Implementasi Data Covid dengan Linear Regression

Kelompok 2:

- Arfian Ramdhani 41519120005
- Kartika Nirwana Silalahi 41519120006
- Baeningrum Syahfutri 41519120036

Linear Regression

Pengertian Linear Regression

- Regresi linear adalah sebuah pendekatan untuk memodelkan hubungan antara variabel terikat Y dan satu atau lebih variabel bebas yang disebut X. Salah satu kegunaan dari regresi linear adalah untuk melakukan prediksi berdasarkan data-data yang telah dimiliki sebelumnya.
- Regresi Linier atau Linear Regression adalah suatu model statistik yang umum dan paling sederhana yang digunakan untuk Machine Learning untuk melakukan prediksi dengan cara supervised learning.

Pengertian Linear Regression

Regresi Linier melibatkan 2 variabel dimana salah satunya adalah variabel independen (x) dan satu lagi adalah variabel dependen (y).

- Independen berarti variabel ini sebagai variabel utama yang mungkin akan mempengaruhi nilai variabel kedua (dependen).
- Dependen berarti nilai variabel ini akan tergantung dari nilai variabel independennya, jika korelasi tinggi maka dependensi juga tinggi.

Pengertian Polynomial Regression

Regresi polinomial merupakan regresi di mana fungsinya adalah kuadratik.

Jika kita ingin mencari hubungan antara 1 variabel dependen dengan 1 variabel independen, maka bisa menggunakan simple atau poli.

Regresi Polinomial adalah suatu bentuk regresi linier di mana hubungan antara variabel independen x dan variabel dependen y dimodelkan sebagai polinomial derajat ke-n.

Kenapa Polynomial Regression?

- Ada beberapa hubungan yang akan dihipotesiskan oleh peneliti sebagai kurva. Jelas, jenis kasus seperti itu akan mencakup istilah polinomial.
- Pemeriksaan residu. Jika kita mencoba menyesuaikan model linier dengan data melengkung, sebaran residual (sumbu Y) pada prediktor (sumbu X) akan memiliki tambalan dari banyak residu positif di tengah. Maka dalam situasi seperti itu tidak tepat.
- Asumsi dalam analisis regresi linier berganda yang biasa adalah bahwa semua variabel independen adalah independen. Dalam model regresi polinomial, asumsi ini tidak puas

Studi Kasus (Covid-19)

Implementasi Prediksi Covid 19

Covid-19 adalah adalah virus yang diidentifikasi sebagai penyebab meningkatnya jumlah penyakit pernafasan di Wuhan, Cina secara mendadak. Awalnya, pasien-pasien pertama di Wuhan diberitakan memiliki hubungan dengan pusat penjualan makanan-makanan laut dan hewan,menandakan bahwa kemungkinan virus ini menjangkit dari hewan ke manusia. Namun, setelah itu, pasien-pasien bermunculan yang tidak memiliki hubungan dengan pusat penjualanan makanan tersebut, menunjukkan bahwa virus ini juga dapat menyebar dari manusia ke manusia. Karena virus ini baru muncul, maka belum jelas berapa mudah virus ini menyebar dan apa saja efeknya bagi yang terjangkit.

Dataset ini berisi informasi harian jumlah kasus infeksi, kematian, dan penyembuhan dari 2019 Novel Coronavirus.

Import Module

Untuk Olahdata

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
```

Persiapan Dataset

Import Module

Untuk Plot

```
import plotly.express as px
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import plotly
plotly.offline.init_notebook_mode() # For not show up chart error

import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
%matplotlib inline

from tqdm import tqdm
def RMSLE(pred,actual):
    return np.sqrt(np.mean(np.power((np.log(pred+1)-np.log(actual+1)),2)))
```

Pengambilan Dataset

```
pd.set_option('mode.chained_assignment', None)
test = pd.read_csv("./covid/data/test.csv")
train = pd.read_csv("./covid/data/train.csv")
train['Province_State'].fillna('', inplace=True)
test['Province_State'].fillna('', inplace=True)
train['Date'] = pd.to_datetime(train['Date'])
test['Date'] = pd.to_datetime(test['Date'])
train = train.sort_values(['Country_Region', 'Province_State', 'Date'])
test = test.sort_values(['Country_Region', 'Province_State', 'Date'])
```

- Untuk Fix error di train data

```
train[['ConfirmedCases', 'Fatalities']] =
train.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases',
```

