Lista de Exercícios 3 - Bio 208 - Processos Evolutivos

- 1. Considere uma mutação que seja recessiva e letal, com frequência de 0,1 numa população grande e na qual os cruzamentos ocorrem ao acaso.
- (a) Qual será a frequência da mutação na próxima geração?
- (b) Como a sua resposta mudaria se a mutação fosse letal e dominante?

(a)

(4)						
	p^2	2pq	q^2			
antes	0.01	0.18	0.81			
W	0	1	1			
Após	0/W_bar	0.18/W_b	0.81/W_b			
		ar	ar			

$$W_bar = 0.18 + 0.81 = 0.99$$

 $p' = (0.18/2)/W bar = 0.0909 [1 ponto]$

- (b) Se a mutação for letal e dominante ele será eliminada na próxima geração, p' = 0, pois todos os indivíduos que a possuem irão morrer. [1 ponto]
- 2. Calcule o tamanho efetivo populacional para os seguintes casos: (a) Uma população que passou 9 gerações com tamanho N=1000 e uma geração com tamanho N=20.

$$1/Ne = [(9 *1/1000) + (1/20)]/10$$

 $1/Ne = 0.0059$
 $Ne=169.4915$ [1 ponto]

(b) Uma população composta por 30 fêmeas receptivas a machos, e apenas 4 machos reprodutores.

$$4*30*4/(30+4) = 14.11765$$
 [1 ponto]

3. Considere uma variável que chamaremos de *f*, que descreve a proporção de sítios de um gene que, quando mutados, <u>não afetam a chance de sobrevivência</u> de seu portador. Suponha ainda que a <u>taxa de mutação</u> total (definida como o a taxa de mudanças que ocorre independente de seu efeito fenotípico) para humanos seja de 10-9 mutações/sítio/ano.

Calcule <u>a taxa de substituição</u> esperada na linhagem humana para os seguintes genes:

- (a) Fibrinopepetídeos, com f=0,9
- (b) Lactase, com f=0.4

(c) Histona, com f=0.01

^(a)
$$0.9 \times 10^{-9} = 9 \times 10^{-10}$$
; $0.4 \times 10^{-9} = 4 \times 10^{-10}$; $0.01 \times 10^{-9} = 1 \times 10^{-11}$

[2 pontos para as 3 respostas]

4. Abaixo está um trecho de 18 bases, presente no éxon 2 num gene MHC (do complexo principal de histocompatibilidade) de camundongos e ratos. Usando o código genético (veja no final deste documento) responda às seguintes questões.

Para esse exercício assuma que o número de possíveis substituições sinônimas correspondem a 1/3 do total de sítios disponíveis, e o número de não-sinônimas corresponde a 2/3. Assuma também que as espécies divergiram uma da outra há 2.5 milhões de anos atrás.

- (a) Qual é a taxa de substituição sinônima e não-sinônima (expressa em número de substituições por sítio por ano)?
- (b) Qual é a razão da taxa não-sinônima e sinônima? O que isso indica sobre o regime de seleção atuando sobre esse gene?

Rato ACC TAC GTG TAC CAC CCA

Camundongo -T- --- C-- --T T—T ---

N.B. Traços indicam que a sequência de camundongo é idêntica à do rato naquela posição.

Temos 3 substituições não-sinônimas e 2 sinônimas kN = 3 subs / 12 posições / 5 milhões de anos = 0,05 subst/base/milhão de anos kS = 2 subs / 6 posições / 5 milhões de anos = 0,06 subst/base/milhão de anos kN/kS = (3/12) / (2/6) = 0,75, indicando um predomínio de seleção purificadora. [2 pontos]

Second Letter

	U		С	Α	G	
1st letter	0	UUU Phe UUC UUA Leu UUG Leu	UCU Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	C	CUU Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA GIN CAG	CGU CGC Arg	U C A G
	A	AUU IIe AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg	U letter C A G
	G	GUU GUC GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GIU GAG GIU	GGU GGC GGA GGG	U C A G