Ihor Neporozhnii

ihor.neporozhnii@mail.utoronto.ca | +1 (778)-697-8423

linkedin.com/in/ihor-neporozhnii | github.com/ineporozhnii | Google Scholar | My Website

EDUCATION

University of Toronto

Toronto, Canada

PhD - Computational Chemistry

September 2021 - expected March 2027

• Thesis focus: Machine Learning for Accelerated Discovery of Medicines and Materials

Taras Shevchenko National University of Kyiv

Kyiv, Ukraine

Bachelor of Science - Physics

September 2017 – June 2021

SELECTED PUBLICATIONS

- I. Neporozhnii, J. Roy, E. Bengio, J. Hartford, Efficient Biological Data Acquisition through Inference Set Design, In proceedings of the International Conference on Learning Representations (ICLR), 2025.
- I. Neporozhnii, Z. Wang, R. Bajpai, C. Gomez, N. Chakraborty, I. Tamblyn, O. Voznyy, Navigating Materials Space with ML-Generated Electronic Fingerprints, Physical Review Letters (Under review).
- F. Dinic, I. Neporozhnii, O. Voznyy, Machine learning models for the discovery of direct band gap materials for light emission and photovoltaics, Computational Materials Science, 2024.
- F. Dinic, Z. Wang, I. Neporozhnii, U. B. Salim, R. Bajpai, N. Rajiv, V. Chavda, V. Radhakrishnan, O. Voznyy, Strain data augmentation enables machine learning of inorganic crystal geometry optimization, Patterns, 2023.
- M. Abdinejad, S. Subramanian, M. K. Motlagh, M. Noroozifar, S. Duangdangchote, I. Neporozhnii, D. Ripepi, D. Pinto, M. Li, K. Tang, J. Middelkoop, A. Urakawa, O. Voznyy, H. Kraatz, T. Burdyny, Insertion of MXene-Based Materials into Cu-Pd 3D Aerogels for Electroreduction of CO2 to Formate, Advanced Energy Materials, 2023.

WORK EXPERIENCE

Machine Learning Research Engineer Intern

August 2025 – Present

Cognano

Toronto, Canada

• Developing data processing and prediction scoring pipelines for the VHH Epitope Prediction Challenge.

Machine Learning Research Intern

April 2024 – December 2024

 $Valence\ Labs\ |\ Recursion\ Pharmaceuticals$

Montreal/Toronto, Canada

- Developed Inference Set Design an active learning approach that reduces costs of high-throughput library screens by up to 60% while preserving the high accuracy of the acquired data, using Python and PyTorch.
- Trained large transformer models to predict the biological effects of compounds on cells.
- Utilized **protein language models** for feature engineering to improve a downstream model.
- Implemented probabilistic stopping criterion to avoid unnecessary experimentation.

Research Assistant

September 2021 - Present

 $University\ of\ Toronto$

Toronto, Canada

- Developing machine learning methods to improve the efficiency of discovering novel materials for clean energy applications and medicines.
- Built ProDosNet a Graph Neural Network (GNN) that decreased the computational cost of materials electronic structure analysis by 3 orders of magnitude, providing a way to accelerate the discovery of new materials for clean energy applications.
- Developed a data processing pipeline and a neural network using **Python** and **PyTorch** to classify materials band gap into direct and indirect. The resulting model achieved a **40% improvement** in identifying direct band gap materials compared to random search.
- Performed density functional theory (DFT) simulations of the CO_2 reduction reaction to support experimental results, contributing to a publication in Advanced Energy Materials.

Machine Learning Bootcamp Instructor

April 2023 – October 2023

University of Toronto | Alliance for AI-Accelerated Materials Discovery (A3MD)

Toronto, Canada

- I organized and conducted two 5-day bootcamps on machine learning and chemistry for 25 scientists at LG Group and Total Energies.
- Prepared lectures and tutorials that covered chemical data processing with **Python** and developing deep learning models for chemistry with **PyTorch** and **TensorFlow**.

Research Intern March 2021 – April 2021

CNRS, Université Paris-Saclay

Paris, France

- Developed an algorithm to analyze signals from the JUNO neutrino experiment.
- Implemented the algorithm in C++, which resulted in a 50% improvement in the accuracy of signal reconstruction.

Research Engineer

April 2019 - August 2021

Institute of Physics, National Academy of Sciences of Ukraine

Kyiv, Ukraine

• Conducted experiments with nanomaterials in ultra-high vacuum conditions. The results of this study are published in Surface Science.

Research Intern

July – August 2020

Jagiellonian University

Krakow, Poland

• Performed cross-match of neutrino and Gamma-ray burst datasets, conducted statistical analysis with Python.

