EXPONENTIAL DRIVING FUNCTION FOR THE LÖWNER EQUATION

DMITRI PROKHOROV

ABSTRACT. We consider the chordal Löwner differential equation with the model driving function $\sqrt[3]{t}$. Holomorphic and singular solutions are represented by their series. It is shown that a disposition of values of different singular and branching solutions is monotonic, and solutions to the Löwner equation map slit domains onto the upper half-plane. The slit is a C^1 -curve. We give an asymptotic estimate for the ratio of harmonic measures of the two slit sides.

1. Introduction

The Löwner differential equation introduced by K. Löwner [11] served a source to study properties of univalent functions on the unit disk. Nowadays it is of growing interest in many areas, see, e.g., [12]. The Löwner equation for the upper half-plane \mathbb{H} appeared later (see, e.g., [1]) and became popular during the last decades. Define a function $w = f(z, t), z \in \mathbb{H}, t \geq 0$,

(1)
$$f(z,t) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right), \quad z \to \infty,$$

which maps $\mathbb{H} \setminus K_t$ onto \mathbb{H} and solves the *chordal* Löwner ordinary differential equation

(2)
$$\frac{df(z,t)}{dt} = \frac{2}{f(z,t) - \lambda(t)}, \quad f(z,0) = z, \quad z \in \mathbb{H},$$

where the driving function $\lambda(t)$ is continuous and real-valued.

The conformal maps f(z,t) are continuously extended onto $z \in \mathbb{R}$ minus the closure of K_t and the extended map also satisfies equation (2). Following [10], we pay attention to an old problem to determine, in terms of λ , when K_t is a Jordan arc, $K_t = \gamma(t)$, $t \geq 0$, emanating from the real axis \mathbb{R} . In this case f(z,t) are continuously extended onto the two sides of $\gamma(t)$,

(3)
$$\lambda(t) = f(\gamma(t), t), \quad \gamma(t) = f^{-1}(\lambda(t), t).$$

Points $\gamma(t)$ are treated as prime ends which are different for the two sides of the arc. Note that Kufarev [9] proposed a counterexample of the non-slit mapping for the radial Löwner equation in the disk. For the chordal Löwner equation, Kufarev's example corresponds to $\lambda(t) = 3\sqrt{2}\sqrt{1-t}$, see [8], [10] for details.

Equation (2) admits integrating in quadratures for partial cases of $\lambda(t)$ studied in [8], [15]. The integrability cases of (2) are invariant under linear and scaling

²⁰¹⁰ Mathematics Subject Classification. Primary 30C35; Secondary 30C20, 30C80.

Key words and phrases. Löwner equation, singular solution.

transformations of $\lambda(t)$, see, e.g., [10]. Therefore, assume without loss of generality that $\lambda(0) = 0$ and, equivalently, $\gamma(0) = 0$.

The picture of singularity lines for driving functions $\lambda(t)$ belonging to the Lipschitz class Lip(1/2) with the exponent 1/2 is well studied, see, e.g., [10] and references therein.

This article is aimed to show that in the case of the cubic root driving function $\lambda(t) = \sqrt[3]{t}$ in (2), that is,

(4)
$$\frac{df(z,t)}{dt} = \frac{2}{f(z,t) - \sqrt[3]{t}}, \quad f(z,0) = z, \quad \text{Im } z \ge 0,$$

the solution w = f(z,t) is a slit mapping for t > 0 small enough, i.e., $K_t = \gamma(t)$, 0 < t < T.

The driving function $\lambda(t) = \sqrt[3]{t}$ is chosen as a typical function of the Lipschitz class Lip(1/3). We do not try to cover the most general case but hope that the model driving function serves a demonstration for a wider class. By the way, the case when the trace γ is a circular arc meeting the real axis tangentially is studied in [14]. The explicit solution for the inverse function gave a driving term of the form $\lambda(t) = Ct^{\frac{1}{3}} + \ldots$ which corresponds to the above driving function asymptotically.

The main result of the article is contained in the following theorem which shows that f(z,t) is a mapping from a slit domain $D(t) = \mathbb{H} \setminus \gamma(t)$.

Theorem 1. Let f(z,t) be a solution to the Löwner equation (4). Then $f(\cdot,t)$ maps $D(t) = \mathbb{H} \setminus \gamma(t)$ onto \mathbb{H} for t > 0 small enough where $\gamma(t)$ is a C^1 -curve, except probably for the point $\gamma(0) = 0$.

Preliminary results of Section 2 in the article concern the theory of differential equations and preparations for the main proof.

Theorem 1 together with helpful lemmas are proved in Section 3.

Section 4 is devoted to estimates for harmonic measures of the two sides of the slit generated by the Löwner equation (4). Theorem 2 in this Section gives the asymptotic relation for the ratio of these harmonic measures as $t \to 0$.

In Section 5 we consider holomorphic solutions to (4) represented by power series and propose asymptotic expansions for the radius of convergence of the series.

2. Preliminary statements

Change variables $t \to \tau^3$, $g(z,\tau) := f(z,\tau^3)$, and reduce equation (4) to

(5)
$$\frac{dg(z,\tau)}{d\tau} = \frac{6\tau^2}{g(z,\tau) - \tau}, \quad g(z,0) = z, \quad \text{Im } z \ge 0.$$

Note that differential equations

$$\frac{dy}{dx} = \frac{Q(x,y)}{P(x,y)}$$

with holomorphic functions P(x, y) and Q(x, y) are well known both for complex and real variables, especially in the case of polynomials P and Q, see, e.g., [2], [3], [4], [13], [16], [17].

