Base de Dados

Colecção de dados q representam um negócio.

Base de dados Relacional(def.)

Colecção de dados operacionais interrelacionados e armazenados de forma independente dos programas que os utilizam e que servem múltiplas aplicações.

SGBD

Programa para suportar a gestão de base de dados. Sistema cujo o objectivo é gerir o acesso e correcta manutenção dos dados numa BD. Deve garantir integridade, segurança e concorrência de modo a manter os dados consistentes.

Base de dados é o motor do SGBD capaz de

criar, modificar, actualizar, disponibilizar, partilhar, manter consistência. Permite criar vistas de dados sem preocupação com a estrutura.

Entidade:QQ objecto do mundo real.

Atributo: colunas (campos). Propriedades da Entidade.

Registo: ocorrência de uma entidadeà Instância, colecção de campos.

Domínio: valores possíveis do atributo.

Dicionário de Dados: Definição formal dos elementos.

Chave primária: atributo que identifica de forma exclusiva cada ocorrência de uma entidade. Não pode ser nula.

Caract.PK

-Não pode haver 2 ocorrências da mesma entidade com o mesmo conteúdo na chave primária.-A chave primária n/ pode ser composta por atributo q aceite nulo.-Os atributos identificadores devem ser o conjunto mínimo que pode identificar cada instância de uma entidade.-cada atributo identificador da chave deve possuir um tamanho reduzido.Pode ser gerada automática/ pelo sistema.

Chave candidata: Atributo que não sendo chave primária identifica de forma única. **Chave estrangeira**: atributo de uma relação que é chave primária de outra entidade.

Pode ter o valor nulo. Pode ter valores duplicados.

Restrições de Integridade (asseguram consistência dos dados)

Integridade Referencial: (pode ser reflexa, cíclica, múltipla)

QQ valor da chave estrangeira tem q existir como valor da chave primária na tabela relacionada ou deve ser nulo.Não pode haver órfãos.Uma modificação do valor da PK tem que ter como reflexo a modificação dos valores de todas as FK correspondentes.A FK pode ser nula e só aceita valores que existam na PK correspondente.

Tipos de Integridade referencial

Reflexa: integridade de uma tabela com ela própria. Cíclica: de pai para

filho. Múltipla: integridade de uma tabela com várias outras.

Integridade de Entidade:

Se um atributo é chave primária não pode ser nulo nem se pode repetir.

Ficheiro: colecção de registos.

Classificação de ficheiros:

Tipo (quanto aos dados):

Master- registos estáveis; campos mto alteráveis.

Tabelas – registos e campos estáveis.

Transacções – alteram os masters.

Trabalho – temporários.

Impressão

Organização dos ficheiros

Sequencial – registos com ordem física

Directo – registos com ordem lógica.

Hashed – acesso directo ao registo a partir da chave.

Indexados – chaves em ficheiros separados.

Sequencial/indexada- registos em blocos por ordem física. Os blocos têm índice.

Estrutura de uma BD(3 formas):

Hierárquico(árvore)

Cada entidade não tem mais de uma entidade ascendente. Só comporta relações 1:1 e 1:M. Grande dependência entre a descrição da estrutura de dados e a maneira como estão registados.

Rede

Cada entidade pode ter qualquer número de subordinados ou superiores. As entidades ligam-se por cadeias. Desenvolvimento do modelo hierárquico para descrever as relações m:n e diminuir o constragimento da hierarquia.

Relacional

Consiste numa ou mais tabelas bidimensionais(relações) onde as linhas são os registos e as colunas são os atributos. Representa a bd como uma colecção de relações. Cada relação assemelha-se a uma tabela de valores. Cada linha da tabela representa uma colecção de valores relacionados-tuplo. O nome da coluna designa-se por atributo. O tipo de dados que descreve o tipo de valores em cada coluna é designado por **domínio**.

Normalização

Conjunto de regras que visa minimizar as anomalias de modificação dos dados e dar maior flexiblidade na sua utilização. Minimiza as redundâncias e inconsistências, facilita a manipulação de dados, facilita a manutenção.

Tabelas n/ normalizadas à 1º forma normal

Eliminar grupos repetidos. Identificar chaves primárias

1º forma normalà 2º forma normal

Eliminar dependências parciais. Assegurar que todos os atributos não chave dependem de uma chave primária. Criar novas tabelas.

2º forma normalà 3º forma normal

Eliminar dependências transitivas.(atributos não chave dependem de atributos não chave). Criar novas tabelas.

Vantagens de um SGBD

Independência dos dados (possibilidade de inclusão de um dado novo numa estrutura sem que a aplicação tenha de ser alterada)

Segurança dos dados.

Integridade dos dados(evitar que aplicações ou utilizadores concorrentes,realizem actualizações sobre os dados tornando-os inconsistentes)

Partilha dos dados (por mais de 1 utilizador).

Controlo de redundância.(controlo centralizado dos dados)

Privacidade dos dados.

Controlo automático das relações entre os dados.

