

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY

An International Journal

EDITOR: G. A. KERKUT (*Southampton*)

Author and Subject Indexes

Volumes 95-97 Parts A, B and C, 1990

PERGAMON PRESS

OXFORD · NEW YORK
FRANKFURT · SEOUL · SYDNEY · TOKYO

Comparative Biochemistry and Physiology

Editor

Professor G. A. KERKUT, Department of Physiology and Biochemistry, University of Southampton, Southampton SO9 3TU, UK (Executive Editor). Tel: (0703) 559122

Members of the Honorary Editorial Advisory Board

T. H. BULLOCK (La Jolla)	H. S. MASON (Portland)
C. B. COWEY (Guelph)	C. L. PROSSER (Urbana)
R. FÄNGE (Göteborg)	J. ROCHE (Paris)
E. FLOREY (Konstanz)	B. T. SCHEER (Santa Barbara)
W. S. HOAR (Vancouver)	C. A. VILLEE (Massachusetts)
H. KINOSITA (Saitama)	G. WALD (Harvard)
O. LOWENSTEIN (Birmingham)	J. H. WELSH (Maine)
C. MANWELL (Adelaide)	

Publishing, Subscription and Advertising Offices: Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, UK (Tel. Oxford 794141).

North America: Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, NY 10523, USA.

Annual Subscription Rates 1991 (including postage and insurance)

Annual institutional subscription rate (1991): Part A, Comparative Physiology DM 2745.00; Part B, Comparative Biochemistry DM 2745.00; Part C, Comparative Pharmacology and Toxicology DM 1930.00; combined subscription, DM 6700.00. 2 year institutional rate (1991/92): Part A, DM 5215.50; Part B, DM 5215.50; Part C, DM 3667.00; combined subscription, DM 12730.00.

Personal subscription rate for those whose library subscribes at the regular rate is available on request. Prices subject to change without notice. Parts A and B: three volumes of each part per year, four issues per volume. Part C: three volumes per year, two issues per volume. Subscription rates for Japan include despatch by air and prices are available on application.

Back Issues

Back issues of all previously published volumes, in both hard copy and on microform, are available direct from Pergamon Press offices.

Copyright © 1991 Pergamon Press plc

It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. However, assignment of copyright is not required from authors who work for organizations which do not permit such assignment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microform or any other reproductions of similar nature and translations. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holder.

Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinion or statement appears in this journal, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the sole responsibility of the contributor or advertiser concerned. Accordingly, the publishers, the editorial board and editors and their respective employees, officers and agents accept no responsibility or liability whatsoever for the consequences of any such inaccurate or misleading data, opinion or statement.

Photocopying information for users in the USA

The Item-fee Code for this publication indicates that authorization to photocopy items for internal or personal use is granted by the copyright holder for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service provided the stated fee for copying, beyond that permitted by Section 107 or 108 of the United States Copyright Law, is paid. The appropriate remittance of \$3.00 per copy per article is paid directly to the Copyright Clearance Center Inc., 27 Congress Street, Salem, MA 01970.

©™ The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.

Permission for other use

The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the publisher for such copying.

The Item-Fee Code for this publication is: 0300-9629/91 \$3.00 + 0.00

AUTHOR INDEX

- Abelenda, M. 97A, 611
Abou-Donia, M. B. 96C, 163
Abu Taleb, E. M. 95C, 79
Accomando, R. 95C, 271
Achazi, R. K. 96B, 533
Adachi, S. 95C, 253
Adame, B. L. 97B, 95
Adato, I. 96C, 427
Addison, A. W. 97B, 391
Addison, R. F. 95B, 317
Adelman, I. R. 95A, 139
Adessi, G. L. 95B, 303
Affonso, E. G. 97B, 435
Aguirre, P. 97C, 345
Ahl, J. S. B. 95A, 491
Ahmad, S. 95B, 355
Ahmadi, M. R. 95B, 115, 225
Aida, S. 96A, 45
Aikawa, J. 97C, 311
Akanbi, K. A. 97C, 133
Akatsuka, N. 97C, 311
Akers, R. M. 96A, 211
Akino, T. 95B, 763
Akiyama, H. 97A, 601
Akiyoshi, H. 97C, 201
Aknin, M. 96B, 559
Al-Ali, A. K. 96B, 821
Al-Hassan, L. A. J. 97B, 461
Al-Sabti, K. 97C, 179
Al-Zaid, N. S. 97B, 821
Alcacer, E. 95B, 483
Alhadeff, J. A. 97B, 713
Alino, S. 95B, 483
Allen, P. C. 96B, 361; 97B, 83
Allsop, J. 97B, 591
Alonso, J. A. 97A, 611
Alonso, J. C. 97A, 611
Alsharif, M. 96B, 527
Alstrup, U. 97A, 65
Amanai, K. 97B, 471
Ambid, L. 97A, 361; 97B, 809
Andersen, B. B. 96A, 473
Andersen, O. 97A, 607
Andersen, R. A. 95C, 111
Andersen, R. J. 97C, 233
Andersen, T. 95C, 111
Anderson, A. J. 96B, 267
Anderson, J. F. 97A, 501
Anderson, M. A. 96C, 71
Anderson, S. 96B, 267
Anderson, V. 96A, 187
Andersson, R. G. G. 96C, 399
Andersson, T. 95B, 247
Ando, S. 96B, 355
Andrews, J. F. 96A, 485
Angeletti, M. 96B, 445
Anger, K. 97B, 69
Annichiarico, M. 96B, 439
Anouassi, A. 97B, 667
Anthoni, U. 96B, 431; 97B, 569
Antuzzi, D. 95B, 35
Aoki, N. 96A, 323

Author Index

- 97B, 573
- Bondareva, V. M. 95B, 477
- Bone, L. W. 97A, 115, 221
- Bonfigli, A. 97B, 751
- Bonga, S. E. W. 95C, 313
- Bonino, M. J. B. de J. 95B, 229, 797
- Bonnet, K. M. 96C, 147
- Borgatti, A. R. 95B, 95; 97B, 343
- Borlakoglu, J. T. 97C, 151, 161, 173
- Bornancin, M. 96A, 303
- Borresen, T. 97B, 569
- Borth, W. 96B, 621
- Bossa, F. 96B, 367
- Bottcher, K. 96B, 243; 97A, 9
- Bouchard, O. 97B, 611
- Boujard, D. 96B, 129
- Bounias, M. 95B, 609
- Boutignon, F. 95B, 281
- Bowler, K. 96A, 177
- Bowman, B. P. 95B, 619
- Boyle, P. R. 95B, 311
- Bozinovic, F. 95A, 181
- Bradbrook, D. A. 95B, 365
- Brandan, E. 96B, 613
- Brandes, Ch. 97C, 53
- Breer, H. 95B, 861
- Bretschneider, F. 97A, 399, 405
- Betting, H. 96B, 147
- Breves, G. 96A, 495
- Brezden, B. L. 96A, 79
- Brighenti, L. 96B, 387
- Brittain, T. 96B, 291; 97B, 815
- Britton, C. H. III. 96B, 651
- Brix, O. 95B, 865
- Brock, J. A. 97A, 525
- Broeck, J. V. 95A, 373; 97A, 35
- Brogdon, W. G. 96B, 339
- Bronnikov, G. E. 97B, 411
- Broughton, G. II. 97B, 521
- Brown, C. R. 95A, 321
- Brown, E. M. 96A, 511
- Brown, J. H. 96B, 505
- Brown, J. J. 95A, 491; 95B, 131
- Brown, M. W. 96C, 181
- Brown, N. K. 96C, 65
- Brown, R. D. 97A, 253
- Bruch, R. C. 95A, 27
- Brunt, R. V. 96B, 527
- Bruscalupi, G. 97B, 597
- Bruschke, A. V. G. 95A, 109
- Bryant, B. P. 95A, 533
- Bryant, S. L. 97A, 573; 97B, 47
- Bryson, D. E. 96A, 511
- Bubenik, G. A. 95A, 163; 97A, 253
- Buchanan, K. D. 95C, 291; 96C, 345; 97C, 333
- Bucher, F. 96B, 795; 97C, 381
- Buhler, D. R. 97C, 127
- Bullesbach, E. E. 96B, 15
- Bump, K. D. 96A, 195
- Bunch, T. D. 96B, 201
- Burgos, M. J. 95B, 535
- Burnell, A. M. 95B, 125
- Burnstock, G. 97C, 363
- Busse, H-G. 97B, 447
- Butler, R. N. 97B, 333

Author Index

7

- Buttar, S. 96C, 245
Buttke, T. M. 95A, 417
Buzaleh, A. M. 96C, 177

Cai, Y. J. 95A, 139
Calabrese, L. 95B, 29
Callard, G. V. 97A, 307
Calvayrac, R. 97B, 113
Camardella, L. 96B, 367; 97B, 803
Cambiazo, V. 97B, 307
Campbell, T. A. 95B, 711
Canadas, S. 97C, 265
Canesi, L. 97C, 37
Canicatti, C. 95B, 145; 96B, 739
Cano, M. J. 96B, 647
Cantore, M. L. 96B, 53
Capasso, A. 97B, 339
Capo, C. 95B, 29
Capua, S. 96C, 125, 427
Capurro, M. de L. 97B, 649, 655
Capuzzo, J. M. 95A, 47
Cardoen, J. 96A, 309; 97A, 35
Carefoot, T. H. 95A, 309, 317, 553
Carginale, V. 97B, 339
Carlier, H. 96A, 479
Carlson, R. W. 95C, 181
Carlsson, U. 95B, 205
Carnicelli, D. 96B, 581
Carpene, E. 97C, 305
Carpenter, H. M. 97C, 127
Carraca, S. 95C, 265
Carratore, V. 97B, 803
Carreras, J. 97B, 159
Carroll, M. 95B, 855

Cartwright, A. L. 96A, 511
Caruso, C. 96B, 367
Carvajal, N. 95B, 85
Cascone, O. 95B, 229, 797
Cassano, G. 96A, 13
Castan, I. 97A, 361
Castaneda, M. 95B, 657
Castellano, F. 97B, 597
Castro, C. 95B, 657
Castro, E. 97C, 265
Cattell, K. J. 95C, 233
Cau, A. 95C, 297
Cavaggioni, A. 96B, 513
Ceccaldi, H. J. 95B, 233
Cecchettini, A. 95B, 107
Cech, J. J. Jr. 96A, 61
Cenini, P. 96B, 581
Chadwick, E. 97B, 193
Chambers, J. 95B, 39
Chan, S-m. 96A, 205
Chan, S. T. H. 95C, 159
Chandler, A. 95B, 159
Chandler, R. 95B, 261
Chang, C-F. 97A, 565
Chang, C. W. J. 97B, 227
Chang, F. 96C, 27
Chavez, M. 95C, 63
Chavez, M. A. 97A, 481
Chedrase, P. J. 95C, 35
Chen, J. 95A, 385
Chen, J. S. 97B, 483
Chen, M-R. 97A, 565
Chen, T. W. 96B, 715
Chesnel, F. 96B, 129

- Chiba, A. 96A, 253; 97A, 189, 385;
97C, 183

Chichibu, S. 96A, 253; 97A, 189,
385; 97C, 183

Chieffi, G. 95A, 249

Chinen, I. 96B, 475

Chitwood, D. J. 97B, 491

Chiu, K. W. 95C, 197

Chiva, M. 96B, 123

Chojnacka, M. 95A, 145

Christophersen, C. 96B, 431; 97B,
569

Chu, F-L. E. 95A, 385

Chuang, N-N. 95B, 165; 96B, 747,
787; 97C, 353

Chugun, A. 97C, 13

Chulavatnatol, M. 97B, 515

Church, R. A. 95B, 847

Cicero, R. 96B, 393

Cimino, G. 97B, 363

Cipollaro, M. 97B, 291

Cizova, D. 95B, 803

Clark, R. J. H. 95B, 847

Clarke, A. 96B, 505

Clarke, D. 96C, 185

Clem, L. W. 95A, 417

Clement, C. Y. 95B, 365

Cobb, J. L. S. 97A, 329

Cobb, J. S. 97C, 143

Cochran, D. G. 95A, 195

Cochrane, B. J. 95B, 619

Cochrane, W. 96B, 331

Cogoni, A. 95C, 297

Cohen, E. 96C, 125, 427

Coimbra, J. 95A, 343; 95C, 265

Colacino, J. M. 97A, 107

Colclasure, G. C. 96A, 147

Collatz, K. G. 95B, 613; 96B, 771

Collis, G. 95A, 101

Combarous, Y. 97B, 667

Conceicao, M. B. 97B, 275

Conill, F. 95B, 483

Conner, J. G. 96B, 309

Connick, J. H. 97C, 259

Conte, L. S. 96B, 811

Contenti, S. 96C, 39

Cook, B. 95B, 365

Cook, B. J. 95C, 19

Cooper, D. W. 95B, 571

Cooper, E. L. 97B, 321, 701

Cooper, W. F. 96C, 307

Coote, G. 97A, 461

Coppenhaver, D. H. 97B, 261

Coppes, Z. L. 96B, 1, 23, 33

Cornette, K. M. 95A, 487

Corti, A. 97C, 305

Coscarella, A. 96B, 439

Costa, P. 97C, 297

Coulson, R. A. 96A, 441

Coulson, T. D. 96A, 441

Cousins, C. J. 96B, 497

Coustans, M-F. 97A, 145

Coviello, A. 95C, 327

Cox, D. L. 95B, 767

Craig, S. P. 95B, 657

Cranford, J. A. 96A, 211

Craveiro, J. P. M. 95C, 91

Crispino, A. 97B, 363

Author Index

9

- Cross, T. F. 97B, 171
Cryer, A. 95B, 597; 95C, 217; 96C,
181; 97C, 215, 221
Csaba, G. 97B, 429
Cuenllas, E. 95B, 641, 705
Cui, Y. 96A, 163; 97A, 169, 381,
551
Curtis, L. R. 97C, 127

D'Alecy, L. G. 96B, 189
D'Aniello, A. 97B, 291
D'Avino, R. 96B, 367; 97B, 803
d'Istria, M. 95A, 249
da Silva, R. S. M. 96A, 415
Daabees, A. Y. 95C, 79
Daban, M. 96B, 123
Dabrowski, K. 95A, 481
Dafre, A. L. 96B, 215
Dahlsten, D. L. 96B, 305
Dalferes, E. R. Jr. 97B, 355
Daniel, E. 96B, 783
Daniel, J. Y. 96B, 405
Danielewicz, R. 97B, 49
Darabi, A. 95B, 821
Darke, B. M. 95B, 597
Das, J. 97B, 447
Davalli, P. 97C, 305
Davenport, J. 96B, 825
Davidovic, V. 97A, 217
Davie, P. S. 95A, 585
Davies, N. M. 97A, 461
Davis, L. D. 95A, 275
Davison, W. 95A, 585
Dawson, N. J. 96A, 333
de Alencar, M. M. 95B, 501
de Almeida-Val, V. M. F. 95B, 77;
97B, 435
de Avellar, M. C. W. 96C, 287
De Bianchi, A. G. 97B, 649, 655
de Bruno, M. P. 95C, 327
De Clerck, D. 97B, 727
de Frutos, P. G. 96B, 63
de Haan, N. 97C, 317
De la Higuera, M. 95A, 87
De Loof, A. 95A, 373; 95B, 459, 565;
95C, 31, 241; 96A, 309; 97A, 35;
97B, 727, 735; 97C, 195
de Meester, F. 97B, 707
de Moreno, J. E. A. 96B, 521
de Petrocellis, B. 97B, 339
De Santis, A. 96C, 115
De Santis, R. 96A, 263
de Silva, E. D. 97C, 233
de Vecchi, S. 96B, 1
de Villar, M. I. P. 96C, 361
de Vlieger, T. A. 95C, 163
Dean, V. C. 96A, 19
Deaton, L. E. 95C, 155
Dedovic, N. 97A, 217
Deeming, D. C. 96B, 183
Degand, P. 95B, 281
Degani, G. 96A, 525
Del Corso, A. 97B, 177
del Hoyo, N. 95B, 535
Del Villar, E. 96C, 217
DeLisle, D. M. 96B, 461
Dell'Agata, M. 96B, 439
Demael, A. 95C, 237

Author Index

- Demarne, Y. 96B, 195
 den Besten, P. J. 97B, 555
 Denbow, D. M. 95A, 393; 96C, 211
 Dendinger, J. E. 95B, 525
 Deng, L. R. 97A, 205
 Denver, R. J. 96A, 67
 Depledge, M. H. 96A, 473; 97C, 1
 Desco, M. 96B, 647
 DeShazer, J. A. 96A, 135
 Desmadril, M. 96B, 457
 Deviche, P. 96C, 393
 Dhur, A. 96C, 271
 Di Cola, D. 97B, 751
 Di Matteo, L. 95A, 249
 di Prisco, G. 95B, 29; 96B, 367;
 97B, 803
 Diaz, M. 95A, 79
 Dick, J. R. 96B, 73
 Dickens, J. C. 95B, 489
 Diehl, W. J. 96B, 343
 Diez, J. M. 96B, 825
 Difeo, T. J. 97B, 391
 Dils, R. R. 97C, 151, 161, 173
 Dimicoli, J.-L. 95B, 505
 Dimitriadis, V. K. 97A, 583
 Dinan, L. 95B, 365
 Diven, W. F. 95B, 39
 Djerassi, C. 96B, 597
 Doeller, J. E. 97A, 107
 Dogan, P. 97A, 179
 Doi, K. 96C, 367
 Donaldson, W. E. 95C, 99
 Donker, M. H. 97C, 119
 Doran, H. J. 97B, 171
 Douaire, M. 97B, 55
 Drake, A. F. 95B, 847
 Dresden, M. H. 95B, 473; 97B, 825
 Drnkova, J. 95C, 125
 Drozdz, M. 96C, 83
 Dubis, E. 95B, 699; 96B, 815
 Dubois, I. 95B, 381
 Duchene, C. 97A, 265
 Duffield, M. S. 96C, 291
 Duffy, L. K. 96B, 41; 97B, 261
 Dugornay, O. 97A, 145
 Duhaman, A. S. 97B, 209
 Dumdei, E. J. 97C, 233
 Dunier, M. 95C, 237
 Dunn, B. S. Jr. 95B, 541
 Dunnett, M. 97A, 249
 Dutil, J-D. 96A, 303
 Eakin, A. E. 95B, 657
 Eales, J. G. 97A, 165
 Ebara, A. 97A, 223, 601
 Eckersall, P. D. 96B, 309
 Edens, F. W. 97B, 755; 97C, 139
 Edjlali, M. 97B, 113
 Edwards, D. G. 96A, 61
 Eeckhoutte, C. 96C, 111
 Egge, H. 96B, 271
 Eguchi, M. 95B, 347, 559
 Eisenstein, R. S. 97B, 719
 Eisner, T. 96B, 705
 Ekker, M. 95C, 213
 El Deeb, S. O. 97B, 321
 El Domiaty, N. A. 95C, 79
 El Hachimi, Z. 96B, 457

- Elia, A. J. 95C, 55
Eliopoulos, E. E. 97B, 1, 837
Elkin, R. G. 96B, 157
Elliott, J. E. 96C, 205
Ellison, G. T. H. 97A, 23
Elsey, R. M. 95A, 55
Eng, J. 96B, 239
England, D. C. 97C, 133
Epstein, W. L. 96B, 553
Erdely, L. 96C, 411
Erfanian-Taheri, K. 97B, 447
Erfanian-Taheri, Y. 97B, 447
Eriksen, K. D. H. 95C, 111
Erkelens, C. 95B, 789
Eskridge, K. M. 96A, 135
Espelie, K. E. 95B, 131; 96B, 305
Espinet, C. 97B, 159
Evans, A. M. 97C, 283
Evans, D. V. 95C, 223
Eylath, U. 97A, 245, 423

