corporation	PB-TS02	Client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE neuver conducted	0.31dB (30MHz-1GHz)
2 RF power, conducted	0.57dB (1GHz-18GHz)	
3 Radiated Spuriou	Dedicted Courieus amission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
(()	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 9 of 56

7 Equipment List

	RF test system												
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)								
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018								
Communication test set test set Agilent		N4010A	MY51400230	03-14-2017	03-13-2018								
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018								
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018								
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018								
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018								
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018								
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018								
RF control unit	RF control unit JS Tonscend		158060006	03-14-2017	03-13-2018								

	Coi	nducted distur	pance Test			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018 06-12-2018 06-12-2018	
LISN	R&S	ENV216	100098	06-13-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017		
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018	
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018	

	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2017	05-22-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

Reference documents for testing:

	No.	Identity	Document Title
Ī	1	FCC Part15C	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

			7.073
Test method	Test item	Verdict	Note
ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
ANSI C63.10	Antenna Requirement	PASS	Appendix F)
ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
	ANSI C63.10/ KDB 558074 ANSI C63.10/ ANSI C63.10 ANSI C63.10	ANSI C63.10/ KDB 558074 ANSI C63.10/ ANSI C63.10/ ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) Radiated Spurious	ANSI C63.10/ KDB 558074 ANSI C63.10/ ANSI C63.10/ ANSI C63.10 ARE Conducted Spurious Emissions PASS ANSI C63.10 ANSI C63.10 ANSI C63.10 ARE Conducted Spurious PASS ANSI C63.10 ANSI C63.10 ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) ANSI C63.10 Radiated Spurious PASS

Appendix A): Conducted Peak Output Power

- Test Procedure

 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

Troodit Taxoto	L-79.1	7 20 71	1 35 31
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	21.50	PASS
11B	MCH	21.29	PASS
11B	HCH	21.20	PASS
11G	LCH	22.84	PASS
11G	MCH	23.22	PASS
11G	HCH	23.06	PASS
11N20SISO	LCH	21.94	PASS
11N20SISO	MCH	21.96	PASS
11N20SISO	НСН	21.76	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.324	13.800	PASS	/°5
11B	мсн	8.296	13.773	PASS	(6)
11B	НСН	9.546	13.826	PASS	
11G	LCH	16.45	16.437	PASS	
11G	MCH	16.42	16.417	PASS	Peak
11G	НСН	16.40	16.424	PASS	detector
11N20SISO	LCH	17.70	17.666	PASS	
11N20SISO	MCH	17.68	17.666	PASS	
11N20SISO	HCH	17.70	17.680	PASS	(3)

Test Graph

Page 14 of 56

Page 15 of 56

Page 16 of 56

Appendix C): Band-edge for RF Conducted Emissions Result Table

Mode	Mode Channel Carrier Power		Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
11B	LCH	6.487	-45.829	-23.51	PASS	
11B	нсн	6.922	-46.092	-23.08	PASS	
11G	LCH	3.807	-42.532	-26.19	PASS	
11G	нсн	3.354	-38.060	-26.65	PASS	
11N20SISO	LCH	2.738	-43.627	-27.26	PASS	
11N20SISO	нсн	2.114	-42.958	-27.89	PASS	

Test Graph

Page 19 of 56

Appendix D): RF Conducted Spurious Emissions

Result Table

	9.	A	7 43	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	7.194	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	7.002	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	6.792	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	3.971	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	3.855	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	3.368	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	2.72	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	мсн	2.661	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	HCH	2.391	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Page 26 of 56

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-8.119	8	PASS
11B	MCH	-8.291	8	PASS
11B	HCH	-8.397	8	PASS
11G	LCH	-10.336	8	PASS
11G	MCH	-11.467	8	PASS
11G	HCH	-11.144	8	PASS
11N20SISO	LCH	-12.173	8	PASS
11N20SISO	MCH	-12.615	8	PASS
11N20SISO	НСН	-12.456	8	PASS

Test Graph

Page 28 of 56

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the inner shell and no consideration of replacement. The best case gain of the antenna is -4.5dBi.

