Tanmay Garg

CS20BTECH11063

Deep Learning Assignment 1

```
import torch
import numpy as np
import matplotlib.pyplot as plt
import math
import torch.functional as F
import torch.nn as nn
```

Q1

```
In [ ]: # Create a Linearly separable 2D dataset
         # Use a different function to generate the dataset
         def create_dataset(n=100, gamma=0.1):
             x = torch.randn(n, 2)
             y = torch.zeros(n)
             # for i in range(n):
             # y[i] = 1 \text{ if } x[i, 0] + \text{gamma } * x[i, 1] > 0 \text{ else } -1
             # return x, y
             # Random initialize the weights and bias
             w = torch.randn(2)
             b = torch.randn(1)
             # Create the Dataset
             y = torch.sign(torch.matmul(x, w) + b)
             y[np.random.rand(n) < gamma] *= -1
             return x, y
        def create_dataset_2(n=100, gamma=1):
             x = torch.randn(n, 2)
             y = torch.zeros(n)
```

```
# Random initialize the weights and bias
    w = np.random.rand(2)
    # Create the Dataset
    v = torch.sign(torch.matmul(x, torch.Tensor(w)))
    # Angle of the line
    theta = np.arctan(w[1]/w[0])
    # apply the separability factor and point shifter to separate data based on separability factor and angle of the line
    point shifter = np.array([np.cos(theta), np.sin(theta)])
    x = x.numpy()
    x[y==1] = x[y==1] + (gamma-1) * point shifter
    x[y==-1] = x[y==-1] - (gamma-1) * point shifter
    return torch.Tensor(x), y
# Plot the scatter plot with legend
x, y = create dataset 2(1000, 2)
scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
xmin, xmax, ymin, ymax = plt.axis()
plt.title("Generated Dataset")
plt.xlabel("x1")
plt.ylabel("x2")
plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
plt.show()
# print frequency percentage of labels
print("Percentage of -1 labels: ", (y == -1).sum().item() / len(y))
print("Percentage of 1 labels: ", (y == 1).sum().item() / len(y))
```

Generated Dataset

Percentage of -1 labels: 0.511 Percentage of 1 labels: 0.489

```
In [ ]: # split dataset into train and test

def split_dataset(x, y, train_ratio=0.8):
    n = len(x)
    train_size = int(train_ratio * n)
    x_train = x[:train_size]
    y_train = y[:train_size]
    x_test = x[train_size:]
    y_test = y[train_size:]
    return x_train, y_train, x_test, y_test

# x_train, y_train, x_test, y_test = split_dataset(x, y, 0.8)
```

```
In [ ]: # Append 1 to x for bias
x = torch.cat((x, torch.ones(x.shape[0], 1)), dim=1)
print("Shape of x: ", x.shape)
```

```
print("Shape of y: ", y.shape)
        # print(x)
        Shape of x: torch.Size([1000, 3])
        Shape of v: torch.Size([1000])
In [ ]: # Perceptron Training Algorithm
        def perceptron train(x, y, max epochs=100):
            w = torch.zeros(3)
            k = 0
            for epoch in range(max_epochs):
                nb changes = 0
                for i in range(x.size(0)):
                    if x[i].dot(w) * y[i] <= 0:</pre>
                        W = W + y[i] * x[i]
                        nb changes = nb changes + 1
                if nb changes == 0:
                    # print('Stopping at Epoch: ', epoch)
                    break
                k = k + 1
            # print('Number of changes: ', nb changes)
            # return the weights and number of epochs
            return w, k
In [ ]: w, max epochs run = perceptron train(x, y, 100)
        print("W = ", w, " Max Epochs Run = ", max epochs run)
        W = tensor([2.7218, 2.2299, 0.0000]) Max Epochs Run = 1
In [ ]: # plot the decision boundary on data
        x1 = np.linspace(-5, 5, 100)
        x2 = -(w[0] * x1 + w[2]) / w[1]
        plt.plot(x1, x2)
        scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
        plt.ylim(ymin, ymax)
        plt.xlim(xmin, xmax)
        plt.xlabel("x1")
        plt.ylabel("x2")
        plt.title("Decision Boundary on Training Data")
        plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
        plt.show()
        # print accuracy on test data
```

```
y_pred = torch.sign(x @ w)
print("Accuracy = ", (torch.sum(y_pred == y) / y.shape[0]).item() * 100, "%")
```