If $z \neq 0$, then $g(z,0) \neq 0$, and there exists a regular solution $g(z,\tau)$ to (5) holomorphic in τ for $|\tau|$ small enough which is unique for every $z \neq 0$. We are interested mostly in studying singular solutions to (5), i.e., those which do not satisfy the uniqueness conditions for equation (5). Every point $(g(z_0, \tau_0), \tau_0)$ such that $g(z_0, \tau_0) = \tau_0$ is a singular point for equation (5). If $\tau_0 \neq 0$, then $(g(z_0, \tau_0), \tau_0)$ is an algebraic solution critical point, and corresponding singular solutions to (5) through this point are expanded in series in terms $(\tau - \tau_0)^{1/m}$, $m \in \mathbb{N}$. So these singular solutions are different branches of the same analytic function, see [17, Chap.9, §1].

The point $(g(z_0, \tau_0), \tau_0) = (0, 0)$ is the only singular point of indefinite character for (5). It is determined when the numerator and denominator in the right-hand side of (5) vanish simultaneously. All the singular solutions to (5) which are not branches of the same analytic function pass through this point (0,0) [17, Chap.9, §1].

Regular and singular solutions to (5) behave according to the Poincaré-Bendixson theorems [13], [2], [17, Chap.9, §1]. Namely, two integral curves of differential equation (5) intersect only at the singular point (0,0). An integral curve of (5) can have multiple points only at (0,0). Bendixson [2] considered real integral curves globally and stated that they have endpoints at knots and focuses and have an extension through a saddle. Under these assumptions, the Bendixson theorem [2] makes possible only three cases for equation (5) in a neighborhood of (0,0): (a) an integral curve is closed, i.e., it is a cycle; (b) an integral curve is a spiral which tends to a cycle asymptotically; (c) an integral curve has the endpoint at (0,0).

Recall the integrability case [8] of the Löwner differential equation (2) with the square root forcing $\lambda(t) = c\sqrt{t}$. After changing variables $t \to \tau^2$, the singular point (0,0) in this case is a saddle according to the Poincaré classification [13] for linear differential equations. From the other side, another integrability case [8] with the square root forcing $\lambda(t) = c\sqrt{1-t}$, after changing variables $t \to 1-\tau^2$, leads to the focus at (0,0).

Going back to equation (5) remark that its solutions are infinitely differentiable with respect to the real variable τ , see [4, Chap.1, §1], [17, Chap.9, §1]. Hence recurrent evaluations of Taylor coefficients can help to find singular solutions provided that a resulting series will have a positive convergence radius [16, Chap.3, §1]. Apply this method to equation (5). Let

(6)
$$g_s(0,\tau) = \sum_{n=1}^{\infty} a_n \tau^n$$

be a a formal power series for singular solutions to (5). Note that g_s is not necessarily unique. It depends on the path along which z approaches to $0, z \notin K_{\tau}$. Substitute (6) into (5) and see that

(7)
$$\sum_{n=1}^{\infty} n a_n \tau^{n-1} \left(\sum_{n=1}^{\infty} a_n \tau^n - \tau \right) = 6\tau^2.$$

Equating coefficients at the same powers in both sides of (7) obtain that

$$(8) a_1(a_1 - 1) = 0.$$

This equation gives two possible values $a_1 = 1$ and $a_1 = 0$ to two singular solutions $g^+(0,\tau)$ and $g^-(0,\tau)$. In both cases equation (7) implies recurrent formulas for coefficients a_n^+ and a_n^- of $g^+(0,\tau)$ and $g^-(0,\tau)$ respectively,

(9)
$$a_1^+ = 1, \ a_2^+ = 6, \ a_n^+ = -\sum_{k=2}^{n-1} k a_k^+ a_{n+1-k}^+, \ n \ge 3,$$

(10)
$$a_1^- = 0, \ a_2^- = -3, \ a_n^- = \frac{1}{n} \sum_{k=2}^{n-1} k a_k^- a_{n+1-k}^-, \ n \ge 3,$$

Show that the series $\sum_{n=1}^{\infty} a_n^+ \tau^n$ formally representing $g^+(0,\tau)$ diverges for all $\tau \neq 0$.

Lemma 1. For $n \geq 2$, the inequalities

(11)
$$6^{n-1}(n-1)! \le |a_n^+| \le 12^{n-1}n^{n-3}$$

hold.

Proof. For n=2, the estimate (11) from below holds with the equality sign. Suppose that these estimates are true for $k=2,\ldots,n-1$ and substitute them in (7). For $n\geq 3$, we have

$$|a_n^+| = \sum_{k=2}^{n-1} k|a_k^+||a_{n+1-k}^+| \ge \sum_{k=2}^{n-1} k6^{k-1}(k-1)!6^{n-k}(n-k)! =$$

$$6^{n-1} \sum_{k=2}^{n-1} k!(n-k)! \ge 6^{n-1}(n-1)!.$$

This confirms by induction the estimate (11) from below.

Similarly, for n=2,3, the estimate (11) from above is easily verified. Suppose that these estimates are true for $k=2,\ldots,n-1$ and substitute them in (7). For $n\geq 4$, we have

$$|a_n^+| = \sum_{k=2}^{n-1} k |a_k^+| |a_{n+1-k}^+| \le \sum_{k=2}^{n-1} k 12^{k-1} k^{k-3} 12^{n-k} (n+1-k)^{n-2-k} = 12^{n-1} \sum_{k=2}^{n-1} k^{k-2} (n+1-k)^{n-2-k} \le 12^{n-1} \left(\sum_{k=2}^{n-2} (n-1)^{k-2} (n-1)^{n-2-k} + \frac{(n-1)^{n-3}}{2} \right)$$

$$< 12^{n-1} \left(\sum_{k=2}^{n-2} (n-1)^{n-4} + (n-1)^{n-4} \right) < 12^{n-1} n^{n-3}$$
which completes the proof.

Evidently, the upper estimates (11) are preserved for $|a_n^-|$, $n \geq 2$.

