Instant Auditing of Cloud Storage Access without Evidence Cached

Advicer: Gwan-Hwan Hwang Student: Wei-Chih Chien

NTNU CSIE CCLAB

2015.12.31

- Scenario
- Real-time Auditing Schemes
 - Intuitive Method
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Initial
 - Read
 - Write
 - Audit
- 4 Schedules
- Experimental Results

- Scenario
- 2 Real-time Auditing Schemes
 - Intuitive Method
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Initial
 - Read
 - Write
 - Audit
- 4 Schedules
- Experimental Results

Why Real-time Auditing?

Scenario (CON'T)

Version Control

Scenario (CON'T)

Problem

Cryptography Proof Needed

- Scenario
- Real-time Auditing Schemes
 - Intuitive Method
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Initial
 - Read
 - Write
 - Audit
- 4 Schedules
- Experimental Results

Intuitive Method

Problem

Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

Worse-case

因爲要更新client端的Merkle Tree, 累積太多版本就需要很多時間來更新

My Method

Assumption: 同時有k個server上同一file出問題的機率 ≈ 0

Comparison

- Pros
 - Device 不用存 Merkle Tree, 省空間
 - 2 Device 也不用同步 Merkle Tree, 省時間
 - ③ 資料有多份備份
 - 平均比之前的方法快速, 且沒有 Worse-case
- Cons
 - 🕕 硬體成本較高
 - ② 需要處理多份 Response

- Scenario
- 2 Real-time Auditing Schemes
 - Intuitive Method
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Initial
 - Read
 - Write
 - Audit
- 4 Schedules
- Experimental Results

Flowchart

Initial

Create Merkle Tree

READ

I. 2-step Handshake & Voting

$$\begin{split} & \text{REQ} = (\text{op}, [\text{op}]_{\text{pri(D)}}) \\ & \text{ACK} = (\text{result}, \ \text{REQ}, [\text{result}, \ \text{REQ}]_{\text{pri(S)}}) \end{split}$$

READ

II. Download

WRITE

I. Upload

 $\mathsf{REQ} = (\mathsf{op}, [\mathsf{op}]_{\mathsf{pri}(\mathsf{D})})$

WRITE

II. Update Merkle Tree

WRITE

III. Voting

 $ACK = (result, REQ, [result, REQ]_{pri(S)})$

AUDIT

- ① Device 向 Synchronization Server 取得 Latest Ack.
- ② Device 再向 Service Provider 取得 前一版本的 Merkle Tree.
- 使用 Step I. 的 Ack 包含的檔案 Hash 值來更新 Step II. 的 Merkle Tree.

Prev. Merkle Tree

Latest Merkle Tree

● 比較 Device 自己算出的 Roothash 值是否和 Server 提供的相同.

- Scenario
- 2 Real-time Auditing Schemes
 - Intuitive Method
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Initial
 - Read
 - Write
 - Audit
- Schedules
- Experimental Results

Schedules

- My Method Finished.
 - Merkle Tree Implements.
 - Operation Handle (Read, Write and Audit).
 - File Transmit.
 - Object Transmit (Serialization).
 - Synchronization Server Implements.
- Wei-Shian's Method Finished.
 - Acknowledgement Chain Implements.
- Question: Read Operation slower than Write Operation
- Design Different Experiments.

- Scenario
- 2 Real-time Auditing Schemes
 - Intuitive Method
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Initial
 - Read
 - Write
 - Audit
- 4 Schedules
- Experimental Results

Experimental Results

Table: THE EXECUTION TIME OF FOLLOWING OPERATIONS (IN MS)

Account A		666MB	42files	6dirs.	
Test Data	1KB	10KB	100KB	1MB	10MB
Non POV					
READ	0.72	0.519	0.471	1.766	13.417
WRITE	1.086	0.651	1.891	3.172	16.426
Wei Chih					
READ	2.575	13.94	3.047	5.353	40.18
WRITE	3.354	2.79	3.608	9.376	65.731
Wei Shain					
READ	1.982	1.756	3.325	6.477	40.606
WRITE	1.708	2.046	3.67	4.834	16.574

Server and Client on the Same Machine

Thank You!