CLAIMS

- 1. A method of modulating a digital signal of width L in frequency on a given useful frequency band comprising the following steps:
 - a separation of the digital signal into N blocks $b_n \ (1 \le n \le N)$,
 - a splitting of the given useful frequency band into N contiguous parts P_n ,
- 10 a definition of channels C_n , of width l_n in frequency, lying within an associated part P_n , the channels C_n being separated,
 - a distributing of each block of digital signals b_n over the associated channel C_n .

15

2. The method of modulation as claimed in the claim 1 wherein the channels C_n are defined by taking account of a predetermined minimum distance between the channels.

20

25

- 3. The method of modulation as claimed in the claim 2 wherein it comprises a step of determining the minimum distance between the channels, the minimum distance being determined as a function of the number N of channels, of their width l_n , and of the mean width of the frequency band affected by the phenomenon of flat fading.
- 4. The method of modulation as claimed in the claim 3 wherein the minimum distance is determined in such a way that a minority of channels C_n are affected by the phenomenon of flat fading.
- 5. The method of modulation as claimed in the claim 1 wherein the channels C_n are of identical widths equal to an Nth of the width of the digital signal L: $l_n = L/N$, \forall 1 \leq n \leq N.

- 6. The method of digital modulation as claimed in the claim 1 wherein :
 - the digital signal is separated into N=2 blocks b_n ,
- 5 the given useful frequency band is split into N = 2 parts P_n ,
 - the first block b_1 is distributed over a channel C_1 of width L/2 lying within the first part P_1 of the given useful frequency band and the second block
- 10 b_1 is distributed over a channel C_2 of width L/2 lying within the second part P_2 of the given useful frequency band.
- 7. The method of modulation as claimed in the claim 1 wherein that the given useful frequency band is the FM band.
 - 8. A modulator of digital signals over a given useful frequency band implementing the method of modulation as claimed in the claims 1 wherein it comprises:

20

35

- means of separation (31) of the digital signal into N blocks b_n (1 \leq n \leq N),
- means of splitting (32) of the given useful frequency band into N contiguous parts P_n ,
- 25 means of definition (33) of channels C_n of width l_n in frequency, lying within the associated part P_n ,
 - means of distributing (34) of each block of digital signals b_n over the associated channel C_n .
- 30 9. A demodulator of digital signals conveyed on a given useful frequency band by a transmitter comprising a modulator as claimed in claim 8 wherein it comprises:
 - means of scanning (81) of the N channels C_n making it possible to read the N blocks b_n of signals distributed over these channels,
 - means of recombination (82) of the N blocks read \hat{b}_n in the N channels C_n into a digital signal $\hat{s}[m]$.

- 10. A transmitter of digital signals on a given useful frequency band comprising at least one transmission chain comprising a modulator as claimed in claim 8 wherein the transmission chain comprises an error corrector coder (10) conveying the coded digital signal $c^q[m]$ to the modulator (30).
- 11. The transmitter as claimed in the claim 10 wherein the transmission chain comprises an interleaver (20) placed between the error corrector coder (10) and the modulator (30).

10

- 12. The transmitter as claimed in the claim 10 wherein with each of the Q transmission chains is associated a distinct set of channels $\{C_n^q\}$.
- 13. A receiver of digital signals conveyed on a given useful frequency band by a transmitter as claimed in claim 10 comprising a demodulator as claimed in claim 9 and in that it comprises a decoder (100) associated with the error corrector coder (10) of the transmitter receiving the digital signal recombined $\hat{s}[m]$ by the demodulator (80).
- 25 14. A receiver of digital signals conveyed on a given useful frequency band by a transmitter claim 11 comprising a demodulator as claimed in claim 9 in that it comprises,
- a deinterleaver (90) associated with the interleaver (20) of the transmitter receiving the digital signal recombined $\hat{s}[m]$ by the demodulator (80),
- a decoder (100) associated with the error corrector coder (10) of the transmitter receiving the digital signal recombined deinterleaved $\hat{c}[m]$ by the deinterleaver (90).

• 15. Use of the transmitter as claimed in the claim 10 and of the receiver as claimed in the claim 13 for the conveying of digital signals in the FM band.