Bits and Bytes

Note: you are required to have the HOMEWORK BOOK with you in EVERY Wednesday lesson of this unit!

Objectives (spec links)

- Bit Patterns in a Computer
 - Explain the different interpretations that may be associated with a pattern of bits.
- Pure Binary Representation of Denary Integers
 - Describe the representation of unsigned denary integers in binary.
 - Perform conversion from denary to binary and vice-versa.
 - Binary arithmetic
- The Concept of Number Bases: Denary, Binary and Hexadecimal
 - Describe the conversion of a denary integer to hexadecimal form and vice versa.
 - Describe the use of hexadecimal as shorthand for binary.
- Integers and numbers with a fractional part
 - Draw a distinction between integers and numbers with a fractional part in a computer context.
 - Describe how an unsigned denary number with a fractional part is represented in fixed-point form in binary.

Data vs Information

Unprocessed raw material held in a computer

• o8976 (some meter reading)

Processed data that has been given structure or meaning

Meter reading turned into a gas bill

Direct and indirect sources

 Direct: collected for a specific purpose. Addresses collected to send out gas bills

 Indirect: data/information collected for a different purpose. Addresses from gas company used for junk mail purposes.

What can be stored in computer?

- Text
- Numbers
- Sound
- Graphics

Unit 1 - Problem Solving,

Programming, Data Representation and Practical exercise

Binary number system

- All digital computers use the binary system for representing data of all types –numbers, characters, sound, pictures etc.
- Bit = Binary Digit, o or 1
- Byte = Binary term
 - Unit of storage
 - 8 bits (normally one character)
 - Can represent 256 different characters character coding schemes to be covered later (eg ASCII, Unicode).

Denary Number System

- Commonly used number system
- 10 digits (o to 9)
- Move from right to left
- Each digit represents a place value (powers of 10)
- E.g. 782
 - $-782 = 7 \times 100 + 8 \times 10 + 2 \times 1$

10 ² = 100	10 ¹ = 10	10 ° = 1
7	8	2

Known as Base 10 system

Binary Number System

- Uses 2 digits from 0 to 1
- Move from right to left
- Each digit represents a place value (power of 2)
- E.g. 13
 - 13 = 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
 - $(13)_{10} = (1101)_{2}$

2 ³ = 8	2 ² = 4	2 ¹ = 2	2° = 1		
1	1	O	1		

- Also known as <u>Base 2</u> system
- Ideal for computers as o = off and 1 = on

Hexadecimal Number System

- "Hexa" means 16, so using 16 characters:
 - digits o-9
 - letters A-F
- Each digit represents a place value (powers of 16)
- E.g.

$$(179)_{10} = (B3)_{16}$$

Advantages:

16¹ = 16	16° = 1
В	3

- Eases task of examining contents of memory or a computer file
- Easier to represent large numbers (used to represent colour codes in web design)

Task 1

Draw a table and write down the numbers o to 15 in Denary, Binary, Hexadecimal:

Denary

Binary

Hexadecimal

Denary to Binary Translation

Translate 177 into binary:

- Compare the denary number to the first (left) column of the binary number line (powers of 2)
- If it is greater than or equal to this number then write a 1 under it

Then subtract the column value from the denary number (177-128 = 49)

Programming, Data Representation and Practical exercise

Unit 1 - Problem Solving,

Denary to Binary Translation

 Take the new number and find the first column that the remainder is greater than or equal to and write a 1 under it

 ...subtract the column value from the denary number (49-32=17)

Denary to Binary Translation

Repeat the process until nothing is left

...then fill in the blanks with o's

 An odd number will always end in a one and an even number will always end with a o

Translate to binary

- **127**
- **86**
- **124**
- **1**7
- **1**9

In pairs, check each other's answers.

Translate to binary

- **■** 127 = 0111111
- **■** 86 = 01010110
- **124** = 01111100
- **1**7 = 00010001
- **1**9 = 00010011

Binary to denary translation

 Write the binary number below the place values (eg 01100011)

look at the numbers with a 1 below and add the column headings:

Always use this method to check a denary to binary translation

Translate to denary

- **10101010**
- 1111111 (the largest 8 bit pure binary number)
- **00001110**
- **01010101**
- **11001100**

In pairs, check each other's answers.

Translate to denary

- **■** 10101010 = 170
- 11111111 = 255
- **■** 00001110 = 14
- **■** 01010101 = 85
- **11001100** = 204

Binary number range

- The largest unsigned number that may be written in 8 bits is 111111112

Or

$$2^8 - 1 = 255_{10}$$

Or

 \blacksquare 2X2X2X2X2X2X2-1 = 255₁₀

Hexadecimal numbers

 A way of writing large binary (or denary) numbers in a shorter number of digits

e.g. colour codes in HTML

Denary	Pure	Hex
	Binary	
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F
16	10000	10

Convert unsigned binary to Hexadecimal

- If the number is in denary then convert to binary first MUCH easier conversion
- Break the binary number into 4-bit nibbles
- Translate each nibble into the hex equivalent (from previous table)

Exampl	e: trans	slate	11	11	11	1	1,
							_

- This can be split into
 1111₃
 1111₃
- The hex code for 1111_2 is F_{16}
- Therefore, the number is

Convert Hexadecimal to unsigned binary

- The quickest way to translate back to denary is to repeat the process in reverse.
- Convert each hex character to a 4-bit nibble
- Combine the nibbles into a single binary value

Example Translate AD into denary

A D

1010 1101

10101101

This may then be converted to denary if required.

- Translate 124₁₀ into:
 - Binary
 - Hexadecimal
- Translate 110010, into:
 - Denary
 - Hexadecimal
- Translate 11011112 into:
 - Hexadecimal

Homework booklet

Finish off

page 2-7