Chuyên đề 8:

LƯỢNG GIÁC TÓM TẮTGIÁO KHOA

A. <u>KIẾN THỨC CƠ BẢN</u>:

I. Đơn vị đo góc và cung:

1. <u>Độ</u>:

$$G \acute{o} c 1^0 = \frac{1}{180} g \acute{o} c b \acute{e} t$$

2. Radian: (rad)

$$180^0 = \pi \text{ rad}$$

3. Bảng đổi độ sang rad và ngược lại của một số góc (cung) thông dụng:

Độ	0_0	30^{0}	45 ⁰	60^{0}	900	120^{0}	135 ⁰	150^{0}	180^{0}	360^{0}
Radian	0	$\frac{\pi}{}$	$\frac{\pi}{}$	π	$\frac{\pi}{}$	2π	3π	5π	π	2π
		6	4	3	2	3	4	6		

II. Góc lượng giác & cung lượng giác:

1. Định nghĩa:

2. Đường tròn lượng giác:

Số đo của một số cung lượng giác đặc biệt:

$$A \rightarrow 2k\pi$$

$$B \rightarrow \frac{\pi}{2} + 2k\pi$$

$$C \rightarrow \pi + 2k\pi$$

$$D \rightarrow -\frac{\pi}{2} + 2k\pi$$

$$A,C \rightarrow k\pi$$

$$B,D \rightarrow \frac{\pi}{2} + k\pi$$

III. Định nghĩa hàm số lượng giác:

1. Đường tròn lượng giác:

- A: điểm gốc
- x'Ox: trục côsin (trục hoành)
- y'Oy: truc sin (truc tung)
- tAt : truc tanguBu : truc cotang

2. Định nghĩa các hàm số lượng giác:

a. $\underline{\text{Dịnh nghĩa}}$: Trên đường tròn lượng giác cho $AM = \alpha$.

Gọi P, Q lần lượt là hình chiếu vuông góc của M trên x Ox và y Oy T, U lần lượt là giao điểm của tia OM với t At và u Bu

b. Các tính chất:

- Với mọi α ta có : $-1 \le \sin \alpha \le 1 \text{ hay } |\sin \alpha| \le 1$ $-1 \le \cos \alpha \le 1 \text{ hay } |\cos \alpha| \le 1$
- $\operatorname{tg} \alpha \text{ xác } \operatorname{dinh} \ \forall \alpha \neq \frac{\pi}{2} + k\pi$
- $\cot \alpha$ xác định $\forall \alpha \neq k\pi$

c. Tính tuần hoàn

$$\sin(\alpha + k2\pi) = \sin \alpha$$

$$\cos(\alpha + k2\pi) = \cos \alpha$$

$$tg(\alpha + k\pi) = tg\alpha$$

$$\cot g(\alpha + k\pi) = \cot g\alpha$$

$$(k \in \mathbb{Z})$$

IV. Giá trị các hàm số lượng giác của các cung (góc) đặc biệt:

Ta nên sử dụng đường tròn lượng giác để ghi nhớ các giá trị đặc biệt

Góc	0_0	30^{0}	45 ⁰	60^{0}	90^{0}	120^{0}	135^{0}	150^{0}	180^{0}	360^{0}
	0	π	$\underline{\pi}$	$\underline{\pi}$	π	2π	3π	5π	π	2π
Hslg		6	4	3	2	3	4	6		
$\sin \alpha$	0	1_	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	0
		2	2	2		2	2	$\overline{2}$		
$\cos \alpha$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	_ 1	$\sqrt{2}$	$\sqrt{3}$	-1	1
		2	2	2		2				
$tg\alpha$	0	$\sqrt{3}$	1	$\sqrt{3}$	kxđ	$-\sqrt{3}$	-1	$\sqrt{3}$	0	0
		3						3		
$\cot \alpha$	kxđ	$\sqrt{3}$	1	$\sqrt{3}$	0	$\sqrt{3}$	-1	$-\sqrt{3}$	kxđ	kxđ
				3		3				

V. Hàm số lượng giác của các cung (góc) có liên quan đặc biệt:

Đó là các cung:

$$\alpha \text{ và } -\alpha$$

:
$$\alpha$$
 và - α (tổng bằng 0)

(Vd:
$$\frac{\pi}{6} \& -\frac{\pi}{6}$$
,...)

:
$$\alpha$$
 và π - α

$$($$
 tổng bằng $\pi)$

2. Cung bù nhau :
$$\alpha$$
 và π - α (tổng bằng π) (Vd: $\frac{\pi}{6} \& \frac{5\pi}{6}$,...)

$$\alpha$$
 và $\frac{\pi}{2}$ - α

$$(t \ddot{o} ng b \dot{a} ng \frac{\pi}{2})$$

3. Cung phụ nhau :
$$\alpha$$
 và $\frac{\pi}{2} - \alpha$ (tổng bằng $\frac{\pi}{2}$) (Vd: $\frac{\pi}{6} \& \frac{\pi}{3}$,...)

4. Cung hơn kém
$$\frac{\pi}{2}$$
 : α và $\frac{\pi}{2} + \alpha$

(Vd:
$$\frac{\pi}{6} \& \frac{2\pi}{3}$$
,...)

5. Cung hơn kém
$$\pi$$
: α và $\pi + \alpha$

(Vd:
$$\frac{\pi}{6} \& \frac{7\pi}{6}$$
,...)

1. Cung đối nhau:

$$\cos(-\alpha) = \cos \alpha$$

$$\sin(-\alpha) = -\sin\alpha$$

$$tg(-\alpha) = -tg\alpha$$

$$\cot g(-\alpha) = -\cot g\alpha$$

Đối cos

2. Cung bù nhau:

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\sin(\pi - \alpha) = \sin \alpha$$

 $tg(\pi - \alpha) = -tg\alpha$

$$t\varrho(\pi-\alpha) = -t\varrho\alpha$$

$$\cot g(\pi - \alpha) = -\cot g\alpha$$

3. Cung phụ nhau:

$$\cos(\frac{\pi}{2} - \alpha) = \sin \alpha$$

$$\sin(\frac{\pi}{2} - \alpha) = \cos \alpha$$

$$tg(\frac{\pi}{2} - \alpha) = cotg\alpha$$

$$\cot g(\frac{\pi}{2} - \alpha) = t g\alpha$$

Phu chéo

Hơn kém $\frac{\pi}{2}$ sin bằng cos

cos bằng trừ sin

Bù sin

4. Cung hơn kém
$$\frac{\pi}{2}$$

$$\cos(\frac{\pi}{2} + \alpha) = -\sin\alpha$$

$$\sin(\frac{\pi}{2} + \alpha) = \cos \alpha$$

$$tg(\frac{\pi}{2} + \alpha) = -cotg\alpha$$

$$\cot g(\frac{\pi}{2} + \alpha) = -t g\alpha$$

5. Cung hơn kém π :

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$\sin(\pi + \alpha) = -\sin \alpha$$

$$tg(\pi + \alpha) = tg\alpha$$

$$\cot g(\pi + \alpha) = \cot g\alpha$$

Hơn kém π tang, cotang **<u>Ví dụ 1</u>:** Tính $\cos(-\frac{11\pi}{4})$, $tg\frac{21\pi}{4}$

<u>Ví dụ 2</u>: Rút gọn biểu thức: $A = \cos(\frac{\pi}{2} + x) + \cos(2\pi - x) + \cos(3\pi + x)$

VI. Công thức lượng giác:

1. Các hệ thức cơ bản:

$$\cos^{2}\alpha + \sin^{2}\alpha = 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$\cot\alpha = \frac{\cos\alpha}{\sin\alpha}$$

$$1 + tg^{2}\alpha = \frac{1}{\cos^{2}\alpha}$$
$$1 + \cot^{2}\alpha = \frac{1}{\sin^{2}\alpha}$$
$$tg\alpha \cdot \cot \alpha = 1$$

Ví dụ: Chứng minh rằng:

1.
$$\cos^4 x + \sin^4 x = 1 - 2\sin^2 x \cos^2 x$$

2.
$$\cos^6 x + \sin^6 x = 1 - 3\sin^2 x \cos^2 x$$

2. Công thức cộng:

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \sin \beta \cdot \cos \alpha$$

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha \cdot tg \beta}$$

$$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha \cdot tg \beta}$$

Ví dụ: Chứng minh rằng:

$$1.\cos\alpha + \sin\alpha = \sqrt{2}\cos(\alpha - \frac{\pi}{4})$$

$$2.\cos\alpha - \sin\alpha = \sqrt{2}\cos(\alpha + \frac{\pi}{4})$$

3. Công thức nhân đôi:

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1$$

$$= 1 - 2\sin^2 \alpha$$

$$= \cos^4 \alpha - \sin^4 \alpha$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2 \alpha}$$

4 Công thức nhân ba:

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos^3 \alpha = \frac{\cos 3\alpha + 3\cos \alpha}{4}$$

$$\sin^3 \alpha = \frac{3\sin \alpha - \sin 3\alpha}{4}$$

5. Công thức hạ bậc:

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}; \quad \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}; \quad tg^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

6.Công thức tính $\sin \alpha$, $\cos \alpha$, $tg\alpha$ theo $t = tg\frac{\alpha}{2}$

$$\sin \alpha = \frac{2t}{1+t^2}; \quad \cos \alpha = \frac{1-t^2}{1+t^2}; \quad tg\alpha = \frac{2t}{1-t^2}$$

7. Công thức biến đổi tích thành tổng:

$$\cos \alpha . \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha . \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right]$$

$$\sin \alpha . \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

Ví du:

- 1. Biến đổi thành tổng biểu thức: $A = \cos 5x \cdot \cos 3x$
- **2.** Tính giá trị của biểu thức: $B = \cos \frac{5\pi}{12} \sin \frac{7\pi}{12}$

8. Công thức biến đổi tổng thành tích:

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$tg\alpha + tg\beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$

$$tg\alpha - tg\beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$

Ví du: Biến đổi thành tích biểu thức: $A = \sin x + \sin 2x + \sin 3x$

9. Các công thức thường dùng khác:

$$\cos \alpha + \sin \alpha = \sqrt{2} \cos(\alpha - \frac{\pi}{4}) = \sqrt{2} \sin(\alpha + \frac{\pi}{4})$$

$$\cos \alpha - \sin \alpha = \sqrt{2} \cos(\alpha + \frac{\pi}{4}) = -\sqrt{2} \sin(\alpha - \frac{\pi}{4})$$

$$\cos^{4} \alpha + \sin^{4} \alpha = \frac{3 + \cos 4\alpha}{4}$$

$$\cos^{6} \alpha + \sin^{6} \alpha = \frac{5 + 3\cos 4\alpha}{8}$$

$$\cos^4 \alpha + \sin^4 \alpha = \frac{3 + \cos 4\alpha}{4}$$
$$\cos^6 \alpha + \sin^6 \alpha = \frac{5 + 3\cos 4\alpha}{8}$$

B. PHƯƠNG TRÌNH LƯỢNG GIÁC

Các bước giải một phương trình lương giác

Bước 1: Tìm điều kiện (nếu có) của ẩn số để hai vế của pt có nghĩa

Bước 2: Sử dụng các phép biến đổi tương đương để biến đổi pt đến một pt đã biết cách giải

Bước 3: Giải pt và chon nghiệm phù hợp (nếu có)

