Тренировочная работа №6 по ИНФОРМАТИКЕ 11 класс

12 мая 2025 года Вариант ИН2410601 (профильный уровень)

Выполнена: ФИО	класс
----------------	-------

Инструкция по выполнению работы

Тренировочная работа по информатике состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение тренировочной работы отводится 3 часа 55 минут (235 минут).

Тренировочная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения испытания в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всей работы текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении выполнения тренировочной работы доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) moж decm вo обозначается \equiv (например, $A \equiv B$); выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащие переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и $(\neg A) \lor B$ равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и ($(\neg A) \land B$) \lor ($C \land D$).
- Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизъюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.
- 4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах.

	П1	П2	П3	П4	П5	П6	П7	П8	П9
П1			12					17	
П2						8	11		11
П3	12						14		12
П4					23	21			
П5				23				7	17
П6		8		21					9
П7		11	14						
П8	17				7				10
П9		11	12		17	9		10	

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что сумма дорог ВЕ и ДИ является чётным числом. Определите длину дороги АБ.

2 Логическая функция F задаётся выражением:

$$x \land (z \rightarrow y) \lor w \land (x \rightarrow \neg z).$$

Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F.

???	???	???	???	F
	1	1		0
	1			0
1	1	1		0

Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть заданы выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

???	???	F
0	1	0

Тогда первому столбцу соответствует переменная y, а второму столбцу — переменная x. В ответе следует написать: yx.

Ответ:	
012011	•

Ответ:

Задание выполняется с использованием прилагаемых файлов.

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблии.

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите, в какой день поставщик «Чай-кофе-сахар» привёз в магазины Октябрьского района масимальное количество товаров (по массе).

В ответе запишите целое число от 1 до 30, соответствующее числу искомой даты. *Например*, ответ 1 означает, что наибольшая масса была поставлена 1 июня.

4	Все заглавные буквы русского алфавита закодированы неравномерны	Μ
	двоичным кодом, в котором никакое кодовое слово не является начало другого кодового слова. Это условие обеспечивает возможность однозначно расшифровки закодированных сообщений. Кодовые слова для некоторых бук известны: Й – 11, М – 1010, Н – 1011.	й
	Какое наименьшее количество знаков может содержать код слов БАЛАЛАЙКА?	3a

- **5** Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом.
 - 1. Строится двоичная запись числа N.
 - 2. Затем строится число по следующему правилу: сначала записываются все единицы из двоичной записи исходного числа, затем все нули из двоичной записи исходного числа.
 - 3. Результат переводится в десятичную систему счисления.
 - 4. Результатом работы алгоритма становится модуль разности исходного числа N и числа, полученного на предыдущем шаге.

Пример. Дано число N = 17. Алгоритм работает следующим образом.

- 1. Строим двоичную запись числа N: $17_{10} = 10001_2$.
- 2. Строим число по правилу: 11000_2 .
- 3. Переводим в десятичную систему: $11000_2 = 24_{10}$.
- 4. Вычисляем модуль разности: |17-24|=7, R=7.

При каком наименьшем N, не превышающем $2 \cdot 10^8$, в результате работы алгоритма получится наибольшее значение R?

	Ответ:
6	Исполнитель Чертёжник передвигается по плоскости и оставляет след в виде
	линии. Чертёжник может выполнять две команды: Точка (x, y) $(x \ u \ y - числа)$
	и Вектор (a, b) $(a и b - числа)$. По команде Точка (x, y) Чертёжник перемещается
	в точку с координатами (x, y) . По команде Вектор (a, b) Чертёжник смещается
	на вектор (a, b) , то есть переходит из точки с координатами (x, y) в точку
	с координатами $(x+a, y+b)$.
	В начальный момент Чертёжник находится в начале координат.
	Чертёжник выполнил следующую программу:

вектор (4, 1) вектор (1, 4) вектор (-4, -1) 10чка (0, 0)
Определите площадь фигуры, полученной при этом построении.

