The Physico-chemical Constants of Binary Systems in Concentrated Solutions

VOLUME 2

TWO ORGANIC COMPOUNDS

(at least One a Hydroxyl Derivative)

by JEAN TIMMERMANS

Hon. Professor, Université Libre, Brussels, Belgium

Copyright © 1959 by Interscience Publishers, Inc.

Library of Congress Catalog Card Number 59-8839

Interscience Publishers, Inc., 250 Fifth Avenue, New York 1, New York

For Great Britain and Northern Ireland:

Interscience Publishers Ltd., 88/90 Chancery Lane, London W. C. 2, England

Printed in the United States of America

Preface to Volume 2

With this second volume of my book, we have collected all the numerical data published about the concentrated binary solutions of organic compounds.

In many cases, the reader will be shocked by the low degree of precision of the measurements since, when different authors made research on the same subject, the quantitative discrepancies are obvious.

This may be due, at least to two kinds of difficulties: different methods on the physical side, and the impurity of the used samples. The possibility of this second cause of error is not considered with sufficient care by most of the authors.

In the case of organic compounds, this is historically easy to understand. Before the twentieth century, organic compounds were generally considered to be too unstable to warrant great care in their purification: only Mendeleev, in his classical studies on ethyl alcohol (1869), and later de Visser (1891) with acetic acid, took the necessary care and found exact values of the measured constants; S. Young, from 1884 on, in his well-known researches on the equation of state, prepared some thirty organic compounds

in a very pure state, which has given a lasting value to his quantitative measurements and has proved the possibility to attain such a goal with certainty.

Therefore, it is a pity that so much work has been done with too little care in that direction; this diminishes the value of numerous numerical data, whatever the care given to the physical methods used.

Presently such errors are no longer admissible because, in many cases, it is easy to obtain the necessary pure samples from different sources, as for example from the Chemical Division of the National Bureau of Standards, in Washington, or from the National Chemical Laboratory in Teddington (England); it is also easy to find out what is known about the methods of purification and the numerical values of physical constants in my own book, Physico-chemical Constants of Pure Organic Compounds, published by Elsevier (Amsterdam - New York) in 1950, to which a Supplement of Addenda and Corrigenda will soon be published.

June, 1959

Jean Timmermans

Contents

	to Volume 2	V VII	
Notice fo	or users	*11	
	H. Hydrocarbons + hydroxyl derivatives		
XXI	Hydrocarbons + alcohols	1	
XXII	Aromatic hydrocarbons + oximes and alcohols	50	
XXIII	Hydrocarbons + phenols	146	
XXIV	Hydrocarbons + acids	206	
	I. Halogen derivatives, CO, CO, CS, etc. + hydroxyl derivatives		
xxv	Halogen derivatives + alcohols	258	
XXVI	Halogen derivatives + phenols and acids	343	
XXVII	CO ₂ , CS ₂ , etc. + hydroxyl derivatives	381	
	J. Oxygen derivatives + hydroxyl derivatives		
XXVIII	Ether oxides + hydroxyl derivatives	398	
XXIX	Ketones + hydroxyl derivatives 46		
XXX	Anhydrides and esters + hydroxyl derivatives	574	
	K. Nitrogen derivatives + hydroxyl derivatives		
XXXI	Nitrogen derivatives + alcohols	650	
XXXII	Nitrogen derivatives + phenols	701	
XXXIII	Nitrogen derivatives + acids	813	
	 L. Mixed oxygen-nitrogen derivatives + hydroxyl derivatives 		
XXXIV	Oxygen-nitrogen derivatives + alcohols	868	
XXXV	Oxygen-nitrogen derivatives + phenols	914	
XXXVI	Oxygen-nitrogen derivatives + acids	973	
	M. Two hydroxyl derivatives		
XXXVII	Two hydroxyl derivatives of different species	1014	
XXXVIII	Two alcohols and two phenols	1095	
XXXIX	Two acids	1183	

METHANE + ETHYL AL COHOL

H. HYDROCARBONS + HYDROXYL DERIVATIVES

XXI. HYDROCARBONS + ALCOHOLS .

Methane (CH_4) + Ethyl alcohol (C_2H_60)

Frolich, Tauch and al., 1931

P	8	
 0	0	
20 40 60 80 100	8	
40	16 25 33 41 50	
60	25	
80	33	
100	41	
120	50	

$$a = \frac{vol. \text{ of gaz}}{vol. \text{ of liq.}} \text{ at 25° and 1 atm.}$$

Methane (CH_{\downarrow}) + Isopropyl alcohol (C_3H_80)

Frolich, Tauch and al., 1931

P	a	
0	0	
20	9	
40	20	
60	3 2	
20 40 60 80	43	
97	52	

Ethane (C_2H_6) + Methyl alcohol (CH_40)

Kuenen, 1897 and 1902 - 1903

t	P	t	P
	Critical	points	
241.2 241.1 240.0 219.0 216.1 160.5 154.2 151.5 131.9 128.5 126.0 78.4 74.6 66.4 62.3 57.0	80.0 80.45 81.5 100.0 101.5 138.0 138.7 143.5 144.0 144.5 135.0 131.5 129.5 127.0	51.9 45.8 41.7 36.0 33.8 26.4 13.2 12.4 -1.5 -2.6 -3.6 -4.5 -3.6 -5.3	121.5 118.5 116.5 114.5 114.7 113.0 114.7 118.0 118.5 144 150 155 (?) 152 156.5 161.5

		C.V.T.	
0%		sat.s	sol.
32.16	48.9	35.37	52.0

Kuenen and Robson, 1899

 t	P ₂	Rem.
14.95 31.95	33.62 50.99	V + L normal condensation
4		3-1

with less alcohol

 t	P ₁	P ₂	Rem.	
15.1 22.9 22.95 31.55	33.44 39.45 47.16	33.77 39.91 47.48	V + L ₁ + L ₂	

t	P	Rem.
31.75 34.2 35.1 35.37 crit.t.	47.46 49.81 50.76 51.99	V + L ₁ + L ₂

 P_1 and P_2 = pressures resp. at the beginning and end of condensation.

P = middle pressurc

Ethane (C_2H_6) + Ethyl alcohol (C_2H_60)

Kuenen and Robson, 1899

t	P ₂	Rem.	
14.97	32.97	V + L	

t	P	Rem.	
31.90 crit. 31.95 32.15 32.55 34.85 39.15 40.67 crit.	46.34 46.49 46.90 46.05 53.23	$v + L_1 + L_2$	

with more alcohol

 τ	r	Kem.
32.65 crit.t. 32.75 32.95 40.75 crit.t.	47.12 47.16 47.30 54.68	v + L ₁ + L ₂

1

with still more alcohol	with less alcohol
t P ₂ Rem.	t P
14.95 32.81 V + L P 32.75 crit.t. 47.04 V + L ₁ + L ₂ 32.95 47.26	15.3 33.48 L + V 22.95 39.36 31.95 47.07
32.95 47.26	38.1 crit.t. L + L ₁ + L ₂ 38.55 53.67 38.75 53.97 39.8 55.04
Ethene (C_2H_6) + Propyl alcohol (C_3H_80) Kuenen and Robson, 1899	38.75 54.22 sat.t. L ₁ + L ₂ 39.75 55.81 39.95 56.19 50.0 70.04 60.0 81.78
t P Rem.	
38.67 crit.t. 52.78 38.75 52.85 V + L ₁ + 38.95 53.12 39.95 54.09 41.7 crit.t. 56.01	Kuenen and Robson 1899
39.55 54.22 Sat.t. L ₁ + 39.75 54.47 retrograde control of the second control of the se	t P Rem.
43.35 59.81 with more alcohol	14.95 31.78 L + V normal con- 31.95 46.12 dens. 52.55 68.85
t P ₂ Rem.	with less alcohol
14.96 32.76 V + L 31.8 46.17 normal conde	t P Rem.
31.96 46.35 38.05 52.25 38.75 53.03 V + L ₁ + L ₂ 38.85 53.09 normal condex 39.65 53.91 38.82 53.14 L ₁ + L ₂ 38.95 53.27	14.95 33.34 L ₁ + L ₂ + V normal 31.95 47.16 condens. 41.95 57.99
40.55 55.70 C.S.T lower 43.35 59.76	with still less alcohol
49.75 68.83 55.95 75.76 82.1 103.2 retrograd co.	t P Rem.
82.1 103.2 retrograd co. 91.4 106 dens.	14.95 33.59 L + V normal con- 31.95 47.37 dens. 43.15 59.91 C.S.T. lower 44.95 62.40
Ethane (C_2H_6) + Duryl alcohol (C_4H_{100})	45.75 63.46 50.35 69.56
Kuenen and Robson, 1899	55.77 75.27 100.0 115.6 retrograd condens. 107.6 118.2
t P Rem,	
14.95 32.86 L + V 22.9 38.88 31.95 46.66 33.35 48.04 41.23 56.55 50.15 68.49	

PROPANE + METHYL ALCOHOL

			PROPANE + N	۷E.
Propane (C ₃ H ₈) + Meth	yl alcohol (СН ₄ 0)	
Kuenen, 1897				
C.S.T.	P	C.S.T.	Р	
21.15 20.85 20.85 20.05 19.85 19.4 19.2	10 11 13 23 26 34.5 39 46	18.6 18.05 17.85 17.8 17.65 17.5 17.4	55 70 79 82 85 93 95	_
				=
Propane (C_3H			eate (C ₁₉ H ₃₆ O ₃)
10.5 vol %				
				==
Butane (C ₄ H ₁₀) + Meth	yl alcohol (СН ₄ 0)	
Timmermans, 1907				
C.S.T.= 16.6° dt/dp ($20-150$ Kg/cm ²) = $+0.007$				
				=
Kuenen, 1911				
C.S.T. = 17.0°				
				=
Butane ($C_{\mu}H_{10}$) + Ethy	l alcohol (C ₂ H ₆ O)	
Kuenen, 1911				
C.S.T. = 37.5°				
Rutane (C.H.) + Meth	ane-thiol (CH.S.)	Ξ
Butane (C_4H_{10}) + Methane-thiol (CH_4S) Lecat, 1949				
•	%	b. t.		
				_
	0 25 100	0.6 -0.5 A 6.3	ΔZ	

```
Isobutane (C_{4}H_{10}) + Methyl alcohol (CH_{4}O)
Timmermans and Kohnstamm, 1909 - 1910
C.S.T. = 20.1^{\circ} dt/dp (10-140kg/cm^2) = +0.008
Isobutane ( C_{4}H_{1\,0} ) + Methane-thiol ( CH_{4}S )
Brooks and Nixon, 1953
Az : 17.5 mo1% -13.0°
 Pentane (C_5H_{12}) + Methyl alcohol (CH_40)
 Lecat, 1949
                                 b.t.
                                                 Dt mix
               \begin{smallmatrix}0\\7\\7\\100\end{smallmatrix}
                                36.15
30.8 Az
64.65
                                                     -1.3
  Zieborak, Maczynska and Maczynski, 1956
  C.S.T. = 14^{\circ}
 Kuenen, 1897 and 1911
                  C.S.T.
 Mondain-Monval and Quiquerez, 1944
 C.S.T. = 14.5^{\circ}
```

PENTANE + ETHYL ALCOHOL

Pentane Ishii,		+ Ethyl alc	ohol (C₂H	60)	Lecat, 1949
mo1%		P			% b.t. Dt mix
100 95 90 85	6.10 50.7 81.8 101.3	0.0° 12.30 79.5 134.1 168.1	23.90 116.8 188.1 242.1	44.55 190.5 309.5 385.0	0 36.15 4 34.2 Az 5 -1.0 100 78.3
80 75 70 65 60 55 50 45 40 35 30 25 20 15	114.4 123.4 129.0 132.7 135.3 137.1 138.1 138.4 138.5 139.0	188.0 199.3 207.3 213.1 217.2 220.0 222.1 223.8 225.4 226.5 227.3 227.5 227.6 227.3 227.6 227.3	281.5 304.7 316.8 322.9 328.0 331.7 334.8 337.5 340.0 341.9 343.3 345.0 344.5 344.5 344.5	385.0 433.6 459.7 476.3 488.8 498.4 505.3 510.5 514.6 520.5 524.8 524.3 524.5 524.3 524.5 522.3 516.0 505.6	Poppe, 1934 Two liquid phases lower than 0° Pentane (C ₅ H ₁₂) + Propyl alcohol (C ₃ H ₈ 0) Beck, 1928
mol%	-10°	P ₁	10°	20°	vol% f.t.
100 95 90 85 80 75	44.8 76.0 95.6 108.8 117.9 123.6 127.4	67.5 123.5 157.0 177.3 188.4 196.8 202.6	94.0 166.5 221.3 261.5 284.7 296.8 304.0	148.0 269.0 345.8 395.4 422.7 439.5 452.3	100 -127 71.5 -150 -165 62.5 -180 50 -170 0 -131
65 60 55 50 45 40 35 30 25	130.0 131.8 132.7 133.1 133.2 133.7 133.8	206.7 209.7 211.6 213.3 214.9 216.0 216.8 217.0 217.2	309.0 313.5 316.8 319.5 322.0 324.0 325.0 326.7 327.5	439.5 452.3 462.2 469.5 475.0 479.3 482.8 485.5 487.8 489.8	Pentane (C ₅ H ₁₂) + Isopropyl alcohol (C ₃ H ₈ O)
20 15	133.8 134.0 134.2 134.4	217.3 217.5	328.0	490.5 491.4 493.0	% b.t. Dt mix
10 5	135.0 138.3	218.2 222.0	328.3 331.5 340.4	405.0 500.6	0 36.15 6 35.35 Az 102.0 100 82.4
mo1%	-10°	P ₂ 0.0°	10°	20 °	
100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 20 15	5.55.55.55.55.55.55.55.55.55.43.75.85.85.44.2	12.0 11.6 11.1 10.7 10.5 "" 10.5	22.8 21.6 20.8 20.0 19.8 18.7 18.2 18.0 ""	45.2 50.5 39.2 38.2 37.0 36.8 36.5 36.2 35.8 35.3 35.3 35.0 "	Pentane (C ₅ H ₁₂) + Tert. Butyl alcohol (C ₄ H ₁₀ 0) Lecat, 1949

PENIANE †	ETHARE-THIOL 5
Pentane (C_5H_{12}) + Ethane-thiol (C_2H_6S)	Isopentane (C_5H_{12}) + Isopropyl alcohol (C_3H_80)
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Lecat, 1949
Lecat, 1949	% b.t. Dt mix
% b.t. Dt mix	0 27.95
0 36.15 200.8 57 32.6 Az 100 35.8	5 27.7 Az 502.8
Denyer. Fidler and Lowry, 1949	Isopentane (C_5H_{12}) + sec.Butyl alcohol ($C_4H_{10}0$) Roland, 1928
Az : 55 mol% (51 wt%) 30.46° $d^{20} = 0.714$ $n_{D}^{20} = 1.3864$	0.32° 100 260.6
Isopentane (C_5H_{12}) + Methyl alcohol ($CH_{i\mu}0$) Lecat, 1949	76.61 248.8 54.30 228.5 39.02 209.0 24.84 174.1 6.77 80.4
% b.t. Dt mix	
0 27.95 - 4 24.55 Az - 152.0 100 64.65 -	Veltmans, 1926 % d (α) D 20° 0.6198 0
Kuenen, 1911 C.S.T. = 10.5°	20 0.6504 3.74 39.9 0.6841 6.78 60 0.7210 9.13 80 0.7618 11.35 100 0.8069 13.87
Isopentane (C_5H_{12}) + Ethyl alcohol (C_2H_60)	Isopentane (C_5H_{12}) + Ethanethiol (C_2H_6S) Lecat, 1949
Lecat, 1949	% b.t.
% b.t. Dt mix 0 27.95 3.5 26.75 Az -1.0	0 27.95 15 27.1 Az 100 35.8
Kuenen, 1911 C.S.T. = -30°	Denyer, Fidler and Lowry, 1949 Az : 32 mol% (29 wt%) 25.72° nho = 1.3703

Hexane ($C_6H_{1 +}$) + Methy	l alcohol (CH.	.0.)	Kuenen, 1897			
	r arconor (cm	40 <i>)</i>	t	P	t	P
Ferguson, 1932					.т.	
mo1% P L V		P ₂	37.0 37.9 38.6	0 33 55 81	41.4 42.4 42.6 43.8	143 175 182 228
45.0° 100 100 327.9 92.82 51.9 611.1 92.26 52.55 601 91.85 52.61 606.9	293.9 285.6 287.6	327.9 317.1 316.1 319.3	39.4 40.25 41.3	105 141	44.8 7.T.	264
90.98 50.14 617.1 89.57 50.70 618. 87.49 50.70 624. 77.60 49.93 628	307.7 304.7 307.7	319.3 311.5 313.6 316.4 313.6	234.8	29.6	minim 210.2	56.0
76.87 49.19 630.5 51.33 49.88 630.2 24.18 49.33 626.4 11.37 48.44 619.3 4.5 41.72 549.8	320.2 315.8 317.5 319.3 320.4	310.1 314.4 308.9 300.0	100%	80.0		
0 0 333.0	333.0	229.4	Rothmund, 1898			
			%	sat.t	%	sat.t.
Schukarew, 1910 	p 8° 290.8 509 529 539 554		75.96 73.60 67.75 65.60 59.39 49.60 41.33 36.44	4.45 9.95 21.67 24.52 32.40 39.17 41.10 41.82	30.41 22.89 13.76 9.65 4.56 3.35 3.32	42.52 42.85 40.05 36.60 23.95 15.22 9.00
54.79 33.70 32.16 25.50 17.30	554 556 557 547 550 309.5		C.S.T. = 42.8°			
Lecat, 1949			Howard and Patt	erson, 1926		
%	b.t.	Dt mix	C.S.T. : 20% =	42.0°		
0 28 50 100	68.8 50.5 Az 64.65	-3,5	Freed, 1933			
			C.S.T. = 34.6			
			Krishnan,1935			
				C.S.T.	30 % 29°	

45.84°

0.636 0.640 0.641 0.642 0.645 0.654 0.663 0.707 0.735 0.767

43°

HEXANE + METHYL ALCOHOL

	Smirnov	and Predvo	ditelev,	1954	(fig.)
Sieg,1951	mol%	25.0°	d 30.02°	36.10°	38.98°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 10 15 20 25 40 50 65 80 90 100	0,657 0,659 0,660 - - - 0.725 0,750 0,787	0.652 0.655 0.656 0.659 	0.646 0.649 0.650 0.653 0.656 0.665 - 0.690 0.715 0.776	0.643 0.646 0.647 0.650 0.652 0.662 0.670 0.685 0.714 0.774
Quantie, 1954	Wolf, 19				
C.S.T. = 32.6 % 28.1°	 	mo1%		σ	
			20°		
Zieborak, Maczynska and Maczynski, 1956 C.S.T. = 34.8°		0 10 25 50 75 90 100		22.31 19.46 18.60 18.58 18.56 18.54 18.52	
Kogan, Deizenrot and al., 1956	Smirnov	and Predve	oditelev,	1954	(fig.)
L ₁ L ₂	mo1%	velo 20°	city of s	ound (m/s	sec.) 33°
4.14 74.92 2 72.11 10 Timmermans and Kohnstamm, 1909 - 1910 C.S.T. = 42.2° dt/dp (1-105 kg/cm²) = +0.032	100 95 88 83 80 75 25 10	1140 1120 1105 1095 	1120 1100 1085 1080 1078 - 1083 1095	1105 1085 1065 1060 1058 1055 - 1060 1074	109 107 105 105 104 104 104 106
	mo1%	vel	ocity of	sound (m/	sec.)
Leibnitz, Könnecke and Niese, 1957	100	35°	36.6 1085	1070	106
t d g interface L ₁ L ₂ (L ₁ /L ₂)	95 1070 1060 88 1045 1040 83 1040 1035 75 1035 1030 65 1030 1025 50 - 1020 35 1030 1022		1050 1030 1025 1015 1010	104 102 101 100 99	
20 0.7924 0.6679 0.283	35 25 10 0	1030 1033 1038 1050	1020 1022 1025 1032 1042	1008 1008 1010 1016 1026	99 99 99 100 101

Krishnan,1935	Smyth and Stoops, 1925
Depolarization at 29-50°	t d 1.53 5.79 9.62 20.76 mol%
Bennett and Vines,1955 (fig) mol	-90 0.7820 0.7842 0.7844 0.7945 -80 0.7742 0.7755 0.7763 0.7857 -70 0.7660 0.7670 0.7682 0.7771 -60 0.7574 0.7582 0.7593 0.7703 -50 0.7483 0.7495 0.7525 0.7611 -40 0.7397 0.7408 0.7430 0.7518
0 42.4 47.6 53.8 25 45.8 50.8 57.2 50 48.0 53.0 59.2 75 48.4 53.8 59.8 100 46.8 51.9 57.6 K = thermal conductivity (cal cm ⁻¹ sec ⁻¹ deg ⁻¹)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Gerts and Filippov, 1956 (fig.)	
Heat conductivity, expressed as function of the potential difference g on the Weatstone	Harms, 1938
bridge .	mo1% d 6° 30°
t $\frac{1/e}{L_1}$ L_2 L	0 0.68707 0.66527
33.7% 39% 34.85 5.65 5.20 - 35.00 5.61 5.22 - 35.25 5.53 5.28 - 35.45 5.38 5.46 35.70 " "	0.497 0.68723 0.66538 1.179 0.68747 0.66556 2.019 0.68779 0.66579 4.864 0.68906 0.66704 7.955 0.69054 0.66839 13.914 0.69365 0.67142 20.389 0.69745 0.67516 24.511 0.70006 0.67778 50.064 0.72049 0.69840 80.753 0.75981 0.73855
Wolf, Pahlke and Wehage, 1935	16.618 0.79250 0.77182 100 0.80133 0.78078
Q mix/mole alcohol 20° = -5900	
Hexane (C_6H_{14}) + Ethyl alcohol (C_2H_60)	Smyth and Stoops, 1925
Lecat, 1949	t ε
% b.t. Dt mix	1.53 5.79 9.62 20.76 mol%
0 68.8 21 58.68 Az 352.55 100 78.38	-90 2.093 2.160 2.255 3.418 -80 2.077 2.144 2.248 3.360 -70 2.060 2.129 2.232 3.295 -60 2.045 2.114 2.214 3.225 -50 2.030 2.098 2.197 3.156 -40 2.016 2.083 2.179 3.075
Kuenen, 1897 C.S.T. = -65°	-40 2.016 2.083 2.179 3.075 -30 2.002 2.068 2.162 2.996 -20 1.989 2.034 2.145 2.913 -10 1.976 2.040 2.128 2.830 0 1.964 2.026 2.111 2.755 +10 1.952 2.014 2.056 2.687 20 1.940 2.002 2.082 2.622 30 1.928 1.990 2.069 2.563 40 1.914 1.978 2.054 2.507 50 1.898 1.968 2.039 2.453 60 1.882 1.958 2.025 2.403

Trieschmann, 1935	
πο1% σ	Wolf, Pahlke and Wehage, 1935 (fig.) mol% Q mix
0 22° 18.49	(by mol alcohol)
25.76 18.52 49.18 18.64 68.45 19.05	room temperature
78, 14 89, 23 100, 00 19, 58 20, 73 100, 96	0.1 -5600 1 3800 5 1500
	10 1000
	20 600 25 500 50 240 75 100
Wolf, 1948	
mol% σ	Hexane (C_6H_{14}) + Isopropyl alcohol (C_3H_80)
20° 0 22,08	Lecat, 1949
10 20.67 25 19.46 50 18.71	% b.t. Dt mix
75 18.60 90 18.54	0 68.8 - 23 62.3 Az -
100 18.52	26 -2.7 100 82.4
Wolf, Pahlke and Wehage, 1935 (fig.)	Poltz, 1936
mol% Q mix by mol alcohol	mo1 % d 22°
at room temperature	0 0.6709 17.920 0.6814
$egin{array}{ccc} 0.1 & -5700 \ 1 & 3900 \end{array}$	17,920 0.6814 33,283 0.6934 47,034 0.7068 59,009 0.7200
5 1500 10 990 20 600	69.742 0.7978 79.276 0.7476
25 500 50 260 75 120	87.858 0.7815 100 0.7840
7.5 120	mol% n
	5893 Å 5000 Å 4500 Å 4000 Å
Hexane (C_6H_{14}) + PropyI alcohol (C_3H_80)	0 1.3796 1.3834 1.3866 1.3914 17.920 1.3778 1.3817 1.3850 1.3898 33.283 1.3771 1.3808 1.3841 1.3889
	47.034 1.3767 1.3804 1.3837 1.3886 59.009 1.3766 1.3803 1.3835 1.3884 69.742 1.3765 1.3802 1.3835 1.3884
## Decar, 1949 ## But. Dt mix	79.276 1.3765 1.3802 1.3835 1.3884 87.858 1.3767 1.3804 1.3836 1.3884 100 1.3769 1.3806 1.3838 1.3886
% b.t. Dt mix 0 68.8	
4 65.65 Az 412.4	
100 97.2	

	Hexane (C_6H_{14}) + Butyl alcohol ($C_4H_{10}0$)
mol% (α) magn. 5893 Å 5000 Å 4500 Å 4000 Å	
0 1.553 2.216 2.794 3.840 17.920 1.443 2.059 2.595 3.387	Trieschmann, 1935
33.283 1.351 1.927 2.424 3.167 47.034 1.268 1.807 2.277 2.971	22°
69.742 1.129 1.610 2.029 2.641	100.00 24.3
79.276 1.071 1.520 1.919 2.505 87.858 1.020 1.445 1.822 2.382	100.00 24.3 59.23 20.2 35.11 19.22
100 0.940 1.342 1.695 2.216	23.58 18.85 18.48 18.72
mol% (\alpha) magn.	10,96 18,55 6.27 18,53
3500 Å 3000 Å 2800 Å	0 18.49
0 4.963 7.236 8.647 17.920 4.622 6.742 8.065	
33.283 4.316 6.312 7.587 47.034 4.063 5.937 7.114	Wale 1042
59.009 3.816 5.605 6.740 69.742 3.609 5.303 6.374	Wolf, 1943
79.276 3.431 5.045 6.060 87.858 3.262 4.800 5.774	mo1% σ
100 3.031 4.458 5.359	20°
	100 24.20 20 23.00
Girard and Abadie, 1939 (fig.)	75 21.48 50 19.73
w.l. dispersion absorption	25 18.93 10 18.62
(cm)	0 18.52
60% 20°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wolf, Pahlkeand Wehage, 1935
30 0.30 0.37 50 0.45 0.47	mol% Q mix (mole alcohol)
100 0.75 0.47 200 0.90 0.28	at room temperature
500 0.95 0.18	$egin{array}{ccccc} 0.1 & & -5500 \ 1 & & 3900 \ \end{array}$
dispersion = $(\varepsilon' - \varepsilon_0)/(\varepsilon_1 - \varepsilon_0)$	5 1500 10 1000
absorption= $\varepsilon''/(\varepsilon_1 - \varepsilon_0)$	20 580 25 480
	50 200 75 100
Wolf, Pahlke and Wehage, 1935 (fig.)	
mol% Q mix	Lecat, 1949
(mole alcohol)	Hexane ($C_6 II_{14}$) (b.t.=68.8) + Alcohols.
room temperature	2 nd comp. Az
$egin{array}{cccc} 0.1 & -5900 \ 1 & 3800 \ 6 & 1500 \ \end{array}$	Name Formula b.t. % b.t. Dt mix.
10 1000 20 760 25 670	Isobuty1 (C _u H ₁₀ 0) 108.0 2.5 68.1 -2.35 alcohol (46%)
50 350 75 150	Sec.Butyl(C _u H ₁₀ 0) 99.5 8.5 67.1 -0.7 alcohol (8%)
	Tert. (C _h H ₁₀ 0) 82.45 23 64.2 - Butyl alcohol

HEXANE + TERT, BUTYL ALCOHOL

Hexane (C_6H_{14}) + Tert. Butyl Alcohol ($C_4H_{10}O$)	Hexane (C_6H_{1*}) + tert. Amyl alcohol ($C_5H_{1*}0$)
	Lecat, 1949
Hoffmann, 1943	% b.t. Dt mix
Infrared absorption M coefficient	0 68.8 4 68.5 Az -0.6 100 102.35
21.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hexane (C ₆ H ₁₄) + Hexyl alcohol (C ₆ H ₁₄ 0) Wolf, 1943 mol% σ
	100 ²⁰ ° 26.15
Wolf, Pahlke and Wehage, 1935 (Fig.)	90 25.27 75 23.91 50 21.28 25 19.45
mol% Q mix (mole alcohol)	10 18.80 0 18.52
room temperature	
$egin{array}{cccc} 0.1 & -5000 \\ 1 & 3500 \\ 5 & 1500 \\ 10 & 900 \\ \end{array}$	Trieschmann, 1935
20 480 25 400	
50 75 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hexane (C_6H_{14}) + Isoamyl alcohol ($C_5H_{12}0$)	
Muchin, 1913	
c d n	
18.7°	Wolf, Pahlke and Wehage, 1935 (fig.)
0.0000 0.6660 348.0 0.8100 0.6709 350.5 2.4366 0.6778 362.9 3.2402 0.6795 369.5 12.183 0.6918 441.5 16.201 0.7024 482.1 100% 0.8116 4716.9 c = g. alcohol in 100cc hexene	mol% Q mix (mole alcohol) room temperature 0.1 -5200 1 3400 10 800 30 400 50 100

	Hexane (C_6H_{14}) + Hexadecyl alcohol ($C_{16}H_{34}0$)
Hexane ($C_6H_{1\mu}$) + 2-Octyl alcohol d ($C_8H_{18}O$)	Hoerr and Harwood, 1951
Rule, Smith and Harrower, 1933	
mol% (α) ^{mol} _{5\(\dagger^6\)} mol% (α) ^{mol} _{5\(\dagger^6\)}	f.t. %
20°	20.0 30.0 40.0 29.7 40.0 73.0
5 +19.6 37.2 +16.91 9.9 18.6 39.9 17.02	
15.1 18.1 45.3 16.79 20.3 17.6 55.1 16.45 25.3 17.54 61.8 16.10 28.3 17.62 70.9 15.87 31.3 17.29 81.9 15.40 34.5 16.73 100 15.24	Hexane (C_6H_{14}) + Octadecyl alcohol ($C_{18}H_{38}O$) Hoerr and Harwood, 1951
	f.t. %
Hexane (C ₆ H ₁₄) + Decyl alcohol (C ₁₆ H ₂₂ O)	30.0 4.5 40.0 39.4 50.0 79.4
Hoerr and Harwood, 1951	
f.t. %	
-20.0 2.9 -10.0 28.8 0.0 75.6	Hexane (C_6H_{14}) + Allyl alcohol (C_3H_60) Lecat, 1949
	% b.t.
Hexane (C_6H_{14}) + Dodecyl alcohol ($C_{12}H_{26}0$)	0 68.8 - 56.7 Az
Hoerr and Harwood, 1951	100 96.85
f.t. %	
-10.0 0,5	Hexane (C_6H_{14}) + Glycol ($C_2H_6O_2$)
0.0 +10.0 8.5 49.0	Leibnitz, Könnecke and Niese, 1957
20.0 87.9	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Hexane (C_6H_{14}) + Tetradecyl alcohol ($C_{14}H_{30}0$)	20 1.1119 0.6600 16.125 40 .0978 .6431 15.891 60 .0826 .6247 15.661
Hoerr and Harwood, 1951	Herana (C.H.) + Diglycol (C.H. O.)
f.t. %	Hexane (C ₆ H _{1 \mu}) + Diglycol (C ₄ H ₁₀ O ₈)
0.0 10.0 0.1 3.6	Leibnitz, Könnecke and Niese, 1957
20.0 30.0 31.5 75.0	t d σ interface L_1 L_2 (L_1/L_2)
	20 1.1108 0.6600 9.929 40 .0952 .6427 9.860 60 .0800 .6247 9.707

Hexane ($C_6H_{1\mu}$) + Triglycol ($C_6H_{1\mu}O_{\mu}$)	Hexane ($C_6H_{1:k}$) + 1-Propanethio1 (C_3H_8S)	
,	Lecat, 1949	
Leibnitz, Könnecke and Niese, 1957	% b.t.	
t d g interface	0 68.8 62 65.2 Az	_
L_1 L_2 (L_1/L_2)	62 65.2 Az 100 67.3	
20 1.1156 0.6600 9.759 40 .0985 .6429 9.334	12% 18° Dt = -1.5	- 1
40 .0985 .6429 9.334 60 .0805 .6259 8.902	· 	- 1
	D. 11	
	Denyer, Fidler and Lowry, 1949	
Hexane (C_6H_{14}) + Benzyl alcohol (C_7H_80)	mo1% mo1%	
	V L b.t. V L b.t.	
Maman, 1934	7 60 mm	
C.S.T. = 50.6°	0 0 68.75 49.0 46.5 64.48	ļ
	10.0 6.5 67.64 54.2 53.7 64.26 13.5 8.3 67.36 63.3 65.5 64.31	- 1
	17.5 11.8 66.91 68.0 71.6 64.41 19.1 13.6 66.76 73.1 76.5 64.41 26.5 21.0 65.97 79.7 83.7 65.02	
	31.7 25.8 65.52 88.7 91.7 65.82	ļ
Mulliken and Wakeman, 1935	34.2 28.9 65.27 100 100 67.82 41.7 37.0 64.93	
C.S.T. : 50 vol% 57°	mol% n _D	
	20°	_
	17.36 1.3812	ļ
	36.21 1.3899 52.15 1.3994	
Hexane (C_6H_{14}) + Ethylenechlorohydrine (C_2H_50C1)	65.16 1.4083	J
Lecat, 1949	79.05 1.4187	ı
% b.t. Dt mix	Az	
	mol% wt% b.t. d^{20} n_D^{20}	
0 68.8 13 68.0 Az		
502.0 100 128.6	55.7 52.6 64.35 0.7406 1.4016 Az	۱ ا
		=
	Hexane (C ₆ H ₁₄) + 2-Methyl-2-propanethiol	_
	$(C_{\downarrow}H_{1}_{\circ}S)$	
	Denyer, Fidler and Lowry, 1949	
	A 7	
	Az	
	mol% wt% b.t. d ²⁰ n _D ²⁰	
	75.0 75.8 63.78 0.7583 1.4074 Az	
		ᅴ
		- 1

2-Methylpentane (C ₆ H _{1 4}) + Benzyl alcohol	Isohexanes (C ₆ H ₁₄) + Thiols
(C ₇ H ₈ O)	Denyer, Fidler and Lowry, 1949.
Maman, 1934	Az
C.S.T. : 54.4°	mol% wt% b.t. d^{20} n_D^{20}
	3-Methylpentane (C_6H_{14}) + 1-Propanethiol (C_8H_8S)
2-Methylpentane (C_6H_{14}) + 1-Propanethiol	37.0 34.2 61.26 0.71265 1.3921
(C _B H _B S)	3-Methylpentane (C_6H_{1+}) +2-Propanethiol(C_3H_8S)
Denyer, Fidler and Lowry, 1949	88.3 87.0 52.40 0.7885 1.4162
mol% L f.t.	3-Methylpentane ($C_6H_{1\mu}$) + 2-Methyl-2-Propanethiol ($C_4H_{10}S$)
760 mm	45.4 46.5 61.51 0.7178 1.3936
0 0 60.40 10.3 9.2 59.66 24.0 23.8 59.25	2,2-Dimethylbutane (C_6H_{14}) + Ethanethiol (C_2H_6S)
30.5 31.5 59.20 33.5 34.5 59.26	87 83 34.41 0.7911 1.4140
44.3 50.5 59.77 47.7 54.9 59.96 58.0 68.3 61.07	2,2-Dimethylbutane (C_6H_{14}) + 2-Propanethiol
100 67.82	(C ₃ H ₈ S)
20	40.6 37.7 47.41 0.7016 1.3857
mol% n _D	2,3-Dimethylbutane (C_6H_{1}) + 1-Propanethiol
19.50 1.3799	(C ₃ H ₈ S)
37.38 1.3832 51.36 1.3974 66.49 1,40825	7,5040
78.46 1.4180 90.76 1.42775	2,3-Dimethylbutane (C_6H_{14}) + 2-Propanethiol
	(C ₃ H ₈ S)
Az mol % wt % b.t. d ²⁰ n _D ²⁰	70.0 67.5 51.24 0.7547 1.4048
26.2 23.9 59.20 0.6889 1.3835	2.3-Dimethylbutane (C ₆ H ₁₄) + 2-Methyl-2- Propane-
	thiol (C ₄ H ₁₀ S)
	20.4 21.1 57.82 0.6821 1.3815
2-Methylpentane (C ₆ H ₁₄) + Thiols	2,3-Dimethylbutane (C ₆ H ₁₄) + 2-Methyl-2-propane-
Denyer, Fidler and Lowry, 1949	thiol (C ₄ H ₁₀ S)
Az mol % wt % b.t. d^{20} n_D^{20}	20.4 21.1 57.82 0.6821 1.3815
2-Methylpentane + 2-Propanethiol (C_3H_8S)	
78.1 75.9 51.70 0.7651 1.40795	
2-Methylpentane + 2-Methyl-2-propanethiol (C ₄ H _{1 O} S)	
29.5 30.4 59.35 0.6896 1.3831	

2,3-DIMENTHYLBUTANE + METHYL ALCOHOL

	ylbutane (ohols	C ₆ H ₁₄) ((b.t.	= 58.0) +	Heptane (C ₇ H ₁₆) + Methyl Alcohol (CH ₁₄ 0) Sieg, 1951 sat. t mol %
Lecat, 194	9					L ₁ L ₂
	2nd Comp.		Az	· · · · · · · · · · · · · · · · · · ·		20 90 18 30 88 21
Name	Formula	b.t.	%	b.t.	Dt mix	40 83 29 45 79 36
Name	TOTMUTA	D. C.	70	D. C.	or	50 55
					Sat.t.	Kogan, Deizenrot and al., 1956
Methy1	СН ₄ О	64,65	20	45.0	-2.2	% Sat.t.
alcohol Ethyl	CHA	70.2	10	E1 E	(20%)	L, L2
alcohol	C ₂ H ₆ O	78.3	12	51.5	-3.7 (50%)	3.36 81.90 2
Propy1	C3H80	97.2	6	56.8	-	3.75 78.91 10 6.6 77.6 20
alcohol	C 11 0	02.4		53.0		9.19 67.4 40
Isopropyl alcohol	C ₃ H ₈ O	82.4	9	53.8	-3.3 (50%)	Lecat, 1949.
sec.Butyl	$C_{14}H_{10}0$	99.5	8	57.7 5	-	
alcohol						51.5 59.1 Az 45.7
tert.Butyl alcohol	C ₄ H _{1 0} 0	82.45	13	55.3	-	Zieborak, Maczynska and Maczynski,1956 (fig)
Allyl	C3H60	96.85	_	56.7	-	Zectorak, maczynska and maczynski,1930 (fig)
alcohol						mol % b.t. mol % b.t.
						760 tum
2 3-Dimeth	ylbutane (C		Dong	l al-ab		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2,0 Dimeting	Thatane (C	61114 / 1		γι α1001 (C ₇ H ₈ O		Az : 59.1° C.S.T. = 51.0°
Maman, 1934	1					Leibnitz, Konnecke and Niese, 1957
C.S.T. : 5	54.4°					t d g interface
						L_1 L_2 (L_1/L_2)
						20 0.7564 0.6875 0.777
Methyl die	thylmethane	(C ₆ H _{1 4}		enzyl al (C ₇ H ₈ 0		30 .7413 .6800 .499 40 .7241 .6746 .232 45 .7148 .6723 .114
Maman, 1934	4					Timofejev, 1905
C.S.T. : 50	0.1°					% U
						20°
Trimethyl et	thylmethane	(C ₆ H _{1 4}) + B	enzyl al (C ₇ H		0 0.490 74.1 0.568 100 0.600
Maman, 1934						% Q dil initial final (mole heptane)
C.S.T. : 62.	.9°					
						100 94.0 -1051 94.0 87.6 938 87.6 82.5 836
						82.5 78.0 749

Heptane (C ₇ H ₁ ,) + Ethyl alc	ohol (C.H.O)				
, , ,			Ferguson	, Freed and M	lorris, 1933	
Smyth and Engel	1, 1929		_	%	V	р
mo1%	P ₁	p ₂	_	L	V 30°	
	30°			00.0 92.7	100.0 67.2	78.3 94.3
0 4.00 6.84 12.36 28.03 33.42 51.51 59.34 71.74 76.87 81.54	58.2 56.4 56.4 54.8 54.5 54.0 51.8 49.9 43.5	0 22.0 47.2 56.1 62.9 63.5 65.9 68.1 69.7 71.0 73.5	11	92.7 82.0 67.7 47.2 19.4 13.5 5.7 5.1 2.2 0.6	48.9 40.5 37.7 36.0 35.1 31.5 32.3 28.9 22.9 16.7 0.0	110.0 119.4 122.0 122.0 120.5 115.2 117.1 109.0 95.0 83.5 58.4
85.50 99.02 91.73 95.45 99.13	40.6 32.1 18.4 10.1 4.7 0	73.9 79.2 87.9 87.0 77.8 78.2	Lecat, 1	949		
0	141.1	0		%	b.t.	Dt mix
5.14 11.80 30.22 43.82 58.62 66.46 73.27 77.20 82.30	132.3 133.6 130.5 130.0 126.6 121.5 120.0 114.9	111.9 155.8 176.9 181.3 184.7 188.0		0 49 57 100	98.4 70.9 78.3	A3 -2.3
82.30 87.88 92.74 97.69	106.2 71.2 47.2 21.6 0	193.9 198.6 221.8 234.5 225.8 220.0	Smyth an	d Stoops, 192	9 d 42.52	61.42
0		0			mo1%	
5.67 11.80 15.73 25.25 36.33 42.90 50.69 59.68 66.48 71.74 76.89 82.00 86.40 89.40 92.50 95.64 98.27	301.4 265.9 274.5 272.8 225.8 224.3 269.7 269.0 267.0 259.6 251.0 245.6 227.9 183.1 129.5 83.0 44.9	0 234.4 339.8 375.2 413.8 431.6 442.4 446.7 450.7 458.1 465.3 462.8 459.3 465.5 493.4 522.3 527.0 524.5 539.1	-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 +10 20 30 40 50 60 70	0.7830 0.7749 0.7669 0.7586 0.7503 0.7422 0.7340 0.7259 0.7177 0.7092 0.6927 0.6843 0.6760 0.6671 0.6582 0.6494 0.6404	0.7487 0.7487 0.7400 0.7317 0.7232 0.7146 0.7058 0.6968 0.6876 0.6689 0.6592	0.7657 0.7572 0.7572 0.7401 0.7314 0.7226 0.7139 0.7048 0.6953 0.6858 0.6760

HEPTANE + ETHYL ALCOHOL

t d 83.00 92.60 100	Martin and Brown, 1938
mo 1%	mol% ε
-110 0.9031 -100 0.8941 -90 - 0.8649 0.8852 -80 0.8369 0.8562 0.8762 -70 0.8281 0.8476 0.8674 -60 0.8193 0.8390 0.8586 -50 0.8108 0.8303 0.8498 -40 0.8022 0.8216 0.8412 -30 0.7938 0.8132 0.8327 -20 0.7851 0.8048 0.8242 -10 0.7766 0.7962 0.8158 0 0.7678 0.7876 0.8073 +10 0.7590 0.7790 0.7988 20 0.7500 0.7702 0.7901	30° 10 2.30 20 2.73 30 3.28 40 4.08 50 5.52 60 7.52 70 10.21 80 13.40 90 17.32 100 22.40
30 0.7411 0.7617 0.7816 40 0.7322 0.7528 0.7727 50 0.7233 0.7436 0.7638 60 0.7143 0.7344 0.7547 70 0.7053 0.7251 0.7456	Timofeev, 1905
	% U
Smyth, Engel and Wilson, 1929	0 0.490 84.2 0.609 88 0,603
mo1% n _D mo1% n _D	100 0.5933
20° 100	## Q dil initial final (by mole heptane) 100 93.7 -586 93.7 88.6 516 88.6 84.2 505 (by mole alcohol) 0 7.2 -797 7.2 12.6 292
Smyth and Stoops, 1929	
t ε 2.56 42.52 61,42 83.00 92.60 100 mo1%	
-110	

HEPTANE + PROPYL ALCOHOL

Lecat, 1949			Smyth		el, 1929			
%	b.t.	Dt mix	·	mo1%		P1	1)2
38 40 100	98.4 84.8 Az 97.2	-1.5		0 6.88 10.47 19.80 22.12 36.41 53.10 54.29 63.69		140.5 135.6 132.5 130.0 130.1 126.6 115.9 114.9 108.5 109.0 105.5	13 19 21 22 22 23 24	3.8 3.0 1.2 1.2 2.0 5.8 5.1
Timofeev, 1905	U		-	64.00 68.05 73.88 78.34 100	i 3	109.0 105.5 94.2 22.5	26 29	6.9 6.1 9.3 6.0 3.3
0 20° 16.7 87.8 100	0.490 0.524 0.575 0.579		Lecat	, 1949				
			_		%		b.t.	Dt mix
initial final 100 95.1 95.1 91.5 91.5 87.5	(by mole h	······	-		0 17 17.8 100		98.4 93.95 Az 117.8	-1.7
0 4.1 4.15 10.0 10.0 15.4 15.4 19.9	(by mole a 5 -1015 342 241 183		Smyth	3.12	5,25	d 8.05 mod#	10.42	13.83
eptane (C ₇ H ₁₆) + Isopro ecat, 1949 % 0 50 50 50.5 100	b.t. 98.4 76.4 Az 82.4	C ₃ H ₈ O) Dt mix -0.3	- 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 20 30 40 50 60 70	0.7760 0.7679 0.7598 0.7514 0.7432 0.7352 0.7192 0.7192 0.7198 0.7024 0.6940 0.6854 0.6769 0.6681 0.6591 0.6502 0.6339	0.7775 6.7692 0.7612 0.7530 0.7450 0.7289 0.7289 0.7126 0.7040 0.6958 0.6700 0.6520 0.6428 0.6333 0.6240	0.7798 0.7718 0.7636 0.7552 0.7473 0.7391 0.7311 0.7148 0.7062 0.6895 0.6810 0.6722 0.6635 0.6447 0.6350 0.6257	0.7489 0.7409 0.7329 0.7249 0.7164 0.7081 0.6997 0.6911 0.6826 0.6739 0.6650 0.6559 0.6467	0.7762 0.7680 0.7680 0.7519 0.7432 0.7355 0.7267 0.7184 0.7101 0.69336 0.6855 0.6767 0.6682 0.6579 0.6512 0.6424 0.6334

t d	t ε 3.12 5.25 8.05 10.42 13.83 mo1%
26.55 44.51 61.52 80.42 100 mol%	-90 2.113 2.131 1.196 2.223 - -80 2.098 2.118 2.168 2.208 2.360 -70 2.082 2.105 2.148 2.194 2.333
$\begin{array}{c} -90 & 0.7948 & 0.8134 & 0.8261 & 0.8604 \\ -80 & 0.7868 & 0.8054 & 0.8182 & 0.8526 & 0.8872 \\ -70 & 0.7789 & 0.7974 & 0.8101 & 0.8448 & 0.8793 \\ -60 & 0.7709 & 0.7895 & 0.8022 & 0.8369 & 0.8713 \\ -50 & 0.7630 & 0.7815 & 0.7942 & 0.8289 & 0.8634 \\ -40 & 0.7552 & 0.7736 & 0.7862 & 0.8211 & 0.8556 \\ -30 & 0.7470 & 0.7657 & 0.7782 & 0.8132 & 0.8479 \\ -20 & 0.7388 & 0.7577 & 0.7701 & 0.8053 & 0.8402 \\ -10 & 0.7305 & 0.7494 & 0.7621 & 0.7974 & 0.8328 \\ 0 & 0.7222 & 0.7414 & 0.7540 & 0.7897 & 0.8256 \\ +10 & 0.7139 & 0.7331 & 0.7458 & 0.7820 & 0.8173 \\ 20 & 0.7053 & 0.7247 & 0.7376 & 0.7737 & 0.8098 \\ 30 & 0.6970 & 0.7160 & 0.7289 & 0.7657 & 0.8098 \\ 30 & 0.6980 & 0.6987 & 0.7115 & 0.7491 & 0.7862 \\ 60 & 0.6709 & 0.6898 & 0.7022 & 0.7410 & 0.7787 \\ 70 & 0.6616 & 0.6809 & 0.6330 & 0.7322 & 0.7703 \\ 80 & 0.6525 & 0.6710 & 0.6839 & 0.7231 & 0.7616 \\ 90 & 0.6431 & 0.6616 & - & 0.7140 & 0.7527 \\ \end{array}$	-60 2.068 2.193 2.149 2.194 2.338 -50 2.068 2.092 2.334 2.179 2.308 -50 2.055 2.080 2.122 2.164 2.285 -40 2.041 2.066 2.109 2.149 2.263 -30 2.028 2.054 2.096 2.131 2.241 -20 2.0116 2.042 2.084 2.123 2.221 -10 2.004 2.032 2.073 2.110 2.203 0 1.993 2.021 2.063 2.100 2.186 +10 1.982 2.011 2.053 2.088 2.167 20 1.972 2.001 2.644 2.077 2.153 30 1.961 1.991 2.034 2.068 2.141 40 1.950 1.980 2.024 2.058 2.132 50 1.936 1.969 2.013 2.046 2.118 60 1.921 1.955 2.001 2.032 2.105 70 1.907 1.939 1.986 2.019 2.099 80 1.890 1.921 1.949 1.985 2.042
	26.55 44.51 61.52 80.42 100 mol%
Wilson and Richards, 1932	
t d v d v 0 mol% 25.70 mol%	-90 4.790 9.27 cr 16.3 cr80 4.703 10.32 1. 16.85 24.0 1. 30.0 +70 4.502 10.31 16.20 24.4 31.3 -60 4.177 9.61 15.40 23.0 29.8
25.0 0.6793 1130 0.7004 1139 35.0 0.6708 1087 0.6917 1095 50.0 0.6575 1025 0.6788 1031	-50 3.889 8.89 14.44 21.6 27.9 -40 3.628 8.18 13.40 20.0 26.2 -30 3.401 7.48 12.40 18.6 24.6 -20 3.200 6.80 11.44 17.3 22.9
48.43 mol% 74.57 mol% 25.0 0.7252 1155 0.7603 1190 35.0 0.7161 1113 0.7519 1148 50.0 0.7034 1053 0.7392 1088	0 2.910 5.55 9.57 14.9 20.2 +10 2.798 5.16 8.78 13.8 18.6 20 2.696 4.82 8.00 12.6 17.4 30 2.608 4.48 7.30 11.6 16.1
82.43 mo1% 100 mo1%	50 2.500 3.92 6.07 9.71 13.8 60 2.454 3.70 5.54 8.72 12.8
25.0 0.7735 1205 0.8061 1245 35.0 0.7656 1167 0.7987 1205 50.0 0.7526 1113 0.7867 1156	70 2.416 3.53 5.11 8.01 11.8 80 2.384 3.39 4.80 7.30 10.8 90 2.348 3.26 4.46 6.69 9.9
v = sound velocity (m/sec.)	
Smyth, Engel and Wilson, 1929	Lecat, 1949
mo1% n _D	Heptane (C ₇ H ₁₆) (b.t.=98.4) + Batyl alcohols.
20°	2 nd comp. Az
71,33 1.39448 66,79 1.39377	Name Formula b.t. % b.t. Dt mix.
62.33 1.39313 57.51 1.39252 42.05 1.39069 30.11 1.38945 16.73 1.38833	Isobutyl (C _u H ₁₀ 0) 108.0 26 91.1 -2.3 alcohol Sec. Butyl (C _u H ₁₀ 0) 99.5 38 88.4 -2.0
9.03 0 1.38788 0 1.38767	alcohol (20%) Tert. Butyl (CuH100) 82.45 63 78.0
	alcohol

Handana (C. H.) Labora Butul alaskal (C. H. O.)	Heptane (C_7H_{16}) + Amyl alcohol ($C_5H_{12}0$)
Heptane (C_7H_{16}) + tert. Butyl alcohol (C_4H_{10} 0)	Phillips, 1950 (fig.)
Smyth and Dornte, 1931	dielectric relaxation
t d 3.85 8.53 13.44 22.59 49.57 72.65	t 0 3.67 4.07 8.2
mol%	-60 0.002 0.006 0.012 0.018
-50 0.7456 0.7470	+20 0.002 0.003 0.007 0.015 40 0.013
10 0.6954 0.6969 0.6997 0.7062 0.7279 0.7541 30 0.6781 0.6794 0.6820 0.6882 0.7096 0.7348 50 0.6599 0.6611 0.6635 0.6694 0.6903 0.7146 70 0.6417 0.6422 0.6441 0.6494 0.6694 0.6832	t 11.8 15.5 19.2 25.5 mol%
t d	-60 0.027 0.034 0.056 0.054 -20 0.024 0.030 0.042 0.064 +20 0.026 0.036 0.056 0.103 40 0.024 0.037 0.057 0.118
100 mo1%	40 0.024 0.037 0.057 0.118 60 0.018 0.030 0.047 0.108
30 0.7775 50 0.7563 70 0.7343	
t ε 5.85 8.53 13.44 22.59 49.57 72.65 100 mol%	Lecat, 1949 Heptane (C_7H_{16}) (b.t.=98.4) + Amyl alcohols.
-50 2.056 2.067	2 nd comp. Az
-30 2.037 2.058 2.084 2.167	Name Formula b.t. % b.t. Dt mix.
10 2.004 2.027 2.069 2.178 3.026 6.21 - 30 1.991 2.016 2.072 2.197 2.958 4.91 10.92 50 1.972 2.007 2.066 2.204 2.920 4.28 8.49	Isobutyl- (C ₅ H ₁₂ 0) 131.9 8 97.9 -0.8 carbinol
70 1.934 1.981 1.945 2.193 2.889 3.99 6.89	2-Pentanol " 119.8 15 96.0 -1.3
	3-Pentanol
	Methyl
	Amylen- " 182.35 28 92.15 -2.1 hydrate (50%)

The image is a straight of the image is a stra	Heptan	e (C ₇ H ₁₆) + 0ct	vl alcohol (Co	Н, рО)	Heptane	(C ₇ H ₁₆) +	Glycol (CoH(Oo)	
t		, -							
1.4.47	t		d		I		and Miese		-
-30 0.7318 0.7344 0.7438 0.7591 -30 0.7318 0.7364 0.7438 0.7591 -30 0.7218 0.7280 0.7388 0.7591 -30 0.7218 0.7280 0.7388 0.7591 -30 0.7218 0.7219 0.7219 0.7219 -30 0.7210 0.7194 0.7227 -30 0.687 0.7023 0.7111 0.7272 -30 0.6892 0.6851 0.6943 0.7111 -30 0.6820 0.6853 0.6943 0.7111 -4 0.6838 0.6769 0.6857 0.7031 -4 0.6718 0.6769 0.6857 0.7031 -4 0.6718 0.6769 0.6857 0.7031 -4 0.6718 0.6769 0.6857 0.7031 -4 0.6718 0.6769 0.6857 0.6858		4.47 6.7	1 12.60	23.47		_	Lo		;
-30		mo	1%	· · · · · · · · · · · · · · · · · · ·		·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-20 -10	0.7236 0.7 0.7151 0.7	280 0.7358 194 0.7277	0.7512 0.7432	40	.0983	.6678	16,174	**************************************
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 30 40 50	0.6987 0.79 0.6904 0.6 0.6820 0.66 0.6738 0.66 0.6647 0.66	023 0.7111 940 0.7028 853 0.6943 766 0.6857 679 0.6770	0.7272 0.7192 0.7113 0.7031 0.6945	Heptane	(C ₇ H ₁₆) +	Diglycol	(C ₄ H ₁₀ O ₃)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Leibnitz	, Konnecke a	and Niese	, 1957	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$] 1		=	100	t	d		σ interface	
-30		10.77		100		L ₁	L2	(L ₁ /L ₂)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-20 -10 0	0.7805 0.7730 0.7650	0.8201 0.8131		40	.0975	.6683	10.133	
A.47	20 30 40 50 60	0.7498 0.7418 0.7338 0.7258	0.7912 0.7838 0.7763 0.7690	0.8253 0.8186 0.8115 0.8042	ll '		b.t.=98.4) + Alcohols.	
Name Formula b.t. % b.t. Dt mix. -30	t		12.60	23.47		2 nd comp.		Az	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ni	101%		Name	Formula	b.t.	% b.t.	Dt mix.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-20 -10 0 +10	2.033 2.05 2.021 2.04 2.010 2.03 2.000 2.02	5 2.152 9 2.141 9 2.131 9 2.122	2.457 2.426 2.393	alcohol	- 0	Two liqu	uid phases ti	(40%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							at leas	t	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.971 2.00	2.100	2.326		$(C_3H_8O_2)$	124.5	23 92.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.295	Ethoxy-	(C ₄ H ₁₀ O ₂)	135.3	14 96.5	
-30	t			100	Ethylen- chlorhydri	(C ₂ H ₅ OC1)	128.6		-2.5 (50%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		mol	%				127.0	17 96.5	-
20 3.384 6.78 10.34 amine 30 3.233 6.14 9.45 40 3.130 5.60 8.62 50 3.030 5.14 7.84	-20 -10	A 456	11.22 10.21 9.25	13.31	Ethylen-	(C ₂ H ₅ OBr)	150.2	- 97.5	-
40 3.130 5.60 8.62 50 3.030 5.14 7.84	+10 20	3.770 3.554 3.384	7.52 6.78	12.26 11.26 10.34	amine				-
00 2.943 4.75 7.09	40	3.233 3.130 3.030 2.943	5.60	8.62	Sucane till 0	1. 0411100 /	71.0	o o 95.0	-

	Heptanes (C ₇ H ₁₆) + Thiols
Heptane (C_7H_{16}) + 1-Butanethiol ($C_4H_{10}S$)	Denyer, Fidler and Lowry, 1949 Az
Denyer, Fidler and Lowry, 1949	wt% mol% .b.t. d ²⁰ n ²⁰
Az	2-Methylhexane + 1-Butanethiol (C ₄ H ₁ oS)
mol% wt% b.t. d ²⁰ n ²⁰	16.8 15.4 89.74 0.6989 1.3914
52.0 49.4 95.45 0.7507 1.4101 Az	2-Methylhexane + 2-Butanethiol ($C_4H_{10}S$)
	74.2 72.1 84.30 0.7806 1,4189
	3-Methylhexane + 1-Butanethiol ($C_{u}H_{10}S$)
Heptane (C ₇ H ₁₆) + 2-Methyl-1-propanethiol	24.5 22.8 91.20 0.7948 1.3977
(C ₄ H ₁₀ S)	3-Methylhexane + 2-Butanethiol (C4H10S)
Denyer, Fidler and Lowry, 1949	82.4 80.8 84,70 0.7968 1.4258
Az	3-Methylhexane + 2-Methyl-1-propanethiol (C _h H ₁₀ S)
mol% wt% b.t. d^{20} n_{D}^{20}	65.2 62.8 87.16 0.7720 1.4164 2,2-Dimethyl pentane + 1-Propanethiol (C_3H_8S)
92.1 91.3 88.50 0.8197 1.4338 Az	85.1 81.3 67.20 0.8026 1.4242
	2,2-Dimethyl pentane + 2-Butanethiol ($C_{4}H_{1,0}S$)
	25.0 23.1 78.60 0.7033 1.3918
2-Methyl hexane (C ₂ H ₁₆) + Methyl alcohol	2,2-Dimethyl pentane + 2-Methyl-1-propanethiol
(СН ₁₄ 0)	11.3 10.3 79.12 0.6867 1.3864
Lecat, 1949	2,3-Dimethyl pentane + 1-Butanethiol ($C_uH_{10}S$)
% b.t.	16.5 15.1 89.53 0.7116 1.3973
	2,3-Dimethyl pentane + 2-Butanethiol (C ₄ H _{1o} S)
0 90.0 40 - Az 100 64.7	70.8 68.6 84.16 0.7835 1.4204
34.7	2,3-Dimethyl pentane + 2-Methyl-1-propanethiol id.
	56.7 54.1 86.26 0.7616 1.4132
	2,4-Dimethyl pentane + 1-Propanethiol (C ₃ H ₈ S)
3-Methyl hexane (C_7H_{16}) + Methyl alcohol (CH_{40})	88.2 85.1 67.48 0.8119 1.4275
Lecat, 1949	2,4-Dimethyl pentane + 2-Butanethiol (C4H10S)
	30.3 28.1 79.55 0.7099 1.3937
# b.t.	2,4-Dimethyl pentane * 2-Methyl-1-propanethiol
0 91.8 40 - Az	15.4 14.1 80.28 0.69205 1.3878
100 64.7	2,2,3-Trimethyl butane + 1-Propanethiol (C_3H_8S)
	90.1 87.4 67.57 0.8177 1.4300
	$\frac{2,2,3\text{-Trimethylbutane } (2\text{-Methyl-l-propanethiol} \\ (C_{u}H_{10}S)}$
	17.9 16.4 80.60 0.7091 1.3956

			OCTA	NE + MI
Lecat, 1949				
Octane (C ₈ H ₁₈) (b.t.=	125.75) +	- Alcohols	s.
2 nd	comp.	Az	:	
Name Form	ula b.	t. %	b.t.	Dt mix.
Methyl (CH ₄ 0 alcohol) 64	. 65 72	63.0	-
Ethyl (C ₂ H ₆ 0	0) 78	.3 76	76.3	-1.8 (78%)
Propyl (C ₃ H ₈)	0) 97	.2 68	93.9	-1.7
Isopropyl (C ₃ H ₈ alcohol	0) 82	.4 84	81.6	-1.4 (90%)
Octane (C ₈ H ₁₈) + Methy	1 Alcoho	1 (CH ₄ 0)
Sieg,1951				
sat. _t	L ₁	mol	% L ₂	
21 30	93 92 91		- 18	
40 5 0	89		22 28 38	
60 67	83	65	38	
	· · · · · · · · · · · · · · · · · · ·			
Kogan, Deizenrot a		.956		
L ₁	б 1	1 2	sat.t.	
2.79		.67	.2	
2.20 4.9 7.13	80	. 25 0.60 1.88	10 25 45	
Zieborak, Maczy	nska and	Maczynsk	i,1956 (f	ig)
mol %	b.t.	mol %	b,t	
	760	mm		· · · · · · · · · · · · · · · · · · ·
100	64.6			

Az : 63.0°

C.S.T. = 66.7°

TIL ALCOHOL	_				
Octane (C ₈ H ₁₈) + Isc	opropyl a	lcohol	(C ₃ H ₈ 0)
Kreglewski, 198	55				
wt%		mo1%		C.V.T.	
100		100		235.25 235.40	
93.5 81.8		96.5 89.5		235.40	
81.8 75.0 47.6		85.1 63.3		236.20 238.05 249.25	
47.6 0		63.3 0		249.25 295.6	
Ralston, Hoern	and Cr	ews, 194	4		
	f.t.		%		
	-75.0 -70.0		6,6		
	-65.0		9.0 13.7 26.5		
	-60.0 -56.84		100		
Octane (C ₆ H ₁₈ Lecat, 1949				-410- /	
	%		o. t.		
	0	į	25.75		
10	50 00]	125.75 110.2 117.8		
Ralston, Hoerr	and Cr	ews, 1944	4		
f	.t.	9	6		
	75.0]	10.9 13.3		
_'	70.0 65.0]	13.3 18.1		
-	60.0	3	31.1		
-,	56.84	10	00		

Octane (C ₈ H ₁₈) + Is	obutyl alcohol	I (C ₁ , Ε	I ₁₀ 0)	Octane (C ₈ I Lecat, 1949	H ₁₈) (b.t.	, = 125,3	75) +	Varia	
Lecat, 1949					2nd Comp.		Az		
0 65 80	b.t. 125.7 102.5		Dt mix	Name	Formula	b.t.	%	b.t.	Dt mix
90 100	108.0	0 	-0.8	Isobutyl carbinol	C ₅ H ₁₂ O	131.9	35	119.8	-1.7 (35%)
Kreglewski, 1955			,	2-Pentanol tert. Amyl alcohol	C ₅ H ₁₂ 0 C ₅ H ₁₂ 0	119.8 102.35		114.8 101.1	-
% t %	C.	.v.T.		Methoxy glycol	C3H8O2	124.5	48	110.0	-0.5 (50%)
100	100 27	76.50		Ethoxy glycol	$C_4H_{10}O_2$	135.3	38	116.0	-3.0 (50%)
91.8 81.4 79.3	87 1 27	74.45 72.90 72.75		Propoxy glycol	C 5H12O2	151.35	20	122.8	-
65.1 56.5 39.8 0	74.2 27 66.7 27 50.4 27	72.30 72.75 76.35 95.65		Methyl lactate	$C_{\mu}H_{8}O_{3}$	143.8	30	120.3	-
min. 75 wt% 272	.30°			Ethylenchlor- hydrine	. C2H50C1	128.6	47	112.5	-2.0
Octane (C ₈ H ₁₈) + N	aethyl ethyl c	carbinol (C ₄ H		Ethanola-	C₂H ₇ ON	170.8	16	123.0	-
Veltmans, 1926	_								
R	d	(α) _D		Octane (C ₈ H	[10] + Renz	vl alcoh	io] ((ር ብ _ዓ ር ነ	
0 19.4 38.5 59.9 79.6 100	20° 0.7022 0.7199 0.7375 0.7397 0.7827 0.8069	0 4 3.18 5.99 8.73 11.18 13.89	9 3 8	Mulliken and	l Wakeman, l	.935			
Octane (C ₈ H ₁₈ O) + I	soamyl alcoho	1 (C ₅ H	120)	Maman, 1937					
Kreglewski, 1953				C.S.T. : 54.	.5°				
N t %	mo1%	C.V.	T.						
100 83.9 63.0 44.9 41.3 32.5 19.1 18.2	100 87.1 68.8 51.4 47.7 38.4 23.4 22.4	306. 298. 292. 290. 289. 289. 291. 291.	75 30 05 95 85 20 40			-			
min.: 41 wt% 28	89.85°								
				<u> </u>					

Lecat, 1949 Diisobutyl		(b.t. =	109.4) + Alc	ohols		ctanes (C ₈	18 / -			(-78-
	2nd Comp.		Az			Maman, 193	7 				
Name	Formula	b.t.	%	b. t.	Dt mix	1st Comp	•		,	c.s.	т.
Hume	. 01	5	<i>/</i> •	p	or	Isooctane				59.9)
					Sat,t.	3-Methylhe	ptane			55,9	
	ou o	(1 (5		(1.0		4-Methylhe	ptane			54.9	
Methyl	CH ₄ 0	64.65	60	61.0	-	3-Ethylhex	ane			49.2	
alcohol	C 11 0	70.3	50	<i>a</i> = 0	• •	2,3-Dimethy	ylhexane			51.4	
Ethyl	C5H60	78.3	59	75.2	-2.8	2,4-Dimethy				57. 3	
alcohol	CHO	97.2	47	89.5	(60%)	2,5-Dimeth				65.3	
Propyl alcohol	C3H80	91,2	47	69.5	-2.7 (50%)	3,4-Dimethy				46.4	
Isopropyl	C3H80	82.4	6 2	78.8	(30%) -1.7	2-Methy1-3-	ethylpenta	ne		46.6	
alcohol	C3H8U	04.4	02	70.0	(60%)						
Butyl	C ₄ H ₁₀ O	117.8	28	101.9	(00%)						
alcohol	υμ111 00	117.0	40	101,7	_	2,2,4-Trime	ethylpentan	e (C ₈ H ₁₈) (b	.t. = 99	9.3)+
Isobutyl	C4H100	108.0	42	98.2	-3.4					Alcohols	s
alcohol	C4H1 00	100.0	42	90.2	(50%)						
sec.Butyl	C4H100	99.5	54	93.0	(30%)	Lecat, 194	19				
alcohol	C4111 00	77.0	J4	70.0			2nd Comm				
tert.Butyl	С. И О	82.45	78	80.7	_	I	2nd Comp	•	Az		
alcohol	C4111 00	02.70	70	50.7		Name	Formula	b.t.	%	b.t.	Dt mix
Isobutyl	C5H120	131.9	15	107.6	-2.0						
carbinol	051120	20217			(50%)						
Methyliso-	C5H120	112.9	32	103.5	-	Methyl	CH ₁ O	64.65	53	59.4	-
propyl alco	-					alcohol	•	• • • • • • • • • • • • • • • • • • • •			
tert.Amyl	C 5H120	102.35	50	97.0	-2.3	ll .	CHA	78. 3	53	72.4	-2.5
alcohol	- 312-				(50%)	Ethyl alcohol	C ₂ H ₆ O	76.3	00	72.4	(60%)
Ally1	C3H60	96,85	50	89.3	-	Propy1	0 ₈ E ₂ 3	97,2	41	85.3	-
alcohol	, ,					alcohol	C 3.180	77.2	,,	00.0	
Methoxy	$C_{3}H_{8}O_{2}$	124.5	33	100.0	-	Isopropy1	€ ₃ H ₈ 0	82,4	54	76.8	_
glycol	3 0 -					alcohol	0 0	02,1	٠.	,,,,	
Ethoxy	$C_4H_{10}O_2$	135.3	22.5	105.0	-	Isobutyl	C4H100	108.0	27	92.0	-
glycol						alcohol	-410-				
Methyl	C4H803	143.8	17	108.5	-5.0	Isobutyl	C 5H120	131.9	5	99.0	-
lactate	-				(17%)	carbinol	-9 12				
Ethylen- chlorhydri	C ₂ H ₅ OC1	128.6	33	101.0	-4.1 (50%)						
	CalloC1	127.0	30	105.0	-						
						2,2,4-Trime	ethylpentan	е (С ₈ Н ₁₈) +	Benzyl a	
2,2,4-Trin	ne thy lpen t	ane (C ₈ H	18)+	Methyl	alcohol CH _u O)	N 7 1 41	- J. Wals	1025		. 578	- ,
Lecat, 194	19			`	₁	Mulliken ar					
	%		b.t.			50 vo1% s	sat.t. = 74	٥			
	0 53		99.3 59.4 A	7							
	100		64.65	•		1					

2,2,4-TRIMETHYL PENT ANE + ETHYL ALCOHOL

2,2,4-Trimethylpentane (C_8H_{18})	+ Ethyl alcohol (C ₂ H ₆ O)	wt%	mo1%	0°	d 50	0°
Kretschmer, Nowakowska and Wiebe	1948	0 5.44 11.20	0 12.48 23.82	0.70812 0.71207 0.71676	0.6 0.6	6686 6959 7378
000	25°	23.32 32.32 41.66	42.99 54.21 63.90 73.71	0.72705 0.73508 0.74371	0.6 0.7	8368 9158 0018
0 13.04 1.86 19.95 14.70 22.30 29.67 22.61 37.95 22.68 56.84 22.65 77.49 22.18 90.77 19.94 94.58 17.99 98.82 13.81 100 11.95	49, 31 78, 83 92, 81 95, 32 95, 83 96, 05 94, 41 86, 31 79, 64 65, 28 59, 02	53.07 53.97 64.09 69.68 80.42 91.95 93.32 100	73.71 74.40 81.57 85.07 91.06 96.59 97.19	0.75464 0.75554 0.76573 0.77160 0.78330 0.79658 0.79823 0.80631	0.7 0.7 0.7 0.7 0.7	1119 1212 2243 2831 4009 5342 5503 6314
mo1% L V	p	Brown and Fo				
0 25°	49.31	mo1%	Q mix	mo1%	Q	mix
5.65 44.41 11.82 47.62 17.00 49.10 27.48 50.73 37.73 51.53 54.16 52.85 72.25 55.01 85.11 59.94	86,56 91,82 93,57 95,22 95,85 96,14 95,25 91,49	11.7 23.3 42.5 70.3	212.0 240.0 233.0 164.9	86.9 95.0	8	30.0 14.8 17.0
96.03 74.71 97.57 80.23 100 100	75.71 70.41 59.03	2,2,4-Trimet	hy lpentane		2-Methyl-	
0 0 1.13 21.38 3.40 42.38 5.79 47.52 12.40 52.54	146.47 207.31 250.15 271.87 296.29	Denyer, Fidl	er and Lowi	ry, 1 94 9		
34.28 57.01 51.76 58.63 59.43 59.41 61.44 59.69	315, 21 318, 26 318, 75 318, 82	mo1%	wt% l	o.t. d ²⁰	n _D	
77.13 62.79 87.99 68.81 93.19 75.26 95.16 79.42	315,10 301,38 282,86 271,27	91.9	90.0	88.41 0.81	64 1.4	325
98.29 90.08 100 100	242.85 220.94	_				
wt% mol%	d	Isooctanes Denyer, Fid		+ 1~Butaneth wrv. 1949	101 (C ₄ II	105)
25°		Az		··- 7		
$\begin{array}{ccc} 0 & 0 \\ 1.30 & 3.16 \end{array}$	0.68777 .68834	Name	mol% v	vt% b.t.	qso	n ² °
1.63 3.94 4.31 10.05 4.99 11.52 14.32 29.30	.68857 .69041 .69088 .69823	2,2-Dimethyl -hexane	82.5	78.8 98.01	0.8049	1.4298
29.60 51.04 46.80 68.56 63.13 80.93 80.57 91.14	.71140 .72735 .74358	2,5-Dimethyl			0.8204	1.4353
89.62 95.54 100 100	.76227 .77261 .78506	3,3-Dimethyl -hexane 2,2,4-Trime-			0.8380	1.4414
		thylpentane	JU, Z	50.3 95.50	0.7568	1.4135

				
Nonane (C ₉ H	₂₀) + Ne	thyl Alcohol (СН ₁ ,0)	Decane (C ₁₀ H ₂₂)
Zieborak, Ma	czynska a	nd Maczynski,l	956 (fig)	Bingham, 1907
mol %	b.t.	mol %	b.t.	C.S.T. = -15°
	76	0 mm		
100 93 90	64.6 64.3 A 64.5	87-50 z 30 0	64.5 L ₁ +L ₂ 65.0 150.7	
	Az : 6-	4.4°		Decane (C ₁₀ H ₂₂)
		~		Lecat, 1949
Kogan, Deizenr	ot and al.	, 1956		Я
L ₁	Я	Sa L ₂	ot.t.	0 92
1.91				100
1.91		86.17 82.80	20	
3.77 8.80		79.93 78:48	40 60	
				<u>-</u>
				Diisoamyl (C ₁₀ H ₂₂
Decane (C _{1 o} H	22) + Me	thyl alcohol (CH40)	Timmermans and Kohn
Zieborak, Mac	zynska an	d Maczynski, 1	956 (fig.)	C.S.T. = 86.8° dt
mol %	b.t.	mol %	b.t.	
	70	50 mm		
100 92	64.6 64.9	92-30	64.9 L ₁ +L	III
Az : 64.93				Diisoamyl (C ₁₀ H ₂₂
				- Mulliken and Wakem
Sat	t.t.	L ₁	1 % L ₂	- 50 vol% sat.t. =
	36	96	-	
(50 50	95 93	-	
	70 30	92 90	-	
8	38 90	83 78	62 78	
ĺ	-	C.S.T. = 91°	, ,	\
				=
Bingham, 1907	•			
C.S.T. = 76°				
1				

```
+ Ethyl alcohol ( C2H60 )
+ Methoxyglycol ( C3H8O2 )
              b.t.
_{2} ) + Methyl alcohol ( CH_{\downarrow}0 )
nstamm, 1909 - 1910
t/dp (10-150Kg/cm<sup>2</sup>) = +0.04
) + Benzyl alcohol ( C<sub>7</sub>H<sub>8</sub>O )·
man, 1935
= 72°
```

Lecat, 194	19					Dodecane (C ₁₂ H ₂₆) + Isopro	
	2nd Comp.		Az	:		Ralston, Hoerr and Crews, 19	44
Name	Formula	b.t.	%	b.t.	Dt mix	7,	f.t.
Methy1	СН ₄ 0	64,65	3	64.6	<u>-</u>	99.9 99.3 97.4 91.7	-50.0 -40.0 -30.0 -20.0
alcohol Butyl	C ₄ H ₁₀ 0	117.8	96	117.6	-0.4	82.6 0	-15.0 -9.64
alcohol Isobutyl carbinol	C 5 H 1 2 O	131.9	83	130.8	(96%) -1.3		
Hexyl alcohol	C ₆ H _{1 4} 0	157.85	37	152.0	(85%) -	Dodecane (C ₁₂ H ₂₆) + Butyl	alcohol ($C_{\mu}H_{10}0$)
Glycol	$C_2H_6O_2$	197.4	21	153.0	-	Ralston, Hoerr and Crews, 19	44
Methoxy glycol	$C_3H_8O_2$	124.5	70	121.0	-	%	f.t.
Ethoxy glycol	$C_{\mu}H_{10}O_{2}$	135.3	63	130.8	-2.2 (80%)	99.5 99.0 98.0	-60.0 -50.0 -40.0
Propoxy glycol	$C_5H_{12}O_2$	151,35	52	143.7	-	95.6 98.0 76,1	-30.0 -20.0 -15.0
Cyclo- hexanol	C ₆ H ₁₂ 0	160.8	42	152.8	=	0.1	-9.64
Methylcyc hexanol	lo C ₇ H _{1 4} 0	168.5	27	155.8	-		
Methyl lactate	C4H803	143.8	68	137.8	-8.5 (50 %)	Dodecane (C ₁₂ H ₂₆) + Propyl	eneglycol (C ₃ H ₈ O ₂)
Ethyl lactate	C ₅ H ₁₀ O ₃	154.1	58	145,5	-5,0 (60%)	Lecat, 1949	
	lor C ₂ H ₅ OC1	128.6	68	123.5	-	%	b.t.
hydrine Dichlor-2 -propano1	C ₃ H ₆ OC1;	175.8	40	154.5	-	0 67 100	216 175 Az 188.5
Undecane	e (C ₁₁ H ₂₄)	+ Methy	l Alco	ohol (CI	I ₄ 0)		
Zieboral	k, Maczynska	and Mac	zynski ——	,1956 (1	fig)	Tridecane (C ₁₃ H ₂₈) + Glyc	ol (C ₂ H ₆ O ₂)
mol	% b.t.		mol %	b.1	i.	Lecat, 1949	
100	64.6		36	65.	. 2	7,	b.t.
94 94-			30	66.	, 0	0 55 100	234.0 188.0 Az 290.5

Tetradecane (C_{1} $_{4}H_{30}$) + Propyleneglycol ($C_{3}H_{8}O_{2}$)	Heptadecane ($C_{17}H_{36}$) + Isopropyl alcohol ($C_{3}H_{8}O$)
Lecat, 1949	Ralston, Moerr and Crews, 1944
	f.t. %
% b.t.	-10.0 99.9
0 252 76 179 Az 100 188.5	10.0 99.2 +10.0 95.2 15.0 89.5 21.72 0
Hexadecane ($C_{16}H_{34}$) + Isopropyl alcohol ($C_{3}H_{8}0$) Ralston, Hoerr and Crews, 1944	Heptadecane (C ₁₇ H ₃₆) + Butyl alcohol (C ₄ H ₁₀ O)
f.t. %	Ralston, Hoerr and Crews, 1944
-20.0 99.9	f.t. %
-10.0 99.6 0.0 98.3 +10.0 93.0 15.0 82.5 18.18 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hexadecane ($C_{16}H_{34}$) + Butyl alcohol ($C_{4}H_{10}0$) Ralston, Hoerr and Crews, 1944	Dotriacontane ($C_{32}H_{66}$) + Isopropyl alcohol (C_3H_80)
f.t. %	f.t. %
-20.0 99.7 -10.0 98.8 0.0 96.1 +10.0 85.7 15.0 66.7 18.18 0	50.0 99.8 60.0 97.8 70.1 89.1 70.16 0
	C.S.T. : 80.4% 82.3°
Diisooctyl (C ₁₆ H ₃₄) + Ethyl alcohol (C ₂ H ₆ O) Zenalova-Mikhailova, 1937 C.S.T. : 40 vol% : 38.72°	Dotriacontane (C ₃₂ H ₆₆) + Butyl alcohol (C ₄ H ₁₀ O) Ralston, Hoerr and Crews, 1944 f.t. 50.0 99.1 60.0 91.6 70.16 0

Paraffin oil + Ethyl alcohol (${ m C_2H_60}$) Howard and Patterson, 1926	Lecat, 1	.949 vlethylene (C	5H ₁₀)	(b.t.=	37,1)	+ Alcohols
C.S.T. 13% 33.5°	Name	Formula	b.t.		b.t.	Dt mix.
	Methyl alcohol	(CH ₄ 0)	64.65	7.5	31.7	-1.4 (21%)
Vaselin oil + Propyl alcohol (n and iso.) ($C_3H_8\theta$)	Ethyl alcohol	(C ₂ H ₆ O)	78.3	-	35.5	-0.8 (4%)
Zenalova-Mikhailova, 1937	Ethane- thiol	(C ₂ H ₆ S)	35.8	60	33.0	-1.2 (50%)
C.S.T. 50 vol% 35.2°						
	Isopropy	lethylene (C	₅ H ₁₀)	+ Methy		hol H _u O)
Amylene (C_5H_{10}) + Ethyl alcohol (C_2H_60)	Lecat, 1	949			()	1140
Guthrie, 1875		%		b.t.		Dt mix
% p % p		0 3 100		20.6 18.6 64.6) Az	-0.3
18.4°						
100 41.9 40 330.0 90 124.1 30 334.5 80 227.4 20 334.8 70 277.3 10 338.1 60 309.0 0 356.5 50 323.7	Isopropyl Lecat, 19	lethylene (C	5H ₁₀)+	Ethyl		o1 ,H ₆ 0)
		%		b.t.		Dt mix
2-Pentene (C_5H_{10}) + Methyl alcohol (CH_{10}) Lecat, 1949		0 2 50 100		20.6 20.0 78.3	Αz	-2.8
% b.t.						
0 36.7 12 31.5 Az 100 64.7	Hexene (C ₆ H ₁₂) + Me ¹	thyl alo	cohol (СН40)
	Lecat, 1			b.t.		
		0 26 100		68.5 50 64.7		
						====

A War and (C. H.) Putul alaskal (C. H. A.)	Lecat, 1949						
1-Heptene ($C_7H_{1\text{L}}$) + Butyl alcohol ($C_{\text{L}}H_{10}O$)	 						
Lecat, 1949	Diallyl (C ₆ II ₁₀) (b.t.=60.1) + Alcohols.						
% b.t.	2 nd comp. Az						
0 95	Name Formula b.t. % b.t. D	t mix.					
13 90 Az 100 117.8	Methyl (CH _u 0) 64.65 22.5 47.05 alcohol	-2.5 (22%)					
	Ethyl (C ₂ H ₆ O) 78.3 13 53.5	-1.9 (15%)					
6-Kethyl-l-heptene (C_8H_{16}) + Isobutyl alcohol	Isopropy1 (Callo 0) 82.4 10 56.2	-1.5 (11%)					
$(C_uH_{10}0)$							
Lecat, 1949	Isoprene (C_5H_8) + Ethyl alcohol (C_2H_60)						
% b.t.	Lecat, 1949						
0 95 18.7 109 Az 100 151,9	% b.t. Dt	mix					
100 151,9	0 34.3 3 32.65 Az 100 78.3	-0.7					
		·····					
1,3-Pentadiene (C_5H_8) + Methyl alcohol (CH_4O)							
Lecat, 1949	Dimethylallene as. (C_5H_8) + Methyl alcohol ($CH_{ m L}$						
% b.t.	Lecat, 1949	. ,					
0 44.2 17 37.5 Az		mix					
100 64.7		inix.					
		-1.1					
Isoprene (C_5H_8) + Methyl alcohol (CH_4O)	100 64.65						
Lecat, 1949							
% b.t. Dt mix	Dimethylallene as. (C_5H_8) + Ethyl alcohol						
0 34.3 5 29.5 Az	(C ₂ H ₆	0)					
503.2	Lecat, 1949						
100 64.65	% b.t.						
	0 40.8 6 38.2 Az 100 78.3						
	II .						

					1			
Cyclopentane (C_5H_{10}) (b.t. = 49.4) + Alcohols								
Lecat, 19	49				·			
	2nd Co	omp.	Az					
Name	Formu	la b.t	. %	b.t.	Dt mix			
Methyl alcohol	СН ⁺ 0	64.0	65 14	38.8	-2.3 (15%)			
Ethyl alcohol	C2H60	78.3	3 7.5	44.7	-			
Isopropyl alcohol	C3H80	82.4	4 -	47.3	~			
Tert.Butyl	C ₄ H ₁₀	0 82.4	45 7	48.2	-			
Cyclopent	ane (C ₅ I	l ₁₀) + Et	hanethio	1 (C ₂ H ₆	,s)			
Denyer, F	idler and	Lowry, 1	.949					
Az								
mo1%	w.t.	b.t.	d ²⁰	uD 5 c				
90	89	34.95	0.8283	1.42	745			
	Cyclopentane (C_5H_{10}) + 2-Propanethiol (C_3H_8S) Denyer, Fidler and Lowry, 1949							
mol	%		mol	%				
v		b.t.		,-				
	L	D. C.	v	L	b.t.			
	L	760 mg		<u> </u>	b.t.			
0 6.0	0 6.0	760 mm 49.35 48.94	37.2 46.0	38.3 48.6	48.02 48.15			
0 6.0 27.0 32.4	0	760 mm	n 37.2	38.3	48.02			
27.0	0 6.0 26.3	760 mm 49.35 48.94 48.05	37.2 46.0 66.0 100	38.3 48.6 73.4	48.02 48.15 49.48			
27.0	0 6.0 26.3 31.8 mo1%	760 mm 49.35 48.94 48.05	37. 2 46. 0 66. 0 100 1.40785	38.3 48.6 73.4	48.02 48.15 49.48			
27.0	0 6.0 26.3 31.8 mo1%	760 mm 49.35 48.94 48.05	37.2 46.0 66.0 100 1.40785 1.4097 1.4124 1.4153 1.4186	38.3 48.6 73.4	48.02 48.15 49.48			
27.0	0 6.0 26.3 31.8 mo1%	760 mm 49.35 48.94 48.05	37.2 46.0 66.0 100 1.40785 1.4097 1.4124 1.4153 1.4186 1.4219	38.3 48.6 73.4	48.02 48.15 49.48			
27.0	0 6.0 26.3 31.8 mo1%	760 mm 49.35 48.94 48.05	37.2 46.0 66.0 100 1.40785 1.4097 1.4124 1.4153 1.4186	38.3 48.6 73.4 100	48.02 48.15 49.48 52.60			
27.0 32.4	0 6.0 26.3 31.8 mo1% 15.33 27.96 43.58 57.82 71.94 85.74	760 mm 49.35 48.94 48.05 47.94	37.2 46.0 66.0 100 1.40785 1.4097 1.4124 1.4153 1.4186 1.4219	38.3 48.6 73.4 100	48.02 48.15 49.48 52.60			

Methylcyclopentane ($C_6H_{1\,2}$) (b.t.=~72.0) + \$Alcohols\$

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	СН ₄ 0	64,65	32	51.3	-3.3 (30%)
Ethyl alcohol	C2H60	78.2	25	60.3	-2.4 (50%)
Propy1 alcohol	C3H80	92.2	7	68.5	-2.3 (10%)
Isopropyl alcohol	C3H80	82.4	25	63.3	-
Butyl alcohol	$C_{\downarrow}H_{10}0$	117.8	-	71.8	
Isobutyl alcohol	$C_{4}H_{10}0$	108.0	2.5	68.1	-2.35 (46%)
sec.Butyl	$C_{\mu}H_{10}0$	99.5	11.5	69.7	-
tert.Butyl	$C_{\downarrow}H_{10}0$	82,45	26	66.6	-
tert. amyl alcohol	C5H120	102.35	5	71.5	-
Allyl alcohol	C ₃ H ₆ 0	96.85	10	67.8	-
Propane- thiol	C ₈ H ₈ S	67.3	95.3	66.2	-
Ethylen -chlorhydr:	C ₂ H ₅ OC1 in	128.6	-	71.4	-

Methylcyclopentane (C_6H_{12}) + 1-Propanethio1 (C_5H_8S)	Dimethylcyclopentanes (C_7H_{14}) + Butanethiols, ($C_8H_{10}S$)
Denyer, Fidler and Lowry, 1949	
mol% b.t. mol% b.t.	Denyer, Fidler and Lowry, 1949
V L V L	Formula mol% wt% Az d²º n²º
760 mm	1,1 A 66.0 64.1 83.90 0.7976 1.4258
0 0 71.85 56.4 54.5 66.24 16.5 11.0 69.74 62.8 61.8 66.21	1,1 B 46.4 44.25 85.69 0.7849 1.4221
30.2 23.6 68.02 67.3 68.0 60.20	1,2 C 50.1 48.0 96.35 0.8048 1.4306
39.0 33.0 67.30 69.4 70.5 66.19 43.0 38.3 66.85 80.0 82.6 66.34	1,2 B 98.7 98.6 88.52 0.8328 1.4383
45.8 41.2 66.76 87.3 89.3 66.76 48.5 44.5 66.60 100 100 67.82	1,3 C 13.5 12.7 90.54 0.7555 1.4121
52.0 48.5 66.37	1,3 A 79.5 78.1 84.75 0.8081 1.4290
mo1% $n_{ m D}^{ m 20}$	1,3 B 60.7 58.6 87.02 0.7930 1.4239
	A= 2-Butanethiol
20.44 1.4129 33.46 1.4157 47.21 1.4193	B= 2-Methyl-1-propanethiol
61.54 1.4233	C= 1-Butanethiol
75.38 1.42805	
mol% wt% b.t. d ²⁰ n _D ²⁰	Cyclopentene (C_5H_8) + Methyl alcohol (CH_40)
66.0 64.2 64.45 0.8015 1.4246	Lecat, 1949 % b.t.
	% D.t.
Methylcyclopentane (C_6H_{12}) + 2-Methyl-2-propanethiol ($C_4H_{10}S$)	0 44.5 18 37 Az 100 64.7
Denyer, Fidler and Lowry, 1949	
Az.	Mothylevelepentone (CH) (h + - 75 95)
mol% wt% b.t. d^{20} n_D^{20}	Methylcyclopentene (C_6H_{10}) (b.t. = 75.85) + Alcohols
95.0 95.3 64.37 0.7967 1.4209	Lecat, 1949
	2nd Comp. Az
	Name Formula b.t. % b.t.
Ethylcyclopentane (C ₇ H ₁₄) + 1-Butanethiol	
(C ₄ II ₁₀ S)	Methyl CH ₄ 0 64.65 35 53.0 alcohol
Denyer, Fidler and Lowry, 1949 Az	Ethyl C ₂ H ₆ 0 78.3 28 63.3 alcohol
mol% wt% b.t. d^{20} $n_{ m D}^{20}$	Propy1 C ₃ H ₈ O 97.2 13 71.7 alcoho1
73.8 72.15 97.76 0.8172 1.4345	tert.Butyl $C_{u}H_{\text{FO}}0$ 82.45 39 69.5 alcohol

			Market and a second	1				
Cyclohexane (C ₆ H,	.) + Meth	vl alcoho	J (CH 0)	Authors				C.S.T.
Lecat, 1949	2 7 * 110011	yr arcono	, Ch ₄ 0)	Timmermans		ohnstamm, 190 lt/dp (5-12		59.0° 2)=+0.03
				Freed	1933	-1		45.5°
*		b.t.		11				45°
.0		80.75		Francis	1944			
38.2 100		54.2 Az 64.65		Wood	1946			45.14°
		01.00		Quantie	1954			49. 2 (40.4%)
							===	(40.4%)
Lecat, 19 0 9				Jones and	Amstell	, 1930		
						sat.t.	%	sat.t.
% s	at,t.	%	sat.t.	67.77 60.60		17.1 30.40	27.19 22.40	45.58 45.53
69	16	29	49.1	51.04 46.40		40.05 42.68	20.74 19.36	45.45 45.32
61.7	29	22.4 18.7 16.5	48.2	40.51 33.82		44.62 45.45	18.75 13.07	45.10 42.80
49.4	33.1 39.9	16.5	47 45.2	30.85 30.14		45.52 45.56	8.53 6.60	3 7. 5
41.1 37.3	45.7 47.2 48.1	13.7 9	44 38.5	29.20 28.00		45.58	4.50	32.3 30.6
33	48.1	9 4.1	21.8	28.00		45.60C.S.T.	2.70	6.1
		· · · · · · · · · · · · · · · · · · ·		Harms, 1938	- 1943			
				m	01%		d	
Eckfeldt and Lucas	se, 1943					6°		30°
%	sat.t.	%	sat.t.	0.	937	0.79146 0.79124		0.769 03 0.76 870
61.06	29.19	26.14	45.14	1 3.4	60 8 618	0.79100 0.79089		0.76 858 0.76823
60.05	30,46	21.17	44.81	5.	265 279	0.79076		0.76801
52.12	42.29 38.62	24.07 18.16	45.09 44.15	9.	152	0.79070 0.79067		0.76779 0.76759
52.12 57.09 40.23	38.62 34.01 44.24	$14.01 \\ 11.02$	42.05 39.05	10. 81.	052	0.79068		0.76748 0.76901
30,15	44.87 45.07	9.08 8.19	35.95	84. 84.	044 454	0.79403 0.79413		0.76993 0.77014
30.09	45.14	7.88 6.11	34.13 33.19	86.	750	0.79428		0.77101
28.12	45.14	6.11	31.3	89. 95.	770	0.79528 0.79982		0.77251 0.77716
				97.1 98.		0.80106 0.80295		0.77845 0.78037
Timmermans, 1922			_	100.0		0.80436		0.78181
P	C.S.T.		dt/dp			d	30°	3
50 100	59.45 61.02		+0.0314	0.	000	0.76903		2.004
200	63.98		. 296		470 03 2	0.76860 0.76834		2.031 ₀
700	69.10 75.2 5		. 256 . 205	1 5.0	0 27 4 7 5	0.76808		2.037 ₄ 2.099 ₃ 2.137 ₆
100	81.0		. 191	11 7.9	991	0.76789 0.76773		2.187.
				10.0 81.0	052	0.76754 0.7 6901		2.264 ₅ 18.41
				84.0 86.2	044 750	0.76993 0.77101		20.71
				89.0	636	0.77251		22.36 24.48 27.14
				92.4 95.5	574	0.77432 0.77687		27.14 29.81
				100.0	J00	0.78182		30.9

	Cyc lohexa	ne (C ₆ H ₁	2) + Ethy	l alcohol	(C ₂ H ₆ O)	
mol% d e	Nagai and	Isii, 19	35			
mo1% α ε 40°	mo1%		p			-
0 0.75944 1.989		0°	10°	20°	30°	
1.529 0.75886 2.014 3.391 0.75851 2.044 5.398 0.75819 2.090 6.162 0.75812 2.108	100 95 90	12.30 21.85 27.70	23.90 40.15 50.65	44.55 70.95 85.75	77.45 116.9 139.5	
10.843 0.75762 2.266 16.178 0.75722 2.528	85 80	31.30 33.45 34.80	50.65 55.70 58.60	94.25 99.85	153.5 162.4	
74.800 0.75790 15.73 89.825 0.76292 23.9	75 70 65	34.80 35.70 36,25	60.45 61.80 62.70	103.4 105.7 107.2	167.9 171.2	
100 0.77230 30.6	60 55	36.50 36.55	63.30 63.75	108.1 108.7	174.0 175.7 177.0	
mol% d ε	50 45 40	36 60	64.15 64.50	$109.0 \\ 109.2$	178.0 178.6	ı
46°	40 35 30	36.65 36.70 36.70 36.70	64.75 64.95 6 5. 10	109.4 109.5	178.9 179.1	
$egin{array}{cccc} 0 & 0.75375 & 1.979 \ 1.652 & 0.75316 & 2.005 \ \end{array}$	25 20 15	-	65.10 65.00	109.6 109.7 109.6	178.9 178.6 178.0	Ì
4.114 0.75260 2.041 6.660 0.75227 2.109	10	~	64.05 63.70	109.3 107.9 104.5	176.9 175.0 169.7	
13.055 0.75159 2.346 22.100 0.75095 2.900 42.393 0.75049 3.955	50	-	61.65 47.00	104.5 77.25	169.7 121.8	
42.393 0.75041 3.318 53.113 0.75048 7.478	mo1%	·0°	10°	20°	30°	İ
62.200 0.75073 10.18 72.067 0.75160 14.41 85.837 0.75510 21.29	100	12.30	23.50	44.75	77.45	-
93.187 0.75965 26.87 100 0.76654 -	95 90 8 5	$11.90 \\ 11.40 \\ 11.10$	22.55 21.75 21.20	42.45 40.75 39.55	73.95 71.40	
	80 75	$10.85 \\ 10.60$	20.70 20.45	38.65	69.25 67.55 66.25	Ì
	70 65	10.35 10.20 10.10	20.15 19.80	37.95 37.15 36.65	64.85 63.85	
Leibnitz, Konnecke and Niese, 1957	60 55 50	9,95 9,90	19.55 19.45 19.35	36.25 35.95 35.65	62.65 61.65 60.85	
t d σ interface L_1 L_2 (L_1/L_2)	45 40	9.90 9.90	19.30 19.25	"	60.15 59.85	
20 0.7800 0.772 0.682	35 30 25 20	-	"	"	59. 7 5 59.25	
30 .7690 .7671 .340 35 .7635 .7621 .223 40 .7579 .7569 107	1 15	_	19.10 18.75	35.55 35.35 34.85	58.85 58.25 57.05	
40 .7579 .7569 .107	10 5	-	17.70 15.40	33.05 28.75	55.05 49.45	
	mol%	0°	P ₁ 10°	20°	30°	
	95 90 85	9.95 16.30 20.20	17.60 28.90 34.50	28.50 45.00 54.70	42.9 68.1 84.2	_
	85 80 75 70	22.60 24.20	37.90 40.00	61.2 65.4	94.8 101.6	
	70 65 60	25.35 26.05 26.40	41.63 42.90 43.75	68.6	106.3 110.1	
	55 50	26.60	44 30	72.7 73.3	115.3 117.1	
	45 40	26.70 26.75 26.80	44.80 45.20 45.50	70.5 71.8 72.7 73.3 73.5 73.7 73.8	110.1 112.9 115.3 117.1 118.2 119.0	
	35 30 25	-	45.70 45.80 45.85	73.8 73.9 74.1	119.3 119.6 119.7	
	20 15	-	45.90	74.2 74.4	119.8	
	10 5 0	-	46.00 46.25 47.00	74.8 75.3 77.25	119.9 120.1	
			47.00	11,43	121.74	

CYCLOHEXANE + ETHYL ALCOHOL

Washburn and Handorf, 1935	Trieschmann, 1935
mo1% p ₂ p ₁	1:01% d
25°	22°
100 100 57.3 - 89.92 47.96 52.0 56.4 79.48 36.96 46.4 79.2 70.98 35.32 46.8 85.8 59.41 35.10 48.4 89.5 49.83 34.24 47.7 91.7 40.16 33.68 46.8 92.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
29.87 33.13 46.1 93.0 20.50 32.68 45.9 94.6 10.30 31.15 42.5 94.3 0 - 97.3	Washburn and Handori', 1935
	mo1% n _D L V
	25°
Dolique, 1935 Az : 30.50% 64.7°	100 1.35935 - 89.92 1.36867 1.39916 79.48 1.37766 1.40524 70.89 1.38412 1.40611 59.41 1.39216 1.40623 49.83 1.39836 1.40666
Lecat, 1949 % b.t. Dt mix	40.16 1.40342 1.40695 29.87 1.40890 1.40723 20.50 1.41356 1.40748 10.30 1.41855 1.40830 0 1.42338
0 80.75 31.5 64.9 A7 -5.5 100 78.3	Harms, 1938
	πiο1% ε 6° 30°
Rarks, 1943 mol% d kol% d 6° 30° 6° 30° 0 0.79133 0.76881 63.822 0.79109 0.76917 2.907 0.79080 0.76805 74.134 0.79250 0.77094 6.328 0.79046 0.76765 85.865 0.7924 0.77417 8.389 0.79032 0.76749 91.803 0.79735 0.77646 17.505 0.78985 0.76701 94.909 0.79868 0.77792 22.722 0.78975 0.76689 97.901 0.80015 0.77951 36.031 0.78972 0.76708 98.606 0.80052 0.77992 43.665 0.78988 0.76736 99.305 0.80093 0.78036 48.551 0.79003 0.76764 100.000 0.80133 0.78078 56.526 0.79047 0.76830	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CYCLOHEXANE + PROPYL AL COHOL

								
Cyclohexane	$(C_6H_{12}) +$	Propyl alcoh	ol (C ₃ H ₈ O)	Joffe	and Marc	hevski i ,	1955	
Lecat, 1949				tho	1%	n _D	mo1%	$^{\mathrm{n}}\mathrm{D}$
	Я	b.t.	Dt mix				20°	
1	0 20 100	80.75 74.3 Az 97.2	-3.5	17 20 28	.66 .04 .00 .34	1.4263 1.4210 1.4181 1.4168 1.4130	40.40 41.56 46.04 50.00 60.00	1.4077 1.4070 1.4050 1.4029 1.3983
Harms, 1943				37	2.03 7.14	1.4113 1.4090	80.00 100	1.3882 1.3773
	no1%	d						
	2	22°		Cycloh	exane (C ₆ H ₁₂) +	Butyl alcoho	$1 (C_4 H_{1.0} O)$
	0 19.126 36.201	0.77646 0.77747 0.78034		Lecat,	1949			
	51,575 65,281	0.78385 0.78767		 		%	b.t.	
	77,621 89.073 100,000	0.79190 0.79641 0.80200			1	0 4 00	80.75 79.8 Az 117.8	
Lecat, 1949	%	b.t.	cohol (C ₃ ll ₈ 0)		and Stoe	ops, 1929		
	0 33 100	80.75 68.6 A 82.4	z	t	0	3.91 mo	11.02	20.02
Storonkin an	d Morachevsk	ii, 1956		10 20 30 40	0.7877 0.7784 0.7690 0.7594	0.7783 0.7690 0.7593	0.7795 0.7701 0.7605	0.7965 0.7813 0.7721 0.7625
mol L	% V	p	b.t.	50 60 70	0.7498 0.7398 0.7299	0.7494 0.7387	0.7508 0.7407	0.7528 0.7428 0.7326
20.0	28.0 31.0 33.3 34.2	273.3 412.0 604.4 782.3	43.34 53.46 63.64 71.02					
40.0	32.0 35.3	261.0 422.0	42.15 53.85	Harms,	1943		·	
	35.3 37.8 39.5	587.0 782.0	62.38 70.27	m	01%	d	mol%	d
60.0	35.3 39.9 42.7 44.9	232.5 405.5 575.6 782.1	40.33 53.59 62.53 70.84	0 2 4	.456 .176	22 0.77643 0.77641 0.77662	24.743 32.284 43.277	0.78056 0.78249
80.0 54.8 57.2	46.4 52.2 565.5 781.7	221.3 403.5 65.02 73.43	42.42 56.47	7 9 12	.069 .327 .780 .861	0.77643 0.77641 0.77662 0.77707 0.77740 0.77801 0.77838	60.141 80.238 89.706 100.000	0.78569 0.79134 0.79907 0.80323 0.80801
100.0	100.0	760.0	82.28	==				
								_

		and and an arrangement of the second				
Trieschmann	, 1935					Cyclohexane (C_6H_{12}) + Octyl alcohol ($C_8H_{18}O$)
	mo1%		σ			Harms, 1943
	·	22°				mo1% d
	100		24.31			22°
	40.42 37.81 16.64 10.03 0		24.08 24.06 24.48 24.53 24.65			0 0.77643 4.586 0.77843 13.338 0.78325 18.957 0.78642 27.294 0.79078 38.838 0.79682 59.402 0.80682
Smyth and S	toops, 192	9				84.060 0.81772 100.000 0.82479
t						
0	3.91	e mo1%	1.02	20.	02	Cyclohexane (C_6H_{12}) + 2-Ethylhexyl alcohol ($C_8H_{18}O$)
10 2.041 20 2.027 30 2.013	2.099 2.088	2 2	. 272 2. 260 2. 248	2.7 2.6 2.6	74 23	Harms, 1943
40 1.998 50 1.981	2.061	2	. 236 . 224 . 210	2.5 2.5	37	mol% d
60 1.963 70 1.944		2	. 192	2.4 2.4	58	22°
Cyclohexane Lecat, 1949		(b.t.	≈ 80.75) + Al	cohols	0 0.77643 4.025 0.77869 7.867 0.78093 13.811 0.78496 14.216 0.78521 23.688 0.79113 38.890 0.80030 58.851 0.81153 79.309 0.82267 100.000 0.83242
	2nd Comp.		Az			
Isobutyl alcohol	C ₄ H ₁₀ O	108.0	14	78.15	-1.2 (14%)	Cyclohexane (C_6H_{12}) + Dibutyl carbinol ($C_9H_{20}O$) Joffe, 1952
Sec.Butyl alcohol	C ₄ H ₁₀ 0	99.5	18	76.5	-3.2 (18%)	% n _D d
tert.Butyl alcohol	C ₄ H ₁₀ 0	82.45	37	71.45	-	20°
Amylene- hydrate	C ₅ H ₁₂ O	102.35	16	78.8	-	0 1.42608 0.7781 17.54 1.42533 0.7835 41.78 1.42558 0.7936 52.46 1.42593 0.7983 72.89 1.42689 0.8085 100 1.42892 0.8234

Cyclohexane (C ₆ H ₁₂) + Decylalcohol (C ₁₀ H ₂₂ 0)	Cyclohexane (
Hoerr, Harwood and Ralston, 1944	
î.t. %	Hoerr, Harwoo
-10.8 29.3 E +6.88 100	
Cyclohexane (C_6H_{12}) + Dodecyl alcohol ($C_{12}H_{26}0$)	
Hoerr, Harwood and Ralston, 1944	
f.t. %	Cyclohexane
-0.9 15.8 E +10.0 55.6	Leibnitz, K
20.0 92.8 23.95 100	t
	20 1.1
Cyclohexane (C_6H_{12}) + Tetradecyl alcohol	40 .09 60 .02
(C ₁ ,H ₃₀ 0)	
Hoerr, Harwood and Ralston, 1944	
f.t. %	Cyclohexane
4.8 5.6 E 10.0 11.8	Leibnitz, Kön
20.0 41.9 30.0 77.8 38.26 100	t L
	20 1.10
	40 .09 60 .07
Cyclohexane (C_6H_{12}) + Cetyl alcohol ($C_{16}H_{34}0$)	
Hoerr, Harwood and Ralston, 1944	
f.t. %	
6.0 1.4 E 10.0 2.2 20.0 9.9	
30.0 39.8 40.0 74.0	
49.62 100	

Cyclohexane (C ₆ H ₁₂) + Octadecyl alcohol (C ₁₈ H ₃₈ O)
Hoerr, Harwood and Ralston, 1944
f.t. %
6.5 0.4 E 10.0 0.6 20.0 3.1 30.0 15.3 40.0 47.9 50.0 80.0 57.98 100
Cyclohexane (C_6H_{12}) + Glycol ($C_2H_6O_2$)
Leibnitz, Konnecke and Niese, 1957
t d ginterface
L_1 L_2 (L_1/L_2)
20 1.1101 0.7786 14.448 40 .0957 .7599 14.247 60 .0785 .7398 13.853
Cyclohexane (C_6H_{12}) + Diglycol ($C_4H_{10}O_5$) Leibnitz, Könnecke and Niese, 1957
t d g interface
L_1 L_2 (L_1/L_2)
20 1.1062 0.7786 8.345 40 .0906 .7399 8.098 60 .0743 .7419 7.746

40			• • •		ANE T	ALLIL AL			
	· · · · · · · · · · · · · · · · · · ·					Cyclohexane	$(C_6H_{12}) + Cyc$	lohexanol	(C ₆ H ₁₂ O)
Cyclohexane	(C ₆ H ₁₂)(b.t.= 80.	7 5)	+ Alcoh	ols	Hoerr and H	larwood, 1956.		
Lecat, 1949						f.t. polymo	orphic forms.		
	2nd Comp.			Az					
Name	Formula	b.t.	%	b.t.	Dt mix		V 1057		
Allyl alcohol	C3 H60	96.85	20	74.1	-3.5 (20%)		Varma, 1956.		
Methoxy- glycol	C3 H802	124.5	8	79.8	-	mo1%	Dv.(c@/mole)	mo1% 	Dv. (cc/mole)
Ethylene chlorhydrin	C2H50C1	128.6	10	78.5	-2	10 20 30 40 50	+0.45 +0.6 +0.59 +0.45 +0.21	70 80 90 100	0.0 -0.2 -0.3 -0.27
Cyclohexane	(C ₆ H ₁₂)	+ Furfural	alc	ohol (C	5H602)	Wulf and Ta	kashima, 1938		
Francis, 194	14					mo1%	đ	ε	ŋ
C.S.T. = 78							18° -	20°	
						0 10	0.778	2.05 2.28	890
Cyclohexane Francis, 194	•	Ethylene		orohydrii C ₂ H ₅ OC		20 30 50 60 70 85 100	0.830 0.866 0.884 0.902 0.926 0.941	2.28 2.64 3.40 6.37 7.66 - 10.35 13.40	1100 1800 2400 5900 10100 17800 37900 59600
C.S.T. = 81						Cyclohexane	(C ₆ H ₁₂) + Ber	nzyl alcoh	ol (C ₇ H ₈ O)
Cyclohexane	(C ₆ H ₁₂) -	- Tetrahyd	ro fi	ırfuryl :	alcohol	Hückel, Nie	sel and Buchs,	1944	
Francis, 194	14			(C ₅)	H ₁₀ 0 ₂)	t	7 5 mol%	d 83	3 mo1%
C.S.T. = 39°)						at room temper	ature	
						15 20 25 30 35 40 45 50	31.63 30.36 29.55 28.95 28.34 27.67 27.40 27.54 28.21		32.64 \$1.43 \$1.03 \$0.91 \$0.96 \$0.85 \$0.56 \$0.42 \$0.42

Cyclohexane (C ₆ H ₁₂) + 1-Propane	thiol (C ₃ H ₈ S)	Methylcycloh	exane (C ₇ H ₁₄)	+ Methyl alcoh	
Denyer, Fidler and Lowry, 1949		Lecat, 1 949		(CH	⁴ 0)
mol% V L	b.t.	Lecat, 1949		l + Co+	
			%	b.t. Sat	
760 mm 0 0 56.5 43.0 72.3 67.0	80.85		57 100	101.15 59.45 Az 64.65	45.7
90.7 89.0 91.9 91.7 93.5 93.5 96.2 96.7 97.8 98.0 100 100	67.82	Francis, 1944 C.S.T. = 47			
Az					
mol% wt% b.t.	d°° nD°°	Methylcyclohe	xane (C ₇ H _{1 4})	+ Ethyl alcohol	(C ₂ H ₆ O)
97.8 97.6 67.77 0	.8395 1.4374	Kretschmer an	d Wiebe, 1949		
mo1% n _D mo1%	n _D	L	% V	р	
0 1.4262 47.06 5.5 1.4261 63.16 14.81 1.4259 75.02 16.56 1.4260 87.57 32.10 1.4264 100	1.4302 1.4323 1.4350 1.4380	0 5.26 14.46 28.78 40.52 54.03 69.14	35° 0 46.45 51.18 53.62 54.71 55.75 58.17	73.62 135.40 146.97 151.27 152.36 152.93 152.22	
Cyclohexane (C_6H_{12}) + 2-Butaneth Denyer, Fidler and Lowry, 1949	iol (C ₄ H ₁₀ S)	84.50 96.76 100.00	64.23 83.69 100.00	145.73 120.04 103.14	
Mol% wt% b.t. 24.2 25.5 79.97	d ²⁰ n _D ²⁰ 0.7879 1.4263	0 5.28 12.51 22.05 36.21 50.71 68.32	0 48.35 53.75 56.45 58.46 59.88 62.44	168.10 319.83 352.80 368.00 376.34 379.83 380.06	
Cyclohexane (C_6H_{12}) + 2-Methyl- ($C_{\psi}H_{10}S$)	l-propanethiol	77.92 93.47 100.00	65.28 78.79 100.00	375.78 337.52 279.89	
Denyer, Fidler and Lowry, 1949	,	Lecat, 1949			
Az	İ		%	b.t.	Dt mix
mo1% wt% b.t. d ²	0 n _D		0 51.5 54	101.15 72.95 Az	-2 3
11.0 11.7 80.70 0.78	32 1,4263		100	78.3	-2.3

Kretschmer a	and Wiebe, 1949				Methylcyclo	hexane (С ₇ Н _{1 4}) (: 101.15	
mo1%	25 N5461	d ^{2 5}	Dv. 10 ⁵ (cc/g)	_	Lecat, 1949)		•		,
				-		2nd Comp		Az		
0 6.72 17.09 28.66 51.96	1.42240 1.41987 1.41605 1.41133 1.40002	0.76496 0.76457 0.76484 0.76562 0.76836 0.77226	0 176 316 418 547 562		Name	Formula	b.t.	%	b.t.	Dt mix
71.25 73.37 73.56 80.60	1.38755 1.38600 1.38587 1.38021	0.77284 0.77288 0.77508	7284 553 7288 554		Propyl alcohol	C31180	97.2	41.5	86.0	-1.3 (50%)
89.61 92.45 100.00	1.37195 1.36904 1.360 7 3	0.77877 0.78024 0.78505	364 290 0		Isopropyl alcohol	C3H80	82.4	47.5	77.4	-
Brown, Fock	and Smith,1956			=	Butyl alcohol	C ₄ H ₁₀ 0	117.8	21	96.4	-2.9 (50%)
			0		Isobutyl alcohol	C4H100	108.0	30	93.2	-3.1 (50%)
mol %	Q mix	mol %	Q mi		Sec.Butyl alcohol	C4H100	99.5	42	90.8	-
12.9 24.7	137.19 163.71	71.9 71.9	123.0 120.9	8	tert.Butyl	C4H100	82,45	65	78.0	-
42.6 65.7 66.5	166.10 132.16 126.43	72.3 88.8 89.2	120.9 112.3 65.9 61.4	6	Amyl alcohol	C ₅ H ₁₂ 0	138.2	-	101.0	-
71.2	114,24			_	Isobutyl carbinol	C ₅ H ₁₂ 0	131.9	8	97.9	-1.2 (10%)
					2-Pentanol	C5H12O	119.8	18	98.6	-
Methylcycloh	exane (C ₇ H ₁₄)	+ 2-Methyl	-1-propane-		3-Pentanol	C5H120	116.0	22	97.8	-
		thiol (ĺ	Methyliso-	, , ,	112.9	25	97.8	-1.5
Denver Fidl	er and Lowry, 19	140			propyl carl		100.00			(25%)
Az	er and howly, 1	77)			Amylene hydrate	C ₅ H ₁₂ 0	102.35	35	93.5	-1.9 (50%)
	wt% b.t.	d ²⁰	n _D 20		Allyl alcohol	C3H60	96.85	42	85.8	-
99.0	98.9 88.55	0,8335	1,4384	-	Methoxy glycol	C ₃ H ₈ O ₂	124.5	2 5	94.8	-
				_	Ethoxy glycol	$C_{\mu}H_{10}O_{2}$	135.9	13	98.8	-
Methylcycloh	exane (C ₇ H ₁₄)	+ 1-Butane		=		С ₂ Н ₅ 0С1	128.6	25	95.8	-2.2 (70%)
			,		Methylcyclo	hexane / c	' H) +	Alcoho	1s.	
Az	er and Lowry, 19	149			Francis, 19	44	7414 /			
mo1%	wt% b.t.	d ²⁰	n _D ^{2 o}	-	2 nd comp.				C.S.T	
60.3	58.2 97.00	0.8083	1,4327	~	Tetrahydrof alcohol	urfuryl (C ₅ H ₁₀ O ₂)		50	
				≡∥	Furfuryl al	cohol ($C_5H_6O_2$)		93	
					Ethylene chlorhydrin	(C2H5OC1)	89	:
								· · · · · · · · · · · · · · · · · · ·		

1,3-Dimethylcyclohexane	(C_8H_{16})(b.t.=120.7)
+ Alcohols					

Lecat, 1949

	2nd Comp	•		Az	
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	СН40	64.65	_	62.5	-1.8 (90%)
Ethyl alcohol	C2H6O	78.35	70	75.8	-
Propyl alcohol	C3 H80	97.2	63	93,0	-
Isopropyl alcohol	C3 H80	82.4	7 8	81.0	-
Butyl alcohol	$C_{4}H_{10}0$	117.8	43	108.5	-
Isobutyl alcohol	$C_{\mu}H_{1}_{0}0$	108.0	56	102.2	-
tert. Butyl	C4H100	82.45	90	82.2	-
Amyl alcohol	C5H120	138.2	20	118,2	_
IsobutyI carbinol	C5H120	131.9	27	116.6	-
2-Pentanol	C5H120	119.8	39°	113.0	-
Amylen hydrate	C5H120	102.35	68	100.1	-
Cyclopentanol	C5H100	140.85	15	119.0	-
Ethoxyglycol	C4H1002	135.3	30	114.0	-
Propoxyglycol	C5H12O2	151.35	15	119.0	-
Ethylen-	C2H5 OC1	128.6	42	109.5	-
chlorhydrin					
Ethylen- bromhydrin	C ₂ H ₅ OBr	130.2	-	117.0	-
2-Chlor- 1-propanol	C ₃ H ₇ OC 1	133.7	35	115.0	-

sec. Butylcyclohexane ($C_{1\,0}H_{8\,0}$) + Methyl alcohol ($CH_{l_{1}}0$)

Delcourt, 1927

%	sat.t.	%	sat.t.	
91.33 79.77	- 1.9	28.19	92.7	
70.50	52.4 73.5	20.83 15.74	$\begin{array}{c} 92.4 \\ 88.3 \end{array}$	
59.20 50.38	86.5 90.8	$13.24 \\ 7.30$	87.5 70.9	
41.42	92.9	34.25	92.9	

Cyclohexene (C_6H_{10})(b.t.=82.75) + Alcohols

Lecat, 1949

	2nd Comp.			Az	
Name	Formula	b.t.	%	b.t.	Dt mix
Methy1	СН ₄ 0	64.65	40	55.9	-
alcohol					
Ethyl	C2H60	78.3	34	68.7	-4.8
alcohol	-				(34%)
Propy1	C ₃ H ₈ O	97.2	21.6	76.6	-3.2
alcohol					(21.6%
Isopropyl	C ₃ H ₈ O	82.4	3 7	70.6	-4.3
alcohol					(37%)
Butyl	$C_4H_{10}O$	117.8	5	82.0	-
alcohol					
Isobutyl	$C_{4}H_{10}0$	108.0	14.2	80,55	-
alcohol					
sec. Butyl	$C_4H_{10}O$	99.5	21	78.7	-
alcohol					
tert. Butyl	$C_{4}H_{10}0$	82.45	40	73.0	-
alcohol					
Amylen-	C5H120	102.35	17	80.8	-
hydrate					
Allyl alcohol	C3 H60	96.85	21.5	76.4	-
Ethylen-	C2H5OC1	128.6	11	81.0	-
chlorhydrin					

Cyclohexene (C_6H_{10}) + Glycol ($C_2H_6O_2$)

Leibnitz, Konnecke and Niese, 1957

t	(i	o interface
	L ₁	L ₂	(L ₁ /L ₂)
20 40 60	1.1064 1.0910 1.0758	0.8115 0.7932 0.7752	11.038 10.809 10.189

44		,	1,3-CY	CLOH	EXADIEN	E + METHYL ALCOHOL
1,3-Cyclohe	exadiene (С ₆ Н ₈) (80.4) hols	+	Decaline ($C_{10}H_{18}$) + Methyl alcohol ($CH_{14}O$)
Lecat, 1949	•					Francis, 1944
	2nd Comp.		Az			C.S.T. = 101
Name	Formula	b.t.	%	b.t.		
Methyl alcohol	CH ₄ 0	64,65	38.5	56,45	-	Decaline (C ₁₀ H ₁₈) + Ethyl alcohol (C ₂ H ₆ O)
Ethyl	C2H60	78.3	34.5	66.7	~	Weissenberger, Henke and Sperling, 1925
alcohol	CHO	97.2	20	7 5.8	_	mol% p Q mix
Propy1 alcohol	С ₃ н ₈ 0	71,4	20	10.0		20°
Isopropyl	C3H80	82.4	-	72.8	-	25 37.8 -99.5 40 38.7 -153.4
alcohol Butyl	C4H100	82.55	38.5	7 3.45	-	50 38.9 -179.7 60 39.2 -160.0
alcohol	-					75 40.5 -104.0 100 44.0 -
Isobutyl alcohol	С ₄ Н _{1 0} 0	108.0	11.5	79.4	-	
tert.Butyl	$C_{\mu}H_{10}0$	82.45	38.18	7 3.4	-	
alcohol Amylene	C 5H120	102.35	13	80.0	-	Decaline ($C_{10}H_{18}$) + Propyl alcohol ($C_{3}H_{8}0$)
hydrate						
Allyl alcohol	C ₃ H ₆ O	96.85	21	7 5.5	-	Beck, 1928
						vol% f.t.
Lecat, 19	49					100 -127 83 -120 71 -100 55 -100
1,4-Cyclol Alcohols	hexadiene (C ₆ II ₈)	(b.t.	.=85.6)	+	50 -90 0 -125
	2 nd comp.		Az			
Name	Formula	b.t.	%	b.t.	Dt mix.	Decaline ($C_{10}H_{18}$) + Isopropyl alcohol C_3II_80)
Methyl alcohol	(CH ₄ 0)	64.65	42.5	58.0	-4.2	Weissenberger, Henke and Sperling, 1925
Ethyl alcohol	(C°H ⁶ O)	78.3	37	68.8	-	101% p
Isopropyl alcohol	(C ₃ H ₈ O)	82.4	-	72.8	_	20°
arconoi						25 32.4 40 35.8 50 36.4
		- 				60 36.6 75 37.8 100 41.2
1						

Decaline (C ₁₀ H ₁₈) + Alcohols.	Tetraline ($C_{10}H_{12}$) + Ethyl alcohol ($C_{2}H_{6}0$)
	Weissenberger, Schuster and Mayer, 1924
Francis, 1944	nol% p mol% p
2 nd comp. C.S.T.	18°
	20 25 66.5 32
Tetrahydrofurfuryl ($C_5H_{10}O_2$) 27 alcohol	33.5 30 75 31 43 31 78 31 50 33
Furfuryl alcohol (C ₅ H ₆ O ₂) 88	60 32
Ethylene (C ₂ H ₅ 0Cl) 82 chlorhydrin	mol% n σ
	(water = 1)
	<u> </u>
	18°
Pagalina (C. H.) (Cont.)	0 2.2 0.465 20 2.0 0,407
Decaline ($C_{10}H_{18}$) + Cyclohexanol ($C_{6}H_{12}0$)	33.5 2.0 0.396
 Wulff and Takashima, 1938	50 2.1 0.341 66.5 1.6 0.355
	80 1.5 0.262
mol% d η ε	
18° - 20°	Francis, 1944
0 0.8865 2660 2.20	
10 - 2.36	Tetraline (C ₁₀ H ₁₂) + Varia
20 - 2.59 30 0.895 4020 3.13	2nd Comp. C.S.T.
50 0.906 6860 5.04 60 0.912 9770 6.82	Zird Comp.
70 0.921 15400 -	Ethylene glycol ($C_2H_6O_2$) 213
$\begin{bmatrix} 85 & - & 36000 & 9.92 \\ 100 & 0.941 & 59600 & 13.4 \end{bmatrix}$	Diethylene glycol ($C_4H_{10}O_3$) 132
2011	Triethylene Glycol ($C_6H_{14}O_4$) 92
	Ethanolamine (C_2H_7ON) 139
	Diethanolamine ($C_{u}H_{11}O_{2}N$) 181
Cavallaro, 1940	Triethanolamine ($C_6H_{15}O_3N$) 187
w.1. 0 25 50 75	
(in ta.) mo1%	
26 0.35 0.20 0.22 0.08	
20 0.38 0.25 0.27 0.12	Isopropyl tetraline ($C_{13}H_{18}$) + Varia
8 0.52 0.37 0.47 0.25	F
6.5 0.57 0.40 0.52 0.30	Francis, 1944
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2nd Comp. C.S.T.
$Light = (D - D_1) / D$	Methyl alcohol (CH _u O) 57
absorption	Furfuryl alcohol (C ₅ H ₆ O ₂) 32
	Diethylene glycol ($C_4H_{10}O_3$) 248
	Triethylene glycol (C_6H_{1} , O_4) 179
	Diethanolamine ($C_{14}H_{1,1}O_2N$) 248
	Triethanolamine ($C_6H_{15}O_3N$) 264
	Phenylethanolamine (C ₈ H ₁₁ ON) 10
	Ethylene chlorhydrin (C ₂ H ₅ 0Cl) -27

				Limonene (C ₁₀ H ₁₆) (b.t. =	177.7) + Alco	hols
Menthene (C ₁₀ H ₁₈) +	Glycol (C ₂ H ₆ O	2)	Lecat, 1949					
Lecat, 194	9			<u> </u>	2nd Comp.		Az		
	%	b.t.		Name	Formula	b.t.	%	b.t.	Dt mix
			·····						
	0 21	170.8 159.5	Az						
	100	197.4		Methyl alcohol	CH ₄ 0	64.65	0.8	64.58	-0.7 (5%)
				Hexyl alcohol	C ₆ H _{1 4} 0	157.85	80	157.2	-1.3 (80%)
Montheno (СН) +	Cyclohexanol (C.H0)	Heptyl	C7H160	176.15	50	171.7	-1.5
Mentinene (C10II18 /	Cyclonexanol (C611120)	alcohol					(20%)
Lecat, 1949				Octyl alcohol	C ₈ H ₁₈ O	195.2	6	177.45	
				Isoocty1	CaH180	180.4	42	178.4	(36%) -0.6
				alcohol	-616-				(30%)
	%	b.t.	Dt mix	Glycol	$C_2H_6O_2$	197.4	23	163.3	-
				Pinacol	$C_6H_{14}O_2$	174.35	50	166.7	-
	0	170.8 157.4 Az		Glycerol.	С ₃ Н ₈ О ₃	290.5	1	177,65	-
	60 65	-	-2.0	Cyclohexanol	C ₆ H ₁₂ O	160.8	73.5	159.3	-0.2
	100	160.8		Methyl	C2H140	168,5	60	165.3	(73.5%) -2.2
				cyclohexanol		100,0	00	100.5	(60%)
				Benzy l	C2H80	205.25	11	176.35	-2.0
Limonene r	$(C_{10}H_{16})$	+ Carvoxime 1	(C ₁₀ H ₁₅ ON)	alcohol	, ,				(50%)
				Propoxy	$C_5H_{12}O_2$	151.35	68	148.5	-
Goldschmid	t and Cooper	, 1898		glycol					
f.t.	%	f.t.	%	Butoxy	C ₆ H ₁ 40 ₂	172.15	5 3	164.0	-
				glycol Methoxy	С.Н. О	102.05	22	160 5	
24.6 30.0	30.8 37.2	43.1 48.0	56.7 66.5	diglycol	C ₅ H ₁₂ O ₃	192,95	33	168.5	-
38.4	37.2 51.1	55.1	76.5	Ethoxy	C6H14O3	201.9	23	173.0	_
				diglycol					
				Ethyl	C 4 H1 0 0 3	154.1	88	153.0	-1.4
				lactate	C 11 0	1-1 -		1//	(95%)
Limonene r	$(C_{10}H_{16})$	+ Carvoxime r	(C ₁₀ H ₁₅ ON)	Propyl lactate	C ₆ H ₁₂ O ₃	171.7	62	166.25	-1.5
		1000		Isobutyl	C7H1403	182.15	38	172.7	(75%) -2.6
Goldschmid	t and Cooper	, 1898		lactate	, , , ,				(40%)
f.t.	%	f.t.	Я	Dichlorethyl	$C_2H_40C1_2$	146.2	80	143.0	-3.5
30.3	38.8	55 0	77.6	alcohol					(50%)
39.3	50.8	55.9 58.8	77.6 84.9	1,3-Dichlor		175.8	57	165.75	-3.0
49.4	66.6	63.2	92.7	propyl alcoh 1,2-Dichlor		102 5	44	160.0	(36%)
				propyl alcoh		102,5	77	169.0	-4.0 (3 2 %)
-				1,2-Dibrom-		219.5	12	176.5	-1.8
				propyl alcoh	ol	· •	-		(10%)
				Ethanolamine	C ₂ H ₇ ON	170.8	37	153.0	-
				ll .					

1-Terpinene ($C_{10}H_{16}$) (b.t. = 173.4) + Alcohols Lecat, 1949

Αz 2nd Comp. Formula b.t. % b.t. Dt mix Name 157.85 72 156.5 C6H140 Hexy1 alcohol C2H160 176.15 40 169.7 -2.0Hepty1 (20%) alcohol 180.4 27 171.8 -1.0 Isooctvl $C_8H_{18}O$ (20%) alcohol 23.5 161.0 Glycol C2H602 197.4 Cyclohexanol C₆H₁₂0 160.8 65 158.3 168.5 52 163.7 -3.2 Methyl C7H140 (50%) cyclohexanol 135.3 80 135.0 Ethoxy $C_{4}H_{10}O_{2}$ glycol C5H12O2 151.35 65 148.0 Propoxy glycol Butoxy C6H1402 171.15 50 164.0 glycol Methyl C5H12O3 192.95 30 168.0 diglycol 143.8 142.5 Methy1 $C_4H_8O_3$ 88 -1.9 lactate (90%) Ethy1 C5H1003 154.1 88 153.0 -1.4 lactate (95%) Propy1 171.7 52 164.0 C6H12O3 -2.5 lactate (50%) Ethylene C2H50C1 128.6 85 127.0 chlorhydrin 1,2-Dichlor C3H60Cl2 182.5 40 167.5 -3.5 propanol (40%) 1,3-Dichlor C3H60Cl2 175.8 56 165.0 -3.3 propanol (60%)

170.8

26

154.0

Ethanolamine C2H70N

Lecat, 1949
3-Terpinene ($C_{10}H_{16}$) (b.t.=183) + Alcohols

3-Terpine	ene (C ₁₀ H ₁₆) (b.t	.=183)	+ Alcoh	ols.
	2 nd comp.		Az		
Name	Formula	b.t.	K	b.t.	Dt mix.
Glycol	C2H6O2	197.4	2 6	166.5	-
Cyclo- hexanol	C ₆ H ₁₂ O	160.8	83	160.3	-
1,3-Dichlor 2-propanol	- CaH60C15	175.8	68	169	-3.0 (70%)
1,2-Dichlor 3-propanol	- C _a H ₆ OC1,	182.5	60	173.5	-4.0
Terpinolen	e (C ₁₀ H ₁₆) (b.t.	= 184	.6)+/	Alcohols
Lecat, 1949)				
	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Isooctyl	C ₈ H ₁₈ O	180.4	57	179.0	-1.5
alcohol					(50%)
Glycol	C2H6O2	197.4	28.5	167.4	_
Glycerine	C ₃ H ₈ O ₃	290.5	-	184.2	_
Cyclohexa- nol	C6H120	160.8	87	160.5	-
Benzyl alcohol	C7H80	205.25	15	182.5	-
Propoxy- glycol	C ₅ H ₁₂ O ₂	151.35	-	150.8	-
Isobutyl lactate	C7H1403	182.15	65	176.1	-2.2 (50%)

Camphene (0 Lecat, 1949								orneol (C ₁₀ H ₁₈	,0)
·	2nd Comp.		Az	,		Erremow, 1915			
		1 6			Sat f	mo1%	f.t.	m.t.	tr.t.
Name	Formula	b.t.	% 	b.t.	Sat.t	0 1.77 4.44 8.93	49.3 51.0 54.1 59.7	50.3 52.1 56.0	-
Isobutyl carbinol	C 5 H 1 2 O	131.9	7 6	130.9	-	18.08 22.74 27.53	71.5 80.7 88.6	67.6 73.1 80.7	- - -
Hexyl alcohol	C ₆ H _{1 4} 0	157.85	46	151.5	-	37.07 41.94 47.00 51.91	105.2 113.3 121.3	96.3 104.3 112.3	- - -
Heptyl alcohol	C7H160	176.15	10	159.3	-	56.97 67.32 72.59	130.6 140.1 156.7	121.6 131.5 150.4	-
Glycol	$C_2H_6O_2$	197.8	20	152.5	-	78.00	165.0 174.1	159.9 1 7 0.0	-
Pinacol	$C_6H_{14}O_2$	174.35	28	155,5	-	83.35 88.82	182.1	178.9	47.6
Methoxy glycol	C3H8O2	124.5	70	121.0	-	91.60 94.37 97.74	192.2 196.9 201.7	189. 2 194. 3 199. 6	56.2 59.5 63.0
Ethoxy glycol	$C_{4}H_{10}O_{2}$	135.3	65	131.0	-	100	204.8 207.0	203.1	67.1 69.1
Propoxy glycol	C ₅ H ₁₂ O ₂	151.35	52	144	-				
Butoxy glycol	C ₆ H _{1 4} O ₂	171, 15	30	154.5	-	1-Pinene (C ₁	_o H ₁₆) + Me	thyl alcohol (CH ₄ 0)
Methyl lactatc	C ₄ H ₈ O ₃	143.8	67	137.0	-	Lecat, 1949			
Ethyl lactate	C5H1003	154.1	55	145.0	16.4 (55%)		%	b.t.	Dt mix
Propyl lactate	C6H12O3	171,7	22	156.2	-		0 15 90.7	155.8 64.5	-1.9
Isopropyl lactate	C ₆ H _{1 2} O ₃	168.8	30	154.2	-	Lecat, 1933.	100	64.65	
Cyclohexa- nol		160.8	41	152.2	-				
Methyl cyclohexan		168.5	25	155.5	-	90	sat.t. -50	% 40	sat.t. 61.5
Ethylene- chlorhydrin		128.6	75	124.5	-	85 80 75 70	-20 +4 21.5	35 30 25	63 63.5 64
Dichlor- ethanol	C ₂ H ₄ 0Cl ₂	146.2	7 5	139.0	-	70 65 60	29.5 42.5 48	20 15 10	63 60 55.5
1,2-Dichlor- propanol			38	152.9	-	55 50 45	53 56.5 59	5 2.5 1	42.5 31 0
1,3-Dichlor- propanol	-	182.5	32	154.5	-				-
Ethanol amine	C ₂ H ₇ ON	170.8	28	144.0	-				
Diethyl	C ₆ H ₁₅ ON	162.2	-	146.5	-				

I-Pinen€	($C_{10}H_{16}$)	(b.t.	=	155.8)	+	Alcohols
----------	---	----------------	---	---	------	---	-------	---	---	----------

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Propy1	C 3H80	97.2	1	99.15	-0.5 (10%)
alcohol Butyl	C 4H1 0	117.8	88	117.4	-0.8 (88%)
Elcohol Isobutyl	C4H100	108.0	99	107.97	-2.6 (50%)
alcohol Isobutyl	C 5 H 1 2 O	131.9	77	130.7	-1.3 (86%)
carbinol Hexyl	C ₆ H ₁ 40	157.85	42	150.0	-1.6 (40%)
alcohol Methoxy	C ₃ H ₈ O ₂	124.5	66	120.2	-
glycol Ethoxy	$C_{\mu}H_{10}O_{2}$	135.3	5 7	131.0	-
glycol Propoxy	C 5H12O2	151.35	48	142.0	-
glycol Butoxy	C ₆ H _{1 4} O ₂	171.15	25	151.5	-
glycol Methoxy	C ₅ H ₁₂ O ₃	192.95	15	153.0	_
diglycol Methyl	$C_{\mu}H_{8}O_{3}$	143.8	63	135.5	-5.0
lactate Ethyl lactate	C 5 H 1 0 0 3	154.1	49.8	143,1	(77%) -4.2 (50%)
Propy1	$C_6H_{12}O_3$	171.7	-	154.5	-1.0 (5%)
lactate Isopropyl lactate	$C_6H_{12}O_3$	168.8	22	152.5	-1.5 (10%)
1,2-Dichlor		182.5	37	151.5	-2.5
1,3-Dichlor	-C ₃ H ₆ OC1 ₂	175.8	36.5	150.4	(20%) -3.3
Ethanol-	C ₂ H ₇ ON	170.8	25	142.0	(22%) -

2-Pinene ($C_{10}H_{16}$) (b.t. = 163.8) + Alcohols

Lecat, 1949

	2nd Comp.		Az	z	
Name	Formula	b.t.	%	b.t.	Dt mix
				 	
Hexyl	$C_6H_{14}O$	157.85	52	153.0	-2.0
alcohol					(50%)
Heptyl	C7H160	176.15	15	162.6	-1.5
alcohol					(10%)
Isooctyl	C8H180	180.4	5	163.5	-
alcohol					
Glycol	$C_2 ll_6 O_2$	197.4	19	155.0	-
Methoxy	C3H8O2	124.5	7 5	121.8	-
glycol					
Ethoxy	$C_{4}H_{10}O_{2}$	135.3	-	133.0	-
glycol					
Butoxy	$C_6 H_{14} O_2$	171.15	3 7	158.0	-
glycol					
Methoxy	C 5 H 8 O 3	192.95	22	159.0	-
diglycol					
Methyl	C4H803	143.8	70	138.5	-5.5
lactate					(50%)
Ethyl	$C_{5}H_{10}O_{3}$	154.1	62	147.8	-4.0
lactate					(60%)
Propyl	C 6H12O3	171.7	33	159.0	-1.1
lactate					(5%)
Isopropyl	C6H12O3	168.8	22	152.5	-1.5
lactato					(10%)
1,2-Dichlo	r- C ₃ H ₆ 0Cl ₂	181.5	37	158.0	-3.7
propanol					(35%)
1,3-Dichlo	r-C3li60Cl2	175.8	43	156.5	-4.0
propano1					(50%)

Turpentine d (C ₁₀ H ₁₆) +	Ethyl alco	hol (C ₂ H ₆ O)	XXII. ARO	MATIC H	YDROCARB(ONS + OXIMES	AND ALCOHOLS .
Landolt, 1876	- 1877			_			***************************************	-
78	d	(α) _D	t	Benzene	(C ₆ H ₆) + Acet	oxime (C ₃ H ₇	ON)
	20°			Beckmann	1888			
0 (21.1°) 26.9073	0.87648	14.147° 14.496°	21 22.0 - 22.5	%		f.t.	%	f.t.
52.4876 77.7557	0.84642 0.81864	14.788° 15.095°	22.0 21.5 - 24.0	0.09		5.44 5.39	3.40 4.48	4.35 4.03
1 1 105/	1055			0.22 0.33 0.68		5.337 5.30 5.18	4.62 5.88 7.19 8.32	4.022 3.62 3.23
Landolt, 1876	- 18//			0.83 1.69		5.122 4.86	8,94	2.885 2.740
%	d	ⁿ D	(α) _D	2.19 2.50 2.88		4.722 4.62 4.51	13.09 17.88 23.09	+1.457 -0.178 -2.108
	20°			======				
0 9.947 30.0584 50.0342 70.0285	0.86290 0.85558 0.83923 0.82542 0.81273	1.47027 1.45787 1.43441 1.41244 1.39151 1.37174	37.010 37.035 37.247 37.548 37.904) + Benza	aldoxime (C	₇ H ₇ ON)
89.9922 100	0.80108 0.79570	1.36242	38.486	Beckmann				
				# %		f.t.	%	f.t.
Rimbach, 1892				0 0.37 0.43 0.72 1.17	, 3	5.44 5.295 5.260	5.87 6.44 7.34	3.920 3.825 3.600
×	đ	((α) D	0.72 1.17	2	5.175 5.040	8.64 9.93	3.330 3.060
	20°			1.79 1.98	3	4.860 4.840	11.62 13.35	2.720 2.340
0 10.314	0.864 0.855	60	34.809 34.892 34,980	2.64 3.54 4.88	ŧ	4.650 4.435 4.130	14.78 15.08 22.13	2.040 3.105 0.700
32.677 49.007 68.567	0.836 0.824 0.810	17	35.119 35.363					
79.899 89.888 100	0.803 0.796 0.791	13 69	35.784 35.999	Benzene	(C ₆ H ₆) + Acet	ophenoxime ((C ₈ H ₉ ON)
				Innes, 1	1918			
				wt %	mol %	p	wt %	mol % p
Bussy and Bu	ignet, 1864					·	75°	
50 vol% 22.4	0° Dt = -	2.40°		0 5.50 10.91 19.2 29.2	0 3.26 6.60 12.04 19.25	651.2 634.2 620.3 597.9 569.3	41.2 57.9 75.4 82.4	28.9 529.7 44.4 456.9 63.8 340.5 72.9 277.0
				Beckmann,	1888			
	8		f.t.	%	f.t.			
* Limonenes	+ Oximes :	see page 4	<u>.</u>	0 0.62 1.41 4.21 6.94		5.44 5.260 5.075 4.470	0 11.41 14.85 18.22	3.435 2.925 2.165 1.385 0.365
				0.74		3.890	22,40	0.365

TURPENTINE & + ETHYL ALCOHOL

Turpentine d	(CW) + 1	F+hvl alco	hol (C H.O)		VVII ADOMATI	IC INDDAC
Landolt, 1876		Linyi aicu	101 (621160)	' 	XXII. AROMAT	
# # # # # # # # # # # # # # # # # # #	d	(α) _D	t		Benzene (C	₆ H ₆) + A
	20°				Beckmann, 1	888
0 (21.1°)	0.91083	14.147°	21 22		- %	f.t.
26.9073 52.4876 77.7557	0.87648 0.84642 0.81864	14.496° 14.788° 15.095°	22.0 - 22. 22.0 21.5 - 24.		0 0.09 0.22 0.33	5,44 5,39 5,337
Landolt, 1876	- 1877				$0.68 \\ 0.83 \\ 1.69$	5.30 5.18 5.122 4.86
%	d	n _D	(α) _D		2.19 2.50 2.88	4.722 4.62 4.51
	20°			İ	2.00	7,01
0 9.947 30.0584 50.0342	0.86290 0.85558 0.83923 0.82542	1.47027 1.45787 1.43441 1.41244	37.010 37.035 37.247 37.548		Benzene (C	;H ₆) + Be
70.0285 89.9922 100	0.81273 0.80108 0.79570	1.39151 1.37174 1.36242	37.904 38.486		Beckmann, 18	388
					%	f.t.
Rimbach, 1892					0 0.37 0.43	5.44 5.295 5.260
%	d		(α) D		0.43 0.72 1.17 1.79	5.175 5.040 4.860
0 10.314 32.677	20° 0.864 0.855 0.836	8	34.809 34.892 34.980		1.98 2.64 3.54 4.88	4.840 4.650 4.435 4.130
49.007 68.567	0.824 0.810	8	34,980 35,119 35,363			
79.899 89.888 100	0.803 0.796 0.791	9	35.784 35.999		Benzene (C	₆ H ₆) + A
					Innes, 1918	
					wt % mo	1% p
Bussy and Bu 50 vol% 22.4	_	2.40°			10.91 6 19.2 12	651 .26 634 .60 620 .04 597
					29.2 19	.25 569
					Beckmann, 18	88
					%	f.t.
* Limonenes	+ Oximes : s	see page 4	6 .		0 0.62 1.41 4.21 6.94	5.44 5.260 5.075 4.470 3.890

50

XXII. AROMATIC I	XXII. AROMATIC HYDROCARBONS + OXIMES AND ALCOHOLS .								
Benzene (C_6H_6) + Acetoxime (C_3H_70N)									
Beckmann, 1888									
%	f.t.	R	f.t.						
0 0.09 0.22 0.33 0.68 0.83 1.69 2.19 2.50 2.88	5.44 3.40 5.39 4.48 5.337 4.62 5.30 5.88 5.18 7.19 5.122 8.32 4.86 8.94 4.722 13.09 4.62 17.88 4.51 23.09		4.35 4.03 4.022 3.62 3.23 2.885 2.740 +1.457 -0.178 -2.108						
Benzene (C ₆ H ₆	Benzene (C_6H_6) + Benzaldoxime (C_7H_7ON)								
Beckmann, 1888									
%	f.t.	%	f.t.						
0 0.37 0.43 0.72 1.17 1.79 1.98 2.64 3.54 4.88	5.44 5.295 5.260 5.175 5.040 4.860 4.840 4.650 4.435 4.130	5.87 6.44 7.34 8.64 9.93 11.62 13.35 14.78 15.08 22.13	3.920 3.825 3.600 3.330 3.060 2.720 2.340 2.040 3.105 0.700						
Benzene (C ₆ H ₆) + Aceto	phenoxime	(C ₈ H ₉ ON)						
wt % mol %	р	wt %	mol % p						
0 0 5.50 3.26 10.91 6.60 19.2 12.04 29.2 19.25	651.2 634.2	75° 41.2 57.9 75.4 82.4	28.9 529.7 44.4 456.9 63.8 340.5 72.9 277.0						
Beckmann, 1888									
%	f.t.	%	f.t.						
0 0.62	5.44 5.260	0 11.41	3,435 2,925						

BENZENE + ACETOPHENOXIME

Benzene (C_6H_6) + 3-Benzilmonoxime ($C_{1\mu}H_{11}O_2N$)	mol % p
Innes, 1918	40° 60° 80° 100°
wt % mol % p wt % mol % p	0 186 394 755 1344 10 270 622 1208 2150 20 335 742 1462 2558 30 354 802 1581 2845
75° 0 0 653.0 29.7 12.71 601.0 5:69 2.03 641.4 40.1 18.72 581.7 11.11 4.15 632.1 47.6 23.98 564.3 20.0 8.00 616.8	20 335 742 1462 2658 300 354 802 1581 2845 40 360 811 1611 2875 50 363 816 1627 2889 60 365 827 1631 2894 70 362 824 1622 2884 80 350 782 1581 2837 90 319 718 1490 2723 100 257 601 1263 2464
Benzene (C_6H_6) + Camphoroxime d ($C_{10}H_{17}ON$)	
Beckmann, 1888	Ryland, 1899
% f.t. % f.t.	% p % p
0 5.44 6.56 4.312 0.53 5.330 9.80 3.720 1.37 5.180 13.00 3.095 2.78 4.953 20.32 1.445 4.45 4.675	38 38.4 770 36 Az 35.7 392 38 39.0 760 41 33.2 223 37 36.8 400 34 33.1 223
	Soday and Bennets, 1930
Benzene (C_6H_6) + Camphoroxime r ($C_{10}H_{17}ON$)	b.t. % b.t. %
Innes, 1918 wt % mol % p wt % mol % p	725,2 mm
75° 0 0 651.6 29.7 16.5 582.0 5.80 2.80 639.4 41.9 25.2 541.7 19.9 10.4	78.6 0 0 0 56.4 38.0 12.0 68.2 8.0 1.0 56.5 37.85 10.0 66.9 15.0 1.5 56.6 38.0 40.0 60.3 24.0 2.0 56.9 45.0 60.0 58.8 28.0 - 57.7 30.0 2.5 58.3 58.0 79.0 57.5 30.0 2.7 59.55 69.8 57.25 32.0 - 61.9 85.8 95.9 56.75 33.0 4.0 63.1 100 100
Benzene (C_6H_6) + Methyl alcohol (CH_4O)	Lee, 1931
Heterogeneous equilibria .	mol%
Schmidt, 1921 and 1926	L V p p ₁ p ₂
mol % p	40°
0° 10° 20° 30° 0 26.9 46.2 76.7 122 10 36.4 66.8 106 167 20 44.1 79.6 128 209 30 48.5 84.7 138.5 221.5 40 48.8 86.8 143 227 50 49.1 88.7 145 230 60 49.2 89.1 145 231 70 48.6 88.4 144 229 80 48.3 86.7 141 227 90 44.2 76.4 124 207 100 31.9 55.2 95 162.5	14.1 50.7 349.0 172 176.9 22.7 52.4 536.6 170.5 186.5 30.4 53.1 360.2 170.0 192.5 40.2 54.0 364.2 167.5 196.7 46.8 54.3 365.6 167.1 198.5 55.2 54.8 366.0 165.4 200.6 64.3 56.6 366.2 158.9 207.3 70.2 58.0 362.5 152.2 210.3 75.0 57.8 357.5 150.9 206.6 83.4 64.1 334.0 109.6 224.9 89.6 72.3 325.2 90.1 235.1 91.5 75.3 322.5 80.6 241.9 100.0 100.0 263.5 0.0 269.5

BENZENE + METHYL ALCOHOL

b, t. mol % b, t. mol % c. l. v l. v l. v l. v l. v l. v l. v l	Fritzwe	iler and D	ietrich, 19	933 (fig	.)						
L V L V 64.7 100 100 60 12 52 64 99 96.1 62 8.5 48.5 63 98 92.5 64 6.5 45 63 98 75. 72.5 72 3.5 25.5 58 80 63.3 74 2.5 72 3.5 25.5 58 80 63.3 74 2.5 72 3.5 25.5 58 80 63.3 74 2.5 72 3.5 25.5 59 15 54 78.3 0 0 5 Scatchard, Wood and Mochel, 1946 Scatchard, Wood and Mochel, 1946 Scatchard, Wood and Mochel, 1946 Scatchard, Wood and Mochel, 1	b. t.	mo1	%	b.t.	mol%		Scat	chard and	Ticknor	, 1952	
64.7 100 100 60 12 55 56 64 6.5 45 56 63 98 99 96.1 62 85. 48.5 63 98 99 96.1 62 85. 48.5 63 98 99 96.1 66 6.5 45 45 60 99 96.1 62 85. 45 56 60 99 96.1 62 85. 45 56 60 99 97.5 76.5 70 4 31 59 89 7.5 72.5 72 3.5 25.5 58 80 63.5 74 2.5 20 10.5 58 80 63.5 74 2.5 20 10.5 58 80 63.5 74 2.5 20 10.5 58 80 63.5 74 2.5 20 10.5 58 80 63.5 74 2.5 20 10.5 58 80 63.5 74 78.3 0 0 0 80.25 43.2 58.8 10.5 54 78.3 0 0 0 80.25 43.2 58.3 10.5 59 15 54 78.3 0 0 0 80.25 43.2 58.3 10.5 59 15 54 78.5 10.5 59 15 54 78.3 10.5 59 15 54 78.5 78.5 10.5 59 15 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.		L	v			V		1	mol %	V	p
Secretard Wood and Mochel 1946	64 63 62 61	99 98 96 94 91.5 87.5	96,1 92,5 87,5 82 76,5 72,5 63,5	62 64 66 68 70 72 74	8.5 6.5 5.5 5 4 3.5 2.5	45 41 36 31 25.5 20		4.05 6.38 7.71 22.98		55° 35.18 42.10 44.62 54.22	545.73 565.10 647.85
Scatchard, Wood and Mochel, 1946 Mood and Mochel, 1946	l 58	27.5 15	57.5 54	78	1	10.5	Hayw	ood, 1899			
Scatchard, Wood and Mochel, 1946 Month Part								 %	h. t.		h. t.
The state of the	Scatcha	rd, Wood	and Mochel,	, 1946							
25° 47.42 53,43 182.70 35° 35° 47.42 53,43 182.70 35° 35° 35° 35° 30.3 358.43 58.25 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.42 73.3 30.3 58.4 93.1 63.2 23.8 58.42 73.3 58.4 93.1 63.2 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.54 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.52 73.7 59.8 23.8 58.54 73.7 59.8 23.8 58.54 73.7 59.8 23.8 58.42 73.7 24.1 75.4 75.5 75.5 59.0 24.5 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2			-	p	· · · · · · · · · · · · · · · · · · ·		1	7.3 0.3	60,95 59,85	48.6 50.7 53.2	58.4 58.42
15.07			53,43 35°				1 1 2 2 2 3	6.6 8.8 3.8 6.1 0.3	58.92 58.8 58.525 58.475	83.5 93.1	59.0 59.8 61.2 63.2
191.97 76.88 255.82 45° 39.55 58.34 Az 39.55		13.02 31.07 49.89 51.91	31.28 48.58 53.04 55.46 55.71	211 274 288 292 292	. 10 . 25 3.47 2.50					2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		79.65	64.21 76.88	283	.58				%	b.t.	(760 mm)
52.34 57.52 451.98 55° 3.04 30.19 465.84 4.93 40.51 527.12 10.31 48.41 597.48 32.17 55.40 664.24 48.74 58.45 675.99 60.76 60.78 678.44 78.98 67.16 664.91 90.14 76.97 622.29 Williams, Rosenberg and Rothenberg, 1948 Williams, Rosenberg and Rothenberg, 1948 L V L V Rosenberg and Rothenberg, 1948 L V								14	39.55	58.34 64.70	Az
3.04 30.19 465.84 4.93 40.51 527.12 10.31 48.41 597.48 32.17 55.40 664.24 48.74 58.45 675.99 60.76 60.78 678.44 78.98 67.16 664.91 90.14 76.97 622.29 Williams, Rosenberg and Rothenberg, 1948 The mol for the		52,34		451	.98			_			
78.98 67.16 664.91 90.14 76.97 622.29 b.t. Williams, Rosenberg and Rothenberg, 1948 The mole of the		3.04 4.93 10.31 32.17	40.51 48.41 55.40	527 597 664	7.12 7.48 4.24		Kafa	rov and G	ordievsk	ii, 1956 ((fig.)
Williams, Rosenberg and Rothenberg, 1948 The state of the state of		78.98	60.78 67.16	678	. 44		L	mol %	v	L	· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Willia	ns, Roseni	perg and Ro	thenberg,	1948		0 5 10		0 38 5	50 60 7 0	60
	t			t			30		55 57 58	90	63 86
	58.60 58.60 62.80 58.70 58.30	0 2.5 5.0 7.0 7.7 13.4 17.0	21.0 42.3 49.5 57.5 52.5 55.7 57.0	59.80 57.50 57.70 59.30 58.50 59.20	36.5 62.5 73.0 77.6 81.2 86.0	57.0 61.0 63.9 73.5 68.5 72.0					

Robinson, Wright and Bennet, 1932		Perrakis, 19	25		
		mo1%	f.t.	mo1%	f.t.
Mo1% b.t. Az 57.6 20.0 59.2 40.0 60.6 57.0		0 7.84 15.78 25.0 36.92 42.68	5.40 3.25 3.00 2.4 2.1 1.85	72.82 77.02 80.61 83.55 86.33 90.14	-4.9 -7.6 -9.7 -11.5 -17.0 -23
Fritzweiler and Dietrich, 1933		50.61 57.43 63.33	1.4 -0.1 -1.35	92.93 95.07 100	-46 -67 -94
mol% b.t.	dew. point	69.00	-3.2		
100 64.6 95 61.3 90 59.6 85 58.6 80 58.0 75 57.7 70 57.5	64.6 63.6 62.5 61.6 60.6 59.5	Vieth, 1929	K	f.t.	
65 57.4 60 " 55 " 50 " 45 57.5 40 57.6 35 57.7 30 57.9 25 58.1	58.3 57.5 57.5 58.7 60.9 66.4 68.4 70.9 72.2 73.9 77.1	C.S.T. : 10	76.9 69.9 62.1 57.2 40.3 38.1	-6.8 -3.8 -1.6 -0.6 +2.0 +2.3	
20 58.3 15 59.1 10 61.0 5 68 0 80.2	75.9 75.5 77.1 78.8 80.2	Lee, 1931			
Lecat, 1949			mo1%	D f.t.	
% b.t.	Dt mix		0.8 1.6 4.2 6.5 9.7	-0.360 0.612 1.265 1.610	
0 80.15 39.5 58.32 Az 47	-3.2	1.	9.7 5.1 5.0 6.9	1.978 2.475 3.000 3.30	
Pickering, 1893		Giacalone, 1	942		
% f.t. %	f.t.	%	D f.t.	%	D f.t.
0 +5.44 47.47 2.261 +3.80 52.49 4.542 +3.21 57.55 9.341 +2.46 62.66 13.758 +1.97 67.83 18.432 +1.52 73.22 23.154 +1.06 78.33 27.923 +0.45 83.63 32.739 -0.29 89.05 37.601 -1.35 94.49 42.514 -2.40	7 -6.06 2 -8.27 3 -11.97 7 -16.10 3 -22.56 4 -29.36 3 -41.46	0.50 1.18 2.63 3.66 5.90 8.76 11.54 14.43 17.43 20.69 23.71	-0.620 1.123 1.670 1.913 2.329 2.723 3.013 3.263 3.533 3.830 4.122	27.00 30.22 33.21 36.07 38.57 40.76 42.60 44.71 57.56 67.85 69.24	-4.473 4.513 5.345 5.721 6.233 6.713 7.153 9.70 13.71 21.54 34.80

Lemonde, 1938	
	Findlay, 1909
vol% D	% t d
11° 2	100 63.7 0.7503 81.86 59.9 0.7691 68.40 58.2 0.7801 58.40 57.6 0.7886 49.9 57.4 0.7954 36.7 57.2 0.8055 29.6 57.3 0.8122 21.5 57.6 0.8189 9.6 59.0 0.8269 8.1 59.6 0.8276 0 79.3 0.8150
Tichacek, Kmak and Drickamer, 1956	
mol % D therm.	
40° 20 +1.80 50 +0.15 80 -0.80	Jahn, 1891. # d
Johnson and Babb, 1956 (fig.)	20°
mol% D benzene methyl alcohol	100 0.87852 31.99 0.81812 0 0.79212
25° 0 2.20 4.20 5 2.28 3.00 10 2.30 2.60	Fischler, 1913
10 2.30 2.60 20 2.32 2.20 30 2.38 2.12 40 2.40 2.00 60 2.40 2.00 70 2.40 2.03 80 2.40 2.08 90 2.40 2.12 100 2.42 2.25	vol% d 25° 0 0.7860 25 0.8071 50 0.8273 75 0.8485 100 0.8696
Properties of phases . Density .	Washburn and Lightbody, 1930
Schmidt 1026	mo1% d mo1% d
Schmidt, 1926	25°
% Dv .104 % Dv .104 17° 17° 90 - 4 40 -17 80 - 7 30 -19 70 - 9 20 -21 60 -12 11 -13 50 -14 -13 -13	0 0.87285 86.8 0.80884 10.4 0.86833 92.6 0.80022 19.6 0.86394 95.2 0.79571 27.9 0.85961 97.7 0.79127 42.3 0.85118 100 0.78698 68.7 0.83014

BENZENE + METHYL ALCOHOL

Perrakis, 1925			t d t d
mol% d	mo1%	d	95.35 mo1% 100 mo1%
0 0.8778 8.72 0.8741 13.81 0.8722 20.71 0.8681 23.62 0.8672 26.55 0.8655 28.79 0.8641 32.95 0.8631 37.48 0.8591 42.58 0.8561	51.85 60.31 64.94 71.75 77.71 84.94 90.39 100	0.8536 0.8500 0.8433 0.8393 0.8323 0.8323 0.8262 0.8171 0.8090 0.7917	35.3 0.8001 52.2 0.7904 30.2 0.8007 47.2 0.7910 25.1 0.8013 39.7 0.7919 20.2 0.8019 35.1 0.7924 15.0 0.8025 30.9 0.7929 10.4 0.8030 25.0 0.7936 19.5 0.7943 12.6 0.7951
Velasco, 1930			% d
mol% d	mo1%	đ	25°
2.48 0.8785 4.34 0.8775 5.79 0.8765 8.01 0.8766 11.48 0.874 14.16 0.8724 17.11 0.8706 21.25 0.8694 24.60 0.8672	27. 86 33. 02 39. 67 42. 38 44. 42 44. 68 49. 81	0.8663 0.8660 0.8631 0.8591 0.8574 0.8560 0.8558	0 0.87363 11.365 0.86288 35.294 0.84102 47.896 0.82990 59.703 0.81990 73.089 0.80863 86.112 0.79787 100 0.78753
Velasco, 1931			mo1% d 6° 30°
t d t 0 mol% 15. 34.5 0.8637 35.4 29.8 0.8686 33.7 24.9 0.8734 28.8 20.0 0.8736 25.0 15.1 0.8834 20.8 10.5 0.8882 15.8 8.3	0.8685 34.8 0.8687 34.4 0.8694 30.0 0.8698 29.7 0.8704 27.5 0.8711 24.8	d 74 mo1% 0.8595 0.8596 0.8601 0.8602 0.8605 0.8605 0.8615 0.8615 0.8622 0.8623	0 0.89358 0.86801 12.56 0.88819 0.86263 25.03 0.88203 0.85673 37.63 0.87450 0.84947 50.00 0.86587 0.84125 62.66 0.85525 0.83114 74.93 0.84253 0.81908 87.53 0.82589 0.80280 100 0.80436 0.78182
t d t	d t	d	Scatchard, Wood and Mochel, 1946
		70 mo1%	wt% mol% d
35.2 0.8514 35.3 29.8 0.8521 24.8 25.6 0.8527 20.4 20.2 0.8534 14.5 15.0 0.8541 10.5 10.8 0.8546	0.8444 30.3 0.8449 25.6 0.8456 20.3	0.8359 0.8364 0.8370 0.8377 0.8383 0.8389	25° 0 0 0.87368 7.61 16.73 0.86606 13.00 26.70 0.86103 19.98 37.83 0.85461 29.59 50.60 0.84598 41.07 62.95 0.83586 41.26 63.13 0.83572
t d t 76.37 mol% 85	d t	d 04 moi%	41.26 63.13 0.83572 54.64 74.60 0.82412 74.43 87.65 0.80741 100 100 0.78654
35.1 0.8269 35.3 30.3 0.8275 30.2 25.1 0.8281 25.2 19.0 0.8288 20.2 15.1 0.8293 15.0 11.0 0.8298 10.9	0.8163 30.6 0.8168 25.2 0.8175 20.2 0.8181 15.1	0.8088 0.8094 0.8100 0.8106 0.8112 0.8118	100 100 0.76034

Williams, Rosenberg and Rothenberg, 1948	Viscosity and surface tension .
vol% d vol% d	Findlay, 1909
25° 100 0.7865 40 0.8410 90 0.7960 30 0.8495 80 0.8040 20 0.8576 70 0.8128 10 0.8653 60 0.8230 0 0.8724 50 0.8320	7 t 7 0 79.3 317 8.1 59.6 359 9.6 59.0 362 21.5 57.6 362
Teitelbaum, Gortalova and Ganelina, 1950	36.7 57.2 361 49.9 57.4 359 58.40 57.6 359 68.40 58.2
20°	81.86 59.9 347 100 63.7 326
0 0.8788 10 0.8748 20 0.8694 40 0.8597 60 0.8432 80 0.8229 90 0.8094 100 0.7923	Lemondo, 1938
Scatchard and Ticknor, 1952	11°
m)1% d 25° 0 0.87351 25.186 0.85158 49.387 0.83083 72.871 0.81049 100 0.78653 G.L. Starobinetz, K.S. Starobinetz and Rigikova, 1951	0 747 2 747 12.5 747 20 746 335 745 50 741 70 730 85 711 98 683 100 677
mo1% d mo1% d	
25° 0.00 0.8733 40.49 0.8539 10.33 0.8694 49.64 0.8493 20.54 0.8644 60.03 0.8403 30.82 0.8598 100.00 0.7872	Tcitelbaum, Gortalova and Ganelina, 1950 mol% 20° 0 646 10 622
Shakhparonov and Shlenkina, 1954.	20 613 40 619 60 626
πιο 1% τ _. . 10 ³ π	80 626 90 610 100 578
0	Fischler, 1913 vol% 0 25° 0 560.8 25 564.5 50 568.4 75 572.3 100 575.8

	C	,	· · · · · · · · · · · · · · · · · · ·	0ptic	al and ele	ectrical	properti	es	
Morgan and	Scarietti, 1917	%	đ	Velasc	0, 1931				
	30°		0°	t	n _D	t	n _D	t	n _D
.0	26,625 25,188	0 19.943	30.514 28.143	0 m	D1%	15.78	mo1%	34.74	mol%
15.04 20.06 25.10 30.13 50.04 75.15	24.804 24.510 24.235 23.270 22.125 21.058	25.00 30.07 70.07	27.779 27.440 25.211 23.643	34.5 29.8 24.9 20.0 15.1 10.5	1.4908 1.4940 1.4974 1.5006 1.5040 1.5071	28.4 24.6 20.0 15.0	1.47735 1.48140 1.4839 1.4856 1.4890 1.4933	34.15 28.95 24.00 20.00 14.7	1.4583 1.4614 1.4645 1.4668 1.4702
				t	$^{\mathbf{n}}\mathbf{D}$	t	n _D	t	n _D
Giacalone,	1942			48.0	4 moi%	59.4 	45 mo.%	67.70	moi%
mo1%	27° 26.04 26.35			34.5 29.4 24.7 20.0 14.9 10.3	1.4390 1.4421 1.4450 1.4476 1.4506 1.4533	34.5 29.3 24.5 20.0 14.9 10.6	1.4221 1.4251 1.4278 1.4304 1.4332 1.4355	34.5 29.7 24.7 20.0 15.1 10.6	1.4071 1.4098 1.4124 1.4150 1.4176 1.4199
2.82 1.88 0.94 0	26.80 27.30 27.95			t	n _D	t	n _D	t	n _D
	***************************************			7 6.3	7 mo1%	85.34	f mol%	90.04	4 mo1%
Rigilova, 19	951 σ	BiO 1 %	σ	34.4 29.4 24.7 20.0	1.3901 1.3924 1.3951 1.3974	34.3 29.3 24.8 20.0	1.3682 1.3706 1.3729 1.3753	34.4 30.0 24.9 20.0	1.3553 1.3575 1.3598 1.3623
mo1%	25°	11:01%		15.2 11.3	1.3999	14.9 10.9	1.3776 1.37945	15.0 9.9	1.3646 1.3668
0.00 10.33 20.54 30.82	28, 20 27, 88 27, 33 26, 84	40.49 49.64 60.03 100.00	26.22 25.86 25.24 22.35	t 95.3	n _D 5 mor%	t 100	n _D	t	n _D
				34.6 29.6 24.8 20.0 15.0 10.5	1.3391 1.3414 1.3434 1.3456 1.3479 1.3498	24.0 20.0	1.3215 1.3262 1.3284 1.3300 1.3325		
				Î	ricz-Zubkow	 -		· · · · · · · · · · · · · · · · · · ·	
				%		n _D	%		- Q ⁿ
						15	0		
				0 5 10 15 20 25 30 35 40 45 50	1 1 1 1 1 1 1 1	.5033 .5012 .4994 .4788 .4690 .4580 .4478 .4378 .4273 .4212	55 60 65 70 75 80 85 90 95	1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3	931 842 762 679 605 532 456 390

BENZENE + METHYL ALCOHOL

Pesce and E	vdokimoff ,	1940		Kafarov and	Bordievskii	, 1956(fig.)	
t	He	t	He	K	ⁿ D	%	n _D
100	25		1 (0000	0 25 50	1.5010 20° 1.458 1.410		.364 .3 28 8
100 86.112 73.089 59.703	1,32643 1,34760 1,36806 1,39005	47.896 35.294 11.365 0	1.40998 1.43201 1.47589 1.49825	Velasco, 193		14	
Williams, R	osenberg and	Rothneberg,	1948	mo1%	ε 20°	mo1%	ε
vol%	n _D	vol%	n _D	2.48 4.34	2.357 2.425	26.31 27.86	4.158 4.363
100 90 80 70 60 50	1.3264 1.3429 1.3595 1.3765 1.3942 1.4121	40 30 20 10 0	1.4296 1.4471 1.4640 1.4809 1.4967	5.79 8.01 11.48 14.16 17.11 21.25 24.60 Romanow and	2.483 2.580 2.765 2.940 3.167 3.573 3.957	33.02 39.67 42.38 44.42 44.68 49.81	5, 141 6, 297 6, 788 7, 246 7, 306 8, 387
La Rochelle	and Vernon,	1950			×	ε	
mo1%	n _D	mo1%	n _D		75 50	21.00 13.86	7
0 14.0	1.4977 1.4859 1.4643	61.3 70.0 77.5	1.4264 1.4092 1.3924		25 10 5 0	7.11 3.39 2.5 2.27	
35.3 36.2 49.7 50.8	1.4637 1.4459 1.4439	84.0 89.5 95.5	1.3762 1.3595 1.3420	La Rochelle	and Vernon, ε	1950 mo1%	ε
60.1	1.4281	100	1.3277		·	25°	
Scatchard a	nd Ticknor,	1952		0	2.27	61.3	12.83
	0 25.186	n _D 25° 1.4979 1.4539		14.0 35.3 36.2 49.7 50.8 60.1	3.67 6.41 6.70 9.20 9.54 12.24	70.0 77.5 84.0 89.5 95.5	16.33 19.69 22.95 26.30 29.51 32.65
	49.387 72.871 100	1.4121 1.3721 1.3267		Starobinetz,	Starobineta	z and Rigikova	, 1951
				mo1%	ε	mo1%	ε
Shakhparono	and Shlenk	ina, 1954				25°	
0 10 20 31	n ² 0° 1.50013 1.48309 1.47079	0.433 0,330 0.230 0.146	2.95 3.48 4.07 5.51	0.00 10.33 20.54 30.82	2.271 2.875 3.861 5.438	40.49 49.64 60.03	7.370 10.10 13.12
40 50 64.5 80	1.45985 1.44514 1.42118 1.38922	0.121 0.109 0.109 0.109 0.109	5.83 6.04 5.00 3.05	Jahn, 1891	Ж	(~)	
100	1.32846	0.071	0.56			(α) _{magn.} 20°	
	e intensity	depolarisation of the molec	on. ular light dis-		0 31.99 100	70.81 114.79 223.92	

11						
Heat consta				Schmidt, 1926		
Timofeev, 19	905			% Q mix (cal/g)		
	%	Ü		- 15°		
				- 90 -0.41		
1	20 ° 0 3,52 5 (?) 5,21 13.7 35.75	0.4233 0.459 0.495 0.487 0.507 0.585 0.600		80 0.80 70 1.19 60 1.59 50 1.98 40 2.27 30 2.43 20 2.28 11 2.23		
initial	% final	Q (by mole a	dil (lcohol)	Wolf, Pahlke and Wehage, 1935 (fig)		
0 2.88	2.88 5.5	- 18 7	398 '24	mol% Q mix (by mole alcohol)		
0 5.4 10.3 33.7 37.4 77.7 84.1 91.9	5.4 10.3 15.8 37.2 35.4 72.8 77.7	(by mole b	80 31 54.3 enzene) 47 44 31	20° 7 -1750 15 1140 25 770 50 300 75 100		
100	84.1 91.9 esemberg and 1	3	1948	Scatchard, Ticknor and al., 1952 volg Q mix (cal/cc) 20°		
vol%		U		5.59 -1.64		
10	30°	40° 0.473	50°	11.34 -2.02 11.62 -2.05 24.85 -2.17 47.66 -1.93 48.28 -1.86 49.18 -1.97		
20 30 40 50 60 70 80	0.483 0.483 0.534 0.525 0.578 	0.502 	0.491 0.530 0.556 0.574 0.605 0.628 0.643 0.639 0.641			
mol°	Q mix	mo1°	Q mix			
10 20 30 40 50	-134 152 158 154 144	60 70 80 90	-124 98 66 35			

60

BENZENE + ETHYL ALCOHOL

Benzene (C ₆ H ₆) + Ethyl alcohol (C ₂ H ₆ O)	% at b.t. L V
Heterogeneous equilibria.	5.4 18.7 7.5 21.9
Skirrow, 1902	13.9 24.7 24.5 27.5
0 25° 95.9	43.0 58.0 38.3
15.43 125 52.34 119 100 59	82.1 54.3
	Lehfeldt, 1899
Schreinemal.ers, 1904	mol% p
% p 34.8° 50° 60° 66°	L V 50°
0 147 271 389 477 2.07 174 326 471 568	0 0 270.9
3.85 185 347 503 620 9.47 195 371 545 677	8.1 21.9 350.4 47.0 40.1 315.0 100 100 219.5
25.64 198 382 570 711 32.15 197 380 569 711	
64.91 178 351 530 671 79.88 155 311 479 609	Ryland, 1899
93.28 122 257 403 520 100 103 223 354 462	Я р
	33 31.4 769
BurwinKel, 1914	33 32.3 763 33 28.2 421
t p 100 84.53 66.57 45.12 32.08 17.87 0.0%	28 27.6 423 28 23.3 241 23 23.4 243
0 13 -	Az : 32% b.t. = 67 - 68°
10 24 40 53 61 63 61 46.8 20 45 72 88 102 106 104 76.9 30 78 120 147 174 178 174 124 40 133 205 258 287 288 269 186	
50 225 307 375 422 426 408 275 60 358 458 553 607 609 580 397	Tyrer, 1912
70 545 674 560	ダ し.t. L V
Lehfeldt, 1898	750 r.m
% p	100 100 78.12 90 68.6 74.40 80 56.0 71.86
50°	70 47.6 70.26 60 41.8 69.00
0 270.9 4.32 339.8 11.11 389.9	50 37.6 68.41 40 34.0 67.97 30 31.3 67.76
II 18 87 404 3	20 28.6 68.20 10 23.6 69.54
46.75 394.0 60.33 375.3	0 0 79.75 Az = 31.8% 67.76°
81.32 81.32 90.61 318.8 274.3	07.70
100 219.5	

Fritzw	eiler and Di	ietrich,	1933	(fig.)	Carroll, R	ollefson and M	athews, 1	925 (fig.)	
b.t.	L mol	% V	b,t.	L mol% V	L %	(at b.t.) V	% L	(a. b.t.) V	
78.3 78 77 76 75 74 73 72 71	100 99.9 99.75 98.5 98 95.5 93 90.5	100 98.5 95 90 84.5 78.5 73.5 69	70 71 72 73 74 75 76	15 38 10 35 8.5 32 7.5 29 6.5 26 5.5 21 19.5 4 15.5 3 12 2 7.5 1 4	100 90 80 70 60 50	100 72.5 57 48 42 37	40 30 20 10 0	34 32 30 25 0	
70 69 68	83.5 77.5 47.5	61 55.5 47.5	78 79 80.1	7.5 1 4 0 0	Brown and	Smith, 1954			·
<u> </u>					L	mo1% V		Þ	
Udovenk	o and Fatkou	lina, 19	52				5.00°	202 74	-
L	mol% V	p	p1	p2	3.74 9.72 21.83	0 19.6 28.9 33.7	95	223.74 271.01 296.53 306.55	
		40°			31.41 41.50	36.2 38.4	25 12	309.33 309.59	
100 98.7 94.3 88.0 80.2 70.2 59.2 49.0 37.3 20.4 9.5 2.0	100 91.2 74.7 60.5 50.7 44.0 40.5 38.4 36.2 33.2 28.0 14.5	134.4 145.6 169.5 196.3 219.4 237.3 245.7 248.8 252.3 249.1 239.8 208.4 183.8	0.0 12.8 42.9 77.5 108.2 132.9 146.2 160.9 166.4 172.6 178.2	134.4 132.8 126.6 118.8 111.2 104.2 99.5 95.6 91.4 82.7 67.2 30.2	51.99 52.84 61.55 70.87 81.02 91.93 95.91 100 Az : 37.5	43.4 47.5 54.5 70.7 82.6 100 mol% 309.75	01 43 51 56 78 01	307.46 306.99 302.05 291.81 271.08 227.72 203.28 172.87	
		50°				t	p		
98.4 93.6 86.6 79.0 69.4 53.6 43.6 38.5 20.6	100 90.9 74.5 61.0 52.6 47.0 43.4 41.1 39.2 36.0	222.6 239.6 276.8 316.8 344.4 366.9 378.1 383.2 384.6 378.3	0.0 21.8 70.6 123.5 163.2 194.4 214.0 225.7 233.8 242.3	222.6 217.8 206.2 193.3 181.2 172.5 164.1 157.5 150.8 136.0		7.22 9.98 13.11 16.05 18.59 oncentration	43.17 50.22 59.66 69.43 79.35 is given.		
8.9 2.5 0.0	$\frac{30.0}{16.5}$	358.7 314.7 271.6	251.1 262.8 271.6	107.6 51.9	b.t.	p	b.t.	p	
100 98.1 92.9 85.9 77.1 68.0 56.8 43.4 39.8 32.2 18.5 8.0 2.6	100 90.4 74.7 62.5 53.7 49.0 45.5 43.6 42.0 40.8 37.5 31.0 16.1	60° 353.6 377.4 431.6 485.0 524.2 548.7 562.6 566.6 568.0 553.7 518.2 452.7 393.0	0.0 36.2 109.2 181.9 242.8 279.8 306.8 319.5 329.4 334.5 346.0 357.5 379.8 393.0	353.6 341.2 322.4 303.1 281.4 268.9 256.0 247.1 238.6 230.5 207.7 160.7 72.9 0.0	30.64 30.67 36.09 36.12 41.15 41.50 41.52 41.52 45.68 49.92 49.92 53.41 53.43 57.31	165.49 166.09 215.62 216.32 271.26 271.36 271.86 271.86 326.72 326.53 391.52 391.52 391.52 391.53 452.59 452.59 527.55	60.59 60.59 66.46 85.29 85.29 102.67 113.47 113.45 120.37 127.39 127.39 127.31 134.34 134.31 141.63	599.68 599.69 748.74 1441.84 1441.84 2450.07 3318.59 3315.69 4003.36 4786.75 4782.78 5682.78 5682.78 5679.26 6759.30 6754.50	

				Barbaudy, 1922	7		
Thayer, 18	98 			R	b.t.	8	b.t.
- %		p	b.t.		760) total	
0 4.8 6.1 7.3 14.7 24.0 32.8 40.7 55.5 64.8 72.8	3 6 2 0 5 5 5 5 5 5 5 5 5 5 5 6 6 6	736.9 728.5 728.5 728.5 736.3 736.0 735.8 735.3 732.9 732.9 732.9	79.5 70.8 69.6 68.8 67.1 66.9 67.1 67.5 68.4 69.8	1.00 2.00 5.00 10.00 20.00 30.00 32.50	80.35 76.75 74.64 71.58 69.70 68.40 68.10 68.09	40.00 50.00 60.00 70.00 79.20 89.90	68.20 68.65 69.37 70.74 72.20 74.38 78.30
100			73	Fritzweiler a	nd Dietric	h, 1933	
Schreinema	kers, 190	4		mo1%		b.t.	dew.p.
%	200 mm	b.t. 380 mm	760 mm	0 5 10		80.2 75.0 70.0	80.2 78.7 77.3
0 2.07 3.85 9.47 17.38 25.64 32.15 50.14 64.91 79.88 93.28	42.2 38.0 36.5 35.3 35.1 35.0 35.2 36.0 37.3 40.2 44.6 47.8	59.3 54.1 52.4 50.55 50.1 49.9 50.0 50.5 51.8 54.5 58.7 61.5	80.3 74.3 72.0 69.2 68.2 67.8 67.7 68.3 69.3 71.8 75.4 78.1	10 15 20 25 30 35 40 45 50 55 60 67 70 75 80		69.0 68.4 68.2 68.1 68.0 67.9 " " 68.0 68.0 68.2 68.4 68.9 69.4 70.3	76.1 74.8 73.3 71.7 70.0 68.5 67.9 68.2 68.9 69.8 70.9 72.1 73.3 74,3 75.2
Znaczynsk	i, 1931			90 95 100		71.9 73.9 78.3	76.1 77.0 78.3
p	0%	20.38% b.t.	32.38%				
760 1695	80,12 108,69	68.36 93.04	68.02 91.70	Swietoslawski	i and Kopc	zynski, 193	1
2360 3460 4323	122.08 137.83 149.82	104.56 118.97 128.21	102.89 117.03 125.97	p 42,53	Dt 3%	p 38.8	Dt 2%
5914 6800	165.81 173.69 51.30%	143.05 151.69 58.97%	139.91 146.62	757 835 1220 1468 1613	0.031 0.028 0.009 0.005 0.002	780 1021 1142 1344 1558	0.016 0.007 0.004 0.002 0.000
		b.t.%		. 1793	0.000	1840	0.002
760 1695 2360 3460	68.84 92.49 103.25 116.75	69.33 92.79 103.60 116.87	78.30 100.00 110.00 122.33	p 35.86	Dt 6%	p 33.7	Dt 8%
4323 5914 6800	125.19 138.04 144.23	125, 26 137, 75 143, 70	130,00 141.57 147.00	770 920 1155 1334 1703 1850	0.007 0.005 0.000 0.003 0.006 0.010	766 854 948 1171 1536 1706 1846	0.000 0.000 0.002 0.007 0.012 0.014 0.020

p Dt p Dt	Swietoslawski and Chojnacki, 1939
32.41% 29.98% 766 0.000 746 0.006 1150 0.012 889 0.011	% P crit. % P crit (Kg/cm ²) (Kg/cm ²)
1440 0.020 1221 0.022 1544 0.025 1623 0.038 1726 0.031 1848 0.043 1845 0.037 Dt = Difference betwen boiling and dew point temperature	100 65 40 62 90 64 30 61 80 63 20 59 70 62 10 55 60 62 0 51
Young, 1902	
% b.t.	Tomassi, 1947
0 80.2 32.41 68.25 Az	% C.V.T. % C.V.T.
100 78.3	100 245 79.59 245.8 98.4 245.3 62.20 248.5 96.47 245.1 49.30 251.8 94.9 245.3 31.4 262.9
Young and Fortey, 1902	93, 35 245.2 4.75 287.4 86, 95 245.7 0 293.1
% b.t. do	% Az P
31.26	(Kg/cm²) 63.4 13 77.0 23 85.6 33 88.0 42 90.4 55
Lecat, 1909	Beckmann, 1888 f.t. % f.t. %
% b.t. 0 80.2 32.36 68.25 Az 100 78.3	5.44 0 3.220 5.49 5.265 0.16 2.715 8.13 4.960 0.49 1.995 12.76 4.565 1.08 1.260 18.42 4.080 2.24 0.440 24.50 3.735 3.36
Swietoslawski, 1932 Az : b.t. = 67.93° (760 mm)	Paterno, 1889
	% Df.t. % Df.t.
	0.32 -0.33 6.26 -2.40 0.58 -0.545 7.84 -2.68 0.98 -0.79 10.74 -2.97 2.05 -1.32 14.12 -3.41 3.90 -1.90 18.03 -3.825 4.35 -2.01 18.77 -3.97

Pickering, 1893				Washburn, Hni	zda and Vold.	1931	
%	f.t.	%	f.t.	76	D f.t.	%	D f.t.
30.085 32.898	2. 433 3.96 58.170 -10.45 4.994 3.22 60.244 -11.69 7.579 2.69 60.383 -12.23 10.021 2.29 62.999 -13.67 14.150 1.68 65.181 -15.90 14.150 1.66 67.876 -17.86 18.216 1.09 69.940 -20.97 21.651 0.68 73.169 -25.16 24.284 0.24 75.190 -29.36 27.240 -0.13 75.190 -29.21 30.085 -0.67 78.094 -34.01		1.8 2.9 4.4 5.8 8.5 10.3 13.3 23.5 31.5 38.1	-1.1 1.5 1.7 2.0 2.3 2.5 2.8 3.7 4.5 5.2	46.4 48.6 52.3 69.8 81.4 90.2 94.9 95.8 96.9	-6.5 7.2 8.4 14.9 30.2 53.7 80.7 95.7	
36,145 37,740	-1.65 -1.78 -2.17	81.672 83.556 85.041 86.273	-41.31 -42.76 -47.51	Giacalone, 194	12		
40.173 41.013	-2.89 -2.08	87.285	-49.26	*	D f.t.	%	D f.t.
45,166 48,347 50,235	-3.64 -4.43 -5.53 -6.41 -7.58	88.804 90.004 91.201 92.430 94.991	-54.26 -57.16 -59.51 -65.86 -71.01 -82.5	0.321 0.907 1.61 2.29 3.11 4.19 5.36 7.27	-0.34 0.80 1.15 1.39 1.63 1.89 2.14	25.38 27.81 30.33 32.34 34.21 37.69 41.36 44.19	-4.74 5.10 5.48 5.79 6.06 6.80 7.63 8.36
Rosza, 1911				9.58 11.75 13.80 15.98 18.03	2.83 3.14 3.39 3.66 3.90	46.81 58.16 65.15 73.18 78.10	9.16 15.89 21.34 30.60 39.45
	f.t.	%	f.t.	19.80 22.48	4.09 4.40	83.87	48.20
0 0.123 0.494 1.141 2.339 4.190	5.91 5.78 5.44 5.01 4.55 4.04	5.098 6.812 8.005 9.770 11.278 16.093	3.85 3.52 3.26 2.95 2.71 2.04	Lemonde, 1936		vol%	D
Viala, 1914 and F	Perrakis	s, 19 2 5	f.t.	0 1 2 2.5 16	2.13 1.67 1.63 0.82	32 50 70 98 100	0.72 0.92 1.19 1.65
0 0	+5.5	54.03 66.57 63.90 75.00	7,65	Johnson and Ba	ხა, 1956	(fig.)	
5.85 9.52 9.76 15.49 12.39 19.33	3.3 2.3 2.0	73.45 82.42 75.76 84.11	13.7 -24.2 27.5	mo1%		D	
17.23 26.08 20.02 29.78	$\frac{1.5}{1.0}$	77.88 85.64 82.52 88.88 86.99 01.89	27.5 31.0 -40.0		benzene	ethy	yl alcohol
33.20 45.72 - 38.96 51.96 - 44.13 57.19 -	0.75 - 0.25 - 1.2 - 2.3 - 3.6 - 5.4	86.99 91.89 91.39 94.73 95.73 97.33 97.87 98.73 100 100	50.0 -63.3 95.0 112.8 -113.9	0 5 10 20 35 40 50 60 70 80 90	25° 2.20 2.23 2.30 2.35 2.38 2.35 2.30 2.15 2.00 1.90 1.80		3.10 2.55 2.20 1.75 1.55 1.50 1.40 1.35 1.25 1.20 1.10

	of phases.			Kowalski an	d Modzelewsk	i, 1901	
Densities. Le Blanc, 18	889				d	<i>%</i>	ď
	%	d				18°	
	20° 52.28	0.83511		0.0 0.343 2.296 3.337 5.527 12.117	0.88153 0.88116 0.87910 0.87710 0.87560 0.86944	28.682 41.319 46.249 52.830 69.238 85.375	0.85398 0.84304 0.83887 0.83335 0.81964 0.80623
Buchkremer,	1890			13.242 17.960	0.86810 0.86355	100.00	0.79405
Z	d	Я	d				
	20	0		Young and F	ortey, 1902		
0 23,467	0.87953 0.85744	0 20.904	0.88140 0.86043	ļ	%	d	
38.277 48.468 59.243 79.917 100	0.84414 0.83558 0.82689 0.80980 0.79350	47.141 78.876 100 (another sa	0.83561 0.81063 0.79303 ample)	dp/dt (at	31.26 32.36 1.t.) = 26.6	0.8685 0.86740	
Paterno and	20° 100 65.66 0 Montemartini,	0.79009 0.81871 0.87852		0 6.1 12.89 20.17 28.98 37.14 46.76 57.88	10° 0.8897 0.8794 0.8761 0.8694 0.8620 0.8558 0.8453 0.8355	0.8509 0.8446 0.8387 0.8325 0.8257 0.8181 0.8104 0.8017	78.2° 0.8165 0.8097 0.8045 0.7943 0.7921 0.7854 0.7773 0.7695
	% 16.88 0.0 1.1760	d 0.88176 0.88019		70.03 74.51 84.16 94.99 100	0.8254 0.8213 0.8143 0.8052 0.7335	0.7923 0.7883 0.7816 0.7735 0.7667	0.7609 0.7572 0.7509 0.7434 0.7363
	18.6146 100.0	0.86336 0.79535					
Philip, 189	7			Getman, 190	6		
1111117, 109	%	d		. t	25 vo1%	d 50 vol%	7 5 vo1%
	0 26.475 49.159 78.499	0.8828 0.8581 0.8396 0.8168 0.8004		15 20 25 30 35 40 63	0.8619 0.8571 0.8523 0.8475 0.8427 0.8378	0.8414 0.8369 0.8324 0.8279 0.8229 0.8179 0.7892	0.8213 0.8170 0.8127 0.8084 0.8040 0.7995 0.7823

BENZENE + ETHYL ALCOHOL

Findlay, 1909	
% t d	Perrakis, 1925
$\begin{matrix} 0 & 79.3 & 0.8150 \\ 1.30 & 74.8 & 0.8179 \end{matrix}$	mol% d mol% d
1.30 70.6 0.8191 6.90 69.2 0.8182 15.20 67.4 0.8123 22.4 66.9 0.8066 37.3 66.8 0.7950 47.4 67.1 0.7869 70.3 69.1 0.7680 88.0 72.7 0.7519 100 77.1 0.7390	20° 0 0.8779 50.91 0.8450 7.75 0.8732 58.93 0.8391 12.86 0.8700 66.36 0.8326 16.28 0.8678 71.25 0.8284 19.86 0.8658 85.98 0.8141 24.72 0.8627 94.07 0.8054 35.63 0.8557 100 0.7982
Polowzow, 1910	Darhaudy, 1024
M d M d	Barbaudy, 1926
0 0.878434 0.972 0.87280 0.34 0.87817 2.056 0.86670	% d % d
0.068 0.87797 4.35 0.86290 0.102 0.87777 5.14 0.85173	25°
0.170 0.87735 10.28 0.82620 0.660 0.87445 100 0.78970	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
% d % d	Hammick and Andrews, 1929
87 8 0 8016 99 47 0 7957	
93. 23 0.7995 99.61 0.7955 97.1 0.7978 99.66 0.7953 98.04 0.7976 100 0.7950	mo1% d
Neshaus and Carl 2014	23.7 0.8578 42.1 0.8422
Mathews and Cook, 1914	56.4 0.8304 75.8 0.8163
t d	100 0,7898
50% 0 0.8653	
0 0.8653 25 0.8404 40 0.8253 55 0.8093	Washburn and Lightbody, 1930
310070	mo1% d mo1% d
Burwinkel, 1914	25°
* d	0 0.87276 82.0 0.80774 7.4 0.86776 89.6 0.79883
17° 0.00 0.88089 17.871 0.86731	14.5 0.86335 93.2 0.79457 21.2 0.85880 96.7 0.79008 33.8 0.85062 100 0.78545 60.4 0.82922
32,083 0,85602 45,121 0,84527 66,569 0,83143 84,532 0,81964 100 0,80933	

Springer and Roth, 1930	
% G	G.L.Starobinetz, K.S.Starobinetz and Rigikova, 1951
25°	mo1% d mo1% d
0 0.8691 3.14 0.8657 11.97 0.8569 54.40 0.8258 91.53 0.7916 100 0.788	25° 0.00 0.8733 59.87 0.8306 9.53 0.8675 69.77 0.8215 20.49 0.8613 80.23 0.8104 30.82 0.8545 89.93 0.7988 39.70 0.8482 100.00 0.7865 49.74 0.8400
Graffunder and Heymann, 1931	Guthrie, 1878
mol% d	50 vol% 17.42° Dv = 0.02488%
56.7°	30 701% 17.42 BY 0.021.00%
0 0.8392 14.45 0.8205 33.74 0.8170 50.42 0.8050 65.02 0.7927 89.66 0.7702 100 0.7576	Ritzel, 1907 P π P π P π
Harms, 1938 - 1943	0 mo1% 24.94 mo1% 50.23 mo1% d = 0.870 d = 0.854 d = 0.838
mo1% d 6° 30° 0 0.89359 0.86800	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.601 0.89312 0.86751 0.834 0.89296 0.86734 1.225 0.89266 0.86704 1.896 0.89217 0.86658	Ρ π Ρ π
4.485 0.89040 0.86481 10.096 0.88674 0.86120 16.437 0.88243 0.85701 24.595 0.87683 0.85168 36.910 0.86766 0.84303	77.85 mol% 100 mol% d = 0.815 d = 0.790 25°
49.066 0.85781 0.83381 64.268 0.84397 0.82083 74.111 0.83397 0.81145 88.689 0.81691 0.779544 96.137 0.80696 0.78606 97.032 0.80567 0.78486 98.319 0.80384 0.78313 100.000 0.80133 0.78078	1 102.0 1 104.7 114 91.1 104.5 95.8 220.5 79.7 204.5 87.3 340 72.1 319 78.4 460 66.7 450 69.7
Circulary 1042	
Giacalone, 1942	
M d	
27° 3.24	

Viscosi	ty and s	ırface tensi	on		Dunstan, 1904	1		
	, , 				76	η		η
Wijkander	r. 1878					25°	······································	
8	10°	20° 3	0° 40°	50°	0 11.14 11.97 19.62	582.1 566.8 566.9 588.5	32.42 49.09 54.40 71.10	651.4 728.2 775.8 883.7
0 50 100	746 1008 1548	641 5 832 6 1258 10	55 488 94 586 36 859	433 503 718	23.47 30.51	607.1 646.5	83.00 91.53 100	954.5 1013 1130
Getman,	1906				Hirata, 1908			
t	η	τ.105	η	τ.10 ⁵		vo1%	η	
						25°		
15 20 25 30 35 40	704 649 606 562 527 492 437	vol% - 11 9 7 7 6 5	25 · 717 657 624 571 538 500	vo1% - 12 - 7 11 7 - 7		75 87.5 93.75 96.875 98.4375 99.21875	826.7 909.0 954.8 982.7 995.5 995.9	
60 63 70	391 351	4	-	-	Findlay, 1909			
t	n	τ.10 ⁵	η	τ.105	%	t	η	
15 20 25 30 35 40 63		vo1% 17 18 18 14 14 9		vo1% - 17 18 18 18 14 14	0 1.30 4.30 6.90 15.20 22.4 37.3 47.4 70.3 88.0	79.3 74.8 70.6 69.2 67.4 66.9 66.8 67.1 69.1	317 327 334 336 341 344 361 377 416 438	
				,	100	77.1	442	
	t	η	τ.10	5	Muchin, 1913			
		100 vo1%			%	ŋ	%	η
	15 20 25 30 35 40 50 60 63	1321 1192 1091 990 909 828 698 592 505	26 20 20 16 16 13 11		100 99,66 99.61 99.47	20° 1295 1288 1288 1289	98. 64 98. 04 97. 1 87. 8	1275 1265 1261 1158

			····	
Mathews and C	ook, 1914			
	t	η		Ramsay and Aston, 1902
	50%			% o o o o o o o o o o o o o o o o o o o
	0 25 40 55	1414 820.3 620.1 496.1		0 29.36 24.67 20.68 6.1 28.15 23.88 20.09 12.89 27.48 23.36 19.72 20.17 26.97 22.94 19.38
Springer and	Roth, 1930	سوافسو القبرالسوافيو القبر والواليونات الأقالات القروات		28.98 26.49 22.57 19.17 37.14 25.99 22.23 18.86 46.76 25.48 21.82 18.56 57.88 24.95 21.44 18.32
8	η	%	n	70.03 24.32 20.98 17.97 74.51 24.08 20.79 17.82
	······································	2 5°		84.16 23.60 20.46 17.60 94.99 23.05 20.05 17.27
0 3.14 11.97	0.3950 .3909 .3865	54.40 91.53 100	0.4687 .6097 .6565	100 22.81 19.78 17.07
η (water	at 0° = 1)			Ritzel, 1907
Lemonde, 1936	and 1938			mo1% σ
vol %	n	vol %	ή	25°
	و سور سور میرونسید است. است. است. است. است.	15°		0 27.79 24.94 26.43
0 2	700 682	50 70	880 1050	49.77 24.83 77.85 23.42
16 3 2	650 72 5	98 100	1300 1310	100 22.18
Golik and Rav				Morgan and Scarlett, 1917
t	η.10 ⁵ in s	tokes t	η.10 ⁵ in stokes	% σ % σ
0%		33.7%		25° 45°
20.4 50.8 113.3 130.0	621 442 278 269	15.8 26.5 50.3 74.0 94.3 113 124 146	769 675 496 400 336 299 279 271	0 27.263 0 24.735 16.70 25.542 19.96 23.124 20.04 25.281 25.00 22.859 22.82 25.104 29.83 22.635 25.04 24.971 100 19.589 50.06 23.651 75.04 22.402 100 21.145
60.	. 5%	82%		
22.4 33.2 41.1 51.2 61.0 78.5	863 735 659 590 504	21.1 38.5 50.0 62.2 78.9	1092 848 714 588 476	Hammick and Andrews, 1929
99.1 132.1	423 350 275	96.6 116.2 124.6	392 324 302	mol% o
		131.7	286	25°
100				23.7 27.38 42.1 25.40
20 50 110 140	1574 1016 413 292			56.4 25.00 75.8 23.84 100 21.90
		اميم والمنور مسيوسيون ومين مسيولميون ما 100 ما 100 ما 100 ميرون من		

BENZENE + ETHYL ALCOHOL

Trieschmann, 1935	Optical and electrical properties			
mo1% σ				
110 17				
22° 100 21.9 ₄	Le Blanc, 1889			
$\begin{array}{cccc} 100 & & 21.9_6 \\ 72.20 & & 23.9_7 \\ 58.35 & & 24.8_6 \\ & & & & & & & & & & & & & & & & & & $	[∞] n _D			
31.57 25.67 26.36	20°			
11.24 27.1_{4} 27.8_{1}	52.28 1.42370			
0 28.6 ₄				
	Buchkremer, 1890			
Giacalone, 1942	я п _р			
mol %	20°			
27°	0 1.50047			
3.24 26.35 2.43 26.65	20,904 1,46806 47,141 1,42808			
1.62 27,02 0.81 27.40 0.00 27.95	78.876 1.38863 100 1.36196			
27,70				
Wolf, 1943				
mol % σ mol % σ	Lehfeldt, 1898			
20° 0 28,62 75 23,72	% п _D % п _D			
10 27,84 90 22,62	18°			
25 26.79 100 22.08 50 25.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
G.L. and K.S. Starobinetz and Rigikova, 1951	20 1.4716 80 1.3878 30 1.4568 90 1.3749 40 1.4425 100 1.3622 50 1.4283			
mol % o mol % o	1.7200			
25°				
0.00 28.20 59.87 24.36 9.53 27.58 69.77 23.78 20.49 26.84 80.23 23.29	de Kowalski and de Modzelewski, 1901			
30.82 25.91 89.93 22.51 39.70 25.44 100.00 22.00	% n _D % n _D			
49.74 25.13	18°			
	0.0 1.50165 28.682 1.45687 0.343 1.50061 41.319 1.43864			
	2.296 1.49760 46.249 1.43171 3.337 1.49560 52.830 1.42251			
	5.527 1.49237 69.238 1.40053 12.117 1.48234 85.375 1.38008			
	13.242 1.48000 100.000 1.36193			

Barbaudy, 1926.	Linebarger, 1896		
\mathcal{K} \mathbf{n}_{D} \mathcal{K} \mathbf{n}_{D}	% E		
25°	20°		
0 1.4979 40.00 1.4376 5.89 1.4979 50.00 1.4239 10.00 1.4817 60.00 1.4103 10.09 1.4818 70.00 1.3962 18.48 1.4691 89.87 1.3718 100.00 1.3592	0 2.249 24.309 2.810 43.076 3.345 71.424 3.884 100 4.261		
Ishikawa, 1930	Philip, 1897		
	16°		
	0 2.244		
30° 0 1.49517 71.0036 1.45118 51.4118 1.42364 31.1290 1.39664 100 1.38174	12.705 3.583 15.284 4.165 26.475 6.813 49.159 13.09 78.499 21.30 100 27.1		
Campbell and Miller, 1947 (fig.)	1021		
% ^п С % ^п С	Graffunder and Heymann, 1931		
25°	mol% E		
100 1.36 40 1.434 90 1.37 30 1.448 80 1.384 21 1.46 72 1.394 10 1.478 59 1.41 0 1.492 49 1.425	56.7° 0 2.230 14.45 2.882 33.74 4.66 50.42 7.30 65.02 10.39 89.66 17.08 100 20.27		
Brown and Smith, 1954	100 20.27		
mol% n _D mol% n _D	G.L.Starobinetz,K.S.Starobinetz and Rigikova, 1951		
25°	mol% ε nol% ε		
0 1.49803 59.84 1.42815 4.51 1.49401 69.40 1.42392 9.57 1.48885 80.59 1.39555 19.91 1.47790 90.52 1.37772 28.90 1.47667 94.87 1.36923 49.66 1.44219 100. 1.35929	25° 0.00 2.271 59.87 11.75 9.53 2.700 69.77 14.95 20.49 3.400 80.23 18.10 30.82 4.700 89.93 21.25 39.70 6.600 100.00 24.45 49.74 8.850		

	Schuller, 1871			
Jahn, 1891	% U			
% α magn.	20.49 0.5022			
20° 100 84.77 65.66 128.09 0 223.92	24.45 0.5112 32.54 0.5268 48.74 0.5465 57.85 0.5565 66.89 0.5666 80.15 0.5862			
	Walker and Henderson, 1902			
Scharf, 1932	c U c U			
vol% (α) ^{magn} . in degrees	at room temperature			
16° 0.0 4.885 9.1 4.594 20.0 4.248 30.0 3.937 40.0 3.637	80.96 0.528 2627.1 0.417 123.87 0.511 4457 0.414 210.99 0.497 6721 0.410 483.21 0.460 13433 0.406 1301.1 0.428 c = g. benzene in 1 mole alcohol.			
50.0 3.325 60.0 3.038 69.7 2.732 80.0 2.438 90.0 2.154 100 1.875	Timofeev, 1905			
Sette, 1950 mol% a/b ₂ .10 ¹ 7 (sec ² .cm ⁻¹)	25.33 0.462 79.9 0.556 100 0.5933			
0 854 1 700 2.4 600 4.5 500	Viala, 1914 taol% U			
8 400 14.5 300 23 200 45 100 60 70 80 57 100 55 a = amplitude of the absorption coefficient. b = frequency.	15° 0 0.407 27.4 0.482 50.2 0.515 60.4 0.530 67.7 0.542 86.0 0.561 100 0.580			
Heat constants	Perrakis, 1925			
	L:01% U L:01% U			
Guthrie, 1878 50 vol % 17.42° Q mix is negative .	20° 0 0.409 71.78 0.541 17.59 0.468 79.82 0.552 29.77 0.487 87.55 0.563 42.22 0.505 90.97 0.569 52.29 0.518 100 0.574			

BENZENE + ETHYL AL COHOL

Tyrer, 1912	Brown and Fock, 1955
% Q vap % Q vap	mol% Q mix mol% Q mix
(cal/g) (cal/g)	45.0°
750mii 0 94.45 60 139.1 10 116.0 70 144.3 20 122.6 80 156.9 30 126.1 90 175.3 40 130.2 100 200.3	13.0
50 134.3	Timofeev, 1905
Az : 31.8% 32.24° Q vap = 126.8	% Q dil initial final (mole alcohol)
Walker and Henderson, 1902	0 0.6 -3578 0.6 1.27 2829 1.27 1.98 2109 1.98 2.84 1563
c Q mix c Q mix	0 5.8 -1635
at room temperature	5,8 10.4 586 10.4 14.6 390 14.6 18.4 344
80.96 - 437 2627.1 - 2901 123.87 - 578 4457 - 3584 210.99 - 806 6721 - 3974 483.21 - 1255 13433 - 4032	(mole benzene) 84.1 79.9 -385
1301.1 c = g. benzene in 1 mole alcohol	87.8 84.1 382 91.7 87.8 381 95.6 91.7 369 100 95.6 361
Wolf, Pahlke and Wehage, 1935 (fig.)	Giblons, 1917
mol% Q mix (mole alcohol)	% Q dil initial final (by mole alcohol)
20°	10°
0.1 -3700 1 3600 8 1750 10 1600 15 1200 25 840 50 330 75 120	1.14 0.57 -3277 2.30 1.14 2775 4.60 2.30 2098 9.20 4.60 1423 13.80 9.20 936 27.04 13.80 707 50.43 27.07 368 100.00 53.15 144
Viala, 1914 mol% Q mix mol% Q mix	1.23 0.61 -2893 2.46 1.23 2797 6.16 2.46 2239 9.25 6.16 1399 18.56 9.25 1085 27.07 18.56 692.5 50.43 27.07 500 100.00 53.15 201
16.0 -129 33.7 -136 17.9 133 37.5 133 19.0 133 43.2 125 20.2 136 47.7 120 23.3 129 54.9 102 30.4 140 88.0 30.3 at room temperature	30° 1.65 0.83 -3156 3.30 1.65 2671 6.61 3.30 2189 13.24 6.63 1619 26.46 13.26 1018 53.00 26.50 570 100.00 53.10 212.8
	100.00 53.10 570 212.8

BENZENE + PROPYL ALCOHOL

Benzene	(C ₆ H ₆)	+ Propyl a	lcohol (C	₃ Н ₈ О)	
	neous equ			•	
Cabuida	1024				Ryland, 1899
Schmidt,		p			% b.t.
MO1/6	0°	10°	20°	30°	0 79 -79.5 16.5 76 -77 (762nm) Az
0 10	26.8 27.5 27.7	45.8 47.1	74.9 79.1	116.0 126.2	100 95.7
20 30 40	27.7 27.2 27.0	45.8 47.1 47.4 47.1 46.8	81.1 80.8 78.0	128.3 127.8 124.5	
50 60	26.5 25.9	45.7 45.7	75.1 72.2 65.5	119.2 114.5	Young and Fortey, 1902
70 80 90	24.9 23.2 18.1	40.0 34.2 24.3 7.7	56.8 42.2	106.3 92.6 69.5	% b.t. (760mm)
100	3.4	7:7	15.0	28.1	16.9 77.12 Az 100 97.19
mo1%	400	p 50°	60°	70°	dp/dt (at b.t.) = 25.0mm
	40°			······································	
0 10 20	180.5 198 203	269.5 289 295	395 428 43 7	550 608 618	
30 40 50	202 196 188	294 289 280	434 423 410	616 608 590	Lecat, 1909 % b.t.
60 70 80	178.5 166 149	278 271 225	393 368 331	566 532 474	
90 100	121 52.0	182 88.5	276 153	391 249	0 80.2 16.9 77.1 Az 100 97.2
				· · · · · · · · · · · · · · · · · · ·	
Lee, 193	31				Rabcewicz-Zubkowski, 1933
	mol%	p	P ₁	P ₂	vol% p b.t.
L	V				Az
3.9 18.0	8.4 14.6	6 196.0	40° 175.6 167.4	16.1 28.6	4.5 - 0 12 146 mm, 35.5 21 760 76.5
30.0 49.2 58.4	16 18 20	7 183.5	149.2	31.4 34.3 35.9	21 760 76.5 45 10.5 atm. 160
64.0 70.9 79.1	21 24.	$ \begin{array}{ccc} 5 & 168.4 \\ 0 & 156.0 \end{array} $	118.6	36.2 37.4 39.6	
87.0 90.1	29.4 32.4 41.	6 102,0	59.6	37 42.4	Kolossowsky and Theodorowitch, 1935
100	100	50.2	0.0	50.2	% b.t. (760mm)
					0 80.2
Vieth, 1	.929				- 77.15 Az 100 97.25
С С Т ;	s lower	thon -3°			
<u> </u>	.5 10WE1	U11611 J			
					

BENZENE + PROPYL ALCOHOL

Pickering, l	.895			Properties of phases.
	f.t.	%	f.t.	Lange, 1925
0 5.569 9.161 13.806 18.493 23.226 28.003 32.827 37.697 42.512	+ 5.44 + 3.43 + 2.49 + 1.72 + 1.03 + 0.34 - 0.56 - 1.18 - 2.38 - 3.33	47.577 52.590 57.650 62.763 67.925 73.138 78.402 83.720 89.092 92.342	- 5.13 - 6.64 - 8.51 - 12.00 - 15.86 - 20.66 - 28.46 - 39.06 - 53.16 - 74.16	24° 0 0.874 3.15 0.871 5.17 0.870 9.46 0.866 15.51 0.857 22.09 0.855 33.90 0.846 100 0.802
Vieth, 1929	% 66.3 54.6 51.6 46.4 40.6 35.3 28.2	f.t. -9 4.4 3.6 2.3 1.2 -0.3 +0.8		70° 0 0.856 3.19 0.852 5.20 0.850 9.50 0.846 15.41 0.840 34.00 0.825 100 0.790 70° 0 0.828 3.30 0.026 5.21 0.825 9.52 0.822 15.52 0.818 22.15 0.818 22.15 0.814 34.20 0.807 100 0.771
Lee, 1931		·		
	mo1%	D f.t.		Springer and Roth, 1930
	0.7 3.5	-0.269 1.007		% d
	8.0 13.7 19.8	1.711 2.376 3.029		25° 0 0.8691 33.1 0.8420 40.22 0.8352 49.99 0.8330 100 0.8007
Giacalone, 1	942			
0.340 0.818 1.61 2.82 4.33 5.87 7.51 9.58	D f.t. -0.266 0.614 1.008 1.442 1.838 2.196 2.529 2.915	31.78 34.68 37.94 41.10 43.89 46.80 48.59 53.31	D f.t. -6.457 6.979 7.668 8.387 9.228 10.178 10.657 12.687	Rabcewicz-Zubkowski, 1933
12.07 14.66 16.84 19.12 21.65 23.69 26.60 29.15	3.338 3.743 4.058 4.400 4.770 5.102 5.538 5.978	54. 63 57. 68 62. 75 67. 93 72. 69 78. 40 85. 21 89. 15	13.178 13.95 17.44 21.30 26.10 33.90 44.50 58.60	2 0.8774 45 0.8447 5 0.8751 55 0.8376 10 0.8711 70 0.8263 15 0.8670 80 0.8187 20 0.8631 90 0.8114 25 0.8592 95 0.8077 30 0.8560 100 0.8032

Spells, 1936		Dunstan, 1908 ~ 1910
% d %	đ	π
22 °		25°
0 0.87661 3.387 1.001 0.87565 4.762 0.997 0.87565 8.007 1.990 0.87460 20.05 1.997 0.87460 50.12 2.003 0.87460 89.90 2.710 0.87390 100	0.87325 0.87204 0.86920 0.85933 0.83706 0.80947 0.80247	100.00 1962 66.90 1167 59.78 702.8 10.01 598.9 4.93 591.7 0.00 597.8
		Springer and Roth, 1930
Harms, 1943		% п
mol% d		(water at 0° = 1)
0 0.87657 16.521 0.86466 32.026 0.85410 46.798 0.84387 60.824 0.83377 74.340 0.82353		0 0.3950 33,1 0.4578 40.22 0.394 49,99 0.565 100 1.1408
86.791 0.81340 94.381 0.80699 100.000 0.80201		Spells, 1936
		% п % п
G.L. and K.S. Starobinetz and Rig	kova, 1951	22°
mol% d mol%	d	0 428 3.387 619.32 1.001 623.40 4.762 620.40
25° 0.00 0.8733 59.83 10.12 0.8665 69.82 19.49 0.8607 79.84 29.93 0.8527 89.78 39.70 0.8464 100.00	0.8335 0.8259 0.8176 0.8103 0.8019	0.997 623.13 8.007 626.53 1.990 620.25 20.05 675.81 1.997 620.27 50.12 977.83 2.003 620.25 89.90 1397.6 2.710 619.34 100 2119.8
49.77 0.8409	0.0019	Brown, 1932 (fig.)
		- K 0 % 0
Schmidt, 1926		20°
% Dv.10 ⁴ %	Dv. 10 ⁴	0 28.89 60 25.40 10 28.00 70 24.95
17° 10 15 60 20 26 70 30 34 80 40 43 100 50 52	58 63 61 30	20 27.33 80 24.60 30 26.65 90 24.18 40 26.25 100 23.78 50 25.65

BENZENE + PROPYL ALCOHOL

G.L.Starobinetz,K.S.Starobinetz and Rigikova, 1951	70 °
mol% σ mol% σ	0 2.185 3.30 2.300
25° 0.00 28.20 59.83 25.11 10.12 27.57 69.82 24.75 19.49 27.01 79.84 24.40	5.21 2.382 9.52 2.593 15.52 2.931 22.15 3.482 34.20 4.631 100 12.39
29.93 26.34 89.78 23.88 39.70 25.83 100.00 23.05 49.77 25.52	
Ishikawa, 1930	Romanow and Eltzin, 1937
mo1% n _D	% ε (w.1. = 57.75 cm)
30°	0 2.27 5 2.38 10 2.51 (w.1. = 91 cm) 25 3.19 75 3.73
0 1.49517 29.3754 1.45828 40.0107 1.45755	75 3.73
49.0197 1.43575 69.2223 1.41380 100.00 1.38174	G.L. and K.S. Starobinetz and Rigikova, 1951
	mol % &
Philip, 1897	25°
% ε	0.00 2.271 10.12 2.823 19.49 3.602
16° 0 2.244 18.653 3.735 31.442 5.962 47.793 9.58 64.631 14.25	19.49 3.602 29.93 4.800 39.70 6.000 49.77 8.080 59.83 10.30 69.82 12.76 79.84 15.64 89.78 18.08 100.00 20.74
Lange, 1925	
% ε	
24°	
0 2.261 3.15 2.412 5.17 2.540 9.46 2.830 15.51 3.381 22.09 4.295 33.90 2.860 100 22.15	
0 2.230 3.19 2.362 5.20 2.469 9.50 2.740 15.41 3.178 34.50 5.251 100 18.12	

	· · · · · · · · · · · · · · · · · · ·					
Girard and Abadie	, 1939 (f	ig.)	Schmidt	, 1 92 6		
w.1.	dispersion	absorption		Q mix	Я	Q mix (cal/g)
3.5 7 10 20 30 50 70	0.09 0.13 0.19 0.33 0.50 0.73	0.14 0.29 0.34 0.40 0.39 0.36	100 80 70 60 50	-0.66 1.32 1.98 2.65 2.93	40 30 20 10	-3.16 3.24 3.02 2.46
100 200 500	0.92 0.98 0.99	0.26 0.12 0.07	Wolf, Pah	lke and Wehage,	1935 (fig.	.)
dispersion ≃ absorption -	$(\epsilon'-\epsilon_0)$ $(\epsilon''/(\epsilon_1-\epsilon_0)$	ε ₁ -ε ₀)	n	101%	Q mix (mole alc	oho1)
			==	209	•	
Heat constants. Timofeev, 1905	-			0.1 1 0.25 60 75	-3900 3600 1800 920 400	
%		U	_	75	160	
	20°					
0 13.1 79.5 100	0. 0.	4233 475 570 579				
Kolossowsky and T Q vap Az = 1	heodorowitch 04.00 cal/g	a, 1935				
Timofeev, 1905						
initial	final	Q dil (mole/alcohol)	_			
0 1.8 5.6 9.4	1.8 5.6 9.4 13.1	-3011 1385 817 610				
100 95.3 90.0 86.5 82.5	95.3 90.0 86.5 82.5 79.3	(mole/benzene) -542 546 533 531 522				

					T		
Benzene (C ₆ H ₆) + Isop	ropyl alcoh	o1 (C ₃ H	80)	Brown, Fock	< and Smith,1956	
Heterogene	eous equilibri	a. -			m c L	o1 % v	
Alsen and	Washburn, 193	7				45.00°	p
mo1%					4.72 9.80	14.67 20,66	252.50
L L	v	р	P1	P ₂	20.47 29.60	26.63 29.53	264.13 272.06 273.40
	25	0			38.62 47.63 55.04	32,11 34,63	272.22 269.49
0.0 5.9	0.0 12.6	- 2.9	21.7	- 104.5	ll 61.98	36.92 39.51 43.78	264.92 259.35 247.70
14.6 36.2 52.1	20.5 25 25.5 25	2.4 8 7.6 8	36.7 30.8	$\substack{109.0\\108.4}$	70.96 80.73 91.20	51.07 66.58	227.14 189.28
1 70.0	36.5 36	0.5 6.4 9.5	75.3 63.4 14.5	105.8 99.8 84.0	96.55 100	82.52	159.80 136.05
83.6 92.4 100.0	63.5 100.0	2.5	24.2	66.4			
					Ryland, 1899		
L Ta-	o1% V	mo1% L	v			%	b.t.
0.0	25					30	79 - 79.5 71 - 72 Az (758 mm)
0.0 11.4 17.3	$0.0 \\ 18.7 \\ 22.3$	63.3 82.0 86.1	33.4 45.0 50.8		·	·	
22.4 33.0 43.0	22.3 23.1 24.6 27.0	91.0 94.8	59.8 73.9		Young and Fo	rtey, 1902	
53.6	29.0	100.0	100.0			R	b.t. (760 mm)
			==			33.3	71.92 Az
Storonkin	and Morachevsl	kii, 1956			dp/dt (at l	100 b.t.) = 26.6 mm	82.44
1	mo1%	p	b.	t.			
L	v						
20.0	26.0 28.5	243.5 418.6	55	.38 .91	Lecat, 1949		
	$\frac{30.0}{31.5}$	600.5 782.1	65 7 3	.75 .56		%	b.t.
40.0	32.3 35.7	254.6 412.0	55	.40 .37		0 33,3	80.2 71.9 Az
	38.4 40.2	600.8 781.8	65 7 2	.30 .72		100	71.9 Az 82.45
60.0	37.7 42.0	258.7 416.5	44 56	.95 .50			
	46.5 48.1 48.2	601.6 781.7 166.5	66 7 3	. 20 . 35	de Kolossows	ky and Alimow, 1	1935
80.0	55.6 61.0 62.4	321.9 596.6	38 53 68	.77 .51 .61		%	b.t. (760 mm)
	62.4	781.6	75 	.85		0	80.2
						100	71.95 Az 82.35
					l		

				Nohowei 1020
Kreglewski	, 1955			Mahanti, 1929
	/t%	mo1%	C.V.T.	mo1% d
25 7	0 15.0 16.1 7.0 3.7	0 30.2 62.4 81.3 95.1	288.80 267,50 249.00 240.90 236.70 235,35	25° 0.00 0.872 7.91 0.864 14.72 0.857 16.98 0.854 21.17 0.851 24.76 0.848 32.72 0.842 100 0.789
Perrakis,	1925			
mo1%	f.t.	mo1%	f.t.	Washburn and Lightbody, 1930
		45.10	~ ^	mol% d
0 4.46	+ 5.4 4.2	65.12 68.96	-7.8 10.1	25°
5.62 15.51 21.29 32.01 37.80 43.00 47.41 50.99 55.20 61.08	3.8 2.3 1.65 +0.7 -0.2 1.0 1.75 3.0 3.9 -6.0	74.00 79.14 83.91 87.90 90.88 94.49 96.72 97.29	12.6 17.5 22.7 30 37 46 63 79 - 86	0 0.87284 15.9 0.86709 11.5 0.86201 17.2 0.85720 28.1 0.84797 54.0 0.82646 77.9 0.80661 86.9 0.79898 91.3 0.79513 95.7 0.79119 100 0.78742
01sen and	Washburn, 19	935 %	D f.t.	Poltz, 1936
0.786	-0.622	8,952	-3.075	тю1% d
2.013 2.530 3.772 7.451	1.214 1.358 1.740 2.639	12.94 14.49 17.40 19.77	3.903 4.141 4.655 5.225	22° 0 0.8767 20.604 0.8572 33.008 0.8462 45.160 0.8356
	of phases.			56,917 0,8251 68,519 0,8146 79,285 0,8046 89,792 0,7946 100 0,7840
Perrakis,				- 18.14
mo1%	4	mo1%	d	Olsen and Washburn, 1938
^		20°		% d % d
0 6.81 17.08 21.18 25.93 37.66 45.93	0.8778 0.8778 0.8658 0.8651 0.8596 0.8517 0.8459	53.84 63.67 74.48 82.30 89.20	0.8402 0.8330 0.8247 0.8184 0.8127 0.8027	25.00° 0.00 0.8737 57.53 0.8156 8.99 0.8625 67.90 0.8069 18.36 0.8520 78.69 0.7982 27.33 0.8441 89.22 0.7895 37.42 0.8333 100.00 0.7808 47.06 0.8248

BENZENE + ISOPROPYL ALCOHOL

%	η	%	ŋ	Brown, Fock a	nd Smith, 19	956.	
0.00	_	5.00° 57.53	893.6	mol %	n _D	mol %	n _D
8.99 18.36 27.33 37.42 47.00	604.2 598.2 605.7 647.6 704.2 780.0	67.90 78.69 89.22 100.00	1067 1300 1592 2083.3	0 5,28 10,67 20,87 30,57 39,31	25. 1.49799 1.49150 1.48511 1.47317 1.46182	49.80 50.17 59.83 71.31 80.53	1.43899 1.43853 1.42681 1.41256 1.40083
Ishikawa,	1930			39.31 48.98 49.32	1.451499 1.43997 1.43952	90.33 94.94 100	1.38805 1.38189 1.3 7 503
mol %	n _D	mo1 %	n _D	Mahanti, 192	29		
0.0000 28.9226 48.1970	1.495 17 1.45468 1.43084	68.8145 100.0000	1.40709 1.37355	mol %	ε	mol %	ε
Poltz, 193				0.00 7.91 14.72 16.98	2.26 2.58 2.89 3.01	21.17 24.76 32.72 100	3.01 3.16 3.46 4.06
mo1%	5893 Å	n 5000 Å 450	00 Å 4000 Å	Poltz, 1936			
0 20.604 33.008	1.4760 1.4613	1.4845 1.4 1.4691 1.4	5187 1.5316 1922 1.5038 1760 1.4866	mo1%	(α) ^{mol} mag	n. (in min.) 5000 Å	4500 Å
45.160 56.917 68.519 79.285 89.792 100	1.4324 1.4180 1.4044 1.3907	1.4388 1.4 1.4238 1.4 1.4093 1.4 1.3951 1.3	1601 1.4698 1445 1.4532 1287 1.4363 1138 1.4205 1987 1.4041 1838 1.3886	0 20.604 33.008 45.160	2.661 2.293 2.070 1.863	3.941 3.372 3.041 2.721	5.128 4.381 3.943 3.520
01sen and	Washburn, 19	937 mol %	n_	56.917 68.519 79.285 89.792 100	1.660 1.464 1.283 1.111 0.945	2.420 2.124 1.860 1.594 1.342	3.120 2.726 2.375 2.027 1.695
0.0 22.2 33.0	1,49800 1,47159 1,45954	25° 53.6 64.0 82.3	1.43444 1.42162 1.39861	mo1%	(α) ^{mol} mag	n. (in min.) 3500 Å	3000 Å
Joffe and	1.44725 Morachevskii	, 1955	1.37479	0 20.604 33.008 45.160	7.033 5.984 5.368 4.774	10.40 8.810 7.862 6.042	17.81 14.85 13.17 11.47
mo1%	n _D	mo1% 20°	n _D	56.917 68.519 79.285 89.792	4.207 3.659 3.158 2.678	6.083 5.243 4.469 3.747	9.924 8.394 7.013 5.714
0 9.05 13.08 17.35 20.00 26.00 29.78	1.4852 1.4802 1.4770 1.4699	33, 88 38.97 40.00 50.00 60.00 80.00 100	1.4608 1.4548 1.4536 1.4412 1.4291 1.4040 1.3773	100	2.216	3.031	4.458

Heat constants	Giacalone, 1942
de Kolossowsky and Alimow, 1935	% Df.t. % Df.t. % Df.t.
() vap Az = 118.33 cal/g	0.518 -0.37 23.13 -5.03 53.18 -12.64 1.215 0.75 27.40 5.76 54.99 13.41 2.07 1.08 31.22 6.44 56.62 14.24 3.07 1.39 34.53 7.11 57.97 14.70 4.69 1.78 37.47 7.71 65.19 16.40
mol % Q mix mol % Q mix (mole alcohol) (mole alcohol)	7.03 2.26 40.26 8.40 70.07 20.80 10.10 2.82 43.67 9.24 79.05 28.70 13.52 3.41 46.89 10.14 83.88 36.40 18.55 4.22 48.80 10.75 90.73 52.40
0.1 -4200 25 -1160 1 -4000 50 -600 10 -2000 75 -250	Perrakis, 1925
10 -2000 73 250	mol% d mol% d mol% d
Brown, Fock and Smith, 1956 mol % Q mix mol % Q mix 45° 11.8 277.96 49.5 403.19	0 0.8778 21.94 0.8609 49.87 0.8424 4.96 .8739 29.86 .8554 64.42 .8336 8.83 .8705 30.59 .8550 80.94 .8233 14.14 .8665 36.86 .8507 89.94 .8176 15.14 .8652 41.90 .8476 100 .8108
11.8 277, 96 49.5 403.19 13.1 289.91 49.9 391.48 23.3 370.93 57.1 369.97 28.4 392.24 58.1 363.52 49.0 395.54 81.6 207.07	Lange, 1925
D. A.C.II. N. I.	* d
Benzene (C ₆ H ₆) + Butyl alcohol (C ₄ H ₁₀ O) Allen, Lingo and Felsing, 1939 mol \$ p p p	20° 0 0.878 15.61 0.868 45.72 0.846 4.48 0.877 25.18 0.821 100 0.821 9.97 0.873 33.38 0.854
25.0°	Smyth and Stoops, 1929
20.0 89.4 85.3 4.0 32.2 84.9 80.7 5.1	t d
50.0 77.8 72.4 5.5 65.0 67.3 61.9 5.5 80.3 50.5 45.8 5.8 100.0 6.4 - 6.4	0 mol \$ 2.11 mol \$ 5.78 mol \$ 10 0.8899 0.8875 0.8843 20 .8791 .8768 .8738 30 .8682 .8661 .8632
mol % mol % L V	40 .8574 .8553 .8528 50 .8466 .8447 .8421 60 .8358 .8338 .8311
25° 19.7 4.5 65.0 8.1 31.3 5.9 79.8 11.3 50.0 7.0	70 .8250 .8231 .8263 7.98 mol \$ 11.17 mol \$ 25.25 mol \$ 10 0.8824 0.8801 0.8693 20 .8719 .8695 .8591 30 .8615 .8591 .8489
Perrakis, 1925	40 .8512 .8489 .8388 50 .8403 .8378 .8284 60 .8296 .8270 .8180 70 .8188 .8162 .8076
mol % f.t. mol % f.t. mol % f.t.	48.39 mol % 73.85 mol.%
0.00 +5.4 42.45 - 2.0 79.84 -23.2 3.40 +4.1 50.12 - 3.8 84.54 -31.0 15.29 +1.75 54.54 - 4.75 91.14 -47 15.25 +0.55 58.00 - 6.1 96.73 -61 18.97 +1.0 62.72 - 8.9 98.64 -81 31.44 -0.1 66.33 -11.0 100 -78 38.99 -1.25 71.83 -15.3	10 0.8523 0.8354 20 .8430 .8269 30 .8334 .8182 40 .8240 .8095 50 .8142 .8007 60 .8048 .7917 70 .7948 .7826

							
Giacalone, 19	942						
				Trieschmann	, 1935		
М	đ	M	d	mol %	σ	mo1 %	
	27.5	0					<u> </u>
3.39	0.8498	0.85	0.8637			2 °	
2,54	0.8525	0	0.8700	0 7.36	28.6 ₄	38.37	26.55
1.69	0.8586			14.34	28.1 ₂	55.71 100	25.81
				24.44	28.1 ₂ 27.7 ₉ 27.2 ₆	100	24.3
Harms, 1943							
	d	I d	d	ii .			
mol %		mol %		Giacalone, 1	1942		
	22	•					
0	0.87643	30.016	0.85355	M	·····	M	σ
4.546	0.87248	40.219	0.84657		27	.5°	
8.027	0.86970	59.988	0.83360	3.39		0.85	27 45
11.969	0.86665 0.86220	79.510 90.011	0.82115 0.81446	2.54 1.69	26.62 26.80 27.05	0.83	27.45 27.95
17.921 21.578	0.85953	100.000	0.80807	1.69	27.05	-	
25.788	0.85653						
				- [[
Jones, Bowder	and al., 19	948		Wolf, 1943			
				mo1 %	σ		σ
, % 	d	%	d	_		mol %	 -
	25°					?0°	
0	0.8731		0.0433	10	28.82 27.25	75	25.11
0 5	0.8689	40 50	0.8433 0.8367	25	27.25 27.25	80 100	24.60
10	0.8650	60	0.8304	25 50	26.00	100	24,30
15	0.8610	80	0.8180				
20	0.8570	100	0.8064	_			
				-			
G.L. and K.S.	Starobinetz	and Rigik	ova, 1951	G.L. and K.S	. Starobinet	z and Rigikova	, 1951
	d	mo1%	d	mol %	σ	mol %	σ
mo1%	u	11017	u	-			
	25	5°		0.00	20.20	40.03	
0.00	0.8733	60.01	0.8319	10.16	28.20 27.37 26.80	60.01	25.22
10.16	0.8663	69.68	0.8272	1 20.05	26,80	69.68 79.48	24.80 24.50
20.05	0.8587 0.8529	79.48 89.75	0.8206 0.8134	29.74 39.65	26.34	89.7 5	24,29
29.74 39.65	0.8329	100.00	0.8072	39.65 50.57	25.86	100.00	23,60
50.57	0.8381	100.50	· · · · · · · · · · · · · · · · · · ·	30.37	25,52		
Jones, Bowden	and al., 19	48		Ishikawa, 193	30		
				-	· ·		
8	η	%	η	_ mol %	$^{\mathbf{n}}\!_{\mathbf{D}}$	mol %	n _D
	25°				·	30°	·
0	603	40	842	0.0000			_
0 5	604	50	1006	0.0000 29.3922	1.49517 1.46226	70.1595	1.42230
10	620	60	1178 1684	49.1946	1.44227	86.3470 100.0000	1.40758 1.39548
15 20	640 664	80 100	2587				1.07040
				=			
				l			
				1			
ľ							

Allen, Lingo and Felsing, 1939.	G.L.Starobinetz, K.S.Starobinetz and Rigikova, 1951
25° 1 (200	mol% ε mol% ε
39.7 1.4927 34.3 1.4910 50.0 1.4897 65.0 1.4886 79.8 1.4850	25° 0.00 2.271 60.01 9.054 10.16 2.545 69.68 11.14 20.05 3.328 79.48 13.30
100.0 1.3974	29.74 4.256 89.75 15.58
Shakhparonov and Shlenkina, 1954	39.65 5.652 100.00 17.38 50.57 7.376
mo1% n2° D (19-20°) I	The constants
0 1.50013 0.433 2.95 20 1.47434 0.318 3.20 35 1.46420 0.243 3.49	Heat constants.
49 1.44862 0.218 3.11	Perrakis, 1925
65 1.43265 0.223 2.16 80 1.41746 0.209 1.59	mol% U mol% U
100 1.39914 0.110 0.73	20°
D - degree of the optical depolarisation.	
I - relative intensity of the molecular light	0 0.409 55.15 0.522 8.32 0.453 66.41 0.533
dispersion.	21.41 0.480 73.14 0.543 31.24 0.495 88.08 0.554
	40.52 0.506 100 0.558
Lange, 1925	
% ε % ε	
20°	Wolf, Pahlke and Wehage, 1935 (fig.)
0 2.270 25.18 3.979 4.48 2.452 33.38 5.022	mol% Q mix
9.97 2.703 45.72 6.701	(mole alcohol)
15.61 3.071 100 19.2	20°
Smyth and Stoops, 1929	0,1 -3950
t E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 2.11 5.78 7.98	25 960 50 440 75 150
10 2.315 2.400 2.548 2.655	
10 2.315 2.400 2.548 2.655 20 2.294 2.378 2.526 2.631 30 2.274 2.354 2.502 2.600	
40 2.253 2.330 2.473 2.565	
60 2.209 2.274 2.401 2.480	
70 2.186 2.243 2.355 2.435	
t E	
11,17 25,25 48,39 73,85	
mo1%	1
10 200	
10 2.835 4.066 8.29 14.03 20 2.797 3.833 7.58 12.84 30 2.756 3.747 6.94 11.72	
30 2.756 3.747 6.94 11.72 40 2.713 3.604 6.37 10.68	
50 2.665 3.472 5.96 9.74	
60 2.612 3.350 5.43 8.91 70 2.555 3.238 5.03 8.11	
	1

Benzene (C_6H_6) + Isobutyl alcohol ($C_uH_{10}O$)	
Allen, Lingo and Felsing, 1939	Lecat, 1949
mo1% P P ₁ P ₂	% b.t. Dt mix
L V	0 80.15 9.3 79.8 Az
25,0°	50 -6.3 100 108.0
0.0 0.0 94.4 94.4 - 20.2 7.2 93.2 86.4 6.7 34.3 8.7 89.3 81.5 7.8 49.8 9.9 83.7 75.4 8.3	Rabcewicz-Zubkowski, 1933
64.0 12.8 75.3 65.7 9.6 80.5 18.7 56.8 46.2 10.6	Az % p t
100.0 100.0 12.6 - 12.6	45.6 15 15.5
	45.6 15 15.5 56.6 - 20 62.5 - 34.5 67.6 760 90 69.1 6.33 atm. 148
Kreglewski, 1955	
wt% mol% C.V.T.	Lange, 1925
100 100 276.25 93.1 93.5 276.00	\$ d
78.6 79.5 275.30 62.9 64.1 275.30	20°
20.0 20.8 281.85 6.9 7.2 286.45 0 0 288.80	0 0.878 5.21 0.875
min.: 72 wt% 275.10	10.64 0.869 20.01 0.861
	35.42 0.854 100 0.806
Young and Fortey, 1902	
% b.t. (760mm)	Mahanti, 1929
9.3 79.84 Az 100 108.06	nol% d
dp/dt (at b.t.) = 24.0 mm	25°
	0.00 0.872 3.06 0.868
	9.48 0.864 15.30 0.860 19.22 0.855 23.17 0.853
de Kolossowsky and Theodorowitch, 1935	28.72 0.849
% b.t.	100 0.806
0 80.2 - 79.8 Az 100 107.85	Harms, 1943
	n:01% d mo1% d
	22°
	0.000 0.87636 41.868 0.84151 3.363 0.87305 47.751 0.83715
	6.955 0.86972 61.976 0.82684 10.769 0.86643 78.763 0.81503 15.815 0.86213 91.184 0.80646
	25.315 0.85422 100.000 0.79983 35.013 0.84572

Ishikawa, 1930	
mol% n _D	Romanov and Eltzin, 1937
30°	g E
0.0000 1.49517 29.1308 1.46116 48.8239 1.44026 69.1479 1.42025 100.0000 1.39163	75 8.70 25 3.52 10 2.54 0 2.27
	Timofeev, 1905
Allen, Lingo and Felsing, 1939	<pre></pre>
mol% n _D	
0.0 25° 1.4980 20.0 1.4892 34.3 1.4874 49.8 1.4848	100 93.5 -760 93.5 89.2 -753 89.2 85.0 -711 85.0 80.1 -711
60.4 1.4827 80.5 1.4759	% U
100.0 1.3936	20°
Lange, 1925	0 0.4233 18 0.505 82.3 0.571 100 0.579
mol% ε	
20° 0 2.270 5.21 2.494 10.64 2.742 20.01 3.410 35.42 5.083 100 20.2	de Kolossowsky and Theodorowitch, 1935 Q vap Az = 93.65 cal/g.
Mahanti, 1929	
mol% ε	
25° 0.0 2.26 3.06 2.38 9.48 2.42 15.30 2.62 19.22 3.16 23.17 3.38 28.72 3.81	

BENZENE + TERT, BUTYL ALCOHOL

Benzene (C ₆ H ₆) + Butyl alcohol (C ₄ H	100)	411 14	and Fo	elsing, 1939		
Locat 1040		Allen, Li				
Lecat, 1949			mo1%		n _D	
% b.t. Dt mi 0 80.15 - 164.1 17 78.55 Az - 100 99.5 -	x		0.0 19.7 35.3 50.0 64.6 79.7 100.0	25°	1.4980 1.4845 1.4821 1.4756 1.4669 1.3946	
Pahlavouni, 1927		Veltmans,	1926			
mol % mol %			mo1%	(α) D		
L V L	V					 .
at b.t.	47. 4			20°		
9.8 11.6 65.4 11.4 12.8 71.2 15.2 15.2 81.5 30.0 21.1 84.2 46.3 28.7 88.3 51.0 30.9 91.6 53.9 33.3 95.7	41.4 46.5 56.9 62.2 70.4 78.1 88.7		0 20 39.6 59.9 79.5	0 2.86 5.63 8.35 10.79 13.87		
Az: 15.15 mol % 79°						
Allen, Lingo and Felsing, 1939				tert. Butyl a	alcohol ((_ц Н ₁₀ 0)
mol % p p ₁	p ₂	mo	01%	p	D.	
L V		L	V	P	P1	P ₂
25.0° 0.0 0.0 94.4 94.4 9.5 - 96.4 - 19.7 11.2 95.1 84.5 35.3 13.3 91.0 78.9 50.0 15:0 85.4 72.5 64.6 18.5 76.9 62.7 79.7 26.2 60.7 44.8 100.0 - 18.4 -	10.7 12.1 12.8 14.2 15.9 18.4	0.0 10.0 19.8 35.1 49.9 65.2 80.2 100.0	0.0 13.0 19.6 24.5 29.1 35.2 45.5 100.0	25.0° 94.4 105.7 106.5 104.3 100.2 92.8 80.5 42.0	94.4 91.1 85.7 78.7 71.0 60.1 43.9	13.6 20.9 25.6 29.2 32.7 36.6 42.0
Veltmans, 1926						
% d %	đ		_			
20 °		Young and I	Fortey, 19	002		
0 0.8790 59.9 20 .8616 79.5	0.8317 .8193		%	b.t	. (760 mm)	
39.6 .8450 100.	.8069		36.6	73.	95 Az	
Pahlavouni, 1927		dp/dt (2	100 at b.t.) =	82.1 26.0 mm	3 3	
mol % n _D mol %	n _D					
20.0° 0.00 1.50128 64.33 12.12 .48657 72.44 18.02 .47980 89:39 34.53 .46178 100.00 41.94 .45380	1.43140 .42366 .40768 .39780					

Lecat, 1949	Benzene (C ₆ H ₆) + Amyl alcohol (C ₅ H ₁₂ O) Giacalone, 1942					
# b.t.	% Df.t. % Df.t.					
0 80.15 36.5 73.9 Az 100 82.45	0.339 -0.21 32.25 -6.77 0.861 0.49 36.79 7.90 1.71 0.85 40.66 8.78 3.40 1.34 43.56 9.67 5.99 1.92 46.47 10.50 9.09 2.52 51.56 12.45					
Spells, 1936	12.75 3.15 54.02 13.60 16.71 3.82 55.76 14.44 20.45 4.48 58.05 15.12 25.27 5.38 60.13 16.63 27.91 5.87 61.84 17.68					
Я d п						
25° 0 0.87341 602 0.998 0.87200 598.65	Ishikawa, 1930 mol% n _D					
1 930 0.87060 596.58 2.570 0.86978 595.80 3.225 0.86885 595.45 4.162 0.86761 595.40 4.759 0.86683 595.39 5.979 0.86530 596.60 7.210 0.86370 598.00 8.000 0.86270 599.53 15.28 0.85465 620.08 23.76 0.84600 657.70 50.08 0.82095 886.03	30° 0,0000 1,49517 28,3887 1,46653 48,5606 1,44308 68,2705 1,43135 85,5892 1,41747 100,0000 1,40640					
89.80 0.79125 2578.9 100 0.78462 4190.5	Jones, Bowden and al., 1948					
Allen, Lingo and Felsing, 1939	25° 0 0.8731 603 5 0.8690 616 10 0.8651 641					
mol% n _D	15 0.8613 669					
25° 0.0 1.4980 10.0 1.4798 19.3 1.4712 35.1 1.4650 49.9 1.4593 65.2 1.4520	20 0,8574 709 40 0,8435 936 50 0,8377 1132 60 0,8312 1360 80 0,8194 1963 100 0,8083 3347					
65.2 1.4520 80.2 1.4400 100.0 1.3845						
Wolf, Pahlke and Wehage, 1935 (fig.)						
mol% Q mix (mole alcohol)	_					
20° 0.1 -3800 1 3700 10 1800 25 1000 50 480 75 190						

	II.
Benzene (C_6H_6) + Isoamyl alcohol ($C_5H_{12}0$)	Burwinkel, 1914
Burwinkel, 1914	% d
t p t p	17°
10 1.2 80 103 20 2.3 90 162 30 5.0 100 247 40 10.0 110 372 50 20.1 120 539 60 38.8 130 744	100 0.81407 83.265 0.82440 69.266 0.83285 50.785 0.84474 28.706 0.85202 17.789 0.86901 0.000 0.88445
t p	Lange, 1925
83.27% 69.27% 50.79% 28.71% 17.79% 0%	% d
10 22.3 33.8 40 42.8 44.0 46.8 20 39.5 52.9 64.8 71.0 75.2 76.9 30 56.7 80.1 99.7 112 117 124 40 85.8 123 150 171 175 186 50 120 175 215 249 258 275 60 170 255 315 364 378 397 70 244 347 439 509 533 560 80 326 466 594 696 724 762	18° 0 0.880 3.32 0.876 6.78 0.873 11.11 0.869 20.21 0.862 32.52 0.853 49.92 0.841 73.10 0.824 100 0.807
	64°
Kreglewski, 1955	0 0.843
wt% mo1% C.V.T.	4.02 0.840 7.62 0.838 12.21 0.834
100 100 306.25 76.4 74.2 299.70 63.0 60.1 295.70 39.0 36.2 290.65 25.1 22.9 289.00 15.3 13.8 287.80 3.2 2.8 287.95	20.89 0.829 33.41 0.822 50.53 0.812 74.82 0.799 100 0.787
3.2 2.8 287.95 0 0 288.80 min.: 9 wt% 287.70	Mahanti, 1929
	mol% d
	25°
Young and Fortey, 1902 - No azeotrope	0.00 0.872 4.38 0.866 7.73 0.864 11.47 0.862 17.10 0.859 22.82 0.853 27.96 0.848 100 0.810

Spells, 1936	
% d % d	Lange, 1925
20°	p ε
0 0.87875 20.44 0.86242 0.70 0.87805 23.51 0.86015 1.349 0.87750 26.47 0.85807 1.950 0.87695 32.93 0.85353 2.794 0.87620 43.05 0.84681 4.345 0.87490 49.00 0.84299 5.562 0.87390 66.55 0.83247 6.322 0.87323 80.20 0.82481 6.940 0.87275 90.10 0.81947 9.870 0.87040 100 0.81411 14.64 0.86670	18° 0 2.273 3.32 2.392 6.78 2.605 11.11 2.828 20.21 3.265 32.52 4.110 49.92 7.705 73.10 14.21 100 14.79
Muchin, 1913	0 2.190 4.02 2.296 7.62 2.427
% d n	12.21 2.661 20.84 3.168
18.4° 0 0.8800 675.2 0.90 0.8800 675.1 1.69 0.8798 674.2 2.46 0.8792 680.6	33.41 3.535 50.53 5.542 74.82 10.42 100 11.95
2.46 0.8792 680.6 3.52 0.8785 679.6 7.94 0.8754 695.0 11.19 0.8727 718.9 15.43 0.8686 754.4	Mahanti, 1929
26.00 0.8587 956.1 100 (18.7°) 0.8116 4716.9	mo1% ε
	25°
Spells, 1936	0.00 2.26 4.38 2.44
	7.73 2.57 11.47 2.72
20° 0 _ 647	17.10 2.78 22.82 3.24 27.96 3.24 100 3.44
0.70 645.03 23.51 757.23 1.349 644.60 26.47 783.34 1.950 644.33 32.98 855.04 2.794 644.52 43.05 1005.5 4.345 647.32 49.00 1114.7 5.562 650.54 66.55 1661.4 6.322 653.34 80.20 2437.8 6.940 655.01 90.10 3244.8 9.870 667.30 100 4375.7	Timofeev, 1905
14.64 693.46	2 0°
Ishikawa, 1930	0 0.4233 83.3 0.531 100 0.5542
mo1% n _D	% Q di1
30°	initial final (mole benzene)
0.0000 1.49517 29.2882 1.46484 49.1267 1.44628 69.5145 1.42864 100.0000 1.40405	100 95.3 -699 95.3 91.1 697 91.1 87.5 690 87.5 83.3 682

Benze	ne (C ₆	H ₆) + Amy1	alcohol (ess	entially iso) (C ₅ H ₁₂ O)	Roman	ow and Elt	tzin, 1937			
Carna	zzi, 19	0.5		5124 /	8		ε	%		ε
Carna			4		-	25∘				
	% <u>.</u>	d	%	d	- 10		2.27 2.44	25 7 5	3	3.04 1.29
	•		20°	0.0403						
	0 5.68 11.88 25.51	0.8773 0.8739 0.8714 0.8638	53.48 82.18 93.48 100	0.8493 0.8234 0.8157 0.8088		ie (C ₆ H ₆) + Diethyl	carbino	l (C ₅ H ₁₂	0)
t			τ.106		%	d	n	%	d	ŋ
	0%	5.68%		25.51%	-	0 07075	20		0.06005	640.21
25 30 35 40 45 50	1214 1230 1243 1255 1258 1285	1205 1216 1224 1238 1247 1273	1198 1204 1215 1226 1240 1253	1159 1178 1184 1197 1204 1213	0 0.716 1.412 2.246 2.813 3.757 3.872	0.87875 .87801 .87730 .87648 .87593 .87508 .87500	647 642.55 638.64 635.68 635.68 637.81 641.69 625.58	9.640 19.94 29.71 40.43 49.82 67.90 79.60 90.12	0.86985 .86170 .85444 .84698 .84094 .83047 .82456	640.21 687.02 729.55 802.10 919.81 1375.0 2031.2 3041.7
t	53.48		.10 ⁶ % 93.48%	100%	5.490 7.220	. 87340 . 87194	625.58	100	. 81969 . 81546	3041.7 4645.8
					- 0 1.241	0.87875 .87750	647 643.33	3.155 4.162 4.690	0.87560 .87470	640. 72 639.91
25 30 35 40 45 50	1088 1100 1115 1125 1129 1145	976 998 1014 1020 1024 1039	941 954 958 971 982 997	923 931 941 946 956 967	1.241 2.370 2.741	. 87638 . 87600	641.10 644.10	4.690 6.260	.87415 .87271	640.10 641.37
P			π		Benzei	ne (C ₆ H ₆) + tert.A	myl alcoh	ol (C ₅ H	20)
		0 % 11	.88 % 25.51 25°	8 53,48 %	Lange	, 1925				
50 200		102 98	98 95 94 86	93 87		%	đ		£	
400 600 800		87 79 73	98 95 94 86 82 77 77 73 72 69	78 73 68			2	4°		
P			π		-	$\frac{0}{3.10}$	0.87 0.87	1	2.261 2.350	
		82.18 %	93.48 %	100 %		5.15 10.21 35.18	0.86 0.86	5	2.400 2.531	
50 20 0		91	5° 89	87		50.22 100	0.84 0.83 0.80	6	3.180 3.579 5.849	
400 600		86 79 73	89 85 78 72	82 77 71						
800		69	68	66	Hasse	l and Naes	shagen, 193	2		
Phili	p. 1897				`	т	no1%	3		
		Ε	<i>d</i>		-		18°			
0 3. 6.	569 890 401		% 16° 15.507 26.812 31.107	3.616 4.794 5.335	-	1	0 7.951 3.73 0.22	2.29 2.32 2.33 2.35	06 83	
===										

BENZENE + HE XANOL

Benzene (C_6H_6) + Hexanol ($C_6H_{1\mu}0$)	Wolf, 1943
Giacalone, 1942	mol%
	20°
% D f.t. % D f.t. 0.487 -0.27 32.16 -6.12 1.322 0.65 36.71 7.12 201 36.71 7.12	0 28.62 10 28.05 25 27.52 50 26.70
3.01 1.14 42.00 8.40 5.37 1.63 45.36 9.35 8.32 2.14 47.69 10.00 12.80 2.84 54.18 12.50 16.50 3.41 56.16 13.46 20.95 4.12 59.03 14.82 25.10 4.82 63.03 16.75 28.77 5.50	75 26.40 90 26.30 100 26.25
20.77 5.00	Trieschmann, 1935
	mol% o
Harms, 1943	22°
mo1% d	$0 28.6_{4} \ 11.13 28.2_{3}$
22°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.000 0.87630 2.802 0.87354 6.916 0.86992 10.156 0.86726	60.00 26.5 ₉ 100 26.2 ₃
14, 357 0, 86384 30, 153 0, 85296 45, 266 0, 84464 59, 055 0, 83806 75, 029 0, 83129	Wolf, Pahlke and Wehage, 1935 (fig.)
91.674 0.82501 100.000 0.82208	mol% Q mix (mole alcohol)
	20°
Jones, Bowden and al., 1948	0.1 -4000 1 3800
	10 1900 30 1000
	50 400
25°	Benzene (C_6H_6) + 2-Methylpentanol (C_6H_{14} 0)
0 0.8731 603 5 0.8693 615 10 0.8654 633	Harms, 1943
15 0.8620 663 20 0.8587 709	tio1% d
40 0.8456 980 50 0.8396 1195 60 0.8338 1505	22°
80 0.8230 2444	0.000 0.87658
0.8124 4329	3.201 0.87310 7.136 0.86941 9.553 0.86724
	14.837 0.86276 22.224 0.85705
	29.796 0.85174 44.236 0.84291
	59.894 0.83494 75.748 0.82817
	$\begin{array}{ccc} 90.691 & 0.8\overline{2260} \\ 100.000 & 0.81941 \end{array}$

Benzene (C_6H_6) + Octyl alcohol ($C_8H_{18}O$)	Benzene (C_6H_6) + Decyl alcohol ($C_{10}H_{22}0$)
Biltz, 1899	Hoerr, Harwood and Ralston, 1944
	f.t. %
	-7.5 38.0 E
17.04 -2.974 10.87 2.125 5.030 1.281	+6.88 100.0
5.030 1.281 1.671 0.570 0.268 0.099	
•••	
	Benzene (C_6H_6) + Tripropylcarbinol ($C_{10}H_{22}0$)
Benzene (C_6H_6) + 2-0ctanol d ($C_8H_{18}O$)	Hassel and Naeshagen, 1932
	molarity ε
Rule, Smith and Harrower, 1933	18°
mo1% (ω) mo1 mo1% (α) mo1 su6;	0.0 2.2951 0.07894 2.3192
20°	0.1439 2.3386 0.1977 2.3539
3.5 +19.3 34.6 15.46 7.2 18.2 36.3 15.52 11.9 17.2 38.8 15.40	
17.0 16.65 43.6 15.44	
24.4 16.12 53.2 15.20 26.6 15.97 64.7 15.09 29.2 15.87 78.9 15.13	Benzene (C_6H_6) + Undecyl alcohol ($C_{11}H_{24}0$)
29.2 15.87 78.9 15.13 30.8 15.71 100.0 15.24 33.1 15.62	Mahanti, 1929
	mo1% d &
	25°
Benzene (C_6H_6) + 2-Octanol r ($C_8H_{18}O$)	0.00 0.872 2.26 1.15 0.869 2.27
	2.17 0.866 2.32 3.34 0.865 2.38
Coppock and Goss, 1939	5.29 0.864 2.44 7.19 0.862 2.53
molβ d ε	9.62 0.859 2.65 12.47 0.856 2.74
20°	100 6.833 -
0 0.8785 2.2813 1.387 0.8770 2.3308	
2.420 0.8755 2.3670 2.938 0.8749 2.3867 3.294 0.8739 2.3977	
7.302 0.8605 2.5205	Benzene ($C_6 H_6$) + Dode cyl alcohol ($C_{12} H_{26} O$)
25.393 0.8526 3.068 36.130 0.8451 3.455	Hoerr, Harwood and Ralston, 1944
62.086 0.8319 4.815 100 0.8204 8.173	f.t. %
	2.5 23.9 E 10.0 58.2
	20.0 93.3 23.95. 100
ı	

BENZENE + TETRADECYL ALCOHOL

Mahanti, 192	9	
mol	%	ε
	2.	5°
0.0 0.6 1.3 2.9 7.5 9.9 13.9	3 2 0 0 6 8	2. 28 2. 23 2. 32 2. 35 2. 41 2. 53 2. 62 2. 80
Benzene (C ₆ 1		adecyl alcohol (C ₁₄ H ₃₀ O)
	f.t.	Я
	5,2 10,0 20,0 30,0 38,26	6.5 E 12.4 42.5 78.0 100
Benzene (C ₆ H Mameli, 1903	10.0 20.0 30.0 38.26	12.4 42.5 78.0
	10.0 20.0 30.0 38.26	12.4 42.5 78.0 100

Hoerr, Harwood	and Ralston	, 1944		
	f.t.	%		
	5.5 10.0 20.0 30.0 40.0 49.62	1.7 2.7 11.9 42.2 75.2 100	Е	
Innes, 1918				
wt%	mo1%	<u> </u>	p	
	75°			i
0 4.50 9.40 18.7 27.6 38.0 47.1 58.2	0 1.49 3.24 6.87 10.92 16.5 23.0 30.9		652.4 641.5 632.0 610.5 589.0 556.6 520.0 471.8	,
Benzene (C ₆ H ₀				80)
	f.t.	×		
	5.5 10.0 20.0 30.0 40.0 50.0 57.98	0.8 1.2 4.0 18.2 49.5 81.1	E	

Benzene (C_6H_6) + Allyl alcohol (C_3H_60)	Benzene (C ₆ H ₆) + Propyle	ne glycol	(C ₃ H ₈ O ₂)
Ryland, 1899	Francis, 1944			
% b.t.	C.S.T. = 90°			
0 79 - 79.5 20 76 - 77 Az 100 95 - 96	Benzene (C ₆ H ₆		ene glycol	(C ₄ H ₁₀ O ₃)
	Johnson and Fr	ancis, 1954		
Lecat,1949	%	sat.t.	%	sat.t.
% b.t.	2.7 5.2 7.05	19 45 56	43.6 46.5 53.0 64.2	88.5 88.5 86 67 42.5
0 80,15 17.3 76.8 Az 100 96.85	7.9 12.5 19.1 23.2 28.4 37.4	60.5 74.5 81.5 85 87 87	68.2 68.5 68.8 69.0 69.2	42.5 45 43 5 5
Wallace and Atkins, 1912	40.6	88		
Az: 17.36% 79.75°	Francis, 1944			
% d				
0° 0 0.90006 15.81 0.89332	C.S.T. = 92°			
18.77 0.89228 100 0.86900	Leibnitz, Kon	necke and Ni	ese, 1957	
	t L ₁	d L ₂	σ inter (L ₁ /L ₂)	
Benzene (C_6H_6) + Ethylene glycol ($C_2H_6O_2$)	20 1.0241 40 .0068	0.8892 .8726	0.511 .447	
Francis, 1944	60 0.9833	. 8587	,313	
C.S.T. = 180°	Benzene (C ₆ H	6) + Triethy	ylene glyce	ol (C ₆ H ₁ ,0,)
Leibnitz, Konnecke and Niese, 1957	Francis, 1944			
t d σ interface $L_1 \qquad L_2 \qquad (L_1/L_2)$	C.S.T. = 22°			
20 1.0984 0.8789 7.306 40 .0829 .8588 7.002 60 .0665 .8374 6.577				

BENZENE + METHYL MALATE

Benzene (C_6H_6) + Methy	l malate (C ₆ F	I ₁₀ 0 ₅)		K	đ	(α) _D
Walden, 19	06					70°	
t	%	d	(à) _D		4.37 6.70	0.859 0.840	-9.98 -9.12
5 20 20 20 20 20	1.58 1.58 6.71 7.42 11.70 14.89	0.901 0.883 0.896 0.8975 0.908	+0.69 -0.09 -2.02 -2.61 -3.29 -3.48	1	4.37 1.26 6.70	20° 0.953 0:901 0.892	-9.81 -9.79 -9.55
20 70 70	6.70 14.89	0.841 0.870	-2.10 -3.70	Benzene (C	6H ₆) +	Dimethyl tar	trate (C ₆ H _{1 o} O ₆)
Grossman	n and Landau,	1910		Innes, 19	18		
		(α)		w	t %	mol %	p
c	red	yellow	green		0	53° 0	302.3
100 % 50,590 25,295 12,6475 5,039 2,5195	-5.62 -4.65 -3.87 -2.69 -2.38 -0.79	20° -6.42 -5.04 -4.23 -3.48 -2.78 -0.40	-7.57 -5.34 -4.55 -3.87 -2.18 0.0	1 22 3 4 5 6 7 8	3.4 0.8 6.4 5.4 5.8 6.7 6.8 5.2	6.47 10.3 13.6 19.3 26.9 36.5 46.9 57.1 79.1	291.9 289.2 287.0 286.7 284.2 281.6 273.5 260.0 188.3
С	light blu	(α) e dark blu	e viol.	9	0.3	80.2 63°	148.3
100 % 50.590 25.295 12.6475 5.039 2.5195	-8.96 -6.42 -4.82 -3.56 -1.79 +0.40	20° -9.49 -6.72 -4.98 -3.16 -1.39 +0.79	-9.86 -7.12 -0.99	2 4 5	0 19.5 11.8 60.5 19.6 18.4 18.3	0 15.5 23.9 30.8 39.4 48.6 61.0 80.3	436.3 410.7 405.4 400.7 394.7 387.1 351.6 191.0
Red - Green - Violet -	(α) b 12.6 g/100cc 8.19 1 12.57 1.52 16.72 2.04 Dersion coeffic	- 8.01 1 -12.35 1.54 -16.02 2.00	(α) b 2.82 g/100cc - 7.4 1 -11.9 1.57 -14.7 2.00		0 4.66 9.54 4.17 85.4 83.5 11.9 64.5 0 19.7 60.0 77.6	2.1 4.62 8.15 13.03 18.1 24.0 34.3 - 0 30.4 39.8 49.6 60.5 68.5	649.7 638.9 630.0 620.0 612.8 606.4 599.8 584.0 652.0 586.1 573.8 552.0
Benzene (Walden, l	$(C_6 II_6)$ + Ethy	l malate (C _g l	H _{1 4} 0 ₅)		0 85.8 01.2	0 72.4 81.8	467.9 651.8 443.5 351.2
	%	D b.t.			92:9 95.8	85.2 90.9	285.1 189.3
	4.75 7.38 9.29 11.49 13.67	+0.577 +0.877 +1.124 +1.415 +1.686					

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

BENZENE + ETHYL TARTRATE

Innes, 1902				В	enzene (C ₆ H ₆) + Ethyl ta	irtrate (C ₈ H ₁ 40 ₆)
9.	D b.t.	%	D b.t.	P	urdie and Bar	bour, 1901		
310 mm	53. 7 °	433 mm	63.1°	_ _	%	d	(α	D
1.29 3.41 5.70 7.79 10.63 14.11	+0.147 0.337 0.520 0.662 0.821 1.000	0.98 1.98 3.61 5.86 8.74 11.80 15.28 19.03	+0,083 0,214 0,367 0,556 0,764 0,957 1,156 1,344		5.64 10.73 21.06 100	339 0.90	38 08	6.75 6.29 6.12 7.61
612.8 mm	73.2°	735mm	79.2°	Pa	tterson, 190	2		
1.34 2.99	+0.162 0.339	1.21 2.47 4.35	+0.159 0.301		t	d	t	đ
5.24 6.98 10.58 14.46 17.56 20.43	0.567 0.794 1.091 1.371 1.571 1.751	4.35 7.08 10.39 15.25 18.77	0.500 0.751 1.029 1.371 1.592		17.95 25.25 32.90 42.65 47.05 58.90	0.88112 0.87336 0.86514 0.85462 0.84989 0.8367	1,0 19,65 21,86 26,53	01% 0.33162 0.87919 0.87419
1,92	+0.266				2.04	5 2 3%	1.353	46%
3.79 6.28 8.41	0.492 0.780 0.997				20 21.5 24.22	0.88351 0.88194 0.87900	18.6 20.85 24.53	0.88338 0.88099 0.87706
12.46 16.07	1.351 1.613			-	3.01	748%	2,520	6%
Walden, 1906					18.1 20.36 24.03	0.88779 0.88537 0.88143	19.61 21.66 25.29 34.57 45.05	0.88501 0.88284 0.87893 0.86894 0.83764
	%	D b. r.			18.15	0.89229	7.533	18%
	3.51 5.46	+0.441 0.634			28.69 37.97 45.8	0.88116 0.87111 0.86260	19.7 21.35 25.63	0.89684 0.89506 0.89048
	7.62 9.41	0.832 0.972			10.00	18%	17.4	
		1.125 d	(α) D		17.6 17.9 19.41 20.9 31.45 40.07 61.28	0.9049 0.9032 0.9017 0.8903 0.8810 0.8576 0.9052	16.33 20.70 25.60 24.93	0.92531 0.92063 0.91535
14	4.67 0.8	879 -	1.72		50.00	4%	17.50 21.7	0.9442 0.9397
11	1.38 0.9 7.41 0.8		7.17 7.82 8.09 8.01		19.3 22.4 23.7 34.5 46.2 62.8	1,0165 1,0119 1,0004 0,9879 0,9696 1,0228	21.75 32.15 43.15 60.60 75.1	0.9284 0.9166 0.8971 0.9427
				≡ l	100%		20.7 23.55	1.10 27 1. 09 19
					16.8 37.2 46.8 58.3 68.1 76.2	1.2087 1.1878 1.1783 1.1665 1.1566 1.1484 1.1248	23.55 31.05 32.63 36.7 43.5 60.2	1.0919 1.0904 1.0870 1.0783 1.0608 1.0998

97

BENZENE + ETHYL TARTRATE

t	(α) _D	t	(α) _D	Winther, 1903
9.6 16.2	1.001% 4.12 5.50	1,353 20 29,4	346% 5.80 7.22	t d (^a) blue red yellow green light dark
18.24.1 8.4 16.1 23.6 30.5 45 17 21.5 31.8	5.82 7.01 2.5206% 4.29 5.65 6.83 8.01 9.98 3.01748% 6.19 6.86 8.39 7.5338% 5.62 6.08	2.045 14.8 19.7 20 4.99 8.2 12.5 18.1 30.2 40.8 45.7 51.5 54.8	5.47 6.20 6.23 965% 4.85 5.45 6.37 8.06 9.54 10.12 10.80 11.30	100% 20 1.2025 +6.73 +7.38 +7.24 +4.39 +2.71 30 1.1929 7.48 8.38 8.51 6.28 4.80 40 1.1832 8.17 9.28 9.66 7.99 6.72 50 1.1731 8.80 10.09 10.69 9.53 8.46 69.12% 20 1.0757 +4.87 +4.91 +4.21 +0.05 -2.08 30 1.0659 5.86 6.16 5.80 2.42 +0.50 40 1.0558 6.75 7.38 7.26 4.53 2.90 33.41% 20 0.9649 +5.30 +5.18 +4.44 -0.25 -2.42 30 0.9543 6.40 6.58 6.21 +2.32 +0.31 40 0.9441 7.32 7.96 7.77 4.75 2.73 50 0.9335 -
16.5 21.7 27.3 7 10.1 17.1 19.5 49.5 59.5	6,90 7,73 24.978% 4.51 5.05 6.28 6.52 7.24 10.32	7.9 11.8 13.3 17 19.6 42.5 50.2 55.2 50.00 15 27.1 98.6 54.6 44.7 16 21.4	5.39 7.18 4.62 10.81 10.33 9.24 5.50 6.39	Winther, 1907
10 16 16 24 31 42 46 49.8	5.14 5.93 6.05 1 7.05 7.80 9.11	10.8 11.3 16.0 20.1 25.1 29.9 33.7 46.1 55.1 67.2 77.1 84.4 89.4	+6.63 6.66 7.21 7.67 8.25 8.70 9.10 10.24 10.94 11.75 12.30 12.73 12.97	red +5.52 +5.80 +5.72 +6.01 yellow 5.59 5.98 5.99 6.27 green 4.94 5.35 5.30 5.39 light blue 1.24 1.23 1.22 1.24 dark blue -1.71 -1.69 -1.69 -2.16 Walden, 1906 ### D b.t. 4.82 +0.494 7.59 0.769 9.85 0.967 12.43 1.189 14.47 1.419

% d	(α) _D	— Ber	zene (C	έ ₆ Η ₆) +	Propy1	tartrate	(C _{1 o} H _{1 8}	306)
70°	10.04							
$ \begin{array}{ccc} 14.86 & 0.865 \\ 6.71 & 0.842 \end{array} $		Pur	die and					
50°			, 	6	d		(α) _D	
14.56 0.886 6.46 0.866	3 +10.05 11.04				2 0°			
20°			5.4	5205 1685	0.8886 0.8890		19.62 20.78	
14.86 0.92 14.56 0.92	3 +5.83 5.61		11, 1 22, 2	1266 2112	0.8993 0.9257		20.34 18.31	
14.47 0.91 10.05 0.90	5 5.78 2 5.30	==	100		1.1344		12,31	
6.71 0.89° 5°	5.08	Wi	nther, 19	903				
14.56 0.93	8 +3.38	t	d		(a)		blu	
6.45 0.91	1 3.82			red	yellow	green	light	dark
Rule, Barnett and Cunningh	am, 1933	20	1.1389	10.17	100% +11.81	+12.98	+12.77	+11.98
	mol	30	1.1306 1.1212	10.89 11.54	12.74 13.57	14.14 15.20	14.46 16.02	13.86 15.59
mo1%	(α) mol ₅₄₆₁				75.9	1%		
20°	.10.0	20 30	1.0648 1.0549	+11.29	+13.39 14.26 15.15	16.14	+15.45 17.17	+14.86 16.76
2.33 7.22	+10.9 11.4	40	1.0460	12.56	15.15 45.5	17.13	18.65	18.36
11.99 15.90 21.40	11.50 11.58 11.57	20	0.9811	+13.06	+15.80	+17.82	+19.23	+18.86
21.40 27.50 35.00	11.25 10.71	30		13.73	16.64 17.34	18.35 19.87	20.71 22.15	20.62 22.22
42.84	11.03				16.3	6%		
		20 30	0.9128 0.9031	+15.35 15.74	+18.60 19.24	+21.28 22.25	+23.90 24.99	+24.24 25.19
			0.8928	16.11	19.92	23.00	25,99	26.52
Benzene (C ₆ H ₆) + Monooct	$glycol (C_{18}H_{38}O_6)$							
Sarolea, 1950			zene (C	₆ H ₆) +	Monoace	in (C ₅	H ₁₀ 0 ₄)	
	d d	Fra	ncis, 19	144				
			S.T. = 93	٥				
0 0.9								
36.6 0.9 51.7 0.9	976 31.52 967 30.99							
70.3 0.5 80.1 0.5	949 30,11 923 29,66 907 29,22							
91.8 100 0.5	3789 28.70							

