APPENDIX SUMMARY

Reference	Item
APPENDIX I	SSD1320 Command Descriptions
APPENDIX II	SSD1320 Command Table
APPENDIX IV	SSD1320 Display Enhancement
APPENDIX V	SSD1320Z Die Pad Floor Plan
APPENDIX VI	SSD1320 Bump Die Pad Coordinates
APPENDIX VII	SSD1320Z Die Tray Information

SSD1320 | Rev 1.1 | P 1/15 | May 2017 | **Solomon Systech**

Appendix I: SSD1320 Command Descriptions

1 COMMAND DESCRIPTIONS

1.1 Fundamental Command

1.1.1 Set Memory Addressing Mode (20h)

There are 2 different memory addressing mode in SSD1320: horizontal addressing mode and vertical addressing mode. This command sets the way of memory addressing into one of the above two modes.

1.1.2 Set Column Address (21h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

1.1.3 Set Row Address (22h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

1.1.4 Set Portrait Addressing Mode (25h)

This double byte command sets the way of memory addressing into portrait addressing mode or the normal (original) addressing mode. Horizontal or vertical addressing mode can be set on top of it by command 20h.

1.1.5 Set Contrast Control (81h)

This double byte command sets the Contrast Setting of the display, with a valid range from 01h to FFh. The segment output current increases as the contrast step value increases, which results in brighter display.

1.1.6 Set Segment Re-map (A0h/A1h)

This command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design.

This command only affects subsequent data input. Data already stored in GDDRAM will have no change.

1.1.7 Set Display Start Line (A2h)

This double byte command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 159. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on.

Solomon Systech Rev 1.1 P 2/15 May 2017 **SSD1320**

1.1.8 Set Display Mode (A4h/A5h/A6h/A7h)

These are single byte commands and are used to set display status to Normal Display, Entire Display ON, Entire Display OFF or Inverse Display, respectively.

• Normal Display (A4h)

Reset the "Entire Display ON" effect and turn the data to ON at the corresponding gray level. Figure 1-1 shows an example of Normal Display.

Figure 1-1: Example of Normal Display

Memory

Display

actor Inc

• Set Entire Display ON (A5h)

Force the entire display to be at gray scale level GS15, regardless of the contents of the display data RAM, as shown on Figure 1-2.

Figure 1-2: Example of Entire Display ON

• Normal Display (A6h)

Reset the "Inverse Display" effect and turn the data to ON at the corresponding gray level. Figure 1-3 shows an example of Normal Display.

Figure 1-3: Example of Normal Display

Display

Display

• Inverse Display (A7h)

The gray scale level of display data are swapped such that "GS0" \leftrightarrow "GS15", "GS1" \leftrightarrow "GS14", etc. Figure 1-4 shows an example of inverse display.

Figure 1-4: Example of Inverse Display

SSD1320 | Rev 1.1 | P 3/15 | May 2017 | **Solomon Systech**

1.1.9 Set Multiplex Ratio (A8h)

This command switches the default 160 multiplex mode to any multiplex ratio, ranging from 16 to 160. The output pads COM0~COM159 will be switched to the corresponding COM signal.

1.1.10 External or internal IREF Selection (ADh)

This double byte command supports External or Internal I_{REF} Selection.

1.1.11 Set Display ON/OFF (AEh/AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned OFF and the segment and common output are in V_{SS} state and high impedance state, respectively. These commands set the display to one of the two states:

- Display OFF
- Display ON

Figure 1-5: Transition between different modes

1.1.12 Set Pre-charge voltage (BCh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of pre-charge voltage is programmed with reference to $V_{\rm CC}$.

1.1.13 Set Grav Scale Table (BEh)

This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON. Following the command BEh, the user has to set the gray scale setting for GS1, GS2, ..., GS14, GS15 one by one in sequence.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 1-6) can compensate this effect.

Figure 1-6: Example of Gamma correction by Gamma Look Up table setting

Solomon Systech Rev 1.1 P 4/15 May 2017 SSD1320

1.1.14 Select Default Linear Gray Scale Table (BFh)

This single byte command reloads the preset linear Gray Scale table as GS0 = Gamma Setting 0, GS1 = Gamma Setting 4, GS2 = Gamma Setting 8, ..., GS14 = Gamma Setting 56, GS15 = Gamma Setting 60.

1.1.15 Set COM Output Scan Direction (C0h/C8h)

This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module design. Additionally, the display will show once this command is issued. For example, if this command is sent during normal display then the graphic display will be vertically flipped immediately.

1.1.16 Set Display Offset (D3h)

This double byte command specifies the mapping of display start line to one of COM0~COM159 (assuming that COM0 is the display start line, display start line register equals to 0).

