0.1 TODO: Noch woanders einsortieren oder löschen

Lemma 0.1.1. Sei \mathcal{A} eine o-minimale Erweiterung eines angeordneten Vektorraums über einem angeordneten Körper F und $g: A^{p+1} \to A$ definierbar, außerdem existiere für unendlich viele $\lambda \in F$ ein $a_{\lambda} \in A^{p}$ mit $g(a_{\lambda}, x) = \lambda x$ für unendlich viele $x \in A$. Dann existiert ein Intervall I in A, sodass auf I eine A-definierbare Körperstruktur existiert, die mit < kompatibel ist (was automatisch einen reell abgeschlossenen Körper impliziert).

Beweis. TODO: Geht irgendwie aus [?] hervor.

Lemma 0.1.2. Es sei $(A, B) \models T^d$, $f: B^{n+1} \to B$ A-definierbar in B und $b \in B \setminus A$. Dann enthält $f(A^n \times \{b\})$ kein Intervall um b.

Beweis. Nimm an, dass das Gegenteil gelte für das Intervall J (Œ mit Randpunkten in A): Dann existiert insbesondere für jedes $q \in \mathbb{Q}$ hinreichend nahe bei 1 ein $a_q \in A^n$ mit $f(a_q, b) = qb$. Dann existiert wieder ein Intervall $I_q \subseteq J_A$ mit $f(a_q, x) = qx$ für alle $x \in I_q$. Œ ist dieses Intervall schon beschränkt und die Randpunkte seien $c_q < d_q$. Definiere dann

$$r_q := \frac{c_q + d_q}{2}, s_q := \frac{d_q - c_q}{2} \in A,$$

$$g : (u, v, x) \mapsto f(u, v + x) - f(u, v) \quad u \in A^n, v, x \in A.$$

Dann gilt für alle $x \in (-s_q, s_q)$

$$g(a_q, r_q, x) = f(a_q, r_q + x) - f(a_k, r_q) = q(r_q + x) - qr_q = qx.$$

Also existiert nach dem letzten Lemma ein Intervall in A mit einer A-definierbaren Körperstruktur als RCF. Durch Translation (benutze Dichtheit) nehme an, dass $b \in I_B$ liegt. Dann existiert nach Lemma ?? ein Element $c \in I_B \setminus f(A^n \times \{b\})$. Œ sei schon inf J, sup $J \in I$, sonst ersetze J durch ein kleineres Intervall.

Seien $d, e \in I$ mit d < c < e und φ die orientierungserhaltende, A-definierbare affine Abbildung in I mit $\varphi(d) = \inf J, \varphi(e) = \sup J$. Dann ist $\varphi(c) \in J \setminus (\phi \circ f)(A^n \times \{b\})$ und da das Verketten mit einer A-definierbaren invertierbaren Abbildung nichts an der Aussage ändert, gibt es einen Widerspruch.

Satz 0.1.3. Wenn $(B, A) \models T^d$, dann ist kein Intervall eine kleine Teilmenge.

Beweis. Sei $f:B^n\to B$ eine durch $\varphi(x,y,b)$ definierbare Abbildung mit φ eine \mathcal{L}_A -Formel und $b\in B^m$ für ein $m\in\mathbb{N}$ definiert. Für $\dim(b/A)=0$ ist $f(A^n)\subseteq A$

klar, deswegen sei $\times \dim(b/A) \geq 1$. Definiere

$$g(x,z) := \left\{ \begin{array}{ll} \text{das eindeutige } y \in B & \text{für alle z, für die } \varphi(x,y,z) \\ \text{mit } B \models \varphi(x,y,z) & \text{bei festem eine Funktion definiert} \\ \\ 0 & \text{sonst} \end{array} \right.$$

Dann ist g in B A-definierbar und $g(\cdot, b) = f$. Falls $\dim(b/A) > 1$, füge genug Komponenten von b zu A hinzu, sodass $\dim(b/A) = 1$. Das Hinzufügen ändert nichts, denn Ab_i ist nach den Eingangsbemerkungen Modell von T und Ab_i ist erst recht dicht in, aber nicht gleich B (sonst hätte man die Dimension mit diesem Schritt schon zu sehr verkleinert).