Benzene (C ₆ H ₆) + Cycloh	exanol (C	6H ₁₂ 0)	Cavallaro, 1940
Weissenberger	and Schuste	r, 1924		w.1. lightabsorption = (D - D')/D
mol%	P ₁	mo1%	P ₁	(in m.) 100 75 50 25
	20°			mo1%
88.5	18	33.5	67	25°
88.0 66.5 57 50 40	28 41 49 56 63	25 20 0	67 71 72 75	$ \begin{bmatrix} 26 & 0.35 & 0.23 & 0.20 & 0.10 \\ 20 & 0.38 & 0.25 & 0.23 & 0.13 \\ 16 & 0.43 & 0.28 & 0.25 & 0.17 \\ 8 & 0.52 & 0.38 & 0.41 & 0.25 \\ 6.5 & 0.57 & 0.42 & 0.47 & 0.28 \\ 5.0 & 0.60 & 0.47 & 0.45 & 0.30 \\ 4.5 & 0.47 & 0.50 & 0.41 & 0.32 \\ \end{bmatrix} $
mo1%	Т	(water=1)	σ	
	20°		-	
100 80	14	.5	0.474	Hassel and Naeshagen, 1932
80 66,5 57	2	.2 .9 .1	0.445 0.433 0.431	mo1% ε
50 40 33.5 25 20 0	1 1 1 0 0	.1 .3 .1 .96 .86	0.431 0.432 0.415 0.410 0.405 0.403 0.396	0.000 18° 2.2951 9.092 2.3281 17.09 2.3571 26.23 2.3918
Wheeler and J	ones, 1952			Golzman and Raskin, 1953
R	n _D	%	n _D	mol% dipole moment .1018
100 91.79 86.11 79.41 71.75 60.25	1.46472 1.46659 1.46790 1.46957 1.47165 1.47481	51.05 40.99 42.65 18.60 9.45	1.47763 1.48096 1.48389 1.48870 1.49215	3 1.4 10 1.4 20 1.3 40 1.3 100 1.3
Wulff and Take	ashima, 1938	3	1.49573	
mo1%	d	ε	n	
0 10 20 30 50 60 70 85	0.8791 - 0.8965 0.9101 - 0.9247 0.9341 0.9415	- 20° 2.29 2.75 3.36 4.21 6.78 7.70 9.99 11.66 13.4	640 1100 1400 2900 8600 25400 59600	
				==

Benzene (C ₆ H ₆	6) + o-Meth		anol C ₇ H ₁₄ O)	Benzei	ne (C ₆ H ₆)	+ p-Methy	lcyclohex	anol (C ₇ H ₁₁	₊ 0)
Weissenberger	and Schust	er, 1924		Weiss	enberger and	1 Schuster	1924		
mo1%	P ₁	mol%	P1	_	mo1%	P1	mo1%	P1	
	20°	,		-		20	0		
80 66.5 57 50 40	30 44 52 58 64	33.5 28.5 25 20 0	68 70 71 72 75		80 66.5 57 50 40	32 48 57 63 69	33.5 25 20 0	72 75 75 75	
mo1	% n	(waier = 1	σ)		mo1%	r	(water=1)	σ	
100 66 50 40 33 25 20	.5 3. 1. 1. .5 1. 1.	7 0 2 0 8 0 5 0 3 0 1 0 0 0	.430 .406 .403 .404 .398 .397 .397		100 66.5 57 50 40 33.5 25 20 0	20 30. 5. 2. 1. 1. 1. 0.	4 3 4 8 6 4	0.420 0.406 0.404 0.406 0.400 0.399 0.398 0.397	
Benzene (C ₆ H ₁ Weissenberger			anol (C ₇ H _{1 4} O)	Hassel	l and Naesha	gen, 1932 arity 18°	ε		
mo1%	p 20°	mo1%	p		0,	0 1201 1776 2382	2.29 2.33 2.35	70 68	
80 66.5 57 50 40	31 46 54.8 60 67	33.5 25 20 0	71 74 75 75	Benzen			2.37	cyclohexanol	
mol;	h ·	(water = 1)	σ		and Naesha			С ₉ Н ₁₈ О)	
100 666, 50 40 333, 225 20 0	.5 1 1 1	.2 0. .1 0. .6 0. .5 0	.407 .399 .398 .398 .397 .397 .397 .396		0.0 0.0	18° 007000 1333 2082	2.29 2.32 2.35 2.35	51 46 12 35	

BENZENE + BORNEOL

Benzene (C ₆	Н ₆) + Borne	eol (C ₁₀ H ₁₈ O)		Benzei	ne (C	6H ₆) + Mer	thol (C ₁	₀ H ₂₀ 0)	
Beckmann, 18	88			Dahms	, 1905	5			
	Я	ſ.t.			no1%	f.t.	mo1	% f	t.
	0 0.423 1.20 2.72 4.40 6.48 9.92 12.28	5.44 5.30 5.055 4.605 4.255 3.675 2.965 2.490			0 0.014 0.084 0.493 1.410 2.160 4.466 4.617 7.784 0.49	+5.34 5.33 5.28 5.01 4.19 3.39 3.32 2.42 1.79	31. 37. 46. 53. 60. 65.	0 -: 34 -: 83 (38 +: 01 84 01 34	3.00 3.4 3.62 0.0 5.4 9.9 15.25 18.1 24.7 29.7
Harms, 1935	(f ig.)				1.35 6.56 8.84	1.61 +0.37 -0.28	91. 95. 100	134 372	35.9 38.55 41.9
molarity	đ	molarity	d		0.01	0.20	100	•	*1.9
	7 °			Harms	1935	;			
0.0 0.1	0.9630 0.9643	0.5 0.6	0.9696 0.9699		М	đ		М	d
0.2 0.3 0.4	0.9658 0.9670 0.9684	0.7	0.9701 0.9703		0.0 0.1 0.2	0.886 0.887 0.887	1 (0.6 0	0.8912 1.8920 1.8928
Peacock, 1914	4				$\begin{array}{c} 0.3 \\ 0.4 \end{array}$	0.889 0.890	3 (0.8 0	.8932
%	d	n _D	(α) _D	Conti	-lion	i, 1934			
	2	5°		Casti	grion	%	d	η	
0.9238 2.3214 4.586 11.348 16.940 22.455	0.8737 0.8747 0.8765 0.8813 0.8864 0.8909	1.4995 1.4992 1.4985 1.4973 1.4960 1.4953	26.6 30.5 29.3 28.8 28.6 28.2			0 10 20 30 40 50	20° 0.8773 0.8796 0.8810 0.8823 0.8837 0.8852 0.8869	625. 687. 774. 936. 1182. 1528. 2171.	24 12 01
Golzman and	Raskin, 1953	3		Egger	s. 19	04			
	mo1%	dipole mon 10 ¹⁸	ient			mol%	t	ε	
(fig.)	3 10 20 40 100	1.2 1.2 1.2 1.2 1.2				0.0 8.2 17.8 19.0 29.3 31.7	24 23 22.5 22.5 23 24	2.25 3.05 3.7 3.82 5.0 4.9	
	mo1%	t. of the maxi of dielectric l		Kanor	nikof	f, 1885			
	5 14 20 30 40 44	15 20 25 32 38 41		21.02 0	t 21.4 20	d 0.87954 0.88041	H _(α) 1.48614 1.49690	D 1.49041 1.50165	Η _(β) 1.50107 1.51324
	Wanna								

Benzene (C ₆ H ₆) + Benzyl alcohol (C ₇ H ₈ O)	
·	Martin and George, 1933
Mameli, 1903	mol% n _{Hα} mol% n _{Hα}
% D b.t. % D b.t.	25°
16.225 2.780 2.606 3.594 12.903 2.308 1.116 0.269 9.000 1.782 0.917 0.222 6.441 1.328 0.440 0.108	- 1.49312 27.048 1.50631 5.162 1.49561 41.644 1.51250 9.838 1.49825 54.908 1.52001 11.056 1.49833 67.562 1.52296 113.298 1.49889 86.285 1.52935 125.792 1.50557 110.000 1.53359
Martin and George, 1933	
mol% d mol% d	Kerr, 1926
25°	β ε
0 0.87288 0.27048 0.92481 0.05162 0.88372 0.41644 0.95182 0.09838 0.89231 0.54908 0.97451 0.11056 0.89502 0.67562 0.99489 0.13298 0.89923 0.86285 1.02230 0.25792 0.92306 1,00000 1.04127	14° 0 2.28 20 3.37 40 4.86 60 7.46 80 10.58 100 13.63
Martin, 1937	Martin, 1937
mol% d	mol% ε
70 °	70°
0.00 0.8246 19.74 0.8663 37.66 0.9020 49.50 0.9238 65.24 0.9514 77.20 0.9718 100.00 0.0062	0.00 2.193 19.74 3.039 37.66 4.163 49.50 4.961 65.24 6.277 77.20 7.327 100.00 9.467
Hückel, Niesel and Bucks, 1944	Benzene (C_6H_6) + Phenylethyl alcohol (C_8H_{100})
t σ 50 67 75 100	Glowaski and Lynch, 1933
mo1%	mol% d mol% d
15	25° 0 0.8724 60.68 0.9705 9.31 0.8898 74.02 0.9882 20.00 0.9096 82.02 0.9972 30.66 0.9277 93.35 1.0092 41.25 0.9437 100 1.0160

Mahamada 1000	Schmidlin and Lang, 1912 (fig.)
Mahanti, 1929	% f.t. tr.t.
mol% d ε	100 66 -
25° 0.00 0.872 2.26 1.66 0.873 2.32 3.75 0.876 2.50 5.44 0.884 2.65 7.02 0.886 2.71 9.09 0.889 2.80 11.48 0.895 2.89 13.74 0.898 2.95 100 0.995	90 58
	% f.t. % f.t.
Benzene (C_6H_6) + Phenyl propyl alcohol ($C_9H_{12}0$) Mahanti, 1929	100 65.9 55.9 29.7 87.3 55.5 54.0 29.4 75.3 46 51.2 27.9 71.2 42.5 46.6 25.7 66.7 38.3 45.0 23.5 64.9 37.5 40.1 20.9 62.8 35.7 38.4 18.3
mol% d ε	61.4 34.8 36.4 16.5 59.5 33.5 31.9 11.6 55.5 30.8 28.7 8.6
25° 0.00	61.4 34.8 36.4 16.5 59.5 33.5 31.9 11.6 55.5 30.8 28.7 8.6 53.4 29.5 25.7 6.0 50.1 27.7 22.2 3.1 47.2 25.6 20.0 1.5 15.0 2.5 10.0 3.6 4.9 4.5
Benzene (C_6H_6) + Benzhydrol ($C_{1.8}H_{1.2}0$) Beckmann, 1888	Benzene (C_6H_6) + Ethanolamine (C_2H_70N) Francis, 1944 C.S.T. = 103
% f.t.	
0 5.440 1.04 5.155 2.53 4.770 3.98 4.427 7.84 3.620 13.85 2.865 16.68 2.395	Benzene (C_6H_6) + Triethanolamine ($C_6H_{15}O_3N$) Francis, 1944 C.S.T. = 155

Benzene	(C_6H_6)	+	Ethylenchlorhydrin	(C_2H_50C1)	
---------	---	----------	---	---	--------------------	---	-------------	---	--

Ben Snyder and Gilbert, 1942

b.t.		mol%	
	L	V	
114.0 98.8 95.0 92.8 88.2 86.2 84.4 83.5 82.0 81.7 81.2	98.8 94.6 92.2 89.9 81.4 74.6 63.0 54.6 33.8 28.5 20.1	71.1 47.2 39.3 30.8 75.7 20.8 17.0 15.0 12.2 11.2 8.5 5.2	

Benzene ($C_6 H_6$) + Chloral alcoholate ($C_4 H_7 \theta_2 C \mathbf{1}_3$)

Beckmann, 1888

%	f.t.	%	f.t.	
0 0.56 1.32 2.50 3.71 5.91	5.44 5.285 5.080 4.770 4.460 3.900	9.54 12.63 16.05 18.47 22.86	3.000 2.270 1.480 + 0.900 -0.160	

Benzene (C_6H_6) + Tetramethyldiaminobenzhydrol

Schmidlin and Lang, 1912 ~(fig.) ($\text{C}_{1\,7}\text{H}_{2\,2}\text{ON}_2$)

	%	f.t.	tr.t.
	00 90 77.6 62 50 40 33 0	99 88 74 63 50 45 33 33.5 25 12 E 5.5	53.5 53 - (1+1)
K	f.t.	9,	f.t.
100 85.0 79.6 79.1 77.0 70.4 64.4 62.3	98.5 83 76 75 73 64.5 55.5	61.9 53.6 45.9 37.0 26.9 21.6 16.6	51.2 48.5 42.8 37.8 30.5 25.7 20.1

Benzene ($C_6 H_6$) + Quinine ($C_{2\,0} H_{2\,4} N_2 0_2$)

Van Iterson-Rotgans, 1913

-			
	%	f.t.	
		stable	
	0 0.72 1.09 1.48 2.05 2.36 4.81 5.27 6.09 10.4 30.01 43.4 44.75 45.9 48.9 51.8 60.3 75.46 80.3 75.46 80.3 75.46	5.4 17 22 29 35 38.5 53 - 55 60 63 72 91 102 103 104.5 107 109 116 130 137 142 146 152 158.9 166	(1+1) (2+3) (2+3) mixed crystals
		metastable	
	5.27 6.09 16.78 28.9	49 50 . 51 62 70	(1+1)

106			E	BENZENE +	ETHANE	THIO	L		
Benzene	(C ₆ H ₆) + 1	Ethanethiol	(C ₂ H ₆ S)			,H ₈) + Me	thyl alcohol	(CH ₄ 0)
Wang, 19	10				Lecat	, 1949			
	mo1%	d		ε	.		%	b.t.	
	0,000	15° 0.88408	2.2		·		0 69 100	110. 63. 64.	75 Az
	1.620 3.045 4.693	0.88344 0.88284 0.88222	2.3 2.3 2.4	309 369	Washb	ırn an	d Lightbod	y, 1930	
	9.074 12.388	0.88048 0.87919		5 7 6		mo1%	d	mo1%	d
	14.287 16.136 24.58 73.257 92.474 100.000	0.87843 0.87768 0.87434 0.85425 0.84558 0.84204	2.8 3.0 5.2 6.3	2.676 2.742 2.801 3.086 5.244 6.348 6.912		0 12.0 22.6 31.7 46.7 72.4	0.854 0.850 0.843	20 93.7 21 95.9 61 98.0 355 100	0.80621 0.79859 0.79477 0.79089 0.78706
Benzene (C ₆ H ₆) + Bu	ıtanethiol	(C4H1 oS)				. 1.0 11	1050
Walss and	Smyth, 1933	1			Teite			and Ganeline	
mo1%				*	.		mol%	d	η
0 2.771 5.204 7.853 13.773 22.957 37.1720	25° 0.8730 0.8714 0.8703 0.8686 0.8659 0.8617 0.8562	50° 0.8461 0.8446 0.8436 0.8421 0.8396 0.8358 0.8304	25° 2.276 2.353 2.421 2.498 2.666 2.925 3.315	2.226 2.294 2.355 2.423 2.571 2.803			0 20 40 60 80 100	20° 0.8660 0.8596 0.8517 0.8400 0.8223 0.7923	593 582 601 620 623 578
56.844 100	0.8492 0.8368	0.8239 0.8123	3.847 4.952	3.142 3.611 4.586	Maso	n and	Washburn,	1936	
						%	U	\$	U
						259	•	35	o
	(C ₆ H ₆) + Smyth, 193		ο1 (C ₅ H,	₂ S)	18 28 37 52 60 70	.17 .71 .37 .43 .27	0.453 0.474 0.503 0.518 0.547 0.564 0.581	9.17 18.73 28.09 37.96 47.66 57.63 68.21	0.447 0.479 0.503 0.525 0.541 0.560
mo 1 /c	25°	u 50°	25°	50°		.34	0.600 0.607	78.47 89.25	0.597 0.610
0	0.8730	0.8461	2.276 2.337	2.226		%	Q dil.	笼	Q dil.
2.123 2.965 5.362 6.427 13.816 21.759 23.514 40.585 51.977	0.8718 0.8712 0.8698 0.8692 0.8652 0.8612 0.8603 0.8535 0.8373	0.8451 0.8444 0.8432 0.8427 0.8392 0.8357 0.8350 0.8291 0.8255 0.8145	2.337 2.362 2.427 2.460 2.663 2.877 2.914 3.337 3.600 4.547	2.280 2.302 2.361 2.387 2.567 2.753 2.789 3.158 3.388 4.230	19 28 38 48 57 68	25° .38 .62 .80 .82 .28 .64 .07	-2.343 -2.639 -2.692 -2.482 -2.174 -1.832 -1.450 -1.047	10.10 18.86 37.74 57.74 78.61	-2.462 -2.758 -2.731 -1.943 -1.050

C7H8) + Eth	yl alcohol (C ₂ H ₆ O)	Lehfeldt, 1899
1914			mo1% p
р	t	p	50°
00%	100	1%	- 11
16 25 42 66 98 145	70 80 90 100 110	212 304 418 576 758	0 0 93.0 12.1 37.2 199.5 48.6 47.4 233.5 100 100 219.5
	р		- Wright, 1933
85.45%	65.00%	50.00%	mol% p
31 54	34 57	34 56	L V
97 115 246 343 552	100 169 260 416 601	99 171 261 419 605	60° 0 0 139.5 10.7 61.8 240 23.1 67.5 367 35.2 68.3 373 44.3 69.0 382 54.3 71.1 387 62.5 72.3 390 72.6 74.4 395 76.7 75.8 297
•	p		54.3 71.1 387 62.5 72.3 390
30.79% 33 54 99 162	17.89% 29 51 94	0.00% 24 45 79	10.7 61.8 240 23.1 67.5 367 35.2 68.3 373 44.3 69.0 382 54.3 71.1 387 62.5 72.3 390 72.6 74.4 395 76.7 75.8 297 84.5 80.2 397 90.4 85.3 388 95.7 92.2 375 100.0 100.0 352.7
260 411 602	241 390 592	226 359 547	65° 0 0 166 10.7 61.9 301 23.1 68.1 455
1898			23.1 68.1 455 35.2 69.3 466 44.3 70.0 472 54.3 71.8 477
p	%	р	35.2 69.3 466 44.3 70.0 472 54.3 71.8 477 62.5 73.1 481 72.6 75.2 486 76.7 76.6 487
93.0 141.2 214.8 233.1	50.15 61.65 71.95 78.60 92.29	249.2 248.2 244.4 243.0 230.9 219.5	72.6 73.1 481 72.6 75.2 486 76.7 76.6 487 84.5 80.8 488 90.4 85.7 480 95.7 92.3 466 100.0 100.0 436.9
mol% L	v	Р	70° 0 0 202.4 10.7 62.0 367 23.1 68.6 557 35.2 70.3 569
	50°	***	44.3 71.0 572 54.3 72.4 584
7.4 20.0 28.0 36.3 46.4 58.2 67.5 79.3 89.8	41.9 49.1 51.6 54.4 55.4 58.6 62.1 72.3 82.1	119.5 235.0 241.0 245.0 247.0 249.0 249.5 241.5 233.5	54.3 72.4 584 62.5 73.9 590 72.6 76.0 592 76.7 77.4 598 84.5 81.4 598 90.4 86.1 591 95.7 92.4 575 100.0 542.5
	1914 p 00% 16 25 42 66 98 145 85.45% 31 54 97 115 246 343 552 30.79% 33 54 99 162 260 411 602 1898 p 93.0 141.2 214.8 233.1 242.1 244.2 mo1% L 7.4 20.0 28.0 36.3 46.4 58.2 57.5	P t 00% 100 16 70 25 80 42 90 66 100 98 110 145 P 85.45% 65.00% 31 34 54 57 97 100 115 169 246 260 343 416 552 601 P 30.79% 17.89% 33 29 54 51 99 94 162 155 260 241 411 390 602 592 1898 P % 50° 93.0 50.15 141.2 61.65 2214.8 71.96 233.1 78.60 241.41 214.8 71.96 233.1 78.60 242.1 92.29 244.2 100 mo1% L V 50° 7.4 41.9 20.0 49.1 28.0 51.6 36.3 54.4 46.4 55.4 58.2 58.6 67.5 62.1	p t p 100% 100% 16 70 212 25 80 304 42 90 418 66 100 576 98 110 758 145 p 85.45% 65.00% 50.00% 31 34 34 54 57 56 97 100 99 115 169 171 246 260 261 343 416 419 552 601 605 p 30.79% 17.89% 0.00% 33 29 24 54 51 45 99 94 79 162 155 132 260 241 226 411 390 359 602 592 547 1898 p % p 50° 93.0 50.15 249.2 411.2 61.65 248.2 214.8 71.95 244.4 233.1 78.60 243.0 242.1 92.29 230.9 244.2 100 219.5 mo1% L V p 50° 7.4 41.9 119.5 22.0 244.2 233.1 78.60 243.0 242.1 92.29 230.9 244.2 100 219.5

TOLUENE + ETHYL ALCOHOL

mol% p	10/2
L V	Kretschmer and Wiebe, 1949
75°	mol% p
0 0 244 10.7 62.0 444 23.1 69.3 677	L V
23.1 69.3 677 35.2 71.4 688	35°
10.7 62.0 444 23.1 69.3 677 35.2 71.4 688 44.3 72.0 698 54.3 73.1 707 62.5 74.7 715 72.6 76.8 722 76.7 78.3 724 84.5 82.0 724	3.30 42.16 79.38 4.68 47.49 86.34
72.6 76.7 76.7 76.7 77.8 76.7 77.8 77.8 77	12.14 56.62 102.09
0 0 244 10.7 62.0 444 23.1 69.3 677 35.2 71.4 688 44.3 72.0 698 54.3 73.1 707 62.5 74.7 715 72.6 76.8 722 76.7 78.3 724 84.5 82.0 724 84.5 82.0 724 90.4 86.5 716	36.20 63.46 114.26 41.60 63.84 115.34
90.4 95.7 95.7 92.5 100.0 100.0 86.5 716 99. 699 100.0 666.1	59.30 67.30 117.90 72.63 71.64 118.57 85.19 78.48 116.56 97.01 93.18 107.64
	85.19 78.48 116.56 97.01 93.18 107.64
80°	55°
$\begin{array}{cccc} 0 & 0 & 289.7 \\ 10.7 & 62.1 & 537 \\ 40.0 & 918 \\ \end{array}$	4.39 43.69 196.64 11.57 56.79 247.70 24.97 63.19 279.24
23.1 69.9 818 35.2 72.9 832 44.3 73.0 844	24.97 63.19 279.24 40.34 66.49 294.75 62.82 71.50 305.48
44.3 54.3 73.8 856	11 71.86 74.31 307.81
62.5 75.5 864 72.6 77.7 874	84. 23 80. 49 306. 23 91, 63 86, 85 299, 53
23.1 72.9 832 44.3 73.0 844 54.3 73.8 856 62.5 75.5 864 72.6 77.7 874 76.7 79.1 877 84.5 82.5 880	96.35 93.07 290.47
95.7 92.6 848	
100.0 100.0 812.6	Robinson, Wright and Bennett, 1932
85°	mo1% b.t (Az)
0 0 397.0	36.8 0.5 26.95 25.0
10.7 62.1 990	26.95 25.0 21.6 50.0 18.2 75.5
1 44 3 74 6 1910	
54.3 74.3 1027 62.5 76.4 1037 72.6 78.5 1047	
62.5 76.4 1037 72.6 78.5 1047 76.7 80.0 1052 84.5 83.1 1052	Swietoslawski, 1932.
84.5 90.4 95.7 92.7 98.4 99.4 99.4 99.7 99.7	onicosianski, 1702.
100.0 100.0 986.3	Az. (760 mm) : 76.83°
	Lecat, 1949
	% b.t. Dt mix
	0 110.75 68 76.65 Az -1.8
	68 76.65 Az -1.8 100 78.3

TOLUENE + ETHYL ALCOHOL

Jahn, 1891	Kretschmer and Wiebe, 1949
% d	wt% mol% d
20° 0 0.86533 62.88 0.81759 100 0.79009	25° 0.00 0.00 0.86219 1.44 2.84 0.86073 5.28 10.02 0.85735 13.44 23.70 0.85073
de Kowalski and de Modzelewski, 1901 # d at room temperature 100.000 0.79373 85.869 0.80422	19,04 31,98 0,84638 28.26 44.07 0,83933 28.82 44.86 0,83833 36.58 53.56 0,83305 46.47 63.45 0,82567 56.30 72.04 0,81830 72.49 84.05 0,80611 84.74 91.74 0,79681 100 100 0.78508
85.869 0.80422 66.260 0.81841 55.346 0.82622 51.166 0.82921 42.173 0.83597 28.921 0.84553 17.578 0.85438 0.00 0.86753	Staszewski, 1917. # " " " " " " " " " " " " " " " " " "
Burwinkel, 1914	0 592 10 601 15 621 25 699 50 887 75 1050 100 1280
0 0.87150 16.551 0.86128 35.003 0.85001 66.119 0.83157 69.211 0.82960 82.110 0.82235 100.000 0.80942	Lemonde, 1938 η
Washburn and Lightbody, 1930	15° 0 621 1 621 3 625 10 645 20 670 40 807 60 980 80 1170 99.5 1330 100 1340

TOLUENE + ETHYL ALCOHOL

Lemonde, 1938	
vol% D	Staszewski, 1917
401%	ξ λ
15°	24°
0 - 1 2.58 3 1.32 10 0.90 20 0.72 40 0.70 60 0.86 80 1.27 99.5 1.60	0 1.00 . 1010 10 2.47 . 1010 15 2.55 . 109 25 1.13 . 108 50 3.5 . 107 75 6.75 . 107 100 1.08 . 106
100 -	Walker and Henderson, 1902
	c % U Q mix
Lehfeldt, 1898	80.2 36.48 0.513 332
% n _D % n _D	208.3 18.10 0.470 628 469.6 8.92 0.442 1034 1248.2 3.56 0.419 1803
18° 0 1.4970 60 1.4131 10 1.4823 70 1.4000 20 1.4680 80 1.3873 30 1.4539 90 1.3747 40 1.4401 100 1.3622 50 1.4265	2584 1.75 0.407 2594 4465 1.03 0.399 3205 6645 0.69 0.395 3515 13222 0.35 0.391 3815 c = g. toluene in one mole of alcohol.
de Kowalski and de Modzelewski, 1901	Schulze, 1951
	mo1% Q mix mo1% Q mix
at room temperature 0.000 1.49551 51.166 1.42381 17.578 1.47137 55.346 1.41821 28.921 1.45417 66.260 1.40396 42.173 1.44185 85.869 1.37875 100.000 1.36136	25° 0 0 56.91 144.9 0.6804 21.85 81.64 64.54 1.4195 42.90 91.164 30.66 5.449 111.3 99.597 1.37 22.12 181.1 100.0 0 42.69 174.8
	Brown, Fock and Smith,1956
Jahn, 1891	mol % Q mix mol % Q mix
% (α) ^{magn} . 20° 0 84.77 37.12 125.82 100 203.96	35,00° 12.2 205.30 67.6 150.81 21.7 234.94 68.1 146.27 37.9 238.52 69.1 140.05 60.3 176.38 87.3 63.09 60.5 176.86
37.12 125.82 100 203.96	

100 97.25 100 110.75 100 97.25 100 1249 100 110.75 100 1249 100 1249 100 1249 100 1249 100 1249 100 1249 100 1249 100 1249 100 1249 100 1249 100 1249 124	
Ryland, 1899	
Toluene (C ₇ H ₈) + Isopropyl alcohol (C ₃ H ₈ 0)	
Toluene (C ₇ H ₈) + Isopropyl alcohol (C ₃ H ₈ 0)	
Robinson, Wright and Bennett, 1932	
Robinson, Wright and Bennett, 1932	
L V L V	
L V L V	
100 97.25 100 110.75 100 97.25 100 120.75 100 97.25 100 1499 100 110.75 100 82.4 100	
## Both (760mm) Control of the co	.4 .8
Lecat, 1949 Lecat, 1949 Lecat, 1949 Lecat, 1949 Lecat, 1949 Lecat, 1949 Lecat, 1949 Lecat, 1949 Lecat, 1949	
0 110.75 - 92.35 Az 100 97.25	
0 110.75 -3.7 67 79 81.3 Az 100 82.4	x
% b.t. Dt mix Robinson, Wright and Bennett, 1932	
0 110.75 483.1 mol% b.t (Az)	
52.5 92.35 Az 100 97.2 58.3 20.0 68.6 40.0 76.0 60.0 80.7 78.0	
Lange, 1912	
g d ε Washburn and Lightbody, 1930	
24° mol% d mol% d	
0 0.863 2.373 3.54 0.861 2.531	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

TOLUENE + BUTYL ALCOHOL

Toluene (C_7H_8) + Butyl alcohol ($C_4H_{1.0}0$)	Toluene (C_7H_8) + Isobutyl alcohol ($C_4H_{1\ 0}O$) Kireev, Sheinker and Peresleni, 1952
Robinson, Wright and Bennett, 1932	t mol% t mol%
mol% b.t (Az)	L V L V
6.9 0.5 7.3 25.0 8.7 50.0 14.0 73.0 32.7 103.1	110.4 0 0 100.8 45.0 52.0 107.2 3.5 13.0 101.1 55.9 55.8 104.7 10.3 22.7 101.2 66.7 57.9 103.8 13.0 28.8 101.7 74.7 63.7 102.5 15.6 32.6 101.9 78.9 66.6 101.9 19.7 35.9 102.8 85.0 73.3 101.4 23.8 40.2 103.6 88.6 78.2 100.9 31.8 43.0 105.2 93.4 86.9 100.6 36.2 45.6 108.0 100 100 100.5 41.2 46.4
% b.t. Dt mix	
0 110.75 27 105.7 Az	de Kolossowsky and Alimow, 1935
313.8 100 117.8	% b.t. (76omm)
Fuoss, 1943	0 110.75 - 101.25 Az 100 107.85
% п _D	Lecat, 1949
25° 30°	\$ b.t.
0.0 1.4929 1.4906 20.2 1.4713 1.4690 40.0 1.4517 1.4497 58.9 1.4337 1.4320 76.9 1.4175 1.4153 100.0 1.3969 1.3953	0 110.75 56 102.2 Az 100 108.0
	de Kolossowsky and Alimow, 1935 % Q vap.(cal/gr.)
	0 86,68 - 105,10 100 -
	Toluene (C_7H_8) + sec . Butyl alcohol ($C_4H_{10}0$)
	% b.t.
	0 110.75 55 95.5 Az 100 99.5

Lecat, 194	49					Toluene (C ₂ H ₈) + Allyl alcohol (C ₂ H ₆ O)
Toluene (C ₇ H ₈) (b.t.=116	0.75)	+ Amyl a	lcohols.	Ryland, 1899
	2 nd comp.		Az			% b.t.
Name	Formula	b.t.	K	b.t.	Dt mix.	0 108.8 - 109.3
Isobutyl carbinol	C5 II1 20	131.9	13	110.05	-4.5 (48%)	50 91 - 92 (756nm) 100 95 - 96
2-Pentanol	C5H120	119.8	28	107.0	-3.7 (25%)	Lecat, 1949 Toluene (C ₇ ll ₈) (b.t.=110.75) + Glycols.
3-Pentanol	C ₅ H _{1 2} O	116.0	33	106.5	-3.9 (30%)	2 nd comp. Az
Methyliso- propyl carb	C5H120 pinol	112.9	31	105.8	-4.0 (30%)	Name Formula b.t. % b.t. Dt mix.
tert.Amyl alcohol	C ₅ H _{1 2} 0	102.35	52	99.4	-4.7 (50%)	Methoxy- (C ₃ U ₈ O ₂) 124.5 25.5 106.1 -2.7 (50%)
Toluene (C	C ₇ H ₈) + Iso	oamyl al	lcohol	(C ₅ H ₁₂	0)	Ethoxy- ($C_h H_{10} O_2$) 135.3 10.8 110.15 -2.7 glycol (25%)
	sky and The					The state of the s
Z	b. :	t.		Q vap Cal/g)	· · · · · · · · · · · · · · · · · · ·	Toluene (C ₇ H ₈) + Glycols. Francis, 1944
0		0.75 9.8 Az		86.68 97.90		2 nd comp. C.S.T.
100	13	1.3				Ethylene glycol (C ₂ H ₆ O ₂) 210
Toluene (C ₇ H ₈) + 2-	Ethoxye	thanol	(C ₁₄ H _{1 C}	002)	Diethylene glycol (C ₄ H ₁₀ O ₃) 134
	d Grabiel,					Triethylene glycol (C ₆ II ₁ \(\mathbb{0}\)\(\mu\) 90
	Z	b.	. t.			
	0 10.8 100	10	09.4 08.7 34.0	١z		Toluene (C_7H_8) + Methyl lactate ($C_4H_8O_3$) Lecat, 1949
mo1%	np		mo1%		nD	% b.t. Dt mix
0 10 20 30 40	1.497 1.488 1.471 1.462	5 8 2	60 70 80 90	1, 1, 1,	.4452 .4364 .4270 .4173 .4080	0 110.75 15 - 110.6 Az 100 143.8
50	1.454					

Toluene (C ₇ H	l。)+ Methvl	malate l	(C(H, 00r)	9.	. 98097%	24.9946%	
Grossmann and)		16.5 19.2 25.3 40.5 52.8	4.28 4.80 5.70 7.86	16.8 4.12 20 4.66 24 5.28 31.2 6.44	
colour		(α)	F 10# 0 F/3F	52.8 58.9	9.41 10.36	43.3 8.12	
50	0.234 25.177	g/100cc	5.127 2.5635	49	. 1834%	59.908%	
		8, 2000		15.1	4.12	16.1 4.65	
	20°			16.8 17	4.38 4.40	16.1 4.65 17 4.83 27 6.27	
li Vellow −⊿	1.58 -3.82 1.98 -4.18	-2.23 -2.71	-1.76 -1.17 -0.78 -0.39	33 38.5	4.40 6.95 7.69	41.2 8.15	
green -5 light blue -5 dark blue -5	5.18 -4.26 5.28 -4.70	-2.87 -3.03	-0.00 -0.00 +0.78 +1.17	41.8 46	8.11 8.61	45.7 8.64 50.4 9.20 62.8 10.44	
dark blue -5 violet -6	5.67 -4.66 5.17 -	-2.47	+0.78 +1.17 +1.37 +1.95 +1.95 -	49.4 56.6	8.97 9.68	68.7 10.95 75.4 11.47	
				62.5	10.17	82.6 12.05	
Toluene (C ₇ H	I ₈) + Ethyl 1	tartrate (C ₈ H ₁ 40 ₆)	Rule. Barne	tt and Cunni	noham 1933	
Patterson, 19	902				mol %	(α) ₅₄₆₁	
t	d	t	d		20		
0	98	2.0	005%		3.8	+1.13	
18.77	0.86616	20.72	0.86898		10.0 16.65	2.76 4.53	
19.75 21.03	0.86525 0.86406	26.52 31.02	0.86362 0.85941		23.73 31.73	6.28 8.26	,
24.15 28.65	0.86114 0.85699			İ	52.28 80.50	16.02 28.76	
5.0	1847%	9.9	98097%			20.70	
20.15 21.16	0.87674	19.8	0.92834				
26.89	0.87579 0.87043	28.24 44.9	0.92165 0.90534	Toluene (C7	H ₈) + Ethan	nolamine (C ₂ H ₇ ON)	
37.05 41.65	0.86086 0.85650	48.85	0.90138				
24.9	946%	49.1	1834%	Francis, 194	7		
21.32 28.24	0.92834	18	1.00643	c	.S.T. = 137°)	
44.9	0.92165 0.90534	27 45.8	0.99742 0.9788				
48.85	0.90138	62.3 82 99	0.9620 0.9419				
			0.9252	į.			
59.90	,		1894%				
20.5 44.8	1.04092 1.01692	19 34	1.07931 1.06454				
59.5 82.6	1.0021 0.9791	49 77	1.0494				
		99	0.9985				
t	(α) _D	t	(α) _D				
2,6	005%	5.	01847%				
17 20.7	4.275 5.75	17 19	4.49 4.92 6.90				
20.7 25	4.95	19 25.1	6.90				
		28.9 41 45.4	6.51 8.21 8.78	1			
		45.4	8.78				

Toluene (C ₇ H _B) + Ethylenchlorhydrin (C ₂ H ₅ OC1)	
Lecat, 1949	
% b.t. Dt mix	Rudolphi, 1909
0 110.75 31 106.95 Az	% d п н _и D н _В н,
50 -3.7 100 128.6	20°
	0.0 0.86511 1.49159 1.50745 1.50745 - 0.2 0.86584 1.49155 1.49606 1.50742 -
Snyder and Gilbert, 1942	2 0.87245 1.49141 1.49587 1.50720 - 5 0.88413 1.49139 1.49579 1.50715 - 10 0.90384 1.49133 1.49568 1.50688 -
b.t. mo1% L V	20 0.95073 1.49181 1.49611 1.50695 - 40 1.07037 1.49353 1.49760 1.50793 -
120.4 96.7 77.0 113.9 92.0 63.0 108.4 72.5 41.6	Я d n H _a D H _b H _y
$\begin{array}{cccc} 107.6 & 59.1 & 35.7 \\ 107.0 & 37.8 & 30.1 \end{array}$	44°
106.9 23.3 25.4 107.8 10.8 17.5 109.2 3.4 8.2	0.0 0.84288 1.47914 1.48345 1.49458 1.50417 0.2 0.84351 1.47914 1.48328 1.49451 1.50390 2 0.84950 1.47902 1.48311 1.49451 1.50369 5 0.86669 1.47866 1.48276 1.49429 1.50323
	10
Toluene (C_7H_8) + 1-chlor-2-propanol (C_3H_70C1)	40
Lecat, 1949	1.0201 1.17007 1.17002
% b.t. Dt mix	
0 110.75 102.0 15 109.0 Az 100 127.0	Toluene (C ₇ H ₈) + Cyclohexanol (C ₆ H ₁₂ 0)
	Wheeler and Jones, 1952
Toluene (C_7H_8) + Chloral hydrate ($C_2H_3O_2Cl_3$)	% n _D % n _D
Speyers, 1902	25° 0 1.46472 51.18 1.47680
f.t. mol%	8.35 1.46641 59.60 1.47918 13.57 1.46753 69.19 1.48201
0 1.78	20.62 1.46992 80.81 1.48570 29.43 1.47124 91.37 1.48921 40.57 1.47401 100 1.49231
10.0 4.24 20.7 11.42 29.6 31.18	
42.5 89.86	
d saturat. sol.	
0.0 0.8978 18.5 0.9328	
28.4 1.069 40.8 1.448	
42.0 1.445	
	<u> </u>

116				TOLUENE +	BEI
Toluene	(C ₇ H ₈)	+ Benzyl	alcohol (С ₇ Н ₈ 0)	
Hückel,	, Niesel a	nd Buchs,	1944		
t	· · · · · · · · · · · · · · · · · · ·	σ	······································		
	50	7 5	83	91	
		mol;	% 		
15	33.11	34.32	36,80	37.88	
20 25	32.37 31.63	33.58 33.24	35.33	37.39 36.87	
30	31.16	32.64	35.33	36.33	
35	30,76	32.51	34.72	36.47	
40	30.22	32.57	34.79	35.86	
45 50	30.15 30.09	$32.04 \\ 31.30$	34.12 33.92	35.26 34.86	
60	28.95	29.75	32.84	33.98	
					==
Toluei	ne (C ₇ H ₈) + Borne	ol (C ₁₀ H ₁	80)	
Vanst	one, 1909				
	% (α) _D	%	(α) D	

%	(α) D	%	(α) D	
	20	10		
13.23 13.37 14.54 15.06	+27.63 27.07 27.57 26.87	15.39 18.38 21.79 27.80	+27.12 28.00 28.14 29.01	

Lecat, 1949 Ethyl benzene (C_8H_{10}) (b.t.=136.15) + Alcohols

	2 nd comp.		Az		
Name	Formula	b.t.	F	b.t.	Dt mix.
Butyl alcohol	C4H100	117.8	68	115.5	-4.2 (67%)
Isobutyl alcohol	Cullio0	108.0	7 9	107.5	(80%)
Amyl alcohol	C511120	138.2	4 0	129.8	-2.9 (20%)
Isobutyl carbinol	C5H120	131.9	48	126.3	-4.2 (50%)
2-Pentanol	C5II120	119.8	67	118.0	-3.8 (50%)

Ethyl benzene (C_8H_{10}) + Diethylene glycol ($C_4H_{10}\theta_3$)

Francis, 1944

C.S.T. = 155°

Ethyl benzene (C_8H_{10}) + Triethylene glycol ($C_6H_{1k}O_{4k}$)

Francis, 1944

C.S.T. = 115°

Ethyl benzene (C₈H₁₀) + Ethanolamine (C₂H₇0N)

Francis, 1944

 $C.S.T. = 150^{\circ}$

Lecat, 1949 ${\rm Ethyl\ benzene\ (\ C_8ll_{1\ 0}\)} \quad {\rm (b.t.=136.15)\ +varia}$

2 nd comp.		Az		
Formula	b.t.	N.	b.t.	Dt mix.
C ₃ li ₈ O ₂	124.5	55	118.8	-2.6
$C_{\mu}II_{10}0_{2}$	135.3	48	127.8	-1.7 (50%)
C5H12O2	151.35	18	134.5	-1.5 (20%)
C 4 H 8 O 3	143.8	38	129.0	-6.6 (35%)
C2H7ON	170.8	15	131.0	-
C21150C1	126.6	55	121.0	-3.5 (50%)
C ₂ II ₅ 0Br	150.2	40	131.5	-3.5 (50%)
	Formula C ₃ L' ₈ O ₂ C ₄ Ll ₁ O ₂ C ₅ H ₁ 2O ₂ C ₅ H ₁ 2O ₂ C ₄ H ₈ O ₃ c ₂ L' ₇ ON C ₂ H ₅ OC1	Formula b.t. C ₃ Li ₈ O ₂ 124.5 C ₄ Ll ₁ O ₂ 135.3 C ₅ H ₁ 2O ₂ 151.35 C ₄ H ₈ O ₃ 143.8 c ₂ Ll ₅ OC1 170.8 C ₂ Ll ₅ OC1 126.6	Formula b.t. % C ₃ Li ₈ O ₂ 124.5 55 C _u H ₁ O ₂ 135.3 48 C ₅ H ₁ 2O ₂ 151.35 18 C _u H ₈ O ₉ 143.8 38 c ₂ Li ₇ ON 170.8 15 C ₂ H ₅ OC1 126.6 55	Formula b.t. % b.t. C ₃ Li ₈ O ₂ 124.5 55 118.8 C ₄ Li ₁ O ₂ 135.3 48 127.8 C ₅ H ₁ 2O ₂ 151.35 18 134.5 C ₄ H ₈ O ₃ 143.8 38 129.0 c ₂ Li ₇ ON 170.8 15 131.0 C ₂ Li ₅ OC1 126.6 55 121.0

Ethyl benze	one (C.I	I) + ·	7-Fthoxyeth	anol	_
				C ₄ H ₁₀ O ₂)	
Kieffer and (fig.)	Grabie.	1, 1931			
	101%	b.t		•	_
L		<u>v</u>	L	<u> </u>	_
0 10		0	50 60	48 52	
20 30	3	22 33	70	58	
40	4	f0 f5	80 90	67 81	
47.4		17.4	100	100	_
	mol %		b.t.		
	0 47.4		134.9		
	100		126.2 Az 134.0	•	
mol?	8	n _D	mo1%	n _D	-
		20°			_
0		.4957	60	1.4472	
10 20		. 48 7 4 . 4801	70 80	1.4382 1.4287	
30 40	1.	.4726 .4645	90	1.4184	
50	1	4560	100	1.4080	
Fried, Pick	and al.	, 1956.			=
mol% L	v	b.t.	P ₁	Pg	_
		50 mm			_
100	100	64.5	68.8	50.0	
94.6 91	83.8 75.3	61.7 60.3	59.7 56.2	44.1 41.2	
89.2	75.3 72.8	59.6	54.5	39.8	
83.6 74.4	63.8 54.4	$\begin{array}{c} 58.0 \\ 56.3 \end{array}$	50.8 47.0	36.8 33.4	
73.5	53	56.2	46.8	33.6	
70.2 70	51 50	55.8 55.7	46.0	32.9 32.7	
47 7	37.6	55.7 54.2	45.8 42.7 42.2	30.3	
34.5 33.5	$\begin{array}{c} 33 \\ 32.8 \end{array}$	53.9 53.9	4))	29.9 29.9	
25.4	28.7	54.1	42.5 42.5	30.1	
25.4 24.6 18	28.2	54.1 54.7	12.5 13.7	30.1 31.1	
17.6	28.7 28.2 25 24.5	54, 7	43.7	31.1	
$\substack{15.8\\12.6}$	$\begin{array}{c} 23.8 \\ 21 \end{array}$	54.9	44.1 44.9	31.5	
0	0	55.3 57.8	50.0	32.1 37.1	
 	mo1%		N D		
	100	20°	,		_
	$\frac{100}{91.9}$		1.4080 1.4165		
	91.9 74.9 55.9		1,4332		
	55.9 35.4		1.4507 1.4680		
	12.6		1.4859		
	U		1.4957		
					=

Propyl	benzene	(C ₉ H ₁₂)	(b.t.	=	159.3)	+
Alcohols									

	2nd Comp.		Az		
Name	Formula	b.t.	K	b.t.	Dt mix
Hexyl	C 6H1 40	157.85	45	152.7	-
ļ	CalleOa	197.4	19	152.0	_
Pinacol	C ₆ H ₁ 40 ₂	174.35	28	156.3	-
glycol	C3H8O2	124.5	82	124.0	-2.1 (80%)
Ethoxy glvcol	C+H1002	135.3	80	134.6	-0.8 (90%)
Propoxy	C 5H12O2	151.35	62	147.8	-2.2 (50%)
Butoxy	$C_6H_{14}O_2$	171.15	50	158.0	-2.8 (50%)
Methyl	$C_{4}H_{8}O_{3}$	143.8	73	140.0	-5 (80%)
Ethyl	C 5H1 00 3	154.1	58	148.0	-4.0 (60%)
Cyclo-	C ₆ H ₁₂ O	160.8	40	154.2	-3.5 (40%)
Ethylene chlorhydrin	C ₂ H ₅ OC1	128.6	76	127.0	-2.7 (80%)
Dichlor ethanol	C ₂ H ₄ 0Cl ₂	146.2	7 5	143.5	-
1-3-Dichlor propanol	C ₃ H ₆ OCl ₂	175.8	20	157.5	-
Iodethanol	C2H50I	176.5	30	155.0	_
Ethanol- amine	C ₂ H ₇ ON	170.8	30	147.0	-
	Hexyl alcohol Glycol Pinacol Methoxy glycol Ethoxy glycol Butoxy glycol Methyl lactate Ethyl lactate Cyclo- hexanol Ethylene chlorhydrin Dichlor ethanol 1-3-Dichlor propanol Iodethanol Ethanol-	Name Formula	Name Formula b.t. Hexyl C ₆ H ₁ u0 157.85 alcohol Glycol 2H ₆ O ₂ 197.4 Pinacol C ₆ H ₁ uO ₂ 174.35 Methoxy glycol 124.5 Ethoxy C ₄ H ₁ OO ₂ 135.3 glycol Propoxy C ₅ H ₁ 2O ₂ 151.35 glycol Butoxy C ₆ H ₁ uO ₂ 171.15 glycol Methyl C ₄ H ₈ O ₃ 143.8 lactate Ethyl C ₅ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₃ 154.1 lactate Cyclo- C ₆ H ₁ OO ₂ 128.6	Name Formula b.t. %	Name Formula b.t. % b.t. Hexyl C ₆ H ₁ uO 157.85 45 152.7 alcohol Glycol 197.4 19 152.0 Pinacol C ₆ H ₁ uO ₂ 174.35 28 156.3 Methoxy glycol 124.5 82 124.0 Ethoxy C ₃ H ₈ O ₂ 124.5 82 124.0 Ethoxy C ₃ H ₁ O ₂ 135.3 80 134.6 glycol Propoxy C ₅ H ₁₂ O ₂ 151.35 62 147.8 glycol Butoxy C ₆ H ₁₂ O ₂ 171.15 50 158.0 glycol Methyl C ₄ H ₈ O ₃ 143.8 73 140.0 lactate Ethyl C ₅ H ₁ O ₃ 154.1 58 148.0 lactate Cyclo- C ₆ H ₁₂ O 160.8 40 154.2 hexanol Ethylene C ₂ H ₅ OCl 128.6 76 127.0 chlorhydrin Dichlor C ₂ H ₄ OCl ₂ <t< td=""></t<>

Francis, 1944

Isopropyl benzene (C_9H_{12}) + Alcohols.

2 nd comp.		C.S.T.
Diethylene glycol	(C ₄ H ₁₀ O ₉)	137
Triethylene glycol	(C ₆ H _{1 4} O ₄)	137
Furfuryl alcohol	(C ₅ H ₆ O ₂)	-50

Lecat,	1949

Isopropyl benzene (C_9H_{12}) (b.t. = 152.8) + Alcohols

Hexyl C	ormula 6H _{1 h} O	b.t. 157.85	*	b.t.	Dt mix
alcohol	6H ₁ 40	157.85			
Glycol C			35	149.5	-4.0 (30%)
	2H6O2	197.4	.18	147.0	-
Cyclohexanol	C6H120	160.8	28	150.0	-3.8
Methv1-					(50%)
	7H1 40	168.5	12	151.7	-
Methyl C	⁴ Н ⁸ О ³	143.8	62	137.8	-6.0
lactate					(50%)
Methoxy	C3H802	124.5	73.5	122.4	-1.5
glycol	•				(90%)
Ethoxy C	4H1002	135.3	67	133.2	-1.8
glycol					(50%)
Propoxy C glycol	5H12O2	151.35	50	147.0	-
	ςH _{1 0} O ₃	154.1	46	144.5	-3.0
lactate					(80%)
Ethylene chlorhydrin	(C ₂ H ₅ OC1) 128.6	7 0	125.3	5 -3.0 (75%)
Dichlor- ethanol	(C2H40C18) 146.2	65	142.0	-
1,3-Dichlor- propanol	(C ₃ H ₆ OCl ₂) 175.8	-	152.5	
Ethanol- (amine	C ₂ H ₇ ON)	170.8	-	142.5	-

Isopropyl benzene ($C_9H_{1\,2}$) + Furfuryl alcohol ($C_5H_60_8$)

Francis, 1944

C.S.T. = -50°

Isopropyl	benzene	(C ₉ H ₁₂)	+	2-Ethoxyethanol
						$(C_{4}H_{10}O_{2})$

Kieffer and Grabiel, 1951

 %	b.t.
0 67.5 100	151.1 132.0 Az 134.0

tr	101%	n D	mol%	n _D	
		20°			
1 2 3 4	0 0 0 0 0 0 0	1.4912 1.4844 1.4776 1.4706 1.4632 1.4553	60 70 80 90 100	1.4470 1.4386 1.4298 1.4194 1.4080	

Isopropy1 benzene ($\rm C_9H_{1\,2}$) + 2-Butoxyethanol ($\rm C_6H_{1\,4}O_2$)

Kieffer and Holroyd, 1955

wt%	mo1%	b.t.	n _D	
	20°			
10.3 Az 100	10.5 100	152.4 151.7 171.2	1.4916 1.4834 1.4196	

Butyl benzene	(C _{1 O} H _{1 4})(b.t.=183.1) +	Alcohols
---------------	-------------------------------------	---------------	-----	----------

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Isooctyl alcohol	C 8H1 80	180.4	50	178.2	-
Glycol	C2H602	197.4	27	166.2	-
Glycerol	C3H8O3	290.5	-	182.9	-
Butoxy glycol	C ₆ H _{1 4} O ₂	171.15	80	170.2	-2,3 (70%)
Methyl diglycol	C ₅ H ₁₂ O ₃	192.95	35	176.5	-1.5 (20%)
Ethoxy glycol	C4H1002	201.9	18	181.3	-1.5 (20%)
Glycol monoacetate	C 4H 8O 3	190.9	33	181.5	-
Methyl cyclohexanol	С ₇ Н _{1 4} 0	168.5	7 0	168.0	-
1,3-Dichlor propanol	C3H60C12	175.8	65	172.0	-
Ethanol- amine	C ₂ H ₇ ON	170.8	48	158.5	-

Butyl benzene ($C_{1\,0}H_{1\,4}$) + 2-Butoxyethanol ($C_6H_{1\,4}O_2$)

Kieffer and Holroyd, 1955

wt%		mol%	b.t.	n ² 0°
73.4 100	Az	0 75.5 100	183.4 169.6 171.2	1.4902 1.4395 1.4196

sec.Butyl benzene ($C_{10}H_{14}$) + varia						
Francis, 1944						
2 nd comp.	C.S.T.					
Diethylene glycol (C ₄ H ₁₀ O ₈)	191					
Triethylene glycol (C ₆ H _{1 k} O _k)	156					
Furfuryl alcohol (C5H6O2)	-22					
Phenyl ethanolamine (C ₈ H ₁₁ ON)	below-10					
sec.Butyl benzene ($C_{PO}H_{1\mu}$) + 2-Butoxyethanol ($C_6H_{1\mu}O_2$)						
Kieffer and Holroyd, 1955						
wt% mol% b.t.	n²o°					
0 0 173.3 47.9 Az 51.2 166.0	1.4902 1.4561					
100 100 171.2	1,4196					
100 100 171,2						
tert.Butyl benzene (C ₁₀ H ₁₄) + A	1.4196					
100 100 171.2 tert.Butyl benzene (C ₁₀ H ₁₄) + A	1.4196					
tert.Butyl benzene (C ₁₀ H ₁₄) + A	1.4196 Alcohols.					
100 100 171.2 tert.Butyl benzene (C ₁₀ H ₁₄) + A Francis, 1944 2 nd comp.	1.4196 Alcohols. C.S.T.					
tert.Butyl benzene (C ₁₀ H ₁₄) + A Francis, 1944 2 nd comp. Diethylene glycol (C ₄ H ₁₀ O ₃)	1.4196 Alcohols. C.S.T.					
tert.Butyl benzene (C ₁₀ H ₁₄) + A Francis, 1944 2 nd comp. Diethylene glycol (C ₄ H ₁₀ O ₈) Triethylene glycol (C ₆ H ₁₄ O ₄)	1.4196 Alcohols. C.S.T. 189 153 -32					
tert.Butyl benzene (C ₁₀ H ₁₄) + A Francis, 1944 2 nd comp. Diethylene glycol (C ₆ H ₁₀ O ₈) Triethylene glycol (C ₆ H ₁₄ O ₄) Furfuryl alcohol (C ₅ H ₆ O ₂)	1.4196 Alcohols. C.S.T. 189 153 -32 2-Butoxyethanol (C ₆ H ₁ ,0 ₂)					
tert.Butyl benzene (C ₁₀ H ₁₄) + A Francis, 1944 2 nd comp. Diethylene glycol (C ₄ H ₁₀ O ₈) Triethylene glycol (C ₆ H ₁₄ O ₄) Furfuryl alcohol (C ₅ H ₆ O ₂) tert. Butyl benzene (C ₁₀ H ₁₄) +	1.4196 Alcohols. C.S.T. 189 153 -32 2-Butoxyethanol (C ₆ H ₁ _u O ₂)					

sec. Amyl benzene ($C_{11}H_{16}$) + Alcohols

Francis, 1944

2nd Comp.		C.S.T.
Methyl alcohol	СН, О	- 6
Furfuryl alcohol	C5H6O2	11
Salicyl alcohol	C2H8O2	104
Diethylene glycol	C4H1 0O3	210
Triethylene glycol	C6H14O4	178
Phenyl ethanolamine	CaH110N	23
Ethylene chlorhydrin	C2H5OC1	-22

Styrene (C_8H_8)(b.t.=145.8) + Alcohols

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl	C 4H1 00	117.8	80	117.2	_
alcohol Isobutyl	C 5H120	131.9	63	128.9	-2.7
carbinol	05120	10117	00	120.7	(66%)
Hexyl alcohol	C ₆ H _{1 4} 0	157.85	23	144	-
Glycol	C2H6O2	197.4	17	141.5	-
Methoxy glycol	C ₃ H ₈ O ₂	124.5	62	141.0	-
Ethoxy glycol	$C_{4}H_{10}O_{2}$	135,3	55	130.0	-
Propoxy glycol	C 5H1 2O2	151.35	37	140.5	-
Methyl lactate	$C_{4}H_{8}O_{3}$	143.8	52	134.0	-6.5 (50%)
Ethyl lactate	C 5H1 0O3	154.1	33	140.5	-2.0 (25%)
Cyclo- hexanol	C ₆ H ₁₂ O	160.8	16	144.4	-
Ethylene chlorhydrin	C2H50Cl	128.6	60	123.2	-
Dichlor- ethanol	C ₂ H ₄ 0Cl ₂	146.2	-	140.0	-

Styrene ($C_8 \rm{H}_8$) + 2-Ethoxyethanol ($C_4 \rm{H}_{10} \rm{O}_2$)

Fried, Pick and al., 1956

mo1% L	v	b.t.	Pa	p ₁	
		50	mm		
0.0	0.0	65,6	53.0	50.0	
8.3	20.0	63.1	47.2	44.7	
15.0	27.8	61.8	44.3	42.2	
20.5	31.8	61.0	42.6	40.8	
38.3	42.0	59.9	40.4	38.8	
48.2	46.8	60.0	40.6	38.9	
62.8	55.5	60.5	41.6	39.8	
78.0	68.3	61.5	43.7	41.7	
84.8	75.5	62.1	45.0	42.8	
93.5	8 7. 5	63.5	48.1	45.5	
96.8	93.4	64.2	49.7	47.0	
100.0	100.0	64.5	50.0	47.8	
				•	

Styrene (C_8H_8) + Alcohols

Francis, 1944

Francis, 1944	
2 nd comp.	C.S.T.
Diethylene ($C_{ij}H_{10}O_3$) glycol	111 37
Triethylene (C ₆ H ₁ , 0, 1) glycol	
Ethanolamine (C ₂ H ₇ ON)	115°
Triethanolamine (C ₆ H ₁₅ O ₃ N)	180°

		ii, 1956		fig.)				
		mol% mol%						
I	<u> </u>			v				
		b.t.						
14	90		50	93.	5			
20 30	91 92.	5	60 80	94 94				
9	n _D		%	n _D)			
		20°						
0	1.50		7 5	1.368	}			
25 50	1.46 1.41	U 10 5	00	1.328	88			
	ranov and Shl		1954					
mo.	1% n2°	1(19-20	°) d(19	9-20°)			
,0	1.5047		3.83	0.	557			
16 30	1.4831	1	$\frac{4.00}{6.12}$	0.	434 206			
41 51	1.4748	2	9.00	0.	124			
65	1.4371	9 10	1.9	0.	087 073			
80 100	1.4031 1.3284	9	6.30 0.56	0.	086 070			
dis	ative intens persion. ree of the o				ight			
Lecat,	1949							
o-Xylen		(b.t.=14	44.3)	+ Alcoho	ls.			
	2 nd comp.		Az					
me	Formula	b.t.	A	b.t.	Dt mix			
	(C ₆ H ₁ ,0)	157.85	20	143.1	-			
xyl cohol			_	140.0	_			
xyl cohol ycol	(C ₂ H ₆ O ₂)	197.4	16	140.0				
coho1	(C ₂ H ₆ O ₂) (C ₃ H ₈ O ₂)	197.4 124.5	16 63	121.0	-2.3 (65%)			

o-Xylene (C_8H_{10}) + 2-Ethoxyethanol ($C_4H_{10}O_2$) Kieffer and Grabiel, 1951 ngo° mo1% mol% 1.4501 1.4402 1.4300 0 1.5044 60 1.4949 1.4862 1.4779 70 80 10 20 30 1.4189 1.4690 1.4598 100 1.4080 40 50 mo1% mol% b.t. L V ٧ 0 10 20 30 40 50 60 70 80 90 100 61 65 74 86 100 0 28 39 45 52 58 % b.t. $\begin{smallmatrix}0\\57.2\\100\end{smallmatrix}$ 143,1 129.6 134.0 o-Xylene (C_8H_{10}) (b.t. = 144.3) + Alcohols Lecat, 1949 2nd Comp. Αz % b.t. Dt mix Formula b.t. Name Propoxy glycol ($\mathrm{C_5H_{1\,2}O_2}$) 151.35 35 140.3 -1.9 Methyl' 143.8 133.5 -5.8 (75%) (C4H8O3) lactate Ethyl lactate 30 140.2 -4.0 $(C_5H_{10}O_3)$ 154.1 160.8 13 Cyclo-143.3 $(C_6H_{12}O)$ (50%) hexanol 123.6 -2.7 Ethylene C2H50C1 128.6 60 (80%)chlorhydrin 1-Chlor-2-C 3H70C1 127.0 85 125.5 propanol 2-Chlor-1-C 3H20C1 133.7 70 130.5 -2.5 propanol (80%) Dichlor $C_2H_40C1_2$ 146.2 50 139.0 -3.0 (30%) ethanol Ethylene C2H50Br 150.2 43 133.5 -3.0 bromhydrin (30%)Ethylene C2H50I 176.5 143.5 10 iodhydrin Ethanolamine C2H2ON 170.8 20 138.0

XYLENE + ETHYL TARTRATE

o-Xylene (C Patterson, 1		yl tartrat	te (C ₈ H ₁ ₄ O ₆)	m-Xylene (C ₈ H ₁₀) + Methyl alcohol (CH ₄ 0)
t 0	d %	t 2.0	d 035%	Francis, 1944
19.12 22.44 28.93 36.34	0.880776 0.877938 0.872521 0.866286	19.2 23.1 31.7	0.88508 0.88179 0.87451	C.S.T. below -78°
	9945%	7.8	31793%	Teitelbaum, Gortalova and Ganelina, 1950
19.21 24.37 27.96 33.47	0.89194 0.88750 0.88445 0.87975	19.5 30.52	0.89854 0.88907	mo1% d T)
9.9	6165%	25.0	067%	0 0.8656 627 20 0.8603 622 40 0.8524 636
19.23 24.85 31.66 35.85	0.903701 0.898829 0.892909 0.889362	18.97 27.05 37.76	0.94251 0.93517 0.92543	50 0.8480 646 60 0.8412 662 70 0.8350 654 80 0.8264 641
49.9	946%	74.9	896%	100 0.7923 578
18.86 27.77 41.90	1.01572 1.00718 0.99368	18.75 31.27 45.58	1.10244 1.08998 1.0758	m-Xylene (C ₈ H ₁₀) + Propyl alcohol (C ₃ H ₈ O)
t	ΔD	t	αD	Lecat, 1949
2.0035	X	4.99	945%	% b.t. Dt mix
11.9 20.7 31.3 7.8179	1.97 3.39 5.06	13 18.9 22 25.6 35.8 37.2	2.75 3.81 4.27 4.82 6.38	0 139.2 94 97.08 Az 523.4 100 97.2
17.5 21.2	3.52 4.15		6.50 5165%	
25.0069 17.8 19.6	7% 3.28 3.59	12.1 15.0 17.4 19.0	2.54 3.03 3.51 3.75	m-Xylene (C_8H_{10}) + Butyl alcohol ($C_4H_{10}0$) Jahn and Möller, 1894
25.1 37.5 40.9	4.53 6.59 7.09	24.9 30.0 33.6 36.7	4.70 5.52 6.05 6.53	% t d ε 100 14 0.80717 19.294
49.994 14.2 16.9 19.7 26.6 35	3.45 3.98 4.50 5.53 6.81	74.9 12.3 18.1 22.5 36.3	9896% 4.57 5.46 6.12 7.83	62.907 13.5 0.82883 11.365 40.018 13.5 0.84303 6.5243 18.398 13 0.85765 3.3742 10.234 13 0.86298 2.7925 0 13.5 - 2.3518
				Ryland, 1899
				% b.t.
				0 136 - 137 52 125 - 126 Az 100 95 - 96

Lecat, 1	949					m-Xylene (C_8H_{10}) + Di	ethylene	glyco	1 (C ₄ F	l ₁₀ 0 ₃)
m-Xylene	(C ₈ H ₁₀) (b.t.=139	9.2) + A	Alcohols.		Francis, 1	944				
	2 nd comp.		Az	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		c.s.T. = 1	62°				
Name	Formula	b.t.	%	b.t.	Dt mix.						
Butyl alcohol	(C ₄ H ₁₀ 0)	117.8	71.5	116.5	-3.1 (48%)	Vulana (C ₈ H ₁₀) + Ti	i athulan	o alva	al (C.	н. о.)
Isobutył alcohol	(C ₁₄ H ₁₀ 0)	108.0	85.5	107.78	-4.5 (50%)		_	. Te thy Ten	e gije	01 (0	111404 /
Isobutyl carbinol	(C ₅ H ₁₂ 0)	131,9	53	127.1	-3.4 (50%)	Francis, 1					
						C.S.T. = 1	200				
m-Xylene	(C ₈ H ₁₀) +	Amyl al	cohol (C ₅ H ₁₂ 0))						
Jahn and	Möller, 1894	ŀ				Lecat, 194	9				
<u> </u>	t	d		ε			C_8H_{10}) (b.	.t. = 139	.2)+		
100 74.21 45.10	14.3 2 14.6	0.8	1593 2782	15.96 11.27	14		2nd Comp.		Az		
20.29 10.98	8 14.8	0.8	4297 5675 6205	5.902 3.154 2.713	10	Name	Formula	b.t.	%	b.t.	Dt mix
100 70.07 45.19 24.14 12.04	6 14 8 14	$\begin{array}{c} 0.8 \\ 0.8 \\ 0.8 \end{array}$	1535 2990 4309 5573 6294	15.925 10.694 5.994 3.452 2.764 2.349	1 12 13 17	Methoxy glycol	С ₃ Н ₈ О ₂	134.5	58	119.5	-2.7 (50%)
						Ethoxy glycol	C4H1002	135.3	51	128.85	-
						Propoxy glycol	C 5H1202	151.35	25.5	136,95	-2.0 (50%)
m-Xylene	(C_8H_{10}) +	Nonyl a	alcohol	(C ₉ H _{2 0} 0)	Methyl lactate	C 4H803	143.8	42.5	131.2	
Chu, Khai	rbanda and a	1., 1954	4			Ethyl	C 5H1 00 3	154.1	19.5	137.4	-3.1
1	b.t.	mo:	•	v		lactate Cyclo- pentanol	(C ₅ H ₁₀ 0)	140.85	40	132.8	(24%) -2.7 (30%)
		753mm 86,5		C2 0		Cyclo- hexanol	(C ₆ H ₁₂ O)	160.8	5	139.1	-3.1 (17%)
	168 159 151.5 146	75.5 59.0 43.0 29.0 13.0	4 2 1	53.0 60.0 25.0 14.5 8.5 4.0							
					٠						

m-Xylene (C_8H_{10}) + 2-Ethor	xyethanol ($C_4H_{10}O_2$)	m-Xylene (C ₈ H ₁₀) + Ethy	l tartrate	(C ₈ H ₁ 4O ₆)
Kieffer and Grabiel, 1951		Patterson,	1902		
76	b.t.	t	đ	t	d
0 48.9	137.9 127.7 Az		0%	1.998	81%
100	134.0	21.37 24.15 31.25 42.10	0.86285 0.86039 0.85427 0.84484	18.42 26.08 30.42	0.86981 0.86321 0.85948
mo1% n _D	mo1% n _D	_ 2	41204%	5.003	18%
0 1.4971 10 1.4883 20 1.4808 30 1.4729 40 1.4650 50 1.4565	60 1.4481 70 1.4389 80 1.4294 90 1.4188 100 1.4088	18.35 26.60 33.75	0.87091 0.86373 0.85763	17.3 23.69	0.877942 0.872386
30 1,4303		t	(a)D	t	(α) _D
m-Xylene (C_8H_{10}) + Methyl	malata 1 (C.H. O.)	1.9	99881%	2	.41204%
Grosman and Landau, 1910	marate 1 (C611 1005)	8.7 19.2 30.7	0.38 2.36 4.40	17 19 25.2	2.28 2.60 3.68
t đ	t d	5.0	00318%	5	.09721%
5.09721% 18.4 0.87719 1	10.0017% 8.80 0.88894 5.05 0.88335	7.9 15.2 25.2	1.08 2.46 3.57	7.8 15.1 24.3	1.20 2.58 4.22
26.88 0.86979 2 33.89 0.86371 3	5.05 0.88335 1.20 0.877943	10.0	0017%	18	. 8179%
18.8179%	33.1227%	11.8 13.7	1.97 2.43	$\substack{10.5\\18.5}$	1.73 3.34
18.01 0.91270 1 25.24 0.90621 2 32.27 0.89993 3	7.66 0.95333 5.23 0.94626 0.26 0.94164	18.8 24.7 31.1	3.35 4.39 5.39	19.2 23.3	3.33 4.14
39.9859%	59.9 7 5%	33.1	1227%	39	. 9859%
17.8 0.97425 2 29 0.96369 4 50.2 0.94403 6 70 0.9255 100 100 0.8969	8 0.9923		3.43 4.33 975%	16 16.8 20 26.2	3.62 3.69 4.32 5.31
74.0857		17 20 27 0	4.57 5.05	27.5 39	5.54 7.19
18.18 1.09323 25.00 1.0865 39.12 1.0724		27.9 42.1 49 53.8 58 65.1	6.17 8.09 8.83 9.33 9.76 10.42	59.7 64.5 71.2 76.1 79.1 100	9.63 10.09 10.69 11.14 11.38 12.78
	g/100cc 12.5243 4.735 2.3675	72.7 84	11.07 11.98		.0857%
red -4.59 -3.87 yellow -5.19 -4.47 green -6.09 -4.87 light blue -6.99 -5.27 dark blue -7.29 -5.47	-2.40 -2.11 -1.69 -2.95 -2.75 -2.11 -3.27 -2.11 -1.69 -3.43 -1.48 -1.27 -3.59 -1.06 -0.84		13.00	10 18.9 20.9 26 32.3	4.30 5.71 5.93 6.64 7.36
violet -7.69 -	0.42 -	=			

	T .
m-Xylene (C ₈ H ₁₀) + Tetrahydrofurfuryl alcohol	Lecat, 1949
(C ₅ H ₁₀ O ₂)	p-Xylene ($C_8 II_{10}$) (b.t.=138.45) + Alcohols.
Chu and Kharbanda, 1954	2 nd comp. Az
t mol% L V	Name Formula b.t. % b.t. Dt mix
746mm	Propyl (C _s H _g O) 97.2 - 97.0 -1.3 alcohol (90%)
169 92.3 69.7 158 85.0 40.4	Butyl (C _u H ₁₀ 0) 117.8 71 116.2 -
151 69.0 27.3 145 51.6 20.2 141.8 33.0 14.5	Isobutyl (C _h H _{1,0} 0) 108.0 83 107.6 -1.6
139.5 15.0 7.6	
Lecat, 1949	p-Xylene (C_8H_{10}) + Isobutyl alcohol (C_8H_{10} 0)
m-Yulana (C.H.) (' + - 130.0)	Paterno and Montemartini, 1894
m-Xylene (C_8H_{10}) (b.t. = 139.2) + Alcohols	% f.t.
2nd Comp. Az	0 13.23 0.36 13.02
Name Formula b.t. % b.t. Dt mix	0.99 12.705 2.26 12.25 4.33 11.765 9.94 10.785 18.96 9.56
Ethylenchlor C ₂ H ₅ 0C1 128.6 54.5 121.9 -3.4	
hydrin (50%)	
1-Chlor-2- C ₃ H ₇ 0C1 127.0 75 124.5 -3.5 propanol (50%)	
2-Chlor-1- C ₃ H ₇ 0C1 133.7 53 129.0 -3.3	Lecat, 1949
propanol (50%)	
Dichlor- C ₂ H ₄ 0Cl ₂ 146.2 32 136.0 -	p-Xylene (C_8H_{10}) (b.t. = 138.45) +
ethanol Ethylene C ₂ H ₅ OBr 150.2 43 133.5 -3.0	Alcohols
Ethylene C_2H_50Br 150.2 43 133.5 -3.0 bromhydrin (30%)	2nd Comp. Az
Ethanolamine C ₂ H ₇ ON 170.8 18 133.0 -	Name Formula b.t. % b.t. Dt mix
Diethyl ethanol-	or Sat.t.
amine	Amy1 C ₅ H ₁₂ O 138.2 42 131.3 ±2.7
DeVulono / C. H. D. A. Fabrilla I. J. J. / C. H. C.	alcohol (20%)
p-Xylene (C_8H_{10}) + Ethyl alcohol (C_2H_60)	Glycol C ₂ H ₆ O ₂ 197.4 14.5 135.2 -
Paterno and Montemartini, 1894	Ethoxy- C _u H ₁₀ O ₂ 135.3 50 128.6 - glycol
% f.t.	Propoxy C ₅ H ₁₂ O ₂ 151.35 24 136.3 -1.5 glycol (20%)
0 0.31 13.23 12.96	glycol (20%) Methyl C ₄ H ₈ O ₃ 147.8 42 130.2 -6.8
$ \begin{array}{ccc} 0.31 & 12.96 \\ 1.22 & 12.46 \end{array} $	lactate (40%)
2.43 12.065	Ethyl C ₅ H ₁₀ O ₃ 154.1 17 136.6 -2.8
3.87 11.76 7.22 11.24 13.58 10.50	lactate
20.95 9.835	

126		×	YLENE + TRIM	E THYLC ARBIN	IOL		
p-Xylene (C ₈ H) + Trin	nothylcarhin	ol (C.H.,O.)	p-Xylene (C ₈ H ₁	o) + 2-Ethox	yethanol (C ₄ H ₁₀ O ₂)
p-xyrene (c ₈ n	10 / + 1111	ne thy icai bin	οι (υμπιου)	Kieffer and Gra	biel, 1951		
Paterno and Mo	ntemartini,				mo1%	b.t.	
100 98.290	18.79 17.35	45.203 40.983	3.375 4.33		0 52.0 100	137.4 127.3 A 134.0	ΔZ
96.172 92.025 87.941	15.74 12.66 9.88	40.983 37.338 32.634 26.676	5.36 6.265 7.235	mo1%	ngo°	mo1%	n _D 2°°
83.970 77.770 71.487 67.992 64.465 59.909 57.683 54.670 53.739 51.650	7.175 4.205 +0.415 -0.61 -1.80 -0.97 -0.63 +0.42 1.10 1.74	19.422 15.793 12.764 8.645 6.002 3.964 3.999 1.434 1.447	8.755 9.420 9.96 10.71 11.27 11.73 11.97 12.475 12.94 13.18	0 10 20 30 40 50	1.4960 1.4882 1.4807 1.4729 1.4648 1.4564	60 70 80 90 100	1.4475 1.4385 1.4289 1.4185 1.4080
Paterno and	Montemarti %	ni, 1894 	%	p-Xylene (C _B H Paterno and Mo		-	ether (C ₇ H ₁₆ O ₃)
13,23	0	11.32	6,00	×	f.t.	%	f.t.
12.29 12.525 12.02 11.78	0.44 1.43 3.00 3.97	11.32 10.76 10.01 9.47 7.285	8.65 12.76 15.74 27.65	0 0.47 1.89 3.36 6.56	13.23 13.05 12.64 12.365 11.63	8.84 12.33 16.00 21.01	11.21 10.52 9.85 8.90
p-Xylene (C ₈ Chu and Kharb		nyl alcohol	(C ₉ H ₂₀ O)	p-Xyiene (C ₈			l (C ₆ H ₁₀ O ₅)
b.t.	L	mo1% V		colour 50.		(α) 5 12.5553 4/100cc	4.856 2.428
	7531	mm			200		······································

58 34.5 23.0 13.5 8.0 3.0

20°

-3.78 -4.34 -4.70 -5.06 -5.18

-2.97 -2.95 -3.03 -3.11 -3.27

-2.68 -2.88 -3.09 -3.09 -2.47 -2.06

-2.47 -2.88 -2.88 -2.06 -1.65

red -4.48 yellow -4.98 green -5.58 light blue -6.47 dark blue -6.67 violet -6.97

p-Xylene (C ₈ H _{1c} Patterson, 1902	,) + Eth	yl tartrate	($C_8H_{14}O_6$)	p-Xylene (C ₈	H ₁₀) + p-X	ylenol (C	₈ H ₁₀ 0)
t	đ	t	d	Paterno, 1895	į		
0%		2.00079	ę	Я	f.t.	Я	f.t.
25.50 0 33.30 0 40.65 0	0.86134 0.85613 0.84939 0.84294		0.86657 0.86273 0.85654	0 0.4757 1.3334 2.0509 4.1393	13.445 13.255 12.96 12.795 12.18	4.3313 5.6585 7.6876 12.2243 16.9112	12.16 11.86 11.39 10.45 9.625
4.995889		10.09559				10,7111	×.020
25.9 0 37.27 0	0.87438 0.86753 0.85746	28.35 42.97	0.88726 0.88368 0.87800 0.86984	p-Xylene (C	₈ H ₁₀) + Te	trahydrofu	rfuryl alcohol
24.98499		50.0899%					$(C_5H_{10}O_2)$
24.08 0	. 92694 . 92171 . 91537	26.86 35.80	1.0044 0.9964 0.9877	Chu and Khar	banda, 1954		
74 .9913%			0.9805	b.t.	J	mo1%	v
27.23 1	.0958 .0871 .0795					5 mm	<u> </u>
ι	(α) _D	t	(α) _D	169. 158. 151.	.5 95. .8 82. .1 78.	.3	80.2 41.3 34.2
2.000	7%	4	. 99588%	144 141. 139	53. .2 36. 20.	. 6 . 7	23.0 20.0 13.6
10 15.9 23.7 29.9	-0.46 +0.29 2.03 3.05	10 16 22.9	+0.11 1.22 2.57		20.		10.0
10.095	5%	24	. 9849%	p-Xylene (C ₈	H ₁₀) + Eth	y lenchlorhy	ydrin (C ₂ H ₅ OCl)
9.9 17.8 18.9 20.8 29.8 45.7	+0.61 2.07 2.27 2.64 4.26 6.57	10.5 15.1 21.8 32.6	+1.24 2.09 3.28 5.24	Lecat, 1949	<i>%</i> _0	b.t. 138.45	
52.9 59.1 74.991;	,	10.8 17.9 23.2 39.6	+2.63 3.84 4.71 7.26		54 60 100	121.5	Az -3.2
16.4 16.7 21.1 22.1 31.7	+3.97 5.01 5.04 5.68 5.78 7.11			p-Xylene (C _B l	H ₁₀) + Ethy	ylenbromhyc	drin (C ₂ H ₅ 0Br)
p-Xylene (C ₈ H ₁	o) + Ber	nzyl alcoho	1 (C ₇ H ₈ O)		%	b.t.	
Paterno and Mon	temartini	, 1894			0	138.45	3
K	f.t.	Я	f.t.		42 100	133.0 150.2	Az
0 0.44 2.04 3.38 6.37	12.23- 13.03 12.44 12.21 11.69	9.79 12.42 15.35 20.58	11.245 10.905 10.57 9.98				

Xylene (C ₈ H ₁₀) + Ethyl alcohol (C ₂ H ₆ 0)	Xylene (C ₈ H ₁₀) + Butyl alcohol (C ₄ H ₁₀ 0)
Jahn, 1891	Robinson, Wright and Bennett, 1932
% d (α)	- Az
magn.	
20°	62.4 20.0
100 0.79009 84.77 69.60 0.81137 114.18	52.8 40.0 43.6 60.0 35.0 80.0
0 0.86491 188.78	20.7 115.0
Cohn and Arons, 1888	$\frac{\text{Xylene (C}_{8}\text{Ii}_{10}\text{) + Amyl alcohol (C}_{5}\text{H}_{12}\text{0)}}{\text{Xylene (C}_{8}\text{Ii}_{10}\text{) + Amyl alcohol (C}_{5}\text{H}_{12}\text{0)}}$
% ε % є	- Clarke, 1905
at room temperature 0 2.36 40 9.53	% Q mix
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(cal/g)
	72.7 0.91
Campbell, 1913	64.8 1.25 53.1 1.53 46.5 1.62
% κ.10 ¹⁰ τ	46.5 39.2 1.57 20.6 1.07
,	
25.6° 15°	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Francis, 1944
20 1000 18 531 -	Methylethylbenzene ($C_{9}II_{12}$) + Alcohols.
16 281 - 14 144 - 12 57.7 -	2 nd comp. C.S.T.
10 16.8 -0.0168	Methyl alcohol (CH ₄ 0) -78°
8 3.76 - 7 1.60 -	Diethylene glycol (C ₄ H ₁₀ O ₃) 176°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Triethylene glycol (C ₆ H _{1 w} O _w) 138°
0 lower than - 0.00001	
	Francis, 1944
	Diethylbenzene (C _{1 o} II _{1 ½}) + Alcohols.
	2 nd comp. C.S.T.
	Methyl alcohol (CH40) -18°
	Diethylene glycol ($C_{\mu}H_{1}_{b}O_{\mu}$) 193
	Triethylene glycol(C ₆ H ₁₊ O ₄) 160
	Furfuryl alcohol (C ₅ H ₆ O ₂) -16

p-Cymene	(C ₁	oH14)(b.t.=17	76.7)	+	Alcohols
----------	------------------	------	----	---------	------	---	---	----------

Lecat, 1949

	2nd Comp.		Αz		
Name	Formula	b.t.	%	b.t.	
Henty I	C7H160	176.15	47	172.5	
alcohol Isooctyl alcohol	C 8H180	180.4	40	175.2	-
Glycol	C211602	197.4	25	163.2	-
Pinacol	C 6 H 1 4 O 2	174.35	50	167.7	-
Butoxy	C6H1402	171.15	60	168.0	-2.5
glycol					(60%)
Methoxy diglycol	C 5H 1 2 0 3	192.95	27	172.0	-1.8 (20%)
Propyl lactate	C ₆ H ₁₂ O ₃	171.7	62	167.0	-2.5 (50%)
Isobutyl lactate	C7H1403	182.15	25	175.5	-2.0
Cyclo- hexanol	C ₆ H ₁₂ O	160.8	74	179.5	-
Methyl cyclohexanol	C7H140	168.5	68	166.5	-

p-Cymene ($C_{10}H_{14}$) + 2-Butoxyethanol ($C_6H_{14}\theta_2$)

Kieffer and Holroyd, 1955

wt%	nio 1%	b.t.	n² o°
56.6 100	0 59.7 100	177.2 167.4 Az 171.2	1.4902 1.4502 1.4196

p-Cymene ($C_{1\ 0}H_{1\ \mu}$) + Terpineol ($C_{1\ 0}H_{1\ 8}0$)

Brauer, 1929

mo1%	b.t.(10 mm)
0	97.2
11.3	
33.0	86 73
53.5	60
72.8	58
91.2	57
100	60 58 57 56.9
	0 11.3 33.0 53.5 72.8

p-Cymene ($C_{10}H_{14}$)(b.t.=176.7) + Alcohols

Lecat, 1949

	2nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix.
2,3-Dichlo	or_ (C ₃ ll ₆ 0Cl ₂)	175.8	55	171.0	-3.6
1,2-Dichlo	or- (C ₃ II ₆ 0Cl ₂	182.5)	42	172.5	-
Ethanol- amine	(C ₂ H ₇ ON)	170.8	37	154.5	-

Cymene (C₁₀H₁₄) + Alcohols

Francis, 1944

2 nd comp.		C.S.T.
Methyl alcohol	(C!!40)	-18°
Diethylene glycol	(C ₄ E ₁ , 0 ₄)	194
Triethylene glycol	(C ₆ II _{1 4} O ₄)	161

Methyldiethylbenzene ($C_{11}H_{16}$) + Alcohols

Francis, 1944

2nd Comp.	C.S.T.
Methyl alcohol (CH ₄ O)	10
Furfuryl alcohol (C ₅ H ₆ O ₂)	2
Diethylene glycol (C4H1003)	207
Triethylene Elycol ($C_6H_{14}O_4$)	172
Phenylethanolamine ($C_8H_{1,1}ON$)	5
Ethylene chlohydrine (C_2H_50C1)	-50

ETHYLISOPROPYL BENZENE + METHYL ALCOHOL

Francis, 1944		Pseudocumene	C ₉ H ₁₂)	+ Methy	lalcol	101 (CH	₄ 0)
Ethylisopropyl benzene (C ₁₁ H ₁₆) + A	Alcohols	Francis, 194	14				
2nd Comp.	C.S.T.	C.S.T. = -26					
Methyl alcohol (CH_uO) Diethylene glycol ($C_uH_{10}O_3$) Triethylene glycol ($C_6H_{1u}O_u$) Furfuryl alcohol ($C_5H_6O_2$) Phenylethanolamine ($C_8H_{11}ON$) Ethylene chlorhydrin (C_2H_5OCl)	-5 213 177 2 27 -60	Pseudocumer Lecat, 1949 2nd Comp.)(b.t.=	168.2 Az) + Alco	ohols Ot mix
					,		
Francis, 1944 Diisopropylbenzene (C ₁₂ H ₁₈) + Alco	hols	Hexyl alcohol Glycol Pinacol	C ₆ H ₁ ₄ 0 C ₂ H ₆ O ₂	157.85	17.5		-1.4 (70%) -
2nd Comp.	C.S.T.	Finacoi	C ₆ H ₁ 40 ₂	174.35	38	162.9	
Methyl alcohol (CH _k 0) Diethylene glycol (C _k H ₁₀ 0 ₃) Triethylene glycol (C ₆ H _{1k} 0 _k) Furfuryl alcohol (C ₅ H ₆ 0 ₂) Phenylethanolamine (C ₈ H ₁₁ 0N)	9 219 191 20 55	Pseudocumen Francis, 19 2nd comp.		+ Alco	ohols.	c	.S.T.
Ethylene chlorhydrin (C ₂ H ₅ 0Cl)	-5	Diethylene Triethylen Furfuryl a	e glycol (C ₄ H ₁₀ O ₃ C ₆ H ₁₄ O ₄ C ₅ H ₆ O ₂)		187 152 -11
Francis, 1944 Diamylbenzene ($C_{16}H_{26}$) + Alcohols		Pseudocume Lecat, 194)(b.t.=	168.2) + Alc	ohols
2nd Comp.	C.S.T.	<u> </u>	2nd Comp.		Az		
Methyl alcohol (CH_40) Diethylene glycol ($C_\mu H_{10} O_3$)	76 262	Name	Formula	b.t.	%	b.t.	Dt mix
Triethylene glycol ($C_6H_{1u}O_{t_u}$) Tetrahydrofurfuryl alcohol ($C_5H_{10}O_2$ Furfuryl alcohol ($C_5H_6O_2$)	234 2) 12 82	Cyclo hexanol	C 6H120	160.8	57	157.8	-3.2 (60%)
Phenylethanolamine (C ₈ H ₁₁ ON) Ethylphenylethanolamine (C ₁₀ H ₁₅ ON)	-113	Methylcyclo hexanol Methyl	С ₇ H _{1 4} 0 С ₄ H ₈ O ₃	168.5 143.8	48 90	164 143.0	_
Ethylene chlorhydrin (C ₂ H ₅ 0Cl)	70	lactate Ethyl lactate	C ₅ H ₁ oO ₃	154.1	74	152.3	-1.5
		Propyl lactate	C ₆ H ₁₂ O ₃	172.7	38	163.5	(81%)

Mesitylene (C ₉ H ₁₂) + Methyl alcohol (CH ₄ O)	Mesitylene	(C ₉ H ₁₂)	+ Ethanol (C4H1002)	
Teitelbaum, Gortalova and Ganelina, 1950	Kieffer an	d Grabiel,	1951		ļ
tiol% d ŋ	mo1%	n _D 20	mol	6	ngo°
20° 0 0.8626 705 20 0.8577 696 40 0.8531 699 50 0.8464 715 60 0.8401 721 80 0.8240 683	0 10 20 30 40 50	1.4975 1.4892 1.4817 1.4744 1.4667 1.4584	60 70 80 90 100	1. 1. 1.	4495 4397 4297 4193 4088
100 0.7923 578	m.	01%		mol%	
	L	v	L	•	V
Mesitylene (C_9H_{12}) + Ethyl alcohol (C_2H_60) Teitelbaum, Gortalova and Ganelina, 1950	0 10 20 30 40 50	0 32 46 56 64 69	60 70 80 90	7. 8 8. 8 10	1 5 9
mol% d n	l				
20°		%	b.1		
0 0.8626 721 20 0.8548 718 40 0.8458 764 60 0.8343 854 80 0.8177 983 100 0.7903 1181		0 85.7 (88.9 100		.7 Az	<u></u>
Mesitylene (C_9H_{12}) + Propyl alcohol (C_3H_80)	Mesitylene Kieffer and		2-Butoxyetha	anol (C ₆ H	1402)
Teitelbaum, Gortalova and Ganelina, 1950	wt%	mo1%	b.t.	n _D 2	o°
ε:01% d η 20°	32.8 100	33.2 100	164.6 162.6 171.5) Az 1.47	19
	Mesitylene Lecat, 1949		b.t. = 164.0	5) + Alco	phols
		2nd Comp.	A	z	
	Name	Formula	b.t. %	b.t. 1	Dt mix
	Hexyl alcohol Glycol	C ₆ H ₁ , ₄ O	157.85 55 197.4 17	155.3	-1.7 (50%)
	Pinacol	C ₆ H ₁ 40 ₂	174.35 35	160.3	

Mesitylene (C ₉ H ₁₂) + Eth Patterson, 1902	yl tartrat	e (C ₈ H _{1 4} O ₆)				·		
t d	t	d	Rule, Barn	ett and Cu	nningham	. 1933		
0%	2.065	6%	- 			α) mol		~~~~
19.9 0.85969	19.44 24.56	0.86476		mo1%		α) 5461		
23.6 0.85669 27.34 0.85362 29.45 0.85189 40.3 0.84299	28.25	0.86055 0.85755		5 0	20°	0.02		
60.05 0.82665 5.00273%	10.007	3%		5.0 13.30 23.24 38.72		0.02 0.37 1.03 2.26		
18.22 0.87264 24.55 0.86740 28.61 0.86407 38.25 0.85605 62.30 0.8358 24.977%	17.97 21.95 33.03 47.77 64.32	0.88510 0.88175 0.87247 0.8599 0.8456		51.4 68.9		3.45 5.17		
19.57 0.92346 23.6 0.91991 32.61 0.91191 46.96 0.89920 62.9 0.88465	17.05 23.05 39.3	0.95861 0.95315 0.93837	Mesitylene Lecat, 194	19	(b.t. = 1		+ Alco	ohols
49.9975%	50.0	217%		2nd Comp.		AZ	1	D4
17.6 1.00169 24.82 0.99495	19.06 21.94	1.00046 0.99777	Name	Formula	ύ.t.	%	b.t.	Dt mix
34.33 0.98602 74.7687%	31,65 62.85	0.98864 0.9592	Cyclo- hexanol	C 6 H 1 2 O	160.8	42	156.4	-3.3 (50%)
17.44 1.09291 26.62 1.08394			Methyl	C7H140	168.5	34	160.5	-3.0
t (α) D	t	(α) _D	cyclohexano Methoxy~	C ₃ H ₈ O ₂	124.5	-	124.3	(30%) -1.5
2.0656%	5,0027	73%	glycol	3 0 -				(90%)
16.4 -2.10 18.8 1.79	16 16,8	+0.19 0.34	Propoxy glycol	C ₅ H ₁₂ O ₂	151.35	72	149.4	-1.5
26.3 0.21 30.4 +0.59 32.3 1.09	25 31 39,3	1.65 2.64 3.87	Butoxy glycol	C 6H1 4O2	171.15	32	162.0	(80%) -
10.0073%	44.9 50	4.58 5.14	Methoxy	C 5H1 2O 3	192.95	13	162.5	-1.2
16.4 +1.31 26.4 2.95	61.9 70	6.56 7.42	diglycol	C H.O	1/3 9	90	141 0	(10%)
29.5 3.40 47 5.74	73.4	7.80	Methyl lactate	C 4H8O3	143.8	80	141.0	-4.0 (80%)
50.9 6.23 60.5 7.30 65.7 7.85	24.977; 18		Ethyl logtote	C 5H1 0O 3	154.1	72	150.2	-2.2
65.7 7.85 70 8.33 71.2 8.47	19 39.7	+2.87 2.97 5.90	lactate Propyl	C ₆ H ₁₂ O ₃	171.7	30	161.0	(90%) -2.0
78.8 9.23 100 11.06	41.1 64.7	6.07 8.95	lactate					(20%)
36.2339%	69.6 70	9.45 9.50	Isopropyl lactate	C ₆ H ₁₂ O ₃	168.8	60	159.5	-
16 +3.18 22.7 4.30	73.3	9.83	Ethylene	C2H50C1	128.6	-	128.0	-1.8
22.7 4.30 32 5.71 34.7 6.06	49.997		chlorhydrin Dichlor-	e C ₂ H ₄ 0C1 ₂	146.2	_	145.0	(90%)
50.0217%	12.5 12.9	+3.44 3.54	ethanol	22400.15	470,4		140.0	-
15.9 +4.09 24.2 5.13	17 19.8	4.19 4.64	1,3-Dichlor	J	175.8	32	161.5	~3.7
25.4 5.27 29.3 5.84	21.5 27.2	4.89 5.71	1,2-propano lodethanol		176.5	35	158.5	(50%) -
H 50 8.38	74.768	7	Ethanolamine		170.8	30	148.5	-
56.2 8,98 62.8 9,62	13.3 14.5	+4.91 5.06						
70 10.27 71.9 10.42 77.5 10.92	21.8 29.9	6.13 7.14						

Methyldiisopropyl benzene (C ₁₃ H ₂₀) +Alcohols Francis, 1944				
2nd Comp.	C.S.T.			
Methyl alcohol (CH ₄ 0)	32			
Diethylene glycol ($C_4H_{10}O_3$) Triethylene glycol ($C_6H_{14}O_4$) Furruryl alcohol ($C_5H_6O_2$) Phenylethanolamine ($C_8H_{11}ON$)	229			
Triethylene glycol ($C_6H_{1\mu}O_{\mu}$)	203			
Furruryl alcohol (C ₅ H ₆ O ₂)	32			
Phenylethanolamine ($C_8H_{11}ON$)	69			
Ethylene chlorhydrin (C_2H_50C1)	13			

Triethylbenzene s.($C_{1,2}H_{1,8}$)(b.t.=215.5) + Alcohols

Lecat, 1949

	2nd Comp.		Az		
Netic	Formula	b.t.	%	b.t.	Dt mix
Glycol	C2H6O2	197.4	48	182.5	-
Glycerol	C 3H8O3	290.5	8	212.8	-
Diethylene	C 4H 1 00 3	245.5	24	209.0	-0.5
glycol					(10%)
Methoxy-	C 5 H 1 2 O 3	192.95	65	190.0	
diglycol					
Methoxy-	C7H1604	245.25	18	212.0	-
triglycol					
2-Terpineol	C10H180	210.5	-	210.0	~
Borneo1	C10H180	215.0	-	212.7	-
Menthol	C10H200	216.3	45	213.5	-
Citronellol	C ₁₀ H ₂₀ 0	224.4	-	215.3	-
Benzyl	С ₇ н ₈ 0	205.25	61	202.1	-1.7
alcohol					(55%)
Phenyl	C ₈ H ₁₀ 0	219.4	-	212.5	-1.3
€thanol					(30%)

Triethylbenzene ($C_{1\,2}H_{1\,8}$) + Alcohols

Francis, 1944

2nd Comp.	C.S.T.
Ethylene chlorhydrin (C ₂ H ₅ OC1)	-15
Methyl alcohol (CH ₄ O)	19
Phenylethanolamine (C ₈ H ₁₁ ON)	34
Tetrahydrofurfuryl alcohol (C5H1002)	-78
Furfuryl alcohol (C5H6O2)	109
Triethylene glycol ($C_6H_{1\mu}O_{\mu}$)	188
Diethylene glycol ($C_{\mu}H_{10}O_{3}$)	219

Hexamethylbenzene (C ₁₂ H ₁₈) + Diethy	lene glycol (C ₄ H ₁₀ O ₃)
Francis, 1944		
C.S.T. = 258		garingan galagan dan sebagai karangan dan karangan dan karangan dan karangan dan karangan dan karangan dan kar
Hexamethylbenzene (C ₁₂ H ₁₈) + Trietl	hylene glycol (C ₆ H ₁₄ O ₄)
Francis, 1944		
- C.S.T. = 235		المراقبة الكرامان فالرفعيات المرامان المراقبيات والمر
Diphenyl ($C_{12}H_{10}$)	+ Alcohols	
Francis, 1944		
2nd Comp.		C.S.T.
Glycol	(C ₂ H ₆ O ₂)	217
Diethylene glycol	(C ₄ H ₁₀ O ₃)	129
Triethylene glycol	(C ₆ H ₁ , 0,)	65
Ethanolamine	(C ₂ H ₇ ON)	133
Diethanolamine	$(C_{4}H_{11}O_{2}N)$	183
Triethanolamine	$(C_6H_{15}O_5N)$	185

Lecat, 1949

	2nd Comp.		A	z
Name	Formula	b.t.	%	b.t.
Glycol	(C ₂ H ₆ O ₂)	197.4	66.5	256.1
Glycerol	(C ₃ H ₈ O ₃)	290.5	25 °	245.8
Diethylene glycol	($C_{\mu}H_{10}O_{3}$)	245.5	48	232.65
Triethylene glycol	($C_6H_{1\mu}\theta_{\mu}$)	288.7	10	255.0
Methoxytri- ethylene gly	(C ₇ H ₁₆ O ₄)	245.25	50	236.0
Cinnamic alcohol	(C ₉ H ₁₀ 0)	257.0	45	253.0

Diphenylmethane ($C_{13}H_{12}$)(b.t.=265.4) + Alcohols

Lecat, 1949

	2nd Comp.			
Name	Formula	b.t.	%	b.t.
Glycol	(C2H6O2)	197.4	68.5	193,3
Glycerol	$(C_3H_8O_3)$	290.5	29	259.1
Diethylene glycol	(C ₄ H ₁₀ O ₃)	245,5	52	2 36.0
Triethylene glycol	($C_6H_{14}O_4$)	288.7	20	263.0
Methoxytri- ethylene gly	(C ₇ H ₁₆ O ₄)	245.25	56	239.0
Benzyl glycol	$(C_9H_{12}O_2)$	265.2	46	262.5
Cinnamic alcohol	($C_9H_{10}O$)	256,2	62	257.0

Lecat, 1949

Dibenzyl ($C_{1\,\mu}H_{1\,\mu}$) (b.6.=284.5) + Alcohols .

2 nd comp.		Az	
Name Formula	b.t.	%	b.t.
Glycol ($C_2H_6O_2$)	197.4	77	195.2
Glycerol ($C_3H_8O_3$)	290.5	32	262.5
Diethylene($C_{\mu}H_{1,0}\theta_{S}$) glycol	24 5.5	66	241.0
Triethylene(C ₆ H ₁ , 0, 1) glycol	288.7	42	276.0
Methoxy- (C ₇ H ₁₆ O ₄) triethylene glycol	245,25	80	243.8

Francis, 1944

Dibenzyl ($C_{14}H_{14}$) + Alcohols.

2 nd comp.		C.S.T.
Diethylene glycol	(C ₄ H ₁₀ O ₃)	160
Triethylene glycol	(C ₆ H _{1 4} O ₄)	115
Monoacetin	(C ₅ H ₁₀ O ₄)	140
Ethanolamine	(C ₂ H ₇ ON)	168
Diethanolamine	(C ₄ H ₁ , O ₂ N)	206
Triethanolamine	$(C_6H_{15}O_3N)$	215
Glycerol chlorhydr	in (C ₃ H ₂ O ₂ Cl)	178

Dibenzyl ($C_{1\, \mu}H_{1\, \mu}$) + Benzoin ($C_{1\, \mu}H_{1\, 2}\theta_2$)

Vanstone, 1913

 mo1%	f.t.	E	
0	51.2	_	
6.30	59.2	50.2	
12.09	77.4	50.2	
21.80	94.0	-	
34.04	103.6	_	
45.76	112.1	-	
56.23	116.3	-	
74.0	120.8	-	
86.0	125.8	118.0	
100	133.0	_	

E : 5.5 mol% 50.20°

Stilbene (C	1 4H12) +	Triethylene	glycol (C ₆ H _{1 4} O ₄)	Naphthalen Vandenber		+ Methyl alco	ohol (CH ₄ O)
Lecat, 1949					%	d (at b.t.)	D b.t.
	% 0 60 100	b.t. 305. 284. 188.	6 5 Az		96.77 94.46 91.40 87.88 80.33	0.755 0.761 0.773 0.786 0.796	+0.195 0.325 0.505 0.695 0.945
Stilhene (C	Castles) +	Glycol (C ₂ H	L(0°)	Vandenber	ghe, 1903		
Lecat, 1 9 49	7412 /			%	D b.t.	%	D b.t.
	% 0 88	b.t. 306. 196.	.5	97.05 94.34 89.29 87.72 83.33	+0.175 0.360 0.653 0.720 0.97	82.65 81.97 81.30 67.11	+0.975 0.99 1.095 1.75
	100	197.	.4	76	D b.t.	%	D b.t.
Triphenylme	thane (C	₁₉ H ₁₆) + Tri	phenylcarbinol (C ₁₉ H ₁₆ O)	97.09 93.46 92.59 90.09	0.165 0.42 0.45 0.62	79.37 88.50 84.03 78.11	1.185 0.645 0.94 1.26
Kremann, Ma	uermann a	f.t.	E	Timofeev	, 1894		
0.0 4.0	0	91 88.5	78.5		%	f.t.	
8.2 12.4 14.2 16.4 20.9 28.7 37.8 48.0 62.3 71.3	0 80 8 12 18 12 19	85 82 80.5 79 86 98.5 110.5 122 135	78.5		95.2 88.6 76.7 50.6 27.0	10.4 35.2 52.0 65.0 72.0	
80.6 92.8 100	1	142 148 155 159	-	Speyers,	1902		
%	ſ.t.	Е	min.		mo1%	f.t.	
16.0 28.8 40.0 59.6 80.0	79 98.5 114.0 132.0 148.0	79 78.5 78.5 115 140	40 25 10		99.13 98.32 97.03 90.17 87.66	0.0 14.6 31.8 48.0 59.9	

NAPHTHALENE + ETHYL ALCOHOL

					Naphthale	ene (C ₁₀ H ₈) + Lthyl alo	cohol (C ₂ ll ₆ 0)
Ward, 1926					Raoult, 1		•	
mo1%	f.t.	mo]		f.t.		mo1%	72 - B	100
18.0 20.6 26.8	74.3 73.9 72.8	95	. 7 6 . 84 . 10	56.7 43.9 37.4		·	<u> </u>	
26.8 33.4 50.3 61.3 74.5 85.75	74.3 73.9 72.8 71.7 69.5 68.4 65.7 60.8	96 97 98 98	.10 .67 .45 .37	37.4 33.6 26.3 13.5 0.8		95.492 88.968 85.286	78° 3.710 7.288 9.329	
Sunier, 193	0							
g.	f.t.	Ķ	f.t.		Vandenber	ghe, 1899		
28.06 35.17 67.79 68.68 68.76 79.60	68.6 40.1 57.9 57.4 58.4 50.6	80.04 80.19 81.02 86.05 86.55	47.8 47.6 48.9 40.2 37.6			93.93 87.92 81.91 79.36	+0.525 1 1.445 1.7	0.746 0.759 0.773 0.779
Speyers, 190)2				Vandenb	erghe, 1903		
	t		sat.sol.		%	D b.t.	%	D b.t.
	0.0 16.6 29.0 47.0 61.7 68.0	0.8194 0.8088 0.8048 0.8086 0.8436 0.9022			93.46 87.72 82.65 78.12 92.94 87.72	+0.555 0.970 1.390 1.72 0.757 0.765	96.15 94.34 92.59 87.72 81.97 79.37	0.34 0.525 0.675 1.00 1.445 1.700
					Timofcev	, 1894	-	
				-		76	f.t.	
						94.0 75.8 53.8	10.4 48.5 61.0	
				-				

NAPHTHALENE + PROPYL ALCOHOL

	Naphthalene ((C ₁₀ H ₈) + Pro	pyl alcoho	ol (C ₃ H ₈ O)
Speyers, 1902				
mol% f.t.	Vandenherghe,			
98.20 0.0 97.87 8.6 95.18 31.8 90.30 46.9 35.77 69.8	96.64 92.73 88.18 85.34 81.71	+0.385 0.805 1.27 1.575 1.955		0.741 0.749 0.756 0.762 0.77
Sunier, 1930	Timofeev, 189)d		
% f.t.				
26.72 67.7 45.70 63.0 61.84 57.1 76.40 47.0 75.68 49.7		94.5 85.8 49.6	10.4 35.2 61.5	
79.91 43.1 85.03 35.2 88.74 25.8 92.27 15.7	Sunier, 1930			
	%	f.t.	%	f.t.
Speyers, 1902	21.2 29.80 54.78 66.29 72.51	69.5 66.9 59.3 53.8 49.8	80.56 83.78 84.51 83.57 90.38	41.7 37.2 36.0 27.9 22.9
Saturated solution 0.0 0.8175			· · · · · · · · · · · · · · · · · · ·	
$17.0 0.8104 \ 31.2 0.8084$	Speyers,190	2		
51.0 0.8230 72.4 0.9563	mo l%	f.t.	t sat	d.sol.
Piatti, 1932 % η(in Engler degrees)	97, 91 97, 30 94, 66 84, 66 37, 91	0.0 10.4 30.3 50.3 68.5	0.0 14.6 30.7 41.8 59.7 72.4	0.8285 0.8228 0.8206 0.8247 0.8634 0.9535
20° 100 1.050 90 "		(C ₁₀ H ₈) + Iso		cohol C ₃ H ₈ O)
	Sunier, 1930		. <u></u>	
	- %	f.t.	%	f.t.
	18.73 33.93 53.74 66.98 72.70 80.24	69.9 65.8 60.2 54.9 51.7 45.2	82.85 86.39 87.87 90.064 92.403	42.8 37.8 35.3 30.9 24.4

Naphthalene (C ₁₀ H ₈) + B	utyl alcohol	(C ₄ H ₁₀ O)	
Ward, 1926				
mo1%	f.t.	mol%	f.t.	_
9.5 16.3 23.8 30.0 39.1 56.8 72.4	76.0 73.9 71.7 70.1 68.1 63.2 56.9	78.9 84.25 90.47 91.83 93.79 94.24 96.0	52.3 46.5 35.6 31.6 24.3 22.0 11.7	
Sunier, 1930				
	%	f.t.		_
25 58 74 84	3.73 3.17 3.51 3.81	68.4 57.8 47.6 34.7		
Naphthalene ((C ₁₀ H ₈) + 1	sobutyl alco	oho1	
Sunier, 1930		(C ₄ H ₁₀ 0)	
%	f.t.	K	f.t.	
19.17 45.90 54.91 75.12	70.2 63.1 60.3 50.4	84.43 86.53 77.24 93.63	40.9 37.6 36.3 19.5	
Naphthalene (C ₁₀ H ₈) + s		ohol C ₄ H _{1 0} O)	
%	f.t.	Ж	f.t.	-
26.94 45.95 54.65 74.97	68.8 60.6 57.3 46.4	76.31 81.37 85.65 89.18	45.4 40.5 34.9 28.7	

 $(C_{1}H_{10}O)$ Kremann, Mauermann and al., 1923 % f.t. % f.t. 44.60 40.5 37.3 31.8 28.8 24.2 19.5 16.3 6.7 0.0 61.3 62.6 63.2 64.6 65.5 66.9 68.8 70.2 74.5 80.3 100.0 24.2 21.0 22.0 29.1 35.8 41.9 47.2 51.9 55.0 56.9 96.9 93.1 89.3 84.9 79.7 74.6 68.4 62.0 57.2 54.8 47.2 44.1 41.2 62.4 E : between 97 and 50% 18.9° - 19.1° Sunier, 1930 % % f.t. f.t. 28.36 42.69 56.39 72.24 76.39 66.6 62.4 57.8 50.2 47.3 82.34 85.51 89.23 93.51 41.7 37.8 31.6 22.1 Lecat, 1949 Naphthalene ($C_{1,0}H_8$) (b.t.=218.0) + Alcohols. 2nd comp. Αz b.t. Formula K b.t. Sat.t. Name 283.9 $(C_2H_6O_2)$ 290.5 51 Glycol 10 215.2 Glycerol (C₃H₈O₃) 290.5 Diethylene ($C_4H_{10}O_3$) 245.5 22 212.6 78.0 glycol

Naphthalene ($C_{10}H_{8}$) + tert.Butyl alcohol

Francis, 19	44	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
Naphthalene		+ Alcol	hols.			Naphthalen	€ (C ₁₀ H ₈) + Etl	nyl tart	rate (C ₈	H _{1 4} O ₆)
2 nd comp.			. ,	C	C.S.T.	Patterson,					
Glycol	(C ₂ H ₆ O ₂))			195	t	(α) _D		t	d	
Propylene					100		10	0.017%			
1.0	- •	_ 0			34	100	+26.47		84.1	0.98	897
Diethylene						87.8 79.4	26.30 26.24		99	0.97	780
Glycerol		C ₃ H ₈ O ₃)			250	70	26.14				
Monoacetin	1 (C ₅ H ₁₀ O ₄	.)			78		2	5.017%			
						100	21.7		82.5	1.0	
Lecat, 1949						77.2 71.4 70	20.7 20.4 20.34		99	0.9	980
Naphthalene	(C ₁₀ H ₈)	(b.t. =	218.0) +			49	9.77%			
Alco	oho1s				_	100 84	18.48 17.57		73.9	1.05	
	2nd Comp.		Az			78.2	17.07		82 90	$\frac{1.05}{1.04}$	145
Name	Formula	b.t.	%	b.t.	Sat.t.	70 69	16.46 16.53		98.5	1.03	349
			,-		Duc. C.		74	1.98%			
						99	15.58		57.3	1 11	103
Methoxy	C 5H12O3	192.95	89	192.2	-	84.9 75.6	14.96 14.47		70.65	$\frac{1.11}{1.10}$	056
diglycol						70	13.47		80.65 9 7. 7	1.09 1.02	
Ethoxy	C 6H1 40 3	201.9	-	200.5	=	60 54.9	13.01 12.23 14.12				
diglycol	C 11 0	245 25	20	214 0	_	44.4	14.12				
Methoxy triglycol	C ₇ H ₁₆ O ₄	245.25	20	214.8	_						
Borneol	C ₁₀ H ₁₈ O	215.0	65	214.4	~						
Terpineol-1		218.85	55	215.7	-	Nonhaha la	/ C 11	\ . xe-		2 33 2 3	
Citronellol	C10H200	224.4	25	217.8	-	Naphthale	ne ($C_{10}H_{8}$) + ME	entnoi (C10H20U)
Menthol	$C_{10}H_{20}0$	216.3	74.5	215.05	42	Scheuer,	1910				
Naphthalene	(C. H.)	+ Farfur	v1 alc	obol (C	- 1.0. Y	wt%	mo1%	f.t.	wt%	mo1%	f.t.
Nuparinatene	(610118)	- 1 uli uli	, 1 416	o / 6	121.6AS)	0	0	80.1	61.46	56.67	54.7
Sunier, 193	1					1.47 3.52	$\frac{1.21}{2.98}$	79.5 78.6	66.02 69.08	61.43 64.69	51.9 49.6
mo1%	f.t.	mo	14	ŕ.t.		7.07 11.08	5.87 9.27	77.15 75.5	72.65 75.89	68.54 72.08	46.5 42.75
µ10170	1.1.	mO.	± /₽	1.1.		15.42 21.54	13.01 18.38	73.75 71.3	83.22 83.24	80.26 80.28	35.1 35.1
26.2 21.5	71.4 72.6	75 66		53.0 58.7		27.92 32.42	24.11 28.24	68.8 67.05	85.30 87.19	82,63	3 2 ,5
38.1	68.3 67.2	81	.4	46.3	3	37.90	33.35	64.9	88.45	84.82 86.26	32.5 33.25
43.9 54.5	67.2 64.3	89.	.06	32.4	+	41.89 42.86	37.15 38.08	63.3 63	91.18 91.21	89.45 89.48	35.05 35.05
						45.41 45.80	40.56 40.94	$\frac{61.9}{61.7}$	92.82 95.45	91.38 94.51	36.25 38.25
						48.28 50.07	43.37 45.12	60.65 59.9	96.18 97.42	95.38	38.8
						52.83	47.87	58.9	98.98	96.88 98.76	39.85 41.15
						52.99 57.41	48.04 52.50	58.55 56.6	100	100	42.0
						E: 31	70				
						E: 31	.7°				

					Naphtha l	ene (C ₁₀ H ₈)) + Tripheny	lcarbinol (C ₁₉ H ₁₆ 0)
Bugnet,	1909				Kremann,	Mauermann ar	nd al., 1923	, -
Eutecti	c				%	î.t.	%	f.t.
Scheuer	, 1910				100.0 94.7 82.1 75.6	159.2 154.0 140.0 132.0	64.5 61.5 57.4 53.8	120.5 116.0 111.0 104.1
wt %	mol %	đ 82.2° 99.0	0° 82.2°		72.5 69.8 67.2	129.0 126.0 123.0	51.8 49.7 48.6	103.2 100.2 99.0
0 19.40 35.87	16.49 31.45	0.9764 0.96 .9683 .93 .9260 .91	99 854 2 7 789	558 640 588		%	f.t.	E
54.17 69.89 84.76 92.63 100	49.52 65.63 82.02 91.16 100	.8959 .88 .8830 .86 .8666 .85 .8584 .84 .8496 .83	87 1142 19 1321 52 1571	718 763 808 914 1041		0.0 4.4 8.2 12.2 18.3 22.3 26.3	80.3 78.5 75.2 75.2 72.9 71.8 70.4	- - - - - -
%	dark red	(α) D	yellow			30.8 35.4 37.4 39.9	70.8 79.1 82.0	69.2 - -
19.40 35.87 54.17 69.89 84.76 92.63	-35.039 -37.708 -37.849 -38.405 -39.222 -39.981 -40.149	-42.919 -46.078 -47.593 -48.157 -49.139 -49.911 -50.15	-45.650 -47.824 -49.997 -50.207 -50.871 -52.020 -52.385		Naphtha l	42.7 46.2 49.3 53.0	85.0 89.6 94.0 98.5 104.0	hydrate (C ₂ H ₃ O ₂ Cl ₃)
	green	indigo blue	violet		Bugnet,			
19.40 35.87 54.17 69.89 84.76 92.63	-51.827 -54.379 -56.078 -56.938 -58.021 -59.041 -59.419	-85.555 -90.276 -92.968 -94.084 -95.768 -97.609	-96.239 -98.173 -98.584		Eutectic	1944		
		د المرافقة في الموجود عن المواقع الموجود الموجود الموجود الموجود الموجود الموجود الموجود الموجود الموجود الموج			 	enc (C ₁₀ H ₈) + varia	
Naphtha	lene (C _{1 o} H ₈) + Benzoin	(C _{1 4} II _{1 2} O ₂)	Glycerol	chlorhydrin	C ₃ H ₇ O ₂ C1) 132
Bernoui	lli and Sara	sin, 1930			Diethano	mine (C ₂ H ₇ OI lamine (C ₄ H ₇ olamine (C ₆ I	1102N)	97 161
	Я	f.t.	E					151
	0 10.1 19.00 30.0 50.2 64.9 79.5	79.8 76.8 74.1 86.5 103.5 113 124	74.0 73.9 74.5 74.3 74.5 73.9					

	METHYLNAPHTHALE									
1-Methy	inaphthale	ne (C ₁₁ H ₁₀		alcohol (CH ₄ O)						
Francis	, 1944									
С.S.Т.	lower than	n 78°								
	lnaphthalen and Orchi	ne (C ₁₁ H ₁₀		nol (C _{1 1} H _{2 4} 0)						
mo1%	mol%	b.t.	mo 1%	b.t.						
L	V		v							
	300	mm	250	mm						
61.3 65.9 71.9 76.5 81.2 86.0 90.7 95.7	66.3 71.0 76.1 79.0 83.8 87.4 91.5 96.3	192.6 193.2 192.3 192.7 191.9 191.6 191.6	67.0 70.2 75.8 79.3 83.6 87.5 91.4 96.2	186.6 186.6 185.8 186.4 185.4 185.4 185.6						

150 mm

50 mm

171.6 170.4 167.3 170.0 170.3 170.3 171.2 180.2

138.8 140.4 139.0 139.7 140.0 139.4 140.0 139.8

64.6 69.8 74.6 78.2 82.8 86.6 90.8 95.9

63.4 67.1 71.8 76.2 80.5 85.0 89.5 95.0

61.3 65.9 71.9 76.5 81.2 86.0 90.2 98.7

61.3 65.9 71.9 76.5 81.2

86.0 90.2 98.7 100 mm

20 mm

158.7 157.6 155.6 159.0 157.6 158.6 158.5

120.5 120.0 117.2 117.7 116.7 119.8 119.1 118.5

65.3 68.5 73.9 77.6 81.9 86.0 90.3 95.4

60.4 64.2 68.8 73.1 78.1 83.8 87.7 94.4

1-Methylnaphthalene	($c_{\scriptscriptstyle 1}{}_{\scriptscriptstyle 1}\mathrm{H}_{\scriptscriptstyle 1}{}_{\scriptscriptstyle 0}$)	+	Alcohols
---------------------	---	---	---	---	----------

Lecat, 1949

	2nd Comp.		A	z
Name	Formula	b.t.	%	b.t.
Glycol	C2H6O2	197.4	60	190.25
Glycerol	$C_3 H_8 O_3$	290.5	18	236.95
Diethylene glycol	$C_{14}H_{10}O_{3}$	245.5	45 .	227.5
Methoxytri- ethylene glyc	С ₇ Н ₁₆ О ₄	245.25	46	232.0
Phenyl propanol	C9H120	235.6	60	234.2
Cinnamic alcohol	C ₉ H _{1 0} O	257.0	12	244.6
Phenoxy- glycol	C ₈ H ₁₀ O ₂	245.2	43	243.0
Francis, 1944				
2nd Comp.				C.S.T.
Glycol	$C_2H_6O_2$			217
Diethylene glycol	$C_{4}H_{10}O_{3}$			1 2 6
Triethylene glycol	$C_6H_{1\mu}O_{\mu}$			62
Monoacetin	C5H1004			124
Glycerol- chlorhydrin	C3H7O2C1			153
Ethanolamine	C ₂ H ₇ ON			182
Triethanol- amine	C ₆ H ₁₅ O ₃ N			177

Feldman a	and Orchin,	1952		
mo1%	mo1%	b.t.	mo 1%	b.t.
L	v		v	
	400	mm	300 t	nm
3.4 8.8	8.4 15.8	210.6 210.5	8.2 15.5	199.3 199.7
13.9 21.8	26.7	200 7	21.1 24.0	199.6 199.0
28.0	36.5 39.6	205.6	34.1	195.3
36.0 44.6	39.6 49.6	205.6 206.7 202.9 202.7 201.0	43.5 52.6	194.2 193.9
50.2	57.3	202.7	57,3	193,0
57.1 65.8	63.6 69.5		62.9 68.9	192.0 191.9
75.8 78.2 83.5	69.5 78.0 80.7	201.3	68.9 77.4	190.9
83.5	80.7 85.2 87.9	201.6	80.5 84.6	190.9 190.7
86.3 93.4	92.4	201.8 169.0	87.7 92.2	190.6
94.2 97.6	95.0	169.0 169.1 170.1	94.9 94.8	190.5 190.7
71.0	98.1 250		97.8 200 i	190.6
3 4				
3.4 8.8	8.5 15.8	193.8 193.6	8.6 15.9	184.7 185.1
13.9	20.1 24.0	191.7 192.0	21.1 29.5 31.2 43.2	184.4
28.0	33 0	190.4	31.2	182.1 183.7
36.0 44.6	43.2 49.7	187.8 185.3		180.6 179.5
50.2 57.1	43.2 49.7 56.5 62.2	186.6	55. 9	178.3
65 R		185.4 185.8	67 8	176.7 178.8
75.8 78.2	77.3	184.9	68.7 76.3	176.2
75.8 78.2 83.5 86.3	77.3 80.2 84.7 87.5	185.3	80.0 84.6	178.7 178.1
93.4		184.9 185.2	87.0 91.5	177.4 177.6
94.2 97.6	94.5 97.3	184.0	91.5 94.9 97.7	177.6 176.1 177.7
,,,u	97.3 150 ₁	184.6		
3.4	8.3	176.3	100 r	
3.4 8.8	15.0	175.2 173.9	7.7 14.4	163.9 163.3
13.9 21.8	21.6 28.6	173.9 172.2	20.7	162.1
28.0 36.0	32.4 41.1 51.3 56.6 68.0	172.2 174.0	20.7 26.7 32.7 42.2	159.1 160.6
44.6	$\frac{41.1}{51.3}$	171.9 171.4	50. Q	159. 7
50.2 65.8	56.6	170.4	55.1	159.4 157.4
75 R	76.3 79.1	170.0 169.2	67.0 75.8	157.8 157.5
78.2 83.5	79.1 83.7	169.4 169.0	78.1	א מכו
86.3 93.4	86.4	167. ก	83.1 85.7	157.8 155.5
94.2	91.4 94.2 97.99	$169.0 \\ 169.1$	90.9	156.8
97.6	97.99	170.1	94.0 97.5	156.5 157.3

	F.O			20 mm	
	50mm			20 mm	
3.4 8.8 13.9 21.8 22.0 36.0 44.6 50.2 57.1 65.8 78.2 83.5 86.3 93.4 94.2 97.6	15. 2 19. 7 28. 0 31. 0 39. 7 48. 0 52. 8 58. 3 65. 1 73. 8 81. 1 84. 5 90. 0	144.0 143.4 142.1 142.0 141.2 141.3 140.0 139.7 138.9 139.4 139.1 138.6 139.6 139.6 140.6 140.2	7.1 13.7 19.5 25.5 31.1 45.0 49.6 54.5 70.9 73.3 79.1 82.7 88.0	1 1 1 1 1 1 1	21.8 21.0 21.0 22.8 21.1 19.4 19.6 19.3 19.5 20.7 21.3 21.0
97.6	93.3 97.7	140.2	92.1 97.0	1	21.3
2-Methylr	naphthalene (C11H10) (b.t	.=241.15	i) +
				ohols.	
Lecat, 1					
	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Glycol	(C ₂ H ₆ O ₂)	197.4	57	189.2	-
Glycerol	$(C_8H_8O_8)$	290.5	16.5	233.7	-
Diethylen glycol	e (C ₄ H ₁₀ O ₈)	245.5	39	225.45	123.5
Methyoxyt: ethylene	ri-(C ₇ H ₁₆ O ₄ glycol) 245.2	5 44	229.4	-
Phenyl- propanol	(C ₉ H ₁₂ O)	235.6	-	233.7	-
Francis,		(C ₁₁ H ₁₀) + Al	cohols.	
2 nd comp).			C	S.S.T.
Glycerol	(C _s H ₈ O ₃)			216
Diethyle	ene glycol (C4H100a)		127
ii	lene glycol (61
	chlorhydrin				155
	nine (C ₂ II ₇ OI				134
13	lamine (C ₄ H				182
					170

Triethanolamine (C₆H₁₅O₃N)

178

		П	
2-Isopropylnaphthalene ($C_{13}H_{14}$) +	Alcohols	di-tert. Butyl naphthalene ($C_{18}H_{24}$)	
Francis, 1944			(C ₄ H ₁₀ O ₃)
2nd Comp.	C.S.T.	Francis, 1944	
Methyl alcohol (CH _u O) Diethylene glycol (C _u H ₁₀ O ₃)	11 175	C.S.T. = 231	
Triethylene glycol (C ₆ H ₁ ,0,)	133		
Ethanolamine (C2H7ON)	168		
Diethanolamine (C ₄ H ₁₁ O ₂ N)	217	di-tert. Butyl naphthalene (C18H24)	+ Triethylene
Triethanolamine (C ₆ H ₁₅ O ₃ N)	226	II .	(C ₆ H ₁ , 40,)
		Francis, 1944	
sec.Amylnaphthalene (C ₁₅ H ₁₈) + Alc Francis, 1944	ohols	C.S.T. = 190	
2nd Comp.	C.S.T.		
Methyl alcohol (CH ₄ O)	49	Diamylnaphthalene ($C_{20}H_{28}$) + Alcohol	s
Furfuryl alcohol (C ₅ H ₆ O ₂)	0	Francis, 1944	ı
Diethylene glycol (C ₄ H ₁₀ O ₃)	199		
Triethylene glycol (C ₆ H ₁ ,0,)	16	2nd Comp.	C.S.T.
Ethylene chlorhydrin (C ₂ H ₅ OCl)	-78	Ethylene glycol (C ₂ H ₆ O ₂)	262
Diethanolamine (C ₄ H ₁₁ O ₂ N)	239	Triethylene glycol $(C_6H_{1\mu}O_{\mu})$	246
Triethanolamine (C ₆ H ₁₅ O ₃ N)	251	Tetrahydrofurfuryl alcohol (C ₅ H ₁₀ O ₂)	9
		Furfuryl alcohol (C ₅ H ₆ O ₂)	88
Dilaman Landahalan (C. H.)		Ethylene chlorhydrin (C ₂ H ₅ OC1)	68
Diisopropyl naphthalene ($C_{16}H_{20}$) +	Alcohols	Phenyl ethanolamine (C ₈ H ₁ , ON)	98
Francis, 1944			
2nd Comp.	C.S.T.		
Methyl alcohol (CH ₄ 0)	58		
Furfuryl alcohol (C ₅ H ₆ O ₂)	18		
Diethylene glycol (C ₄ H ₁₀ O ₃)	217		
Triethylene glycol (C ₆ H ₁ ,0,)	177	 	
Ethylene chlorhydrin (C ₂ H ₅ OCl)	-28	J	
Diethanolamine ($C_4H_{11}O_2N$)	258		
Triethanolamine (C ₆ H ₁₅ O ₃ N)	265		
Phenylethanolamine (C ₈ H ₁₁ ON)	21		

Anthracene ($C_{1} \downarrow H_{10}$) + Alcohols.		Fluorene ($C_{13}H_{10}$) + Glycol (C ₂ H ₆ O ₂)
Francis, 1944		Lecat, 1949	
2 nd comp.	C.S.T.	%	b.t.
Ethylene glycol ($C_2 I_6 O_2$)	217		296.4
Diethanolamine $(C_4 I_{11} O_2 N)$	195		196.0 Az 19 7 .4
Triethanolamine ($C_6H_{15}O_3N$)	197		
Phenanthrene ($C_{14}H_{10}$) + Ethyl alcohol (Innes, 1918	C ₂ H ₆ O)	Fluorene (C ₁₃ H ₁₀) + Diglycol Lecat, 1949	(C _M H ₁₀ O ₃)
% P % p		%	b.t.
		0	296.4
75° 100 669.4 80.94 641.9 94.91 660.4 77.8 639.4 93.30 658.4 74.7 636.6 92.97 657.5 70.2 633.8		_80	243.0 Az 245.5
92.97 657.5 70.2 633.5 87.88 650.7 66.9 630.2 86.13 647.9 65.0 629.1	!	Fluorene (C _{1 S} ll _{1 O}) + Alcohols.	
		Francis, 1944	
Speyers, 1902		2 nd comp.	C.S.T.
f.t. $\%$ t d		Glycol (C ₂ H ₆ O ₂)	220
0.0 99.18 0.0 0.814	11	Diglycol (C ₄ H ₁₀ O ₅)	138
10.9 99.18 15.6 0.803 32.1 98.44 35.3 0.790	35	Ethanolamine (C ₂ II ₇ ON)	145
47.0 97.81 52.2 0.79	41	Diethanolamine (C ₄ II ₁₁ 0 ₂ N)	179
70.2 92.48 76.4 0.865	04	Triethanolamine (C ₆ H ₁₅ O ₃ N)	180
Phenanthrene ($C_{14}H_{10}$) + Alcohols			
Francis, 1944			
2nd Comp.	C.S.T.		
Ethylene glycol (C ₂ H ₆ O ₂)	225		
Diethylene glycol (C ₄ H ₁₀ O ₃)	128		
Glycerol chlorhydrin (C ₃ H ₇ O ₂ C1)	174		
Monoacetin ($C_5H_{10}O_4$) Ethanolamine (C_2H_7ON)	130		
Diethanolamine ($C_2 H_{11} O_2 N$)	139 182		
Triethanolamine ($C_6H_{15}O_3N$)	174		

Acenaphthene	e (C.aH.a)	+ Ethyl alcoh	iol (CaHcO)	Indene (C ₉ l	H ₈)(b.t.=	182.6) +	Alcohol	s	
	- (-1210 /			Lecat, 1949					
Speyers, 190)2 ————				2nd Comp.			Az	
	mo1%	f.t.		Name	Formula	b.t.	% b	. t.	Sat.t.
	99.43 99.16 98.30 96.14	0.0 10.0 30.3 49.8		Octyl alcohol	С ₈ Н ₁₈ О	195.2	12 18	2.4	-
	87.06	71.6		Isooctyl alcohol	CaH ₁₈ 0	180.4	- 17	8.5	-
t	d	t	d	Glycol	$C_2H_6O_2$	197.4		8.4	-
1	sol.	100%	-	Glycerol	C ₃ H ₈ O ₃	290.5		2.4	-
				Methoxy-	C ₅ H _{1 2} O ₃	192.95	30 17	7,5	-
0.0 15.0 36.3	0.8108 0.8013 0.7910	$0.0 \\ 19.1 \\ 35.3$	0.8074 0.7921 0.7780	diglycol Isobutyl	C7H14O3	182.15	49 17	8.5	-
53.4 73.0	0.7890 0.8186	52.3 72.8	0.7633	lactate		100 0	••		
75.0	0.8180	72.0	0.7448	Glycol	$C_{\mu}H_{8}O_{3}$	190.9	20 18	0.0	-
				monoacetate 1.3-Dichlor-	C3 H60C12	175.8	66.5 17	3.5	-0.9
Acenaphthen	€ (C ₁₂ H ₁₀) + Propyl alc	oho1 (C ₃ H ₈ O)	2-Propanol					(66.5%)
Speyers, 19	02			1.2-Dichlor- 1-propanol	C ₃ H ₆ OC 1 ₂	182.5	55 17	8.5	-2.5 (50%)
	mol%	f.t.							=======================================
	99,12	0,0		Tetraethylsi	lane (C ₈ H;	20 Si) + 1	Ethyl al	cohol (C	2H ₆ O)
	99.03 98.12	10.5		Bjerrum and	Jozefowicz	, 1932			
	95.63	$\begin{array}{c} 31.1 \\ 50.3 \end{array}$		mol	4	P ₁	Pz		
	80.1	73.4		L	v	P1	rz.		Þ
t	d	t	, d		20	o°			
Sat	t.sol.	1009	·	1 0 0.00	100.00	0.0	43.45 41.65	4	3.45
0.0	0.8228	0.0	0.8192	94.64 89.94	95.48 93.8 7	1.97 2.67	40.93	4	3.62 13.60
12.9 26.6	$0.8171 \\ 0.8110$	$\substack{18.0 \\ 28.0}$	0.8067 0.7991	75.32 49.78	92.36 91.89	3.25 3.38	39.31 38.34		12.56 11.72
47.4	0.8063	44.4	0.7854	28.20	91.69	3.34	36.85	4	10.19
64.7 83.3	0.8063 0.9 7 36	65.1 80.6	0.7678 0.7538	7.80 3.04	90.02 83.36	3.42 3.96	30.86 19.83		34.28 23.79
				8.87	0.0=	3.66	0.0	-	3.66
					3.	5°			
		(b.t. = 277.	9)+	100.0	100.0	0.0	101.15		1.15
1	hols			95.26 89.52	95.76 93.95	4.39 6.12	99.16 97.42)3.55)3.54
Lecat, 1949				70.66	93.95 92.72	7.39	94.12	10	1.51
	2nd Comp.	Az		43.26 24.90	92.02 91.56	7.82 8.02	90. 2 0 8 7.0 0		98.02 95.02
Name	Formula	b.t. %	b.t. Sat.t.	10.98 3.38 0.00	89.89 85.32 0.00	8.40 8.56 8.70	74.73 49.76	8	33.13 58.32
				0.00			0.0		8.70
				100.0)°	220 25	20	n 15
Giycol	C2H6O2	197.4 74.2	194.65 -	100.0 94.99	100.0 95.83	$\frac{0.0}{9.30}$	220.25 213.6	22	20.25 22.9
Glycerol	C ₃ ll ₈ O ₃	290.5 29	259.1 -	90.06 75.75	94.28 92.72	12.66 15.74	208.7 200.4	22	1.4 6.1
Diglycoi	C 4H 1 0O 3	245.5 62	239.6 136	50.52	91.96	16.65	190.55	2 1	7.2 3.5
Trigiycoi	C 6H1 404	288.7 35	271.5 -	28.56 16.67	91.31 88.77	$17.69 \\ 18.50$	185.8 146.2	20 16	3.5 4.7
Methoxy- triglycol	C7H1604	245.25 71	242.5 ~	3.95	85.63	18.95	113.3	13	2.2
- IXIYCOI				0.0	0.0	19.43	0.0	1	9.43

146

ETHANE + NITROPHENOL

XXIII. HYDROCARBONS + PHENOLS

Ethane (C_2H_6) + o-Nitrophenol ($C_6H_5O_3N$)

Scheffer and Smittenberg, 1933

f.t.	P	f.t.	P
C + L ₁	+ V	C + L ₂ +	F1
14.0	33.1	38.8	159
18.0	36.0	38,1	97.0
22.0	39,2	37.7	73', 0
26.0	42.5	37.7	60.0
30.0	46.0	37.8	52.0
33.0	48.9	38.2	45.7
34.3	50.3	39.2	36.3
		40.9	24.6
$L_1 + L$	₂ + V	44.8	0.0
34.5	50.4		

Hixson and Hixson 1941

Propane (C_3H_8) + Phenol (C_6H_60)

Propane (C_3H_8) + p-Cresol (C_7H_80)

Propane (C_3H_8) + Carvacrol ($C_{10}H_{14}0$)

Insoluble.

Pentane (C_5H_{12}) + Phenol (C_6H_60)

Vondracek 1937

%	f.t.	sat.t.	H	f.t.	sat.t.
100 95.20 90.49 83.86 82.60 81.44 80.05 79.45 74.79 69.32 59.54 49.78	40.8 37.3 35.1 32.5 32.0 31.95 31.9 31.9	23.3 27.8 31.4 33.5 42.5 48.8 55.3 56.6	38.68 33.44 27.02 19.67 13.23 11.03 10.06 7.55 4.10 3.00 2.20 1.57	31.9 31.7 31.7 30.8 29.7 27.2 20.5 16.2 10.8 0.8	55.8 54.7 51.6 45.5 36.6 29.9 27.1

Isopentane (C_5H_{12}) + Phenol (C_6H_60)

Vondracek, 1937

%	f.t.	sat.t.	%	f.t.	sat.t.
100	40.8	-	31.88	_	63.1
96,47	38.0	-	24.26	31.8	56.8
92.14	35.8	-	19.74	_	52.2
87.66	33.4	-	15,25	-	45.7
83.02	32.1	27.5	11,21	31.9	36.9
81.2	31.9	31.8	9.82	31.3	-
78.7	31.9	38.9	8.75	30:4	27.0
67.16	_	60.7	7.80	29.5	24.8
59.95	_	66.2	5.9	27.4	13.8
50.9	31.8	69.0	3.92	22.7	<u>-</u> -
44.90	-	68.6	2.00	14.1	-
39.36	31.9	67.3		• -	

Campetti and Delgrosso, 1910

%	sat.t.	%	sat.t.
8.13	26.60	54.67	62,25
13.90	39.15	64.30	60.75
26.14	55.85	71.54	54.95
38.08	62.55	75.42	49.20
43.82	62.75	83.05	29,35
47.85	63.25	87.59	17.55

Hexane (C_6H_{14}) + Phenol (C_6H_60)

Vondracek 1937

%	f.t.	sat.t.	%	f.t.	sat.t.
100	40.8	_	49.64		53.1
98.26	39.6	_	39.95	33.0	52.1
91.93	34.0	-	34,86	-	50.6
87.10	34.2	-	18.50	-	42.6
85.00	33.7	-	13.12	33.1	34.1
82.59	33.2	23.3	9.85	31.9	27.0
80.38	33.15	31.1	7.58	29.7	-
71.58	33,1	45.0	6.76	28.5	-
69.38	-	47.2	4.54	23.6	-
59,98	-	51.1	3.41	19.2	-
• / / / -					

Campetti an	i Delgros	so, 1910
-------------	-----------	----------

%	sat.t.	%	sat.t.	
11.43	20.75	58.36	38.65	
17.06	29.20	50.80	37.65	
31.22	37.00	70.02	34.20	
35.06	37.65	73.89	31.70	
49.86	42.15	82.42	14.40	

Poppe, 1934

C.S.T. sup: = 52.45° dt/dp = -0.0275

Krishnan, 1937

 $C.S.T. = 49\% \quad 44.5^{\circ}$

Depolarisation and relative intensities of dispersion at 44.5 - 71°

Hexane (C_6H_{14}) + Resorcinol ($C_6H_6O_2$)

Bingham, 1907

 $C.S.T. = 250^{\circ}$

Hexane ($C_6H_{1\,\mu}$) + 1-Menthyl salicylate ($C_{1\,7}H_{2\,\mu}0_3$)

Rule and Dunbar, 1935

% 	(a) mol ₅₄₆₁ (in degrees)	%	(α) ^{mol} _{5 4 6 1} (in degrees)
	20°		
4.01 9.02 16.84 27.31 34.27 36.09 42.11	297 300 306 310 313.3 316.7 319.1	45.49 52.26 60.13 69.29 75.23 82.88	320.3 321.3 321.7 323.6 325.9 327.7

Isohexane (C_6H_{14}) + Phenol (C_6H_60)

Vondracek, 1937

%	f.t.	sat.t.	%	î.t.	sat.t.
100	40.8	_	14.98	_	38.2
92.98	37.0	-	11.99	33.0	38.8
84.85	34.2	-	11.85	33.0	33.8
81.53	33.4	28.8	9.84	30.5	27.1
80.86	33.2	34.6	8.99	30.1	-
79.00	-	40.8	6.98	27.6	-
74.77	33.2	46.3	5.00	24.2	-
59,17	33.1	55.1	3.85	22.0	-
49.36	-	56,9	3.40	20.2	-
32.79	33.15	54.3	2.49	17.3	-

Heptane ($C_{7}H_{16}$) + Phenol ($C_{6}H_{6}0$)

Quantie, 1954

49.% C.S.T. = 35.7°

Vondracek, 1937.

%	f.t.	sat.t.	%	f.t.	sat.t.
100 98.46 93.87 86.09 83.07 80.10 77.39	40.8 39.6 37.1 34.7 34.2	25.8 35.1 40.1	41.99 28.73 19.72 13.30 12.37 10.60 9.88	34.1 34.1 32.2 31.1	48.9 43.0 36.6 35.1 30.2 24.3
67.09 39.33 51.25	34.1	49.1 51.7 52.7	9.26 4.89 3.10	30.8 23.1 17.5	-

Campetti and Delgrosso, 1910

K	sat.t.	%	sat.t.	
20.64 25.98 34.59 42.31	14.45 17.95 20.55 27.35	56.31 66.69 76.19	23.40 22.05 13.20	

Krishnan, 1937

C.S.T. = 54.2%410 Depolarisation and relative intensities of light dispersion at 41.2 - 74°

OCTANE + PHENOL

Octane (C_8H_{18}) + Phenol (C_6H_60)				- 11 11 11 11 11 11 11 11 11 11 11 11 11	
Campetti and Delgrosso, 1910	Lecat, 194	9			
% sat.t. % sat.t.	Tridecane	(C _{1 3} H _{2 8})	(b.t. =	234.0) +
13.28 22.55 52.37 49.35		nenols			
22.79 37.85 71.14 44.70 23.53 38.15 82.01 30.65 32.89 44.70 85.99 19.65		2nd Comp.		Az	
32.89 44.70 85.99 19.65 41.72 47.75	Name	Formula	b.t.	Z	b.t.
Isooctane (C ₈ H ₁₈) + Phenol (C ₆ H ₆ O)	o-Xylenol Pyrocate- chol	C ₈ H ₁₀ O C ₆ H ₆ O ₂	226.8 245.9	58 30	223.5 228.0
Drickamer, Brown and White, 1945	Resorcinol o-Nitrophe-	C 6H602	281.4	8	233.2
mol% b.t. L V	nol	C ₆ H ₅ O ₃ N	217.2	94	215,0
100 100 182.2 76.20 11.20 125.5 57.30 6.36 113.5 33.40 8.60 108 9.85 5.41 104 4.70 3.07 101 4.54 2.96 101 2.05 1.36 100.5 1.08 0.86 100.5	Rheinboldt,	, 1939		Picric	acid (C ₆ H ₃ O ₇ N ₃)
0.41 0.34 100 0 99	⁷	<u> </u>	E		f.t.
Decane ($C_{10}H_{22}$) + Phenol (C_6H_60) Lecat, 1949	0. 10. 30. 50. 60. 70. 90.	0 1 0 0 1	83.0 81.0 82.5 82.5 82.5 82.5 92.0 121.0		84.5 119.0 120.0 120.0 120.0 120.0 120.0 120.0
% b.t.					
0 173.3 35 168.0 Az 100 182.2	Liquid petr	oleum + Th	ymol (C	0H140)
	Seidell, 19	12			
	Density at	different	temperati	ıres.	
Diisoamyi (C ₁₀ H ₂₂) + Phenol (C ₆ H ₆ O)					
Lecat, 1949					
% b.t.					
0 160.1 20 157.5 Az 100 182.2					

Cyclopentane (C_5H_{10}) + Diethylresorcinol ($C_{10}H_{14}\theta_2$)	Vondracek, 1937
	% sat.t. % sat.t.
Eykman, 1904	100 40.8 45.18 26.5
c b.t.	97.42 39.4 38.37 26.2 90.93 35.8 28.05 24.9
0 49 7.23 50.21 13.03 51.18 15.69 51.61 17.73 51.98 19.48 52.29	82.66 32.7 25.00 24.3 76.46 31.2 20.33 22.6 71.08 30.5 13.64 17.0 64.00 29.5 12.54 15.8 58.93 28.6 9.44 9.8 52.94 27.6
Cyclohexane (C_6H_{12}) + Pyrocatechol ($C_6H_6O_2$)	Decaline ($C_{10}H_{18}$) + Pyrocatechol ($C_6H_6O_2$)
Francis, 1944	Francis, 1944
C.S.T. = 120°	C.S.T. = 146
Methylcyclohexane (C_7H_{14}) + Phenol (C_6H_60)	Decaline ($C_{10}H_{18}$) + Benzyl-p-hydroxybenzoate ($C_{14}H_{12}O_3$)
Drickamer, Brown and White, 1945	Francis, 1944
mol% b.t. L V	C.S.T. = 92
760 mm 100 100 182.2 16.31 3.32 102.8 9.80 2.62 102.2 6.50 2.08 101.7 5.14 1.72 101.7 2.50 0.83 101.1 1.69 0.58 101.1 0 0 100.8	Tetraline ($C_{10}H_{12}$) + Resorcinol ($C_{6}H_{6}\theta_{2}$) Francis, 1944 C.S.T. = 94
mol%	
L V b.t.	Isopropyltetraline ($C_{13}H_{18}$) + Hydroquinone ($C_{6}H_{6}O_{2}$)
98.60 32.25 150 73.80 12.90 130 62.00 11.60 120 34.80 9.12 112 9.74 6.16 105.5 4.82 3.17 102.5 3.89 2.59 102 1.26 0.86 101.5 0.48 0.37 101	Francis, 1944 C.S.T. = 235 Isopropyltetraline ($C_{13}H_{18}$) + Salicylalcohol ($C_{7}H_{8}O_{2}$) Francis, 1944 C.S.T. = 83

MENTHENE + PHENOL

Menthene ($C_{10}H_{18}$) + Pheno1 (C_6H_60)	Terpinolene (C ₁₀ H ₁₆) (b.t.=184.6) + Phenols Lecat, 1949
Lecat, 1949	2 nd comp. Az
\$ b.t.	
0 170.8	Name Formula b.t. % b.t.
34 164.5 Az 100 182.2	Phenol (C ₆ H ₆ O) 182.2 46 172.8
	o-Cresol (C ₇ H ₈ O) 191.1 34 179.5
Limonene (C ₁₀ H ₁₆) (b.t. = 177.7) +	p-Cresol (C ₂ H ₈ O) 201.7 16 183.0
Phenols	Camphene ($C_{10}H_{16}$) + Phenol (C_6H_60)
Lecat, 1949	
2nd Comp. Az	Lecat, 1949
Name Formula b.t. % b.t.	8 b.t.
	0 159.6 22 156.1 Az 100 182.2
Phenol C ₆ H ₆ O 182.2 40.5 168.95 o-Cresol C ₂ H ₈ O 191.1 25 175.3	
m -Cresol C_7H_8O 202.2 5 177.5	1-Pinene ($C_{10}H_{16}$) + Phenol ($C_{6}H_{6}0$)
p-Cresol C ₇ H ₈ O 201.7 5 177.4	a rinene (o our 6) · rinener (o o o o
o-Chlor- C ₆ H ₅ 0Cl 176.8 28 169.5	Lecat, 1949
phenol	% b.t.
	, D. t.
1-Terpinene (C ₁₀ H ₁₆) (b.t.=173.4) + Phenols. Lecat, 1949	0 155.8 19 152.75 Az 100 182.2
2 nd comp. Az	
Name Formula b.t. % b.t.	
Pheno1 (C ₆ H ₆ O) 182.2 36 166.7	I-Pinene (C ₁₀ H ₁₆) + o-Chlorphenol (C ₆ H ₅ OCl)
o-Cresol (C ₇ H ₈ O) 191.1 16 172.0	Lecat, 1949
o-Chlor- (C ₆ H ₅ OCl) 176.8 28 169.5 phenol	% b.t.
3-Terpinene (C _{1 o} H ₁₆) (b.t.=183) + Phenols. Lecat, 1949	0 155.8 5 155.2 Az 100 176.8
2 nd comp. Az	
Name Formula b.t. % b.t.	2-Pinene (C _{1 o} H ₁₆) + Phenol (C ₆ H ₆ O)
Phenol (C ₆ H ₆ O) 182.2 45 172.5	
o-Cresol (C ₇ H ₈ O) 191.1 31 179.0	Lecat, 1949
p-Cresol (C ₇ H ₈ O) 201.7 13 181.8	% b.t.
	0 163.8 26 159.0 Az 100 182.2

Benzene (C_6H_6) + Ph	enol (C ₆ H ₆ C))		Mihaly, 1897	7		
Heterogeneous equilib	ria .		1	%	f.t.	%	f.t.
Weissenberger, Schust mo1% 57 50	p 15° 43 49	ler, 1924		0 0.942 2.825 8.548 10.454 13.505	5.91 5.592 5.026 3.543 3.085 2.39 2.355	16.089 17.208 18.965 19.88 20.638	1.818 1.598 1.228 0.942 0.852 40.015
40 33.5 28.5	52 54 55		ľ				
			=	Dahms, 1905			
Mameli, 1903			.	mo 1%	f.t.	mo1%	f.t.
# D b.t. 4.260 +1.019 4.757 1.132 5.571 1.316 6.559 1.535 7.321 1.706	8,221 9,539 9,995 11,123 14,326	D b.t. +1.899 2.175 2.269 2.503 3.152		0 0.241 0.501 1.573 4.939 12.25 22.05 31.08 33.89 34.8	+5.345 5.242 5.143 4.785 3.692 +1.715 -0.72 -3.38 -4.05 -4.36	36.04 38.44 49.33 55.10 61.14 71.04 82.10 93.77 98.921	-4.74 -1.9 +5.6 9.5 13.6 20.15 27.3 35.22 38.79 39.57
Beckmann, 1888 % f.t.	K	f.t.		Tsakalotos a	and Guye,	1910	
0 5.440	3.82	4.285		mo 1%	f.t.	mo1%	f.t.
0.33 5.325 1.19 5.055 2.42 4.685	7.39 14.74 21.11	3.360 1.645 0.435		0 25.7 31.8 37.7 42.9 46.3	+5.4 -1.5 -3.4 -4.5 -1.8 0.0 +2.7	54.7 58.0 63.5 66.9 75.3 86.9	7.7 11.0 13.5 16.0 21.6 28.3 39.5
Paterno and Ampola, l	997			48.8 50.1	3.6	200	0,10
78	f.t.	E	_				
0.0 54.80	+5.55 -2.57 -2.44	-4.43		Rosza, 1911			
56.06 57.58 59.13 60.20	-2.44 -3.88 -5.275	-4.395 -4.35 -4.33		%	f.t.	%	f.t.
60.20 62.40 64.31 65.73 67.70 68.45 100.00	-3.88 -5.275 -4.74 -4.05 -3.46 -2.97 -2.43 -2.24 +40.24	-4.33 -4.33 -4.33 -4.33 		0 1.202 2.825 4.802 6.680 8.548	5.91 5.51 5.03 4.47 3.97 3.54	11.417 13.505 15.910 17.206 19.885 21.055	2.84 2.39 1.82 1.61 0.94 0.80
				78.287 80.267 82.144 84.455 87.259 89.157	27.15 28.15 29.08 30.34 31.85 32.54	90.350 93.118 95.794 97.690 99.008	33.29 34.87 36.82 38.15 39.19 40.05

BENZENE + PHENOL

Hatscher and Skirrow, 1917	Swearingen, 1928
mol % f.t. mol % f.t.	mol% 25° d
100 39.4 39.0 -3.6 86.2 30.0 37.3 -5.4 77.2 23.6 34.5 -4.4 70.0 18.4 30.2 -3.0 58.3 11.0 25.6 -1.8 50.2 4.9 18.7 0 43.7 0.6 12.1 +1.65 0 3.1	0.0 0.87362 8.3 0.89112 18.1 0.9118 23.9 0.9236 27.9 0.9313 37.0 0.9477 47.8 0.9710 52.2 0.9794 61.9 0.9988 65.8 1.0065 69.2 1.0147 76.2 1.0271 78.6 1.0340
Properties of phases Philip and Haynes, 1905	Martin and Collie, 1932
% d	
20°	mol% d
0 0.8789 5.32 .8884 13.55 .9053 20.10 .9151 28.58 .9305	25° 0.000 0.87288 8.590 0.89066 9.043 0.89174 23.653 0.921790 28.108 0.93068
Bramley, 1916 . % d	37.384 0.94936 39.741 0.95420 43.543 0.96197 56.014 0.98692
$\begin{array}{ccccc} 0.00 & 20^{\circ} & 0.8772 \\ 6.04 & 0.8880 \\ 9.84 & 0.8949 \\ 20.01 & 0.9133 \\ 32.40 & 0.9370 \\ 42.09 & 0.9549 \\ 53.02 & 0.9766 \\ 63.65 & 0.9976 \\ 74.11 & 1.0194 \\ 83.20 & 1.0383 \\ 100.00 & 1.0752 \\ \end{array}$	Martin, 1937 mol% 0.00 0.8246 10.74 0.8475
Williams and Allgeier, 1927	13.46 0.8534 20.17 0.8681 20.33 0.8680 32.46 0.8942 40.72 0.9119 45.45 0.9215
	59.96 0.9520 72.57 0.9781 100.00 1.0307
0 25° 0.8723 3.88 0.8788 8.33 0.8861 12.10 0.8903 15.39 0.8989 22.27 0.9127 26.66 0.9217 38.88 0.9434	1.0307

t	d	f(t)	% o
	0 %		35°
20	0.8710	_	0 38.033
30	0.8680	2.45	24.86 32.513
40	0.8578	2.61	29.88 31.764 35.18 31.038
20	N/4 of phenol		39.03 30.561
30 40	0.8770 0.8709	1.91	45.00 29.892 50.11 29.400
50	0.8547	1.87	100 25.991
20	N/2 of phenol		
29 30	0.8 847 0.8796	1.27	Weissenberger, Schuster and Shuller, 1924
40	0.8748	1.29	werssenberger, schuster and shuffer, 1924
	N/1 of phenol		mol% n σ
30 40	0.8854 0.8823	1.87	(water = 1)
50	0.8795	1.80	150
	2 N of phenol		15°
30 40	0.91 7 0 0.90 7 6	1.96	66.5 2.66 0.440 57 1.97 -
50	0.9040	1.88	50 1.60 0.428
	3 N of phenol	,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
30 40	0.9299 0.9250	1.93	28.5 0.97 0.408
50	0.9212	1.98	25 0.91 0.400
	6 N of benzene		
30	0.9744	-	Bramley, 1916
40 50	0.9700 0.9212	2.08 2.00	
	5 N of benzene		
30	0.9920	-	20 °
40 50	0.9894 0.9870	1.71 1.66	0.00 629 6.04 683
	4 N of benzene	1.00	6.04 683 9.84 724
30	1.0091	_	20.01 865 32.40 1126
40	1.0058	1.75	42.09 1401
50	1.0035	1.69	53.02 1911 63.65 2642
30	3 N of benzene 1.0253	-	74.11 3811
40	1.0225	1.75	83.20 5350 100.00 11040
50	1.0208	1.63	
35	2 N of benzene 1.0401	_	
45	1.0490	1.66	Swearingen, 1928
55	1.0485	1.66	mol.% η σ
30	1 N of benzene		25°
38 48	1.0584 1.0563	1.63	0.0
58	1.0548	1.75	8.3 659.2 27.375
	100 % phenol		18.1 851.6 27.880 23.9 921.8 28.183
45 55	1.0546 1.0432	2.01	27.9 1037.0 28.440
65	1.0318	2.00	47.8 1695.7 29.891
f(t) = tem	perature coefficie	nt of o	52.2 1849.4 30.302 61.9 2540.4 31.418
			65.8 2782.8 32.220
			69.2 3172.0 32.776 76.2 3936.0 33.866 78.6 4423.9 34.211
			78.6 4423.9 34.211

	Martin, 1937
mol % n	mol % ε
25°	70°
100 9023.4 75 3869.0 50 1806.3 25 966.6 0 602.5	0.00 2.193 10.74 2.540 13.46 2.639 20.17 2.934
75 3851.2 50 1800.3 25 967.5 75 3824.2	20.33 2:943 32.46 3.567 40.72 4.063 45.45 4.375
50 1806.3 25 967.5	59.96 5.458 72.57 6.517 100.00 9.161
Martin and Collie, 1932	Wullf and Takashima, 1938 (fig.)
mol β n _{Hα}	mol % ε
0.000 1.49312	18° - 20°
8.590 1.49776 9.043 1.49809 23.653 1.50631 28.108 1.50864 37.384 1.51365 39.741 1.51496	0 2.30 10 2.70 20 3.30 30 4.10 34 4.50
43.543 1.51693 56.014 1.52330 56.047 1.52335	Mecke and Zeininger, 1948 (fig.)
Philip and Haynes, 1905	mol % ×.108
χ ε 20° 0 2.29 5.32 2.493	10 0.0001 25 0.0018 50 0.063 75 3.16 100 17.8
13.55 2.871 20.10 3.252 28.58 3.805	
Williams and Allgeier, 1927	30 +0.007 50 0.000 60 -0.002 70 -0.001 90 +0.003
% ε	
25° 0 2.280 3.88 2.403 8.33 2.567 12.10 2.765 15.39 2.915 22.27 3.300 26.66 3.602 38.88 4.664	
4.004	

			BENZE	NE + P	TROCATECH	IUL		
Heat constant	ts.				Benzene (C	H ₆) + Re	esorcinol (C ₆	H ₆ O ₂)
Timofeev, 1905	5				Rothmund, 19	208		
	%	U			%		sat.t.	f.t.
	20°				0 3.18	}	73 77	5.4
	0 20	0.4233 0.441			4.75 6.97	,	82	60.92 71.15
	47,3	0.470			13.97 24.74 37.44		92.15 105.27 108.95	95.5
	%		Q dil		48.04 61.70	!	108.95 104.42	95.5
initia	l f	inal	(mole pheno	01)	65.76 74.39 77.64)	100.30 80.25 69.87	
0 0.23	0). 23). 65	-4.36 -4.19		83.46 90.23		39.35	96.5 98.5 101
0.65 1.09 1.95	1	.09 .95	-4.35 -4.11		100		-	110
0	2	. 22	-4.02 -4.31 -3.98		Walker, Col	lett and I	azzeil, 1931	
2.22 4.31 6.34	6 8	. 34	-3.72 -3.53			mo1%	f.t.	
8.29 11.05 13.0	13	.06 .0 .84	-3.39 -3.05 -3.02		\ <u></u>	100.00	109,4	
14.84 16.6	16	.6	-2.96 -2.92			85.17 68.56	101.7 97.3	L ₁ + L ₂
18.3 41.7	20	.0	-2.81 -2.57			9.34 5.16	93.4 87.4	L1 + L2
42.9 44.1	44 45	.1	-2.56 -2.54			2.95 2.02	79.3 72.6	
45.2 46.3	46	.3	-2.53			1.14	61.1	
40.5	47	.3	-2.53		triple poin	0.244 $t = 95.9^{\circ}$	25.0	
					Bingham, 19	07		
Benzene (C ₆ H	6) + Pyroca	atechol (C ₆ H ₆ O ₂)		C C T 10			
Walker, Colle	tt and Lazze	ell, 1931			C.S.T. = 10			
mo1%	f.t.	mo1%	f.t.		Timmermans a	nd Kohnst	amm, 1909 - 19	910
100.00	104.5	34.81	82.0		C.S.T. = 109	.10° dt/	dp (10 -170Kg/	$(cm^2) = -0.03$
83.59 74.85	97.0 93.3	20.03 11.05	77.2 70.6					
61.32 48.52	88.9 85.1	5.29 0.862	59.6 25.0		Francis, 19	44		
					C.S.T. = 10	0		
Benzene (C ₆ H	₆) + Hydroq	quinone (C ₆ H ₆ O ₂)					
Walker, Colle	tt and Lazze	eli, 1931			Schukarew,	1910		
mol%	f.t.	mo1%	f.t.		8	Ŭ	%	U
100.00 81.68	172.9 163.8°	13.21 5.70	154.1		,	20°	- 110°	
75.06 68.03	161.0 158.8	5.21 0.036	143.2 141.2		81.88 72.50	0.8129 0.7022	45.40 39.89	0.6573
	100.0	0.030	4 25.0		62.08	0.7089	22.41	0.6339 0.5640
L ₁ + L ₂								

Benzene (C ₆ H ₆) + o-Cresol	(C ₂ H ₈ O)		Dhilin and Hayr	os 1005			
Weissenberger a		, -		Philip and Hayn		, <u> </u>	ε	
					20			
mo1%	<u>г</u> 18°	mo1%	p	0 5.40	0.87	789 860	2.21 2.441	
91 80.5 71.5 63 54	12.2 22.4 30.0 37.0 44.0	50 47 33.5 24.5 23	46.8 49.3 56.8 61.1 64.5	10.01 14.72 23.73	0.89 2 0.90 3 0.91	021 153	2.574 2.701 3.001	
				Pushin and Mata	avulj, 19	32		
Piatti, 1936				78	n _D	%	n _D	
mol%	b.t.	mo1%	b.t.		16.5	5°		
100 90 80 70 60 50	190.7 154.2 129.7 113.6 103.0 96.9	40 30 20 10 0	91.3 86.8 83.7 81.3 80.1	13.8 27.3 38.6 48.4	1.5033 1.5089 1.5145 1.5194 1.5236 1.5278	67.4 76.4 84.5 92.6 100	1.5324 1.5366 1.5403 1.5443 1.5478	
				Persona (C II c				
				Benzene (C ₆ H ₆ C		,	1 ₈ 0)	
Glass and Madg	in, 1934	(fig.)		Weissenberger a	and Piatti	i, 1924		
- %	f.t.	%	ï.t.	mol%	р	mol%	р	
0 10	+5.4	60 70	+5.5		18	30		
20 30 39,5 50	+2.5 -2 -5.5 -7.4 E -0.5	80 90 100	11 18 24 30.5	91 80.5 73 58 54	14.4 27.1 37.8 50.2 54.9	50 40 28.5 22 0	58.0 64.8 79.8 72.5 68	
Weissenberger	and Piatti	1974		Piatti, 1936				
mo1%				mo1%	b.t.	mo1%	b.t.	
	η (water=1)	mo1%	σ (water=1)	100	201.5	40	92.2 87.7	
18	30		0°	90 80 70	160.0 134.5 116.6	30 20 10	84.2 81.8	
84 70 58 43.5	8.84 3.06 2.15 1.50	100 69.5 43.5 30.5	0.459 0.447 0.440	60 50	105.5 98.0	0	80.1	
38.5 30.5	1.38 1.38 1.18	30.5 22.5 15.5	0.433 0.427					
22.5 18	0.94	0.0	0.418 0.399	Kremann and Bo	rjanovics	1916		
# 16	0.95 0.79 0.73			7,	í.t.	%	f.t.	
12	0.73 0.55			0	+5,4	56.7	-14.5	
				5.3 15.3 25.8 39.2 50.4 53.5	+3.4 +3.3 +0.5 -2.2 -7.1 -11.2 -13.0	61.7 70.9 79.1 88.9	-14.3 -19.6 -13.0 -4.1 +5.0	

BENZENE + CRESOL

						
N. 142 4 Ma	1205			Kremann, Mein	gast and Gug	1, 1914
Philip and Hay	/nes, 1905			mo1%		đ
0 4.55 13.60 19.62	20°	0.8 0.8	8789 8853 8977 9061	0 25 66.7 75 100	$egin{array}{c} 1.0180 \ 0.9795 \ 0.9381 \end{array}$	(1-0.000711 t) (1-0.000 %7 t) (1-0.000878 t) (1-0.000980 t) (1-0.001192 t)
				%	20°	Dv 70°
Kremann, Gugl	and Meingast,	1914		25	+0.23	+0.17
mol%	12°	đ	640	50 75	+0.05 +0.12	+0.40 +0.07
100.0 75.0 50.0	1.0402 1.0078 0.9692	0.9	0014 9640		er and Borjan	novics, 1916
25.0 0.0	0.9692 0.9273 0.8866	0.8	9245 8 79 0 8309	<i>K</i>	9.5°	d 77°
Kremann and M	Meingast, 1914	t	d	0 16.7 33.3 49.0 63.4 82.2 100	0.816 0.845 0.874 0.897 0.928 0.969 0.998	0.888 0.908 0.935 0.960 0.983 1.022 1.042
0 mo1%			mol%	- 	9.5°	n 77°
10.5 20.5 30.0 40.0 47.6 50.0 60.0 70.0 73.0 80.0	0.8880 0.8776 0.8670 0.8562 0.8481 0.8455 0.8348 0.8241 0.8209	10.5 20.0 21.5 32.0 40.2 40.5 50.0 60.0	0.9283 0.9180 0.9083 0.9006 0.9005 0.8918 0.8825	0 16.7 33.3 49.0 63.4 82.2 100	769 1061 1480 2275 3564 10078 35537	326 361 410 485 586 819 1232
50 mo1	1%	7	5 mo1%	Trew and Sp	encer, 1936	and 1937
20.0 30.0 40.0 50.5 60.0 100 r 17.0 19.0 30.0 40.0 50.0 60.0	0.9622 0.9536 0.9450 0.9360 0.9280 mol% 1.0367 1.0350 1.0268 1.0195 1.0120 1.0045	16.5 20.0 21.8 31.5 40.5 50.5 53.5 60.0 60.8	1.0040 0.9996 0.9910 0.9835 0.9750 0.9725 0.9665		0° 65 04 73 78 06 64	0.9722 0.3916 0.9532 0.9422 0.9510 0.9670 0.9892 1.0051 1.0302
					66.1 75.3 99	0.9906 0.9977 1.0142 1.0293

Kremann, Gugl and Mei	ingast, 1914	Kremann and Meingast, 1914	1.
mo1%	η • 64°	t	σ
100.0 296 75.0 82 50.0 29 25.0 12	10 1889 30 1038 30 701	0 mol% 10.5 20.5 30.0 40.0 47.6 50.0	29.89 28.93 27.72 26.50 25.25 25.17
Piatti, 1931		60.0 70.0 73.0 80.0	24.02 22.96 22.05 21.05
	η	25 mo1%	
90 43200 80 20800 70 11900 60 7010 50 4440 40 3180	10° 20° 30° 43900 20800 10000 16200 8330 6410 9930 5630 4620 6750 4120 3380 4590 3140 2500 3190 2440 1940 2240 1890 1530	10.5 20.0 21.5 32.0 40.2 40.5 50.0 60.0	31.08 30.00 29.99 28.67 27.83 27.88 26.75 25.50
30 2180 20 1640 10 1250 0 1160	1690 1420 1220 1400 1300 1060 1180 1000 952 1050 958 883 50° 60°	20.0 30.0 40.0 50.5 60.0	31.89 30.86 29.92 28.84 28.20
70 2460 60 2000 50 1620 40 1320	4380 3370 3160 2600 2600 2120 2110 1720 1750 1460 1470 1230 1250 1180 1050 1010 901 899 812 783 768 725	75 mol% 16.5 20.0 21.8 31.5 40.5 50.5 60.0 60.8	34.62 34.3 34.02 33.09 32.49 31.72 31.19 30.7 30.71
Weissenberger and Pia	er=1) mol% _g (water=1)	100 mol% 17.0 19.0 30.0 40.0 50.0 60.0	35.78 35.52 34.53 33.24 32.19 35.32
18°	20°	Pushin and Matavulj, 1932	
83.5 4.70 69.5 3.49 60 2.91 53.5 2.38 43 1.58 27.5 1.08 20 1.01 0 0.55	100 0.437 69.5 0.425 60 0.420 51 0.418 43 0.415 27 0.412 20 0.410 0 0.399	% n _D 16.5° 0 1.3033 14.1 1.5082 26.7 1.5126 37.3 1.5165	% n _D 66.9 1.5284 76.6 1.5322 84.0 1.5353 92.5 1.5389 00 1.5419

Trew and Spencer, 1936	Kremann, Meing	ast and Gugl,	1914	
mol % n _D	%	U	Q miX (cal/g)	
25° 0 1.49591 8.3 .50044 17.6 50525	46	16° 0.490	-2.250 +2.250	
26.3 .50934 35.6 .51019 45.1 .51869 56.0 .52319 66.1 .52619 76.8 .53150	Trew and Spen	cer, 1936		
88 .53491 100 .53812	mol %	U	Q mix (cal/g)	
Philip and Haynes, 1905 $\mbox{$\not\epsilon$}$	0 24.3 40.4 69.8 76.7 88.9	0.474 0.455 0.452 0.479 0.487 0.464	2.05 2.53 2.39 2.28 1.60	
0 2.21 4.55 2.444 13.60 2.796 19.62 3.090	Benzene (C ₆ H ₆	;) + p-Cresol	(C ₇ H ₈ O)	
Kerr, 1926	Wiessenberger	and Piatti, 1	924	
vol % ε	mol %	P	mol %	p
16° 0 2.28 20 3.28 40 4.82 60 6.95 80 9.86 100 12.95	91 80.5 71.5 63 54	15.3 27.3 34.6 43.0 49.9	50 37 30 20 0	52.7 60.0 64.7 68.4 68
	Piatti, 1936			
Trew and Spencer, 1937	mo1 %	b.t.	mo1 %	b.t.
0° 0 0.710 10.65 0.705 26.04 0.696 40.73 0.692	100 90 80 70 60 50	202.2 160.6 134.5 117.5 105.8 98.2	40 30 20 10 0	92.4 87.8 84.2 81.8 80.1
40.73 0.692 46.78 0.689 58.06 0.685 73.64 0.677 88.67 0.671 100 0.672				

	Benzene (C ₆ H ₆) + Thymol (C ₁₀ H ₁₄ 0)				
Kendall and Beaver, 1921	Zoppellari, 1905				
g f.t.	t % d n _D				
0 5.600 1.34 5.010 2.83 4.420 4.44 3.909 6.31 3.375 7.89 2.975 9.77 2.498 11.87 2.031 14.03 1.535	5.3 6.2323 0.89964 1.51107 7.0 14.4314 0.90451 1.51117 7.6 21.0144 0.90990 1.51199 12.5 37.7608 0.92039 1.51375				
	Timofeev, 1905				
Weissenberger and Piatti, 1924	# U				
mol % η (water=1)	0 0.4233 16.2 0.426				
20° 71 5.01 60.5 3.27	% Q dil initial Final (mole/thymol)				
60.5 3.27 43.5 1.89 39.5 1.58 35 1.39 25 1.00 17 0.86 11.5 0.78 0 0.55	0 2.9 -5.67 2.9 5.6 5.49 5.6 8.2 5.34 8.2 10.7 5.26 10.7 13.0 5.15 13.0 15.2 5.01				
mol %					
(water=1) 20° 100 0.437 60.5 0.425 43 0.421	Benzene (C_6H_6) + Guaiacol ($C_7H_8O_2$)				
39 0.419 34.5 0.399 25 0.410 17 0.405 0 0.399	Weissenberger, Henke and Bregmann, 1925 mol% p (water=1)				
Philip and Haynes, 1905	67 28.4 2.4 0.58 50 41.6 1.5 0.55 40 47.4 1.2 0.53 34 51.7 1.1 0.52 25 53.6 0.9 0.51				
β ε d	0 68.4				
$egin{array}{cccc} 20^\circ & & & & & & & & & & & & & & & & & & &$	Pushin and Rikovski, 1937				
16.08 2.936 0.9017 21.68 3.231 0.9098	mol% f.t. mol% f.t.				
	0 +5.2 60 +5 10 +1.5 70 +11 20 -2.5 80 17 30 -6 90 22.5 40 5 100 28 E 35 mol% -7.5°				

mo 1%	d	η	
	30°	· · · · · · · · · · · · · · · · · · ·	
100	1.11236	4450	
90	1.1088	3400	
80	1.0812	2490	
70	1.0596	1970	
60	1.0349	1570	
50	1.0084	1250	
40	0.9823	1040	
30	0.9544	87 3	
20	0.9280	742	
10	0.8997	641	
0	0.8672	569	
uschin and Matavo	ılj, 1932		
% n.			

Benzene (C_6H_6) + Salicylaldehyde ($C_7H_6O_2$)

Weissenberger, Henke and Bregmann, 1925

no1%	p	η	σ
		(wate	r=1)
	20	0	
80	19.4	1.8	0.62
67	29.1	1.5	0.59
50	39.6	1.2	0.55
34	47.6	1.0	0.52
34 25	52.7		0.01
20	55.0	0.9	0.51
		• •	
0	68.4	-	-

Sidgwick and Allott, 1923

%	f.t.	%	f.t.	
0.0 4.35 8.23 10.90 15.0	5.32 3.65 2.15 1.00 -0.60	20.4 25.0 31.4 39.2	-3.35 -5.40 -8.20 -12.15	

Benzene ($C_6 H_6$) + m-Hydroxybenzaldehyde ($C_7 H_6 \theta_2$)

Sidgwick and Allott, 1923

%	f.t.	%	f.t.	
0	5.32	40.0	79.1	-
6.29	61.3	52.5	82.4	
10.42	67.1	59.5	83.6	
16.6	71.2	77.2	89.8	
27.4	75.7	100.0	106.0	

Benzene ($C_6 H_6$) + p-Hydroxybenzaldehyde ($C_7 H_6 \theta_2$)

Sidgwick and Allott, 1923

%	f.t.	%	f.t.	
0 3.64 11.09 20.0 31.1	5.32 65.0 81.4 84.1 86.7	46.0 58.8 72.6 100.0	89.5 93.5 100.6 116.0	

Benzene (C_6H_6) + Hydroxytolualdehydes ($C_8H_8O_2$)

Sidgwick and Allott, 1923

%	f.t.	Z	f.t.	%	f.t.
1.2.	.5	1.	4.5	1.	4.6
0.0 5.56 11.50 17.0 21.5 27.4 34.0 41.7 55.4 64.4 71.0 90.9 100.0	5.32 3.45 1.30 -0.60 +0.15 6.05 11.5 28.0 31.8 46.4 55.1	2.27 7.08 11.7 18.8 26.9 38.6 48.4 63.0 73.9 100.0	5.32 97.2 66.7 72.4 76.0 79.8 83.7 85.8 92.1 98.2 117.4	0 4.94 8.19 17.5 33.2 53.3 67.5 71.5	5.32 54.7 67.5 72.9 75.7 81.8 86.7 89.1 108.9

E: 23.3% -3.0

102 DENZERE T ME I	THE SALICIEALE
Benzen ϵ (C_6H_6) + Methyl salicylate ($C_8H_8O_3$)	40.2°
Innes, 1918	0 0.85711 2.24 10.52 0.87664 2.77 19.951 0.90455 3.12
wt% mol% p	30.312 0.93245 3.67
wt% no1% p	50.102 0.98232 4.87
75°	57.989 1.01491 5.39 70.123 1.04940 5.94
0 0 649.0	80.341 1.08751 6.87
5.10 2.69 631.9 11.92 6.49 608.5	90.442 1.12572 7.77 100.000 1.16490 8.64
16.06 8.94 592.5 23.9 13.9 560.9	
31.05 18.7 532.0	
0 0 651.8	Benzene (C_6H_6) + Ethyl salicylate ($C_9H_{10}O_3$)
52.0 32.4 433.8 60.9 44.4 382.9	Kalinowski, 1933
71.1 55.6 313.7 82.1 70.0 223.3	mo1% d ε 40.2°
	0 0.85711 2.24
	11.067 0.87982 2.80 22.181 0.903375 3.30
B	31.716 0.924560 3.79
Paterno, 1889	39.272 0.942841 4.20 51.315 0.971852 4.87
% D f.t.	60.276 0.994581 5.41
	80.173 1.049610 6.66
1.27 -0.485 3.09 1.135	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12.32 4.485	1,111201 0.02
14.35 5.16	
	Benzene (C_6H_6) + Phenyl salicylate ($C_{1.9}H_{1.0}O_3$)
	Kalinowski, 1933
Glowaski and Lynch, 1933	mo1% d ε
% d % d	40.2°
25°	0 0.85711 2.24
0.000 0.8724 51.39 1.0551	9.838 0.88328 2.72
10.16 0.9136 59.80 1.0796	16.853 0.90177 2.94 29.855 0.93853 3.36
18.00 0.9434 70.61 1.1089 29.07 0.9838 81.36 1.1337	38.878 0.96676 3.63
39.47 1.0188 100.00 1.1798	49.993 0.99788 3.97 59.992 1.03161 4.32
	69.992 1.10416 4.87
	90.031 1.14642 5.76
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Kalinowski, 1933	
<u>Μ</u> d ε	Benzene (C ₆ H ₆) + Ethyl-p-hydroxybenzoate Innes, 1918
13.2°	(C ₉ H ₁₀ U ₃)
0.88639 2.29	wt% mol% p
11.132 0.91158 2.79 20.762 0.93386 3.32	,75°
31.156 0.96212 3.95	$egin{array}{cccc} 0 & 0 & & & & & & & & & & & & & & & & $
39.811 0.98635 4.49 49.939 1.01346 5.16	10.4 5.17 639.8
59.092 1.04293 5.64	30.0 16.8 619.5
70.623 1.08023 6.72 79.172 1.11023 7.45	41.7 25.2 604.6 580.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	380.0
7,00	

Benzene (C_6H_6) + β -Naphthol ($C_{10}H_80$)

Kuriloff, 1897

mol%	f.t.	mo1%	f.t.
100	121.0	25.1	77.4
79.0	112.5	17.8	71.5
71.6	106.5	14.6	67.0
51.8	95.3	3.60	32.5
44.8	89.8	1,83	12.0
39.3	87.0		

Benzene (C_6H_6) + o-Chlorphenol (C_6H_50C1)

Sidgwick and Turner, 1922

%	f.t.	%	f.t.
0 3.04 8.33 15.49 24.56 29.01 45.22 55.54 60.68 62.50 E: 61.5%	5.3 4.6 2.7 0 -3.2 5.0 11.6 16.5 18.8 -18.5	63.83 64.90 69.05 80.32 84.72 90.26 95.20 97.65	-17.14 16.4 13.7 7.0 3.8 +0.2 3.6 5.6 7.0

Puschin and Matavulj, 1932

 %	n _D	% 	n _D
	16.	5°	
0 16.8 29.8 42.0 52.4 62.7	1.5033 1.5104 1.5163 1.5225 1.5293 1.5348	71.3 78.9 86.3 93.3 100.0	1.5400 1.5453 1.5506 1.5559 1.5612

Benzene (C_6H_6) + m-Chlorphenol (C_6H_50C1)

Sidgwick and Turner, 1922

%	f.t.	%	f.t.	
0 4.31 7.00 15.32 21.40 26.29 31.77 36.82 38.39 40.92	5.3 4.0 3.2 0.5 -1.4 2.9 4.5 6.0 6.5 7.2	44.90 47.78 50.68 51.81 57.02 64.65 70.00 75.10 83.68 89.89	-8.4 1.5 0 +0.6 3.4 7.4 10.7 14.2 20.0 24.6	
41.66 41.66 43.62	7.5 5.3 - 4.0	96.50 100	29.8 32.5	

E: 40% -7.0°

Benzene (C_6H_6) + P-Chlorphenol (C_6H_50C1) Weissenberger, Schuster and Lielacher, 1925

mo1%	p	
2	00	
0 10 20 30 40 50	74.7 68.2 63.2 59.0 53.8 46.7	

Sidgwick and Turner, 1922

%	f.t.	%	f.t.
0 2.98 10.25 15.10 17.62 29.14 35.50 38.07 39.67 45.65 E: 37.5%	-5.4 -4.5 -2.4 -1.0 -0.2 -3.2 -5.0 -5.4 -3.2 +2.8	50.10 55.24 60.54 68.58 73.13 80.06 86.65 90.63 95.52	6.0 9.6 12.9 18.0 20.8 25.8 30.5 33.6 37.5 41.0

BENZENE + AMINOPHENOL

f.t. 114.9 132.2 141.8 146.8 149.7 151.5 153.6	# 49.3 39.7 69.8 80.4 87.6	f.t. 155.7 158.4 161.5 165.2 168.2 177	Benzene (0 Shakhparono mo1% 0 5 10 15		17°	20°
f.t. 114.9 132.2 141.8 146.8 149.7 151.5	49.3 39.7 69.8 80.4	155.7 158.4 161.5 165.2 168.2	mo1% 0 5 10	15°	17°	
114.9 132.2 141.8 146.8 149.7 151.5	49.3 39.7 69.8 80.4	155.7 158.4 161.5 165.2 168.2	mo1% 0 5 10	15°	17°	
114.9 132.2 141.8 146.8 149.7 151.5 153.6	80.4	158.4 161.5 165.2 168.2	0 5 10	15°	17°	
141.8 146.8 149.7 151.5 153.6	80.4	161.5 165.2 168.2	5 10	57.83 56.85	63.86	#4 OF
			20 25 30	56.16 52.64 49.67 48.29	63.86 62.32 60.95 57.77 54.82 53.08	74.05 74.05 71.25 67.90 63.82 62.39 56.94
6) + m-Amino	ophenol (C ₆ H ₇ ON)	mo1%	d 15°	vapour (mg/c	c) 20°
		•	<u> </u>			
f.t.	sat.t.		- 0 5 10 - 15 20	0.2520 0.2470 0.2440 0.2272 0.2160	0.2641 0.2580 0.2520 0.2392 0.2266	0.3039 0.3039 0.2920 0.2780 0.2618 0.2555
96.5 105.4	100.8		25 30	0.2100	0.2198	0.2555 0.2332
-	122.1 122.3 122.1 121.9		Bogojawlcns	ky, Bogolju	bow and Wind	gradow, 1906
-	119.3 111.2		R	f.t.	%	f.t.
116.4 122.1 2.3	105.8 111.4 96.9	110.6°	100 90.4 77.2 65.4 59.2 53.1 47.0 40.9 E = -4.4	44.5 37.2 28.7 21.9 14.3 10.4 6.5	36.7 31.2 25.7 19.4 15.9 12.0 6.6	3.2 -2.4 3.8 2.1 -0.5 +1.1 3.1 +5.4
	ophenol (C ₆ H ₇ ON)	Carrick, 19	22		
Lallow, 1924			%	f.t.	Я	f.t.
f.t. 103 124 130 135 138.5	% 40.1 51 60.9 69.2 100	f.t. 143 145 149 154 186	100 89.73 84.88 78.51 72.79	44 40.1 34.6 30.1 26.9	59.72 50.94 40.51 31.45	20.1 14.1 6.0 0
	Callow, 1924 f.t. 96.5 105.4	f.t. sat.t. 96.5 - 105.4 - 100.8 - 114.3 - 121.2 - 122.1 - 122.3 - 119.3 - 111.2 - 110.8 - 105.8 - 111.4 - 96.9 116.4 - 122.1 - 2.3 t. = 16.5 - 69.9% 103	f.t. sat.t. 96.5 - 105.4 - 100.8 - 114.3 - 121.2 - 122.1 - 122.3 - 119.3 - 111.2 - 110.8 - 110.8 - 110.8 - 105.8 - 111.4 - 96.9 - 116.4 - 122.1 - 2.3 t. = 16.5 - 69.9% 110.6° Callow, 1924 f.t. % f.t. 103 40.1	Callow, 1924 f.t. sat.t. 96.5 - 105.4 - 25 105.4 - 30 - 114.3 - 121.2 - 122.1 - 122.3 - 122.1 - 119.3 - 111.2 - 110.8 - 110.8 - 105.8 - 110.4 - 96.9 116.4 - 26.9 - 111.4 - 96.9 116.4 - 25.4 - 59.2 2.3 t. = 16.5 - 69.9% 110.6° E = -4.4 f.t. % f.t. 100 89.73 84.88 78.51 130 60.9 149 135 69.2 154	Callow, 1924 f.t. sat.t. 96.5 - 105.4 - 25 0.2470 10 0.2520 10 0.2440 15 0.2272 20 0.2160 25 0.2100 30 - 25 0.2100 30 - 25 0.2100 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30	Callow, 1924 f.t. sat.t. 0 0.2520 0.2641 5 0.2470 0.2580 10 0.2440 0.2520 15 0.2272 0.2392 20 0.2160 0.2266 25 0.2100 0.2198 30

Benzene (C ₆ H ₆) + m-Nit	rophenol	(C ₆ H ₅ O ₃ N)	Bei Si
Bogojawlensky,	Bogoljubo	w and Win	ogradow, 1906	_ -
%	f.t.	%	f.t.	_
100 90.4 81.3 71.4 50.9 39.6	95.2 89.6 84.8 80.8 74.3 70.8	29.8 20.2 10.9 8.6 4.8 1.0	68.1 63.3 53.1 48.8 38.3 5.2	1
E: +5,2			-11	_
Carrick, 1922				10
%	f.t.	%	f.t.	
100 89.55 84.98 79.05 54.63 31.48	93 87.8 85.0 81.5 74.0 66.0	17.37 9.18 4.75 1.79 0.62	57.5 48.0 38.0 22.0 6.0	
31.46	00.0			Ber
				Kui
Benzene (C ₆ H ₆) + p-Nit	rophenol	(C ₆ H ₅ O ₃ N)	
Bogojawlensky,	Bogoljubo	w and Win	ogradow, 1906	
%	f.t.	%	f.t.	-
100 89.0 81.2 70.4 58.7 50.4 41.5	111.4 102.9 98.2 92.0 88.5 86.3 83.8	28.9 20.2 14.2 10.6 6.6	80.6 76.4 71.5 66.4 58.5 5.4	Fi
Carrick, 1922				
%	f.t.	Я	f.t.	
100 91.54 80.00 56.05 38.09 20.11	114 104.2 96.5 91.0 85.41 78.5 73.5	8.08 5.08 2.75 1.63 0.95 0.64	65.5 59.4 41.3 32.1 20.1 8.0	Pi
				=
			1	_

Benzene (C ₆ H ₆) + Dinitro	ophenols (C ₆ H ₄ O ₅ N	,)
Si d gwick and	Aldous, 1921	; Sidgwic	k and Ta	ylor,1922
% f.t	. %	f.t.	%	f.t.
2,3	2,	4	2,5	
100 145. 91.57 134. 69.05 118. 38.66 102. 25.30 93. 12.77 78.	9 93.61 6 86.50	112.9 105.6 99.5 93.9 87.2 83.7 77.1 65.0 51.0	100 92.90 82.44 72.97 54.78 48.91 35.81 24.22 13.96	105.6 98.5 88.6 82.4 71.4 67.9 57.0 48.5 33.5 5.5
2,6	3,4		3,5	
100 62 92.85 55.(86.87 50.(78.52 44 60.17 34.(43.36 25	73.10 60.49 56.86	134.7 122.6 116.1 113.0 112.1 109.1 106.5 89.2	100 94.20 83.73 73.08 51.13 32.63 20.13 6.39	126.1 116.0 162.8 103.4 97.7 94.4 85.0 60.9
Benzene (C ₆ H ₆) + Picric	acid (C ₆	H ₃ O ₂ N ₃)
Kuriloff, 1897			-,-	
mo1%	f.t.	mo 1%		ſ.t.
100 89.9 84.5 63.2 56.6 52.2 51.1 48.8	122.2 116.0 111.0 95.1 88.8 86.4 85.6 85.1 83.8	48.1 45.9 37.6 20.2 7.59 5.69 2.10 1.74	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	32.8 31.4 77.0 37.0 40.4 34.9 15.0 10.0
Findlay, 1902				
%	f.t.	%	r.	t.
3.57 5.09 6.79 8.71 11.23 11.90 17.61	5 10 15 20 25 26.5 35	20.72 25.13 33.62 36.88 41.63 49.18	38 45 55 58 65 75	.4
Piatti, 1931				
	%	ř.t.		
	15.8 12.4 10.0 8.2 6.7 4.4	40 35 30 25 20		

Toluene (C ₇ H ₈) + Phenol	(C4H40)			T	*****			
, -				Pushi	n, Matavu	ılj and Rikov	ski, 1948	
Weissenberger, Schuster an		, 1924	·	-	%	n _D	Я	n _D
mo1%	p			-		459)	
57.5 50 39.2 33.3 25	7,1 8,4 10 11 13				0 10.1 20.3 29.0 40.6	1.4827 1.4939 1.4990 1.5053 1.5106	50.1 60.6 70.1 80.1 90.0	1.5165 1.5228 1.5282 1.5339 1.5402
Drickamer, Brown and White	1945			T. 1	(C !!			
mo1%	mo1%			loluer	ie (C7H8) + o-Creso	1 (C ₇ H ₈ U)	
L V b.t.	L	V	b.t.	Weisse	enberger,	Schuster an	d Wojnoff,	1925
7 60n	ım				mo l	%	р	
100 100 182.2 65.90 95.65 172.8 48.80 91.28 159.4 37.90 88.14 153.9 37.50 87.52 149.4 21.50 78.10 142.2 19.30 72.50 133.9 12.75 59.20 128.3 10.99 52.00 126.7 8.41 41.02 122.2 7.20 36.52 120.3 7.40 34.88 120.0	5.37 4.64 4.55 2.50 2.04 1.39 0.52 0.20 0.14 0.07	26.00 22.70 19.88 11.60 8.92 6.06 2.30 0.90 0.61 0.27	119.7 119.4 115.5 112.8 112.2 113.3 111.1 110.6 110.6		66. 50 40 33. 28. 25 22.	3 6	8.82 11.4 13.5 14.0 14.6 15.0 15.1	
				:	mo1%	η	σ	
Paterno, 1896						15°		
99.53 98.66 98.27 92.89 89.55 86.30 80.88	D f.t. -0.36 0.97 2.68 5.09 7.44 9.62 13.32	The state of the s			66.7 50.0 40.0 33.3 28.5 25.0 22.2	3040 1790 1320 1210 1050 990 910 709	33. 35. 38. 32. 33. 34. 29.	46 10 04 97 33 43
Weissenberger, Schuster an	d Schüler.	. 1924		Pushin	, Matavul	lj and Rikovs	·	
mol% σ	mol%			 		300	n _D	
	r = 1)	η 				12.2	1.4913 1.4964	
57 0.410 50 0.405 60 0.401 33.3 0.400 25 0.400	5° 57.5 39.2 49.5 32.6 27.8 24.3	2. 1. 1. 0.	01 92			23.2 33.7 44.1 53.4 63.3 73.0 82.2 91.0	1.5018 1.5067 1.5116 1.5167 1.5216 1.5268 1.5317 1.5366 1.5413	

Toluene (C_7H_8) + m-Cresol (C_7H_8O)	75 mo1%			
Weissenberger, Schuster and Wojnoff, 1925	17.0 0.9111 21.0 0.9075 26.8 0.9021 35.0 0.8948 45.0 0.8853			
mol% p	45.0 0.8853 50.0 0.8809			
15°	61.0 0.8708			
66.7 7.62 50 11.3 40 13.2 33.3 13.9 28.6 14.4 25 14.8 22.2 15.0 0 17.0	100 mol 20.0 0,8650 30.0 0.8565 40.5 0.8471 50.0 0.8397 60.0 0.8300 69.5 0.8215 75.5 0.8161			
Kremann, Meingast and Gugl, 1914	Kremann, Gugl and Meingast, 1914			
mol% d	mol% d			
0 0.8824 (1-0.000982 t) 25 0.9271 (1-0.000991 t) 50 0.9676 (1-0.000881 t) 75 1.0088 (1-0.000928 t) 100 1.0493 (1-0.000711 t)	12° 0.0 0.8724 25.0 0.9158 20.0 0.9572 75.0 0.9987 100.0 1.0402			
Kremann and Meingast, 1914	0.0 0.8264 25.0 0.8681 50.0 0.9130 75.0 0.9569 100.0 1.0014			
Q mol% 17.0 1.0367 19.0 1.0350	Trew and Spencer, 1936			
$egin{array}{cccc} 30.0 & 1.0268 \ 40.0 & 1.0195 \end{array}$	mol% d			
50.0 1.0120 60.0 1.0045	25°			
25 molg				
10.0 1.0003 20.0	0 0.3596 11.32 0.8788 22.24 0.8978 33.94 0.9186 45.06 0.9386 54.56 0.9556 76.12 0.9922 87.74 1.0120 100 1.0302			
50 mol%	0 0 8562			
15.5 0.9544 20.0	12.5 0.8786 16.1 0.8847 31.0 0.9111 41.5 0.9307 37.8 0.9401 57.6 0.9570 68.6 0.9754 77.6 0.9906 89.1 1.0082 100 1.0292			

TOLUENE + CRESOL

Kremann, Meingast	and Gugl, 1914		- Kremann, G	ugl and Mei	ngast, 1914	
nol%	20°	70°	-	mol%	(water ^t =	1)
25 50 75	+0.2 +0.1 +0.05	+0.2 +0.05	=	0.0 25.0 50.0	0.60 0.91 2.02	30 40
Kremann and Meing	ast, 1914		_	75.0 100.0	1.04	87
0 mol% 17.0 19.0 30.0 40.0	35.73 35.52 34.53 33.24		_	0.0 25.0 50.0 75.0 100.0	0.34 1.04 0.91 0.95 1.00	80 30 69
50.0 60.0 25 mol%	32.59 32.19		Weissenberg	ger, Schuste	er and Wojnof	f, 1925
10.0 20.0 20.5	34.17		mo	01%	η(water=1)	σ
35.0 40.0 44.5 50.0 60.0	33.98 31.20 32.14 31.79 30.89 30.16		50 40 33) 3.3	15° 4.46 2.34 1.71 1.35	0.503 0.481 0.469 0.462
15.5 20.0 20.5 30.0 40.0 50.0 60.0	31.52 31.30 30.27 29.38 28.53 27.70		28 25 22	2	1.17 1.04 0.95	0.457 0.455 0.454
75 mol%	29.60		Pushin, Ma	tavulj and	Rikovski, 194	18
21.0 26.8 35.0	29.45 28.93 27.93 27.24 27.34 26.74		%	ⁿ D	Я	n _D
45.0 45.0 50.0 61.0	25.05		0 11.7	1.4942 1.4990	25° 63.3 73.3	1.5219 1.5264
100 mol% 20.0 30.0 40.5 50.0 60.0	28.32 27.12 25.97 24.99 24.49		22.3 32.8 43.9 52.6	1.5032 1.5032 1.5131 1.5172	81.5 91.5 100	1.5304 1.5350 1.5392
60.0 69.5 75.5	23.53 22.16		=			

TOLUENE + CRESOL

Trew and Spencer,	1936		Toluene (C_7H_8) + p-Cresol (C_7H_80)
	01%	n _D	
	28°		Weissenberger, Schuster and Wojnoff, 1925
1 1 3 4 3 5 6 7	2.5 6.1 1.0 1.5 7.3 7.6 8.6 7.6	1.49030 1.49663 1.49937 1.50620 1.51133 1.51430 1.51920 1.52797 1.53329 1.53812	mol% p 15° 66.7 8.55 50 11.9 40 13.6 33.3 14.3 28.6 14.7 25 15.0 22.2 15.2
mo1%	U	Q mix (cal/g)	
0 21.3 38.6 56.9 72.7 37.1	0.383 0.409 0.425 0.436 0.441 0.456 0.515	-1.68 2.02 2.05 1.45 0.30	Pushin, Matavulj and Rikovski, 1948 # n _D # n _D 40° 0 1.4855 63.7 1.5143 11.5 1.4905 72.9 1.5195
			33.5 1.5005 91 3 1.5236
Kremann, Meingast	and Gugl, 1914		43.8 1.5058 100 1.5218 54.2 1.5107
mol%	U	Q mix (cal/g)	Weissenberger, Schuster and Wojnoff, 1925
	16°	-	
53	0.436	+1.690	mol% n σ (water = 1)
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			Toluene (C ₇ H ₈) + Resorcinol (C ₆ H ₆ O ₂)
			Bingham, 1907
			C.S.T. = 134°
			F
			Francis, 1944 C.S.T. \(\pm \) 128°

70			TOLUE	NE
Toluene (C ₇ H ₈	3) + Guai	acol (C ₇ I	I ₈ 0 ₂)	
Pushin and Pi	nter, 1929			
mo1%	d	l	η	
	30	٥		
100 90 80 70 60 50 40 30 20 10	1.0 1.0 1.0 0.5 0.9 0.9 0.8 0.8	236 1994 1757 1454 1158 1961 1687 1411 1119 13547	4450 3170 2470 1830 1500 1200 981 815 700 599 526	
Pushin, Matavu %	n _D	7SK1, 1948	n _D	
~	30)0	υ	
0 13.0 26.7 38.5 58.2	1.4913 1.4959 1.5011 1.5069 1.5159	66.0 73.9 81.0 91.7 100	1.5205 1.5248 1.5298 1.5344 1.5386	

Toluene (C_7H_8) + Thymol ($C_{10}H_{14}0$)

Pushin, Matavulj and Rikovski, 1948

<u></u> %	n _D	%	ⁿ D
	60)°	
0 13. 27. 37. 50. 59.	7 1.4831 8 1.4863 6 1.4903	68.7 77.3 84.9 91.8 100	1.4957 1.4980 1.5001 1.5022 1.5041

Toluene ($\rm C_7H_8$) + o-Chlorphenol ($\rm C_6H_50C1$)

Pushin, Matavulj and Rikovski, 1948

%	n _D	%	n _D
	2	5°	
0 14.4 26.8 37.6 48.3 58.3	1.4942 1.5008 1.5067 1.5126 1.5187 1.5251	67.5 75.0 84.9 92.6 100	1.5313 1.5370 1.5440 1.5503 1.5566

Toluene (C_7H_8) + p-Chlorphenol (C_6H_50C1)

Pushin, Matavulj and Rikovski, 1948

%	n _D		
	40°	45°	
0 13.3 26.4 37.1 47.7 58.0 67.4 75.9 84.2 92.3	1.4855 1.4932 1.5013 1.5092 1.5168 1.5248 1.5323 1.5396 1.5455 1.5524 1.5593	1.4827 1.4906 1.4992 1.5070 1.5146 1.5229 1.5304 1.5375 1.5434 1.5503 1.5570	

Toluene (C_7H_8) + o-Nitrophenol ($C_6H_5O_3N$)

Sidgwick, Spurrell and Davies, 1915

%	f.t.	%	f.t.	
27.01 35.73 43.06 52.77 59.15 66.84 74.53	-0.6 +6.9 12.5 18.5 22.3 26.1 30.0	81.98 85.88 90.48 93.21 97.87	+33.7 35.8 38.5 40.1 43.3 44.9	

			IULUENE +	
Toluene (C ₇ H ₈) + m-Nit	rophenol (C	5H5O3N)	
Sidgwick, Spur	rell and D	avies, 1915		
Z	f.t.	Z	f.t.	
4.63 6.00 7.03	39.6 45.8 48.9	33.16 46.93 57.71 70.50	71.5 74.5 75.7 78.5	
9.11 11.28 16.44 20.26	54.0 58.0 64.8 67.7	70.50 79.57 91.43 100	78.5 82.3 88.8 95.1	
20,20				
Toluene (C ₇ H ₈	₃) + p-Ni	trophenol (C	6H5O3N)	
Sidgwick, Spur	rell and D	avies, 1915		
%	f.t.	Я	f.t.	
5.60 6.54 9.99 14.22	62.4 66.3 72.2	44.45 49.96 61.50	90.0 91.0 93.8 95.8	
22.41 26.4 34.67	66.3 72.2 77.1 82.6 84.5 87.7	68.69 79.80 89.98 100	100.2 105.4 113.8	
Ethylbenzene (CH)+	Pasarainal (C.H.O.)	
	_			
Timmermans and	Kohnstamm	, 1909 - 1910		
C.S.T. = 151.5 dt/dp $(5 - 65 \text{Kg}) = -0.025$				
Propylbenzene (C_9H_{12}) + Phenol (C_6H_60)				
Lecat, 1949				
	%	b.t.		
1 10	0 .4 00	159.3 158.5 182.2	Az	

Cumene (C_9H_{12}) + Pheno	$1 (C_6H_6O)$	
Vilim, Hala and al. 1954	(fig.)	
	b.t.)	
L	v	
50 n	ım	
0 5	0 45	
25 50	74 82	
5 25 50 75 100	91 100	
Byk and Stroiteleva,	1956	
V %	L	b.t.
760	mm	
92.0	97.5 96.0	178.0
87.0 78.0 67.0	92,0	176.2 173.6
60.0 54.0	89.0 85.0 79.0	170.1 168.5
41.0	69.5 68.5	166.6 161.6
37.5 34.0	63.0 58.0	162.0 160.7
30.05 26.0	53.5 43.0	158.9 157.0
37.5 34.0 30.05 26.0 22.5 11.5	36. 3	154.7 154.0
6.0	15.0 7.0	151.8 150.8
%	d	n _D
	45°	
100 97	1.0550 1.0490	1.5390
94 90	1.0424 1.0299	1.5375 1.5362
85 80	1.0077 1.0060	1.5327 1.5302
70 60	0.9825 0.9599	1,5258 1,5192 1,5130
50 40	0.9389 0.9200	1,5068
30 20 10	0.8964 0.8770	1.5007 1.4950
Ĭõ	0.8404	1.4888 1.4778
Butylbenzene (C ₁₀ H ₁₄)	+ Phenol (C	νμ.ο.)
pactinensene (clout?)	· I HEROT (C	61160)
Lecat, 1949		
%	b.t.	
0 46	183.1 175.0	Az
100	175.0 182.2	***
		· · · · · · · · · · · · · · · · · · ·

			·			
m-Xylene (C ₈ H ₁₀) + Phe	no1 (C ₆ H ₆ O)		p-Xylene (C ₈ H	10) + Pheno	o1 (C ₆ H ₆ 0)
Philip and Haynes, 1905			Paterno and Mo	ntemartini,	1894	
8	d	E	8	f.t.	%	f.t.
0 0 5.59 0 12.40 0	.8701 .8821	2.375 2.576 2.890 3.201	0 1.235 2.690 4.648 6.379 8.891 11.596 16.169 20,060	13.18 12.63 12.065 11.435 10.92 10.315 9.44 8.935 8.15	45.542 48.732 51.089 54.137 56.724 59.288 61.520 69.222 71.597	6.745 8.605 10.005 11.52 12.79 14.07 15.30
m-Xylene (C ₈ H ₁₀) + Re Campetti, 1913 ·	sorcinol (C ₆ H	60 ₂)	24.823 31.008 35.158 39.457 43.510 44.615	7.255 6.255 5.425 3.995 5.085 6.59	79.773 89.452 94.164 98.145 100	20.07 24.82 30.37 33.32 35.82 37.02
# f.t.	X	sat.t.				
1.07 60.2 1.97 75.9	2.99 4.03	61.1 72.5 80.1	Paterno, 1894			
1.97 75.9 2.99 82.5 4.03 89.2 4.78 94.2	4.78 7.90	101.0	II	£	f.t.	
7.90 99.9 82.53 102.2	9.87 19.61 29.93	108.6 136.2 146.1	0 1.1 2.6	137	13.445 12.895 12.33 11.70	
85.05 104.5 95.06 107.1 100 108.8	29.93 49.78 59.73 71.02 81.33 86.94 89.79	148,3 144.9 135.7 106.0 72.4 35.0	4.6 6.3 8.8 11.3 16.3 20.6	647 878 891 588 134 060	11.70 11.185 10.58 10.005 9.20 8.415 7.52	
,m-Xylene (C ₈ H ₁₀) + Met Chu and Kharbanda, 1954	hyl salicylate	(C ₈ H ₈ O ₃)	Paterno and Am	pola, 1897	t.	E
b.t.	mo1%		0.0		.35	<u>.</u>
L	V 5 mm		30.38 31.01 31.82 33.07	6 6 5	.44 .33 .095 .94	5.675 5.69
197 89.0 182 78.5 171 66.0 158 48.0 150 31.5 143 14.5	48.0 29.0 16.0 7.5 5.0 2.0		34, 28 35, 05 35, 85 36, 30 36, 79 37, 04 37, 59 38, 07 39, 78 42, 05 44, 08 100, 0	555555666 78	.68 .60 .71 .705 .62 .575 .00 .11 .17 .42 .79	5.705 5.71 - 5.715 5.715 5.715 5.705 5.68 - -

D	Lecat, 1949
Paterno, 1896	
% D f.t.	% b.t.
80.2680 -12.57 83.4221 10.42 89.7143 6.57 92.6202 4.76 95.5174 2.95 97.6148 1.57	0 176.7 36 171.5 Az 100 182.2
99.3633 0.45	p-Cymene ($C_{10}H_{14}$) + o-Chlorphenol ($C_{6}H_{5}OC1$)
	Lecat, 1949
p-Xylene (C ₈ H ₁₀) + Thymol (C ₁₀ H ₁₄ 0)	% b.t.
Paterno and Montemartini, 1894	0 176.7
% f.t. 0 13.23	50 172.2 Az 100 176.8
1.10 12.89 2.05 12.615	
3.05 12.305 5.29 11.70	Alkylbenzenes + Phenols
9.27 10.66 13.29 9.61	Francis, 1944
18.84 8.105 28.20 5.595	Systems C.S.T.
32.58 4.425	Diisopropylbenzene (C ₁₂ H ₁₈) + 126
	Salicylic alcohol ($C_7H_8O_2$)
	Diisopropylbenzene ($C_{1,2}H_{1,8}$) + above 237 Hydroquinone ($C_6H_6O_2$)
r-Xylene (C_8H_{10}) + Methyl salicylate ($C_8H_80_3$)	Diamylbenzene ($C_{16}H_{26}$) + above 144 Pyrocatechol ($C_{6}H_{6}O_{2}$)
Chu and Kharbanda, 1954	Diamylbenzene (C ₁₆ H ₂₆) + above 250
b.t. mol%	Hydroquinone ($C_6H_6O_2$) Diamylbenzene ($C_{16}H_{26}$) + 99
L V	Benzyl-p-hydroxybenzoate (C ₁₄ H ₂₃ O ₃)
204 94.0 57.5	Diamylbenzene ($C_{16}H_{26}$) + 151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2,4$ -Dinitrophenol ($C_6H_4O_5N_2$) Methyldiethylbenzene ($C_{11}H_{16}$) + 86
157 47.5 7.0 148 28.5 3.5	Salicylic alcohol ($C_7H_8O_2$)
143 15.0 1.5	Methyldiisopropylbenzene (C ₁₃ H ₂₀) + 100
	Pyrocatechol ($C_6H_6O_2$) Hexaethylbenzene ($C_{18}H_{30}$) + 119
	Pyrocatechol (C ₆ H ₆ O ₂)
p-Cymene ($C_{10}H_{14}$) + Pheno1 (C_6H_60)	Hexaethylbenzene (C ₁₈ H ₃₀) + 154 Salicylic alcohol (C ₇ H ₈ O ₂)
Brauer, 1929	
% mol% b.t.	Pseudocumene (C_9H_{12}) + Phenol (C_6H_60)
(10mm)	Lecat, 1949
100 100 73.5 50 58.7 56.8 30 37.8 55.8	% b.t.
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 168.2 25 166.4 Az 100 182.2

Mesitylene (C_9H_{12}) + Phenol (C_6H_60)

Lecat, 1949

K	b.t.	_
0 21 100	164.6 163.5 Az 182.2	

Triethylbenzene s.($C_{1,2}H_{1,8}$) (b.t. = 215.5) + Phenols

Lecat, 1949

	2nd Comp.		Az	
Name	Formula	δ.t.	%	b.t.
p-Ethyl phenol	C ₈ H _{1 0} 0	218.8	40	212.0
Mesitol	C9H120	220.5	30	213.0
Pyrocate- chol	C6H6O3	245.9	9	214.7
Guethol	C _B H ₁₀ O ₂	216.5	30	214.5
p-Chlorphenol	C6H50C1	219.75	20	214.7
o-Nitro- phenol	C ₆ H ₅ O ₃ N	217.2	30	214.3

Francis, 1944

Aromatic hydrocarbons + Salicyl alcohol $.(C_7H_8O_8)$

Manage Mydrocurbons - Saffeyi alconor	. (C7H8U2)
1 st comp.	C.S.T.
Ethylisopropylbenzene (C _{1,1} H _{1,6})	107
Methyldiisopropylbenzene ($C_{t,8}H_{20}$)	142
Triethylbenzene ($C_{12}H_{18}$)	109
sec. Amylnaphthalene $(C_{15}H_{18})$	80
Diisopropylnaphthalene ($C_{16}H_{20}$)	96

Lecat, 1949

Diphenyl ($C_{12}H_{10}$) (b.t. = 256.1) + Phenols

	2nd Comp.		Az	
Name	Formula	b.t.	%	b.t.
Pyro- catechol	C6H6O2	245.9	56.5	239.85
Resorcinol	C6H602	281.4	21	252.35
Pyrogallol	C6H6O3	309	10	253.5
Eugenol	C10H1202	254.8	50	253.5

Diphenyl ($C_{12}H_{10}$) + Resorcinol ($C_6H_6O_2$)

Francis, 1944

C.S.T. = 109°

Diphenyl ($C_{1\,2}H_{1\,0}$) + Trinitroresorcinol s. ($C_6H_3O_8N_3$)

Efremov, 1916

%.	f.t.	E	min.
.00	175.5	•	-
95	170.2	-	-
90	165.5	61.5	48
80	148.5	61.5	9ŏ
70	138.9	61.5	160
61.41	130.0	61.5	210
60	128.1	62.4	240
50	118.0	61.5	330
40	107.6	61.5	420
30	96.2	61.5	540
25	84.6	62.3	620
15	62.8		700
10	65.9	62.5	430
5	68.4	60.4	210
0	70.5	-	320

Diphenyl (C ₁₂ H ₁₀) + Picric acid ($C_6H_3O_7N_3$)
Efremov, 1915 and	1918

	f.t.	E	
100	122.4	-	
95	114.6	-	
90	108.6	52.2	
80	98,5	· -	
70	88.3	53.3	
60	77.3	54.1	
50	66.7	"	
40	55.1	52.8	
35	55.0	2.0	
40 35 30	54.1	56.9	
20	52.9	60.6	
10	50.9	65.4	
10 5	68.1	03,4	
Õ		-	
U	70.5	-	

p-p'-Ditolyl ($C_{14}H_{14}$) + p-p'-Diphenol ($C_{12}H_{10}O_2$) | Paterno, 1895

Grimm,	Gunther and T	littus, 1931	(fig.)
	Я	f.t.	m.t.
	100 90 80 70 67 60 50 43.5 40 30 20 10	121 213 237.5 247 248 246.5 240 231.5 240 254 261.5 268 272.5	119 119 125 210 248 (2+1) 231 231 231 231 231.5 232 232 235 270

Diphenylmethane ($C_{1\,\,3}H_{1\,2}$) + Phenol ($C_6H_6\,0$)

Paterno and Ampola, 1897

%	f.t.	E	%	f.t.	E
0 0.47 1.23	24.45 24.16 23.705	-	34.36 35.94 36.65	12.35 11.87 11.69	11.24 11.295 11.50
2.02 3.59 5.37	23.23 22.47 21.73	-	37.07 37.53 38.68	11.585 11.26 11.52	11.295 11.325
8.08 14.24 18.07	20.72 18.40 17.20	-	39.16 40.94 41.33	10.01 10.51 11.94	11.30 11.235 11.49
20.73 23.40 27.20 31.56	16.49 15.35 14.54 13.24	11.30	41.77 43.43 43.44 44.86	11.05 12.94 11.93 12.87	11.235
32.46 32.80 33.46	12.75 12.34 12.68	11.45 11.38 11.27	47.21 48.99 51.08	14.07 15.44 16.73	34.88
34.20	12.28	11.46		-	-

0 0.46 1.22	24.58 24.29 23.835	
1.44		
2.02	23.36	
3.59	22.60	
5.36	21.86	
8.09	20.85	
14.24	18, 295	
16.70	17.095	
20.72	16.385	

Lecat, 1949

Diphenyl methane ($C_{13}H_{12}$) (b.t. = 265.4) + Phenols

Name	2nd Comp. Formula		Az %		Sat.t.
		b.t.		b.t.	
tert.Amyl phenol	C ₁₁ H ₁₆ O	266.5	40	263.0	-
Pyrocatechol	C6H6O2	245.9	65	242.7 5	96 (65%)
Resorcinol	C ₆ H ₆ O _R	281.4	26	258.7 5	113 (26%)
Pyrogallol	C 6 H 6 O 3	309	11	263.5	-

DIPHENYL METHANE + PYROCATECHOL

Diphenyl methene ($C_{1\,3}H_{1\,2}$) + Pyrocatechol ($C_6H_6\theta_2$)

Kremann and Fritsch, 1920

%	f.t.	E	%	f.t.	E	
0	23.9	_	55.0	90.3	_	
2,6	40.3	23.1	59.9	91.8		
<u>5.2</u>	56.0	-	60.1	91.2	23.2	
7.7	63.0 69.0	-	62.6 62.7	93.2 92.1		
$\substack{11.3\\15.8}$	74.1	23.1	65.1	92.5	-	
20.9	78.8	-	70.9	93.9	23.2	
26.6	82.1	-	77. 1	95.2	-	
32.0	34.0	23.1	88.3	97.8		
36. 7 40.9	$\frac{85.9}{37.0}$	-	91.9 96.3	98.8 100.4	23.2	
43.8	87.6	_	100	101.8	_	
49.3	89.2	23.1				

Diphenyl methane ($C_{1.3}H_{1.2}$) + Resorcinol ($C_6H_6\theta_2$)

Kremann and Fritsch, 1920

%	f.t.	Sat.t.	%	f.t.	Sat.t.	
0	23.9	_	53,8	101.6	114.0	
0.7	27.8	-	54	101.6	114.1	
3.0	53.3	-	58.9	101.8	112.1	
4.8	75.6	-	61.5	101.5	111.0	
4.8	7 8.5	-	62.0	101.8	110.0	
6,6	85.0	-	64.3	101.6	109.3	
8. 7	90.8	-	64.5	101.8	109.0	
3.3	92.5	-	64.8	101.6	103.4	
12.2	96.5	-	66.8	101.6	107.3	
12.7	98.4		68.4	101.8	105.8	
18.9	100.9	106.5	70.3	101.6	104.5	
19.5	100.1	106.3	73.2	101.6	-	
22.7	100.8	109.5	75.5	101.8	-	
26.9	100.5	112,1	77. 5	102.5	-	
31.1	101.4	114.2	81 .7	103.2	-	
36.6	101.6	115.1	36.4	104.3	-	
41.3	101.5	115.4	89.7	105.4	-	
42.3	101.4	115.4	96.5	107.5	-	
49.7	101.4	115.0	100	108.3	-	

Diphenyl methane ($C_{1.3}H_{1.2}$) + Hydroquinone ($C_6H_60_2$)

Kremann and Fritsch, 1920

%	f.t.	E	%	f.t.	E
0	23.9	-	62.4	162.0	_
0.8	62.4	23.9	63.7	162.0	-
1.2	92.3	-	68.4	162.1	-
1.6	101.8	23.9	70.7	162.1	-
2.8	117.4	23.9	73.4	162.5	24.0
4.7	126.8	-	75. 5	162.5	23.9
8	140	-	78.2	163.0	-
11.6	149	23.9	81.3	163.7	-
15.9	154	-	86 .7	165.2	23.9
22.6	158.6	-	86.9	165.2	23.9
28.1	160.5	-	93.6	167.0	-
34	161.0	-	9 5	167.4	-
د.40	161.3	-	96.5	166.0	-
45.2	162.0	23.9	98.4	168.6	23.9
54.7	162.0	-	100	168.8	-
58.6	162.0	23.9			

Diphcnyl methane ($\rm C_{1\,3}H_{1\,2}$) + Pyrogallol ($\rm C_6H_6O_3$)

Kremann and Fritsch, 1920

%	f.t.	Sat.t.	E
0	23.9		_
1,3	75.6	-	23.4
1.7	71.0	-	- ' '
2.6	93.4	-	-
4.2 5	105,4	-	-
5	106.9	-	-
7.8	113.9	-	_
10	115.2	116.5	-
11.2	115.0	-	23,4
20	115.2	120.2	-
22.2	115.2		23.5
30	115.0	121.9	
40	115.2	122.8	_
50	115.3	122,9	_
60	115.2		-
65	115.6	122.5	23.5
70	115.5	121.1	
80	115.0	119.2	23.5
90	115.5		-0.0
95	119.5	_	_
100	120.0	_	_

Diphenyl methane ($C_{13}H_{12}$) + Isoeuzenol ($C_{10}H_{12}O_2$)	Diphenyl methane ($C_{13}H_{12}$) + m-Nitrophenol ($C_{6}H_{5}O_{3}N$)
Lecat, 1949	Kremann and Fritsch, 1920
% b.t.	% f.t. E % f.t. E
0 265.4 20 264.7 Az 100 268.8	0 24.0 22.0 54.2 80.8 - 12.1 58.0 22.0 57.3 81.8 -
Diphenyl methane ($C_{13}H_{12}$) + 1-Naphthol($C_{10}H_80$) Kremann and Fritsch, 1920 # f.t. E # f.t. E	14.2 62.0 " 60.0 82.5 - 17.6 64.5 - 61.5 82.8 21.5 20.8 67.5 22.0 64.5 83.8 - 24.5 70.5 - 65.5 83.5 - 29.2 73.0 - 73.5 86.0 - 33.1 74.5 - 80.0 87.5 - 37.9 75.5 - 87.0 90.2 - 40.6 76.6 21.5 92.6 91.8 - 44.1 78.6 - 96.5 92.8 - 47.6 79.5 - 100 94.8 -
0 23.9 - 55.7 71.2 19.6 4.6 21.5 - 62.6 75.3 -	
10.4 26 19.6 62.8 75.0 19.6 15.8 34.2 19.6 69.3 78.4 - 19.3 39.0 - 67.6 78.0 - 21.3 42.0 - 72.9 80.5 19.6 24.7 46.0 19.6 76.4 82.2 - 28.0 48.4 - 81.2 83.8 - 33.0 54.0 - 84.6 85.4 19.6	Diphenyl methane ($C_{13}H_{12}$) + p-Nitrophenol ($C_6H_50_3N$) Kremann and Fritsch, 1920
36.1 57.2 - 90.6 88.2 - 39.9 61.1 - 96.1 91.3 19.3 48.8 67.1 - 100 93.1 -	% f.t. E % f.t. E
Diphenyl methane ($C_{13}H_{12}$) + 2- Naphthol($C_{10}H_80$) Kremann and Fritsch, 1920	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
% f.t. E % f.t. E	
0 23.8 - 61.4 99.7 - 4.5 25.5 22.6 63.4 100.5 - 15 61.0 22.6 65.2 101.7 - 18.9 67.0 22.6 67 102.0 - 22.0 72.5 22.6 71.5 104.5 - 27.6 78.1 - 74.3 105.5 - 38.2 87.0 - 78.8 108.0 - 43.9 91.3 - 80.8 108.9 - 47.1 98.5 - 85.7 112.0 - 50.4 94.4 - 92.9 117.0 -	Diphenyl methane ($\rm C_{13}H_{12}$) + Picric acid ($\rm C_6H_3O_7N_3$) Efremov, 1915 and 1918
38.2 87.0 - 78.8 108.0 - 43.9 91.3 - 80.8 108.9 - 47.1 98.5 - 85.7 112.0 -	% f.t. E % f.t. E
47.1 98.5 - 85.7 112.0 - 50.4 94.4 - 92.9 117.0 - 59.1 99.0 22.6 100 122.0 -	0 26.6 - 60 90.8 23.9 2.5 26.1 - 65 90.8 23.9 5 25.4 22.7 70 91.0 23.9 10 24.5 - 75 91.1 23.8 15 32.7 23.8 80 96.7 23.3 20 43.9 23.9 85 102.9 23.0 30 63.3 23.8 90 108.0 22.2 40 78.8 23.8 95 114.2 - 45 84.4 23.9 97 114.2 - 50 89.6 23.9 100 122.4 - 55 90.7 23.9

178			DIP	IENYL M	ETHAN	E +
Kremann and	i Fritsch,	1920				
%	f.t.	E	%	f.t.	E	
0	24.0	_	61.0	97.0	22.5	
6.9	22.3	22.3	61.3	96.8	22.3)
16.9 24.1	53.6 68.5	-	64.8	96.9 98.2	22.0	
29.4	7 5.5	-		99.5	22.5	
34.9	80.5	22.3	66.8	98.8	-	
38.7	83.8	-	71.8	101.6	22.5	
41.6 44.3	85.2 87.4	-	75.8 79.7	103.1 105.4	22.3	
l 478		-	84.2	108.0	22.5	
51.2	89.3 91.8	-	88.2 91.9	110.3	-	
53.9	92.6	22.3	91.9	112.6 121.5	22.5	
57.9	94.5	-	100	121.5	-	
						\equiv
Diphenyl n	methane (C. allea) + Tf	initrores	sorcinol s	s.
		♥1,41 <i>x</i>	,			''
	3037			(C ₆ H ₃ O ₈ N	13 /	
Efremov, 1	1916					
%	f.t		E	min.		
0	26.	6	-			

%	f.t.	Е	min
0	26.6	-	-
4.5 5	22.7	-	760
5	40.6	22.6	640
10	64.8	22.6	570
20	99.2	22.6	500
30	121.8	22.6	410
35	132.2	22.6	380
40	140.8	22.6	330
45	144.3	22.6	310
50	144.6	22.6	280
55	144.6	22,5	240
60	145.1	22.5	210
65	148.9	22.6	190
70	152.7	22.6	160
7 5	155.0	22.5	130
80	157.9	21.3	100
90	163.4	18 .7	_
95	169.2	-	-
97	172.4	-	-
100	1 7 5.5	-	_

Triphenyl methane ($C_{19}H_{16}$) + Phenol ($C_{6}H_{6}O$)

Kremann, Odelga and Zawodsky, 1921

%	f.t.	%	f.t.	
0	91.0	51.5	59.8	
4.2	86.2	55.9	51.3	
7.4	89.0	59.8	48.9	
12.3	78.0	62.9	45.8	
16.4	74.8	65.1	43.4	
18.6	73.2	68.0	41.0	
22,1	71.0	71.6	35.0	
25.2	69.0	7 5.1	32.5	
28.3	67.0	77.8	33.0	
32.5	65.0	80.4	34.5	
35.9	63.2	85.2	36.7	
38.9	61.7	89.4	38.0	
40.7	60.0	93.4	38.5	
42.8	59.7	96.2	39.8	
46.8	56.5	100	41.0	
70,0	50.5	100	41,0	

Triphenyl methane ($\text{C}_{1\,\,9}\text{H}_{1\,6}$) + Pyrocatechol ($\text{C}_6\text{H}_6\text{O}_2$)

Kremann, Odelga and Zawodsky, 1921

%	f.t.	Я	f.t.	
0 1.3 3.6 8.3 12.5 16.4 20.9 24.3 29.1 32.1 32.5 38.9 41.2 47.1 51.2	91.0 88.8 86.5 85.0 82.5 87.8 89.1 90.1 91.2 91.9 92.5 94.0	54.6 56.4 57.4 59.2 63.7 68.2 72.0 76.6 79.8 83.4 87.5 91.2 96.1	94.8 94.7 95.0 95.3 95.5 96.1 96.8 97.5 98.0 98.5 100.5 101.8	

Triphenyl methane ($C_{19}H_{16}$) + Hydroquinone ($C_{6}H_{6}O_{2}$)

Kremann, Odelga and Zawodsky, 1921

<u>%</u>	f.t.	Sat.t.	%	f.t.	Sat.t.
0	91.0	-	44.9	160.0	177.0
2.6	128.0	_	50.5	160.0	177.0
5.7	146.0	-	55.1	160.0	176.0
8.8	154.0	-	59.5	160.0	175.0
12.3	160.0	-	63.7	160.0	173.0
16.0	160.0	164.0	67.7	160.0	171.0
20.4	160.0		72.1	160.0	167.5
24.1	160.0	170.0	76.7	160,0	163.0
27.3	160.0	173.0	83.2	161,0	-
29.9	160.0	175.0	88,6	164.0	-
33.8	160.0	176.0	95,4	167.0	-
39.9	160.0	177.0	100	168.5	-

Triphenyl methane ($C_{19}H_{16}$) + Resorcinol ($C_6H_6O_2$)	Triphenyl m	ethane (C ₁₉	H ₁₆) + o-1	Nitrophen (C ₆ H ₅ 0	
Kremann, Odelga and Zawodsky, 1921	Kremann, Od	elga and Zawoo	isky, 1921		
% f.t. sat.t.	# #	f.t.	%	f.	t.
0 91.0 - 3.9 89.0 - 8.2 102.0 - 10.4 106.0 - 15.7 106.0 129.0 19.6 106.0 134.0 27.7 105.5 138.0 38.1 106.0 142.0 45.2 106.0 143.0 49.3 107.0 142.5 52.1 106.0 142.0 55.1 106.0 142.0 55.1 106.0 142.0 59.7 106.0 141.5	0 5.9 14.7 20.8 27.5 32.3 37.6 40.9 45.0 50.2 E: 3	91.0 86.0 80.0 75.5 69.5 66.5 62.0 59.0 56.0 51.8 85.5° ~ 36.0°	57.3 62.9 67.6 72.6 77.0 83.0 87.7 92.4 96.5	43 38 37 38 40 40 43 44	.0 .5 .5
63.0 106.0 141.0 66.7 106.0 138.0 72.1 105.5 135.0 77.6 106.0 123.0 81.6 106.0 120.0 84.7 106.0 112.0 87.7 106.5		ethane (C ₁₉ H ₁ elga and Zawod		trophenol (C ₆ H ₅ O ₃	
90 107.0 - 92.3 107.5 - 96.1 108.5 -	%	f.t.	×	f,	t.
100 109.0 - E = 87.5° Triphenyl methane (C ₁₉ H ₁₆) + Pyrogallol (C ₆ H ₆ O ₃)	0 1.6 4.8 9.6 14.3 20.4 26.4 30.9 35.5 40.2	91.0 89.8 88.0 86.5 84.5 81.5 80.5 84.2 84.2	50 56.1 60.4 65.2 59.3 74.8 80.9 86.4 91.8 96.9	86 87 87 88 88 90 90 93	3.9 .8 .0 .0 3.3 .0 8.8 .0
Kremann, Odelga and Zawodsky, 1921	E:	78° - 80°			
% f.t. Sat.t. 0 91.0 - 4.0 98.0 - 10.0 122.0 - 16.3 124 - 125 155.0		ethane (C ₁₉ H ₁ uermann and al		4-Dinitro (C ₆ H ₄ (
51.6 " 178.5 57.8 " 176.0 64.2 " 173.0	R	f.t., E	%	f.t.	E
71.8 " 164.0 95 " 164.0 98.4 125.0 - 98.2 125.5 - 100 126 -	0 5.88 11.70 14.23 17.73 25.65 34.0 39.53 48.80	88.5 80.5	57.46 63.82 71.56 76.50 80.90 85.61 89.39 96.53	96.5 99 101 103 105 106 108 110.5 111.5	80.5

180		TRIPHE	NYL METHAN	IE 1
· · · · · · · · · · · · · · · · · · ·				
Triphenyl m	ethane (C ₁₉ H ₁ 16		troresorcinol $C_6H_3O_8N_3$)	
%	f.t.	E	min.	
0 5 10 20 30 40 45 50 55 60 70 80 85 90 95	92.2 91.4 113.3 138.9 149.5 159.8 162.8 165.7 167.3 167.4 167.4 167.4 170.2 172.8	91.2 92.0 91.2 91.2 91.2 91.2 91.2 91.2 91.3 88.0 85.2 83.3 80.8	500 420 360 310 280 260 210 190 140 120 70 36	
Triphenyl m	ethane (C ₁₉ H ₁ 15 and 1918	₆) + Picri	c acid (C ₆ H ₃ O ₇ N ₃)
%	f.t.	E	Sat.t.	
0 2.5 5	92.0 90.4 88.8	- - 80.7	-	

%	f.t.	<u>E</u>	Sat.t.
0	92.0	_	_
2.5 5	90.4	-	_
5	88.8	80.7	
10	85.9	81.5	~
15	96.5	-	
20	104.0	82.8	-
25	108.5	82.3	-
30	111.0	82.0	116.5
35	111.9	82.3	128.3
40	112,3	82.1	134.5
50	113.5	81.5	139.1
<u>60</u>	112.8	82.5	140.3
70	113.1	82.3	140.1
7 5	112.7	82.3	138,1
80	113.0	82.3	133.7
85	112.6	82.3	127.3
88	113.5	82.3	119,2
90	112.6	80.1	
95	117.1	78.7	_
97	119.2	-	-
00	122.4	-	_

%	f.t.	Sat.t.	%	f.t.	Sat.t.
0	89.2	-	67.6	114.0	144
15.4	86.5	-	69.9	113.7	143
20.7	106.0	-	71.8	113.9	142
29.3	113.4	118	75.2	114.0	140
37.6	113.5	132	78.8	114.0	136
42.5	113.8	136	88.6	113.8	131
48.9	113.6	140	93.7	116.0	-
54.0	113.6	143	97.8	119.6	_
57.9	114.0	143.5	100	121.5	_
62.8	113.8	144	100	121.0	
64.7	113.9	144			
-			87.7	114.2	122

Rheinboldt and Kircheisen, 1926					
%	f.t.	Ε.	Sat.t.		
0	92.0	91.0	_		
3.9	90.5	86.0	-		
10.3	92.0	86.0	~		
14.8	101.5	86.0	_		
19.8	102.0	86.0	_		
25.1	114.0	86.0	_		
30,2	113.5	86.5			
35.3	114.0	86.6	123.0		
39.4	114.0	86.5	130.0		
49.6	113.5	86.5	141.0		
59.7	114.0	86.0	144.5		
69.6	114.0	86.5	143.0		
79.4	115.0	87.0	134.0		
84.6	115.0	87.0	107.0		
93.9	114.5	87.0	_		
100	122.5	121.5	_		

Triphenyl methane ($C_{19}H_{16}$) + 1-Naphtol (C₁₀H₈O)

Kremann, Odelga and Zawodsky, 1921

%	f.t.	E	%	f.t.	E	
0 3.9 6.2 9.6 12.8 15.7 18.3 20.6 23.3 26.7 32.3	91.0 88.2 85.2 82.5 80.0 77.2 74.8 73.0 67.5 64.8	63	43.8 46.3 49.5 50.4 53.2 60.6 66.9 74.3 83.9 88	71.0 72.0 73.5 74.4 75.6 78.2 81.0 84.6 87.9 89.4	61	
36.1 38.9	67.0 68.8	63 61	100	$\begin{array}{c} 91.2 \\ 93.0 \end{array}$	-	

Triphenyl methane ($C_{19}II_{16}$) + 2-Naphtol ($C_{10}H_80$)	Dibenzyl ($C_{14}H_{14}$) + Trinitroresorcinol s.	
Kremann, Odelga and Zawodsky, 1921	(C ₆ H ₃ O ₈ N ₃)	
% f.t. % f.t.	Efremov, 1916	
0 91.0 53.6 99.0	% f.t. E min	
2.2 88.6 56.7 100.8 4.8 86.6 60.6 102.5 7.7 85.0 61.7 102.8	100 175.5 95 172.0	
11.5 82.5 65.4 104.2 14.8 81.0 68.8 105.8	90 167.7 48.9 48 80 158.9 50.7 140	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 162.3 50.7 240 63 148.2 50.7 280	
28.0 84.0 87.8 113.5	50 145.7 50.7 380	
35.3 88.0 93.2 116.5 40.3 94.0 97 119.0 46.8 96.0 100 121.0	40 128.4 50.7 480 30 121.8 50.7 600 20 107.8 50.7 700	
50.1 97.8	15 92.6 50.7 700 10 66.8 50.6 840	ļ
E: 77.0°	5 51.0 - 760 0 51.8	
Dibenzy1 ($C_{1}_{\mu}H_{1}_{\mu}$) + Resorcinol ($C_{6}H_{6}O_{2}$)	1-Methylstyrene ($C_{10}H_{10}$) + Phenol ($C_{6}H_{6}0$)	=
Lecat, 1949	- •	
% b.t.	Shcherbak, Bik and Aerov, 1955	
0 284.5 43 269.5 Az	% p b.t. L V	
100 281.4	0 0 768.0 163.7	
C.S.T. = 125	15.5 13.0 754.5 162.2	
	31.2 24.5 746.3 163.8 40.5 30.5 748.2 164.2	i
Francis, 1944	49.0 38.0 748.18 165.3 57.5 42.5 747.7 166.5 60.5 43.5 752.15 166.1	
	68.0 50.0 752.20 167.3	
Dibenzyl ($C_{14}H_{14}$) + Hydroquinone ($C_6H_6O_2$)	77.0 72.5 746.74 170.0	
Francis, 1944	,92.5 83.5 7 53.30 176.3	
1100(15, 1944	100 100 747.0 181.5	
C.S.T. = 171	% d n _D % d n _D	
	45°	
Divenzyl $C_{14}H_{14}$) + Picric acid ($C_6H_3O_7N_3$)	0 0.8870 1.5210 76 1.0081 1.5345	
Efremov, 1915 and 1918	20 0.9165 1.5248 82 1.0203 1.5357 30 0.9340 1.5261 84 1.0249 1.5360	
% f.t. E % f.t. E	50 0.9642 1.5300 90 1.0356 1.5370	
100 122.4 - 30 65.8 46.7 95 116.1 44.6 25 58.7 46.7	60 0.9809 1.5317 92 1.0387 1.5374 64 0.9883 1.5324 94 1.0428 1.5378 67 0.9931 1.5331 96 1.0465 1.5383	
90 112.2 44.5 20 49.2 47.1 80 103.2 46.0 15 48.2 46.7	70 0.9991 1.5335 98 1.0500 1.5386 73 1.0045 1.5340 100 1.0550 1.5390	
1 60 89.3 46.7 5 50.9 47.1		
50 82.0 46.0 0 51.8 47.1 40 74.1 46.7		=

102				TIEDENE !					
Stilbene (C ₁₂	H ₁₂) + Reso	orcinol (C 6 H 6 O 3)	Naphthalene (C	_{1 о} н ₈) + Р	henol (C ₆ H	₆ 0)	
Lecat, 1949					Saunier, 1948 an	nd 1950	(fig.)		
	K	b.t.			%	dew.	p.	b.t.	
	0 56 00	306.5 277.5 281.4	Az		0 10 20 30 40 50	218. 213. 208. 203. 199. 195.	2 0 6 4 0	218.0 204.4 196.0 190.6 188.0 185.8 184.0	
Stilbene (C _{1 4}	,H ₁₂) + Trir		cinol s		70 80 90 100	187. 184. 182. 180.	6 0 0	182.6 182.0 181.6 180.2	
Efremov, 1916									
\ 	t. E		f.t.	<u>E</u>	Yamamoto, 1908	(fig.)			
100 175 97 171	5.5 - 1.3 -	50	141.3 139.8	114.6 114.6	%	f.t.	%	f.t.	
100 175 97 171 95 168 90 162 85 157 80 152 70 149 64.3 146 60 145 57.5 143 55.0 142	1.8 142.4	45 40 30 25 20 15 10	135.7 131.2 123.0 118.9 115.5 116.2 118.0 120.1 122.5	114.6 114.6 114.6 114.6 114.3	0 4.80 10.98 18.82 28.44 36.12 46.24 51.91 56.60 61.95 69.03	79, 95 76, 81 73, 33 69, 70 65, 43 61, 94 57, 16 53, 93 51, 19 47, 92 42, 60	71.76 72.13 73.61 74.4 77.29 79.52 	39. 26 38. 42 45. 51 36. 39 32. 60 29. 61 28. 60 E 29. 80 30. 97 33. 42 36. 39 40. 39	
Stilbene (C ₁₄ Efremov, 1915	and 1918		C ₆ H ₃ O ₇	N ₃)	Hirobe, 1908				
	f.t.	Ŀ	min.		<u> </u>	f.t.	%	f.t.	
100 95 90 85 80 70 65 62.5 62.5 55.5 50 45 40 30 20 15 10	122.4 117.8 112.6 108.5 104.3 91.3 91.3 92.4 92.8 95.1 96.8 99.2 104.7 109.2 114.4 116.5 118.8 120.4	87.6 90.0 90.2 90.2 90.2 90.2 - 92.8 92.8 92.8 92.8 92.8 92.8 92.8	366 72 120 170 310 430 540 500 470 400 360 300 210 170 15		0.0 12.04 22.28 32.17 42.13 49.38 56.49 64.32	79.87 72.87 67.98 63.58 59.11 54.64 51.01 45.59	70.12 76.17 78.72 - 80.36 84.44 91.48 100	40. 20 34.59 29.60 29.27 E 29.42 30.05 32.26 35.79 40.29	

Hatcher and Skirrow, 1917	Mameli and Mannessier-Mameli, 1933
% f.t. % f.t	t. mol% f.t.
100 39.4 61.1 51. 93.3 35.1 49.8 58. 86.5 30.2 31.7 66. 83.8 28.7 19.1 70. 80.0 35.4 10.6 74. 75.5 39.3 0 79.	.0 84 29.5 E .2 100 42.5
	Shishokin and Muskina, 1938
	mol% f.t. mol% f.t.
Mortimer, 1923	0 80 48.94 59.6
% f.t. % f.t 100 40.5 40 63.	10.41 75 61.89 52.5 19.43 71.2 69.63 46.8 30.27 67.2 79.59 36.7
90 33.4 30 67. 84 29.8 E 20 71. 70 46.7 10 75. 60 53.7 0 80.	Bernouilli and Veillon 1932
50 58.8	% d
Migliacci and Gargiulo, 1927 # f.t. E min 100 43.0 90 35.4 28.5 580 85 33.1 29.1 880 80 39.0 29.0 1200 70 39.2 28.9 990 60 47.8 228.8 800 50 54.9 29.1 630 40 61.5 28.7 440 30 66.3 28.3 310 20 71.5 28.5 200 10 75.9 28.6 80	80 - 1.0140 70 0.9897 1.0125 70 - 1.0097 60 0.9864 1.0075 50 0.9830 1.0030 40 0.9789 0.9983 10 30 0.9755 0.9935 20 0.9709 0.9900 10 0.9681 0.9846 0 0.9645 -
	97.5° 77.0°
Bernoulli and Veillon, 1932 # f.t. 100 41.0 90 34.1 80 30.2 70 41.0 50 53.4 20 67.8 0 79.4	100 768.7 1122.2 90 726.5 1053.7 85 - 1021.2 80 693.7 985.8 75 957.0 70 659.7 923.7 65 - 900.1 60 633.0 874.0 50 608.9 824.1 40 585.8 789.2 30 566.8 762.2 20 549.7 736.4 10 543.3 727.3 0 541.2

Naphthalene	(C ₁₀ H ₈) + o-Cresol	(C ₇ H ₈ O)

Rhodes and Hance, 1921

%	f	. t.
	stable	metast.
100	30.4	<u>-</u>
99.5	30,2	_
99	29.9	_
98	29.4	_
97	29.0	~
96	28.45	_
95	28.2	_
90	25.9	-
85	23.6	_
80	21.9	5.0
79	21.8	15,94
78	20.8	17.34
77	21.3	19.1
76.5	21.8	17.1
75	24.3	_
70	32.3	_
60	43.3	_
50	50.1	_
25	65.65	_
10	74.56	-
0	80.2	-
ŭ	00.2	-

Naphthalene (
$$C_{10}H_8$$
) + m-Cresol (C_7H_80)

Piatti, 1932

%	η (degrees Engler)
100	20° 2.7
90	2.0
80	1.8

Naphthalene ($C_{10}H_{8}$) + p-Cresol ($C_{7}H_{8}0$)

Saunier, 1948 and 1950 (fig.)

8	dew.p.	b.t.
. 0	218	218
10	214.7	212.4
20	211.8	208.8
30	209.2	206.0
40	207.0	204.5
50	205.0	203.5
60	203.8	203.0
70	203.0	202.3
80	202.3	202.0
90	202.0	201.9
100	201.9	

Naphthalene ($C_{10}H_8$) + (m + p) Cresol (C_7H_80 ,

Markowska-Majewska, 1955 (fig.)