Accuracy = 100.0 %

```
In [ ]: # Running the perceptron training algorithm for different values of gamma for multiple trials
num_trials = 5
gamma_val = []
k_val = []
for gamma in np.linspace(0.1, 2, 20):
    acc = 0
    k_avg = 0
    for i in range(num_trials):
        x, y = create_dataset(1000, gamma)

    # split dataset into train and test
    x_train, y_train, x_test, y_test = split_dataset(x, y, 0.8)
    # x = x_train
    # y = y_train
```

```
x train = torch.cat((x train, torch.ones(x train.shape[0], 1)), dim=1)
        w, k = perceptron train(x train, y train, 100)
        k \text{ avg} = k \text{ avg} + k
        x \text{ test} = \text{torch.cat}((x \text{ test, torch.ones}(x \text{ test.shape}[0], 1)), dim=1)
       v pred = torch.sign(x test @ w)
        acc = acc + torch.sum(y pred == y test) / y test.shape[0]
        # print('----')
    k avg = k avg / num trials
    gamma val.append(gamma)
    k val.append(k avg)
    print('Gamma: %f, Accuracy: %f, Avg. Epochs: %f' % (gamma, acc / num trials, k avg))
    # print('----')
plt.plot(gamma val, k val)
plt.xlabel('Gamma')
plt.ylabel('Avg. Epochs')
plt.title('Avg. Epochs vs Gamma')
plt.show()
Gamma: 0.100000, Accuracy: 0.772000, Avg. Epochs: 100.000000
Gamma: 0.200000, Accuracy: 0.565000, Avg. Epochs: 100.000000
Gamma: 0.300000, Accuracy: 0.638000, Avg. Epochs: 100.000000
Gamma: 0.400000, Accuracy: 0.506000, Avg. Epochs: 100.000000
Gamma: 0.500000, Accuracy: 0.475000, Avg. Epochs: 100.000000
Gamma: 0.600000, Accuracy: 0.523000, Avg. Epochs: 100.000000
Gamma: 0.700000, Accuracy: 0.540000, Avg. Epochs: 100.000000
Gamma: 0.800000, Accuracy: 0.660000, Avg. Epochs: 100.000000
Gamma: 0.900000, Accuracy: 0.823000, Avg. Epochs: 100.000000
Gamma: 1.000000, Accuracy: 0.998000, Avg. Epochs: 53.600000
Gamma: 1.100000, Accuracy: 0.997000, Avg. Epochs: 39.400000
Gamma: 1.200000, Accuracy: 0.996000, Avg. Epochs: 46.400000
Gamma: 1.300000, Accuracy: 0.992000, Avg. Epochs: 47.600000
Gamma: 1.400000, Accuracy: 0.998000, Avg. Epochs: 26.600000
Gamma: 1.500000, Accuracy: 0.995000, Avg. Epochs: 32.200000
Gamma: 1.600000, Accuracy: 0.999000, Avg. Epochs: 39.200000
```

Gamma: 1.700000, Accuracy: 0.995000, Avg. Epochs: 39.400000 Gamma: 1.800000, Accuracy: 0.999000, Avg. Epochs: 21.200000 Gamma: 1.900000, Accuracy: 0.998000, Avg. Epochs: 22.000000 Gamma: 2.000000, Accuracy: 0.994000, Avg. Epochs: 38.400000

We can see that as the value of γ increases, the average number of epochs required to converge decreases. This is because as γ increases, the data becomes more and more linearly separable and hence the number of epochs required to converge decreases.

The variation in average epochs with higher values of γ is due to the fact that each iteration a random sample is being generated and hence the number of epochs do not decrease uniformly.

