Álgebra Linear e suas Aplicações

Notas de Aula

Petronio Pulino

$$\begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = Q \begin{bmatrix} -4 \\ 1 \\ 6 \end{bmatrix} Q^{t}$$

$$Q^t Q = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$$

Álgebra Linear e suas Aplicações Notas de Aula

Petronio Pulino

 $Departamento\ de\ Matemática\ Aplicada$ Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas $E{-}mail{:}\ pulino@ime.unicamp.br$ $www.ime.unicamp.br/{\sim}pulino/ALESA/$

Conteúdo

1	Est	Estruturas Algébricas			
	1.1	Operação Binária. Grupos	2		
	1.2	Corpo Comutativo	7		
	1.3	Corpo com Valor Absoluto	10		
	1.4	Corpo Ordenado	12		
	1.5	Valor Absoluto num Corpo Ordenado	15		
	1.6	Números Reais	17		
	1.7	Números Complexos	20		
	1.8	Característica do Corpo	25		
	1.9	Métricas	27		
2	Ma	trizes e Sistemas Lineares	29		
	2.1	Matrizes	30		
	2.2	Tipos Especiais de Matrizes	41		
	2.3	Inversa de uma Matriz	59		
	2.4	Matrizes em Blocos	63		
	2.5	Operações Elementares. Equivalência	76		
	2.6	Forma Escalonada. Forma Escada	81		
	2.7	Matrizes Elementares	84		
	2.8	Matrizes Congruentes. Lei da Inércia	101		
	2.9	Sistemas de Equações Lineares	107		
3	Esp	paços Vetoriais	L 3 9		
	3.1	Espaço Vetorial. Propriedades	140		
	3.2	Subespaço Vetorial	147		
	3.3	Combinação Linear. Subespaço Gerado	154		
	3.4	Soma e Intersecção. Soma Direta	158		
	3.5	Dependência e Independência Linear	167		
	3.6	Bases e Dimensão	173		
	3.7	Coordenadas	204		
	3.8	Mudança de Base	212		

ii CONTEÚDO

4	Tra	$nsforma \~c\~oes\ Lineares$	219		
	4.1	Transformações do Plano no Plano	. 220		
	4.2	Transformação Linear	. 221		
	4.3	Núcleo e Imagem	. 226		
	4.4	Posto e Nulidade	. 232		
	4.5	Espaços Vetoriais Isomorfos	. 244		
	4.6	Álgebra das Transformações Lineares	. 249		
	4.7	Transformação Inversa	. 253		
	4.8	Representação Matricial	. 268		
5	Produto Interno 283				
	5.1	Introdução	. 284		
	5.2	Definição de Produto Interno	. 284		
	5.3	Desigualdade de Cauchy–Schwarz	. 297		
	5.4	Definição de Norma. Norma Euclidiana	. 299		
	5.5	Definição de Ângulo. Ortogonalidade	. 303		
	5.6	Base Ortogonal. Coeficientes de Fourier	. 311		
	5.7	Processo de Gram–Schmidt	. 316		
	5.8	Complemento Ortogonal	. 324		
	5.9	Decomposição Ortogonal	. 329		
	5.10	Identidade de Parseval	. 337		
	5.11	Desigualdade de Bessel	. 339		
	5.12	Operadores Simétricos	. 341		
	5.13	Operadores Hermitianos	. 345		
	5.14	Operadores Ortogonais	. 347		
	5.15	Projeção Ortogonal	. 353		
	5.16	Reflexão sobre um Subespaço	. 361		
	5.17	Melhor Aproximação em Subespaços	. 365		
6	Aut	ovalores e Autovetores	369		
	6.1	Autovalor e Autovetor de um Operador Linear	. 370		
	6.2	Autovalor e Autovetor de uma Matriz	. 379		
	6.3	Multiplicidade Algébrica e Geométrica	. 394		
	6.4	Matrizes Especiais	. 399		
	6.5	Aplicação. Classificação de Pontos Críticos	. 411		
	6.6	Diagonalização de Operadores Lineares	. 416		
	6.7	Diagonalização de Operadores Hermitianos	. 438		

CONTEÚDO iii

7	Funcionais Lineares e Espaço Dual		463	
	7.1	Introdução	464	
	7.2	Funcionais Lineares	465	
	7.3	Espaço Dual	471	
	7.4	Teorema de Representação de Riesz	488	
8	$\acute{A}lg$	ebra Linear Computacional	493	
	8.1	Introdução	494	
	8.2	Decomposição de Schur. Teorema Espectral	495	
	8.3	Normas Consistentes em Espaços de Matrizes	501	
	8.4	Análise de Sensibilidade de Sistemas Lineares	514	
	8.5	Sistema Linear Positivo—Definido	532	
	8.6	Métodos dos Gradientes Conjugados	537	
	8.7	Fatoração de Cholesky	555	
	8.8	Métodos Iterativos para Sistemas Lineares	566	
	8.9	Sistema Linear Sobredeterminado	591	
	8.10	Subespaços Fundamentais de uma Matriz	597	
	8.11	Projeções Ortogonais	615	
	8.12	Matriz de Projeção Ortogonal	621	
	8.13	Fatoração QR	629	
		Modelos de Regressão Linear		
	8.15	Solução de norma—2 Mínima	684	
		Problemas de Ponto Sela		
		Decomposição em Valores Singulares		
	Bib	liografia	735	

iv *CONTEÚDO*

7

Funcionais Lineares e Espaço Dual

Conteúdo					
7.1	Introdução				
7.2	Funcionais Lineares				
7.3	Espaço Dual				
7.4	Teorema de Representação de Riesz 488				

7.1 Introdução

7.2 Funcionais Lineares

Definição 7.2.1 Seja V um espaço vetorial sobre o corpo \mathbb{F} . Um Funcional Linear sobre V é uma aplicação $J:V\longrightarrow \mathbb{F}$ com as seguintes propriedades:

(a)
$$J(u + v) = J(u) + J(v)$$
 ; $\forall u, v \in V$

(b)
$$J(\lambda u) = \lambda J(u)$$
 ; $\forall u \in V \ e \ \lambda \in \mathbb{F}$

Podemos observar facilmente que um funcional linear é uma transformação linear de V em \mathbb{F} , onde estamos considerando \mathbb{F} como um espaço vetorial sobre o corpo \mathbb{F} . Assim, estamos indicando por \mathbb{F} tanto o corpo como o espaço vetorial.

Exemplo 7.2.1 Seja V um espaço vetorial sobre o corpo \mathbb{F} e $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V. A aplicação

$$T_i: V \longrightarrow IF$$

$$u \longrightarrow T_i(u) = \alpha_i$$

onde α_i é a i-ésima coordenada do elemento u com relação à base ordenada β , é um funcional linear sobre V.

Exemplo 7.2.2 Considere o espaço vetorial real $M_n(\mathbb{R})$. A aplicação

$$Tr: \mathbb{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$A = [a_{ij}] \longrightarrow Tr(A) = \sum_{i=1}^n a_{ii}$$

que é o traço da matriz A, é um funcional linear sobre $\mathbb{I}M_n(\mathbb{R})$.

Exemplo 7.2.3 Considere o espaço vetorial real C([a,b]). A aplicação

$$T: \mathcal{C}([a,b]) \longrightarrow \mathbb{R}$$

$$f \longrightarrow T(f) = \int_a^b f(x) dx$$

 \acute{e} um funcional linear sobre C([a,b]).

Definição 7.2.2 Seja V um espaço vetorial sobre o corpo \mathbb{F} munido da norma $\|\cdot\|$. Dizemos que o funcional $J:V\longrightarrow \mathbb{F}$ é limitado, se existe uma constante $c\in\mathbb{R}$ positiva tal que

$$|J(u)| \le c ||u||$$
 para todo $u \in V$.

Definição 7.2.3 Seja V um espaço vetorial sobre o corpo \mathbb{F} munido da norma $\|\cdot\|$. A **norma** do funcional $J:V\longrightarrow \mathbb{F}$, induzida pela norma $\|\cdot\|$, é definida por:

$$|\!|\!|\!| J |\!|\!| \quad = \quad \max \left\{ \begin{array}{ll} \frac{\mid J(u) \mid}{\mid \mid u \mid \mid} & ; \quad \mid \mid u \mid \mid \; \neq \; 0 \end{array} \right\}$$

Exemplo 7.2.4 Na Definição 7.2.3, se J é um funcional linear sobre V, podemos verificar facilmente que uma forma alternativa para a definição da norma do funcional linear J é dada por:

$$|||J||| = \max\{|J(u)| ; ||u|| = 1\}$$

Podemos verificar facilmente que da Definição 7.2.3, segue que

$$|J(u)| \le ||J|| ||u||$$
 para todo $u \in V$.