Bước 4: Kết luận

I. <u>Định lý cơ bản</u>: (Quan trọng)

$$\begin{array}{ll} \text{sinu=sinv} & \Leftrightarrow \begin{bmatrix} \mathbf{u} = \mathbf{v} + \mathbf{k} 2\pi \\ \mathbf{u} = \pi - \mathbf{v} + \mathbf{k} 2\pi \end{bmatrix} \\ \text{cosu=cosv} & \Leftrightarrow \begin{bmatrix} \mathbf{u} = \mathbf{v} + \mathbf{k} 2\pi \\ \mathbf{u} = -\mathbf{v} + \mathbf{k} 2\pi \end{bmatrix} \\ \text{tgu=tgv} & \Leftrightarrow \mathbf{u} = \mathbf{v} + \mathbf{k} \pi \qquad (\mathbf{u}; \mathbf{v} \neq \frac{\pi}{2} + k\pi) \\ \text{cotgu=cotgv} & \Leftrightarrow \mathbf{u} = \mathbf{v} + \mathbf{k} \pi \qquad (\mathbf{u}; \mathbf{v} \neq \mathbf{k} \pi) \\ \end{array}$$

$$(\mathbf{u}; \mathbf{v} \mid \mathbf{a} \text{ các biểu thức chứa ẩn và } k \in \mathbf{Z})$$

Ví dụ: Giải phương trình:

$$1. \quad \sin 3x = \sin(\frac{\pi}{4} - 2x)$$

$$2. \quad \cos(x - \frac{\pi}{4}) = \cos\frac{3\pi}{4}$$

$$3. \quad \cos 3x = \sin 2x$$

4.
$$\sin^4 x + \cos^4 x = \frac{1}{4}(3 - \cos 6x)$$

II. Các phương trình lượng giác cơ bản:

1. Dang 1:
$$\sin x = m$$
; $\cos x = m$; $\tan x = m$; $\cot x = m$ ($\forall m \in R$)

* Gpt : sinx = m(1)

- Nếu |m| > 1 thì pt(1) vô nghiệm
- Nếu $|m| \le 1$ thì ta đặt m = $\sin \alpha$ và ta

(1)
$$\Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = (\pi - \alpha) + k2\pi \end{bmatrix}$$

* Gpt : cosx = m(2)

- Nếu |m| > 1 thì pt(2) vô nghiệm
- Nếu $|m| \le 1$ thì ta đặt m = $\cos \beta$ và ta có

(2)
$$\Leftrightarrow \cos x = \cos \beta \Leftrightarrow \begin{bmatrix} x = \beta + k2\pi \\ x = -\beta + k2\pi \end{bmatrix}$$

- * Gpt: tgx = m (3) (pt luôn có nghiệm $\forall m \in R$)
 - Đặt m = $tg \gamma$ thì (3) \Leftrightarrow tgx = tg γ \Leftrightarrow x = γ +k π
- * Gpt: cotgx = m (4) (pt luôn có nghiệm $\forall m \in R$)
 - Đặt m = $\cot \delta$ thì (4) \Leftrightarrow cotgx = cotg $\delta \Leftrightarrow$ x = δ +k π

Các trường hợp đặc biệt:

$$\sin x = -1 \iff x = -\frac{\pi}{2} + k2\pi$$

$$\sin x = 0 \iff x = k\pi$$

$$\sin x = 1 \iff x = \frac{\pi}{2} + k2\pi$$

$$\cos x = -1 \iff x = \pi + k2\pi$$

$$\cos x = 0 \iff x = \frac{\pi}{2} + k\pi$$

$$\cos x = 1 \iff x = k2\pi$$

<u>Ví dụ:</u>

- 1) Giải các phương trình:
 - a) $\sin 2x = \frac{1}{2}$
 - c) $2\sin(2x \frac{\pi}{6}) + \sqrt{3} = 0$
 - e) $\sin 2x + \cos 2x = 1$

- b) $\cos(x \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$
- d) $2\cos(x+\frac{\pi}{3})-\sqrt{3}=0$
- f) $\cos^4 x + \sin^4 x = \cos 2x$

- 2) Giải các phương trình:
 - a) $1 + \cos^4 x \sin^4 x = 2\cos 2x$

 - b) $\sin^6 x + \cos^6 x = \cos 4x$
 - e) $\cot gx + \sin x(1 + tgx.tg\frac{x}{2}) = 4$
- c) $4(\sin^4 x + \cos^4 x) + \sin 4x 2 = 0$
- d) $\sin^3 x \cdot \cos x \cos^3 x \cdot \sin x = \frac{1}{4}$

2. Dang 2:

$$a \sin^{2} x + b \sin x + c = 0$$

$$a \cos^{2} x + b \cos x + c = 0$$

$$atg^{2} x + btgx + c = 0$$

$$a \cot g^{2} x + b \cot gx + c = 0$$

$$(a \neq 0)$$

Cách giải:

Đặt ẩn phụ : $t = \sin x$ ($t = \cos x$; t = tgx; $t = \cot gx$)

Ta được phương trình : $at^2 + bt + c = 0$ (1) Giải phương trình (1) tìm t, rồi suy ra x

Chú ý: Phải đặt điều kiện thích hợp cho ẩn phu (nếu có)

Ví du:

- a) $2\cos^2 x + 5\sin x 4 = 0$
- b) $\cos 2x 4\cos x + \frac{5}{2} = 0$
- c) $2\sin^2 x = 4 + 5\cos x$

- d) $2\cos x \cos 2x = 1 + \cos 2x + \cos 3x$
- e) $\sin^4 x + \cos^4 x = \sin 2x \frac{1}{2}$ f) $2(\sin^4 x + \cos^4 x) \cos(\frac{\pi}{2} 2x) = 0$
- g) $\sin^4 \frac{x}{2} + \cos^4 \frac{x}{2} = 1 2\sin x$
- h) $\sin^4 x + \cos^4 x + \sin x \cdot \cos x = 0$
- k) $\frac{2(\cos^6 x + \sin^6 x) \sin x \cdot \cos x}{\sqrt{2} 2\sin x} = 0 \quad 1) \quad 5(\sin x + \frac{\cos 3x + \sin 3x}{1 + 2\sin 2x}) = \cos 2x + 3$

3. Dang 3:

$$a\cos x + b\sin x = c \quad (1) \qquad (a;b \neq 0)$$

Cách giải:

Chia hai vế của phương trình cho $\sqrt{a^2 + b^2}$ thì pt

(1)
$$\Leftrightarrow \frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x = \frac{c}{\sqrt{a^2 + b^2}}$$
 (2)

• Đặt $\frac{a}{\sqrt{a^2 + b^2}} = \cos \alpha$ và $\frac{b}{\sqrt{a^2 + b^2}} = \sin \alpha$ với $\alpha \in [0; 2\pi)$ thì:

(2)
$$\Leftrightarrow \cos x.\cos \alpha + \sin x.\sin \alpha = \frac{c}{\sqrt{a^2 + b^2}}$$

$$\Leftrightarrow \cos(x-\alpha) = \frac{c}{\sqrt{a^2 + b^2}}$$
 (3)

Pt (3) có dạng 1. Giải pt (3) tìm x.

Chú ý:

Pt $a\cos x + b\sin x = c$ có nghiệm $\Leftrightarrow a^2 + b^2 \ge c^2$

Ví du: Giải các phương trình:

a)
$$\cos x + \sqrt{3} \sin x = -1$$

b)
$$\cos x + \sqrt{3} \sin x = \sqrt{2}$$

c)
$$4(\sin^4 x + \cos^4 x) + \sqrt{3}\sin 4x = 2$$
 d) $tgx - \sqrt{3} = \frac{1}{\cos x}$

d)
$$tgx - \sqrt{3} = \frac{1}{\cos x}$$

e)
$$\frac{\cos x - \sin 2x}{2\cos^2 x - \sin x - 1} = \sqrt{3}$$

d. <u>Dang 4</u>:

$$a\sin^2 x + b\sin x \cdot \cos x + c\cos^2 x = 0$$
 (a; c \neq 0) (1)

Cách giải 1:

Ap dụng công thức hạ bậc :
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
 và $\cos^2 x = \frac{1 + \cos 2x}{2}$

và công thức nhân đôi : $\sin x \cdot \cos x = \frac{1}{2} \sin 2x$ thay vào (1) ta sẽ biến đổi pt (1) về dạng 3

<u>Cách giải 2</u>: (Quy về pt theo tang hoặc cotang)

Chia hai vế của pt (1) cho $\cos^2 x$ ta được pt:

$$atg^2x + btgx + c = 0$$

Đây là pt dạng 2 đã biết cách giải

<u>Chú ý</u>: Trước khi chia phải kiểm tra xem $x = \frac{\pi}{2} + k\pi$ có phải là nghiệm của (1) không?

Ví du: Giải phương trình:

$$\sqrt{3}\sin^2 x + (1 - \sqrt{3})\sin x \cdot \cos x - \cos^2 x + 1 - \sqrt{3} = 0$$

d. Dang 5:

$$a(\cos x + \sin x) + b\sin x \cdot \cos x + c = 0 \quad (1)$$

Cách giải:

• Đặt
$$t = \cos x + \sin x = \sqrt{2}\cos(x - \frac{\pi}{4})$$
 với $-\sqrt{2} \le t \le \sqrt{2}$

Do
$$(\cos x + \sin x)^2 = 1 + 2\sin x \cdot \cos x \implies \sin x \cdot \cos x = \frac{t^2 - 1}{2}$$

Thay vào (1) ta được phương trình:

$$at + b\frac{t^2 - 1}{2} + c = 0$$
 (2)

• Giải (2) tìm t . Chọn t thỏa điều kiện rồi giải pt: $\sqrt{2}\cos(x-\frac{\pi}{4}) = t$ tìm x.