```
[21] , 'Fatalities']] = train.groupby(['Country_Region', 'Province_State'])[['ConfirmedCases', 'Fatalities']].transform('cummax')
```

Algoritma Linear Regression

Forecast with BayesianRidge

Forecasting atau perkiraan adalah kegiatan yang bertujuan untuk meramalkan atau memprediksi

```
from sklearn.linear model import LinearRegression, BayesianRidge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make pipeline
feature day = [1,20,50,100,200,500,1000]
def CreateInput(data):
    feature = []
    for day in feature day:
        #Get information in train data
        data.loc[:,'Number day from ' + str(day) + ' case'] = 0
        if (train['train['Country Region'] == country) & (train['Province State'] == province) & (train['ConfirmedCases'] < day)]['Date'].count() > 0):
            fromday = train[(train['Country Region'] == country) & (train['Province State'] == province) & (train['ConfirmedCases'] < day)]['Date'].max()
            fromday = train[(train['Country Region'] == country) & (train['Province State'] == province)]['Date'].min()
        for i in range(0, len(data)):
            if (data['Date'].iloc[i] > fromday):
                day denta = data['Date'].iloc[i] - fromday
                data['Number day from ' + str(day) + ' case'].iloc[i] = day denta.days
        feature = feature + ['Number day from ' + str(day) + ' case']
    return data[feature]
```

Algoritma Linear Regression

```
from sklearn.linear model import LinearRegression, BayesianRidge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make pipeline
feature day = [1,20,50,100,200,500,1000]
def CreateInput(data):
   feature = []
   for day in feature day:
       #Get information in train data
       data.loc[:,'Number day from ' + str(day) + ' case'] = 0
       if (train['(train['Country Region'] == country) & (train['Province State'] == province) & (train['ConfirmedCases'] < day)]['Date'].count() > 0):
           fromday = train[(train['Country Region'] == country) & (train['Province State'] == province) & (train['ConfirmedCases'] < day)]['Date'].max()
       else:
           fromday = train[(train['Country Region'] == country) & (train['Province State'] == province)]['Date'].min()
       for i in range(0, len(data)):
           if (data['Date'].iloc[i] > fromday):
               day denta = data['Date'].iloc[i] - fromday
               data['Number day from ' + str(day) + ' case'].iloc[i] = day denta.days
        feature = feature + ['Number day from ' + str(day) + ' case']
   return data[feature]
pred data all = pd.DataFrame()
with tqdm(total=len(train['Country Region'].unique())) as pbar:
   for country in train['Country Region'].unique():
   #for country in ['Japan']:
       for province in train[(train['Country Region'] == country)]['Province State'].unique():
           df train = train[(train['Country Region'] == country) & (train['Province State'] == province)]
           df_test = test[(test['Country_Region'] == country) & (test['Province_State'] == province)]
           X train = CreateInput(df train)
                                                                                                                                          Activate Wi
           y train confirmed = df train['ConfirmedCases'].ravel()
                                                                                                                                          Go to PC setting
           y_train_fatalities = df_train['Fatalities'].ravel()
           X pred = CreateInput(df test)
```

```
# Define feature to use by X pred
            feature_use = X_pred.columns[0]
            for i in range(X_pred.shape[1] - 1,0,-1):
                if (X \text{ pred.iloc}[0,i] > 0):
                    feature use = X pred.columns[i]
            idx = X train[X train[feature use] == 0].shape[0]
            adjusted X train = X train[idx:][feature use].values.reshape(-1, 1)
            adjusted y train confirmed = y train confirmed[idx:]
            adjusted y train_fatalities = y train_fatalities[idx:] #.values.reshape(-1, 1)
            adjusted X pred = X pred[feature use].values.reshape(-1, 1)
            model = make pipeline(PolynomialFeatures(2), BayesianRidge())
            model.fit(adjusted X train,adjusted y train confirmed)
            y_hat_confirmed = model.predict(adjusted X_pred)
            model.fit(adjusted X train,adjusted y train fatalities)
            y hat fatalities = model.predict(adjusted X pred)
            pred data = test[(test['Country Region'] == country) & (test['Province State'] == province)]
            pred data['ConfirmedCases hat'] = y hat confirmed
            pred data['Fatalities hat'] = y hat fatalities
            pred data all = pred data all.append(pred data)
        pbar.update(1)
df val = pd.merge(pred data all,train[['Date','Country Region','Province State','ConfirmedCases','Fatalities']],on=['Date','Country Region','Province State'], how='left')
df val.loc[df val['Fatalities hat'] < 0, 'Fatalities hat'] = 0</pre>
df val.loc[df val['ConfirmedCases hat'] < 0, 'ConfirmedCases hat'] = 0</pre>
                                                                                                                                            Activate Windows
df_val_1 = df_val.copy()
                                                                                                                                            Go to PC settings to activate Wind
               | 173/173 [01:05<00:00, 2.63it/s]
100%
```

Confirmed Cases dan Fatalities