The lower estimates (11) imply divergence of $\sum_{n=1}^{\infty} a_n^{\dagger} \tau^n$ for $\tau \neq 0$. Therefore equation (5) does not have any holomorphic solution in a neighborhood of $\tau_0 = 0$.

There exist some methods to summarize the series $\sum_{n=1}^{\infty} a_n^+ \tau^n$, the Borel regular method among them [3], [16, Chap.3, §1]. Let

$$G(\tau) = \sum_{n=1}^{\infty} \frac{a_n^+}{n!} \tau^n,$$

this series converges for $|\tau| < 1/12$ according to Lemma 1. The Borel sum equals

$$h(\tau) = \int_0^\infty e^{-x} G(\tau x) dx$$

and solves (5) provided it determines an analytic function. The same approach is applied to $\sum_{n=1}^{\infty} a_n^- \tau^n$.

In any case solutions $g_1(0,\tau)$, $g_2(0,\tau)$ to (5) emanating from the singular point (0,0) satisfy the asymptotic relations

$$g_1(0,\tau) = \sum_{k=1}^n a_k^+ \tau^k + o(\tau^n), \quad g_2(0,\tau) = \sum_{k=1}^n a_k^- \tau^k + o(\tau^n), \quad \tau \to 0,$$

for all $n \geq 2$, $o(\tau^n)$ in both representations depend on n.

Let $f_1(0,t) := g_1(0,\tau^3)$, $f_2(0,t) := g_2(0,\tau^3)$. Since $f_1(0,t) = \sqrt[3]{t} + 6\sqrt[3]{t^2} + o(\sqrt[3]{t^2})$ and $f_2(0,t) = -3\sqrt[3]{t^2} + o(\sqrt[3]{t^2})$ as $t \to 0$, the inequality

$$f_2(0,t) < \sqrt[3]{t} < f_1(0,t)$$

holds for all t > 0 small enough.

Let us find representations for all other singular solutions to equation (4) which appear at t > 0. Suppose there is $z_0 \in \mathbb{H}$ and $t_0 > 0$ such that $f(z_0, t_0) = \sqrt[3]{t}$. Then $(f(z_0, t_0), t_0)$ is a singular point of equation (4), and $f(z_0, t)$ is expanded in series with powers $(t - t_0)^{n/m}$, $m \in \mathbb{N}$,

(12)
$$f(z_0,t) = \sqrt[3]{t_0} + \sum_{n=1}^{\infty} b_{n/m} (t - t_0)^{n/m}.$$

Substitute (12) into (4) and see that

$$\sum_{n=1}^{\infty} \frac{nb_{n/m}(t-t_0)^{n/m-1}}{m} \times$$

(13)
$$\left(\sum_{n=1}^{\infty} b_{n/m} (t-t_0)^{n/m} - \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2 \cdot \dots (3n-4)}{n!} \frac{(t-t_0)^n}{(3t_0)^n}\right) = 2.$$

Equating coefficients at the same powers in both sides of (13) obtain that m=2 and

$$(14) (b_{1/2})^2 = 4.$$

This equation gives two possible values $b_{1/2} = 2$ and $b_{1/2} = -2$ to two branches $f_1(z_0, t)$ and $f_2(z_0, t)$ of the solution (12). Indeed, we can accept only one of possibilities, for example $b_{1/2} = 2$, while the second case is obtained by going to another

branch of $(t-t_0)^{n/2}$ when passing through $t=t_0$. So we have recurrent formulas for coefficients $b_{n/2}$ of $f_1(z_0,t)$ and $f_2(z_0,t)$,

(15)
$$b_{1/2} = 2$$
, $b_{n/2} = \frac{1}{n+1} \left(c_{n/2} - \frac{1}{2} \sum_{k=2}^{n-1} k b_{k/2} (b_{(n+1-k)/2} - c_{(n+1-k)/2}) \right)$, $n \ge 2$,

where

(16)
$$c_{(2k-1)/2} = 0, \quad c_k = \frac{(-1)^{k-1} 2 \cdot \dots (3k-4)}{3^k t_0^{k-1/3} k!}, \quad k = 1, 2, \dots$$

Since

$$f_1(z_0, t) = \sqrt[3]{t_0} + 2\sqrt{t - t_0} + o(\sqrt{t - t_0}), \ f_2(z_0, t) = \sqrt[3]{t_0} - 2\sqrt{t - t_0} + o(\sqrt{t - t_0}),$$
$$\sqrt[3]{t} = \sqrt[3]{t_0} + \frac{1}{3t_0}(t - t_0) + o(t - t_0), \quad t \to t_0 + 0,$$

the inequality

$$f_2(z_0, t) < \sqrt[3]{t} < f_1(z_0, t)$$

holds for all $t > t_0$ close to t_0 .

3. Proof of the main results

The theory of differential equations claims that integral curves of equation (4) intersect only at the singular point (0,0) [17, Chap.9, §1]. In particular, this implies the local inequalities $f_2(0,t) < f_2(z_0,t) < \sqrt[3]{t} < f_1(z_0,t) < f_1(0,t)$ where $(f(z_0,t_0),t_0)$ is an algebraic solution critical point for equation (4). We will give an independent proof of these inequalities which can be useful for more general driving functions.

Lemma 2. For t > 0 small enough and a singular point $(f(z_0, t_0), t_0)$ for equation (4), $0 < t_0 < t$, the following inequalities

$$f_2(0,t) < f_2(z_0,t) < \sqrt[3]{t} < f_1(z_0,t) < f_1(0,t)$$

hold.