Test Procedure:	Test frequency range :150KH: 1)The mains terminal disturba		conducted in a shielded	d room.
	2) The EUT was connected Stabilization Network) wh power cables of all other which was bonded to the othe unit being measured. A power cables to a single L exceeded. 3) The tabletop EUT was placed.	to AC power source lich provides a 50Ω units of the EUT w ground reference plat A multiple socket out ISN provided the rati	through a LISN 1 (Lin /50 μ H + 5 Ω linear impere connected to a sence in the same way as the strip was used to cong of the LISN was not	e Impedance bedance. The cond LISN 2 the LISN 1 for nnect multiple
	reference plane. And for	floor-standing arrang		
	horizontal ground reference 4) The test was performed wishall be 0.4 m from the reference plane was bond was placed 0.8 m from the reference plane for LISN distance was between the of the EUT and associated	th a vertical ground revertical ground reled to the horizontal become boundary of the under mounted on top of closest points of the	ference plane. The ver- ground reference plane it under test and bonde of the ground reference to LISN 1 and the EUT.	ertical ground e. The LISN 1 d to a ground e plane. This All other units
0	 In order to find the maximu the interface cables must measurement. 			
Limit:				
	Frequency range (MHz)		(dBµV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* The limit decreases linearly to 0.50 MHz. NOTE: The lower limit is appl	-		nge 0.15 MHz
leasurement Data		200		
	vas performed on the live and neut			
	erage measurement were perform	ed at the frequencies	s with maximized peak of	emission wer
letected.				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 33 of 56

Live line:

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
_	1	0.1500	45.87	41.28	23.52	9.77	55.64	51.05	33.29	65.99	55.99	-14.94	-22.70	Р	
	2	0.2100	40.93	34.24	11.99	9.72	50.65	43.96	21.71	63.20	53.20	-19.24	-31.49	Р	
_	3	0.3780	36.13	31.90	20.61	9.76	45.89	41.66	30.37	58.32	48.32	-16.66	-17.95	Р	
	4	0.6620	34.37	30.39	15.43	9.75	44.12	40.14	25.18	56.00	46.00	-15.86	-20.82	Р	
	5	10.4899	29.11	21.85	14.02	9.90	39.01	31.75	23.92	60.00	50.00	-28.25	-26.08	Р	
_	6	17.6059	33.69	25.86	18.03	10.09	43.78	35.95	28.12	60.00	50.00	-24.05	-21.88	Р	

Page 34 of 56

Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	46.85	40.71	19.92	9.77	56.62	50.48	29.69	65.99	55.99	-15.51	-26.30	Р	
2	0.2540	38.11	29.82	16.05	9.75	47.86	39.57	25.80	61.62	51.62	-22.05	-25.82	Р	
3	0.3180	36.50	29.83	16.91	9.77	46.27	39.60	26.68	59.76	49.76	-20.16	-23.08	Р	
4	0.3860	36.45	31.77	20.88	9.75	46.20	41.52	30.63	58.15	48.15	-16.63	-17.52	Р	
5	0.8780	34.68	30.91	15.51	9.75	44.43	40.66	25.26	56.00	46.00	-15.34	-20.74	Р	
6	1.4780	33.62	27.61	15.88	9.67	43.29	37.28	25.55	56.00	46.00	-18.72	-20.45	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	Detector RBW		Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Al 4011-	Peak 1MHz Peak 1MHz		3MHz	Peak	
	Above 1GHz			10Hz	Average	је
Fest Procedure:	Below 1GHz test procedu a. The EUT was placed o at a 3 meter semi-anec determine the position	n the top of a rot hoic camber. Th	e table wa			
	 b. The EUT was set 3 me was mounted on the to c. The antenna height is a determine the maximur polarizations of the antena was tuned was turned from 0 degree. The test-receiver system Bandwidth with Maximus for Place a marker at the effrequency to show combands. Save the spectre for lowest and highest of Above 1GHz test procedure. 	o of a variable-heraried from one ran value of the fier on a reset to not one of the fier of the fier of the from the fr	eight ante neter to for ld strength nake the rwas arrand meter to ees to find ak Detect ed band of easure any	nna tower. bur meters n. Both hor neasurement ged to its 4 meters the maxin Function a	above the gro rizontal and ve- ent. worst case and and the rotatal num reading. nd Specified the transmit is in the restric	und tertical
	g. Different between abov to fully Anechoic Cham	e is the test site,	table 0.8	meter to 1		
	18GHz the distance is h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu	1 meter and table west channel , th ments are perfor d found the X axi	e Highest med in X, s position	channel Y, Z axis p ing which i	t is worse cas	e.
.imit:	h. Test the EUT in the low i. The radiation measured Transmitting mode, and	1 meter and table west channel , th ments are perfor d found the X axi	e Highest med in X, s position encies me	channel Y, Z axis p ing which i	t is worse cas	e.
imit:	h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu	1 meter and table vest channel, the ments are perfored found the X axines until all frequents	e Highest med in X, s position encies me	channel Y, Z axis p ing which i easured wa	t is worse case as complete.	e.
imit:	h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency	1 meter and table vest channel , the ments are perform found the X axines until all freques Limit (dBµV/r	e Highest med in X, s position encies me	channel Y, Z axis p ing which i easured wa Rei Quasi-pe	t is worse cases complete.	е.
imit:	h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	1 meter and table vest channel , the ments are perform found the X axines until all frequency Limit (dBµV/r 40.0	e Highest med in X, s position encies me	channel Y, Z axis p ing which i easured wa Rei Quasi-pe	t is worse cases complete. mark eak Value	e.
Limit:	h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	1 meter and table vest channel , the ments are perform found the X axines until all frequencies (dBµV/r 40.0 43.5	e Highest med in X, s position encies me m @3m)	channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	t is worse cases complete. mark eak Value eak Value	e.
imit:	h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	1 meter and table vest channel , the ments are perform found the X axines until all frequency Limit (dBµV/r 40.0 43.5 46.0	e Highest med in X, s position encies me m @3m)	channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	t is worse cases complete. mark eak Value eak Value eak Value	