Q2

```
In []: # Create a Linearly separable 2D dataset
    x, y = create_dataset_2(1000, 2)
    scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
    xmin, xmax, ymin, ymax = plt.axis()
    plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
    plt.xlabel("x1")
    plt.ylabel("x2")
```

```
plt.title("Generated Dataset")
plt.show()

print("Percentage of -1 labels: ", (y == -1).sum().item() / len(y))
print("Percentage of 1 labels: ", (y == 1).sum().item() / len(y))
```

Generated Dataset

Percentage of -1 labels: 0.493 Percentage of 1 labels: 0.507

Shape of y: torch.Size([1000, 3])

```
In [ ]: x_train, y_train, x_test, y_test = split_dataset(x, y, 0.8)

# Append 1 to x for bias
x = torch.cat((x, torch.ones(x.shape[0], 1)), dim=1)
print("Shape of x: ", x.shape)
print("Shape of y: ", x.shape)
Shape of x: torch.Size([1000, 3])
```

```
In [ ]: # Gradient Descent Algorithm for Hinge Loss
        def hinge gradient descent(x, y, lr=0.1, max epochs=100):
            w = torch.zeros(3)
            k = 0
            for epoch in range(max epochs):
                 nb changes = 0
                for i in range(x.size(0)):
                    if x[i].dot(w) * y[i] < 1:</pre>
                         w = w + lr * (y[i]*x[i])
                         nb changes = nb changes + 1
                if nb changes == 0:
                     # print('Stopping at Epoch: ', epoch)
                     break
                 k = k + 1
            # print('Number of changes: ', nb changes)
            # return the weights and number of epochs
            return w, k
        # Gradient Descent Algorithm for Log Loss
        # def log_loss_gradient_descent(x, y, lr=0.1, max_epochs=100):
               w = torch.zeros(3)
              k = 0
              for epoch in range(max_epochs):
                  nb changes = 0
                  for i in range(x.size(0)):
                       if x[i].dot(w) * y[i] < 1:
                          w = w + lr * (y[i]*x[i]) / (1 + torch.exp(y[i]*x[i].dot(w)))
                          nb_changes = nb_changes + 1
                  if nb_changes == 0:
                      # print('Stopping at Epoch: ', epoch)
                       hreak
                   k = k + 1
              # print('Number of changes: ', nb_changes)
              # return the weights and number of epochs
              return w, k
        def log_loss_gradient_descent(x, y, lr=0.1, max_epochs=100):
            w = torch.zeros(3)
            k = 0
            for epoch in range(max_epochs):
                 nb_changes = 0
                 dL_dw = torch.zeros(3)
                for i in range(x.size(0)):
```

```
y_pred = 1/(1 + torch.exp(-x[i].dot(w)))
dL_dw += (y_pred - y[i]) * x[i]
  # if np.linalg.norm(dL_dw) < 1e-4:
  # break

w = w - (lr * dL_dw)/x.size(0)
 k = k + 1

# print('Number of changes: ', nb_changes)

# return the weights and number of epochs
return w, k</pre>
```

Log loss is a loss function used for classification problems. It is defined as:

$$\mathcal{L}(\hat{y}, y) = -rac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

where \hat{y} is the predicted value and y is the actual value. The loss function is minimized by the gradient descent algorithm.

Upon applying sigmoid activation function to achieve binary classification, the derivative of the loss function with respect to the weights is given by:

$$rac{\partial \mathcal{L}}{\partial w} = rac{1}{N} \sum_{i=1}^{N} ({\hat{y}}_i - y_i) x_i$$

```
In [ ]: w, max_epochs = log_loss_gradient_descent(x, y, 0.1, 100)
        print("W = ", w, " Max Epochs Run = ", max_epochs)
        W = tensor([5.0191, 8.1887, -4.8108]) Max Epochs Run = 100
In [ ]: # plot the decision boundary
        x1 = np.linspace(-4, 4, 100)
        x2 = -(w[0] * x1 + w[2]) / w[1]
        plt.plot(x1, x2)
        scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
        plt.xlim(xmin, xmax)
        plt.ylim(ymin, ymax)
        plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
        plt.xlabel("x1")
        plt.ylabel("x2")
        plt.title("Decision Boundary on Generated Dataset")
        plt.show()
        # print accuracy
        # x test = torch.cat((x, torch.ones(x test.shape[0], 1)), dim=1)
```

```
y_pred = torch.sign(x @ w)
print("Accuracy = ", (torch.sum(y_pred == y) / y.shape[0]).item() * 100, "%")
```

