

Степенной метод / Eigenvalue Power Method (EPM)

Teopuя Power method для поиска наибольшего собственного значения матрицы и его приложения.

Постановка задачи

Пусть $A \in M_n(\mathbb{R})$ – квадратная матрица размера $n \times n$.

Сосбветнным значение матрицы A называется число λ такое, что $\exists v \in \mathbb{R}^n : A \cdot v = \lambda \cdot v$. Вектор v в таком случае называют собственным вектором, отвечающим собственному значению λ .

Power Method решает задачу поиска наибольшего собственного значения матрицы.

Мотивировка

Собственные значения матрицы отвечают за растяжение, которому подвергаются векторы при воздействии на них матрицей А в базисе собственных векторов (при линейном отображении).

Это свойство помогает анализировать данные и наблюдать закономерности во многих сферах: экономика, теория графов, машинное обучение и т.д.

Принцип работы алгоритма

Пусть А ∈ М_n(ℝ) – диагонализуемая квадратная матрица. Алгоритм поиска ее наибольшего собственного значения λ состоит из этапов:

Инициализация:

Выбираем случайный вектор $x_0 \in \mathbb{R}^n$; eps – толерантность, с точностью до которой мы ищем λ ; k – максимальное число итераций;

Итерация:

На i+1 -й итерации поддерживаем x_i - вектор, полученный на прошлой итерации, λ_i - текущее приближение собственного значения.

- умножаем вектор x_i на матрицу A слева \to получаем x_{i+1} . вычисляем λ_{i+1} по формуле $x_{i+1}^T \cdot x_i / (x_i^T \cdot x_i)$
- если λ_{i+1} λ_i < eps или i+1=k прекращаем работу алгоритма
- нормализуем вектор: $x_{i+1} / ||x_{i+1}||$ чтобы избежать слишком больших / малых значений

Доказательство работы алгоритма

Пусть $A \in M_n(\mathbb{R})$ – матрица диагонализуемого линейного оператора $\phi: \mathbb{R} \to \mathbb{R}$ и $\mathcal{C} = \{e_1, ..., e_n\}$ – базис из собственных векторов, перенумерованный так, что $|\lambda_1| > |\lambda_2| > ... > |\lambda_n|$, где $\lambda_i = A \cdot e_i$. Рассмотрим итерацию алгоритма:

1:
$$x_0 \in \mathbb{R}^n : x_0 = c_1 \cdot e_1 + ... + c_n \cdot e_n$$
; Тогда $Ax_0 = \lambda_1 c_1 \cdot e_1 + ... + \lambda_n c_n \cdot e_n$

......

i:
$$x_i = \lambda_1^i (c_1 \cdot e_1 + \sum_{k=2}^n (\lambda_k / \lambda_1)^i c_k \cdot e_k)$$

Очевидно, что второе слагаемое в последней скобке стремится к нулю при $i \to \infty$. Тогда на последнем шаге алгоритма (при котором достигается заданная точность) будем считать, что x_n примерно равно $\lambda_1^i \cdot c_1 \cdot e_1$; Тогда $\lambda_1 = x_n^T \cdot x_{n-1} / (x_{n-1}^T \cdot x_{n-1})$.

Интуиция в работе алгоритма

Каждый раз, когда вектор умножается на матрицу слева (когда к нему применяется линейное отображение) он "выравнивается" в сторону вектора, который отвечает наибольшему собственному значению (т. е. становится коллинеарным вектору е₁ в перенумерованном базисе из собственных векторов).

Применение

Google – PageRank

Один из самых известных примеров применения алгоритма – ранжирование веб-страниц по важности.

PageRank – один из индикаторов, который помогает Google сортировать веб-страницы. Сеть страниц при поисковом запросе образует граф, вершины которого – вероятность перехода на страницу. Поиском наибольшего собственного значения система (каким то образом) оценивает важность каждой страницы.

Применение

РСА – метод главных компонент.

Не менее яркий пример применения степенного метода для снижения размерности данных в экономических моделях.

Степенной метод в РСА находит самое важное направление в данных — ось, вдоль которой точки разбросаны сильнее всего.

Многократно уточняя это направление, алгоритм выделяет главную компоненту, которая сохраняет максимальную информацию о данных, позволяя уменьшить их размерность без существенной потери информации.

Заключение

Eigen Power Method – это полезный алгоритм который много где применяется.