%	b.	t.	•
	begin	end	
0 10 20 40 60 80	202.0 201.8 201.8 202.5 205.5 205.5	202 202 202 202 204 207 210,5	•
90 100	213.5 215.5	214 215.5	

Naphthalene ($C_{10}H_8$)(b.t.=218.0) + Phenols

Lecat, 1949

	2nd Comp.		Az	· · · · · · · · · · · · · · · · · · ·
Name	Formula	υ.t.	Z	b.t.
m-Cresol	C ₇ H ₈ O	202,2	97.5	202.18
p-Ethyl- phenol	C ₈ H _{1 o} 0	218.8	45	215.0
o-Xylenol	C8H100	228.8	16	217.6
Mesitylol	C ₉ H _{1 2} O	220.5	37	215.5

Naphthalene ($C_{10}H_{8}$) + Thymol ($C_{10}H_{14}0$)

Roloff, 1895

 %	f.t.	Ж	f.t.
0 6.6 16.6 23.7 32.4 38 44.9 49.1 53.8 55.3 667.3 69.8 70.9	79.5 77.0 72.4 68.6 64.0 60.9 56.8 53.8 50.6 49.4 35.7 36.5 32.7 31.8	72.8 74.0 74.1 75.3 76.7 77.8 78.6 83 88.5 89.0 92.4 94.4 96.4	32.3 33.2 34.1 34.0 34.4 34.9 36.2 38.7 42.5 42.6 44.7 45.6 47.3 49.2
7 1.3	30.0		

Sorum and Durand, 1952

%	f.t.	
0 100	80.1 32.1 E 49.2	

		Naphthalene	(C ₁₀ H ₈) + Py	rocatech	o1 (C ₆ H ₆ O ₂)
Bernoulli and Veillon, 1932		Lecat, 1949			
% f.t.		-	%	b.t.	
100 49.2 80 36.9 70 31.1 60 43.1 50 51.0 40 57.6 20 69.7			0 11.5 00	218.0 217.4 245.9	Az
20 69.7 0 79.4		Kremann and	Janetzky, 1912		
		= %	f.t.	%	f.t.
Bugnet, 1909 Eutectic		0 4.2 17.2 23.2 30 32.7 36.3 38.5 42.9	80.0 78.0 73.0 76.0 80.0 81.5 82.0 83.0 83.0	46.5 51.4 55.5 65.6 72.7 82.2 89.4	83.5 84.5 85.0 88.0 91.5 95.5 97.5
Bernoulli and Veillon, 1932	d	$\begin{array}{c} E_1 : 2 \\ E_2 : 6 \end{array}$		(1+1)
97.5° 100 0.9118 90 0.9164 80 0.9220 80 0.9225 70 0.9273 70 0.9295 60 0.9320 60 0.9352 50 0.9380 40 0.9431 30 0.9484 20 0.9537 10 0.9590 0 0.9645	77.0° 0.9288 0.9340 0.9395 0.9418 0.9459 0.9528 0.9555 0.9605 0.9660 0.9715	Rheinboldt, 100	1925 f.t. E 104.5 104.0 100.0 73.0 97.0 72.0 93.0 73.0 93.0 72.5 90.0 73.0 90.0 72.0 86.0 73.0 88.0 72.5	43.0 37.4 30.6 27.3 21.9 20.6 9.2	f.t. E 85.0 72.0 83.0 73.0 82.0 72.0 79.0 73.0 76.0 73.0 76.5 72.0 76.0 73.0 80.0 79.0
Ø, 07 F0	<u>n</u>	_ Naphthalene	$(C_{10}H_{8}) + H_{3}$	droquino	ne ($C_6H_6O_2$)
97.5° 100 791.8	77° 1198.9	Kremann and	Janetzky, 1912	2	
90 732.1 80 688.5	1096.6 1015.4 980.0	%	f.t.	E	min.
75 70 65 60 65 60 627.5 55 50 597.7 40 583.3 30 748.6 20 549.1 10 544.5 0 541.2	940.5 940.5 906.1 864.3 848.5 827.2 784.2 563.8 725.2 714.1	100 90 80 60 50 34,0 20 10 8,0 3,3 1,3	172 159 156 155 154.2 153.0 150 139 130 110 88 80	78.5 78.0 79.0 79.0 79.0	1 3 5 6.5 8 11

180					
Naphthalene (C ₁₀ H ₈) + Resorcinol	(C ₆ H ₆ O ₂)	Naphthalene	(C ₁₀ H ₈) +	Guàiacol (C7H8O2)
Vignon, 1891		Pushin and Va	ic, 1926		
mol% f.t.		mo1%	f.t.	E	min.
0 80 33,33 97 50 98 66 101 100 110		100 90 88 85 80 70 60 50	28 23 21.7 20.2 18.3 35 44	17 18 18 18 16 9.9 9	- 1.9 2.3 3.8 2 1.7 1.2
Kremann and Janetzky, 1912		30 20 10 0	52 58 63 7 5 80	14	-
% f.t. %	f.t.				
100 110.0 50.2 92.9 105.5 29.4 88.1 102.0 22.5 81.7 100.5 10.9 75.1 98.0 8.0 68.5 97.0 3.1 56.9 97.0 0	97.0 96.0 95.0 90.0 86.0 74.5	Bugnet, 1909			
% f.t. E %	f.t. E	Naphthalene	(C _{1 O} H ₈) +	Salicylaldel	hyde (C ₇ H ₆ O ₂)
80 101.0 76.0 40 86.5 101.5 76.0 25 80.8 100.0 - 18.8 73.9 97.5 - 13.8 63.4 97.0 - 10.7 54.8 97.0 - 6.3 60 97.2 76.0 6.7 50 97.0 -	97.0 76.0 95.0 - 94.0 76.0 91.0 - 89.0 - 82.0 - 76.5		% 0.99 4.96 14.09 26.65 35.96 43.57 50.69	D f.t. -0.60 2.75 7.35 13.36 18.06 22.30 26.64	
Naphthalene (C _{1 o} H ₈) + Guethol	(C ₈ H _{1.0} O ₂)	Naphthalene	(C ₁₀ H ₈)		ıldehyde C ₇ H ₆ O ₂)
Lecat, 1949		Auwers, 1899			
% b.t.			%	D f.t.	
0 218.0 72 215.5 100 216.5	Az	15 20	.74 .20 .61 .63 .12	-0.40 1.78 3.30 4.59 5.43 6.36	

Naphthalene (C ₁₀ H ₈) + p-Oxybenzaldehyde	Naphthaleme ($C_{10}H_8$) + 1-Naphthol ($C_{10}H_80$)
(С ₇ Н ₆ О ₂)	Vignon, 1891
Auwers, 1899	mo1% f.t.
% Df.t.	0 80
1.31 -0.58 4.84 1.53 9.18 2.20 13.06 2.82 16.76 3.27	33.33 66 50 60 66.67 71 100 92
	Crompton and Whiteley, 1895
	% f.t. % f.t.
Naphthalene ($C_{10}H_8$) + Methyl salicylate ($C_8H_80_3$)	0 79.8 40 62.2 10 74.8 50 69.6 20 71.2 60 74.5
Auwers, 1899	30 65.7 70 80.8 35 64.4 81.8 87.5
% D f.t.	10 74.8 50 69.6 20 71.2 60 74.5 30 65.7 70 80.8 35 64.4 81.8 87.5 38.9 61.7 90 92.5 100 95.5
1.63 -0.76 10.63 5.11 18.78 9.32 25.13 12.81 30.26 15.80 35.66 19.13 40.00 21.95	Kofler and Brandstätter, 1943
40.00 21.95 44.25 24.87 47.60 27.40	% f.t. % f.t.
Naphthalene (C ₁₀ H ₈) + Salo1 (C ₁₃ H ₁₀ O ₃)	0 81 60 76 10 78 70 82 20 74 80 88 30 69 90 93 40 63 100 96
Majumdar and Rakshit, 1955	Kofler, 1944
% f.t. E % f.t. E	% f.t.
100 42.0 42.0 65 42.26 - 95 37.09 - 58.4 49.11 25.40 90 33.1 - 50 55.38 -	0 81 42 61 E 96 100
82 - 25.49 30 67.94 - 80 - 25.49 20 71.3 -	Sorum and Durand, 1952
78 E 25,49 25,49 10 76,59 - 74 30,2 25,49 0 80,05 - 72 32,2 -	g f.t.
Bugnet, 1909	0 80.0 - 59.0 E
Eutectic	Rastogi and Varma, 1956 (fig.)
Angeletti, 1928	mol% f.t. mol% f.t.
E: 78.8% 24.5°	0 80 60 70 10 77 70 80 20 74 80 87 30 70 90 92 48.7 54.1 E 100 95

NAPHTHALENE + NAPHTHOL

}					
}	%	f.t.	m.t.	_	ontan.
}	n	70.5	70.5		t
	9.935 19.92 29.934 39.62 50.337 59.385 58.123 79.97	84.6 88.55 92.5 97.5 101.8 105.4 108.9 113.2 117.9	83.04 87.33 91.5 95.4 99.6 103.23 107.2 112.4 117.25	80 84 89 92 96 101 104 108	.1 .75 .5
Rudolfi	1909				
	mo1%	f.t.	min.	ε	đ
0	0	60		at ro	om temp. 1.158
20 30 40 50 60 70 80	27.6 37.3 47.0 57.1 67.4 78.0	88 91.5 95.5 100 103.5 108 114	7 9 11.5 13 10.5 10	2.83 2.91 2.95 2.96	1.189 1.201 - 1.243
			1926	3.15	1.251
	Я	f.t.		m.t.	
	0.0 14.6 16.7 31.9 37.3 50.1	80.0 86.0 88.0 93.0 95.0 99.5		83.5 84.5 88.5	
	78.2 88.0 100.0	104.0 113.5 117.0 122]]]	03.5	
=====					
	Rudolfi	0 9,935 19,92 29,934 39,62 50,337 59,385 68,123 79,97 90,773 100 Rudolfi, 1909 # mol# 0 0 10 9,0 20 18,2 30 27.6 40 37.3 50 47.0 60 57.1 70 67.4 80 78.0 90 88.9 100 100 Rheinboldt and K # 0.0 14.6 16.7 31.9 37.3 50.1 59.0 78.2 88.0	0 79.5 9.935 84.6 19.92 88.55 29.934 92.5 39.62 97.5 50.337 101.8 59.385 105.4 68.123 108.9 79.97 113.2 90.773 117.9 100 121 Rudolfi, 1909 # mol% f.t. 0 0 0 00 10 9.0 84 20 18.2 88 30 27.6 91.5 40 37.3 95.5 50 47.0 100 60 57.1 103.5 70 67.4 108 80 78.0 114 90 88.9 117.5 100 100 121.5 Rheinboldt and Kircheisen, # f.t. 0.0 80.0 14.6 86.0 16.7 88.0 31.9 93.0 37.3 95.0 50.1 99.5 59.0 104.0 78.2 113.5 88.0 117.0 100.0 122	0 79.5 79.5 9.935 84.6 83.04 19.92 88.55 87.33 29.934 92.5 91.5 39.62 97.5 95.4 50.337 101.8 99.6 59.385 105.4 103.23 68.123 108.9 107.2 79.97 113.2 112.4 90.773 117.9 117.25 100 121 121 Rudolfi, 1909 # mol f f.t. min. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crys 0 79.5 79.5 79.5 79.5 9.935 84.6 83.04 80 19.92 88.55 87.33 84 29.934 92.5 91.5 89 39.62 97.5 95.4 92 50.337 101.8 99.6 96 59.385 105.4 103.23 101 68.123 108.9 107.2 104 779.97 113.2 112.4 108 90.773 117.9 117.25 113 100 121 121 121 Rudolfi, 1909 Rudolfi, 101, 83.04 Rudolfi, 1909 Rudolfi, 101, 83.04 Rudolfi, 102, 90.04 Rudolfi,

NAPHTHALENE + CHLORPHENOL

Naphthalene ($C_{10}H_8$) + o-Chlorpheno1 (C_6H_50C1)	Naphthalene (C _{1 c} H ₈) +	r-Aminophenol (C ₆ H ₇ ON)
Lecat, 1949	Bernoulli and Lotter, 1	933
% b.t.	%	f.t. E
0 218.0 36.5 216.3 100 219.75	2.5 1 5 1.0 10 1.20 1.30	79.9 - 22.3 80.0 41 80.0 56.0 80.0 67.2 80.0 74.5 80.0
Naphthalene (C ₁₀ H ₈) + o-Cyanphenol (C ₇ H ₅ ON)	71.87 1 75.35 1 80 1	77.5 79.8 80.0 80.0 80.1 79.7 81.0 79.9
### Auwers, 1899 ### D f.t.		83.8 79.8 87.0 -
2.14 -1.01 7.15 2.30 12.89 3.30 15.43 3.68	Naphthalene (C ₁₀ H ₈) +	o-Nitrophenol (C ₆ H ₅ O ₃ N)
	%	b.t. Sat.t.
Naphthalene ($C_{10}H_8$) + o-Aminophenol (C_6H_70N) Bernoulli and Lotter, 1933	0 60 100	218.0 215.7 Az 42.5 217.2
g f.t. E		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Auwers, 1899	
10 132.7 79.9 20 145.0 79.9 40 156,5 79.7	% D f.t	
40 156,5 79,7 60 162.5 79.3 80 167,5 79.5 100 173.8	0.97 -0.47 4.18 2.09 12.17 6.24 19.20 10.03 25.62 13.70 30.43 16.86 36.15 20.09	45.11 26.09 49.44 29.47 54.59 33.31 58.59 36.94 61.51 39.50
Naphthalene ($C_{1,0}H_{8}$) + m-Aminophenol ($C_{6}H_{7}ON$)		
Bernoulli and Lotter, 1933	Kremann, 1904	
% f.t. E	% f.t.	% f.t.
0 79.9 - 2.5 79.2 79.1 5 83.0 79.2 10 92.0 79.0 20 105.0 78.8 40 107.0 78.8 60 108.2 78.8 71.87 109.2 78.8 75.35 110.2 78.8 80 111.1 78.8 90 113.8 78.8	0 80.5 8.4 77.0 18.7 71.0 29.7 64.0 35.9 60.5 42.1 56.0 47.1 52.5 51.2 49.0 58.1 44.0 63.0 39.5	67.2 34.8 67.7 34.0 70.3 32.0 70.6 31.0 72.8 31.0 77.8 34.0 88.8 39.0 94.7 42.0 100 45.0

NAPHTHALENE + NITROPHENOL

							
Sapozhnikov, l	904			Naphthalene ($C_{10}H_{8}$) + p-	Nitrophenol	(C ₆ H ₅ O ₃ N)
X	f.t.	Я	f.t.		_		•
0 12.2 15.3 20.0 24.1 29.9 39.3 55.4	79.5 72.8 71.0 68.1 65.45 67.2 55.3 42.9	58.5 62.8 63.9 67.2 69.1 72.0 86.0	36.9 35.6 34.5 29.7 29.9 30.3 37.0 44.5	Campbell and	Tampbell, 194 L 73.0 89.8 95.0	v	
Sorum and Dura	nd, 1952			Auwers, 1899			
	%	f.t.			K	D f.t.	
1	0 00	80.1 30.2 E 45.0		H	1.07	-0.51	
Petrucci and S	orum, 1956	(fig.)		1 2 2	9.22 2.99 6.50 90.05 3.22	1.99 3.39 4.28 5.01 5.76 6.27	
mo1%	f.t.	mol%	f.t.				
0 10 20 30 40 50 E: 71 m		where	43 32 37.5 43 44.9	% 0.0 6.7 19.4 29.1 39.8 42.8 46.6 48.1	f.t. 80.5 78.0 75.0 81.0 82.5 84.5 85.0	\$1.7 57.4 62.7 70.4 81.2 90.7 100.0	87.0 89.0 92.0 95.5 102.0 107,0 113.0
	n = 1.5897	n = 1.5795	n = 1,5700	70.1			
				Rheinboldt, 1	925		
0 20	80.5 65.5	-	-	*	mo1%	f.t.	E
30 50 60 70 90 100	58 51 39.5 34 23	79 66.5 61 55.5 44.5 40	80 74.5 64.5 59	0 11.8 25.3 33.3 49.8 62.3 73.0 75.7 89.1 100.0	0.0 11.0 23.8 31.5 47.7 60.4 71.4 74.2 88.3 100.0	80.5 77.0 73.5 77.0 85.0 92.0 98.0 99.2 107.5	80.0 73.0 "" "73.5 111.5

Sorum and Durand, 1952	Naphthalene ($C_{10}H_8$) + 2,4-Dinitrophenol ($C_6H_40_5N_2$)
% f.t.	
0 80.1 - 71.0 E	Kremann, 1904
- 71.0 E 100 113.0	% f.t. % f.t.
Campbell and Campbell, 1941	0.0 80.5 53.7 92.0 4.3 79.0 54.8 91.8 9.6 76.5 58.7 92.0
	16.4 73.5 59.8 92.0 1 22.2 74.0 61.9 92.0
# mol # d 117.3° 0.00 0 0.9554 10.09 9.37 0.9779 14.77 13.76 0.9879 21.52 20.15 1.007 44.28 42.26 1.070 48.38 46.33 1.084	27.6 79.5 64.0 91.5 36.7 87.0 64.4 90.6 40.1 88.5 69.4 89.5 41.2 89.0 74.9 90.0 45.5 90.5 83.3 96.0 46.4 90.5 91.9 104.0 51.2 91.5 100 110.0
48.38 46.33 1.084 59.62 57.62 1.121 66.49 64.63 1.148 79.89 78.54 1.195 89.71 88.92 1.236	Sapozhnikov, 1904
100,00 100,00 1,282	% f.t. % f.t.
% n % n	0 79.5 50.0 91.7 10.9 72.9 60.0 91.3 14.8 72.0 67.6 90.9 18.9 77.4 73.6 95.6
121° 0.0 440 49.8 1055 11.8 478 62.3 1350 25.3 600 73.0 1615 33.3 750 89.8 2045	14.8 72.0 67.6 90.9 18.9 77.4 73.6 95.6 24.5 83.9 88.3 104.9 35.8 90.4 100 111.4
33.3 750 89.8 2045 100.0 2560	Buehler and Heap, 1926
% mo1% d	(1+1) f.t. = 94.7° - 95.0°
121.0	
0.00 0 29.3 11.8 11 29.9 25.3 24 31.0 33.3 31.5 31.8 49.8 48 33.7 62.3 60 34.8 73.0 71 37.7 89.8 88 41.8 95.0 93 43.4 100.0 100 46.3	

	Naphthalene ($C_{10}H_{8}$) + Picric acid ($C_{6}H_{3}O_{7}N_{3}$)	
## f.t.		De Gee, 1916 (fig.)
Second Second	Kremann, 1904	mol% f.t. mol% f.t.
## ## ## ## ## ## ## ## ## ## ## ## ##	0.0 80.0 53.3 146.0	5 77.1 E 60 148 10 110 70 140 20 130 80 130 30 140 90 113.4 E 40 148 100 121.5
	48.4 144.0 95.0 112.5 51.0 145.0 100.0 122.5	
Sapozhnikov, 1904	(4.17)	
Mol% f.t. E min. Rudolfi, 1909	% mo1% f.t. 0 0 80 10 5.86 79 20 12.30 77.5 25 15.70 122 30 19.31 129 40 27.14 139 50 35.84 144.5 60 45.59 149 64.15 50 149.5 70 56.65 149 80 69.10 142.5 90 83.41 129 95 91.41 115 97.5 95.62 118 100 100 122.5	7.5 4.3 79.0 78.0 78.0 9.5 5.5 85.0 78.5 11.0 6.5 99.0 78.0 13.9 8.3 109.5 " 20.9 12.9 122.0 78.5 23.8 14.9 128.0 " 30.3 19.6 136.0 " 37.6 25.2 138.5 " 50.4 36.2 146.5 79.0 5.6 2 41.8 149.0 " 55.2 41.8 149.0 " 59.5 45.1 149.5 80.0 62.9 48.7 150.0 137.0 137.0 67.1 53.3 149.5 112.0 77.0 65.2 144.0 " 77.0 65.2 144.0 " 79.3 68.2 143.0 " 83.1 73.3 138.5 " 91.1 85.1 124.0 " 94.6 90.7 115.0 " 94.6 90.7 115.0 " 94.6 90.7 115.0 " 94.7 90.9 112.5 " 97.6 95.8 118.5 112.0 197.6 190.0 100.0 122.5 122.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5 2.9 79 78 40 10 5.8 83 78 47 0 at room temp. 20 12.3 111 78.5 43 5 1.158 2.64 30 19.3 127 78 35 10 - 2.66 40 27.1 140 79 28 20 - 2.66 50 35 1 146 20 27	% mol% f.t. E min.	Rudolfi, 1909
60 45.6 151 78 5 40 1.300 2.69 70 56.6 148 112 4.5 80 69.1 140 114 10 90 83.4 121.5 115 17 95 91.4 116 114 11 100 122	5 2.9 79 78 40 10 5.8 83 78 47 20 12.3 111 78.5 43 30 19.3 127 78 35 40 27.1 140 79 28 50 35.1 146 80 17 60 45.6 151 78 5 70 56.6 148 112 4.5 80 69.1 140 114 10 90 83.4 121.5 115 17 95 91.4 116 114 11 100 100 122	at room temp. 1.158 2.64 10 - 2.66 20 - 2.67 30 1.300 2.69 40 - 2.70 50 - 2.73 60 1.467 2.80 70 80 1.612 2.93 90 - 2.99

ı			_	-	_
Milone and	Rossigno	oli, 193	32		
		Q c	omb. (cal	l/gr)	
	0		9616		
	10 20		889 7 8156		
	30		7425		
	40 50		6707 5966		
	64.14		4964		
	70 80		4778 4110		
	90		3411 2709		
	100		2709		
Naphthalen	~ (C. aH.) + T1	rinitrocr	esol s.	
паригнален	E (C) pe	, ,	llii ta owa	(C ₇ H ₅ O ₇	.N.)
ı				× -75-7	
Sapozhniko	v, 1904				
	%	mo]	1%	f.t.	
	0	0		80	_
10	0	5	. 55	76.4	
20 30) n	11. 18. 25. 34.	. 69 . 42	93 105	
40	0	25.	.99	113	
50 60	0	34. 44.	. 49 . 13	120	
6	5.5 0	50		124.5	
80	0	72.	.63	120 124 124.5 124.5	
9) 9.	5	55, 72, 82, 91,	, 58 13	103 91	
9	7.5 0	95.	35	93	
	0	100		103	
(1+1)					
					
				_	
Naphthalen	e (C ₁₀ l	1 ₈) + 7			
			((C ₆ H ₃ O ₈ N ₃	₃)
Efremov, 19	916				
%	f.t.	E	%	f.t.	E
0	80.0	-	60	164.6	79.0
0 2.5 5	79.7 81.2	_	65.68 67.5	$\frac{165.5}{165.1}$	-
10	99.4	79.2	70 75	164.5	147.7 148.8
15 20	$\frac{110.9}{121.4}$	79.2 79.3 79.0	75 80	164.5 163.1 159.2 151.0	148.8 148.8
30 40	121.4 137.2	79.1	85	151.0	148.8
45	149.1 154.2	79.2 79.2	90 95	158.3	148.8 148.8 147.8 146.9
50 55	154.2 158.3 162.4	79.1 79.2 79.2 79.2 79.2	97 100	158.3 167.5 171.9 175.5	
00	104.7	17.4	(1+		-
			(.11	

```
l-Methylnaphthalene (C_{11}H_{10}) + Resorcinol
                                          (C_6H_6O_2)
Francis, 1944
C.S.T. = 108
2-Methylnaphthalene (C_{11}H_{10}) + m-Cresol (C_{7}H_{8}0)
Othmer, Savitt and al., 1949
                                           (fig.)
                    mol% at b.t.
                 L
                       760 mm
                10
20
40
60
80
90
2-Methylnaphthalene ( C_{11}H_{10} ) + p-Cresol ( C_{7}H_{8}0 )
Othmer, Savitt and al., 1949
                                         (fig.)
                    mol% at b.t.
                 L
                10
20
40
60
80
90
                                   40
58
75
83
91
95
                       760 mm
Lecat, 1949
2-Methylnaphthalene (C_{11}H_{10}) (b.t. = 241.15) +
                    Phenols
               2nd Comp.
                                       Αz
               Formula
Name
                            b.t.
                                            b.t.
                                            233.25
               C6H6O2
                            241.15 37
Pyrocate-
chol
```

281,4

243.8

309

10.5 140.05

240.6

240.2

6

25

 $C_6H_6O_8$

C6H6O3

 $C_7H_8O_2$

Resorcinol

Pyrogallol

Monomethyl

resorcinol

2-Methylinaphthalene ($C_{11}H_{10}$) + 2-Naphthol ($C_{10}H_{80}$)	1-Propylnaphthalene (C ₁₃ H ₁₄) + Picric acid				
Grimm, Günther and Tittus, 1931 (fig.)	($C_6H_3O_7N_3$) Morrell, Pickering and al., 1948				
mol% f.t. m.t. mol% f.t. m.t.	mol% f.t. m.t.				
0 121 121 70 70 44 10 118.5 101 80 52 37 20 114 89 83.5 - 32 30 109 77.5 86 44 - 40 40 102 69 90 42 32 50 94 58.5 95 - 32 60 83.5 51 100 37 37	0 -9 -13 10.6 +35 +30 19.0 68 - 32.4 84 - 35.5 86 - 42.0 86 85 50.0 86 84 60.0 92 91 67.0 97 - 100 +121 -				
1-Ethylnaphthalene ($C_{12}H_{12}$) + m-Cresol ($C_{7}H_{8}0$) Othmer, Savitt and al., 1949 (fig.) mol% at b.t.	2-Isopropylnaphthalene (C ₁₃ H ₁₄) + m-Cresol				
L V	(${ m C_7H_8O}$) Othmer, Savitt and al., 1949 (fig.)				
760 mm	mol% at b.t.				
10 62 20 75 40 85	mol% at b.t. L V				
60 90 80 94 90 96	760 mm 10 42 20 63 40 81 60 89 80 95 90 97				
l-Ethylnaphthalene ($C_{12}H_{12}$) + p-Cresol (C_7H_80)					
Othmer, Savitt and al., 1949 (fig.) mol% at b.t. L V	2-Isopropylnaphthalene ($C_{13}H_{14}$) + p-Cresol ($C_{7}H_{8}O$)				
760 mm	Othmer, Savitt and al., 1949 (fig.)				
10 60 20 73 40 83 60 90 80 95 90 98	mol% at b.t. L V 760 mm 10 55 20 73 40 86 60 91 80 94 90 97				

Isopropylnaphthalene ($C_{13}H_{14}$) + Resorcinol ($C_6H_6O_2$)	Sec.Amylnaphthalene ($C_{15}H_{18}$) + Hydroquinone ($C_6H_6O_2$)
Francis, 1944	Francis, 1944
C.S.T. = 153	C.S.T. = 229
Isopropylnaphthalene (C ₁₃ H ₁₄) + Hydroquinone (C ₆ H ₆ O ₂) Francis, 1944 C.S.T. = 198 2-Amylnaphthalene (C ₁₅ H ₁₈) + m-Cresol (C ₇ H ₈ O) Othmer, Savitt and al., 1949 (fig.) mol% at b.t. L V 760 mm 10 67 20 8D 40 90 60 94 80 97 90 93 2-Amylnaphthalene (C ₁₅ H ₁₈) + p-Cresol (C ₇ H ₈ O) Othmer, Savitt and al., 1949 (fig.) mol% at b.t. L V 760 mm 10 72 20 81 40 89 60 95 80 98 90 99	Naphthalenic Hydrocarbons + Phenols Francis, 1944 Systems C.S.T. Diisopropyl naphthalene (C ₁₆ H ₂₀) + 233 Hydroquinone (C ₆ H ₆ O ₂) Di (tert.Butyl)naphthalene (C ₁₈ H _{2k}) + above 100 Pyrocatechol (C ₆ H ₆ O ₂) Di (tert.butyl)naphthalene (C ₁₈ H _{2k}) + 257 Hydroquinone (C ₆ H ₆ O ₂) Diamylnaphthalene (C ₂₀ H ₂₈) + 136 Pyrocatechol (C ₆ H ₆ O ₂) Diamylnaphthalene (C ₂₀ H ₂₈) + Ben- below 80 zyl-Hydroxybenzoate (C _{1k} H ₁₂ O ₃) Diamylnaphthalene (C ₂₀ H ₂₈) + 195 m-Aminophenol (C ₆ H ₇ ON) Diamylnaphthalene (C ₂₀ H ₂₈) + 220 p-Aminophenol (C ₆ H ₇ ON) Diamylnaphthalene (C ₂₀ H ₂₈) + 117 2,4-Dinitrophenol (C ₆ H ₄ O ₅ N ₂) Diisopropylnaphthalene (C ₁₆ H ₂₀) + m-Cresol

Diisopropylnaphthalene (C ₁₆ H ₂₀) + p-Cresol	Anthracene (C ₁₄ H ₁₀) + Phenols.
(C ₇ H ₈ O) Othmer, Savitt and al., 1949 (fig.)	Vignon, 1891
<u></u>	mol% f.t.
mol% at b.t.	+ Resorcinol +1-Naphthol +2-Naphtho
L V	$(C_6 II_6 O_2)$ $(C_{10} II_8 O)$ $(C_{10} II_8 O)$
760 mm	100 110 92 122
10 60	66.67 180 149 153 50 186 169 170
20 89 40 94	33.3 190 180 184
60 97	0 213 213 213
80 99 90 99,5	
	Anthracene ($C_{1}_{4}H_{10}$) + 2-Naphthol ($C_{1}_{0}H_{8}0$)
	Rudolfi, 1909
1-Benzylnaphthalene ($C_{17}H_{14}$) + Trinitroresorcinol s.($C_6H_3O_8N_3$)	% f.t. E
Efremov, 1916	100 121 - 95 117 -
	90 114 -
% f.t. E % f.t. E	85 114 107 80 125 109
100 175.5 - 45 133.8 32.2	7 0 141.5 109
1 95 170.1 - 40 132.0 45.0	50 167,5 109
(85 100.2 117.8 30 125.3 47.3)	40 176.5 108 30 186 110
80 155.0 129.3 20 111.2 47.3	20 194 106
70 148.1 133.9 15 102.0 47.5 65 141.8 133.9 10 88.8 47.4 60 137.6 133.9 5 67.7 48.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
60 137.6 133.9 5 67.7 48.0 55 134.1 - 2.5 52.7 -	
[52.92 134.3 - 1.5 48.3 -]	
50 134.2 - 0 51.3 -	
	Anthracene ($C_{14}H_{10}$) + o-Aminophenol (C_6H_70N)
IPopeulannethologo (C. H.) + Diario coid	Bernoulli and Lotter, 1933
Henzylnaphthalene ($\mathcal{L}_{17}H_{14}$) + Picric acid ($C_6H_3O_7N_3$)	% f.t. E
Efremov, 1915 and 1918	100 173.8 -
# f.t. E # f.t. E	97.5 173.6 169.3
Д 1.1. Б Д 1.1. Е	95 173.5 169.3 90 171.9 169.0
100 122.4 - 45 95.4 34.6 95 117.9 - 40 91.8 37.8	77.73 170.0 168.0
95 117.9 - 40 91.8 37.8 90 111.8 67.3 35 86.4 " 85 106.3 81.1 30 79.1 "	60 178.0 167.8 40 189.0 167.9
85 106.3 81.1 30 79.1 " 80 100.7 87.3 25 69.5 "	20 199.0 167.8
70 92.0 83.15 20 60.4 "	$egin{array}{cccccccccccccccccccccccccccccccccccc$
60 91.8 - 10 40.6 - 55 95.3 - 5 44.1 28.2 51.23 97.0 - 2.5 47.7	
65 87.8 - 15 50.2 37.7 60 91.8 - 10 40.6 - 55 95.3 - 5 44.1 28.2 51.23 97.0 - 2.5 47.7 - 50 96.6 - 0 51.3 -	
(1+1)	

							
Anthracene (C ₁₄ E	I ₁₀) + m-A	minopheno	1 (C ₆ H ₇ ON)	Anthracene (C _{1 14} H ₁₀) + m	-Nitropheno	1 (C ₆ H ₅ O ₈ N)
Bernoulli and Lot	tter, 1933			Kremann and M	ller, 1921		
mo1%	f.t.		E	8	f.t.	%	f.t.
100 97.5 95 90 80 78.73 71.0 60 40 29 20	117.8 118.8 137.3 159.0 175.5 184.0 189.0 194.3 198.0 2005.7		118.6 118.7 118.9 118.3 118.5 118.5 118.5	0 11.1 18.3 29.5 37.6 43.8 44.9 45.9 48.7	212.5 208.0 204.0 196.0 189.0 186.05 186.4 186.0	54.6 54.8 60.6 68.1 76.6 85.8 91.8 96.6	179.5 179.5 174.0 166.0 139.5 124.0 93.0 95.5
0	211.2			Anthracene (C		Ni tropheno l	(C ₆ H ₅ O ₈ N)
inchwasana (C U		·· ' 'h an a 1			f.t.	%	f.t.
Anthracene (C ₁₄ H Bernoulli and Lot		minopheno!	(C ₆ H ₇ ON)	0 12.0 18.5	212.5 204.0 200.5	61.2 64.8 67.2 71.4 78.3 85. 92.6	175.0 171.0 169.0 163.5
mo1%	f.t.		E	27.4 38.1 43.4	196.0 190.5 187.5 185.0	71.4 78.3	155.0
100 95 90.56 84.64 80 78.73	187.0 186.2 184.3 183.3 184.8 185.2 190.3 191.7]]]]	81.3 82 81.3 81.7 81.7	48.1 51.5 56.1	185.0 183.0 179.1	92.6 100	142.0 113.0 113.5
71.0 64.76 60 40 20	192.3	1	81.7 81.6 81.6 81.0	Anthracene (C			neno1 (C ₆ H ₄ N ₂ O ₅)
ŏ	203.4 211.2		-	Kremann and Mu	ller, 1921		
				- 8	f.t.	*	f.t.
Anthracene (C _{1 L} H. Kremann and Müller		trophenol	(C ₆ H ₅ O ₈ N)	0 4.3 9.5 15.2 23.4 33.5 41.8	213.0 210.5 207.0 203.0 196.0 185.0	58.4 60.6 66.4 75.0 81.1 84.5 88.8	153,5 150,0 140,0 123,0 108,0 101,0
%	f.t.	%.	f.t.	47.2 53.0	162.0 162.0	95.2 100	105.0 109.0 110.0
100 97.3 93.2 84.6 76.0 71.7 63.2 57.4	44.5 47.0 72.0 113.0 132.0 142.0 154.0 161.0	51.7 50.7 44.7 42.4 33.8 25.2 5.9	168.0 169.0 175.0 177.0 186.0 201.0 209.0 212.0	Kofler, 1944	*	f.t.	110.0
	101.0		212.0	10	87 - 88 00	103 H 113	E

Anthracene (C	₁₄ H ₁₀) + Pi	cric acid (C ₆ H ₃ O ₇ N ₈)	Anthracene (C ₁
Kremann. 1904		(fig.)		Efremov, 1916
%	f.t.	Я	f.t.	% f.
0 36.6 44.1 48.2 51.7 53.2 55.8 56.2 56.3 57.1 59.8 60.7 62.8	213 177.0 169.0 164.0 159.5 157.0 153.0 153.0 152.5 152.5 151.0 148.0 147.0 144.0	63.8 64.1 66.7 69.9 71.4 72.9 75.2 80.7 81.1 86.3 91.2 94.0 97.5 99.0	140.5 142.0 sic 139.0 136.0 133.0 132.0 125.0 126.0 114.0 112.0 114.5 119.0 120.5	. 100 17 97 17 95 16 90 16 85 13 75 16 70 17 65 17 64 17 60 17 (1+1)
				Bernoulli and
heinboldt, 19	2 5			%
Z	mo1%	f.t.	m.t.	0 5 10.1
0.0 10.1 29.6 34.9 38.8 49.6 51.6 52.7 56.8	0.0 8.0 24.6 29.4 33.0 43.3 45.3 46.4 50.5	216.5 207.5 190.0 184.0 178.0 162.0 159.0 157.5 150.5	216.0 144.5 142.0 141.5 142.0 142.0 141.0 141.0	18.0 25.1 30.2 49.9 70 90 94.9 97.1 100
58.1 60.3 63.5 72.3 80.7 89.8	51.9 54.2 57.5 67.0 76.5 87.3	146.5 143.5 140.5 134.0 125.0 112.5	134.0 110.5 110.5 109.5 110.0 110.0	Phenanthrene (
97.1 100.0	96.3 100.0	118.5 122.5	110.5 122.0	- Z
1 2 3 4	% 0 0 0 0 0	Q comb. (cal/g) 9467 8773 8091 7407 6735		0 3.2 5.1 6.9 10 19.9 30.0 40.9 50.0 60 70.3 80 90.2
5 6	0 0 0 0 0	6100 5471 4908 4220 3470 2709		Francis, 1944 C.S.T. = 111

 $C_{14}H_{10}$) + Trinitroresorcinol s. $(C_6H_3O_8N_3)$ % E f.t. E f.t. 57.9 55.0 50 45 40 35.0 30 175.5 171.3 168.8 160.7 152.2 158.4 165.3 170.4 174.4 174.6 175.0 176.3 176.0 173.6 171.0 179.5 185.7 191.0 201.7 208.3 210.6 213.0 149.2 151.4 170.1 170.1 170.1 165.9 164.2 161.9 151.4 151.2 151.4 10 5.0 0) $(C_{14}H_{10})$ + Pyrocatechol $(C_{6}H_{6}O_{2})$ Sarasin, 1930 Ε. f.t. 97.0 92 89.1 87.4 85.7 86.4 93 85.0 85.1 84.7 84.6 83.2 83.5 1**0**1 102.3 102.8 103.6 ($C_{14}H_{10}$) + Resorcinol ($C_{6}H_{6}\theta_{2}$) Sarasin, 1930 f.t. E 97.0 94.9 94.7 92.2 102.7 102.8 102.2 103.0 103.0 106.5 110.0 $\substack{91.8\\91.6}$

		FRENANTRKE	TE T HID	KOGOIRO	JNE			177
Phenanthrene (C	_{1 Կ} Н _{1 0}) + Hyd:	roquinone (C ₆ H ₆ O ₂) Phenar	ithrene (C ₁₄ H ₁₀) +	p-Aminoph	ienol (C ₆ H ₇	ON)
Bernoulli and Sa	rasin, 1930		Bernou	ılli and l	Lotter, 1933	3		
%	f.t.	E	_	%	f.t.		Е	
0 3 5 9.9 20 35.2 50.1 74.6 90 95	97.0 121.5 134.3 143.5 157.0 163.0 164.0 165.0 170.0 171.0	96.4 96.25 96.0 96.1 96.4 95.9 94.6 93.0		0 2.5 5 10 20 40 56.75 78.73 88.46	97.2 131.7 150.0 163.0 172.2 178.2 180.5 183.0 186.2 187.0		96.6 96.7 96.7 96.3 97.0 97.0 97.0	
Phenanthrene (C	1 ₁₄ H ₁₀) + o-A	minophenol (C ₆ H ₇ ON)	ll l	threne (C ₁₄ H ₁₀)+		rophenol (C ₆ H ₄ N ₂ O ₅)	
Bernoulli and Lo	tter, 1933		Kreman	n and Hof	meier, 1910)		
%	f.t.	E		%	f.t.	%	f.t.	
0 2.5 5 10 20 40 60 80 100	97. 2 108. 0 123. 0 139. 1 152. 0 160. 5 165. 3 170. 0 173. 8	96.7 96.5 96.5 96.8 96.3 96.3		100 97.1 93.0 87.6 84.9 80.2 76.1 72.5 68.4 64.8 60.3 56.6 55.7	111 109 107 104 101 98 96 93 90 87 82 77	51.6 51.5 48.3 45.4 42.3 38.4 34.3 29.3 24.1 16.7 10.6 4.4	72 74 72 67 64 68 73 78 83 90 96 100	
Phenanthrene (C	₁₄ H ₁₀) + m-An	minophenol (C ₆ H ₇ ON	Kofler,	1940				
Bernoulli and Lo	tter, 1933				%	f.t.		
%	f.t.	E	-		0	100		
0 5 10 13.28 20 29.0 40 56.75	97.2 94.3 98.9 100.8 107.3 108.8 111.2 111.6	94.3 94.3 94.3 94.1 94.4 94.3 94.2		10	<u> </u>	73 E 84		
78.7 80 84.64 90 95 100	113.1 113.3 114.5 116.0 117.3 117.8	94.2 94.2 94.0 94.0 92.2						

							ic acid				
Phenanthr		цН ₁₀)+	Picric a	icid (C ₆ H	I ₃ O ₇ N ₃)	Retene (C ₁₈ H ₁₈)	+ Picrio	acid (C ₆ H ₃ O ₇ N ₃)	
Efremov,	1910	ميان شيانان لين المراجيات				Efremov,	1915 and	1918			ĺ
%	f.t.	E	K	f.t.	E	%	f.t.	E	Я	f.t.	E
100 97 95 90 85 80 75 70 65 60 56.25	122.4 117.6 114.1 107.4 99.8 98.6 109.6 118.5 125.9 130.7 132.8	81.6 88.8 93.6 93.8 93.7 92.8	54 50 45 40 35 30 25 20 10 5 0	131.9 128.6 123.6 116.0 107.5 95.0 83.4 84.9 94.2 97.1 99.2	80.6 81.0 81.1 81.2 81.6 81.4 79.7 78.8 74.8	100 97 95 90 80 75 70 60 55	122.4 119.5 117.5 114.0 105.3 100.9 105.6 115.6 119.6	91.2 96.8 110.7 100.7 98.8	45 40 30 25 20 15 10 5 0	117.3 108.5 88.4 73.6 60.1 73.5 82.5 90.0 95	54.6 57.9 60.2 60.3 60.2 55.4
Phenanthre	no / C	и \ .	Trinitro	rosol s		Retene (C ₁₈ H ₁₈)	+ Trinit	rocresol	sym. (C7H	507N3)
rnenanture	ne (C ₁ ₄			7H ₅ O ₇ N ₃)			and Tikho			•	
Efremov an	d Tikhom	irova, l	927			%	f.t.	E	%	f.t.	E
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	f.t. 101.2 97.1 90.0 86.8 92.7 98.0 103.4 108.2 112.4 112.9 112.7	79.2 84.3 85.6 85.5 84.5 84.5 83.2 78.6	50.0 45.0 40.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0	111.0 107.9 103.3 92.7 87.5 85.8 89.3 96.0 99.0	81.3 83.0 83.7 84.2 84.3 84.2 83.6 82.5	100 95 90 85 80 75 70 65 60 55.0	101.2 92.2 92.6 97.0 101.2 104.5 108.4 111.8 114.6 117.0 5 118.3 118.3	87.4 88.8 86.7 84.8 83.0 76.5	45 40 35 30 25 20 15 10 5 2,5 0	117.6 115.2 111.0 105.2 98.5 90.7 81.4 74.8 86.4 91.5 95.2	65.0 66.0 68.2 70.4 72.5 72.9 73.2 70.6 53.3
Phenanthren	ie (С _{1 ц} Е	I ₁₀)+1		esorcinol (C ₆ H ₃ O ₈ N		Retene ((C ₁₈ H ₁₈)	+ Trini; (C ₆ H ₈ (troresoro) ₈ N ₃)	inol sym.	
F.C 10	17		,	C61130811	٠,	 %	f.t.	E		f.t.	
Efremov, 19						100			50	135.6	
100 97 95 90 85 80 75 70 67.5 64 60 57	f.t. 175.5 172.6 170.7 165.3 151.7 146.5 136.5 126.6 129.7 132.3 132.6 132.7	122.8 124.6 125.6 125.6 125.1 125.0	55 50 45 40 30 25 20 15 10 5 2.5 0 (1+)	f.t. 131.8 129.0 125.1 120.4 107.6 100.3 89.2 88.5 91.5 95.2 97.2 99.2	83.8 85.7 85.7 85.7 85.8 85.8 85.6 75.3	97 95 90 85 80 75 70 65 62.5 51.1:	175.5 173.6 172.5 169.1 161.6 153.2 143.7 131.3 126.3 129.8 132.2 135.1 135.7	123.7 125.6 125.6 125.6 125.6 125.7 126.4	46 40 35 30 25 20 15 10 5 2.5	134.2 130.3 122.0 111.4 98.1 84.5 85.7 84.8 90.0 92.8 95.2	71.3 75.5 76.2 76.2 76.0 71.0

			 					
Pyrene (C ₁₆ H ₁₀)) + 2,4-Dinitrop	henol ($C_6H_{\downarrow}O_5N_2$)	Indene (C _s		nol (C ₆	H ₆ 0)	
mo1%	E	f.t.		%		b.t.		
0.0 7.7 18.0 33.5 44.8 45.6	120.0 120.0 120.0 120.0	150.0 143.0 132.5 134.5 145.0		0 47 100		182.6 177.1 182.2	8 Az	
50.6 53.0 61.0 80.5 92.4	120.0 143.0 - 101.5 101.0 101.0	146.0 146.5 146.0 143.0 113.0	Indene (C.	9H ₈) + o-C	resol (C ₇ H ₈ O))	
E 1 : 26.4% 2 : 84.4%				Я		b.t.		
(1+1)				0 9 100		182. 182. 191.	5 Az	
Pyrene (C ₁₆ H ₁₀)	+ Trinitrocresol	(C ₇ H ₅ O ₇ N ₃)	Fluorene (C ₁₃ H ₁₀) +	Resorci	nol (C6H6O3)
Shinomiya, 1940			Lecat, 1949)				
mo1%	f.t.	E		Я		b.t.		
0 10.9 23.5 29.0	150.0 140.0 148.0 152.0	135.0 134.5 135.0		0 48 100		295 274.0 281.	0 Az 4	
44.9 52.9 57.8 69.9 75.4 84.7	161.0 163.0 161.0 153.5 147.0 132.5	151.0 158.0 144.0 83.0 100.0 102.0	Francis, 19	9 44				
2 : 15.23m	01% - 101.0° 01% - 135.0°		C.S.T. = 10)5 				
(1+1):	103.00		Acenaphthene Lecat, 1949	e (C _{1 2} H _{1 0}) (b.t	. =	277.9)	+Phenols
				2nd Comp.		A;		
			Name	Formula	b.t.	%	b.t.	Sat.t.
			Pyro- catechol	C6H6O2	245.9	84	245.2	5 -

Resorcinol $C_6H_6O_2$ 281.4 40

C6H6O3

309

Pyro-

gallol

266.2

272.8

20

105 (40%)

ACENAPHTHENE + NITROPHENOL

202			ACENAP	HIRENI	E T NIIKO	PHENU	L			
Acenaphthene	(C ₁₂ H ₁₀)	+ o-Nitro	ophenol (C ₆	H ₅ O ₃ N)	Acenaphthe	ene (C ₁	₂ H ₁₀) +	m-Nitro	phenol (C ₆ H ₅ O ₃ N)
Kremann and H	laas, 1919				Kremann ar	d Haas,	1919			
			····		K	f.t.	E	%	f.t.	Е
	t. E	%			100 93.7	94.8 91.8	-	39.4 36.2	76.5 77.5	-
92.2 46 87.5 38 85.1 36 83.2 36 75.7 -	8 - 5.8 -	53.5 49.3 47.0 45.6 40.6 31.6 23.8 9.2 6.5	62.5 - 65.6 - 71.5 - 76 -	1.5	84.4 75.3 68.4 61.2 55.4 53.1 49.2 44.3	86.5 82.8 79.8 76 74.2 74 74.5 75	73.5	30.8 27.8 22.1 18.2 13.6 10.6 4.7	79 80 81.5 82.5 84.5 85.7 87.9 90.5	73.5 73.5 - - - -
Efremov, Ferd	ermeer, Pri	inkman, 19	36					+ p-Nitro	phenol (C ₆ H ₅ O ₃ N)
mo1%	f.t.	tr.t.	<u>E</u>		Kremann ai					
0 5.51 10.88 21.69 26.95 32.20 41.79 47.17 50.00 52.56 57.50 62.43 72.35 76.97 81.58 90.89	96.2 93.3 91.0 84.3 81.3 78.6 71.6 68.3 65.5 63.5 60.7 49.0 37.3 36.3 40.6 42.7	44.5 51.3 57.0 64.3 64.6	27. (31. 6 33. 3 34. (34. 4 35. 3 30. 7	5 3 9 4	# 100 92.0 88.6 79.8 69.6 62.8 57.7 51.2 52.0	111.8 107.5 105.5 100.5 95.6 92.8 90.0 87.5 87.2	80 - - - 80	% 47.2 42.4 35.2 27.8 14.6 9.4 6.2 3.4	85.3 83.5 81.5 81.8 85.5 87.2 88.3 90.5	80 80 80 - 80.0
100.0	45.5	(1	+1)				g g		f.t.	
Sorum and Dur	and, 1952					100)		90.0 76.0 E 13.5	
	Z	f.t.	,							
	0.00	90.6 32.9 44.8) E							

(1+1)

			W				
Acenaphthene (C ₁ Kremann and Haas,		initrophenol ($C_6H_{t_k}O_5N_2$)	Acenaphthene Efremov, 1916		+ Trinitro	resorcinol (C ₆ H ₃ O ₈	.N ₃)
		مین سے بھردین میں سے میں آت سیربھار جی سے شی گے سے سے تھو تیا۔ اس اب	#			 E	
	f.t.	<u>E</u>					
100 86.1 76.4 72.0 69.5 61.3 57.5 53.3 47.5 42.1 38.6 35.8 29.4 26.5 22.0 18.1 14.6 10.5 6	110 97.8 90.8 84.5 85.8 86.8 85.8 86.8 87.3 80.7 78.8 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 76.8 81.8 82.5 85.8 89.2 90.5 (1+1)	73.5 73.5	100 97 95 90 85 80 75 70 64.5 61.4 60 55 50 45 40 35 20 25 20 15 10	17 17 17 15 14 14 15 5 10 15 15 14 14 13 13	5.5 2.47 00.73 8.66 6.08 9.78 9.78 9.78 9.78 9.78 9.78 9.78 9.7		
هی پیروشتی میں بنید الموامل میں البر سی سے البر اس البرائی اللہ البر البرائی البرائی البرائی البرائی نیو ایس البرائی البرائی میں البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی ا نیو ایس البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی البرائی	سے بھی الموانیو بھی انہوں کے انہوں کے انہوں کے انہوں کی انہوں کی انہوں کے انہوں کی دائمی کی دائمی کی دائمی کی مقبل کے انہوں کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائ بازندی میں میں میں میں میں انہوں کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی دائمی کی د	بها النب فيهر شمو الدولية والله الله النبو المواسع الله اللهامية الله المواسعة الله المواسعة الله وما في مورسات النبو المواسعة الله المواسعة اللهامية اللهامة الله المواسعة اللهامية المواسعة وما منام الله ومن أمن النبو المواسعة اللهامية النبو اللهامية المواسعة اللهامية المواسعة اللهامة المواسعة اللها		(1	L+1)		
A			سر حالت الميزامين الميزامية البيرانية التي سيد المد الميزامية الميزامية الميزامية الميزامية الميزامية الميزامي من حمد المدالية الميزامية		د کنی کنی کنید کنی بنی جنیدات میردان است. د کنی کنی کنی کار کار کار کار کار کار کار کار کار کار	ندم جميدسي دهم جميز جمي الحكامية مين الحكام جميد الحكام جميد المكام حكام الحكام الحكام حكام حكام الحكام ====	
Acenaphthene (C ₁₂	H ₁₀) + Trinit	rocresol s. $(C_7H_5O_7N_8)$					
Efremov and Tikhom	irova, 1927	(67150718)	Acenaphthene	($C_{12}H_{10}$)	+ Picric a	cid (C ₆ H ₃ O ₇	N ₃)
# # # # # # # # # # # # # # # # # # #	f.t.	دید می سیزیندهای دید و می استان این این این این این این این این این ا	Efremov, 1915	and 1918	ر المواليون 9 مانيور منيوانيو مير ساد اميراد	سود الموسور مشد المو لمعرفة المواجع محود شعر المورس	
100 95	101.2 94.3	82.7	8	f.t.	E	min.	
95 90 85 80 75 70 65 61, 22 60 55 50 45 40 35 20 15 10 5 2.5	89.6 98.7 106.2 111.2 114.7 117.9 117.9 117.5 116.6 114.2 110.7 106.4 92.5 84.8 87.8 90.8 93.7 95.0 96.2	87.5 87.3 85.2 80.7 - - - 80.0 82.3 84.6 84.8 84.8 84.8	100 97 95 90 85 80 75 70 65 62.5 52.8 57.5 55 40 45 40 35 30 25 20 10 5	122.4 119.8 117.4 117.1 140.8 150.2 155.0 157.7 159.8 160.6 160.8 155.8 155.8 155.8 151.9 145.6 139.1 122.3 110.4 99.8 87.8 93.0 94.9	108.5 112.3 112.3 112.3 112.4 110.5 108.8 103.3 		
	ن میں ہے۔ لیے میں ایپ شور نیوں میں اندوائی میں اس کے س	سے سے سیمیں اسرامی امران ہے۔	5.3	95.2	-	-	

Fluorene ($C_{13}H_{10}$) + Trinitroresorcinol s. ($C_6H_3O_8N_3$)	Fluoranthene ($C_{16}H_{10}$) + 2,4-Dinitrophenol ($C_{6}H_{4}O_{5}N_{2}$)
Efremov, 1916	Shinomiya, 1940
% f.t. tr.t. E	mol% f.t. E
100 175.5	0.0 109.5 - 5.3 105.0 85.5 15.5 99.0 75.5 27.5 83.0 75.0 27.6 83.0 75.0 30.3 78.2 75.0 39.5 88.0 74.5 49.1 92.0 90.5 50.5 91.0 36.0 60.0 87.5 84.5 62.2 87.0 84.0 69.5 94.0 84.0 79.0 101.8 84.5 87.4 106.0 85.0 E 1: 31.2 % - 75.0° 2: 61.2 % - 85.0° (1 + 1): 92.0° Fluoranthene (C ₁₆ H ₁₀) + Trinitrocresol s. (C ₇ H ₅ O ₇ N ₃) Shinomiya, 1940
Kremann, 1911	0 109,5
# f.t. # f.t. 0 112.5 55.6 84.0 5.55 110.0 60.1 83.5 13.65 105.5 63.1 82 21.82 99.0 67.9 84 29.64 92.5 76.9 96 36.81 86.0 82.3 103 43.93 81.0 89.9 111 47.26 82.0 100 122 51.36 84.0	3.8 107.8 100.8 11.7 105.0 101.0 13.8 112.0 101.0 21.4 126.5 101.0 36.4 139.0 - 43.2 143.0 105.0 48.3 144.0 140.0 56.9 143.0 126.0 61.1 - 101.8 67.7 139.0 101.0 89.0 110.0 101.0 E 1 : 91.8 mol % ~ 110.0° 2 : 11.0 mol % ~ 110.0° (1 + 1) : 144.0°

206

PROPANE + LAURIC ACID

					1			
XXIV. HYD	ROCARBONS + ACI	DS			Isobutane (C4H10) +	Oleic acid	
Propane (C ₃ H ₈) + Acids				Hixson and I	Bockelmann	, 1942	
P .	d Hixson, 1941 d Bockelmann, 1	942			Soluble unt	il at leas	t 135°	
Acid			14					
			vo1%	sat.t.	Pentane (C ₅ F	I ₁₂) + For	mic acid (CH	1 ₂ 0 ₂)
Lauric	C ₁₂ H ₂₄ O ₂		10	111.0				
Myristic "	C14H28O2		9 10	104.5 104	Lecat, 1949			
Palmitic	C16H3202		12.2	96.3			b.t.	Sat.t.
Stearic	C ₁₈ H ₃₆ O ₂		10	97	0 10		36.15 34.2 Az	28
11	n		6.3	93.3	100		100.75	20
Oleic	$C_{18}H_{34}O_{2}$		10	90				
. "	"		10	90.5	Isopentane	(C ₅ H ₁₂)	+ Formic acid	(CH ₂ O ₂)
Linoleic	C ₁₈ H ₃₂ O ₂		9	79.8	Lecat, 1949			
Propane (C_3H_8) + Oleic	acid (C ₁₈	Н _{а 4} 0 ₂)		 		b, t.	
Hixson an	d Hixson, 1941				0 4 100		27.95 27.2 Az 100.75	
%	f.t.	%	f.t	•	100		100.75	
2.7	98.4	27.4	91.	6	Konovaloff,	1907		
$\frac{3.1}{5.0}$	97.2 94.2	$\frac{32.1}{37.6}$	92. 92.	2		p		p
5.0 5.3 9.3	95.4 91.8	$\substack{\textbf{40.0}\\\textbf{40.3}}$	93. 94.		- 		18.1°	
9.4 9.7	92.3 91.3	43.5 45.0	94. 96.	8			_	044.5
18.8	91.1	46.9	98.		0 27,46	542.8 473.3	65.87 73.45	344.5 300.0
					33.78 48.91	456.9 412.6	100	0
Propane (C ₃ H ₈) + Abiet	ic acid (C	20H ₃ 0O2)				
	d Hixson, 1941				Isopentane	(C ₅ H ₁ ,) ·	+ Dichloracet	ic acid
 %								(C ₂ H ₂ O ₂ Cl ₂)
	f,t,		f.t		Konovaloff,	1900 - 19	·············	
$\frac{1.3}{1.5}$	95.7 95.7	5.7 6.5	70. 66.		no1%	p	mo1%	p
2.1	92.8 92.8	6.6 7.6	66. 60.	0	C)°	18.1	
2.6	91.8	7.8	60.	4	0	264.9	0	532.3
2.6 2.9 2.9	90.3 91.5	7.8 9.5	58. 29.	7	25.05 48.82	247.5 246.0	32.80 49.04	505.3 494.3
3.0 3.5 3.8	91.0 80.2	$9.9 \\ 10.0$	29. 29.	7 7	65.34 78.01	243.6 233.6	65.60 78.70	484.3 454.1
30	80.2 81.0	19.5 19.7	96. 96.	8			79.50	445.3
4.0 4.1	80.2 82.2	19.9 20.4	96. 91.	8	C.S.T. is lo	wer than ()°	
4.3 5.5	81.0 70.3	20.7 20.9 21.0	81. 81.	ŏ				مر میں اور اور اور اور اور اور اور اور اور اور
		41,U	91.					
					l			

Hexane (C_6H_{14}) + Formic acid (CH_2O_2)	Hexane (C_6H_{1+}) + Propionic acid ($C_3H_6O_2$)
Lecat, 1949	Dunken, 1943 (fig.)
% b.t.	mol% Dv (cc/mole)
0 68.8 28 60.5 Az 100 100.75	15 0.25 30 0.44 43 0.49 74.5 0.375 90 0.24
Hexane ($C_6H_{1 \downarrow}$) + Acetic acid ($C_2H_{\downarrow}O_2$)	Hexane (C_6H_{14}) + 1-Methyl caproic acid
Lecat, 1949	(C ₇ H _{1 w} O ₂)
% b.t. Dt mix	Rule, Smith and Harrower, 1933
0 68.8 5 67.5 Az 101.2	mol% (α) mol 5 4 6 1
100 118.1 Kurtyka, 1955 (fig.)	20° 4.5 +33.7 7.9 33.6 17.3 33.5 34.4 32.85 53.6 32.69 71.9 32.44 100 32.17
% b.t. % b.t.	
0 68.60 60 76 6.0 Az 68.25 80 86 20 68.6 90 99 40 70 100 118.05	Hexane (C_6H_{14}) + Caprylic acid ($C_8H_{16}O_2$) Hoerr and Harwood, 1951
Dinahan 1007	f.t. %
Bingham, 1907 C.S.T. ≈ -15°	-20.0 12.8 -10.0 29.8 0.0 57.6 +10.0 96.3
Piercy and Lamb, 1956	
mol% sound velocity (m/sec.)	Hexane (C_6H_{14}) + Pelargonic acid ($C_9H_{18}O_2$)
25°	Hoerr and Harwood, 1951
10.5 36.7 1059	f.t. %
	-20.0 20.1 -10.0 42.6 0.0 71.4 +10.0 86.5

HEXANE + CAPRINIC ACID

Hexane (C_6H_{14}) + Caprinic acid ($C_{10}H_{20}O_2$)	Hexane ($C_6 II_{14}$) + Palmitic acid ($C_{16} H_{32} O_2$)
Hoerr and Harwood, 1951	Hoerr and Harwood, 1951
r.t. %	f.t. %
-20.0 2.1 -10.0 6.3 0.0 19.2 +10.0 44.8 20.0 74.4 30.0 98.1	10.0 0.5 20.0 2.9 30.0 12.7 40.0 38.4 50.0 70.5 60.0 95.5
Hexanc (C_6H_{14}) + Lauric acid ($C_{12}H_{24}O_2$) Hoerr and Harwood, 1951	Hexame (C_6H_{14}) + Margaric acid ($C_{17}H_{34}O_2$) Hoerr and Harwood, 1951
f.t. %	f.t. %
-20.0 0.2 -10.0 1.5 0.0 4.7 10.0 12.8 20.0 32.3 30.0 65.9 40.0 93.5	10.0 0.2 20.0 2.8 30.0 14.8 40.0 42.2 50.0 75.0 60.0 98.7
Hexane (C_6H_{14}) + Myristic acid ($C_{14}H_{28}O_2$) Hoerr and Harwood, 1951	Hexane (C_6H_{14}) + Stearic acid ($C_{18}H_{36}O_2$) Hoerr and Harwood, 1951 f.t. %
7.t. \$\mathcal{K}\$ -10.0 0.1 0.0 1.2 10.0 3.9 20.0 10.6 30.0 29.5 40.0 66.4 50.0 94.3	20.0 0.5 30.0 4.1 40.0 16.0 50.0 44.2 60.0 75.2
	Hexane ($C_6 H_{1+}$) + Oleic acid ($C_{18} H_{3+} O_2$)
Hexane (C_6H_{14}) + Pentadecanoic acid ($C_{15}H_{30}O_2$)	Hoerr and Harwodd, 1952
Hoerr and Harwood, 1951	f.t. %
0.0 0.5 10.0 2.8 20.0 12.3 30.0 37.6 40.0 74.3	-40.0 0.1 -30.0 1.2 -20.0 8.3 -10.0 30.7 0.0 61.5 10.0 87.8
50.0 96.7	

	Zieborak, 1955 and Zieborak and Zieborakowa, 1955		
Hexane (C_6H_{14}) + Linoleic acid ($C_{18}H_{32}O_2$)			
Hoerr and Harwood, 1952	Az 33.0 % 91.8° 91.9		
f.t. %	_ }		
-50 2.9 -40 12.5 -30 34.6 -20 63.0	Heptane (C_7H_{16}) + o-Hydroxybenzoic acid ($C_7H_6O_3$)		
-10 90.8	Sidgwick and Ewbank, 1921		
	% f.t. % f.t.		
Diisopropyl (C ₆ H _{1 4}) + Formic acid (CH ₂ O ₂)			
Lecat, 1949	100 159.0 20.15 134.3 81.4 149.5 10.25 124.7 60.2 145.5 5.37 112.4		
% b.t.	60.2 145.5 5.37 112.4 41.6 142.0 2.09 92.2		
0 58.0 22 52.5 Az 100 100.75			
Heptane (C_2H_{16}) + Formic acid (CH_2O_2)	Heptane (C_7H_{16}) + 1,2,3-Hydroxytoluic acid ($C_8H_8O_3$)		
	Sidgwick and Ewbank, 1921		
Lecat, 1949	% f.t. % f.t.		
% b.t.	100 167.0 24.77 132.9		
0 98.4 43.5 78.2 Az 100 100.75	88.95 154.3 9.95 119.0 70.04 146.6 4.86 101.0 52.03 141.9 1.89 81.0 47.63 140.9		
Heptane (C_7H_{16}) + Acetic acid ($C_2H_4O_2$)			
Lecat, 1949	Heptane (C ₇ H ₁₆) + 1,2,4-Hydroxytoluic acid (C ₈ H ₈ O ₃)		
% b.t. D t mix	Sidgwick and Ewbank, 1921		
0 98.4 32 92.3 Az	% f.t. % f.t.		
32 92.3 Az 502.8	100 177.8 20.15 147.1 79.29 166.7 10.00 135.6 61.03 16.2 4.51 166.7 36.28 156.6 2.12 100.6		
Kurtyka, 1985 (fig.)			
% b.t. % b.t.			
0 98.25 60 93 20 92 80 99 33.0 Az 91.72 90 107.5 40 91 100 118.05			

Hep tane	(C ₇ H ₁₆)	+	1,2,5-Hydroxytoluic acid
				(C ₈ H ₈ O ₃)

Sidgwick and Ewbank, 1921

%	f.t.	%	f.t.	
100	152.5	30.38	131.1	
89.9	145.9	10.42	116.2	
69.9	138.7	4.59	97.1	
50.9	135.5	1.84	79.0	

Heptane (C_7H_{16}) + 0-Chlorbenzoic acid ($C_7H_5O_2C1$)

Sidgwick and Ewbank, 1921

%	f.t.	%	f.t.	
100 88.68 68.76 51.90 36.89	140.3 134.7 129.8 128.0 126.0	12.55 10.42 4.61 2.57	112.8 108.8 94.8 79.0	

Heptane ($C_7H_{1.6}$) + m-Chlorbenzoic acid ($C_7H_50_2C1$)

Sidgwick and Ewbank, 1921

 <u> </u>	I.t.	%	f.t.
100 89.82 70.05 50.06	154.5 147.7 140.1 134.2	30.60 9.98 4.48 1.92	128.1 105.8 89.6 72.2

Heptane ($C_7H_{1.6}$) + p-Chlorbenzoic acid ($C_7H_5O_2C1$)

Sidgwick and Ewbank, 1921

- %	f.t.	%	f.t.
100 76.86 51.30 31.23	241.5 227.6 218.3 207.2	10.09 4.96 1.69	180.9 165.3 136.1

Octane (C_8H_{18}) + Formic acid (CH_2O_2)

Lecat, 1949

%	b.t.
0	125.75
55	90.5 Az
100	200.75

Octane ($C_8H_{1\,8}$)+ Acetic acid ($C_2H_4O_2$)

Lecat, 1949

%	b.t.	Dt mix	
0 50 100	125. 7 5 109.0 118.1	-2.7	

Kurtyka, 1955 (fig.)

	_		
%		b.t.	
20 40 53.0 80	Az	125.30 109 106 105.70 107 118.05	

Octane (C_8H_{18})(b.t. = 125.75) + Acids

Lecat, 1949

	2nd Comp.		Az	
Name	Formula	b.t.	Я	b.t.
Propionic acid	C3H6O2	141.3	30	121.5
Butyric acid	C4H805	164.0	15	124.5
Isobutyric acid	C4H802	154,6	18	124.0

Diisobutyl (C ₈ H ₁₈)(b.t. =	109.4) + Acids
Lecat, 1949		

	2nd Comp			Az	
Acid	Formula	b.t.	%	b.t.	Dt mix
Formic	CH ₂ O ₂	100.75.	48	83.2	_
Acetic	$C_2H_4O_2$	118.1	45	100.5	-2.8 (50%)
Propionic	$C_3H_60_2$	141.3	8	108.0	-2.0 (50%)

Nonane ($C_9 H_{2\,0}$) + Acetic acid ($C_2 H_{14} O_2$)

Lecat, 1949

Zieborak, 1955

Az : 69.0 % (82.5 mol %) 113.0°

Kurtyka, 1955	(fig.)		
%	b.t.	%	b.t.
0 10 20 40	150.20 124 113 113	60 69.0 Az 80 100	112 112.80 113 118.05

Methy1-2-octane ($C_9 H_{20}$) + Acetic acid ($C_2 H_u \theta_2$) Lecat, 1949

× ×	b.t.	
0	135.2 108.8 Az	
100	118.1	•

Decame ($C_{1\,0}H_{2\,2}$) + Acetic acid ($C_2H_{l_4}\theta_2$)

Zieborak, 1955

Az : 95 % 117.85°

Kurtyka, 1955	(fig.)		
Я	b.t.	%	b.t.
0 10 20 40	173.30 138 125 118.5	60 79.5 Az 100	117 116.75 118.05

Decane ($C_{10}H_{22}$)(b.t. = 173.3) + Acids Lecat, 1949

	2nd Comp.			Az		
Acid	Formula	b.t.	%	b.t.		
Propionic	C3 H602	141.3	95	140.5		
Isobutyric	C4H8O2	154.6	72	151.2		
Monochlor- acetic	$C_2H_3O_2C1$	189.35	42	165.2		
Isovaleric	$C_5H_{10}O_2$	176.5	33	167.0		

Decane ($C_{1\,0}H_{2\,2}$) + Valeric acid ($C_{5}H_{1\,0}O_{2}$) Bingham, 1907 C.S.T. = -20°

Diisoamyl ($C_{10}H_{22}$)(b.t. = 160.2) + Acids Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b,t.	X	b.t.	Dt mix.
Formic acid	CH202	200.75	93	98.5	-
Acetic acid	$C_2H_4O_2$	118.1	94	117.0	-0.8 (95%)
Propionic acid	C3H6O2	141.3	67	138.0	-1.0 (80%)
Butyric acid	C 4H 802	164.0	33	1 52. 5	-2.0 (30%)
Isobutyric acid	C 4H802	154.6	45	148.0	-2.2 (50%)
Isovaleric acid	C 5 H 1 0 0 2	176,5	20	158.0	-1.2
Monochlor acetic acid	C2H302C1	189.35	28	155.7	-

Undecane $(C_{11}H_{24}) + Acctic acid (C_2H_4O_2)$

Kurtyka, 1955 (fig.)

%	b.t.	%	b.t.	
0	193.85	60	118.5	
10	146	80	118	
20	128	95.0 Az	117.72	
40	119.5	100	118.05	

f.t.

201.0 201.0 201.0 201.0 201.0 172.0

ſ.t.

195.0 195.0 194.5 195.3 194.0 195.0 194.5 193.5 194.0 172.0

212				UNDE	CANE + H	EPTANOIC	ACID				
Tridecan	e (C ₁₃ H	I ₂₈) + H	eptanoic a	acid (C	7H14O2)	Tritetraco	onta ne (С ₄₃ Н ₈₈)	+ Desoxy	ycholic ac	
Lecat, l	.949					Rheinbolt,	1939				
	%		ե.ւ.			%	m.i.	f.t.	%	m.t.	f.t
	0 55 100		234.0 219.2 222.0	Az		0.0 10.0 20.0 25.0 50.9	83.0 82.5 82.5 82.5 82.5 83.0	84.5 201.0 201.0 201.0 201.0 201.0	80.0 81.6 85.0 90.0 95.0	178.0 185.0 189.0 169.0 168.5	201 201 201 201 201 201 172
		₁₇ H ₃₆)+	Palmitic	acid (C ₁₆ H ₃₂ O ₂)	60.0	83.0 83.5	201.0	100.0	169.5	172
	f.		% X	ř.t.		Tuit of Mood		C 11 \			
100		.5	40	51		Tritetraco	ntane (C _{4,3} H ₈₈)		olic acid (C ₂₄ H ₃₈ O ₁	,)
90 80	62 60		30 20	47 44		Rheinbolda	, 1939				
70 60 50	5 7 55 54	.5	10 0	36 22		8	m.t.	f.t.	8	m.t.	f,t
	J-1	·				0.0	83.5	84.5	70.0	84.0	195
Pena, ria	con.ane	(C . II.) + Apocl	anlie as	id	5.8 9.7 10.0	80.5 81.0 80.5	184.5 191.5 188.5	75.2 80.0 80.1	113.5 156.0 155.0	195 194 195
· cncaviia	e on earne	(0351172	, Apoc		1380 ₄)	14.6 21.2 35.2	81.0 81.0	193.0 194.2	85.0 85.0	$184.0 \\ 177.0$	194
Rheinbold	t, 1939					35.2 49.6 49.6	81.0 81.0 81.5	194.5 194.5 194.0	89.9 90.0 95.0	169.0 169.0 168.0	193 194 193
%	Е	f.ı.	Я	Е	f.t.	59.6	81.0	194.7	100.0	169.5	194 172
0.0	73.0 71.5	73.5 191.0	60.0 60.0	72.0 71.0	193.5 194.2						
9.7 9.7 19.9	70.5 72.0	193.0 193.0	71.5 71.5	74.0 75.0	174.2 174.0 194.2						
20.0 30.0	71.0 72.0	$\frac{194.0}{123.5}$	$80.1 \\ 80.1$	130.0 128.0	124.0	Paraffin +	Acetic	acid (C	2H4O2)		
30.0 39.9 40.0	71.0 71.0 72.0	194.0 194.0 193.5	85.0 85.0 89.8	179.0 175.5 169.0	194.3 194.0 194.5 194.0	Bingham, 1	907				
49.9 50.0	71.0 72.0	194.2 193.5	95.0 100.0	168.0 169.5	192.0 172.0	C.S.T. = 2	000				
P e ntatriad	contane	(C ₃₅ H ₇₂) + Desox	ycholic (C _{2 4} H							
Rheinboldt	t, 1 9 39										
%	m.t.	f.i.	Я	m.t.	f.t.						
0 10.0 70.0 80.0 85.0	73.0 72.0 72.5 117.0 173.0	73.5 201.5 201.5 201.5 201.5	90.0 93.0 95.0 100.0	178.0 168.5 168.5 169.5	201.5 201.5 201.5 172.0						
						H					

Trimethylethylene (C_5H_{10}) + Formic acid (CH_2O_2)	Cyclohexane (C_6H_{12}) + Formic acid (CH_2O_2)
(Ch ₂ O ₂)	Lecat, 1949
Lecat, 1949	% b.t.
% b.t.	0 80.75
0 37.1 10 35.2 Az 100 100.75	33 69.5 Az 100 100.75
Isopropylethylene (C ₅ H ₁₀) + Formic acid (CH ₂ O ₂)	Cyclohexane (C_6H_{12}) + Acetic acid ($C_2H_4O_2$)
Lecat, 1949	Lecat, 1949
% b.i.	% o.t. Di mix
0 20.6 2 20.3 Az 100 100.75	0 80.75 9 79.7 Az 101.0 100 118.1
Cyclopentane (C ₅ H ₁₀) + Formic acid (CH ₂ O ₂) Lecat, 1949	Jones, 1923 *** *** *** *** ** ** ** **
Diallyl (C_6H_{10}) + Formic acid (CH_2O_2)	% sar.t. % sat.i.
Lecat, 1949 % b.t. 0 60.1 54 5 Az	11,27 2.6 33.09 9.6 13.03 3.9 37.76 9.9 16.76 6.2 42.89 9.9 19.17 7.1 44.10 9.4 23.54 8.2 45.21 8.9 27.74 8.5 46.42 8.4
100 100.75	Baud, 1913
	% i.t. % f.t.
Methylcyclopentane (C_6H_{12}) + Formic acid (CH_2O_2) Lecat, 1949	100 16.7 54.97 10.9 93.07 14.2 50.32 10.9 79.34 11.9 40.13 10.7 69.16 11.15 25.21 9.8 62.63 10.9 11.84 5.6
% b.t.	69.16 11.15 25.21 9.8 62.63 10.9 11.84 5.6 61.21 11.05
0 72.0 29 63.3 Az 100 100.75	

Baud, 1913 and 1915	Cyclohexane (C_6H_{12}) + Lauric acid ($C_{12}H_{24}O_2$)
mol% Q mix	Hoerr and Ralston, 1944
39.0 -3045 58.8 3810 70.1 3380 78.3 3642 82.4 3436 87.1 2860 90.4 2350	3.2 6.8 E 10.0 16.5 20.0 40.5 30.0 68.3 40.0 92.9 43.92 100
Cyclohexane (C_6H_{12}) + Caprylic acid ($C_8H_{16}O_2$)	
Hoerr and Ralston, 1944	
f.t. %	Cyclohexane (C_6H_{12}) + Tridecanoic acid ($C_{13}H_{26}O_2$)
-14.0 22.0 E +10.0 87.0 16.30 100.0	Hoerr and Ralston, 1944
	f.t. %
Cyclohexane (C_6H_{12}) + Nonanoic acid ($C_9H_{18}O_2$) . Koerr and Ralston, 1944	1.9 8.6 E 10.0 23.4 20.0 50.0 30.0 76.8 40.0 98.8 41.76 100
f.t. %	Cyclohexane (C_6H_{12}) + Myristic acid ($C_{14}H_{28}O_2$)
-17.5 23.9 E +10.0 95.1 12.25 100.0	Hoerr and Ralston, 1944
	f,t. %
Cyclohexane (C ₆ H _{1,2}) + Caprinic acid (C ₁₀ H ₂₀ O ₂) Hoerr and Ralston, 1944	5.6 2.4 E 10.0 5.0 20.0 17.7 30.0 41.9 40.0 68.5 50.0 92.9 54.15 100
20.0 77.4 30.0 98.7 31.24 100.0	Cyclohexane (C_6H_{12}) + Pentadecanoic acid ($C_{15}H_{30}O_2$) Hoerr and Ralston, 1944
	f.t. %
Cyclohexane (C_6H_{12}) + Undecanoic acid ($C_{11}H_{22}O_2$) Hoerr and Ralston, 1944 f.t. # -5.9	5.4 2.9 E 10.0 6.4 20.0 21.3 30.0 46.8 40.0 73.5 50.0 96.1 52.54 100
28.13 100.0	

Cyclohexane (C_6H_{12}) + Palmitic acid ($C_{16}H_{32}O_2$)	Cyclohexane (C_6H_{12}) + Linoleic acid ($C_{18}H_{32}O_2$)
Hoerr and Ralston, 1944	Hoerr and Harwood, 1952
f.t. %	f.t. %
6.4 0.4 E 10.0 0.9 20.0 6.1 30.0 21.5 40.0 47.9 50.0 74.0 60.0 96.2 62.82 100	-28.3 51.8 E -20.0 73.3 -10.0 92.3 Methylcyclohexane (C ₇ H ₁₄) + Formic acid (CH ₂ O ₂)
Cyclohexane (C_6H_{12}) + Margaric acid ($C_{12}H_{34}O_2$)	Lecat, 1949
Hoerr and Ralston, 1944	% b.t.
f.t. \$	0 101.15 46 81.0 Az 100 100.75
6.3 0.7 E 10.0 1.5 20.0 7.8 30.0 25.4 40.0 52.0 50.0 78.5 60.0 98.7 60.94 100	Methylcyclohexane (C ₇ H _{1 \(\) \) + Acetic acid Lecat, 1949 (C₂E₄O₂) \$\\ \\$ b.t. \text{Dt mix}}
Cyclohexane (C_6H_{12}) + Stearic acid ($C_{18}H_{36}O_2$) Noerr and Ralston, 1944	0 101.15 32 95.2 Az 502.6 100 118.1
f.t. %	Methylcyclohexane (C ₇ H ₁₄) + Chloracetic acid
6.6 0.1 E 10.0 0.2 20.0 2.4 30.0 9.5 40.0 30.0 50.0 57.1 60.0 81.8 69.32 100	(C ₂ H ₃ O ₂ C1) Francis, 1944 C.S.T. = 98°
	Ethylcyclohexane (C_8H_{16}) + Acetic acid ($C_2H_{10}O_2$)
Cyclohexane (C_6H_{12}) + Oleic acid ($C_{18}H_{34}O_2$)	Lecat, 1949
Hoerr and Harwood, 1952	% b.t.
f.t. % -12.1 38.9 E	0 131.8 - 107.9 Az 100 128.1
-12.1 38.9 E -10.0 44.4 0.0 70.0 10.0 89.7	100 120.1

1,3-Dimethyl Lecat, 1949	cyclohexane Acids	e (C ₈ H ₁₆) (b.t. = 1	20.7) +	l,4-Cyclohex Lecat, 1949	adiene (C _é	;H ₈) + A	Acetic	acid (C ₂ H ₄ 0	2)
	2nd Comp.		Az				%	ŀ	o.t.		
Name	Formula	b.t.	Я	b.t.	Dt mix		0 6 100	8	35.6 34.0 <i>1</i> 18.1	λz	
Formic acid	CH ₂ O ₂	100.75	51	89.0	-				===		
Acetic acid	$C_2H_4O_2$	118.1	45	109.0	-2,5 (50%)	Decaline (C Francis, 194		-Nitrob		acid H ₅ 0 ₄ N)	
Propionic acid	$C_3H_6O_2$	141.3	18	118.2	-0.5 (90%)	C.S.T. = 2	18				
Isobutyric	$C_4H_8O_2$	154.6	10	120.2	-						
acid						Isopropylte	traline (C	₁₃ H ₁₈)	+ o-Ni	trobenzo (C ₇ H:	
Cyclohexene	(C ₆ H ₁₀)	+ Formic	acid	(CH ₂ O ₂		Francis, 19	14				
Lecat, 1949						C.S.T. = 132	?				
	8	l.).t.			Nononaphther	ne (C ₉ H ₁₈) + Acet	ic aci	d (C ₂ H ₁	,0 ₂)
	0 34 100	2	32.75 71.5 00.75	Az		Lecat, 1949					
	100	10	70.75				%		b.t.		
Cucloboxono	(CH.)	+ Acotic	aaid	/ C !! O			0 100		136.7 109.6 118.1	Az	
Cyclohexene	(C6H10)	ACELIC	atiu	(Canto	,						
Lecat, 1949	4					Limonene ((Lecat, 1949	C ₁₀ II ₁₆) (b.t. = 1	77.7)	+ Acid	ls
	0		o.t.	D1	mix		2nd Comp.		Az		
	5 100	1	32,75 31,6 18,1	Az	-0.5	Name	Formula	b.t.	%	b.t.	Dt mix
1,3-Cyclohe	cadiene (C	(II.a.) + /	Aceti	e acid		Butyric acid	C ⁴ H ⁸ O ³	164.0	56	160.9	-0.5 (50%)
	radiche (o	6g / · ·		(C ₂ H ₄ O ₂)	Isobutyric acid	$C_4H_8O_8$	154.6	7 5	153.0	
Lecat, 1949						Valeric	C5H1002	186.35	27	173.4	
	<u>%</u>		0.t.			acid Isovaleric	C5H1002	176.5	41	169.0	
	0 2 100	8	30.4 30.0 18.1	Az		acid Caproic	C ₆ H ₁₂ O ₂	205.15	5	177.0	(50%) -0.1
, 						acid					(5%)
			===			Isocaproic acid	C ₆ H _{1 2} O ₂	199.5	10	1/6.5	-0.2 (5%)
						Monochlor acetic acid	C2H3O2C1	189.35	34	167.8	-

C ₁₀ n ₁₆)	(b.t. ≈	173.4	†) +		11) (b.t.	= 184	.6)+	
2nd Comp					Lecat, 1949					
	b +				<u> </u>	2nd comp.		Az		
roimula	<i>b.</i> t.	<i>7</i> 6 	D. t.	Dt mix	Name	Formula	b.t.	Z	b.t.	
C3H6O2	141.3	97	141.2	-0.2 (95%)	Butyric	C4H802	164.0	72	162.5	
C4H802	164.0	48	160.65	-	acid Valeric	C5H1002	186.35	35	178.0	
$C_4H_8O_2$	154.6	70	152.0		acid Isovaleric					
C5H1008	186.35	20	171.0	-0.2	acid					
C ₅ H ₁₀ O ₂	176.5	32	168.0	(20%)	acetic acid	C2H3O2CI	189.35	-	172.2	
C2H3O2C1	189.35	~	166.0	_						
							o.t. = 15	9.6)	+	
	 				Lecat, 1949					
(C ₁₀ H ₁₆)	+ Isoval	eric	acid (C	5H ₁₀ O ₂)	 	2nd Comp.	<u> </u>	Az		
					Name	Formula	b.t.	%	b.t.	Ot mix or Sat.t.
%	ь.	t			Agotic soid	C 13 O	110 1	07	117 0	- Jac. C.
0 47 100	17:	2.5	Az		Propionic acid	C ₃ H ₆ O ₂	141.3	65	138.0	-
					Butyric acid	C411805	164,0	28	152.3	-15 (28%)
					Isobutyric acid	$C_4H_8O_2$	154.6	44	147.8	_ !
C ₁₀ II ₁₆)	+ Valerio	acio	1 (C ₅ H ₁₀	,0 ₂)	Valeric	C5H1002	186.35	8	158.5	-
					Isovaleric	C ₅ II _{1 0} O ₂	176.5	17	156.5	-
0	183	——— }			Monochlor acetic acid	C2H3O2C1	189.35	15	154.8	48 (15%)
100	186	35	ız							
				!						
	2nd Comp. Formula C ₃ H ₆ O ₂ C ₄ H ₈ O ₂ C ₄ H ₈ O ₂ C ₅ H ₁ O ₂ C ₅ H ₁ O ₂ C ₂ H ₃ O ₂ C1 (C ₁ OH ₁ 6) % O ₄ 7 100	2nd Comp. Formula b.t. C ₃ H ₆ O ₂ 141.3 C ₄ H ₈ O ₂ 164.0 C ₄ H ₈ O ₂ 154.6 C ₅ H ₁ O ₂ 186.35 C ₅ H ₁ O ₂ 176.5 C ₂ H ₃ O ₂ C1 189.35 (C ₁ OH ₁₆) + Isoval % b. O 18. 47 17. 100 176 C ₁ OH ₁₆) + Valeric	2nd Comp. A: Formula b.t. % C ₃ H ₆ O ₂ 141.3 97 C ₄ H ₈ O ₂ 164.0 48 C ₄ H ₈ O ₂ 154.6 70 C ₅ H ₁ O ₂ 186.35 20 C ₅ H ₁ O ₂ 176.5 32 C ₂ H ₃ O ₂ C1 189.35 (C ₁ OH ₁₆) + Isovaleric % b.t. O 183 47 172.5 100 C ₁ OH ₁₆) + Valeric acid % b.t. O 183	2nd Comp. Az Formula b.t. % b.t. $C_3H_6O_2$ 141.3 97 141.2 $C_4H_8O_2$ 164.0 48 160.65 $C_4H_8O_2$ 154.6 70 152.0 $C_5H_1_0O_2$ 186.35 20 171.0 $C_5H_1_0O_2$ 176.5 32 168.0 $C_2H_3O_2C1$ 189.35 - 166.0 ($C_1_0H_{16}$) + Isovaleric acid (C_1) % b.t. 0 183 47 172.5 Az $C_1_0H_{16}$) + Valeric acid (C_5H_{10}) % b.t. 0 183 178.5 Az	2nd Comp. Az Formula b.t. % b.t. Dt mix $C_3H_6O_2$ 141.3 97 141.2 -0.2 (95%) $C_4H_8O_2$ 164.0 48 160.65 - $C_4H_8O_2$ 154.6 70 152.0 -0.7 (70%) $C_5H_1_0O_2$ 186.35 20 171.0 -0.2 (20%) $C_5H_1_0O_2$ 176.5 32 168.0 - $C_2H_3O_2C1$ 189.35 - 166.0 - ($C_1_0H_1_6$) + Isovaleric acid ($C_5H_1_0O_2$) % b.t. 0 183 47 172.5 Az $C_1_0H_1_6$) + Valeric acid ($C_5H_1_0O_2$) % b.t. 0 183	2nd Comp. Az Formula b.t. % b.t. Dt mix Name C3H602 141.3 97 141.2 -0.2 (95%) C4H802 164.0 48 160.65 - acid Valeric acid Valeric acid (70%) C5H1002 186.35 20 171.0 -0.2 acid (20%) C5H1002 176.5 32 168.0 - acetic acid C2H302C1 189.35 - 166.0 - Camphene (C Acids (100 183	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Replantifier Acids Lecat, 1949

<u> </u>				
Camphene (C ₁₀ h	i ₁₆) + Tric		c acid C ₂ HO ₂ Cl ₃)	
Brooks and Hump	hrey, 1918	(fig.)		
R	f.t.	%	f.t.	
100	+55	40	-57	
90 80 70	+43 +25 -10	30 20 10	- 23 +5 +23	
68	-78	0	+23 +50	
				==
Turpentine 1 ($C_{10}H_{16}$) +	Acetic ac	id (C ₂ H ₄ O ₂)
Landolt, 1878				
光	đ	(α)	D	
	20°			
0 9.8364	0.8629 0.87565	37 37	.01 .148	ļ
21.9342 35,1390	0.89166	37	.406 .885	į
49.0263 77.0384	0.93530	38	.427 .672	{
90.1586	1.02330	40	. 222	ĺ
100	1,0502			\equiv
Turpentine (C,	0H16) + Ace	tic acid	(C ₂ H ₄ O ₂)	
Rimbach, 1892				
A	d	(a)	D	
	20°			
0	0.8648	34	.809	
37.648 50.052	$0.9156 \\ 0.9368$	35	.372 .678	Ì
71.012 82.954	0.9772 1.0084	36	.539 .976	ļ
82.954 85.307 90.706	1.0092 1.0226	37	7.004 7.584	
100	1.0476			=
Turpentine (C ₁	o ^{II} 16) + Abi	etic acid	(C ₂₀ H ₃₀ O ₂)
Vezes, 1910				
8	b.t.	%,	b.t.	
0	157.9 158.9 159.5 160.7 161.4 162.2 163.6	33,29 34,93	168.0 169.8	į
6, 28 10, 47	159.5	36.79	169.8 171.4 1 72 .8	
16.67 19.81 22.66	161.4	39.17	174.4	ľ
22.66 26.67 29.08	163.6	41.18	176.4 179.0	ļ
29.08 30.36 31.74	165.4 166.1 166.7	33.29 34.93 36.79 38.27 39.17 40.16 41.18 42.23 43.34	182.0 185.7	
31.74	100.7			l

Lecat, 1949					
	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Formic acid	CH ₂ O ₂	100,75	98.5	118.2	- <u></u>
Acetic acid	C2H4O2	118.1	90	117.0	-1.1 (90%)
Propionic acid	C3H6O2	141.3	58.5	136.3	-2.0 (45%)
Butyric acid	C4H8O2	164.0	28	150.2	-1.2 (26%)
Isobutyric acid	$C_{\mu}H_{8}O_{8}$	154.6	37	146.8	-1.4 (30%)
Valeric acid	C5H1 OO2	186.35	5	155.5	-0.6 (10%)
Isovaleric acid	C5H1002	176.5	11	154.2	-1.0 (18%)
Monochlor acetic acid	C2H3O2C1	189.35	25	151.6	-

1-Pinene ($C_{10}H_{16}$) (b.t. = 155.8) +

Acids

Lecat, 1949

2-Pinene ($C_{10}H_{16}$) (b.t. = 163.8) + Acids

	2nd Comp.		Az		
Name	Formula	b.t.	K	b.t.	Dt mix
Propionic acid	C3H6O2	141.3	76	139.0	-1.8 (75%)
Butyric acid	C4H803	164.0	38	156.0	-1.3 (40%)
Isobutyric acid	$C_{\mu}H_{8}O_{2}$	154.6	52	149.2	-1.6 (50%)
Valeric acid	C5H1002	186.35	10	162.2	-0.5 (10%)
Isovaleric acid	C5H1002	176.5	22	160.8	-1.2 (25%)
Monochlor acetic acid	C2H3O2C1	189.35	30	157.6	-

						V			
					Benzene (C_6H_6) + A	Acetic acid	(C ₂ H ₄ O ₂)
Benzene (C ₆	H ₆) + Formi	c acid (CH	202)		Heterogen	eous equil:	ibria.		
Lecat, 1949				_	Linebarge	r. 1895			
	%	b.t.		_ -				·	
	0	80.15		-	mol; L	% V	p	$^{\mathrm{p}}$ 1	^p 2
	31 100	80.15 71.05 100.75	Az	-		· · · · · · · · · · · · · · · · · · ·	35.0°	· · · · · · · · · · · · · · · · · · ·	
Van Bijlert	% 0	f.t. +4.07			0 6.44 15.17 37.10 43.99 49.86 53.24 54.65 56.60 73.87	2.45 4.74 8.25 11.02 12.26 13.33 13.82 14.62 20.18	146 143.5 135.6 127.5 119.7 117.1 112.5 112.6 112.4 91.1 81.6	146 140 129.2 117.0 106.5 103.1 97.6 97.3 96.0 72.7	3.5 6.4 10.5 13.2 14.0 14.9 15.3 16.4
	0.9 94.2 95.8 97 100	3.71 L ₁ + L ₂ -0.58 0.02 0.38 1.37			80.00 100.00 0 53.24 80.00 97.28 100.00	26.91 100 - 11.99 21.97 64.66 100	81.6 26.5 20° 75.6 55.3 42.1 17.6 11.7	75.6 48.7 33.0 6.2	22.3 26.5 - 6.6 9.1 11.4 11.7
Ewins, 1914	,								
*	sat.t.	Я	sat.t.		Zawidzki,	1900			
9.2 11.8 14.2	21.0 39.1 44.2	45.2 48.9 51.8	73.0 73.2 73.2		mol L	1% V	P	p ₁ 50°	Pa
14.2 17.5 19.7 21.0 22.2 25.1 31.3 36.9 40.9 43.0	44.12 51.4 56.0 58.4 59.9 64.2 70.1 72.5 73.0 73.2	51.8 54.2 57.2 64.5 69.5 75.6 81.8 81.9 85.8 89.8	73.4 72.3 70.2 66.2 57.7 41.2 41.0 25.3 3.8		0 1.70 4.13 5.04 9.96 13.77 20.88 25.35 35.66 41.36 43.65	0 1.45 2.80 3.15 5.28 6.72 9.16 10.48 13.30 15.07 16.25	267.1 265.9 265.2 264.4 261.1 259.0 250.2 245.2 236.0 228.0 224.3	267.1 262.3 258.7 257.2 249.6 244.8 231.8 224.7 211.2 200.9 195.6	0 3.63 6.53 7.25 11.51 14.2 18.4 20.5 24.8 27.1
Timmermans a C.S.T. = 82.				= =	65.30 68.01 72.42 88.09 98.51 99.49 100	13.30 15.07 16.25 24.15 25.17 28.66 47.97 86.27 94.46 100	189.5 184.0 175.3 126.0 68.0 59.2 55.4	153.2 147.2 135.1 75.3 13.3 3.5 0	28.7 36.3 36.8 40.2 50.7 54.7 54.7 55.4

Mameli, 1903	Othmer, 1932
% L Db.t.	L V L V
0.620 0.444 -0.087 0.723 0.518 0.091 0.725 0.536 0.101 1.117 0.996 0.129 1.169 1.044 0.131 1.600 1.610 0.123 1.602 1.620 0.107 1.756 1.817 0.105 1.764 1.843 0.099 1.778 1.892 0.098	at the b.t. 750 mm 91 94.60 97 97.50 92 94.95 98 98.10 93 95.30 98.5 98.50 94 95.90 99 98.85 95 96.40 99.5 99.25 96 96.95
1.778 1.892 0.098 2.528 3.009 0.086 2.636 3.153 0.079 2.774 3.433 0.075 3.383 4.519 0.062 4.363 6.417 +0.049	Garner, Ellis and Pearce, 1954
6.002 10.048 0.209 8.974 28.587 0.643 14.799 56.789 2.021	L V 1111.2 97.0 84.8 92.3 78.0 43.8 89.3 70.7 37.2
Rosanorf and Easley, 1910	89.3 70.7 37.2 86.5 63.0 31.0 84.7 54.2 27.5 83.3 45.0 22.5 82.1 34.7 18.5 81.1 25.0 14.7
mol% b.t. L V	
0 0 80.24 35.49 14.96 84.72 54.61 22.48 88.96 61.96 25.79 90.85 70.07 31.41 93.99 75.03 35.57 96.23 80.77 42.24 99.44 87.28 52.18 103.71 91.09 61.18 106.82 93.53 68.51 109.51	Skirrow, 1902
Othmer, 1928	100 14
b,t.	mo1% p 10° 20° 30° 40° 50° 60° 70°
758 mm 115.1 1.2 7.7 109.0 3.6 29.2 100.0 9.4 45.9 91.5 21.4 65.4 85.8 40.2 75.5 82.8 59.7 83.3 80.0 90.7 94.6 79.8 96.1 97.0	0 45.8 74.9 113.0 180.5 269.5 395 552 10 49.2 77.2 122.5 196 288.5 414 587 20 50.8 78.8 124.0 200.5 297 429 601 30 50.1 76.2 121.0 195.5 290 426 596 40 48.3 72.6 117.2 183 276 413 573 50 45.4 68.8 111.5 169.0 255 379 537 60 42.4 64.3 104.1 156.5 234.5 351 497 70 35.1 55.8 93.2 139.5 210 311 452 80 29.8 48.5 79.2 121.5 182 268 393 90 22.1 33.6 56.9 91.3 136 210 296 100 7.1 13.8 21.0 37.2 61.2 97.5 148.7

Hovorka and Dreisbach, 1934	Roloff, 1895
mol% p P ₁ P ₂	% f.t. % f.t.
25° 0 94.91 94.91 0 7.3 93.2 90.4 2.8 9.5 92.74 88.6 4.1 11.4 92.87 87.6 4.5 14.6 91.16 86.0 5.2 17.0 90.8 84.0 6.8 19.7 90.0 82.35 7.65 22.6 88.45	0 +5.5 0 +5.6 12.3 +0.6 5.1 3.6 20.0 -2.4 9.3 1.9 25.4 4.6 15.2 -0.4 29.3 6.0 20.0 2.3 33.0 7.6 25.1 4.3 35.3 8.4 29.5 6.1 36.4 8.8 32.4 7.2 37.8 8.1 34.5 8.1 39.6 7.4 36.1 8.8 E 40.9 7.0 37.1 9.1 43.8 6.0 38.4 9.6 46.2 4.9 49.5 3.5
36.3 83.85 74.7 75.7 38.6 82.94 71.0 11.9 47.4 79.19 47.9 79.19 66.2 13.0 67.4 79.17 54.2 14.2 74.8 68.38 78.2 62.65	61.6 1.2 79.8 8.3 64.3 2.3 86.1 10.7 69.0 4.1 94.5 14.0 73.8 6.0 100 16.3
87.7 59.46	35.0 -9.2 52.8 -2.1 36.6 8.6 54.2 1.8 37.6 8.3 59.0 0.2 38.6 7.7 61.9 1.4 39.9 7.4 64.7 2.3 41.2 6.7 69.2 3.9 42.5 6.4 78.1 7.5 44.7 5.5 84.2 9.7
Lecat, 1949	44.7 5.5 84.2 9.7 47.6 4.2 89.2 11.7 49.6 3.4 100 16.2
% b.t. Dt mix	
0 80.15 1.7 80.02 Az 441.9 100 118.1	Dahms, 1905
	mol% f.t. mol% f.t.
Beckmann, 1888 7 f.t. 0 +5.44 0.46 5.232 1.18 4.930 2.27 4.470 4.28 3.650 7.55 2.335 13.18 0.150	0 +5.30 49.51 -11.35 -5.5 1.49 4.80 51.55 -4.7 4.39 3.85 66.15 +0.65 11.39 1.62 76.34 4.37 22.70 -1.91 85.62 8.12 28.77 3.89 93.20 11.69 35.74 6.25 98.17 14.29 40.22 7.85 99.329 15.00 42.4 8.60 100 15.41
18.57 -1.860	Rosza, 1911
Hentschel, 1888	% f.t. % f.t.
## f.t. # f.t. 0	0 5.91 79.770 11.09 0.344 5.74 85.725 11.35 0.420 5.71 87.883 12.16 0.573 5.64 88.954 12.23 1.869 5.05 92.986 13.70 4.810 3.77 93.447 13.92 7.037 2.90 95.086 14.57 8.863 2.21 96.878 15.32 10.720 1.53 97.731 15.63 11.635 1.24 99.119 16.29
	12.344 1.01 100 16.72

% f.t. % f.t. 0 +5.35 36.312 -7.955 25.222 -4.394 37.612 -7.821 26.673 -4.906 37.727 -9.140	Properties of phases.
0 +5.35 36.312 -7.955 25.222 -4.394 37.612 -7.821 26.673 -4.996 37.737 -0.140	
29. 283 -5.924 41.017 -5.676 31. 826 -6.853 41.520 -5.854 33.661 -7.607 44.548 -4.829 34. 200 -7.804 45.451 -4.387 34.461 -7.860 45.937 -3.510 35.256 -7.856 100 +16.55	Le Blanc, 1889
Giacalone, 1942	Buchkremer, 1890
% D f.t. % D f.t.	% d
0.75 -0.34 15.54 -6.25 1.64 0.72 18.59 7.34 3.15 1.35 21.27 8.40 5.21 2.20 23.32 9.15 7.48 3.07 25.48 10.09 9.07 3.74 27.78 10.84 10.87 4.36 33.33 12.95 12.44 5.02 35.47 13.87 13.21 5.33 37.26 14.46 14.06 5.70	20° 0 0.87953 20.258 0.9043 32.368 0.9204 40.095 0.9320 50.012 0.9475 59.998 0.9649 70.118 0.9847 89.982 1.0260 100 1.0505
Tan, Krieger and Miller, 1952	Humburg, 1893
% f.t. % f.t.	16°
0.0	0 0.88422 10.7985 0.8951 19.823 0.9062 31,317 0.9221 100 1.0557 Friedlander, 1901

BENZENE + ACETIC ACID

Hubbard, 1910	Briegleb, 1930
% d	mo1% d
25° 50°	22°
0 0.87368 0.86679 11.634 0.88678 0.85938 23.614 0.90152 0.87387 34.008 0.91580 0.88784 44.857 0.93197 0.90385 54.459 0.94743 0.91934 63.968 0.96439 0.93613 73.819 0.98341 0.95516 82.321 1.00142 0.97299 91.338 1.02321 0.99380 100 1.04390 1.01560	93.07
Goerdt, 1911	Smyth and Rogers, 1930
% d 18.0°	t d 0 9.78 23.05 43.72 mol%
0.000 0.880662 10.729 0.890656 23.320 0.908266 51.071 0.948915 69.531 0.981582 100.00 1.051860	0 0.8986 0.9100 0.9222 0.9484 10 0.8896 0.8989 0.9113 0.9369 20 0.8786 0.8879 0.9006 0.9257 30 0.8682 0.8768 0.8901 0.9144 40 0.8574 0.8657 0.8796 0.9032 50 0.8466 0.8546 0.8658 0.8920 60 0.8357 0.8436 0.8582 0.8810 70 0.8246 0.8327 0.8475 0.8698
Muchin, 1913	61.34 79.12 100 mo1% .0 0.9760 1.0134 -
<i>g</i> d	$\begin{bmatrix} 10 & 0.9645 & 1.0020 & 1.0607 \\ 20 & 0.9532 & 0.9904 & 1.0491 \end{bmatrix}$
20° 0	30 0.9418 0.9788 1.0376 40 0.9307 0.9675 1.0264 50 0.9193 0.9562 1.1053 60 0.9078 0.9448 1.0039 70 0.8964 0.9333 0.9923
97.39 1.0452 99.06 1.0496 99.48 1.0504	Rao, 1934
99.77 1.0512 100 1.0532	# d
	30°
Hammick and Andrew, 1929 mo1% d 25°	0 0.878 19.2 0.896 37.5 0.920 51.0 0.942 70.0 0.978 86.8 1.010
27.9 0.9005 51.0 0.9329 82.0 0.9965 100 1.051	100 1.040

BENZENE + ACETIC ACID

Viscosity and surface tension .
Friedländer, 1901
(water =1) 25° 0 32.64 57.49 0.686 99.85 0.776 1.313
Dunstan, 1905
25° 0 597.8 2.75 594.1 10.27 590.7 18.58 596.2
18.58 596.2 20.75 596.9 51.71 665.8 65.07 834.1 83.26 893.2 100 1194.0
Muchin, 1913
20° 0 658 86.6 1010 95.26 1140 97.39 1190 99.06 1230 99.48 1250 99.77 1260 100 1260
Whatmough, 1902
18° 0 28.40 20 27.73 40 27.37 50 27.17 60 27.02 80 27.01 100 27.48

BENZENE + ACETIC ACID

Morgan and Scarlett, 1917	Buchkremer, 1890
15° 0 28.551 55.13 26.849 60.40 26.729 65.20 26.714 100 27.175	20° 0 1.50001 59.998 1.42148 20.258 .47301 70.118 .40872 32.368 .45704 89.982 .38445 40.095 .44693 100 .37265 50.012 .43409
% d % d	
30°	Zawidzki, 1900
0 26.625 59.95 24.988 10.27 26.09 61.48 24.969 25.10 25.62 62.90 24.961 38.89 25.30 75.42 25.05	% п _D % п _D
38.89 25.30 75.42 25.05 49.77 25.10 100 25.711	25.2°
Hammick and Andrew, 1929 mol% σ	0 1,49797 50.02 1,43151 4.92 .49117 60.03 .41896 9.93 .48438 70.05 .40622 19.73 .47107 80.04 .39382 30.21 .45727 90.03 .38176 40.05 .44486 100 .36994
25° 27.9 28.08 51.0 27.04 82.0 27.78 100 28.52	Hubbard, 1910
	$m{g}$ n C D F G_1
Belton, 1935	0 1.49329 1.49794 1.50985 1.52015 11.634 1.47782 1.48218 1.49323 1.50276 23.614 1.46225 1.46628 1.47644 1,48517
mo1% 20° 35° 0 28.89 26.91 25.85 27.79 25.49 49.53 27.21 25.43 59.66 27.02 25.32 69.15 26.90 25.21 86.19 26.45 25.40 100 27.42 25.91	34.008 1.44890 1.45265 1.46208 1.47020 44.857 1.43516 1,43861 1.44724 1.4540 54.459 1.42300 1.42618 1.43414 1.44086 63.968 1.41131 1.41418 1.42150 1.42765 73.819 1.39907 1.40172 1.40827 1.41375 82.321 1.38875 1.39119 1.39712 1.40206 91.338 1.37803 1.38023 1.38552 1.38983 100 1.36779 1.36976 1.37442 1.37818
	Briegleb, 1930
Antical and all and a	mol% n _F
Optical and electrical properties . Le Blanc, 1889	22° 13.00

Rosanoff and Easley, 1910	Briegleb, 1930
	mol% ε
mol% n _D deviation of the linearity	22°
25° 0	13.00 2.370 16.37 2.397 19.43 2.420 22.84 2.455 28.11 2.519 37.56 2.713 50.19 3.070 66.22 3.969 87.36 6.684 93.07 7.745
n _D benzene = 1.49762 n _D acid = 1.37043 at 25°	Humburg, 1893
	% (α) mol magn
Allard and Wenzki, 1934	16° 100 2,4746
mol% r mol% r	31.317 2.5178 19.823 2.517 10.7985 2.4688
0.000 13.03 50.061 12.992 5.0476 13.07 85.239 12.998 7.613 13.00 90.361 12.980 13.790 12.99 95.629 12.991 17.538 12.980 100.000 13.002 r = molar refraction of acetic acid.	Smith and Smith, 1918
	% X
Smyth and Rogers, 1930	20°
t ε 0 9.78 23.05 43.72 mol%	17.7 0.660 40.9 0.626 61.3 0.588 79.7 0.554 100 0.520
0 2.236 2.375 2.464 2.706 10 2.315 2.388 2.449 2.700 20 2.295 2.340 2.434 2.693 30 2.274 2.322 2.418 2.687 40 2.253 2.303 2.403 2.679 50 2.232 2.285 2.388 2.672 60 2.210 2.266 2.372 2.663 70 2.188 2.246 2.357 2.655 61.34 79.12 100 0 3.113 3.956 - 10 3.118 3.981 6.074 20 3.124 4.007 6.13 30 3.130 4.032 6.20 40 3.133 4.052 6.27	Rao, 1934
30 3,130 4,032 6,20 40 3,133 4,052 6,27 50 3,132 4,067 6,36 60 3,129 4,078 6,47 70 3,126 4,084 6,60	37.5 0.636 51.0 0.608 70.0 0.574 86.8 0.546 100 0.520

		-7		T			 		
Heat constants				Benzene ((C ₆ H ₆)	+ Propio	nic acid	(C ₃ H ₆ O ₂	,)
Timofeev, 1905				Mameli, l	903				
	%	U			Ĺ	D b.t.	v	% L	D b.t.
	20°			0.166	0.310	+0.013	0.792	4,047	+0.470
30	0 0.2 6.6 2.5	0.4233 0.430 0.457 0.471 0.487		0.178 0.184 0.367 0.384 0.401 0.485 0.574 0.788	0.382 0.429 0.926 1.289 1.386 1.775 2.672 3.556	0.045 0.051 0.105 0.126 0.135 0.156 0.289 0.392	0.819 0.900 1.411 1.578 1.641 1.843 2.207 3.043	4.860 5.990 8.382 9.921 11.266 13.179 16.729 30.870	0.568 0.728 1.074 1.287 1.482 1.766 2.230
% initial	final	Q di							
42.6 74.9 78.8	40.9 71.0	(mole benzene) - 79.3 191 212		Paterno, l	889				:
82.8 88.1	74.9 78.8 82.8	239 278			Я		f.t.		
93.8 100 0 0 9.06 16.7	88.1 93.8 6.65 9.06 16.7 23.6	273 323 467 (mole acid) -337 300 211 199			0 1.34 3.01 6.66 7.42 12.91 15.02		5.5 5.0 4.39 3.09 2.79 +0.73 -0.09	5	
23.6 29.5 39.4	29.5 34.1	154 151							
54.4	42.6 56.6	122 73		Giacalone,	1942				
				%	D f	t.	%	Df.	t.
Schmidt, 1926				0.79 2.80	-0.3	30	24.38 27.17	-9.	51
10	mix a1/g) 16° 0.57 0.88	% Q mix (cal/g) 60 -1.36 70 1.21	5.98 9.80 12.40 15.60 18.33 21.64	1.0 2.1 3.5 4.5 5.8 6.9 8.3	19 58 58 32	31.94 34.42 36.25 38.58 40.83 44.29	10. 13. 14. 15. 16. 17.	08 46 46 63 77	
30 40	1.15 1.32	80 90	0.94 0.57						
	1.43			Humburg, 1	893				
					# #		(α) mo	1 gn	
					معمر ليهي باسيد الميد الميدالية اللهاد	16°			
					100 37.25 15.03	96 19	3.48 3.50 3.47	33 69 17	
				ستور شون کمور شور دیرو کمور کمور کمور کمور کمور کمور کمور کم	بخورشور بدنو سی دهد دهویگاه شو بخورشی هم جمع خورشو اکار سی	ی سیده شده بست است است و دست است میده است است است است	پوليم مقدر مدين محدود الكو ملين الا پانهم مانيو المين الاين اللي عليه الا	ت أهل ومن أهل سنة أهل بدأت أكثر ودأول ومن البيومات الله المالوالي 1977	ي ماي سور دين احي ادي دين احي ادي ادي ادي ادي ادي ادي ادي ادي ادي اد
	·								

Briegleb, 1930	Benzene (C_6H_6) + Butyric acid ($C_4H_8O_2$)		
mol% d mol% d	Weissenberger, Henke and Katschinka, 1926		
22°	mol% p		
7.85 0.8867 23.18 0.8997 10.93 0.8893 24.90 0.9010	20°		
12.08 0.8904 32.99 0.9080	0 74.7		
15.82 0.8930 64.37 0.9395 19.23 0.8965 83.24 0.9662	25 64.2 40 55.3 50 47.7		
91.90 0.9810	50 47.7 60 40.5 75 28.0		
Giacalone, 1942			
mol% σ	Mameli, 1903		
4,97 27 26.68 3.65 26.79 2.44 27.02	% D b.t.		
1.22 27.38 0 27.95	0.986 +0.150		
	1.884 0.283 3.458 0.518 5.535 0.809		
Briegleb, 1930	9.121 1.325 12.881 1.863		
mo1% n _F ε	20.871 3.010		
22°			
7.85 2.310 1.4806 10.93 2.326 1.4775 12.08 2.330 1.4759	Giacalone, 1942		
14.91 2.345 1.4730 15.82 2.350 1.4720	% Df.t. % Df.t.		
19.23 2.365 1.4680 23.18 2.386 1.4640 24.90 2.390 1.4620	0.96 -0.33 23.15 -8.07		
24.90 2.390 1.4620 32.99 2.442 1.4585 44.23 2.530 1.4412	2.98 0.96 25.59 9.14 5.39 1.68 28.43 10.41 7.24 2.31 33.53 12.75		
64.37 2.764 1.4200 83.24 3.030 1.4000 91.90 3.170 1.3916	7.24 2.31 33.53 12.75 9.81 3.10 36.14 14.21 12.25 3.93 38.00 15.21		
91.90 3.170 1.3916	1 14.68 4.82 30.05 16.16		
	17.00 5.65 41.95 17.51 19.06 6.46 43.65 18.51 21.20 7.26 45.61 19.56		
Humburg, 1893			
₹ (α) mol magn	Humburg, 1893		
16°	% d		
100 4.5465 34.1865 4.510	16°		
6,0295 4,540	0 0.88422 6.0295 0.8866		
ا موجود المواقية في المواقية والمواقية 4.1865 0.9059 100 0.9633			

		-				
Smyth and Rogers, 1930			den and al.			
mol% d		76	n	%	<u>η</u>	
10° 40°	70° 0.8246	0 5 10	603 612 624	40 50 60	747 808 903	
3.79 0.8916 0.8595 6.40 0.8933 0.8616 8.94 0.8939 0.8636 18.75 0.9703 0.9389 47.29 0.9026 0.8713	0.8270 0.8272 0.8313 0.9119 0.8388	15 20	639 656	80 100	1100 1466	
71.83 0.9254 0.8933 100 0.9435 0.9160	0.8634 0.8854	Giacalone,	1942			
Briegleb, 1930		ļ	mol%		σ	
mol% d				27 °		
22° 11.27 0.8872 12.69 0.8884 16.69 0.8910 21.26 0.8950			0 0.96 1.92 2.88 3.86		27.95 27.58 27.38 27.18 27.03	
36.19 0.9020 36.19 0.9020 33.28 0.9047 55.09 0.9229 70.74 0.9350 92.13 0.9538		Briegleb,				
72.10			mo1%	n _F		
Giacalone, 1942				22°		
mo1% d	11.27 1.4762 12.69 1.4745 16.69 1.4703					
27°	21. 26 1. 4655 27° 36. 19 1. 4560 33. 28 1. 4530			55 60 30		
0.96 0.87 1.92 0.88 2.88 0.89 3.86 0.89	63 32 01		55.09 70.74 92.13	1.43 1.41 1.39	87	
Jones, Bowden and al., 1948		Smyth and R	Rogers, 193	0		
% d %	đ	mo1%	10°	ε 40°	70°	
25° 100 0.9535 20 80 0.9345 15 60 0.9171 10 50 0.9094 5 40 0.9013 0	0.8864 0.8832 0.8797 0.8767 0.8731	0 3.79 6.40 8.94 18.75 47.29 71.83	2.315 2.301 2.333 2.342 2.388 2.542 2.705 2.932	2.253 2.266 2.280 2.290 2.340 2.519 2.715 3.001	2.188 2.203 2.219 2.231 2.291 2.500 2.725 3.074	

Briegleb, 1930	Jones, Bowden and al., 1948			
mol β ε	g d			
	25°			
22° 11.27	0 0.8731 5 8753 10 8779 15 8802 20 8828 40 8943 50 9010 60 9072 80 9203 100 9344			
	25°			
Benzene (C ₆ H ₆) + Isobutyric acid (C ₄ H ₈ O ₂) Paterno and Montemartini, 1894	0 603 5 620 10 639 15 662 20 687 40 825 50 920			
18.46°	80 1436			
0 0.88023 19.245 0.89069 100 0.95069	Benzene (C_6H_6) + Isovaleric acid ($C_5H_{10}O_2$)			
Benzene (C_6H_6) + Valeric acid ($C_5H_{10}O_2$)	Briegleb, 1930			
	mol% d n _F ε			
Giacalone, 1942	22°			
# D f.t. 1.27 - 0.37 3.72 - 1.04 7.00 - 1.96 12.19 - 3.43 16.79 - 4.87 20.34 - 6.10 23.77 - 7.26 27.18 - 8.65 30.40 - 9.93 36.73 - 12.94 38.70 - 13.87	7.29 0.8830 1.4805 2.314 8.95 0.8836 1.4786 2.332 11.45 0.8852 1.4755 2.331 15.32 0.8874 1.4710 2.343 18.71 0.8892 1.4674 2.356 26.76 0.8935 1.4590 2.393 34.55 0.8973 1.4510 2.425 53.26 0.9075 1.4330 2.524 74.79 0.9185 1.4154 2.648 92.90 0.9280 1.4005 2.753			
41.60 -15.30 44.11 -16.78 46.56 -18.12 49.53 -19.98	Benzene (C_6H_6) + Caproic acid ($C_6H_{12}O_2$)			
	Paterno, 1889			
	% f.t.			
	0 5.5 1.04 5.235 1.66 5.095 4.33 4.45 10.33 2.935 11.83 2.52 14.01 1.90			

r					
Giacalone, 1942			Benzene (C ₆ H ₆) + Heptanoic acid	(C ₇ H ₁ , 0 ₂)
% D) f.t. %	D f.t.	Giacalone, 194		•
0.86 1.80	0.10 20.63 0.24 25.07 0.49 29.33	-5.74 7.26 8.89		D f.t. %	D f.t.
3.59 5.21 8.61 11.69 14.49	0.49 33.06 1.35 38.22 2.22 42.37 3.05 44.81 3.84 47.09 4.92 49.59	10.44 12.87 15.04 16.44 17.80 19.55	1.17 3.04 6.63 12.14 17.31 21.57 23.02 27.24	-0.279 31.65 0.705 36.19 1.52 40.41 2.85 45.65 4.21 48.94 5.49 51.94 5.96 53.89 7.32	-8.93 10.81 12.78 15.56 17.60 19.60 21.11
Jones, Bowden an	d al., 1948				
%	đ	η	Jones, Bowden a	nd al., 1948	
	25°		%	d	η
0 5 10 15	0.8731 0.8749 0.8769 0.8789	603 626 653 684	0	25° 0.8731	603
20 40 50 60 80 100	0.8809 0.8902 0.8950 0.9003 0.9116 0.9238	718 908 1058 1284 1844 2814	5 10 15 20 40 50 60 80 100	0.8746 0.8761 0.8777 0.8795 0.8869 0.8906 0.8942 0.9029 0.9130	631 666 705 752 990 1168 1490 2300 3784
Zochowski, 1936 a Hrynakowski and Z		ε	Zochowski, 193 Hrynakowski an	6 and d Zochowski, 1937	
	71.0°		%	d	ε
0.000 5.043 10.185 20.329 35.015 50.012 64.859 78.434 88.864 100.000	0,8261 0,8282 0,8311 0,8367 0,8441 0,8532 0,8623 0,8708 0,8788 0,8863	2.180 2.187 2.196 2.217 2.254 2.298 2.369 2.444 2.544 2.632	0.000 5.031 10.179 20.005 34.407 50.313 63.546 79.577 90.224 100.000	0.8284 0.8300 0.8346 0.8415 0.8497 0.8568 0.8654 0.8714	2.180 2.186 2.193 2.213 2.248 2.278 2.348 2.433 2.503 2.587

December (C.H.) 1 Mashed beganning and	Zochowski, 1936 and
Benzene (C_6H_6) + 1-Methyl hexanoic acid ($C_7H_{1\mu}O_2$)	Hrynakowski and Zochowski, 1937
Rule, Smith and Horrower, 1933	% d ε
mol % (α) mol mol % (α) mol ποl % (α) mol ποl % (α) mol	71.0°
20°	0,000 0,8261 2,180 4,987 0,82 77 2,185
1.3 +35.3 28.3 +33.78 3.1 +35.4 44.7 +33.15	10.327 0.8300 2.193 19.908 0.8338 2.209
6.8 +34.9 66.7 +32.65 12.2 +34.5 100 +32.14	34,203 0,8398 2,238 49,913 0,8475 2,283
19.6 +34.1	64.440 0.8561 2.338 79.853 0.8617 2.449
	91.926 0.8679 2.501 100.000 0.8723 2.544
Benzene (C_6H_6) + Caprylic acid ($C_8H_{16}O_2$)	2,017
Benzene (Spile) . Suprifice acra (Serifox)	
Powney and Addison, 1938 (fig.)	
vol% f.t. vol% f.t.	Benzene (C_6H_6) + Pelargonic acid ($C_9H_{18}O_2$)
0 5.4 55 -8 10 2 65 3	Giacalone, 1942
20 0 75 +2.5 30 -3 85 8	% Df.t. % Df.t.
40 6 90 10 50 12 100 16	2.20 -0.40 36.15 -9.09
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	16.60 3.29 49.70 15.31 21.07 4.36 51.99 16.66
Ralston and Hoer, 1942	27.04 5.97 54.14 18.20 31.91 7.45 55.52 19.20
% f.t.	
	Benzene ($C_6 II_6$) + Caprinic acid ($C_{10} H_{20} O_2$)
88.5 10 100 16.30	F (-0-0 / F (-10-20-4 /
	Ralston and Hoerr, 1942
Giacalone, 1942	å f.t.
% Df.t. % Df.t.	59.2 10 79.9 20
1.77 -0.38 30.32 -7.64	98.8 30
5.15 1.09 34.87 9.34 9.80 2.08 42.86 12.93	100 30.32
15.40 3.37 45.74 14.47	
20.24 4.63 47.52 15.46 26.08 6.27 52.49 18.63	
Jones, Bowden and al., 1948	Benzene (C_6H_6) + Undecanoic acid ($C_{11}H_{22}O_2$)
% d ŋ	Ralston and Hoerr, 1942
25°	% f.t.
0 0.8731 603 5 0.8743 638	67.5 10
1 10 0.8754 680	86.9 20 100 28.13
15 0.8764 727 20 0.8776 781 40 0.8833 1072	
1 50 0.8867 1295	
60 0.8900 1591 80 0.8981 2505	
100 0.9064 5160	

Benzene (C_6H_6) + Lauric acid ($C_{12}H_{24}O_2$)	Benzene (C_6H_6) + Myristic acid ($C_{14}H_{28}O_2$)
Powney and Addison, 1938 (fig.)	Powney and Addison, 1938 (fig.)
vol% f.t, vol% f.t.	vol% f.t.
0 5.4 30 11 5 4.5 40 16 10 3 60 24 15 2 80 33 17 4 100 44	0 5.4 9 8 15 13 20 16 30 21 40 25 60 33
Ralston and Hoerr, 1942	80 42 100 54
% f.t.	
24.4 10 48.4 20 72.2 30 93.3 40 100 43.86	Ralston and Hoerr, 1942 # f.t. 6.50 10
	22.6 20 46.6 30 70.5 40
Timofeev, 1905	70.5 40 92.8 50 100 53.78
% Q dil	33.76
initial final (mole acid)	
0 1.12 -10310 1.12 3.82 9960 3.82 8.8 9780 8.8 13.3 9600 13.3 17.4 9580 17.4 21.1 9580 21.1 22.8 9450 22.8 24.5 9370	Benzene (C_6H_6) + Pentadecanoic acid ($C_{1.5}H_{30}O_2$) Ralston and Hoerr, 1942 ### f.t.
	8.12 10 26.4 20
Benzene (C_6H_6) + Tridecanoic acid ($C_{13}H_{26}O_2$)	26.4 20 50.8 30 74.7 40 95.8 50 100 52.49
Ralston and Hoerr, 1942	
£ f.t.	
29.8 10 53.9 20 78.0 30 98.7 40 100 41.76	
	·

Benzene	1	CAHA	١	+	Palmitic	acid	1	C16H3202	1
Denzene	١.	CGM6	,	T	La Imitit	aciu	١.	C16R5 2U2	,

Powney and Addison, 1938 (fig.)

vol%	f.t.	vo1%	f.t.
0	5.4	50	38
0 5 10 20 30 40	5.4 17	50 60 70	38 43 47 52 57
10	21	70	47
20	27 31 35	80 90	52
30	31		5 7
40	35	100	62.5

Ralston and Hoerr, 1942

 %	f.t.	
1.03	10	
6.80	20 30 40 50	
25.8	30	
51.2	40	
75.4 95.6	50	
95.6	60	
100	62,4	

Zochowski, 1936 and Hrynakowski and Zochowski, 1937

Я	đ	E
	71.0°	
0.000 5.004 10.296 20.084 34.814 50.220 64.800 79.429 89.796 100.000	0.8261 0.8268 0.8278 0.8294 0.8319 0.8358 0.8390 0.8427 0.8461 0.8496	2.180 2.183 2.187 2.196 2.212 2.236 2.258 2.295 2.321 2.348

Benzene (C_6H_6) + Margaric acid ($C_{17}R_{34}O_2$)

Ralston and Hoerr, 1942

%	f.t.	
1.50	10	
8.46 29. 6	20 30	
54.8 78.7	30 40 50 60	
98.3 100	60 60,94	
100	00.71	

Benzene (C_6H_6) + Stearic acid ($C_{1\,8}H_{3\,6}0_{2}$)

Powney and Addison, 1938 (fig.)

f.t.	vol %	
5.4 15 25 35 43 51 57.5	0 2 6 20 40 60 80	

Ralston and Hoerr, 1942

8	f.t.	
0.24 2 11.0 33.8 59.2 82.4	10 20 30 40 50 60	

Zochowski, 1936 and Hrynakowski and Zochowski, 1937

Ж	d	έ	
	71.0°		
0.000 5.022 10.085 20.315 34.723 49.531 64.722 79.973 90.971 100.000	0.8261 0.8267 0.8273 0.8285 0.8309 0.8346 0.8386 0.8425 0.8449 0.8470	2.180 2.183 2.186 2.191 2.208 2.225 2.299 2.278 2.299 2.318	

Benzene (C_6H_6) + Oleic acid ($C_{18}H_{34}O_2$)	Benzene (C	6H ₆) + Ric	inoleic acid	(C ₁₈ H ₃₄ O ₃)	
Powney and Addison, 1938 (fig.)	N	Addison, 19			
vol% f.t. vol% f.t.	vo1%	Sat.t.	vol%	Sat.t.	
0 +5.4 50 -6 10 4 60 0 20 2 70 +3 25 1 80 6 30 0 90 10 40 -2.5 100 13.5	0 10 15 20 40	10 20.0 26.2 30.1 34.9	50 60 70 80	33.0 29.7 25.0 17.5	
Hoerr and Harwood, 1952 ### f.t.	Benzene (C	6H ₆) + 14-0	Oxytetradecan (oic acid C ₁₄ H ₂₈ O ₃)	
59.7 -9.2 E	Stoll and R	touve, 1934	(fig.)		
71.7 0.0 0.0 90.1 10.0	K	f.t.	×	f.t.	
Benzene (C_6H_6) + Linoleic acid ($C_{18}H_{32}O_2$)	0 2 3 4 15	10 20 30 40 45	27 35 43 50	50 55 60 65	
Powney and Addison, 1938 (fig.)	Pa / (7 II	a sh la magastic	acid	
vol % sat.t.	Benzene (C	.6n4) + Mon	ochloracetic (C2H3O2C1)	
13 0.0 20 1.0	Kendall and Booge, 1916				
30 1.0 41 0.0	%	f.t.	Я	f.t.	
Hoerr and Harwood, 1952 # f.t. 74.6 -21.2 E	0 1.7 5.0 8.6 11.0 19.4 24.3 30.0	5.4 4.8 3.8 10.8 15.9 27.6 31.3 34.7	42.6 53.0 60.6 69.1 75.1 81.7 91.3 100	40.2 44.1 46.5 49.7 52.0 54.2 57.8 61.4	
74.6 -21.2 E 76.2 -20 92.6 -10	Aumeras and	l Minangoy,	1950 (fi _s	;.)	
	Z		f.t.		
Benzene (C_6H_6) + Lactic acid ($C_3H_6O_3$)		I	II		
Francis, 1944	0 5 10 20	5 3 12	- - 8	-	
C.S.T. = 66°	30 40 50	5 3 12 27 35 39 43 46	21 29 33 37 41	- 20 24 30 33	
	60 70 80 90 100	50 54 57 62	45 47 51 57	24 30 33 37 40 45 50	

BENZENE + DICHLORACETIC ACID

Benzene (C ₆ N ₆) + Dichl	oracetic acid ((C ₂ H ₂ O ₂ Cl ₂)	Benzene (C ₆ H) + Bonzoic	acid (C-W.O	
Weissenberger, Schuster			ĺ	y + benzoic	acid (071160;	2 /
mo1%	p Q) mix	Raoult, 1890		p	
10 69 20 30 61 40 56 50 52	.2	10.5 19.0 20.0 15.0 11.0 8.0 6.0 4.5	90.20 80.13 60.40	12.3% 1015.1 750.2 396.4	97- 71	0% 0.9 7.0 9.5
Humburg, 1893			Innes, 1902	b.t.	*	b.t.
76	d (α)	mol magn	310 mm		433 mm	
100 24.4065 0.	6° 5488 5.1	1770 2380 -	0 0.63 1.40 2.31 5.00 6.35 8.68 11.18	53.7 53.759 53.835 53.913 54.160 54.285 54.325 54.783	0 0.55 1.31 2.37 4.07 6.46 9.43	63.1 63.166 63.243 63.354 63.516 63.755 64.084
Mameli, 1903 D b.t.	% 1	(C ₂ HO ₂ Cl ₃) D b.t. +0.890 1.010 1.126 1.608 2.380	613 mm 0 0.82 1.66 2.85 3.99 5.72 7.68 10.39 13.12 1090 mm 0 1.31 2.64 4.16 6.13	73. 2 73. 306 73. 402 73. 533 73. 665 73. 860 74. 089 74. 408 74. 738 93. 1 93. 281 93. 459 93. 660 93. 909	756 mm 0 1.54 3.91 4.50 5.99 8.61 11.50 16.46 21.38	80.1 80.309 80.503 80.663 80.843 81.170 81.541 82.188 82.923
Kendall and Booge, 1916			9.16 12.96 18.50	93.909 94.299 94.806 95.536		
mo1% f.t.	mo1%	f.t.				
0 +5.4 10.4 +1.5 15.7 -0.5 23.6 -3.8 31.4 +3.0 37.3 +9.4	44.4 52.7 64.8 74.5 83.6 100	16.1 23.1 33.0 39.6 46.8 57.2	Roloff, 1895	% 0 1.09 2.48 3.71 4.50 4.73 5.05 5.41 5.94	f.t. 5.37 5.11 4.82 4.54 4.35 4.29 4.22 4.20 4.20	2

				 			
78	f.t.	%	f.t.	Benzene (C_6H_6) + P	henylacetic a	cid ($C_8H_8O_2$)
$\begin{smallmatrix} 5.0 \\ 5.0 \end{smallmatrix}$	4.0 4.6	6.7 7.2	13.7 15.05	Innes, 19	18		
5.1 5.3	5.2 6.05	7.4 14.5	17.1 33.9	w	t%	mo1%	р
5.1 5.3 5.6 5.7 5.7 6.3	7.6 8.4 9.5	34.2 42.6 78.2 87.5	33.9 60.5 68.7 99.6)		7 5°	
6.3	9.5 11.7	87.5 100	105.3 121	l l	0 5.73 1.54	0 3.36 6.95	652.6 639.7
				1 2	1.54 2.4 1.8	6.95 10.2 21.1	626.4 600.3 573.2
			_	4 5	2.8 3.6	30.0 39.8	575.2 534.7 486.9
Sidgwick and	Ewbank, 1921			ł	0 8.5	0 44.8	655.1
- K	f.t.	%	f.t.	3 7 8	8.5 4.2 4.0	44.8 62.0 75.2	469.7 357.7 252.8
100 80.5	122.7 103.0	20.08 9.40	43.5 23.0				
59.7 40.12	84.4 66.7	4.92	6.5 5.5				
				Sidgwick	and Ewbank,	1921	:
				%	f.t.	Я	f.t.
Chipman, 1924				0 6.22	5.5 4.4	28.00 42.98	13.0 29.0
wt%	mo 1 5	6	f.t.	13.04 16.30	4.4 3.2 2.2 3.0	61.28 81.03	42.0 59.0 76.7
5.1 6.1	3.32 3.99		4.3 E 10.0	19.93	3.0	100	76.7
6.1 8.95 10.05 13.0	3.99 5.94 7.23 8.74		20.0 25.0				
18.4 25.3	12.61 17.94		30.0 40.0 50.0	Renzene (C.H.) + 2-	-Phenylpropic	onic acid
74.1 44.5	12.61 17.94 24.9 33.7		50.0 60.0 70.0			i meny ipi opi	$(C_9H_{10}O_2)$
18.4 25.3 74.1 44.5 55.6 67.3 78.3	44.4 56.8 69.8		80.0 90.0 100.0	Sidgwick	and Ewbank,	1921	
88.9 100.0	88 100		110.0 121.7	***************************************	f.t.	%	f.t.
				0	+5.5	60.43	12.8
Mortim los				19.65 31.26 40.20	+5.5 +1.5 -1.8 +3.1	78.87 100	28.0 48.6
Mortimer, 1923	·						
	mo1%	f.t.					
	6.1 12.6	20 40					
	23.7 11.7 00.0	60 80 121.0					
		141,0					

38		DEI	IZENE T ALD	ENIDEBERZOIC	ACID
Benzene'(C ₆ H	6) + o-Alde		c acid C ₇ H ₆ O ₃)	Benzene (C ₆ H,	₅) + m-Hyo
Sidgwick and	Clayton, 19	22		Sidgwick and l	Ew h ank, 191
X	f.t.	Я	f.t.	%	f,t.
100 81.84 64.09 49.50	100.5 81.0 77.8 75.7	39.88 21.87 10.16	73.9 72.3 66.7	100 83.3 62.3 41.6 22.4	201.3 192.5 185.5 182.5 173.0
Benzene (C ₆ H		(c acid C ₇ H ₆ O ₃)	Benzene (C ₆ H,	6) + p-Hyo
Sidgwick and				Sidgwick and	Ewbank, 19
<u> </u>	f.t.	%	f.t.	— <u> </u>	f.t.
100 73.36	175.0 154.5	56.98 43.84	149.9 149.7	100 83.0 61.3 40.6 21.0	213.0 206.0 198.8 195.7 191.5
Sidgwick and %	Ewbank, 192 f.t. 250.0		f.t.	Benzene (C ₆ H	
2.40	196.0	0.96	110.0	A R	f.t.
Benzene (C ₆ H	(₆) + o-Hyd	roxybenzoio	acid (C ₇ H ₆ O ₈	100 90.33 69.92 49.18	167.0 155.4 138.3 123.0
Sidgwick and	Ewbank, 192	1			
Я	f.t.	%	f.t.	Benzene (C ₆ H	() + 1.2. ₄
100 81.3 64.5 41.1	159.0 140.0 131.5 114.5	20.8 5.27 1.92	98.5 65.0 44.3	Sidgwick and	-
Krupatkin,	1956			R	f.t.
	f.t.	%	f.t.	100 91.6	177.8 167.6
100 14 84.97 14 70.0 14	55.0	31.36 1 18.95 1	35.0 27.0 13.0 02.5	91.6 71.7 50.7	150.3 135.1
70,07					

Benzene (C_6H_6) + m-Hydr	oxybenzoic	acid (C ₇ H ₆ O ₃)	
Sidgwick and Ewbank, 1921				
K	f.t.	Я	f.t.	
100 83.3 62.3 41.6 22.4	201.3 192.5 185.5 182.5 173.0	10.54 5.16 2.95 1.23	162.0 154.5 141.0 122.5	
Benzene (C ₆ H ₆		•	acid (C ₇ H ₆ O ₃)	
%	f.t.	<i>K</i>	f.t.	
100 83.0 61.3 40.6 21.0	213.0 206.0 198.8 195.7 191.5	10.3 4.30 3.03 1.04	178.0 165.3 156.9 132.2	
Benzene (C_6H_6 Sidgwick and E			ic acid (C ₈ H ₈ O ₃)	
	f.t.	# #	f.t.	
100 90.33 69.92 49.18	167.0 155.4 138.3 123.0	29.96 9.67 5.23 2.01	107.2 79.1 62.4 45.2	
49.18		2,01	45.2	
49.18 Benzene (C ₆ H ₆		Hydroxytolu		
) + 1,2,4-	Hydroxytolu	ic acid	
Benzene (C ₆ H ₆) + 1,2,4-	Hydroxytolu	ic acid	

Benzene	(C ₆ H ₆) +	1,2,5-Hydroxytoluic acid
			$(C_8H_8O_3)$

Sidgwick and Ewbank, 1921

%	f.t.	%	f.t.
100	152.5	29.98	93.3
91.10	142.0	10.53	68,0
70.36	124.7	4.73	48.8
52.05	110.6	1.76	30.0

Benzene (.C₆H₆) + 1,3,4-Hydroxytoluic acid (C_8 H₈ θ_3)

Sidgwick and Ewbank, 1921

×	f.t.	Я	f.t.
100	208.5	29.8	176.5
91.7	202.5	9.80	160.5
72.7	192.0	4.87	147.4
50.0	183.7	2.18	131.6

Benzene (C_6H_6) + 1,4,3-Hydroxytoluic acid ($C_8H_80_3$)

Sidgwick and Ewbank, 1921

%	f.t.	8	f.t.
100	172.4	29.8	139.5
90.7	166.0	10.11	126.2
71.7	152.8	4.78	116.7
52.6	145.0	2.78	109.5

Benzene (C_6H_6) + Coumaric acid ($C_9H_8O_2$)

Innes, 1918

 wt%	mo1%	p	
	7 5°		
0 5.73 10.43 18.95 28.95	0 2.94 5.77 11.0 16.5	649.4 638.7 629.8 612.8 590.2	

Benzene (C_6H_6) + Thymotic acid ($C_{11}H_{14}O_3$)

Mameli, 1903

 8	D b.t.	
0.456	+0.077	
$0.940 \\ 1.948$	0.138 0.247	
3.544 5.746	0.379 0.577	
8,211	0.794	
12.804 16.359	$1.180 \\ 1.458$	

Benzene (C_6H_6) + Monooctyl phthalate ($C_{16}H_{14}O_4$)

Dunstan and Thole, 1910 (fig.)

inoie,	1910	(11g.)
		d

r 8.24 0.8863 718.9 r 10.61 0.8901 752.0 r 14.95 0.8966 843.2 r 15.28 0.8977 860.4 r 18.29 0.9017 919.0 d 6.18 0.8836 684.4 d 10.71 0.8887 757.5 d 11.16 0.8866 763.1 d 19.44 0.9054 952.5 1 19.29 0.9046 941.8

Benzene (C_6H_6) + o-Chlorbenzoic acid ($C_7H_5O_2C1$)

Sidgwick and Ewbank, 1921

 %	f.t.	K	f.t.	
100 90.9 70.4 50.08 29.81	140.3 129.5 113.9 99.6 82.7	9.91 5.15 1.98 0	57.7 44.8 26.0 5.5	

Sidgwick and Ewbank, 1921

_	8	f.t.	%	f.t.	
	100 90.2 71.15 49.0 30.1	154.5 142.5 125.3 108.0 93.7	9.67 4.96 2.25 0	65.5 51.2 35.8 5.5	

Benzene (C_6H_6) + p-Chlorbenzoic acid ($C_7H_5O_2C1$)

Sidgwick and Ewbank, 1921

Я	f.t.	%	f.t.
100 92.2 72.9 52.5 30.5	241.5 232.5 212.7 194.0 172.5	10.3 5.3 1.98 0	137.4 119.4 93.6 5.5

Benzene (C_6H_6) + o-Brombenzoic ($C_7H_5O_2Br$)

Innes, 1902

%	b.t.	%	b.t.
358	mm.	753.	5 mm
0 1.75 3.91 5.79 8.07	57.8 57.924 58.062 58.182 58.321	0 2.41 4.70 6.83 9.66 12.74 16.25	80.0 80.193 80.364 80.529 80.758 80.989 81.278
1090 1	mm		
0 1.68 3.03 5.28 7.58 10.65 14.67 18.83 23.73	93.1 93.267 93.388 93.575 93.768 94.010 94.368 94.750 95.258		

Benzene ($C_6 {\rm H}_6$) + o-Nitrobenzoic acid ($C_7 {\rm H}_5 0_4 N$)

Sidgwick and Ewbank, 1921

×	f.t.	Я	f.t.	
100 81.00 50.25 28.32	146.8 128.3 113.0 105.8	10.00 5.03 2.10	90.5 78.6 63.0	

Collett and Lazzell, 1930

mo1%	f.t.	mo1%	f.t.
100.00	147,7	33.92	114.7
85.01	138.8	20.94	108.7
64.26	128.2	8,70	99.2
54.61	123.2	4.99	92.2
45.85	119.7		

Benzene (C_6H_6) + m-Nitrobenzoic acid ($C_7H_5O_4N$)

Sidgwick and Ewbank, 1921

×	f.t.	%	f.t.	
100 79.6 55.5 30.54	141.4 121.0 105.0 89.5	9.87 4.95 1.95	65.2 48.0 33.0	

Collett and Lazzell, 1930

mo1%	f.t.	mo1%	f.t.
100.00 88.85 72.39 53.30 47.58 36.64	142.4 134.8 124.8 113.3 109.4 104.2	22.45 10.25 6.45 3.36 2.27	93.4 80.3 71.8 60.7 50.6

				1				
Benzene (C ₆ H	6) + p-Nitro	benzoic ació	(C ₇ H ₅ O ₄ N)	Toluene (Heterogen			cid (C ₂ II ₄ 0	2)
Sidgwick and	Enbank, 1921			Linebarger	, 1895			
%	f.t.	K	f.t.		mo1%		n -	D
100	242.4	33.42	196.5	L		V	p ₂	p ₁
82.1 54.8	222.0 201.6	$\frac{21.10}{9.45}$	183.4 164.5			35°		
			. — 	0 49.00 60,88		0 32.66 37.91	15.0	47.2 31.8
				83.37 100	,	56.36 00	17.4 22.2 26.5	28.5 16.7
Collett and L	azzell, 1930			Zawidski,			20.0	
mo1%	f.t.	mo1%	f.t.	mo1%		p	n.	n.
100,00	239.9	9.78	177.9	L IIIO1/	v	Р	P ₂	P ₁
35.43 22.63	206.4 197.2	9.78 5.76 1.58	168.9 138.9	0	0	201.0	0.0° 0	201.0
				0.43 1.60	1.58 3. 7 5	202.0 206.2	-	-
				2.31 4.06	5.03	207.4	-	-
Benzene (C ₆ H,	6) + 6-Nitro	-3-methylben	zoic acid	4.14 6.78	7.64 7.79 11.27	211.1 210.7 214.6	17.2	193.5
			C ₈ H ₇ O ₄ N)	7.05 8.18	11 66	215.5 216.6	20 5	-
Giacalone, 193	35			9.51	12.89 14.22 18.99	216.6 216.6 220.6	30.5	186.1
				9.51 14.55 17.85	18.99 21.74 25.65	220.6 222.7 224.3	46.5	176.2
%		f.t.		23.26 23.74 25.34	26.02	224.6	-	-
0.	72	10		30.71	27.01 30.38	225.1 225.8	57.8	167.3
1.	7	20 30		34.69	32.65 35.74 37.15	225.0 224.0	69.3	155. 7
3. 7. 14.	6	40 50		40.38 43.15 48.06	37.15 40.18	223.4	78.2	145.2
18.	8	60		48.96 53.95 62.38	42.78	221.3 218.9	83.7 88.2 95.7 103.0 110.8	137.6 130.7
31. 47.	0	70 80]] 71.14	47.51 53.09	213.5 204.9	95.7 103.0	117.8 101.9
				78.91 88.79	59.48 71.37	195.6 174.3	110.8	84.8
				100	100.37	136.5	120.5 136.5	54.8 0.0
Toluene (C ₇ H	8) + Formic	acid (CH ₂ 0	,)	mol% L	v	p	Pa	p ₁
Lecat, 1949						80°		
	%	15 ±		0 1.82	0 4.55	294.0 302.2	-	294.0
		b.t.		4.14 6.44	8.34 11.38 14.02	308.4 313.7 317.5	27.8	280.6
	0 50	110.75 85.8 Az		8.70 11.44	16.79 19.35	317.3 321.7 324.2	45.4	272.1
	100	100.75		14.24 24.21	26.94	331.7	62.3 86.7	261.9 245.0
				31.00 31.04 32.00	31.19 31.17 31.67	333.3 333.6 333.0	100.2	233.4
				38.14 44.36	35.06 38.04	332.1	111.7	220.4
				51.47 59.07	41.64 45.40	326.8 320.5	130.1	196.7
			ļ	66.33 89.43	49.61	333.0 332.1 331.0 326.8 320.5 312.1 260.5 250.1	148.1	164.0
				I 91 98	75.82 87.39 88.97 89.77 90.71	250,1 229,3	184.8 19 7. 5	65.3 31.8
				96.37 96.91 97.03 97.50	88.97 89.77	229.3 225.3 224.4 222.6	-	-
				97.50 99.22	90.71 96.96	222.6 210.4	199.8	222.6
				100	100	206.0	206.0	

TOLUENE + ACETIC ACID

	Lecat, 1949
Skirrow, 1902	% b.t. Dt mix
% p 25° 0 9	0 110.75 301.0 34 104.95 Az 100 118.1
0 thmer, 1943 The state of t	Properties of phases. Ramsay and Aston, 1902
95 88.5 104.9 100 100 110.8 ————————————————————————————————————	87.83 27.56 24.00 20.50 15.06 100 28.20 24.59 21.07 15.62
700 mm 95.8 87.3 45.0 40.0 93.1 82.5 39.9 37.7 89.2 74.4 37.1 36.2 86.8 70.0 32.0 33.4 84.2 66.5 24.6 29.0 75.1 57.4 18.4 24.6 70.2 54.2 15.5 22.4 61.7 48.0 10.5 17.7	100 mol 8 82.30 mol 71.68 mol (d = 1.042)
58.8 46.7 7.3 14.0 53.4 43.9 5.3 11.1 Ryland, 1899	58.30 mol% 23.20 mol% 0 mol% (d = 0.928) (d = 0.880) (d = 0.859) 1 93.3 1 91.0 1 90.8 86.5 86.2 174 72.9 114.5 80.6 193 78.2 273. 67.4 230.5 70.3 305 67.7 393 58.7 355 62.1 428 64.8 504 60.5
% b.t. 0 108.8 - 109.3 30 103.5 - 104.5 Az 100 117 118	

TOLUENE + PROPIONIC ACID

	% Q dil
Gay, 1911	initial final (mole acid)
mol% Dv cc/molgr.	- 0 6.4 -263 6.4 13.5 159 - 13.5 18.5 126 18.5 22.8 131
28.879 0.509 49.541 0.693 58.264 0.713 67.269 0.692 82.039 0.511	
Piercy and Lamb, 1956	Baud, 1915 mo1% Q mix
mol% v mol% v	81.1 -53.9 74.2 68.5
25°	- 81.1 -53.9 74.2 68.5 67.6 78.4 56.0 88.0 51.8 89.1 46.3 88.9
0 1301 22.14 1264 5.37 1293 32.15 1245 11.71 1286	1010
<pre>v = sound velocity in m/sec.</pre>	
	Toluene (C_7H_8) + Propionic acid ($C_3H_6O_2$)
Humburg, 1893	Lecat, 1949
β d (α) mol magn	% b.t. Dt mix
16° 100 1.0557 2.4746 38.492 0.9248 2.4330 27.446 0.9072 2.3463 9.6055 0.8813 2.4520 0 0.8694	0 110.75 3 110.45 Az 54 - 0° 100 141.3
Zawidski, 1900	Humburg, 1893
g n _D g n _D	- β d (α) mol
25.2°	- 16° 100 0.9973 3.4833
0 1.49366 49.90 1.43166 4.69 1.48785 60.11 1.41921 9.20 1.48224 69.94 1.40691 19.75 1.46910 79.88 1.39469	29.9668 0.9020 3.4604 15.8894 0.8856 3.4970 0 0.8694
19.75 1.46910 79.88 1.39469 29.75 1.45667 89.84 1.38242 40.27 1.44360 100 1.37003	Toluene (C ₇ H ₈) + Butyric acid (C ₄ H ₈ O ₂)
	Humburg, 1893
Heat constants.	β d (α) mol magn
Timofeev, 1905	16°
% U 20°	100 0.9633 4.5465 35.9134 0.8996 4.5017 9.7705 0.8771 4.609 0.8694 -
100 0.487 22.8 0.434 0 0.4123	

TOLUENE + CAPRYLIC ACID

	Tolon (C.V.) Polodolo (C.V.)
Toluene (C_7H_8) + Caprylic acid ($C_8H_{16}O_2$)	Toluene (C_7H_8) + Palmitic acid ($C_{16}H_{32}O_2$)
Hoerr, Sedgwick and Ralston, 1946	Hoerr, Sedgwick and Ralston, 1946
% f.t	% f.t.
41.0 -10.0 62.6 0.0 86.4 +10.0 100 16.51	0.2 0.0 2.1 10.0 8.0 20.0 23.0 30.0 44.6 40.0 70.8 50.0 100 62.82
Toluene ($C_7 H_8$) + Caprinic acid ($C_{10} H_{20} \theta_2$) Hoerr, Sedgwick and Ralston, 1946	Toluene (C_7H_8) + Stearic acid ($C_{18}H_{36}O_2$)
8 f.t.	Hoerr, Sedgwick and Ralston, 1946
	% f.t.
20.3 -10.0 36.3 0.0 56.9 +10.0 76.3 20.0 97.6 30.0 100 31.35	0.1 10.0 1.9 20.0 9.1 30.0 26.8 40.0 50.6 50.0 100 69.6
Toluene (C ₇ H ₈) + Lauric acid (C ₁₂ H ₂₄ O ₂) Hoerr, Sedgwick and Ralston, 1946 f.t. 4.9 -10.0 13.2 0.0 28.8 +10.0	Toluene (C_7H_8) + Lactic acid ($C_8H_6O_8$) Francis, 1944 C.S.T. = 100°
49.2 20.0 71.53 30 93.4 40 100 43.12	Toluene (C_7H_8) + Pyruvic acid ($C_5H_4O_5$) Lecat, 1949
Toluene ($C_7 H_8$) + Myristic acid ($C_{14} H_{28} O_2$)	% b.t. Sat.t.
Hoerr, Sedgwick and Ralston, 1946 ### f.t.	0 110.75 7.5 110.05 Az 13 100 166.8
0.6 -10.0 3.0 0.0 9.2 +10.0 23.1 20.0 45.5 30.0 69.7 40 93.1 50 100 54.15	

Toluene (C ₇	H ₈) + Dichlo	racetic ac	cid ($C_2H_2O_2Cl_2$)	Ethylbenzer	ne (C ₈ H ₁₀) + Form	ic aci	d (CH ₂ C)2)
Humburg, 189	3			Lecat, 1949	9				
	d		(α) mol magn		%	ł	o.t.		
100 24.6 0	16° 1.54 976 0.97 0.86	88 61	5.1770 5.1627		0 68 100	1	196.15 94.0 100.75		
Toluene (C ₇	H ₈) + B enz oi	c acid (С ₇ Н ₆ О ₂)	Ethylbenzer Lecat, 1949	ne (C ₈ H ₁₀ .) + Acet	ic aci	d (C ₂ H ₁	.02)
Mortimer, 19	23				**************************************	b	. t.		Ot mix
	3.2 5.8 13.6 24.3 40.0	0 20 40 60 80			0 65 66 100	1	96.15 14.65 18.1	Az	~0.8
	64.6 100.0	100 121.0		Parthasarat	ty, 1934				
Chipman, 1	924			X-ray diffi	raction	.	. 0		
wt%	mo1%		f.t.	8	inne	Spacing r ring		ıter rin	ıg
4.44 5.6 8.0 9.6 11.5 16.2 22.3 30.2	3.34 4.23 6.18 7.41 8.91 12.70 17.90 24.7		0.0 16.0 20.0 25.0 30.0 40.0 50.0 60.0	0 33 50 67 100	7	. 20		5.30 5.06 4.71 4.19 4.10	
39.7 50.7 62.8 75.1 86.8 100.0	33.3 43.9 56.1 69.6 83.4 100.0		70.0 80.0 90.0 100.0 110.0 121.7	Lecat, 1949 Ethylbenzen) (b.t.	= 196.	.15) +	
Toluene (C ₇ H	l ₈) + 6-nitro	o-3-methyl	4		2nd Comp.		Az		
Giacalone, 19	35		(C ₈ H ₇ O ₄ N)	Name	Formula	b.t.	%	b.t.	Dt mix
0.30	f.t.	% 7.96	f.t. 50	Propionic acid	C ₃ H ₆ O ₂	141.3	30	131.1	+0.2 (28%)
0.64 1.20 2.35 4.38	10 20 30 40	14.62 25.10 39.83	60 70 80	Butyric acid Isobutyric	C4H8O2	164.0 154.6	4 10	135.8 134.5	(5%) +0.1
				acid Pyruvic acid	1 C ₃ H ₄ O ₃	166.8	22	130.5	(12 %) -

	2nd Comp.		Az				2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix	Name	Formula	b.t.	%	b.t.	Dt 1
Butyric acid	C4H8O3	164.0	75	162.5		Formic acid	CH ₂ O ₂	100.75	93	98.8	
Isovaleric acid	C5H1002	176.5	50	173.0	(93%) -0, 2 (50%)	Propionic acid	C ₃ H ₆ O ₂	141.3	75	139.5	(909
Monochlor- acetic acid	C2H3 O2C1	189.35	52	172.8	-	Butyric acid		164.0	30	154,5	(28
Monobrom- acetic acid	C2H3O2Br	105.1	25	179.5	-	Isobutyric acid	C ⁴ H ⁸ O ²	156.4	47	149.5	-0.5 (50)
Trichlor- acetic acid	C2HO2C13	197.55	.20	181.3	-	Valeric acid Isovaleric acid	C ₅ H ₁₀ O ₂ C ₅ H ₁₀ O ₂	186.35 176.5	7 14	158 15 7. 5	-0.
						Pyruvic acid Monochlor-	C ₃ H ₄ O ₃ C ₂ H ₃ O ₂ C1	166.8 189.35	3 7 25	147.6 156.0	(109
Phenylethyle A	ne (C ₈ H ₈) cids Formula) (b.t.	= 145.	.8)+		acetic acid		7 - V			
	cids	b.t.		.8)+ b.t.	Dt mix	II.		1 ₁₂) (b),t. =	152.8)	+
A	cids Formula		Az		Dt mix	acetic acid	nzene (C ₉ k	d ₁₂) (b), t. =	152.8)	+
A	Formula Formula CH ₂ O ₂		Az %		-1.3	Isopropylbe	nzene (C ₉ 1 Acids 2nd Comp. Formula	d ₁₂) (b		152.8) b.t.	+ Dt 1
Name Formic acid Acetic acid Propionic	Formula Formula CH ₂ O ₂	b.t.	Az	b.t. 95.75	-	Isopropylber Name Formic acid Acetic acid	nzene (C ₉) Acids 2nd Comp. Formula CH ₂ O ₂ C ₂ H _u O ₂	b.t. 100.75 118.1	% 88	b.t. 97.2 116.8	Dt 1
Name Formic acid Acetic acid Propionic acid Butyric acid	Formula Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂	b.t. 100.75 118.1 141.3	73 80 45	95.75 116.2 135.5	-1.3 (80%) -	Isopropylber Name Formic acid Acetic acid Propionic acid	nzene (C ₃) Acids 2nd Comp. Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂	b.t. 100.75 118,1 141.3	88 - 65	97.2 116.8 139.0	Dt 1
Name Formic acid Acetic acid Propionic acid Butyric acid Isobutyric	Cids Formula Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂ C ₄ H ₈ O ₂	b.t. 100.75 118.1 141.3 164.0 154.6	73 80 45 15 27	95.75 116.2 135.5 143.5 142.0	-1.3 (80%) -	Isopropylber Name Formic acid Acetic acid Propionic acid Butyric acid	nzene (C ₉) Acids 2nd Comp. Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂	b.t. 100.75 118.1 141.3	88 - 65 20	97.2 116.8 139.0	-0. (80)
Name Formic acid Acetic acid Propionic acid Butyric acid Isobutyric acid Monochlor- acetic acid	Cids Formula Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂	b.t. 100.75 118.1 141.3 164.0 154.6 189.35	73 80 45 15 27	95.75 116.2 135.5 143.5 142.0	-1.3 (80%) -	Isopropylber Name Formic acid Acetic acid Propionic acid Butyric acid Isobutyric acid	nzene (C ₉) Acids 2nd Comp. Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂ C ₄ H ₈ O ₂	b.t. 100.75 118.1 141.3 164.0	88 - 65 20	b.t. 97.2 116.8 139.0 149.5	-0. (80) -0.: (20) -0. (35)
Name Formic acid Acetic acid Propionic acid Butyric acid Isobutyric acid Monochlor-	Cids Formula Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂ C ₄ H ₈ O ₂	b.t. 100.75 118.1 141.3 164.0 154.6	73 80 45 15 27	95.75 116.2 135.5 143.5 142.0	-1.3 (80%) -	Isopropylber Name Formic acid Acetic acid Propionic acid Butyric acid Isobutyric	nzene (C ₅) Acids 2nd Comp. Formula CH ₂ O ₂ C ₂ H ₄ O ₂ C ₃ H ₆ O ₂ C ₄ H ₈ O ₂ C ₄ H ₈ O ₂ C ₅ H ₁ O ₂	b.t. 100.75 118.1 141.3	88 - 65 20	97.2 116.8 139.0	Dt 1 -0. (80) -0. (20) -0. (35)

C.S.T. = 198°

o-Xylene (C ₈ H ₁₀)(t	.t.=144.3	3) +	Acids		o-Xylene (C_8H_{10}) + Myristic acid ($C_{1\mu}H_{28}O_2$)
Lecat, 1949	1					Hoerr, Sedgwick and Ralston, 1946
	2nd Comp.		Az			% f.t.
Name	Formula	b.t.	%	b.t.	Dt mix	0.3 -10.0
Formic acid	• •	100.75 118.1	74 78	95.7 116.2	-1.3	2.3 7.7 +10.0 20.7 20.0 42.9 30.0
Propionic acid	C3H6O2	141.3	43	135.4	(75%) +0.2 (40%)	68.8 40.0 50.0
Butyric acid	C"H805	164.0	10	143.0	-0.1 (10%)	o-Xylene (C_8H_{10}) + Palmitic acid ($C_{16}H_{32}O_2$)
Isobutyric acid	C+H802	154.6	22	141.0	+0.3 (25%)	Hoerr, Sedgwick and Ralston, 1946
Isovaleric acid	C5H1002	176.5	5	143.8		\$ f.t.
o~Xylene (((C ₈ H ₁₆ 0		
Hoerr, Sedge		·				
	% 36.3 60.6	-	f.t. 10.0 0.0			o-Xylene (C_8H_{10}) + Stearic acid ($C_{18}H_{36}O_2$)
	84.9	+	10.0			Hoerr, Sedgwick and Ralston, 1946
o-Xylene (C				C _{1 0} H _{2 0} C)2)	# f.t. 0.1 10.0 1.7 20.0 8.2 30.0 25.5 40.0
	Я	f	. t.			50.3 50.0
	16.8 32.3 53.8 75.9 97.5	+1	0.0 0.0 0.0 0.0 0.0			o-Xylene (C ₈ H ₁₀) + Oleic acid (C ₁₈ H ₃₊ O ₂)
						Hoerr and Harwood, 1952
o-Xylene (C	₈ H ₁₀) + I	auric ac	id (C	12H2402	, 	# f.t.
Hoerr, Sedgw						23.3 -20 46.8 -10 71.4 0 91.7 10
	0.4		f.t. 10.0			E: 5.6% -31.0°
	9.9 25.8 47.9 70.4 93.2		0.0 10.0 20.0 30.0 40.0			

o-Xylene (C ₈ H ₁₀) + Pyruvic acid	(C ₃ H ₄ O ₃) Lecat
Lecat, 1949	
% b.t.	Dt mix
0 144. 28 137. 30 -	0 Az
	Part
o-Xylene (C ₈ H ₁₀) + Monochloracet	ic acid
Lecat, 1949	
\$ b.t.	
0 144. 12 143. 100 189.	3 5 Az 35
m-Xylene (C ₈ H ₁₀) + Formic acid	(CH ₂ O ₂)
Lecat, 1949	m-Xy
% b.t	
0 139 70 94 100 100	.2 .2 Az .75 Name
m-Xylene (C ₈ H ₁₀) + Acetic acid	Propi (C ₂ H ₄ O ₂) acid Butyr
Ryland, 1899	
% b.t	· Isobu
0 136 27 113.5 100 117	- 137 Pyruv
	m. Yv I

Lecat, 1949		
Я	b.t.	Dt mix
0 62 72.5 100	139.2 115.35 118.1	-1.8

Parthasarathy, 1934

X - ray diffraction

 %	spacing i	n Å	
	inner ring	outer ring	
100	7.20	4.10	
67 50 33	7. 20	4.11 4.42	
	-	4.87	
0	-	5.54	

Lecat, 1949

m-Xylene (C_8H_{10}) (b.t. = 139.2) + Acids.

Αz

b.t. % b.t. Dt mix

2nd Comp.

Formula

Propionic acid	C 3H6O2	141.3	35.5	132.65	-0.3 (50%)
Butyric acid	C4H805	164.0	6	138.5	+0.4
Isobutyric acid	C4H803	154.6	15	136,4	+0.4 (15%)
Pyruvic acid	C3H4O3	166.8	24	132,85	38.5 (24%)
Monochlor- acetic acid	CaH3OaC1	189.35	7	139.05	_

m-Xylene (C_8H_{10}) + Lactic acid ($C_3H_6O_3$)

Francis, 1944

 $C.S.T. = 124^{\circ}$

				1					
p-Xylene (C ₈ H	10) + Form	ic acid (CH	202)						
Lecat, 1949					d Montemart	ini, 189	4 		
	%	<u> </u>	D+ miss	2 nd series					
	·	b.t.	Dt mix	%	f.t.	%		f.t.	
	0 8 0	138.45 94.5 Az 100.75	-1.5	0 0.767 1.221 2.151 3.871 5.161	13.23 12.91 12.77 12.45 11.89	8.3 10.94 11.93 5 14.25	11 48 28	10.98 10.62 10.09 9.69 9.12	
p-Xylene (C ₈ H Lecat, 1949	1 ₀) + Acet	ic acid (C ₂	H ₄ O ₂)						
	%	b. t.	Dt mix	Paterno and	Ampola, 18	97 			
	0		-	%		f.t.		E	
7	0 1	138,45 115.0 118.1	-1.5	100.0 60.50 60.16 59.60 57.83 56.25	:	15.05 4.56 4.30 3.95 3.39	0	- - 0.035 0.04	
Paterno and	Montemartin	i, 1894		54.75 53.44 51.75 51.05 49.90 48.53 47.72 47.01		2.73 1.77 1.30 0.95 0.60 0.21 0.17 0.31 0.55	0	.065 .06 .075 .14	
%	f.t.	%	f.t.	46.26 0.0	1	0.76 3.35	0	.09	
99.121 98.060 96.694 95.324 93.878 92.190 90.000 88.267	14.92 14.555 14.095 13.63 13.17 12.65 12.01 11.50	46.696 46.155 45.659 45.005 44.264 43.632 42.990 42.310	0.535 0.55 0.545 0.505 0.505 0.69 0.890 1.075	p-Xylene ((C ₈ H ₁₀)(I	o.t. = I8	38.45	+ Acids	3
84.983 82.510	10.65 9.96	41.521 40.764	1.28 1.915		2nd Comp.	ت میں بیچائے اس میں الفاقد ال		Az	
80.43 77.609	9,255 8.69	39.526 37.646	2.285 2.77	Name	Formula	b.t.	%	b.t.	Dt mix
75.126 72.442 69.770 67.006	8.025 7.475 6.845 6.165	35.494 33.081 31.442 29.222	3.29 3.885 4.40 4.86	Propionic acid	C3 H602	141.3	34	232.5	+0.1 (35%)
64.517 63.275 61.524	5.55 5.315 4.825	27.122 24.994 22.884	5.38 5.925 6.405	Butyric acid	C ₄ H ₈ O ₂	164.0	5.5	137.8	-0.1 (5%)
59.758 57.469 55.063 52.558	4.380 3.815 2.925 2.475	20.919 12.473 9.868 7.673	6.965 9.07 10.02 10.57	Isobutyric acid	C4H802	154.6	14	136.4	+0.1 (15%)
51.082 49.201 48.945 47.600	1.865 1.135 0.71 0.51	6.477 4.908 2.106 1.206	10.93 11.44 12.40 12.72	Monochlor- acid	C ₂ H ₃ O ₂ C1	189.35	4	138.35	-
47, 191	0.54	0.761	12.86		ی رسی ساوسی کوسانی اسی ایوبانی اسی می در کے باتی کی میں میں میں اس اسی اسی اسی اسی اسی کے میں امیر امیر امیں اشاق اسی سیاناتی امیں امی	در باین بین اداره کار باین خود است که است که است کار باشد در است کار باشد در است کار باشد که در است کار باشد د کار بین بین در است کار باشد در است کار باشد در است کار باشد در است کار باشد در است کار باشد کار باشد کار باشد ک		این هی هی خدم استیانی میبرانی این مدیر سی سب کیانی است استان کار سی امیر مین دادن امیر شدن استان استان	هیودین کیوند البدیات پین د سم دین می مایدات البدیان اس می میرود البدالم میدا
						_			

Xylene ($C_8H_{1.0}$)	+	Acetic	acid	($C_2H_4O_2$)
Othmer, 1943							

	mol%	b.t.
L	V	
0 3 5 10 20 30 40 50 60 70 80	0 21.5 30.6 42.1 52.5 60.5 66.4 70.1 73.2 76.4 80.7 83.2	138.8 135.0 132.8 128.5 123.1 120.1 118.3 117.0 116.3 115.6 115.2
90 95 100	86.5 91.6 100.0	115.4 116.2 118.1

Powney and Addison, 1938

vo1%	f.t.	vo1%	f.t.	
5	21	60 70 80 90	46 50 53 57.5	
10 20 30	21 27.5 29	70	50	
20	29	80	53	
30	33	90	57.5	
40 50	33 37.5	100	62.5	
50	42			

p-Cymene ($C_{10}H_{14}$)(b.t.=176.7) + Acids

Lecat, 1949

	2nd Comp.			Az	
Name	Formula	b.t.	R	b.t.	Dt mix
Butyric acid	C ₄ H ₈ O ₂	164.0	60	162.0	-0.3 (60%)
Isobutyric acid	$C_{\mu}H_{8}O_{2}$	154.6	80	153.4	-0.2 (80%)
Valeric acid	C5H1002	186.35	22	173.5	-0.2 (25%)
Isovaleric acid	C ₅ H ₁₀ O ₂	176.5	38	170.8	-0.3 (50%)
Isocaproic acid	C6H12O2	199,5	3	176.2	-
Monochlor- acetic acid	C2H3O2C1	189.35	42	169.0	-
Monobrom- acetic acid	$C_2H_3O_2Br$	205.1	15	174.7	-
Trichlor- acetic acid	C2HO2Cl3	197.55	-	176.0	-
1-Monobrom- propionic a	C ₃ H ₅ O ₂ Br cid	205.8	4	176.4	-

Mesitylene (C_9H_{12}) (b.t. = 164.6) + Acids.

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Formic acid	CH 20 2	100.75	90	99.7	-
Propionic acid	C3H6O2	141,3	82	141.0	-0.2 (80%)
Butyric acid	C4H8O8	164.0	38	158.0	-0.2 (33%)
Isobutyric acid	C4H803	154.6	5 7	151.5	-0.2 (50%)
Valeric acid	C5H1002	186.35	10	164.0	-
Isovaleric acid	C5H1002	176.5	19	162.5	-0.2 (20%)
Pyruvic acid	C ₃ H ₄ O ₃	166.8	40	151.2	-
Monochlor- acetic acid	C2H3O2C1	189.35	30	160.5	-

Diisopropylbenzene ($C_{1\,2}H_{1\,8}$) + Sebacic acid ($C_{1\,0}H_{1\,8}O_{4}$)

Francis, 1944

C.S.T. : lower than 120°

Diisopropylbenzen e ($C_{1\,2}H_{1\,8}$) + o-Nitrobenzoic acid ($C_7H_5O_4N$)

Francis, 1944

C.S.T. = 149°

	- <u>1</u>			1					 ,
Diamylbenzene (C ₁	₆ H ₂₆) + Chlo		cid H ₃ 0 ₂ Cl)	1,3,5-Triet	hy l benzene	(C _{1 2} H _{1 8})(b.	.t.=215.	5)
Francis, 1944				Lecat, 1949					
C.S.T. = 56°					2nd Comp.		Az		
				Name	Formula	b.t.	%	b.t.	Dt mix
Diamylbenzene (C, 6	I ₂₆) + o-Ni†			Caproic	C ₆ H ₁₂ O ₂	205.15	63	202.0	
		()	7H ₅ O ₄ N)	acid	C II 0	222.0		411.0	
Francis, 1944				Heptanoic acid	C7H1402	222.0	27	211.0	-0.1 (25%)
C.S.T. = 250°				Levulinic	C5H8O3	252	-	214.0	-
				acid	6 H O C1	100.25		105 -	
				Monochlor- acetic acid	C2H3O2C1	189.35	75	185.5	-
1,2,4-Trimethylben	zene (C ₉ H ₁₂ Acids.) (b.t.	= 168.2) +	Monobrom- acetic acid	C ₂ H ₃ O ₂ Br	205.1	76	199.0	-
Lecat, 1949									
2nd C	omp.	Az		J					
Name Formu	<u>-</u>		t. Dt mix	Triethylbenz	ene (C ₁₂ H ₁	18)+0-	Nitro	benzoic (C ₇ H ₅	
				Francis, 194	4				
Butyric C _u H ₈ O ₂	164.0	45 15	9.5 -0.3	C.S.T. = low	er than 136	50			
Isobutyric C ₄ H ₈ O ₂	154.6	65 15	(50%) 2.4 -0.5						
acid			(60%)						
Isovaleric C5H10(176.5	23 16	5.0 -0.2						
Monochlor- C ₂ H ₃ O ₂ acetic acid	C1 189.35	34 16	(23%) 2.8 ~	Methyldiisop	ropylbenzen	ie (С ₁₃ Н		o-Nitro	
-	·			Francis, 194	4				
				C.S.T. = 1689	5				
				Hexaethylbenz	zene (C ₁₈ H	30) + o-		benzoic C ₇ H ₅ O ₄ N	
				Francis, 1944	ļ				
				C.S.T. = 211°					
				ſ					

Diphenylmethane (C ₁₃ H ₁₂)	(b.t.	æ	265,4)+
Acids				

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Pelargonic acid	C 9H1802	254.0	75	252.7	-
Caprinic acid	C ₁₀ H ₂₀ O ₂	268.8	28	262,5	-
Benzoic acid	C7H602	250.8	83	249.55	114 (83%)
Phenyl acetic acid	C8H8O2	266.5	35	258.7	140.6 (35%)

Triphenylethylene ($C_{20}H_{16}$) + Methyl ether of the 1,1-dimethyl-2-ethyl allenolic acid ($C_{16}H_{22}O_3$)

Jacques, 1949 (fig.)

8	f.t.	m.t.	
0 10 20	114 114 112	114 106 103	
30 33 40 50 60	109 106 113	103 103 E 103	
	121 127 130	103 103 103	
80 90 100	132 136 139	112 127 139	

Diphenyl ($C_{1\,2}H_{1\,0}$)(b.t.=256.1) + Acids

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Pelargonic acid	C 9H1 802	254.0	45	250.0	<u>-</u>
Benzoic acid	C7H602	250.8	50.5	246.15	87.5 (50.5%
Phenyl acetic acid	C8H8O2	266.5	23.3	252.35	-

Dibenzyl ($C_{1\,\mu}H_{1\,\mu}$) + Adipic acid ($C_6H_{1\,0}\theta_{\mu}$)

Francis, 1944

C.S.T. : lower than 147°

Dibenzyl ($C_{1\,\mu}H_{1\,\mu}$) + Phenylacetic acid ($C_8H_80_2$)

Lecat, 1949

%	b.t.	
0 70 100	284.5 264.3 266.5	Az

Naphthalene ($C_{10}H_{8}$) + Acetic acid ($C_{2}H_{4}O_{2}$)	Naphthalene ($C_{10}H_{8}$) + Valeric acid ($C_{5}H_{10}\theta_{2}$)
Timofeev, 1894	Lecat, 1949
7 f.t.	% b.t.
6.4 6.75	0 218.0
11.6 21.5 23.7 42.5 34.8 51.3 52.6 60.0 100 80	96 186.0 Az 100 186.35
	Timofeev, 1894
	% f.t.
Ward, 1926	8.7 6.75 15.1 21.5
mol% f.t. mol% f.t.	62.6 65.0
4.37 15.6 19.55 50.4 5.80 23.5 34.1 59.6 7.30 29.0 47.7 64.9	
7.30 29.0 47.7 64.9 10.16 36.5 58.2 68.3 14.9 45.2 81.8 75.1	Naphthalene ($C_{10}H_8$) (b.t.=218.0) + acids.
	Lecat, 1949
	2 nd comp. Az
Naphthalene ($C_{10}H_{8}$) + Propionic acid ($C_{3}H_{6}O_{2}$)	Name Formula b.t. % b.t. Sat.t.
Timofeev, 1894	
% f.t.	Caproic (C ₆ h ₁₂ O ₂) 205.15 71 203.75 37.0
12.2 6.75 18.9 21.5 44.4 50.0	Isocaproic (C ₆ H ₁₂ O ₂) 199.5 75 199.0 - acid
100 80	Heptanoic (C ₇ H ₁₄ O ₂) 222.0 30 214.2 - acid
Naphthalene (C_{1} oH $_{8}$) + Butyric acid (C_{4} H $_{8}$ O $_{2}$)	Naphthalene ($C_{10}H_8$) + Lauric acid ($C_{12}H_{24}O_2$)
Timofeev, 1894	Eykmann, 1989
% f.t.	% f.t.
12.0 6.75 18.1 21.5 58.8 60.0	100 43.4 97.167 42.41 94.49 41.45 91.957 40.48 87.28 38.68 83.06 37.13

NAPHTHALENE + PALMITIC ACID

Naphthalene (C ₁₈ H _o) + Palm	mitic acid ($C_{16}H_{32}O_2$)	Naphthalene (C _{1 0} H ₈) + Mo		ic acid C ₂ H ₃ O ₂ C1)
Efremov, Vinogradova and Tik	khomirova, 1937	Lecat, 1949		•	- 23-2 /
% f.t. E	% f.t. E	.	%	b.t.	Sat.t.
95.0 57.3 - 4 90.0 55.6 41.3 3 85.0 53.4 45.7 3 80.0 51.5 48.0	45.0 63.2 47.5 40.0 65.4 47.5 35.0 67.5 47.0 30.0 69.4 46.3 25.0 71.4 45.5 20.0 73.3 43.7 15.0 74.8 42.5 10.0 76.4 40.7		0 78 100	218. 187. 189.	0 1 Az 49.7 35
65.0 53.4 47.8 60.0 55.7 47.8	10.0 76.4 40.7 5.0 78.3 37.5 0.0 80.0	Cady, 1899			
55.0 58.5 47.7 50.0 60.9 47.6		t	% L ₁	t	% L ₂
Naphthalene (C ₁₀ H ₈) + S ₁ Efremov, 1929 - 1930	tearic acid (C ₁₈ H ₃₆ O ₂)	75 3.4 70 4.6 65 10.8 60 19.7 55 40.4 53.5	30.3 46.7 57.6 68.7	60 98 55 97	.3 96.0 .9 79.0
% f.t.	E min.	53,5 -	70.6		
100 67.7 95 66.0 90 64.7 85 62.9	49.5 150 51.5 300 53.0 450	Miers and Isaa	ac, 1909		
80 61.3 75 59.1 70 56.0	53,3 600 53,3 750 53,3 900	%	f.t.	%	f.t.
85 62.9 80 61.3 75 59.1 70 56.0 65 53.6 60 56.5 55 59.6 50 61.9 45 64.4 40 66.5 35 67.9 30 69.8 25 71.5 20 73.5 15 74.9 10 76.6 5 78.2	53.3 1050 53.3 960 53.3 870 53.3 780 53.3 690 53.3 600 53.3 540 53.3 450	0 11.078 20 30.3 40 49.98 59.965	79.5 75.5 72.5 69.5 66.5 62.5 58.75	65 69.96 76.73 77 80 85	55.5 52.5 47.5 47.5 45.5 43.5
25 71.5 20 73.5 15 74.9	53.3 390 53.0 300 52.7 240	×	f.t.I	Я	f.t.I
10 76.6 5 78.2 0 80.0 E: 65.6% 53.°	52.3 150 50.3 60	60 65 70 76.73 77 77.015	50.5 52 53 54 54.5 54.5	78 80.085 80.06 84.974 85.297 90.049	55 55.6 55.6 56.8 56.5 58 61.5
Naphthalene (C ₁₀ H ₈) + Levi	ulinic acid (C ₅ H ₈ O ₃)	%	f.t.II	K.	f.t.III
Lecat, 1949	b.t.	70.5 77.015 78 80.06	48.5 49.8 50 50.1 50.5	80.085 84.974 89.867 100	44.5 45.5 46.6 50
0 11 100	218.0 216.7 Az 252	85.297 90.049 100	50.5 52 55		
		=			

Mameli and	Mannesier, 191	3		Naphthalene ($C_{10}H_8$) + Monobromacetic acid ($C_2H_3O_2Br$)
R	f.t.I %	f.t.I	f.t.II	Lecat, 1949
0	79.60 65.5	8 54.72	-	% b.t.
7.93 14.80 22.05 27.46 39.57 39.75	76.40 69.1 74.00 69.1	1 52.76 6 52.26 5 52.80 1 - 7 53.06 0 54.07	- 50.95 49.65 48.80 49.35	0 218.0 72 201.3 Az 100 205.1
39.75 44.81 48.38 52.17 53.33 54.35	61.25 60.65 91.0	7 33.63 0 56.06	49.35 48.99 50.25 	Naphthalene ($C_{10}H_{B}$) + 1-Monobrompropionic acid ($C_{3}H_{5}O_{2}Br$)
57.17 58.47 64.66	60.19 92.8 59.20 95.6 58.18 97.4 55.67 100.0	1 60.15 1	55.42 56.53	Lecat, 1949 % b.t.
Mameli and M	Mannessier-Mame	li, 1933		0 218.0 73 202.5 Az 100 205.8
%		f.t.		
0 74.56 78.50 100	79.6 52.7 E 61.8	7	9.6 - 8.5 E 6.6	Naphthalene (C ₁₀ H ₈) + Trichloracetic acid (C ₂ HO ₂ Cl ₅) Pushin and Rikovski, 1940 - 1946
Aumeras and	Minangoy, 1950	(fig.)		100 57 - 90 49 39
%	I	f.t. II	111	81.5 40 40 70 48 40 61.5 56 40 49 62.5 39
0 10 20 30 40 50	80 76 73 70 66 62 58	80 76 73 70 66 62 58	80 76 73 70 66 62 58	40.5 66.5 38 30 71 37 20 75 - 0 80 -
68 70 72 78 80 90	52 52.5 53 55 56 59 62.4	58 52 50 48 50 51 52.5 57.3	52 50 48 44 44 55 48 51.4	Kitran, 1924 E : 77 mol% f.t. = 35.2°

Naphthalene	(C _{1 o} H ₈) + 1	Benzoic acid	(C ₇ H ₆ O ₂)	Na nh tha Lei	ne (('. u. \	+ Diphe	ny la	lycolic a	aid
1040					Naphthaler	iie (t	-10 ¹¹ 8 /	+ Dipne.	ny 1g.	Iycolic a C ₁₄	H _{1 2} O ₃)
Lecat, 1949					Bernoulli	and S	Sarasin	, 1 9 30			Í
	%	b.t.	Sa	t.t.	*	f.t.	E		%	f.t.	E
=======================================	0 5 100	218.0 217.0 250.0	65 Az	79	0 5.0 10.1 15.0	79.8 78.5 79.5 84.5	78. 78. 78.	1 7 0 8 0 9	$0.0 \\ 0.1 \\ 5.3 \\ 0.2$	113.0 123.0 136.0 139.0	77.5 77.0 73.0
Bugnet, 1	909				19.9 29.9	87.0 102.0	78. 78.	3	0	148.0	-
Eutectic				1							
	ر الحدد الحدد الحدد الحراجية الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحد	د میں اس شیر شیر بیندانت امن بین سیر نصر ہیں ہیں۔ 4 میں اس شیر شیر بین بین امریکی بین اس بین اس			Naphthaler	1e ((C ₁₀ H ₈)	+ Salicy	vlic	acid (C	alico,
Vasiliev,	1917				Bugnet, 19			•		,	,,
E: 32.3	% 67.9°			1	Eutectic .						l l
	ر کے جو اس اللہ خمر ہے ہیں جی جی اس میں اس رحمہ اس کی اس اللہ میں اس اللہ میں اس اللہ میں اس	ر میں اس اس اس میں اس میں میں میں میں د میں اس اس اس اس اس میں میں میں میں اس			Datectic .						,
Pushin an	d Wilowitsch,	1925	عند النبر القراسي عند مند سے بنے لیے		Bernoulli	and S	arasin,	1930			
mo1%	f.t.	E	min.		%	f.t.	Е		%	f.t.	E
100 80 65 50 40 30	121 106 94.1 82 73 68	67 66.2 68	0.4 0.8 1.2 1.4 2.1		0 5.0 10.0 13.0 20.0	79.8 78.3 78.0 83.4 97.0	77. 76. 76.	3 60 7 70 7 80	0.0 0.4 0.1 0.0	116.6 134.5 138.9 146.8 158.0	77.3 77.4 77.4 76.9
25 20 18 16.7 15 12 10	70.5 72 73 7 74 74.5 75.5 76	mixeu	crystals		l-Methylna		ilene (C ₁ , H ₁ o) (b.	t.=244.6) + Acids
ó	80		u				nd Comp). 		Az	
					Acids	I	ormula	b.t.	%	b.t.	Dt mix
Bernoull:	i and Sarasin,	, 1930		j	Pelargonio	: (.0 ₉ H₁ 80°	254.0	18	243.0	0
%	f.t. E	%	f.t.	E	Benzoic	C	7H602	250.8	27	239.6	(20%) 67
0	79.8 -	40.0	73.8	68.3	Phenylace:	tic (208H8	266.5	14	243.0	(27%)
10.7 19.9	76.5 68.1 73.1 68.5	l 55.1	88.5 99.5	68.3 68.5	Levulinic	C	5 H 8 O3	252	36	237.0	-
30.1 33.0	69.0 68.0 68.3 -		115.1 122.5	67.35		====		75555	====		
35,1	68.4 -	200	12210		2-Methylna	aphth	alene (C ₁₁ H ₁₀)(b.	t.=241.15) + Acids
		نبي جديد است هاي حص الحدد حتى است الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحد من حيد الحدد المدد ختين الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد الحدد ال			Lecat, 19	49					
Sorum and	d Durand, 1952	? 					2nd C	omp.		Az	
	%	f.t.	_ سر ہے سے صداعے نیہ سر انہوا		Acids		Formu	la b	. t.	%	b.t.
	0	80.1			Caprylic		C 8H1 6	02 27	8.5	48	235.0
	100	69.0 E 121.4			Pelargoni	С	C9H18	02 25	4.0	10	240.2
					Benzoic		C71160		8.0	25	237.25
		سے بھی نہیں اللہ کی اللہ بھی اللہ فی اللہ کی اللہ ہے۔		*	Phenylace Levulinic		C ₈ H ₈ O ₃		6.5 2	12 29	239.95 234.55
II											

Naphthalene derivatives + Acids		Fluorene (C	13H10) + Ph	neny lace ti	c acid	(C ₈ H ₈ O ₂)	
Francis, 1944		Lecat, 1949					
System	C.S.T.	ن میں اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	8	b. t.	د سن مند مب نی می میر میر می		
Isopropylnaphthalene (C ₁₃ H ₁₄) +	184		0 90	295 265.8	Az		
Adipic acid ($C_6H_{10}O_4$) sec.Amylnaphthalene ($C_{15}H_{18}$) +	237	د الله المواجعة الله المواجعة الله الله الله الله الله الله الله الل	100 =========	266.5			
Adipic acid ($C_6H_{10}O_4$) sec.Amylnaphthalene ($C_{15}H_{18}$) + Chloracetic acid ($C_2H_{4}O_2C1$)	33	Indene (C ₉ H	8)(b.t. =	182.6) +	Acids		
Diisopropyl maphthalene (C ₁₆ H ₂₀) +	253	Lecat, 1949				ļ	
Adipic acid ($C_6H_{10}O_4$) Diisopropyl naphthalene ($C_{16}H_{20}$) +	38	نے بیرشن کے بندر اندر اندر اندر اندر اندر اندر اندر ا	2nd Comp.		A	z	
Chloracetic acid (C ₂ H ₃ O ₂ Cl)	1.05	Acids	Formula	b.t.	g	b.t.	
di~tert.Butyl naphthalene ($C_{18}H_{24}$) + o-Nitrobenzoic acid ($C_{7}H_{5}O_{4}N$)	135	Butyric	C 4 H 8 O 5	164.0	84	163.65	
Diamylnaphthalene (C ₂₀ H _{2B}) +	200	Valeric	C ₅ H _{1 0} O ₂	186,35	30	178.5	
o-Nitrobenzoic acid (C ₇ H ₅ O ₄ N)		Isovaleric	C5H1002	176.5	60	173.0	
	دو معنی معند الثان الدون نمی امیر این است التا التا التا التا التا التا التا	Monochlor- acetic	C2H3 O2C1	189,35	~	174.5	
Phenanthrene (C_{1} ₄ H_{10}) + Propionic acid	(C° 1190°)		ر برید ستر سر سد استانید بنید امراضه است سر ر برید سر سر مده امراضه امراضه استان برید ر برید سر سر سر استان امراضه استان استا				
Timofeev, 1894							
% f.t.	التواطئ البيانية التواطية المدانية البيانية	Acenaphthene (C ₁₂ H ₁₀) +	Benzoic a	cid (C	7H6O2)	
83.0 23.0		Lecat, 1949					
78.6 39.0 59.7 62.4			%	b.t.			
Phenanthrene ($C_{1\mu}H_{10}$) + Butyric acid (Timofeev, 1894	C ₄ H ₈ O ₂)	0 277.9 87 250.3 Az 100 250.8					
% f.t.	شیر ایس بیره خان کی سے شیر ایس نیش سام ۲						
84.4 23.0 79.0 39.0	دی امیر میره است آخری بیش هم معیار میرو است ا مارا امیر امیره است امیر میره است امیرا است امیرا است امیرا است امیرا امیرا امیرا امیرا است امیرا امیرا است ا	Acenaphthene Lecat, 1949	(C ₁₂ H ₁₀)	+ Phenylac	cetic ac	id (C _B H _B O ₂)	
Fluorene ($C_{13}H_{10}$) + Acetic acid ($C_{2}H_{10}$. \				 sat.		
Mortimer, 1923	'2 / !	<u>-</u> -	نس جين الحياس جي الحراب والرائب الي بالداء	7,9			
مين بند دو دو دو دو يو دو دو دو دو دو دو دو دو دو دو دو دو دو	f.t.	71 100	26	2.6 Az 6.5	62.	. 8	
99.2 20 88.7 98.1 40 60.0 95.5 60 0.0	80 100 114.5	Amount and an experience of the property of the state of	A CONTRACTOR DE LA CONT	الله من الله الله الله الله الله الله الله الل	وه وجن آنها ساین باین امن سور برای داد. بر خان خان اگیر بهر جنی دیراند بر خان خان اگیر بهر جنی برای در برای است.	ما المراجع على المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	
	are mengantu ada hang peli delemban pada an Mendelam pada ada hang peli delemban pelepangan Mendelam peli delemban peli delemban pelepangan pelipangan pelipangan pelipangan pelipangan pelipangan pelipangan						

258

METHYL CHLORIDE + METHYL ALCOHOL

I. HALOGEN DERIVATIVES, CO, CO ₂ , CS ₂ etc	Methyl iodide (CH ₃ I) + Ethyl alcohol (C ₂ H ₆ O)
+ HYDROXYL DERIVATIVES	•
XXV. HALOGEN DERIVATIVES + ALCOHOLS .	Lecat, 1949
	% b.t. Dt mix
Methyl chloride (CH ₃ Cl) + Methyl alcohol (CH ₄ O)	0 42.5 3.5 40.7 Az 256.6 100 78.3
Baume and Borowski, 1914	1000
mol% f.t. mol% f.t.	Holmes and Sageman, 1909 % d
100 -93.0 36.9 -107.9 84.9 93.5 32.5 107.3 69.4 97.4 31.6 111.2 57.0 99.5 24.2 112.0 42.2 106.2 13.9 98.2 38.5 105.7 0 94.0	0 2.25099 1.955 25° 2.16754 3.917 2.09152 7.708 1.95952 14.649 1.75848 20.965 1.60901 25.415 1.51855 39.969 1.28330 100 0.78660
Methyl iodide ($ ext{CH}_3 ext{I}$) + Methyl alcohol ($ ext{CH}_4 ext{O}$)	mol% Dtmix
Holley and Weaver, 1905	5.74 -5.2 11.19 15° 6.0 20.50 7.0 34.58 7.3
	44.82 6.8 51.24 6.4
0 44.5 8 39.6 Az 100 64.8	67.24 5.6
	Methyl iodide (CH ₃ I) + Propyl alcohol (C ₃ H ₈ O)
Lecat, 1949	Holmes and Sageman, 1909
	% d
	25°
0 42.5 5.5 37.8 Az 256.2	0 2.25099 2.573 2.14551 4.679 2.06778 4.888 2.06041 9.556 1.90565 17.744 1.69210 24.685 1.54483 29.800 1.45214
Holmes and Sageman, 1909	45.122 1.23133 100 0.79970
mol% Dt mix	mol% Dt mix
15°	15°
7.06 -4.0 10.71 -5.3 20.19 -6.0 34.38 -6.9 43.21 -6.8 51.72 -6.4 66.69 -5.6	5.75 -5.4 10.39 6.2 10.87 6.3 20.12 7.5 33.7 8.0 44.22 7.8 50.09 6.9 66.03 5.1

Methyl iodide (CH ₃ I) + Isopropyl alcohol (C ₃ H ₈ O)	Methylene chlorbromide (CH ₂ ClBr) + Ethyl alcohol
Lecat, 1949	(C ₂ H ₆ O)
% b.t. Dt mix	Lecat, 1949
0 42.5	% b.t.
2 42.25 Az 54.3 100 82.4	0 75.3 18 66.3 Az 100 78.3
Methyl iodide (CH ₃ I) + Amyl alcohol (C ₅ H _{1,2} O)	Methylene chloride (CH_2Cl_2) + Methyl alcohol (CH_4O)
Holmes and Sageman, 1909	Lecat, 1949
mol% Dt mix	% b.t. Dt mix
15° 10.79 -6.5 19.28 7.8 33.02 8.1 48.53 6.9 66.38 4.5	0 40.0 7.3 37.8 Az 55 +0.6
Methyl iodide (CH_3I) + Ethyl tartrate (C_8H_1 , O_6) Patterson and Thomson, 1908	Methylene chloride (CH_2Cl_2) + Ethyl alcohol ($C_2H_6\theta$)
t d t d	% b.t. Dt mix
0% 5.1960 <i>5</i> %	
18.22 2.28408 19.39 2.17168 20.85 2.27655 21.03 2.16729 26.35 2.26063 26.62 2.15225	0 40.0 5 39.85 Az -1.8 100 78.3
10.4466% 38.0899%	
18.86 2.07572 18.77 1.68916 21.02 2.07034 20.89 1.68540 23.16 2.06492 25.12 1.67773	Methylene chloride (CH_2Cl_2) + Methyl malate 1 ($C_6H_{10}O_5$)
β d (α) D	Grossmann, 1910
20° 0 2.27899 1.08 5.19605 2.17005 1.13 10.4466 2.07288 1.20 38.0809 1.68698 2.85	g/100cc (α) _D red jellow green light dark violet blue blue
t ((a) D t ((a) D	50.710 -0.89 -1.38 -1.38 -0.10 +0.30 +0.99
5.19605% 10.4466%	25.355 +0.87 +1.22 +2.37 +3.63 4.42 - 12.6775 +1.34 +1.66 +2.68 +4.18 +4.89 - 5.421 +1.66 +2.03 +3.32 +4.98 +5.72 +7.56
14.9 0.52 18.1 0.95 20.3 1.19 21.5 1.37 28.3 2.16 24.8 1.78	2.7105 +1.84 +2.21 +3.69 +5.53 +6.27 -
38.0899%	
14.5 2.06 24.4 3.48 22.2 3.06 25.5 3.62	

METHYLENE CHLORIDE + ETHYL TARTRATE

Mothylone ableride (CH Cl) (Fa	1-1	Mothylone	hmomido / C	U Dr. \	+ Duton	athial	
Methylene chloride (CH ₂ Cl ₂) + Et	C ₈ H ₁₄ O ₆)	methylene	bromide (C	n ₂ Br ₂)	+ Dutane	(C ₄ H	1 oS)
Patterson and Thomson, 1908		Lecat, 194	9				
t d t	d		%	ե	. t.		
0% 17.096	5%		0 28		7.0 5.5 Az		
18.05 1.3397 20.37 20.77 1.33467 22.11 26.23 1.32464 27.20	1.30830 1.30563 1.29719		100	9	7.5		
5.11606% 32.8988	8%	Methylene	bromide (C	l ₂ Br ₂)	(b.t. =	97.0	+
19.34 1.32865 19.5 22.85 1.32246 22.88 25.96 1.31693 27.20	1.28704 1.28207 1.27719		Alcohols				
9.74502% 61.88%	1.27719		2nd Comp	· 	Az		
18.57 1.32249 18.80	1,24867	Name	Formula	b.t.	%	b.t.	Dt mix
21.25 1.31792 21.42 28.13 1.30607 26.45	1.24549 1.23926	Methyl alcohol	СН ₄ 0	64.65	48	64.25	-
t (a) _D t	(α) _D	Ethyl alcohol	CaH60	78.3	40	7 5.5	~
5.11606% 32.8988		Propy1 alcohol	C 3H80	97.2	26	90.5	_
14.7 ~2.81 16.7 20.7 -1.88 21.6	-3.02 -2.27	Isopropyl alcohol	C3H80	82.4	68	81.0	-6.0 (50%)
24.1 -1.57 25.5 27.0 -1.08 30.1 -0.67	-1.62	Isobutyl alcohol	C4H100	108.0	18	94.8	-
9.74502% 61.88%						·	
16.2 -3.08 19.0 20.4 -2.33 26.9 26.5 -1.35 30.9 17.966% 32.3	-0.23 -1.48 -2.12 -2.35	Methylene	iodide (Cl	1 ₂ I ₂) +	Ethyl a	lcohol (C ₂ H	60)
34.7 16.5 -3.35 21.3 -2.60 25.1 -2.06	-2.73	Bingham, 1 C.S.T. = +					
29.1 -1.40							
% d	(α) _D	Methylene	iodide (CH	2I ₂) + 1	Alcohols	,	
5.11606 1.32749	-1.60 -2.08		and Kohnst				
9.74502 1.32006 17.0966 1.30890 32.8988 1.2863	-2.40 -2.79 -2.50 +0.36	2nd Comp.	Formula	C.S.T.	limits of pres	ssure	lt/dp
		Ethyl	Calleo	93.8	5 - 75		0.004
		alcohol Propyl	C -H -O	82.9	5 - 205		800.0
		alcohol Isopropyl	C ₃ H ₈ O	75.7 93.2	1 - 200		0.006
		alcohol	C31180	70.4	1 - 200	, +{	0.012
		Isobutyl alcohol	C ₄ H _{1 0} 0	77.5	1 - 80) +0	0.012

	2-d C			∥	%	b. t.	
Name	2nd Comp. Formula	b.t. %	b.t.		0 12 100	60 - 61 53.5 - 54.5 64.5 - 65	Az
Heptyl	С ₇ Н ₁₆ 0	176,15 62	169.8				
alcohol Octyl alcohol sec	C ₈ H ₁₈ O	180.4 30	174.0	Lecat,	1040		
Glycol	С ₂ Н ₆ О ₂	197.4 14	168.65		2/4/		
Butoxy-	C6H14O2	167.15 42	171.15	I	%	b.t.	Dt. mix
glycol					0	61,2	
Furfuryl alcohol	C5H6O2	169.35 44	165.8		12.5 35 100	53.5 Az 64.65	+5.6
aywood, 18	99 b.t. p		b.t.	Lang,		% (at b.t.) V 760 mm	
0 2.3 4.5 6.1 7.3 10.6 12.3 15.4 18.1 25.5	56.4 54.9 54.5 54.3 54.1 54.025	70.2 31.6 " 37.2 " 43.0 " 48.9 " 47.8 " 56.3 " 60.7 70.4 75.0 " 87.2 " 100	55.3 56.05 7 56.85 7 57.75 7 57.5 7 58.9 7 61.85 7 63.6 7 65.25 7		97.6 97.5 91.5 78.6 77.9 73.2 53.4 39.3 32.4 23.2 12.1	93. 93. 80. 60. 59. 54. 51. 36. 33. 31. 25.	9 7 6 6 7 7 5 8 8
Pettit, 18	99			Tyrer,	1912		
%	b.t.	Я	b.t.		L	v	
	P =	746.2 mm					b.t.
100.0 89.6 80.8 73.6 67.4 58.1 49.4	64.82 63.54 61.88 61.28 60.23 58.78 57.28	40.2 31.0 22.5 15.4 11.9 8.2 0.42 0.0	56.12 55.03 54.33 53.89 53.63 53.63 54.43 61.46		100 90 80 70 60 50 40 30 20	74.8 58.3 45.9 36.0 27.7 22.0 18.5 15.8	64.86 64.05 62.38 60.68 59.07 57.52 55.94 54.52 53.66 53.65 61.37

CHLOROFORM + METHYL ALCOHOL

Conrad and Hall, 1935 (fig.)	
	Hirobe, 1925
vol% p	d
25° 100	0 25° 1.47820 2.46 1.44898 6.12 1.40449 11.91 1.34162 13.36 1.32632 23.09 1.23369 38.44 1.10980 51.02 1.02420 67.22 0.93218 100 0.78867
0 196	Conrad and Hall, 1935 (fig.)
	vol% d
Wyatt, 1929 (fig.)	25°
mo1% f.t. mo1% f.t. 100 -97.8 50 -70 90 -110 40 -66 87.6 -111.8 E 30 -65 80 -95 20 -64.5 70 -82 10 -64 60 -77 0 -63.5 55.2 -77.5 tr.t. (1+2)	100 0.7909 90 0.86 80 0.91 70 0.99 60 1.06 50 1.11 40 1.20 30 1.27 20 1.33 10 1.40 0 1.4793
	vo1% π
Sapgir, 1929	25°
\$\frac{100}{81.8} \begin{array}{cccccccccccccccccccccccccccccccccccc	100 133.3 90 131.0 80 128.5 70 125.5 60 123.0 50 120.5 40 118.0 30 115.5 20 113.0 10 110.5 0 107.1
	vol% n o n _D
Chéneveau, 1907	25°
7 d n _D 20° 100 0.8314 1.3407 75.81 0.9295 1.3556 0 1.4903 1.4489	100 552 22.33 1.3290 90 591 22.7 1.340 80 617 23.1 1.354 70 636 23.5 1.364 60 649 23.9 1.373 50 650 24.3 1.385 40 641 24.7 1.397 30 621 25.05 1.409 20 594 25.06 1.419 10 571 26.0 1.429 0 572 26.48 1.4493

Peel, Madgin and Briscoe, 1928	Chloro	form (C	HCl ₃) + Ethy	/l alc	ohol (C ₂ H ₆	,0)	
1 vol + 1 vol Dv = -0.225% Dt = 5.5°	Heterogeneous equilibria.						
	Burwink	el, 1914	4				
Timofeev, 1905	t	0%	15.62%	p	35.91%	50.21%	
U 20°	0				47	37	
0 0.2363	10 20	62.6 102 162	160		84 136	70 113	
10.1 0.295 22.4 0.369 100 0.600	30 40 50	253 370 540	256 377 577		223 338 507	190 288 437	
			····				
% Q dil initial final	t	66.33	83.88%	p ;	100%		
(mole alcohol)	0 10 20	25 53	17 40		13 24		
0 2.7 -525 2.7 5.3 -24 5.3 8.0 +186	20 30 40	84 152 228 354	62 108 172		45 79 132		
5.3 8.0 +186 8.0 10.3 +250 40.5 42.8 +143	50	354	282		226		
(mole chloroform)	Röck	and Schr	öder , 1956.				
42.8 39.1 +67.9 90.1 81.5 +975	ļ	-1 <i>d</i>		10			
100 90.1 +1072]	01%	p 172 17 45°	mo1%	p		
Tyrer, 1912.	9	0.0 7.9 3.5	172.17 45° 184.4 211.0	74.1 69.4	327.4 350.6		
	8 7	4.2 8.7	261.0 302.5	65,5 61.4 0	376.5 382.9 436.8		
% Q vap (cal/gr)	10	•	55°	U	430.6		
100 209.5	8:	0 7.9 9.4	279.13 296.0 368.5	74.1 69.7	490.0 519.9		
70 154.7		4.0 8.9	368.5 412.7 454.7	65.7 61.5	541.2 562.2		
40 30 99.5	===:	====		0.0	618.6		
20 10 84.2	Scatch	ard and l	Raymond, 1938				
0 39.32		moly	% V	Þ	Pa	?	
Hirobe, 1925.			35	•			
g Q mix	i	0 3.84	0 5.86	295. 303. 303.	11 0 91 17.	. 81	
0 2.46 6.12 -145.9		$\frac{4.00}{4.14}$	5.97 6.15 6.35	303.4 304.	69 18. 17 18.	. 13 . 69	
6.12 11.91 13.36 13.36 552 1		4.40 6.85 15.17	6,35 8,39 12,17	306.0	05 25	68	
23.09 38.44 51.02 533.1 475.1		15, 17 15, 77 17, 35 22, 54	12.48 13.02 14.46	306. 305. 305. 303.	25 37. 12 38. 39 39. 05 43.	.08 .76 .82	
67.22 100 322.3		32, 17 38, 15	16.73 18.19	296. 291.	93 49. 95 53.	10	
		51.54	21.88	274.4	46 60.	05	

	-
51.73 22.03 274.04 60.37 56.16 23.54 267.65 69.00 60.78 25.88 255.28 66.07 63.55 26.30 253.39 66.64	Thayer, 1899
67.73 29.91 236.50 70.74 69.86 31.30 229.24 71.75	% b.t. % b.t.
71.27 32.53 225.06 73.21 76.39 37.93 205.68 78.01	744.2mm 732.5mm
82.70 46.95 177.60 83.40 88.91 61.15 148.26 90.66 94.06 76.57 125.82 96.34 97.03 87.90 113.61 99.86 97.59 90.09 111.31 100.28 99.38 97.46 104.87 102.21 100 100 102.78 102.78	100.00 77.86 19.02 59.55 89.13 75.61 14.54 59.08 74.62 72.10 9.31 58.65 67.14 70.19 6.37 58.57 55.77 67.69 2.60 59.06 50.92 65.93 0.00 60.50 46.54 64.78 40.05 63.32 34.62 62.18
0 0 433.54 0 1.34 2.73 439.89 12.01 2.42 4.21 443.07 18.64 3.23 5.46 445.38 24.32 4.43 6.81 448.49 30.52 8.37 10.26 453.76 46.56	28.89 61.03 Az : 7 \$ 58.5/732.5 19.51 60.19 13.06 59.39 7.09 59.09 0.00 60.93
9.00 10.67 454.54 48.45 11.48 12.17 455.79 55.47 17.94 14.84 455.56 67.61 28.52 18.09 448.17 81.07 37.17 20.46 438.89 89.80	Ryland, 1899
48.60 23.97 420.63 100.83	
59. 85 28. 57 391. 51 111. 85 67. 02 32. 86 365. 07 119. 96 68. 84 34. 43 355. 66 122. 45	0 60 - 61 6 58.5 - 59.5 Az 100 77.5 - 78
74. 31 39.40 329.62 129.57 79.89 46.05 299.63 137.98 80.03 46.34 298.08 138.13 87.40 60.26 249.92 150.60 92.88 75.33 214.44 161.54 95.24 82.83 199.62 165.34	Wade and Finnemore, 1904
98.11 92.84 182.63 169.55 98.43 94.00 180.96 170.10	% b.t.
100 100 172.76 172.76 55.0°	0 61.15 7.0 59.4 Az 100 78.3
3.48 5.92 626.79 37.71 5.70 8.50 644.24 54.79 9.63 12.02 650.38 78.18	Findlay, 1909
1 22.36 18.19 650.96 118.41	% b.t. % b.t.
31.49 21.43 641.49 137.47 37.89 23.61 632.14 149.25 42.70 24.73 623.67 154.23 52.06 28.39 599.03 170.06 60.35 32.40 569.02 184.36 60.96 32.80 566.74 185.89 62.33 33.59 560.25 188.19	0 60.2 44.7 63.5 5.78 58.5 56.1 66.4 10.05 58.4 68.8 69.8 10.91 58.5 83.6 73.4 24.02 59.8 100 77.1 35.28 61.5
71.94 40.58 507.78 206.46 77.99 47.29 469.41 221.98 81.31 52.05 441.04 229.56	Lecat, 1949
1 89.71 68.77 367.01 252.40	% b.t. Dt mix
91.98 74.67 346.89 259.02 92.88 76.98 339.89 262.65 96.69 88.38 306.38 270.78 100 100 279.86 279.86	0 7.0 59.35 Az 35 100 78.3

CHLOROFORM + ETHYL ALCOHOL

Properties of phases	Schwers, 1912				
	t d t d				
Drecker, 1883	0% 12.586%				
% d 0° 19.46° 25.42° 30.96	11.2 1.50584 10.95 1.35474 19.3 1.49090 21.7 1.33693 - 30.65 1.46987 30.7 1.32113				
0 1.52418 1.48746 1.47680 1.4662 10.349 .39158 .36359 .35340 .3436 19.939 .29592 .26709 .25828 .2493 30.037 .20666 17976 .17164 .1634 40.074 .13000 .10482 .09694 .0894 49.971 .06201 .03838 .03131 .0244 59.958 .00032 0.97891 0.97250 0.9661 70.000 0.94395 .92551 .91941 .9135 79.968 .89578 .87767 .87195 .8665 90.030 .85108 .83396 .82861 .8235 100 .80760 .79470 .78962 .78483	21.571% 39.099% 10.9 1.26612 14.5 1.11711 19.45 1.25308 23.1 1.10569 29.7 1.23663 30.5 1.09548 50.921% 65.176% 10.2 1.04136 10.75 0.95644 21.9 1.02775 18.7 0.94825 32.0 1.01505 30.3 0.93548 72.839% 80.478%				
% d	_ 11.3				
18° 0 1.4810 23.42 1.2350 39.20 1.1112 66.02 0.9468 100 0.7964	100% 11.3 0.79693 21.0 0.78884 29.3 0.78152				
Findlay, 1909	Nirobe, 1925				
	_ % d % d				
	25°				
0 60.2 1.4098 5.78 58.5 1.3414 10.05 58.4 1.2966 10.91 58.5 1.2879 24.02 59.8 1.1725 35.28 61.5 1.0769 44.7 63.5 1.0119 56.1 66.4 0.9423 68.8 69.8 0.8733 83.6 73.4 0.8045	0 1.47919 38.44 1.10375 2.35 1.44898 45.32 1.06007 4.32 1.39267 63.53 0.94634 11.48 1.34178 73.64 22.42 1.23631 100 0.78522 29.70 1.17503				
100 77.1 0.7390	Graffunder and Heymann, 1931				
Burwinkel, 1914	% (1				
% d	25°				
17° 0	0 1.4702 19.56 1.3720 37.07 1.2701 52.94 1.1740 67.34 1.0700 80.49 0.9590 92.52 0.8525 100 0.7850				

CHLOROFORM + ETHYL ALCOHOL

Scatchard and Raymond, 1938	" Oholm, 1913
% mo1% u	normality of CHCl ₃
25° 0 0 1.47955 3.37 8.29 1.43640 6.58 15.44 1.39796 8.65 19.71 1.37477 14.83 31.11 1.30804 16.51 33.89 1.29163 27.14 49.12 1.19656 35.91 59.23 1.12584 41.30 64.59 1.08789 59.39 79.13 0.97374 64.79 82.67 0.94561 72.76 87.33 0.90360 78.56 90.47 0.87544 84.80 93.52 0.84744 100 100 0.78562	20° 1
Migal and Belotskii, 1955 (fig.)	Lemonde, 1938
% d	vol% D
0° 20°	15°
0 1.03 1.020 20 0.995 0.980 40 0.948 0.930 60 0.900 0.888 80 0.858 0.847 100 0.809 0.800	2 1.96 20 0.98 40 0.98 60 1.38 or 1.20 80 1.62 98 1.63
Guthrie, 1875	Lemonde, 1938
1 vol + 1 vol Dv = -0.2488%	vol % η
Peel, Madgin and Briscoe, 1928 1 vol + 1 vol	15° 0 595 2 595 20 648 40 806 60 1048 80 1257 98 1330 100 1340
25° 0 106.7 10.33 106.3 20.84 106.4 31.21 108.0 40.56 107.6 50.52 105.4 64.28 105.6 79.30 109.1 100 113.8	

Migal and Belotskii,	1955 (fig.)			Optical	and Electri	cal Consta	nts	
mo1% 0° 5°	η 150	20°	250	Schwers,	1912			
100 1900 1720	1580 1420	1380	25° 1120	t	red	n n _D	blue	violet
80 1580 1490 60 1260 1180 20 1000 940 0 800 760	1310 1180 1040 950 880 820 700 660	1060 880 790 620	940 800 720 600	10.8 18.7 47.5	1,36329 1,36015	100% 1.36501 1.36185	1.36939 1.36619 1.35404	1,37295 1,36966 1,35748
Findlay, 1909	- W W W W W W W W.			59.9	1,34820 1,34296	1.34984 1.34460	1,34876	1.35271
0 5,78 10.05	b.t. 60.2 58.5 58.4	η 399 400 404		8.75 24.9 30.2 40.7	1.37445 1.36771 1.36536 1.36096	80.4789 1.37626 1.36944 1.36711 1.36249	1.38088 1.37392 1.37160 1.36693	1.38452 1.37753 1.37520 1.37055
10. 91 24. 02 35. 28 44. 7 56. 1 68. 8	58.5 59.8 61.5 63.5 66.4 69.8 73.4	406 440 446 462 468 467 457		10.05 25.0 33.0 43.6	1.37850 1.37191 1.36849 1.36396	72.8399 1.38036 1.37367 1.37028 1.36573	1.38504 1.37836 1.37484 1.37019	1.38888 1.38204 1.37850 1.37384
100	77.1	442		6.2 17.3 36.6	1.38509 1.38020 1.37145	65,1769 1,38714 1,38211 1,37331	1.39160 1.38693 1.37805	1.39547 1.39075 1.38189
Rodenbeck, 1879			!	50.921%				
<u> </u>	17.5°			11.0 22.4 35.8 50.0	1.39343 1.38813 1.38163 1.37452	1.39537 1.39002 1.38351 1.37642	1.40053 1.39517 1.38850 1.38144	1.40463 1.39922 1.39346 1.38535
0.800 0.920 1.040 1.160 1.280 1.400 1.494	22.74 24.00 25.25 25.82 26.24 26.92 27.24			10.5 24.2 31.3 45.6	1.40327 1.39642 1.39283 1.38519	39.0999 1.40539 1.39849 1.39486 1.38729	1.41071 1.40369 1.39996 1.39246	1.41491 1.39778 1.40406 1.39660
Migal and Belotskii, l	955 (fig.)			7.3 17.4 36.5	1.42200 1.41651 1.40586	21.5719 1.42431 1.41877 1.40795	1.42999 1.42455 1.41374	1.43445 1.42896 1.41813
0° 5° 100 24.05 23.60	10° 15° 23.05 22.70	20°	25° 22.00	11.8 24.0 37.55 48.6	1.43026 1.42329 1.41523 1.40854	12.586% 1.43251 1.42556 1.41754 1.41081	1.43835 1.43141 1.42322 1.41641	1.44261 1.43595 1.42753
80 25.70 25.10 60 26.90 26.30 40 27.90 27.10 20 28.80 28.05 0 29.90 29.05	24.80 24.30 25.80 25.20 26.60 26.05 27.40 26.90 28.40 27.80	23, 80 24, 80 25, 60 26, 25 27, 20	23.20 24.10 25.00	10.1 25.2 43.5 61.8	1.44951 1.44038 1.42928 1.41811	0% 1.45206 1.44290 1.43176 1.42051		1.46347 1.45929 1.44286 1.43139

CHLOROFORM + ETHYL ALCOHOL

Migal and Belotskii, 1955 (fig.)	Drecker, 1883					
mo1% n _D mo1% n _D	% U					
20°	25°					
0 1.4450 60 1,3950 20 1.4300 80 1.3800 40 1.4150 100 1.3600	0 0.159 10.349 0.213 19.939 0.261 30.037 0.310 40.074 0.339 49.971 0.370 59.958 0.401 70.000 0.435 79.968 0.464					
Philip, 1897 π ε	90.030 0.488 100 0.513					
18°						
100 26.09 66.02 21.45 39.20 15.09	Timofeev, 1905					
23.42 10.988 0 4.927	% U					
	20°					
Graffunder and Heymann, 1931 % ε	0 0.2363 3.62 0.259 9.81 0.298 65.8 0.462 100 0.5933					
25°						
100 24.69 92.52 22.90	% Q dil initial final					
80.49 19.82 67.34 16.14 52.94 12.46 37.07 9.36 19.56 6.65 0 4.80	(mole chloroform) 100 88.1 +1277 88.1 79.0 +989 79.0 71.9 +742 71.9 65.8 +517					
	(mole alcohol)					
Heat constants Schüller, 1871	0 0.43 -209 0.43 0.87 -1715 0.87 1.58 -1257 1.58 2.15 -878 2.15 3.05 -762 3.05 4.4 -229 4.4 5.47 -69 5.47 6.8 +39 6.8 7.9 +114					
at room t.	0 4.5 -874					
100 0.6067 16.75 0.3348 28.77 0.3919 33.92 0.4130 39.78 0.4315 47.00 0.4539 56.46 0.4841 72.80 0.5331 0 0.2337	4.5 8.55 -48 9.6 14.0 +249 14.0 17.7 +306 17.7 21.6 +342 33.8 37.3 +324 37.3 40.65 +299					

Hirobe, 1925	Chloroform (CHCl ₃) + Propyl alcohol (C ₃ H ₈ O)
% Q mix % Q mix	Hirobe, 1925
25°	% d Q mix
2.35 -92.4 38.44 +116.8 4.32 -109.2 45.32 +149.2	25°
4.32 -109.2 45.32 +149.2 11.48 -87.1 63.53 +153.9 22.42 +2.1 73.64 +121.3 29.70 +58.9	0 1.48011 - 3.32 1.42933 +107.4 9.05 1.37269 152.1 14.95 1.31190 140.2 18.95 1.27369 123.2 32.34 1.16144 36.2 33.33 1.15420 31.4 49.37 1.04483 -58.4
Guthrie, 1875 1 vol + 1 vol Q mix is positive.	33.33 1.15420 31.4 49.37 1.04483 -58.4 56.43 1.00239 -81.7 71.91 0.92036 -99.2 90.78 0.83599 -50.6 100 0.80089 -
	Timofeev, 1905
Bussy and Buignet, 1864 - 1867	% Q dil
% t Dt	initial final
5.99 20.01 -2,50	(mole chloroform)
7.16 20.00 -2.60 8.80 20.00 -2.40	100 89.5 +945 89.5 80.8 +616 24.8 23.1 -261
8.80	24.8 23.1 -261 (mole alcohol) 21.7 24.8 +228 18.9 21.7 +191 1.42 5.9 -747 0 1.42 -
50 vol% 20.10° Dt = +2.90°	Chloroform (CHCl $_3$) + Isobutyl alcohol ($C_{\rm h}H_{1.0}O$)
Deal Madgin and Drivers 1989	
Peel, Madgin and Briscoe, 1928 vol vol initial final 0 50 +3.7 50 67 +2.6 50 33 -1.3	25° 0 1.48011 - 9.14 1,44965 +19.2 12.64 1.34364 +21.2 28.51 1.18935 -3.6 38.63 1.15139 -51.2 63.61 0.97139 -177.6 71.67 0.91949 -208.5 88.21 0.84828 +210.8
-1.3	96.83 0.83520 +108.7 100.00 0.79830

	Chloroform ($CHCl_3$) + 1-Dodecanol ($C_{12}H_{26}O$)
Chloroform (CHC1 $_3$) + Amyl alcohol ($C_5H_{12}O$)	Hoerr, Harwood and Ralston, 1944
Holmes, 1913	% f.t.
% d	1.3 -40.0
25° 0 1.47998 11.09 1.3554 19.47 1.2728 26.79 1.2097 42.04 1.0961	3.9 -20.0 32.2 0.0 89.1 +20.0 100 23.95
59.87 0.9886 69.31 0.9388	
100 0.80677	Chloroform ($CHCl_3$) + 1-Tetradecanol (C_{1} $_4$ H_{30} 0)
	Hoerr, Harwood and Ralston, 1944
Chloroform (CHCl $_3$) + Isoamyl alcohol (C $_5$ H $_{12}$ O)	% f.t.
Hirobe, 1925	0.6 -20.0 7.6 0.0 46.0 +20.0 75.3 30.0
25.01° 100 1.48010 -	100 38,26
95.54 1.42938 84.34 1.30317 +37.6 65.15 1.14627 +34.5 53.54 1.06702 -33.2 44.82 1.01405 -80.4 20.95 0.91180 -132.8 10.42 0.84803 -179.7 1.74 0.81400 -115.4 0	Chloroform (CHCl ₃) + 1-Hexadecanol (C ₁₆ H ₃₄ O) Hoerr, Harwood and Ralston, 1944 ### f.t.
Chloroform ($CHCl_3$) + Decanol ($C_{10}H_{22}0$) Hoerr, Harwood and Ralston, 1944	1.6 0.0 19.3 20.0 43.1 30.0 72.4 40.0 100 49.62
f.t. %	
-40.0 6.3 -20.0 26.5 0.0 79.6 +6.88 100	Chloroform (CHCl ₃) + 1-Octadecanol (C ₁₈ H ₃₈ O) Hoerr, Harwood and Ralston, 1944
	% f.t.
	0.2 0.0 6.2 20.0 22.0 30.0 48.7 40.0 100 57.98

Chloroform (CHCl $_3$) + Methyl malate ($C_6H_{10}O_5$)						
	Chiorofo	orm (CHC13)	+ Ethyl tartra	te (C _B H _{1 4} O ₆)		
Walden, 1906	Patterso	n, 1905	····			
% D b.t.	t	đ	t	d		
$egin{array}{ccc} 0.79 & +0.180 \ 1.95 & 0.438 \end{array}$	2.0	2.00276% 8.9947%				
3.27 0.714 5.54 1.209 7.45 1.694 11.78 2.817 14.15 3.452	12.8 26.5 37.0 51.0	1.49369 1.46803 1.4486 1.4218	18.0 31.8 38.5 54.0	1.45939 1.43531 1.4234 1.3956		
	19.1	19%	39.913	%		
Grossmann and Landau, 1910	17.3 36.3 51.0 60.0	1.4272 1.3963 1.3712 1.3564	14.5 24.5 33.8 49.6	1,3673 1,3538 1,3401 1,3173		
g/100cc (α)	60.0	36%	79.9 5%			
red yellow green pale dark violet tlue tlue 20°	13.5 26.5 33.2 57.3	1.3114 1.2953 1.2870 1.2567	13.7 25.5 33.5 56.0	1.2598 1.2466 1.2376 1.2270		
50.251 -0.40 0.00 +0.40 +1.19 +1.89 +2.09 25.1255 +1.31 +1.55 +2.59 +4.18 +4.78 - 12.5628 +2.07 +2.47 +3.42 +5.09 +6.05 - 4.949 +2.53 +3.23 +4.04 +5.15 +6.16 +7.17 2.487 +3.23 +4.02 +4.83 +6.03 +7.64 -	Walden,	1906	t	d		
Chloroform (CHCl $_3$) + Ethyl malate ($C_8H_{14}O_5$) Walden, 1906		18.11 9.73 4.07 18.11 9.73 4.07 9.73 4.06	50 50 50 20 20 20 0	1.367 1.399 1.421 1.413 1.451 1.478 1.485 1.499		
line (α) c		7.00		1,477		
18°	Winther,	1907				
red -3.9 1 -3.9 1 -3.6 1 green -5.5 1.40 -5.3 1.37 -5.1 1.41		×	đ			
violet -6.2 1.58 -6.0 1.54 -6.0 1.66			20°			
c = dispersion constant		100 63.037 47.078 23.586 5.477	1.4019	7 5 1 5		

CHLOROFORM + CHLORAL HYDRATE

			Winther,	1907			
(α) _D	t	(α) _D		%		(α) _D	
2.00276% 8.9947%					20°		
-6.04 -5.98 -3.86 -3.22 -0.23 +0.65 +1.36 +3.05	14.4 16.5 24.1 33.4 38.5 40.3 46.9	-4.32 -3.86 -2.25 -0.44 +0.45 +0.71 +1.86	spectral	47.078 23.586 5.477		+1.09 -0.81 -2.65 -3.09	
	39.913	1%	lines	63.037%	47.078	23.586%	5.477%
-3.85 -3.79 -2.39 -0.18 +0.33 +1.15 +2.16 +2.77	7.7 10.7 19.0 31.1 38.4 45.9 49.7 52.9	-4.20 -3.51 -1.77 +0.55 +1.76 +2.98 +3.58 +4.12	red yellow green pale blue dark blue	+1.88 +1.09 -0.55 5.84 9,39	-0.81 2.88 9.38	2.65 5.37 12.69	-1.19 3.09 5.83 13.66 17.94
	•	5					
-2.04 -1.85 -1.03 -0.58 -0.01 +0.45 +2.52 +3.85 +4.63 +5.26 +5.92	4.5 5.9 10.0 11.3 18.0 29.3 34.1 39.8 45.8 52.3	+1.45 1.63 2.30 2.58 3.53 5.19 5.77 6.43 7.12 7.99	Speyers,	1902 01%	f, t.	t	d sat.sol.
			= 31. 100. 100.	2 3 93 0 0	12.5 27.7 44.0 44.4 46.3 sic	16.3 34.4 44.6	1.505 1.565 1.615
t	(α ⁾ D					
50 50 50 35.5 37 36 20 20 20 0	+1 +2 0 0 0 -3 -3 -3	. 26 . 32 . 44 . 07 19 . 75	=				
	-6.04 -5.98 -3.86 -3.22 -0.23 +0.65 +1.36 +3.05 -3.85 -3.79 -2.39 -0.18 +0.33 +1.15 +2.16 +2.77 -2.04 -1.85 -1.03 -0.58 -0.01 +0.45 +2.52 +4.63 +5.26 +5.92 -5.00 -5	8,994 -6.04	8.9947% -6.04	(α) _D t (α) _D (α) _D t (α) _D (α) _D 8.9947% -6.04 14.4 -4.32 -5.98 16.5 -3.86 -3.86 24.1 -2.25 -3.22 33.4 -0.44 -0.23 38.5 +0.45 +0.65 40.3 +0.71 +1.36 46.9 +1.86 -3.85 7.7 -4.20 -3.79 10.7 -3.51 -2.39 19.0 -1.77 -0.18 31.1 +0.55 +0.33 38.4 +1.76 +1.15 45.9 +2.98 +2.16 49.7 +3.58 +2.77 52.9 +4.12 79.95% -2.04 4.5 +1.45 -1.85 5.9 1.63 -1.03 10.0 2.30 -0.58 11.3 2.58 -0.01 18.0 3.53 +0.45 29.3 5.19 +2.52 34.1 5.77 -3.85 39.8 6.43 +4.63 45.8 7.12 +5.26 52.3 7.99 -50 +1.06 50 +1.26 50 +2.32 35.5 0 20 -3.44 20 -3.07 20 -3.44 20 -3.07 20 -3.19 0 -6.75	8,9947% -6.04	(a) b t (a) b	(α) _D t (α) _D

		<u> </u>	ILOROI ORM I
Chloroform (CHC	C1 ₃) + Cyc	lohexanol	(C ₆ H ₁₂ O)
Weissenberger ar	ıd Schüster	, 1924	
mol%	р	mo1%	р
	20	10	
66.7 57.5 50.0 40.3	54 74 92 111	33.3 28.6 25.0 20.0	123 133 140 145 160
mo1%	1	n (water = 1) σ
	20°		
100 66.7 57.5 50.0 40.3 33.3 28.6 25.0 20.0	14 3 2 1 1 1 1 1 0	.4	0.474 0.439 0.424 0.414 0.404 0.399 0.394 0.391 0.391
Chloroform (CHC			(C ₇ H _{1 4} 0)
Weissenberger, S	chüster an	d Wojnov, 1 	925
mo	1%	p	
	15°		
66 50 40 33 28 25 22	.0 .0 .3 .6	59.5 77.2 87.1 94.3 99.5 104.5	
mol%	η	(water =1) ^d
	15°		
66.7 50.0 40.0 33.3 28.6 25.0 22.2	3. 2. 1 1 1 1	15 14 36 27 06 05	0.432 0.412 0.404 0.399 0.397 0.395 0.394

```
Chloroform ( CHC1_3 ) + m-Methylcyclohexanol
                                                               (C_7H_{14}O)
Weissenberger, Schüster and Wojnov, 1925
                    mol%
                                                     p
                                      15°
                    66.7
50.0
40.0
33.3
28.6
25.0
21.8
             mol%
                                            \eta (water =1)
                                   15°
                                          4.95
3.03
2.33
1.87
                                                                    0.424
0.412
0.406
                                                                   0.400
0.398
0.396
Chloroform (CHCl3) + p-Methylcyclohexanol
                                                           ( C<sub>7</sub>H<sub>1</sub>40 )
Weissenberger, Schüster and Henke, 1925
        mo1%
                            p
                                                 \eta (Water =1)
                                      15°
                          57.0
74.3
85.1
91.7
95.1
98.1
99.9
                                                                   0.455
0.441
0.435
0.432
0.432
0.431
0.431
       66.7
50.0
40.0
                                             4.61
2.58
1.70
1.36
1.25
1.03
0.95
```

Chloroform ($CHCl_3$) + Menthol ($C_{10}H_{20}O$)				Bromoform (CHBr ₃) + Methyl alcohol (CH _k O)						
Castiglioni, 1934				Kireev and Sitnikov, 1944						
9	5	d		η		me	01%	p	P ₁	p ₂
		20°				L	v			
] ,	0	1.4835 1.3919	68	1.97 6.13				35°		
3	20 80	1.3098 1.2395	84 113	1.30 4.50		0	_0	9.8	9.8	.0
	10 50	1.5743 1.1131	165	0.00 7.80		0.1	71.4 88.1	34.7 82.13	9.9 9.8	24.8 72.3
ď	50	1.0639		4.30		11.0 18.9 37.7	92.3 93.5	124.2 147.7	9.6 9.0	114.6 138.7
						40,1	94.3 94.3	154.8 155.4	8.8 8.9 8.9	146.0 146.5
Chloroform (Benzyl a	alcohol	(C ₇ H ₈	0)	47.0 50.2 57.6 65.5 66.7 71.8 76.7 84.0	94.4 94.7 94.7 95.2 95.4 95.6 96.2	158.4 160.6 164.7 169.4 169.2 173.8 178.3 186.7	8.9 8.5 8.7 8.1 7.8 7.6 6.8 5.6	149.5 152.1 156.0 161.3 161.4 166.2 171.8 179.8
	vol%		1			84.0 88.8 92.0	97.0 97.6 98.2	186.7 190.5 196.6	4.6 3.5	185.9 193.1
	23.	5° - 24°				94.8 97.0 100	98.8 99.3 100	202.1 205.2 208.3	2.4 1.4 0	199.7 203.8
	100 75 65 50 35	1.04 1.15 1.26 1.33	591 534 592 345			Öholm,		200.3		208.3
	25 0	1.37 1.48				11	ality romoform	đ	η	diffusion ratio
							Onto I of pt			
	 							20°		
Lecat, 1949							0% 1 0.5 0.25	2.82 - 2.86 0.9808 0.884 0.833	2000 696 660 615	1.63 1.67
Dichlorbromn	nethane (C Alcohols	CHC1 ₂ Br)	(b.t.	= 90.1	.) +			0.795	596	-
	2nd Comp.		Az							
Name	Formula	b.t.	%	b.t.	Dt mix	Kireev	and Sitni	kov, 1944		
Methyl	$CH_{\mu}O$	64.65	40	63.75			mol	% d	n	מל
alcohol Ethyl	C2H60	78.3	28	7 5.5	(34%) +0.9			400		
alcohol	- 2 - 0 -			70,0	(36%)			20°		
Propyl	C 3H80	97.2	19.5	86.5	-2.1	() 	0 15.0	2.8907 1 2.7354	1.5	9733 7836
alcohol Isopropyl	C3H80	82.4	38	79.3	(19%) -2.8		29.8 46.9	0 2.2904	1.5	5 77 1 1985
alcohol	-,180	O#1.T	00	•) • 0	(27%)		58.2 65.6	2 1 9155	1 4	9220 7099
Isobuty1	$C_{14}H_{10}0$	108.0	11	89.25	-5.3		65.7 71.6	5 1.9136 2 1.7694	1.4	5163
alcohol tert.Butyl	C. II A	92 45	70	00.0	(15%)	ľ	73.1 83.1	0 1.4374	1.4	0977
alcohol	C ₄ H _{1 0} 0	82.45	38	80.0	-4.2 (10%)		83.7 88.3	9 1.4199		_
Allyl	C 3H60	96.85	17.5	85.85	-2.24		91.9. 92.0	7 1.2621 3 1.1308 9 1.1239	1.3	7098
alcohol					(19%)		,_,,	- 114607	·	
						i				

Bromoform ($CHBr_3$) + $Ethyl$ alcohol (C_2H_60)	Ampola and Manuelli, 1895
Kireev and Sitnikov, 1944	% f.t. % f.t.
mo1% p p ₁ p ₂	0 +7.80 4.75 3.735
L V	0.12 7.49 5.57 3.39 0.41 6.77 6.95 3.05
0 0 9.8 9.8 0 4.8 75.9 39.8 9.6 30.2 6.4 77.6 42.0 9.4 32.6 18.9 86.7 69.2 9.2 60.0 21.1 87.3 69.1 8.8 60.3 37.8 90.0 78.2 7.8 70.4 54.0 90.2 81.9 8.0 73.9	0.83 6.115 8.77 2.565 1.31 5.555 10.61 2.38 1.90 5.095 13.68 1.85 2.78 4.57
54.0 90.2 81.9 8.0 73.9 58.0 90.6 82.2 7.7 74.5 64.8 91.2 84.0 7.4 76.6 68.2 91.4 85.5 7.3 78.2 84.6 94.8 92.9 4.8 88.1 98.2 99.4 101.6 0.6 101.0 100 100 102.7 0 102.7	Lecat, 1949 Bromoform (CHBr ₃) (b.t. = 149.5) + Varia
	2nd Comp. Az or Dt mix
01-1- 1012	Name Formula b.t. % b.t. Sat.r.
Oholm, 1913	Glycol C ₂ H ₆ O ₂ 197.4 6.5 146.45 142
normality d n diffusion of bromoform ratio	(6.5%) Propoxy- C ₅ H ₁₂ O ₂ 151.35 16 147.15 +25
20°	Propoxy- C ₅ H ₁₂ O ₂ 151.35 16 147.15 +25 glycol (16%)
100% 2.82 - 2.86 2000 - 1 0.9779 1316 0.835 0.5 0.890 1294 0.843 0.25 0.833 1250 - 0 0.790 1201 -	Ethylene C ₂ H ₅ 0Cl 128.6 54 127.4 +0.2 chlorhydrin (82%) Dichlor C ₂ H ₄ 0Cl ₂ 146.2 45 143.0 +0.3 ethanol (40%)
Kireev and Sitnikov, 1944 mol% d n _D	Bromoform ($ ext{CHBr}_3$) + $ ext{Methyl malate}$ ($ ext{C}_6 ext{H}_{10} ext{O}_5$) Grossmann and Landau, 1910
20°	g/100cc (α) pale dark red yellow green blue blue violet
0 2.8910 1.59733 10.60 2.7375 1.58236	20°
10.60 2.7375 1.58236 22.79 2.5476 1.55958 38.17 2.2811 1.52740 48.70 2.0878 1.50572 57.79 1.8945 1.48367 64.28 1.7525 1.46784 69.93 1.6219 1.45335 70.10 1.6192 1.45339 78.30 1.4139 1.43015 84.71 1.2432 1.41142 88.86 1.1269 1.39840 95.55 0.9302 1.37684 96.40 0.9046 1.37412 100 0.7909 1.36170	50.506 -0.04 +0.18 +0.53 +1.52 +2.16 +2.77 25.253 +1.58 +2.49 +3.33 +4.67 +5.43 - 12.6265 +2.46 +3.80 +5.15 +6.34 +7.37 - 4.865 +5.14 +6.17 +7.61 +9.25 +10.07 +10.69 2.4325 +2.47 +3.29 +4.52 +5.76 +6.58 -

Bromoform ($CHBr_3$) + $Ethyl$ tartrate ($C_8H_{16}O_1$	Carbon tetrachloride (CCl_{μ}) + Methyl alcohol ($CH_{\mu}0$)
Patterson and Thomson, 1908	Heterogeneous equilibria .
t d t d	
0% 7.0809%	Thorpe, 1879
19.07 .8924 19.04 2.62003 21.17 2.8869 22.56 2.61179 25.75 2.8750 30.03 2.59402	υ, ι, β τη γ
9.9976% 30.915%	749.5mm
12.9 2.5169 19.25 2.00408 31.0 2.4751 22.6 1.99788 52.0 2.4270 32.17 1.9808 73.0 2.3780	55.8 - 56.2 23.44
% d (α) _D	760,7mm
	57.8 - 58.8 31.96 58.8 - 59.5 35.30
20° 0 2.8899 0.20 7.0809 2.61778 0.93 9.9976 - 1.19 30.915 2.0027 3.09	59.5 - 60.3 39.66 60.3 - 61.1 44.63 61.1 - 61.8 49.91 61.8 - 62.8 56.53 62.8 - 63.8 67.87 63.8 - 64.8 83.04 64.8 - 65.5 95.59 65.6 - 65.6 100
t $(\alpha)_D$ t $(\alpha)_D$	Az : 78.1% 55.6 - 55.9°
7.0809% 9.9976%	
16.0 0.47 16.9 0.86 20.5 0.99 22.6 1.43 24.8 1.51 38.8 3.18 39.8 3.17 50.6 4.34 59.1 5.11	
30.915% 76.9 6.76	
14.5 16.9 2.76	765.1 - 765.3 mm 100 65.2 40.6 56.6
28.9 4.11 Lowry and Dickson, 1915 (α) 6708 Å 5893 Å 5780 Å 5461 Å 435	100 65.2 40.6 56.6 93.9 64.0 38.5 56.475 87.2 62.7 31.8 56.2 75.0 60.5 24.9 56.0 64.0 58.85 20.7 55.97 59.6 58.3 18.4 55.95 54.9 57.8 15.0 56.0 48.6 57.2 7.4 56.35 45.6 56.9 5.9 56.6 42.1 56.7 0.0 77.2
	8 A
20° 100 +6.69 7.45 7.52 7.50 5.6	young, 1903
20 +1.84 +0.83 +0.63 -0.30	% b.t.
	0 76.75 20.41 55.70 Az 100 64.7

Lecat,1949				Scatchard, Wood a	nd Mochel, 194	6		
	%	b.t.	Dt mix	mol L	% V	р		
	0 20.6 30	76.75 55.65 Az 64.65	-0.6	0.4880	25° 0.4838	205.30		
Fontell, 1936	P	76	p	1.69 1.89 13.49 35.60	35° 32.97 33.74 46.30 49.15 50.30	259.13 262.31 315.12 324.64		
100 88.8 87.3 69.0 67.1	96.1 110.4 111.8 132.2 133.9	23.0 14.5 10.6 8.8 7.5	159,9 160,2 160,1 159,6 159,6	35.60 47.76 49.39 65.57 79.12 91.20	50.30 50.56 53.02 57.92 70.24	324.64 325.71 325.71 323.81 312.61 277.37		
66.4 51.9 51.1 50.3 40.1 36.4	134.6 147.1 148.1 148.4 154.8 156.3	4.9 3.2 2.3 0.40 0.03	158.6 157.0 155.4 140.6 94.5 90.3	0.4866	45° 0.5231 55°	500.13		
24.9 %	p 20°	P ₁	p ₂	2.54 5.79 14.93 36.47 48.93	36.19 36.39 49.81 52.84 54.31	580.66 591.16 716.95 741.36 745.60		
100 96 90	96.1 117.2 135.5	0.0 24.4	96.1 92.8	49.46 64.48 79.03 90.87	54.38 56.86 61.87 73.37	745.72 744.54 724.28 658.37		
86 80 76 70		50 A	47.1 58.0 69.0	88.4 85.9 83.0 81.9	Scatchard and Ti	cknor, 1952		
66 60	152.0 155.0 157.5 158.7 159.9	69.0 73.1 76.9 78.8 (80.9)	80.6 79.9 (79.0)	mol L	% V	p		
56 50 46 40 36 30	160.0 160.1 160.2 160.1 160.0 159.9	(81.0) (83.0) (83.7) (84.6) (85.2) 85.2 86.5 87.1	(78.1) (77.1) (76.5) (75.5) (74.8) 73.7	55.87	35° 51.40 55°	325,68		
30 26 20 16 10 6	159.5 158.6 157.6 155.2 151.0 90.3	86.5 87.1 87.5 88.3 89.1 90.3	73.0 71.5 70.1 66.9 61.9 0.0	2.34 3.43 5.25 17.34 54.50 86.99	36.92 39.26 43.26 50.84 55.35 67.24	568.91 592.60 644.13 721.56 746.30 687.30		

CARBON TETRACHLORIDE + METHYL ALCOHOL

Hipkin and Myer:	. 1054		Properties of p	hases.	-
HIPKIII alid Myel:			Young, 1903		
L	mo1% V	b.t.	20,41% (Az)	$d^0 = 1.352$	36
	760mm		20.41% (AZ)	u - 1,332	30
0.0	0.0	76.7	1029		
0.2 0.2	2.0 2.7	76.1 75.85	Harms, 1938		
$\begin{array}{c} 0.4 \\ 1.3 \end{array}$	12.7 24.15	72.35 67.6	mo1%		<u>d</u>
1.7 3.0	26.4 38.3	66.85 62.0		6°	30°
5.05 10.7 12.4	44.5 49.0 50.0	59.4 5 7.2 56.95	0.000 2.793	1.62097 1.61115	1.57449 1.56463
24.8 40.1	52.2 53.65	56.25 55.8	4.668 8.889	1.60440 1.58872	1.55797 1.54265
45.25 49.8	54.1 54.5	55.75 55.75	13.169 22.170	1.57210 1.53410	1.52642 1.48943 1.43528
50.5 55.0	54.85 55.2	55.7 55.65	33.681 41.665 54.320	1.47830 1.43382 1.35077	1.39217 1.31156
56.55 59.65	55.2 55.8	55.7 55.7	63.496 82.619	1.27834 1.07891	1.24132 1.04800
60.3 62.5 67.6	56.1 56.3	55.7 55.755	97.017 100.000	0.86958 0.80436	0.83633 0.78182
72.5 72.7	57.6 59.1 59.5	55. 7 5 56.0			
76.4 81.3	60.5 63.0	56.0 56.35 56.75			
83.8 86.8	64.9 67.7	56.75 57.1 57.7	Pesce and Evdoki	mov, 1940	
88.3 89.7	69.55 71.6	58.2 58.6	8		đ
91.75 93.8 94.8	75.3 80.3	59.5 60.4		25°	
96.2 97.9	82.3 86.4	60.85 61.8	0 14.3	101	1.58440 1.38464
98.6 99.3	91.0 93.9 96.65	62.8 63.5 64.1	22.9 33.8	63	1.28647 1.18107
99.7 99.9	98.8 99.5	64.5 64.6	45.6 59.6	46 89	1.08444 0.98804
100	100	64.7	77.4 100	40	0.88797 0.78658
Hommond and Ca	1055	سور میں نیے انفر شد اس امر نیے حداث ہیں۔			
Hammond and St	شدر سے بنے سے سے سے سے سے اس میں است سے است سے است سے اس میں است سے است سے است سے است سے است سے است سے است سے است	بعن فتي شد شهرست كنداك ويترسك المداكم المراجع أهراسه ألم المراجع			
C	D c 25°	D	Scatchard, Wood	and Mochel,	1946
4,16 4,49	2,227 11.	20 2.100 92 1.995	wt%	mo1%	d
7.73 9.46	2.162 18. 2.119 18.	20 1.970 80 1.963		25°	
10,35 c = g CC1 ₄	2,138	-•-	0	0	1.58452
- 5 0014	من کی کی کار در است کا در است کا در است کا در است کا در است کا در است کا در است کا در است کا در است کا در است ک در این می در در در در در در در در در در در در در		2.96 6.40	12.76 24.72	1.53764 1.48731
Tichacek, Kmak	k and Drickamer, 19	56	13.26 17.36 25.79	42.33 50.22 62.52	1.39691 1.34781 1.25715
mo	ol % D t		25.97 38.74	62.74	1.25526 1.13928
	40°		39.27 59.87	75.23 75.64 87.75	1.134 72 0.9869 7
\$ 5	50 ~	2.8 4.9	100	100	0.78654
N .	80 -ans $^{ m CH}_{ m 4}0$ going to t	3.0 he hot wall .			
:::::::::::::::::::::::::::::::::::::::		۔ و عبد جو اسم خود شور اللہ فرو خود خود اللہ سم خال اللہ ہوں اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	1		
L			<u> </u>		

	**************************************			l .			
Jones, Bowd	en, Yarwold	and Jones, 1	948	Optical a	nd electrical	l Properties.	
	%	d					
	· · · · · · · · · · · · · · · · · · ·			Pesce and E	evdokimov, 194	10	
		1.50			%	n ₅₈₇₅	
	0 5	1.5844 1.5085				25°	
	10 15 20	1.4398			0	1,45725	
	40 50	1.3228 1.1320 1.0529		ľ	14.301 22.963	1.42423 1.40821	
	60 80	0.9887 0.8758			33.862 45.646	1.39100 1.37524	
	100	0.7865			59.689 77.440	1.36232 1.34311	
					100	1.32643	
Scatchard a	and Ticknor,	1952					
	mol%	đ		Scatchard a	and Ticknor,	1952 	
	3	5°			mo1%	n _D	
	0.0 26,886	1.58437 1.37052			3	35°	
	51.242 73.074	1.17715 1.00264			0.0	1.4572	
	100.0	0.78653			26.886 51.242	1.4221 1.3903	
					73.074 100.0	1.3620 1.3267	
Jones, Bowd	len, Yarnold	and Jones, 1	948				
%	η	%	η	Hipkin and	Myers, 1954		
		2 5°		mo1%	n _D	mo1%	n _D
0 5	902 858	40 50	746 702			:0°	
10 15	854 846	60 80	665 599	0	1,4602	60	1,4090
20	831	100	552	10 20	1.4549 1.4483	70 80	1.3935 1.3768
				30 40	1.4407 1.4321	90 100	1.3546 1.3286
Sette, 1950				50	1.4216	200	20202
	mol%	d/f ² .10	17				
	0	580		Shakhparono	v and Shlenki	na, 1954	
	6.5 10	400 350		mo1%	n _D	I	D
	20 30	257 190			20°	19° - :	20°
	40 50	134 100		0 21	1.45981	1 26	0.045
	70 100	68 40		41	1.44667 1.43182	2.26 3.82	0.022 0.014
d = amn		ne ultrasound	labsorntion	50 59	1.42069 1.40940	3.74 3.00	0.015 0.018
	efficient	artrasoulla	. abborption	84 100	1,36869 1,32846	1.60 0.56	0.030 0.071
f = fre	equency.			D = degre	e of the opti	cal depolari:	zation
				I = relat	ive intensit	y of the mol	
				dispe	rsion (at rig	ht angle)	

CARBON TETRACHLORIDE + METHYL ALCOHOL

Fontell, 1936.	
% (α) _D	
20°	Harms, 1938
100 68°31'	mol% ε
74.04 64°27' 62.84 62°26' 42.82 58°18'	6° 30°
42.82 58°18' 33.39 56°3' 27.17 54°24.5'	0.000 2.263 ₆ 2.216 ₃ 2.793 2.342 ₈ 2.298 ₇
13.62 50° 18', 7.39 48°4',	4.668 2.4049 2.3607 8.889 2.5921 2.5327
4.57 46°57° 1.76 45°46°	13.169 2.8825 2.7775 22.170 3.8832 3.6031
1.00 45°26', 0 44°58',	33.681 5.994 5.350 41.665 8.263 7.499
	54.320 12.57 11.364 63.496 16.90 15.067
	82.619 27.53 23.44 97.017 -
Schupp, 1949 (fig.)	100.000 33.0 30.9
mol% total polarization	lieat constants.
20°	near constants.
0 8.80 20 13.40	Scatchard, Ticknor, Goates and Mc Cartney, 1952
40 21,00 60 27,70	vol% Q mix* vol Q mix*
$\begin{array}{ccc} 80 & 30.40 \\ 100 & 31.60 \end{array}$	(cal/cc) (cal/cc)
	20°
	5.64 0.78 22.43 +0.74 6.54 0.78 47.40 +0.28
Hoffmann, 1943	6,54 0.78 47.40 +0.28 9,93 0.85 49.00 +0.25 11.33 0.83 74.65 -0.11
molarity molar extinction .105	21.64 0.70 75.45 -0.17
	* In the paper, there is an error in this column
21° - 22° 7.789 202	heading.
2.998 492 1.018 1204	
0.3580 2676 0.1161 5317	Times 100F
0.0957 5730 0.0485 7160	Timofeev, 1905
$egin{array}{ccc} 0.0250 & 7712 \\ 0.0250 & 7980 \\ \hline \end{array}$	% Q dil initial final
0.0219 7980 0.0 8000	(mole alcohol)
	0 2.7 -741
	5.3 7.7 -51.3
	7.7 10.0 -22 10.0 12.4 -25
	(mole CCl ₄)
	100 89.3 +121 89.3 80.5 +73.6

Carbon te	trachloric	ie (CCl ₄) + Ethyl al		Burv	inkel,	1914					
Heterog	eneous equ	ilibria.	, J ₂ 1	-0~ /					p			
						0		5 33.9	2 49.6	9 66.6	66 89.24	100%
					0 10	33 56	40 71 120	39 69 117	34 66	29 51	21 40	13 24
Haywood,	1899 				_ 20 30	92 144	193	189	108 176	93 148	72 113	45 79 132
%	b.t.	<u> </u>	% b.t.	P	- 40 50 60	213 311 447	29 6 460 670	292 448 666	273 406 618	238 356 541	184 295 444	226 359
100.0 87.7	78.9 75.85	768.8	8.1 65.8 0.4 65.5	5 768.3	70	618	-		-10	-		-
87.7 73.1 57.8 50.7 46.7	72.4 69.4 68.2	769.0 1 768.9 1	.7.3 65.5 .1.4 65.6	768.4 768.4								
50.7 46.7 45.9	68.2 67.6 67.5	768.9 768.9 768.3	8.9 65.8 5.3 66.5 2.5 68.5 0.0 77.2	768.0 767.9	King	and Si	medley	,1924				
39.8 34.1	66.8 66.225	768.4 768.3	0.0 77.2	768.4 767.7		vol%		p		vol%	p	
					_				20°			
Schreiner	makers, 19	004			-	0 10		90 111		50 70	103	
- %			·····		-	20 30		112 110		80 90	87 75 60	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	34.8°	50°	60°	66°	_	40		108		100	44	
0 2.57	173	312 413	446 601	544 7 41								
7.02 5.75	225 226	428 430	630 63 7	780 788	Tyre	r, 191						
23.31 28.32	173 221 225 226 223 220	427 421	630 630	782 782 752	Î	L		%	v		b.t.	
41.75 51.14 56.13		403 381 369	600 571 554	752 716 700	 				745mm			
60.94 72.87	193 187 179 156	355 317	534	677 614		100			100		77.91	
79.98 89.77	142 122	292 257	487 453 404	576 520		100 90 80			60 45.4		74.82 72.44	
100	103	223	354	462		70 60 50			35.3 28.0 23.2		70.25 68.35 66.04	
Z		b.t.		· · · · · · · · · · · · · · · · · · ·	-	40 30			20.6 18.5		65.32 64.42	
	200mm	380	ım 7 6	Omm	_	20 10			$\frac{16.8}{12.9}$		63.88 64.30	
0 2.57	38.5 32.5 32.1	55. 47.	4 7 8	6.4 6.8		0 z = (1:	5 RQ)	63.8	0		7 5.92	
7.02 5.75	32.1	47. 47.	1 6	5.2 4.9	^	e - (1.	J. G/b/	00.0				
23.31 28.32 41.75	32.3 32.7 34.1	47. 47.	2 6 5 6	4.9 5.2	==							
51.14 56.13	35.55	48. 49. 50.	9 6	6.3 7.6 8.1								٠
60.94 72.87	36.2 37.3 40.0	51. 54.	6 6	9.1 1.5								
79.98 89.77 100	41.9 44.7 47.8	55. 58.	5 7.	2.9 5.4								
100	7/.0	61.	<i>5</i> /	8.1	Ĭ							
					=							

CARBON TETRACHLORIDE + ETHYL ALCOHOL

Hill, 1912	<u> </u>		1		100	120
$Az = 65.2^{\circ}$ 16.	4%		Wyatt, 1929	(fig.)		
Lecat, 1949			mo1%	f.t.	mol%	f.t.
%	b.t.	Dt mix	100	-117 -119 E	40 30	-42 -36
0 15.8: 16 100	76.75 65.08 78.3	Az -2.8	90 80 70 60 50	-119 E -86 -64 -58 -46	20 10 0	-26 -24 -22
Barker, Brown and	Smith, 1953		Vieth, 1929			
11	mo1%	p		%	f.t.	
4.59 10.15 19.24 29.12 39.50	45° 21.78 26.49 29.81 31.78 33.56	328.31 342.23 348.98 350.47 350.47	C.S.T. :	73.6 68.3 50.9 49.2 42.3 29.2 below -39°	-58.5 -52.5 -39 -38 -35 -30	
40.69 51.55	33.69 35. 77	350.51 346.88	Hammond and	Stokes, 1955		
60.95 72.64	38,23 43,35 52,69	339.65 321.69	c		c	D
83.62 89.84 96.44 97.88 5.17 10.39 19.77 29.60	52,69 62,44 81,37 87,90 65° 23,12 29,87 34,27 37,00	286, 53 253, 77 205, 65 192, 73 678, 54 721, 28 748, 32 757, 36	4.34 10.72 17.92 c = g CCl _h i	1.445 1.400	21.40 23.54	1.387 1.364
39.13 40.07 59.76 59.95 69.95 70.75 71.23 82.55 89.39 95.96	39.03 39.08 41.59 44.24 48.78 49.17 49.42 57.94 67.30 83.27 89.25	759.79 760.82 756.18 745.46 720.63 716.86 716.91 657.86 595.71 508.51 481.24	Hammond and lower cell compartement	1 Stokes, 1956. upper cel t compartem	l ent	D
				25°		1 472
Dolique, 1935			8.68 21.40 35.76	0 0 0		1.472 1.447 1.401
t	P ₂	P ₁	35.76 40.99 47.08	0		1.384 1.359
21 29 46.5 53.5 57.5 60.8 63.15 64.25 65.25 66	156.1 341.3 457.1 546.6 625.9 702.1 738.5 764.3	121 168.7 303.7 162.9 551 530.3 704.1 739.2 765.4	63.16 84.57 89.46 95.90 92.34 113.80 129.32 157.58 157.25 158.10 157.98 158.24	0 37. 37. 37. 65. 77. 101. 98. 119. 138. 139.	90 90 90 32 43 62	1, 311 1, 027 0, 996 0, 993 0, 857 0, 732 0, 601 0, 666 0, 709 0, 764 0, 773

	Vrahma and Williams 1927
Properties of phases.	Krchma and Williams, 1927 mol% d
Findlay, 1909	25°
% b.t. dtedb.t.	0 1.5835 10 1.5325 25 1.4491
0	40 1.3540 50 1.2833
6.71 64.5 1.4069 9.65 64.0 1.3693	100 0.7862
20.96 63.8 1.2417 30.2 64.2 1.1539	
36.6 64.8 1.0990 58.8 67.7 0.9414 73.0 70.5 0.8618	
73.0 70.5 0.8618 100 77.1 0.7390	Hedestrand, 1929
	mol% d
Hill, 1912	25°
% d	0 1.5835 10 1.5325
0°	25 1.4491 40 1.3540
0 1.63165 16.050 1.40234	50 1.2833
16.059 1.40006 15.059 1.40141 sic 16.173 1.39962	
16.046 1.40142 100 0.80625	Graffunder and Heymann, 1931
	mol% d
Duminia 1014	
Burwinkel, 1914	25° 100 0.7850
d	71.27 1.1035 52.45 1.2650
17°	29.26 1.4250 15.48 1.5065
0 1.60446 15.557 1.38551	0 1.5835
33.920 1.19968 50.307 1.07300 66.659 0.96988	
84.241 0.87802 100 0.80942	Harms, 1938
	mo1% d
King and Smedley, 1924	6° 30°
	0 1.62097 1.57449 1.857 1.61137 1.56487
vol% d vol% d	3.437 1.60325 1.55685 5.593 1.59215 1.54598
20°	8.372 1.57749 1.53171 16.681 1.53202 1.48748
0 1.594 60 1.113 10 1.513 70 1.002 20 1.433 80 0.949	26.423 1.47467 1.43196 35.382 1.41761 1.37681
30 1.353 90 0.875	43.031 1.36503 1.32604 53.026 1.28992 1.25346 59.429 1.23762 1.20300
40 1.273 100 0.789 50 1.192	77.394 1.07006 1.04099 95.848 0.85659 0.83435
	100 0.80130 0.78077

CARBON TETRACHLORIDE + ETHYL ALCOHOL

	1048	10:		1				
Campbell and I	Miller, 1047	(fig.	J	Co.h.	1040			
mol%	đ	mol%	d	Sacher,	1940			7040
	25	0		mo1%		d	sound velocity (m/s)	π .10 ¹² (dyn./cm ²)
100 97 95 90 86 80 72	0.78 0.825 0.85 0.92 0.96 1.025 1.08	61 58 52 42 27 0	1.19 1.24 1.28 1.34 1.45 1.59	0 4.10 8.39 16.32 28.63 41.05 49.69 64.73 74.73 85.41	4	5985 5776 5554 5115 4408 3600 2979 1758 0860 97196	943.3 938.7 938.3 942.0 951.1 967.8 982.1 1015.6 1043.9	70.31 71.92 78.03 74.39 76.73 78.44 79.88 82.46 84.49 87.34
Jones, Bowden	, Yarnold an	d Jones, 1	948	92.64 100.00		88646 7 91 7 5	1121.5 1168.7	89.69 92.47
%	d	%	d	Sette, 19	50	*		
0 5 10	1.5844 1.5069 1.4378	40 50 60	1.1313 1.0522 0.9877			mol%	a/f² .10	17
15 20	1.3752 1.3195	80 100	0.8746 0.7851			0 10 20 30	530 380 250 170	
Barker, Brown	and Smith,	1953				40 50 60 80 100	130 100 88 70 55	
mo1%	d	mo1%	d	a = am	plitud	e of t	the ultrasound ab	sorption
0.00 5,16 10,83 14,90 19,25 25,45 29,70 32,88 38,36 44,12 44,99 Peel, Madgin		54.33 60.28 64.62 69.69 76.62 80.38 85.47 89.19 94.59 100.00	1.25102 1.20361 1.16671 1.12152 1.05527 1.01687 0.96217 0.91999 0.85506 0.78511	f = fr Findlay,	effici equenc 1909 % 0 4.58 6.71 9.65 20.96 30.2 36.6 58.8 73.0		65. 1 64. 5 64. 0 63. 8 64. 2 64. 8 67. 7 70. 5	η at b.t. 499 518 521 520 530 530 526 5110 6190 642
				Dolian an	d Bris	coe, 1	1937	
					m	o1%	η	
						00 93.7 86.9 79.5 67.0 52.7 35.8 15.7 8.3	25° 1070 1070 1070 1050 1020 980 940 890 890 920	

Campbell and Miller, 1947 (fig.)
n n
25°
100 1.359 34 1.408 91 1.362 29 1.412 82 1.368 25 1.418 72 1.372 18 1.425 65 1.380 9 1.439 55 1.385 0 1.455 45 1.395
Barker, Brown and Smith, 1953
mol% n _D mol% n _D
25°
0.00 1.4578 54.33 1.4162 5.16 1.4540 60.28 1.4105 10.83 1.4504 64.62 1.4060 14.90 1.4477 69.69 1.3994 19.25 1.4447 76.62 1.3924 25.45 1.4402 80.38 1.3873 29.70 1.4371 85.47 1.3808 32.88 1.4348 89.19 1.3758 38.36 1.4303 94.59 1.3678 44.12 1.4256 100.00 1.3596
49,99 1.4201
Hoffmann, 1943
N molar N molar extinction
21.6°
6.150 0.00220 0.5053 0.01831 4.316 0.00321 0.3193 0.02469 4.287 0.00327 0.2192 0.03170 4.259 0.00315 0.1984 0.03363 4.213 0.00334 0.1803 0.03556 2.965 0.00449 0.11058 0.04528 1.885 0.00677 0.03766 0.05774 1.687 0.00703 0.02403 0.05968 1.601 0.00741 0.0229 0.05902 1.206 0.00954 0.0136 0.06322 1.092 0.01036 0.0 0.0606 1.004 0.01070 0.7273 0.01368 by mol ⁻¹ cm ⁻¹

CARBON TETRACHLORIDE + ETHYL ALCOHOL

Harms, 1938	Heat constants .					
mo1% ε	Peel, Madgin and Briscoe, 1928					
6° 30° 0 2.264 2.216 1.857 2.313 2.272 3.437 2.354 2.318	% Dt initial final					
5.593 2.426 2.385 8.372 2.530 2.485 16.681 3.093 2.948 26.423 4.344 3.941 35.382 6.279 5.494 43.031 8.419 7.534 53.026 11.47 10.78	0 50 -0.4 50 67 +0.7 50 33 -0.8					
53.026 11.47 10.78 59.429 14.05 13.69 77.394 20.12 19.35 0 28.0 24.4	Brown and Fock, 1955 mo1% Q mix					
Krchma and Williams, 1927	45.0° 53.7 122.1 55.0 114.7					
mo1% ε	60.5 88.0 67.1 65.2					
25°						
0 2.230 10 2.560 25 3.74 40 5.45 50 7.05 100 25.2	Tyrer, 1912 % Q vap (cal/g)					
Hedestrand, 1929	100 200.3 90 141.8 80 120.3 70 106.0 60 95.5					
mol% ε	50 88.1 40 83.2					
25°	40 83.2 30 80.9 20 77.5 10 64.2					
0 2.230 10 2.560 25 3.74 40 5.45 50 7.05	0 46.89					
50 7.05						
Graffunder and Heymann, 1931						
mo1% ε						
25°						
0 2.276 15.48 2.939 29.26 4.45 52.45 9.40 71.27 14.71 100 24.69						

Jones, Bowden, Yarnold and Jones, 1948							
Carley and Bertelsen, 1949 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Jones, Bowd	en, Yarno	ld and Jones	, 1948	
Carley and Bertelsen, 1949 Description of the property of t			Æ		đ	η	
Carley and Bertelsen, 1949 b.t.	Carbon tetrachioride (CCI ₄) + Pi				25°		
b.t. wol≸ L V 97.19 100 100 100 100 1.0654 1.1427 1409 50 1.0654 1.534 1409 50 1.0654 1.554 1554 1554 1554 1554 1554 1554 1		, ,,,,,,,	<u>o</u>			902	
b.t. mol	Carley and Bertelsen, 1949		10				
So			20		1.3810	1012	l
97, 19 100 100 100	L	V	50				
84.5 85.9 55.0 70.0 36.7 75.8 55.9 29.3 74.7 47.8 26.1 73.9 31.7 21.8 73.4 18.2 18.2 73.6 14.9 16.9 76.75 0 0 0	97.19 100 90.8 94.2	100 74.7	80		0.8902	1667	Ì
73.9 31.7 21.8 73.4 18.2 18.2 73.6 14.9 16.9 76.75 0 0 0	84.5 85.9	55.0	100		0.8015	2004	
73.9 31.7 21.8 73.4 18.2 18.2 73.6 14.9 16.9 76.75 0 0 0	75.8 55.9 74.7 47.8	29.3					=
18.9	73.9 31.7 73.4 18.2	21.8	Renfeld, 19	55			
Holley and Weaver, 1905	74.2 5.0	16.9 10.5	mo1%	đ			
Holley and Weaver, 1905					.8°		
Holley and Weaver, 1905 1,9354 1,5702 940,22 72,042 72,			2.3387	1.5862	940.80	71,227	
1.4792 954.46 74.713 24.324	Holley and Weaver, 1905		9.3823	1.5422	943.22	72.042 72.888	
Note	g b	+	24,324	1.4432	962,62	74.212 74.773	
11.80			48.910	1.2657	1115.9	76,556	
No	0 76 11,80 72	2.6 Az	81.590	0.99502	1140.7	77.234	
Note	100 93						
Denzier, 1945			v = sound v	elocity			
Denzier, 1945	V. 1 1 1 1 1 1						
## 100 ## 100	Molossovski and Ineodorowitsch, 193	35	Denzler, 194	15			
Lecat, 1949 Lecat, 1949 b.t. Dt mix 0 76.75 111.5 73.1 Az 125 250 100 1.3839 44.2 1.4126 94.0 1.3859 39.8 1.4160 89.9 1.3879 34.4 1.4199 83.7 1.3906 29.6 1.4237 79.1 1.3926 24.9 1.4275 74.0 1.3953 20.0 1.4325 67.4 1.3988 15.1 1.4375 65.2 1.4004 10.3 1.4433 59.2 1.4003 5.4 1.4490 52.1 1.4076 0 1.4574	<u> </u>	t.	Я	n _D	%	n _D	
Lecat, 1949 Lecat, 1949 100		. 25 8 4 A 7			25°		-
94.0 1.3859 39.8 1.4160 89.9 1.3879 34.4 1.4199 83.7 1.3906 29.6 1.4237 79.1 1.3926 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 24.9 1.4275 25.1 1.404 10.3 1.4335 25.1 1.4033 5.4 1.4490 25.1 1.4076 0 1.4574 25.1 1.4101 25.1	100 97	.25	100	1.3839		1.4126	ļ
Lecat, 1949			94.0	1.3859	39.8	1.4160	
Lecat, 1949			83.7 79.1	1.3906 1.3926	29.6 24.9	1.4237 1.4275	ļ
% b.t. Dt mix 59.2 1.4033 5.4 1.4490 0 76.75 52.1 1.4076 0 1.4574 11.5 73.1 Az 12 -2.5	Lecat, 1949		74.0 67.4	1.3988	15.1	1.4375	
0 76.75 11.5 73.1 Az -2.5	g b.	t. Dt mix	59.2	1.4033	5.4	1.4490	ļ
11.5 73.1 Az -2.5		.75			U	1,4574	
100 97.2	11.5 73	-1 Az					
	100 97	.2					
Kolossovski and Theodorowitsch, 1935			Kolossovski a	ınd Theodo	rowitsch, 19	935	ĺ
Q vap Az = 55.30 cal/g			y vap Az =	- 55.5U Ca	1/ g		
		ļ					≡∥

Carbon tetrachloride (CCl_{1}) + Isopropyl alcohol (C_3H_80)	Smyth and Engel, 1929
Lecat, 1949	mol% p ₁ p ₂
% b.t. Dt mix 0 76.75 18 68.95 Az -2.5 100 82.4	0 308.9 0 2.45 303.9 5.1 11.28 291.5 13.1 22.36 280.4 15.7 32.86 276.0 15.6 41.64 256.7 18.2 50.51 240.7 19.4 52.41 236.0 18.1 61.53 213.6 19.7
Kolossovski and Theodorowitsch, 1935	61.53 213.6 19.7 68.39 189.5 20.5 74.08 161.3 20.2
% b.t. Q vap (cal/g)	82.34 125.3 21.1 86.48 99.2 22.4 92.18 62.4 23.9 100 0 33.3
0 76.75 - - 68.75 Az 65.62 100 82.35 -	Jones, Bowden, Yarnold and Jones, 1948
Hoffmann, 1943	% d n
malar	25°
N molar N molar extinction extinction 21.2° - 21.8° 7.788 0.00256 0.1988 0.04083 5.803 0.00351 0.0946 0.05423 4.007 0.00506 0.0499 0.06174 1.973 0.00900 0.0252 0.06390 1.006 0.01487 0.0182 0.06471 0.5030 0.02367 0.0 0.0667	0 1.5844 902 5 1.5101 918 10 1.4447 975 15 1.3827 1046 20 1.3301 1135 40 1.1462 1560 50 1.0695 1794 60 1.0023 1979 80 0.8942 23325 100 0.8064 2587
	Rehfeld, 1955
Carbon tetrachloride (CCl ₄) + Butyl alcohol (C ₄ H ₁₀ 0) Lecat, 1949	mol% d v $_{\pi,10^{1}2}$ m/sec. cm 2 /dyn.
## b.t. Dt mix 0	18° 1.2973

mo1%	n _D	mol%		n _D		%	U	
	20°					20°		
0 5.55 11.96 16.86 22.55	1,46026 1,45677 1,45307 1,45017 1,44687	57.07 61.97 71.54 80.95 85.98	1.4 1.4 1.4	42690 42390 41830 41212 40886		67.9	. 2067) . 495 . 579	
32.40 42.43 47.42 52.14	1,44125 1,43532 1,43251 1,42980	91.17 95.65 100	1.4	40540 40280 39942	initi	% al final	Q di (mole Co	
Schupp, 1949 Total polari	(fig.)		- earl' vall- vall gemeen de favorier	ager ager gere gere gere men men en gere gere gere gere gere gere gere	81	90.1 9.1 81.6 6 73.6 6.6 69.0	174 247 270 289	
Carbon tetra	achloride (CC	:1 ₄)(b.t	.=76,75)	Carbon tet	rachloride (CC1	4) + tert.	Butyl alcohol
Lecat, 1949					Hoffmann,	1943		
	2nd Comp.	Az			N	molar extinction	N	molar extinction
Name F	ormula b.	t. %	b.t.	Dt mix		21.5	٥	
alcohol Sec. Butyl alcohol	C ₄ H ₁₀ O 108 C ₄ H ₁₀ O 99 C ₄ H ₁₀ O 82		75.8 75.6 71.1	-2.2 (7%) -2.2 (20%) -0.4	8.555 7.665 3.870 1.890 0.9330 0.4981 0.3066 0.2002	0.00410 .00455 .00840 .01448 .02339 .03469 .04032 .05281	0.1081 0.1622 0.0806 0.0764 0.0530 0.0186 0.0	0.05572 .05983 .07153 .07190 .07520 .07958 .0822
Carbon tetrac	hloride (CC1) + Isol	butyl al (C _Կ H ₁		7.577 3.829 1.870 0.9240	30.0 0.00561 .01027 .01749 .02785	0.4933 0.1982 0.1041	0.04016 .06089 .07168
Kolossovski %	and Theodoro	vitsch, l	935 Q vap (cal/g)		5.025 3.7657 1.896 0.9114	0.01028 .01288 .02084 .03309	0.6710 0.2918 0.0888	0.03955 .05723 .07905
0 100	7	6.75 5.75 Az 7.85	48.85					

Carbon tetrachloride (CCl_4) + Isoamyl alcohol ($C_5H_{12}O$)	Carbon tetrachloride ($CC1_{i_k}$) + Hexy1 alcohol ($C_6H_{1i_k}0$)
Krchma and Williams, 1927	Jones, Bowden, Yarnold and Jones, 1948
mol% d n E	% d η
mol% d n _D ε	25°
25° 0 1.5835 1.45724 2.230 10 1.4965 1.45106 2.502 25 1.3700 1.44273 3.127 40 1.2453 1.43468 4.61 100 0.8083 1.40568 14.55 Carbon tetrachloride (CCl ₄) + Dimethyl ethyl	0 1.5844 902 5 1.5119 961 10 1.4467 1058 15 1.3872 1167 20 1.3341 1299 40 1.1510 1931 50 1.0741 2317 60 1.0060 2737 80 0.9007 3570 100 0.8124 4329
carbinol (C ₅ H ₁₂ 0)	Rehfeld, 1955
Lecat, 1949	
% b.t. Dt mix	mol% d v $\pi \cdot 10^{1.2}$ m/sec. cm ² /dyn.
Carbon tetrachloride (CCl ₁ ,) + tert. Amyl alcohol (C ₃ H ₁₂ O) Hoffmann, 1943 molarity molar molarity molar extinction 5.911 0.00677 0.1014 0.06198 3.833 0.01002 0.07600 0.06405 2.094 0.01577 0.0387 0.06601 0.9838 0.02579 0.0216 0.06742	18° 1.4143
0.4932 0.03774 0.0 0.0684 0.1999 0.05395	% d n
	25°
	0 1.5844 902 5 1.5123 982 10 1.4474 1102 15 1.3877 1237 20 1.3350 1402 40 1.1536 2175 50 1.0780 2716 60 1.0151 3302 80 0.9059 4527 100 0.8188 5710

Carbon tetrachloride (CCl_{\downarrow}) + Capryl alcohol ($C_8H_{18}O$)	Carbon tetrachloride ($CC1_{i_0}$) + 1-Dodecanol ($C_{12}H_{26}0$)
Jones, Bowden, Yarnold and Jones, 1948	Hoerr, Harwood and Ralston, 1944
% d n	f.t. %
25° 0 1.5844 902 5 1.5129 1000 10 1.4480 1139 15 1.3884 1297 20 1.3360 1470 40 1.1550 2483 50 1.0821 3124	-23.3 1.1 E -20.0 1.3 0.0 15.9 +10.0 45.3 20.0 81.8 23.95 100
60 1.0168 3847 80 0.9089 5580 100 0.8221 7330	Carbon tetrachloride ($CC1_{4}$) + 1-Tetradecanol ($C_{14}H_{30}0$)
	Hoerr, Harwood and Ralston, 1944
Carbon tetrachloride (CCl_{+}) + Decanol ($Cl_{0}H_{22}$ 9)	f.t. \$
Hoerr, Harwood and Ralston, 1944 f.t. % -25.2 5.7 E -20.0 8.8 0.0 70.6 +6.88 100	-23.0 0.1 E -20.0 0.2 0.0 1.9 +10.0 9.5 20.0 35.0 30.0 67.7 38.26 100
Jones, Bowden, Yarnold and Jones, 1948	Carbon tetrachloride (CCl_k) + 1-Hexadecanol ($C_{16}H_{34}0$)
% d η	Hoerr, Harwood and Ralston, 1944
25° 0 1.5844 902	f.t. %
0 1.5844 902 5 1.5141 1031 10 1.4499 1224 15 1.3903 1441 20 1.3382 1775 40 1.1586 3091 50 1.0835 4012 60 1.0218 5080 80 0.9135 7860 100 0.8263 11850	0.0 0.4 10.0 1.5 20.0 7.9 30.0 32.2 40.0 64.9 49.62 100
	Rehfeld, 1955
	mol% d v π . 10^{12} m/sec. cm ² /dyne
	18°
	1.0973 1.5752 949.00 70.498 2.0230 1.5547 953.56 70.734 3.8011 1.5189 964.56 70.765 7.7110 1.4470 992.25 70.192 14.549 1.3418 -

Carbon tetrachloride (CCl_4) + Heptadecanol ($C_{17}H_{36}O$)	Carbon tetrachloride (${ m CCl}_{k}$) + Methyl malate l (${ m C_6H_{10}O_5}$)
Ralston, Hoerr and Crews, 1944	Grossmann and Landau, 1910
f.t. %	g/100cc (a)
-25.6 3.3 E -20.0 4.5	red yellow green pale dark violet blue blue
-10.0 11.1 0.0 32.0 +10.0 63.5 15.0 79.2 21.72 100	20° 50.321 +0.10 +0.20 +0.50 +0.60 +1.05 +1.25 25.1605 +0.76 +0.87 +1.27 +2.11 +2.66 - 12.5803 +1.51 +1.75 +2.46 +4.13 +5.33 - 4.985 +2.61 +4.21 +7.42 +8.63 +10.03 +10.83 2.4925 +4.41 +6.82 +10.43 +12.04 +14.04 -
Carbon tetrachloride ($CC1_4$) + 1-Octadecanol ($C_{18}H_{38}O$)	
Hoerr, Harwood and Ralston, 1944 f.t. %	Carbon tetrachloride (CCl_{μ}) + Ethyl tartrate ($C_8H_{1\mu}O_6$)
0.0 below 0.1 10.0 0.3 20.0 1.7	Patterson and Thomson, 1908
20.0 1.7 30.0 10.7 40.0 37.5	t d t d
57.98 100.	0% 8.82387%
Carbon tetrachloride (CCl ₄) + Allyl alcohol	19.35 1.59555 18.91 1.55059 21.8 1.59114 23.07 1.54292 30.4 1.5742 29.60 1.53091 58.2 1.5196
(C ₃ H ₆ O)	21.224% 48.926%
Lecat, 1949 % b.t. Dt mix	18.1 1.49349 20.08 1.37606 23.44 1.48459 23.38 1.37155 27.56 1.47761 25.64 1.36817 29.54 1.47421 32.76 1.35838
0 76.75	
11.5 72.32 Az 122.4	t $(\alpha)_{\overline{D}}$ t $(\alpha)_{\overline{D}}$
100 96.85	8.82387% 21.224%
	18.6 1.21 16.7 0.92 19.5 1.48 26.8 2.37 20.9 1.68 31.5 3.02 25.2 2.49 35.8 3.73 27.9 2.83 30.2 3.22
	48.926%
	16.9 2.36 30.9 4.35 22.5 3.00 35.3 4.78 26.5 3.77 39.4 5.45

					····	1				
	% 	d		x)D		Comb	totE0	hlamida	(CCl) + Bown	aal (C H A)
		20°				Caro	on tetrac	nioriae	(CC1 ₄) + Born	eor (C ₁₀ H ₁₈ U)
ľ	0 8. 82 39	1.594 7 2 1.54858		+1.9 +1.53		Golz	nan and R	askin,	1953 (fig.)
ļ	21.224 48.926	1.49033	,	+1.38 +2.75				%	t max	
	40.720	1,0,02]			of dielectric	losses
====								6 0	20 30	
	and Dickson,	1915					3 4	0 0	36 43	
	and Dickson,						4	6	48	
*	6708 Å	(α) 5893 Å	5780 Å	5461 Å	4358 Å					
		20°				Carbo	n tatrac	hlorido	(CCl.) + Pong	w) alcohol
100	+6.69	+7.45 -1.34	+7.52 -1.73	+7.50 -3.11	+1.62	Carbo	m tetrat	nioi ide	(CCl ₄) + Benz;	уг атсолот С ₇ Н ₈ О)
20	+0.20	-1,34	-1.73	3,11		Desmy	ter, 194	8		
							mo1%	p	mol%	p
Carbon	tetrachlori	de (CCl ₄		ohexanol (C ₆ H ₁₂ O					0°	
V. 66	- 1042			(6111 20	,	l	100	0.0	41.1	85.5
HOIIMAI	ın, 1943			11 '			98.1 97.4	$\begin{array}{c} 6.6 \\ 11.6 \end{array}$	39.5 30.6	88.4 89.1
	N	mo	lar exti	ction		i	89.5 81.6	29.8 49.7	19.6 9.6	94.1 98.5
		21.5°					70.6 61.4	62.1 72.9	4.8	100.1 108.5
	6.00 3.888		0.00326 0.00549				48.9 47.7	84.4 84.3	0	107.0 106.9
	1.938 0.9639	(0.01045 0.01741			i				
	0.4785 0.1910	().02748).04722							
	0.0987 0.0326	(0.06433 0.07078			uoff.	nann, 194	2		
	$\substack{\textbf{0.0161}\\\textbf{0.0}}$	t (0.07271 0.0758							
====							<u> </u>		molar exti	nction
							_		21.5°	
Golzman	and Raskin,	1953	(fig.)				1.	.888 .943	0.00446 0.00783	
	mol%	+	. of max				0.	.006 .5137	0.01277 0.02097	
			. or max. ectric lo				0.	. 1986 . 1024	0.03661 0.04824	
	8		40				0.	.0715 .0498	0.05370 0.05675	
İ	20 35		56 68					.0 27 5 .0	$0.06110 \\ 0.0643$	
			· · · · · · · · · · · · · · · · · · ·							
					1					
										_

Ethyl bromide (C	_a H ₅ Br) + Methyl	alcohol (CH ₄ O)	Hirata, 1908			
Ryland, 1899			vol%			
			401%	•	η (alcohol =	1)
<u> </u>	b.t.			25)	
0 5 100	37.5 - 3 (765mm) 35 - 3 64.5 - 6	8.5 6 Az 5	75 87. 93. 96.	5 7 5 87 5	0.7488 0.8687 0.9324 0.9682	
Lecat, 1949			98. 99.	4375 218 7 5	0.9857 0.9940	
*	b.t.	Dt mix	Smyth, Engel	and Wilson,	1929	
0 5. 18	-	-6.0	mo1%	n _D	mol%	n _D
100	64.65 	على حكى الله الله على الله على حتى يهيد سين منس لمن على على الله الله الله الله الله الله الله ال			0°	
	₂ H ₅ Br) + Ethyl	alcohol (C ₂ H ₆ O)	0 7.29 12.20 16.46 24.27	1.42403 1.41992 1.41717 1.41477	53.37 59.49 65.38 72.18	1.39312 1.38935 1.38559 1.38118
Ryland, 1899	b.t.		27.49 37.65	1.41027 1.40830 1.40256	77.67 81.66 89.30	1.37745 1.37475 1.36934
0		38.5	41.00 47.80	1.40058 1.39646	93,82. 100	1.36603 1.36152
6. 100	6 37.5 - 36.5 - 77.5 -	37.5 78	Ethyl bromid Roland, 1928		+ sec.Butyl	alcoho1 (C ₄ H _{1 O} O)
Lecat, 1949				mol%	P ₁	
	h +	De min		0.329	······································	
0 3 35 100	5 38.4 37.6 78.3	Az -5.2		0 15.46 29.86 49.48 71.15	165.5 155.9 146.8 104.4 48.0	
				16.84		
Smyth and Engel,	1929			0 17.69 33.29	340.6 312.2 290.1	
mo1%	P ₁	p ₂		57.66 76.29	243.3 183.0	
	30°			92.06	82.5	
0 11.75 28.10 29.97	567.8 527.1 503.0 562.2	0 40.7 49.2 sic 47.1	Veltmans, 19	226		
41.66 54.31 62.10	474.2 447.9 415.8	51.6 53.5 59.1	%	(Ι (α) _D
67.84 75.47 75.62	389.6 338.2	60.9 64.0		20)°	
75.62 80.86 85.53 86.63 89.56	339.8 292.6 240.2 223.8 183.8 0	63.8 65.8 68.4 67.6 69.5 78.4	0 19.9 40 60 73.1 100	1.46 1.24 1.09 0.97 0.91	170 2 1700 5 1780 8 1.25 10	. 98 . 68 . 24 . 00

Ethyl bromid	e (C ₂ H ₅ Br)	+ Methyl ma	ılate l	Ethyl i	odide (C ₂ H ₅ I) + Methyl al	cohol (CH ₁ 0)
0	1.1	0	$(C_6H_{10}O_5)$	Ryland,	1899			
Grossmann an	d Landau, 191	·			%	b.t.		
g/100cc red	yellow gr	een blue	dark blue violet		0 17 (770	72.3 mm) 54.5	- 72.5 - 55.5 Az	~~~
50.158 -2.6	20 1 -3.07 -3	.19 -3.07	-2.89 -2.61		100	64.5	- 65	
25.079 -1.5 12.5395 -0.4 4.937 -0.2 2.4685 0.0	$egin{array}{cccccccccccccccccccccccccccccccccccc$.92 -0.52 .32 +0.64 .62 +2.43 .03 +2.84	2 -0.20 - 3 +0.88 - 3 +3.24 +3.85	Lecat, 1		h +	Dt mi	•
		F.1.1.		:	%	b.t.	DC RI	
Ethyl bromide	(C ₂ H ₅ Br) +	Ethyl tari	(C ₈ H _{1 4} O ₆)		0 18 30	72.3 54.4	Az -4.	5
Patterson and	Thomson, 190	8			100	64,65		
t	d	t	đ	Tsakalo	otos, 1910			
	0%	2.015			%	đ	η	
18.32 19.62 22.5	1.46369 1.46107 1.45523	18.47 19.07 21.6	1.4564 1.4552 1.4501			20°		
	9815%	10.92	€		0 26.8	1.934 1.348	$646.1 \\ 632.0$	
18.7	1.44652	18.95	1.42832		68.7 100	0.9656 0.7932	606.8 597.2	
19.77 20 .93	1.44439 1.44210	22.9 27.20	1,42090 1,41242					
30.	576%	65,282	2%	Yajnik	Bhalla and a	1., 1925		
18.85 19.37	1.3725 1.37129	19.57 20.17	1.28320 1.28250	76		n		
20.10	1.37038	21.20	1.28117		20°	35°	45°	
× ×	đ		(a) _D	100 90	4 5 0 451	410 412	328 343	
	20°			80 70	456 465	41 4 420	354 364	
0	1,45		-0.95	60 50	471 473	429 448	370 376 386	
4.9		395	-0.98	40 30 20	479 480 481	448 447 438	390 394	
0 10.9	1.46 2 1.42 76 1.27	631	-1.05	10	483 487	436 435	398 404	
30.5 65.2			-0.52 +2.73					
t	(α) _D	t	(α) _D	Yajnik,	Sharma and Bh	aradway, 1926		
			υ	vo1%	25.20	ر 17. ده	450	
4.981 20.1	•	10.92%	-1.43	100	25.2° 19.65	37.5° 18.97	45° 18.46	
AU.I	0.77	17.1 21.5 26.8	-0.91 -0.11	90 80	20.75 23.66	20.04 22.90	19.49 21.81	
30,576		65.2829		70 60	25.12 26.04	23.81 24.62	22.95 23.60	
19.1	-0.66	16,6	2,24	50 40	26.80 27.03 28.21	24.83 26.02	24.23 24.81	
21.5	-0.22	23.5 24.7	3.27 3.43	30 20 10	28.21 28.98 29.61	26.78 27.46 28.18	25.34 25.82 26.37	
				:	30.39	28,60	26.81	
	····			·				

Ethyl iodide (C ₂ H ₅ I) +	Ethyl alcohol ((С ₂ Н ₆ О).	Hirata, 1908			
Smyth and Engel, 1929				vol%	η	
mol% p	1 P2				(alcohol	=1)
	0°			25°		
4.38 16 13.07 15 28.86 14 36.68 14 40.00 14 48.75 13 55.07 13	2.3 0 2.4 25. 2.9 44. 8.2 53. 5.3 55. 4.4 56. 9.8 57.	9 1 3 2 1 6		75 87.5 93.75 96.875 98.4375 99.21875	0.8078 0.9029 0.9514 0.9815 0.9912 0.9950	
73.84 11 78.36 10	2.1 61.1 5.8 63. 6.7 64. 6.5 66. 7.4 68. 8.2 69.	3 9 2 4		and Wilson,		
89.12 7	2.1 70.(0	mol%	ⁿ D	mo1%	$^{\mathbf{n}}\mathbf{D}$
	2.1 70.7 0 78.3	2		20°		
Jana and Gupta, 1914			0 13.93 25.94 36.81 47.59 51.56	1.51330 1.49552 1.47967 1.46472 1.44906 1.44314	57.44 62.48 66.36 75.17 84.39 93.45	1.43408 1.42614 1.41992 1.40528 1.38950 1.37329
% b.t.	%	b.t.	52.68	1.44153	100	1,36152
760	mm				7	
100 77.8 73.31 70.2 64.31 68.8 58.62 67.0 47.14 64.8 42.72 64.0	15.13 11.65 9.5 5.50 2.37	61.9 61.4 61.3 61.5 62.0 64.0	Ethyl iodide Ryland, 1899	(C ₂ H ₅ I) + P	ropyl alcohol	l (C ₃ H ₈ O)
37.30 63.3 30.58 62.2	0 7	72		%	b.t.	
Ryland, 1899				0 7 (768mm) 100	72.3 - 72.5 69.5 - 70 95.7	S Az
K	b.t.					
0 14 100	71.5 - 72.5 62.5 - 63.5 A 77.5 - 78	z	Lecat, 1949			
				%	b.t.	Dt mix
Lecat, 1949				7.5 30 100	72.3 70.1 Az 97.2	-5.5
<u> </u>	b.t.	Dt mix				
0 13.2 30 100	72.3 62.5 Az 78.3	-4.9				

Ethyl iodide (C_2H_5I) + Isopropyl alcohol (C_3H_8O)	Ethyl iodide (C_2H_5I) + Allyl alcohol (C_3H_6O)
Ryland, 1899	Lecat, 1949
% b.t.	% b.t. Dt mix
0 71.5 - 72.5 13 65.5 - 66.5 Az 100 81 - 82	0 72.3 12 69.4 Az 504.3 100 96.85
Lecat, 1949 % b.t. Dt mix	Ethyl iodide (C_2H_5I) + Methyl malate 1 ($C_6H_{10}O_5$) Grossmann and Landau, 1910
0 72.3 14 66.1 Az 504.2 100 82.4	g/100cc (α) red yellow green pale dark violet blue blue
	20°
Ethyl iodide (C_2H_5I) + Butyl alcohol ($C_4H_{10}0$)	49.958 -2.16 -2.32 -2.40 -2.38 -2.10 -1.80 24.979 -1.04 -0.80 -0.36 +0.12 +0.40 - 12.4895 0.0 +0.72 +1.28 +2.08 +2.56 - 4.871 +0.62 +1.85 +3.28 +4.31 +4.93 +5.75 2.4355 +2.05 +3.28 +4.52 +5.34 +6.16 -
mo1% p	
20°	Ethyl iodide (C_2H_5I) + Ethyl tartrate ($C_8H_{14}O_6$)
79.5 111.5 79.5 105.5	Patterson and Thomson, 1908
79.5 106.5 66.0 104.5 59.0 105.0	t d t d
59.0 104.5 48.0 101.0 48.0 99.0 42.5 95.0 38.0 92.0 17.6 69.0	0% 5.17118% 19.25 1.93875 18.58 1.87591 20.99 1.93483 19.33 1.87422 24.54 1.92654 24.17 1.86367 32.35 1.90862 32.9 1.84426
	10.6333% 32.766%
Ethyl iodide (C_2H_5I) + tert.Butyl alcohol ($C_4H_{10}O$)	18.22 1.81533 18.07 1.60740 20.41 1.81067 20.46 1.60373 21.75 1.80801 25.33 1.59553 26.01 1.79910
Lecat, 1949	% d (α) _D
% b.t. Dt mix	20°
0 72.3 12 68.5 Az -4.7 100 82.45	0 1.93706 -2.2 5.17118 1.87279 -1.88 10.6333 1.81155 -1.46 32.766 1.6044 +0.24

270				DENE	CHLUKII	DE TMEINI	LALCOHOL	·		
	t		(α) _D			Ethylidene cl	nloride(C₂H ₄ C	(1 ₂) + Met	hyl mala (C ₆ H ₁₀ (
	5.	17118 %				Grossmann and	i Landau, 191	10		
	20.6 25.2 27.0 50.2		-1.82 -1.19 -0.65 +2.91			g/100cc rec	d yellow gr	(α) reen pale blue	dark blue	violet
		.6333 %	-2.51					20°	· - ·· · · · · · · · · · · · · · · · · ·	
	12.8 19.7 25.4 30.6 45.9		-1.42 -0.66 +0.10 10.63			50.443 -1. 25.2215 +0. 12.6108 +1. 5.056 +1. 2.528 +1.	36 +0.99 +1 11 +1.98 +3 38 +2.57 +4	1.07 -0.52 1.43 +2.54 3.65 +4.84 4.55 +5.93 5.14 +6.33	+3.09 +5.95 +7.32	+0.34
	18.7 26.2		$0.06 \\ 1.13$							
	26.2 29.2 30.6		1.57 1.87			Patterson and	d Thomson, 19	808		
						t	đ	t	d	
		c u c1) (b	± = 5'	7 25)	0;	%	4.64	846%	
+ Alcohol	echloride (s	CaHitla) (0.	, t, = 3.	,,25)	17.6 21.25 29.25	1.17922 1.17354 1.16097	19.91 23.17 27.87	1,176 1,171 1,164	l5 7
Lecat, 19	149					10.	. 6933%	34.23	7%	
Name	2nd Comp.	b.t.	Az %	b.t.	Dt mix	19.27 22.24 28.97	1,17915 1,17471 1,16467	19.9 25.28 27.71	1.185 1.178 1.175	322
Methyl	СНьо	64.65	12	49.65	-2.4 (12%)	K	đ		(α) _D	
alcohol Ethyl	C2H60	78.3	11.5	54.6	-4.5		20°			
alcohol Isopropyl alcohol	C 3H80	82.4	10	56.5	(11,5%) -6.5 (10%)	0 4.6484 10.6983 34.237	1.175 6 1.176 3 1.178 1.185	44 06	-1.70 -2.15 -2.63 -2.68	
						t	(α) _D	t	(α)	D
						4.6484	6%	10.6	983%	
						11.5 16.1 19.6 22.8 25.3 27.8 34.237	-3.9 -3.06 -2.23 -1.48 -1.05 +0.66	11.3 14.0 19.6 21.6	-4. -3. -2. -2.	7
						12.0 17.0	-4.29 -3.40	24.9 27.0	-1. -1.	65 22
						34.237	%	24.9 27.0	-1. -1.	65 22

ETHYLENE CHLORIDE + METHYL ALCOHOL

Ethy I	ene chlori	de (C ₂ H4	Cl ₂) + M			Her	z and L	evi, 1929			
17 d				(СН ₄ ())	Az	: 32%	60.95°			
l ——	nko and Fr	·1d, 1948				_				<u>,</u>	
mo1%	40°	р 5 0 °	60°	P1 50	P₂)°			t	0%	d A	\z
0 10 20 30 40 50 60 70	150.0 265.4 303.5 319.9 325.0 326.8 327.9 327.4	233.5 404.2 457.6 483.8 493.2 499.9 503.3 501.4	350.0 586.2 667.3 695.5 712.4 719.7 726.4 724.3	233.5 193.2 257.4 286.0 297.1 306.0 316.5 329.4	422.0 211.0 200.2 197.8 196.1 193.9 186.8 172.0		2: 3: 4: 5:	0 1. 0 1. 0 1.	2548 2396 2249 2102	1.0 1.0 1.0	0286 0167 0047 0923
80 90 100	320.4 301.7 265.0	492.8 469.7 422.0	710.1 680.0 620.0	350.4 382.1	142.4 87.5	Ud:	ovenko,	Ayrapetov	a and Fila	tova, 195	1
	mol% L	40°	mo1% V 50°	6	0°		mo1%	30°	d 40°	50°	60°
	10 20 30 40 50 60 70 80 90	47.9 56.9 59.2 60.3 60.5 61.4 64.0 69.7 81.0	47.8 56.2 59.1 60.2 61.2 62.5 65.7 71.1 81.4	5 5 6 6 6 7	6.4 5.6 8.4 9.9 1.3 3.2 6.4 1.9 2.2		100.00 91.20 83.93 79.82 69.06 62.21 53.74 42.17 23.69 15.68 0.0	0.7861 0.8594 0.9107 0.9375 0.9978 1.0354 1.0718 1.1175 1.1788 1.2023 1.2405	0.7759 0.8478 0.8997 0.9265 0.9860 1.0204 1.1030 1.1646 1.1868 1.2264	0.7681 0.8388 0.8887 0.9147 0.9738 1.0082 1.0450 1.0913 1.1522 1.1740 1.2124	0.7588 0.8277 0.8769 0.9035 0.9632 0.9961 1.0354 1.0774 1.1383 1.1594
Fordy	ce and Sim		19			- ==					
	L	%	v	b.t.		- He		evi, 1929			
	0.0),1	82.1		-		t	0%	η	Az
	0.6 2.2 7.1 14.3 30.2 45.3 59.5 73.5	22 30 34 38 42 48	0.0 2.4 0.3 1.7 3.1 2.2	73.4 65.2 61.4 60.6 60.2 60.1			20 30 40 50))	832.0 723.4 645.4 580.3		684.9 589.8 514.0 458.5
:	87.5 100.0	74		61.2 62.3 63.7		. Vd	ovenko,	A yrapetov	a and Fila	tova, 1951	L
Lecat	, 1949						mol%	30°	40°	η 50°	60°
	,	K	b.t.		Dt mix		100.00	522.9	453.9	402.3	352.0
	32 100) 2)	83.45 60.9 64.65	Az	-2.4		91,20 83,93 79,82 69,06 62,21 53,74 42,17 23,69 15,68 0,00	548.8 561.7 569.6 582.4 593.6 603.2 612.5 640.7 658.5 725.6	476.2 485.2 491.5 500.5 509.4 522.7 531.8 559.6 577.2 638.3	419.9 425.5 432.3 442.2 450.6 458.7 470.9 499.0	368.2 375.4 376.6 387.0 395.3 401.8 417.7 444.2 463.0 511.6
						=		·			