Essa desigualdade será muito utilizada nas nossas análises.

Exemplo 7.2.5 Seja V um espaço vetorial sobre o corpo $I\!\!F$ munido do produto interno $\langle \cdot, \cdot \rangle$. Considerando $\overline{v} \in V$ fixo, porém arbitrário. A aplicação definida por:

$$T: V \longrightarrow F$$

$$u \longrightarrow T(u) = \langle u, \overline{v} \rangle$$

é um funcional linear limitado sobre V. Além disso, $||T||_2 = ||\overline{v}||_2$.

Exemplo 7.2.6 Considere o espaço vetorial real $\mathcal{C}([a,b])$ munido do produto interno

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx.$$

A aplicação $J: \mathcal{C}([a,b]) \longrightarrow \mathbb{R}$ definida por:

$$J(f) = \int_{a}^{b} f(x)dx$$

é um funcional linear limitado sobre $\,\mathcal{C}([a,b]).\,$ Além disso, $\,\parallel \!\!\mid \, \!\!\mid \, \mid \!\!\mid _2 \, = \, \sqrt{b-a}\,$.

Exemplo 7.2.7 Considere o espaço vetorial real C([a,b]) munido da norma

$$|| f ||_{\infty} = \max \{ |f(x)| ; x \in [a, b] \}.$$

A aplicação $J: \mathcal{C}([a,b]) \longrightarrow I\!\!R$ definida por:

$$J(f) = \int_a^b f(x)dx$$

é um funcional linear limitado sobre C([a,b]). Além disso, $\|J\|_{\infty} = b - a$.

Exemplo 7.2.8 Considere o espaço vetorial real C([-1,1]) munido da norma

$$|| f ||_{\infty} = \max \{ |f(x)| ; x \in [-1, 1] \}.$$

A aplicação $J: \mathcal{C}([-1,1]) \longrightarrow \mathbb{R}$ definida por:

$$J(f) = \int_{-1}^{0} f(x)dx - \int_{0}^{1} f(x)dx$$

é um funcional linear limitado sobre C([-1,1]). Além disso, $|||J|||_{\infty} = 2$.

Exemplo 7.2.9 Considere o espaço vetorial real C([a,b]) munido da norma

$$|| f ||_{\infty} = \max \{ |f(x)| ; x \in [a, b] \}.$$

A aplicação $J: \mathcal{C}([a,b]) \longrightarrow \mathbb{R}$ definida por:

$$J(f) = f(x_0)$$
 para $x_0 \in [a, b]$ fixo

é um funcional linear limitado sobre $\,\mathcal{C}([a,b]).\,$ Além disso, $\,\|\!|\!| J \,\|\!|\!|_{\infty} \,=\, 1.$

Exemplo 7.2.10 Sejam V um espaço vetorial sobre o corpo $I\!\!F$ munido da norma $\|\cdot\|$. A aplicação **norma** $\|\cdot\|:V\longrightarrow I\!\!R$ é um funcional sobre V, entretanto, não é linear.

Exercícios

Exercício 7.1 Considere o espaço vetorial real $\mathcal{P}(\mathbb{R})$. Mostre que a aplicação

$$J: \mathcal{P}(\mathbb{R}) \longrightarrow \mathbb{R}$$
 $p(x) \longrightarrow J(p(x)) = 2p'(0) + p''(1)$

é um funcional linear sobre $\mathcal{P}(\mathbb{R})$.

Exercício 7.2 Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$. Mostre que a aplicação

$$J: \mathcal{P}_2(I\!\!R) \longrightarrow I\!\!R$$

$$p(x) \longrightarrow J(p(x)) = \int_0^1 p(x) dx$$

 \acute{e} um funcional linear sobre $\mathcal{P}_2(\mathbb{R})$.

Exercício 7.3 Sejam o espaço vetorial real \mathbb{R}^3 com a base ordenada

$$\gamma \ = \ \{ \ (1,0,1), \ (1,1,0), \ (0,1,1) \ \}$$

e o espaço vetorial real \mathbb{R} com a base $\alpha = \{-2\}$. Considere o funcional linear J sobre o \mathbb{R}^3 definido por J(x,y,z) = x - 2y + 3z. Determine a representação matricial do funcional J, isto é, a matriz $[J]^{\gamma}_{\alpha}$.

Exercício 7.4 Sejam o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com a base canônica

$$\beta = \{ 1, x, x^2 \}$$

e o espaço vetorial real IR com a base $\gamma = \{ 1 \}$. Considere o funcional linear

$$J: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$p(x) \longrightarrow J(p(x)) = \int_{-1}^1 p(x) dx$$

Determine a representação matricial do funcional J, isto é, a matriz $[J]^{\beta}_{\gamma}$.

Exercício 7.5 Sejam o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com a base ordenada

$$\gamma = \{1, 1 - x, 1 + x^2\}$$

e o espaço vetorial real \mathbb{R} com a base $\alpha = \{2\}$. Considere o funcional linear

$$J: \mathcal{P}_2(I\!\!R) \longrightarrow I\!\!R$$
 $p(x) \longrightarrow J(p(x)) = \int_{-1}^1 p(x) dx$

Determine a representação matricial do funcional J, isto é, a matriz $[J]^{\gamma}_{\alpha}$.

Exercício 7.6 Sejam o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com a base canônica

$$\beta = \{ 1, x, x^2 \}$$

e o espaço vetorial real \mathbb{R} com a base $\gamma = \{-1\}$. Considere o funcional linear

$$J: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}$$
 $p(x) \longrightarrow J(p(x)) = 2p'(0) + p''(1)$

Determine a representação matricial do funcional J, isto é, a matriz $[J]^{\beta}_{\gamma}$.

Exercício 7.7 Considere o espaço vetorial real C([0,1]) munido da norma $\|\cdot\|_{\infty}$. Mostre que a aplicação $J: C([0,1]) \longrightarrow \mathbb{R}$ definida por:

$$J(f) = \int_{a}^{b} f(x)g(x)dx$$

para $g \in \mathcal{C}([0,1])$ fixa, porém arbitrária, é um funcional linear limitado sobre $\mathcal{C}([a,b])$ e determine $\|J\|_{\infty}$.

Exercício 7.8 Considere o espaço vetorial real C([0,1]) munido da norma $\|\cdot\|_{\infty}$. Mostre que a aplicação $J: C([0,1]) \longrightarrow \mathbb{R}$ definida por:

$$J(f) = \alpha f(0) + \beta f(1)$$
 para $\alpha, \beta \in \mathbb{R}$

 \acute{e} um funcional linear limitado sobre $\mathcal{C}([0,1])$ e determine $|||J||_{\infty}$.

Exercício 7.9 Sejam o espaço vetorial \mathbb{R}^3 e o funcional linear J definido por:

$$J(u) = 2x + y - z$$
 para todo $u = (x, y, z) \in \mathbb{R}^3$.

Determine uma base para o subespaço Ker(J).

Exercício 7.10 Sejam V um espaço vetorial sobre o corpo \mathbb{F} , com $\dim(V) = n$, $e \ J : V \longrightarrow \mathbb{F}$ um funcional linear. Quais são as possíveis dimensões do subespaço vetorial Ker(J)?

Exercício 7.11 Sejam o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ e o funcional J definido por:

$$J(p(x)) = \int_{-1}^{1} p(x)dx + p'(0)$$
 para todo $p(x) \in \mathcal{P}_2(\mathbb{R})$.

Mostre que J é um funcional linear sobre $\mathcal{P}_2(\mathbb{R})$ e determine uma base para Ker(J).

7.3 Espaço Dual

Seja V um espaço vetorial sobre o corpo $I\!\!F$. Denotamos por $L(V,I\!\!F)$ o conjunto de todos os funcionais lineares sobre V, isto é,

$$L(V, I\!\!F) = \{J: V \longrightarrow I\!\!F / J \text{ \'e um funcional linear } \}.$$

Pelo Teorema 4.6.1, sabemos que $L(V, \mathbb{F})$ é um espaço vetorial sobre o corpo \mathbb{F} .

