

CHARACTERISATION OF MORINGA STENOPETALA ORGANELLAR GENOMES

A. Gálvez-Salido, P. Contreras Saavedra, C. Martínez Padilla, A. Ríos Bravo, J.J. Regalado-González, and L. Carretero-Paulet* Department of Biology and Geology, "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, E04120 Almería (Spain), ags408@ual.es (presenting author); lpaulet@ual.es (*corresponding author)

Introduction

The monogeneric family Moringaceae comprises 13 species that are widely used for food, fodder, medicine, and various industrial applications. One notable species is Moringa stenopetala, which is native to southern Ethiopia and northern Kenya. It has a high nutritional value, making it a key crop for combating malnutrition in vulnerable populations. Unlike many staple crops, M. stenopetala is recognized for its remarkable tolerance to drought and heat-stresses that are expected to worsen under climate change. Despite its significant agronomic, pharmacological, and nutritional potential, M. stenopetala is considered an orphan crop and has received minimal attention from scientists and breeders.

Workflow for organelle genome assembly **Functional analysis and annotation Extraction and sequencing** Raw data preprocessing and assembly Reference database + BLAST HiFiAdapterFilt Filtering of sequencing reads Fresh leaves Reference database + BLAST **NCBI FCS DNA Extraction** Quality control LongQC tRNA ARAGORN + tRNAscan-SE Automated process according to Revio HiFi PacBio Sequencing Organellar genome assembly Oatk the genome: Plastid genomes → CPGAVAS2 Oatk | Mitochondrial genomes -> PMGA

Mitochondrial genome

Chloroplast genome

Gene profile and organization

Category of genes	Group of genes	Name of genes
Core genes	Complex I (NADH dehydrogenase)	nad1, nad2, nad3, nad4 (x2), nad4L, nad5, nad6, nad7, nad9
	Complex II (succinate dehydrogenase)	sdh3 (x3), sdh4
	Complex III (ubiquinol cytochrome c reductase)	cob
	Complex IV (cytochrome coxidase)	cox1, cox12, cox2, cox3
	Complex V (ATP synthase)	atp1, atp4, atp6, atp8, atp9
	Cytochrome c biogenesis	ccmB, ccmC, ccmFC (x2), ccmFN
	Maturases	matR (x2)
	Transport membrane protein	mttB
Variable genes	Large subunit of ribosome	rpl10, rpl16, rpl2 (x2), rpl5
	Small subunit of ribosome	rps1, rps10 (x2), rps12, rps13, rps14, rps19 (x3), rps3, rps4, rps7
rRNA genes	Ribosomal RNA	rrn18, rrn26 (x2), rrn5
		trnL-CAA, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA (x2), trnG-GCC,
tRNAs	Transfer RNA	trnH-GUG, trnK-UUU (x2), trnM-CAU, trnfM-CAU (x2) ,trnI-CAU (x2), trnN-GUU, trnP-UGG (x3), trnQ-UUG (x2), trnS-GCU , trnS-GGA , trnS-
		UGA, trnW-CCA, trnY-GUA

Gene profile and organization

Codon usage bias analysis and characterization of SSRs

Codon usage bias analysis and characterization of SSRs

Acknowledgements

This research was supported by the project "El modelo agrícola de Almería ante el cambio global. Propuestas desde la genómica de la agrobiodiversidad (OrphanEvolGen)" (PID2023-146207OB-I00), funded by the 2023 Call for Knowledge Generation Projects and associated predoctoral training actions of the Spanish Ministry of Science and Innovation. The Principal Investigator and supervisor is Dr. Lorenzo Carretero Paulet, Professor in Genetics at the University of Almería and head of the Plant Evolutionary Genomics research group (SICA id BIO359). Additional support was provided by the project UAL2024_1, "Puesta en valor del cultivo huérfano etíope Moringa stnopetala mediante la secuenciación y anotación funcional de su genoma (shiferawgenome)" (Modality 1), funded by the 2024 Plan Propio for International Cooperation (Program I) of the University of Almería, granted to Dr. Lorenzo Carretero Paulet.

DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