Finde also b_i , sodass A-definierbare (h_j) existieren mit $b_j = h_j(b_i)$ für alle j. Wenn jetzt $J \subseteq f(A^n) = g(A^n, b) = g(A^n, h(b_i))$ für ein Intervall J, dann widerspricht das der Aussage des letzten Lemmas für die Funktion $(x, y) \mapsto g(x, h(y))$.

Beweis. Wenn D=C, ist $D \leq A$ und die Aussage daher klar nach der vorigen Folgerung. Die Inklusion $(AD,A) \subseteq (B,A)$ ist trivialerweise frei (zwei gleiche Mengen in der Unabhängigkeit), außerdem ist $A \leq AD$ dicht (da A dicht in $B \supseteq AD$) und eine echte Inklusion, da für D=A wegen Unabhängigkeit von D und A ansonsten D=C folgen würde. Nach Lemma ?? ist also $(AD,A) \leq (B,A)$ und daher ist $dcl(D) \subseteq dcl(AD) = AD$, da AD definierbar abgeschlossen nach Lemma ??.

Sei jetzt $d \in AD \mathcal{L}^P$ -definierbar über D und $a \in A^n$ minimal mit $d \in Da$ (insbesondere ist a unabhängig über D). Im Folgenden wird gezeigt, dass dann a schon das leere Tupel, also $d \in D$ ist.

Nimm an, dass n > 0 und sei $f: B^n \to B$ die definierende Funktion von d, also ist sie D-definierbar und f(a) = d. Seien

 $S_1 := \{x \in B^n \mid f(x_1, \dots, x_{n-1}, \cdot) \text{ ist streng monoton wachsend auf einem Intervall um } x_n\},$

$$S_2 := \{x \in B^n \mid f(x_1, \dots, x_{n-1}, \cdot) \text{ ist streng monoton fallend auf einem Intervall um } x_n\},$$

$$S_3 := \{x \in B^n \mid f(x_1, \dots, x_{n-1}, \cdot) \text{ ist konstant auf einem Intervall um } x_n\}.$$

 $S_1 \cup S_2 \cup S_3$ ist groß, denn wenn eine offene Menge $U \subseteq B^n \setminus (S_1 \cup S_2 \cup S_3)$ existiert, wähle $x \in U$ beliebig und ein Intervall I um x_n mit $\{(x_1, \ldots, x_{n-1})\} \times I \subset U$. Nach der Charakterisierung o-minimaler definierbarer Funktionen existiert ein Subintervall $J \subseteq I$, sodass $f(x_1, \ldots, x_{n-1}, \cdot)$ entweder streng monoton wachsend, fallend oder konstant ist auf J. Also ist $x \in S_1 \cup S_2 \cup S_3$ im Widerspruch zu $x \in U$.

Da a generisch ist, muss es also in der großen Menge liegen.

• Wenn a in S_1 liegt, nehmen wir an, dass (B,A) schon hinreichend saturiert ist (das ändert nichts, da (B,A) ja nur irgendeine Oberstruktur und Modell von T^d sein muss) und finden in $A \setminus Da_1 \dots a_{n-1}$ ein $a' \neq a_n$ mit demselben Ordnungstyp über $Da_1 \dots a_{n-1}$ (ansonsten wäre a_n definierbar über a_1, \dots, a_{n-1}). Insbesondere ist $a_1, \dots, a_{n-1}, a' \in S_1$, weil die Menge aller solchen Elemente $a' Da_1 \dots a_{n-1}$ -definierbar ist und daher eine $Da_1 \dots a_{n-1}$ -definierbare Umgebung von a_n dort drin liegt, in der a' liegen muss. Da f streng monoton ist, ist $f(a_1, \dots, a_{n-1}, a') \neq f(a) = d \in D$.

Allerdings ist $d \mathcal{L}^P$ -definierbar über D, also ist

$$f(a_1,\ldots,a_{n-1},x)=d\in\operatorname{tp}_{\mathcal{L}^P}(a/Da_1\ldots a_{n-1})\setminus\operatorname{tp}_{\mathcal{L}^P}(a'/Da_1\ldots a_{n-1})$$

(oder zumindest mit der definierenden Formel für d eingesetzt), die Typen sind daher nicht gleich.

Da $a_n, a' \in A$ aber den gleichen Ordnungstyp über $Da_1 \dots a_{n-1}$ haben, haben sie auch den gleichen \mathcal{L} -Typ über $Da_1 \dots a_{n-1}$ nach dem Beweis von Satz ??. Außerdem ist $(Da_1 \dots a_{n-1}, Ca_1 \dots a_{n-1}) \subseteq (B, A)$ nach Lemma ?? (6.) frei, weswegen aus Lemma ?? folgt, dass a_n, a' denselben \mathcal{L}^P -Typ über $Da_1 \dots a_{n-1}$ haben - Widerspruch!

