CS3230 Cheatsheet (Midterm)

by Yiyang, AY21/22

Asymptotic Analysis Asymptotic Notations

Big-O:
$$f(n) = O(g(n))$$
 if there exists $c > 0$ and $n_0 > 0$, s.t., for all $n \ge n_0$

$$0 \le f(n) \le cg(n)$$

Similar definition for Big-Omega, $\Omega()$.

Small-o:
$$f(n) = o(g(n))$$
 if there exists $c > 0$ and $n_0 > 0$, s.t., for all $n \ge n_0 \mathbf{x}$

$$0 \le f(n) < cg(n)$$

Similar definition for Small-omega, $\omega()$.

Lastly,
$$f(n) = \Theta(g(n))$$
 iff. $f(n) = O(g(n)) \land f(n) = \Omega(g(n))$.

Solve Recurrence Relations Master Theorem

For recurrence in the form of

$$T(n) = aT(n/b) + f(n)$$

there are three cases to be considered

• If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

• If
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
 for some $k > 0$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

• If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some $\epsilon > 0$ and it satisfies the regularity condition that $af(n/b) \le cf(n)$ for some $0 < c < 1$, then $T(n) = \Theta(f(n))$

Notes: The three cases mean whether f(n) grows **polynomially** slower, around the same rate, or faster than $n^{\log_b a}$.

Notes: The regularity condition ensures the sum of sub-problems is less than f(n).

Stirling's Approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
, or asymptotically, $\lg(n!) = \theta(n \lg n)$.

Harmonic Sequence

$$H_n = \sum_{i=1}^n \frac{1}{i} = \ln n + O(1)$$

Other Important Asymptotic Statements

$$\lg n = O(n^{\alpha}) \text{ for any } \alpha > 0.
x^{\alpha} = O(e^{x}) \text{ for any } \alpha > 0.$$

Common Recurrence Relations

Hashing & Fingerprint