7	Камера дорожного наблюдения делает цветные фотографии с разрешением
	1536×1024 пикселей, используя палитру из 8192. цветов. Снимки
	сохраняются в памяти камеры как набор пикселей, служебная информация не
	учитывается. Каждый снимок сжимается на 25 %, затем снимки
	группируются в пакеты по 20 штук. К каждому пакету добавляется описание
	пакета. Далее пакеты отправляются в центр обработки по каналу связи

с пропускной способностью 3 072 000 бит/сек. Определите максимальный объём описания пакета в Кбайтах при условии, что пакет надо передать не более чем за 100 секунд. В ответе запишите целое число Кбайт.

Ответ:						

Информатика	. 11	класс.	Вариант	ИН2410	0601

8	Определите количество восьмизначных 15-ричных чисел, в записи которых
	каждая цифра встречается не более одного раза и запись содержит
	одинаковое количество чётных и нечётных цифр.
	Ответ:
	Задание выполняется с использованием прилагаемых файлов.
9	В каждой строке электронной таблицы записаны восемь натуральных чисел.
	Определите количество строк таблицы, для которых одновременно
	выполнены следующие условия: — в строке есть чётное число, повторяющееся не меньше двух раз;
	 в строке есть нечётное число, повторяющееся не меньше двух раз; в строке есть нечётное число, повторяющееся не меньше двух раз;
	– в строке есть неповторяющиеся чётные и неповторяющиеся нечётные числа;
	– сумма чётных чисел больше суммы нечётных чисел.
	Ответ:
	Задание выполняется с использованием прилагаемых файлов.
10	Определите, сколько раз в файле, содержащем книгу братьев Стругацких
	«Трудно быть богом», встречается сочетание букв «где» в составе других
	слов, включая сложные слова, соединённые дефисом, но не как отдельное
	слово. Строчные и заглавные буквы в этом задании не различаются.
	Omnoru
	Ответ:
11	Для передачи зашифрованных сообщений используется специальный алфавит
	из 1800 символов. Сообщения передаются двоичным кодом, при этом
	используется равномерное посимвольное кодирование, каждый символ кодируется одинаковым для всех символов минимальным числом бит, а
	сообщение в целом — минимально возможным числом байт. Затем
	подсчитывается контрольная сумма, равная количеству единиц в зашифрованном
	сообщении. Эта сумма переводится в двоичный код и дописывается в конец
	сообщения. Контрольная сумма содержит одинаковое для всех сообщений целое число байт.
	Суммарный размер сообщения при передаче должен быть не более 1 Кбайт.
	Какое наибольшее количество символов может входить в одно сообщение?
	Отрат
	Ответ:

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах *v* и *w* обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды **заменить** (v, w) не меняет эту строку.

Б) нашлось (у).

Эта команда проверяет, встречается ли цепочка ν в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Дана программа для Редактора:

ПОКА НЕ нашлось (00)

заменить (01, 210)

заменить (02, 3201)

заменить (03, 1302)

КОНЕЦ ПОКА

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними были только цифры «1», «2» и «3». После выполнения данной программы получилась строка, содержащая 114 единиц, 215 двоек и 111 троек. Сколько цифр «2» было в исходной строке?

Ответ:							
				-			

13	В терминологии сетей ТСР/ІР маской сети называют двоичное число,
	которое показывает, какая часть ІР-адреса узла сети относится к адресу сети,
	а какая – к адресу узла в этой сети. Адрес сети получается в результате
	применения поразрядной конъюнкции к заданному адресу узла и маске сети.
	Узлы с ІР-адресами 104.54.106.232 и 104.54.36.112 находятся в разных сетях.
	Известно, что в масках обеих сетей одинаковое количество единиц,
	а в адресах обеих сетей количество единиц кратно трём. Укажите
	наименьшее возможное количество единиц в маске сетей.

()твет:							

14	Значение арифметического выражения $4 \cdot 5^{2025} + 3 \cdot 25^5 - x$, где x — целое положительное число, записали в 5-ричной системе счисления. Определите наименьшее значение x , при котором в 5-ричной записи числа, являющегося значением данного арифметического выражения, содержится ровно 2024 цифры 4. В ответе запишите число в десятичной системе счисления.
	Ответ:
15	Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m ». Для какого наименьшего натурального числа A логическое выражение $ (\neg \text{ДЕЛ}(x, 34) \lor \neg \text{ДЕЛ}(x, 122)) \to \neg \text{ДЕЛ}(x, A) $ тождественно истинно, то есть принимает значение 1 при любом натуральном значении переменной x ?
	Ответ:
16	Обозначим через $a\%b$ остаток от деления натурального числа a на натуральное число b , а через $a//b$ — целую часть от деления a на b . Функция $F(n)$, где n — неотрицательное целое число, задана следующими соотношениями:
	F(n) = 0, если $n = 0$; $F(n) = F(n//9) + n%3$, если $n > 0$.
	Сколько существует таких натуральных чисел n , что $10^8 \le n \le 2 \cdot 10^8$ и $F(n) = 0$?
	Other

Задание выполняется с использованием прилагаемых файлов.