Fabbri, E. 96B, 387
Fabiani, R. 97B, 675
Faidy, C. 96B, 137
Failla, M. L. 97C, 387
Fairweather, I. 96C, 345; 97C, 333
Fang, L-S. 95B, 219; 97B, 37
Fanta, E. 96C, 151
Fantin, A. M. B. 96B, 627
Farcı, R. 95C, 297
Farrell, A. P. 96B, 483
Farrell, A. P. 97C, 59
Fauconneau, B. 97C, 345
Faulkner, D. J. 97C, 233

Favero, N. 97C, 297
Favier, R. J. 97A, 543
Fell, R. D. 95A, 539
Fenerich-Verani, N. 97B, 235, 247,
579
Fenske, M. 95A, 259
Ferguson, J. C. 95A, 245
Ferguson, M. W. J. 96B, 183
Fernandez, F. 96B, 63
Ferns, P. N. 97B, 849
Ferracin, A. 96B, 439
Ferreira, E. 96B, 1
Fescemyer, H. W. 96B, 671
Fesenko, E. E. 95A, 325
Fetterer, R. H. 96B, 421
Fettman, M. J. 97B, 333
Fiedler, A. 97C, 71
Fielden, L. J. 96A, 227
Fiesler, S. E. 96B, 543
Fifis, T. 95B, 571
Figenschou, E. 97A, 427
Findlay, J. B. C. 96B, 513; 97B, 1,
837
Fioretti, E. 96B, 445
Fischer, K. 95A, 445
Fishkin, A. F. 97B, 521
Fitzgibbons, R. Jr. 97B, 521
Fitzpatrick, D. 95B, 317
Flamant, F. 97B, 55
Flanigan, J. 96B, 67
Fleith, M. 96A, 479
Fleming, W. R. 95A, 121, 441
Fletcher, C. R. 96A, 123
Flisinska-Bojanowska, A. 95A, 549;

Author Index

- 96A, 151
- Flores, A. 96B, 315
- Floris, G. 95C, 297
- Focant, B. 95B, 269; 97B, 547
- Focesi, Jr. A. 96B, 119
- Foglia, T. A. 96A, 511
- Fokkens, R. H. 97C, 317
- Fontan, A. 96C, 361
- Foote, W. C. 96B, 201
- Forlin, L. 95B, 247
- Forsman, L. 96A, 117
- Forster, M. E. 95A, 585; 96A, 113
- Fournet, B. 96B, 753
- Fournier, B. 95B, 57
- Fragoulis, E. G. 97B, 301
- Frandsen, J. C. 97A, 221
- Fredrickson, L. S. 97C, 127
- Fried, B. 96B, 791; 97B, 601
- Frisardi, A. L. 96B, 729
- Fry, M. 96B, 775
- Fujii, H. 96B, 253; 97A, 205
- Fujii, R. 95A, 337
- Fujioka, R. S. 97A, 525
- Fujita, S. 95B, 691
- Fukada, Y. 95B, 763
- Fukuda, H. 95C, 253
- Fukushima, J. G. 95B, 797
- Fukuyama, K. 96B, 553
- Funakoshi, M. 97C, 341
- Furugohri, T. 97A, 81
- Furuichi, M. 97B, 539
- Furuse, M. 97A, 531
- Fuster, J. F. 97A, 411
- Gaillard, F. 96A, 357
- Gainey, L. F. Jr. 95C, 177
- Gaitan, S. 95B, 641, 705
- Gaitanaki, C. J. 96B, 229
- Galan, P. 96C, 271
- Gallone, A. 96B, 393
- Galois, R. 97B, 611
- Galtier, P. 96C, 111
- Gamble, H. R. 96B, 421
- Garate, A. M. 95B, 119
- Garateix, A. 95C, 63; 97A, 481
- Garcera, M. D. 95B, 483
- Garcia, M. 95C, 63
- Garcia-Aragon, J. 95A, 135
- Garcia-Barreno, P. 96B, 647
- Garcia-Rejon, L. 95A, 87
- Gardner, D. R. 55; 96A, 79
- Garrett, J. R. 97A, 335
- Garstka, W. R. 95A, 329
- Gauldie, J. 95A, 41
- Gauldie, R. W. 96A, 199, 451; 97A, 119, 137, 449, 461, 475
- Gaule, C. 96C, 217
- Gavagnin, M. 97B, 363
- Gavioli, M. E. 96B, 387
- Gemmell, R. T. 95A, 135
- Gennser, M. 95A, 219
- Genofre, G. C. 95A, 229
- Genoud, M. 97A, 229
- Gentry, P. A. 96A, 131
- George, S. 96C, 185
- Gerday, Ch. 95B, 381
- Gerencser, G. A. 95A, 215, 487
- Gerson, U. 96C, 125, 427

- Geysen, J. 96A, 309 Gordon, A. H. 95A, 41
Ghebremeskel, K. 97B, 167 Gordon, C. 96A, 91
Giachetti, E. 95B, 431 Goss, M. 96C, 83
Giardina, B. 95B, 865 Gottlieb, M. 95B, 711
Giesel, J. T. 97A, 501 Grahl-Nielsen, O. 96B, 721
Gilat, E. 96C, 339 Gram, L. 97B, 569
Gildberg, A. 96B, 323; 97B, 775 Graser, G. 96B, 491
Gill, J. 95A, 549; 96A, 151, 435 Grassi, A. M. 95B, 781
Gill, T. S. 97C, 287 Gray, K. R. 95C, 155
Gilles, R. 97A, 265, 275 Green, K. L. 97C, 283
Gilmour, T. H. J. 97B, 767 Grego, B. 95B, 261
Gingerich, W. H. 97A, 615 Greive, H. 97A, 493; 97B, 197
Ginsberg, H. 95A, 31 Grisley, M. S. 95B, 311
Giorgi, F. 95B, 107 Grogan, J. 96B, 655
Giwerzman, A. 95A, 303 Grosjean, M. 95B, 233
Gladu, P. K. 97B, 491 Gross, M. 95A, 329
Gleaves, E. W. 96A, 135 Gross, S. C. 95B, 821
Glenn, J. L. 97B, 95 Gruzdov, A. A. 95A, 501
Glisic, S. 97A, 217 Guerriero, V. 97B, 645
Gnoni, G. V. 95B, 153 Guillaume, J. 97A, 145
Goda, T. 96B, 415 Gumaa, K. A. 97B, 821
Goerke, H. 97B, 741 Guppy, M. 96B, 67
Goglia, F. 97B, 327, 809 Gupta, R. P. 96C, 163
Goldaber, M. L. 95B, 781 Gusev, S. A. 95A, 501
Gomes, V. 95B, 281 Gustafson, T. 95C, 133
Gomez, R. 95B, 119 Haasch, M. L. 96C, 259
Gong, B. 96B, 483 Hachimori, A. 96B, 399
Gonzalez, C. B. 96B, 53 Hagerman, L. 97A, 51
Gonzalez, M. 96B, 613 Hagey, L. R. 96B, 157
Gonzalez, M. P. 97C, 265 Hahn, G. 96A, 499
Gonzalez, R. 95B, 85 Haigh, G. R. 95A, 363
Gonzalez-Baro, M. del R. 97B, 129 Hakala, A. 95B, 865
Gonzalez-Plaza, R. 96B, 613 Hall, M. 96B, 621
Goodarzi, G. 95B, 821

Author Index

- Halliday, J. A. 95B, 773
 Hallman, G. M. 96A, 383
 Halton, D. W. 96C, 345
 Halton, D. W. 97C, 333
 Hamaguchi, M. 96A, 253; 97A, 189, 385, 433; 97C, 183
 Hamai, M. 95B, 255
 Hamajima, F. 95B, 755
 Hamann, A. 97A, 9
 Hamilton, M. G. 95B, 321; 96B, 497; 97B, 623, 631
 Hammond, A. M. 96B, 671
 Han, K-K. 97B, 205
 Hanaki, Y. 96A, 257
 Handa, A. 97B, 793
 Hara, N. 97A, 417
 Hara, T. J. 97A, 279, 289
 Harada, E. 97A, 201
 Harada, H. 95C, 145, 151; 96C, 17, 23, 373
 Harbige, L. S. 97B, 167
 Hardig, J. 97C, 179
 Hargis, B. M. 96B, 585
 Harker, C. T. 96B, 189
 Harkness, R. A. 97B, 591
 Harlow, H. J. 95A, 65
 Harmon, D. L. 97A, 45
 Harms, J. 96B, 405; 97B, 69
 Harper, A. E. 97B, 719
 Harrington, J. P. 95B, 91; 96B, 41
 Harris, R. C. 97A, 249; 97B, 591
 Hartshorne, D. J. 96B, 639
 Harumi, T. 96A, 263
 Harvey, D. J. 96C, 65
 Harvey, S. 95A, 435
 Hashiguchi, 97B, 761
 Hashimoto, K. 95B, 341, 387; 96B, 81, 89; 97B, 793
 Hashimoto, Y. 97A, 201
 Hasler, J. A. 96C, 305
 Hassan, T. H. 97B, 321
 Hatano, M. 96B, 355
 Hattingh, J. 95C, 247
 Hayakawa, M. 97C, 33
 Hayasaki, K. 96B, 349
 Hayashi, S. 96B, 171
 Hayes, M. A. 95C, 25
 Heath, J. E. 96A, 141
 Hebanowska, E. 95B, 699; 96B, 815
 Hebert, P. 97B, 369
 Heib, M. 96B, 491
 Hempel, J. 95B, 39
 Hemre, G-I. 97A, 41
 Hendler, G. 97A, 329
 Hendrickx, K. 95C, 241
 Herbert, J. D. 96A, 441
 Hercberg, S. 96C, 271
 Hernandez, J. L. 97A, 481
 Hernandorena, A. 97A, 153
 Herskovits, T. T. 95B, 321; 96B, 497; 97B, 623, 631
 Herzberg, G. R. 96B, 767
 Heschl, M. F. P. 96B, 633
 Heuver, G. 97C, 317
 Hewitt, D. R. 96A, 373
 Hickman, G. C. 96A, 227
 Higgins, D. A. 97B, 637
 Hill, R. J. 95B, 571

- Hilmy, A. M. 95C, 79
Hilton, F. K. 96A, 431
Hilton, M. A. 96A, 431
Himick, B. A. 97A, 165
Hirano, H. 95B, 551
Hirano, T. 96B, 107
Hirata, M. 97B, 527
Hirayama, K. 96B, 553
Hirigoyneberry, F. 95B, 71
Hiripi, L. 95C, 301
Hirose, G. 95B, 171
Hirschhorn, M. 96B, 1
Hisada, M. 95A, 601
Hissa, R. 97A, 345, 353
Hofer, R. 97C, 381
Hoffman, J. 97A, 423
Hogan, J. M. 95A, 579
Hoganson, G. 97B, 719
Hole, K. 96C, 131
Holender, E. S. 97B, 601
Holleland, T. 96B, 177
Holman, G. M. 95C, 19
Holmes, E. H. 96B, 689
Holmes, L. J. 96B, 505
Holwerda, D. A. 96C, 419
Homma, S. 97C, 79
Honda, H. 95B, 555
Hood, D. A. 97B, 257
Hopkins, T. 95A, 529
Hori, M. 97A, 325
Horiuchi, S. 95B, 691
Horning, M. 95B, 613; 96B, 771
Hoshi, T. 97C, 13
Hosie, D. 97A, 51
Hotta, Y. 95B, 183
Hou, D-X. 97B, 761
Hou, R. F. 96C, 27
Housley, G. D. 96A, 333
Howard, R. W. 97B, 285
Howden, M. E. H. 95B, 45
Howl, J. D. 95B, 833
Hoyle, C. H. V. 97C, 363
Hrabec, Z. 96C, 59
Hsu, C-L. 96C, 27
Hu, C. Y. 97C, 133
Huang, J. 95A, 149
Huang, Z-Y. 97C, 275
Huang, Z. 95C, 71
Hublart, M. 95B, 281
Hue, B. 95C, 229; 96C, 157; 97C, 317
Huecas, V. 97A, 611
Huet, J-C. 97B, 667
Huet-Duvillier, G. 95B, 281
Hughes, M. R. 95A, 567
Hughes, S. G. 96A, 109
Hultman, E. 97A, 249
Hume, I. D. 96A, 351
Humphreys, W. F. 95A, 101
Hunaiti, A. A. 95B, 275
Huner, J. V. 96A, 235
Hung, M-S. 95B, 219
Hunter, W. 96C, 27
Huppert, D. 95A, 497
Huriaux, F. 95B, 269; 97B, 547
Huybrechts, R. 95C, 31
Hwang-Bo, J. 95A, 429

Author Index

- Ibanez, P. 95B, 483
Ibarguren, I. 97B, 279
Ichikawa, Y. 96B, 93
Ichinose, M. 97A, 417
Idoate, I. 96C, 317
Iida, K. 95B, 415, 635; 96C, 241; 97B, 617
Iijima, N. 96A, 45
Ilan, E. 96B, 783
Illnerova, H. 97A, 175
Ilyin, Yu. N. 95A, 325
Imai, A. 95B, 415, 635; 96C, 241; 97B, 617
Imschenetzky, M. 97B, 467
Inagaki, H. 96A, 517
Inestrosa, N. C. 96B, 613; 96C, 77; 97B, 307
Iossa, S. 97B, 327
Ip, Y. K. 96A, 87; 96B, 47
Ipata, P. L. 97B, 177
Irazu, C. E. 97B, 129, 535
Iriarte, A. 96B, 101
Irving, M. G. 96A, 373
Irwin, L. 96B, 471
Ishay, J. C. 97A, 555
Ishay, J. S. 95A, 349, 497
Ishida, M. 95B, 669
Ishigami, M. 97C, 25
Ishikita, S. 95B, 403
Ishimoda-Takagi, T. 95B, 403
Ishizaki, Y. 97B, 563
Ismail, M. H. 97B, 209
Itazawa, Y. 95A, 591
Itoh, S. 97B, 783
Itoh, Y. 96B, 451
Iwata, M. 97C, 107
Izokun-Etiobhio, B. O. 95B, 521
Jackson, L. L. 95B, 663
Jacobson, N. L. 95A, 275
Jakobsen, K. 97A, 519
Jamieson, J. C. 95B, 327
Jansen, M. 97B, 555
Jarrett, I. G. 97B, 333
Jarzebski, A. 97B, 81
Jaslove, S. W. 96C, 339
Jeckel, W. H. 96B, 521
Jenkins, J. A. 97B, 477
Jenks, B. G. 96C, 199
Jenner, N. K. 96B, 689
Jenssen, B. M. 95C, 213
Jessen, C. 96A, 245
Jezewska, M. M. 97B, 135, 141
Johansen, J. 97A, 577
Johansen, K. 96A, 333
Johnson, S. W. 97B, 713
Johnston, C. F. 95C, 291; 96C, 345; 97C, 333
Joly, J. 96B, 129
Jones, L. C. 96A, 287
Jordao, B. P. 96B, 59
Jorey, S. T. 96A, 215
Jorgensen, J. N. 97A, 519
Jorgensen, L. 96A, 395
Jullien, P. 95B, 505
Juorio, A. V. 95C, 35
Jupe, D. M. D. 97B, 47

- Kabotyanski, E. A. 95C, 39
Kaczmarczyk, W. 95A, 453
Kaddouri, M. 96C, 111
Kagawa, H. 96B, 81
Kaim-Malka, R. A. 95B, 233
Kaiser, I. I. 97B, 695
Kalab, P. 95B, 803
Kalomenopoulou, M. 95B, 287, 677
Kaloyianni, M. 95B, 287
Kamau, J. M. Z. 96A, 291
Kamei, Y. 96A, 323
Kameyama, Y. 96B, 171
Kanai, M. 95A, 411
Kandeel, K. M. 96B, 319
Kang, J. 96A, 221
Kantha, S. S. 96B, 81, 89
Kanui, T. 97A, 607
Kanui, T. I. 96C, 131
Kapper, M. A. 97B, 661
Karaki, H. 96C, 367
Karasev, V. S. 95B, 477
Kariya, Y. 95B, 387
Karlsson, J. O. G. 96C, 399
Karmann, H. 96A, 327
Karnaukhov, V. N. 95B, 1
Karpe, F. 95A, 219
Karst, H. 97C, 317
Kartelija, G. 95A, 73
Kasinsky, H. E. 96B, 123
Kimura, Y. 97B, 527
Kimwele, C. 97A, 607
Kinemuchi, H. 96C, 91
Kinoshita, M. 96B, 565; 97B, 201,
315, 543
Kirby, G. M. 95C, 25
Kiss, T. 95C, 207
Kita, J. 95A, 591
Kitazawa, T. 97C, 13, 25
Kitto, G. B. 96B, 235
Klaverkamp, J. F. 95B, 51
Kleinhaus, A. L. 97A, 577
Kleinow, K. M. 96C, 259
Kleinow, W. 95B, 393
Kliman, P. G. 97B, 83
Klir, J. J. 96A, 141
Kluger, M. J. 96B, 189
Knels, U. 96B, 147
Knight, G. E. 97C, 363
Knowles, C. O. 95C, 71; 97C, 275
Knowles, S. O. 95C, 99
Knox, C. M. 95C, 247
Knudsen, K. L. 97A, 27
Ko, R. C. 95B, 193
Kobayashi, E. 95C, 279
Kobayashi, M. 97A, 513; 97B, 201,
495, 543
Kobayashi, T. 95B, 341; 97B, 793
Koevoets, P. 97C, 119
Koga, K. 96B, 253; 97A, 205
Kass-Simon, G. 97C, 143
Kato, K. 97A, 341
Kato, S. 95A, 411; 97B, 783
Katsumata, Y. 97A, 341
Katz, U. 97A, 423
Kauffman, F. C. 96B, 113
Kaufman, S. S. 95A, 281
Kawabata, I. 95B, 415; 96C, 241
Kawada, T. 96A, 323