- Das Fall $a \in S_2$ geht analog, es wurde eben auch nur streng monoton benutzt.
- Im Falle $a \in S_3$ ist $d \mathcal{L}$ -definierbar über $Da_1 \dots a_{n-1}$ durch

$$d = f(a_1, \dots, a_{n-1}, x)$$
 für irgendein $(a_1, \dots, a_{n-1}, x) \in S_3$.

Lemma 0.1.4. Für jede \mathcal{L} -definierbare Menge $S \subseteq B^m$ und Funktion $g: B^m \to B^k$ gibt es eine \mathcal{L} -definierbare Teilmenge $S' \subseteq S$, sodass

$$A^m \cap S \cap g^{-1}(A^k) = A^m \cap S'.$$

Beweis. Für $S = \emptyset$, wähle $S' = \emptyset$. Ansonsten führen wir eine Induktion über $(m, k, \dim S)$ mit elementweiser Halbordnung (die ist fundiert):

Wenn m=0, k=0 oder $\dim S=0$, ist $A^m\cap S\cap g^{-1}(A^k)$ endlich und daher \mathcal{L} -definierbar, also kann man $S'=A^m\cap S\cap g^{-1}(A^k)$ wählen. Sei also $(m,k,\dim S)>(0,0,0)$.

• Wenn k > 1 gilt und g die Koordinatenfunktionen g_1, \ldots, g_k hat, so existieren $(S_i')_{i \leq k}$ mit $S_i' \subseteq S$ und $A^m \cap S \cap g_k^{-1}(A) = A^m \cap S_i'$ für alle i per Induktionsvoraussetzung. Dann gilt

$$A^{m} \cap S \cap g^{-1}(A^{k}) = \bigcap_{i=1}^{k} A^{m} \cap S \cap g_{i}^{-1}(A) = \bigcap_{i=1}^{k} A^{m} \cap S_{i}' = A^{m} \cap (\bigcap_{i=1}^{k} S_{i}'),$$

also erfüllt $S' := \bigcap_{i=1}^{k} S'_i$ das Gewünschte.

- Wenn k=1 gilt, zerlege S in Zellen (Z_i) , deren Dimension natürlich \leq dim S ist. Wenn man da das Problem löst (induktiv bzw. von Hand) und jeweils ein passendes S'_i findet, löst $\bigcup_i S'_i$ das Problem für S. Sei also S jetzt schon eine Zelle.
 - Wenn $n := \dim S < m$ ist und π die entsprechende homöomorphe Projektion auf eine offene Zelle in B^n bzw. eine \mathcal{L} -definierbare Fortsetzung davon auf ganz B^m , sei λ eine \mathcal{L} -definierbare Fortsetzung der Umkehrfunktion dieser Projektion. Wähle die Fortsetzung λ dabei so, dass $\lambda(\pi(S))$ und $\lambda(B^n \setminus \pi(S))$ disjunkt sind. Das ermöglicht die Gleichheit $\lambda(C \cap D) = \lambda(C) \cap \lambda(D)$ für $C \subseteq \pi(S)$. Löse dann mit einem \mathcal{L} -definierbaren $S'' \subseteq \pi(S)$ das Problem

$$A^n \cap \pi(S) \cap \lambda^{-1}(A^m) \cap (g \circ \lambda)^{-1}(A) = A^n \cap S''.$$

Das Problem entspricht im Übrigen den Anforderungen, weil man $\lambda^{-1}(A^m) \cap (g \circ \lambda)^{-1}(A)$ wie im Fall k > 1 umschreiben kann. Schneidet man das mit $\lambda^{-1}(A^m)$ und wendet darauf λ an, erhält man (mit schrittweiser Verwendung des \cap -Herausziehens)

$$\lambda(A^n) \cap S \cap A^m \cap g^{-1}(A) = \lambda(A^n \cap \pi(S) \cap \lambda^{-1}(A^m) \cap (g \circ \lambda)^{-1}(A))$$
$$= \lambda(\lambda^{-1}(A^m) \cap A^n \cap S'')$$
$$= A^m \cap \lambda(A^n) \cap \lambda(S''),$$

wegen $A^m \cap S \subseteq \lambda(A^n)$ aufgrund der Projektionseigenschaft von π , kann man $\lambda(A^n)$ weglassen und erhält

$$A^m\cap S\cap g^{-1}(A)=A^m\cap \lambda(S''),$$

also löst $\lambda(S'')$ das Problem für S.