Proof. To show that $f_1(z_0,t) < f_1(0,t)$ let us subtract equations

$$\frac{df_1(0,t)}{dt} = \frac{2}{f_1(0,t) - \sqrt[3]{t}}, \quad f_1(0,0) = 0,$$

$$\frac{df_1(z_0,t)}{dt} = \frac{2}{f_1(z_0,t) - \sqrt[3]{t}}, \quad f_1(z_0,t_0) = \sqrt[3]{t_0},$$

and obtain

$$\frac{d(f_1(0,t) - f_1(z_0,t))}{dt} = \frac{2(f_1(z_0,t) - f_1(0,t))}{(f_1(0,t) - \sqrt[3]{t})(f_1(z_0,t) - \sqrt[3]{t})},$$

which can be written in the form

$$\frac{d\log(f_1(0,t) - f_1(z_0,t))}{dt} = \frac{-2}{(f_1(0,t) - \sqrt[3]{t})(f_1(z_0,t) - \sqrt[3]{t})}.$$

Suppose that $T > t_0$ is the smallest number for which $f_1(0,T) = f_1(z_0,T)$. This implies that

(17)
$$\int_{t_0}^{T} \frac{dt}{(f_1(0,t) - \sqrt[3]{t})(f_1(z_0,t) - \sqrt[3]{t})} = \infty.$$

To evaluate the integral in (17) we should study the behavior of $f_1(z_0, t) - \sqrt[3]{t}$ with the help of differential equation

(18)
$$\frac{d(f_1(z_0,t) - \sqrt[3]{t})}{dt} = \frac{2}{f_1(z_0,t) - \sqrt[3]{t}} - \frac{1}{3\sqrt[3]{t^2}} = \frac{\sqrt[3]{t} + 6\sqrt[3]{t^2} - f_1(z_0,t)}{3\sqrt[3]{t^2}(f_1(z_0,t) - \sqrt[3]{t})}.$$

Calculate that $a_3^+ = -72$ and write the asymptotic relation

$$f_1(0,t) = \sqrt[3]{t} + 6\sqrt[3]{t^2} - 72t + o(t), \quad t \to +0.$$

There exists a number T'>0 such that for 0 < t < T', $\sqrt[3]{t} + 6\sqrt[3]{t^2} > f_1(0,t)$. Consequently, the right-hand side in (18) is positive for 0 < t < T'. Note that T' does not depend on t_0 . The condition "t>0 small enough" in Lemma 2 is understood from now as 0 < t < T'. We see from (18) that for such t, $f_1(z_0,t) - \sqrt[3]{t}$ is increasing with t, $t_0 < t < T < T'$. Therefore, the integral in the left-hand side of (17) is finite. The contradiction against equality (17) denies the existence of T with the prescribed properties which proves the third and the fourth inequalities in Lemma 2.

The rest of inequalities in Lemma 2 are proved similarly and even easier. To show that $f_2(z_0,t) > f_2(0,t)$ let us subtract equations

$$\frac{df_2(0,t)}{dt} = \frac{2}{f_2(0,t) - \sqrt[3]{t}}, \quad f_2(0,0) = 0,$$

$$\frac{df_2(z_0,t)}{dt} = \frac{2}{f_2(z_0,t) - \sqrt[3]{t}}, \quad f_2(z_0,t_0) = \sqrt[3]{t_0},$$

and obtain

$$\frac{d(f_2(0,t) - f_2(z_0,t))}{dt} = \frac{2(f_2(z_0,t) - f_2(0,t))}{(f_2(0,t) - \sqrt[3]{t})(f_2(z_0,t) - \sqrt[3]{t})},$$

which can be written in the form

$$\frac{d\log(f_2(z_0,t) - f_2(0,t))}{dt} = \frac{-2}{(f_2(0,t) - \sqrt[3]{t})(f_2(z_0,t) - \sqrt[3]{t})}.$$

Suppose that $T > t_0$ is the smallest number for which $f_2(z_0, T) = f_2(0, T)$. This implies that

(19)
$$\int_{t_0}^{T} \frac{dt}{(f_2(0,t) - \sqrt[3]{t})(f_2(z_0,t) - \sqrt[3]{t})} = \infty.$$

To evaluate the integral in (19) we should study the behavior of $f_2(z_0, t) - \sqrt[3]{t}$ with the help of differential equation

(20)
$$\frac{d(f_2(z_0,t) - \sqrt[3]{t})}{dt} = \frac{2}{f_2(z_0,t) - \sqrt[3]{t}} - \frac{1}{3\sqrt[3]{t^2}} = \frac{\sqrt[3]{t} + 6\sqrt[3]{t^2} - f_2(z_0,t)}{3\sqrt[3]{t^2}(f_2(z_0,t) - \sqrt[3]{t})}.$$

Since

$$f_2(0,t) = -3\sqrt[3]{t^2} + o(\sqrt[3]{t^2}), \ t \to +0,$$

there exists a number T''>0 such that for 0 < t < T'', $\sqrt[3]{t} + 6\sqrt[3]{t^2} > f_2(0,t)$. Consequently, the right-hand side in (20) is positive for 0 < t < T''. We see from (20) that for such t, $f_2(0,t) - \sqrt[3]{t}$ is decreasing with t, $t_0 < t < T < T''$. Therefore, the integral in the left-hand side of (19) is finite. The contradiction against equality (19) denies the existence of T with the prescribed properties which completes the proof.

Add and complete the inequalities of Lemma 2 by the following statements demonstrating a monotonic disposition of values for different singular solutions.

Lemma 3. For t > 0 small enough and singular points $(f(z_1, t_1), t_1), (f(z_0, t_0), t_0)$ for equation (4), $0 < t_1 < t_0 < t$, the following inequalities

$$f_2(z_1, t) < f_2(z_0, t), \quad f_1(z_0, t) < f_1(z_1, t)$$

hold.