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

300

ETHYLENE CHLORIDE + ETHYL ALCOHOL

Herz and	Levi, 1929)			Udoven	ko and Fri	d, 1948			
	t	0%	σ	Az	mo1%	40°	p 50°	60°	p ₁	P ₂
3 4 5	O O O O E chloride	31.92 30.61 28.88 27.42		27.17 26.12 24.93 23.26	10 20 30 40 50 60 70 80 90	202.5 216.8 223.0 223.8 223.5 221.5 216.2 206.4 180.8	315.7 338.5 348.0 350.8 350.1 346.4 338.2 319.5 286.4	468.9 507.5 521.2 527.0 528.0 522.8 510.0 483.6 439.2	101.2 133.0 146.5 151.9 156.4 161.6 169.5 181.3 200,4	214.5 205.5 201.5 198.9 193.9 184.8 168.7 138.2 86.0
Lecat,	1949 		b.t.	Dt mix		mol% L	40°	mo1%		60°
	0 35 40 100		83.45 70.5 Az 78.3	-3.9		10 20 30 40 50 60 70	31.7 38.4 40.9 41.6 42.3 44.3	32. 39. 42. 43. 44. 46. 50.	3 1 3 6 6 6	31.9 40.3 43.2 45.2 47.0 48.8 52.5
	and Fatk		952 			80 90	54.2 67.0	56. 67.		59.1 72.5
L L	01% V	р	p ₁	P ₂	Toronos	and Nikor	novich 1	955		
100 94.8 88.7 78 64.2 49.2 40.0 34.6 23.2 12.4 3.3	100 80.0 65.6 53.3 45.9 42.5 40.2 39.5 36.8 32.5 19.2	134.4 158.7 179.0 201.3 214.8 219.0 220.0 217.0 208.5 184.0 156.6	0.0 31.8 61.6 94.0 116.2 126.2 131.6 133.1 137.2 140.8 148.7	134.4 126.9 117.4 107.3 98.6 93.2 88.4 86.9 79.8 67.7 35.3 0.0	I	V 40° 0 24.5	p 156.0 194.0 200.0 209.8 219.4	mo1% L 0 4.3 7.2 10.3	50° 0 21.3 27.9 33.7	236.0 274.3 293.7 310.0
	·	50°	150.0	0.0	27.1	36.1		22.8 60°	39.5	331.5
100 94.3 87.6 76.6 63.6	100 80.3 67.2 56.0 49.0	222.6 258.5 287.1 316.8 332.5	0.0 50.9 94.2 139.4 169.6	222.6 207.6 192.9 177.4 162.9	0 3. 5.		344.0 393.8 410.2	12.2 28.5	35.0 42.8	459.8 497.0
48.8 40.2 34.0 19.4	45.0 43.1 42	337.9 338.0 336.7 328.7	185.9 192.3 195.3	152.0 145.7 141.4	Herz a	nd Levi,	1929			
13.2 3.9 0	37.8 35.1 19.4 0	317.8 274.6 235.6	204.5 206.3 221.3 235.6	124.2 111.5 53.3 0.0		t	100%	đ	A	z
100 93.9 86.8 74.2 62.6	100 80.4 67.7 57.0 51.3	353.6 403.5 444.0 486.0 499.5	0.0 79.1 143.4 209.0 243.3	353.6 324.4 300.6 277.0 256.2		20 30 40 50	0.7894 0.7810 0.7722 0.7633		1.0 1.0 1.0 0.9	247 121
48.3 42.1 35.5 20.3 14.7 4.3 0	47.4 46.0 43.8 42.0 38.1 19.4	504.1 503.5 500.5 491.5 470.8 400.7 344.5	265.2 271.9 281.3 285.1 290.5 323.0 344.5	238.9 231.6 219.2 206.4 179.3 77.7 0.0						

lidovenko	Ayrapetova and Fil	atova 1051		-				1 1 1
mol%	d	····	Ethyle	ne chl	oride (C ² H ⁴ C1 ²)	+ Propyl a	;3H ⁸ O)
	30° 40°	50° 60	Udoven	ko and	Frid, 1	948		
100.00 88.19 75.20	0.7829 0.7735 0.8522 0.8450 0.9229 0.9121 0.9996 0.9877	0.7655 0.75 0.8342 0.82 0.9006 0.89	7 mol	%	50°	60°	70°	80°
59.89 47.26 39.12 32.79 22.95 12.15 6.40 0.00	0.9996 0.9877 0.0568 1.0440 1.0917 1.0775 1.1118 1.1027 1.1565 1.1420 1.1965 1.1826 1.2175 1.2021 1.2405 1.2264	0.9752 0.96 1.0318 1.01 1.0647 1.05 1.0992 1.07 1.1285 1.11 1.1685 1.15 1.1890 1.17 1.2124 1.19	6 0 0 0 2 0 3 3 3 4 0 4 0 5 5))))	246.0 245.0 243.2 238.0 230.9 218.0 198.3 170.7 132.8	361.7 36.25 359.7 354.1 344.0 326.1 298.0 269.2 210.0	515.5 518.5 515.3 507.6 493.5 470.0 435.4 386.5 320.4	717. 2 722. 0 719. 0 719. 0 695. 0 667. 0 628. 0 562. 8 480. 0
Herz and	Levi, 1929			mo k	<u> </u>	P ₁	Pa	
t	100%	n A z		L		60°		
20 30 40 50	1231.2 1020.2 846.6 703.2	846.0 725.3 630.0 543.3		10 20 30 40 50 60 70		42.3 60.2 68.5 76.8 83.2 91.1 100.6	319.4 302.3 291.2 277.3 260.8 235.0 197.4 143.1	
	Ayrapetova and Fil	atova, 1951		90		117.1 131.6	78.4	
mo1%	30° 40°	50° 60°	mo	1% L	50°	mo1%	V 70°	80°
100.00 88.19 75.20 59.89 47.26 39.12 32.79 22.95 12.15 6.40 0.00	948.2 816.5 874.6 737.4 790.7 667.1 725.1 617.8 687.3 589.5 670.2 580.6 666.8 576.7 665.4 578.7 677.9 593.8 695.4 612.6 725.6 638.3	692.1 583. 628.0 533. 572.3 491. 536.0 465. 516.1 450. 510.7 447. 511.5 449. 512.0 455. 533.6 475. 552.9 495. 572.4 511.	11 21 33 44 51 66 77 81 91	0 0 0 0 0 0 0	10.6 15.0 17.3 19.5 21.8 25.5 31.7 41.2 59.1	11.7 16.6 19.0 21.7 24.2 27.9 33.8 45.0 62.7	12.7 18.2 21.1 24.2 27.0 30.8 38.0 48.8 66.2	14.0 20.3 22.7 26.6 29.7 33.6 41.3 52.7 69.4
Herz and	Levi, 1929		Lecat	, 1949				
t	100%	σ Az			Я		b.t.	Dt mix
20 30 40 50	22.53 21.24 20.71 19.80	27.11 26.10 24.83 23.60			0 18 40 100		83.45 80.5 Az 97.2	-5.7

Udovenko	, Ayrapetov	a and Filat	ova, 1951				(C ₂ H ₄ Cl ₂)		utyl al	
mo1%	***	d	50°	60°		and Frid,	1948			
	30°	40°			mo1%	50°	р 60°	70°	80)0
100.00 83.60 67.21 55.79 32.60 21.63 11.82 0.0	0.7964 0.8724 0.9462 0.9965 1.1147 1.1455 1.1887 1.2405	0.7892 0.8619 0.9351 0.9842 1.1008 1.1315 1.1736 1.2264	0.7818 0.8533 0.9243 0.9734 1.0879 1.1168 1.1604 1.2124	0.7727 0.8436 0.9123 0.9615 1.0746 1.1033 1.1462 1.1974	10 20 30 40 50 60 70 80	233.5 234.0 231.0 225.0 216.0 205.5 192.5 173.1 144.0	350.0 351.0 346.0 337.5 326.5 310.5 289.5 261.2 218.4	493.0 494.3 490.4 478.0 462.5 440.0 413.2 378.6 320.8	678 683 677 664 646 620 585 542 464	8.2 3.7 7.0 4.0 5.0 5.0 2.0 4.3
mol%	30°	η 40°	50°	60°	100	104.0 56.0	163.4 96.0	248.6 157.0	370 249	9.8
100.00 83.60	1768.0 1328.0	1385.8 1071.1	1128.0 1887.2	915.4 736.0		mol%	P1	60°	P ₂	
67.21 55.79 32.60 21.63 11.82 0.00	1034.0 900.7 726.3 688.8 696.9 725.6	851.4 756.3 629.3 616.7 608.9 638.3	1721.0 1648.4 1554.2 1548.8 1548.3 1572.4	611.5 555.5 487.8 483.3 486.4 511.6		10 20 30 40 50 60 70	28.5 40.1 45.5 51.3 55.3 60.2 67.5 77.0		322.5 305.9 292.0 275.2 255.2 229.3 193.7	
		(C ₂ H ₄ Cl ₂)	, + sutyl a	alcohol (C ₄ H ₁₀ O)		90	86.4	,	77.0	
Lecat,					mol%		mol%	v		
	%		t.	Dt mix	 	50°	60°	70°	80)°
	0 20 23 100	71	3.45 1.0 Az 2.4	-3.5	10 20 30 40 50	7.2 10.4 12.2 13.9 16.0	8.1 11.6 13.5 15.7 17.8	8.9 13.1 15.5 18.0 20.2	10. 14. 17. 19.	.8 .3 .8
Udovenko	, Ayrapetov	a and Filat	ova, 1951		60 70 80 90	18.8 23.4 31.6 48.6	20.8 25.8 35.3 52.8	23.3 29.1 39.2 56.8	22. 25. 32. 43. 60.	. 2 . 0
mol%	30°	d 40°	50°	60°				20,0		
100.00 85.60 67.68 56.18 46.83 31.78 20.52 9.69 0.00	0.8029 0.8582 0.9288 0.9760 1.0160 1.0829 1.1345 1.1908	0.7958 0.8495 0.9184 0.9650 1.0052 1.0706 1.1201 1.1752 1.2264	0.7881 0.8415 0.9104 0.9541 0.9914 1.0575 1.1063 1.1620 1.2124	0.7803 0.8340 0.8925 0.9438 0.9815 1.0459 1.0942 1.1482 1.1974	Lecat, 19	chloride Alcoh			. = 83.4	(5) +
mo1%	······································	η			Name	2nd Co Formu		Az %	b.t.	Dt mix
l ————	30°	40°	50°	60°	Isobutyl	C4H10	 -	5	-	-4.1
100.00 85.60 67.68 56.18 46.83 31.78 20.52 9.69 0.00	2254.8 1744.1 1271.6 1061.7 941.8 808.1 744.9 712.1 725.6	1758.9 1378.5 1036.0 873.4 789.2 692.0 642.7 620.5 638.3	1405.1 1122.8 871.1 744.7 679.1 606.1 571.0 558.4 572.4	1126.7 931.3 728.8 635.7 583.8 531.0 504.0 497.8 511.6	alcohol sec. Buty alcohol tert. But	1 C ₄ H ₁₀ (99.5	12	83.15	(6.5%)
					11		*			

,					mol%		T)	
Ethylene	chloride ((C ₂ H ₄ Cl ₂)		alcohol C ₅ H ₁₂ O)	and I /s	30°	40°	50°	60°
Udovenko	and Frid,	1948			100.00 88.80 80.49 66.39	3267.1 2510.5 2080.8 1532.1	2429.2 1909.8 1619.1 1229.8 1064.7	1867.4 1507.2 1309.1 1014.6	1451.6 1197.6 1059.0 852.2
mo1%	50°	р 60°	7 0°	80°	57.65 43.02	1301.6 1028.6	857.9	891.7 736.5 665.0	748.1 633.3 586.6
10	233:5 219:6	358:8	493:0 463:5	678:2 848:4	32.64 22.01 12.72	905.4 797.0 743.0	686.5 647.8	603.0 578.6 572.4	531.7 514.2 511.6
20 30 40	206.2 194.0 182.8	306.0 288.0 270.3	434.9 409.1 383.9	603.0 566.2 532.7	0.00	725.6			
50 60 7 0	182.8 170.9 156.1	250.7 226.5 196.6	357.1 323.9 282.6	495.8 453.0 398.0	Ethylene Lecat,		(C ₂ H ₄ Cl ₂)	+ Allyl	alcohol (C ₃ H ₆ O)
80 90 100	136.0 107.1 68.6 17.5	157.3 104.5	229.0 155.7	325.5 227.0			7	b.t.	
	mol%	32.0 P1	57.5 P2	97.0		0		83.45 74.5	Az
	110170	60°	PZ			15 100	S ——————	96.85	
	10 20	321.0 294.8	7.0 11.8		Ethylene	e chloride	(C ₂ H ₄ C1 ₂		
	30 40	272.9 252.6	15.1 17.7 19.7					(C ₆ H ₁₀ O ₅)
	50 60 70	231.0 205.0 173.3	21.5 23.3			nn and Lan			
	80 90	131.9 76.4	25.4 28.1		g/100cc	red yel	(α) low green	pale blue	dark violet blue
mol%	50°	mo1%	V 70°	80°			20°		
10 20 30 40 50 60	1.8 3.2 4.4 5.4 6.4 7.7	2.1 3.8 5.2 6.5 7.9 9.5 11.9	2.6 4.8 6.5 8.1 9.8 11.8	3.2 5.7 7.9 9.8 11.8 14.1	49.917 24.9585 12.4793 5.123 2.5615	-1.40 -0 +0.96 +1 +1.52 +2 +3.51 +4 +4.29 +5	.40 +2.68 .08 +4.25 .68 +6. 6 5	+0.40 +4.01 +5.53 +8.98 +9.37	+0.80 +1.20 +4.89 - +7.21 - +9.96 +11.52 +10.15 -
70 80 90	9.6	11.9 16.1 26.9	14.6 19.7 32.1	17.4 23.2 36.7	H		(C ₂ H ₄ C l ₂		
					Lowry	and Abram,	1915		(C ₆ H _{1 0} O ₆)
						λ	25g/100c	(a)	100%
Udovenko,	Ayrapetov	a and Filat	ova, 1951		9	5708 5438	-8.16 9.31		+2.79 2.65
mol%	30°	d 40°	50°	60°	1	5 780 5 70 0 5461	13.50 14.56 16.51		2.05 +1.28
100.00 88.80	0.8040 0.8397	0.8309	0.7685 0.8229	0.7838 0.8144	11 5	5218 5153 5105	19.56 20.60 21.28		-
80.49 66.39 57.65	0.8674 0.9180 0.9519	0.9089	0.8503 0.8983 0.9315	0.8426 0.8916 0.9203		5086 4811 4800	21.53 26.97 27.09		-0.39 2.47
43.02 32.64	1.0127 1.0612 1.1123	1.0028 1.0483	0.9910 1.0369 1.0871	0.9789 1.0242 1.0764		4722 4678 4470	29.04 30.12 36.7		-
22.01 12.72 0.00	1.1635 1.2405	1,1515	1.1366 1.2124	1.1256 1.1974		4385 4358	40.92 40.92		8.93
						4299 4236	43.3 46.7		-
1									

ETHYLENE CHLORIDE + ETHYL TARTRATE

Ethylene chloride (C ₂ H	₄ C1 ₂) + Eth	yl tartrate (C ₈ H _{1 4} O ₆)	Ethylene chloride	e (C ₂ H ₄ Cl ₂)		chlorhydrin ₂ H ₅ OCl)
Patterson and Thomson,	1908		Kaplan,Grishin an	nd Skvortsova		ķ ,
% d	Я	d	%		d	
0%	5.87	02%		20°		
18.5 1.25569 21.42 1.25141	18.66 20.27	1.25058 1.24829	100		1.2022	
27.15 1.24303	24.05	1.24287	90 80]	1.2073 1.2124	
11.733%	22.03		70 60 50	1	1,2176 1,2224 1,2276	
18.76 1.24630 20.96 1.24322 31.72 1.22819	18.15 20.92 30.65	1.24076 1.23711	40 30	1	1.2326 1.2374	
49.7182%	30,03	1.22404	20 10		1.2424 1.2476	
18.15 1. 22 641	27.12	1.21553	0]	1.2527	
21.65 1.22217			1		b.t.	
R	d	(α) _D	- L	v		
	20°		100 96.8	100 62	125.44 117.8	
	25350	-4.20	92.5 87.5 86	55.5 34 33.5	111.2 104.9 100.3	
11.733 1.3	24868 24457	-4.07 -3.80	86 77 72 61	22.5	98.5 95.5	
22.0379 1. 49.7182 1.	23833 22417	-3.40 -1.22	50.5	23 11.5 10.5	91.64 89.83	
t (α) _D	t	(α) _D	39	7 0	87.86 83,28	
5,8702%	11.73	33%				
15.9 -4.65 19.0 -4.19	13.9 18.4	-4.61 -4.03	Ethylene bromide	/ C II D= \	. D	. 1 1
19.0 -4.19 39.8 -1.76 45.5 -1.12	36.9 41.5	-1.48 -0.75	Ediylene browide	(Canhora)	C ₃ H	
22.0379%	49.7		Lecat, 1949			
13.6 -4.54 16.8 -4.07	14.7 18.2	-2.12 -1.48	7	b		Dt mix
20.6 -3.27 24.2 -2.65	23.3 27.2	-1.48 -0.79 -0.03	0		31.65	
26.0 -2.24 29.6 -1.62	30.9	-0.64	50 91 100		97.0 Az	-4.9
	· · · · · · · · · · · · · · · · · · ·		100		97.2	
Lowry and Dickson , 191	.5		,,			
%	(α)		Herz, 1930			
6708 Å 5893 Å	5780 Å 5	461 Å 4358 Å	%	d	^{n}D	
100 +6.69 +7.45		7.50 + 1.62		18.7°		
20 -1.36 -3.63 10 -1.55 -3.76	-4.11 - -4.24 -	5.88 - 22.39 6.09 - 23.11	39.9916 79.1434	0.86081 0.9 2 908	1.3915 1.3991	36
5 -1.71 -	-4.63 -	6.40 - 23.80	59.2650 39.9060 19.9157	1.08453	1.4158 1.4390	15
			9.9088	1.62640 1.86652	1.4757 1.5032	

Schütt, 1892			Lecat, 1949					
×	đ		Lecal, 1949					
ĺ	8.07°		Ethylene br	omide (C_2 l Alcohols	H ₄ Br ₂) (b.t. =	131.65	+
100.0000 89.9916 79.1484	0.80659 0.86081 0.92908			2nd Comp		Az		
70.1649 59.2680	0.92908 0.99300 1.08453		Name	Formula	b.t.	%	b.t.	Dt mix
50.1516 39.9060 29.9877	1,17623 1,29695 1,44175		Butyl alcohol	C4H100	117.8		114.75	-6.0 (32 %)
19,9157 9,9088 0,0000	1.62640 1.86652 2.18300		Isobutyl alcohol	C4H100	108.0	63	106.75	-4.2 (63%)
<u> </u>			Amyl	C5H120	138.2	22	127.3	-6.5
% Li	n Hα	D	alcohol Isoamyl	C5H12O	131.9	30 5	124.15	(20%) -8.0
1	8.07°		alcohol	2 5111 2€	101.7	90.0	147.13	(30%)
100.0000 1.383919	1,384249	1.386161	Methyl	C5H120	119.8	53	119.0	-8.5
89.9916 1.389551 79.1484 1.396690	1.389897 1.397065	1.391892 1.399136	propyl carb	lnot				(35%)
70.1649 1.403405 59.2680 1.413118	1.403776 1.413486	1.405958 1.415815						
50. 1516 1.422890 39. 9060 1.435944	1.423322 1.436372	1.425748 1.439013	Ethylene bro	omide (C ₂ H	l _u Br ₂) +	Isobut	vl alcol	hol
29.9877 1.451726 19.9157 1.472145	1.452232 1.472691	1.455063 1.475796			Ŧ . ·		(C4H10	1
9.9088 1.499120 0.0000 1.535674	1.499709 1.536370	1.503227 1.540399	Ryland, 1899)				,
TI	Нβ	Ну		%	b.	t.		
100.0000 1.388257 89.9916 1.394071 79.1484 1.401427 70.1649 1.408336 59.2680 1.418350 50.1516 1.428441	1.390775 1.396690 1.404199 1.411238 1.421414 1.431731	1.394593 1.400633 1.408338 1.415559 1.426050		0 62 100	10-	9 - 1 4.5 5.3 - 1	Az	
39.9060 1.441922 29.9877 1.458210 19.9157 1.479301 9.9088 1.507141 0.0000 1.544917	1.445434 1.462076 1.483591 1.511956 1.550501	1.450766 1.467899 1.490018 1.519293	Ethylene br	omide (C ₂	H ₄ Br ₂) +	→ Amyl a		I _{1 2} 0)
			Ryland, 189	9				
				%	ŀ	.t.		
		i		0 30 100]	129 - 13 121 - 13 128 - 13	30 22 Az 29	
		į	!					
			Ì					

ETHYLENE BROMIDE + ALLYL ALCOHOL

Ethylene	bromide (C ₂ H	Br.) (h.t.	= 131.6	5)+	%		(a)					
	Alcohols	-4x / (101.0			red	yellow	green	pale blue	dark blue		
	2nd Comp.		Az		Sat.t.				20°				-
Name	Formula	b.t.	Я	b.t.	Dt mix	69,600	+3.10	+2.62	+1.34	-3,60	-6	. 82	
Allyl alcohol	C3H60	96.85	_	96.7	-	44.472 22.494 11.583	-0.38 -4.35 -7.29	-1.94 -6.99 -10.79	-4.34 -10.75 -15.36	-11.56 -20.47 -27.47	-15 -26 -34	. 98 i . 24 i . 14	
Glycol	C2H6O2	197.4	3.5	130.89	102	II 5.532	-9.65 1-11.77	-14.16	-19.80 -23.19	-33.33	-41	1.07 5.43	
	. = =				(3.5%)	1.31							
Methoxy-	C3H8O2	124.5	36.5	120.55	-1.5	 					==		==
glycol					(45%)	Scheuer	r, 1910						
Ethoxy-	$C_{4}H_{10}O_{2}$	135.3	23	127.75	-0.6	8			(a)				
glycol					(85%)	 	6527.	6 2 -	(") 890.25 Å	5702	6 2	5455.9	2
Methyl	C ₄ H ₈ O ₃	143.8	18	130.0	+0.8		0027.	UA 3	A	0/63.	- A	J455.5	_A
lactate					(10%)	8.43	-1.09	16	-2.185	-2.5	22	-3,668	
						21.62	+0.05	51 -	-0.819	-1.0	70	-2.008	}
Ethylene	bromide (C2H	I ₄ Br ₂)	+ Meth	yl mala	te	21.62 53.79 76.58	+2.31 +3.58	12	+2.030 +3.639	+1.9 +3.4	27	+1.372	!
				(C ₆ H _{1 o} () ₅)	92.34	+4.46	55 +	+4.622	+4.5	92	+4.476 +5.151	;
Grossman	n and Landau,	1910				1	+4.83	•	+5.173	+5,1		+5.151	
						1			4364,8 Ă	4346			
g/100cc		(a)		_		8.43 21.62	-8.08 -6.11	6 -	14.224 11.895	-14.8 -12.0	58 53		
	red yellow	green	•	dark	violet	21.62 53.79	-1.54	0		-6.4	99		
			blue	blue		76.58 92.34	-1.54 +1.27 +2.74	73 17	-	-2.6 -0.4	89		
	2	20°				100.34	+3.39	Õ	-	+0.1	95		
49,896	+0.56 +1.24		+2.75	+3,67	+4.73]							_
24.948	+2.57 +3.53	+5.01	+6.73	+8.46	7.70								==
12.474 4.925	+3.77 +5.53 +5.08 +7.92	+10.36	+14.01	+11.78	+18.27	1							
2.4625	+6.50 +8.93	+11.78	+15.43	+17.87		Lowry	and Diks	on, 1918	5				
						8			(°)				
=====							6708 Å	5893		Å 54	461 Å	4358	Å
						 							-
Ethylene	bromide (C ₂ H	iµBr₂) +	-			-	-10 00	1/ ^-	20°	_			
				(C ₈ H _{1 +} () ₆)	10	-9 .60	-16.06 -14.26	-17.11 -15.23	-18	.73 .65	-48.70	
W:1	1007			-		100	-7,40	-11.52	-13.23 -12.35 +7.52	-15	. 23	-44.76 -38.76	
Winther,	1907					100	+0.69	+7.45	+7.52	+7.	. 50	+1.62	
	Я	d		(a)D		 							
	10.2	20					λ	100	(a ∩≰	•	g/100	cc	
	69.600 1	L. 20435 L. 38674		+2.62		 	 -	100		23	6/ 100		
	44.472 1	.58990 .82975		-1.94		1			20°				
	11,583 1	1.98142	~ .	-6.99 10. 7 9			6708	+6.	. 69		-6.66		
	5.532 2 2.311 2	2.07885 2.13618	-	14.16 16.72		h	6438	7.	.00 ,25 ,52		-6.66 7.57 10.56	1	
	1.197 2	2. 15666	- 3	17.3		11	58.93 5780	7.	52		11.33		
	0.4235 2	. 17133 . 17888	-	17.3 18.7		li .	5461 5086	7.	.50 .96		14.11 18.75		
							4800	5.	. 85	:	23.89	1	
						1	4359 4326	1.	62		36.77 38.6	•	
							4308				39.0		
						1	4271 4154	+0	.21	-:	40.7 46.6		
						1	-						

(10%)

				INIEEN	E BROMIDE
Ethyle	ne bromide	: (C₂HųI	Br ₂) +		rtrate C ₁₀ H ₁₈ O ₆)
Winthe	r, 1903				
t	***************************************		d		
	15.29%	4	15%	74.51	.\$
20 30 40 60 70	1.8868 1.8704 1.8544 1.8363 1.8019	ı.	5293 5168 5036 4902 4631	1.291 1.280 1.268 1.258 1.235	6 3 22 31 8
		(a)		· · · · · · · · · · · · · · · · · · ·
	red	yellow	green	pale blue	dark blue
		74	.71%		
20 30 40 50 60 70	+7.85 8.70 9.46 10.13 10.72 11.21	+8.93 9.99 10.95 11.83 12.62 13.32	+9.19 10.59 11.83 12.97 13.99 14.89	+7.59 9.57 11.39 13.04 14.53 15.84	+6.12 8.41 10.49 12.35 13.99 15.40
		45	.%		
20 30 40 50 60 70	+5.40 6.31 7.15 7.92 8.62 9.25	+5.70 6.82 7.89 8.90 9.86 10.76	+5.04 6.64 8.10 9.40 10.56 11.56	+1.54 3.79 5.83 7.76 9.47 10.98	-0.52 +1.96 4.26 6.38 8.31 10.05
		15	. 29%		
20 30 40 50 60 70	+2.19 3.20 4.16 5.10 5.99 6.85	+1.50 2.79 4.02 5.18 6.27 7.28	-0.17 +1.61 3.25 4.72 6.03 7.17	-6.35 3.62 1.16 +1.03 2.93 4.55	-8.98 6.24 3.63 1.16 +1.18 3.38
Ethyler	ne bromide Alcoho		r ₂) (l	o.t. = 13	1.65) +
	2nd	Comp.		Az	
Name	Fore	nula	b.t.	% b.	t. Dt mix
Ethyler chlorhy 2-Chlor	drin -1- C ₃ H		128.6 133.7		2.3 -5.2 (39%) 8.0 -4.8
1-Chlor	alcohol -2- C ₃ H ₇ alcohol	,0 C 1	127.0	62 124	(30%) 4.8 -4.5 (30%)
Ethyler	ne C₂H₅	0Br	150.2	10 130	0.5 -1.0

bromhydrin

Ethylene br	omide (C ₂	H ₄ Br ₂)	⊦ Ment	hol (C ₁	(0 ₀ gH _o
Dahms, 1905					
f,t.	9	f f	. t.		K
9.61 9.105 8.71 7.58 6.29 5.55 5.40 5.15	1. 4. 8. 12. 13.	031 14 66 11 28 24 80 23 70 7	1.8 4.8 7.5 4.1 8.7	6	77.36 8.33 8.39 9.5.64 75.91
Ethylidene	bromide () (b	.t. = 10	9.5) +
	2nd Comp	•	A:	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Propyl alcohol	C 3H80	97.2	43	94.0	-0.8 (43%)
Isopropyl alcohol Butyl	С ₃ Н ₈ О С ₄ Н _{1 о} О	82.4 117.8	20	82.0 104.5	-5.0 (50%) -6.8
alcohol Isobutyl alcohol	C4H100	108.0	32	101.0	(20%) -7.2 (35%)
Ethylene chlorhydrin Teri.Amyl	C ₂ H ₅ OC1	128.6	50	108.5	-5,5 (50%)
alcohol	C5H120	102,35	55	101.3	-
Ethylene ch Lecat, 1949		CaHrc	IBr)	+ Ethyl (C ₂ H	
	%	b. 1	t		
	0 53 100	100 77 78	5.7 7.0 A 8.3	Z	
Ethylene ch	lorbromide	(C ₂ H ₄ C		+ Isobut ol (C ₄ H	-
Lecat, 1949					
	*	b. 1	t.	D	t mix
	0 30 50 100	-	5.7 0.2 A 3.0	z	-5.3

1,1,2-Trichlorethane ($C_8H_3Cl_3$) + Isobutyl alcohol ($C_9H_{10}O$)	Lecat, 1949
Lecat, 1949	Acetylene tetrachloride ($C_2H_2Cl_k$) (b.t. = 146.2) + Varia
	2nd Comp. Az
0 113.65 38 103.8 Az 100 108.0	Name Formula b.t. % b.t. Dt mix or Sat.t.
1,1,2-Trichlorethane (C ₂ H ₃ Cl ₃) + Methyl malate 1	Glycol C ₂ H ₆ O ₂ 197,4 7.5 144.9 88.5 (7.5≰)
$(C_6H_1O_5)$	Ethylene C ₂ H ₅ 0Cl 128.6 69 128.2 -0.1 chlorhydrine (80%)
Grossmann and Landau, 1910	Dichlor- C ₂ H ₄ OCl ₂ 146.2 48 144.0 -0.2 ethanol (20%)
g/100cc (α) red yellow green pale dark violet blue blue	Ethylene C_2H_50Br 150.2 - 141.5 -0.3 bromhydrine (30%)
20°	
50.031 +0.72 +1.08 +1.82 +3.20 +3.78 +4.86 25.0155 +2.44 +3.64 +4.52 +6.40 +7.52 - 12.5078 +3.68 +5.28 +7.68 +9.03 +10.79 - 4.983 +4.42 +6.42 +9.43 +10.03 +12.24 +14.85 2.4915 +5.22 +6.82 +9.63 +10.84 +12.84 -	Tetrachlorethane s. ($C_2H_2C1_4$) + Methyl malate ($C_6H_{10}O_5$)
	g/100cc (a)
Acetylene tetrachloride ($C_2H_2Cl_4$) + Isobutanol ($C_0H_{10}O$)	red yellow green pale dark violet blue blue
Fritzsche and Stockton, 1946	20° 50.626 +1.68 +3.16 +4.64 +5.83 +7.11 +8.39
% d % d	25.313 +4.23 +5.49 +7.47 +9.80 +11.69 12.6565 +5.06 +6.32 +9.24 +12.01 +13.75
25°	4.802 +6.04 +8.12 +11.87 +15.41 +17.91 +20.20 2.401 +6.25 +8.75 +12.49 +16.24 +18.33
100.0 0.796 39.60 1.129 89.85 0.834 36.45 1.149 79.74 0.879 29.60 1.217 69.60 0.930 24.85 1.266 59.50 0.991 14.94 1.379 49.55 1.060 4.95 1.510 0 1.588	
mol% at b.t. mol% L V L V	
4.0 20.9 36.5 69.0 7.2 27.0 50.4 78.5 7.0 39.4 71.0 85.5 14.5 48.0 86.0 92.5 23.0 61.1 96.4 98.8	

Tetrachlorethane s. ($C_2H_2Cl_{\downarrow}$) + Et	hyl tartrate (C ₈ H ₁₊ O ₆)				
Patterson and Thomson, 1908		Tetrachlo	rethane s. (C_2	H2Cl4) + Isol	
t d t	d	Patterson	. 1916		(C ₁₂ H ₂₂ O ₆)
0% 4.961	98%	t	d	t	d
18.2 1.60303 18.79 21.1 1.5985 22.23 26.62 1.58995 27.44	1.57512 1.56993 1.56203	1	33.362%	48.15%	
9.314% 38.062	K	0.0 16.2 16.4	1.3883	24.8 30.2 42.2	1.2927 1.2867 1.2729
21.68 1.54838 17.76 31.92 1.53320 23.41 32.50 1.5323 28.27 41.0 1.5198 71.2 1.4747	1.42309 1.41578 1.40950	43.9 44.0 68.0 99.4 99.7	6 1.3482 1.3481 1.3199 1.2782	50.8 67.0 72.8 99.65	1.2630 1.2442 1.2377 1.2061
% d	(α) _D	t	6716.3 Å	(α) 6234.3 Å	5790.5 Å
20°			 	33.362%	
4.96198 1.57330	-16.60 -15.20 -13.80 -6.55	0.0 16.4 44.0 68.0 99.4	5.459 7.471 10.183 11.90 13.26	5.816 8.229 11.389 13.343 14.915	5.974 8.886 12.583 14.908 16.844
t (a) _D t	(α) _D		5460.7 Å	4959.7 Å	4358.3 Å
4.96198% 9.31	4%	0.0 16.4	5.813 9.146	4.553 8.84 14.320	-0.261 +5.628
15.2 -16.53 16.0 21.2 -14.93 22.3 26.9 -13.24 29.1 31.5 -11.76 33.4	-14.81 -13.33 -11.42 -10.30	44.0 68.0 99.4	13.428 16.013 18.353	14.320 17.838 20.78	13.314 18.235 22.558
36.5 -10.44 39.3 48.2 38.062% 66.4 72.3	-8.48 -6.82 -3.19 -1.66	t	6716.3 Å	(α) 6234,3 Å	5790.5 Å
15.6 -7.55 92.8 23.1 -5.90 101.3 27.1 -4.94	+1.77 +2.61		4	8.15%	
30.9 -4.27 34.6 -3.65 37.6 -2.84		24.8 42.2 67.0 99.65	9.289 10.846 12.390 13.776	10.443 12.236 14.067 15.592	11.497 13.583 15.820 17.607
			5460.7 Å	4959.7 Å	4358.3 Å
Lowry and Dickson, 1915		24.8 42.2 67.0 99.65	12.20 14.566 17.211 19.283	12.743 15.832 19.249 22.057	11.040 15.300 20.075 24.263
% (α) 6708 Å 5893 Å 5780 Å .	5461 Å 4358 Å				
20°					
20 -8.13 -12.41 -13.30 -	+7.50 +1.62 16.33 -39.70 18.48 -43.57 19.55 -45.17				

t	d	t	đ	Acetylene 1	tetrabromide	(C ₂ H ₂ Br ₄)	+ Methyl-1-malate
·		100%					(C ₆ H ₁₀ O ₅)
75.2	1.0309 .0206	(d) 98.2 " 108.6	1.0107 (1) 1.0007 "	Grossmann a	and Landau,	1910	
75.2 86.2 97.7	.0105	" 130.2 146.0	0.9809 " 0.9649 "	gr/100cc		(α)	
		140.0	0.7047	- r	ed yellow	green pale	lt.
t		d	(α)	-			
		100%				20°	0 47 70 40 11
		6716.3 Å		25.1335 +	2.45 +3.34 5.45 +7.08	+4.64 +6.1 +9.59 +12.1	l7 +14.40 - ∥
	•	1 0207	15.073	4.905 +	7.96 +10.19 8.56 +11.82	+12.65 +16.0 +14.68 +17.1 +14.68 +17.1	13 +19.98 +24.26 👖
73 99	. 05	1.0325 1.0094	15.863 16.328	2,4525 +	8.56 +11.82	+14,08 +17.1	13 +19.96
132 171	,7	0.9788 0.9416	16.422 16.016				
193. 226.		$\begin{array}{c} 0.9212 \\ 0.8892 \end{array}$	15.640 15.275	Acetylene t	etrabromide($C_2H_2Br_4$) +	Ethyl tartrate
		6234.3 Å		(C ₈ H ₁ 4O ₆)		
73. 99	. 0 . 05	1.0325 1.0094	17.936 18.510	Patterson a	and Thomson,	1908	
152. 171.	. 0	0.9788 0.9416	18.729 18.305	t	%	t	%
193 226	. 0	0.9212 0.8892	17.930 17.302)%	5,667	6%
		5790.5 Å		20.87	2,96182	19,99	2.72802
73.		1.0325	20.50	23.78 31.5	2.95518 2.93 7 93	22.81 31.50	2.72193 2.7038
132.	.05 .0	1.0094 0.9788	21.166 21.426			45,91	2.6736
171. 193.	.0	$0.9416 \\ 0.9212$	20.937 20.557	l	0596%	20.110	%
226.	.3	0.8892	19 .7 95	19.82 21.95	2.57597 2.57167	17.76 20.75	2.28204 2.27661
		5460.7 Å		30.2	2,55516	25.98	2.26694
73. 99.	. 05	1.0325 1.0094	22.769 23.337			d	(α) _D
132 171	.7	0.9788 0.9416	23.139 23.139	ļ			
193 226	.3	$\begin{array}{c} 0.9212 \\ 0.8892 \end{array}$	22.71 21.97		2	90°	
		4959.7 Å		0 5.6	2.9 6676 2.7	9638 - 92804 -	20.0 13.47
73.	.0	1.0325	26.143	9.9 20.1	5956 2.5	i 7 561 -	10.19 -5.53
99. 132.	.0	1.0094 0.9788 0.9416	27.194 27.752				
171. 193. 226.	0 3	0.9212 0.8892	27.336 26.856 26.032	t	(α) _D	t	(α) _D
	. •	4358,3 Å	20.032	5.	6676%	0	9596%
73.	.0	1.0325	29.687	17.7	-13.93	16.2	-11.01
99. 132.	05	1.0094 0.9788	31.397 32.330	20.4 23.0	-13.35 -12.85	19.6 22.8	-10.26 -9.54
171. 193.	.7	0.9416 0.9212	32.104 31.73	25.4 44.4	-12.24 -8.34	31.7	-7.74
226.		0.8892	30.957	ii .	1106%		ļ
				= 11.7	-7.03	16.3	-6.28
				12.6	-6.83	19.8	-5.47
							i

Lowry and Dickson, 1915	Propylchloride (C ₃ H ₂ Cl) (b.t. = 46.65) + Alcohols
β (α) 6708 Å 5893 Å 5780 Å 5461 Å 4358 Å	2nd Comp. Az
20°	Name Formula b.t. % b.t. Dt mix
100 +6.69 +7.45 +7.52 +7.50 +1.62 23 -6.3011.33 -13.95 -35.36	Methyl CH ₄ 0 64.65 10 40.6 -2.0 alcohol (10%) Ethyl C ₂ H ₆ 0 78.3 6 44.95 -3.2
Pentachlorethane (C_2HCl_5) (b.t. = 162.0) + Alcohols	alcohol (10%) Isopropyl C ₃ H _B O 82.4 2.8 46.6 -2.8 alcohol (5%)
2nd Comp. Az	Isopropyl chloride (C_3H_7Cl) + Methyl alcohol (CH_u0)
Name Formula b.t. % b.t. Dt mix	Lecat, 1949
Hexyl C ₆ H _{1 10} 0 157.85 46 155.65 0°	% b.t. Dt mix
alcohol (60%) Glycol $C_2H_6O_2$ 197.4 12 154.55 - Pinacol $C_6H_{14}O_2$ 174.35 16 158.9 -	0 34.9 - 5 -2.5 6 32.3 Az - 100 64.65 -
Ethyl C ₅ H ₁₉ O ₃ 154.1 65 153.65 +2.6 lactate (60%)	100 04,03
Isopropyl C ₆ H ₁₂ O ₃ 166.8 - 161.8 -	Isopropyl chloride (C ₃ H ₂ Cl) + Ethyl alcohol
Cyclohexanol C ₆ H ₁₂ 0 160.8 37 157.9 +0.9 (37%)	(C_2H_60) Lecat, 1949
1,3-Dichlor C ₃ H ₆ 0Cl ₂ 175.8 22 159.75 -3.8	% b.t. Dt mix
-2-propanol (17%)	0 34.9 - 3 34.2 Az - 10 -3.7 100 78.3 -
Pentachlorethane (C_2HCl_5) + Methyl-1-malate ($C_6H_{10}O_5$)	Propyl bromide (C ₃ H ₇ Br) + Methyl alcohol (CH ₄ O)
Grossmann and Landau, 1910	Holley and Weaver, 1905
g/100cc (a)	% b.t,
red yellow green pale dark violet blue blue	0 71.5
20°	20.60 54.8 Az 100 64.0
49.915 -0.32 +0.02 +0.38 +1.20 +1.76 +2.50 24.9575 +1.84 +2.80 +3.49 +5.33 +6.49 - 12.4788 +3.21 +4.81 +6.25 +8.65 +10.18 - 5.001 +4.00 +6.00 +8.00 +10.80 +12.60 +14.00 2.5005 +4.80 +6.40 +9.20 +11.20 +12.80 -	Lecat, 1949
	% b.t. Dt mix 0 71.0 - 21 54.6 Az -
	21 54.6 Az - 20 -3.6 100 64.65 -

Propyl brom	ide (C ₃ H ₇ Br) + Eth	yl alc	ohol (C2H60)	Isopropyl br	Alcohol		b.t. =	= 59.4) +
Holley and	Meaver, 1905					Lecat, 1949	···				
	%	b.t					2nd Comp	•	Az		
	0	71				Name	Formula	b.t.	%	b.t.	Dt mix
	16.24 100	71. 63. 78.	6 Az			Methyl alcohol	CH 140	64.65		49.0	-3.8 (14%)
Lecat, 1949						Ethyl alcohol Isopropyl alcohol	С ₃ Н ₈ О	78.3 82.4	7.0		-3.8 (35%) -4.0 (10%)
i	%	b. t			Dt mix	Tert.butyl	C4H100	82.45	12	68.0	-3.2
	0 18 20 100	71. 62. 78.	75 Az		-4.5	alcohol Propyl iodid	е (С ₃ Н ₇ І) (b.t.	= 102	.4) +	(10%) Alcohols
						Lecat, 1949					
							2nd Comp	<u> </u>	Az		
Propyl brom	ide (C ₃ H ₇ Br) + Pro	pyl al	cohol	(C_3H_8O)	Name	Formula	b.t.	%	b.t.	Dt mix
Holley and	Weaver, 1905					Methyl alcohol	CH [↑] 0	64.65	50	63.1	-3.0 (40%)
	Я	b.t	•			Ethyl alcohol	CaHeO	78.3	44	74.9	-4.0 (23%)
	0 10 100	71. 69. 95.	75 Az	:		Propyl alcohol Isopropyl	C ₃ H ₈ O	97.2 82.4	29 44	90.3	-4.8 (30%) -4.5
						alcohol	0,380	02	••	• / • •	(50%)
Lecat, 1949)					Butyl alcohol	C4H100	117.8	13.5	99.1	-4.8 (25%)
Propyl brom	ide (C ₃ H ₇ B1) (b.t	. = 71	.0)+	Alcohols	Isobutyl alcohol	C4H100	108.0	23	96.2	-4.2 (50%)
	2nd Comp.		Az		···	Tert.butyl	C4H100	82.45	-	81.4	
Name	Formula	b. t.	%	b.t.	Dt mix	alcohol Tert.Amyl	C5H1 20	102.35	30	97.2	
Propyl alcohol	C H O	97.2 82.4		69.8	(10%)	alcohol Methoxyglyco	1 C 3H8O2	124.5	-	101.0	(30%)
Isopropyl alcohol	C₃H ₈ O	02.4	20.5	66.75	-4.8 (20%)	Ethylene chlorhydrin	C-H-OC1	128.6	15	99.7	_
Tert.butyl	C4H100	82.45	12	68.0	-3.2 (10%)			120.0	10	77.1	
Allyl alcohol	C3H60	96.85	8	69.3							

			ISOP	ROPY	LIODIDE	+ METHYL	ALCOHOL				31
Isopropyliod	iide (C ₃ H ₇ Alcohols	,I) (b.	ı. = 89	.45)	+		chloride (C	• • •	+ Iso	opropyl a	
	2nd Comp		Az					1949			
Name	Formula	b. t.	- AZ	b.t.	Dt mix	L	Z	٧		b.t.	
Methyl alcohol	СН ₄ 0	64,65	35		-3.2			760 mm 0.1		04.2	
Ethyl alcohol	C2H60	78.3	25		-4.3 (70.2%)	0.0 1.1 2.8 6.9	1	5.8 .3.6 .5.2		94.2 91.1 87:6 82.6	
Propyl alcohol	C ₃ H ₈ O	97.2	17	82.95	-5,0 (20%)	17.1 27.2 38.0	4	5.3 1.0 5.7		79.0 77.9 77.7	
Isopropyl alcohol	C3H80	82.4	30	75. 5	-5.5 (30%)	48.5 62.3 75.3	4 5	9.8 6.3 5.0		77.5 77.6 78.1	
Butyl alcohol	С ₄ Н _{1 0} 0	117.8	6		-4.8 (30%)	88.0 100.0		76.8 96.8		79.0 80.5	
Isobutyl alcohol	C ₄ H _{1 0} 0	108,0	12	86.8	-3.8 (30%))	R		%		
Sec.butyl alcohol	C ₄ H ₁₀ O	99,5	17.25	89.4	-5,5 (1 7 ,25%)	LL	V	30°			V
Tert.butyl alcohol	C ₄ H _{1 0} O	82,45	31	77.7 5	-	6.3	13.5 25.5	49	2.7		6.3 9.2
Tert.Amyl alcohol	C5H120	102.35	8	88.6	-5.5 (50%)	20.3 33.1 38.2	25.4 31.0 32.8	81	2	6-	4.3 3.4
Ethy lene chlorhydrin	C2H2OC1	128.6	8	88.5	-	36.2	32.0				
Acetone dich	nloride ((CaH ₆ Cl ₂)	(b.t.	= 70.	4) +	Lecat, 19 Propylene	49 bromide (C ₃	H ₆ Br ₂)	(b.1.	, = 140,	5)+
Lecat, 1949	Alcohols	5				 	2nd Comp.		A		
	2nd Comp	•	Az		•	Name	Formula	b. t.	# A 2	b.t.	Dt mix
Name	Formula	b.t.	%	b.t.	Dt mix	Butyl				117.1	
Methyl alcohol	СН ₄ О	64.65	21	55.7	-2.8 (20%)	alcohol Isoamyl	C ₄ H ₁₀ 0 C ₅ H ₁₂ 0	117.8	61 98	117.1	-4.0 (60%) -6.0
						II	, ·•				

63.7 -4.8

70.1 -6.0

66.8

70.0

(15%)

(12%)

Ethyl

alcohol

Propy1

alcohol

alcohol Allyl

alcohol

Isopropyl

78.3

97.2

82.4

96.85

16

11

17

C2H60

C3H80

C 3H80

C3H60

1040		
Lecat, 1949 Propylene bromide (C ₃ H ₆ Br ₂) (b. ı.	. = 140.5) +

	2nd Comp.		A 2	: 	
Name	Formula	b.t.	×	b.t.	Dt mix
Butyl alcohol	C4H100	117.8	61	117.1	-4.0 (60%)
Isoamyl alcohol	C ₅ H ₁₂ O	131.9	98	128.5	-6.0 (50%)
Glycol	C2H6O2	197.4	6	139.0	-
Methoxy- glycol	C 3H802	124.5	-	124.0	-0.2 (90%)
Ethoxy- glycol	ChH1003	135.3	50	131.5	-2.0 (50%)
Ethylene chlorhydrin	C2H2OC1	128.0	-	126.0	-2.0 (90%)
Ethylene bromhydrin	C2H50Br	150.2	-	137.0	-

Dibrompropane (C ₃ H ₆ Br ₂) + Ethy1	tartrate	(C ₈ H _{1 4} O ₆)
Lowry and Dickson, 1915					-

%		(α)		_
·	6708 Å	5893 Å	5780 Å	5461 Å	4358 Å
100 20	+6.69 -1.50	+7.45 -3.40	+7.52 -4.40	+7.50 -6.40	+1.62 -23.35

Lecat, 1949

Trimethylene bromide ($C_3H_6Br_7$) (b.t. = 166.9) + Alcohols

	2nd Comp	•	AZ	Dt mix.	
Name	Formula	b.t.	K	b.t.	Sat.t.
Glycol	C2H6O2	197.4	10,2	160.2	85.7 (10.2%)
Butoxyglycol	C6H++08	171.15	23	164.55	-2.4 (25%)
Furfuryl alcohol	C5H6O2	169,35	-	164.0	-

Dt mix or

Lecat, 1949

Trichlorhydrin ($C_3H_5Cl_3$) (b.t. = 156.85) + Alcohol

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Hexyl alcohol	C ₆ H _{1 4} 0	157.85	40	152.8	-
Glycol	C2H6O2	197.4	14	152.5	~
Cyclohexanol	C ₆ H ₁₂ O	160.8	31	154.9	-1.7 (35%)
Ethyllactate	C ₅ H _{1 0} O ₃	154.1	15	153.7	+0,8 (53%)

Butyl chloride (C_uH_9Cl) (b.t. = 78.5) + Alcohols Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	CH"0	64.65	32	60.9	-2.4 (32%)
Ethyl alcohol	C2H6O	78.3	21.5	66.2	-2.8 (20%)
Propyl alcohol	C3H8O	97.2	16	75.6	-2.0 (10%)
Isopropyl alcohol	C 3H8O	82.4	23	71.0	-3.5 (20%)
Butyl alcohol	C4H100	117	1.9	77.7	-
Isobutyl alcohol	C4H1 00	108.0	4	78.0	-1.5 (5%)

Butyl chloride ($C_{ij}H_{j}Cl$) + sec.Butyl alcohol-d ($C_{ij}H_{10}O$)

Veltmans, 1926

% 	d	(α) _D	
	20°		
0 20 39.8 60 80 100	0.8862 0.8684 0.8500 0.8342 0.8203 0.8069	0 2.94 .5.64 8.27 10.82 13.87	

Lecat, 1949

Butyl chloride ($C_{4}H_{9}Cl$) (b.t. = 78.5) + Alcohols

	2nd Comp.		Az		
Name	Formula	b.t.	Я	b. t.	
Sec.Butyl alcohol	C4H100	99.5	8	77.7	
Tert.Butyl	C4H100	82.45	20	72.8	
Allyl	C3H60	96.85	15	74.5	
alcohol					

Isobutyl chlo	ride (C ₄ H ₉ Cl)	(b.t.	=	68.85)	٠
Lecat, 1949	Alcohols				

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	CH1+0	64.65	22	53.05	-2.3
Ethyl alcohol	CaH60	78.3	16.3	61.45	-2.5 (15%)
Propyl alcohol	0 ₈ H _E O	97.2	16	67.55	-2.1 (10%)
Isopropyl alcohol	C 3H80	82.4	17	64.45	-3.% (10%)
Tert.Butyl alcohol	C ₄ H ₁₀ 0	82.45	11	66.5	-
Allyl alcohol	C 3H60	96.85	6	67.0	-2.8 (10%)

Sec.Butyl chloride ($C_{4}H_{9}C1$) + Butyl alcohol ($C_{4}H_{1\,0}0$)

Veltmans, 1926

·	% 	d	(α) _D	
		20°		
	100 80 60 40.6 16.7	0.8097 0.8221 0.8350 0.8470 0.8622 0.8726	0 -1.56 -3.36 -4.98 -7.07 -8.48	

Sec.Butyl chloride (C_uH_9C1) (b.t. = 68.25) + Lecat, 1949

Name	2nd Comp.		Az		
	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	CH ₄ 0	64.65	20	52.7	-2.3 (20%)
Ethyl alcohol	C2H60	78.3	15.8	61.2	-2,5 (15%)
Propyl alcohol	O ₈ H _E O	97.2	9	67.2	-2.5 (50%)
Isopropyl alcohol	C3H80	78.3	18	64.0	-2.5 (10%)

Tert.Butyl chloride ($C_{u}H_{9}C1$) + Methyl alcohol ($CH_{u}0$)

Lecat, 1949

Я	b.t.	Dt mix	_
0 10 11 100	50.8 43.6 Az 64.65	-1.6	

Tert.Butyl chloride ($C_{\rm h} H_9 C1$) + Ethyl alcohol ($C_2 H_6 O$)

Lecat, 1949

Я	b.t.	Dt mix
7.5 10 100	50.8 48.5 Az 78.3	-1.8

Butyl bromide ($C_{\rm L}{\rm H}_9{\rm Br}$) (b.t. = 101.5) + Alcohols Lecat, 1949

2nd Comp. Αz Name Formula b.t. K b.t. Dt mix Methyl CH_u0 64,65 59 63.5 -2.8 alcohol (25%) 78.3 Ethyl C2H60 45 75.3 -3.6 alcohol (25%) Propy1 C₃H₈O 97.2 30 90.5 -3.7 alcohol (20%) 79.6 Isopropyl C₃H₈O 82.4 50 -3.2 alcohol (50%)

Buty1	bromide	(C ₄ H ₉ Br)	(b.t.	=	101.5) + Alcohols
Lecat	1949							

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl	C4H100	117.8	13	98.6	-
alcohol					
Isobutyl	C4H100	108.0	22	95.8	-2.3
alcohol					(20%)
Sec.Butyl	C ₄ H _{1 D} O	99.5	30	93.0	-3.0
alcohol	,				(50%)
Tert.Butyl	ChH100	82.45	63	81.8	-3.7
alcohol					(40%)
Diethyl	C5H120	116.0	14	100.7	_
carbinol	,				
Methyl	C5H120	112.6	14	99.7	-3.5
isopropyl c	arbinol				(15%)
Dimethyl	C5 H1 20	102,35	28	97.8	-
ethyl carbi	nol				
Glycol	C2H6O2	197.4	1.7	101.3	-
Ally1	C3H60	96.85	30	89.5	-4.4
alcoho1	, ,				(20%)
Ethylene	CoHsOC1	128,6	10	99.5	-
chlorhydrin	,				

Butyl bromide ($C_{u}{\rm H}_{9}{\rm Br}$) + Butyl alcohol ($C_{u}{\rm H}_{1\,0}0$)

Smyth and Engel, 1929

	mo1%	P1	Pа	
		50°		
	0 14.55 21.40 25.94 28.15 38.98 50.33 52.26 57.90 63.68 70.93 77.51 88.32 93.83 97.39	127.0 116.6 113.6 111.2 109.6 104.9 97.1 92.5 80.2 78.7 67.5 43.3 26.3 16.2 0	0 15.8 17.3 18.4 19.0 20.9 22.4 21.9 22.7 23.3 24.3 25.3 27.2 27.5 33.3	
1	1			

Smyth, Engel and Wilson, 1929

mo1%	n _D	mo1%	n _D
	20	0°	
100 94.94 86.06 82.89 73.27 64.20 58.45	1.39942 1.40177 1.40570 1.40698 1.41124 1.41500 1,41690	54.80 52.20 45.16 23.78 18.12 0.00	1.41870 1.41970 1.42240 1.43065 1.43291 1.43994

Isobutyl bromide ($C_u H_9 Br$) (b.t. = 91.4) + Lecat, 1949 $\quad Alcohols$

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl	СН ₄ 0	64.65	42	61.55	~3.3
alcohol					(25%)
Ethyl	C2H60	78.3	33	72.5	-4.3
alcohol					(30%)
Propyl	C 3H8O	97.2	21	85.2	-3.5
alcohol					(20%)
Isopropyl	C ₃ H ₈ O	82.4	32	77.5	~4.1
alcohol					(32%)
Buty1	C4H100	117.8	7	90.7	-1.8
alcohol					(7%)
Isobutyl	C4H100	108.0	16	89.2	-3.5
alcohol					(20%)
Sec.Buty1	C4H100	99.5	19.5	87.0	-4.0
alcohol					(20%)
Tert.Butyl	C4H100	82.45	42	79.0	-3.8
alcohol					(38%)
Tert.Amyl	C5H120	102.35	12	90.5	-2.9
alcohol					(12%)
Glycol	C2H6O2	197.4	0.8	91.35	
Allyl	C3H60	96.85	18	84.5	-4.0
alcohol					(18%)

Isobutyl b			b.t.=89).2) +	Alcohols.	Tert.Butyl b	romide (((b.t.	= 73.25	5)+
	2 nd comp		Az			Lecal, 1949	AICONOI.				
							2nd Comp	•	Az		
Name	Formula	b.t.	% 	b.t.		Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	(CH 4 0)	64.0	44-59	60.0		Methyl alcohol	СН40	64.65	23	55.6	-2.8 (23%)
Ethyl alcohol	(C ₂ H ₆ O)	78.4	41.0	71.4		Propyl alcohol	C ₃ H ₈ O	97.2	8	71.5	-
Propyl alcohol	(C ₃ H ₈ O)	95.6	18.25	86.1		Isopropyl alcohol	C 3H80	82.4	20 15	68	-3.0 (50%)
						Tert.Butyl alcohol	C4H100	82.45	15	69.95	_
Sec.Butyl	bromide (C ₄ H ₉ Br)	Butyl	alcoho	01						
				(C ₄ H	I ₁₀ 0)	Butyl iodide	e (C ₄ H ₉ I) (b.t.	= 130.	4) + A	lcohols
Houston, 19	933					Lecat, 1949					į
mol%	n _D	mo	1%	n _D			2nd Comp.	•	Az		
		20°				Name	Formula	b.t.	%	b.t.	Dt mix
100 91.49	1.3983 1.4013	43	. 7 3 . 64	1.4192 1.4242		Ethyl alcohol	CaH60	78.3	-	78.15	-1,2 (50%)
83.06 74.25 63.33	1.4042 1.4073 1.4117		. 80 . 6 7	1.4275 1.4329 1.4370	•	Propy1 alcohol	C ₃ H ₈ O	97.2	66	96.2	-2.8 (60%)
55.14	1,4138	3 7 3 0 (1	240		4057	Butyl alcohol	€ ₄ H ₁₀ 0	117.8	41.5	113,8	-4.2 (40%)
Az : 29		37.2° (7	49 mm)	n _D = 1	.4250	Isobutyl	C4H100	108.0	50	106.2	-3.6
						alcohol					(50%)
sec.Butyl 1	bromide (C ⁺ H ³ RL)(b.t.=9	1.2) +	Alcohols	Amyl alcohol	C ₅ H _{1 2} 0	138.2	15	117.0	-2.5 (25%)
Lecat, 1949			·			Isobuty1	C5H120	131.9	28	123.2	-4.5
	2nd Comp	·	Az			carbinol		1100			(30%)
Name	Formula	b.t.	%	b.t.	Dt mix	Methyl propyl carbi	C ₅ H ₁₂ O nol	119.8	46	117.0	-5.0 (30%)
Methy1	СНто	64.65	41.5	61.5	~3.2	Allyl	C3H60	96.85	74	96.4	-4.0
alcohol. Ethyl	C 11 0	70.7	12	70 5	(25%)	alcohol			_		(50%)
alcohol	C2H60	78.7	33	72. 5	-	Glycol Cyclopentano	C ₂ H ₆ O ₂	197.4	5	128.5	-
Propy1	C ₃ H ₈ O	97.2	20,5	85.3	-3.5	Methoxy-	C ₃ H ₈ O ₂	140.85 124.5	16	126.0 115.5	-
alcohol	- , -B				(20%)	glycol	€-38∘X	12110		110.0	
Isopropyl	C3H80	82.4	34	77. 5	-	Ethoxy-	$C_{14}H_{1\ 0}O_{2}$	135.3	30	123.0	-
alcohol Butyl	C4H100	117.8	6	90,6	=	glycol Propoxy-	C5H12O2	151.35	_	130.0	~
alcohol						glycol	J 12. 1				
Isobutyl alcohol	$C_{\mu}H_{10}0$	108.0	14	88.6	-	Methyl lactate	$C^{h}H^{8}O^{3}$	143.8	20	128.5	-
Sec.Buty1	C4H100	99.5	20	87.5	~3.5	Ethylene	CaH50C1	128.6	38	117.5	_
alcohol	- 4 - 10 -				(15%)	chlorhydrine	- 25				
						Dichlor-	$C_2H_40C1_2$	146.2	15	128.0	-
						ethanol					
											

2-Chlor-1- C ₃ H ₂ 0C1 133.7 30 123.5 -	Isobutyl iodi		b	+ = 17	081+	
propanol		Alcohols	1)(0	1 12	0.0 , .	
1-Chlor-2- C ₃ H ₇ 0Cl 127.0 45 120.0 -	Lecat, 1949					
propanol		2nd Comp.		Az		
	Name	Formula	b.t.	8	b.t.	Dt mix
Isobutyl iodide ($C_{ij}H_{ij}I$) (b.t. = 118 - 119) +	Methy l	CH ₄ 0	64.65	7 5	64.60	-1.3
Alcohols Ryland, 1899	alcohol	CHO	70.3	71 5	77 4	(50%) -3.0
	Ethyl alcohol	C ² H ⁶ O	78.3	71.5	77.4	(27%)
	Propy1	C 3H80	97.2	66	96.2	-2.8
	alcohol Isopropyl	CPO	07.4	75	92 A	(60%) -2,5
Methyl CH ₄ 0 64.5 - 65 70 63.5 - 64.5 alcohol	alcohol	C ₃ H ₈ O	82.4		82.0	(75%)
Ethyl C ₂ H ₆ 0 77.5 - 78 70 76.5 - 77.5 alcohol	Butyl alcohol	C ₄ H ₁₀ 0	117.8	29	110.0	-3.8 (30%)
Propyl C ₃ H ₈ 0 97.5 45 92.5 - 93.5	Isobuty1	$C_{\mu}H_{1\;0}0$	108.0	34	103.85	-3.0 (34%)
alcohol (753mm) Isopropyl C ₃ H ₈ O 81 - 82 70 81 - 82	Isoamyl alcohol	C5H120	131.9	17	117.5	(34%) -4.5 (30%)
alcohol (761mm) Butyl C ₄ H ₁₀ O 105.3 - 106.3 33 101 - 102	Allyl	C3 H60	197.4	3.5	119.5	-
alcohol (765mm) Amyl C ₅ H _{1 2} O 128 - 129 2O 115 - 116	Methoxy-	C 3H802	124.5	2 5	110.5	-
alcohol	Ethoxy-	$C_{4}H_{10}O_{2}$	135.3	-	117.5	-
Scc.Butyl iodide (C _u H ₉ I) + Methyl alcohol	Methyl lactate	$C_{\mu}H_{8}O_{3}$	143.8	6	120.0	-
(CH ₄ 0)	Ethylene chlorhydrine	C2H50C1	118.6	30	112.5	-
% b.t.	Dichlor- ethanol	C2H4OC12	146.2	-	120.5	-
0 120.0	1-Chlor-2- propanol	C3H70C1	127.0	25	115.0	~
65 64.60 Az 100 64.65						
	Sec.Butyl io	dide (C ₄ H	+ (اوا	Ethyl a	lcohol (C ₂ H ₆ O)
	Lecat, 1949					
		%		b.t.		
		0		120.0		
		70· 100		77.2 78.3	Az	
 						

Isoamyl chloride ($C_5H_{13}C1$) (b.t. = 99.	4)+
Alcohols Lecat, 1949	

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl	CH ₄ 0	64.65	56	62.0	-1.8
alcohol					(20%)
Ethyl	C2H60	78.3	43	74.7	-2.3
alcohol					(25%)
Propy1	C 3H80	97.2	29	89.0	-2.0
alcohol					(15%)
Isopropyl	C3H80	82.4	44	79.0	-
alcohol					
Buty1	C4H100	117.8	12	97.0	-2.2
alcohol					(12%)
Isobutyl	C4H100	108.0	20	94.5	-2.8
alcohol					
sec.Butyl	C4H100	99.5	29	91,5	_
alcohol					
tert.Butyl	C4H100	82,45	59	81,15	-
alcohol					
tert.Amyl	C5H120	102.35	26.5	95,85	-3.0
alcohol					(17%)
Allyl	C 3H60	96.85	29	88.3	-4.2
alcohol					(20%)
Ethylene	C2H50C1	128.6	14	97.8	-2.0
chlorhydrin	-				(10%)

Amyl bromide ($C_5H_{11}Br$) + Propyl alcohol (C_3H_80)

Holley, 1902

 %	b. t.	%	b.t.
	763	mm	
100.00	95.5	43.01	94.5
94.42	95.2	40.50	94.7
88.05	94.8	35.35	95.2
83.78	94.6	29.02	95.9
79.55	94.4	23.24	96.9
74.81	94.2	18,23	98.3
70.70	94.0	14.81	99.6
66,99	94.1	11.38	101.6
63.69	94.15	8.77	103,85
59.85	94.2	6.49	106.2
55.98	94.25	4.36	109.1
52.09	94.3	2.14	112.6
47.94	94.4	0.00	118.2
46.60	94.4	5.00	110,2

Amyl bromide ($C_5H_{1\,1}{\rm Br}$) + Isobutyl alcohol ($C_4H_{1\,0}0$)

Holley, 1902

- %	b.t.	%	b.t.
	757.	4mm	
100.00 94.88 89.50 84.33 79.92 76.35 72.96 69.36 66.63 63.63 60.70 57.48 54.56	105.0 104.3 104.0 103.8 103.65 103.6 103.55 103.45 103.45 103.45 103.5	51.37 48.10 44.32 38.08 31.28 25.55 20.56 16.55 12.22 7.89 6.01 2.73 0.00	103.7 103.75 103.8 104.1 104.6 105.4 106.2 107.4 109.0 111.2 112.9 115.0 118.1

Amyl bromide ($C_5H_{11}Br$) + Amyl alcohol ($C_5H_{12}0$)

Holley, 1902

	b.t.	*	b.t.		
	763.	7mm			
0.00 2.32 4.96 8.61 12.67 16.60 20.78 26.88 34.42 40.62 46.02 52.56	117.9 117.2 116.8 116.35 116.15 116.3 116.4 116.8 117.25 117.9 118.9	57.00 56.71 62.09 67.60 73.14 78.97 82.68 86.72 90.98 95.77 100.00	119.5 119.0 120.3 121.5 122.7 124.0 124.9 126.0 127.0 128.1 129.0		

Isoamyl	bromide	(C ₅ H ₁₁ Br) (b.t.	=	120.65)	+	
	Alcoh	ols						
_								

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b,t.	%	b.t.	Dt mix
Ethyl	C2H60	78.3	74	77.7	-3.5
alcohol					(25%)
Propyl	C3H80	97.2	58	95.35	-2.5
alcohol					(50%)
Butyl	$C_{\mu}H_{10}0$	117.8	31.5	110.6	-3.3
alcohol					(30%)
Isobutyl	C ₄ H ₁₀ 0	108.0	44	104.55	-3.5
alcohol					(40%)
Amyl	C5H120	138.2	15	118.2	-3.2
alcohol					(20%)
Isoamy1	C5H120	131.9	16	117.95	-4.0
alcohol					(30%)
Methyl	C5H120	119.8	26	115.0	-4.5
propyl carbi	nol				(25%)
Allyl	C3H60	96.85	45	93.15	-1.5
alcohol					(75%)
Glycol	CaH6Oa	197.4	5.5	119.45	_
Methoxy-	$C_3H_8O_2$	124.5	20	111.5	-0.8
glycol					(10%)
Ethoxy-	C4H, 002	135.3	8	118.0	-0.5
glycol					(5%)
Ethylene	CaH50C1	128.6	24	113.0	-3.5
chlorhydrine					(40%)
2-Chlor-1-	C ₃ H ₇ OC1	133.7	15	118.0	-
propanol					
1-Chlor-2	C ₉ H ₇ OC1	127.0	30	115.5	-
propanol	•				
Ethylene	C ₂ H ₅ 0Br	150.2	7	119.5	-
bromhydrin	•				

Isoamyl iodide ($C_2H_{1,1}I$) + Propyl alcohol (C_3H_80)

von Zawidzki, 1903

mo1%	.,	mol%	v
L	v	L	\
44.9°		49.9°	
100	100	100	100 9 7. 74
96.90 96.27 92.18 92.31 87.26 87.26 82.70 70.23 59.28 47.76	94.60 94.84	98.40 95.51	94.20
92.18	90.68	95.51 95.59	94.24
92.31	90.83		94.33
87.26	70.05 70.05 84.48	87.97	91.09 88.05
82.70	84.48	83.38	85.44 83.28 83.21
70.23	80.54	78.16	83.28
59.28 47.76	80.54 77.86 75.93	77.77 77.00	83.21 82.88
77.70	10,70	92.31 87.97 83.38 78.16 77.77 77.00 76.22	82.88
60°		60°	
100	100	88.26	89,11
98.85	98.51	83.36	86,56
98.92 97.28	98.44 96.60	83.08 82.67	86.45 86.23
95.32	94.11	82.67 82.30 81.95 80.79	86.09
94.98 91.40	94.10 01 17	81.95	85.90 I
91.40	91.17 91.17	80.79	85.44 85.22
88.30	89.11		00,22
7 0°		70 °	
100	100	88.37	90.16
96.93 96.93	96.54 96.54	80.92 80.30	86.72 86.60
89.97	96.54 91.15	76.09	84.95 84.82
88.46	90.24	75.24	84.82
×	n _D	×	n _D
	25	5.1°	
100	1.38308	34.94 26.21	1.43453
88.26 77.59 62.79	1.38976	26.21	1.44541
62.79	1.39653 1.40740	17.19 13.22	1.45792 1.46419
54 65	1.41433	13.22 6.78	1.47559
46.57 39.85	1.42071 1.42881	2.88	1.48292
37,60	1.44001	0	1.48863
Holley, 1902			
%	b.t.	%	b.t.
	753.	5 mm	
100.00	95 .7	36.50	97.6
93.36	95.6	30.27	98.4
89.94	95.65	24,90	99.7
79.91 73.06	95.7 95.8	19.19 14.78	101.4 103.4
66.16	95.9	11.48	105.6
59,90 54,38	96.1	8 64	108,2
54.38 46.15	96.3 96.6	5.95 3.07	110.8 115.6
41.08	96.9	5.95 3.07 0.00	146.5 (sic)

lsoamyl iodi		,I)(b	.t. =	147.65)	+	Isoamyl iodid	e (C ₅ H ₁₁]	() + Amy	yl alc	ohol (C	:5H120)
Lecat, 1949	Alcohols					Holley, 1902					
	2nd Comp		A:	z		K	b.t.		8	b.t.	
Name	Formula	b.t.	Я	b.t.	Dt mix		758	.5 mm		·	
Butyl	C4H100	117.8	72	117.1	-3.5	100.00	128.9	45.		127.	
alcohol					(50%)	93.57 87.47	128.6 128.4	40. 35,		128. 128.	
Isoamyl	C5H120	131.9	33	129.7	-3.0	81.19	128.3	30,	.32	129.	3
alcohol					(50%)	74.80 70.19	128.2 128.18		. 28 . 12	130. 132.	
Hexyl	C6H140	157.85	13	145.2	-3.5	67.46 63.26	128.05	12.	64	133.	7
alcohol					(15%)	60.08	127.9 127.7	7.	. 10 . 43	135. 136.	
Glyco1	C2H6O2	197.2	-	139.0	-	56.18 51.98	127.4 127.3		16	140.	
Pinacol	C6H1 4O2	174.35	10	145.5	~	18.89	127.4		.04 .00	142. 146.	
Ethoxy-	$C_{\mu}H_{10}O_{2}$	135.3	60	132.0	-		حالت الله الله الله الله الله الله الله ا				
glycol	7 " 0										
Propoxy- glycol	C ₅ H ₁₂ O ₂	151.35	-	143.0	-	Hexyl bromid	e (C ₆ H ₁₃ I	3r)(b.	t.=156	5.5) + A	Alcohols
Ethylene	C2H50C1	128.6	55	124.0	-	Lecat, 1949					
chlorhydrin Dichlor-	C2H4OC12	146.0	50	120 =			2nd Comp.	•		Az	
ethanol	CSurrers	140.2	50	138.5	-	Name	Formula	b. t.	 %	b. t.	Dt mix
Ethylene iodhydrin	C2H20I	176.5	23	145.8	-	Hexyl alcohol	C ₆ H ₁ 40	157.85	40	150.5	-3.2 (35%)
1,3-Dichlor-	CaHcOCla	175,8	4	147.4	_	Glycol	C2H602	197.4	14	150.5	-
propanol	- J 0 v	,-	•	*****		Butoxyglycol		171.15	-	156.0	-
Methyl lactate	$C_{4}H_{8}O_{3}$	143.8	52	139.0	-	Ethylene chlorhydrin	C ₂ H ₅ OC1	128.6	7 5	126.5	-2.8 (50%)
Ethyl	C ₅ H ₁₀ O ₃	154.1	35	144.5	_	1,3-Dichlor- 2-propanol	$C_3H_60C1_2$	175.8	15	154,5	-
lactate	•					Cyclohexanol	C2H120	160.8	34	153.7	-2.8
Cyclonexanol	C ₆ H ₁₂ O	160.8	8	146.5	-1.9						-2.8 (35%)
					(10%)						
						Dodecyl chlo	ride (C ₁	₂ H ₂₅ Cl)	+ Bu	tyl alcoi ((hol C _u H ₁₀ 0)
Isoamyl iodid	e(C ₅ H ₁ , I) + Isob	utyl a	lcohol ((C ₄ H ₁₀ O)	Hoerr and Ha	rwood, 19	51			
Holley, 1902	2						%	f	.t.		
%	b.t.		%	b. t			86.1	-3	0.0		
	7	48 mm					61	- 2 	0.0 =====	د حد حد الدو دین شیر شیر سی سی در اسر حین حید دین سیر سی در دا اس دین می در	ندائی الیونید شوانی دی شر مدکر کی بید الدائم دی دی شر
100.00 94.88	104.8 104.7	2	6.86 9.92	106 107	.9	Dodecyl iodi	2- / F D		Teanr	onul alc	obol
83.36 82.35 74.99	104.7 104.8 105.0	1	5.39 9.20 4.48	108 110 112	.7 .4	Hoerr and Ha		-	Laopi	орут ит. (C ₃ H ₈ O)
67.56 59.67	$\frac{105.3}{105.5}$	1	1.00 7.73	115 117	.0						
53.87 47.88	$105.8 \\ 106.1$		5.26 2.32	121 126	.0			I	.t.		
43.40	106.2		0.00 	146	.5		100.0 97.8 87.5 5.2	-2	0.0 0.0 0.0		
										ا مواجعة حدد المداعية على المواجعة المواجعة على المواجعة المواجعة المواجعة	

Dodecyl iodide ($C_{12}H_{25}I$) + Butyl alcohol ($C_{4}H_{10}0$)	1,2-Dichlorethylene ($C_2H_2Cl_2$) + Ethyl alcohol
Hoerr and Harwood, 1951	(C ₂ H ₆ O)
% f.t.	Chavanne, 1913
$\begin{array}{ccc} 0.9 & -30.0 \\ 5.6 & -20.0 \end{array}$	
5.6 -20.0 23.8 -10.0 95.1 0.0	Cis. 6.0 46.3
	Trans.
	9.8 57.7
Cetyl iodide ($C_{16}H_{33}I$) + Butyl alcohol ($C_{4}H_{10}O$)	Dichlorethylene cis. (C ₂ H ₂ Cl ₂) + Methyl alcohol
i	Lecat, 1949 (CH ₄ 0)
Hoerr and Harwood, 1951	% b.t. Dt mix
% f.t.	0 60,25
lower than 0.08 0.0 6.1 10.0	15 51.4 Az -2.7 100 64.65
87.8 20.0	
	Alpert and Elving, 1951
Vinylbromide ($C_2H_3\mathrm{Br}$) + Methyl alcohol ($CH_{\iota\mu}0$)	b.t. mol% b.t. mol%
Lecat, 1949	L V L V
% b, t.	760 mm
	64.6 100 100 52.0 48.7 39.1 63.3 97.1 91.1 51.8 42.9 36.6 61.8 95.2 86.3 51.5 34.9 34.9
0 15.8 - 15.7 Az 100 64.65	61.8 95.2 86.3 51.5 34.9 34.9 60.6 93.0 81.3 51.8 29.5 34.5 58.0 86.4 66.9 51.9 22.6 32.4
	56.9 83.1 62.9 52.3 15.0 29.2 56.0 80.4 60.9 52.9 8.4 26.0
	54.5 74.1 54.6 55.4 1.4 16.0 53.7 68.6 49.6 56.3 0.4 12.7 53.1 63.5 46.1 57.8 0.2 6.1
1,1-Dichlor ethylene ($C_2H_2Cl_2$) + Methyl alcohol	53.1 63.5 46.1 57.8 0.2 6.1 52.6 60.0 44.1 60.3 0 0 52.4 57.4 42.4
(CH ₁₄ 0)	mol% n _D mol% n _D
Lecat, 1949	20°
% b.t.	100 1.3287 40 1,4163
0 31	90 1.3482 30 1.4253 80 1.3653 20 1.4338 70 1.3801 10 1.4412
6 27.5 Az 100 64.7	70 1.3801 10 1.4412 60 1.3942 0 1.4483 50 1.4061
-	

Dichlorethylene cis. ($C_2H_2Cl_2$) + Ethyl Alcohol (C_2H_60)	Dihalogen ethylenes+ Alcohols.
Lecat, 1949	Lecat, 1949
% b.t.	Name Formula Az
0 60.25 10,2 57.8 Az	b.t. % b.t.
10.2 57.8 Az 100 78.3	Dibromethylene C ₂ H ₂ Br ₂ 112 67.5 77.8 cis.
	Ethyl alcohol C ₂ H ₆ O 78.3
	Dibrompropylene C ₃ H ₄ Br ₂ 135.2 96.55 97.05 cis.
Dichlorethylene trans. ($C_2H_2Cl_2$) + Methyl alcohol (CH_10)	Propyl alcohol C ₉ H ₈ O 97.2
Alpert and Elving, 1951	Dibromethylene C ₂ H ₂ Br ₂ 108 37 76.0 trans.
mol% n _D mol% n _D	Ethyl alcohol C ₂ H ₆ 0 78.3
20°	Chloriodethylene 116 25 108.5 cis. C_2H_2IC1
100 1.3287 40 1.4128	Butyl alcohol C ₄ H ₁₀ 0 117.8
90 1.3480 30 1.4219 80 1.3629 20 1.4302 70 1.3777 10 1.4380	Chloriodethylene 116 44.4 93.6 cis. C ₂ H ₂ ICl
60 1.3909 0 1.4455 50 1.4027	Propyl alcohol C ₃ H ₈ O 97.2
	Chloriodethylene trans. C_2H_2IC1 113 4 87.5
b.t, b.t. L V L V	Propyl alcohol C ₃ H ₈ 0 97.2
	Bromiodethylene 149.05 67.6 117.3
64.6 100 100 43.0 56.2 27.2 63.4 99.3 94.9 42.4 44.0 26.7 60.9 97.9 86.2 42.0 29.0 24.2	Butyl alcohol CuHio0 117.8
60.9 97.9 86.2 42.0 29.0 24.2 60.5 97.2 84.2 42.0 26.3 24.0 56.5 94.2 69.6 41.9 23.1 23.1 Az	a constant and a second
52.3 88.8 54.8 42.3 11.4 21.0 51.1 86.6 51.5 43.1 3.5 17.0	Trichlorethylene (C_2HCl_3) + Methyl alcohol (CH_40)
48.1 82.3 46.2 44.8 1.3 9.4 46.0 75.4 40.7 46.0 0.4 5.6 44.8 70.6 34.7 48.3 0 0	Fritzweiler and Dietrich, 1933
44.3 65.7 32.0	b.t. b.t.
	L V L V
	100 100 64.7 5.0 48.0 66 99.75 98.5 64 4.75 43.5 68
Dichlorethylene (C ₂ H ₂ Cl ₂) + Methyl malate 1	99.0 95 63 4.5 39.5 70
cis + trans. $(C_6H_{10}O_5)$	93.0 84.5 61 3.5 29.5 74
Grossmann and Landau, 1910	70.0 70 Az 59.3 2.5 17.5 78 34.0 65 60 1.5 19.0 80
g/100cc (a)	10.0 56 62 0.5 4.0 84
red yellow green pale dark violet blue blue	5.4 52.5 64 0 0 86.5
20°	
50.088 -1.90 -2.70 -2.80 -2.20 -1.50 -1.10	
25.044 -0.20 -0.12 +0.48 +1.56 +1.96 - 12.522 +0.80 +1.12 +1.84 +2.87 +4.15 -	
5.011 +1.20 +2.79 +4.79 +5.99 +7.58 +9.98 2.5055 +2.00 +3.19 +5.19 +6.79 +8.38 -	

alcohol Ally1

alcohol

Ethylene

chlorhydrin

C3 H60

C2H5OC1

96.85

128.6

TRICHLORETHYLENE + ETHYL ALCOHOL

mol		b,t.	d	ew poi	nt	Trichlor	ethylen	e (C ₂ 1	HC13)	-	alcohol	
100 95 90 85		64.6 61.3 60.3 59.8		64.6 63.0 62.0 61.1		Fritzwei	ler and	Dietri	ich, 19.	33		
80 75 70		59.4 59.3		60.4 59.9 59.3	Az	mo L	1% V	b.t.	. r	no1% V		.t.
65 60 55 50 45 40 35 30 25 20 15		59.4 59.6 59.7 59.8 60.1 60.3 60.7 61.1		59.8 60.7 62.5 65.0 67.2 69.6 71.9 73.9 75.5 77.0 81.0		100 99.5 98 95 92 88.5 82.5 71 53.5	100 95. 90 84. 78 71. 65. 58 53.	76 5 75 74 5 73 5 72 71	2 30 14 7 5 4 3 2 1 9 Az 0		.5 7 7 7 7 7 .5 8 .5 8	1 2 3 4 6 6 8 8 0 0 2 1 4
5 0		63.0 86.4		83.3 86.4			100		78.3		w point 78.3	
Trichlorethy	vlene (C ₂ l	HCl₃)(b.	. t.=86	9)+	Alcohols		95 90 85 80 75 70 65 60 55		75.0 73.5 72.3 71.7 71.2 71.0 70.9 70.3		76.9 76.0 75.1 74.3 73.6 72.8 71.9 71.2	
	2nd Comp			Az			45		70.7 70.7		70.7 70.7 71.2	
Name	Formula	b.t.	%	b.t.	Dt mix		40 35		70.8 70.9		72.0 74.0	
Methyl alcohol	CH ₄ 0	64.65	36	60.15	+1.2 (35%)		35 30 25 20 15		71.0 71.2 71.4 71.4		76.4 78.7 80.1 81.6	
Ethyl alcohol	C2H60	78.3	27	70.9	-0.8 (28%)		10 5 0		72.4 74.0 86.4		83.0 84.7 86.4	
Propy1 alcohol	C3 H80	97.2	17	81.75	-2.6 (15%)							
Isopropyl alcohol	C3 H80	82.4	30	75. 5	-2.9 (36%)	Trichlor	rethylen	ie (C _a l	HCl ₃)+	Methyl m	alate 1 C ₆ H ₁₀ O ₅)
Butyl alcohol	$C_{4}H_{10}0$	117.8	3.0	86.65	-2.8 (10%)	Grossman		Landau		-		
Isobuty1 alcohol	C4H100	108.0	9	85,35	-3.7 (8.5%)	gr/100cc		ellow	(α) green	pale blue	dark blue	violet
sec.Butyl alcohol	C4H100	99.5	15	84.2	-4.5 (15%)				20°		,	
tert.Butyl alcohol	C4H100	82.45	32	77.0	-4.5 (15%)	50.55 5 25.2775 12.6388 4.911	+0.71	-1.98 +0.91 +3.16 +5.09	-0.79 +2.06 +5.22 +7.53	-0.40 +3.48 +6.49 +11.00	-0.20 +4.23 +8.70 +13.03	-0.10 - +14.66
tert.Amyl	C5H120	102.35	7.5	86,63	-3.6	2.4555	+3.67	+5.70	+8.55	+12.22	+14.25	. 14.00

(18%)

-2.8

(16%)

-2.4

(48%)

16 80.95

2.5 86,55

			r E K (JILOKE	
Perchlorethy	ylene (C ₂ Alcohols		o.t. =	121.1)	+
Lecat, 1949					
-	2nd Comp),	A	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl	СН _и О	64.65	63.5	63.75	-2.1
alcohol	4	01,00	00.0	00.70	(50%)
Ethyl	CaHeO	78.3	65	76,65	
alcohol	O21160	70.0	05	70.03	-0.8
Propy1	C ₃ H ₈ O	97.2	48.5	94.05	(71%)
alcohol	- ingo	// . 2	40.5	94.03	-1.1
Isopropy1	C 3H80	82.4	72	D1 (5	(55%)
alcohol	C 31180	02.7	12	81.65	-1.5
Butyl	C4H100	117 0	20	100 05	(70%)
alcohol	C4111 00	117.8	29	108.95	-2.1
Isobutyl	C 11 0	100.0	40	102.05	(29%)
•	C ₄ H ₁₀ O	108.0	40	103.05	-3.0
alcohol	CILO				(40%)
Sec.Butyl alcohol	C ₄ H ₁₀ 0	99.5	57	97.0	-1.6
	C 11 0	100 0			(50%)
Amyl	C5H120	138.2	15	117.0	2.5
alcohol	0 II 0		_		(25%)
Isoamy1	C5H120	131.9	19	116.2	-2.7
alcohol					(20%)
Methy1	C ₅ H ₁₂ O	119.8	34	113.2	-3.4
propyl carbi					(30%)
Dimethy1	C ₅ H ₁₂ 0	102,35	73	101.4	-6.1
ethyl carbin	ol				(30%)
Allyl	C ₃ H ₆ O	96.85	45	93.15	-1.5
alcohol					(75%)
Glycol	$C^5H^6O^5$	197.4	6	119,1	-
Methoxy-	C3H8O2	124.5	24.	5 109.8	-2.1
glycol					(21%)
Ethoxy-	$C_{14}H_{10}O_{2}$	135.3	16.	5 116.0	-1.2
glycol					(50%)
Propoxy-	C5H12O2	159.35	5	120.6	-2.8
glycol					(33%)
Methyl-	CuHeO3	143.8	10	120.0	-
lactate					
Ethylene	C2H50C1	128.6	24	110.0	-2.3
chlorhydrin	. ,				(35%)
Dichlor-	C2H4OC12	146.2	4	119.5	_
ethanol	, ,				
2-Chlor-1-	C 3H70C1	133.7	13	115.0	-1.2
propanol	, ,				(10%)
1-Chlor-2-	C 3H 70C 1	127.0	28	113.0	-1.8
propanol	- 57			120,0	(20%)
Ethylene	C ₂ H ₅ 0Br	150.2	15	116.5	-1.0
bromhydrin	22.15001	200.2	10	110.0	(10%)
Cyclopenta-	C ₅ H ₁ ₀ O	140.85	8	118.8	-1.6
nol					(10%)

(10%)

Trihalogen ethylenes + Alcohols. Lecat, 1949								
Name		Formu	ıla		Az			
				b.t.	<u>%</u>	b.t.		
Dichlorbrom-		C ₂ HC1;	⊵Br	107	60.5	77.25		
ethylene as. Ethyl alcoho		C ₂ H ₆ C)	78.3				
Dichlorbrom- ethylene sym	.cis.+	C ₂ HC1	₂ Br	113.8	69.1	77.4		
Ethyl alcoho	1	C ₂ H ₆	0	78.3				
Chlordibrom- ethylene +	C	aHC1B	r ₂	138	-	117		
Butyl alcoho	1	C ₄ H,	00	117.8				
Halogenprop		s + A1	cohols	i.				
Lecat. 1949)					·		
Name		Form	ula	b.t.	Az %	b.t.		
1-Chlorpropy lene cis. +	/ -	C ₃ H ₅ C	:1	32.8	3	32.25		
Ethyl alcoho	1	C ₂ H ₆ ()	78.3				
1-Chlorpropy lene trans.	/- +	C ₃ H ₅ C		37.4	4	36.7		
Ethyl alcoho	1	C ₂ H ₆ C)	78.3				
2-Chlorpropy lene +	,-	C ₃ H ₅ (:1	22.65	3	22.0		
Methyl alcoh	ol	$CH_{\downarrow\!\!\!\downarrow}0$		64.65				
2-Brompropy- lene +	•	C ₃ H ₅ E	3r	48.35	-	46.2		
Ethyl alcoho	1	C ₂ H ₆ ()	78.3				
Allylchlorid Lecat, 1949	e (C	₃ H ₅ C1) (b.	.t. = 4	5,3)	+ Alcohols		
	2nd C	omp.		Az				
Name	Formu	la	b.t.	%	b.t.	Dt mix		
Methyl alcohol	CH ₄ 0		64.65	10	39.8	35 -		
Ethyl	CSH60	1	78.4	5	43.5			
alcohol Isopropyl alcohol	C 3H80	1	82.4	2	42.	(10%) 25 -		

						}	`	C2H60
	2nd Comp		Az			Lecat, 1949		
Name	Formula	b.t.	%	b.t.	Dt mix	76	b.t.	Dt m
Methyl alcohol Ethyl	СН ₄ 0	64.65 78.3	10.5 17	54.0 62.8	-4.0	0 46 50 100	96.25 74.65 Az 78.3	-1.
alcohol Propyl alcohol	C 3H80	97.2	9.3	69.1	(15%) -3.8 (10%)	Chlorbutenes (C ₄ H ₂ C1) + Ethyl alcohol	(C.
Isopropyl alcohol	C 3H80	82.4	20	66.0	_	Lecat, 1949	(b.t.=78.3)	
Tert.Butyl alcohol	C4H10P	82.45	10	68.5	-	isomere b.t.	Az %	b.t.
Allyl alcohol	C 3H60	96.85	-	69.2	-	1 - 1 cis. 63.5		58.0
						1 - 1 trans. 68.1	20.2	61.4
Allyl iodid Lecat, 1949) (b.t.	= 101.	8) + A	lcohols	2 - 1 58.5 2 - 2 cis. 66.8	18.4	53.8
	2nd Comp.		Az	·	<u>-</u>	2 - 2 trans. 62.6	15.4	57.0
Name	Formula	b.t.	%	b.t.	Dt mix			
Methyl alcohol	СН ₄ 0	64.65	51	63.2	-	Brombutylenes (C ₄ H ₇ Br Lecat, 1949) + Ethyl alcohol (b.t.=78.3)	(C ₂ H
Ethyl alcohol	C2H60	78.3	42	75.0	-4.0 (25%)		.t. % A2	ь,
Propyl alcohol	C ₃ H ₈ O	97.2	28.5	90.0	-5.0 (30%)	<u>{</u> {	6.15 27.6 4.7 35.75	69 72
Isopropyl alcohol	C3H80	82.4	45	79.0	-3,2 (50%)	2 Br - 2 cis. 9	3.9 33.65 5.55 26.7	72 69
Butyl alcohol	C ₄ H _{1 0} 0	117.8	13	98.7	-4.6 (30%)			
Isobutyl alcohol	C ₄ H ₁₀ 0	108.0	21	95.8	-5.0 (30%)	Pornylahlarida (C. "	01)	
Tert.Amyl alcohol Allyl	C ₅ H ₁ 20 C ₃ H ₆ O	102.35 96.85	25 28	97.2 89.4	-4.8 -5.2	Bornylchloride (C ₁₀ H ₁₇		ctate C ₈ H ₁₆ O
alcohol		7V.0J	20	07.4	(20%)	Lecat, 1949		
Glycol	C2H6O2	197.4		101.5	-	8	b.t.	
Methoxy- glycol	C ₃ H ₈ O ₂	124.5	5	100.5	-	0	207.2	
Ethylene	C2H50C1	128.6	14	99.2	_	100	201.8 Az 202.4	

Chlortetrahydronaphthalene	$(C_{10}H_{11}C1) + Ethyl$ alcohol (C_2H_60)
Weissenberger, Henke and Ka	atschenka, 1926

mo1%	p	
	20°	
25 40 50 60 75 100	35.1 41.2 38.6 36.5 36.0 44.0	

Pinene chlorhydrate ($C_{10}H_{17}C1$) + Borneol ($C_{10}H_{18}0$)

Efremov, 1915

mo1%	f.t.	m.t.	tr.t.	
100	207.0	207.0	69.1	
99.13	206.4	206.0	68.5	
97.37	202.8	200.6	66.8	
95.59	199.7	197.4	65.0	
91.51	193.6	190.2	60.3	
81.97	183.5	177.9	47.0	
77.31	178.4	172.7	39.2	
72.86	174.8	167.6		
63.00	166.2	158.4	_	
53.20	158.1	150.0	_	
43.00	158.1	150.0	-	
43.00	149.9	141.6	_	
32.70	140.8	134.7	_	
27.41	137.7	132.5	_	
22.01	134.6	130.2	_	
11.19	127.5	124.7	_	
5.62	125.9	123.4	_	
3.38	124.5	123.0	_	
1.14	123.5	123.0	_	
0.14	123.3	142.4	_	
U	123.0	-	-	

Timmermans, 1930

mo1%	f.t.	m.t.	
0	128.0	128	
	131.5	128.2	
20	135.5	129	
10 20 30 40 50	141.5	131.5	
40	148.5	135.5	
50	156.5	141.5	
60 70	164.5	148	
70	173.5	158	

Cholesteryl chloride ($C_{27}H_{4_5}C1$) + Cholesterol ($C_{27}H_{4_6}O$)

Lettre, Barnbeck and Lege, 1936

%	f.t.	m.t.	
100	147	146	
88.5	147 144 139 135	89	
79	139	88	
79 69.3 59 50 40 30.5	135	"	
59	129	**	
50	121	**	
40	114	Ħ	
30.5	104	**	
20.5	91	**	
10	104 91 93	77	
20,5 10 0	96	95	

Fluorbenzene (C_6H_5F) (b.t. = 84.9) + Alcohols Lecat, 1949

	2nd Comp.		Az	
Name	Formula	b.t.	%	b.t.
lethyl lcohol	СН40	64.65	32	59.7
thyl lcohol	C2H60	78.3	27	69.5
ropyl lcohol	C3H80	97.2	19	80.5
soproyp1 lcohol	C3H80	82.4	33	75. 5
sobutyl lcohol	C4H100	108.0	9	84.0
ert.Butyl	C4H100	82.45	30	76.8

Fluorbenzene (C_6H_5F) + Methyl malate 1 ($C_6H_{10}O_5$)

Grossmann and Landau, 1910

gr/100cc			(a)			
	red	yellow	green	pale blue	dark blue	violet
50,259	-3 84	-4.32	20° -5,21	-5.97	-6.80	-7.16
50.259 25.1295 12.5648 4.941	-2.82 -0.88	-3.34 -1.11	-3.42 -0.80 +0.20	-3.58 -0.48 +0.61	-3.34 -0.32 +1.01	-

328		Ci	HUKRENZENE	+
Chlorbenzene	(C ₆ H ₅ C1)	+ Methyl Al	cohol(CH ₄ 0)	
Shakhparonov	and Shlenk	ina, 1954		
mo1%	$n_{\overline{D}}$	D	I	_
	20°	19°	- 20°	
0 13 29	1.52445 1.51412 1.49799	0.598 0.452 0.250	4.57 5.20 7.20	
41 50	1.48297 1.46967	0.175 0.148	8.30 8.60	
6 4	1.45125	$0.138 \\ 0.142$	7.40 5.00	
78 100	1.40775 1.32846	0.071	0.56	.
D - degree	of the opti	cal depolari	sation	
I - relativ	e intensity	of the mole	cular light	
dispers	ion			
				_
Chlorbenzen	e (C ₆ H ₅ C1)	+ Ethyl alo	cohol (C ₂ H ₆ O)	-
Schulze, 198	56			
mo1%	р	mo1%	p	_
	25	5°		_
0	11.70	83.34	57,73	N
5.27 9.02	40.98 44.63	90.11 91.71	58.64 58.43	Į
14.97	47.37	95.00	58.32	
26,93 58,99	50.28 55.44	96.06	58.78 58.66	1
65.38	55.53	97.08 98.02	58.90	-
65.38 68.26 79.58	56.34 5 7.7 4	98.94 100	58.98 59.06	
77.00).02°	39.00	1
0	15.35	78.59	75.84	
9.23 22 11	57.04 64.53	83,34 90.11	76.71 77.55	- }
22.11 33. 7 2	67.43 70.82	91.71	77.55 77.79 78.00	
50.66 58.99	70.82	95.00	78.00	- 1
60.64	72.83 72.92	97.08 98.02	78.26 78.35	Į.
63.48	73.25 74.34	98.94	78.42	
63.48 68.26 72.70	74.34 74.97	100	78.50	
Hirata, 1908				=
	vol%	η		-
		(alcohol	=1)	_
		2 5°		
	25 12.5	0.9189 0.9674		1
	6.25	0.9894		
	3.125	0.9972 1.0012		
	1.5625 0.78125	1,0012		1
				= [

mol%	Q mix	mo1%	Q mix
	2	5°	
0	0	64.6	88.1
2,21	63.1	64.6	93.7
6.1	111.0	70.8	72.8
9.42	141.7	78.9	47.1
7.8	164.1	88.2	20.7
4.4	144.1	96,46	3.89
6.8	113.4	100.0	0 `

Chlorbenzene (C_6H_5C1) (b.t. = 131.75) + Alcohols.

Lecat, 1949

	2nd Comp	•	A:	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Propyl alcohol	C3H8O	97.2	82	96.9	-1.3 (80%)
Butyl alcohol	$C_{\mu}H_{10}0$	117.8	54	115.35	-2.7 (45%)
Isobutyl alcohol	$C_{\mu}H_{10}0$	108.0	63	107.2	~4.5 (50%)
Amyl alcohol	C ₅ H _{1 2} 0	138.2	25	126.2	-2.5 (20%)
Isoamyl alcohol	C5H120	131.9	34	124.35	-3.3 (50%)
Methyl propyl car	C ₅ H ₁₂ O binol	119.8	55	118.2	-4.0 (35%)

Chlorbenzene (C_6H_5Cl) (b.t. = 131.75) + Alcohols

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Allyl alcohol	C3H60	96.85	82.5	96.5	-2.6 (50%)
Glycol	C2H603	197.4	56	130.8	-
Methoxy- glycol	C3H8O2	124.5	47.5	119.45	+0.6 (67%)
Ethoxyglycol	C4H1 002	135.3	32	127.2	+0.1 (23%)
Methyl lactate	C + H 8 0 3	143.8	-	130.8	-1.3 (10%)
Cyclopenta- nol	C ₅ H ₁₀ 0	140.85	20	128.5	-2.5 (20%)

Chlorbenzene	(C_6H_5C1)	+	Cyclohexanol	($C_6H_{12}0$)
--------------	---	------------	---	---	--------------	---	--------------	---

Wheeler and Jones, 1952

%	n _D	%	^{n}D	
100	25	70.00	1.49400	
100	1.46472	39.99	1.49400	
91.25	1.46831	30.75		
83.75	1.47135	20.24	1.50624	
75.41	1.47521	13.41	1.51121	
69.00	1.47842	6.55	1.51658	
60.29	1.48308	0	°1.52195	
50.97	1.48820			

Chlorbenzene (C_6H_5C1) + Methyl malate 1 ($C_6H_{10}O_5$

Grossmann and Landau, 1910

gr/100cc (α)
red yellow green pale dark violet
blue blue

Chlorbenzene (C_6H_5C1) (b.t. = 131.75) + Alcohols

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Ethylene chlorhydrine	C ₂ H ₅ OC1	118.6	42	119.95	-2.3 (49%)
Dichlor- ethanol	C2H4OC12	146.2	20	130.0	-2.5 (10%)
2-Chlor-1- propanol	C ₃ H ₇ OC1	133.7	36	126.0	-2.5 (30%)
l-Chlor-2- propanol	C ₃ H ₇ 0C1	127.0	55	122.2	-2.5 (50%)
Ethylene bromhydrine	C ₂ H ₅ 0Br	150.2	20	128.7	~1.5 (15%)
Ethanol amine	C ₂ H ₇ ON	170.8	13.5	128.55	-120 (13.5%)

Chlorbenzene (C_6H_5C1) + Ethyl tartrate ($C_8H_{1\,4}0_6$)

Patterson and Donald, 1908

Patterson and	d Donald	, 1908		
t	d		t	d
0;	%		3.	8059%
17.05 24.12 38.53	1.109 1.102 1.086	215	18.5 24.25 31.87	1.11071 1.10451 1.09622
10.00	073%		24	.9956%
15.0 39.3 68.1 99.0	1.120 1.093 1.062 1.027	882 22	14.7 36.0 63.2 99.0	1.13432 1.11108 1.0812 1.0415
47.4	69%		7 5	. 345%
17.9 36.3 65.5 101.3	1.151 1.132 1.101 1.061	223	18.8 24.91 49.5	1.1797 1.1732 1.1472
%		đ		(α) _D
		20°		
0 5.4	9034	1.106 1.110	7 4 81	13.3
0 3.8 10.0 24.9 47.4 75.3	96	1.106 1.109 1.114 1.128 1.149 1.178	57 09 81 54 57	13.3 11.87 10.14 8.00 6.98 6.99
t	(α) _D		t	(α) _D
3.805	59%		10.0	0073%
13.8 17.4 23.6 40.0 43.7	11.02 11.55 13.65 14.45 14.86	1	11.3 21.7 32.0 40.1 47.8 56.0 00.0	8.74 10.41 11.97 12.96 13.82 14.63 17.19
24.99			47.4	
13.0 24.8 38.8 44.6 59.3 68.7 100.0	6.75 8.78 10.68 11.32 12.87 13.71 15.66	1	9.1 13.1 21.9 37.9 46.5 57.3 67.2 00.0	5.39 5.92 7.22 9.37 10.40 11.49 12.29 14.49
13.0 22.0 38.6	6.11 7.31 9.24		55.5 66.6	10.77 11.64

				1				<u> </u>	
Rule, Barnet				Brombenzene Lecat, 1949	(C ₆ H ₅ Br) (b.t.	= 156	.1) + Al	cohols
	mo1%	.α 5461		<u> </u>	2nd Comp.		Az	;	
	20°	+3.21		Name	Formula	b.t.	%	b.t.	Dt mix
	3.7 20.9 38.0 50.1	10.11 15.34 20.23		Isoamyl alcohol	C5H120	131.9	85	131.65	-4.2 (35%)
	63.0 79.1	24.43 30.30		Hexyl alcohol	C ₆ H ₁ 40	157.85	34	151.6	-2.4 (30%)
				Glycol	C2H6O2	197.4	12	150.2	-
			hal / C U A N	Pinacol	C6H1402	174.35	20	153.5	- 1
Brombenzene	(C ₆ H ₅ Br)	+ Ethyl alco	hol (C ₂ H ₆ O)	Methyl lactate	C4H8O3	143.8	22	141.5	-0.8
Schulze, 195	6			Ethyl	C5H1003	154.1	58	150.1	(90%) -1.1
mol%	p	mo1%	p	lactate					(58%)
				Isopropyl lactate	C ₆ H ₁₂ O ₃	166.8	12	155,2	-
0 6.10	4.72 38.68	77.40 83.18	53.27 55.35	Ethoxy- glycol	C4H1002	135.3	86	135.22	+0.7 (73%)
11.84 35.88	42.98 49.49	100	59.06	Propoxy- glycol	C ₅ H ₁₂ O ₂	151.35	48	148.2	-
	30.02°			Ethylene chlorhydrin	C2H50Cl	128.6	∙68	127.45	-2.2 (50%)
0 6,50	5.67 47.11	41.42 60.75	63.70 67.00	Dichlor-	$C_2H_40C1_2$	146.2	70	142.5	-3.5
16.59 22.57	56.56 58.92	77.39 100	70.46 78.50	ethanol lodethanol	C2H50I	176.55	25	153.5	(50%)
				1,3-Dichlor- 2-propanol	C3H60Cl2	175.8	9	155.5	(15%) +2.9
Schulze, 195				Ethanolamine	CaH70N	170.0	22	145.0	(10%) 59.5
mol%	Q mix	mo1%	Q mix]					(22%)
	2	5°		Cyclohexanol	C ₆ H ₁₂ O	160.8	31	153,6	-2.8 (35%)
0 0.882 2.76 14.5 38.6 53.8	0 28.2 75.9 170.7 182.4 151.0	63.6 77.0 88.18 99.29 100.0	121.8 71.3 32.26 1.73 0	Brombenzene Grossmann and			yl mala	te l (C	6H10O5)
				gr/100cc		(a)			
				red	yellow	green	pale blue	dark blue	violet .
						20°			·
				50.666 -3.9 25.333 -2. 12.66665 -0. 4.889 +0.6 2.4445 +1.2	29 -2.57 16 +0.16 51 +1.64	+2.86	-4.93 -2.09 +0.87 +4.09 +8.18	-5.33 -1.97 +1.03 +5.11 +9.41	-4.84 - - +6.14
									====
			Ji						

Brombenzene	(C ₆ H ₅ Br) +	Éthyl tarti	rate (C ₈ H ₁ 40 ₆)	lodbenzene (C ₆ H ₅ I) +	Ethyl al	cohol	(C ₂ H ₆	0.)
Patterson an	d Mc Donald,	1908		Oholm, 1913.					
t	d	t	d	- с	η	С		Diffusio ratio	
0%	3	9.9	3184%	-	20	0			
14.3 42.8 58.6 100.6	1.50188 1.46425 1.44313 1.3862	18.6 36.1 59.0 100.6	1.45914 1.43590 1.4059 1.3508	3 1.5 0.7 0.4	1330 1309 1288 1278	1 0.5 0.25		0.81 0.83 0.84	
19.4	1.4048	47.9	1.33699	c= N of io	dbenzene				
38.0 61.6 100.8	1.3820 1.352 1.302	38.5 61.0 101.0	1.31434 1.2875 1.2392	Iodbenzene (C ₆ H ₅ I) (b.t. = 18	38.45) + Alc	ohols
8	d		(α) _D	Lecat, 1949					
	20°			- Name	2nd Comp. Formula	b, t.	% %	b.t.	Dt mix
0 4.99	1.49	447	11.7	Ethanol amine	C ₂ H ₇ ON	170.8	45	161.0	-
0 9.93 24.94		728 -	11.7 9.6 7.86	Glycol monoacetate	$C^{\prime\prime}H^80^3$	190.9	-	184.0	-
47.96	7 1.33	594	7.03	Butoxy- glycol	C ₆ H ₁ 40 ₂	171.15	-	170.8	-
t	(α) _D	t	(a) _D	Isobutyl _ lactate	C7H1403	182.15	70	180.5	-
9.93 11.0 14.8 24.0 39.6 47.0 52.0 100.0	7.99 8.62 10.29 12.41 13.22 13.8 17.09	24.9 9.6 13.2 18.0 24.0 37.7 45.5 55.3	6.17 6.79 7.6 8.44 10.30 11.21 12.19	1,3-Dichlor- 2-propanol 1,2-Dichlor- 3-propanol		175.8	70 57	173.0	-4.8 (70%) -
47.9 10.4 13.0 23.1 41.2	5.70 6.04 7.48 9.69	62.5 100.4 48.3 56.2 62.0 100.3	12.89 15.51 10.44 11.15 11.63 14.31	Iodbenzene (Grossmann and			late	(C ₆ H ₁₀	0 ₅)
				gr/100cc re		α) green	pale blue	dark blue	violet
				50.082 -4. 25.041 -2. 12.5205 -0. 4.815 -0. 2.4075 +3.	49 -4.99 88 -3.27 80 -1.04 62 +0.62	-3.47 - -0.80 - +1.66 +	5.99 3.71 0.64 3.53 9.97	-6.49 -3.99 -0.48 +5.19 +11.63	- - +6.65
					•				

				o-Dichlorben	zene (C ₆ H Alcohol	I ₄ Cl ₂) (b.t.	= 179.5) +
Iodbenzene (C ₆ H ₅ I) + Et	hyl tartr	ate (C ₈ H ₁₄ O ₆)	Lecat, 1949	2nd Comp.		A		
Patterson and	Mc Donald, 1	.908		Name	Formula	b.t.	%	b.t.	Dt mix
t	d	t	d	Heptyl	C ₇ H ₁₆ O	176,15	55	173.5	-
19.5 24.8 31.25 38.5 24.90 19.5 24.5 29.6 38.9 50.6	1.83257 1.82363 1.8138 1.8027 011% 1.61552 1.60846 1.6011 1.5881 1.5716	18.85 24.1 34.3 51.6	1.73208 1.72429 1.7090 1.6832 182% 1.45079 1.44344 1.4288 1.4069	alcohol Octyl alcohol Glycol Glycol monoacetate Butoxy- glycol 1,3-Dichlor- 2-propanol	C ₆ H ₁ uO ₂ C ₃ H ₆ OC1 ₂		46 20 - 73 60	177.5 165.8 179.3 170.5	-5,5 (60%) - - - -
75.29 19.25 25.05	983% 1.31392 1.30724	36.2 53.7	1.2948 1.2749	1,2-Dichlor- 3-propanol Ethanol amine	C ₃ H ₆ 0Cl ₂ C ₂ H ₇ 0N	182.5 170.8	40	174.2 157.3	-
8	d		(α) _D				===		
0 10.6375 24.9011 49.8182 75.2983	1.6148 2. 1.4485 3. 1.3131 1.8317	73 38 32 56	11.0 9.2 8.2 8.0 7.9	p-Dichlorber G.L.Starobin	nets and K		-	(C ₂ H ₆	
10.637 24.2 40.1 51.1 49.818 13.6 26.4 40.4 51.5 59.5	(α) _D 75% 9.78 11.77 13.26	24.9 16.8 21.1 36.4 52.4	11.0 (α) _D 1011% 7.83 8.36 10.38 12.29 1983% 7.48 8.03 9.32 10.53	- 0.00 2.5 5.00 7.55 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00	0 0 0 0 0 0 0 0 0 0 0	52.74 51.62 50.58 50.02 49.61 48.14 47.38 46.28 45.32 43.80 41.16 35.64 23.18		30, 25 28, 85 27, 50 25, 95 24, 90 23, 26 23, 26 22, 10 20, 80 19, 65	

			1		
mo1%	d	ε	p-Dichlorbenzene	$(C_6H_4CI_2) + IS$	(C ₃ H ₈ O)
	55°		G.L.Starobinets a	nd K.S.Starobine	
0.00 5.14	1.2530 1.2390	2.397 2.536			
9.58 20.14	1.2250 1.1968	2.688 3.176	mo1%	f.t.	σ
34.80	1.1495	4,191	U		55°
50.17 58.54	1.0985 1.0508	5,950 7,755	0.0	52.74	32.00
69.92 79.94	0.9895 0.9317	10.44 12.86	0.0 2.5	51.52	52.00
89.96	0.8574	16,98	5.0 7.5	50.50 49.97	-
100.00	0.7668	19.66	10.0 20.0	49.30	29.40 29.50
			30.0	47.30 45.85	26,00
			40.0 50.0	44.54 42.92	24.60 23.40
p-dichlorbenzene	$(C_6H_{\downarrow}Cl_2) + Pro$		60.0 70.0	40.70 37.48	22.30
		(C_3H_80)	80.0	31.34	21.40 20.50
G.L.Starobinets	and K.S.Starobine	ts, 1951	90.0 100.0	16.26	19.75 19.05
			1		2,100
mo1%	f.t.	<u> </u>	mol%	đ	ε
	55°			55°	
0.00 2.5	52.74 51.40	32.00			
5.0	50.42	-	0.00 5.09	1.2530 1.2339	2.397 2.526
$\begin{array}{c} \textbf{7.5} \\ \textbf{10.0} \end{array}$	50.05 49.57	30.45	8.89 20.29	1.2179 1.1782	2.630
20.0 30.0	49.57 47.74	29.25	29.75	1.1379	3.062 3.605
40.0	46.70 4 5 .26	27.85 26.80	40.00 50.53	1.1014 1.0574	4.451 5.600
50.0 60.0	43.58 41.29	25.45 24.55	59.95	1.0140	6.551
70.0	37.60	23.70	69.87 79.86	0.9585 0.8980	7.707 9.628
80.0 90.0	31.00 14.85	22.80 21.85	89.96 100.00	0.8296 0.7532	11.756 14.330
100.0	-	20.70	100.00	0.7002	111000
					
mo1%	d	ε			
	55°		p-Dichlorbenzene	$e (C_6H_{14}C1_2) + 1$	sobutyl alcohol (C ₄ H ₁₀ O)
0.00 5.08	1.2530 1.2375	2.397			
10.03 19.94	1.2200 1.1841	2.522 2.687 3.100	G.L.Starobinets a	nd K.S.Starobine	ts, 1951
30.16 39.29	1,1469 1,1139	3.750 4.450	mo1%	f.t.	σ
49.06 59.02	1.0717 1.0219	5.357 6.821			55°
68.66 78.79	0.9740 0.9208	8.761 11.058	0.00 5.00	52.74 50.46	32.00
88.10	0.8611	13.449	10.00	48.80	29.25
100.00	0.7791	16.774	20.00 30.00	47.02 45.46	27.50 26.10
			40.00 50.00	43.96 41.90	24.65
			60.00	39.40	23.85 22.80
			70.00 80.00	39.40 34.13 27.25	22.50 21.95
			90.00 100.00	11.98	21.00 20.20
			133,00		20.20

DICHLORBENZENE + ISOAMYL ALCOHOL

mo1%	d	ε	p-Dichlorbena	zene (C/H	.Cla) (b.t. =	174.4) +
	55°		II *	Alcohols	42 / (
0.00	1.2530	2.397	Lecat, 1949					
4.92 10.22	1.2278 1.2071	2.505 2.646	<u></u>				 	
19.59 29.83	1.1696 1.1264	2.999 3.467		2nd Comp.		Az		
39.85 49.67	1.0778 1.0378	4.130 4.969	Name	Formula	b.t.	%	b.t.	Sat.t.
60.13 69.90 79.87 89.86	0.9878 0.9367 0.8853 0.8349	6.130 7.474 9.384	Hexyl alcohol	C ₆ H ₁ 40	157.85	81.3	157.65	-
100.00	0.7726	11.329 13.177	Heptyl alcohol	C7H160	176.15	35	171.2	-
			0cty1	C8H180	180.4	22	173.65	45
			alcohol	C 11 O	107.4	10	140.75	(22%)
p-Dichlorbenzene	$(C_6H_4C1_2) + I_5$	soamyl alcohol $(C_5H_{12}O)$	Glycol	C2H6O2	197.4	18 30	162.75	_
İ		(0511/20)	Pinacol	C ₆ H ₁ 40 ₂	174.35	52	167.0	28
}			Butoxy-	C 6H1 4O2	171.15	32	168.3	
G.L.Starobinets as	nd K.S.Starobinet	s, 1951	glycol 1,3-Dichlor-	C-H-0C1-	175.8	45	168.3	(52%) 39
	£ +		2-propanol	C 31160C12	170.0	70	100.5	(45%)
mo1%	f.t.	σ	1,2-Dichlor-	CaHZOCIa	182.5	30	170.8	-
		55°	2-propanol	• 3Poet's	102.0	-	1.0.0	
0.0	52,74	32.00	Cyclohexanol	C6H120	160.8	74	160.2	-
2.5 5.0	52.74 51.53 50.30		Methyl	C7H140	168.5	5 7	167.3	-
7. 5	49.72	_	cyclohexanol					
$\frac{10.0}{20.0}$	49.14 47.20	29.30 28.05	Ethanolamine	C2H7ON	170.8	35	154,6	104.5
30.0	45.50	25.7 5						(35%)
40.0 50.0	43.58 41.22	24.80 24.80	Furfuryl	C5H602	169.35	70	172.5	-
60.0	37.96	24.05	alcohol					
70.0 80.0	33.24 25,15	23.40 22.65						
90.0	8.20	21.80						
100.0	-	21.05						
14			p-Dichlorbe	enzene (C	ςH ₄ C1 ₂)	+ Hept	yl alco	ho1
mo1%	d	ε	Į.				(C	7H16U)
	55°							
0.00	1 4740		G.L.Starobin	ets and K.	S.Starob	inets,	1951	
0.00 4.99 9.85	1.2530 1.2262 1.2042	2.397 2.505 2.623	mol%		f.t.		đ	
30.04 39.66	1.1124 1.0689	3.379					55	,
49.55	1,0233	3.933 4.536			50.74			
59. 74 69. 7 1	0.9773 0.9306	5.462 6.582	0.0 2.5		52.74 51.36		32.0	<i>,</i> 0
79.76	0.8836	7.916	5.0		50.39		30.6	(n
89.89 100.00	0.8348 0.7862	9.538 11.231	7.5 10.0		49.51 48.88		30.	10
			20.0 30.0		46.68 44.16		28.9 28.3	90
			40.0		41.62		27.3	55
			50.0 60.0		37.45 33.22		26.3 25.7	55
			70.0		25.56		24.8	30
			80.0 90.0		-		23.9 23.0	70)()
			100.0		-		22.	lõ
			1					

mo1%	đ	ε	p-Dichlorbenze	ne (C ₆ H _Կ Cl ₂		
0.00 23.00	55° 1.2530	2.397	Patterson and I	Mc Donald, 1		$(C_8H_{14}O_6)$
40.00 60.00 87.00	1.1280 1.0459 0.9586 0.8435	3.006 3.574 4.722 7.031	t	(α) _D	t	(α) _D
100.0	0.8023	8.223	5,00	2%	40.0	1%
p-Dichlorbenzene(C ₆	H ₄ C1 ₂) + Octade	cyl alcohol (C ₁₈ H ₃₈ O)	50.8 55.6 60.0 63.6 72 79.3 97.0	6.78 7.44 8.05 8.53 9.44 10.23 11.85	53.7 60.0 63.4 72.4 99.0	6.62 7.4 7.8 8.82 11.18
G.L.Starobinets and	K.S.Starobinets	, 1951	60.019			
mo1%	f.t.	σ 55°	52.7 57.0 60.00	7.77 8.35 8.7	66.0 75.0 89.7	9.37 10.25 11.5
0.0 2.50 5.00 7.50 10.00 20.00 30.00 100.00	52.74 51.40 50.32 49.20 48.30 46.00 42.20	32.00 31.90 31.50 31.10 30.95 30.60 30.40 29.70 (58°)	p-Dibrombenzend Schröder, 1893	e (C ₆ H ₄ Br ₂) + Ethyl	alcohol (C ₂ H ₆ O)
mol%	đ	ε		%	f.t.	
0.00 2.63 5.07 7.74 10.50 20.33 30.17 100.00	55° 1.2530 1.2229 1.1975 1.1714 1.1455 1.0744 1.0167 0.8246	2.397 2.460 2.514 2.560 2.618 2.776 2.911 3.475		0.0 5.6 19.5 19.5 25.4 42.5 566.5 80.2	13.0 20.0 23.0 25.0 26.5 30.0 35.0 42.5 59.5	
p-Dichlorbenzene (C		yl malate 1 C ₆ H ₁₀ O ₅)	Mortimer, 1923			
Grossmann and Landau	, 1910			mol%	f.t.	
gr/100cc red yell	(α) ow green pale blue			97.2 95.9 89.0 0.0	20 40 60 89.0	
49.699 -2.21 -2.7 24.8495 -1.01 -0.5 12.4248 +1.05 +2.1 5.081 +1.97 +3.5 2.5405 +3.54 +6.3	6 -0.28 +0.52 7 +2.90 +3.86	+0.85 - +4.83 - +8.27 +9.84				

p-Dibrombenzene	(C ₆ H ₄ Br ₂)	(b.t.	=	220.25)	+
Alco							
1040							

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Glycol	C2H6O2	199.4	32.5	183.9	-
Glycerol	C3H8O3	290.5	10	217.1	-
Geraniol	C10H180	229.6	3	220,2	-
Borneol	C10H180	215.0	80	214.9	-
Menthol	C ₁₀ H ₂₀ O	216.3	57	215.3	55 (5 7 %)
Benzyl alcohol	С ₇ Н ₈ О	205.25	65.5	204.25	48 (65.5%)
Phenyl ethanol	C ₈ H _{1 0} 0	219.4	32.5	215.0	67 (32.5%)
Phenyl propanol	C9H120	238.6	15	219.9	-
Propyl lactate	C ₆ H ₁₂ O ₃	171.7	62	170.0	
Diglycol	$C_{14}H_{10}O_{3}$	245.5	13	212.85	-

p-Dibrombenzene ($\text{C}_6\text{H}_4\text{Br}_2$) + Propy1 alcohol ($\text{C}_3\text{H}_8\text{O}$)

Schröder, 1893

 %	f.t.	
0 3.2 10.7 44.3 56.4 68.0	87.0 82.0 77.5 66.5 62.0 54.0	

p-Dibrombenzene ($C_6H_4Br_2$) + Isobutyl alcohol ($C_4H_{1\,o}O$)

Schröder, 1893

 % f.	t.
0 87 5.4 80 24.3 74 66.5 66 63.5 56 71.3 49 34.7 30	.0 .0 .0 .0

p-Chlorbrombenzene	($c_6 \mathtt{H}_{\mathtt{L}} c 1 \mathtt{Br}$)	+	Glycol	($C_2H_60_2$)

Lecat, 1949

%	b.t.
0	196.4
28	173.8 Az
100	197.4

p-Chlorbrombenzene ($\rm C_6H_4C1Br$) + Benzyl alcohol ($\rm C_7H_80$)

Lecat, 1949

 %	b.t
0	196.4
-	194.0 Az
100	205,25

Trichlorbenzenes.($C_6H_3Cl_3$) (b.t. = 208.4) + Alcohols

Lecat, 1949

	2nd Comp		A	z
Name	Formula	b.t.	%	b.t.
Glycol	C2H6O2	197.4	-	181.0
Benzyl alcohol	C7H80	205.25	-	202.5
Benzyl alcohol Benzyl carbinol	C ₈ H ₁₀ O	219.4	-	207.5

o-Fluortoluene ($^{C}_{7}H_{7}F$) + Methyl malate 1 ($^{C}_{6}H_{1}{_{0}}O_{5}$)

Grossmann and Landau, 1919

gr/100cc		yellow	(α)	pale	dark	violet
	100	JC110#	green	blue	blue	VIOLET
			20°			
49.915	-4.29		-5. 7 5	-6.74	-6.73	-6.59

p-Fluortoluene ($\rm C_7H_7F$) + Methyl malate l ($\rm C_6H_{1.0}O_5$)

Grossmann and Landau, 1910

gr/100cc			(a)			
	red	yellow	green	pale blue	dark blue	violet
			20 °			
50.047 25.0235 12.5118	-3.60 -1.96 -1.12	-4.28 -2.28 -0.72	-4.78 -2.48 -0.40	-4.98 -2.24 0.00	-5.12 -2.08 +0.24	-4.90 -
5,346	+0.75	+1.50	+2.06	+3.18	+3.93	+5.05

o-Chlortoluene (C_7H_7C1) (b.t. = 159.2) + Alcohols

Lecat, 1949

	2nd Comp.		A	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Hexy1	C6H140	157.85	44	153.5	-2.5
alcohol					(45%)
Glycol	C2H6O2	197.4	13	152.5	-
Pinacol	C6H, 402	174.35	-	157.0	-
Propoxy-	C5H12O2	151.35	60	149.5	+0.3
glycol					(50%)
Butoxy-	C6H1402	171.15	12	158.5	+0.1
glycol					(15%)
Ethyl	C5H1003	154.1	65	151.0	-1.2
lactate					(65%)
Propyl	C6H12O3	171.7	-	159.0	-
lactate					
Isopropyl	C6H12O3	166.8	22	157.8	-
lactate					
Ethylene	CaH50C1	128.6	85	128.0	~1.8
chlorhydrin					(70%)
Ethylene	C2H50I	176.5	29	155.5	_
iodhydrin					
Cyclohexanol	C6H120	160.8	37	155.2	-2.7
ii .					(50%)
Methy l	C7H140	168.5	-	158.4	-2.2
cyclohexanol					(20%)
Ethanolamine	C2H2ON	170.8	26	146.5	-
1,3-Dichlor-	C3H60C12	175.8	15	157.8	-2.5
2-propanol					(10%)
11					,-,

p-Chlortoluene (C_7H_7C1) (b.t. = 162.4) + Alcohols

Lecat, 1949

Hexyl alcohol Heptyl alcohol Glycol Pinacol Propoxy- glycol Butoxy- glycol	Formula C ₆ H ₁ ₄ 0 C ₇ H ₁ ₆ 0 C ₂ H ₆ O ₂ C ₆ H ₁ ₄ O ₂ C ₅ H ₁ ₂ O ₂ C ₆ H ₁ ₄ O ₂	b.t. 157.85 176.15 197.4 174.35 151.35	54 8 14 13 70 20	b.t. 154.0 161.9 154.8 153.0 149.7	Dt mix -2.0 (60%) -
alcohol Heptyl alcohol Glycol Pinacol Cropoxy- glycol Butoxy- glycol	C ₇ H ₁₆ O C ₂ H ₆ O ₂ C ₆ H ₁₄ O ₂ C ₅ H ₁₂ O ₂	176.15 197.4 174.35 151.35	8 14 13 70	161.9 154.8 153.0 149.7	
Heptyl alcohol Glycol Clycol CPropoxy- Glycol Butoxy- Glycol	C ₂ H ₆ O ₂ C ₆ H ₁ ₄ O ₂ C ₅ H ₁ ₂ O ₂	197.4 174.35 151.35	14 13 70	154.8 153.0 149.7	(60%) - - - -
alcohol Glycol Clycol Pinacol Clycol Propoxy- Glycol Butoxy- Glycol	C ₂ H ₆ O ₂ C ₆ H ₁ ₄ O ₂ C ₅ H ₁ ₂ O ₂	197.4 174.35 151.35	14 13 70	154.8 153.0 149.7	-
Glycol C Pinacol C Propoxy- C glycol Butoxy- C glycol	C ₆ H ₁ 4O ₂ C ₅ H ₁₂ O ₂	174.35 151.35	13 70	153.0 149.7	-
Pinacol C Propoxy- C glycol Butoxy- glycol C	C ₆ H ₁ 4O ₂ C ₅ H ₁₂ O ₂	174.35 151.35	13 70	153.0 149.7	-
Propoxy- C glycol Butoxy- C glycol	C5H12O2	151.35	70	149.7	-
glycol Butoxy- glycol	,				-
Butoxy- C glycol	C ₆ H _{1 4} O ₂	171.15	20	160.5	_
glycol	C6H1402	171.15	20	160.5	_
0 •				100.0	_
Ethyl (
	C5H1003	154.1	72	152.0	-0.8
lactate					(90%)
Propyl (C6H12O3	171.7	18	160.5	-
lactate					
Isorropyl (C6H12O3	166.8	36	160.2	-
lactate					
Cyclohexanol C	C6H120	160.8	45	156.5	-2.8
					(50%)
Methyl C	C7H140	168.5	30	161.1	-2.6
cyclohexanol					(25%)
Ethanolamine (C2H7ON	170.8	28	148.3	-
1,3-Dichlor- (C2H6OC12	175.8	22	160.0	-
2-propanol					

Bromtoluene (C_7H_7Br) + Isopropyl Alcohol (C_9H_80)

Ray, 1956

Absorption spectrum of 40 % at room temperature .

o-Bromtoluene	(C ₇ H ₇ Br) (b.t.	= 181.5) + Alcohols
---------------	-----------------------------------	---------	---------	--------------

Lecat, 1949

	2nd Comp.		A:	Z	
Name	Formula	b.t.	%	b.t.	Dt mix
Propy1	C6H12O3	171.7	15	171.0	-
lactate					
Isobutyl	C7H1403	182.15	50	179.0	-
lactate					
Heptyl	C7H160	176.15	67	174.0	-3.5
alcohol					(30%)
0cty1	$C_{8}H_{18}O$	195,2	-	181.45	-2.1
alcohol					(33%)
sec.0ctyl	C8H180	180.4	49	178.3	-2.4
alcohol					(50%)
Glycol	$C_2H_6O_2$	197.4	24	166.8	-
Glycolmono-	$C_4H_8O_3$	190.9	25	180.0	-
acetate					
Butoxy~	$C_6H_{14}O_2$	171.15	65	169,6	+0.6
glycol					(65%)
1,3-Dichlor-	$C_3H_60C1_2$	175.8	60	170.8	-5.2
2-propanol					(60%)
1,2-Dichlor-	C3H60Cl2	182.5	45	174.5	-4.3
3-propanol.					(45%)
Ethanolamin	e C ₂ H ₇ ON	170.8	42	157.8	-

m-Bromtoluene (C_7H_7Br) (b.t. = 184.3) + Alcohols Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Octyl	C8H180	195.2	9	184.05	-1.3
alcohol					(15%)
Sec.Octy1	C8H180	180.4	57	178.9	-2.2
alcohol					(60%)
Glycol	$C_2H_6O_2$	197.4	23	168.3	-
Benzyl	C7H80	205,25	-	184.15	-2.3
alcohol					(20%)
Ethanol-	CallyON	170.8	44	159.3	-
amine Isobutyl lactate	C7H14O3	182.15	60	180.0	-
Glycol-	ChH803	190,9	32	182.0	-
monoacetate				•	
1,3-Dichlon	~ C ₃ H ₆ 0C1 ₂	175.8	64	171.8	-5,0
2-propano1					(50%)
1,2-Dichlor	r-C3H60Cl2	182.5	50	175.8	-5
3-propanol					(40%)

p-Bromtoluene (C_7H_7Br) + Ethyl alcohol (C_2H_60)

Paterno, 1895

%	f.t.	
0 0.26 0.59 1.07 1.86 3.49 5.52 9.84 16.06 28.86	26.88 26.45 26.03 25.57 25.11 24.48 23.62 23.00 21.02 20.09	

p-Bromtoluene (C₇H₇Br) + tert.Butyl alcohol ($C_{4}\mathrm{H}_{1\,0}0$)

Paterno and Ampola, 1897

%	f.t.	%	f.t.
100.0 98.99 96.05 94.45 91.43 87.97 79:40 73.13 69.09 64.80	23.52 22.96 22.28 21.42 19.94 18.30 14.32 12.17 10.45 9.18	62.41 61.15 59.90 59.19 53.30 48.43 45.89 42.00 0.0	8.89 8.76 9.21 10.17 11.54 13.01 13.78 14.73 26.74

p-Bromtoluene (C_7H_7Br) (b.t. = 185.0) + Alcohols

Lecat, 1949

	2nd Comp.		Az	
Name	Formula	b.t.	%	b.t.
Octyl alcohol	C 8H 1 8O	195.2	10	184.6
Glycol	$C_2H_6O_2$	197.4	25	168.7
Benzyl	C7H80	205,25	10	184.8
alcohol				
Isobutyl	C7H1403	182.15	62	180.2
lactate				
1,3-Dichlor-	C3H60C12	175.8	67	172.0
2-propanol				
1,2-Dichlor-	C3H6OC12	182.5	52	176.2
3-propenol				

Bromtoluene (C_7H_7Br) + Isobutyl alcohol($C_4H_{1\ 0}0$)

Roy, 1956

Absorption spectrum of 60% solution at ordinary temperature and -180°.

p-Iodtoluene ($C_7 H_7 I$) (b.t. = 197.4) + Alcohols Lecat, 1949

	2nd Comp.		Az	
Name	Formula	b.t.	%	b.t.
Glycol	C2H6O2	197.4	30	181.5
Benzyl alcohol	C7H80	205,25	65	203.0
Mentho1	C10H200	216.3	-	213.0

Benzyl chloride (C_7H_7C1) (b.t. = 179.3) +

Lecat, 1949 Alcohols

	2nd Comp.		A	z	
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Heptyl alcohol	C7H160	176.15	49	173.5	-6.0 (50%)
sec.Octyl alcohol	C ₈ H ₁₈ 0	180.4	46	177.5	-5.5 (60%)
Glycol	C2H6O2	197.4	24	166.7	150 (24%)
Methyl cyclohexano	C ₇ H _{1 Կ} 0	168.5	66	168.2	-
Propyl lactate	C ₆ H ₁₂ O ₃	171,7	22	171.2	-2.0 (50%)
Isobutyl lactate	C7H1403	182,15	70	178.0	-1.8 (39%)
Cyclohexanol	C6H120	163.5			

7							
	Benzyl chloride	: (C ₇ H	₇ Cl) +	Methyl	malate	: 1	
					($c_6 \mathtt{H_1}_{o} \mathtt{o}_5$)
	Grossmann and La	ındau,	1910				
	gr/100cc		(a)				
ı	red y	ellow	green	pale	dark	violet	
-				blue	blue		
			20°				
.		-3.13	-3.35	-3.81	+4.77	-4.59	
		-2.03 +0.56	-1.72 + 1.04	-1.48 +1.44	-1.32	-	
		+1.65	+2.89	+3.92	+1.91	+6.19	
	2.4235 +1.24	+2.48	+4.54	+6.19	+7.43	-	
	i						

Benzyl bromide (C_7H_7Br) + Octyl alcohol ($C_8H_{18}O$)

Lecat, 1949

 %	b.t.	Dt mix
 0 30	198.5	-6.5
30 32 100	193.5 Az 195.2	•••

Benzyl bromide (C_7H_7Br) + Isobutyl lactate ($C_8H_16O_3$)

Lecat, 1949

 %	b.t.	Dt mix
0 10 73 100	198.5 197.6 202.4	-0.6

Benzylidene chloride ($C_7H_6Cl_2$) (b.t. = 205.2) + Lecat, 1949 Alcohols

	2nd Comp.	•	Az	ž.	
Name	Formula	b.t.	%	b.t.	Dt mix
Octyl alcohol	C8H180	195.2	82	195.0	-
Borneol	C10H180	215.0	15	205.0	-
Isoamyl	C8H1603	202.4	25	201.5	+1.2
lactate					(52%)

Grossmenn and Lendau, 1910 gr/100cc	Benzylide	ne ch	loride	(C ₇ H ₆ C)	l ₂) + M	lethyl m (C ₆ H ₁	
red yellow green pale dark violet blue blue 20° 50.625 -1.54 -2.23 -2.47 -2.69 -2.90 -2.55 25.3125 -1.46 -1.22 -0.91 -0.55 -0.20 -12.6563 +0.47 +0.63 +1.19 +1.90 +2.37 -5.035 +0.99 +1.99 +2.98 +3.97 +4.97 +6.36 2.5171 +1.59 +3.19 +5.16 +7.15 +8.74 - p-Fluorxylene (C _θ H ₉ F) + Methyl malate l (C ₆ H ₁₀ O ₅) Grossmann and Landau, 1910 gr/100cc (α) red yellow green pale dark violet blue blue 20° 50.003 -4.00 -4.80 -5.40 -5.90 -6.06 -5.86 25.0015 -2.64 -3.08 -3.40 -3.40 -3.24 -12.5008 -1.44 -1.60 -1.44 -0.96 -0.64 - Ioddiphenyl (C ₁₂ H ₉ I) + Menthol (C ₁₀ H ₂₀ O) Pfeiffer, Schmitz and Inone, 1929 % f.t. E % f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 20 68 " 80 101 " 20 104.5 "	Grossmann	and	Landau,	1910			
50.625 -1.54 -2.23 -2.47 -2.69 -2.90 -2.55 25.3125 -1.46 -1.22 -0.91 -0.55 -0.20 - 12.6563 +0.47 +0.63 +1.19 +1.90 +2.37 - 5.035 +0.99 +1.99 +2.98 +3.97 +4.97 +6.36 2.5171 +1.59 +3.19 +5.16 +7.15 +8.74 - p-Fluorxylene (C ₈ H ₉ F) + Methyl malate 1	gr/100cc	red	yellow				violet
25.3125 -1.46 -1.22 -0.91 -0.55 -0.20 - 12.6563 +0.47 +0.63 +1.19 +1.90 +2.37 - 5.035 +0.99 +1.99 +2.98 +3.97 +4.97 +6.36 2.5171 +1.59 +3.19 +5.16 +7.15 +8.74 p-Fluorxylene (C ₀ H ₉ F) + Methyl malate 1 (C ₆ H ₁₀ O ₅) Grossmann and Landau, 1910 gr/100cc (α) red yellow green pale dark violet blue blue 20° 50.003 -4.00 -4.80 -5.40 -5.90 -6.06 -5.86 25.0015 -2.64 -3.08 -3.40 -3.40 -3.24 - 12.5008 -1.44 -1.60 -1.44 -0.96 -0.64 - Ioddiphenyl (C ₁₂ H ₉ I) + Menthol (C ₁₀ H ₂₀ O) Pfeiffer, Schmitz and Inone, 1929 # f.t. E # f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 20 68 " 80 101 " 20 68 " 80 101 "				20°			_ "
Grossmann and Landau, 1910 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	25.3125 · 12.6563 · 5.035	-1.46 +0.47 +0.99	-1.22 +0.63 +1.99	-0.91 +1.19 +2.98	-0.55 +1.90	-0.20 +2.37	-
Grossmann and Landau, 1910 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$							
gr/100cc (α) red yellow green pale dark violet blue blue 20° 50.003 -4.00 -4.80 -5.40 -5.90 -6.06 -5.86 25.0015 -2.64 -3.08 -3.40 -3.40 -3.24 -12.5008 -1.44 -1.60 -1.44 -0.96 -0.64 - Ioddiphenyl (C ₁₂ H ₉ I) + Menthol (C ₁₀ H ₂₀ 0) Pfeiffer, Schmitz and Inone, 1929 # f.t. E # f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 20 68 " 80 101 " 30 76 " 90 104.5 "	p-Fluorx	ylene	(C ₈ H ₉ I	F)+M			
red yellow green pale dark violet blue blue 20° 50.003 -4.00 -4.80 -5.40 -5.90 -6.06 -5.86 25.0015 -2.64 -3.08 -3.40 -3.40 -3.24 - 12.5008 -1.44 -1.60 -1.44 -0.96 -0.64 - Ioddiphenyl (C ₁₂ H ₉ I) + Menthol (C ₁₀ H ₂₀ O) Pfeiffer, Schmitz and Inone, 1929 # f.t. E # f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 20 68 " 80 101 "	Grossman	n and	Landau,	, 1910			
50.003 -4.00 -4.80 -5.40 -5.90 -6.06 -5.86 25.0015 -2.64 -3.08 -3.40 -3.40 -3.24 - 12.5008 -1.44 -1.60 -1.44 -0.96 -0.64 - Ioddiphenyl (C ₁₂ H ₉ I) + Menthol (C ₁₀ H ₂₀ O) Pfeiffer, Schmitz and Inone, 1929 # f.t. E # f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 20 68 " 80 101 " 30 76 " 90 104.5 "	gr/100cc		yellow	• •			violet
25.0015 -2.64 -3.08 -3.40 -3.40 -3.24 - 12.5008 -1.44 -1.60 -1.44 -0.96 -0.64 - Ioddiphenyl (C ₁₂ H ₉ I) + Menthol (C ₁₀ H ₂₀ O) Pfeiffer, Schmitz and Inone, 1929 # f.t. E # f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 30 76 " 90 104.5 "				20°			
Pfeiffer, Schmitz and Inone, 1929 % f.t. E % f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 30 76 " 90 104.5 "	50,003 25,0015 12,5008	-4.00 -2.64 -1.44	-4.80 -3.08 -1.60	-3.40	-3.40	-3.24	-
Pfeiffer, Schmitz and Inone, 1929 % f.t. E % f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 30 76 " 90 104.5 "		===					
% f.t. E % f.t. E 0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 30 76 " 90 104.5 "	Íoddiphe	nyl (C ₁₂ H ₉ I) + Men	nthol (C _{1 0} H _{2 0} 0)
0 43 40 50 87 33 5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 30 76 " 90 104.5 "	Pfeiffer	, Sch	mitz and	Inone,	1929		
5 41.5 38 60 91 " 10 55 " 78 96 " 20 68 " 80 101 " 30 76 " 90 104.5 "	76	f	.t.	E	%	f.t.	E
	5 10 20 30	4 5 6 7	1.5 5 8 6	38	60 78 80 90	91 96 101 104,5	11 17 17

1-Chlornaphthalene ($C_{10}H_{7}C1$) (b.t. = 262.7) + Lecat, 1949 Alcohols

	2nd Comp.		Az	
Name	Formula	b.t.	%	b.t.
Glycol	C2H6O2	197.4	65.2	193.1
Glycerol	C3H8O3	290.5	17	256.0
Benzyl glycol	$C_{12}H_{12}O_2$	265.2	-	261.5
Diglycol	C4H1003	245.5	47	234.1
Triglycol	C ₆ H _{1 4} O ₃	288.7	5	261.5

l-Bromnaphthalene ($C_{10}H_7Br$) (b.t. - 281.2) + Alcohols

Lecat, 1949

2nd Comp.		Αz	
Formula	b.t.	%	b.t.
CaH6Oa	197.4	71.2	194.95
C 3 H 8 O 3	290.5	_	272.5
$C_{4}H_{10}O_{3}$	245.5	59.5	240.8
C6H1403	288.7	33	273.4
	Formula C ₂ H ₆ O ₂ C ₃ H ₈ O ₃ C ₄ H ₁ OO ₃	Formula b.t. C ₂ H ₆ O ₂ 197.4 C ₃ H ₈ O ₃ 290.5 C ₄ H ₁ O ₀ 245.5	Formula b.t. % C ₂ H ₆ O ₂ 197.4 71.2 C ₃ H ₈ O ₃ 290.5 - C ₄ H ₁ O ₀ ₃ 245.5 59.5

l-Bromnaphthalene ($C_{1.0} H_7 Br$) + Methyl malate 1 ($C_6 H_{1.0} \theta_5$)

Walden, 1906

r/100c	c red (α) d	.с.	green (α) d.	.c.	viole: (α)	d.c.
			18°			
27.2 6.8 1.7	-2.90 +0.2 +3.3	1 1 1	~5.57 +1.2 +7.4	1.4 5.3 2.3	-6.47 +3.0 +15.9	1.65 13.7 4.9

				T		
1-Bromnapht	halene (C ₁₀ H ₇	Br) + Eth	yl tartrate (C ₈ H _{1 4} O ₆)		aphthalene (C _{1 o} F alcoho Kohnstamm, 1909 -	1 (CH ₁₄ 0)
Patterson a	nd Mc Donald,	1908				
t	d	t	d	C.S.T.	limits of pressure	dt/dp
0	 %	2.0	0 7 933%	62.0	5 - 195 K g	-0.025
18.55 20.75 23.0	1.49225 1.49006 1.48777	19.8 22.8 31.3	1,47853 1,47549 1,46697			
4.99 18.95 20.95 24.3 49.68	1.47269 1.47067 1.46727 82%	20.1 18.65 20.75 24.25	1.42089 1.41853 1.41491		alco Kohnstamm, 1909 - limits of	H ₇ Br) + Isobutyi bhol (C _u H ₁₀ 0) - 1910 dt/dp
18.7 20.55 23.6	1.33026 1.3270 d	(α)),	8.6	1 - 180Kg	-0.01
0 4.	20° 1.48651 07933 1.47833 1.49081 1.47164 1.47164 1.41937	26. 20. 26. 16.	.0	Bromnaphthalene Zecchini, 1897	(C ₁₀ H ₇ Br) + I	Ethyl alcohol (C ₂ H ₆ O)
	6882 1.33085		.32	%	đ	ⁿ D
t	(a)D	t	(α) _D		7 °	
2,079	•	4.990		0 52.04 100	1.49181 1.03940 0.80301	1.66356 1.46738 1.36699
16.9 25.2 38.5 52.1 79.0 110.5	20.36 21.83 24.34 24.51 29.2 29.05	15.0 33.5 47.2 59.3	15.3 19.9 22.3 24.1			
20.37 19.4 24.3	11.8 12.22	13.5 20.0 31.0 42.5 52.1	8.31 9.32 11.04 12.51 13.62			

342

METHYLENE IODIDE + RESORCINOL

XXVI. HALOGEN DERIVATIVES + PHENOLS AND ACIDS .	Timofeev, 1905
Methylene iodide (CH_2I_2) + Resorcinol ($C_6H_6O_2$)	% Q mix initial final (by mole phenol)
Bingham, 1907	
C.S.T. = 180	0 0.26 -3.74 0.26 0.73 -3.91 4.32 4.76 -2.99 14.25 14.70 -2.30 15.0 15.90 -2.44
Chloroform (CHCl ₃) + Phenol (C ₆ H ₆ O)	
Weissenberger, Schuster and Henke, 1925	Chlarafara (CICL) Landard (C.II.0.)
mol% p	Chloroform (CHCl ₃) + o-Cresol (C ₇ H ₈ O)
20°	Weissenberger, Schuster and Wojnoff, 1925
66.7 40.2 50 74.6	mo1% p
40 93.6 33.3 105.2 0 160.5	15°
0 100.0	66.7 56.6 50 83.0
Weissenberger, Schuster and Schüler, 1924	40 93.0 33.3 100
	28.6 104 25 108 22.2 110
	22.2
15°	mol% η σ
64.5 57 56.5 67 50 73	(water = 1)
42.9 77	15°
99.2 33.3 80 87	66.7 0.5 0.488 50.0 1.0 0.465
mo1% n	40.0 1.5 0.449 33.3 2.0 0.445 28.6 2.5 0.449
mo1% η (water = 1.)	28.6 2.5 0.449 25.0 3.0 0.457 22.2 3.5 0.439
15°	0.439
64.5 3.10 56.5 1,32	
50.0 1.94	
39.2 1.41 33.0 1.17 24.8 0.96	
mol% σ	
(water = 1)	
15°	
64.5 0.347 56.5 0.328	
50.0 0.311 39.2 0.287	
33.0 0.278 28.6 0.270	
25.0 0.263	

Chloroform (CHCl ₄) + m-Cresol (C ₇ H ₈ O)	Chloroform ($CHCl_{1_4}$) + Resorcinol ($C_6H_6O_2$)
Weissenberger, Schuster and Wojnoff, 1925	Walter, Collett and Lazzell, 1931
mol% p	mol% f.t. sat.t.
15° 66.7 60.1 50 87.4 40 100 33.3 109 28.6 113 25 116 22.2 118	100.00 109.4 - 85.19 102.3 - 5.68 - 90.0 5.15 - 89.4 0.521 - 25.0 Triple point = 94.8° (L ₁ +L ₂ +C)
mol% η σ (water = 1)	Chloroform ($CHCl_{14}$) + Pyrocatechol ($C_6H_6O_2$)
66.7 4.77 0.428 50.0 2.91 0.430	Walter, Colett and Lazzell, 1931
30.0 2.71 0.430 40.0 1.55 0.432 33.3 1.37 0.435 28.6 1.10 0.440 25.0 0.92 0.448 22.2 0.87 0.452	mol% f.t. mol% f.t. 100.00 104.5 35.93 79.0 85.29 98.0 21.37 73.7 71.98 92.0 10.69 65.8 59.12 86.6 5.49 55.3 46.21 82.3 2.322 25.0
Chloroform (CHCl _h) + p-Cresol (C ₇ H ₈ O) Weissenberger, Schuster and Wojnoff, 1925	Bromoform ($CHBr_3$) + $Phenol$ (C_6H_60)
p	Paterno, 1896
15°	% D f.t.
66.7 59.9 50 83.2 40 91.8 33.3 98.8 28.6 103 25 106 22.2 108	0.81 -0.20 2.44 0.65 5.60 1.57 10.64 3.08 16.49 5.03 24.55 7.90
mol% η σ	
(water = 1)	
15°	
66.7 4.11 0.485 50.0 2.26 0.462 40.0 1.60 0.446 33.3 1.15 0.441 28.6 0.85 0.436 25.0 0.71 0.434 22.2 0.63 0.434	

344	C	ARBON TETRAC	HLORIDE + PH	ENOL	<u></u>	
Carbon tetrachlorid	e (CC1 ₄) + Phe	enol (C ₆ H ₆ O)	Hoffmann, 1943			
Weissenberger,Schus	ter and Schüler,	, 1924	.mo	larity	molar extino	_
mo1%	p				coefficient	(9600 A)
	15°		•	21.5		
57.5 49.5 40.0 33.9 28.7 25.0	55 61 65 67 67 68		2. 0. 0. 0. 0.	017 005 9678 5296 2572 1019 0502 0160	0.00768 0.01337 0.2328 0.03514 0.05406 0.07922 0.08945 0.09800 0.1030	
Brusset and Bono, 1	956; and Bono 1	956.	Mecke and Zein	inger, 1948	(fig.)	
mol% p	mo1%	p		no 1%	н	
0 91. 2.5 90. 5.0 89. 10.0 88. 15.0 87.	20° 0 20.0 5 25.0 9 30.0 7 35.0	86.3 85.4 84.4 83.0		10 25 50 75	0.000000056 0.000001 0.000032 0.0010 0.0018	
15.0 87.0	6 40.0	80.8		no1%	d μ/dt.l/μ	
Weissenberger, Schu: mol% 57.5 49.5 40.0 33.9 28.7 25.1	15° 3.65 2.91 2.24 1.99 1.69 1.56	σ			0.01 0.009 0.011 0.0051 0.005 0.004 -0.001 -0.0025 -0.003 -0.0007 +0.004 +0.0055 +0.0052	(C ₇ H ₈ O)
			Brusset and Bo	no 1956 and	Bono 1956.	
Schupp, 1949			mo1%	р	mo1%	р
Total polarization f	for 10 - 60°		0 5.0 10.0 15.0 20.0	91.0 88.7 87.4 85.6 83.9	25.0 30.0 35.0 40.0	81.5 79.1 77.0 74.3

		CA	ARBON TETRA	CHLORIDE + C	RESOL			345
Carbon tetrach			resol (C ₇ H ₈ O)	Carbon tetrac	hloride (C	C1 ₄) + 1,2	,6-Xylenol (C ₈ H ₁₀ 0)	
mo1%	p	mo1%		_ Bono, 1956				
mo 1/2			p	- %	Р	%	p	
0	20 91.0	46.8	74.3		20	٥		
11.3 17.6 31.6	86.7 84.1 81.9	59.0 67.9 78.2	69.8 57.1 48.7	0 4.0 12.0 22.0	91.0 88.0 83.5 77.3	31.8 40.0 49.3	73.5 68.3 63.2	
Carbon tetrach			resol (C ₇ H ₈ O)	Carbon tetrac		•	ocatechol (C ₆ H ₆ O ₂)	
mo 1%	р	mo1%	p		f.t.	mol%	f.t.	
0 12.2 16.8	91.0 86.0 84.3	0° 28.1 43.9	81.7 72.0	100.00 85.97 72.31 59.08 45.74	104.5 98.3 94.6 92.6 91.5	36.36 19.45 10.47 4.35 0.156	91.1 90.5 88.5 83.5 25.0	
Bono, 1956	loride (CC		,3-Xylenol (C ₈ H ₁₀ 0)	Carbon tetrac			orcinol (C ₆ H ₆ O ₂)	
%	р		р	-	mo1%	f.t.		
0 2.8	91.0 89.0	5.1 11.4	87.5 86.9	_	100.00 85.31 0.84 0.65 0.231	109.4 104.1 100.7 95.4 25.0		
Carbontetrachlo	ride (CC1 ₄) + 1,2,4	-Xylenol (C ₈ H ₁₀ O)	Triple poin	t = 103.7°	(L ₁ +L	2+C)	
Bono, 1956				Bingham, 190 7				
%	p	%	р	C.S.T. = 135				
0 5.8 13.38 22.4 27.29 31.37 39.05	20° 91.0 88.1 84.5 80.6 77.8 76.8 71.8	44.3 54.1 60.4 65.8 78.4 87.7	68.0 64.0 56.4 52.6 43.9 25.0					

Carbon tetrachloride ($CC1_4$) + Hydroquinone ($C_6H_6O_2$)	Dahms, 1905
	mol% f.t. mol% f.t.
Walter, Collett and Lazzell, 1931	100 39.54 37.90 -1.1 99.490 39.13 37.0 -1.70
mol% f.t.	96.73 37.12 36.17 -1.51 93.59 34.99 31.85 -0.40
100.00 172.9 86.73 167.2	84.37 28.45 27.27 +0.72 76.88 23.29 19.93 2.60
$\begin{array}{ccc} 1.89 & 154.0 \\ 1.42 & 147.3 \end{array}$	72.90 20.50 10.21 5.28 66.72 16.64 4.325 7.41
0.85 137.3 0.69 132.4	61.29 13.3 1.639 8.71 56.47 10.3 0 9.625
0.0081 25.0	44.72 3.25
Triple point = 163.2° (L_1+L_2+C)	
	Ethylene bromide (C ₂ H ₄ Br ₂) + o-Nitrophenol
Carbon tetrachlorida (CCI) + Thurst (C U C)	(C ₆ H ₅ O ₃ N)
Carbon tetrachloride (CCl_{μ}) + Thymol ($C_{10}H_{1\mu}0$)	Sidgwick, Spurrell and Davies, 1915
Carroll, Rollefson and Mathews, 1925	% f.t.
% f.t.	40.0 15
24.2 0	47.8 20 56.8 25
49.1 25.0 79 38.5	67.2 79.0 30 35
	90.6 40
	100 44.9
Ethylene Bromide ($C_2H_4Br_2$) + Phenol (C_6H_60)	
Paterno and Ampola, 1897	
% f.t. E	Ethylene bromide ($C_2H_4Br_2$) + p-Nitrophenol
	(C ₆ H ₅ O ₃ N)
100 40.24 - 47.59 15.73 -	Sidgwick, Spurrell and Davies, 1915
44.88 14.33 - 42.58 12.96 -	% f.t.
40.22 11.30 - 38.14 9.89 -	
36.35 8.58 - 34.26 7.27 -	31.0 52.0 70 80
32.14 5.63 - 30.30 4.43 -	73.2 90 88.5 100
28.98 3.52 -	98.0 110
26.46 2.45 - 24.87 +1.21 -	100 113.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
20.99 -1.12 -0.71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D . II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pentachlorethane (C_2HCl_5) + Phenol (C_6H_60)
16.04 0.76 -	Lecat, 1949
14.27 1.46 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0 162.0 9.5 160.95 Az
	9.5 160.95 Az 100 182.2

Perchloreth) (b.t	. = 18	4.8)+	Phenols
	2nd Comp		A2	<u></u>	
Name	Formula	b.t.	%	b.t.	Sat.t.
Phenol	C6H60	182.2	38	173.7	124 (38%)
o-Cresol	С ₇ Н ₈ О	191.1	27	181.3	122 (27%)
m-Cresol	C7H80	202.2	8	183.2	-
p-Cresol	C7H80	201.7	10	183.0	-
Bornyl chlo		1 ₁₇ C1) +	b.t. 207. 199. 201.	5	₇ H ₈ O)
Bornyl chlo		I ₁₇ Cl) +	p-Ch1		l (0C1)
	%		b.t.		
	0 8 100		207. 206. 219.	5 2 Az 75	

Chlorbenzene (C_6H_5C1) + Phenol (C_6H_69) Gutner, Morozova and al., 1946 % (V) b.t. p 13% 135.5 136.6 118.6 112.5 90.5 74.2 56.8 784.6 760.5 496 401 203 113 4.67 4.67 3.36 4.09 2.98 2.28 65 26 29.6 1.20 35% 7.67 6.39 6.29 4.90 3.50 2.44 2.20 789 140.0 122.5 114.8 505 401 213 112 94.8 76.4 55.8 42.6 49 28 50.% 795 507 143.0 10.67 9.47 9.70 7.82 5.64 5.43 2.83 126.3 118.0 403 225 99.4 84.0 59.8 45.5 131 53 30 63% 783 515 415 208 $148.0 \\ 130.8$ 16.75 13.59 12.96 9.53 8.11 $123.8 \\ 100.2$ 80.8 62.6 42.0 106 4.97 2.92 61 21 83% 32.34 25.44 37.55 25.86 21.68 17.86 10.31 785 160.6 506 142.0 134.2 402 202 113.4 93.1 35.2 51.1 98 61 28 93% 769.6 510 170.2 154.2 55.15 51.15 49.23 50.70 44.19 34.2 25.29 392 213 112 53 20 144.4 125.6 107.0 88.0 64.6 95% 172.2 157.2 149.2 126.8 107.0 66.39 62.93 62.33 54.40 50.03 762.3 505 403 199 49 15 88.6 62.2 41.60 43.8

CHLORBENZENE + RESORCINOL

348			CHLUKBENZ	ENE + KESUK	CINOL				
Hirobe, 1908				Brombenzen	e (C ₆ H ₅ Br)	+ o-Nit	rophe	nol (C ₆ H	1 ₅ 0 ₃ N)
%	f.t.	%	f.t.	Sidgwick,	Spurrell and	Davies,	1915		
100	40.24	49.04	21.76		%	f.	t.		
100 96.762	40.24 38.46	68.06 62.30	18.89	1					
90.409 83.840	30.69 30.87	56.01 49.24	14.88 11.09		18.8 57.7	20 25	i		
78.10	27.54	41.01	6.12		67.2 78.3	30 35			
				[]	39.7 00	40			
					00	44	••9		
Bramley, 1916									
8	d		η	Brombenzen	e (C ₆ H ₅ Br)	+ p-Nit	rophe	nol (C ₆ H	1 ₅ 0 ₃ N)
	20°			1 _					
100.00	1.0752	2	11040	Sidgwick,	Spurrell and	Davies,	1915		
81.45 71.41	1.0806 1.0836	5.	5555 4 07 0		%	f.	t.		
58.15 49.90	1.0874 1.0898		2748 2218		32.7	80	`		
38.90 30.43	1,0930 1,0954		16 7 3 13 7 4		59.7	90)		
21.73	1.0980)	1122		80.6 96.3	100 110			
9.78 4.93	1.1018 1.1034	‡	888 825	10	00	113	8.8		
0.00	1.105	1	768						
					(CHI)		100 4	5 \ Db.	
				11	(C ₆ H ₅ I)	, b, t	100.4) + PH6	HOIS
ecke and Zei	ninger, 1948	(f	ig.)	Lecat, 194	2nd Comp.				
	mo1%	н		Name	Formula	b,t.	Az %	b.t.	Dt mix
	140		.010						
	10 25	0.000 0.000		Pheno1	C6H60	182.2	47	177.7	7
	50 75	0.000 0.001		o-Cresol	C ₇ H ₈ O	191.1	31	184.95	(47%) -4.4
	100	0.001		0 51C301	71180	*/***	31	104.70	(50%)
				p-Cresol	C7H80	201.7	12	187.9	-
	 		 	o-Chlor-	C ₆ H ₅ 0C1	176.8	78	176.0	
Taboury and	Lestrade, 19	47		Phenol					
D									
kaman spectr	a in liquid p	hase		o-Dichlorb	enzene (C ₆ 1	LCL Y	(b +	~ 170 5	` ·
					Phenols	-4012 /	, D. L.	- 1/9,5	<i>)</i> +
				Lecat, 19	49				
Chlorbanzana	(C.H.Cl) +	Pasarat	nol (C ₆ H ₆ O ₂)		2nd Comp		Az		
outor Denzene	, 06115CI / T	Weson CI	nor (ceuens)	Name	Formula	b.t.	%	b.t.	Dt mix
Bingham, 190	7			Phenol	С6Н60	182.2	35	173.7	
				o-Cresol	С ₇ Н ₈ О	191.1	35 15	173.7	_
C.S.T. = 227	0			o-Chlor-	C ₆ H ₅ 0C1	176.8	48	173.6	-5.0
				phenol	•				(50%)
				=				-	

p-Dichlorbenzene ($C_6H_4Cl_2$) + Phenol (C_6H_60)	p-Dichlorbenzene ($C_6H_4C1_2$) + p-Chlorphenol (C_6H_5OC1)
Lecat, 1949	Burnham and Madgin, 1936 (fig.)
% b.t. Sat.t.	mo1% f.t.
0 174.4 25.2 171.05 Az 42.4 100 182.2	100 52.9
Taboury and Lestrade, 1947 (fig.)	60 42 50 38.5 40 33.5
% f.t. % f.t.	30 29 26.6 27.2 E 20 32.5
0 58 60 30 10 54 70 24 E 20 50 80 30 30 46 96 36	26.6 27.2 E 20 32.5 10 39 0 42.9
40 40 100 41 50 36	mo1% n _D
	54°
p-Dichlorbenzene ($C_6H_4Cl_2$) + o-Cresol ($C_7H_8\theta$) Glass ans Madgin, 1934 (fig.)	0 1.5317 20 1.5330 40 1.5405 60 1.5448
Glass ans Madgin, 1934	80 1.5490 100 1.5538
0 52.9 60 22.5 10 48 66.5 17.7 E 20 44 70 19.5 30 39 80 24 40 35 90 27.5 50 29.5 100 30.5	p-Dichlorbenzene ($C_6H_4C!_2$) + Thiophenol (C_6H_6S)
	Lecat, 1949
p-Dichlorbenzene (C ₆ H ₄ Cl ₂) + o-Chlorphenol	% b.t.
(C_6H_50C1) Lecat, 1949	0 174.4 71 168.2 Az 100 169.5
% b.t.	
0 174.4 35 171.0 Az 100 176.8	p-Dichlorbenzene ($C_6H_uCl_2$) + o-Nitrophenol ($C_6H_5O_3N$)
	Sorum and Durand, 1952
	% f.t.
	0 53.0 - 23.1 E 100 45.0

CHLORBROMOBENZENE + PHENOL

Lecat, 194	9				
	2nd Comp		A	7	
Name	Formula	b.t.	<u>^</u>	h.t.	
Phenol	C H 0	182.2	62 53	181.0	
o-Cresol p-Cresol	С ₇ Н ₈ О	191.1 201.7	53 25	189.0 194.5	
p cresur	C7H80	401.7	20	174.0	
Dibramban	zene (C ₆ H ₄	Dr \ 1 I	Phono I	/ C U.O	`
-Diniomaen	zene (C ₆ n ₄	D1 2 / T I	nenor	(C ₆ n ₆ 0	,
lortimer, 1	923				
···	mo1%	f	.t.		
	98.3		0		
	$\begin{array}{c} 71.4 \\ 28.0 \end{array}$	8	0 0		
	0.0		9,0		
Shishokin	and Muskina	, 1938			
	mo1%		.t.		
	0		7		
	$9.81 \\ 21.81$	8	2.4 8.5		
	30.41 40.12	7	6.1		
	50.0	7	3.2		
	60.08 69.25		6 0.9		
	79.25 90.0	5	1.4 4.9		
n-Dihrombe	Trene (C.H.	Dr.)/ b		20. 25.)	Di 1
	izene (C ₆ H ₁	tpr 5 // p	. t2	20,25) +	Pnenol
Lecat, 194				 	
N	2nd Comp		A.		<u> </u>
Name	Formula	b.t.	%	b.t.	Sat.t.
o-Xylenol	C _B H _{1 O} O	226.8	25	218.65	-
m-Xylenol	C ₈ H ₁₀ O	210.5	90	209.8	-
Pyro- catechol	C6H6O2	245.9	10	218.15	84 (10%)
Guethol	CaH1002	216.5	32	214.0	(10%)
Methyl	C ₈ H ₁ oO ₂	222.95	25	219.4	69
salicylate	0 10-1				
	C6H50C1	219.75	35	215.05	66.5
p-Chlor-					
p-Chlor- phenol o-Nitro-		217.2	52	215.15	

	. / C. H. D.	<u> </u>	10	1 5) (Dhana) -
o-Bromtoluen Lecat, 1949) (D.T.	. = 1b.	1.5) + Phenols
Decar, -	2nd Comp.		Az	
NI - m A	Formula			
Name	rormula	b.t.	%	b.t.
Phenol	C6H60	182.2	40	174.35
o-Cresol	C ₇ H ₈ O	191.1	18	180.5
o-Chlor-	C ₆ H ₅ 0C1	176.8	52	153.8
pheno1				
-				
m-Bromtolue	ne (C ₇ H ₇ Br) + Phe	nol (C ₆ H ₆ O)
				• -
Lecat, 1949				
	%		b.t.	
				-
	0 43		184. 175. 182.	3 7 Az
	100		182.	2
	 			
m-Bromtolue	ene (C ₇ H ₇ Br) + o-C	resol	(C_7H_8O)
- 10.00				
Lecat, 1949) 			<u></u>
	%	b.	t.	
	0	18	14.3	
	22 100	18	3.05 A	12
	100	19	1.1	
	_			
n-Dromtoluo	/ C 11 D	\ . Dh-	1 /	2 H 0)
h-promroise	ene (C ₇ H ₇ Br) + Pne	nor (C ₆ H ₆ U)
Paterno, 18	95			
%	f.t.		%	f.t.
0 2.13 3.75 5.49 7.32 8.58	26.88 25.36 24.48 23.77 23.18 22.70 22.13 21.57	1	4.17 6.67	21.03 20.37
3.75	24.48	ī	6.67 8.43	19.85 19.07
7.32	23.77 23.18	2 2	1.09 3.51	19.07 18.57
8.58 10.40	22.70	2	6.11	17.83
10.40 12.20	21.57	3	1.09 3.51 6.11 8.57 0.01	17.24 16.81

%	f.t.
100	40.06
98.04	39.34
94.20	37.68
85.29	36,36
80.33	34.06
78.32	30.88
72.03	28.77
64.46	27.44

Paterno and Ampola, 1897

%	f.t.	E	%	f.t.	E
\$\\ \begin{align*} 100.0 \\ 99.44 \\ 98.04 \\ 94.19 \\ 91.00 \\ 85.28 \\ 81.51 \\ 78.32 \\ 72.02 \\ 65.10 \\ 64.72 \\ 59.32 \\ 55.34 \\ 52.57 \\ 51.49 \\ 62 \\ 49.02 \\ 48.06 \\ 46.84 \\ 45.58 \\ 44.05 \\ 37.80	f.t. 40.06 39.96 39.34 37.68 36.36 34.06 32.48 30.75 28.51 27.18 25.26 23.18 21.33 20.17 19.51 19.51 19.51 17.23 16.65 14.69 14.71 14.83 14.25	E	0.0 1.33 2.13 3.76 5.49 7.32 8.58 10.41 112.20 14.21 16.73 18.42 21.75 23.50 26.42 28.58 30.04 32.22 34.44 32.22 34.44 40.33 40.33 40.33	26.74 26.12 25.22 24.34 23.63 23.04 22.56 21.43 20.89 20.23 19.71 18.93 18.43 17.69 17.10 16.67 15.99 15.35 14.14 14.03 13.73 13.59 13.27 13.51	13.49 13.65 13.65 13.65 13.65
			42.76 44.32 46.38	13.41 13.97 15.07	13.41
			100.00	40.06	-

p-Bromtoluene (C_7H_7Br) (b.t. = 185.0) + phenols

Lecat, 1949

	2nd Comp.		Az	:
Name	Formula	b.t.	%	b.t.
Phenol o-Cresol	C6H60	182.2	44	176.2
o-Cresol	C7H80	191.1	25	183.0
o-Chlor-	C 3H 50C1	176.8	64	175.5
phenol o-Bromphenol	C #H 50Br	195.0	20	183.8

p-Bromtoluen	e (C.W.Br) + p-Cres	ol (C.H.O.)	Phenyl chlor	oform (C.	H-C1 >	+ Meth	vl salio	vlate
p bromtoraem	C (C7117151	, p cres	01 (071180)	l neny i enisi	0.01 (0,	,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		003)
Paterno, 189	5			 Lecat, 1949	•			_	
%	f.t.		f.t.		%		b.t.		Ot mix.
0 0.41 1.02 1.76 2.65 3.83 5.45	26.88 26.58 26.20 25.83 25.39 24.93 24.34	8.28 11.49 15.07 18.87 22.55 28.04	22.54 21.60	1	0 3 93 00		220.8 220.75 222.95		0
				Pentachlorto	luene ((C7H3C15) + Per	tachlor	henol
p-Bromtoluen	ie (C ₇ H ₇ Br) + Thymol	(C ₁₀ H ₁₄ 0)		10.40			(C ₆ H0)C1 ₅)
Paterno and	Ampola, 189	7		Brandstätter	, 1948				
					%		f.t.		
0 0.37 0.86 1.87 3.29 4.93 7.00	26.74 26.53 26.57 25.72 24.97 24.18 23.22	35.52 37.89 39.43 68.04 68.70 77.13 82.65 87.39	11.35 13.63 15.39 33.12 35.64 38.58 40.92 43.02		100 80 60 50 40 20		190 196 202 205 207 214 219		;
11.55 27.06 29.04 31.31 33.37 E = 13.5	22.35 21.25 15.01 14.11 13.08 12.25	91.69 94.57 96.97 98.13 100	45.20 46.46 47.26 48.36 49.20	Ioddiphenyl Pfeiffer, Sc				(С _{1 о} Н ₈ ())
				%		f.t.		E	
Lecat, 1949 p-Iodtoluene	(C ₇ H ₇ I)	(b.t. = 2	214.5) + Phenols	100 90 80 70		96 92.5 89 86		94 73 73 73	
	2nd Comp.		Az	. 60 50		82.5 78		73	
m-Cresol p-Cresol o-Xylenol	Formula C ₇ H ₈ 0 C ₇ H ₈ 0 C ₈ H ₁ 00	201.7 7	5 201.6 0 201.0 5 214.0	40 30 20 10 0		75.5 84 93.5 102 112		73 73 73 73 73 73 111	
m-Xylenol	C ₈ H ₁₀ 0		2 207.5						
p-Ethyl- phenol Pyrocatechol	C ₈ H ₁₀ O		8 212.0 6 213.2	1-Chlornapht	halene ((Phenols) (b. t	. = 262.	7)+
p-Chlor-		219.75 2		 					
phenol				 	2nd Comp		A2		
o-Nitro- phenol	C ₆ H ₅ O ₃ N	217.2 1	8 212.0	Name	Formula	b.t.	%	b.t.	Sat.t.
piteno1				Pyrocatechol	C6H6O8	245.9	59	241.0	90 (59%)
				Resorcinol Isocugenol	C ₆ H ₆ O ₂ C ₁₀ H ₁₂ O ₂	281.4 262.7	26 92	255.8 262.4	-
							===		===

1-Chlornapht	halene (C ₁₀		initroresorcinol (C ₆ H ₃ O ₈ N ₃)	Į
Efremov, 191	6			
%	f.t.	tr.t.	Е	
100 97	175.5 170.4			
95	166.6	-	-	
90 85	160.2 154.5	-	-	
80 75	$150.0 \\ 145.2$	$103.8 \\ 107.0$	91.7 91.7 92.2 92.3 92.2	
70	140.3	100 4	92.2	
65 60.12	134.9 128.6	109.8 109.8 109.7	92.3 92.2	
55 50	123.0 115.2 109.2	109.7	´ - '-	
50 45	109.2	109.8	-	
40 35	109.2 107.9 104.3 100.3 97.2 92.2 85.0	-	-	
30	100.3	~	-	
30 25 20	97.2 92.2	_	-	
15 10	85.0	-	-	
5 2.5	75.2 58.7 35.7	_	_	
	25 7	_	_	
2.5	33.7	(3+1)		
2.5	30.7	(1+1)		=
1-Chlornaphth	naleņe (C ₁₀		cric acid (C ₆ H ₃ O ₇ N ₃)	=
1-Chlornaphth	naleņe (C ₁₀			=
1-Chlornaphth Efremov, 1915 % 100	aleme (C ₁₀ and 1918	Н ₇ С1) + Рі	(C ₆ H ₃ O ₇ N ₃)	=
1-Chlornaphth Efremov, 1915	aleme (C ₁₀ and 1918	H ₇ C1) + Pi E	min.	=
1-Chlornaphth Efremov, 1915 % 100 97 95 90	f.t. 122.4 119.2 117.0 111.8	E	min 120 540	
1-Chlornaphth Efremov, 1915 % 100 97 95 90 85 80	f.t. 122.4 119.2 117.0 111.8 105.6	H ₇ C1) + Pi E - 100.2	min. 120 540 680	_
1-Chlornaphth Efremov, 1915 % 100 97 95 90 85 80	f.t. 122.4 119.2 117.0 111.8 105.6	E	min. 120 540 680 570 390	
1-Chlornaphth Efremov, 1915 % 1000 97 95 90 85 80 75 70	f.t. 122.4 119.2 117.0 111.8 105.6	E	min. 120 540 680 570	=
1-Chlornaphth Efremov, 1915 # 100 97 95 90 85 80 75 70 65 60	f.t. 122.4 119.2 117.0 111.8 105.6	E	min. 120 540 680 570 390 290	
1-Chlornaphth Efremov, 1915 # 100 97 95 90 85 80 75 70 65	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7	E	min. 120 540 680 570 390 290 180	
1-Chlornaphth Efremov, 1915 # 100 97 95 90 85 80 75 70	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7	E	min. 120 540 680 570 390 290 180	
1-Chlornaphth Efremov, 1915 % 100 97 95 90 85 80 70 65 60 58.44 55 50 45	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7	E	min. 120 540 680 570 390 290 180	=
1-Chlornaphth Efremov, 1915 # 100 97 95 90 85 80 75 70 65 60 58.44 55 50 45 40 35 30	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7	E	min. 120 540 680 570 390 290 180	=
1-Chlornaphth Efremov, 1915 # 100 97 95 98 80 75 70 65 60 65 60 45 40 35 30 25	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7	E	min. 120 540 680 570 390 290 180	=
1-Chlornaphth Efremov, 1915 # 100 97 95 90 85 80 75 70 65 60 65 645 40 35 30 25 20	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7 125.6 125.2 123.8 122.3 118.0 113.4 106.8 96.0	E	min. 120 540 680 570 390 290 180	
1-Chlornaphth Efremov, 1915 # 100 97 95 90 85 80 70 65 60 58.44 55 50 45 40 35 30 25 20 15	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7 125.6 125.2 123.8 122.3 118.0 113.4 106.8 96.0 72.4	E	min. 120 540 680 570 390 290 180	=
1-Chlornaphth Efremov, 1915 # 100 97 95 98 80 75 70 65 60 65 60 45 40 35 30 25	f.t. 122.4 119.2 117.0 111.8 105.6 109.8 116.4 120.4 123.5 125.6 25.7 125.6 125.2 123.8 122.3 118.0 113.4 106.8 96.0	E	min. 120 540 680 570 390 290 180	=

2-Chlornaphthalene ($C_{10}H_7C1$) + Picric acid ($C_6H_3O_7N_3$)

Efremov, 1915 and 1918

%	f.t.	Е	min.	
100 97 95 90 85 80 75 70 65 60 58.49 55 40 35 30 25 20 15	122.4 118.2 115.3 108.6 102.3 95.8 88.7 82.8 79.9 81.3 81.5 81.4 80.7 79.1 76.3 73.0 67.5 61.0 53.2 55.6 54.9 55.6	77.4 78.6 79.2 " "79.5 " "48.6 49.3 49.5 " " 43.8 43.7 47.7 46.8 (1+1)	- 36 72 140 180 280 380 260 " " 90 160 240 330 380 480 620 530 330	
		1-1-		

2-Chlornaphthalene (C₁₀H₇Cl) + 2-Naphthol (C₁₀H₈0)

Grimm, Günther and Tittus, 1931

 mo 1 %	f.t.	m.t.	
0	123	120	
10	118	101	
20	114.5	88	
30	108.5	71	
37	-	62	
40	100.5	62	
50	92.5	61.5	
60	85	61	
70	7 5	60.5	
73.0	-	60,5	
80	65	58	
83	62	56	
90	60.5	54	
95	-	55	
100	58.5	58.5	

1-Bromnaphthalene ($C_{10}H_7Br$) (b.t. = 281.2) + Phenols.

Lecat, 1949.

	2nd Comp	•	A		
Name	Formula	b.t.	%	b.t.	Sat.t.
Pyro- catechol	C6H6O2	245.9	80	245.5	_
Resorcinol	C 6 H 6 O 5	281.4	45	266.3	135.2 (45%)
1-Naphthol	C10H80	288.0	-	280.9	-

354		DRUMUNA	APRICALENE 1	IKINITA	J.K.E.301			
	ene (C ₁₀ H ₇		itroresorcinols. C ₆ H ₃ O ₈ N ₃)			(C₁₀H ₇ Br		troresorcinol C ₆ H ₃ O ₈ N ₃)
Efremov, 1916				Efremov, 1	916			
%	f.t.	tr.t. (1+1)	E	K	f.t.	tr.t.	Е	min.
100 97.0 95 90 85 80 70 65 60 54.20 50 45 40 35 30 25 20 15 10 5 2.5 0			63.0 70.2 70.9 70.9 71.0 - - 1.8 4.1 5.2 5.5 6.1 6.1 6.2 6.2	100 97 95 90 85 80 70 65 57.5 54.20 52.5 50 45 40 30 25 20 10 5 2.5 0		·		9 110 9 140 9 240 9 260 9 330 .9 400 460
%	f.t.	E	min.	Efremov, 1	915 and	1918 f.t.	E	min.
100 97 97 95 90 85 80 75 70 65 60 55 \$2.53 50 40 335 30 25 20 115 10 5	122.4 120.3 118.0 113.6 109.2 106.2 115.2 121.4 125.5 127.9 129.4 129.6 "129.5 128.2 126.6 124.3 120.7 116.3 109.0 97.3 70.6 41.3	105.6 105.6 105.6 105.0 		100 97 95 90 35 70 65 60 55 52 45 40 35 30 25 20 15 0	. 53	122.4 117.7 114.4 107.7 101.4 94.6 97.8 79.9 77.7 91.7 83.4 83.4 82.3 80.4 77.9 74.0 83.4 82.3 80.4 51.1 50.9 54.6 57.0 59.30	72.4 75.6 76.3 76.2 75.8 74.9 	54 90 180 240 480 480 480 190 - - - 36 120 190 230 290 240 430 540 720 360 100

Methyl iodi	ide (CH ₃ I) + Formi	c acid	i (CH ₂ O ₂)	Methylene	iodide (CH	₂ I ₂) + Acids	
Lecat, 1949)				Bingham, 1	907		
		b.t.		Dt mix	2 nd comp.			C.S.T.
()	42.5		•	Propionic	acid	C ₃ H ₆ O ₂	52
	5	41.7 A2		-2.0	Isobutyri	c acid	C4H802	15
100	,	100.75			Valeric a	ncid	$C_5H_{10}O_2$	73
					Oleic aci	d	C ₁₈ H ₈₄ O ₂	90
Methylene b	romide (CH,	,Br ₂) +		c acid (C ₂ H ₄ O ₂)			Formic acid (CH ₂ 0 ₂)
Lecat, 1949	•				Lecat, 1949			
		b.t.			-	%	b.t.	Dt mix
		97.0			·	0 9.2	61.2	-1.3
100	5	94.8 A: 118.1	<u>E</u>			15 100	59.15 100.75	Az
Bingham, 196	07	•		acid (C ₂ H ₁ O ₂)	Chloroform (Acetic acid (C ₂ H ₄ O ₂)
					:		p	
Poppe, 1934	30 3 4 4					26.67 56.46 100	188 144.5 88.5 14	
C.S.T. = 94	.8° at/ap	= +0.036	55					
					Schwers, 1	.912		
Methylene i	odide (CH _o I	.) (b	.t. =	181) + Acids	t	d	t	đ
	2nd Comp.		Az		72,	416%	49.	056%
Name	Formula	b.t.	%	b.t.	14.5	1,14511 1,13496	14.5 21.9	1.23599 1.22515
Propionic	C3H6O2	141.3	72	140.65	22.3 32.0	1.12221	30.0	1.21275
acid Butyric	C+H802	164.0	40	159.1	14.7 23.1 30.3	381% 1.31752 1.30404 1.29206	11.7	237% 1.38668 1.37281
acid Isobutyric	C4H802	154.6	53	151.8	30.3		30.45 100	1.35469
acid Isovaleric acid	C5H1002	176.5	25	168.5	11.2 19.3 30.65	1.50584 1.49090 1.46987	12.5 23.9 30.4	1.05819 1.04546 1.03797
					30.03	1,40987	30.4	1.03797

Ritzel, 1907			Schwers	, 1912.			
mo1%	d						
25	0		t	red	D n	blue	violet
0 15.61 32.38 49.37 70.59 85.11	1.470 1.419 1.355 1.283 1.191 1.120 1.042		10.1 25.2 43.5 61.8	1.44951 1.44038 1.42928 1.41811 1.42779	1.45206 1.44290 1.43176 1.42051 1.43019	1.45839 1.44914 1.43789 1.42648	1.46347 1.45429 1.44286 1.43139
	1.042		21.6 41.8	1.42133 1.42968	1.42373 1.41225	1.42754 1.41785	1.43410 1.42229
Р п	.5°	π	13.0 24.0 43.9	1.41503 1.40937 1.39852	1.41733 1.41157 1.40068	1,42302 1,41714 1,40617	1.42740 1.42146 1.41047
Omo 1%	15.61	mo1%	54.3	1,39278	1.39493	1.40032	1.40458
1 103.3 79.5 96.3	1 88	102.6 94.0	12.1 22.8 39.2	1.40136 1.30601 1.38785	1.40315 1.39811 1.39015	1.40896 1.40342 1.39528	1.41308 1.40746 1.39918
173.5 81.6 291 75.8 409 67.7	205.5 330 463	82.5 72.3 66.8	12.9 22.0 39.4 57.5	1.38604 1.38210 1.37436 1.36621	1.38763 1.38411 1.37635 1.36818	1.39315 1.38912 1.38126 1.3 7 296	1.39684 1.39275 1.38495 1.37652
32.38mo1% 1 100.3 97 92.5	49.37 1 105.5	98.7 90.1	21.2 31.7	1.36949 1.36542	1.37146 1.36738	1.37621 1.37209	1.37952 1.3 7 536
216.5 501.5 84.6 66.2	196 295.5 416.5	79.0 74.5 66.7	49.7	1.35818	1.36014	1.36476	1.36798
70. 59mo1%	85.11	no1%	Timofeev	, 1905			i
$\begin{array}{ccc} 1 & 97.0 \\ 103.5 & 90.2 \end{array}$	1 112	92.5 83.40		%			
223.5 77.4 355 66.5 479 650	235 371 501	74.5 66.2 49.4			20°		
100 mo1%				0 15		0.2363 0.284	
1 87.5 92.5 81.4 218.5 72.6 357 65.0				45.2 100		0.365 0.487	
494 57.1			ini	% itial	final	Q mix	K
						(mole ch	loroform)
Whatmough, 1902				00 01.9	91.9 84.3	+549 +510	•
R	σ		. 5	50.7	47.5	+244	1
18°				0	6.0	(mole ac	
100 80 60 50	27.48 26.48 26.13 26.17		5	6.0 10.5 14.7	6.0 10.5 15.0 50.8	+473 +436 +368 +474	5 3
40 20	26.20 26.45						
0	26,89		, . ,				_

Chloroform ($CHCl_3$) + Butyric acid ($C_4H_80_2$)	Chloroform (CHCl ₃) +Undecanoic acid (C ₁₁ H ₂₂ O ₂)
Weissenberger, Henke and Katschinka, 1926	Hoerr and Ralston, 1944
mo1% p	% f.t.
20° 75 35.5 60 57.4 50 73.1 40 89.6 25 115.5	42.5 0.00 61.7 10.00 82.9 20.00 100 28.13
0 160.5	Chloroform (CHCl $_3$) + Lauric acid ($C_{12}H_{24}O_2$)
Kovalenko and Trifonov, 1953	Hoerr and Ralston, 1944
mol% σ	₹ f.t.
0° 33° 100 28.73 25.57 75 28.73 25.38 50 29.02 25.32 25 29.39 25.40 0 30.04 25.57	18.3 0.0 28.1 10.0 45.5 20.0 67.4 30.0 95.4 40.0 100 43.92
Chloroform (CHCl $_3$) + Caprylic acid ($C_8H_{16}O_2$) Hoerr and Ralston, 1944 ### f.t.	Chloroform (CHCl $_3$) +Tridecanoic acid ($C_{13}H_{26}O_2$) Hoerr and Ralston, 1944
68.1 0.00 87.8 10.00 100 16.30	# f.t. 22.1 0.0 34.6 10.0 53.9 20.0 76.0 30.0 98.4 40.0
Chloroform (CHCl ₃) + Pelargonic acid (C ₉ H ₁₈ O ₂)	100 41.76
Hoerr and Ralston, 1944	
\$ f.t.	Chloroform (CHC 1_3) + Myristic acid ($C_{1\mu}H_{28}O_2$)
$77.1 \qquad 0.00 \\ 96.0 \qquad 10.00$	Hoerr and Ralston, 1944
100 12.25	% f.t.
Chloroform ($CHCl_3$) + Caprinic acid ($C_{10}H_{20}O_2$) Hoerr and Ralston, 1944 # f.t.	7.5 0.0 13.1 10.0 24.5 20.0 43.8 30.0 67.2 40.0 90.9 50.0 100 54.15
37.9 0.00 55.0 10.00 76.5 20.00 98.5 30.00 100 31.24	

CHLOROFORM + PENTADECANOIC ACID

Chloroform (CHCl ₃) + Pentadecanoic acid (C ₁₅ H ₃₀ O ₂)	Chloroform ($CHC1_3$) + $Oleic$ acid ($C_{18}H_{34}O_2$)
Hoerr and Ralston, 1944	Hoerr and Harwood, 1952
# f.t.	% f.t.
8.7 0.0 15.0 10.0 27.6 20.0 47.7 30.0 71.1 40.0 94.6 50.0 100 52.54	10.3 -40 16.9 -30 31.5 -20 47.9 -10 67.2 0 88.3 10
Chloroform ($CHCl_3$) + Palmitic acid ($C_{16}H_{32}O_2$)	
Hoerr and Ralston, 1944	Chloroform (CHCl $_3$) + Linoleic acid ($C_{18}H_{32}O_2$)
% f.t.	Hoerr and Harwood, 1952
2.8 0.0 5.7 10.0 13.1 20.0 26.7 30.0 47.7 40.0 71.4 50.0 94.7 60.0 100 62.82	## f.t. 16.0 -50 28.6 -40 46.9 -30 67.8 -20 88.5 -10
Chloroform (CHCl ₃) + Margaric acid (C ₁₇ H ₃₄ O ₂) Hoerr and Ralston, 1944 # f.t.	Chloroform (CMCl $_3$) + o-Nitrobenzoic acid ($C_7H_5O_4N$) Collett and Lazzell, 1930
3.5 0.0	mol% f.t. mol% f.t.
7.0 10.0 15.1 20.0 29.9 30.0 51.4 40.0 74.8 50.0 98.0 60.0 100 60.94	100.00 147.7 48.63 118.9 88.01 139.9 38.35 114.1 72.40 131.9 23.74 106.2 71.12 130.8 16.94 101.3 60.72 126.0 5.50 84.2 59.19 125.0 2.11 64.2 54.27 121.2
Chloroform (CHCl $_3$) + Stearic acid ($C_{18}H_{36}O_2$)	Chloroform (CHCl $_3$) + m-Nitrobenzoic acid ($C_7H_5O_4N$)
Hoerr and Ralston, 1944	Collett and Lazzell, 1930
% f.t.	mol % f.t. mol % f.t.
0.4 0.0 2.0 10.0 5.7 20.0 14.9 30.0 32.7 40.0 55.4 50.0 78.4 60.0 100 69.32	100.00 142.4 38.61 100.0 84.97 132.1 38.27 99.8 71.93 124.3 22.82 85.3 58.32 113.9 11.64 67.5 47.06 105.8 5.69 47.7 38.94 100.5

Name				z		41			
	Formula	b.t.	%	b.t.	Dt mix		Я	b.t.	
Formic acid	CH ₂ O ₂	100.75	48	97.4	_		0 18.5 00	76.75 66.65 A 100.75	z
Acetic acid	$C_2H_4O_2$	118.1	82	117.9	-0.3				
Monochlor- acetic acid	C2H3O2C1	189.35	31	148.5	(82%) -	Bingham, 1907			
Propionic acid	C3H6O2	141.3	37	138.0	-0.4 (60%)	C.S.T. = 220°			
Butyric	$C^{P}H^{8}O^{5}$	164.0	68	146.8	-0.3	من من من من من سوسل سور من به البوائد	رسي مين اميار سي وياد الله الميار الله الله الله الله الله الله الله ال	ہے جو جے اس میں میں اس کی اس کا اس کے اس کے اس کے اس کا اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی میں اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس ک اس کی میں اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس کی اس ک	نے شہر النہ الدرسی الدر الدر اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل
acid Isobutyric acid	C+H805	154.6	19	145.0	(10%) -0.4 (20%)	Carbon tetrac	hloride (C	Cl ₄) + Acet	ic acid (C ₂ H ₄ O ₂
Isovaleric acid	C5H1002	176.5	4	148.7	-0.2	Lecat, 1949			
acid					(10%)		%	b.t.	Dt mi
Bromoform (icid (C+H802)		0 3 12 100	76.75 76.55 A	z -1.1
·····	%		.t.			Schwers, 1912			
	0		45.5			t	d	t	d
:	12.5 100	1	42.6	- 159		0%		35.	564%
						17.0 24.1 30.5	1.60012 1.58622 1.57358	16.45 24.2 30.4	1.33899 1.32430 1.31564
						58. 27	2%	78.	861%
Dichlorbromm	ethane ((CHC1 ₂ Br)	+ For	rmic aci (CH ₂ O ₂		14.2 21.35 29.3	1.22167 1.21144 1.19984	14.6 21.1 29.2	1.13292 1.12456 1.11416
Lecat, 1949						100%			
	%	b, t		Sa	it.t.	12.5 23.9 30.4	1.05819 1.04546 1.03797		
:	0 24 100	90. 78. 100.	15 A	z	61.3				
						I			

Jones, Bowden, and al., 1948	Elskens, 1948
% d n	vol% ε
25°	(1 Kcycle)
	20°
0 1.5844 902 5 1.5391 840 10 1.4983 822	0 2.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 3.3 50 4.5
40 1,2989 832 50 1,2468 863	0 2.2 25 3.3 50 4.5 75 5.9 100 7.1
100 1.0442 1126	
Whatmough, 1902	Schwers, 1912
	# (α) magn.
mol% d	5895 Å 5460 Å 4360 Å
18°	15°
100 27.56 80 26.20	100 0.6675 0.7838 1.2836 78.681 0.7163 0.8419 1.3758
60 25.80	58.272 0.7739 0.8981 1.4834
50 25.77 40 25.79 20 26.03	35.564 0.8525 1.0015 1.6387 0 1.0337 1.2211 2.0135
0 26.55	
Schwers, 1912.	Timofeev, 1905
t n 6563 Å 5893 Å 4960 Å 4360 Å	% U
0%	20°
10.7 1.46276 1.46563 1.47263 1.47817 23.8 1.45503 1.45786 1.46468 1.47023	100 0.487 16.3 0.260
37.1 1.44710 1.44989 1.45650 1.46199	0 0.2067
49.0 1.43996 1.44266 1.44906 1.45451	d
35.564%	% Q dil initial final
14.5 1.41462 1.41676 1.42261 1.42714 22.55 1.40762 1.41277 1.41850 1.42304	
34.4 1.40439 1.40660 1.41225 1.41667 48.0 1.39726 1.39949 1.40477 1.40917	(by mole acid) 0 41 -271
58.272%	4.1 7.3 -243
13.35 1.39593 1.39829 1.40352 1.40747 39.5 1.38357 1.38572 1.39090 1.39476	10.3 13.3 -150
39.5 1.38357 1.38572 1.39090 1.39476 57.0 1.37494 1.37708 1.38215 1.38585	13.3 100 16.3 93.2 -138 -247
78.861%	
13.05 1.38315 1.38524 1.39038 1.39401 24.5 1.37842 1.38050 1.38541 1.38916	
24.5 1.37842 1.38050 1.38541 1.38916 40.3 1.37135 1.37340 1.37832 1.38189	
100%	
21.2 1.36949 1.37146 1.37621 1.37952 31.7 1.36542 1.36738 1.37209 1.37536	
31.7 1.36542 1.36738 1.37209 1.37536 49.7 1.35818 1.36014 1.36476 1.36798	
	<u> </u>

Carbon tetrachlorio	de (CC1 ₁₄) +	Butyric acid (C ₄ H ₈ O ₂)	Carbon tetrachlo	ride (CCl ₁) +	Caprylic acid (C ₈ H ₁₆ O ₂)
Jones, Bowden and a	al., 1948		Hoerr and Ralsto	n, 1944	
%	d	η	76	f.1	
0 5	25° 1.5844 1.5293	902 911	53. 78. 100	7 10.	0 0 .30
10 15 20 40 50 60	1.4827 1.4404 1.3945 1.2493 1.1884 1.1372	925 945 966 1079 1142 1201	Jones, Bowden and		
80 100	1.0407 0.9535	1331 1466	%	d	<u> </u>
		1100	0	25° 1.5844	902
Carbon tetrachlorid	le (CCl ₁₄) +	Caproic acid (C ₆ H ₁₂ O ₂)	5 10 15 20	1.5275 1.4727 1.4219 1.3763	1011 1124 1248 1380
Jones, Bowden and a		·	40 50 60 80	$egin{array}{c} 1.2180 \\ 1.1517 \\ 1.0898 \\ 0.9936 \end{array}$	2021 2406 2867 3905
<u> </u>	d	η	100	0.9064	5160
	25°				
0 5 10 15 20 40 50 60	1.5844 1.5297 1.4767 1.4281 1.3834 1.2290 1.1638 1.1112 1.0133	902 966 1033 1108 1188 1548 1743 1927 2343	Carbon tetrachlor		Pelargonic acid (C ₉ H ₁₈ O ₂)
100	0.9238	2814	%	f'.	t.
Carbon tetrachlorid	re (CCl _k) +	Heptanoic acid	61. 92. 100.	0 10	.0 .0 .25
	, ,	(C ₇ H ₁ 40 ₂)			
Jones, Bowden and a	1., 1948		Carbon tetrachlor	ide (CCl ₄) + (Capric acid
%	d	η 			$(C_{10}H_{20}O_{2})$
	25°		Hoerr and Ralston	, 1944	
0 5	1.5844 1.5 29 8	902 990	%	f.1	•
10 15 20 40 50 60 80	1.4746 1.4252 1.3781 1.2220 1.1559 1.1009 1.0040 0.9130	1080 1175 1271 1767 2046 2362 3015 3784	21. 39. 67. 97. 100	0 10. 8 20.	0 0 0

CARBON TETRACHLORIDE + UNDECYLIC ACID

Carbon tetrachloride (CCl_{k}) + Undecylic acid ($Cl_{11}H_{22}O_{2}$)	Carbon tetrachloride (CCl_4) + Pentadecanoic acid ($C_{15}H_{30}O_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
% f.t.	\$ f.t.
25 0.0 46.9 10.0 76.1 20.0 100 28.13	3.7 0.0 7.8 10.0 18.2 20.0 40:9 30.0 67.5 40.0 93.8 50.0 100 52.54
Carbon tetrachloride (CCl_4) + Lauric acid (Cl_2H_2 ,02)	
Hoerr and Ralston, 1944 # f.t.	Carbon tetrachloride (CCl_{+}) + Palmitic acid ($C_{16}H_{32}O_{2}$)
	Hoerr and Ralston, 1944
8.5 0.0 17.0 10.0 34.7 20.0	% f.t.
61.6 30.0 81.3 40.0 100 43.92	0.6 0.0 1.8 10.0 5.5 20.0 17.6 30.0 41.9 40.0 68.0 50.0 94.0 60.0 100 62.82
Carbon tetrachloride (${ m CCI_4}$) + Tridecanoic acid (${ m C_{1~3}H_{2~6}O_2}$) Hoerr and Ralston, 1944	
g f.t.	Carbon tetrachloride (CCl_{μ}) + Margaric acid ($C_{17}H_{3\mu}O_{2}$)
$\begin{array}{cccc} 10.1 & & 0.0 \\ 20.1 & & 10.0 \\ 42.9 & & 20.0 \\ 70.6 & & 30.0 \end{array}$	Hoerr and Ralston, 1944 # f.t.
70.6 30.0 98.1 40.0 100 41.76	0.7 0.0 2.0 10.0 6.4 20.0 20.1 30.0
Carbon tetrachloride (CCl_{\downarrow}) + Myristic acid ($Cl_{1}_{\downarrow}H_{2}_{8}O_{2}$)	45. 4 40.0 71.5 50.0 97.8 60.0 100 60.94
Hoerr and Ralston, 1944	Carbon tetrachloride ($CC1_4$) + Stearic acid ($C1_8H_860_2$)
	Eykman, 1889
3.1 0.0 6.4 10.0 12.7 20.0 35.5 30.0 62.3 40.0 89.6 50.0 100 54.15	95.39 -1.369 90.316 2.912 87.19 3.888 83.32 5.14

Hoerr and Ralston, 1944	Carbon tetrachloride (CCl ₄) + Tartaric acid rac.
# f.t.	(C ₄ H ₆ O ₆)
0.2 10.0 2.3 20.0	Findlay and Campbell, 1928
9.7 30.0 26.7 40.0	% f.t.
51.8 50.0 76.5 60.0	14.01 0 17.20 15
100 69.32	22.5 25
	35.7 40
Carbon tetrachloride (CCl ₄) +Oleic acid	
(C ₁₈ H ₃₄ O ₂)	Carbon tetrachloride (CCl_{μ}) + Benzoic acid
Hoerr and Harwood, 1952	(C ₇ H ₆ O ₂)
	Mortimer, 1923
	% f.t.
9.4 -25.6 19.8 -20.0	1,7 0
40.5 -10.0 61.6 0.0	4,2 20 9,4 40
85.5 10.0 100 20.0	20.0 60 100.0 121.0
	121,0
Carbon tetrachloride (CCl_4)+ Linoleic acid ($C_{1.8}H_{32}O_2$)	Carbon tetrachloride ($CC1_{i_{\downarrow}}$) + o-Nitrobenzoic acid ($C_7H_50_{i_{\downarrow}}N$)
Hoerr and Harwood, 1952	Collett and Lazzell, 1930
	mol% f.t. Sat.t.
31.9 -35.3 E 41.1 -30 61.5 -20 85.7 -10 100 0	100.00 147.7 - 9.74 - 127.2 3.59 - 120.9
Carbon tetrachloride (CCl_{μ}) + Tartaric acid d ($C_{\mu}H_{6}O_{6}$)	Carbon tetrachloride ($CC1_{4}$) + m-Nitrobenzoic acid ($C_{7}H_{5}O_{4}N$)
Findlay and Campbell, 1928	Collett and Lazzell, 1930
	mol% f.t.
# f.t.	100.00 142.4
38.27 0 66.4 15	83.30 132.3 68.62 124.9
66.4 15 76.3 25 85.5 40	1 51.46 119.3 39.65 117.0
· · · · · · · · · · · · · · · · · · ·	35.32 115.9 20.37 112.3 9.52 107.2
	9.52 107.2 3.37 95.6
l l	

Ethylbromide	(C ₂ H ₅ Br) +	Formic acid (CH ₂ O ₂)	Ethylene	chloride (C ₂ H ₄ Cl ₂	+ Formic	acid (CH ₂ O ₂)
Lecat, 1949				Lecat, 19	149			
	X	b.t.	Dt mix				b.t.	
	0	38.4	-1.15		· · · · · · · · · · · · · · · · · · ·			
10	3.0	38.23 Az 100.75	-1,13		0 20 100		83.45 77.2 Az 100.75	
	· · · · · · · · · · · · · · · · · · ·							
Ethyl bromid	e (С ₂ Н ₅ Вг)	+ Butyric aci	d (C ₄ H ₈ O ₂)	Ethylene (chloride (C ₂ H ₄ Cl ₂)	+ Acetic	acid (C ₂ H ₄ O ₂)
Konovalov, 1	907			Othmer,	1943			
mol %	р	mol %	p		mo1%		mo1%	
		8.10	177 5	L	v	1	L	v
0 25.06 50.00	347.5 306.4 235.2	65.84 79.20	177.5 114.1			b.t.		
و سبر آمی میں میں آمی میں اسم آمی میں میں امیر ایک ایک ایک و اللہ آمی میں امام اللہ میں اللہ آمی میں اللہ آمی میں آمیا میں و اللہ آمی اللہ آمی اللہ آمیا اللہ آمی آمیات آمیا اللہ آمیا اللہ آمیا اللہ آمیا اللہ آمیا اللہ آمیا	ر سیم النام مدین سند النام میں سند النام اوری شعب النام میں النام اللہ عمل النام النام میں النام النام النام النام النام النام النام النام النام النام النام النام النام ا النام اللہ النام النام النام النام النام النام النام النام النام النام النام النام النام النام النام النام الن	منی التی شدر اللہ التی اللہ اللہ فتی شہر اللہ التی الدین اللہ اللہ اللہ فتار اللہ اللہ اللہ اللہ اللہ اللہ اللہ ال	الديد الله الديد الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدي الدين الدين الدينة الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين ا الدين الدين 0 95 90		5.7 40	9 13	8.0 2.6	
Ethyl bromid	e (C ₂ H ₅ Br)	+ Dichloracet	ic acid	80 70	50	2.6 30 0.3 20 5.4 10	0 .	8.8 5.5
Konovalov, 1	907	(C ₂ H ₂ O ₂ Cl ₂)	60				2.8
mol %	p	mol %	p	Schwers,	1912			
		8.1°	F*	t		d	t	d
0	347.5	67.16	176.5		100%		73.40	7%
25.13 48.56	306.4 2 40.8	80.22	115.7	12.5 23.9	$\frac{1.0}{1.0}$	5819 4546	10.1 20.0	1.10223 1.09026
حق التي شدر القد التي سين شدر أنس من من البدر شدر التي البدر التي المن المن المن المن التي التي التي التي التي التي الدر التي التي التي التي التي التي التي التي		الله التواقع الله الله الله الله الله الله الله الل	جود میں اللہ علیہ میں میں میں اس اس اس جور سے میں ہے۔ میں امیار خان ملک شاوالی میں میں میں امر میں شور امر کے امر امیر اللہ حالت میں المراجع میں امر اللہ میں شام میں امر امر	30.4	1.0	3797	31.3	1.07690
Ethyl iodide	e (C ₂ H ₅ I) +	Formic acid	(CH ₂ O ₂)	11.4	53.052%	3834	30.432 10.4	•
Lecat, 1949				20.9 30.3	5 1.1	2615 1395	21.3 30.3	1.18804 1.17327 1.16102
سر میر میراند هی سو هده این نبی می تیر پی این دی	%	b. t.			11.610%		0%	1110102
	0	72.3		10.7 20.2		3438 2088	17.2	1.25750
	21 100	65.0 Az 100.75		30.2		0640	23.8 30.1	1.24792 1.23841
الدخل من المراجعة من المراجعة الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل ال الدخل من الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الدخل الله الله الله الله الله الله الله ا	ی شدن دادن جی حق سی سی شین شدن است. - حق جی جی خود برای دادن بی حق شین است به سی خیر است. - حقومتها حدد است بین خود این است دین است دین است. این است. این است. این است. این است. این است. این است. این ا		t	red	D n	blue	viole*	
Ethyl iodide	e (C ₂ H ₅ I) +	Acetic acid	(C ₂ H ₄ O ₂)	I	160	100 %	Dine	violet
Whatmough,	1902			21.2 31.7	1.36949	1.37146 1.36738	1.37621 1.37209	1.37536
mol %		mol %		49.7	1.35818	1.36014 73.407 %	1.36476	1,36798
100		18° 40	26.52	9.0 21.2	1.38808 1.38284	1.39018 1.38488	1.39517 1.38985	1.398 7 6 1.39340
100 80 60	27.56 26.21 26.20	20 20 0	26.52 27.16 28.29	41.8 56.0	1.37389 1.36754	1.37589 1.36952	1.38063 1.37420	1.38399 1.3 77 48
50	26.20 26.33			9.7	1.40089	52.052 £ 1.40307	1.40834	1.41227
ه التان الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين 4 التان الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين ا				20.2 37.2	1.39622 1.38813	$1.39835 \\ 1.39022$	1.40348 1.39518	1.40741 1.39901
				55.3	1.37937	1.38143	1.38640	1,38998
				<u> </u>				

30 432 ≰ 8.6 1.41890 1.42113 1.42659 1.43066 23.5 1.41148 1.41370 1.41913 1.42325 42.0 1.40214 1.40431 1.40958 1.41356 50.1 1.39788 1.40006 1.40534 1.40922 11.610 ≰ 9.0 1.43592 1.43825 1.44406 1.44855 28.5 1.42577 1.42811 1.43380 1.43816 52.3 1.41295 1.41534 1.42087 1.42488	Ethylene chloride ($C_2H_uCl_2$) + Myristic acid ($C_1uH_{28}O_2$) Hoerr, Sedgwick and Ralston, 1946 ### f.t. 0.8 10.0
0 \$\frac{1}{8}\$ 9.7	4.8 20.0 26.2 30.0 62.1 40.0 94.0 50.0 100 54.15
Ethylene chloride ($C_2H_4Cl_2$) + Caprylic acid ($C_8H_16O_2$)	Ethylene chloride (C ₂ H _k Cl ₂) + Palmitic acid (C ₁₆ H ₃₂ O ₂) Hoerr, Sedwick and Ralston, 1946
Hoerr, Sedgwick and Ralston, 1946	% f.t.
59.0 0.0 86.3 10.0 100 16.30	0.6 20.0 5.7 30.0 28.3 40.0 65.2 50.0 94.2 60.0 100 62.82
Ethylene chloride (C ₂ H ₄ Cl ₂) + Capric acid (C ₁₀ H ₂₀ O ₂) Hoerr, Sedgwick and Ralston, 1946	Ethylene chloride (C ₂ H ₄ Cl ₂) + Stearic acid (C ₁₈ H ₃₆ O ₂) Hoerr, Sedgwick and Ralston, 1946 f.t. 1.0 30.0 9.1 40.0 41.1 50.0 73.6 60.0 100 69.32
Ethylene chloride (C ₂ H ₄ Cl ₂) + Lauric acid (C ₁₂ H ₂ 40 ₂) Hoerr, Sedgwick and Ralston, 1946 f.t. 1.2 0.0 6.1 10.0 26.7 20.0 41.1 30.0 92.4 40.0 100 43.92	Ethylene chloride (C ₂ H ₄ Cl ₂) + Oleic acid (C ₁₈ H ₃₄ O ₂) Hoerr and Harwood, 1952 f.t. 0.1 -30 1.3 -20 20.7 -10 56.5 0 87.0 10

Ethylene chloride ($C_2H_4C1_2$) + Succinic acid ($C_4H_60_4$)

Timmermans and Vesselowsky, 1931

mol%	f.t.	mol%	f.t.
0	-36	14.1	+171.5
$\begin{array}{c} 0.8 \\ 1.0 \end{array}$	+142 +164	25.0	+172.0
2.0	+166	50.0 75.0	+177.5 +181.5
8.7	+171	100	+185.0

E: -43.5°

Lecat, 1949

Ethylene bromide ($C_2H_{\rm b}{\rm Br}_2$) (b.t. 131.65) + Acids

	2nd Comp.		Az		
Name	Formula	b.t.	Я	b.t.	Dt mix or Sat.t.
Formic acid	CH202	100.75	51.5	94.65	71.8 (51.5%)
Acetic acid	C2H403	118.1	55	114.3	-1.7 (50%)
Propionic acid	C3H6O8	141.3	17.5	127.95	-2.2 (19%)
Butyric acid	C4H802	164.0	3.5	131.1	-0.7 (3.5%)
Isobutyric acid	C ₄ H ₈ O ₈	154.6	7.5	130.0	-0.8 (5%)

Ethylene bromide ($C_2H_{\rm th}{\rm Br}_2$) + Acetic acid ($C_2H_{\rm th}0_2$)

Dahms, 1905

mol%	f.t.	mo1%	f.t.
0	9,69	53.97	-1.0
0.934	9.39	60.85	+0.9
3.67	8,54	70.01	3.4
11.60	6.30	76.25	5.29
14.87	5.41	81.22	6.95
23.75	3.11	85.84	8.59
29.98	1.69	90.47	10.51
36.48	0.08	95.49	12.92
42.45	-1.45	97.30	13.91
47.1	-2.76	99.951	14.93
47.3	-2.79	99.703	15.26
48.72	-2.4	100	15.44
50.71	-1.9	100	10.44

Ramsay and Aston, 1902

%		đ	l	
	14.0°	46.00	78.0°	132.0°
0	2.1909	2.1264	2.0590	1.9843
9.66	2.0367	1.9765	1.9125	1.7997
19.45 40.86	1.89 72 1.6376	1.8463 1.5996	1.7857	1.6789
61,62	1.6376	1.3788	1.5469 1.3317	1.4508 1.2477
80.27	1,2252	1.1866	1.1453	1.0716
90.30	1.1392	1.1044	1.0656	0.9963
100	1.0553	1.0216	0.9857	0.9205
%	14.0°	46.0°	78.0°	132.0°
	29.77	24.42	20.45	
0 9.66	38.67 31.83	34.43 29.26	30.47 27.21	23.68
19.45	31.64	28.30	25.02	21.94 19.80
40.86	30.16	26.65	23.38	18.00
61.62	28.83	25.38	22.16	17.09
80.27	28.16	24.32	21,16	16.26
90.30	27.57	23.99	20.95	16.37
00	23.86	21.74	19.62	16.11

Gay, 1911

mol %	Dv (cc/mole)	
	at room t.	
36,230 63,208 83,451	0,588 0,686 0,476	

Ethylidene bromide ($C_2H_4Br_2$) + Acetic acid ($C_2H_4O_2$)	$1,1,2$ -Trichlorethane ($C_2H_3Cl_3$) + Acetic acid ($C_2H_4O_2$)
Lecat, 1949	Lecat, 1949
% b.t. Dt mix	% b.t.
0 109.5 25 103.7 Az 501.8 100 118.1	0 113.65 30 106.0 Az 100 118.1
Ethylene chlorbromide (C_2H_4ClBr) + Acetic acid ($C_2H_4O_2$)	Acetylene tetrachloride ($C_2H_2Cl_4$) (b.t. = 146.2) Lecat, 1949 + Acids
Lecat, 1949 	2nd Comp. Az
# b.t.	Name Formula b.t. % b.t. Dt mix
0 106.7 22 102.0 Az 100 118.1	Formic CH ₂ O ₂ 100.75 68 99.25 - acid Propionic C ₃ H ₆ O ₂ 141.3 50 140.7 +2.4 acid (61%)
Ethylene bromiodide cis. (C_2H_kBrI) + Acetic acid ($C_2H_kO_2$)	Butyric C ₄ H ₈ O ₂ 164.0 3.8 145.6 +0.5 acid (5%) Isobutyric C ₄ H ₈ O ₂ 154.6 8 144.8 +1.4 acid (10%)
Lecat, 1949	
0 149.05 59.5 115.6 Az 100 118.1	Acetylene tetrachloride ($C_2H_2Cl_u$) + Succinic acid ($C_uH_6O_u$) Timmermans and Vesselowsky, 1931
	mol% f.t.
Ethylene bromiodide cis. (C_2H_4BrI) + Propionic acid ($C_3H_6O_2$) Lecat, 1949	0 -42.5 5.7 +15 13.0 170 45.1 172.5 75.2 175.7 100 182.5
# b.t.	E:-43.7°
0 149.05 34.8 135.3 Az 100 141.3	

PENTACHLORETHANE + BUTYRIC ACID

Pentachlorethane	(C_2HC1_5) (b.t. = 162.0) + Aci	ds
Lecat, 1949		

	2nd Comp.		Αz		
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t
Butyric acid	C4H802	164.0	26	156.8	+8 (50%)
Isobutyric acid	$C_{4}H_{8}O_{2}$	154.6	43	152.9	+2 (43%)
Valeric acid	C ₅ H _{1 0} O ₂	186.35	2.8	161.5	+0.8 (10%)
Isovaleric acid	C5H1002	176.5	9	160.25	+0.7 (9%)
Monochlor- acetic acid	C2H3O2C1	189.35	9.9	158.7	43 (9.9%)
Trichlor- acetic acid	C ₂ HO ₂ Cl ₃	197.55	3	161.9	-

Perchlorethane (C_2Cl_6) (b.t. = 184.8) + Acids Lecat, 1949

	2nd Comp.		A	z	
Name	Formula	b.t.	%	b.t.	Sat.t.
Valeric acid	C ₅ H _{1 0} O ₂	186.35	30	179.0	-
Isovaleric acid	C5H1002	176.5	37	172.6	104 (37%)
Monochlor- acetic acid	C2H3O2C1	189.35	25	171.2	-
Trichlor- acetic acid	C2HO2C13	197.55	22	183.0	-

Propylchloride ($\rm C_3H_7C1$) + Formic acid ($\rm CH_2O_2$)

Lecat, 1949

%	b.t.	Dt mix
0	46,65	
8	45.7 Az	
10	_	-2.5
100	100.75	

Isopropyl chloride (C_3H_7C1) + Formic acid (CH_2O_2)

Lecat, 1949

%	b.t.	Dt mix
0 1.8 100	34.9 34.8 Az 100.75	-1.4

Propyl bromide (C_3H_7Br) + Formic acid (CH_2O_2)

Lecat, 1949

·	%	b.t.	_
	0 27 100	71.0 64.7 100.75	

Isopropyl bromide (C_3H_7Br) + Formic acid (CH_2O_2)

Lecat, 1944

76	υ.τ.	
0 14 100	59.4 56.1 Az 100.75	

Propyl iodide (C ₃ H ₇ I) + Formic acid (CH ₂ O ₂)	Acetone dich Lecat, 1949		3H6Cl ₂)		rmic acid CH ₂ O ₂)	1
Lecat, 1949			ļ	%		b.t.		
0 36 100	102.4 82.4 Az 100.75			0 25 100]	70.4 66.0 100.75	Az	
			Propylene b		3H6Br ₂)	(b.t	. = 140.	5)+
Propyl iodide (C ₃ H ₇ I) + Acetic acid ($C_2H_{\psi}O_2$)		2nd Comp	•	A	z	
i 			Name	Formula	b.t.	%	b.t.	Dt mix
Lecat, 1949	b.t.	Dt mix	Acetic acid	$C_2H_4O_2$	118.1	70	116.0	-1.2 (70%)
0	102.4	DC IIIIX	Propionic acid	$C_3H_6O_8$	141.3	33	134.5	-0.6 (50%)
16 20 100	98.0 Az 118.1	-1.9	Butyric acid	$C_{\mu}H_{8}O_{2}$	164.0	8	138.5	-
			Isobutyric acid	C4H805	141.3	15	137.0	-1.0 (10%)
Isopropyl iodide (C. Lecat, 1949	b.t. 89.45 75.2 100.75	(CH ₂ O ₂)		mo1% 47.396 70.310	Dv	+ Acet (cc/mo 0.662 0.662	-	(C ₂ H ₄ O ₂)
Isopropyl iodide (C ₃)	H ₇ I) + Acetic acid	(C ₂ H ₄ O ₂)	Lecat, 1949 Trimethylene) (ъ	.t. = 160	6.9)+
	b.t.	Dt mix		2nd Comp.		Az	·	
		Dt illx	Name	Formula	b.t.	%	b.t.	
0 9 20 100	89.45 87.2 Az 118.1	-2.2	Butyric acid	C+H805	164.0	30	158.4	
100	110.1		Isobutyric acid	$C_{4}H_{8}0_{8}$	154.6	60	151.5	
			Valeric acid	C5H1002	186.35	8	166.0	ļ
		:	Isovaleric acid	C ₅ H _{1 0} O ₂	176.5	15.5	163.35	
			I					1

Trichlorhydrin	(C ₃ H ₅ Cl ₃)	(b.t. =	156.85)	+ Acids
Lecat. 1949							

	2nd Comp.		Az		
Name	Formula	b.t.	Я	b.t.	Dt mix
Propionic acid	C 3H6O2	141.3	65	139.5	-0.3
Butyric acid	$C^{\dagger}H^{8}O^{5}$	164.0	23	152.0	-0.3 (25%)
acid Isobutyric acid Valeric	$C_4H_8O_2$	154,6	38	149.0	-
Valeric acid	C5H1002	176,35	7	155.0	-
Monochlor- acetic acid	CaH3OaC1	189.35	10	154.5	-

Tribromhydrin	(C ₃ H ₅ Br ₃) +	Heptanoic acid (C ₇ H ₁₄ O ₂)
Lecat, 1949		
	%	b.t.
	0 38 00	221 218.0 Az 222.0

Tribromhydrin ($C_3H_5Br_3$) + Benzoic acid ($C_7H_6\theta_2$)

Lecat, 1949

, , , , , , , , , , , , , , , , , , , ,	<u> </u>	.t.	
0 6 100	. 2	221 220.5 Az 250.8	

Butylchlorides (C_uH_9C1) + Acids. Lecat, 1949.

Name	Formula	b.t.	%	Az Dt mix
Butylchloride Formic acid	+ CH ₂ O ₂	100.75	25	69.4 -
Butylchloride+ Acetid acid	C2H402	118.1	3	78.0 -0.4
Isobutylchlori + Formic acid	de CH ₂ O ₂	100,75	19	62.95 -
Acetid acid Isobutylchlori + Formic acid tert. Butyl chl Formic acid	CH ₂ O ₂	100.75	11	49.3 -
Formic acid	CH ₂ 0 ₂	100.75	11	49.3 -

Butyl bromides ($C_{1\mu}H_9Br$) + Acids. Lecat, 1949.

			Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Iso +		91.4	30	26.7	-
Formic acid	CH2O2	100.75			
Iso + Acetic acid	C2H4O2	91.4 118.1	13	89.5	-1.6 (20%)
Sec. + Acetic acid	C2H402	$\substack{91.2\\118.1}$	13	89.0	-0.6 (10%)
Tert. + Formic acid	CH202	73.3	22	66.2	-
Butylbromide Formic acid	CH202	100.75	35	81.4	-
Butylbromide Acetic acid	C2H408	118.1	20	97.0	-1.5

BUTYL BROMIDE + ACETIC ACID

					Butyl iodic	le (C _h H ₉ I) (b.t.	= 13	0.4)+	Acids
Rutyl bro	mide (C.F	{ ₀ Rr) + A	cetic acid	(C ₂ H ₄ O ₂)	Lecat, 1949					
	·	-y2- , ·	delle delle	(•240%)	Name	2nd Comp Formula	b.t.	A	b.t.	
Schwers,				·····	Formic	CH ₂ O ₂	100.75	52		
t	d	t		<u>d</u>	acid	Cligoz	100.75	32	92,6	
! !	%		31.909%		Acetic acid Propionic	C ₂ H ₄ O ₂ C ₃ H ₆ O ₂	118.1 141.3	47 15	112.4 126.8	
10.8 20.5 30.2	1.22678 1.21142 1.19534	23	.45 1.18 .3 1.13 .0 1.12	3901	acid Butyric	C 111602	164.0		5 129.8	
56.	353%		78.039%		acid		101.0	2	2 147.0	
14.4 21.7 31.0	1.11132 1.10189 1.08960	23	.4 1.08 .5 1.07 .3 1.06	7000	Isobutyric acid	C ₄ H ₈ O ₂	154.6	7	128.8	
100		30			Isobutyl iod	lide (C.H	aI)(h		100 75 \	+ Acids
12.5	1.05819				Lecat, 1949	(-411	, , , D.			ACIUS
23.9 30.4	1.04546 1.03 7 97					2nd Comp.	•	Az		
					Name	Formula	b.t.	%	b.t.	Dt mix
t	red	D n	blue	violet	Formic acid Acetic acid		100.75 118.1	45 35	89. 7 5 108.2	- -3.5
		0%			Propionic	C 11.0	141.3	7	110.1	(50%)
10.4 26.0 58.8	1.42954 1.42056 1.40110	1.43228 1.42332 1.40357	1.43921 1.43015 1.41019	1.44449 1.43537 1.41523	acid	C 3H6O2	141.5	,	119.3	-0.6 (10%)
		31.	909%				===	==		
13.25 40.7	1.40317 1.38886	1.405 5 4 1.39116	1.41153 1.39701	1.41602 1.40138	Sec.Butyl io	dide (C _μ F	l ₉ I) + Ac	etic	acid (C	яН ₄ О ₂)
		56.3	353%		Lecat, 1949					
13.5 24.0 36.1	1.38954 1.38473 1.37895	1.39173 1.38693 1.38118	1.39720 1.39226 1.38645	1.40120 1.39623 1.39044		K		b. t		
			39%	-10/011		0 30		120 110	0.0 0.7 Az	ļ
14.15 24.4 44.4	1.37958 1.37505 1.36648	1.38150 1.37717 1.36843	1.38666 1.38221 1.37346	1.39027 1.38588		100		118	.1	
1414	1,50040	100%	1,37340	1.37697						
21.2 31.7 49.7	1.36949 1.36542 1.35818	1.37146 1.36738 1.36014	1.37621 1.37209 1.36476	1.37952 1.37536 1.36798						į
										1
										j
										ĺ
										į

Isoamyl chloride (C_5H_1) Lecat, 1949	1Cl) + Formic acid (CH ₂ O ₂)
%	b.t
0 32 100	99.4 80.1 Az 100.75
Isoamyl chloride (C ₅ H ₁	₁ Cl) + Acetic acid (C ₂ H ₄ O ₂)
Lecat, 1949	
×	b.t. Dt mix
0 15 20 100	99.4 2.2 96.0 Az 118.1

Lecat, 1949

Isoamyl bromide ($C_5H_{1\,1}{\rm Br}$) (b.t. = 120.65) + Acids

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Formic acid	CH202	100.75	47	90.0	<u> </u>
Acetic acid	C2H4O2	118.1	37	108.65	-2.4 (50%)
Propionic acid	C3H6O2	141.3	7.5	119.45	-0.4 (11%)
Isobutyric acid	C4H803	154.6	3	120.2	-0.8 _(10%)

Perfluoro-n-hexane ($C_6F_{1\,\mu}$)+Pentafluoropropionic acid ($C_3H0_2F_5$)

Newcome and Cady, 1956.

mo1%	Dew p.	Bubble p.
	25	0
100.0 50.4 24.5 0.0	30.0 142.6 174.7 219.2	183.0 201.5

Isoamyl iodide ($C_5H_{1\,1}\,I$) (b.t. = 147.65) + Acids Lecat, 1949

	2nd Comp.		A	Z	
Name	Formula	b.t.	Я	b.t.	Dt mix
Formic acid	CH ₂ O ₂	100.75	62	97.0	-
Acetic acid	$C_2H_4O_2$	118.1	7 5	116,5	-
Monochlor- acetic acid	CaH3OaC1	189.35	-	146.5	-
Propionic acid	C3H6O2	141.3	42	136.5	-1.5 (44%)
Butyric acid	C4H808	164.0	13	144.4	-
Isobutyric acid	$C^{\mu}H^80^5$	154.6	25	142.5	-
Isovaleric acid	C5H1002	176.5	3	147.0	~

Hexylbromide ($C_6H_{13}Br$) (b.t. = 156.5) + Acids Lecat, 1949

	2nd Comp		Αz		
Name	Formula	b.t.	Æ	b.t.	Dt mix
Acetic acid	C2H403	118.1	92	117.5	-1.2 (80%)
Propionic acid	C3H6O2	141.3	60	139.0	-0.8 (60%)
Butyric acid	C4H803	164.0	25	151.5	-0.6 (25%)
Isobutyric acid	C+H803	154.6	35	148.0	-1.0 (30%)
Valeric acid	C 5H1 0O2	186,35	4.5	155.5	-0.3 (10%)
Isovaleric acid	C ₅ H _{1 0} O ₂	176.5	10	155.0	-0.3 (10%)

Trichloreth	ylene (C ₂ l	HC1,) +	Formic	acid (СН202)	Allyl iodide	c (C ₃ H ₅ I) + Aceti	c acid	(C ₂ H ₄	0,2)
Lecat, 1949	ı					Lecat, 1949					
	%	b.	t.			}	%		b.t.		
	0 25 100	86 74 100	.9 .1 Az .75				0 15 100		101.8 97.2 118.1	Az	
Trichloreth		HC1 ₃) +		c acid (C ₂ H ₄ O ₂	₂)	Fluorbenzeno Lecat, 1949) + Formi		CH ₂ 0	2)
				D+	mix	I		··	b.t.		
	0 3.8 10	86	.9 .45 A	z	0.35		0 27 100	:	84.9 73.0 100.75	Az	
Perchloreth Lecat, 194			.t. = 1	22.1)	+ Acids	Lecat, 1949 Chlorbenzene	(C ₆ H ₅ C1) (b.t.	= 131	.75) +	Acids
Name	Formula	b.t.	%	b.t.	Dt mix	l	2nd Comp.		Az		
Formic	CH ₂ O ₂	100.75		119.1	_	Name	Formula	b.t.	%	b.t.	Dt mix r Sat.t.
acid Acetic acid Propionic	C ₂ H ₄ O ₂	118.1 141.3	38 8.5	104.35 119,1	(50%)	Formic acid Acetic acid	CH ₂ O ₂ C ₂ H ₄ O ₂	100.75 118.1	68 58.5	99.25 114.6	- -0.8 (50%)
acid Butyric	C"H805	164.0	1.2	121.0	(50%) -0.4	Propionic acid	C 3H6O2	141.3	18	128.7	+0.2 (18%)
acid Isobutyric acid	С ₄ Н ₈ О ₂	154.6	3	120,1	(10%) -0.3 (5%)	Butyric acid Isobutyric acid	С ₄ Н ₈ О ₂	164.0 154.6	8	131.5 130.5	+0.5 (10%) -0.2 (5%)
Allyl halio	ies + Formi	c acid (CH ₂ O ₂)(b.t.	=100,75)	Pyruvic acid	C 3H40 3	166.8	15	128.6	25 (15%)
Lecat, 1949	9										
Name	Form		t.	Az % b	.t						
Allyl chlor	ride C _s H ₅				4.4						
Allyl bromi	ide C _S H ₅		.5 2		4.5						
Allyl iodic	ie C _S H ₅	1 101	.8 3	3 8	1.0						

CHLORBENZENE + FORMIC ACID

China and Call C	1) (Family said (CH O)	Piercy and Lamb, 1956
Chrorbenzene (C6H5C	l) + Formic acid (CH ₂ O ₂)	
Bingham, 1907		mol% v mol% v
C C T - 110		25°
C.S.T. = 110		0 1269 11.3 1248 3.07 1259 19.3 1232 5.98 1255
Timmermans and Kohnst	amm, 1909 - 1910	v = sound velocity in m/sec.
C.S.T.	limits dt/dp	Burnham and Madgin, 1936.
	of pressure (Kg)	mo1% n _D
106.6	5 - 65 +0.035	25° 100 1.3730
		80 1,4150 60 1,4480
Chlorhenzene (C.H.Cl) + Acetic acid $(C_2H_4O_2)$	40 1.4720 20 1.5015
	,	0 1.5221
Baud, 1913		
mo1%	f.t.	Timofeev, 1905
100	16.70	% Q mix
95.2 91.0	14.60 12.65	initial final (by mole acid)
84.0 78.0	0.72 7.20	0 5.9 -216
72.2 62.5	4.74 1.60	0 5.9 -216 5.9 10.6 -127 15.6 14.8 -106
54.0 40.0	-1.50 -7.30	
34.7	-9.90	
		=
Burnham and Madgin,	1936 (fig.)	Hoerr, Sedgwick and Ralston, 1946
		# f.t.
mo1%	f.t.	42.3 -10.0
ō	-45. 2	63.9 87.8 +10.0
3 10	-49 -40	100 16.30
20 30 40 50 60	-28.5 -17.5	
40 50	-11 -4	
l 70	-1 +3.5	Chlorbenzene (C_6H_5Cl) + Capric acid ($C_{10}H_{20}O_2$)
80 90	+8 +12 +16,7	
1óŏ	+10.7	Hoerr, Sedgwick and Ralston, 1946
		% f.t.
		14.2 -10.0
		30.0 0.0 51.8 +10.0
		75.3 20.0 97.8 30.0 100 31.24
		31.24

Chlorbenzene (C_6H_5C1) + Lauric acid ($C_{12}H_{24}O_2$)	Chlorbenzene	(C ₆ H ₅ C1) + Oleic	acid	(C ₁₈ H ₃	μ 0 ₂)
Hoerr, Sedgwick and Ralston, 1946	Hoerr and Ha	rwood, 195	2			
% f.t.		%	1	f.t.		
2.0 -10.0 9.5 0.0 24.1 +10.0 46.5 20.0 70.5 30.0 93.1 40.0 100 43.92		2.4 5.8 21.2 46.0 68.7 90.0	-	-40 -30 -20 -10 0		
Chlorbenzene (C_6H_5C1) + Myristic acid ($C_{14}H_{28}O_2$)	Brombenzene	(C ₆ H ₅ Br)	(b.t. =	156.	i) +	Acids
Hoerr, Sedgwick and Ralston, 1946	Lecat, 1949					
% f.t.		2nd Comp.		Az		
$\begin{array}{cccc} 0.4 & -10.0 \\ 2.0 & 0.0 \\ 6.7 & +10.0 \\ 19.1 & 20.0 \end{array}$	Name	Formula	b.t.	Z	b.t.	Dt mix or Sat.t.
41.9 30.0 68.7 40.0 92.7 50.0 100 54.15	Formic acid Acetic acid		100.75 118.1	68 95	98.1 118.0	- -1.2 (90%)
	Monochlor-	$C_2H_3O_2C1$	189.36	9.5	154.35	
Chlorbenzene (C_6H_5C1) + Palmitic acid ($C_{16}H_{32}O_2$)	acetic acid Propionic acid	C 3H602	141.3		140.15	(60%)
Hoerr, Sedgwick and Ralston, 1946	Butyric	C ₄ H ₈ O ₂	164.0	18	152.2	+0.3 (20%)
% f.t.	Isobutyric acid	C ₄ H ₈ O ₂	154.6	35	148.8	-0.4 (50%)
0.1 1.6 10.0	Valeric acid	C5H1002	186.35	3.5	155,65	
7.2 20.0 20.4 30.0 43.3 40.0 69.7 50.0	Isovaleric acid	C ₅ H ₁₀ O ₂	176,5	8	1 54.7 5	-0.2 (10%)
69.7 50.0 100 62.82	Pyruvic acid	C ₃ H ₄ O ₃	166.8	34	147.0	-1.0 (50%)
Chlorbenzene (C_6H_5C1) + Stearic acid ($C_{18}H_{36}O_2$) Hoerr, Sedgwick and Ralston, 1946						
# f.t.						
0.1 10.0 2.1 20.0 9.7 30.0 27.7 40.0 50.4 50.0 100 69.32						

			_								
Brombenzene	(C ₆ H ₅ Br)	+ Butyr	ic aci	d (C+H8	02)	o-Dichlorbenz	zene (C ₆ H ₄ C Acids	(1 ₂) (1	o.t. =	179.5)	+
Ryland, 1899						Lecat, 1949					
	%		b.t.				2nd Comp.		Az		
	0		152 -	153	0 . 3 4	Name	Formula	b.t.	%	b.t.	Dt mix
	19 100		159 -	148 (74 160	8mmi) Az	Butyric acid	C4H8O2	164.0	65	163.0	-
Lecat, 1949						Valeric acid	C5H1002	186.35	22	175.8	-
Iodbenzene (C ₆ H ₅ I) ((b.t. =	188.45) + Aci	ds	Isovaleric acid	C5H10O2	176.5	42	171.2	-
	2nd Comp.		Az	:		Caproic	C6H1202	205,15	5	179.2	-
Name	Formula	b.t.	%	b.t.	Dt mix	acid Isocaproic	C ₆ H ₁₂ O ₂	199.5	6	178,5	-0.2
Butyric acid Isobutyric	C4H8O2 C4H8O2	164.0 154.6	72 82	163.5 154.2	-	acid Monochlor-	C2H3O2C1	189,35	28	171.3	(6%) -
acid Valeric acid	C ₅ H _{1 0} O ₂	186.35	34	180.15	-1.0 (25%)	acetic acid Monobrom- acetic acid	C ₂ H ₃ O ₂ Br	205.1	16	177.0	-
Isovaleric acid	C5H10Q2	176.5	48	173.0	-						
Caproic acid	C6H12O2	205.15	10	186.8	-	p-Dichlorben	zene (C ₆ H ₄ Acids	Cl ₂) (b.t. =	174.4) +
Isocaproic acid	C6H12O2	199.5	15	185.5	-	Lecat, 1949					
Monochlor- acetic acid	C2H3O2C1	189.35	36	175.3	-	Name	2nd Comp. Formula	b.t.	Az K	b.t.	Sat.t
Monobrom- acetic acid	C ₂ H ₃ O ₂ Br	205.1	20	184.3	-	Butyric	C4H8O2	164.0	57	162.0	22.0
Trichlor- acetic acid	C ₂ HO ₂ C1 ₃	197.55	23	184.8	-	acid Valeric	C5H1002	186.35	14.7	171.7	
1-Brom- propionic aci	C₃H₅O₂Br id	205.8	-	184.8	-	acid Isovaleric acid	C5H1002	176.5	28	168.85	
						Caproic	C ₆ H ₁₂ O ₂	205.15	3.5	174.25	(28%) 30 (3.5%)
						Isocaproic acid	C6H12O2	199.5	2	174.2	- (3,3%)
						Monochlor- acetic acid	C2H3O2C1	189.35	24.5	167.7	-
						Monobrom- acetic acid	C2H3O2Br	205.1	13	172.8	-
						Trichlor- acetic acid	C2HO2C13	197.55	10	174.1	
						1-Brompro- pionic acid	C3H502Br	205.8	7	173.5	-
						1					
						ii .					

	ene (C ₆ H ₄ B Acids	r ₂) (b	.t. = 2	220.25) +
Lecat, 1949					
	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Caproic	C6H12O2	205.15	68	203.8	-
Heptanoic acid	C7H1402	222.0	30	215.5	-
Caprylic acid	C8H16O2	238.5	7	219.5	-
Benzoic acid	C7H6O2	250.8	3.8	219.5	_
Monochlor- acetic acid	C2H3O2C1	189.35	7.5		61 (7.5%)
Monobrom- acetic acid	C ₂ H ₃ O ₂ Br	205,1	55	201.5	-
n-Chlorbromb	enzeno (C	u cipa i	/ b +	104	
p-Chlorbromb Lecat, 1949	Acids	п [†] СТВГ)	(D. T	. = 196	.4) +
	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	
Isovaleric acid	C ₅ H _{1 0} O ₂	176.5	7 5	1 7 5.5	
Caproic acid	C6H12O2	205.15	20	193.0	
Monochlor- acetic acid		189.35	35	175.0	
Trichlor- acetic acid	C ₂ HO ₂ C1 ₃	197,55	47	191.5	
Trichlorbenz	ene s.(C ₆ H	3Cl ₃) +		ic acid	
Lecat, 1949					
		b.1	t.		
	0 42	208 201	3.4 1.0 Az 5.15	:	
	42 100	205	. 15		

Trichlorbenzene s. ($C_6H_3Cl_3$) + Monochloracetic acid ($C_2H_3O_2Cl$)											
Lecat, 1945				·							
	%	b.	t.								
	0	20:	8.4								
	72	18	5.0	Az							
	100	10:	9.35								
Benzylchloride (C ₇ H ₇ Cl) (b.t. ≈ 179.3) + Acids Lecat, 1949											
	2nd Comp.		Az								
Name	Formula	b.t.	K	b.t.	Dt mix						
					or						
					Sat.t.						
Butyric	C4H802	164.0	58	161.8	-0.4						
acid					(80%)						
Isobutyric	$C_4H_8O_2$	154.6	7 5	153.0	-2.2						
acid	0 11 0	104	•		(90%)						
Valeric acid	C 5H1 002	186.35	25	175.0	-1.0						
_	C 5H1 0O2	176,5	38	171.2	(25%) -1.2						
acid	C 5111 002	170.5	30	171.2	(70%)						
Caproic	C6H12O2	205.15	5	178.7	-0.3						
acid					(5%)						
Isocaproic	$C_6H_{12}O_2$	199.5	8	178.0	-0.5						
acid					(10%)						
	C2H3O2C1	189.35	23	173.5	32						
acetic acid	C 110 C1	10=			(23%)						
Trichlor- acetic acid	C2HO2C13	197.55	14	178.2	-						
accerc acru											
Benzylbromic Lecat, 1949	le (C ₇ H ₇ Br) (b.t.	=	198.5)	+ Acids						
	2nd Comp.		Az								
Name	Formula	b.t.	%	b.t.	Dt mix						
Valeric acid	C ₅ H ₁₀ O ₂	186.35	53	183.0	'-1.2 (50%)						
Isovaleric acid	$C_5H_{10}O_2$	176.5	72	175.2	-1.2 (72%)						
Caproic acid	C ₆ H ₁₂ O ₂	205,15	25	194.0	-1.0 (25%)						
Isocaproic acid	$C_6H_{12}O_2$	199.5	32	193.0	-1.0 (30%)						
Monochlor- acetic acid	C2H3O2C1	189.35	-	183.5	<u>.</u>						

Benzylidene	chloride (C7H6C12		onochlor (C ₂ H ₃ 0		o-Bromtoluen Lecat, 1949	e (C ₇ H ₇ Br) (b.t.	= 181	.5) + 1	Acids
Lecat, 1949							2nd Comp.		Az		
	%	b).t.			Name	Formula	b.t.	%	b.t.	Dt mix
	0 97 100	1	205.2 189.1 189.35	Az		Butyric acid	C4H8O2	164.0	72	168.0	-0.5
			.07.00			Valeric acid	C ₅ H _{1 0} O ₂	186.35	23	176.8	-0.3
p-Chlortolue	ne (C II C		==	162		Isovaleric	C ₅ H _{1 0} O ₂	176.5	39,5	172.1	(25%) -0.5
Lecat, 1949		. / (D.	·. =		→ ACIGS	acid Caproic	C ₆ H ₁₂ O ₂	205.15	6	181.0	(50%) -0.2
	2nd Comp.		Az			acid					(5%)
Name	Formula	b.t.	%	b.t.	Dt mix	Isocaproic acid	C ₆ H ₁₂ O ₂	199.5	9	180.5	-0.1 (5%)
Formic acid		100.75	73 77	99.1	0.2	Monochlor- acetic acid	C2H3O2C1	189.35	31	173.0	-
Propionic acid	C 3H6O2	141.3	77	140.8	-0.3 (90%)	Monobrom-	C ₂ H ₃ O ₂ Br	205.1	-	179.0	-
Butyric acid	$C_{4}H_{8}O_{8}$	164.0	32	156.8	+0.1 (32%)	acetic acid Trichlor-	C2HO2C13	197.55	22	180.3	_
acid Isobutyric	$C_4H_80_8$	154.6	47	150.5	-0.7	acetic acid	•		44	100,3	-
acid	C 11 ^	10/ 2=	,	1/1 -	(50%)	Brompropionic acid-1	C ₃ H ₅ O ₂ Br	205.8	12	179.0	-
Valeric acid Isovaleric	C ₅ H ₁₀ O ₂ C ₅ H ₁₀ O ₂	186.35 176.5	6 15	161.2 160.0	-0.4	ucia_i					
acid		•-	•	, , ,	(15%)						
Pyruvic acid		166.8	40	151.5	_	m-Bromtoluen	e (C ₇ H ₇ Br) (b.t.	= 184	.3)+,	Acids
Monochlor- acetic acid	C2H3O2C1	189.35	14	158.8	-	Lecat, 1949					
			===				2nd Comp.		Az		
-o-Chlortolue Lecat, 1949	ene (C ₇ H ₇ C1) (b.1	t. = 1	59.2)	+ Acids	Name	Formula	b.t.	%	b.t.	Dt mix
Decat, 1777	2nd Comp.		Az			Butyric	$C_{4}\mathrm{H}_{8}0_{2}$	164.0	79.5	163.62	
Name	Formula	b.t.	%	b.t.	Dt mix	acid Valeric	C5H10O2	186.35	25.5	178.55	(78%) -0.4
Propionic	C3H6O2	141.3	68	140.2	-0.7	acid Isovaleric	C ₅ H _{1 0} O ₂	176.5	45	172.5	(25%) -0.5
acid	CHA	164.0	27	154.5	(68%)	acid	-2-1002		70		(50%)
Butyric acid	C4H802	164.0	27	154.5	-	Isocaproic	$C_6H_{12}O_2$	199.5	10	183.0	
Isobutyric	$C_{4}H_{8}O_{2}$	154.6	42	149.5	-0.4 (42%)	acid Monochlor-	C2H3O2C1	189.35	32	174.5	(10%) -
acid Valeric	C5H1002	186.35	5	158.5		acetic acid Monobrom-	C ₂ H ₃ O ₂ Br	205.1	14	181.2	_
acid Isovaleric	•	176.5	12	157 5	(10%) -0.3	acetic acid	ozn30201.	200.I	14	401,Z	
acid	C ₅ H _{1 0} O ₂	110.0	14	157.5	-0,3 (10%)	I					
Pyruvic	$C_3H_4O_3$	166.8	37	149.5	-						
acid Formic	CH ₂ O ₂	100.75	72	98.5	-2.0						
acid					(90%)						
Monochlor- acetic acid	C2H3O2C1	189.35	12	156.2	-						
						1					

Paterno, 1895	n-Bromtoluen	e (C.H.Br) + Acet	ic aci	d (C ₂ H _h O ₂)	1-Chlornapht	halene (C,	oH ₇ Cl)	(b.t	. = 262.	7)+
S			,		· - 6-74-76	li e		~ (
Name Formula b.t. Set			3 2	+		_	2nd Comp.		Az		
Pelargonic Coherent Coheren						- Name	Formula	b.t.	%	b.t.	Set.t.
15.99		0.34 1.11 2.20 3.68	2 2 2 2	6.54 6.00 5.27 4.28		acid					-
p-Bromtoluene (C ₇ H ₇ Br) (b.t. = 185.0) + Acids Lecett, 1949 2nd Comp. Az Name Formula b.t. \$ b.t. Butyric C _h H ₈ O ₂ 164.0 78 163.5 acid Veleric C ₇ H ₁ O ₂ 186.35 32 179.2 acid Isovaleric C ₇ H ₁ O ₂ 176.5 48 173.0 acid Caproic C ₆ H ₁₂ O ₂ 205.15 8 184.0 acid Monochlor- acetic acid P-lodtoluene (C ₇ H ₇ I) (b.t. = 214.5) + Acids Leceat, 1949 2nd Comp. Az Name Formula b.t. \$ b.t. Valeric C ₇ H ₁ O ₂ 186.35 80 184.5 acid Caproic C ₇ H ₁ O ₂ 189.35 78 184.8 acid Caproic C ₇ H ₁ O ₂ 205.15 50 202.2 acid Reptanoic C ₇ H ₁		15,99	1	8.84		acid Benzoic			5 7		95.5 (57%)
Name		ne (C ₇ H ₇ Br) (b.t.	= 18	5.0) + Acids	11 -	C ₈ H ₈ O ₂	266.5	30	255.9	36 (30%)
Butyric CuHg02 164.0 78 163.5		2nd Comp.		Az							
Timmermans and Kohnstamm, 1909 - 1910						Bromnaphtha:	lene (1+2)	(С _{1 о} Н ₇ В	r) +		
Social Sovaleric C5H1002 176.5 48 173.0	-	C*H805	164.0	78	163.5	Timmermans a	and Kohnstai	nm, 1909	- 191	.0	
Isovaleric C ₅ H ₁ 0 ₂ 176.5 48 173.0 (Kg)		C ₅ H ₁₀ O ₂		32	179.2	C.S.T.				dt/dp	
acid Isocaproic colors acid Monochlor- colors acetic acid P-Iodtoluene (C ₇ H ₇ I) (b.t. = 214.5) + Acids Lecat, 1949 Name Formula b,t. % b.t. Valeric corroic C ₅ H ₁₀ O ₂ acid Heptanoic C ₇ H ₁₁ O ₂ acid Monochlor- C ₂ H ₃ O ₂ C1 189.35 78 184.8 acetic acid Trichlor- C ₂ H ₃ O ₂ C1 189.35 78 198.0 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949 1-Bromnaphthalene (C ₁₀ H ₇ Br) + Phenyl acetic acid (C ₈ H ₈ O ₂) Lecat, 1949		C ₅ H ₁ ₀ O ₂	176.5	48	173.0						
acid Monochloracetic acid $C_2H_3O_2C1$ 189.35 35 175.0 acetic acid $C_2H_3O_2C1$ 189.35 78 184.8 acetic acid Monochloracetic acid $C_2H_3O_2C1$ 189.35 78 184.8 acetic acid	-	$C_6H_{12}O_2$	205.15	8	184.0	42.4	5 -	210		+ 0.025	
acetic acid $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	$C_6H_{12}O_2$	199.5	12	183.0						
P-Iodtoluene (C ₇ H ₇ I) (b.t. = 214.5) + Acids Lecat, 1949 Rame Formula b.t. b.t. 53.5 264.0 Az 55.3		C ₂ H ₃ O ₂ C1	189.35	35	175.0	l-Bromnaphth	nalene (C _{1 c}	_b H ₇ Br)			
2nd Comp. Az Name Formula b.t. % b.t. Valeric C ₅ H ₁₀ O ₂ 186.35 80 184.5 acid Caproic C ₆ H ₁₂ O ₂ 205.15 50 202.2 acid Heptanoic C ₇ H ₁₄ O ₂ 222.0 17 211.0 acid Monochlor- C ₂ H ₃ O ₂ C1 189.35 78 184.8 acetic acid Monobrom- C ₂ H ₃ O ₂ Br 205.1 54 198.0 acetic acid Trichlor- C ₂ HO ₂ Cl ₃ 197.55 - 196.8	p-lodtoluene	(C ₇ H ₇ I)	(b.t. =	214.5	5) + Acids	Lecat, 1949					
Name Formula b.t. % b.t. Valeric C ₅ H ₁ 00 ₂ 186.35 80 184.5 acid Caproic C ₆ H ₁₂ 0 ₂ 205.15 50 202.2 acid Heptanoic C ₇ H ₁ 0 ₂ 222.0 17 211.0 acid Monochlor- C ₂ H ₃ 0 ₂ C1 189.35 78 184.8 acetic acid Monobrom- C ₂ H ₃ 0 ₂ Br 205.1 54 198.0 acetic acid Trichlor- C ₂ H0 ₂ C1 ₃ 197.55 - 196.8	Lecat, 1949						%	b	. t.	Sa	t.t.
Valeric C ₅ H ₁₀ O ₂ 186.35 80 184.5 acid Caproic C ₆ H ₁₂ O ₂ 205.15 50 202.2 acid Heptanoic C ₇ H ₁₄ O ₂ 222.0 17 211.0 acid Monochlor- C ₂ H ₃ O ₂ C1 189.35 78 184.8 acetic acid Monobrom- C ₂ H ₃ O ₂ Br 205.1 54 198.0 acetic acid Trichlor- C ₂ HO ₂ Cl ₃ 197.55 - 196.8		2nd Comp.		Az		_	0				
acid Caproic C ₆ H ₁₂ O ₂ 205.15 50 202.2 acid Heptanoic C ₇ H ₁₄ O ₂ 222.0 17 211.0 acid Monochlor- C ₂ H ₃ O ₂ C1 189.35 78 184.8 acetic acid Monobrom- C ₂ H ₃ O ₂ Br 205.1 54 198.0 acetic acid Trichlor- C ₂ HO ₂ Cl ₃ 197.55 - 196.8	Name	Formula	b.t.	%	b.t.			20	64.0 A 66.5	z	55 .3
acid Heptanoic $C_7H_{14}O_2$ 222.0 17 211.0 acid Monochlor- $C_2H_3O_2C1$ 189.35 78 184.8 acetic acid Monobrom- $C_2H_3O_2Br$ 205.1 54 198.0 acetic acid Trichlor- $C_2HO_2C1_3$ 197.55 - 196.8		C ₅ II _{1 0} O ₂	186.35	80	184.5						
acid Monochlor- C ₂ H ₃ O ₂ Cl 189.35 78 184.8 acetic acid Monobrom- C ₂ H ₃ O ₂ Br 205.1 54 198.0 acetic acid Trichlor- C ₂ HO ₂ Cl ₃ 197.55 - 196.8	Caproic	$C_6H_{12}O_2$	205.15	50	202.2						
acetic acid Monobrom- C ₂ H ₃ O ₂ Br 205.1 54 198.0 acetic acid Trichlor- C ₂ HO ₂ Cl ₃ 197.55 - 196.8		C7H14O2	222.0	17	211.0						
acetic acid Trichlor- C ₂ HO ₂ Cl ₃ 197.55 - 196.8		C2H3O2C1		7 8	184.8						
		C ₂ H ₃ O ₂ Br	205.1	54	198.0						
acetic acid		C2HO2C13	197.55	~	196.8						

380

CARBON DIOXIDE + METHYL ALCOHOL

XXVII, CO2, CS	2, etc + HY	DROXYL DERIVATIVES .							
Carbon dioxide	(CO ₂) + Met	hyl alcohol (CII ₄ 0)							
Stern, 1912									
P Absorption coefficient cc/g -78° -59°									
	-/0-	- 3y-							
50	194.0	~							
100	195.0	63.0							
200	202.9	64.2							
400	221.5	66.3							
500	-	- .							
700	2(0.0	69.0							
740	260.0	- -							

Krichewskii and Lebedeva, 1947

P	P Absorption coefficient cc/g									
	0°	25°	49.80	7 5°						
1.0	8.13	4,33	3,11	-						
6.8	59.5	29.9	19.5	12.8						
10.7	94.9	49.3	32.1	22.3						
16.5	17.4	82.5	51.8	35.5						
22.3	27.0	118	71.9	48.6						
30.0		197	112	71.5						
39.7	_	287	161	103						
49.4	-	-	228	140						
55.2	-	_	269	-						
59.1	_	_		181						
68.8	-	-	-	234						

Baume and Perrot, 1914

mol%	f.t.	mo1%	f.t.
100	- 95.4	35.2	- 99.7
95.1	-100	73.3	- 35.2
94.4	-100.4	77.9	- 37.2
91.1	-103.1	73.8	- 73.4
90.7	-103.1	71.4	- 77.5
90.2	-103.4	58.6	- 71.9
99.1	-105.4	64.9	- 69.3
37.1	-106.5	60.3	- 54.8
97.1	-105.3	52.5	- 65.1
		53,3	- 62.5

Francis, 1954			
	%	 đ	

	%	d	
 -	23.5 26.5 35 60 84	0.8250 0.8413 0.8480 0.8480 0.8480	
	100	0.7888	

Carbon dioxide ($C0_2$) + Ethyl alcohol (C_2H_60)

Bohr, 1900

t	absorpt.coef.	cc/g t	absorpt.coef.
-65	38,41	10	3,57
-65 -25	8.75	15	3,25
- 20	7.51	20	2.98
-15	6.59	25	2.76
-10	5. 7 5		2.57
-5	5.01		2.41
0	4.44		2.20
5	3.96	45	2.01
-15 -10 -5	6.59 5.75 5.01 4.44	20 25 30 35 40 45	2.76 2.57 2.41 2.20

Sander, 1912

P	abs.	P	abs.
Kg/cm ₂		Kg/cm ₂	
2	20°		35°
30 40 50 60 70	104.8 149.7 188.8	30 40 50 60 70	77.87 113.1 144.5 173.0 210.8
	(0°		100°
40 50 60 70 80 90 100	72.82 97.09 122.5 145.2 167.9 180.7 195.7	50 60 70 80 90 100 110 120 130 140	42.49 66.05 88.67 111.2 129.0 145.7 155.0 174.6 182.6 186.0
aus cc Cu ₂	ausorned in	Olive CC 0	1 SULULION

Stern, 1912		
р	absorption coe -78°	fficient cc/g -59°
100 200 400 700 740	111.8 115.7 123.8 138.6	40.85 41.0 42.35 44.15

Travers and Gwyer , 1905

Sublimation temperature : -78.23° (V+L+C)

K		đ	
	4°	1 7 °	25°
	35 atm.	55 atm.	66 atm.
00	0.810	0.795	0.790
90	0.826	0.808	0.799
80	0.841	0.822	0.808
70 60	0.858 0.874	0.835	0.818
50	0.874	0.848 0.859	0.827 0.836
40	0.899	0.839	0.835
3ŏ	0.916	0.876	0.852
20	0.925	0.877	0.844
ĺÔ	0.931	0.871	0.830
0	0.934	0.841	0.728

Carbon dioxide (CO_2) + Propyl alcohol (C_3H_8O)

Sander, 1912

P Kg/cm ²	abs	P Kg/cm ²	abs
		20°	
20 30	56.16 86.62	40 50	122.1 174.6
		35°	
20 30 40 50	40.00 64.08 98.16 122.8	60 70 80	159.9 228.2 269.6
	•	60°	
20 30 40 50 60	24.73 47.68 64.65 88.54 111.5	70 80 90 100	144.4 159.2 184.3 213.9
		00°	
40 50	26.50 54.19	60 70	74.51 92.17
abs ≃	ccCO2 absorbe	d in one cc o	f solution:

Buchner, 19	906					
	%	sat.t.				
	36.5 57.5	-24 -30				
Complete	miscibility	at 0°				
Carbon diox	side (CO ₂)	+ Butyl alcohol	(C ₄ H _{1 0} O)			
Buchner, 19	906					
	%	sat.t.				
	29.4 38.3 44.5	- 19 - 17 - 2 0				
с.s.т. :	35 % near	-16°	1			
	ر سے میں میںشنو سے دی اس میں سیندی اس میں دائد رسے نسے میں میں اس میں سی میں اشار اس میں اس میں اس ر میں میں سی میں اس میں اس میں سید اس میں اس میں اس	ر منظم والمدين والمدين والمدين المدين والمدين المدين المدين المدين المدين المدين المدين المدين المدين المدين ا والمدين المدين r>والمدين المدين				
Carbon diox	ide (CO ₂)	+ Isobutyl alcoh	01 (C _h H _{1 0} 0)			
Buchner, 19	06					
C.S.T. : 51	.5 % -22°					
	المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ا والمراجعة المراجعة ا والمراجعة المراجعة ا	ن مساد شمير منتج الحق الحق في الحقوقية وهي الحقوق التي الحقوق التي الحقوق التي الحقوق التي الحقوق الحقوق الحقو في والتي التي التي التي التي التي التي التي	شهره منها الدين المراجع التين التين الأدر الدين الدين التين الدين الدين الدين الدين الدين الدين الدين الدين ا الدين الدين الدين الدين [

Carbon dioxide (${\rm CO_2}$) + Isoamy1 alcohol (${\rm C_5H_{1\,2}O}$)

Timmermans, 1894

C.S.T. : -30°

CARBON DIOXIDE + HEPTYL ALCOHOL

Carbon dioxide (CO ₂) + Alcoho	ls			Carbon dioxide (CO ₂) + Borneol (C ₁₀ H ₁₈ O)
Francis, 1954				Buchner, 1906
2nd Comp.		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	buchner, 1900
	L ₁	•	L_2	C.V.T. saturated solution: 33°; under high pressu-
450				re gazeous CO2 dissolves at 70°, 3% borneol.
25°				<u> </u>
Heptyl alcohol (C ₇ H ₁₆ O)	62		62	
2-Ethylhexanol (C ₈ H ₁₈ O)	47		17	Carbon dioxide ($C0_2$) + o-Nitrophenol ($C_6H_50_3N$)
Decyl alcohol (C ₁₀ H ₂₂ O)	70		1	
Ethylene glycol ($C_8H_6O_2$)	93		0.2	Scheffer and Smittenberg, 1933
Propylene glycol(C ₃ H ₈ O ₂)	90		0.5	t P t P
Pinacol (C ₆ H ₁ µO ₂)	77		2	t P t P
Diethyleneglycol (C ₄ H ₁₀ O ₃)	90		I	$C + L + V \qquad \qquad L_1 + L_2 + V$
Dipropylene glycol (C ₆ H ₁ µ0 ₃)	85		2	"
Glycerol (C ₃ H ₈ O ₃)	93		0.05	-2.0 31.9 25.9 61.1 +1.0 34.3 28.5 64.9
Triethylene glycol (C ₆ H ₁ , 0,)	88		2	4.0 36.8 31.0 68.7
2-Hydroxyethyl acetate (C ₄ H ₈ O ₃			17	7.0 39.5 33.5 72.5 10.0 42.3 36.0 76.8
Monoacetine ($C_5H_{10}O_4$)	90		1	12.5 44.6 38.0 80.2
2-Chlorethanol (C ₂ H ₅ OCl)	60		10	15.0 46.0 40.05 83.9 17.5 46.2
2-Hydroxypropionitrile (C ₃ H ₅ ON	70		1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Chloral hydrate (C ₂ H ₃ O ₂ Cl ₃)	-		2	22,5 43.9 26.0 40.0 25.9 61.1
Cyclohexanol (C ₆ H ₁₂ O)	80		4	31.0 32.5 26.1 61.9
p-Methylcyclohexanol (C ₇ H ₁ , 0)			4	37.0 20.5 28.6 70.6 31.5 80.4
Benzyl alcohol (C ₇ H ₈ O)	73		8	44.8 0.0 34.3 89.7
Phenylethanol (C ₈ H ₁₀ O)	85		3	Triple point 36.3 96.2
Tetrahydrofurfuryl alcohol	80		3	
$\left(\begin{array}{c} C_{5}II_{1}_{0}O_{2} \end{array}\right)$	70		4	
Furfuryl alcohol (C ₅ H ₆ O ₂)	70		4	
				Timmermans and Kohnstamm, 1909 - 1910
Carbon dioxide (CO ₂) + Phenol	.s			,
				C.S.T. = 24.8° $at/dp (80 - 124 atm.) = +0.30$
Francis, 1954				
2nd Comp.		%	_	
	L ₁		La	Buchan 1007
25°				Buchner, 1906
Phenol (C ₆ H ₆ O)	-		3	% f.t. sat.t.
Resorcinol(C ₆ H ₆ O ₂)	-		0.1	1.9 -52 - C.V.T = 30°
o-Cresol (C ₂ ll ₈ O)	70		2	$\frac{4.2}{0.00}$ $\frac{-8.5}{0.00}$ $\frac{-6.00}{0.00}$ $\frac{-8.5}{0.00}$
m-Cresol (C ₂ H ₈ O)	80		4	8.4 +11.5 32.5 11 10.0 12.5 31 " "
p-Cresol (C ₂ H ₈ O)	7 0		2	21.2 14 25
Xylenol (C ₈ H ₁₀ 0)	-		1	33.8 15 26 48.5 16 -
p-Ethylphenol (C ₈ H ₁₀ C)	92		1	60.7 20 -
Thymol ($C_{10}H_{14}O$)	59		9	100 42 -
Phenyl salicylate (C ₁₃ H ₁₀ O ₃)	62		9	
Eugenol (C ₁₀ ll ₁₂ O ₂)	62		10	
Salicyl alc(C7H8O2)			0.1	
Phenyl ethanolamine ($C_8H_{11}ON$)	85		1	d d
·				

		·		
Carbon dioxide (CO ₂) + m-1 Bayle, 1951	Nitrophenol ($C_6H_5O_3N$)	65.2 60.2 55.05 55.0 50.4	119.6 38	
% t	P	45.4 42.4	97.2 35 90.05 34	.7 77.2
L, = V	سے بھی جی سے اند نے اند نے اندر میں میں اندر اندر اندر اندر اندر اندر اندر اندر	41.2 40.0	87.1 29 84.3 27	.8 68.25 .1 64.4
'	93.0	39.9 39.7	83.95 24 83.55 20	.0 60.3
2.95 39.2 1.02 34.8 0 31.1	82.9 77.25 72.95	39.6 39.4	83.4 20 82.9 18	.0 55.05
		39.2	82.7 9.7 %	.1 52.0
t P	t P	60.6 55.6	144.1 37. 132.4 36.	0 77.25
L ₁ + L ₂ +	· v	50.9 50.8	120.0 35. 119.8 35.	8 76.8
40.0 84.0 s 39.6 83.2 39.4 82.85	33.3 72.2 32.9 71.75 32.0 70.1	47.0	100 / 35	0 75.3 0 72.15
39.6 83.2 39.4 82.85 39.0 82.25	32.0 70.1 31.0 68.65	42.8 42.75	97.7 30. 97.5 25.	$\begin{array}{ccc} 0 & 67.75 \\ 0 & 61.0 \end{array}$
39.0 82.25 38.8 81.85 38.6 81.35	30.2 67.65 29.5 66.45	40.4 38.4	90.3 20. 84.7 15.	1 54.45
	28.8 65.3 27.2 63.1		9.9 %	2 97 45
37.7 79.9 37.0 78.5	26.8 62.5	57.05 56.8		
36 6 77 9	26.1 61.65 26.0 61.5 25.8 61.25	49.2 44.2	115.5 102.0	.2 /6.2
35.8 76.55 35.1 75.45 34.4 74.1	25.7 61.1 i	56.2	13.5 % 140:1 32.	.2 70.85
74.1	s = C.S.T. sup. i = " inf.	52.2 51.0	130.3 127.7 120.4 31.	.8 70.1 2 69.25
C + L	• 1111.	48.4 45.8		.0 69.05
44.6 m.t. 36.0 24.1	16.2 46.8 15.7 46.7	ii 42.4	103.0 30. 95.2 27.	.4 68.2
33.6 29.05 27.2 39.7	15.0 46.55	39.8 37.4 35.4	113.3 30, 103.0 30, 95.2 27, 87.5 25, 81.2 20, 74.2 15,	.0 60.7
25.8 41.45 25.6 41.85	14.2 46.15 13.8 46.0	35.4 33.2	74.2	4 40 45
23.6 43.95 23.1 44.2	13.4 45.85 12.6 44.9	60.2	19.0 % 160.9 28 160.7 28	.65 65.75
22 0 45 0	11.8 44.05 11.6 43.95	60.2 60.1 57.0	153.2 28	.4 64.75
21.0 45.65 19.9 46.15	12.6 44.9 11.8 44.05 11.6 43.95 9.8 42.05 9.5 41.85	53.8 49.0	144.8 27 130.6 25 123.7 22	.9 64.05 .9 61.55
21.0 45.65 19.9 46.15 18.6 46.55 17.6 46.85 16.8 46.9	8.0 40.6 7.2 39.7 6.1 38.75	46.6 44.0	130.6 25 123.7 22 116.0 21	.6 57.1 .2 55.2
16.8 46.9	0.1 38.75	41.4 39.0 36.8	107.6 18 100.1 15	.2 55.2 .2 51.4 .35 48.0
t P	t P	34.0	92.65 13 83.55 11 69.1	0 45.4
1.02	· ·	29.6	69.1 25.4 %	
43.2 87.1 42.0 85.3 39.4 81.95	34.4 76.75 33.4 75.3	55.0 50.6	25.4 % 152.1 26 139.7 26	.4 62.5 .3 61.95
1 38.2 80.85	32.4 73.8 31.4 72.4	45.0 40.0	139.7 26 123.0 26 107.9 25	.2 61.9
37.7 80.4 36.8 79.5	30.4 71.0 28.0 67.3	36.0 32.1	94.5 82.0 25	.3 60.6 .0 60.25
36.0 78.5 35.0 77.5	25.2 63.4 20.6 57.0	32.0 29.5	81.45 23 73.15 18	.9 58.25
34.8 77.2 5 2.95	%	27.4	65.6 15	
60.2 121.2 54.9 112.6	39.2 39.0 82.65	55.0 51.0	30.6 % 154.0 26	.8 64.75
54:7 112.2 49.6 102.6	38.6 81.95 38.0 81.0	45.4	142.3 26 126.2 26	.3 63.05 .0 62.3
44.8 93.6	37.0 79.65 35.4 77.25	40.8 37.5	111.8 25 100.8 25	.9 62.0 .7 61.05
40.6 85.25 40.5 85.05	32.35 72.7 28.6 67.4	34.8 32.0	92.2 82.75 25	.6 61.0 .5 60.9
39.95 83.85 39.8 83.7	23.95 60.95 19.2 54.55	29.5 28.2	74.1 24 69.55 24	.3 59 25
39.4 83.2		27.2 26.9	66.35 23 65.2 15	.65 58.35

35.4 %	Carbon dioxide (CO_2) + m-Chlorphenol (C_6H_5OC1)
55,2 154,6 27.0 65.8 50,8 143,3 26.6 64.05 45,4 126,3 26.5 63.85	Buchner, 1906
43.0 118.6 25.2 62.75	Limited solubility
37.6 101.5 25.6 60.95	Quadruple point $(L_1 + L_2 + C + V) = 20^\circ$
35.5 94.5 24.8 59.8 34.0 89.9 23.6 58.2	
32.4 84.2 22.6 56.9 31.2 79.85 21.2 55.05	
30.0 76.15 18.5 51.6 28.3 70.05 15.2 47.7	Carbon dioxide (CO_2) + Picric acid ($C_6H_3O_7N_3$)
55.8 151.1 44.6 % 55.8 151.1 28.4 65.15	De Gee, 1916
50.0 134.3 28.2 64.5 45.2 120.0 27.4 63.3 40.2 104.0 26.4 61.9	Pkg t Pkg t
II 36.4 91.95 25.5 60.7	0 %
33.0 80.85 25.4 60.6 31.8= 76.85 24.7 59.6	$\begin{bmatrix} 60.1 & 21.6 & 71.3 & 29.1 \\ 62.2 & 23.0 & 72.4 & 29.8 \end{bmatrix}$
30.4 72.0 23.6 58.0 29.5 69.05 22.0 55.9 29.2 68.05 19.4 52.5	64.3 24.5 73.3 30.4
28.6 65.8 17.6 50.25	68.9 27.6 74.8 31.2 crit.t.
61.1 151.0 33.8 73.1 55.4 136.7 33.2 71.95	Pkg t Pkg t
123.9 32.2 70.3	L + C + V
47.0 112.3 31.75 69.55 43.0 100.0 28.0 63.75	61.7 22.85 219.8 98.4 65.2 25.5 199.0 98.9
90.8 24.0 58.05 38.4 85.7 19.85 52.55	
37.4 82.25 18.2 50.55 36.4 79.05 17.2 49.2	71.7 29.6 161.05 101.1 72.8 30.4 139.8 102.9 73.6 30.8 121.7 104.9 74.2 31.2 105.2 106.5
34.8 75.05 16.0 47.75	73.6 30.8 121.7 104.9 74.2 31.2 105.2 106.5 74.7 31.4 93.2 108.1
60.2 143.7 36.2 76.9	74.7 31.4 93.2 108.1 75.6 31.9 crit.t.
55.6 131.7 32.2 69.95	
1 10.0 105.9 28.4 23.7E	Carbon dioxide (CO ₂) + Phenols
39.6 85.0 22.0 57.95	Francis, 1954
38.8 82.45 17 25 40.25	2nd Comp. Formula %
38.0 80.5 15.5 47.05	L_1 L_2
78.7 63.5 %	25°
60.6 122.3 37.6 74.6	Chlorphenol C ₆ H ₅ OCl 75 8
50.8 100.3 32.45 66.65	2,4-Dichlor- C ₆ H ₄ OCl ₂ 70 14 phenol
50.65 99.8 30.2 63.45 49.5 97.0 27.6 59.95	2-Chlor-6- C ₁₂ H ₉ OCl 80 1 phenylphenol
49.5 97.0 27.6 59.95 48.5 94.9 27.4 59.75 47.6 92.8 25.2 56.8	phony iphonor
46.4 90.7 22.35 53.4 45.2 88.4 19.6 49.9	Carbon dioxide (CO ₂) + 3,4-Dichlornitrobenzene
44.0 86.1 18.2 48.35 42.4 82.95 17.6 47.75	
41.2 81.0 65.6 % 71.0 105.2 40.0 63.8	Bayle, 1951
66.2 98.2 37.0 60.45 60.8 90.6 33.6 56.65	t P t P
55.4 83.2 30.1 52.9	L ₁ + L ₂ + V
50.1 76.25 26.2 48.85	34.95 s 77.5 23.2 59.5
43.0 67.75 24.0 46.9	1 34.2 76.1 20.6 55.85
75.0 50.05 44.4 33.85 63.6 43.85 37.1 30.45	33.4 74.9 20.5 55.7
ll 56.6 40.2 33.5 28.55	32.8 73.8 18.0 52.5 30.6 70.3 16.0 q 50.0
50.7 37.0	30.4 69.85 15.0 48.65 30.2 69.55 13.0 46.5
	26.3 63.75

