Contents

```
1 TS-Toolbox: LiP MISO example (Ladedruck )
2 Modell order
  Create TS model
4 I/O data
  Clustering in product-space (u,y)
 Plot co Clustering
 Initial model
  Evaluation of initial model
  Optimize Clusters c (MF) and/or local model A/B/C
1
    TS-Toolbox: LiP MISO example (Ladedruck)
% $Id: NARX_MISO_Ladedruck.m | Fri Feb 26 16:22:06 2021 +0100 | Axel Dürrbaum $
clear
close all
addpath( '../TSModel' ) % Path to TSModel files
    Modell order
          % number of clusters = local models
% Selection of inputs in data
inu = [1,2,3,4,5];
nu = length(inu);
                    % number of inputs
nue = 1.2; % fuziness parameter
% Input vector u and output vector y
load( 'Data/MISO_Ladedruck.mat' )
dt = 1; % Implicit sampling time for static models
    Create TS model
3
ts = TSModel( 'ARX', nc, nu, 'Name', 'Ladedruck',...
'Comment', 'IAV Überlandfahrt 24.3.2013 Konstante Einspritzcharakteristik');
ts.setFuzziness( nue );
ts.set_msf_type( 'FCM');
ts.setSchedulingLags( {0,0,0,0,0}, [1,2,3] );
ts.setRegressorLags( {0,0,0,0,0}, [1,2,3] );
    I/O data
4
Labels = {};
u = [];
for i=inu
    Labels{end+1} = data.u(i).label;
    u = [u,data.u(i).Vals];
end
```

1

1

1

2

3

3

4

Labels{end+1} = data.y.label;

```
y = data.y.Vals;
dt = data.y.ts;
ts.setData( u, y, 'SampleTime',dt, 'Labels', Labels, ...
    'Comment', 'from dataset' );
%ts.setDataLimits( [0,2;0,2; -7,7] );
```

5 Clustering in product-space (u,y)

```
ts.clustering('FCM', 'nue', nue, 'tries',2, 'seed', 0)
c1 = getCluster(ts);
ans =
TS-Model: Type=ARX
Name: 'Ladedruck'
Type: 'TSModel'
Date: '21-May-2021 11:14:16'
Comments:
 'IAV Überlandfahrt 24.3.2013 Konstante Einspritzcharakteristik'
Structural parameters: nu = 5, ny = 1, nv = 3
Identification data: N=92207
, ts=0.01 (from dataset) Initial model estimation:
lags: u_1:0, u_2:0, u_3:0, u_4:0, u_5:0, y = [1 2 3]
 Membership function type = FCM
 Clustering: FCM, nue=1.2 norm=Euclidean in input space
Estimation of local models:
lags: u_1:0, u_2:0, u_3:0, u_4:0, u_5:0, y = [1 2 3]
```

6 Plot co Clustering

```
figure(1),clf
x = [y,u];
c = c1(:,[1,4:end]);
[sr,sc] = getSubplotPar( nu + 1 );
s=0;
for i1=1:nu
    for i2=i1+1:nu+1
        s=s+1;
        subplot(sr,sc,s)
        plot(x(:,i1),x(:,i2),'.')
        grid on
        xlabel( ts.Labels(i1) )
        ylabel( ts.Labels(i2) )
        hold on
        plot(c(:,i1),c(:,i2),'x')
        hold off
    end
end
```


7 Initial model

ts.initialize('FCM', 'nue', nue, 'method', 'global');

8 Evaluation of initial model

```
yp = ts.predict( u,y );
plotResiduals( y, yp, 'figure', 2, 'title', 'Ladedruck MISO/NARX: correlation' );
set(gcf,'WindowState', 'maximized' );
```


9 Optimize Clusters c (MF) and/or local model A/B/C

```
ts.optimize( 'B' );

c2 = getCluster( ts );
ypo = ts.predict( u,y );
```

			Norm of	First-order
Iteration	Func-count	f(x)	step	optimality
0	52	315687		5.62e+07
1	104	233167	10	6.71e+06
2	156	191464	20	2.21e+07
3	208	155323	40	2.07e+06
4	260	105797	80	8.47e+06
5	312	41858.9	160	1.38e+06
6	364	18978.7	186.632	9.18e+06
7	416	16742.5	54.7038	2.36e+05
8	468	16742.5	260.082	2.36e+05
9	520	16706.9	65.0205	1.9e+05
10	572	16691	65.0205	4.77e+05
11	624	16673	16.2551	8.84e+04
12	676	16651.1	32.5103	1.22e+05
13	728	16629.2	32.5103	9.1e+04
14	780	16606.6	32.5103	9.25e+04
15	832	16583.9	32.5103	9.52e+04
16	884	16562	32.5103	9.55e+04
17	936	16539.7	32.5103	9.78e+04
18	988	16518.3	32.5103	9.93e+04
19	1040	16497.4	32.5103	1.01e+05
20	1092	16470.2	65.0205	1.1e+05

21	1144	16424	65.0205	2.63e+05
22	1196	16389.8	130.041	1.08e+06
23	1248	16389.8	260.082	1.08e+06
24	1300	16336.7	65.0205	6.36e+04
25	1352	16314.4	130.041	1.22e+05
26	1404	16293.3	260.082	5.7e+05
27	1456	16265.6	260.082	1.94e+05
28	1508	16236.9	520.164	4.9e+05
29	1560	16210.7	520.164	4.93e+05
30	1612	16185.8	573.651	4.66e+05
31	1664	16185.8	358.186	4.66e+05
32	1716	16174.3	89.5465	1.92e+05

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.

Plot the correleation

 $\label{local_plotResiduals} $$ plotResiduals(y, ypo, 'figure', 3, 'title', 'Ladedruck MISO/NARX opt: correlation'); $$ set(gcf,'WindowState', 'maximized'); $$$