Exemplo 7.3.1 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} e $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V. O funcional linear definido por:

$$J_i: V \longrightarrow IF$$

$$v \longrightarrow J_i(v) = c_i$$

onde

$$[v]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

é o vetor de coordenadas do elemento $v \in V$, tem um importante papel na teoria de espaço dual, como veremos a seguir. O funcional J_i é denominado i-ésima função coordenada com respeito à base ordenada β .

Note que $J_i(v_j) = \delta_{ij}$, onde δ_{ij} é o delta de Kronecker, isto é,

$$\delta_{ij} = \begin{cases} 1 & \text{para } i = j \\ 0 & \text{para } i \neq j \end{cases}$$

Definição 7.3.1 Seja V um espaço vetorial sobre o corpo \mathbb{F} . O espaço vetorial $L(V,\mathbb{F})$ sobre o corpo \mathbb{F} é denominado o **espaço dual** do espaço vetorial V, que denotamos por V^* .

Observamos no Exemplo 7.3.1, que os funcionais J_i , para $i=1,\cdots,n$, pertencem ao espaço dual V^* . Além disso, pelo Teorema 4.2.1, existe um único funcional linear J_i , para cada i, tal que $J_i(v_j) = \delta_{ij}$. Desse modo, a partir de uma base ordenada β , obtemos um único conjunto de n funcionais distintos J_1, \cdots, J_n sobre V.

Teorema 7.3.1 Considere V um espaço vetorial de dimensão finita sobre o corpo F com $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V. Sejam J_i a i-ésima função coordenada com respeito à base ordenada β , para $i = 1, \dots, n$, e $\beta^* = \{J_1, \dots, J_n\}$. Então, β^* é uma base ordenada para o espaço dual V^* , denominada **base dual** da base β . Além disso, todo funcional linear $T \in V^*$ é representado da seguinte forma:

$$T = \sum_{i=1}^{n} T(v_i) J_i$$

e cada elemento $v \in V$ é escrito como:

$$v = \sum_{i=1}^{n} J_i(v)v_i.$$

Assim, temos que $dim(V^*) = n$.

Demonstração – Devemos mostrar que o conjunto $\beta^* = \{J_1, \dots, J_n\}$ é linearmente independente em V^* e gera o espaço dual V^* .

Primeiramente, vamos mostrar que o conjunto β^* é linearmente independente no espaço dual V^* . Para isso, consideramos a seguinte combinação linear

$$T = \sum_{i=1}^{n} c_i J_i \quad \text{para} \quad c_i \in \mathbb{F}.$$

Desse modo, tomando

$$T(v_j) = \sum_{i=1}^{n} c_i J_i(v_j)$$
$$= \sum_{i=1}^{n} c_i \delta_{ij}$$
$$= c_j$$

para $j=1,\dots,n$. Em particular, se T é o funcional linear nulo, isto é, T é o elemento neutro do espaço dual V^* , temos que $T(v_j)=0$ para cada j. Logo, os escalares c_j são todos nulos. Portanto, mostramos que o conjunto β^* é linearmente independente no espaço dual V^* .

Finalmente, vamos mostrar que β^* é um sistema de geradores para o espaço dual V^* .

Como $\beta = \{v_1, \dots, v_n\}$ é uma base para V, temos que todo elemento $v \in V$ é representado de modo único por:

$$v = \sum_{i=1}^{n} c_i v_i = \sum_{i=1}^{n} J_i(v) v_i$$
.

Assim, dado um funcional linear $T \in V^*$, com $T(v_i) = \alpha_i$, temos que

$$T(v) = \sum_{i=1}^{n} J_i(v) T(v_i) = \sum_{i=1}^{n} \alpha_i J_i(v)$$
 para todo $v \in V$.

Desse modo, mostramos que todo funcional $T \in V^*$ é escrito de modo único como:

$$T = \sum_{i=1}^{n} \alpha_i J_i .$$

Portanto, provamos que $V^* = [J_1, \dots, J_n]$. Logo, $\beta^* = \{J_1, \dots, J_n\}$ é uma base para o espaço dual V^* e $dim(V^*) = n$, o que completa a demonstração.

Pela observação feita logo abaixo da Definição 7.3.1, podemos concluir que existe uma única base dual β^* relativa à base ordenada β do espaço vetorial V.

Podemos observar facilmente que

$$T(v_j) = \sum_{i=1}^n \alpha_i J_i(v_j) = \alpha_j \quad \text{para} \quad j = 1, \dots, n.$$

Assim, temos que a representação matricial do funcional linear $T \in V^*$ em relação às bases ordenadas β de V e $\gamma = \{1\}$ de $I\!\!F$ é dada por:

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} \alpha_1 & \cdots & \alpha_n \end{bmatrix},$$

que é uma matriz de ordem $1 \times n$. Além disso, podemos observar que

$$[T]_{\beta^*} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix},$$

é o vetor de coordenadas do funcional T com relação à base dual β^* .

Exemplo 7.3.2 Podemos verificar facilmente que todo funcional linear sobre o espaço vetorial \mathbb{F}^n , isto é, $T: \mathbb{F}^n \longrightarrow \mathbb{F}$, é representado da forma:

$$T(x_1, \dots, x_n) = \alpha_1 x_1 + \dots + \alpha_n x_n \quad para \ todo \quad (x_1, \dots, x_n) \in \mathbb{F}^n$$

para certos escalares $\alpha_1, \dots, \alpha_n \in \mathbb{F}$ definidos por uma base ordenada de \mathbb{F}^n .

De fato, considerando o espaço vetorial $I\!\!F^n$ com a base canônica $\beta = \{e_1, \dots, e_n\}$, temos que todo elemento $u = (x_1, \dots, x_n) \in I\!\!F^n$ é escrito de modo único como:

$$u = x_1 e_1 + \cdots + x_n e_n.$$

Desse modo, temos que

$$T(x_1, \dots, x_n) = x_1 T(e_1) + \dots + x_n T(e_n)$$
$$= \alpha_1 x_1 + \dots + \alpha_n x_n$$

onde $\alpha_i = T(e_i) \in \mathbb{F}$ para $i = 1, \dots, n$.

Por outro lado, dados os escalares $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, podemos verificar facilmente que a aplicação $T: \mathbb{F}^n \longrightarrow \mathbb{F}$ definida por:

$$T(x_1, \cdots, x_n) = \alpha_1 x_1 + \cdots + \alpha_n x_n$$

é um funcional linear sobre \mathbb{F}^n , o que completa a resolução da questão.

Exemplo 7.3.3 Considere o espaço vetorial real \mathbb{R}^3 com a base canônica

$$\beta = \{ (1,0,0), (0,1,0), (0,0,1) \}$$

e o funcional linear T sobre o \mathbb{R}^3 definido por T(x,y,z) = 2x - 3y + z.

Temos que todo elemento $u=(x,y,z)\in {I\!\!R}^3$ é escrito como:

$$(x, y, z) = xe_1 + ye_2 + ze_3$$

 $(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$.

Desse modo, para todo $(x, y, z) \in \mathbb{R}^3$, temos que

$$T(x,y,z) = x T(e_1) + y T(e_2) + z T(e_3) = 2x - 3y + z$$
.

Podemos verificar facilmente que a representação matricial do funcional linear T em relação às bases ordenadas β de \mathbb{R}^3 e $\gamma = \{1\}$ de \mathbb{R} é dada por:

$$[T]^{\beta}_{\gamma} = \begin{bmatrix} 2 & -3 & 1 \end{bmatrix}.$$

Exemplo 7.3.4 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} , $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V e T um funcional linear sobre V. Podemos verificar facilmente que o funcional T é representado da forma:

$$T(v) = \alpha_1 c_1 + \cdots + \alpha_n c_n$$
 para todo $v \in V$,

para certos escalares $\alpha_1, \dots, \alpha_n \in \mathbb{F}$ definidos pela base β e o elemento v escrito de modo único como:

$$v = \sum_{j=1}^{n} c_j v_j.$$

De fato, aplicando o funcional T no elemento v, obtemos

$$T(v) = c_1 T(v_1) + \cdots + c_n T(v_n)$$
$$= \alpha_1 c_1 + \cdots + \alpha_n c_n$$

onde $\alpha_i = T(v_i) \in \mathbb{F}$ para $i = 1, \dots, n$.

