Channel Pruning via Automatic Structure Search

Charles Kuo

About the paper

- Published in IJCAI in 2020
- Cited by 129 as of today

Channel Pruning via Automatic Structure Search

Mingbao Lin^1 , Rongrong Ji^{1*} , Yuxin $Zhang^1$, Baochang $Zhang^2$, Yongjian Wu^3 , Yonghong $Tian^4$

¹Media Analytics and Computing Laboratory, Department of Artificial Intelligence, School of Informatics, Xiamen University, China

²School of Automation Science and Electrical Engineering, Beihang University, China ³Tencent Youtu Lab, Tencent Technology (Shanghai) Co., Ltd, China

⁴School of Electronics Engineering and Computer Science, Peking University, Beijing, China Imbxmu@stu.xmu.edu.cn, rrji@xmu.edu.cn, yxzhangxmu@163.com, bczhang@buaa.edu.cn, littlekenwu@tencent.com, yhtian@pku.edu.cn

Abstract

Channel pruning is among the predominant approaches to compress deep neural networks. To this end, most existing pruning methods focus on selecting channels (filters) by importance/optimization or regularization based on ruleof-thumb designs, which defects in sub-optimal pruning. In this paper, we propose a new channel pruning method based on artificial bee colony algorithm (ABC), dubbed as ABCPruner, which aims to efficiently find optimal pruned structure, i.e., channel number in each layer, rather than selecting "important" channels as previous works did. To solve the intractably huge combinations of pruned structure for deep networks, we first propose to shrink the combinations where the preserved channels are limited to a specific space, thus the combinations of pruned structure can be significantly

CNNs [Luo et al., 2017; He et al., 2017; He et al., 2018b; He et al., 2018a; Liu et al., 2019a; Wang et al., 2019b].

Channel pruning targets at removing the entire channel in each layer, which is straightforward but challenging because removing channels in one layer might drastically change the input of the next layer. Most cutting-edge practice implements channel pruning by selecting channels (filters) based on rule-of-thumb designs. Existing works follow two mainstreams. The first pursues to identify the most important filter weights in a pre-trained model, which are then inherited by the pruned model as an initialization for the follow-up fine-tuning [Hu et al., 2016] Li et al., 2017, He et al., 2017 He et al., 2018a. It usually performs layer-wise pruning and fine-tuning, or layer-wise weight reconstruction followed by a data-driven and/or iterative optimization to recover model accuracy, both of which however are time-cost. The second typically performs channel pruning based on handcrafted rules to regularize the retraining of a full model followed by pruning

Channel Pruning

- Pruning
 - Compress model size, accelerate speed
 - Remove portion of filters in CNN, while keeping accuracy

After pruning

- Weight pruning: Removes individual neurons in the filters or connections across different layers.
- Channel pruning: Structural model compression approach, remove the entire redundant filters directly.

Motivation

 Existing channel pruning methods: prune channels (filters) based on rule-of- thumb designs. -> not automatic, defects in sub-optimal pruning

Propose ABCPruner

ABCPruner

- Find optimal pruned structure (channel number) in each layer, instead of selecting "important" channels
- Apply **artificial bee colony algorithm** to automatically find optimal pruned structure(channel number).

Implementation

- (a) Initialize structure set
- (b) Randomly assign filter to each structure, then train and measure fitness
- (c) Use ABC algorithm to update structure set and recalculate fitness.

Repeat (b) and (c) for several cycle, then find the optimal pruned structure with best fitness.

Experiment

• Tested on VGGNet, ResNet, GoogLeNet with CIFAR-10 dataset.

		5				—		
Model	Top1-acc	↑↓	Channel	Pruned	FLOPs	Pruned	Parameters	Pruned
VGGNet-16 Base	93.02%	0.00%	4224	0.00%	314.59M	0.00%	14.73M	0.00%
VGGNet-16 ABCPruner-80%	93.08%	0.06%†	1639	61.20%	82.81M	73.68%	1.67M	88.68%
GoogLeNet Base	95.05%	0.00%	7904	0.00%	1534.55M	0.00%	6.17M	0.00%
GoogLeNet ABCPruner-30%	94.84%	0.21%↓	6150	22.19%	513.19M	66.56%	2.46M	60.14%
ResNet-56 Base	93.26%	0.00%	2032	0.00%	127.62M	0.00%	0.85M	0.00%
ResNet-56 ABCPruner-70%	93.23%	0.03%↓	1482	27.07%	58.54M	54.13%	0.39M	54.20%
ResNet-110 Base	93.50%	0.00%	4048	0.00%	257.09M	0.00%	1.73M	0.00%
ResNet-110 ABCPruner-60%	93.58%	0.08%†	2701	33.28%	89.87M	65.04%	0.56M	67.41%

Compare with other methods

- Obtains better FLOP reduction and accuracy performance comparing with other importancebased pruning methods.
- Requires less training epochs.

FLOPS: Floating point operations (measure of computer performance, less-> better)

Model	FLOPs	Top1-acc	Baseline-acc	Epochs
ThiNet-30	1.10G	68.42%	76.01%	244 (196 + 48)
ABCPruner-30%	0.94G	70.29%	76.01%	102 (12+90)
SSS-26	2.33G	71.82%	76.01%	100
GAL-0.5	2.33G	71.95%	76.01%	150 (90 + 60)
GAL-0.5-joint	1.84G	71.80%	76.01%	150 (90 + 60)
ThiNet-50	1.71G	71.01%	76.01%	244 (196 + 48)
ABCPruner-50%	1.30G	72.58%	76.01%	102 (12+90)
SSS-32	2.82G	74.18%	76.01%	100
CP	2.73G	72.30%	76.01%	206 (196 + 10)
ABCPruner-100%	2.56G	74.84%	76.01%	102 (12+90)
MetaPruning-0.50	1.03G	69.92%	76.01%	160 (32 + 128)
ABCPruner-30%	0.94G	70.29%	76.01%	102 (12+90)
MetaPruning-0.75	2.26G	72.17%	76.01%	160 (32 + 128)
ABCPruner-50%	1.30G	72.58%	76.01%	102 (12+90)
MetaPruning-0.85	2.92G	74.49%	76.01%	160 (32 + 128)
ABCPruner-100%	2.56G	74.84%	76.01%	102 (12+90)

Conclusion

ABCPruner

 Find optimal channel number in each layer, instead of selecting "important" channels

• Apply artificial bee colony algorithm to automatically find optimal channel

number.