- Файл содержит последовательность натуральных чисел, не превышающих 100 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек, для которых выполняются следующие условия:
 - в тройке есть хотя бы два числа, у которых совпадают последние цифры;
 - последняя цифра максимального числа тройки совпадает с последней цифрой максимального элемента всей последовательности;
 - в тройке нет чисел, последняя цифра которых совпадает с последней цифрой минимального элемента всей последовательности.

В ответе запишите два числа: сначала количество найденных троек, затем максимальную величину суммы элементов этих троек.

Ответ:
Ответ:

Задание выполняется с использованием прилагаемых файлов.

Робот стоит в левом верхнем углу прямоугольного поля. Перед каждым запуском Робота в каждой клетке поля лежит монета достоинством от 1 до 100. В некоторых клетках записано число –1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа, соответствующие достоинствам монет.

За один ход Робот может переместиться на одну клетку вправо или на одну клетку вниз. При перемещении Робота в клетку с помощью команды вправо он забирает монету из этой клетки, только если в ней написано чётное число. А при перемещении Робота в клетку с помощью команды вниз он забирает монету из этой клетки, только если в ней написано нечётное число. Монету в стартовой клетке Робот забирает в любом случае.

Задание 1. Определите максимальную сумму, которую может собрать Робот на пути из верхней левой клетки в правую нижнюю клетку.

Задание 2. Определите минимальную сумму, которую может собрать Робот на пути из верхней левой клетки в правую нижнюю клетку.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:	
Olber.	

19	Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. Если количество камней в куче делится на целое k (0 < k < 31), то игрок может убрать из кучи k камней. <i>Например</i> , если в куче 36 камней, то за один ход можно убрать 1, 2, 3, 4, 6, 12 или 18 камней. Игра завершается, когда количество камней в куче становится не более 31. Победителем считается игрок, сделавший последний ход, то есть первым
	получивший кучу, в которой будет 31 или меньше камней.
	В начале игры в куче было S камней, $S > 31$.
	Укажите максимальное значение <i>S</i> , при котором Петя не может выиграть первым ходом, но при любом первом ходе Пети Ваня может выиграть своим
	первым ходом, но при любом первом ходе пети баня может выиграть своим первым ходом.
	Ответ:
20	Для игры, описанной в задании 19, найдите наименьшее и наибольшее значения S , при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом
	при любой игре Вани.
	В ответе запишите найденные значения в порядке возрастания.
	Ответ:
21	Для игры, описанной в задании 19, найдите максимальное значение S ,

Для игры, описанной в задании 19, найдите **максимальное** значение *S*, при котором у Вани есть стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволила бы ему гарантированно выиграть первым ходом.

Ответ: ______.

22

Задание выполняется с использованием прилагаемых файлов.

	В компьютерной системе необходимо выполнить некоторое количество
,	вычислительных процессов, которые могут выполняться параллельно или
	последовательно. Для запуска некоторых процессов необходимы данные,
	которые получаются как результаты выполнения одного или нескольких
	других процессов – поставщиков данных. Если зависимый процесс получает
	данные от других процессов (поставщиков данных), то выполнение
	зависимого процесса не может начаться раньше завершения всех процессов-
	поставщиков. Длительность процесса не зависит от других параллельно
	выполняемых процессов, приостановка выполнения процесса не допускается.
	В таблице представлены идентификатор (ID) каждого процесса, его
	длительность в мс и ID поставщиков данных для зависимых процессов. Для
	независимых процессов в качестве ID поставщика данных указан 0.

В момент, когда процесс готов к запуску, он ставится в очередь. Если несколько процессов оказываются готовы к запуску одновременно, первым ставится в очередь тот процесс, у которого меньше ID.

