1、利用 1986 年全国 29 个省市自治区的农作物播种面积 (x, 万亩)和产值 (y 亿元)(data1)。建立产值的恰当回归模型。

(1)对变量进行单位根检验

首先看X、Y的折线图,发现两个变量都是有**很小的截距,无趋势**,ADF检验两个序列都是平稳的,ADF

检验结果如下:

Null Hypothesis: X has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=6)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.488885	0.0014
Test critical values:	1% level	-3.689194	
	5% level	-2.971853	
	10% level	-2.625121	

Null Hypothesis: Y has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=6)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-4.102179 -3.689194 -2.971853 -2.625121	0.0037

(2)对X、Y进行OLS估计,结果如下

Dependent Variable: Y Method: Least Squares Date: 05/31/17 Time: 10:31

Sample: 129

Included observations: 29

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X	-5.661019 0.012309	8.924156 0.000989	-0.634348 12.44872	0.5312 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.851624 0.846129 27.06008 19770.70 -135.7568 154.9706 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	86.14828 68.98436 9.500468 9.594765 9.530001 2.170375

发现常数项不显著,进一步修正

Dependent Variable: Y Method: Least Squares Date: 05/31/17 Time: 10:32

Sample: 1 29

Included observations: 29

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Х	0.011790	0.000551	21.40728	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.849413 0.849413 26.76975 20065.35 -135.9713	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn	t var erion on	86.14828 68.98436 9.446296 9.493445 9.461063
Durbin-Watson stat	2.096316			

(3)结果表明R方0.85, DW值接近2,拟合效果较好。

结果为 Y= 0.011790*X

2、考虑 1962 年 1 月至 1999 年 12 月的 CRSP 指数的月对数收益率 (data2.xlsx)

①首先进行单位根检验

Null Hypothesis: CRSP has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=17)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-16.40178	0.0000
Test critical values:	1% level	-2.570054	
	5% level	-1.941521	
	10% level	-1.616232	

结果表明该序列是平稳的

②接下来看该序列的自相关系数和偏自相关系数

Sample: 1962M01 1 Included observation						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5 6 7	-0.038 -0.016 0.009 -0.009 -0.056	-0.065 -0.022 -0.002 0.012 -0.016 -0.053	23.518 23.564 24.234 24.349 24.388 24.424 25.862 31.272 31.292 31.423	0.000 0.000 0.000 0.001
		11 12	0.040 0.104	0.032 0.095	32.177 37.302	0.001 0.000

1)给该序列建立一个 AR 模型,并进行1步和2步预测

根据相关自相关系数和偏自相关系数,首先建立AR(1)模型,结果如下:

Dependent Variable: CRSP Method: Least Squares Date: 05/31/17 Time: 10:42

Sample (adjusted): 1962M02 1999M12 Included observations: 455 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	1.069163 0.227095	0.331516 0.045829	3.225074 4.955257	0.0014 0.0000
R-squared	0.051417	Mean depende	nt var	1.063580
Adjusted R-squared	0.049323	S.D. dependent var		5.605513
S.E. of regression	5.465524	Akaike info criterion		6.239183
Sum squared resid	13531.99	Schwarz criterion		6.257294
Log likelihood	-1417.414	Hannan-Quinn	criter.	6.246318

F-statistic Prob(F-statistic)	24.55457 0.000001	Durbin-Watson stat	1.968754
Inverted AR Roots	.23		

然后再看 AR (2)模型的结果

Dependent Variable: CRSP Method: Least Squares Date: 05/31/17 Time: 10:43

Sample (adjusted): 1962M03 1999M12 Included observations: 454 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2)	1.063964 0.241579 -0.064260	0.311843 0.047036 0.047121	3.411856 5.136077 -1.363735	0.0007 0.0000 0.1733
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.055353 0.051164 5.466211 13475.64 -1413.851 13.21356 0.000003	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.062548 5.611654 6.241635 6.268847 6.252356 2.000597
Inverted AR Roots	.1222i	.12+.22i		

比较发现 AR (1)的 AIC 更小,因此选择,AR (1)模型进行预测

①当进行一步预测时,为了提高预测的准确率,采用静态预测的方式,结果如下:

C	KSPF Workfile:	DAIA
	Object Propertie	s][Pr
2	2.504593	
	1.254435	
2	2.227537	
}	-0.154461	
ļ.	0.785030	
j	2.651750	
j	1.384561	
	1.672517	
}	0.975336	
)	0.115781	
)	0.483448	
	0.785030	
2	2.738500	
	2.609738	
2	NA	
}	NA	
ļ.	NA	
j	NA	

②两步预测时,采用动态预测的方式,预测结果两步结果为:

	- 19	1999M11	8.420000	
104 52	19	1999M12	7.853000	
时,采	19	2000M01	2.609738	
	19	2000M02	1.419019	
列建立-	19	2000M03	NA	
	10	000001104		

