STAT 230 Personal Notes

by Sam Gunter

Instructors: Audrey Béliveau, Adam Kolkiewicz, Don McLeish, Diana Skrzydlo Course Notes by: Chris Springer, Jerry Lawless, Don McLeish, Cyntha Struthers
• Winter 2021 • University of Waterloo •

Important Counting Arrangements:

- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ takes k items from n disregarding order
- n! finds the arrangements of length n using each item in n once
- $n^{(k)} = \frac{n!}{(n-k)!}$ finds the arrangements of length k using each item from n at most once
- n^k finds the arrangements of length k using the items from n as often as wanted

Contents

1	INT	TRODUCTION TO PROBABILITY	1
	1.1	Definitions of Probability	1
2	MA	THEMATICAL PROBABILITY MODELS	2
	2.1	Sample Spaces and Probability	2
3	PR	OBABILITY AND COUNTING TECHNIQUES	3
	3.1	Addition and Multiplication Rules	3
	3.2	Counting Arrangements or Permutations	3
	3.3	Counting Subsets or Combinations	3
4	PR	OBABILITY RULES AND CONDITIONAL PROBABILITY	5
	4.1	General Methods	5
	4.2	Rules for Unions of Events	6
	4.3	Intersections of Events and Independence	7
	4.4	Conditional Probability	7
	4.5	Product Rules, Law of Total Probability and Bayes' Theorem	7
	4.6	Useful Series and Sums	8
5	DIS	SCRETE RANDOM VARIABLES	9
	5.1	Random Variables and Probability Functions	9
	5.2	Discrete Uniform Distribution	10
	5.3	Hypergeometric Distribution	10
	5.4	Binomial Distribution	10

	5.5	Negative Binomial Distribution	11
	5.6	Geometric Distribution	11
	5.7	Poisson Distribution from Binomial	11
	5.8	Poisson Distribution from Poisson Process	12
6	CON	MPUTATIONAL METHODS WITH R	13
7	EXF	PECTED VALUE AND VARIANCE	14
	7.1	Summarizing Data on Random Variables	14
	7.2	Expectation of a Random Variable	14
	7.3	Means and Variances of Distributions	15
8	COI	NTINUOUS RANDOM VARIABLES	16
	8.1	Terminology and Notation	16
	8.2	Continuous Uniform Distribution	17
	8.3	Exponential Distribution	18
	8.4	Computer Generation of Random Variables	18
	8.5	Normal Distribution	19
9	MU	LTIVARIATE DISTRIBUTIONS	20
	9.1	Basic Terminology and Techniques	20
	9.2	$\label{eq:Multinomial Distribution} \mbox{Multinomial Distribution} \ \ \dots \ \ \ \dots \ \ \dots \ \ \dots \ \ \ \ \dots \ \ \ \dots \ \ \ \dots \ \ \ \ \ \ \ \dots \$	21
	9.3	Markov Chains	21
	9.4	Covariance and Correlation	21
	9.5	Mean and Variance of a Linear Combination of Random Variables $\ \ldots \ \ldots$	22
	9.6	Linear Combinations of Independent Normal Random Variables	23
	9.7	Indicator Random Variables	23
10	CEN	NTRAL LIMIT THEOREM/MOMENT GENERATING FUNCTION	NS 24
	10.1	Central Limit Theorem	24
	10.2	Moment Generating Functions	25
	10.3	Multivariate Moment Generating Functions	26

INTRODUCTION TO PROBABILITY

1.1 Definitions of Probability

Def Randomness: Caused by (1) variability in population and (2) variability in processes

Def Sample Space (S): All distinct possible outcomes to a random experiment

Note: Continues in 2.1

Def Probability: Can be defined in 3 ways:

1. **Def** Classical: Provided all points in S are equal,

 $\frac{\text{number of ways the event can occur}}{\text{number of outcomes in } S}$

Note: Continues in 2.1

- 2. **Def** Relative Frequency: The portion of times an event has happened after repetitions of an experiment.
- 3. **Def** Subjective Probability: How sure an individual is that an event will happen.