Worse case mode:		802.11b (11Mbps)					
	Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak			

Worse case mode:	802.11b (11Mbps)						
Frequency: 2390.0MHz	Test channel: Lowest Pola	rization: Vertical	Remark: Peak				

Worse case mode:	802.11b (11Mbps)	(6.)	(6,
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)	(6.)	(6,)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average	

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	75
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark:Average

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	7:5
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Page 45 of 56

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

- 1	١İـ	\sim	1	٠	•
- 1	_11	ш	и		

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	700	30
1.705MHz-30MHz	30	-	(32)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

Test mode: Transmitting Vertical

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dR/m	dB	dRuV	dRuV/m	dRuV/m	dB		
	11112	ub/ III	ub	abav	ubuv/ III	ubuv/ III	ub		
4	34 055	40.00	0.00	47.54	20 50	40.00	44 40		
1	31.955	10.99	0.08	17.51	28.58	40.00	-11.42	Vertical	
2	42.451	12.64	0.07	13.51	26.22	40.00	-13.78	Vertical	
3	64.659	10.33	0.23	14.66	25.22	40.00	-14.78	Vertical	
4	131.758	8.86	0.60	20.79	30.25	43.50	-13.25	Vertical	
5	247.682	11.96	1.33	24.49	37.78	46.00	-8.22	Vertical	
6 pp	444.851	16.22	1.46	24.84	42.52	46.00	-3.48	Vertical	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	50.586	13.18	0.12	5.80	19.10	40.00	-20.90	Horizontal	
2	105.272	10.68	0.59	10.32	21.59	43.50	-21.91	Horizontal	
3	247.682	11.96	1.33	17.05	30.34	46.00	-15.66	Horizontal	
4	370.702	14.93	1.32	25.20	41.45	46.00	-4.55	Horizontal	
5 рр	519.065	17.51	1.53	22.53	41.57	46.00	-4.43	Horizontal	
		20.97	2.46	17.86	41.29	46.00	-4.71	Horizontal	