Por outro lado, dados os escalares $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, podemos verificar facilmente que a aplicação $T: V \longrightarrow \mathbb{F}$ definida por:

$$T(v) = \alpha_1 c_1 + \cdots + \alpha_n c_n$$

é um funcional linear sobre V.

Exemplo 7.3.5 Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com a base canônica

$$\beta = \{ p_1(x) = 1, p_2(x) = x, p_3(x) = x^2 \}$$

e o funcional linear T sobre o $\mathcal{P}_2(I\!\! R)$ definido por T(p(x))=p(1)+p'(1).

Temos que todo polinômio $p(x) \in \mathcal{P}_2(\mathbb{R})$ é escrito como:

$$p(x) = a + bx + cx^2$$
 para $a, b, c \in \mathbb{R}$.

Desse modo, para todo $p(x) \in \mathcal{P}_2(\mathbb{R})$, temos que

$$T(p(x)) = a T(p_1(x)) + b T(p_2(x)) + c T(p_3(x))$$

= $a + 2b + 3c$

onde
$$T(p_1(x)) = 1$$
, $T(p_2(x)) = 2$ e $T(p_3(x)) = 3$.

Exemplo 7.3.6 Considere o espaço vetorial real \mathbb{R}^3 e os seguintes elementos

$$v_1 = (1,0,1)$$
 , $v_2 = (0,1,-2)$ e $v_3 = (-1,-1,0)$.

Pede-se:

(a) Considere o funcional linear T sobre o \mathbb{R}^3 tal que

$$T(v_1) = 1$$
 , $T(v_2) = -1$ e $T(v_3) = 3$.

Determine explicitamente a expressão do funcional T.

(b) Seja T um funcional linear sobre o \mathbb{R}^3 tal que

$$T(v_1) = T(v_2) = 0$$
 e $T(v_3) \neq 0$.

Determine explicitamente a expressão do funcional T.

(c) Seja T um funcional linear sobre o \mathbb{R}^3 tal que

$$T(v_1) = T(v_2) = 0$$
 e $T(v_3) \neq 0$.

Mostre que $T(2,3,-1) \neq 0$.

(a) Podemos verificar facilmente que $\gamma = \{v_1, v_2, v_3\}$ é uma base ordenada para \mathbb{R}^3 . Assim, todo elemento $(x, y, z) \in \mathbb{R}^3$ é escrito de modo único como:

$$(x, y, z) = a v_1 + b v_2 + c v_3$$

= $a(1, 0, 1) + b(0, 1, -2) + c(-1, -1, 0)$

com
$$a = 2x - 2y - z$$
, $b = x - y - z$ e $c = x - 2y - z$.

Desse modo, temos que

$$T(x,y,z) \ = \ a\,T(v_1) \ + \ b\,T(v_2) \ + \ c\,T(v_3) \ = \ 4x \ - \ 7y \ - \ z \ .$$

para todo $(x, y, z) \in \mathbb{R}^3$.

(b) Considerando que $T(v_3) = \alpha \neq 0$ e do resultado do item (a), temos que

$$T(x, y, z) = \alpha (x - 2y - z)$$
 para todo $(x, y, z) \in \mathbb{R}^3$.

(c) Considerando o resultado do item (b), temos que

$$T(2,3,-1) = -3\alpha \neq 0$$

pois $\alpha \neq 0$.

Exemplo 7.3.7 Considere o espaço vetorial real \mathbb{R}^3 com a base ordenada

$$\gamma = \{ (1,0,1), (1,1,0), (0,1,1) \}$$

e o funcional linear T sobre o \mathbb{R}^3 definido por T(x,y,z) = 2x - 3y + z.

Vamos determinar a representação matricial do funcional linear T em relação às bases ordenadas γ de \mathbb{R}^3 e $\alpha = \{2\}$ de \mathbb{R} .

Inicialmente vamos obter a representação de $T(v_j)$, onde v_j são os elementos da base ordenada γ , em relação à base $\alpha=\{2\}$ de $I\!\!R$

$$T(1,0,1) = 3 = 2\frac{3}{2}$$

$$T(1,1,0) = -1 = 2\left(-\frac{1}{2}\right)$$

$$T(0,1,1) = -2 = 2(-1)$$

Desse modo, temos que a representação matricial do funcional linear T em relação às bases ordenadas γ de \mathbb{R}^3 e $\alpha = \{2\}$ de \mathbb{R} é dada por:

$$[T]^{\gamma}_{\alpha} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} & -1 \end{bmatrix}.$$

Note que todo elemento $(x, y, z) \in \mathbb{R}^3$ é escrito de modo único como:

$$(x, y, z) = a v_1 + b v_2 + c v_3$$

= $a(1, 0, 1) + b(1, 1, 0) + c(0, 1, 1)$

com

$$a = \frac{x - y + z}{2}$$
, $b = \frac{x + y - z}{2}$ e $c = \frac{-x + y + z}{2}$.

Considerando o elemento $u = (1, 2, 1) \in \mathbb{R}^3$ temos que

$$[u]_{\gamma} \ = \ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \ .$$

Logo, temos que $[T(u)]_{\alpha} = [T]_{\alpha}^{\gamma} [u]_{\gamma}$, isto é,

$$[T(u)]_{\alpha} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = -\frac{3}{2}.$$

De fato,
$$T(1,2,1) = -3 = 2\left(-\frac{3}{2}\right)$$
.

Exemplo 7.3.8 Considere o espaço vetorial real \mathbb{R}^2 com a base ordenada

$$\gamma = \{ (2,1), (3,1) \}$$

e vamos denotar por $\gamma^* = \{J_1, J_2\}$ a base dual. Determinar explicitamente as expressões dos funcionais J_1 e J_2 .

Para isso, procedemos da seguinte forma:

$$J_1(v_1) = J_1(2e_1 + e_2) = 2J_1(e_1) + J_1(e_2) = 1$$

$$J_1(v_2) = J_1(3e_1 + e_2) = 3J_1(e_1) + J_1(e_2) = 0$$

onde $v_1=(2,1)$, $v_2=(3,1)$, são os elementos da base ordenada γ , e $\beta=\{e_1,e_2\}$ é a base canônica do \mathbb{R}^2 .

Desse modo, obtemos $J_1(e_1) = -1$ e $J_1(e_2) = 3$. Logo, temos que

$$J_1(x,y) = -x + 3y$$
 para todo $(x,y) \in \mathbb{R}^2$.

De modo análogo, determinamos a expressão do funcional J_2 .

$$J_2(v_1) = J_2(2e_1 + e_2) = 2J_2(e_1) + J_2(e_2) = 0$$

$$J_2(v_2) = J_2(3e_1 + e_2) = 3J_2(e_1) + J_2(e_2) = 1$$

Assim, obtemos $J_2(e_1) = 1$ e $J_2(e_2) = -2$. Logo, temos que

$$J_2(x,y) = x - 2y$$
 para todo $(x,y) \in \mathbb{R}^2$.

Exemplo 7.3.9 Considere o espaço vetorial real \mathbb{R}^2 com a base ordenada

$$\gamma \ = \ \{ \ (1,1), \ (1,-1) \ \}$$

e vamos denotar por $\gamma^* = \{J_1, J_2\}$ a base dual. De modo análogo, determinamos explicitamente as expressões dos funcionais J_1 e J_2 . Assim, temos que

$$J_1(x,y) = \frac{1}{2}(x+y)$$
 e $J_2(x,y) = \frac{1}{2}(x-y)$

para todo $(x,y) \in \mathbb{R}^2$.

Exemplo 7.3.10 Considere o espaço vetorial real \mathbb{R}^3 com a base canônica

$$\beta = \{ (1,0,0), (0,1,0), (0,0,1) \}$$

e vamos denotar por $\beta^* = \{J_1, J_2, J_3\}$ a base dual. De modo análogo, determinamos explicitamente as expressões dos funcionais da base dual.

$$J_1(x, y, z) = x$$
 , $J_2(x, y, z) = y$ e $J_3(x, y, z) = z$

para todo $(x,y,z) \in \mathbb{R}^3$. Note que, $J_i(e_i) = \delta_{ij}$ para i, j = 1, 2, 3.

Exemplo 7.3.11 Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com a base canônica

$$\beta = \{ 1, x, x^2 \}$$

e vamos denotar por $\beta^* = \{J_1, J_2, J_3\}$ a base dual. De modo análogo, determinamos explicitamente as expressões dos funcionais da base dual.