Ví du: Giải phương trình:

$$\sin 2x - 2\sqrt{2}(\sin x + \cos x) - 5 = 0$$

Chú ý: Ta giải tương tự cho pt có dạng:

$$a(\cos x - \sin x) + b\sin x \cdot \cos x + c = 0$$

Ví dụ: Giải phương trình:

$$\sin 2x + 4(\cos x - \sin x) = 4$$

- 4. Các phương pháp giải phương trình lượng giác thường sử dụng:
- a. <u>Phương pháp 1</u>: Biến đổi pt đã cho về một trong các dạng pt lượng giác cơ bản đã biết
 <u>Ví dụ</u>: Giải phương trình:

$$\sin^4 x + \cos^4 x + \sin 2x - \frac{3}{2} = 0$$

b. Phương pháp 2: Biến đổi pt đã cho về dạng tích số

Cơ sở của phương pháp là dựa vào các định lý sau đây:

$$A.B = 0 \Leftrightarrow \begin{bmatrix} A=0 \\ B=0 \end{bmatrix}$$
 hoặc $A.B.C = 0 \Leftrightarrow \begin{bmatrix} A=0 \\ B=0 \\ C=0 \end{bmatrix}$

Ví dụ: Giải các phương trình:

a.
$$\sin^2 x + \sin^2 2x + \sin^2 3x = 2$$

b.
$$\sin^2 3x - \cos^2 4x = \sin^2 5x - \cos^2 6x$$

c.
$$2\sin^3 x + \cos 2x - \cos x = 0$$

d.
$$\sin 2x + 2\sqrt{2}\cos x + 2\sin(x + \frac{\pi}{4}) + 3 = 0$$

c. Phương pháp 3: Biến đổi pt về dạng có thể đặt ẩn số phụ

Một số dấu hiệu nhận biết:

* Phương trình chứa cùng một một hàm số lượng giác (cùng cung khác lũy thừa)

Ví du: Giải các phương trình:

$$a. \cos 3x + \cos 2x - \cos x - 1 = 0$$

b.
$$4\cos^3 x - \cos 2x - 4\cos x + 1 = 0$$

c.
$$2\cos 2x - 8\cos x + 7 = \frac{1}{\cos x}$$

d.
$$\sin^4 x + \cos^2 2x = 2$$

* Phương trình có chứa $(\cos x \pm \sin x)$ và $\sin x \cdot \cos x$

<u>Ví du</u>: Giải phương trình: a. $1 + \sin^3 x + \cos^3 x = \frac{3}{2} \sin 2x$

b.
$$\sin^3 x + \cos^3 x = 2(\sin x + \cos x) - 1$$

BÀI TẬP RÈN LUYỆN

DANG 1: Giải phương trình lượng giác

Sử dụng 1 trong 3 phương pháp sau

- Biến đổi phương trình về dạng phương trình lượng giác cơ bản
- Biến đổi phương trình về dang phương trình tích số
- Biến đổi phương trình về dang có thể đặt ẩn số phu chuyển về phương trình đại số

Bài 1: Giải các phương trình lượng giác sau

1)
$$\sin 2x + 2\sqrt{2}\cos x + 2\sin(x + \frac{\pi}{4}) + 3 = 0$$

1)
$$\sin 2x + 2\sqrt{2}\cos x + 2\sin(x + \frac{\pi}{4}) + 3 = 0$$
 2) $\sin \frac{7x}{2}\cos \frac{3x}{2} + \sin \frac{x}{2}\cos \frac{5x}{2} + \sin 2x\cos 7x = 0$

3)
$$\cos^2(x + \frac{\pi}{2}) + \cos^2(2x + \frac{\pi}{2}) + \cos^2(3x - \frac{\pi}{2}) = \sqrt{3} \cdot \cos\frac{\pi}{6}$$

4)
$$\frac{\cos^4 \frac{x}{2} - \sin^4 \frac{x}{2}}{\sin 2x} = \frac{1 + \sin 2x}{2\sin^2(x + \frac{\pi}{4})}$$

$$5) \cos 7x + \sin 8x = \cos 3x - \sin 2x$$

6) $2\sin x + \cos x = \sin 2x + 1$

Bài 2: Giải các phương trình lương giác sau

$$1.2\sin^3 x + \cos 2x + \cos x = 0$$

2.
$$\sin x \cdot \cos 4x - \sin^2 2x = 4\sin^2(\frac{\pi}{4} - \frac{x}{2}) - \frac{7}{2}$$

3.
$$9\sin x + 6\cos x - 3\sin 2x + \cos 2x = 8$$

4.
$$\frac{\sin^4 x + \cos^4 x}{5\sin 2x} = \frac{1}{2}\cot g2x - \frac{1}{8\sin 2x}$$

5.
$$tg^4x + 1 = \frac{(2 - \sin^2 2x)\sin 3x}{\cos^4 x}$$

6.
$$3 - tgx(tgx + 2\sin x) + 6\cos x = 0$$

7.
$$\cos 2x + \cos x \cdot (2tg^2x - 1) = 2$$

8.
$$\sin^2(\frac{x}{2} - \frac{\pi}{4}).tg^2x - \cos^2\frac{x}{2} = 0$$

9.
$$\frac{\cos^2 x(\cos x - 1)}{\sin x + \cos x} = 2(1 + \sin x)$$

10.
$$tg2x - tgx = \frac{1}{3}\cos x \cdot \sin 3x$$

11.
$$2\cos 2x - 8\cos x + 7 = \frac{1}{\cos x}$$

12.
$$\cot gx - 1 = \frac{\cos 2x}{1 + tgx} + \sin^2 x - \frac{1}{2}\sin 2x$$

$$13. \quad \cot gx - tgx + 4\sin 2x = \frac{2}{\sin 2x}$$

14.
$$tgx + \cos x - \cos^2 x = \sin x \cdot (1 + tgx \cdot tg \frac{x}{2})$$

DANG 2: Phương trình lương giác có chứa tham số

Sử dụng phương pháp sau

- Chọn ẩn phụ thích hợp và tìm điều kiện đúng cho ẩn phụ vừa chọn (tùy thuộc vào x)
- Chuyển phương trình về phương trình đai số
- Lập luận để chuyển bài toán đã cho theo ẩn phu vừa chon
- Sử dung phương pháp giải tích hoặc đại số để tìm tham số theo yêu cầu của đề bài

<u>Bài 1:</u> Tìm m để phương trình sau có nghiệm:

$$\sin^4 x + \cos^4 x - \cos 2x + \frac{1}{4}\sin^2 2x + m = 0$$

<u>Bài 2:</u> Dịnh m để phương trình: $\sin x + \cos x + 1 + \frac{1}{2}(tgx + \cot gx + \frac{1}{\sin x} + \frac{1}{\cos x}) = m$

có nghiệm
$$x \in \left(0; \frac{\pi}{2}\right)$$

Bài 3: Cho hàm số:
$$2(\frac{4}{\cos^2 x} + \cos^2 x) + m(\frac{2}{\cos x} - \cos x) = 1$$

Tìm m để phương trình có nghiệm thuộc $(0; \frac{\pi}{2})$.

Bài 4: Cho phương trình :
$$\frac{3}{\sin^2 x} + 3tg^2 x + m(tgx + \cot gx) - 1 = 0$$

Tìm tất cả các giá trị của m để phương trình có nghiệm.

Bài 5: Xác định m để phương trình:

$$2(\sin^4 x + \cos^4 x) + \cos 4x + 2\sin 2x - m = 0$$

có ít nhất một nghiệm thuộc đoạn $[0; \frac{\pi}{2}]$

<u>Bài 6</u>: Cho phương trình : $\sin 2x - 4(\cos x - \sin x) = m$ (1) Tìm tất cả các giá tri của m để phương trình (1) có nghiệm.

<u>Bài 7:</u> Tìm m để phương trình: $4(\sin^4 x + \cos^4 x) - 4(\sin^6 x + \cos^6 x) - \sin^2 4x = m$ có nghiệm.

<u>Bài 8:</u> Cho phương trình $\cos 4x + 6 \sin x \cos x - m = 0$ Định m để phương trình có nghiệm $x \in \left[0; \frac{\pi}{4}\right]$.

<u>Bài 9:</u> Tìm m để phương trình : $2\cos 2x + (\sin x \cdot \cos x - m)(\sin x + \cos x) = 0$ có nghiệm trên đoạn $\left[0; \frac{\pi}{2}\right]$

<u>Bài 10</u>: Cho phương trình: $\frac{\cos^6 x + \sin^6 x}{\cos^2 x - \sin^2 x} = mtgx$

Với giá trị nào của m thì phương trình có nghiệm

Bài 11: Cho phương trình: $\sin^4 x + (\sin x - 1)^4 = m$ Với giá trị nào của m thì phương trình có nghiệm

<u>Bài 12:</u> Tìm m để phương trình : $2 + 2\sin 2x = m(1 + \cos x)^2$ có nghiệm $x \in [-\frac{\pi}{2}; \frac{\pi}{2}]$

Câu 1. Nghiệm của phương trình $2\cos x - \sqrt{3} = 0$ là

A.
$$x = \pm \frac{\pi}{6} + 2k\pi$$
 B. $x = \pm \frac{\pi}{6} + k\pi$ C. $x = \pm \frac{\pi}{3} + 2k\pi$ D. $x = \pm \frac{\pi}{3} + k\pi$.

B.
$$x = \pm \frac{\pi}{6} + k\pi$$

C.
$$x = \pm \frac{\pi}{3} + 2k\pi$$

D.
$$x = \pm \frac{\pi}{3} + k\pi$$
.

Ta có $2\cos x - \sqrt{3} = 0 \Leftrightarrow \cos x = \frac{\sqrt{3}}{2} \Leftrightarrow \cos x = \cos\frac{\pi}{2} \Leftrightarrow x = \pm\frac{\pi}{2} + k\pi$

Câu 2. Nghiệm của phương trình $\sqrt{3} \tan 3x - 3 = 0$ là

A.
$$x = \frac{\pi}{9} + \frac{k\pi}{9}$$
.

A.
$$x = \frac{\pi}{9} + \frac{k\pi}{9}$$
. B. $x = \frac{\pi}{9} + \frac{k\pi}{3}$. C. $x = \frac{\pi}{3} + \frac{k\pi}{9}$. D. $x = \frac{\pi}{3} + \frac{k\pi}{3}$

C.
$$x = \frac{\pi}{3} + \frac{k\pi}{9}$$

D.
$$x = \frac{\pi}{3} + \frac{k\pi}{3}$$
.

Ta có $\sqrt{3} \tan 3x - 3 = 0 \Leftrightarrow \tan 3x = \sqrt{3} \Leftrightarrow \tan 3x = \tan \frac{\pi}{2} \Leftrightarrow 3x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{2} + \frac{k\pi}{2}$

Câu 3. Nghiệm của phương trình $(\sin x + 1)(2\cos 2x - \sqrt{2}) = 0$ là:

A.
$$x = \frac{\pi}{2} + \frac{k\pi}{3}$$

B.
$$x = \frac{\pi}{8} + \frac{k\pi}{3}$$

C.
$$x = -\frac{\pi}{8} + \frac{k\pi}{3}$$

A.
$$x = \frac{\pi}{2} + \frac{k\pi}{3}$$
 B. $x = \frac{\pi}{8} + \frac{k\pi}{3}$ C. $x = -\frac{\pi}{8} + \frac{k\pi}{3}$ D. $x = \pm \frac{\pi}{8} + \frac{k\pi}{3}$; $x = \frac{\pi}{2} + \frac{k\pi}{3}$.