Page 49 of 56

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Po	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1630.264	31.11	2.94	43.85	56.96	47.16	74.00	-26.84	Pass	Horizontal
1851.542	31.48	3.12	43.63	53.98	44.95	74.00	-29.05	Pass	Horizontal
4824.000	34.73	5.10	44.60	52.84	48.07	74.00	-25.93	Pass	Horizontal
6594.518	36.21	6.84	44.56	46.66	45.15	74.00	-28.85	Pass	Horizontal
7236.000	36.42	6.69	44.80	42.48	40.79	74.00	-33.21	Pass	Horizontal
9648.000	37.93	7.70	45.57	47.93	47.99	74.00	-26.01	Pass	Horizontal
1333.284	30.53	2.66	44.20	53.49	42.48	74.00	-31.52	Pass	Vertical
1630.264	31.11	2.94	43.85	53.48	43.68	74.00	-30.32	Pass	Vertical
4824.000	34.73	5.10	44.60	44.31	39.54	74.00	-34.46	Pass	Vertical
6445.156	36.13	6.98	44.55	45.33	43.89	74.00	-30.11	Pass	Vertical
7236.000	36.42	6.69	44.80	47.63	45.94	74.00	-28.06	Pass	Vertical
9648.000	37.93	7.70	45.57	43.73	43.79	74.00	-30.21	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1289.885	30.43	2.62	44.26	47.96	36.75	74.00	-37.25	Pass	Horizontal
1818.842	31.43	3.10	43.66	48.23	39.10	74.00	-34.90	Pass	Horizontal
4874.000	34.84	5.09	44.60	45.62	40.95	74.00	-33.05	Pass	Horizontal
5850.919	35.79	7.10	44.51	47.13	45.51	74.00	-28.49	Pass	Horizontal
7311.000	36.43	6.76	44.86	44.89	43.22	74.00	-30.78	Pass	Horizontal
9748.000	38.03	7.61	45.55	43.54	43.63	74.00	-30.37	Pass	Horizontal
1107.186	29.99	2.40	44.52	47.57	35.44	74.00	-38.56	Pass	Vertical
1529.749	30.93	2.85	43.96	47.51	37.33	74.00	-36.67	Pass	Vertical
4874.000	34.84	5.09	44.60	47.92	43.25	74.00	-30.75	Pass	Vertical
5880.782	35.81	7.17	44.51	47.04	45.51	74.00	-28.49	Pass	Vertical
7311.000	36.43	6.76	44.86	46.51	44.84	74.00	-29.16	Pass	Vertical
9748.000	38.03	7.61	45.55	43.64	43.73	74.00	-30.27	Pass	Vertical

Page 50 of 56

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	(dBµV/m) Limit (dB)		Result	Antenna Polaxis
1235.257	30.31	2.56	44.33	47.52	36.06	74.00	-37.94	Pass	Horizontal
1823.477	31.43	3.10	43.66	47.36	38.23	74.00	-35.77	Pass	Horizontal
4924.000	34.94	5.07	44.60	44.30	39.71	74.00	-34.29	Pass	Horizontal
6445.156	36.13	6.98	44.55	46.29	44.85	74.00	-29.15	Pass	Horizontal
7386.000	36.44	6.83	44.92	43.12	41.47	74.00	-32.53	Pass	Horizontal
9848.000	38.14	7.53	45.53	44.99	45.13	74.00	-28.87	Pass	Horizontal
1251.079	30.35	2.57	44.31	47.06	35.67	74.00	-38.33	Pass	Vertical
1491.300	30.85	2.82	44.01	47.49	37.15	74.00	-36.85	Pass	Vertical
4924.000	34.94	5.07	44.60	44.41	39.82	74.00	-34.18	Pass	Vertical
6299.178	36.06	7.13	44.53	46.48	45.14	74.00	-28.86	Pass	Vertical
7386.000	36.44	6.83	44.92	44.08	42.43	74.00	-31.57	Pass	Vertical
9848.000	38.14	7.53	45.53	43.79	43.93	74.00	-30.07	Pass	Vertical