Decision Boundary on Generated Dataset

Accuracy = 100.0 %

Q3

```
In []: # create dataset with concentric circles
    # import sklearn.datasets as skdata
    from sklearn.datasets import make_circles
    from sklearn.utils import shuffle

def create_concentric_dataset(n_samples, factor=0.9, noise=0.05):
        radius = np.random.rand(n_samples) * factor
        angle = np.random.rand(n_samples) * 2 * np.pi

        dataset = np.column_stack((radius * np.cos(angle), radius * np.sin(angle))) + np.random.normal(0, noise, (n_samples, 2))
```

```
labels = np.zeros(n samples)
    labels[radius > factor / 2] = 1
    return dataset, labels
def create concentric dataset 2(n samples, factor=0.9, noise=0.05, outer rad=1.0):
    inner rad = outer rad * factor
    num samples = n samples // 2
    angles = np.random.rand(num samples) * 2 * np.pi
    outer data = np.column stack((outer rad * np.cos(angles), outer rad * np.sin(angles))) + np.random.normal(0, noise, (num samples, 2))
    inner data = np.column stack((inner rad * np.cos(angles), inner rad * np.sin(angles))) + np.random.normal(0, noise, (num samples, 2))
    dataset = np.concatenate((outer data, inner data))
    label = np.zeros(n samples)
    label[num samples:] = 1
    return dataset, label
x, y = create_concentric_dataset_2(n_samples=1250, factor=0.2, noise=0.05)
x, y = shuffle(x, y)
scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
plt.title('Concentric Circles Dataset')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend(handles=scatter.legend_elements()[0], labels=["0", "1"])
plt.show()
print("Percentage of 0 labels: ", (y == 0).sum().item() / len(y))
print("Percentage of 1 labels: ", (y == 1).sum().item() / len(y))
```

