10. Ammonium hexachloroplatinate(IV), $(NH_4)_2(PtCl_6)$, is one of the few sparingly soluble ammonium salts. Its K_{sp} at 20° C is 5.6×10^{-6} . Compute its solubility in grams per liter of solution.

 $(NH_4)_2(PtCl_6)(s) \rightleftharpoons 2 NH_4^+(aq) + PtCl_6^{2-}(aq)$ $[NH_4^+]^2[PtCl_6^{2-}] = K_{sp} = 5.6 \times 10^{-6}$. Let $S = [PtCl_6^{2-}]$ at equilibrium at 20°C. If neither of the product ions reacts significantly with the solvent or with each other, then at equilibrium $[NH_4^+] = 2S$. Substitution gives

$$(2S)^2 S = 5.6 \times 10^{-6}$$
 which is easily solved: $S = 0.011 \text{ mol L}^{-1}$

The gram solubility is $(0.011 \text{ mol L}^{-1})(443.87 \text{ g mol}^{-1}) = 5.0 \text{ g L}^{-1}$.

15. At 100°C, water dissolves 1.8×10^{-2} g of AgCl per liter. Compute the $K_{\rm sp}$ of AgCl at this temperature.

The dissolution reaction and its $K_{\rm sp}$ -expression are

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq) \qquad [\operatorname{Ag}^+][\operatorname{Cl}^-] = K_{\operatorname{sp}}$$

At equilibrium in 1.00 L of the solution at 100°C

$$n_{\rm Ag^+} = 0.018 \text{ g} \times \left(\frac{1 \text{ mol AgCl}}{143.3 \text{ g AgCl}}\right) \left(\frac{1 \text{ mol Ag}^+}{1 \text{ mol AgCl}}\right) = 1.26 \times 10^{-4} \text{ mol}$$

Since the volume of the solution is 1.00 L, the concentration of $\mathrm{Ag^+}$ ion is 1.26×10^{-4} M. The concentration of $\mathrm{Cl^-}$ ion is the same—one mole per liter of chloride ion is produced in solution for every mole per liter of silver ion. Substitute the concentrations into the mass-action expression

$$K_{\rm sp} = [{\rm Ag}^+][{\rm Cl}^-] = (1.26 \times 10^{-4})(1.26 \times 10^{-4}) = \boxed{1.6 \times 10^{-8}} {\rm at} \ 100^{\circ}{\rm C}$$

Tip. This $K_{\rm sp}$ exceeds the $K_{\rm sp}$ in text Table 16.2 (by a factor of 100!) because the temperature is higher.

20. Suppose 100.0 mL of a 0.0010 M CaCl₂ solution is added to 50.0 mL of a 6.0×10^{-5} M NaF solution at 25°C. Determine whether CaF₂(s) ($K_{\rm sp} = 3.9 \times 10^{-11}$) tends to precipitate from this mixture.

The calcium chloride and sodium fluoride solutions dilute each other as they are mixed. The concentration of $\mathrm{Ca^{2+}}$ is 2/3 of 0.0010 M immediately after mixing, and the concentration of $\mathrm{F^{-}}$ is 1/3 of 6.0×10^{-5} M. Substituting these concentrations in the K_{sp} expression for $\mathrm{CaF_2}$ gives a Q of about 2.7×10^{-13} . Because this is less than K_{sp} , no precipitate forms.

- **27.** The solubility product of nickel(II) hydroxide, Ni(OH)₂, at 25°C is $K_{\rm sp} = 1.6 \times 10^{-16}$.
 - (a) Calculate the molar solubility of Ni(OH)₂ in pure water at 25°C.
 - (b) Calculate the molar solubility of Ni(OH)₂ in 0.100 M NaOH.
 - a) For every $y \mod L^{-1}$ of Ni(OH)₂ that is dissolved at equilibrium, $y \mod L^{-1}$ of Ni²⁺ and $2y \mod L^{-1}$ of OH⁻ have formed according to the equation

$${\rm Ni}({\rm OH})_2(s) \Longleftrightarrow {\rm Ni}^{2+}(aq) + 2\,{\rm OH}^-(aq) \qquad \quad [{\rm Ni}^{2+}][{\rm OH}^-]^2 = K_{\rm sp} = 1.6\times 10^{-16}$$

Substituting into the $K_{\rm sp}$ expression gives the equation $(y)(2y)^2 = 1.6 \times 10^{-16}$. Solving gives $y = 3.4 \times 10^{-6}$. The solubility of Ni(OH)₂ is 3.4×10^{-6} mol L⁻¹ at 25°C.

