

Hrvatsko otvoreno natjecanje u informatici

4. kolo, 18. siječnja 2020.

Zadaci

Zadatak	Vremensko ograničenje	Memorijsko ograničenje	Bodovi
FPS	1 sekunda	512 MiB	20
Pod starim krovovima	1 sekunda	$512~\mathrm{MiB}$	50
Spiderman	1 sekunda	$512~\mathrm{MiB}$	70
Ukupno			140

Zadatak: FPS

Naši dragi prijatelji Fabijan i Patrik su prošle godine bili jako dobri te su za Božić zaslužili odlične poklone. Fabijan je od Djeda Mraza tražio dva kontrolera, a njegov prijatelj Patrik najbolju igru na svijetu. Naravno, ta igra je FIFA 20. Na Božićno su jutro bili oduševljeni jer su pod drvcem našli upravo ono što su tražili. Prepuni veselja našli su se kod Patrika kako bi što prije započeli s igranjem. Za svoju prvu utakmicu odabrali su okršaj titana s dna HNL tablice, Fabijan će upravljati igračima Varaždina, a Patrik će igrati protiv njega u dresovima Istre.

Kako bi stigli na Božićni ručak, u postavkama igre su postavili da utakmica traje točno X minuta. Patrik na svom računalu može igrati igru u Y FPS-a (engl. Frames Per Second (sličica u sekundi)), tj. njegovo računalo svake sekunde prikaže Y sličica. Nakon što su odigrali utakmicu Fabijan je pitao Patrika: "Patriče, koliko je sličica tvoje računalo prikazalo za vrijeme ove utakmice?". Dečki se za vrijeme praznika ne žele baviti matematikom pa vas mole da odgovorite na Fabijanov upit.

Ulazni podaci

U prvom je retku prirodan broj X ($1 \le X \le 100$) iz teksta zadatka.

U drugom je retku prirodan broj Y (1 $\leq Y \leq$ 100) iz teksta zadatka.

Izlazni podaci

U jedini redak ispišite broj sličica prikazanih na Patrikovom računalu za vrijeme utakmice.

Probni primjeri

ulaz	ulaz	ulaz
1 1	10	10 25
izlaz	izlaz	izlaz
60	600	15000

Pojašnjenje prvog probnog primjera: Jedna minuta sadrži 60 sekundi. Ako se svake sekunde prikaže jedna sličica, ukupno će biti prikazano 60 sličica.

Zadatak: Pod starim krovovima

Mjesto radnje: legendarna starozagrebačka gostionica Kod Žnidaršića.

Vrijeme radnje: početak druge polovice tridesetih godina dvadesetog stoljeća.

Kratki sadržaj: Franjo za šankom s prijateljima razgovara o stanju u Abesiniji. Njegov sin, mali Perica, sjedi u kutu za stolom. Na stolu ispred Perice stoji N čaša označenih brojevima od 1 do N. Za svaku čašu znamo koliko u njoj trenutno ima tekućine i kolika je njena zapremnina u nanolitrima. Zapremnina je najveća količina tekućine koju možemo uliti u čašu.

Problem: Malog Pericu zanima koliko najviše čaša može isprazniti prelijevanjem tekućine između čaša. Pod prelijevanjem tekućine iz jedne u drugu čašu podrazumijevamo postupak kojim svu ili neki cjelobrojni dio (u nanolitrima) tekućine iz jedne čaše prelijemo u drugu čašu. Prilikom prelijevanja tekućina se ne smije proliti po stolu.

Ispišite traženi broj ispražnjenih čaša te dodatno ispišite količinu tekućine u svakoj čaši u trenutku kada je ispražnjeno najviše čaša što se moglo. Ako ima više mogućnosti, ispišite bilo koju. Primijetite da nije potrebno minimizirati broj prelijevanja.

Ulazni podaci

U prvom je retku prirodan broj N (1 $\leq N \leq$ 1 000) iz teksta zadatka.

U sljedećih N redaka su po dva broja, cijeli broj T_i ($0 \le T_i \le 10^9$) i prirodan broj Z_i ($1 \le Z_i \le 10^9$) koji predstavljaju trenutnu količinu tekućine te zapremninu čaše s oznakom i. Obje su vrijednosti dane u nanolitrima te trenutna količina tekućine u čaši ne može premašiti njenu zapremninu, odnosno vrijedi $T_i \le Z_i$.

