DEVOIR MAISON 1 1ère spé

Exercice 1 : Pour chacune des suites suivantes et pour n entier naturel, déterminer les 4 premiers termes.

1)
$$u_n = 7n + 1$$
 2) $u_n = n^2 + 2n - 3$ 3) $u_n = \frac{1}{2n + 1}$
4)
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{u_n + 2} \end{cases}$$
 5)
$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n^2 + 2 \end{cases}$$
 6)
$$\begin{cases} u_0 = 3 \\ u_{n+1} = 2u_n - n + 3 \end{cases}$$

Exercice 2 : Dans chaque cas, étudier le sens de variation de la suite (u_n) définie par :

1)
$$u_n = n^2 + 5n - 12$$
 2) $u_n = \frac{1}{2n+3}$ 3) $u_n = \frac{n+1}{n+2}$ 4) $u_n = -7n+6$

Exercice 3 : Dans un repère orthonormé, représenter la fonction f définie sur R par f(x) = 0.5x + 3 ainsi que la droite d'équation y = x. (unité 1 cm pour 0,5 en abscisse et en ordonnée).

On définit la suite (u_n) par $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases}$

- 1. Représenter sur votre graphique les 5 premiers termes de la suite sur l'axe des abscisses.
- 2. D'après le graphique, vers quelle valeur semblent tendre les termes de la suite (u_n) ?

Exercice 4: Soit (u_n) la suite définie pour tout entier naturel n telle que $u_0 = -4$ et chaque terme se déduit du précédent en le multipliant par 3 en lui ajoutant 1.

- 1. Vérifier que u_1 est égal à -11.
- 2. Calculer u_2 .
- 3. Donner la relation entre u_{n+1} et u_n .

Exercice 5 : Soit la suite
$$(u_n)$$
 définie par $\begin{cases} u_0 = 5 \\ u_{n+1} = 2u_n + 3 \end{cases}$

1. Ecrire en Python un algorithme qui permet d'obtenir le terme de rang 19 de la suite.