Proof. Similarly to Lemma 2, subtract equations

$$\frac{df_1(z_1,t)}{dt} = \frac{2}{f_1(z_1,t) - \sqrt[3]{t}}, \quad f_1(z_1,t_1) = \sqrt[3]{t_1},$$

$$\frac{df_1(z_0,t)}{dt} = \frac{2}{f_1(z_0,t) - \sqrt[3]{t}}, \quad f_1(z_0,t_0) = \sqrt[3]{t_0},$$

and obtain

$$\frac{d(f_1(z_1,t)-f_1(z_0,t))}{dt} = \frac{2(f_1(z_0,t)-f_1(z_1,t))}{(f_1(z_1,t)-\sqrt[3]{t})(f_1(z_0,t)-\sqrt[3]{t})},$$

which can be written in the form

$$\frac{d\log(f_1(z_1,t) - f_1(z_0,t))}{dt} = \frac{-2}{(f_1(z_1,t) - \sqrt[3]{t})(f_1(z_0,t) - \sqrt[3]{t})}.$$

Suppose that $T > t_0$ is the smallest number for which $f_1(z_1, T) = f_1(z_0, T)$. This implies that

(21)
$$\int_{t_0}^{T} \frac{dt}{(f_1(z_1, t) - \sqrt[3]{t})(f_1(z_0, t) - \sqrt[3]{t})} = \infty.$$

To evaluate the integral in (21) apply to (18) and obtain that there exists a number T' > 0 such that for 0 < t < T', $f_1(z_0, t) - \sqrt[3]{t}$ is increasing with $t, t_0 < t < T < T'$. Therefore, the integral in the left-hand side of (21) is finite. The contradiction

against equality (21) denies the existence of T with the prescribed properties which proves the second inequality of Lemma 3.

To prove the first inequality of Lemma 3 subtract equations

$$\frac{df_2(z_1,t)}{dt} = \frac{2}{f_2(z_1,t) - \sqrt[3]{t}}, \quad f_2(z_1,t_1) = \sqrt[3]{t_1},$$
$$\frac{df_2(z_0,t)}{dt} = \frac{2}{f_2(z_0,t) - \sqrt[3]{t}}, \quad f_2(z_0,t_0) = \sqrt[3]{t_0},$$

and obtain after dividing by $f_2(z_1,t) - f_2(z_0,t)$

$$\frac{d\log(f_2(z_0,t)-f_2(z_1,t))}{dt} = \frac{-2}{(f_2(z_1,t)-\sqrt[3]{t})(f_2(z_0,t)-\sqrt[3]{t})}.$$

Suppose that $T > t_0$ is the smallest number for which $f_2(z_0, T) = f_2(z_1, T)$. This implies that

(22)
$$\int_{t_0}^{T} \frac{dt}{(f_2(z_1, t) - \sqrt[3]{t})(f_2(z_0, t) - \sqrt[3]{t})} = \infty.$$

To evaluate the integral in (22) apply to (20) and obtain that $\sqrt[3]{t} + 6\sqrt[3]{t^2} > \sqrt[3]{t} > f_2(0,t)$. Consequently, the right-hand side in (20) is positive and we see that $f_2(0,t) - \sqrt[3]{t}$ is decreasing with t, $t_0 < t < T$. Therefore, the integral in the left-hand side of (22) is finite. The contradiction against equality (22) denies the existence of T with the prescribed properties which completes the proof.

Proof of Theorem 1.

For $t_0 > 0$, there is a hull $K_{t_0} \subset \mathbb{H}$ such that $f(\cdot, t_0)$ maps $\mathbb{H} \setminus K_{t_0}$ onto \mathbb{H} . We refer to [10] for definitions and more details. The hull K_{t_0} is driven by $\sqrt[3]{t}$. The function $f(\cdot, t_0)$ is extended continuously onto the set of prime ends on $\partial(\mathbb{H} \setminus K_{t_0})$ and maps this set onto \mathbb{R} . One of the prime ends is mapped on $\sqrt[3]{t_0}$. Let $z_0 = z_0(t_0)$ represent this prime end.

Lemmas 2 and 3 describe the structure of the pre-image of \mathbb{H} under $f(\cdot,t)$. All the singular solutions $f_1(0,t)$, $f_2(0,t)$, $f_1(z_0,t)$, $f_2(z_0,t)$, $0 < t_0 < t < T'$, are real-valued and satisfy the inequalities of Lemmas 2 and 3. So the segment $I = [f_2(0,t), f_1(0,t)]$ is the union of the segments $I_2 = [f_2(0,t), \sqrt[3]{t}]$ and $I_1 = [\sqrt[3]{t}, f_1(0,t)]$. The segment I_2 consists of points $f_2(z(\tau),t)$, $0 \le \tau < t$, and the segment I_1 consists of points $f_1(z(\tau),t)$, $0 \le \tau < t$. All these points belong to the boundary $\mathbb{R} = \partial \mathbb{H}$. This means that all the points $z(\tau)$, $0 \le \tau < t$, belong to the boundary $\partial(\mathbb{H} \setminus K_t)$ of $\mathbb{H} \setminus K_t$. Moreover, every point $z(\tau)$ except for the tip determines exactly two prime ends corresponding to $f_1(z(\tau),t)$ and $f_2(z(\tau),t)$. Evidently, $z(\tau)$ is continuous on [0,t]. This proves that $z(\tau) := \gamma(\tau)$ represents a curve $\gamma := K_t$ with prime ends corresponding to points on different sides of γ . This proves that $f^{-1}(w,t)$ maps \mathbb{H} onto the slit domain $\mathbb{H} \setminus \gamma(t)$ for t > 0 small enough.