– Wenn dim S=m, finde eine \mathcal{L}_A -definierbare Funktion $G:B^{m+n}\to B$ mit $g=G(\cdot,b)$ für ein über A unabhängiges Tupel $b\in B^n$. Als nächstes betreiben wir Induktion über n. Wenn n=0, dann ist nichts zu tun, weil dann g schon A-definierbar ist, also $g^{-1}(A)=A^m$ und man dann S'=Swählen kann. Ansonsten zerlege S in die Mengen

$$S_1 := \{ x \in B^{m+n} \mid G(x_1, \dots, x_{m+n-1}, \cdot) \text{ ist streng monoton wachsend}$$

auf einem Intervall um $x_n \},$

$$S_2 := \{x \in B^{m+n} \mid G(x_1, \dots, x_{m+n-1}, \cdot) \text{ ist streng monoton fallend}$$

auf einem Intervall um $x_n\},$

$$S_3 := \{x \in B^{m+n} \mid G(x_1, \dots, x_{m+n-1}, \cdot) \text{ ist konstant auf einem Intervall um } x_n\}$$

und den Rest $S_4 := B^{m+n} \setminus (S_1 \cup S_2 \cup S_3)$. $S_1 \cup S_2 \cup S_3$ ist groß, denn wenn eine offene Menge $U \subseteq S_4$ existiert, wähle $x \in U$ beliebig und ein Intervall I um x_n mit $\{(x_1, \ldots, x_{n-1})\} \times I \subset U$. Nach der Charakterisierung o-minimaler definierbarer Funktionen existiert ein Subintervall $J \subseteq I$, sodass $G(x_1, \ldots, x_{m+n-1}, \cdot)$ entweder streng monoton wachsend, fallend oder konstant ist auf J. Also ist $x \in S_1 \cup S_2 \cup S_3$ im Widerspruch zu $x \in U$. Partitioniere diese Mengen dann noch in A-definierbare Zellen $(Z_i)_i$ und definiere $Z_i' := \{x \in B \mid (x,b) \in Z_i\}$ für alle i. Dann ist für jede offene Zelle G in der letzten Koordinate entweder streng monoton steigend, fallend oder konstant jeweils auf der ganzen Zelle; das folgt, indem offene Zellen schon Teilmenge von S_1, S_2 oder S_3 sind. Die lokale Definition dieser Mengen überträgt sich durch Supremumsbildung oder definierbaren Zusammenhang auf die gesamte Zelle.

Löse das Problem jetzt für alle $(Z_i')_i$, wegen $S := \bigcup_i Z_i'$ ist es dann auch für S gelöst: Für nicht-offene Zellen geht das per Induktion bzw. genauso wie im vorigen Unterpunkt. Wenn Z_i' nun eine offene Zelle ist, gilt für ein generisches Element x über A, b, dass (x, b) generisch von B^{m+n} ist, also in $S_1 \cup S_2 \cup S_3$. Also ist Z_i entweder in S_1, S_2 oder S_3 enthalten.

* Wenn $Z_i \subseteq S_3$ ist, definiere

$$\tilde{G}(\overline{x}) = z : \Leftrightarrow z = G(\overline{x}, y) \text{ für ein } y \text{ mit } (\overline{x}, y) \in Z_i,$$

dann gilt $g = \tilde{G}(\cdot, b_1, \dots, b_{n-1})$ und per Induktion kann man das Problem für n-1 lösen.

* Wenn $Z_i \subseteq S_1, S_2$, also G auf Z_i injektiv in der letzten Koordinate ist, wird das Problem durch \emptyset gelöst: Denn sei $a \in A^m \cap S_i' \cap g^{-1}(A)$, also existiert $a' \in A$ mit a' = g(a) = G(a, b), weil $a \in Z_i'$ ist, ist $(a, b) \in Z_i$, also ist wegen Injektivität von G in der letzten Koordinate b_n eindeutig bestimmt mit $(a, b) \in Z_i$ und a' = G(a, b). Das ist aber A, b_1, \ldots, b_{n-1} -definierbar, also ist b nicht unabhängig über A.