Test mode:	802.11g(6M	1bps)	Test Freq	uency: 24	12MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1159.096	30.13	2.47	44.44	48.42	36.58	74.00	-37.42	Pass	Horizontal
1557.252	30.98	2.88	43.93	49.70	39.63	74.00	-34.37	Pass	Horizontal
4824.000	34.73	5.10	44.60	43.15	38.38	74.00	-35.62	Pass	Horizontal
5850.919	35.79	7.10	44.51	45.24	43.62	74.00	-30.38	Pass	Horizontal
7236.000	36.42	6.69	44.80	44.17	42.48	74.00	-31.52	Pass	Horizontal
9648.000	37.93	7.70	45.57	47.94	48.00	74.00	-26.00	Pass	Horizontal
1406.496	30.68	2.74	44.11	59.13	48.44	74.00	-25.56	Pass	Vertical
1630.264	31.11	2.94	43.85	58.04	48.24	74.00	-25.76	Pass	Vertical
4824.000	34.73	5.10	44.60	47.56	42.79	74.00	-31.21	Pass	Vertical
5747.586	35.71	6.87	44.52	46.37	44.43	74.00	-29.57	Pass	Vertical
7236.000	36.42	6.69	44.80	47.78	46.09	74.00	-27.91	Pass	Vertical
9648.000	37.93	7.70	45.57	50.15	50.21	74.00	-23.79	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Fred	quency: 24	37MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1557.252	30.98	2.88	43.93	52.85	42.78	74.00	-31.22	Pass	Horizontal
4149.351	33.18	5.37	44.60	45.91	39.86	74.00	-34.14	Pass	Horizontal
4874.000	34.84	5.09	44.60	49.53	44.86	74.00	-29.14	Pass	Horizontal
6017.064	35.91	7.41	44.50	44.54	43.36	74.00	-30.64	Pass	Horizontal
7311.000	36.43	6.76	44.86	42.91	41.24	74.00	-32.76	Pass	Horizontal
9748.000	38.03	7.61	45.55	44.02	44.11	74.00	-29.89	Pass	Horizontal
1406.496	30.68	2.74	44.11	59.48	48.79	74.00	-25.21	Pass	Vertical
1706.700	31.24	3.01	43.77	56.79	47.27	74.00	-26.73	Pass	Vertical
4874.000	34.84	5.09	44.60	52.71	48.04	74.00	-25.96	Pass	Vertical
5732.974	35.70	6.83	44.52	46.15	44.16	74.00	-29.84	Pass	Vertical
7311.000	36.43	6.76	44.86	50.48	48.81	74.00	-25.19	Pass	Vertical
9748.000	38.03	7.61	45.55	47.36	47.45	74.00	-26.55	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	requency: 2462MHz		Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1630.264	31.11	2.94	43.85	52.06	42.26	74.00	-31.74	Pass	Horizontal
1851.542	31.48	3.12	43.63	51.71	42.68	74.00	-31.32	Pass	Horizontal
4924.000	34.94	5.07	44.60	50.41	45.82	74.00	-28.18	Pass	Horizontal
6428.771	36.12	7.00	44.54	45.49	44.07	74.00	-29.93	Pass	Horizontal
7386.000	36.44	6.83	44.92	45.98	44.33	74.00	-29.67	Pass	Horizontal
9848.000	38.14	7.53	45.53	42.66	42.80	74.00	-31.20	Pass	Horizontal
1483.727	30.84	2.81	44.02	53.07	42.70	74.00	-31.30	Pass	Vertical
1851.542	31.48	3.12	43.63	51.86	42.83	74.00	-31.17	Pass	Vertical
4924.000	34.94	5.07	44.60	47.54	42.95	74.00	-31.05	Pass	Vertical
5956.109	35.87	7.33	44.50	45.51	44.21	74.00	-29.79	Pass	Vertical
7386.000	36.44	6.83	44.92	48.94	47.29	74.00	-26.71	Pass	Vertical
9848.000	38.14	7.53	45.53	46.22	46.36	74.00	-27.64	Pass	Vertical