Def Probability Model:

- The sample space is defined
- A set of events (subset of S) is defined
- A mechanism for assigning probabilities is defined

MATHEMATICAL PROBABILITY MODELS

2.1 Sample Spaces and Probability

Def Sample Space (S) Continued: All distinct possible outcomes to a random experiment

- In a single trial, one and only one outcome can occur
- \bullet The sample space does not need to be uniquely defined $(S=\{1,2,3,4,5,6\}$ or $S=\{\text{Even},\text{Odd}\})$
- May be discrete $(S = \{1, 2, 3...\})$ or $S = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}...\})$ or non-discrete $(S = \{x : x > 0\})$

Def Simple Event: The subset of the event $A \in S$ contains only a single point where S is discrete $(A = \{a_1\})$

Def Compound Event: The subset of the event $A \in S$ contains two or more simple events $(A = \{a_1, a_2 \dots\})$

Def Probability Distribution: The probability distribution on S is the set of probabilities $\{P(a_i), i = 1, 2, ...\}$ where the following conditions hold:

- $0 \le P(a_i) \le 1$
- $\sum_{\text{all}i} P(a_i) = 1$

Def Probability: The probability of an event A occurring is

$$P(A) = \sum_{a \in A} P(a)$$

Def Odds: The odds of an event A occurring is

$$\frac{P(A)}{1 - P(A)}$$

Note: The odds against the event is the reciprocal

PROBABILITY AND COUNTING TECHNIQUES

3.1 Addition and Multiplication Rules

Def Uniform Probability Model: A set where each simple event has probability $\frac{1}{n}$

Def Addition Rule: Suppose we can do job 1 in p ways and job 2 in q ways. Then we can do either job 1 **OR** job 2 (but not both), in p + q ways

Def Multiplication Rule: Suppose we can do job 1 in p ways and, for each of these ways, we can do job 2 in q ways. Then we can do both job 1 **AND** job 2 in $p \times q$ ways

3.2 Counting Arrangements or Permutations

Def Permutations: A sample space which is a set of arrangements or sequences

Def n to k factors: A product is said to have n to k factors if

$$n^{(k)} = \frac{n!}{(n-k)!}$$

Def Stirling's Approximation: An approximation to n! for large n values

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

Note: For $n \ge 8$, the error is less than 0.01

Def Complement: The complement of A, denoted \overline{A} , is the set of all outcomes in S that are not in A

3.3 Counting Subsets or Combinations

Def Combinatorial: "n choose k" is sued to denote the number of subsets (with no order) of size k that can be selected from the set of n objects

$$\binom{n}{k} = \frac{n^{(k)}}{k!} = \frac{n!}{k!(n-k)!}$$

Note: Properties of $\binom{n}{k}$ are as follows

•
$$n^{(k)} = \frac{n!}{(n-k)!} = n(n-1)^{(k-1)}$$
 for $k \ge 1$

•
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n^{(k)}}{k!}$$

•
$$\binom{n}{k} = \binom{n}{n-k}$$
 for all $k = 0, 1, \dots n$

- If we define 0! = 1, then the formulas hold with $\binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \binom{n}{k} = \binom{n-1}{n-k} + \binom{n-1}{k}$
- Binomial Theorem: $(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$

PROBABILITY RULES AND CONDITIONAL PROBABILITY

4.1 General Methods

Proved Set-Theoretic Rules:

- 1. P(S) = 1
- 2. For an event $A, 0 \leq P(A) \leq 1$
- 3. For $A \subseteq B$, $P(A) \leq P(B)$

Def Union: If A or B occur (inclusive), the event occurred

 $A \cup B$

Def Intersection: If A and B occur, the event occurred

 $A \cap B$

Note: Often shortened to AB

Def Complement: If A did not occur, the event occurred

 \overline{A}

Note: $\overline{S} = \emptyset$

Proved De Morgan's Laws:

- 1. $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 2. $\overline{A \cap B} = \overline{A} \cup \overline{B}$

4.2 Rules for Unions of Events

Proved Addition Law of Probability or the Sum Rule:

4. **A**
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Proved Probability of the Union of Three Event:

4.
$$\mathbf{B} P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Proved Probability of the Union of n Events:

4. **C**
$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_i P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) - \cdots$$

Def Mutually Exclusive: Events A and B are mutually exclusive if

$$A \cap B = \emptyset$$

Proved Probability of the Union of Two Mutually Exclusive Events: Let A, B be mutually exclusive, then

5. **A**
$$P(A \cup B) = P(A) + P(B)$$

Proved Probability of the Union of n Mutually Exclusive Events: Let A_a, A_2, \ldots, A_n be mutually exclusive, then

5. **B**
$$P(A \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i)$$

Proved Probability of the Complement of an Event:

6.
$$P(A) = 1 - P(\overline{A})$$

4.3 Intersections of Events and Independence

Def Independent Events: Events are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

Def Mutually Independent: Events $A_1, A_2, \dots A_n$ are mutually independent if and only if

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2) \dots P(A_n)$$

for all sets $\{i_1, i_2, \dots i_k\}$ of distinct subscripts chosen from $(1, 2, \dots, n)$

Note: Often referred to as "independent"

4.4 Conditional Probability

Def Conditional Events: If an event B occurred, the probability that A occurs is the conditional probability of A given B

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Note: If A and B are independent, then $P(A \mid B) = P(A)$

Theorem 10: The events A and B are independent if and only if

$$P(A \mid B) = P(A) \text{ or } P(B \mid A) = P(B)$$

4.5 Product Rules, Law of Total Probability and Bayes' Theorem

Proved Product Rules: Let P(A) > 0, $P(A \cap B) > 0$, $P(A \cap B \cap C) > 0$

- 7. $P(AB) = P(A)P(B \mid A)$
 - $P(ABC) = P(A)P(B \mid A)P(C \mid AB)$
 - $P(ABCD) = P(A)P(B \mid A)P(C \mid AB)P(D \mid ABC)$

Proved Law of Total Probability: Let $A_1, A_2, \dots A_k$ be a partition of the sample space into mutually exclusive (disjoint) events. Let B be an event in S. Then

$$P(B) = P(BA_1) + P(BA_2) + \dots + P(BA_k) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

Proved Bayes' Theorem: Let P(B) > 0. Then

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid \overline{A})P(\overline{A}) + P(B \mid A)P(A)}$$

4.6 Useful Series and Sums

Geometric Series

if
$$t \neq 1$$
, then $\sum_{i=0}^{n-1} t^i = 1 + t + t^2 + \dots + t^{n-1} = \frac{1-t^n}{1-t}$

if
$$|t| < 1$$
, then $\sum_{x=0}^{\infty} t^x = 1 + t + t^2 + \dots = \frac{1}{1-t}$

and thus with higher derivatives,

if
$$|t| < 1$$
, then $\sum_{x=0}^{\infty} xt^{x-1} = \frac{1}{(1-t)^2}$

Binomial Theorem

if
$$n \in \mathbb{N}$$
 and $t \in \mathbb{R}$, then $(1+t)^n = 1 + \binom{n}{1}t + \binom{n}{2}t^2 + \dots + \binom{n}{n}t^n = \sum_{x=0}^n \binom{n}{x}t^x$

if
$$n \notin \mathbb{N}$$
 and $|t| < 1$, then $(1+t)^n = \sum_{x=0}^{\infty} \binom{n}{x} t^x$

Multinomial Theorem

if
$$n \in \mathbb{N}$$
, then $(t_1 + t_2 + \dots + t_k)^n = \sum \frac{n!}{x_1! x_2! \dots x_k!} t_1^{x_1} t_2^{x_2} \dots t_k^{x_k}$

where the summation is over all non-negative integers such that $x_1 + x_2 + \cdots + x_k = n$ Note: See page 62

Hypergeometric Identity

$$\sum_{x=0}^{\infty} \binom{a}{x} \binom{b}{n-x} = \binom{a+b}{n}$$

Exponential Series Let $f(x) = e^x$ and $f^{(k)}(0) = 1$ for k = 1, 2, ...

if
$$t \in \mathbb{R}$$
, then $e^t = \frac{t^0}{0!} + \frac{t^1}{1!} + \frac{t^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{t^n}{n!}$

