Fairness of decision algorithm in machine learning

Alessandro La Farciola, Leevi Rönty, Camilla Beneventano

EPFL

14 December 2022

Fairness in machine learning

Machine learning increasingly affects decision in domains protected by anti-discrimination law: ensure fairness in machine learning!

Fairness in machine learning

- Machine learning increasingly affects decision in domains protected by anti-discrimination law: ensure fairness in machine learning!
- Naïve approach: ignoring all protected attributes, such as race, color, sex, ...

Fairness in machine learning

- Machine learning increasingly affects decision in domains protected by anti-discrimination law: ensure fairness in machine learning!
- Naïve approach: ignoring all protected attributes, such as race, color, sex, ...

Definition (Demograpphic parity)

We say that a binary predictor $\hat{Y} \in \{0,1\}$ satisfies demographic parity with respect to a binary procted attribute $A \in \{0,1\}$ and Y if

$$Pr{\hat{Y} = 1|A = 0} = Pr{\hat{Y} = 1|A = 1}.$$

Equalized odds and equal opportunity

Definition (Equalized odds)

We say that a predictor \hat{Y} satisfies **equalized odds** with respect to protected attribute A and outcome Y, if \hat{Y} and A are independent conditional on Y, i.e. if

$$Pr\{\hat{Y}=1|A=0,Y=y\}=Pr\{\hat{Y}=1|A=1,Y=y\},\ y\in\{0,1\}.$$

Equalized odds and equal opportunity

Definition (Equalized odds)

We say that a predictor \hat{Y} satisfies **equalized odds** with respect to protected attribute A and outcome Y, if \hat{Y} and A are independent conditional on Y, i.e. if

$$Pr\{\hat{Y}=1|A=0, Y=y\} = Pr\{\hat{Y}=1|A=1, Y=y\}, y \in \{0,1\}.$$

Definition (Equal opportunity)

We say that a binary predictor \hat{Y} satisfies **equal opportunity** with respect to A and Y if

$$Pr\{\hat{Y}=1|A=0, Y=1\} = Pr\{\hat{Y}=1|A=1, Y=1\}.$$

Derived predictor

- Consider $R \in [0,1]$ a **score function** and the predictor $\hat{Y} = \mathbb{1}\{R > t\}$;
- Find $\tilde{Y} = \mathbb{1}\{R > t_A\}$ using different thresholds for different values of A;

Definition (Derived predictor)

A predictor \tilde{Y} is **derived** from a random variable R and the protected attribute A if it is a possibly randomized function of the random variables (R,A) alone. In particular, \tilde{Y} is independent of X conditional on (R,A).

It is always possible to construct a trivial predictor satisfying equalized odds or equal opportunity, but our goal is to derive predictors \tilde{Y} that minimize the expected loss $\mathbb{E}[\ell(\tilde{Y},Y)]$, where $\ell \colon \{0,1\}^2 \to \mathbb{R}$ is a loss function.

Deriving from a score function

Consider the A-conditional ROC curves

$$C_a(t) := (Pr\{\hat{R} > t | A = a, Y = 0\}, Pr\{\hat{R} > t | A = a, Y = 1\});$$

and the convex hull of the image of the conditional ROC curve

$$D_a = convhull\{C_a(t) : t \in [0,1]\}.$$

- for equal odds we must have that for all classes the resulting true positive rate and false positive rate must be in $D_0 \cap D_1$
- equal opportunity means that $C_0(t_0)$ and $C_1(t_1)$ agree in the second component.

Experiments: dataset

_	Age ÷	Workclass	Education [©]	Education.num	Occupation [‡]	Relationship	Race	Sex ÷	Capital.gain [©]	Capital.loss	Hours.per.week	label [‡]
- 1	39	State-gov	Bachelors	13	Adm-clerical	Not-in-family	White	Male	2174	0	40	<=50K
2	50	Self-emp-not-inc	Bachelors	13	Exec-managerial	Husband	White	Male	0	0	13	<=50K
3	38	Private	HS-grad	9	Handlers-cleaners	Not-in-family	White	Male	0	0	40	<=50K
4	53	Private	11th	7	Handlers-cleaners	Husband	Black	Male	0	0	40	<=50K
5	28	Private	Bachelors	13	Prof-specialty	Wife	Black	Female	0	0	40	<=50K
6	37	Private	Masters	14	Exec-managerial	Wife	White	Female	0	0	40	<=50K
7	49	Private	9th	5	Other-service	Not-in-family	Black	Female	0	0	16	<=50K
8	52	Self-emp-not-inc	HS-grad	9	Exec-managerial	Husband	White	Male	0	0	45	>50K
9	31	Private	Masters	14	Prof-specialty	Not-in-family	White	Female	14084	0	50	>50K
10	42	Private	Bachelors	13	Exec-managerial	Husband	White	Male	5178	0	40	>50K
11	37	Private	Some-college	10	Exec-managerial	Husband	Black	Male	0	0	80	>50K
12	30	State-gov	Bachelors	13	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	>50K
13	23	Private	Bachelors	13	Adm-clerical	Own-child	White	Female	0	0	30	<=50K
14	32	Private	Assoc-acdm	12	Sales	Not-in-family	Black	Male	0	0	50	<=50K
15	40	Private	Assoc-voc	11	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	>50K
16	34	Private	7th-8th	4	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	<=50K
17	25	Self-emp-not-inc	HS-grad	9	Farming-fishing	Own-child	White	Male	0	0	35	<=50K
18	32	Private	HS-grad	9	Machine-op-inspct	Unmarried	White	Male	0	0	40	<=50K
19	38	Private	11th	7	Sales	Husband	White	Male	0	0	50	<=50K
20	43	Self-emp-not-inc	Masters	14	Exec-managerial	Unmarried	White	Female	0	0	45	>50K

Experiments: predictors

- Sex Blind: same threshold for all classes
- Max profit: no fairness constraints, best threshold for each class
- Demographic parity: max profit subject to positive prediction rate per class being equal
- **Equal opportunity**: max profit subject to true positive rate per class being equal
- **Equalized odds**: same fraction of true positives and false positives for each group, different thresholds (possibly randomized)

Experiments: results

Experiments: results

How to choose demographic parity

Loss is a convex function of positive prediction rate \Rightarrow we can choose optimal prediction rate with ternary search.

Experiments: errors

	train loss	test loss
predictor		
blind	0.1482	0.1487
max profit	0.1481	0.1488
demographic parity	0.1664	0.1695
equal opportunity	0.1490	0.1491
equal odds	0.1624	0.1692

References:

- Hardt, M., Price, E., Srebro N., (2016). Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems (pp. 3315-3323).
- Adult. (1996). UCI Machine Learning Repository.

Thank you for the attention!