b) The presence of a common ion (the OH⁻ ion) reduces the solubility of the nickel(II) hydroxide. Set up the usual three-line table:

Substitute the equilibrium concentrations into the $K_{\rm sp}$ expression

$$K_{\rm sp} = [{
m Ni}^{2+}] [{
m OH}^-]^2 = z (0.100 + 2z)^2 = 1.6 \times 10^{-16}$$

Assume that 2z is much smaller than 0.100 mol L⁻¹. Then

$$(0.100)^2(z) = 1.6 \times 10^{-16}$$
 so that $z = 1.6 \times 10^{-14}$ mol L⁻¹

The assumption is obviously justified. The solubility is $1.6 \times 10^{-14} \text{ mol L}^{-1}$ at 25°C.

32. Compare the molar solubility of $Mg(OH)_2$ in pure water with that in a solution buffered at pH 9.00.

a) Assume that neither the Mg^{2+} ion nor the OH^- ion from the dissolution of the $Mg(OH)_2$ interacts further in the solution. Then, if S is the solubility of the $Mg(OH)_2$, the concentration of Mg^{2+} ion is S and the concentration of OH^- ion is S. At equilibrium,

$$K_{\rm sp} = 1.2 \times 10^{-11} = S (2S)^2$$
 from which $S = 1.4 \times 10^{-4} \text{ mol L}^{-1}$

b) If the solution is buffered at pH = 9, then the [OH⁻] is being held at 10^{-5} M. This concentration is *less* than what forms from the dissolution of the Mg(OH)₂ in pure water. After the dissolution of Mg(OH)₂ comes to equilibrium, the concentration of OH⁻ ion remains at 10^{-5} M because of the action of the buffer. Let S again represent the solubility of the salt. Then:

$$K_{\rm sp} = 1.2 \times 10^{-11} = S(10^{-5})^2$$

and the solubility is $0.12 \text{ mol } L^{-1}$.

38. The organic compound 18-crown-6 (see preceding problem) also binds strongly with the alkali metal ions in methanol.

$$K^+ + 18$$
-crown-6 \rightleftharpoons [complex]

In methanol solution the equilibrium constant is 1.41×10^6 . A similar reaction with Cs⁺ has an equilibrium constant of only 2.75×10^4 . A solution is made (in methanol) containing $0.020 \text{ mol } L^{-1}$ each of K⁺ and Cs⁺. It also contains $0.30 \text{ mol } L^{-1}$ of 18-crown-6. Compute the equilibrium concentrations of both the uncomplexed K⁺ and the uncomplexed Cs⁺.

The two equilibria are

$$K^+(meth) + crown(meth) \rightleftharpoons K - crown^+(meth)$$
 $K = 1.41 \times 10^6$
 $Cs^+(meth) + crown(meth) \rightleftharpoons Cs - crown^+(meth)$ $K = 2.75 \times 10^4$

The equilibrium constants are fairly large, so both equilibria lie far to the right. The 18-crown-6 compound is in excess in the solution. Thus, effectively all of the K^+ and Cs^+ ion are consumed leaving 0.30-0.020-0.020=0.26 mol L^{-1} of crown and forming 0.020 mol L^{-1} of K-crown⁺ and 0.020 mol L^{-1} of Cs-crown⁺.

$$1.41 \times 10^6 = \frac{[\text{K-crown}^+]}{[\text{K}^+][\text{crown}]} = \frac{0.020}{[\text{K}^+]0.26}$$
 from which $[\text{K}^+] = 5.5 \times 10^{-8} \text{ mol L}^{-1}$

A similar computation on the Cs⁺ equilibrium gives $[Cs^+] = 2.8 \times 10^{-6} \text{ mol L}^{-1}$.

47. $K_{\rm sp}$ for Pb(OH)₂ is 4.2×10^{-15} , and $K_{\rm f}$ for Pb(OH)₃ is 4×10^{14} . Suppose a solution whose initial concentration of Pb²⁺(aq) is 1.00 M is brought to pH 13.0 by addition of solid NaOH. Will solid Pb(OH)₂ precipitate, or will the lead be dissolved as Pb(OH)₃ (aq)? What will be [Pb²⁺] and [Pb(OH)₃] at equilibrium? Repeat the calculation for an initial Pb²⁺ concentration of 0.050 M. (Hint: One way to solve this problem is to assume that Pb(OH)₂(s) is present and calculate [Pb²⁺] and [Pb(OH)₃] that would be in equilibrium with the solid. If the sum of these is less than the original [Pb²⁺], the remainder can be assumed to have precipitated. If not, there is a contradiction and we must assume that no Pb(OH)₂(s) is present. In this case we can calculate [Pb²⁺] and [Pb(OH)₃] directly from $K_{\rm f}$.)

