ABSTRACT

A group of Double-Sided High-T_c Superconducting (HTS) Magnetic-Dipole Micro-Antennas is provided. The multi-resonant double-sided HTS magnetic dipole micro-antenna are fabricated using thin-film ($\tau_{YBCO} \approx 3000\text{Å}$) YBCO material (with $T_c \approx$ 5 92 K). The substrate is a single LaAlO₃ crystal (with the loss-tangent of $tan\delta \approx 10^{-5}$, ε_r \approx 24) with the thickness of $\tau_{LAO} \approx$ 508 μ m. Each antenna is comprised of a combination of co-centric loop and spiral structures, patterned on both sides of the substrate without ground plane. Due to their geometric structures, each antenna demonstrates a multi-10 resonant characteristic. The comparison between the overall dimensions of the device (22x22 mm²) and variation of the wavelength at resonances indicate a typical ratio of D/ λ $\approx 10^{-2}$ between the largest loop diameter and the longest wavelength. A multi-resonant double-sided spiral HTS magnetic dipole micro-antenna, a multi-resonant double-sided folded log-periodic HTS magnetic dipole micro-antenna and methods for reducing antenna length with a multi-resonant double-sided HTS magnetic dipole micro-antenna 15 are also provided.