```
[ ] RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)

[ ] RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)

[ ] 0.1828241464847915
```

Confirmed Cases dan Fatalities Country

for		l['Country_Region'] == (talities'].isnull() == False)] val_country['ConfirmedCases_hat'].values),RMSLE(df_val_country['Fatalities'].values,df_val_country['
df_v	val_score = pd.DataFrame(val_sc val_score.columns = ['Country', val_score.sort_values('Confirme	'ConfirmedCases_Scored'		
D-	Country	ConfirmedCases_Scored	Fatalities_Scored	
101	Mali	1.121247	0.133608	
164	Ukraine	0.854126	0.244006	
163	Uganda	0.656863	0.000000	
65	Grenada	0.565423	0.000000	
68	Guinea-Bissau	0.522935	0.000000	
1000				
99	Malaysia	0.020022	0.212704	
151	Sweden	0.019551	0.183070	
128	Poland	0.014691	0.082859	
44	Diamond Princess	0.010608	0.084689	
136	Saint Vincent and the Grenadines	0.000000	0.000000	
1731	rows × 3 columns			Activate Windows Go to PC settings to activate Windows.

Cases Indonesia

<pre>country = "Indonesia" df_val = df_val_1 df_val[df_val['Country_Region'] == country].groupby(['Date', 'Country_Region']).sum().reset_index()</pre>								
	Date	Country_Region	ForecastId	ConfirmedCases_hat	Fatalities_hat	ConfirmedCases	Fatalities	
0	2020-03-19	Indonesia	5806	297.940261	26.445855	311.0	25.0	
1	2020-03-20	Indonesia	5807	363.453291	30.708079	369.0	32.0	
2	2020-03-21	Indonesia	5808	436.044137	35.892138	450.0	38.0	
3	2020-03-22	Indonesia	5809	515.712798	41.998033	514.0	48.0	
4.	2020-03-23	Indonesia	5810	602.459274	49.025764	579.0	49.0	
5	2020-03-24	Indonesia	5811	696.283566	56.975330	686.0	55.0	
6	2020-03-25	Indonesia	5812	797.185673	65.846731	790.0	58.0	
7	2020-03-26	Indonesia	5813	905.165596	75.639968	893.0	78.0	
8	2020-03-27	Indonesia	5814	1020.223334	86.355041	1046.0	87.0	
9	2020-03-28	Indonesia	5815	1142.358887	97.991948	1155.0	102.0	
10	2020-03-29	Indonesia	5816	1271.572256	110.550692	1285.0	114.0	
11	2020-03-30	Indonesia	5817	1407.863440	124.031270	1414.0	122.0	
12	2020-03-31	Indonesia	5818	1551.232439	138.433684	1528.0	136.0	
13	2020-04-01	Indonesia	5819	1701.679254	153.757934	0.0	0.0	
14	2020-04-02	Indonesia	5820	1859.203884	170.004019	0.0	0.0	
15	2020-04-03	Indonesia	5821	2023.806330	187.171939	0.0	0.0	
16	2020-04-04	Indonesia	5822	2195.486591	205.261695	0.0	0.0	

[] D	17	2020-04-05	Indonesia	5823	2374.244667	224.273287	0.0	0.0
	18	2020-04-06	Indonesia	5824	2560.080559	244.206714	0.0	0.0
	19	2020-04-07	Indonesia	5825	2752.994266	265.061976	0.0	0.0
	20	2020-04-08	Indonesia	5826	2952.985788	286.839074	0.0	0.0
	21	2020-04-09	Indonesia	5827	3160.055126	309.538007	0.0	0.0