Set Display Clock Divide Ratio / Oscillator Frequency (D5h) 1.1.17

This command consists of two functions:

- Display Clock Divide Ratio (D) (A[3:0]) Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 256, with reset value = 0001b.
- Oscillator Frequency (A[7:4]) Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings being available.

1.1.18 Set Phase Length (D9h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period for Phase 1 in the unit of DCLK. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period for Phase 2 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_P.

1.1.19 **Set SEG Pins Hardware Configuration (DAh)**

1

This command sets the SEG signals pin configuration to match the OLED panel hardware layout. SEG Odd / Even (Left / Right) and Top / Bottom connections are software selectable, thus there are total of 8 cases and they are shown on the followings:

Oddeven (1) / Sequential (0) SEG Remap Left / Right Swap Case no. Remark (0 disable, 1 enable) 0 0 2 1 3 0 1 0 4 0 1 1 5 1 0 0 Default 6 1 0 1 7 1 1 0 8 1

Table 1-1: SEG Pins Hardware Configuration

SSD1320 Rev 1.1 P 5/15 May 2017 Solomon Systech

 Solomon Systech
 Rev 1.1
 P 6/15
 May 2017
 SSD1320

Note:

(1) The above eight figures are all with bump pads being faced up.

1.1.20 Set VCOMH Deselect Level (DBh)

This double byte command adjusts the VCOMH regulator output.

1.1.21 Set Command Lock (FDh)

This double byte command is used to lock the OLED driver IC from accepting any command except itself. After entering the "Lock" state, the OLED driver IC will not respond to any newly-entered command (except the register for unlocking it) and there will be no memory access. That means the OLED driver IC ignore all the commands (except the register for unlocking it) during the "Lock" state.

stor Inc

In the "Unlock" state, the driver IC resumes from the "Lock" state, and the driver IC will then respond to the command and memory access.

 SSD1320
 Rev 1.1
 P 7/15
 May 2017

 Solomon Systech

Appendix II: SSD1320 Command Table

1 COMMAND TABLE

Table 1-1: SSD1320 Command Table

(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)

Fund	lamental									, , , , , , , , , , , , , , , , , , , ,	
D/C #						D3	D2	D 1	D 0	Command	Description
	20	0	0	1	0	0	0	0			A[0] = 0b, Horizontal Addressing Mode
	A[0]	*	*	*	*	*	*	0			A[0] = 1b, Vertical Addressing Mode
0	A[U]							U	A()	Addressing Wode	A[0] = 10, Vertical Addressing Wode
0	21	0	0	1	0	0	0	0	1	C-4 C-1	Coton colonia de des la la la la colonia de la colonia del c
	21	0	0	1	0	0	0	0			Setup column start and end address
	A[7:0]	A ₇	A_6	A_5	A_4	\mathbf{A}_3	\mathbf{A}_2	A_1		Address	A[7:0] : Column start address, range : 0-79d,
0	B[7:0]	\mathbf{B}_7	B_6	\mathbf{B}_5	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	B_0		(RESET=0d)
											B[7:0]: Column end address, range: 0-79d,
											(RESET =79d)
0	22	0	0	1	0	0	0	1	0		Setup page start and end address
0	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[7:0]: Row start address, range: 0-159d,
0	B[7:0]	\mathbf{B}_{7}	B_6	B_5	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0		(RESET=0d)
											B[7:0]: Row end address, range: 0-159d,
											(RESET =159d)
											140
0	25	0	0	1	0	0	1	0	1	Set Portrait	A[0] = 0b, Normal Addressing Mode
	A[0]	*	*	*	*	*	*	0	A_0		A[0] = 1b, Portrait Addressing Mode
U	A[U]							U	\mathbf{A}_0		
										136	
0	A0/A1	1	0	1	0	0	0	0	X_0	Set Segment Re-	A0h, X[0]=0b: column address 0 is mapped to
			_	_			Ť			map	SEG0 (RESET)
											0000 (0000)
										60	A1h, X[0]=1b: column address 79 is mapped to
											SEG0
											5260
0	A2	1	0	1	0	0	0	1	0	Set Display Start	Set display RAM display start line register from 0-
	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1		Line	159 by A[7:0] (RESET=00h)
	7 1 [/ .O]	11/	110	115	1 14	113	112	7.1	710	Line	13) by M[7.0] (NEDET=00II)
											Note
											(1) In command A2h, A[6:0] from 00h to 3Fh has
											the same effect as serviced 40h 75h
											the same effect as command 40h-7Fh.
0	A 1 / A 5	1	0	1	0	0	1	0	V	Entine Discrine ON	A 41 V. Oh, Daguma to DAM and the district
0	A4/A5	1	0	1	0	0	1	0	X_0	Entire Display ON	A4h, X ₀ =0b: Resume to RAM content display
											(RESET)
											Output follows RAM content
											A5h, X ₀ =1b: Entire display ON
											Output ignores RAM content
	1										
	l .									ı	·