Research Intern

July – August 2019

Institute of Nuclear Physics, Polish Academy of Sciences

Krakow, Poland

• Analyzed data from CERN Atlas experiment using Machine Learning and Monte Carlo methods.

PROJECT EXPERIENCE

Active Learning for building Maps of Biology | Valence Labs, Recursion Pharmaceuticals

2024

- Applied transfer learning, active learning, and model ensembling techniques to predict gene-compound relationships achieving 80% accuracy, using Python and PyTorch.
- Handled and analyzed biological data, including molecular structures, cell images, model embeddings, experimental measurements, and simulation results.
- The project resulted in a publication and a poster presentation at ICLR 2025 conference.

Discovering Organic Light Emitting Molecules with ML | University of Toronto

2023

- Utilized **Python** and **RDKit** to preprocess and featurize molecular datasets.
- Developed machine learning model ensembles using **Python**, **PyTorch**, and **Scikit-learn** to predict emission properties of organic molecules, achieving $0.78~R^2$ on experimental data.
- Ran multiple active learning rounds to acquire additional data, improving model predictions by 10%.
- Identified promising molecules with machine learning that were synthesized and characterized in the lab, validating model predictions.

Exploring Space of Materials with Deep Learning | University of Toronto

2023

- Implemented a deep learning model for predicting materials electronic densities of states, using **Python** and **PyTorch**.
- Developed robust material representations, enabling targeted exploration of chemical space and demonstrating effectiveness across 5 distinct applications, including **catalysts** and **solid electrolytes**.
- Performed molecular dynamics simulations to verify model predictions.
- Designed a loss function that improved training stability and reduced prediction error by 20%.
- Deployed the model and a chemical space analysis tool: ProDosMate.

TEACHING EXPERIENCE

Teaching Assistant | Physics for Life Sciences at University of Toronto

September 2021 – Present

• I conduct practical sessions for undergraduate students enrolled in courses Physics I and II for Life Sciences, including lab experiments and computer simulations.

Honors and Awards

	Climate Positive Energy Graduate Student Scholarship University of Toronto (\$15,000) Invited talk: Accelerated discovery of materials with Machine Learning Climate Positive Energy Best presentation award: Navigating Material Space with ML Canadian Chemistry Conference	- 2025 2024 2024 2023 - 2021 2019
_	Onference Presentations	
	Efficient High-Throughput Compound Library Screens with Active Learning Poster presenter, Accelerate Conference, Toronto, Canada	2025
	Efficient Biological Data Acquisition through Inference Set Design Poster presenter, International Conference on Learning Representations (ICLR), Singapore	2025
	Navigating Material Space with ML-Generated Electronic Fingerprints Poster presenter, Materials for Sustainable Development Conference (MATSUS24), Barcelona, Spain	2024
	Navigating Material Space with ML-Generated Electronic Fingerprints Poster presenter, Accelerate Conference, Toronto, Canada	2023
	Accelerated discovery of battery materials using ML-predicted Density of States Talk, Climate Positive Energy Research Day, Toronto, Canada	2023
	Navigating Material Space with ML-Generated Electronic Fingerprints Talk, Canadian Chemistry Conference and Exhibition, Vancouver, Canada	2023
	Predicting Materials Density of States with Graph Neural Networks Talk, MRS Fall Meeting and Exhibit, Boston, United States	2022
	Predicting Materials Density of States with Graph Neural Networks Poster presenter, Accelerate Conference, Toronto, Canada	2022
	Machine Learning Methods for Predicting Density of States Poster presenter, Canadian Symposium on Theoretical and Computational Chemistry, Kelowna, Canada	2022
	Machine Learning Methods for Predicting Density of States Talk, Canadian Chemistry Conference and Exhibition, Calgary, Canada	2022
	Spatio-temporal correlation between Gamma-ray bursts and High-energy neutrino Talk, WDS Conference, Prague, Czech Republic	2020

TECHNICAL SKILLS

- Languages: Python, R, Julia, C++
- Frameworks and libraries: PyTorch, TensorFlow, JAX, Transformers, Scikit-learn, RDKit, Pandas, Numpy.
- Machine Learning: Deep Learning, Active Learning, Transfer Learning, GNNs, LLMs, Machine Learning Force Fields.
- Computational Chemistry: Density Functional Theory (VASP, CP2K, PySCF), Semi-empirical methods (xTB), LAMMPS.
- **High-performance computing**: Training models and running molecular dynamics simulations on multi-node GPU and CPU clusters with SLURM, Hydra, and PyTorch Lightning.
- Software development: Version control (Git, Github), VS Code, JupyterLab.