

TEMPERATURE & HUMIDITE

Raspberry Pi & DHT 11 ou DHT-22

Ce projet est un démonstrateur de la mesure de la température et de l'humidité à l'aide d'un capteur DHT-11 connecté à un ordinateur Raspberry Pi, et l'exploitation des données à l'aide d'une page Web.

Version 1.1

F-314 Labs 04/11/2014

Table des matières

Licence	4
Historique du projet	4
Version initiale	4
Version 1.1	4
Schéma général du Projet	5
Diagramme synoptique	5
Le Raspberry Pi et le DHT-11	7
La page Web du Projet	8
Les composants du Projet	9
Matériel	9
Logiciel	9
Evaluation du coût	10
Installation	12
Infrastructure	12
Installation du Raspberry Pi	12
Installation des éléments relatifs au DHT-11	12
Composants du projet	13
Téléchargement	13
Contenu du téléchargement	14
Installation	15
Utilisation	16
Collecte des mesures sur le Raspberry Pi	16
Paramètres du script DHT11-to-CSV.py	16
Exemple	17
Affichage et exploitation des mesures	17
Localisation de la page web du projet	17
Utilisation de la page	18
Evolutions	19
Version 1.1	19
Liste des changements	19
Compatibilité	19
Schéma de câblage	19

Remerciements / Crédits	21
Contact	21

LICENCE

Ce projet est mis à disposition selon les termes de la <u>Licence Creative Commons</u> Attribution - Pas d'Utilisation Commerciale 4.0 International.

Pour plus d'informations sur les implications de cette licence, voir http://creativecommons.fr/licences/les-6-licences/

HISTORIQUE DU PROJET

Version initiale

Validée avec un capteur DHT-11.

Version 1.1

L'objectif de cette version est de pouvoir intégrer le capteur DHT-22 (<u>fiche technique ici</u>) qui à une meilleure résolution et une plus grande plage d'utilisation que le DHT-22.

SCHEMA GENERAL DU PROJET

Diagramme synoptique

Quelques points:

1. Le DHT-11

- a. est alimenté en 5V à partir des ports GPIO du Raspberry Pi,
- b. utilise aussi sa masse GND,
- c. utilise un port (Pin #7, GPIO #4) pour transmettre les mesures au Raspberry Pi

- 2. Le projet utilise plusieurs composants logiciels en orange sur le schéma:
 - a. La bibliothèque python qui permet d'interroger le DHT-11 (*Adafruit_DHT*)
 - b. Deux bibliothèques javascript pour l'exploitation des données :
 - i. Papa parse pour lire les données au format CVT
 - ii. *Highcharts* pour la mise en forme graphique et la navigation dans les données
- 3. Le projet comprend différents composants logiciels propres en vert sur le schéma :
 - a. Un script Python qui interroge le DHT-11 et stocke les mesures dans un fichier au format CVF (en rouge sur le schéma)
 - b. Un script javascript qui récupère les données lues par Papa parse et met les données en forme pour leur affichage par Highchart
 - c. Les éléments de structure (HTML) et de style (CSS) pour l'interface du projet

Le format CVF permet, au-delà du projet, le retraitement éventuel des données par les tableurs (Excel, LibreOffice, etc...).

Le Raspberry Pi et le DHT-11

Les spécifications du DHT-11 sont disponibles ici : http://www.micro4you.com/files/sensor/DHT11.pdf

La page Web du Projet

Le contenu et l'utilisation de cette page sont détaillés dans la section *Utilisation de la page*

LES COMPOSANTS DU PROJET

Matériel

Les composants sont détaillés dans la section Evaluation du coût ci-après.

La connexion du capteur DHT-11 au Raspberry Pi est décrite en détails ici : https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/wiring

Quelques points:

- 1. Le capteur acheté sur ce projet est monté sur un support :
 - Qui intègre déjà la résistance de 10K nécessaire au bon fonctionnement du capteur
 - Ne présente que 3 pattes (marquées +, -, out), et ne présente pas la patte inactive du DHT-11
- 2. Le capteur acheté sur ce projet est livré avec des fils qui pourraient permettre un câblage directement sur les broches GPIO du Raspberry Pi

Logiciel

Le projet fait appel à différents composants logiciels :

- 1. Le logiciel de communication entre le Raspberry Pi et le capteur DHT-11, voir : https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/software-install-updated
- 2. Le composant en javascript qui permet de générer et exploiter les graphiques, voir : http://www.highcharts.com/
- 3. Le composant utilisé pour récupérer les mesures générées au format CSV par le logiciel du projet, voir http://papaparse.com/

Tous ces composants logiciels sont téléchargeables gratuitement.