 Solomon Systech
 Rev 1.1
 P 8/15
 May 2017
 SSD1320

Func	lamental	Com	mand	l Tab	le						
	Hex	D7	D6	D 5	D4	D3	D2	D1	D 0	Command	Description
0	A6/A7	1	0	1	0	0	1	1	X ₀	Set Normal/Inverse Display	A6h, X[0]=0b: Normal display (RESET) 0 in RAM: OFF in display panel 1 in RAM: ON in display panel A7h, X[0]=1b: Inverse display 0 in RAM: ON in display panel 1 in RAM: OFF in display panel
0 0	A8 A[7:0]	1 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Set Multiplex Ratio	Set MUX ratio to N+1 MUX N=A[7:0]: from 16MUX to 160MUX. RESET = 1001 1111b (i.e. 159d, 160MUX) A[7:0] from 0 to 14 are invalid entry
0	AD A[4]	1 0	0 0	1 0	0 A ₄	1 0	1 0	0 0	1 0	External or internal I _{REF} Selection	Select external or internal I_{REF} : $A[4] = \text{`0'} \text{ Select external } I_{REF} \text{ (RESET)}$ $A[4] = \text{`1'} \text{ Enable internal } I_{REF} \text{ during display ON}$
0	AE/AF	1	0	1	0	1	1	1	X ₀	Set Display ON/OFF	AEh, X[0]=0b: Display OFF (sleep mode) (RESET) AFh X[0]=1b: Display ON in normal mode
0	BC A[4:0]	1 *	0 *	1 *	1 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Set Pre-charge voltage	Set pre-charge voltage level.[reset = 11110b]
0 0 0 0 0	BE A1[6:0] A2[6:0] A14[6:0] A15[6:0]		A2 ₆ A14 ₆	 A14 ₅		A2 ₃ A14 ₃	A2 ₂ A14 ₂	A2 ₁ A14 ₁	A1 ₀ A2 ₀ A14 ₀		The next 15 data bytes set the gray scale pulse width in unit of DCLK's. A1[6:0], value for GS1 level Pulse width A2[6:0], value for GS2 level Pulse width A14[6:0], value for GS14 level Pulse width A15[6:0], value for GS15 level Pulse width Note (1) The pulse width value of GS1, GS2,, GS15 should not be equal. i.e. 0 <gs1<gs2<gs15 (2)="" +="" 1="" 2<="" be="" gs15="" larger="" level="" must="" of="" period="" phase="" pulse="" set="" td="" than="" the="" width=""></gs1<gs2<gs15>

SSD1320 Rev 1.1 P 9/15 May 2017 **Solomon Systech**

Fund	amental	Com	nand	l Tab	le						
D/C #	Hex	D7	D6	D5	D4	D3	D2	D 1	D 0	Command	Description
0	BF	1	0	1	1	1	1	1	1	Linear LUT	The default Linear Gray Scale table is set in unit of DCLK's as follow
											GS0 level pulse width = 0; GS1 level pulse width = 4 GS2 level pulse width = 8; GS3 level pulse width = 12; : : : GS14 level pulse width = 56; GS15 level pulse width = 60
0	C0/C8	1	1	0	0	X ₃	0	0	0	Set COM Output Scan Direction	C0h, X[3]=0b: normal mode (RESET) Scan from COM0 to COM[N-1] C8h, X[3]=1b: remapped mode. Scan from COM[N-1] to COM0 Where N is the Multiplex ratio.
	D3 A[7:0]	1 A ₇	1 A ₆	0 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Display Offset	Set vertical shift by COM from 0d~159d (RESET=0d)
	D5 A[7:0]	1 A ₇	1 A ₆	0 A ₅	1 A ₄	0 A ₃	1 A ₂	0 A ₁	A_0	Set Display Clock Divide Ratio/Oscillator Frequency	A[3:0]: Define divide ratio (D) of display clock (DCLK) (i.e. 1, 2, 4, 8256) (RESET is 0001b, i.e. divide ratio = 2) A[7:4]: Set the Oscillator Frequency, F _{OSC} . Oscillator Frequency increases with the value of A[7:4] and vice versa. (RESET is 0100b)
	D9	1	1	0	1	1	0	0		Set Phase Length	Range: 0000b~1111b. A[3:0]: Phase 1 period of up to 15 DCLK
0	A[7:0]	A_7	A_6	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	10 50	Clock 0 is invalid entry (RESET=2h) A[7:4]: Phase 2 period of up to 15 DCLK Clock 0 is invalid entry (RESET=7h)
	DA A[5:4]	1 0	1 0	0 A ₅	1 A ₄	1 0	0 0	1 1		Hardware Configuration	A[4]=0b, Sequential SEG pin configuration A[4]=1b (RESET), Alternative (odd/even) SEG pin configuration A[5]=0b (RESET), Disable SEG Left/Right remap A[5]=1b, Enable SEG Left/Right remap
	DB A[2:0]	1 0	0 0	1 0	1 0	1 0	0 A ₂	1 A ₁	1 A ₀	Set V _{COMH}	Set COM deselect voltage level. A[5:3]