	22	2020-04-10	Indonesia	5828	3374.202279	333.158775	0.0	0.0
	23	2020-04-11	Indonesia	5829	3595.427248	357.701379	0.0	0.0
	24	2020-04-12	Indonesia	5830	3823.730032	383.165819	0.0	0.0
	25	2020-04-13	Indonesia	5831	4059.110631	409.552094	0.0	0.0
	26	2020-04-14	Indonesia	5832	4301.569046	436.860204	0.0	0.0
	27	2020-04-15	Indonesia	5833	4551.105276	465.090150	0.0	0.0
	28	2020-04-16	Indonesia	5834	4807.719322	494.241932	0.0	0.0
	29	2020-04-17	Indonesia	5835	5071.411182	524.315548	0.0	0.0
	30	2020-04-18	Indonesia	5836	5342.180859	555.311001	0.0	0.0
	31	2020-04-19	Indonesia	5837	5620.028350	587.228288	0.0	0.0
	32	2020-04-20	Indonesia	5838	5904.953657	620.067411	0.0	0.0
	33	2020-04-21	Indonesia	5839	6196.956780	653.828370	0.0	0.0
	34	2020-04-22	Indonesia	5840	6496.037717	688.511164	0.0	0.0
	35	2020-04-23	Indonesia	5841	6802.196470	724.115793	0.0	0.0
	36	2020-04-24	Indonesia	5842	7115.433039	760.642258	0.0	0.0
	37	2020-04-25	Indonesia	5843	7435.747423	798.090559	0.0	0.0
	38	2020-04-26	Indonesia	5844	7763.139622	836.460695	0.0	0.0
	39	2020-04-27	Indonesia	5845	8097.609637	875.752666	0.0	0.0

		20 St St	555775-	7.00		W050	
20	2020-04-08	Indonesia	5826	2952.985788	286.839074	0.0	0.0
21	2020-04-09	Indonesia	5827	3160.055126	309.538007	0.0	0.0
22	2020-04-10	Indonesia	5828	3374.202279	333.158775	0.0	0.0
23	2020-04-11	Indonesia	5829	3595.427248	357.701379	0.0	0.0
24	2020-04-12	Indonesia	5830	3823.730032	383.165819	0.0	0.0
25	2020-04-13	Indonesia	5831	4059.110631	409.552094	0.0	0.0
26	2020-04-14	Indonesia	5832	4301.569046	436.860204	0.0	0.0
27	2020-04-15	Indonesia	5833	4551.105276	465.090150	0.0	0.0
28	2020-04-16	Indonesia	5834	4807.719322	494.241932	0.0	0.0
29	2020-04-17	Indonesia	5835	5071.411182	524.315548	0.0	0.0
30	2020-04-18	Indonesia	5836	5342.180859	555.311001	0.0	0.0
31	2020-04-19	Indonesia	5837	5620.028350	587.228288	0.0	0.0
32	2020-04-20	Indonesia	5838	5904.953657	620.067411	0.0	0.0
33	2020-04-21	Indonesia	5839	6196.956780	653.828370	0.0	0.0
34	2020-04-22	Indonesia	5840	6496.037717	688.511164	0.0	0.0
35	2020-04-23	Indonesia	5841	6802.196470	724.115793	0.0	0.0
36	2020-04-24	Indonesia	5842	7115.433039	760.642258	0.0	0.0
37	2020-04-25	Indonesia	5843	7435.747423	798.090559	0.0	0.0
38	2020-04-26	Indonesia	5844	7763.139622	836.460695	0.0	0.0
39	2020-04-27	Indonesia	5845	8097.609637	875.752666	0.0	0.0
40	2020-04-28	Indonesia	5846	8439.157467	915.966473	0.0	0.0
41	2020-04-29	Indonesia	5847	8787.783112	957.102115	0.0	0.0
42	2020-04-30	Indonesia	5848	9143.486573	999.159592	0.0	0.0

Fatalities Indonesia

Global Fatalities