Author Index

- Kawahara, S. 95C, 279, 285
 Kawamura, H. 97C, 341
 Kawamura, Y. 97B, 201, 543
 Kawanishi, Y. 95B, 199
 Kawguchi, Y. 97A, 205
 Kay, J. 95B, 597; 95C, 217; 96C, 181; 97C, 221
 Kayama, M. 96A, 45
 Keeley, L. L. 96A, 205
 Kelly, T. C. 97B, 171
 Kemali, M. 96A, 421
 Kennedy, S. W. 96C, 205
 Kenyon, J. R. 95C, 177
 Kesa, H. 95A, 145
 Kessi, E. 95B, 85
 Khan, M. M. 96A, 87
 Khoo, J. 95B, 419
 Kien, J. 95A, 607, 623
 Kilgore, D. L. Jr. 97A, 27
 Kime, D. E. 96C, 49
 Kimura, S. 95B, 137, 669
 Koga, T. 97B, 527; 97C, 227
 Koj, A. 95A, 41
 Kojima, M. 95A, 549; 95C, 145, 151; 96A, 151; 96C, 17, 23, 373
 Komori, Y. 97B, 507
 Komuniecki, P. R. 95B, 811
 Komuniecki, R. 95B, 811
 Konagaya, S. 95B, 149; 96B, 247, 733
 Kondo, H. 97C, 107
 Konno, K. 95B, 255
 Kononen, H. 96A, 235
 Koob, T. J. 95B, 767
 Kornprobst, J-M. 96B, 559
 Kosaka, M. 96A, 253; 97A, 189, 385
 Kosegawa, E. 96B, 253
 Kosteljanetz, N. 97C, 93
 Kostka, V. 97B, 89
 Koumanov, K. S. 95B, 685
 Kovacs, P. 97B, 429
 Kowalczyk, C. 95A, 511
 Kowalczyk, J. K. 97C, 187
 Koyama, T. 96B, 399
 Krampitz, G. 96B, 491
 Kraus, D. W. 97A, 107
 Krause, R. 96C, 11
 Kreikemeier, K. K. 97A, 45
 Kretchmer, N. 95A, 95
 Kreuter, M-H. 97B, 151
 Kriesten, K. 96B, 271
 Krokos, H. 97C, 49
 Kruk, C. 97C, 317
 Kubilus, J. 95B, 781
 Kubista, V. 95C, 125
 Kubota, I. 97C, 373
 Kudo, K. 97C, 25
 Kuhle, K. 95B, 393
 Kuhnem, G. 96A, 245
 Kumamoto, K. 96B, 475
 Kumosinski, T. F. 97B, 391
 Kupenova, P. 97C, 93
 Kurcz, E. V. 96A, 195
 Kurita, M. 95B, 423
 Kuroda, O. 95A, 407
 Kwong, A. Y. H. 95B,
 193

- Laasberg, T. 97C, 9
Lacaille, M. 96A, 469
Lachowicz, L. 96C, 59
Lagerspetz, K. Y. H. 96A, 57
Laitano, S. Y. T. 95A, 229
Lam, S. K. 95A, 435
Lambert, J. 95B, 565
Lambert, J. G. D. 97B, 735
Lambertsen, G. 97A, 41
Lambrecht, L. 96B, 677
Lambris, J. D. 95B, 839
Laming, P. R. 95A, 459
Lammers, G. 95B, 327
Lance, V. 95A, 55
Lanciani, C. A. 97A, 501
Landry, C. C. 97B, 831
Langlois, P. 97B, 55
Langman, C. B. 96A, 347
Lanni, A. 97B, 327, 809
Lantos, C. P. 96B, 53
Lapadula, D. M. 96C, 163
Larralde, J. 96C, 317
Larrieu, G. 96C, 111
Laskey, J. W. 97C, 139
Lassalle, F. 95B, 71
Lassegues, M. 95B, 71
Lateef, Z. 96B, 47
Latowska, A. 96B, 815
Laval-Martin, D. 97B, 113
Lavoie, K. H. 95A, 157
Lawrence, L. M. 96A, 195
Le Coz, J. R. 96B, 405
Le Guellec, D. 95B, 303
Leake, R. E. 97B, 151
LeaMaster, B. R. 97A, 525
Leaver, M. 96C, 185
Lech, J. J. 96C, 259
Lecourtier, M-J. 96B, 195
Lee, C. S. 95B, 159
Lee, H-M. 97A, 115
Lee, H. II. 96C, 327
Lee, P. 95A, 453
Lee, Y. C. 95C, 197
Leenders, H. J. 96C, 199
Lees, W. E. 95B, 597
Lehmenkuhler, A. 97A, 65
Leibovitz, H. 95B, 115, 225
Leigh, P. N. 97C, 259
LeMay, D. R. 96B, 189
Lembke, H. F. 95A, 195
Lemos, F. J. A. 96B, 59
Lennon, B. W. 97B, 695
Lesoon, A. 95B, 811
Lester, D. S. 97B, 707
Leu, R. D. 95B, 663
Levin, R. M. 96A, 221
Levy, J. A. 97B, 275
Lhoste, J.-M. 95B, 505
Lhuillary, C. 96B, 195
Licht, L. E. 97A, 569
Licht, P. 96A, 67
Lie, O. 97A, 41
Lima, J. E. 97B, 193
Lin, Y. M. 95B, 745
Linden, H. 97A, 345
Lindqvist, O. V. 96A, 235
Lippe, C. 97C, 49
Liptrap, R. M. 96A, 131

Author Index

- Little, G. H. 96B, 315 Macek, P. 97B, 687
 Litvin, F. E. 97B, 407 Mackie, I. M. 96B, 743
 Liu, J. 96A, 163; 97A, 169, 381, 551 Mackow, M. C. 95B, 711
 Liu, L-X. 96C, 71 Maclean, N. 97C, 357
 Liu, S. S. 97B, 637 Madsen, S. S. 95A, 171
 Liverini, G. 97B, 327 Maeda, Y. 97B, 761
 Livingstone, B. 96A, 97 Maeno, T. 97A, 417
 Livingstone, D. R. 97B, 661 Maeshige, K. 96A, 323
 Lloyd, D. 95B, 335 Maffia, M. 96A, 13
 Lockey, K. H. 95B, 603, 721 Mah, Y-II. 96B, 605
 Lockwood, A. P. M. 95A, 545 Mai, Y-Q. 97B, 205
 Loguercio, C. 96C, 115 Maida, I. 96B, 393
 Longhurst, P. A. 96A, 221 Maidhof, A. 97B, 151
 Loo, G. 96B, 361; 97B, 83 Maimun, A. H. 97C, 247
 Loo, S. Y. 95A, 487 Maitland, D. P. 95A, 267
 Loomis, W. F. 95B, 21 Majewski, H. S. 95B, 51
 Lopez, I. 95B, 375 Maki, A. A. 96A, 135
 Lopez-Luna, P. 95B, 535 Malinski, E. 95B, 699; 96B, 815
 Lopez-Moratalla, N. 96B, 101 Mallard, J. 97B, 55
 Lopez-Zabalza, M. J. 96B, 101 Mallefet, J. 96C, 105
 Lorenzo, A. 95A, 79 Manabe, T. 96A, 517
 Lou, M. 96B, 697 Mangiabene, C. 96C, 39
 Lou, Y.-H. 95B, 187 Mankura, M. 96A, 45
 Lucchiari, P. H. 96C, 151 Mantel, P. 96C, 157
 Lucu, C. 97A, 297 Maoka, T. 95B, 583, 759
 Lugtenburg, J. 95B, 789 Mappouras, D. G. 97B, 301
 Luick, J. 97B, 261 Marchetti, M. G. 95B, 653; 96B, 257
 Lummis, S. C. R. 95C, 1 Marcinkowska, A. 97B, 49
 Lundholm, C. E. 95C, 85; 96C, 321 Marcovaldi, M. A. 97B, 275
 Lundy, E. F. 96B, 189 Marder, J. 97A, 245
 Lusby, W. R. 97B, 491 Maribao, V. 96C, 71
 Lynn, K. R. 96B, 761 Marin, R. 97B, 383
 Marins, L. F. 97B, 275

- Marion, K. 95A, 529
Marjanovic, M. 96A, 97
Markus, R. P. 96C, 287
Marlin, D. J. 97A, 249
Marmorino, C. 95A, 249
Marshall, M. R. 97B, 483
Martensson, L. G. E. 96C, 399
Martin, W. G. 95A, 453
Martinat, N. 97B, 667
Martinez, I. 96B, 221
Martinez, R. 95B, 483
Martins, R. 97B, 809
Maruniak, J. E. 96B, 543
Maruyama, K. 95B, 171, 179, 183
Mas, R. 95C, 63; 97A, 481
Masetti, M. 95B, 107; 97B, 65
Mason, R. T. 96B, 705
Masson, P. 95B, 609
Mat Jais, A. M. 97C, 247, 373
Matsubara, F. 96B, 605; 97A, 373; 97B, 183
Matsuda, T. 95B, 635
Matsui, R. 95B, 137, 669
Matsunaga, C. 95A, 407
Matsunami, K. 95B, 635
Matsuno, T. 95B, 583, 759; 96B, 465, 801
Matsuoka, N. 96B, 335; 97B, 31
Matsuura, M. S. A. 96B, 119
Matsuura, S. 96A, 257
Matsuyama, M. 96A, 257
Mayet, M. H. 97A, 543
McCartney, R. 96B, 183
McClintock, J. B. 95A, 529
McCormack, J. F. 96C, 211
McCreanor, G. M. 97B, 591
McDaniel, C. A. 95B, 541
McDonald, G. D. 96B, 235
McFadden, B. A. 95B, 431
McGuire, P. M. 96B, 543
McKay, D. M. 96C, 345; 97C, 333
McKean, T. A. 97B, 109
McKee, G. 96A, 485
McKenzie, H. A. 95B, 773, 825
McMahon, B. R. 97B, 745
McNease, L. 95A, 55
McVeagh, S. M. 95A, 297
Mecham, J. O. 96A, 19
Medda, R. 95C, 297
Megnin, F. 95B, 505
Meinel, W. 96C, 11
Melis, A. 95C, 297
Melrose, W. D. 97B, 47
Mendes, E. G. 95C, 91
Mendizabal, M. V. 96C, 317
Mendonca-Previano, L. 95B, 281
Menendez, R. 95C, 63
Menzel, R. 97C, 53
Mercier, C. 96A, 469
Merino, V. 97B, 467
Mertens, J. 97B, 369
Messager, J-L. 97A, 145
Messenger, J. B. 96C, 49
Messiha, F. S. 96C, 389
Messiha, F. S. 97C, 43
Metailler, R. 97A, 145
Metz, J. 96C, 291
Meyerson-McCormick, R. 96A, 211

Author Index

- Meza, G.** 95B, 375 **Moore, F. L.** 96C, 393
Mezentseva, V. S. 97B, 411 **Moore, J. S.** 96B, 577
Mezzasoma, I. 97B, 675 **Moore, M. N.** 97C, 37
Mia, A. J. 96C, 245 **Morales, A. E.** 95A, 87
Michaelidis, B. 95B, 493 **Moreno, V. J.** 96B, 521
Michelsen, K. 97C, 329 **Mori, H.** 96B, 605; 97A, 373; 97B,
Migliorini, R. H. 96A, 415 183
Milicua, J. C. G. 95B, 119 **Mori, S.** 97A, 341
Miller, R. H. 97B, 719 **Morishima, I.** 95B, 551; 96B, 591
Miller-Graber, P. A. 96A, 195 **Morita, Y.** 96B, 487
Milosevic, I. 95C, 39 **Moroni, M.** 97B, 675
Min-Hong, 97B, 205 **Morriconi, E.** 96B, 123
Minelli, A. 97B, 675 **Morris, K.** 97A, 537
Mineo, H. 95A, 411 **Morris, S.** 97B, 745
Minucci, S. 95A, 249 **Mortari, N.** 95B, 501
Miralles, J. 96B, 559 **Moser, L. R.** 96A, 195
Miranda, M. 97B, 751 **Moskovitz, E.** 97A, 245
Mirelman, D. 97B, 707 **Motohashi, A.** 95B, 403
Mitani, H. 96B, 349 **Muchlinski, A. E.** 95A, 579; 96A,
Mitchell, M. A. 97A, 57 383
Miura, A. 97C, 201 **Muci, M. R.** 95B, 153
Miura, Y. 97B, 783 **Muller, W. E. G.** 97B, 151
Miyamoto, T. 97A, 535 **Muller-Klieser, W.** 97B, 151
Mizuno, M. 96B, 171 **Mummery, R. S.** 97B, 837
Mizuta, S. 96B, 451 **Munck, B. G.** 96A, 181, 187
Moal, J. 96B, 405 **Munck, L. K.** 96A, 181, 187
Moens, L. 97B, 369 **Muneoka, Y.** 97C, 373
Moffett, S. B. 96A, 399, 407 **Munilla-Moran, R.** 95B, 625
Mohamed, A. S. 97B, 177 **Munoz-Pulido, R.** 97A, 611
Molinski, T. F. 97C, 233 **Muntz, L.** 97B, 215
Molyneux, D. H. 96B, 577 **Mura, U.** 97B, 177
Momchilova-Pankova, A. B. 95B, 685 **Murakami, K.** 97A, 341
Montgomery, W. D. 96A, 431 **Murakami, U.** 96C, 367
Montoya, G. A. 96C, 193 **Muramatsu, T.** 95A, 429; 97B, 103

Author Index

23

- Murata, K. 95B, 387
Murawski, U. 96B, 271
Murray, T. F. 96C, 393
Musko, I. B. 96C, 11
Myers, Y. M. 96A, 215

Nachman, R. J. 95C, 19
Nacionales, M. A. 97A, 211
Nagaishi, H. 95A, 337
Naito, H. 97B, 783
Naitoh, T. 97C, 201
Nakajima, T. 96C, 157
Nakamura, R. M. 97A, 525
Nakamura, Y. 96B, 335
Nakanishi, M. 97B, 605
Nakanishi, T. 96B, 475
Nance, J-M. 96A, 303
Nardi, G. 96C, 115; 97B, 291
Nasu, T. 95A, 201; 97C, 269
Natoli, G. 95B, 29
Naveso, M. A. 97A, 611
Navone, N. M. 96B, 729
Nawrot, J. 95B, 699; 96B, 815
Nedelec, J.-F. 95B, 505
Nelson, D. G. A. 97A, 119, 449
Nelson, R. A. 95A, 65; 96A, 91, 97
Nelssen, J. L. 97A, 45
Newkirk, M. W. 96A, 431
Nezu, T. 97A, 513
Ng, S. L. 95C, 45
Ng, T. B. 95C, 45, 159; 96C, 381;
97B, 441
Nibbelink, M. 97A, 361
Nibbering, N. M. M. 97C, 317

Nichols, J. R. 95A, 121, 441
Nicolas, C. 96B, 195
Nicoli, J. R. 97A, 235
Nicotra, A. 96C, 87
Nielsen, M. O. 95A, 303; 97A, 519
Nielsen, P. H. 96B, 431; 97B, 569
Nielsen, R. 97A, 75
Niemuller, C. 96A, 131
Nikai, T. 97B, 507
Nikolova, M. N. 95B, 685
Nikonov, A. A. 95A, 325
Ninomiya, Y. 97C, 341
Nishiu, S. 96A, 323
Noble, R. C. 96B, 183
Noguchi, T. 97B, 783
Nolet, B. A. 97A, 91
Nomura, K. 95B, 423
Nomura, T. 97C, 341
Norey, C. G. 95B, 597; 95C, 217;
96C, 181; 97C, 215, 221
Novak, F. 95B, 565; 97B, 727
Novakova, O. 95C, 125
Novoa, F. F. 95A, 181
Nunamaker, C. E. 96A, 19
Nunamaker, R. A. 96A, 19
Nunomura, W. 96A, 489
Nuutinen, M. 95B, 865
Nyets, J. 97A, 35

O'Connor, K. L. 95B, 525
O'Dea, J. D. 95A, 23
O'Dee, C. D. 97B, 333
O'Neill, P. 95B, 29
O'Riordan, V. B. 95B, 125

- O'Sullivan, W. J. 95B, 159
 Obata, T. 96C, 91
 Ochiai, Y. 95B, 341, 387; 97B, 793
 Oda, S. 96C, 405
 Ofstad, R. 96B, 221
 Ogawa, T. 95B, 199
 Ogo, S. H. 96B, 119
 Ohguro, H. 95B, 763
 Ohneda, A. 96C, 405
 Ohnishi, M. 97A, 373
 Ohshima, H. 97A, 601
 Ohta, T. 97C, 107
 Ohtaki, T. 97B, 471
 Oka, J.-I. 95C, 253
 Okada, Y. 96B, 381; 97A, 535
 Okamoto, S. 97B, 761
 Oksman, P. 95B, 699; 96B, 815
 Oku, H. 96B, 475
 Okumura, J-i. 95A, 429
 Okumura, J. 97A, 531
 Olds, S. J. 97A, 221
 Olsen, R. L. 96B, 221, 323
 Opperman, L. A. 97B, 295
 Oraedu, A. C. I. 95B, 521
 Oraha, V. S. 95B, 603, 721
 Ordovas, M. 96B, 209
 Ornhagen, H. Ch. 95A, 219
 Ortega, C. E. 96A, 383
 Orunesu, M. 95C, 271; 97C, 37
 Osada, K. 96B, 355
 Osborn, P. J. 95A, 297
 Osborne, R. H. 95C, 233; 96C, 1
 Oset-Gasque, M. J. 97C, 265
 Oshima, N. 95A, 337; 96A, 517;
 97C, 33
 Osipenko, O. N. 95C, 9; 96C, 45
 Osman, A. M. 97B, 177
 Osman, S. E. 96B, 319
 Otero, R. M. 97B, 623
 Ottaviani, E. 96B, 627
 Ottolenghi, C. 96B, 387
 Ouahbi, A. 97A, 265, 275
 Ourth, D. D. 97B, 477
 Ousey, J. C. 97B, 591
 Overbo, K. 97B, 775
 Oz, O. 96B, 597
 Ozaki, S. 97B, 527
 Ozesmi, C. 97A, 179
 Padula, L. 97B, 291
 Paemen, L. 97B, 727
 Paesen, G. 97B, 727
 Paganelli, C. V. 95A, 1
 Page, R. D. 96C, 245
 Pages, T. 97A, 411
 Pagliarani, A. 95B, 95; 97B, 343
 Palace, V. P. 95B, 51
 Palacios, L. 97A, 411
 Palmer, R. M. 97C, 369
 Palmer, W. K. 95A, 321
 Palomeque, J. 97A, 595
 Pande, J. 97C, 287
 Panepucci, L. 95B, 501
 Pang, P. K. T. 95C, 197
 Pankov, Y. A. 95B, 477
 Pannunzio, G. 96B, 439
 Papadopoulos, A. I. 96B, 229
 Paquette, C. M. 96A, 215

- Pardini, R. S. 95B, 355
Parish, E. J. 97A, 115
Parisi, E. 97B, 339
Parisi, G. 97B, 645
Park, J. H. Y. 95A, 281
Parker, G. R. 95B, 419
Parker, J. C. 96A, 147
Pascolini, R. 96C, 39
Pasic, M. 95A, 73
Passeron, S. 96B, 53
Patel, S. 96C, 71
Patry, J. 95B, 505
Patterson, G. W. 97B, 491
Paulson, S. K. 96A, 347
Pavely, A. 96A, 1
Paxhia, T. 96B, 697
Paxton, R. 96B, 651
Peacock, A. J. 97A, 537
Peacock, M. A. 97A, 57
Peakall, D. B. 96C, 205
Pearse, A. M. 97B, 47
Pearson, M. R. B. 95A, 359
Pedder, S. 97C, 373
Pedersen, J. 95B, 261
Pedrosa, M. L. 97A, 235
Peeters, K. 97B, 369
Peichao, W. 96A, 267
Peinado, V. 97A, 595
Pekkarinen, M. 97B, 269
Pelhate, M. 96C, 157
Pereira, M. 96B, 431
Perez, J. C. 97B, 95
Pernollet, J. C. 97B, 667
Perrin, M. R. 96A, 227
Pertica, M. 97C, 37
Pertseva, M. N. 95B, 477
Petaja-Repo, U. 97A, 353
Peters, R. 97B, 83
Peters, R. C. 97A, 399, 405
Peterson, M. S. 97A, 17
Petersson, L. R. 95C, 201
Petkova, D. H. 95B, 685
Petrausch, G. 97A, 9
Petrovic, S. 95B, 589
Petrovich, D. P. 97B, 745
Pettit, G. R. 96C, 305
Pfeffer, E. 96A, 495
Philippart, J. C. 97B, 547
Phillips, J. I. 96C, 291
Phillips, S. B. 95B, 781
Pichova, I. 97B, 89
Pickett, C. 97A, 537
Piek, T. 95C, 229; 96C, 157, 223;
97C, 317
Pihlaja, K. 95B, 699; 96B, 815
Pimentel, G. E. 96B, 549
Pines, E. 95A, 497
Pinto, M. R. 96A, 263
Pintucci, G. 96B, 393
Pinzauti, G. 95B, 431
Pischetola, M. 97B, 291
Pitkanen, A. 96C, 299
Pitkin, R. B. 96C, 147
Pityer, R. A. 97A, 615
Pokorny, R. 95, 803
Poli, G. 97C, 37
Pollero, R. J. 97B, 129, 535
Polo, C. F. 96B, 729