Page 52 of 56

Test mode:	802.11n(HT	Γ20)(6.5N	1bps)	Test Frequ	ency: 2412M	lHz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lin	_	Over Limit (dB)	Result	Antenna Polaxis
1483.727	30.84	2.81	44.02	56.77	46.40	74.	00	-27.60	Pass	Horizontal
1851.542	31.48	3.12	43.63	57.69	48.66	74.	00	-25.34	Pass	Horizontal
4824.000	34.73	5.10	44.60	43.70	38.93	74.	00	-35.07	Pass	Horizontal
5880.782	35.81	7.17	44.51	46.00	44.47	74.	00	-29.53	Pass	Horizontal
7236.000	36.42	6.69	44.80	45.37	43.68	74.	00	-30.32	Pass	Horizontal
9648.000	37.93	7.70	45.57	44.55	44.61	74.	00	-29.39	Pass	Horizontal
1479.955	30.83	2.81	44.02	55.29	44.91	74.	00	-29.09	Pass	Vertical
1732.967	31.29	3.03	43.75	49.37	39.94	74.	00	-34.06	Pass	Vertical
4824.000	34.73	5.10	44.60	43.95	39.18	74.	00	-34.82	Pass	Vertical
5880.782	35.81	7.17	44.51	46.10	44.57	74.	00	-29.43	Pass	Vertical
7236.000	36.42	6.69	44.80	44.19	42.50	74.	00	-31.50	Pass	Vertical
9648.000	37.93	7.70	45.57	48.60	48.66	74.	00	-25.34	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2437M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lim (dBµ\		Over Limit (dB)	Result	Antenna Polaxis
1506.563	30.88	2.83	43.99	47.16	36.88	74.0	00	-37.12	Pass	Horizontal
1791.273	31.38	3.08	43.69	47.00	37.77	74.0	00	-36.23	Pass	Horizontal
4874.000	34.84	5.09	44.60	48.23	43.56	74.0	00	-30.44	Pass	Horizontal
6331.329	36.07	7.10	44.53	46.36	45.00	74.0	00	-29.00	Pass	Horizontal
7311.000	36.43	6.76	44.86	44.97	43.30	74.0	00	-30.70	Pass	Horizontal
9748.000	38.03	7.61	45.55	47.34	47.43	74.0	00	-26.57	Pass	Horizontal
1371.145	30.61	2.70	44.15	48.21	37.37	74.0	00	-36.63	Pass	Vertical
1851.542	31.48	3.12	43.63	51.92	42.89	74.0	00	-31.11	Pass	Vertical
4874.000	34.84	5.09	44.60	42.59	37.92	74.0	00	-36.08	Pass	Vertical
5865.832	35.80	7.13	44.51	45.57	43.99	74.0	00	-30.01	Pass	Vertical
7311.000	36.43	6.76	44.86	42.74	41.07	74.0	00	-32.93	Pass	Vertical
9748.000	38.03	7.61	45.55	45.09	45.18	74.0	00	-28.82	Pass	Vertical

Page 53 of 56

Test mode:	802.11n(HT	T20)(6.5N	(lbps)	Test Freque	ency: 2462M	Hz	Rema	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	1	nit V/m)	Over Limit (dB)	Result	Antenna Polaxis	
1479.955	30.83	2.81	44.02	51.72	41.34	74.	.00	-32.66	Pass	Horizontal	
3192.366	33.43	5.58	44.68	53.13	47.46	74.	.00	-26.54	Pass	Horizontal	
4924.000	34.94	5.07	44.60	54.80	50.21	74.	.00	-23.79	Pass	Horizontal	
5776.922	35.73	6.93	44.52	46.49	44.63	74.	.00	-29.37	Pass	Horizontal	
7386.000	36.44	6.83	44.92	52.01	50.36	74.	.00	-23.64	Pass	Horizontal	
9848.000	38.14	7.53	45.53	46.43	46.57	74.	.00	-27.43	Pass	Horizontal	
1529.749	30.93	2.85	43.96	49.98	39.80	74.	.00	-34.20	Pass	Vertical	
4245.509	33.41	5.33	44.60	47.91	42.05	74.	.00	-31.95	Pass	Vertical	
4924.000	34.94	5.07	44.60	47.21	42.62	74.	.00	-31.38	Pass	Vertical	
5880.782	35.81	7.17	44.51	46.61	45.08	74.	.00	-28.92	Pass	Vertical	
7386.000	36.44	6.83	44.92	47.82	46.17	74.	.00	-27.83	Pass	Vertical	
9848.000	38.14	7.53	45.53	43.92	44.06	74.	.00	-29.94	Pass	Vertical	

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading Correct Factor
- Correct Factor = Preamplifier Factor Antenna Factor Cable Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: L400 PAD

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 55 of 56

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32I00318001 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