```
Displaying World Total Fatalities

[] df_total = df_val.groupby(['Date']).sum().reset_index()
    df_train = train[(train['Country_Region'].isin(df_val['Country_Region'].unique())) & (train['ConfirmedCases'] > 0)].groupby(['Date']).sum().reset_index()

idx = df_total[((df_total['ConfirmedCases'].isnull() == False) & (df_total['ConfirmedCases'] > 0))].shape[0]

fig = px.line(df_total, x="Date", y="ConfirmedCases_hat", title='Total Cases of fig.add_scatter(x=df_train['Date'], y=df_train['ConfirmedCases'], mode='lines', name="Actual train", showlegend=True)

fig.add_scatter(x=df_total['Date'][0:idx], y=df_train['Fatalities'], mode='lines', name="Actual train", showlegend=True)

fig.add_scatter(x=df_train['Date'], y=df_train['Fatalities'], mode='lines', name="Actual train", showlegend=True)

fig.add_scatter(x=df_total['Date'], y=df_train['Fatalities'], mode='lines', name="Actual train", showlegend=True)

fig.add_scatter(x=df_total['Date'], y=df_total['Fatalities'], mode='lines', name="Actual train", showlegend=True)

fig.add_scatter(x=df_total['Date'], y=df_total['Fatalities'], mode='lines', name="Actual test", showlegend=True)

fig.add_scatter(x=df_total['Date'], y=df_total['Fatalities'], mode='lines', name="Actual test", showlegend=True)

fig.add_scatter(x=df_total['Date'], y=df_total['Fatalities'], mode='lines', name="Actual test", showlegend=True)
```

Total Fatalities of World Forecast

5 Top Confirmed Country

```
Displaying Top 5 Countries Confirmed & Fatalities
 [ ] df now = train.groupby(['Date','Country Region']).sum().sort values(['Country Region','Date']).reset index()
     df now['New Cases'] = df now['ConfirmedCases'].diff()
     df now['New Fatalities'] = df now['Fatalities'].diff()
     df now = df now.groupby('Country Region').apply(lambda group: group.iloc[-1:]).reset index(drop = True)
     fig = go.Figure()
     for country in df now.sort values('ConfirmedCases', ascending=False).head(5)['Country Region'].values:
         df country = df val[df val['Country Region'] == country].groupby(['Date', 'Country Region']).sum().reset index()
         idx = df country[((df country['ConfirmedCases'].isnull() == False) & (df country['ConfirmedCases'] > 0))].shape[0]
         fig.add trace(go.Scatter(x=df country['Date'][0:idx],y= df country['ConfirmedCases'][0:idx], name = country))
         fig.add trace(go.Scatter(x=df country['Date'],y= df country['ConfirmedCases hat'], name = country + ' forecast'))
     fig.update layout(title text='Top 5 ConfirmedCases forecast')
     fig.show()
     fig = go.Figure()
     for country in df now.sort values('Fatalities', ascending=False).head(5)['Country Region'].values:
         df_country = df_val[df_val['Country Region'] == country].groupby(['Date', 'Country Region']).sum().reset_index()
         idx = df country[((df country['Fatalities'].isnull() == False) & (df country['Fatalities'] > 0))].shape[0]
         fig.add trace(go.Scatter(x=df country['Date'][0:idx],y= df country['Fatalities'][0:idx], name = country))
         fig.add trace(go.Scatter(x=df country['Date'],y= df country['Fatalities hat'], name = country + ' forecast'))
     fig.update_layout(title_text='Top 5 ConfirmedCases forecast
     fig.show()
```


5 Top Fatalities Country

Top 5 Fatalities forecast

Top 10 Country

```
Top 10 Countries

[ ] df_now = df_now.sort_values('ConfirmedCases', ascending = False)
    fig = make_subplots(rows = 2, cols = 2)
    fig.add_bar(x=df_now['Country_Region'].head(10), y = df_now['ConfirmedCases'].head(10), row=1, col=1, name = 'Total cases')
    df_now = df_now.sort_values('Fatalities', ascending=False)
    fig.add_bar(x=df_now['Country_Region'].head(10), y = df_now['Fatalities'].head(10), row=1, col=2, name = 'Total Fatalities')

df_now = df_now.sort_values('New Cases', ascending=False)
    fig.add_bar(x=df_now['Country_Region'].head(10), y = df_now['New Cases'].head(10), row=2, col=1, name = 'New Cases')
    df_now = df_now.sort_values('New Fatalities', ascending=False)
    fig.add_bar(x=df_now['Country_Region'].head(10), y = df_now['New Fatalities'].head(10), row=2, col=2, name = 'New Fatalities')
    fig.update_layout({'title_text':'Top 10 Country', 'legend_orientation':'h', 'legend_y':1.1, 'legend_yanchor':'auto'})
```


Referensi

- https://www.geeksforgeeks.org/python-implementationof-polynomialregression/#:~:text=Polynomial%20Regression%20is%20 a%20form,denoted%20E(y%20%7Cx)
- https://id.wikipedia.org/wiki/Regresi_linear
- https://www.kaggle.com/binhlc/sars-cov-2-exponentialmodel-week-2
- https://www.kaggle.com/c/covid19-global-forecastingweek-2/data
- https://medium.com/@jrendz/regresi-linier-dengan-r-danpython-ebb80662c6da
- https://www.megabagus.id/polynomial-regression/

TERIMAKASIH