Concentric Circles Dataset


```
Percentage of 0 labels: 0.5
Percentage of 1 labels: 0.5
```

```
In []: print(x.shape)
    print(y.shape)
    x = torch.from_numpy(x).float()
    y = torch.from_numpy(y).float()

    x_train, y_train, x_test, y_test = split_dataset(x, y, 0.8)
    print("Shape of Training x: ", x_train.shape)
    print("Shape of Training y: ", y_train.shape)

    (1250, 2)
    (1250,)
    Shape of Training x: torch.Size([1000, 2])
    Shape of Training y: torch.Size([1000])

In []: # Create MLP with 1 hidden Layer from scratch
    class MLP:
        def __init__(self, x, y, hidden_size=4, lr=0.1) -> None:
```

```
self.x = x
    self.v = v
    self.input size = x.shape[1]
    self.hidden size = hidden size
    self.output size = 1
    self.lr = lr
    # Weights and Biases
    self.w1 = torch.randn(self.input size, self.hidden size)
    # print("w1: ",self.w1.shape)
    self.b1 = torch.randn(1) * torch.randn(self.hidden size)
    # print("b1: ",self.b1.shape)
    self.w2 = torch.randn(self.hidden size, self.output size)
    # print("w2: ",self.w2.shape)
    self.b2 = torch.randn(1)
# Signmoid Activation Function
def sigmoid(self, x):
    return 1 / (1 + torch.exp(-x))
# Signmoid Derivative
def sigmoid_derivative(self, x):
    return x * (1 - x)
# Hinge Loss Function
def hinge_loss(self, y_pred, y):
    # print(y_pred.shape)
   # print(y.shape)
    # print((y_pred * y).shape)
    return torch.max(torch.zeros_like(y_pred), 1 - y_pred * y)
# Square Loss Function
def square_loss(self, y_pred, y):
    return (y_pred - y) ** 2
# Hinge Loss Derivative
def hinge_loss_derivative(self, y_pred, y):
    # print(y_pred.shape)
    # print(y.shape)
    return -y * (y * y_pred < 1)
# Square Loss Derivative
def square_loss_derivative(self, y_pred, y):
    return 2 * (y_pred - y)
```

```
# Binary Cross Entropy Loss Function
def binary cross entropy(self, y pred, y):
    return - y * torch.log(y pred) - (1 - y) * torch.log(1 - y pred)
# Binary Cross Entropy Loss Derivative
def binary cross entropy derivative(self, y pred, y):
    return -(y / y \text{ pred}) + ((1 - y) / (1 - y \text{ pred}))
# Forward Propagation
def forward(self, x):
    self.z1 = x @ self.w1 + torch.Tensor.repeat(self.b1, x.shape[0], 1)
    # print("z1: ",self.z1.shape)
    self.a1 = self.sigmoid(self.z1)
    # print("a1: ",self.a1.shape)
    self.z2 = self.a1 @ self.w2 + self.b2
    # print("z2: ",self.z2)
    self.a2 = self.sigmoid(self.z2)
    # print("a2: ",self.a2)
    # print("w2: ",self.w2)
    # print("w1: ",self.w1)
    return self.a2
# Backward Propagation
def backward(self, x, y):
   y = y.reshape(-1, 1)
    # print("x shape: ", x.shape)
    self.loss_a2 = self.binary_cross_entropy(self.a2, y)
    # print("Loss a2 shape: ", self.loss a2.shape)
    # Calculate Gradients
    self.dL d a2 = self.binary cross entropy derivative(self.a2, y)
    # print("dL d a2 shape: ", self.dL d a2.shape)
    self.da2_dz2 = self.sigmoid_derivative(self.a2)
    # print("da2 dz2 shape: ", self.da2 dz2.shape)
    self.dz2 d w2 = self.a1.T
    # print("dz2 d w2 shape: ", self.dz2 d w2.shape)
    self.dz2 d b2 = torch.ones like(self.z2)
    # print("dz2 d b2 shape: ", self.dz2 d b2.shape)
```

```
self.dL d w2 = self.dz2 d w2 @ (self.dL d a2 * self.da2 dz2)
   # print("dL d w2 shape: ", self.dL d w2.shape)
   # self.dL d b2 = (self.dz2 d b2 * (self.dL d a2.T @ self.da2 dz2)).reshape(-1)
   self.dL d b2 = ((self.dL d a2 * self.da2 dz2).T @ self.dz2 d b2).reshape(-1)
   # print("dL d b2 shape: ", self.dL d b2.shape)
    self.da1 dz1 = self.sigmoid derivative(self.a1)
   # print("da1 dz1 shape: ", self.da1 dz1.shape)
    self.dz1 dw1 = x
   # print("dz1 dw1 shape: ", self.dz1 dw1.shape)
    self.dz1 x = self.w1
    self.dz2 d a1 = self.w2
   # print("dz2 d a1 shape: ", self.dz2 d a1.shape)
   # print("dz1 x shape: ", self.dz1 x.shape)
   # self.dz1 d b1 = torch.ones like(self.a1)
   # print("dz1_d_b1 shape: ", self.dz1 d b1.shape)
    # print("ter: ", ((self.dL d a2 * self.da2 dz2) @ self.w2.T).shape)
    self.dL_dw1 = self.dz1_dw1.T @ (((self.dL_d_a2 * self.da2_dz2) @ self.w2.T) * self.da1_dz1)
   # print("dL dw1 shape: ", self.dL dw1.shape)
    # print("ter ",(((self.dL_d_a2 * self.da2_dz2) @ self.w2.T) @ self.da1_dz1.T).shape)
   # print((((self.dL_d_a2 * self.da2_dz2).T @ (self.da1_dz1 * self.dz1_d_b1))).T.shape)
   self.dL_db1 = (((self.dL_d_a2 * self.da2_dz2) @ self.w2.T) * self.da1_dz1).sum(axis=0)
    # print("dL db1 shape: ", self.dL db1.shape)
    # Updating Weights and Biases
   self.w2 -= self.lr * self.dL d w2
    self.b2 -= self.lr * self.dL d b2
    self.w1 -= self.lr * self.dL dw1
   self.b1 -= self.lr * self.dL_db1
# Training the Model
def train(self, epochs=100):
    loss = []
    for epoch in range(epochs):
        self.forward(self.x)
```

```
# print("W1 in forward: ", self.w1)
        # print("W2 in forward: ", self.w2)
        # print("B2 in forward: ", self.b2)
        # print("A2 in forward: ", self.a2)
        self.backward(self.x, self.y)
        # print("W1 in backward: ", self.w1)
        # print("W2 in backward: ", self.w2)
        # print("B2 in backward: ", self.b2)
        loss.append(self.loss a2.mean())
        if epoch % 10 == 0:
            print("Epoch: ", epoch, " Loss: ", self.loss a2.mean())
    # print("Final Predicted: ", self.forward(self.x))
    # print("Ground Truth: ", self.y)
    # print("z2: ", self.z2)
    # Plotting the Loss Curve
    plt.figure(figsize=(20, 5))
    plt.xticks(np.arange(0, epochs + 10, 10))
    plt.plot(loss)
    plt.xlim(-1, epochs)
    plt.ylim(min(loss), max(loss) + 0.1)
    plt.yticks(np.arange(0, max(loss) + 0.1, 0.1))
    plt.title("Loss vs Epochs")
    plt.show()
    return
def predict(self, x, threshold=0.5):
    predicted = self.forward(x)
    # print(torch.round(predicted))
    # apply threshold of 0.6 for label
    # print(predicted)
    return predicted > threshold
def accuracy(self, x, y):
    # print(self.predict(x).shape)
   y = y.reshape(-1, 1)
    return torch.sum(self.predict(x) == y) / y.shape[0]
```

```
In [ ]: # create MLP
mlp = MLP(x_train, y_train, hidden_size=4, lr=0.01)
mlp.train(epochs=200)

print("Accuracy on Test set: ", mlp.accuracy(x_test, y_test).item() * 100, "%")
```

```
print("Accuracy on Training set: ", mlp.accuracy(x train, y train).item() * 100, "%")
# plot the predicted labels on the test set
scatetr = plt.scatter(x test[:, 0], x test[:, 1], c=mlp.predict(x test).detach().numpy(), cmap=plt.cm.Paired, edgecolors='k')
plt.legend(handles=scatetr.legend elements()[0], labels=['0', '1'])
plt.xlabel("x1")
plt.ylabel("x2")
plt.title("Predicted Labels on Test Set")
plt.show()
Epoch: 0 Loss: tensor(1.2530)
Epoch: 10 Loss: tensor(1.0649)
Epoch: 20 Loss: tensor(1.0491)
Epoch: 30 Loss: tensor(0.9612)
Epoch: 40 Loss: tensor(0.7286)
Epoch: 50 Loss: tensor(0.3294)
Epoch: 60 Loss: tensor(0.2802)
Epoch: 70 Loss: tensor(0.2329)
Epoch: 80 Loss: tensor(0.1299)
Epoch: 90 Loss: tensor(0.0715)
Epoch: 100 Loss: tensor(0.0463)
Epoch: 110 Loss: tensor(0.0340)
Epoch: 120 Loss: tensor(0.0269)
Epoch: 130 Loss: tensor(0.0224)
Epoch: 140 Loss: tensor(0.0192)
Epoch: 150 Loss: tensor(0.0169)
Epoch: 160 Loss: tensor(0.0151)
Epoch: 170 Loss: tensor(0.0136)
Epoch: 180 Loss: tensor(0.0124)
Epoch: 190 Loss: tensor(0.0114)
                                                               Loss vs Epochs
120
         10
               20
                      30
                                   50
                                                70
                                                                   100
                                                                          110
                                                                                       130
                                                                                             140
                                                                                                    150
                                                                                                          160
                                                                                                                 170
                                                                                                                       180
                                                                                                                              190
                                                                                                                                     200
```