Ta có $(\sin x + 1)(2\cos 2x - \sqrt{2}) = 0 \Leftrightarrow$ $\begin{vmatrix} \sin x + 1 = 0 \\ 2\cos 2x - \sqrt{2} \end{vmatrix} \Leftrightarrow \begin{vmatrix} \sin x = -1 \\ \cos 2x = \frac{\sqrt{2}}{2} = \cos \frac{\pi}{4} \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = -\frac{\pi}{2} + k2\pi \\ x = \pm \frac{\pi}{2} + k\pi \end{vmatrix}$

Câu 4. Nghiệm của phương trình $2\cos^2 x - 3\cos x + 1 = 0$ là

A.
$$x = 2k\pi$$
.

B.
$$x = \frac{\pi}{3} + 2k\pi$$

C.
$$x = -\frac{\pi}{3} + 2k\pi$$

A.
$$x = 2k\pi$$
. B. $x = \frac{\pi}{3} + 2k\pi$. C. $x = -\frac{\pi}{3} + 2k\pi$. D. $x = 2k\pi$; $x = \pm \frac{\pi}{3} + 2k\pi$.

$$2\cos^{2} x - 3\cos x + 1 = 0 \Leftrightarrow \begin{bmatrix} \cos x = 1 \\ \cos x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \cos x = 1 \\ \cos x = \cos \frac{\pi}{3} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k2\pi \\ x = \pm \frac{\pi}{3} + k2\pi \end{bmatrix}$$

Câu 5. Nghiệm của phương trình $\tan \frac{x}{2} - \tan x = 0$ là:

A.
$$x = k\pi$$
. B. $x = 2k\pi$.

C.
$$x = \pi + 2k\pi$$
.

D.
$$x = -\pi + 2k\pi$$
.

$$\tan\frac{x}{2} - \tan x = 0 \Leftrightarrow \tan\frac{x}{2} = \tan x \Leftrightarrow x = \frac{x}{2} + k\pi \Leftrightarrow 2x = x + k2\pi \Leftrightarrow x = k2\pi$$

Câu 6. Nghiệm của phương trình $3\cos x + 4\sin x = -5$ là:

A.
$$x = \pi + \alpha + 2k\pi$$
, với $\frac{3}{5} = \cos \alpha$.

B.
$$x = \pi + \alpha + 2k\pi$$
, với $\frac{3}{5} = \sin \alpha$.

C.
$$x = \pi - \alpha + 2k\pi$$
 với $\frac{3}{5} = \cos \alpha$.

C.
$$x = \pi - \alpha + 2k\pi$$
 với $\frac{3}{5} = \cos \alpha$. D. $x = \pi - \alpha + 2k\pi$, với $\frac{3}{5} = \sin \alpha$.

$$3\cos x + 4\sin x = -5 \Leftrightarrow \frac{3}{5}\cos x + \frac{4}{5}\sin x = -1 \Leftrightarrow \cos x \cos \alpha + \sin x \sin \alpha = -1 \text{ v\'oi } (\cos \alpha = \frac{3}{5})$$
$$\Leftrightarrow \cos(x - \alpha) = -1 \Leftrightarrow x - \alpha = \pi + k2\pi \Leftrightarrow x = \pi + \alpha + k2\pi$$

Câu 7. Phương trình $\cos x - m = 0$ có nghiệm khi m thỏa mãn điều kiện là:

A.
$$m \in (-\infty; -1) \cup (1; +\infty)$$
. **B.** $m > 1$ **C.** $-1 \le m \le 1$.

B.
$$m > 1$$

C.
$$-1 \le m \le 1$$
.

D.
$$m < -1$$
.

 $\cos x - m = 0 \Leftrightarrow \cos x = m$ có nghiệm khi $|m| \le 1 \Leftrightarrow -1 \le m \le 1$

Câu 8. Phương trình $\sin 2x + \frac{1}{2} = 0$ có bao nhiều nghiệm thỏa $0 < x < \pi$

A. 1.

B. 3. **C.** 2. **D.** 4.

Ta có
$$\sin 2x + \frac{1}{2} = 0 \Leftrightarrow \sin 2x = -\frac{1}{2} \Leftrightarrow \sin 2x = \sin(-\frac{\pi}{6}) \Leftrightarrow \begin{bmatrix} 2x = -\frac{\pi}{6} + k2\pi \\ 2x = \frac{7\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{12} + k\pi \\ x = \frac{7\pi}{12} + k\pi \end{bmatrix}$$

Phương trình có 2 nghiệm trên khoảng $(0; \pi)$

Câu 9. Phương trình $\cos^2 2x + \cos 2x - \frac{3}{4} = 0$ có nghiệm là :

A.
$$x = \pm \frac{2\pi}{3} + k\pi$$
. **B.** $x = \pm \frac{\pi}{3} + k\pi$. **C.** $x = \pm \frac{\pi}{6} + k\pi$. **D.** $x = \pm \frac{\pi}{6} + k2\pi$.

B.
$$x = \pm \frac{\pi}{3} + k\pi$$
.

C.
$$x = \pm \frac{\pi}{6} + k\pi$$
.

D.
$$x = \pm \frac{\pi}{6} + k2\pi$$
.

Ta có
$$\cos^2 2x + \cos 2x - \frac{3}{4} = 0 \Leftrightarrow \begin{bmatrix} \cos 2x = \frac{1}{2} \\ \cos 2x = -\frac{3}{2} \end{bmatrix} \Leftrightarrow \cos 2x = \frac{1}{2} = \cos \frac{\pi}{3} \Leftrightarrow 2x = \pm \frac{\pi}{3} + k2\pi$$

Câu 10. Nghiệm của phương trình lượng giác : $\sin^2 x - 2\sin x = 0$ có nghiệm là:

$$\mathbf{A.} \ \ x = k2\pi.$$

$$\mathbf{B.} \ x = k\pi$$

$$\mathbf{C.} \ \ x = \frac{\pi}{2} + k\pi$$

A.
$$x = k2\pi$$
. **B.** $x = k\pi$. **C.** $x = \frac{\pi}{2} + k\pi$. **D.** $x = \frac{\pi}{2} + k2\pi$.

Ta có
$$\sin^2 x - 2\sin x = 0 \Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \sin x = 2 \end{bmatrix} \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi$$

Câu 11. Phương trình nào sau đây vô nghiệm:

A.
$$\sin x + 3 = 0$$

A.
$$\sin x + 3 = 0$$
 B. $2\cos^2 x - \cos x - 1 = 0$ **C.** $\tan x + 3 = 0$

C.
$$\tan x + 3 = 0$$

D.
$$3\sin x - 2 = 0$$

Phương án A.

Câu 12. Nghiệm dương bé nhất của phương trình $2\sin^2 x + 5\sin x - 3 = 0$ là

A.
$$x = \frac{\pi}{6}$$

B.
$$x = \frac{\pi}{2}$$

A.
$$x = \frac{\pi}{6}$$
 B. $x = \frac{\pi}{2}$ **C.** $x = \frac{3\pi}{2}$ **D.** $x = \frac{5\pi}{6}$

D.
$$x = \frac{5\pi}{6}$$

Tá có
$$2\sin^2 x + 5\sin x - 3 = 0 \Leftrightarrow \begin{bmatrix} \sin x = 0.5 \\ \sin x = -3 \end{bmatrix} \Leftrightarrow \sin x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$

Câu 13. Giải phương trình lượng giác $2\cos\frac{x}{2} + \sqrt{3} = 0$ có nghiệm là

A.
$$x = \pm \frac{5\pi}{3} + k\pi$$
.

B.
$$x = \pm \frac{5\pi}{6} + k\pi$$
.

C.
$$x = \pm \frac{5\pi}{6} + k4\pi$$

A.
$$x = \pm \frac{5\pi}{3} + k\pi$$
. **B.** $x = \pm \frac{5\pi}{6} + k\pi$. **C.** $x = \pm \frac{5\pi}{6} + k4\pi$ **D.** $x = \pm \frac{5\pi}{3} + k4\pi$

Ta có
$$2\cos\frac{x}{2} + \sqrt{3} = 0 \Leftrightarrow \cos\frac{x}{2} = -\frac{\sqrt{3}}{2} = \cos\frac{2\pi}{3} \Leftrightarrow \frac{x}{2} = \pm\frac{5\pi}{6} + k2\pi \Leftrightarrow x = \pm\frac{5\pi}{6} + k4\pi$$

Câu 14. Điều kiện để phương trình $3\sin x + m\cos x = 5$ vô nghiệm là

A.
$$m \le -4$$
 hoặc $m \ge 4$ **B.** $m > 4$ **C.** $m < -4$ **D.** $-4 < m < 4$

B.
$$m > 4$$

C.
$$m < -4$$

D.
$$-4 < m < 4$$

Phương trình $3\sin x + m\cos x = 5$ có a = 3, b = m, c = 5 vô nghiệm khi $a^2 + b^2 < c^2$

$$3^2 + m^2 < 5^2 \iff m^2 < 16 \iff m^2 < 4^2 \iff |m| < 4 \iff -4 < m < 4$$

Câu 15. Nghiệm của phương trình $\sin x + \cos x = 1$ là :

A.
$$x = k2\pi$$

B.
$$x = k2\pi$$
; $x = \frac{\pi}{2} + k2\pi$

$$\mathbf{C.} \ \ x = \frac{\pi}{4} + k2\pi$$

B.
$$x = k2\pi$$
; $x = \frac{\pi}{2} + k2\pi$ **C.** $x = \frac{\pi}{4} + k2\pi$ **D.** $x = \frac{\pi}{4} + k2\pi$; $x = -\frac{\pi}{4} + k2\pi$

Ta có
$$\sin x + \cos x = 1 \Leftrightarrow \sqrt{2} \sin(x + \frac{\pi}{4}) = 1 \Leftrightarrow \sin(x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2} = \sin \frac{\pi}{4} \Leftrightarrow \begin{vmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \\ x + \frac{\pi}{4} = \frac{3\pi}{4} + k2\pi \end{vmatrix}$$

Câu 16. Phương trình $\sqrt{3} \sin 3x + \cos 3x = -1$ tương đương với phương trình nào sau đây :

A.
$$\sin\left(3x - \frac{\pi}{6}\right) = -\frac{1}{2}$$
 B. $\sin\left(3x + \frac{\pi}{6}\right) = -\frac{\pi}{6}$ **C.** $\sin\left(3x + \frac{\pi}{6}\right) = -\frac{1}{2}$ **D.** $\sin\left(3x + \frac{\pi}{6}\right) = \frac{1}{2}$ $\sqrt{3}\sin 3x + \cos 3x = -1 \Leftrightarrow \frac{\sqrt{3}}{2}\sin 3x + \frac{1}{2}\cos 3x = -\frac{1}{2} \Leftrightarrow \sin 3x \cos \frac{\pi}{6} + \cos 3x \sin \frac{\pi}{6} = -\frac{1}{2}$ $\Leftrightarrow \sin(3x - \frac{\pi}{6}) = -\frac{1}{2}$

Câu 17. Phương trình lượng giác $\sqrt{3} \tan x + 3 = 0$ có nghiệm là

A.
$$x = \frac{\pi}{3} + k\pi$$
 B. $x = -\frac{\pi}{3} + k2\pi$ **C.** $x = \frac{\pi}{6} + k\pi$ **D.** $x = -\frac{\pi}{3} + k\pi$

$$\sqrt{3} \tan x + 3 = 0 \Leftrightarrow \tan x = -\sqrt{3} \Leftrightarrow \tan x = \tan(-\frac{\pi}{3}) = \tan \frac{2\pi}{3} \Leftrightarrow x = -\frac{\pi}{3} + k\pi$$

Câu 18. Phương trình $\cos x - m = 0$ có nghiệm khi m là

A.
$$m > 1$$
 B. $-1 \le m \le 1$ **C.** $m < -1 \lor m > 1$ **D.** $m < -1$ Phương án B.

Câu 19. Điều kiện để phương trình $m\sin x - 3\cos x = 5$ có nghiệm là :

A.
$$m \ge 4$$
 B. $-4 \le m \le 4$ **C.** $m \ge \sqrt{34}$ **D.** $m \le -4 \lor m \ge 4$
Phương trình $3\sin x + m\cos x = 5$ có $a = m, b = 3, c = 5$ có nghiệm khi $a^2 + b^2 \ge c^2$ $m^2 + 3^2 \ge 5^2 \Leftrightarrow m^2 \ge 16 \Leftrightarrow m^2 \ge 4^2 \Leftrightarrow |m| \ge 4 \Leftrightarrow m \le -4 \lor m \ge 4$

