Homework 9

- 1) Let K/F be purely insep with char (F)=p.

 Let $\alpha \in K$ has min poly $m_{\alpha}(x) \in F[x]$, we can write $m_{\alpha}(x) = \overline{m_{\alpha}}(x^{p^m})$ with m maximal so p^m deg m_{α} . Then $\overline{m_{\alpha}}(x)$ sep and inval in F[x] so α^{p^m} is sep over F. ... $\alpha^{p^m} \in F$ by inseparability. Set $\alpha = \alpha^{p^m}$ then α is a root of $\alpha \in F[x]$ $\Rightarrow m_{\alpha}(x) \mid x^{p^m} = x^{p^m} = m_{\alpha}(x) = x^{p^m} = x^{p^m$
- 3) Recall , from the definition that a finite for is prevely insert if F is the maximal separate substitute in E/F. We need to show that

| if L/F is the new sep extension in R/F,
| then L is also me max sep extension
in K/L.

Assume L is not ive there in a large separate extension L'

K shen that L'/L is separate. Then L'/F

is also superable so we have found

L' a larger sept extension for K/F ===

L ... L is the mark sept ext of K/L

=> K/L is prely inseparable II

4) (It K/F be an algebraic field extension.

Let $f: K \to K$ be a F-honomyphism. It is clear that this homomorphism is injective as it is a field home.

to show surjeethon, let $a \in F$. Since K/F also, $\exists p \in FCF$ with two tests are let Kp denote the seet of mote of p(x) in K_1 which is a posite of Also $f(Kp) \in Kp$ (f maps a root of p(x) to another root).

: f induces an injective map $Kp \to Kp$ and since Kp finile, this is a subjective so $\exists bt K$ sit. f(G)=a

bl s: K=K to a field iso one F.

consider Ko the subtied of or-invariant electronic Kock.

consider Ki.e. L is also inaliant under σ L

and L is provide inc L= $K(d_{1},...,d_{n})$ K^{σ} K^{σ} K^{σ} K^{σ}

considu L/K°, me need to show that the extendion is cyclir.

let at L/K°, then or(d)=di for some i

.. Y BELK II s.t. o'(d)=B...

we see that the extension how a cyclic group
g automarphism to and is Galois so chal(L/K°) is

eyclic.

6) Over a perfect field, every algebraic field extension is separable. Let F be perfect. We need to show every extension E/F is perfect. i.e every L/E is separable. Consider the torse.

Then L/F is suparable $\Rightarrow L/E$ is suparable. Therefore E is perfect as well

$$7) \text{ as functions } K \rightarrow K$$

$$M_{A+B}(x) = (A+B)x = Ax + Bx = (M_A + M_B)(x)$$

$$M_A \circ M_B(x) = ABX = M_{AB}(x)$$

Picking a basis for K(f), and passing to a motive: To K(F) = V(f) =

[ma] LIF = (Ciá), [mciá] FIK = (bián) /[ma] LIK = ([mciá] FIK).

Trf/K (TrL/F (A1) = Trf/K (¿Cil)

= Z Trf/K (cir)

= SS birr
i r

The argument above can be replicated for the norm as new, with some linear algebra menipulations

= TrL/K(X).

9) Assume I a linear relation: $\sum_{k=1}^{\infty} c_k J_{PR} + c_0 = 0$

let L/O be smollest extension containing all Tax.

if $a \in N$ in not a prefect square T(Ja) = 0. also T(a) = 0 ; of q = 0 for substant q.

: By taking trace J both sides, (6=0). Let $1 \le j \le n$ and number by $\sqrt{n}g$ $(\frac{1}{2})^2 + \frac{1}{2}$. Che $\sqrt{n}g = 0$.

taking time again gives $T(C_3P_3)=0 \Rightarrow C_3=0$. :: Unear independent

- 10) if $\epsilon \in K$, then all autonorphin in $\epsilon K \epsilon^{-1}$ fix $\epsilon(B)$. In other was, that $(E/\epsilon(B)) = \epsilon K \epsilon^{-1}$. The fixed field by $\epsilon K \epsilon^{-1}$ is equal to $\epsilon(B)$.
 - :. 6(B)=B iff & nomalizes k
 - :. Gal (KM/K) = Na (4)/11