It remains to show that $\gamma(t)$ is a C^1 -curve. Fix $t_0 > 0$ from a neighborhood of t = 0. Denote $g(w,t) = f^{-1}(w,t)$ an inverse of f(z,t), and $h(w,t) := f(g(w,t_0),t)$, $t \ge t_0$. The arc $\gamma[t_0,t] := K_t \setminus K_{t_0}$ is mapped by $f(z,t_0)$ onto a curve $\gamma_1(t)$ in \mathbb{H}

emanating from $\sqrt[3]{t_0} \in \mathbb{R}$. So the function h(w,t) is well defined on $\mathbb{H} \setminus \gamma_1(t_0)$, $t \ge t_0$. Expand h(w,t) near infinity,

$$h(w,t) = g(w,t_0) + \frac{2t}{g(w,t_0)} + O\left(\frac{1}{g^2(w,t_0)}\right) = w + \frac{2(t-t_0)}{w} + O\left(\frac{1}{w^2}\right).$$

Such expansion satisfies (1) after changing variables $t \to t - t_0$. The function h(w, t) satisfies the differential equation

$$\frac{dh(w,t)}{dt} = \frac{2}{h(w,t) - \sqrt[3]{t}}, \quad h(w,t_0) = w, \quad w \in \mathbb{H}.$$

This equation becomes the Löwner differential equation if $t_1 := t - t_0$, $h_1(w, t_1) := h(w, t_0 + t_1)$,

(23)
$$\frac{dh_1(w,t_1)}{dt_1} = \frac{2}{h_1(w,t_1) - \sqrt[3]{t_1 + t_0}}, \quad h_1(w,0) = w, \quad w \in \mathbb{H}.$$

The driving function $\lambda(t_1) = \sqrt[3]{t_1 + t_0}$ in (23) is analytic for $t_1 \geq 0$. It is known [1, p.59] that under this condition $h_1(w, t_1)$ maps $\mathbb{H} \setminus \gamma_1$ onto \mathbb{H} where γ_1 is a C^1 -curve in \mathbb{H} emanating from $\lambda(0) = \sqrt[3]{t_0}$. The same does the function h(w, t).

Go back to $f(z,t) = h(f(z,t_0),t)$ and see that f(z,t) maps $\mathbb{H} \setminus \gamma(t)$ onto \mathbb{H} , $\gamma(t) = \gamma[0,t_0] \cup \gamma[t_0,t]$, and $\gamma[t_0,t]$ is a C^1 -curve. Tending t_0 to 0 we prove that $\gamma(t)$ is a C^1 -curve, except probably for the point $\gamma(0) = 0$. This completes the proof.

4. Harmonic measures of the slit sides

The function f(z,t) solving (4) maps $\mathbb{H} \setminus \gamma(t)$ onto \mathbb{H} . The curve $\gamma(t)$ has two sides. Denote $\gamma_1 = \gamma_1(t)$ the side of γ which is mapped by the extended function f(z,t) onto $I_1 = [\sqrt[3]{t}, f_1(0,t)]$. Similarly, $\gamma_2 = \gamma_2(t)$ is the side of γ which is the pre-image of $I_2 = [f_2(0,t), \sqrt[3]{t}]$ under f(z,t).

Remind that the harmonic measures $\omega(f^{-1}(i,t); \gamma_k, \mathbb{H} \setminus \gamma(t), t)$ of γ_k at $f^{-1}(i,t)$ with respect to $\mathbb{H} \setminus \gamma(t)$ are defined by the functions ω_k which are harmonic on $\mathbb{H} \setminus \gamma(t)$ and continuously extended on its closure except for the endpoints of γ , $\omega_k|_{\gamma_k(t)} = 1$, $\omega_k|_{\mathbb{R} \cup (\gamma(t) \setminus \gamma_k(t))} = 0$, k = 1, 2, see, e.g., [6, Chap.3, §3.6]. Denote

$$m_k(t) := \omega(f^{-1}(i,t); \gamma_k, \mathbb{H} \setminus \gamma(t), t), \quad k = 1, 2.$$

Theorem 2. Let f(z,t) be a solution to the Löwner equation (4). Then

(24)
$$\lim_{t \to +0} \frac{m_1(t)}{m_2^2(t)} = 6\pi.$$

Proof. The harmonic measure is invariant under conformal transformations. So

$$\omega(f^{-1}(i,t); \gamma_k, \mathbb{H} \setminus \gamma(t), t) = \Omega(i; f(\gamma_k, t), \mathbb{H}, t)$$

are defined by the harmonic functions Ω_k which are harmonic on \mathbb{H} and continuously extended on \mathbb{R} except for the endpoints of $f(\gamma_k, t)$, $\Omega_k|_{f(\gamma_k, t)} = 1$, $\Omega_k|_{\mathbb{R} \setminus f(\gamma_k, t)} = 0$, k = 1, 2. The solution of the problem is known, see, e.g., [5, p.334]. Namely,

$$m_k(t) = \frac{\alpha_k(t)}{\pi}$$

where $\alpha_k(t)$ is the angle under which the segment $I_k = I_k(t)$ is observed from the point w = i, k = 1, 2. It remains to find asymptotic expansions for $\alpha_k(t)$.

Since

$$f_1(0,t) = \sqrt[3]{t} + 6\sqrt[3]{t^2} + O(t), \quad f_2(0,t) = -3\sqrt[3]{t^2} + O(t), \quad t \to +0,$$

after elementary geometrical considerations we have

$$\alpha_1(t) = \arctan f_1(0, t) - \arctan \sqrt[3]{t} = 6\sqrt[3]{t^2} + O(t), \quad t \to +0,$$

$$\alpha_2(t) = \arctan \sqrt[3]{t} - \arctan f_2(0, t) = \sqrt[3]{t} + 3\sqrt[3]{t^2} + O(t), \quad t \to +0.$$

This implies that

$$\frac{m_1(t)}{m_2^2(t)} = \pi \frac{6\sqrt[3]{t^2} + O(t)}{(\sqrt[3]{t} + 3\sqrt[3]{t^2} + O(t))^2} = 6\pi (1 + O(\sqrt[3]{t})), \quad t \to +0,$$

which leads to (24) and completes the proof.

