59

Near-consistent robust estimations of moments for unimodal distributions

Tuban Lee

10

11

12

13

14

15

17

19

20

21

22

23

24

27

28

29

30

31

34

35

37

This manuscript was compiled on May 8, 2023

Descriptive statistics for parametric models currently heavily rely on the accuracy of distributional assumptions. Here, based on the invariant structures of unimodal distributions, a series of sophisticated yet efficient estimators, robust to both gross errors and departures from parametric assumptions, are proposed for estimating mean and central moments with insignificant asymptotic biases for common unimodal distributions. This article also illuminates the understanding of the common nature of probability distributions and the measures of them.

orderliness | invariant | unimodal | adaptive estimation | U-statistics

he asymptotic inconsistencies between sample mean (\bar{x}) and nonparametric robust location estimators in asymmetric distributions on the real line have been noticed for more than two centuries (1), yet remain unsolved. Strictly speaking, it is unsolvable as by trimming, some information about the original distribution is removed, making it impossible to estimate the values of the removed parts without distributional assumptions. Newcomb (1886, 1912) provided the first modern approach to robust parametric estimation by developing a class of estimators that gives "less weight to the more discordant observations" (2, 3). In 1964, Huber (4) used the minimax procedure to obtain M-estimator for the contaminated normal distribution, which has played a pre-eminent role in the later development of robust statistics. However, as previously demonstrated, under growing asymmetric departures from normality, the bias of the Huber M-estimator increases rapidly. This is a common issue in parameter estimations. For example, He and Fung (1999) constructed (5) a robust M-estimator for the two-parameter Weibull distribution, from which all moments can be calculated. Nonetheless, it is inadequate for the gamma, Perato, lognormal, and the generalized Gaussian distributions (SI Dataset S1). Another old and interesting approach is based on L-statistics, such as percentile estimators. Examples of percentile estimators for the Weibull distribution, the reader is referred to Menon (1963) (6), Dubey (1967) (7), Hassanein (1971) (8), Marks (2005) (9), and Boudt, Caliskan, and Croux (2011) (10)'s works. At the outset of the study of percentile estimators, it was known that they arithmetically utilizes the invariant structures of probability distributions (6, 11, 12). Maybe such estimators can be named as I-statistics. Formally, an estimator is classified as an I-statistic if it asymptotically satisfies $I(LE_1, \dots, LE_l) = (\theta_1, \dots, \theta_q)$ for the distribution it is consistent, where LEs are calculated with the use of L-statistics, I is defined using arithmetic operations and constants, but it may also incorporate transcendental functions and quantile functions, and θ s are the population parameters it estimates. A subclass of I-statistics, arithmetic I-statistics, is defined as LEs are L-statistics, I is solely defined using arithmetic operations and constants. Since some percentile estimators use the logarithmic function to transform all random variables before computing the L-statistics, a percentile estimator might not always be an arithmetic I-statistic (7). In this article, two subclasses of I-statistics are introduced, arithmetic I-statistics and quantile I-statistics. Examples of quantile I-statistics will be discussed later. Based on L-statistics, I-statistics are naturally robust. Compared to probability density functions (pdfs) and cumulative distribution functions (cdfs), the quantile functions of many parametric distributions are more elegant. Since the expectation of a simple L-statistic can be expressed as an integral of the quantile function, I-statistics are often analytically obtainable. However, the performance of the aforementioned examples is often worse than that of the robust M-statistics when the distributional assumption is violated (SI Dataset S1). Even when distributions such as the Weibull and gamma belong to the same larger family, the generalized gamma distribution, a misassumption can still result in substantial biases for central moments, rendering the approach ill-suited.

