I. K. Gujral Punjab Technical University Master of Computer Applications (MCA)

Detailed contents	Contact hours
Part A	
Formal Language, Non-Computational Problems, Diagonal Argument,	22 hours
Russels's Paradox.	22 110 0115
Theory of Automata: Deterministic Finite Automaton (DFA), Non-	
Deterministic Finite Automaton (NDFA), Equivalence of DFA and	
NDFA, Mealy and Moore Models, Minimization of Finite Automata.	
Regular Sets and Regular Grammars: Regular Languages, Regular	
Grammars, Regular Expressions, Properties of Regular Language,	
Pumping Lemma, Non-Regular Languages, Lexical Analysis.	
Context Free Language: Properties of Context Free Language,	
Chomsky Classification of Languages, Context Free Grammar,	
Simplification of Context Free Grammar, Chomsky Normal Form,	
Greibach Normal Form.	
Part B	
Push Down Automata: Ambiguity, Parse Tree Representation of	22 hours
Derivation Trees, Equivalence of PDA's and Pushdown Automaton	
(PDA), Non-Deterministic Pushdown Automaton (NPDA).	
Turing Machines (TM): Standard Turing Machine and its Variations;	
Universal Turing Machines, Models of Computation and Church-	
Turing Thesis.	
Recursive and Recursively-Enumerable Languages; Context-	
Sensitive Languages, Unrestricted Grammars, Chomsky Hierarchy of	
Languages, Construction of TM for Simple Problems.	
Unsolvable Problems and Computational Complexity: Unsolvable	
Problem, Halting Problem, Post Correspondence Problem, Unsolvable	
Problems for Context-Free Languages, Measuring and Classifying	
Complexity, Tractable and Intractable Problems.	

Text Books:

- 1. Jeffrey Ullman and John Hopcroft, Introduction to Automata Theory, Languages, and Computation, 3e, Pearson Education India (2008).
- 2. K.L.P. Mishra, Theory of Computer Science: Automata, Languages and Computation, Prentice Hall India Learning Private Limited (2006).
- 3. John Martin, Introduction to Languages and the Theory of Computation, McGraw-Hill Higher Education (2007).

Reference Books:

1. Introduction to Computer Theory, Daniel. I.A. Cohen, John Wiley & Sons.

Course Code: PGCA1928

Course Name: Advanced Computer Networking Laboratory

Page **41** of **94**