Câu 20. Nghiệm của phương trình $\sin x \left(2\cos x - \sqrt{3}\right) = 0$ là

A.
$$x = k\pi; x = \pm \frac{\pi}{6} + k2\pi$$
 B. $x = k\pi; x = \pm \frac{\pi}{6} + k\pi$ **C.** $x = k2\pi; x = \pm \frac{\pi}{3} + k2\pi$ **D.** $x = \pm \frac{\pi}{6} + k2\pi$ $\sin x \left(2\cos x - \sqrt{3}\right) = 0 \Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \cos x = \frac{\sqrt{3}}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \cos x = \cos \frac{\pi}{6} \end{bmatrix} = \frac{\pi}{6} + k2\pi$

Câu 21. Nghiệm của phương trình $\tan(2x+10^0) + \cot x = 0$ là:

A.
$$x = -100^{0} + k180^{0}$$
 B. $x = 100^{0} + k180^{0}$ C. $x = -10^{0} + k180^{0}$. D. $x = 10^{0} + k180^{0}$. $\tan(2x+10^{0}) + \cot x = 0 \Leftrightarrow \tan(2x+10^{0}) + \tan(90^{0}-x) = 0 \Leftrightarrow \tan(2x+10^{0}) = \tan(x-90^{0})$

Câu 22. Số nghiệm của phương trình $\sin\left(x+\frac{\pi}{4}\right)-1=0$ với $\pi \le x \le 3\pi$ là

A. 1 **B.** 0 **C.** 2 **D.** 3
$$\sin\left(x + \frac{\pi}{4}\right) - 1 = 0 \Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = 1 \Leftrightarrow x + \frac{\pi}{4} = \frac{\pi}{2} + k2\pi \Leftrightarrow x = \frac{\pi}{4} + k2\pi$$

$$\text{Vi } \pi \leq x \leq 3\pi \text{ nên } \pi \leq \frac{\pi}{4} + k2\pi \leq 3\pi \iff 1 \leq \frac{1}{4} + 2k \leq 3 \iff \frac{3}{4} \leq 2k \leq \frac{11}{4} \iff \frac{3}{8} \leq k \leq \frac{11}{8}$$

Vì $k \in \mathbb{Z}$ nên chỉ chọn được k = 1 vậy phương trình đã cho chỉ có 1 nghiệm là $x = \frac{9\pi}{4}$

Câu 23. Phương trình $\sin x - \frac{1}{2} = 0$ có nghiệm thỏa $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$ là :

A.
$$x = \frac{5\pi}{6} + k2\pi$$
. **B.** $x = \frac{\pi}{6}$. **C.** $x = \frac{\pi}{3} + k2\pi$. **D.** $x = \frac{\pi}{3}$.

$$\sin x - \frac{1}{2} = 0 \iff \sin x = \frac{1}{2} \iff \sin x = \sin \frac{\pi}{6} \iff \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$

$$\text{Vì } -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \text{ nên } \begin{bmatrix} -\frac{\pi}{2} \leq \frac{\pi}{6} + k2\pi \leq \frac{\pi}{2} \\ -\frac{\pi}{2} \leq \frac{5\pi}{6} + k2\pi \leq \frac{\pi}{2} \\ -\frac{1}{2} \leq \frac{5}{6} + 2k \leq \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{3} \leq 2k \leq \frac{1}{3} \\ -\frac{1}{3} \leq 2k \leq -\frac{1}{3} \\ -\frac{4}{3} \leq 2k \leq -\frac{1}{3} \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{3} \leq k \leq \frac{1}{6} \\ -\frac{2}{3} \leq k \leq -\frac{1}{6} \end{bmatrix}$$

Vì $k \in \mathbb{Z}$ nên chỉ chọn được k = 0 vậy phương trình đã cho chỉ có 1 nghiệm là $x = \frac{\pi}{6}$

Câu 24. Số nghiệm của phương trình $\sin x + \cos x = 1$ trên khoảng $(0, \pi)$ là

A. 0. **C.** 2. **B.** 1.

Ta có $\sin x + \cos x = 1 \Leftrightarrow \sqrt{2} \sin(x + \frac{\pi}{4}) = 1 \Leftrightarrow \sin(x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2} = \sin \frac{\pi}{4}$

$$\Leftrightarrow \begin{bmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \\ x + \frac{\pi}{4} = \frac{3\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k2\pi \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

Vì
$$0 < x < \pi$$
 nên $\begin{cases} 0 < k2\pi < \pi \\ 0 < \frac{\pi}{2} + k2\pi < \pi \end{cases} \Leftrightarrow \begin{cases} 0 < k2\pi < \pi \\ -\frac{\pi}{2} < k2\pi < \frac{\pi}{2} \end{cases} \Leftrightarrow -\frac{1}{2} < 2k < \frac{1}{2} \end{cases}$

Vì $k \in \mathbb{Z}$ nên chỉ chọn được k = 0 vậy phương trình đã cho chỉ có 1 nghiệm là $x = \frac{\pi}{2}$

Câu 25. Phương trình lượng giác $\frac{\cos x - \sqrt{3} \sin x}{2 \sin x - 1} = 0$ có nghiệm là :

A.
$$x = \frac{\pi}{6} + k2\pi$$

C.
$$x = \frac{\pi}{6} + k\pi$$

A.
$$x = \frac{\pi}{6} + k2\pi$$
 B. Vô nghiệm **C.** $x = \frac{\pi}{6} + k\pi$ **D.** $x = \frac{7\pi}{6} + k2\pi$

Diều kiện $2\sin x - 1 \neq 0 \iff \sin x \neq \frac{1}{2} \iff \sin x \neq \sin \frac{\pi}{6} \iff x \neq \frac{\pi}{6} + k2\pi \land x \neq \frac{5\pi}{6} + k2\pi$

Ta có $\cos x - \sqrt{3} \sin x = 0 \Leftrightarrow \cos x - \tan \frac{\pi}{3} \sin x = 0 \Leftrightarrow \cos x - \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} \sin x = 0$

$$\Leftrightarrow \cos x \cos \frac{\pi}{3} - \sin x \sin \frac{\pi}{3} = 0 \Leftrightarrow \cos(x + \frac{\pi}{3}) = 0 \Leftrightarrow x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{6} + k\pi$$

Cách khác $\cos x - \sqrt{3} \sin x = 0 \Leftrightarrow \cos x = \sqrt{3} \sin x \Leftrightarrow \cot x = \sqrt{3} = \cot \frac{\pi}{6} \Leftrightarrow x = \frac{\pi}{6} + k\pi$

Đối chiếu với điều kiện ta có nghiệm là $x = \frac{7\pi}{4} + k2\pi$

Câu 26. Nghiệm của phương trình $2\cos^2 x + \sin x + 1 = 0$ là:

A.
$$x = 2k\pi$$
.

B.
$$x = k\pi$$
.

A.
$$x = 2k\pi$$
. B. $x = k\pi$. C. $x = -\frac{\pi}{2} + 2k\pi$. D. $x = \frac{\pi}{2} + 2k\pi$

$$D. \ x = \frac{\pi}{2} + 2k\pi$$

$$2\cos^{2}x + \sin x + 1 = 0 \Leftrightarrow 2(1 - \sin^{2}x) + \sin x + 1 = 0 \Leftrightarrow -2\sin^{2}x + \sin x + 3 = 0$$

$$\Leftrightarrow \begin{bmatrix} \sin x = -1 \\ \sin x = \frac{3}{2} \\ \Leftrightarrow \sin x = -1 \\ \Leftrightarrow x = -\frac{\pi}{2} + 2k\pi$$

Câu 27. Nghiệm của phương trình $\sqrt{3} \tan^2 x - (1+\sqrt{3}) \tan x + 1 = 0$ là:

A.
$$x = \frac{\pi}{4} + k\pi \text{ và } x = \frac{\pi}{6} + k\pi$$

A.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \frac{\pi}{6} + k\pi$ B. $x = \frac{\pi}{4} + 2k\pi$ và $x = \frac{\pi}{6} + 2k\pi$.

C.
$$x = \frac{\pi}{3} + k\pi \text{ và } x = \frac{\pi}{6} + k\pi$$

C.
$$x = \frac{\pi}{3} + k\pi$$
 và $x = \frac{\pi}{6} + k\pi$. D. $x = \frac{\pi}{4} + 2k\pi$ và $x = \frac{\pi}{3} + 2k\pi$.

$$\sqrt{3}\tan^2 x - \left(1 + \sqrt{3}\right)\tan x + 1 = 0 \Leftrightarrow \begin{bmatrix} \tan x = 1 \\ \tan x = \frac{\sqrt{3}}{3} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \tan x = \tan\frac{\pi}{4} \\ \tan x = \frac{\pi}{6} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \frac{\pi}{6} + k\pi \end{bmatrix}$$

Câu 28. Nghiệm của phương trình $2\sin 2x - 2\cos 2x = \sqrt{2}$ là:

A.
$$x = \frac{5\pi}{12} + k\pi$$
, $x = \frac{13\pi}{12} + k\pi$.

A.
$$x = \frac{5\pi}{12} + k\pi$$
, $x = \frac{13\pi}{12} + k\pi$. B. $x = \frac{5\pi}{24} + k\pi$, $x = \frac{13\pi}{24} + k\pi$.

C.
$$x = \frac{5\pi}{6} + k\pi$$
, $x = \frac{\pi}{6} + k\pi$.

D.
$$x = \frac{2\pi}{3} + k\pi$$
, $x = \frac{\pi}{3} + k\pi$.

 $2\sin 2x - 2\cos 2x = \sqrt{2} \Leftrightarrow 2(\sin 2x - \cos 2x) = \sqrt{2} \Leftrightarrow 2\sqrt{2}\sin(2x - \frac{\pi}{4}) = \sqrt{2} \Leftrightarrow \sin(2x - \frac{\pi}{4}) = \frac{1}{2}$

$$\Leftrightarrow \sin(2x - \frac{\pi}{4}) = \sin\frac{\pi}{6} \Leftrightarrow \begin{bmatrix} 2x - \frac{\pi}{4} = \frac{\pi}{6} + k2\pi \\ 2x - \frac{\pi}{4} = \frac{5\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x = \frac{5\pi}{12} + k2\pi \\ 2x = \frac{13\pi}{12} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{24} + k\pi \\ x = \frac{13\pi}{24} + k\pi \end{bmatrix}$$

Câu 29. Nghiệm của phương trình $5\sin 2x - 6\cos^2 x = 13$ là:

A.
$$x = k\pi$$
.

B.
$$x = 2k\pi$$

B.
$$x = 2k\pi$$
. C. $x = \pi + 2k\pi$.

D. Phương trình vô nghiệm.

$$5\sin 2x - 6\cos^2 x = 13 \Leftrightarrow 5\sin 2x - 6 \cdot \frac{1}{2}(1 + \cos 2x) = 13 \Leftrightarrow 5\sin 2x - 3 - 3\cos 2x = 13$$

$$\Leftrightarrow 5\sin 2x - 3\cos 2x = 16$$

Có
$$a = 5, b = 3, c = 16$$
 mà $a^2 + b^2 < c^2$ nên phương trình vô nghiệm

Câu 30. Nghiệm của phương trình $\sin^2 x + \sin 2x - 2\cos^2 x = \frac{1}{2}$ là:

A.
$$x = -\frac{\pi}{4} + k\pi \text{ và } x = \arctan(-5) + k\pi$$
 B. $x = \frac{\pi}{4} + k\pi \text{ và } x = \arctan(-5) + k\pi$.