Para isso, procedemos da seguinte forma:

$$J_1(p_1(x)) = 1$$
 , $J_1(p_2(x)) = 0$ e $J_1(p_3(x)) = 0$

$$J_2(p_1(x)) = 0$$
 , $J_2(p_2(x)) = 1$ e $J_2(p_3(x)) = 0$

$$J_3(p_1(x)) = 0$$
 , $J_3(p_2(x)) = 0$ e $J_3(p_3(x)) = 1$

onde $p_1(x) = 1$, $p_2(x) = x$ e $p_3(x) = x^2$, são os elementos da base canônica β .

Desse modo, para todo $p(x) = a + bx + cx^2 \in \mathcal{P}_2(\mathbb{R})$, temos que

$$J_1(p(x)) = a$$
 , $J_2(p(x)) = b$ e $J_3(p(x)) = c$

Exemplo 7.3.12 Considere o espaço vetorial real \mathbb{R}^3 com a base ordenada

$$\gamma \ = \ \{ \ (1,0,1), \ (1,1,0), \ (0,1,1) \ \}$$

e vamos denotar por $\gamma^* = \{J_1, J_2, J_3\}$ a base dual. De modo análogo, determinamos explicitamente as expressões dos funcionais da base dual. Assim, temos que

$$J_1(x,y,z) = \frac{1}{2}(x-y+z)$$

$$J_2(x,y,z) = \frac{1}{2}(x + y - z)$$

$$J_3(x,y,z) = \frac{1}{2}(-x + y + z)$$

para todo $(x, y, z) \in \mathbb{R}^3$.

Seja V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} . Neste momento uma questão importante que surge é se toda base de V^* é a base dual de alguma base de V. Para isso, vamos fazer um rápido estudo do espaço dual de V^* , isto é, $V^{**} = (V^*)^*$.

Considere um elemento $v \in V$, arbitrário. A aplicação L_v sobre V^* dada por:

$$L_v(T) = T(v)$$
 para $T \in V^*$

é um funcional linear sobre V^* . De fato,

$$L_v(\lambda T_1 + T_2) = (\lambda T_1 + T_2)(v) = \lambda T_1(v) + T_2(v) = \lambda L_v(T_1) + L_v(T_2)$$

para $T_1, T_2 \in V^*$ e $\lambda \in \mathbb{F}$. Assim, temos que $L_v \in V^{**}$.

Lema 7.3.1 Considere V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} . Seja $v \in V$ um elemento não-nulo. Então, existe um funcional linear T sobre V tal que $T(v) \neq 0$. Equivalentemente, se $L_v(T) = 0$ para todo $T \in V^*$, então v = 0.

Demonstração – Como v é um elemento não–nulo de V, existe uma base ordenada $\beta = \{v_1, \dots, v_n\}$ de V tal que $v_1 = v$. Considerando que $\beta^* = \{J_1, \dots, J_n\}$ é a base dual da base β , temos que $J_1(v_1) = J_1(v) = 1 \neq 0$.

Teorema 7.3.2 Considere V um espaço vetorial de dimensão finita sobre o corpo $I\!\!F$ e para cada elemento $v \in V$ definimos o funcional linear L_v sobre V^* por:

$$L_v(T) = T(v)$$
 para $T \in V^*$.

Então, a aplicação $\varphi: V \longrightarrow V^{**}$ definida por $\varphi(v) = L_v$ é um isomorfismo.

Demonstração – Primeiramente vamos mostrar que a aplicação φ é linear. De fato, sejam $u, v \in V$ e $\lambda \in \mathbb{F}$. Chamando $w = \lambda u + v$, para todo $T \in V^*$, temos que

$$\varphi(\lambda u + v)(T) = L_w(T) = \lambda T(u) + T(v) = \lambda L_u(T) + L_v(T).$$

Assim, temos que $\varphi(\lambda u + v) = \lambda L_u + L_v = \lambda \varphi(u) + \varphi(v)$. Logo, mostramos que a aplicação φ é uma transformação linear de V em V^{**} .

Pelo Lema 7.3.1, temos que a aplicação φ é injetora, pois $\varphi(v) = L_v$ é o funcional nulo se, e somente se, $v = 0_V$. Pelo Teorema 7.3.1, sabemos que

$$dim(V^{**}) = dim(V^*) = dim(V).$$

Portanto, φ é sobrejetora. Logo, φ é um isomorfismo de V em V^{**} .

Corolário 7.3.1 Sejam V um espaço vetorial de dimensão finita sobre o corpo $I\!\!F$ e V^* o espaço dual de V. Então, toda base ordenada de V^* é a base dual de alguma base ordenada de V.

Demonstração – Seja $\beta^* = \{ J_1, \dots, J_n \}$ uma base ordenada de V^* . Sabemos, pelo Teorema 7.3.1, que existe uma base ordenada $\beta^{**} = \{ L_1, \dots, L_n \}$ de V^{**} , que é a base dual da base β^* , isto é,

$$L_i(J_j) = \delta_{ij}$$
.

Pelo Teorema 7.3.2, sabemos que os espaços vetoriais V e V^{**} são isomorfos, isto é, para cada i existe um elemento $v_i \in V$ tal que $\varphi(v_i) = L_{v_i}$, onde φ é um isomorfismo de V em V^{**} . Desse modo, temos que

$$L_i(T) = L_{v_i}(T) = T(v_i)$$
 para $T \in V^*$.

Assim, temos que $\beta = \{v_1, \dots, v_n\}$ é uma base ordenada para V de modo que β^* é a sua base dual, o que completa a demonstração.

Exemplo 7.3.13 Considere o espaço vetorial \mathbb{R}^2 . Para todo $(x,y) \in \mathbb{R}^2$ definimos os seguintes funcionais lineares

$$J_1(x,y) = \frac{x-y}{2}$$
 e $J_2(x,y) = \frac{x+y}{2}$.

Podemos verificar facilmente que $\gamma^* = \{J_1, J_2\}$ é uma base para o espaço dual $(\mathbb{R}^2)^*$, bastando mostra que γ^* é linearmente independente em $(\mathbb{R}^2)^*$, e que $\gamma = \{v_1, v_2\}$, onde $v_1 = (1, -1)$ e $v_2 = (1, 1)$, é a base ordenada de \mathbb{R}^2 tal que γ^* é a sua base dual.

Considerando o funcional linear J(x,y)=x-2y sobre o \mathbb{R}^2 , temos que $J(v_1)=3$ e $J(v_2)=-1$. Logo, sabemos que

$$[J]^{\gamma}_{\alpha} = \begin{bmatrix} 3 & -1 \end{bmatrix}$$
 e $[J]_{\gamma^*} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$,

onde estamos tomando $\alpha = \{1\}$ a base de \mathbb{R} .

Desse modo, dado o elemento $u = (1,3) \in \mathbb{R}^2$, temos que

$$J(u) = 3J_1(u) - J_2(u) = -3 - 2 = -5.$$

De fato, avaliando J no ponto $(1,3) \in \mathbb{R}^2$, obtemos J(1,3) = -5.

Note que, podemos obter o mesmo resultado utilizando o fato que

$$[J]_{\alpha} = [J]_{\alpha}^{\gamma} [u]_{\gamma} .$$

Podemos verificar facilmente que

$$[u]_{\gamma} = \begin{bmatrix} -1\\2 \end{bmatrix}.$$

Assim, temos que

$$[J]_{\alpha} = \begin{bmatrix} 3 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -5.$$

Portanto, obtemos J(1,3) = -5, lembrando que $\alpha = \{1\}$ é a base de \mathbb{R} , o que completa uma primeira exemplificação da teoria exposta anteriormente.

Exemplo 7.3.14 Considere o espaço vetorial real $\mathcal{P}_1(\mathbb{R})$. Para todo $p(x) \in \mathcal{P}_1(\mathbb{R})$, definimos os funcionais lineares

$$J_1(p(x)) = p(1)$$
 e $J_2(p(x)) = p'(1)$.

Verificamos facilmente que $\gamma^* = \{J_1, J_2\}$ é uma base para o espaço dual $(\mathcal{P}_1(\mathbb{R}))^*$, bastando mostra que γ^* é linearmente independente em $(\mathcal{P}_1(\mathbb{R}))^*$. Denotando a base ordenada $\gamma = \{q_1(x), q_2(x)\}$ para $\mathcal{P}_1(\mathbb{R})$ de modo que γ^* seja sua base dual, temos que $J_i(q_j(x)) = \delta_{ij}$. Desse modo, obtemos

$$q_1(x) = 1$$
 e $q_2(x) = x - 1$.