Special Integer Series

•
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

•
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

DISCRETE RANDOM VARIABLES

5.1 Random Variables and Probability Functions

Def Random Variable: A function that assigns are al number to each point in a sample space S

$$X = x_1, x_2, x_3, \dots$$

Note: The full sample space must be a union of the events of each element in X

Def Discrete Random Variable: Takes values in a countable set

Def Continuous Random Variable: Takes values in an interval, not countable

Def Probability Function: Let X be a discrete random variable with range(X) = A

$$f(x) = P(X = x)$$

- 1. $f(x) > 0, \forall x \in A$
- 2. $\sum_{x \in A} f(x) = 1$

Note: Make sure to state the domain of the function

Def Probability Distribution: The set of pairs

$$\{(x, f(x)) : x \in A\}$$

Def Cumulative Distribution Function: The sum of all previous probability functions

$$F(x) = \sum_{u \le x} f(u) = P(X \le x) \text{ for all } x \in \mathbb{R}$$

- 1. F(x) is non-decreasing
- 2. $0 \le F(x) \le 1$
- 3. $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

5.2 Discrete Uniform Distribution

Physical Setup For a range of X of $\{a, \ldots, b\}$, where each integer is equally probable

Note: With replacement Note: Parameters a, and b

Probability Function For b-a+1 values in the set, each has $\frac{1}{b-a+1}$, thus

$$f(x) = P(X = x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x \in \{a, \dots, b\} \\ 0 & \text{otherwise} \end{cases}$$

5.3 Hypergeometric Distribution

Physical Setup A collection of N objects with r of S and N-r of F. X is the number of successes obtained

Note: Without replacement Note: Parameters r, N, and n

Probability Function For $x \ge \max(0, n - N + r)$ and $x \le \min(r, n)$

$$f(x) = P(X = x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

5.4 Binomial Distribution

Physical Setup A experiment with outcome P(S) = p and P(F) = 1 - p repeated for n independent times (Bernoulli Trials).

 $\sim Binomial(n, p)$

Note: With replacement Note: Parameters n, and p

Note: If p = 0 or p = 1, then X is said to be a degenerate random variable

Probability Function For $0 \le x \le n$ and 0

$$f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

10

5.5 Negative Binomial Distribution

Physical Setup A experiment with outcome P(S) = p and P(F) = 1 - p repeated for until S is obtained for the k^{th} time. X is the number of failures before the k^{th} success

 $\sim NegativeBinomial(k, p)$

Note: With replacement Note: Parameters k, and p

Probability Function For $0 \le x$ and 0

$$f(x) = P(X = x) = {x+k-1 \choose x} p^k (1-p)^x$$

5.6 Geometric Distribution

Physical Setup The negative Binomial Distribution with k = 1

 $\sim Geometric(p)$

5.7 Poisson Distribution from Binomial

Physical Setup Restrict the product $np = \mu$, then take the Binomial Distribution as $n \to \infty$ (thus $p \to 0$)

$$\sim Poisson(\mu)$$

Note: Used when n is large and p is small

Note: If n is large and p is large, switch "failure" vs "success" Note: If $\mu = 0$ then is said to be a degenerate distribution

Probability Function When $np = \mu$, For $x \ge 0$

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

5.8 Poisson Distribution from Poisson Process

def Order Notation: $g(\Delta t) = o(\Delta t)$ as $\Delta t \to 0$ means g approaches 0 faster than Δt approaches 0

$$\frac{g(\Delta t)}{\Delta t} \to 0 \text{ as } \Delta t \to 0$$

Physical Setup A situation where certain events occur at random points of time and follow the Poisson Process

- 1. Independence: Occurrences in non-overlapping intervals are independent
- 2. Individuality: Events do not occur in clusters, that is

$$P(2 \text{ or more events in } (t, t + \Delta t)) = o(\Delta t) \text{ as } \Delta t \to 0$$

3. **Homogeneity/Uniformity**: The probability of one occurrence in an interval $(t, t + \Delta t)$ is $\lambda \Delta t$ for small Δt