2)给该序列建立一个 MA 模型,并进行1步和2步预测

首先估计 MA(1)与 MA(2)模型,并比较 AIC与 SC 准则,发现 MA(1)更合适,结果如下

Dependent Variable: CRSP Method: Least Squares Date: 05/31/17 Time: 10:57

Sample (adjusted): 1962M01 1999M12 Included observations: 456 after adjustments Convergence achieved after 5 iterations

MA Backcast: 1961M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	1.061394 0.239034	0.316180 0.045587	3.356929 5.243483	0.0009 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054539 0.052457 5.451166 13490.71 -1419.332 26.18910 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	1.059511 5.600024 6.233913 6.251994 6.241035 1.995328
Inverted MA Roots	24			

Dependent Variable: CRSP Method: Least Squares Date: 05/31/17 Time: 10:57

Sample (adjusted): 1962M01 1999M12 Included observations: 456 after adjustments Convergence achieved after 7 iterations MA Backcast: 1961M11 1961M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) MA(2)	1.061563 0.240879 0.006423	0.318631 0.047026 0.047125	3.331634 5.122303 0.136301	0.0009 0.0000 0.8916
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054575 0.050401 5.457075 13490.19 -1419.323 13.07491 0.000003	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	1.059511 5.600024 6.238260 6.265382 6.248944 1.998591

①采用静态预测的方法,一步预测结果为 2000M1 2.252708402484566

②采用动态预测的方法两步预测结果为

1999M12	7.853000	
2000M01	2.252708	
2000M02	1.061394	
2000M03	NA	
2000M04	NΙΔ	

-.03

3)比较所拟合的 AR 和 MA 模型

从 AIC 和 SC 的比较结果来看 MA (1)模型的拟合结果更好

Dependent Variable: CRSP Method: Least Squares Date: 05/31/17 Time: 10:42

Sample (adjusted): 1962M02 1999M12 Included observations: 455 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	1.069163 0.227095	0.331516 0.045829	3.225074 4.955257	0.0014 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.051417 0.049323 5.465524 13531.99 -1417.414 24.55457 0.000001	Mean depende S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn Durbin-Watson	t var erion on criter.	1.063580 5.605513 6.239183 6.257294 6.246318 1.968754
Inverted AR Roots	.23			

Dependent Variable: CRSP Method: Least Squares Date: 05/31/17 Time: 10:57

Sample (adjusted): 1962M01 1999M12 Included observations: 456 after adjustments Convergence achieved after 5 iterations

MA Backcast: 1961M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	1.061394 0.239034	0.316180 0.045587	3.356929 5.243483	0.0009 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.054539 0.052457 5.451166 13490.71 -1419.332 26.18910	Mean depende S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn Durbin-Watson	t var erion on criter.	1.059511 5.600024 6.233913 6.251994 6.241035 1.995328

Prob(F-statistic)	0.000000	
Inverted MA Roots	24	

3、利用固定期限为 1 年和 3 年的美国国库券月度数据 (data3)

首先对原始数据进行单位根检验,都是有截距有趋势的序列,检验下来均不平稳,然后进行一阶差分,发现一阶差分均为平稳序列,结果如下

Null Hypothesis: DONEYEAR has a unit root

Exogenous: None

Lag Length: 5 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-12.25176	0.0000
Test critical values:	1% level	-2.568790	
	5% level	-1.941347	
	10% level	-1.616347	

Null Hypothesis: DTHREEYEAR has a unit root

Exogenous: None

Lag Length: 5 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-11.17235	0.0000
Test critical values:	1% level	-2.568790	
	5% level	-1.941347	
	10% level	-1.616347	

1)为该二元利率序列识别一个 VAR 模型

比较多种准则,发现滞后6阶的效果最好,因此对d(oneyear)与d(threeyear)建立VAR(6)的模型,比较结果如下:

VAR Lag Order Selection Criteria

Endogenous variables: DONEYEAR DTHREEYEAR

Exogenous variables: C
Date: 05/31/17 Time: 11:17
Sample: 1953M04 2004M03
Included observations: 605

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-11.70602	NA	0.003587	0.045309	0.059872	0.050976
1	41.90975	106.6998	0.003044	-0.118710	-0.075022	-0.101709
2	67.34063	50.44140	0.002836	-0.189556	-0.116742*	-0.161221
3	74.02318	13.21047	0.002811	-0.198424	-0.096485	-0.158756
4	79.69481	11.17452	0.002796	-0.203950	-0.072885	-0.152948
5	87.02850	14.40069	0.002765	-0.214970	-0.054780	-0.152635
6	110.7653	46.45359*	0.002590*	-0.280216*	-0.090900	-0.206547*

模型结果如下:

Vector Autoregression Estimates
Date: 05/31/17 Time: 11:20
Sample (adjusted): 1953M11 2004M03
Included observations: 605 after adjustments
Standard errors in () & t-statistics in []

()		
	DONEYEAR	DTHREEYEAR
DONEYEAR(-1)	0.178439 (0.10658) [1.67419]	-0.023707 (0.08998) [-0.26347]
DONEYEAR(-2)	-0.169211 (0.10797) [-1.56719]	-0.006431 (0.09115) [-0.07056]
DONEYEAR(-3)	-0.048573 (0.10862) [-0.44719]	-0.149605 (0.09170) [-1.63151]
DONEYEAR(-4)	-0.156375 (0.10892) [-1.43563]	-0.024327 (0.09196) [-0.26456]
DONEYEAR(-5)	0.168588 (0.10828) [1.55690]	0.206070 (0.09142) [2.25422]
DONEYEAR(-6)	-0.458925 (0.10549) [-4.35048]	-0.356966 (0.08905) [-4.00839]
DTHREEYEAR(-1)	0.391057 (0.12733) [3.07117]	0.501498 (0.10750) [4.66531]
DTHREEYEAR(-2)	-0.155110 (0.12989) [-1.19417]	-0.293548 (0.10965) [-2.67704]
DTHREEYEAR(-3)	0.160033 (0.13139) [1.21799]	0.267169 (0.11092) [2.40861]
DTHREEYEAR(-4)	0.005243 (0.13157) [0.03985]	-0.090806 (0.11108) [-0.81751]
DTHREEYEAR(-5)	0.055762 (0.13013) [0.42853]	-0.062063 (0.10985) [-0.56496]
DTHREEYEAR(-6)	0.261498 (0.12813) [2.04087]	0.214788 (0.10817) [1.98566]
С	-0.001545 (0.01596)	-0.000785 (0.01347)

	[-0.09678]	[-0.05828]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.264731 0.249827 91.19853 0.392494 17.76227 -286.0704 0.988663 1.083320 -0.000992 0.453161	0.241883 0.226516 64.99699 0.331349 15.74020 -183.6143 0.649965 0.744623 -0.000380 0.376756
Determinant resid covariand Determinant resid covariand Log likelihood Akaike information criterion Schwarz criterion		0.002483 0.002377 110.7653 -0.280216 -0.090900

2) 计算所拟合的 VAR 模型的广义脉冲响应函数

Response to Cholesky One S.D. Innovations ± 2 S.E.

3)检验序列是否存在协整关系,如果存在建立 VECM 模型

对滞后5阶进行协整检验,发现具有协整关系

Date: 01/01/09 Time: 02:42

Sample (adjusted): 1953M11 2004M03 Included observations: 605 after adjustments Trend assumption: Linear deterministic trend

Series: DONEYEAR DTHREEYEAR Lags interval (in first differences): 1 to 5

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.222001	252.6715	15.49471	0.0001
At most 1 *	0.153469	100.7984	3.841466	0.0000

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

VCEM 模型

Vector Error Correction Estimates Date: 01/01/09 Time: 03:06

Sample (adjusted): 1953M11 2004M03
Included observations: 605 after adjustments
Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1	
DONEYEAR(-1)	1.000000	
DTHREEYEAR(-1)	-0.841748 (0.03688) [-22.8230]	
С	0.001155	
Error Correction:	D(DONEYEAR)	O(DTHREEYEA R)
CointEq1	-2.182227 (0.19065)	-1.351042 (0.16609)

Error Correction:	D(DONEYEAR)	R)
CointEq1	-2.182227 (0.19065) [-11.4460]	-1.351042 (0.16609) [-8.13429]
D(DONEYEAR(-1))	1.209741 (0.18105) [6.68170]	1.111393 (0.15773) [7.04629]
D(DONEYEAR(-2))	0.946322 (0.16601) [5.70033]	0.970171 (0.14462) [6.70822]
D(DONEYEAR(-3))	0.784563 (0.15383) [5.10033]	0.658618 (0.13401) [4.91476]
D(DONEYEAR(-4))	0.524342 (0.12768) [4.10682]	0.485709 (0.11123) [4.36682]
D(DONEYEAR(-5))	0.585996	0.538779