Author Index

- Pomerantz, D. K. 95A, 163
- Ponnudurai, G. 95B, 577; 95C, 105; 96B, 683; 97C, 99
- Popova, E. 97C, 93
- Popova, J. 96C, 119
- Porter, D. W. 95A, 453
- Power, D. M. 95A, 291; 96B, 821
- Pratap, H. B. 95C, 313
- Preston, C. M. 95B, 335
- Principato, G. B. 96C, 39
- Proctor, G. B. 97A, 335
- Proverbio, F. 97B, 383
- Proverbio, T. 97B, 383
- Pruitt, N. L. 97B, 849
- Publicover, S. J. 95B, 833
- Puchi, M. 97B, 467
- Pudas, J. 95B, 865
- Pudney, M. 96B, 775
- Puerta, M. L. 97A, 611
- Pulga, V. B. 96A, 465; 97B, 767
- Punzo, F. 95A, 69; 96A, 341
- Purcell, J. P. 96B, 421
- Puviani, A. C. 96B, 387
- Pynnonen, K. 97C, 111
- Quevedo, L. 96C, 193
- Quick, H. A. 95A, 459
- Quigley, J. P. 96B, 621
- Raae, A. J. 97B, 145
- Raath, J. P. 95C, 247
- Rach, J. J. 97A, 615
- Radhakrishnamurthy, B. 97B, 355
- Radtke, R. L. 96A, 199; 97A, 137
- Rahn, H. 95A, 1
- Rainbow, P. S. 97C, 1
- Ram, J. L. 96C, 71
- Rambeck, W. A. 95A, 573
- Raming, K. 95B, 861
- Ramires, P. A. 96A, 13
- Ramos-Martinez, J. I. 95B, 531; 97B, 279
- Rankin, S. M. 96A, 205
- Ratanapo, S. 97B, 515
- Rattan, S. C. 96B, 239
- Rees, J. F. 95C, 275; 96A, 425; 96C, 105
- Reeve, J. R. Jr. 96C, 135
- Reeves, J. T. 97A, 537
- Rege, A. A. 97B, 825
- Regnault, M. 96B, 137
- Rehami, A. 96B, 821
- Reibenspies, J. 96C, 281
- Reineskog, M. 95C, 201; 96C, 353, 357
- Reis-Henriques, M. A. 95A, 343; 95B, 303
- Reischl, E. 96B, 215
- Reiter, R. J. 95A, 363
- Remy-Martin, J. P. 95B, 303
- Renton, K. W. 95B, 317
- Renzel-Selke, A. 96B, 533
- Reynolds, R. 96B, 41
- Ribeiro, J. M. C. 95B, 215
- Riby, J. 95A, 95
- Ricci, R. 95B, 35
- Richard, M. J. 95A, 275
- Rideau, N. 96A, 327

Author Index

27

- Rideout, J. A. 96C, 305
Ridzwan, B. H. 97C, 247, 251
Riekkinen, P. J. 96C, 299
Rinaldi, F. 97B, 151
Rintamaki, H. 97A, 345
Rivero, J. L. 95B, 229
Rizzolio, M. 96B, 597
Roberts, E. D. 95A, 401
Roberts, J. 96B, 597
Roberts-Thomson, I. C. 97B, 333
Robertson, J. D. 97A, 87
Rocco, G. P. 97C, 297
Rodley, G. A. 95B, 847
Rodriguez, J. M. 97B, 383
Rodriguez, R. R. 97B, 631
Rodriguez-Burgos, A. 96B, 297
Rogers, M. P. 96B, 331
Rogerson, M. 96B, 767
Rohrer, S. P. 95C, 223
Rojas, M. G. 96C, 281
Rokita, H. 95A, 41
Rolf, H. J. 95A, 445
Rolle, R. S. 97B, 483
Romano, M. 96B, 367
Romer, H. 97A, 443
Romero, L. 97A, 481
Rongone, E. L. 97B, 521
Rose, F. L. 96B, 651
Rose, R. W. 97A, 573
Rosebrough, R. W. 96B, 163; 97C,
387
Rosenlund, G. 96A, 395
Rosenmann, M. 95A, 181
Roshchina, G. M. 95A, 501
Rosie, G. 96C, 39
Ross, F. P. 97B, 295
Rossdale, P. O. 97B, 591
Rossignol, P. A. 96B, 549
Roubik, D. W. 97A, 1
Roubos, E. W. 96C, 199
Rowe, R. A. 95A, 253
Rozali, B. O. M. 97C, 247
Rudolph, P. H. 97C, 241
Ruiz, H. A. 97B, 355
Ruiz-Amil, M. 95B, 641, 705
Rukavina, K. C. 96C, 327
Rusakov, Y. I. 95B, 477
Rutigliano, B. 96B, 367
Ryder, O. A. 95A, 573
Saad, A. H. M. 97B, 321
Saarela, S. 97A, 353
Saba, R. 96B, 821
Sabashi, K. 97C, 341
Sacchetta, P. 97B, 751
Saifuddin, M. N. 97C, 293
Sailer, M. 96B, 533
Saito, A. 96B, 253
Saito, T. 95B, 763
Sakaguchi, E. 96A, 351
Sakashita, Y. 96B, 171
Sakharov, D. A. 95C, 39
Sakharov, I. Yu. 97B, 407
Sakurai, S. 97B, 471
Salafsky, B. 95B, 555
Salanki, J. 95C, 301
Salvatorelli, G. 96B, 257
Samain, J. F. 96B, 405

Author Index

- Samel, M. 97C, 209
 Samie, M. 96B, 577
 Sams, G. H. 96B, 585
 Sanchez, E. 96C, 217
 Sandnes, K. 96A, 395
 Saneyoshi, M. 96B, 355
 Sano, R. 96A, 297
 Santarone, S. 97B, 751
 Santiago, E. 96B, 101
 Santome, J. A. 95B, 797
 Santoro, P. 97B, 645
 Santos, E. A. 95A, 229
 Sanz, S. 96B, 101
 Sasaki, Y. 96C, 405
 Sata, O. 95A, 115
 Satchell, G. H. 95A, 585
 Sato, M. 96B, 349, 451
 Sato, T. 95A, 115; 97A, 535
 Satterlee, D. G. 95A, 401
 Sawada, M. 97A, 417
 Scali, V. 97B, 65
 Schafer, H. 95A, 209
 Schams, D. 95A, 163; 97A, 253
 Schanck, A. 96C, 99
 Schaner, A. M. 95B, 663
 Schepens, E. 95C, 163
 Scheuer, P. J. 97B, 227
 Schinina, M. E. 96B, 367
 Schipp, R. 97C, 71
 Schlichter, D. 95A, 559
 Schlinger, B. A. 97A, 307
 Schoenemann, H. M. 97C, 387
 Schoofs, L. 95B, 459
 Schoofs, L. 97C, 195
 Schoonbee, H. J. 96C, 333
 Schroder, B. 96A, 495
 Schroder, H. C. 97B, 151
 Schroven, W. 97C, 195
 Schulz, R. 96A, 459
 Schumann, J. 97B, 447
 Schwabe, C. 96B, 15; 97A, 101
 Schwanke, M. L. 97C, 143
 Schwantes, A. R. 97B, 235, 247, 579
 Schwantes, M. L. B. 95B, 77; 97B,
 235, 247, 579
 Schwantes, P. A. 96A, 273
 Schwantes, U. 96A, 273
 Schweigert, F. J. 95A, 573
 Schweinsberg, F. 95C, 117
 Scobbie, A. E. 96B, 743
 Scopelliti, R. 96C, 87
 Scott, E. M. 95B, 91
 Secraw, D. J. 97B, 95
 Seki, N. 96C, 141
 Sempore, B. 97A, 543
 Senatori, O. 96C, 87
 Sencic, L. 97B, 687
 Sernia, C. 95A, 135
 Serrazanetti, G. P. 96B, 811; 97C,
 305
 Sharir, R. 97A, 245
 Sharma, R. 97C, 373
 Shaw, C. 95C, 291; 96C, 345
 Shaw, C. 97C, 333
 Shaw, D. C. 95B, 773, 825
 Sheehy, M. R. J. 96A, 281
 Shennan, D. B. 97A, 317
 Sheridan, M. A. 97C, 329

- Sherief, H. T. 97B, 83
Sherma, J. 96B, 791
Sherma, J. 97B, 601
Shetty, P. H. 96B, 791; 97B, 601
Sheumack, D. D. 95B, 45
Shibata, H. 97C, 269
Shibuya, T. 95B, 555
Shima, A. 96B, 349
Shima, T. 96A, 107
Shimabukuro, J. 97A, 373
Shimada, M. 97B, 605
Shimizu, Y. 96B, 565; 97B, 315
Shimojo, N. 95C, 279, 285
Shimonishi, Y. 97B, 679
Shinomura, Y. 96B, 239
Shirai, T. 96B, 107
Shirakura, S. 96A, 503; 97A, 81
Shirazi, A. 96B, 655
Shlafer, M. 96B, 189
Sho, S. 96C, 91
Shwaery, G. T. 96B, 209
Siebers, D. 96B, 243; 97A, 9
Sieburth, P. J. 96A, 19
Siigur, J. 97C, 209
Silva, M. E. 97A, 235
Silva, M. E. C. 97A, 235
Silva, Marcio E. 97A, 235
Simard, C. 96A, 469
Simi, B. 97A, 543
Simmons, D. G. 97B, 755
Simon, J. 96A, 327
Simonishi, Y. 95B, 423
Simpson, K. L. 95B, 115, 225
Simpson, R. J. 95B, 261
Sin, F. Y. T. 95B, 419
Sinclair, J. 96B, 677
Sirvio, J. 96C, 299
Sivasubramanian, P. 96C, 235
Siwicki, A. R. 95C, 237
Skadhauge, E. 96A, 187
Skakkebaek, N. E. 95A, 303
Skiba, P. J. 95B, 663
Skinner, J. D. 97A, 23
Skorkowski, E. F. 95B, 817
Small, S. A. 97C, 59
Smart, D. 95B, 335
Smirnova, L. F. 95A, 501
Smith, E. L. 96B, 677
Smith, F. F. 95B, 65
Smith, I. R. 95C, 25
Smith, J. H. 95A, 163
Smith, J. W. 95B, 489
Smith, M. W. 97A, 57
Smith, S. C. 96B, 209
Snegaroff, J. 95B, 515
Snell, T. W. 95B, 619; 97A, 211
Snow, D. H. 97A, 249; 97B, 591
Snyder, K. A. 96A, 407
Sodano, G. 97B, 363
Sogi, T. 97B, 103
Sola, F. 96A, 303
Somasundaram, B. 95A, 511
Sondergaard, T. 97A, 51
Song, C-y. 95B, 473
Song, C. Y. 97B, 825
Sonnenfeld, M. J. 97B, 855
Sorensen, P. G. 96B, 571
Soto, J. G. 97B, 95

- Sottrup-Jensen, L. 96B, 621 Stucchi, A. F. 96B, 209
 Southorn, B. G. 97C, 369 Studier, E. H. 95A, 157
 Southwick, E. E. 97A, 1 Stupfel, M. 96A, 1
 Spaargaren, D. H. 95A, 379; 97C, 87 Sugai, R. 96C, 367
 Spanjer, W. 97C, 317 Sugano, S. 96C, 367
 Sparti, A. 97A, 391 Sugawa, M. 97C, 53
 Spaziani, E. 97C, 241 Sugihara, H. 97B, 507
 Specht, D. T. 96C, 327 Sugimoto, E. 96A, 323
 Speckmann, E.-J. 97A, 65 Sugimoto, M. 97C, 33
 Spence, I. 95B, 45 Sugimoto, Y. 96B, 253
 Spira, A. W. 95A, 149 Suginaka, S. 95B, 551
 Srinivasan, S. R. 97B, 355 Sugishita, N. 97A, 531
 St John, L. C. 97B, 123 Sulakhe, S. J. 96A, 465; 97B, 767
 Staddon, G. E. 95A, 359 Suleymanian, M. A. 95A, 237
 Stafford, I. 97B, 333 Sullivan, D. M. 97C, 65
 Stamper, D. L. 96A, 67 Sumida, M. 96B, 605; 97A, 373; 97B,
 Stanley-Samuelson, D. W. 97B, 285 183
 Stark, J. M. 95B, 597 Summers, P. 97B, 167
 Stark, J. R. 95B, 625 Sunaga, H. 95C, 279, 285
 Stein, E. A. 97B, 701 Sundby, A. 96A, 117; 97A, 41
 Stenersen, J. 95C, 111 Sunshine, S. 95A, 95
 Steuernagel, A. 95B, 545 Surholt, B. 97A, 493; 97B, 197
 Stickle, W. B. 97B, 661 Suzuki, H. 96C, 141
 Stipanovic, R. D. 96C, 281 Suzuki, K. T. 95C, 279, 285
 Stirpe, F. 96B, 581 Suzuki, N. 95B, 423; 96A, 263; 97B,
 Stolarsky, T. 97B, 707 679
 Stone, T. W. 97C, 259 Suzuki, T. 96B, 107
 Stoof, J. C. 95C, 163 Sveinsson, T. 97A, 279, 289
 Storelli, C. 96A, 13 Swain, R. 97A, 573
 Storey, K. 96B, 67 Swevers, L. 97B, 727, 735
 Storey, K. B. 95B, 817 Swierczynski, J. 95B, 469; 97B, 59
 Stoutenburgh, R. J. 95A, 579 Swinnen, K. 95A, 373; 97A, 35
 Straight, R. C. 97B, 95 Syuto, B. 97A, 201
 Stratil, A. 95B, 803 Szafranek, J. 95B, 699; 96B, 815

- Szkudlarek, J. 96C, 59 Tentori, E. 95A, 545
Taborsky, G. 96B, 655 Teo, L. H. 96B, 47, 671, 715
Takahashi, H. 95B, 187 Tepikin, A. V. 96C, 45
Takahashi, M. 95A, 601 Terabayashi, T. 95B, 199
Takahashi, S. 95B, 171, 179, 183 Terra, W. R. 96B, 59
Takano-Ohmuro, H. 95B, 171, 179, 183 Terris, J. M. 96A, 41, 75
Takao, T. 95B, 423; 97B, 679 Tetens, V. 96A, 333
Takase, S. 96B, 415 Teunis, P. F. M. 97A, 399, 405
Takeda, T. 95A, 425 Tewari, H. 97C, 287
Takemoto, S. 96C, 367 Theophilidis, G. 97A, 583
Takemura, Y. 95B, 759 Theunis, W. 95C, 31
Talentino, K. 96B, 471 Thiem, L. 95C, 291
Talesa, V. 96C, 39 Thomas, J. D. 95A, 511
Talmont, F. 96B, 753 Thomas, W. G. 95A, 135
Tamaya, T. 95B, 415, 635; 96C, 241; 97B, 617 Thompson, D. 95A, 69
Tameyasu, T. 95A, 597 Thompson, E. M. 96A, 425
Tamotsu, S. 96B, 487 Thomsen, B. 95B, 865
Tan, L. L. 96B, 715 Thorndyke, M. C. 96C, 135
Tan, N-H. 95B, 577; 95C, 105; 96B, 683; 97C, 99, 293 Thurman, R. G. 96B, 113
Tan, N-H. 97C, 99 Tijane, M. 96B, 457
Tanagho, J. L. 96B, 319 Timofeeva, N. M. 95A, 501
Tanaka, M. 97A, 341 Tirindelli, R. 96B, 513
Tanaka, Y. 97A, 373, 513 Tirri, R. 96A, 177
Tannenbaum, M. G. 95A, 363 Tocher, D. R. 96B, 73
Tanner, M. J. 96B, 705 Toh, B. H. 95B, 261
Tanokura, M. 96B, 665 Tokumitsu, Y. 96A, 503; 97A, 81
Taylor, S. L. 97B, 849 Tokuno, T. 96A, 253; 97A, 189, 385
Tazawa, H. 95A, 407 Tokuno, T. 97C, 183
Tejero, C. 95B, 641, 705 Tomogane, H. 95A, 185
Temma, K. 97C, 107 Tong, Y. C. 97C, 317
Toolson, E. C. 97B, 285
Topham, R. W. 97B, 831
Toriiiminami, Y. 95B, 583

- Towle, D. W. 96B, 177
 Towner, M. C. 96A, 383
 Toyohara, H. 96B, 565; 97B, 315
 Tran, S. T. 96A, 465
 Trentalance, A. 97B, 597
 Triantafillos, E. 97B, 333
 Trigari, G. 95B, 95; 97B, 343
 Trombetti, F. 95B, 95; 97B, 343
 Truchot, J. P. 95C, 307
 Tschopp, J. 96B, 739
 Tseng, A. 97B, 521
 Tsuda, T. 95C, 145, 151; 96C, 17, 23, 373, 405
 Tsugawa, K. 96A, 57
 Tsuji, F. I. 96A, 425
 Tsukuda, H. 96A, 157
 Tsushima, M. 96B, 709, 801
 Tuma, D. J. 95A, 281
 Turner, J. C. 95A, 297
 Turner, J. T. 97C, 65
 Turunen, S. 97B, 269
 Twin, J. E. 97B, 47
 Tyler, M. I. 95B, 45
 Uchida, Y. 96B, 399
 Uchiwa, H. 96C, 367
 Uebayashi, H. 97C, 341
 Ueno, T. 95B, 551; 96B, 591
 Uesaka, H. 97A, 223
 Uglow, R. F. 97A, 51
 Ugochukwu, E. N. 95B, 521
 Ugolev, A. M. 95A, 501
 Ultsch, G. R. 97A, 505
 Umebachi, Y. 97B, 563
 Umeki, S. 96B, 461
 Ushijima, J-I. 95A, 411
 Val, A. L. 95B, 77; 97B, 435
 Valjakka, A. 96C, 299
 Valotaire, Y. 96B, 129
 Van Beek, E. 95B, 565
 van den Thillart, G. 95B, 789
 Van der Laarse, A. 95A, 109
 van der Mast, C. A. 96C, 419
 van der Vliet, W. 97C, 317
 Van der Westhuyzen, J. 96C, 291
 Van Mellaert, H. 95C, 241
 Van Straalen, N. M. 97C, 119
 van Waarde, A. 95B, 789
 van Zoest, I. D. 96C, 199
 Vandermeulen, J. H. 95C, 169
 Vandewalle, P. 97B, 547
 Vanni, P. 95B, 431
 Vaughan, J. A. 95B, 215
 Vaughan, M. K. 95A, 363
 Vazquez, E. S. 96C, 177
 Vazquez-Illanes, M. D. 97B, 279
 Vega, P. 96C, 217
 Veldhuizen-Tsoerkan, M. B. 96C, 419
 Ventrella, V. 95B, 95; 97B, 343
 Verachtert, B. 96A, 309
 Verhaert, P. 95A, 373
 Verkleij, J. A. C. 97C, 119
 Vermeulen, N. P. E. 96C, 253
 Vessey, D. A. 95B, 647
 Vestweber, C. 95B, 647
 Viarengo, A. 95C, 271
 Viarengo, A. 97C, 37