B.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan(-5) + k\pi$

C.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan 5 + k\pi$

C.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan 5 + k\pi$ D. $x = -\frac{\pi}{4} + k\pi$ và $x = \arctan 5 + k\pi$.

$$\sin^2 x + \sin 2x - 2\cos^2 x = \frac{1}{2} \Leftrightarrow 2\sin^2 x + 4\sin x \cos x - 4\cos^2 x = 1 \ (1 = \sin^2 x + \cos^2 x)$$

$$\Leftrightarrow \sin^2 x + 4\sin x \cos x - 5\cos^2 x = 0$$

$$\Leftrightarrow \tan^2 x + 4 \tan x - 5 = 0 \Leftrightarrow \tan x = 1, \tan x = 5$$
. Chọn C.

Câu 31. Nghiệm của phương trình $\cos x \cos 5x = \cos 2x \cos 4x$ là:

A.
$$x = k\pi$$

B.
$$x = \frac{k\pi}{2}$$
.

C.
$$x = \frac{k\pi}{3}$$

A.
$$x = k\pi$$
. B. $x = \frac{k\pi}{2}$. C. $x = \frac{k\pi}{3}$. D. $x = \frac{k\pi}{4}$.

 $\cos x \cos 5x = \cos 2x \cos 4x \Leftrightarrow \frac{1}{2}(\cos 6x + \cos 4x) = \frac{1}{2}(\cos 6x + \cos 2x)$

$$\Leftrightarrow \cos 4x = \cos 2x \Leftrightarrow \begin{bmatrix} 4x = 2x + k2\pi \\ 4x = -2x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k\pi \\ x = k\frac{\pi}{3} \Leftrightarrow x = k\frac{\pi}{3} \end{bmatrix}$$

Câu 32. Nghiệm của phương trình $\sin 2x + \sin 4x = \sin 6x$ là:

A.
$$x = \frac{k\pi}{2}$$
 và $x = \frac{k\pi}{3}$. B. $x = \frac{k\pi}{3}$ và $x = \frac{k\pi}{5}$. C. $x = \frac{k\pi}{2}$ và $x = \frac{k\pi}{5}$. D. Phương trình vn. $\sin 2x + \sin 4x = \sin 6x \Leftrightarrow 2\sin 3x \cos x = 2\sin 3x \cos 3x \Leftrightarrow \begin{bmatrix} \sin 3x = 0 \\ \cos x = \cos 3x \end{bmatrix}$

$$\Leftrightarrow \begin{bmatrix} 3x = k\pi \\ 3x = x + k2\pi \\ 3x = -x + k2\pi \end{bmatrix} \Leftrightarrow \begin{vmatrix} x = k\frac{\pi}{3} \\ x = k\pi \\ x = k\frac{\pi}{2} \end{vmatrix} = \begin{bmatrix} x = k\frac{\pi}{3} \\ x = k\frac{\pi}{2} \end{bmatrix}$$

Câu 33. Nghiệm của phương trình $\cos 5x \sin 4x = \cos 3x \sin 2x$ là:

A.
$$x = k\pi$$
 B. $x = \frac{k\pi}{2}$ và $x = \frac{\pi}{14} + \frac{k\pi}{7}$ C. Phương trình vn D. $x = \frac{\pi}{14} + \frac{k\pi}{2}$ và $x = \frac{k\pi}{7}$.
 $\cos 5x \sin 4x = \cos 3x \sin 2x \Leftrightarrow \frac{1}{2}(\sin 9x - \sin x) = \frac{1}{2}(\sin 5x - \sin x) \Leftrightarrow \sin 9x = \sin 5x$

$$\Leftrightarrow \begin{bmatrix} 9x = 5x + k2\pi \\ 9x = \pi - 5x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 4x = +k2\pi \\ 14x = \pi + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = +k\frac{\pi}{2} \\ x = \frac{\pi}{14} + k\frac{\pi}{7} \end{bmatrix}$$

Câu 34. Nghiệm của phương trình $\sin x + \sin 2x = \cos x + \cos 2x$ là:

A.
$$x = \frac{\pi}{6} + \frac{2k\pi}{3}$$
 và $x = \pi + k\pi$ B. $x = \frac{\pi}{6} + \frac{2k\pi}{3}$ và $x = \pi + 2k\pi$ C. $x = \frac{\pi}{6} + 2k\pi$ và $x = \pi + 2k\pi$ D. vn $\sin x + \sin 2x = \cos x + \cos 2x \Leftrightarrow \sin 2x - \cos 2x = \cos x - \sin x \Leftrightarrow \sqrt{2}\sin(2x - \frac{\pi}{4}) = \sqrt{2}\cos(x + \frac{\pi}{4})$

$$\Leftrightarrow \sin(2x - \frac{\pi}{4}) = \sin(\frac{\pi}{4} - x) \Leftrightarrow \begin{bmatrix} 2x - \frac{\pi}{4} = \frac{\pi}{4} - x + k2\pi \\ 2x - \frac{\pi}{4} = \frac{3\pi}{4} + x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3x = \frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k\frac{2\pi}{3} \\ x = \pi + k2\pi \end{bmatrix}$$

Câu 35. Nghiệm của phương trình $\sin^2 4x + \sin^2 3x = \sin^2 2x + \sin^2 x$ là:

A.
$$x = \frac{k\pi}{2}$$
 và $x = \frac{k\pi}{3}$ B. $x = \frac{k\pi}{3}$ và $x = \frac{k\pi}{5}$ C. $x = \frac{k\pi}{2}$ và $x = \frac{k\pi}{5}$ D. Phương trình vn $\sin^2 4x + \sin^2 3x = \sin^2 2x + \sin^2 x \Leftrightarrow \frac{1}{2}(1 - \cos 8x) + \frac{1}{2}(1 - \cos 6x) = \frac{1}{2}(1 - \cos 4x) + \frac{1}{2}(1 - \cos 2x)$ $\Leftrightarrow \cos 8x + \cos 6x = \cos 4x + \cos 2x \Leftrightarrow 2\cos 7x \cos x = 2\cos 3x \cos x \Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \cos 7x = \cos 3x \end{bmatrix}$

$$\Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ 7x = 3x + k2\pi \\ 7x = -3x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ 4x = k2\pi \\ 10x = k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = k\frac{\pi}{2} \\ x = k\frac{\pi}{5} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k\frac{\pi}{2} \\ x = k\frac{\pi}{5} \end{bmatrix}$$

Câu 36. Phương trình $\sin x + \sin^2 \frac{x}{2} = 0,5$ có nghiệm là:

A.
$$x = \arctan \frac{1}{3} + k\pi$$
. B. $x = k\pi$. C. $x = \arctan \frac{1}{2} + k\pi$. D. $x = \pm \arctan \frac{1}{2} + k\pi$. $\sin x + \sin^2 \frac{x}{2} = 0, 5 \Leftrightarrow \sin x + \frac{1}{2}(1 - \cos x) = \frac{1}{2} \Leftrightarrow 2\sin x + (1 - \cos x) = 1 \Leftrightarrow 2\sin x - \cos x = 0$ $\Leftrightarrow 2\sin x = \cos x \Leftrightarrow \tan x = \frac{1}{2}$. Có nghiệm $x = \arctan \frac{1}{2} + k\pi$

Câu 37. Phương trình
$$2\sin^2 x + 3\cos x = 2$$
 có nghiệm thỏa mãn điều kiện $0^0 \le x \le 360^0$ là:
A. $x = 30^0$ và $x = 120^0$ B. $x = 90^0$ và $x = 120^0$ C. $x = 90^0$ và $x = 270^0$ D. Phương trình vn

$$2\sin^2 x + 3\cos x = 2 \Leftrightarrow 2 - 2\cos^2 x + 3\cos x = 2 \Leftrightarrow -2\cos^2 x + 3\cos x = 0 \Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \cos x = \frac{3}{2} (vn) \end{bmatrix}$$

$$\Leftrightarrow x = 90^0 + k180^0$$

$$Vi \ 0^0 \le x \le 360^0 \ \text{nên} \ 0^0 \le 90^0 + k180^0 \le 360^0 \iff 0 \le 1 + 2k \le 4 \iff -1 \le 2k \le 3 \iff -\frac{1}{2} \le k \le \frac{3}{2}$$

Từ chỗ
$$\begin{cases} k \in \mathbb{Z} \\ -\frac{1}{2} \le k \le \frac{3}{2} \end{cases}$$
 suy ra
$$\begin{bmatrix} k = 0 \\ k = 1 \end{cases}$$
 do đó phương trình có nghiệm
$$\begin{bmatrix} x = 90^0 \\ x = 270^0 \end{bmatrix}$$

Câu 38. Phương trình $\tan x + 2 \cot x = 3$ có nghiệm thỏa mãn điều kiện $180^0 \le x \le 360^0$ là:

A.
$$x = 205^{\circ}$$
 và $x = 213,435^{\circ}$. B. $x = 220^{\circ}$ và $x = 223,435^{\circ}$.

B.
$$x = 220^{\circ}$$
 và $x = 223,435^{\circ}$

C.
$$x = 215^{\circ}$$
 và $x = 233,435^{\circ}$. D. $x = 225^{\circ}$ và $x = 243,435^{\circ}$.

D.
$$x = 225^{\circ}$$
 và $x = 243,435^{\circ}$

$$\tan x + 2 \cot x = 3 \Leftrightarrow \tan^2 x - 3 \tan x + 2 = 0$$

$$\Leftrightarrow \begin{bmatrix} \tan x = 1 \\ \tan x = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \tan x = \tan 45^{0} \\ \tan x = \tan 63,435^{0} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 45^{0} + k108^{0} \\ x = 63,435^{0} + k180^{0} \end{bmatrix}$$

Câu 39. Tìm các giá trị của m để phương trình $\sin x + (m-1)\cos x = 1$ vô nghiệm:

A.
$$\phi$$
 B. $(-\infty;1)$ **C.** $(1;+\infty)$ **D.** $\forall m \in \mathbb{R}$

Điều kiện có nghiệm
$$1^2 + (m-1)^2 \ge 1^2 \iff (m-1)^2 \ge 0$$
, $\forall m \in \mathbb{R}$

Câu 40. Tìm các giá trị của m để phương trình $\sqrt{3}\cos\left(3x-\frac{\pi}{4}\right)+m-1=0$ có nghiệm:

A.
$$m < 1 - \sqrt{3}$$
 B. $-\sqrt{3} \le m \le \sqrt{3}$ **C.** $m > 1 + \sqrt{3}$ **D.** $1 - \sqrt{3} \le m \le 1 + \sqrt{3}$ Ta có $\sqrt{3} \cos \left(3x - \frac{\pi}{4}\right) + m - 1 = 0 \Leftrightarrow \sqrt{3} \cos \left(3x - \frac{\pi}{4}\right) = -m + 1 \Leftrightarrow \cos \left(3x - \frac{\pi}{4}\right) = \frac{-m + 1}{\sqrt{3}}$