Remark 1. The relation similar to (24) follows from [14] for the two sides of the circular slit $\gamma(t)$ in \mathbb{H} such that $\gamma(t)$ is tangential to \mathbb{R} at z=0.

5. Representation of holomorphic solutions

Holomorphic solutions to (4) or, equivalently, to (5) appear in a neighborhood of every non-singular point $(z_0, 0)$. We will be interested in real solutions corresponding to $z_0 \in \mathbb{R}$.

Put $z_0 = \epsilon > 0$ and let

(25)
$$f(\epsilon, t) = \epsilon + \sum_{n=1}^{\infty} a_n(\epsilon) t^{n/3}$$

be a solution of equation (4) holomorphic with respect to $\tau = \sqrt[3]{t}$. Change $\sqrt[3]{t}$ by τ and substitute (25) in (5) to get that

(26)
$$\sum_{n=1}^{\infty} n a_n(\epsilon) \tau^{n-1} \left[\epsilon - \tau + \sum_{n=1}^{\infty} a_n(\epsilon) \tau^n \right] = 6\tau^2.$$

Equate coefficients at the same powers in both sides of (26) and obtain equations

(27)
$$a_1(\epsilon) = 0, \quad a_2(\epsilon) = 0, \quad a_k(\epsilon) = \frac{6}{k\epsilon^{k-2}}, \quad k = 3, 4, 5,$$

and

(28)
$$a_n(\epsilon) = \frac{1}{n\epsilon} \left[(n-1)a_{n-1}(\epsilon) - \sum_{k=3}^{n-3} (n-k)a_{n-k}(\epsilon)a_k(\epsilon) \right], \quad n \ge 6.$$

The series in (25) converges for $|\tau| = |\sqrt[3]{t}| < R(\epsilon)$.

Theorem 3. The series in (25) converges for

(29)
$$|t| < \epsilon^3 + o(\epsilon^3), \quad \epsilon \to +0.$$

Proof. Estimate the convergence radius $R(\epsilon)$ following the Cauchy majorant method, see, e.g., [4, Chap.1, §§2-3], [16, Chap.3, §1]. The Cauchy theorem states: if the right-hand side in (5) is holomorphic on a product of the closed disks $|g - \epsilon| \le \rho_1$ and $|\tau| \le r_1$ and is bounded there by M, then the series $\sum_{n=1}^{\infty} a_n(\epsilon) \tau^n$ converges in the disk

$$|\tau| < R(\epsilon) = r_1 \left(1 - \exp\left\{ -\frac{\rho_1}{2Mr_1} \right\} \right).$$

In the case of equation (5) we have

$$\rho_1 + r_1 < \epsilon$$
, and $M = \frac{6r_1^2}{\epsilon - (\rho_1 + r_1)}$.

This implies that for $\rho_1 + r_1 = \epsilon - \delta$, $\delta > 0$,

$$R(\epsilon) = r_1 \left(1 - \exp\left\{ -\frac{\epsilon - \delta - r_1}{12r_1^2} \delta \right\} \right).$$

So $R(\epsilon)$ depends on δ and r_1 . Maximum of R with respect to δ is obtained for $\delta = (\epsilon - r_1)/2$. Hence, this maximum is equal to

(30)
$$R_1(\epsilon) = r_1 \left(1 - \exp\left\{ -\frac{(\epsilon - r_1)^2}{48r_1^3} \right\} \right),$$

where $R_1(\epsilon)$ depends on r_1 . Let us find a maximum of R_1 with respect to $r_1 \in (0, \epsilon)$. Notice that R_1 vanishes for $r_1 = 0$ and $r_1 = \epsilon$. Therefore the maximum of R_1 is attained for a certain root $r_1 = r_1(\epsilon) \in (0, \epsilon)$ of the derivative of R_1 with respect to r_1 . To simplify the calculations we put $r_1(\epsilon) = \epsilon c(\epsilon)$, $0 < c(\epsilon) < 1$. Now the derivative of R_1 vanishes for $c = c(\epsilon)$ satisfying

(31)
$$1 - \exp\left\{-\frac{(1-c)^2}{48\epsilon c^3}\right\} \left(1 + \frac{(1-c)(3-c)}{48\epsilon c^3}\right) = 0.$$

Choose a sequence $\{\epsilon_n\}_{n=1}^{\infty}$ of positive numbers, $\lim_{n\to\infty} \epsilon_n = 0$, such that $c(\epsilon_n)$ converge to c_0 as $n\to\infty$. Suppose that $c_0<1$. Then

$$\exp\left\{-\frac{(1-c(\epsilon_n))^2}{48\epsilon_n c^3(\epsilon_n)}\right\}\left(1+\frac{(1-c(\epsilon_n))(3-c(\epsilon_n))}{48\epsilon_n c^3(\epsilon_n)}\right)<1$$

for n large enough. Therefore $c(\epsilon_n)$ is not a root of equation (31) for $\epsilon = \epsilon_n$ and n large enough. This contradiction claims that $c_0 = 1$ for every sequence $\{\epsilon_n > 0\}_{n=1}^{\infty}$ tending to 0 with $\lim_{n\to\infty} c(\epsilon_n) = c_0$. So we proved that $c(\epsilon) \to 1$ as $\epsilon \to +0$.