Accuracy on Test set: 100.0 %
Accuracy on Training set: 100.0 %

Predicted Labels on Test Set


```
In [ ]: # # Plot decision surface for MLP model on entire dataset

x1_min, x1_max = x[:, 0].min() - 1, x[:, 0].max() + 1
 x2_min, x2_max = x[:, 1].min() - 1, x[:, 1].max() + 1

x1_grid, x2_grid = np.mgrid[x1_min.item():x1_max.item():0.001, x2_min.item():x2_max.item():0.001]
    # print(x1_grid.shape, x2_grid.shape)
    x_mesh = np.array([x1_grid.flatten(), x2_grid.flatten()]).T
    y_mesh = (mlp.predict(torch.from_numpy(x_mesh).float()).detach().numpy()).reshape(x1_grid.shape)

plt.figure(figsize=(20, 10))
    plt.title("Decision Surface on Entire Dataset")
    plt.xlabel("x1")
    plt.ylabel("x2")
    plt.pcolormesh(x1_grid, x2_grid, y_mesh, cmap=plt.cm.Paired, alpha=0.5)
    plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
```

```
plt.xlim(x[:, 0].min() - 0.1, x[:, 0].max() + 0.1)
plt.ylim(x[:, 1].min() - 0.1, x[:, 1].max() + 0.1)
plt.show()

# print accuracy on entire dataset
print("Accuracy on Entire Dataset: ", mlp.accuracy(x, y).item() * 100, "%")
```

Decision Surface on Entire Dataset

Accuracy on Entire Dataset: 100.0 %