							1
16.0 q 15.95 16.05	$\begin{array}{c} C + L_1 \\ 145.5 \\ 89.1 \\ 70.7 \\ C + L_1 \end{array}$	16.0 16.0 q	60.6 50.0	48.8 44.7 40.4 36.55	8.5 149.2 138.2 126.5 115.6	17.6 16.4 16.2 15.5	57.6 53.1 51.9 49.6
16.0 q 15.6 15.2 14.55 13.8 12.0	50.0 49.5 49.1 48.35 47.6 45.7	10.4 10.3 20.0 18.9 17.0 16.0 q	44.0 43.8 47.3 48.1 49.7 50.0	33.3 29.0 24.8 22.8 21.0 19.6	106.3 93.0 79.85 74.0 68.6 63.7	15.3 14.8 13.9 13.4 12.4	49.1 48.55 47.6 46.9 45.8
40.55 37.6 34.5 30.5	C + L ₂ m.t. 9.55 18.2 28.35 33.35		42.7 44.4 47.3 48.1 49.7	40.2 35.2 31.0 27.2	11.3 148.2 135.1 123.7 112.1 73.7	24.6 17.3 13.6 12.1	104.9 81.9 72.4 69.0
28.3 24.0 s = C.S.T.	41.4 q = q	16.0 q uadruple poi	50.0	49.2 44.0 39.0 33.8 29.0 24.2	135.7 123.3 111.4 98.9	21.0 17.8 15.8 14.9 13.9	65.4 57.1 51.9 49.9 47.5
tt	P 0.97	t d	<u> </u>	24.2	86.2 73.3		47.3
41.0 39.8 37.6 37.4 35.6 34.75 34.7 34.5	87.55 85.65 81.95 81.6 78.55 77.15 77.1 76.85	34.2 33.8 33.45 33.15 30.95 25.0 17.4 15.0	76.5 76.15 75.65 75.15 71.75 63.15 52.75 49.90	49.3 44.0 39.2 35.1 31.2 28.0 26.0 24.2	74.5 126.7 113.8 102.3 91.5 80.25 72.1 67.0 62.1	23.0 22.6 22.4 22.0 21.2 20.0 17.35 16.2	59.65 58.9 58.5 57.75 56.6 54.9 51.5 49.85
51.0 46.3 42.6 39.45 39.3 37.6 36.55 36.4 35.4	109.7 100.4 93.0 86.9 86.2 82.55 80.55 80.15 78.75 77.35	34.8 34.6 34.0 31.1 27.6 24.45 20.7 17.5 13.95	77.25 76.9 76.05 71.6 66.55 62.1 56.95 52.8 48.3	50.2 46.0 42.0 37.8 36.0 34.2 32.8	75.9 118.2 108.3 97.9 87.1 82.4 77.6 74.4	31.4 31.0 30.6 29.2 24.4 20.5 17.0	71.7 70.8 70.2 68.0 60.8 55.1 50.5
50.55 47.7 44.0 39.6 36.8 34.0 33.15	2.95 115.8 109.9 101.2 90.4 83.45 76.7 74.5	% 32.8 32.4 31.4 27.8 24.6 21.6 18.3	73.85 73.15 71.7 66.4 61.75 57.85 53.4	50.0 45.9 41.4 37.7 34.1 50.5 46.6 41.6	105.6 96.5 86.6 79.8 73.3 81.8 88.45 82.45 75.1 67.7	29.1 24.4 20.4 17.6 % 31.1 25.6 20.6	65.3 59.0 54.0 50.4 60.8 54.3 48.85
33.0	74.0 3.95 %	,		36.3	67.7	20,0	40.05
49.6 45.4 41.2 37.6 34.6 32.0 31.6 31.05	3.95 % 120.2 109.7 99.1 89.7 81.35 74.7 73.3 71.8	30.35 30.0 27.0 24.0 20.9 18.6 15.3 13.8	69.8 69.35 65.05 60.85 56.65 54.75 49.55 47.8	Carbon dioxid Francis, 1954	-	cetic acid (C ₂ H ₄ O ₂)
30.6 30.5	70.6 70.1	12.0	45.85	%	d	%	đ
49.4 46.0 42.0 38.8 35.45	5.8 % 130.5 122.0 111.4 103.0 93.5	25.7 25.6 25.4 25.0 22.5	63.35 62.8 62.55 61.95 58.45	0 14.5 24 29.5	0.69 0.8749 0.8912 0.9227	35 50.5 100	0.9429 0.9914 1.0454
32.0 28.0 27.0	83.2 70.75 67.65	19.0 15.4	54.0 49.5				

				11			
Carbon diox	ide (CO ₂) + Aci d s		No Kaluy an	d Simpson, 192	2	
Francis, 19				I			
				##	sat.t.	%	sat.t.
2nd Comp.		25°	L ₁	0.36 1.53 4.73 5.26	-18.85 + 6.46 26.50 28.00	27.15 29.87 35.88 38.97	+34.09 33.35 30.70 28.60
Lauric acid Oleic acid	-	C _{1 2} H _{2 4} O ₂ C _{1 8} H _{3 4} O ₂	78 ·22	5.45 6.60	$\frac{30.58}{31.08}$	$\substack{39.47 \\ 50.07}$	27.34 13.80
Lactic acid		C ₃ H ₆ O ₃	92 0,5	9.78 11.57	33.80 34.82	58.71	- 4.43 -38.37
Chloracetic	acid	C ₂ H ₃ O ₂ C1	- 10	15.27 16.11	35.75	71.22 81.30	-73.60 -100.7
2-Chlorpropi	ionic acid		48 26	22.35	$\begin{array}{c} 35.63 \\ 35.30 \end{array}$	93,61	-100.7
Phenylacetic	aci d	C8H8O2	- 0				
				Bingham, 19	07		
Carbon disu	lfide (CS	2) + Methyl a	lcoho¶ (CH ₄)	C.S.T. = 40	.5°		
Drucker, 18	397			Timmermans	and Kohnstamm,	1909-1910	
%	sat.t.	%	sat.t.	C.S.T. = 48	3.5° dt/dp (5 - 85 kg/cm) = +0.015
53.42 47.45 38.58 28.64 23.12 19.25	13.02 24.77 33.12 39.57 40.50	16.70 10.97 8.86 5.27 2.82	40.27 39.19 37.75 33.45 23.23	Krishnan, 1 C.S.T. = 15			
19.25	40.69			Rousset, 19	36		
Rothmund, 1	908			C.S.T. = 20	% 40.08°		
<u> </u>	sat.t.	%	sat.t.	Mo my state 10	141		
58.65 53.02 50.10	1.68 13.80 18.62	15.51 13.56 7.59	39.92 39.87 36.35	Maryott, 19 C.S.T. = 35			
47.13 37.06 33. 97	22.40 34.20 35.32	3.81 2.32 1.64	25.82 16.10				
	00,02	1.04	8.27	Quantie, 19	254		
Buchner and	Prins, 19	16		C.S.T. = 20	41.3°		
mol %	sat.t.	mol %	sat.t.	Mc Kelvy an	d Simpson, 192	2	
8.1	21.8	42.4	37.4		%	f.t.	
14.1 21.2	30.8 35.9	50.8 52.9	35.3 34.7		0	-112	
24.4 29.4	37.4 37.1 37.2	61.0	28.7	t	riple point	- 99.6	
34.6	37.2	72.8 81.0	11.2 15		93.6 100	-100.7 - 99.7	
				II			

CARBON DISULFIDE + METHYL ALCOHOL

Buchner and P	rins, 1916				· t	Р	t	P
t P t P						L, + L	₂ + V	
21.4 24.3 25.0 26.5 28.9 29.5 32.4 33.3	344 357 376 414 420 467 480	36.0 37.2 38.3 40.4 43.6 44.8 46.5	530 550 573 616 676 685 715 761		0 8.6 9.6 10.1 12.8 13.0 14.8 15.8 18.3 19.6 20.8 21.4	154 227 239 245 272 280 303 313 345 372 389 403	22.0 26.0 26.3 28.2 29.0 29.4 31.0 33.6 34.1 34.5 36.4	410 484 491 523 550 556 588 654 668 679 725 734
17.8 21.0 23.1 23.9 28.8 34.8	339 388 422 438 536 672	38.1 44.4 48.2 50.4 52.4	767 959 1092 1176 1259	-	Drucker and We	eissbach,		
74.4		.72 mol%	204	-	mo1%	p	mol%	p
34.4 38.2 41.5	669 767 8 7 4	$\begin{array}{c} 41.9 \\ 46.1 \\ 50.2 \end{array}$	883 1033 1190	-		4()°	
		.43 mo1%	1190	ľ	0 2.47	617.6 794.3	72.17 90.3	813.4 656.0
39.9 43.2	828 936	46.8 50.0	1072 1193		4.66 11.72 19.43 26.4 30.6 52.9	820.4 825.2 831.0 833.7	90.7 93.1 95.7 100	651.5 567.8 486.8 259.4-260.5
40.2 41.0 43.4	841 865 944	45.8 48.3 49.6 0.66 mo1%	1031 1128 1178	-	30.6 52.9 mo1%	832.8 830.8	p	F ₁ P ₂
39.8 41.2 42.5 44.0 46.0	826 877 915 915 1037	46.8 47.4 47.9 47.9 49.6	1073 1090 1106 1106 1179		9.34 61,1	25.2	3.9° 792 59	92.7 199.3
	52	2.9 mo1%			89.5	36.4	653 41	58 229 15.5 237.5
37.7 38.6 38.8 40.0 42.0	759 792 799 835 896	43.2 43.6 45.0 47.0 50.0	943 954 1001 1075 1196	-	Roberts and Ma	yer, 1941		
	72	2.17 mo1%		-	mo1%		mo l	1%
17.2 22.6 27.4 32.8	333 416 507 626	39.2 44.9 45.1 50.0	790 975 979		L 95.54	V 30.8	L	V
32.0		3 mo1%	1168		84.9 70.4	39.8 25.0 20.8	37.2 29.5 29.5	20.2 20.2 20.2
0 14.3 13.6 19.0 19.4 27.2 27.8	128 240 289 291 296 405 416	34.0 39.2 45.4 51.3 54.6 58.3	526 639 798 976 1097 1238		69.7 50.9 49.2 44.2	20.8 20.8 20.2 20.2 20.2	29.5 20.8 11.2 6.1	20.2 20.2 20.2 19.2 19.2 18.6
33.4	188	00% 53.5	463					
35.4 36.2 42.3 45.3 48.0 50.8	210 280 319 370 410	56.1 58.6 60.0 64.6	529 590 627 760					

CARBON DISULFIDE + ETHYL AL COHOL

Whatmough, 1902	Carbon disulfide (CS ₂) + Ethyl alcohol (C ₂ H ₆ O) Heterogeneous equilibria.					
t ^σ L ₁ t σ L ₂	Guthrie, 1878					
18°						
$egin{array}{cccccccccccccccccccccccccccccccccccc$	% sat.t.					
20. 2 26.00 20.1 26.16 29. 8 24.99 29.4 25.09 38. 8 24. 24 38. 8 24. 24	5.06 -18.4 10.46 -14.4 15.11 -15.9 20.06 -16.1 34.89 -17.7 60.04 -20					
	1.818g +1.9855g 17.6° dv = +0.02912 cc					
% х	- 1 vol + 1 vol 11° dv = 0.7278%					
100 -0.53 61 -0.60 3.5 -0.67 0 -0.68	Q mix is negative					
	Mc Kelvy and Simpson, 1922					
Cherbov, 1935	% sat.t. % sat.t.					
% t Q vap 0 20 86.4 7.2 (sat.sol.) 20 105.2 68.8 (sat.sol.) 20 105.0 100 20 276.3 40 273.5	0.91 -108.04 23.75 -25.13 1.45 73.68 29.61 26.88 3.22 43.71 38.77 35.17 6.35 30.16 50.54 54.58 10.43 25.76 61.25 79.26 12.52 25.07 68.04 100.07 17.29 24.31 100.00 111.7 crit. t.					
Drucker and Weissbach, 1925	Schoorl and Regenbogen, 1922 vol% sat.t.					
wt% mol% U Q mix						
cal/g cal/100g cal/mole	2.0 -62 5.7 -42 9.1 -35					
98.0 99.16 0.638 21.5 6.94	22.2 -24 28.5 "					
95.1 97.87 0.586 52.6 17.4 92.6 96.72 0.584 80.9 27.1 91.5 96.3 0.558 89.9 30.3 84.5 92.9 0.544 153 53.7	43.0 " 57.0 -45 71.0 -75					
73.0 86.5 0.495 232 87.9	Author C.S.T.					
39.3 77.6 0.463 293 122.5	Kuenen, 1897 -10.6°					
55.4 74.6 0.453 303 131 51.7 71.6 0.437 311 138	Bingham, 1907 -14°					
3.08 6.97 0.270 99.5 73.7	Vieth, 1929 -24.4° (25%)					
2.32 5.32 0.269 88.7 65.5 1.56 3.61 0.268 75.5 56.5 0.787 1.85 0.260 56.3 42.3 0.454 1.08 0.257 45.7 34.7	Maryott, 1941 -23.5					
36°						
- 96.3 33.8 - 93.1 62.3 - 90.4 92.1						

CARBON DISULFIDE + ETHYL ALCOHOL

Alluard, 1864	_				Drecker,	1883				
% 725	b.t.	760 г	mm		%	0°	17.86°	3 28,21°	35 960	τ.10 ⁷ 25°
0 44, 66.67 46, 80.00 49, 83.33 55, 85.71 59, 88.88 62, 92.31 65, 95.24 70, 96.77 72, 98.36 75, 99.01 77.	1 1 1 1 7 0 6 5	47.7 48.1 51.0 57.2 61.0 64.0 67.5 71.5 74.1 77.0) 2 3 3 5 5 1		0 10.025 20.141 29.663 40.604 49.807 60.073 71.091 79.976 88.421	1.29195 .21448 .14725		1,25031 .17472 .10964 .05538		12220 12710 12754 12601 12547 12345 12144 11948 11747 11401 11109
D. 1. 1. 1000					9.	π	q.		π	
Ryland, 1899	45. 41.	5 - 46 5 - 42.5 5 - 78	5 (7 55mm)Az	0 18.54 27.48 40.32 51.76	97.5 103.0 106.6 109.3 111.3	25° 64 74 89 100	. 15 . 89 . 54	113.8 115.0 115.4 113.8	
					Philip, 18	397				:
Burwinkel, 1914						%		đ		
t 0% 16.54% 0 125 135 10 198 212 20 301 319 30 443 473 40 630 690	p 34.20% 136 214 331 485 699	50.77% 128 203 310 459 660	71.17% 104 171 254 375 552	100% 13 24 45 79 132		100. 76. 52. 26.	035 56 7	0.799 0.8716 0.961 1.091 1.268		
40 630 690 50 60 70	-	-	-	226 359 547	Zecchini,	1897				
				==.	K	1.8°	6.4°	1 6.8°	7.	1°
Properties of phases. Landolt, 1865	t	d			23.50 76.59 77.66	1.28859 - 0.87393 0.80513	1.28142	1.1139 - 0.8003	0.87	133
100 87.2 28.4 0	22.1 21.5 22.0 22.0	0.7950 0.8372 1.1077 1.2602	<u>2</u> 7		Holmes, 19	06 %		đ		
						100 64.8 48.7 23.8 14.0 8.4	81 78 50 07	0.7932 0.9080 0.9749 1.1060 1.1653 1.2046 1.2701		

Burwinkel, 1914	Dinstan, 1904				
% d	% n % n				
17°	25°				
0 1.26818 16.542 1.15000 34.199 1.04394 50.769 0.96723 51.397 0.96234 71.172 0.89701 83.578 0.85762 100.00 0.79365	100 1113 47.18 665.9 83.09 944.8 30.05 566.9 80.71 953.5 26.50 546.6 74.36 906.5 18.07 492.6 67.69 840.7 0 365.6				
Springer and Roth, 1930	Hirata, 1908				
	% η (alcohol ≃1)				
0°	25°				
100 0.8058 74.36 0.8887 47.18 0.9979 26.5 1.1046 0 1.2803	99.21875 0.9971 98.4375 0.9910 96.875 0.9666 93.75 0.9326 87.5 0.8656 75 0.7491				
Harms, 1938					
mol% d 6° 30°	Springer and Roth, 1930				
0 1,28395 1,24819 0,948 1,27898 1,23304 1,917 1,27402 1,22805	π (water =1)				
3,841 2,26421 1,22836 5,888 1,25405 1,21827 10,695 1,23038 1,19509 16,955 1,19976 1,16521 21,187 1,17914 1,14523 26,714 1,15226 1,11914 33,185 1,12083 1,08869	100 1.0589 74.36 0.8674 47.18 0.6687 26.5 0.5249 0 0.4028				
38.223 1.09641 1.06511 45.796 1.05975 1.02972 53.036 1.02470 0.99589 81.505 0.88817 0.86436 93.925 0.82970 0.80809 94.851 0.82533 0.80389 96.606 0.81724 0.79609 97.805 0.81171 0.79081	Landolt, 1865				
98,996 0,80615 0.78543 100 0,80133 0,78080	T T				
	20° 100 22,1 1,3606				
	100 22.1 1.3606 87.2 21.5 1.3844 28.4 22.0 1.5370 0 22.0 1.6267				
Peel, Madgin and Briscoe, 1928					
1 vo1 + 1 vo1 dv = 0.75%					

CARBON DISULFIDE + ETHYL ALCOHOL

Zecchini, 1897	Buchner, 1931 (fig.)
% п _р	$% \chi \qquad \chi \qquad \chi \qquad \chi \qquad \chi \qquad \chi \qquad \chi \qquad \chi \qquad \chi \qquad \chi $
1.8° 6.4° 6.8° 7.1° 0 1.64170 1.63789 23.50 1.54073 76.59 1.40550 77.66 1.40602 100 1.36879 - 1.36658 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Philip, 1897	
% ε	Huet, Philippe and Bono, 1953
18° 100.0 (26.8) 76.035 22.56	% molar % molar extinction extinction coefficient coefficient
52,567 17,14 26,378 9,130 0 2,598	0.198 1.084 5.77 0.2248 0.487 0.903 11.5 0.152 0.673 0.830 20.1 0.1136 1.35 0.579 22.95 0.1102 1.65 0.509 39.95 0.086 2.35 0.390 40.2 0.083 4.7 0.2605
harms, 1938	Heat constants.
mo1% & 30°	Drecker, 1883
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	% U (constant volume)
3.841 2.8619 2.7991 5.888 3.0257 2.9348 10.695 3.5958 3.3819 16.955 4.6892 4.2452 21.187 5.590 4.9303 26.714 6.965 6.002 33.185 8.676 7.246 38.223 10.203 8.460 45.796 12.57 10.627 53.036 15.25 12.73 81.505 23.47 20.25	20° 0 0.160 10.025 0.207 20.141 0.260 29.663 0.298 40.604 0.327 49.807 0.352 60.073 0.386 71.091 0.418 79.976 0.445 88.421 0.475 100 0.518
	Peel, Madgin and Briscoe, 1928
	1 vol + 1 vol dt = -5.2°

Schüller, 1871			Timofeev, 1905	
% U	%	U	% Q dil final initial (mole alcoho	1)
0 0 2442	40.53 48.64 59.30 70.90	0.4237 .4237 .4808 .5138 .6019	0 3.8 -1345 3.8 7.3 -572 13.0 16.5 -282 16.5 20.0 -260 32.2 34.4 -185	
Beetz, 1879 0 (d=1,272) - (d=0.804) 100 (d=1,257)	heat conduction of the conduct		Carbon disulfide (CS ₂) + Propyl alcohol Kuenen, 1897 C.S.T. = -52°	(C ₃ 11 ₈ 0)
Bussy and Buignet, 1864	- 1867	الله الله الله الله الله الله الله الله	Holmes, 1906	
vol% t	(dt	% d	
50 21	,90 -5.	.90	15,5°	
78 0 37.7 100	0.2381 0.3903 0.5790		- 100 1.2701 90.93 1.2032 78.31 1.1232 61.42 1.0332 40.80 0.9427 18.75 0.8636 0 0.8072	
32.7% Q m	ix = -2.312 ca	1/g	Holmes, 1915 	
	474 -1.65 662 -2.03 058 -2.17 340 -2.19 558 -2.08 333 -1.78 164 -1.31 160 -0.70	12 42 44 90 04 80 14	15 - 16° 11.6	

Carbon disulfide (CS_2) + Isopropy1 alcohol (C_3H_80)	Carbon disulfide (CS_2) + Isobutyl alcohol ($C_uH_{10}O$)
Ryland, 1899	Schwers, 1912
	t d t d
	0% 15.803%
0 45.5 - 46 9 43.5 - 44.5 Az	13,45 1.27348 11.3 1.16304 22,60 1.25983 18.75 1.15392 33,95 1.24283 31.7 1.13648
de Kolossowsky and Theodorowitsch, 1935	30.008% 50.220% 13.9 1.07702 15.5 0.97919 21.1 1.07718 30.7 0.96248 34.2 1.06113
% b.t. Q vap	70.388% 100%
0 46.25 - - 44.85 88.44 cal/g 100 82.35 -	13.8 0.90118 16.25 0.80680 32.4 0.88336 31.8 0.79423 53.0 0.77651 74.65 0.75829
Carbon disulfide (CS ₂) + Butyl alcohol (C ₄ H ₁₀ O)	t n red D blue violet
Kuenen, 1897	9.6 1.56877 1.57631 1.59630 1.61402 28.9 1.55461 1.56198 1.58130 1.59852 39.7 1.54632 1.55357 1.57260 1.58963
C.S.T. = -80°	30.008% 8.3 1.52753 1.53380 1.54994 1.56416 25.2 1.51660 1.52266 1.53833 1.55212 33.6 1.51057 1.51664 1.53216 1.54592
Tichacek, Kmak and Drickamer, 1956	50,220%
nol% D therm	11.8 1.47802 1.48276 1.49445 1.50484 22.1 1.47223 1.47679 1.48184 1.49866 34.6 1.46497 1.46938 1.48076 1.49083
3° 20 -6.5	70.388%
\$0 0 \$0 0 \$0 +0.25	9.5 1.44132 1.44470 1.45326 1.46068 22.4 1.43506 1.43825 1.44665 1.45366 28.8 1.43172 1.43496 1.44320 1.45015
Carbon disulfide (CS ₂) + tert, Butyl alcohol	100%
Hoffmann, 1943 $ \begin{array}{c} (C_{t_i}H_{1,0}0) \\ \hline \\ N \\ \end{array} $ molar extinction $.10^5$	8.0 1.39814 1.39996 1.40496 1.40885 23.7 1.39192 1.39372 1.39868 1.40248 34.9 1.38733 1.38912 1.39403 1.39779 49.1 1.38137 1.38311 1.38798 1.39169 66.3 1.37398 1.37568 1.38045 1.38463
21.5°	86.0 1.36529 1.36686 1.37138 1.37506
8.174 429 3.921 699 1.921 1115 0.9691 1719 0.4518 2705 0.1434 4545 0.0544 5280	0% 6.85 1.62853 1.63816 1.66346 1.68620 20.9 1.61754 1.62694 1.65180 1.67436 34.5 1.60678 1.61588 1.64017 1.66225
0.0077	

Schwers, 1912	Carbon disulfide (CS_2) + Ethyl malate ($C_8H_{14}O_5$)
7 (α) _{magn} t 5893 Å 5460 Å 4360 Å	Walden, 1906 filter α c α c
0 15.6 2.7305 3.2693 3.843 34.0 2.6483 3.1686 5.655	32.8g/100cc 16.4g/100cc
15.803 16.0 2.1915 2.6111 4.5634 50.080 15.7 1.4657 1.7333 2.9629 75.360 16.5 1.0924 1.2867 2.1639	red -8.37 1 -7.92 1 green -13.18 1.56 -12.30 1.55 violet -17.67 2.09 -16.1 2.03
100 16.1 0.8165 0.9582 1.5700 55.2 0.7758 0.9100 1.4877	c = dispersion constant
Tichacek, Kmak and Drickamer, 1956	Carbon disulfide (CS_2) + Menthol ($C_{10}H_{20}O$)
50 mol% thermal diffusion ratio at 8° = -0.93	Eggers, 1904
	- β t ε
Carbon disulfide (CS_2) + sec. Butyl alcohol ($C_4H_{10}O$)	0.0 19 2.65 5.4 24 2.8 11.5 24 3.25 16.06 23.5 3.8 22.1 24 4.2 28.56 24 4.7
mo1% p ₁	
0,32°	Carbon disulfide (CS ₂) + Phenol (C ₆ H ₆ O)
0 128.5 16.84 126.3 27.46 123.8	Weissenberger, Schuster and Schüler, 1924
44.69 118.6 77.73 84.9 86.60 61.7	mol% p mol% p
20.34°	15°
0 300.3	57.1 195 33.3 226 49.5 216 28.6 226 44.5 224 25.0 227
30.09 283.2 46.35 265.5 83.32 163.9 92.29 117.1	44.5 224 25.0 227 40.0 224 0.0 243.8
	mol% σ mol% η
	15°
Veltmans, 1926	57.1 30.26 57.1 2360 49.5 29.38 50.0 1720
% d $(\alpha)_{D}$	44.5 28.65 46.5 1460
20°	33.3 27.55 33.3 1040
0 1.2629 0	25.0 27.33 25.0 899 0.0 28.80 0.0 380
20 1.1193 3.33 39.9 1.0053 6.52 50 0.9652 7.81 59 0.9321 8.98 70.2 0.8944 10.32 79.4 0.8655 11.38 89.9 0.8347 12.60 100 0.8069 13.87	Aumeras, Minangoy and al., 1953 Infra-red spectra

Carbon dosulfide (CS_2) + o-Cresol (C_7H_80)

Weissenberger, Schuster and Wojnoff, 1926

mo1%	р	
	15°	
66.7 50.0 40.0 33.3 28.6 25.0 22.2	163 209 225 233 238 241 243	

mo1%	η	ď
	(water	= 1)
66.7 50.0 40.0 33.3 28.6 25.0 22.2	4.14 2.03 1.12 0.92 0.80 0.73 0.66	0.454 0.463 0.410 0.395 0.391 0.390 0.398

Aumeras, Minangoy and al., 1953

Infra-red spectra

Carbon disulfide (CS_2) + m-Cresol (C_7H_80)

Weissenberger, Schuster and Wojnoff, 1926

mo1%	p	η	σ
		15° (wate	r = 1)
66.7 50.0 40.0 33.3 28.6 25.0 22.2	160 208 223 231 236 240 243	3.88 1.81 1.05 0.84 0.78 0.73	0.473 0.480 0.420 0.400 0.392 0.390 0.388

Aumeras, Minangoy and al., 1953

Infra-red spectra

Carbon disulfide (CS_2) + p-Cresol (C_7H_80)

Weissenberger, Schuster and Wojnoff, 1926

mo1%	p	ή	σ	
		(wate	r = 1)	
	1	5°		
66.7 50.0 40.0 33.3 28.6 25.0 22.2	167 211 226 235 240 243 244	4.41 2.25 1.19 1.00 0.83 0.73 0.61	0.435 0.447 0.412 0.397 0.392 0.390 0.388	

Aumeras, Minangoy and al., 1953

Infra-red spectra

Carbon disulfide (CS_2) + Formic acid (CH_2O_2)

Lecat, 1949

78	b.t.	
0 17 100	46.25 42.55 100.75	Az

Carbon disulfide (CS_2) + Acetic acid ($C_2H_4O_2$)

Pickering, 1893

%	f.t.	%	f.t.	
100 98.123 96.579 94.467 92.791 90.778 87.457 83.112 78.806	16.63 15.76 15.17 14.32 13.79 13.07 12.14 11.06 12.08	74.858 71.179 67.655 64.525 61.219 55.530 50.504 47.626	9.50 8.96 8.53 8.31 8.24 8.11 8.00 7.94	

CARBON DISULFIDE + ACETIC ACID

		t		'n		
Poppe, 1934 - 1935			red	<u>D</u>	blue	violet
% f.t. %	f.t.			0%		
100 16.52 30.30 82.40 10.70 20.6 66.62 8.28 14.0 49.95 7.70 10.1	7.40 6.60 5.10 2.75	6.85 20.9 34.5	1.62583 1.61754 1.60678	1.63816 1.62694 1.61588	1.66346 1.65180 1.64017	1.68620 1.67436 1.66225
40.90 7.65 5.0 C.S.T. = +4.2	-4.50	11.9 23.1 44.3	1.57917 1.57066 1.55416	12.07 1.58723 1.57854 1.56172	6% 1.60856 1.59962 1.58211	1.61862 1.60047
P f.t.	CET	13.0	3	61.28		
40%	C.S.T.	13.9 21.1 35.0	1.44279 1.43875 1.43065	1.44695 1.44281 1.43461	1.45740 1.45321 1.44470	1.46636 1.46211 1.45340
59.75 8.0	4.39			80.29	8%	
96.75 10.0 122.50 10.50 148.75 11.0 256 13.3	7.60 8.50 9.43	11.5 23.0 41.2	1.40555 1.40111 1.39132		1.41614 1.41035 1.40130	1.42215 1.41617 1.40698
Bingham, 1907 C.S.T. = -10°		21.2 31.7 49.7	1.36949 1.36542 1.35818	1.37146 1.36738 1.36014	1,37621 1,37209 1,36476	1.37952 1.37536 1.36798
0.3.1.		# #		(a) magn		
Jones, 1923		76 	t	5893 Å	5460 Å	4360 Å
% Sat.t.		0	15.6 34.0	2.7305 2.6488	3.2693 3.1686	5.843 5.655
19.6 0.5 24.6 2.6 42.7 3.9 49.3 3.9		12.076 50.354 61.284 77.605	15.2 15.5 16.8 16	2.3154 1.4431 1.2503 0.9894	2.7596 1.7117 1.4820 1.1695	4.8601 2.9303 2.5171 1.9648
56.1 2.0 66.1 -5.2		100	15.2 32.0	0.6675 0.6568	0.7838 0.7712	1.2836 1.2625
Schwers, 1912						
t d t	d					
0% 12.0	76%					
13.45 1.27348 13.5 22.6 1.25983 20.6 33.95 1.24283 30.8	1.22831 1.21786 1.20261					
61.284% 80.2						
14.7 1.10562 13.0 22.7 1.09475 20.7 30.7 1.08355 30.1	1.09426 1.08520 1.07395					i
100%						
12.5 1.05819 23.9 1.04546 30.4 1.03797						

CARBON DISULFIDE + BUTYRIC ACID

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						T				
Weissenberger, Henke and Ratschinka, 1926	Carbon dis	ulfide (CS ₂) +	Butyric ac:	id (C ₄ H ₈ O ₂)	t	red		blue	violet
Carbon disulfide (CS ₂) + Isobutyric acid CuH ₈ O ₂) CuH ₈ O ₂) CuH ₈ O ₂	Weissenber	ger, Hen	ke and Ka	tschinka,	1926			0%		
11.75						20.9	1.61754	1.62694	1,65180	1.67436
60			20°					20.336	76	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		60 50 40		181.0 212.9 241.4		19.5	1.55182	1.54810	1.57792 1.56651	1.59495
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				298.0			1 (01#3			1 50000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						18.2	1.48758	1.49253	1,50579	1.51835
Carbon disulfide (CS_2) + Isobutyric acid ($C_4H_8O_2$) 18.45						-		68.028	%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon disu	lîide (CS ₂) +]			18.45	1.44178	1.44515 1.43480	1,45460	1.46356
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Schwers, 19	12				9.05	1.39491	1.39689	1,40170	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t		đ	t	đ	_ 39.4	1.38210	1.38394	1.38860	1.39346
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	R		20.336	Z	68.4	1,36967	1.37145	1,37598	1,38064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.6	1.2 1.2 1.3	27348 25983 24283	13.35 22.7 30.1	1.17067					
21.1 1.08550 20.4 1.02316 31.0 1.07236 28.2 1.01398 Schwers, 1912 100% 111.4 0.96211 53.2 0.91978	45	. 276%			%	Carbon dis	sulfide (CS ₂) + Iso	ovaleric ac	id
11.4 0.96211 53.2 0.91978 t 5893 Å 5460 Å 4360 Å 34.2 0.93921 74.4 0.89795 0 15.6 2.7305 3.2693 5.843	21.1	1.0	08550	20.4	1.02316	Schwers, 1	1912		(C ₅ H	1002)
11.4 0.96211 53.2 0.91978 t 5893 Å 5460 Å 4360 Å 34.2 0.93921 74.4 0.89795 0 15.6 2.7305 3.2693 5.843			100%					(a) _{magn}		
0 15.6 2.7305 3.2693 5.843	11.4			53.2	0.91978		t	5893 Å	5460 Å	4360 Å
34.0 2.6483 3.1686 5.655	34.2	0.			0.69793	_	15.6 34.0	2.7305 2.6483		
# (α) magn. t 5893 Å 5460 Å 4360 Å 32.725 15.8 1.8244 2.1705 3.7628 46.203 16.4 1.5568 1.8494 3.1907 50.099 15.4 1.4952 1.7704 3.0392 63.543 17.1 1.2706 1.5063 2.5585	%	t	(α) mag 5893 Å	gn. 5460 Å	4360 Å	46.203 50.099	16.4	1.5568 1.4952	1.8494 1.7704	3.1907 3.0392
0 15.6 2.7305 3.2693 5.843 34.0 2.6483 3.1686 5.655 100 33.9 0.7628 0.8958 1.4932	0	$\begin{array}{c} 15.6 \\ 34.0 \end{array}$		3.2693 3.1686				0.7628	0.8958	1.4932
20.336 14.5 2.1022 2.5097 4.3735 45.276 14.6 1.5570 1.8279 3.1586 49.112 14.9 1.4908 1.7599 3.0113	45,276	14.6	1.5570	2.5097 1.8279 1.7599	3,1586			0.7788	0.9133	1,4306
100 15.0 0.732 0.8530 1.412 31.8 0.719 0.8376 1.386	100									

	d		d	J. OXYGEN DERIVATIVES + HYDROXYL DERIVATIVES .
t				THE STATE OF THE S
13.45 22 .6		48 12.1 83 20.7		XXVIII. ETHER OXIDES + HYDROXYL DERIVATIVES .
33.9	5 1.242 45.900%	883 30.7		Methylpropyl ether ($C_4H_{10}0$) + Methyl alcohol (CH_40)
14.2		96 10.2		Lecat, 1949
22.3 31.2	1.071 1.060	.30 19.7 144 30.7	1.02326 1.01100	% b.t. Dt mix
17.6 40.2	0.933 0.912		0.89222	0 38.95 - 9 38.85 Az 100.6 100 64.65 -
t	red	n D	blae violet	Bouillon, 1950
		0%		% b.t. (743mm) n _D 2°
6.85 20.9 34.5	1.62583 1.61754 1.60678	1,63816 1,62694 1,61588	1.66346 1.68620 1.65180 1.67436 1.64017 1.66225	0 30 -
		28.295%		
9.5 20.3 32.0	1.53953 1.53254 1.52466	1.54626 1.53891 1.53095	1.56353 1.57872 1.55571 1.57084 1.54755 1.56253	Methylbutyl ether (C.H.o)) + Methyl alcohol
		45,900%		Bouillon, 1950
8.0 19.8 26.6	1.49817 1.49131 1.4 87 09	1.50346 1.49639 1.49213	1.51683 1.52851 1.50947 1.52098 1.50509 1.51673	% b + (743mm) n20
11.2	1.46271	62.573% 1.46666	1.47695 1.48583	0 71 - 33.35 56.3 Az 1.3600
20.5 37.7	1.45 7 54 1.44841	1.46158 1.45234	1.47161 1.48051 1.46210 1.47066	
8.1	1.40524	100% 1.40 7 36	1.41231 1.41770	Methyl tert. butyl ether ($C_5 II_{12}0$) + Methyl alcohol (CII_40)
28.3 41.9	1.39604 1.391 21	1.39888 1.39322	1.40369 1.40905 1.39830 1.40318	Lecat, 1949
57.0	1,38499	1.38694	1.39185 1.30667	% b.t.
) + 0ieic	acid (C ₁₈ !i ₃₄ 0 ₂)	0 50 15 52,6 Az 100 64.65
Campbell, 1	915 ——————			
%_	p	% 30°	p	Methyl tert. amyl ether ($C_6H_{1}_{+}0$) + Methyl alcohol ($CH_{+}0$)
0	. 0	34.7	7 290.5	Lecat, 1949
3. 15. 25.	12 40.9 75 164.0 85 233.7	56,14	1 316.3 366.6 431.9	g b.t.
	200.7	100	701,7	0 86 50 62.3 Az
				100 64.65

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

398

CARBON DISULFIDE + OLEIC ACID

τ	d	t		d	J. OXYGEN DERIVATIVES + HYDROXYL DERIVATIVES .
	0%		. 295%		
13.45 22.6 33.95	1.27348 1.25983	12.15 20.7 30.7	1.1	4718 3613 2267	XXVIII. ETHER OXIDES + NYDROXYL DERIVATIVES . Methylpropyl ether (C _h H _{1 o} O) + Methyl alcohol
	45.900%	62.	5 7 3%		(CH ₄ 0)
14.2 22.3	1.08096 1.07130	10.2 19.7 30.7	$\frac{1.0}{1.0}$	3281 2326	Lecat, 1949
31,2	1.06044			1100	% b.t. Dt mix
17.6 40.2	0.93319 0.91204	60.8	0.8	9222	0 38.95
t	red	n D	blue	violet	Bouillon, 1950
		0%			% b.t. (743mm) n _D 20
6.85 20.9 34.5	1.61754 1. 1.60678 1.	62694 1.	. 66346 . 65180 . 64017	1.68620 1.67436 1.66225	0 39 - 11.94 38 Az 1.3549
9.5 20.3 32.0	1.53254 1.	53891 1.	. 56353 . 55571 . 54 7 55	1.57872 1.57084 1.56253	Methylbutyl ether ($C_5 II_{12}0$) + Methyl alcohol (CH_b0)
		5.900%			Bouillon, 1950
5.0 19.8 26.6	1.49131 1.	49639 1.	. 51683 . 5094 7 . 50509	1.52851 1.52098 1.51673	% b.t. (743mm) n _D 20
11.2 20.5	1.46271 1.		. 4 769 5 . 4 7 161	1.48583 1.48051	0 71 - 33,35 56,3 Az 1,3600
37.7	1.44841 1.		46210	1.47066	Methyl tert, butyl ether (C ₅ H ₁₂ O)
8.1 28.3 41.9 57.0	1.39604 1. 1.39121 1.	39888 1. 39322 1.	.41231 .40369 .39830 .39185	1.41770 1.40905 1.40318	+ Methyl alcohol ($\mathrm{CH_{4}O}$) Lecat, 1949
			.07100	1.30667	% b.t.
Carbon disu	lfide (CS ₂)	+ Oleic ac	id (C _{1 8}	3li340 ₂)	0 50 15 52.6 Az 100 64.65
Campbeli, 19	915 ———————				
<u> </u>	p	% 30°	р		Methyl tert. amyl ether ($C_6H_{1u}0$) + Methyl alcohol ($CH_{u}0$)
0 3,	0 12 40.9	34.77 40.51	290.		Lecat, 1949
15.2 25.8	75 164.0	56.14 100	316. 366. 431.	. 6	g b.t.
					0 86 50 62.3 Az 100 64.65

Ethyl ether	· (C ₄ H _{1 0} 0) +	Methyl al	coho1 (CH ₁₄ 0)					
Haywood,	1899							
%	b.t.	%	b.t.					
	765.2m	ım						
100 85.3 70.4 63.1 56.2 49.7 44.5	65.15 57.7 50.2 47.1 44.7 42.7 41.4	39.1 36.5 36.2 30.7 18.4 0.0	40.1 39.55 39.42 38.5 36.6 34.85					
Pettit, 18	Pettit, 1899							
%	b.t.	%	b.t.					
	738.7	ותנות						
100.0 92.2 85.0 65.3 59.4 52.5	64.94 60.62 56.31 47.18 44.00 42.92	51.1 42.3 22.9 16.4 8.8 0.0	42.50 39.90 36.65 35.65 34.70 34.21					
	er and Zoppi	·		==				
%	D b.t.	%	D b.t.					
0 .34 0.97 1.6 2.8 3.6 5.1	0 -0.035 -0.085 -0.100 -0.065 -0.035 +0.109 0.150	7.8 9.9 11.5 12.6 19.2 30.6 32.4	0.460 .605 .815 .935 1.800 3.465 3.770					
Schmidt, 1	891							
%		C.V.T.						
0 22.83 45.67 52.97		193.5 200.4 212.1 216.2 241.9		_				
				=				

Centnerszwer and Zoppi, 1906						
mol%	C.V.T.	mo1%	C.V.T.			
0 7.7	194.0 194.1	69.7 91.2	212.9 230.5			

7.7 194.1 91.2 230.5 10.6 193.9 95.1 234.9 15.2 194.4 100 240.2 35.6 197.9

%	f	.t.	Ė	:
-	stable	metast.	stable	metast.
0	-116,4	-123.4	_	-
6.2	-118.0	-125.0	-	_
9.6	-118.7	-125.7	-119.5	-
10.5	-118.9	-125.7	-119.5	-
15.4	-119.0	-125.5	_	_
22	-		-	-126.1
31.5	-121.2	-123.0	_	-125.2
42.9	-119.6	-	-	-126.1
50.1	-117.4	_	_	-124.2
62.8	-113.4	_	-	
81.5	-106.6	_	_	_
81	-106.3	-	_	_
100	-97.8	_	_	_

Pfaler and Nikka, 1914

Vapour phase .

%	d (at b.t.)	%	d (at b.t.)
	g/1		g/1
100	1,147	40.0	1.787
90.0	1,195	29.9	1.998
79.6	1.290	20.0	2.222
70.0	1.450	10.0	2.585
60.0	1.577	0	2.977
50.0	1.673		

Liquid phase .	Ether ($C_4H_{10}0$) + Ethyl alcohol (C_2H_60)
	Heterogeneous equilibria.
Centnerszwer and Zoppi, 1906	Wullner, 1866
% d % d	t p
25°	100% 50% 33.4% 20% 0%
0 0.707 52.9 0.755 11.2 .720 61.5 .762 22.2 .731 72.9 .770 31.2 .737 81.8 .776 33.1 .741 90.9 .783 42.0 .746 100.0 .788	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hirobe, 1908	21.1 - 322.5 373.7 401.2 - 23.2 - 353.8 405.6 435.3 - 25.5 60.8 392.7 448.2 478.0 530 28.0 - 492.1 527.1 - 31.4 - 567.9 675.3 - 34.6
mol% d mol% d	
25.1° 0 0.70808 71.007 0.75665 21.734 .72041 82.214 .76715	Louder, Briggs and Browne, 1924
21.734 .72041 82.214 .76715 31.972 .72659 92.585 .77922 55.824 .74293 100 .78939	t p 100% 89.95% 79.23% 69.91% 60% 50%
Baker, 1912	0.0 12.41 43.3 70.9 93.7 111.8 126.7 5.0 17.31 54.6 90.2 118.1 139.5 158.5 10.0 24.34 70.1 114.4 147.2 175.0 197.4 15.0 33.422 89.2 144.5 182.1 225.5 247.9
% d n	20.0 44.40 112.4 1/4.0 224.8 268.1 302.7
25°	25.0 59.7 140.7 214.2 274.0 324.5 367.8 30.0 79.3 174.8 262.9 333.9 395.3 446.2 35.0 103.1 217.3 318.5 403.7 476.7 641.5
100 0.7880 550.6 76.88 .7731 473.4 64.93 .7648 429.6 52.60 .7559 384.6	30.0 79.3 174.8 262.9 333.9 395.3 446.2 35.0 103.1 217.3 318.5 403.7 476.7 641.5 40.0 134.6 266.3 386.6 481.2 571.0 762.1 45.0 173.3 327.4 467.1 582.0 679.2 804.6 50.0 221.1 400.3 558.1 693.1 804.6 903.5
39.77	t p 39.93% 30.46% 19.93% 9.97% 0%
	0.0 141.1 151.7 160.8 172.0 105.3 5.0 178.1 190.5 203.6 217.0 233.2
Hirobe, 1908	10.0 221.7 236.8 253.9 271.7 291.7 15.0 271.2 293.6 314.4 335.7 360.7 20.0 332.9 359.2 384.4 410.8 442.2
mol% Q mix. mol% Q mix.	23.0 403.2 436.1 467.5 499.3 537.0
25.1°	35.0 590.6 632.1 681.7 726.2 775.5 40.0 708.6 758.0 812.2 865.8 921.3
21.734 - 99.9 71.007 -61.4 31.972 -119.9 82.214 -36.6 55.824 - 97.9 92.585 -11.6 63.864 - 80.2 100 -	45.0 842.8 901.0 965.2 1025.8 1089.8 50.0 995.0 1002.7 1136.0 1208.4 1276.4
55.824 - 97.9 92.585 - 11.6 63.864 - 80.2 100 -	Desmaroux, 1931
	mol% p_1 p_2 mol% p_1 p_2
	20°
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Desmaroux, 1928				mol%				2		
mo1%					0°	10°	20°	30°	40°	50°
L V 0 0 0 10.07 2. 20.37 3. 20.66 2. 30.96 4. 32.45 4. 40.62 5. 45.56 6. 50.33 6. 55.25 6. 55.25 6. 55.40 6. 60.22 7. 65.76 7. 65.76 7. 65.76 7. 65.76 7. 80.13 12. 84.82 14. 89.76 19. 89.80 21. 89.80 21.	.99 -	P ₂ - 4.0 6.4 4.4 7.6 7.1 7.7 8.4 8.6 9.5 8.7 9.4 9.6 9.1 10.7 11.1		100 95 90 85 80 75 70 65 65 55 40 35 30 25 20 15 10	12.14 11.83 11.28 10.76 10.29 9.87 9.49 9.11 8.74 7.61 7.26 6.62 6.16 4.80 3.82 2.50	24.34 23.17 22.00 21.01 20.15 19.32 18.53 17.75 17.00 16.21 15.47 14.81 14.20 10.28 8.85 7.10 4.53 0	44.40 42.77 40.27 38.41 36.71 35.12 33.61 32.23 30.48 27.00 28.38 27.00 24.15 22.71 21.07 7.70 0	79.30 75.56 72.00 68.70 65.75 62.86 60.18 57.64 55.20 52.72 50.24 47.74 45.20 39.70 36.32 32.40 27.80 21.60 13.35	134.6 128.1 122.1 116.4 111.2 106.3 101.9 97.6 93.4 89.0 67.1 61.4 46.2 35.6 0	221.1 211.0 201.1 191.6 183.0 174.8 167.0 159.8 152.6 145.5 138.8 132.0 124.7 116.8 108.3 98.4 86.6 73.0 56.3 34.2
94.97 33. 100 100	129,1	10.5 11.9		Moelle	r, Engl	aud and	al., 195			
Haywood, 1899				b.1	t.	L %	v	b.t.	L	% V
ļ		h +			1	.84 atm			4.08a1	im.
% b.t. 100.0 79.0 86.4 67.5 74.8 58.5 64.0 54.2 57.5 49.5 54.3 47.3 Nagai and Isu,	p	b.t. 2 45.7 1 43.95 4 42.3 1 39.9 8 37.5 0 35.05	p 771.4 771.4 771.3 771.3 771.3 771.3	104 103 100 92 87 86 82 75 74 73 70	.0 96 .3 87 .7 81	3.8 3.6 7.7 1.1 1.3 1.7 3 7.1 2.8 5.9	76.6 79.7 65.4 45 36.2 35.6 26.3 15.8 14.5 8	109.4 106.0 104.5 103.5 101.0 97.9 93.7 91.0 90.0	93.9 84 72.3 70.4 63.6 57.6 44.2 37.4 12.6 3.4	59.2 50.1 36.1 35.7 31.7 26.3 19.4 16.2 3 8 1.0
						.12 atm.			8.50	atm.
0° 100 0 95 25.0 90 46.1 85 65.6 80 80.5 75 92.9 70 103.4 65 112.5 60 120.5 55 128.0 50 135.0 45 140.9	0 0 0 36.5 55.6 71.1 104.8 100.4 146.1 122.4 181.4 141.9 211.5 158.7 237.4 172.7 259.0 185.7 277.2 198.6 293.7	30° 40° 0 0 78.4 109.9 151.0 208.2 210.3 292.1 259.2 362.0 302.1 423.2 329.2 475.1	50° 0 153.0 285 393 491 574 646 709	127 123 122 113 111 110 107 107 106 105	.0 90 .2 83 .5 80 .0 55 .0 55 .0 50 .0 32 .0 32 .0 10	0 2.1 0 8.8 5.4 2.2 3.4 2.2 3.4	65 52.5 52.6 33.3 31.5 29.1 23.7 16.5 10.5 2.0	144.8 137.4 131.5 127.5 125.0 122.0 118.8 118.2	96.3 86.2 75.2 66.0 55.4 43.4 17.3 8,8	88.9 63.4 51.4 42.6 34.5 27.7 11.1 5.9
45 140.9	217.2 323.5	425.3 598.6 448.5 632.9	822 868 909	Strai	uss, 188	B0 C.V.T.	%		C.V.T.	
35 149.5 30 153.2 25 157.2 20 161.9 15 167.2 10 172.6 5 178.4 0 185.3	224.2 336.8 231.6 349.0 239.4 359.4 247.5 369.9 255.7 381.6 263.5 394.8 271.6 408.6 280.6 423.8 291.7 442.6	488.4 687.7 505.7 713.2 532.3 738.8 541.2 765.1 558.6 792.4 577.0 819.8 597.0 849.4 619.2 881.8 647.3 921.3	1059 1097 1136 1177 1221 1276.4	0 15 27 52	.8	195.5 202.8 208.8 218.8	72 83 96 100	.9 .5	227.5 233.9 239.9 240.6	

Desmarou	ix, 1928					Ramsa	y and Young	, 1887		
mo1%	f.t.	mol	1%	f.t.		t	1.500mm	spec.vo	1. 10.000mm	15,000mm
100 90 80 73 67 63 60 55 53 50 47 43	-112.7 -117.7 -120.0 -122.8 -124.9 -123.0 -121.8 -120.0 -118.6 -118.6 -119.1	33 30 22 20 11 3 10 11	3 - 3 - 5 - 8 - 8 - 5 -	117.5 118.5 117.0 117.6 117.8 116.7 114.8 116.0 116.9 116.9		20 30 40 50 60 70 80 90 100 110 120	1.320 .336 .354 .3725 .393 .416	63 mol% 1 .319 .335 .352 .371 .3915 .413 .436 .462 .4895 .520	1.318 .334 .351 .369 .389 .410 .433 .458 .4855 .516 .5875	1.317 .332 .3495 .368 .387 .408 .4305 .4555 .482 .5115
Sapgir,	1929					130 140 150 160	-	-	.5875 .631	.582 .624 .672 .732
%	stable	t. meta	st. s	E table	metast.	t	20.000mm	spec.vo 25.000mm	30.00	Omm
0 20.9 43.7 60.8 73.9 84.5	-116.4 -119.1 -122.2 -122.6 -119.3 -114.1	-12 -12 -12 -12 -	6.0 -	125.8 125.4 125.6	-128.5 -128.1 -	20 30 40 50 60 70 80 90	1.316 .331 .348 .366 .3855 .406	1,314 .330 .3465 .364 .3835 .402 .426	1.31 .32 .34 .36 .38 .40	85 5 2 1 15 35
Lalande	, 1934 mo1%	f.t.	%	mo1%	f.t.	100 110 120	.428 .452 .4735 .508 .5405	.4495 .4755 .504	.44 .47 .50	7 25 1 25
0 2.0 4.0 7.4 13.5 16.5	0 3.3 6.2 11.4 20.1	-116.3 -117.0 -117.3 -117.7 -118.3 -118.6	49.2 55.4 57.8 59.9 64.4 69.2 72.0 80.2 85.2 87.1 100.0	60.9 66.6 68.3 70.6 74.4	-123.0 -124.8 -125.0E -124.3 -123.3 -122.5 -121.5	130 140 150 160 170 180 190	.5775 .6195 .666 .723 .792	.571 .6115 .658 .712 .778 .860 .980	.56 .60 .65 .70 .76 .84	6 05 25 5
22.1 25.1 31.3 32.8	35.1 42.3 43.9	-119.2 -119.3 -120.0 -120.3 -121.3	72.0 80.2 85.2 87.1	78.3 80.5 86.7 90.2 91.6 100.0	-121.5 -119.5 -118.3 -117.6 -114.5	t	35.000mm	spec.vo	1. 42.500mm	45.000mm
39.2 45.9	51.0 57.7 ies of ph	-122.4	100.0	100.0	-114.5	20 30 40 50 60 70 80 90	1.312 .327 .3435 .361 .380 .400 .421	1.311 .3265 .3425 .360 .3785 .328 .420	1.311 .326 .342 .359 .378 .397 .418	1,311 .3255 .341 .358 .3765 .396 .417
Pfaler a	and Nikka,					100 110 120	.421 .4445 .470 .4985 .530	.468 .496 .526	.441 .466 .494 .524	.465 .492
100.0 90.0 79.6 69.8 59.9 50.0	in vap. 1.5 1.6 1.7	766 534 552 757 318	% 0 mm 40.(29.5) 20.(10.0)	in v	(at b.t.) ap phase 2.087 2.366 2.460 2.806 2.977	130 140 150 160 170 180 190 200 210 220	.564 .6015 .6445 .694 .752 .826 .920 2.055 .305	.559 .596 .638 .685 .741 .810 .8965 2.014 .193 .775	.5565 .593 .634 .6815 .735 .803 .888 .996 2.157	.522 .554 .590 .631 .678 .732 .7965 .878 .980 2.128 .405
20,0	2,(

spec.vol.	
t 47.500mm 50.000mm 55.000mm	Squibb, 1873
20 1.310 1.310 1.310 30 .325 .324 .3235 40 .340 .3395 .3385	% d 4° 15° 15.6° 25°
40 .340 .3395 .3385 50 .357 .356 .3545 60 .3755 .374 .372 70 .395 .3935 .3915 80 .416 .414 .412 90 .4384 .437 .434 100 .4635 .4615 .459 110 .490 .488 .485 120 .520 .517 .514 130 .552 .549 .545 140 .588 .585 .580 150 .6285 .624 .619 160 .674 .670 .6635 170 .729 .724 .715 180 .7905 .784 .771 190 .869 .860 .841 200 .967 .954 .933 210 2.101 2.080 2.051 220 .334 .283 .210 230 .960 .711 .444	0 0.73128 0.71888 0.71817 0.70751 1 .73257 .72020 .71948 .70886 2 .73386 .72152 .72080 .71020 3 .73415 .72185 .72212 .71155 4 .73644 .72418 .72343 .71289 5 .73764 .72544 .72469 .71419 6 .73884 .72670 .72595 .71551 7 .73904 .72794 .72721 .71633 8 .74124 .72918 .72847 .71814 9 .7425 .73044 .72973 .71944 10 .74366 .73170 .73100 .72075 11 .74487 .73195 .73227 .72207 12 .74608 .73420 .73353 .72336 13 .74728 .73537 .73473 .72457 14 .74847 .73654 .73593 .72579 15 .74968 .73871 .73713 .72701 16 .75086 .73888 .73833 .72822 17 .75193 .74908 .73953 .72944 18 .75299 .74129 .74074 .73065
Liquid phase . Schiff, 1859	21 .75634 .74488 .74431 .73430 22 .75756 .74606 .74548 .73553 23 .75878 .74725 .74664 .73676 24 .76000 .74843 .74782 .73799 25 .76127 .74970 .74912 .73931 26 .7655 .75098 .75041 .74063
g d	27 .76383 .75226 .75171 .74195 28 .76510 .75353 .75300 .74327 29 .76640 .75493 .75430 .74462 30 .76770 .75613 .75560 .74596
at room t.	
0 0.729 10 .737 30 .756 40 .765	Ramsay and Young, 1887
60 .779 70 .786	t d t d
90 .30 1 100 .309	63 mol % 0 0.777 110 0.657 10 .768 120 .644
Landolt, 1865	20 .757 130 .628 30 .748 140 .613 40 .738 150 .596 50 .728 160 .577
100 22.1 0.7950 29.8 22.5 0.7397 0 22.5 0.7105	60 .717 170 .556 70 .707 180 .534 80 .689 190 .517 90 .684 200 .474 100 .671 210 .425
	Buchkremer, 1890
	% d
	20° 0 0.72078 20.710 .73893 40.014 .75412 61.175 .76936 78.850 .78107 100 .793495

				Desmaroux,	1928			
đ	%		d	mo1%	đ	m	01%	đ
0.7168 .7344 .7607		0	0.7846 .7986	100 96.76 91.90	0.8087 .8058 .8017	50 47	.16 '.58	0.7693 .7684 .7667
				79.83 78.45 69.90	.7908 .7900 .7828	45 45	.69 .44	.7665 .7651 .7651 .7611
đ	mol %		d	60.56	.7758	21	.,03	.7585 .7492
2.	5.1°			56.44	.7726			.7445 .7364
0.70991 .70991 .72595 .73715 .74874	71,919 83 .79 9) 7	0.75494 .75951 .77004 .78298 .78542	Wyman Jr.	, 1933	***************************************		
				8	d	%	đ	
					25°			
đ	K.		đ	100.0	0.7853	51.47	0.752	
0.7901 .7338	25° 9.51		0.7174 0.7078	77.40 70.05 61.93	.7708 .7677 .7614	30.82 20.86 13.08	.737 .728 .722 .708	
- -				Lalande,	1934			
d	%		đ	<u> </u>			%	d
0.7880 .7724 .7546 .7464 .7408	27.01 21.63 13.61		0.7336 .7291 .7218 .7075	100 91.45 85.40 73.51 68.68 59.39	. 8 . 7 . 7 . 7	8062 8014 1977 1902 1873 1812	41.82 34.29 18.77 14.12 8.77 6.35	0.7694 .7640 .7524 .7489 .7437 .7419
nd Boutin,	1922			51.08 45.86			0	.7363
d	%	d						
15°				Bussy and	Buignet,	1864		
0.795	45 (mol %	Dv	/v	mol %	Dv/v
.792 .789 .786 .7825 .779 .779 .772 .768 .765	40 35 30 25 20 1.5 10 5	.7535 .7495 .746 .742 .738 .734 .730		75 66.7 60 50 40 50 vo	.0 .0 .0	070 079 080 091	33.3 25 20 16.6 2.3 Dt = -3.2	0.0084 .0070 .0069 .0061 .0060
	d 0.7168 .7344 .7607 d 2 0.70991 .72595 .73715 .74874 d 0.7901 .7338 d 0.7880 .7724 .7546 .7464 .7408 and Boutin, d 15° 0.795 .789 .786 .786 .786 .786 .786	d % 16° 0.7168 80.100 .7344 100 d mol % 25.1° 0.70991 66.75 .70991 71.910 .72595 83.799 .73715 96.949 .74874 100 d % 25° 0.7901 9.51 .7338 0 0.7880 27.01 .7724 21.63 .7546 13.61 .7408 nd Boutin, 1922 d % 15° 0.795 45 .790 40 .789 35 .786 30 .7825 25	d % 16° 0.7168 80,100 .7344 100 d mol % 25.1° 0.70991 66.754 .70991 71.910 .72595 83.797 .73715 96.947 .74874 100 d % 25° 0.7901 9.51 .7338 0 0.7880 27.01 .7724 21.63 .7546 13.61 .7464 0 .7408 nd Boutin, 1922 d % d 15° 0.795 45 0.7575 .792 40 .7535 .799 35 .7495 .786 30 .7465 .786 30 .7465 .786 30 .7465	d % d 16° 0.7168 80,100 0.7846 .7344 100 .7986 d mol % d 25.1° 0.7091 66,754 0.75991 .72595 83.797 .77004 .73715 96,947 .78298 .74874 100 .78542 d % d 0.7901 9.51 0.7174 .7338 0 0.7174 .7338 0 0.7078 d % d 0.7880 27.01 0.7336 .7724 21,63 .7291 .7546 13.61 .7218 .7464 0 .7075 md Boutin, 1922 d % d 15° 0.795 45 0.7575 .792 40 .7535 .799 35 .7495 .786 30 .7465 .786 30 .7465 .786 30 .7466 .7875 25 742	d	d	d	d

Guthrie, 1875	Kono, 1923
50 vol % 23.5° Dv = +0.7278 %	% η(water≈1) % η(water=1)
Wijkander, 1878 # 1st series 12° 20° 25° 30° 40° 50°	15° 100 1.158 50.48 0.477 88.18 0.947 43.37 .427 82.71 .840 33.19 .362 76.43 .779 28.74 .339 68.13 .641 20.50 .305
100 278 258 245 50 595 534 501 10 1482 1257 1138 1034 856 715	68.13 .641 20.50 .305 62.88 .609 8.75 .267 57.52 .534 0 .239
% 2nd series 10° 15° 20° 25° 30°	Optical and electrical properties
100 283 271 258 245 233 75 401 382 360 50 50 612 572 537 496 - 25 25 977 896 824 761 - 10 10 1552 1418 1280 1148 - 10 10 1564 1405 1270 1147 1200 1147 - 1200 1147 - 1200 1147	Landolt, 1865
Hirata, 1908	29.8 1.3555 0 1.3498
25° 75 0.6620 87.5 88187 93.75 9069 96.881 9575 98.447 9823 99.228 9949 100 1.0000	g n _D % n _D 20° 0 1.35360 61.175 1.36067 20.710 .35715 78.850 .36122 40.014 .35931 100 .36186
Horiba, 1911	Horiba, 1911
π (water=1) 25°	g n _D
100 1.276 16.69 0.3075 9.51 0.284 0 0.295	$\begin{array}{cccc} & & & & & & \\ 100 & & & 1.36032 \\ & 27.26 & & .35532 \\ & 16.69 & & .35402 \\ & 9.51 = & .35265 \\ & 0 & & .34985 \end{array}$
Baker, 1912	0 .34760
π % η 25°	
100 1112 27.01 315.2 76.85 741.4 21.63 289.7 52.57 478.2 13.61 263.5 42.49 400.5 0 226.0 35.52 359.0	

	Pfeiffer, 1885
Sanfourche and Boutin, 1922	- % т _• 10 ⁵ х
% n _D % n _D	18°
15°	100 -704 1.964 86.76 -230 1.793
100 1.363660 45 1.361090 95 .36,3590 40 .360632 90 .363554 35 .360272 85 .36,3302 30 .359948 80 .36,3230 25 .359120 75 .362905 20 .358436 70 .36,2765 15 .357680 65 .362310 10 .357068 60 .361990 5 .356132	76.55 -132 1.586 70.88 +443 1.544 65.38 +101 1.228 49.98 +940 0.979 40.91 +300 0.655 27.46 -960 0.167 0 +683 2.242
55 .361954 0 .35543 50 .361630	Desmaroux, 1928
	moi % λ(alcohol=1) mol % λ(alcohol=1)
Philip, 1897	0° 100 1.000 53.7 1.265 86.3 1.149 49.5 1.109 75.8 1.245 46.5 0.905 67 1.295 42.8 0.673 59.3 1.319 33.8 0.439
100 (26.8) 18.118 7.19 80.100 21.71 0 4.292 48.166 13.63	Heat constants .
Wyman Jr., 1933	Bussy and Buignet, 1864 45.32 % Q mix = -18.404 cal/g
% ε % ε	Guthrie, 1875
25° 100.00 24.28 41.24 10.76 86.20 20.96 30.82 8.712	50 vol % 23.5° Q mix is negative .
77,40 18.90 20.86 6.998 70.05 17.20 13.08 5.885 61.93 15.26 0 4.235	Hirobe, 1908
51.47 12.89	mol % Q mix mol % Q mix
Higasi, 1934	0 - 66.754 -114.1 8.816 -91.3 71.910 -103.6 27.558 -159.5 83.797 -60.8 43.790 -161.8 96.947 -9.6 58.890 -135.9 100 -
mo1 % ε	Desmaroux, 1928
0 4.35	mol % Q mix mol % Q mix
11.3 5.27 21.0 6.17 31.9 7.44 57.0 13.00 100.0 25.00	63.1 -111 36.1 -149 58.1 -122 35.9 -144 54.7 -130 32.2 -146 52.3 -133 28.7 -146 49.6 -139 25.4 -143 46.4 -137 22.4 -139 45 -142 18.7 -131 41.3 -142 14.8 -117
	40 -144 11.5 -95 37.9 -145

Ether ($C_4H_{10}O$) + Propyl alcohol (C_3H_8O)	Ether ($C_4H_{10}0$) + Amyl alcohol ($C_5H_{12}0$)
Schmidt, 1891	Higasi, 1934
% C.V.T. % C.V.T.	mo1% ε mo1% ε
	20°
100 270.5 19.55 211.3 35.16 224.5 16.37 203.9 33.79 221.2 0 193.5	0 4.35 26.8 6.03 5.1 4.62 47.3 7.94 19.8 5.54 100.0 15.4
Baker, 1912	Ether ($C_{u}H_{10}0$) + Isoamyl alcohol ($C_{5}H_{12}0$)
% d n % d n	
25° 100 0.8010 1971 40.11 0.7473 427.4 88.07 .7918 1404 27.03 .7341 335.6	Hirobe, 1908
88.07 .7918 1404 27.03 .7341 335.6 77.01 .7818 1024 13.78 .7200 271.7 65.08 .7730 752.8 0 .7075 226.0	mol % d Q mix
52.84 .7594 561.9	25.15°
Hirobe, 1908	$\begin{array}{cccccc} 0 & 0.70794 & - \\ 11.750 & .72359 & -111.1 \\ 18.680 & .73190 & -144.2 \\ 29.658 & .75184 & -176.6 \\ 42.949 & .75827 & -185.4 \\ \end{array}$
mol% d Q mix mol% d Q mix	44.611 .76039 -184.0 58.635 .77327 -167.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.131 .78225 -141.5 87.547 .79734 - 64.7 100 .80730 -
	Ether ($C_{\downarrow}H_{10}0$) + Decyl alcohol ($C_{10}H_{22}0$)
Ether ($C_{i_0}H_{1,0}O$) + Isobutyl alcohol ($C_{i_0}H_{1,0}O$)	Hoerr, Harwood and Ralston, 1944
Hirobe, 1908	% f.t.
mol % d Q mix	
25.15°	7.4 -40.0 27.9 -20.0 83.8 0.0
100 0.79806 - 89.030 .78934 - 63.5	83.8 100 6.88
75, 326 .77837 -131, 9 63, 464 .76822 -174, 9 51, 868 .75784 -200, 5 45, 510 .75223 -207, 2 31, 720 .73896 -199, 7 13, 864 .72218 -131, 3 5, 218 .71352 -60, 3	Ether (C ₁ H ₁₀ 0) + Dodecyl alcohol (C ₁₂ H ₂₆ 0)
Higasi, 1934	Hoerr, Harwood and Ralston, 1944
	% f.t.
mol% ε mol% ε20°	1.4 -40.0 4.9 -20.0 30.7 0
0 4.35 29.7 6.50 5.7 4.68 43.3 7.96 9.6 4.93 50.0 8.79 11.4 5.07 100 20.0	90.5 100 23.95
11.4 5.07 100 20.0 13.7 5.22	
B Company of the Comp	II

400	
Ether ($C_{14}H_{10}0$) + Tetradecyl alcohol ($C_{14}H_{30}0$)	Ether ($C_4H_{10}0$) + Trichlorlactamide ($C_3H_40_2NCl_3$)
Hoerr, Harwood and Ralston, 1944	Meldrum and Turner, 1908
% f.t. % f.t.	c Db.t. c Db.t.
0.1 -40.0 79.1 30.0 1.2 -20.0 92.1 34.5 8.5 0.0 100 38.26	11.73 1.015 6.97 0.695 10.78 0.960 5.69 .605 8.14 .780 c = g trichlorlactamide in 100 cc ether.
Ether (C ₄ H _{1 0} 0) + Cetyl alcohol (C ₁₆ H ₃₄ 0)	Ether (C ₄ H ₁₀ 0) + Menthol (C ₁₀ H ₂₀ 0) Castiglioni, 1934
Hoerr, Harwood and Ralston, 1944	% d η % d η
% f.t. % f.t. 0.1 -20.0 43.1 30.0 2.9 0.0 54.7 34.5 20.6 20.0 100 49.62	0 0.7237 249.22 40 0.7921 555.84 10 .7379 284.38 50 .8108 774.68 20 .7560 333.84 60 .8292 1138.09 30 .7758 436.02
Ether (C ₄ H _{1,0} 0) + Octadecyl alcohol (C ₁₈ H ₃₈ 0) Hoerr, Harwood and Ralston, 1944 f.t. 0.5 7.1 20.0 20.9 31.5 34.5	Ether (C ₄ H _{1 0} 0) + Borneol (C _{1 0} H _{1 8} 0) Gilbault, 1897 g crit.t. P crit. 36.718 278.4 80.5 9.4553 198.2 60.6 0.00 189.9 36.8
$ \begin{array}{c} 31.5 \\ 100 \\ \hline \\ & 57.98 \end{array} $ Ether (C ₄ H ₁₀ 0) + Methyl melate 1 (C ₆ H ₁₀ 0 ₅)	Darmois, 1910 c (α)5780
Grossmann and Landau, 1910 g/100cc (α)	15.92 -21.4 28.72 -22.0 53.8 -21.6
red yellow green pale dark viol. blue blue 50.232 -6.61 -8.24 -9.85 -11.51 -12.24 12.84 25.116 -7.53 -9.56 -10.99 -12.94 -13.36 - 12.558 -8.52 -10.59 -12.10 -14.01 -15.13 - 5.216 -8.63 -9.97 -11.50 -13.04 -14.38 -16.10 2.608 -8.44 -9.97 -11.50 -13.04 -14.27 -	Ether ($C_kH_{10}0$) + Ethyl mercaptan (C_2H_6S) Lecat, 1949 # b.t.
	0 34.6 35 34.0 Az 100 35.8
H	U .

Ethylpropylether	$(C_5H_{12}O)$	(b.t.=63.85)	+ varia
Lecat, 1949			

	2 nd comp.			Az	
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	(CH ₄ 0)	64.65	24	55.5	-0.8 (25%)
alcohol Ethyl alcohol	(C ₂ H ₆ O)	78.3	14	60.7	-2.2 (24%)
Isopropyl alcohol	(C ₃ H ₈ O)	82.4	6	62.7	-3.2 (50%)
alcohol Propyl mercaptan	(C ₃ H ₈ S)	67.3	9	63.5	-
1					

Propyl ether ($C_6H_{1\,h}0$) (b.t.=90.1) + variaLecat, 1949

	2 nd comp	•	A	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Tert.butyl alcohol	(C ₄ H _{1 0} 0) 72.45	52	79.2	-
Dimethyl ethyl carb	(C ₅ H ₁₂ 0) inol	102.35	17 20	88.8	-2.2
Allyl alcohol	(C ₃ H ₆ O)	96.85	20 30	85 .7	-2.3
Ethyl alcohol	(C ₂ H ₆ O)	78.35	44 50	74.4	-2.8
Propyl alcohol	(C ₃ H ₈ O)	97.2	29 30	90.1	-2.5
Isopropyl alcohol	(C3H80)	82.4	52 54	78.3	-3.5
Isobutyl alcohol	(C4H100)	108.0	5 10	89.5	-1.0
Sec.Butyl alcohol	(C ₄ H _{1 0} 0)	108.0	15 22	88.0	-2.0
	(C ₄ H _{1 0} 0)	108.0		88.0	-2.0

Ethyl tert. butyl ether ($\text{C}_6\text{H}_{1\,\text{k}}0$) + Ethyl alcohol (C_2H_60)

b.t.

Lecat, 1949

73 66.6 Az 78.3

Ethyl isobutyl ether ($C_6H_{1\,\,\text{h}}0$) + Isobutyl alcohol ($C_\text{h}H_{1\,\,\text{o}}0$)

Bouillon, 1950

%	b.t.(743mm)	n _D ²⁰
0 18.43	79 78 Az	1.3764

Lecat, 1949

R	b.t.	
$\begin{array}{c} 0 \\ 21 \\ 100 \end{array}$	73 66.6 Az 99.5	

Ethyl tert.amyl ether ($C_7H_{16}0$) + Isopropyl alcohol (C_3H_80)

Bouillon, 1949

×	b.t.	n _D ² o	
0 71.91	103 79 Az	1.3800	

Ethy1 tert. amy1 ether ($C_7\mathrm{H}_{1\,6}0$)(b.t.= 10.1) + Alcohols

Lecat, 1949

	2nd Comp	•	A:	Z	
Name	Formula	b.t.	%	b.t.	
Ethyl alcohol	C2H60	78.3	21	66.6	
sec. buty1- alcohol	$C_{14}H_{10}0$	99.5	39	94.5	

[sopropy]	l ether ((Isopropy (C ₃ H ₈ O)			Isopropyl e	ther (C ₆ H		Propyl C ₃ H ₈ S		n
Miller F	larding and	d Bliss. 1	1940			Lecat, 194	9				
				%	b.t.	%		b.t	•		
L %	v	b.t.	L	ν 	0.0.	0 65		68.	3 0 Az		
100	100 93.40	82.3 81.06	41.6 34.2	30.7 27.4	66.77 66.33	100		67.			
98.65 91.60 86 82 80.87	69.8 62.2 56.3 54.9	76.02 73.98 72.48 72.78	26.8 25.3 24.6 21.85	24.3 23.6 23.3 12.75	66.20 66.18 66.18 66.17	Butyl ethe Lecat, 194) (b.t.	.=142.	4) + vari	a
71.8	45.6 42. 5	69.93 69.90	15.4 12.3	17.9 16	66.31 66.56		2 nd comp.		A	z	
65.55 61.5 57.1 56.4	37.9 37.4 35.1	68.18 68.02 67.79	10.9 9 8.2	$\begin{array}{c} 15.3 \\ 13.2 \end{array}$	66.33 66.57	Name	Formula	b.t.	%	b.t.	Dt mix
55.6 52.3 52.2	35.6 34.8 34.2	67.87 67.56 67.53	4.5 1.1 0	11.9 8.5 3.6 0	66.77 67.09 67.73 68.00	Amyl alcohol	C 5H120	138.2	50	134.5	-2.5
48	33.1	67.19				Isoamyl alcohol	$C_5H_{12}0$	131.9	70 90	129.8	-1.3
mo1%	d	mol 25°	<u>%</u>	<u>d</u>		Glycol	CaHeOa	197.4	12	140.2	-
100	0.7810	25° 52.	24 0	.7453		hethoxy- glycol	C 3H8O2	124.5	68 70	122.0	- -2.0
99.92 83.62	.7766 .7670	50. 43.	14 86	.7444 .7408		Ethoxy- glycol	C4H1002	135.3	55	130,2	-2.5
77.06 74.08 73.23	.7623 .7598 .7596	34. 25. 23.	68	.7356 .7317 .7305		Methyl- lactate	$C_4H_8O_3$	143.8	42	137.0	-
66.68 65.20	.7549 .7543	15. 11.	94	.7261 .7252		Ethyl- lactate	C 5 H 1 0 O 3	154.1	10	141.5	-1.2
58.14	.7493	0		.7191		Ethylene- chlorhydrine	C2H50C1	128.6	65	125.0	-
						Ethylene- bromhydrine	C₂H₅0Br	150.2	-	138	~
Miller a 66.15°	nd Bliss,					Cyclo- pentanol	C5H1 00	140.85	20 39	124 5	-1.7
00.13	21.0	mol% Az				Dichlor- ethanol	C2H40C15	146.2	45	136.7 136.0	-
Lecat, 1	949				_	Chlor-2- pentanol	C ₃ H ₇ OC1	133.7	70	130.5	-
		b.	t.			Ethanol- amine	CaH70N	170.8	16	136.5	-
0 16.3		69 66	. 2 Az								
100		82	.4			Butyl ethe	er (C ₈ H ₁₈ C				drin
Isopropy	l ether (C ₆ H _{1 14} 0)	Ethyler		drin	Snyder and	Gilbert,		₂ H ₅ OC	· <i>,</i>	
Snyder a	and Gilbert	t, 1942	. 5211500			mo1%	v	b.t.		mo1% L V	b.t.
mo1%	ر ا	b.t.	mo L	01% V	b.t.					_	_
 		104.0			76.0	99.2 92.1 84.9	96.8 82.2 75.5	127.1 123.7 123.3	31	.7 59.5 .3 54.9 .0 49.	124.0 9 125.0 1 126.9 0 129.8
97.9 97.2 96.1	43.2 43.0 34.0	106.0 105.3 97.0 89.3	73.8 65.4 56.1	8.5 7.3 5.9	76.0 74.5 73.1	75.5 64.9	71.0 67.4	123.0 123.0	11	.0 49. .5 40. .8 24.	1 120.9 0 129.8 3 134.6
92.6 87.3	14.3	83.5	56.1 51.5 33.6	5.9 5.2 3.7	73.1 72.7 70.7	54.9	64.3	123.3			
79.8	10.1	77.8	27.7	3.3	70.0						
<u> </u>					=	I					

Lecat, 194					
	2nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl alcohol	C4H100	117.8	48	113.5	-
Isobutyl alcohol	C_4H_{10}	108.0	70	106.5	~
Amyl alcohol	C5H120	138.2	5 9	121.4	-0.6
Isoamyl alcohol	C ₅ H _{1 2} O	132,9	22 30	119.8	-3.0
Pentanol-2	C5H120	116.0	5 2	113.5	-
Pentanol-3	C 5H1 20	119.8	35 4 7	116.5	-3.0
Amyl ether	(C ₁₀ H ₂₂ 0)	+ Methy	i alco	onol (Cl	1 ₄ 0)
Schönrock	, 1895				
%	d		(a) _m	agn.	
	20°	_			
79.790 100	0.77730 .80397 .81145	. ,	1.264	43 38 (19.7	°)
Amyl ether	· (C _{1 O} H _{2 2} 0) + Ethy	l alco	ohol (C ₂	H ₆ 0)
Amyl ether	· (C _{1 o} H ₂₂ 0) + Ethy	l alco	ohol (C ₂	.H ₆ 0)
Schönrock	c, 1895) + Ethy			,H ₆ 0)
"	c, 1895			nhol (C ₂	.H ₆ 0)
Schönrock	d 20.	9° 30(18.3)	(α) ₁		
Schönrock	d 20 0.777. 7.787. 7.791.	9° 30(18.3)	(α) ₁	magn.	
Schönrock	d 20 0.777. 7.787. 7.791.	9° 30(18.3) 08 26	(α) ₁	magn.	
Schönrock	d 20. 0.777 7.787 7.791	9° 30(18.3) 08 26 cal/g) 97 7 3 5 6 3 8 8 9	(α) ₁	magn.	

Amyl ether Lecat, 1949) (b.t.	=187.5	5) + alcoh	ols
	2 nd comp.		A	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Isooctyl alcohol	C ₈ H ₁₈ O	180.4	86	179.8	-0.6 (95%)
Glycol	$C_2H_6O_2$	197.4	26	168.8	-
Butoxy- glycol	C ₆ H ₁ 40 ₂	171.15	67 80	169,0	-1.8
Methoxy- di glycol	C5H12O3	192.95	46	1 79. 5	-
Ethoxy- di glycol	C ₆ H _{1 4} O ₃	201.9	-	183.0	-
Glycol- monoacetat	С ₄ Н ₈ О ₃	190.9	42 70	180.8	- - 2. 5
Ethanol- amine	C2H7ON	170.8	50	160.0	-
	or (C "	0) / 1	+ -17	2 2) + 41-	shale
Isoamyleth Lecat, 194		22 U) (D.	, t.=17	3.2) + AIC	onors.
	2 nd comp	•	A	ız	
Name	Formula	b.t.	9	b.t.	Dt mix.
Hexyl alcohol	C6H140	157.65	50 89	157.0	-3.2
Heptyl alcohol	C7H160	178.15	38 40	170.2	-1.7
Isooctyl alcohol	C ₈ H ₁₈ 0	180.4	17 30	172.65	-1.8
Glycol	$C_2H_6O_2$	197.4	22	161,4	-
Pinacol	$C_6H_{14}O_8$	174.35	38	166.5	-2.4
Propoxy- glycol	C ₅ H _{1 2} O ₂	151.35	50	150.2	-
Glycol- monoacetate	С ₄ Н ₈ О ₃	190.9	28 50	170.2	- -3.0
Propyl lactate	C6H12O3	171.7	50 53	167.0	-2.2
Isobutyl lactate	C7H1403	182.15	10 13	172.0	-1.2
Ethanol amine	C2H7ON	170.8	30.5	149.5	-
Diethyl- ethanolamin	eC ₆ H ₁₅ ON	162.2	58	158.5	-
Cyclo- hexanol	C ₆ H ₁₂ O	160.8	79 80	159.35	-1.2
Methyl- cyclohexan	С ₇ Н _{1 4} 0	168.5	63 65	166.2	-1.5
Furfuryl alcohol	C5H6O2	169.35	20 55	163.5	-1.5
Ethylene iodhydrine	C2H201	176.5	50	166.5	~
Dichlor- ethanol	$C_2H_40C1_2$	146.2	85	145.0	-
Dichlor-1.			48	165.7	-0.1
propanol-1.	2 C ₃ H ₆ 0C ₃	182.5	37	167.5	

Vinyl ethyl ether (C_4H_80) + Ethyl alcohol (C_2H_60)	Vinyl isopropyl ether (C ₅ H ₁₀ O) + Isopropyl alcohol (C ₃ H ₈ O)
Shostakovski, Prielezhaeva and Uvarova, 1953	Shostakovski, Prielezhaeva and Uvarova, 1953
% b.t. d n _D	% b.t. d n _D
20°	20°
0 36.0	0 5.9(Az) 55.2 0.7557 1.3842 100 82.4 -
Vinyl propyl ether ($C_5H_{10}0$) + Ethyl alcohol (C_2H_60)	Vinyl butyl ether ($C_6H_{12}O$) + Butyl alcohol ($C_4H_{10}O$)
Shostakovski, Prielezhaeva and Uvarova, 1953	Shostakovski and Prielezhaeva, 1947
% b.t. d n _D	mol% b.t.
20° 0 65.1	0 93.8 10.1(Az) 93.3 100 117.7
	Shostakovski, Prielezhaeva and Uvarova, 1953
Vinyl propyl ether ($C_5H_{10}O$) + Propyl alcohol (C_3H_8O)	% b.t. d n _D
Shostakovski, Prielezhaeva and Uvarova, 1953	0 7.8(Az) 93.7 100 117.7 0.7818 1.4026
% b.t. d n _D	
20° 0 65.1 4.5(Az) 64.9 0.7697 1.3895 100 97.2	Vinyl isobutyl ether ($C_6H_{12}O$) + Isobutyl alcohol ($C_4H_{10}O$)
	Shostakovski and Prielezhaeva, 1947
	mol% b.t.
Vinyl isopropyl ether ($C_5H_{10}0$) + Ethyl alcohol (C_2H_60)	0 83.0 3.2(Az) 82.7 100 108.6
Shostakovski, Prielezhaeva and Uvarova, 1953	Shostakovski, Prielezhaeva and Uvarova, 1953
% b.t. d n _D	
20°	"0
0 55.8	20° 0 83.0

Vinyl isoamyl ether (C ₇ H _{1 k} O) + Isoamyl alcohol	Methylal ($C_3H_8O_2$) + Methyl alcohol (CH_uO)
(C ₅ H ₁₂ O)	
Shostakovski and Prielezhaeva, 1947	Lecat, 1949
mol% b.t.	% b.t.
0 112.6 15(Az) 112.1 100 131.1	0 42.3 8.2 41.85 Az 100 64.65
Shostakovski, Prielezhaeva and Uvarova, 1953	
% b.t. d n _D	Methylal ($C_3H_8\theta_2$) + Ethyl mercaptan (C_2H_6S)
0 112.6	
12.5(Az) 112.1 0.7866 1.4097 100 131.2 -	Lecat, 1949
	% b.t.
Allyl ether ($C_6H_{10}O$) + Allyl alcohol (C_3H_6O) Lecat, 1949	0 42.3 80 34.5 Az 100 35.8
% b.t.	
0 94.84 30 89.8 Az 100 96.85	Methyl ethyl formal ($C_{\mu}H_{10}O_{2}$) + Methyl alcohol ($CH_{\mu}O$)
Ethyl butenyl ether (C ₆ H ₁₂ O) + Ethyl alcohol	Lecat, 1949
Lecat, 1949 (C ₂ H ₆ O)	% b.t.
% b.t.	0 65.9
0 76.65 24 69.0 Az 100 78.3	25.3 57.1 Az 100 64.65
Ethyl butenyl ether cis ($C_6H_{12}O$) + Ethyl alcohol (C_2H_6O)	Methyl ethyl formal ($C_uH_{10}O_2$) + Ethyl alcohol (C_2H_6O)
Lecat, 1949	Lecat, 1949
% b.t.	% b.t.
0 100.3 61 76.5 Az 100 78.3	0 65.9 13.3 64.05 Az 100 78.3
Ethyl butenyl ether trans ($C_6H_{12}O$) + Ethyl alcohol (C_2H_6O)	
Lecat, 1949	
% b.t.	
0 100.45 67 77.3 Az 100 78.3	

	 				W				
Ethylal (C ₅ H ₁	202) (b.t.= 8	7.95) -	+ alcoho	ols	Dimethylacet	al (C _h H ₁ c	.0 ₂) + Etl	hvl alçohol	l
Lecat, 1949					Dimetily	M. A		2H ₆ O)	
2 nd	comp.	Az			Lecat, 1949				
Name For	mula b.t.	%	b.t.	Dt mix	K		b.t.		
alcohol Ethyl (C,	I ₄ 0) 64.65	50 65 42	63.2 74.2	-1.3	0 12 100		64.3 62.0 A 78.3	Λz	
alcohol Propyl (C ₃ alcohol	,H ₈ 0) 97.2	14 50	86.7	-5.2	Dibutylaceta	1 (C _{1 o} H _{2;}	,0 ₂) + But	yl alcohol	(C _h H _{1 0} 0)
Isopropyl (C ₃ alcohol Allyl (C ₃	H ₈ 0) 82.4 H ₆ 0) 96.85	52 58 10	79. 6	-5.2 -2.0					
alcohol	ngo / 70.00	11	87.0	-2.0	Conner, Elv		eingisei,		
					b.t.	L wt%	mo1%	V wt%	mol%
Acetal (C ₆ H ₁₄ 0	2) + Ethyl ale	cohol ((C'H'90)			762	mm	
Lecat, 1949	b.t.	T	Ot mix		137.8 176.5 168.1	0.0 0.2 0.8	$0.0 \\ 0.5 \\ 1.8$	0.0 12.3 24.6	0.0 24.7 43.5
0 50	103,55	-	-3.0		160.0 143.0 133.0	2.0 3.5 12.3	4.6 7.9 24.7	35.3 52.5 73.3	56.1 72.3 86.5
76 100	77.95 Az 78.3		-		125.5 122.2 120.5	31.0 46.7 67.4	51.4 67.2 83.0	83.9 90.0 94.2	92.4 95.5 97.4
					wt%	n n	no1%	d	
" O holm, 1913						2	25°		
N	dif. retio (cm²/jo	ur)	n	0 20 40		0 37.0 61.0	0.8275 .8238 .8198	
2	20° 0.98			_	60 80 100]	77.9 90.4 100	.8153 .8106 .8057	
2 1 0.5	0.98			1044 1133					
0.25	-			1166 1216	Phenyl ethe	er (C ₁₂ H ₁	₀ 0) + Eth	yl alcohol	(C ₂ H ₆ O)
		·			Perrakis, 1	925			
Dimethylacetal	$(C_{4}H_{10}O_{2}) + M$	ethyl a	alcohol	(CH ₄ 0)	mo1%	f.t.	mol%	f.t.	
Lecat, 1949					0 6.173 13.0	27.89 25.25 23.9	80.0 82.44 84.16	17.7 16.55 15.8	
×	b.t.				22.63	22.6 22.1 21.35	84.16 89.26 89.31	11.25 11.2	
0 24.2 100	64.3 57.5 64.6	Az			38.37 47.49 52.35 60.15 68.12 76.70	21.1 20.65 19.9 19.65	91.68 93.66 95.15 98.18 98.79	-61	
					76.70	18.5	100	-113.9	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6.76 .0585 49.13 .9930 8.85 .0562 56.85 .9765 14.11 .0407 71.29 .9359 18.46 .0438 81.88 .8954 19.64 .0423 90.96 8485 29.51 .0281 100 .7862 41.26 .0082 ** **U	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>
0 0.433 70.10 0.527 11.31 .453 82.90 .548 20.31 .473 88.08 .557 33.76 .488 92.26 .565 47.44 .502 94.71 .573 56.03 .513 100 .580 Paraldehyde (C ₆ H ₁₂ O ₈) + Methyl malate l (C ₆ H ₁₀ O Grossmann and Landau, 1910 (α) g/100cc red yellow green pale dark vio blue blue 20° 50.035 -5.10 -5.80 -6.40 -7.10 -7.29 -7. 25.0175 -4.72 -5.04 -5.96 -6.72 -6.80 .12.5088 -3.84 -4.40 -4.88 -4.96 -5.04 4.927 -2.03 -2.44 -2.84 -3.04 -2.84 -2.	_
0 0.433 70.10 0.527 11.31 .453 82.90 .548 20.31 .473 88.08 .557 33.76 .488 92.26 .565 47.44 .502 94.71 .573 56.03 .513 100 .580 Paraldehyde (C ₆ H _{1 2} O ₈) + Methyl malate l (C ₆ H _{1 0} O Grossmann and Landau, 1910 (α) g/100cc red yellow green pale dark vio blue blue 20° 50.035 -5.10 -5.80 -6.40 -7.10 -7.29 -7. 25.0175 -4.72 -5.04 -5.96 -6.72 -6.80 .21.25088 -3.84 -4.40 -4.88 -4.96 -5.04 .4.927 -2.03 -2.44 -2.84 -3.04 -2.84 -2.	
Grossmann and Landau, 1910 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Grossmann and Landau, 1910 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>-</u>
g/100cc red yellow green pale dark vio blue blue blue 20° 50.035 -5.10 -5.80 -6.40 -7.10 -7.29 -7. 25.0175 -4.72 -5.04 -5.96 -6.72 -6.80 -12.5088 -3.84 -4.40 -4.88 -4.96 -5.04 -4.92 -2.03 -2.44 -2.84 -3.04 -2.84 -2.	,,
g/100cc red yellow green pale dark vio	
50.035 -5.10 -5.80 -6.40 -7.10 -7.29 -7. 25.0175 -4.72 -5.04 -5.96 -6.72 -6.80 -12.5088 -3.84 -4.40 -4.88 -4.96 -5.04 -4.927 -2.03 -2.44 -2.84 -3.04 -2.84 -2.	1.
25.0175 -4.72 -5.04 -5.96 -6.72 -6.80 -12.5088 -3.84 -4.40 -4.88 -4.96 -5.04 -4.927 -2.03 -2.44 -2.84 -3.04 -2.84 -2.	
	-
	=
Paraldehyde ($C_6H_{12}O_3$) + Ethyl tartrate ($C_8H_{14}O_6$)
Patterson and Pollock, 1914	
t d $(\alpha)_D$ t d (α)	O (1
50%	
20 1.0975 3.93 57 1.053 9.08 33.1 .082 6.19 67.5 .041 9.98 42.9 .070 7.40	5
t d t $(\alpha)_D$	
100°	
16.8 1.2087 20.1 7.67 37.2 .1878 33.7 9.10 46.8 .1783 37.6 9.56 58.3 .1665 46.1 10.24 68.1 .1566 55.1 10.94 67.2 11.75	

1,2-Dichlor ether ($C_{\rm q}H_{\rm g}0C1_{\rm g}$)(b.r.= 145.5) + Alcohols

Lecat, 1949

	2nd comp.		Az		
Name	Formula	b.t.	%	b.t.	
Butyl alcohoi	(C4H100)	117.8	99.4	117.0	
Isoemyl alcohol	(C ₅ H _{1 8} 0)	131.9	70	129.2	
Cyclo- pentanol	(C ₅ H _{1 0} 0)	140.85	50	136.5	
Propoxy- glycol	(C ₅ H ₁₂ O ₂)	151,35	70	144.3	-3.0 (30%)

Lecat, 1949

Dichlorether sym. ($C_{\rm h} {\rm H_80C1_2}$) (b.t.=178.65) + alcohols

	2 nd comp.		Az		
Name	Formula	b.t.	Z		Ot mix r Sat.t.
Hexyl alcohol	(C ₆ H _{1 4} 0)	178.5	75 78	157.5	-4.7
Heptyl alcohol	(C ₇ H ₁₆ 0)	176.15	50	173.5	-6.5
Isooctyl alcohol	(C ₈ H ₁₈ O)	180.4	35 38	177.2	-5.7
Glycol	$(C_2H_6O_2)$	197.4	21	171.05	115
Methyl- cyclohexar	10 (C7H140)	168.5	60 50	167.5 167.85	-3 <u>.</u> 5
Butoxy- glycol	$(C_6H_{14}O_2)$	171.15	50 7 5	- 1 7 0.85	
Ethylene- chlorhydri	(C ₂ H ₅ 0C1) ne	128.6	85	128.2	-

Chlorex	(C ₄ H ₈ OCl ₂) +	Methyl alc	cohol (CI	Н ₄ 0)	Chlorex	(C ₄ H ₈ 0C1	₂) + Propy	l alcoho	1 (C ₃ H ₈ 6))
Tschamle:	r, Richter and	Wettig, 19	49 (fig	.)	Tschamle	r, Wettig	and Richt	er, 1949	(fig.)	
mo1%	f.t.	mol%	f.t		mol%	f.t.	Sat.t.	mol%	f.t.	Sat.t
100 87.9 70.2 44.1	-97.5 -61.0 -55.1 -53.7	32.5 18.2 7.8 0	-53. -52. -51. -47	.9 .2	100 94 90.4 85.4 79.7 70.2 59.7	-126.5 -62.2 -55.4 -48.9	- -51.0 -40.9 -35.0 -33.0	35.2 26.8 14.8 12.2 8.7 4.4	-48.6 -48.6 -48.0 -47.8	-34.6 -36.9 -44.5 -49.4
mo1%	Dv	mol%	D	٧	48.1	-	-33.1	0	-46.9	-
	25°	•								
90 80 70 60	-0.38 -0.46 -0.50 -0.48	50 30 10	-0.4 -0	34	Chlorex	(C ₁₄ H ₈ OC1	₂) + alcol	nols		
mol%	U Q mix	x mol%	U	Q mix	Tschaml	er, 1949				
		25°			-	•	lume + 1	volume		
100 90	0.620 - .586 -95	.0 40 .0 30	0.461 .440	- 279 268	Alcoh	ol		sat.t.		
80 70	.556 168	20	.419	225 148	Ethv1	alcohol (C ₂ H ₆ O)	-33.9		
60 50	.528 220 .504 255 .483 274	0	.387	-	Propyl		C ₃ H ₈ O)	-33.2		
					Butyl	" ($C_{\mu}H_{10}0$)	-24.9		
					Amy1		$C_5H_{12}O$)	-14.6		
					Hexy1		$C_6H_{14}O$	-11.8		
Chlorex	$(C_{4}H_{8}OCl_{2}) +$	Ethyl alco	hol (C.H	LO 1	Hepty		$C_7H_{16}O$	-3.1		
	(041-800-127	zenyr ares	noi (Can	160)	0cty1		$C_8H_{18}O$	-1.0		
Tschamle	er, Wettig and D	Dichtor 10	340				C ₃ H ₈ O) -(1)(C ₄ H ₁₀	-17.0		
			,		11		$(4) (C_5H_{12})$			
ISCHAMIE	er, Richter and	wettig, 19	949 (fig)	11	ylbutanol		-9.4		
mol%	Sat.t.	mol%	Sat.t.				(1) (C ₆ H _{1 4}			
70	3.5	40			Methyldi	ethylcarl	oinol (C ₆ H ₁	μ0) -16.9		
70 60	-35 -32,5	40 30	-31.5 -33				cane (C ₇ H ₁	60) -4.0		
50	-31.5	20	-35		Glycol		$(C_2H_6O_2)$			
mol%	U 0 mix						(C ₄ H ₁₀ O ₂			
1110170		mo1%	U	Q mix		ancuioi	(C ₇ H ₁₆ O ₂) +60.5		
	2:	5°								
100 90 80 70 60 50	0.602 .565 -142 .538 270 .515 343 .492 385 .470 408	40 30 20 10 0	0.449 .430 .414 .399 .387	-412 388 325 215						
=====					_					
:										
]]					

Chlorex	(C.H.OCla)	+	Butvl	alcohol	($C_{4}H_{10}0$
	٠,	OH THE BOOLS	,		Duch	u r c o ii o r	٠,	OH-11 DO /

Tschamler, Richter and Wettig, 1949

mol%		Sat.t.	mo1%	Sat.t.		
25 40 50		-29.5 -25 -24.5	60 7 0		25 26.5	
mo1%	U	Q mix	mo1%	U	Q mix	
		25°				
10 20 30 40 50	0.595 .579 .558 .539 .518 .497	-183 320 410	60 70 80 90	0.476 .455 .434 .412 .388	-393 247	

Chlorex ($C_4H_80C1_2$) + Amyl alcohol ($C_5H_{12}0$)

Tschamler, Richter and Wettig, 1949 (fig.)

mol%	U	Q mix	mo1%	U	Q mix
		2.	5°		
0 10 20 30 40 50	0.580 .560 .539 .519 .499 .479	- 194 344 - -	60 70 80 90 100	0.459 .439 .419 .401 .387	- 415 267

 $C.S.T. = -14.6^{\circ}$ (50 vo1%)

mo1%	Dv	Sat.t.	mo1%	Dv	Sat.t.
0 10 20 30 40 50	-0.03 -0.08 -0.12 0.15 0.16	-17 -15 -14	60 70 80 90 100	-0.15 -0.10 -0.08 -0.04	-14 -15.5

Chlorex ($C_{4}H_{8}0C1_{2}$) + Hexyl alcohol ($C_{6}H_{1\,4}0$)

Tschamler, 1949 (fig.)

mo1%	Sat.t.	mol%	Sat.t.	
0.3 0.4 0.5	-15.5 -12.5 -12	0.6	-12.5 -14.5	

Chlorex ($\text{C}_{\text{4}}\text{H}_{8}\text{OCl}_{\text{2}}$) + Heptyl alcohol ($\text{C}_{7}\text{H}_{16}\text{O}$)

Tschamler, 1949 (fig.)

mo1%	Sat.t.	
40 50 60 70	-4 -3 -3 -4	

Chlorex ($C_uH_80Cl_2$) + 0ctyl alcohol ($C_8H_{18}0$)

Tschamler, 1949 (fig.)

mol%	Sat.t.	
40 50 60 7 0	-3.5 -1.5 -1 -2.5	
50	-1.5	
60	-1	
70	-2.5	

Chlorex ($\rm C_uH_80C1_2$) + Ethylene chlorhydrin ($\rm C_2H_50C1$)

Snyder and Gilbert, 1942

	mo1	%		mo	1%
b.t.	L	V	b.t.	L	v
128.3 128.2 128.2 128.2 128.4 128.8 130.4	98.0 97.0 96.0 91.9 86.3 80.7 68.1	96.0 94.5 93.4 91.4 89.9 88.9 86.3	133.0 135.6 139.4 144.6 152.2 160.8 167.0	53.1 39.2 27.1 17.1 9.1 4.4 2.0	83.5 80.3 74.2 65.0 54.5 38.3 20.5

Tschamler and Krischai, 1951 P-Chlorex ($C_6H_{1,2}OCl_2$)+ Alcohol 2nd comp. 50 vol% Propyl alcohol (C_3H_80) Isopropyl alcohol (C_5H_80) Butyl alcohol ($C_4H_{1,0}0$)	s Sat.t.						
2nd comp. 50 vol% Propyl alcohol (C ₃ H ₈ O) Isopropyl alcohol (C ₅ H ₈ O) Butyl alcohol (C ₄ H ₁ O)							
$50 \text{ vol}\%$ Propyl alcohol (C_3H_80) Isopropyl alcohol (C_5H_80) Butyl alcohol ($C_4H_{10}0$)	Sat.t.						
Propyl alcohol (C_3H_80) Isopropyl alcohol (C_5H_80) Butyl alcohol ($C_4H_{10}0$)							
Isopropyl alcohol (C_3H_80) Butyl alcohol ($C_4H_{10}0$)							
Butyl alcohol ($C_{14}H_{10}O$)	-90.5						
	-59.4						
	-85.0						
Isobutyl alcohol ($C_{4}H_{10}0$)	-62.0						
Amyl alcohol (C ₅ H ₁₂ O)	-71.0						
Trichlormethylether ($C_2H_3OCl_3$) + Methoxyglycol ($C_3H_8O_2$) Lecat, 1949							
% b.t.							
111.2							
0 131.2 25 123.0 Az 100 124.5							
100 124.5							
Lecat, 1949 Chloracetal (C ₆ H ₁₃ O ₂ C1) (b.t.=1	57.4) + alcohols						
2 nd comp. A2							
Name Formula b.t. %	b.t. Dt mix.						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	154.5 -						
Pinacol $(C_6H_{14}O_2)$ 174.35 -	155.9 -						
Cyclo- ($C_6H_{12}O$) 160.8 35 hexanol	155.2 -						
Ethyl- (C ₅ H ₁₀ O ₃) 154.1 73	152.8 -1.2						
Diethyloxonium bromide (C ₄ H ₁₁ 0Br Ethyl alcohol (C ₂ H ₆ 0) Maass and Russell, 1918) +						
% f.t. %	f.t.						
0 -40.0 17.4 6.0 -45.4 19.3 9.2 -49.5 21.4 11.8 -52.5 23.4 15.4 -58.8	-62.6 -65.8 -70.5 -75.5						

Comple	x chlora	l with Eth	nyl tartra	ite + Et	hyl alcohol
Jones,	1933				(C ₂ H ₆ O)
λ	(α)	λ	(α)	λ	(α)
		20	٥		
		78.75 %	d=0.8856		
6708	29.30	5466	44.75	5086	52.02
6439 6363	31.80	5461 5218	44.91 49.34	4811 4800	58.65 58.83
6104	32.76 35.58 38.34	5218 5209	-	4678	62.13
5893 5780	38.34	5153 5105	50.76	4602 4358	64.33 72.28
5700	39.91 41.08	5105		7000	72,20
		87.59 %	d=0.8460		
6708	29.12	5466	-	5086	51.91
6439 6363	31.63	5461 5218	44.68 49.10	4811 4800	58.40
6104	32.52 35.38	5209	49.34	4678	58.63
5893 5 7 80	38.12	5153 5105	$\frac{50.30}{51.58}$	4602 4358	64.26
5700	39.64 40.75	5103	31.38	4000	72.06
D: (1)					
Di (ch	lormethyl) sulfide	C ₂ H ₄ C1		
			+ Ethyl	alcohol	(C_2H_6O)
Thomps	on, Blac	k and Sohl	1, 1921		
K.		sat.t.	K.		sat.t.
95.31		13.6	67.00 61.91)	13.6
93.13		14.5 14.8	61.91 57.52	L)	12.2 11.8
87.13		15.3 15.6 15.5	23.77	\$	10.6
83.12 80.25	C.S.T.	15.6 15.5	50.39 47.45 44.83) :	$\frac{9.1}{7.5}$
87.13 83.12 80.25 75.76 71.75		14.0	44.8	ŝ	9.1 7.5 5.6
71.75		14.2			
Yperite	e (C ₄ H ₈ C	1 ₂ S) + G	lycol (C	гн ₆ 0)	
Lecat,	1949				
%			b.t.		
0			216.8		
4			186.0 Az		
100			197.4		
Yperit	е (С ₄ Н ₈ (C1 ₂ S) + E	Benzyl alc	ohol (C ₇ H ₈ O)
Lecat,	1949				
%			b.t.		
0			216,8		
-					
100			195.5 Az 205.25		

Methyl sul	lfide (C ₂ H ₆	S) + Me	thyl ale	cohol (СН, 0)	Propylsu)	lfide (C ₆ H ₁₄ !	5)	(b.t.=	141.5)	+Alcohols.
Lecat, 1	949					Lecat, 19					
				D+ - :			2 nd comp.		Az		
		t.		Dt mix		Name	Formula	b.t.	%	b.t.	Dt mix
0 13 15 100	34	.4 .5 Az .65		-3.2		Isoamyl alcohol	(C ₅ H ₁₂ O)	131.9	79	130.5	-3.0 (70%)
	04					Ethoxy- glycol	$(C_{4}H_{10}O_{2})$	135.3	52	130.2	_
						Methyl- lactate	(C4H8O3)	143.8	40	138.0	-
Methyl sul	fide (C ₂ H ₆ S	5) + Etl	ıyl merc	captan	(C2H6S)	Ethylene-	- (C ₂ H ₅ OC1)	128.6	67	125.5	-2.0 (90%)
Lecat, 19	040					Ethanol-	(C ₂ H ₇ ON)	170.8	13	139.7	
	7 4 7										
%		b.t.		· · · · · · · · · · · · · · · · · · ·		11	lsulfide (C ₆ F	1 ₁₄ S)	(b.t.=	120.5)	+Alcohols
62		37.4 34.8	Az			Lecat, 1					
100		35.8					2 nd comp.		Az		
Ethyl cul	lfide (C ₄ H,	ο S)	(b + -	92.11 :	alask:	Name	Formula	b.t.	% 	b.t.	
Lecat, 19		J- /	(υ.τ.≕	74.1) +	alcohols	Butyl alcohol	($C_{4}H_{10}0$)	117.8	3 45	112.0)
	2 nd comp.		Az			Isobutyl alcohol	(C _h H ₁₀ 0)	108.0	73	105.8	3
Name	Formula	b.t.	<u></u>	b.t.	Dt mix		(C ₂ H ₅ 0C1)	128.6	5 30	115.5	;
Methyl alcohol	(CH ₁ ,0)	64.65	62 65	61.2	-4.0						
Ethyl alcohol	(C ₂ H ₆ O)	78.3	56 93	72.6	-1.2						
Propy1 alcohol	(C_3H_8O)	97.2	28 50	85.5	-4.7	Butyl sul	lfide (C ₈ H ₁₈ 9		sobuty Ç ₇ H _{1 4} 0		te
Isopropyl alcohol	(C_3H_8O)	82.4	45 52	79.0	-5.1	Lecat, 19	949			*	
1	$(C_{14}H_{10}O)$	99.5	32	89.0	-4.2			b.t.		- _	
Tert.Butyl alcohol	$(C_{\downarrow}H_{10}0)$	82.45	70	79.8	-	_0		185.	.0		
Allyl alcohol	(C ₃ H ₆ O)	96.85	30 50	85.0	-5.5	78 100		181. 182.	3 Az		
	(C ₄ H _{1 o} S)	87.8	85	87.0	-						
						Butyl sul	fide (C ₈ H ₁₈ S) + E	thanol	amine	(C ₂ H ₇ ON)
						Lecat, 19	949				
						7,		b.t			
						0 53		185	.0 .5 Az		
						100		170	.5 AZ		

720								
						C9H20S4 + C	13 H28S4	
Isobutylsul	fide (C ₈ l	H ₁₈ S)(b.	t.=17	2.0) +	Alcohols	Timmermans,	1957.	
Lecat, 1949)					8	f.t.	E
	2nd Comp.			Az		0	- 14	-
Name	Formula	b.t.		%	b.t.	20 40	- 25 - 50	- 67
Butoxy	C ₆ H _{1 4} O ₂	171.15		42	163.8	60 80	- 62.3 - 46	" -
glycol	61 # 0 %	27 - 7 - 2				100	- 36.5	-
	C6H12O3	171.7		48	169.0	tr.1	- 63	
lactate		170.0		20	154.0	D.1.		
Ethanol- amine	C2H7ON	170.8		33	156.0	Ethoxytrimeth	nyl silane (C ₅ H _{1 4} 0Si	(C_2H_60)
								(C21160)
						Lecat, 1949		
Allylsulfic	de (C ₆ H ₁₀	S)(b.t.	=139.3	5) + A	lcohols	×	b.t.	
Lecat, 1949	9					0	75	
	2nd Comp.			Az		100	66 Az 78.3	
				b. t.	Dt min			
Name	Formula	b.t.	%			Diethoxydime	thyl silane (C ₆ H ₁₆ O ₂	Si) + Ethyl alco-
Amy1 alcohol	C5H120	138.2	42	134.5	-	ho1 (C ₂ H ₆ O)	, · striyi areu-
Isoamy1	C5H120	132.9	78	130.5	-2.0 (80%)	Lecat, 1949		
alcohol Cyclopen-	C5H100	140.85	33	135.5	-	%	b.t.	
tanol	0,11,00					0	114.0	
Methoxy-	$C_3H_8O_2$	124.5	7 5	122.5	-	83 100	77 Az	
glycol		151 95	20	137.5	_		78.3	
Propoxy-	C5H12O2	151.35	20	137.3		Putos vtrinos	hul silens (C V acci	
glycol Ethylene	C2H5OC1	128.6	61	124.5	-	Butoxytrimet	hyl silane (C ₇ H ₁₈ 0Si	
chlorhydrin								(C ₄ H ₁₀ 0)
Ethylene	C ₂ H ₅ OBr	150.2	20	135.5	-	Lecat, 1949	1	
bromhydrin		170.8	8	137.2	-	76	b.t.	
Ethanol- amine	C ₂ H ₇ ON	110,0	Ü	.0,,,		0	124	
						42	111 Az	
						100	117.8	
Methoxytri	methyl sil	ane (C ₁₄ H	a0Si)	(CII O)			
Lecat, 194	9	+ Me	thyl a	icohoi	(CH ₄ 0)	China		
						Ethylenechle	imethyl silane (C ₅ H ₁₈ rhydrin (C ₂ H ₅ OCl)	C1Si) +
		b	.t.			achy reneculo:	inyuiin (C2H5OCI)	
	0 15	5	7 0 Az			Lecat, 1949	•	
	100	6	4.65			7.	b.t.	
						0	134.3	
						100	120 A 128.6	Z

Methylisobornylether(C ₁ ,H ₂₀ 0) (b.t.=192.4) +	Methylterpenylether(C ₁ ,H ₁₈ 0)(b.t.=216.2)+Alcohols
Alcohols	Lecat, 1949
Lecat, 1949	2 nd comp. Az
2 nd comp. Az	Name Formula b.t. % b.t. Dt mix
Name Formula b.t. % b.t.	Glycol (C ₂ H ₆ O ₂) 197.4 38 183.5 -
Octyl (C ₈ H ₁₈ O) 195.2 30 191.9 alcohol	Glycerol (C ₃ H ₈ O ₃) 290.5 3 224.0 - Borneol (C ₁ OH ₁₈ O) 225.0 25 214.0
Glycol ($C_2H_6O_2$) 197.4 27 171.5	Menthol (C ₁₀ H ₂₀ 0) 219.4 101.2 20 215.5 -
Glycerol ($C_3H_80_3$) 190.5 7.5 192.0	Terpinol-β(C _{1 o} H _{1 8} 0) 210.5 82 210.0 -
Diglycol ($C_{4}H_{10}O_{3}$) 245.5 9 191.0	Benzyl- (C ₈ H ₁₀ 0) 219.4 10 - 20
Methoxy- (C ₅ H ₁₂ O ₃) 192.95 50 187.5 diglycol	Diglycol (C ₄ H ₁₀ O ₃) 245.5 20 210.5 -
Ethoxy- (C ₆ H ₁ , 0 ₃) 201.9 25 190.5 diglycol	Dipropyle- 229.2 24 211.5 - neglycol (C ₆ H ₁ , 0 ₃)
Glycol- (C ₄ H ₈ O ₃) 190.9 60 185.0 monoacetate	
Ethanol- (C ₂ H ₇ ON) 170.8 62 165.0 amine	Anisole (C_7H_80) + Methyl alcohol (CH_40)
Ethylbornylether ($C_{1,2}H_{2,2}0$) (b.t.=204.9) + alcohol	=
Lecat, 1949	
2 nd comp. Az	% d η % d η
Name Formula b.t. % b.t.	100 0.7884 554.1 32.38 0.9177 756.3 84.89 .8147 586.3 21 .9426 809.5 70.60 .8411 622.6 10.27 .9655 886.1
Glycol ($C_2H_6O_2$) 197.4 34 177.0	57.09 .8671 662.2 0 .9909 1010 44.40 .8926 706.8
Glycerol (C ₃ H ₈ O ₃) 290.5 5 203.5	
Benzyl (C ₇ H ₈ 0) 205.25 50 203.0	Anisole (C_7H_80) + Ethyl alcohol (C_2H_60)
	Piatti, 1930-31
Ethylisobornylether (C ₁₂ H ₂₂ 0)(b.t.=203.8)+Alcohol	mol% b.t. mol% b.t.
Lecat, 1949	0 153.9 60 83.9
2 nd comp. Az	10 130.2 70 82.2 20 106.4 80 80.9
Name Formula b.t. % b.t. Dt mix	30 92.9 90 79.3
Glycol (C ₂ H ₆ O ₂) 197.4 33 176.5 -	
Benzyl (C ₇ H ₈ 0) 205.25 39 201.0 -2.2 (40%)	
Ethoxydi (C ₆ H ₁₄ O ₃) 201.9 55 198.5 - glycol	Baker, 1912 π d η π d η
	250
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Piatti,	1930-31					Anisol	e (C ₇ II ₈ 0) + Meth	yl malat	e 1 ((C ₆ H _{1 0} O ₅)
mol%	0°	η 10° 20°	° 30	° 40°	0	Grossm	ann and I	Landau, 19	10			
		20	30	40		ļ						
0 10 20 30	1740 14 1700 14	10 1320 70 1280 50 1250 30 1230	121 117 113 111	0 1080 0 1050	0 0	g/100c	red	yellow	(α) green	pale blue	dark blue	viol.
40 50 60 70 80 90 100	1660 14 1650 14 1690 14 1740 14 1790 14 1860 15	10 1210 00 1200 10 1210 130 1220 60 1240 600 1260 670 1280	109 107 107 107 107 107 108	0 1010 0 971 5 970 6 962 78 959 9 938	0 1 0 2 9 5	50.639 25.3195 12.6598 4.907 2.4535	-2.61 -1.43	-5.35 -4.27 -3.24 -1.63 -1.22	-6.24 -4.50 -2.92 -1.63 -0.82	-6.91 -4.79 -2.29 -1.43 -0.41	-7.21 -4.82 -2.29 -1.02 0.00	-
Aninolo	C II O \ \ (1)					Anicol	a (C. H. () + Meth	vl tartr	ato (C.H0.	,
Lecat, 19		o.t.=153.85) + Alco	hols		AHISOI	.e (C71181	o) + Meth	iyr tarti	ace (C6111 006	
	2 nd com	p.	Az			Yen-ki	-Heng, 19:	36				
Name	Formula	b.t.	%	b.t.	Dt mix Sat.t.		d		(α)	·		
Hervi	(C.H. O) 157.85	34		-4.8			Hg y	Hg		Hg i	
Hexyl alcohol	(C ₆ H _{1 4} 0	, 137.63	36.5	151.0	-			19.360	g/ 100	сс		
Glycol	(C ₂ H ₆ O ₂		11.5	150.45	134.5	0 15	1.0703 .0604	-14.32 12.01	-17. 14.	51 -	-87.51	
Pinacol	(C ₆ H ₁ 40;	2) 174.35	4	153.4	-	28.5 38	.0515	9.37 7.76	7 11.	81	-	
Ethoxy- glycol	(C ₄ H _{1 0} O ₂		50 94	135,25	-1.1	48 58 71.5	.0386 .0320 .0231	6.41 5.07 3.54	. 8. 7 6.	52 91	26.82 24.23	
Propoxy- glycol	(C ₅ II ₁₂ 0	2) 151.35	56 85	148.15	-0.6	78.3	.0190	2.88		88 49	20.97 19.29	
Methyl- lactate	(C ₄ H ₈ O ₃) 143.8	80 82	142.5	-1.3							
Ethyl- lactate	(C ₅ H _{1 0} O ₃	3) 154.1	40 44.5	150.1	-1.8	Lowry		am, 1915				
Cyclo- hexanol	(C ₆ H ₁₂ 0) 160.8	29 35	152.3	-4.8	w.1.(À	·)	(α) 20g/1	00cc		100%	
Ethylene- chlorhydr	(C ₂ H ₅ OC	1) 128.6	59 9 7. 5	128.55	-2.6	6438		20° -7.20			12 /5	
Dichlor- ethanol	(C2H40C	l _a) 146.2	-	145.5	76	5780 5461 4800		$\frac{11.00}{13.80}$	•		+2.65 +2.05 +1.28	
Ethanol- amine	(C ₂ H ₇ ON	170.0	25.5	145.75	-	4358		23.68 37.08			-2.47 -8.93	
Diethyl- ethanolas		N) 162.2	19	143.0								
Anisole (C7H80) +	Glycerol	(C ₃ H ₈ O ₃)								
Mc Ewen,	1923											
Z	sat.t.	K	sat	.t.								
9.88 21.20 30.54 46.59	230.5 263.5 273.5 275.5	55.98 72.32 89.71 93.93	274 250 185 161	.5 .5								

Anisole ((C ₇ H ₈ O)+	Ethyl tartra	ite (C ₈ H ₁ ,0 _€	,)	Phenetol	e (C ₂ H _{1.0} 0) + Methvl al	cohol (CH ₄ 0)	
Patterson	and Steven	.son, 1910			Baker, 1		,	const (onto	
ļ	d	·	d						
9,9		t 24.62			ļ	%	d	η	
	1.0142	14.9					25°		
17.5 25.4	1.0064	32.5 45.5 55.5	1.0424 1.0261 1.0130 1.0033			100 85.17 71.07 57.76 45.12	0.7879 .8107 .8331	553.5 595.7 640.6	
49.8	5%	100%				45.12	. 8555 . 8771	695.4 757.2	
15.8 25.6	1.0933 1.0835	16.8 37.2 46.8 58.3 68.1 76.2 99.4	1.2087 .1878 .1783 .1665 .1566 .1484			33.00 21.43 0.00	.8987 .9212 .9622	816 894 1142	
t	(α) _D	t	(α) D		Phenetol	e (C ₈ H ₁₀ O) + Ethyl alc	ohol (C_2H_60)	
9.999		24.62			Baker, l	912			
18.2	4.27	14.6	6.24				d	η	
20 27.3 35.2 49.859	4.5 5.34 6.25	20 33.2 46.8 52.9 68.9 72.8	6.8 8.20 9.75 10.15 12.11 12.41			100 85.03 71.11	25° 0.7879 .8106 .8329 .8551	1113 1067 1035	
19 20 30.6	7.96 8.1 9.12	1.8 11.3 16 20.1 25.1 29.9 33.7 37.6 46.1 46.1 55.1 67.2 77.1 84.4 89.4	6.63 6.66 7.21 7.67 8.25 8.70 9.10 9.56 10.24 10.94 11.75 12.30 12.30 12.73 12.97			57.68 45.05 34.95 21.50 9.75 0	. 8766 . 8981 . 9194 . 9421 . 9619	1010 997 991 1000 1035 1135	
Rule, Bar	rnett and Cu	ınningham, 19	933						
mo1 %	α 5461	nol %	α 5461						
2.8 3.6 12.2 22.5 38.7	0.077 0.195 1.257 2.192 3.970	20° 46.8 63.3 70.1 76.5	5.747 6.822 7.275 7.952						

Phenetole (C ₈ H ₁₀ O)(b.t.=170.45)	+	Alcohols
Lecat, 1949				

2nd Comp.			Az	
Name Formula	b.t.	%	b. t	Dt mix
Hexyl (C ₆ H _{1 4} O) alcohol	157.85	75 80	- 157.55	-2.3
Heptyl (C ₇ H ₁₆ O) alcohol	176.15	$\begin{array}{c} 10 \\ 30 \end{array}$	168.8	-1.1
Glycol (C ₂ H ₆ O ₂)	197.4	19	161.45	-
Pinacol (C ₆ H ₁₄ O ₂)	174.35	33	165.25	-
Cyclo- (C ₆ H ₁₂ O) hexanol	160.8	72 75	159.5	-2.1
Butoxy- (C ₆ H ₁₄ O ₂) glycol	171.15	50 52	167.1	-0.9
Propyl (C ₆ H ₁₂ O ₅) lactate	171.7	50	167.1	-1.8
Methyl- (C ₇ H ₁ ,0) cyclohexanol-1,2	168.5	50 56	165.7	-2.7
Methyl- (C ₇ H _{1 4} 0) cyclohexanol-1,3	171.2	-	167.3	-
Furfuryl($C_5 II_6 O_2$) alcohol	169,35	25 46	166.0	-2.0
Ethylen-(C ₂ H ₅ 0I) iodhydrin	176.5	38	166,0	~
Dichlor-1,3 (C ₃ H ₆ OCl ₂ propanol-2)175.8	20 37	168.8	-2.9
Ethanol-(C ₂ H ₇ ON) amine	170.8	30	151.0	<u></u>

Phenetole ($C_8H_{1\,0}0$) + Methyl malate 1 ($C_6H_{1\,0}0_5$) Grossmann and Landau, 1910

g/100cc			(α)		
	red	yellow	green	pale blue	dark blue	viol.
49.537 24.7685 12.3843 4.903 2.4515	-5.55 -5.21 -5.09 -5.10 -5.30	-6.06 -6.02 -5.98 -6.32 -7.34	-7.67 -7.43 -7.35 -7.75 -11.42	-8.78 -8.60 -8.48 -8.97 -13.05	-9.59 -9.08 -8.96 -9.99 -14.28	-9.99 -10.81

Phenetole ($C_8H_{1\,0}0$) + Ethyl tartrate ($C_8H_{1\,4}0_6$)

Patterson and Stevenson, 1910

t	(α) _D	t	(α) _D
9.9	19%	24	.96%
19.5 20 22.1 27.1 36.5	7.72 7.75 8.00 8.41 9.58	19.2 20 31.6 43.5 50.5	7.23 7.32 8.79 10.14 10.92
51.	. 73%		
18.2 20 31.0	6.72 6.86 8.05		
t	d	t	d
9.99%		24	.96%
18.6 25.8	0.9862 0.9794	17.9 28.1 38.3 48.4	1.0161 1.0071 0.9969 0.9869
51	. 73%	10	0%
17.7 26.5	1.0772 1.0633	see Be Ethyl t	nzene +

Lecat, 1949

Propylphenylether ($C_9H_{12}O$) (b.t.=190.5) + Alcohols

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
Octyl alcohoi	(C ₈ H ₁₈ O)	195.2	12	190.3
Glycol	$(C_2H_6O_2)$	197.4	26	170.8
Glycerol Ethanol- amine	$(C_3H_8O_3)$	290.5 170.8	8 55	190.0 162.5

Veratrole ($C_8H_{10}O_2$) + Ethyl alcohol (C_2H_6O)

Weissenberger, Henke and Bregmann, 1925

mol%	p	η (wate	r=1) σ
		17°	
20 33 50 66 75	18.1 24.6 27.0 30.3 31.7	2.5 2.0 1.7 1.4 1.3	0.53 0.48 0.45 0.43 0.41

Paterno, 1895

K	f.t.	%	f.t.	
0	22.53	6.23	16.23	
0.53	21.09	9.06	14.69	
1.21	21.09	12.01	13.21	
2.21	20.03	15.12	12.01	
4.17	17.84	19.28	10.73	

Veratrole ($C_8H_{1\,0}O_2$) + Diethyl glycerol ($C_7H_{1\,6}O_3$)

Paterno, 1895

K	f.t.	%	f.t.	
0 0.59 1.27 2.05 3.14	22.53 22.245 21.96 21.64 21.20	5.30 8.40 18.26 27.18	20.35 10.23 15.85 12.74	

Veratrole ($C_8H_{1\,0}O_2$) + Glycol ($C_2H_6O_2$)

Lecat, 1949

0 206.8 38 178.4 Az	R	b.t.	
100 197.4	38	178.4 Az	

Veratrole ($C_8 H_{1\,0} O_2$) + Benzyl alcohol ($C_7 H_8 O$)

Paterno, 1895

 %	f.t.	%	f.t.	
0.0 0.60 1.80 3.67 5.42	22.53 22.17 21.42 20.39 19.45	7.30 9.09 11.50 13.99 17.35	18.42 16.92 14.85 14.57 13.85	

Lecat, 1949

 %	b.t.	
0	206.8	
50	202.5 Az	
100	205,25	

Dimethylresorcinol ether ($C_gH_{1\,0}O_2$)(b.t.=214.7) + Alcohols

Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Glycol	(C ₂ H ₆ O ₂)	197.4	43	183.7	-
Glycerol	$(C_3H_8O_3)$	290.5	7	212.5	-
Borneol	($C_{10}H_{18}0$)	215.0	-	214.3	-
Benzyl alcohol	(C ₇ H ₈ O)	205.25	50	202.5	-
Terpineol -α	$(C_{10}H_{16}O)$	218.85	10 30	214.0	-0.2

Diethylresorcinol ether ($C_{1.0}H_{1.\mu}\theta_2$)(b.t.=235.4) + Alcohols

Lecat, 1949

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
Decyl alcohol	$(C_{10}H_{22}0)$	232.8	18	232.4
Glycol	(C ₂ H ₆ O ₂)	197.4	53	191.0
Phenyl- propanol	(C ₉ H ₁₂ O)	235.6	43	234.8

Alcohols	-cresylether (C ₈ H ₁₀ O) (b.t	= 177	.05) +	Alcohol		C ₁₁ H ₁₂ 0	₂) (b.	t.=254.7) +
Lecat, 1			<u></u>			Lecat,					
	2 nd comp.		Az				2 nd comp.		Az		
Name	Formula	b.t.	% 	b.t.	Dt mix or Sat.t.	Name	Formula	b.t.	%	b.t.	Sat.t.
Heptyl alcohol	(C ₇ H ₁₆ 0)	178.15	52	173.3	-	Glycol Glycero	$(C_2H_6O_2)$ $(C_3H_8O_3)$	197.4 290.5	68.5 18	195.1 248.0	144
Isooctyl alcohol	($C_8H_{18}O$)	180.4	30	176.4	-1.0	B	1 (C ₄ H ₁ ₀ O ₃)	245.5	47	235.0	-
31ycol	$(C_2H_6O_2)$	197.4	22.8	166.6	160	Dipropy englyco	$^{1}_{1}$ ($^{6}_{1}$ $^{4}_{0}$)	229.2	65	226.5	-
Pinacol	$(C_6H_{14}O_2)$	174.35	40	169.5	-	Diethan		268.0	-	247.0	-
Butoxy- glycol	($C_6H_{1\mu}O_2$)	171.15	63	169.3	-	amine	(C ₄ H ₁₁ O ₂ N	, 			
Propyl- lactate	$(C_6H_{12}O_3)$	171.7	82	171.0	-	Methyli Alcohol	soeugenyl etho	er (C ₁₁ H	I _{1 2} 0 ₂)	(b.t.=27	0.5) +
Cyclo- hexanol	$(C_6H_{12}O)$	160.8	92	160.55	5 -	Lecat,	1949 2 nd comp.		Az		
Methyl- cyclohexa	(C ₇ H _{1 4} 0)	168.5	79	167.6	-	Name	Formula	b.t.	#Z 		
Dichlor 1 propanol	.3 (C ₃ H ₆ 0Cl ₂)	175.8	59 76	173.1	-1.6	Glycol	(C ₂ H ₆ O)	197.4	⁷ °	b.t. 196.0	
Dichlor 1 propanol	3 ² (C ₃ H ₆ 0C1 ₂)	182.5	32	175.5	-	11 -	$(C_3H_8O_3)$	290.5	25	258.4	
Ethanol- amine	(C ₂ H ₇ ON)	170.8	37	154.5	-	Diglycol	(C ₄ H ₁₀ O ₃)	245.5	60	238.8	
Mothyl +	hymol ether(C	. н о)	(h. t	=216.5) +	o-Broman Lecat,	isole (C ₇ H ₇ 0 1949	Br) + D	iglyco	1 (C ₄ H ₁	003)
Alcohols	nymor cener (c	71 111 60 7	(5.0	. 21010		7	·	b.t.			
Lecat, 1						0		21.7.5			
	2 nd comp.		Az			25 100		217.7 211.0 245.5)		
Name	Formula	b.t.	%	b.t.							
Glyco1	(C2H6O2)	197.4	40	183.0		o-Broma Lecat,	nisole (C ₇ H ₇ 0 1949		Diprop C ₆ H ₁₄		ol
Terpine- ol-α	($C_{10}H_{18}0$)	218.85	-	215.5		- %		b.t.			
Borneo1	($C_{10}H_{18}0$)	215.0	62	214.0	•	0		217.			
Benzyl- carbinol	$(C_8H_{10}O)$	219.4	30	215.0		100		212. 229.	0 Az		
Diglycol	$(C_{4}H_{10}O_{3})$	245.5	19	210.5	;						
Dipropyl glycol	en- (C ₆ H ₁ 40 ₃)	229.2	30	211.0	•	p-Bromp Lecat,	henetole (C ₈ 1949	H ₉ UBT)		opylengl	yco1
			===			<u> </u>		b.	t.		
						0 45 100		22	4.2 1.0 Az 9.2	3	

p-Bromphene	etole (C ₈ H	₉ 0Br) + Digly	col (C ₄ H ₁₀ O ₃)	Scheuer	, 1910			
	_			%	mol%	d	η	i n
Lecat, 1949) 					82.2	0	99.0°
%		b.t.		0 9.90	0 9.44	0.9366	812 0.92 799 .91	224 512 26 601
0 3 2		234.2		34.60 53.01	33,41 51,69	.9272 .9007 .8841	799 .91 857 .88 901 .87	3 7 5 660 ∥
100		222.0 Az 245.5		67.87 84.85 100	66.71	.8727 .8601	980 .85	588 675 169 915
				100	84.94 100	.8496 55.6	1850 .83	372 1041
Anethole ($C_{10}H_{12}0$)	+ Menthol ((C ₁₀ H ₂₀ 0)	0	0		0.0	74.6°
				9.90 34.60	9,44 33,41	0.9605 .9508	1287 0.94 1275 .93	901
Scheuer, 19	910			53.01 67.87	51.69 66.71	.9234 .9072 .3943	1659 .89	06 7989
K	mol%	f.t.	E	84.85 100	84.94 100	0017	2129 .86 3510 .86 6290 .85	68 igii 📗
0	0	21.3					6290 150	2409
0.58 2.06	0.55 1.95	21.05 20.45	- -	The The	r ²	D	α	
3.05 4.94	2.77 4.70	20.1 19.35	- -			76.	g . 7 5°	gr
6.69	6.37 7.57	18.85 18.4	-	9.90 34.60	-37.333 -38.258	-46.396 -47.859	-48.230 -50.027	-54.812 -58.166
7.94 9.53 12.33	$9.10 \\ 11.77$	13.0 17.25 16.7	-	53.01 67.87 84.85	-38.816 -39.089	-48.739 -49.115	-51.217	-57.869 -58.092
15.60 13.48 21.63	14.06 17.70	16.0	-	100	-39.405 -40.149	-49.503 -50.155	-51.645 -52.385	-58.520 -59.419
1 23.87	20.75 22.92 29.40	15.45 15.05 14.35	-	%				
30.01 35.36 35.80 36.48	29.40 34.16	14.35 13.9 13.9	13.9	70	b^2	α d b	v	
36.48 36.48	34.16 34.59 36.49	14.3	13.9	9,90	-75.097	-89,512	-90.559	
39.44 41.03 41.66	38.18 39.76 40.38	15.55 16.25 16.50	-	34.60 53.01	-78.753 -80.029	-93.503 -94.207	-93.913 -95.688	
43.23 43.55	41.94 42.25	17.2 17.35 18.3	<u>.</u>	67.87 84.85	-79.875 -82.056	-96.364 -97.592	-97.289 -98.584	1
46.54 47.74 51.60 53.35	45.23 46.41	18.3	=	100		,,,,,,_	70,001	
51.60 53.35	50.27 52.03	18.8 20.15 20.75	-	76		(α) ^{mol}	
54.15 55.39	52.83 54.08	21.05 21.5 22.8	-		r	D	g	gr
58,84 59,34	57.55 58.05	22.8 23.0	- -	9.90	-58.296 -59.740	-72.448	-75.314	-85.590
61.28 63.14	$60.01 \\ 61.89$	23.7 24.35	-	34.60 53.01	-60.612	-74.733 -76.107	-78.118 -79.638	-90.827 -90.364
64.42 64.67	63.20 63.45	24.85 24.95	-	67.87 84.85	-61.039 -62.821	-76.694 -77.300	-79.977 -80.645	-90.711 -91.381
67.22 67.82	66.04 66.65	25.9 26.15	- -	100	-62.695	-78.318	-81.801	-92.784
72.17 73.36 77.74 91.30	71.10 72.31 76.81 80.48	25.9 26.15 27.70 23.2	- -	%	b^2	(α) ^{mo}		
91.30 82.72	76.81 90.4 9 91.95	30.1 31.8 32.5	-			db	<u>v</u>	
94.67 86.32	83.97 85.68	32.5 33.55 34.5	- -	9.90 34.60	-117.27 -122.97	-139.77 -146.01	-141.41 -146.65	
87.87 89.34	87.30 88.83	35.3 36.05	- -	53.01 67.87	-123.30 -124.97	-147.11 -148.93	-149:42 -150.01	
91.49 93.40	91.07 93.06	37.3 38.3	=	84.85 100	-124.73	-150.47 -152.39	-151.92 -153.94	
95.11 97.19	94.86 97.05	39.25 40.4	-					
100.00	100.00	42.0	-	$r^2 =$	pale red,	g = yellow e, db = ind	v, gr = gre	en,
				D =	pare pine	, an = 1nd	igo biue, V	- Aloiet
								=

						n					
Anethole ($C_{10}H_{12}0$)	+ Ethyl	alcohol	(C ₂ H ₆ O)	Diphenyl Lecat, 19	ether (C ₁₂ H ₁	₀ 0) (b	.t.=25	59.0) + A	Alcohols
Weissenber	ger, Schuste	er and M	Mayer, 1	1924			2nd comp.		Az		
mo1%		р				Name	Formula	b.t.	%	b.t.	Sat.t.
	18°					 					
20		22				Glyco1	$(C_2H_6O_2)$	197.4	61	193.05	-
33.3		29 32				Glycero1	$(C_3H_8O_3)$	290.5	22	247.6	-
50.0 66.7 75.0		34 35				Diglycol	(C ₄ II ₁ ₀ O ₃)	245.5	49.4	234.4	116
		· · · · · · · · · · · · · · · · · · ·	(water=)	1) σ		Dipropyl- englycol	(C ₆ H ₁ ,0 ₃)	229.2	77	228.0	-
mo1%		18°	(water-			11	(C ₆ H ₁ 40 ₄)	265.2	15	258.2	_
0		- "		0. 504		11		245.25	80	243.0	_
0 33.3		2.9		0.594		Methoxy- triglycol	$(C_7H_{16}O_3)$	2.01.			
50.0 60.0 66.7		1.8 1.7 2.1		.342 .339 .336		Benzyl- glycol	$(C_9H_{12}O_2)$	265.2	15	258.2	-
30.0		1.7		.326		Diethanol- amine	$(C_{4}H_{11}O_{2}N)$	268.0	-	250.0	-
Anethole	(C ₁₀ H ₁₂ 0)	(b.t.=23	35.7) +	Alcohols							
Lecat, 19	49										
	2 nd comp.		Az			Diphonyl	ether (C ₁₂ H	. 6 \	E+hv-1	******	
Name	Formula	b.t.	g,	b.t. S	Sat.t.	b Thueny 1	ciner (C ₁₂ h		C ₈ H ₁		e
Decyl- alcohol	(C ₁₀ H ₂₂ 0)	232.9	22	232.6	-	Patterson	and Stevense	on, 1910			
Glycol	(C ₂ H ₆ O ₂)	197.4	56	189.35	-	t		$\alpha_{\mathbf{D}}$			
-5	$(C_5H_8O_3)$	290.5	14	230.8	-		24.58%				
Diglycol ($(C_{\mu}H_{1}O_{3})$	245.5	38	224.1	108	18.7	. 1	.824			
Dipropylen-glycol	$(C_6H_{14}O_3)$	229.2	48	221.5	-	20 51.8 66.0]	.95 2.68 2.92			
Methoxy- (triglycol	C7H1603)	245.25	30	233.0	-	76.3		3.288 			
Phenyl- (C9H120)	235.6	48	234.0	-	Pheny1ben	zyl ether(C ₁	3H120)	(b.t.	=286.5)	+
propanol						Alcohols					
Looppoth	10 (C U O					Lecat, 19					
Lecat, 19	le (C ₁₀ H ₁₂ 0 49	,, (b.t.	=215.6)	+ Alcoho	ls		2 nd comp.		Az		
	2 nd comp.		Az			Name	Formula	b.t.	%	b.t.	
Name	Formula	b.t.	K	b.t.		Glycol	(C ₂ H ₆ O ₂)	197.4	87	195.5	
Glycol ((C ₂ H ₆ O ₂)	197.4	40	182.3		41	$(C_3H_8O_3)$		30	264.5	
Diglycol ((C ₄ H _{1 0} O ₃)	245.5	20	210.0			($C_{\mu}H_{10}O_{3}$)	245.5	80	241.5	
Glycerol (290.5	7.5	213.5		Triglycol	($C_6H_{1\mu}O_{\mu}$)	288.7	40	280.0	
Ethoxy- ((C ₆ H ₁ 40 ₃)		. ••	220,0							
diglycol	5 .4.3 /	201.9	87	201.0							
		===									
						11					

Methylb	enzylether (1949	C ₈ H ₁₀ O)	(b. t	.=167.8)	+Alcohols	Ethylbenzyl ether $(C_9H_{12}0)$ + Ethyl tartrate $(C_8H_{14}0_6)$ Patterson and Stevenson, 1912
	2 nd comp.		Az			
Name	Formula	b.t.	%	b.t.	Dt mix	t ^α D
			,- 			20.78%
Hexyl alcohol	(C ₆ H _{1 \(\psi\)} 0)	157.85	73 10	156.7	-2.5	13 2.175 20 .26 26.5 .39 36.3 .57
Heptyl alcohol	(C ₇ H ₁₆ 0)	176.15	2 0	167.0	-	36.3 .57 42.5 .825
Glyco1	$(C_2H_6O_2)$	197.4	18	159.8	-	201 - 1 - 1 - (C. H. O.) (1 - 202) - Alaskala
Pinacol	$(C_6H_{14}O_2)$	174.35	28	163.5	-	Dibenzyl ether ($C_{1} \mu H_{1} \mu 0$) (b.t.=297) + Alcohols
Butoxy- glycol	$(C_6H_{14}O_2)$	171.15	40 43	165.0	-0.7	Lecat, 1949 2 nd comp. Az
Glycol- mono- acetate	(C ₄ H ₈ O ₃)	190.9	10	167.0	-1.4	Name Formula b.t. % b.t.
Propyl- -lactate	(C ₆ H ₁₂ O ₃)	171.7	25	165.5	-	Glycol (C ₂ H ₆ O ₂) 197.4 96 196.5
Cyclo- hexanol	(C ₆ H _{1 2} O)	160.8	62 90	159.0	-1.0	Glycerol (C ₃ H ₈ O ₃) 290.5 36 269.5 Diglycol (C ₄ H ₁ O ₃) 245.5 87 243.8
Methyl- cyclohexai	(C ₇ H _{1 4} O) no1	168.5	46 50	165.0	-2.7	
Ethylen- iodhydrin	(C ₂ H ₅ O _I)	176.5	40	164.0	-	Dibenzyl ether ($C_{1\mu}H_{1\mu}O$) + Ethyl tartrate ($C_8H_{1\mu}O_6$)
Dichlor-l propanol- Ethanol- (amine	2 ³ -(C ₃ H ₆ 0C1 ₂) C ₂ H ₇ 0N)	175.8 170.8	- 28	167.0 150.5	-	Patterson and Stevenson, 1912
Ethylben: Alcohols Lecat,		H ₁₂ 0) ((b.t.=	185.0) +		24.84% 16.4 2.995 20 3.07 27.6 3.205 32.2 3.35
	2 nd comp.		Az		·	40.9 3.535
Name	Formula	b.t.	R	b.t.	Dt mix	
Isooctyl- alcohol	- (C ₈ H ₁₈ O)	180.4	74	180.0	-	
Glyco1	$(C_8H_6O_8)$	197.4	74	169.0	-	
Pinacol	$(C_6H_1 \mu O_2)$	174.35	62	171.5	-	
Methoxy- diglycol	$(C_5H_{12}O_3)$	192.95	-	183.2	-	
Glycol- mono- acetate	(C ₄ H ₈ O ₃)	190.9	35 50	180.5	-2.5	
Isobutyl- lactate	- (C ₇ H ₁ ₄ O ₃)	182.15	7 5	181.0	-	
Dichlor 1 propanol	.2(C ₃ H ₆ 0C1 ₂) 182.5	53	180.0	-	

SAFROLE + GLYCOL

Safrole ($C_{10}H_{10}O_2$)(b.t.=235.9) + Alcohols	Safrole ($C_{10}H_{10}O_2$) + Citronellol ($C_{10}H_{20}O$)
Lecat, 1949	
2 nd comp. Az	Brauer, 1929
Name Formula b.t. % b.t. Dt mix	wt% mol% b.t. wt% mol% b.t.
or Sat.t.	10 mm
Glycol (C ₂ H ₆ O ₂) 197.4 55 190.05 187.5	0 0 105.2 70 70.8 104.7 10 10.4 103.7 90 90.3 107.5 30 30.8 102.3 Az 100 100 108.0
Glycerol (C ₃ H ₈ O ₃) 290.5 14.5 231.2 -	30 30.8 102.3 Az 100 100 108.0 50 51.0 102.4
Diglyco1 (C ₄ H ₁₀ O ₃) 245.5 33 225.5 84.5	
Dipropylen- glycol (C ₆ H ₁ , 0 ₃) 225.2 50 222.0 -	
Methoxy- (C7H1603) 245.25 31 233.5 -	Safrole ($C_{10}H_{10}O_2$) + Borneol ($C_{10}H_{18}O$)
Phenyl- (C ₉ H ₁₂ 0) 233.8 50 235.6 -2.5 propanol	
	Brauer, 1929
$1_{sosafrole} (C_{10}H_{10}O_2)(b.t.=252.0) + Alcohols$	wt% mol% b.t. wt% mol% b.t.
Lecat, 1949	10 mm
2 ^{11Q} comp. Az	0 0 105.2 30 20.8 98.5 10 10.5 103.2 100 100 103.2
Name Formula b.t. % b.t. Sat.t.	
Glycol (C ₂ H ₆ O ₂) 197.4 64 192.8 172	
Glycerol (C ₃ H ₈ O ₃) 290.5 18 243.9 -	Safrole ($C_{10}H_{10}O_2$) + Terpineol ($C_{10}H_{18}O$)
Diglycol (C ₄ H ₁₀ O ₃) 245.5 44 233.2 84.2	
Dipropylen- 229.2 60 225.5 - glycol (C ₆ H ₁₄ O ₃)	Brauer, 1929
Methoxy- (C ₇ H ₁₆ O ₃) 245.25 65 241.5 - triglycol	wt% mol% b.t. wt% mol% b.t.
Phenoxy- (C ₈ H ₁₀ O ₂) 245.2 68 244.5 -	10 mm 100 100 96.5 30 31.1 100.1
glycol	90 90.4 96.4 Az 10 10.4 103.2 70 71.0 96.5 0 0 105.2
Diethanol-(C ₄ H ₁ , 0 ₂ N) 263.0 - 246.0 -	50 51.3 97.8
	Safrole ($C_{10}H_{10}O_2$) + Benzyl alcohol (C_7H_8O)
	Brauer, 1929
	wt% mol% b.t. wt% mol% b.t.
	10 mm
	0 0 105.2 70 77.8 92.3 10 14.3 101.0 90 93.1 91.7 Az 30 39.1 95.5 100 100.0 91.7
	1

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

FURANE + METHYL ALCOHOL

Furane ($C_{\mu}H_{\mu}0$) + M	iethyl alcohol ($CH_{\downarrow}O$)	
Lecat, 1949			Pesce and Lago, 1944
2	b.t.		mol % d
			25°
0 7 100	31.7 30.5 Az 64.65		100 0.78664 92.63 .82366 84.89 .85605 76.56 .88575 63.54 .92356
Methyl furane (C ₅ H	I ₆ 0) + Methyl alcoho	1 (CH ₄ 0)	51.00 95250 25.58 .99646 0 1.02802
Lecat, 1949			Herz and Lorentz, 1929
X.	b.t.		% d 20° 40°
0 22.3 100	63.8 51.5 Az 64.65		90 0.8167 0.7979 60 .8819 .8623 40 .9248 .8834
Methyl furane (C ₅ H	60) + Ethyl alcohol	(C ₂ H ₆ O)	30 .5518 .9308 10 1.0082 .9857 0 .0330 1.0111
Lecat, 1949			Harms, 1943
%	b.t.		mo1 % d
0 15	63.8 60.5 Az		22°
100	78.3		100,000 0,78934
Diowane (C _h H ₈ O ₂) -	+ Methyl alcohol (Cl ughes, 1942	I ₄ 0)	92.074
% L V	% b.t. L V	b.t.	
100 100 6- 96.5 98.1 64 91.9 94.2 64 86.7 91.9 64 82.9 89.4 65 78.0 86.3 65 75.7 85.2 65 69.7 81.7 65 61.7 77.9 65 54.6 75.7 66 3.7 30.8 83 2.4 19.1 89 1.6 11.1 93	4.60 48.4 72.6 4.72 38.8 72.4 4.90 29.8 70.1 4.96 29.0 67.1 5.27 17.0 63.1 5.34 15.4 62.1 5.55 9.7 59.4 5.78 6.0 52.3 5.78 6.0 52.3 5.90 0.3 1.3 7	66.94 67.10 67.60 67.89 68.20 68.20 68.50 70.40 73.20 73.20 78.20 9100.38 8 100.54	

431

				,, <u> </u>				\	01 25\	Alasha	10
Herz an	nd Lorentz,	1929.				1	(C ₄ H ₈ Q ₂)) (p.t.=1	01.35)	+ Alcono	18
K	2 0°	η 40°	20°	σ	40°	Lecat, 1					
							2 nd com		Az		
90 60	59 7 631	466 498	22.6	:	20.50 22.4 0	Name	Formula	b.t.	%	b.t.	Dt mix
50 40	664 707	516 552	24.4 25.4	2	23.20 24.32	E+h1	/ C !! O >	70.3		70.13	
30 10	767 1007	598 78 6	27.4 29.9	6 6	25.52 27.88 32.54	Ethyl alcohol	(C ₂ H ₆ O)	78.3	90. 7 95	78.13	-1.5
0	1255	1917	35.4	2	32.54	Propyl alcohol	(C ₃ H ₈ O	97.2	55 85	95.3	- -5.0
Anis,	Choppin and	Padgitt,	1942			Isobutyl alcohol	(C ₁₄ H _{1 0} 0) 99.5	40	98.8	-6.0
%	10.04°	20.00°	η 30.00°	40.00°	50.00°	Dimethyl ethyl carbinol	C ₅ H ₁₂ O) 102.35	16 20	100.6	-4.1
0.000		1313.3	1104.0	942.1	819.0	=====					
9.392 10.635 19.23	5 -	999.2 868.6	875.9	757.2 740.1	650.8 574.2	Dioxane	(C4H80's) + Ethy1	alcoho	1 (C ₂ H ₆ 0)
20.010 30.410 30.536	888.2	763.9	742.5	643.6 576.3	509.3	Hopkins	, Yerger a	and Lynck	, 1939		
40.792	2 -	-	657.3 605.6	529.4	-	g		-		f	
49.975	761.2	697.2 657.9	-		470.1 444.9	L "	v	b.t.	_ L		b.t.
50.695	5 724.2	626.8	569.4	499.0	424.9	100	100 97.8	78.32 78.22	41.5	60.3	80.18
60.624 61.78	5 -	-	545.5 543.4	478.2 -		98.5 95	94.7	78,19	35.3 33.3	56.7 54.9	80.93 81.32
69.931 70.353		606.9	528.8	462.7	410.7	90.7 87	90.7 88.3	78.13	31.5 20.1	54.5 43.5	81.40 84.42
80.058 80.665	3 -	59 3 .5	528.8 517.2	452.0	-	83.2 78	85.2 81.7	78.17 78.23 78.35	15.2 9.8	39.7 29.5	85.43
90.119) -	587.7	510.5	-	400.3	68 58	75.3	78.36	6.7	24 15	89.08 92.02
100.000		585.8	508.0	446.0 443.8	394.9 391.3	46 43.5	85.2 81.7 75.3 69.5 62.7 61.3	79.10 79.87 80.15	3.7 1.2 0	5.2 0	94.89 99.05 101.07
Pesce	and Lago, 1	944				Herz ar	d Lorentz	, 1929			
mol	%		n _			K		d			
	6678.1	Ă· 58	375.6Å	5460.	8Å		20°	40°		60°	· · · · · · · · · · · · · · · · · · ·
			25°		_ _	90	0.8107	0.793	5 0	.7743	
100 92.	1.3246 63 .3385		32654	1.327	83	60 40	.8736 .9218	.854 .901	5	.8359 .8809	
84. 76.	89 .3509	2	34054 35288	.341 .354		30 10	.9475 1.0023	.927 .986		.9056 .9582	
63.	54 .37 66	4 .	36426 37884	. 365 . 380		0	1.0330	1.011		.9895	
51.0 25.5	58 .4049	0 8 :	39005 40 72 6	.391 .410	.61			===	===		
0	.4175		41194	.421		Hopkins	Yerger a	nd Lynck,	1939		
mol		.0	n °		0	mo1%	· d	mol	%	đ	
122	5015.7		71.5Å	4358	. 3Ă	100		2 5° 69.	48	0.8808	
100 92.6 84.8	1,3295 33 .3437		33644 34660	1.33	321 725	97.02		65.	6 2	.8912	
84.8 76.5	89 .3561 56 3677	9	36946 37111	.36	026	94.16 91.07	.8166	55.	27	.9008 .91 72	
63.5 51.0	3824	υ,	38590	.38	196 683	88.44 84.97	.8252 .8361	44.	11 10	.9429 .9700	
25.5	58 .4111	9 .	39 727 41506	.41	829 602	81.66 77.50	.8463	17.	36 12	.9966 1.0116	
	.4239	у ,	42802	.42	897	73.22			-	.0276	
						====	====		===		

					Lorenz, 1929		
Harms, 193	8 and 1943	·		%	2 0°	σ 40°	60°
mo1%	d	mol%	d	10	22.46	21.30	19.00
0.00 4.20 9.97 19.40 24.37	1.0223 1.0150 1.0049 0.9878 0.9784	42.31 70.41 87.17 100.00	0.9416 .8732 .8243 .7806	40 50 60 90 100	24.96 25.11 26.23 30.36 35.42	22.69 23.04 24.45 28.56 32.54	21.97 22.63 26.03 29.48
				Hopkins,	Yerger and	Lynck, 1939	
Herz and L	orentz,192	9		mo1%	n _D	rio1%	ⁿ D
%		'n				25°	
90 60 50 40 10	979 871 897 915 1054 1255	772 659 670 684 821 1917	552 492 499 519 601 1685	100 97.0 94.1 91.0 88.4 84.5 81.6 77.5 73.2	.3648 .3671 .4 .3694 .7 .3718 .6 .3745	55.27 44.11 31.10 17.36	1.3830 .3859 .3884 .3991 .3991 .4058 .4125 .4159
Griffiths,	1954 d	%	d	Huet, Phi	lippe and Be	ono, 1953	
, , , , , , , , , , , , , , , , , , ,	259			mo1%	ex	tinction coe	efficient
98.76 97.23 94.52 92.08 86.33 83.63 79.57 75.11	0.78508 .78751 .79045 .79589 .80074 .81234 .81779 .82608 .83529	42.64 39.82 36.74 31.0 27.94 20.87 15.74 11.07 9.09	0.90862 .91565 .92330 .93862 .94627 .96530 .97988 .99360 .99969	0.0 2.2 10.6 23.6.7 69.1 72.9 87.3		1.20 0.66 .28 .21 .18 .16 .15	
68.74 65.13 58.74 50.95	.84882 .85668 .87082 .88858 .89588	6.24 4.18 1.87 0.80	1.00807 .01480 .02199 .02517 .02808	Harms, 19	38		
				mo1%		mol%	8
Hopkins, Y	erger and	Lynck, 1939		0.0		30°	E 00/
mol%	ŋ	mol% 25°	η	4.2 9.9 19.4 24.3	2.383 7 2.692 0 3.342	42.31 70.41 87.17 100.00	5.996 12.71 13.14 24.4
100 94.16 88.44 81.66 73.22 65.62	1100 992 938 884 860 849	55.27 44.11 31.10 17.36	863 885 933 1029 1184				

Dioxane ($C_{4}H_{8}O_{2}$) + Butyl alcohol ($C_{4}H_{1}O_{0}$)

Mc Cormack, Walkup and Rush, 1956

×		b.t.	5	6	b.t.
L	V		L	V	
		7 60m	ım		
0 4.5 6.7 10.7 36.8 47.5 46.1 52.1 54.4 53.6 60.8 62.2	0 3.0 4.9 7.5 22.2 31.6 33.8 38.0 38.8 37.2 43.8 45.6	101.1 101.5 101.3 102.2 105.0 106.25 106.5 107.35 107.4 107.55 108.5 108.8	65.4 73.2 74.2 75.8 76.3 80.1 81.1 85.9 91.2 94.2 96.4	48.9 55.4 57.8 59.8 62.3 67.0 67.0 75.8 85.0 90.6 94.2	109.3 110.55 110.8 111.25 111.65 112.3 112.65 113.8 115.1 116.0 116.5

Rush, Ames, Horst and Mackay, 1956.

mo1%	đ	n _D	η
	1.0004	25.00°	
0,0	1.0286	1.4200	1166
5.28	1.0148	1.4180	1126
11.48	0.9990	1,4161	1091
19.98	0.9790	1.4140	1078
23.20	0.9720	1.4131	1073
28. <i>7</i> 7	0.9580	1.4120	1070
32.74	0.9490	1.4108	1074
40.83	0.9308	1.4090	1099
52.80	0.9042	1.4060	1169
67.22	0.8731	1.4032	
76.06	0.8545		1328
87.30		1.4016	1490
	0.8314	1.3994	1806
96.54	0.8128	1.3980	2264
100.0	0.8060	1.3974	2414

Dioxane $(C_4H_8\theta_2)$ +Isobutyl alcohol $(C_4H_{1,0}\theta)$

Rush, Ames, Horst and Mackay, 1956.

mo1%	d	n _D	ŋ
		25.00°	
0.0 5.81 11.55 16.80 21.41 25.89 28.59 42.12 42.44 49.34 52.61 58.35	1.0286 1.0127 0.9985 0.9852 0.9740 0.9629 0.9567 0.9241 0.9069 0.9003 0.8874	1.4200 1.4180 1.4160 1.4144 1.4180 1.4117 1.4110 1.4072 1.4073 1.4054 1.4047 1.4047	1165 1181 1109 1099 1107 1098 1107 1144 1153 1206 1281
68.96 76.46 87.50 95.84 100.00	0.8644 0.8643 0.8480 0.8244 0.8066 0.7980	1.4008 1.3990 1.3966 1.3949 1.3940	1489 1668 2140 2787 3295

Dioxane ($C_{4}H_{8}0_{2}$) + sec. Butyl alcohol ($C_{4}H_{1\,0}0$)

Rush, Ames and al.,

mo1%	đ	^a D	Τ)
	· · · · · · · · · · · · · · · · · · ·	25.00°	
0.00	1.0286	1.4200	1165
5.77	1.0125	1.4171	1119
15.69	0.9874	1.4143	1071
25.87	0.9621	1.4112	1046
40.84	0.9270	1.4070	1061
47.94	0.9106	1.4050	1092
58.25	0.8881	1.4026	1173
69.58	0.8635	1.4001	1324
76.40	0.8494	1.3988	1474
87.44	0.8272	1.3969	1880
95.87	0.8106	1.3955	2470
100.00	0.8031	1.3950	2934

Dioxane ($C_4 H_8 o_2$) + tert.Butyl alcohol ($C_4 H_{1\,0} O$)

Rush, Ames and al., 1956.

mo1%	d	n _D	η
		25.00°	
0.00 12.14 14.76 20.90 22.22 33.41 42.90 53.05 63.53 72.83 82.24 91.22 100.00	1.0286 0.9935 0.9828 0.9689 0.9648 0.9350 0.9105 0.8854 0.8605 0.8391 0.8130 0.7988	1,4200 1,4142 1,4128 1,4106 1,4098 1,4054 1,4019 1,3980 1,3948 1,3920 1,3892 1,3870 1,3849	1165 1118 1110 1111 1114 1134 1197 1304 1496 1773 2179 2941 4999

Getman, 1937

mol%	f.t.	mol%	f.t.
0 3.23 3.83 5.57 9.16 9.70	11.7 9.96 9.65 8.20 6.26 6.35 2.78	37.05 46.41 56.32 62.47 67.11 78.36 88.74	-3.81 -6.68 -9.01 -6.73 -4.46 +3.37
27.40	-0.84	100.00	25.43

Dioxane ($C_wH_8O_2$) + Glycol ($C_2H_6O_2$)	Paraldehyde ($C_6H_{12}O_3$) + Ethyl alcohol (C_2H_6O)
Wang, 1940	Muchin, 1913
mol% d ε	c d n
15° 30° 15° 30°	20°
0.000 1.03883 1.02205 2.232 2.196 2.442 1.04027 1.02360 2.422 2.375 4.556 1.04151 1.02493 2.609 2.553 6.918 1.04290 1.02643 2.842 2.767 7.776 1.04341 1.02697 2.927 2.834 10.410 1.04496 1.03153 3.762 3.587 26.676 1.05571 1.04047 5.743 5.392 38.674 1.06334 1.04933 8.598 8.040 55.528 1.07861 1.06557 15.91 15.27 79.775 1.09729 1.08542 28.73 27.97 100.000 1.11605 1.10567 46.66 -	0.000 0.7934 1253 0.564 .7948 1252 0.833 .7953 1245 2.256 .7972 1223 4.163 .8006 1175 11.28 .8152 1121 20.84 .8347 1178 c=g paraldehyde in 100cc alcohol
	Drucker and Kassel, 1911
Dioxane ($C_4H_8O_2$) + 1,4 Butanedio1 ($C_4H_{10}O_2$)	χ d η
Wang 1040	76.5°
Wang, 1940 mo1% d 15° 30° 15° 30° 0.000 1.03893 1.02210 2.223 2.209 1.637 .03861 .02197 2.333 2.351 2.749 .03840 .02184 2.493 2.455 4.759 .03801 .02168 2.714 2.659	100 0.7656 949 89.98 .7785 821 70.02 .8061 679 50.00 .8366 572 29.99 .8719 502 9.96 .9076 479 0.0 .9248 478
4.759 .03801 .02168 2.714 2.659 7.106 .03756 .02150 3.018 2.938 9.099 .03722 .02132 3.290 3.169 18.891 .03355 .02054 4.804 4.316 38.936 .03207 .01883 9.400 8.678 58.721 .02846 .01676 16.37 14.95 80.401 .02391 .01365 24.14 22.00 100.000 .01905 .01300 32.90 30.16	100 0.8183 6203 90.00 .8327 4742 70.00 .8659 3107 50.00 .9011 2237 30.05 .9401 1777 10.00 .9822 1551 0.0 1.0037 1528
Dioxane ($C_{4}H_{8}O_{2}$) + Glycerol ($C_{5}H_{8}O_{5}$) Wang, 1940	Lecat, 1949 Paraldehyde ($C_6H_{12}O_3$)(b.t.=124.35) + Alcohols 2nd comp. Az
mol% d ε 15° 30° 15° 30°	Name Formula b.t. % b.t. Dt mix
0.000 1.03901 1.02220 2.224 2.200 1.468 .04210 .02541 .389 .352 2.436 .04413 .02751 .502 .457 3.935 .04732 .03084 .683 .631 4.810 .04916 .03275 .800 .743 83.715 .22362 .21347 94.969 .24839 .23858 100.000 .25890 .24972	Butyl (C ₁ H ₁₀ 0) 117.8 52 115.75 - alcohol Isoamyl (C ₅ H ₁₂ 0) 131.9 22 123.5 -5.0 alcohol Pentanol (C ₅ H ₁₂ 0) 119.8 52 118.5 -6.3 -2 (50%)
	Methoxy ($C_3H_8O_2$) 124.5 38 118.6 - glycol Ethoxy ($C_9H_{10}O_2$) 135.3 14 123.8 -

Cincole (C ₁₀ H ₁₈ 0)(b.t.=176	(.35)	+ Alcoho	ols	Epichlorhy	drin (C ₃ H ₅ (X(1) (b.t	.=116.4) + Alco	hols
Lecat, 19					-	Lecat, 1949					
	2nd comp.		Az				2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix	Name	Formula	b.t.	%	b.t.	Dt mix
Heptyl alcohol	C7H160	176.15	20 48	- 173.0	-0.5	Propyl alcohol	C3H80	97.2	77	96.0	-5.7
Isooctyl alcohol	C ₈ H ₁₈ O	180.4		175.85	-0.7	Butyl alcohol	C ₄ H _{1 0} 0	117.8	40 53	112.0	-8.0
Glycol	C2H6O2	197.4	18	164.5	-	Isobutyl alcohol	C4H1 00	108.0	40 60.5	105.0	-8.5
Pinacol	C6H1402	174.35	45	168.5	-	Sec.Buty1	C4H100	99.5	75	98.0	_
Butoxy- glycoi	C6H1402	171.15	50 58.5	- 5 168,9	+0.1	alcohol Amyl	C5H120	138.2	15	116.2	-1.2
Methoxy- diglycol	C5HAO3	192.95	27	173.0	-	Alcohol Isomnyl	•	131.9	19	115 25	
Ethoxy-	С ₆ Н _{1 д} О ₃	201.9	-	175.5	-	Alcohol	C5H120	131,9	50	115.35	-9.0
diglycol Glycol-	C ₁₄ H ₈ O ₃	190.9	22	174.1	_	Tert-Amyl Alcohol	C5H120	102.35	7 0	100.7	-7. θ
mono- acetate	4 6 3	170.7	50	-	-1.2	Methyl- propyl	C5H120	119.8	90 40	113.0	-3.0
Cyclo- hexanol	C ₆ H ₁₂ 0	160.8	90 9 2	160.65	5 -0.7	carbinol Methyl-	C5H120	112.9	10	- - -	-3.4
Methyl- cyclohexan	C7H140 ol	168.5	75 76	167.4	-1.5	Isopropyl carbinol			52	109.5	-
Propyl- lactate	C6H12O3	171.7	73	169.5	-	Allyl alcohol	C3H60	96,85	7 8	95.75	-4.8
Isobutyl- lactate	C7H1403	182.15	22	175.0	-						
Ethanol- amine	C ₂ H ₇ ON	170.8	36		150.4	Epibromhy	drin (C ₃ H ₅	0Br) + B	utyl al	cohol (C ₄ H _{1 0} O)
	- C4H1102N	162.2	-	158.0	-	Lecat, 194	49				
amine						*		b.t.			
						37		138.5 117.5	Az		
Cinacla	(C U O)	+ Torni	nool	/ C H	0.	100		117.8			
	(C ₁₀ H ₁₈ 0)	+ terpi	neor	(CioHig	,0)	Epibromh	ydrin (C₃H	. 0 Br) +	Isoamvl	alcohol	
Brauer,	1929 					. }		,	,	(C ₅	H ₁₂ 0)
	%		b.t.	(10mm)		Lecat, 1	949 				
	00 70		97.2			7.		b.t.			
	50 30 10		62. 58 55.2			0 60		138.5 129.5	Az		
	0		54.6			100		131.9			

Ethylene sulfide (C_2H_uS) + Methyl alcohol (CH_uO)	Ether ((C4H ₁₀ O) + P	henol (C ₆ H ₆	0)	
Lecar, 1949.					
% b.t.	Weissenb	erger, Schus	ster and Sch	uler,1924	
0 55,7	mo1%	p	mol%	р	
21 47.0 Az		15	>		
100 64.65	80	8	50.5	43	
	66.7	15	45.5	54	
Thiophene ($C_{ij}H_{ij}S$)(b.t.=84.7) + Alcohols	62.1 55.0	22 33	39.8 33.3	68 85	
Lecat, 1949	mol%		η (water=1)	σ	
2 nd comp. Az			15°		
Name Formula b.t. % b.t.	74.1 65.8 61.0	2	1.01 2.69 2.14	0.416 .409	
Methyl (CH ₁₄ 0) 64.65 55 59.55 alcohol	57.1 49.5 40.3]	1.33 0.87	.392 .372 .349	
Ethyl (C ₂ H ₆ O) 78.3 45 70.0 alcohol	33.3	0).64 	.333	
Isopropyl (C ₃ H ₈ O) 82.4 43 76.0 alcohol.	Ether (C4H100) + 6	o-Cresol (C	7H ₈ O)	
Hexamethyl disiloxane ($C_6H_{18}OSi_2$) + Trimethylsi-	Weissenbe	rger and Pia	atti, 1924		
lenol (C ₃ H ₁₀ OSi)	mol%		molø		<u>"</u>
Lecat, 1949	1101/6	p	mol%	p	
% b.t.		18			
	96.15 89.28	$\begin{smallmatrix}5.4\\11.1\end{smallmatrix}$	57.47 53.76 51.28	106.5 149.5	
0 100 34 90 Az	83:33	17.5	51.28	190.1	
100 99 12	74.62 66.66	17.5 26.2 54.7	50.00 40.00	198.0 236.5	
	63.63	67.2	33.33	266,8	
	mo1%	η (water=1)	mol%		1)
Tetrahydrothiophene (C ₄ H ₈ S) + Ethylene chlorhydrin	·		11101%	o (water	=1)
(C ₂ H ₅ 0C1)	18°			18°	
Lecat, 1949.	75.19 70.42	4.23 3.30	100		0.459
% b.t.	68.96 62.33	2.80	69.3 50. 0		.420 .398
	50.00	2.09 1.26	41.8	34	.386
0 118.8	33.22 26.18	0.63 0.54	33.2 26.1	.8	.376 .367
28 115.0 Az 100 128.6	19.68	0.42	19.8 14.9		.354 .349
	14.90 0	0.34 0.24	0	v	.226
Tetrahydrothiophene ($C_{\psi}H_{8}S$) + Propyl alcohol ($C_{3}H_{8}O$)					
Lecat, 1949					
% b.t.					
0 118.8 90 96.5 Az 100 97.2					

Ether ($C_{u}H_{10}0$) + m-Cresol ($C_{7}H_{8}0$)	Ether ($C_4H_{10}O$) + Pyrocatechol ($C_6H_6O_2$)
Weissenberger and Piatti, 1924	Walker, Collett and Lazzell, 1931
riol% p mol% p	mol% f.t.
18° 96.15 6.1 63.63 76.2 89.28 12.2 57.47 120.7 83.33 18.4 53.76 154.6 81.53 18.9 51.28 192.5 74.62 33.8 50.00 199.2 66.66 63.7 33.33 267.5	100.00 104.5 84.53 95.0 73.37 85.6 56.13 60.5 41.03 9.8
nol% η (water=1) mol% σ (water=1)	Wai
18°	Weissenberger, Henke and Bregmann, 1925
80.00 4.70 100 0.437 67.29 3.31 80.00 .425 64.28 418	mol% p η (water≈1)
59. 37	17° 44 138.7 2.9 0.34 40 161.9 2.4 0.33 34 210.9 0.3 29 245.2 1.0 0.31 22 285.3 0.7 0.30 20 295.1 0.6 0.30 18 300.7 0.5 0.29
Ether ($C_{k}H_{10}0$) + p-Cresol ($C_{7}H_{8}0$)	
Weissenberger and Piatti, 1924	Ether ($C_4H_{10}O$) + Resorcinol ($C_6H_6O_2$) Weissenberger, Henke and Bregmann, 1925
mol% p mol% p	mol% p η σ (water=l)
18°	(water=1)
96.15 5.7 53.76 161.1 89.28 11.6 51.28 188.6 83.33 14.4 50.00 198.1 80.00 14.9 40.00 237.8 74.62 28.3 33.33 268.2 66.66 58.6 28.00 289.8 57.47 118.3 63.66 71.3	46 112.4 - 0.42 40 150.4 6.0 - 34 195.0 2.8 0.34 25 255.9 1.1 0.30 20 286.6 0.6 0.28 18 - 0.5 0.26
mol% η (water=1) mol% σ (water=1)	
18° 18°	Ether ($C_{\mu}H_{10}0$) + Hydroquinone ($C_{6}H_{6}0_{2}$)
85.36 10.85 100 0.437 74.62 4.75 61.47 0.416 64.81 2.48 48.35 0.399	Walker, Collett and Lazzell, 1931
48.35 1.29 39.78 0.383 40.00 0.77 32.08 0.367	rol% f.t.
32.74 0.62 24.22 0.351 24.22 0.50 13.57 0.334 19.13 0.43 0 0.226 18.57 0.42 13.76 0.35 0 0.24	100.00 172.9 57.78 145.0 46.06 133.2 35.24 117.3 21.62 89.9

Ether ($C_4H_{10}0$) + o-Nitrophenol ($C_6H_50_3N$)

Shakhparonov and Martinova, 1953

mol%	g/1 Vap. phase	p	
0 2 5 8 10 12	0° 0.808 .7950 .7850 .7670 .7560 .7310	184.6 181.7 179.1 175.2 172.9 167.2	<u>.</u> , ,

Carrick, 1922

%	f.t.	%	f.t.	
100 90.23 82.79 71.38 58.12	44 37.5 33.2 27.8 21.9	44.75 37.27 30.95 27.41	15.8 10.5 5.5 1.0	

Ether ($\text{C}_{\text{4}}\text{H}_{\text{1 o}}\text{O}$) + m-Nitrophenol ($\text{C}_{\text{6}}\text{H}_{\text{5}}\text{O}_{\text{3}}\text{N}$)

Carrick, 1922

9.	f.t.	%	f.t.	_
100 91.42	93 83.0	63.89 58.96	39.5 26.5	
83.58 78.03	75.0	55.99	12.2	
72.92 68.02	68.0 59.0 48.5	54.17 51.44	$\begin{smallmatrix} 8.2 \\ 0.2 \end{smallmatrix}$	

Ether ($\rm C_4H_{1\ 0}0$) + p-Nitrophenol ($\rm C_6H_5\,0_3N$)

Carrick, 1922

%	f.t.	Я	f.t.	
109 90.92 35.51 79.23 71.38 66.89 62.64	114 101.9 97.1 87.8 70.5 59.9 46.8	59.89 58.20 57.07 56.74 55.06 53.11 52.31	38.1 31.7 28.7 24.1 18.0 10.1	

	Diethyl-carbitol ($C_8H_{18}O_3$) + m-Cresol (C_7H_8O)
Amyl ether ($C_{10}H_{22}0$) + Phenol ($C_{6}H_{6}0$)	Othmer, Savitt and al., 1949 (fig.)
Lecat, 1949	mol%(at b.t.) L V 760mm
% b.t.	20 4
0 187.5 78 180.2 Az 100 182.2	40 18 60 46 71 71 80 88
Amyl ether ($C_{10}H_{22}0$) + o-Cresol ($C_{7}H_{8}0$)	Diethyl-carbitol (C ₈ H ₁₈ O ₃) + p-Cresol
Lecat, 1949	Othmer, Savitt and al., 1949 (fig.)
% b.t.	mol%(at b.t.)
0 187.5 18 186.2 Az 100 191.1	L V 760mm
100 191.1	H II
Isoamyl ether ($C_{10}H_{22}O$) + Phenol ($C_{6}H_{6}O$)	20 6 40 19 60 48 72 72 80 87
Lecat, 1949	Dichlorethylether (ChH80Cl2) + Chlorphenol-o
% b.t.	(C ₆ H ₅ 0C1)
0 173.2 15 172.2 Az 100 182.2	Lecat, 1949
	% b.t.
Isoamyl ether ($C_{10}H_{22}O$) + o-Chlorphenol ($C_{6}H_{5}OC1$)	0 178.65 86 176.5 Az 100 176.8
Lecat, 1949	
% b.t.	Dichlorethylether ($C_uH_80C1_2$) + Phenol (C_6H_60)
0 173.2 30 171.0 Az	Lecat, 1949
0 173.2 30 171.0 Az 100 176.8	% b.t.
	0 178.65 40 178.2 Az 100 182.2

Butyl sulfide ($C_8H_{1.8}S$)(b.t.=185.0) + Phenols	Dichlorethyl sulfide (C ₄ H ₈ C1 ₂ S)(b.t.=216.8) + Phenols
Lecat, 1949	Lecat, 1949
2 nd comp. Az	l
Name Formula b.t. % b.t.	2 nd comp. Az
Phenol (C ₆ H ₆ O) 182.2 45 177.5	Name Formula b.t. % b.t.
o-Cresol (C ₇ H ₈ O) 191.1 25 183.8	m-5-Xy- (C ₈ H _{1 0} O) 226.8 90 227.5 lenol
o-Chlor- (C ₆ H ₅ OC1) 176.8 82 175.0 phen 01	m-4-Xy- (C ₈ H ₁₀ 0) 210.5 25 218.5
Isobutyl sulfide (C ₈ H ₁₈ S) (b.t.=172.0) + Phenols	p-Ethyl- (C ₈ H ₁₀ O) 228.8 58 220.3 phenol
Lecat, 1949	Guethol (C ₈ H ₁₀ O ₂) 216.5 58 215.2
2 nd comp. Az	Mesitol (C ₉ H ₁₂ O) 220.5 72 223.0
Name Formula b.t. % b.t.	o-Nitro- (C ₆ H ₅ O ₅ N) 217.2 52 215.5 phenol
Phenol (C ₆ H ₆ O) 182.2 28 170.5	
o-Chlor- (C ₆ H ₅ OC1) 176.8 28 169.5 phenol	Methylterpenylether (C ₁₁ H ₂₀ 0) (b.t.=216.2) + Phenols Lecat, 1949
	nd
Isoamyl sulfide (C ₁₀ H ₂₂ S) (b.t.=214.8) + Phenols	2 rd comp. Az
Lecat, 1949	Name Formula b.t. % b.t.
2 nd comp. Az	p-Ethyl- (C ₈ H ₁₀ 0) 218.8 14 216.2
Name Formula b.t. % b.t.	phenol
Guethol (C ₈ H ₁₀ O ₂) 216.5 - 214.2	p-Chlor- (C ₆ H ₅ OC1) 219.75 15 215.9 phenol
p-Ethyl- phenol (C ₈ H ₁₀ O) 218.8 23 213.5	o-Nitro- (C ₆ H ₅ O ₅ N) 217.2 28 215.9 pheno1
m-4-Xy- (C ₈ H ₁₀ 0) 210.5 88 209.5	
lenol	Methylisobornyl ether ($C_{11}H_{20}$ 0) + o-Cresol ($C_{7}H_{8}$ 0)
o-Nitro- (C ₆ H ₅ O ₃ N) 217.2 30 212.5 pheno1	Lecat, 1949
	% b.t.
	0 192.4 68 189.7 Az 100 191.1
	Methylisobornyl ether ($C_{1}_{1}H_{2}_{0}0$) + o-Bromphenol ($C_{6}H_{5}_{5}0Br$)
	Lecat, 1949
	% b.t.
	192.4

CINEOLE + PHENOL

	Cineole ($C_{10}H_{18}O$) + o-Cresol ($C_{7}H_{8}O$)
Cineole (C _{1 o} H _{1 8} O) + Phenol (C ₆ H ₆ O)	Bellucci and Grassi, 1913
Brauer	% f.t. % f.t.
mol % b.t.	
L V	100 30 30 46 90 20 20 35 80 10 10 10
10 mm	75 10 7.5 3
100 100 73.5 80 86.8 74.2 50 62.0 73.4	70 22 5 -3 60 40 2.5 -1.5 50 48 0 +1
50 62.0 73.4 20 29.0 62.6 0 54.6	40 50 (1+1)
	Morgan, 1936
	% f.t. % f.t.
Lecat, 1949	100 30 40 52 90 20 30 47 80 10 20 33
% b.t	80 10 20 33
0 176.35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
72 182.85 100 182.2	(1+1)
	Cineole (C ₁₀ H ₁₈ O) + m-Cresol (C ₇ H ₈ O)
Bellucci and Grassi, 1913	
% f.t. % f.t.	Bellucci and Grassi, 1913
100 42,5 38 +8	½ f.t. ½ f.t.
90 37.5 35 7.5 80 27 25 3	100 +4 40 -5 90 -1 30 -12 80 -6 25 -16
80 27 25 3 70 15 17 -14 60 -2 10 -7 55 -13 0 +1	l 80 -6 25 -16
70 15 17 -14 60 -2 10 -7 55 -13 0 +1 50 -2	70 -12 20 -13 65 -17 10 -6 60 -14 0 +1
	50 -6 (1+1)
	Cineole ($C_{10}H_{18}O$) + p-Cresol ($C_{7}H_{8}O$)
Brambilla, 1942	Bellucci and Grassi, 1913
# f.t. % f.t.	% f.t. % f.t.
0 0.9 50 -2.0 10 -6.8 55 -13.2	100 36 40 +1.5 90 30 35 0 80 17 30 -1.5
17 -13.9 60 -1.8 20 -5.0 70 +14.8	90 30 35 0 80 17 30 -1.5 70 -2 25 -5 5
38 8.1 90 37.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
40 -8.2 100 42.4	50 -1 0 +1 (1+1)
	Brambilla, 1942
	% f.t. % f.t.
	0 0.9 60 -13.1 10 -3.8 70 -2.0
	0 0.9 60 -13.1 10 -3.8 70 -2.0 20 -11.2 80 17.4 30 -1.3 90 29.3 40 -1.8 100 36.1
	40 -1.8 100 36.1 50 -1.0
	A10

	(C ₁₀ H ₁₈ O) +		phenol ($C_8H_{10}O$)
%	f.t.	%	f.t.
100 90 80 70 65 60 50	-30 - - - -25 -14.5	43 40 30 25 20 10	4.1 1.5 -8 -15 -15 -5 0.5 (1+1)

Cineole ($C_{10}H_{18}0$) + p-Ethyl phenol ($C_{8}H_{10}0$)

Morgan and Pettet, 1935

%	f.t.	¥.	f.t.	
100 90 80 70 64 47	44 36 25.5 7.5 -4.1	43.5 40 30 20 10 0	-4.5 -6.5 -13.5 -13.5 -3.5 +1	(1+1)

Cineole ($C_{10}H_{18}0$) + Thymol ($C_{10}H_{14}0$)

Bellucci and Grassi, 1913

%	f.t.	%	f.t.	
100 90 80 70 65 60 55	50 43 35.5 18.5 7 -2.5	50 40 30 25 20 10	+4.5 -1.5 -14 -16 -13 -7 +1	(1+1)

Cineole ($C_{10}H_{18}O$) + Hydroquinone ($C_{6}H_{6}O_{8}$)

Bellucci and Grassi, 1913

%	f.t.	E	%	f.t.	Е
100	170		35	117.5	103
90	165	95	30	103	100
80	161	95	26	106.5	-
70	156	103	2 0	101	-2
60	148.5	103	ĩŏ	86	-5
50	140	103	-5	71	-2
42	130	103	Õ	+1	
40	127	103	•	-	
				(1+1)

Cineole (C₁₀H₁₈0) + Pyrocatechol (C₆H₆0₂)

Bellucci and Grassi, 1913

f.t. E # f.t. E

100 104 - 42 39 31 90 99 31 40 38 0 80 94 31 30 30 -1 70 87 31 20 17 -2 60 76 31 10 4 -2 50 58 31 5 -2 - 47 44 31 0 +1 - 45 38 - (1+1)

Cineole ($C_{10}H_{18}0$) + Resorcinol (C_6H_60)

Bellucci and Grassi, 1913

%	f.t.	E	%	f.t.	Е
100 90 80 70 65 60 55 50 45 42	110 104 98 88 80 73 80 85 88 89	74 73 73 73 73 73 73 73 73	35 30 25 20 15 10 5 4 1	88 85 80 75 70 64 54 47 19	-2 -2 -2 -2 2

Brambil.	Brambilla, 1942				
%	f.t.	%	f.t.		
0 10 20 30 40 50	0.9 63.6 74.8 85.0 89.1 84.6	60 70 80 90 100	72.5 88.0 98.3 104.1 110.2		

CINEOLE + XYLENOL

444				CINEOL	E +
Cineole (C ₁₀ H ₁₈ 0)	o-4-Xyler	101 (C _B H ₁	0)	
Morgan a	nd Pettet,	1935			
%	f.t.	K	f.t.		_
100 90 80 70 60 56,5	63 59.5 51 40.9 26.5 13.5	50 40 30 20 10	11 -2.5 -15 -14 -6 +0.5		
Cineole ($C_{10}H_{18}0$) + m-2-Xylenol ($C_{8}H_{10}0$) Morgan and Pettet, 1935					
%	f.t.	%	f.t.		
100 90 80 70 60 50	45 41 35.5 27 15.0	44.2 40 30 20 10 0	12.0 11 7 -1 -4.5 +0.5	(1+1)	
Cineole ($C_{10}H_{18}O$) + m-4-Xylenol ($C_{8}H_{10}O$) Morgan and Pettet, 1935					
%	f.t.	%	f.t.		_
100 90 80 70 62.5 60 50	20 13 28 36 37.9 37.5 33.5	40 30 20 13 10 5	23 11 -4 -15 -7.5 -2 +0.5	(1+2)	
Morgan, 1936					=
%	f.t.	%	f.t.		_
100 90 80 70 60 50	20 15 31 36 38 32	40 30 20 10 0	24 8 -5 -2 +1	+2)	
					=

		· · · · · · · · · · · · · · · · · · ·		
Cineole (C ₁₀ H ₁₈ O) +	m-5-Xyler	101 (C ₈ H ₁₀ 0)
Morgan and	d Pettet, 1	935		
%	f.t.	Я	f.t.	
100	64.5	52.5	-2.5	
90	60.0	40	-2.5 -0.5	
80 7 0	52 40	25 20	-12.5 -12.5	
60	2 0	10	-12.3 -3	
50 45	-2 0	0	+0.5	
			(1+1)
Cincole (C 4 0 1	+ m=Vv:lone	1 / C 11 0	
Cinedie (C1 011 80 /	+ p-xyreno	1 (C ₈ H _{1 o} 0	,
Morgan ar	nd Pettet,	1935		
%	f.t.	K	f.t.	
100	72.5	43	26.8	
90	70	40	25.5 17	
80 70	65 57.5	30	17	
7 0 60	57.5 46.5	20 10	2	
50	25	ő	0.5	(1+1)
Cineole(C		2-Methyl-	4-ethyl phe	nol
Namaan an		1935		
<u>%</u>	f.t.	%	f.t.	
100	6	50	-8.5	
90	-1.5	40	-14.5	
85 80	-8 -12.5	35 30	-22 -24	
75	-2	20	-12.5	
70 63 8	+2 +4 1	10	-5.5 +0.5	
63.8 60	+4.1 +2.2	0		1421
			(1+2)
a		A W	·	1
Cineole(C	-	2-Methyl- (C ₉ H ₁₂ O)	6-ethyl phe	nol
Morgan an	d Pettet,	1935		
%	f.t.	Я	f.t.	
100	-8	46.9	-23.1	
90	-15,5	40	-27	
80 70	-27 5	30 20	-28 -18	
60	-30 -27 -24	10		
50	-24	0	-7.5 +0.5	(1+2)
				(172)

Cineole ($C_{10}H_{18}O$) + Methyl salicylate ($C_8H_8O_3$) Bellucci and Grassi, 1913 f.t. % f.t. +1 -22 -31 -38.5 -37.2 100 90 85 80 75 70 60 50 45 40 35 30 20 10 (1+1)Cineole ($C_{10}H_{18}0$) + Phenyl salicylate ($C_{13}H_{10}0_3$) Bellucci and Grassi, 1913 f.t. f.t. 42 35 28 21.5 14 7 100 90 80 70 40 30 **2**0 Cineole ($\text{C}_{\text{1 o}}\text{H}_{\text{1 8}}0$) $^{+\alpha}$ -Naphthol ($\text{C}_{\text{1 o}}\text{H}_{\text{8}}0$) Bellucci and Grassi, 1913 % f.t. f.t. 93.5 88 81.5 72 65 68 74 75 72 65 45 19.5 -2 +1 100 90 80 70 65 60 50 48 40 30 20 10 5 0 58 60 60 60 60 Cineole ($C_{10}H_{18}O$) + β -Naphthol ($C_{10}H_{8}O$) Bellucci and Grassi, 1913 f.t. f.t. E 100 122 114 90 80 70 60 55 50 48 42.5 43.5 43.5 43.5 43.5

(1+1)

Cineole ($C_{10}H_{18}O$) + Naphthyl salicylate ($C_{17}H_{12}O_3$)	Cineole ($C_{10}H_{18}O$) + o-Nitrophenol ($C_6H_5O_3N$)
Bellucci and Grassi, 1913	Bellucci and Grassi, 1913
% f.t. E % f.t. E	% f.t. E % f.t. E
100 90 - 40 49 -5 90 83 -5 30 37.5 -5 80 76.5 -5 20 24 -5 70 70 -5 10 -2 - 60 64 -5 5 -1 - 50 57 -5 0 +1 -	100 44 - 30 16 -6 90 40 -6 20 4 -6 90 36 -6 15 -2 -6 70 33 -6 10 -4.5 -6 60 30 -6 5 -1.5 -6 50 26.5 -6 0 +1 -
	Brambilla, 1942
Cineole ($C_{10}H_{18}O$) + o-Aminophenol ($C_{6}H_{7}ON$)	% f.t. % f.t.
Bellucci and Grassi, 1913	0 +0.9 60 29.8 10 -4.4 70 33.0 20 +4.1 80 36.3 30 15.9 90 40.2
% f.t. E % f.t. E	30 15.9 90 40.2 40 22.0 100 43.8 50 26.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cineole ($C_{10}H_{18}O$) + m-Nitrophenol ($C_{6}H_{5}O_{3}N$)
	Bellucci and Grassi, 1913
	% f.t. E % f.t. E
Cineole ($C_{10}H_{18}O$) + m-Aminophenol ($C_{6}H_{7}ON$) Bellucci and Grassi, 1923	100 96 - 40 16 -15 90 91 -15 30 -2 -15 30 85 -15 25 -12 - 70 75 - 20 -12 - 60 55 - 10 -4 -15
% f.t. E % f.t. E	50 35 -15 0 +1 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cineole ($C_{10}H_{18}O$) + p-Nitrophenol ($C_6H_5O_3N$)
	Bellucci and Grassi, 1913
	% f.t. E % f.t. E
	100 114 - 40 26 -16 90 107 -16 30 1 -16 90 99 -16 25 -11 - 70 99 - 20 -12 - 60 73 - 10 -5 -16 55 61 -16 0 +1 - 50 49 -16

Cineole ($C_{10}H_{18}O$) + Dinitro-o-cresol ($C_7H_6O_5N_2$)	Methyleugenol ether ($C_{11}H_{14}O_2$) + Eugenol ($C_{10}H_{12}O_2$)
Brambilla, 1942	Lecat, 1949
% f.t. % f.t.	% b.t. Ot mix.
0 +0.9 60 47.2 10 -6.8 70 58.1 20 -11.1 80 70.8 30 -12.3 90 79.9 40 +14.0 100 86.0 50 32.3	0 254.7 - 45 254.9 10.6 Az 100 254.8 -
Butylphenyl ether ($C_{10}H_{14}0$) + Resorcinol ($C_6H_60_2$)	Methylthymol ether ($C_{11}H_{16}O$) + Ethylphenol-p ($C_{8}H_{10}O$) Lecat, 1949
Lecat, 1949	% b.t.
% b.t. 0 286.5 83 275.0 Az 100 281.4	0 216.5 20 216.3 Az 100 213.8
100 281.4	Veratrole ($C_8H_{10}O_2$) + Phenol (C_6H_6O)
Butylphenyl ether ($C_{1\ 0}H_{1\ h}0$) + Pyrogallol ($C_6H_60_3$)	Paterno, 1895 % f.t. % f.t.
Lecat, 1949	0 22.53 17.17 7.71
6.t. 0 286.5 20 283.5 Az	1.72 21.19 21.26 2.47 3.59 19.89 24.04 -0.11 10.87 14.22 14.48 10.89
100 309	% f.t. % f.t.
Anethole ($C_{10}H_{12}0$) + Pyrocatechol ($C_{6}H_{6}0_{2}$) Lecat, 1949	69.94 -28.89 85.39 -9.92 72.68 -25.49 87.58 -8.12 75.13 -22.99 90.62 -5.66 78.22 -17.29 93.95 -3.39 81.77 -13.63 93.15 -0.62
0 235.7 25 233.0 Az 100 245.9	Veratrole ($C_8H_{10}O_2$) + Thymol ($C_{10}H_{1k}O$)
Ethylbenzyl ether (C ₉ H ₁₂ O) + Phenol (C ₆ H ₆ O)	Paterno, 1895
	g f.t. g f.t.
Lecat, 1949 % b.t.	0 22.53 4.62 20.53 0.54 22.23 11.94 16.92 1.11 22.05 17.99 13.43 2.40 21.45 23.91 5.33
0 195.0 93 181.9 Az 100 182.2	

Diethylresorcinol	ether (C ₁₀ H ₁₄ O ₂) + Pyrocatechol (C ₆ H ₆ O ₂)
Я	b.t.	
0 29 100	235.4 233.5 Az 245.9	

Giua and Marcellino, 1920

A.	f.t.	E	%	f.t.	E
0 9.59 14.27 23.21 26.68 33.58 37.42 42.11 45.39 49.98	54.4 52.6 50.5 47.2 45.7 42.5 40.4 37.4 38.1 39.5	37.0 37.2 37.1 37.2 37.0 36.8	50.02 50.05 52.15 55.12 60.38 65.91 69.54 73.30 76.19	40.8 40.7 41.3 47.1 60.2 70.0 75.0 81.5 85.2 122.0	41.4 36.6 41.4 41.4 41.0 36.6

(3+2)

Phenylether ($C_{1,2}H_{1,0}0$)(b.t.=259.0) + Phenols

Lecat, 1949

2nd Comp,			Az			
Name	Formula	b.t.	%	b.t.	sat.t.	
Pyro- catechol	C6H6O8	245.9	59.3	242.0	92	
Resor- cinol	C6H6O2	281.4	23	255.65	93	
Eugenol	C ₁₀ H ₁₂ O ₂	254.8	37	254.7	-	

 $\beta\text{-Naphthyl}$ methyl ether ($C_{1\,1}H_{1\,0}0$)+ Picric acid ($C_6H_30_7N_3$)

Giua and Marcellino, 1920

%	f.t.	Е	%	f.t.	E
0	70.9	_	55.40	113.0	90
8.35	68.2	67.4	59.16	113.3	11
20.25	80.2	"	61.13	113.3	71
24.38	87.2	11	63.39	112.8	31
33.15	98.0	n	66.41	111.5	11
33.30	98.0	11	68.68	110.3	11
38.97	102.5	11	77.17	105.3	n
45,9	108.0	11	84.86	102.0	77
48.62	110.3	90	100	122.0	Ħ
51,23	112.0	70			
01.23	112.0	-		(1+1)	

o-Chloranisole (C_7H_70C1) + o-Creso1 (C_7H_80)

Lecat, 1949

K	b.t.	
0· 80 100	195.7 189.8 Az 191.1	

p-Bromphenetole ($\rm C_8H_90Br$) + Pyrocatechol ($\rm C_6H_60_2$)

Lecat, 1949

%	b.t.	
0 20 100	234.2 231.5 Az 245.9	

p-Bromphenetole ($\rm C_8H_90Br$)+ o-Xylenol asym. ($\rm C_8H_{1\,0}O$)

Lecat, 1949

%	b.t.	· · · · · · · · · · · · · · · · · · ·
0 88 100	234.2 228.0 Az 226.8	

Safrole (C. H.	00 ₂) + Phenol (C4H4O)	Dimethvl	pyrone (C,H ₈ O ₂) + o-Cres	ol (C ₇ H ₈ O)
.,,			Kendall	,		, ,
Brauer, 1929			mo1%	f.t.		f.t.
×	mo1%	b.t./ 10mm	0		63.4	49.4
100 80 50 0	100 87.3 65.6	72.0 73.7 77.4 105.2	10.5 20 30.5 38.6 44.8 47.6 50.8	132.1 126.5 119.5 105.5 91.1 74.3 64.0 54.3 (1+1)	66.6 70.5 76.0 79.4 82.8 84.8 86.1	50.4 49.2 43.2 37.0 27.5 21.8 16.6
Safrole (C ₁₀ H ₁	002) + Pyrocatec	hol (C ₆ H ₆ O ₂)	53.4 56.9 60.4	53.5 51.5 47.2 47.2 (1+2)	86.1 89.0 94.5	16.6 21.0 26.9
Lecat, 1949			60.4	47.2 (1+2)	100	30.3
%	b.t.	Sat.t.				
0 23 100	235.9 233.55 245.9	71 Az	Dimethyl	pyrone (C ₇ H ₈ O ₂) + m-Cres	ol (C ₇ H ₈ O)
			Kendall	, 1914		
Softmale (C. II	a Yantut I	• • • • • • • •	mol%	f.t.	mol%	f.t.
Lecat, 1949	10U2) + Etnylsal	icylate (C ₉ H ₁₀ O ₃)	0 15 25.6 35.2 41.3	132.1 123.0 112.0 97.2 84.2	58.4 61.8 65.3 68.0 71.6	21.3 (1+2) 23.9 25.0 25.3 23.7
%	b.t.	Dt mix.	46.4 50	69.8 55.6	77.0 81.0	17.4 9.5
0 50 82 100	235.9 233.78 233.8	-0.3	54.1 56.1 59.0	35.3 24.7 4.3	85.7 90.5 95.2 100	5.0 -1.2 6.1 10.9
Isosafrole (C ₁	₀ H ₁₀ O ₂) + Pyroca	atechol ($C_6H_6O_2$)		pyrone (C ₇ H ₈ O ₂) + p-Cres	sol (C ₇ H ₈ O)
Lecat, 1949			Kendall			
K	b.t.		mo1%	f.t.	mo1%	f.t.
0 70 100	252.0 242.7 Az 245.9		0 11.4 22.8 32.4 38.6 45.1	132.1 125.5 115.0 102.0 90.2 73.6	63.0 64.2 66.8 68.4 70.8 74.1	19.6 19.6 (1+2) 20.3 19.7 17.5 11.2
	0H1002) + Eugene	ol (C ₁₀ H ₁₂ O ₂)	49.0 51.8 55.1 58.5 61.3	59.6 46.6 31.8 25.7 (1+1)	76.7 82.9 86.7 92.9	1.2 -0.5 14.6 26.6
Lecat, 1949	•		01.3	22.4	100	34.1
<u> </u>	b.t.	Dt mix.				
0 8 80 100	252.0 251.95 - 254.8	0				
			Di .			

450	PH	ENYLT	ETRAME	THYLTE	TRAH	YDROPYR	ANE +
	ramethylt	+		C ₁₅ H ₂₂ O) thol (C ₆ H	1	Phenyltet Resorcino Bennett	1 (C ₆ H ₆
Beillett a	iliu maili,	1900				mo1%	f.t.
mol%	f.t.	E	mo1%	f.t.	Е	100	110.1
100 78.7 61.4 56.7 52.4 48.6 (1+1)	104.7 94.6 82.6 78.2 77.6 77.9	103.9 74.7 75.3 75.2 74.4 65.8	41.8 33.5 19.6 11.5 6.3	76.7 73.2 63.1 53.9 54.8 57.5	51.5 50.9 51.1 50.9 50.7 56.2	76.5 62.0 51.5 45.3 39.7 32.1 (2+1)	96.5 83.9 69.2 63.2 65.8 67.1
Pheny ltet	ramethylt			C ₁₅ H ₂₂ O)		(Tetramet	•
Bennett a	ınd Wain,		α-Naphth	iol (C _{1 o} H	80)	Bennett	and Wai
						mol%	f.t.
mo1%	f.t.	E	mol%	f.t.	Е	I — — —	
100 87.9 74.7 65.0 59.6 54.2	96.2 90.2 78.8 67.0 65.9 68.0	95.1 62.1 61.6 61.8 61.3 61.4	47.1 39.4 27.8 19.9 9.9	68.4 65.8 58.8 50.9 53.8 57.5	48.6 48.0 48.3 48.1 48.3 56.2	100 74.9 58.2 48.4	104.7 94.4 86.8 80.8
(1+1)							

Phenyltetramethyltetrahydropyrane ($\text{C}_{1\,5}\text{H}_{2\,2}0$)

+ β -Naphthol ($C_{10}H_{8}O$)

Bennett and Wain, 1936

mo1%	f.t.	E	mo1%	f.t.	Е
100	120.8	119.5	35.9	42.7	35.2
81.0	108.4	36.9	20.5	48.4	37.4
58.8	85.3	37.1	8.2	54.2	37.6
50.8	74.5	37.3	0	57.6	56.2

Itetrahydropyrane ($C_{15}H_{22}0$) + (60₂)

n, 1936

mo1%	f.t.	Е	mol%	f.t.	<u>E</u>
100 76.5 62.0 51.5 45.3 39.7 32.1 (2+1)	110.1 96.5 83.9 69.2 63.2 65.8 67.1	109.0 60.4 58.4 59.5 59.3 60.4 63.1	27.9 21.3 15.3 11.5 7.0	64.3 64.6 60.2 54.3 55.1 57.5	52.7 52.1 52.7 51.9 51.6 56.2

bitolyl cyclic oxide ($C_{18}H_{20}0$) + $C_6H_6O_2$)

in, 1936

mo1%	f.t.	Е	mol%	f.t.	Е
100	104.7	103.9	41.9	77.1	73.6
74.9	94.4	73.9	26.3	79.8	74.2
58.2	86.8	74.0	14.5	85.5	73.9
48.4	80.8	73.8	0	91.8	90.0

(Tetramethyl) bitolyl cyclic oxide ($C_{1\,8}\mathrm{H}_{2\,0}0$) + α -Naphthol ($C_{10}H_{8}0$)

Bennett and Wain, 1936

mol%	f.t.	Е	mo1%	f.t.	E
100 84.3 71.0 63.2 52.3 42.9	96.2 88.1 79.0 71.4 70.5 74.1	95.1 65.2 65.4 65.7 64.8 64.6	34.3 33.0 28.8 24.1 18.0	75.7 76.2 76.4 79.4 82.6 91.8	70.2 73.6 72.5 72.8 72.7 90.0
(2+1)	7 6°	(incong	ruent)		

Ethyl ether ($\text{C}_{\text{h}}\text{H}_{\text{10}}\text{O}$) + Formic acid ($\text{CH}_{\text{2}}\text{O}_{\text{2}}$)

Udovenko and Airapetova, 1947

mo 1%	d	η	н	
100.00 98.30 95.57 92.03 82.51 72.75 63.81 52.65 35.78 23.95 21.67	1.2375 1.0467 1.0618 0.9949 0.9445 0.8933 0.8297 0.7922 0.7897 0.7744	2821.0 	0.739 0.596 0.497 0.387 0.175 0.092 0.043 0.029 0.009 0.001	
0.00	0.7323 25°		-	
100.00 98.30 95.57 92.03	1.2088 - 1.1193	1537.2 - 1303.8	1.245 0.991 0.835 0.639	
82.51 72.75 63.81 52.65	1.0334 0.9684 0.9182 0.8682	1025.1 808.9 653.1 509.9	0.283 0.143 0.068 0.044	
35.78 23.95 21.67 13.98 0.00	0.8036 0.7674 0.7618 0.7478 0.7048	377.6 318.0 310.7 292.8 246.1	0.015 0.001 0.001	
0.00	0.7046	240.1		

Ether ($\text{C}_4\text{H}_{1\,0}0$) + Acetic acid (C_2H_40_2)

Pickering , 1893.

%	f.t.	%	f.t.
98. 926 97. 939 96. 772 95. 775 94. 546 92. 469 80. 756 86. 754 83. 484 81. 251 78. 649 76. 209 73. 545 71. 063 68. 742 66. 269 64. 247 61. 562 58. 799 55. 811 53. 774 51. 279	+16.626 +16.06 15.57 14.47 13.80 12.83 11.35 9.71 8.21 6.61 5.06 3.58 +1.90 -0.32 -1.25 2.02 3.48 6.55 8.37 10.88 12.48 -14.30	49.005 46.726 40.940 40.947 40.987 39.049 36.175 33.951 30.384 28.205 24.550 22.762 20.536 18.647 17.102 14.775 14.445 13.807	- 16. 57 18. 23 19. 75 22. 35 22. 67 24. 87 28. 67 31. 27 33. 87 37. 45. 47 49. 97 55. 27 58. 47 62. 97 63. 47 - 66. 47

mo 1%	f.t.	E	tr.t.	
100	16.5	_	_	
72.28	-3,0	-120	-	
73,7 3	-4.0	11	-126	
49.55	-28.0	11	1)	
26.27	-57.0	17	-125	
17.62	- 77.0	11	-126	
6.82	-116	"	Dr T	
3.74	-	**	н	
0	-	ıı	-	

Smyth and Rogers, 1930

mo1%		d		
	0°	10°	2 0 °	30°
0 3.39 6.73 10.39 12.69 35.49 52.33 71.98 100.00	0.7370 .7364 .7532 .7619 .7669 .8259 .8731 .9450	0.7254 .7276 .7414 .7504 .7556 .8146 .8628 .9342 1.0607	0.7137 .7189 .7295 .7387 .7442 .8032 .8526 .9234 1.0491	0.7021 .7102 .7176 .7271 .7328 .7918 .8424 .9126 1.0376

Pucarieff, 1932	Ether ($C_{ij}H_{10}0$) + Butyric acid ($C_{ij}H_{8}0_{2}$)
η 0° 10° 18° 20° 30° 40° 50°	Konovalov, 1907
0° 10° 18° 20° 30° 40° 50°	% p % p
0 263.1	7 p % p 18.1°
15.5 366.5	
40.26 409.6	19.81 341.5 69.36 132.9
56.49 654.0 599.0 549.8 545.1 483.0 - 393.7	30.50 301.0 80.50 83.3 49.65 222.3
63,93 812,9 744.7 - 664.1 595,3 521.5 466.5 71.06 726.8	
74.9 1142.8 996.9 737.6 662.1 587.7 76.74 821.3	
79.47 811.2 83.75 937.0	February (CH O) A Techneturic poid (CHO)
83.93	Ether ($C_{\mu}H_{10}0$) + Isobutyric acid ($C_{\mu}H_{8}O_{2}$)
88.12 1147.4	Konovalov, 1907
100.00 - 1664.7 1345.0 1296.0 1099.6 960.1 828.8	% p % p
	18,1°
Rogers and Smith, 1930.	0 413.6 50.71 216.4
	21.49 334.9 66.70 146.4 33.30 300.1 73.89 114.4
mol% ε 0° 10° 20° 30°	70.07
$ \begin{array}{ccccccccccccccccccccccccccccccc$	Ether ($C_4H_{10}O$) + 1-Methylcaproic acid ($C_7H_{14}O_2$)
6.73 .869 .671 .462 .276 10.39 .966 .749 .542 .348	
12.69 5.015 .797 .593 .406 35.49 .489 5.275 5.072 .880	Professional W
52.33 .793 .606 .428 5.266 71.09 6.28 6.12 97 .81	Rule, Smith and Harrower, 1933
100.0007 6.13 6.20	mol% (α) ^{mol} mol% (α) ^{mol} 5461
يك ها والواق الواق 20°	
Ether ($C_4H_{10}L$) + Propionic acid ($C_3H_6O_2$)	2.3 33.3 14.7 34.96
	2.3 33.3 14.7 34.96 5.3 34.3 20.7 34.70 7.2 34.7 33.4 33.56
Schmidt, 1891	9.4 35.1 100.0 32.15
100 337.6 24.74 231.9	Ether ($C_4H_{10}O$) + Oleic acid ($C_{18}H_{34}O_2$)
0 193.8	
	Dornte, 1929
	% p % p
	30°
	95.04 96.7 62.60 414.9
	92.82 119.9 38.07 535.6 85.64 217.9
	76.45 303.2 0 642.1

Hoerr and Harwood, 1952	Ether ($C_4 \dot{H}_{10} 0$) + Dichloracetic acid ($C_2 H_2 O_2 C I_2$)
% f.t. % f.t.	Konovalov, 1907
1.2 -40 37.5 -10	mol% p mol% p
4.1 -30 66.1 0 15.0 -20 89.7 +10	18.1°
	0 413.6 39.81 152.6 15.0 343.1 44.54 95.6 31.89 217.8 66.56 13.0
Campbell, 1915	mol% Q mix.
% d % d	79.94 752
30° 100 0.8859 59.09 0.8118 90.48 .8690 46.71 .7896 75.45 .8429 0 .7010	66.49 1107 50.27 1361 33.60 1129 20.72 793
Ether (C ₄ H ₁₀ O) + Malonic acid (C ₃ H ₄ O ₄)	Weissenberger, Schuster and Pamer, 1925
	mol% p Q mix mol% p Q mix
Klobbie, 1897	20°
% f.t. % f.t.	0 442.4 - 40 116.7 1419 10 365.0 355 50 51.3 1350
6.255 0 10.49 30 7.49 10 35.20 83 7.79 14 54.75 106 8.15 13 80.15 123	20 - 710 60 - 1100 30 202.4 1065 70 6.7 785
Ether ($C_{\nu}H_{10}0$) + Monochloracetic acid ($C_{2}H_{3}O_{2}C1$)	Ether ($C_{11}H_{10}0$) + Trichloracetic acid ($C_{2}H0_{2}Cl_{3}$) Konovalov, 1907
Konovalov, 1907	18.1°
mol% p mol% p 18.1° 0 413.6 37.69 229.4 15.20 351.0 49.39 155.7 24.34 306.9 58.65 104.0	0 413.6 23.35 276.8 34.20 203.9 41.70 126.5 49.13 47.4
Weissenberger, Schuster and Pamer, 1925	Tsakalotos,1910
mol% p mol% p	% d % d
20°	18°
0 442.4 30 228.1 10 381.0 40 176.4 20 299.0 50 131.2	0 0.7165 44.76 0.8930 17.63 .8115 62.63 1.159 31.78 .8990 74.60 1.314

ETHER + BENZOIC ACID

Walanahaman Cabuston and Demon 1925	Timofeev, 1905
Weissenberger, Schuston and Pamer, 1925	% U
mol% p	20°
20° 0 442.4 10 266.0	0 0.539 22.8 0.552
30 202.8 40 116.0 50 31.7	% Q mix(by mole acid) initial final
Ether ($C_4H_{10}O$) + Benzoic acid ($C_7H_6O_2$)	1.54 -2.33 1.54 4.5 -2.38 4.5 7.3 -2.46 7.3 9.9 -2.57
Beckmann, 1890	
% b.t. % b.t.	Ether (C_4H_{100}) + Salicylic acid ($C_7H_6O_3$)
0 34.97 6.42 36.092 1.24 35.192 11.91 37.019 3.32 35.561 18.10 38.112	Tammann and Hirschberg, 1894
	% v ^t /v ⁰ 10° 20° 30°
Gilbault, 1897	0 1.01532 1.03147 1.04851 33.19 1.01257 1.02577 1.03962
% T.C.V. P.C.V.	
0 189.9 36.8 5.0957 221.9 57.0 22.691 261 71.8	Ether ($C_4H_{10}O$) + o-Nitrobenzoic acid ($C_7H_5O_4N$) Collett and Lazzell, 1930
Carroll, Rollefson and Mathews, 1925	mol% f.t. mol% f.t.
₹ f.t.	
18.9 29.0 0 25	100.00 147.7 50.81 104.1 82.90 135.2 22.81 55.8 68.17 123.5 12.25 32.7 53.52 107.9
Tammann and Hirschberg, 1894	Ether ($C_{4}H_{10}O$) + m-Nitrobenzoic acid ($C_{7}H_{5}O_{4}N$)
% v ^t /v ⁰ 10° 20° 30°	Collett and Lazzell, 1930
0 1.01532 1.03147 1.04851	mol% f.t. mol% f.t.
20.28 .01335 .02795 .04236 100 .01427 .02960 .04550	100.00 142.4 41.80 89.6 86.36 133.0 35.96 81.9 71.98 122.2 29.80 71.9 61.51 113.0 21.33 52.0 48.82 98.4

Ether ($C_4H_{10}O$) + p-Nitrobenzoic acid ($C_7H_5O_1N$)	Amyl ether ($C_{10}H_{22}0$) (b.t.=187.5) + Acids.
Collett and Lazzell, 1930	Lecat, 1949 2 nd comp. b.t. % b.t. Dt mix
mol% f.t.	Valeric (C ₅ H ₁₀ O ₂) 186.35 45 181.5 -0.4
100.00 239.9	Acid (50%)
25.46 5.37 187.6	Isovaleric
	Chlor- (C ₂ H ₃ O ₂ C1) 289.35 50 184.3 - acetic acid
Lecat, 1949	
Butyl ether (C ₈ H ₁₈ O) (b.t.=142.4) + Acids.	Isoamyl ether ($C_{10}H_{22}0$) (b.t.=173.2) + Acids
2 nd comp. Az	Lecat, 1949 2 nd comp. Az
Name Formula b.t. % b.t. Dt mix	No.
Propionic (C ₃ H ₆ O ₂) 141.3 45 136.0 -1.0 acid (50%)	b.t. bt.mix.
Isobutyric ($C_4H_8O_2$) 154.6 22 140.5 -0.3	Butyric (C _h H ₈ O ₂) 164.0 500.4 acid 54 161.8 -
acid (15 $\%$) Pyruvic ($C_3H_h\theta_3$) 166.8 15 138.0 -	Isobutyric (C _u H ₈ O ₂) 154.6 800.2 acid 93 154.2 -
acid	Valeric (C ₅ H ₁₀ O ₂) 186.35 100.2 acid 12.5 171.8 -
	Isovale- $(C_5H_{10}O_2)$ 176.5 35 169.0 -0.3
Isobutyl ether ($C_8H_{18}O$) + Acetic acid ($C_2H_4O_2$)	Chloracetic acid (C ₂ H ₃ O ₂ C1) 189.38 16 171.95 -
Lecat, 1949	
% b.t.	Monochloracetal ($C_6H_{13}O_2C1$) + Isobutyric acid ($C_4H_8O_2$)
0 122.3 48 113.5 Az 100 118.1	Lecat, 1949
	% b.t.
Isobutyl ether ($C_8H_{18}O$)+ Propionic acid ($C_5H_6O_2$)	0 157.4 82 154.3 Az 100 154.6
Lecat, 1949	
% b.t. Dt mix.	
0 122.3 -	
10 121.5 -0.3 141.3 -0.3	

Ethyl sulfide ($C_h H_{10} S$) + Formic acid ($C H_2 O_2$)	Butyl sulfide ($C_8H_{1.8}S$) + Isovaleric acid ($C_5H_{1.0}O_2$)
Lecat, 1949	Lecat, 1949
g b.t.	% b.t.
0 92.1 35 82.2 Az 100 100.75	0 73 100 175.0 176.5
Ethyl sulfide ($C_4H_{10}S$) + Acetic acid ($C_2H_4O_2$)	
Lecat, 1949	Isobutyl sulfide ($C_8H_{1.8}S$) + Butyric acid ($C_4H_8O_2$)
% b.t.	Lecat, 1949
0 92.1 10 91.5 Az 100 118.1	g b.t.
	0 78 162.5 Az 100 164.0
Lecat, 1949 Propyl sulfide ($C_6H_{1.4}S$) (b.t.=141.5) + Acids.	Isoamyl sulfide ($C_{10}H_{22}S$)+ Caproic acid ($C_{6}H_{12}O_{2}$)
2 nd comp. Az	Lecat, 1949
Name Formula b.t. % b.t.	% b.t.
Formic (CH_2O_2) 100.75 83 98.0 acid	0 214.8 95 204.5 Az 100 205.15
Acetic ($C_2H_4O_2$) 118.1 83 116.9 acid	
Propionic (C ₃ H ₆ O ₂) 141.3 45 136.5 acid	Allyl sulfide ($C_6H_{10}S$) (b.t.=139.35) + Acids. Lecat, 1949
Isopropyl sulfide ($C_6H_{14}S$) + Formic acid (CH_2O_2)	2 nd comp. Az
• •	Name Formula b.t. % b.t.
Lecat, 1949	Formic (CH ₂ O ₂) 100.75 80 97.5 acid
δ b.t. 0 120.5	Acetic (C ₂ H ₄ O ₂) 118.1 78.5 116.55 acid
0 120.5 62 93.5 Az 100 100.75	Propionic (C ₃ H ₆ O ₂) 141.3 40 134.6
Isopropyl sulfide ($C_6H_{14}S$) + Acetic acid ($C_2H_{4}O_2$)	
Lecat, 1949	
ß b.t.	
0 120.5 48 111.5 Az 100 118.1	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & \\ \hline & & & & $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0 203.8
100 200 - 35 124 - 30 186 5 - 13 30 82 - 1 100 200 - 35 124 - 30 186 5 - 13 30 82 - 1 100 180 - 13 25 36 - 30 171 - 13 20 - 13 - 5 - 1 30 160 - 13 10 - 5 - 1 40 142 - 13 0 + 10 - 10
Lecat, 1949 Cineole (C ₁₀ H ₁₈ O) + Valeric acid (C ₅ H ₁₀ O ₂) Cineole (C ₁₀ H ₁₈ O) + p-Oxybenzoic acid (C ₇ H ₆ O ₃
Lecat, 1949 Solution Cineole ($C_{10}H_{18}O$) + p-Oxybenzoic acid ($C_{7}H_{6}O_{3}$) Solution Dt mix.
Bellucci and Grassi, 1913
0 176.35 - % f.t. E % f.t. F
100 +1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Lecat, 1949 Anisole (C ₇ H ₈ 0) (b.t.=153.85) + Acids. Lecat, 1949
% b.t. Dt mix. 2 nd comp. Az
0 176.35 - Name Formula b.t. % b.t. Dt mi 100 176.5 - 176.5
Propionic (C ₃ H ₆ O ₂) 141.3 87 141.17 -0 acid (4
Butyric (C ₄ H ₈ O ₂) 164.0 12 152.85 -0 (1
Isobutyric ($C_4H_8O_2$) 154.6 42 149.0 -1 (5
Pyruvic (C ₃ H ₄ O ₃) 166.8 28 148.5 -

Phenetole	$(C_8H_{10}O) + Acetic acid (C_2H_4O_2)$
Beckmann,	1888
	Ø Df.t.
	98.97 -0.324
	94.71 1.602 91.52 2.522
	91.52 2.522 85.53 4.162 81.33 5.252
Phenetale	$(C_8H_{10}O) + Butyric acid (C_4H_8O_2)$
i nene tore	(Cantoo) , Butylic acid (Chubos)
1 10	240
Lecat, 19	74Y
R	b.t. Dt mix.
_0	170.45
50	0.1
50 65 100	162.35 Az -0.1 164.0 -
50 65 100 Phenetole Lecat, 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50 65 100 Phenetole	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50 65 100 Phenetole Lecat, 1	162.35 Az -0.1 162.35 Az - (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix.
50 65 100 Phenetole Lecat, 1 % 0 20 23	162.35 Az -0.1 164.0 -0.1 (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix.
50 65 100 Phenetole Lecat, 1	162.35 Az -0.1 162.35 Az - (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix.
50 65 100 Phenetole Lecat, 1 %	162.35 Az -0.1 162.35 Az - 164.0 - (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix. 170.450.3 168.5 Az - 176.5 - c (C ₈ H ₁₀ 0) + Stearic acid (C ₁₈ H ₃₆ 0 ₂)
Phenetole Lecat, 1	162.35 Az -0.1 162.35 Az - 164.0 -0.1 (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix. 170.45 -0.3 168.5 Az -0.3 176.5 - 2 (C ₈ H ₁₀ 0) + Stearic acid (C ₁₈ H ₃₆ 0 ₂)
50 65 100 Phenetole Lecat, 1 % 0 20 23 200 Phenetole Eykman,	162.35 Az
50 65 100 Phenetole Lecat, 1 % 0 20 23 200 Phenetole Eykman,	162.35 Az -0.1 162.35 Az - 164.0 - (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix. 170.45 -0.3 168.5 Az - 176.5 - c (C ₈ H ₁₀ 0) + Stearic acid (C ₁₈ H ₃₆ 0 ₂) 1889 f.t. \$ f.t.
Phenetole Lecat, 1	162.35 Az -0.1 162.35 Az - 164.0 -0.1 (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix. 170.45 -0.3 168.5 Az -0.3 176.5 - 2 (C ₈ H ₁₀ 0) + Stearic acid (C ₁₈ H ₃₆ 0 ₂)
50 65 100 Phenetole Lecat, 1 % 0 20 23 200 Phenetole Eykman,	162.35 Az -0.1 162.35 Az - 164.0 - (C ₈ H ₁₀ 0) + Isovaleric acid (C ₅ H ₁₀ 0 ₂) 1949 b.t. Dt mix. 170.45 -0.3 168.5 Az - 176.5 - c (C ₈ H ₁₀ 0) + Stearic acid (C ₁₈ H ₃₆ 0 ₂) 1889 f.t. \$ f.t.

ACETIC	ACID				
Propylpho	enyl ether (С9Н120		leric aci ₅ H _{1 O} O ₂)	đ
Lecat,	1949				
%	b.	t.			
0 58 100	190 184 186	.5 .3 Az .35			
	enyl ether (C ₉ H ₁₂ O)		ocaproic ₆ H ₁₂ O ₂)	acid
Lecat,					
		b.t.		-	
10 100	19	90.5 90.0 Az 99.5			
Anethole Eykman,	(C _{1 O} H _{1 2} O)	+ Lauric	acid	(C ₁₂ H ₂₄	02)
%	f.t.	K	f	.t.	
100 96.21 91.48	43.4 42.25 40.79	86.46 81.76 77.9	3 3 3	9.26 7.90 6.76	
Anethole	e (C ₁₀ H ₁₂ O) 1949	(b.t.=23	5.7)	+ Acids.	
	2 nd comp.		Az	·	
Name	Formula	b.t.	%	b.t.	
Caprylic acid	(C ₈ H ₁₆ O ₂)	238.5	35	234.0	
Benzoic acid	(C ₇ H ₆ O ₂)	250.4	12	234.6	
Levulini acid	c (C ₅ H ₈ O ₃)	252	22	232.0	
					

Methyl-p-cresyl ether ($C_8H_{10}O$) + Valeric acid ($C_5H_{10}O_2$)	Ethylbenzyl ether ($C_9H_{12}O$) + Valeric acid ($C_5H_{10}O_2$)
Lecat, 1949	100
% b.t.	Lecat, 1949
0 177.05 22 176.0 Az	% b.t.
22 176.0 Az 100 176.35	0 185.0 40 180.5 Az 100 186.35
Methyl-p-cresyl ether ($C_8H_{10}O$) + Isovaleric acid ($C_5H_{10}O_2$) Lecat, 1949	Methylthymol ether ($C_{11}H_{16}O$) + Caprylic acid ($C_{8}H_{16}O_{2}$)
% b.t.	Lecat, 1949
0 177.05 45 172.0 Az 100 176.5	% b.t.
100 172.0 AZ 176.5	0 216.5 15 215.0 Az 100 222.0
Methylbenzyl ether ($C_8H_{10}O$) + Butyric acid ($C_4H_8O_2$) Lecat, 1949	Methyleugenyl ether ($C_{10}H_{12}O_2$) + Benzoic acid ($C_7H_6O_2$)
% b.t.	Lecat, 1949
0 167.8 ,55 160.0 Az	% b.t. Sat.t.
55 160.0 Az 164.0	0 254.7 89 250.6 117 Az
Methylbenzyl ether ($C_8H_{10}O$) + Isovaleric acid ($C_5H_{10}O_2$)	
Lecat, 1949	Methylisoeugenyl ether ($C_{10}H_{12}O_2$) + Phenylacetic
g b.t. Dt mix.	acid ($C_8 ext{H}_8 ext{O}_2$) Lecat, 1949
0 167.8 22 167.0 Az -	4
100 176.5 -0.3	0 270.5
	60 100 265.4 266.5 48.5 Az

Veratrole ($C_8H_{10}O_2$) + Acetic	acid (C ₂ H ₄ O ₂)	Isosafrole (C ₁₀ H ₁₀ O ₂)(b.t.=25 Lecat, 1949	2.0) + Acids.
		2 nd comp.	Az
Paterno, 1895		Name Formula b.t.	% b.t. Sat.t.
% f.t. %	f.t.	Pelargonic (C ₉ H ₁₈ O ₂) 254.0	35 249.5 -
0 22.53 5.31 0.35 22.22 7.64 0.93 21.69 10.43 1.96 20.81 16.31	18.25 16.63 14.88	acid Benzoic ($C_7H_6O_2$) 250.8 acid	53.5 246.5 89
1.96 20.81 16.31 3.26 19.80	11.43	Phenyl- (C ₈ H ₈ O ₂) 266.5 acetic acid	13 250.8 -
Veratrole (C ₈ H ₁₀ O ₂) + Valerio	c acid (C ₅ H ₁₀ O ₂)		
		Diphenyl ether (C ₁₂ H ₁₀ 0) (b.	t.=259.0) + Acids.
Paterno, 1895		Lecat, 1949	
% f.t. %	f.t.	2 nd comp.	Az
0 22.53 5.75	19.52	Name Formula b.t.	% b.t. Sat.t.
0.50 22.23 9.03 1.00 21.90 16.13 1.76 21.42 29.05	17.94 15.09 10.08	Pelargonic ($C_9H_{18}O_2$) 254.0 acid	55 2 50.5 -
3.63 20.58		Caprinic $(C_{10}H_{20}O_2)$ 268.8 acid	12 258.0 -
		Benzoic $(C_7H_6O_2)$ 250.8 acid	59 247.3 99
Veratrole ($C_8H_{10}O_2$) + Trichlo (C_2HO_2C		Phenyl- ($C_8H_8O_2$) 266.5 acid	27.8 255.05 306
Pushin and Rikovski, 1935			
mol% f.t. E n	nol% f.t. E	Phenylbenzyl ether (C ₁₃ H ₁₂ 0)	+ Phenylacetic acid (C ₈ H ₈ O ₂)
100 56.5 - 90 49.5 - 80 37 8	50 28 - 40 23 -	Lecat, 1949	
80 37 8 70 19 12.5 65 18 12	30 12 3 20 10.5 3.5 10 17 -	% b.t.	
60 23 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
(1+1)		0 286.5 90 266.0 100 266.5	Az
Safrole (C ₁₀ H ₁₀ O ₂ Xb.t.=235.9)	+ Acids.		
Lecat, 1949			
2 nd comp.	Az	Dioxane (C ₄ H ₈ O ₂) + Formic ac	id (CH ₂ O ₂)
Name Formula b.t.	% b.t. Sat.t.		
Heptanoic (C ₇ H ₁ 40 ₂) 222.0 acid	85 221.7 -	Lecat, 1949 % b.t.	Dt mix
Caprylic ($C_8H_{16}O_2$) 238.5 acid	42 232.5 -	0 101.35	
Benzoic (C ₇ H ₆ O ₂) 250.8	12.5 234.75 47	43 113.35 50 100.75	5 Az – +8 0
Levulenic ($C_5H_8O_3$) 252 acid	17 232.5 -	100.73	_

Dioxane ($C_kH_8\theta_2$) + Acetic acid ($C_2H_k\theta_2$)	Allard and Wenzke, 1934		
Lecat, 1949	mol% molar refraction of acetic acid		
% b.t. Dt mix. 0 101.35 - 9 +0.7 77 119.5 Az - 100 118.1 -	0.000 12.93 2.992 13.00 4.997 12.91 10.101 12.98 10.885 12.934 20.932 12.921 31.192 12.913 50.695 12.951 60.660 12.952		
Osipov and Shelomov, 1956	70.266 12.968 84.221 12.991 89.763 12.991 94.271 12.999 96.622 12.996 98.207 12.997		
mol% d mol% d .	100.000 12.997		
100.00 1.0510 40.00 1.0429 80.00 .0501 20.00 .0379 60.00 .0474 10.00 .0339 50.00 .0450	Osipov and Shelomov, 1956. mol% ε mol% ε		
Kovalenko, Trifonov and Tissen, 1956.	100.00 5.421 40.00 4.032 80.00 5.735 20.00 3.002 60.00 4.925 10.00 3.220 50.00 4.483		
mol% 25° d 40°			
0 1.0265 1.0101 20 1.0348 1.0185 40 1.0411 1.0245 60 1.0434 1.0268 80 1.0442 1.0285 100 1.0453 1.0295	Dioxane ($C_4H_8O_2$) + Caprinic acid ($C_{10}H_{20}O_2$) Hoerr, Sedgwick and Ralston, 1946		
mo1% 25° ~ 40°	% f.t.		
2 1181 919 20 1187 920	78.1 97.8 20.0 30.0		
40 1285 981 60 1333 1013 80 1332 1012 100 1193 921	Dioxane ($C_4H_8O_2$) + Lauric acid ($C_{12}H_{24}O_2$)		
mo1% z5° d0°	Hoerr, Sedgwick and Ralston, 1946		
2 33,65 31,53 20 33.01 31,30 40 32,52 30.75 60 31,70 30,00 80 29,34 27,64 100 27,57 26,07	50.2 20.0 71.1 30.0 92.7 40.0		
mo1% 25° n _D 40°	70.0		
0 1.4204 1.4126 20 1.4145 1.4072 40 1.4068 1.4000 60 1.3973 1.3908 80 1.3853 1.3790 100 1.3710 1.3662			

DIOXANE + MYRISTIC ACID

		Dioxane (C ₄ H	$_{8}0_{2}$) + α ? - Methyl - α -	ethyl-succinic		
Dioxane (C ₄ H ₈ O ₂) + Myristic acid ($C_{14}H_{28}O_2$)	acid (C ₇ H ₁₂ C				
				1		
Hoerr, Sedgwick and Ralston, 1946		Berner and Lec	Berner and Leonardsen, 1939			
K	f.t.	%	d	(α) _D		
24.5	20.0		20°			
46.8 69.5 91.6	30.0 40.0	8.584	1.0474 1.0573	6.56		
91.6	50.0	17.185 27.524	1.0573 1.0646	6.25 5.82		
Diovene (CHO) + Dolminia id (C. T. O.)	Paraldehyde (C ₆ H ₁₂ O ₃) + Acetic	acid (C ₂ H ₄ O ₂)		
Dioxane (Chu802) + Palmitic acid ($C_{16}H_{32}O_2$)	Muchin, 1913				
Hoerr, Sedgwick	and Ralston, 1946					
Z Z		a	d	η		
	f.t.	0.0000	20°	1010		
9.8 24.7	20.0 30.0	0.5488	1.0478 .0476	1219.3 1218.9		
47.6 71.3	40.0 50.0	0.9380 2.7440	.0475 .0473	1220.4 1226.3		
94.5	60.0	4.6902 8.5345	.0464 .0416	1221.8		
		13.7200	.0400	1240.4 1245		
		23.4512 42.6728	.0355	1252		
İ			15°	1259		
Dioxane (C ₄ H ₈ O ₂) + Stearic acid ($C_{18}H_{36}O_{2}$)	0.0000	1.0466	1328.7		
		0.3418 1.7090	.0465	1330.3		
Hoerr, Sedgwick	and Ralston, 1946	4.7726	.0460 .0445	1330.7 1344.9		
		8.5345 23.8632	.0416 .0315	1379.3		
7/2	f.t.	42.6728	.0190	1476.0 1522.0		
4.1 13.2	20.0 30.0	b	d			
32.7 56.9	40.0		20°	η		
80.5	50.0 60.0	0.0000				
		0.5721	0.9948 .9950	1178 1199.9		
		1.1984 2.2884	.9953	1207.7		
Diamana (C. H.O.	N	5.9728 11.4424	.9958 .99 78	1217.0 1244.8		
Dioxane (C ₄ H ₈ U ₂) + Oleic acid ($C_{18}H_{34}O_{2}$)	20.8600	1.0012 .0100	1255.2		
			15°	1254.2		
Hoerr and Harwoo	d, 1952	0.0000	0.9905	1316 3		
- Z	f.t.	0.5721 1.1984	. 9905	1316.1 1340.6		
	1.0.	2.2884 5.9720	.9910 .9915	1342.8 1347.7		
61.6	-3.3E	11.4424	.9958 1.0981	1368.6		
70.2 90.1	0 10	29.8600	.0064	1368.6 1393.7 1478.3		
	***	a= g paraldehy	a= g paraldehyde in 100cc acid			
			b= g acid in 100cc paraldehyde			
)				

%	b.t.	Dt mix,
0	116.4	
30 35	115.05 Az	-2.1
100	118.1	-
riophane (C	4H ₈ S) + Formic acid (CH202)
ecat, 1949		
%	b.t.	
0	118.8	
73 100	94.5 Az 100.75	
hiophane (C ₄ H ₈ S) + Acetic acid	(C ₂ H ₄ O ₂)
ecat, 1949		
ecat, 1949 %	b.t.	
% 0	118.8	
%	- <u></u>	

Epichlorhydrin	(C ₃ H ₅ OC1) + Acetic acid	(C ₂ H ₄ O ₂)

Lecat, 1949

× ×	b.t.	Dt mix.
0 30 35 100	116.4 115.05 Az 118.1	-2.1

```
XXIX, CETONES + HYDROXYL DERIVATIVES .
 Formaldehyde (CH<sub>2</sub>O) + Methyl malate 1 (C<sub>6</sub>H<sub>10</sub>O<sub>5</sub>)
Grossmann and Landau, 1910
g/100cc
               red
                      yellow green
                                                pale
                                                            dark
                                                                       viol.
                                                blue
                                                            blue
                                            20°
                                    -18.66 -23.55 -24.95 -27.65
-10.70 -14.01 -16.45 -
-19.56 -23.95 -26.35 -
-6.96 -11.73 -13.12 -13.92
-11.13 -11.93 -15.90 -
50.096
                        -16.07
            -12.58
25.048
12.524
             -6.03
                          -8.06
            -13.73
-4.37
-6.76
                        -16.29
 5.030
2.515
                          -6.76
-8.75
Acetaldehyde ( C2H40 ) + Methyl alcohol ( CHu0 )
 Lander, 1948
    mol%
                                          n_{\mathbf{D}}
                          initial
                                                   final
    100
84
75
66
54
38
                         1.33174
                                                   1.35266
                            .34140
                            .34213
                           .34179
      19
                            .34039
                            .33673
Acetaldehyde (C_2H_40) + Ethyl alcohol (C_2H_60)
 de Leeuw, 1911 and Smiths and de Leeuw, 1911
    mol%
                     f.t.
                                      mo1%
                                                       f.t.
                   -123.3
-125.4
-127.6
-132
                                       \substack{55.47 \\ 60.50}
                                                      -125.3
-128.05
      8.69
    16.10
19.81
                                       65.67
70.75
74.94
                                                      -123.2
                                                      -126.8
    22.66
25.55
33.99
                   -126.0
-126.5
-124.3
                                                      -132.2
                                       82.68
                                                      ~130.6
```

90.22

(1+1)

100

40.30

Copyrighted Materials

Copyright © 1959 Knovel Retrieved from www.knovel.com

THIOPHANE + FORMIC ACID

Lecat, 1949			1
%	b.t.	Dt mix.	
0	116.4	-	1
30 35 100	115.05 Az 118.1	-2.1	
			-
Thiophane (C	H ₈ S) + Formic acid	(CH ₀ O ₀)	-
•	, , , , , , , , , , , , , , , , , , , ,	(0.1,20,2)	1
Lecat, 1949			
*	b.t.		•
0	118.8		
73 100	94.5 Az 100.75		I
			:
			-
Thiophane (C	L_4H_8S) + Acetic acid	(C ₂ H ₄ O ₂)	
Lecat, 1949			
%	b.t.		-
0			-
47 100	118.8 113.5 Az		
	118.1		.
Epichlorhydri	n (C ₃ H ₅ OCl) + Acet	ic acid ($C_2H_\mu O_2$)	H

Lecat, 1949

× ×	b.t.	Dt mix.
0 30 35 100	116.4 115.05 Az 118.1	-2.1 -

```
XIX. CETONES + HYDROXYL DERIVATIVES .
ormaldehyde ( CH_2O ) + Methyl malate 1 ( C_6H_{10}O_5 )
rossmann and Landau, 1910
100cc
           red
                 yellow green
                                          pale
                                                      dark
                                                                viol.
                                          blue
                                                      blue
                                      20°
                              -18.66 -23.55 -24.95 -27.65
-10.70 -14.01 -16.45 -
-19.56 -23.95 -26.35 -
-6.96 -11.73 -13.12 -13.92
-11.13 -11.93 -15.90 -
.096
                   -16.07
        -12.58
          -6.03
                     -8.06
                    -16.29
etaldehyde ( C2H40 ) + Methyl alcohol ( CH40 )
ander, 1948
 mo1%
                                     n_{\mathbf{D}}
                     initial
                                             final
                     1.33174
 100
84
75
66
54
38
19
```

Acetaldehyde (C_2H_40) + Ethyl alcohol (C_2H_60)

de Leeuw, 1911 and Smiths and de Leeuw, 1911

mo1%	f.t.	mo1%	f.t.	
0 8.69 16.10 19.81 22.66 25.55 33.99	-123.3 -125.4 -127.6 -132 -126.0 -126.5 -124.3	55.47 60.50 65.67 70.75 74.94 82.68 90.22	-125.3 -128.05 -123.2 -126.8 -132.2 -130.6 -120.6	
40.30 49.27	-123.5 -122.3	100	-114.9 (1+1)	

ACETALDEHYDE + ETHYL ALCOHOL

mol% b.t.	mol% n mol% n
L V	18°
699mm 0 - 10.1 18.8 - 15.3 30.3 - 19.6 42.2 - 34.7 51.8 2.6 40.1 65.4 14.8 48.8 79.5 30.8 57.7	0 244 62.55 1.552 18.21 402 68.42 1.546 25.02 519 77.50 1.495 37.34 833 78.42 1.489 46.80 1.217 89.56 1.377 56.85 1.472
79.5 30.8 57.7 89.2 48.9 65.3 100 - 76.1	mol% n _D mol% n _D
0 - 5.8 18.8 - 11.0 30.3 - 15.9 42.2 - 21.9 48.5 4.5 29.2 57.7 - 32.3 65.4 8.3 37.2 77.4 32.9 45.4 88.6 55.5 53.2	0 1.3392 62.55 1.3784 18.21 .3538 63.42 .3784 25.02 .3614 77.59 .3764 37.34 .3718 78.42 .3727 46.50 .4775 89.56 .3720 56.85 .3790 100 .3601
100 - 62.8 97mm	Adkins and Broderick, 1928
023.9 33.615.7 46.27.3	% п _D % п _D
48.41.8 53.5 - +3.6 - 5.2 5.4 59.1 - 7.8 - 9.0 8.5 63.1 - 11.1 68.4 20.5 15.9 75.2 - 21.2	100 1.36424 31.9 1.37762 88.1 .37134 24.5 .36424 66.9 .38266 15.9 .37480 59.8 .38533 9.2 .35686 44.9 .38506 4.3 .35097 43.7 .38612 0 .34445
79.7 34.7 23.3 84.5 – 25.1	De Leeuw, 1911
89.8 - 27.8 - 61.2 29.7 - 65.7 29.9 93.1 75.9 30.1 - 79.1 31.4 100 - 34.3	mol% Q reaction (cal/nole) 18.90
mol% d mol% d	50.27 + 1000.8 55.78 + 998.2
18° 0° 0 0.7834 0 0.8050 15.72 .8277 22.6 .8704 24.92 .8474 23.3 .8947 33.14 .8501 40.9 .9089 46.14 .8715 43.1 .9061 49.68 .8719 49.7 .9044 55.44 .8709 51.1 .9033 63.50 .8627 51.7 .8944 70.30 .8501 58.0 .8832 81.52 .8296 64.5 .8751 86.98 .8200 68.9 .8413 100 .7907 84.3 .8063	57.56

ACETALDEHYDE + I	SOPROPYL ALCOHOL 465
Acetaldehyde (C_2H_40) + Isopropyl alcohol (C_3H_80)	Propionaldehyde (C_3H_60) + Ethyl alcohøl (C_2H_60)
Adkins and Broderick, 1928	Pestemer and Bernstein, 1933
% n _D % n _D	mol% e mol% e
100 1.38516 8° 29.4 1.36864 86.7 .38391 25.8 .36552 66.4 .33247 19.0 .30044 57.4 .38008 7.9 .35193 47.3 .37640 4.2 .34941 35.6 .37218 0 .34445	0 17.7 55 2.06 25 9.56 65 1.32 38.5 5.53 80 0.61 45 3.63 95 0.18 50 2.61 100 - e= maximum extinction in ultra-violet.
	Butyraldehyde (C _u H ₈ O) + Ethyl alcohol (C ₂ H ₆ O)
Acetaldehyde (C_2H_u0) + Terr-Butyl alcohol ($C_uH_{1,0}0$)	Adkins and Broderick, 1928
Adkins and Broderick, 1928	% d n _D
% n _D	25°
100 8° 1.38684 50 .37470 0 .34445	100 1.35828 0.7839 39.3 .39134 .8442 0 .37875 -
Acetaldehyde (C_2H_4O) + Methyl malate 1 ($C_6H_{10}O_5$) Grossman and Landau, 1910	Butyraldehyde ($C_{i_i}H_{i_i}0$) + Tert.butyl alcohol ($C_{i_i}H_{i_i}0$) Adkins and Broderick, 1928
g/100cc ($lpha$) red yellow green pale dark viol.	% n _D % n _D
blue blue	25°
50.576 -17.60 -20.37 -25.01 -31.04 -34.40 -37.27 25.288 -19.18 -22.74 -28.27 -34.60 -38.95 - 12.644 -22.30 -28.79 -28.79 -32.51 -39.54 - 4.889 -12.48 -16.77 -23.93 -31.50 -40.50 -44.18 2.4445 -23.73 -27.41 -30.27 -36.82 -39.27 -	100 1.38458 48.9 1.37932 95.2 .38360 33.1 .37837 86.9 .38333 20.1 .37772 78.7 .38237 18.4 .37861 69.1 .38094 7.5 .37743 58.9 .38018 0 .37875
Propionaldehyde (C_3H_60) + Methyl alcohol (CH_40)	Isobutyraldehyde (C _u H ₈ O) + Methyl alcohol (CH _u O)
Mc Kenna, Tartar and Lingafalter, 1949	Lecat, 1949
	"

%

 $\begin{array}{c} 0 \\ 40 \\ 100 \end{array}$

b.t.

63.5 62.7 64.65

Dt mix.

+3.5

mol%	f.t.	E	tr.t.
0	-80.05	_	-
9.4	-96.15	-114.9	~
15.1	-112.2	-114.9	~
24.9	-91.17	-114.9	~
35.3	-74.84	-114.9	-
50.2	-66.75	-	-117.3
60.6	-75.49	-134.0	-118.5
70.6	-101.1	-134.0	-120.5
79.3	-132.9	-134.0	
85.9	-114.0	-134.0	-118.4
98.2	-99.53	-134.0	-114 3
0.001	-98.02	-	-113.5(1+1)

Heptaldehyde ($\text{C}_7\text{H}_{1\,\text{H}}0$) + Ethyl alcohol (C_2H_60)

Adkins and Broderick, 1928

%	n _D	Ж	n _D
	25°		
100 88.7 79.5 69.2 59.6 48.8	1.35928 .36708 .37452 .38266 .38979 .39768	38.9 28.9 18.0 9.9 4.5	1.40419 .40855 .41113 .41103 .41028 .40884

Heptaldehyde ($C_7H_{1\,\,\text{\tiny 4}}0$) + Isopropyl alcohol (C_3H_80)

Adkins and Broderick, 1928

%	^{n}D	%	$^{\mathrm{n}}$ D	
	25	0		
100 88.3 82.8 80 60 49.6	1.36994 .38113 .38381 .37640 .39318 .39699	37.4 30.2 19.4 10.6 8.1	1.39945 .40350 .40577 .40765 .40835 .40884	

Heptaldehyde ($C_7H_{1\,4}O$) + Heptyl alcohol ($C_7H_{1\,6}O$)

Mc Kenna, Tartar and Lingafalter, 1949

mo1%	f.t.	E	mo1%	f.t.	E
0.0 3.7 7.4 10.8 14.3 18.7 23.8 29.6 35.3 40.1 45.6	-43.71 -46.11 -50.44 -48.15 -34.52 -19.69 -7.85 -1.98 +0.33 1.57	-58.92 -58.92 -58.92 -58.92 -58.87 -58.92 	48.9 59.4 66.2 71.5 77.7 79.4 82.9 84.9 87.7	2.25 0.47 -4.16 -10.31 -26.04 -32.97 -44.92 -49.06 -45.27 -34.03	-50.02 -50.07 -50.13 -50.13 -50.13

Citronellal ($C_{1\ 0}H_{1\ 8}0$) (b.t.=208.0) + Alcohols. Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t. Dt mix or Sat.t	
Glycol	(C ₂ H ₆ O ₂)	197.4	53	188.5	165
Benzyl alcohol	(C ₇ H ₈ O)	205.25	56	203.0	+7.5
Isoamyl lactate	(C ₈ H ₁₆ O ₃)	202.4	-	202.2	-

Benzaldehyde (C_7H_60) + Methyl alcohol (CH_40)

Weissenberger, Schuster and Henke, 1925

mol%	p	mo1%	p	
	20	0		
33.3 50.0 60.0	55.9 78.9 87.0	66.7 71.4 75.0	90.0 92.2 91.5	

Benzaldehyde (C_7H_60) + Ethyl alcohol (C_2H_60)

Adkins and Broderick, 1928

%	d	n _D	%	đ	n _D	
100 92.2 83.3 63.7 53.3 43.5	0.7839 .8020 .8251 .8728 .8933 .9225	1.35828 .37050 .38448 .41702 .43770 .45567	37.3 32.7 16.0 16.1 3.9	0.9391 .9499 .9935 1.0155 .0300 .0403	1.46562 .47429 .50774 .52387 .53423 .54254	

Dunstan, 1904

R	n		%	η
		25°	2 nd	series
100 88.35 79.33 76.40 67.53 46.04 20.68 9.37	1113 1092 1050 1051 1041 1158 1308 1362 1445		100 82.34 69.58 0	1113 1052 1031 1321

Benzaldehyde (C_7H_60) (b.t.=179.2) + Alcohols. Lecat, 1949	Benzaldehyde (C_7H_60) + Isobutyl lactate($C_7H_1 + 0_8$) Lecat, 1949
2 nd comp. Az	% b.t.
Name Formula b.t. % b.t. Dt mix.	
Heptyl (C ₇ H ₁₆ 0) 176.15 55 174.5 - alcohol	0 179.2 8 178.8 Az 100 182.15
Isooctyl (C ₈ H, ₈ O) 180.4 40 176.5 +2.0 (10%)	
Glycol (C ₂ H ₆ O ₂) 197.4 15 173.5 -	Benzaldehyde (C_7H_6O) + Ethyl tartrate ($C_8H_{14}O_6$)
	Patterson and Mc Donald, 1909
Benzaldehyde (C ₇ H ₆ O) + Glycerol (C ₃ H ₈ O ₈)	t d t d
_	0% 35.5%
Bingham, 1907	18.5 1.0517 17.7 1.105 20.0 .0498 20.0 .1027 31.65 .0398 22.2 .101
C.S.T.= 100°	31.65 .0398 22.2 .101 9.97% 31.15 .092
Mc Ewen, 1923	18.05 1.0650 78.75% 20 .0634 21.5 .0620 20 1.171
% sat.t. % sat.t.	31.1 .054 60 .125 42.4 .043
2.98 85.5 50.78 160.3 5.46 107.5 73.37 144.5 9.90 127.5 76.13 140.0	t $(\alpha)_D$ t $(\alpha)_D$ t $(\alpha)_D$
22.87 152.5 87.58 123.5 37.70 159.5 92.26 103.5	9.97% 35.5% 78.75%
44.71 160.7 95.47 67.5	19.9 42.8 14.4 32.0 20 15.72 20 42.4 20 31.3 34.2 16.07
	38.8 39.2 23.3 31.01 47.8 16.42 49.6 37.8 37.4 29.85 64 17.09
Benzaldehyde (C_7H_6O) + Methyl malate 1 ($C_6H_{10}O_5$)	78 33.3 75 27.36 87.4 17.51
Grossmann and Landau, 1910	100 29.7 79 27.08 100 17.6 100 25.4
(α) g/100cc red yellow green pale dark viol. blue blue	Patterson and Montgomerie, 1909
20°	67.59 vol% 35.5 wt% Dv = -0.24%
49.938 -7.81 -8.71 -10.11 -11.71 -12.72 -13.22	50 vo1% Dt = +0.35°
24.969 -8.45 -9.89 -12.05 -14.58 -16.02 - 12.4845 -9.69 -11.61 -13.86 -17.30 -18.42 -	
5.131 -9.74 -11.69 -14.03 -17.54 -19.49 -22.02 2.5655 -8.97 -10.52 -13.64 -16.76 -17.93 -	Benzaldehyde ($ extsf{C}_7 extrm{H}_6 extsf{0}$) + Butoxyglycol ($ extsf{C}_6 extrm{H}_1 extsf{4} extsf{0}_2$)
	Lecat, 1949
	% b.t. Dt mix.
	0 179.2 -
	461.4 91 170.95 Az - 100 171.15

ANISALDEHYDE + ETHYL ALCOHOL

Anisaldehyde ($C_8H_8O_2$) + Ethyl alcohol (C_2H_6O)	Cinnamaldehyde (C_9H_80) + Methyl malate 1 ($C_6H_{1.0}O_5$)
Adkins and Broderick, 1928	Grossmann and Landau, 1910
% n _D % n _D	(α)
25°	g/100cc red yellow green pale dark viol. blue blue
100 1.35828 38.1 1.47518 87.5 .38008 23.0 .51040 76.5 .39876 15.3 .52992 65.9 .41782 7.8 .54966 54.7 .44012 4.6 .55733 45.5 .45956 0 .57004	20° 50.019 -6.70 -7.90 -8.70 -10.50 -11.40 -11.70° 25.0095 -6.76 -7.96 -9.24 -11.32 -12.28 - 12.5048 -6.56 -8.08 -8.64 -11.04 -11.68 - 5.098 -3.73 -5.30 -6.47 -10.79 -11.38 -12.36° 2.549 -3.53 -5.10 -6.28 -7.85 -8.24 -
Anisaldehyde ($C_8H_8O_2$) + Methyl malate 1 ($C_6H_{10}O_5$)	1.2155 -7.82 -9.05 -10.28 -11.93 -12.75 - 0.60775 -5.76 -6.58 -7.40 -11.52 -12.34 - 0.30388 -3.29 -4.94 -6.58 -9.87 -9.87 - Cinnamic aldehyde (C ₉ H ₈ O) + Cinnamic alcohol
Grossmann and Landau, 1910	(C ₉ H _{1 o} O)
(α) g/100cc red yellow green pale dark viol. blue blue	Lecat, 1949
20°	% b.t.
49.968 -7.20 -8.41 -9.31 -11.71 -13.01 -13.51 24.984 -9.45 -11.85 -13.65 -16.93 -18.57 - 12.492 -11.29 -14.01 -16.73 -20.49 -22.57 - 4.891 -11.45 -14.31 -16.97 -21.92 -26.53 -28.83 2.4455 -10.22 -11.86 -13.09 -18.81 -21.26 -	0 253.5 - 252.3 Az 100 257.0
	Furfural (C ₅ H ₄ O ₂) + Methyl alcohol (CH ₄ O)
Anisaldehyde ($C_8H_8\theta_2$) + Diglycol ($C_4H_{10}\theta_3$)	Andreev and Zirlin, 1954
Lecat, 1949	L V L V
% b.t.	755 mm
0 249.5 - 244.0 Az 100 245.5 Cinnamaldehyde (C ₉ H ₈ O) + Ethyl alcohol (C ₂ H ₆ O)	1.20 82.32 48.07 96.12 2.96 86.48 59.62 94.76 6.00 92.40 65.90 96.62 7.60 89.40 71.40 96.69 10.00 95.60 77.80 97.18 15.20 93.00 89.71 98.66 20.67 94.04 90.50 99.33 37.70 95.20 94.55 99.31 40.28 96.12 95.88 99.58 44.19 96.57
Jan Capage / Bong I Brono (Company)	300 mm
Zecchini, 1897	3,50 52,20 30,00 94,20 4,20 48,40 50,00 96,02 5,35 68,90 75,00 96,79
% t d n _D	10.00 79.20 90.00 98.43 15.00 88.80 (sic)
0 8.1 1.08727 1.60025 63.10 8.2 0.89410 1.44078 100 8.1 0.80201 1.36630	Orange oil + Ethyl alcohol (C ₂ H ₆ O) Dewar and Jones, 1908 Rotatory power.

Furfural	(C ₅ H ₄ O ₂)	(b.t.=161	.45)	+ Alcohol	ls.	t	р	t	p	t	p
Lecat, 1949		0%		sat	$sat.sol.L_1$		I.L ₂				
Name	2 nd comp.	b.t.	Az %	b.t.	Dt mix.	20.5 25 30 35	1.4 2.2 3.8 6.1	20.5 25 30 35	10.0 11.4 14.8 17.9	20.5 25 30 35	15.7 17.7 20.2 21.8
Hexyl alcohol	(C ₆ H ₁ ,0)	157.85	56	154.1	-5.6 (83%)	40 43 45	9.9 12.9 15.3	37.5 40 41	18.9 19.9 19.8	36 38 40	22.0 22.1 21.8
Heptyl alcohol	(C ₇ H ₁₆ O)	176.15	6	160.9	-2.5 (10%)	46 46.6 48 50	16.7 17.5 19.2 22.0	42 44 45 46	19.8 19.2 18.7 17.8	41 42 43 44	21.4 20.9 20.4 19.7
Propoxy- glycol	(C ₅ H ₁₂ O ₂			151.1	-1.1 (67%)	55 46 44	31.8 16.8 14.6	46.4 47 48	18.1 18.7 20.0	45 45.6 46	19.1 18.5 18.4
Butoxy- glycol	(C ₆ H ₁ 40 ₂	171.15	12	161.2	-1,5 (50%)	40 35 30	10.7 7.0 5.0	50 55 44.5	22.8 32.8 15.7	45 46 46,5	21.0 22.4
Cyclo- hexanol	(C ₆ H ₁₂ O)	160.8	45	156.4	-6.8 (50%)			42 40 38	$13.0 \\ 11.2 \\ 9.7$	48 50 55	28.8 39.6
Methyl cyclohexa	nol C7H140)	168.5	26 	158.6	-4.7 (20%)			36	8.3	45 43 40	18.4 15.3
Chloral (C ₂ HOC1 ₃) +	Ethyl a	lcohol	(C ₂ H ₆ 0)					35 30 25	10.8 7.8 5.5
Leopold,	1909	_				Lecat,	1949				
mol%	f.t.	mol	%	f.t.		7			b.t.		
100 90 80 75	-130,5 -70 -23 +2	50 49. 47. 39.	3 6	46.6 45.9 45.0 38		100		-	97.75 116.2 Az 78.3		
69 60 62.4 51.0 49.6	16 34.7 45.2 45.9 46.2	33. 26. 15. 7 0	3 2 0	30 21 1 -18 -57.5		Kurnak	ov and Ef	remov,	1913		
 mo1%	b.t.			(1+1)	%	40°		d 45°	50°	
		p	mol;	% b.t.	p						· · · · · · · · · · · · · · · · · · ·
100 90 78.1 73.6 72.7 69.2 64.6 61.0 55.5 53.0 55.5 53.0	78.4 82.0 91.2 94.4 98.0 103.4 109.6 113.2 115.6 116.1 116.2 116.4	765.3 768 768 768.1 768.2	50 49.5 49.4 48 47 46 44.7 43 41 25 0	116.8 116.2 116.0 115.7	768.2 771.2 "" "" 771.0 760.0 740	100 73. 76 63. 84 55. 54 48. 37 42. 15 31. 90 29. 71 27. 63 23. 80 20. 35 17. 24 11. 80 9. 52 7. 24 3. 36	0.7792 .98 1.05: .11: .17: .2830: .35: .36: .37(.39: .40' .43: .46: .48'	33 52 52 66 66 66 66 87 97 97 98 98 98 98 98 98	0.7688 .9134 .9803 1.0471 .1118 .1695 .2764 .3001 .3225 .3445 .3561 .3625 .3862 .4031 .4293 .4493 .4556 .4789 .4818	0.7642 .9035 .9725 1.0417 .1026 .1634 .2700 .2912 .3144 .3338 .3464 .3542 .3776 .3920 .4217 .4353 .4473 .4688 .4730	

Kurnakov and	Eframov	1019			Kurnakov and	Efremov,	1913	
	El remov,			\	%	40°	n 45°	50°
%	60°	d 70°	85°	-	100	796	720	657
100 73.76 63.84 55.54 48.37 42.15 31.90 29.71 27.63 24.53 23.80 20.35 17.24 11.80 9.52 7.24 3.36 0	0.7550 8988 .9628 1.0310 1.517 .2565 .2791 .3022 .3209 .3325 .3384 .3611 .3787 .4068 .4201 .4308 .4517 .4546	0.7458 .9900 .9530 1.0200 .0812 .1397 .2423 .2671 .2857 .3053 .3154 .3218 .3422 .3591 .3907 .4037 .4140 .4351	0.3768 .9425 1.0035 .0662 .1217 .2223 .2436 .2610 .2807 .2908 .2969 .3229 .3407 .3697 .3827 .3933		100 73.76 63.84 55.54 48.37 42.15 31.90 29.71 27.63 25.66 24.53 23.80 20.35 17.24 11.80 9.52 7.24 3.36 0	196 1126 1406 1753 2200 2783 4053 4053 4352 4757 4703 4565 3937 3311 2258 1976 1755 1351	1031 1271 1569 1951 2383 3366 3580 3769 3854 3783 3673 3201 2737 1989 1724 1542 1219 934	939 1141 1397 1702 2074 2848 3000 3141 3201 3143 3064 2706 2392 1757 1530 1380 1120 869
			والمن القراء في المن المن المن المن المن المن المن المن	===	*	60°	70°	8.5°
Mathews and					100 73.76	556 789	485 659	477
t	d	t	d		63.84 55.54	946 1131 1228	780 929	576 690
40 1 45 50	25. .36652 .34468 .33381		1.32023 .30432 .28070		48.37 42.15 31.90 29.71 27.63 25.66 24.53	1338 1596 2119 2225 2278 2315 2305	1082 1262 1599 1743 1717 1705 1715	807 922 1105 1163 1190 1186 1170
Springer and	i Roth, 1	930			23.80 20.35 17.24 11.80 9.52 7.24	2217 2045 1334 1424 1251	1680 1568 1450 1164	1168 1101 1021 868
R		d			7.24 3.36	1152 961 779	1060 966 827	800 739
100	0°				0	779 	677	557
100 80 60 0		0.8058 0.9163 1.055 1.557			Mathews and	Cooke, 19	14	
				==	t	η	t	η
Öholm, 1913					40	25.7		
c		η	Diffusion ratio		40 45 50	4757 3853 3201	60 70 85	2314 1739 1186
2 1	5	20°	0.50 0.53		Springer an	d Roth, 19	30	
0	. 5 . 15	1503 1397 1278	-		%	η (water	=1) %	η(water=1)
c= molali			-		100	0° 1.059	60 0	2.942
					80	1.576	0	2.942 1.513

Chloral (C2HOCl3) + Isobutyl alcohol (C4H100)	Chloral (C ₂ HOCl ₃) + Ally1 Alcohol (C ₃ H ₆ O)
Lecat, 1949	Efremov, 1928
% b.t.	mo1% d
0 97.75 - 138 Az 100 108.0	100
Chloral (C ₂ HOCl ₃) + Dimethylethylcarbinol (C ₅ H ₁₂ O)	60 .2838 .2655 .2529 .2460 .2020 57 5 3067 .2870 .2737 .2632 .2213
Efremov, 1913 and 1918	55 .3278 .3080 .2937 .2632 .2350
mol% wt% d 25° 40° 50° 70 ° 85°	50 .3636 .3399 .3252 .2989 .2651 47.50 .3732 .3479 .3326 .3134 .2750 45 .3891 .3642 .3481 .3280 .2887
0 0 0.8060 0.7920 0.7821 0.7605 0.7441 10 15.68 .8878 .8718 .8613 .8375 .8152 20 29.50 .9660 .9500 .9389 .9134 .8938 30 41.78 1.0507 1.0352 1.0204 .9931 .9639 40 52.74 .1387 .1205 .1019 1.0730 1.0449 42.5 55.26 .1678 .1374 .1209 .0908 .0626 45 57.79 .1791 .1589 .1422 .1082 .0794 48.5 60.20 .2002 .1748 .1552 .1263 .0975 50 62.60 .2191 .1986 .1824 .1435 .1139 55 67.17 .2576 .2351 .2162 .1796 .1504 60 71.50 .2915 .2690 .2510 .2678 .788 70 79.60 .3573 .3	\$2.50 .3493 .3284 .3140 .2919 .2555 50 .3636 .3399 .3252 .2989 .2651 47.50 .3732 .3479 .3326 .3134 .2750 45 .3891 .3642 .3481 .3290 .2887 40 .4050 .3807 .3637 .3531 .3025 35 .4318 .4085 .3919 .3742 .3246 30 .4482 .4232 .4075 .3911 .3446 25 .4653 .4433 .4250 .4052 - 20 .4754 .4579 .4404 .4183 - 15 .4910 .4683 .4530 .4271 - 10 .4987 .4753 .4620 .4357 - 0 .5037 .4860 .4711 .4361 - .5048 .4917 .4730
55 67.17 .2576 .2351 .2162 .1796 .1504 60 71.50 .2915 .2690 .2510 .2678 .1788 70 79.60 .3573 .3363 .3175 .2787 - 75 83.30 .3908 .3676 .3475 .3097 -	moi% wt% n 7 25° 40° 50° 70° 85°
70 79.60 .3573 .3363 .3175 .2787 - 75 83.30 .3908 .3676 .3475 .3097 - 80 87.00 .4229 .4002 .3839 .3431 .3137 90 93.77 .4763 .4513 .4367 .4008 .3753 100 100 .5049 .4917 .4730 .4361 .4073	0 0 1263 916 765 548 432 10 22.01 1806 1271 1025 696 540 15 30.42 2226 1539 1211 822 610
mol% wt% n 25° 40° 50° 70° 85°	20 38.83 2780 1835 1433 942 710 25 45.48 3561 2303 1722 1082 808 30 52.12 4606 2801 2078 1247 898 35 57.50 6172 3411 2463 1419 1007
0 0 3697 1975 1401 798 573 10 15.68 3809 2142 1513 881 562 20 29.50 5190 2746 1907 1042 733 30 41.78 6882 3502 2332 1223 837 40 52.74 8576 4063 2625 1333 929 42.5 55.26 8813 4163 2754 1380 958 45 57.79 8897 4193 2792 1396 928 48.5 60.20 8988 4233 2812 1388 " 50 62.60 8992 4226 2784 1382 923 55 67.17 8512 4047 2683 1346 911 60 71.50 7391 3733 2541 1284 898 70 79.60 5018 2959 2112 1133 "	35 57.50 6172 3411 2463 1419 1007 40 62.87 7633 3990 2813 1565 1099 42.5 65.19 8439 4337 3006 1642 1141 45 67.51 9281 4658 3144 1704 1168 47.5 69.68 9880 4880 3317 1744 1209 49 70.92 10361 4916 3346 1766 1225 50 71.75 10435 4918 3349 1768 1231 52.5 73.69 10133 4863 3324 1750 1223 55 75.63 9536 4612 3208 1705 1175 60 79.21 8109 4052 2861 1600 1120 65 82.40 6304 3430 2507 1455 1034 70 85.57 4657 2852 2156 1285 - 75 88.31 3672 2386 1856 1208 - 80 91.04 2890 1972 1588 1057 - 85 93.43 2262 1603 1321 931 - 90 95.81 1763 1303 1107 825 - 100 100 1263 1009 869 677 -

CHLORAL + METHYL MALATE

Chloral (C_2HOCl_3) + Methyl malate 1 ($C_6H_{10}O_5$)	mo1%	60°	η	80°
Grossmann and Landau, 1910 g/100cc (α) red yellow green pale dark blue 20° 50.718 -61.22 -77.09 -93.26 -116.13 -128.85 -141.47 25.478 -64.17 -80.07 -97.14 -123.44 -134.43 -146.40 12.687 -59.12 -74.88 -94.19 -115.47 -125.72 -138.72 4.932 -58.80 -74.61 -93.67 -114.95 -125.29 -137.86 2.451 -56.30 -71.40 -86.09 -107.30 -116.28 -130.15	100 87, 81 80, 02 75, 09 70, 16, 65, 01 60, 24 55, 15 50, 40 40, 49 29, 78 20, 27 10, 83 0	8254 9350 10065 10440 10492 10495 10199 9316 7757 3994 2054 1327 931 701	377 414 446 454 457 458 449 417 366 238 143 100 74	15 09 17 76 33 78 02 28 88 32
Chloral (C_2H0Cl_3) + Ethyl tartrate(+) ($C_8H_{14}O_6$) Grossmann and Landau, 1910	ĺ	HOC1 ₃) + Benz 1 Khomenko, 195		(C ₇ H ₈ O)
g/100cc (α)	mol%	25°	d 50°	75°
red yellow green pale dark viol. 20° 50.668 +51.71 +65.23 +76.38 +92.37 +98.58 +107.76 26.206 58.77 70.79 85.10 102.84 112.95 124.21 13.172 56.56 69.09 81.61 101.35 108.18 119.57 5.329 55.92 68.49 81.07 100.02 107.71 118.78 2.658 55.30 67.72 80.14 99.32 106.85 117.76 Chloral (C ₂ H0Cl ₃) + Cyclohexanol (C ₆ H ₁₂ 0) Udovenko and Khomenko, 1956.	100.00 90.14 81.09 72.05 74.38 59.36 56.36 52.49 50.70 50.02 46.05 40.75 33.21 24.36 11.73 0.00	1.0190 1.1071 1.1674 1.2312 1.2843 1.3215 1.3424 1.3678 1.3780 1.3817 1.3942 1.4194 1.4387 1.4600 1.4906 1.5013	1.0006 1.0862 1.1454 1.2083 1.2592 1.2944 1.3142 1.3352 1.3460 1.3510 1.3632 1.3887 1.4075 1.4233 1.4557 1.4603	0.9819 1.0661 1.1225 1.1829 1.2339 1.2650 1.2837 1.3053 1.3118 1.3170 1.3288 1.3531 1.3732 1.3909 1.4123 1.4186
mo1% d 80°	mol%	25°	η 50 °	75°
100 0.9187 0.9019 87.81 1.0019 0.9831 80.02 1.0544 1.0334 75.09 1.0900 1.0700 70.16 1.1234 1.1014 65.01 1.1633 1.1397 60.24 1.1925 1.1688 55.15 1.2317 1.2065 50.40 1.2647 1.2388 40.49 1.3098 1.2830 29.78 1.3456 1.3181 20.27 1.3778 1.3511 10.83 1.4076 1.3794 0 1.4413 1.4096	72.05 64.38 59.36 56.36 52,49 50.70 50.02 46.05	55160 54240	2548 3521 4774 6410 6783 9558 10850 10570 10210 10010 8491 6780 3796 1639 1307 764	1501 1934 2422 2948 3175 3772 4165 3888 3873 3279 3258 2953 2066 1115 922 588

					_
Bromal (C ₂ HOBr ₃) + Methyl malate 1 (C ₆ H ₁₀ O ₅)	Acetone ((C ₃ H ₆ O) + Me	thyl alcoh	01 (Cll ₄ 0)	
Diomet (-2	Heterogeneous equilibria.				
Grossmann and Landau, 1910	Pettit, 189	99			
g/100cc (a)	%	b.t.	%	b.t.	
red yellow green pale dark viol.		760 m			-
20°	100.0		45.0	57.65	
	100.0 89.1	65.52 63.44	31.0	56.68	
50.550 -42.04 -52.42 -64.69 -77.84 -84.57 -92.58 25.142 -50.12 -64.63 -77.76 -90.49 -100.63 -110.17	80.5 58.6	61.98 58.96	23.1 18.6	56.29 56.09	
12.791 -58.24 -70.75 -84.43 -100.46 -111.41 -123.92 12.791 -58.24 -76.05 -89.52 -104.85 -113.14 -124.33 4.826 -61.54 -76.05 -89.52 -104.85 -113.14 -124.33	53.7	58.52	13.2	55.99 56.09	
4.826 -61.54 -76.05 -89.52 -104.65 -113.14 -124.55 2.417 -61.65 -76.13 -89.78 -105.09 -113.36 -124.53	51.9 49.0	58.34 58.02	0.0	56.62	
Bromal (C_2HOBr_3) + Ethyl tartrate ($C_8H_{14}O_6$)	Haywood,	1899			
, , , ,	# #	b.t.	%	b.t.	
Grossmann and Landau, 1910			mm		
				E7 75	
g/100cc (α) red yellow green pale dark viol.	2.8	56.65 56.4	48.2 50.3	57.75 58.0	
blue blue	7.1 11.7	56.1 55.85	52.5 56.1	58.5 58.8	
20°	11,8	55.9	61.8	59.5	
50.073 +26.96 +32.05 +38.44 +45.33 +47.53 +50.33	15.5 16.6	55.95 55.9	67.9 79.1	60.2 61.8	
25.355 32.93 42.99 50.09 57.19 61.33 67.25	24.1 34.3	$\begin{smallmatrix} 56.1 \\ 56.65 \end{smallmatrix}$	$\begin{smallmatrix} 92.1\\100\end{smallmatrix}$	63.9 65.2	
12.616 36.07 46.05 53.27 60.24 63.33 72.66 5.092 37.51 48.11 55.38 63.83 68.34 72.66	42.9	57.3	-00		
2.646 37.79 48.37 55.93 63.87 68.78 72.94					==
Acetyl chloride (C ₂ H ₃ OCl) + Methyl malate l	Griswald	and Buford,	1949		
(C ₆ H _{1 0} O ₅)					
Grossmann and Landau, 1910	mo1%	b.t.	mo1%	b.t.	
g/100cc (α) red yellow green pale dark viol.	89.5	61.7	32.7	55.9	
blue blue	82.7 77.3	59.4	$\substack{ 26.0 \\ 16.8 }$	55.8	
20°	69.8	58.3	15.3	-	
50.199 -23.90 -29.38 -34.66 -41.44 -45.42 -50.40	57.6 54.9	56.7	8.5	55.8	
25.0995 -25.10 -30.48 -35.66 -42.43 -46.42 -	35.7	55.9	6.0	56.1	
5.426 -20.27 -25.43 -29.49 -35.94 -38.70 -41.84					
2.713 -19.90 -25.06 -29.12 -35.39 -37.97 -	Amer, Pax	cton and van	Winkle, 19	953	
	mo1%	b.t.	mol%	b.t.	
Benzoyl chloride (C ₇ K ₅ OCl) + Methyl malate l	1101%	D. C.	110170	D. C.	
(C ₆ H ₁₀ O ₅)					
Grossmann and Landau, 1910	100	64.6 63.5	48.7 43.7	56.2 56.0	
	96.4 94.2	62.8	43.7 41.6	56.0 55.9	
g/100cc (α)	91.9 87.9	$\substack{62.2\\61.1}$	$\frac{31.7}{31.2}$	55.8 55.8	
red yellow green pale dark viol. blue blue	80.9 79.4	59.6 59.4	25.8	55.8 55.8	
	73.1	58.4	24.6 17.7	55.8 55.8	
49.672 -3.28 -4.05 -4.39 -4.53 -4.51 -4.33 24.836 -2.21 -2.50 -2.38 -2.25 -2.09	70.7 64.4	58.1 57.3	$\substack{16.8\\13.9}$	55.8 55.8	
12.418 -1.05 -1.29 -1.05 -0.72 -0.40 - 4.805 -0.21 0.00 +0.21 +0.62 +0.83 +1.25	60.6 54.7	56.9 56.5	0	56.1	
2.4025 +1.66 +2.08 +2.50 +3.33 +3.75 -					
	3				
	- TI	_			

ACETONE + METHYL ALCOHOL

Lecat, 1	949				Fordyce	and Simor	194 194	19		
	b.t.		Dt n	nix.	b.t.	# The state of the		b.t.		6
0 12 50 100	56.1 55.5 64.6	5 Az	-4.3	3	17.6 15.8	100 89.0 80.0	V 100 77.5 64.0	00 mm 10.8 9.2	51.0 29.5 14.5	35.0 19.5 11.5
Othmer,	Friedland and Sch	iebel.	(unpublish	ned)	12.6	66.0	49.0	8.0 7.4	0	0
b.t.	mol% L V	b.t.	mo L	01% V	Lang, 19	50				
63 0	760 m		20.40	2 0.0	т	ol% at b	t.	mo	l% at b.	
62.9 60.1 58.3 57.2	95.20 86.0 82.40 68.30 72.0 58.0 60.0 48.40	55.1 55.6 55.6 56.1	32.40 20.0 5.0 1.80	29.0 20.0 6.0 2.40	L		V 760	L		v
56.1	40.0 34.40				4.1	Ę	5.1 5.3 2.2	29.7 56.9	28	. 2
Pettit,	1899				4.3 10.0 11.0	1.3	3.0	67.6 76.7 78.2 86.2	48 56 64	.0
p	b.t. L V	р	b.t. L	v	11.0 18.2 20.1 21.3 24.4	2	0.2 0.7 1.8 1.2	78.2 86.2 93.6 95.5	64 65 75 97	.0
734 734 734 734 734 734	56.67 56.40 56.49 56.30 56.28 56.14 56.22 56.10 56.17 56.08 56.02 55.93	737	59.17 59.77 60.77 61.67	57.07 57.47 57.71 58.47 59.29 60.17	Britton,	Nutting	and Hor	sley, 1952	? (fig.)	
734 734 735 735 735	56.02 55.93 56.16 55.93 56.30 55.95 56.40 55.95 56.54 56.03	11 11	62.89 63.33 63.77	60.63 61.31 61.83	L %	v	b.t.	% L	v	b.t.
735 737 737 737 737 737	56.54 56.15 56.94 56.15 57.04 56.27 57.46 56.45 58.52 56.91	11 11 11 11	64.46 64.76 64.97 65.22	62.93 63.43 63.77 64.49	0 20 40 60	0 18 24 37	22 23 24 27	80 90 100	56 64 100	31 33 35
Bergstr	om, 1913							747 mm		
L	760 mm	v			0 10 20 40	0 10 20 22	56 55 55.5 56.5	60- 80 90 100	40 59 76 100	58 61 62.5 64
4.1 7.8 8.2 21.1	4 8 8 18	1.7 3.0 1.6 1.7			0 20 40	- -	159 154 152	60 80 100	-	151.5 151.5 152
Othmer,	1928									
b.t.	L V	b.t.	L	% V						
55.2 55.0 54.7 54.9 55.4	4.2 4.0 7.1 7.9 10.1 11.3 18.6 16.7 33.0 26.5	55.6 56.8 58.3 61.9	41.2 54.8 68.2 90.4	31.7 38.0 48.2 76.4						

Ruchmak	rine Tizlove en	d Maladark	. 1052		Proper	ties o	f phases.			
I	cine, Lizlova an		<u> </u>	·	Hirobe,	1908		_		
L	101% V	mol:	% ¥		mo1%		d	mol%	d	
	760 mm						25.05°			
94.9 87.0 85.6 81.7 76.4 75.7 68.4	89.6 76.7 75.1 70.2 64.1 63.1 56.7	56.0 45.7 31.8 31.0 23.5 19.3 14.1 10.2	46.8 39.5 29.2 28.8 23.3 19.8 15.3 11.7		100 93.05 80.66 68.65 60.14	59 .7 55 .7 28 .7	8842 9006 9151 9801 9147	59.657 51.634 42.441 24.258 0	0.79148 .79112 .79030 .78870 .78494	
66.5 58.1 57.1	55.1 48.5 47.5	4.7	5.6		Doroshe	evski,	1911			
ļ 					%		d	%	đ	
Amer, F	axton and Van W	inkle, 195	6		0 11.95		15° 79000 79924	68.37 92.00	0.80049 .79764	
b.t.	rol%	b.t.		01%	23.97 49.71	, ;	30066 30145	100	.79602	
 	L V		L	v						
64.6	100 100	0 mm	49.7	42.0	Barr an	d Birc	umshaw, 1	921		
63.5	96.4 91.8 91.9 83.9		48.7 41.6 31.7	42.0 36.1 29.5	wt%	mol%	đ	wt%	mol%	đ
62.2 60.7 59.4 58.1 56.9	85.9 74.9 79.4 66.4 70.7 57.7 60.6 50.0	55.8 55.8 55.8	25.8 17.7 13.9 0	25.5 19.4 15.7 0	0 9.75 20.1 39.5	0 16.4 31.3 54.2	25 0.78502 .78780 .78974 .79125	69.7	80.6 87.4 93.6 96.8	0.79136 .79083 .78969 .78805
Sapgir,	1929				59.7	72.9	.79170	100	100	.78658
%	f.t.	Е	tr.t		Burrows	, 1926				
100	-97.8 -103.0	-	-		%			đ		
84.1 71.2 59.2 50.3 36.1	-111.7 -115.7	-114.9 -117.8 -116.6 -115.6	-111	.7	0 15.3	25	0.	.78555 .78855		
27.7 22.5 13.3	-111.0 -108.3 -104.1	-113.9 -	=	:	53.1 76.3			.79095 .78977		
0	-95.6	-	-		Tomonar	i, 1936	;			
					mol%		đ	mol%	d	
							20°			
					0 20 40	•	7908 7944 7960	60 80 100	0.7961 .7943 .7913	

ACETONE + METHYL ALCOHOL

Griswold a	and Buford, 1	949		Amer, Pax	ton and van	Winkle, 1	.953	
mol%	d	mol%	d	mo1%	n _D	mol%	n _D	
89.5 82.7 77.3 69.8	25° 0.78841 .79005 .79001 .79051	57.6 35.7 15.3	0.79035 .78865 .78644	100 9 4.2 87.9 80.9 73.1 64.4	1.32904 .33240 .33600 .33949 .34280 .34601	54.7 43.7 31.2 16.8	1.34907 ,35198 ,35447 ,35672 ,35878	
Jones and	Getman, 1904	and Jones	and Mc Master, 1906					===
vol%	0°	25°		Tomonari	, 1936			
	1 st sam	nple		%	a ⁿ	%	n _D	
100 75 50 25	818.5 649.8 533.6 450.1	565.0 461.5 389.1 344.6		0 20	20° 1.35916 .35460	60 80	1.34317	
	2 nd san	nple		40	.34922	100	.33640 .32911	
100 75 50 25 0	903.2 649.7 517.7 433.8 504.5	608.4 508.7 449.8 415.5 397.7		Griswold	and Buford,	1949		
				mol%	$^{\mathrm{n}}$ D	mol%	n _D	
Jones and	Mahin, 1909 0°	n 25 °		89.5 82.7 77.3 69.8	25° 1.33228 .33636 .33881 .34637	35.7 32.7 16.8 8.5	1.35033 .35096 .33590 .33099	
100 75 50 25 0	857 734 596 471 429	583 517 433 370 346			nstants			
				mo1%	U	mo1%	U	
Morgan an	d Scarlett,	1917 30°		0 10 25 50	0.476 .484 .492 .529	75 90 100	0.551 .584 .577	
0 33.25	25.192 25.088	21.578 21.775		Hirobe,	1908			
39.88 49.84 49.92	25.004 24.877	21.747 21.689		mol%	Q mix	mo1	% Q mix	
59.83 100	24.673 23.643	21.058			2	25.05°		
				100 93.0 80.6 68.6 60.1	65 -92.4 98 -132.8	51.	657 -151.8 634 -160.3 441 -164.0 253 -129.3	

Acetone	(C ₃ H ₆ O)	+ Ethy	l alcohol	(C ₂ H ₆ O))	Amer, Pa	xton and v	an Winkle,	1956	
Hotor						mo15		b.t.	rıo1%	b.t.
Heterog	eneous equ	lilibria.				L	<u>v</u>		L V	· · · · · · · · · · · · · · · · · · ·
Thayer,	1899							7 60 mr		
%	b.t.	р	%	b.t.	р	100 96.7	$\substack{100\\88.9}$	78.3 76.4	58.6 63.4 46.8 30.3	63.4
0 3.18 14.54 22.57 33.03	55.6 56.58 57.30 58.39 59.30	742.9 742.9 742.7 742.7 742.4	54.69 59.14 63.26 69.92 73.98	63.42 64.22 65.15 66.79 67.92	739.1 739.1 739.4 739.4 739.4	92.2 85.1 80.5 68.4	78.4 65.5 59.0 46.6	74.0 70.8 69.1 65.6	30.9 20.4 14.8 10.4 0 0	
39.01 47.07 54.50	60.72 61.32 63.29	742.2 742.2 741.9	82.14 88.59 100	70.51 72.83 77.70	739.4 739.4 739.4	Amer, Pa	xton and v	/an Winkle,	1953	
Az: 81%	63.40	737.1	mm			mo1%	b.t.	mol		
Duttey,	1950					100 91.9 83.4 74.6	78.3 73.8 70.1 67.3	45. 35. 24. 12.	1 59.6 0 58.2	
mol% L	v	b.t.	me L	o1% V	b.t.	65.4 55.8	64.9 62.8	0	3 57.1 56.1	
		760 r	nm							
100 95 90 85 80 75 70 65	100 84.5 73.8 65.2 58.3 52.2 47.6 43.4	78.3 75.4 73.0 71.0 69.0 67.3	60 50 40 30 20 10	39.5 32.6 26.1 19.8 13.5 7.1	63.6 61.3 60.4 59.1 58.0 57.0 56.1	Sapgir,	f.t.	- 7:		E -119.1
05	43.4	64.7				25.8 39.7	-100.0 -102.1 -104.8	- 90 - 100	9.5 118.7 9.4 116.6 9 114.1	-119.1 -118.3
Hellwig	and van W	inkle, 19	953					-118.9		
b.t.	mo	1%	wt	%		Propertie	s of phase	es.		
	v	L	v	L		Jahn, 1891	L			
56.2 57.0	$\frac{0}{3.10}$	$^{0}_{12,5}$	$\frac{0}{6.5}$	0		С		d	(α) mag	n.
58.5 60.7	17.3 27.4	26.4	14.2 23.0	10.2 22.2 36.5				20°		
63.0 65.2 66.8 70.1	36.4 44.5 50.6	42.0 55.6 66.1 72.4	$\frac{31.2}{38.9}$ $\frac{48.3}{}$	49.8 60.7		100 23.175 0		0.79476 0.79219 0.79009	84.90 29.25 0	
70.1 72.2 75.1 78.4	62.4 70.3 82.4 100	82.5 87.9 94.2 100	56.8 65.6 79.1 100	67.5 78.9 85.2 92.8 100		c= g ace	etone in 10		•	
						Hirobe, 1	908			
						no1%	d	nol%	d	·
						100 89.471 73.917 63.252 55.582	25. 0.78607 .78645 .78662 .78651 .78626	53.999 44.169 34.042 17.098	0.78648 .78598 .78589 .78556 .78492	
									77 77 77	

ACETONE + ETHYL ALCOHOL

Muchin, 1913	Graffunder and Heymann, 1931
c d c d	mol% d mol% d
20° 0.0000 0.7934 4.3276 0.7924 0.4809 .7932 9.6196 .7923 0.7375 .7931 15.6860 .7921 1.9239 .7928 18.4384 .7921 3.6876 .7925 c= g acetone in 100 cc alcohol.	25° 0 0.7863 65.33 0.7866 12.25 .7883 74.56 .7864 23.90 .7864 83.42 .7862 35.00 .7865 92.79 .7860 45.58 .7866 100 .7857 55.68 .7868
Mathews and Cooke, 1914	Tomonari, 1936
t d	% d % d
50 % 0 0.8218 25 0.7965 40 0.7797	20° 0 0.7908 60 0.7922 20 .7920 80 .7917 40 .7920 100 .7909
Barr and Bircumshaw, 1921	Dunstan, 1904
wt% mol% d wt% mol% d	% п % п
25° 0 0 0.78502 76.4 80.5 0.78816 10.0 12.4 .78485 83.7 86.8 .78783 21.0 25.2 .78602 91.7 93.4 .78813 22.8 27.4 .78619 93.6 95.0 .78794 39.5 44.9 .78719 100 100 .78752 60.1 65.4 .78752	100 1115 56.62 516.2 77.54 716.8 55.50 502.8 72.23 651.0 48.43 462.0 64.89 579.7 29.66 383.6 63.17 563.6 0 312.5
Hammick and Andrew, 1929	Jones and Getman, 1904 and Jones and Mc Master, 1906
mol% d mol% d	vol % η η
25° 0.00 0.7898 68.74 0.7892 18.79 .7902 100.00 .7882 45.08 .7900	0° 25° 0° 25° 1st sample 2nd sample 100 1856 1106 2108 1145 75 1041 671.4 1156 733.2 50 680.1 487.4 708 533.3 25 499 377.6 490 439.3 0 409.7 323.7 504.5 397.7
Springer and Roth, 1930	Hirata, 1908
% d % d	% η (alcohol=1) % η (alcohol=1)
0° 100 0.8058 48.63 0.8114 82.23 .8092 29.66 .8095 56.62 .8107 0 .81105	25° 75 0.6137 96.875 0.9355 87.5 0.7653 98.4375 0.9689 93.75 0.8695° 99.21875 0.9905

Jones and Ma	hin, 1909			Hammi	ck and	Andrew, 1929			
%	ه حبر حبر المر ابن الي مير مير اين ميد .	0° η	25°	`	1	nol %	σ		
100 75 50 25 0		2103 1131 725 522 429	1180 726 506 398 346		4	0.00 18.79 45.08 68.74 00.00	21. 22. 22. 22. 23.	12 85 63	
Muchin, 19	13	احتاد الله الله الله الله الله الله الله ال	and and the second seco	Tomor	ari, Tro	ogus and Hes	s, 1932		
C	η	c	η	- %		n	%	r	
		20°	التي التي التي التي التي التدالي التي التي التي التي التي التي التي ا		С	D	~	c	D
0.0000 0.4809 0.7375 1.9239 3.6876	1253 1245 1226 1193 1127	4.3276 9.6196 15.6860 18.4384	868.9	0 10 20 40 50	1.35715 .35760 .35807 .35872	35956 35993 36057	20° 55 60 80 90	1.35914 .35923 .35953 .35956	1.36096 .36105 .36138 .36138
Mathews and	Cooke, 191	4	الله الدر الدر الدر نمو مور سر. الله الله الدر الدر الدر الدر عن مور مور من						
	t	<u>n</u>		Tomo	nari, 19	36			_
	0	0 % 770.0	1		%	n _D	K	nD	
Saning on	25 40	529.2 420.4		2 4	0	20 1.35916 .36028 .36107	60 80 100	1.36166 .36184 .36181	
Springer and	(water=1)		(water=1)	Amer	, Paxton	and van Wir	nkle, 1953		
0		0° 56.62	0,4823	mo	1 %	n _D	mol %	n _D	
29.66 48.63	0.3062 0.366 0.435	92.23 100	0.4023 0.6064 1.0589			20)°		
Morgan and S	ر العبر الحدود العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر العبر	ہے۔ ذاہم خدم شدر شدر شدر کی اسی خور سے سے سے بین خدم خاند شدر شاہ ضدر کانی نسی سیر بین بند		100 91 83 74 65 55	.9 .4 .6 .4	1.36152 .36158 .36159 .36143 .36122 .36097	45.7 35.1 24.0 12.3	1.3606 .3602 .3598 .3592 .3587	22 30 27
%	0°	შ 20 °	45°	Pasta	mer, 193				
0 2			19.781						
15.02 29.03 29.94	-	22.633 22.598 22.506	- -		C	e	СС		e
40.06 50.03 2 59.94 79.70	4.297	22.406	19.831	10 9 6	.69 .91 .54 .88	15.6 12.1 10.05 7.15	4.80 3.25 1.62	5	5.00 3.51 1.65
100 2	3.090	21.752 21.534	19.589			s acetone in		ultra-vio	let .