- Vicente, V. 95B, 501
Vickridge, I. 97A, 461
Videler, J. J. 97A, 91
Vieira, E. C. 97A, 235
Vieira-Makings, E. 96C, 291
Vietmeier, B. 95B, 39
Viga, A. 96B, 721
Vigna, S. R. 96C, 135
Vihko, V. 97A, 345
Vilaro, P. 96A, 91
Vilella, S. 96A, 13
Villamarin, J. A. 95B, 531
Villarreal, H. 95A, 189
Vinardell, M. P. 95A, 17
Vinogradova, S. O. 97B, 411
Vinson, S. B. 96C, 281
Virtanen, E. 96A, 117
Virtanen, P. 97A, 345
Viscor, G. 97A, 595
Vitaioli, L. 95B, 35
Vitale, L. 95B, 589
Vitanova, L. 97C, 93
Viviani, R. 97C, 305
Vliegen, H. W. 95A, 109
Vollmar, A. M. 96A, 459
von Bernhardi, R. 96C, 77
von Karsa, L. 95C, 117
Von Vleck, M. F. 96B, 163
Voogt, P. A. 97B, 555
Vota-Pinardi, U. 96A, 421
Vukmirovic, M. 95C, 15
Waagbo, R. 96A, 395
Wada, K. 96C, 241
Wadsworth, S. C. 97B, 403
Wagner, R. M. 95C, 19
Waite, J. H. 97B, 19
Wakata, N. 97B, 201, 543
Wali, J. S. 96B, 497
Walker, C. H. 97C, 151, 161, 173
Walker, C. W. 95B, 65
Walker, R. J. 97C, 373
Wallbanks, K. R. 96B, 577
Wang, S. 96B, 201; 97B, 661
Ward, L. C. 96A, 287
Warkentin, I. G. 96A, 379
Warner, A. H. 97B, 855
Washio, H. 97C, 227
Wasilewski, W. 96C, 33
Wasser, J. S. 97A, 505
Wassersug, R. J. 97C, 201
Watabe, K. 95B, 821
Watabe, M. 95B, 821
Watabe, S. 95B, 341, 387; 96B, 81, 639; 97B, 793
Watala, C. 97C, 187
Watanabe, H. 97B, 605
Watanabe, M. 97B, 605
Watanabe, T. 95B, 759
Watanabe, Y. 97B, 527
Watson, N. G. 97C, 247, 251
Watts, S. A. 95A, 529
Weaver, B. M. Q. 95A, 359
Weaver, W. D. Jr. 95A, 393
Webb, E. 96B, 775
Webb, K. L. 95A, 385
Weber, K. 97B, 741
Weglarz, L. 96C, 83

- Wei, C. I. 97B, 483
 Weile, K. 97A, 51
 Wein, A. J. 96A, 221
 Weinhold, L. C. 95B, 355
 Weinstock, J. 95B, 261
 Weiss, M. 96B, 375
 Welch, S. 97B, 417
 Weldon, P. J. 95B, 541; 96B, 705
 Wells, R. M. G. 96A, 333; 97B, 815
 Welty, J. D. 97A, 487
 Wenne, R. 97B, 81
 Werkman, T. R. 95C, 163
 Werner, D. I. 95B, 541
 West, N. H. 96A, 379
 Whish, W. J. D. 96B, 527
 White, C. J. B. 96B, 527
 White, J. C. 97B, 193
 Whittaker, M. 96B, 113
 Whittow, G. C. 95A, 407
 Wigington, J. G. 96A, 19
 Wikfors, G. H. 97B, 491
 Wilbrink, M. 96C, 253
 Wilkens, J. L. 97A, 159
 Wilkins, J. P. G. 97C, 151, 161,
 173
 Williams, D. E. 96C, 259; 97C, 127
 Williams, G. 97B, 167
 Williams, H. J. 96C, 281
 Williams, J. A. 95A, 177
 Williams, J. H. 96A, 387
 Williams, J. M. 97A, 1
 Willis, J. S. 96A, 91, 97
 Winkler, D. W. 95A, 567
 Winsor, M. 96C, 327
 Wisniewski, J. R. 95B, 545
 Withers, P. 96B, 67
 Wiygul, G. 95B, 489
 Wolny, M. 97B, 49
 Won, H. 96C, 205
 Wong, H. Y. C. 97B, 83
 Wong, P. C. L. 95B, 193
 Wood, E. 96C, 361
 Wood, K. V. 96B, 157
 Wood, S. J. 95C, 233; 96C, 1
 Woodring, J. P. 96B, 671
 Wright, L. G. 95C, 319
 Wright, M. L. 96A, 215
 Wyse, J. P. 95A, 149
 Xiang, J. 96A, 267
 Xu, R-J. 96B, 375
 Xu, R. A. 95A, 127; 96A, 33
 Yaginuma, T. 97B, 495
 Yalow, R. S. 96B, 239
 Yamada, M. 96B, 709
 Yamada, S. 97B, 539
 Yamada, Y. 97A, 373
 Yamagishi, H. 97A, 223, 601
 Yamaguchi, M. 95B, 423; 97B, 679
 Yamakami, K. 95B, 755
 Yamamoto, K-i. 96A, 107
 Yamamoto, Y. 95B, 347
 Yamanaka, Y. 96C, 91
 Yamashita, E. 96B, 465
 Yamashita, M. 95B, 149, 559; 96B,
 247, 733
 Yamashita, O. 97B, 495

Author Index

35

- Yamauchi**, K. 95B, 187 **Zagalsky**, P. F. 95B, 847; 97B, 1, 837
Yamazaki, M. 96B, 93 **Zaharieva**, S. 96C, 119
Yang, B-C. 96B, 787; 97C, 353 **Zahlsen**, K. 95C, 213
Yang, S. I. 97A, 531 **Zahn**, R. K. 95C, 15
Yashiro, K. 96B, 171 **Zakrzewska**, B. 97B, 135, 141
Yasuhara, T. 96C, 157 **Zandee**, D. I. 96C, 419
Yersin, A. G. 97B, 755 **Zanders**, I. P. 97B, 383
Yokota, Y. 96B, 171, 381 **Zaporowska**, H. 96C, 33
Yokoyama, A. 95A, 185 **Zarivi**, O. 97B, 751
Yon, J. M. 96B, 457 **Zelewski**, M. 95B, 469; 97B, 59
Yonchana, T. 96A, 157 **Zeman**, M. 97A, 175
Yonehara, S. 95B, 559 **Zepeda**, P. 97B, 467
Yong, H. S. 97B, 119 **Zerba**, E. 96C, 361
Yorio, T. 96C, 245 **Zerweck**, E. 95B, 647
Yoshida, S. 95B, 559 **Zhang**, G. 96C, 141
Yoshinaka, R. 96B, 451 **Zhang**, Y. S. 95B, 247
Yoshino, K-I. 95B, 423; 97B, 679 **Zhao**, Z. 96A, 91
Yoshino, M. 97A, 341 **Zherelova**, O. M. 95A, 325; 96A, 173
Younai, S. 97B, 701 **Zhuang**, H. 97B, 83
Young, A. A. 96A, 333 **Zigman**, S. 96B, 697
Young, P. 96C, 185 **Ziji**, R. 96C, 253
Yu, N.-T. 96B, 697 **Zucker**, H. 95A, 573
Yuan, X. L. 96B, 605; 97B, 183 **Zurburg**, W. 97B, 661

SUBJECT INDEX

- A-currents, 96C, 411
 AC, 96A, 503
Acanthephrya sexspinosa, 95A, 547
Acanthophis antarcticus, 95B, 45
 ACE, 95C, 327
 Acetazolamide, 95C, 85
 Acetylhistidine, 97B, 539
 ACh, 95C, 91
 AChE, 95B, 609; 96C, 77
Acherontia atropos, 97A, 493
 Acid phosphatase, 95A, 145
 Acid stress, 95A, 69
 Acid waters, 96C, 377
 ACTH, 95A, 121, 259; 95C, 45
Actinia cari, 97B, 687
 Actinomycin D, 95A, 441
 ACZH, 96C, 381
 Ad libitum-fed, 96A, 287 (not fed)
 Adenine nucleotides, 97B, 411
 Adenosine, 97C, 363
 Adenosine metabolizing enzymes, 97B, 675
 Adenylate cyclase, 97A, 81
 ADH, 95B, 419
 Adipocytes, 96A, 323, 503
 Adipocyte plasma membrane, 96B, 195
 Adipose tissue, 96B, 585
 Adonirubin, 95B, 119
 ADPR-transferase, 96B, 527
 Adrenaline, 95A, 591; 97C, 363
 Adrenergic activity, 97A, 361
 Adrenergic agonists, 97C, 133
 Adrenocortical mitochondria, 96B, 93
 Adrenocorticotrophin, 95A, 259, 95C, 159
 Adrenoreceptors, 96C, 399, 405
Aedes aegypti, 96B, 549
Aepyceros melampus, 95C, 247
 Aerial metabolism, 96A, 61
 Aerial respiration, 95A, 267
 Aerobic metabolism, 97A, 341
 Aeroplysinin-1, 97B, 151
 Aestivation, 96B, 67
 Aflatoxin-b, 95C, 15
Agama agama, 95B, 522
 Age dependent changes, 96B, 771
 Age dependent variations, 97B, 209
 Age related changes, 96B, 271
 Age rings, 96A, 451
 Aged rats, 96A, 469; 96C, 299
 Ageing, 96B, 271; 96C, 287
 Agglutinins, 97B, 701
 Aggression, 96C, 131
 Aggressive behavior, 97A, 307
Agiistrodon, 95B, 577
 AIAT, 95A, 549
 AKH, 95B, 459
 ALA-D, 95B, 317
 ALA-S, 95B, 317

- Alanine, 95A, 533
 Alanine taste, 95A, 533
 Albumin, 96A, 479
Alca tarda, 97C, 151
 Aldolase, 96B, 67
 Aldosterone, 95A, 79, 259; 97A, 535
 Aldrin, 95B, 515
 Alginate lyases, 97B, 103
 Alkaline phosphatase, 95B, 165; 96B, 787
 Alkaloids, 96B, 431
Alligator mississippiensis, 95A, 55; 96A, 441; 96B, 183, 651
Alligators, 96A, 441; 96B, 651
Allomyrina dichotomus, 97A, 223, 601
 Allozyme variability, 97B, 119
 Alpha-1-antitrypsin, 95B, 39
 Alpha fetoprotein, 97C, 357
 Altitude, 97A, 179
 Aluminium, 95C, 201; 96C, 353, 357; 97C, 111
Alvinella pompejana, 96B, 753
Amaurochiton glaucus, 96B, 291
Ambystoma mexicanum, 95B, 839
Amiloride, 96A, 91; 96C, 71; 97A, 275
 Amino acids, 96A, 13; 97A, 279, 289; 97B, 605
 Amino acid absorption, 95A, 17
 Amino acid decarboxylase, 97C, 247
 Amino acid sequences, 96B, 41
 Ammonia, 97C, 87
 Ammonia excretion, 96A, 373; 97A, 51
 Amphipods, 95A, 177
 Amylase, 95A, 47; 97A, 45
 Anaerobic energy metabolism, 95B, 493
 Anaerobiosis, 97A, 341
 Anaesthesia, 95A, 87
Anagasta kuehniella, 95B, 699
 Analgesia, 96C, 131
Anarhica's minor, 96B, 221
Anas domestica, 95A, 407
Anas platyrhynchos, 95C, 213; 97B, 637
 Androstanedione, 95A, 163; 95B, 303
Anemone sulcata, 95A, 559
Angiostrongylus cantonensis, 95B, 193
 Angiotensin II, 96B, 553
 Angiotensin, 95C, 327
Anguilla anguilla, 95A, 219; 95B, 153, 269, 381; 96A, 13
Anguilla japonica, 95B, 219; 96B, 107
 Anodonta cygnea, 95C, 301
Anophalese arabiensis, 96B, 339
 ANP gene expression, 97B, 205
Anthocidaris crassipina, 96B, 381
Anthonomus grandis, 95B, 489
 Antibacterial activity, 95B, 71
 Antibacterial peptides, 95B, 551
 Anti-estrogen, 96C, 241
Anticarsia gemmatalis, 96B, 671
 Antihypertensive effect, 96C, 367
 Anti-inflammatory drugs, 96C, 83

- Antisera.**, 97A, 35

Apical membrane., 95A, 501

Apis mellifera., 95A, 539; 95B, 609; 97C, 53, 275

Aplysia muscle., 96C, 71

Aplysia californica., 95A, 215

Aplysia fasciata., 95C, 39

Aplysia gut., 95A, 215

Aplysia kurodai., 96B, 465

Apocarotenoid., 96B, 465

Apoproteins E and C., 96B, 209

ApoVLDLII gene transcription., 97B, 55

Aquaculture., 95B, 225

AR-1 collagen., 96B, 451

Arachidonic acid uptake., 97B, 285

Arenicola cristata., 95B, 745

Arginine taste., 95A, 533

Aroclor 1254., 95C, 15

Arousal., 96A, 485

Artemia., 95A, 491; 95B, 565; 97B, 855

Artemia salina., 96B, 581; 97A, 153

Artemia uromiana., 95B, 115, 225

Arterial fatty acid-binding protein., 97B, 123

Arterial wall., 97B, 355

Aryl hydrocarbon hydroxylase., 95C, 169; 97C, 127

Ascaris suum., 95B, 811

Ascogaster quadridentata., 95B, 131

Ascorbic acid., 95A, 481, 96A, 395

Ascorbic acid deficiency., 97A, 145

AspAT., 95A, 549

Aspergillus melleus., 95B, 347, 559

Assimilation., 96A, 441

Astacus astacus., 96A, 235

Astaxanthin., 95B, 119; 96B, 355

Asterias rubens., 97B, 555; 97C, 363

Asterias vulgaris., 95B, 65

Astriclypeus manni., 97B, 679

Astropecten articulatus., 95A, 529

Atherosclerosis., 97B, 123

ATP., 97C, 363

ATPase., 97B, 383

ATP-synthetase., 97B, 411

Atria., 95A, 219

Atrial natriuretic peptide., 95C, 327; 96A, 459

Autonomic drugs., 97C, 13

Avian liver explants., 96B, 163

AVT., 95B, 464

Axinella verrucosa., 97B, 645

5-azacytidine., 97C, 357

5-aza-2-deoxycytidine., 97C, 357

Bacillus., 97B, 65

Bacillus calyciflorus., 95B, 619

Bacillus thuringiensis., 95C, 241

Bacterial pyrogen., 96A, 383

Bacterium., 97B, 103

Bactrocera albistrigata., 97B, 119

Balaenoptera autorostata., 95B, 199

Barbatia reeveana., 96B, 235

Barbus barbus., 97B, 547

Basal metabolism., 96A, 379

Basal metabolic rate., 97A, 27

- BAT, 95B, 535; 96A, 485; 97A, 217; Blue sensitive visual pigment, 96B, 487
 97B, 59
- Bats, 96C, 291
- Beauveria bassiana**, 95B, 559
- Benzo[a]pyrene**, 95C, 25
- Beta-bisabolol**, 95B, 489
- Beta-galactosidase**, 96B, 747
- Beta-galactosidase**, 97C, 353
- Beta-Naphthoflavone**, 95B, 247
- Bettongia giamardi**, 97A, 573
- Bidyanus bidyanus**, 96B, 267
- Bile acid**, 95B, 647
- Biliary bile acid profiles**, 96B, 157
- Biliary lipids**, 97B, 521
- Bilirubin UDP-glucuronyltransferase**, 95B, 19
- Biochemical rhythm**, 96B, 771
- Biochemistry values in baboons**, 96B, 647
- Biogenic amines**, 96C, 389
- Biomphalaria glabrata**, 95A, 511; 96B, 791
- Bison bonasus**, 96A, 435
- Blackbucks**, 97A, 595
- Blaps polychresta**, 96B, 319
- Blaps sulcata**, 96B, 319
- Blood chemistry**, 97A, 525; 97A, 525, 595, 611
- Blood physiology**, 97A, 51
- Blood protein characters**, 96B, 201
- Bluetongue virus**, 96A, 19
- Blue-green blood plasma**, 97B, 37
- Body temperature regulation**, 95A, 579 95A, 435; 97A, 573
- Body weight set-point**, 96A, 287
- Bohr effect**, 96B, 119
- Bombesin**, 96C, 135
- Bombus terrestris**, 97A, 493; 97B, 197
- Bombyx mori**, 95B, 551, 559; 96B, 253, 591, 605; 97A, 205, 373; 97B, 183, 471, 495
- Bone porosity**, 95A, 401
- Bordetella avium**, 97B, 755
- Borohydride reduction**, 95B, 119
- Bos (Bibos) javanicus**, 95B, 825
- Bos bibos**, 95B, 825
- Bos indicus**, 95B, 275, 501
- Bos taurus**, 95B, 501, 781; 96B, 309, 445, 513
- BPT1**, 445
- Brachionus calciflorus**, 95B, 619
- Brachionus plicatilis**, 95B, 393, 619; 97A, 211
- Brain amines**, 96C, 299
- Brain gangliosides**, 95B, 199; 96B, 471
- Brain-steroid interaction**, 97A, 307
- Branched-chain fatty acid**, 96B, 475
- Branchial heart**, 97C, 71
- Brassicasterol**, 97B, 491
- Breast cancer cells**, 97B, 151
- Breathing**, 96A, 333
- Breathing rhythm**, 96A, 291

- Broiler chickens, 97A, 537
Bromobenzene, 96C, 253
Bromophenols, 97B, 741
Brush-border, 96A, 13
Bryonia dioica, 96B, 581
Bryozoan secondary metabolites, 96B, 431
Buccal ganglia, 97A, 65
Bufo arenarium, 95C, 327
Bufo bufo, 97B, 751
Bufo marinus, 95A, 487
Bufo melanostictus, 96B, 715
Bufo regularis, 95C, 79
Bufo viridis, 97A, 423
Bullfrogs, 95C, 253
Bungarus caeruleus, 95C, 105
Bungarus candidus, 95C, 105
Bungarus fasciatus, 95C, 105
Bungarus venoms, 95C, 105
Busycon canaliculatum, 97B, 745
Butyrate, 95A, 411