 Solomon Systech
 Rev 1.1
 P 10/15
 May 2017
 SSD1320

Fund	lamenta	l Com	man	d Tal	ole						
D/C #	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description
0	FD	1	1	1	1	1	1	0	1	Set Command	A[2]: MCU protection status.
0	A[2]	0	0	0	1	0	A_2	1	0	Lock	
											A[2] = 0b, Unlock OLED driver IC MCU interface
											from entering command (RESET)
											A[2] = 1b, Lock OLED driver IC MCU interface
											from entering command
											Note
											(1) The locked OLED driver IC MCU interface
											prohibits all commands and memory access except
											the FDh command

SSD1320 Rev 1.1 P 11/15 May 2017 **Solomon Systech**

Appendix IV: SSD1320 Display Enhancement

1 COMMAND DESCRIPTIONS

1.1 Display Enhancement (D8h)

The low Greyscale display quality would be improved by this command.

2 COMMAND TABLE

Table 2-1: Command Table for Display Enhancement

Comn	nand Table										
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description
0	D8	1	1	0	1	1	0	0	0	Display	A[5] = 0b: Enhanced low GS
										Enhancement	display quality
0	A[5]	1	1	A_5	1	0	1	0	1		A[5] = 1b: Normal [reset]
					50	G	in	56		tial to	ctor inc

 Solomon Systech
 Rev 1.1
 P 12/15
 May 2017
 SSD1320

Appendix V: SSD1320Z Die Pad Floor Plan

Pin 1 -

43:

Figure 1: - SSD1320Z Die drawing

Die size	9.33mm +/- 0.05mm x 0.80mm+/- 0.05mm
Die thickness	250 +/- 15um
Min I/O pad pitch	30um
Min SEG pad pitch	27um
Min COM pad pitch	27um
Bump height	Nominal 9 um

Bump size		
Pad#	X[um]	Y[um]
1-20	15	67
20-157	35	67
158-239, 402-483	12	100
240-401	12	110

Alignment mark	Size
+ shape	56.25um x 56.25um
T shape	56.25um x 56.25um

(For details dimension please see Figure 2)