Note: λ is the intensity or rate of occurrence parameter, thus λt is the average number of occurrences per t units of time

Note: If n is large and p is large, switch "failure" vs "success"

Probability Function Let $f_t(x)$ be the probability of x occurrences over the interval t. For $x \ge 0$

$$f_t(x) = f(x) = \frac{(\lambda t)^x e^{-\lambda t}}{x!}$$

COMPUTATIONAL METHODS WITH R

no thanks

EXPECTED VALUE AND VARIANCE

7.1 Summarizing Data on Random Variables

 \mathbf{def} Frequency Distribution: The number of times each value of X occurred

def Sample Mean: The average for a particular sample, the mean of n outcomes $x_1, \ldots x_n$ for random variable X is

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

def Median: The value such that half of results are below and half the results are above when arranged in numerical order

def Mode: The value which occurs the most often.

Note: There is no guarantee of a single mode

7.2 Expectation of a Random Variable

def Expected Value: Let X be a discrete random variable with range(X) = A and probability function f(x), then

$$\mu = E(X) = \sum_{x \in A} x f(x)$$

Proved Theorem 17: Let X be a discrete random variable with range(X) = A and probability function F(x). Then the expected value of some g(X) of X is

$$E[g(X)] = \sum_{x \in A} g(x)f(x)$$

Note: E[g(X)] is the average value (expected value) of g(X) in an infinite series of repetitions of the process where X is defined

Proved Linearity Properties of Expectation: For constants a, b

$$E[aq(X) + b] = aE[q(X)] + b$$

7.3 Means and Variances of Distributions

Proved Expected value of a Binomial random variable: Let $X \approx Binomial(n, p)$

$$E(X) = np$$

Proved Expected value of the Poisson random variable: Let X have a Poisson distribution

$$E(X) = \lambda t$$

Proved Expected value of the Hypergeometric random variable: Let X have a Hypergeometric distribution

 $E(X) = \frac{nr}{N}$

Proved Expected value of the Negative Binomial random variable: Let X have a Negative Binomial distribution

$$E(X) = \frac{k(1-p)}{p}$$

def Variance: The average square distance from the mean, that is

$$\sigma^2 = Var(X) = E\left[(X - \mu)^2 \right]$$

(1):
$$Var(X) = E(X^2) - [E(X)]^2 = E(X^2) - \mu^2$$

(2):
$$Var(X) = E[X(X-1)] + E(X) - [E(X)]^2 = E[X(X-1)] + \mu - \mu^2$$

def Standard Deviation: The square root of the variance, that is

$$\sigma = sd(X) = \sqrt{Var(X)} = \sqrt{E\left[(X - \mu)^2\right]}$$

Proved Variance of a Binomial random variable: Let $X \approx Binomial(n, p)$

$$Var(X) = np(1-p)$$

Proved Variance of a Poisson random variable: Let X have a Poisson distribution

$$Var(X) = \mu$$

(2): The variance is equal to the mean

Proved If a, b are constants, Y = aX + b, and $\mu_X = E(X), \sigma_X^2 = Var(X), E(Y) = \mu_Y, Var(Y) = \sigma_Y^2$, then

$$\mu_Y = E(Y) = aE(X) + b = a\mu_X + b$$

and

$$\sigma_Y^2 = Var(Y) = a^2 Var(X) = a^2 \sigma_X^2$$

CONTINUOUS RANDOM VARIABLES

8.1 Terminology and Notation

def Continuous Random Variables: Have a range of all possible values over an interval (or collection of intervals)

def Cumulative Distribution Function:

- 1. F(x) is defined for all real x
- 2. F(x) is non-decreasing over all real x
- 3. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$

4.
$$P(a < X < b) = P(a < X \le b) = P(a \le X \le b) = P(a \le X \le b) = F(b) - F(a)$$

 $\operatorname{\mathbf{def}}$ Probability Density Function: The likely hood of small intervals around specific x values