Có nghiêm khi

$$-1 \le \frac{-m+1}{\sqrt{3}} \le 1 \Leftrightarrow -\sqrt{3} \le -m+1 \le \sqrt{3} \iff -\sqrt{3}-1 \le -m \le \sqrt{3}-1 \Leftrightarrow \sqrt{3}+1 \ge m \ge -\sqrt{3}+1$$

Câu 41. Gọi X là tập nghiệp của phương trình $\cos\left(\frac{x}{2} + 15^0\right) = \sin x$. Khi đó

A.
$$240^0 \in X$$

B.
$$220^0 \in X$$

A.
$$240^0 \in X$$
 B. $220^0 \in X$ **C.** $290^0 \in X$ **D.** $200^0 \in X$

D.
$$200^0 \in X$$

Ta có
$$\cos\left(\frac{x}{2} + 15^{0}\right) = \sin x \Leftrightarrow \sin\left(75^{0} - \frac{x}{2}\right) = \sin x \Leftrightarrow \begin{bmatrix} x = 75^{0} - \frac{x}{2} + k306^{0} \\ x = 180^{0} - 75^{0} + \frac{x}{2} + k360^{0} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2x = 150^{0} - x + k720^{0} \\ 2x = 105^{0} + x + k720^{0} \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3x = 150^{0} + k720^{0} \\ x = 105^{0} + k720^{0} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 50^{0} + k240^{0} \\ x = 105^{0} + k720^{0} \end{bmatrix}$$

Câu 42. Giải phương trình $\cos(\frac{\pi}{2} + x) + \cos(\frac{\pi}{2} - x) = 1$ có nghiệm là:

A.
$$x = \frac{k2\pi}{3}$$

$$\mathbf{B.} \ \ x = k2\pi$$

C.
$$x = \frac{k\pi}{3}$$

A.
$$x = \frac{k2\pi}{3}$$
 B. $x = k2\pi$ **C.** $x = \frac{k\pi}{3}$ **D.** $x = \frac{\pi}{3} + \frac{k2\pi}{3}$

Ta có $\cos(\frac{\pi}{3} + x) + \cos(\frac{\pi}{3} - x) = 1 \Leftrightarrow 2\cos\frac{\pi}{3}\cos x = 1 \Leftrightarrow \cos x = 1 \Leftrightarrow x = k2\pi$

Câu 43. Nghiệm của phương trình $\cos^2 x + \cos^2 2x + \cos^2 3x + \cos^2 4x = 2$ là:

A.
$$x = \frac{\pi}{2} + k\pi$$
.

B.
$$x = \frac{\pi}{10} + \frac{k\pi}{5}$$
.

C.
$$x = -\frac{\pi}{4} + \frac{k\pi}{2}$$

B. $x = \frac{\pi}{10} + \frac{k\pi}{5}$. C. $x = -\frac{\pi}{4} + \frac{k\pi}{2}$. D. Tất cả các đáp án đều đúng.

Ta $c \circ \cos^2 x + \cos^2 2x + \cos^2 3x + \cos^2 4x = 2$

$$\Leftrightarrow \frac{1}{2}(1+\cos 2x) + \frac{1}{2}(1+\cos 4x) + \frac{1}{2}(1+\cos 6x) + \frac{1}{2}(1+\cos 8x) = 2$$

$$\Leftrightarrow 1 + \cos 2x + 1 + \cos 4x + 1 + \cos 6x + 1 + \cos 8x = 4 \Leftrightarrow \cos 2x + \cos 4x + \cos 6x + \cos 8x = 0$$

$$\Leftrightarrow 2\cos 3x\cos x + 2\cos 7x\cos x = 0 \Leftrightarrow 2\cos x(\cos 3x + \cos 7x) = 0 \Leftrightarrow 2.2\cos x\cos 5x\cos 2x = 0$$

$$\Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \cos 2x = 0 \\ \cos 5x = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ 2x = \frac{\pi}{2} + k\pi \\ 5x = \frac{\pi}{2} + k\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = \frac{\pi}{4} + k\frac{\pi}{2} \\ x = \frac{\pi}{10} + k\frac{\pi}{5} \end{bmatrix}$$

Câu 44. Nghiệm của phương trình $(1 - \tan x)(1 + \sin 2x) = 1 + \tan x$ là:

A.
$$x = \frac{\pi}{6} + k\pi$$
 và $x = -\frac{\pi}{4} + k\pi$ B. $x = \frac{\pi}{6} + k\pi$ và $x = \frac{\pi}{4} + k\pi$.

B.
$$x = \frac{\pi}{6} + k\pi \text{ và } x = \frac{\pi}{4} + k\pi$$

C.
$$x = -\frac{\pi}{6} + k\pi \text{ và } x = -\frac{\pi}{4} + k\pi$$
 D. $x = k\pi \text{ và } x = -\frac{\pi}{4} + k\pi$.

D.
$$x = k\pi \text{ và } x = -\frac{\pi}{4} + k\pi$$
.

Ta có $(1 - \tan x)(1 + \sin 2x) = 1 + \tan x \Leftrightarrow (1 - \frac{\sin x}{\cos x})(1 + 2\sin x \cos x) = 1 + \frac{\sin x}{\cos x}$

$$\Leftrightarrow$$
 $(\cos x - \sin x)(\sin^2 x + \cos^2 x + 2\sin x \cos x) = \cos x + \sin x$

$$\Leftrightarrow (\cos x - \sin x)(\sin x + \cos x)^2 = \cos x + \sin x \Leftrightarrow \begin{bmatrix} \sin x + \cos x = 0 \\ \cos x - \sin x = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sqrt{2}\cos(x - \frac{\pi}{4}) = 0 \\ \sqrt{2}\cos(x + \frac{\pi}{4}) = 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \cos(x - \frac{\pi}{4}) = 0 \\ \cos(x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2} = \cos\frac{\pi}{4} \end{cases} \Leftrightarrow \begin{bmatrix} x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \\ x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \\ x + \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{3\pi}{4} + k\pi \\ x = k2\pi \\ x = -\frac{\pi}{2} + k2\pi \end{bmatrix}$$

Câu 45. Nghiệm của phương trình $\tan x + \tan 2x = \sin 3x \cdot \cos x$ là

A.
$$x = k\pi$$

B.
$$x = \frac{k\pi}{2}$$

C.
$$x = \frac{k\pi}{3}$$

B.
$$x = \frac{k\pi}{2}$$
 C. $x = \frac{k\pi}{3}$ D. $x = \frac{k\pi}{4}$

 $\tan x + \tan 2x = \sin 3x \cdot \cos x \Leftrightarrow \frac{\sin 3x}{\cos x \cos 2x} = \sin 3x \cdot \cos x \Leftrightarrow \sin 3x = \sin 3x \cdot \cos x \cdot \cos x \cos 2x$

$$\Leftrightarrow \sin 3x (1 - \cos^2 x \cos 2x) = 0 \Leftrightarrow \begin{bmatrix} \sin 3x = 0 \\ \cos^2 x \cos 2x = 1 \end{bmatrix}$$

Trường hợp 1. $\sin 3x = 0 \Leftrightarrow 3x = k\pi \Leftrightarrow x = k\frac{\pi}{2}$

Trường hợp 2.
$$\cos^2 x \cos 2x = 1 \Leftrightarrow \begin{cases} \cos^2 x = 1 \\ \cos 2x = 1 \end{cases} \Leftrightarrow \cos 2x = 1 \Leftrightarrow x = k\pi$$

Ta thấy
$$\cos^2 x = 1 \Leftrightarrow \frac{1}{2}(1 + \cos 2x) = 1 \Leftrightarrow 1 + \cos 2x = 2 \Leftrightarrow \cos 2x = 1$$

Tổng hợp nghiệm ta được họ nghiệm là $x = k \frac{\pi}{3}$

Câu 46. Nghiệm của phương trình $\tan x + \cot 2x = 2 \cot 4x$ là:

A.
$$x = k\pi$$
 và $x = \frac{2\pi}{3} + k\pi$. B. $x = \frac{\pi}{3} + k\pi$ và $x = k\pi$. C. $x = \frac{\pi}{3} + k\pi$ và $x = \frac{2\pi}{3} + k\pi$. D. Pt vn.

Điều kiện của phương trình là $x \neq k \frac{\pi}{4}$

$$\tan x + \cot 2x = 2\cot 4x \Leftrightarrow \cot 4x - \tan x = \cot 2x - \cot 4x \Leftrightarrow \frac{\cos 4x}{\sin 4x} - \frac{\sin x}{\cos x} = \frac{\cos 2x}{\sin 2x} - \frac{\cos 4x}{\sin 4x}$$

$$\Leftrightarrow \frac{\cos 4x \cos x - \sin 4x \sin x}{\sin 4x \cos x} = \frac{\sin 4x \cos 2x - \cos 4x \sin 2x}{\sin 2x \sin 4x} \Leftrightarrow \frac{\cos 5x}{\sin 4x \cos x} = \frac{\sin 2x}{\sin 2x \sin 4x}$$

$$\Leftrightarrow \frac{\cos 5x}{\sin 4x \cos x} = \frac{1}{\sin 4x} \Leftrightarrow \frac{\cos 5x}{\cos x} = 1 \Leftrightarrow \cos 5x = \cos x \Leftrightarrow \begin{bmatrix} 5x = x + k2\pi \\ 5x = -x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k\frac{\pi}{2} \\ x = k\frac{\pi}{2} \end{bmatrix}$$

Đối chiếu điều kiện ta có họ nghiệm là $x = k \frac{\pi}{2}$

Câu 47. Phương trình $(\tan x + \cot x)^2 - (\tan x + \cot x) = 2$ có nghiệm là:

A.
$$x = \frac{\pi}{6} + k\pi$$

B.
$$x = \frac{\pi}{3} + k\pi$$

$$C. \ \ x = \frac{\pi}{4} + k\pi$$

A.
$$x = \frac{\pi}{6} + k\pi$$
 B. $x = \frac{\pi}{3} + k\pi$ C. $x = \frac{\pi}{4} + k\pi$ D. $x = \frac{\pi}{2} + k\pi$

Ta có $(\tan x + \cot x)^2 - (\tan x + \cot x) = 2 \Leftrightarrow (\tan x + \cot x)^2 - (\tan x + \cot x) - 2 = 0$

$$\Leftrightarrow \begin{bmatrix} \tan x + \cot x = -1 \\ \tan x + \cot x = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = -1 \\ \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{\sin^2 x + \cos^2 x}{\cos x \sin x} = -1 \\ \frac{\sin^2 x + \cos^2 x}{\cos x \sin x} = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{1}{\cos x \sin x} = -1 \\ \frac{1}{\cos x \sin x} = 2 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \cos x \sin x = -1 \\ \cos x \sin x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{1}{2} \sin 2x = -1 \\ \frac{1}{2} \sin 2x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin 2x = -2 \ (vn) \\ \sin 2x = 1 \end{bmatrix} \Leftrightarrow \sin 2x = 1 \Leftrightarrow 2x = \frac{\pi}{2} + k2\pi$$

$$\Leftrightarrow x = \frac{\pi}{4} + k\pi$$

Câu 48. Phương trình $3\sin^2 x - \sin 2x - \cos^2 x = 0$ có nghiệm là:

A.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan\left(-\frac{1}{3}\right) + k\pi$

A.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan\left(-\frac{1}{3}\right) + k\pi$ B. $x = -\frac{\pi}{4} + k\pi$ và $x = \arctan\left(-\frac{1}{3}\right) + k\pi$.

$$C. \ \ x = \pm \frac{\pi}{4} + k\pi$$

D. Phương trình vô nghiệm.

$$3\sin^2 x - \sin 2x - \cos^2 x = 0 \Leftrightarrow 3\sin^2 x - 2\sin x \cos x - \cos^2 x = 0$$

Biến đổi được
$$3\tan^2 x - 2\tan x - 1 = 0 \Leftrightarrow \begin{bmatrix} \tan x = 1 \\ \tan x = -\frac{1}{3} \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \arctan(-\frac{1}{3}) + k\pi \end{bmatrix}$$

Câu 49. Phương trình $3\sin^2 2x - \sin 2x \cdot \cos 2x - 4\cos^2 2x = 2$ có nghiệm là:

A.
$$x = \arctan 2 + \frac{k\pi}{2}$$
 và $x = \arctan(-3) + \frac{k\pi}{2}$ B. $x = \arctan 2 + \frac{k\pi}{2}$ và $x = \arctan 3 + \frac{k\pi}{2}$.