Одновременно может выполняться не более 4 процессов. Если в какой-то момент в системе работает менее 4 процессов, то при наличии готовых к запуску процессов выбирается и запускается первый процесс из очереди. За какое время будут выполнены все процессы?

В ответе напишите число – требуемое время в мс.

23 Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены буквами.

- А. Прибавь 3
- В. Умножь на 2
- С. Раздели нацело на 3

Программа для исполнителя – это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 6 в число 25, и при этом команда С выполняется в программе не более одного раза?

Задание выполняется с использованием прилагаемых файлов.

24	Текстовый файл состоит не более чем из 10^6 символов и содержит только
	буквы латинского алфавита А, В, С, D, Е. Определите максимальное
	количество идущих подряд символов в прилагаемом файле, среди которых
	пара символов CD (в указанном порядке) встречается не более 200 раз, а пара
	символов АВ (в указанном порядке) встречается не менее 30 раз.

Ответ: .
MIDUI.

Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр.

Например, маске 123*4?5 соответствуют числа 123405 и 12376415.

Найдите все натуральные числа, не превышающие $2 \cdot 10^9$, которые соответствуют маске 1*7*1 и при этом имеют ровно три нетривиальных делителя (не считая 1 и самого числа).

В ответе запишите все найденные числа в порядке возрастания.

Ответ:	

26

Задание выполняется с использованием прилагаемых файлов.

В мастерской есть станок А и станок В. Для обработки детали требуется последовательно выполнить две операции: на станках А и В. Для каждой детали известны порядок операций и длительность каждой операции. В недельной технологической карте указаны время поступления детали в мастерскую на обработку в минутах от 00 ч. 00 мин. понедельника, длительность обработки на станке А и длительность обработки на станке В, а также какая операция выполняется первой. Гарантируется, что никакие две детали не поступают в мастерскую одновременно. Обработка новой детали на каждом станке может начинаться сразу по окончании обработки предыдущей детали. На перенос детали от станка А к станку В или, наоборот, от станка В к станку А дополнительное время не требуется (перенос уже учтён в длительности операций). Если станок свободен, то сразу начинается обработка очередной детали, если станок занят, то деталь

попадает в соответствующую очередь. Если две детали поступают на станок одновременно, то первой в очередь попадает деталь, которая поступила в мастерскую раньше.

Входные данные

Первая строка входного файла содержит целое число N — общее количество деталей. Каждая из следующих N строк содержит три числа и букву A или B. Первое число — время поступления в мастерскую, второе число — длительность обработки на станке A, третье число — длительность обработки на станке B, буква показывает какая операция должна выполняться первой. B ответе запишите два целых числа: сначала количество деталей, которые не сразу попали на обработку на станке A и были поставлены в очередь, затем время окончания обработки всех деталей на станке A (в минутах от 00ч. 00 мин. понедельника).

Пример входного файла

18 6 7 A

По этим данным детали будут обрабатываться в следующем порядке.

Первая деталь, станок A. 4-7 мин.

Первая деталь, станок В. 7 – 12 мин.

Вторая деталь, станок В. 12 – 16 мин. После ожидания.

Вторая деталь, станок A. 16 - 20 мин.

Третья деталь, станок В. 17 – 20 мин.

Четвёртая деталь, станок А. 20 – 26 мин. После ожидания.

Третья деталь, станок А. 26 – 28 мин. После ожидания.

Четвёртая деталь, станок В. 26 – 33 мин.

Станок А ожидали две детали. Обработка на станке А завершена в 28 мин.

Ответ:	
OIBCI.	

27

Задание выполняется с использованием прилагаемых файлов.

В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.

По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров так, что каждая точка попадает ровно в один кластер, при этом ближайшие точки разных кластеров отстоят друг от друга не менее, чем на единичное расстояние.

В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо в каждом кластере определить экспериментальную точку, вокруг которой расположено максимальное количество других точек на расстоянии не более одной единицы. Если таких точек несколько, то выбирается точка с наибольшей координатой X. По данному протоколу надо определить минимальное расстояние между найденными экспериментальными точками двух различных кластеров.

Вам даны два входных файла (А и В), каждый из которых имеет описанную выше структуру.