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$$

- 1. $P(a \le X \le b) = F(b) F(a) = \int_a^b f(x) dx$
- 2. f(x) > 0
- 3. $\int_{-\infty}^{\infty} f(x) dx = \int_{\text{all } x} f(x) dx = 1$
- 4. $F(x) = \int_{\infty}^{x} f(u) du$

def Quantiles and Percentiles: For a cumulative distribution function F(x), the p^{th} quantile is the value q(p) such that $P[X \leq q(p)] = p$

Note: q(p) is the 100^{th} percentile of distribution

Note: m = q(0.5) is the median of distribution

def Expected Value: For a continuous random variable,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(X)dx$$

8.2 Continuous Uniform Distribution

Physical Setup Over an interval [a, b], each subinterval of a fixed length is equally likely

$$\sim Uniform(a,b)$$

Note: Parameters b > a

Probability Density Function

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

Cumulative Distribution Function

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Mean

$$E(X) = \frac{b+a}{2}$$

Variance

$$Var(X) = \frac{(b-a)^2}{12}$$

Def Gamma Function: For $\alpha > 0$,

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} \mathrm{d}y$$

- 1. For $\alpha > 0$, $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- 2. For $\alpha \in \mathbb{N}$, $\Gamma(\alpha) = (\alpha 1)!$
- 3. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

8.3 Exponential Distribution

Physical Setup The time it takes it takes between occurrences of an event in the Poisson process

$$\sim Exponential(\theta)$$

Note: Parameters $\lambda > 0$ is the average rate of occurrence

Note: Parameters $\theta > 0$ is the waiting time until an occurrence

Probability Density Function

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & \text{otherwise} \end{cases} \text{ or } f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Cumulative Distribution Function

$$F(x) = \begin{cases} 0 & x \le 0 \\ 1 - e^{-\lambda x} & x > 0 \end{cases} \text{ or } F(x) = \begin{cases} 0 & x \le 0 \\ 1 - e^{-\frac{x}{\theta}} & x > 0 \end{cases}$$

Mean

$$E(X) = \frac{1}{\lambda} \text{ or } \theta$$

Variance

$$Var(X) = \theta^2$$

Def Memoryless Property: The probability you have to wait c unit of time does not depend on how long you have been waiting, that is

$$P(X > c + b \mid X > b) = P(X > c)$$

8.4 Computer Generation of Random Variables

Theorem 24 If F is an arbitrary cumulative distribution function and $U \sim Uniform(0,1)$ then $X = F^{-1}(U)$ has cumulative distribution function F(x)

8.5 Normal Distribution

Physical Setup A "bell curve", where X is a physical dimension of some kind

$$X \sim N(\mu, \sigma^2)$$

Note: Parameters $x, \mu \in \mathbb{R}$ Note: Parameters $\sigma \in \mathbb{R}^+$

Gaussian Distribution Similar but with σ instead of σ^2

$$X \sim G(\mu, \sigma)$$

Probability Density Function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Cumulative Distribution Function

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dy$$

Mean

$$E(X) = \mu$$

Variance

$$Var(X) = \sigma^2$$

Def Standard Normal Distribution: A normal distribution with $\mu = 0$ and $\sigma = 1$

Theorem 25 Let $X \sim N(\mu, \sigma^2), Z = \frac{X-\mu}{\sigma}$, then $Z \sim N(0, 1)$ and

$$P(X \le x) = P(Z \le \frac{x - \mu}{\sigma})$$

MULTIVARIATE DISTRIBUTIONS

9.1 Basic Terminology and Techniques

Def Joint Probability Function: For discrete random variables X, Y, the probability both occur

$$f(x,y) \ge 0$$
 and $\sum_{\text{all }(x,y)} f(x,y) = 1$

Def Marginal Probability: For a joint probability function f(x, y), the probability when interested in only one random variable

$$f_1(x) = \sum_{\text{all } y} f(x, y)$$

Def Independent Random Variables: For a joint probability function f(x, y), being independent means that

$$f(x,y) = f_1(x)f_2(y)$$

or generalized to

$$f(x_1, x_2, \dots x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n)$$

Def Conditional Probability: For a joint probability function f(x, y), if $f_2(y) > 0$ then the conditional probability function of X given Y is