Izlazni podaci

U prvi redak ispišite najveći broj čaša koji možemo isprazniti.

U drugi redak ispišite traženu količinu tekućine (u nanolitrima) u čašama počevši od one s oznakom 1 pa sve do one s oznakom N.

Bodovanje

Točan ispis prvog retka vrijedi 4 boda, a točan ispis drugog retka vrijedi 1 bod za svaki testni primjer.

U testnim primjerima ukupno vrijednima 20 bodova sve će čaše biti iste zapremnine.

Probni primjeri

ulaz	ulaz	ulaz
5	5	8
2 6	4 5	2 6
1 6	2 7	3 4
0 6	5 5	1 1
6 6	0 10	9 10
5 6	7 9	0 10
izlaz	izlaz	4 5 6 8
2	3	3 9
6 6 2 0 0	0 0 0 10 8	izlaz
		5 0 0 0 9 10 0 0 9

Pojašnjenje drugog probnog primjera: Jedan od mogućih postupaka prelijevanja je

- 1. sve iz čaše 1 u čašu 2.
- 2. sve iz čaše 2 u čašu 4.
- 3. četiri nanolitra iz čaše 3 u čašu 4
- 4. jedan nanolitar u čašu 5.

Sada su čaše s oznakama 1, 2 i 3 u potpunosti prazne.

Zadatak: Spiderman

Mali Ivan veliki je obožavatelj društvene igre **Jamb** i Marvelovih superjunaka. Najdraži superjunak mu je čovjek-pauk, njujorški tinejdžer prijateljima poznat kao Peter Parker koji je svoje supermoći stekao ugrizom radioaktivnog pauka. Ivan mašta da će jednoga dana, baš kao čovjek-pauk, slobodno vrijeme provoditi skačući s nebodera na neboder. Usred jedne takve maštarije, Ivan je usnuo.

U snu se više nije zvao Ivan, već Peter Parkour, singapurski tinejdžer koji slobodno vrijeme provodi skačući s nebodera na neboder koristeći vještine parkoura¹. Ivan, odnosno Peter Parkour, zna da se u Singapuru nalazi točno N nebodera te da je i-ti neboder visok h_i metara. Također, poznato mu je da zbog svojih vještina može skočiti s i-tog na j-ti neboder ako je ostatak pri dijeljenju h_i s h_j jednak K. Pomozite Ivanu za svaki neboder odrediti na koliko ostalih nebodera može s njega skočiti.

Ulazni podaci

U prvom su retku prirodan broj N (1 $\leq N \leq 3 \cdot 10^5$) i cijeli broj K (0 $\leq K < 10^6$) iz teksta zadatka.

U sljedećem se retku nalazi N prirodnih brojeva h_i ($1 \le h_i \le 10^6$) iz teksta zadatka.

Izlazni podaci

U jedinom retku ispišite N cijelih brojeva tako da i-ti ispisani broj odgovara broju nebodera na koje Peter Parkour može skočiti sa i-tog nebodera iz ulaza.

Bodovanje

- U testnim primjerima ukupno vrijednima 14 bodova, vrijedit će $1 \leq N \leq 2~000$
- U testnim primjerima vrijednima 28 bodova, postojat će najviše 2 000 nebodera različitih visina.
- U testnim primjerima vrijednima dodatnih 14 bodova, vrijedit će K=0.

Probni primjeri

ulaz	ulaz	ulaz
2 1 5 5	6 3 4 3 12 6 8 2	5 1 1 3 5 7 2
izlaz	izlaz	izlaz
izlaz 0 0	izlaz 0 4 0 0 0 0	izlaz 4 1 1 2 0

Pojašnjenje trećeg probnog primjera:

- S prvog nebodera visine 1 Peter skočiti na bilo koji od preostalih nebodera.
- S drugog nebodera visine 3 Peter može skočiti samo na neboder visine 2.
- S trećeg nebodera visine 5 Peter može skočiti samo na neboder visine 2.
- S četvrtog nebodera visine 7 Peter može skočiti na neboder visine 2 ili na neboder visine 3.
- S petog nebodera visine 2 Peter ne može skočiti ni na koji od preostalih nebodera.

¹Parkour – metoda razvijanja ljudskog tijela kako bi bilo sposobno kretati se što brže i efikasnije kroz okolinu.