The problem concerns the fate of $Pb^{2+}(aq)$ in a solution adjusted to pH 13.0 by the addition of NaOH. The precipitation reaction

$$Pb^{2+}(aq) + 2OH^{-}(aq) \Longrightarrow Pb(OH)_{2}(s)$$

tends to reduce the concentration of $\mathrm{Pb^{2+}}(aq)$. The K for this reaction is the reciprocal of the K_{sp} of $\mathrm{Pb}(\mathrm{OH})_2(s)$. It is quite large $(K_{\mathrm{sp}}$ is 4.2×10^{-15} so $1/K_{\mathrm{sp}}$ is 2.38×10^{14}). This seems to mean that 1.00 M $\mathrm{Pb^{2+}}$ ion gives a precipitate of $\mathrm{Pb}(\mathrm{OH})_2(s)$ at pH 13.0. But there is a complication. The equilibrium

$$Pb^{2+}(aq) + 3OH^{-}(aq) \Longrightarrow Pb(OH)_{3}^{-}(aq)$$

ties up Pb²⁺ ion in a soluble form, thereby opposing the precipitation of Pb(OH)₂(s). The K for this reaction is the K_f for Pb(OH)₃ (aq) and is large (given as 4×10^{14} in the problem). Whether Pb(OH)₂ precipitates depends how the competition between these reactions plays out.

Suppose Pb(OH)₂(s) does precipitate. Then, at pH 13.0, where $[OH^-] = 0.10$ M, the concentration of Pb²⁺ must fulfill the equation

$$K_{\rm sp} = 4.2 \times 10^{-15} = [{\rm Pb^{2+}}] [{\rm OH^{-}}]^2 = [{\rm Pb^{2+}}] (0.10)^2$$

This means $[Pb^{2+}]$ is locked at 4.2×10^{-13} M if solid $Pb(OH)_2$ is present. The mass-action expression for the complexation equilibrium is

$$K_{\rm f} = 4 \times 10^{14} = \frac{\rm [Pb(OH)_3^-]}{\rm [Pb^{2+}][OH^-]^3}$$

Substitute $[OH^-] = 0.10$ and $[Pb^{2+}] = 4.2 \times 10^{-13}$ M, and solve for $[Pb(OH)_3^-]$. The answer is 0.17 M. Any concentration of Pb^{2+} ion that exceeds this threshold value causes precipitation. Because 1.00 M exceeds 0.17 M, $Pb(OH)_2(s)$ precipitates in the case defined in this problem. At equilibrium, $[Pb^{2+}]$ equals 4.2×10^{-13} M, and the concentration of $Pb(OH)_3^-$ equals 1.2×10^{-13} M.

The problem also asks whether $Pb(OH)_2(s)$ precipitates if the initial concentration of Pb^{2+} is 0.050 M. This value is less than the precipitation threshold of 0.17 M so no precipitate of $Pb(OH)_2(s)$ can form. The K_{sp} equilibrium is *not* in effect. Essentially all of the Pb^{2+} ion is tied up in the complex, making the concentration of $Pb(OH)_3^-$ equal $\boxed{0.050 \text{ M}}$. Put this value into the K_f mass-action expression

$$K_{\rm f} = 4 \times 10^{14} = \frac{[{\rm Pb}({\rm OH})_3^-]}{[{\rm Pb}^{2+}][{\rm OH}^-]^3} = \frac{0.050}{[{\rm Pb}^{2+}](0.10)^3}$$

Solving gives the concentration of Pb²⁺(aq) (also called "free" Pb²⁺ ion) as 1×10^{-13} M.

53. Calculate the $[Zn^{2+}]$ in a solution that is in equilibrium with ZnS(s) and in which $[H_3O^+] = 1.0 \times 10^{-5}$ M and $[H_2S] = 0.10$ M.

$$\operatorname{ZnS}(s) + \operatorname{H}_2\operatorname{O}(l) \Longleftrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{HS}^-(aq) + \operatorname{OH}^-(aq) \qquad K = [\operatorname{Zn}^{2+}][\operatorname{HS}^-][\operatorname{OH}^-]$$