$$f_1(x \mid y) = \frac{f(x,y)}{f_2(y)}$$

Theorem 29 If $X \sim Poisson(\mu_1)$ and $Y \sim Poisson(\mu_2)$ independently, then

$$T = X + Y \sim Poisson(\mu_1 + \mu_2)$$

Theorem 30 If $X \sim Binomial(n, p)$ and $Y \sim Binomial(m, p)$ independently, then

$$T = X + Y \sim Binomial(n + m, p)$$

9.2 Multinomial Distribution

Physical Setup An experiment with k distinct outcomes with probability $p_1, p_2, \dots p_k$, repeated n times. Let X_i be the number of times i outcome occurs

$$(X_1, X_2, \dots X_k) \sim Multinomial(n, p_1, p_2, \dots p_k)$$

Note: $p_1 + p_2 + \dots + p_k = 1$ Note: $X_1 + X_2 + \dots + X_k = n$

Joint Probability Function

$$f(x_1, x_2, \dots x_p) = \frac{n!}{x_1! x_2! \dots x_p!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$$

9.3 Markov Chains

Def Markov Chain: A sequence of discrete random variables X_1, X_2, \ldots which take integer states $1, 2, \ldots N$. There exists a certain transition probability matrix P, such that for all $i = 1, 2, \ldots N, j = 1, 2, \ldots N$

$$P(X_{n+1} = j \mid X_n = i) = P_{ij}$$

Note: Markov chains only depend on present state, not past states

Did not complete reading, was optional for stat 230

9.4 Covariance and Correlation

Mean

$$E(g(X_1, X_2, \dots X_n)) = \sum_{\text{all } (x_1, x_2, \dots, x_n)} g(x_1, x_2, \dots x_n) f(x_1, x_2, \dots x_n)$$

Proved Property of Multivariate Expectation:

$$E[ag_1(X_1, X_2) + bg_2(X_1, X_2)] = aE[g_1(X_1, X_2)] + bE[g_2(X_1, X_2)]$$

Def Covariance: A way to measure the relation between X and Y, denoted as

$$\sigma_{XY} = Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$$

Note: > 0 means positively correlated, < 0 negative means negatively correlated

Theorem 35 If X and Y are independent then Cov(X,Y)=0

Theorem 36 If X and Y are independent then,

$$E[g_1(X)g_2(Y)] = E[g_1(X)]E[g_2(Y)]$$

Def Correlation Coefficient: A way to measure the strength of the relation between X and Y, covariance scaled to [-1,1] denoted as

$$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Note: Since p has same sign as Cov(X,Y), Theorems 35 and 36 hold

Note: As $p \to \pm 1$, the relation becomes linear

9.5 Mean and Variance of a Linear Combination of Random Variables

Proved Results for Means:

1.
$$E(aX + bY) = aE(X) + bE(Y)$$

2.
$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{n=1}^{n} E(X_i)$$

3. if
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 then $E(\overline{X}) = \mu$

Proved Results for Covariance:

- 1. Cov(X, X) = Var(X)
- 2. Cov(aX + bY, cU + dV) = acCov(X, U) + adCov(X, V) + bcCov(Y, U) + bdCov(Y, V)

Proved Variance of a linear combination:

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Proved Variance of a sum of independent random variables: Assume X and Y are independent,

$$Var(aX+bY) = a^2Var(X) + b^2Var(Y)$$

Proved Variance of a general linear combination of random variables:

$$Var\left(\sum_{i=1}^{n} a_{i}X_{i}\right) = \sum_{i=1}^{n} a_{i}^{2}\sigma_{i}^{2} + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} a_{i}a_{j}Cov(X_{i}, X_{j})$$

Proved Variance of a linear combination of independent random variables: Assume $X_1, X_2, \dots X_n$ are independent,

1.
$$Var\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$$

2. If $X_1, X_2, ... X_n$ have the same variance, then $Var(\overline{X}) = \frac{\sigma^2}{n}$

9.6 Linear Combinations of Independent Normal Random Variables

Theorem 38 Linear Combinations of Independent Normal Random Variables:

1. Let
$$X \sim N(\mu, \sigma^2)$$
 and $Y = aX + b$, then $Y \sim N(a\mu + b, a^2\sigma^2)$

2. Let
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$
 be independent, then $aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$