В ответе запишите два числа: сначала минимальное расстояние между двумя найденными точками для файла А, затем для файла В.

В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.

Тренировочная работа №6 по ИНФОРМАТИКЕ 11 класс

12 мая 2025 года Вариант ИН2410602 (профильный уровень)

Выполнена: ФИ	0	класс

Инструкция по выполнению работы

Тренировочная работа по информатике состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение тренировочной работы отводится 3 часа 55 минут (235 минут).

Тренировочная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения испытания в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всей работы текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении выполнения тренировочной работы доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) moж decm вo обозначается \equiv (например, $A \equiv B$); выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащие переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и $(\neg A) \lor B$ равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и ($(\neg A) \land B$) \lor ($C \land D$).
- Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизъюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.
- 4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах.

	П1	П2	П3	П4	П5	П6	П7	П8	П9
П1			16				12	14	
П2					17	23		9	
П3	16			15					
Π4			15					8	11
П5		17							21
П6		23					13	11	
Π7	12					13			
П8	14	9		8		11			9
П9				11	21			9	

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что сумма дорог ВЕ и ДИ является нечётным числом. Определите длину дороги АБ.

Ответ:						

2 Логическая функция F задаётся выражением:

$$w \wedge (z \rightarrow \neg x) \vee z \wedge (x \rightarrow y).$$

Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F.

???	???	???	???	F
		1		0
		1	1	0
	1	1	1	0

Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть заданы выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

???	???	F
0	1	0

Тогда первому столбцу соответствует переменная y, а второму столбцу — переменная x. В ответе следует написать: yx.

Ответ:

Задание выполняется с использованием прилагаемых файлов.

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите, в какой день поставщик «Чай-кофе-сахар» привёз в магазины Центрального района масимальное количество товаров (по массе).

В ответе запишите целое число от 1 до 30, соответствующее числу искомой даты. *Например*, ответ 1 означает, что наибольшая масса была поставлена 1 июня.

4	Все заглавные буквы русского алфавита закодированы неравномерным
	двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Й – 1111, М – 10, Н –1110, Е – 1100, К – 11010.
	Какое наименьшее количество знаков может содержать код слова ФОТОЭФФЕКТ?
	Ответ: .

- **5** Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом.
 - 1. Строится двоичная запись числа N.
 - 2. Затем строится число по следующему правилу: сначала записываются все единицы из двоичной записи исходного числа, затем все нули из двоичной записи исходного числа.
 - 3. Результат переводится в десятичную систему счисления.
 - 4. Результатом работы алгоритма становится модуль разности исходного числа N и числа, полученного на предыдущем шаге.

Пример. Дано число N = 17. Алгоритм работает следующим образом.

- 1. Строим двоичную запись числа N: $17_{10} = 10001_2$.
- 2. Строим число по правилу: 11000₂.
- 3. Переводим в десятичную систему: $11000_2 = 24_{10}$.
- 4. Вычисляем модуль разности: |17-24|=7, R=7.

При каком наименьшем N, не превышающем $8 \cdot 10^8$, в результате работы алгоритма получится наибольшее значение R?

	ash ophtima nosty intex hanoosibilice sha terme it:
	Ответ:
6	Исполнитель Чертёжник передвигается по плоскости и оставляет след в виде линии. Чертёжник может выполнять две команды: Точка (x, y) $(x$ и y — числа) и Вектор (a, b) $(a$ и b — числа). По команде Точка (x, y) Чертёжник перемещается в точку с координатами (x, y) . По команде Вектор (a, b) Чертёжник смещается на вектор (a, b) , то есть переходит из точки с координатами (x, y) в точку с координатами $(x + a, y + b)$. В начальный момент Чертёжник находится в начале координат.
	Чертёжник выполнил следующую программу: Вектор (5, 1) Вектор (1, 5) Вектор (-5, -1) Точка (0, 0) Определите площадь фигуры, полученной при этом построении.

