Machine Structure 01 Dr. Djamel HASSANI

DW N° 1 NUMBER SYSTEMS AND INFORMATION REPRESENTATION

Exercise 1

Give the polynomial forms of the following numbers:

42653(10)

526,649(10)

 $653,24_{(9)}$

2AEF8₍₁₆₎

Exercise 2

Find the decimal equivalents of the largest numbers that can be written with 5 digits (a4, a3, a2, a1, a0) = N, in base systems B = 10, 8, 3, 2.

Exercise 3

1. Convert the following binary numbers to decimal numbers:

1011011

100000

111110

11111111

2. Convert the following numbers to decimal:

 $N_1 = 10111010_{(2)}$

 $N_2 = 11101101_{(2)}$

 $N_3 = 745_{(8)}$

 $N_4 = 376_{(8)}$

 $N_5 = C7A_{(16)}$

 $N_6 = FAC_{(16)}$

3. Convert the following decimal numbers to binary:

 $N_1 = 98$

 $N_2 = 453$

 $N_3 = 3459$

4. Convert the following decimal numbers to octal:

 $N_1 = 443$

 $N_2 = 7528$

 $N_3 = 3691$

5. Convert the following decimal numbers to hexadecimal:

 $N_1 = 5664$

 $N_2 = 45935$

 $N_3 = 1968$

Exercise 4

1. Convert the following octal numbers to binary:

365(8)

7164₍₈₎

 $6415_{(8)}$

2. Convert the following hexadecimal numbers to binary:

BEF₍₁₆₎

 $2BCD_{(16)}$

9D5FE₍₁₆₎

Exercise 5

Calculate the binary equivalent of the following decimal numbers via base 8:

7777

8888

9562

3895

Exercise 6

Convert the following numbers to binary:

228,375(10)

 $93,75_{(10)}$

345,125(8)

 $1AE,FDC_{(16)}$

378F,B4₍₁₆₎

Machine Structure 01 Dr. Djamel HASSANI

Exercise 7

1. How many bits are needed to encode the following numbers in binary and in BCD?

2. Convert the following numbers to binary then to BCD 8421:

3. Convert the following numbers to binary then to BCD 6311:

4. Convert the following BCD 8421 numbers to decimal numbers:

```
1001 0001 0011 1000 0110 1010
```

Exercise 8

Carry out the following operations in base 2:

$$1 + 1 =$$
 $11 + 10 =$
 $10111010 + 11101101 =$
 $111011 - 10010 =$
 $101101011 - 11011 - 10101 =$

Exercise 9

Perform the following operations:

$$562_{(8)} + 743_{(8)} =$$
 $654_{(8)} - 375_{(8)} =$ $734_{(8)} * 652_{(8)} =$ $7FE_{(16)} + 3AB_{(16)} =$ $AC6_{(16)} - 9DB_{(16)} =$ $6AF_{(16)} * 325_{(16)} =$

Exercise 10

Knowing that we have 6 bits, using 2's complement, give the binary expressions of the following numbers:

$$-24$$
 -31 -15 -4 -12

Same question using 1's complement

Exercise 11

Perform the following operations using 2's complement (n = 4 bits):

Exercise 12

Perform the following operations using 1's complement (n = 4 bits):

Machine Structure 01 Dr. Djamel HASSANI

Exercise 13

Perform the following operations in the BCD code 8421:

$$5 + 7 =$$
 $9 + 9 =$ $12 + 93 =$ $129 + 89 =$ $229 - 177 =$ $345 - 67 =$

Exercise 14

Convert into Gray code (reflected binary) the following binary numbers:

11011 11100100010

Exercise 15

Convert the following Gray code (reflected binary) numbers to binary:

10111 101100111

Exercise 16

Give the floating-point simple-precision representation of the following numbers:

$$128 - 32,75$$
 $18,125$ $0,0625$

Exercise 17

Give the floating-point double-precision representation of the following numbers:

Exercise 18

Give the decimal representation of the following floating-point, single-precision, coded numbers:

Exercise 19

Give the decimal representation of the following floating-point, double-precision, coded numbers:

```
403D \ 4800 \ 0000 \ 0000_{16} = 0100 \ 0000 \ 0011 \ 1101 \ 0100 \ 1000 \ 0000.....0
C040 \ 0000 \ 0000 \ 0000_{16} = 1100 \ 0000 \ 0100 \ 0000.....0
BFC0 \ 0000 \ 0000 \ 0000_{16} = 1011 \ 1111 \ 1100 \ 0000.....0
```