C.
$$x = \arctan(-2) + \frac{k\pi}{2}$$
 và $x = \arctan 3 + \frac{k\pi}{2}$ D. $x = \arctan(-2) + \frac{k\pi}{2}$ và $x = \arctan(-3) + \frac{k\pi}{2}$.

Ta có $3\sin^2 2x - \sin 2x \cdot \cos 2x - 4\cos^2 2x = 2 \Leftrightarrow \sin^2 2x - \sin 2x \cdot \cos 2x - 6\cos^2 2x = 0$

Ta dc
$$\tan^2 2x - \tan 2x - 6 = 0 \Leftrightarrow \begin{bmatrix} \tan 2x = 3 \\ \tan 2x = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x = \arctan 3 + k\pi \\ 2x = \arctan(-2) + k\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{1}{2}\arctan 3 + k\frac{\pi}{2} \\ x = \frac{1}{2}\arctan(-2) + k\frac{\pi}{2} \end{bmatrix}$$

Câu 50. Phương trình $2\sin^2 x + (3+\sqrt{3})\sin x$. $\cos x + (\sqrt{3}-1)\cos^2 x = -1$ có nghiệm là:

A.
$$x = \frac{\pi}{6} + k\pi$$
 và $x = \frac{\pi}{4} + k\pi$

B.
$$x = \frac{\pi}{6} + k\pi$$
 và $x = -\frac{\pi}{4} + k\pi$.

C.
$$x = -\frac{\pi}{6} + k\pi$$
 và $x = -\frac{\pi}{4} + k\pi$ D. Phương trình vô nghiệm.

Câu 51. Nghiệm của phương trình $\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x$ là:

A.
$$x = \frac{2\pi}{3} + 2k\pi$$

A.
$$x = \frac{2\pi}{3} + 2k\pi$$
 B. $x = -\frac{2\pi}{3} + 2k\pi$ C. $x = \frac{\pi}{8} + \frac{k\pi}{2}$

C.
$$x = \frac{\pi}{8} + \frac{k\pi}{2}$$

D. Tất cả các đáp án đều đúng.

 $\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x \Leftrightarrow 2\sin 2x \cos x + \sin 2x = 2\cos 2x \cos x + \cos 2x$

$$\Leftrightarrow \sin 2x (2\cos x + 1) = \cos 2x (2\cos x + 1) \Leftrightarrow \begin{bmatrix} \sin 2x - \cos 2x \\ \cos x = -\frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin 2x - \cos 2x - \cos 2x \\ \cos x = \cos \frac{2\pi}{3} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \sqrt{2}\sin(2x - \frac{\pi}{4}) = 0 \\ \cos x = \cos\frac{2\pi}{3} \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x - \frac{\pi}{4} = k\pi \\ x = \pm\frac{2\pi}{3} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{8} + k\frac{\pi}{2} \\ x = \pm\frac{2\pi}{3} + k2\pi \end{bmatrix}$$

Câu 52. Nghiệm của phương trình $\sin x = \sqrt{2} \sin 5x - \cos x$ là:

A.
$$x = \frac{\pi}{16} + \frac{k\pi}{2}$$
 và $x = \frac{\pi}{8} + \frac{k\pi}{2}$

A.
$$x = \frac{\pi}{16} + \frac{k\pi}{2}$$
 và $x = \frac{\pi}{8} + \frac{k\pi}{2}$ B. $x = \frac{\pi}{16} + \frac{k\pi}{3}$ và $x = \frac{\pi}{8} + \frac{k\pi}{3}$.

C.
$$x = \frac{\pi}{16} + \frac{k\pi}{2}$$
 và $x = \frac{\pi}{8} - \frac{k\pi}{3}$ D. Phương trình vô nghiệm.

$$\sin x = \sqrt{2}\sin 5x - \cos x \Leftrightarrow \sin x + \cos x = \sqrt{2}\sin 5x \Leftrightarrow \sqrt{2}\sin(x + \frac{\pi}{4}) = \sqrt{2}\sin 5x$$

PHƯƠNG TRÌNH LƯƠNG GIÁC

$$\Leftrightarrow \sin(x + \frac{\pi}{4}) = \sin 5x \Leftrightarrow \begin{bmatrix} 5x = x + \frac{\pi}{4} + k2\pi \\ 5x = \pi - x - \frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{16} + k\frac{\pi}{2} \\ x = \frac{\pi}{8} + k\frac{\pi}{3} \end{bmatrix}$$

Câu 53. Nghiệm của phương trình $\frac{1}{\sin 2x} + \frac{1}{\cos 2x} = \frac{1}{\sin 4x}$ là:

A.
$$x = \frac{\pi}{3} + 2k\pi$$
. B. $x = \frac{2\pi}{3} + 2k\pi$. C. $x = k\pi$. D. Phương trình vô nghiệm.

$$\frac{1}{\sin 2x} + \frac{1}{\cos 2x} = \frac{1}{\sin 4x} \Leftrightarrow \frac{\cos 2x + \sin 2x}{\sin 2x \cos 2x} = \frac{1}{2\sin 2x \cos 2x} \Leftrightarrow \cos 2x + \sin 2x = \frac{1}{2}$$

Câu 54. Nghiệm của phương trình $2\sin^2 x + 3\sin x \cos x + \cos^2 x = 0$ là:

A.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan\left(-\frac{1}{2}\right) + k\pi$. B. $x = -\frac{\pi}{4} + k\pi$ và $x = \arctan\frac{1}{2} + k\pi$.

C.
$$x = -\frac{\pi}{4} + k\pi$$
 và $x = \arctan\left(-\frac{1}{2}\right) + k\pi$. D. Phương trình vô nghiệm.

Câu 55. Nghiệm của phương trình $\frac{1+\cos 2x}{\cos x} = \frac{\sin 2x}{1-\cos 2x}$ là:

A.
$$x = \frac{3\pi}{4} + 2k\pi \text{ và } x = \frac{\pi}{4} + 2k\pi$$
 B. $x = k\pi; k \in \mathbb{Z}$.

C.
$$x = \frac{\pi}{6} + 2k\pi$$
 và $x = \frac{5\pi}{6} + 2k\pi$ D. Phương trình vô nghiệm.

Điều kiện
$$\begin{cases} \cos x \neq 0 \\ \cos 2x \neq 1 \end{cases} \Leftrightarrow \begin{cases} \cos x \neq 0 \\ \sin 2x \neq 0 \end{cases}$$

$$\frac{1+\cos 2x}{\cos x} = \frac{\sin 2x}{1-\cos 2x} \Leftrightarrow (1+\cos 2x)(1-\cos 2x) = \cos x \sin 2x \Leftrightarrow 1-\cos^2 2x = \cos x \sin 2x$$

$$\Leftrightarrow \sin^2 2x = \cos x \sin 2x \Leftrightarrow \begin{bmatrix} \sin 2x = 0 \\ \sin 2x = \cos x \\ \Leftrightarrow \sin 2x = \cos x \\ \Leftrightarrow \sin 2x = \sin(\frac{\pi}{2} - x) \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2x = \frac{\pi}{2} - x + k2\pi \\ 2x = \pi - \frac{\pi}{2} + x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3x = \frac{\pi}{2} + k2\pi \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k\frac{2\pi}{3} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

Câu 56. Nghiệm của phương trình $\frac{\sin^3 x + \cos^3 x}{2\cos x - \sin x} = \cos 2x \text{ là:}$

A. Phương trình vô nghiệm. B.
$$x = \frac{\pi}{4} + k\pi$$
 và $x = \arctan\left(-\frac{1}{2}\right) + k\pi$.

C.
$$x = -\frac{\pi}{4} + k\pi$$
 và $x = \arctan \frac{1}{2} + k\pi$. D. $x = \frac{\pi}{4} + k\pi$ và $x = \arctan \frac{1}{2} + k\pi$.

Câu 57. Giải phương trình $\frac{\sin^2 x - \cos^2 x + \cos^4 x}{\cos^2 x - \sin^2 x + \sin^4 x} = 9.$

A.
$$x = \pm \frac{\pi}{6} + k2\pi$$
. **B.** $x = \pm \frac{\pi}{3} + k\pi$. **C.** $x = \pm \frac{\pi}{6} + k\pi$. **D.** $x = \pm \frac{\pi}{3} + k2\pi$.

Câu 58. Tìm m để phương trình: $\cos^2 x - \sin x + m = 0$ có nghiệm.

A.
$$m \ge -\frac{4}{5}$$
. **B.** $-\frac{1}{4} \le m \le 1$. **C.** $-\frac{5}{4} \le m \le 1$. **D.** $-\frac{5}{4} \le m \le -1$.

Câu 59. Giải phương trình: $\frac{\cos x(1-2\sin x)}{2\cos^2 x - \sin x - 1} = \sqrt{3} \text{ có nghiệm.}$

$$\mathbf{A.} x = -\frac{\pi}{\epsilon} + k2\pi$$

B.
$$x = \pm \frac{\pi}{6} + k2\pi$$

C.
$$x = \frac{\pi}{6} + k2\pi$$

D.
$$x = -\frac{\pi}{6} + k2\pi, x = -\frac{\pi}{2} + k2\pi$$

A. $x = -\frac{\pi}{6} + k2\pi$ **B.** $x = \pm \frac{\pi}{6} + k2\pi$ **C.** $x = \frac{\pi}{6} + k2\pi$ **D.** $x = -\frac{\pi}{6} + k2\pi$, $x = -\frac{\pi}{2} + k2\pi$. **Câu 60.** Tìm m để phương trình: $\cos 2x - \cos x - m = 0$ có nghiệm.

A.
$$-\frac{9}{8} \le m \le 2$$
.

A.
$$-\frac{9}{8} \le m \le 2$$
. **B.** $-\frac{9}{8} \le m \le 1$. **C.** $m \ge -\frac{9}{8}$. **D.** $-\frac{5}{8} \le m \le 2$.

C.
$$m \ge -\frac{9}{8}$$
.

D.
$$-\frac{5}{8} \le m \le 2$$
.

Tham gia vào group: Tài Liệu VIP - 2K3 Học Là Giỏi https://www.facebook.com/groups/2436168169960793 để nhận thêm nhiều tài liệu hữu ích