In previous research on semiparametric robust mean estimation, median Hodges-Lehmann mean is still inconsistent for any skewed distribution, despite having much smaller asymptotic biases than other symmetric weighted L-statistics, which are either symmetric weighted averages or symmetric weighted H-L means. All robust location estimators commonly used are symmetric due to the universality of the symmetric distributions. An asymmetric weighted L-statistic is consistent for a semiparametric class of skewed distributions, but its lack of symmetry makes it suitable only for certain applications (13). Shifting from semiparametrics to parametrics, an ideal robust location estimator would have a non-sample-dependent breakdown point (defined in Subsection??) and be consistent for any symmetric distribution and a skewed distribution with finite second moments. This is called an invariant mean. Based on the mean-symmetric weighted L-statistic-median inequality, the recombined mean is defined as

$$rm_{d,\epsilon,n,\text{SWL}} := \lim_{c \to \infty} \left(\frac{(\text{SWL}_{\epsilon,n} + c)^{d+1}}{(m_n + c)^d} - c \right),$$

Significance Statement

Bias, variance, and contamination are the three main errors in statistics. Consistent robust estimation is unattainable without parametric assumptions. Here, invariant moments are proposed as a means of achieving near-consistent and robust estimations of moments, even in scenarios where moderate violations of distributional assumptions occur, while the variances are sometimes smaller than those of the sample moments.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

¹To whom correspondence should be addressed. E-mail: tl@biomathematics.org

where d is the key factor for bias correction, m_n is the sample median, $SWL_{\epsilon,n}$ is $BM_{\epsilon,n}$ in the first Subsection, but other symmetric weighted L-statistics can also be used in practice as long as the inequalities hold. The following theorem shows the significance of this arithmetic I-statistic.

pletes the demonstration.

Theorem .1. If the second moments are finite, $rm_{d\approx 0.163,\epsilon=\frac{1}{16},BM}$ is a consistent mean estimator for the exponential and any symmetric distributions and the Pareto distribution with quantile function $Q(p) = x_m(1-p)^{-\frac{1}{\alpha}}$, $x_m > 0$, when $\alpha \to \infty$.

Proof. Finding d and ϵ that make $rm_{d,\epsilon}$ a consistent

mean estimator is equivalent to finding the solution of $E[rm_{d,\epsilon,n}] = E[X]$. Rearranging the definition, $rm_{d,\epsilon,BM} =$ $\lim_{c\to\infty}\left(\frac{(\mathrm{BM}_{\epsilon}+c)^{d+1}}{(m+c)^d}-c\right)=(d+1)\,\mathrm{BM}_{\epsilon}-dm=\mu.$ So, $d=\frac{\mu-\mathrm{BM}_{\epsilon}}{\mathrm{BM}_{\epsilon}-m}.$ The quantile function of the exponential distribution of the exponential distribution. bution is $Q(p) = \ln\left(\frac{1}{1-p}\right)\lambda$. $E[X] = \lambda$. $E[m_n] = Q\left(\frac{1}{2}\right) = 0$ $\ln 2\lambda$. For the exponential distribution, $E\left|\mathrm{BM}_{\frac{1}{16},n}\right| =$ $\lambda \left(1 + \ln\left(\frac{16866160640\sqrt[4]{\frac{5}{39}}}{1744156557 11^{3/4}}\right)\right)$, the detailed formula is given in the SI Text. Obviously, the scale parameter λ can be canceled out, $d = \frac{1 - \left(1 + \ln\left(\frac{16866160640\sqrt[4]{\frac{5}{39}}}{1744156557 \cdot 11^{3/4}}\right)\right)}{\left(1 + \ln\left(\frac{16866160640\sqrt[4]{\frac{5}{39}}}{1744156557 \cdot 11^{3/4}}\right)\right) - \ln 2} \approx 0.163$. The proof of the second assertion follows directly from the co-incidence property. For any symmetric distribution with a finite second moment, $E[BM_{\epsilon,n}] = E[m_n] = E[X]$. Then $E\left[rm_{d,\epsilon,n,\mathrm{BM}}\right] = \lim_{c\to\infty} \left(\frac{(E[X]+c)^{d+1}}{(E[X]+c)^d} - c\right) = E\left[X\right].$ The proof for the Pareto distribution is more general. The mean of the Pareto distribution is given by $\frac{\alpha x_m}{2}$. The d value with two unknown percentiles p_1 and p_2 for the Pareto distribution is $d_{Perato}=\frac{\frac{\alpha x_m}{\alpha-1}-x_m(1-p_1)^{-\frac{1}{\alpha}}}{x_m(1-p_1)^{-\frac{1}{\alpha}}-x_m(1-p_2)^{-\frac{1}{\alpha}}}$. Since any weighted L-statistic can be expressed as an integral of the quantile function as shown in Theorem A.1, $\lim_{\alpha \to \infty} \frac{\frac{\alpha}{\alpha-1} - (1-p_1)^{-1/\alpha}}{(1-p_1)^{-1/\alpha} - (1-p_2)^{-1/\alpha}} =$