Considerando o funcional linear $J \in (\mathcal{P}_1(\mathbb{R}))^*$ definido por:

$$J(p(x)) = \int_0^1 p(x)dx ,$$

sabemos que $J = \alpha_1 J_1 + \alpha_2 J_2$, onde

$$\alpha_1 = J(q_1) = \int_0^1 q_1(x)dx = 1$$
 e $\alpha_2 = J(q_2) = \int_0^1 q_2(x)dx = -\frac{1}{2}$.

Desse modo, temos que

$$J(p(x)) = J_1(p(x)) - \frac{1}{2}J_2(p(x))$$
 para todo $p(x) \in \mathcal{P}_1(\mathbb{R})$.

Assim, o vetor de coordenadas do funcional J em relação à base dual γ^* é dado por:

$$[J]_{\gamma^*} = \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix}.$$

Para exemplificar, consideramos o polinômio q(x)=2+3x e vamos calcular o valor J(q(x)) que é dado por:

$$J(q(x)) = J_1(q(x)) - \frac{1}{2}J_2(q(x)) = 5 - \frac{3}{2} = \frac{7}{2}.$$

Por outro lado, fazendo o calculo diretamente da definição do funcional J obtemos

$$J(q(x)) = \int_0^1 (2+3x)dx = \frac{7}{2}.$$

Exemplo 7.3.15 Considere o espaço vetorial real \mathbb{R}^3 . Definimos os funcionais lineares

$$J_1(x,y,z)=x$$
 , $J_2(x,y,z)=-x+y$ e $J_3(x,y,z)=-x+y-z$ para todo elemento $(x,y,z)\in\mathbb{R}^3$.

Mostre que $\gamma^* = \{ J_1, J_2, J_3 \}$ é uma base para o espaço dual $(\mathbb{R}^3)^*$. Determine uma base ordenada γ para \mathbb{R}^3 de modo que γ^* seja sua base dual.

Sabemos que a dimensão do espaço dual $(\mathbb{R}^3)^*$ é igual a três. Assim, basta mostrar que γ^* é linearmente independente. Tomando a combinação linear nula

$$aJ_1(x,y,z) + bJ_2(x,y,z) + cJ_3(x,y,z) = 0$$

e avaliando nos elementos da base canônica $\beta=\{e_1,e_2,e_3\}$, obtemos o seguinte sistema linear homogêneo

$$\begin{cases} a - b - c = 0 \\ b + c = 0 \\ - c = 0 \end{cases}$$

que possui somente solução trivial a=b=c=0. Desse modo, provamos que γ^* é linearmente independente em $L(\mathbb{R}^3, \mathbb{R})$.

Por simplicidade, denotamos a base ordenada $\gamma = \{v_1, v_2, v_3\}$. Inicialmente, vamos determinar o primeiro elemento $v_1 = (a, b, c)$ que pode ser representado por:

$$v_1 = ae_1 + be_2 + ce_3$$
 para $a, b, c, \in \mathbb{R}^3$.

Sabemos que

$$J_1(v_1) = aJ_1(e_1) + bJ_1(e_2) + cJ_1(e_3) = 1$$

$$J_2(v_1) = aJ_2(e_1) + bJ_2(e_2) + cJ_2(e_3) = 0$$

$$J_3(v_1) = aJ_3(e_1) + bJ_3(e_2) + cJ_3(e_3) = 0$$

Assim, obtemos o seguinte sistema linear

$$\begin{cases} a & = 1 \\ -a + b & = 0 \\ -a + b - c & = 0 \end{cases}$$

que possui como única solução a=1, b=1 e c=0. Logo, $v_1=(1,1,0)$. De modo análogo, determinamos os elementos v_2 e v_3 . Desse modo, o espaço vetorial real \mathbb{R}^3 tem como base ordenada $\gamma=\{(1,1,0),(0,1,1),(0,0,-1)\}$, cuja base dual é γ^* .

Exemplo 7.3.16 Considere o espaço vetorial $\mathcal{P}_1(\mathbb{R})$. Definimos os funcionais lineares

$$J_1(p(x)) = p(-1)$$
 e $J_2(p(x)) = p(1)$

para todo polinômio $p(x) \in \mathcal{P}_1(\mathbb{R})$.

Mostre que $\gamma^* = \{J_1, J_2\}$ é uma base para o espaço dual $(\mathcal{P}_1(\mathbb{R}))^*$. Determine uma base ordenada γ para $\mathcal{P}_1(\mathbb{R})$ de modo que γ^* seja sua base dual.

Sabemos que a dimensão do espaço dual $(\mathcal{P}_1(\mathbb{R}))^*$ é igual a dois. Assim, basta mostrar que γ^* é linearmente independente. Tomando a combinação linear nula

$$aJ_1(p(x)) + bJ_2(p(x)) = 0$$

e avaliando nos elementos da base canônica $\beta = \{ p_1(x) = 1, p_2(x) = x \}$, obtemos o seguinte sistema linear homogêneo

$$\begin{cases} a + b = 0 \\ -a + b = 0 \end{cases}$$

que possui somente solução trivial a=b=0. Assim, mostramos que γ^* é linearmente independente em $L(\mathcal{P}_1(\mathbb{R}), \mathbb{R})$.

Por simplicidade, denotamos a base ordenada $\gamma = \{q_1(x), q_2(x)\}$. Primeiramente, vamos determinar o primeiro elemento q_1 que pode ser escrito da seguinte forma:

$$q_1(x) = ap_1(x) + bp_2(x)$$
 para $a, b \in \mathbb{R}$.

Sabemos que

$$J_1(q_1(x)) = aJ_1(p_1(x)) + bJ_1(p_2(x)) = 1$$

$$J_2(q_1(x)) = aJ_2(p_1(x)) + bJ_2(p_2(x)) = 0$$

Assim, obtemos o seguinte sistema linear

$$\begin{cases} a - b = 1 \\ a + b = 0 \end{cases}$$

que possui como única solução

$$a = \frac{1}{2}$$
 e $b = -\frac{1}{2}$.

Logo, temos o elemento $q_1(x) = \frac{1}{2}(1-x)$.

De modo análogo, determinamos o elemento $q_2(x) = \frac{1}{2}(1+x)$.

Exercícios

Exercício 7.12 Considere o espaço vetorial real \mathbb{R}^3 com a base ordenada

$$\gamma = \{ (1,0,1), (1,2,1), (0,0,1) \}.$$

Determine a base dual $\gamma^* = \{ J_1, J_2, J_3 \}$ da base ordenada γ .

Exercício 7.13 Considere o espaço vetorial real \mathbb{R}^3 com a base ordenada

$$\gamma = \{ (1, -1, 3), (0, 1, -1), (0, 3, -2) \}.$$

Determine a base dual $\gamma^* = \{ J_1, J_2, J_3 \}$ da base ordenada γ .

Exercício 7.14 Considere o espaço vetorial $\mathcal{P}_1(\mathbb{R})$. Definimos os funcionais lineares

$$J_1(p(x)) = \int_0^1 p(x)dx$$
 $e J_2(p(x)) = \int_0^2 p(x)dx$

para todo polinômio $p(x) \in \mathcal{P}_1(\mathbb{R})$. Mostre que $\gamma^* = \{J_1, J_2\}$ é uma base para o espaço dual $(\mathcal{P}_1(\mathbb{R}))^*$. Determine uma base ordenada γ para $\mathcal{P}_1(\mathbb{R})$ de modo que γ^* seja sua base dual.

Exercício 7.15 Considere o espaço vetorial $\mathcal{P}_1(\mathbb{R})$. Definimos os funcionais lineares

$$J_1(p(x)) = \int_0^1 p(x)dx$$
 $e J_2(p(x)) = \int_{-1}^1 p(x)dx$

para todo polinômio $p(x) \in \mathcal{P}_1(\mathbb{R})$. Mostre que $\gamma^* = \{J_1, J_2\}$ é uma base para o espaço dual $(\mathcal{P}_1(\mathbb{R}))^*$. Determine uma base ordenada γ para $\mathcal{P}_1(\mathbb{R})$ de modo que γ^* seja sua base dual.