The equilibrium expression is a triple product, but is otherwise not exceptional. Both the OH^- and HS^- concentrations depend strongly on the concentration of H_3O^+ according to the equations

$$2\,\mathrm{H}_2\mathrm{O}(l) \Longleftrightarrow \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{OH}^-(aq) \qquad K_\mathrm{w} = [\mathrm{H}_3\mathrm{O}^+][\mathrm{OH}^-]$$

$$\mathrm{H}_2\mathrm{S}(aq) + \mathrm{H}_2\mathrm{O}(aq) \Longleftrightarrow \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{HS}^-(aq) \qquad K_\mathrm{a1} = \frac{[\mathrm{HS}^-][\mathrm{H}_3\mathrm{O}^+]}{[\mathrm{H}_2\mathrm{S}]}$$

Solve these equations for $[OH^-]$ and $[HS^-]$, and substitute into the triple-product K expression

$$[\mathrm{Zn^{2+}}] \left(\frac{K_{\mathrm{a1}}[\mathrm{H_2S}]}{[\mathrm{H_3O^+}]} \right) \left(\frac{K_{\mathrm{w}}}{[\mathrm{H_3O^+}]} \right) = K$$

Assume that the temperature is 25°C. Then $K_{\rm a1}$ of H₂S equals 9.1×10^{-8} , $K_{\rm w}$ equals 1.0×10^{-14} , and K equals $2\times10^{-25}.^6$ Also, the concentration of H₂S equals 0.10 M, and the concentration of H₃O⁺ equals 1.0×10^{-5} M. Solve the preceding equation for the concentration of Zn²⁺, and insert the three equilibrium constants and two concentrations

$$\begin{split} [\mathrm{Zn^{2+}}] &= K \left(\frac{[\mathrm{H_3O^+}]}{K_\mathrm{a1}[\mathrm{H_2S}]} \right) \left(\frac{[\mathrm{H_3O^+}]}{K_\mathrm{w}} \right) \\ &= 2 \times 10^{-25} \left(\frac{1.0 \times 10^{-5}}{(9.1 \times 10^{-8})(0.10)} \right) \left(\frac{1.0 \times 10^{-5}}{1.0 \times 10^{-14}} \right) = \boxed{2 \times 10^{-13} \ \mathrm{M}} \end{split}$$

56. What is the highest pH at which 0.050 м Mn²⁺ will remain entirely in a solution that is saturated with H₂S at a concentration of [H₂S] = 0.10 м? At this pH, what would be the concentration of Cd²⁺ in equilibrium with solid CdS in this solution?

MnS(s) +
$$H_2O(l) \rightleftharpoons Mn^{2+}(aq) + OH^{-}(aq) + HS^{-}(aq)$$
 $K = 3 \times 10^{-14}$

Add to this the equilibria

$$\mathrm{HS^-}(aq) + \mathrm{H_3O^+}(aq) \rightleftharpoons \mathrm{H_2S}(aq) + \mathrm{H_2O}(l) \qquad K = \frac{1}{K_a}$$

$$\mathrm{H_3O^+}(aq) + \mathrm{OH^-}(aq) \rightleftharpoons 2 \; \mathrm{H_2O}(l) \qquad K = \frac{1}{K_w}$$

This gives

$$\mathbf{MnS(s)} \ + 2 \ \mathrm{H_2O^+}(aq) \rightleftharpoons \ \mathbf{Mn^{2+}(aq)} + \ \mathrm{H_2S}(aq) + 2 \ \mathrm{H_2O}(l)$$

The condition for Mn²⁺ to remain in solution is

$$\frac{[\mathrm{Mn^{2+}}][\mathrm{H_2S}]}{[\mathrm{H_3O^{+}}]^2} < \frac{K}{K_{\mathrm{a}}K_{\mathrm{w}}} = \frac{3 \times 10^{-14}}{(9.1 \times 10^{-8})(1.0 \times 10^{-14})} = 3.3 \times 10^{7}$$

Inserting $[\mathrm{Mn^{2+}}] = 0.050~\mathrm{M}$ and $[\mathrm{H_2S}] = 0.10~\mathrm{M}$ gives

$$[H_3O^+]^2 > \frac{[Mn^{2+}][H_2S]}{3.3 \times 10^7} = \frac{(0.050)(0.10)}{3.3 \times 10^7} = 1.5 \times 10^{-10}$$

 $[H_3O^+] > 1.2 \times 10^{-5}; \quad pH < 4.9$

$$[\mathrm{Cd}^{2+}] = \frac{[\mathrm{H_3O^+}]^2}{[\mathrm{H_2S}]} (7.7 \times 10^{-7}) = \frac{(1.2 \times 10^{-5})^2}{0.10} (7.7 \times 10^{-7}) = 1 \times 10^{-15} \text{ M}$$