Theorem .1 implies that for the Weibull, gamma, Pareto, lognormal and generalized Gaussian distribution, $rm_{d\approx 0.163,\epsilon=\frac{1}{16},\mathrm{BM}}$ is consistent for at least one particular case. The biases of $rm_{d\approx 0.163,\epsilon=\frac{1}{16},\mathrm{BM}}$ for distributions with skewness between those of the exponential and symmetric distributions are tiny (SI Dataset S1). $rm_{d\approx 0.163,\epsilon=\frac{1}{16},\mathrm{BM}}$ exhibits excellent performance for all these common unimodal distributions (SI Dataset S1).

 $-\frac{\ln(1-p_1)+1}{\ln(1-p_1)-\ln(1-p_2)}$, the d value for the Pareto distribution approaches that of the exponential distribution as $\alpha \to \infty$,

regardless of the type of weighted L-statistic used. This com-

Besides introducing the concept of invariant mean, the purpose of this paper is to demonstrate that, in light of previous works, the estimation of central moments can be transformed into a location estimation problem by using U-statistics, the central moment kernel distributions possess desirable properties, and a series of sophisticated yet efficient robust estimators can be constructed whose biases are typically smaller than the variances (as seen in Table $\ref{Table 1}$ for n=4096) for unimodal distributions.

Background and Main Results

A. Invariant mean. It is well established that a theoretical model can be adjusted to fit the first two moments of the observed data. A continuous distribution belonging to a location–scale family takes the form $F(x) = F_0\left(\frac{x-\mu}{\lambda}\right)$, where F_0 is a standard distribution without any shifts or scaling. Therefore, $F(x) = Q^{-1}(x) \to x = Q(p) = \lambda Q_0(p) + \mu$. Thus, any WA can be expressed as $\lambda \text{WA}_0(\epsilon) + \mu$, where WA $_0(\epsilon)$ is an integral of $Q_0(p)$ according to the definition of the weighted average. The following theorem shows that the Hodges-Lehmann distribution is always a location-scale distribution if the original distribution is a location-scale distribution with the same location and scale parameters. The proof is given in the SI Text.

Theorem A.1.
$$hl_k(x_1 = \lambda x_1 + \mu, \dots, x_k = \lambda x_k + \mu) = \lambda hl_k(x_1, \dots, x_k) + \mu.$$

Let WeHLM₀(ϵ) denote the expected value of weighted Hodges-Lehmann mean for the standard distribution, then for a location-scale family of distributions, it can also be expressed as $\lambda \text{WeHLM}_0(\epsilon) + \mu$. The simultaneous cancellation of μ and λ in $\frac{(\lambda \mu_0 + \mu) - (\lambda \text{SWL}_0(\epsilon) + \mu)}{(\lambda \text{SWL}_0(\epsilon) + \mu) - (\lambda m_0 + \mu)}$ assures that d is a constant. Consequently, the roles of SWL $_\epsilon$ and median in $rm_{d,\epsilon}$ can be replaced by any L-statistics, although only symmetric weighted L-statistics are considered in defining the invariant mean.