Controlo do espaço de armazenamento.(usar técnicas como a compressão de dados e reaproveitamento automático de espaços)

TopDown: Baseia-se em observações amplas da empresa. **Objectivo**: através de uma visão macro da empresa criar as entidades e relacionamentos que fundamentam os seus negócios. **Vantagem** identificar o universo de dados da empresa e possibilitar uma visão de integração entre partes. **Dificuldade**: mobilização necessária para empreender um trabalho de modelação que se estende ás várias unidades funcionais da empresa. **Bottom-up:** Orientação aos processos e dados produzidos. **Dificuldade**: agregação dos atributos necessários ás visões lógicas dos utilizadores da aplicação.

Middle Down: Objectivo: os modelos criados por um sistema podem ser consolidados com outros já existentes conseguindo uma integração contínua e gradativa.

Modelação

Modelo: representação abstracta da realidade atingido através da percepção do modelador, utilizando uma ou mais metodologias.

Modelação: ideia que consiste em através de uma realidade modelada diferentes observadores consigam visualizar o "mundo real" de forma não ambígua com o objectivo de permitir especificar de forma conceptual o que o software deve fazer.

Objectivos modelação: representar o ambiente observado, documentar e normalizar, fornecer processos de validação, garantir processos de relacionamentos entre objectos.

Relação entre entidades

Associação entre instâncias de entidades devido a regras de negócio. Ocorre entre instâncias de 2 entidades mas pode ocorrer entre instâncias da mesma entidade(autorelação).

Cardinalidade: Indica quantas ocorrências de uma entidade participam no minimo e no máximo da relação.

Cardinalidade mínima: define se a relação entre 2 entidades é obrigatória.

Cardinalidade máxima: define a quantidade máxima de ocorrências da entidade que pode participar na relação.

Álgebra relacional - conjunto de operações sobre modelos relacionais de dados.

Exemplos: Selecção, Projecção, Divisão, Junção

Operações tradicionais:

União – conjunto de todos os registos pertencentes a A ou a B.

Intersecção - conjunto de todos os registos pertencentes a A e B.

Diferença - conjunto de todos os registos de A não pertencentes a B.

Produto cartesiano- conjunto de todos os registos originados pela concatenação de cada registo de A com cada registo B.

Selecção – É a operação usada para construir um subconjunto horizontal de uma relação cujos registos satisfaçam uma determinada condição.

Projecção- É a operação usada para construir um subconjunto vertical de uma relação obtida pela selecção de alguns atributos.

Junção de 2 relações R1 e R2 que possuem um atributo em comum D é o subconjunto do produto cartesiano das 2 relações cujos valores dos elementos do atributo comum sejam iguais nas 2 relações.

Divisão - Seja R1 uma relação com atributos x e y e R2 uma relação com atributo z com y e z definidos sobre o mesmo domínio. É o conjunto dos elementos x com pares (x,y) pertencentes a A para todos os valores y pertencentes a B.

SQL -Ferramenta para organizar, gerir, consultar dados armazenados numa BD. Parte integrante de um SGBD. É uma ferramenta e uma linguagem para comunicar com o SGBD.

Características do SQL

Independência do fabricante; portabilidade; SQL padrão; Modelo relacional; Linguagem descritiva de alto nível; Acesso interactivo à BD; Acesso programático à BD; Diferentes vistas dos dados; Linguagem completa para a BD; Definição dinâmica da estrutura; Arquitectura Cliente/Servidor.

Comandos SQL

Inserir: Insert into nome_tabela (campo1,campos2...) values (1,2,"xxx")

Apagar: Delete campo1 from nome_tabela where campo1="xxx"

Actualizar: update nome_tabela set campo1="xxx" where campo2="yyy"

Proteger Informação: Grant update, select on nome tabela to user

Desproteger: Revoke all on nome_tabela from user

Esquema: Agrupa as tabelas, vistas e permissões que fazem parte da BD.

Catálogo: colecção de esquemas.

Alter table: altera a definição da tabela. Permite alterar, adicionar ou remover atributos e restrições e activar/desactivar restrições lógicas.

Comando Create Table

Argumentos:Identity-cria um valor único, incremental por cada vez que é criado um registo;Constraint-Indica o inicio de uma restrição (PK,FK...); Check: obriga os valores de um campo a manterem-se numa gama; Not for replication:indica que a propriedade identity não é passada na replicação;Fillfactor:preenchimento dos índices; Rowguidcol: nº ou palavra gerado aleatoriamente para cada registo com 28 caracteres alfanuméricos.Valor único de cada campo.

Comando Select:

Argumentos: distinct-só aparecem as linhas únicas; with ties –se existirem linhas iguais mostra todas; column_alias-nome de substituição para o nome original; into-insere os resultados do select.

Comando From(especifica as tabelas)

Argumentos:Openxml: devolve vista tipo tabela a partir de um doc.XML;Row_set_function:devolve objecto usado no lugar de uma referência a uma tabela;user_defined_function-função do utilizador que devolve objecto que pode ser usado no lugar de uma referência a uma tabela;table_hint-especifica 1 ou + índices ou métodos a serem usados pelo optimizador; derived table-instrução select encaixada (subquery).