3. Let
$$X_1, X_2, \dots X_n$$
 be independent $\sim N(\mu, \sigma^2)$ variables,
then $\sum_{i=1}^n X_i \sim N(n\mu, n\sigma^2)$ and $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

9.7 Indicator Random Variables

Def Indicator Random Variables: Define a variable X_i where $X_i = 0$ indicates the trial was a failure, while $X_i = 1$ indicates the trial was a success

Proved Variance of a Hypergeometric random variable: Let X have a Hypergeometric distribution

$$Var(X) = n\left(\frac{r}{N}\right)\left(1 - \frac{r}{N}\right)\left(\frac{N-n}{N-1}\right)$$

CENTRAL LIMIT THEOREM/MOMENT GENERATING FUNCTIONS

10.1 Central Limit Theorem

Theorem 39 Central Limit Theorem: Let $X_1, X_2, ... X_n$ be independent random variables with the same distribution, mean (μ) , and variance (σ^2) , then as $n \to \infty$

$$S_n = \sum_{i=1}^n X_i \sim N\left(n\mu, n\sigma^2\right)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Note: Better approximation for larger n

Note: Better approximation when the distribution X_i is symmetric

Def Continuity Correction: Changing the bounds of $P(10 \le S_{100} \le 20)$ to be offset by .5, thus $P(9.5 \le S_{100} \le 20.5)$. Sign of offset is decided by whether left/right hand Riemann sum corrects value (if past expected value make positive)

Note: Should not be applied to a continuous distribution

Theorem 40 Normal Approximation to Poisson: Let $X \sim Poisson(\mu)$, then as $\mu \to \infty$, the cdf

$$Z = \frac{X - \mu}{\sqrt{\mu}} \sim N(0, 1)$$

Note: $X \sim N(\mu, \mu)$

Theorem 41 Normal Approximation to Binomial: Let $X \sim Binomial(n, p)$, then as $n \to \infty$, the random variable

$$W = \frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

Note: $X \sim N(np, np(1-p))$

10.2 Moment Generating Functions

Def Moment Generating Function: For a discrete random variable X and a > 0, the moment generating function is defined as

$$M(t) = E(e^{tX}) = \sum_{x \in \text{all}} e^{tx} f(x) < \infty$$

For a continuous random variable X and a > 0, the moment generating function is

$$M(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx < \infty$$

Note: The k^{th} moment is $E(X^k)$

Theorem 43: Let X have the moment generating function M(t) for $t \in [-a, a]$, then

$$E(X^k) = M^{(k)}(0)$$

Proved MGF of Binomial: Let $X \sim Binomial(n, p)$, then

$$M(t) = \sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = (pe^{t} + 1 - p)^{n}$$

Proved MGF of Poisson: Let $X \sim Poisson(\mu)$, then

$$M(t) = e^{-\mu + \mu e^t}$$

Theorem 44 Uniqueness Theorem for Moment Generating Functions: Let X, Y have moment generating functions $M_X(t), M_Y(t)$, if $M_X(t) = M_Y(t)$ for all $t \in \mathbb{R}$ then X and Y have the same distribution

Proved MGF of Normal: Let $X \sim N(\mu, \sigma^2)$, then

$$M(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Proved MGF of Exponential: Let $X \sim Exponential(\theta)$, then

$$M(t) = \frac{1}{1 - \theta t}$$
 for $t < \frac{1}{\theta}$

10.3 Multivariate Moment Generating Functions

Def Joint Moment Generating Function: For random variables X, Y, the joint moment generating function is defined as

$$M(s,t) = E(e^{sX+tY})$$

Note: If X, Y are independent, then $M(s,t) = M_X(s)M_Y(t)$

Theorem 47: The moment generating function of the sum of independent random variables is the product of individual moment generating functions

Theorem 48: Let $X_i = N(\mu_i, \sigma_i^2)$ be independent where $a_1, a_2, \dots a_n \in \mathbb{R}$ then

$$\sum_{i=1}^{n} a_{i} X_{i} \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)$$

Was optional for STAT 230