Evaluation du coût

Ces éléments sont donnés à titre purement indicatifs.

Ils décrivent la configuration qui a servi à ce projet.

Les données ont été validées à la date du 28 octobre 2014.

	cout indicatif				
	Obligatoire	Facultatif	lien d'approvisionnement	commentaire	
Infrastructure réutilisable					
Raspberry Pi B+	35,80€		http://tinyurl.com/m85bvnm		
Cique de protection		7,99 €	http://tinyurl.com/md3uuf9		
Carte mémoire micro SD	14,09€		http://tinyurl.com/mwceo8a		
GPIO broker 26 pins		11,15€	http://tinyurl.com/pzu7ynz		
Nappe 26-40 pins		9,90€	http://tinyurl.com/loc7twt	Nécessaire si Raspberry B+ et GPIO broker 26 pins	
Breadboard		2,23 €	http://tinyurl.com/nb9vcs8		
fils pour breadboard		1,33 €	http://tinyurl.com/ohljrex		
clé USB Wifi	14,95€		http://tinyurl.com/ptuwjg3	Peut être remplacé par un câble Ethernet	

Total global	97,44	1€
Total partiel	64,84 €	32,60€

Infrastructure du projet DHT-11			
Capteur DHT 11 sur support avec fils	4,98€	http://tinyurl.com/na5rh3n	Inclut des fils permettant le branchement direct sur le Pi B+ Monté sur support qui inclut la résistance de 10K nécessaire au DHT-11

Eléments complémentaires			Indispensables mais peuvent être empruntés sur un PC, smartphone, etc.
Clavier USB			
Souris USB			
Moniteur			
câble DVI-HDMI	7,99€	http://tinyurl.com/qh7uhdc	
alimentation mini-USB	7,99 €	http://tinyurl.com/par3vqw	

INSTALLATION

Infrastructure

Installation du Raspberry Pi

- Installation de l'OS Raspbian à partir de NOOBS, voir http://www.raspberrypi.org/help/noobs-setup/
- Configuration du Raspberry pour un démarrage sur le serveur graphique :
 - o sudo raspi-config
 - o boot-config → démarrage du desktop au boot
- Install PuTTY et Client VNC sur PC sous Windows 7, voir http://the-raspberry.com/ssh-raspberry-pi
- Install VNC server, voir http://the-raspberry.com/vnc
- Installation d'une clé Wifi USB (parmi celles testées) a l'aide de l'utilitaire Wifi config du desktop graphique du Raspberry Pi, voir http://the-raspberry.com/wifi-config

Installation des éléments relatifs au DHT-11

- Mise en place des connections entre le Raspberry Pi et le DHT-11, voir https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/wiring
- Installation des éléments logiciels pour le capteur DHT 11, voir https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/software-install-updated

Composants du projet

Une fois l'infrastructure en place, il est temps de procéder à la mise en place des composants du projet.

<u>Téléchargement</u>

1. Rendez-vous sur la page web du projet :

http://luc-laurens.com/F-314 Labs/DHT-11/Web/

2. Téléchargez le code du projet à partir de la page :

3. Décompressez le fichier téléchargé

Contenu du téléchargement

O	doc			Documentation du projet
	PDF		F314Labs-DHT11	
9	Pi-DHT11			Script Python à installer sur le Raspberry Pi.
4			DHT11-to-CSV	
J	Web			Eléments relatifs à la page web du projet
	HTML		index	Structure HTML
	>		style	Feuille de style CSS
		polices		Polices utilisées par la feuille de style
		images		Images utilisées par la page web
		js		Fonctions javascript utilisées par la page
		3	dht11	Fonctions javascript spécifiques au projet
				Fonctions javascript des librairies réutilisées : • Highcharts • Papa parse
		Data sample		Fichiers de mesures pour tester la page web
	•	CSV	sample	Un fichier de mesures
				Autres fichiers de mesures

<u>Installation</u>

Sur le Raspberry Pi:

- Créer un répertoire **f314labs**
- A minima, copier le répertoire **Pi-DHT11** sous **f3141abs**
- Si vous souhaitez exécuter et/ou personnaliser la page web d'affichage du projet localement sur le Raspberry Pi, copier le répertoire Web sous f3141abs

Si vous utilisez une autre plateforme de développement, par exemple pour intégrer les fonctions d'affichage de données de ce projet à une application plus importante, vous pouvez y déployer les parties concernées de de projet (notamment, par exemple, le répertoire **Web**.