Pad 1,2,3,...->483 Gold Bumps face up

Figure 2: SSD1320Z alignment mark dimension

SSD1320 | Rev 1.1 | P 13/15 | May 2017 | **Solomon Systech**

Appendix VI: SSD1320 Bump Die Pad Coordinates

Table 1 : SSD1320Z Pin Assignment

	, , , , , , , , , , , , , , , , , , , ,					
Pin number Pin name X Y	Pin number Pin name X Y	Pin number Pin name X Y	Pin number Pin name X Y	Pin number Pin name X Y	Pin number Pin name X Y	Pin number Pin name X Y
1 VSS -4172.5 -338.5	81 VP -247.5 -338.5	161 SEG77 4456.5 322	241 COM0 2146.5 317	321 COM80 -13.5 317	401 NC -2173.5 317	481 SEG158 -4483.5 322
2 TP0 -4142.5 -338.5	82 VP -192.5 -338.5	162 SEG76 4429.5 322	242 COM1 2119.5 317	322 COM81 -40.5 317	402 VCC -2350.5 322	482 SEG159 -4510.5 322
3 TP1 -4112.5 -338.5	83 NC -137.5 -338.5	163 SEG75 4402.5 322	243 COM2 2092.5 317	323 COM82 -67.5 317	403 SEG80 -2377.5 322	483 NC -4537.5 322
4 TP2 -4082.5 -338.5	84 VDD -82.5 -338.5	164 SEG74 4375.5 322	244 COM3 2065.5 317	324 COM83 -94.5 317	404 SEG81 -2404.5 322	
5 TP3 -4052.5 -338.5	85 VDD -27.5 -338.5	165 SEG73 4348.5 322	245 COM4 2038.5 317	325 COM84 -121.5 317	405 SEG82 -2431.5 322	
6 TP4 -4022.5 -338.5	86 VDD 27.5 -338.5	166 SEG72 4321.5 322	246 COM5 2011.5 317	326 COM85 -148.5 317	406 SEG83 -2458.5 322	
7 TP5 -3992.5 -338.5	87 VDD 82.5 -338.5	167 SEG71 4294.5 322	247 COM6 1984.5 317	327 COM86 -175.5 317	407 SEG84 -2485.5 322	
8 VSS -3962.5 -338.5	88 FR 137.5 -338.5	168 SEG70 4267.5 322	248 COM7 1957.5 317	328 COM87 -202.5 317	408 SEG85 -2512.5 322	
9 TP6 -3932.5 -338.5	89 VSS 192.5 -338.5	169 SEG69 4240.5 322	249 COM8 1930.5 317	329 COM88 -229.5 317	409 SEG86 -2539.5 322	
10 TP7 -3902.5 -338.5	90 CS# 247.5 -338.5	170 SEG68 4213.5 322	250 COM9 1903.5 317	330 COM89 -256.5 317	410 SEG87 -2566.5 322	
11 TP8 -3872.5 -338.5	91 RES# 302.5 -338.5	171 SEG67 4186.5 322	251 COM10 1876.5 317	331 COM90 -283.5 317	411 SEG88 -2593.5 322	
12 TP9 -3842.5 -338.5	92 NC 357.5 -338.5	172 SEG66 4159.5 322	252 COM10 1876.5 317 252 COM11 1849.5 317	332 COM90 -283.5 317 332 COM91 -310.5 317	411 SEG89 -2620.5 322	
13 TP10 -3812.5 -338.5	93 D/C 412.5 -338.5	173 SEG66 4132.5 322	253 COM11 1849.5 317 253 COM12 1822.5 317	333 COM92 -337.5 317	413 SEG90 -2647.5 322	
14 TP11 -3782.5 -338.5	94 R/W#(WR#) 467.5 -338.5	173 SEG60 4132.5 322	253 COM12 1822.5 317 254 COM13 1795.5 317	334 COM92 -384.5 317	414 SEG91 -2674.5 322	
15 VSS -3752.5 -338.5	95 VSS 522.5 -338.5	174 SEG64 4105.5 322 175 SEG63 4078.5 322	255 COM14 1768.5 317	334 COM93 -364.5 317 335 COM94 -391.5 317	414 SEG91 -2674.5 322 415 SEG92 -2701.5 322	
16 TP12 -3722.5 -338.5	96 E(RD#) 577.5 -338.5	176 SEG62 4051.5 322	256 COM15 1741.5 317	336 COM95 -418.5 317	416 SEG93 -2728.5 322	
17 TP13 -3692.5 -338.5	97 NC 632.5 -338.5	177 SEG61 4024.5 322	257 COM16 1714.5 317	337 COM96 -445.5 317	417 SEG94 -2755.5 322	
18 TP14 -3662.5 -338.5	98 D0 687.5 -338.5	178 SEG60 3997.5 322	258 COM17 1687.5 317	338 COM97 -472.5 317	418 SEG95 -2782.5 322	
19 TP15 -3632.5 -338.5	99 NC 742.5 -338.5	179 SEG59 3970.5 322	259 COM18 1660.5 317	339 COM98 -499.5 317	419 SEG96 -2809.5 322	