Definition 0.1.5. Sei \mathcal{A} eine Struktur in einer Sprache \mathcal{L} und \mathcal{B} eine Struktur in einer Sprache \mathcal{L}' . Dann heißt \mathcal{B} Erweiterung von \mathcal{A} , wenn A = B und die Interpretation von \mathcal{L} in \mathcal{A} schon \mathcal{L}' -definierbar in \mathcal{B} ist. TODO: Muss es sogar schon 0-definierbar sein? sonst später Problem mit dem Typ...

Lemma 0.1.6. Sei \mathcal{A} eine unendliche Struktur, und sei \mathcal{B} eine \aleph_0 -saturierte o-minimale Erweiterung von \mathcal{A} , , sodass Definable Choice gilt und alle in \mathcal{B} definierbaren Funktionen $A \to A$ schon in \mathcal{A} definierbar sind. Dann sind die in \mathcal{A} und \mathcal{B} definierbaren Mengen die gleichen.

TODO: Eigentlich musste \mathcal{B} nicht o-minimal sein, dafür \mathcal{A} . Fehler?

Beweis. Per Definition einer Erweiterung sind alle A-definierbaren Mengen auch B-definierbar.

Sei $S \subseteq A^n$ definierbar in \mathcal{B} . Wenn n=1 ist, ist die charakteristische Funktion χ_S : $A \to A$ definierbar in \mathcal{B} , also per Voraussetzung auch in \mathcal{A} , also ist auch $S = \{\chi_S = 1\}$ definierbar in \mathcal{A} . Wenn 0,1 nicht in A enthalten sind, muss man sich stattdessen ein Analogon mit zwei bestimmten Elementen aus A basteln.

Wenn n>1 ist, dann zerlege S in \mathcal{B} -Zellen. Es reicht daher, die Aussage für eine beliebige \mathcal{B} -Zelle S zu beweisen, genauer reicht es sogar aus, die \mathcal{A} -Definierbarkeit für die definierende(n) partiellen Funktion(en) $x\mapsto\sup S_x, x\mapsto\inf S_x$ zu beweisen; nach wählen eines willkürlichen noch nicht angenommenen Funktionswertes, reicht es, die \mathcal{A} -Definierbarkeit für beliebige \mathcal{B} -definierbare Funktionen $f:A^{n-1}\to A$ zu beweisen. Wenn n=2 ist, gilt das auch schon per Voraussetzung. Wenn n>2 ist, definiere die \mathcal{B} -definierbaren Funktionen $f_a:A^{n-2}\to A, x\mapsto f(a,x)$. Nach Induktionsvoraussetzung ist jede davon \mathcal{A} definierbar, sei also $f_a=F_a(c_a,\cdot)$ für 0- \mathcal{A} -definierbare Funktionen $F_a:A^{m_a+n-2}\to A$ und passende $m_a\in\mathbb{N}, c_a\in A^{n_a}$. Es ist möglich, bloß endlich viele unterschiedliche F_a zu verwenden: Ansonsten ist nämlich

$$\{ \forall c (f(a, x) \neq F(c, x)) \mid F : A^{m+n-2} \to A \text{ 0-}\mathcal{A}\text{-definierbar}, m \in \mathbb{N} \}$$

konsistent in \mathcal{B} , der Erfüller davon darf nach obigen Erkenntnissen aber nicht existieren. Also existieren 0- \mathcal{A} -definierbare Funktionen $F_i:A^{m_i+n-2}\to A$ für $i=1,\ldots,k$, sodass für alle $a\in A$ ein $i\leq k$ und ein $c\in A^{m_i}$ existiert mit $f_a=F_i(c_i,\cdot)$. Für ein $b\in A$ und z von der Dimension max m_i sei

$$F(z, y, x) := \begin{cases} F_i(y_1, \dots, y_{m_i}, x) & i \text{ ist das einzige } j \text{ mit } z_j = b \\ b & \text{sonst} \end{cases}$$

Dann ist F definierbar in \mathcal{A} und es gilt, dass für alle $a \in A$ ein $(z,y) \in A^{k+\max m_i}$ mit $f_a = F(z,y,\cdot)$. Da in \mathcal{B} Definable Choice gilt, existiert eine \mathcal{B} -definierbare Funktion g, sodass f(a,x) = F(g(a),x) gilt. Nach der Voraussetzung sind alle Koordinatenfunktionen von g definierbar in \mathcal{A} , also auch g selbst, also auch g.