Graffunder and Heymann, 1931	Acetone (C ₃ H ₆ O) + Propyl alcohol (C ₃ H ₈ O)
mol% ε mol% ε	Tomonari, 1936
25°	
0 20.87 65.33 21.75 12.25 20.70 74.56 22.57 23.90 20.68 83.42 23.08 35.00 20.75 92.79 23.85 45.58 20.98 100 24.69	% d n _D % d n _D 20° 0 0.7908 1.35916 60 0.7908 1.37562
55.68 21.38	0 0.7908 1.35916 60 0.7908 1.37562 20 .7939 .36472 80 .8017 .38100 40 .7963 .37026 100 .8041 .38644
Jahn, 1891	Acetone (C ₃ H ₆ O) + Isopropyl alcohol (C ₃ H ₈ O)
c d magn	.
20° 100 0.79476 84.90 23.175 0.79219 86.15	Parks and Chaffee, 1927 mol% p p ₁ p ₂
0 0,79009 84,77	mo1% p p ₁ p ₂
Smith and Smith, 1918	
% X % X	0.0 226.5 226.5 0.0 16.1 221.6 199.7 21.9 33.1 190.0 162.5 27.5
ں کے شرخت میں میں میں میں میں میں میں میں میں میں	48.6 167.2 134.2 33.0
20° 0 -0,619 53,3 -0,676	82.5 100.0 59.9 40.1
0 -0.619 53.3 -0.676 14.8 -0.630 74.5 -0.692 30.9 -0.648 100 -0.721	100.0 44.3 0.0 44.3 mol%
	L V L V
Heat constants	15.2 10.8 ^{25°} 48.6 20.2
Nakamura, 1928	II 10.1 9.0 48.8 19.7
mol % U mol % U	29.9 13.7 66.1 26.5 30.2 13.7 81.2 39.0 45.2 17.2 84.9 42.2
	% d % d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25°
	0.00 0.7855 49.72 0.7806 15.65 .7832 49.85 .7807 16.56 .7831 66.90 .7801
Timofeev, 1905	30.00 .7818 81.70 .7804
% 0 dil	30.89 .7816 85.37 .7805 46.34 .7805 100.00 .7803
initial final (by mole alcohol)	
0 5.7 -1125 5.7 11.2 - 935 20.9 27.3 - 552 44.4 47.7 - 239	Thacker and Rowlinson, 1954 (fig.)
44.4 47.7 - 239	mol% Dv (cc/mol) mol% Dv (cc/mol)
Hirobe, 1908	10 0.12 70 0.23 30 .25 90 .08
mol % Q mix mol % Q mix	
25,12° 100 89,471 -106,1 44,169 -268,3 73,917 -210,1 34,042 -252,0 63,252 -251,0 17,098 -168,5 55,582 -266,8 0	

D. J. and Chaffee 1007	Parks and	Chaffee, 1927			 -
Parks and Chaffee, 1927	- 7	Q mix	%) mix
% n % n	_				v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.65 16.56 30.00 30.89 46.34 49.72	- 190 - 196 - 316 - 320 - 362 - 388	49.85 66.90 67.41 67.61 81.70 85.37	- - -	385 343 357 338 236 197
Thacker and Rowlinson, 1954 (fig.)	Thacker a	nd Rowlinson, 1	954 (fig	.)	
mol% Dη/η 56° 80° 100°	mp1%	Q mi			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 30 50 70 90 ————————————————————————————————	-150 -340 -410 -370 -170 -170	/l alcohol	(C ₄ H ₁₀	0)
mole fractions and η_1 and η_2 are the viscosities	Brunjes a	ind Furnas, 1935	,		
of the pure components at the same temperature.	V mc	01% L	V m	01%	
Palmer, 1920		25.0		L	
% n % n C E C E	100 75.6 41.8 23.5 14.8	100 96.8 89 79.5 70	8.2 5 3.3 2.5 1.5	57. 45 37. 25.	5
0 1.35633 1.36296 15.1 1.35862 1.36526 1.38 .35655 36324 16.2 .35871 .36534 1.95 .35651 .36316 29.3 .36097 ,36768 2.41 .35660 .36324 53.8 .36537 - 3.5 .35701 .36358 67.3 .36779 .37443 5.07 .35714 .36378 72.3 .36940 .37592	Fordyce a	and Simonsen, 19)49		
5.07 .35714 .36378 72.3 .36940 .37592 8.24 .35754 .36425 89.9 .37225 .37861 9.71 .35772 .36436 100 .37470 .38121 13.49 .35834 .36492	L %	p V	L L	V	p
	:	25	;°		
Parks and Chaffee, 1927	99.9 87.5 61.9	93.7 50 11.2 73 4.9 116	25.4 12.1 6.4	2.1 1.4 1.2	164 182 190
8 n D	40.6	3.2 149		·-	-,-
25°					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Ernst, Litkenhous and Spanyer, 1932	Ernst, Litkenhous and Spanyer Jr., 1932
mol% b.t. mol% b.t.	mol % n mol % n mol % n
760 mm 100 117.69 34.3 66.34 87.6 101.35 25.1 63.32 75.8 88.49 16.4 60.90 64.6 80.00 8 58.68	25° 100 2485.0 54 710.8 16.4 401.4 87.6 1650.0 43.9 591.9 8 365.1 75.8 1164.0 34.3 508.9 0 343.9 64.6 887.5 25.1 428.5
54 74.21 0 56.24 43.9 70.03	mol % σ mol % σ mol % σ
Reilly and Ralph, 1920	25° 100 24.20 54 24.04 16.4 23.80 87.6 24.14 43.9 23.98 8 23.74 75.8 24.17 34.3 23.92 0 22.99 64.6 24.10 25.1 23.86
20°	
0 0.79123 29.53 .79637 50 .79976	Ernst, Litkenhous and Spanyer Jr., 1932
50 .79976 69.14 .80360 100 .80974	mol % n _D mol % n _D
Ernst, Litkenhous and Spanyer jr, 1932 mol% d mol% d 25°	25° 100 1.3981 34.3 1.3727 87.6 1.3934 25.1 1.3686 75.8 1.3891 16.4 1.3645 64.6 1.3850 8 1.3607 54 1.3808 0 1.3570 43.9 1.3770
100 0.8056 34.3 0.7929 87.6 .8031 25.1 .7908 75.8 .8012 16.4 .7889 64.6 .7991 8 7870	Brunjes and Furnas, 1935
54 .7971 8 .7870 54 .7970 0 .7856 43.9 .7940	wt % mol % ⁿ D wt % mol % ⁿ D
Tomonari, 1936	25° 100 100 1,3985 50.60 44.60 1.3790 95.04 94.80 .3965 40.52 35 .3743 90 87.60 .3946 30.49 25.60 .3700 80.25 76 .3903 20.45 17.70 .3664 70.40 65 .3864 10.28 8.20 .3615 - 60.25 54.30 .3822 0 0 .3578
0 0.7908 60 0.8033	
20 .7953 80 .8076 40 .7993 100 .8118	Tomonari, 1936
	* n _D
Brunjes and Furnas, 1935	20° 0 1,35916 60 1,38337
wt% mol% d	20 .36728 80 .39159 - 40 .37544 100 .39964
25° 100 100 0.805301	
95.04 94.80 .80428 90 87.60 .80216 80.25 76 .80012 70.40 65 78826	Acetone (C_3H_60) + Isobutyl alcohol ($C_0H_{1,0}0$) Osipov, Panina and Lempert, 1955
50.25 54.30 .79581 50.10 44.60 .79334	mol % η χ mol % η χ
40.52 35 .79133 30.49 25.60 .78951 20.45 17.70 .78716 10.28 8.20 .78423 0 .78233	20° 0 300 21 80 1950 17.5 20 450 19 90 2800 18 40 700 17 100 4000 18.5
	60 1100 17

Acetone (C ₃ H ₆ O) + An	yl alcoh	ol (C ₅ H ₁	₂ 0)		Acetone (C ₃ H ₆ O) + I	Decyl alcoh	ol (C ₁₀ H ₂₂ O)
Carnazzi,	1905					Hoerr, Har	wood and R	alston, 194	4
%	d	7/2		d		%		f.t.	
0 6.35 12.39 48.36	0.7962 .7976 .7988 .8044	80.6 94.4 100	8 .!	8075 8085 8088		11.9 76.6 100	C ₃ H ₆ O) + 1	-20.0 0.0 +6.98	hol (C ₁₂ H ₂₆ O)
Carnazzi,	1905					Hoerr, Har	wood and R	alston, 194	4
%		τ.	106			<i>d</i>		f.t.	
	15°	20°	25°	30°		%			
0 6.35 12.39 43.36 30.62 94.48 100	1323 1304 1287 1191 1032 939 909	1340 1319 1304 1194 1035 950 917	1355 1332 1315 1207 1037 960 924	1370 1352 1325 1213 1045 966 928		1.6 11.4 42.9 92.0 100	CoH(O) +	-20.0 0.0 +10.0 20.0 23.95	lcohol (C ₁₄ H ₃₀ 0)
%	35°	40° τ.1	0 ⁶ 45°	50°				Ralston, 19	
0 6.35	1378 1367	1398 1376	1418 1392	1440 1413			f.t.	%	f.t.
12.39 48.36 80.62 94.48 100	1334 1229 1052 972 936	1352 1239 1063 976 942	1372 1250 1072 991 950	1395 1264 1082 999 961		0.1 2.4 7.9	-20.0 0.0 +10.0	27.8 77.5 100	20.0 30.0 38.26
P		π 2 5 °	,						
50 133 200 123	120 103 103 101		83.05% 93 89	95.19% 90 83	100% 87 82	Acetone (C ₃ H ₆ O) +	Cetyl alcol	no1 (C ₁₆ H ₃₄ 0)
400 116 600 109 300 102	97 93 39 84 30 76	96 78 71	83 74	78 72 67	77 71	Hoerr, Har	wood and R	alston, 194	14
	ov 70		68	0/		%	f.t.	%	f.t.
Acetone	(C ₃ H ₆ O) +	Isoamyla	alcohol (C ₅ H ₁₂ 0)	0.1 1.3 6.2	0.0 10.0 20.0	23.5 74.3 100	30.0 40.0 49.62
Tomonari,	, 1936								
	l n _Ď	%	đ	n _D		Acetone (C3H60) +	Octadecyl a	alcohol (C ₁₈ H ₈₈ O)
		20°				Hoerr, Ha	rwood and	Ralston, 19	94 4
20 .7	7908 1.35916 7952 .36877 7988 .3780	7 80	0.8032 .8076 .8119	1.3878 .3979 .4077	7	%	f.t.	%	f.t.
			.0117	. 10//		0.1 1.1 6.5	10.0 20.0 30.0	29.3 100	40.0 57.98

Acetone (C_3H_6O) + Glycerol ($C_9H_8O_3$)	Tomonari, 1936
Mc Ewen, 1923	% n _D % n _D
% sat.t. % sat.t.	20°
10.39 40.0 51.57 95.5 13.07 58.5 53.69 95.3 23.04 81.3 54.25 95.3 32.58 91.7 55.33 95.3 35.53 93.5 65.26 85.3 42.75 95.5 70.76 81.3	0 1.35916 60 1.38337 20 .36728 80 .39159 40 .37544 100 .39964
43.41 95.5 73.42 81.3 44.66 95.6 79.56 86.6 46.93 95.7 84.23 44.8 48.72 95.6 89.10 9.5	Acetone (C_8H_60) + Ethyl malate ($C_8H_{14}O_5$)
Poppe, 1934	Walden, 1906
C.S.T. sup. = 100.4° dp = -0.0635	% D b.t.
Acetone (C_9H_6O) + Methyl malate 1 ($C_6H_{10}O_5$) Walden, 1906	4.31 +0.332 8.05 0.730 10.20 0.965 12.88 1.284
% Db.t. % Db.t.	15.39 1.599
2.86 +0.237 10.37 +1.128 4.51 .417 13.09 1.485 6.10 .604 16.98 2.025 8.04 .836	Acetone (C_3H_60) + Methyl tartrate ($C_6H_{10}O_6$) Yen-ki-Heng, 1936
% d (α)D	t d t d
20°	22.540%
16.98 0.849 -11.13 11.26 .832 -11.36 4.98 .809 -11.58 50°	1 0.9068 43 0.8661 12 .8962 51 .8583 21 .8874 60 .8506 32 .8768
11.26 0.795 -11.25 4.98 .775 -10.61	
g/100cc (α) c (α) c	Lowry and Abrams, 1915
18° red green violet	w.1. (α) w.1. (α) 0% 25gr/100cc 0% 25gr/100cc
4.40 -9.32 1 -14.32 1.54 -18.98 -2.04 8.80 -9.09 1 -13.86 1.53 -18.41 -2.02 17.60 -8.84 1 -13.61 1.54 -18.21 -2.06 c= dispersion coefficient.	20° 6708 +2.79 +4.59 414410.0 6438 2.65 4.67 4065 - 13.0 5893 2.22 4.62 4046 - 13.7 5780 2.05 4.50 3982 - 16.7
Grossmann and Landau, 1910	5461 1.28 4.01 3934 -22.48 18.0 5086 -0.39 2.73 3925 - 18.7 4800 2.47 0.97 3900 - 19.7 4384 - -4.7 3847 - 22.7
g/100cc (α) red yellow green pale dark viol. blue blue	4358 8.93 5.05 3825 - 24.0 4353 - 5.3 3788 - 26.7 4299 - 6.3 3750 - 29.3 4271 - 7.0
20° 50.023	

Yen-ki-Heng, 1936	
t α	Patterson and Pollock, 1914
н _{gy} н _{g н_{gi}}	t (α) _D
22.540%	10.01 %
1 1.86 1.48 3.51 12 2.13 1.865 2.895 21 2.465 2.275 2.075 32 2.56 2.405 1.835 43 2.83 2.69 1.14 51 2.945 2.845 0.685 60 3.245 3.105 0.25	13 11.67 17 11.86 36.7 13.35 46 13.92 25.055 \$ 11.5 11.25
Acetone (C_2H_60) + Ethyl tartrate (C_8H_{1} , O_6)	16. 2 11.61 25. 5 12.33 32.0 12.76 36 13.03
Walden, 1906	
% D b.t.	100° 20.1 7.67
3.67 +0.245 6.72 .534 9.30 .833 12.29 1.109 14.76 .378	20.1 7.67 33.7 9.10 37.6 9.51 46.1 10.24 55.1 10.94
% t d	Walden, 1906
15.54 0 0.872	% t (α) _D
14.76 20 .841 15.54 20 .850 15.54 50 .817	15.54 0 9.91 14.76 20 11.76 15.54 20 11.62 15.54 50 13.36
Patterson and Pollock, 1914	1015
t d t d	Lowry and Dickson, 1915
10.01% 25.055% 13 0.8302 11.5 0.8820 17 .8260 16.2 .8769	(α) 6708 Å 5893 Å 5780 Å
17 .8260 16.2 .8769 36.7 .8043 25.5 .8665 46 .7944 32.0 .8593 36 .8550	5 10.73 12.80 13.23 10 10.10 12.28 12.63 20 9.90 11.66 11.93 100 6.69 7.45 7.52
t d t d	ξ (α)
100°	5461 Å 4358 Å
16.8 1.2087 46.8 1.1783 37.2 .1378 58.3 .1665	5 13.97 11.37 10 13.24 10.99 20 12.46 9.52 100 7.50 1.62

Acetone	(C_9H_60)	+	Cyclohexanol	(C6H120)
	•	- 36 -	•		•jeronemanor	•	0611120	,

Weissenberger and Schuster, 1924

mo1%	p	mo1%	p	
 	20)°		
80 66.7 57.2 50.0	69 101 122 136	40.0 25.0 16.2	151 165 168	

mo1%	η (water	=1) o
	20°	
100 80 66.7 57.2 50.0 40.0 25.0 16.2	14.5 -4.2 2.3 1.6 1.3 0.82 0.68 0.61 0.37	0.474 .436 .416 .401 .388 .369 .351 .346

Acetone ($\text{C}_3\text{H}_6\text{O}$) + Trichlorlactamide ($\text{C}_3\text{H}_4\text{O}_2\text{NCl}_3)$

Meldrum and Turner, 1908

gr/100cc	D b.t.	gr/100cc	D b.t.	
12.65	+1.600	9.01	+1.150	
11.23	1.440	8.22	1.045	
10.03	1.280	7.50	0.935	

Acetone ($C_8 \rm{H}_6 \rm{O}$) + Borneol ($C_{1\,0} \rm{H}_{1\,8} \rm{O}$)

Peacock, 1914

%	% d		(α) _D
	25°		
1.0302 2.9805 3.0730 9.9940 15.322 19.652 37.697	0.7860 .7925 .7960 .8035 .8113 .8184 .8493	1.3533 .3613 .3623 .3675 .3739 .3791 .4005	27.6 26.3 28.6 23.7 27.0 27.1 27.2

Acetone ($\text{C}_3\text{H}_6\text{O}$) + Glycol mononitrate ($\text{C}_2\text{H}_5\text{O}_4\text{N}$)

Twist and Baughan, 1955

mo1%	\mathbf{p}_1	mo1%	$\mathbf{p_1}$	
	20°			
5.33 11.59 12.87 18.24 20.04 21.92 24.17 28.98 35.81 36.90 38.90 34.25 45.28 46.88 46.88 47.47 50.70 50.99 56.75	175.0 163.2 160.3 149.1 145.7 140.4 136.2 125.1 110.0 108.1 104.3 92.1 90.0 84.9 84.0 79.0 77.9 74.0 66.3	57.26 59.34 61.83 63.22 63.32 70.13 70.01 73.59 76.97 80.30 80.93 82.57 85.67 89.04 91.99 93.61 95.57 98.39	64.8 59.5 56.0 54.0 43.5 41.8 39.3 33.5 29.8 22.1 16.9 11.6 10.5 8.7 6.3 2.0	

mo1%	đ	Dv (cc/mole)
	20°	
0 19.15 38.87 59.17 80.16	0.7905 .9107 1.0308 .1459 .2558 .3559	-0.51 -0.89 -0.83 -0.39

Methyl ethyl ketone (C_uH_80) + Methyl alcohol (CH_u0)

Britton, Nutting and Morsley, 1952 (fig.)

	%	
L	V	b.t.
	100 mm	
0 10 20 40 58 80 100	0 20 31 52 58 70 100	27 21.5 19.5 18 17.5 19
	275 mm	
0 10	0	49
20 40	21 32 52	44 42
70	5,2	40

0 10	24	80 71 67	Marshal Az:	1, 190 6 75° (763 m	m)			
20 40 68 80 100	61 68	67 65 64 64 65	Methyl Alcohol	ethyl ketone (C,480)	(b.t.	=79.6)	
	2040 mm		Lecat,					
0 10	0 1	48 35		2 nd comp.		Az		
20 40	39 1	29 23	Name	Formula	b.t.	%	b.t.	Dt mix
60 80 100	80 90 100	20 . 5 20 20	Methyl alcohol	(CH ₄ 0)	64.65	30	63.5	-
0	11090 mm 0 1	97	Ethyl alcohol	(C_2H_6O)	78.32	46	75.7	-5.5 (50%)
0 10 20 40	30 <u>1</u> 43 1	75 67 59 55	Isopropy alcohol	1 (C ₃ H ₈ O)	82.4	32	77.9	-5.9
60 80 100	190	.55 53.5 53	Tert.But	y1 (C ₄ H ₁₀ 0)	82.45	31	78.7	-
Hill and	d van Winkle, 1952		Methyl	ethyl ketone	(C ₄ H ₈ O)		Butyl a	lcohol
b.t.	wt% mol% V L V	L	Amick,	Weiss and Kir	shenbaum	, 1951		
67.0 66.2 65.5	20.3 8.5 28.4 28.1 14.7 39.2	10.6	L	mo1%	v	b.t		
65.5 64.8 61.9	31.0 17.7 53.0 42.9 31.1 61.6	20.0 36.0 49.1		76	50.0 mm			
63.5 63.0	53.9 47.7 73.6	60.0 69.2	98.2 94.4	9	96 39	99 97	.0	
63.6 62.7	71.2 71.7 84.0	77.1 84.0 90.0	88.6 88.2	7	78.3 78	96 96	.0	
63.7	73.1 73.9 89.1 81.3 83.2 94.4	95.3	87.2 84.0		76.8 70.4	95 94	. 8	
			83.6 78.2	ä	70.9 53	94 93	. 2	
Methyl	ethyl ketone (C_4H_80) + Ethy (C_2H		75.5 72.4 72.3 70.9 63.7		59.7 55.6 55.2 54.4	92 91 91 91	.5 .4 .7	
Hellwig	and van Winkle, 1953		60.5 57.5	4	43.6 40.5	90 83 88	. 3	
b.t.	wt% mo1% V L V	L	47.9 46.9 39.0 34.6	Ş	32.6 31.3 25.6 23.1	86 87 85 84	.1	
78.4 77.2 75.2 74.6 74.0 74.1 75.0 75.6 77.7	93.5 95.6 89.8 74.3 80.8 64.9 64.2 69.5 53.4 51.3 52.1 40.2 49.2 48.5 33.3 27.9 22.3 19.8 20.8 15.1 14.4 8.64 4.00 5.70 0 0	100 93.3 72.9 59.3 41.0 37.6 15.5 10.2 2.60	32.4 28.3 19.1 12.2 10.8 7.3 6.0 2.9	į	21.4 18.8 12.9 8 7.4 5.1 4.6 4	84 83 82 81 80 80 80 79	.4 .2 .1 .5 .9 .7	
Az:	50.1 mo1% 74.0°							

METHYL ETHYL KETONE + DECYL ALCOHOL

mol % b.t.	Methyl ethyl ketone ($C_{\mu}H_{8}0$) + Cetyl alcohol ($C_{16}U_{3\mu}0$)
2 V 374.5 mm	Hoerr, Harwood and Ralston, 1944
96.6 91.2 80.3	% f.t. % f.t.
90.7 82.4 79.0 90.5 77.6 78.1 85.5 67.8 76.4 82.8 63.5 75.2 77.9 57.2 73.9 74.2 52.9 72.3	1.6 0.0 33.3 30.0 4.5 10.0 74.3 40.0 12.4 20.0 100 49.62
68.3 45.4 71.0 63.2 40.4 69.4 52.1 30.2 67.2 48.4 28.1 66.5 45.2 25.4 65.8 42.0 23.5 65.4 32.8 18.3 63.7 28.4 15.7 63.0 19.1 10.6 61.8 11.4 6.4 60.6 3.5 2.0 59.9	Methyl ethyl ketone ($C_{14}H_{8}0$) + Octadecyl alcohol ($C_{18}H_{38}0$) Hoerr, Harwood and Ralston, 1944
	% f.t. % f.t.
Methyl ethyl ketone (C_uH_80) + 1-Decyl alcohol ($C_{10}H_{22}0$)	0.1 0.0 11.2 30.0 1.0 10.0 33.2 40.0 3.7 20.0 100 57.98
Hoerr, Harwood and Ralston, 1944	Methyl ethyl ketone (C_uH_80) + Glycerol ($C_3H_80_3$
₹ f.t.	Methyl ctnyl ketone (equigo) - olycerol (eguigo g
14.1 -20.0 77.8 0.0 100 +6.88	Mc Ewen, 1923
	% sat.t. % sat.t.
Methyl ethyl ketone (C_4H_80) + Lauryl alcohol ($C_{12}H_{26}0$) Hoerr, Harwood and Ralston, 1944	7.86 55.5 58.73 163.2 13.45 118.5 63.87 162.5 25.22 150.0 73.25 155.5 32.86 161.5 86.79 128.5 39.75 164.5 89.27 116.5 46.16 164.5 96.00 97.5
\$\frac{f.t.}{16.2}\$	Methyl propyl ketone ($C_5H_{10}O$) + Methyl alcohol ($CH_{10}O$)
46.8 +10.0 92.0 20.0	Hill and van Winkle, 1952
100 23.95	wt% mol% b.t. V L V L
Methyl ethyl ketone (C ₄ H ₈ O) + Myristic alcohol (C ₁₄ H ₃₀ O) Hoerr, Harwood and Ralston, 1944 ### f.t. ### f.t.	27.4 7.1 42.1 12.4 77.9 41.3 14.8 57.6 23.0 73.5 49.8 22.4 70.5 40.2 72.2 56.4 30.1 77.0 53.5 69.0 63.3 40.7 81.9 64.2 67.3 72.5 55.4 85.9 72.9 66.1 79.9 67.7 89.1 80.2 64.6 88.9 83.2 92.0 85.6 63.3 94.3 91.9 94.7 91.5 63.9
0.6 -20.0 37.5 20.0 4.4 0.0 77.5 30.0 14.1 +10.0 100 38.26	
	n .

Methyl propyl ketone ($C_5H_{10}O$) + Ethyl alcohol (C_2H_6O)	Methyl propyl ketone (C ₅ H ₁₀ O) (b.t.=102.35) + Alcohols. Lecat, 1949
Lecat, 1949	2 nd comp. Az
% b.t.	Name Formula b.t. % b.t. Dt mix.
0 102 88.7 77.7 Az 100 78.3	Propyl (C ₃ H ₈ O) 97.2 68 96.0 -4.3 (70%)
100 78.3	Isobutyl (C _u H ₁₀ 0) 108.0 19 101.8 -4.5 alcohol (50%)
Britton, Nutting and Horsley, 1952 (fig.)	Tert.Amyl (C ₅ H ₁₂ 0) 102.35 42 100.9 - alcohol
L [%] V h. †	Allyl (C ₃ H ₆ 0) 96.85 70 95.0 - alcohol
0 0 46 10 20 40 20 26 38 40 66 35 64 64 34 80 80 34	Methyl propyl ketone ($C_5H_{10}O$) +Isopropyl alcohol (C_3H_8O) Ballard and van Winkle, 1953
100 100 35 747 mm	b.t. mol% b.t. mol% V L V L
0 100 100 100 20 31 90 48 85 40 68 80 82 79 80 84 78.5 100 78	98.0 20.30 7.55 85.4 72.00 58.45 94.8 32.95 14.55 84.3 78.00 68.50 91.4 46.10 24.60 83.5 84.15 78.15 88.6 58.00 37.20 83.0 89.75 86.55 86.6 66.40 48.40 82.5 96.70 95.65
5400 rm 0 0 183 10 26 165 20 42 155 40 42 155 60 66 148 80 94 141 100 100 100	Methyl isopropyl ketone ($C_5H_{10}O$) + Propyl alcohol (C_8H_8O) Lecat, 1949
	% b.t. Dt mix.
Hellwig and van Winkle, 1953	0 95.4 - 35 93.5 -4.7 100 97.2 -
b.t. mol% wt% V L V L	
78.4 100 100 100 100 78.3 98.3 98.5 96.8 97.2 77.9 96.7 96.9 94.0 94.3 78.0 95.3 95.9 91.5 90.8 78.3 93.0 91.9 87.7 85.8 78.5 89.2 86.7 81.6 77.7 78.5 88.5 85.4 80.4 75.8 78.7 83.8 78.9 73.4 66.6 79.8 73.8 62.4 60.1 47.0	Methyl isopropyl ketone ($C_5H_{10}0$) + Allyl alcohol (C_3H_60)
78.7 83.8 78.9 73.4 66.6 79.8 73.8 62.4 60.1 47.0 73.8 73.2 61.3 59.3 45.9 81.8 68.3 53.4 53.5 38.0	% b.t. Dt mix.
02.9 51.8 30.1 36.5 18.7	0 95.43.0
86.0 34.7 13.0 22.1 7.4 87.9 23.7 6.52 14.3 3.6	36 93.5 Az
Az: 96.2 mol% 78.0°	

	The state of the s
Methyl butyl ketone ($C_6H_{12}O$) + Methoxy glycol ($C_3H_8O_2$)	Methyl isobutyl ketone ($C_6H_{12}O$) (b.t.=116.05) + Alcohols.
	Lecat, 1949
Lecat, 1949	2 nd comp. Az
g b.t.	Name Formula b.t. % b.t. Dt mix.
0 127.2 56 121.5	
100 124.5	Butyl (C ₄ H ₁₀ 0) 117.8 30 114.35 -3.7 alcohol (53%)
	Isobutyl (C4H100) 108.0 91 107.85 -1.1
Methyl butyl ketone ($C_6H_{12}O$) + Ethylenechlorhy-	alcohol
drin (C ₂ H ₅ 0C1)	Diethyl (C ₅ H ₁₂ O) 116.0 35 115.0 - carbinol
	No. 1
Lecat, 1949	Methoxy (C ₃ H ₈ O ₂) 124.5 25 114.2 -
% b.t. Dt mix.	
0 127,2 -	Pinacélin ($C_6H_{12}O$) + Ethyl alcohol (C_8H_6O)
70 - +0.2	
75 129.0 Az - 100 128.6 -	Pestemer, 1934
	m e m e
Methyl isobutyl ketone ($C_6H_{12}O$) + Methyl alcohol	8.11 10.80 5.50 6.89
(CH ₄ 0)	7.87 10.25 4.93 6.32
Hill and van Winkle, 1952	6.84 8.32 2.81 4.25
,	6.17 7.67 1.54 2.50 5.89 7.30
wt% mol% b.t. V L V L	m = molarity of pinacolin
Y L Y L	e = extinction coefficient in ultraviolet
35.7 4.8 64.7 14.1 86.9	
51.6 11.6 75.1 25.8 77.0 62.5 21.0 83.4 43.9 71.4	Pinacolin ($C_6H_{10}O$) + Isobutyl alcohol ($C_4H_{10}O$)
62.5 21.0 83.4 43.9 71.4 65.3 25.8 87.2 57.3 70.5 72.1 37.0 89.6 67.6 69.4 73.6 41.1 81.5 75.8 67.8	
72.1 37.0 89.6 67.6 69.4 73.6 41.1 81.5 75.8 67.8 74.3 41.6 93.3 82.4 67.5	Lecat, 1949
79.9 55.4 95.0 88.0 65.7	
85.8 69.7 96.6 92.6 64.8 90.8 81.0 98.3 96.6 63.3	% b.t.
	0 106.2
Methyl isobutyl ketone (C ₆ H ₁₂ O) +Isopropyl alco-	42 105.5 Az 454.2
hol (C_8H_8O)	100 108.0
Bullard and van Winkle, 1953	
b.t. mol% b.t. mol%	
V L V L	Pinacolin ($C_6H_{12}O$) + Sec.Butyl alcohol($C_4H_{10}O$)
112.0 14.30 3.45 89.5 75.10 49.70	
108.5 25.20 6.55 87.4 80.35 60.70	Lecat, 1949
103.0 40.75 14.30 86.0 84.90 70.45 97.0 56.10 25.35 84.4 90.55 83.15 92.3 67.85 39.30 83.0 96.25 93.15	
108.5 25.20 6.55 87.4 80.35 60.70 103.0 40.75 14.30 86.0 84.90 70.45 97.0 56.10 25.35 84.4 90.55 83.15 92.3 67.85 39.30 83.0 96.25 93.15 91.9 69.25 41.45	% b.t.
	0 106.2
	84 99.1 Az 100 99.5

			_				
Methyl hexyl ketone (C ₈ H ₁₆ O)(b.t.=172.85) +							
Lecat, 1949							
	2nd Comp.			Az			
Name	Formula	b.t.	* 	b.t.	Dt mix or sat.t.		
Pinacol	C 6H 1 40 2	174.35	35	171.5	-		
Glycol	C2H602	197.4	20	168.0	66		
Propylen- glycol	C2 H805	187.8	-	169.5	-		
Propyl- lactate	C6H12O3	171.7	75	171.4	-		
1.3-Dichlor- 2-propanol	C3 H6 OC 12	175.8	67	179.0	3,0 (50%)		
1.2-Dichlor- 3-propanol	C ₃ H ₆ OC1 ₂	182.5	-	184.0	-		
Methyl hepty			+ Met	thyl alc	ohol CH ₄ 0)		
	%	f.t]		
	89.2 80.7 49.3 5.2	-40. -30. -20. -10. - 7.	0 0 0	حد الله القرابية فسر فقية بين			
Methyl heptyl ketone ($C_9H_{18}O$) + 2-Propyl alcohol (C_3H_8O)							
Hoerr, Reck							
stable	% unstal	ble		f.t.			
: 99.5 92.0 61.0 9.1	99 88. 56.	3 2	-	40.0 -30.0 -20.0 -10.0 - 7.46			

Methyl undecyl ketone ($C_{13}H_{26}0$) + Methyl alcohol (CH₄0) Hoerr, Reck and al., 1955 stable unstable f.t. 98.6 94.9 82.3 -10.0 93.5 0.0 + 10.078.8 22.0 20.0 27.46 Methyl undecyl ketone (C18H260) + Isopropyl alcohol (C₃H₈O) lloerr, Reck and al., 1955 stable unstable f.t. 97.9 92.7 76.3 27.4 -10.0 0.0 +10.0 20.0 27.46 Methyl heptadecyl ketone ($C_{19}H_{38}O$) + Methyl alcohol ($CH_{\downarrow}0$) Hoerr, Reck and al., 1955 f.t. stable unstable 95.9 17.9 0 85.9 -40.0 50.0 54.59 Methyl heptadecyl ketone (C₁₉H₃₈O) + Isopropyl alcohol (C3H80) Hoerr, Reck and al., 1955 f.t. stable unstable 97.6 92.1 66.2 20.0 30.0 40.0

50.0 54.59

Diethylketone ($C_5H_{10}O$) (b.t.= 102.05) + Alcohols. Lecat, 1949	Diisopropyl ketone ($C_7H_{14}O$) + Diisopropyl carbinol ($C_7H_{16}O$)
2 nd comp. Az	George, 1943
Name Formula b.t. % b.t. Dt mix.	% n _D % n _D
Propyl (C ₉ H ₈ O) 97.2 505.2 alcohol 63 96.0	20°
Isobutyl (C ₄ H ₁₀ O) 108.0 20 101.7 -5.7 alcohol	0 1.4002 64.8 1.4157 34.8 .4080 100 .4245 53.2 .4127
Sec. Butyl (C _u H ₁₀ Q) 99.5 505.5 alcohol 58 98.0	Diisobutyl ketone ($C_9H_{18}O$) (b.t.=168.0) +
Tert. Amyl ($C_5H_{12}O$) 102.35 40 100.7 - alcohol	Lecat, 1949
Allyl (C _S H ₆ O) 96.85 72 95.95 -2.8	2 nd comp. Az Name Formula b.t. % b.t. Dt mix.
	Glycol (C ₂ H ₆ O ₂) 197.4 15 164.2 -
Ethyl propyi ketone ($C_6H_{12}O$) + Butyl alcohol ($C_4H_{12}O$)	hethyl- (C ₇ H ₁₄ 0) 168.5 40 167.5 -2.0 cyclo- (10%) hexanol
Lecat, 1949	Dichlor 1.3. propanol (C ₈ H ₆ OC1 ₂) 175.8 85 177.5 -
% b.t. Dt mix.	
0 123.3 - 80 117.2 Az -2.8 100 117.8 -	Caprinone ($C_{1.9}H_{3.8}O$) + Methyl alcohol ($CH_{4.0}$)
	Garland, Hoerr and al., 1943
Ethyl propyl ketone ($C_6H_{12}O$) + Methoxy glycol	% f.t. 99.4 10.0
(C ₃ H _B O ₂	1) 09 5
Lecat, 1949	
0 123.3 43 119.5 Az 100 124.5	Caprinone ($C_{19}H_{38}O$) + Ethyl alcohol ($C_{2}H_{6}O$)
Dipropylketone ($C_7H_{14}0$) + Methyl lactate	Garland, Hoerr and al., 1943
$(C_4H_{1,8}O_5)$	% f.t.
Lecat, 1949	98.8 96.9 30.0 34.1 50.0
% b.t.	57.8
0 143.55 47 142.7 Az 100 143.8	

Caprinone ($C_{1.9}H_{3.8}O$) + Isopropyl alcohol ($C_{3}H_{8}O$)	Laurone (C ₂₃ H ₄₆ 0) + Isopropyl alcohol (C ₃ H ₈ 0)
Garland, Hoerr and al., 1943	Garland, Hoerr and al., 1943
β f.t.	% f.t.
98.7 10.0 95.4 30.0 33.6 57.8	99.7 10.0 99.2 30.0 90.7 50.0 12.2 65.0 0 69.3
Caprinone ($C_{1.9}H_{8.8}0$) + Butyl alcohol ($C_{u}H_{1.0}0$)	Laurone ($C_{23}H_{46}0$) + Butyl alcohol ($C_{4}H_{10}0$)
Garland, Hoerr and al., 1943	Garland, Hoerr and al., 1943
# f.t.	% f.t.
97.8 10.0 92.2 30.0 31.5 50.0 0 57.8	99.6 98.8 86.1 12.2 0 10.0 30.0 50.0 65.0 69.3
Laurone ($C_{29}H_{46}0$) + Methyl alcohol ($CH_{4}0$)	Myristone ($C_{27}H_{54}O$) + Ethyl alcohol ($C_{2}H_{6}O$)
Garland, Hoerr and al., 1943	Garland, Hoerr and al., 1943
g f.t.	
99.9 99.5 30.0 98.3 50.0 18.7 64.7 0 69.3	% f.t. 99.9 30.0 99.2 50.0 88.1 65.0 0 77.2
Laurone ($C_{23}H_{46}0$) + Ethyl alcohol ($C_{2}H_{6}0$)	Numicous (C. H. O.)
Garland, Hoerr and al., 1943	Myristone ($C_{27}H_{5}$ $_{*}0$) + Isopropyl alcohol ($C_{3}H_{8}0$)
g f.t.	Garland, Hoerr and al., 1943
99.8 99.4 30.0 94.3 50.0	% f.t.
94.3 50.0 10 65.0 0 69.3	99.9 98.1 79.9 0 30.0 50.0 65.0 77.2

Myristone (C_{2} / H_{5} $_{+}$ 0) +	Butyl alcohol (CuH ₁₀ 0)
Garland, Hoerr and al.,	1943
K	f.t.
99.9 95.9 70.0 0	30.0 50.0 65.0 77.2
Palmitone ($C_{31}H_{62}0$) +	Ethyl alcohol (C ₂ H ₆ O)
Garland, Hoerr and al.,	1943
*	f.t.
99.8 97.3 59.1 0	50.0 65.0 78.5 83.7
Palmitone (C ₃₁ K ₆₂ O) +	Isopropyl alcohol (C ₃ H ₈ O)
Garland, Hoerr and al.,	1943
	f.t.
99.9 95.2 3.9 0	50.0 65.0 82.3 83.7
Palmitone (C ₈₁ H ₆₂ O) + Garland, Hoerr and al.	Butyl alcohol (C _h H _{1 0} 0)
	f.t.
99.9 99.1 90.3 11.4 0	30.0 50.0 65.0 80.0 83.7

Stearone (C₃₅H₇₀0) + Isopropyl alcohol (C₃H₈0)

Garland, Hoerr and al., 1943

f.t.

99.4
65.0
63.3
82.3
0
88.7

Stearone (C₃₅H₇₀0) + Butyl alcohol (C₄H₁₀0)

Garland, Hoerr and al., 1943

%	f.t.	
99.9 98.2 48.6 0	50.0 65.0 80.0 88.7	

Methyl heptenone (C_8H_{1+0}) (b.t.=173.2) + Alcohols

Lecat, 1949

	2nd Comp.			Az	
Name	Formula	b.t.	%	b.t.	Dt mix or sat.t.
1.3-Dichlor- 2-propanol	C3 C12H60	173.2	65	179.0	+2.8 (40%)
Pinacol	C6H1402	174.35	40	171.7	-
Glycol	C2H6O2	197.4	23	168.1	65
α-Dichlor- hydrin	C ₃ H ₆ OC1 ₂	175.1	65	178.5	-

Isopropyli	iden acetone	(C ₆ H ₁	0)	(b, t.=129	.45) +Alc
Lecat, 194					
	2 nd comp.		Az		
Name	Formula	b.t.	%	h.t.	Dt mix.
Methoxy- glycol	(C ₃ H ₈ O ₂)	124.5	60	122.5	-
Ethoxy- glycol	(C ₄ H ₁₀ O ₂)	135.3	18	128.9	-
Ethylene chlorhydri	(C ₂ H ₅ OC1) n	128.6	33	130.2	+0.1 (60%)
Isoamyl alcohol	(C ₅ H ₁₂ 0)	131.9	24	129.15	-4.4 (50%)
Db (C II O) (1				
Lecat, 19	С ₉ Н _{1 4} О) (b	ı.t.≈197	. B) ·	+ Alcohol	ls.
Decat, 17	-nd				
Name	Formula	b.t.	Az %	b. t.	,
	101111111	D. C.		D. L.	
0ctyl alcohol	(C _B H ₁₈ O)	195.2	80	193.5	
Glyco1	($C_2H_6O_2$)	197.4	50	184.5	
Methoxy- diglycol	(C ₅ II ₁₂ O ₃)	192.95	75	190.5	
Acetyl ac	cetone (C ₅ II		Isoar (C ₅ H		101
Lecat, 19	949				
		b. t.			
0 65 100		137.2 129.3 131.9	7 5 Az 9		
Diacetyle Lecat, 19	e (C ₄ H ₆ O ₂) 149	(b.t.=	87.5)) + Alcoh	ols.
	2 nd comp.		Az	 Z	
Name	Formula	b.t.	%	b.t.	
hethyl alcohol	(CH ₄ 0)	64.65	7 5	62.0	
Ethyl alcohol	(C ₂ H ₆ O)	78.3	47	73.9	
Propyl alcohol	(C ₃ H ₈ O)	97.2	2 5	85.0	
Isopropyl alcohol	(C ₃ H ₈ O)	82.4	60	79.0	

Acetyl	acetone	(C ₅ H ₈ O ₂) + Cyclopentanol	(C ₅ H _{1 o} C	,)
Lecat,	1949				
%			b.t.		
0 32 100			137.7 135.5 140.85		
					=

Acetonyl acetone ($\rm C_6H_{1\ 0}O_2$)(b.t.=191.3) + Alcohols

Lecat, 1949

	2nd Comp			Az	
Name	Formula	b.t.	%	b.t.	
Octyl alcohol	C 8H1 80	195.2	35	190.0	
sec. Octyl alcohol	CgH1B0	180.4	82	179.0	
Glycol	C2H6O2	197.4	45	180.5	

Monochloracetone ($C_3\,H_5\,0C\,1$)(b.t.=119.7) + Alcohols

Lecat, 1949

2nd Comp	•	Az				
Formula	b.t.	%	b.t.	Dt mix		
C4H100	117.8	43	112,5	-6.5 (50%)		
C4H100	108.0	63	106.0	-6.8 (63%)		
C5H120	119.8	32	116.0	-		
C5H120	131.9	17	119.0	-6 (50%)		
	Formula CuH100 CuH100 CuH120	C _u H ₁₀ 0 117.8 C _u H ₁₀ 0 108.0 C ₅ H ₁₂ 0 119.8	Formula b.t. \$ CuH100 117.8 43 CuH100 108.0 63 C5H120 119.8 32	Formula b.t. % b.t. CuH100 117.8 43 112.5 CuH100 108.0 63 106.0 C5H120 119.8 32 116.0		

Cyclopentanone	(C ₅ H ₈ 0)	(b.t.=	130.65)	+ Alcohols
Lecat, 1949						

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
Isoamyl alcohol	(C ₅ H ₁₂ O)	131.9	42	130.0
alcohol Ethoxy glycol	(C ₄ H ₁₀ O ₂)	135.3	27	130.2

Cyclohexanone ($C_6 \text{H}_{\text{10}} 0$) +Ethyl alcohol ($C_2 \text{H}_6 0$)

Weissenberger, Schuster and Mayer, 1924

mo1%		p		
	18°			
20 33.7 50 66.7		18 23 28 33		

mo1%	η (water=1)	σ
	13°	
0 33.3 42.8 50.0 66.7 80.0	2.1 1.6 1.6 1.7 1.4	0.440 .402 .385 .373 .344

Cyclohexanone ($\text{C}_6\text{H}_{1\,0}\text{O}$) + Hexyl alcohol ($\text{C}_6\text{H}_{1\,4}\text{O}$)

Lecat, 1949

96	b.t.	Dt mix.	
0 6 10 100	155.7 155.65 Az 157.85	-2.0	

Cyclohexanone ($C_6H_{10}O$) + Ethyl lactate ($C_6II_{10}O_3$)

Lecat, 1949

%	b.t.	Dt mix.
0 60 66 100	155.7 153.7 Az 154.9	-1.2

Cyclohexanone ($C_6H_{10}O$) + Cyclohexanol ($C_6H_{12}O$)

Hudlicky, 1949

%	η	n _D	%	T)	n _D
		25°			
0 20 33.4 40 50	1850 2380 3020 3540 4540	1.4482 .4510 .4532 .4559	60.5 66.5 80 100	6290 7860 13850 46000	1.4588 .4608 .4646

Menthone ($C_{10}H_{18}0$) (b.t.=209.5) + Glycols.

Lecat, 1949

	2 nd comp.),		Az	
Name	Formula	b.t.	%	b.t.	
Glycol	(C ₂ H ₆ O ₂)	197.4	62	190.0	
Propylen glycol	(C ₃ H ₈ O ₂)	187.8	85	185.0	

Menthone ($C_{10}H_{18}O$) + Menthol ($C_{10}H_{20}O$)

Vanstone, 1909

mol%	f.t.	mol%	f.t.	
0.0	-6.6	49.2	+2.0	
10.2	-9.1	56.2	8.0	
25.5	-12.0	63.0	12.0	
39.6	-5.0	100	39.0	

Camphor (C ₁₀ H ₁₆ O) + Methyl alcohol (CH ₄ O)	Malosse, 1912
	% d % d
Vandenberghe, 1899	20°
% D b.t. % D b.t.	100 0.8123 70 0.8580 90 .8276 60 .8731 80 .3425 50 .8883
+2.91 +0.175 13.79 +0.773 4.76 .257 14.53 .820 6.54 .335 16.67 .905 6.54 .370 17.35 1.59 9.91 .537 18.03 1.023 10.71 .600	Zoppellari, 1905
	% t n _D
Landolt, 1876 and 1877	93.9868 10.6 1.33945 84.5868 9.6 .35163
% d	71.5525 10.5 .36756 68.7922 9.2 .37192
20°	57,3361 10,1 .38652
50.6134 0.88093 69.6846 .85318 88.7410 .82700 100 .80915	Kanonnikov, 1885
Kanonnikov, 1885	% п Н _α D Н _β
8 d	70.67 1.38806 1.39009 1.39471 100 .35930 .36067 .36543
·20°	Golse, 1911
70.67 0.83607 100 .79177	
	% п _D % п _D
Zoppellari, 1905	20° 100 1.3290 64.54 1.3723 87.66 .3435 53.74 .3876 75.86 .3576 43.34 .4026
% d % d	73,00 ,3070
93.9867 0.80915 68.7922 0.85105 84.5868 .82535 57.3361 .86858 71.5525 .84491	Landolt, 1876 and 1877
	% (α) _D
Golse, 1911	20°
% d % d	88.7410 45.844 69.6846 47.179 50.6134 48.996
20°	
100 0.7912 64.54 0.8472 87.66 .8102 53.74 .8649 75.86 .8286 43.34 .8827	Angla, 1949 C (α) C (α)
	c (α) c (α) 5460
	1 47°90 10 51°00 2 48°60 20 52°95 3 49°20 30 55°00 5 49°80

Camphor ($C_{10}II_{16}O$) + Ethyl alcohol ($C_{2}I$,0)		 	
	Wetselaar,	1927		سول جيد جند المدر المدر شدر سور شدر منيا المدر المدر المدر المدر المدر المدر المدر المدر المدر المدر
Carroll, Rollefson and Mathews, 1925	8	d	%	d
wt% mol% f.t.		15°		
49.0 24.0 0 35.60 35.3 25.0 24.30 48.5 52.9	100 95 90	0.7940 0.8016 0.8093	85 80	0.8169 0.8245
24.30 40.0 02.7		ب الموالم فان اللو اليو جاء الدر الدر الو الو الو الو الو الو الو الو الو الو		العربية حد الدولية عن حد حد الدولية ليوالي عن سوري
Öholm, 1913	0wen, 1930	. الدون المواقع المداعة الدون الدون الدون الدون الدون الدون الدون الدون الدون الدون الدون الدون الدون الدون ال 2		d
N diffusion ratio _{cm}	/day	d 20°		به میرمن موسوس موسوس موسوس . مع میرمن موسوس موسوس موسوس
20°	100	0,7916	69.897	0.8377
2 0.54 1 .58 0.5 .60	94.022 89.487 84.341 75,623	0,8005 0,8075 0,8150 0,8283	69.897 61.720 52.107 49.507	0.8509 0.8667 0.8717
Landolt, 1877	Castiglion	i, 1933		
% d % d	%	d	8	d
20°		20)°	
100 0.7957 69.8380 0.84 90.3117 .80943 50.1858 .87 84.9080 .81752 45.2719 .88	94 190	0.8142 0.8220 0.8363 0.8515	60 50 40	0.8661 0.8795 0.8925
Golse, 1911	Pariaud, l	951 (fig.)	۱۰۰ من من من من اس اس اس اس اس اس اس اس اس اس اس اس اس	
% d %	mol %	d	mol %	d
20°		23°		
100 0.7939 64.43 0.8 87.68 .8129 53.75 .8 75.90 .8304 43.21 .8	<u>0</u>	0.899 0.889 0.886 0.864	90.9 95.2 96.5	0.839 0.821 0.814
Malosse, 1912			د کنین کنید دیگر دیگر خود الله الله الله الله و الله الله الله الله الله الله الله الل	سی میں میں میں میں میں اسے حق است متن سے سے اس الیے میں میں اسے اسپرمین میں میں میں میں حق اس الی اس الی میں اس الی الی الی الی الی الی الی الی الی الی
% d % d	Öholm, 191	3		
20°		%	ŋ	الله جي حي حي حي حي الله الله الله الله الله الله الله الل
100 0.7930 70 0.8438 90 .8106 60 .8615 80 .8264 50 .8782		20°	1508 1362	
Watterfors, 1920		0.5 0.15 0	1295 1236 1216	
% d %	d =======	ن مين شيد الكو الكر الكر الكر الكر شير شين كي الكر الكر الكر الكر الكر الكر الكر الكر	نہے کیے نے سے الم اللہ اللہ اللہ سے سے سے عمر اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	نت جي نبي جي جي سي اس اس انت اسم انت انت انت انت جي جي جي جي جي جه جي جيم جي نسب انت انت انت انت انت انت انت سي جي جي جي جي
18° 87.86 0.8114 53.78 75.88 0.8296 43.34 64.61 0.8479	. 865 8 . 8835			

Castiglioni, 1933	0wen, 1930
я п я п	% (a) dispersion coefficient
20°	20°
100 1500.5 60 1936.1 90 1552.0 50 2118.5 80 1565.2 40 2435.3 70 1685.8	94.022 43.22 0.0920 89.487 43.32 .0920 84.341 43.53 .0920 75.623 44.46 .0930 69.897 45.28 .0931 61.72 45.92 .0939
Wetselaar, 1927	52.107 46.55 .0952 49.507 46.80 .0959
я п _D я п _D	
15°	Poe and Plein, 1934
100 1.3623 85 1.3764 95 .3670 80 .3811	% (α) _D % (α) _D
90 .3717	2 0°
Golse, 1911	98 43.4 70 46 92.5 43.8 63 47.05 85 44.5 55 47.9 77.5 45.3 50 48.25
% n _D % n _D	
20°	Pariaud, 1951 (fig.)
100 1.3618 64.43 1.3961 87.68 .3735 53.75 .4076 75.90 .3846 43.21 .4191	β (α) _D % (α) _D
Wetterfors, 1920	23° _0 55 90.9 43.3
	71.4 48.3 95.2 42.5 77.7 45.8 96.5 - 83.3 45 96.7 42.2 97.3 42
7100 Å 5890 Å	97.3 42
87.86 1.3709 25.25 1.3738 43.25 75.88 .3823 25.86 .3853 44.37 64.61 .3934 26.47 .3967 45.45 53.78 .4047 27.05 .4081 46.53 43.34 .4161 27.76 .4195 47.67 5460 Å 4360 Å	Camphor (C ₁₀ H ₁₆ O) + Propyl alcohol (C ₃ H ₈ O) Golse, 1911
87.86 1.3754 55.51 1.3818 131.39 75.88 .3870 56.81 .3936 134.27	8 d $^{n}_{ m D}$
64.61 .3983 58.18 .4053 137.26 53.78 .4099 59.49 .4171 140.22	20°
43.34 .4214 60.84 .4289 143.34	100 0.8046 1.3855 87.81 0.8210 1.3940
Landolt, 1877	76,10 0.8380 1.4030 64,90 0.8543 1.4124 54,07 0.8709 1.4212
% (α) _D % (α) _D	43.63 0.8874 1.4293
20-6° 100 - 69.8380 44.901 90.3117 42.806 50.1858 46.934 84.9080 43.661 45.2719 47.823	

Watterfors, 1920	Camphor (C ₁	$_{0}\text{H}_{16}\text{O}$) + Gly	col (C ₂ II ₆ O ₂)
% d	Lecat, 1949			
18.5°	%	b.t.	sat	
87.85 0.8233 76.17 0.8398 64.94 0.8564 54.22 0.8729 43.79 0.8892	0 40 100	209.1 186.1 197.4	5 Az 11	7
% n		سے میں میں جس امیر میں میں جس امام اقام خص سے		
7100 Å	Camphor (C_1	₀ H ₁₆ O) + Bor	neol (C ₁₀ H ₁₈	(0)
87.85 25.67 1.3926 76.17 26.36 1.4014	Vanstone, 19	10		
64.94 27.04 1.4101 54.22 27.63 1.4188	t	p	t	p
43.79 28.21 1.4276 5890 Å	78.4	6,8	% 13 2. 0	76,7
87.85 44.09 1.3956	80.0 92.4	$\frac{7.1}{13.1}$	134.2 136.3	84.2 91.0
76 17 45 27 1 4045	100.0 101.0	19.5 20.5	$140.3 \\ 141.7$	$\substack{105.0\\110.0}$
64.94 46.44 1.4134 54.22 47.53 1.4223 43.79 48.54 1.4310	109.4 116.7	30.8 42.6	$\substack{147.0\\154.3}$	$\substack{131.0\\165.8}$
5460 Å	127.4	65.5 20 ma	√1 ∉	•
87.85 56.51 1.3972 76.17 57.94 1.4061	78.6	6,10	131.6	66.90
64.94 59.35 1.4152 54.22 60.71 1.4241	97.0 97.4 110.6	15.90 16.04 28.13	131.8 156.2	67.50 159.40
43.79 61.99 1.4329	110,0	40 mc	1 %	l l
4360 Å	78.4 97.2	5.54 13.27	131.0 156.4	63.70 150.5
87.85 133.69 1.4041 76.17 137.11 1.4134 64.94 140.10 1.4226	110.0	25.60	130.4	130,5
64.94 140.10 1,4226 54.22 143.01 1,4317 43.79 145.88 1,4409	78.5	60 mc 4.83	01 % 131.2	60.58
	97.1 110.2	11.40 23.05	156.0	140.00
	223,0	80 mg	ol %	
Camphor ($C_{10}H_{16}0$) + Allyl alcohol ($C_{3}H_{6}0$)	78.6 96.8	3.56 8.80	$110.8 \\ 131.8$	20.00 56.40
Pariaud, 1951 (fig.)	97.1 110.6	9.10 19.70	156.2	130.20
mol %			nol %	
at room t. 0 55	78.0 95.2 110.5	2.30 6.67 15.70	130.2 150.2 158.4	40.4 96.6 127.2
66.6 45 75.0 43.5	mol %	p	mo1 %	p
83.3 43.1 91.6 40	10	30.4	60	20.9
	20 30	27.8 27.1	70 80	19.9 18.2
	40 50	25.0 24.0	90	17.9
	ر میں امیر اللہ میں نہیں میں امیر اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	ر میں حصر میں اندو اندر مور میں میں میں اندا ان میں لئید ر میں اندر اندا انداز اندا اندا اندا اندا اندا اند		

Vanstone, 1909	Timmermans, 1930
% f.t. % f.t.	mol% f.t. m.t. mol% f.t. m.t.
0 178.6 67.8 200.3 9.9 181.9 79.5 203.4 20.2 185.3 90.0 206.0 39.8 191.1 40.0 192.4 48.0 194.9 59.8 198.5 63.0 199.6 100 208.6	0 178.8 178.8 60 196.3 190.5 10 182.0 179.8 70 198.8 193.6 20 185.4 189.4 80 201.5 196.8 30 188.4 183.2 90 204.0 200.6 40 191.2 185.3 100 206.4 206.4 50 193.8 187.8
Efremov, 1915	
	Camphor ($C_{10}H_{16}0$) + Menthol ($C_{10}H_{20}0$)
mol% f.t. m.t. tr.t.	Pawlewski, 1893 and 1899
	mol% f.t. mol% f.t.
4.93 178.5 176.4 95.0 9.89 180.1 177.6 89.1 14.86 181.5 178.0 69.3 19.80 182.8 178.4 - 24.73 184.4 179.8 - 29.71 185.7 180.4 - 39.69 188.4 182.6 - 46.67 191.2 185.8 - 59.70 194.3 188.2 - 69.76 196.9 191.9 - 74.78 198.4 194.1 -	0 175 53.46 19 3.89 163.5 64.16 - 7.36 155 74.57 22.5 11.46 142 79.65 28.7 23.27 108 86.29 34.5 29.65 96 91.75 36.3 44.92 48 94.54 39.6 49.15 36 100 43.0 49.46 34.5
79.79	Oxymethylene camphor ($C_{11}H_{16}O_2$) + Methyl alcohol ($CH_{14}O$) Bruhl, 1900
Ross and Somerville, 1926	% t d H _a nD H _y
	51.399 16.7 0.9293 1.41526 1.41806 1.43057 0 18.1 .7947 .32830 .32983 .33662
	0 18.1 .7947 .32830 .32983 .33662
100.0 206.5 90.4 201.7 75.7 198.5 57.3 196.2 49.0 192.7 37.8 188.9 21.3 185.3 8.4 181.4 0.0 178.6	

FENCHONE + METHYL ALCOHOL

Fenchone ($C_{10}H_{16}0$) + Methyl alcohol ($CH_{4}0$)	Fenchone ($C_{10}H_{16}0$) + Isobutyl alcohol ($C_{4}H_{10}0$)
	Pariaud, 1951 (fig.)
Pariaud, 1951 (fig.)	mol% (α) _D mol% (α) _D
mo1% (α) _D	17.5
15° 0 39.5 83.3 35 90.9 32 95.2 30 96.5 29.6	0 39.5 90.0 30 50 35 90.9 29.5 66.6 33 92.8 28.5 83.3 31.8
	Fenchone ($C_{10}H_{16}O$) + Allyl Alcohol ($C_{3}H_{6}O$)
Fenchone ($C_{10}H_{16}0$) + Ethyl alcohol (C_2H_60)	Pariaud, 1951 (fig.)
Pariaud, 1951 (fig.)	mo1% d (α) $_{ m D}$ mo1% d (α) $_{ m D}$
mo1% d (α) _D	17°
sample 1 sample 2	0 39.5 0.943 90.0 28.5 0.878 75.0 31.6 .903 93.7 27.3 .870 80.0 30.7 .893 95.2 26.2 .868 87.5 29 .883 95.6 25.8 .868
0 - 39.50 65.75 66.6 0.895 33.3 63.2 80.0 .865 32.4 62.8 90.9 .830 31.8 62.5 95.2 .815 30.3 62.1 96.7 .812 29 61.7 97.3 .808 27.7 60.8	Fenchone (C ₁₀ H ₁₆ O) + Fenchyl alcohol (C ₁₀ H ₁₈ O)
	Fischer, 1940
Fenchone ($C_{10}H_{16}0$) + Butyl alcohol ($C_{4}H_{10}0$)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pariaud, 1951 (fig.)	58.3 -20.1 -40.1 100 +42.1 -
πο1% (α) _D 17° 39.5 66.6 35	Fenchone (C ₁₀ H ₁₆ O) + Benzyl alcohol (C ₇ H ₈ O)
66.6 83.3 90.9 93.7 30 93.7	Pariaud, 1951 (fig.)
	mo1% d (a)D
	16° 50

Lecat, 1	949				
%		b.t.			
0		223,	3		
58 100		191. 297.	2 Az		
			· 		
Carvone	(C _{1 0} H _{1 4} 0)	(b.t.=23	31.0) +	Alcohol	s.
Lecat, 1					
	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
			·		or Sat.t
Decyl	(C ₁₀ H ₂₂ O)	232.8	19	230,85	-2.8
alcohol					(30%)
Glycol	(C5H6OB)	197.4	60.8	192.5	97.8
Glycerol	($C_3H_8O_3$)	290.5	3	230.85	
Geraniol	(C ₁₆ H ₁₈ O)	229.6	60	229.2	-1.1 (90%)
	ohord(C ₁₀ H ₁₅	0C1) + E	Borneo mol%	1 (C ₁₀ H	
					
0 3	93 84	84	50 60	146. 158.	5 84 5 "
	95 109	"	70	171	**
10		11	80 90	182.5 195	5 "
10 20 30	122				

D b.t.

+0.36 .622 .625 .832

. 88

%

90.91 84.75 84.03 78.74 77.52

Bromcamphord($C_{10}H_{15}OBr$) + Ethyl alcohol (C_2H_6O) Haller, 1892 % f.t. % f.t. 43.48 25.64 12.42 0 89.24 83.57 66.34 15.25 25.5 40.5 50 55 60.5-61 75 Bromcamphor d ($C_{10}H_{15}OBr$) + Borneol (d, l or r) $(C_{10}II_{18}O)$ Timmermans, 1930 mol% f.t. E mol% f.t. E 129 145 160.5 176 191.5 206.5 76.5 54.8 61 50 54.8 54.8 60 70 10 20 30 40 80 80 90 98 114 100 Bromcamphor r ($C_{10}H_{15}OBr$) + Borneol (d or r) Timmermans, 1930 mo1% f.t. E mo1% f.t. Е 138.5 154 169 57 49.5 50 49.5 49.5 10 60 66 84.5 70 183 195.5 80 20 30 103.5 90 122 100 208 Bromcamphor ($C_{10}H_{15}OBr$) + Borneol ($C_{10}H_{18}O$) Hrynakowski, Staszewski and Szymt, 1936 f.t. m.t. f.t. m.t. 67.0 65.5 63.5 64.0 61.7 61.0 61.0 40 $134.5 \\ 141.8$ 110.0 114.5 127.5 45 149.0 163.2 170.8 50 62.8 60 143.0 10 73.6 65.0 65 **7**0 150.0 20 30 35 175.8 191.0 202.5 94.0 160.0 116.0 126.5 93.0 80 90 180.0

Formyl bromcamphor ($C_{11}H_{15}O_2Br$) + Methyl alcohol ($CH_{4}O$)	Acetophenone (C_8H_8O) + Methyl malate 1 ($C_6H_{10}O_5$)
	Grossmann and Landau, 1910
Bruh1, 1900	g/100cc (α) red yellow green pale dark viol.
% t d n	blue blue
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.384 -7.94 -9.92 -10.22 -12.70 -12.90 -14.79 25.192 -8.53 -10.84 -12.86 -15.76 -16.59 -12.596 -10.80 -12.23 -14.29 -18.34 -19.29 -14.79 27.10 -12.90 -11.14 -13.36 -15.39 -18.63 -21.06 -23.69
	2,4695 -11,74 -13,77 -16,20 -20,65 -22,68 -
Acetorhenone (C_8H_80) (b.t.=202.0) + Alcohols Lecat, 1949	Propiophenone ($C_9H_{10}O$) + Glycol ($C_2H_6O_2$)
2 nd comp. Az	-
Name Formula b.t. % b.t. Dt mix	Lecat, 1949
or Sat.t.	% b.t.
Octyl (C ₈ H ₁₈ O) 195.2 87.5 194.95 -2.0 (88%)	0 217.7 57 190.2 Az 100 197.4
Glycol (C ₂ H ₆ O ₂) 197.4 52 185.85 114.5	
Propylen (C ₃ H ₈ O ₂) 187.8 - 183.5 - glycol	
Methoxy (C ₅ H ₁₂ O ₈) 192.95 80 191.9 -0.5 diglycol (71\$)	Propiophenone ($C_9H_{10}O$) + Dibrom 2.3-propanol ($C_9H_6OBr_2$)
Linalool (C ₁₀ H ₁₈ O) 198.6 86 198.0 -1.7	
Isoamyl (C ₈ H ₁₆ O ₃) 202.4 52 201.7 -0.3	Lecat, 1949
	% b.t.
Acetophenone (C_8H_80) + Glycerol ($C_9H_80_9$)	0 217.7 - 222.0 Az 100 219.5
Mac Ewen, 1923	
% sat.t. % sat.t.	p-Methylacetophenone ($C_9H_{10}O$)(b.t.=226.35) +
2.37 90.5 58 185.0 C.S.T. 4.70 113.5 65.38 184.0	Lecat, 1949
16.58 162.5 78.86 174.5 24.93 175.5 84.12 164.0 38.10 182.6 91.14 136.5	2 nd comp. Az
38.10 182.6 91.14 136.5 46.68 185.5 95.62 97.5 48.87 185.4	Name Formula b.t. % b.t. Dt mix. or Sat.t.
	Glycol ($C_2H_6O_2$) 197.4 59.8 192.2 77.5
	Citronellol(C ₁₀ H ₂₀ O) 224.4 68 223.7
	Geraniol (C ₁₀ H ₁₈ O) 229.6 5 226.25 -1.0 (10%)
	Dibrom 2.3' (C ₃ H ₆ 0Br ₂) 219.5 - 228.2 -propanol 1

Methylbenzylglyoxal (C ₁₀ H ₁₀ O ₂) Køtone + Enol	Benzophenone ($C_{13}H_{10}0$) + Benzohydrol ($C_{13}H_{12}0$)	
Moureu, 1930 Schaum and Rosenberger, 1924		
я п _D я п _D	mol% f.t. mol% f.t.	
16° 0.0 1.5192 22.94 1.5441 2.11 .5219 25.45 .5469 4.47 .5246 28.5 .5499 7.49 .5272 36.9 .5590 11.4 .5319 44.9 .5674 15.54 .5362 49.1 .5721 19.14 .5401	100 67 39 23 90 57.5 30 26 80 48.5 20 33 70 41 10 40 60 34 0 47.5	
% n _D % n _D		
20° 100 1.5808 18 1.6030 81.68 .6032 16 .6010 76.83 .6106 11 .5950 70.44 .6187 7 .5901 63.79 .6266 6 .5882	Benzophenone ($C_{13}H_{10}0$) + Fenchyl alcohol ($C_{10}H_{18}0$) Fischer, 1940	
Phenylbenzylglyoxal (C ₁₅ H ₁₂ O ₂) Ketone + Enol	0 48.05 - 30.1 32.9 - 58.2 13.8 3.7 74.2 12.4 4.9 86.1 26.7 100 42.1 -	
% n _D % n _D		
20° 0.0 1.5814 23.34 1.6034 3.3 .5849 29.6 .6090 9.7 .5910 34.7 .6132 18.95 .5995	Benzil ($C_{1\mu}H_{10}O_{2}$) + Methyl alcohol ($CH_{\mu}O$) Vandenberghe, 1903	
	% D b.t.	
Phenylanisylglyoxal(C ₁₆ H ₁₄ O ₃) Ketone + Enol	92,50 +0.26 85,47 0.523 77,52 0.79	
Moureu, 1930	Benzil ($C_{14}H_{10}O_{2}$) + Ethyl alcohol ($C_{2}H_{6}O$)	
% b.t. p n _D		
18 185-190 1 1.6030 16 174-178 0.5 .6010 11 177-180 1 .5950 7 178-180 2 .5901 6 209-211 9 .5882	Innes, 1918 mo1% p 75° 100 668.5 99.02 663.1 97.80 656.4	
[%] π _D % π _D	97.80 94.39 642.8 87.88 628.3 77.6 614.7	
20° 100 1.5808 70.44 1.6187 81.68 .6032 63.79 .6266 76.83 .6106		

Benzil (C ₁₄ H ₁₀ O ₂) + Hydrobenzoin (C ₁₄ H ₁₄ O ₂)	Quinone ($C_6H_4O_2$) + Ethyl tartrate ($C_8H_1_4O_6$)
Vanstone, 1913	
mol% f.t. E mol% f.t. E	Patterson and Stevenson, 1910
100 133.7 - 32.96 97.5 85.8	t (α) _D
79,29 124.6 108.0 18.09 85.6 - 61.17 115.8 85.6 6.05 90.6 85.8 46.80 107.8 85.8 0 93.5 -	74.98% 87.5 10.804
70.00 107.0 04.0	87.5 10.804 115 10.968 122.9 11.128
Benzil (C _{1 4} H _{1 0} O ₂) + Benzoin (C _{1 4} H _{1 2} O ₂)	
Vanstone, 1909	
mol% f.t. mol% f.t.	Estrone ($C_{18}H_{22}O_2$) + Estradiol ($C_{18}H_{23}O_2$)
0 94.3 50.7 107.3 8.2 89.7 59.0 113.2 15.7 85.4 60.5 113.6	Ungnade and Morriss, 1947 (fig.)
17.7 84.1 64.7 116.2 24.7 84.2 76.2 122.3 27.2 84.4 79.7 124.6 30.5 89.6 88.1 128.4	% f.t. m.t. % f.t. m.t.
27.2 84.4 79.7 124.6 30.5 89.6 88.1 128.4 37.0 96.5 91.7 128.6	0 250 245 60 205 184 12 241 - 62 208 185
39.6 . 99.2 100 133.2 49.0 106.2	15 239 226 70 203 168 22 236 - 85 186 165
Parada 1012	30 231 - 90 180 - 40 225 203 100 170 168
Benrath, 1913	
# f.t. % f.t.	Formaldehyde (CH ₂ O) +Phenol (C ₆ H ₆ O)
100 134 30 97.5 90 130.5 25 92.5 80 127.5 22 90	Ravich and Frolova, 1953
70 122.5 20 86 60 117.5 17.5 88	% Q mix (cal/gr. phenol)
50 112 10 91 40 105 0 95	10 0 30 20
33.3 101.2	40 35 50 75
Methyl desoxybenzoin ($C_{15}H_{14}0$) + Benzoin ($C_{14}H_{12}0_2$)	58 135 70 112
Preiswerk and Erlenmeyer, 1934	80 70 90 0
% f.t. % f.t.	
0 52.5 50 122.5 5 47.5 65 126.	Chloral (C_2 H0Cl ₃) + Phenol (C_6 H ₆ 0) Udovenko and Khomenko , fig., 1956.
10 97.5 80 130. 20 108. 100 134.	14
35 118. E: 47°	101% 40° 60° 80°
Quinone ($C_6H_4O_2$) + Triphenylcarbinol ($C_{19}H_{16}O$)	0 850.3 701.0 565.5
<u>.</u>	20 2500 1100 800 40 4000 1800 1000
Kremann, Sutter and al., 1922	50 5900 2000 1100 60 7000 2400 1200 80 6000 2800 1400
% f.t. % f.t.	100 4672.0 2526.0 1571.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
20 110 70 110 30 106 80 128	
40 102 90 145 50 98 100 161	

Chloral (C ₂ HOCl ₃) + o-Cresol (C ₇ H ₈ O)	Citronellal ($C_{10}H_{18}O$) +Guaiacol ($C_{7}H_{8}O_{2}$)
Udovenko and Khomenko, 1956 (fig.)	Lecat, 1949
по1% ° 75° 75°	% b.t. Sat.t.
0 1055.2 764.1 588.5 20 2000 1000 700 40 5000 3000 1000 50 16000 4000 1200 60 16100 4500 - 80 10000 3100 - 100 7372.4 2836.8 1521.0	0 208.0 - 86.5 204.55 18 100 205.05 -
Chloral (C ₂ H0Cl ₃) + m - Cresol (C ₇ H ₈ O) Udovenko and Khomenko, 1956.(fig.)	Cyclohexanone ($C_6H_{10}O$) + Phenol (C_6H_6O) Lecat, 1949
mo1% 25° 50° 75°	% b.t.
0 1055.2 764.1 588.5 20 3000 1500 1000 40 12000 4000 1200 50 21000 5000 1300 60 27000 7000 2000 80 18000 5000 2000 100 13095 4196.7 2011.8	0 155.7 72 184.8 Az 100 182.2 Benzaldehyde (C ₇ H ₆ O) + Phenol (C ₆ H ₆ O) Lecat, 1949 ### b.t.
Chloral (C ₂ HOCl ₃) + p - Cresol(C ₇ H ₈ O) Udovenko and Khomenko, 1956.(fig.)	0 179.2 51 186.0 Az 100 182.2
mol% η 25° 50° 7 5°	Benzaldehyde ($C_7 H_6 0$)+ $Cresol-o$ ($C_7 H_8 0$)
0 1055.2 764.1 588.5 20 3000 1500 1000 40 8000 3000 1500 50 20000 4000 1500 60 28000 5000 2000 80 20000 5000 2200 100 14080 4476.6 2113.5	Lecat, 1949
Citronellal (C ₁₀ H ₁₈ O) + m-Cresol (C ₇ H ₈ O)	Piperonal (C ₈ H ₆ O ₃) + Vanillin (C ₈ H _B O ₃)
Lecat, 1949	Lehmann, 1914
ß b.t.	% f.t. % f.t.
0 208.0 - 208.2 Az 100 202.2	100 81.8 90 77.3 99 81.0 85 77.0 98 80.7 80 75.0 97 80.0 75 75.0 96 " 70 74.2 95 " 65 73.5 94 " 60 " 93 79.3 55 73.0 92 79.2 50 68.5 91 79.0 0 37

508			ANISALDE	HYDE +
Anisalde h	yde (C ₈ H ₈ O	2) + Pyro	catechol (C ₆ H	60 ₂)
Lecat, 19)49 			
%		b.t.		
0 25 100	· · · · · · · · · · · · · · · · · · ·	249.5 253.0 Az 245.9		
Cinnamic	eldehyde (С ₉ н ₈ 0)+	Resorcinol (С ₆ Н ₆ О ₂)
Kremann a	and Zechner,	1925		
%	f.t.	%	f.t.	
0 14.1 22.1 29.7 37.4 44.0 46.3	-10 -3 -1 +12 17 21 25.5	52.4 60.5 71.3 83.4 93.0	47 68 87 98 105.5	
	aldehyde ((Pyrocatechol $C_6H_6O_2$)	
%	f.t.	Я	f.t.	
100 92 83.6 74.5	103.5 97 92 84.5	38.7 23.3 25 17.9	21 19 15.5	
66.1 57.9 48.9 45.3	74 61 28 22	11.6 5.5 0	10 5 -1 -10	
57.9 48.9 45.3	61 28 22	11.6 5.5 0	5 -1	
57.9 48.9 45.3 ————————————————————————————————————	61 28 22	11.6 5.5 0 C ₉ F ₈ O) +	5 -1 -10 o-Ni trophenol	:
57.9 48.9 45.3 ————————————————————————————————————	61 28 22 aldehyde (11.6 5.5 0 C ₉ F ₈ O) +	5 -1 -10 o-Ni trophenol	

PYROCATI	ECHOL			
Cinnamic a	ldehyde (C.	-	-Nitropheno C ₆ H ₅ O ₃ N)	ol.
Kremann and	d Zechner,	1925		
%	f.t.	%	f.t.	
100 92.6 82.5 71.6 61.0 51.4	95 88 76 64.0 51.0 32.0	45.0 35.5 22.6 8.0	+19 +4 -3 -16 -10	
	ldehyde (C d Zechner,	(-Nitropheno C ₆ H ₅ O ₃ N)	ol .
%	f.t.	%	f.t.	
100 92.8 85 73.8 65.7 61.0 57.2 54.5 53.4 49.8	113 105.0 95.0 82 70 61 50 45 32 33 32.5	43.6 38.6 33.2 28.3 21.9 15.2 10.5 10.2 3.8	32 30 25 18 5 -10 -25 -25 -14	
Cinnamic	aldehyde (C ₉ !! ₈ 0) +	β-Naphtol	(C _{1 o} H ₈ 0)
Kremann an	d Techner,	1 92 5		
%	f.t.	%	f.t.	
100 94.2 77.4 66.6 56.6	121 118 98 7 9 59	47.8 42.2 19.5 9.7	36 0 0 0 -10	
Cinnamic a	ldehyde (C	₉ H ₈ O) +α	-Naphtol (С _{1 о} Н ₈ 0)
Kremann and	l Techner,	1925		
%	f.t.	%	f.t.	

100 89.7 75.5 63.0

52.9 0

-11 -10

				ACET	ONE
Acetone (C ₃ H ₆ O) +	Phenol (С6Н60)		
Schreinema	kers, 190	2			
%		р		· · · · · · · · · · · · · · · · · · ·	
	50°	65.5°	68°	75°	
0 10.74 20.32 31.13 40.20 50.17 59.07 65.56	605 567 514 447 377 290 206 149	760 713 647 562 475 367 263 192	- 794 695 538 394 291	- - - 678 497 369	
73.30 79.09	96 -	120	179 114	277 148	
Weissenber	ger, Schu			924	
mol%	<u> </u>	mo	01%	P	
		15°			
80.00 66.70 64.40 54.3	15	45	.42	43 54 68 85	

Weissenberger, Henke	and Sperling, 1925	
mo1%	р	
	20°	
75 60	6.1 20.7	
50 40	39.4 65.9	
25 0	107.9 179.6	

Schreinemakers, 1902 j.t. 200mm 380mm 600mm 760mm 0 22.1 37.4 49.7 56.5 10.74 23.6 39.3 51.5 58.4 20.32 26.0 41.8 54.3 61.3 31.13 29.3 45.5 58.4 65.7 40.20 33.4 50.2 63.5 70.7 50.17 40.2 57.5 71.2 78.8 59.07 49.2 67.0 81.1 89.2 65.56 57.7 75.9 90.7 98.5 73.30 71.2 90.1 90.7 98.5 79.09 84.2

Lang, 1912			
%	f.t.	%	f.t.
100 90.0 86.9 85.0 84.3 83.1 82.1 80.0 78.2 72.5 70.0	42.1 20.5 10.3 6.5 4.3 11.1 12.9 14.2 14.8 14.5	64.8 60.0 55.0 51.5 50.0 47.7 39.1 31.1 24.1 19.7 13.0	9.0 4.3 -2.0 -4.5 -8.0 -10.5 -22 -38 -51.5

Schmidlin and	Lang, 1912	!	
Я	f.t.	%	f.t.
0 10 20 30 40 50	-95 -83 -56 -37 -22 -7 +6	70 76.0 80 84 90	+14 +14.8 (1+2) +14 +2 E +20 +41

Biron, Nikitin and Jakobson, 1913					
mo 1%	d	mo1%	đ		
0 27.523 46.347 56.929 66.554 71.173	0.7968 0.8962 0.9543 0.9836 1.0067 1.0174	0 35° 4.956 9.992 20.134 32.937 49.448 67.194 74.945 84.437 90.010	0.7749 0.7947 0.8144 0.8515 0.8948 0.9462 0.9927 1.0104 1.0318 1.0430 1.0628		

ramley, 1916		
%	đ	
	9.95°	20.05°
0.00	0.8031	0.7912
14, 19	0.8425	0.8315
26.72	0.8768	0.8662
38.06	0.9085	0.8983
49,43	0.9406	0.9308
5 7.7 9	0.9642	0.9547
65,22	0.9851	0.9757
73.74	1.0090	0.9998
78,94	1.0237	1.0146
85.39	1.0420	1.0334
92.85	1.0623	1.0538
100.00	1.0836	1.0752

%		đ		 Morgan and S	carlett, 1917	,	
	29.8°	40.10	49.8°	%	đ	Я	đ
0.00 9.57 19.53 27.70 37.42 44.67 53.79 60.24 67.19 74.25 80.76 87.98	7 0.8056 8 0.83572 9 0.8857 7 0.9063 9 0.9330 9 0.9520 9 0.9724 6 0.9935 1.0115 8 1.0327	0,7676 0,7940 0,8223 0,8460 0,8743 0,8952 0,9220 0,9416 0,9625 0,9837 1,0022 1,0237 1,0378	0.7559 0.7830 0.8116 0.8335 0.8636 0.8846 0.9115 0.9316 0.9530 0.9733 0.9933	100 40.02 35.40 29.22 0	29.44	100 61.53 50.27 39.99 34.99 29.97 25.04	38. 033 30. 465 28. 001 26. 141 25. 257 24. 423 23. 701 20. 953
100.00	1.0668	1.0584	1.0293 1.0503	 Acetone (C ₃ I	H ₆ 0) + o-Cre	sol (C ₇ H ₈ O	•
	%	<u></u>		 Weissenberge	r and Piatti,	1924	_
		9.95°	20.05°	mo1%	p	mo1%	p
	0.00 14.19 26.72 38.06 49.43 57.79 65.22 73.74 78.94 85.39 92.85 100.00	360 486 635 868 1256 1688 2358 3670 4950 7480 1193 201.0	323 429 560 755 1055 1379 1853 2750 3590 4970 730 110.4	96.15 89.28 78.17 71.32 66.66 58.36 50.00	2.4 3.1 6.9 12.3 17.2 32.6	8° 41.27 35.43 33.33 25.94 25.00	74.5 95.0 108.5 120.0 123.6 163.65
- %		η		Piatti, 1936			
	29.8°	40.1°	49.80		mo1%	b.t.	
0.00 9.57 19.53 227,70 37.42 44.67 53.79 60.24 67.19 74.25 80.76 87.98 92.81 100.00	295 360 441 521 670 808 1058 1319 1658 2180 2910 3915 4905 7100	270 328 399 470 590 711 904 1101 1363 1741 2230 2875 3465 474	248 299 360 422 530 628 794 950 1150 1425 1785 2245 2615 328		100 90 80 70 60 50 40 30 20 10	190.7 159.4 136.5 120.1 105.0 92.5 81.1 72.0 65.0 59.5 56.0	
		ter and Schüler	, 1924	 Weissenberger	and Piatti,	1924	
mo l	1% 	η mol% (water = 1)	σ	×	η (water	% r = 1)	η
72. 61, 50, 39, 33, 28, 25,	87 1. 43 1. 22 0. 33 0. 00 0.	90 78.16 90 66.66 30 50.43 93 39.22 76 33.22 66 25.31	0.466 0.451 0.430 0.415 0.401 0.380	80.0 78.17 65.37 50.00 44.56 34.76	3.30 3.05 1.90 1.30 1.03 0.73		0.57 0.49 0.48 0.45 0.29

mo1%	σ	mo1%	σ	T T	mol%	σ	mo1%	σ
	(water				<u></u>	(wateı	- =1)	
	18°			1		189	,	
100 66.66 49.22 35.47 27.47	0.459 0.439 0.431 0.417 0.402	22.34 19.32 15.27 0	0.401 0.396 0.391 0.315		78.17 66.66 58.74 49.53 40.17	0.437 0.442 0.447 0.445 0.437 0.431	29.94 26.06 18.57 16.54	0.415 0.410 0.402 0.395 0.315
Acetone (C ₃ H ₆	,0) + m-Creso	1 (С ₇ Н ₈ О)	Aceton	e (C ₃ H ₆	0) + p-Cre	sol (C ₇ H ₈ O)
Weissenberger	and Piatti, 1	924		Weisser	nberger a	and Piatti,	1924	
mo1%	p	mo1%	P		mo1%	p	mo1%	р
	18°	***		1		189	•	
88.96 77.83 66.66 62.38 61.34 48.3	2.6 8.0 21.4 29.3 32.3 54.6	45.43 41.70 36.43 33.33 26.62 0	64.7 75.6 96.5 109.2 120.5 163.65		96.15 89.28 78.17 71.32 66.66 58.43 48.35	2.5 3.2 7.0 12.9 18.6 34.9	41.27 35.43 33.33 28.00 22.22	76.4 96.7 108.4 117.0 127.5 163.65
				Piatti,	1936			
Piatti, 1936					mol%	b.t.	mol%	b. t.
	100 90 80 70 60 50	201.5 165.1 141.8 123.0 108.7 94.0			100 90 80 70 60 50	202.2 165.7 142.3 123.4 109.0 94.2	40 30 20 10 0	82.6 73.3 66.5 60.5 56.0
i	40 30 20	82.4 73.2 66.5		Weisser	berg and	Piatti, 192	4	
	10 0	60.5 56.0			mo1%	η (water	mo1% = 1)	η
						18	0	
Weissenberger	η	mol%	η		94.33 68.02 66.66 62.43 50.25	13.85 3.83 3.20 2.79 1.88	37.43 23.34 19.31 15.27	0.82 0.57 0.50 0.43 0.29
	(water	= 1)			43.26	1,19		· · · · ·
78.17 68.34	6.10 3.04	29.93 26.06	0.72 0.64		mo1%	σ (water	mo1% = 1)	σ
58.43 50.00 43.26	2.10 1.50	19.07 12.39	0.53 0.47 0.29			18		· · · · · · · · · · · · · · · · · · ·
43.26 37.52	1.09	0	0.29		76.45 66.66 59.27 50.25 38.43	0.437 0.447 0.450 0.447 0.444	32.26 23.34 19.31 15.27	0.431 0.409 0.401 0.392 0.315

• • •					
Acetone (C_3H_60) + Cresol (C ₇ H ₈ 0)	Acetone ($C_3 ll_6 0$) +	Pyrocatechol (C ₆ I	1 ₆ 0 ₂)
Berl and Schwebe	1, 1922		Weissenberger, Hen	ke and Bregmann, 19	25
%	p		mo1%	Г	
	0°	20°		1 7 °	
6.3 7.7	0.76 1.20	2.39 3.31	48	30.9	1
12.9 18.3	2.71 5.30	7.56 15.45	40 34	48.7 63.5	
10.3			29 20	76.6 102.5	
Acetone (C_3H_60) + Guaiacol (C ₇ H ₈	0,)	Lang, 1912 and So	chmidlin and Lang,	1912
Weissenberger, H	lenke and Bregmann,	1925	% f	%.t. %	f.t.
mo 1%	p n	er = 1)	9.1 20.0	- 67.0 - 68.2	29.2 35.2
	17°			73.1 59.8 77.0	52.1 63.8
80		0.63	50.0 -3	8.2 78.0 9.5 79.0	67.5 70
80 6 7 50	14.4 4.1 30.2 3.0 56.0 2.0	0.60 0.55	55,0 -3	36.6 79.2 33.3 80.0	63.5 73
40 34	74.7 1.5 87.6 1.0	0.52 0.49	59.0 -2	32.5 81.4 24.1 83.2 21.7 84.6	76.5 83.5
29	95.3 0.9	0.48	61.0 -1		83.5 83.5 86.1
			[65.3]	15 88.8 21 100	90.2 115
				(1+1)	110
Pushin and Pinte	er, 1929				
mo1%	d	η	Walker, Collett	and Lazzell, 1931	
	30°		mol	% f.t.	
100 90	1.1236 1.1056	4450 3670	100.0	00 104.5	
80 70	1.0863 1.0624	2950 2350	82.2 70.3	78 77.4	
60 50	1,6360 0,99 7 3	1820 1260	58.6	56 53.2	
40 30	0.9706 0.9300	1030 755			
20 10 0	0.8896 0.8357 0.7781	573 440 330	Weissenberger, Her	nke and Bregmann, 1	925
			mo1%	η	σ
Acetone (C ₃ H ₆ 0) + Thymol (C ₁₀ H ₁₄	0)		(water = 1)	
Zoppellari, 1905	5		48 46 42 40 34	4.8	0.43 0.42 0.42
%	t d	n _D	34 29 25 22	3.1 2.0 1.4	0.42 0.42 0.41 0.40 0.39
6.4781	4 0.81906 5.5 0.82763	1.37566	25 22	1.2	0.39 0.39
12.2926 22.5853 29.2116	3.6 0.84632 4.1 0.85368	1.38390 1.40015			
40.0179	12.1 0.86793	1.40916 1.42457			

	*****		ACETONE	+ KESUK	JINUL			
Acetone (C	3H ₆ O) + Res	orcinol (C	C ₆ H ₆ O ₂)		<u> </u>			
Weissenberge	er, Henke ar	d Bregmann,	1925	Walker,	Collett a	nd Lazzell,	1931	
mo19	£	p			mo1%		f.t.	
50 48 40 34 25 20	23 40 58	6 6 6 6	20° - - 44.7 70.4 103.2		59.1 67.9 85.4 100.0	3 9	51.8 75.1 98.3 109.4	
20 0	100		119.0 179.6	Shakh	paronov an	d Martinova	, 1953	
Shakhparon	ov and Mart	inova, 1953			mo1%	d	(V) (g/1)	
mo	1 %		p	-1		0°	5°	
1 2 2 3		0° 69.70 68.25 65.42 55.15 48.83 44.92 41.44	5° 84.50 81.45 59.35 62.58 53.98		0 2 5 15 20 25 30	0.2375 0.2323 0.2228 0.1878 0.1664 0.1530 0.1412	0.2830 	
Schmidlin and	d Lang, 1911	2		Weissen	berger. He	nke and Bre	gmann, 1925	
%	f.t.	%	f.t.	-	, 		ter = 1)	
0 10 20 30 40 50 (2 + 1)	-95 -83 -57 -42 -32 -30 f.t. = -28	59 65 70 80 90 100	-46 +13 +40 +65 96 109		50 48 40 34 25 20	9.9 7.0 3.6 1.7 1.2	0.52 0.49 0.47 0.42 0.39	
Lang, 1912				Timofee	v, 1905	A		
%	f.t.	%	f.t.	_	initial	% final	Q dil (by mole resorci	nol)
20.0 30.0 40.0 45.5 50.0 55.0 60.0 65.0	-58.4 -43.5 -32.3 -29.6 -28.8 -33.2 -38.3 +12.0	67.0 73.1 79.2 81.4 83.2 84.6 86.4	+26.5 53.3 72.5 78.5 82.8 86.5 91.0		0 2.55 17.4 34.3	2.55 5.3 19.2 35.4	+931 +797 +274 -459	
				=				

Acetone (C_3H_60) + Hydroquinone ($C_6H_60_2$)

Lang, 1912 and Schmidlin and Lang, 1912

%	f.t.	%	f.t.
10 20 30 40 50	-4 +22 42 52.5 64	60 70 80 90	137 147 145 158.5

Walker, Collett and Lazzell, 1931

mo1%	f.t.	mol%	f.t.
100.00	172.9	38.37	82.4
82.84	160.3	35.17	69.5
71.55	148.4	34.11	66.5
58.78	131.3	29.54	58.8
46.45	105.3	25.98	54.8
40.61	90.2	21.25	45.6

Acetone (
$$C_3H_60$$
) + Pyrogallol ($C_6H_60_3$)

Weissenberger, Schuster and Henke, 1925

mo1 %	p	
	2 0°	
40.00 33.33 28.00 25.00 20.00	62.6 83.9 106.8 128.7 142.2 163.65	
mo1%	σ	η
	/ + i	. 1 \

	(wate	r=1)
209	o	
40.00 33.33 28.00 25.00 20.00	0.484 0.449 0.422 0.359 0.265 0.313	1.24 0.65 0.38 0.27 0.16

Lang, 1912 and Schmidlin and Lang, 1912

%	f.t.	%	f.t.	
100	+155	59,1	+2.0	
83.3	102	55.0	-26.5	
81.6	96	50.0	26.3	
7 8, 1	88	50.9	-	
76.7	83	45,0	24.4	
75.0	7 8	44.3	24.2	
73.1	71	40.0	23.9	
70.8	63.5	39 .7	24.5	
68.2	52.8	34.8	2 6	
67.0	46.9	30.1	28.5	
66.0	45.5	14.1	54	
65.0	32	9.3	64.5	
62.0	-10.0	(3+1	1)	

Tarasov, Bering and Sidorova, 1936

 %	d	π	
 · · · · · · · · · · · · · · · · · · ·	22°		
0 10 20 30 35 40 42 43 45 50	0.7980 0.8426 0.8909 0.9437 0.9701 0.9965 1.0072 1.0125 1.0229 1.0493	92.5 79.6 68.3 58.8 55.4 50.8 49.25 49.9 47.45 43.5	

Acetone (C_3H_60) + Salicylic aldehyde ($C_7H_60_2$)

Weissenberger, Henke and Bregmann, 1925

mo1%	p	η	ď
		(water	= 1)
	1 7 °		
80	30.6	1.8	0.61
67 50	50.2 75.8	1.7 1.0	0.57
34	103.6	0.7	0.52 0.49
25	116.1	0.6	0.46
20	124.9	0.6	0.45
17	- '	0.6	0.44
16	129.0	-	
14	132.0	-	_

			ii .				
Acetone (C_3H_60) +	Ammonium salicy	late (C ₇ H ₉	90 ₃ N)	×	30°	η 40°	50°
Henstock, 1934				0.00	205	270	248
	f.t.			18.49	295 419	382	248 351.5
				32.38 49.95	569 893 1199	508 777	465 687
40.48 55.21	15 25			60.49 71.01	1199 1684	777 1019 1369 1886 2165	893 1154
22.16 27.01 31.51	25 35 45			83.22 91.73	1684 2400 2850	1886 2165	1527 1735 1871
31.51	45 55			100.00	3080	2320	1871
40.30	65			×		η	
Acetone (C ₃ H ₆ O)	+ o-Chlorphenol (C ₆ H ₅ 0C1)				10°	
	-			$\substack{0.00 \\ 18.49}$	395.5 587	360 527	323.5 475
Bramley, 1916				32.38	787	692 1162	611 992
% mo1%	f.t. %	mo1%	f.t.	49.95 60.49 71.01	1398 2135 3500	1682	1376 2051
				83.22 91.73	3590 6750	2675 4470	3170
0 0 5.68 2.65	-94.0 51.06 95.0 58.51	32.0 38.85	-49.6 44.3	$91.73 \\ 100.00$	9400 10 7 90	5800 6390	3910 4210
9.82 4.68	95.0 58.51 96.0 64.12 97.0 70.81	44.6 52.2	40.7				
19.47 9.81	84.8 75.70 76.9 "	58.45	43 1 11	%	60°	η	70°
28.95 15.55	70.6 79.64	63.8 70.5	69.0			·	
33.55 18.55 38.05 21.7	65.7 84.16 61.2 90.88	81.8	20.6	59.37 68.23	729 918		541 791
42.86 25.35	-56.3 96.34	93.4 100	+5.3 +8.0	76.99	1107	(952
E 1 : 7.2 mo1% E 2 :62.4 mo1%	-97.1		···	84.64 91.08	1289 1422 1513	11)87 187
	-47.6			100.00	1513	12	266
Æ	0° 10		20°				
		, <u>4</u>		mley, 1916			
0.00 18.49	0.8146 0.86 0.8799 0.86	0.7 0.8 0.8	7912				
32.38 49.95	0.8799 0.86 0.9363 0.92 1.0138 1.00	255 0.9	9147 1924 ——	%	U	%	U
60.49 71.01	1.0039 1.03	33 1.0	427		0° ~ 20°	,	
83.22	1.1176 1.10 1.1826 1.17	1.0 18 1.1	962 .609	0	0.500	68,95	0.431
91.73 100.00	1.2284 1.21 1.2741 1.26	.72 1.2 326 1.2	206 0 2512	9.02 25.35	0.489 0.468	73.3 78.0	0.425 0.422
				37.6	0.455	80.8	0.423
%	30° 40		60°	37.6 47.65 55.0 68.7	0.445 0.440	90.0 100	0.411 0.401
	30 40			68.7	0.428		
0.00 18.49	0.7793 0.76 0.8464 0.83	574 0.7 552 0.8		<i>a</i>	0 -:-	4	
32.38 49.95	0.0030 0.80	30 0.8	821	%	Q mix cal/100g	Ж	Q mix
60.49	1.0321 1.02	$\begin{array}{cccc} 12 & 0.9 \\ 15 & 1.0 \\ \end{array}$	109		Ca1/100g		ca1/100g
71.01 83.22	0.9818 0.97 1.0321 1.02 1.0856 1.07 1.1501 1.13	748 1.0 1.1	285	38.00 46,55	7 94 935	70.65 72.45	1157 1141
91.73 100.00	1.1948 1.18 1.2399 1.22	30 1.1	725	50.0 55.95	999	74.0	1123
				5 7. 3	1076 1086	76.3 78.1	1089 1054
×	d 408	70°		62.4 66.2	1136 1154	80.9 82.9	966 906
	60°	70*		68.85	1160	86.1	776
59.37 68.23		.9837 .0280					
76.99	1.0848 1	.0736					
84.64 91.08	1.1581 1	.1130 .1468					
100.00	1.2069 1	.1947					
A STATE OF THE STA							

Acetone (C_3H_60) + p-Chlorphenol (C_6H_50C1)

Weissenberger, Schuster and Lielacher, 1925

 mo1%	p	mo1%	р	
	209)		
0 10 20 30 40	179.6 155.0 123.2 86.8 54.0	50 60 70 80	31.5 15.3 6.5 2.0	

Acetone (C_3H_60) + o-Nitrophenol ($C_6H_50_3N$)

Shakhparonov and Martinova, 1953

mo1%		p		
	0°			
0 5 10 12	69.70 67.50 63.46 60.56 59.66		76.96 74.89 70.27 67.92 65.00	
15 30	50.00		54.15	

Carrick, 1922

%	f.t.	%	f.t.	
100 92.56 84.98 79.97 70.50	44 36.5 30.3 26.1 20.1	67.88 62.48 56.79 50.60	16.1 11.5 6.0 0.2	

Shakhparonov and Martinova, 1953

mo1%		đ	Vapour phase
	0°		2 °
0	0.2375		0.2600
5	0.2300		0.2530
10	0.2160		0.2380
12	0.2060		0.2295
15	0.2030		0.2200
30	0.1700		0.1832
30	0,1700		0.1832

Acetone (C_3H_60) + m-Nitrophenol ($C_6H_50_3N$)

Carrick, 1922

%	f.t.	%	f.t.
100	93	75.08	43.0
92.88	84.0	71.85	34.5
90.05	74.5	69.08	25.0
84.21	63.0	65.63	10.1
80.87	55.2	62.95	0.2

Acetone (C_3H_60) + p-Nitrophenol ($C_6H_50_3N$)

Carrick, 1922

Я	f.t.	%	f.t.	_
100 92.30 88.78 84.54 80.16 76.63	114 97.0 85.6 75.2 61.7 50.4	73.97 72.43 69.66 68.87 67.15 66.99	41.2 33.2 24.6 18.1 10.1	

Acetone (C_3H_60) + ar-Tetrahydro-2-naphthol ($C_{1\,0}H_{1\,2}0$)

Weissenberger, Schuster and Mayer, 1924

mo1%	р	mo1%	Р	
		18°		
50.00 40.00 36.34	58 78 86	33.33 25.00 0	95 1 22 163.65	
 mo1%	·	n	т	

	(water	= 1)	
	18°		
50.00 40.00 33.33 25.00	5.9 3.1 1.7 0.79 0.29	0.398 0.436 0.390 0.340 0.315	

Acetone (C_3H_60) + 2-Naphthol ($C_{10}H_80$)	Methylhexylketone ($C_8K_{16}O$) (b.t.=172.85) +
Acerone (Clue) + 2-Maphithor (Clougo)	Lecat, 1949
Skirrow, 1902	2 nd comp. Az
% р	
2 5°	
0 229.6 13.95 213	Phenol (C ₆ H ₆ 0) 182.2 68 184.5 o-Cresol (C ₂ H ₈ 0) 191.1 85 191.9
26 . 88 195 100 0	o-Creso1 (C ₇ H ₈ O) 191.1 85 191.9 o-Chlor- (C ₆ H ₅ OC1) 176.8 65 187.0
	pheno1
	o-Brom- (C ₆ H ₅ 0Br) 198.5 100 194.8 phenol
Weissenberger, Schuster and Mayer, 1924	
mol% p	Diisobutylketone ($C_9H_{18}O$) + Phenol (C_6H_6O)
18°	
50.00 58 44.44 69	Lecat, 1949
40.00 87 36.34 97	% b.t.
33.33 105 0 163.65	0 168.0
	0 168.0 80 183.4 Az 100 182.2
mol% უ თ (water = 1)	
18°	Methylheptenone ($C_8H_{14}O$) + Phenol (C_6H_6O)
50.00 4.8 0.465	The state of the s
33.33 2.1 0.446	Lecat, 1949
20.00 1.0 0.370 0 0.29 0.315	% b.t.
	0 173,2
	67 184.6 Az 100 182.2
Rabinovitch, 1940	
vol% (α) magn B yellow green indigo 5780 Å	
20°	Methylheptenone ($C_8H_{14}O$) + Cresol-o (C_7H_8O)
0 7.96 9.02 14.83 0.13	Lecat, 1949
1 14.2 12.49 14.20 25.21 0.04	% b.t.
25.5 15.96 18.37 33.48 1.59	
B = Magnetic birefringence	0 173.2 85 192.9 Az 100 191.1

PHORONE + PHENOL

					- 1
	(C ₉ H ₁₄ 0)	(b.t.=19	97.8)	+ Phenols.	
Lecat,					W.
	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	
Pheno1	(C6H6O)	182,2	18	198.8	
o-Cresol	(C ₇ H ₈ O)	191.1	35	201.3	
m-Cresol	(C ₇ H ₈ O)	201.7	55	206.0	
p-Cresol	(C ₇ H ₈ O)	202,2	55	206.5	
Acetonyl	acetone (C	H _{1 0} O ₂)	+ m-Cre	sol (C ₇ H ₈ O)	==
ĺ	avitt and al		(fig		
		mo1% (b	,t.)		(
	L			V	
	20 40		2	6 21	}
	60		5	5	
	65 80		6	5 5 5 7	
				•	ı
					==
	acetone (C_{ℓ}			esol (C ₇ H ₈ O)	
		mo1% (b	.t.)		
	L			v	
	20			7	
	40		2	13	
	60 68 80		6	7 3 5 8 7	
	80		8	37	
					==
	anone (C ₆ H ₁				
	12 and Schmi			1912	
%	f.	t.	<u>%</u>	f.t.	
11. 18.	0 -7	72	59.9 65.0	-30.5 -36.2	
N 28.	2 -4	• ~	69.6	-36.2 -13	
34. 43. 46.			74.0	0	
46.	i -:	22.5	76.9	+2.3 +8.3	
H 49.	8 -1	23	76.9 78.3 87.5	+12.3 +27.8	
50. 53.	6 -	30 24 22.5 23 24.1	100	+42	
				(1+1)	
J					

Hudlicky, 1949		
%	n _D	η
	25°	
0 10 20 100	1.4482 1.4582 1.4682 1.5509	1850 2020 2240 8500
Menthone (C _{1 o} H ₁	₈ 0) + Thymol	(C ₁₀ H ₁₄ 0)
Lecat, 1949		
%	b.t.	
0 92 100	209.5 233.2 A 232.9	z
Menthone (C ₁₀ H	80) + Carvacr	ol (C ₁₀ H ₁₄ 0)
Brauer, 1929		
%	mo 1%	b.t. (10mm)
0 20 50	0 20,2 50,6 80,3	82.0 87.0 103 111

Camphor ($\text{C}_{\text{10}}\text{H}_{\text{16}}0$)(b.t.=209.1) + Pheno1s

Lecat, 1949

	2nd Comp.		A	z
Name	Formula	b.t.	%	b.t.
o-Cresol	C7H80	191.1	15	209.85
m-Cresol	C7H80	202.2	35	213.35
p-Cresol	C7H80	201.7	30.5	213.15
o-Xylenol	$C_8H_{10}O$	226.8	7 3	227,5
m-Xylenol	$C_8H_{10}0$	210.5	50	217.0
Thy mol	C10H140	232.9	84	233.3
p-Chlorphenol	C6H50C1	219.75	7 5	227.5
o-Bromphenol	C ₆ H ₅ OBr	216.5	40	216.5

Camphor ($C_{10}H_{16}0$) + Phenol ($C_{6}H_{6}0$)

f.t.

+40

+38 +35 +32

+32 +26.5 -22 +14 - 2 -12

%

38.49

37.79 35.88 33.36 32.47 32.26

30.68 29.83 28.52 27.76 26.63 23.42 20.27 18.93 17.81 15.28 11.14

9.35 7.45 5.94

4.02

Ó

f.t.

-20.0

-18.7 -19.0 -19.3 -16.7 -20.1

-15.9 -26.4 -13.8 - 0.1 +29.5 50.7 67.5 77.0 80.0

88.0 112.0

128.0 140.0

151.0 158.0

174.5

Kremann, Wischo and Paul, 1915

%

81.7 77.3 70.8

f.t.

40.3

39.0 37.5 36.1 34.2 29.7 25.0 22.0

19.0 16.1

10.5 7.9 5.0 2.4 - 3.0 -15.7 -22.5 -28.0 -25.7

-23.6 -20.4

-22.64

-20.0 -19.0

Wood and Scott, 1910

%

100 97.68 95.49 93.13 90.58 85.14 79.69 78.36 75.90 74.60 71.43 71.08

69.69 67.36 65.50 61.43 60.48 59.65 57.57

55.10

50.01 47.48 44.20 41.27

E: -30.5E: -32.0(1 + 1) $f.t. = -18.6^{\circ}$

100

100 98.5 93.5 88.1

Copyrighted Materials

Copyright © 1959 Knovel Retrieved from www.knovel.com

CAMPHOR + CRESOL

%	f.t.	%	f.t.
0.0 16.0 26.0 30.0 31.8 34.0 36.8 38.4 38.8 39.0 41.0	+178 + 86 + 3.0 - 12.5 - 16.5 - 15.5 - 15.2 - 13.7 - 155\$5.0 - 15.8 - 15.5	42.0 46.0 49.9 50.0 50.8 52.1 53.5 65.0 75.0 100.0	-15.0 -18.2 -22.5 -21.5 -24.5 -27.1 -32.3 - 7.2 +15.7 +39.5
%	đ	%	đ
	1;	5.8°	
0.0 26.0 32.7 34.0 40.0 43.9	0.8110 .9952 .9988 1.0011 .0039 .0077	45.0 49.8 52.8 56.0 100.0	1.0080 .0106 .0130 .0149 .0596
%	n _D	%	n _D
]	18°	
69.5 64.5 59.1 53.9 48.9 47.0 46.0 45.8 45.0	1.5274 1.5239 1.5139 1.5156 1.5116 1.5105 1.5095 1.5094 1.5091	44.4 43.0 42.0 41.0 39.7 38.4 34.0 28.2	1.5082 1.5072 1.5064 1.5058 1.5049 1.5039 1.5000 1.4951
Pariaud, 1	951 (fig.)		
	mol %	(α) _D	
	17	0	
	33.3 50 66.7 75 79	39.30 34 25 18.30 15.20	

519

520		C	AMPHOR + P	YROCATECHOL			
Camphor (C ₁₀ H	1,60) + Pyroca	atechol (C ₆ F	1602)	Camphor (C ₁₀ H ₁₆	0) + Reso	orcinol (C ₆ H ₆ O ₂)
Efremov, 1913				Caille, 1909			
%	f.t.	E	min.	%	f.t.	%	f.t.
0.0 3.0 5.0 7.5 10.0 15.5	178 165.0 147.7 136.2 110.1 70.5	-19.0 -18.5 -19.0 -20.0	- 7 8.5 20	0 20 24.5 40 41.9	175 50 +1.5 E 28 28.5	43.5 60 80 100	25 E 77 97 108
19.4 22.0 25.0 26.0 28.0 30.0 35.0	35.1 18.5 -3.2 -16.8 -14.0 -6.1 +6.5	-19.0 -19.0 -20.0 -19.0 -19.0	64 84 108 125 123 104 69	Efremov, 1913	F.	E	min
37.5 40.0	+6.5 10.1	-19.0 -18.5 -19.0	43 21		f.t	Е	min.
42.0 44.2 47.2 50.0 52.5 60.0 65.0 70.0 74.3 80.0 85.0 90.0 95.0	11.3 11.5 10.0 12.1 23.5 36.2 58.9 71.4 80.6 86.0 93.2 97.5 100.9 103.0 104.0	7.5 7.5 8.0 7.5 7.5 7.5 7.5 7.5 8.0	20 75 64 53 35 26 16 9	0.0 3.0 5.0 7.5 10.0 12.5 15.5 19.4 22.0 25.0 26.6 28.0 30.0 32.0 35.0 37.5 40.0	178 165.0 147.3 136.0 10.0 93.2 75.0 47.0 30.0 11.2 1.0 5.9 16.0 15.8 22.1 26.0 28.0	1.0 1.0 0.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.5	8 18 18 55 71 105 143 161 214 240 216 184 162 103 72
Kremann and Od	lelga, 19 2 1			41.2 42.0 43.1 44.2 44.5	29.0 29.0 28.1 26.2	1.0	- - 18 72
Я	f.t.	%	f.t.	44.5 47.2 50.0	36.1 47.0	24.0 24.0 23.5	65 60
0 1.8 3.9 6.8 11.3 15.3 20 22.4 22.8 23.9 25.2	175.0 170.0 161.5 150.0 131.6 110.0 73.5 54.0 50.0 43.0 31.0	36 37.1 38.7 40.4 41.5 41.8 42.9 45.3 46.9 48.9 50.7	4.0 - 0.0 12.0 25.0 25.5 28.9 38.5 44.0 52.0 56.5	52.5 60.0 65.0 70.0 74.3 80.0 85.0 90.0 95.0	58.2 76.5 87.3 93.1 100.0 105 110.1 114.5 117.0 119.0	24.0 25.0 24.5 23.5 24.0 24.0	53 41 30 23 17 6 - - - - +1)
25.3 26.4 27.4	26.0 26.0 8.5	54.3 56.4	56.5 68.0 71.0				
28.9 29.7	8.5 8.5	61.7 65.3 69.5	76.5 81.5 85.5	Kremann, Wisch	o and Paul,	1915	
31.2 32.4	8.5 7.0	73.6 78.5	85.5 88.5 92.0	%	f.t.	%	f.t.
34.7 35 35.5	6.5 6.0 4.0	87 100 (2 + 1	97.5 102.5	0 35 38.5 41.0 42	173 20.5 22.8 24.3 25.3 25.0	44 45 47.1 51.8 100	23.0 24.8 33.8 52.0 109
				43.2	25.0	(1+)	1)

mo 1%	f.t.	Е	
100	120	-	
70 57 50	92 52	27	
5 7	52	27	
50	29 29.5	-	
48	29.5	19	
40	21	0	
40 36	11	Ó	
31	~	Ô	
25	50	Õ	
-0	170	_ ~	

Camphor ($C_{10}H_{16}0$) + Hydroquinone ($C_6H_60_2$)

Efremov, 1913

%					
70	f.t.	tr.t.	min.	E	min.
	170.0				
0.0	178.0	-	-		-
3.0	165.1	-	-	50	-
5.0	154.2	-	-	49.0	11
7.5	145.0	-	-	49.0	17
10.0	128.0	-	-	49.0	36
12.5	117.1	-	-	49.0	48
15.5	104.3	-	-	49.0	65
19.4	84.0	-	-	50.0	103
22.0	71.2	-	-	50.0	120
25.0	56.1	-		50.0	143
26.6	49.1	-	-	_	162
28.0	56.1	-	-	49.0	133
30.0	62.1	-	-	49.0	104
33.0	77. 5	61.5	14	49.0	67
35.0	90.0	62.0	29	49.0	43
37.5	98.1	62.0	43	51.0	30
40.0	106.1	62.0	57	49.0	68
42.0	111.1	62.0	70	-	12
45.0	119.5	62.0	42	_	
47.0	124.5	62.0	35	-	-
49.0	127.7	62.0	27	_	_
50.0	129.0	62.0	-	_	~
52.5	133.1	62.0	17		_
57.5	139.8	62.0		-	_
59.2	141.5	62.0		-	_
60.0	142.6	62.0	-	-	_
62.5	145.1	_	-	-	-
65.0	148.1	-	-	-	_
68.5	150.8	-	-	-	_
70.0	152.6		-	-	-
74.3	156.2	-	-	-	_
80.0	160.0	-	-	_	_
85.0	163.4	-	-	-	_
90.0	166.0	-	-	~	-
92.5	167.5	-		-	_
95.0	168.3	-	_	~	-
100.0	169.0	-	-	-	_
1					

%	f.t.	%	f.t.	_
0 3.8 7.7 10.8 16.7 20.5 22.7 25.4 27.9 28.9 31.3 35.5 38.8	175.0 161.0 147.0 132.0 106.0 81.0 64.5 32.0 52.0 69.0 79.0 103.0 110.0	41.6 44.3 47.9 50.3 54.8 60.0 64.4 69.1 75.8 81.7 86.7 93.2	118.1 124.0 126.0 133.0 139.0 143.5 146.0 151.0 153.5 158.0 161.5 165.0	

Camphor ($C_{10}H_{16}O$) + Pyrogallol ($C_{6}H_{6}O_{3}$)

Jouniaux, 1912

 E	f.t.	mo 1%
_	178	0
-	144.8	10
_	111	20
17,6	30	10 20 30 35
21.0	35	35
	50	40
_	73	50
_	93	60
-	108	70
_	118.8	80
_	125.8	90
_		91.3
_		
	100.0	100
21	_	31 E
	126.2 130.8	31 E

Kremann and Odelga, 1921

%	f.t.	%	f.t.
0 1.3 6.9 11.5 17.2 20.1	175.0 165.0 153.0 137.0 115.0 88.0	39.8 44.7 48.1 52.5 57.8 63.2	47.0 69.0 79.0 89.0 98.0
20.6 24.1 25.6 27.2 28.6 29.5 33.6	75.0 61.0 53.0 39.0 19.0 15.5 13.0	68.2 68.5 75.3 78.4 81.3 89.2 93.6	107.0 110.5 115.2 117.1 118.3 119.5 124.2 126.0

Camphor ($C_{10}H_{16}0$)	+ Salol (C ₁₃ H ₁₀ O ₃)	
Caille, 1909	(fig.)	
×	f.t.	
0 20	175 132	
20 40 56	67 6	
60 80	11 28	
100	42	

Le Fevre and Webb, 1931

%	f.t.	%	f.t.
0 7.0 13.5 21.4 37.7 47.8 50.1	175 147.0 145.4 98.0 8.6 6.9 8.6	52.5 57.8 60.9 61.75 62.10 85.80	8.8 8.75 9.0 11.0 12.40 30.8 42.5

Camphor ($\text{C}_{1\,\,\text{o}}\text{H}_{1\,6}\text{O}$) + o-Nitrophenol ($\text{C}_{6}\text{H}_{5}\text{O}_{3}\text{N}$)

Efremov, 1916 and 1919

mo1%	%	f.t.	E	min.
0 3.27 5.44 10.83 21.47 26.69 31.91 37.04 42.16 47.20 52.23 57.44 62.64 67.24 71.84 81.39 90.77 95.39 97.25	0 3.0 5.0 10.0 20.0 25.0 35.0 40.0 45.0 50.0 66.0 70.0 80.0 90.0 97.0	178.0 168.0 161.3 145.7 111.6 93.1 74.6 51.9 25.0 12.6 15.2 19.6 30.3 35.2 40.2 42.2 43.5 45.0	4.1 11.3 11.3 11.3 11.3 11.8 11.8 11.8 11	4 8 18 28 38 46 57 62 70 58 50 40 34 24 13 4
E : 45.5	5 mo1%	- 11.80		

Kremann and Odelga, 1921

R	f.t.	%	f.t.	
0 4.2 9.4 13.8 19.7 22 24 31.1 34.4 39.2 43.1 44.3 46.6	175.0 165.0 151.0 139.0 119.0 110.0 102.0 75.0 62.0 42.0 26.0 17.0 16.0	48.2 51.3 53.5 55.5 68.5 75.1 78.1 78.1 88.1 92.7	17.0 18.7 22.0 22.0 25.0 30.0 33.5 35.5 40.0 42.0	

Camphor ($C_{1\ 0}H_{1\ 6}O$) + m-Nitrophenol ($C_{6}H_{5}O_{3}N$)

Efremov, 1916 and 1919

	%	mo1%	f.t.	%	mo1%	f.t.
	0	0	178.0	44.30	46.51	33.1
	4.60	5.0	165.6	44.84	47.07	37.8
	9.22	10.0	148.6	46.07	48.29	38.1
2	8.60	20.0	105.2	47.76	50.00	43.0
	0.12	21.60	100.9	49.92	52.15	48.0
	5.01	26.71	81.6	54.08	56.30	55.7
	8.15	30.0	72.6	60.07	62.19	66.2
3	0.24	32.14	63.8	67.34	69.30	76.5
	3.98	36.01	44.9	75.41	77.03	82.6
	5.60	37.67	33.6	79.48	80.91	86.5
3	8.00	40.13	24.1	85.34	86.42	90.5
	9.89	42.05	17.5	92.30	92.92	93.7
	3.16	45.36	30.3	100	100	95.5

E: 41.5 mo1% 16°

Kremann and Odelga, 1921

%	f.t.	Я	f.t.
0	175.0	54.9	66.0
3	169.0	56.7	70.0
6.5	158.0	59.9	73.2
10.8	138.5	62,4	75.8
17.9	102.0	66.3	80.5
22.9	60.0	70.9	84.0
25	52.0	75.7	86.2
26.3	60.0	79.1	88.0
29.3	10.0	84.8	90.2
31.1	10.0	90.4	92.0
41.3	12.0	94.4	93.5
45.2	39.0	97.6	94.2
46.9	44.0	100	94.8
48.1	48.0	-00	74.0

Camphor (C ₁₀ H ₁₆ 0	0) + p-Nit	rophenol (C	C ₆ H ₅ O ₃ N)	Kremann and Ode	lga, 1921		
Efremov, 1916 and	d 1919			%	f.t.	%	f.t.
% mo1% 0 0 3.0 2.95 5.0 4.60 10.0 9.22 15.0 13.91 20.0 18.60 25.51 23.85 30.13 28.29 33.00 31.30 40.95 38.82 43.12 40.94 44.96 42.76 E: 36 mo1%	149.6 125.9 104.9 76.2 38.5 17.7 20.6	49.88 47 54.96 52 60.0 57 64.90 62 70.0 68 75.0 73 80.0 78	f.t. 7.65 48.2 7.65 58.5 83 68.0 81.3 8.08 81.3 8.31 88.3 8.53 94.0 1.7 107.2 8.56 111.0 1.73 112.3 114.1	0 2.3 7.1 11.9 18.5 25 31.4 37.6 40.1 40.4 40.7	175.0 171.2 161.0 149.5 133.0 111.5 92.0 71.0 70.0 69.0 71.5	46.6 52.5 57.6 62.9 67.6 75.5 81.9 86.1 92.6 97.9 100	79.0 82.5 87.0 89.5 92.5 92.5 100.0 102.0 105.5 109.0 110.5
Kremann and Odel	lga, 1921			Efremov, 1916 a		•	
R	f.t.	%	f.t.	mo1%	%	f. t.	E
0 5.4 13.1 20.3 25 26.6 27.4 31.0 39.6 40 40.3 40.9 43.4 45.4	175.0 159.0 133.0 92.0 64.0 46.0 43.0 -9.0 -6.0 -5.0 -4.0 0.0 +22.0 27.0	50.3 52.5 56.3 57.4 58.3 61.0 61.9 67.5 70.8 73.7 80.8 90.5 95.1	49.5 56.0 63.0 66.5 67.5 73.0 75.0 83.0 87.5 90.7 99.0 106.5 110.0 112.5	0 3.0 5.0 10,0 15.0 20.0 25.0 30,0 35.0 40.0 45.0 50.0 50.0 80.0	0 4.45 7.34 14.34 20.85 27.36 33.33 39.23 44.66 50.08 55.09 60.10 64.71 69.32 77.85 85.76 93.13	178.0 168.3 162.0 145.1 125.8 106.1 86.5 67.7 69.7 74.3 78.2 83.0 88.6 92.5 100.5	58.2 63.5 64.7 66.4 66.4 66.4 66.4 66.4 66.4 66.4
Camphor (C ₁₀ H ₁₆	0) + 2,4-1		l ₆ H ₄ O ₅ N ₂)	95.0 97.0 100	96.62 97.98 100	$118.0 \\ 120.0 \\ 121.4$	60.3
Efremov, 1919				E: 30.5m	101% 66.4	٥	
mo1%	%	f.t.	Е	Kremann and Od	elga, 1921		
0 3.0 5.0	0 3.38 5.98	178.0 168.2 161.5 145.2 128.6	48.3 61.0 67.3 69.2	78	f.t.	%	f.t.
10.0 15.0 20.0 25.0 30.0 35.0 40.0 50.0 60.0 70.0 80.0 90.0 95.0 97.0 100.0	5.98 11.85 17.54 23.23 28.70 34.16 39.41 44.66 54.76 64.48 73.85 78.34 82.83 91.60 95.50	145.2 128.6 114.0 93.8 69.7 72.2 75.1 79.2 84.9 90.8 94.5 96.7 102.6 106.6 107.9 111.4	67.3 69.2 69.5 69.3 69.3 69.3 69.5 69.5 69.5	0 4.5 11.5 11.8 28.2 35.5 39.4 43.4 47.3 51.5	175.0 169.0 155.0 132.0 104.0 84.0 71.0 80.0 85.5 89.0	56.0 60.1 74.4 80.5 83.5 89.4 93.5 96.1	93.3 96.0 104.0 107.5 110.0 113.5 117.0 119.0 122.5

E: 30.7 mol% - 69.3°

Camphor ($C_{16}H_{10}0$) + 3-Nitropyrocatechol $(C_6H_5O_4N)$

Efremov, 1916 and 1919

8	mo1%	f.t.	Е	
0	0	178.0	_	
4.23 10.45	4.15 10.27	$\begin{array}{c} 176.1 \\ 150.4 \end{array}$	-	
15.11 21.17	14.86 20.84	$135.9 \\ 116.8$	26.1	
24.97 29.71	24.61 29.30	100.4 80.3	25.8 26.0	
35.00 37.30	34.56	50.1	25.9	
39.93	36.84 39.46	$\begin{array}{c} 30.0 \\ 31.2 \end{array}$	25.8	
44.90 50.00	44.41 49.54	39.8 47.1	25.8 26.1	
54.95 60.0	54.46 59.53	53.2 58.3	26.1 25.9	
69.96 80.06	69.54 79.7 5	66.2 72.0	26.1	
88.78 95.03	88.59 94.94	77.6 80.9	-	
100	100.74	83.8	-	

E: 38gr% 25.80

Camphor ($C_{1\,0}H_{1\,6}\theta$) + 2-Nitroresorcinol ($C_6H_5\theta_4N$)

Efremov, 1916 and 1919

%	1.4			
	mo1%	f.t.	E	
0 2 2 2	0	178.0	_	
3.25	3.18	168.4	_	
5.00	4.91	163.8	-	
11.23	11.12	147.1	46.6	
15.03	14.75	135.1	46.5	
22.16	21.82	114.0	46.6	
33.50	33.13	75.1	46.3	
33.91	33 .47	73.4	46.3	
37.97	37.51	52.2	46.3	
41.90	41.42	48.9	46.3	
44.26	43.70	51.2	46.3	
50.80	50.31	56.3	46.3	
56.51	56.02	60.2	46.5	
59.70	59.23	62.6	46.4	
70.50	70.09	69.0	46.3	
80.04	79.69	72.9	46.4	
90.05	89.82	79.0	46.4	
96.66	96.59	83.5		
100	100	84.8	-	
l		21,0		

E: 39.3mo1% 46.30 Camphor ($C_{1\,0}H_{1\,6}0$) + Nitrohydroquinone ($C_{6}H_{5}0_{4}N$)

Efremov, 1916 and 1919

%	mo1%	f.t.	E	
0	0	178.0	_	
6.32	6.21	160.4	_	
7.99	7.85	156.3	-	
13.20	12.97	139.6	-	
17.50	17.22	121.8	_	
23.49	23.15	96.8	26.9	
27.24	26.88	70.8	26.5	
30.29	29.37	48.7	26.4	
32.68	32.25	30.6	26.4	
34.43	33.96	31.3	26.4	
39.94	39.45	52.9	26.5	
45,21	44.71	67.1	26.5	
50.36	49.88	78.8	26.5	
55.97	55.17	88.9	26.5	
60.00	59.53	95. 7	26.7	
70.57	70.14	110.2	20.7	
80.02	79.67	118.4	_	
90.00	89.77	125.0	~	
94.98	94.84	128.4	_	
100	100	131.3	_	
100	100	131.3	_	
E: 33.2	mo1%	26.40		

Camphor ($C_{10}H_{16}0$) + 2,4-Dinitroresorcinol $(C_6H_4O_6N_2)$

Efremov, 1916 and 1919

<u> </u>	mo1%	f.t.	Е
0	0	178.0	_
3.10	2.37	170.3	-
5.37	4.17	162.5	-
10.02	7.80	150.0	-
15.51	12.36	132.6	-
20.01	15.96	117.1	48.6
25.11	20.31	100.0	47.2
30.02	24.57	77.8	47.3
34.94	28.98	47.2	_
37.51	31.32	61.4	47.2
39.54	33.24	82.1	47.2
45.02	3 7.7 7	96.0	47.2
50.10	43.28	106.6	47.2
59.83	53.09	118.4	47.5
69.97	63.93	125.2	- '
80.08	75.2 5	132.4	-
86.37	82.81	136.6	-
94.98	93.52	140.8	-
100	100	142.7	-

Camphor ($C_{1.0}H_{1.6}0$) + 2,4,6-Trinitroresorcinol ($C_6H_3O_6N_3$)	Menthenone ($C_{10}H_{16}0$) + Thymol ($C_{10}H_{14}0$)
Efremov, 1916 and 1919	Brauer, 1929
mo1% % f.t. E	% mol% b.t. (10mm)
0 0 178.0 - 3.0 4.74 168.7 - 5.0 7.82 163.8 62.3 10.0 15.19 143.2 73.6 15.0 21.96 124.5 80.0 20.0 28.72 101.9 82.6 25.0 34.79 81.8 - 30.0 40.85 89.1 82.6 35.0 46.33 98.6 82.6	0 0 103.0 20 20.2 106.6 50 50.4 116.5 Az 80 80.2 114.0 100 100 109.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lecat, 1949 % b.t.
90.0 93.55 166.9 - 95.0 96.84 171.6 - 97.0 98,12 173.6 - 100 100 175.5 -	0 222.4 75 236.5 Az 100 232.9
E : 25.3 mol% 82.6°	
Camphor (C _{1 o} H ₁₆ 0)+1-Naphthol (C _{1 o} H ₈ 0)	Menthenone ($C_{10}H_{16}0$) + Carvacrol ($C_{10}H_{14}0$) Brauer, 1929
Raille, 1909	% mol% b.t. (10mm)
0 +175 36 E -15 100 +96	0 0 103 10 10.1 106.5 30 30.1 114.0 50 50.3 118.3 70 70.2 119.1 Az
Camphor ($C_{1 O}H_{10}O$) + 2-Naphthol ($C_{1 O}H_{8}O$)	90 90.1 116.5 100 100 112.7
Caille, 1909	
% f.t. 0 175	Lecat, 1949
34 E 13 100 132	% b.t.
Kremann, Wischo and Paul, 1915	0 222,4 75 239,5 Az 100 237,85
% f.t. % f.t.	
0 173 49.8 53.0 7.7 150 55.6 65.0 13.5 130 61.1 76.0 24.7 83 66.6 87.5 29.7 37 75.7 97.0 36.8 11.0 85.4 105.8 42.7 25 93.4 111.5 44.4 36.0 100 117	

526 MENTHENO	NE + EUGENOL
Menthenone ($C_{10}H_{16}0$) + Eugenol ($C_{10}H_{12}0_{p}$) Brauer, 1929	Lecat, 1949
% mo1% b.t.(10mm)	% b.t.
0 0 103 10 9.4 105.2 30 28.4 110.0 50 48.1 114.2 70 68.3 118.0 90 89.2 120.7	0 193.6 25 196.2 Az
90 89.2 120.7 100 100 122.5	Fenchone ($C_{10}H_{16}0$) + Cresol-p ($C_{7}H_{8}0$)
Pulegone ($C_{10}H_{16}0$)(b.t.=223.6) + Phenols	Lecat, 1949
Lecat, 1949	% b.t.
2nd Comp. Az Name Formula b.t. \$ b.t.	0 193.6 72 205.5 Az 100 201.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fenchone ($C_{10}H_{16}O$) + Pyrocatechol ($C_{6}H_{6}O_{2}$) Kremann and Dietrich, 1923
	% f.t.
Pulegone (C ₁₀ H ₁₆ O) + Carvacrol (C ₁₀ H ₁₄ O) Brauer, 1929	100 103.5 89.1 98.5 76.1 91.5 69.7 80.5 55.3 68 47.5 50
0 0 94.6 10 10.1 97.0 30 30.1 100.5 50 50.3 112 70 70.2 115.4	- 47.5 50 40.1 -5 8.0 -3 0 +5.3
90 90.1 114 100 100 113	Fenchone ($C_{10}H_{16}O$) + Resorcinol ($C_6H_6O_2$)
Fenchone ($C_{1,0}H_{1,6}O$) + Phenol ($C_{6}H_{6}O$)	Kremann and Dietrich, 1923
Kremann and Dietrich, 1923	% f.t.
f.t. 100 86.9 35 81.4 29 68.2 4 50.2 -14 38 1.7 9.2	100 115 84.9 103 72.5 92 63 80.5 54.8 68 46.4 49 12.0 -8.3 7.3 -2.5 0 5.3

Fenchone	(C12H160)	+	Hydroquinone	(C6H6O2)	
----------	---	---------	---	---	--------------	---	--------	---	--

Kremann and Dietrich, 1923

%	f.t.	Z	f.t.	
0 4.8 18.8 20.2 20.9 23.6 28.6 30.8 31.8	5.3 0 34 48 52 77 102 107	44.3 52.6 62.9 74.8 84.7 92.6	134 143 154 161 166.2 168	

Fenchone ($C_{1\,0}H_{1\,6}0$) + Pyrogallol ($C_{6}H_{6}0_{3}$)

Kremann and Dietrich, 1923

7 9	.9	131 125.2 115 104.3	45.9 39.9 35.6 11.4 4.5	75 62.6 45 -2.5
		84	0.3	2.5

Fenchone ($C_{10}H_{16}O$) + o-Nitrophenol ($C_{6}H_{5}O_{3}N$)

Kremann and Dietrich, 1923

 %	f.t.	K	f.t.
100 93.1 83.9 73.0 60.3	44.5 41.5 36.5 31.8 24.7	52.5 43.1 33.3 8.0	20 13.5 6 1.5 5.3

Fenchone ($C_{10}H_{16}0$) + p-Nitrophenol ($C_6H_50_3N$)

Kremann and Dietrich, 1923

 Ж	f.t.	R	f.t.
100 92.6 81.7 73.5 65.5 58.7 53.1 48.4	115 109 100.5 91.5 83 72 56 44	45.1 43.5 43.3 42.9 38.1 12.6 4.1	30 23 22 21.0 -6 -2.8 +3.5 +5.3

Fenchone ($\text{C}_{1\,0}\text{H}_{1\,6}0$) + 1,2,4-Dinitrophenol ($\text{C}_6\text{H}_{14}0_5\text{N}_2$)

Kremann and Dietrich, 1923

 Я	f.t.	%	f.t.	
100 94.1 87.5 72.6 65.4 59.6 52.8	111 108 106 98.5 94 90 85.5	47.3 42.4 31.0 22.4 12.1 4.5	81.7 76. 57.5 41.5 9 +2.5 +5.3	

Fenchone ($C_{10}H_{16}0$) + Picric acid ($C_{6}H_{3}O_{7}N_{3}$)

Kremann and Dietrich, 1923

<u> </u>	f.t.	%	f.t.
100 95.3 87.9 76.9 75.2 65.4 65.2 56.8 52.6 E = 0°	121.3 119.5 116.5 111.5 100.5 106 106 101 98.5	49.7 46.9 39.8 32.6 25.6 16.1 10.9 5.5	96.5 94 88 76 60 27 3.5 3.3 5.3

Fenchone ($C_{10}H_{16}0$) + 1-Naphthol ($C_{10}H_{8}0$)

Kremann and Dietrich, 1923

%	f.t.	%	f.t.
100	95.0	46	60,5
92.5	89.5	45.4	60.5
83.6	81.5	43	60
70.9	66	38.9	58.5
70.8	66.5	35.9	56
65.5	59.3	33.1	53
61.8	55	31.8	52
60.6	56	26.0	45
59	57	18.1	29
59 56.1	59	11.6	1 3
54.4	59	5.0	3 2
50	60.5	0	3.2 5.3
51.9	60.0	·	0.0
*/	*****	(1+1)	

Fenchone (C _{1 o} H	I ₁₆ 0) + 2	-Naphthol	(C ₁₀	Н ₈ О)		Carvenon	e (Coo	H. (0) (b.t.=	234.5)	+ Phenol	s.
Kromone and Dia		.22				Lecat, 1		16-	, (=, =,			
Kremann and Die	f.t.	23 %		f.t.			2 nd co	omp.		Az		
						Name	Forma	la	b.t.	%	b.t.	
100 97.6 89.2	121 119.5 113.1	36.4 35.4 32		16 15 10			, C U	0)	232.9	50	241.0	
79.6 70.7	104	31.9 28.1		10 4.7		Thymol Carvacrol					243.0	i
61.9 54.4	81.5 65.2	25 21.7	,	0 -5		Carvacroi	(01 011	140 /	207.100			
51.7 50	55 50	17.5 14.2		-7.5 -5		Acetophe	none (C ₈ H ₈ O) (b.t.	=202.0) + Pheno	ls.
48.3 43.6 42.5	46.6 23 22	5.7		-1.5 +2		Lecat 1						
40.8 39.9	21 19.5	1.7		+3.8 +5.3			2 nd c	omp.		Az		
	٠,,٠	(1+	1)			Name	Formu	ıla	b.t.	%	b.t.	Dt mix
E ₁ : 23°						Phenol	(C ₆ H ₆	0)	182,2	7.8	202,2	-
E ₂ : 9.8°						Cresol-o	(C ₇ H ₈	.0.3	191,1	15	203.75	_
						Cresol-m	(C7H2	•	202.2		208,45	+5.5
Carvone (C _{1 o} I	H., O) (h	+ = 231	0) +	Phenal		Cresol-p	(C ₇ H ₈		208.4		202,7	-
	.i1 40 / 0.	t 201.	.0 / /	i nengi:	3	Xylenol-m	•			70	213.0	-
Lecat, 1949						Ethyl-	(C ₈ H ₁		228.8	85	219.5	-
N	2nd Comp.			Az	C-+ +	phenol-p Guaiacol	(CaH	ر م0ء	205.05	67 5	202.25	_
Name	Formula	b.t.			Sat.t.	Chlorphe-			176.8	-	202.23	_
	C ₁₀ H ₁₄ 0	232.9		238.5	-10	no1-o					-	
Carvacrol Pyrocatechol	C ₁₀ H ₁₄ 0	237.85 245.9		242.2 248.1	_	Chlorphen -p	o1 (C ₆ H ₅	50C1)	219,75	85	224.5	-
p-Chlorphenol		219.75		238.3	_	Brompheno	1 (C ₆ H	₅ 0Br)	198.5	52	212.5	-
								==				===
						Acetophen	one (C	3H ₈ O)	+ Phen	101 (C	6H6O)	
Carvone (C _{1 o} I	H ₁₄ 0) + C	Carvacrol	(C _{1 o} H	1,40)		Kremann a	nd Mark	tl. 19	20			
Brauer, 1929							%	f.1		%	f.t	
wt	%	mol %		b.t.			00	41.	.0	55.5	-36	.0
		10 mm				1	95.3 88.8	38. 33.	0 3	49.3 46.3	-44 -35	.0
0		0 10		101 102		ŀ	85.6 82.2	30. 25.	.7	39.1 29.8	-19 -3	.9
30 50		30 50		109		ļ.	77.5 72.7 67.4	21. 15. 7.	0	22.8 13.4 4.7	+2 11 18	.5
70 90		70 90		116.5 115.3 113	Az	,	61.8	-9.	.5	ġ.,	20	
100		100	۔ ہے۔ در حمرے د	113		=====						
		ر آن کر سے ان کا اس نے نم کا ا		======								

Lestrade, 1952		
Z	f.t.	Е
100 80 70 60 50 40 30 20	40 11 -2 -12 -46 -22 -29 +2 20	-47 -47 -47 -47 -30 -30 -30

Taboury and Lestrade, 1947

Raman spectra in the L

Acetophenone (C_8H_80) + Thymol ($C_{10}H_{14}0$)

Lestrade, 1952

%	f.t.	E	
0	20	_	
0 35 45 50 60 73 80 100	10	-12	
45	2	-12	
50	- 5	-12	
60	-7	-21	
7 3	-6	-21	
80	-14	-21	
100	+51	-	
		(1+1)	

Acetophenone (C_8H_8Q) + Pyrocatechol ($C_6H_6O_2$)

Kremann and Markt 1, 1920

R	f.t.	%	f.t.
0 3.4	20.5	42.3	6.0
3.4 7.8	$\substack{18.8\\16.6}$	4 7. 8 51.6	29.0 43.0
14.3	12.5	52.6	44.8
20.2	6.8	56.1	53.0
23.8	+1.5	59.6	44.8
27.5 28.1	-0.3 -2.0	67.5 74.6	76.2 84.2
32.0	-1.ŏ	83.2	92.0
34.1	+0.5	88.9	95.8
$\frac{36.2}{39.0}$	+0.5	95.6	99.7
39.8	$\substack{0.5\\0.9}$	100	102.0
(1 + 1)	E: 39%	-1.3°	

Acetophenone (C_8H_80) + Resorcinol ($C_6H_60_2$)

Kremann and Marktl, 1920

%	f.t.	%	f.t.	
0 1.7 6.3 14.5 23.4 29.9 34.5 38.9 43.5 45.8	20.5 19.3 17.8 +9.9 -2.1 +1.2 8.3 11.2 12.5	48.0 49.2 51.8 56.9 64.2 72.9 82.3 91.2	27.0 12.5 45.0 66.5 77.0 88.7 97.2 104.0	
(1.1.				

(1+1) E: 23.4% -5.5°

Acetophenone (C_8H_80) + Hydroquinone ($C_6H_60_2$)

Kremann and Marktl, 1920

×	f.t.	%	f.t.
0 3.4 3.9 8.0 9.2 14.0 15.0 18.4 19.7 22.5 25.6 29.1 31.2 36.5	20.5 18.1 18.2 28.5 28.8 35.0 36.3 40.3 41.2 42.9 68.0 78.0 86.0 102.5	40.7 43.5 44.2 47.3 51.1 56.2 61.9 65.4 72.5 80.2 86.5 93.7 100	112.0 115.2 118.2 121.0 127.0 136.3 141.0 146.0 152.5 157.4 162.0 165.0 168.2

(1+1) E: 8.0% 17.7°

Acetophenone (C_8H_80) + Pyrogallo1 ($C_6H_60_3$)

Kremann and Marktl, 1920

<u> </u>	f.t.	%	f.t.
0 3.7	20.0 19.5	40.2	32.0
8.5 12.1	18.0 16.2	43.1 46.2 49.3	50.0 55.8
17.9 20	7.6	51.4	68.0 75.0
22.8 23.9	4.0 5.2	56.2 62.8	85.8 95.2
26.6 30.2	7.8 11.0	68.9 77.9	103.0 112.0
33.7 37.4	15.5 19.5	84.2 91.6 100	117.2 122.0 120.0

(1+1) E: 43.1% 21.0°

Acetophenone (C_8H_80) + o-Nitrophenol ($C_6H_50_3N$)

Kremann and Marktl, 1920

%	f.t.	E	%	f.t.
0 5.2	20.2	_	50,2	6.0
5.2	18.0	-	55,0	11.4
3.2	15.0	-	59.5	16.2
8.5	12.5	_	65.8	22.0
3.4	-	2.5	72,4	27.0
8.9	9.1	2.3	79.3	32.0
6.5		2.5	87.8	37.8
0.7	_	2.3	94.3	41.0
5.8	4.2	1.8	100	44.5

Acetophenone (C_8H_80) + m-Nitrophenol ($C_6H_50_3N$)

Kremann and Marktl, 1920

) _	+20.5	53,3	+30.5
			40.0
			56.0 66.5
0.2	+2.0	75,4	73.0
1.4	-3.0	81.7	80.5
			90.5 95.0
֡		0.1 15.5 7.8 11.2 7.0 0.2 +2.0 4.4 -3.0 3.6 -10.2	0.1 15.5 57.1 7.8 11.2 63.9 7.0 70.1 10.2 +2.0 75.4 14.4 -3.0 81.7 15.5 57.1 16.7 70.1 17.9 70.1 18.6 -10.2 92.4

Acetophenone (C_8H_80) + p-Nitrophenol ($C_6H_50_3N$)

Kremann and Marktl, 1920

%	f.t.	E	%	f.t.	E
0	20.5		46.0	-	-4.2
6.9	17.8	-	48.0	26.0	-
12.8	14.0	-	56.0	51.5	-
20	9.5	-	62.7	66.0	-
24.4	6.2	-	63.8	67.0	-
30.0	2.0	-	68.3	76.0	-
30.0	+1.8	-4.0	72.2	81.2	-
34.1	-0.8		78.8	90.9	-
38.5	0	-	86.7	99.2	-
39.3	7.0	-	94.4	106.6	-
43.3	+16.0	_	100	112.0	

Acetophenone ($C_8 H_8 0$) + 1,2,4-Dinitrophenol ($C_6 H_4 \Phi_5 N_2$)

Kremann and Marktl, 1920

 %	f.t.	E	%	f.t.	
0	20.5	_	49.8	58.0	
4.3	19.2	-	56.4	66.8	
10.2	16.8	-	61.8	73.6	
15.0	14.8	-	6 7. 6	80.0	
21.0	12.0	12.0	73.3	85.5	
25. 3	17.5	11.5	77.3	90.0	
29.5	26.5	12.6	82.7	94.8	
34.3	33.5	-	87.7	98.9	
39.6	41.8	10.8	93.3	104.5	
43.5	48,5	-	100	110.0	

Acetophenone ($C_8 \rm{H}_8 \rm{0}$) + Picric acid ($C_6 \rm{H}_3 \rm{0}_7 \rm{N}_3$)

Kremann and Marktl, 1920

%	f.t.	E	%	f,t,	E
0	20.5	-	55.0	49.9	-
6.3	18.8	_ - .	56 .7	50.3	50.0
12.3	_ -	16.5	59.0	-	50.0
18.0	20.6	16.5	61.4	59.0	-
23.8	28.2	15.9	65.9	67.2	_
29.9	35.0	-	70.8	75.2	_
35.0	39.0	-	77.8	86.0	_
40.0	43.2	_	84.9	96.5	_
45.4	47.2	-	91.2	106.0	_
48.1	48.0	-	100	121.0	_
51.6	49.2	-			
(1+	1)				

Acetophenone (C_8H_80) + 1-Naphthol ($C_{10}H_80$)

Kremann and Marktl, 1920

%	f.t.	%	f.t.	
0 4.2 12.9 19.1 25.9 34.2 41.8 46.6	20.0 19.0 15.5 10.6 6.5 2.5 9.8 11.8	48.3 53.4 62.9 71.9 79.4 86.0 95.3	12.5 13.0 42.9 61.8 75.6 82.4 90.8 93.2	
(1+1)	E : 25	.9% 0°		

Acetophenone (C_8H_80) + 2-Naphthol ($C_{10}H_80$)

Kremann and Marktl, 1920

%	f.t.	E	%	f.t.	Е
0	20.0	_	50.6	12.3	_
3.6	18.5	-	50.6	35.0	+8.2
11.2	15.0	_	55.9	51.4	-
20.3	10.5	-	61.2	63.9	-
28.0	6.0	+1.5	67.6	78.0	-
34.9	4.0	_	73.5	88.8	_
40.2	6.0	-	78.3	96.9	-
44.4	7.8	-	85.2	105.5	_
46.2	12.3	-	100	121.5	-
(1+	1)				

p-Methylacetophenone ($C_9H_{1\,0}O$) + Phenol (C_6H_6O)

Taboury and Lestrade, 1947 (fig.)

%	f.t.
0 10 18 20 30 40 50 60 65 70 80 90	+26 -36 -56 E -50 -35 -30 (1 + 1) -32 -37 -42 E -28 +2 +25 +40

Lestrade, 1952

- %	f.t.	E	
0 25 30 43 50 60 68 80	+28 -20 -31 -22 -23 -29 -30 -3 +40	-33 -33 -37 -37 -37 -37 -37	

p-Methylacetophenone ($C_{1\;9}H_{1\;0}0$)(b.t.=226.35) + Phenols

Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Xylenol-o	(C ₈ H ₁₀ 0)	226.8	51	231.35	-
Xylenol-m	($C_8H_{10}O$)	210.5	85	227.0	-
Ethylphe- nol-p	(C ₈ H ₁₀ 0)	218.8	30	229.5	-
Thymol	$(C_{10}H_{14}0)$	232.9	68	234.9	7.7
Pyrocate- chol	(C ₆ H ₆ O ₂)	245.9	87.5	246.3	-
Chlorphe- nol-o	(C ₆ H ₅ 0C1)	219.75	48	235.4	-12

Ethylphenyl ketone ($C_9 H_{1\,\,0} 0$)(b.t.=217.7) + Phenols

Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix.
Cresol-m	(C ₇ H ₈ O)	202,2	17.2	218.6	3.3
Cresol-p	(C ₇ H ₈ O)	201.7	16.2	218.5	-
Xylenol-o	(C ₈ H ₁₀ 0)	226.8	67	228.5	-
Xylenol-m	$(C_8H_{10}O)$	210.5	65	221.0	-
Ethyl- phenol-p	$(C_8H_{10}O)$	218.8	-	224.5	-
Thymol	(C ₁₀ H ₁₄ 0)	232.9	87	233.2	-
Guethol	$(C_8H_{10}O_2)$	216.5	-	218.3	-
Chlor- phenol-p	(C ₆ H ₅ OC1)	219 7 5	58	231.0	-

Benzophenone ($C_{13}H_{10}0$) + Pheno1 (C_6H_60)

Kremann and Zechner, 1925

	f.t.	E	% 	<u>f.t.</u>
0	47	_	51.8	-15·
6.80	39	-	53.8	-10
13.53	29	_	55.7	- 7. 5
14.5	28	-4.5	59.1	0
23.41	11	-	59.4	+1
23.56	9	-	61.8	6.5
27.46	1	-	68.7	16
28	1	-4.5	74.1	25
31.35	-4	-	77.3	27.5
37.78	-4	-	81.0	31
41.11	-3.5	•	87.9	36
45.89	-7.5	-	95.1	39.5
47.3	-24	-	100	40.8
51.05	-15			

Hrynakowski and Jeske, 1938 (fig.)

 %	ε	K	ε
0	9.55	56	12.95
10	11.3	63	12.5
17	11.45	69	12.5
25	11.8	63	11.5
39	12.3	81	11.3
42	13.0	90	10.3
45	13.2	100	9.7
50	13.45		
		at room	temperatur

Benzophenone ($C_{13}H_{10}0$) + Thymo1 ($C_{10}H_{14}0$)

Pawlewski 1893 and 1899

 mo1%	f.t.	mo1%	f.t.	
0 6.31 12.98 17.99 23.61	48.5 45.8 41.2 38.5 35.0	23.61 76.85 86.73 89.42 93.75	35.0 39.2 44.0 45.7 47.4 49.0	

Benzophenone ($C_{13}H_{10}0$) + Pyrocatechol ($C_6H_60_2$)

Freunlich and Posnjak, 1912

%	f.t.	%	f.t.
0 10	47 37	40 50	48 65.5 77
20 23 24	37 25 19 E	50 60 70	77 85
28. 5	19.5 (2+1) 15 E	70 80 90	85 92 98.5
30	19	100	105

Kremann and Zechner, 1925

%	f.t.	E	%	f.t.	E	
0	47.0	_	48.9	68		
3.5	43.5	-	59,16	79.5	-	
9.3	37.5	11.3	65.02	85.2	-	
14.6	31.5	11.3	74.14	91	-	
20.5	23.5	-	80.15	95.1	-	
28.4	11.6	-	88.73	99.2	-	
30.82	17	11.0	92.73	101	-	
42.0	53	-	100	103	-	
42.55	55	-				

Benzophenone ($C_{13}H_{100}$) + Resorcinol ($C_{6}H_{60}$)

Freundlich and Posnjak, 1912

	f.t.	%	f.t.
0 10 20 21 E 24 (2+1) 34 E	47 37 22 19.5 21.5 14	50 60 70 80 90	72 84.5 94 102.5 110

Pfeiffer, 1924

%	f,t.	%	f.t.
0	48	46.4	68 - 69
13.0	38	60.5	86
27.0	29 - 30	78.1	99
36.3	50	100	110

<u>%</u>	f.t.	E	%	f.t.	E
0	47	-	34.9	34	-
5.12	41.5	-	37.10	41	
7.90	38.1	-	40.18	54	-7
9.37	35.4	-	41.4	60	-
15.28	26.5	-	46.8	73. 5	
17.72	20.5	-	55.9	87	
21,96	13	-	60.5	90.8	-
23.4	9	_	68.3	97.4	~
23,36	7.0	-	74.3	100.6	~
27.32	- 1	-7	80.3	103.5	~
29.21	-7	-7	85.1	105	
32.1	12	-7	98	108.5	~
3,49	28,2	_	100	109	_

Benzophenone ($C_{13}H_{10}0$) + Hydroquinone ($C_{6}H_{6}0_{2}$)

Kremann and Zechner, 1925

%	f.t.	E	%	f.t.	E	
			25,78	112	_	
0	47	-	32.04	124	_	
5.26	43.9	-	40.9	137.5	-	
5.91	43.5	41.1	44.35	142	-	
9.91	-	41.3	50,6	147.5	-	
10.87	41.3	-	55.41	150.5	*-	
13.40	_	41.1	6 7. 3	15 7	-	
14.96	69	-	72.6	168	-	
19.81	95	40.5	79. 1	162.5	-	
21.10	99	-	100	170.4	-	

Benzophenone ($C_{13}H_{10}0$) + Pyrogallol ($C_{6}H_{6}0_{3}$)

Kremann and Zechner, 1925

%	f.t.	Е	%	f.t.	
0 2.3 7.07 8.91 11.40 18.90 21.24 29.12	47 45.8 42.1 41.5 38.4 33 39 62	32.0 32.9	29.30 34.71 44.43 55.5 67.7 83.1	61 73.5 90.8 105 114 122.1	

Benzophenone ($C_{1\,3}H_{1\,0}0$) + o-Nitropheno1 ($C_6H_50_3N$)

Kremann and Zechner, 1925

E
16
5 - 5 16
) -
- 5 -
-
2 -
} -
-

Benzophenone ($C_{1\,\,3}H_{1\,\,0}0$) + m-Nitrophenol ($C_{6}H_{5}0_{\,3}N$)

Kremann and Zechner, 1925

Я	f.t.	Е	%	f.t.	Е
0 3.41 9.72 16.23	47 44.5 39 32	- - -	43.37 47.59 53.12 55.5	36 44.5 53.7 57.5	11.5
24.3 33.86 37.99 42.04	23 12 21 25	11.5 - 11.5	62.1 76.8 93.7 100	67.6 83.5 93 95.8	- - -

Benzophenone ($C_{1}\,_{3}H_{1\,0}0$) + p-Nitrophenol ($C_{6}H_{5}0\,_{3}N$)

Kremann and Zechner, 1925

%	f.t.	E	%	f.t.	E
0	47	_	44.31	54	17
0	49	-	47.21	60	_
9.26	40.5	-	48,56	63	-
16,45	35.1	16	53.25	71	_
17.03	26	-	53.41	71	-
22.86	29	-	56.50	77	17
31.57	21.2	17	58.47	7 9	_
37.92	35	-	67.07	88.4	-
40.27	41	-	73.76	94.3	_
42.19	49	-	100	112.7	-

Benzophenone	(C1 3H1 00)	+	1,2,4-Dinitrophenol
					(C ₆ H ₄ O ₅ N ₂)

Kremann and Marktl, 1920

%	f.t.	E	K	f.t.	
0 4.6	47.0 45.0	-	49.1 53.7	70.9 75.1	
8.5 13.5	43.0 40.0	-	59.6 64.1	80.6 84.5	
19.3 22.9	36.0 38.0	35.0	68.4 72.7	87.5 90.9	
27.6 31.7	45.0 50.0	_	76.9 80.7	94.2 97.0	
35.5 40.8	55.5 60.0	35.0	86.9 94	101.0 105.8	
47.3	69.0	34,1	100	110.0	

Benzophenone ($C_{1\,\,3}H_{1\,\,0}0$) + Picric acid ($C_6H_30_7N_3$)

Kremann and Marktl, 1920

K.	f.t.	E	%	f.t.	E	
0	47.0	_	47.3	54.5		
8.2	43.2	-	48.2	59.2	12	
13.8	40.0	-	50.5	61.6		
19.5	36.8	-	53,7	69.5	_	
20.0	36.0	-	59.1	80.0	_	
23.8	32.8	-	65.0	88.0	_	
25.7	30.5	24.8	7 0.7	93.3	_	
29.I	27.2	-	77.5	102.0	_	
31.3	27.0	-	82.7	107.0	-	
33.0	27.0	-	88.3	112.5	-	
37.6			100	121.0	-	
42.0	42.5	27				

E: 23.8% 24.8° (2+1) or (1+1)

Pushin and Rikovski, 1930

%	f.t.	E	7	f.t.	E
0.0	47	_	40.5	43	27
12.5	40.5	26	45.5	55	25
24	34.5	-	55.5	75	23
26.5	33	-	65.5	88	21
29	33 31.5	27.6	74.5	97	
32	29.5	- '	83.5	105.5	_
34	28.5	28.5	92	113.5	_
32 34 35 36 37	29.5		96	117.5	_
36	30.5	27.5	100	121	_
37	35	27.5			

	meister, 19	42 (fig	,· <i>′</i>
%	t'	%	t
0	53 58 64	60 70 80	93
10	58	7 0	103
20	64	80	115
20 30	70	90	129
40	70 78	100	145
50	85		

t' = temperature where refractive index for a red filter = 1.5898

Benzophenone ($C_{13}H_{10}0$) + 1-Naphthol ($C_{10}H_{8}0$)

Kremann and Zechner, 1925

8	f.t.	E	%	f.t.	E
0	47	_	43.9	38	-
5.97	42.4	-	46	37.8	-
12.80	37.4	-	49.6	-	-
17.5	32	-	49.7	32	-
19.1	31	-	50.8	37	37.1
24.3	26	-	54.9	46	37.1
24.19	26	-	56.2	-	37.1
28.60	-	26.0	58.5	53.5	-
31.3	-	26.0	59.2	53	37.1
34.02	32.9	-	69.4	70.8	-
37.88	35.5	-	81.1	82.2	-
38.3	35.8	_	94.2	90.3	-
42.4	37.8	-	100	93	-
(1+1)				

Benzophenone ($C_{13}H_{10}0$) + 2-Naphthol ($C_{10}H_{8}0$)

Kremann and Zechner, 1925

%	f.t.	E	%	f.t.	E
0	47	_	35.59	35.5	19
3 .7 5	44.1	-	43,53	50	_
9.51	39.1	-	49.8	62.51	-
16.27	31.5	-	57.8	17.9	18.5
16.34	31.3	-	71.3	97.2	-515
22.45	26.5	18.5	82.3	107.9	-
29.13	-	19.1	96	117.2	_
30.13	19	_	100	121.9	_

Benzil (C _{1 h} H ₃	002) + Phe	nol (C ₆ H ₆	,0)	Benzalacetone	(C _{1 O} H _{1 O} O) +	Pheno1	(C ₆ H ₆ O)
				Lestrade, 1952			
Hrynakowski ar	nd Staszewsk	i, 1936					
X.	f.t.	%	f.t.	*	f.t.	.,	
100 90 85 80 70 61	39.9 35.9 33.9 29.9 24.4 13.5	50 40 30 20 10 0	33.0 47.5 59.0 71.0 83.5 94.7	0 10 20 30 40 50 60 70	42 32 26 31 28 23 -5 -9 40		- 20 20 20 -31 (1+1) -31 -31 -31
Benzil (C ₁₄ H ₁			(C ₆ H ₆ O ₂)	łł			echol (C ₆ H ₆ O ₂)
Hrynakowski an	d Staszewsk	1, 1936		Chelintsev and	Kuznetsov, 19.	39 	
%	f.t.	%	f.t.		%	f.t.	
100 90 80 70 60 50	104.8 102.8 99.8 93.3 87.3 80.3	40 35 30 20 10 0	71.3 63.5 70.5 71.0 93.0 94.7		0 10 20 30 40 50 60 70	42 35 45 51 47 52 57 86	(1+1)
Benzil (C _{1 4} H ₁ Hrynakowski an			C ₆ H ₆ O ₂)	Chelintsev, 19	37 f.t.	Ą.	f.t.
				0	42	40	49 É
100 90 80 70	110.9 108.0 102.4 97.9	40 30 20 10	72.9 70.0 76.0 84.0	10 20 27.3	35 E 45.5 53 (2+1)	50 60 64	51.5 57 70
50	94.4 83.9	0	94.7				inol (C ₆ H ₆ O ₂)
Benzil (C _{1 h} H ₁	002) + 2,4-	Dinitroph	enol (C ₆ H ₄ O ₅ N ₂)	Chelintsev an	d Kuznetsov, 1		
		•			% 	f.t.	
Kofler, 1948					0 10	42 29	
E: 37% 69	0				20 30 40 70	34.5 39 36 108	(1+1)
-							

	Dibenzalacetone (C ₁₇ H ₁₄ O) + Hydroquinone
Benzalacetone ($C_{10}H_{10}O$) + Hydroquinone ($C_{6}H_{6}O_{2}$	
Chelintsev and Kuznetsov, 1939	Chelintsev and Kuznetsov, 1939
% f.t.	- % f.t.
0 42 10 71.5 20 78.5 30 81 40 82.5 50 82.5 60 83.5 70 143.5	0 112 10 98 20 93.5 30 94.5 40 99 (1+2) 50 88 60 96 70 158
Dibenzalacetone ($C_{1.7}H_{1.4}0$) + Pyrocatechol ($C_6II_60_2$) Chelintsev, 1937 and Chelintsev and Kuznetsov, 1939	Dibenzalacetone ($C_{17}H_{14}0$) + 1-Naphthol ($C_{10}H_{8}0$)
π f.t.	- % f.t. % f.t.
0 112 10 105 20 86 30 71 40 70 E 48.4 79 (1+2) 50 77.5 60 68 E 70 90	100 94 52.9 71 90.2 90 49.5 70 83.6 87 44.7 69 71.9 78 39.1 69 67.3 73 35.4 75 63.6 71 9.4 93 - 94 61 72 0 110 - 112
Dibenzalacetone ($C_{17}H_{14}0$) + Resorcinol ($C_6H_60_2$)
Pfeiffer, 1924	Dibenzalacetone ($C_{1.7}H_{1.6}O$) + 2-Naphthol ($C_{1.0}H_{8}O$)
% f.t. % f.t.	- -
0 110-112 56.4 95 9 100 60.6 98 18.7 82 70.4 102 26.5 95 81.5 106 37.8 96 95 110 44.5 93 100 110 51 91 (1+1)	Pfeiffer, 1924
Chelintsev and Kuznetsov, 1939	60.4 96 51.5 79 38.8 59
% f.t.	26.9 82 14 100 0 110-112
0 112 10 99 20 92 30 95.5 40 97.5 50 89.5 60 86 70 92	0 110-112

Dianisalacetone ($C_{1.9}H_{1.8}O_3$) + Resorcinol (C_6H_6O	Chalcone ($C_{15}H_{12}0$) + 2-Naphthol ($C_{10}H_{8}0$)
Pfeiffer., 1924	Pfeiffer, 1924
% f.t. % f.t.	% f.t. % f.t.
	0 57 - 58 48.6 69 6.3 48 - 49 61.1 89 11.9 44 69.2 97 - 98 18.5 40 80.4 106 24.5 37 90 112 37.3 42 - 43 100 122
(1 + 2)	
Dianisalacetone ($C_{1.9}H_{1.8}O_3$) + 1-Naphthol ($C_{1.0}H_8O$	
Pfeiffer, 1924	% f.t. E % f.t. E 0 114.3 - 50 169 -
## f.t. ## f.t. 100	3.38 111.5 - 50.25 166 - m 5 123.5 - 54.25 168 - m 10 140 - 54.62 168 - m 15.61 102 m - 59.0 161 150 20 153 - 60 166 - 23.38 94 m - 67.68 159 - 30.08 87 m 75 m 70 159.5 150 35.45 80 m - 72.22 155 150 40 166 - 77.42 150 - 41.85 116 m - 80 152.5 150 41.85 116 m - 80 152.5 150 42.70 126 m 75 m 84.4 155.5 - 44.31 135 m - 85 155 155 45.25 139 m - 90 160 - 47.64 153 m - 100 169 - 48.37 162 - (1+1)
32.5 103 - 104 75.2 112 38.1 79 83.9 116 43.8 77 95.9 120	% f.t. f.t.
49 75 100 120 (2+3) Chalcone (C ₁₅ H ₁₂ 0) + 1-Naphthol (C ₁₀ H ₈ 0) Pfeiffer, 1924 # f.t. # f.t. 0 57 - 58 69.2 77 5.2 49 80.9 87 - 8: 20.3 38 90 89 45.3 40 100 94	after a long time 0

4-Ethoxybenzal	acetophenone	$(C_{17}H_{16}O_{2}) + Picric$
		ecid ($C_6H_3O_7N_3$)

Asahina, 1934

mol%	f.t.	mol%	f.t.
100.0	122.0	52,9	83.0
95.4	118.5	5 2. ó	82.5
90.8	116.0	50.3	84.0
86.2	112.0	42.4	83.2
81.5	110.0	32.0	79.0
	106.3	21.6	69.5
76.8			
67.2	98. 0	10.8	68.5
62.6	93.0	6.5	72.0
60.0	89.0	0.0	74. 5
55.4	85.0		
E, ; 5	3.5 mo1%	81.0	
$E_2:1$	6.7 mo1%	60.5	
(1+	1)		

Cinnamylidene acetophenone ($C_{1.7}H_{1.\mu}0$) + Resorcinol ($C_6H_60_2$)

Pfeiffer, 1924

%	f.t.	%	f.t.
100 94 85 73 64.6 57.5	110 104 - 105 103 101 99 94	44.2 38.3 27.0 18.2	81 71 65 80 102 - 103

p-Chloracetophenone (C_8H_70C1) + Phenol (C_6H_60)

Taboury and Lestrade, 1947

Raman spectra in the L

Flavone ($C_{15}H_{10}O_2$) + Dioxyflavone 5-6 ($C_{15}H_{10}O_4$)

Asahina, 1934

%	f.t.	m.t.	
0 5	97.0	96.5	
5	98.0	-	
10	104.5	97.0	
12	107.5	98.0	
15	115.5	98.5	
20	120.0	101.0	
25	124.0	105.5	
30	128.0	109.0	
35	147	121.0	
40	159	124.5	
50	178.5	125.5	
60	194	125.0	
70		124.5	
	205.5		
80	216.5	140.0	
85	221	170.0	
90	224.5	185.0	
100	230.5	230.0	
	*		

Flavone ($C_{15}H_{10}O_2$) +Dioxyflavone 5-7 ($C_{15}H_{10}O_4$) Asahina and Yokoyama, 1935

%	f.t.	Е	
0 5.0 10.0 15.0 20.0 30.0 40.0 50.0	91.3 92.0 91.5 91.5 91.5 91.5 91.5	96.5 95.2 94.5 108.0 139.0 180.0 208.0 229.0	
70.0 80.7 90 100	91.5 91.5 95.0	255.0 264.0 271.0 275.0	

Flavone ($C_{1\,5}H_{1\,0}\theta_2$) + 5-0xy-6-methoxyflavone ($C_{1\,6}H_{1\,8}\theta_4$)

Asahina and Yokoyama, 1935

<u> </u>	f.t.	E	
0	96.5	_	
0 3 6	95.0	90.5	
	,94.0	91.0	
10	109.5	90.5	
15	122.5	90.5	
20 31	136.2	90.5	
39,2	151.2	90.6	
39.2 46.5	161.5	90.5	
56	170.5	89.5	
65	180.0	90.5	
77.2	188.5	91.0	
90.2	198.0 205.0	90.0	
100	210.5	90.5	
-00	210,5	-	

Dimethylpyrone Kendall, 1914	·	+ Phenol ((C ₆ H ₆ O)	Dimethylpyrone Kendall, 1914	(С ₇ Н ₈ О ₂)	+ p-Nitroph	heno1 (C ₆ H ₅ O ₃ N)
mo1%	f.t.	mo1%	f.t.	mo1%	f.t.	mo1%	f.t.
0 10.9 22.5 31.6 39.2 46.3 49.1 51.6 54.6 56.9 59.6 (1 + 2)	132.1 126.0 116.0 103.5 88.9 69.1 59.3 46.6 32.1 28.0 32.0	61.5 64.6 67.4 70.7 75.2 78.8 81.4 86.2 91.6	34.1 36.1 36.7 35.6 29.7 22.3 15.6 16.6 31.3	0 11.9 23 31.2 35.4 39.2 42.2 42.8 46.5 49.4 56.2 59.6 62.6	132.1 125.5 114.5 101.3 91.4 80.2 68.3 68.3 70.9 71.3 72.2 62.1 56.4	62.6 65.7 66.4 67.1 68.4 70 70 71.8 73.8 77.6 84.5 90.9	57.0 58.1 58.2 58.1 57.9 57.4 57.4 65.4 72.2 82.2 96.6 105.2 113.8
			اس النواجي بين جو جو النواقة أن الكرام عن الدائم الدائم الدائم المراجي في حو مو النواقة إلى أنه إلى الدائم الذائم الدائم الدائم الدائم الدائم الدائم الدائم الدائم الدائم الد في من موجوع من النواقة الدائم الدائم الذائم الدائم الدائم الدائم الدائم الدائم الدائم الدائم الدائم الدائم الد	(1+1)		(1+2)
Dimethylpyrone Kendall, 1914	e (C ₇ H ₈ O ₂)	+ o-Nitrop	henol (C ₆ H ₅ O ₃ N)	Dimethylpyrone Kendall, 1914	(С ₇ Н ₈ О ₂)	+ 2,4-Dini	trophenol ($C_6H_{\mu}O_5N_2$)
mo1%	f.t.	mol%	f.t.				·
0 9.6 20.3 32 38.5 43.9 48.7 53.2 57.8	132.1 126.5 119.0 110.4 104.9 98.6 92.9 85.9 77.9	62.7 67.7 72.5 77.3 81.3 86.8 92.4	68.3 57.1 45.8 32.7 35.1 38.2 41.0	0 10.6 19.9 30.1 36.1 41.8 44.8 48.2 51.9	f.t. 132.1 126.0 118.0 105.6 95.2 83.2 77.5 78.3 78.1	55 58.2 62.3 65.2 68.1 74.9 82.91 90.7	77.5 75.8 75.0 81.1 86.3 95.1 102.9 109.0 114.0
Dimethylpyrone (C ₇ H ₈ O ₂) +	m-Ni tropher	no1 (C ₆ H ₅ O ₃ N)	Dimethylpyrone ((С ₇ Н ₈ 0) + Р	icric acid	(C ₆ H ₃ O ₇ N ₃)
mo1%	f.t.	mol%	f.t.	mo1%	f.t.	mo1%	
0 9.4 19.3 29.7 34.7 39 42.6 46.1 49.1 51.7 54.6 (1+1)	132.1 127.0 118.5 104.2 93.8 81.5 67.0 68.1 68.7 68.4 66.9	57.9 60.8 63.8 67 68.5 71 74.9 79.6 85.5 91.6	63.0 58.8 52.9 45.9 42.6 52.4 63.4 72.9 82.9 89.7 95.3	0 12 21.3 25.6 29.4 32.5 33.3 34.8 36.2 38.1 40.5 44.3	132.1 124.0 111.2 101.1 90.0 83.5 81.9 86.7 89.5 92.9 96.1 98.9	47.4 49.1 52.3 56.4 61.6 65.9 70.0 (1+ 73.9 77.6 84.9 90.4	100.2 100.8 100.4 93.8 94.9 87.6 1) 87.5 92.4 97.4 104.8 110.6 118.4

Dimethylpyrone ($\text{C}_7\text{H}_8\text{O}_2$) + 1-Naphthol ($\text{C}_{1\,0}\text{H}_8\text{O}$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.
0	132.1	61.2	78.8
11.0	126.0	62.7	78.4
22.3	116.5	64.2	77.6
31,2	103.6	65.6	76.8
39.5	85.2	68	73.8
43.1	73.0	70.2	69.7
45.9	65.6	72.1	65.9
47.0	67.8	7 5	56.6
48.5	69.3	76.6	56.0
50	70.5	79.3	65.7
51.2	73.2	82.3	73.8
52.7	75.6	88.0	84.2
54.7	77.4	93.8	90.7
57.3	78.3	100	96.1
59.4	79.0	-00	70.1
~/	• > • •		
(1+1)	(2 + 3)	2)	

Dimethylpyrone ($C_7H_8O_2$) + 2-Naphthol ($C_{10}H_8O$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.
.0	132,1	59.4	39.4
$\frac{12.4}{7}$	126.0	59.8	40.3
23.7	114.5	61.9	42.5
33.4	99.5	64.1	43 .9
38.4	87.1	65	37 . 4
42.8	74.5	66.4	44.5
44.6	68.2	67	44.6
47.9	54.9	69.8	54.5
50. 7	40.7	72.7	70.6
53.5	24,3	7 4.9	79.9
53.5	36,6	78.6	92.0
55.3	38.0	85.9	107.9
56,2	34.4	90.4	113.8
56.2	38.4	100	121.6
5 7. 8	39.0		-24.0
(1+1)	(1+	2)	

Coumarin ($C_9H_6O_2$) + Vanillin ($C_8H_8O_3$)

Lehmann, 1914

%	f.t.	%	f.t.
100	81.8	90	78. 0
99	81.4	85	77.0
98	80.5	80	73.0
97	80.0	7 5	72.0
96	80.0	70	71.1
95	79.6	65	68.4
94	78.8	60	66.2
93	80.0	55	57.2
92	78.4	50	51.8
91	78.2	ő	67

Tetramethylphthalane ($C_{1\,2}H_{1\,6}0$) + Pyrocatechol ($C_6H_60_2$)

Bennett and Wain, 1936

mo1%	f.t.	m.t.
100 90.3 79.7 68.4 59.8 51.4 40.3 34.0 25.2 19.7 12.9 6.1	104.7 100.4 93.5 84.6 83.7 85.2 83.7 80.4 73.3 66.1 62.2 68.2 72.1	103.9 74.8 80.2 79.6 79.2 80.1 57.4 58.7 58.5 59.2 58.9 59.3 71.1 (1+1)

Tetramethylphthalane ($C_{1\,2}H_{1\,6}0$) + Resorcinol ($C_6H_60_2$)

Bennett and Wain, 1936

mol%	f.t.	m.t.	
100 90.6 73.9 60.2 50.5 47.4 42.9 38.3 32.8 24.1 16.8 10.9	110.1 106.3 97.5 87.9 77.8 77.9 82.4 86.1 88.5 85.9 80.1	109.0 71.6 72.3 72.8 72.6 73.2 73.0 72.6 81.6 65.8 66.8	
$\frac{5.6}{0}$	$\frac{68.1}{72.1}$	65.4 71.1	

Tetramethylphthalane ($C_{12}H_{16}0$) + p-Xylenol ($C_8H_{10}0$)

Bennett and Wain, 1936

 mo1%	f.t.	Е	
100 74.4 60 54.9 48.8 45 40 38.9 34.8 24.8 11.5 0	77.5 60.4 45.3 39.8 39.7 40.2 38.7 36.5 41.8 53.1 64.6 72.1	76.0 37.9 36.8 36.8 34.5 34.8 34.4 33.8 34.2 33.5 34.3 71.1	

Tetramethylphthalane (C ₁₂ H ₁₆ O)	+ Trichlorphenol s.
	$(C_6H_3OC1_3)$
Description 1016	

Bennett and: Wain, 1936

mo1%	f.t.	mo1%	f.t.
100 90 77.9 71.6 60.1 52,6	66.7 62.7 55.1 48.3 36.2 20.3	48.1 40 32.9 24.2 13.6	9.1 10.6 41.8 56.1 66.5 72.1

Tetramcthylphthalane ($C_{1\,2}H_{1\,6}0$) + p-Bromphenol ($C_{6}H_{5}0Br$)

Bennett and Wain, 1936

100 64.0 63.0 82.9 42.9 29.8 71.1 37.4 29.8 65 39.1 30.1 62.2 46.1 29.5 55.2 52.2 30.5 48.7 54.2 52.1 44.7 53.2 41.2 38.4 49.8 40.6 34.3 46.8 40.6 34.3 46.8 40.6 34.3 30.3 45.5 39.5 16.6 59.4 39.9 0 72.1 71.1	mol%	f.t.	Е	
	82.9 71.1 65 62.2 555.2 48.7 44.7 38.4 34.3 30.3 16.6	42.9 37.4 39.1 46.1 52.2 54.2 53.2 49.8 46.8 45.5 59.4	29.8 29.8 30.1 29.5 30.5 52.1 41.2 40.6 40.4 39.5 39.9	

Tetramethylphthalane (${C_1}_2{H_1}_60$) + Tribromphenol s (${C_6}{H_3}0Br_3$)

Bennett and Wain, 1936

 mo1%	f.t.	E	
100	92.9	91.6	
86.9	86.9	38.3	
72.2	78.0	38.7	
60.8	68.5	38.5	
52,6	60.1	38.1	
50.1	57.1	39.0	
46.0	52.6	30.2	
41.4	45.2	38.3	
36.3	42.3	37.2	
31.9	49.1	38.3	
23,6	57.8	38.5	
15.7	63.2	38.7	
6.1	69.0	38.8	
0.1	72.1	71.1	
3		11.1	

Tetramethylphthalane ($C_{1\,2}H_{1\,6}0$) + p-Iodphenol (C_6H_50I)

Bennett and Wain, 1936

mo	1%	f.t.	Е
	36.1 75.9 75.1 53.2 56.2 56.2 53.8 45.6 41.0 28.4 19.3	83.1 52.8 547.6 448.1 449.7 51.7 51.7 51.1 444.9 447.7 655.3	91.6 49.2 42.0 43.2 42.5 42.8 42.1 43.1 39.5 38.8 38.5 39.6 39.1 39.4 71.1

Tetramethylphthalane ($C_{1\,2}H_{1\,6}0$) + 1-Naphthol ($C_{1\,0}H_{8}0$)

Bennett and Wain, 1936

mol%	f.t.	Е	
100	96.2	95.1	
87.9	90.3	76.3	
74.2	81.0	76.4	
66	79.4	7 6. i	
60.2	88.1	76.3	
55.1	91.6	76.4	
50.2	92.5	79.3	
45	92.1	75.8	
39.8	90.5	64.6	
32.9	86.1	64.2	
23.7	78.3	64.3	
15.8	69.8	64.3	
10	66.6	64.2	
6.9	68.9	63.9	
0	72.1	71,1	
		, 1 , 1	
(1+1))		

Tetramethylph	thalane (C ₁₂	H ₁₆ 0) + 2-	·Naphthol (C _{1 O} H ₈ O)	2-Keta cined	ole (C ₁₀ H ₁₆ O) + o-Ni+	ranhanal
Bennett and Wa	ein, 1936			Brambilla,		2) + 0-NIC	(C ₆ H ₅ O ₃ N)
mo	1% f	. t.	E	<i>" %</i>	f.t.	 %	f.t.
6 5 5 4 3	8.6 10' 7.5 9 8.6 8 5.3 7 9.5 7 9.6 7	7.5 5.8 1.7 6.1 4.4 8.2	121.1 69.7 69.4 70.5 70.0 70.9	0 10 20 30 35 40	40.6 25.8 17.7 7.3 1.8 7.9	50 60 70 80 90	18.4 24.8 30.7 35.8 40.5 43.8
1 1	8.5 7 1.9 6 4.7 6	8.9 3.9 9.4 9.1 2.1	65.1 65.3 65.2 65.0 71.1			2) + 4,6-D	initro-o-cresol (C ₇ H ₆ O ₅ N ₂)
				Brambilla,	f, t,	 %	f.t.
2-Keto cineol Brambilla, 19) + Phenol	(C ₆ H ₆ O)	0 10 20 30 40 50	40.6 28.0 22.2 21.8 21.2 20.4	60 70 80 90 100	53.5 61.3 69.0 76.4 86.0
0 10 20 30	40.6 26.2 10.0 -10.4	70 80 90 100	- 1.8 +16.1 31.0 42.4		lidene aceton) + Resorcinol (C ₆ H ₆ O ₂)
2 Vada ainas	10 (C H .0) + Pasar	cinol (C ₆ H ₆ O ₂)	8	f.t.	%	f.t.
Brambilla,		2) + Resul	Cindi (Cangoz)	0 10	39 30	20 70	19 56
0 10 70	f.t. 40.6 22 83.1	80 90 100	92.7 100.8 110.2	Chelintsev,	e acetone (C 1937 ev and Kuznet		ydroquinone (C ₆ H ₆ O ₂)
2-Keto cine	ole (C ₁₀ H ₁₆ 0) ₂) + p-Cr	esol (C ₇ H ₈ O)	8	f.t.	%	f.t.
Brambilla,				0 10 20	39 28. 5 E 33	40 50 60	34.5 37.5 160
%	f.t.	Я	f.t.	30	31 E (4+	70	162
0 10 20 30	40.6 32.5 22.6 10.0	70 80 90 100	15.6 22.4 29.0 36.1		هندوانده الدواند الدواند و الدواند	من المواقع المواقع المواقع المواقع المواقع المواقع المواقع المواقع المواقع المواقع المواقع المواقع المواقع الم المواقع المواقع	

Monofurfuryli	dene acetone	(C ₈ H ₈ O ₂)	+ Pyrocatechol (C ₆ H ₆ O ₂)				
Chelintsev an	d Kuznetsov,	1939		Sulfonal (C ₇ H	$(1_{16}0_{4}S_{2}) + 2-N$	aphthol (C	10H ₈ O)
%	f.t.	%	f.t.	Bianchini, 191	4		
0 10	39 3 2	40 50	- 3 - 4.5	mo1%	f.t.	E	min.
20 30	14 5	60	+80	0 10 20	124.5 120.5 114	67	- 60 80
Difurfurylide	ne acetone (C ₁₃ H ₁₀ O ₃)	+ Pyrocatechol (C ₆ H ₆ O ₂)	30 40 50 60	108.5 95 82 68.5	11 11 11	90 110 150 180
Chelintsev and	Kuznetsov,	1939		70 80 90	83 99 110	t1 11	140 100 40
	f.t.	%	f.t.	ő	122	-	-
0 10 20 30	58 44.5 48 63	40 50 60 70	67 69 70.5 73	Kordes, 1926			
Difurfurylider	ne acetone (C13 H1 002)	+ Resorcingl		mo1%	f.t.	
Chelintsev and			(C ₆ H ₆ O ₂)		0 62	125 6 7 E	
%	f.t.	R	f.t.		100	122	
0 10 20 30	58 58.5 59 57 (1+1)	40 50 60 70	63 55 53 82	Sulfonal (C	7 ^{II} 16 ⁰ 4 ^S 2) + Sa	alipyrin ((C ₁₈ H ₁₈ O ₄ N ₂)_
Dif				Hrynakowski	and Adamanis,	1933	
			+ Ilydroquinone (C ₆ Il ₆ O ₂)	mo1%	f.t.	mo1%	f.t.
	,		Kuznetsov, 1939	100 93,0	92 88.5	36.4 31.8	108.0 111.0
	f.t.	[%]	f.t.	86.3 79.8	86.0 84.5	27.4 23.1	112.5 114.5
0 10 20	58 75 79	50 60 64	83 85 110	73.7 67.7 62.0	81.5 80.0 E 87.0	18.9 14.9 11.0	117.0 118.5 120.5
33.9 40	82.5 (1+1) 79 E	7 0	156"	56.5 51.2 46.1	93.0 97.5 101.3	7.2 3.5 0	123.0 124.5 125
Sulfonal (C ₇ 1	$H_{16}O_{4}S_{2}$) + R	esorcinol	(C ₆ H ₆ O ₂)	41.1	104.0	=======================================	
Hrynakowski ar	nd Adamanis,	1933		2-Bromcampho	r (C _{1 o} H ₁₅ 0Br)	+ Salol (C ₁₃ H ₁₀ O ₃)
mo1%	f.t.	mo1%	f.t.	Caille, 1909			
97.5 94.9	$^{110}_{110.0}$	63 58	55.0 E 61.0		%	f.t.	
92.2 89.2 86.2	$105.0 \\ 101.0$	58 52.8 47.1	61.0 70.0 77.0 92.0 100.0		0 54	79 21 E	·
82.9 79.4	97.0 90.0 82.0	40.9 34.2 26.8	100.0 106.0	10	54 00	21 E 42	
97.5 94.9 92.2 89.2 86.2 87.4 75.7 71.7 67.5	82.0 78.0 71.0 63.0	18.8 9.9 0	112.0 119.0 125				
		-	***				

Acetaldehyde (C_2H_40) + Acetic acid ($C_2H_40_2$)	Citronellal ($C_{10}H_{18}0$) + Caproic Acid ($C_6H_{12}O_2$
Morozov, Kogan and Grossblyat, 1934	
mol% p mol% p	Lecat, 1949
10° 20°	% b.t. Dt mix.
92.45 54.6 91.2 90.7 90 72.0 73 232.6 79.3 140.5 60.9 325.5 60.8 238.0 46.1 429.6 45.9 309.0 0 721.0 19.1 425.0 0 503.4	0 208.0
Pascal, Dupuy and al., 1921	Beckmann, 1888
	% D f.t.
% b.t. L V 768mm 65,2 4.7 42 75.3 9.5 50 80.8 14.7 58	99.55 -0.162 98.52 0.537 96.24 1.345 92.61 4.835 86.37 7.430 79.28
85.9 24.4 68 93.2 43.6 84 100 100 118	Abegg, 1894 N f.t.
20° 100 1.049 32.2 0.866 90.19 1.022 16.3 0.824 77.8 0.989 4.8 0.793 65.3 0.956 44.5 0.900	0 16.52 0.620 14.295 1.363 11.685 2.107 8.985 2.791 6.475 3.283 4.595 Benzaldehyde (C ₇ H ₆ O) + Valeric Acid (C ₅ H ₁₀ O ₂
Chloral (C_2H0Cl_3) + Acetic acid ($C_2H_4\theta_2$)	Lecat, 1949
Beckmann, 1888	% b.t. Dt mix.
% D f.t.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
99.24 -0.165 97.26 0.640 94.84 1.275 90.58 2.480 87.30 3.500 84 4.590 81.28 5.540	Benzaldehyde (C_7H_60) + Isovaleric Acid ($C_5H_{1.0}O_7$)
	% b.t. Dt mix.
	0 179.2 - 62 174.4 Az - 65 100 176.5 -2.1

Benzaldehyde	(C7H60)	+	Trichloracetic acid	
					(C2HO2Cl3)

Kendall and Gibbons, 1915

mo	1%	f.t.	mo1%	f.t.
8 7 6 6	1.5 3.8 5.2 9.1 3.8	57.3 51.3 44.7 33.1 21.0 4.3 3.6	55.6 50.0 45.4 40.0 34.3 29.4	7.1 8.4 7.2 4.3 -0.8 -6.9

Pushin and Rikovski, 1940 - 1946

	mo1%	f.t.	E	
	100	5 7	_	
Ì	90	47	_	
	80	35	-2.5	
	70	47 35 16	0	
	63	2	Õ	
	60	2	-1.5	
	100 90 80 70 63 60 55 50 40 30 20	4.5		
	50	6	_	
	40	2.5	_	
	30	-6	_	
	20	-19	-	
l.	10	-41	-	
	0	- 26	_	

Anisaldehyde ($C_8H_8O_2$) + Trichloracetic acid ($C_2HO_2Cl_3$)

Kendall and Gibbons, 1915

ı	mo1%	f.t.	mo1%	f.t.
	100 90.2 80.9 72.8 69.8 67.6 61.8 55.3	57.3 50.0 37.7 22.2 17.9 17.9 24.4 29.4	48.7 41.8 35.1 27.1 18.8 12.0 6.8	30.7 27.7 21.9 12.6 0.3 -8.1 -4.9
l	(1+1)			

Furfural ($C_5 H_{\rm h} 0_2$) + Acetic acid ($C_2 H_{\rm h} 0_2$)

Othmer, 1943

	mo1%	(b.t.)		
L	v	L	V	
0	0	50	78.3	
_5	13.6	60	84.5	
10	27.0	70	89.4	
20	46.5	80	93.5	
30	60.2	90	97.2	
40	70.4	170	100.0	

Furfural ($C_5 \text{H}_4 0_2$) + Butyric Acid ($C_4 \text{H}_8 0_2$)

Lecat, 1949

%	b.t.	Dt mix.	
0 42.5 47 100	161.45 159.4 Az 164.0	-2.9	

Furfural ($C_5H_4O_2$) + Isobutyric Acid ($C_4H_8O_2$)

Lecat, 1949

%	b.t.	Dt mix.	_
90 100	161.45 153.8 Az 154.6	-1.5	

Furfural ($C_5H_4O_2$) + Caprylic acid ($C_8H_16O_2$)

Hoerr, Sedgwick, and Ralston, 1946

%	f.t.	
18.4 68.3	$\begin{smallmatrix}0.0\\10.0\end{smallmatrix}$	

Furfural ($C_5H_4O_2$) + Caprinic acid ($C_{10}H_{20}O_2$)	Furfural ($C_5H_uO_2$) + Oleic acid ($C_{1.8}H_{3.4}O_2$)
Hoerr, Sedgwick and Ralston, 1946	Hoerr and Harwood, 1952
% f.t.	% f.t.
3.7 0.0 8.1 10.0 29.8 20.0 97.0 30.0	0.1 -30 0.3 -20 1.3 -10 4.5 0 12.7 10 21.2 20
	C.S.T. = 26.2°
Furfural ($C_5H_{\mu}\theta_2$) + Lauric acid ($C_{12}H_{24}\theta_2$) Hoerr, Sedgwick and Ralston, 1946	Acetone (C ₃ H ₆ O) + Formic acid (CH ₂ O ₂)
% f.t.	Udovenko, 1939
0.3 10.0 3.6 20.0	mol% d 25° 35° 45°
17.2 92.3 40.0	0.00 0.7850 0.7735 0.7602 10.14 0.8102 0.7991 0.7881 20.68 0.8389 0.8280 0.8164 29.90 0.8665 0.8551 0.8439 40.09 0.9000 0.8890 0.8777
Furfural (C ₅ H ₄ O ₂) + Myristic acid (C ₁₄ H ₂₈ O ₂) Hoerr, Sedgwick and Ralston, 1946	49.45 0.9338 0.9227 0.9119 60.83 0.9809 0.9695 0.9577 69.98 1.0236 1.0123 1.0001 80.14 1.0782 1.0661 1.0544 89.47 1.1392 1.1265 1.1147 100.00 1.2144 1.2017 1.1898
1.5 30.0 12.0 40.0	1.207
88.8 50.0	Udovenko, 1939
Furfural ($C_5H_4O_2$) + Palmitic acid ($C_{16}H_{32}O_2$)	mol% η 25° 35° 45°
Hoerr, Sedgwick and Ralston, 1946	0.00 317.2 290.7 264.9
# f.t. 1.6 40.0 13.6 50.0 94.7 60.0	10.14 357.3 325.1 295.4 20.68 400.2 363.9 328.7 29.90 448.2 406.3 365.7 40.09 519.2 465.9 416.3 49.45 597.2 531.5 472.6 60.83 731.2 642.0 560.9 69.98 862.2 745.5 645.7 80.14 1052.8 906.0 771.9 89.47 1287.3 1078.9 913.9 100.00 1627.1 1304.3 1088.7
Furfural ($C_5H_4O_2$) + Stearic acid ($C_{1.8}H_{36}O_2$)	
Hoerr, Sedgwick and Ralston, 1946	
g f.t.	
2.5 50.0 22.1 60.0	

Acetone (C ₃ H ₆ O) +	Acetic a	cid (C	oHuOo)	***			1057				
				a4- a			mermans				E	
York, Jr.	and Holme	s, 1942					<u>%</u>		f.t		<u>-</u>	
b.t.	% L	mol%	% 	mo1% V			0 12.7 24.6 33.3	75 55 3	- 95 -101.5 - 71.5 - 51.5	5 2	-100	
112.1 107.4 106.3 106.1 105.4	95.9 92 90 88.3 87.6 88.5	95.8 91.8 89.7 88 87.3 88.2 84.2	89.5 78 74.9 71.8 69.7 70.4 65.1	89.2 77.5 94.3 71.1 69 69. 7			52.8 61.0 80.4 100 tr.t.	3) 4	- 26. - 18. + 2. + 16. - 53.	0 0 4	- - - -	and the second s
104.6 101.4 98.7 94.3	84.6 81.1 82 78	80.6 81.4 77.4	57.5 54.4 44.4	64.4 56.7 54.6 44.6	1	Timme	rmans,	1958				
92.5 90.4 87.0 86.3	76.9 73.6 71.3 70	76.4 72.4 70.6 69.3	42.9 37.8 34.7 29.8	42 37 34 29,1		t	tr.p. 209	f .p. ⁸	tr.p. 40	f.p.	tr.p. 60	f.p.
87.0 86.3 78.6 74.2 70.8 65.6 63.6 60.7	57.5 56.9 75.7 34 24.6 6.7	69.3 56.7 46.2 45 35.2 23.9 6.5	16 8.2 8.7 3.4 1.9 0.3	15.6 8 8.2 3.4 1.9 0.2		12.5 17.5 25 32.5 40 47.5 55 62.5	1300 1400 1610 2050 2355 2850 3100	1160 1750 1820	1520 1600 2440 2870 3130	1220 1710 1410 1620 1750 1920	2550 2750 2980	1320 1420 1610
Othmer, 19	43					! !	and f.p	are in F	transit (gs	ion and :	freezin	g pressure
	L	mol% V		b.t.		Mathew	s and Co	ooke, l	914			
	100 95 90	100 83	. 8	$118.1 \\ 110.0$		ļ 		t	- · · · · · · · · · · · · · · · · · · ·	d	· 	
	90 80 70	69 44	.4	103.8 93.1					50%			
	50 50 40 30 20 10	16 8 5 3 1	.8 .3 .1 .6 .7	85.8 79.7 74.6 70.2 66.1 62.6 59.2 56.1				0 25 40 55 70		0.9363 0.9083 0.8917 0.8752 0.8574		
	-					Kenda l	I and B	rakeley	, 1921			
Beckmann	1990						mo1%		đ	mo1%		đ
# # # # # # # # # # # # # # # # # # #	D f.t		d	D.C.					25	0		
0.50 1.75 4.21	-0.34 1.17 2.83	0 8 5 11	,43 .09 .72	5.785 7.775 9.740			9.96 20.35 30.25 40.49 49.86	0. 0. 0.	7872 8089 8351 8568 8847 9064	59.7 69.6 80.1 90.3	8 0 5 0 7 1	.9333 .9609 .9907 .0255 .0499
					· 							

ACETONE + ACETIC ACID

Hammick and	Andrew, 1929			Mathews and Cooke, 1914				
	mo1%	d						
	25°			t η				
	100 70.91 50.02 38.17 27.12	1.0510 0.9996 0.9547 0.9247 0.8921 0.7867		50% 0 961.0 25 666.4 40 533.2 55 455.2 70 399.0				
				Kendall and Brakeley, 1921				
Rao, 1934				mol% η mol% η				
%	đ	%	d	0 306.5 59.73 699.4				
0 16.0 37.4 55.2	3 0.794 0.832 0.884 0.928	72.0 86.3 100	0.968 1.006 1.040	9.96 349.6 69.68 802.6 20.35 404.6 80.15 921.3 30.25 463.6 90.37 1036 40.49 535.0 100 1121 49.86 609.8				
Udovenko, 1	939			Udovenko, 1939 mo1% 7 20° 30° 40°				
mo1%	20°	d 30°	40°	0.00 329.8 303.3 276.6 13.00 390.9 254.6 232.8				
0.00 13.00 22.20 31.20 40.25 50.66 60.50 69.94 80.50 90.11 100.00	0.7901 0.8219 0.8435 0.8632 0.8838 0.9151 0.9406 0.9660 0.9943 1.0215 1.0489	0.7774 0.8104 0.8326 0.8522 0.8783 0.9041 0.9295 0.9554 0.9844 1.0105 1.0381	0.7665 0.7992 0.8214 0.8411 0.8679 0.8932 0.9191 0.9445 0.9727 0.9996 1.0273	22.20 438.9 397.6 360.7 30.20 491.6 441.1 399.3 40.25 563.2 501.5 451.8 50.66 654.9 576.6 513.8 60.50 751.5 656.2 581.7 69.94 861.2 748.2 656.4 80.50 988.1 852.7 743.7 90.11 1102.6 947.2 821.8 100.00 1208.8 1027.0 894.8				
				Hammick and Andrews, 1929				
Faust, 1912	!			mo1%				
mo1%	0°	η 18°	42°	25 ° 100 28.52 70.91 27.79				
100 70 40 0	2380 1315 818 400	1391 936 583 350	1003 686 470 280	50.02 26.74 38.17 26.14 27.12 25.53 0 22.72				

Kendall a	nd Gross, 1921	<u> </u>		Acetone (C3H60) + B	utyric acid	(C ₄ H ₈ O ₂)
mo1	% и.107	mo1%	ж.107	Weissenber	ger, Henke a	and Katschin	ka, 1926
	2.	5°			mo1%	p	
0 12. 20. 28. 39. 46.	27 3.46 65 4.19 45 4.42	51.04 64.92 71.43 81.10 92.23	5.08 4.80 4.32 3.12 1.33 0.24		75 60 50 40 25 0	20° 42 63 77 101 119 179	.8 .4 .8 .3
Passerini	, 1924			Udovenko,	1939		
76		Я	×.107	mo1%		d	
100		7,5°	1 100	<u> </u>	25°	35°	45°
86 82 77 72 68 62 58	7.740 .1 6.410 .1 5.385 .7 4.565 .2 3.825 .4 3.148 .8 2.503 .1 2.194 .3 1.839 .2 1.608 .2 1.480	48.6 43.1 36.6 33.1 27.6 22.4 16.9 11.4 5.7	1,409 1,585 1,655 1,912 2,120 2,235 2,225 1,990 1,510 0,103	0.00 9.96 18.83 30.23 37.59 51.44 59.77 70.09 79.89 90.16 92.75	0.7850 0.8096 0.8296 0.8521 0.8655 0.8894 0.9022 0.9144 0.9300 0.9421	0.7735 0.7986 0.8184 0.8414 0.8554 0.8792 0.8924 0.9065 0.9199 0.9319	0.7602 0.7876 0.8078 0.8310 0.8453 0.8697 0.8822 0.8908 0.9102 0.9231 0.9258
Elskens,	1948			100 mo1%	0.9447 0.9531	0.9432	0.9336
	es/sec	и,107		1401%	25°	η 35°	45°
	0%	37.5%	100%	0.00	317.2	290.7	264.9
	250 4.72 500 5.00 750 5.33 000 5.69	20° 17.1 20.1 23.8 39.3	0.742 0.760 0.778 0.791	18.83 30.23 37.59 51.44 59.77	386.7 457.6 566.6 647.7 818.1 930.7	351.0 413.1 504.7 574.1 715.3 809.5	318.3 366.6 448.9 513.5 626.5 707.8
vol	% ε.	vol%	ε	70.09 79.89 90.16 92.75 100	1071.4 1215.9 1361.0 1408.4	809.5 924.6 1040.7 1158.1 1197.3	796.9 894.2 994.7 1017.9
0	20			100	1501.9	1270.1	1078.4
12.5 25 37.5 50	30.5	62.5 75 87.5 100	26.5 21.5 14.5 7.1			-Methyl capro	oic acid (C ₇ H ₁₄ O ₂)
				Rule, Smit	h and Harrov		
Rao, 1934	4				mo1%	(α)ι	no l 5461
%	X	%	x		•	20°	
0 16 37 55	0.592 0.580	72.0 86.3 100	0.540 0.531 0.520		2.6 4.8 5.5 13.2 21.7 41.2 56.6 100.0	36 36 38 38 34 33	5.6 5.4 5.75 5.75 1.21 4.21 3.61 2.15

	Acetone (C_3H_60) + Lauric acid ($C_{12}H_{24}\theta_2$)
Acetone (C_3H_60) + Caprylic acid ($C_8H_{16}0_2$)	Ralston and Hoerr, 1942
Ralston and Hoerr, 1942	% f.t.
% f.t.	$egin{array}{ccc} 0 & 0 & 17.9 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 1$
68.8 0 90.7 10 100 16.38	37.7 20 68.3 30 94.0 40 100 43.86
	Acetone (C_3H_60) + Tridecanoic acid ($C_{13}H_{26}O_2$)
Acetone (C_3H_60) + Pelargonic acid ($C_9H_{18}O_2$)	Ralston and Hoerr, 1942
Ralston and Hoerr, 1942	% f.t.
# f.t.	7.0 0
78.0	16.8 10 43.9 20 75.9 30
97.4 100 12.24	98.8 40 100 41.76
Acetone (C_3H_60) + Caprinic acid ($C_{10}H_{20}O_2$)	Acetone (C_3H_60) + Myristic acid ($C_{1\mu}H_{28}0_2$)
Ralston and Hoerr, 1942	Ralston and Hoerr, 1942
% f.t.	% f.t.
31.1 0 52.7 10	2.60 0
52.7 10 80.2 20 97.9 30	$\begin{array}{ccc} 6.05 & 10 \\ 13.7 & 20 \end{array}$
100 30,92	29.8 59.8 30 40
	100 53,78
Acetone (C_3H_60) + Undecanoic acid ($C_{11}H_{22}O_2$)	Acatona (C H O) + Pantalan
Ralston and Hoerr, 1942	Acetone (C_3H_6O) + Pentadecanoic acid ($C_{15}H_{30}O_2$)
% f.t.	Ralston and Hoerr, 1942
33.5 0 59.9 10	# f.t.
59.9 87.5 20 100 28.13	$\begin{bmatrix} 2.1 & 0 \\ 5.1 & 10 \end{bmatrix}$
20,10	$\begin{bmatrix} 12.1 & 20 \\ 33.0 & 30 \end{bmatrix}$
	64.5 40 100 52.49

Acetone (C_3H_60) + Palmitic acid ($C_{16}H_{52}0_2$)	Campbell, 1915				
Ralston and Hoerr, 1942	% d				
	30°				
0.60 0 1.8 10 5.1 20 13.4 30 36.7 40 89.8 56.5 100 62.41	100 0.8859 97.18 0.8831 79.56 0.8697 62.61 0.8563 40.06 0.8391 0 0.8103				
	я р 				
Acetone (C_3H_60) + Margaric acid ($C_{1.7}H_{34}O_2$)	30° 97.21 48.7 88.01 130.6 79.24 180.0 62.60 220.4 0 275.8				
% f.t.					
$\begin{array}{ccc} 0.40 & 0 \\ 1.4 & 10 \\ 4.1 & 20 \\ 12.6 & 30 \end{array}$	Acetone (C_3H_60) + Linoleic acid ($C_{18}H_{32}O_2$)				
40.3 93.0 56.5 100 60.94	Hoerr and Harwood, 1952 ### f.t.				
	3.1 -50 7.9 -40 21,3 -30				
Acetone (C_3H_6O) + Stearic acid ($C_{1.8}H_{3.6}O_2$)	21.3 -30 59.2 -20 92.3 -10				
Ralston and Hoerr, 1942					
% f.t.	Acetone (C_3H_60) + Oxalic acid ($C_2H_2O_4$)				
$egin{array}{ccc} 0,21 & 0 \ 0.80 & 10 \ 1.54 & 20 \ \end{array}$	Chatterji and Bose, 1950				
4.6 14.5 40 68.7 56.5	t n t n (acetone =1)				
100 69.20	10.6% 24.5%				
Acetone (C_3H_60) + Oleic acid ($C_{18}H_{34}O_2$)	30 1.472 30 2.876 35 1.459 35 2.807 40 1.453 40 2.726 45 1.452 45 2.691				
Hoerr and Harwood, 1952	g x				
% f.t.	25° 30° 35° 40° 45°				
0.5 -40 1.4 -30 4.8 -20 21.4 -10 61.3 0 89.6 10	4.323 0.4220 - - - 0.4778 11.12 0.3664 - - - 1.0300 19.77 1.4580 - - - 1.8290 24.27 1.8130 1.9370 2.0810 2.2140 2.3470 27.836 2.1150 2.2820 2.4700 2.6500 2.8070				

Acetone (C_3H_60) + Succinic acid ($C_{u}H_60_{u}$)	Udovenko, 19)39 		
Schweiger, unpublished	mol%	2 5°	d 35°	50°
% f.t. % f.t. 2.42 0 25 106 2.90 10 45 144 3.68 20 65 165 4.76 30 85 177 6.13 40 100 183	0.00 13.59 18.55 28.89 37.86 47.91 69.71 81.45	0.7850 0.8583 0.9032 0.9697 1.0283 1.0918	0.7735 0.8475 0.8921 0.9586 1.0164 1.0801 1.2186	0.7523 0.8301 0.8751 0.9420 1.0004 1.0629 1.1997 1.2710
Acetone (C_3H_6O) + Maleic acid ($C_4H_3O_4$)	mo1%	2 5°	n 35°	50°
Weiss and Downs, 1923	0.00 13.59 18.55 28.99 37.86	317.2 435.1 533.9 732.9 972.7	290.7 394.0 477.7 543.5 843.9	254.7 340.9 413.4 539.3 687.6
26.36% f.t. = 29.7°	47.91 69.71 81.45	1344.6	1131.0 2166.5	904.2 1599.7 2123.2
Acetone ($C_{1}H_{6}0$) + Malic acid ($C_{4}H_{6}0_{5}$)			-	
Nasini and Gennari, 1896	Kataeva ar	nd Smutkina,	1955	
% d (α) red yellow green pale dark	N	σ	N	σ
20°	I		13°	24.00
22.000 0.90713 -4.93 -6.01 -7.10 -7.53 -8.90	0.00 0.25 0.50 0.76 1.03	24.20 24.51 24.84 24.87 25.02	2.10 2.26 2.57 2.68 2.98	26.30 26.56 26.48 27.26
Acetone (C_3H_60) + Chloracetic acid ($C_2H_3O_2C1$)	1.37 1.77 2.02	25.02 25.51 25.83 26.10	3.03 3.24 3.26 20°	26.90 27.35
Weissenberger, Schuster and Pamer, 1925	0.00 0.91 1.16 1.56	23.84 24.10 24.20 24.75	2.12 3.00 3.14	26.47
mol % p	N	σ	N	σ
0 179.63 10 147.7	0.00	24.20	13°	24.05
20 114.5 30 84.0 40 63.1- 50 42.7	1.94 2.64 2.70	24.20 26.15 26.99 26.90	3.03 3.07 3.10 3.20	26.93 27.00
	0.00 0.75 1.30 2.09	23.84 23.87 24.60 25.20	20° 2.10 2.99 3.15	26.35

			w			
Acetone (C_3H_60) + D	ichloracetic acid (C ₂ H ₂ O ₂ Cl ₂)	Udovenko, 19	39		
Weissenberg, Schuster	and Pamer, 1925		mo1%	35°,	d 45°	55°
mo1 % p 0 m	ix mol % p	Q mix				JJ-
0 179.63 - 10 147.6 44! 20 114.5 69! 30 81.0 86: 40 50.0 102:	20° 50 21.0 5 60 9.2 0 70 4.0 7 80 2.1	1149 1010 820 580	0.00 16.50 25.17 34.85 44.11 55.37 68.08 74.75 85.21 91.83	0.7735 0.9665 1.0526 1.1583 1.2473 1.3433 1.4415 1.4876 1.5568	0.7602 0.9550 1.0483 1.1471 1.2346 1.3302 1.4268 1.4738 1.5438	0.9445 1.0360 1.1346 1.2220 1.3268 1.4141 1.4605 1.5326
Acetone (C_3H_60) + 7	richloracetic acid	(C ₂ HO ₂ C1 ₃)	mo1%		η	· · · · · · · · · · · · · · · · · · ·
Weissenberg, Schusten	r and Pamer, 1925		 	35°	45°	55°
mol % p	mol %		0.00 16.50	290.7 503.9	264.9 453.0	415.6
mol % p		p	25.17 34.85	689.3 1009.8	607.8 883.3	551.3 790.5
	20°		44.11	1508.0	883.3 1272.5 1967.0	1114.8
0 179 10 147		76.6	55.37 68.08	2424.1 3725.3	1967.0 2922.4	1633.6 2381.5
20 112	.6 50	40.0 5.6	ll 74.75	4527,2	3504.2 4441.3	2811.9
			85.21 91.83	585 4. 6	4441.3 5024.4	3495.6 3899.4
Kendall and Brakeley,	, 1921			и о) в В		
			Acetone (C	n ₆ u / + Benz	zoic acid (C	7H6U2)
moi % d r	25°	<u>n</u>	Beckmann, 18	390		
0 0.7872 306 4.84 0.8541 368	38.26 1.20			%	b.t.	
13.16 0.9342 485	5.5 59.71 1.40	00 382.9		0	F(2	
25.43 1.073 815	5.6 71.75 1.48	83 580.8		1.87	56.3 56.5 7 5	
			ll.	2.39 4.68	56.649 56.99	
V1-11 - 1.C - 1	001			5.51	57. 106	
Kendall and Gross, 1	.921		}	9.75 11.19	57.782 57.995	
mo1% %	н			16.63 18.73	57.995 58.998 59.267	
		6 0 °			37, 207	
0 0	0.00054	-				
0.37 8.94 6.76 16.94	0.01284	-	Mortimer, 19	923		
10 05 23 92	0.01630 0.01985	-		mo1%	f.t.	
12.52 28.71 16.28 35.37 19.53 40.58	0.02145 0.02229	_		15.8	0	
23.04 45.72	0.02248	-		20.5	20	
26.02 49.77 28.57 52.95	0.02189 0.02051	-		26.9 36.2	40 60	
31.81 56.77		-		100.0	121.0	
47.32 71.65	0.01180	-				
54.17 76.88 59.74 80.68 65.79 84.40	0.00738	- -	Correll D-1	lofoon on the	1005	
72.47 88.10 76.60 90.21	0.002023 0.	0003601	Carrott, KOI		athews, 1925	
92.66 97.26 100 100	- 0.	000257 000006		*	f.t.	*
				24.5 33.5	0 25	

Chatterji and Bose, 1950	Acetone (C_3H_60) + Cinnamic acid ($C_9H_80_2$)
t η t η (acetone =1)	Chatterji and Bose, 1950
33.33% 37.50%	t
30 2.218 30 2.455	(acetone =1)
35 2.174 35 2.405 40 2.144 40 2.353 45 2.146 45 2.303	16.87%
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
% 25° 35° 40° 45°	40 1.581 45 1.592
34.37	% 30° 35° 40° 45°
41.95 - 0.006541 - 0.007201	16.22 0.007683 0.008754 24.63 0.009430 0.011190
Acetone (C_3H_60) + Salicylic acid ($C_7H_60_3$)	27.82 0.009772 0.010320 0.010800 0.011190 30.93 0.009798 0.011136 32.73 - 0.011500
Chatterji and Bose, 1950	
t η t η (acetone =1)	Acetone (C_3H_60) + o-Aminobenzoic acid ($C_7H_70_2N$)
31.28% 35.68%	Chatterji and Bose, 1950
30 2.093 30 2.443	я
35 2.046 35 2.354 40 2.015 40 2.322 45 2.020 45 2.305	25° 30° 40° 45°
ge n	18.14 0.01689 0.02033 24.52 0.02778 0.03431 41.35 0.04365 0.04698 0.05310 0.05570 47.11 0.04922 0.06440 50.25 0.05450 0.05794 0.06550 0.06948
	50.25 0.05450 0.05794 0.06550 0.06948
32.73 0.01651 0.01752 0.01823 0.01982 0.01914 36.120177202033 - 38.830175602037 - 41.2901765 0.01855 .02066 0.01962	Acetone (C_3H_60) + o-Nitrobenzoic acid ($C_7H_50_4N$)
	Collett and Lazzell, 1930
Timofeev, 1905	mol% f.t. mol% f.t.
% Q dil	100.00
initial final (by mole acid)	77.62 129.9 39.32 75.2 62.55 113.5 36.66 68.2
1.62 4.44 -2.38 4.44 8.03 -2.49 19.04 21.2 -2.88	53.84 101.9 25.85 37.6

Chatterji and Bose, 1950	\$ ×
t η t η (acetone =1)	25° 30° 35° 33.42 0.01713 0.01822 0.01932
40.3% 45.1%	37.39 0.01758 44.40 0.01796
30 3.428 30 4.708 35 3.327 35 4.578 40 3.258 40 4.441 45 3.200 45 4.325	я 40° 45°
π 25° 30° 35°	33.42 0.02031 0.02118 37.39 - 0.02214 44.40 - 0.02320 47.44 - 0.02390 49.56 0.02230 0.02406
42.53 0.04578 0.04936 0.05313 44.98 0.04456 51.46 0.04190 53.07 0.03908 0.04211 0.04594	Acetone (C_3H_60) + p-Nitrobenzoic acid ($C_7H_50_4N$)
% и 40° 45°	Collett and Lazzell, 1930
42.53 0.05675 0.06053	mol% f.t.
44.98 - 0.05940 51.46 - 0.05624 53.07 0.04922 0.05256	$\begin{array}{cccc} 100.00 & 239.9 \\ 28.78 & 164.1 \\ 21.91 & 147.3 \\ 10.48 & 105.5 \\ 5.74 & 72.5 \end{array}$
Acetone (C_3H_6O) + m-Nitrobenzoic acid ($C_7H_5O_4N$)	
Collett and Lazzell, 1930	Methyl ethyl ketone ($C_{i_1}H_g0$) + Formic acid (CH_2O_2)
mol% f.t.	Udovenko, 1939
$\begin{array}{ccc} 100.00 & 142.4 \\ 76.83 & 120.7 \\ 61.53 & 104.0 \\ 51.08 & 88.0 \end{array}$	mo1% d 25° 35° 45°
38.32 64.8 22.70 28.0	
Chatterji and Bose, 1950	60.20 0.9609 0.9501 0.9387 70.14 1.0051 0.9945 0.9819 79.72 1.0569 1.0445 1.0332
t η t η (acetone =1)	90.11 1.1257 1.1145 1.0332 100.00 1.2144 1.2017 1.1898
37.4% 50.7%	mo1% η 25° 35° 45°
30 2.953 30 5.514 35 2.898 35 5.312 40 2.838 40 5.203 45 2.826 45 5.058	$ \begin{array}{ccccccccccccccccccccccccccccccc$

				Nected sales have (C.H.O.) i Complete and
Methyl ethy	l ketone (C	₄ H ₈ O) + Acε	etic acid $(C_2H_4O_2)$	Methyl ethyl ketone (C_uH_80) + Caprinic acid ($C_{10}H_{20}O_2$)
Udovenko, 1	939			Ralston and Hoerr, 1942
mo 1%		đ		% f.t.
	25°	35°	45°	29.7
0.00 10.06 20.03 30.11 40.19 50.31	0.7989 0.8170 0.8361 0.8361 0.8561 0.8772	0.7885 0.8068 0.8258 0.8459 0.8667 0.8893	0.7781 0.7964 0.8154 0.8355 0.8563 0.8790	50.0 10 76.0 20 98.5 30 100 30.92
60.06 70.23 79.85 89.86 100.00	0.9239 0.9510 0.9782 1.0086 1.0431	0.9133 0.9401 0.9676 0.9983 1.0322	0.9027 0.9292 0.9563 0.9879 1.0212	Methyl ethyl ketone (C_4H_80) + Undecanoic acid ($C_{11}H_{22}\theta_2$)
mol%	25°	η 35°	45°	Ralston and Hoerr, 1942
0.00	389.5	354.7	321.3	% f.t.
10.06 20.03 30.11 40.19 50.31 60.06 70.23	389.5 431.2 473.7 526.6 583.2 650.7 725.9 815.2	390.5 425.5 469.7 517.3 573.0 634.6 713.2	352.1 383.2 419.6 460.1 505.8 559.0 620.3	32.3 0 58.2 10 83.8 20 100 28.13
79.85 89.86	908.5 1013.4	790.2 879.0	684.5 762.2	
100.00	1115.0	960.9	832.8	Methyl ethyl ketone (C_uH_80) + Lauric acid ($C_{12}H_{2,u}O_2$)
				Ralston and Hoerr, 1942
Methyl ethy	yl ketone (C	: _Կ Н ₈ 0) + Pr	opionic acid $(C_3H_6O_2)$	% f.t.
Othmer, 19	43			10.3 19.8 10 39.2 20
	L	no1 % V		66, 8 30 94, 8 40 100 43, 86
	at	b.t.		
	100 95 90 80 70 60 50	100 84, 70, 48, 31, 19,	.8 .2 .7 .4 .1	Methyl ethyl ketone (C_4H_80) + Tridecanoic acid ($C_{13}H_{26}O_2$)
	30	4.	.5	Ralston and Hoerr, 1942
	20 10 0:	1 1 0	.1	% f.t.
				10.6 22.8 48.7 75.9 30 98.7 40 100 41.76
II				li .

Methyl ethyl ketone ($C_{ij}H_{8}0$) + Myristic acid	Methyl ethyl ketone (C_uH_80) + Margaric acid ($C_{1.7}H_{3.4}O_2$)
(C ₁₄ H ₂₈ O ₂)	Ralston and Hoerr, 1942
Ralston and Hoerr, 1942	
-% f.t.	# f.t.
4.1 0 7.8 10 15.5 20 35.1 30 65.4 40 92.4 50 100 53.78	0.71 0 2.8 10 6.8 20 16.8 30 43.7 40 74.2 50 98.6 60 100 60.94
Methyl ethyl ketone ($C_{\rm h}H_{\rm g}0$) + Pentadecanoic acid ($C_{\rm 1.5}H_{\rm 3.0}O_{\rm g}$)	Methyl ethyl ketone (C_4H_80) + Stearic acid ($C_{18}H_{36}0_2$) Ralston and Hoerr, 1942
% f.t.	% f.t.
4.1 0 8.0 10 16.7 20 41.2 30 71.9 40 96.3 50 100 52.49	0.25 0 1.01 10 2.9 20 7.6 30 19.7 40 41.8 50 77.2 60 100 69.20
Methyl ethyl ketone ($C_{\rm b}H_80$) + Palmitic acid ($C_{1.6}H_{3.2}0_2$) Ralston and Hoerr, 1942	Methyl ethyl ketone (C_4H_80) + Oleic acid ($C_{18}H_{34}O_2$) Hoerr and Harwood, 1952
	# f,t.
7 f.t. 0.90 0 2.9 10 7.8 20 17.9 30 39.8 40 69.3 50	1.0 -40 2.5 -30 7.9 -20 25.1 -10 62.9 0 89.8 10
96.0 60 62.41	Methyl ethyl ketone (C_uH_80) + Linoleic acid ($C_{18}H_{32}O_2$)
	Hoerr and Harwood, 1952
j	% f.t.
	4.3 -50 9.5 -40 27.0 -30 64.9 -20 92.4 -10

		74 1711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Methylpropyl	lketone (C ₅	H ₁₀ 0) + Fo	ormic acid	mol %		η	
			(CH_2O_2)		25°	35°	45°
Lecat, 1949				0,00	467.3	419.7	378,2
%	b. 1		Dt mix.	9.97 19.96	507.4 548.2	455.1 488.2	406.1 433.9
J 	 			29.89	592.3 640.1	524.6	463.9
32	102. 105.	.35 .5 Az	-	39.83 50.13	698.6	$565.5 \\ 613.4$	498.9 539.4
32 35 100	100.	-	+3.9	60.17 69.87	762.8 839.0	667.0 727.0	583.8 635.0
		. / ·	······································	80.81 89.22	922.5 1011.0	800.6 878.0	696.1 7 51.9
			. من من هـ. من خوام اما اما اما اما اما اما اما اما اما	100.00	1115.0	960.9	832.8
Udovenko, 19	939						
mo1%		d					
11017	25°	35°	45°	Methylisopro	nvlketone	(C.HO.)	+ Formic Acid
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	,	py inctone	(05111 00 /	(CH ₂ O ₂)
$0.00 \\ 10.02$	$0.8017 \\ 0.8171$	0.7917 0.8074	0.7827 0.7988				
19.98 30.16	0.8352 0.8561	0.8252 0.8462	0.8152 0.8361	Lecat, 1949)		
39.92 48.81	0.8798 0.9044	0.8693	0.8593	8	h	t.	Dt mix.
59.74	0.9411	0.8940 0.9304	0.8836 0.9201	I			Dt mix.
71.86 83.92	$0.9937 \\ 1.0632$	$0.9823 \\ 1.0521$	0.9715 1.0406	85	95 102	6.4 2.15 Az	-
87.01 100.00	1.0864 1.2144	1.0751 1.2017	1.0633 1.1896	90 100		.75	+1.5

mo1%		'n					
	25°	35°	45°	Methylisobu	ty lketone	(C ₆ H ₁₂ O)	+ Acetic acid
0.00	467.3	419.7	378.2	•			(C ₂ H ₄ O ₂)
10.02 19.98	504.3 54 7. 9	451.9 487.6	408.5 434.4	Othmer, 1943			
30.16 39.92	603. 7 66 8. 9	532.7 586.0	471.3 514.6		·		
48.81 59.74	734.8 841.8	542.4 729.4	558.9 633.1		mol%		b.t.
71.86	1002.9	853.2	732, 5	L		V	
83.92 87.01	1198.3 1261.7	1010.6 1058.3 1304.3	860.7 898.2	100		100	118.1
100.00	1627.1	1304.3	1088.7	95 90		94.91 89.92	118.06 118.02
				80 70		79.97 69.95	117.94 117.84
				60 50		59 48.80	117.73 117.65
				40		38.30	117.53 117.52 117.32
Methyl propyl	ketone ($C_5H_{10}O) + A$		30 20		27.80 17.60	116.96
			(C ₂ H ₄ O ₂)	10		8.90 0	116.38 115.80
Udovenko, 193	39						
mol%		đ					
	25°	35°	45°				
0.00	0.8017	0.7919	0.7827				
9.97 19.96	0.8162	0.8066	0.7970				
29.89	0.8320 0.8489	0.8220 0.8393	0.8120 0.8295				
39.83 50.13	0.86 7 4 0.8892	0.8578 0.8790	0.8477 0.8689				
60.17 69.87	$0.9121 \\ 0.9380$	0.9021 0.9274	0.8920 0.9170				
80.81 89.22	0.9684 1.002	0.9578 0.9890	0.9471 0.9783				
100.00	1.0431	1.0322	1.0212				

					T				
Methyl amyl	ketone ($C_7H_{1\mu}O$) + Acet	ic acid)	Pinacoli	in (C ₆ H ₁₂	0) + Formi	c acid (CF	i ₂ 0 ₂)
Othmer, 1943	}				Lecat, 1	1949	· · · · · · · · · · · · · · · · · · ·		
	mol% (b.t	.)			R		b.t.	Dt	mix.
L	v	L	V		0		106.2		_
õ	0	50	74.5	5	24 25 100		107.1 Az	4	3.0
5 10	12.7 22.8	60 70	81.0 86.9)	100		100.75		-
20 30 40	44.0 58.2 67.3	80 90 100	91.8 96.1 100.0	l	Diketen	e (С ₄ Н ₄ О ₂	+ Acetic	acid (C ₂ F	I ₄ 0 ₂)
					Dinaburg	g and Pora	ni-Koshits,	1955	
Othmer and B	Benenati, 1945				mo19 L	% V	mo L	01% V	
mol%	b.t.	mo1	•	b.t.			(50mm)	· · · · · · · · · · · · · · · · · · ·	
L	V	L	V		10.6	19.2	66.0	69.4	
5.0	12.7 147.5 32.0 145.0	55.8	76.4	131.1	21.6 34.1	37.9 49.4	74.9 85.1	69.4 78.6 86.0	
18.0 26.3 34.2	45.3 141.9	60.0 63.4	80.0 82.7 83.5	130.0 129.1	52.6 56.0	57.4 64.4	91.8	92.6	
34.2 39.1 43.3	62.0 136.8	64.8 68.7 72.0 75.7	83.5 86.4 88.2	127.3 126.5 125.8	+ @		+0		
49.3 53.0	66.5 135.0 71.7 132.9 74.1 132.1	75.7	89.9	124.5	wt%	ⁿ D	wt%	ⁿ D	· · · · · · · · · · · · · · · · · · ·
	77.4 402.2					20°			
mol%	n _D	mo1%	n _D		10	1.4384 .4314	70 80	1.3915 .3853	
			-		20 30	.4248 .4179	85 90	.3822 .3794	
_0	18° 1.4118	60	1,39	79	40 50 60	.4107 .4048	95 100	.3765 .3 7 45	
10 20	1.4102 1.4084	70 80	1.39 1.39 1.38	380		.3983			
30 40	1.4065 1.4044	90 100	1.38 1.37	315	Diacetyl ((C4H6O2)	+ Acetic a	cid (C2H40	2)
50	1.4016				Othmer, 19	14.3			
					Othmer, 17				
Diethylket	cone (C ₅ H ₁₀ 0)	+ Formic .	Acid (C	H ₂ 0 ₂)		L	mo1% V	b. t	•
Lecat, 194	.9				1	100 98	100 9 7	118 116	.1
%						97 95	94.: 90.:	7 116	.0
· · · · · · · · · · · · · · · · · · ·	b.t.		Dt m	ix		90 80	80.4 61	4 111 5 104	.0
0 33	102.05 105.25	Az	-			70 60	47 39.	3 101 7 99	. 1
55 100	100.75		+3.7			50 40	28 21 15	3 97 4 95	.1
						30 20 10	10,1	3 93 2 92	.9
						0	5.3 0	88 3 91	.2
									
					11				

DIISOBUTYL KETONE + ACETIC ACID

Diisobutyl ketone ($C_9H_{18}O$) + Acetic	c acid C ₂ H ₄ O ₂)	Camphor ($C_{10}H_{16}0$) + Formic acid (CH_20_2)
Othmer, 1943	· x4 - x ·	Golse, 1911
		d ''D
mol% (b.t.) L V L	V	20°
0 0 50 2 16.0 60 5 29.4 70 10 44.6 80 20 62.1 90 30 74.6 100 40 83.0	87.8 91.0 93.3 96.3 98.5 100.0	100 1.2201 1.3709 91.56 1.1881 1.3794 82.73 1.1579 1.3891 73.44 1.1313 1.3971 63.69 1.1026 1.4063 53,46 1.0746 1.4175
Cyclohexanone (C ₆ H ₁₀ 0) + Isobutyr:	ic acid	
Lecat, 1949 (C ₄ H ₈ O ₂))	Camphor ($C_{10}H_{16}O$) + Acetic acid ($C_{2}H_{16}O_{2}$)
% b.t.		Campilor (C101160) · Acetic acid (C211402)
0 155.7		Beckmann, 1888
- 152.5 Az 100 100.75		% f.t.
Methylcyclohexanone (C ₇ H ₁₂ O) + Acet Othmer, 1943 (C ₂ H ₁		100 16.4 99.50 16.27 97.55 15.77 92.98 14.575
	b.t.	89.51 13.63 85.39 12.45 80.66 11.04 77.29 9.96
5 18.9 10 33.1 20 53.5 30 67.2 40 77.7 50 84.9 60 89.7 70 93.4 80 96.3 90 98.5 100 100.0	· · · · · · · · · · · · · · · · ·	Pushin and Rikovski, 1948 Mol% f.t. E
L V	b.t.	
2 22.5 10 46.1 20 81.7 30 88.8 40 93.5 50 96.4 60 98.0 70 98.9 80 99.3 90 99.6	193. 0 181. 0 175. 2 152. 0 143. 0 136. 0 131. 0 127. 0 124. 0 124. 0 121. 5 119. 5 118. 1	Landolt, 1876 - 1877

CAMPHOR + PROPIONIC ACID

Winther, 1907	Landolt, 1876 - 1877
% d	% (α) _D
20° 66.743 1,01738	20° 34.7481 +50.801
96.023 1.04584 96.854 1.04669 97.855 1.04782 98.873 1.04882 100 1.04998	34.7481 +50.801 60.2817 47.181 84.1181 44.021
Golse, 1911	Winther, 1907 π (α)
% d	р
20°	20° 66.743 +45.66
$\begin{array}{cccc} 50,11 & 1,0022 \\ 60,46 & 1,0115 \\ 70,55 & 1,0211 \\ 80,60 & 1,0508 \\ 90,36 & 1,0397 \\ 100 & 1,0495 \end{array}$	66.743 +45.66 97.023 42.33 96.854 41.81 97.855 41.3 98.873 40.9
	Colours (α) 66.743% 96.023% 97.855%
Malosse, 1912	20°
A d	red 33.10 30.68 31.2 yellow 45.66 42.33 41.3 green 61.86 57.80 57.0 pale blue 101.70 96.26 94.6
20° 40 0.9973 50 1.0061 60 1.0149 70 1.0235 80 1.0328 90 1.0414	Pale blue 101.70 96.26 94.6 dark blue 122.65 117.19 114.7
100 1.0502	Golse, 1911
Golse, 1911	A d n _D
mo1% n _D	. 20° 100 0.9948 1.3847
20° 50.11 1.4221 60.46 1.4115 70.55 1.4010	89.88 0.9921 1.3940 79.18 0.9893 1.4026 69.60 0.9868 1.4123 59.34 0.9844 1.4213 49.04 0.9810 1.4309
80.60 1.3913 90.36 1.3811 100 1.3713	

J02	.,,							
Camphor (C	10H160) + CE	proic acid	1 (C ₆ H ₁₂	02)	Camphor	(C _{1 0} H ₁₆ 0) + Oleic acid	1 (C ₁₈ H ₃₄ O ₂)
Lecat, 1949	ı				Castigl	ioni, 1933		
						%	d	η
		b.t.	· · · · · · · · · · · · · · · · · · ·				20°	
0	2	209,1 204.0 Az				100 95	0.8958	3056.7 2981.1
100		205.15	· · · · · · · · · · · · · · · · · · ·			90 85	0.9001 0.9025 0.9050	2919.7 2815.7
Camphor (C ₁	_o H ₁₆ 0) + Pal	mitic acid	(C ₁₆ H ₃	202)	i	80 7 5	0.9081 0.9165	2734.1 2589.3
Efremov, Vin	ogradov and T	ikhomirova	, 1937					
76	mol%	f.t.	Е		Camphor	(C ₁₀ H ₁₆ 0) + Desoxycho	lic acid ($C_{2} \mu H_{\mu 0} 0_{\mu}$)
100 95	100 91.85 84.23	59.2 55.7	-		Rheinbo	ldt, König	and Flume, 19	29
90 85 80	77.50 70.78	53.4 51.5	42	.3		<u></u> %	f.t.	Е
75 70	64.42 58.06	48.3 45.8 54.0	45 45			$\begin{smallmatrix}0.0\\10.1\end{smallmatrix}$	176.5 168.0	176.0 153.5
65 60	52.63 47.19	62.7 71.1	45 44	.7		18.0 30.4	161.0 161.5	153.0
55 50	42.21	80.0	44 43	.0		40.0 51.4	168.5 174.5	153.5
45 40	37.23 32.78 28.33	38.1 97.2 107.7	43	.0		65.0 70.0	178.0 178.5	15 7.0
35 30	24.30 20.27	115.5	41 40	. 2		76.3 81.2	178.5 178.5 176.5	16 8. 0 164.0
25 20	16.3 7	124.2 133.9 142.0	40 39	.5		84.8	174.0	164.0
15	12.47 9.32	150.5	38 38			90.3 94.7	$171.0 \\ 168.0$	# #
10 5 0	6.18 3.09	160.1 169.8	30	,5		100.0	172.0	168.5 (1+1)
U	0	178.0	-					
Camphor (C ₁₀	H ₁₆ 0) + Ste	aric acid	(C ₁₈ H ₃₆ ()2)	Camphor	(C _{1 0} H _{1 6} 0) + Apocholic	acid ($C_{2\mu}H_{38}\theta_{\mu}$)
Efremov, 1929	9 - 1930				Rheinbo	ldt, König	and Flume, 19	29
% f.1	t. E	·-, · · · · · · · · · · · · · · · · · ·				%	f.t.	Е
%	f.t.	E	min.	tr.t.		0.0 9.5	176.5 169.0	176.0 154.5
100 95	67.7 64.9	-	-	-		16.4 22.4	169.0 160.0 162.0	154.0
90 85	62.4 61.0	-	-	-		27.7 39.6	166.0 1 72.5	11
80 7 5	58.4 58.0	- 47.8	150	-		50.4 59.8	177.5 179.0	17
70 65	57.0 65,1	55.8	390	-		70.9 75.9	179.5	164.0
60 55	74.4	56.3 56.2 56.4	540 480	-		78.7	178.5 177.0	162.0
50 40	85.0 93.5 101.0	56.4	390 330	-		89.8 94.9 100.0	172.0 169.0 172.0	168.0(1+1)
35 30	113.2	50.3	270 240	$\frac{90.3}{91.2}$		100.0	172.0	168.00***
25 20	113.2 127.7 135.8	56. 3 56. 2 53. 7	210 180	92.5 93.0				
1 15	144.4 152.2 161.1	52.2 49.2 47.2	$\begin{array}{c} 150 \\ 100 \end{array}$	94.3 94.5				
10 5 0	161.1 169.0 178.0	47.2	-	95.5 9 7. 3				
<u> </u>	178.0	-	-	98.0				

r									
Camphor (C ₁₀ H ₁₆		cetic acid	(C _z H ₃ O _z C1)						
Pawlewski, 1893	and 1899			Pushin and	Rikovski	, 1940 -	1946	-	
mo1%	f.t.	mol%	f.t.	mo1%	f.t.	Е	mol%	f.t.	
0 22.03 28.63 34.87 40.87 66.93 70.57 74.78 81.01 82.86	175 106 75 40 - - 23.1 27.5 33 35.5	85. 83 88. 12 91. 12 93. 40 94. 42 96. 71 98. 38 99. 81 100	39.3 41 42.7 44.2 46 46.2 47.8 50.5	100 85 75 70 69 65 55 50 45	57 42 22.5 9 7 28 58 66 60 50	7 7 7 7 7 6 -	37 36 35 33 32 30 25 15 0	41 37 39 42 47 51 70 123 178	
Pushin and Rikov	ski, 1948	······································		Camphor (C ₁₀ H ₁₆ 0)	+ Benzo	ic acid (С7Н602)	
mol%	f.t.	Е		Jouniaux,	1912				
0 10 20	178 148 107	- -		mo1%	f.t.	E	min.	tr.t.	
20 30 35 40 45 50 60 70 80 90 100	61 26 -18 -6 +4 21.5 37 47 56	-23 -28 -18 -23 -19 -24 -		0 5 10 20 30 40 50 60 70 80 90 95	178 161.8 145.5 112.8 80.2 60.4 73.5 85.3 105.2 113.3 117.2 121.2	56.1 57.2 57.2 57.2 57.2 57.2 57.2	0.59 0.71 0.57 0.43 0.28 0.17		
Camphor (C10H16) + Dichlor			100	121.2	-	-	-	
		(C ₂ H ₂ () ₂ C1 ₂)						
Pushin and Rikovs	ski, 1948			F6	015				
mo1%	f.t.	mo1%	f.t.	Efremov, 1		1%	f.t.	E	
0 10 20 30 40 45 50	178 139 92 +11 -39 -32 -29 (1+1)	55 60 70 80 90 100	-31 -38 -26 -8 +5 11.5	0 2.4 4.0 8.1 16.7 21.1 25.6 30.1 32.5	5 5 8 9 1 20 5 25 0 30 7 35 0 37	.00 .00 .99 .01 .06 .02 .03	178 168.4 162.2 146.0 115.1 100.0 84.5 66.5 56.5 60.1	55.0 56.0 57.0 57.1 56.0 56.5	
Camphor (C ₁₀ H ₁₆ Kitran, 1924	f.t.		d C ₂ HO ₂ Cl ₃)	34.8 39.6 44.5 54.6 65.1 76.2 87.8 93.8	6 40 9 45 2 50 3 60 6 69 5 80 4 90 5 95 3 97	.03 .08 .00 .01 .98 .01 .00 .00	66.6 73.0 86.5 97.0 106.1 114.0 117.6 119.7	56.6 57.0 56.6 56.5 56.5 56.5 47.2 65.0	
33 50 70	22.3 62 6.7	E (1+1) E		100 tr.t. 0-20	100		121.4 - 98.1°		

CAMPHOR + CINNAMIC ACID

Camphor ($C_{10}H_{16}O$) + Cinnamic acid ($C_{9}H_{8}O_{8}$)	Acetophenone (C_8H_80) + Acetic acid ($C_2H_4O_2$)
Efremov, 1916	Beckmann, 1888
mo1% f.t.	% f.t.
0 178.0 36.6 71.5 E 100 133.0 tr.t. 0 - 20% 98°	100 16.4 99.35 16.195 98.19 15.835 95.58 15.020 92.22 13.955 88.63 12.805 85.32 11.795 80.71 10.230 78.05 9.365
	7,000
Camphor ($C_{10}H_{16}0$) + Salicylic acid ($C_7H_60_3$)	Vandoni and Chazeau, 1948
Efremov, 1915	mol% f.t.
% f.t. E % f.t. E	0 19.62
0 178.0 - 42.62 93.5 56.0 2.73 168.0 - 47.58 107.0 55.0 4.56 161.6 50 57.66 121.7 55.0 9.18 144.4 51.0 67.93 132.5 55.0 13.84 125.0 51.5 78.41 139.5 55.0 18.50 105.1 53.5 89.10 147.8 - 23.23 88.8 55.0 94.45 153.1 - 28.01 64.5 55.0 96.72 154.4 -	2.41 18.64 4.53 17.65 16.07 13.55 31.50 7.71 50.32 -0.70
28.01 64.5 55.0 96.72 154.4 - 32.85 60.0 55.0 100 156.2 - 37.70 76.8	
37.70	Kendall and Brakeley, 1921
	mol% d n
Le Fevre and Tideman, 1931	25°
mo1% f.t. mo1% f.t.	0 1.0263 1681 9.98 1.0272 1740.7
0 178.0 29.4 55.3 1.6 173.2 29.5 55.2 2.6 171.0 30.5 54.3 4.6 165.0 31.0 54.1 6.4 158.0 32.0 55.1 10.9 143.0 42.5 92.0 17.1 117.0 52.4 110.9 22.7 88.0 62.2 126.0 24.6 75.0 72.7 136.3 27.3 56.0 81.3 143.1 27.6 55.0 89.9 148.0 28.3 53.3 100.0 157.3	21.07 1.0287 1753.6 29.35 1.0300 1742 42.53 1.0325 1703 48.85 1.0338 1668 60.03 1.0365 1598 69.98 1.0390 1524 80.02 1.0420 1420 90.13 1.0453 1293 100 1.0499 1121
	Kendall and Gross, 1921
	mol% × mol% ×
	25°
	0 0.00055 57.22 0.00320 6.91 0.00286 65.87 0.00283 16.39 0.00333 69.68 0.00259 25.39 0.00351 77.20 0.00226 33.29 0.00358 82.79 0.00175 40.98 0.00346 90.74 0.00111 49.55 0.00344 100 0.00024

				T T			
Acetophenone	(C ₈ H ₈ O) +	Caproic acid	(C ₆ H ₁₂ O ₂)	Kendall and Bra	keley, 1921	l	
Lecat, 1949				mo1%	đ	η	
# # # # # # # # # # # # # # # # # # #	b. t.	Dt m			25°		
0 16 32 100	202.0 200.5 205.1	-0.9 Az	ميسون المراقب الدراهن اليوالي من ابيدائية اليوالي ال	0 8.96 14.00 21.21 29.39 40.90 48.76 57.94	1.026 1.076 1.103 1.146 1.192 1.268 1.313	5 211 3 240 5 293 2 373 5 554 7 734 5 933	2 2 1 5 0
Acetophenone	(C ₈ H ₈ O) +	Isocaproic a	cid (C ₆ H ₁₂ O ₂)	68.15	1.442	2 1115	0
Lecat, 1949				Kendall and Gro	oss, 1921	ر من مداند. حدد حدوقت المناسبة عن المناسبة المناسبة	يوجين الكان القياطة القراطة إلى الكوافة القراطية الكان التوافية الكان
ر جن جن جن جن الياض فق من حن في الدول الد	%	b.t.	المديد الدين المدين المدين المدين الدين الدين المدينة المدينة المدينة الدين المدينة المدينة المدينة المدينة ا المدينة المدينة	mo1%		н	······
Acetophenone	0 100 (C ₈ H ₈ O) +	202.0 199.2 Az 199.5	acid (C ₂ H ₃ O ₂ Cl)	0 6.83 14.04 24.60 36.92 44.15 48.42	25° 0.00055 0.01139 0.01596 0.02010 0.02135 0.02141 0.02166	60° - - - - - -	
Kendall and Gi	ibbons, 1915			53.23 59.94 66.64 71.37	0.02238 0.02257 0.02084 0.01777	0.04443	
mo1 % 100 85.4 89.8 78.7	f.t. 61.4 51.1 47.6	mol % 50.0 40.1 36.1	f.t. + 7.6 - 8.8 - 3.8	71.37 72.42 79.27 87.38 95.16 100	0.01688	0.02794 0.01057 0.00148 0.00006	
78.7 74.2 69.7 66.2 59.0	44.7 40.5 ° 35.7 32.7 22.2	25.0 19.3 6.8 0	+ 5.0 + 8.0 + 15.5 + 18.7	Acetophenone (C ₈ H ₈ O) +	Benzoic acid	(C ₇ H ₆ O ₂)
شو هي شير هي حال الدواني الدواني الدواني عن البياني الدوان في مدر عدر عدد الدواني عدد عدد الدواني الدواني الدواني في مدر عدر عدد الدواني الدواني الدواني الدواني الدواني الدواني	یا تحدد میں میں میں میں میں شو کار اس الدور براک میں میں میں میں میں میں الدورات میں ا دائیں میں الدورات میں ایس الدورات اس الدورات میں ا	و شهر سن شهر شد اسن آمن الدواست سن آمن اسن اسن اس د من شهر اسن است آمن آمن آمن آمن آمن است سن سند ۱۰۰ د من شهر اسن است شدر آمن آمن آمن آمن آمن است استان ۱۰۰	، سے جہا کہ کہ خورسے اس امیرسی خبراتی اس اس اس اس کے ا و کیر بہت کی کہ کہ سے کی تی سورسا اس اس اس اس کے اس اس کے اس اس کی در اس کی در اس کی اس کی در اس کی	Mortimer, 1923			
Acetophenone	(C.H.O.) + :	Trichloracet	ic acid	%	f.t.	%	f.t.
Kendall and Gi		TI TENTOTACE	(C ₂ HO ₂ C1 ₃)	8.3 14.4 23.6 35.9	0 20 40 60	51.6 71.6 100.0	80 100 121.0
mol %	f.t.	mol %	f.t.	ن من من الله الله الله الله الله الله الله الل		سي هي جيد المد المد الدو الدو الدي تدي بدي بدي الدو الدي كار مي الدو الدو الدو الدولان الدو الدو الدو الدولان بي بي الدول الدو الدولان الدولان الدولان الدولان الدولان	نین کی شور اندون کم سی کمی دی دی دور داشته اثام کمی دید در در در بازی دادم ادم کمی کمی نوی کمی دی در دادم دادم کمی کمی دادم در دی دادم کمی کمی کمی کمی کمی کمی کمی دادم دادم کمی کمی
100 91.4 83.8 78.1 72.0 63.8 58.3 52.1 48.4	57.3 50.5 41.9 33.3 21.3	43.0 36.5 30.7 25.1 19.9 14.5	23.3 18.1 11.6 3.7 5.1 10.1	Propiophenone ((C ₉ H _{1O} O.)	+ Heptanoic a	acid (C ₇ H ₁ 40 ₂)
58.3 52.1 48.4	-2.2 22.9 25.6 25.7	8.4	14.4 18.7		% ————————	b.t.	
70. 1		+ 1)	535555555555555555555555555555555555555	2 10	0 0 0	217.7 216.5 Az 222.0	

METHYLACETOPHENONE + HEPTANOIC ACID

p-Methylacetophenone ($C_9H_{10}O$) + Heptanoic acid	Benzophenone ((C ₁₃ H ₁₀ O) +		etic acid C ₂ HO ₂ Cl ₃)
(C ₇ H ₁₄ O ₂)	Kendall and Gi	hhons. 1915	•	Camacia)
Lecat, 1949	mo1%	f.t.	mo1%	f.t.
% b.t. 0 226.35	100 89.7 81.4	57.3 49.7 40.3	41.6 36.6	-1.0 +10.1
70 221,2 Az 100 222,0	74.5 68.6 62.5	28.5 16.2 0.4	28.4 22.4 13.9 0	22.4 30.2 38.2 46.3
Benzophenone ($C_{13}H_{10}0$) + Acetic acid ($C_2H_40_2$)				
Beckmann, 1888	Benzil (C ₁₄ H ₁	$_{0}0_{2}$) + Chlor	racetic acid	(C ₂ H ₃ O ₂ C1)
% Df.t.	Kendall and Gil	bbons, 1915	<u> </u>	· · · · · · · · · · · · · · · · · · ·
99.15 -0.18 96.85 0.66	mo1%	f.t.	mo1%	f.t.
96.85 0.66 92.10 1.58 88.86 2.31 83.12 3.22 75.70 4.62 65.83 5.96	100 90.0 80.2 67.1 57.8 43.6	61.4 56.3 51.6 58.3 65.3 74.0	34.2 18.0 13.0 9.9	79.0 86.6 88.6 89.9 94.0
Raoult, 1890				
mo1% 100 .(p ₂ - p)/p ₂	Benzil (C ₁₄ H	100 ₂) + Tri		acid 0 ₂ Cl ₃)
118°	Kendall and G	ibbons 1015	(0211	02013 /
96.707 4.902 93.573 8.741 83.452 15.180	mo1%	f.t.	mo1%	f.t.
Benzophenone ($C_{13}H_{10}0$) + Lauric acid ($C_{12}H_{24}0_{2}$)	100 91.4 81.2 75.8 69.9 62.0 54.4	57.3 50.9 39.8 35.3 21.5 31.2 45.0	47.5 39.5 30.4 22.0 12.2	55.3 65.3 73.8 80.8 87.0 94.0
Eykman, 1889				
100 43.4 96.12 42.49 93.085 41.82	Benzil (C _{1 4} H	100 ₂) + Ben	zoic acid (C ₇ H ₆ O ₂)
88.91 40.94 92.73 39.69	Kendall and G	ibbons, 1915		
77.4 38.81	mo1%	f.t.	mo1%	f.t.
	100 86.2 75.1 66.8 53.8 45.4	121.4 111.8 104.9 98.3 88.5 81.7	36.2 25.8 19.4 9.9	79.5 83.1 86.6 90.8 94.0

Passerini, 1924		Dibenzalacetone (C ₁₇ H ₁₄ O) + Trichloracetic acid
% f.t. E min	. E unst. min.	(C ₂ HO ₂ Cl ₃)
0 95		Kendall and Gibbons, 1915
6.7 90 13.4 85 78 4 20 82 78 5		mol% *f.t. mol% f.t.
13.4 85 78 4 20 82 78 5 26.7 78 78 8 33.4 83 78 12 40 88 78 9 49.4 91 78 8 46.7 93 78 7 50 96 78 6 53.4 98 78 5 60 102 78 3 62.2 103 78 2 64.5 104 78 2 66.7 106 78 1 70.1 107 78 1 73.4 108 79.9 112 86.7 115 93.4 117 100 120	75 5, 75 4, 75 3; 3; 3	100 57.3 75.3 87.0(1+1) 90.0 48.3 71.4 97.8 89.0(1+2) 51.6 68.5 102.8 87.5 58.1 62.9 110.2 86.3 61.9 60.6 112.2 83.6 70.0 57.0 114.5 81.3 73.8 54.4 115.2 79.0 78.3 50.0 116.6 76.5 82.6 45.0 117.0 71.3 85.2 40.2 115.0
79.9 112 86.7 115	75 3;3 75 2;	
93.4 117 100 120	ī ī	Dibenzalacetone ($C_{17}H_{14}0$) + Phenylacetic acid ($C_8H_80_2$)
		Pfeiffer, 1924
Sorum and Durand, 1952		% f.t. % f.t.
	f.t,	0 110 - 112 59 58 13.5 99 68.3 60
0	94.0 78.0 E 21.4	13.5 99 68.3 60 20 92 78.9 65 36.6 77 91.8 72 50.4 64 100 76 58.2 58
Dibenzalacetone (C ₁₇ H ₁₄ O) + C	Chloracetic acid (C ₂ H ₃ O ₂ C1)	Dianisalacetone ($C_{1.9}H_{1.8}O_3$) + Benzoic acid ($C_7H_6O_2$) Pfeiffer, 1924
Kendall and Gibbons, 1915		% f.t. % f.t.
100 61.4 68 92.7 56.5 65 86.3 50.5 61 82.0 46.2 58 77.3 41.5 53	1% f.t. 3.4 33.0 3.0 42.9 9.9 51.0 3.7 58.0 6.6 67.0 9.3 74.0	100 121 46.7 95 92.5 121 - 122 42 91 - 92 85.1 119 38.5 85 74.1 113 - 114 37.3 99 65.7 109 18.3 111 57.7 104 0 129 50.9 100
		Dianisalacetone ($C_{1.9}H_{1.8}O_3$) + Phenylacetic acid ($C_{8}H_{8}O_{2}$)
		Pfeiffer, 1924
		% f.t. % f.t.
		0 129 66.2 64 - 65 21.9 109 67.9 66 - 67 34.2 94 - 95 82.6 71 45.1 81 - 83 91.9 74 56.9 64 - 65 100 76

Phenyl	anisyl	ketone	($C_{14}H_{12}O_{2}$) + Trichloracetic
			acid ($C_2HO_2Cl_3$)

Kendall and Gibbons, 1915

mo1%	f.t.	mo1%	f.t.
0	58.7	67.8	4.3
13.0	53.0	74.4	22.5
20.3	48.2	80.6	34.5
28.0	41.3	86.9	44.8 52.4
35.2	31.7	92.9	
45.5	7.4	100	57.9

p-Acetylbiphenyl ($C_{1\,u}H_{1\,2}0$) + p-Toluic acid ($C_8H_80_2$)

Pfeiffer, Angern and al., 1930

%	f.t.	Е	
100 90 80 70 60 50 40 30 20 10	178 173,5 167.5 161 155 148 138,5 123 108 114	176 103.5 103 103 103.5 103.5 103.5 103.5 103.5	

Quinone ($C_6H_4O_2$) + Trichloracetic acid ($C_2HO_2C1_3$)

Kendall and Gibbons, 1915

mo1%	f.t.	mol%	f.t.
100 91.7 84.7 77.3 70.5 62.2 55.0	57.9 52.1 44.9 34.4 22.2 2.6 24.6	46.9 39.8 29.9 20.9 11.5	48.3 63.9 81.4 94.6 105.1 114.6

l-Methoxyanthraquinone ($\rm C_{1.5}H_{1.0}O_{3}$) + p-Toluic acid ($\rm C_{8}H_{8}O_{2}$)

Pfeiffer, Augern and al., 1930

%	f.t.	m.t.	
100	178	176	
90	1 7 4	136.5	
80	169	136.5	
7 0	164	136.5	
70 60 50 40 30	156.5	136.5	
50	149.5	136.5	
40	141.5	13 7	
30	148	136.5	
20	155	136.5	
10	162	137	
0	169.5	167.5	

Anthraquinone derivatives + Meconic acid ($C_7H_4O_7$)

Neuhaus, 1945

Crystallographic studies of partially isomorphous systems.