C_{Na}, 95A, 237
C-reactive protein, 96A, 489
 Ca^{2+} , 97A, 75
 Ca^{2+} -calmodulin, 97B, 527
 Ca^{2+} -dependent K^+ , 97A, 417
 Ca^{2+} -mobilizing receptors, 97C, 9
Ca ATPase, 95A, 453
Ca/Na exchange, 96A, 147
Cadmium, 95C, 111, 217, 265, 271, 279, 285, 313; 96C, 11, 181, 419; 97C, 215, 221, 297, 305
Caenis diminuta, 95A, 69
Caenis hilaris, 95A, 69
Caenorhabditis elegans, 95B, 125; 95C, 223; 96B, 81, 633
Calbindin-D9K, 97B, 295
Calcium, 97C, 329
Calcium-binding proteins, 95B, 381
Calcium carbonate, 96C, 353
Calcium release, 96C, 45
Calcium transport, 95A, 453, 96A, 465
Calidris alpina, 97B, 849
Calinaticina oldroydii, 97B, 631
Callinectes sapidus, 95B, 525; 97B, 831
Callithrix jacchus, 97B, 167
Callopsistes maculatus, 96A, 383
Calmodulin, 95B, 381; 96C, 321; 97C, 33
Calmodulin protein-kinase, 96B, 533
Caloric values, 96A, 267
Camelus dromedarius, 95B, 275, 96B, 821; 97B, 177, 667
cAMP, 95C, 163; 96B, 53; 97C, 329
Cancer antennarius, 97C, 241
Cancer magister, 97A, 159
Cancer pagurus, 96B, 137
Canis domesticus, 95B, 781
Capra hircus, 95A, 275, 303; 95B, 275; 96A, 245
Carassius auratus cuvieri, 97B, 315
Carassius auratus, 95A, 459; 95B, 107, 789; 96A, 57, 157; 97B, 815; 97C, 305
Carbaryl, 97C, 49

Subject Index

- Carbohydrate metabolism, 96A, 435 Catecholamines, 97C, 53, 107
- Carbohydrate utilization, 97A, 41 Cathepsin, 96B, 247
- Carbonic anhydrase, 95B, 205; 95C, 85; 96B, 243 Cathepsin B, 96B, 381, 733
- Cathepsin D-like, 95B, 327
- Carcinus maenas*, 95A, 379, 547; 95C, Cathepsins, B,D,H, 95B, 149
- 307; 96B, 177, 243, 405; 97A, 9; 97C, 87 *Catostomus commersoni*, 95C, 25
- Cardiac activity, 96A, 473 *Cavia domesticus*, 95B, 781
- Cardiac hypertrophy, 95A, 109 *Cavia porcellus*, 95A, 149, 501;
- Cardiac output, 95A, 359 95B, 327
- Cardiac Purkinje fibres, 95A, 237 CCK, 95B, 459
- Cardita affinis*, 96B, 235 *Cebidichthys violaceus*, 96A, 61
- Caretta caretta*, 97B, 275 Cecropins, 95B, 551
- Carnitine, 97A, 543 Cefatrizine, 96C, 317
- Carnivore's Vitamin A, 95A, 573 Cephaloglycine, 96C, 317
- Carnosine, 96A, 195 Cephalopod CNS, 96C, 49
- Carotenoid, 95B, 1, 583, 759; 96B, 355, 801; 97B, 601 Ceratitis capitata, 97B, 301
- Carotenoid-protein, 95B, 119 *Ceratotherium simum*, 95B, 803
- Carotenoproteins, 95B, 847; 97B, 645, 837 Ceruloplasmin, 95C, 297
- Carotenoproteins architecture, 97B, 1 *Cervus elaphus*, 97A, 427
- Carp, 95C, 145, 151; 96C, 17, 23, 91 Cetaceans, 95B, 199
- Carp metabolism, 95C, 237 *Ceuthophilus stygius*, 95A, 157
- Carp muscle, 96B, 565 *Chaenocephalus aceratus*, 95B, 29
- Carpra hircus*, 96A, 495 Chaetozone setosa, 95C, 111
- Carrgeenans, 96C, 77 Chagas disease, 97A, 235
- Catalase, 95B, 91, 811 Channel catfish, 97B, 477
- Catch mechanism, 96B, 639 CHAT, 95B, 375
- Catch-muscle, 96C, 99 *Cherax cuspidatus*, 96A, 281
- Catch relaxing peptide, 97C, 373 *Cherax tenuimanus*, 95A, 189
- Catechol oxidase, 95B, 767 Chest-lung system, 96A, 499
- Chick, 96B, 709
- Chick embryo, 97A, 175; 97C, 9
- Chick lungs, 96B, 415
- Chick ovary, 96B, 53
- Chicken, 96A, 327

- Chicken erythrocytes, 97B, 159 Clam heart, 95C, 155
Chicken growth hormone, 96B, 491 Clarias fuscus, 96A, 199
Chinchilla villoso-*villidera*, 95B, 39 Classification of *Microcebus*, 97B,
Chironomus thummi, 95B, 545 261
Chitinase, 95B, 311; 96B, 761 *Clonorchis sinensis*, 97B, 825
Chitobiases, 96B, 761 *Clupea harengus*, 95B, 803; 96B, 743
Chlomethoxynil, 96C, 373 *Clypeaster japonicus*, 97B, 679
Chloride, 95A, 367 *Clypeaster prostratus*, 95A, 529
Chloride absorption, 95A, 215 CNP, 96C, 373
Chloride channel blockers, 97A, 9 CO₂, 95A, 379; 96C, 333
Chloride channel, 96C, 339 Cobalt, 95C, 79; 97C, 305
Chloride shift, 95B, 865 *Cobitis biswae*, 96A, 253; 97A, 385;
Chlorpromazine, 97C, 247, 251 97C, 183
Cholesterol, 95A, 31; 95B, 193; 96B, Cockerels, 97B, 55
271, 571 Cockroach salivary gland, 97C, 283
Cholesterol accumulation, 95A, 275 Coelenterazine, 96A, 425
Chondrichthyes, 96B, 23 Coelomic fluid, 97A, 87
Chondroitin sulfate proteoglycans, Coelomocyte lysate, 95B, 145
97B, 355 Coho salmon, 96B, 483
Chorioallantoic membrane, 96B, 297 Colchicine, 95A, 281; 97A, 265
Chorionic gonadotropin, 96A, 525 Cold exposed rats, 97B, 327
Chromatophores, 97C, 33 Cold exposure, 95A, 363; 97B, 59
Chromophycota, 97B, 491 Cold stress, 97A, 265, 275
Chrysemys dorbignyi, 95A, 229 Collagens, 95B, 137, 669; 96B, 451;
Chymotrypsin, 97B, 145 97B, 821
Chymotrypsin inhibitors, 97A, 205 Collisions with aircraft, 97B, 171
Chymotrypsinogen, 97B, 761 Colonic epithelium, 97B, 333
Ciona intestinalis, 96A, 263 *Collossoma macropomum*, 95B, 77
Circadian rhythm, 96C, 151 *Colpa interrupta*, 96C, 157
Circahoral, 96A, 1 *Columba domestica*, 95A, 407
Circular dichroism study, 95B, 847 *Columba livia*, 95B, 677
Cirriformia tentaculata, 97B, 391 *Concholepas concholepas*, 95B, 85;
CK, 96B, 1, 33 96B, 613
Cladogenesis, 97B, 65 *Condylactis gigantea*, 97A, 481

- Conjugation, 95B, 647
 Control, 96A, 333
 Convergence ratio, 97A, 405
 Cooling, 95A, 201, 407
 Copper, 95C, 111, 177, 265, 271, 279, 285, 307; 95B, 29; 96B, 393; 97C, 297, 305
 Copper deficient pigs, 97C, 387
 Core temperature, 96A, 245
 Coronary artery, 97C, 59
 Cortex slices, 97A, 275
 Corticosterone, 95A, 55, 401
 Cortisol, 95A, 259, 171; 95C, 313
Coturnix coturnix japonica, 95A, 401; 97B, 761, 783; 97C, 139
Crassostrea virginica, 95A, 385
 Crayfish, 97A, 189
 Creatine, 96B, 107
Crithidia luciliae, 95B, 159
Crocodylus niloticus, 97A, 607
Crotalus durissus collilineatus, 97B, 695
Crotalus viridis lutosus, 97B, 95
 Crotoxin, 97B, 695
 Crude oil, 95C, 213
 Crustacea, 95A, 545
 Crustacean gill epithelia, 97A, 297
 Crustacyanin, 97B, 837
 CSF ion composition, 96A, 135
Culicoides variipennis, 96A, 19
 Cutaneous respiration, 95A, 425
 Cuticle polypeptides, 96B, 421
 Cuticular hydrocarbons, 95B, 131, 699; 96B, 305, 815
 Cuticular lipids, 95B, 603, 721
 Cyanide intoxication II, 96C, 177
 Cyclic nucleotides, 95C, 133
 Cycloheximide, 95A, 441
Cydia pomonella, 95B, 131
Cynomys ludovicianus, 97B, 521
Cynoscion striatus, 96B, 33
Cyprinodon variegatus, 97A, 17
Cyprinus carpio, 95A, 139, 425; 95B, 255, 341; 95C, 145, 11, 237; 96A, 45, 163, 565; 96B, 107; 97A, 565; 97B, 49; 97C, 13, 25, 107
 Cysteamine, 96A, 327
 Cysteine proteinase, 95B, 473, 691; 97B, 825
 Cytochalasin B, 97A, 265
 Cytochrome c, 95A, 139
 Cytochrome c oxidase subunit III mRNA, 97B, 257
 Cytokines, 95A, 41
 D-alanine, 97B, 291
 D-aldosterone, 96A, 75
 D-amino acids, 97C, 341
Dacus dorsalis, 96C, 27
 DALA synthetase, 95B, 317
 DALAH, 96B, 709, 729
Dama dama, 95A, 445
Daphnia magna, 97A, 513
Daphnia pulex hemoglobin, 97B, 369
Dasyurus viverrinus, 97B, 47
 Decapod crustacean larvae composition, 97B, 69

- DEE, 95C, 85
Defensive chemicals, 97C, 233
Dehydration, 97B, 205
3-dehydroretinal, 96B, 487
Deinagkistrodon acutus, 95B, 577
Delta-11-tetrahydrocannabinol, 96C, 65
Demyelinisation, 96C, 291
Dendrocoelum lacteum, 96B, 581
Detoxification, 96C, 281
Developmental physiology, 96A, 309
Dexamethasone, 97C, 369
DHT, 95A, 445
Diadema setosum, 95B, 423
Diazinon, 96C, 23
Diceros bicornis, 95B, 803
2,2'-dichlorobiphenyl, 96C, 253
Dichlorvos, 95C, 237
Didelphis virginiana, 96B, 239; 97B, 193; 97C, 65
Diet, 96A, 33; 97A, 41
Diet selection, 95A, 195
Dietary amino acid, 95A, 309
Dietary cholesterol, 97B, 83
Dietary protein, 95A, 429
Digesta, 96A, 109
Digesta retention, 96A, 351
Digestion, 95B, 625; 96A, 441
1,25-dihydroxyvitamin D₃ receptors, 96A, 495
Diplodon delodontus, 97B, 535
Diplodus annularis, 95B, 653
Diplodus puntazzo, 96B, 257
Disaccharidase, 97A, 45
Diurnal changes, 96A, 151
Diurnal rhythm, 95A, 549
Diving physiology, 95A, 229
DNA, 95B, 657
DNA content, 95A, 109
DNA evolution, 95B, 21
DNA polymerase, 95C, 271
DNA synthesis, 95B, 65
DOCA, 96A, 75
Dolphins, 95B, 199
Domestic fowl, 96C, 211
Domestic wastewater, 97C, 381
DOPA-oxidase, 96B, 393
DOPA-decarboxylase, 97B, 301
Dopamine, 95C, 35, 163, 301; 97B, 563; 97C, 387
Dopamine receptor, 97C, 283
Dorid nudibranchs, 97C, 233
Doris verrucosa, 97B, 363
2-3-DPG, 95B, 677
Drosophila, 95B, 171; 97B, 307
Drosophila, 97B, 307
Drosophila funebris, 95B, 663
Drosophila melanogaster, 95B, 171, 179, 183; 96A, 309
Drosophila myosin, 95B, 179, 183
Drosophila simulans, 97A, 501
Drosophila src, 97B, 403
Drug metabolism, 96C, 217
Duck stomach, 97B, 89
Ducks, 95C, 213
DUM, 95C, 55
Duplicate genes, 96B, 33
Dynein adenosine triphosphatase,

- 97A, 325
Dynein-tubulin, 96A, 517
Dystrophic hamster diaphragm, 97B, 821
Ecdysone 95B, 365
Ecdysteroid, 95B, 365
ECG, 95A, 459
Echinoderm testes, 95B, 65
Echinoderms, 95A, 529
Echinostoma trivolvis, 97B, 601
Edema-inducing, 97C, 293
EDTA, 95C, 79
EEG, 95A, 459; 96C, 299
Eel-liver cytosol, 95B, 153
Eel myosin, 95B, 269
Eel skeletal muscle, 95B, 381
EGF, 95A, 41; 97B, 151
Egg, 96B, 253
Egg gas tensions, 95A, 4
Egg pores, 95A, 2
Egg shell conductance, 95A, 3
Egg shell thinning, 95C, 85
Egg water loss, 95A, 4
Eicosanoid metabolism, 95C, 99
Eisenia fetida andrei, 95B, 71
Eisenia foetida, 96B, 343
Elapid venoms, 97C, 99
Electric anesthetized loach, 97A, 385
Electric capacitance, 97A, 555
Electrical stimulation, 96A, 469
Electronarcosis, 96C, 333
Electrophoretic identification, 97B, 171
Electroreceptor organs, 97A, 399
Electroreceptor, 97A, 405
Electroretinogram, 95A, 149
Eledone cirrhosa, 95B, 311
Elephas maximus blood, 96A, 131
Eliomys quercinus, 97B, 809
Embryo proteins, 96B, 253
Embryonic development, 96B, 505
EMP, 95B, 287
Endorphins, 95C, 45; 96C, 381
Endothelium, 97C, 311
Energy balance, 97A, 1
Energy budget, 96A, 163; 97A, 169, 381, 551
Energy metabolism, 96A, 253; 97A, 189
Energy reserves, 97A, 345, 353
Enkephalin, 97C, 93
Entamoeba histolytica, 97B, 707
Entosphenus japonicus, 95B, 669
Enzyme binding, 96B, 67
Enzyme depletion, 96B, 59
Epibrassicasterol, 97B, 491
Epidermal growth factor, 97A, 201
Epidermis, 96C, 245
Epilepsy, 97C, 257
Epinephelus akaara, 95C, 159
Epinephrine, 95A, 591; 96B, 113; 97C, 363
Eptatretus burgeri 95B, 137
Eptatretus cirratus, 95A, 585; 96A, 113
Eptesicus fuscus, 96A, 431

- Equus caballus**, 95A, 549; 96A, 151, **Fat**, 95A, 429
195 **Fat bodies**, 96B, 319
- Eremitalpa granti namibensis**, 96A, **Fatty acid binding protein**, 96B, 585
227 **Fatty acid composition**, 96B, 267,
Eretmochely imbricata, 97B, 275 721
- ERG**, 95A, 149; 97C, 93 **Fatty acid distribution**, 96B, 559
- EROD**, 95B, 247 **Fatty acid profile**, 97B, 269
- Erythrocyte haemolysis**, 97B, 167 **Fatty acid synthesis**, 95B, 153, 469
- Erythrocytes**, 95A, 453; 96A, 91, 97 **Fatty acids**, 95A, 385, 417; 95C, 99;
Erythrophores, 96C, 399 96B, 271, 597
- Escherichia coli**, 97B, 477 **FDPA**, 95A, 549
- Esox lucius**, 95C, 217; 96C, 87 **Feed deprivation**, 96B, 361
- Esox masquinongy**, 96A, 109 **Feline whey**, 95B, 773
- Estiol**, 95B, 415 **Felis catus**, 95B, 773
- Estradiol**, 95B, 565; 97B, 55 **Female-specific proteins**, 95B, 483
- Estradiol-17 β** , 95B, 415 **Femoral gland secretions**, 95B, 541
- Estrogen receptors**, 96B, 375 **Fenitrothion**, 96C, 23
- Estrogens**, 97B, 617 **Fertilization**, 97B, 767
- Estrone**, 95B, 303 **Fetoproteins**, 96B, 297
- Ethacrynic acid**, 96A, 41 **Fibre digestion**, 96A, 351
- Eurythoe complanata**, 96B, 783 **Fibroblasts**, 97B, 617
- Euspira heros**, 97B, 631 **Fick's Law**, 95A, 3
- Everted sac**, 95A, 297 **Fish erythrocytes**, 95B, 91
- Evolution of hormone-receptor **Fish isozymes**, 96B, 1**
systems, 97A, 101 **Fish liver**, 95B, 647; 95C, 15
- Ewes**, 96A, 347 **Fish otoliths**, 97A, 449, 461, 475
- Exercising rats**, 97A, 543 **Flea**, 95B, 215
- Exhausting exercise**, 95A, 585 **Flexor tibiae muscle**, 97A, 583
- Exogenous lactate**, 96A, 157 **Flight muscles**, 97B, 197
- Eye lens protein**, 95B, 653 **Fluxes of Na⁺, Cl⁻**, 97A, 195
- F6P**, 95B, 531 **FMRFamide**, 95B, 459
- Faecal production**, 96A, 163 **Foals**, 95A, 549; 96A, 151
- Falco clumbarius**, 96A, 379 **Food consumption**, 96A, 163
- Food intake**, 97A, 361

Subject Index

- Food restriction**, 95A, 321
Forced submersion, 95A, 229
Fowl, 96B, 157 (also see chick and *Gallus*)
Fratercula arctica, 97C, 161
Frog, 97C, 93 (also see *Rana*)
Frog skin, 97A, 75
Frog spinal cord, 96C, 115
Fructose 2,6-bisphosphate, 96B, 63
Fructose-bis-phosphatase, 97B, 197
FSH, 95A, 163
Fucosidases, 97B, 713
Fundulus kansasae, 95A, 121, 441
Fungal protease, 95B, 347
Fungal protease inhibitors, 95B, 559
Furosemide, 97A, 275
G3PDH, 96A, 147
GABA, 95B, 375
GABA receptor, 95C, 1
GAD, 95B, 375
Gadus morhua, 96B, 221, 323, 743; 97A, 41; 97B, 775
GAG, 95B, 387
Galactan, 96B, 147
Galeocerdo cuvieri, 95B, 205
Gallotia galloti, 95A, 79; 97C, 257
Gallus domesticus, 95A, 321, 393, 429, 435, 453; 95B, 589; 95C, 85, 99, 96A, 135, 181, 187, 297, 511; 96B, 53, 101, 157, 297, 361, 415, 491, 585, 651, 677, 709, 767; 97A, 57, 325, 531; 97B, 83
Gallus gallus, 95B, 347, 375; 96B, 655; 97B, 135, 141
Gammarus fossarum Koch, 96C, 11
GAPDH, 96B, 67
Gas fluxes, 95A, 1
Gasterochisma melampus, 96A, 199
Gastrins, 96B, 239
Gastro-intestinal circulation, 95A, 481
Gazella dorca, 95B, 275
Gazelles, 97A, 595
GDH, 96B, 137
GDPH, 95B, 419
Gekko japonicus, 96A, 267
Gene expression, 97B, 235, 247
Gene frequencies, 95B, 501
Genetic analysis, 96C, 389
Genetic selection, 97A, 57
Genetic similarities, 95B, 23
Genomes, 95B, 21
Genotoxic effects, 97C, 179
Geodia mesotriaena, 96C, 305
Geodiatoxins 2-4, 96C, 305
Gerbil, 95C, 45
Germinal vesicle, 96A, 257
Gerrhosaurus major, 96A, 383
GH, 95A, 373; 97A, 607
Gill ($\text{Na}^+ + \text{K}^+$), 95B, 95
Gill microsomal ATPases, 95B, 95
Gill O_2 , 95A, 425
Gill RNA metabolism, 95A, 121
Glibenclamide, 97C, 363
Globin chains, 96B, 41
Gloydius blomhoffi, 95B, 577