7	Камера дорожного наблюдения делает цветные фотографии с разрешением
	1536×1024 пикселей, используя палитру из 32 768 цветов. Снимки
	сохраняются в памяти камеры. Каждый снимок сжимается на 40 %, затем
	снимки группируются в пакеты по 50 штук. К каждому пакету добавляется
	описание пакета. Далее пакеты отправляются в центр обработки по каналу
	связи с пропускной способностью 8 852 480 бит/сек. Определите
	максимальный объём описания пакета в Кбайтах при условии, что пакет надо

передать не более чем за 80 секунд. В ответе запишите целое число Кбайт.

Ответ:						

Ответ: .

	•
8	Определите количество восьмизначных 17-ричных чисел, в записи которых
	каждая цифра встречается не более одного раза и запись содержи
	одинаковое количество чётных и нечётных цифр.

7

Этвет: .

Информатика. 11 класс. Вариант ИН2410602

Задание выполняется с использованием прилагаемых файлов.

- 9 В каждой строке электронной таблицы записаны восемь натуральных чисел. Определите количество строк таблицы, для которых одновременно выполнены следующие условия:
 - в строке есть чётное число, повторяющееся не меньше двух раз;
 - в строке есть нечётное число, повторяющееся не меньше двух раз;
 - в строке есть неповторяющиеся чётные и неповторяющиеся нечётные числа;
 - сумма нечётных чисел больше суммы чётных чисел.

Ответ:						

Задание выполняется с использованием прилагаемых файлов.

10	Определите, сколько раз в файле, содержащем книгу братьев Стругацких
	«Трудно быть богом», встречается сочетание букв «мой» в составе других
	слов, включая сложные слова, соединённые дефисом, но не как отдельное
	слово. Строчные и заглавные буквы в этом задании не различаются.

(твет:		
$\mathbf{\mathcal{C}}$	IDCI.		

Для передачи зашифрованных сообщений используется специальный алфавит из 2500 символов. Сообщения передаются двоичным кодом, при этом используется равномерное посимвольное кодирование, каждый символ кодируется одинаковым для всех символов минимальным числом бит, а сообщение в целом — минимально возможным числом байт. Затем подсчитывается контрольная сумма, равная количеству единиц в зашифрованном сообщении. Эта сумма переводится в двоичный код и дописывается в конец сообщения. Контрольная сумма содержит одинаковое для всех сообщений целое число байт.

Суммарный размер сообщения при передаче должен быть не более 1 Кбайт. Какое наибольшее количество символов может входить в одно сообщение?

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах *v* и *w* обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды **заменить** (v, w) не меняет эту строку.

Б) нашлось (у).

Эта команда проверяет, встречается ли цепочка ν в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Дана программа для Редактора:

ПОКА НЕ нашлось (00)

заменить (01, 210)

заменить (02, 3201)

заменить (03, 1302)

КОНЕЦ ПОКА

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними были только цифры «1», «2» и «3». После выполнения данной программы получилась строка, содержащая 127 единиц, 232 двойки и 119 троек. Сколько цифр «2» было в исходной строке?

Ответ:						

13	D V TICD/ID V
13	В терминологии сетей ТСР/ІР маской сети называют двоичное число,
	которое показывает, какая часть ІР-адреса узла сети относится к адресу сети,
	а какая – к адресу узла в этой сети. Адрес сети получается в результате
	применения поразрядной конъюнкции к заданному адресу узла и маске сети.
	Узлы с ІР-адресами 104.54.106.232 и 104.54.36.112 находятся в разных сетях.
	Известно, что в масках обеих сетей одинаковое количество единиц,
	а в адресах обеих сетей нечётное количество единиц. Укажите наименьшее
	возможное количество единиц в маске сетей.

14	Значение арифметического выражения $5 \cdot 6^{2025} + 4 \cdot 36^6 - x$, где x — целое
	положительное число, записали в 6-ричной системе счисления. Определите
	наименьшее значение x , при котором в 6-ричной записи числа, являющегося
	значением данного арифметического выражения, содержится ровно
	2024 цифры 5. В ответе запишите число в десятичной системе счисления.
	Ответ:
15	Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится
	без остатка на натуральное число <i>m</i> ». Для какого наименьшего натурального
	числа A логическое выражение
	$(\neg ДЕЛ(x, 38) \lor \neg ДЕЛ(x, 134)) \rightarrow \neg ДЕЛ(x, A)$
	тождественно истинно, то есть принимает значение 1 при любом натуральном
	значении переменной х?
	Ответ:
	OTBC1
1.0	0/1
16	Обозначим через $a\%b$ остаток от деления натурального числа a на натуральное число b , а через $a//b$ — целую часть от деления a на b .
	Функция $F(n)$, где n — неотрицательное целое число, задана следующими
	соотношениями:
	F(n) = 0, если $n = 0$;
	F(n) = F(n//9) + n%3, если $n > 0$.
	Сколько существует таких натуральных чисел n , что $10^9 \le n \le 2 \cdot 10^9$ и $F(n) = 0$?
	Ответ: .