Satz 0.1.7. Sei $(B, A) \models T^d$, RCF $\subseteq T$, $\mathbb{R} \subseteq B$ und $X \subseteq \mathbb{R}^n$. Wenn X offen und \mathcal{L}^P -definierbar ist, ist es \mathcal{L} -definierbar.

Bemerkung. Für eindimensionale Mengen ist das trivial, denn in der Darstellung von Satz ?? kann der Fall $X \cap I$ dicht und kodicht nicht auftreten, weil offene Mengen niemals kodicht sind. Also sind die definierbaren offenen Teilmengen von B gerade die endlichen Vereinigungen von Intervallen und das ist \mathcal{L} -definierbar.

Beweis des Satzes. Füge zunächst zu \mathcal{L} n-stellige Relationen O_{φ} für jede \mathcal{L}_{B}^{P} -Formel φ , die in (B,A) eine offene Teilmenge von \mathbb{R}^{n} definiert, in dieser Sprache \mathcal{L}' sei \tilde{B} die Erweiterung von B durch kanonische Interpretation als $O_{\varphi}(B) := \varphi((B,A))$. Nach der Bemerkung oben sind die eindimensionalen offenen \mathcal{L}^{P} -definierbaren Teilmengen von \mathbb{R} die Vereinigungen von Intervallen in \mathbb{R} und daher (TODO: warum?) folgt nach [?], dass \tilde{B} o-minimal ist. Es sei (D,C') eine \aleph_{0} -saturierte Elementarerweiterung von (B,A) und \tilde{D} die Erweiterung von D auf \mathcal{L}' durch kanonische Interpretation der O_{φ} . Dann muss $\tilde{B} \preceq \tilde{D}$ gelten, denn alle \mathcal{L}'_{B} -Formeln gehen auf \mathcal{L}'_{B} -Formeln zurück und für die gilt per Konstruktion die Elementarität der Inklusion. Also ist \tilde{D} auch o-minimal, daher ist jede \mathcal{L}' -definierbare Funktion $f:D\to D$ stückweise stetig. Weil sie dann auch \mathcal{L}^{P} -definierbar ist, gilt nach Lemma ??, dass jede \mathcal{L}' -definierbare Funktion $f:D\to D$ schon \mathcal{L} -definierbar ist. \tilde{D} ist o-minimal und hat Definable Choice, deswegen erfüllt die Erweiterung \tilde{D}/D die Voraussetzungen des Lemma 0.1.6 und die definierbaren Mengen in D und \tilde{D} sind die gleichen.

Wenn X jetzt eine offene Teilmenge von \mathbb{R}^n ist, die durch χ in (B,A) definiert werde, dann ist $X_{(D,C)} = \chi((D,C))$ eine definierbare Teilmenge in \tilde{D} , also definierbar in D durch eine Formel $\psi(x,d)$ für ein $d \in D^m$. In (D,C) gilt also $\exists y(\chi(x) \leftrightarrow \psi(x,y))$,

also existiert wegen $(B, A) \leq (D, C)$ ein $b \in B^m$ mit $X = \chi((B, A)) = \psi((B, A), d) = \psi((B, d))$. Das heißt, X ist definierbar in \mathcal{L} .

Folgerung 0.1.8. Auch abgeschlossene \mathcal{L}^P -definierbare Teilmengen von \mathbb{R} sind \mathcal{L} -definierbar. Die Definition läuft in diesem Fall über das Komplement.

Folgerung 0.1.9. Sei (B, A) wie oben und $S \subseteq \mathbb{R}^n$ \mathcal{L}^P -definierbar. Dann

- sind int S, \overline{S} definierbar in B nach dem Satz und der Folgerung als offene bzw. abgeschlossene \mathcal{L}^P -definierbare Mengen.
- ist S genau dann \mathcal{L} -definierbar, wenn es eine boolesche Kombination von offenen/abgeschlossenen Teilmengen von \mathbb{R}^n ist, von denen jede \mathcal{L}^P -definierbar ist. Die Rückrichtung folgt dabei aus dem Satz und der Folgerung, da dann jede einzelne Menge in der Kombination \mathcal{L} -definierbar ist; die Hinrichtung folgt per Zellzerlegung.