Tipos de Join: inner- todas as linhas correspondentes são devolvidas. As s/ correspondência são ignoradas; **Full(outer)**-são incluídas todas as linhas das 2 tabelas. Se n há correspondência aparece null. **Left(outer)**-são incluídas todas as linhas da 1ºtabela e as correspondentes da 2º. As outras ficam a null; **right(outer)**- são incluídas todas as linhas da 2ºtabela e as correspondentes da 1º. As outras ficam a null. **Cross join**-inclui todas as linhas da 1º tabela e para cada todas as da 2º; **union**- Combina o resultado de 2 ou mais consultas num único resultado com todas as linhas de cada consulta.

View-tabela virtual-tabela única derivada de outras tabelas ou views com limitações nas modificações dos atributos(valores) mas sem restrições a consultas.

Stored procedures-colecção de instruções T-SQL que se armazena com a BD e que encapsula uma tarefa que se realizara varias vezes.

Triggers: Tipo especial de SP que é executado smp que os dados da tabela ou vista associada são modificados.

Considerações: um trigger está associado a uma view ou a uma table; A sua execução é automática quando os registos são modificados c/ insert,update e delete; Não podem ser chamados directamente e não aceitam nem devolvem parâmetros; não podem ser criados para tabelas temporárias; O trigger e a instrução que o activa são considerados como uma única transacção.

Argumentos:with encription-encripta o texto do trigger; **After**- o trigger é executado dp de terminada a instrução(incl.constraints) que o disparou. Vantagem:se existir algum erro na instrução o trigger n é executado. Desvantagem: só é criado para table.

Instead OF -o trigger é executado em vez da acção que o dispara logo antes das constraints.permitem que views formadas a partir de varias tabelas possam suportar insert/update/delete. A opção delete/update n pode ser usada se for seleccionada acção em cascata; **if update(column)**-testa se a coluna foi alvo de insert ou update; **If columns updated**-testa se no insert ou update as colunas mencionadas foram incluídas;

DRI(declarative referential integrity): assegura integridade em SQLà utilização de triggers externos somente.

Transactions- as varias alterações aos dados são processadas como uma unidade de trabalho.Cada unidade tem que ser executada completamente ou não é executada de todo.

Propriedades Transactions

Atomicidade-Todas as modificações são efectuadas ou nenhuma ocorrerá.

Consistência- Todas as regras de dados se devem verificar e todas as estruturas internas devem estar correctas.

Isolamento-Existindo transacções concorrentes cada uma vê os dados antes ou dp das outras terem terminado.

Durabilidade-Dp de terminada a transacção as modificações são definitivas.

Tipos de transactions

Automáticas- ocorrrem sem intervenção do utilizador. Predefinido do SQL server.

Explicitas – Definidas pelo utilizador. Agrupam instruções entre Begin transaction e Commit transaction. Para cancelar: rollback transaction

Implicitas:Set implicit transaction ON...;termina com setOFF.

Transaction log – área onde são registadas as transacções para manter a consistência da BD. Cada operação fica registada: **Begin**-marca de inicio; **Commit**: marca de fim; **checkpoint:** verificações a tempos regulares para ver quais as transacções já aplicadas.liberta espaço no log e acelera tempo de recuperação.

Bloqueios

Previnem conflitos na actualização dos dados (concorrência).Os utilizadores n podem ler nem modificar dados que outros utilizadores estejam a modificar.

Métodos para assegura concorrência

Controlo de concorrência pessimista-impede que + do que uma aplicação aceda aos dados em simultâneo.

Controlo de concorrência optimista-As aplicações n bloqueiam os dados a q acedem.Se ocorre um conflito, uma das transacções é terminada.

Níveis de bloqueio

Granularidade-Tipo de elemento a bloquear(registo,índice,página).

Tipos de locks-indica o nível de dependencia que a conexão obtem do objecto bloqueado.

Shared lock-permite que as transacções leiam os dados concorrentemente. Permite vários selects em simultâneo mas n podem ocorrer updates.

Update lock – uma única transaccao pode pedir 1 lock update que será convertido em exclusivo. É uma espécie de shared lock com prioridade.

Exclusive lock- é obtido acesso exclusivo ao objecto.

Intent lock – é como se a transacção tivesse um nº de ordem de atendimento para obter o lock de um objecto.3 tipos: intent shared(ler); intent exclusive(alterar); shared with intent exclusive.

Schema lock-é obtido para uma transacção que modifica a estrutura da base.

Bulk update lock

Deadlock- Qd as 2 transacções têm locks em objectos separados e cada uma requer um lock no recurso da outra. São terminados automaticamente pelo sql server.1-rollback da transacção da vitima; notifica a aplicação da vitima; cancela o pedido corrente da vitima; permite que a outra transacção continue.