Estructuras de datos

Wilmer Emiro Castrillón Calderón

12 de marzo de 2020

1. Tablas aditivas

Son estructuras de datos utilizadas para realizar operaciones acumuladas sobre un conjunto de datos estáticos en un rango específico, es decir, ejecutar una misma operación(como por ejemplo la suma) sobre un intervalo de datos, se asume que los datos en la estructura no van a cambiar. Estas estructuras también son conocidas como *Cumulative Frequency Table* o de manera mas informal *Tablas aditivas*, aunque no necesariamente son exclusivas para operaciones de suma, pues la idea general es aplicable a otras operaciones.

Durante el cálculo de una misma operación sobre diferentes rangos se presenta superposición de problemas, las tablas aditivas son utilizadas para reducir la complejidad computacional aprovechando estas superposiciones utilizando tablas de memorización.

Ejemplo inicial.

Dado un vector $V = \{5,2,8,2,4,3,1\}$ encontrar para múltiples consultas la suma de todos los elementos en un rango [i,j], indexando desde 1, por ejemplo con el rango [1,3] la suma es [5+2+8] = 15.

La solución trivial es hacer un ciclo recorriendo el vector entre el intervalo [i,j], en el peor de los casos se debe recorrer todo el vector, esto tiene una complejidad O(n) puede que para una consulta sea aceptable, pero en casos grandes como por ejemplo un vector de tamaño 10^5 y una cantidad igualmente de consultas el tiempo de ejecución se hace muy alto, por lo tanto se hace necesario encontrar una mejor solución.

La operación suma tiene propiedades que nos pueden ayudar a resolver este problema de una forma mas eficiente:

- 1. La suma es asociativa es decir, se cumple: a + (b + c) = (a + b) + c, esto indica que sin importar la agrupación que se realice el resultado sera igual.
- 2. La suma posee elemento neutro, es decir existe un β tal que $a + \beta = a$, en la suma $\beta = 0$.
- 3. La suma tiene operación inversa, es decir existe una operación que puede revertir la suma, la cual es la resta: si a + b = c entonces c a = b.

Considerando las anteriores propiedades el problema se puede trabajar desde otro enfoque, primero se puede definir $suma(x) = \sum_{k=1}^{x} V_k$, ahora tomando como ejemplo una consulta en el rango [3,5] del vector V, se tiene que: $suma(2) = V_1 + V_2$ y $suma(5) = V_1 + V_2 + V_3 + V_4 + V_5$, pero se necesita encontrar $V_3 + V_4 + V_5$, usando la propiedad asociativa se obtiene: $(V_1 + V_2) + (V_3 + V_4 + V_5) = (V_1 + V_2 + V_3 + V_4 + V_5)$ y usando la propiedad inversa se llega a: $(V_3 + V_4 + V_5) = (V_1 + V_2 + V_3 + V_4 + V_5) - (V_1 + V_2)$ por lo tanto $(V_3 + V_4 + V_5) = suma(5) - suma(2)$.

De esta manera el problema se puede generalizar como $\sum_{k=i}^{j} V_k = suma(j) - suma(i-1)$ cuando $i \neq 1$ y suma(j) cuando i = 1.

Ahora pre-calculando suma(x) se puede dar una solución inmediata a cada consulta, esto se puede resolver utilizando un enfoque básico de programación dinámica. Para encontrar suma(x) se puede reescribir como: $suma(x) = V_x + suma(x-1)$ con caso base $suma(1) = V_1$ y por definición tendremos que la operación acumulada sobre un conjunto vacío es igual al elemento neutro, a partir de esto se puede obtener la siguiente solución en C++ con consultas indexando desde 1.

```
int V[] = {5,2,8,2,4,3,1}, memo[8];

void precalcular(){
   memo[0] = 0;
   for(int i = 0; i < 7; i++)
        memo[i+1] = V[i] + memo[i];
}

int consulta(int i, int j){ return memo[j] - memo[i-1]; }</pre>
```

De manera general las tablas aditivas son aplicables a cualquier operación que posea las tres propiedades descritas anteriormente: ser asociativa, tener elemento neutro y operación inversa, por ejemplo la suma, multiplicación o el operador de bits XOR.

Tablas aditivas en 2D

Las operaciones acumuladas no solo se pueden usar sobre una dimension, sino también sobre n-dimensiones, en estos casos se debe trabajar con el principio de inclusión-exclusión pues se debe considerar mejor las operaciones entre intervalos, si no tiene en cuenta este principio las soluciones contendrían elementos duplicados o faltantes, lo que produciría soluciones incorrectas.