Exercício 7.16 Considere o espaço vetorial real \mathbb{R}^3 . Definimos os funcionais lineares

$$J_1(x,y,z) = x - 2y$$
 , $J_2(x,y,z) = x + y + z$ e $J_3(x,y,z) = y - 3z$

para todo elemento $(x, y, z) \in \mathbb{R}^3$. Mostre que $\gamma^* = \{J_1, J_2, J_3\}$ é uma base para o espaço dual $(\mathbb{R}^3)^*$. Determine uma base ordenada γ para \mathbb{R}^3 de modo que γ^* seja sua base dual.

Exercício 7.17 Considere o espaço vetorial $\mathcal{P}_2(\mathbb{R})$. Definimos os funcionais lineares

$$J_1(p(x)) = \int_0^1 p(x)dx$$
, $J_2(p(x)) = \int_0^2 p(x)dx$ e $J_3(p(x)) = \int_0^{-1} p(x)dx$

para todo polinômio $p(x) \in \mathcal{P}_2(\mathbb{R})$. Mostre que $\gamma^* = \{J_1, J_2, J_3\}$ é uma base para o espaço dual $(\mathcal{P}_2(\mathbb{R}))^*$. Determine uma base ordenada γ para $\mathcal{P}_2(\mathbb{R})$ de modo que γ^* seja sua base dual.

Exercício 7.18 Considere o espaço vetorial $\mathcal{P}_2(\mathbb{R})$. Definimos os funcionais lineares

$$J_1(p(x)) = p(-1), \quad J_3(p(x)) = p(0) \quad e \quad J_3(p(x)) = p(1)$$

para todo polinômio $p(x) \in \mathcal{P}_2(\mathbb{R})$. Mostre que $\gamma^* = \{J_1, J_2, J_3\}$ é uma base para o espaço dual $(\mathcal{P}_2(\mathbb{R}))^*$. Determine uma base ordenada γ para $\mathcal{P}_2(\mathbb{R})$ de modo que γ^* seja sua base dual.

Exercício 7.19 Considere o espaço vetorial $\mathcal{P}_3(\mathbb{R})$. Definimos os funcionais lineares

$$J_1(p(x)) = p(-1), \quad J_2(p(x)) = p'(-1), \quad J_3(p(x)) = p(1) \quad e \quad J_4(p(x)) = p'(1)$$

para todo polinômio $p(x) \in \mathcal{P}_3(\mathbb{R})$. Mostre que $\gamma^* = \{J_1, J_2, J_3, J_4\}$ é uma base para o espaço dual $(\mathcal{P}_3(\mathbb{R}))^*$. Encontre uma base ordenada γ para $\mathcal{P}_3(\mathbb{R})$ de modo que γ^* seja sua base dual.

Exercício 7.20 Considerando os Exercícios 7.17 e 7.18 e o funcional linear

$$J(p(x)) = \int_{-1}^{1} p(x)dx + p'(0),$$

determine $[J]_{\gamma^*}$ e o valor de J(q(x)) para $q(x) = 1 - 2x + x^2$.

Exercício 7.21 Sejam V um espaço vetorial sobre o corpo \mathbb{F} , $\beta = \{v_1, v_2, v_3\}$ a base ordenada de V e $\beta^* = \{J_1, J_2, J_3\}$ a base dual da base β . Sabendo que

$$[v]_{\beta} = \begin{bmatrix} 2a \\ a \\ -5a \end{bmatrix} \qquad e \qquad [J]_{\beta^*} = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} ,$$

encontre o valor de a para que J(v) = -46, onde $v \in V$ e $J \in V^*$. Considere que $\alpha = \{1\}$ é a base de \mathbb{F} .

7.4 Teorema de Representação de Riesz

Teorema 7.4.1 (Teorema de Riesz) Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} munido do produto interno $\langle \cdot, \cdot \rangle$ e $J: V \longrightarrow \mathbb{F}$ um funcional linear. Então, existe um único elemento $\overline{v} \in V$ de modo que o funcional linear J é representado da sequinte forma:

$$J(u) = \langle u, \overline{v} \rangle$$
 para todo $u \in V$.

 $Al\acute{e}m\ disso,\ \|J\|_2 = \|\overline{v}\|_2.$

Demonstração – Seja $\beta = \{q_1, \dots, q_n\}$ uma base ortonormal para V. Vamos definir o elemento \overline{v} da seguinte forma:

$$\overline{v} = \sum_{j=1}^{n} \overline{J(q_j)} q_j.$$

Vamos considerar F um funcional linear sobre V definido por:

$$F(u) = \langle u, \overline{v} \rangle$$
.

Assim, temos que

$$F(q_i) = \langle q_i, \sum_{j=1}^n \overline{J(q_j)} q_j \rangle = \sum_{j=1}^n J(q_j) \langle q_i, q_j \rangle = J(q_i).$$

para todo $i=1, \dots, n$. Como $F(q_i)=J(q_i)$ para todo elemento da base β , temos que os funcionais F e J são os mesmos.

Agora vamos mostrar a unicidade do elemento $\overline{v} \in V$. Supomos que os elementos $\overline{v}, \overline{w} \in V$ satisfazem

$$J(u) \; = \; \langle \, u \, , \, \overline{v} \, \rangle \qquad \mathrm{e} \qquad J(u) \; = \; \langle \, u \, , \, \overline{w} \, \rangle \qquad ; \qquad \forall \, u \, \in \, V \, .$$

Assim, temos que

$$\langle u, \overline{v} \rangle - \langle u, \overline{w} \rangle = 0 \implies \langle u, \overline{v} - \overline{w} \rangle = 0 \quad ; \quad \forall u \in V.$$

Fazendo $u = \overline{v} - \overline{w}$, obtemos

$$\|\overline{v} - \overline{w}\|_2^2 = 0.$$

Assim, temos que $\overline{v} - \overline{w} = 0_V$. Logo, $\overline{v} = \overline{w}$, provando a unicidade do elemento \overline{v} .

Finalmente, vamos mostrar que $\parallel J \parallel_2 = \parallel \overline{v} \parallel_2$. Da Definição 7.2.3, temos que

$$|\,J(u)\,| \ \leq \ |\!|\!|\,J\,|\!|\!|_2\,|\!|\,u\,|\!|_2 \qquad \text{para todo} \qquad u \,\in\, V\,.$$

Fazendo $u = \overline{v}$, obtemos

$$\|\overline{v}\|_2^2 = \langle \overline{v}, \overline{v} \rangle = |J(\overline{v})| \leq \|J\|_2 \|\overline{v}\|.$$

Considerando que J é diferente do funcional nulo, isto é, $\overline{v} \neq 0_V$, temos que

$$\|\overline{v}\|_2 \leq \|J\|_2. \tag{7.1}$$

Da Representação de Riesz e da desigualdade de Cauchy-Schwarz, vemos que

$$|J(u)| = |\langle u, \overline{v} \rangle| \leq ||u||_2 ||\overline{v}||_2. \tag{7.2}$$

Da definição da norma do funcional J e da desigualdade (7.2), segue que

$$|||J||_2 = \max\{|J(u)|\} ; ||u||_2 = 1\} \le ||\overline{v}||_2.$$
 (7.3)

Portanto, das desigualdades (7.1) e (7.3), obtemos $|||J||_2 = ||\overline{v}||_2$.

Exemplo 7.4.1 Considere o espaço vetorial real \mathbb{R}^3 munido do produto interno usual $\langle \, \cdot \, , \, \cdot \, \rangle$. Considere o funcional linear $J: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definido por:

$$J(u) \ = \ 2x \ + \ y \ - \ z \qquad para \ todo \qquad u \ = \ (x,y,z) \ \in \ I\!\!R^3 \, ,$$

Assim, pelo Teorema de Representação de Riesz, temos que

$$J(u) = \langle u, \overline{v} \rangle$$
 para todo $u = (x, y, z) \in \mathbb{R}^3$.

Podemos observar que o elemento $\overline{v}=(2,1,-1)$. Assim, temos que

$$|||J||_2 = ||\overline{v}||_2 = \sqrt{6}.$$

Exemplo 7.4.2 Sejam V um espaço vetorial de dimensão finita sobre o corpo F com o produto interno $\langle \cdot, \cdot \rangle$ e $\beta = \{q_1, \dots, q_n\}$ uma base ortonormal para V. Sabemos que todo elemento $v \in V$ é escrito de modo único como:

$$v = \sum_{j=1}^{n} c_j q_j.$$

No Exemplo 7.3.4, mostramos que todo funcional linear T sobre V é representado da forma $T(v) = \alpha_1 c_1 + \cdots + \alpha_n c_n$ para os escalares $\alpha_i = T(q_i) \in \mathbb{F}$. Utilizando essa representação do funcional linear T em relação à base ortonormal β de V, podemos apresentar uma nova demonstração para o Teorema de Riesz.