20 VSS -3602.5 -338.5	100 D1 797.5 -338.5	180 SEG58 3943.5 322	260 COM19 1633.5 317	340 COM99 -526.5 317	420 SEG97 -2836.5 322	
21 NC -3547.5 -338.5	101 D2 852.5 -338.5	181 SEG57 3916.5 322	261 COM20 1606.5 317	341 COM100 -553.5 317	421 SEG98 -2863.5 322	
22 NC -3492.5 -338.5	102 NC 907.5 -338.5	182 SEG56 3889.5 322	262 COM21 1579.5 317	342 COM101 -580.5 317	422 SEG99 -2890.5 322	
23 NC -3437.5 -338.5	103 D3 962.5 -338.5	183 SEG55 3862.5 322	263 COM22 1552.5 317	343 COM102 -607.5 317	423 SEG100 -2917.5 322	
24 NC -3382.5 -338.5	104 VSS 1017.5 -338.5	184 SEG54 3835.5 322	264 COM23 1525.5 317	344 COM103 -634.5 317	424 SEG101 -2944.5 322	
25 VCC -3327.5 -338.5	105 VSS 1072.5 -338.5	185 SEG53 3808.5 322	265 COM24 1498.5 317	345 COM104 -661.5 317	425 SEG102 -2971.5 322	
26 VCC -3272.5 -338.5	106 D4 1127.5 -338.5	186 SEG52 3781.5 322	266 COM25 1471.5 317	346 COM105 -688.5 317	426 SEG103 -2998.5 322	
27 VCC -3217.5 -338.5	107 NC 1182.5 -338.5	187 SEG51 3754.5 322	267 COM26 1444.5 317	347 COM106 -715.5 317	427 SEG104 -3025.5 322	
28 VCC -3162.5 -338.5	108 D6 1237.5 -338.5	188 SEG50 3727.5 322	268 COM27 1417.5 317	348 COM107 -742.5 317	428 SEG105 -3052.5 322	
29 VCC -3107.5 -338.5	109 D6 1292.5 -338.5	189 SEG49 3700.5 322	269 COM28 1390.5 317	349 COM108 -769.5 317	429 SEG106 -3079.5 322	
30 VCC -3052.5 -338.5	110 NC 1347.5 -338.5	190 SEG48 3673.5 322	270 COM29 1363.5 317	350 COM109 -796.5 317	430 SEG107 -3106.5 322	
31 VCC -2997.5 -338.5	111 D7 1402.5 -338.5	191 SEG47 3646.5 322	271 COM30 1336.5 317	351 COM110 -823.5 317	431 SEG108 -3133.5 322	
32 VCC -2942.5 -338.5	112 CL 1457.5 -338.5	192 SEG46 3619.5 322	272 COM31 1309.5 317	352 COM111 -850.5 317	432 SEG109 -3160.5 322	
33 VCOMH -2887.5 -338.5	113 VSS 1512.5 -338.5	193 SEG45 3592.5 322	273 COM32 1282.5 317	353 COM112 -877.5 317	433 SEG110 -3187.5 322	
34 VCOMH -2832.5 -338.5	114 CLS 1567.5 -338.5	194 SEG44 3565.5 322	274 COM33 1255.5 317	354 COM113 -904.5 317	434 SEG111 -3214.5 322	
35 VCOMH -2777.5 -338.5	115 VDD 1622.5 -338.5	195 SEG43 3538.5 322	275 COM34 1228.5 317	355 COM114 -931.5 317	435 SEG112 -3241.5 322	
36 VCOMH -2722.5 -338.5	116 VDD 1677.5 -338.5	196 SEG42 3511.5 322	276 COM35 1201.5 317	356 COM115 -958.5 317	436 SEG113 -3268.5 322	
37 VCOMH -2667.5 -338.5	117 BS0 1732.5 -338.5	197 SEG41 3484.5 322	277 COM36 1174.5 317	357 COM116 -985.5 317	437 SEG114 -3295.5 322	
38 VCOMH -2612.5 -338.5	118 VSS 1787.5 -338.5	198 SEG40 3457.5 322	278 COM37 1147.5 317	358 COM117 -1012.5 317	438 SEG115 -3322.5 322	
39 VCOMH -2557.5 -338.5	119 BS1 1842.5 -338.5	199 SEG39 3430.5 322	279 COM38 1120.5 317	359 COM118 -1039.5 317	439 SEG116 -3349.5 322	
40 VCOMH -2502.5 -338.5	120 VDD 1897.5 -338.5	200 SEG38 3403.5 322	280 COM39 1093.5 317	360 COM119 -1066.5 317	440 SEG117 -3376.5 322	
41 NC -2447.5 -338.5	121 BS2 1952.5 -338.5	201 SEG37 3376.5 322	281 COM40 1066.5 317	361 COM120 -1093.5 317	441 SEG118 -3403.5 322	