- Glucagon, 95A, 411; 96A, 327; 96B, 387; 96C, 405; 97A, 41
- Gluconeogenic/glycolytic balance, 95B, 505
- Glucose, 95A, 511; 95C, 313; 96A, 87; 96C, 333; 97A, 165
- Glucose 6-phosphate dehydrogenase, 97B, 461
- Glucose disappearance rates, 95A, 209
- Glucose production, 96B, 163
- Glucose transport, 97A, 81
- Glucose-6-phosphate isomerase, 97B, 579
- Glucuronidase, 96B, 315
- Glutamate decarboxylase, 95B, 375
- Glutamate dehydrogenase, 97C, 265
- Glutamatergic antagonist, 97C, 317
- Glutamine binding protein, 95C, 223
- Glutamyl aminopeptidase, 95B, 589; 97B, 767
- Glutathione S-transferases, 95B, 275, 355, 619; 95C, 25; 96B, 339
- Glyceraldehyde-3-phosphate dehydrogenase, 97B, 49
- Glycoconjugate, 96B, 627
- Glycogen cycle, 96B, 163
- Glycogen phosphorylase b, 95B, 295; 97B, 573
- Glycogen phosphorylase, 96B, 113. 591
- Glycolipid biosynthesis, 96B, 689
- Glycolysis, 97B, 279
- Glycolytic oscillator, 95B, 613
- Glycoproteins, 95B, 281, 855; 96B, 613
- Glycosaminoglycan, 95B, 387
- Glycosidase activity, 96B, 577
- Glycosidases, 95B, 393; 96B, 671
- Glycosylated haemoglobin, 96B, 821
- Glycosylation, 96B, 235
- Glyoxylate cycle, 95B, 125
- Glyptocidaris crenularis, 96B, 335
- Goats, 95A, 275, 303
- Goldfish, 96A, 157
- Golfingia vulgaris, 97A, 87
- Gonadotrophin, 96B, 53
- Goniada maculata, 95C, 111
- GOT, 95B, 419
- GPI, 96B, 257
- G-proteins, 95B, 861
- Greyhound dog, 97A, 249
- Growth hormone, 95B, 229, 96C, 119
- Growth hormone family, 95B, 797
- Growth rate, 97A, 57, 381
- GSHT, 95B, 247
- GTP olfaction, 95A, 27
- GTP, 96C, 45
- Guanosine nucleotide, 97B, 855
- Guanine nucleotide binding proteins, 97B, 339
- Guinea pig, 95C, 45; 97B, 527; 97C, 247, 251, 269
- Gulls, 95A, 567
- H⁺ secreting cells, 96C, 245
- Habenulae, 96A, 421
- Habituation, 97A, 159

- Hadenoecus subterraneus**, 95A, 157 **Hemicentrotus pulcherrimus**, 96B, 381
- Haemagglutinin**, 97B, 471
- Haematological indices**, 96C, 33
- Haematology**, 97B, 47
- Haemonchus contortus**, 95C, 223; 96B, 421
- Haemopoiesis**, 95B, 641
- Hagfish**, 96A, 113
- Haloperidol**, 97C, 43
- Hamster**, 95C, 45; 97A, 487
- Hapalemur griseus**, 97B, 261
- Haplometra cylindracea**, 96C, 345
- Haptoglobin**, 96B, 309
- Harderian gland**, 95A, 249
- HBDH**, 96C, 333
- Heart**, 97A, 601
- Heart rate**, 96C, 147
- Heat dissipation**, 97A, 107
- Heat exposure**, 97A, 245
- Heat shock**, 96C, 419
- Heat-shocked Euglena cells**, 97B, 113
- Heavy metals**, 95C, 271, 301; 97C, 37
- Heavy metal concentrations**, 95C, 117
- Heliothis virescens**, 96C, 281
- Heliothis zea**, 95A, 539
- Helisoma trivolvis**, 97B, 601
- Helix central neurons**, 97C, 373
- Helix pomatia**, 95A, 73, 145; 95C, 9, 201, 207; 96B, 147; 96C, 45, 353, 357; 97A, 65
- Heleoecius cordiformis**, 95A, 267
- Hemicentrotus pulcherrimus**, 96B, 381
- Hemidactylus brookeri**, 95B, 522
- Hemocyanin**, 96B, 497; 97B, 623, 631, 745
- Hemodynamics**, 97A, 487
- Hemoglobins**, 95B, 321, 825; 96A, 151; 96B, 119, 215, 235, 291, 783; 97A, 107, 513; 97B, 391, 435, 803, 815
- Hemolymph**, 95B, 233, 545; 96A, 341, 95C, 307
- Hemolymph magnesium**, 95A, 545
- Hemorrhagic**, 97C, 209
- Hepatic alcohol dehydrogenase**, 96B, 677
- Hepatic drug metabolizing enzymes**, 96C, 111
- Hepatic membrane**, 96B, 361; 97B, 83
- Hepatocytes**, 95A, 281; 96B, 677
- Hepatopancreas**, 97B, 129; 97C, 119, 353
- Herring**, 95B, 817
- Heterocephalus glaber**, 96C, 131
- Hexachlorobenzene**, 96C, 327
- Hexokinase**, 96A, 469
- Hexose monophosphate shunt**, 95B, 287
- Hibernating dormouse**, 97A, 361
- Hibernation**, 96A, 431; 96B, 457; 97B, 411
- Histamine**, 95C, 91; 97B, 429; 97C, 251
- Histidine**, 95B, 797

- Histones, 97B, 467
- HK, 96B, 343, 336
- HMS, 95B, 287
- Holothuria polii, 95B, 145; 96B, 739
- Holozyme A, 96B, 739
- Homarus americanus, 95A, 47; 96B, 761
- Homarus vulgaris, 96B, 81
- Homo sapiens, 95B, 781
- Honey bees, 97A, 1
- Honeybee brains, 97C, 53
- Hornet cuticle, 95A, 497
- Horse, 96A, 195; 97A, 249; 97B, 591
- hsp70 multigene, 96B, 633
- 5HT, 95C, 91, 163, 301; 97A, 159
- 5HTP, 95C, 39
- Hyaena hyaena, 95B, 275
- Hydrocortisone acetate, 97A, 45
- Hydrogen peroxide, 97B, 167
- Hydrolagus colliei, 96C, 135
- Hydroxybenzenes, 96C, 411
- Hydroxybutyrate, 96B, 189
- 20-hydroxyecdystone, 96A, 205
- Hydroxysteroid dehydrogenase, 97B, 735
- Hymenolepis diminuta, 96A, 87; 96B, 527
- Hyperbaric pressure, 95A, 219
- Hypertensive rats, 95B, 555; 96C, 367
- Hyperthermic rabbit, 97A, 245
- Hypnale hypnale, 95B, 577
- Hypokalemia, 96A, 75
- Hypophysectomy, 95A, 121
- Hypostomus sp., 96A, 199
- Hypoxaemia, 97A, 537
- Hypoxanthine phosphoribosyltransferase, 97B, 591
- Hypoxia, 96B, 189; 97A, 17, 341, 513
- Hystrix indica, 95B, 275
- IBMX, 95A, 73
- IBP, 96C, 23
- ICL, 95B, 431
- Ictalurus nebulosus, 96A, 199
- Ictalurus punctatus, 95A, 417, 533; 97A, 195
- IDH, 95B, 419
- Idotea balthica basteri, 95B, 233
- Iguana iguana, 95B, 541
- Immobilization, 96A, 297
- Immunity, 96C, 271
- Impala, 95C, 247
- Infection, 96C, 271
- Ingestive behavior, 96C, 211
- Inhibitory amino acids, 97C, 79
- Inosine, 96B, 107
- Insect CNS, 95C, 229
- Insect hearing, 97A, 443
- Insect hemolymph, 95A, 539
- Insect leg muscles, 97C, 227
- Insect steroids, 95B, 365
- Insect venoms, 96C, 223
- Insulin, 95A, 411; 95B, 459, 477; 96A, 327; 96B, 331; 96C, 405; 97A, 41
- Insulin, 97C, 133, 369

Subject Index

- Lymphoid organs, 96A, 459
- Lysine-vasopressin, 95A, 259
- Lysozyme, 95B, 773
- Macaca fascicularis**, 95B, 781
- Macaca fuscata**, 96B, 665
- Macoma balthica**, 97B, 269
- Macoma nasuta**, 96C, 327
- Macoma**, 97B, 81
- Macquaria ambigua**, 96B, 267
- Macquaria australasia**, 96B, 267
- Macrobdella decora**, 97A, 577
- Macrobrachium amazonicum**, 97B, 383
- Macrobrachium borellii**, 97B, 129
- Macrobrachium rosenbergii**, 96B, 505
- Macrodon ancylodon**, 96B, 33
- Macrophages**, 97A, 417; 97B, 527
- Macropodus chinensis**, 96A, 163
- Macropus eugenii**, 95B, 571
- Malaria parasite**, 95A, 31
- Malathion**, 96C, 23, 361, 427
- Malic enzyme**, 95B, 469, 817
- Malignant transformation**, 96B, 349
- Maltose**, 95A, 511
- Malus pumila**, 95B, 131
- Mammalian epidermis**, 95B, 781
- Mammary gland ion transport**, 97A, 317
- Mammary tissue slices**, 95A, 367
- Manduca sexta**, 95C, 241
- MAO**, 96C, 87, 91
- Marine bivalves**, 97B, 81
- Marine fish**, 97B, 37
- Marisa cornuarietis**, 97B, 623
- Mauremys caspica**, 97A, 411
- Mayflies**, 95A, 69
- MDH**, 95B, 419; 96B, 1, 23, 33, 257; 97B, 247
- Mechanical characteristics**, 97A, 411
- Melampus bidentatus**, 96A, 399, 407
- Melampus**, 96A, 399, 407
- Melanogrammus aeglefinus**, 96B, 743
- Melanophores**, 96C, 399
- Melatonin**, 95A, 363
- Meleagris gallopavo**, 96B, 163
- Membrane fluidity**, 96A, 57
- Membrane lipid composition**, 97B, 849
- Membrane proteins**, 95A, 559; 96B, 597
- Membrane transport**, 96A, 91, 97
- Mercenaria mercenaria**, 95C, 155
- Mercury**, 95C, 271; 97C, 287
- Meretrix lusoria**, 96B, 787
- Meretrix meretrix**, 96B, 81, 89
- Meriones unguiculatus**, 95A, 259; 96A, 141
- Mesocricetus auratus**, 95B, 635; 96A, 485; 96B, 475
- Metabolic acclimation**, 97A, 259
- Metabolic rate**, 95A, 181; 96A, 245
- Metabolic responses**, 95A, 407
- Metabolism**, 97A, 229
- Metacercariae**, 95B, 755
- Metal binding compounds**, 97C, 119
- Metalloproteinase**, 97C, 209
- Metallothionein**, 95C, 279; 95B,

- 597; 97C, 215, 221 **Momordica cochinchinensis**, 96B, 581
- Metals**, 95C, 279 **Monkey skeletal muscle**, 96B, 665
- Metamorphic rate**, 96A, 215 **Monoamines**, 96C, 49; 97C, 71
- Methanethiol**, 96C, 115 **Monoclonal antibodies**, 96B, 229
- Methyl-D-glucoside**, 96A, 87 **Monodin**, 97B, 515
- Mevalonate**, 97B, 597 **Morphine**, 96C, 131
- mf^d- fly**, 95B, 183 **Mosquito**, 96B, 339, 549
- MFO**, 95C, 213; 96C, 205 **Motility assay**, 95B, 335
- Mg ATP**, 95B, 531 **Motor activity**, 96C, 389
- Mg GTP**, 95B, 531 **Mouse brain**, 96C, 389; 97C, 43
- Mg ITP**, 95B, 531 **Mouse cerebellum**, 95B, 855
- Mice**, 97C, 341, 357 **Mouse diaphragm**, 95B, 833
- Microincrementation**, 97A, 137 **Mouse mammary carcinoma**, 96B, 729
- Micromesistius poutassou**, 96B, 221 **MS222**, 95A, 87; 95B, 51
- Micropterus dolamieus**, 96A, 109 **Mucins**, 96B, 753
- Microsciona prolifera**, 96B, 597 **Mucosa**, 96C, 321
- Microsomes**, 97B, 129 **Mugil auratus**, 95C, 15
- Microtubular response**, 95A, 281 **Mugil cephalus**, 95C, 297
- Milk casein**, 96C, 367 **Mullet plasma**, 95C, 297
- Millipedes**, 95A, 103 **Multilocus isozyme systems**, 96B, 1
- Mineral content**, 97A, 221 **Muramic acid**, 96B, 627
- Mites**, 96C, 125 **Murex brandaris**, 96C, 39
- Mitochondria**, 95B, 817; 97B, 109, 809 **Mus musculus**, 95A, 501; 95B, 327, 505, 781, 821, 833, 855; 96B, 475, 729; 95C, 125, 319
- Mitochondrial inhibitors**, 96B, 775 **Musca domestica**, 96A, 273; 96B, 53, 581; 97B, 649, 655
- Mitochondrial oxidative capacities**, 97B, 327 **Muscarinic cholinergic receptor**, 97C, 65, 275
- Mn₃O₄**, 97C, 139 **Muscarinic receptor**, 96C, 119
- Molluscan neurons**, 96C, 411; 97A, 481 **Muscle buffering capacity**, 97A, 249
- Molluscan smooth muscle**, 95A, 597 **Muscle differentiation**, 97B, 215
- Molpadias arenicola**, 96B, 235 **2C muscle fiber**, 97B, 201
- Molt**, 96A, 235 **Muscle hypertrophy**, 95A, 321
- Molybdate**, 95A, 145

- Muscles of fresh-water fish, 96B, 107
- Muscular activity, 95C, 133
- Myeloproliferative leukemia, 95B, 505
- Mylossoma duriventris*, 95B, 77
- Myocaster coypus*, 95B, 275
- Myocytes, 95A, 109
- Myofibrils, 97B, 315
- Myopathy, 95B, 833
- Myosin, 97B, 547
- Myosin isoforms, 96B, 221
- Myosin light chains, 95B, 171, 341
- Myosin subfragment-1, 95B, 255
- Myotropic factors, 97C, 195
- Mytilus inhibitory peptide*, 95C, 207
- Mytilus edulis ABRM*, 95A, 597
- Mytilus edulis*, 95A, 343; 95B, 303; 95C, 177, 265; 96B, 533; 96C, 419
- Mytilus galloprovincialis*, 95B, 531; 95C, 271; 97B, 279; 97C, 37
- N-6 phosphoglyceride fatty acids, 97B, 167
- N-acetyltransferase, 95A, 363; 97A, 175
- N-acyldopamine, 97B, 563
- N-ethylmaleimide inhibition, 95A, 215
- $\text{Na}^+ + \text{K}^+$ -ATPase, 96B, 177
- Na^+ transport, 97A, 75
- Na^+ -ATPases, 97B, 343
- Na-dependent carrier, 96A, 13
- NAD-sorbitol dehydrogenase, 97B, 495
- NADPH oxidase, 96B, 461
- NADPH-diaphorase, 97C, 259
- Naloxone, 96C, 393
- NAT, 95A, 363
- Natalus tumidirostris*, 97A, 229
- Natrix matrix*, 97B, 135
- NEM, 95A, 533
- Neobatrachus pelobatooides*, 96B, 67
- Neophirasea japonica*, 95B, 583
- Nephila clavata*, 95C, 229
- Nephrops norvegicus*, 97A, 52
- Nerodia taxispilota*, 97A, 367
- Neuraminidase, 95B, 35
- Neurochemistry, 96A, 341
- Neuronal activity, 95A, 607, 623
- Neuronal uptake, 96C, 287
- Neuroparsins, 95B, 57
- Neuropeptides, 97C, 13
- Neurotensin, 95C, 291
- Neurotoxin, 95B, 45
- Neurotoxins from venoms, 96C, 223
- Neutrophil respiratory burst oxidase, 96B, 461
- Neverita duplicata*, 97B, 631
- Nickel, 95C, 79, 111
- Nicotinamide adenine dinucleotide, 96B, 93
- Nicotinic cholinergic synapses, 96C, 77
- Nicotinic receptor, 95C, 63; 97C, 275

- NIH373, 96B, 349
Nitellopsis obtusa cells, 96A, 173
Nitrogen stress, 95A, 195
Nitrogenous excretion, 96A, 163
Nitrophenol hydroxylase, 97B, 455
³¹P-NMR, 96A, 253; 96C, 99; 97A, 385, 433
³¹P-NMR spectroscopy, 95B, 789
Noemacheilus barbatulus, 97C, 221
Non-ionic detergent, 95B, 233
Non-specific esterases, 96C, 125
Noradrenaline thermogenesis, 97A, 23
Noradrenaline, 96C, 287; 97C, 329, 387
Normoxic, 97A, 505
Notophthalmus viridescens
viridescens, 96C, 147
Notothenia coriiceps neglecta, 97B, 803
Notothenia coriiceps, 96B, 367
Notothenia neglecta, 96C, 151
NSTX, 95C, 229
Nucleoside phosphorylase, 95B, 501
3'-nucleotidase/nuclease, 95B, 711
5'-nucleotidase, 96B, 195
5'-nucleotide phosphodiesterase, 95B, 821
Nucleotide composition, 96B, 405
Numida meleagris, 96B, 581
Nutritional requirements, 97A, 153
Nutritional state, 96B, 63
Ochopeas howardii, 95B, 215
(Z)-11-octadecenyl acetate, 95B, 663
Octodon degus, 96C, 217
Octopamine, 97C, 227
Octopamine receptors, 95C, 233
Octopus saliva, 95B, 311
ODH, 95B, 419
Odocoileus virginianus, 95A, 163
Odour thresholds, 95A, 325
Oleic acid, 96A, 479
Olfactory cilia, 95A, 27
Olfactory responses, 97A, 279, 289
Oncorhynchus gorbuscha, 95B, 91, 477
Oncorhynchus keta, 95B, 149, 187, 341, 477
Oncorhynchus kisutch, 96B, 107, 483
Oncorhynchus masou, 95B, 187
Oncorhynchus mykiss, 95A, 51, 291; 95B, 247; 96C, 259; 97A, 165, 615
97C, 59, 127, 329
Oncorhynchus nerka, 95B, 91; 96B, 41
Oncorhynchus tshawytscha, 95B, 91
Oncogene, 96B, 349
Oosthuizobdella garoui, 96C, 307
Ophiocephalus argus, 95B, 522
Ophiocoma wendtii, 97A, 329
Ophiodon elongatus, 95B, 647
Opiate, 95C, 159
Opioid regulation, 96C, 211
Orbinia norvegica, 95C, 111
Orchestation hypothesis, 95C, 55
Orcinus orca, 95B, 199