Piperonal ($C_8H_6O_3$) + Chloracetic acid ($C_2H_3O_2C1$)

Mameli and Mannessier, 1913

mol%	f.t.	mo1%	f.t.
I	I		
100 98.18 96.80 93.39 86.07 80.93 64.01 59.82 54.73 52.36 49.97 45.32 41.74 40.51 39.71 38.74 37.46 36.83 34.73 32.27 29.71 27.37 23.46 9.93 6.47 0	61.80 61.10 60.50 59.19 56.02 53.46 43.51 39.89 34.31 32.20 28.43 24.16 18.00 16.37 14.97 12.65 9.74 8.58 4.71 3.26 -3.30 +1.10 -3.30 +1.10 -3.30 -3.30 +1.10 -3.30 -3.30 +1.10 -3.3	100 97.52 93.79 89.67 82.20 78.95 73.77 69.93 63.75 61.57 56.79 53.83 47.84 38.49 38.31 37.81 37.81 36.25 30.50 28.45 26.05 12.11 6.47 0	56,53 55,62 54,17 52,36 48,89 47,20 41,30 37,08 34,21 30,14 26,52 22,71 18,40 4,52 22,71 18,40 4,52 23,36 -0,65 -1,30 -2,80 -0,30 +3,71 7,53 24,31 29,54 35,37

				 					
Kendall and G	ibbons, 1915			Piperona	1 (C ₈ H ₆ 6	0 ₃) + Bei	nzoic acid	(C ₇ H ₆ O ₂)
mo1%	f.t.	mo1%	f.t.	Kendall a	and Gibbo	ons, 1915			
100 91.7 84.9 78.9 73.6 69.0 65.1 60.4 52.9	61.4 56.6 52.2 47.2 42.4 37.5 33.0 28.4 22.0	49.7 44.3 39.7 35.8 25.8 19.3 8.2	17.8 14.5 10.2 11.0 18.7 23.8 31.0 35.5	10	000 86.2 30.6 73.1 65.5 59.2 60.0 44.2	f.t. 121.4 111.0 106.6 100.8 94.2 89.0 81.0 74.2 65.5	30.0 25.9 22.1 18.7 18.5 17.0 10.2	f.t. 54.6 48.4 39.7 32.0 27.2 27.4 30.8 35.5	
Piperonal (C	_в н ₆ 0 ₃) + Tri		acid 10 ₂ C1 ₃)			=======			
Kendall and G	ibbons, 1915			Passerini	, 1924				
mo1%	f.t.	mo1%	f.t.	mol%	f.t.	E m	in. Euns	st. mir	n.
100 90.3 82.4 76.3 75.5 69.8 74.4 72.2 68.7 65.2 64.4 59.0 (1	30.8 29.3 17.5	53.5 51.0 50.3 48.3 43.5 39.4 35.3 33.0 25.2 30.0 28.1 25.2 17.3 11.6	33.2 34.9 34.8 32.7 29.9 26.8 24.8 18.7 13.7 16.2 18.7 24.4 28.7 35.5	0 6.7 14.4 20 26.7 33.4 40 0 46.7 53.4 60 66.7 73.4 80 86.7 93.4	37 32 28 42 54 64 73 31 88 94 99 104 1109 113 117	28 28 28 28 28 28 28 	111	5 4 3	
Pushin and Rik	ovski, 1940 -	1946		Coumarin	(€ ₉ H ₆ 0	₂) + Tri	chloraceti		
mol%	f.t stable	. metast.	E	Pushin a	nd Rikov	ski, 1940		C2HO2C13	,
100 90 80 75 70 66.7 63 60 57 55 52.5 40 30 25 20 10	57 49.5 37 34.5 36.5 37 36.5 31.5 32.5 31.5 32.5 33.5 33.5 33.5 33.5 33.5 33.5 33	19 - - - - 30 - 23.5	- 31 31 - (2+1) - - - (1+1) - - 18 18 16	100 90 80 75 68 65 60 50 40 38	f.t. 57 50.5 37 28 15 12 18 23 24 26	m.t.	mo1% 36 35 33.3 30 27 25 22 20 10 0	f.t. 31 33 36.5 42 46 48 52 54 62.8 68	m.t. 24 24 23 22 18 20 15 18 2- 2)
				ш					

Dimethylpyrone	(C ₇ H ₈ O ₂) +	Parmia ani		1		المراجع التنافي المراجع	
		rormic aci	d (CH ₂ 0 ₂)	Dimethylpyrone (С ₇ Н ₈ О ₂) +		acid (C ₂ H ₅ O ₂ C1)
Kendall, 1914				Wd-11 1014			,,
mo1%	f.t.	mo1%	f.t.	Kendall, 1914			
0 14.4 24 34,1	132.1 122.5 112.5 98.0 84.5 70.9	63.5 63.9 65.1	18.8 18.7 18.9 18.9	mo1% 0	132.1	mo1% 58.6	f.t. 34.1
39.9 45.4 49.2 52.2	5 N. J	65.4 66.7 67 68.5 69.1 70.5 71.8	19.0 19.0 18.9 18.7	9.5 20.1 32.8 37.2 41.6	126.0 116.5 97.2 87.9 75.0	61.3 66.2 70 72.6 77 82.5 90.5 100 (I) 100 (II)	29.7 19.1 5.1 14.4
54.1 55.9 56.5 56.7 57.4	45.0 35.1 24.9 20.4	70.5 71.8 74	18.3 17.6 16.3 15.5	44.8 48.2 49.2 51.2	46.8 41.0	82.5 90.5 100 (I)	27.5 41.6 53.9 61.3
58.3 59.3	20.4 19.0 18.9 19.1 19.3 19.6 19.5 19.6 19.5	74 75 76.1 78.5 71.1 84.7	14.3 11.1 7.0 -0.3	52.6 55 (1+1)	39.7 39.1 37.7	100 (111)	56.2 50.2
59.5 60 60.4 61	19.5 19.6 19.5	86.4 88 91.7	-4.3 -5.5 0.0				
61.5 62.7	19.4 19.2	94.3 100	3.1 8.5				
) (1+			Dimethylpyrone (Kendall, 1914	C ₇ H ₈ O ₂)	+ Dichlorace (C ₂ H ₂ O ₂ Cl ₂	
Dimethylpyrone ((C ₇ H ₈ O ₂)	+ Acetic ac	id $(C_2H_{\downarrow}O_2)$	mo1%	f.t.	mo1%	f.t.
Kendall, 1914						· · · · · · · · · · · · · · · · · · ·	
mo1%	f.t.	mo1%	f.t.	0 14.1 24.5 31	132.1 124.0 111.0 99.1	52.8 56.7 59.8 64.9 68.6	21.7 17.1 11.1 -4.1
0 12.9 25 35.2 42.8	132.1 125.5 115.0 102.5 88.6 73.3 61.1 50.3	65.1 66.6 71.5 76.1	23.8 22.4 15.6 7.5 -0.4	36.4 40.2 43.6 45.9 48.5	85.3 72.5 56.6 43.2 26.0 22.9	68.6 80 85.9 91.9 100	-21.2 -23.8 -9.0 -0.8
42.8 49.1 53.4 56.8 60.4 62.5	73.3 61.1 50.3 37.3 28,3	79.6 82.3 84.7 91 100	-2.0 2.1 9.6 16.4	49.9		100	-9.7 (I) -4.1 (II)
(1+1)							
Dimethylpyrone (C ₇ H ₈ O ₂)	+ Crotonic	acid (C ₃ H ₆ O ₂)	Dimethylpyrone (С ₇ Н ₈ О ₂) +		tic acid HO ₂ Cl ₃)
Kendall, 1914				Plotnikov, 1911	·		
mo1%	f.t.	mol%	f.t.	*	f.t.	*	f.t.
0 12.4 23.9 37.2 45.4 50.1	132.1 125.5 116.5 100.7 86.0 75.2	63.2 67.2 71.3 78.7 84.2 91.0	47.5 44.1 39.2 49.4 56.7 63.6	30 40 45 50	130 110 95 43 48	53 65 81 90 100	43 67 32 52 59
54.6 59 (1+1	62.3 50.0	100	71.0				

		<u> </u>		
		DIME	THYLPYRONE	+ IODPR
Kendall, 1914			XXX	Dimethyl
mo1%	f.t.	mo1%	f.t.	- _ Kendall,
0 15	132.1 124.5	63.1 64.5	63.8 65.6	
28.6	110.0	66.2 68	66.7 66.1 (1+2)	
33.9 38.9	99.2 83.8	70,5	63.0	
42,4 44.5	67.1 52.9	72.9 76.4	58.1 49.3	
47.3 50.1	43.0 (44.8	1+1) 80.3 81.0	33.5 12.5	ļ
52.4 54.6	44.0 41.4	83.5 87.1	$\frac{28.1}{41.0}$	
54.6	36.4	92.5	51,5	
56.8 59	46.9 54.6	100	57.2	1
				_
				=
Plotnikov, 1915				
×	f.t.	%	f.t.	Dimethyl
100	56.8	58.8 57.9	38.8 37.7	Kendall,
96.8 93.3	54.0 49	5 7	42.9 41.5	
91.8 91.1	43.8 41.7	56.5 56	37.9	
90.5 89.7	39.7 37.2	55 52,3	36.8 42.3	
88.2 87	30.8 27.1	51 50	54.2 78.1	
83.3 81	34.7 47	46 44.1	89.1 93.1	3 3
78.5	56.5	40 35	99.4 107.0	1 2 3 3 4 4
76.2	61.4	.0.7	107.0	

i	%	f.t.	%	r.t.
	100	56.8	58.8	38.8
	96.8	54.0	57.9	37.7
	93.3	49	57	42.9
	91.8	43.8	56.5	41.5
	91.1	41.7	56	37.9
	90.5	39.7	55	36.8
	89.7	37.2	52.3	42.3
	88.2	30.8	51	54,2
	87.	27.1	50	78.1
	83.3	34.7	46	89.1
	81	47	44.1	93.1
	78.5	56,5	40	99.4
	76.2	61,4	35	107.0
	73.5	64.4	30	113.0
	71.5	63.8	25	118.0
	69.6	61.2	20	121.7
	66,2	54.0	15	124.6
	62.3	48.0	10	127.5
	59,4	48.0	Ó	131.5

Dimethylpyrone ($C_7H_8O_2$) + 2-Iodpropionic acid $(C_3H_5O_2I)$

Kendall, 1914

-	mo1%	f.t.	mo1%	f.t.	
	0 15	132.1 123.5	62.2 68.4	8.8 35.4	
	24.3 35 42.8	108.0 87.4 67.2	72.7 76.2 79.5	45.1 52.2 58.4	
	42.8 49.7 55.6	44.0 18.4	88.3 100	70.9 81.2	
	58.8	8.9			

lpyrone (C₇H₈O₂) + Trichlorbutyric acid $(C_4H_5O_2Cl_3)$

, 1914

mo1%	f.t.	mo1%	f.t.
0 10.2 18.4 26.8 32.9 35.2 38.5 41.8 45.6 53.9 58.8 61.2 63.2	132.1 127.0 121.0 110.2 98.0 91.8 82.1 66.5 53.4 56.1(1+ 53.8 47.8 42.5 35.2	63.4 65.7 67.3 69.5 72.4 76.6 71.9 75.1 79.6 1) 82.7 86.9 92.5	35.1 33.5 33.7 (1+2) 33.0 20.2 25.0 -7.2 9.7 27.1 37.1 45.9 53.0 57.9

lpyrone ($C_7H_8O_2$) + Chlorcrotonic acid $(C_4H_5O_2C1)$

, 1914

m	01%	f.t.	mo1%	f.t.
2 3 3' 4 4. 4. 5	0 0.5 1.4 1.8 7.2 1 5.9 8.8 0.5 3.3	132.1 125.5 115.0 100.1 89.6 78.5 60.8 46.5 45.7 45.1	62 62.4 62 64.4 64.7 65.5 68.2 71.7 74.1	38.5 38.0 39.0 46.3 47.4 49.9 57.3 65.4 71.1
	6.7 9.3	43.9 41.7	89.6 100	92.9 99.0

Dimethylpyrone ($C_7H_8O_2$) + Trichlorlactic acid $(C_3H_3O_3C1_3)$

Kendall, 1914

mo1%	f.t.	mo1%	f.t.
0 10 22.3 30.8 35 37.8 41.5 44.7	132.1 126.5 113.0 92.9 77.1 65.1 49.5 52.7	60.7 63.2 66.1 66.1 73.2 78	46.9 43.6 38.5 21.2 43.2 59.3 83.0 95.4
19.5 15.1 18.2	54.4 52.6 49.8	89.9 100	$\begin{array}{c} 106.6 \\ 113.8 \end{array}$

Dimethylpyrone	($C_7H_8O_8$)	+	Benzoic	acid	($\mathbf{C_7H_60_2}$)
----------------	---	-------------	---	---	---------	------	---	----------------------	---

Kendall, 1914

%	f.t.	%	f.t.
0	$132.1 \\ 127.0$	52.6	50.2
10.5		54.1	49.6
18.9	120.0	56.2	48.5
25.8	111.5	58.7	54.8
31.5	102.4	62.1	66.8
36.5	93.1	65.3	
41.1 44.1	82.6	69.1	76.7 85.6
47	74.2	74.7	95.2
	63.8	81.9	105.2
49.5 50 50.6	53.5 50.5 50.5	$\begin{smallmatrix} 90.5\\100\end{smallmatrix}$	113.6 120.8

Dimethylpyrone ($C_7H_8O_2$) + Phenylacetic acid ($C_8H_8O_2$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
0 12 23,7 29,9 35,9 40 45,9 51,1 53 56,6 59,8	132.1 125.0 113.0 105.5 94.9 85.1 69.0 51.6 44.2 25.4 5.5	58.9 59.8 61.5 62 64 65.7 69.9 76.4 83.6 92	21.7 21.0 19.2 18.7 19.2 25.9 37.8 51.6 62.4 70.8	

Dimethylpyrone ($\rm C_7H_8O_2$) + Salicylic acid ($\rm C_7H_6O_3)$

Kendall, 1914

mo1%	f.t.	mo1%	f.t.
0 9.9 20.7 32.2 36.6 39.6 42.7 44.0 46.5 48.9	132.1 128.0 119.5 100.5 89.2 80.1 68.9 69.1 70.7	50.1 52.5 56.0 60.7 67.3 72.3 82.6 89.9 100	71.9 71.1 68.9 70.3 115.8 127.6 144.2 152.2 158.9

Dimethylpyrone ($C_7 H_8 0_2$) + o-Nitrobenzoic acid ($C_7 H_5 Q_{\rm u} N$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.
0	132.1	53.1	71.6
13.5	123.0	56.1	69.6
29.6	111.0	59.2	66.1
31.4	98.9	62.3	76.1
35.7	90.1	65.8	90.5
39.9	76.3	71.4	108.4
43	68.9	79.0	124.9
47.9	71.6	88.5	137.4
50.1	72.3	100	147.0

Dimethylpyrone ($C_7H_8O_2$) + o-Toluic acid ($C_8H_8O_2$)

Kendall, 1914

Dimethylpyrone ($\rm C_7H_8O_2$) + m-Toluic acid ($\rm C_8H_8O_2$)

Kendall, 1914

mo1%	f.t.	mol%	f.t.	
0 10 21 31.4 35.6 41.4 46 48.1 50.9	132.1 126.5 116.0 102.0 94.4 81.0 69.1 63.8 64.0	54.7 57.5 59.9 62.5 66.8 73.8 81.4 90.1	62.9 61.7 60.5 59.8 70.0 84.8 95.6 103.0	

				~					
Dimethylpyrone	(C ₇ H ₈ O ₂)	+ p-Toluic	acid ($C_8H_8O_2$)	Dimethylp	yrone (С ₇ н ₈ 0 ₂) -	+ Mandeli	acid (C ₈ H ₈ O ₃)
Kendall, 1914				Kendall,	1914				
mo1%	f.t.	mo1%	f.t.	mol	%	f.t.	mo1%	f.	t.
0 15.7 20.8 27.4 32.6 37 39.9 40.5 42.8	132.1 126.5 120.0 112.0 103.1 93.4 86.3 85.0 86.2	45 46.8 49.4 52.7 58.6 67.9 78.6 89.7 100	87.1 87.7 93.2 106.9 124.4 143.2 158.6 170.0 178.5	0 11 19 24 27 32 37 41 44	1	132.1 123.5 116.0 109.7 104.7 94.8 82.0 68.1 66.4 66.5	50 55.5 56.5 58.7 60.7 63.4 65.7 67.2 67.5 69.5	67 70 71 72 73 74 73	.7 .7 .8 .0 .7
Dimethylpyrone Kendall, 1914	(C ₇ H ₈ O ₂) -	+ Cinnamic	acid (C ₉ H ₈ O ₂)	45. 47. 50 52. 55. 57.	7 5 2 7	66.5 67.5 68.9 69.3 68.8 67.2 66.1 62.7 60.0 49.0	67.5 69.5 71.6 74.7 81.2	73 61 73 78 82 88 98	.7 .6 .2 .8 .6
mo1%	f.t.	mo1%	f.t.	63.4 45.4	4 4	60.0 49.0	89.4 100	108 117	.0
$\begin{array}{c} 0 \\ 9.8 \\ 19.0 \\ 28.1 \end{array}$	132.1 126.5 119.5 107.8	51.8 55.4 56.5 59.7 63.7 69.5 75.2	73.1 72.4 75.0	(1	+ 1)	(1+2)		
28.1 35.7 39.4 43.1 45.7 48	132.1 126.5 119.5 107.8 95.7 88.4 79.9 72.7 73.1 73.2	90.9	75.0 87.0 97.4 109.0 116.4 126.3 131.8 136.8	Tetramethy				-Toluic : C ₈ H ₈ O ₂)	
(1 + 1)		100	136.8	Bennett	and Wain	, 1936			
	•			mo1%	f.t.	Е	mo1%	f.t.	E
Dimethylpyrone	(C ₇ H ₈ O ₂) +		amic acid C ₉ H ₁₀ O ₂)	100 80.2 69.8 59.9 49.9	104.7 92.6 85.1 76.5 68.4	103.9 49.2 49.4 49.4 49.3	43.7 35.9 25.2 11.9	62.6 54.1 55.5 65.5 72.1	49.5 49.2 49.3 49.6 71.1
Kendall, 1914									
mo1% 0	f.t.	mo1%	f.t.	Tetrametl		lane (C ₁₂	H ₁₆ 0) +	Phenylace	etic
$10.1 \\ 19.8 \\ 27.7$	132.1 126.5 119.0 110.0	53 56.7 60.1 63.4 66.3 73.3 78.9	49.7 35.3 22.0 4.8	Bennett	and Wain	, 1936			
30.6 34 37	105.4 99.5 93.3 86.7	73.3	4.8 5.9 21.1	mol%	f.t.	Е	mol%	f.t.	E
40.5 43.3 46.9 49.8	93.3 86.7 80.1 69.7 60.6	78.9 84.7 91.4 95 100	29.4 35.8 41.0 43.2 45.2	100 90.1 80.1 70.2 61.1 51.1	77.7 73.1 66.4 59.1 51.8 41.8	76.8 37.4 37.2 36.9 37.0 37.1	45.9 40.5 29.4 21.2 9.7 0	40.1 46.5 55.0 60.6 67.4 72.1	36.8 36.9 37.1 37.0 37.1 31.1

ACETIC ANHYDRIDE + METHYL MALATE

XXX. ANHYDRIDES AND ESTERS + HYDROXYL DERIVATIVES .	Benzoic anhydride ($C_{1\mu}H_{10}O_{3}$) + 8-0xyquinoline ($C_{0}H_{7}ON$)
Acetic anhydride ($C_{4}H_{6}O_{3}$) + Methyl malate l ($C_{6}H_{1}O_{5}$)	Dionisiev and Dzhelomanova, 1954 (fig.)
Grossmann and Landau, 1910	mol% f.t.
g/100cc (α) red yellow green pale dark violet blue blue	0 42 9 32 E 20 66 40 96 50 103 (1+1)
20° 49.974 -4.78 -5.78 -6.48 -7.26 -7.56 -7.78 24.987 -4.64 -5.52 -6.20 -6.88 -7.28 - 12.4935 -4.48 -5.36 -6.08 -6.72 -7.12 - 4.824 -5.60 -7.05 -7.88 -8.71 -9.12 -9.54	75 49.5 E 80 60 100 75
2,412 -5,80 -7,46 -8.29 -9.12 -9.54 -	95° 105°
Acetic anhydride (C _h H ₆ O ₃) + 8-0xyquinoline (C ₉ H ₇ ON) Dionisiev and Dzhelomanova, 1954 (fig.)	0 2497 2097 20 4000 3050 40 8000 5900 50 13080 8510 60 8300 5900 80 3800 2800 100 750 100
mol% f.t.	mo1% ×
0 -72 20 +24 40 55 50 55,7 (1 + 1) 60 48 65 41,5 E 80 59 100 75	95° 105° 0 0,0002 0,0002 10 0,0060 0,0063 21 0,0062 0,0069 40 0,0017 0,0020 50 0,0003 0,0005 60 0,0008 0,0010 80 0,0019 0,0021
mo1% n	100 0.0004 0.0004
75° 85° 0 800 500 20 1200 1000 40 2900 2100 50 4000 3000	Phthalic anhydride ($C_8H_{u}0_3$) + sec.Butyl alcohol ($C_uH_{1,0}0$)
55 4100 3300 60 4000 3200 80 3400 2400	Lombaers, 1924
80 3400 2400 100 3000 2100	mol% f.t. mol% f.t.
mol% × 75° 85°	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.72 97.2 0.0 130.8 (before reaction)

574

mo1%	f.t.	mol%	f.t.	Methylformate ($C_2H_hO_2$) + Ethyl mercaptan
81.15 80.93 78.94 70.29 68.82	22 29 42 48.0 40.4	53.28 50 43.18 38.64 17.74	53.8 54.1 78.5 89.0 118.0	(C ₂ H ₆ S)
68.82 67.96 61.07	$\frac{49.2}{52.0}$	0	130.8	% b.t.
E: 53	.6 reaction)			0 31.7 - 28.5 Az 100 35.8
Phthalic anhyd	ride (C ₈ H ₄ O ₃		inoline ₉ H ₇ ON)	Ethylformate ($C_3H_6O_2$) + Methylalcohol (CH_4O)
Dionisiev and I	Dzhelomanova,	1954 (fig.)	Lecat, 1949
mo1%	f.t.	mo1%	f.t.	% b.t. Dt mix
0 20 40 45 60	128 120 105 99 E 100	70 80 90 95 100	101 99 88 71 E 75	0 54.15 16 50.95 Az 203.2 100 64.65
mo 1%		η		Williams and Gordy, 1937
	135°	145	•	Hilliams and Goldy, 1937
0 20	1300 1050	110 95		Infrared absorption
40 60	1000 1000	90 90	0	
80 100	$\begin{array}{c} 1000 \\ 1000 \end{array}$	90 90		
mo1%		ж	······································	Ethyl formate ($C_3H_6O_2$) + Methyl malate l ($C_6H_{10}O_5$)
	115° (af 1	115° er prolonged	135°	Grossmann and Landau, 1910
	···	heating)		g/100cc (α)
0 10 20 40	0,102	0.148	0.020 0.118 0.198 0.146	red yellow green pale dark violet blue blue
50 60	$\substack{0.082\\0.066}$	0.100 0.106	$0.100 \\ 0.090$	20°
70 80 100	0.040 0.022 0.0	0.090 0.052 0.0	0.072 0.035 0.003	50.002 -5.24 -6.34 -7.12 -8.16 -8.60 -8.90 25.001 -5.12 -6.24 -6.80 -7.96 -8.36 - 12.5005 -5.04 -6.16 -6.72 -7.52 -8.00 - 4.936 -5.27 -6.89 -8.10 -7.90 -7.50 -6.89 2.468 -5.67 -7.70 -8.51 -7.10 -7.70 -
ľ				
li .				II

Propylformate Lecat, 1949	($C^{\prime\prime}H^80^5$)	(b.t.	=	80.85)	+	Alcohols
Lecat, 1949									

	2nd Comp.				
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	СНь0	64.65	50.2	61.85	-1.7 (83%)
Ethyl alcohol	CSH60	78.3	39	71.75	-5.0 (50%)
Propyl alcohol	08HE	97.2	3	80.75	-1.8 (10%)
Isopropyl alcohol	0_8 H ₈ O	82.4	36	75.9	-6.5 (36%)
Tert.Butyl alcohol	$C_{\mu}H_{1\ 0}0$	82.45	40	77.5	-
Allyl alcohol	C 3H60	96.85	5	80.75	-1.3

Isopropylformate ($C_u H_8 0_2$) + Methyl alcohol ($C H_u 0$)

Lecat, 1949

<i>K</i>	b.t.	Dt mix
0 33 50 100	68.8 57.2 Az - 64.65	-6.2

Butylformate ($C_5H_{1\,0}O_2$) (b.t. = 106.8) + Alcohols

Lecat, 1949

	2nd Comp		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Propyl alcohol	C 31180	97.2	64	95.5	-2.8 (65%)
Butyl alcohol	$C_{14}H_{10}0$	117.8	15	106.0	-3,4 (47%)
Isobutyl alcohol	$C_{4}H_{10}0$	108.0	52	105.4	-4.8 (50%)
Sec.Butyl alcohol	$C_{14}H_{10}0$	99.5	68	98.0	-
Tert.Amyl alcohol	C ₅ II ₁₂ 0	102.35	65	101.0	-
Pentanol-3	C 5H120	116.0	1.5	106.5	-

IsobutyIformate ($C_5 H_{1.0} \theta_2$) (b.t. = 98.2) + Alcohols

Lecat, 1949

L	2nd Comp.		Αz		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	СН ₁₄ 0	64.65	93	64.55	-0.8 (95%)
Ethyl alcohol	C2H60	78.3	72	76.7	-3.3 (72 %)
Propyl alcohol	C 3H80	97.2	43	92.5	-3.4 (50%)
Isopropyl alcohol	C3H80	82.42	90	82,35	-2.5 (90%)
Isobutyl alcohol	C4H100	108.0	13	97.6	-2.2 (20%)
sec,Butyl alcohol	C4H100	99.5	40	99.4	-
tert.Butyl alcohol	C4H100	82,42	90	82.25	-2,5 (90%)
Allyl alcohol	C3H60	96.85	40	91.7	-3.2 (40%)

Isoamylformate ($C_6H_{12}O_2$) (b.t. = 123.8) + Lecat, 1949 Alcohols

	2nd Comp.		Az	:	
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl alcohol	C 4H 1 00	117.8	67	116.0	-3.0 (70%)
Isoamyl alcohol	C 5H1 20	131.9	18	123.7	-3.8 (50%)
Methoxy- glycol	SOBHE 2	124.5	40	119,1	-1.2 (36%)
Ethylene chlorhydrin	C2H50C1	128.6	21	123, 15	-
1-Chlor-2- propanol	C ₃ H ₇ 0C1	127.0	30	123.0	-
2-Chlor-l- propanol	С ₃ Н ₇ 0С1	133.7	5	123.7	-

Allylformate ($C_4H_6O_2$) + Ethyl alcohol (C_2H_6O)

Lecat, 1949

%	b.t.
0	80.0
_	71.5 Az
100	80.0 71.5 Az 78.3

Methyl acetate ($C_3H_6O_2$) + Methyl alcohol (CH_4O)	Methyl acetate ($C_3H_6O_2$) + Ethyl alcohol (C_2H_6O)
methyl account (Canada) + Methyl alcohol (Chuo)	Bredig and Bayer, 1927
Bredig and Bayer, 1927	р %
р % р % L V L V	L V
	_ 39.76°
39.76° 49.76° 401.3 0.0 0.0 589.4 0.0 0.0 422.3 2.1 4.3 619.4 2.6 4.5 431.9 4.8 8.7 640.0 6.8 9.9 437.4 6.9 10.2 653.9 9.0 11.5 443.8 9.4 13.1 657.4 10.1 13.4 445.7 12.5 14.3 660.6 13.7 15.5 447.3 17.2 17.9 663.8 17.6 18.6 446.4 19.7 18.3 661.4 21.8 19.7 445.0 22.5 20.3 658.4 25.8 22.0 439.2 29.0 23.6 652.4 31.0 24.5 434.6 32.8 25.5 635.0 40.0 28.9 422.8 40.8 26.2 610.0 51.3 32.6 402.9 53.5 32.2 592.5 57.1 36.2 384.7 61.8 37.3 558.5 68.2 41.8	187.3 0.0 0.0 246.0 5.1 16.0 270.3 9.9 22.2 282.5 14.1 26.8 290.0 18.4 29.4 294.0 22.9 33.9 299.0 29.6 38.5 300.0 34.0 39.2 299.0 39.4 41.3 300.0 42.8 43.0 300.0 42.8 43.0 300.0 48.4 47.0 301.0 54.4 49.5 295.6 65.2 58.2 293.2 69.1 60.6 287.5 78.8 67.8 279.0 87.7 77.8
351.0 76.2 48.4 558.5 68.2 41.8 331.5 85.4 59.8 535.0 72.3 43.9 301.4 91.8 71.6 404.6 100.0 100.0	
286.0 93.4 78.6 259.8 100.0 100.0	Mathews and Cooke , 1914
	t d n
1040	50%
Lecat, 1949 % b.t. Dt mix	0 0.8819 899.1 25 0.8637 612.6 40 0.8394 494.8 55 0.8237 414.3
0 56.95 18.7 53.8 Az -3.5 100 64.65	Peel, Madgin and Briscoe, 1928
Ryland, 1899	50 vol% Dv = +0.25% Dt = -7.05°
% b.t.	
0 55.5 - 56.5 18 53.5 - 54.5 100 64.5 - 65	Madgin, Peel and Briscoe, 1928 50 vol% 5° Dt = -4.6°
	30° Dt = -5,3°
	Methyl acetate ($C_3H_6O_2$) + Glycol ($C_2H_6O_2$)
	Mukhin and Mukhina, 1930
	% sat.t. % sat.t.
	5.0 3.0 40.0 26.0 10.0 16.9 45.0 25.5 15.0 22.5 50.0 24.3 20.0 25.3 55.0 22.5 25.0 26.5 60.0 19.8 30.0 26.8 65.0 16.3 35.0 26.5 70.0 11.0 C.S.T. = 26.8°

ETHYL ACETATE + METHYL ALCOHOL

Ethyl acetate	(C ₄ H ₈ O ₂) +	Methyl alcoho	1 (CH ₄ 0)	Ethyl aceta	te (C ₄ H ₈ O ₂) + Ethyl alo	cohol (C ₂ H ₆ O)
Ryland, 189	9			Griswold, Ch	u and Winsau	er, 1949	
	Æ	b.t.		mo1%		b.t. p ₁	Fa
	0 47 100	75.5 - 76.5 61.7 - 62.5 64.5 - 65	Az	15.5 27.2 30.9	33.2	73.9 676 72.7 650 72.4 645 71.9 634	600 5 594
Herz and Le				30.9 52.7 55.8 62.8 73.6 83.6	51.7 56.2 62.8 73.3	72.0 638 72.3 644 73.3 658 74.6 694	5 585 4 590 5 620 4 650
Az : 44 %	62.25°			92,1	84.5	76.1 730	692
t	0 %	d 44 %	100 %	Kirschbaum,	1950 (fig	·)	
20 30 40 50	0.9005 0.8884 0.8762 0.8635	0.8515 0.8409 0.8299 0.8189	0.7915 0.7825 0.7740 0.7650		1.4		01% V
t	0 %	n 44 %	100 %	10 20 40 50	19 31 47.5 52.5	60 70 80 90	59 67.5 75 87.5
20 30 40 50	453.8 403.5 361.4 337.1	487.5 441.3 386.3 344.7	586.6 512.0 452.1 400.7	56	56		
t		ď		Stockhardt,			
	0 %	44 %	100 %	· L	mo1% V	mo L	1% V
20 30 40 50	24.09 22.92 21.68 20.30	22.86 22.10 21.09 20.08	22.70 21.86 20.94 19.97	0.0	0.0	760mm 50.0	48.4
Williams and	Gordy, 1937			5.0 10.0 20.0 30.0 40.0	16.3 37.4 32.6 42.4	60.0 70.0 80.0 90.0 95.0	48.4 54.3 61.1 69.3 81.3 89.8
Infrared abs	orption .			46.0	46.0	100.0	100.0
Timofeev, 19	05			Merriman, Azeotropic			
initial	% final	Q đ	il	p	K	b.t.	b.t.
100	04.00	(by mole					0%
100 94.83 89.3 84.4 80.7	94.83 89.3 84.4 80.7 77.0	-73 -70 -68 -67 -64	9 5 8	25.0 77.4 117.2 219.9 423.0	12.85 15.95 17.60 21.21 25.79	-1.37 +18.71 27.02 40.50 56.31	+0.61 21.01 29.60 43.73 60.46
13.3 9.1 4.8 0	16.4 13.3 9.1 4.8	(by mole: -38 -48 -68 -104	alcohol) 3 8 9	578.2 760.0 948.0 1121.0 1475.5	28.41 390.93 33.27 35.22 38.87	64.43 71.81 78.13 83.05 91.35	60.46 69.16 77.15 84.01 89.42 98.60

W. 1 - 1 H-1- 102	,		Deveux, Schouteden and al., 1938
Mund and Heim, 193	t p	t p	Azeotrope
0%	13.65%	19,48%	% p b.t. % p b.t.
20.00 73.0 25.00 94.6 30.00 120.1 35.00 151.5 40.00 188.1 45.00 233.0 50.00 285.8 55.00 347.2 60.00 419.6	20.41 83.9 25.37 107.6 30.23 136.4 35.30 172.7 40.30 215.8 45.12 265.5 50.54 332.2 54.76 391.7 50.42 473.6	20.12 80.8 24.83 103.6 29.80 132.0 34.98 169.7 39.89 212.3 45.10 266.3 49.95 327.9 55.43 409.1 60.13 494.3 65.24 596.2	61.5 1400 90 76 335 50 64 1185 85 77 275 45 66.5 1005 80 78 220 40 68 850 75 80 175 35 69.8 715 70 82 140 30 70.5 590 65 83 115 25 71.5 490 50 84 85 20 74 410 55
1 75 00 709 0	65.30 562.3 69.70 682.5 75.77 842.4 80.45 985.0	74.55 829.8 81.18 1039.6	Ryland, 1899
80.00 832.5 85.00 977.7	80.45 985.0 85.20 1147.7 90.50 1356.3 93.65 1491.6	85.45 1192.5 90.45 13 92.7 93.20 1514.1	% b.t.
90.00 1141.7 95.00 1322.9 100.00 1528.0	93.65	93, 20 1014.1	0 75.5 - 76.5 31 71 - 72 Az 100 77.5 - 78
t p	t p	t p	W. J. 1005
29.60%	40.33%	49.43%	Wade, 1905
20.19 81.3 25.01 105.0 29.95 134.0 35.08 171.1 40.75 221.6 45.13 267.9	20.36 80.2 25.60 105.0 29.79 129.0 34.91 164.5 41.05 218.1 45.51 265.2 49.81 321.7 55.60 406.7 59.76 479.5 65.00 711.4	20.05 75.6 25.00 97.2 29.95 124.5 35.00 158.8 40.15 201.9 45.04 251.2	30.6 71.8 100 78.3
45.13 267.9 49.62 324.5 55.32 409.4 59.75 485.1 64.70 586.0 70.30 717.1 74.90 845.3	49.81 321.7 55.60 406.7 59.76 479.5 65.00 585.6 70.15 711.4 75.23 852.1 80.38 1020.9	50.13 313.6 55.28 391.4 60.05 472.8 65.10 577.7 70.20 699.6 75.30 842.6	Lecat, 1949 % b.t. Dt mix
79.86 1003.1 85.30 1202.8 89.82 1391.8 92.13 1499.1	80.38 1020.9 84.87 1190.6 91.86 1493.0	80.41 1013.6 85.25 1194.7 90.49 1421.7 92.40 1514.0	0 77.1 - 30.8 71.8 Az - 50 -5.4 100 78.3 -
t p	t p	t p	Sangin 1020
71.01%	89.48%	100%	Sapgir, 1929
19.90 66.4 25.34 88.2 29.50 109.3 35.06 143.5 39.95 181.0 44.95 227.8 50.00 285.6 55.08 355.6 60.26 442.4 65.29 542.2 70.04 651.3 75.16 788.8 80.29 951.0 85.64 1148.4	20.33 57.9 25.03 74.3 30.30 97.6 34.95 123.6 39.58 155.3 45.00 203.3 49.80 253.8 55.01 318.3 59.90 392.9 64.80 482.9 69.95 793.0 75.21 729.1 80.23 880.8 85.30 1241.0	20.00 45.1 25.00 60.4 30.00 79.1 35.00 104.8 40.00 136.0 45.00 174.8 50.00 221.4 55.00 221.4 55.00 437.8 79.00 541.1 75.00 665.6 78.31 758.7 78.48 764.2 80.00 811.6	# f.t. E 0 -83.6 - 11.4 -87 -118.5 28.4 -90 " 46.8 -92 " 58.5 -96.5 " 71.5 -110 " 87.6 -115.5 " 100 -114.1 -
90.00 1335.6 93.48 1501.7	89.85 1241.0 95.25 1497.6	80.00 811.6 85.00 980.9 90.00 1180.8 95.00 1413.9	Wade, 1905
			100 0.7935 30.6 0.8674

ETHYL ACETATE + PROPYL ALCOHOL

Hirobe, 1908				Timofeev, 1905
mol %	đ	mol %	đ	% U
0 19,319 38.86 53,458 54,449	25.10 0.89447 .88009 .86333 .84887 .84796	58.123 70.773 77.763 90.508	0.84404 .82910 .81995 .80173 .78600	0 0.478 52.5 0.532 100 0.5933 % Q % Q
				initial final dil initial final dil
Merriman, 1913				(by mole acetate) (by mole alcohol) 100 95.1 -1109 52.5 53.85 - 112
% d	%		% d	95.1 91.2 -1035 10.0 14.2 - 820 91.2 85.7 - 964 5.2 10.0 -1075 85.7 81.9 - 914 0 5.2 -1510
0 0.92454	24.481	0.89104 60	.511 0.84830 .015 .83659	54 52.5 - 571
5.103 .91734 10.184 .91031 15.662 .90297 16.185 .90225	34.588 41.100	.87886 85	.750 .82077 .654 .81164	Longtin, 1942 (fig.)
19.920 .89739				mol % Q mix mol % Q mix mol % Q mix
Mathews and Co	oke, 1914	t		23 % 100 0 60 -276 20 -240 90 - 96 50 -292 10 -144 80 -192 40 -295 0 0
	50 %			80 -192 40 -295 0 0 70 -240 30 -288
	0.8645 0.8440	40 55	0.8267 0.8085	Hirobe, 1908
Peel, Madgin ar	nd Briscoe,	1928		mol % Q mix mol % Q mix mol % Q mix
		= +0.10 %		25,10° 0 - 54,449 -278.5 77.763 -202.1 19,319 -223.2 58,123 -290.6 90.508 -100.6 38,86 - 70.773 -249.7 100 -
Griswold, Chu				53.458 -315.5
%	d 25°	<u>%</u>		Peel, Madgin and Briscoe, 1928
12.5	. 89428 . 88459 . 87682	62.2 74.8	0.83449 .82128 .80858	50 vol % Dt = -5.3°
	. 86238 . 84783	$\substack{87.1\\100.0}$.7969 1 . 78 459	
Hirata, 1908				Ethyl acetate ($C_uH_gO_2$) + Propyl alcohol (C_3H_gO)
				Timofeev, 1905
vol %		vol %	<u>η</u>	% U
75 87.5 93.75	778 915 993	96.871 98.43 99.22	1045 10 70 1983	0 0.478 56.6 0.554 100 0.579
Mathews and Co	oke, 1914			0 dil initial final (by mole acetate)
t	η	t	η	100 93.1 -1249 93.1 86.0 -1117
0 25	50 % 959.0 694.4	40 55	539.6 442.5	93.1 86.0 -1117 86.0 80.8 -1000 59.4 56.6 - 606

Ethyl aceta	te (C ₄ H ₈ O ₂) + Isoamyl	alcohol
			$(C_5H_{12}O)$
Hirobe, 190	18.		

d	Q mix
25.08°	· · · · · · · · · · · · · · · · · · ·
0.89447	-
. 88316	-185.5
.87063	-323.8
. 85 7 54	-402.4
.85394	-410.6
.85232	-415.16
.83923	-417.8
,82452	-323.2
. 82046	-251.5
.80730	-
	25.08° 0.89447 .88316 .87063 .85754 .85394 .85232 .83923 .82452 .82046

w -	1	1.						1052	
VO.	vaı	.enkt) ar	ıa,	1111	one	v.	1953	

mol%		σ	
	0°	25.4°	31°
0	26,57	23.54	22.89
25	26,14	23,32	22.67
50	25,70	23.25	22.82
75	25,63	23.32	22.82
100	25,56	23.54	23, 10

Ethyl acetate ($C_4H_8O_2$) + Decyl alcohol ($C_{10}H_{22}O$)

Hoerr, Harwood and Ralston, 1944

*	f.t.	
12.8 76.2 100	-20.0 0.0 6.88	

Ethyl acetate ($C_4H_8O_2$) + Lauryl alcohol ($C_{12}H_{26}O$)

Hoerr, Harwood and Ralston, 1944

×	f.t.	
2.5	-20.0	
13.9 43.1	$\begin{smallmatrix}0.0\\10.0\end{smallmatrix}$	
90.7	20.0	
100	23.95	

Ethyl acetate (C4H8O2) + Tetradecyl alcohol (C14H300)

Hoerr, Harwwod and Ralston, 1944

 %	f.t.	
0.1	-20.0	
3.3 9.2	0.0	
9.2	10.0	
29.3	20.0	
73.1	30.0	
100	38.26	

Ethyl acetate ($C_4 H_8 \textbf{0}_2$) + Cetyl alcohol ($C_{1\,6} H_{3\,4} \textbf{0}$)

Hoerr, Harwood and Ralston, 1944

	%	f.t.	
	0.8 3.0 8.4 25.4 68.7	0.0 10.0 20.0 30.0 40.0 49.62	

Ethyl acetate ($C_4H_8O_2$) + Octadecyl alcohol $(C_{18}H_{38}O)$

Hoerr, Harwood and Ralston, 1944

Ж	f.t.	
0.1 0.6 2.7 9.3 33.1	0.0 10.0 20.0 30.0 40.0 57.98	

Ethyl acetate ($C_4H_8O_2$) + Glycol ($C_2H_6O_2$)

Mukhin and Mukhina, 1930

%	sat.t.	%	sat,t.
5.68 10.0 15.0 20.0 25.0 30.0 35.0 40.0	6.5 33.0 44.5 50.5 54.4 56.3 57.0	45.0 50.0 55.0 60.0 65.0 70.0 85.0	56.8 56.5 56.0 54.4 51.5 46.5 39.2

Ethyl acetate ($C_{\downarrow}H_{8}$	0 ₂) + Methyl 6	alate l	Ethy l	acetate	(C ₄ H ₈ 0	2) + Eth	yl mala	te (C ₈ H ₁	₄ 0 ₅)
		$(C_6H_{10}O_5)$	Walden,	, 1906					
Walden, 1906					%	D	b.t.		
%	D b.t.				2.94 4.82	+0	.364).724		
1.53 3.13 4.76 6.83	+0.212 0.478 0.759 1.130				7.15 9.30 11.20	().995 1.338 1.650		
8.77 11.11 14.03	1.495 1.928 2.475			%		d		(α) _D	
7,	d	(α) _D				20°		10 (2	
	20°	- · · <u>D</u>		6.57 11.20 14.62		0.912 0.923 0.934		-12.63 -12.56 -12.57	
6.54 18.05	0.918 0.949	-7.95 -8.11				70°			
10.03	70°			6.57 14.62		0.851 0.872	•	-12.20 -11.98	
5.66 13.98	0.855 0.885	-7.87 -8.13	g/100cc	(α) rea	d.c.	(α) gre	d.c. en	(α) viole	d.c.
			ļ			18°			
Walden, 1906			29.90 14.95 7.47	-9.49 -9.8 -9.8	1 1 1	-14.80 -15.1 -15.4	1.57 1.54 1.55	-20.18 -20.6 -20.8	2.12 2.09 2.11
g/100cc (α) d.c red	. (α) d. green	c. (a) d.c. violet					1.00	20.0	2.11
	18°								
20.42 -6.51 1 10.21 -6.51 1 2.55 -64.7 1	-9.65 1. -9.65 1. -9.41 1.	40 -12.10 1.86	Ethyl	acetate	(C₄H802	,) + Ethy	yl tart:	rat e (C ₈	H _{1 4} 0 ₆)
d.c. = dispersion c	onstant		Walden	, 1906					
				%		d		(α) _D	
			1			0°			
Grossmann and Landau g/100cc	, 1910 (α)			2.6 6.4 14.5	0	0.931 0.940 0.967	7	7.34 7.62 7.68	
red yellow	green pale	dark violet				20°			
	20°	blue		2.6 6.4 10.3	$\frac{0}{1}$	0.906 0.917 0.927	10 10).61).21).04	!
50.364 -5.96 -7.15 25.182 -6.12 -7.31	-8.44 -9.83 -8.66 -10.21	-10.32 -11.02 $-11.00 -$		14.5	12	0.943 50°	9	9.81	
12.591 ~6.59 -7.94	-9.29 -10.80 -9.55 -10.97	-11.52 - -11.78 -12.60		2.6 6.4 14.5	0	0.867 0.881 0.908	12	2.76 2.60 2.28	
						70 °			
				6.5 14.5		0.856 0.882	14 13	1.60 3.23	!

Ethyl acetate ($C_4H_8O_2$) + Cyclohexanol ($C_6H_{12}O$)	Ethyl acetate ($C_4H_8O_2$) + m-Methylcyclohexanol ($C_7H_1{}_1{}_0$)
Weissenberger and Schuster, 1924	Weissenberger, Schuster and Wojnoff, 1925
mol% p mol% p	
2 0°	15°
80.0 27 40.00 54 66.7 38 33.33 57	66.7 29.1
57.1 44.8 25.00 60 50.0 49 20.00 73	50.0 36.0
	40.0 29.9 33.3 42.1 28.6 43.8
mol% n σ	25.0 44.5 22.2 44.9
(water =1)	malg n o
20° 100· 14.5 0.474	
50 0 3 7 0 412	(water = 1)
57.2 1.4 0.378 50.0 1.2 0.369	15°
33,3 0,80 0,352	66.7 4.11 0.423 50.0 1.69 0.399 40.0 1.05 0.391
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ll 33.3 0.98 0.386
0 0.46 0.521	28,6 0.97 0.385 25.0 0.78 0.385 22.2 0.72 0.385
Ethyl acetate ($C_4H_8O_2$) + o-Methylcyclohexanol ($C_7II_{14}O$) Weissenberger, Schuster and Wojnoff, 1925	Ethyl acetate ($C_4H_8O_2$) + p-Methylcyclohexanol ($C_7H_{14}O$) Weissenberger, Schuster and Wojnoff, 1925
mo1% p	
15°	mol% p
66.7 25.6 50.0 32.1	15° 66.7 27,1
$\begin{array}{cccc} 40.0 & 36.2 \\ 33.3 & 38.9 \end{array}$	66.7 27.1 50.0 33.8 40.0 37.8
28.6 41.4 25.0 43.2	33.3 40.2 28.6 42.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
mol% η σ	mol% (water=1) o
	(water-1)
(water =1) 15°	15° 66.7 4.25 0.435
66.7 3.21 0.403 50.0 1.54 0.386	50.0 1.69 0.401 40.0 1.05 0.384
40.0 1.15 0.375 33.3 0.94 0.369 28.6 0.81 0.369	33.3 0.98 0.376 28.6 0.97 0.373
28.6 0.81 0.369 25.0 0.71 0.374 22.2 0.70 0.370	25.0 0.78 0.372 22.2 0.72 0.372
22.2 0.70 0,070	

Ethyl aceta	te (C ₄ H ₈ 0) ₂) + Bor	neol	(C ₁₀ H ₁₈	0)	Isopropy1	acetate	(C ₅ H ₁ ₀ O ₂) + Eth:	yl alc (C ₂ H	
Peacock, 19	14					Lecat, 19	49				
% 	đ	n _D		αD			Я		b.t.		Dt mix
0.8699 2.3461 4.433 8.951 17.663 26.301	0.8953 0.8956 0.8976 0.9004 0.9063 0.9127	1.37 1.37 1.37 1.38	19 61 90 91	28.2 28.4 28.2 28.1 28.6 28.5		======================================	0 53 70 100	(C.H. O.	78.3	Az	-4.4
							acctate	(C5111 002	, · 130		4 ₈ 0)
Propyl acetate ($G_5H_{10}O_2$) (b.t. = 101.6) + Lecat, 1949						Lecat, 194	19 	· · · · · · · · · · · · · · · · · · ·	b.t.) + miv
	2nd Comp		A	z							Ot mix
Name	Formula	b.t.	%	b.t.	Dt mi'x		0 30		89.5		-7. 3
Ethyl alcohol	CaH60	78.3	83	78.2	-1.5 (90%)		57 100		81.0 A 82.42	. z	
Propyl alcohol	C3H80	97.2	50	94.7	-5.7						
Isobutyl alcohol	C4H100	108.0	19	101.0	-5.1 (20%)	Sieg, Crü				ilcoho:	1 (CH ₄ 0)
sec.Butyl alcohol	$C_{4}H_{10}0$	99.5	53	97.3	-7.0 (50%)	ļ	1%	p ₂	P ₁		p
tert.Amyl	C 5H1 2 0	102.35	42	99.8	-5.2	L	v				
alcohol Allyl alcohol	C31160	96.85	52	94.6	(50%) -5.8	0	0	23.50° 0.0	11.4	1	11.4
21(0)101					(50%)	5.0 10.6 20.0 40.3	60.0 75.1 83.3 89.8	16.9 34.2 49.2 73.7	11.0 10.4 9.9 8.4) 	27.4 44.2 58.6 81.5
Propyl aceta			thyl	lactate ((C5H10O3)	54.0 74.5 83.1 94.8 100	91.0 94.3 95.7 98.6 100	78.7 92.6 98.4 109.8 116.0	7.9 5.8 4.6 1.7 0.0	3	88.6 99.4 104.7 113.5 116.0
Morgan and G								F	mol%	1.	n
	· · · · · · · · · · · · · · · · · · ·		σ			L	V	1.	L	v	r
0 28.		15° 24.080 25.19		40° 21.347 22.48				40.00			
51. 78. 100	59 83	26.19 27.78 29.449		23.54 25.21 26.990		0.0 10.6 13.8 20.0 29.6 37.8 47.2 54.3	0.0 75.2 78.1° 82.7 86.5 88.1 89.7 90.9	26.4 91.0 106.0 129.8 156.8 170.8 185.7 194.7	58.8 61.4 70.0 74.9 81.8 85.9	91.6 92.0 93.4 94.4 95.4 95.7	203.0 205.5 217.3 223.4 232.4 237.0 262.8
:											

mo1%	p	mo1%		Р	Lecat, 1	949				
L V	60.0°	L			Butylace	tate (C	(H ₁₂ O ₂)	(b.t. = 1	26.0) +	Alcohols
0.0 0.0		60.6	91.2	485.3		2nd	Comp.	A	z	
7.6 65.0 14.5 75.2	185.8	71.8 79.3	93.5	525.2 549.9	Name	For	nula b	.t. %	b.t.	Dt mix
25.1 82.7 30.6 85.2 47.8 89.3	336.5	90.0 00	96.6	588.4 632.4	Butyl alcohol	СъН	0 11	7.8 68.	5 117.2	-4.0 (68%)
mo1%			no 1%		Isoamyl alcohol	C ₅ H	120 13	1.9 17.	5 125.85	-3.3 (22%)
LL	V	L			Methoxy-	С ₃ Н	₈ 0 ₂ 12	4.5 48	119.5	-1.2
	2 0 °			i	glycol	C 11	0 10			(76%)
0.0	0.0	61.4 64.2		91.4	Ethoxy- glycol	C ₄ H	1002 13	5.3 10	1 2 5.35	i i
7.0 12.1	44.0 62.3	75.9	,	91.4 92.3 94.3	Ethylene	C ₂ H	50C1 12	8.6 31	125.6	(16%) -1.2
20.0 24.0	75.0 78.8	80.0		95.3 97.1	chlorhyd		,	0.0 01	120.0	(50%)
39.2 53.0	85.5 89.5	$90.8 \\ 100.0$	1	00.0	1-Chlor-	2- C ₃ H	0C1 12	7.0 25	125.5	-
33,0	69,5				propanol					
mo1%	b.t.	mo1%		b.t.						
					Butvl	acetate	(C4H1 2O2) + Butyl	alcohol	
	744mm						•			C ₄ H ₁₀ O)
0.0 10.4	126.2 110.4	$\frac{60.0}{71.5}$		71.6 68.9	Brunje	s and Fu	rnas, 193	5		
22.0 30.0	94.1 85.2	85.5		66.1	mol	% V	b.t.	L mc	1 % V	b.t.
43.0	76.8	60.0 71.5 85.5 92.5 100.0		64.92 64.15	L 			L	·	
					10.90	21.7	121.75	67.9	69.2	116.2
mo1%	Q mix	mol%		Q mix	20.8 29.5	33.2 41.3 46.5 51.7 52.9	120.1 119.1	71.0 72.6 72.9 73.1	71.5 73.4	116.2 116.6
(f }	20°				36.1 43.3	46.5 51.7	118.4 117.8	72.9 73.1	72.9 73.3 75.0	116.5 116.55 116.55 116.3 116.8 117.0
10.1	-120.0	54.2	_	267.2	44.7 51.0	52.9 56.9	117.5 117.3 117.1 116.8	75.6 82.8 86.5 91.3 96.0	75.0 81:3	116,55 116,3
18.9 33.3	-195.0 -266.0	63.0	-:	239.0	51.0 54.4 55.0	56.9 60.1 60.7 61.9	117.1	86.5 91.3	81.3 85.0 89.5 94.2	116.8
44.8	-280.0	81.3 86.7	-	143.8 105.1	57.5	61.9	116.6	96.0	94.2	11/.0
					60.8 64.6	64.2 66.9	$\substack{116.4\\116.3}$	98.0 99.5	96.4 98.9	117.0 117.0
							نی سے اند اند اند سے اند کے			
					mol %	d	mo1 %		mol %	d
					0.00	0 87418	25 36 50	0.85362	77. 15 0	. 81523
					2.20	0.87418 .87293	43 20	.84998	80.10	. 82276
					3.20 3.25 5.04	. 87210 . 87190	45.70 47.70 53.70 57.70	.84778 .84619	86.10	. 82296 . 81817
					5.04 5.49	.87190 .87124 .87076	53.70 57.70	. 84 240 . 83 967		. 81552 . 81340
					10.50 10.74	.86825 .86839	60.75 64.10	.83756 .83514	91.75	.81313 .81087
					15.40 20.80	. 86605	65.60 67.30	.83413	94.35	.81042
					24.80	.86302 .86078	70,85			. 80838 . 80598
					29.30	.85805	74,10	.82763		

	Butyl acetate ($C_6H_{12}O_2$) + Lauryl alcohol ($C_{12}H_{26}O$)
Sheinker and Peresleni, 1952	Hoerr, Harwood and Ralston, 1944
mo1%	% f.t.
L V b.t.	5.2 -20.0
p = 50mm	17.8 0.0 45.7 10.0
100 100 56.1 83.3 92.1 54.7 75.2 86.8 53.5 64.5 76.5 52.3	90.7 20.0 100 23.95
50.4 59.1 51.2 43.7 48.7 50.9 41.6 43.5 50.8 37.0 37.0 50.7 36.3 35.5 50.8 32.2 28.2 51.1 22.5 18.0 51.5	Butyl acetate ($C_6H_{12}O_2$) + Tetradecyl alcohol ($C_{1\mu}H_{3\sigma}O$)
0 0 52.6	Hoerr, Harwood and Ralston, 1944
p = 165.6mm	% f.t.
100 100 80,3 80.7 87.3 78.3 70.5 77.7 77.2 62.0 67.5 76.8 57.8 61,3 76.5 47.9 47.4 76.4 37.5 31,3 76.9 21.0 16.1 78.2 0 0 80.5	1.1 -20.0 5.8 0.0 14.5 10.0 36.7 20.0 73.3 30.0 100 38.26
p = 760mm	Butylacetate (C ₆ H ₁₂ O ₂) + Cetyl alcohol
100 100 117.5 88.8 89.6 117.1 84.4 84.7 117.0 82.4 82.5 116.9	(C ₁₆ H ₃₄ 0)
78.6 77.9 116.8 74.1 72.2 116.9 69.2 66.4 117.1	# f.t.
58.0 51.4 117.9 48.2 37.2 118.9	
33.4 21.9 121.2 0 0 126.1	0.3 -20.0 2.0 0.0 4.9 10.0 12.1 20.0 31.5 30.0 69.2 40.0 100 49.62
Butul assess (CH 0) Da 1 alask 1 (CH 0)	
Butyl acetate ($C_6H_{12}O_2$) + Decyl alcohol ($C_{10}H_{22}O$)	
Hoerr, Harwood and Ralston, 1944	Butyl acetate ($C_6H_{12}O_2$) + Octadecyl alcohol ($C_{18}H_{38}O$)
# f.t.	Hoerr, Harwood and Ralston, 1944
15.1 -20.0 76.1 0.0	% f.t.
100 6.88	0.3 0.0 1.7 10.0 5.0 20.0
	14.5 37.1 40.0 100 57.98
a .	II

Alcohols	Sonatyr	acetate	$(C_6H_{12}O_8)$) (b.t.	=	117.4) +	
Alcohols		Alco	hols						

Lecat, 1949

·	2nd Comp.		Az		_
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl alcohol	$C_{4}H_{10}0$	117.8	45	114.2	-4.5 (50%)
Isobutyl alcohol	$C_{14}H_{10}0$	108.0	78	107.75	-4.8 (50%)
Methoxygly	co1C3H8O3	124.5	16	115.6	-1.0

Sec.Butyl acetate ($C_6H_{1\,2}O_2$) + Sec.Butyl alcohol ($C_4H_{1\,0}O$)

Lecat, 1949

%	b.t.	
86.3 100	122.2 99.6 Az (sic.) 99.5	

Amyl acetate ($C_7H_{14}O_2$) + Amyl alcohol ($C_5H_{12}O$)

Holley, 1902

770.0mm - 770.4mm 100.00	/0	D. L.	70	υ. τ.
97.36 129.1 60.08 130.2 94.58 129.3 56.87 130.5 91.84 129.55 50.04 131.3 89.10 129.9 42.88 132.0 85.42 129.95 35.21 133.0 82.06 130.0 27.83 133.8 78.48 130.0 20.85 134.55 74.80 130.05 17.80 135.5 71.27 130.01 7.49 136.2		770.0mm -	770.4mm	
	97.36 94.58 91.84 89.10 85.42 82.06 78.48 74.80 71.27	129.1 129.3 129.55 129.9 129.95 130.0 130.0 130.05 130.05	60.08 56.87 50.04 42.88 35.21 27.83 20.85 17.80 7.49	130.2 130.5 131.3 132.0 133.0 133.8 134.55 135.5

Amyl acetate ($C_7H_{14}O_2$) + Glycol ($C_2H_6O_2$)

Lecat, 1949

%	b.t.	
0 6 100	148.8 147.6 Az 197.4	

Isoamyl acetate ($C_7H_{1\,4}O_2$) (b.t. = 142.1) + AIc. Lecat, 1949

	2nd Comp		A	z	
Name	Formula	b.t.	%	b.t.	Dt mix
Cyclo- pentanol	C ₅ H ₁₀ 0	140.85	48	139.4	-4.8 (40%)
Ethoxy- glycol	C4H1002	135.3	70	133,8	-2.4 (50%)
Methyl lactate	$_{\it F}$ $0_{\it g}$ $H_{\it \mu}$ $\rm J$	143.8	44	138.5	-1.9 (50%)
Glycol	C2H6O2	197.4	two	liquid	phases.

Hexyl acetate ($C_8H_{16}O_2$) + Butoxyglycol ($C_6H_{14}O_2$)

Lecat, 1949

%	b.t.	
0 45 100	171.5 167.7 171.15	Az

Lecat, 1949

Methylpropionate ($C_0H_8O_2$) (b.t. = 79.85) + Alcohols

	2nd Comp.	Az	Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	СН ₄ 0	64.65	48	62.4	-5.7 (50%)
Ethyl alcohol	C2H60	78.3	36	72.2	-5.5 (50%)
Isopropyl alcohol	C3H8O	82.42	35	7 6.35	-7.3 (35%)
Tert.Butyl alcohol	C ₄ H ₁₀ 0	82.45	36	77.6	-

	سجت حديد السائل السائل		===	=							
Ĭ	onate (C ₅ H Alcohols	1002) (b.t.	= 99.1)	+	Butylpropion	ate (C ₇ H Alcohols	1402) (b.t. =	= 146.8) +
Lecat, 194	- 					Lecat, 1949					
	2nd Comp		Az			<u> </u>	2nd Comp		Az		
Name	Formula	b.t.	%	b.t.	Dt mix	Name	Formula	b,t.	%	b.t.	Dt mix
Ethyl alcohol	C2H60	78.3	72	77.95	-3.8 (75%)	Glycol	C ₂ H ₆ O ₂	197.4	7	146.0	-
Propyl alcohol	0 ₈ H ₆ 3	97.2	46	93.4	-5.6 (50%)	Propoxy- glycol	$C_5H_{12}O_2$	151.35	10	145.0	-
Isobutyl alcohol	$C_{4}H_{10}0$	108.0	13	98.9	-1.5 (10%)	Methyl lactate	$C_{\mu}H_{8}O_{3}$	143.8	60	140.5	-2.5 (55%)
sec.Butyl alcohol	C4H100	99.5	45	95.8	-5.0 (40%)	Ethylene bromhydrin	C2H50Br	150.2	50	146.6	-
tert.Amyl alcohol	C ₅ H _{1 2} 0	102.35	30	98.0	-4.5 (38%)						
Allyl alcohol	C ₃ H ₆ O	96.85	43	93.5	-6.0 (47%)	Isobutylprop	ionate (Alcoho		(b1	t. = 137.	5)+
E-h-la			===				2nd Comp		Az		
Einyipropi	onate (C ₅ H	1002) +		1 malate $_{100_5}$)	1	Name	Formula	b.t.	%	b.t.	Dt mix
Grossmann a	and Landau,	1910				Isoamyl alcohol	C 5 H 1 2 O	131.9	72	131.3	-3.5 (70%)
g/100cc	red yellow	(α green		dark blue	violet	Ethoxyglycol Methyl lactate	$C_{4}H_{10}O_{2}$ $C_{4}H_{8}O_{3}$	135.3 143.8	35 40	131.5 135.8	-2.0 (40%)
		20°				Cyclopentano	1C ₅ H _{1 0} 0	140.85	28	136.5	-
25.0955 -5 12.5478 -5 4.986 -5	5.18 -6.38 5.02 -6.02 5.66 -7.01 5.82 -7.42 5.42 -8.02	-7.01 -7.57 -8.02	-8.67 -8.09 -8.29 -8.62 -9.63	-9.16 -8.49 -8.77 -9.03 -10.03	-9.86 -9.01 -9.09 -9.43 -10.43	Isoamylpropi Lecat, 1949	onate (C Alcoho		(b.t.	≈ 160.7	') +
						1	2nd Comp.		Az		
Propylprop Lecat, 194	oionate (C_6	H ₁₂ O ₂)	(b.t.=	123.0) +	Alc.	Name	Formula	b.t.	%	b.t.	Dt mix
	2nd Comp.		Az			Cyclohexanol	C6H120	160.8	47	158.5	-4.0 (50%)
Name	Formula	b.t.	%	b.t.	Dt mix	Ethyl lactate	C 5H1 0O 3	154.1	78	152.8	-
Butyl alcohol	C4H100	117.8	-	117.5	-						
Methoxy- glycol	C 3H802	124.5	38	118.5	-1.3 (40%)						
Ethylene chlorhydrine	C2H50C1	128.6	-	122,7	-1.1 (50%)						
			4								!

590			ET	HYLBU	TYRAT
Ethylbutyr Lecat, 194	ate (C ₆ H ₁₂ Alcohols	0 ₂) (b.	t. = .	121,5)	+
	2nd Comp		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl alcohol	C4H100	117.8	58	115.9	-2.5 (72%)
Methyl propyl car	C ₅ H _{1 2} 0 binol	119.8	47	118,5	-
Methoxy- glycol	C3H8O2	124.5	32	117.8	-1.0 (30%)
Methylbuty Lecat, 194	rate (C ₅ H ₁ Alcohols 9	₀ 0 ₂) (i	.t. =	102.65) +
	2nd Comp	•	Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Ethyl alcohol	C2H60	78.3	84	78.0	-0.7 (95%)
Propyl alcohol	C3H80	97.2	51	94.5	-4.4 (50%)
Isobutyl	C ₄ H ₁₀ 0	108.0	25	101.3	-3.5

99.5

102.35

96.85

59

47

51

97.7

99.8

94.7

alcohol

alcohol

alcohol

alcohol

Allyl

sec.Butyl

tert.Amyl

 $C_{\mu}H_{10}0$

C5H120

C3H60

١	Propylbutyrate ($C_7H_{14}O_2$) (b.t. = 143.7) + Alcohols
i	Alcoho1s
ı	1 cant 1040

Lecat, 1949 2nd Comp. Αz % Dt mix Formula b.t. b.t. Name $C_8H_6O_8$ 197.4 3 143.6 Glycol 135.3 72 134.0 -1.5 Ethoxy- $C_{\mu}H_{1}_{0}O_{2}$ (80%) glycol -3.2 Methyl $_{\rm F}0_{\rm B}H_{\mu}{\rm J}$ 143.8 45 138.5

Butyl butyrate (C8H1602) + Butyl alcohol (C4H100)

(45%)

Othmer, 1943

lactate

(23%)

-5.5

(50%)

-4.8

(50%)

-3.1

(50%)

	mo1%	(b.t.)		
L	V	L	V	
0	0	50	83.8	
2 5	11.7	60	87.6	
5	27.5	70	90.7	
10	53.4	80	93.8	
20	67.9	90	97.1	
30	74.7	100	100.0	
40	79.7		• •	

Butyl butyrate ($C_8H_{1\,6}O_2$) (b.t. = 166.4) + Leçat, 1949 $^{\rm Alcohols}$

Name	2nd Comp.		A:	z	
	Formula	b.t.	%	b.t.	Dt mix
Glycol	CaHeOa	197.4	16	160.3	-
Butoxy-	C6H1402	171,15	20	165.0	-1.5
glycol					(25%)
Cyclohexan	io1C ₆ H _{1 2} O	160.8	-	160.5	-
Furfuryl alcohol	C5H6O2	169.35	30	164.0	-

Isoamyl	butyrate (C9H180;)	(b.t.	=	181.05) +
	Alcohols					
Tecat	1040					

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Isooctyl alcohol	C ₈ H ₁₈ 0	180.4	72	180.3	-3.7 (60%)
Glycol	C2H6O2	197.4	23	167.5	-
Pinaco1	$C_6H_1 + O_2$	174.35	-	173.9	-
Butoxy-	$C_6H_1 + O_2$	171.15	86	170.75	-0.5
glycol					(90%)
Methoxydi-	C5H12O3	192.95	22	176.55	-0.8
glycol					(20%)
Isobutyl	C7111403	182.15	28	178.5	-1.3
lactate					(20%)
Dichlor- hydrin as.	C2 H6 OC 15	182.5	- 50%	180.9	+1.0
Glycol	$C_{4}H_{8}O_{3}$	190.9	21	180.2	-

Isobutyl butyrate ($C_8H_{16}O_2$) (b.t. = 156.9) + Lecat, 1949 Alcohols

	2nd Comp.				
Name	Formula	b.t.	%	b.t.	Dt mix
Cyclohexanol	C6H120	160.8	22	156.3	-2.3 (20%)
Propoxy- glycol	C5H12O2	151.35	72	149.8	-1.8 (70%)
Ethyl lactate	C ₅ H _{1 0} O ₃	154,1	62	151.5	-2.5 (50%)

Ethylisobutyrate ($C_6H_{1\,2}O_2$) (b.t. = 110.1) + Alcohols

Lecat, 1949.

monoacetate

	2nd Comp	•	Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Propyl alcohol	C 3H80	97.2	75	96.5	-3.5 (75%)
Butyl alcohol	C ₄ H ₁₀ 0	117.8	17	109.4	-2.2 (17%)
alcohol Isobutyl alcohol	C4H100	108.0	52	105.4	-4.8 (50%)
Allyl alcohol	C 3H60	96.85	75	96.2	-

Methylisobutyrate ($C_5H_{10}O_2$) (b.t. = 92.5) +

Alcohols
Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Methyl alcohol	СН ₄ 0	64.65	83	64.4	-2.5 (80%)
Ethyl alcohol	C2H60	78.3	58	77.0	-2.3 (85%)
Propyl alcohol	C3H80	97.2	27	89.7	-4 (25%)
Isopropyl alcohol	C ₃ H ₆ O	82.42	65	81.4	-7.2 (65%)
sec.Butyl alcohol	C ₄ H ₁₀ 0	99.5	23	92.0	-3.8 (25%)
tert.Butyl alcohol	C4H100	82.45	80	82.2	_
Allyl alcohol	C 3H60	96.85	28	89.8	-

Propylisobutyrate ($C_7H_{14}O_2$) (b.t. = 134.0) + Lecat, 1949 Alcohols

i	2nd Comp.		Az				
Name	Formula b.t. %		%	b.t. Dt mi			
Amylalcohol	C 5H1 20	138.2	19	133.5			
Isoamyl alcohol	C5H120	131.9	53	130.2			
Ethylene chlorhydrin	C2H50C1	128.6	94	128.3			

Isopropylisobutyrate ($C_7H_{1\,4}0_2$) + Butylalcohol ($C_4H_{1\,0}0$)

Lecat, 1949

%	b.t.	
0 54 100	120.8 115.5 117.8	Az

Lecat.	1949
Letat.	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Isobutylisobutyrate ($\rm C_8H_{16}O_8$) (b.t. = 148.6) + Alcohols

	2nd Comp	•	Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Glycol	C2H6O2	197.4	6	147.2	_
Methyl	C4H803	143.8	70	141.5	-3.2
lactate					(50%)
Ethy I	C5H1003	154.1	30	146.5	-2.5
lactate					(30%)

Lecat, 1949

Isoamylisobutyrate ($C_9H_{1\,8}O_2$) (b.t. = 169.8) + Alcohols

Name	2nd Comp.		Az	
	Formula	b.t.	%	b.t.
Glycol	CaH6Oa	197.4	18	162.5
Butoxy- glycol	C6H1402	171.15	36	166.5
Glycol Butoxy- glycol Propyl lactate	C6H12O3	172.7	40	167.5

Lecat, 1949

Ethylvalerate ($C_7H_{14}O_2$) (b.t. = 145.45) + Alcohols

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Glycol	C211602	197.4	4.5	144.8	30 (4.5%)
Propoxy- glycol	C5H12O2	151.35	20	144.1	-2.2 (50%)
Methyl lactate	ε 0 ₈ Η ₄ Ω	143.8	58	140.0	-

Lecat, 1949

Methylisovalerate ($C_6H_{1\,2}O_2$) (b.t. = 116.5) + Alcohols

	2nd Comp	•	Az			
Name	Formula	b.t.	%	b.t.	Dt mix	
Butyl alcohol	C4H100	117.8	40	113.5	-3.3 (40%)	
Isobutyl alcohol	C4H100	108.0	73	107.5	-3 (83%)	
Methyl propyl car	C ₅ H ₁₂ O binol	119.8	20	115.8	-	
Methoxy- glycol	C3H8O2	124.5	15	115.0	-0.8 (10%)	

Lecat, 1949

Ethylisovalerate ($C_7 H_{1\,\text{h}} \theta_2$) (b.t. = 134.7) + Alcohols

	2nd Comp		Αz		
Name	Formula	b.t.	%	b.t.	Dt mix
Methoxy- glycol	C 3H805	124.5	94	124.0	-
Ethoxy- glycol	$C_{\mu}H_{10}O_{2}$	135.3	42	130.0	-2,2 (50%)
2-Chlor-1- propanol	C ₃ H ₇ OC1	133.7	60	133.5	-

Lecat, 1949

Propylisovalerate ($C_8H_{16}O_2$) (b.t. = 155.7) + Alcohols

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Hexyl alcohol	C ₆ H _{1 4} 0	157,85	31	154.2	-2.5 (30%)
Cyclohexanol Propoxy- glycol	C ₆ H ₁₂ O C ₅ H ₁₂ O ₂	160.8 151.35	17 65	155.1 147.5	-
Ethyl lactate	C5H1003	154.1	60	151.0	-2,5

r———						<u> </u>				
Lecat, 194	9					Lecat, 1949				
Methylcapr	oate (C ₇ H Alcohol		b.t. =	149.8) +	Esters + Al	cohols			
	0 - 1 C - m		A 2	·		·	2nd Comp.		Az	
	2nd Com		% %	b.t.		Name	Formula	b.t.	%	b.t.
Name	Formula	b.t.	76	В. С.		Ethy1	C8H1602	167.7	25	166.0
Glycol	$C_8H_6O_8$	197.4	7			caproate +	"			-
Methyl	C4H803	143.8	70	141.	7	Butoxy-	$C_6H_{14}O_2$	171.15		
lactate	c u A	154.1	37	148.	n	glycol	<i>a</i> , , ,	7.00 =		
Ethyl lactate	C5H1003	104.1	37	140.	o .	Ethy I heptanoate	C ₉ H ₁₈ O ₂	188.7	30	174.0
1ac ta te						Glycol	С ₂ Н ₆ О ₂	197.4		
			==			Methyl	C ₉ H ₁₈ O ₂	192.9	31	175.0
Lecat, 194	9					caprylate +	,,,,,			
Tooby + 7 : -	lo=o+c	/ C D O) (5	. 4 ~ 15	71 2) +	Glycol	CaH60a	197.4		
Isobutylis	ovalerate Alcol		<i>)</i> (E	. t. ~ 14	11,4 / *	Ethyl	$C_{10}H_{20}O_{2}$	208.35	41	182.5
	AICO					caprylate +				
	2nd Comp	р.	Az	: 		Glycol Ethyl	C ₂ H ₆ O ₂	197.4		202.0
Name	Formula	b.t.	%	b.t.	Dt mix	caprylate +	$C_{10}H_{20}O_{2}$	208.35	-	202.0
Uontul	CUA	176.15	8	171.0	-0.6	Isoamyl	C8H16O3	202,4		
Heptyl alcohol	C7H, 60	170.13	0	171.0	(5%)	lactate	0 .0 1			
Glycol	C2H6O2	197.4	21	163.5	-	Ethyl	C ₁₀ H ₂₀ O ₂	208,35	82	204.8
Pinacol	C6H, 402	176.15	10	169.8	-	caprylate +				
Butoxy-	C6H, 402	171.15	43	167.7	-2.2	Benzyl	C7H80	205,25		
glycol					(40%)	alcohol Methyl	C10H2002	212.0		
Methoxydi-	C5H12O3	192.95	-	170.5	-	pelargonate		213.8	45	186.0
glycol Propyl	C6H12O3	172.7	52	169.0	-1.3	Glycol	C2H6O2	197.4		
lactate	C6111 20 4	1/2,/	32	107.0	(50%)	Ethyl	C ₁₁ H ₂₂ O ₂	227	-	190.8
Methyl	C2H140	168.5	62	167.5	-2.3	pelargonate				
cyclohexan	•				(60%)	Glycol	C2H6O2	197.4		
د سار شد آمر سید شهرسی اسار شهرسی مید د کمیان که اسار شید می سید اسار سید بید اسا د کمیان که دارد کمیان مید اسان کار اساز کمیان کار	. هم حد حد بر سام می می می می وارد. . هم حد می می می می می می می می می ا									
. 10						1				
Lecat, 19	49					Mothul conmu	doto / C H	0) +	D., 41	alaaba1
Isoamylis + Alcohol	ovalerate s	(C _{1 o} H _{2 o} O	e)(t	o.t.=192.	,7)	Methyl capry	late (C ₉ n	1802) +	-	(C ₄ H ₁₀ 0)
	2nd Comp.	,		Az		Sedgwick, Hoerr and Harwood, 1952				
Name	Formula	b.t.	%	b.t.	Dt mix		%	f.	t.	
Octyl alcohol	C ₈ H ₁₈ O	195,2	15	192.55	-1.8 (28%)		75.08 42.55	- 50 - 40	0 0	
Glycol	C2H6O2	197.4	28	174.85	~					
Methoxy- diglycol	C5H12O3	192.95	45	185.0	-					
Glycol monoacetat	C4H8O3	190.9	57	187.0	. .					
Linalool	C _{1 0} H _{1 8} 0	198.6	_	192.4	-					

Methyl laurate ($C_{13}H_{26}O_2$)	+ Methyl alcohol (CH _k O)	Methy
Sedgwick, Hoerr and Marwood	, 1952	Sedgw
Я	f.t.	
99.9 98.7 95.02	-30 -20 -10	
95.02 55.5	0	
Methyl laurate ($C_{13}H_{26}O_2$)	+ Butyl alcohol ($C_{\downarrow}H_{1,0}0$)	Methy
Sedgwick, Hoerr and Harwood	, 1952	Sedgy
<u> </u>	f.t.	
99.7 99.3 97.9	-50 -40 -30	
97.9 94.2 84.2 37.7	-20 -10	
37.7	0	
Methyl tridecanoate ($C_{1 \mu}H_2$	$_{8}0_{2}$) + Methyl alcohol ($_{\rm CII_{k}0}$)	Methy
Sedgwick, Hoerr and Harwood	•	Sedg
Z	f.t.	
99.7	-20 -10	
97.3 73.4	0	
Methyl tridecanoate ($C_{14}H_2$	₈ 0 ₂) + Butyl alcohol (C ₄ H _{1 o} O)	Ethyl
Sedgwick, Hoerr and Harwood	, 1952	.
%	f.t.	Neiri
99.9 99.6	-50 -40	
99.6 98.2 94.8	-30 -20	
86.3 47.5	-10 0	
		1

Methyl myristate ($C_{1.5}H_3$	$_{0}0_{2}$) + Butyl alcohol ($C_{4}H_{10}0$)
Sedgwick, Hoerr and Harw	ood, 1952
%	f.t.
99.9 99.0 96.4 90.3 67.1	-30 -20 -10 0

Methyl palmitate ($C_{1.7}H_{3.4}O_{2}$) + Methyl alcohol ($CH_{\rm k}O$)

Sedgwick, Hoerr and Harwood, 1952

Я	f.t.	
99.9 98.6 78.7	0 10 20	

Methyl palmitate ($C_{1.7}H_{3\,\mu}0_{2}$) + Butyl alcohol ($C_{4}H_{1.0}0$)

Sedgwick, Hoerr and Harwood, 1952

Я	f.t.
99.9 99.3 97.8 92.4 66.7	-20 -10 0 10 20

Ethyl palmitate ($C_{18}H_{36}O_2$) + Ethyl alcohol (C_2H_6O)

Neirinckx, 1953

mo1%	f.t.	mo1%	f.t.
92 90 88 84 80 70 60 50	5.5 8.25 10.4 12 12.9 14 15	40 30 12 9 6 2	16.9 17.85 19.55 20 20.75 21.9 22.9

	<u> </u>				
Methyl vinyl carbinol acetate ($C_6H_{1.0}O_2$) + 2,3-Butylene glycol 1 ($C_4H_{1.0}O_2$)	Methyl acr	ylate (C ₄ H, Alcohol:		t.t. = 80.0)	+
Othmer, Shlechter and Koszalka, 1945	Lecat, 1949) 	1		
	-	2nd Comp.		Az	
mo1% b.t. L V	Name	Formula	b.t.	% b.t.	
0 0 179.0 0.8 10.0 175.5 2.4 24.8 170.4	hethyl alcohol Ethyl	Сн ₄ 0 С ₂ н ₆ 0	64.65 78.3	54.0 62.5 42.5 73.5	
4.7 54.8 156.0 6.9 63.5 150.4 11.6 72.5 141.2	Alcohol Proryl	C3H80	97.2	5.4 79.0	
17.9 80.4 133.9 46.4 91.7 120.5 75.7 97.5 114.9 86.5 98.6 114.0 88.3 98.8 113.5 100 100 111.8	alcohol Isopropyl alcohol	0 ₈ H ₆ 3	82.4	46.5 76.0	
% - n _D % n _D	Methyl met	acrvlate (CeiioOo)	+ Methyl alc	ohol
24°	Woods, 1947		- 	(CH ₄ 0	Į.
0 1.3990 52.30 1.4155 9,92 1.4025 55.00 1.4160 18,19 1.4040 58.02 1.4168	% L	mol%	K	mol% V	b.t.
24,96 1.4060 61.28 1.4178 30.77 1.4080 64.81 1.4190 35.61 1.4100 69.08 1.4205			200mm		
39.82 1.4115 73.71 1.4220 43.42 1.4125 76.76 1.4230 46.74 1.4139 84.79 1.4260 49.70 1.4150 92.32 1.4285 52.40 1.4160 100 1.4310	0 1.0 2.0 4.0 6.0 8.0 10.0	0 3.1 6 11.5 16.6 21.4 25.7 35.5	0 4.0 10.0 19.5 30.0 36.2 38.0 43.0	0 11.5 25.7 43.1 57.2 64.0 65.7 70.2	61.5 56.0 50.0 46.5 44.2 43.2 41.9
Triolein ($C_{57}H_{104}O_6$) + Ethyl alcohol (C_2H_6O) Bingham, 1907	20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0	33.9 51 57.25 67.6 75.7 82.3 87.9 92.6	48.0 52.0 54.5 57.0 62.5 67.6 72.8 80.4	74.2 77.2 78.9 80.5 83.9 86.7 88.3 92.8	39.4 38.1 37.2 36.4 36.3 35.1 34.9 34.7 34.6
C.S.T. = 145°	85.0 90.0 95.0 100.0	94.6 96.5 98.35 100	83.4 88.3 93.1 100.0	94.0 95.9 97.7 100.0	34.6 34.7 34.9 35.2
	= 		760mm		
Triolein (C ₅₇ H ₁₀₄ O ₆) + Menthol (C ₁₀ H ₂₀ O) Castiglioni, 1934	0 1 2 4 6 8	0 3.1 6 11.5 16.6 21.4 25.7	0 5.7 12.0 21.2 28.4 33.6 37.6	0 15.0 29.0 46.2 55.5 61.3 65.4	99.5 96.6 92.5 84.5 79.0 76.3 74.2
	- 15 20	25.7 35.5 43.9	37.6 42.1 48.0	69.3 74.25	71.2 69.6
20° 0 0.9136 5869.2 5 0.9123 5547.3 10 0.9114 5192.5 15 0.9106 4869.9 20 0.9101 4444.0	25 30 40 50 60 70 80 85 90	51.7 57.25 67.6 75.7 82.3 87.9 92.6 94.6 96.5 98.35	48.0 52.2 55.4 59.8 64.2 69.7 75.3 81.1 85.0 89.0 94.9	77.4 79.6 82.4 84.8 87.7 90.4 92.9 94.7 96.5	68.2 67.2 66.0 65.6 65.1 64.8 64.4 64.2 64.4
	100	100	100.0	98.3 100.0	64.5 64.6

%	d	n _D	
	20°		
0 1.0 2.0 4.0 6.0 8.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 95.0	0.9441 0.9408 0.9398 0.9366 0.9323 0.9263 0.9178 0.9016 0.8823 0.8778 0.8619 0.8470 0.8323 0.8112 0.8045 0.7916	1.4140 1.4135 1.4128 1.4117 1.4100 1.4078 1.4060 1.3966 1.3917 1.3876 1.3780 1.3600 1.3518 1.3430 1.3340 1.3350	
Ethyl acrylate (C	₅ H ₈ O ₂) + Meth	nyl alcohol ((CH ₄ 0)
Leczt, 1949			

%	b.t.
0	43 (103mm)
84.4	64.5(760mm) Az
100	64.7

Ethyl acrylate ($C_5H_8O_2$) + Ethyl alcohol (C_2H_6O)

Lecat, 1949

%	b.t.		
$\begin{smallmatrix}0\\72.7\\100\end{smallmatrix}$	43 77.5 78.3	Az	

Ethylene diacetine ($C_6H_{10}O_4$) (b.t. = 186.3) + Lecat, 1949 Alcohols

	2nd Comp.		Az	;
Name	Formula	b.t.	%	b.t.
Octyl alcohol	C ₈ H ₁₈ O	195.2	-	186.0
Isooctyl alcohol	C ₈ H ₁₈ O	180.4	-	179.2
Glycol	C2H6O2	197.4	24	179.5
Methoxy- diglycol	C ₅ H ₁₂ O ₃	192.95	30	181,5

Ethylidene diacetine ($C_6H_{10}O_4$) (b.t. = 168.5) + Lecat, 1949 Alcohols

	2nd Comp.		Αz		
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Hexyl alcohol	C ₆ H _{1 4} 0	157.85	-	157.3	-1.8 (20%)
Isooctyl alcohol	C ₈ H ₁₈ O	180.4	6.5	168,3	-4.2 (40%)
Glycol	C2H6O3	197.4	8.2	167.45	32.8 (8.2%)
Pinacol	C6H1402	1 7 4.35	-	167.0	-
Butoxy- glycol	C ₆ H _{1 4} O ₂	171.15	36	166.7	-2.8 (48%)
Methyl cyclohexano	C ₇ H _{1 +} 0	168.5	43	165.8	-

Methylcarbonate ($C_3H_6O_3$) (b.t. = 90.35) + Alcohols

Lecat, 1949

		Az		
Formula	b.t.	%	b.t.	Dt mix
CH ₁₄ 0	64.65	70	62,7	-6,3
				(70%)
C2H60	78.3	52	75.0	-5
				(50%)
C3H80	97.2	26	86.4	-6.0
				(25%)
C3H80	82.42	56	78.8	-8.5
				(50%)
$C_{4}H_{10}0$	108.0	9	90.05	-9.2
				(50%)
$C_{4}H_{10}0$	99.5	15	89.0	-6,5
				(15%)
$C_{4}H_{10}0$	82.45	67	80.65	-6.5
				(67%)
C3H60	96.85	23	86.4	-6.5
			, .	(20%)
$C_{14}H_{10}S$	97.5	30	88.2	-
			,-	
	CH ₄ 0 C ₂ H ₆ 0 C ₃ H ₈ 0 C ₃ H ₈ 0 C ₄ H ₁₀ 0	CH ₄ 0 64.65 C ₂ H ₆ 0 78.3 C ₃ H ₈ 0 97.2 C ₃ H ₈ 0 82.42 C ₄ H ₁₀ 0 108.0 C ₄ H ₁₀ 0 99.5 C ₄ H ₁₀ 0 82.45 C ₃ H ₆ 0 96.85	CH ₄ 0 64.65 70 C ₂ H ₆ 0 78.3 52 C ₃ H ₈ 0 97.2 26 C ₃ H ₈ 0 82.42 56 C ₄ H ₁₀ 0 108.0 9 C ₄ H ₁₀ 0 99.5 15 C ₄ H ₁₀ 0 82.45 67 C ₃ H ₆ 0 96.85 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

			ETHY	L CAR	BONAT
Lecat, 1949		34			
Ethylcarbona	te (C ₅ H ₁₀ Alcohols	03)(b	.t. =]	126.5)	+
	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl alcohol	$C_{{}^{\!$	117.8	63	116.5	-4.4
Amy 1 alcohol	C5H120	138.2	4	125.5	-1.0 (4%)
Isoamyl alcohol	C5H120	131.9	26.5	125.3	-6.4 (50%)
Cyclopentanol	C 5H1 00	140.85	-	125.0	-
Ethylene chlorhydrin	C2H50C1	128.6	28	125.7	-
Lecat, 1949					
Isobutylcarb	onate (C ₉ Alcohols	η Η ₁₈ 0 ₃)	(b.t.	≈ 190.3	3) +
	2nd Comp.		Az	************	
Name	Formula	b.t.	%	b.t.	Dt mix
Octyl alcohol	C ₈ II ₁₈ 0	195.2	7	189.5	-2.2 (20%)
Isooctyl alcohol	C ₈ H ₁₈ O	180.4	-	180.0	-1.2 (90%)
Glycol	$C_2H_6O_2$	197.4	28	180.5	-
Linaloö1	C _{1 O} H _{1 8} 0	198.6	4	189.8	-1.5 (10%)
Lecat, 1949					
Isoamylcarbon	nate (C ₁₁	Нагоз)	(b.t.	= 232.2	+
	2nd Comp.		Az		-
Name	Formula	b.t.	%	b.t.	
Decyl alcohol	C ₁₀ H ₂₂ 0	232.8	36	230.9	
Glycol	CaH6Oa	197.4	49	188.45	
Citronellol	C ₁₀ H ₂₀ 0	224.4	-	224.2	
Geraniol Phenyl	C ₁₀ H ₁₈ 0	229.6	65 5	229.2	

C9H12O

C9H100

235.6

257.6

231.8

256.7

Pheny1

propanol

Cinnamic

alcohol

+ BUTYL A	LCOHOL				597		
Methyl oxala	te (C ₄ H ₆ C) ₄) + Tr	imethy		oI H ₁₀ 0)		
Ampola and R	imatori, 1	1896					
%	D f	. t.	%	D	f.t.		
0.42 0.78 1.35 1.79 2.48 3.51 4.75	-0.1- 0.22 0.5 0.6 0.8 1.2	8 1 0 5	5.93 7.31 3.85 10.46 14.67 21.29 31.83	-2. 2. 2. 3. 4. 6.	47 96 48		
			===				
Methyl oxalate ($C_u H_6 O_u$) + Capryl alcohol ($C_8 H_{1.8} O$)							
Ampola and Ri	matori, 1	896			 		
%	D f	.t.	%	D	f.t.		
0.33 0.67 1.25 1.83 2.50 3.72 4.73	-0.1 0.2 0.4 0.5 0.7 1.0	0 0 6 5 1 4 1	5.79 7.54 8.27 9.60 1.53 5.21 9.86	2. 2. 2. 3.	60 89 22 54 91 60 34		
Lecat, 1949 Methyl oxala	te (C ₄ H ₆ 0 Alcohols) ₄) (b.	t. = 1	.65,45)	+		
	2nd Comp.		Az	:			
Name	Formula	b.t.	%	b.t.	Sat.t.		
Heptyl	C7H160	1 7 6, 15	-	163.8	-		
alcohol Isooctyl alcohol	C ₈ H ₁₈ O	180.4	14	164.0	-		
Glycol	$C_2H_6O_2$	197.4	14	163.8	-		
Pinacol	$C_6H_{1\mu}O_8$	174.35	19	163.3	48.3 (19%)		
Cyclohexanol Methyl cyclohexanol	C7H140	160.8 168.5	59 -	155.6 161.2	-		

Methyl oxalate ($C_{4}H_{6}O_{4}$) + Glycerol	diethyl ether (C ₇ H ₁₆ O ₃)	Ethyl s	uccinate	(C ₈ H _{1 1} O ₁	,) + Ethy		ite 5H14O6)
Ampola and Rimatori, 189	96 		Patters	on, Hende	erson and	Fairlir,	1907	
% D f.t.	%	D f.t.	t	d	t	d	t	đ
$\begin{array}{ccc} 0.24 & -0.07 \\ 0.71 & 0.20 \end{array}$	4.00 6.02	-0.86 1.27	20.	6721%	79	.9261%		100%
1.30 0.30 1.96 0.46 2.65 0.60	8.66 13.68 19.87	1.77 2.86 4.20	19.35 25.55 33.95 43.3	1.065	7 36,75	1.1684 1.1562 1.1515 1.1450	16.8 37.2 46.8 58.3	1.2087 1.1878 1.1783 1.1665
			t	(a)	t	(α) _D	t	(α) _D
Ethyl oxalate (C ₆ H ₁₀ O ₄) + Ethyl al	cohol (C ₂ H ₆ O)	1	6721%		.9261%		100%
Peel, Madgin and Briscoe 50 vol% Dv = 0			11.6 23.1 31.5 44.4 49.9	8.39 9.67 10.45 11.57 12.08	20.8 34.2 42.0	6.94 7.87 9.30 10.05 10.69	20.1 33.7 37.6 46.1 55.1	7.67 9.10 9.56 10.24 10.94
Dt = -6.85°	,							
			Butyl s	ebacate ((C18H340	,) + Metl	nyl alcol	nol
Ethyl oxalate (C ₆ H ₁₀ O ₄	-	alcohol (C ₈ H ₁₈ O)	Colmant				(CH ₁	
Lecat, 1949			mo1%	p		mo1%	i)
%	b.t.	Dt mix		20°	18°		20°	18°
0 67 100	185.65 178.75 180.4	Az -3.5	0.00 2.96 3.39 4.68 4.82 6.27	0.0 7.155 8.17 11.10 11.50 14.63	0.0 10.15 13.335	35.80 43.47 49.81 55.71 65.42 73.27	61.765 69.52 74.50 78.75 84.28 87.73 90.21	62.72 67.13 70.94 75.815 78.83
Ethyl oxalate (C ₆ H ₁₀ O ₄ Lecat, 1949) + Glycol (C2H6O2)	7.62 8.41 10.83 11.80 13.19 17.65	17.575 19.15 24.315 26.03 28.94 36.77	16.04 17.455 22.16 26.35	80.10 82.66 87.53 90.33 92.54	90.94 92.39 93.15	81.665 83.61 84.16
76	b. t.		20.30 23.24 27.28	41.16 45.72	33.42 37.38 41.46	94.07 95.45 97.34	93.795 94.27 94.71 95.505	84.96 85.60
0			27.28 31.07	51.48 56.37	51.00	100	97.35	85.69 87.32
25 100	185.65 176.5 197.4	Az	 	at .				
	*//**		mo1	7 6	d	mo1%		d
Methyl succinate (C)	0) . 0 - 1					0°		
Methyl succinate (C ₆ H ₁		c ₈ H ₁₈ 0)	0 21. 30.	07 (0.9382 0.9342 0.9314 0.9160	79.4 85.8 94.4	0.3	8928 8 77 55 8 4 04
Lecat, 1949			60.	9 (0.9160	100.0	0.1	7916
%	b.t.	Dt mix		·				
0 50 100	195.5 192.55 195.2	-7.5						

mo1%	n _D	mo1%	n_{D}	Methyl fuma	ırate (C ₆	Н ₈ О ₄)(t	o.t.=19	3.25) +	Alcohols
	20	0.		Lecat, 1949)				į.
0 27.5	1.4417 1.43761	73.6 83.5	1.41426 1.39964	ļ	2nd Comp),	Az		
44.7 63.7 67.0	1.43259 1.42306	91.7 96.0	1.37749 1.35800	Name	Formula	b.t.	%	b.t.	
	1.42066	100	1.3287	Octyl alcohol	C 8H180	195.2	28	190.1	
mo1%	n 	mo1%	η 	Glycol	C2H6O2	197.4	33	177.3	5
	2	0°		Methoxy-	C5H12O3	192.9	44	185.5	
0 9.8 12.9 15.2 21.6	91.84 85.37 83.13 81.40 76.31	79.4 81.6 84.2 85.8 88.0	27.28 25.10 22.00 20.47 18.10	diglycol Glycol monoacetate	C ₄ H ₈ O ₃	190.9	65	189.0	
24.3 27.4 29.9 30.3 30.6	74.77 72.34 70.37 70.20 69.70	90.0 92.0 93.4 94.4 95.4	15.83 13.56 12.05 11.07 10.06	Lecat, 1949		8 0 +) (b.t. =	204,05) +
33.9 38.7 45.9	67.71 63.79 58.12	95.9 96.6 97.2	9.55 8.90 8.30		Alcohols				
54.4 60.9	51.04 45.40	98.1 99.2	7.53 6.52		2nd Comp	•	Az		
65.6 73.3	41.08 33.27	100	5.92	Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
mo1%	ε	mol%	ε	Octyl alcohol	C ₈ H ₁₈ 0	195.2	68	193,55	-4.0 (34%)
		10°		Glycol	$C_2H_6O_2$	197.2	42	189.6	47.8
0 12.5 19.0 26.8	4.56 4.85 5.07 5.34	80.9 83.8 85.9 86.4 87.7	12.71 13.95 15.19 15.45	Isoamyl lactate	C ₈ H ₁₆ O ₃	202.4	~	202.0	(42%) -
30.3 33.9 37.9	5.51 5.66	88.7	16.31 16.95	Linaloöl	C1 0H1 80	198.6	60	197.2	-
43.5 49.0	5.85 6.22 6.71	90.1 91.9 93.1	18.09 19.64 20.89	Borneol	C _{1 o} H _{1 e} o	215.0	22	202.95	62.5 (22%)
54.9 57.0 64.3 71.5 76.9	7.27 7.49 8.55 9.92 11.44	94.6 96.3 97.9 99.1 100	20.39 22.75 25.28 28.16 30.56 32.68	1-Terpineol	C, oH, 80	218.85	-	203,8	-2.2 (10%)
80.3	12.66		32.00						
Dimethyl me	ethylsuccina	te (C ₇ H _{1 2} O ₄)	Ethyl malea	ite (C ₈ H ₁	204) + E	Ethyl ta	rtrate (C ₈ H,	₄ 0 ₆)
	eonarden, 19	+ Ethyl al	coho1 (C ₂ H ₆ 0)	Patterson,	Henderson	and Fair	lie, 19	007	
I	-		(-)	t	đ	t	d	t	č.
	·	d 	σ ^(α) D	0%		20.677	4%	79	.9308%
14. 36. 69. 88.	07 1. .51 0. .71 0.	0° 022 953 862 818	+4.40 +2.53 -0.21 -1.17	10 25.2 32.5 44.2	1.07898 1.0634 1.05637 1.0445	25.95 33.05	1.0943 1.0885 1.0814 1.0698	18.15 22.25 30.05 34.25	1,1731 1,1652
L				И					

t	(α))	t	(α) D
	20.6774%	79.	9308%
12.0 21.4 31.1 41.4 50.8	13.30 13.98 14.52	13.3 25.2 38.7 46.9 53.3	8.07 9.29 10.46 11.30 11.78

Lecat, 1949

Ethyl maleate ($C_{8}H_{1,2}\mathbf{0}_{+}$) (b.t. = 123.3) + Alcohols

	2nd Comp.	•	A	z	
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Glycol	C2H6O2	197,4	55	193,1	79
1-Terpineol	C _{1 0} H _{1 8} 0	218.85	80	218.3	-5.6 (50%)
Citronellol	C10H200	224.4	50	222,3	-
Diglycol	$C_{\mu}H_{1\ 0}O_{3}$	2 45.5	10	222.65	-1.1 (50%)

Ethyl fumarate ($C_8 ll_{1\,2} O_{14}$)(b.t.=217.85) + Alcohols

Lecat, 1949

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Glycol	C2H6O2	197.4	48.5	189.35	79.5 (48.5%)
Diglycol	C4H1003	245.5	10	217.1	-0.5 (50%)
Menthol	C, oH200	216.3	7 0	216.0	-

Ethyl fumarate ($C_8H_{1\,2}O_4$) + Ethyl tartrate ($C_8H_{1\,4}O_6$)

Patterson, Henderson and Fairlie, 1907

t	d	t	đ	t	ď
05	6	20,67	7835%	79.9	82%
20.6 30.23 33.25	1.05189 1.04210 1.03897	15.95 24.1 32.3 42.05	1.0844 1.0760 1.0674 1.0573	19.05 31.3 37.0 48.8	1.17178 1.15884 1.1530 1.1409

0%	20,67835%	79.982%

t	(α) _D	t	(α) _D
20.6	7835%	79.9	982%
11.0 20.1 31.5 38.8 51.9	+12.76 +13.53 +14.26 +14.73 +15.49	14.0 23.7 29.8 40.9 46.3	8.31 9.38 9.95 10.91 11.41

Tricaprin $(C_{33}H_{62}O_6)$ + Ethyl alcohol (C_2H_6O)

Loskit, 1928

8	f.t.	Я	f.t.	-
7, 39 14, 76 16, 70 26, 20 31, 60 64, 72 70, 68 85, 64 87, 28	35 55 65 69 69 60.8 58.5 25.2	88.17 90.13 92.56 94.19 96.14 97.99 99.01 99.56	24.9 25.1 24.2 23.4 20.8 17.6 13.8 9.5	-

2,3-Buty	lene glycol	diacetate	(C ₈ H _{1 4} 0	ı,) + 2,3-	Lecat, 1949					
		ene glycol	1 (C ₄ H ₁₀		Methoxyglyco		(C ₅ H _{1 0} 0 ohols	3)(b.t. = 1	144.6) +
mol%	mo1%	b. t.	mo1%	b. t.		2nd Comp		Az	:	
L	V	760mm	V.	500mm	Name	Formula	b.t.	%	b.t.	Dt mix
0 5 10	0 7.5	192.7 189.8 187.2	0 10.5	177.5 173.6 171.8	Amyl alcohol	C5H120	138.2	-	137.0	-
20 30 40	14.7 28.5 37.7 46.7 55.7	184.0 182.0	17.5 28.5 38.7 47.7	168.8 167.0 165.9	Methyl lactate	C4H8O3	143.8	55	143.2	-
50 60 70 80 90	63.5 72.0 79.0 86.8	180.5 179.3 178.3 177.7 177.6 178.0	56.0 63.0 70.5 76.6 85.0	165.2 164.8 164.7 164.7 165.1	Cyclopenta- nol	C ₅ H _{1 0} 0	140.85	75	139.0	-7.0 (50%)
95 100	92.0 100	178.4 179.0	90.7 100	165.4 165.7						
		350mm		250mm	Lecat, 1949					I
0 5 10 20 30	0 12.0 20.0 29.7 38.7 47.2	165.6 162.4 160.5 158.0 156.3	0 12.0 21.5 32.5 41.2	154.5 152.0 150.0 147.4 145.5	Ethoxyglycol	l acetate Alcol) (b	.t. = 15	66.8) +
40 50	47.2 55.7	154.8 153.7	48.6 55.5	144.5 143.7		2nd Comp.	•	Az		
60 7 0	55.7 62.5 68.5	$153.1 \\ 153.0$	62.0 72.0	143.5 143.9	Name	Formula	b.t.	%	b.t.	Dt mix
80 90 95 100	74.5 83.5 90.0 100	153.2 153.8 154.2 154.8	81.8 89.0 100	144.5 144.7 145.1	Hexyl alcohol	C6H140	157.85	37	156.6	-7.1 (50%)
		-			Propoxy-	$C_5H_{12}O_2$	151.35	87.5	151.25	-1.5
%	Az	p		b.t.	glycol					(88.5%)
77	.0	760		177.6						
71	.5	500 350 250		164.6 153.0 143.4	Lecat, 1949	,				
%	n _I	-	%	n _D	Butoxyglyco		(C ₈ H ₁₆ O ₃) (1	b.t. = 1	87.8) +
	1 4	24°	_		 	2nd Comp.		• -		
0 8.3	74 1.41	l40 5	0.2 3.1	1.4195 1.4 20 0	Vame	Formula		Az		
17. 22.	30 1.41	155 5	6.1 9.9	1.4210 1.4215	Name .	rormula	b.t.	%	b.t.	Dt mix
28.3 33.3 37.5 41.0	25 1.4] 10 1.4] 50 1.4]	165 6 170 7 175 7	5.4 1.2 7.9	1.4230 1.4240 1.4255	Glycol Propulanc	C ₂ H ₆ O ₂	197.4	12	171.0	-
44.2 46.8	20 1.41	90 9	4.5 2.3	1.4270 1.4290	Propylene glycol	C3H8O2	187.8	-	170.0	-
49.4	1.41 15 1.42	.95 100 .00	0	1.4300	Butyl glycol	C ₆ H ₁ 40 ₂	171.15	53	170.1	-2.3 (50%)
	 				Furfuryl alcohol	C5H6O8	169.35	82	168.5	-
										, , , , , , , , , , , , , , , , , , ,

Lecat, 1949	Isobutyl diacetyl tartrate ($C_{16}H_{26}O_{6}$) + Ethyl alcohol ($C_{2}H_{6}O$)					
Ethoxydiglycol acetate ($C_BH_{12}O_4$) (b.t. = 228.5) + Alcohols	Freundler, 1895					
2nd Comp. Az	% (α) _D					
Name Formula b.t. % b.t.	20°					
Glycol C ₂ H ₆ O ₂ 197.4 - 195.0	98.535 +13.1 87.13 13.3					
1-Terpineol C ₁₀ H ₁₈ 0 218.85 47 218.0	87.13 13.3 74.825 12.3					
Methyl dimethoxysuccinate ($C_8H_{1\mu}O_6$) + Methyl alcohol ($CH_{\mu}O$)	Methyl acetoacetate ($C_5H_8O_3$) + Ethyl tartrate ($C_8H_{1u}O_6$)					
Purdie and Barbour, 1901	Patterson and Pollock, 1914					
β d (α) _D	t d (α) _D					
20°	0%					
76.9849 0.8591 78.90	20 1.0757					
87,9194 0,8276 76,32 93,7412 0,8102 81,04 100 0,7927	10.2123%					
	15.3 1.092 10.92 22 1.086 11.57 35.1 1.072 12.15 43.2 1.064 12.67					
Propyl dimethoxysuccinate ($C_{12}H_{22}O_6$) + Methyl	54 1.052 13.15					
alcohol (CH ₄ O)	25. 2268%					
Purdie and Barbour, 1901	16.9 1.1103 10:35 23.5 1.1030 10.84 35.1 1.0910 11.67					
% d (α) _D	35.1 1.0910 11.67 44.2 1.0810 12.18 57.3 1.0670 12.82					
20°	50.4615%					
.0 1.0608 84.9	15.6 1.143 9.04 21.7 1.137 9.51					
76, 2915 0.8479 85, 79 87, 6303 0.8213 84, 50	21.7 1.137 9.51 37.4 1:121 10.86 47.0 1.111 11.59					
93.3429 0.8086 84.99	56.2 1.102 12.1					
	for 100% see: ethyl succinate + ethyl tartrate					
Dimethyl acetyl malate ($C_8H_{12}O_6$) + Methyl alcohol ($CH_{14}O$)						
Walden, 1906						
% D b.t.						
96.02 +0.125						
93.00 0.249 89.03 0.429						
85.54 0.587 81,23 0.789						

Ethyl acetoacetate ($C_6H_{10}O_3$) + Methyl alcohol ($CH_{\rm h}O$)	Ethyl acetoacetate ($C_6H_{10}O_3$) + Ethyl tartrate ($C_8H_{14}O_6$)				
Bruhl and Schröder, 1905	Patterson and Pollock, 1914				
$^{\%}$ d t $^{\text{H}}_{lpha}$ D $^{\text{H}}_{eta}$ H $_{\gamma}$	t d (a)				
d t H _α D H _β H _γ 100 0.7980 14.50 1.32948 1.33118 1.33490 1.33801 69.80 0.3562 18.90 1.35138 1.35325 1.35748 1.36103 43.32 0.9177 18.10 1.37470 1.37664 1.38145 1.38542	0° 20 1.0284 - 10.4715%				
	14 1.0510 8.02				
Ethyl acetoacetate ($C_6H_{10}O_3$) + Ethyl alcohol (C_2H_6O)	18 1.0470 8.66 46 1.0185 11.48 51 1.0132 11.66 57.5 1.0065 12.40 63 1.0010 12.64 71.5 0.9925 13.13 25.0834%				
	14 1.075 7.46 20.4 1.068 8.10				
% d (α) _{magn} .	30 1.058 9.06 40.5 1.048 10.01 50.5 1.038 10.78				
100 0.78535 4.095	50.1892%				
80.33 0.8235 4.154 50.63 0.8876 4.274 0 1.0227 4.435	15.2 1.117 7.09 20.4 1.111 7.76 30.7 1.101 8.84 43.1 1.088 10.05 54.2 1.077 10.92				
Dunstan and Stubbs, 1908 and 1909	for 100%, see.: ethyl succinate +				
% d n	ethyl tartrate				
25°					
100 0.7875 1067 91.95 0.8025 1023 63.72 0.8605 962.5 53.29 0.8832 979.1	Ethyl acetoacetate ($C_6H_{10}O_3$) ketone + enol Boyaert, 1936				
35.98 0.9244 1037.0 0 1.0222 1508.1	π _D ε				
	20°				
Ethyl acetoacetate ($C_6H_{10}O_3$) + Methyl malate l ($C_6H_{10}O_5$) Grossmann and Landau, 1910	100 1.44321 6.34 90.6 - 7.24 89.2 1.44060 7.34 85.7 1.43975 7.69 79.9 1.43834 8.24 77.1 1.43762 3.50 74.6 1.43692 8.74 66.4 1.43498 9.63 58.5 1.43288 10.48				
g/100cc (α) red yellow green pale dark violet blue blue	58.5 1.43288 10.48 52.5 1.43126 11.12 47.2 1.43000 11.71 41.7 1.42839 12.37 36.0 1.42690 13.07 35.9 1.42682 13.09				
20°	29.4 1.42508 13.90				
51.011 -5.39 -5.98 -7.55 -8.63 -9.21 -9.80 25.0055 -5.57 -6.39 -7.76 -9.02 -9.57 - 12.7528 -5.57 -6.43 -7.76 -9.02 -9.57 - 4.891 -5.57 -6.54 -7.97 -9.20 -10.63 -11.42 2.4455 -6.13 -7.77 -11.45 -13.09 -14.31	22.9 1.42330 13.90 21.6 1.42301 14.70 14.6 1.42109 15.71 7.74 1.41922 16.56 7.41 1.41912 16.60 0 1.41706 17.51				

ETHYL DIMETHYLACETOACETATE + ETHYL TARTRATE

Ethyl dimethylace	Ethyl (diethyl)acetoacetate ($C_{10}H_{18}O_3$) + Ethyl alcohol (C_2H_6O)								
Patterson and Pol	lock, 1914		Dunstan and	Stubbs, 19	908 and 1	909			
t	d	(α) _D	%		đ		η		
	0%				25°				
20	1,0101 10,2808%	-	J 79	.34 0. .260 0.	.7875 .8112 .8200 .8325]	1067 1094 1107 1138		
11.9 21.8 35.8	1.035 1.025 1.0115	8.18 8.87 10.08	80	.22 0	.9491 .9646	:	2188 2793		
00.0	25.1675%		For 100%: see Ethyl succinate + ethyl tartrate						
13.2 21.9 38.4 48.8 57.1	1.0602 1.0518 1.035 1.024 1.016	7.14 8.23 9.78 10.61 11.26	Lecat, 1949						
12,6	50.3124% 1.107	6.54	Methyl chloracetate ($C_3H_9O_2Cl$) (b.t. = 129.95) Alcohols						
20.1 32.2	1.100 1.088	7.38 8.69	2nd Comp. Az						
40.8 51.0	1.079 1.069	9.47 10.46	Name	Formula	b.t.	%	b.t.	Dt mix	
14 0	100%		Butyl	C4H100	117.8	65	115.5	-7.2	
16.8 20.1 33.7 37.6	1.2087	7.67 9.10 9.56	alcohol Isobutyl alcohol	$C_4H_{10}0$	108.0	88	107.7	(75%) -4.0 (88%)	
46.1 46.8 55.1	1.1783	10.24	Amyl alcohol	C5H120	138.2	30	126.8	-4.0 (10%)	
58.3	1,1665	<u>-</u>	Isoamyl alcohol	C5H120	131,9	39.5	124.9	-9.8 (40%)	
			2-Pentanol	C5H120	119.8	60	117.0	-10.0 (50%)	
Ethyl (ethyl)ace	toacetate (C ₈ H _{1 4}	03) + Ethyl	3-Pentanol	C5H120	116.0	68	114.0	-	
		(C ₂ H ₆ O)	Methoxy- glycol	C 3H803	124.5	65	122.5	-	
Dunstan and Stubi			Ethoxy- glycol	C4H10O2	135.3	23	128.6	-2.0 (50%)	
	d	η	Ethylene chlorhydrin	C2H2OC1	128.6	85	128.0	-	
100	25° 0. 7 875	1079	Cyclopentanol	C ₅ H _{1 0} 0	140.85	23	127.5	-3.5 (10%)	
94.56 76.20 58.69 12.13	0.7953 0.8271 0.8588 0.9165 0.9495 0.9750	1064 1038 1058 1203 1385 1679						(20%)	

<u></u>						W		ب السيسية			
Lecat, 1949	9					Butyl chlora	cetate (C	C ₆ H ₁ 10 ₂ C1) + (Glycol (C2H6O2)
Ethyl chlo	racetate () (b.	t. ≈ 14.	3.55) +	Lecat, 1949					
						%	b.	.t.			
	2nd Comp	•	Az			N.	0		81.9	• -	
Name	Formula	b.t.	%	b. t.	Dt mix	ł	30 100		76.0 97.4	Az	
Isoamyl	C5H120	131.9	77	131.0	-7.0						
alcohol Hexyl	C ₆ II _{1 1} 0	157,85	10	143.3	(41%) -2.5			· · · · · · · · · · · · · · · · · · ·			
alcohol	20-140	207,00	20	210.0	(10%)	1040					
Ethoxy-	$C_{\mu}H_{10}O_{2}$	135.3	68	134.8	-2.3	Lecat, 1949					
glycol	C 11 A	142.0		7.40	(50%)	Isoamyl chlo	racetate ((C ₇ H _{1 3} O ₂	C1)	(b.t. =	195.0) +
Methyl lactate	C4H803	143.8	51	140,4	-1 (50%)	I	Alco	ohols			ļ
Cyclopentan	ol C ₅ H _{1 o} 0	140.85	50	137.6	-6.5		2nd Comp.	·- · · · · · · · · · · · · · · · · · ·	Az		
					(50%)	Name	Formula	b.t.	%	b.t.	Dt mix
					 ,		C II 0	105.0	10	102 5	-3,5
						Octyl alcohol	C ₈ H ₁₈ O	195.2	38	193.5	(30%)
Dalas I al I						Glycol	C2H6O2	197.4	38	187.5	-
Etnyl chio	oracetate (C ₄ H ₇ U ₂ CI) + M			Methyl	C5H12O3	192.95	55	187.0	-
_				(06	H ₁₀ 0 ₅)	diglycol Linalool	C W O	198.6	18	104.2	_
Grossmann	and Landau,	1910				Glycol	C ₁₀ H ₁₈ O C ₄ H ₈ O ₃	190.9	50	194.2 189.3	_
g/100cc		(α)			monoacetate	401				
r	ed yellow	y green	pale		violet		:::::::::::::::::::::::::::::::::::::				
			blue	blue	· · · · · · · · · · · · · · · · · · ·				····		
		20°				Fabrul diable			., ,	+ Havela	lashal
50.184 -3 25.092 -2	1.27 -3.91 2.51 -2.87	+4.30	+4.50	+4.44		Ethyl dichle	oracetate	(C4H6U2C	12)		H ₁₄ 0)
12.546 -2	2.07 -2.31	-2.99 -2.39	-2.99 -1.83	-2.79 -1.59	-					` -0	
	$\begin{array}{r} .91 & -2.10 \\ .53 & -0.38 \end{array}$	-2.29 +0.38	-1.53 $+1.53$	-0.96 +2.29		Lecat, 1949					
l							%	b,	t.		
							0		8.1		
Lecat, 1949	9					10	12 00	15 15	6.0 7.85	Az	
December 1		C II O C			(3.5.)						
rropyi chi	oracetate (Alco		ı) (b	,τ. = 10	03.5) +						
	2nd Comp	 -	Az			Methyl trich	loracetat	e (C.H.O	-C1-) + Cycli	ohevanol
Name	Formula	b.t.	%	b.t.	Dt mix			- (- 110	A = -,1		C ₆ H ₁₂ O)
Hexyl	C ₆ H _{1 4} 0	157.85	60	156.4	-6.5	Lecat, 1949					
alcohol	J 1.4		•	• •	(50%)	[%	h .	+		
Glycol	C2H6O2	197.4	20	162.0	-	ļ		b.			
Cyclo- hexanol	C6H120	160.8	50	159.0	-	2	8	15: 15	2.8 1.0	Az	
HEXABOT						10	0	16	1.0		
ii .						//					

Ethyl trichloracetate ($C_uH_{7}O_2Cl_3$) + Methyl cyclo- hexanol ($C_2H_{1u}O$)	Methyl chlorsuccinate d ($C_6H_9O_uCl$) + Methyl tartrate ($C_6H_1OO_6$)
Lecat, 1949	Timmermans and Vesselowsky, 1932
% b.t.	wt% d mol% f.t.
0 167.2 38 165.5 Az 100 168.5	100 100 48 86.3 86.5 44 66.4 66.7 35.5 55.1 55.4 28.5 43.3 43.6 20.5
Lecat, 1949	37.1 37.4 18 32.3 32.6 13 25 25.3 below 3 13 13.2 -5
Ethylbromoacetate ($C_{4}H_{7}O_{2}Br$) (b.t. = 158.8) + Alcohols	wt% 1 mol% f.t.
2nd Comp. Az	100 100 49
Name Formula b.t. % b.t. Sat.t.	100 100 48 80.7 80.9 41 65.9 66.2 30
Hexyl- C ₆ H _{1 h} 0 157.85 45 154.0 -	53.7 54.0 22 45.1 45.4 18
alcohol	31.3 31.6 24.5 24.8 0
Glycol C ₂ H ₆ O ₂ 197.4 12 157.3 75	16.7 16.9 below 0
(12%) Propoxy- C ₅ H ₁₂ O ₂ 151.35 95 151.75 - glycol	
Cyclo- C ₆ H ₁₂ O 160.8 35 155.5 - hexanol	Lecat, 1949
Methyl C ₇ H ₁₄ 0 168.5 15 157.5 - cyclohexanol	Methyl thioacetate (C_3H_6OS) (b.t. = 95.5) + Alcohols
	2nd Comp. Az
	Name Formula b.t. % b.t.
Ethyl chlorcarbonate ($C_3H_5O_2Cl$) + Methyl malate 1 ($C_6H_{10}O_5$)	Ethyl C ₂ H ₆ 0 78.3 - 77.8
Grossmann and Landau, 1910	Propyl C ₃ H ₈ 0 97.2 - 91.5
g/100cc (α) red yellow green pale dark violet blue blue	Isopropyl C ₃ H ₈ O 82.4 - 81.5 alcohol
20°	
49.905 -3.65 -4.25 -4.81 -5.19 -5.25 -5.05 24.9525 -2.93 -3.21 -3.45 -3.45 -3.09 -12.4763 -2.48 -2.73 -2.65 -2.32 -1.92 -4.941 -2.02 -1.62 -1.21 -0.81 -0.61 +0.20 2.4705 -1.62 -0.81 -0.40 -0.00 +0.40 -	Ethyl thioacetate ($C_{ m L}H_{ m g}OS$) + Isobutyl mercaptan ($C_{ m L}H_{ m l}_{ m O}S$)
	Lecat, 1949
	% b.t.
	0 95.5 88 87.2 Az 100 87.8

				EINI	L INIO	ACETAT
Lecat,	1949					
Ethyl	thioac	etate ((b.t.	= 116.6) +
		2nd Com	р.	A	z	
Name		Formula	b.t.	%	b.t.	
Butyl aldoho	1	C4H100	117.8	-	113.5	•
Isobut alcoho	•	C4H100	108.0	-	107.2	
Diethy	1	C5H120	116.0	-	114.0	
Allyl alcoho		C3H60	96.8	5 -	96.5	
Lecat, Bornyl	aceta	te (C ₁₂ 1 Alcohols	H ₂₀ 0 ₂)	(b.t. =	= 227.6)) +
		2nd Com	p.	Az		
Name		Formula	b.t.	%	b.t.	Sat.t.
Glycol		C2H6O2	197.4	57	194.0	_
Glycer Diglyc		C ₃ H ₈ O ₃ C ₄ H ₁ ₀ O ₃	290.5 245.5	9 18	225.9 223.0	200
Methyl camphorcarbonate (C ₁₂ H ₁₈ O ₃) + Methyl alcohol (CH ₄ O) Bruhl and Schröder, 1905						
%	t	d			n	
,			Η _α	D	Нβ	Н
	14.50 19.40 19.40	0.7980 .8589 .9150	1.32948 .36057 .38908	1.33118 .36228 .39093	1.33490 .36662 .39570	1.33801 .37011 .39956

Lecat, 1949 Benzyl formate ($C_8H_8O_2$) (b.t. = 203.0) + Alcohols 2nd Comp. Αz Name Formula b,t. % b.t. Dt mix C2H6O2 Glycol 197.4 38 186 Linalool C1 0H1 80 198.6 197.8 -1.2 (90%) Benzyl C₇H₈O 205.25 8 202.9 -2.5 alcohol (50%) Lecat, 1949 Benzyl acetate ($C_9H_{10}O_2$) (b.t. = 215.0) + Alcohols 2nd Comp. ÁZ Name Formula % Dt mix b.t. b.t. C4H1003 245.5 214.85 -0.6 Diglycol (50%) Borneol C10H180 215.0 52 213.9 Menthol C10H20 216.3 26.5 213.8 1-Terpineol C1 0H1 80 218.85 15 214.85 -4.3 (33%) Benzyl acetate ($C_9H_{10}O_2$) + Ethyl tartrate ($C_8H_{14}O_6$) Patterson and Stevenson, 1912 t (a) 24.89% 16.3 4.63 20 31.8 43.7 51.7 4.68 4.72 4.75 4.815

Lecat,	1949

Phenyl acetate ($C_8H_8O_2$) (b.t. = 195.7) + Alcohols

	2nd Comp.		A	Z	
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Octyl alcohol	C ₈ H ₁₈ O	195.2	47	192.8	-5,8 (50%)
Glycol	CaH60s	197.4	36	181.5	67.7 (36%)
Linaloöl	C _{1 0} H _{1 8} 0	198.6	37	193.8	-3.4 (30%)
Methoxy- diglycol	C5H12O3	192.95	45	186,5	-
Glycol monoacetate	C"H 802	190.9	-	190.0	-

Phenyl acetate ($C_8H_80_{\text{R}}$) + Ethyl tartrate ($C_8H_{1\,\text{h}}0_6$)

Patterson and Stevenson, 1912

24.96%	
20 22.6 28.2 39.3 44.4	5.28 5.29 5.325 5.395 5.365

(α)_D

Lecat, 1949

Methyl phenylacetate ($C_3H_{10}O_2$) (b.t. = 215.3) + Alcohols

2nd Comp.		A:	z	
Formula	b.t.	%	b.t.	Dt mix
C10H180	215.0	48	214.3	_
C ₁₀ H ₁₈ 0	218.85	25	215.0	-3.7
C 11 0	217.2	25		(25%)
	Formula C ₁₀ H ₁₈ 0 C ₁₀ H ₁₈ 0	C _{1 0} H _{1 8} 0 215.0 C _{1 0} H _{1 8} 0 218.85	Formula b.t. % C _{1 Q} H _{1 8} O 215.0 48	Formula b.t. % b.t. C ₁₀ H ₁₈ O 215.0 48 214.3 C ₁₀ H ₁₈ O 218.85 25 215.0

Lecat, 1949

Ethyl phenylacetate ($C_{10}H_{12}O_{2}$) (b.t. = 228.75) + Alcohols

	2nd Comp.		Az		
Name	Formula	b.t.	R	b.t.	Dt mix or Sat.t.
Decyl alcohol	C _{1 0} H _{2 2} 0	232.8	6	228.55	-1.8 (10%)
Glycol	CaH60a	197.4	58	194.0	-
Glycerol	C ₃ H ₈ O ₃	290.5	8	228.5	81 (8%)
Diglycol	CuH1003	245.5	20	224.0	-
Geraniol	C10H180	229.6	30	228.1	-3.4
!					(20%)

Ethyl phenylpropionate ($C_{11}H_{11}\theta_2$) + Glycerol ($C_3H_8\theta_3$)

Lecat, 1949

%	b.t.	
0 15 100	248.1 242.0 Az 290.5	

Lecat, 1949

Methyl benzoate ($C_8H_8O_8$) (b.t. = 199.4) + Alcohols

	2nd Comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Octyl alcohol	C ₈ H ₁₈ O	195.2	65	194.4	-4.1 (50%)
Glycol	C2H6O2	197.4	36,5	182.2	107.5 (36.5%)
Linaloöl	C _{1 0} H _{1 8} 0	198.6	55	197.5	-3.2 (55%)
Methoxy- diglycol	C5H12O3	192.95	50	188.8	-
Isoamyl lactate	C8H1603	202.4	-	198.8	-

Methyl benzoate ($C_8H_8O_2$) + Glycol ($C_2H_6O_2$)	
	Tammann and Hirschberg, 1894
Mukhin and Mukhina, 1930	mol% vol.
% sat.t. % sat.t.	
5.0 62.3 45.0 109.5 10.0 85.0 50.0 109.2	
15.0 96.5 55.0 108.0	80.17 1 1.01028 1.02098 1.03203
25.0 105.7 65.0 104.1	60.34 1 1.01039 1.02101 1.03199
35.0 108.6 75.0 97.1	
40.0 109.4 80.0 89.0	Hirata, 1908
Ethyl honzosto (C.H. O. N. Ethyl de la la la la la la la la la la la la la	vol% η
Ethyl benzoate ($C_9H_{10}O_2$) + Ethyl alcohol (C_2H_6O)	(alcohol =1)
Raoult, 1890	25°
% (p ₂ -p/p ₂) .100	75 1.0324 87.5 1.0126 93.75 1.0066
60°	H 96.87 1.0080
84.52 71.48 10.0	98.44 1,0075 99.22 1.0079
1 54.19 18.9	
35.71 32.5 23.29 44.8 11.31 63.6	
11.31 4.80 2.52 80.6 2.79	Ethyl benzoate ($C_9H_{10}O_8$) (b.t. = 212.5) +
mol% (p ₂ -p/p ₂) .100	Alcohols
78°	2nd Comp. Az
5.33 5.201	Name Formula b.t. % b.t. Dt mix
10.91 20.60 18.90	or Sat.t.
	Glycol (C ₂ H ₆ O ₂) 197.4 46 212.5 136
	(46%) Terpineol (C, 6H, s0) 210.5 52 209.8 -4.7
Beckmann, 1890	Terpineol (C _{1 oH 18} 0) 210.5 52 209.8 -4.7 (50%)
g b.t.	Borneol (C ₁₀ H ₁₈ 0) 215.0 12 212.25 -
100 78.3	
98.04 78.435 94.56 78.668 90.18 78.958 83.35 79.427	Ethyl benzoate ($C_9H_{10}O_2$) + Glycol ($C_2H_6O_2$)
	Mukhin and Mukhina, 1930
	% sat.t. % sat.t.
	5.0 85.0 50.0 137.0 10.0 110.8 55.0 136.6
	15.0 122.0 60.0 136.0 20.0 128.0 65.0 134.1
	25.0 132.1 70.0 132.0 30.0 134.6 75.0 128.2
	35.0 136.0 80.0 123.3 40.0 136.5 85.0 115.0
	45.0 137.0
1	

violet

-12.56 -14.71 -16.56 -17.41

Dt mix

-0.5 (50%)

Benzylbenzoate ($C_{14}H_{12}O_{2}$) + Glycerol ($C_{8}H_{8}O_{8}$)	Ethyl anisate ($C_{10}H_{12}O_{8}$) + Methyl malate l ($C_{6}H_{10}O_{5}$)
Lecat, 1949	Grossmann and Landau, 1910
% b.t.	(α)
0 324 55 281.5 Az 100 290.5	g/100cc red yellow green pale dark viol
270.0	49.772 -6.13 -7.74 -8.64 -10.45 -11.45 -12
Lecat, 1949 Methyl cinnamate ($C_{10}H_{10}O_2$) (b.t.=261.9) + Alcohols.	24,886 -7.27 -9.12 -10.57 -12.82 -13.54 -14 12.443 -8.36 -10.53 -11.81 -11.31 -15.27 -16 4.997 -8.81 -11.21 -13.41 -15.21 -16.41 -17 2.4985 -9.61 -12.01 -15.21 -17.21 -18.81
	Lecat, 1949
Name Formula b.t. % b.t. Sat.t	Alcohols.
Glycol (C _g H ₆ O ₂) 197.4 85 196.2 101.5	2 nd comp. Az
Diglycol (C ₄ H ₁₀ O ₈) 245.5 63 240.0 -	Name Formula b.t. % b.t. Dt
Methoxytri-($C_7H_{16}O_4$) 245.25 70 242.3 - glycol	Glycerol (C ₃ H ₈ O ₃) 290.5 31 271.5
	Diglycol (C ₄ H ₁₀ O ₈) 245.5 96.3 245.4 -0 (50
Ethyl cinnamate + Methyl malate- $1(C_6H_{10}O_5)$ ($C_{11}H_{12}O_2$)	Triglycol (C ₆ H _{1 14} O ₁₄) 288.7 33 277.0
Walden, 1906	
g/100cc (α) c (α) c (α) c red green violet	Ethyl phthalate ($C_{12}H_{14}O_{4}$) + Methyl alcohol ($CH_{4}O$)
20.43 -7.24 1 -10.91 1.51. -14.14 1.95 10.20 -7.25 1 -11.17 1.54 -14.21 1.96 5.10 -7.45 1 -11.18 1.50 -14.51 1.95	Foote and Dixon, 1929 and Dornte, 1929
c= dispersion constant.	mol% p mol% p
Lecat, 1949 Ethyl cinnamate (C ₁₁ H ₁₂ O ₂) (b.t.=272.0) + Alc.	25° 100.0 126.1 37.5 84.8 96.7 119.1 37.3 81.9 90.0 118.6 34.1 80.0 88.3 117.5 33.5 78.4 87.5 116.5 30.9 75.8 84.8 115.9 30.4 73.5
2 nd comp. Az	N 81.0 113.8 20.7 73.0
Name Formula b.t. % b.t.	78.4 112.6 22.4 63.4 77.8 111.0 22.4 61.3
Glycol (C ₂ H ₆ O ₂) 197.4 72 197.0	76.4 111.1 17.4 53.2 72.2 109.5 15.8 48.0 68.3 107.5 13.7 44.3
Diglycol (C _H H ₁₀ O ₅) 245.25 85 244.5	64.0 105.3 9.63 32.4 61.7 103.9 9.00 31.7
Triglycol (C ₆ H ₁ , 0,) 288.7 7 271.5	55.5 98.3 5.50 21.3 49.9 95.1 49.5 94.6
	II .

Ethyl benzoate ($C_9H_{1\,0}O_2$) + Methyl malate 1 ($C_6H_{1\,0}O_5$)

Grossmann and Landau, 1910

(α)						
g/100cc	red	yellow	green	pale	dark	viol.
				blue	blue	
49.972	-6.40	-8.10	-9.21	-10.31	-11.01	-11.81
24.986 12.493		-9.37 -9.77		-12.77 -13.45	-13,73 -14.89	
4.928	-8.73	-10.35 -11.77	-11.77	-14,20 -15,42	-15.22	-15.63
2.404	-9.74	-11.77	-12.99	-15.42	-16,23	-

Lecat, 1949 $Propyl \ benzoate \ (\ C_{1\ 0}H_{1\ 2}O_{2}\) \ (b.t.=230.85\) \ + Alcohols.$

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix or Sat.t.
Decyl alcohol	(C ₁₀ H ₂₂ O)	232.8	23	230.5	-3.4 (45%)
Glycol	(C°H ⁶ O°)	197.4	55	190.35	164
Glycero1	(C ₈ H ₈ O ₈)	290.5	95	229.0	-
Methoxy- triglycol	(C7H1604)	245.25	32	226.0	-
Diglycol	($C_{4}H_{10}O_{8}$)	245.5	26	222.7	-

Lecat, 1949

Butyl benzoate ($C_{11}H_{14}O_2$) (b.t.=249.0) + Alcohols.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Glycol	(C2H6O2)	197.4	65	193.0	178
Glycerol	(C ₃ H ₈ O ₃)	290.5	17	242.5	24 3
Diglycol	(C ₄ H ₁₀ O ₈)	245.5	43	232.2	102
Methoxytri glycol	i-(C ₇ H ₁₆ O ₄)	2 45, 2 5	52	235.0	-

Lecat, 1949

Isobutylbenzoate ($C_{1\,1}\,H_{1\,4}\,\theta_{\,2}$) (b.t.=241.9) + Alcohols.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Glycol	(C ₂ H ₆ O ₂)	197.4	60	192,2	172
Glycerol	($C_8H_8O_8$)	290.5	14	237.4	230
Diglycol	$(C_{\mu}H_{10}O_{3})$	245.5	3 7	228.65	86
Methoxy tr -glycol	·i(C ₇ H ₁₆ O ₄)	245,25	40	231.2	-

Lecat, 1949

Isoamylbenzoate ($C_{12}H_{16}O_2$) (b.t.=262.0) + Alcohols.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t.
Glycol	(C ₂ H ₆ O ₂)	197.4	67	193.95	182
Glycerol	(C ₃ H ₈ O ₃)	290.5	22	251.55	-
Diglycol	$(C_{\mu}H_{10}O_{S})$	245.5	52.5	236.55	116.5
Triglycol	$(C_6H_{14}O_4)$	288.7	14	261.4	-
Methoxy- triglycol	(C ₇ H ₁₆ O ₄)	245.25	60	239.4	-
Benzyl- glycol	(C ₉ H ₁₂ O ₂)	265.2	15	261.0	-

Lecat, 1949

Phenylbenzoate ($C_{13}H_{10}O_2$) (b.t.=315) + Alcohols.

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
Glycerol	(C _S H ₈ O _S)	290.5	48	279,8
Triglycol	(C ₆ H ₁ ,0 ₁ ,)	288.7	80	286.0

612

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

ETHYL PHTHALATE + ETHYL ALCOHOL

Ethyl phthalate ($C_{12}H_{14}O_{4}$) + Ethyl alcohol ($C_{2}H_{6}O$)	Ethyl-1 oxymethylene phenylacetate ($C_{11}H_{12}O_{8}$) + Ethyl alcohol ($C_{2}H_{6}O$)
Foote and Dixon, 1929 and Dornte, 1929	Bruhl, 1900
mo1% p mo1% p	β t d n H _α D H,
100 58.8 53.9 45.3 90.5 54.9 52.7 46.3 88.6 54.4 49.2 44.8 87.5 54.3 44.5 43.4 86.6 54.1 44.3 43.7 86.1 53.6 40.1 41.5	0 22.7 1.1129 1.52909 1.53429 1.56069 74.45 19.8 0.8803 1.39689 1.39928 1.40982 100 21.4 0.8052 1.3607 1.36288 1.37052
85. 2	Ethyl-2-oxymethylene phenylacetate ($C_{11}H_{12}O_{8}$) + Ethyl alcohol ($C_{2}H_{6}O$) Bruhl, 1900
73.9 51.1 13.5 21.4 73.1 50.9 10.1 16.7 71.4 50.2 7.25 13.0 67.7 50.5 6.40 11.6 67.5 49.8 3.70 6.3	% t d n $_{lpha}$ D $_{ m H_{ m y}}$
67.5 49.8 3.70 6.3 61.3 49.1 0 0 58.0 47.8 54.3 45.4	74.41 22.5 0.8788 1.39608 1.39841 1.40864 100 21.4 0.8052 1.36107 1.36288 1.37052
Ethylphthalate ($C_{12}H_{1k}O_{k}$) + Triglycol ($C_{6}H_{1k}O_{k}$)	Ethyl-2-oxymethylene (ethoxy) phenylacetate(C _{1.8} H _{1,4} O ₄) + Ethyl alcohol (C ₂ H ₆ O) Bruhl, 1900
Lecat, 1949 	% t d n H _t D H _t
0 298.5 58 285.5 Az 100 288.7	0 22.2 1.1291 1.52184 1.52698 1.55193 80.695 20.6 0.8553 1.38539 1.38772 1.39793 100 21.4 0.8052 1.36107 1.36288 1.37052
Ethyl 2 - oxymethylene phenylacetate (C ₁₁ H ₁₂ O ₃) + Methyl alcohol (CH ₁ O) Bruhl, 1900	methyl sulfate ($C_2H_6O_4S$) + Methyl malate l ($C_6H_{10}O_5$) Grossmann and Landau, 1910
% t d n H, D H,	(α) g/100cc red yellow green pale dark viol. blue blue
69.924 17.2 0.8918 1.37912 1.38137 1.39125 100 18.1 0.7947 1.32830 1.32983 1.33662	49.950 -2.19 -2.61 -2.92 -3.26 -3.35 -3.39 24.975 -1.02 -1.20 -1.35 -1.47 -1.55 - 12.4875 -0.50 -0.59 -0.67 -0.73 -0.76 - 4.882 -0.19 -0.22 -0.25 -0.26 -0.24 -0.21 2.441 -0.09 -0.10 -0.10 -0.09 -0.08 -

Methyl acetate ($C_3H_6O_2$) + p-Chlorphenol (C_6H_5 0Cl)	mol% n o
	15° (water =1)
Weissenberger, Schuster and Lielacher, 1925	66.7 3.69 0.465 50.0 1.99 0.447
mol% p mol% p	50.0 1.99 0.447 40.0 1.48 0.438 33.3 1.12 0.418
20 °	28.0 1.03 0.409 25.0 0.91 0.401
$\begin{array}{cccc} 0 & 169.8 & 50 & 37.5 \\ 10 & 146.8 & \underline{60} & 2\underline{1.7} \end{array}$	22.2 0.82 0.397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
40 60.7 90 1.0	Ethyl acetate (C ₄ H ₈ 0 ₂) + p-Cresol (C ₇ H ₈ O)
	Waisaankaraan Sabustor and Wainoff 1925
Ethyl acetate ($C_{ m t}H_8O_2$) + o-Cresol (C_7H_8O)	Weissenberger, Schuster and Wojnoff, 1925
Weissenberger, Schuster and Wojnoff, 1925	mol% p
14	15°
mo1% p	66.7 9.2 50.0 18.9
15°	40.0 25.8 33.3 30.9
$\begin{matrix} 66.7 & 10.1 \\ 50.0 & 19.0 \end{matrix}$	28.0 25.0 38.3
40.0 24.5 33.3 30.0	22.2 41.2 mo1% n g
28.0 33.4 25.0 36.1 22.2 38.9	
22.2 38.9	(water =1)
mol% n σ	15°
15° (water =1)	66.7 3.60 0.465 50.0 1.92 0.427 40.0 1.32 0.410
66.7 3.65 0.465	33.3 1.02 0.399
$egin{array}{cccccccccccccccccccccccccccccccccccc$	25.0 0.81 0.388
33.3 28.0 0.98 0.400	22.2 0.77 0.387
25.0 0.86 0.395 22.2 0.80 0.392	
	Ethyl acetate ($C_u H_e O_2$) + Resorcinol ($C_6 H_6 O_2$)
Ethyl acetate ($C_4H_8O_2$) + m-Cresol (C_7H_8O)	Cohon Do Magazan and Magazania 1934
·	Cohen, De Meester and Moesveld, 1924
Weissenberger, Schuster and Wojnoff, 1925	8 d % d
mol% p	30°
15°	0 0.88797 50.12 1.08622 13.786 93400 65.905 12339
66.7	25.345 97310 63.040 10351 37.525 1.01494 68.498 12254 46.116 04463
40.0 17.1 23.5	46.116 .04463
33.3 28.6 25.0 34.6	Timofeev, 1905
22.2 36.4	% Q dil.
	initial final (by mole resorc.)
	0 2.0 +198 2.0 3.7 0
	9.9 11.3 -469 25.7 27.0 -977

Ethyl acetate ($C_0H_8O_2$) + Pyrogallo1 ($C_6H_6O_3$)	Isobutylisovalerate ($\cdot C_9H_{18}O_2$) + o-Chlorphenol (C_6H_5OC1)
Weissenberger, Schuster and Henke, 1925	Lecat, 1949
mol% p % (water =1) o	% b.t.
20°	0 171.2
33.33 43.8 4.44 0.403 28.00 46.1 2.94 0.382 25.00 52.4 2.03 0.366	57 182.8 Az 100 176.8
22: 22 55: 0 1: 35 0: 363 20: 00 57: 1 0: 92 0: 363 0 72: 8 - 0: 360	
	Lecat, 1949
Ethyl acetate ($C_{u}H_{B}O_{R}$) + Thymol ($C_{1}OH_{1}_{u}O$)	Isoamylisovalerate ($C_{10}H_{20}O_2$) (b.t.=192.7) +
	2 nd comp. Az
Carroll, Rollefson and Mathews, 1925	Name Formula b.t. % b.t.
g f.t.	o-Cresol (C ₂ H ₈ O) 191.1 33.3 195.45
68.71 1.0 80.5 25.0	o-Chlor- (C ₆ H ₅ OC1) 176.8 15 194.8 pheno1
Lecat, 1949	o-Brom- (C ₆ H ₅ 0Br) 194.8 54 203.0 phenol
Isoamyl butyrate ($C_9H_{18}O_2$) (b.t.=181.05) +	Ethyl harvas (G.V. a.)
2 nd comp. Az	Ethyl heptoate ($C_9H_{18}O_2$) + Phenol (C_6H_6O)
Name Formula b.t. % b.t. Sat.t.	Lecat, 1949
Phenol (C ₆ H ₆ O) 182.2 52 185.3 +7	% b.t.
o-Cresol (C ₇ H ₈ O) 191.1 93 191.3 -	0 188.7 12 190.0 Az
o-Chlor- (C ₆ H ₅ 0Cl) 176.8 38 188.0 - phenol	100 182.2
o-Brom- (C ₆ H ₅ 0Br) 194.8 72 197.5 -	
phenol	Ethyl heptoate ($C_9H_{18}O_2$) + o-Cresol (C_7H_8O)
	Lecat, 1949
Butylisovalerate ($C_9H_{18}O_2$) + Phenol (C_6H_6O)	% b.t.
Lecat, 1949	0 188.7 60 193.7 Az 100 191.1
% b.t.	
0 177.6 70 184.0 Az 100 182.2	

Methylcaprylate ($C_9H_{18}O_2$) + o-Cresol (C_7H_8O)	Glycol diacetate ($C_6H_{10}O_4$) + o-Cresol (C_7H_8O)
	, and the second comment of the second comme
Lecat, 1949	Lecat, 1949
0 192.9	% b.t.
33 105.8 Az 100 191.1	0 186.3 65 194.5 Az 100 191.1
Ethylcaprylate ($C_{10}H_{20}O_2$) + Guaiacol ($C_7H_8O_2$)	Glycol diacetate ($C_6H_{10}O_4$) + m-Cresol (C_7H_8O)
Lecat, 1949	Othmer, Savitt and al., 1949 (fig.)
% b.t.	mo1%
0 208.35 15 208.9 Az 100 205.05	L V at the b.t.
Ethylcaprylate ($C_{10}H_{20}O_2$) + p-Chlorphenol (C_6H_5OC1)	20 8 40 22 60 48 80 80 90 95
Lecat, 1949	90 95
% b.t.	Glycol diacetate ($C_6H_{10}O_4$) + p-Cresol (C_7H_8O)
0 208.35 65 223.2 Az 100 219.75	Othmer, Savitt and al., 1949 (fig.)
Ethylidene diacetate ($C_6H_{10}O_4$) + Phenol (C_6H_6O)	L V
Lecat, 1949	at the b.t. 20 7
% b.t.	40 21 60 45 82 82
0 168.5 82 182.5 Az 100 182.2	82 90 93
Glycol diacetate (C ₆ H ₁₀ O ₄) + Phenol (C ₆ H ₆ O)	Methoxyglycol acetate ($C_5H_{10}O_8$) + Phenol (C_6H_6O)
, -00	Lecat, 1949
Lecat, 1949	% b.t.
% b.t.	0 144.6 82 183.6 Az
0 186.3 40 189.9 Az 100 182.2	100 182.2

16			ETH	OXYGL	YCOL A	CETATE	+ PHEN	0L			
Ethoxygly	col acetate (C ₆ H ₁₂ O ₃) + 1	Phenol (C ₆ H ₆ 0)	Cellobio	ose- 1-oct	acetate (C28H38O1	-	enol H ₆ 0)
Lecat, 19	49										
%		b.t.				Marsden	, Bainbrid	ige and Mor	ris, 194	3	
0		156.8				wt%	mo1%	f.t.	wt%	mo1%	f,
72 100		184.95 182.2	AZ			100.0 73.0	100.0 95.0	41.05 28.55 16.7	11.3 7.0	52.0 35.4	215 220
Ethoxygly	col acetate ((C ₆ H _{1 2} O ₃		o-Cresol C ₇ H ₈ O)		60.2 56.0 43.6 29.3 18.4	91.5 90.2 84.8 75.0 62.0	16.7 27.15 105.55 168.6 203.2	4.6 3.5 1.5 0.0	26.0 20.7 9.8 0.0	215 220 222 221 224 227
Lecat, 19	949										
%		b.t.				Callab	iosa- 1 -0	tacetate (C - H - 0) + n	-Nitr
0 90 100		156.8 191.65 191.1	5 Az			11	(C ₆ H ₅ O ₈ I		. Czgnago	19 / 19	
						Marsde	n, Bainbr	idge and Mo	rris, 19	943	
						wt%	mo1%	f.t.	wt%	mol%	f
Lecat, 1 Butoxygl	949 ycol acetate	(C ₈ H ₁₆ O	a) (I	b.t.=1 7 1	.7 5) +	100.0 95.4 89.6 83.6	100.0 99.0 97.5 96.5 94.0	113.85 112.85 111.4 108.4 104.8	24.4 22.9 19.1 13.6 6.4	61.4 59.2 53.6 43.5 31.6	150 150 170 200 210
	2 nd comp.		Az			76.4 69.4 61.9	91.6 88.8	98.8 91.0	6.0 5.5	24.0 22.4 19.7	20 20
Name	Formula	b.t.	%	b.t.	Sat.t.	58.5 54.6	87.3 85.4 84.5	$\begin{array}{c} 91.0 \\ 98.8 \end{array}$	4.8 4.3 3.6	17.7	20 20 21
Phenol	(C ₆ H ₆ O)	182.2	55	187.0	_	52.8 50.3 45.9	84.5 83.1 80.5	107.8 119.4 133.8	$\frac{3.5}{3.2}$	$15.3 \\ 15.0 \\ 14.0$	19 20
	(C ₇ H ₈ O)	191.1	68	194.1	12	38.9 29.9	83.1 80.5 75.7 67.5	$157.4 \\ 173.8$	2.4 2.2 1.7	$\substack{10.9 \\ 10.0}$	21 21
p-Cresol	(C ₇ H ₈ O)	201.7	82	203.3	-	26.0 25.9	63.2	167.4 152.6	1.7 0.0 (1+2)	7.5 0.0	21
63	2-pentacetat		^	\		Triole	in (C ₅₇ 1	H ₁₀₄ 0 ₆)+	Resorcin	no1 (C ₆ H	60 ₂

mo1%

81.8 81.0 74.6 67.0 51.7 31.9 0.0

f.t.

-4.8 2.05 30.25 50.0 87.5 115.2 131.8

Marsden, Bainbridge and Morris, 1943

f.t.

41.05 38.05 29.85 25.0 18.5 7.9 -1.15

wt%

51.9 50.2 41.6 33.0 20.5 10.2

mo1%

100.0 97.0 93.2 90.4 88.7 85.8 82.6

wt%

100.0 39.3 77.0 70.4 65.2 59.2

53.5

dge and Morris, 1943 f.t. wt% mo1% f.t.

41.05 28.55 16.7 27.15 105.55 168.6 203.2 11.3 7.0 4.6 3.5 1.5 0.0 52.0 35.4 26.0 20.7 9.8 0.0 215.6 220.75 222.75 221.75 224.5 227.75

wt%	mo1%	f.t.	wt%	mo1%	f.t.
100.0 95.4 89.6 83.6 76.4 69.4 61.9 58.5 54.6 52.8 50.3 45.9 29.9 26.0 25.9	100.0 99.0 97.5 96.5 94.0 91.6 88.8 87.3 85.4 84.5 83.1 80.5 75.7 67.5 63.2	113.85 112.85 111.4 108.4 104.8 98.8 91.0 91.0 98.8 119.4 113.4 113.4 157.4 173.8 167.4	24.4 22.9 19.1 13.6 6.0 5.5 4.8 3.6 3.5 2.4 2.1 7	61.4 59.2 53.6 43.5 31.6 24.0 22.4 19.7 17.7 15.3 15.0 10.9 10.0 7.5	150.6 153.5 173.0 200.5 210.4 203.5 207.5 208.4 212.5 198.5 205.0 214.0 212.5 227.75
		(1+2)		

Bingham, 1907 $C.S.T. = 245^{\circ}$

Triolein	(C57H10406)	+	Thymo1	($C_{10}H_{14}0$)	
----------	---	-----------	---	---	--------	---	-----------------	---	--

Seidell, 1912

%	t	đ	%	t	đ
32.7	13.0	0.9368	40.0	25.0	0.9347
33.5	15.3	.9361	45.3	29.5	.9348
36.7	22.0	.9340	55.9	37.3	.9374

%			d	
	13.0°	20.6°	29.6°	3 7 °
0 5 10 15 20 25 30 35	0.9168 .9199 .9230 .9260 .9292 .9320 .9353 .9384	0.9130 ,9160 ,9190 ,9221 ,9252 ,9283 ,9313 ,9344 ,9376	0.9080 .9108 .9148 .9167 .9197 .9227 .9256 .9285	0.9034 .9063 .9092 .9132 .9151 .9180 .9210 .9239 .9269
45 50	. 94 45 . 94 7 6	.9406 .9436	.9345 .93 7 6	.9298 .9328

Triricinolein ($\text{C}_{57}\text{H}_{\text{104}}\text{O}_{9}$) + Thymol ($\text{C}_{\text{10}}\text{H}_{\text{14}}$ O)

Seidell, 1912

%	t	d	
51.71	22.0	0.9504	
57.31	29.5	.9621	
64.55	37.2	.9719	

Cod liver oil, peanut oil, cottonseed oil and linseed oil + Thymol ($C_{1\,0}H_{1\,4}0$)

Seidell, 1912

Density at different temperatures.

Lecat, 1949

Isobutyl carbonate ($C_9H_{1\,8}O_3$) (b.t.=190.3) + Phenols,

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
Phenol	(C ₆ H ₆ O)	182.2	25	191.5
o-Cresol	(C ₇ H ₈ O)	191,1	48	195
p-Creso1	(C7H80)	201.7	89	201.9
p-Chlor- phenol	(C ₆ H ₅ 0C1)	219.7 5	-	220.5

Lecat, 1949

Isoamyl carbonate ($C_{11}H_{22}O_3$) (b.t.=232.2) +

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
Thymol	(C _{1 O} H _{1 14} 0)	232.9	48	236.25
Ethyl- salicylate	(C ₉ H _{1.0} O ₃)	233.8	28	232.0
p-Chlorphei	no1(C ₆ H ₅ 0C1)	219.75	26	236.5

MethyI oxalate ($C_4H_6O_4$) + Pheno1 (C_6H_6O)

Lecat, 1949

%	b.t.	
0 95 100	164.45 182.35 Az 182.2	

Ampola and Rimatori, 1896

%	D f.t.	%	D f.t.	
0.37	-0.17	5.71	-3.01	
0.75	0.34	7.14	3.81	
1.28	0.71	8.91	4.79	
2.06	1.09	10.47	5.63	
2.89	1.58	11.77	6.40	
4.46	2.35	14.96	8.29	

Kremann, Zechner and Drazil, 1924	Methyl oxalate ($C_4H_6O_4$) + Hydroquinone ($C_6H_6O_2$)
% f.t. % f.t.	Kremann, Zechner and Drazil, 1924
100	Kremann, Zechner and Drazil, 1924
Methyl oxalate ($C_4H_6O_4$) + Pyrocatechol ($C_6H_6O_2$) Kremann, Zechner and Drazil, 1924	(4+1)
% f.t. % f.t.	Methyl oxalate ($C_bH_6O_b$) + Pyrogallol ($C_6H_6O_3$)
100 103.5 54 49 93.8 92 48.8 50 93.2 99 43.4 39 76.1 85 33.6 34 68.4 78 25.2 40.5 61.6 67 12.2 48 56.5 60 0 54	Kremann, Zechner and Drazil, 1924 # f.t. E # f.t.
E: 39% 30°	100 130.5 - 45.2 65 88.5 119 - 41.7 56.5
Methyl oxalate ($C_4H_6O_4$) + Resorcinol ($C_6H_6O_2$) Kremann, Zechner and Drazil, 1924 ### f.t. E ### f.t. E	80.2 111 - 34.5 41 73.6 104 35 28.9 40 66.5 95 " 19.7 45 59.4 89.0 - 11.0 49 52.2 78.0 35 5.2 52 50.9 73.5 - 1.9 53 46.3 65 - 0 54
100 115 - 58.4 60 28 95.9 112 - 52.4 47 "	Methyl oxalate ($C_4O_4H_6$) + Thymol ($C_{10}H_{14}O$)
92.7 109 - 45.4 47 " 87.9 104.8 - 45. 32 " 83.1 100 - 29.8 39 - 77.9 92.5 - 21.3 43 28 67.8 78 - 13.9 47 - 65.2 74 28 1.3 52 - 61.5 66 " 0 54 -	Ampola and Rimatori, 1896

Methyl oxalate ($C_4H_60_4$) + 1-Naphthol ($C_{1.0}H_80$) Kremann, Zechner and Drazil, 1924

%	f.t.	E	Æ	f.t.	E
100	95	_	51.3	26 27 29.0	26
89.3	83	-	48.6	27	-
77.5 65.4	83 70 52	_	45.5	29.0	26
65.4	52	-	41	32	**
58.9 57.4	39.5	26	40.9	32 32 39 44	-
57.4	39		30.3	39	-
54.1	39 30	2 6	21.4	44	-
53.6	30		11.5	49	
51.7	28	-	0.0	49 54	-

Methyl oxalate ($\text{C}_{\text{\tiny 4}}\text{H}_{6}\text{O}_{\text{\tiny 4}}$) + 2-Naphthol ($\text{C}_{\text{\tiny 1}\,\text{\tiny 0}}\text{H}_{\text{\tiny 8}}\text{O}$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	E
100	121	-	44.3	58.5	-
96.9	119	-	43.2	57. 6	39
90.5	112.3	-	36.5	49	11
82.6	103.5	-	35.5	47	_
75.2	94	-	31.5	42	_
75.2 69	86.5	_	29.4	40	39
64.3	80	_	28,1	41.5	'n
64.3 59.5	75	39	21.5	45.5	_
56.7	70	-	14.7	48	_
52.1	60	-	9.4	50.5	_
49 2	63	_	4.9	51.5	_
49.2 46	60	_	ó.´	54	-
	00		J	J-1	_

Methyl oxalate ($C_4H_60_4$) + o-Nitrophenol ($C_6H_50_3N$)

Kremann, Zechner and Drazil, 1924

%	f.t.	%	f.t.	
100 84.8 78 70.6 63.2 57.8 52.1 E: 63%	44.5 39.0 33.5 30 26 28 35	51.6 50.3 32.9 20.5 8.59	30 31 40 46 51 54	

Methyl oxalate ($C_4H_6O_4$) + m-Nitrophenol ($C_6H_5O_3N$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	E
100 93 85.7	95	_	45.4	24	24
93	95 90 83 71 54	-	38.1	3 2	-
85.7	83	-	28.5	40	-
74.1	71	24	16.9	47	24
63.5	54	_	9.2	50	-
56.4	42	24	0	54	-
49.5	3 2	24			

Methyl oxalate ($C_{\bf k}H_60_{\bf k}$) + p-Nitrophenol ($C_6H_50_3N$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	Е
100	114.5	_	55.8	59	32
95. 7	110.5	-	48.9	47	11
90	106	_	41.4	33.5	H
80.9	96.5	_	31	39.1	_
73.7	88.0	_	22	44.5	
66.9	78.5	-	$\bar{13.7}$	48	_
63.4	72.5	32	2.3	52	_
60	65.8	-	ã. s	54	_

Methyl oxalate ($C_{t_k}H_{\delta}0_{t_k}$) + 1,2,4-Dinitrophenol ($C_{\delta}H_{t_k}0_{5}N_{2}$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	E	
100	112.5	_	49.4	69	43	
89.7	101	_	43.6	63	-	
	94	-	31.9	47	43	
82 74.8	89	-	23.9 15.3	45.5	-	
67.5	82	-	15.3		43	
60.5 55.5	7 8	43	7.1	48 52	-	
	74	-	0	54	-	
54.1	7 3	-				

Methyl oxalate ($C_4H_6O_4$) + Picric acid ($C_6H_3O_7N_3$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	E
100	121.5	_	49.7	51.5	_
95.2	115.5	-	47.7	47	38
85.6	102.5	-	43.9	38.5	-
79	94	-	38.1	40.5	38
73.2	86	-	32.2	42.8	11
68.3	80	38	27,18	44.8	-
64.5	74	-	20.9	47.0	-
60.1	69	38	13.3	49.5	-
56.7	64	-	4.1	52.5	_
51.8	55	38	0	54	-

Lecat, 1949

Ethyl oxalate ($C_6H_{10}O_4$) (b.t.=185.65) + Phenols.

	2 nd comp.		Az		······································
Name	Formula	b.t.	%	b.t.	Dt mix.
Phenol	(C ₆ H ₆ O)	182.2	42	189.6	-
o-Cresol	(C ₇ H ₈ O)	191.1	64	194.15	-
m-Creso1	(C ₇ H ₈ O)	202.2	91 97	202.3	+1.2
p-Cresol	(C ₇ H ₈ O)	201.7	95	201.9	-
p-Chlorphe nol	e-(C ₆ H ₅ OC1)	219,75	88	221.5	-

Ethyl oxalate ($C_6H_{10}O_4$) + Phenol (C_6H_6O)

Paterno, 1896

%	Df.t.	%	Df.t.	
0.49	-0.24	6.54	-3.74	
1.33	0.57	9.18	5.65	
2.82	1.51	11.78	7.94	
4.68	2.56	14.82	10.64	

Ethyl oxalate ($C_6H_{1\,0}O_{4}$) + Resorcinol ($C_6H_6O_2$)

Kremann, Zechner and Drazil, 1924

%	f.t.	%	f.t.	
100	114.5	50.1	49.5	
$95.1 \\ 89.3$	$\frac{108}{104.3}$	45.3 43.6	30 19	
82.8	99	40.8	6	
76.2	92	39.1	2	
69.4	85	38.8 35.9	-	
63.4 56	75.5 64	33.9 0	-	

Ethyl oxalate ($C_6H_{10}O_4$) + Hydroquinone ($C_6H_6O_2$)

Kremann, Zechner and Drazil, 1924

%	f.t.	%	f.t.	
100 94.1 83.9 71.4 53.7 52.3 47.6 47 42.3 36.4 33.1 32.2	169 167 163 155 148 140 135 129 129 123 119	30 27.2 27.2 24.3 21.2 19 16.8 12.8 9.2 6.4 5.7 3.2	114 108, 4 108 102 100 92 86 79 62 48 37 30 21	

Ethyl oxalate ($C_6H_{1\,0}O_4$) + 2-Naphthol ($C_{1\,0}H_8O$)

Kremann, Zechner and Drazil, 1924

%	f.t.	%	f.t.	
100 96.4 91 85.2 79.1 71.7 62.2 66.1 55.6 49.9	121.5 118 113 107 101 92 79 85 69.3	44.6 40.3 39.3 38.3 33.7 30 26.7 20.8	51 42.5 40 39.5 30 24 15	

	Lecat, 1949
Isoamyl oxalate ($C_{12}H_{22}O_{i_+}$) + Resorcinol ($C_6H_6O_2$)	Methylmaleate ($C_6H_8O_4$) (b.t.= 204.05) + Phenols.
	2 nd comp. Az
Lecat, 1949	Name Formula b.t. % b.t. Dt mix.
, b.t.	o-Cresol (C ₇ H ₈ O) 191.1 22 204.65 -
0 268.0 85 282.5 Az 100 282.4	m-Cresol (C_7H_80) 202.2 45 208.75 -
100 282.4	p-Cresol (C_7H_80) 201.7 44 208.6 15
Lecat, 1949	Guaiacol (C ₇ H ₈ O ₂) 205.05 80 205.15 15
Methyl succinate ($C_6H_{10}O_4$) (b.t.=195.5) + Phenols	p-Chlor- (C ₆ H ₅ 0Cl) 219.75 68 223.0 - phenol
2 nd comp. Az	
Name Formula b.t. % b.t.	Lecat, 1949
	Methyl fumarate (C ₆ H ₈ O ₄) (b.t.=193.25) + Phenols,
Pheno1 (C ₆ H ₆ 0) 182.2 20 196.5	2 nd comp. Az
o-Cresol (C ₇ H ₈ O) 191.1 - 199	Name Formula b.t. % b.t.
p-Cresol (C ₇ H ₈ O) 201.7 75 204.5	Phenol (C ₆ H ₆ O) 182.2 23 194.85
p-Chlor- (C ₆ H ₅ OCl) 219.75 90 222.5 phenol	o-Cresol (C ₇ H ₈ O) 191.1 40 197.8
	m-Cresol (C ₇ H ₈ O) 202.2 28 204.3
Lecat, 1949	p-Cresol (C ₇ H ₈ O) 201.7 71 204.0
Ethyl succinate ($C_8H_{14}O_4$) (b.t.=217.25)+	p-Chlor- (C ₆ H ₅ 0C1) 219.75 92 221.0 phenol
+ Phenols 2 nd comp. Az	
Name Formula b.t. % b.t.	Lecat, 1949
Thymol ($C_{10}H_{14}0$) 232.9 - 233.1	Ethylmaleate (C ₈ H ₁₂ O ₄) (b.t.=223.3) + Phenols.
o-Nitro- ($\mathrm{C_6H_5O_3N}$) 217.2 54 216.9 phenol	2 nd comp. Az
p-Chlor- (C ₆ H ₅ 0Cl) 219.75 52 231.8 phenol	Name Formula b.t. % b.t.
	o-Xylenol (C ₈ H ₁₀ O) 226.8 55 230.0
	m-Xylenol (C ₈ H ₁₀ 0) 210.5 - 223.7
Propyl succinate ($C_{10}H_{18}O_{4}$) + Carvacrol($C_{10}H_{14}O$)	p-Ethyl- (C ₈ H ₁₀ 0) 218.8 38 226.3 phenol
Lecat, 1949	Thymol (C _{1.0} H _{1.4} 0) 232.9 73 234.9 Carvacrol (C _{1.0} H _{1.4} 0) 237.85 88 238.7
% b.t.	p-Chlor- (C ₆ H ₅ 0Cl) 219.75 53 232.5
0 250.5 25 251.5 Az	phenol
100 237.85	Methyl- (CgHgOs) 222.95 60 221.95 -0.8 salicylate
	ii

Lecat, 1949	β (α) 6528 Å 5890 Å 5784 Å 5456 Å
Ethylfumarate (C ₈ H ₁₂ O ₄) (b.t.=217.85) + Phenols.	
2 nd comp. Az	69.13 +5.003 +5.353 +5.264 +3.802 44.55 3.049 2.857 2.771 2.292 31.63 2.708 2.474 2.338 1.801
	1 15.62 3,233 3,125 3.011 2.607
Name Formula b.t. % b.t. Sat.t.	5.42 4.268 4.429 4.430 4.199 0 4.833 5.173 5.181 5.151
p-Ethyl- (C ₈ H ₁₀ 0) 218,8 48 223.0 - phenol	\$ (a)
o-Xylenol (C ₈ H ₁₀ O) 226.8 69 228.2 -	⁷⁶ (α) 4750 Å 4365 Å 4346 Å
m-Xylenol (C ₈ H ₁₀ O) 210.5 32 219.65 -	69.13 +3.572 - +0.034 44.55 -0.426 -4.714 -4.997
Thymol (C ₁₀ H ₁₄ 0) 232.9 87.5 232.35 35	31.63 -1.3365.906 15.62 -0.066 -3.909 -4.324
p-Chlor- (C ₆ H ₅ 0Cl) 219.75 54 230.5	5.42 +2.297 -0.469 -1.539 0 +3.390 - +0.195
phenol	10.175
Ethyl diacetyl tartrate (C ₁₂ H ₁₈ O ₆) + Phenol	
(C ₆ H ₆ O)	Lecat, 1949
6-h 1010	Bornyl acetate (C ₁₂ H ₂₀ O ₂) (b.t.=227.6) + Phenols.
Scheuer, 1910	2 nd comp. Az
% mol% f.t. % mol% f.t.	Name Formula b.t. % b.t.
100 100 40.0 38.95 66.31 -4.6 96.94 98.99 39.3 37.91 65.32 -1.5 93.60 97.83 38.25 36.62 64.06 +3.2	o-Xylenol (C ₈ H ₁₀ O) 226.8 37 229.8
93.00 97.83 38.25 30.62 64.06 +3.2 88.47 96.13 36.1 35.15 62.58 7.9	Thymol ($C_{10}H_{14}$ 0) 232.9 61 235.5
1 85.04 94.61 33.9 34.85 62.27 9.7 1	Carvacrol (C ₁₀ H ₁ u ₀) 237.85 75 238.8
85.04 94.61 33.9 34.85 62.27 8.7 80.81 92.85 31.1 31.91 59.11 15.8 78.32 91.77 29.3 31.24 58.37 17.25 76.03 90.73 27.4 27.28 53.64 25.8	p-Chlor- (C ₆ H ₅ OC1) 219.75 30 232.6
$\begin{bmatrix} 72.49 & 89.04 & 24.6 & 26.46 & 52.60 & 27.25 \\ 69.98 & 88.17 & 23.0 & 24.61 & 50.18 & 21.2 \end{bmatrix}$	phenol
$\begin{bmatrix} 68.51 & 87.05 & 21.0 & 23.49 & 48.64 & 31.9 \end{bmatrix}$	
$\begin{bmatrix} 65.35 & 85.33 & 17.7 & 19.08 & 42.13 & 40.5 \end{bmatrix}$	Phenyl acetate ($C_8H_8O_2$)(b.t.=195.7) + Phenols
52.02 76.98 -3.6 15.13 35.48 46.3	
47.04 73.27 -16.6 7.37 19.70 55.7	Lecat, 1949
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 nd comp. Az
	Name Formula b.t. % b.t. Dt mix.
% mo1% d 67.3° 82.2° 99.0°	Phenol (C ₆ H ₆ 0) 182,2 9 195,8 -
100 100 1.0330 1.0204 1.0046 69.13 87.35 .0586 .0461 .0370	o-Cresol (C ₇ H ₈ O) 191.1 36 198.2 - m-Cresol (C ₇ H ₈ O) 202.2 70 204.1 +3.0
45.55 71.25 .1054? .0917? .0749? 31.63 58.80 .0866 .0720 .0562	, ,
15.62 36.35 .1002 .0840 .0682 5.42 15.02 .1091 .0929 .0929	p-Cresol (C ₇ H ₈ O) 201.7 68 203.5 -
0 0 .1086 .0976 .0802	o-Chlor- (C ₆ H ₅ OC1) 176.8 12 197.0 phenol 48 - +6.2
% mo1% 7 67.3° 82.2° 99.0°	p-Chlor- (C ₆ H ₅ 0Cl) 219.75 87 220.3 -
	o-Brom- (C ₆ H ₅ OBr) 194.8 50 205.0 +5.8
100 100 1742 1168 799 69.13 87.36 2017 1416 968 45.55 71.25 3332 2228 1443	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31.63 58.80 5294 3093 2201	
15.62 36.35 6122 3480 2182 5.42 15.02 7005 4065 2483	
0 0 8951 5504 3126	

Ethyl phenyl acetate	$(C_{10}H_{12}O_2)(b.t.=228$.75)
+ Phenols		

Lecat, 1949

2 nd comp.			Az	. سند شدر دنو سند شد خدر الدوست میدخده شدر دنو پاسه است.
Name	Formula	b.t.	%	b.t.
o-Xylenol	(C ₈ H ₁₀ O)	226.8	42	230.8
Thymo1	$(C_{10}H_{14}0)$	232.9	62	239.95
Carvacrol	(C ₁₀ H ₁₄ 0)	237.85	80	238.3
p-Chlor- phenol	(C ₆ ,H ₅ 0C1)	219.75	27	233.2

Benzyl formate ($C_8H_8O_2$)(b.t.=203.0) + Phenols

Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix.
m~Cresol	(C ₇ H ₈ O)	202.2	46	206.8	3.5 (50%)
p-Cresol	(C_7H_8O)	201.7	42	206.3	-
Guaiacol	(C ₇ H ₈ O ₂)	205.05	90	206.2	=
p-Chlor- phenol	(C ₆ H ₅ OC1)	219.75	7 5	221.5	

Benzyl acetate ($C_9H_{10}O_2$) + m-Cresol (C_7H_8O)

Moore and Styan, 1956

mol	% 	Dv (cc/mole)	Q mix	
80 60 50 40 20		-0.06 -0.1 -0.12 -0.13 -0.1	+225 +270 +266 +250 +170	

Benzyl acetate ($C_9II_{1\ 0}O_2$)(b.t.=215.0) + Phenols

Lecat, 1949

	2nd comp.		Az		
Name	Formula	b.t.	%	b.t.	
m~Xylenol as.	(C ₈ H _{1 o} 0)	210.5	36	216.8	
p-Ethyl- phenol	(C ₈ H ₁₀ 0)	218.8	60	221.0	
Guethol	(C ₈ H ₁₀ O ₂)	216.5	70	217.5	
p-Chlor- phenol	(C ₆ H ₅ 0C1)	219.75	45	226.5	

Methyl benzoate ($C_8H_8O_2$)(b.t.=199.4)

+ Phenols

Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix. Sat.t.
o-Cresol	(C ₇ H ₈ O)	191.1	21	200.35	-
m-Cresol	(C ₇ H ₈ O)	202.2	63 77	204.65	- +1.9
p-Cresol	(C ₇ H ₈ O)	201.7	42	206.3	-
p-Chlor- phenol	(C ₆ H ₅ 0C1)	219.75	7 9	220.75	17.5
o-Brom- phenol	(C ₆ H ₅ 0Br)	194.8	42	206.2	-

Ethyl benzoate ($C_9H_{10}O_2$)(b.t.=212.5)

+ Phenols

Lecat, 1949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix.
m-Cresol	(C ₇ H ₈ O)	202.2	9 12	212.6	+1.3
p-Cresol	(C ₇ H ₈ O)	201.7	7	212.55	
m-Xylenol as.	($C_8H_{10}O$)	210.5	3 2	214.5	-
p-Ethyl- phenol	$(C_8H_{10}O)$	218.8	80	219.8	-
o-Brom- phenol	(C ₆ H ₅ 0Br)	194.8	15	214.2	-
p-Chlor- phenol	(C ₆ H ₅ OC1)	219.75	60⋅	225.0	-

Propyl benzoate	($C_{10}H_{12}O_{2}$)(b.t.=230.85)
+ Phenols		

Lecat, 1949

	2 nd comp.		Az	
Name	Formula	b.t.	%	b.t.
o-Xyleno	1 (C ₈ H _{1 o} O)	226.8	33	231.9
Thymo1	($C_{10}H_{14}0$)	232.9	55	235,6
p-Chlor- phenol	(C ₆ H ₅ OC1)	219.75	25	234.5

Isobutyl benzoate ($C_{1\,1}H_{1\,1\mu}0_{2}$)(b.t.=232.9) + Phenols

Lecat, 1949

	2 nd comp.	Az	
Name	Formula	b.t. %	b.t.
Thymo1	(C ₁₀ H ₁₄ 0)	232.9 17	242.35
Carvacrol	($C_{10}H_{14}0$)	237.85 43	243.85
Methyl- resorcino	(C ₇ H ₈ O ₂)	243.8 69	244.5
p-Chlor- phenol	(C ₆ H ₅ 0C1)	219.75 7	242.5

Ethyl cinnamate ($\rm C_{11}H_{12}O_2$) + Resorcinol ($\rm C_6H_6O_2$) Lecat, 1949

<i>R</i>	b.t.
0	272.0
88	281.6 Az
100	281.4

Methyl phthalate ($\text{C}_{\text{10}}\text{H}_{\text{10}}\text{O}_{\text{4}}$)(b.t.=283.2) + Phenols

Lecat, 1949

	2nd Comp.			Az
Name	Formula	b. t.	%	b.t.
Resorcinol	(C ₆ H ₆ O ₂)	281.4	32	286.5
1-Naphthol	$(C_{10}H_{8}O)$	288.0	78	290.5
2-Naphthol	$(C_{10}H_{8}O)$	295.0	82	296.0

Guaiacol carbonate ($C_{1\,5}H_{1\,4}O_{5}$) + Vanilline ($C_{8}H_{8}O_{5}$)

Lehmann, 1914

%	f.t.	%	f.t.	
100 99 98 97 96 95 94 93 92	81.8 81.0 80.9 80.7 80.5 80.2 80.0 79.5 79.3 79.2	90 85 80 75 70 65 60 55 50	79.0 79.5 78.0 78.0 77.2 74.0 72.8 71.0 70.6	

Sulfonal ($C_7H_{16}O_4S_2$) + Salo1 ($C_{13}H_{10}O_5$)

Bianchini, 1914

mo1%	f.t.	Е	min.	
100	42,5	_	_	
100 95	39 38 70.5 89	34	90	
90	38	-2	100	
80	70,5	-	90	
70 60	89	-	80	
60	9 7	-	п	
50	105	-	70	
40	109	-	60	
30 20	112	-	11	
20	118.5 123	-	50	
10	123	34	30	
0	124.5	-	-	
		_		

Acetic anhydride (C _u H ₆ O ₈) + Acetic acid (C ₂ H _u O ₂) Pickering, 1893	
% f.t. % f.t.	
L V p p ₂ p ₁ 100 +16.63 43.008 -8.50 93.499 16.06 41.001 9.80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 8 5 5 8 1 7 7 7
0 0 37.5 - 37.5 70.151 5.27 18.950 32.17 38.9 54.6 61.4 33.6 27.9 64.521 2.87 16.787 35.88 58.4 77.5 70.7 54.3 16.4 62.064 1.87 15.835 37.87 78.4 85.5 81.6 69.9 11.2 59.493 0.53 14.933 39.67 100 100 89.0 89.0 - 57.440 -0.43 13.387 43.47 54.763 1.70 11.784 46.97 52.052 3.30 10.120 50.55	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
9,228 4.80 8.394 56.37 9thmer, 1932 47.330 5.88 7.505 61.87 45.048 7.19 6.599 -65.97	,
L % V L % V	
b.t.(750 mm) Atsuki and Ishii, 1931	
10 23.2 60 78.6 20 42.3 70 84.1 % f.t. % f.t.	
30 56.5 80 89.7 40 65.2 90 95.0 100 16.18 91.53 12.90 50 72.4 98.70 15.69 86.99 11.30 97.52 15.27 82.08 10.11	6 5
Povarnin and Markov, 1924 94.64 14.14 76.80 7.69	·
Equilibrium L - V Timmermans, 1957.	
x(100-y)/y(100-x)=0.419 b.t.=118°+22.7°.y	E
0 - 72.5 x.v=anhydride % in V and L 8.8 - 20.8	~ 74.35
35.8 - 5.7 47.8 - 3.5 63.6 + 4.85 100 + 16	-
b.t. mol% b.t. mol% Greathouse, Janssen and Haydel, 1956	
400 mm	0.582g H ₂ 0
109.2 40.0 58.1 101.6 81.6 89.7 108.1 44.9 63.4 100.0 91.9 95.9 10.0 -1.25 -1.30 25.0 1.95 2.05 50.0 2.40 2.35	-1.25 2.05 2.30
Drucker and Kassel, 1911 50.0 2.40 2.35 75.0 1.60 1.70 85.0 1.10 1.10	1.60 1.05
76.5° 15° 90.0 0.80 0.90 0.50 0.50 0.45 0.50 0.40	0.75 0.30 0.25
0 1.0096 462 1.0850 979 98.0	0.15
69.93 .9914 522 .0631 1185 90.03 .9860 555 .0570 1318 100 .9853 563 .0550 1333	

Benzoic anhydride ($C_{1u}O_{3}H_{10}$) + Acetic acid Beckmann, 1888 ($C_{2}H_{u}O_{2}$)	Methyl formate ($C_2H_u\theta_2$) + Butyric acid ($C_uH_B\theta_2$) Konovalov, 1907
% D f.t.	mol% p mol% p
98.66 -0.240 96.25 0.670 90.33 1.630 82.92 2.755 73.93 4.070	18.1° 0 442.3 49.53 284.3 25.31 363.3 65.80 217.1 33.62 337.2 74.13 175.2
Phthalic anhydride ($C_8H_4O_8$) + Phthalic acid Debeau, 1946 ($C_8H_6O_4$)	Methyl formate ($C_2H_kO_2$) + Isobutyric acid Konovalov, 1907 ($C_kH_8O_2$)
% f.t.	mol% p mol% p
0 130.95 1.65 129.80 E	18.1° 0 442.3 49.51 288.4 25.32 364.4 66.94 218.9 32.52 344.4 74.56 182.9
Phthalic anhydride ($C_8H_4O_8$) + Trichloracetic	32,62 3,1.4 7.105 10217
acid (C ₂ H0 ₂ Cl ₃) Pushin and Rikovski, 1940-46	Methyl formate ($C_2H_uO_2$) + Chloracetic acid Konovalov, 1907 ($C_2H_3O_2C1$)
	% p
mol% f.t. E mol% f.t. E	18.1°
100 57 - 40 99.5 35.5 90 51.5 36.5 30 108.5 30 80 44 42 20 116 - 70 58 42 10 123 - 60 74.5 41 0 130 - 50 88 40.5	0 442.3 25.50 326.3 34.24 280.9 50.88 193.2
Acetyl chloride (C_2H_30C1) + Acetic acid ($C_2H_40_2$) Usanovich and Vasilyeva, 1946 (fig.)	Methyl formate ($C_2H_4O_2$) + Dichloracetic acid Konovalov, 1907 ($C_2H_2O_2Cl_2$)
mo1% η mo1% η	mol% p mol% p
25°	18,1°
0 387 60 620 10 440 70 790 20 520 80 997 30 550 90 1020 40 570 100 1097	0 442.3 48.58 136.2 25.98 290.9 65.04 59.3 33.43 236.6 72.88 35.8
50 600	
The author gives also an erroneous curve for 35°	Methyl formate ($C_2H_4O_2$) + Trichloracetic acid ($C_2HO_2Cl_3$)
Oleyl chloride ($C_{1,B}H_{89}OCl$) + Oleic acid ($C_{1,B}H_{84}O_2$)	Konovalov, 1907
Taufel and Kunkele, 1935 (fig.)	mol% p
% b.t. % b.t.	18.1°
0 205 93 196 10 221 95 195 20 233 100 170 30 238 40 241 Az	0 442.3 25.14 290.4 32.48 232.1 49.39 102.4 63.55 40.1

Ethyl formate ($C_3H_6O_2$) + Formic acid (CH_2O_2)	. % η 25° 40° 60°
Udovenko and Airapetova, 1947	0.00 1118 905 694
mo1% d	12.15 975 795 624
m01/5	. 23.98 846 695 554 34.61 755 627 507
0° 25° 50°	45.49 664 554 461
100.00 1.2375 1.2088 1.1846	55.03 608 512 424 64.72 550 432 365
91.02 1.1859 1.1605 1.1329 83.55 1.1469 1.1243 1.0933	73.89 505 432 365 83.16 459 391 -
72.81 1.1071 1.0784 1.0498	91.25 424 362 -
64.44 1.0773 1.0506 1.0245 49.14 1.0330 1.0101 0.9825	95.93 395 340 - 100.00 378 322 -
36.68 1.0134 0.9872 0.9552 25.61 0.9833 0.9591 0.9285	
# 14 02 0 9676 0 9413 0 9118	
8.72 0.9592 0.9298 0.8967 0.00 0.9474 0.9168 0.8818	Amyl formate ($C_6H_{12}O_2$) + Acetic acid ($C_2H_4O_2$)
mol% ŋ	Abegg, 1894
0° 25° 50°	molarity of amyl formate f.t.
	0 16.52
100.00 2821.0 1537.2 976.7 91.02 2102.3 1230.7 818.2	0.737 13.725 1.420 10.905
83.55 1723.6 1056.1 724.9 72.81 1341.7 869.2 609.1	1.980 8.375
64.44 1143.2 764.0 555.0	2.456 6.05 2.834 4.05
49.14 900.8 624.4 471.1 36.68 783.2 559.4 434.2	
25 .61 663.5 494.0 376.5	
8.72 547.4 417.0 315.9	Ethyl formate (C ₃ H ₆ O ₂) + Dichloracetic acid
0.00 528.8 397.2 308.0	(C ₂ H ₂ Cl ₂ O ₂)
Ethyl formate ($C_9H_6O_2$) + Acetic acid ($C_2H_4O_2$)	Konovalov, 1907
	mo1% p
Abegg, 1894	18.1°
N of formate f.t. N of formate f.t.	0 183.0
0 16.52 1.200 11.84	37.30 101.3 46.83 61.2
0.229 15.644 1.941 8.78	65.98 23.5
0.529 14.499 2.600 5.85 0.814 13.394 3.294 4.74	
1.162 12.017	
Usanovich,Bilyalov and Krasnomolova, 1956	Methyl acetate ($C_3H_6O_2$) + Acetic acid ($C_2H_4O_2$)
% d	Abegg, 1894
25° 40° 60°	molarity of methyl acetate f.t.
0.00 1.0442 1.0279 1.0074	
12.15 ,0267 ,0095 0,9893	0 16.52 0.798 13.56 1.677 10.05
34.61 9939 9772 9550	1.677 10.05 2.485 6.32
45.49 .9785 .9617 .9415 55.03 .9649 .9491 .9269 64.72 .9525 .9356 .9131	2.485 6.32 3.235 2.72
55.03 .9649 .9491 .9269 64.72 .9525 .9356 .9131 73.89 .9384 .9226 .8974	
83.16 .9251 .9095 -	
91.25 .9166 .8984 - 95.93 .9004 .8924 -	1
100.00 ,9040 ,8842 -	

METHYL ACETATE + BUTYRIC ACID

Methy l	acetate	($C_3H_6O_2$)	+	Butyric	acid	(C4H8O5)

Weissenberger, Henke and Katschinka, 1926

mo1%	þ	mo1%	p	
	20)		
75 60 50	32.0 77.8 78.5	40 25 0	107.7 123.2 169.8	

Methyl acetate ($C_3H_6O_2$) + Chloracetic acid ($C_2H_3O_2Cl$)

Weissenberger, Schuster and Pamer, 1925

mo1%	p	mo1%	р	
	20°			
0 10 20	169.8 148.1 1 24. 3	30 40 50	98.8 73.1 54.0	

Methyl acetate ($C_3H_6O_2$) + Dichloracetic acid ($C_2H_2O_2Cl_2$)

Weissenberger, Schuster and Pamer, 1925

mo1%	р	Q mix	mol%	p	Q mix
		20	0		
0 10 20 30 40	169.8 141.0 109.4 78.6 50.0	375 588 750 842	50 60 70 80	29.5 16.1 7.6 3.0	871 844 752 588

Methy1 acetate ($C_8H_6O_2$) + Trichloracetic acid ($C_2HO_2Cl_3$)

Weissenberger, Schuster and Pamer, 1925

mo1%	р	mol%	р	
	2	0°		
0 10 20	169.8 143.8 112.0	30 40 50	79.2 43.5 20.7	

Ethyl acetate ($C_{4}H_{8}0_{2}$) + Acetic acid ($C_{2}H_{4}0_{2}$)

Schmidt, 1930

·····				
K				
L	V	p	рz	p ₁
		59.6°		
0 4.1 6.8 20.4 41.12 41.12 50.70 51.28 53.45 68.05 68.05 84.68	0 0.74 1.47 4.24 13.40 13.32 19.49 19.87 21.30 35.73 35.65 60.78	415.3 401.2 390.4 334.5 265.0 234.0 233.0 225.0 176.9 177.7	2.20 3.32 14.26 31.96 32.13 40.92 41.03 42.19 57.68 57.51	415.3 399.0 387.1 320.2 233.0 232.9 193.1 192.0 182.8 119.2
04.08	60.78	42°	70.99	56.7
0 4.91 6.80 20.04 33.08 59.51 77.75 77.75	0 0.92 1.46 3.55 7.52 23.51 43.05 43.21 100.00	203.8 194.1 188.1 164.2 142.0 95.8 68.5 68.5 38.5	1.21 3.16 4.84 9.4 19.1 26.01 25.91 38.5	203.8 192.9 184.9 159.2 132.6 76.7 42.5

Usanovich, Bilyalov and Krasnomolova, 1955

_	t	р	t	р	t	р
	100	mo1%	7 8.6	mo1%	71 m	01%
	41.2 44.5 60.0 64.1 74.5 83.5	37 45 93 110 171 249	42.0 46.5 51.2 56.5 60 63.5	81 100 124 155 181 198	47.0 50.0 53.5 56.5 60 62	137 159 178 203 229 251
		mol%	33.0			mo1%
	52.5 58.0 60.0 62.5 67.5 71.0	238 298 321 354 427 481	40.7 45.0 50.0 54.0 57.0	165 199 241 282 319 360	46.0 50.0 52.6 56.2 60.0 63.7	251 297 321 374 419 475
			0 1	mol%		
-	45.5 48.5	250 282	53.0 58.0	38 7 411	60.0 63.5	444 499

Bushmakin and Lutugina, 1956

mo l	.%	mo	1%	
L	v	L	v	
	7 60	mm		
2.5 14.9 34.4 62.3	6.4 31.9 59.5 84.5	79.9 86.6 93.9 95.5	93.6 96.2 98.5 98.9	

	The second secon		T			
Abegg, 1894			Kendall ar	d Brakeley,	1921	
molarity of ethy	l acetate f.t.		mo1%	η	mol%	n
0 0.876 1.574 2.278 2.865	16.52 13.21 10.27 7.20 4.13		0 10.49 20.70 30.37	25° 423.6 459.0 494.9 533.1	59.96 69.88 80.11 87.42	689.0 766.8 859.0 943.0
Kendall and Brake	eley, 1921	***************************************	39.90 49.85	576.2 628.9	100	1121
mol% d	mol% c	l				
0 0.894	25° 18 59.96 0.96	97	Hammick and	Andrew, 192	9	
10.49 .909 20.70 .92	92 69,88 ,98	50	mo1%	ا	mol%	σ
30.37 .93(39.90 .94) 49.85 .955)8 8 7.42 .01 7 1 00 .04	.65	100 87.27 69.69	25° 28.52 27.49 26.56	45.71 31.10 0	25.21 25.65 23.42
Hammick and Andr	ew, 1929					
mol% d	mol% d		Kendall and	Gross, 1921		
_	25°		mo1%	ж .10 ⁷	mol%	и .10 ⁷
100 1.0510 87.27 .0200 69.69 .9844	31.10 .92 0 .89	88	100 77.87 49.27	0.24 0.20 0.12	23.52 0 b	0.05 elow 0.01
	ov and Krasnowolova	, 1955	<u> </u>		**********	
wt% mol%	d 25° 40°	60°	Longtin, 19	42 (fig.)		
100 100	1.0442 1.0279	1.0074	mo1%	Q mix	mo1%	Q mix
79.65 72.73 69.63 60.97 58.99 49.50 50.21 40.72 39.94 31.19 30.38 22.98 20.29 14.77 9.52 6.69 0	.0210 1.0045 0.9994 0.9823 .9825 .9642 .9644 .9471 .9512 .9354 .9379 .9197 .9266 .9086 .9141 .8961 .9029 .8849 .8914 .8741	0.9831 .9603 .9436 .9247 .9124 .8933 .8862 .8731 .8613 .8505	0 10 20 30 40 50	0 -2.38 -2.38 0 +3.57 +5.05	60 70 80 90 100	+8.93 +11.90 +13.09 +9.52
wt% mol%	η 25° 40°	60°	Timofeev, 1	905		
100 100 89.80 85.81	1118 905 970 701	694	initial	% final		dil y mole acetate)
79.65 72.73 69.63 60.97 58.99 49.50 50.21 40.72 39.94 31.19 30.38 22.98 20.29 14.77 9.52 6.69	867 707 771 634 697 579	518 557 503 461 430 393 369 342 316 295	100 93.3 86.9	93.3 86.9 81.8		+107 +68 +50

Ethyl acetate ($C_4H_8O_2$) + Caprylic acid($C_8H_{16}O_2$)	Ethyl acetate ($C_uH_8O_2$) + Tridecanoic acid ($C_{18}H_{26}O_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 194≰
\$ f.t.	% f.t. % f.t.
61.6 0 85.9 10 100 16.30	9.1 0.0 73.7 30.0 18.3 10.0 98.7 40.0 41.1 20.0 100 41.76
Ethyl acetate ($C_hH_8O_2$) + Pelargonic acid ($C_9H_{18}O_2$)	Ethyl acetate ($C_{\rm h}H_{\rm g}O_{\rm g}$) + Myristic acid ($C_{\rm 1h}H_{\rm g}g_{\rm g}$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
# f.t.	% f.t. % f.t.
71.4 0 87.0 10.0 100 12.25	3.2 0.0 62.0 40.0 6.1 10.0 93.1 50.0 13.3 20.0 100 54.15 30.8 30.0
Ethyl acetate ($C_4H_8O_2$) + Caprinic acid ($C_{1.0}H_{2.0}O_2$) Hoerr and Ralston, 1944	Ethyl acetate ($C_{l_1}H_{8}O_{2}$) + Pentadecanoic acid ($C_{1.5}H_{8.0}O_{2}$)
% f.t.	Hoerr and Ralston, 1944
25.2 0.0 47.3 10.0 74.2 20.0 98.7 30.0 100 31.24	% f.t. % f.t. 2,7 0.0 67.5 40.0 5.7 10.0 95.5 50.0 13.3 20.0 100 52.54 33.7 30.0
Ethyl acetate (C _L H ₈ O ₂) + Undecanoic acid	Ethyl acetate ($C_bH_8O_2$) + Palmitic acid ($C_{16}H_{82}O_2$) Hoerr and Ralston, 1944
80.9 100 28.13	% f.t. % f.t.
	0.8 0.0 34.6 40.0 2.1 10.0 66.9 50.0 5.7 20.0 95.9 60.0 14.9 30.0 100.0 62.82
Ethyl acetate ($C_hH_8O_2$) + Lauric acid ($C_{12}H_{2h}O_2$)	
Hoerr and Ralston, 1944 **F.t.	
8.5 0.0 71.4 30.0 15.5 10.0 92.6 40.0 34.2 20.0 100 43.92	

Ethyl acetate (C _u H ₈ O ₂) + Margaric acid	Ethyl acetate ($C_{ m L}H_8O_2$) + Chloracetic acid
(C ₁₇ H ₉₄ O ₂)	(C ₂ H ₃ O ₂ Cl)
	Waissanhargan Sahustan and Daman 1925
Hoerr and Ralston, 1944	Weissenberger, Schuster and Pamer, 1925
% f.t. % f.t.	mol% p
0.4 0.0 37.1 40	2 0°
1.6 10.0 70.6 50	0 72.8 10 62.9
4.9 20.0 98.3 60 14.2 30.0 100 69.64	20 52.0
	30 44.0 40 35.0
	50 26.0
Ethyl acetate (C _u H ₈ O ₂) + Stearic acid (C ₁₈ H ₃₆ O ₂)	
Hoerr and Ralston, 1944	Ethyl acetate ($C_4H_8O_2$) + Dichloracetic acid
	(C ₂ H ₂ O ₂ Cl ₂)
% f.t. % f.t.	Weissenberger, Schuster and Pamer, 1925
0.5 20.0 43.8 50.0 4.8 30.0 77.6 60.0	mol% p Q mix mol% p Q mix
4.8 30.0 77.6 60.0 17.6 40.0 100 69.32	20°
	0 72.8 - 40 23.5 900
Ethyl acetate ($C_4H_8O_2$) + Oleic acid ($C_{18}H_{84}O_2$)	10 61.0 365 50 13.0 961 20 49.0 530 60 6.8 905
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hoerr and Harwood, 1952	
% f.t. % f.t.	
ρ 1. ι. ρ 1. ι.	Fahral contacts (C.H.O.) The children and contacts
1.5 -40 30.5 -10 4.2 -30 64.9 0	Ethyl acetate ($C_{\mu}H_{8}O_{2}$) + Trichloracetic acid ($C_{2}HO_{2}Cl_{3}$)
10.8 -20 88.2 +10	(521102013 /
	Weissenberger, Schuster and Pamer, 1925
	mol% p mol% p
Ethyl acetate (C _u H ₈ O ₂) + Linoleic acid	20°
(C ₁₈ H ₃₂ O ₂)	0 72.8 30 33.3 10 62.0 40 19.0
	20 49.0 50.0 9.5
Hoerr and Harwood, 1952	
# f.t.	Kendall and Booge, 1916
5.2 -50	mol% f.t. mol% f.t.
12.7 -40 36.7 -30	100 -92.0 45.2 -20.0
66.6 -20	100 -83.0 45.3 -20.9 95.5 -88.0 40.1 -18.3
92.9 -10	87.1 -70.5 32.7 +10.7 78.9 -53.0 24.6 30.4
	70.5 -42.0 17.6 42.8 59.9 -32.5 8.5 52.3
	50.0 -27.5(1+1) 0 58.8 47.8 -28.1
	77,0 20,1
ĺ	

ETHYL ACETATE + BENZOIC ACID

Kendall and Brakeley, 1921	Ethyl acetate ($C_uH_8O_2$) + Salicylic acid ($C_7H_6O_3$)
mol% d mol% d	
25°	Timofeev, 1905
0 0.8948 48.78 1.295 11.18 0.9972 61.42 1.386 18.40 1.045 70.08 1.454 28.07 1.123 100 1.62 38.46 1.202	% Q dil. initial final (by mole acid) 0 0.54 -1.21
mol% n mol% n	$\begin{array}{cccc} 0.54 & 5.8 & -1.80 \\ 5.8 & 10.5 & -2.32 \\ 10.5 & -2.32 \end{array}$
0 423.6 48.78 2176	10.5 14.8 -2.71 14.8 18.6 -2.98
11.18 587.8 61.42 3467 18.40 730.9 70.08 4709 28.07 1001 100 6830 38.46 1449	Ethyl acetate (C ₄ H ₈ O ₂) + m-Nitrobenzoic acid
Kendall and Gross, 1921	(C ₇ H ₅ NO ₄)
mol% ж.10 ⁷ mol% ж.10 ⁷	Timofeev, 1905
25° 25° 60°	% Q dil, initial final (by mole acid)
0 below 0.01	0 3.93 -2.77 3.93 7.6 -2.95 7.6 10.8 -2.97 10.8 13.3 -3.16
27.31 8.37 72.63 3.93 7.02 30.07 9.12 79.12 - 4.01 33.06 9.62 86.40 - 1.91 36.67 9.95 94.66 - 0.37 42.05 10.05 100 - 0.06	Propyl acetate ($C_5H_{10}O_2$) + Acetic acid ($C_2H_{11}O_2$) Othmer, 1943
	mo1% mo1%
Ethyl acetate ($C_4H_8O_2$) + Benzoic acid ($C_7H_6O_2$)	at the b.t.
Beckmann, 1890 % D b.t. % D b.t.	100 100 50 40.4 95 92.4 40 32.5 90 84.9 30 24.5 80 70.7 20 16.2 70 58.7 10 8,2
0.78 +0.170	60 49 0 0
Parkers First and Constant 1995	Abegg, 1894 molarity of acetate f.t.
Beckmann, Fuchs and Gernhardt, 1895	
725.5 mm 2.48 +0.575 10.53 +2.400 4.85 1.110 11.90 2.725 6.59 1.500 12.85 2.940 7.24 1.650 13.45 3.090 9.30 2.120	0 16.52 0.769 13.53 1.54 10.19 2.196 6.965 2.723 4.15 2.972 2.85

Butyl acetat	e (C ₆ H ₁₂ O ₂) +	Acetic ac	id (C ₂ H ₂ O ₂)	wt%	mo1%		d		
	י איים טייי		(-8.40%)	ļ		25°	40°	60°	
Othmer, 194	3			100 89.75 79.65	100 81.92 66 94	1.0442 .0062 0.9784	1.0279 0.9914 .9611	1.0074 0.9711	
mo1%		1%		70.11	54.82 43.71	. 9559	.9437	.9425	
L	V L	v		60.02 50.93	34.93 22.17	.9352 .9247	.9232 .9090	. 9021 . 8898	<u> </u>
	the b.t.			35.51 19.85	11.36 7.14	.9063	. 8923 . 8754	.8732 .8581	
0 5	0 50 6.8 60	57.8 66.3		12.95 11.14	6.09	.8884 .8830	. 8709 . 8693	. 850 7 . 849 7	
10 20	13.4 70 25.7 80	75.0 84.1		9.04 6.85	4.89 3.67	. 8825 . 8808	. 8669 . 8710	. 8477 . 8473	1
30 40	37.6 90 48.0 100	$\substack{92.5\\100.0}$		5.73 3.95	3.05 2.36	.8813 .8776	. 8684 . 8624	. 8458 . 8435	1
				2,21 0	1.15 0	. 8760 . 8739	. 86 27 . 8584	. 8432 . 8396	
Bushmakin ar	d Lutugina, 19	56		wt%	tno	14		<u> </u>	
mol% L	V L	no1% V		# L7º	шо	1 Vo	25°	η 40°	60°
	760 mm	Y		100	100				
5.00 6	.13 77.30	81.28		100 89.75	100	1.92	1118 1003	905 811	694 634
11.66 14	.18 89.5	91.2 92.6		79.65 70.11 60.02	5,	6.94 4.82	947 887	767 724	595 568
1 21.45 25	.80 93.6	94.5 94.7		50.93 35.51	3-	4.82 3.71 4.93	842 811	685 671	543 52 7 499
49.25 55 59.55 65	.38 93.8 .29 96.1 .20 96.2	96.7 96.7		19.85	1	2.17 1.36	770 729	630 599	478
70.90 76	.50	70.7		12.95 11.14		7.14 6.09	716 723 712	589 592	467 467
				9.04 6.85 5.73		4.89 3.67	698 698	583 580	460 457
Usanovich, B	ilyalov and Kra	snomolova,	1955	3.95 2.21	:	3.05 2.36 1.15	696 686	580 5 7 4 663	457 457 450
	p t	p	t p	0.2		5	669	555	443
100 mo1%		. mo1%	80.1 mo1%						
41.2 3 44.5 4	5 58,5	33 89	48.5 48 53.2 61						
60.0 9 64.1 11	61.5	88 101	56.0 68 60.0 84	Butyl	acetate	(C ₆ H ₁₂	0 ₂) + Capr		l
74.5 17 83.5 24		118 158	69.0 131 75.0 162	İ			(С ₈ п	1602)	
60 mo1%		mo1%	27.1 mo1%	Hoerr	and Rals	ston, 19	44		
55.2 6.60.0 8	l 47.2	28 43	37.5 28 47.5 44	<u> </u>			f.t.		
63.0 9- 67.0 110 72.5 13-	54.5 60.0	61 7 9	54.0 60 60.0 77	67.	3		0.0		
72.5 13	65.5	95	65.5 94 70,5 116	87. 100	5		$\begin{smallmatrix} 10.0 \\ 16.30 \end{smallmatrix}$		
15.0 mol	6 0	mol%							
43.0 39 48.5 51	43.0 48.5	38							
54.0 67	55.0	45 60		Butyl :	acetate	(C ₆ H _{1 2}	0 ₂) + Pela		i
60.0 76 65.0 95	60.0 65.0	74 93 114		1			(C ₉ H	18 0 2)	
	70.0	114		Hoerr	and Ral	ston, 19	944		
				%			f.t.		
				75.	.9		0.0		·
				95 100	. 4		10.0 12.25		
							12.20		

Butyl acetate ($C_6H_{12}O_2$) + Caprinic acid ($C_{10}H_{20}O_2$)	Butyl acetate ($C_6H_{12}O_2$) + Myristic acid ($C_{1}_{\mu}H_{28}O_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
% f.t. % f.t.	% f.t. % f.t.
30.8 0.0 98.8 30.0 52.5 10.0 100 31.24 76.7 20.0	4.5 0.0 67.4 40.0 8.9 10.0 93.1 50.0 17.7 20.0 100 54.15 37.9 30.0
Butyl acetate ($C_6H_{12}O_2$) + Undecanoic acid ($C_{11}H_{22}O_2$)	Butyl acetate ($C_6H_{12}O_2$) + Pentadecanoic acid ($C_{15}H_{30}O_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
# f.t.	\$ f.t. \$ f.t.
35.4 0.0 59.1 10.0 83.7 20.0 100 28.13	4.2 0 71.6 40.0 8.8 10.0 96.0 50.0 18.2 20.0 100 52.54 39.8 30.0
Butyl acetate ($C_6H_{12}O_2$) + Lauric acid ($C_{12}H_{24}O_2$) Hoerr and Ralston, 1944 # f.t. # f.t.	Butyl acetate (C_6 : $H_{12}O_2$) + Palmitic acid ($C_{16}H_{32}O_2$) Hoerr and Ralston, 1944
	% f.t. % f.t.
11.5 0.0 67.9 30.0 21.0 10.0 93.1 40.0 40.4 20.0 100 43.92	1.4 0.0 40.8 40.0 3.6 10.0 69.2 50.0 8.1 20.0 95.8 60.0 18.9 30.0 100 62.82
Butyl acetate ($C_6H_{12}O_2$) + Tridecanoic acid ($C_{13}H_{26}O_2$)	
Hoerr and Ralston, 1944	Butyl acetate ($C_6H_{12}O_2$) + Margaric acid
% f.t. % f.t.	(C ₁₇ H ₈₄ O ₂)
12.5 0.0 76.2 30.0 24.8 10.0 98.9 40.0	Hoerr and Ralston, 1944
24.8 10.0 98.9 40.0 48.7 20.0 100 41.76	% f.t. % f.t.
	1.2 0.0 42.8 40.0 3.3 10.0 72.8 50.0 8.0 20.0 98.3 60.0 19.3 30.0 100 60.94

Butyl acetate ($C_6H_{12}O_2$) + Stearic acid($C_{18}H_{36}O_2$)	wt%	mol%	25°	d 40°	60°	
Hoerr and Ralston, 1944 # f.t. # f.t. 0.1 0.0 22.2 40 0.2 10.0 49.2 50 1.6 20.0 77.7 60 7.5 30.0 100 69.32	100 90.55 79.82 69.65 59.52 54.01 48.85 39.26 30.43 21.22 10.38	100 81.55 64.59 51.42 40.41 35.56 30.56 22.96 16.78 11.05 5.33	1.0442 1.0043 .9740 .9497 .9278 .9180 .9090 .8940 .8840 .8740 .8680 .8629	1.0279 0.9868 .9560 .9332 .9122 .9040 .8965 .8800 .8700 .8620 .8550 .8491	1.0074 0.9649 .9340 .9090 .8905 .8820 .8760 .8610 .8525 .8440 .8370 .8272	
Butyl acetate ($C_6H_{12}O_2$) + Oleic acid($C_{18}H_{8\mu}O_2$)	wt%	mo1%	25°	40 ⁷ 6	60°	······································
Hoerr and Harwood, 1952	100 90.55 79.82 69.65 59.52 54.01 48.85 39.26 30.43 21.22 10.88	100 81.55 64.59 51.42 40.41 35.56 30.56 22.96 16.78 11.05 5.33	1118 1055 1049 994 978 1002 1006 980 974 917 881	905 853 831 799 781 797 798 777 772 734 708 663	694 669 613 616 603 609 595 589 586 547 522	
Abegg, 1894	I a a a must a		/C 11 0)			H 0 \
molarity of acetate f.t.	Othmer,		(C7H14U2)	+ ACETIC	acid (C ₂	n ₄ U ₂)
0 16.52 0.531 14.37 0.815 13.34 1.36 10.97	L	ol% V at the	L	mol%	V	
1.855 8.56 2.267 6.28 2.622 4.24 Usanovich, Bilyalov and Krasnomolova, 1955	0 5 10 20 30 40	0 7.7 15.9 30.9 43.4 55.2	5 7 6 9 7 9 8	0 7 0 8 0 8	55.8 74.4 81.7 88.2 94.2	
t p t p						
100 mo1% 80.1 mo1% 60.0 mo1% 41.2 37 39.5 31 41.5 29 44.5 45 46.0 45 45.5 37 60.0 93 50.7 55 50.7 43 64.1 110 55.7 69 56.0 56 74.3 171 60.0 82 60.0 71 83.5 249 64.5 98 66.0 94			cetate ((+ Acetic	
38.3 mol% 19.2 mol% 0 mol%	mo1%		b.t.		1%	b.t.
43.0 28 42.0 22 45.0 28 49.5 39 47.5 35 51 36 55.0 56 56.5 53 56.0 45 60.0 62 60.0 56 60.0 49 64.5 81 63.7 59 63.0 56	13.5 18.8 24.5 32.0 33.0	27.0 36.3 45.1 51.0 53.0	143.9 138.3 136.8 134.9 132.9	41.0 56.2 60.1 60.3 63.9 87.1	V 60.5 76.0 79.4 79.8 81.9 94.3	132.0 127.0 126.1 126.0 125.1 120.4

mo1%	n _D	mol%	n _D			Cyclohex	yl acetai	te (C ₈ H _{1 14}		cetic acid	l
0	18° 1.4013	60	1,3936			Othmer,	1943		` `	2-4-2	
10	.4007 .3998	70	.3880		i	mo19				1%	
20 30	.3981	80 90	.3837 .3785			L L	v	b.t.	L	V	b.t.
40 50	. 3960 . 3937	100	, 3724								
						0	0 36.5	177.0 172.0	50 60	85.3 90.0	132.5 128.2
						2 5	47.0	166.0	70	93.7	125.0
Methyl is	oamyl acet	tate (C	8H16O2) +	· Acetic (C ₂ H ₄ O ₂		10 20 30 40	55.9 65.5 73.1 79.6	157.5 149.1 142.1 137.0	80 90 100	96.4 98.3 100.0	122.3 120.1 118.1
Othmer, 1	943										
mo1% L	v	L	mo1% V			Butox	yethyl ac	etate (C ₈	H ₁₆ 0 ₉)	+ Acetic $(C_2H_4O_2)$	
		he b 56.									
0 5	14.1	50 60	71.3 78.4			Othmer a	and Benen	ati, 1945			
10 20	24.5 41.0	70 80	84.9 90.4)		mol9	6		mo	1%	
30 40	53.7 63.3	90 100	95.2 100.0	ļ		L	<u>v</u>	b.t.	L	v	b.t.
						9.6	44.1	174.5	53.3	91.2	140.
	· · · · · · · · · · · · · · · · · · ·					17.9 27.3	61.9 73.0	165.0 158.0	61.9 69.5	92.5 95.0	134.9 130.9
_						30.0 46.6	75.5 87.2	154.9 145.0	75.0 79.0	96.8 97.2	128.
Cetyl ace	tate (C18	H ₃₆ 0 ₂)	+ Acetic	acid(C ₂ F	Ι ₄ 0 ₂)		07.2	140,0	77.0	91.2	126.
Sumarokov	a and Bily	valov. 1	955			mo1%	ⁿ D	mol	%	n _D	
mo1%	wt%			 I			1 47 44	18°			
		40°	50°	60°	70°	10	1.4144 .4129	70		400 7 3965	
100	100	1.0279	1.0162	1.0074	0.9958	20 30	.4114 .4095			3908 3830	
90,66	67.09 (65.79	0.9583	0.9487	0.9385	.9280	40 50	.4070	100		3724	
71.26 48.52	65.79 16.67	.9019 .8734	.8911 .8649	.8839 .8570	. 8755 . 8499		.4040				
0	0	. 8455	. 8379	.8310	. 8238	Fabrul 1					
	A					Etnyi bu	tyrate (C ₆ H ₁₂ O ₂)	+ Acetic	acid ((2H402)
mo1%	wt%	40°	50°	n 6 0°	70°	Abegg,	1894				
100	100					molar	ity of et	hyl butyra	ite f	.t.	
90.66	100 67.09	905 1460	767 1250	694 1090	60 7 956	(0		1	6.52	
71.26 48.52	65.79 16.67	2580 3 72 0	2130 2990	1830 247 0	1590 2120	1	0.730 1.342		1	3.875 1.455	
31.45	7.66	4390	3500	2860	2370	ļ	1,909		1	8.980	
0	0	5010	3850	3200	2670		2.411 2.828			6.605 4.435	
											
						1					
						1					
						[
						1					
						u					

Amyl butyrate ($C_9H_{18}O_2$) + Acetic acid ($C_2H_{\downarrow}O_2$)	Lecat, 1949
Usanovich, Bilyalov and Kransnomolova, 1955	Esters + Chloracetic acid (C ₂ H ₃ O ₂ C1) (b.t.= 189.05)
	1 St comp. Az
25° 40° 60°	Name Formula b.t. % b.t. Sat.t.
100 100 1.0442 1.0279 1.0074 89.87 77.10 0.9917 0.9745 0.9547 85.01 68.26 .9719 .9562 .9376 79.93 60.17 .9558 .9424 .9232 74.85 53.03 .9435 .9286 .9097 69.86 41.79 .9323 .9182 .8990 60.0 36.27 .9142 .9006 .8808 50.01 27.51 .8992 .8881 .8688	Isoamyl (C ₁₀ H ₂₀ O ₂) 192.7 65 187.7 44 isovalerate Ethyl (C ₉ H ₁₈ O ₂) 188.7 48 185.5 - heptanoate Methyl (C ₉ H ₁₈ O ₂) 192.9 67 187.5 -
39.82 20.07 .8886 .8756 .8559 30.81 14.45 .8809 .8679 .8499 19.60 8.47 .8721 .8594 .8418 10.94 4.46 .8666 .8530 .8364 5.41 2.12 .8632 .8507 .8330 0 0 .8599 .8480 .8317	Methyl brassidate ($C_{23}H_{44}O_{2}$) + Brassidic acid ($C_{22}H_{42}O_{8}$)
25° 40° 60°	Keffler and Maiden, 1936
100	mol% f.t. mol% f.t. 100 59.80 3.8 32.60 69.1 55.65 2.5 30.10 50.7 52.65 1.6 30.05 31.1 48.50 0 30.10 Ethyl brassidate (C ₂₄ H ₄₆ O ₂) + Brassidic acid (C ₂₂ H ₄₂ O ₂) Keffler and Maiden, 1936 mol% f.t. mol% f.t. 100 59.80 11.6 41.80 78 57.00 3.7 32.50 59.6 54.15 2.6 29.90 40.9 50.15 1.6 24.90 22.1 46.00 0 25.05
0.635 14.17 1.172 12.05 1.644 9.99 1.982 8.42	Glycol diacetate (C ₆ H ₁₀ O ₄) + Valeric acid (C ₅ H ₁₀ O ₂) Lecat, 1949 b.t. 0

Methy	l methacr	ylate (C	5H8O2) +	Methacryl	ic acid	Tripal	mitin (C	₅₁ H ₉₈ O ₆)	+ Palmitio	acid (C ₁₆ H	, ₂ 0 ₂)
Woods	, 1947			(0	μH ₆ O ₂)	Kreman	n and Kle	in, 1913			
mo	1 % b.	 t.	mol	%	b.t.	*	f.t.	m.t.	8	f.t.	m.t.
0 0.2 0.5 1.0 2.0	0 0.02 0.08 0.15 0.25 0.5 0.35 0.5	61.5 61.6 61.9 62.0 62.3 63.5 63.7 63.8	L 6 8 10 15 20 25 30	0.7 0.8 1.8 2.1 3.0	64.0 64.4 65.0 65.0 67.0 68.0	100 95 90 80 70 60 50	61.0 60.6 60.3 59.0 57.9 56.0 54:0	38.9 42.3 46.2 51.2 53.2 54.0	40 30 20 10 5	53.4 57.7 58.8 60.3 60.1 61.9	54 54 54 -
\$ 	0.55 d	63.8	% 	4.0 d	69.4			₅₁ H ₉₈ O ₆)	+ Stearic	acid (C ₁₈ H ₃	602)
0	0,9432	1,4140	20°	0.9480	1.4158	Kreman	n and Kle	in, 1913			
0.2 0.5 1.0 2.0 3.0 4.0 5.0	.9436 .9438 .9442 .9450 .9458 .9465 .9473	.4142 .4144 .4146 .4149 .4152 .4155 .4157	6.0 8.0 10.0 15.0 20.0 25.0 30.0	. 9496 . 9513 . 9548 . 9588 . 9623 . 9651	.4162 .4165 .4172 .4181 .4188 .4196	100 95 90 80 70 60 50	f.t. 67.5 67.3 66.8 65.9 65.1 62.9 62.0	m.t. 33.1 42.8 46.0 52.4 55.2 57.0	40 30 20 10 5	59.0 59.0 60.1 61.2 61.9	57.1 57.1 58.1 58.1 57.0
	r, Shlect		diacetate + Acet szalka, 19- t	ic acid (C ₂ H ₄ O ₂)	Kremanı	n and Kro	₇ H ₁₁₀ O ₆)	شن کنی کنی میں کی کنی اللہ اللہ میں کم	(C ₁₆ H ₃	ي اليونيور ادم حدر ميو اليونيو جدر ا
	760 mm	_		0 mm			f.t.	E	 %	f.t.	E
0 5 10 20 30 40 50 60 70 80 90 95	193.7 185.5 177.5 162.1 149.7 141.0 135.5 131.3 127.0 123.2 120.0 118.6 117.8	0 30.1 50.2 75.2 86.8 92.2 94.7 96.5 98.1 99.2 99.7 99.8 100.0	178.7 171.3 164.3 150.5 138.6 130.0 123.5 118.0 113.0 108.7 105.7 104.7	0 29.3 50.0 86.4 92.0 95.0 94.4 98.4 99.2 99.2		0 1 2 3.6 5,5 8 9.8 12.2 15.1 25	56 63.9 67.6 68.4 68.0 67.0 68.4 67.2 64.3 63.3		33,3 41.6 50 58.5 60 66.5 75 83,2 91.7 92.5 100	60,2 58,5 55,4 56,6 55,0 57,5 58,7 59,2 61,0 61,0	54.4 51.6 54.7 55.0
0 5	300 161.0 153.7	0 31.2	138.3 131.5	0 40,0				7H ₁₁₀ O ₆)	+ Stearic	acid (C ₁₈ H ₃	602)
10 20 30 40 50 60 70 80 90 95 100	146.8 134.0 123.7 116.3 110.5 105.2 100.1 95.7 91.7 90.4 89.6	50.5 75.4 86.1 91.9 95.1 96.7 98.2 99.1 99.7 99.8	124,7 112,5 103,3 96.3 90.7 86.1 82.0 78.3 74.7 73.0 71.5	40.0 60.0 79.9 89.0 93.5 95.8 97.8 99.0 99.7 99.8		100 85.7 62.5 50 37.5	f.t. 67.5 66.7 63.0 61.7 59.6 58.0	E 52-50.8 53.6 53.7	25 20 12.5 6.3 0	f.t. 57.0 56.0 55.1 56.0	51.5 52.0

Isobutyl carbonate ($C_9H_{18}O_8$) + Chloracetic acid ($C_2H_3O_2C1$)	Methyl oxalate ($C_h H_6 O_h$) + Isobutyric acid ($C_h H_8 O_2$)				
Lecat, 1949	Ampola and Rimatori, 1896				
% b.t.	% Df.t, % Df.t.				
0 190.3 40 192.5 Az 100 189.05	0.35 -0.15 6.73 -2.53 0.83 0.36 7.86 2.92 1.60 0.62 9.56 3.53 2.31 0.94 12.91 4.57 3.28 1.27 16.74 5.83 4.48 1.77 25.53 8.39				
Isoamyl carbonate ($C_{11}H_{22}\theta_3$) + Caprylic acid ($C_8H_{16}\theta_2$) Lecat, 1949 g b.t.	Methyl oxalate ($C_{\rm h}H_6O_{\rm h}$) + Valerianic acid ($C_5H_{10}O_2$) Ampola and Rimatori, 1896				
0 232.2 10 233.8 Az	% D f.t. % D f.t.				
Methyl oxalate ($C_uH_6O_+$) + Acetic acid ($C_2H_4O_2$)	0.23 -0.08 5.41 -1.83 0.56 0.20 6.49 2.16 1.02 0.36 8.03 2.72 1.70 0.63 9.92 3.33 2.34 0.84 12.23 3.98 3.12 1.15 16.61 5.16 4.25 1.48 24.37 6.01				
r 11) 15 101/					
Kendall and Booge, 1916 mol% f.t. mol% f.t. 0 53.2 61.9 30.5 9.6 50.3 65.3 28.2 19.5 47.5 71.5 23.8 29.3 44.5 81.2 14.1	Methyl oxalate ($C_kH_6O_k$) + Chloracetic acid ($C_2H_8O_2C1$) Kendall and Booge, 1916				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mol% f.t. mol% f.t.				
58.2 32.5 Lecat, 1949 Methyl oxalate (C _h H ₆ O _h) (b.t.=164.0) + Acids. 2 nd comp. Az	0 53.2 56.5 29.4 10.7 49.3 65.3 37.6 23.5 44.7 69.1 40.8 29 41.0 75.8 45.3 35.7 37.3 83.4 51.8 42.8 32.6 91.1 56.9 49.9 27.6 100 61.7 50.7 27.0				
Name Formula b.t. % b.t.	Methyl oxalate (C _u H ₆ O _u) + Trichloracetic acid				
Butyric (C _u H ₈ O ₂) 164.45 46 160.8	(C ₂ HO ₂ Cl _s)				
acid	Kendall and Booge, 1916				
Isobutyric ($C_kH_8O_2$) 154.6 82 154.2 acid	% f.t. % f.t.				
	0 53.3 54.7 2.3 8.7 49.4 60.0 2.5 19.4 42.9 66.2 15.5 27.1 36.4 73.1 27.5 36.4 28.4 82.8 41.6 43.3 20.0 91.7 50.9 50 10.3 100 57.9				

640			E	THYL	XALAIE	
Lecat,						
Ethyl o	xalate (C ₆ H ₁₀	0 ₄) (b.	t.=18	5,65) +	Acids.	
	2 nd comp.		Az			
Name	Formula	b.t.	%	b.t.	Dt mix.	
Valeric acid	$(C_5H_{10}O_2)$	186.35	3 7	182.5	-1.6 (12%)	
Isovaler acid	ic(C ₅ H ₁₀ O ₂)	176.5	84	176,3	-2.0 (80%)	
Chlorace acid	tic(C ₂ H ₃ O ₂ C1)	189.05	7 0	190,25	-	
Ethyl oxalate ($C_6H_{10}O_4$) + Trichloracetic acid ($C_9HO_2Cl_3$)						
Kendal1	and Booge, 191	6				
mo 1%	f.t.	mol%		f.t.		
0 10.4 17.5 25.4 30.7 36.9 43.3 50 51.7 57.3	-41.0 -43.5 -46.5 -46.5 -35.0 -23.6 -13.9 -5.9 -4.1 +0.1	61.1 66.7 67.2 64.1 69.2 77 82.2 91.3		1.9 3.4 3.4 -10.6 +8.5 25.5 38.8 50.5 58.6	(1+2)	
Propyl oxalate ($C_8H_{14}O_4$) + Heptanoic acid ($C_7H_{14}O_2$)						
Lecat,	1949	b. t.			· · · · · · · · · · · · · · · · · · ·	
		 				
0 7 100	·	214 213.8 A 222.0	z			
Isoamyl oxalate ($C_{12}H_{22}O_{4}$) + Caprinic acid ($C_{10}H_{20}O_{2}$)						
Lecat,	1949					
 %		b.t.				
0 35 100		268.0 266.0 268.8	Az			

Isoamyl oxalate ($C_{1\,2}H_{2\,2}0_{_{1\!\!4}}$) + Phenylacetic acid ($C_{_B}H_{_B}0_{_B}$)

Lecat, 1949

%	b.t.	Sat.t.
0 50 100	268.0 262.35 266.5	46 Az

Methyl malonate ($\rm C_5H_8O_4$) + Valeric acid ($\rm C_5H_{1\,0}O_2)$

Lecat, 1949

K	b.t.	Dt mix
0 10 15 100	181.4 180.5 186.35	-1.3

Methyl malonate ($\rm C_5H_8O_4$) + Isovaleric acid ($\rm C_5H_1_oO_2$)

Lecat, 1949

%	b.t.	Dt mix.	
0 55 80 100	181.4 180.5 Az 176.5	-2.0	

Methyl malonate ($C_5H_80_{\iota_k}$) + Trichloracetic acid ($C_2H0_2Cl_3$)

Kendall and Booge, 1916

mo1%	f.t.	mo 1%	f.t.	
0 39.1 45.6 50 54.2 58.3	-62.0 -60.0 -46.1 -39.0 -34.0 -31.0	62.3 65 71.3 75.8 80.7 89.4	-28.7 -15.1 +8.7 21.7 32.3 47.7	
62.2	-29.2	100	58.9	

Lecat, 194	9		
%		b.t.	Dt mix.
0 10 12 100		199.35 198.5 Az 205.15	-1.3
Ethyl mal	onate (C ₇ H		ocaproic acid ₆ H ₁₂ O ₂)
Lecat, 19	49		
%		b.t.	
0 42 100		199.35 196.5 Az 199.5	
Methyl su	ccinate (C		Acetic acid $C_2H_4O_2$)
	nd Booge, 19	(
Kendall a	nd Booge, 19	916	C ₂ H ₄ O ₂)
Mendall as mo1% 0 9.9 20.7 30.7 39.5 47.7	f.t. 18.2 15.5 12.4 9.3 6.2 2.5	916 mo1% 57.4 67.3 77.1 82.3 93.9 100 sH,00,) + 1	f.t. -2.2 -5.3 +1.4
Mendall as mo1% 0 9.9 20.7 30.7 39.5 47.7	f.t. 18.2 15.5 12.4 9.3 6.2 2.5 ecinate (C ₆	916 mo1% 57.4 67.3 77.1 82.3 93.9 100 sH,00,) + 1	f.t. -2.2 -5.3 +1.4 5.2 12.7 16.4
Methyl suc	f.t. 18.2 15.5 12.4 9.3 6.2 2.5 ecinate (C ₆	916 mo1% 57.4 67.3 77.1 82.3 93.9 100 sH,00,) + 1	f.t. -2.2 -5.3 +1.4 5.2 12.7 16.4

641 Methyl succinate ($C_6H_{1\,\,0}\theta_{\,\mu}$) + Chloracetic acid $(C_2H_3O_2C1)$ Lecat, 1949 % b.t. $^{0}_{28}_{100}$ 195.5 197.0 Az 189.05 Kendall and Booge, 1916 mol% f.t. mol% f.t. 9.7 19.0 28.6 37.6 18.2 14.8 57.7 58.1 65.3 73.3 81.9 91.5 18.0 18.5 28.1 10.8 38.0 47.4 56.2 5.9 0.1 50.2 100 61.9 Methyl succinate ($C_6H_{1\,0}O_4$) + Trichloracetic acid $(C_2HO_2Cl_3)$ Kendall and Booge, 1916 % f.t. % f.t. +1.9 2.7 5.5 7.1 8.0 (1+2) 7.0 5.5 17.7 37.2 49.7 58.1 55.1 56.6 59.7 62.9 66.8 18.2 15.4 10.7 6.8 0 8.5 18 22.8 30.1 35.5 39.7 43.1 47.5 49.5 52.5 $\frac{1.4}{-4.2}$ 69.8 73.3 76.8 84.2 91.4 100 -9.8 -13.4 -6.9 -3.3 -1.0 Ethyl succinate ($C_8H_{1\,4}O_4$) + Heptanoic acid $(C_7H_{14}O_2)$ Lecat, 1949 % b.t. Dt mix.

217.25 216.0 222.0

-2.0

20 100

042		
Ethyl succinate (acid (C ₂ HO ₂ Cl ₃)	$C_8H_{1\mu}0_{\mu}$) + Trichloracetic	Ethyl pyruvate ($C_5H_80_8$) + Isobutyric acid ($C_4H_80_2$)
Kendall and Booge	. 1916	Lecat, 1949
% f.t.	% f.t.	% b.t.
0 -20.8 9.2 -23.3 17.3 -26.5 24.9 -30.2	71.9 -9.1 76.1 +9.5 80.5 25.5 85.5 38.2	0 155.5 60 153.0 Az 100 154.6
32.7 -35.6 40.2 -44.0 69.1 -26.0	90.1 47.1 100 58.3	Methyl fumarate ($C_6H_8O_4$) + Chloracetic acid ($C_2H_3O_2Cl$)
		Lecat, 1949
Propyl succinate	$(C_{10}H_{18}O_4)$ + Pelargonic acid	b.t.
Lecat, 1949	(C ₉ H ₁₈ O ₂)	0 193.25 40 195.7 Az 100 189.05
# # # # # # # # # # # # # # # # # # #	b, t.	
0	250.5	Methyl maleate ($C_6H_8O_4$) + Caproic acid($C_6H_{12}O_2$)
20 100	249.8 Az 249.8 O	Lecat, 1949
		% b.t. Dt mix.
Propyl succinate	($C_{10}H_{18}\theta_{+}$) + Benzoic acid ($C_{7}H_{6}\theta_{2}$)	0 204.05 37 201.5 Az 502.0
Lecat, 1949		
% 0	b.t. 250.5	Methyl maleate ($C_6H_8O_4$) + Isocaproic acid
43 100	248.0 Az 150.8	(C ₆ H ₁₂ O ₂)
		Lecat, 1949
		% b.t.
Methyl pyruvate ($C_u H_6 0_3$) + Propionic acid ($C_3 H_6 0_2$)	0 204.05 60 198.5 Az 100 199.5
Lecat, 1949		Ethyl maleate ($C_8H_{12}O_4$) + Heptanoic acid
78	b.t.	(C ₇ H ₁ ₄ O ₂)
0	137.5	Lecat, 1949
0 25 100	137.5 137.2 Az 141.3	% b.t.
		0 223.3 50 220.0 Az 100 222.0
<u> </u>		н

Ethul fumorate (C	8H ₁₂ O ₄) + Heptano	ic acid	Rutovvalva	1 200*2*2 (C ₈ H ₁₆ O ₈) +	T save law	
Ethyl Iumarate (C	(C ₇ H ₁ \ 0		Butoxygiyeo	i acetate ((C ₅ H _{1 0} O ₂	
Lecat, 1949			Lecat, 1949				
K	b.t.		%		b.t.		
0 22 100	217.85 216.4 Az 222.0		0 66 100		171.75 178.0 Az 176.5		
Methoxy glycol ac acid (C ₃ H ₆ O ₂)	etate (C ₅ H ₁₀ O ₃) -	+ Propionic	Butoxydigly	col acetate	(C ₁₀ H ₂₀ O ₄) + Benzo (C ₇ H ₆	
78	b.t.	Dt mix.	Lecat, 194	9			
0	144.6		78	·	b. t.		
35 36 100	146.85 Az 141.3	-1.1	0 70 100		245.3 251.8 Az 250.8		
Ethoxyglycol acet Lecat, 1949	ate (C ₆ H ₁₂ O ₈) + I	Butyric acid C ₄ H ₈ O ₂)	Ethyl diace Acetic acid	(C ₂ H ₄ O ₂)) +	
<u> </u>	b.t.	Dt mix.	Frankland an				
0 38 82 100	156.8 164.3 Az 164.0	-1.3	99.0 97.7 95.8	D f.t. -0.310 0.705 1,270	91.9 87.9 86.2	D f.t2.040 3.250 3.860	
Ethoxyglycol acet	ate (C ₆ H ₁₂ O ₃) +		%	t	d	(α) _D	
Lecat, 1949		С ₄ Н ₈ О ₂)	96.7 80.0	15.1 15.4	1.0599 1.0783	-28.74 -19.44	
<u> </u>	b.t.	Dt mix.	Ethyl aceto	acetate (C4	H ₁ ,0,) + I	sovaleric	acid
0 38 50	156.8 159.5 Az	-1.2				C ₅ H _{1 O} O ₂)	
100	154.6	·····	Lecat, 1949				· · · · · · · · · · · · · · · · · · ·
Butoxyglycol acet	ate (C ₈ H ₁₆ O ₃) + I	Suturic acid			b.t.		Dt mix.
	(C ₁ H ₈ O ₂)	0 75 77 100		180.5 176.1 Az 176.5		-2.0
Lecat, 1949	b.t.						
							
0 5 100	171.75 172.0 Az 164.0						

Perchlormethyl formate ($C_2 O_2 C l_{\scriptscriptstyle \perp}$) + Acetic acid ($C_2 H_{\scriptscriptstyle \perp} O_2$)	Ethyl trichlorac			(C ₂ H ₄ O ₂)
Hentschel, 1888	Usanovich, Bilya	سار حمد میں میں بھی بھی میں میں میں بھی اس اس اس		
% f.t. % f.t.	t		t 	p
100 16.21 90.921 14.39 98.895 15.97 83.30 12.86 91.900 15.17 79.61 12.02	41.2 44.5 60.0	100 % 37 45 93 79.6 %	64.1 74.5 83.5	110 171 249
Ethyl chloracetate ($C_{\mu}H_{7}O_{2}Cl$)(b.t.=143.55) + Acids	53.5 57.5 60.0	55 66 78 61.6 %	62.5 68.0 71.3	85 110 128
Lecat, 1949	53.5 57.5	49 57	65.3 68.3	81 94
2nd Comp. Az	60.0	66	71.5	108
Name Formula b.t. $\%$ b.t. Propionic acid $C_3H_6O_2$ 141.3 61 140.2	46.0 54.0 60.0	43.8 % 29 43 56	64.5 68.5 72.0	65 81 96
Butyric acid $C_1H_8O_2$ 164.0 40 161.0 Valeric acid $C_5H_{10}O_2$ 186.35 - 185.8	50.3 55.5	34.8 % 31 39	68.0 71.5	66 77
	60,0	49 17.6 %	73.5	85
Ethyl dichloracetate ($C_uH_6O_2Cl_2$) + Butyric acid ($C_uH_8O_2$) Lecat, 1949	46.0 51.5 56.5	17 24 30 0.0 %	60.0 66.0 70.0	34 44 52
% b.t.	60.0 69.0	15	79.0 84.0	38 48
0 158.1 - 157.0 Az 100 164.0	69.0 73.5	22 29 	d	10
		25°	40°	60°
Ethyl dichloracetate ($C_uH_6O_2Cl_2$) +	0.00 14.38 19.49 26.13 36.43	1.0442 .0750 .0897 .1079 .1356	1.0279 .0580 .0734 .0921 .1201	1.0074 .0380 .0526 .0696
% b.t. 0 158.1 - 153.8 Az 100 154.6	44.23 57.62 68.53 82.34 91.27 100.00	.1611 .2052 .2434 .2947 .3331 .3834	.1452 .1863 .2259 .2780 .3161 .3644	.1211 .1639 .2009 .2525 .2908 .3377
	8	25°	40°	60°
Methyl trichloracetate (C ₅ H ₃ O ₂ Cl ₃) + Isobutyric acid (C ₄ H ₈ O ₂) Lecat, 1949	0.00 14.38 19.49 26.13 36.43 44.23 57.62 68.53 82.34 91.27 100.00	1118 1073 1068 1065 1078 1088 1129 1198 1282 1389 1585	905 867 865 863 868 880 910 961 1025 1107 1249	694 675 672 658 678 686 709 742 806 857 931

	Benzyl formate ($C_8H_8O_2$) + Isocaproic acid
Ethyl trichloracetate ($C_uH_5O_2Cl_3$) + Butyric acid ($C_uH_8O_2$)	(C ₆ H ₁₂ O ₂) Lecat, 1949
Lecat, 1949	% b.t.
% b.t.	0 203,0
0 167.2 - 163.5 Az 100 164.0	62 198.8 Az 100 149.5
Ethyl bromacetate ($C_{h}H_{7}O_{2}Br$) + Butyric acid ($C_{h}H_{8}O_{2}$)	1-Naphthyl acetate ($C_{12}H_{10}O_{2}$) + Trichloracetic acid ($C_{2}HO_{2}Cl_{3}$) Kendall and Booge, 1916
Lecat, 1949	mol % f.t. mol % f.t.
% b.t. Dt mix 0 158.8 - 16 157.4 Az - 20 -0.3 100 164.0 -	0 44.8 53.9 10.2 9.6 40.0 59.3 8.0 17.7 34.8 69.6 6.0 23.1 29.7 70.0 21.0 30.4 23.6 76.7 33.5 36.0 16.5 84.5 44.5 41.4 7.5 91.9 51.9 45.7 10.0 100 58.0 49.9 10.7 (1+1)
Ethyl bromacetate (C _h H ₇ O ₂ Br) + Isobutyric acid (C _h H ₈ O ₂) Lecat, 1949 b.t. Dt mix	2-Naphthyl acetate ($C_{12}H_{10}O_{2}$) + Trichloracetic acid ($C_{2}HO_{2}Cl_{3}$) Kendall and Booge, 1916
و المحالة المواقع والمحالة المحالة l % f.t. mol % f.t.	
0 158.80.5 500.5 60 153.0 Az 100 154.6 Ethyl bromisobutyrate (C ₆ H ₁₁ O ₂ Br) + Butyric acid (C ₄ H ₈ O ₂)	0 68.5 54.4 65.7 10.1 63.9 57.0 64.8 17.6 59.4 61.9 62.3 28.9 55.5 67.6 57.7 34.8 60.9 75.5 48.7 39.9 63.6 83.9 43.8 44.9 65.4 91.4 51.5 50.0 66.3 (1+1) 100 58.2
Lecat, 1949	Methyl benzoate (C ₈ H ₈ O ₂) + Trichloracetic acid
% b.t.	(C ₂ nO ₂ Cl ₃)
0 163.7 - 161.5 Az 100 164.0	Kendall and Booge mol% f.t. mol% f.t.
Benzyl formate (C _B H ₈ O ₂) + Caproic acid (C ₆ H ₁₂ O ₂) Lecat, 1949 5 b.t. 0 203.0 20 202.2 Az	0 -13.7 stable 37.5 -15.3 (1+1) 4.3 -15.0 " 40 -13.1 " 6.0 -16.3 " 44.2 -10.5 " 7.1 -17.0 " 47.5 -9.3 " 50 -8.8 " 0 -12.3 unst 52.3 -9.2 " 6 -14.7 " 55.7 -10.1 " 7.6 -15.4 " 56.8 -15.6 " 9.5 -16.5 " 60.3 -4.8 12.8 -18.6 " 63.8 +4.2 16.6 -21.5 " 68.6 15.9 22 -25.5 " 73.8 20.4 25 -28.5 " 79.8 36.5
100 205.15	25 -28.5 " 79.8 36.5 27.3 -25.5 (1+1) 85.7 44.2 29.3 -23.3 " 91.8 50.9 33.7 -18.6 " 100 57.5 34.6 -17.9 "

ETHYL BENZOATE + ACETIC ACID

Ethyl benzoate ($C_9H_{10}O_2$) + Acetic acid ($C_2H_{14}O_2$)	Kendall and Brakeley, 1921
, , , , , , , , , , , , , , , , , , , ,	mol% d η
Beckmann, 1888 99.13	25° 0 1.0458 1982 8.874 1.0864 2324 20.96 1.1466 2930 31.25 1.1915 3711 39.82 1.2413 4610 49.07 1.2922 5848 57.95 1.3501 7068 67.58 1.4027 3374 100 1.62 683
	Kendall and Gross, 1921
Kendall and Brakeley, 1921	mo1% ×.107 mo1% ×.107
mol% d n	25° 60° 25° 60°
25° 0 1.0458 1982 10.41 1.046 1948 21.29 1.046 1874 30.45 1.047 1797 38.82 1.047 1727 47.50 1.047 1651	0 below 0.01 - 54.81 7.80 - 7.95 1.19 - 58.88 8.26 - 17.93 2.08 - 68.72 7.91 13.91 26.83 2.91 - 74.97 - 12.24 36.59 4.14 - 84.32 - 7.57 47.66 6.32 - 92.57 - 2.54 51.37 7.28 - 100 - 0.06
47.50 1.047 1651 58.22 1.048 1538 68.26 1.048 1446 79.56 1.049 1322 91.32 1.049 1202 100 1.050 1121	Ethyl benzoate ($C_9H_{10}O_2$) + Phenylacetic acid ($C_8H_8O_2$)
	Perkin, 1896
Kendall and Gross, 1921	mol% d (α) _{magn} .
mol% × .10 ⁷ mol% × .10 ⁷	33.3 1.0796 1.0705 1.8026 0 1.0514 1.0422 1.7533
0 below 0.01 74.69 0.38 10.15 0.04 84.60 0.43 28.78 0.08 91.74 0.38 44.07 0.16 100 0.24 61.45 0.28	Propyl benzoate ($C_{10}H_{12}O_2$) + Levulinic acid ($C_5H_8O_8$)
	Lecat, 1949
Ethyl benzoate ($C_9H_{10}O_2$) + Trichloracetic acid	% b.t.
(C ₂ HO ₂ Cl ₃) Kendall and Booge, 1916	0 230.85 7 230.0 Az
mol% f.t. mol% f.t.	100 252
0 -32.7 55.8 -24.0 12.3 38.4 59.3 10.1 21.2 45.0 64.7 +6.0 29.0 38.5 70.2 20.0 35.6 31.6 75.6 30.5 38.9 28.5 80.3 38.5 45.6 24.7 86.0 46.2 50.0 23.4 92.8 53.2 52.7 23.5 100 58.7	
	:

Butyl benzoate ($C_{11}H_{14}O_2$) + Benzoic acid(C_7H_6	Benzyl benzoate $(C_{1}_{\mu}H_{1}_{2}O_{2})$ + Acetic acid $(C_{2}H_{\mu}O_{2})$
Lecat, 1949	Kendall and Gross, 1921
% b.t.	mo1% ×.107
0 249.0 35 245.5 Az 100 250.8	0 below 0.01 22.76 " 73.81 " 100 0.24
Isobutyl benzoate ($C_{11}H_{14}O_{2}$) + Benzoic acid ($C_{7}H_{6}O_{2}$)	Benzyl benzoate (C ₁₄ H ₁₂ O ₂) + Trichloracetic acid
Lecat, 1949	(C ₂ HO ₂ Cl ₃) Kendall and Booge, 1916
% b.t. sat.t.	mol% f.t. mol% f.t.
0 241.9 12 241.15 48.5 100 250.8	0 18.3 45.9 10.9 9.2 15.4 49.8 11.9 (1+1) 19.1 13.3 51.2 11.8 23.9 6.8 55.4 11.5
Isoamyl benzoate ($C_{12}H_{16}O_2$) + Phenyl acetic a ($C_8H_8O_2$)	25.2 6.4 60.21 10.2 27.9 4.5 64.4 10.0 28.7 4.0 70 21.6 30.1 2.0 74.8 30.3 32.5 -1.0 80.3 38.7
Lecat, 1949	30. 2 -1.5 86.2 45.5 32.5 +1.5 93.7 53.1 36.9 6.5 100 57.9
% b.t. Sat.	t. 42.1 9.5
0 262.0 - 26 259.85 30 100 266.5 -	Kendall and Gross, 1921
Isoamyl benzoate ($C_{12}H_{16}O_2$) + Levulinic acid ($C_5H_8O_3$)	mol% x .107 mol% x .107 25° 25° 60°
Lecat, 1949 % b.t.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 262.0 25 238.6 Az 100 252	37.58 .23 94.50 - 0.70 49.28 .47 100 - 0.06 57.01 .68 59.54 .73
Phenyl benzoate ($C_{1.3}H_{1.0}O_{2}$) + Trichloracetic ac ($C_{2}HO_{2}Cl_{3}$)	id Methyl phenylacetate ($C_9H_{10}O_2$) + Phenylacetic acid ($C_8H_8O_2$)
Kendall and Booge, 1916	Bakunin and Vitale, 1935
mol% f.t. mol% f.t.	mol% f.t. mol% f.t. E
0 67.8 59.7 13.2 12.6 62.8 65 11.5 21.6 57.3 69.3 21.0 29.1 52.1 76.7 33.7 35.5 46.7 84.8 44.7 47.3 33.0 92.0 52.1 49.8 29.6 100 58.5 56.2 19.0	100 76.7 30.54 14.5 - (1+1) 90.23 70 25.49 7 - " 80.50 63 20.42 -4 - " 70.55 55 17.19 -14 -63 " 60.62 46 15.14 -24 -67 " 50.60 36 10.24 -54 -66 " 40.70 24 7.29 -52 0 -38

Ethyl phenylacetate ($\rm C_{10}H_{12}\theta_{2}$) + Phenylacetic acid ($\rm C_{8}H_{8}\theta_{2}$)

Bakunin and Vitale, 1935

mo1%	f.t.	f.t,	f.t.
0.00	-30	53,70	43 (1+1)
11.38	-38	64.44	48 " 57
22.43	-38 (1+1)	72.98	57
28.00	0 \""	82,25	64
33.13	+36 *	90.42	70
43.60	36 "	100.0	76.7

Benzyl phenylacetate ($C_{1\,5}H_{1\,\psi}0_{2}$) + Phenylacetic acid ($C_{8}H_{8}0_{2}$)

Bakunin and Vitale, 1935

mo1%	f,t,	Е	mo1%	f.t.	E
100 92.71 84.92 76.66 67.87 58.48	76.7 72.3 67 62 57.5 48.5	-14 -13	48.41 37.62 23.83 13.52	38 27 6 -13 -6	-13 -13 -17 -13

p-Methyl toluate ($C_9H_{1\,0}O_2$) + Trichloracetic acid ($C_2HO_2Cl_3$)

Kendall and Booge, 1916

mo 1%	f.t.	mo1%	f.t.	
0 13.3 19 24.5 31.6 37.9 42.5 47	33.2 28.8 25.4 21.1 13.6 4.7 6.0 8.2 9.0 (1+	53.6 57.8 62.3 66.2 73.6 83.2 91.1 100	8.6 7.1 3.4 11.0 28.6 43.1 52.0 59.2	

Methyl cinnamate ($C_{10}H_{10}O_2$) + Chloracetic acid ($C_2H_3O_2C1$)

Kendall and Booge, 1916

mo1%	f.t.	mo1%-	f.t.
0 15.2 22.8 26.6 36.1 43.2 50.9	34.4 27.4 23.4 20.0 14.5 14.0 22.0	59.5 74.8 85.2 89.8 96.0	30.0 43.5 51.9 55.3 59.2 61.4

Methyl cinnamate ($C_{1.0}H_{1.0}\theta_{2}$) + Trichloracetic acid ($C_{2}H\theta_{2}Cl_{3}$)

Kendall and Booge, 1916

mo 1%	f.t.	mo1%	f.t.	
0 8.8 18.2 25.7 32.0 36.8 40.1 40.1 43.5 47.6	34.7 30.8 25.0 18.4 10.9 +3.3 -3.7 +3.2 6.4 7.9	49.8 53.1 56.8 62 64.8 69 75.1 82.9 90.6	8.5 (1+1) 7.7 6.0 1.9 6.5 17.8 30.0 41.9 50.4 58.3	

Methyl cinnamate ($C_{1\,0}H_{1\,0}O_{2}$) + Phenyl acetic acid ($C_{8}H_{8}O_{2}$)

Lecat, 1949

%	b.t.	
0 3 100	261.9 261.8 Az 266.5	

Methyl anisate ($C_9H_{10}O_3$) + Trichloracetic acid ($C_2HO_2Cl_3$)

Kendall and Booge, 1916

mo1%	f.t.	mol%	f,t.
0 8.6 15.3 21.2 26.9 32.8 38.4 41.8 43.8 45.3	48.3 43.7 39.2 34.0 27.9 19.5 9.5 0 -5.5 -7.4	50 55.1 59.4 62.4 65.4 70.5 77.3 83.5 90.8	-6.3 (1+1) -7.0 -9.5 -6.5 +5.0 17.0 31.5 41.1 50.6 58.1

			*************************************	<u> </u>		
Methyl to acid (C;		(C ₁₀ H ₁₀ O ₁₄)	+ Trichloracetic	Sulfonal (C ₇	H ₁₆ 0 ₄ S ₂) + Be	enzoic acid ($C_7 H_6 O_2$)
Kendall	and Booge, 1	016		A and L Kofle		
mo1%	f.t.	mo1%	f.t.	E: 43.50%	95°	<u> </u>
0 10.8 19.8 29.2 38.5 47.1 53.9 62.7 66.6 71.9	140.3 135.4 129.5 121.7 111.0 98.2 85.6 59.7 46.3 36.4	75.1 77.3 78.1 80 77.3 80 80.8 44.1 91.7	26.7 27.6 27.7 27.9 (1+4) 21.5 28.2 30.4 37.9 50.1 57.8	Methyl sulfate Lecat, 1949	e (C ₂ H ₆ O ₄ S)	+ Valeric acid(C ₅ H ₁₀ O ₂) b.t. 189.1 182.0 Az 186.35
И	penzoyl glyce	rate (C ₁₈ H ₁₈	₃ 0 ₆) +			
	id (C ₂ H ₄ O ₂)	, 1896		Methyl sulfate	e (C ₂ H ₆ O ₄ S)	+ Isovaleric acid (C ₅ H ₁₀ O ₂)
%	D f.t.		D f.t.	Lecat, 1949		
activ	ve	inactiv	ve]		
98 96.7 96.1 94.6 93.9 92.8 92.7 92.7 92.2	-0.250 .460 .495 .690 .710 .970 1.000 .045 .080	97.6 94.6 92.5 90.4 88.2	-0.300 0.770 1.095 1.385 1.750	% 0 60 100 100 Methyl sulfate	e (C ₂ H ₆ O ₄ S)	b.t. 189.1 175.0 Az 176.5 + Chloracetic acid
88.6 88.3 88.1 86.2	.840 .830 .850 2.345			Lecat, 1949		(C ₂ H ₃ O ₂ C1)
%	t	d	(a) _D	76	b.t.	
98.3 96.2 91.4 87.7	16.2 16.7 15.6 16.8	1.0561 .0694 .0699 .0750	34.34 33.27 32.45	0 100	189.1 194.5 189.0	Az
84.4	16.3	.0820	32.61 32.38			

650

METHYLAMINE + SACCHAROSE

	IVATIVES + HYDROX		Decylamine (Ethyl alcoho	1 (C ₂ H ₆ O)
Methylamine ((CH ₅ N) + Saccharos	se (C ₁₂ H ₂₂ O ₁₁)	Ralston, Hoerr		4	
Fitzgerald, 191	12		92.20	f.t. -40.0	22.22	0.0
M	ď	η	52.360	-20.0	0	+16.11
1.4403	18° 1.016 0.9156	44700 3370	Decylamine (C ₁₀ H ₂₃ N) +	Isopropyl al	cohol (C ₃ H ₈ O)
			Ralston, Hoerr	and al.,1944		
Isopropylamine	(C ₃ H ₉ N) + Isop	ropyl alcohol (C ₃ H ₈ O)	%	f.t.	K.	f.t.
Thacker and Ro	wlinson, 1954		89.88 67.11	-40.0 -20.0	30.47	0.0 +16.11
mo1 %	Dv (cc/mole)	Q mix				
	25°		Decylamine (C ₁₀ H ₂₃ N) +	Butyl alcoho	1 (C ₄ H ₁₀ 0)
90 80 70	-0.48 -0.84 -1.07	-220 -400 -510	Ralston, Hoerr			·
60 50 40	-1.25 -1.32 -1.26	-580 -600 -570	×	f.t.	%	f.t.
30 20 10	-1.08 -0.85 -0.50	-480 -350 -118	91.53 76.52	-40.0 -20.0	35.53 0	0.0 +16.11
mol %	56° D	n/n 80° 100°	Dodecylamine	(C ₁₂ H ₂₇ N)	+ Methyl alo	ohol (CH ₄ 0)
83 79 51	0.000 -0.0	-0.010	Ralston, Hoe	rr and al.,	1944	
50 22 21	-0.002 -0.0 0.0	-0.016 -08	%	f.t.	Я	f.t.
18	-0.001	0.000	95.47 77.21 33.78	-40.0 -20.0 0.0	9.71	+20.0 28.32
Decylamine (C	10H23N) + Methyl	alcohol (CH ₄ 0)				
Palaton Hoone on	-d -1 1044		Dodecylamine	(C ₁₂ H ₂₇ N)	+ Ethyl alco	hol (C ₂ H ₆ O)
Ralston, Hoerr an	iu a1.,1944.		Ralston, Hoe	er and al., 9	1144	
		f.t.	%	f.t.	%	f.t.
76.33 36.89	-40.0 15. -20.0 0	0.0 +16.11	98.04 86.64 46.51	-40.0 -20.1 0.0	13.16	+20.0 28.32

				Totrodogula	nine (C U 1	N) + Butyl a	lcohol
Dodecylamine			1coho1 (C ₃ H ₈ O)	retradecyra	urue (elhudi)	. , · butyl a	(C ₄ H _{1 0} 0)
Ralston, Hoerr	and al.,1944			Ralston,Hoerr	and al.,194	4	
%	f.t.	%	f.t.	%	f.t.	%	f.t.
95.56 86.96 57.14	-40.0 -20.0 0.0	16.90 0	+20.0 28.32	99.81 97.64 85.83	-40.0 -20.0 0.0	43.48 19.81 0	+20.0 30.0 38.19
Dodecylamine	(C ₁₂ H ₂₇ N)+	Butyl alcoh	ol (C ₄ H _{1 O} O)	Hexadecylamin	ne (C ₁₆ H ₈₅ N) + Methyl a	lcohol (CH _u O)
Ralston, Hoerr	and al.,1944			Ralston,Hoerr	and al.,194	4	
%	f.t.	×	f.t.	8	f.t.	%	f.t.
97.64 92.23 63.69	-40.0 -20.0 0.0	19.87	+20.0 28.32	99.8 94.31 46.49	-20.0 0.0 +20.0	28.16 11.30 0	30.0 40.0 46.77
Tetradecylam	ine (C _{1 4} H ₃₁)	N) + Methyl	alcohol (CH ₄ 0)	Hexadecylami	ne (C ₁₆ H ₃₅ N	I) + Ethyl a	lcohol (C ₂ H ₆ O)
Ralston,Hoerr	and al.,1944			Ralston,Hoerr	and al.,194	1	
%	f.t.	%	f.t.	×	f.t.	%	f.t.
99.84 97.26 61.73	-40.0 -20.0 0.0	25.53 13.80 0	+20.0 30.0 38.19	97.08 54.65 29.72	0.0 20.0 30.0	11.50 0	40.0 46.77
Tetradecylam	ine (C _{1 4} H ₃₁ N	i) + Ethyl a	lcohol (C ₂ H ₆ O)	Hexadecylamine	(C ₁₆ H ₃₅ N)	+ Isopropyl	alcohol (C ₃ H ₈ O)
Ralston, Hoerr	and al.,1944			Ralston, Hoerr	and al.		
%	f.t.	×	f.t.	%	f.t.	A	f.t.
98.53 76.78 31.45	-20.0 0.0 +20.0	13.16	30.0 38.19	99.6 93.26 59.52	-20.0 0.0 +20.0	37.74 14.71 0	30.0 40.0 46.77
Tetradecylami) + Isoprop	yl alcohol (C ₃ H ₈ O)	Hexadecylamin	ie (C ₁₆ H ₃₅ N) + Butyl al	cohol (C ₄ H ₁₀ 0)
Ralston, Hoerr		·		Ralston, Hoer	r and al., 19	944	
	f.t.	%	f.t.	Æ	f.t.	K	f.t.
99.40 96.47 79.94	-40.0 -20.0 0.0	39.54 17.93 0	+20.0 30.0 38.19	99.9 96.73 64.52	-20.0 0.0 +20.0	40.73 16.27 0	30.0 40.0 46.77

OCTADECYLAMINE + METHYL ALCOHOL

Octadecylamir	ie (C ₁₈ H ₃₉ N) + Methyl al	cohol (CH ₄ O)	Diethylamin	e (C ₄ H ₁₁ N) +	Ethyl alco	hol (C ₂ H ₆ O)
Ralston, Hoerr	and al.,1944			Copp and Ever	ett,1953		
%	f.t.	%	f.t.	p	L	mol %	v
99.4 86.43 51.28	0.0 20.0 30.0	29.18 6.50 0	40.0 50.0 53.06	100 150 200 290	30°15 72. 55 40 0		57.5 25 13 0
Octadecylamin	ne (C ₁₈ H ₃₉ N) + Ethyl alo	cohol (C ₂ H ₆ O)	140 150 200	40°25 100 80 60		.00 70 33
Ralston, Hoer	r and al.,19	44		250 250 300	50 38 26		20 13 7 0
*	f.t.	%	f.t.	440	50°00		ó
99.9 93.47 57.14	0.0 20.0 30.0	26.32 5.79 0	40.0 50.0 53.06	215 250 300 350 400	100 78 65 56	1	00 65 44 30
	ine (C ₁₈ H ₃₉ N err and al.,1		l Alcohol (C _S H ₈ O)	450 500 550 625	45 37 27 18 0		18 13 9 4 0
	f.t.	%	f.t.	350	59°95 1 <u>00</u>	1	00
99.51 76.92 53.76	0.0 20.0 30.0	30.69 7.00 0	40.0 50.0 53.06	400 450 500 600 680 880	75 65 58 45 34 0		62 57 36 23 15
Octadecylamin	ne (C ₁₈ H ₃₉ N) + Butyl Al	cohol	Hatem, 1951			
Ralston, Hoe	rr and al.,19		100)	%		χ	
99.6 81.51 57.14	0.0 20.0 30.0	32.69 7.46 0	f.t. 40.0 50.0 53.06	0 20 40 60 80 88 100		-0.812 -0.788 -0.769 -0.749 -0.734 -0.732	
				Tichacek, K	Smak and Dricka	mer, 1956	
				mol %	D therm.	mol %	D therm.
				43.0 54.0 68.3	-1.11 -0.85 -0.48	80.4 90.9 97.1	-0.59 -0.88 -1.12

	Dilaurylamine	(C ₂₄ H ₅₁ N)	+ Methyl alc	ohol (CH ₄ 0)
Dioctylamine ($C_{16}H_{35}N$) + Methyl alcohol ($CH_{14}O$)	Hoerr, Harw	ood and Rals	ton,1944	
Hoerr, Harwood and Ralston, 1944			f,t.	
# f.t.		.87	30.0	
63.29 -10.0	87 1	.65 .71	40.0 50.0	
1.49 +10.0 0 14.60	0		51.8	
	Dilaurylamin	e (C _{2h} H ₅₁ N) + Ethyl alc	ohol (C ₂ H ₆ O)
Dioctylamine (C ₁₆ H ₃₅ N) + Ethyl alcohol (C ₂ H ₆ O)	Hoerr, Harwo			
Hoerr, Harwood and Ralston, 1944	%	f.t.	Я	f.t.
% f.t.	99.8 83.74 35.09	10.0 30.0 40.0	2.90	50.0 51.8
95.47 -10.0 61.35 +10.0 0 14.60) + Isopropy	l alcohol (C _S H ₈ O)
		good and Rals	ton,1944	
Dioctylamine ($C_{16}H_{35}N$) + Isopropyl alcohol ($C_{3}H_{8}0$)	% 	f.t.	% - 	f.t.
Hoerr, Harwood and Ralston, 1944	97.86 64.52 25.42	10.0 30.0 40.0	2.64	50.0 51.8
%° f.t.				
78.86 -10.0 30.29 +10.0 0 14.60	Dilaurylami	ne (C ₂₄ H ₅₁ N) + Butyl al	cohol (C ₄ H ₁₀ 0)
	Hoerr, Harw	ood and Rals	ton,1944	
Dioctylamine ($C_{16}H_{35}N$) + Butyl alcohol ($C_{u}H_{10}0$)	%	f.t.	%	f.t.
Hoerr, Harwood and Ralston,1944	99.6 96.78 61.73	-10.0 +10.0 30.0	24.37 2.04 0	40.0 50.0 51.8
% f.t.				
68.55 -10.0 26.32 +10.0	Ditridecylar	aine (C ₂₆ H ₅₅	N) + Methyl	alcohol (CH ₄ O)
0 14.60	Hoerr, Harwo	ood and Ralsi	on,1944	
	%	f.t.	%	f.t.
	93.37 75.69	40.0 50.0	72.26 0	60.0 56.5

				Ditetradecyl	amine (C. U.	N) + Icoprov	vul alaahal
Ditridecylami	ine (C ₂₆ H ₅₅ N) + Ethyl a (C	lcohol ₂ H ₆ O)	Ditetradecyr	amine (C ₂₈ H ₅₉	N) + Isopio	(C _B H ₈ O)
Hoerr, Harwo	ood and Ralst	on,1944		Hoerr, Harwo	od and Ralsto	n,1944	
%	f.t.	%	f.t.	%	f.t.	R	f.t.
95.83 69.89	30.0 40.0	13.26	50.0	99.4 87.69	30.0 40.0	27.34 0	50.0 60.6
	mine (C ₂₆ H ₅₅		pyl alcohol (C ₃ H ₈ O)		amine ($C_{28}H_5$		alcohol (C ₄ H ₁₀ 0)
%	f.t.	%	f.t.	%	f.t.	%	f.t.
91.16 55.87	30.0 40.0	11.91	50.0 56.5	99.9 94.06 75.87	10.0 30.0 40.0	28.57	50.0 60.6
	mine (C ₂₆ H ₅₉		alcohol (C ₄ H ₁₀ O)	Dipentadecy	lamine (C ₃₀ H		alcahol (C ₂ H ₆ O)
%	f.t.	Я	f.t.	8	f.t.	×	f.t.
99.0 84.62 49.40	10.0 30.0 40.0	12.50	50.0 56.5	98.20 60.24	40.0 50.0	5.74	60.0 63.3
Ditetradecy	lamine (C ₂₈ F	H ₅₉ N) + Metl	hyl alcohol (CH ₄ 0)	Dipentadecy	lamine (C ₃₀ H,	₅₃ N) + Isopr	opyl alcohol (C ₃ H ₈ O)
Hoerr, Harw	vood and Rals	ton,1944		Hoerr, Harwood	and Ralston	, 1944	
%	f.t.	%	f.t.	×	f.t.	Ø.	f.t.
87.72 85.47	50.0 60.0	0	60.6	97.85 58.43	40.0 50.0	5.56	60.0
	ylamine (C ₂₈		yl alcohol (C ₂ H ₆ O)	Dipentadecy	lamine (C ₃₀ k	I ₆₃ N) + Buty	l alcohol (C _u H ₁₀ 0)
R	f.t.	%	f.t.	Hoerr, Harwood	i and Ralston	, 1944	
99.6 92.74	30.0 40.0	30.80	50.0 60.6	99.0 89.8 2 50.00	30.0 40.0 50.0	7.00	60.0 63.3

			1	(400		
Dioctadecylamine (C	₁₆ H ₇₅ N) + Isopi	ropyl alcohol (C ₃ H ₈ O)	100	64°8		445 55
		, - 38-	89.60 75.95	435.50 447.25	34.60 28.70 22.70	445.55 437.60
Hoerr, Harwood and Rals	ton, 1944		69.60 62,95	459.15 462.10	15.15	428.35 409.70
% f.t.	×	f.t.	55.85 39.45	463.30 462.70 451.15	7.20	377.80 340.70
98.80 50.0 88.61 60.0		72.3				
			1	mol % Az	p b	o.t.
Dioctadecylamine (C	7 ₃₆ H ₇₅ N) + Buty	1 alcohol (C ₄ H ₁₀ O)		52.0 23 62.9 46.	9.1 43.3 6	34.85 19.60 14.85 17.00
Hoerr, Harwood and Rals	ton, 1944					
% f.t.	K	f.t.	Tichacek,	Kmak and Drick	amer, 1956	·
99.8 94.83 40.0 50.0	61.35	60.0 72.3	mol %	D therm.	mol %	D therm.
				_	0°	
Triethylamine (C ₆ H ₁₅	N) + Methyl Al	cohol (CH ₄ O)	29.7 44.4 61.5	-1.08 -1.19 -0.92	70.6 90.6 95.6	-1.22 -0.89 -0.67
Joukovsky, 1953			Triisobut	ylamine (C ₁₂ H ₂	7N) + Meth	yl alcohol
mol %	20°5	30°0	Timmerman	s, 1921		(CH ₁ 0)
100 94.5	99 96 38	160.2 144		Two liquid laye	rs at all te	emperatures
73.5 45 39 32 0	76 72 70 4.3	125 118 7.3		nine (C ₈₄ H ₅₁ N)		l alcohol (C ₃ H ₈ O)
-			Ralston, H	oerr and Du Bro	w, 1944	
Triethylamine (C ₆ H _{1.5}	N) + Ethyl Alc	ohol (C.H.O.)	%	f.t.	¥	f.t.
Copp and Everett, 1953	•	, ,	97.78 95.24	-60.0 -50.0	85.47 0	-40.0 -34.6
mol % p	mol %	p	Trioctylam	ine (C ₂₄ H ₅ , N)	+ Butyl alo	cohol
100 102.0	34°95 00 47.35	113.20	Ralston, H	oerr and Du Bro		(C ₄ H ₁₀ 0)
91.90 104. 81.25 109. 71.35 113.	30 41.75 15 27.50	118.80 117.60 112.75	8	f.t.	%	f.t.
65.50 114.9 59.90 116.2	5.85	109.15 104.60	92.49 86.64	-60.0 -50.0	31.25 0	-40.0 -34.6
100 217.0	00 44.90	238.50				
36.95 225. 78.95 230.8 67.95 230.8 67.95 238.5 58.15 238.5 54.25 238.5	32.60 30 20.70 25 13.10 5 5.45	234.45 227.25 219.10 205.10 193.10				

Trilaurylamine ($C_{36}H_{75}N$) + Isopropyl alcohol ($C_{8}H_{8}O$)	Ethylenediamine ($C_2H_8N_2$) + Methyl alcohol Elgort,1936 ($CH_{\rm h}0$)
Ralston, Hoerr and Du Brow, 1944	mo1 % gr % d
% f.t. sat.t.	0° 25°
99.9 0.0 - 97.43 10.0 - 86.78 - 20.0 80.86 - 30.0 63.29 - 40.0 0 15.7 -	100 100 0.8104 0.7870 94.9 90.8 8295 8069 77.3 78.6 8533 8312 80 68.1 8713 8485 74.5 60.9 8797 8565 70.3 55.7 8850 8619 66.2 51.2 8913 8684 62.7 47.4 8957 8731 59.4 43.8 8989 8763
Trilaurylamine ($C_{36}H_{75}N$) + Butyl alcohol ($C_4H_{10}0$ Ralston, Hoerr and Du Brow, 1944	54.0 39.5 9028 8784 52 36.6 9054 8795 24.5 9073 8897
% f.t. % f.t. 29.90 -10.0 79.64 +10.0	mol % 0° 25°
98.50 0.0 0 15.7 Trioctadecylamine (C ₅₄ H ₁₁₁ N) + Butyl alcohol (C ₄ H ₁₀ 0) Ralston, Hoerr and Du Brow, 1944 f.t. f.t. f.t. 99.80 40.0 0 54.0 85.47 50.0	100 836 563 94.9 1199 764 87.3 1767 1006 80 2428 1195 74.5 2930 1347 70.3 3355 1426 66.2 3477 1481 62.7 3519 1494 59.4 3563 1522 55 3524 1530 52 3512 1522 49.6 3500 1520 43.3 3372 1498 34.2 3204 1466 19.3 2981 1376 0 2615 1265
Allelenies (C.H.N.) - Co. Lea. (C. N. o.)	mol % gr % f.t. E
Allylamine (C ₃ H ₇ N) + Saccharose (C ₁₂ H ₂₂ O ₁₁) Wilcox, 1902	100

Ethylenediamine (C_2 H	₈ N ₂) +	Pinacol ($C_6H_{14}O_2$)
Pushin and Dimitrijevi	tch,1947	
mol %	f.t.	E
0	8.8	
9.6 16.1	1 0	-1.0
21.1 26.3	9.8 14.5	-2.0
26.3 39.5 42	4.5 9.8 14.5 18.2 18.5	-
50.3 53.7	17.5	-
59.8 66.25 67.25	$15.0 \\ 11.0$	+ 4.6
71.0	9.8 14.8	+ 7.1 + 7.5
76 84	22.3 32) 42.8	-
100 (1+1	3 42.8	
Ethylenediamine (C ₂ H ₈	N ₂) ● Di	phenylcarbinol (C ₁₃ H ₁₂ O)
Pushin and Dimitrijevi	tch,1947	
mol %	f.t.	E
$\begin{smallmatrix}0\\10\end{smallmatrix}$	9 4	-3
20 30	1 4	-3 -3 -3
40 50	17 25	<u>-</u>
60 66.6	32 34	-
71 80	29 45	29 29 28
90 100 (1+2)	57 65	28
Ethylenediamine (C ₂ H	₈ N ₂) + Tr	iphenylcarbinol (C ₁₉ H ₁₆ 0)
Pushin and Dimitrijevi	tch, 1947	
mol %	f.t.	E
0 5 15	9 41	-2
15 30	65 89	- <u>2</u>
40 50	9 7 101	- 97
55 60	108 115	97 97
66.6 70	123 128	96
100 (1+1)	163	-

Aniline (C6H2N) + Methyl alcohol (CH40) Weissenberger, Schuster and Lielacker, 1947 mol % mol % p p 96.0 87.2 79.6 100 90 80 70 54.9 46.2 37.4 28.4 50 40 20° 30 20 10 71.3 63.2 60 16.6 Holmes and Sageman, 1909 đ 25° 1.01760 0.999530 0.985211 0.970961 0 8.367 14.660 20.982 25.445 33.676 44.948 100 0.960291 0.941142 0.914713 0.78810 Hartung, 1917 d 25° mol % % 0 8.21 14.22 19.95 24.58 29.40 36.62 42.00 54.10 57.71 74.71 1.01744 0 20.63 32.52 41.99 48.63 54.74 62.67 77.40 79.86 0.99964 0.98602 0.98602 0.97271 0.96193 0.95056 0.93360 0.92097 0.89283 0.884489 89.56 0.84489 0.78740 100 Hatem, 1949 K. χ χ -0.677 100 -0.690 40 -0.664 80 -0.685 20 -0.690 50 0 -0.648 Timofeev, 1905 U 20° $\begin{array}{c} 0 \\ 37.4 \\ 100 \end{array}$ $\substack{0.4915 \\ 0.602 \\ 0.600}$

Hartung, 1917			Aniline (C	₆ H ₇ N) + E th	yl alcohol	I (C ₂ H ₆ O)
Я	mol %	U	Johst, 1883			
0 8.21 14.22	0 25° 20.63 32.52	0.484 0.512 0.534	×	đ	Я	d
14.22 19.95 24.58 29.40 36.62 42.00 54.10 57.71 74.71	32.32 41.99 48.63 54.74 62.67 67.77 77.40 79.86 89.56	0.547 0.553 0.568 0.571 0.577 0.595 0.587	0 20.78 28.28 44.12	1.02367 0.97522 0.95784 0.92184	.3° 61.36 70.54 100	0.88371 0.86376 0.80722
100	100	0.605	Guerdjikova	, 1910		
Timofeev,1905			%	d	%	d
initial	final 2.45 8.9	Q mix (by mole alcohol) +36.3	100 90.195 79.515	0.7865 8083 8317	40.391 29.542 19.008	9483
2.45 8.9 13.7 34.4	8.9 13.7 18.0 37.4	+36.3 +86.2 +128.2 +133.4 +90	79.515 70.293 63.630 49.128	8524 8673 9003	11.572	9893 1.0174
initial	final	(by mole aniline)	Herz,1930			
100 92.2 84.7	92.2 84.7 78.9	+613 +472 +390	- X	d	% .3°	đ
Hartung, 1917			0 19.84 33.10	1.02478 0.95888 .92284	40.74 100	0.88467 .80810
Я	mol %	0 mix (cal/100 g)	Hatem, 1949			
3.12 6.32	25° 8.55 16.39	- 4.89 - 4.59	mol %	15° 20°		30° 35°
10.59 14.48 21.01 27.65 36.01 47.30 60.61 64.32 83.49 86.42	25.58 32.97 43.59 52.61 62.05 72.28 81.72 83.97 93.62 94.86	+ 4.69 17.4 41.9 58.2 81.2 104.9 115.1 114.7 80.1 63.7	0 0.299 1.410 5.00 8.64 13.21 41.0 61.558 71.09 77.34 89.341 94.95	0245 02 0228 01 0142 01 0141 01 0078 00 0.9625 0.95 9200 91 8941 89 8762 87 8343 83	10 0169 87 0145 80 0100 00 0061 39 0.9987 83 9540 53 9108 03 8863 26 8681	9500 9458 9057 9024 8824 8774 8636 8594 8213 8175
Weissenberger,	Schuster and L	ielacher, 1947	97.761 99.072 99.538	8027 79 7970 79	88 7948 29 7887 14 7873	7907 7867 7847 7806
	mol %	Q mix	100	7943 79	01 7861	7832 7788 7820 7775
	90 80 70 60 50 40 30 20	8 22 39 53 55 43 27 14				