UTILISATION

Collecte des mesures sur le Raspberry Pi Paramètres du script DHT11-to-CSV.py

Lu script s'exécute en mode superuser avec les paramètres suivants :

sudo - ./DHT11-to-CSV.py <fréquence> <fichier
CSV> [<nombre de mesures>]

fréquence : Il s'agit de la pause (en <u>secondes</u>) entre deux interrogations du DHT-11.

Quelques points:

- Par sécurité, on fixe une valeur minimale de ce paramètre à 10 secondes, de façon empirique.
- Il faut noter que cette valeur est approximative. En pratique on observe un glissement du au temps pris par les différentes opérations du processus (écriture dans le fichier, etc.)

Exemple: **60** indiquera que l'on souhaite effectuer une mesure par minute.

fichier CSV: Il s'agit du nom du fichier dans lequel on souhaite collecter les mesures.

Exemple: ./data/2014-10-30.csv indiquera que l'on souhaite stocker les mesures dans le fichier 2014-10-30.csv du sous-répertoire data du répertoire courant.

nombre de mesures : Ce paramètre est **optionnel**. Il indique le nombre de mesures que l'on souhaite effectuer.

S'il est spécifié, le logiciel s'arrêtera après le nombre demandé de mesures.

S'il est omis, il faudra interrompre le logiciel (par exemple avec **Ctrl-C**) pour arrêter la prise de mesure.

Exemple

lance la collecte de 1200 mesures à raison d'une toutes les 60 secondes (soit une période d'environ 20 heures), et les stocke dans le fichier ./data/2014-10-30.csv.

Affichage et exploitation des mesures

Localisation de la page web du projet

La page peut être accédée :

- 1. Via internet, en appelant la page du projet utilisée pour le téléchargement, voir la section *Téléchargement*
- 2. Localement, en appelant le fichier index.html contenu dans le code du projet téléchargé au préalable :
 - a. Soit sur le Raspberry Pi
 - b. Soit sur un autre ordinateur (PC, etc.)

La deuxième option est pertinente, en particulier, si vous souhaitez personnaliser cette page.

Utilisation de la page

- 1. Chargement d'un fichier au format CSV pour affichage des données. Ce fichier est soit issu de l'exécution du script sur le Raspberry Pi, soit un fichier fourni par le projet comme exemple.
- 2. Téléchargement d'un fichier de données fourni par le projet comme exemple.
- 3. Lecture d'un point particulier des courbes, pointé par le curseur de la souris.
- 4. Affichage / Effacement d'une des courbes à l'aide d'un clic souris
- 5. Liens vers les informations sur les composants et technologies utilisés pour le projet
- 6. Téléchargement de la documentation ou du code du projet
- 7. Lien vers la page qui décrit les termes de la Licence du projet
- 8. Lien pour contacter les concepteurs du projet par email.

Il est temps de vous lancer:

Téléchargez un fichier de données...

... puis chargez-le pour commencer.

EVOLUTIONS

Version 1.1

Liste des changements

- Script python : affichage et enregistrement des mesures avec une décimale.
- Javascript (dht11.js): traitement des mesures au format float
- Shopping-list:

DHT-22	4,36€	http://tinyurl.com/kc48hdg
Resistance 10K (50 pcs)	1.25 €	http://tinyurl.com/lbhmhdl

- Index.html : Modifications cosmétiques pour exposer la compatibilité avec DHT-11 ou DHT-22
- Câblage du dispositif à base de DHT-22

Compatibilité

Compatibilité descendante : les composants d'affichage (HTML, javascript) de cette version permettent d'afficher les mesures générées avec la version initiale du projet.

Schéma de câblage

A noter:

- La mise en place d'une résistance de 10K Ohms entre les pins VDD et data du DHT-22 (https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/wiring).
- Important :

- Il faut vérifier que le port GPIO du câblage est cohérent avec la constante DHT_PIN (ici 18) du script python exécuté sur le Raspberry Pi
- If faut vérifier que la constante DHT_TYPE du script python reflète bien le capteur utilisé Adafruit_DHT.DHT22

REMERCIEMENTS / CREDITS

Liens sur les pages des tutoriaux ou composants réutilisés pour ce projet :

- Learn.adafruit
- Openclassrooms
- <u>Highcharts</u>
- Papa Parse

Une mention particulière à Manfraid, contributeur du forum Framboise 314, pour son aide.

CONTACT

Nous sommes joignables par email à l'adresse :

f314labs@gmail.com