Задание выполняется с использованием прилагаемых файлов.

- Файл содержит последовательность натуральных чисел, не превышающих 100 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек, для которых выполняются следующие условия:
 - в тройке есть хотя бы два числа, у которых совпадают последние цифры;
 - последняя цифра минимального числа тройки совпадает с последней цифрой минимального элемента всей последовательности;
 - в тройке нет чисел, последняя цифра которых совпадает с последней цифрой максимального элемента всей последовательности.
 - В ответе запишите два числа: сначала количество найденных троек, затем минимальную величину суммы элементов этих троек.

Ответ:		
--------	--	--

Задание выполняется с использованием прилагаемых файлов.

Робот стоит в левом нижнем углу прямоугольного поля. Перед каждым запуском Робота в каждой клетке поля лежит монета достоинством от 1 до 100. В некоторых клетках записано число –1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа, соответствующие достоинствам монет.

За один ход Робот может переместиться на одну клетку вправо или на одну клетку вверх. При перемещении Робота в клетку с помощью команды вправо он забирает монету из этой клетки, только если в ней написано нечётное число. А при перемещении Робота в клетку с помощью команды вверх он забирает монету из этой клетки, только если в ней написано чётное число. Монету в стартовой клетке Робот забирает в любом случае.

Задание 1. Определите максимальную сумму, которую может собрать Робот на пути из нижней левой клетки в правую верхнюю клетку.

Задание 2. Определите минимальную сумму, которую может собрать Робот на пути из нижней левой клетки в правую верхнюю клетку.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:	

19	Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. Если количество камней в куче делится на целое k ($0 < k < 33$), то игрок может убрать из кучи k камней. Например, если в куче 36 камней, то за один ход можно убрать 1, 2, 3, 4, 6, 12 или 18 камней. Игра завершается, когда количество камней в куче становится не более 33. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или меньше камней. В начале игры в куче было S камней, $S > 33$. Укажите максимальное значение S , при котором Петя не может выиграть первым ходом, но при любом первом ходе Пети Ваня может выиграть своим первым ходом.
20	Для игры, описанной в задании 19, найдите наименьшее и наибольшее значения <i>S</i> , при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите найденные значения в порядке возрастания. Ответ:
21	Для игры, описанной в задании 19, найдите максимальное значение S , при котором у Вани есть стратегия, позволяющая ему выиграть первым или

вторым ходом при любой игре Пети, но у Вани нет стратегии, которая

позволила бы ему гарантированно выиграть первым ходом.

22

Задание выполняется с использованием прилагаемых файлов.

В компьютерной системе необходимо выполнить некоторое количество
вычислительных процессов, которые могут выполняться параллельно или
последовательно. Для запуска некоторых процессов необходимы данные
которые получаются как результаты выполнения одного или нескольких других
процессов – поставщиков данных. Если зависимый процесс получает данные от
других процессов (поставщиков данных), то выполнение зависимого процесса
не может начаться раньше завершения всех процессов-поставщиков.
Длительность процесса не зависит от других параллельно выполняемых
процессов, приостановка выполнения процесса не допускается.

В таблице представлены идентификатор (ID) каждого процесса, его длительность в мс и ID поставщиков данных для зависимых процессов. Для независимых процессов в качестве ID поставщика данных указан 0.

В момент, когда процесс готов к запуску, он ставится в очередь. Если несколько процессов оказываются готовы к запуску одновременно, первым ставится в очередь тот процесс, у которого меньше ID.

Одновременно может выполняться не более 3 процессов. Если в какой-то момент в системе работает менее 3 процессов, то при наличии готовых к запуску процессов выбирается и запускается первый процесс из очереди.

За какое время будут выполнены все процессы?