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

	(0.10355) [5.65927]	(0.09021) [5.97274]
D(DTHREEYEAR(-1))	-1.214922 (0.17440) [-6.96622]	-1.305361 (0.15193) [-8.59167]
D(DTHREEYEAR(-2))	-1.217602 (0.16900) [-7.20480]	-1.380815 (0.14723) [-9.37885]
D(DTHREEYEAR(-3))	-0.874403 (0.16857) [-5.18724]	-0.851573 (0.14685) [-5.79889]
D(DTHREEYEAR(-4))	-0.692278 (0.14410) [-4.80426]	-0.689297 (0.12553) [-5.49099]
D(DTHREEYEAR(-5))	-0.477972 (0.12123) [-3.94262]	-0.524517 (0.10561) [-4.96639]
С	0.000288 (0.01623) [0.01778]	-0.000209 (0.01414) [-0.01478]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.408467 0.397494 94.47172 0.399138 37.22545 -296.7371 1.020619 1.107995 0.000595 0.514213	0.361918 0.350081 71.69774 0.347717 30.57700 -213.2951 0.744777 0.832154 0.000132 0.431316
Determinant resid covarian Determinant resid covarian Log likelihood Akaike information criterion Schwarz criterion	ce	0.002923 0.002808 60.36612 -0.113607 0.075709

4、利用美国 10 个州 1963——1992 年的香烟消费量相关变量建立香烟消费模型; Inc (人均香烟消费量的对数); Inp (实际香烟价格的对数); Inpmin (相邻州最低香烟价格的对数); Iny (人均可支配收入); state (州); year (年)。建立恰当模型,并做必要解释。

scalar f2=(s3-s1)/s1/36*260 **88.102** scalar f2c=@qfdist(0.95,36,260) **1.45** scalar f1=(s2-s1)/s1*260/27 **41.58** scalar f1c=@qfdist **1.528**

拒绝 H2、H1 为变系数模型

结果 F2>F2C F1>F1C 接受 H0。表明是变系数模型

比较下来是变系数模型,结果如下:

Dependent Variable: LNC? Method: Pooled Least Squares Date: 01/01/09 Time: 02:55 Sample: 1963 1992 Included observations: 30 Cross-sections included: 10

Total pool (balanced) observations: 300

Variable	Coefficient	Std. Error	t-Statistic	Prob.
_1LNP_1	-0.701180	0.267939	-2.616943	0.0094
_2LNP_2	-0.091003	0.185826	-0.489720	0.6247
_3LNP_3	-0.097547	0.232034	-0.420400	0.6745
_4LNP_4	-0.536980	0.124493	-4.313342	0.0000
_5LNP_5	-0.824444	0.142600	-5.781523	0.0000
_6LNP_6	-0.184485	0.144956	-1.272691	0.2043
_7LNP_7	-0.445522	0.212431	-2.097252	0.0369
_8LNP_8	-0.303695	0.159200	-1.907632	0.0575
_9LNP_9	-0.118377	0.220820	-0.536080	0.5924
_10LNP_10	-1.272055	0.211310	-6.019850	0.0000
_1LNPMIN_1	0.198223	0.291128	0.680880	0.4966
_2LNPMIN_2	-0.560730	0.170181	-3.294901	0.0011
_3LNPMIN_3	-0.291544	0.238901	-1.220358	0.2234
_4LNPMIN_4	-0.219820	0.161649	-1.359863	0.1751
_5LNPMIN_5	0.316402	0.129596	2.441458	0.0153
_6LNPMIN_6	-0.101334	0.139788	-0.724912	0.4692
_7LNPMIN_7	0.097704	0.122081	0.800323	0.4243
_8LNPMIN_8	-0.263209	0.165095	-1.594285	0.1121
_9LNPMIN_9	-0.397214	0.197239	-2.013876	0.0451
_10LNPMIN_10	0.519078	0.230432	2.252625	0.0251
_1LNY_1	0.096100	0.015358	6.257488	0.0000
_2LNY_2	-0.073839	0.015553	-4.747413	0.0000
_3LNY_3	0.126112	0.014177	8.895389	0.0000
_4LNY_4	-0.191033	0.016937	-11.27881	0.0000
_5LNY_5	-0.126899	0.016895	-7.511274	0.0000
_6LNY_6	-0.115773	0.015039	-7.698395	0.0000
_7LNY_7	-0.445767	0.034812	-12.80497	0.0000
_8LNY_8	-0.050021	0.017082	-2.928353	0.0037
_9LNY_9	0.073835	0.014313	5.158513	0.0000
_10LNY_10	-0.006818	0.015468	-0.440774	0.6597
_1C	6.147890	0.410451	14.97837	0.0000
_2C	8.259610	0.354427	23.30409	0.0000

_3C _4C _5C _6C _7C _8C _9C _10C	5.404266 9.837761 8.285885 7.306980 10.60481 7.847737 6.408721 8.088156	0.372865 0.356431 0.345311 0.394960 0.333308 0.408259 0.411689 0.334677	14.49389 27.60071 23.99540 18.50058 31.81686 19.22246 15.56691 24.16708	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.945055 0.936814 0.052078 0.705162 482.2849 114.6676 0.000000	Mean dependent S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn o Durbin-Watson s	var rion n criter.	4.792591 0.207179 -2.948566 -2.454729 -2.750932 0.901352