- Pigment migration, 96C, 399
- Pimozide, 97C, 43
- Pineal gland, 97A, 175
- Pineal photoreceptors, 96B, 487
- Pipistrellus pipistrellus*, 95B, 535
- PK, 95B, 85
- Placental lactogen, 97A, 35
- Planorbella duryi*, 95B, 321
- Plasma lipoprotein, 96A, 511
- Plasma transport, 96A, 45
- Plasmalemma, 96A, 173
- Plasmids, 96B, 349
- Plasmodium falciparum*, 96B, 775
- Plasmodium vivax*, 95A, 31
- Platichthys flesus*, 96B, 571
- Pleoticus muelleri*, 96B, 521
- Pleuronectes platessa*, 96A, 123, 395; 96C, 185
- Pleurotus ostreatus*, 97C, 297
- PLP, 96B, 101
- PMSG, 95A, 185
- Poecilia latipinna*, 97A, 17
- Poephila guttata*, 95A, 253
- Polinices draconis*, 97B, 631
- Polinices lewisii*, 97B, 631
- Pollutant metabolising, 96C, 185
- Polyamines, 95B, 65
- Polyamine metabolism, 97C, 305
- Polyhypovitaminosis, 97A, 145
- Polytrophic ovarian follicles, 96A, 309
- Pomacea lineata*, 95C, 91
- POMC-derived peptides, 96C, 199
- Porcellio scaber*, 97C, 119
- Porcine adipocytes*, 97C, 133
- Porichthys*, 95C, 275; 96C, 105
- Possoms, 96A, 351
- Potassium, 96A, 181
- Potassium ions, 96A, 97
- Potassium transport, 95A, 79
- Power spectral analysis, 96A, 387
- Prasypathectomy, 97A, 335
- Pregnenolone, 95B, 565
- Priapulus caudatus*, 97A, 87
- Procambarus clarkii* ATPase, 95A, 601
- Procambarus clarkii*, 95A, 601; 95B, 119
- Prochilodus scrofa*, 97B, 235, 247, 579
- Proctolin, 95C, 233
- Proctolin, 97C, 227
- Progesterone, 95A, 185, 343; 95B, 303, 365
- Prolactin, 95A, 163, 185, 291, 373; 97A, 35; 97B, 667
- Propionylcholinesterase, 96C, 39
- Propranolol, 95C, 275
- Prosimian hemoglobins, 97B, 261
- Prostaglandin, 97A, 75
- Protamines, 95B, 571; 96B, 123
- Protease, 95A, 47; 96B, 715
- Protease C, 95B, 745
- Protein kinase C, 97B, 707
- Protein synthesis, 96C, 419; 97C, 345
- Proteoglycans, 96B, 613; 97B, 307
- Psammechinus miliaris*, 95C, 133

- Psammomys obesus**, 95A, 209
Pseudemys scripta elegans, 96A, 67
Pseudemys scripta, 96B, 651
Pseudocheirus peregrinus, 96A, 351
Pseudorasbora parva, 96A, 163
Pterolebias longipinnis, 97B, 447
Pterygoplichthys multiradiatus,
 97B, 435
PTTH, 95B, 459
PUFA, 96B, 73, 483
Purine nucleoside phosphorylase,
 97B, 177
Purine nucleotide, 97B, 193
Putrescine, 95B, 65
Pyrazine-binding protein, 96B, 513
Pyrethroids, 96C, 427
Pyruvate kinase, 96B, 229
Pyruvate oxidoreductase, 97B, 661
Pyruvate sparing, 97B, 333
Quail, 96C, 205 - see *Coturnix*
Quinine, 95A, 115
Quinone-tanned glues, 97B, 19
Quinuclidinyl benzilate binding,
 95C, 71
Rabbits, 97A, 179; 97B, 543
Rainbow trout, 96B, 689
Raja clavata, 95A, 325
Raja erinacea, 95B, 767
Rana catesbeiana, 95A, 115; 95B,
 691, 763, 781; 95C, 253; 96B, 315
Rana computatrix, 96A, 357
Rana esculenta, 95A, 249; 95B, 35;
 96A, 421; 96B, 393, 581; 97B, 597,
 605; 97C, 49
Rana moctezuma, 95B, 375
Rana pipiens larvae, 96A, 215
Rana pipiens, 95A, 219; 96A, 357,
 387; 96C, 245
Rana ridibunda, 95B, 287
Rana temporaria, 96C, 345; 97C, 333
Rana tigrina, 95C, 197
Rat adipocytes, 97A, 81
Rat brain, 96C, 59; 97C, 259, 265
Rat liver, 96B, 113
Rat liver membrane, 95B, 685
Rathke's gland secretions, 96B, 705
Rats, 95C, 45; 96B, 271; 97A, 335
Rattus norvegicus, 95A, 95, 109,
 185, 281, 367, 501; 95B, 522, 685,
 781, 798; 96B, 113, 171, 475
Rattus rattus, 95A, 209
RBCF-1, 96B, 349
Rearing temperature, 96A, 281
Red algae, 96B, 559
Reductase, 96B, 93
Refeeding, 96A, 415
Regional variation, 97B, 95
Regulatory peptide, 96C, 345
Relaxin, 96B, 15
Renal granulomatous disease, 97A,
 145
Renal physiology, 96A, 41
Renal trehalase, 95A, 95
Reproduction, 96A, 33
Reproductive hormones, 97A, 253
Reserpine, 95C, 177

- Resonant frequency**, 96A, 499
Respiration, 97B, 109
Respiratory flow curve, 96A, 499
Respiratory system, 97A, 411
Rete mirabile, 95A, 23
Retinol, 96B, 415
Retinyl esters, 95A, 573
Retinyl palmitate, 96B, 415
Rhinoceroses, 95B, 803
Rhizoglyphus echinopus, 95C, 71
Rhizoglyphus robini, 96C, 427
Rhodnius prolixus, 96C, 361
Rhopalicus pulchripennis, 96B, 305
Rhynchoragus kirki, 96A, 291
Ribosome-inactivating proteins,
96B, 581
Ricin, 96B, 543
Riftia pachyptila, 96B, 753
RNA metabolism, 95A, 441
Rousettus aegyptiacus, 97B, 295
Saccostomus campestris, 97A, 23
Salamanders, 96B, 471
Salamandra salamandra, 96B, 129
Salinity, 95A, 121
Salivary apyrase, 95B, 215
Salivary bacteriolytic activity,
96B, 549
Salivary gland, 96C, 307
Salmo gairdneri, 95A, 87, 171, 247,
317, 591; 95B, 91, 515, 597, 641
705; 96A, 117; 96B, 107, 387, 581,
655, 689, 743, 795; 97B, 539
97C, 215, 221, 345
Salmo salar, 96A, 109, 303; 96B,
73, 721, 743
Salmo trutta, 96C, 377; 97C, 381
Salmon insulins, 95B, 477
Salt-dependent effects, 95A, 491
Salt-loading, 97B, 205
Salvelinus alpinus, 97A, 279, 289
Salvelinus fontinalis, 95C, 169;
96B, 355
Salvelinus namaycush, 96A, 109
Salvelinus pluvius, 96B, 107
Saporin, 96B, 581
Sarcophaga bullata, 95A, 373; 96A,
309; 96C, 235
Sarotherodon melanotheron, 97A,
525
Sauromalus obesus, 95A, 579
Schistocerca gregaria, 95A, 607,
623; 95B, 603, 721; 95C, 233;
96C, 1
Schistosoma mansoni, 96B, 553
Sciurus carolinensis, 96B, 697
Sclerasterias mollis, 95A, 127
Scolopendra cingulata, 96B, 439
Scophthalmus maximus, 95B, 625;
97A, 145
Scyliorhinus canicula, 96B, 825
SDA, 95A, 553
Sea anemones, 95A, 559
Sea urchin, 97B, 467
Sea urchin eggs, 96, 381
Sea urchin sperm, 97B, 339
Sea-urchins evolution, 97B, 31
Seasonal cyclicity, 96A, 435

- Seasonal variations, 97B, 279
 Sebastes miniatus, 95B, 648
 Selenite, 95A, 297
 Selenium, 96C, 271
Selerasterias mollis, 96A, 33
 Semicircular canal, 96A, 199
 Seminal plasma, 97B, 675
 Sensitization, 97A, 159
Sepia officinalis, 97B, 611; 97C,
 71
 Sequence evolution, 95B, 657
 Serine collagenolytic protease,
 97B, 407
 Serine protease, 95B, 145; 96B,
 739
 Serotonergic neurons, 97C, 241
 Serotonin, 96C, 71; also see 5HT
 Serum amine oxidase, 95C, 297
 Serum immunoglobulins, 97B, 637
 Serum protein inhibitors, 95B, 347
 Serum protein lipid, 97A, 179
 Serum proteins, 95B, 803
 Serum transferrin, 97B, 417
 Sex, 96C, 185
 Sex differences, 96A, 287
 Sex hormones, 96A, 489
 Sex pheromone, 97A, 211
 Sex steroids, 97A, 115, 565
 Shark, 96B, 215
 Sheep, 95C, 35; 96B, 201; 96C, 405
 Sheep ileum, 95A, 297
 Shell-repair, 95C, 201; 96C, 353,
 357
 Short circuit current, 95A, 215

Shrews, 97A, 391
 Sialic acid, 95B, 35
 Sialidase, 97C, 353
Sillago japonica, 96A, 257
Silvilagus floridanus, 95A, 209
Sipunculus mudus, 97A, 87
 Skeletal muscle, 97A, 433; 97B, 201
 Skeletal myosin, 97B, 793
 Skeletal S-1, 96B, 101
 Skin surface lipid, 96B, 475
 Sloths, 95A, 23
 Slow muscles, 95A, 601
 Smell, 95A, 325
 Smooth muscle, 95A, 201
 Snake venoms, 95C, 105; 97C, 293
 Snakes, 97A, 259
 SOD, 95B, 29, 91, 521; 97B, 461
 Sodium, 96C, 393
 Sodium azide, 96C, 105
 Sodium balance, 95A, 259
 Sodium ions, 96A, 91
 Sodium transport, 95A, 487
 Soluble proteins, 95B, 653
 Somatomedin C, 95A, 303
 Somatostatin, 96C, 119
 Somatotropin, 97A, 35
 SOS umu-test, 95C, 15
Sparus aurata, 96B, 63
Sparus auratus L., 95B, 95
Sparus auratus, 97B, 343
 Species identification of fish eggs,
 96B, 743
 Specific dynamic action, 95A, 309,
 317

- Sperm basic proteins, 96B, 123 Starfish, 95A, 245
- Sperm motility, 95A, 329 Starfish osmoregulation, 95A, 245
- Sperm plasma membrane, 95B, 187 Starvation, 96A, 415; 97A, 41, 373;
- Sperm-activating peptide, 95B, 423; 97B, 429
- 97B, 679 Starvation-refeeding, 97B, 59
- Spermatogenesis, 96C, 27 Stenella attenuata, 95B, 199
- Spermatozoa, 95B, 635; 96A, 263, 297; 97A, 325 Steroid metabolism, 97B, 555
- Spermidine, 95B, 65 Steroidogenesis, 96B, 53
- Spermine, 95B, 65 Steroids, 95A, 127, 303, 365; 96A, 33, 257; 97B, 727
- Spermophilus tridecemlineatus*, 96B, 189 Sterol composition, 97B, 81
- Spheciopspongia confoederata*, 96B, 597 Sterols, 96B, 267, 791, 811; 97B, 601
- Sphenodon punctatus*, 96A, 333 *Stichopus japonicus*, 95B, 387
- Sphingophosphonolipids, 97B, 535 *Stizostedion vitreum*, 96A, 109
- Spider toxins, 95C, 229 Stress treatment, 95A, 87, 401
- Spilogale putorius*, 97A, 27 Stride frequency, 96A, 291
- Spinal cord, 96C, 291 *Strongylocentrotus intermedius*, 95B, 403
- Spinal interneurons, 97C, 79 Sublingual saliva, 97A, 185
- Spiostethus pandurus*, 95B, 483 Substance P, 96C, 59, 235
- Spleen, 96A, 107 Suckling rat, 97A, 201
- Spodoptera eridania*, 95B, 355 Sucrase, 96B, 47, 605; 97B, 183
- Spodoptera frugiperda*, 96B, 543 Sucrose overfeeding, 97A, 217
- Spodoptera littoralis*, 97B, 321 Sugar absorption, 95A, 17
- Sponges, 96B, 597 Sulfated macromolecules, 96B, 613
- Spontaneous walking, 95A, 607, 623 Superoxide anion, 96B, 315
- SPS, 95A, 459 Surface temperature, 96A, 141
- Spyrna zygaena*, 96B, 215 *Sus scrofa*, 95B, 261; 95C, 291;
- Squilla mantis*, 96B, 811 96A, 41, 75; 96B, 195, 399
- Squirrel, 96B, 697 Sustained swimmings, 95C, 39
- Squirrel liver mitochondria, 97B, 411 Swimming, 97A, 91
- Staircase potentiation, 96A, 387 Sympatho-adrenal activity, 97A, 217

- Synapsin, 96C, 59
 Synaptic latency, 97A, 399
 Synaptic plasticity, 97C, 143
 Synaptosomal Ca^{2+} , 95B, 555

 T_s , 95A, 429, 549; 96B, 315
 T_A , 96A, 67; 97A, 165
 Tachykinin, 95B, 463; 97C, 25, 333
Talorchestia deshayesi, 95A, 177
 Taste, 95A, 115; 97A, 535
 Taste stimulus, 95A, 533
 Taurine, 96A, 431; 96B, 107
Taxidea taxus, 95A, 65
 TCA cycle in nematodes, 95B, 125
Tegula funebralis, 96B, 123
 Temperature, 95A, 69, 189, 417; 95B, 515; 96A, 57, 297, 333, 441; 96C, 393; 97B, 49, 145, 495
 Temperature acclimation, 96B, 571
 Temperature dependence, 96A, 177
 Temperature regulation, 95A, 181; 97A, 27, 229, 391
Tenebrio molitor, 95A, 539
 Testosterone, 95A, 163, 445; 95B, 303, 365
Tethya aurantia, 96B, 597
 Tetrahydrocannabinol, 96C, 95
Tetrahymena, 97B, 429
Tetranychus urticae, 96C, 427
Tetrao urogallus, 97A, 345, 353
Tevnia jerochonana, 96B, 753
 Thermal acclimation, 96B, 471; 97C,

Thermoconductive properties, 95A, 349
 Thermogenesis, 95A, 429; 97A, 493
 Thermotolerance, 95A, 393
 Thiol protease, 95B, 755
 Threonine*-bradykinin, 96C, 157
Thrichomys apereoides, 96A, 211
Thunnus thynnus, 95B, 341
 Thyroid, 95A, 435
 Thyroid hormones, 95C, 213; 97A, 353
 (see also T_s)
 Thyroidal, 96A, 67
 Thyroxine, 95A, 171
Tibicen dealbatus, 97B, 285
Tilapia, 97A, 525
Tilapia melanophores, 96A, 517
Tilapia nilotica, 95B, 255, 341; 96B, 107
 Tissue blood volumes, 97A, 615
 Tissue perfusion, 95A, 359
 TMO, 97B, 569
 Toad neuromuscular junction, 96C, 193
 Toad skin, 95A, 487
 Tourette's syndrome, 97C, 43
 Toxin, 95C, 63
 Trace metals, 97C, 1
 Trachea, 96C, 287
Trachemys scripta, 95A, 329
 Tranquilizers, 95C, 247
 Transbranchial Na^+ exchange, 96A, 303
 Transducin, 95B, 763
 Transduction, 97A, 405

- T**ransferrin, 95B, 261, 825 **T**yramine, 95C, 35, 233
Transmitter release, 96C, 141 **T**yrosinase, 96B, 393
Trematode peptides, 96C, 345 **T**yrosine kinase, 97B, 151
Tri-n-butylin chloride, 95C, 151 **T**yrosinemia, 97A, 145
Tribolium destructor, 96B, 815 **UDPGT**, 95B, 219, 247
2,4,6-trichlorophenyl-4'-nitrophenyl ether, 95C, 145; 96C, 17 **Ultradian**, 96A, 1
Trichogaster trichopterus, 96A, 525 **Ultrasound doppler**, 97A, 519
Trichoplusia ni, 95B, 355; 96B, 543 **Uracil phosphoribosyltransferase**, 95B, 159
Trichostrongylus colubriformis, 97A, 221 **Urea**, 96B, 399; 97A, 373
Trichosurus vulpecula, 95A, 135; 96A, 351; 96B, 375 **Urea accumulation**, 97A, 423
Triploidy, 96A, 117 **Urea-creatinine**, 95A, 65
Tritiated water, 95A, 253 **Urechis caupo**, 96B, 235
Tropomyosin, 95B, 403 **Uria aalga**, 96B, 767; 97C, 161
Troponin, 95B, 381 **Uric acid**, 96A, 273
TROUT haemopoiesis, 95B, 705 **Urinary bladder**, 96A, 221
TROUT isolated hepatocytes, 96B, 387 **Urine**, 97A, 427
Trypanosoma brucei, 95B, 281 **Urine production**, 96A, 123
Trypanosoma (Schizotrypanum) cruzi, 95B, 657 **URPTase**, 95B, 159
Trypanosoma cruzi, 97A, 235 **Ursus americanus**, 96A, 91, 97
Trypsin, 95B, 525 **Ursus arctos L.** 95B, 865
Tryptophan 2,3-dioxygenase, 97B, 755 **Uterus**, 96C, 241
Tubiculous annelid worms, 96B, 753 **Valerate**, 95A, 411
Turbatrix aceti, 97A, 115, 221 **Vanadate**, 96B, 177
Tursiops gilli, 95B, 199 **Vanadium-ethanol**, 96C, 33
Turtle heart, 96C, 381 **Varanus exanthematicus**, 96A, 383
Turtles, 96B, 651; 97A, 505; 97C, 93 **Varnishes**, 97B, 19
Vascular reactivity, 97C, 59
Venoms, 95B, 577; 96B, 683; 96C, 157; 97B, 19
Ventilatory patterns, 95C, 181

- Verapamil-sensitive cation channels, Water loss, 95A, 101; 97A, 569
 96A, 173
 Water metabolism, 96A, 227

Vertebrate peptide hormones, 95B, 287
 459
 Water vascular system, 95A, 245

Vespa orientalis, 95A, 349, 497;
 97A, 555
 Whales, 95B, 199

Vinciguerria attenuata, 96A, 425
 White muscle, 97B, 543

Vipera, 96B, 683
 White-tailed deer, 97A, 253

Vipera aspis, 97B, 507
 Willow shiner, 96C, 373

Vipera berus berus, 97C, 209
 WKY, 95B, 555

Vipera - genus, 96B, 687
 Wolf spider venom, 95C, 319

Vipera russelli, 96B, 683
 Worker bees, 97C, 53

Visual units, 96A, 357
 Xanthine:NAD⁺ oxidoreductase, 97B,

Vitamin A, 95A, 573; 96B, 415
 135, 141

Vitamin B₁₂, 96C, 291
 Xenobiotic biotransformation, 95B,

Vitamin C, 95A, 481
 247

Vitamin D, 96A, 347
 Xenopsylla cheopis, 95B, 215

Vitamins, 96A, 323
 Xenopus laevis, 96C, 199; 97C, 201

Vitellin, 96B, 253; 97B, 65
 Xylocopa, 97A, 493

Vitellogenin, 96B, 129
 Yoldia limatula, 96B, 497

Volatile compounds, 97A, 427
 Yolk, 96B, 183

Volume restoration, 97A, 265,
 275
 Yucatan miniature boar, 96A, 75

Vulpes vulpes, 95B, 275

Zachryssia quanensis, 95C, 63

Wasp venoms, 97C, 187
 Zinc, 95B, 29; 95C, 111, 265, 271,

Water economy, 95A, 157
 279, 285; 97C, 305

Water flux, 95A, 253
 Zonotrichia capensis, 95A, 181