В ответе напишите число – требуемое время в мс.

Ответ: .

23 Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены буквами.

- А. Прибавь 3
- В. Умножь на 2
- С. Раздели нацело на 3

Программа для исполнителя – это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 8 в число 33, и при этом команда С выполняется в программе не более одного раза?

Imp om	()/!D <i>E</i> /!"	MIDWI.		Ответ:			
		Отрет	()TRAT'				
		()TDAT					

Задание выполняется с использованием прилагаемых файлов.

24	Текстовый файл состоит не более чем из 10^6 символов и содержит только
	буквы латинского алфавита A, B, C, D, E. Определите максимальное
	количество идущих подряд символов в прилагаемом файле, среди которых
	пара символов CD (в указанном порядке) встречается не более 220 раз, а пара
	символов ВЕ (в указанном порядке) встречается не менее 55 раз.

Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр.

Например, маске 123*4?5 соответствуют числа 123405 и 12376415.

Найдите все натуральные числа, не превышающие $2 \cdot 10^9$, которые соответствуют маске 1*5*1 и при этом имеют ровно три нетривиальных делителя (не считая 1 и самого числа).

В ответе запишите все найденные числа в порядке возрастания.

Задание выполняется с использованием прилагаемых файлов.

В мастерской есть станок А и станок В. Для обработки детали требуется последовательно выполнить две операции: на станках А и В. Для каждой детали известны порядок операций и длительность каждой операции. В недельной технологической карте указаны время поступления детали в мастерскую на обработку в минутах от 00 ч. 00 мин. понедельника, длительность обработки на станке А и длительность обработки на станке В, а также какая операция выполняется первой. Гарантируется, что никакие две детали не поступают в мастерскую одновременно. Обработка новой детали на каждом станке может начинаться сразу по окончании обработки предыдущей детали. На перенос детали от станка А к станку В или, наоборот, от станка В к станку А дополнительное время не требуется (перенос уже учтён в длительности операций). Если станок свободен, то сразу начинается обработка очередной детали, если станок занят, то деталь

© СтатГрад 2024–2025 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

попадает в соответствующую очередь. Если две детали поступают на станок одновременно, то первой в очередь попадает деталь, которая поступила в мастерскую раньше.

Входные данные

Первая строка входного файла содержит целое число N — общее количество деталей. Каждая из следующих N строк содержит три числа и букву A или B. Первое число — время поступления в мастерскую, второе число — длительность обработки на станке A, третье число — длительность обработки на станке B, буква показывает какая операция должна выполняться первой. B ответе запишите два целых числа: сначала количество деталей, которые не сразу попали на обработку на станке B и были поставлены в очередь, затем время окончания обработки всех деталей на станке B (в минутах от 00 ч. 00 мин. понедельника).

Пример входного файла

18 6 7 A

По этим данным детали будут обрабатываться в следующем порядке.

Первая деталь, станок A. 4-7 мин.

Первая деталь, станок В. 7 – 12 мин.

Вторая деталь, станок В. 12 – 16 мин. После ожидания.

Вторая деталь, станок A. 16 - 20 мин.

Третья деталь, станок В. 17 - 20 мин.

Четвёртая деталь, станок $A.\ 20-26$ мин. После ожидания.

Tретья деталь, станок A. 26 - 28 мин. После ожидания.

Четвёртая деталь, станок В. 26 – 33 мин.

Станок В ожидала одна деталь. Обработка на станке В завершена в 33 мин.

Ответ:	

27

Задание выполняется с использованием прилагаемых файлов.

В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.

По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров так, что каждая точка попадает ровно в один кластер, при этом ближайшие точки разных кластеров отстоят друг от друга не менее, чем на единичное расстояние.

В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо в каждом кластере определить экспериментальную точку, вокруг которой расположено максимальное количество других точек на расстоянии не более одной единицы. Если таких точек несколько, то выбирается точка с наибольшей координатой X. По данному протоколу надо определить максимальное расстояние между найденными экспериментальными точками двух различных кластеров.

Вам даны два входных файла (А и В), каждый из которых имеет описанную выше структуру.

В ответе запишите два числа: сначала максимальное расстояние между двумя найденными точками для файла А, затем для файла В.

В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.

Ответ:		
--------	--	--