Programming Assignment Report

1) When the total muscle-tendon length is 0.30 m:

When $l_{mt}=0.3\,m$, the calculated \tilde{l}_m is 1.02. Therefore, the value of active and passive force-length functions could be achieved $(f_A(\tilde{l}_m)=0.9997 \text{ and } f_P(\tilde{l}_m)=0.0015)$. In this case, the contractile element dominates the contraction of the muscle as the generated active force is close to the total force.

2) When the total muscle-tendon length is 0.31 m:

When $l_{mt} = 0.31 \, m$, the calculated \tilde{l}_m is 1.22. Therefore, the value of active and passive force-length functions could be achieved $(f_A(\tilde{l}_m) = 0.7724 \text{ and } f_P(\tilde{l}_m) = 0.1372)$. In this case, the contractile element still contributes significantly to the contraction of the muscle while the passive element adds 500 N to the total force.

3) When the total muscle-tendon length is 0.32 m:

When $l_{mt} = 0.32 \, m$, the calculated \tilde{l}_m is 1.41. Therefore, the value of active and passive force-length functions could be achieved $(f_A(\tilde{l}_m) = 0.304 \text{ and } f_P(\tilde{l}_m) = 0.6064)$. In this case, the passive element plays a significant role in muscle contraction as over sixty percent of the total force stems from this component.