De fato, Desejamos encontrar um elemento $\bar{v} \in V$, que é escrito de modo único como:

$$\overline{v} = \sum_{j=1}^{n} b_j q_j ,$$

tal que $T(v) = \langle v, \overline{v} \rangle$ para todo $v \in V$.

Desse modo, para todo $v \in V$, temos que

$$T(v) = T(q_1) c_1 + \cdots + T(q_n) c_n$$

$$\langle v, \overline{v} \rangle = c_1 \overline{b}_1 + \cdots + c_n \overline{b}_n$$

Comparando as expressões acima, obtemos $b_j = \overline{T(q_j)}$ para $j = 1, \dots, n$.

Assim, o elemento $\overline{v} \in V$, que estamos procurando, é escrito como:

$$\overline{v} = \sum_{j=1}^{n} \overline{T(q_j)} q_j$$

que é o elemento de V que realiza a representação do funcional linear T com relação ao produto interno, isto é,

$$T(v) = \langle v, \overline{v} \rangle$$

para todo $v \in V$. A prova da unicidade do elemento \overline{v} e que $||T||_2 = ||\overline{v}||_2$ é a mesma prova feita no Teorema 7.4.1.

Exemplo 7.4.3 Considere o espaço vetorial real \mathbb{R}^n , com a base canônica β , munido do produto interno usual $\langle \cdot, \cdot \rangle$. No Exemplo 7.3.2, mostramos que todo funcional linear T sobre o espaço vetorial \mathbb{R}^n é representado da forma:

$$T(x_1, \dots, x_n) = \alpha_1 x_1 + \dots + \alpha_n x_n$$
 para todo $u = (x_1, \dots, x_n) \in \mathbb{R}^n$,

para os escalares $\alpha_i = T(e_i) \in \mathbb{R}$, onde e_i é o i-ésimo elemento da base canônica.

Desse modo, pelo Teorema de Riesz, temos que T é representado da forma:

$$T(u) = \langle u, \overline{v} \rangle$$
 para todo $u = (x_1, \dots, x_n) \in \mathbb{R}^n$,

onde o elemento $\overline{v}=(\alpha_1,\cdots,\alpha_n)\in I\!\!R^n$. Logo, pelo Teorema de Riesz, sabemos que o elemento \overline{v} é único e que $||T||_2=||\overline{v}||_2$.

Exemplo 7.4.4 Considere o espaço vetorial real \mathbb{R}^n , com a base canônica β , munido do produto interno usual $\langle \cdot, \cdot \rangle$ e o funcional linear T(x, y, z) = x - 2y + 4z definido sobre \mathbb{R}^n . Sabemos que T é representado com relação à base β da seguinte forma:

$$T(u) = x T(e_1) + y T(e_2) + z T(e_3)$$

para todo $u=(x,y,z)\in \mathbb{R}^n$. Temos também que o elemento

$$\overline{v} = (T(e_1), T(e_2), T(e_3)) = (1, -2, 4)$$

realiza a representação do funcional linear T com relação ao produto interno, isto é,

$$T(u) = \langle u, \overline{v} \rangle = x - 2y + 4z$$

para todo $u = (x, y, z) \in \mathbb{R}^n$. Assim, $|||T|||_2 = ||\overline{v}||_2 = \sqrt{21}$.

Exercícios

Exercício 7.22 Considere o espaço vetorial real $\mathcal{P}_1(\mathbb{R})$ com o produto interno

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$$
 ; $\forall p, q \in \mathcal{P}_1(\mathbb{R})$.

Seja $T: \mathcal{P}_1(\mathbb{R}) \longrightarrow \mathbb{R}$ o funcional linear definido por: T(p(x)) = p(1). Determine o elemento $q(x) \in \mathcal{P}_1(\mathbb{R})$ tal que $T(p(x)) = \langle p, q \rangle$ para todo $p(x) \in \mathcal{P}_1(\mathbb{R})$.

Exercício 7.23 Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ munido do produto interno

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$$

 $com\ a\ base\ ortogonal\ \beta\ =\ \{\ q_1(x)\,,\,q_2(x)\,,\,q_3(x)\ \}\,,\ onde$

$$q_1(x) = 1$$
 , $q_2(x) = x$ e $q_3(x) = x^2 - \frac{1}{3}$.

Dado o funcional linear T sobre o $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = p(1) + p'(1)$$
.

Determine o elemento $\overline{p}(x) \in \mathcal{P}_2(\mathbb{R})$ de modo que $T(p(x)) = \langle p, \overline{p} \rangle$ para todo p(x) em $\mathcal{P}_2(\mathbb{R})$.

Exercício 7.24 Considere o espaço vetorial complexo \mathbb{C}^2 munido do produto interno usual $\langle \cdot, \cdot \rangle$ e com a base canônica $\beta = \{e_1, e_2\}$. Dado o funcional linear T sobre \mathbb{C}^2 definido por: $T(z_1, z_2) = 2z_1 - z_2$. Determine o elemento $\overline{v} \in \mathbb{C}^2$ tal que $T(u) = \langle u, \overline{v} \rangle$ para todo $u \in \mathbb{C}^2$.

Bibliografia

- [1] Tom M. Apostol, Análisis Matemático, Segunda Edición, Editorial Reverté, 1977.
- [2] Tom M. Apostol, Calculus, Volume I, Second Edition, John Wiley & Sons, 1976.
- [3] Tom M. Apostol, Calculus, Volume II, Second Edition, John Wiley & Sons, 1976.
- [4] Tom M. Apostol, Linear Algebra–A First Course with Applications to Differential Equations, John Wiley & Sons, 1997.
- [5] Alexander Basilevsky, Applied Matrix Algebra in the Statistical Sciences, Dover, 1983.
- [6] J. L. Boldrini, S. I. R. Costa, V. L. Figueiredo e H. G. Wetzler, Álgebra Linear, Terceira Edição, Editora Harbra Ltda, 1986.
- [7] C. A. Callioli, H. H. Domingues e R. C. F. Costa, Álgebra Linear e Aplicações, Sexta Edição, Atual Editora, 2003.
- [8] R. Charnet, C. A. L. Freire, E. M. R. Charnet e H. Bonvino, *Análise de Modelos de Regressão Linear com Aplicações*, Editora da Unicamp, Segunda Edição, 2008.
- [9] F. U. Coelho e M. L. Lourenço, Um Curso de Álgebra Linear, edusp, 2001.
- [10] S. H. Friedberg, A. J. Insel and L. E. Spence, *Linear Algebra*, Prentice—Hall, Third Edition, 1997.
- [11] Gene H. Golub & Charles F. Van Loan, *Matrix Computations*, Third Edition, John Hopkins, 1996.
- [12] K. Hoffman e R. Kunze, Álgebra Linear, Editora da USP, 1971.
- [13] Roger A. Horn and Charles R. Johnson, *Matrix Analysis*, Cambridge University Press, 1996.
- [14] Bernard Kolman e David R. Hill, *Introdução à Álgebra Lienar com Aplicações*, LTC, Oitava Edição, 2006.
- [15] Serge Lang, Introduction to Linear Algebra, Second Edition, Springer, 1986.
- [16] Elon L. Lima, Álgebra Linear, Coleção Matemática Universitária, IMPA, 1996.
- [17] Elon L. Lima, Curso de Análise, Projeto Euclides, IMPA, 1996.

- [18] Seymour Lipschutz, Álgebra Linear, Terceira Edição, Makron Books, 1994.
- [19] LUENBERGER, D. D. (1973), Introduction to Linear and Nonlinear Programming, Addison—Wesley.
- [20] Patricia R. de Peláez, Rosa F. Arbeláez y Luz E. M. Sierra, *Algebra Lineal con Aplicaciones*, Universidad Nacional de Colombia, 1997.
- [21] Gilbert Strang, *Linear Algebra and its Applications*, Third Edition, Harcourt Brace Jovanovich Publishers, 1988.
- [22] David S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, 1991.