42 VDD -2392.5 -338.5	122 VSS 2007.5 -338.5	202 SEG36 3349.5 322	282 COM41 1039.5 317	362 COM121 -1120.5 317	442 SEG119 -3430.5 322	
43 VDD -2337.5 -338.5	123 VSS 2062.5 -338.5	203 SEG35 3322.5 322	283 COM42 1012.5 317	363 COM122 -1147.5 317	443 SEG120 -3457.5 322	
44 VDD -2282.5 -338.5	124 VSS 2117.5 -338.5	204 SEG34 3295.5 322	284 COM43 985.5 317	364 COM123 -1174.5 317	444 SEG121 -3484.5 322	
45 VIDO -2227.5 -338.5	125 BGGND 2172.5 -338.5	205 SEG33 3268.5 322	285 COM44 958.5 317	365 COM124 -1201.5 317	445 SEG122 -3511.5 322	
46 VID0 -2172.5 -338.5	126 VBREF 2227.5 -338.5	206 SEG32 3241.5 322	286 COM44 935.5 317	366 COM125 -1228.5 317	446 SEG123 -3638.5 322	
47 VID0 -2117.5 -338.5	127 VLSS 2282.5 -338.5	207 SEG31 3214.5 322	287 COM46 904.5 317	367 COM126 -1255.5 317	447 SEG124 -3565.5 322	
47 VID0 -2117.5 -338.5 48 VID0 -2062.5 -338.5	127 VLSS 2282.5 -338.5 128 VLSS 2337.5 -338.5	207 SEG31 3214.5 322 208 SEG30 3187.5 322	288 COM47 877.5 317	368 COM127 -1255.5 317	447 SEG124 -3565.5 322 448 SEG125 -3592.5 322	
49 VSS -2007.5 -338.5	129 VLSS 2392.5 -338.5	209 SEG29 3160.5 322	289 COM47 877.5 317 289 COM48 850.5 317	369 COM128 -1309.5 317	449 SEG126 -3619.5 322	
50 VSS -1962.5 -338.5	129 VLSS 2392.5 -338.5 130 VLSS 2447.5 -338.5	210 SEG28 3180.5 322 210 SEG28 3133.5 322	289 COM48 850.5 317 290 COM49 823.5 317	370 COM129 -1336.5 317	450 SEG127 -3646.5 322	
50 VSS -1952.5 -338.5 51 VSS -1897.5 -338.5	130 VLSS 2447.5 -338.5 131 VLSS 2502.5 -338.5	210 SEG28 3133.5 322 211 SEG27 3106.5 322	291 COM50 796.5 317	371 COM129 -1336.5 317	450 SEG127 -3646.5 322 451 SEG128 -3673.5 322	
52 VSS -1842.5 -338.5 53 VID1 -1787.5 -338.5	132 VLSS 2557.5 -338.5 133 VLSS 2612.5 -338.5	212 SEG26 3079.5 322 213 SEG25 3052.5 322	292 COM51 769.5 317 293 COM52 742.5 317	372 COM131 -1390.5 317 373 COM132 -1417.5 317	452 SEG129 -3700.5 322 453 SEG130 -3727.5 322	
55 VID1 -1677.5 -338.5	135 VSL 2722.5 -338.5	215 SEG23 2998.5 322	295 COM54 688.5 317	375 COM134 -1471.5 317	455 SEG132 -3781.5 322	I
56 VID1 -1622.5 -338.5 57 VDD -1567.5 -338.5	136 VSL 2777.5 -338.5	216 SEG22 2971.5 322	296 COM55 661.5 317	376 COM135 -1498.5 317	456 SEG133 -3808.5 322	
	137 VSL 2832.5 -338.5	217 SEG21 2944.5 322	297 COM56 634.5 317	377 COM136 -1525.5 317	457 SEG134 -3835.5 322	
58 VDD -1512.5 -338.5	138 IREF 2887.5 -338.5	218 SEG20 2917.5 322	298 COM57 607.5 317	378 COM137 -1552.5 317	458 SEG135 -3862.5 322	
59 VDD -1457.5 -338.5	139 VCOMH 2942.5 -338.5	219 SEG19 2890.5 322	299 COM58 580.5 317	379 COM138 -1579.5 317	459 SEG136 -3889.5 322	I
60 VDD -1402.5 -338.5	140 VCOMH 2997.5 -338.5	220 SEG18 2863.5 322	300 COM59 553.5 317	380 COM139 -1606.5 317	460 SEG137 -3916.5 322	
61 VDD -1347.5 -338.5	141 VCOMH 3052.5 -338.5	221 SEG17 2836.5 322	301 COM60 526.5 317	381 COM140 -1633.5 317	461 SEG138 -3943.5 322	
62 VDD -1292.5 -338.5	142 VCOMH 3107.5 -338.5	222 SEG16 2809.5 322	302 COM61 499.5 317	382 COM141 -1660.5 317	462 SEG139 -3970.5 322	
63 VDD -1237.5 -338.5	143 VCOMH 3162.5 -338.5	223 SEG15 2782.5 322	303 COM62 472.5 317	383 COM142 -1687.5 317	463 SEG140 -3997.5 322	I