Ejemplo: dada la matriz M encontrar para múltiples consultas la suma de todos los elemento en una submatriz $Q_{(i1,j1),(i2,j2)}$:

	1	9	6	3	7
	7	5	3	0	5
M =	0	7	6	5	3
	7	8	9	5	0
	9	5	3	7	8

En el intervalo $Q_{(2,2),(3,4)}$ el resultado es 5+3+0+7+6+5=26.

En el caso de 1D se definió $suma(x) = \sum_{k=1}^{x} V_k$, ahora esta debe tener dos dimensiones, es decir, suma(i,j) debe contener la suma de los elementos en la submatriz $Q_{(1,1),(i,j)}$, entonces ahora se definirá: $suma(i,j) = \sum_{k=1}^{i} \sum_{w=1}^{j} V_{k,w}$, mas sin embargo precalcular suma(i,j) de forma eficiente requiere de usar el principio de inclusión-exclusión, de manera trivial se puede calcular la primera fila como $suma(1,j) = \sum_{w=1}^{j} V_{1,w}$ y la primera columna como $suma(i,1) = \sum_{k=1}^{i} V_{k,1}$, estos servirán como casos base, ahora para pre-calcular el resto de la matriz se puede hacer a partir de resultados anteriores pero se debe tener algo de cuidado, por ejemplo si se toma $suma(2,2) = suma(1,2) + suma(2,1) + M_{2,2}$ se obtendría un resultado incorrecto pues se estaría realizando la siguiente operación: $(M_{1,1} + M_{1,2}) + (M_{1,1}, M_{2,1}) + M_{2,2}$, se puede observar que el elemento $M_{1,1}$ se esta sumando dos veces, acá se aplica el principio de inclusión-exclusión: $|A| \cup |B| = |A| + |B| - |A \cap B|$ lo que significa que hace falta quitar la intersección, esta es suma(1,1) entonce se puede generalizar como: $suma(i,j) = M_{i,j} + suma(i-1,j) + suma(i,j-1) - suma(i-1,j-1)$.

Una vez construido el pre-calculo es necesario realizar las consultas, de igual manera se debe tener cuidado de no sumar un mismo intervalo mas de una vez, entonces para encontrar la suma en el intervalo $Q_{(i1,j1),(i2,j2)}$ se tomaría suma(i2,j2) esta contendría $\sum_{k=1}^{i2} \sum_{w=1}^{j2} V_{k,w}$, esta tiene elemento adicionales como lo muestra la figura 1, al restarle suma(i1-1,j2) se quitan algunos elementos (figura 2), al restarle suma(i2,j1-1) pasaríamos a restar dos veces el intervalo $M_{(1,1),(i1-1,j1-1)}$ (figura 3), por lo tanto es necesario reponer lo restante agregando suma(i1-1,j1-1) (figura 4), de esta manera se puede generalizar la formula: $\sum_{k=i1}^{i2} \sum_{w=j1}^{j2} V_{k,w} = suma(i2,j2) - suma(i1-1,j2) - suma(i2,j1-1) + suma(i1-1,j1-1)$.

Para la solución en C++ la primera fila y columna de la tabla donde se guardara el precalculo se deberá llenar con el elemento neutro, el cero, luego los casos base (la primera fila y columna) y por ultimo se llenaría el resto de la tabla siguiendo las formulas antes establecidas.

```
void precalcular(){
1
       memset(memo, 0, sizeof(memo));
2
       memo[1][1] = M[0][0];
3
       for (int i = 2; i <= fila; i++)</pre>
4
           memo[i][1] = memo[i-1][1] + M[i - 1][0];
5
       for (int j = 2; j \le col; j++)
6
           memo[1][j] = memo[1][j-1] + M[0][j-1];
7
       for (int i = 2; i <= fila; i++)</pre>
9
       for (int j = 2; j <= col; j++)</pre>
10
           memo[i][j] = memo[i][j - 1] + memo[i - 1][j] +
11
                            M[i - 1][j - 1] - memo[i - 1][j - 1];
12
  }
13
14
  int consulta(int f1, int c1, int f2, int c2){
15
       return memo[f2][c2] - memo[f1-1][c2] - memo[f2][c1-1] + memo[f1-1][c1-1];
16
17
```

2. Bibliografia

```
http://trainingcamp.org.ar/anteriores/2017/clases.shtml.
http://programacioncompetitivaufps.github.io/
https://www.geeksforgeeks.org/dynamic-programming-subset-sum-problem/
libro: competitive programming 3.
```