The performance in heavy-tailed distributions can be further improved by constructing the quantile mean as

$$qm_{d,\epsilon,n,\text{SWL}} \coloneqq \hat{Q}_n\left(\left(\hat{F}_n\left(\text{SWL}_{\epsilon,n}\right) - \frac{1}{2}\right)d + \hat{F}_n\left(\text{SWL}_{\epsilon,n}\right)\right),$$

provided that $\hat{F}_n(SWL_{\epsilon,n}) \geq \frac{1}{2}$, where $\hat{F}_n(x)$ is the empirical cumulative distribution function of the sample, \hat{Q}_n is the sample quantile function. A widely used method for calculating the sample quantile function involves employing linear interpolation of modes corresponding to the order statistics of the uniform distribution on the interval [0, 1], i.e., $\hat{Q}_n(p) = X_{|h|} + (h - \lfloor h \rfloor) \left(X_{\lceil h \rceil} - X_{|h|} \right), \ h = (n-1) p + 1.$ To minimize the finite sample bias, here, the inverse function of \hat{Q}_n is deduced as $\hat{F}_n(x) := \frac{1}{n-1} \left(cf - 1 + \frac{x - X_{cf}}{X_{cf+1} - X_{cf}} \right)$, where $cf = \sum_{i=1}^{n} \mathbf{1}_{X_i \leq x}$, $\mathbf{1}_A$ is the indicator of event A. The solution of $\hat{F}_n(SWL_{\epsilon,n}) < \frac{1}{2}$ is reversing the percentile by $1-\hat{F}_n$ (SWL_{ϵ,n}), the obtained percentile is also reversed. Without loss of generality, in the following discussion, only the case where $\hat{F}_n(SWL_{\epsilon,n}) \geq \frac{1}{2}$ is considered. Moreover, in extreme righted skewed heavy-tailed distributions, the calculated percentile can exceed $1 - \epsilon$, the percentile will be modified to $1-\epsilon$ if this occurs. The quantile mean uses the location-scale invariant in a different way as shown in the following proof.

Data Availability. Data for Table ?? are given in SI Dataset S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I gratefully acknowledge the constructive comments made by the editor which substantially improved the clarity and quality of this paper.

- CF Gauss, Theoria combinationis observationum erroribus minimis obnoxiae. (Henricus Dieterich), (1823).
- S Newcomb, A generalized theory of the combination of observations so as to obtain the best result. Am. journal Math. 8, 343–366 (1886).
- S Newcomb, Researches on the motion of the moon. part ii, the mean motion of the moon and
 other astronomical elements derived from observations of eclipses and occultations extending
 from the period of the babylonians until ad 1908. *United States. Naut. Alm. Off. Astron. paper;*v. 9 9 1 (1912)

2 | Lee

4. PJ Huber, Robust estimation of a location parameter. Ann. Math. Stat. 35, 73-101 (1964).

166

167

168

175

176

- X He, WK Fung, Method of medians for lifetime data with weibull models. Stat. medicine 18, 1993–2009 (1999).
- M Menon, Estimation of the shape and scale parameters of the weibull distribution. Technometrics 5, 175–182 (1963).
- 171 7. SD Dubey, Some percentile estimators for weibull parameters. *Technometrics* **9**, 119–129 (1967).
- 173
 8. KM Hassanein, Percentile estimators for the parameters of the weibull distribution. *Biometrika* 174
 58, 673–676 (1971).
 - NB Marks, Estimation of weibull parameters from common percentiles. J. applied Stat. 32, 17–24 (2005).
- 177
 10. K Boudt, D Caliskan, C Croux, Robust explicit estimators of weibull parameters. *Metrika* 73,
 178
 187–209 (2011).
- SD Dubey, Contributions to statistical theory of life testing and reliability. (Michigan State
 University of Agriculture and Applied Science. Department of statistics), (1960).
- 181
 LJ Bain, CE Antle, Estimation of parameters in the weibdl distribution. *Technometrics* 9, 621–627 (1967).
- RV Hogg, Adaptive robust procedures: A partial review and some suggestions for future applications and theory. J. Am. Stat. Assoc. 69, 909–923 (1974).