64 NC -1182.5 -338.5	144 VCOMH 3217.5 -338.5	224 SEG14 2755.5 322	304 COM63 445.5 317	384 COM143 -1714.5 317	464 SEG141 -4024.5 322	
65 VSL -1127.5 -338.5	145 VCOMH 3272.5 -338.5	225 SEG13 2728.5 322	305 COM64 418.5 317	385 COM144 -1741.5 317	465 SEG142 -4051.5 322	
66 VSL -1072.5 -338.5	146 VCOMH 3327.5 -338.5	226 SEG12 2701.5 322	306 COM65 391.5 317	386 COM145 -1768.5 317	466 SEG143 -4078.5 322	
67 VSL -1017.5 -338.5	147 VCC 3382.5 -338.5	227 SEG11 2674.5 322	307 COM66 364.5 317	387 COM146 -1795.5 317	467 SEG144 -4105.5 322	
68 VLSS -962.5 -338.5	148 VCC 3437.5 -338.5	228 SEG10 2647.5 322	308 COM67 337.5 317	388 COM147 -1822.5 317	468 SEG145 -4132.5 322	
69 VLSS -907.5 -338.5	149 VCC 3492.5 -338.5	229 SEG9 2620.5 322	309 COM68 310.5 317	389 COM148 -1849.5 317	469 SEG146 -4159.5 322	
70 VLSS -852.5 -338.5	150 VCC 3547.5 -338.5	230 SEG8 2593.5 322	310 COM69 283.5 317	390 COM149 -1876.5 317	470 SEG147 -4186.5 322	
71 VLSS -797.5 -338.5	151 VCC 3602.5 -338.5	231 SEG7 2566.5 322	311 COM70 256.5 317	391 COM150 -1903.5 317	471 SEG148 -4213.5 322	
72 VLSS -742.5 -338.5	152 VCC 3657.5 -338.5	232 SEG6 2539.5 322	312 COM71 229.5 317	392 COM151 -1930.5 317	472 SEG149 -4240.5 322	
73 VLSS -687.5 -338.5	153 VCC 3712.5 -338.5	233 SEG5 2512.5 322	313 COM72 202.5 317	393 COM152 -1957.5 317	473 SEG150 -4267.5 322	
74 VLSS -632.5 -338.5	154 VCC 3767.5 -338.5	234 SEG4 2485.5 322	314 COM73 175.5 317	394 COM153 -1984.5 317	474 SEG151 -4294.5 322	
75 VLSS -577.5 -338.5	155 T1 3822.5 -338.5	235 SEG3 2458.5 322	315 COM74 148.5 317	395 COM154 -2011.5 317	475 SEG152 -4321.5 322	
76 NC -522.5 -338.5	156 TO 3877.5 -338.5	236 SEG2 2431.5 322	316 COM75 121.5 317	396 COM155 -2038.5 317	476 SEG153 -4348.5 322	
77 VP -467.5 -338.5	157 NC 3932.5 -338.5	237 SEG1 2404.5 322	317 COM76 94.5 317	397 COM156 -2065.5 317	477 SEG154 -4375.5 322	
78 VP -412.5 -338.5	158 NC 4537.5 322	238 SEG0 2377.5 322	318 COM77 67.5 317	398 COM157 -2092.5 317	478 SEG155 -4402.5 322	I
79 VP -357.5 -338.5	159 SEG79 4510.5 322	239 VCC 2350.5 322	319 COM78 40.5 317	399 COM158 -2119.5 317	479 SEG156 -4429.5 322	
80 VP -302.5 -338.5	160 SEG78 4483.5 322	240 NC 2173.5 317	320 COM79 13.5 317	400 COM159 -2146.5 317	480 SEG157 -4456.5 322	
			1 22 21 22 1 27			

P 14/15 May 2017 SSD1320 Solomon Systech Rev 1.1

Note
(1) Input Side: pin 1 to 157; Output Side: pin 158 to 483.

Appendix VII: SSD1320Z Die Tray Information

Figure 1: SSD1320Z Die Tray drawing

Symbol	Spec (mm)	(mil)
W1	76.00±0.10	(2992)
W2	68.00±0.10	(2677)
W3	68.30±0.10	(2689)
Dx	10.50±0.10	(413)
TPx	55.00±0.10	(2165)
Dy	6.15±0.10	(242)
TPy	63.70±0.10	(2508)
Px	11.00±0.05	(433)
Py	2.45±0.05	(96)
X	9.48±0.05	(373)
Y	0.95±0.05	(37)
Z	0.35±0.05	(14)
N	162(pocket	number)

Remark:

- 1. Depth of text: Max. 0.1mm

- Depth of text: Max. 0. Hinth
 Tray material: ABS
 Tray Color Code: Black
 Surface Resistance: 10°~10¹²Ω/SQ
 Tray Warpage: Max. ±0.1mm
 Pocket Bottom: Rough Surface

SSD1320 Rev 1.1 P 15/15 | May 2017 Solomon Systech