Consequently, the maximum of R_1 with respect to r_1 is attained for $r_1(\epsilon) = \epsilon c(\epsilon) = \epsilon(1 + o(1))$ as $\epsilon \to +0$. Let $R_2 = R_2(\epsilon)$ denote the maximum of R_1 with respect to r_1 . It follows from (30) that (32)

$$R_2(\epsilon) = r_1(\epsilon) \left(1 - \exp\left\{ -\frac{(\epsilon - r_1(\epsilon))^2}{48r_1^3(\epsilon)} \right\} \right) = \epsilon c(\epsilon) \left(1 - \exp\left\{ -\frac{(1 - c(\epsilon))^2}{48\epsilon c^3(\epsilon)} \right\} \right).$$

Examine how fast does $c(\epsilon)$ tends to 1 as $\epsilon \to +0$. Choose a sequence $\{\epsilon_n > 0\}_{n=1}^{\infty}$, $\lim_{n\to\infty} \epsilon_n = 0$, such that the sequence $(1-c(\epsilon_n))^2/\epsilon_n$ converges to a non-negative

number or to ∞ . Denote

$$l := \lim_{n \to \infty} \frac{(1 - c(\epsilon_n))^2}{\epsilon_n}, \quad 0 \le l \le \infty.$$

If $0 < l < \infty$, then $(1 - c(\epsilon_n))/\epsilon_n$ tends to ∞ , and equation (31) with $\epsilon = \epsilon_n$ has no roots for n large enough.

If l=0, then, according to (31), $\lim_{n\to\infty}(1-c(\epsilon_n))/\epsilon_n=0$, and

$$\exp\left\{-\frac{(1-c(\epsilon_n))^2}{48\epsilon c^3(\epsilon)}\right\} \left(1 + \frac{(1-c(\epsilon_n))(3-c(\epsilon_n))}{48\epsilon_n c^3(\epsilon_n)}\right) = \left(1 - \frac{(1-c(\epsilon_n))^2}{48\epsilon_n c^3(\epsilon_n)} + o\left(\frac{(1-c(\epsilon_n))^2}{\epsilon_n}\right)\right) \left(1 + \frac{(1-c(\epsilon_n))(3-c(\epsilon_n))}{48\epsilon_n c^3(\epsilon_n)} + \right) = 1 + \frac{1-c(\epsilon_n)}{24\epsilon_n} + o\left(\frac{1-c(\epsilon_n)}{\epsilon_n}\right), \quad n \to \infty.$$

This implies again that equation (31) with $\epsilon = \epsilon_n$ has no roots for n large enough. Thus the only possible case is $l = \infty$ for all sequences $\{\epsilon_n > 0\}_{n=1}^{\infty}$ converging to 0. It follows from (32) that

(33)
$$R_2(\epsilon) = \max_{0 < r_1(\epsilon) < \epsilon} R_1(\epsilon) = \epsilon + o(\epsilon), \quad \epsilon \to 0.$$

In other words, the series in (25) converges for $|t| < (\epsilon + o(\epsilon))^3$, $\epsilon \to 0$, which implies the statement of Theorem 3 and completes the proof.

Remark 2. Evidently, a similar conclusion with the same formulas (27) and (28) is true for $\epsilon < 0$.

REFERENCES

- I. A. Aleksandrov, Parametric Continuations in the Theory of Univalent Functions, Nauka, Moscow, 1976.
- [2] I. Bendixson, Sur les courbes définies par les équations différentielles, Acta Math. 24 (1901), 1–88.
- [3] E. Borel, *Mémoire sur les séries divergentes*, Ann. Sci. École Norm. Sup. (3) **16** (1899), 9–131, see also: E. Borel, Leçons sur les Séries Divergentes, Paris, 1928.
- [4] V. V. Golubev, Lectures on the Analytic Theory of Differential Equations, Izdat. Tech.-Theor. Liter., Moscow-Leningrad, 1941.
- [5] G. M. Goluzin, Geometric Theory of Functions of Complex Variables, 2-nd Edit., Nauka: Moscow, 1966.
- [6] W. K. Hayman, P. B. Kennedy, Subharmonic Functions, vol.I, Academic Press, London New York, 1976.
- [7] G. Ivanov, D. Prokhorov, A. Vasil'ev, Non-slit and singular solutions to the Löwner equation, Bull. Sci. Mathém. doi: 10.1016/j.bulsci.2011.09.002.
- [8] W. Kager, B. Nienhuis, L.P. Kadanoff, Exact solutions for Loewner evolutions, J. Statist. Phys. 115 (2004), no. 3-4, 805–822.
- [9] P. P. Kufarev, A remark on integrals of Löwner's equation, Doklady Akad. Nauk SSSR (N.S.) 57, (1947), 655–656 (in Russian).
- [10] J. Lind, D.E. Marshall, S. Rohde, Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), no. 3, 527–573.
- [11] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121.

- [12] I. Markina, A. Vasil'ev, Virasoro algebra and dynamics in the space of univalent functions, Contemp. Math. **525** (2010), 85–116.
- [13] H. Poincaré, Sur les courbes définies par une équation différentielle, J. Math. Pures Appl. 4 (1886), no. 2, 151–217, see also: H. Poincaré, Oeuvres, vol. 1, Gauthier-Villars, Paris, 1916.
- [14] D. Prokhorov, A. Vasil'ev, Singular and tangent slit solutions to the Löwner equation, In: Analysis and Mathematical Physics, Eds.: B. Gustafsson, A. Vasil'ev. Birkhäuser, Basel-Boston-Berlin, 2009, 455–463.
- [15] D. Prokhorov, A. Zakharov, Integrability of a partial case of the Löwner equation, Izv. Saratov University. New Series 10 (2010), Ser. Math. Mech. Inform., no. 2, 19–23.
- [16] G. Sansone, Equazioni Differenziale nel Campo Reale, P. 1^a, 2^a Ediz., Bologna, 1948.
- [17] G. Sansone, Equazioni Differenziale nel Campo Reale, P. 2^a, 2^a Ediz., Bologna, 1949.
- D. Prokhorov: Department of Mathematics and Mechanics, Saratov State University, Saratov 410012, Russia

 $E ext{-}mail\ address: ProkhorovDV@info.sgu.ru}$