Migal and Be	lotskii,1955	5			Migal a	nd E	Belotski	i,1955			
Я	()° d	20°		mol %	0)° 5	° 10°	σ 15°	20°	2 5°
0 20 49 60 80 100]] 1	1.54 1.29 1.12 1.00 1.90 1.803	1.49 1.26 1.10 0.98 0.38 0.80		0 20 40 60 80 100	45. 39. 34. 30. 27. 23.	90 39. 40 33. 20 29. 20 26.	30 35.8 90 33.4 90 29.4 50 26.0	0 38.20 0 32.80 0 28.80 0 25.50	42.70 38.00 32.40 28.30 25.20 22.10	42.10 37.40 32.00 28.00 24.80 22.00
Drucker, 1956					Johs	t, 1	883				
vol %	đ	vol	%	d	%		Нα	n D	Нз	H	,
17.0 52.1	0.9471 0.9135		.9 0.	9086	0 20.1	78	1.58135 .52890	16.3 1.58818 .53443	3 1.6063 3 .5489	0 .56	271 186
Hirata,1908					28.3 44.3 61.3 70.5 100	12	.51088 .47465 .43757 .41882 .36225	.51596 .47886 .44095 .42178 .36403	.4897 .4496 .4293	9 .499 0 .457 2 .435	943 713 580
vol %	(alcohol:		% (alco	hol=l)							
75 87.5 93.75	1.2081 1.0864 1.0439		87 1. 14 1. 22 1.	0279 0176 0103	1	r an		ikova, I	1910 %	ⁿ D	
Hatem, 1949 %	n 20 4450	% % 60	1620		79 70 63	. 19 . 51 . 29 . 63	1.3 1.4 1.4	25° 3596 3782 3993 4183 317 630	40.39 28.54 19.01 11.27	1.48 1.51 1.53 1.55 1.58	10 43 31
10 20 30	3400 2760 2140	70 80 90	1460 1350 1260		Hatem, 1	949					
40 50	2080 1820	100	1200		mol	K	15°	20°	n _D 25°	30°	35°
Migal and B	elotskii,199	n	15° 20°	25°	0 0.2 1.4 8.6	10 4	1.5900 5891 5865 5757	1.5869 5860 5834 5725	1.5840 5830 5804 5694	1.5910 5900 5773 5661	1.5780 5778 5742 5628
20 40 60 80	0200 8000 7400 6000 5200 4350 3800 3000 2700 2200 1700 1500	4950 4 3700 3 2700 2 2000 1	5300 4300 4000 3400 3000 2600 2200 1950 1600 1400 1200 1100	3800 2950 2200 1700 1200 1000	13.2 41.0 61.5 77.3 89.8 97.7 99.0 99.5	58 4 41 61 72	5695 5234 4792 4371 3998 4717 3659 3648 3634	5670 5208 4773 4348 3976 3698 3640 3630 3615	5644 5183 4750 4325 3954 3678 3622 3610 3596	5619 5158 4730 4301 3933 3658 3604 3590 3576	5595 5133 4710 4279 3912 3639 3585 3572 3556

ANILINE + PROPYL ALCOHOL

gal and Bel	otskii,1955	····		Timofeev,1905	5		
mol %	n _D	mol %	n _D	initial	% final	(by mo	Q mix ole alcohol)
0 20 40	20° 1.5850 1.5550 1.5200	60 80	1.4800	0 5.0	5.0 9.6		-464 -305
	1,5200	100	1,3600			(by mo	ole aniline)
Guerdjikova	,1910			100 90.9	90.9 83.0		+158
%	(a) mol D magn	Я	(a) mol D magn	83.0	76.8		-58
	25°			Aniline (C ₆	H ₇ N) + Pro	pyl alcoho	1 (C _s H ₈ O)
100 90.195 79.515 70.293 63.630	4.139 4.964 5.847 6.784 7.418	40.391 28.542 19.008 11.572	9.833 11.334 12.551 13.596 15.338	Kremann, Meir			
49.128	8.956	0	13,336	mol :		d	
Muller and	Guerdjikoff, 19	012		0 35 79.7 100	7 0.9	9798 (1-0 8855 (1- 0	.000844 t) .000878 t) .001014 t) .001024 t)
7.	(α) mol D magn	Z	(a) mol D magn	Kremann and 1			
	25°			l			
100 90.19 79.51 70.29 63.63 49.12	4.14 4.96 5.85 6.78 7.42 8.96	40.39 28.54 19.01 11.27 0	9.83 11.33 12.55 13.60 15.34	13.3 29.0 52.6 65.1	1.030 1.0162	\$ 80.0 95.8	0.9712 0.9575
Drucker, 195	6			65.1	0.9954 0.9843	107.3	0.9475
vol %	ⁿ D 25°	vol %	ⁿ D 25°	14.0 22.0 26.6	35 mc 0.9675 0.9604 0.9564	43.5 59.0	0.9420 0.9200
17.0 52.1	25° 1.5122 1.4784	53.9	1.4774	15.5 25.8	80 mc 0.8716 0.8623	01 % 40.5 52.5	0.8497 0.8388
Hatem, 1949				15.5 28.5 39.4	0.8075 0.7964	47.2 60.0	0.7807 0.7700
Я	X	%	χ	37,4	0.7875	65.1	0.7653
0	20 -0.648	。	-0.700	Kremann, Mei	ngast and G	ugl, 1914	
10 20 30 40	-0.680 -0.690 -0.694	70 80 90	-0.700 -0:706 -0.712 -0.722 -0.745	mol %	20)° Dv	70°
50	-0.698 -0.698	100	-0.745	74.21 28.32	-0. -1.	.52 .05	-0.68 -1.15

mol % d , q q (water=1)	initial	final	(by mole	mix aniline)
12° 0 1.0312 4.705 35 0.9696 3.062 80 0.8749 2.196	0.0 90.5 81.7	90.5 81.7 74.9	-	389 430 402
100 0.8103 2.109	remann, Meir	ngast and Gugl	1,1914	
0 0.9854 2.269 35 0.9242 1.752 80 0.8290 1.406 100 0.7666 1.353	mo1 %	U 16°	(Q mix cal/g)
Springer and Roth, 1930	0 35 80 100	0.495 0.592 0.662 0.640	+ +	2.328 1.682
mol % (water=1)	Aniline (C ₆	H ₇ N) + Isopr	opyl alcoh	ol (C ₃ H ₈ O)
12° 0 3.6474 35 3.1832 80 2.253	atem,1949			i
80 2.253 100 2.171	%	х	%	χ
Kremann and Meingast,1914	100	18°	40	-0.712
t σ t σ	80 60	-0.767 -0.728 -0.720	20	-0.712 -0.700 -0.650
20.0 41.93 80.0 36.92 29.0 40.96 95.8 35.25	Aniline (C ₆ k	H ₇ N) + Isobu	tyl alcoho	(C ₄ H ₁₀ O)
35 mol % 14.0 33.06 43.5 31.22	K	f.t.	%	f.t.
20.0 32.50 59.0 30.21 22.0 32.39 70.0 29.54 26.6 32.14 80 mol %	0 0.44 1.24	-5.96 -6.34 -6.92	4.99 6.38 8.10	-9.56 -10.48 -11.48
15.5 26.71 40.5 24.96 20.0 26.41 52.5 24.02 25.8 26.01	2.01 2.76 3.38	-7.49 -8.04 -8.44	10.47 14.83	-12.68 -14.90
1 15.5 25.74 47.4 22.00 11	sipov, Panina	and Lempert.	,1955	
28.5 23.12 60.0 21.07 39.4 22.55 65.1 20.58	mol %	η		ε
Hatem, 1949	0	20° 390 370		7
% X % X	20 40 60 80	370 345 340 360		8 9 11
18° 100 -0.788 40 -0.704 80 -0.733 20 -0.690 60 -0.716 0 -0.648	100	400		14 18.5

Aniline (C ₆ H ₇	N) + Sec Buty	/l Alcohol (C	μH ₁₀ 0)	Anilino	(C ₆ H ₂ N)	(h.t. =	184 35) + Alex	hale
Roland, 1928						\ b.t. "	*01100	, · Aici	
mol %	p	mol %	p	Lecat,19			·····		
			i		2nd Comp.	***************************************		Az	 -
100	20.36° 12.6	40.10	9.3	Name	Formula	b.t.		b.t.	Dt mix
76.47 50.75	$\begin{smallmatrix} 12.1 \\ 10.3 \end{smallmatrix}$	26.93 11.65	7.9 5.3	Meptyl alcohol	C7H160	176, 15	78	175.4	-3.8 (78%)
100	30.02° 24.4 21.7	39.63 26.57	16.6 14.1	Octyl alcohol	C8H180	195.2	17	183.95	-2.5 (13%)
76.18 50.33	18.4 39.85°	11.51	9.0	Isooctyl alcohol	C ₈ H ₁₈ O	180.4	65	179.0	-4.6 (64%)
100 75.77	44.9 37.6	38.87 25.99	28.6 23.4 15.7	Glycol	C2H6O2	197.4	24	180,55	-0.6 (10%)
49.60	31.6	11.28	15.7	Propylen glycol	$_{2}0_{8}$ He $_{2}$	187.8	55	179.5	
Veltmans,1926				Pinacol	C ₆ H ₁ 40 ₂	174.35	90	172.0	
Z	d	(a) _D		Ethanol amine	C ₂ H ₇ ON	170.8		170.3	+2.7 (51%)
0 15 40 60 79.7 100	20° 1.0219 0.9842 0.9277 0.8840 0.8441 0.8069	0 2.20 5.41 7.93 10.60 13.87			(C ₆ H ₇ N) +		Malate	(C ₆ H _{1 0} 0	5)
Aniline (C ₆ H ₇	N) + Octyl Al	cohol (C ₈ H ₁₈ C))	g/100cc	red yello	(α w green	pare	dark blue	viol.
Tschamler, Rich	nter and Wettig	g, 1949		49.817 -	10.04 -12.7	20° '5 -15.86	-19.47	-21.18	-22.48
mol %	f.t.	mol %	f.t.	24.9095 - 12.4543 - 4.902 -	14.25 -17.0 16.06 -18.9 18.16 -21.6 19.18 -22.4	6 -21.56 5 -23.85 2 -28.36	-26.10 -29.55 -33.25	-28.58 -32.28 -38.35	-
100 87.9 79 59.9 50,5	-16.8 -19.6 -23:3 -22.8 -19.7	36.6 28 18.8 8.8 0	-16.3 -14.9 -13.0 -10.6 -6.3						

Aniline (C ₆ F	I ₇ N) + Ethyl 1	artrate (C	gH ₁ 40 ₆)	Anilin	e (C ₆ H ₇ 1	N) + Ben:	zyl Alcoho.	1 (C7H80)
Patterson and	Stevenson, 1912			Ampola	and Rima	atori,1897	7		
t	d	(α) _D			%	f.t.	%	1	.t.
15.1 20 20.6 25.1	0 % 1.0262 1.0221 1.0215 1.0176	# ·		3	.74 .41 .81	-5.96 -6.36 -7.22 -7.98	7.07 8.91 14.23 16.03	1 -16 3 -13 3 -14	9.26 9.38 9.58 4.76
17.2 20 34.7 59.3 70.7	7.66 % 1.0373 1.0346 1.0217 1.0002 0.9903	38.22 37.65 36.47 35.26 33.34	5	}		20°	d	60° 50	
12.7 14.6 20 38.1 55.6 81.8	23.98	36.27 35.93 35.45 33.45 31.18 29.42 22.08		0 10 20 30 40 50 60 70 80 90	1.043 1.054 1.065 1.076 1.086 1.097 1.108 1.120 1.131	1.034 1.045 1.056 1.066 1.077 1.088 1.099 1.110	1.025 1. 1.036 1. 1.046 1. 1.057 1. 1.068 1. 1.078 1. 1.090 1. 1.101 1.	006 0.9 016 1.0 027 1.0 038 1.0 048 1.0 059 1.0 069 1.0 080 1.0 091 1.0 102 1.0	17 228 38 49 60 71 82
43.2 75.2 86.1	1.1182 1.0872 1.0767 100 %	21.29 20.75 20.60		%	60°	70°	d 80°	90°	
16.8 20.1 33.7 37.2 37.6 46.1 46.8 55.1 58.3 67.2 68.1	1.2087 - 1.1878 - 1.1783 1.1665 1.1566	7.67 9.10 9.56 10.24 10.94		0 10 20 30 40 50 60 70 80 90 100	0.9874 0.9976 1.007 1.019 1.029 1.039 1.050 1.061 1.072 1.084 1.095		0.9794	0.9602 0.9704 0.9808 0.9909 1.001 1.011 1.021 1.038 1.044 1.055	
				,	6	n ₅₈₉₈	%	n ₅₈₉₈	
Aniline (C ₆ Wheeler and J	Ones,1952	nexanol (C ₆	H _{1 2} 0)	21	.00 .84 .47	1.5832 1.5631 1.5433	62.48 82.13 100.00	1.521 1.502 1.483	:3
%	ď	%	D O	%	40°	60°	บ 80°	100°	120°
9.85 19.62 29.55 40.60 49.56	1.46472 25° 1.47468 1.48463 1.49479 1.50649 1.51612	70.87 79.01 91.34	1.52685 1.54092 1.55169 1.57011 1.58311	0 10 20 30 40 50	0.503 .502 .501 .501 .501 .501	0.511 .511 .512 .512 .512 .512	0.520 .520 .521 .522 .523 .524	0.528 .529 .530 .531 .533 .536	0.536 .537 .539
				70 80 90 100	.501 .501 .501 .501	.514 .516 .517 .519	.528	. 542 . 547	-

Methylani	line (C7H9	N) (b.	t.=196	,25) +	Alcohols	Methylani	line (C ₇ H ₉ N)	+ Ethyl t	artrate (C,	e ցH _{1 Կ} 0 ₆)
Lecat, 194	9					Patterson a	and St	evenson,19	912	, ,	
	2nd Comp.			Az		t		d		(α) _D	
Name	Formula	b.t.	%	b.t.	Dt mix					··· /U	
Octyl alcohol	C ₈ H ₁₈ O	195.2	55	193.0	-4.5 (5 7 %)	14.9 20 31.7		9.936 % 1.0069 1.0036 0.9938		23.87 23.65 23.10	
Glycol	$C_2H_6O_2$	197.4	40.2	181.6	-	49.8 65		0.9787 0.9662		22.73 22.57	
Propylen glycol	C3 H802	187.8	46	181.0	-			30.89 %			
Methoxy diglycol	C5H12O3	192.95	60	190.0	(80%)	20 19.4 15.4		1.0445 1.0450 1.0481		17.57 17.53 17.42	
Linalool	$C_{10}H_{18}0$	198.6	30	195.6	-	15.3		1.0486		17.37	
Benzyl alcohol	C7H80	205.25	30	195.8	-	For 10	0 % s	ee : Anili	ne + Eth	yl Tart	rate
Ethanol amine	C ₂ H ₇ ON	170.8	70	167.5	-	Dimethyla	nilin	e (C ₈ H ₁₁ N) + Met	hyl Alc	ohol
Methylani	line (C7H9	N)+ Gly	cerol	(C ₃ H ₈ O ₃)	Weissenber	ger, S	Schuster a	ınd Lielad	cher,19	(CH ₄ 0) 47
Parvatiker and Mc Ewen, 1924 mol % p Qmix mol % p Qmix											
%	sat.t	•	%	sat	.t.	100	96.0	20°	50	79,3	-244
10.50	197.5 220.0		8.44 9.40	223 222		90 80 70	88.0 82.3	-46 -118	40 30	78.4 72.6	-232 -194
26.50 33.58 40.52	223.0 224.5	69	9.74 5.40	219 190	.0	60	82.3 79.3 78.6	- 182 - 230	20 10	64.5 46.5	-140 - 71
						Ampola and	Rima	tori.1871.	1896		
Methyla	miline (C,	+ (M ₉ H,	Methyl		1 1005)	l			, —————		
Grossman	n and Landa	u,1910				# %		f.t.	* 		f.t.
g/100cc			(α)			0 0.43 1.17		+1.96 1.33 0.56	6.4 8.0	2	-1.66 -1.98
<i>y</i> 100 00	red yell	ow gree		e dari ie blu		2.19 3.40 4.51 5.44		-0.16 -0.74 -1.125 -1.40	10.3. 14.76 20.96 31.1	6 0	-2.43 -3.02 -3.60 -4.405
49.438	-6.47 -8,	20°		02 -11	93 -12.74						
24.719 12.3595	-9.22 -11. -10.92 -13. -13.35 -16. -14.75 -17.	49 -12.9 92 -17.0	5 -14. 7 -19.	73 -15.5 93 -19.5	99 - 99 -						
						<u> </u>					

Dimethyla	niline (C	₈ H ₁ ,N)	+ Isobu	tyl Alcol	hol ₄ ll ₁₀ 0)	Dimethylani	line (C ₈ H ₁₁ N	l) + Capryl	Alcohol (C ₈ H ₁₈ O)	
Ampola and	l Rimatori	,1896,189	97			Ampola and R	imatori,1887	,1896		
%	f.	t.	Я	f	.t.	×	f.t.	%	f.t.	
0 0.45 1.18 1.91 2.61 3.48 5.07 7.39	+1.: 1.: 1.: 0.: 0.: 0.: -0.: -0.: -1.:	50 14 76 14 02 14	10.74 13.74 17.03 20.94 25.05 28.34 31.41	-2 -2 -3 -3 -4	74 2.28 2.74 3.33 3.82 3.16 4.48	0 .46 1.30 2.59 4.00 5.53 7.51	+1.96 1.70 1.305 0.82 0.30 -0.21 -0.86	9.68 12.74 18.63 23.53 27.65 30.62	-1.50 -2.36 -4.06 -5.43 -6.585 -7.62	
Dimethyl	laniline (cbinol C ₄ H ₁₀ O)	Dimethylaniline ($C_8H_{11}N$) + Glycerol ($C_3H_80_8$) Parvatiker and McEwen,1924				
	f.t	· · · · · · · · · · · · · · · · · · ·	%	f	.t.	×	sat.t.	%	sat.t.	
0 0.34 0.95 1.90 2.98	+1.9 1.7 1.3 0.7 0.2	76 31 79	6.82 8.72 12.22 19.25 26.43	-1 -2 -3	.07 .56 .40 .74	7.60 14.0 31.98 41.46	197.5 245.0 282.0 286.0	49.94 64.32 78.29 90.82	287.0 354.0 273.0 218.5	
3.34	-0.5		31.93		.46	Dimethylanil	ine (C ₈ H ₁₁ N) + Glycero ether (l diethyl C ₇ H ₁₆ O ₃)	
Dimethylan + Alcohols	iline (C ₈	H ₁₁ N) (b.t.=1	94.05)		Ampola and R	imatori,1887,		,	
Lecat, 1949						%	f.t.	K	f.t.	
	2nd Comp			Az		0	+1.96	14.35	-1.905	
Name	Formula	b.t.	%	b.t.	Dt mix	0.50 1.20 2.23	1.76 1.52 1.17	17.36 20.25 28.03	-2.62 -3.29 -5.19	
Capryl alcohol	C8H180	195.2	49.5	191.75	-4.0 (50%)	2.92 4.72 6.65	0.93 0.35 -0.08	30.77 33.26 35.87	-6.06 -6.77 -7.48	
Glycol	$C_2H_6O_2$	197.4	33.5	1 7 5.85		8.87 11.55	-0.63 -1.28	38.05	-8.16	
Propylen glycol	$_{\rm g}0_{\rm g}$ He $_{\rm g}$	187.8	45	177.0		Dimethylani	line (C ₈ H ₁₁ N) + Methyl	Malata I	
Pinacol	C6H1402	174.35	60	169.5		Dimethy family	THE (CBILLIA	, Freethy I	(C ₆ H ₁₀ O ₅)	
Methoxy diglycol	C ₅ H ₁₂ O ₃	192.95	49	184.85	-0.7 (61%)	Grossmann and	d Landau, 1910			
Ethoxydi glycol	C ₆ H ₁₄ O ₃	201.9	10	193.0		g/100cc red	yellow gree	(α) en pale	dark viol.	
Linalool	$C_{10}H_{18}0$	198.6	15	193.9	-1.0	l .cu	JULION BIEL		blue	
Benzyl alcohol	C7H80	205.25	6.5	193.9	-1.0 (9%)	50.207 -5.9	20° 4 -7.23 -8.1		9.92 -10.36	
Ethanol amine	C2H7ON	170.8	55	163.5		25.1035 -5.83 12.5518 -5.74	26.97 -7.9	3 -9.12 - 5 -8.92 -	9.72 - 9.40 -	
Diethyl- ethanolami	C ₆ H _{1 5} ON ne	162.2	58	160.5				7 -10.37 -1	0.97 -11.77 1.17 -	

Dimethylanili	ine (C ₈ H ₁₁ N)	+ Ethyl Tar	trate (C _B H ₁₄ O ₆)	Ethylan	iline (C ₈ H ₁₁ N)(b.t.=	205.5) +	Alcohols
Patterson and	Stevenson, 191	2		Lecat,	1949				
					2nd Cor	mp.		Az	
t	đ	(a) D		Name	Formula	b.t.	Я	b.t.	of satx
16.4	9.4 % 0.9774	3.08		Octyl alcohol	С _в н _{1 в} 0	295.2	85	194.9	~4.3 (50%)
20 26.6 43	0.9744 0.9687 0.9548	4.20 5.63 7.76		Glycol	$C_2H_6O_2$	197.4	43	183.7	126.5
33.9 19.3	0.9625 0.975	6.58 3.72		Benzyl alcohol		205.25	50	202.8	-3.8
15.6	24.84 % 1.0100	4.564		Ethanol amine	C ₂ H ₇ ON	170.8	-	170.0	-
20 30.9 47.3 50.9	1.0061 0.9963 0.9816 0.9785	5.150 6.595 8.503 9,404		Ethy l	aniline	(C _B H ₁ , N)	+ Me	thyl Mala	te 1 C ₆ H ₁₀ O ₅)
	, see : Anili			Grossma	nn and	Landau, 1910			-6111 005)
Dimethylanili	ine (C ₈ H ₁₁ N)	+ Benzyl Al	cohol	g/100cc	<u></u>		(α)		
		-	(С ₇ Н ₈ О)		red	yellow gr	een	pale da blue bl	rk viol. ue
Ampola and Ri	matori,1896,18	97				_)°		
×	f.t.	Я	f.t.	50.093 25.0465 12.5233	-8.46 -10.78	-7.59 -9 -10.38 -12 -13.89 -16	.54 – .29 –	14.81 -15 18.77 -19	. 29 - . 56 -
0 0.69	+1.96 +1.60	11.95 14.75	-2.32 -3.10	5.047 2.5235	-14.27	-17.44 -20 -18.62 -22	.19 -	23.58 -25 25.76 -27	.74 -
1.85 3.94	+1.08 +0.22	18.00 21.58	-3.98 -5.02						
6.52 8.83	-0.68 -1.395	25.91 29.13	-6.26 -7.60	Diethy	laniline	e (C ₁₀ H ₁₅ N) + :	Isoamyl Al	lcohol (C ₅ H ₁₂ O)
				Drucke	r and K	assel,1911			
Dimethylanil	ine ($C_8H_{11}N$)	+ Benznyaro	I (C ₁₉ H ₁₂ U)		%	đ		η	··
Schmidlin and	Lang, 1912					74 50			
%	f.t.	%	f.t.	1	00	76.5° 0.765	;	951	
		·			90.02 70.00	0.7764 0.7995		784	
100 90	66 59.5	40 30	20 9.5	1 .	50.08 30.15	0.8218 0.8473		723 709	
80 70	53 46	19 10	-7 E.		10.07 0.0	0.8 74 1 0.8901		725 783	
60 50	38 30	ő	+2			0°			
				1	00	0.825	<u> </u>	8834	
					90.03 70.52	0.8363 0.8586	í	7564 5698	
				}	50.08 30.52	0.8834 0.9091		4519 3821	
					10.00	0.9307 0.9504		3600 3838	
			}						·

Diethylani	iline (C _{1 c}	H ₁₅ N)	+ Meth	yl Mala	te 1 C ₆ H ₁₀ O ₅))}		C7H9N) +	Ethyl A	lcohol	(C ₂ H ₆ O)
Grossmann a	and Landau.	1910				Hatem, 1	949 			·····	
g/100cc			(α)			mol %	18°	20°	d 25°	30°	35°
	ed yellow				k viol. e	0	0.9996	0.9980	0.9937	0.9896	0.9857
25.036 -4 12.518 -4 4.897 -3	5.19 -6.27 1.63 -5.95 1.15 -5.19 1.06 -4.70 1.45 -4.08	-6.55 -5.91 -5.31	-7.1 -5.9 -4.9	9 -7.63 1 -5.59 0 -4.29	3 - 9 - 9 -3.68	2.714 5.583 10.18 49.45 73.109 87.478 97.68 98.9 99.40	.9980 .9940 .9892 .9365 .8858 .8547 .8012 .7960	.9963 .9925 .9877 .9350 .8843 .8629 .7914 .7942 .7930	.9923 .9884 .9840 .9306 .8800 .8583 .7950 .7900	.9883 .9846 .9802 .9264 .8757 .8540 .7904 .7855 .7843	.9844 .9803 .9764 .9222 .8715 .8494 .7860 .7812
Alcohols	iline (C ₁	_o H ₁₅ N)	(b.t	.=217.05	;) +	mol %	18°	20°	™ 0 25°	30°	35°
Lecat,194	9 					0	1.5752	1.5738	1.5705	1.5679	1.5653
	2nd Comp.			Az		2.714 5.583 10.18	.5723 .5690	.5710 .5678	.5678 .5643	.5650 .5615	.5625 .5595
Name	Formula	b.t.	%	b.t.	Dt mix	49.45	.5638	.5620 .5047	.5594 .5010	.5572 .4884	.5556 .4865
Glycol	$C_2H_6O_2$	197.4	33	183.4	-	73.109 87.478 97.68	.4532 .4109 .3728	.4515 .4092 .3715	.4483	.4468 .4033	.4427 .4013
Ethoxy- diglycol	C ₆ H _{1 4} O ₃	201.9	85	200.5	-	98.9 99.40	.3680	.3665	.3638 .3635 .3618	.3665 .3617 .3598	.3645 .3602 .3584
Borneol	C ₁₀ H ₁₈ O		80	214.8	-		K			χ	
l-Terpineol	**	218.85		215.5	-4.2 (50%)	 	,, 	n 		~	
Menthol	C ₁₀ H ₂₀ 0	216.3					0	20° 4300)	-0.692	
Benzyl- alcohol	C7H80	205,25	72	204.2	-1.6 (70%)		0 2 4 6	4040 3860	 	_	
Phenyl- ethanol	C ₈ H ₁₀ O	219.4	40	213.95	-2.5 (50%)		8 20	3720 3680 2840		-0.710 -0.748	
Phenyl propanol	C ₉ H ₁₂ O	235,6	7	216.9	-0.5 (5%)		40 60 80	2060 1600 1340		-0.763 -0.742 -0.718	
Ethanol amine	C₂H ₇ OÑ	170.8	82	169.0		! 9	92 94 96	1230 1230 1220		- -0.723	
							8	1200 1200		-0.733 -0.743	
							141 /				
				:		0-101u		C7H9N)(D. τ.=20	10.35) +	Alcohols
						Lecat,	2nd Con	mp.		Az	
						Name	Formula	b.t	. %	b.t.	Dt. mix
						Octyl alcohol	C ₈ H ₁₈ O	195	.2 77	194.	7 -2.4 (50%)
						Glycol	C ₂ H ₆ O ₂	197	.4 42	.5 186.	45 -2.4 (56%)
						Linalool	C _{1 o} H _{1 8} 0	198	,6 70	198.	3 -1.5
						====				====	

o-Toluidine (C ₇ H ₉ N) + Glycerol (C ₃ H ₈ O ₅)	m-Toluidine ($C_7 II_9 N$) + Ethyl Alcohol ($C_2 II_6 O$)
Parvatiker and McEwen, 1924	Hatem, 1949
% sat.t % sat.t	mol % d
7.80 100 53.41 154.0 13.86 130 59.03 153.0 26.58 150 67.96 150.0	0 0.9923 0.9907 0.9982 0.9860 0.9715
36.72 154 79.04 137.0 47.47 154.4 87.58 99.2	3.25 .9902 .9880 .9832 .9780 .9737 7.072 .9872 .9851 .9811 .9752 .9706 11.835 .9823 .9798 .9752 .9702 .9654
o-Toluidine (C_7H_9N) + Methyl malate 1 ($C_6H_{10}O_5$)	46,15 ,9358 ,9343 ,9305 ,9273 ,9232 69,824 ,8899 ,8382 ,8833 ,8789 ,3745 87,63 ,8404 ,9383 ,8345 ,8305 ,8265 95,536 ,9002 ,7981 ,7962 ,7902 ,7865
Grossmann and Landau, 1910	97.54 .7963 .7944 .7905 .7863 .7822 99.395 .7935 .7920 .7875 .7835 .7798
g/100cc pale dark red yellow green blue blue viol.	mol % n _D 18° 20° 25° 30° 35°
20° 50.155 - 8.07 -10.37 -12.16 -14.55 -15.85 -17.15 25.0775 - 9.97 -12.48 -14.20 -17.35 -19.22 - 12.5388 -10.93 -13.24 -14.99 -18.10 -19.94 - 5.230 -12.62 -15.11 -17.21 -21.41 -23.33 -25.81 2.615 -13.00 -15.30 -17.59 -21.80 -23.71 -	0 1.5726 1.5711 1.5675 1.5644 1.5613 3.25 .5678 .5655 .5633 .5603 .5577 7.072 .5637 .5625 .5593 .5561 .5531 11.835 .5580 .5570 .5541 .5511 .5483 46.15 .5099 .5037 .5063 .5039 .5015 69.824 .4090 .4090 .4052 .4028 .4006 87.63 .4080 .4069 .4043 .4022 .4002
o-Toluidine ($C_7 H_9 N$) + Ethyl tartrate ($C_8 H_{14} O_6$)	95.536 .3715 .3706 .3655 .3670 .3654 97.54 .3670 .3660 .3637 .3615 .3602 99.395 .3631 .3620 .3599 .3592 .3570
Patterson and Stevenson, 1912	% п х
t d (a)	20°
10.93 % 12.6	0 3910 -0.664 5 3500 - 6 - -0.678 10 3210 - 20 2700 -0.687 40 2040 -0.695 60 1600 -0.698 80 1300 -0.700 90 1240 - 92 - -0.708 96 1200 -0.714 98 1200 -0.734
45.7 1.0228 25.65 58 1.0120 25.22	
50.3 % 14.9 1.1007 21.23 20 1.0960 21.09 34.6 1.0825 20.69 50.5 1.0677 20.38	m-Toluidine (C ₇ H ₉ N) + Glycol (C ₂ H ₆ O ₂) Lecat,1949
For 100 %, see Aniline **Ethyl tartrate	% b.t. Dt mix
	0 203.1 42 138.55 Az 50 - +2.5 100 197.4

κ -Toluidine (C_7H_9N) + Glycerol ($C_3H_8O_3$)	p-Toluidine (C ₇ H ₉ N) + Ethyl Alcohol (C ₂ H ₆ O)
a fortune (cyngh) - dryceror (cyngo y	Perkin, 1896
Parvatiker and McEwen, 1924	
higher higher	mol
% sat.t. % sat.t.	
16.77 89 46.90 120.2 20.77 102 54.32 119.5	66.7 0.9038 0.9000 0.8958 0.8916 100 - 0.7943
28.42 113.5 63.13 117.5	0.7740
35.50 119.4 82.29 88.5 41.32 120.5	mol % (a)mol
	mol % (α) ^{mol} Dmagn
% lowersat.t. % lower sat.t.	15°
16.38 66.6 68.60 9.2	0 16.347 65.7 21.023
33.96 92.2 78.32 14.2 37.14 93.0 81.28 16.8	Course 1002
51.20 93.3 86.01 23 59.01 91.8	Speyers, 1902
39.01 71.0	mol % f.t. mol % f.t.
m-Tolmidine (C_7H_9N) + Methyl Malate 1 ($C_6H_{10}O_5$)	79.28 0.0 49.10 22.1 66.12 11.7
Grossmann and Landau,1910	t d sat. sol. t d sat. sol.
g/100cc (α) red yellow green pale dark viol.	0.0 0.8884 28.4 0.9458 15.6 0.9168 40.6 0.9636
blue blue	Hatem, 1949
20°	1.6
50,078 -9.88 -12.38 -15.08 -18.47 -20.07 -21.47 25.039 -14.38 -19.57 -22.37 -27.56 -30.55 - 12.5125 -17.17 -21.81 -24.52 -30.19 -32.67 -	mol % d 18° 20° 25° 30° 35°
4.817 -19.31 -23.87 -27.61 -34.25 -37.78 -43.60	
2.4085 -19.93 -24.08 -28.23 -34.46 -38.20 -	23.63 0.8727 0.8706 0.8657 0.8620 0.8582 13.05 .8430 .8408 .8367 .8328 .8293
	5.66 .8157 .8115 .8090 .8051 .8012 0.57 .7945 .7945 .7880 .7840 .7801
m-Toluidine (C_7H_9N) + Ethyl Tartrate ($C_8H_{14}O_4$	
Totaldine (Syngh,) . Benyl lartrate (Cantago	mor %
Patterson and Stevenson,1912	18° 20° 25° 30° 35°
	23.63 1.4408 1.4387 1.4372 1.4351 1.4328
t d (α) _D	13.05 .4103 .4092 .4067 .4041 .4017 5.66 .3844 .3832 .3810 .3790 .3770
11.65 %	0.57 .3649 .3640 .3619 .3599 .3578
15.5 1.0154 49.47 20 1.0117 49.49 29.7 1.0033 48.60	% n x
43.2 0.9920 42.68	20°
24.964 % 16.3 1.0407 43.40	00.640
20 1.0376 42.40 32.9 1.0267 39.36	48 2050 -0.685 60 1700 -0.720
48 1.0140 36.38 64.3 1.0005 33.42	80 1400 -0.730 92 1260 -0.724
For 100 %, see : Aniline + Ethyl Tartrate	94 1240 - 96 1230 -
And A Maritime + Eduyr raitrate	98 1220 -0.743

p-Toluidine (C ₇ H ₉ N) + Ethyl Tartrate (C ₈ H ₁₄ O ₆)
Patterson and Stevenson,1912
t d (α) _D
24.925 % 20
Kremann and Wlk,1919
% f.t. E % f.t. E
0 43 - 51.6 93.2 - 13.2 39.9 - 54.0 98.1 36.2 13.2 39.9 - 54.4 98 - 24.7 37.2 - 57.3 103 - 28.5 40 36.2 61.5 109.1 36.2 36.5 62 36.2 66.6 117.4 - 38.9 69 - 71.8 125 - 42.0 75 36.2 76.1 131.1 - 43.4 78 - 80.9 136.3 - 45.2 82.2 36.2 86.0 143.3 - 45.9 84.1 36.2 89.8 147.2 - 48.8 89 36.2 94.8 154 - 48.8 89 36.1 - 100 159.2 -
200,2
p-Dimethyltoluidine (C ₉ H ₁₃ N)(b.t.=210.2) + Alcohols Lecat, 1949 2nd Comp. Az Name Formula b.t. \$ b.t.
Glycol C ₂ H ₆ O ₂ 197.4 47 182.0
Propylen C 3H802 187.8 60 178.0 glycol thoxy C6H1403 201.9 - 199.5 diglycol Benzyl C7H80 205.25 58 202.8 alcohol Benzyl C8H100 219.4 30 208.5 carbinol Ethanol C2H70N 170.8 75 169.0 amine

o-Dimetl + Alcoh	hylt ol uid ols	ine (C ₉ l	H ₁₈ N)(b.t.=185.	3)	m−Xy	lidine (C	₈ H _{1 1} N) + M	enthol (C ₁₀ H	200)
Lecat,					l.	Leca	it,1949			
	2nd Comp			Az					b. t.	
Name	Formula	b.t.	%	b.t.	Dt mix		······			
Heptyl alcohol	C7H160	176.15	82	175.5	-0.7 (90%)		0 30 100		214.0 213.5 Az 216.3	
Octyl alcohol	C8H180	195.2	20	184.8	-2.0	m-	xylidine	(C ₈ H ₁₁ N)	+ 2,4-xylenol	(C ₈ H ₁₀ O)
Iso octyl alcohol	C8H180	180.4	70	179.0	-2.2	Mor	gan and Pe	ttet,1935		
Glycol	$C_2H_6O_2$	197.4	23	169.3			%		4	<u> </u>
Propylen glycol	C ₃ H ₈ O ₂	187.8	37	174.0		Í		f.t.	%	f.t.
Butoxy glycol	C6H1402	171.15	88	170.95			100 90 84	20 10 5.5	48.5 40 30	36.3 34 25. 5
Methoxy diglycol	$C_5H_{12}O_3$	192.95	18	183.0			80 70 60	11 25.5 34	20 15 10	15 8
Benzyl alcohol	C7H80	205.25	7	185.2	-0.6 (5%)		50	³⁶ (1	+1) 0	2.5
Ethanol amine	C2H7ON	170.8	50	161.0		n -	xylidine (C ₈ H ₁ ,N) +	2,6-xylenol	(C ₈ H ₁₀ 0)
- Y 3:3	11 (C)		Clusel	/ C II 0		More	gan and Pet			<u> </u>
0-Ay110	iine (C ₈	n11N / T	diyeui	(C ₂ H ₆ O ₂	,					
Lecat,	1949					 	%	f.t.	%	f.t.
·	%		b.1	: .			100 90 80	45 40	50 40	22 20.5
	0		225.	.5 .0 Az			70 60	32 20 10.5	30 20	15.5 5.0
	100		197				50.2	21 /	10 1+1) 0	3 9.5
o-Xylio	line (C ₈	H ₁₁ N) +	Citron	ellol (C	₀ H ₂ ₀ 0)					
Lecat,	1949					m-	xylidine	(C ₈ H ₁₁ N) -	3,4-xylenol	$(C_8H_{10}O)$
	%		b. 1			Mor	gan and Pe	ttet,1935		
 	0		225				%	f.t.	K	f.t.
	60 100			.5 Az			100 90	63	50	18
			63				80 70	57 47 35	40 30 20	10.5
		H ₁₁ N) +	ulycol	(C ₂ H ₆ O ₂	,		66.6 60	35 16 24 (1+	20 10 1) 0	-12 0.5 10
Lecat,	1949		····							
	%		b.	t.						
	0 43 100		214 288 197	.0 .0 Az						
			17/							

m- xylidin	e (C ₈ H ₁ ,N)	+ 3,5-xyle	nol (C ₈ H ₁₀ O)	o-Phenylenediamir	ne (C ₆ H ₈ N ₂)	Erythritol (C ₄ H ₁₀ O ₄)	
Morgan and l	Pettet,1935			Pushin and Dezelic, 1932			
×	f.t.	%	f.t.	mol %	f.t.	E	
100 90 80 70 65 60 56	64.5 58 50 35.5 39 39.8 40.1	50 40 30 20 10 0	40 37.5 34.5 29 19.5 10.5	100 90 80 70 60 50 40 30 25 20	118 114.5 112 109 106.5 103.5 99.7 95 92 94	- 89 90 92 "	
Leithe, 192		·8 ^{II} 11N) +	Methyl Alcohol (CH ₄ 0)	0	102	_	
g	d 15		(α)); ⁵	o-Phenylenediamin		Benzhydro1 (C ₁₃ H ₁₂ 0)	
100	0.0561	100		Kremann and Draz	11, 1915		
30.49 13.89	0.9561 .8541 .8222 .8113	100 26.04 11.42	40.67 29.0 28.7	%%	f.t.	<u>E</u>	
o-Phenylend	diamine (C ₆ H, Wek,1919	6.60 ₈ N ₂) + Tr	imethylcarbinol (C _h H ₁₀ 0)	100 92.1 82.0 76.0 68.6 62.8 56.2 46.5 40.6 35.7 25.7	64.5 59 50 52 62.5 69 74.8 82.5 86 88.5 93.5	- 47 47 - - - - - 47	
100	f.t. 23		E	16.8 6.4 0.0	97 100.5 102.5	<u>-</u> -,	
100 94.5 90.6 85.7 82.6 79.7 73.4 71.9 64.9	23 27.2 36.2 45 51.5 53		21 21 21 - 21	m-Phenylenediamine		Trimethyl carbinol (C _u H ₁₀ 0)	
11 04.3	65 70.5 71	5	- -	%	f.t.	E	
59.5 59.4 51.5 43.4 30.0 17.5 7.8 0	51. 53. 64 65 70.5 70.5 71 74 (73.5 76.5 80 84 89 96.1 101.1	(*) 5 1 =======	21 - 21	100 92.3 84.7 80.9 75.8 63.9 64.1 58.8 54.7 50.6 46.2 41.4 39.6 34.2 30.4 24.3 19.2 15.3 9.5 5.3	23 21.5 32.8 37.3 40.5 42.5 44.5 44.5 44.9 45.5 46 46.2 46.8 47.2 48.5 49.9 51.2 53.8 56.5	21.5	

	M-PHEN'	YLENEDIAMINE						
amine (C ₆ H ₈	N ₂) + Tri	phenylcarbinol (C ₁₉ H ₁₆ O)						
and Muller,	1921							
f.t.	%	f.t.						
159.5 155.0 151.0 146.0 139.0 134.0 128.5 122.5	43.8 40.9 36.8 32.5 24.7 18.5 14.2	105.5 104.0 100.0 95.5 87.0 78.0 70.0 59.6						
111.5	0	$\substack{61.0 \\ 62.0}$						
p-Phenylenediamine ($C_6H_8N_2$) + Erythritol ($C_4H_{10}O_4$) Pushin and Dezelic, 1932								
f.t		E						
114 110 107 103 108 114	.5 .5	103 102 103 103 103 102 90 77						
نوید امیردانیه ایری کامل میش آمی آمی امی امی امی امی امی معنی امیر خوب خاص خاص امیر آمی امی امیر امی امی امی های شمیدانید شدن کامل شدن امیر امی امی امیر امیرانید امی	ہ کائی کی قبید کی میں ذکے میں کیدرسے اس بر کائی کمی کمی کی کی برائی کی کائی کی کائی کا کائی کائی کی کائی کی کائی کی کائی کی کائی کی کائی	در است دست دست آمان آثان جای آثان باشد کار در این دارد در این در این در این در این در این در این در این در این در است است است دادر این شر این در این در این در این در این در این در این در این در این در این در این در این در						
p-Phenylenediamine ($C_6 H_8 N_2$) + Menthol ($C_{10} H_{20} 0$)								
ezeli c , 1938								
f.t.	E	min.						
140 137.5 135 133 130.5 128.5 127 127 120 107 85.5 42	39 39 39 40 40 40 41 41	1.0 1.3 1.4 1.6 2.3						
	and Muller, f.t. 159.5 155.0 146.0 139.0 134.0 128.5 122.5 116.5 111.5 ine (C ₆ H ₈ N ₂ f.t 118 110 107 103 108 114 121 127 133 140 amine (C ₆ H ₈ ezelic, 1938 f.t. 140 137.5 135 133 130.5 128.5 127 120 107 85.5	amine (C ₆ H ₈ N ₂) + Trij and Muller, 1921 f.t.						

p-Phenylenediam	ine (C ₆ II ₈ N,	⊋) + Benzh	nydrol (C ₁₈ H ₁₈ O)					
Kremann and Drazil,1915								
%	f.t.		Е					
100 90.9	64.5 55		_					
87.7	60		-					
87.7 79.3 70.8	81.5 95		51 51					
62.4 57.2 48.3	104.5 109.5 116.5		_					
48.3	116.5		- - -					
36.7 26.4	124.5 131.5		_					
18.4	136		-					
10.8 0.0	140 147		_					
p-Phenylenediamin	ne (C ₆ H ₈ N ₂) + Triphe	nyl carbinol (C ₁₉ H ₁₆ 0)					
Kremann, Hohl and	Muller, 19	21						
%	f.t.	%	f.t.					
100	159.5	59.7	121.0					
96.3 93.1	156.0 151.0	55.1 51.0	122.5 124.0					
90.3	144 0	39.8	123.0					
93.1 90.3 86.1 82.8 79.3 74.0 70.2 66.5	141.0 137.5 133.0 127.0 121.0	34.4 32.4	$129.5 \\ 130.5$					
79.3 74.0	133.0	22.2	133.0 134.5 136.0					
70.2	121.0	12.2	12.2 136.0					
66.5 64.1	$\begin{array}{c} 118.0 \\ 119.0 \end{array}$	59.7 55.1 51.0 39.8 34.4 32.4 22.2 17.1 12.2 7.3	137.5 140.0					
Benzylethylamine	(C ₉ H ₁₃ N)	+ Glycerol	(C ₃ H ₈ O ₃)					
		-						
Parvatiker and Mc Ewen, 1924								
Я		sat.t.						
	lower		higher					
12.15	85		144					
17.50 23.90	71 63	253 277						
45.11 59.94	51	277 281						
75.52	50.1 50.0		281 274 267					
81.93 89.86	50.0 61		251 177					

Benzylaniline ($C_{13}H_{13}N$) + Benzoin ($C_{14}H_{12}O_2$)	Campetti,1914
Vanstone, 1909	t U
mol % f.t. E	08
0 34.2 - 2 2 34.3 34.2 34.4 34.2 35.84 99.8 32.4 32.4 46.78 106.6 32.4 32.4 32.4 34.5 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.4	56 0.4423 54 0.4385 16.67 % 50.90 0.4987 55.97 0.5017 42.47 %
100 132.7 -	50.7 0.5571 53.7 0.5849 56.0 0.6002
Benzylidenaniline ($C_{1.9}H_{1.1}N$) + Benzoin ($C_{1.4}H_{1.2}O_2$) Vanstone, 1909	100 % 40 0.6393 58 0.7024
vanstone, 1909	
mol % f.t. E	Diphenylamine ($C_{12}H_{11}N$) + Isopropyl Alcohol ($C_{2}H_{8}0$)
0 49.8 - 12.55 63.8 48.0	Deviatikh, Pamfilov and Starobinetz,1948
23.98 84.1 49.0 31.87 94.1 - 43.75 103.8 -	mol % f.t. σ ₁ - σ
54.97 110.0 - 69.22 118.4 - 80.84 124.0 - 87.21 129.3 - 100 133.0 -	0 52.8 - 10 47.7 0.6 20 44.2 2.1 30 41.4 4.5 40 39.0 7.0
Diphenylamine ($C_{12}H_{11}N$) + Ethyl Alcohol (C_2H_60)	50 36.9 10.1 60 34.9 13.9 70 33.1 15.7 80 29.3 17.7 90 18.7 19.3
mol % (p ₂ -p)/p ₂ .100	
98.567 1.45 96.368 3.617 93.666 5.688	Diphenylamine (C ₁₂ H ₁₁ N) + Butyl Alcohol (C _u H ₁₀ O) Deviatikh, Pamfilov and Starobinetz,1948
	mol % f.t. σ₁ - σ
Deviatikh, Pamfilov and Starobinetz,1948	60°
mol % f.t. $\sigma_1 - \sigma$	0 52.8 - 10 48.3 3.7 20 44.8 5.0 30 42.0 8.2 40 39.6 10.0
0 -52.8 - 10 -48.1 0.3 20 -44.9 0.8 30 -41.6 2.8 40 -40.5 5.0 50 -38.8 8.7 60 -37.1 11.2	40 39.6 10.0 50 37.2 11.3 60 34.9 12.8 70 31.2 14.2 80 24.4 15.3 90 10.3 16.7
50 -38.8 8.7 60 -37.1 11.2 70 -35.2 13.7 80 -32.1 14.9 90 -22.1 16.8	

Diphenylamine (C ₁₂ H ₁₁ N) + Isobutyl A	Alcohol (C _h H ₁₀ O)	Diphenylamir	ie (C ₁₂ H ₁₁	N) + Cety	yl Alcohol (C ₁₆ H ₃₄ 0)
Deviatikh, Pamfilov and Starobinetz,19	048	Giua and Cherchi,1919			
mol % f.t. σ ₁ .	- σ	%	f	.t.	Е
0 52.8	lcohol (C ₅ H ₁₂ O)	0 8.6 12.7 18.6 23.9 27.7 35.7 39.0 41.6 45.6 45.6 50.5 53.1 62.0 64.8 68.9 72.9	28662915796444444444444333388316	3.10 0.60 9.75 8.7 7.4 6.85 6.35 5.9 5.45 4.8 3.8 3.2 1.9 9.95 8.8 8.9	37.8 38 38 38 38 38 37.7 37.2 37.2 37.5
	- σ 50°	80.7 86.6 90.3 95.4	1 4 3 4 5 4	0.1 1.7 3 4.7	-
5.0 50.25 7.5 49.05 10 47.8 20 44.2 30 41.8 1 40 39.6 1 50 37.6 1 60 34.9 1 70 32.8 1	0.2 1.9 3.2 5.1 7.9 0.4 1.4 2.8 4.1 5.6 5.7 7.7	Diphenylami Patterson a t 16.3 20 22.1	ne (C _{1.2} H ₁	t	- hyl Tartrate (C ₈ H ₁ μ0 ₆) (α) D 10.91 11.01 11.45
Deviatikh, Pamfilov and Starobinetz,	1948				nzyl Alcohol (C7H80)
mol % f.t.	60°	Deviatikh,			
0 52.8 1 52.40 2 52.00 3 51.60 4 51.20 5 50.80 6 50.45 7 50.15 8 49.90 9 49.70 10 48.50 20 48.00	0.1 0.9 2.8 3.2 4.2 5.0 5.2 5.3 5.7 6.7 8.3	0 10 20 30 40 50 60 70 80	0	52.8 48.0 43.6 40.0 35.8 30.9 24.2 16.8 22	60° 0.1 0.2 0.3 0.55 0.95 1.7 2.7 3.3

METHYLDIPHENYLAMINE + ETHYL TARTRATE

Methyldiphenylamine ($C_{1.9}H_{1.9}N$) + Ethyl Tartrate ($C_{8}H_{1.\mu}O_{6}$)	1-Naphthylamine ($C_{10}H_{9}N$) + Trimethylcarbinol ($C_{u}H_{10}0$)				
Patterson and Stevenson,1912	Kremann and Wlk, 1919				
t (α) _D t (α) _D	% f.t. E % f.t. E				
69.67 % 13.9 6.06 30.5 7.28 20 6.35 40.5 8.02 22.9 6.39	100				
90.09 % 16.7 8.15 33.4 9.41 20 8.32 39 10.29 26.5 8.74	68.3 15.9 - " 23.0 29.5 - " 63.5 14 14 " 15.5 33 28.5 (2+1) 59.0 19 14 (1+2) 7.8 42.5 - " 56.8 21 - " 0 48.1 - " 54.1 22.6 - "				
Tetramethyl-p-Diamino-Triphenylmethylamine ($C_{29}H_{27}N_{8}$) + Tetramethyl-p-Diamino-Triphenylcarbinol ($C_{29}H_{26}0N_{2}$) Grimm, Gunther and Tittus, 1931	l-Naphthylamine ($C_{10}H_{9}N$) + Triphenylcarbinol ($C_{19}H_{16}0$) Kremann and Wlk, 1919				
	% f.t. E % f.t. E				
0 110 109 122 119 10 114 110 124 123 20 117 111 126 123.5 30 120 113.5 128 123.5 40 123.5 115 - 123.5 50 126 118 - 123 60 128 120 134 123 70 130 124 135.5 123.5 80 133.5 127 136 126.5	100 159.2 - 51.0 90.5 - 93.0 152 - 38.5 58.1 38 88.4 146.5 - 36.1 48 38 83.4 140 - 29.5 40 38 (6+1) 78.5 134.1 - 27.0 40.7 37 7 70.5 124 - 20.3 41.2 37 7 63.5 113 16.4 40.5 37 7 30.4 107.5 - 11.2 39.2 37 7 55.4 99.2 38 5.2 37 37 7 51.7 90.5 - 0 48.1				
90 135 130.5 137.5 130.5 100 137 134.5 138 136	l-Naphthylamine ($C_{10}H_{9}N$) + Ethyl alcohol ($C_{2}H_{6}0$)				
Aniline-1-phenylethane (C _{1 k} H ₁₅ N) + Ethyl Alcohol (C ₂ H ₆ O)	Campetti, 1914				
Descamps, 1924	t U				
5893 Å ^(α) 50 4358 Å	0 % 51.7 0.4736 54.7 0.4774				
5.07 -16.35 -17.13 19.96 -13.94 -12.50 39.47 -10.56 - 5.99 66.13 - 6.14 + 2.45 83.43 - 3.20 + 8.59 100 - 0.12 +14.87	13.11 % 47.8				
	46.45 0.5989 49.00 0.6096 52.02 0.6111				
	40 0.6396 58 0.7024				

1 -Napht	ylamine (C _{1 o} H ₉ N) + + B	enzhydr	ol C ₁₃ H ₁₂ O)					
Kremann and Drazil, 1916						2-Naphthylamine ($C_{10}H_{9}N$) + Triphenylcarbinol ($C_{19}H_{16}0$)				
	% f.t. E						Kremann and Wik, 1919			
	100		4 5				%	f.t.		E
	100 64.5 93.4 60.5 86.2 56.5 77.7 51 68.3 44 61.6 38 55.0 32.4 51.5 29.5 39.7 19 33.9 19 21.5 31.5 10.1 41.		- - - - 16 16 16			0 4.7 10.0 11.3 14.7 17.1 20.4 22.4 26.5 31.2 32.2 37.8 42.1	109 107 105 104.5 101.9 101 99.6 99.1 97.1 95.1 94.3 (2+1) 91.8	- - - - - - - - - - - - - - - - - - -		
2-Naph	2-Naphtylamine (C ₁₀ H ₉ N) + Tri			rimethy	lcarbinol (C ₄ H ₁₀ 0)		45.8 48.5 49.2 51.0 51.5	92	7 (2+1) B (2+1)	91.8 - 91.8
Kreman	Kremann and Wlk, 1919						53.6 53.8	92 91.	8 (2+1)	91.8
K	f.t.	Е	%	f.t.	Е	_	58.1 58.8	92.	9	91.8
stable							$62.1 \\ 67.1 \\ 71.6$	100.9 111 119.9		- - -
0 10.1 11.0 17.5 20.1 25.5 27.1 32.8	109 102.7 102.5 98.5 95.5 94.9 95	102.7 95.5 45.9 90 95.5 102.5 " 46.3 90.1 75.5 98.5 " 46.4 89.8 89.8 95 " 49.5 91.5 95.5 95.5 " 50.1 92 75.5 94.9 " 57.0 89.8 "	89.8 95.5 75.5 "		71.6 75.9 83.6 88.6 95.5 100	126 137 144. 154	126 137 144.2			
33.6 34.7 37.8 38.3 42.0 42.2	95 94 93.8 93.7 92.7 92.1	89.8 95.5 " 89.8 95.5	61.4 63.0 67.5 70.8 100	84 80.5 76 70 23	75.5 95.5 " 75.5			ne (C _{1 o} H ₉ N) + Benzh	ydrol (C ₁₃ H ₁₂ O)
50.5 55.4	91.5 90.5	18	83.1 85.8	56.2 52	18	%		f.t.	% 	f.t.
59.7 62.9 66.7 71.4 76.4 78.1 80.2 metastab	84.9 88.9 76 70 65.2 63 61	11 11 11 11 11 11	84.6 89.2 90.5 93.8 95.5	50 47 44 29.5 20.5 23	" - 18	0. 13. 21. 28. 34. 40. 45.	8 9 5 5 2	110 104 100.5 96.0 93 88.8 86 81.5	59.4 65.2 71.4 79.1 86.4 93.8 100	76 68 61 51 56.5 61 64.5
47.3 49.1	88 84.5	18	$62.9 \\ 65.9$	74.8 73	18					هند چند جند الموا
52.3 57.8	81.5 75.5	18+1) (1	71.4	69.3	0					

0/6	
Pyrroline (C _u H ₇ N) + Propyl Alcohol (C _s H ₈ O)	Methylpyrrole (C_5H_7N) + Butyl alcohol ($C_4H_{1.0}0$)
	Lecat, 1949
Lecat, 1949	\$ b.t.
% b.t.	0 112.8 - 112.2 Az
0 90.0	100 117.8
- 100 97.2	
	Methylpyrrole (C ₅ H ₇ N) + Isobutyl alcohol (C ₄ H ₁₀ 0)
Pyrrole (C_4H_5N) + Ethyl Alcohol (C_2H_60)	Lecat, 1949
Dezelicz and Belia,1938	\$ b.t.
mol % d n	0 112.8 - 107.5 Az 100 108.0
25° 0 0.9419 1215	
20 9147 1001 40 8843 939 60 8572 940	Ethylpyrrole (C_6H_9N) + Isoamyl Alcohol ($C_5H_{1.2}O$)
60 8572 940 80 8333 981 100 7859 1140	Lecat, 1949
	% b.t.
Hatem, 1949	0 130.4
% X % X	- 129.0 Az 100 131.9
18°	Pyridine (C ₅ H ₅ N) + Methyl Alcohol (CH _u O)
100 -0.743 40 -0.742 80 -0.728 20 -0.730 60 -0.742 0 -0.710	Timofeev,1905
	% U % U
Pyrrole (C_kH_5N) + Isoamyl Alcohol ($C_5H_{12}O$)	10° .405 .74.4 0.609
Lecat,1949	19.2 0.460 100 0.600
% b.t.	% Q dil Initial Final (By mole alcohol)
0 130.0 79 129.4 Az 100 131.9	0 4.8 +537
100 131.9	9.3 +477 9.3 12.9 +441
	12.9 16.4 +394 16.4 19.7 +366
	(by mole pyridine)
	100 94.3 +984
	94.3 89.1 +935 89.1 83.4 +867 83.4 79.4 +902
	83.4 79.4 +803 79.4 74.1 +742

Pyridine (C ₅ H ₅ N) + Ethyl	Alcohol (C ₂	H ₆ 0)	Hatem,19	949			
Blackburn and Kipling, 1953	(fig)			%	η	Я	'n
mol % p;	p ₂	p				20°	
0 16 20 20 12 28 11 40 9 60 7 80 3 100 -	° -	16 21 22 26 32 38 44	10 20 30 40 50)))	940 890 840 800 830 980	60 70 80 90 100	940 1010 1070 1130 1200
Dunstan, Thole and Hunt,	190 7		Dunstar	, Thole	and Hun	t,1907	
% d	%	đ	;	% 	ŋ	%	η
25' 100 0.79037 70.08 0.84317 50.03 0.88449	33.93 20.04	0.92418 0.94564 0.97832	100 70 5 0	.08	1153.2 1034.0 959.1	33.93 20.04	879.2 877.3 877.5
Holmes, 1918			Hatem,1	949			
% d	Я	đ	mol %	18°	20°	ⁿ D 25°	30° 35°
15.5° 0 0.9871 10.48 0.9642 25.92 0.9319	45.61 0 100 0	.8931 .7932	4.88 6.72 17.139 41.50	1.5120 5070 5050 4934 4635	1.5106 5060 5040 4903 4624	5028 5008 4898 4602	.5043 1.5014 4996 4963 4978 4848 4868 4840 4578 4554
Hatem, 1949 mol % 18° 20° d	25° 30°	35°	65,787 81,09 90.04 96,363 98,04	4292 3961 3853 3704 3668	4280 3948 3842 3694 3659	4254 3923 3820 36 7 2 3640	4230 4206 3897 3871 3798 3774 3652 3632 3620 3598
0 0.9846 0.9825 0. 4.88 9794 9773	9775 0.9730 9723 9680 9698 9654	0.9688 9641 9614	×	······································	x	%	X
6.72 9765 9745 17.139 9628 9607 41.50 9243 9223 65.787 8803 8787 81.09 8353 8334 90.04 8220 8202 96.363 8024 8008 98.04 7919 7901	9598 9514 9176 9137 8738 8694 8290 8250 8165 8128 7968 7930 7860 7822	9475 9105 8657 8214 8095 7890 7789	0 10 20 30 40 50		20 -0.597 -0.633 -0.648 -0.656 -0.660	60 70 80 90 100	-0.670 -0.680 -0.691 -0.711 -0.743
Griffiths,1952			Hatem, 19	951 (fig	g)		
% d	% 	d			χ	<i>a</i>	· · · · · · · · · · · · · · · · · · ·
25° 100 0.78508 89.90 0.30442 79.07 0.82751 70.33 0.84709 58.22 0.87210 49.94 0.88807	37.97 30.89 19.93 11.22	0.91182 0.92903 0.94426 0.95953 0.97800	0 20 40 60		-0.807 2 -0.781 -0.761 -0.749	% 0° 80 88 100	-0.738 -0.734 -0.740

PYRIDINE + PROPYL ALCOHOL

Kastha, 1956	V		_ Lecat,1949
Absorption sp	ectrum at -180°		% b.t. Dt mix
Timofeev,1905			0 115.4
%	U	% U	66 0.7 71 118.7 100 117.8
0 8	0.405 1 0.424 10	5.5 0.429 0.5933	Pyridine (C_5H_5N) + Isobutyl Alcohol (C_0H_{100})
initial	% final	Q dil (by molealcohol)	Kreglewski,1954
0 1.85 3.3 7.6	1.85 3.3 7.6 11.4	+131 +132 +132 +147	wt % mol % crit.t.
11.4 0 4.9	15.1 4.9 8.26	+140 +115 +121 (by mole pyridine)	
100 91.6	91.6 85.0	+465 +356	69.7 71.1 297.40 96.4 96.6 279.65 100 100 276.70
85.0 62.1	78.7 58.3	+286 +122	Pyridine (C_5H_5N) + Tert. Butyl Alcohol ($C_4H_{10}0$)
Pyridine (C ₅ Timofeev,1905		Alcohol (C ₃ H ₈ O)	Prentiss,1929
initial	% final	0 dil (by mole alcohol)	mol % d mol % d
0 5.6 24.3	5.6 12.0 27.8	+ 40 + 50.9 + 69.4	33 0.904 67 0.840 33 0.903 67 0.841
Pyridine (C ₅ Kreglewski,19		yl Alcohol (C ₃ H ₈ O)	Pyridine (C_5H_5N) + Isoamyl Alcohol ($C_5H_{12}O$)
1/2	mo1%	crit.t.	Kreglewski,1954
0	0	344.77	wt % mol % crit.t.
9,4 18,2 60,8 88,5 89,5 98,5 100	67.1 5 91.0 5 91.8	322.70 275.05 245.05 244.50	0 0 344.77 5.6 5.1 342.70 23.9 22.0 335.30 46.2 43.5 326.60 73.8 71.1 316.55 95.7 95.3 307.35 100 100 306.05
Pyridine (C. Prentiss, 1929		lcohol (C ₄ H ₁₀ O)	Pyridine (C_5H_5N) + 3-Pentanol ($C_5H_{12}0$)
mol %	p m	ol % p	Lecat, 1949
20.1 20.1 22.5	20.5	50 19.5 80 16.5 80.5 16.0	0 115.4 55 117.4 Az

Pyridine (C_5H_5N) + Methyl Malate 1 ($C_6H_{10}O_5$)	Pyridin	$e (C_5H_5N)$	+ Ethyl Tarti	rate (C ₈ H ₁₄ O ₆)
Grossmann and Landau,1910	Patters	on,1916		
g/100cc (α) red yellow green pale dark viol. blue blue	t	đ	t	đ
blue blue	11	19.263 %		100 %
20° 50.600 -19.07 -23.12 -28.46 -36.07 -39.82 -42.09 25.300 -20.36 -24.90 -31.41 -39.13 -42.89 - 12.650 -22.69 -27.83 -34.78 -41.34 -45.14 - 4.972 -23.93 -28.36 -36.00 -42.44 -49.48 -54.30 2.486 -26.15 -30.57 -38.21 -45.05 -52.70	0.0 13.8 15.7 43.6 58.6 66.3 91.6 100.0	1.027 1.026 0.998 0.987 0.974	77 37.2 62 46.8 81 58.3 78 68.1 42 76.2 76 99.4	2 1.1878 3 1.1783 3 1.1665 1 1.1566 2 1.1484
Pyridine (C_5H_5N) + Methyl Tartrate ($C_6H_{10}O_6$)			(α)	
Yen ki Meng,1936	t	6708 Å	6234.3 Å	5769 Å
t d (α)yellow (α)green 19.144 % 3 1.0580 43.79 48.90 18.4 1.0446 39.72 44.12	0.0 15.7 58.6 100.0	34.74 32.26 26.38 21.99	19.263 % 39.50 36.63 29.90 25.185	46.75 43.23 35.03 29.50
29 1.0392 36.70 40.84 39 1.0278 34.68 38.15 49.7 1.0194 32.10 35.37 60 1.0110 29.92 33.15 70 1.0026 27.99 30.98	t	5460.7 Å	4959.7 Å	4358.3 Å
80 0.9941 26.37 28.87	0.0 15.7 58.6 100.0	52,06 48,11 38,704 32,63	19.263 % 62.48 57.63 45.89 38.41	78.63 72.06 59.90 46.51
Lowry and Abram, 1915	t	6708 Å	6232 Å	5769 Å
w,1. (α) 20g/100cc 100 %			100 %	
20° 6438 +30,48 +2,65 5893 36,32 2,22 5782 37,43 -	0.0 15.6 59.6 115	5.17 6.64 9.57 11.51	5.42 7.03 10.47 12.80	5.35 7.33 11.74 14.37
5780 37, 44 2.05 5700 38, 43 - 5461 41, 60 +1, 28 5218 45, 23 "	t	5460.7 Å	4959.7 Å	4358 Å
5153 46,16 " 5105 46.82 " 5086 47,15 -0.39 4800 52.01 -2.47	0.0 15.6 59.6 115	4.99 7.26 12.06 15.37	100 % 3.31 6.18 12.35 16.77	-3.10 +1.13 9.95 16.46

Pyridine (C_5H_5N) + Propyl tartrate ($C_{10}H_{18}O_6$)	2,4,6-Collidine ($C_8H_{11}N$) + Glycol ($C_2H_6O_8$)
Holty,1905	
	Kurtyka,1956
	Az = 9.7 % (17.4 mol. %) 170.50°
26° 100 1.1266 12.73	Quinoline (C_0H_2N) + Ethyl Alcohol (C_2H_4O)
95 1.1185 16.86 90 1.1141 20.26	
95 1.1185 16.86 90 1.1141 20.26 75 1.0961 31.04 50 1.0555 40.66 25 1.0130 47.76 20 1.0032 47.69	Hatem, 1949
15 0.9967 47.99	≸ η X
5 0.9790 48.99 2 0.9739 50.15	20° 0 3730 -0.670 10 3120 -
0.5 0.9716 51.81 0.25 0.9712 50.29 0.125 0.9709 50.10	10 3120 20 2650 -0.680 30 2260 -
0.145 0.9709 30.10	40 1960 -0.685 50 1770 -
Pyridine (C ₅ H ₅ N) + Levulose (C ₆ H ₁₂ O ₆)	60 1600 -0.688 70 1460 - 80 1360 -0.703
Holty, 1905	90 1250 - 100 1200 -0.743
% d (α) _D	% 18° 20° 25° 30° 35°
26° 0 0.9705 -	0 1.0968 1.0952 1.0913 1.0879 1.0845 11.22 0832 0813 0770 0734 0696
7.60 1.005 -36.82 12.61 1.0234 -39.47	14.96 0782 0763 0724 0691 0660 61.73 0.9748 0.9731 0.9690 0.9656 0.9623
18.49 1.0488 -45.44	85.17 8797 8780 8746 8706 8678 97.79 9071 8051 8010 7971 7944
1-Picoline (C ₆ H ₇ N) + Isoamyl alcohol (C ₅ H ₁₂ O)	99.112 7971 7956 7919 7882 7855 99.542 7944 7928 7890 7856 7830
Lecat,1949	100 7943 7901 7861 7829 7775
% b.t.	% 18° 20° 25° 30° 35°
0 130.7 - 132,5 Az	0 1.6294 1.6280 1.6252 1.6226 1.6203 11.22 6165 6151 6115 6085 6056
100 131,9	14.96 6111 6098 6064 6038 6012 61.73 5180 5163 5128 5098 5070 85.17 4362 4350 4324 4320 4282
	97.79 3750 3740 3716 3694 3684 98.60 3708 3698 3671 3646 3625
2,6-Lutidine (C ₇ H ₉ N) + Ethyl alcohol (C ₂ H ₆ O)	99.112 3680 3670 3647 3623 3602 99.542 3652 3642 3620 3598 3576 100 3634 3615 3596 3576 3556
Dunstan, Thole and Hunt,1909	Kernot and Pomilio, 1911
% d n	
25°	% п % п
100 0.79043 1153.6 90.03 0.80382 1149.9 80.12 0.81972 1164.3	25° 100 1078.6 31.02 2016.7
60.23 0.85145 1202.3 40.30 0.88029 1132.8	86.70 1092.0 24.31 2257.1 76.50 1273.0 14.43 2584.3 60.91 1400.9 7.91 2916.1
20.57 0.90743 1020.4 9.45 0.92101 968.6 0 0.93218 877.66	60.91 1400.9 7.91 2916.1 49.77 1640.5 0 3360.6 37.35 1877.2

Quinoline ((С ₉ Н ₇ N) (b.	t.=237.3) + A	lcohols	Lowry and Abr	am,1915		
Lecat, 1949				w.1,	21.5	g/100cc	100 %
2nd (Comp.	Az			······································	20°	7,1111
Name Form	ıla b.t.	% b.t.	Dt mix	6438 5893	3	.47 .56	+2.65 2.22
				5782 5780	3	1.26 1.19	2.05
Glycol C ₂ H ₆ (~	79.5 196.35	-	5700 5461 5218	+]	04 73 04	+1.28
Diglycol CuH1	0 ₈ 245.5	29 233.6	+5.8 (50%)	5153 5105	C	.58	w 11
Dipropylen glycol C ₆ H ₁₁	0 ₃ 229.2	72 228.0	-	5086 4800]	. 35 5. 24	-0.39 -2.47
Butoxy diglycol C ₈ H ₁₈	30 ₃ 231.2	56 229.5	-				
Methoxy triglycol C7H1	ο ₄ 245.25	22 235.55	-	Quinoline (C	₉ H ₇ N) + E1	hyl Tartra	te (C ₈ H ₁₄ 0 ₆)
				Patterson and	Mac Donald	1,1909	
Quinoline (C ₉ H ₇ N) + M	ethyl malate l	(C ₆ H _{1 O} O ₅)	t	đ	t	(α) _D
Grossmann ar	nd Landau,19	10			1.021	*	
g/100cc		(α)	_	26	1.090	26	16.88
red	yellow g		ark viol. lue	10.5	10.05		
		20°	·	19.5 22.5 27.0	1,109 1,107 1,103	17.7 20 26	23.45 22.9 21.55
49.929 -13.5 24.9645 -14.5	52 -17.93 -2 54 -18.23 -2	0.23 -24.94 -2 1.75 -26.08 -2	7.34 -29.04 8.52 -	99.0	1.044	47.5 85.5	18.38 16.13
4.872 -15.0	06 -18.75 -2 39 -20.11 -2	1.79 -26.12 -2: 2.58 -25.45 -2:	8.52 - 7.09 -29.15			114.5	16.38
2.436 -15.6	00 -20.53 -2	2.99 -25.45 -2	7.09 -	19.8	25,40 1,1293	% 16.4	28.26
				22.6 25.3	1.1268 1.1247	20. 26	27.3 25.89
Quinoline (C ₉ H ₇ N) + M	ethyl Tartrate	$(C_6H_{10}O_6)$	99.0	1.060	42 60.8	23. 23 20. 88
Yen Ki Heng,	1936					82.5 107	19.49 19.03
					49.98		
t .	đ	(α) Hg yellow	Hg green	20.7 27.2	1.1587 1.1527	17.2 20	29.29 28.6
	17,60	1 %	···	30.6	1.151	26 46.9 77	27.40 24.24
0 12	1.1499 1.1418	$\substack{\textbf{2.98}\\\textbf{1.81}}$	2.44 1.06			105 131	22.17 20.70 20.16
17 30	1.1384 1.1295	$\substack{1.51\\0.42}$	0.56 -0.48		75.10		#U, 1U
40 50	1.1227 1.1159	-0.18	-1.03 -1.35	20.3 28.0	1.181 1.174	20 21.3	21.7 21.56
61 69 73	1.1084 1.1027 1.1004	-0.78 -0.58	-1.55 -1.47			26 41 5	21.08
73 80	1.0955	-0.52 -0.46	-1.41 -1.35	For 100 %, see	: Aniline	+ Ethyl Ta	rtrate
				Patterson and	l Montgomer	ie,1909	
				19.75 vol %	Dv = 0		
					Dt = +	9.5	

Quinoline (C ₉ H ₇ N) + Isobutyl tartrate	Nicotine ($C_{10}H_{14}N_2$) + Methyl Alcohol (CH_{40})
(C ₁₂ H ₂₂ O ₆) Patterson, 1916	Winther,1907
t 18.0 38.95 69.55 99.55 151.0	4 d (α) _D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20° 0 1.00995 -163.85 18.767 0.97073 -155.74 34.889 .93523 -149.14 52.389 .89634 -143.17 74.787 .84703 -136.02 87.934 .81901 -132.6 93.969 .80639 -131.0 96.556 .80106 -130.5 100 .79383
t 0.0 18.0 39.35 69.75 99.5 144.2 (α) 73.72 62.56 52.79 42.99 37.24 33.16	100 .79383 -
λ = 5460.7 t 0.0 39.35 69.75 99.5 145.0	Gennari, 1896
(α) 83.36 59.45 48.15 41.87 36.66	% d
$\lambda = 4959.7$ $\lambda = 4358.3$	90.240 20° 0.81226 81.040 0.83358 0 1.01071
Quinaldine (C ₁₀ H ₉ N) + Diglycol (C ₄ H ₁₀ O ₃) Lecat,1949	β (α) red D green pale dark blue blue
% b.t.	90.24 - 98.23 -130.43 -167.67 -205.80 -248.60 81.04 - 99.46 -131.61 -170.67 -206.65 -266.10 0 -123.37 -162.84 -209.78 -250.71 -317.79
0 246.5 - 241.0 Az 100 245.5	
	Nicotine ($C_{10}H_{14}N_2$) + Ethyl Alcohol (C_2H_60) Landolt,1877
Quinaldine (C ₁₀ H ₉ N) + Methoxytriglycol (C ₇ H ₁₆ O ₄) Lecat,1949	% d n _D (a)
0 246.5 - 243.0 Az 100 245.25	20° 0 1.01101 1.52828 161.55 9.9055 0.98839 1.50994 158.65 25.0664 0.95358 1.48223 154.92 40.0655 0.92001 1.45589 151.78 54.9154 0.88747 1.43125 148.81 69.9732 0.85536 1.40693 145.42 85.0433 0.82506 1.38412 141.60 100 0.7957 1.36242
Coniine ($C_8H_{19}N$) + Ethyl Alcohol (C_2H_60)	Winther,1907
Zecchini,1893	% 00 d
% t (α) ₀	0° 10° 20° 30°
86.4134 24.4 8.12 81.1762 22.7 8.70 46.0118 26.0 9.98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
· .	

					1				
Dewar	and Jones	. 1908				a		α	
				, سيوي سو بيوات انوان شو انوان د د د	t	đ	5461 Å	4916	4359
	t	α	t	α					
	· · · · · · · · · · · · · · · · · · ·	21.2 g/	100cc		i		66.67 %		ı
	+20	-30.0	-90	-25.3	0	1 1/05	-52.60	-71.14 -72.04	-
	-50	-28.7	-120	-22.0	20.8 43.5	1.1425 1.1203	-53.52 -54.14	-72.04 -73.01	
	-70	-27.3			66	1.0979	-54.36	-72.91	-
	ہ کانو اسے سے سے سے سے سے ہے۔ واکی سے اسے اسے سے سے سے سے سے اسے سے سے واکس سے سے اس سے اسے سے سے سے سے سے سے	ن الله الله الدر الدر شي ذي التي التي سير بساء الدر الدر الدر الدر الدر الدر الدر الدر	**************************************		90	1.0745	-54.21	-	-
Nic	otine (C.	.H N 1 + P	ronvl Alcol	hol (C ₃ H ₈ O)	~			α	
N ₁ C	otine (c ₁	0111115)	Topji Aico.	(•38.)	t	đ	6716 Å	6234	5 7 90
.	100/						0/10 A		0,,0
nei	ne,1896						39.81 %		
					1 0	_	-67.56	-80.8	-97.37
	%	(α) D	Я	(α) D	20	1.0900	-67.94	-81.15	-98.22
	·		 		44.75 66	1.0670 1.0472	-68.63 -68. 2 8	-81.73 -81.65	-98.55 -98.23
	0	-164.00	85.93	- 147.35	89.5	1.0253	-69.36	-81.98	-98.43 -97.47
	11.45	160.76	90.35	- 146.35	 			 	
l	39.99 74.63	156.34 149.92	92.54 98.17	- 145.89 - 143.67	t	đ	_	α	ļ
			,,,,,,	ATU, U/]	u	5461 Å	4916	4359
==					 				
		:	_		Į.		39.81 %		
Nicot	ine (C ₁₀ H	$_{1\mu}N_{2}$) + Eth	yl tartrate	$e d (C_8 H_{14} O_6)$		7 0000	-112.8	-	- 1
J				000	20 44.75	1.0900 1.0670	-113.56 -113.76	-	_ 1
Patte	rson, Lamb	erton and Cu	nningham,	1939	66.73	1.0472	-113.60	_	-
					89.5	1.0253	-112.56	-	- 1
	t 5	461 Å		5461 Å	=======				
		100	1						
		100	•		Nicotin	e (C ₁₀ H ₁	4N2) + Ethy	l tartrate	r (C ₈ H _{1 4} O ₆)
	14.0 16.0	8.18 8.57	24.8 27.5	10.26 10.53	l _				
	20.0	9.45	36.0	11.62	Patters	on, Lambe	rton and Cu	nningham, 19	39
t	d	_	(â)		l t	d		α	
	_	6 7 16 Å	6234	5 79 0			6716 Å	6234	5790
							02 12 #		
ļ		92.12 %					92.12 %		
0		-1,18	-2.30	-3.97	0 18.8	1.1921	-102.8 -105.5	-121.6 -124.7	-144.1
22 44	1.19 89 1.16 7 5	-0.12	-1.00	-2.35	44.0	1.1676	-109.6	-129.8	-148.9 -155.0
66	1.1454	+0.73 +1.58	+0.24 +1.14	-0.90 +0.15	66.9	1,1443	-111.8	-133.8	-160.0
89.5	1.9215	+2.16	+1.82	+0.99	90.7	1,1202	-115.4	-136.8	-163.2
					I			~	
t	đ	0	(a)		t	d	5461 Å	α	4250
1		5461 Å	4916	4359	1		2401 7	4916	4359
					ļ ————————————————————————————————————		92.12 %		
		92.12 %			0	_	·	-110 2	20/ 0
22	1 1000	-5.84	-11.42	-24.36	18.8	1.1921	-167.0 -172.2	-218.3 -224.7	-306.8 -314.2
44	1.19 89 1.16 7 5	-4.07 -2.32	- 8.96 - 6.83	-20.86 -17.40	44.0	1.1676	-179.3	-233.2	-325.2
66	1.1454	-1.09	- 4.90	-17.40 -14.69	66.9 90.7	1.1443	-184.6	-240.1	-334.9
89.5	1.9215	-0.06	- 3.47	-12.29		1.1202	-188.5	-243.9	- 338.5
			(a)			4		α	
t	d	6716 Å			t	d	6716 Å	6234	5790
		6716 A	6234	5790			-720 A	0207	3790
		// /= 4			1		66.67 %		·
		66,67 %			0	_	-105.9	-126.7	_151 4
20.8	1.1425	-30.41	-36.71 -37.33	-44.79 -45.47	19.0	-	-îĭĭ.í	-131.2	-151.4 -156.7
43.5	1.1425	-31, 2 4 -31,41	-37.33 -37.87	-45.47 -46.17	II 29.2	1.1346	-111.1 -111.6	-133.2	-159.4
66	1.0979 1.0745	-31.65	-38.08	-46.35	54.2 86.3	$1.1093 \\ 1.0783$	-116.9 -119.9	-138.6	-164.0
90	1.0745	-31.64	-38.03	-46.22	~~.	0703	417.7	-141.4	-168.0
									ļ
			<u>,</u>		<u> </u>				

t	d	0	α	40.00	Nicotin	e (C ₁₀ H ₁₄	N ₂) + Isobu	ityl Tartrate	e d
		5461 Å	4916	4359	Patters	on, Lamber	ton and Cun	ningham, 193	H ₂₂ 0 ₆)
0 19.0 29.2 54.2 86.3	1.1346 1.1093 1.0783	66.67 % -175.1 -180.9 -183.8 -189.9	-228.8 -236.1 -239.4 -247.1	-320.0 -330.2 -334.9 -344.4	t	đ	6716 Å	α 6234	5 79 0
86.3	1.0783	-194.3	-253.4	-352,6			39.800 %		
t	đ	6716 Å	6234	5790	0 18.4 42.4 66.5	1.0484 1.0275 1.0061	-63.30 -64.23 -64.73 -64.93	-74.93 -75.88 -76.68 -76.83	-90.55 -91.68 -92.40 -92.38
		39.80 %		143.0	90.7	0.9842	-64.55	-76.25	-92.08
0 23.0 44.8 67.4 90.2	1.0869 1.0669 1.0461 1.0253) -119,4 l -121,1	-135.0 -138.8 -141.3 -143.3 -144.4	-161.2 -165.5 -168.7 -170.9 -172.3	t	đ	5461 Å	α 4916	4359
	a		α	******			39,800 €		
t	đ	5461 Å	4916	4359	0 18.4 42.4 66.5 90.7	1.0484 1.0275 1.0061	-104.85 -106.18 -107.05 -107.13 -106.38	-137.43 -139.08 -138.90 -139.65	-197.33 -199.15 -199.40 -199.25
0	-	•	-242.3	-340.8	90.7	0.9842	-106.38	-138.28	-197.33
23.0 44.8 67.4 90.2	1.086 1.066 1.046 1.025	9 -194.8 1 -197.2	-242.3 -247.9 -252.9 -255.0 -254.2	-348.6 -355.2 -358.1 -360.7	Nicotine	(C _{1 O} H _{1 4} N	y) + Isobu	tyl tartrate	
=====					Patterso	n. Lamhert	on and Cunni		2H22O6)
Nicotin	e (C. H.	цN ₂) + Ethy	l macatartra	+0					
		erton and Cun		$(C_8H_{14}O_6)$	t	đ	6716 Å	α 6 234	5790
t	d	6716 Å	α 6234	5790	0	_	39.799 % -87.70	-103.25	-122.93
0 17.8	-	39.803 9 -113.6	-134.0	-160.3	21.2 44.8 66.5 89.3	1.0473 1.0258 1.0061 0.9862	-87.23 -86.50 -85.13 -83.48	-102.85 -101.85 -100.15 - 98.00	-122.40 -121.03 -119.20 -116.75
17.8 20.5 43.4 66.1 89.9	1.0928 1.072 1.0516 1.029	3 -117.6 6 -119.4	-137.0 -139.5 -141.3 -142.9	-163.4 -166.8 -168.8 -170.6	t	đ	5461 Å	a 4916	4359
t	đ		α				39,799 %		
		5461 Å	4916	4359	0	-	-141.45	-181.45	-251,68
		39,803		220.0	21.2 44.8 66.5	1.0473 1.0258 1.0061	-140.85 -139.25 -137.13	-181.45 -179.53 -178.38 -176.80	-250.03 -247.58 -243.90
0 17.8 20.5	1 003	-185.3 -188.5	-240.1 -244.1	-338.8	89.3	0.9862	-134.35	-171.68	-239.65
43.4	1.092 1.072 1.051	3 -192, 3	-249.6	-345.0 -350.0					
66.1 89.9	1.029		-252.0 -253.7	-354.7 -357.4					
					-				
Ti .					1				

A	Nicotine ($C_{10}H_{14}N_2$) + Isobutyl tartrate r. ($C_{12}H_{22}O_6$) Patterson, Lamberton and Cunningham, 1939					_	e (C ₆ H ₈ N ₂		yl Mala (C,	te 1 6H ₁₀ O ₅)
t	đ	6716 Å	α 6234	5790	g/100cc	red ye	llow gre	(α) en pale blue	dark blue	viol.
		39.8 %					20°			
0 20.6 46.0 65.2 86.2	1.0470 1.0245 1.0071 0.9885	-117.6 -120.2 -122.3 -122.8 -124.0	-139.1 -141.9 -144.8 -145.9 -146.7	-166.1 -169.2 -172.9 -174.4 -175.4	25.0675 12.5338 4.857	-13.60 -1 -14.68 -1 -16.68 -2	3.56 -16. 7.11 -20. 8.19 -21. 0.18 -23. 8.53 -21.	23 -22.82 86 -26.17 68 -27 79	-24.41 -28.16 -29.65	-
t	đ	5461 Å	α 4916	4359						
<u> </u>					Hydra	zobenzene	(C ₁₂ H ₁₂	N ₂) + Be	nzoin	
0 20.6	-	39.8 % -191.9	-249.4	-350.3	Vanste	one,1913			(611	,Η ₁₂ 0 ₂)
46.0 65.2 86.2	1.0470 1.0245 1.0071 0.9885	-196.0 -199.5 -201.4 -202.3	-253.9 -258.4 -260.3	-357.2 -364.0 -366.2	%	f.t.	Е	Я	f.t.	E
========		- 202.3	-261.9	-367.5	100	133.0		46.55	100.4	98.4
		N ₂) + Isobu	(0	$^{12}H_{22}O_{6}$)	95.57 77.44 59.28	130.6 122.1 110.8	127.0 98.4 98.4	35.61 16.93 0	100.3 116.0 127.2	98.4 98.4
Patterso	n, Lamber	ton and Cunni	ngham, 1939)						
t	đ	6716 Å	α 6234	5790			₁₂ H ₁₀ N ₂)	+ Ethyl	Alcohol	(C ₂ H ₆ O)
I		39.804 %			Innes	,1918			··-	
0 18.5 41.0 65.8 89.3	1.0518 1.0325 1.0107 0.9902	-117.6 -119.8 -121.2 -122.5 -123.9	-139.1 -140.8 -143.1 -145.1 -145.9	-166.2 -168.9 -170.9 -173.2 -174.3		100	671.5	75° 42.8	6	p 02.7
t	đ	5461 Å	α 4916	4359	Į.	91.91 84.2 75.4 65 54	658.9 647.9 636.8 625.9 614.5	36.8 27.7 19.9 14.1	5 5	98.0 82.5 61.7 35.2
		39.804 %								
0 18.5 41.0 65.8 89.3	1.0518 1.0325 1.0107 0.9902	-191.9 -194.6 -197.4 -199.9 -201.2	-248.8 -252.4 -256.0 -257.9 -259.6	-351.0 -354.8 -359.7 -363.1 -364.5						
=======================================	و به الحراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق و مراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المراق المرا									
					344					

088		
Azobenzene (C ₁₂ H ₁₀ N ₂) + Benzoii	n (C _{1 4} H ₁₂ O ₂)	Jouko v sky ,1933
Vanstoge,1913		mol% n _{Hey} mol% n _{Hey}
% f.t. E %	f.t. E	16° 100 1.33023 42.8 1.34175 87.4 1.33345 30.1 1.34317
90.79 127.4 121.0 17.13 68 120.0 - 18.03 57.28 115.6 - 6.80 47.04 110.5 63.8 0	96.0 63.8 85.8 63.8 63.8 63.8 66.2	64.3 1.33845 0 1.34595 54.9 1.34009 Popov,1926
Acetonitrile (C_2H_3N) + Methyl	Alcohol (CH _b O)	% Q mix (by mole nitrile)
Joukovski,1933		93.3 -903 87.4 -798 82.9 -741
% p p ₁	p ₂	82.9 -741 78.25 -699 73.3 -599
100 160.2 0	160.2	Acetonitrile(C_2H_3N) + Ethyl Alcohol (C_2H_60)
88 174 28 80 179.8 41.3 63.7 184.0 64 61.8 182.3 65.6 40 175 86	146.0 138.5 120.0 116.7	Vierk, 1950
28.7 165.6 89 26 162 89.5 15 147 97.0	89.0 76.2 73.0 50.0	mo1 % p 20° 30° 40°
110.0	0 ol % V	100 44.1 78.0 133.8 89 67.2 106.3 156.4 72 75.3 122.1 177.8 57 81.3 126.9 189.9 41 81.9 130.3 200.9 28 81.9 131.0 201.8 18 80.8 129.6 200.1 8 76.5 123.6 188.1
30° 26 45.3 63.7 40 51.0 88	65.8 83.9	41 81.9 130.3 200.9 28 81.9 131.0 201.8 18 80.8 129.6 200.1 8 76.5 123.6 188.1 0 70.9 111.8 170.8
Vincent and Delachanal, 1880		Vierk,1950
% b.t. d 0° %	b.t. d 0°	mol % p p ₁ p ₂
0 81.6 0.8052 60 10 74.0 0.8063 70 20 69.2 0.8073 80 30 67.1 0.8083 90 40 65.7 0.8093 100 50 64.8 0.8102	64.2 0.8110 63.8 0.8115 63.7 0.8115 64.0 0.8109 64.8 0.8098	20° 81 72.5 35.0 37.5 68 78.0 42.9 35.1 59 80.5 47.9 32.6 81.5 48.9 32.6 32 81.9 53.2 28.7 19 81.0 57.5 23.5 9 77.8 63.8 14.0 5 75.0 66.8 8.3
Lecat, 1949		Vincent and Delachanal, 1880
% b.	t.	% b.t. d 0° % b.t. d 0°
81 6.	1.6 3.45 Az 4.65	0 81.6 0.8052 56 72.6 - 10 76.8 0.8059 60 72.7 0.8102 20 74.8 0.8067 70 73.2 0.8114 30 73.8 0.8075 80 74.1 0.8127 40 73.2 0.8083 90 75.4 0.8132
Į.		72.7 0.8092 100 78.4 0.8120

Lecat,194	1 9				Vierk,1950			
	K	b.t.			mo1 %	ď	mol %	σ
	0 56 100	81.6 72.5 78.3	Az		100 95 88 81 75 65 51	21.64 22.21 22.92 23.64 23.64 23.92 24.21	20° 47 46 28 20 10 2	24.36 24.36 25.08 25.79 26.51 27.94 28.37
Vierk,195					mol %	n _D	mo1 %	n _D
%	d %	d	% d				·	· · · · · · · · · · · · · · · · · · ·
96 0 90 0	.7894 72 .7913 67 .7922 57 .7916 45	0.7901 0.7901 0.7901 0.7889 0.7876	33 0.7859 17 0.7845 0 0.7829	H	100 79 78 62 51	1.3611 1.3589 1.3586 1.3560 1.3541	24 20 8 0	1.3488 1.3479 1.3454 1.3444
Thacker an	d Rowlinson,	1954						
mo1%	(cc/mble)	mo1%	Dv (cc/mol	e)	Popov, 1926			
10	-0.04	60	+0.01		%	Q mix	%	Q dil
20 40 50	-0.05 -0.03 -0.02	80 90	+0.03 +0.01		92.7 86.65 80.7	-1312.5 -1044 - 868	75.4 70.8	-739 -658
Vierk, 195	50	<i>-</i>			Vierk,1950			
%	η	K	η		mo1 %	Q mix	mol %	Q mix
100 96 90 88 83 72	1232.7 1120.4 997.9 939.0 906.5 703.3	20° 67 57 33 17 0	641.5 558.5 441.8 400.1 383.0		93.1 81.8 71.0 61.3 54 44.7	94.59 - 207.72 - 283.04 - 323.64 - 341.05 - 339.02	0° 37.6 29.6 21.2 13.1 5.6	-329.27 -305.43 -259.61 -191.26 - 98.80
Thacker an	d Rowlinson,	1954			Thacker and R	owlinson,l	954	
mo1	% 56°	D _{η/η} 80°	100°		mol %	Q mix	mol %	Q mix
17 18 45 47 78 80 18	0.020 0.026 - - 0.019	0.018	0,004 0,010 0,007		10 20 40 50	-130 -230 -330 -365	60 80 90	-360 -260 -150
D _{η/η} : Devi	ation from ad	ditivity .						
								-

Acetonitrile (C₂H₃N) + Pr	opyl Alcohol (C ₃ H ₈ O)	Acetonitril	e (C ₂ H ₃ N) + C	etyl Alcohol (C ₁₆ H ₃₄ O)
Lecat,1949		Hoerr, Harw	ood and Ralston	
Я	b.t.	×	f.t.	sat.t.
0 22 100	81.6 81.0 Az 97.2	0.1 1.1 4.8 17.2 100	30.0 40.0	50.0
Acetonitrile (C ₂ H ₃ N) + Is	opropyl Alcohol (C ₈ H ₈ O)			ctadecyl Alcohol
Lecat, 1949		Hoerr, Harw	ood and Ralston	(C ₁₈ H ₈₈ 0)
%	b.t.	*	f.t.	% f.t.
0 48 100	81.6 74.5 Az 82.4	0.3 1.6	30.0 43 40.0 100	.18 50.0 57.96
Acetonitrile (C ₂ H ₃ N) + De	cyl Alcohol (C ₁₀ H _{ag} 0)		(C ₂ H ₃ N) + Met 1 Landau,1910	thyl Malate 1 (C ₆ H ₁₀ O ₅)
Hoerr, Harwood and Ralston,	1944	g/100cc red	(α yellow green	
% f.t.	sat.t.			blue blue
5.4 0.0 17.7 - 34.2 - 100 6.88	10,0 20,0	12.443 -8.04 4.902 -9.18	- 9.20 -10.81 - - 9.64 -11.25 ·	-12.62 -13.50 - -13.26 -14.69 -16.52
Acetonitrile (C ₂ H ₃ N) + Lau	(C ₁₈ H ₂₆ 0)	Acetonitrile	c (C ₂ H ₃ N) + La	actonitrile (C ₂ H ₇ ON),
Hoerr, Harwood and Ralston,I	944	Walden,1906		
# f.t.	sat.t.	vol %	d 0° 25°	η 0° 25°
1.3 0.0 3.7 10.0 14.2 20.0 22.9 23.95	30.0	0 25 50 75 100	0.8173 0.7896 0.8626 0.8374 0.9095 0.8865 0.9589 0.9356 1.0062 0.9845	461 357 694 500 1069 734 1462 1173 4312 2236
Acetonitrile (C ₂ H ₃ N) + Te	tradecyl Alcohol (C ₁₄ H ₃₀ 0)			
Hoerr, Harwood and Ralston,	_	Acetonitril Eggers,1904	.е (С ₂ Н ₃ N)+)	Menthol (C ₁₀ H ₂₀ O)
% f.t.	sat.t.	8	t	E
0.1 10.0 1.3 20.0 7.0 30.0 18.7 100 38.2	40.0	0.0 7.55 12.7 20.2 25.2 30.23	44.5	36.5 32.3 29.0 24.0 22.5 19.5

Propionitr Homfray, 1		N) + Ethy	l alcoh	ol (C ₂ H ₆ O)	mol %	56°	D _{η/η} 80°	100°
	8	p	8		15 18 22	0.019	- 0,022	0.021
Az b.t.=77.2	72.5 72.0	760 200	64.5 62.0	100 45	46 47 49	0.027	0.022	0.020
%	ⁿ C	n ⁿ D		n _F	78 79 81	0.019	0.015	0.007
100 98.4 93.2 78.2 77 73.8 71.5 64.7 62.6 45.5 29.5 12.5 8.3	1.3601 1.3604 1.3612 1.3612 1.3612 1.3612 1.3622 1.3622 1.3624 1.3644	1.36 33 1.36 54 1.36 55 1.36 51 1.36 52 1.36 52 1.36 52 1.36 53 1.36 53 1.36	220 225 305 336 332 354 372 396 462 5589	1.36627 	Propionitrile Bingham, 1907	(C_8H_5N) - $C.S.T. = 140$	• Gly cerol (
Propionit		H ₅ N)(b.t.	=97.2)	+ Alcohols	Lecat, 1949	6	b.t.	
	2nd Comp.	·		Az	50 100	}	117.9 113.0 Az 117.8	
Name	Formula	b.t.	%	b.t.				
Ethyl alcohol	C2H60	78.3	-	78.1	Butyronitrile	(C4H7N) +	Isobutyl Al	cohol (C ₄ H ₁₀ O)
Propyl alcohol	C ₃ H ₈ O	97.2	50	90.5	Lecat, 1949			
Isopropyl alcohol	C2 H80	82.4	88	81.5		f 	b.t.	
Isobutyl alcohol	C4H100	108.0	24	95.5	0 90 100)	117.9 106.8 Az 108.0	
Tert. amyl alcohol	C ₅ H _{1 2} O	102.38	43	94.5			108.0	
	rile (C _S H	1 ₅ N) + Isop	propyl A	Alcohol (C ₉ H _g O)	Isobutyronitri Lecat,1949	le (C ₄ H ₇ N) + Propyl A	lcohol (C ₈ H ₈ O)
m	ol %	Dv (cc/mole))	Q mix	%		b.t.	
	90 70 50 30 10	0.07 0.22 0.27 0.26 0.11		+180 370 410 360 180	0 70 100		103.85 95.0 A2 97.2	

Isobutyronitrile ($C_{1_k}H_7N$) + tert. Amyl alcohol ($C_5H_{12}0$)	Capronitrile ($C_6H_{11}N$) + Hexyl alcohol ($C_6H_{116}O$)
Lecat, 1949	Lecat, 1949
% b.t.	% b.t.
0 103.85 58 99.5 Az 100 102.35	0 163.9 81 156.6 Az 100 157.85
Valeronitrile (C_5H_9N) + Amyl alcohol ($C_5H_{12}O$)	Caprinitrile ($C_{10}H_{19}N$) + Methyl alcohol ($CH_{i\downarrow}0$)
Lecat, 1949	Hoerr, Binkerd and al., 1944
% b.t.	% f,t.
0 141.3 58 136.5 Az 100 138.2	93.1 -40.0 37.0 -20.0 0 -14.46
Valeronitrile (C_5H_9N) + Ethoxyglycol ($C_uH_{10}O_2$)	Caprinitrile (C ₁₀ H ₁₉ N) + Ethyl alcohol (C ₂ H ₆ O)
Lecat, 1949	Hoerr, Binkerd and al., 1944
% b.t.	# f.t.
0 141.3 - 135.0 Az 100 135.3	93.0 -40.0 42.4 -20.0 0 -14.46
Isovaleronitrile (C_5H_9N) + Methoxyglycol ($C_3H_8O_2$) Lecat, 1949	Caprinitrile ($C_{10}H_{19}N$) + Isopropyl alcohol (C_3H_80) Hoerr, Binkerd and al., 1944
و بن من موجود بنیش من مرد من نوبسس می مدر ایند فرانس کا من من من من اس آن اس من من من اس آن اس من اس اس اس اس ا 	و موجد این ها ها جو من بر در در در در در در در در در در در در در
0 130.5 - 130.0 Az 100 124.5	93.0 -40.0 40.0 -20.0 0 -14.46
Capronitrile ($C_6H_{1,1}N$) + Cyclohexanol ($C_6H_{1,2}O$)	Caprinitrile ($C_{10}H_{19}N$) + Butyl alcohol ($C_{4}H_{10}0$)
Lecat, 1949	Hoerr, Binkerd and al., 1944
\$ b.t.	% f.t.
0 163.9 64 158.0 Az 100 160.8	92.8 -40.0 39.2 -20.0 0 -14.46

Lauronitrile (C ₁₂ H ₂₃ N) + Methyl Alcohol (CH ₄ 0)	Myristonitrile ($C_{14}H_{27}N$) + Ethyl Alcohol ($C_{2}H_{6}0$)			
Hoerr, Binkerd and al.,1944	Hoerr, Binkerd and al.,1944			
% f.t.	% f.t. % f.t.			
98.0 -40.0 95.2 -20.0 38.4 0.0 0 + 4.02	98.8 -40.0 62.9 +10.0 97.3 -20.0 0 19.25 92.0 0.0			
Lauronitrile ($C_{12}H_{29}N$) + Ethyl Alcohol ($C_{2}H_{6}0$) Hoerr, Binkerd and al.,1944	Myristonitrile ($C_{1\mu}H_{27}N$) + Isopropyl Alcohol (C_9H_80 Hoerr, Binkerd and al.,1944			
% f.t.	% f.t. % f.t.			
97.7 -40.0 94.8 -20.0 35.7 0.0 0 +4.02	98.5 -40.0 59.9 +10.0 97.7 -20.0 0 19.25 91.2 0.0			
Lauronitrile (C ₁₂ H ₂₃ N) + Isopropyl Alcohol (C ₃ H ₈ O) Hoerr,Binkerd and al.,1944	Myristonitrile ($C_{1\mu}H_{27}N$) + Butyl Alcohol ($C_{\nu}H_{10}0$) Hoerr, Binkerd and al.,1944			
% f.t.	% f.t. % f.t.			
97.8 -40.0 94.8 -20.0 32.2 0.0 0 + 4.02	98.3 -40.0 54.7 +10.0 97.1 -20.0 0 19.25 88.4 0.0			
Lauronitrile ($C_{12}H_{23}N$) + Butyl Alcohol ($C_4H_{10}O$) Hoerr, Binkerd and al.,1944	Palmitonitrile ($C_{16}H_{81}N$) + Methyl Alcohol ($CH_{16}O$) Hoerr, Binkerd and al.,1944			
\$ f.t.	% f.t. % f.t.			
97.3 -40.0 93.7 -20.0 30.3 0.0 0 +4.02	99.9 -40.0 85.6 20.0 99.8 -20.0 11.5 30.0 99.2 0.0 0 31.40 97.5 +10.0			
	Palmitonitrile ($C_{16}H_{31}N$) + Ethyl Alcohol ($C_{2}H_{6}0$)			
Myristonitrile ($C_{1\mu}H_{27}N$) + Methyl Alcohol ($CH_{\mu}O$)	Hoerr, Binkerd and al., 1944			
Hoerr, Binkerd and al.,1944	% f.t. % f.t.			
99 -40.0 70.8 +10.0 98.6 -20.0 0 19.25	99.4 -40.0 75.1 20.0 99.3 -20.0 9.11 30.0 98.3 0.0 0 31.40 95.2 +10.0			
94.6 0.0				

Palmitonitrile (C ₁₆ H ₃₁ N) + Isopropyl Alcohol	Stearonitrile (C ₁₈ H ₃₅ N) + Butyl Alcohol
($C_{s}H_{8}0$) Hoerr, Binkerd and al.,1944	($C_{\rm h}H_{10}0$) Hoerr, Binkerd and al.,1944
% f.t. % f.t.	% f.t. % f.t.
99.4 -40.0 71.1 20.0 99 -20.0 9.1 30.0 97.8 0.0 0 31.40 93.4 +10.0	99.8 -40.0 86.0 20.0 99.5 -20.0 54.7 30.0 98.6 0.0 0 40.38 96.4 +10.0
Palmitonitrile (C ₁₆ H ₃₁ N) + Butyl Alcohol (C ₄ H ₁₀ O) Hoerr, Binkerd and al.,1944	Acrylonitrile (C_8H_3N) + Methyl Alcohol (CH_40) Lecat,1949
% f.t. % f.t.	% b.t.
99.3 -40.0 63.2 20.0 98.8 -20.0 7.9 30.0 96.5 0.0 0 31.40 89.2 +10.0	0 77.3 61.3 61.4 Az 100 64.7
Stearonitrile (C ₁₈ H ₃₅ N) + Methyl Alcohol (CH ₄ O) Hoerr, Binkerd and al.,1944	. Acrylonitrile (C_9H_9N) + Isopropyl alcohol (C_5H_8O) Lecat,1949
% f.t. % f.t.	% b.t.
99.8 10.0 88.2 30.0 98.4 20.0 0 40.88	0 77.3 44 71.7 Az 100 82.55
Stearonitrile (C ₁₈ H ₃₅ N) + Ethyl Alcohol (C ₂ H ₆ O) Hoerr, Binkerd and al.,1944	Succinonitrile ($C_{4}H_{4}N_{8}$) + Ethyl Alcohol ($C_{2}H_{6}0$) Schreinemakers, 1898 mol % f.t. sat.t. 0 54.5
Stearonitrile ($C_{18}H_{35}N$) + Isopropyl Alcohol ($C_{3}H_{8}0$) Hoerr, Binkerd and al.,1944	72 - 31.2 84 - 28.2 87.5 - 24.6 90.1 - 20.0 92.4 - 13.5 94.1 10
% f.t. % f.t.	Timmermans and Kohnstamm, 1909-10
99.9 -40.0 92.1 20.0 99.8 -20.0 65.0 30.0 99.2 0.0 0 40.88 97.8 +10.0	C.S.T. = 24.30° dt/dp (10-160kg/cm ²) = 0.005

Merzlin and	Vassey, 195	1		Glutaronitrile	(C ₅ H ₆ N ₂)	+ Propyl alc	ohol (C ₃ H ₈ O)
%	f.t.	sat.t.	E	Phibbs, 1955			
13.2 21.3	19.0 11.5		11.5	mol %	Q mix	mol %	Q mix
25.7 31.8 48.2 60.1 70.9 80.3	- - - -	18.5 24.5 29.5 30.0 28.5 23.5	11 11 11 11	83.5 69.7	-310 -400	28° 57.7 37.9	-480 -552
87.1 90	6	11.5	-	Glutaronitrile	(C ₅ H ₆ N ₂)	+ Glycol (C	2H602)
Succinonitrile	e (C ₄ H ₄ N)			Phibbs, 1955			
Timmermans and	d Kohnstamm,		С ₄ Н _{1 О} О)	mol %	Dv (cc/m	ole) (m	ix
	C.S.T. = 67. (5-155kg/c	0° (m²) = 0.004		62.2 50.0 39.9	28° +0.1	-4	_
Glutaronitril	e (C ₅ H ₆ N ₂)	+ Methyl Alc	ohol (CH ₄ 0)	Glutaronitrile	(C ₅ H ₆ N ₂)	+ Ethanolami	ne (C ₂ H ₇ ON)
Phibbs, 1955		· · · · · · · · · · · · · · · · · · ·		Phibbs, 1955			~ ~ ~ ~
mol %	Dv (cc/mole)	Q mix		mol %	ŋ	mol %	η
61.9 50.0 36.1	28° -0.55	-3 7 3 -3 7 4		100 64.4	28° 16850 7700		5730 5670
Glutaronitrile	(C ₅ H ₆ N ₂)	+ Ethyl alco	ho1 (C ₂ H ₆ O)	mol %	Dv (cc/mo	le) Q mi	х
Phibbs, 1955				61.7 50.0 40.0	28° +0.20		
mol %	p	mol %	p			-34	
	20)°					
100 89.1 87.5 77.0 75.7	44.6 43.5 42.3 42.1 41.3	62.0 57.7 36.5 34.3	41.8 40.2 37.3 36.3				
Dv max	. (50 mol %	6) 28° -0	.53 cc/mole				
mol %	Q mix	mol %	η				
57.4 40.9	-500 -498	28° 100. 67.1 36.9	1040 1570 2540				

Glutaronitrile ($C_5H_6N_2$) + Ethylene cyanhydrin	Benzonitrile (C_7H_5N) + Isobutyl Alcohol ($C_4H_{10}O$)
(C ₃ H ₅ 0N) Phibbs, 1955	₩agner,1903
mol % n	% d (alcohol=1)
28° 100 3220 64.8 3500 35.3 4050 mol % Dv Q mix	0 - 0.3682 9.57 0.98110 0.3617 19.51 0.95766 0.3701 33.37 0.92722 0.3965 64.29 0.86502 0.5282 81.47 0.83325 0.6751
(cc/mole)	90.551 0.81716 0.8005
28° 54.9188 50.0 +0.07 - 26.0161	Benzonitrile (C ₇ H ₅ N) + Capryl Alcohol (C ₈ H ₁₈ O)
Tetracyanoheptane ($C_{11}H_{12}N_{i_{\perp}}$) + Ethyl Alcohol ($C_{2}H_{6}0$)	% b.t.
Phibbs,1955	0 191,1
80 % f.t. = 90.0	3 0 189.2 Az 100 195.2
Tetracyanoheptane (C ₁ , H ₁₂ N ₄) + Ethylene cyanhydrin (C ₈ H ₅ ON) Phibbs, 1955 80 % f.t. = 48.0	Benzonitrile (C ₇ H ₅ N) + Isooctyl Alcohol (C ₈ H ₁₈ O) Lecat,1949
Benzonitrile (C_7H_7N) + Ethyl Alcohol (C_2H_60)	0 191.1 88.5 180.0 Az 100 180.4
Wagner,1903	Benzonitrile (C_7H_5N) + Methoxydiglycol ($C_5H_{12}O_3$)
% d n 30° (alcohol=1)	Lecat, 1949
0 - 1.0768 20.46 0.95485 0.9091 43.00 0.90418 0.8785 54.68 0.87894 0.8949 75.41 0.83820 0.9210 87.36 0.81581 0.9539 93.501 0.80420 0.9784 96.772 0.79830 0.9883 98.380 0.79523 0.9958	0 191.1 190.5 Az 100 192.95

	BENZ	UNITRILET	EINIL IAKIKA	., .		
	₅ N) + Ethyl Tartrate	e (CgH ₁₄ 0 ₆)	Decylammoni um	chloride (C ₁		hol (C ₂ H ₆ O)
Rule, Barnett and (Cunningham, 1933		Harwood Pals	ton and Selby	. 1941	
mol %	(α) ^{mo1} 5461		# # # # # # # # # # # # # # # # # # #	f.t.	8	f.t.
	20°		75	8	40	46
(5.094g/100cc) 23.3	67.9 40.18		70	14	30 20	65 77
46.6	30.80		60 50	24 35	20	
58.8	26.62			د الدينانسة السو منتور الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين ال والدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين ا		است شهیدانید التیکند. الدر کیل شیع می و بلی الدی الدی الدی الدی الدی الدی الدی بید التیکانی شیع شده ایدر الدی الدی الله الله الدی الدی الدی
Benzyl Cyanide ((C ₇ H ₇ N) + Methyl Mala	te 1 C ₆ H ₁₀ O ₅)	Sedgwick, Hoen	rr and Ralston		ig.)
Grossmann and Land	dau, 1910		×	I	f.t.	II
g/100cc	(α)		86	3		•
		rk viol.	84	3 8 15		-
	blue bl	ue	78 72	22 30		12
	20°		60 50	38		12 23 35
49.714 -5.23 -6.2 24,857 -5.43 -6.6	28 -7.04 -8.13 -8. 67 -7.28 -8.24 -8.		40 30	46 70		-
12.4285 -5.63 -6.9	92 -7.48 -8.45 -9.	09 -				
5.160 -5.81 -7.3 2.580 -5.81 -7.3		69 -10.08 08 -				
			Undecylammon	ium chloride	(C ₁₁ H ₂₆ NCl) + Ethyl
			alcohol (Cg			
1,3,5-Tridodecylhex	kahydro-sym-triazine	$(C_{39}H_{81}N_{3})$	Harwood, Ral	ston and Selby	y,1941 (fig)
+ Ethyl alcohol (C	C ₂ H ₆ O)		4	f.t.	×	f.t.
Hoerr, Rapkin and a	11., 1956		¥	1	·	
	سے سند امید امیں علی امیں میں میں جب و العام معر معم عمر امیر علی بات امیر علی میں		75 70	16 18	40 30	49 61
% I	f.t. II III	sat.t.	60	26	26	72
			50	37		
99 -5 97 +8	0 8 15 21	- 21				
95 8	15 21	21 57	Sedgwick, Ho	err and Ralst	on,1945 (fi	g)
80 8	15 15 21	80				
60 - 40 -	- 21 - 21 - 21	-	%	f.t.	×	f.t.
30 - 20 -	- 21 - 21	88 70	75	17	40	42
10 -	- 21	21	75 60	17 25	30	43 62
	16 25		50	37		
Octylammonium chlo	ride (C ₈ H _{2 o} NC1) + Ethyl alcoho	ol (C ₂ H ₆ O)	Laurylammoni alcohol (C	ium chloride (C ₁₂ H ₂₈ NC1) + Ethyl
Sedgwick, Hoerr and	d Ralston, 1945 (f	ig.)		lston and Selb	y,1941 (fig	()
% f.t. I II	% f.	t.	*	f.t.	8	f.t.
			25.5		FΛ	43
72 2 - 65 8 3 60 12 12	50 20 40 40	-	87.5 80	11 20	50 40	43 51
65 8 3 60 12 12	40 40 30 72	-	70 60	29 36	30 2 6	64 72
			I			•-

Sedgwi	ick, Hoerr	and Ralston,	1945 (fig.)	alcohol (C2H60)		2NC1) + Etliyl
	%		f.t.		Harwood, I	Ralston and Se	lby,1941 (fi	g)
		<u> </u>		II	Я	f.t.	%	f.t.
	94 90 80 70 60 50 40 30	3 17 28 37 44 48 58 68		7 20 27 35 43 53 67	94.5 90 80 70 60	11 22 34 41.5 48	50 40 30 25	53 60 68 75
	%	ı	f.t.	II	Sedgwick,	Hoerr and Ral	ston,1945 (f	ig)
	89.03 80.78	22.3 31.9		12.7		X	I f.t.	11
	69.60 58.65 50.32 44.76 42.68 41.50 41 40.42 40 39.70 39.20	40.9 47.9 52.3 55.2 56.2 56.8 57.3 57.5 58.5		34.1 42.8 48.4 52.3 53.7 54.4 54.7 56.4		98 95 90 80 70 60 50	5 18 30 40 47 52 58 65 72	8 23 35 43 47 54 62 70
	38.55 37.80 37,12 36.25 35.19 34.45 33.65 31.60	61.8 63.8 66.0 68.2 71.1 73.3 75.4 78.5			aiconoi (lammonium ci.lo $\mathbf{C}_2\mathbf{H}_60$)		ig)
alco	ohol (C ₂ H ₆	um chloride (0) on and Selby,		+ Ethyl	95.5 90 80 70 60	10.8 25 36 43 48	50 40 30 25	f.t. 54 60 69.5 77
	%	f.t.	%	f.t.		70		
	88.5 80 70	12 21 30	50 40 30	45 54 65	Sedgwick,	Hoerr and Ra	Iston, 1945	(fig.)
-	60	38	24	77	%	f.t.	%	f.t.
Sed		r and Ralston		6.4	97 95 90 80 70	8 17 27 36 43	60 50 40 30	47 54 60 70
	%	f.t.	%	f.t.				
	90 80 70 60	8 23 32 37	50 40 30	45 55 67				

Hexadecylamn	onium chlori		-	Sedgwick, Hoe	err and Rals	ton, 1945	(fig.)
Harwood, Ral	ston and Sel	-	cohol (C ₂ H ₆ O) (fig.)	8	. سر هد صوف سر مدر فر <mark>ان</mark> می سوست.	f.t.	
%	f.t.	 %	f.t.				II
98 90 80 70 60	13.5 36 46 51.5 57	50 40 30 27.5	62 67 73 75,5	99 95 90 80 70 60 50 40		10 46 52 58 63 67 72 75 78	14 36 48 55 60 63 70 75 78
Sedgwick, Ho	err and Rals	ton, 1945	(fig.)	نے کے سے سے میں شہر شہر سے سے سے اس شہر اللہ اللہ اللہ اللہ اللہ اللہ اللہ ال	ر جور سی شمیر کنند شدم شدم جور جور جور سی سی سی د به خور سی مدیر کنند شدم خور جور جور سی در برد اس در در در در در در در در در در در در در	والله الله الله الله الله الله الله الله	بيز حدر حدر حدر اس اليون شير عدر عدر حدر حدر حدر اس السراحي يو عدر اليون الدر اليون سير دين اليون الدر الدر الدر الدر الدر الدر الدر الدر
%		f.t.	II	Dodecyltrime	thy lammon i um		C ₁₅ H ₃₄ NC1) coho1 (CH ₄ 0)
99 9 5 90		7 32 40	5 2 6 35	Reck, Harwood	d and Ralsto	on, 1947	
80 70 60		48 55 60	45 52 57	%	f.t.	8	f.t.
50 40 30	ميدون سند سند شاهند الله المواجد الله المواجد الله المواجد ا	65 67 74	67 67 74	16.0 31.0 35.2 83.1	-40 -30 -20 -10	113.8. 145.8 180.0 226.6	0 +10 20 30
97.5 90	f.t. 20 38	ву, 1941 	f.t. 62 67	+ Methyl alo	ohol (CH ₄ 0) on, 1947	(C ₂₁ H ₄₆ NC1)
80 70 60	47 52 58	30 29	74 75	5.7 15.4	f.t. -10 0	112.8	f.t. 30
Sedgwick, Ho	err and Rals	ton, 1945	(fig.)	32.5 71.6	+10 20	168 252.1	40 50
95 90 80 70	28 40 47 52	60 50 40 30	f.t. 58 63 65 75	+ Ethyl alc	imethylammon ohol (C_2H_60 od and Ralst)	(C ₂₁ H ₄₆ NC1)
Octadecylam	monium chlor			%	f.t.	%	f.t.
Harwood, Ra	lston and Se		(fig.)	3.7 9.3 25.6 43.1	-10 0 +10 20	82.9 132.3 209.8	30 40 50
98 94 90 80 70	22 40 47 55 61	60 50 40 30 25	65 69 74 78 81.5				

α-Naphthylami Hatem, 1949		ide (C _{1 o} H _{1 o} NC Ethyl alcohol		2-Undecylbenzthiazole ($C_{1.8}H_{2.7}NS$) + Isopropyl alcohol ($C_{5}H_{8}O$)
	~			Du Brow, Hoerr and Harwood, 1952
%	χ	% X		\$ f.t.
100	18°			99 - 20
100 90	-0.743 -0.738	70 -0.3 60 -0.3		92.8 -10 70.9 0
80	-0.732	0 -0.3		33.3 +10
i		₈ NC1) + Methy	l alcohol (CH ₄ 0)	2-Heptadecylbenzthiazole ($C_{24}H_{3.9}NS$) + Isopropyl alcohol (C_3H_80)
Kerler and Tri	lling, 1894			Du Brow, Hoerr and Harwood, 1952
%	D b.t.	%	D b.t.	\$ f.t.
		·· · · · · · · · · · · · · · · · · · ·		99 10
98.07 96.27	+0.215 0.252	91. 77 91.59	0.687 0.7	89.9 20 11.8 30
95.06 94.77	0.398 0.3 27	90.50 89.36	0.807 0.9	
94.75 93.55	0.38	86.60	1.188	
93.28 92.89	0.511 0.55 0.562	86.05 84.63 83.04	1.194 1.38 1.499	Anabasine hydroiodide ($C_{10}H_{15}N_2I$) + Ethyl alcohol (C_2H_60)
		ے ہے سرحہ اس سے سے سرحہ الدوجر الداخر کے الداخر نے اس سرحہ الداخر سے الداخر الداخر الداخر الداخر الداخر الداخر نے خواص سامانی سے اس میں الداخر الداخر الداخر الداخر الداخر الداخر الداخر الداخر الداخر الداخر الداخر الداخر	,	Sadikov, Otroshchenko and Malikov, 1955
Piposoline bu		C II NOI \		
Pipecoline hyd		C ₆ H _{1 4} NCI) Methyl alcohol	(CH ₀ 0)	% f.t.
Leithe, 1929		-	• •	95.82 0
ر بیر می سیاس مید سازام ایران می اسان ۱۰۰۰ - اماران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران ایران				94.1 20
×	đ	(α) _n		88.91 78
	-,			موجود المراجعية في المراجع من مراجع من مراجع من المراجع المرا
	15°			
39.8 14.8				Anabasine hydrochloride (C ₁₀ H ₁₅ NC1)
6.2				+ Ethyl alcohol (C ₂ H ₆ O)
				Sadikov, Otroshchenko and Malikov, 1955
				ور دو نده نده که در دو دو دو دو دو دو دو دو دو دو دو دو دو
2-Undecylbenz	thiazole (C.	8H ₂₇ NS) + Metl	hvl alcohol	% f.t.
		u = ,	(CH ₄ 0)	70.04
Du Brow, Hoer	r and Harwood	, 1952		60.00 20 39.74 78
Я	f.t.	%	f.t.	
00	10	00 F		
95.7	~10 _0	88.5 84.3 76.7	30 40	
99 95.7 93.7 91.4	+10 +20	76.7	50	
				
l				

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

ETHYLENEDIAMINE + PHENOL

XXXII. NITROGEN DERIVATIVES + PHENOLS .	Ethylenediamine ($C_2H_8N_2$) + p-cresol (C_7H_80)
Ethylenediamine ($C_2H_8N_2$) + Phenol (C_6H_60)	Pushin and Sladovic,1928
Pushin and Sladovic,1928	mol % f.t. E min.
mol % f.t. E min.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 8.70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E ₁ : 35 mol % -14° E ₂ : 88.5 mol % +20.2°	Ethylenediamine ($C_2H_8N_2$) + Salicyl Aldehyde ($C_7H_6O_2$) Pushin and Dimitrijevitch,1947
Ethylenediamine (C ₂ H ₈ N ₂) + o-Cresol (C ₇ H ₈ O)	mol % f.t. E
Pushin and Sladovic,1928	0 9 - 10 1 1
mol % f.t. E min. 0 8.7	10 1 1 1 20 31

f.t. E 9.40 - 8 +3.50 7 3.2 6 3.5 10 4.8 15.3 4 23.2 3.2 30.2 1.5 35.8 -0.4 40.7 -0.5 45 - 46.8 - 48.8 - 50.1 - 51.5 - 51.5 -	min. - 1,1 - 1,9 - 1,3 1,2 0,8 0,7	mo1 % 0 5 10 12.5 15 16.5 18.5 20 21	8.7 7.2 5 3.2	-1.10 -2.4 +1 -1.4 -1.3
8 +3.50 7 3.2 6 3.5 10 4.8 15.3 4 23.2 3.2 30.2 1.5 35.8 -0.4 40.7 -0.5 4546.8 -48.8 -	1.1 1.9 1.3 1.2 0.8	12.5 15 16.5 18.5	7.2 5 3.2 - - -	-2.4 +1 -1.4 -1.3
51.5 - 52.2 - 55.8 - 56.9 - 57.5 - 57.5 - 56.8 - 56.8 - 66.4 42.6 66.3 41.7 66.5 - 66.5 - 66.5 - 66.8 24 64.8 26.5	(1+1)	Heterogeneous equilii Lecat, 1949	16 22.5 30 39.6 44.2 49.5 52.2 62 69.5 70.7 67.3 64.5 62 63.8 68 69.2 67.7 66.8 65.2 64.8 66.8 67.6 67.6 67.6 63.4 70 77 85 90.5 98.2 102.7 2° 60° 64° Phenol (C ₆ H ₆ O	55
	59	59	59. 4 57.2 - 66.6 66.6 66.5 - 66.3 41.7 - 66.5 - 70 66.5 - 74 66.8 24 - 74 66.8 26.5 - 75 77.5 77.5 77.5 77.5 77.5 77.5 77	59

Paterno,1896					Prope	rties of	P phases					
Z	D f.t.	%	D f.t	•	Krema	nn and I	Ehrlich,	1907 (fig	ກ			
99.478 99.212 95.366 92.815	9 1.35 4 3.57	89.0615 87.8413 82.9057	8.29 9.90 14.23	5		mol %		40°	d (52.5°		
	inemakers,1899				100 75 50 25 0		1.058 1.0495 1.038 1.022 1.006]	1.046 1.034 1.020 1.004 0.986			
mo1 %	f.t.	mol %	f.t.									
94 93.5	37.3 35.0	44.5	29.5 27.5	(1+1;	Kreman	n and El	rlich,19	907 (fig)			
93.5 90.2 88.4 84.6 79.6 76.6	35.0 32.0 29.5 25.3 18.5 16.2 (1+1)	39.1 37.2 29.9 23.9 16.8	27.5 27.3 22.0 16.5 5.7 - 5.2	11 11 11	mol %	34-39°	41-50°	% Dv 32-41°	39-51°	50-6 2°		
74.6 69.9 66.3 62.7 54.8	16.2 (1+1) 18.0 " 22.7 " 24.9 " 27.7 " 29.9 "	10.8 7.6 5.2 3.1 1.5 0	-11.4 - 9.5 - 8.1 - 7.1 - 6.1		0 10 25 32 40 46	+0.470 0.475 0.472 0.486 0.485 0.487	+0.702 0.716 0.734 0.741 0.740 0.744	+0.691 0.696 0.708 0.712 0.719 0.720	+0.961 0.971 0.990 1.000 1.000 0.999	+0.983 1.000 1.010 1.021		
Lidbury, 1902					50 60 68	0.486 0.484 0.482	0.746	$0.721 \\ 0.721 \\ 0.717$	1.001 1.000 1.000	1.016 0.966 1.017		
%	f.t.		allizati elocity	on	75 90 100	0.483 0.482 0.480	0.739 0.731 0.714	0.705 0.705	0.981	1.016		
55.8 55.2	30.181		7.5° 0.68		Biron,	Nikitin	and Yak	obson,19	13			
55.2 54.1 53.1 52.2	30.290 30.427 30.529 30.589		0.71 0.73 0.74 0.76		mo l	%	d	mol ;	%	đ		
51.3 50.7 50.1 49.5 48.9 47.5 45.6	30.601 30.600 30.590 30.555 30.497 30.350 30.020		0.76 0.76 0.77 0.75 0.75 0.75 0.73		67	7.054 7.035 7.033	35 1.0627 1.0548 1.0504 1.0412	33.2 25.2 0	4 7 0 1	.0318 .0266 .0088		
					Thole,	Mussell	and Dun	stan,191	3			
Vinogradova,	Tikhomirova	and Efremov	,1936		%		d	%	(đ		
% f.t. 100 41.3	- 4	f.t. 5 29.3	- E		0 35. 51.	1	1.007 ³⁵ 1.030 1.040	67.9 79.7 100.0		049 055		
95 36.3 90 29.7 85 23.3 80 17.7	- 40 27.5 -16.3 11.3 30 21.3 -13.0 13.3 25 12.5 -12.0				Springe	r and R	oth,1930					
75 17.0 70 22.3 60 28.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} 5 & 4.7 \\ 0 & -10.4 \end{array} $	_		$\begin{array}{cccc} 6.9 & -11.7 \\ 4.7 & -11.7 \\ -10.4 & - \end{array}$		mo1	%	đ	mol	%	d
55 29.8 50 30.5	13.5	5 - 8.0 - 5.0			0 10 20 25 32 40 46		0.992 0.999 1.0063 1.010 1.014 1.0197 1.024	54.5° 50 54 60 68 75 80 100		1.027 1.030 1.033 1.037 1.041 1.042 1.050		

Bramley, 1916	(fig.)			Thole, Mu	ssell and Dunst	an,1913	
%				я	η	%	η
30° 0.00 1.0131	40° 	60°	80° 0,9 700	0 35.1	35° 2790 5390	67.9 79.7	7210 6920 5550
7.58 1.0185 15.96 1.0242 23.33 1.0292 31.65 1.0347 39.14 1.0394	1.0099 1.0156 1.0206 1.0260 1.0307	0.9925 0.9982 1.0032 1.0086 1.0133	0.9752 0.9809 0.9858 0.9911 0.9959 1.0005	51,4	6540 916 (fig.)	100	5550
47.17 1.0442 54.00 1.0448 61.84 1.0521 69.28 1.0557 76.36 1.0590	1.0470 1.0504	1.0180 1.0220 1.0259 1.0296 1.0330	220 1.0047 259 1.0085 296 1.0122 330 1.0156 358 1.0185	ļ	30° 40°	n 60°	80°
84.80 1.0617 92.50 1.0646 100 1.0668	$\frac{1.0531}{1.0561}$	1.0358 1.0388 1.0414	1.0185 1.0215 1.0242	7.58 3 15.96 4 23 33 5	145 2405 660 2740 340 3150 070 3610 950 4100	1540 1690 1880 2083 2285	1100 1175 1280 1375 1480 1570
Bramley, 1916				47.17 7	850 4610 700 5100 360 5450 890 5730 070 5830	2485 2670 2790 2900	1570 1662 1720 1768 1793
× ====================================	20°		25°.	76.36 8 84.80 8 92.50 7	890 5730 340 5460 680 5110 090 4760	2940 2920 2835 2690 2520	1793 1777 1745 1670 1580
23.34 31.28	0.00 1.0219 0.9288 7.94 1.0276 0.9342 15.31 1.0326 0.9390 23.34 1.0380 0.9436 31.28 1.0434 0.9482 39.39 1.0485 0.9527 47.56 1.0532 0.9571 53.81 1.0569 0.9606 62.50 1.0611 0.9648 69.52 1.0644 0.9690 77.02 1.0675 0.9727 85.02 1.0704 0.9762 92.28 1.0729 0.9795 100 1.0750 0.9828		\$°.	2	η 0°	125°	
53.81 62.50 69.52 77.02 85.02 92.28			0 7. 15. 23. 31. 39. 47. 53. 62.	94 50 31 61 34 73 28 88 39 105 56 121 81 132	00 80	637 666 693 723 749 770 788 799 811	
Kremann and Ehr	lich, 1907			77. 85. 92. 100.	02 142 02 133 28 122	10 10 10	817 818 813 797
mol %	η (wa 39°	ater at 0° 54.5°	74°		and Roth, 1930	40	770
0 10 25 32 40 46 50 54 60 68 75 90 100	2.050 2.228 2.753 3.140 3.502 3.800 4.061 4.231 4.360 4.419 4.318 3.790	1.113 1.230 1.450 1.542 1.759 1.833 1.853 1.920 1.941 1.952 1.891 1.822	0.882 1.059 1.110 1.190 1.221 1.222 1.244 1.248 1.250 1.223		0 54.5° 20 40 60 80 00	n er at 0°=1 1.3289 1.6526 2.0393 2.298 2.3986 2.3972)

\$\frac{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}	Vinogradova, Tikhom	nirova and Efrem	ov, 1936	Howell and I	Robinson, 193	3	
100	% d	o d	σ 45°	***************************************	н	Я	н
100	90 1.9723 80 1.0707 75 1.0678 70 1.0652 67.5 1.0635 60 1.0609 50 1.0560 40 1.0510 30 1.0451 25 1.0425 20 1.0385 10 1.0313	35.38 1.05: 35.83 1.044: 35.75 1.04: 35.87 1.04: 36.22 1.04: 36.65 1.03: 37.28 1.02: 37.95 1.02: 38.36 1.02: 38.74 1.01:	31 35.7 25 35.2 269 - 27 - 27 - 28 35.1 29 35.2 22 35.6 39 36.3 34 - 25 - 20 37.6	5.52 12.84 19.86 31.48 32.82 35.96 41.24 45.34 47.96 52.75 55.18	0.00034 .00037 .00046 .00065 .00094 .00194 .00143 .00180 .00194 .00232 .00260	65.22 69.14 72.46 77.87 82.32 82.59 86.66 90.31 93.14 96.33 98.87	.0 0366 .0 0389 .0 0409 .0 0416 .0 0418 .0 0406 .0 0380 .0 0337 .0 0171 .0 0093
90 1.0687 8870 1.0570 4440 1.0492 2980 80 1.0657 9650 1.0535 4760 1.0454 3200 75 1.0632 9810 1.0515 4970 1.0437 3270 70 1.0618 10000 1.0497 4970 1.0408 3290 67.5 1.0608 10100 1.0484 4830 1.0401 3200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% d n 25°	d 40°	d η	Howell and	ackson, 1934		
75	90 1,0687 8870	1.0570 4440	1.0492 2980	9	í	mol %	ε
## d	75 1.0632 9810 70 1.0618 10000 67.5 1.0608 10100 60 1.0567 9920 50 1.0515 9000 40 1.0460 7770 30 1.0405 6350 25 1.0375 5710 20 1.0337 5140 10 1.0263 3940	1.0515 4970 1.0497 4970 1.0484 4830 1.0450 4810 1.0391 4490 1.0336 4170 1.0280 3640 1.0217 3370 1.0215 3020 1.0111 2560	1.0437 3270 1.0408 3290 1.0401 3200 1.0367 3180 1.0313 3090 1.0248 2980 1.0198 2620 1.0161 2490 1.0135 2300 1.0059 1980	10.00 20.01 30.00 40.00 45.01 50.02 55.00 57.50 59.98		9.90 19.84 29.78 39.74 44.75 49.75 54.74 57.24 56.969 62.22	6.78 7.28 7.72 8.22 8.43 8.66 8.79 8.88 8.95
90 1.0285 1350 1.0078 750 77.01 77.32 9.50 80 1.0250 1410 1.0030 770 72.55 1.0223 1430 1.0009 770 82.55 82.35 9.61 75 1.0283 1420 0.9990 780 82.50 82.35 9.61 70 1.0198 1420 0.9990 780 85.01 84.87 9.74 67.5 1.0190 1400 0.9979 770 90.00 89.90 9.87 60 1.0153 1410 1.0939 770 95.00 94.95 10.08 50 1.0104 1370 0.9894 760 40 1.0015 1340 0.9788 800(sic) 30 0.9957 1320 0.9724 760 25 0.9927 1280 0.9667 740 10 0.9826 1090 0.9593 680 0 0.9757 970 0.9524 630 The standard of the standar	% d 75°	n d 1	00 °	64.97 67.00 70.00	7	64.73 66.76 69.77	9.13 9.17 9.28
30 0.9957 1320 0.9724 760 25 0.9927 1280 0.9693 770 20 0.9900 1210 0.9667 740 10 0.9826 1090 0.9593 680 0 0.9757 970 0.9524 630 The property of the state of th	90 1.0285 80 1.0250 75 1.0223 70 1.0198 67.5 1.0190 60 1.0153 50 1.0104 40 1.0015	1350 1.0078 1410 1.0030 1430 1.0099 1420 0.9990 1400 0.9979 1410 0.9939 1370 0.9894 1340 0.9788	750 770 770 780 770 770 760 800(sic)	77.01 79.98 82.50 85.01 90.00	 	74.81 77.32 79.81 82.35 84.87 89.90 94.95	9.46 9.50 9.54 9.61 9.74 9.87 10.08
0 0.9757 970 0.9524 630 t U t Q mix cal/g	25 0.9927 20 0.9900	1280 0.9693 1210 0.9667	770 740	Kremann, 1910	(fig.)		
Pushin, Matavulj and Rikovski,1943 50 mol %				t	U	t	-
22.77		<u></u>		22 7	50 mc		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1.572 10 570	45° 29 60 34 70	1.5551 5521	40.3 55.7 65.8 74.9	0.461 0.454 0.426	57.0 61.9 73.4 80.2	5.23 5.15 4.88
30 5650 90 5440 40 5618 100 5402 50 5588	30 565 40 561	50 90 1 8 100	5440				

Aniline (C ₆ H ₇ N) + o-cresol (C7H80)		Kremann and Ehrlic	h,1907	
Lecat, 1949				mol %	0°	d 61.5°
%	b	.t.				
92 100	1 1 1	84.35 91.25 Az 91.1		100 7 5 55 50 45 25 0	1.049 1.0495 1.049 1.048 1.0475 1.044	1,003 1,002 1,0005 1,000 0,999 0,995 0,987
Kremann, 1916 (fig.)			Tsakalotos, 1908		
8	f.t.	X	f.t.	mol %	d	η
100 89.9 81.2 77.7 72.7 68.3 63.9 57.4 55.6	30.4 22.1 12.9 8.3 1.7 4.2 7.5 8.3 8.3 (1+1)	50 49.1 43.4 35.8 28.5 20.5 11.4 5.4	8.3 8.3 7.9 1.3 -7.1 -16.7 -12.5 -9.8 -6.8	0 30 37.4 46.1 54.9 63.1 77.8	25° 1.018 1.022 1.024 1.026 1.029 1.030 1.030	3721 6799 8194 9622 11120 12200 12310 12910
Pushin, Matavul	j and Rikovski	,1948		Biron, Nikitin and	l Yakobson,l	913
mol %	gr %	^{n}D		mol %	đ	mol % d
0 10.2 19.5 29.2	40° 0 11.7 22 32.3	1.5755 5713 5677 5636		100 70.218 64.046 48,634	20° 1.0340 1.0337 1.0334 1.0318	31.565 1.0289 22.342 1.0271 0 1.0217
40.6 50.3 62.6 70.5 80	44.2 54 66.7 73.4 82.3	5596 5554 5505 5477 5443	596 554 505 477	Trew and Spence	r,1936	
90.5 100	91.7 100	5400 5364		mo1 %	đ	n _D
	Aniline (C_6H_7N) + m-Cresol (C_7H_80) Kremann,1906 (fig)				28° 1.014 1.018 1.019 1.021 1.023	7 1.57577 2 1.57502 2 1.57117 2 1.56431 3 1.56075
%	f.t.	8	f.t.	57.3 66.2 77.6	1.027 1.028 1.028	1 1.55187 7 1.54692
100 95.5 92.7 84.2 78.3 73.7 67.4 61.3	4.2 0.0 - 4.6 -12.5 -20.9 -30.2 -23.8 -15.8	54.4 46.8 39.2 29 20.7 6.8 0	-14.6 -14.6 -18.7 -26.7 -23.4 -10.0 - 6.6	77.6 88.6 100	1.029 1.029	0 1.54228 3 1.53812

	mol %	đ	χ		Aniline	(C ₆ H ₇ N)	+ p-cresol	(C ₇ H ₈ O)	
	0	25° 1.0182	0.662		Kremann,	1906			
:	12.02 26.79 42.75	1.0214 1.0250 1.0273	0.665 0.665 0.668		%		f.t.	R	f.t.
	472.73 47.88 57.86 75.13 87.62 100	1.02/3 1.0282 1.0309 1.0315 1.0303 1.0302	0.669 0.670 0.671 0.671 0.672		100 88. 77 69 63. 57.	6 8	33.2 20.8 5.8 14.6 16.7 18.8 19.2	45 38.2 34.2 24.5 13.9 4.6	18.3 15.4 12.1 3.7 -14.2 -10.0 - 6.7
Krema	ann and Ehrlic	eh,1907			52. 45.	3	18.3	(1+1)
mol %		η (water at	0°=1)						
	0° 34.10		76.3°	95.9°	Philip,19	03			
100 90 75	46.85 4.51 50.92 4.59 49.61 4.54	3 1.611 2 1.569	1.216 1.230 1.225	0.945 0.946 0.933	%		f.t.	×	f.t.
75 65 55 50 45 35 25 10 0	45.63 4.35 37.38 3.98 33.66 3.72 28.57 3.49 19.44 2.97 13.17 2.51 7.77 1.89 5.697 1.61	7 1,473 71 - 95 1,373 70 1,279 .5 1,194	1.173 1.128 1.015 0.863	0.915 0.878 0.807 0.723	100 92.3 83.5 E 75.6 71.2 61.3	. 1	33.4 24.8 8.7 9.4 6.8 4.3 20.0	53.9 53.3 50.9 48.1 42.7 36.6	21.2 21.1 21.0 20.6 18.9 15.8
Pushin, Matavulj and Rikovski,1948				Thole, M	ussell a	nd Dunstan	, 1913		
	mol %	gr %	a^n		%	d	25° η	d 50°	η
	0 5.1 10.3 14.9 20.4 29.6 41 45.8	25° 0 5.9 11.7 16.9 22.2 32.2 46.8 49.6	1.5833 580 578; 575; 572; 563; 563; 561;	5 2 5 7 3 3	0 30.0 53.6 62.7 79.5 90.0 100.0	1.020 1.022 1.027 1.028 1.028 1.029	3620 6950 10700 12400 14400 14500	0.992 0.997 1.001 1.004 1.005 1.005	2010 2930 3975 4260 4620 4710 4620
	50.6 56 60.8 70	54.3 59.8 64.3 73.9	5591 5569 5548 5508) }	Biron, Nikitin and Yakobson,1913				
	80 90 100	82.1 91.2 100	5469 5430 5392))	mo1	Я	đ	mol %	đ
Trew and	d Spencer, 193	6. U	0:		100 69. 65. 49.		1.0342 1.0342 1.0340 1.0324	32.692 31.844 24.502	1.0296 1.0295 1.0279 1.0217
	LIGT %		Q mi	х					
	0 17.1 39.9 52.9 68.7 84.3 100	0.448 0.462 0.473 0.465 0.463 0.515	1.97 3.88 4.85 4.66 3.06	P I					

Pushin, Matavul	j and Rikovs	ki,1948		Aniline (C ₆ H	N) + Xyleno	1-1,3,4 (C _B H	1100)
mol %	gr %	n _D		Parant,1950 (1	Fig)		
	40°			mol %	f.t.	mol %	f.t.
0 10 20 30.3 40 45 50.2 55.5	0 11.5 22.5 32.4 43.6 48.8 54.2 59.1	1.5755 5705 5657 5612 5564 5549 5499	5 7 2 6 6 6 2	0 11 20 30 40 49	- 7 -14 E 0 + 8 +10 +11	60 70 80 90 100 (1+	33 44 55 62 64 1)
60.5 70 79.5 90 100	63.9 72.9 81.9 91.3 100	548) 5439 5396 5358 5318	9 6 8	Aniline (C ₆ H Parant,1950 (,	1-1,3,5 (C ₈ I	I ₁₀ 0)
Aniline (C ₆ H ₇ N) + Cresol	(С ₇ Н ₈ О)		mol %	f.t.	mol %	f.t.
Ampola and Rima	f.t.	K	f.t.	0 10 15 20 30 40	- 7 -15 -17 E - 7 + 3 + 5	50 60 70 80 90	+ 6 E +35 +42 +51 +58
0 0.41 1.40 2.61	- 5.96 - 6.22 - 6.79 - 7.54	4.21 8.10 9.36 11.59	- 8.46 -10.25 -11.86 -13.62	Aniline (C ₆ l			
Aniline (C ₆ H ₇ N) + Xylenol	-1,2,3 (C ₈ H ₁	100)	Parant,1950	(fig)		
Parant,1950 (fig				mo1 %	f.t.	mo1 %	f.t.
mol % 0 4 10 20	f.t. - 7 - 8.5 E +10 25	mo1 % 55 57 70	f.t. 38,2 42 52.5	0 5 6 10 20 30 40	- 7 - 7 - 8 + 3 + 18 + 33 + 45	50 60 70 80 90 100	+58 +68 +75 +82 +85 +93
30 40	34 38 (1+1		61 68 71.5	Aniline (C.	(fig)	thy l-5-Ethy lp	ohenol (C ₉ H ₁₂ O)
Aniline (C ₆ H ₇ N		-1,2,5 (C ₈ H	100)	mol %	f.t.	mol %	f.t.
Parant,1950 (fig	f.t.	mol %	f.t.	0 10 20 30 40	- 7 -12 E + 1 + 8 +10 + 9 E	60 70 80 90 100	+20 +30 +35 +47
0 10 20 30 40	- 8 -11 E +11 +19 +24 +27	60 70 80 90 100	53 61 67 71 75	50	+ 9 E	(3	+50
50	+27	(1+1					

Ampola and F	limatori,189	7		Pushin and	Vaic, 1926		
K	f.t.	K	f.t.	%	f.t.	E	min.
0 0.55 1.46 2.90 4.25	-5.96 -6.22 -6.57 -7.125 -7.66	4.98 9.62 11.47 14.04	- 8.02 - 9.38 -10.27 -11.46	100 90 85 80 70 67 62 60	28 20.8 17.2 12.5 13.2 13.5	9.0 10.2 10.3	- - - - -
Pushin, Mari	ch and Rike	ovski,1948		50 40	15.5 17 15	-13.5	0.13
mo1	%	f.t.	E	- 35 30 20 - 15 10	13.6 9.6 0.1	-15.8 -13.4	- 0.41
100 90 80 70		51 45 34	6 9 10	10 5 0	-3.8 -9.7 -6	-12 -12.7 -13.8 - (1+1	0.94 1.20 0.18
65 60 55 50		22 15 10 11	10 10	Pushin and	l Pinter, 192	29	
47 40		12 11 8	12 -15	mol %	d	mol %	đ
30 20 10 5 0		8 2 - 5 -13 -10 - 6 (1+)	-15 -14 -13	0 10 20 30 40 50	1.1236 1.1158 1.1079 1.0981 1.0881 1.0785	30° 60 70 80 90 100	1.0654 1.0537 1.0422 1.0276 1.0140
Pushin, Mat	avulj and R	ikovski,19	48	- Pushin and	l Pinter, 192	29	
mo1 %	n _D	mol %	n _D	_ mol %	η	mol %	η .
0 10 18.2 31 40.8 50.7	1.5650 5554 5483 5390 5327 5265	60° 60 70 80 90 100	1.5216 5170 5125 5082 5041	0 10 20 30 35 40 45	4450 4740 4900 5110 5150 5230 5120	50° 55 60 70 80 90	5090 4940 4860 4580 4230 4610 3040
Aniline (C_{θ}			C ₁₀ H ₁₄ 0)	Pushin, Mata	avulj and Ri	kovski, 1948	
%				mol %	n _D	mol %	n _D
,c	f.t.	% 	f.t.	_		30°	
0 0.52 1.44 2.60 3.77 4.71	-5.96 -6.20 -6.55 -7.01 -7.50 -7.86	6.60 9.25 11.00 13.24 16.03 19.77	- 8.65 - 9.81 -10.58 -11.58 -12.94 -13.22	0 10 20 30 40 50	1.5808 .5773 .5727 .5683 .5643 .5601	60 70 80 90 100	1.5561 .5517 .5472 .5430 .5386

, and the same of	
Aniline (C_6H_7N) + Pyrocatechol ($C_6H_6O_2$)	Aniline (C_6H_7N) + Pyrogallol ($C_6H_6O_8$)
Kremann and Rodinis,1906	Kremann and Zechner,1925
% f.t. % f.t.	% f.t. E % f.t. E
100 105.0 40.9 34.0 92.8 100.0 38 32.0 82.1 91.5 37.8 31.0 74 82.5 33.5 26.0 68.2 74.0 30.4 21.0 63.3 68.0 27.7 +14.0 57.4 56.0 23.6 + 4.8 51.2 39.0 18.1 - 5.0 45 37.0 5.8 - 9.0 44.6 37.0 0 - 6.3	100
' Aniline (C_6H_7N) + Resorcinol ($C_6H_6O_2$)	(2+1)
Kremann and Rodinis,1906	Aniline (C_6H_7N) + o-Chlorphenol (C_6H_5OCl)
% f.t. % f.t.	Bramley, 1916
100 110.0 68.4 77.5 91.1 102.0 61.0 65.0 76.9 89.5 54.5 50.0 0.0 - 6.0	gr % mol % f.t. 0 0 -6.5 3.15 2.30 -7.8 7.23 5.35 -9.5 12.21 9.15 -10.4
Aniline (C_6H_7N) + Hydroquinone ($C_6H_60_2$) Kremann and Rodinis,1906	16.45 12.50 - 2.0 22.44 17.3 + 7.85 29.08 22.9 15.15 35.82 28.75 20.7 42.99 35.35 25.65 49.50 41.5 28.06
% f.t. % f.t.	62.13 54.25 28.95 68.90 61.6 26.35
0 -6.5 29.4 88.0 3.6 +54.5 34 89.0 5.1 63.0 34.8 88.5 7.5 68.5 35.9 88.5 9.7 73.5 38.8 95.0 12.5 76.5 39 94.5 16.2 81.0 41.4 100.0 17.1 81.0 50.8 121.0 20.7 85.0 54.2 126.0 23.5 87.0 57.2 131.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
23.5 87.5 60.5 135.0 23.9 86.5 63.5 138.0 27.6 87.5 68.5 144.0 28.5 88.5 (1+1)	Pushin and Rikovski,1949
28.5 88.5 (1+1)	mol % f.t. mol % f.t.
	0 -6 55 30 30 24 60 28.5 40 29 70 22 43.5 30 100 7

Thole, Mu	ssell and	Dunstan,1	913			60°	80°	110°	150°	
%	25°	đ 50°	25°	η _{50°}	0.0 15.54 28.94 40.16	1543 1790 2015 2195	1100 1222 1327 1407	709 781 842 886	446 498 539 568	
100 91.6 84.1 59.6 58.2 50.05 38.6 29.7	1.235 1.216 1.199 1.146 1.142 1.134 1.099 1.079	1.203 1.184 1.168 1.118 1.114 1.105 1.072 1.053 0.992	4110 5380 6710 9510 9630 9440 7710 6490 3620	2015 2570 2880 3300 3350 3260 3040 2870 2010	46.61 51.68 56.87 60.61 65.18 68.50 77.80 89.65	2275 2325 2350 2350 2350 2340 2320 2145 1825 1513	1443 1462 1470 1470 1460 1444 1368 1222 1070	901 909 912 912 907 901 873 820 760	577 582 585 585 584 581 572 559 546	
Bramley,1	916				Ellyett	,1937				
×	10°	20°	30°	40°		mo1 %	n _D	Č	1	
0.0 15.54 28.94 40.16 46.61 51.68 56.87 68.50 77.80 89.65 100 0.0 15.54 28.94 40.16 46.61 51.68 56.87 60.61 65.18	1.0350 0644 0957 1220 1375 1496 1617 1703 1811 1893 2107 2384 2626 60° 0.9872 1.0197 0496 0740 0889 1001 1117 1197 1307 1307 1307 1317 1377 1582 1839 2060	1.0017	1.0131 0466 0773 1028 1181 1298 1417 1501 1607 1689 1897 2166 2399 110° 0.9430 9739 1.0019 0248 0389 0493 0604 0679 0775 0844 1039 1281 1490	1.0045 0377 0681 0932 1084 1199 1317 1400 1505 1584 1792 2057 2284 150° 0.9052 9334 9620 9839 9972 1.0069 0177 0249 0339 0404 0590 0823 1028	Peel, Me		Dv = Dt =	8 - 1.0 % +13.85°	0218 0423 0574 1992 1526 1635 1765 1011 1175 12175 12459 1512	
%	10°	20°	30°	40°	0 10 20 30 40	1.58. 58 57' 57'	15 93 75	60 70 80 90 00	1,5699 5669 5632 5601	
0.0 15.54 28,94 40.16 46.61 51.68 56.87 60.61 65.18 68.50 77.80 89.65	6300 9035 13150 17860 20450 22400 23650 23950 23530 22480 17550 11180 6390	4280 5780 7740 9600 10560 11240 11660 11760 11480 10960 9040 6300 4210	3145 4050 5060 5930 6390 6720 6930 6950 6860 6700 5800 4310 3080	2405 2945 3540 3990 4200 4330 4390 4400 4340 4240 3790 3010 2320	50	57: 57: Peel and Br 5° 30°	iscoe, 192	28	5566	

Ellyett, 1937			Aniline (C_6H_7N) + m-Chlorphenol (C_6H_5OC1)
mol %	U mol %	บ	Thole, Mussell and Dunstan,1913
0.00 0.	25° .496 78.43	0,446	% d % 25° 50° 25° 50°
17.05 0. 45.40 0.	496 78.43 493 90.99 483 100.00 466	0.420 0.392	100 1.268 1.237 11550 3980 91 1.238 1.210 11850 4135 80.65 1.207 1.180 12460 4340 69.9 1.131 1.153 13220 4490 59.7 1.153 1.126 10830 4030 39.9 1.104 1.077 8110 3210
9.04 0. $27.77 0.$.4994 56.82 .499 68.21 .491 88.18 .484 100.00	0.471 0.461 0.425 0.495	39.9 1.104 1.077 8110 3210 24.6 1.071 1.045 6130 2650 0 1.022 0.992 3620 2100
$\ 10.10 0.$.5295 67.93 .525 88.02 .506 100.00	0.469 0.437 0.415	Aniline (C_6H_7N) + p-Chlorphenol (C_2H_5OC1) Thole, Mussell and Dunstan, 1913
mol % Q	mix mol %	Q mix	
	20°		% d n 50° 25° 50°
42.59 1	615 49.74 831 59.65 862 25°	1874 1754	100 1.249 1.244 16800 4990 92.2 1.228 1.223 17200 5140 84.6 1.209 1.199 17100 5370 77.8 1.185 1.179 15700 5370 70.1 1.166 1.158 14100 5130 62.8 1.154 1.140 13100 4800
14.21 20.01 1 27.10 1: 34.20 1: 42.03 1: 46.33 1: 47.42 1:	474 49.39 831 53.27 117 59.65 391 68.08 603 77.43 765 79.39 807 90.99 801 90.99 792	1804 1795 1689 1447 1098 1000 466 467	62.8 1.154 1.140 13100 4800 58.2 1.133 1.128 11200 4510 49.8 1.084 1.107 7050 4190 29.8 - 1.058 - 3070 9.7 1.037 1.012 4520 2210 0 1.022 0.992 3620 2010
	35°		Pushin, Matavulj and Rikovski,1948
12.21 6 24.20 11 31.35 14	347 48.98 685 49.68 .85 56.37 .25 57.25 .12 63.05	16 7 9 1693 161 7 1603	mol % n _D mol % n _D
39.09 16 41.41 16 47.06 16 47.79 16	78°	1508 1183 752 3 7 0	0 1.5755 59.5 1.5660 9.8 5738 69.6 5644 21 5721 78.7 5630 31 5706 88.7 5612 40 5692 100 5593 49 5677
13.73 49 24.67 77	08 92.98	972 962 921 756 467 199	

Aniline (C_6H_7N) + m-Aminophenol (C_6H_70N)	%		η	000	
Kremann and Hohl,1920		30°	40° 60°	80°	
% f.t. % f.t. 100 118.5 30.4 39.0 97.2 116.5 25.0 26.5 88.4 111.0 23.1 23.0 84.1 108.6 20.4 9.0 78.5 103.0 15.5 -11.5 72.9 98.2 12.3 -14.8 67.2 91.7 8.8 -12.5 61.4 85.0 6.5 -11.0 53.7 75.0 3.9 - 9.0 46.4 63.5 1.6 - 8.5 36.9 50.0 0 - 6.0	0.00 10.88 22.36 32.77 42.00 51.28 60.52 68.32 77.11 85.04 91.49 100.00	3145 2972 2863 2805 2802 2828 2881 2952 3069 3225 3300 3650	2405 1543 2322 1512 2257 1486 22224 1477 2215 1478 2230 1494 2272 1525 2328 1564 2415 1622 2515 1688 2610 1741 2755 1825	1094 1086 1081 1088 1100 1127 1155 1199 1248 1289	
Aniline (C_6H_7N) + o-Nitrophenol ($C_6H_5O_3N$)	Kremann and	Rodinis,			
Kremann and Philippi, 1908	⁸	f.t.	<u>%</u>	f.t.	
100 mol % 50 mol % d d d d d d d d d d d d d d d d d d	100.0 92.1 85.7 74.5 70.9 68.0 64.6 61.0 57.9	96.0 89.0 82.0 65.5 60.0 55.0 46.5 36.0 26.0	52.7 49.2 44.5 40.6 36.1 13.5 5.0 0.0	22.5 20.5 17.0 13.0 6.5 -10.0 - 7.0 - 6.3	
Kremann and Rodinis, 1906	Kremann and Philippi, 1908				
mol % f.t. mol % f.t.	100 mg			0 mol %	
100 46.0 54.1 13.5 95.3 44.0 49.3 10.0 88.2 38.0 48.8 10.0 79.8 32.0 43.3 5.0 76.9 30.0 42.4 5.5 71.9 27.0 36.7 - 1.0 71.1 26.0 34.5 - 2.5	115.5 1.25 138.5 .22 161.5 .20 140.0 .22	8 40.14 0 38.06	27.5 1 46.0 61.0 78.0	d σ1946 50.311784 47.861656 45.791506 43.90	
67.9 23.0 29.0 - 7.5 65.8 22.0 19.8 -13.5 64.8 21.0 12.0 -10.5 61.5 18.5 6.2 - 8.7 59.9 17.5 2.2 - 7.0 57.4 16.0 0.0 - 6.3	Aniline (C_6H_7N) + p-Nitropheno1 ($C_6H_5O_3N$) Kremann and Rodinis, 1906				
55.1 15.5	8	f.t.	%	f.t.	
Bramley, 1916	100.0 92.2 85.4 79.5 73.0 71.7 68.9 66.8	113.0 104.0 96.5 86.5 75.0 73.0 67.0 61.0	46.7 45.9 39.5 34.7 29.7 28.8 22.2 18.0	39.0 38.5 33.5 28.0 20.0 4.0 -12.0	
22.36 0655 0566 0382 1.0202 32.77 0924 0883 0645 0460 42.00 1175 1080 1888 0699 51.28 1445 1350 1150 0955 60.52 1717 1620 1419 1222 63.32 1968 1867 1663 1462 77.11 2263 2162 1954 1748 35.04 2531 2428 2216 2008 91.49 (1.2745) 2642 2429 2218 100.00 (1.3045) 2942 2712 2482	62.5 60.2 54.8 52.3	42.0 42.0 42.0 	13.2 5.0 1.8 0.0	-17,5 -10,5 - 7,5 - 6,3	

			······································		
Kremann and Philippi, 1908		Parant, 1950	(fig.)		
100 mol %	50 mo1 %	mol %	f.t.	mol %	f.t.
t d o t	<u>d</u> σ	0	- 7 - 9 E	50	+34 E
131.0 1.327 46.79 41.5 165.0 .259 42.02 61.2	1.2022 48.56 .1854 45.45	5 10	+12	60 70	+53 +67
151.0 .289 43.84 80.0 133.0 .323 46.01	1690 43.50	20 30	+23 +30	80 90	+78 +83
	المناوية من المراوة على منها المراوة المراوة المراوة المراوة المراوة المراوة المراوة المراوة المراوة المراوة ا	40	+33 (1+1)	100	+90
ر من موجود موجود موجود موجود موجود الموجود موجود موجود موجود موجود موجود موجود موجود موجود موجود موجود موجود م موجود مو	المها والمراسم الها، فتم الله الله المؤالية في المراسم الله الله المؤالية المؤالية المؤالية المؤالية المؤالية المؤارجين مهارجين الله المؤالية المؤالية الله المؤالية المؤالية المؤالية المؤالية المؤالية المؤالية المؤالية ا	سے سے جینات سے سے اس ایس جات اس است است است است است است است است اس	میں میں میں میں میں میں است اس امار اسا اس امار اسا امار امار اسا امار اسا امار امار	حيد من بياحة أن أن أن أن أن أن أن أن أن أن أن أن أن	
Aniline (C_6H_7N) + 2,4-Dinitroph	enol (C ₆ H ₄ O ₅ N ₂)				
Kremann, 1906		Aniline (C ₆ H	17N) + β-Naph	ithol (C _{1'0}	H _g U)
% f.t. %	f.t.	Kremann, Lupf	er and Zawods	ky, 1920	عم جنور جنور جنور جنور جنور الدور أحج أحج أحج أحج أحج أحج أحج أحج أحج أحج
100.0 110.5 55.2	73.5		f. t		E
95.1 106.0 41.9 89.3 101.0 30.7	69.0 60.0	0		0	- -6,5
76.7 86.5 30.0 71.1 80:0 21.1	60.0 51.0	8	+28.	0	-7.0
69.4 78.0 13.8	42.0	11 16	5.4 50.	0	-
64.8 75.0 3.4	22.0 - 7:0	22 31	2.7 60. .4 69.	5 5	-
58.0 74.0 1.0 57.9 74.0 0.0	- 7.0 - 6.5	ll 35	.9 73.	6	-
و الهرائي عن الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول ا والدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول ا والدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول الدول ا		49	80.	5	-
Aniline (C_6H_7N) + α -Naphthol.(C ₁₀ H ₈ O)	ll 53	81. 8.9 81. 9.2 82.	5	-
Kremann, Lupfer and Zawodsky, 1920)	60	82. 5.5 82.	0 2	-
% f.t.	E	63	1.8 81. 3.9 81. 81.	8	-
0 - 6.0		68	81. 8.4 81.	0	80.5 80.0
1.3 - 7.0	-	ll 69	80.	.5	-
2.2 - 7.7 4.2 - 8.5	-	72	81. 85.	3	_
$\begin{array}{cccc} 6.0 & -10.0 \\ 7.7 & - \end{array}$	-14.0	73	3.0 90. 3.5 87.		80.0 80.0
12 - 8.7	-	l 78	3.4 96.	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-14.0	89).3 110.	.5	-
21.3 +16.0 22.9 +17.0	-	95 100	5.2 117. 121.	8	-
25.7 + 19.5 29.1 +22.5	-		(1+1	1)	
33.8 +25.0	-				
37.9 +27.2 39.5 +27.5	-	Parant, 1950	(fig.)		
43.6 +27.8 46.9 +53.1 48.3 +27.2	+26.0 +26.5	mol %		mol %	
51.9 +48.1 53.2 +29.9	+30.0		f.t.		f.t.
55.9 +44.1 58.7 +41.3 63.8 +36.2	+31.5 +32.0	0 1	- 7 - 8 E	50 55	+ 83 + 78 E
63.8 +36.2 68.4 +43.5	+31.5	5 10	+32 +50	60 7 0	+ 88 +100
73.5 +53.5	-	20 30	+67	80 90	+108 +113.5
78.4 +62.8 84.2 +71.8 89.3 +78.5	-	40	+75 +80	100	+120
89.3 +78.5 95.2 +86.2	-	ساعت من من من الدران ا	نده الله الله الله الله الله الله الله ال		
100 +90.5	-		شه آمین آمی حقید حمد آمین سین نمید خمیدهن نمید مید مید		ه النب النب النب حدد منوانت حد حدد بنب نبي بنب بنب بنب من منو
(1+1) (2+1))				
بر مد من خوبتی بنی بدر در در در من من من من است است این این این این این در این در این این این این این این این به من من منزمی من در در در من منزمی من در منزمی این این این این این این این این این ای					

Methylaniline (C_7H_9N) + Phenol (C_6H_60)	
Vinogradova and Efremov, 1937	% о
% d 19.5° 45°	19.5° 45° 100 - 37.1
100 - 1.0579 93 1.0755 .0570 90 .0764 .0527 80 .0663 .0459 75 .0620 .0424 70 .0584 .0387 68 .0566 .0368 60 .0515 .0318 50 .0443 .0245 40 .0360 .0164 25 .0210 .0033 20 .0160 0.9967 10 .0091 .9900	793 37.11 -1 90 36.54 35.9 80 35.93 -75 35.66 34.9 70 35.59 -68 35.39 34.5 60 35.60 -1 50 35.70 34.2 40 35.88 34.2 25 36.35 34.3 20 36.55 10 37.20 34.9 0 38.00 35.6
10 .0091 .9900 0 .0025 .9783	Methylaniline (C_7H_9N) + Thymol ($C_{10}H_{14}0$)
% d	Pushin, Matavulj and Rikovski,1949
25° 40° 50° 7 5° 100°	mol % n _D mol % n _D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60° 0 1.5509 62.8 1.5163 10 5444 69 5145 19.7 5388 80 5104 28.5 5331 91 5067 38.5 5280 100 5041 50.3 5220
40 0321 0203 0125 9933 9696 30 0230 0127 0018 9822 9613 25 0170 0068 0.9998 9804 9602 20 0130 0020 9915 9783 9533 10 0055 0.9941 9860 9680 9478 0 0.9957 9826 9740 9537 9390	Methylaniline (C_7H_9N) + Guaiacol ($C_7H_8O_2$) Pushin and Pinter,1929
% n 25° 40° 50° 7 5° 100°	mol % d n
100 - 4150 2680 1280 800 90 9020 4250 2980 1340 750 80 10160 4750 3200 1360 750 75 10540 4950 3280 1360 750 68 10760 5070 3330 1430 770 60 10520 5040 3300 1430 780 55 10170 4920 3250 1420 760 50 9740 4730 3140 1410 750 46. 8 9400 4540 3050 1390 740 40 8200 4310 2820 1300 720 30 6960 3630 2500 1220 670 25 6060 3250 2340 1140 660 20 5470 2950 2170 1080 620 10 4210 2480 1840 970 <td>30° 100 1.1236 4450 90 1088 4000 80 0942 3720 70 0804 3360 60 0692 3030 50 0495 2760 40 0336 2440 30 0187 2220 20 0027 1990 10 0.9866 1720 0 9725 1550</td>	30° 100 1.1236 4450 90 1088 4000 80 0942 3720 70 0804 3360 60 0692 3030 50 0495 2760 40 0336 2440 30 0187 2220 20 0027 1990 10 0.9866 1720 0 9725 1550

Methylaniline(C ₇ H ₉ N) + o-Cresol (C ₇ H ₈ O)	Ethylaniline	C ₈ H ₁₁ N) + Pheno	1 (C ₆ H ₆ 0)
Pushin, Matavulj and Rikovski,1949	Tikhomirova	and Efremo	v, 1937		
% n _D % n _D	%	f.t.	% 		f.t.
40° 0 1.5609 54.5 1.5481 10 5584 59.5 5469 20 5559 69.5 5443 31.5 5535 80 5418 44.5 5502 83 5400 50 5490 100 5864	100 95 90 80 70 65	41.3 37.5 33.4 24.4 12.6 2.6 - 9.2	55 50 45 25 20 10		22.2 43.5 60.0 31 77.7 71.5 63.6
	Z	19.	d 5°	45°	
Methylaniline (C ₇ H ₃ N)+ m-Cresol (C ₇ H ₈ O) Pushin, Matavulj and Rikovski,1949	100 90 83 80 75 70	1.00	661 695 669	.0597 .0461 .0395 .0367	
% n _D % n _D	75 70 60 50	.04	526 160 347	.0318 .0252 .0142	
25° 0 1.5684 55 1.5523 10 5655 60 5508 20 5626 70 5477 30 5598 80 5450 40 5567 90 5421 45 5552 100 5392 50 5537	43.7 40 30 25 20 10 0	.01 .01 .00 0.99 .98	.10 109 146 1883	.0031 0.9956 .9909 .9798 .9734 .9670 .9548	
	% 25°	40°	d 50°	75°	100°
Methylaniline (C ₇ H ₉ N) + p-Cresol (C ₇ H ₈ O) Pushin,Matavulj and Rikovski,1949	100 - 90 1.0617 83 0547 75 0480 70 0415	0450 0355	1.0532 0411 0340 0271	1.0324 0181 0138 0016	1.0118 0.9951 9889 9795
% n _D % n _D	70 0415 60 0300 50 0187 43.7 0121	0182 0075	0210 0102 0.9986 9914	0.9975 9838 9725 9623	9745 9625 9521 9455
40° 0 1.5609 60 1.5440 10 5579 69 5411 20 5550 79 5383 30 5526 38 5353 39.5 5497 100 5318 50 5468	40 0060 30 0.9961 25 9897 20 9833 10 9704 0 9585	9947 9847 9774 9718 9587	9871 9748 9693 9621 9509 9399	9620 9577 9433 9360 9253 9134	9394 9312 9225 9137 9044 8935
50 5468	% 25	° 40°	5 <mark>7</mark> °	7 5°	100°
	100 - 90 863 83 882 75 853 70 818 60 728 50 598 43.7 510 40 477 30 368 25 327 20 290 10 222 0 175	0 4530 0 4340 0 4260 0 3960 0 3410 0 2990 0 2780 0 2310 0 2060 0 1880	2680 3140 3160 3060 3130 2970 2540 2150 1760 1620 1540 1240	1280 1460 1470 1410 1330 1220 1120 1070 960 910 860 760 690	800 830 770 800 900 760 710 670 670 590 580 540 520 480

	Kremann, 1906		
% d 19.5° 45°	% f.	.t. %	f.t.
100 - 37.1 90 37.0 36.3 83 36.70 - 80 36.52 - 75 36.40 35.4 70 36.22 - 60 35.96 34.7 50 35.82 34.1 43.7 35.76 33.7	0.0 + 7.7 - 16.9 - 24.0 -1 30.4 -1 36.7 -2 42.7 -3	1.5 61.6 2.3 67.0 7.3 71.6 2.5 76.5 7.7 90.2 3.8 96.2 2.5 100.0	- 5.5 + 5.0 13.0 19.0 33.5 38.0 41.0
40 35,64 33,4 30 35,60 32,8 25 35,55 - 20 35,50 32,2	Bramley,1916		
10 35.46 31.6 0 35.45 31.1	%	mo1 %	f.t.
Ethylaniline (C ₈ H ₁₁ N) + Guaiacol (C ₇ H ₈ O ₂) Lecat, 1949	0 9.85 23.68 32.60 42.90 51.18 56.16 61.41 66.79 73.10 80.07 87.18 93.8 100	0 12.30 28.55 38.4 48.7 57.3 62.2 67.25 72.05 77.7 83.7 89.9 95.25 100	+ 1.0 - 3.6 -12.0 -19.4 -29.7 -29.5 -17.8 - 5.5 + 4.85 15.1 24.4 31.8 36.85 40.8
Dimethylaniline ($C_8H_{1.1}N$) + Phenol (C_6H_60)			
Paterno, 1896	Vinogradova and	f.t.	E
% D.f.t. % D.f.t.	100	41.3	_
99.41 -0.34 92.73 -4.63 98.70 -0.87 90.55 -6.36 97.70 -1.46 86.60 -9.89 95.87 -2.60 100	95.0 90.0 85.0 80.0 75.0 75.0 65.0 60.0	37.6 33.8 29.1 24.3 17.2 9.5 1.3 - 8.7 - 20.8	-45.7 -41.3 -39.1 -37.7 -37.0
Ampola and Rimatori, 1896 - 1897	52.5 50.0 4 7. 5	-26.9 -33.9 -34.4	-36.0
% f.t. % f.t.	45.0 40.0 35.0	-31.6 -27.4 -22.8	-35.8 -35.7
0 1.96 6.96 - 2.05 0.45 1.69 7.55 - 2.38 0.68 1.57 7.81 - 2.48 1.44 1.14 9.86 - 3.59 2.46 0.56 12.93 - 5.35 4.66 -0.66 16.28 - 7.28 5.56 -1.22	30.0 20.0 10.0 5.0	-18.0 - 9.7 - 3.7 - 0.8 + 1.6	-39.0 -41.3 - -

DIMETHYLANILINE + PHENOL

Bramley	,1916				75. 70.	0 0	242 185 0	0035 .9975 9860	98 2 9 9760	
%	10°	20°	1 126°	177°	70. 60. 50. 43. 40. 30. 25.	0 0.9 7 9 0 9 0 9	942 942 855 822 700 639 580 459 340	9730 9668 9615 9483	9657 9525 9463 9407 9285 9244 9175	
0.00 9.07 17.30 23.94	0.9647 9752 9851 9932	0.9564 9670 9768 9849	0.8679 8776 8863 8939	0.8225 8318 8403 8472	10.	90 9	459 340	9442 9375 9266 9136	9072 8947	
23.94 33.08 40.39 48.27	1.0041 0136	9959 1.0053 0150	9040 9127 9216	8472 8568 8647 8733	Bramley,	1916				
755.75 62.82 69.97 78.14 85.39 92.76 100.00	0327 0413 0500 0595 0678 0759 0835	0243 0330 0416 0512	9302 9387 9471 9564	8817 8895 8978 9069 9152	×	10°	2 0°	n 126°	177°	
85.39 92.76 100.00	0678 0759 0835	0512 0595 0676 0752	9648 9734 9815	9152 9237 9315	0.00 9.07 17.30	1654 2076 2586	1387 1684 2045	461 482 508	341 352 362 372	
%	29.8°	40. 2 °	d 59.9°	80.0°	23.94 33.08 40.39 48.27	3145 4185 5315 6960	2045 2415 3085 3770 4700	531 565 594 627	386 398 410	
0.00 7.93 16.61 24.60 32.71 41.46	0.9482 9574 9677 9772 9872 9981	0.9400 9492 9593 9688 9788 9895	0.9234 9325 9425 9520 9619 9724	0.9070 9159 9258 9352 9449 9553	55.75 62.82 69.97 78.14 85.39 92.76 100.00	8690 10940 13470 16390 18500 19640 20100	3085 3770 4700 5640 6750 8010 9400 10300 10870 11040	653 680 703 728 745 761 770	422 432 442 453 460 467 490	
16.61 24.60 32.71 41.46 49.19 56.14 63.95 70.99 78.83	1.0076 0158 0252 0329 0431 0516 0594 0668	9990 1.0073 0166 0243	9818 9899 9991 1.0069	9645 9726 9817 9895 9997	%	29.8°	40.2°	ŋ 59.9°	80,	0°
86.08 93.19 100.00	0516 0594 0668	0346 0431 0509 0584	0171 0256 0335 0414	1,0082 0162 0242	0.00 7.93 16.61 24.60	1173 1351 1629 1936 2315 2830	1021 1159 1354 1570 1840 2185 2510 2855 3340 3715 4150 4400 4590 4790	799 878 1001 1123	7 7 8	58 07 82 52
Vinogrado	va and Ef	remov, 193	37.		24.60 32.71 41.46 49.19 56.14		2185 2510 2855	1267 1428 1587 1760	10 11	10
%	19.5°	25°	d 40°	45°	63.95 70.99 78.83 86.08	3930 4705 5325 6025 6480 6860 7090	3340 3715 4150 4400	1267 1428 1587 1760 1960 2100 2270 2380 2465	13 13 14 15 15	12 79 72 23
100 93.0 90.0	1.0652 0621	1.0625 0592 0498	1.0626 0530 0499	1.0579 0495 0463	93.19			2530	15	85 =========
80.0 75.0 70.0 60.0	0534 0490 0427 0303 0185	0444 0365	0385 0322 0250	0463 0338 0287 0218 0102	Vinogrado	ova and Ef	remov, 19			
50.0 50.0 43.7 40.0	alax	0257 0140 0063 0014	0140 0018 0.9938 9901	0.9980 9897 9862	%	25°	40°	n 50°	75°	100°
30.0 25.0 20.0 10.0 0.0	0056 0.9930 9870 9806 9692 9580	0.9888 9830 9760 9647 9534	9775 9714 9650 9534 9418	9737 9677 9615 9497 9379	100 93.0 90.0 80.0 75.0	7720 7520 6810 6380	4150 3930 3900 3600 3370	2680 2690 2680 2500 2350	1280 1340 1250 1180 1130	800 700 700 660 640 600
Vinogradova	and Efre	mov, 1937			70.0 60.0 50.0 43.7	5750 4470 3500 3010	3100 2620 2230	2220 1910 1650 1450	1130 990 900	590 530
× ×	56)°	d 75°	100°	40.0 30.0 25.0	3010 2800 2180 1980	2090 1810 1530	1400 1180	810 820 730	520 510 500
100 93.0 90.0 80.0	0	532 1 460 427 300	.0324 0235 0218 0093	1.0118 0025 0009 0.9880	20.0 20.0 10.0 0.0	1750 1400 1160	1370 1250 1030 910	1110 1100 850 750	680 640 580 520	460 460 410 380
L										

				Pushin, Matavu	lj and Rikovski,	1949
*	19.5°	σ 45°	,	gr %	mo1 %	n _D
100 93.0 90.0 80.0 75.0 70.0 60.0 50.0 43.7 40.0 30.0 25.0	37.62 37.37 36.90 36.74 36.64 36.30 36.18 36.95 35.95 35.85	37. 36. 35. 34. 34.	6 5 5	0 9 19 26.8 37.3 47.3 57 66.7 77.8 88.6	40° 0 11 20.5 30.7 40.5 50.2 59.2 68.5 79.2 88.8 100	1,5478 5464 5452 5440 5428 5418 5408 5398 5386 5377 5364
10.0	35.47 35.48	32. 32.		Dimethylanilin	e (C ₈ H ₁ , N) + n	⊢Cresol (C ₇ H ₈ O)
Pushin, Matav	ulj and Rikovsl	ci,1949		Kremann, Meings	ast and Gugl,191	4
mo1 %	n _D	mo1 %	n _D	0	0.9742 (I-	0.000 868 t)
0	45° 1.5452	59.5	1.5424 5417	25 50 75 100	0.9925 (1-	0.000 846 t) 0.000 815 t) 0.000 795 t) 0.000 711 t)
10 20 30	5446 5440 5434	70.7 79.7 88.5	5413 5405	nol %	20°	v 70°
40 50.2	5434 5427	100	5402	25 50 75	+0.20 -0.30 -0.40	-0.27 +0.17 -0.14
	ne ($C_8H_{11}N$) +	o-Cresol	(C ₇ H ₈ O)	Kremann, Gugl and	l Meingast, 1914	
Pushin and S1	adovich,1928	 	······································	mo1%	d.	η
mol %	f.t.	E			9°	(water= 1)
100 90 80 70 65 60 55	29.5 23.8 13.5 2.5 - 4.1 - 8.6 - 7.4		7.7 3.5	100 73.1 50 34.9 0.	1.040 1.020 1.002 0.990 0.965	30.0 11.16 6.26 3.49 1.28
50 45 40 35 30 25 20	- 7.7 - 8.5 -11.2 -13.7	-16 -15 -16 -16	.6	100 75 50	1.0426 1.0240 1.0040 64°.	29.30 13.69 6.25
10 0	+ 1.6			100 75 50 0.0	1.0014 0.9786 0.9585 0.9201 77°	4.119 3.320 2.295 1.3605
				100 73.13 25.0 0.0	0.992 0.966 0.936 0.909	3.76 3.49 1.95 1.33

Kremann and Sch	hniderschitsch, 1916	Kremann and Meingast, 1919
×	d	- Riemann and Merngast, 1717
	33° 45°	t d o
100 90.5 81.4 71.6 51.9 26.5	1.024 1.016 1.017 1.009 1.010 1.001 1.002 0.993 0.986 0.978 0.967 0.957 0.946 0.936	100 % 17.0 1.0367 35.78 19.0 0350 35.52 30.0 0268 34.53 40.0 0195 33.24
%	d 55° 63.5°	50.0 0120 32.59 60.0 0045 32.19 16.0 1.0373 35,59 20.0 0343 35.45
100 90.5 81.4 71.6 51.9 26.5	1.008 1.002 1.000 0.994 0.993 0.987 0.985 0.979 0.969 0.963 0.948 0.943 0.927 0.921	30.5 0265 34.80 45.0 0159 33.91 55.0 0082 33.46 65.0 0007 33.10 70.0 0.9970 32.61 80.0
% %	d	75 mol %
100 90.5 81.4 71.6 51.9 26.5	76.8° 96.5° 111° 0.992 0.977 0.966 0.984 0.969 0.958 0.977 0.962 0.950 0.968 0.953 0.942 0.952 0.937 0.925 0.931 0.915 0.904 0.909 0.893 0.881	14.0 1.0197 37.56 20.0 37.16 20.6 1.0142 37.16 25.4 0103 36.67 44.0 0.9955 35.09 57.1 9848 33.91 70.0
·	η (water=1)	10.0 1.0030 37.76
100 90,5 81,4 71,6 51,9 26,5	9.64 6.37 8.40 6.00 7.07 5.22 5.77 4.43 3.64 3.03 2.08 1.91 1.32 1.38	20.0 20.8 0.9941 36.91 25.5 9901 36.43 41.3 9773 34.90 55.1 9660 33.74 68.0 9554 32.51 70.0 - 80.4 0.9451 31.42 25 mol \$\$ 10.5 0.9835 37.60
8	n (water=1) 55° 63.5°	10.5 0.9835 37.60 20.0 36.84 20.8 0.9750 36.84 25.5 9706 36.34 41.0 9581 34.73
100 90,5 81,4 71,6 51,9 26,5	4.95 4.16 4.60 3.90 4.11 3.52 3.58 3.13 2.62 2.40 1.76 1.71 1.33 1.36	56.0 9453 33.31 70.0 - 31.68 0 mol \$ 10.0 0.9656 37.57
**************************************	η (water=1) 76.8° 96.5° 111°	- 21.4 9561 36.58 24.8 9533 36.08 35.5 9441 34.93 42.0 9388 34.10
100 90.5 81.4 71.6 51.9 26.5	3.25 2.41 2.21 3.10 2.33 2.18 2.85 2.20 2.06 2.61 2.06 1.98 2.10 1.79 1.77 1.64 1.51 1.49 1.36 1.30 1.32	49.9 9322 33,4k 60.0 9235 32.32 74.2 9117 30.38

Pushin, Matavulj and Rikovski, 1949	Dimethylaniline ($C_8H_{11}N$) + Cresol (C_7H_80)
% mol % n _D	Ampola and Rimatori,1896-1897
25° 0 0 1.5556 10 11 ,5536	% f.t. % f.t.
18 19.8 5520 23.2 25.5 5510 35 37.5 5488 44.2 47 5474 56.7 59.4 5455 58.2 61 5451 71 73.2 5431 77 79 5420 86.8 88.2 5410 100 100 5392	0 1.96 8.56 - 2.24 0.41 1.79 10.35 - 3.10 1.34 1.28 13.90 - 5.00 2.20 0.82 17.79 - 7.06 3.29 0.30 23.20 -10.34 4.83 -0.44 26.02 -12.23 6.31 -1.14
Kremann, Meingast and Gugl, 1919	Dimethylaniline ($C_BH_{11}N$) + Thymol ($C_{10}H_{14}0$)
mol % U Q mix	Ampola and Rimatori,1896-1897
16°	% f.t. % f.t.
0 0.449 - 50 0.451 -2.82	0 1.96 7.05 - 1.32 0.51 1.76 9.85 - 2.15 1.62 1.33 12.39 - 3.26
Dimethylaniline ($C_8H_{1,1}N$) + p-Cresol (C_7H_80)	3.05 0.74 13.60 - 3.62 5.03 -0.055 14.03 - 4.02 5.16 -0.14 16.82 - 5.65 6.90 -0.83
Pushin and Sladovic, 1924	
mol % f.t. E	Pushin, Matavulj and Rikovski,1949
100 33 - 90 24.6 - 80 11.7 - 70 -10.8 -39.8	mol % n _D mol % n _D
60 -19 -36,2 55 -28 -41 50 -37,2 45 -31,3 -38,4 40 -24,8 -39,3 35 -20,7 -41,7 30 -16,4 -39,4 20 -10,2 -	60° 0 1.5374 55.4 1.5161 10 5330 60.2 5149 20.2 5286 70.2 5120 30.3 5247 80 5095 40.3 5211 90.2 5067 45.8 5192 100 5041
0 + 1.6 -	Dimethylaniline (C ₈ H ₁₁ N) + Carvacrol (C ₁₀ H ₁₄ 0)
Pushin, Matavulj and Rikovski, 1949	Ampola and Rimatori,1896-1897
% mol % n _D	% f.t. % f.t.
40° 0 0 1.5478 9 10 .5463 20.3 22 .5444 27.8 30 .5433 37.2 40 .5420 47 50 .5403 52 54.5 .5397 57.2 60 .5388 78 80 .5355 88.7 90 .5334 100 100 .5318	0 1.96 11.68 -2.76 0.46 1.78 14.40 -3.96 1.90 1.20 16.48 -4.92 3.82 0.45 18.13 -5.65 5.59 -1.20 19.71 -6.36 7.75 -1.06 21.60 -7.34 9.74 -1.92

Dimethylaniline	(C ₈ H ₁₁ N) +	Guaiacol	(C ₇ H ₈ O ₂)	Dimethy	laniline (C ₈ H ₁₁ N) + o-Cl	nlorphenol (C ₆ H ₅ OC1)
Pushin and Rikov	rski,193 7			Bramley	,1916		(0,0001 /
5601 %	f.t.	mol %	f.t.		gr %	mo1 %	f.t.
ll 30	+ 2.5 - 1 - 5 - 10 - 16.3 - 7.5	60 70 80 90 100	+ 0.5 + 8 15 22, 28		0 3.75 7.92 11.61 15.45 19.37 26.61 35.10	0 3.53 7.45 10.95 14.60 18.4 25.4 33.6	+1.0 -0.35 -2.2 -4.0 -1.0 +4.0 10.0 13.75
Pushin and Pinte	er,19 2 9				44.64 53.94 59.78 65.49	42.5 52.45 58.2 64.05	16.2 16.6 15.7 13.9
mol %	đ	ŋ			74.99 82.71 78.66 88.00	73.8 81.8 77.5	8.1 0.4 5.3
0 10 20	30° 1.1236 1029 0859	4450 3710 3210			94.61 100	87.3 94.3 100 (1+1)	4.5 8.0
30 40 50 60 70	0673 0479 0313 0143	2840 2460 2160 1890		%		0° 10°	20°
80 90 100	0.9980 9795 9636 9477	1650 1460 1310 1170		0.00 14.67 27.71 40.65	1.0	0.9644 0070 9983 0432 1.0341 0820 0725	0.9562 9896 1.0250 0630
Pushin, Matavul	j and Rikovsk	i,1949		52.49 60.40 70.50 75.41 80.87]]]	1192 1093 1444 1343 1763 1659 1930 1824 2110 2002	0994 1242 1555 1718
mol %	n _D m	ol %	n _D	83.81 90.14 100.00		2110 2002 2207 2098 2416 2305 2741 2626	1894 1989 2194 2512
0 1 10 20 29.5	.5530 5515 5500	60 70 79.7 89.8	1.5448 5430 5418 5404	%	30°	40° d	° 80°
40 49.7		00	5386	0.00 14.67 27.71	0.9484 9809 1.0159	0.9399 0.92; 9722 954 1.0068 989	48 9374
Dimethylaniline	e (C ₈ H ₁₁ N) +	p-Hydrox	ybenzaldehyd (C ₇ H ₆ O ₂)	40.65 52.49 60.40 70.50 75.41	0535 0895 1141 1451 1612	0440 1.025 0796 060 1040 084 1347 114 1506 129	51 1.0062 00 0404 40 0640 42 0937
Lang, 1912 and S	chmidlin and	Lang , 1912		80.87 83.81 90.14	1786 1880 2083	1678 146 1771 155 1972 175	55 1252 56 1341
	t. %		.t.	100.00	2399	2284 200	
58.5 89 51.3 84 46.3 81 43.4 78	29. 25. 25. 16. 20. 21. 21.	3 65 4 61 7 46 1 30 6 - 1 8 - 3	.5 .5	The state of the s			
38.6 74 34.2 70	0.2						

%	0°	η 10°	20°	% Q mix % Q mix (cal/100 g) (cal/100 g)			
0.00 14.67 27.71 40.65 52.49 60.40 70.50 75.41	2025 3020 4350 6760 9840 11900 14400 15400 15830	1655 2340 3135 4300 5680 6720 7960 8300 8440	1385 1859 2430 3050 3700 4140 4690 4890 5000	40.5 490 62.6 631 45.7 531 64.85 618 49.0 558 67.25 599 51.2 570 69.85 570 54.2 593 73.65 531 57.4 616 80.0 450 60.5 631			
83.81 90.14 100.00	15720 14520 10790	8420 8000 6390	4980 4740 4210	Dimethylaniline ($C_8H_{11}N$) + p-Chlorphenol (C_6H_50C1)			
×	30°	η 40° 60°	80°	Pushin, Matavulj and Rikovski,1949			
0.00 14.67 27.71 40.65 52.49 60.40 70.50 75.41 80.87 83.81 90.14	1170 1473 1890 2350 2790 3090 3410 3505 3545 3545 3410	1024 798 1243 940 1410 1078 1660 1210 1915 1338 2085 1422 2305 1524 2400 1563 2470 1589 2475 1593 2450 1578	658 731 804 878 949 995 1050 1072 1090 1097	- mol % n _D mol % n _D			
100.00	3080	2320 1513 Rikovski,1949	1070	Diethylaniline ($C_{10}H_{15}N$) + Phenol ($C_{6}H_{6}0$) Tikhomirova and Efremov,1937			
mol %	n _D	mo1 %	n _D	% f.t. % f.t.			
0 10 22 29 42 49	1.5556 5558 5562 5566 5570 5573	25° 60.5 71 79.5 90 100	1.5577 5579 5576 5573 5566	100 41.3 50 - 3.3 95 38.3 38.7 -17.5 90 35.1 35 -25.2 85 30.6 30 -33.5 80 27.7 10 -43 70 17.2 5 -40.8 60 6.6 0 -37.7 55 1.7			
Bramley,191	6			¶ d 19.5° 25° 40°			
% 0-20 0 11.30 14.55 23.45 29.6 42.15 47.75 53.3	0.418 429 432 439 442 455 461 467	% 0-20° 58.4 63.75 68.3 72,2 80.0 86.8 92.0 100	U 2.466 467 463 458 451 441 427 401	100 1.0626 90 1.0703 1.0659 0494 84 0593 0537 0412 80 0550 0500 9362 75 0473 0423 0294 70 0410 0360 0213 60 0260 0206 0078 50 0110 0062 0.9930 38.7 0.9958 0.9909 9780 30 9828 9775 9650 25 9740 9687 9570 20 9687 9637 9500 10 9504 9457 9342 0 9384 9341 9219			

DIETHYLANILINE + P-ETHYLPHENOL

۶, 45°	d 50° 7 5°	100°	Diethylaniline ($C_{10}H_{15}N$) + Xylenol ($C_8H_{10}0$)
			_ Lecat,1949
100 1.0579 90 0450 84 0362	1.0532 1.0324 0407 0167 0312 0087	1.0118 0.9926 9350	% b.t.
80 0314 75 0251 70 0195 60 0086 50 0.9890 38.7 2737	0275 0037 0208 0.9964 0137 9887 0.9993 9751 9850 9612 9694 9410	9300 9720 9662 9510 9387	0 217.05 8.0 217.0 Az 100 226.8
30 9618 25 9531 20 9463 10 9312 0 9178	9575 9325 9492 9261 9425 9187 9285 9057 9137 8902	9112 9031 8963 8829	Diethylaniline ($C_{10}H_{15}N$) + Guaethol ($C_{8}H_{10}O_{2}$) Lecat,1949
% 25°	n 40° 50°	75° 100	% b.t.
100 - 90 8660	4150 2680 4490 3100	1280 800 1460 820	- 0 217.05 57 216.2 Az 100 216.5
84 8760 80 8470 75 8200 70 7750 60 6440 50 5270 38.7 4110	4490 3130 4350 3000 4150 2870 3950 2770 3490 2480 3000 2170 2510 1930	1440 830 1450 800 1370 800 1330 750 1240 750 1150 700 1070 660	Isoamylaniline (C ₁₁ H ₁₂ N) + Eugenol (C ₁₀ H ₁₂ O ₂)
30 3270 25 2860	2130 1650 1950 1520	950 570 880 570	Lecat,1949 % b.t.
30 3270 25 2860 20 2630 10 2170 0 1770	1800 1370 1480 1220 1350 1070	830 530 750 510 690 480	0 256.0 - 254.5 Az 100 254.8
×	19.5° σ	45°	
100 90 84 80	36.90 36.57 36.38	37.1 36.3 35.7	o-Toluidine (C ₇ H ₉ N) + Phenol (C ₆ H ₆ O) Kremann, 1906
75 70 60	36.39 36.16 35.88 35.46	35.3 34.4	% f.t. % f.t.
50 38.7 30 25 20 10 0	35.26 35.07 34.95 34.90 34.80 34.72 34.57	33.8 33.5 32.7 32.4 32.1 31.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Diethylaniline (C ₁₀ H ₁₅ N) + p-Eth	ylphenol (C ₈ H ₁₀	49.9 34.0 (1+1)
Lecat,1949			Biron, Nikitin and Yakobson,1913
*	b.t.		Rol % d Rol % d
0 60 100	217.05 214.0 218.8	Az	35° 100 1.0622 51.027 1.0282 82.942 0507 38.598 0184 79.062 0483 20.084 0032 66.472 0399 0 0.9865

o-Toluidine	(C ₇ H ₉ N) + m-Cre	esol (C	₇ H ₈ O)	Tsakalotos	,1908		
Lecat,1949		-, -,		nol %	đ	mol %	d
76	b.t.	·····	Dt mix	<u> </u>	2	5°	
0 61. 74 100	5 200.35 203.263 202.2		+5.9	0 33 49.6	0.993 1.012	66.2 75.1 100	1.023 1.025 1.031
Kremann, Meir	ngast and Gugl,19	14		Kremann, M	eingast and Gu	g1,1914	
mol %	đ			mo1 %	10°	Dv (%) 20°	70°
0 25 50 75 100	1.0151 (1 1.0276 (1 1.0386 (1 1.0452 (1 1.0493 (1	-0.000 (-0.000 (794 t) 802 t)	25 50 75	-0.615	-0,42	-0.40 -0.40 -0.30
Kremann, Gugl	and Meingast, 19	914	ر حون جوند بالبود فاتها فاتها المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة والمهم المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المو	Kremann, Gu	gl and Meingas	t, 1914	
mol %				mol %	η (water=1)	mol %	η (water=1)
12°	ر ميم جيها هر ميرسي هم هي عبد الموجع بعد المراه و	mol %	<u>d</u>	11	2°		54°
0.0 25.0 50.0 75.0 100.0	1.0053 1.0179 1.029 1.036	0.0 25.0 50.0 75.0 00.0	4° 0.9625 0.9755 0.9854 0.9943 1.0014	0.0 25.0 50.0 75.0 100.0	4.687 9.94 20.59 27.14 23.92	0.0 25.0 50.0 75.0 100.0	2.200 3.015 3.862 4.246 4.119
Kremann and M	eingast, 1914		هر حور بنون آنها قبيم بيش الله الله باشه الله الله الله الله الله الله الله ا		Meingast, 191		ن بر حين مين مدين الدي الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الد الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين ا
t	d	t	d	t	đ	t	σ
18.0 20.0	0 mol %	42.6 54.0	0.9801 9706	18.0 20.0 21.0 26.0	0 mol 37.61 37.43 37.07	% 42.6 54.0 65.5 70.0	35.72 34.90 33.98
21.0 26.0 16.5 20.0	0.9979 9937 25 mol %	65.5 70.0 68.0 70.0	9611 - 0.9713	16.5 20.0 25.1 38,0	25 mol 38.40 - 37.57 36.70	% 68.0 70.0 80.0	34.14 33.27
25.1 38.0	1.0069 0.9966	80.0	0.9620	10.5	50 mol	•	
10.5 11.0 20.0 20.8	50 mol % 1.0300 0295 - 1.0213	26.4 54.9 68.7 70.0	1.0167 0.9930 9814	10.5 11.0 20.0 20.8	37.98 37.84 - 37.31 75 me1	26.4 54.9 68.7 70.0	36.94 34.69 33.68
12.4 20.0 22.0	75 mol % 1.0356 1.0280	26.9 51.2 70.0	1.0240 0042	12.4 20.0 22.0	36.82 36.25 36.09	26.9 51.2 70.0	35.78 33.95 32.53
17.0 19.0 30.0	1.0367 0.350 0268	40.0 50.0 60.0	1.0195 0120 0045	17.0 19.0 30.0	35.78 35.52 34.53	40.0 50.0 60.0	33.24 32.59 32.19
						ره مومن مترسمان مارمن می می می میداد. برمان می مداندر مارس	نے میں بھی ہے۔ میں اس اس اس اس اس اس اس اس اس اس اس اس اس

O-TOLUIDINE + P-CRESOL

Tsakalotos, 1908	Pushin and Pinter,1929
mol% 7 mol% 7	mol % d n
25° 0 3645 66.2 13840 33 8060 75.1 13760 49.6 11210 100 12910 Kremann, Meingast and Gugl, 1914	30° 100 1.1236 4450 90 1129 4730 80 1014 4930 70 0863 5200 66 - 5220 64 - 5190 60 1.0758 5170 50 0632 5120
mol % U Q mix (cal/g) 90° 55° 20° 75 0.506 -0.378 -4.04 -5.31 50 0.490 -0.441 -4.6 -5.49 25 0.485 -2.663.54 0 0.492	40 0509 4820 30 0347 4330 20 0202 4000 10 0056 3430 0 0.9910 3100 m-Toluidine (C ₇ H ₉ N) + m-Cresol (C ₇ H ₈ O)
o-Toluidine (C ₇ H ₉ N) + p-Cresol (C ₇ H ₈ O)	Lecat, 1949
Lecat,1949	% b.t. Dt mix
% b.t. 0 200.35 57 203.5 Az	0 203.1 50 - +6.8 53 205.5 Az 100 202.2
o-Toluidine (C ₇ H ₉ N) + Guaiacol (C ₇ H ₈ O ₂) Pushin and Vaic, 1926	m-Toluidine (C ₇ H ₉ N) + p-Cresol (C ₇ H ₈ O) Lecat,1949
mol % f.t. E min	% b.t.
100 28	0 203.1 47 204.9 Az 100 201.7

p-Toluidine (C ₇ H ₉ N) + Ph	nenol (C ₆ H ₆ O)	Hrynakowski, Staszowski and Szmytowna,1936
Philip,1903		% f.t. E % f.t. E
% f.t.	% f.t.	100 42.3 - 40 26.0 16.2 90 29.4 - 30 20.3 -
100 40.4 93.7 35.5 87.2 29.0 82.8 23.5 79 18.1 76.4 13.4 72.1 9.5 68.1 15.3 64.6 20.4 58.9 25.6 54.7 28.0 (1+1)	50 29.5 46.9 30.0 41.5 28.8 36.2 27.0 33 24.3 29.3 20.6 27.3 20.3 24.3 23.9 17.7 30.5 11.2 35.9 0 42.8	80 13.6 8.4 20 28.6 18.1 70 12.5 8.2 10 39.2 17.2 60 22.8 7.6 0 43.4 - 50 28.3 12.8 (1+1)
Kremann,1906		(1+1) f.t. I = 30 II = 28.5
% f.t.	% f.t.	Kitran,1924
100 41,0	50.8 29.0	mol % f.t.
94.8 38.0 89.0 32.0 81.1 24.0 73.1 9.0 63.8 22.0 58.8 26.0 56.5 27.0	45.5 29.0 41.8 28.5 37.8 27.5 32.9 23.0 24.5 23.0 16.7 32.5 11.0 37.0	31 20.8 E 50 29.4 (1+1) I 28.6 (1+1) II 75 9.1 E
53.2 28.5 (1+1)	0.0 42.5	Bramley,1916
Pushin, 1926		% d
mol % f.t.	E min	39.9° 59.9° 79.8° 99.9° 125°
100 40.8 90 31.6 85 26.7 80 20.9 75 - 70 14.6 65 20.2 60 24.5 55 27.1 50 28.6 45 28.0 40 26.9	8.1 1.0 8.1 1.7 8.1 2.4 9.1 3.1 9.0 2.0 9.0 1.3 9.0 1.1 8.7 0.4 20.0 0.3 20.8 1.0	0.00 0.9703 0.9534 0.9365 0.9189 0.8962 9.85 .9808 .9640 .9470 .9295 .9068 20.67 .9913 .9744 .9574 .9398 .9172 29.86 1.0004 .9835 .9665 .9488 .9261 38.57 .0087 .9919 .9750 .9575 .9348 46.25 .0160 .9991 .9820 .9645 .9418 55.09 .0239 1.0069 .9898 .9723 .9495 62.70 .0305 .0135 .9965 .9795 .9567 71.11 .0372 .0201 1.0031 .9856 .9628 80.19 .0441 .0270 .0099 .9924 .9696 89.76 .0512 .0340 .0170 .9995 .9766 100.00 .0585 .0414 .0243 1.0065 .9833
35 22.9 32 20.9 31 - 30 21.2	20.7 1.9 20.4 2.3 20.8 2.3 20.7 1.9	% 39.9° 59.9° 79.8° 99.9° 125°
25 26.8 20 31.2 10 38.5 0 43.8	20.7 1.4 20.7 1.4 20.0 1.0 19.5 0.5	0.00 2080 1398 1006 776 608 9.85 2632 1699 1149 869 655 20.67 3352 1983 1323 969 706 29.86 4090 2283 1469 1050 749 38.57 4820 2564 1600 1123 790
P kg	f.t.	29. 86 4090 2283 1469 1050 749 38. 57 4820 2564 1600 1123 790 46. 25 5430 2810 1705 1175 820
Eutectic 1 2050 3050 3550	9.1 36.0 49.0 55.5	0.00 2080 1398 1006 776 608 9.85 2632 1699 1149 869 655 20.67 3352 1983 1323 969 706 29.86 4090 2283 1469 1050 749 38.57 4820 2564 1600 1123 790 46.25 5430 2810 1705 1175 820 55.09 6015 3015 1805 1226 842 62.70 6290 3115 1858 1245 851 71.11 6270 3110 1857 1240 847 80.19 5915 2990 1804 1210 830 89.76 5380 2780 1711 1171 806 100.00 4790 2520 1581 1115 770

Bramley,1916				Howell and .	Jackson,1934		
% 150	d)° 175°	η 150°	1 7 5°	%	mol	%	ε
0,00 0,87; 16.62 888; 23.11 896 34.42 906; 38.24 916; 45.61 91; 56.31 926; 65.69 93; 76.25 94; 79.43 94; 86.34 94; 100.00 95;	34 0.8502 98 8668 51 8732 59 8842 95 8878 72 8943 64 9034 41 9110 21 9188 43 9210 91 9256	491 541 560 594 603 619 636 641 635 630 618 592	423 456 468 490 507 517 520 515 512 508 492	0 10.00 20.00 30.00 40.00 47.50 50.00 52.50 57.52 60.00 62.50 65.00 67.50 70.00	0 11. 22. 32. 43. 50. 53. 55. 58. 60. 63. 67. 70.	15 79 74 23 72 13 65 66 48 89	5.07 5.68 6.29 6.91 7.57 8.04 8.14 8.31 8.47 8.63 8.73 8.73 8.96 9.01 9.07
Thole, Mussell a	nd Dunstan, 191	3		72.50 75.00 80.01	75. 77. 82.	01	9.13 9.20 9.43
%	đ	η		90.00 100	91. 100	ĭĭ	9.83 10.28
39.9 47.5 58.8	30° 1.016 1.021 1.032	7570 8640 9420		Howell and I	Robinson, 1933		
62.2 71.5 100.0	1.0375 1.043 1.067	9620 8940 7000		Я	ж.10 ⁷	%	×.10 ⁷
Beck, 1923				0 1 1. 66	50° 0.37 0.56	62.18 65.26	4.67 5.07
t	d (w	η ater 25°=1)		21.11 26.21 29.67	0.77 0.96 1.05	71.37 75.16 75.65	5.97 6.31 6.37
46 60 75 85 95 105 115 120 125 130	0 mol % 0.971 0.953 0.943 0.931 0.928 0.914 0.905 0.900 0.890 0.880 0.876	2.076 1.437 1,242 1.076 0.917 0.807 0.675 0.629 0.612 0.595 0.572		31.21 32.39 33.76 36.20 38.17 49.12 49.23 51.73 52.78 58.78 59.90	1.07 1.22 1.32 1.53 1.63 2.71 2.83 3.07 3.17 4.03	83.32 83.97 85.40 90.09 92.51 93.87 96.34 98.03 99.13 99.43	6.90 6.95 6.99 6.60 6.12 5.76 4.65 3.44 2.52 1.87 0.21
149 46 60 75 85	9.873 50 mol # 1.006 9.989 9.978 9.968	0.572 0.550 4.752 2.810 1.979 1.625		Hrynakowski	and Jeske, 19	938 (fig)
95 105 115	0.963 0.948 0.939	1.358 1.123 0.900		%	ε		molar larization
125 135 135 46 51 60 75 85 95 105 115 125 135	0.939 0.926 0.913 100 mol % 1.058 1.043 1.031 1.016 1.008 0.998 0.983 0.974 0.962 0.950	0.858 0.749 4.322 3.651 2.825 1.935 1.579 1.314 1.023 0.876 0.849 0.803		100 90 82 80 66 50 40 34 25 20 7	at room 9.8 9.9 10.0 10.1 10.2 8.99 8.0 7.7 7.0 5.7 4.6 3.8	5	76 66 67 68 69 68 64 63 62 56 50

p-Toluidine (C ₇ H ₉ N) + o-Cresol (C ₇ H ₈ O)	p-Toluidine (C ₇ H ₉ N) + p-Cresol (C ₇ H ₈ O)
Pushin and Sladovic,1928	Lecat, 1949
mol % f.t. E	% b.t.
100 30.3 - 90 23 - 85 19.2 14 80 - 14	0 200.55 57 204.05 Az 100 201.7
75 17.6 13.8 70 21.4 12.9 60 32.8	Pushin and Sladovic,1928
50 38 - 40 34 22.2 30 26.5 24.5	mol % f.t. E
25 - 24.8 20 31 25.6 10 37.3 22.5 0 43.5 (1+1) -	100 34.40 - 90 27.3 - 82.5 22.5 - 80 20.6 3.8 77 18.6 - 75 16.3 7.6 70 13.4 11.7
p-Toluidine (C ₇ H ₉ N) + m-Cresol (C ₇ H ₈ O) Lecat,1949	75 16.3 7.6 70 13.4 11.7 68 - 12.1 64 14 9.1 60 16.4 - 56 18.6 -
% b.t.	50 20.5 - 45 19.1 - 40 17.1 14.8
0 200,55 62 204,3 Az 100 202,2	35 30 20.9 15 20 30.4 15.8 10 37.4 14.1 0 43.5 (1+1)
Pushin and Sladovic, 1928	
mol % m.t. f.t. E	p-Toluidine (C ₇ H ₉ N) + Guaiacol (C ₇ H ₈ O ₂)
100 9.4 10.4 - 90 - 3.9 - 1.0 - 82.5 - 16.4 - 9 - 20 75 - 16.7 - 7.3 - 21.7	Pushin and Vaic,1926 mol % f.t. E min
75	100 28

p-Toluidine (C_7H_9N) + Resorcinol ($C_6H_6O_2$)	Talvidia (CHN) (Hudasariana (CHO)
Vignon, 1891	p-Toluidine (C_7H_9N) + Hydroquinone ($C_6H_6O_2$) Philip and Smith,1905
mol % f.t.	% mol % f.t.
0 45 33.33 39 50 69 66.67 80 100 110	100 100 169.2 84.4 84 159.0 69.8 69.3 147.1 60.6 60 137.5 51 50.3 125.1
Philip and Smith,1905 # f.t. # f.t. 100 108.7 33.9 16.4	49.6 48.9 123.4 44.2 43.6 113.0 40.7 40.0 105.2 37.4 36.9 96.6 34.1 33.5 96.75 27.8 27.2 96.2 21.7 21.2 94.1 10.7 10.4 83.7 1.6 1.5 46.0
89.9 97.8 33 16.5 70.2 80.9 31.5 16.2 59.4 56.5 28.2 12.45	1.0 1.0 42.7 0.5 0.5 43.05 0 (2+1) 43.4
53.4 31.6 26.8 17.2 50.6 31.95 26.8 15.0 45.3 30.05 25.9 19.2 40.5 26.4 15.4 32.9	p-Toluidine (C_6H_7N) + Pyrogallol ($C_6H_6O_8$)
36.8 22.15 0 43.3 34.6 18.1 (2+1)	Kremann and Zechner, 1925
	% f.t. E
p-Toluidine (C_7H_9N) + Pyrocatechol ($C_6H_6O_2$) Philip and Smith, 1905	100 125.5 - 92.32 126 - 87.75 117 - 80.60 113 - 77.19 110 - 74.27 107.3 - 72.65 106 -
% f.t. % f.t.	71.93 106 68.87 101.4 - 65.33 96 -
100 103.2 44.4 37.8 93.7 99.4 43.9 48.6 77.1 85.2 41.7 47.6 72.8 80.2 40.1 46.9 68.9 75.1 39.9 40.2 60.9 62.65 37.2 44.65 58.8 58.4 35.5 41.4 55.5 5 52.4 35.1 42.5 49.8 33.7 41.4 53.3 36.0 23.8 38.5 52.9 49.9 20.5 36.3 50.9 42.0 16.4 32.6 50 50.9 42.0 16.4 32.6 50 50.9 42.0 16.4 32.6 50 50.2 15.6 33.25 47.7 49.3 9.5 38.0 44.4 46.1 35.8 0 43.4 46 49.4 (1+1)	58.10 83 57.37 83 52.46 72 52.18 70 49.23 63.5 54.3 47.92 61 46.09 53.8 E 41.52 55.9 32.60 55.8 26.52 23.03 48.5 18.50 42.1 36 12.48 37.5 7.24 40.3 4.55 42 2.21 43 0 44 (2+1)

		······	TT TT			
p¬Toluidine ((C7H9N) + Thymol	(C ₁₀ H ₁₄ 0)	Burnham and Ma	ndgin, 1936	······································	
Pushin, Marich	and Rikovski, 194	18	mol %	n _D	mo1 %	n _D
mol %	f.t.	E	0 20 40	40 1.5537 5570 5590	60 80 100	1.5580 5545 5491
100 90 83,5	51 43 37	- - 25	5ŏ	5590	- · · ·	
80 75 70 65 60 55	34 30 26 29 32 34 35 34	25 22 25 26 25 25 22 35 21 22 24 25	p-Toluidine Burnham and	(C ₇ H ₉ N) + p-	-Chlorphenol	. (C ₆ H ₅ 0C1)
50 45	32	35 21 22	mol %	f.t.	mol %	f.t.
40 35 30 22 17 9 0	29.5 26 31 35 40 45 (1+1	-	0 10 20 28 30 40 50	43.5 37.5 28.5 21 22.5 24 26.2	60 70 71 80 90 100	22.5 10 7 23 36 42.9
p-Toluidine (C	₇ H ₉ N) + Orcinol	(C ₇ H ₈ O ₂)	mol %	n _D	mol %	n _D
Pushin, Lukavet	zki and Rikovski	,1948		549		
mo1 %	f.t.	E	0 20 40	1.5461 5500 5530	60 80 100	1.5540 5540 5538
100. 90 80 70 60 55 50	108 100 88 71 49 38 47	- - - 37 38 36	p-Toluidine (C ₇ H ₉ N) + o-Aminophenol (C ₆ H ₇ ON) Hrynakowski, Staszewski and Szmytowna,1936			
40 3 7. 5 33.3	56 56.5 5 7. 5	34 - -	R	f.t.]	E
30 25 20 15 12.5 0	57.5 57 55 50 43 39 40 45 (2	37 38 39 39 39 39	100 90 80 70 60 50	174.0 170.1 168.3 165.8 158.2 146.9	39 39 40	5.8 6.6 9.2 0.0
p-Toluidine (C	7H ₉ N) + o-Chlor	phenol (C ₆ H ₅ 0C1)	30 20 10 7	126.3 105.8 76.8		0.3
Burnham and Mad	gin,1936		4 2	42.1 42.6 43.0 43.4	4	0.8 1.0
mol %	f.t. mo	1 % f.t.	ō	43.4		
0 10 20 30 40 50	43.5 6 37 7 29 8 32 9 37.5 10	0 36 0 27 0 11 0 5 0 8				
			l			

p-Toluidine (C U N) + m-Amir	nophenol (C ₆ H ₂ ON)	p-Tøluidine	(C ₇ H ₉ N) + p	-Aminophen	ol (C ₆ H ₇ ON)
Kremann and Ho	, ,	tophenoi (Canyon)	Kremann and F	Iohl, 1920		
*	f.t.	E	K	f.t.		Е
0 2.7 4.7 9.4 12.3 15 18.1 22.4 24.2 27.6 31.8	44.0 43.0 40.9 39.0 38.0 40.0 44.0 46.8 47.4 49.0	37.0 - - 37.0	100 98.5 95.5 92.0 87.8 82.7 79.0 74.5 68.8 60.6	43.5 42.5 41.6 54.6 66.6 85.1 110.6 120.1 143.1		41.0 41.0 41.0
34.6 37.3 41.6	50.0 60.5 68.0	-	Hrynakowski,	Staszewski a	nd Szmytow	na,1936
45.6 49.7 53.9	76.5 81.0 86.5	- -	%	f.t.		E
53.9 57.7 59.3 67.0 69.6 74 79.3 83.3 87.7 91.1 94.5 97.1	91.0 92.0 96.0 98.5 100.5 103.5 106.5 109.0 111.7 113.5 115.0 116.5	37.0 	100 90 80 70 60 50 40 30 20 15 10 5	188.2 181.2 175.7 170.8 163.6 159.2 150.0 140.2 129.3 120.6 106.0 70.8 42.1		41.0 - 41.2 41.3 41.4 41.5 "
Hrynakowski,	Staszewski and S	izmy towna , 1936		من هر هن هن احد احداد، احد احداد، من خبرهن احد احداد، احد احد احد احد احد احداد، من هن هن هن احداد، احد احداد، احداد، احداد، احداد، احداد،	ر-میشندی کلید کنید کنید احق الحد لاجربالات محمد شعو کلید کلید کلیداندی احدو احدواندی کلید محمد کلید کلید کلید احدواندی احدواندی کلید کلید	ol (C ₆ H ₅ NO ₈)
%	f.t.	Е	Pawlewski,189	,	·	
100 90 80	123.4 115.4 109.2	- - -	mol %	f.t.	mol %	f.t.
70 60 50 45 40 35 30 25 20	104.8 95.6 80.0 75.2 69.2 58.1 50.0 48.5	44.6 45.3 47.1 48.0 47.3 	0 3.91 7.9 16.08 24.75 33.87 43.47	45.0 42,5 40.5 36.4 32.0 27.3 23.0	53.54 64.09 75.46 87.45 93.57	19.5 26.0 32.7 39.0 42.0 45.0
10 5 0	40.0 40.1 42.4 43.4	37.8 37.8 37.0	Philip,1903			
	(1+1)		%	f.t.	%	f.t.
			100 91.6 84.3 77.4 71.8 65.9 59.5 53.8	44.1 38.9 34.4 30.2 26.7 22.8 18.2 16.1	51.5 48.8 40.6 33.2 26.9 21.4 12.1	17.8 20.0 24.7 28.9 32.1 34.7 34.5 43.3

Atkins, 1803	p-Toluidine	(C ₇ H ₉ N) + p-N	itrophenol (C ₆ H ₅ NO ₈)
E : 15.6°	Kremann and	Petritschek,191	7
Thole, Mussell and Dunstan, 1913	\$	f.t.	E
% d n	100 93.6 85.4 79.4	111.4 104.5 93.8 86.0	- - - 57.7
0.0 0.958 5° 1800 35.3 1.050 1835 79.6 1.220 2150 100.0 1.282 2680	79.4 71.1 66.7 61 59.7 55.4 50.8 50.5	68.0 58.0 32.5 51.0 46.0 39.0	57.7 57.7 - - -
p-Toluidine (C_7H_9N) + m-Nitrophenol ($C_6H_5NO_8$) Kremann and Petritschek,1917	49.8 46.2 44.4 43 37.7 35.8	38.7 38.0 30.0 25.0 25.0 24.5 24.2	24.5 - - - - -
% f.t. E	31 30.5 23.1 22.8 15.2	28.0 28.6	20 19.8 19.5
100 94.8 - 92.8 88.4 -	15.2	34.5 42.5	(1+1) -
92.8 88.4 - 81.3 73.7 - 74.3 62.5 - 66.7 42.5 34.9 64.9 38.0 - 61.8 36.0 - 59.1 36.0 -	p-Toluidine Vignon,1891	$(C_7H_9N) + \tilde{\alpha}-N$	aphtol (C ₁₀ H ₈ O)
55 36.5 - 53.9 36.5 - 49.6 35.7 -	mo1 %	f.t.	mol % f.t.
44.9 32.2 - 43.5 32.0 - 41 29.2 - 39.6 29.0 23.0	0 33.33 50	45 46 51	66.67 61 100 92
34 24.8 30.0 - 14.1 36.5 -	Philip,1903		
5.4 40.5 - 0 42.5 (1+1) -	%	f.t. %	f.t.
	100 94.9 83.6 73 61.8 56.7 51.2 45.6	93.9 38. 89.9 34. 78.2 27. 62.5 22. 53.1 15. 53.6 8. 52.6 0	5 41.4 6 34.1-30.3 9 30.5 9 35.4
	Beck and Ebb:	inghaus, 1906	
	mol ;	% f.1	t. tr.t.
	100 75 60 50 40 25 19	94 75. 50. 53. 52 39 30.	2 48.5 2 28.5 2 31.5 7 10.5 9.5 12.5 3 11.5 22

Beck,1907			Kremann, Lupfer	and Zawodsky,19	20
t	d ⁿ 25 (water	=1)	%	f.t.	E
46 0 60 0 75 0 85 0 95 0 105 0 115 0 120 0 125 0 130 0 135 0 140 0	0 \$\%\\ .971		100 93.4 85.8 82.4 76.2 72.3 67.2 63.1 59.5 56.6 47.3 43.7 36.9 32.2 22.6 18.4 14.9 7.7 2.9	122.0 116.5 106.0 102.0 103.5 87.4 80.4 80.5 80.8 81.2 80.4 78.9 77.7 73.7 68.2 61.5 56.7 51.2 43.7 41.3 44.0	77
	.958 1.086 00 %		Kremann and Stro	hschneider, 191	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.092 3.397 .082 2.695 .075 2.280		8	f.t.	Е
120 1, 130 1, 140 1	.071 2.089 .055 1.793 .044 1.509		0 1.9 5.3 16.6 2 5.5	43.5 42.5 41.3 48.0 62.0	38.0 38.2
Hrynakowski, Staszews	ر الله الله الله الله الله الله الله الل		35.6 41.0 48.5	72.0 75.5 79.0	-
100 90 80 70 60 50 40 30	94.2 89.2 80.6 55 66.2 555.0 555.0 49.3 3 42.3 33.8 3	E	56.5 61.0 61.4 64.5 68.5 73.5 81.7 88.5 94.0	81.5 (1+1) 81.2 81.3 81.0 80.0 85.0 97.0 105.5 113.8 122.0	-
10	42.2 43.4	1.3	Hrynakowski, Sta	szewski and Szm	ytowna, 1936
p-Toluidine (C ₇ H ₉ N) Vignon, 1891) + β-Naphthol (C _{1 o} H ₈ O)	100 90 80 70	f.t. 122.3 110.1 111.4 87.9	80.0 80.6 81.0
mol % f.	t. mol %	f.t.	65 60 55 50	83.2 83.3 85.6	81.0 81.0 81.2
0 48 33.33 78 50 82	5 66.67 5 100 2	91 122	50 40 30 20 10 5 0	87.9 83.2 83.3 85.6 82 78.2 70.0 58.3 40.0 42.2 43.4 (1+	40.0 40.0 39.8 -

Dimethyl-o	o-toluidine (C	₉ H ₁₈ N) +	Phenol (C ₆ H ₆ O)	m-5-Xvlidine	(C _B H ₁₁ N) +	m-Cresol (C ₇ H ₈ O)
Lecat,1949)		(5,11,64)	Morgan and P			, -
	X	b.t.		7/2	f.t.	# %	f.t.
m-xylidin	0 69.5 100 e (C _B H ₁₁ N) +	185.3 180.6 182.2 Phenol (Az	100 90 82.5 80 70 64.1 60 51	8.0 2.5 -3.5 0 8.5 10.1 9.7 4.7	50 45 40 30 24 20 10	4.8 4.9 3.5 - 7 -18 -10 0.5 9.5
Kremann,1	906						
100 87.8	f.t. 41.0 33.0	46.0 42.1	f.t. 16.0 16.0	m-5-Xylidine Morgan and F	e (C ₈ H ₁₁ N) +	p-Cresol (C ₇ H ₈ O)
80.6 70.4 63.8	$\begin{array}{c} 25.0 \\ 8.0 \\ 2.0 \\ \end{array}$	41.9 37.6 33.4	16.0 14.5 13.0	%	f.t.	 %	f.t.
60.1 55.8 51.9 47.4 ——————————————————————————————————	7.0 10.5 14.5 16.0 (1+		10.0 5.0 - 6.0 - 16.6	100 90 83 80 70 64.5	34.5 22.5 10 9.5 19.5 20.2	50 40 35 15 10 0	13 0 -10 - 9.5 - 3 + 8.5
Morgan and	Pettet, 1935						
%	f.t.	~~~~~~ %	f.t.	m-5-Xylidine	e (C ₈ H ₁₁ N) +	o-Ethylphe	nol (C ₈ H ₁₀ O)
100	41	43,7	0.2	Morgan and F	ettet, 1935		
90 80 70	33.5 23 5.5	40 30 20	9.2 8.5 3.0 -8.0	%	f.t.	Я	f.t.
50	2.5 7.0 (1+1)	10 0	9.5	100 90 80 70 60	-23 +3 20 28	30 20 15.5 13	20.5 10 + 2 - 1.5 + 1
m-5-Xylidir	re (C ₈ H ₁₁ N) +	o-Cresol	(C ₇ H ₈ O)	50 40	30.0 28	0	+10.5
Morgan and	Pettet, 1935						
*	f.t.	%	f.t.	m-5-Xylidine Morgan and F		p-Ethylphe	nol (C ₈ H _{1 o} 0)
100	30	47.2 40 30	48.3		میں سے میں میں میں سے میں سے حمد حمد حمد میں میں میں		
90 80 70	30 23 23 38 45 46 (1+1)	30 20	42 32	%	f.t.	%	f.t.
70 60 50	45 48 (1+1)	20 10 0	48.3 47.0 42 32 10 9.5	100 90 80 75 70 67 60	44 34.5 21 14 13 14 11.5	50 40 30 20 10	5.5 - 3.5 - 5.0 + 4.0
				6 7 60	14 11.5	0	9.5

m-5-Xylidine	$(C_gH_{11}N)+$	p-Xylenol (C ₈ H ₁₀ 0)	m-5-Xylidine	$(C_8H_{11}N) + 4$	-Methy 1-2-ethy lphenol ($C_9H_{12}O$,
Morgan and P	ettet, 1935		هندر الندر الندر الدو الدو الدو الدو الدو الدو الدو الدو	Morgan and Pe	ttet, 1935	حد الدين عبر الحد الحد الميانات الله عبر شير الذي الذي جرز مين مين عبر الدين ويزم عبر الدين الدين	
%	f.t.	%	f.t.	%	f.t.	% f.t.	
100 90 80 70 60 50	72.5 67 60 57.5 63 65.1 (1+	40 30 20 10 5	62.5 57 45 22.5 5	100 95 90 88 85 80 70 60	15 8 - 1 0 12.5 20 29.5 32.5	50 32.5 40 29.5 30 23.5 20 12 15 3 10 3 5 7.7 0 10.0	
m-5-Xylidine	e (C ₈ H ₁₁ N) +	2-Methy1-4-	ethylphenol (C ₉ H ₁₂ O)	53.5 o-Phenylened	33.0	(1+1) (1 ₂) + Phenol (C ₆ H ₆ 0)
%	f.t,	 %	f.t.	Kremann and	Petritschek,19	17	
100	6	40	24	%	f.t.	E	
90 80 70 60 52,9	- 1.5 + 0.5 20.5 26.5 27.4	30 20 10 0	16 2.5 3.5 10 +1)	0 4.2 12.8 21.6 34.3 39.6	100.0 97.5 91.7 85.0 71.9		,
m-5-Xylidine	e (C ₈ H ₁₁ N) +	3-Methyl-4-	ethylphenol (C ₉ H ₁₂ O)	32.0 45.8 47.4 49.3 50.0 51.7 52.4 53.7	66.3 55.2 52.5 51.0 49.6 46.5 45.0 42.0	38.7 	
%	f.t.	%	f.t.	55.0 57.3 58.1	43.0 42.0 42.0	-	
100 95 90 85 80 69.2 65 60 (2+1	23.5 19.5 11.5 13 18 22.9 22	55 53 45 40 20 15 10 0 (1+1	23 23.5 21 17:5 -10 -5 -0.5 10.5	62 62.6 66.2 67.5 69.6 71.5 72.8 74.2 76.7 79 79.1 81.2 85.4	40.1 39.5 37.5 36.2 34.5 30.5 30.3 28.9 29.5 29.0	28.8	
	e (C ₈ H ₁₁ N) +	3-Methy1-6-	ethylphenol ($C_9H_{12}O$)	93.5 97.2 100	35.5 38.5 40.5	- - -	
Morgan and P		ے سے لیے لیے ہے ہے سک سے اماد میں اماد میں اماد میں اماد میں اماد میں اماد میں اماد میں اماد میں اماد میں اماد	مو مر مو مار مو مو مو مار مار مار مار مو مو مار مار مو مو مار مار مو مار مار مار مار مار مار مار مار مار مار	(1+1)	(2+3) (1+	2) (1+4)	
%	f.t.	% 	f,t.				=
100 90 80 75 70 60 53	42 35 28 32 37.5 42 43.1 (1-	50 40 30 29 11.55 10	43 40 33.5 20 3.5 3.8 10				
				l			

o-Phenylenediam	ine (C ₆ H ₈ N ₂) +	Hydroquinone (C ₆ H ₆ O ₂)	o-Phenylenediam	ine (C ₆ H ₈ N ₂) +	Pyrocatechol (C ₆ H ₆ O ₂)
Krepann and Str	ohschneider,1918		Kremann and St	rohschneider,191	
%	f.t.	E	%	f.t.	E
0 1.8 4.9	99.8 98.8 96.5	- -	0 6.5	99.8 95	
9.7 14.3	93.8 95.5		6.5 12.4 15.5 21.2 27.2 34.0	92	~
14.3	95.5	91.8	15.5	90	-
17.3	98.0 102	_	27.2	84.5 79.5 78	-
22.0 27.2	104	-	34.0	78.	76
33.1	105 (2+1)	-	40.0	83	-
38.8 46.5	104 112	_	44.0 50.0	84 84 5 (1±1)	-
51.0	117	_	51.2	84.5 (1+1) 84.5	-
51.0 56.5 62.9	123	-	55.5 60.2	84	- 1
62.9	131	~	60.2	8 2 80.0	-
68.2 87.0	13 7 15 7	-	65.1 68:0	80.0 7 9	
95.7	165	~	80.1	87.0	
100	169	-	§ 85.1	87.0 92.5	76
ļ			94.3 100	99.0	-
			100	102.7	- 1
o-Phenylenedias	nine ($C_6H_8N_2$)	Resorcinol	o-Phenylenediam	ine (C ₆ H ₈ N ₂) +	Pyrogallol
		$(C_6H_6O_2)$	g Then Tenedian	(08118112)	(C ₆ H ₆ O ₃)
Kremann and Str	ohschneider,1918	8	Kremann and Zec	hner,19 2 5	
d	£ 4	IP.			
% 	f.t.	E	%	f.t.	E [
0	100	-	100	10(0	
4	97.5	-	100 93.85	126.0 121.7	
10.2 12.7	93.5 92	-	87.42	115,6	
20.1	84.5	-	W 80.89	108	-
26.0	75	_	74.66 72.10	97.1	88
27.2	73 65	-	69.07	88	87.6
30.2 32.0	60 60	44.3	69.06	88.2	-
36.2	47	_	66.0	01.0	88.1
∫ 39.8	48	-	63.0 62.01	91.0 92.0	87
40.0	48	-	59.6	93.0	-
43.0 44.8	49 49.2	_	56.8	93.6 93.5 93.4	-
45.1	49.3	_	56.3 56.21	93.5	-
49.0 51.5	50 (1+1) 50.1	-	¶ 51.3	93.4	-
51.5	50.1 50	-	49.4 47.5	92.9 91.7	-
53.0	50. 50.0	_	47.5 47.4	91.7	-
53.8	50	.= .	46.0	92 90.8	74
57.6	49.0 49.0	47.0	44.4	89.5	·
58.5 60.0	47	47.0	40.8 35.2	86	-
61.6	50.5		33.0	79.8 77.5	73.2
64.2	58 58	46.5	33.0 29.2	-	73.2 74
68.0	69	<u>-</u>	24.6	79. 6	74
64.6 68.0 69.0 73.5	<i>7</i> 0	-	23.3 19.8	81 85.2 91.0 92.7 93	74 74 74
73.5 84.0	80	47.0	14.3	$\overline{21.0}$	′2
88.0	96 100	47.0	12.1 11.6	92.7	-
88.2	100	-	9.2	93 94.3	-
95.0 100	100 105 108.5	=	6.7	9 7	-
100	108.5	-	3.4	99	
			. 0	100.9 (1	+1) -
			· (===================================		
]					

o-Phenylenedi	iamine (C ₆ F	I ₈ N ₂) + Th	ymol (C ₁₀ H ₁₄ 0)	o-Phenylenediamin	ne (C ₄ H ₀ N ₀) +	Orcinol (C ₇ H ₈ O ₂)
Pushin and De	ezelic, 1938	B		Pushin,Lukavetzki		
mo1 %	f.t.	E	min.	mol %	f.t.	E
0 10 20 30 40 50 60 70 75 80 90	102 97 91.5 85.5 78.5 75 38 29.5 35.5 44.5	28.5 29 29 29.5 10 10	0.7 1.0 1.1 1.7 2.1 2.4	100 90 85 80 77.5 75 73.5 72.5 70 66.7 62.5	108 100 95 88 84 81 77 80 82 83 82 83	70 73 75 77 77 77 77 77 77 64
o-Phenylenedia	mine (C ₆ H ₈	N ₂) + Salo	ol (C ₁₃ H ₁₀ O ₃)	55 50 45 42.5 40	77 76 72 73 74 75 76	72
Pushin and Dez	elic, 1938	ند دي منز ميراني نب سه اند سو ان است	سي إنشيانك كليم الكل الك أدبي جو أدب الدراجي الدو الذو الله الدراج	38 33.3 30	82	- - 74
mol %	f.t.	E	min.	27 25 20	84 86 90	74 74 74 74
0 10 20 30 40 50 60 70 80	102 97 93 89 86 82 78 72 63	- - 39 40 "	0.5 0.6 0.7 0.8 1.1 1.2	o-Phenylenediamin	97 103 (e (C ₆ H ₈ N ₂) +m	2+1) -
95 100	40 43	h 	1.4	× ×	f.t.	E
Dezelic,1932	· · · · · · · · · · · · · · · · · · ·	···	niacol (C ₇ H ₈ O ₂)	0 3.5 9.6 10.7 13.8 18.3 21.7 26.8 29.8	100.5 99.0 97.0 94.5 92.0 89.0 86.0 82.0 78.5	-
mol %	f.t.	E	tr.t.	35.4 40.7 44.4	73.0 68.0 63.0	63.0
100 90 87 80 70 66.7 60 50 40 30 20 10	29 22.5 21.5 30 31 40.5 60 72 80 88.5 95 100.5	29 21 21 18 21 	31 31 31 30 30 30	49.4 53.8 55.6 60.6 64.1 67.6 72.3 75.4 80 87.3 93.6	67.5 73.5 75.5 83.0 87.0 90.0 94.0 98.0 101.5 109.0 113.5 118.0	63.0 62.5

o-Phenylenediamine ($C_6H_8N_2$) + α -Naphthol ($C_{10}H_80$	o-Phenylenediamine ($C_6H_8N_2$) + 1,4-Dioxynaphtha- lene ($C_{10}H_8O_2$)
Kremann and Strohschneider,1918	Kremann, Hemmelmayer and Riemer,1922
% f.t. E	% f.t. E
0 99.8 - 5.8 97.0 - 11.2 95.0 - 20.2 88.0 58.2 27.0 82.0 - 34.9 72.3 58.2 42.5 61.0 58.0 50.1 59.0 - 54.5 59.8 - 59.0 60.0 (1+1) - 62.0 59.8 - 67.7 59.2 -	100 183 - 92.1 178 - 85.5 165 - 46 113 - 40.9 110 - 32.5 105 - 25.3 100 - 20 94 87 13.5 95 87 8.5 99 - 0 103 (1+1) -
68.5 59.1 - 74.6 58.0 - 75.0 60.0 - 77.5 66.0 - 81.0 73.0 57.6 89.0 85.0 - 94.0 89.5 57.2	o-Phenylenediamine ($C_6H_8N_2$) + 1,6-Dioxynaphthalene ($C_{10}H_8O_2$) Kremann, Hemmelmayer and Riemer,1922
72.0	f.t. E
o-Phenylenediamine ($C_6H_8N_2$) + β ~Naphthol ($C_{10}H_80$ Kremann and Strohschneider,1918	94 131 - 80,2 111 - 73,4 95 - 65,3 85 - 61,9 94 -
0 99.8 - 6.8 96.5 - 12.7 93.5 - 22.6 88.0 79.0 29.8 84.0 - 34.9 79.0 - 41.1 82.0 - 46.5 84.0 - 51.5 85.5 57.3 86.0 (1+1) - 63.0 85.0 -	59.7 95 57.2 94 - 51.8 90 - 47.3 82 - 43.2 71 62 36.9 72 62 27.9 82 - 21.6 92.5 62 13.1 99 - 5.5 101 - 0 103 - (1+1)
63.1 85.0 - 65.5 84.0 - 65.5 84.0 - 67.7 83.5 - 72.2 81.0 - 78.2 92.0 86.2 103.5 80.5 93.5 113.0 -	o-Phenylenediamine ($C_6H_8N_2$) + 1,8-Dioxynaphthalene ($C_{10}H_80_2$) Kremann, Hemmelmayer and Riemer,1922
100 122.0 -	% f.t. E
o-Phenylenediamine ($C_6H_8N_2$) + 2,3-Dioxynaphth lene ($C_{10}H_8O_2$) Kremann, Hemmelmayer and Riemer,1922 # f.t. 0 103 2.9 101 5.6 98.5 (3+2) 8.3 99 " 14.5 119 " 19.9 130 " 36.1 155 reaction 100 162	10 103 - 4.4 101 - 8.3 98 - 15 95 - 21.4 108 - 25.7 119 - 30.9 130 - 37.5 140 - 42.8 145 - 53.4 149 - 60.3 151.5 - 66.4 149 - 76.9 142 - 87.2 128 100 137 - (1+1)

o-Phenylenediami lene (C ₁₀ H ₈ O ₂)	ne (C ₆ H ₈ N ₂)	- 2,6-Dioxyna	phtha-	o-phenyle	nediamine	(C ₆ H ₈ N ₂)+ m-Ni	trophenol	
Kremann, Hemmelm					nd Petrits	_		(C ₆ H ₅ O ₈ N)
%	f.t.	E					·		
,-	~ ~~~~			% 	f.t.		%	f.t.	
0 4.6 10.6 13.7 16.6 23.2 27.8 33.9 39.4 42.2 46.4 50.5 50.7 56.3 61.9 78.4	103 101 114 122 127 135,5 139 143,5 146 148 150 151 150 149 144 133 152 178	99-98.5 " 99-98.5 - - - - 124		100 97.3 94.1 87.7 81.4 77.4 72.3 66.7 65.2 62.1 60.8 59.8 59.8 59.5	95.0 92.5 90.0 82.5 73.3 73.7 73.7 73.1 71.3 769.1 69.3 69.3 65.0		53.3 52.8 52.3 49.3 48.6 43.6 41.3 35.2 29.4 21.7 11.8 4.4	63.1 63.2 73.9 63.4 63.1 67.1 70.0 71.5 72.5 77.8 83.0 89.0 94.0 98.2 100.0	
85.5 9 3.4 100	205	- (:	3+2)		(2,1)	(111)	···		
o-Phenylenediami lene (C ₁₀ H ₈ O ₂)			aphtha-		nediamine			itrophenol (C ₆ H ₅ O ₈ N	()
KI enami, nemmera	nayer and kreme	1,1722							-
%	f.t.	Е		%		f.t.		E	
0 8 18 23.2 27.3 32.3 40.5 48 50 60.7 66.6 74.5 84.1 92.7 100	103 97 107 113 119 126 134 139 140 115 125 149 168 178 186		(3+2) 	0 5 11 22 29 39 45 51 52 56 68 74 81 88 93	.4 7.7 2.3 3.4 8.1 1.4 8.9 5.5 5.5	100.0 97.8 95.1 83.0 73.5 68.3 73.2 74.4 78.8 83.5 87.8 86.3 105.5 105.5	(1+2)	67.2	
Kremann and Petr	itschek,1917	(c,	(H ₅ O ₅ N)						=
% 5.3 14.8 22.5 30.8 37.8 48.1 54.7 62 67.5 68.5 74 78.9 85	f.t. 100.0 97.5 94.2 91.5 87.5 84.3 80.1 75.5 70.5 67.0 66.5 60.0 55.6 46.5 38.8	38.2 							
96 100	41.8	-		!					

o-Phenylenediamine ($C_6H_8N_2$) + 2,4-Dinitrophenol ($C_6H_40_5N_2$)	m-Phenylenediamine ($C_6H_8N_2$) + Guaiacol ($C_7H_8O_2$)
Kremann and Zawodsky,1920	Dezelic,1932
% f.t. E	mol % f.t. E
100 110.0 - 95.7 105.0 - 93.4 103.2 - 89.6 99.0 - 84.7 94.2 - 81.0 90.7 - 80.0 89.8 - 78.8 88.8 83.5 76.2 85.8 - 74.9 85.0 83.5 72.8 83.8 - 70.8 84.5 - 67.3 85.0 - 64.7 85.4 -	100 29 29 90 22.5 16.2 80 16.2 16.2 70 25 13 60 26.5 - (1+1) 41 22 22 40 23.5 16.5 30 37.5 19 20 47 22 10 55 19 0 63 -
62.7 85.2 - 62.2 85.6 -	(1+1) (1+2) (2+3)
59.3 85.0 - 57.2 84.5 - 55.0 83.5 - 52.9 83.0 -	m-Phenylenediamine ($C_6H_8N_2$) + Resorcinol ($C_6H_6O_2$)
52.1 82.0 - 48.6 79.0 - 46.2 75.6 -	Kremann and Strohschneider,1918
43.6 72.0 72.0 40.5 75.3 7.0	% f.t. E
37.8 77.5 71.5 33.3 81.3 72.0 28.3 85.1 " 23.5 88.7 " 17.8 92.5 - 10.2 96.0 - 4.2 99.0 - 0 100.2 -	0 62.0 - 7.9 55 32 14.2 45 33 30.3 57 - 45.3 77.0 - 55.0 78 - 61.0 73 - 66.2 65.5 52.2 72.0 - 73.0 58 52.6
Buehler and Heap,1926	73.0 58 52.6 76.0 69.5 53.0 82.0 85.0 –
(1+1) f.t. = 93.6-94.0°	92.2 100 - 100 108.5 -
π -Phenylenediamine ($C_6H_8N_2$) + Phenol (C_6H_60)	(1+1)
Kremann and Petritschek,1917	m-Phenylenediamine ($C_6H_8N_2$) + Hydroquinone ($C_6H_6O_2$)
% f.t. % f.t.	Kremann and Strohschneider,1918
100 40.5 50.8 52.0	% f.t. E
96.6 36.9 49.6 51.4 90.7 31.5 46.4 50.6 86.1 25.0 41.6 49.3 80 34.3 35.9 46.9 70.7 47.2 29.2 44.6 65.6 50.5 24.5 42.0 65.2 50.7 15.8 48.6 62.0 51.8 11.7 51.8 60.3 52.5 7.1 56.4 56.6 52.5 0 62.0 54.9 52.6 (1+1) (1+2) E: 41.0° (2+3)	0 62.0 - 6.3 60.0 60.0 12.3 85 - 20.2 103 - 37.1 121 59.7 48.5 127 - 61.0 125 - 71.4 140 - 72.2 141 - 88.6 160 119.8 95.0 165 - 100 169 - (1+1)

- Phonylonedianis	20 / C II N	humaga tagha l	m-Phenylened	iamine (C ₆ H ₆	₃ N ₂) + Py	rogallol (C ₆ H ₆ O ₉)
m-Phenylenediamir	ie (C ₆ n ₈ n ₂) + i	(C ₆ H ₆ O ₂)	Kremann and			
Kremann and Strob	nschneider,1918		%	f.t.		E
Х	f.t.	E	100			
0 5.1 12.1 19.1 32.3 38.2 45.6 54.0 63.0 64.0 70.0 73.0 81.8 90.0 96.2	62.0 56.0 47.0 44.0 54.0 60.0 64.0 64.0 58.2 60 70.0 76 88 97 100.2 102.7 (1+1)		100 94.6 88.9 82.3 77.4 67.2 64.1 60.3 56.6 52.4 50.2 45.5 44.3 41.1 33.19 30.94 22.43 21.92 15.67 10.62 7.09	77. 74. 3 74 70. 63 54 33 44. 51 55	3 2 5 5 4 4 4 4 1 0 0 8 8 9 9 7 7 7 7 9 9	75
Pushin, Lukavetz	ki and Rikovski,	1948	0	61 (1+1)	-
mol %	f.t.	E	m-Phenylened	iamine (C ₆ H ₈	N ₂) + α-1	Naphthol
100 90 80 76	108 99 80	- 69	Kremann and			(C _{1 o} H ₈ O)
76 70 60	80 71 77 83	71 71	K	f.t.	%	f.t.
50 40 30 20 17 10 0	85 82 71 46 40 53	39 38 40 40 +1)	0 3.6 10.0 17.4 20.9 30.6 43.0	62 60 555 49 45 32 34	47.4 54.0 62.5 70.1 78.0 87.2 95.0	34.5 35.0 34.0 35.0 64.5 81.0 89.5
m-Phenylenediami	ine $(C_6H_8N_2)$ +	Salo1 (C ₁₃ H ₁₀ O ₃)		(1+1)		, -
Pushin and Dezel	lic,1938					
mol %	f.t.	Е				
0 15 20 40 60 75 80 85 90 95 100	63 57.5 55.5 48 41 36.2 35 36.2 37.5 40	 35 34 35 - - -				

m-Phenylenediamine	($C_6H_8N_2$) + β -Naphthol ($C_{10}H_80$)
Various and Campber	h-11010

Kremann and Strohschneider, 1918

%	f.t.	%	f.t.
0 3.8 12.0 19.8 29.5 37.0 42.8	62.0 59.0 72.1 81.5 91.0 96.0 101.0	57.5 62.8 69.0 73.4 78.5 86.9 94.8	110.0 112.5 114.0 114.0 113.0 106.0 113.5
50.0	106.0	100	122.0

m-Phenylenediamine ($\rm C_6H_8N_2$) + 1,4-Dioxynaphthalene ($\rm C_{1.0}H_8O_2$)

Kremann, Hemmelmayer and Riemer, 1922

Z	f.t.		E	
 100 88.0 80.2 63.7 52.7 47.9 42.4 33.6 26.6 14.5 4.6	183 160 140 123 122 120 113.5 106 98 79 61 63.5	(1+1)		
		1/		

m-Phenylenediamine ($C_6H_8N_2$) + 1,6-Dioxynaphthalene ($C_{10}H_80_2$)

Kremann, Hemmelmayer and Riemer, 1922

d	_			
 %	f.t.		E	
100	134		_	
91	119		_	
86.7	103		87	
75.3	97		n'	
6 7.8	116		_	
62.7	123		_	
58.4	125		-	
55.2	123		_	
50	118		_	
47.4	115			
41.4	110		-	
31.7	97		-	
30.2	96		_	
22.2	86		49	
12	55	(3.3)	49	
0	63	(1+1)	~	

m-Phenylenediamine ($C_6H_8N_2$) + 1,8-Dioxynaphthalene ($C_{1\,0}H_80_2$)

Kremann, Hemmelmayer and Riemer, 1922

100 137 - 91.3 127 - 84.2 116 - 75.9 98 - 64.4 92 - 58.2 101 75 54.0 98.5 - 44.6 92 - 44.5 95.5 - 41.5 90 - 35 84 - 31.8 81 - 31.8 81 - 23.5 73 - 17.4 66 - 9 58 58 4.3 61 58	*	f.t.	E
0 03 - (1+1)	91.3 84.2 75.9 64.4 58.2 54.0 44.6 44.5 31.8 23.5 17.4	127 116 98 92 101 98.5 92 95.5 90 84 81 73 66 58	75 - - - - - - - 58

m-Phenylenediamine ($C_6 H_8 N_2$) + 2,3-Dioxynaphthalene ($C_{10} H_8 O_2$)

Kremann, Hemmelmayer and Riemer, 1922

K	f.t.	E
100 87.4 80.5 72.9 66.4 53.7 48.9 46 42.4 30.5	162 150 139 135.5 145 149 144 140 135	- 123-122 - - - - - -
$\begin{array}{c} 17.2 \\ 4.0 \\ 0 \end{array}$	89 56 63	53 (1+1)

m-Phenylenediamine ($C_6H_8N_2$) + 2,7-Dioxynaphthalene ($C_{\uparrow,0}H_80_2$)

Kremann, Hemmelmayer and Riemer, 1922

%	f.t.	E
100	186	_
91.5	179.5	_
85.1	167	-
77.8	148	-
71.9	145	127-126.5
65.1	131	n
59.6	139	-
53.0	135.5	-
47.4	129.5	-
39.6	120	-
30	104	-
22	90	53
11.3	71	11
0	63	- (1+1)

m-Phenylenediamine ($C_6H_8N_2$) + 2,6 lene ($C_{10}H_8O_2$)	-Dioxynaphtha-	m-Phenylenediami	ine (C ₆ H ₈ N ₂) +	o-Nitrophenol (C ₆ H ₅ O ₈ N)
Kremann, Hemmelmayer and Riemer, 19	22	Kremann and Peti	ritschek,1917	
% f.t.	E	X	f.t.	Е
100 216 88.6 194 79.1 168 75.5 159 69.9 144 65.1 147 61.7 170 56.5 170.5 52.2 169 49.7 168 45.1 165 41.5 163 35.2 157 27.4 146 18.4 129 6.1 81 0 63 (1+1)		100 89.8 82.7 77.7 72.6 68.6 65.3 62.9 58.4 58 53.6 52.4 49.9 46.0 42.3 33.9 25.4 17.8 8.3 5.9	44.3 39.0 36.5 34.9 -33.5 34.5 35.5 37.7 37.9 39.5 40.5 41.5 42.9 45.2 48.0 51.6 53.6 58.2 59.2 62.0	33.5
Kremann and Hohl,1920	(C ₆ H ₇ ON)	m-Phenylenediam	ine (C ₆ H ₈ N ₂) +	m-Nitrophenol (C ₆ H ₅ O ₃ N);
% f.t.	E	Kremann and Pet	ritschek,1917	
100 118.0 95.8 115.0 92.1 112.2 86.2 105.5 82.9 101.8 75.0 93.0 74.5 87.8 67.8 82.5 63.7 74.0 58.4 65.0 52 53.0 32.6 28.8 34.0 18.4 46.0 11.6 52.0 4.4 58.5 0 62.0	23 24 23	100 94.1 86.1 82 75.2 70 65.2 62.4 61.3 57.2 55 53.1 49.5 49.1 45.1 42.6 35.1 27.1 17.9 9.6 5	95.0 89.6 79.0 74.4 73.8 74.4 76.9 77.0 79.3 80.3 80.2 80.0 79.1 79.2 77.1 74.5 68.0 59.0 51.2 56.2 59.2 62.1 (1+1	52.0

m-Phenylenediamine ($C_6H_8N_2$) + p-Nitrophenol	p-Phenylenediamine ($C_6H_8N_2$) + Phenol (C_6H_60)
($C_6H_50_8N$) Kremann and Petritschek,1917	Kremann and Petritschek,1917
% f.t. E	% f.t. E
100 111.5 - 93.3 104.8 - 88.4 105.0 - 82.8 114.0 101.8 78.1 118.0 102.0 73.9 119.3 - 71.8 119.9 - 71 119.9 - 67.6 119.0 - 67.2 118.9 - 63.7 117.4 - 63.4 117.0 - 58.4 113.5 - 52.6 108.0 - 43.6 97.0 - 35.5 84.0 - 26.1 64.5 52.4 13.4 55.5 3.3 60.3 0 62.0 (1+1) -	100
% f.t. % f.t.	7.5 3.6 136.5 0 139.1 (1+2)
0 62.0 50.0 97.0 1.9 61.5 50.1 96.5 7.2 59.0 52.7 99.0 11.4 57.0 55.4 101.0 19.0 54.0 60.0 99.5 21.6 57.0 63.5 100.0 30.0 76.0 70.0 97.5 32.6 79.0 75.0 91.5 37.3 88.0 80.0 95.0 38.4 90.0 84.7 99.0	p-Phenylenediamine ($C_6H_8N_2$) + Pyrocatéchol ($C_6H_6O_2$) Kremann and Strohschneider,1918
40.0 89.0 92.4 104.0 42.4 95.5 100 111.0	% f.t. E
(1+1) Buehler and Heap, 1926 (1+1) f.t. = 107.9-108.2°	0 138

p-Phenylenediamin	e (C ₆ H ₈ N ₂) + Hyd	iroquinone (C ₆ H ₆ O ₂)	p-Phenylenediami	ne (C ₆ H ₈ N ₂)	Resorcinol (C ₆ H ₆ O ₂)
Kremann and Stroh	schneider,1918		Kremann and Stro	hschneider, 191	B
%	f.t.	E	K	f.t.	E
0 3.4 7.4 14.2 14.6 18.6 22.4 29.6 35.4 36 42.5 45.2 49.0 55.0 55.0 57.4 58.6 62.0 63.0 63.5 67.4 68.0 69.2 69.7 71.2	138.0 136.6 136.0 160.0 158.0 167.0 175.0 183.0 188.0 192.0 191.5 193.0 190.5 187.0 185.5 183.0 180.0 174.5 170.0 167.0 165.0 164.0 164.0 154.8	134 	0 4.8 10.3 16.3 21.2 27.1 32.2 38.4 43.3 46.8 48.7 48.8 51.2 54.2 56.0 57.5 58.0 61.0 64.0 67.8 69.0 70.6 74.1 81.0 85.0	138.0 135.0 130.5 125.0 119.0 110.0 102.0 108.8 113.5 115.5 115.5 115.5 115.9 116.0 115.9 116.0 115.2 114.5 113.1 112.0 110.5 108.0 107.0 104.0 104.0 104.0 104.0 98.0 94.0	102 102 102
74.0 76.0 79.2 79.5 80.6 82.5 83.0 85.0	155.0 155.0 154.0 154.0 153.8 153.0 154.0 156.0	152 152 152	85.0 92.5 97.0 100 p-Phenylenediami	101.0 105.3 108.5 (1-	93.5
	158.3 159.2 160.0	152	Pushin, Lukavetz	ki and Rikovski	, 1948
89.5 92.0 94.0 96.5 97.2	162.1 164.5 166.0 167.0	152	mol %	f.t.	E
100	169.0 (1+1)	_	100 90 85	10 8 90 75	- - 75
Pushin and Rikov	ski, 1949		80 70 60	108 123 130	74 73 71
mol %	f.t.	E	55 50 45	132 133 131.5	-
100 95 90 87 85 82.5 80 75 70 60 50 40 30 20	172 169 165 162 165 171 175 183 188 195 198 198 197 190	162 162 162 162 159 158 - - 133 136 136 137	45 40 35 30 27.5 23 20 10 0	129 123 116 114 118 121 133 140 (1+1)	113 113 113 114 113 113 112
6.5 5 0	152 137 138 140 (1+1)	137			

p-Phenylenediamin	ne (C ₆ H ₈ N ₂) -	+ Guaiaçol			
		(C7H8O2)	Beets, 1937		
Dezelic,1932 (fig	g)		mol %	f.t.	E
100 90 80	f.t. 29 57.5	29 29 29 26	0.0 10.0 26.6 35.6 41.6	139.4 136.5 127.0 118.7 118.4	117.2 117.0 117.0
70 66.7 60 50 40	66.5 69.5 70 82.5 100 112	28.5 70 70 70 70	46.3 50.0 58.0 69.4 71.5	119.2 120.0 118.8 108.9 106.0	117.3 - 103.4 103.2
30 20 10 0	120 128 135 140 (1+2)	68.5 68.5 68.0	75.0 76.7 86.7 100.0	106.2 108.1 120.6 132.5 (1-	103.2 103.3 103.5 -1) -
p-Phenylenediami	ne (C ₆ H ₈ N ₂)	+ Pyrogallol (C ₆ H ₆ O ₃)	p-Phenylenediami Pushin and Dezel		Salol (C ₁₃ H ₁₀ O ₃)
Kremann and Zechi			Tushin and Dezer		
%	f.t.	E	mo1 %	Е	f.t.
0 4.7 7.9 15.3 23.1 31.0 36.6 39.0 39.2 42.1 46.2	139.8 136.5 134.1 127.0 117.4 101.3 100.5 102 101.9 105 107.1	- - - - 98 98 - 98 - 98	0 5 10 20 30 40 50 60 70 80 90 100	- 43 43 43 43 43 43 43 43 43 43	140 137. 8 135. 5 130 125. 5 121 117 112 106 98 82 43
50.93 52.9 55.59 56.0 59.76 60.78 61.80	108.9 109.9 109.5 109.7 108.9 108.6 107.8	- - - - - 103.9	p-Phenylenediami Kremann and Stro		α-Naphthol (C ₁₀ H ₈ O)
65.50 67.69 68.68	105.7 106 106	-	2	f.t.	E
71, 73 73, 83 74, 26 80, 48 86, 15 91, 22 96, 67 100	105.8 104 103 104.2 115 121 124.9 126.0 +1) (1+2	98 98 98 98 -	0 6.2 15.8 32.4 44.5 53.0 58.5 65.0 70.0 74.2 76.0 77.7 85.3 92.0 98.2	138 136 131 118.2 103 100 104.5 108 110 110 109 108.0 100.0 86.0 90.5 92.0	95 94.8
i				(1+2)	

p-Phenylenediami Kremann and Stro		$(C_{10}H_{8}O)$	p~Phenylenediami lene (C ₁₀ H ₈ O ₂) Kremann, Hemmelm		+ 2,6-Dioxynaphtha=
RI CHAIM AND SELO			Kremann, Hemmeim	ayer and kiem	er,1922
*	f.t.	E	Я	f.t.	E
0 7.2 10.2 22.6 34.0 45.5 47.0 49.0 51.65 55.5 61.0 64.7 69.6 72.0 76.0 78.0 82.0 83.5 91.0 96.0	138 133 131.5 123.5 122.0 137.0 138.0 140.0 145.0 148.0 149.0 150.1 150.5 149.0 148.0 148.0 148.0 148.0	117	100 94.2 93.9 92.6 85.6 74.7 68.8 62.2 42.8 34.2 26.2 16.2 11.3 0 p-Phenylenediamillene (C ₁₀ H _B O ₂)	216 209 209 195 204 210 211 212 203 193 183 164 154 147 (1+1)	- 195 195
	(1+2)		Kremann, Hemmelma	ayer and Rieme	er,1922
p-Phenylenediam lene ($C_{10}H_{\rm B}O_{2}$ Kremann, Hemmel)	+ 1,6-Dioxynaphtha- er,1922	100 95.7 89.6 87.6 77.9	186 181 171 174 179.5	E 171 "
100 95 87.8 82.8 76 72.7 68.8 65.1 59.5	134.0 131.0 126.0 130.0 155.0 161.0 167.0 169.0	121 121 121 -	74.3 64.3 54.6 43.3 31.5 22.6 9.6	179.5 177 171 157 145 134 140 147 (1+2)	- - - 127 128 "
56.5 52.8 48.3 41.4 34.5 27.4 16.5 0	169.5 168.0 166.0 157.0 157.0 140.0 147.0	125 125 125			

p-Phenylenediamine lene (C ₁₀ H ₈ O ₂)	(C ₆ H ₈ N _⋒)	+	1,8-Dioxynaphtha-
---	---	--	---	---	-------------------

Kremann, Hemmelmayer and Riemer, 1922

×	f.t.	E
100 91.7 82.3 77.1 74.6 71.2 68 65.8 53.6 46.1 41.6 35.7 20 14.6 0	137 127 115 115 118 117 113 109 112 117 120 125 134 138 147	- 109 108 - - 106 - 106 - 106 "

p-Phenylenediamine ($\text{C}_6\text{H}_8\text{N}_2$) + 2,3-Dioxynaphthalene ($\text{C}_1\,_0\text{H}_8\text{O}_2$)

Kremann, Hemmelmayer and Riemer, 1922

*	f.t.	E
100 95.6 91.1 84.4 78 81.2 76 63.8 56.5 46.7 36.4 30.2 19.7 11.4 5.8 0	162 142 148 158 162.5 161.5 164 160 155 143 132 119.5 131 139 144 147	- 140-142 " 142 " - - - - 118

p-Phenylenediamine ($C_6H_8N_2$) + m-Aminophenol (C_6H_70N)

Kremann and Hohl, 1920

%	f.t.	Е
100	118.0	-
97.5	116.8	-
95,6	115.2	-
92,6	113,2	-
90.6	110.5	-
88.1	107.5	_
84,4	104.5	_
81.1	99.0	-
77.6	94,5	_
74.3	95.0	_
71.3	96.3	_
69.1	97.0	_
65.9	97.0	_
63.3	96.5	_
60.0	97.0	_
57.9	99.0	-
60.0 57.9 55.2	101.0	94,0
52. I	102.3	<u>-</u>
48.3	102.5	-
46	102.0	-
43.1	102.0	_
39.4	106.0	-
35.4	110.0	102.0
32,7	113.0	-
32.7 31.7 29.0	114.0	-
29.0	118.0	_
19.8	1 25. 5	_
8.9	133.0	_
8.9 3.4 0	136.0	_
0	138.5	-
	(1+1) $(1+2)$)

p-Phenylenediamine ($C_6H_8N_2$) + o-Nitrophenol ($C_6H_50_{\,8}N$)

Kremann and Petritschek, 1917

%	f.t.	E	
100.0	44.7	~	_
97.6	43.2	. =	
95.1 89.3	42.5	~	
81.7	64.0 82.5	~	
75.3	94.0	-	
65.2	103.5	40.2	
60.1	106.6		
53.5 45.4	111.8	-	
45.4 35.5	117.5 122.8		
22.8	128.6	40.2	
12,3	133.2	-	
5.8	136.2	_	
0	139.1	-	

p-Phenylenedi	amine (C ₆ H ₈ N) + p-Nitro	phe nol C ₆ H ₅ O ₈ N)	<u> </u>		
Kremann and F	etritschek,19	·	- 05 - u ,	p-Phenylenediam	ine ⁻ (C ₆ H ₈ N ₂)	+ 2,4-Dinitrophenol (C ₆ H ₄ O ₅ N ₂)
Я	f.t.	Е		Kremann and Zaw	odski, 1920	
100 98.1	111.5 110.5	108.0		%	f.t.	E
97.1 94.0 91.4	120.5	109.5 109.6		0 6.7	138.5	-
90.3 85.0	7 127.5	108.5		15.0 20.5	135.7 129.5 124.0	-
83.4	4 134.2	-		1 26.1	117.2	88.5
78.9 77.	3 131.9	-		30.9 34.9	109.2 99.1 88.5	# #
73.7 71. 68.	7 128.5 7 127.0	=		37.3 44.3 47.5	96.5	
63. 0) 121.1	-		1 50.8	98.0	-
62.9 58.1	1 117.5	-		60.6 67.3 74.9	-	-
53.	3 117.3	-		1 78.9	109.0 116.0	109.3
53. 52. 50.	1 117.0	=		79.9 84.2	117.0 118.0	
46.	8 115.0	-		84.2 84.6 89.7 90.7 95.3 95.8 97.9	118.0 116.0	- 107.0
46. 41.	5 111.0	Ξ		90.7 95.3	115.0	107.0
32. 19. 11.	2 115.1 7 127.6	Ξ		95.8 97.9	109.0 109.0 108.5	107.0
5.9	9 136.0	-		100	110.0	(1+2) - (1+3)
2. 0.	2 138.5 0 139.1	-	(1+4)			(2.0)
				2.4-Toluenediami	ine (CaHioNa)	+ Thymol (C ₁₀ H ₁₄ 0)
p-Phenylenedi	amine (C ₆ H ₈ N ₅) + m-Nitro	phenol C ₆ H ₅ O _B N)		• -	
Kremann and P	etrischek, 1917		0 3 - <u>1</u> - · · ·	Pushin, Marich a	and Rikovski,19	948
*	f.t.	Е		mol %	f.t.	E
98. 94.	8 94.2 9 105.0	93.2		100	51	<u>-</u> .
88	3 125.5	93.2		80 80	44 33	12
82. 74.	3 137.8	=		90 80 75 72	26 19	14 15 14 16
69. 65.	5 136.6	-		50 50	44 58 70	14 16
63. 59.	8 135.5 6 133.5	-		40 30 20	70 81	16 14
58.0 55.0	0 132.0	-		20 10	88 93.5 99	-
53. 51.	0 127.5	-		0	99	-
49. 46.	6 124.1	-				
45. 42.	2 119.0	-				
40.1	7 112.3	110.9				
40. 38.	5 111.2	110.0				
37. 34. 32. 32.	111.2 111.2 111.2 6 112.0 5 115.0 1 115.5	110.9				
32.1 32.1	115.0	110.9				
9 27.:	5 120.8	110.9 110.9				
20. 13. 7.	3 127.1 7 131.5	- "				
6.0	136.5	(1+2) -	(2+1)			
0.0	139.2	· · · · · · · · · · · · · · · · · ·	(271)			
				[

Pushin and R	ikovski,1937			Pushin, Mata	vulj and Rik	ovski,1948	
nol %	f.t.	mol %	f.t.	mol %	· · · · · · · · · · · · · · · · · · ·	n _D	
100 90	10 0	50 40	36.4 31	0	1.5535	30° 1.5389	60° 1.5239
81 7 0 60	-20 +14 31	30 20 (1+1	20 6	16.6 30 39.5	1.5535 5524 5513 5506	5385 5380 53 72	5240 5239 5232
				44.3 47.5 49.7	5501 549 7	5388 5363	5229 5224
Benzylamine	(C ₇ H ₉ N) + 1	o-Cresol (C ₇ F	180)	52.3 54.5 59.3	5493 5486 5480 5462	5359 5353 5346 5331	5221 5213 5207 5192
Pushin and R	likovski,1937			66.2 75.0 80.0	5435 5402 5384	5305 5 27 3	5171 5139
mol %	f.t.	mol %	f.t.	89.5 100	5348 5309	5253 5215 5176	5120 5082 5041
100 90 83.5	36 26 18	60 54 50	5.5 - 8 - 6	Benzy lamine	(C ₇ H ₉ N) +	Guaiacol (C7H8O2)
80 75 70 (1+	19 20	40 30 20 (1+3	-11 -30	Pushin and	Rikovski,193	7	·
		(1+3		mol %	f.t.	mol %	f.t.
Pushin, Mata	vulj and Riko	vski,1948		100 91.5 90	28 24 25	60 50 45	26.5 15.5 (1+1) 15.5
mo1 %	1°	ⁿ D 40°	60°	80 75 70	31 32 (1+3) 31	40 30 20	5 - 9
0 20.5 40.2	1,5534 5584 5625	5402 5450	1.5239 5303 5350	Pushin, Matav	ulj and Riko	vski, 1948	
45.2 47.2 49.5 52.5	563 2 5635 5638	5458 5460 5462	5356 5358 5360	mo1 %		n _D	
55.0 59.3	5641 5640 563 7	5463 5462 545 7	5360 5360 5355		12°	30°	60°
65.0 70.0 72.2	5630 5621 5615	5450 5437 5431	5348 533 7 533 2	0 17.5	1.5479 5549	1,5389 5457	1.5239 5310
74.5 77.0 80.0	5611 5603°	5426 5417	53 2 5 5316	30.7 40.7	5601 5640 5655	5509 5539	5356 538 2
82.0 84.3	5593 5584 55 7 4	540 7 5399 5390	5305 5299 5290	45.8 47.2 49.7	5 660 5 666	5550 5552 5555	5390 5391 5392
100	5544 5483	5367 5318	5269 5234	52.5 54.2 57.7	5670 5674 5680	5558 5559 5559	5393 5393
				60.0 64.3 70.4	5681 5676	5557 5550	5392 5390 5383
Benzylamine	$(C_7H_9N) + 1$	Thymol (C ₁₀ H ₁	₄ 0)	76.0 80.2	5662 5643 5620	5533 5512 5492	5368 5350 5333
Pushin, Mari	ch and Rikovs	ski , 1948		85.0 90.0 100	5588 5550 5474	5469 5440 5386	5333 5314 5292 5239
mol %	f.t.	mol %	f.t.				
0 10 20 2 5	51 43 32.5 26.5	28 30 40	22 19 10.5				
20 25	32.5 26.5	40	10.5				

							
Benzylamine (C ₇ H ₉ I	N) + o-Chlorpher	nol (C ₆ H ₅ OCl)	Pushin and	Rikovski,	1937		
Pushin and Rikovsk	i,1937		mol %	f.t.	mo1 %	f.t.	
mol % f.t.	mol %	f.t.	100 95 90	36 31	60 50	38.5 16	(1+1)
100 8 90 46.5 80 54 75 55 (60 55 50 1+3) 40	46 47.5 46 (1+1) 38 21	90 80 75 70	43 53 55 (1+ 52	3) 30 20	15.5 13 + 1 -17	
70 54	30	21	Diphenylam	ine (C ₁₂)	$H_{1,1}N$) + Phe	enol (C ₆	H ₆ O)
Pushin, Matavulj a	and Rikovski, 194	8	Philip,1903	3	······································		
mol %	n _D	(00	mo1 %	f.t.	mo1	%	f.t.
0 15.5	20° 1.5440 5584 5720	1.5239 5362 5482	100 92.3 84.6 78.6 72.7 66.7	40.4 36.8 33.3 30.3 28.1 24.6	42. 31 30. 26.	7 5	25.0 28.3 32.0 34.4 37.1
30.0 41.7 45.2 49.8 52.5 54.6	5820 5850 5879 5892 5898	5572 5598 5620 5629 5632	57.4 51.7	19.8 18.1 18.5 18.2	16. 11. 5.	8 2	40.4 44.1 48.2 52.6
57.3 60.0 62.0	5902 5903 5903	5634 5633 5632	Atkins,1908	3			
63.6 70.5 80.2 90.0	5901 5883 5838 5738	5630 5610 5560 5478		Е	: 18.1°		
100	5593	5379	Thole, Mus	sell and l	Dunstan,1913	}	
Benzylamine (C ₇ H Pushin, Matavulj a	•		K		d 50°	r)	
·		3	100 67.	5 .	1.048 1.048	3 2 00 38 2 5	
mol %	ⁿ D 10° 40°	60°	41.	l 5 :	1.052 1.055	4362 5010	
0 15.5	.5489 1.5339 5582 5432	1.5239 5331	Bramley, 19	16			
29.5 39.5 44.5 49.6	5666 5515 5731 5579 5759 5603 5783 5625	5416 5479 5503 5525	% 	30°	40°	61°	81°
52.5 54.5 57.5 59.7 62.7 64.5 69.5 74.3 80.0 89.0	5793 5636 5800 5642 5808 5650 5814 5654 5820 5660 5822 5662 5826 5664 5822 5661 5814 5652 5787 5631 5727 5593	5536 5543 5549 5554 5557 5557 5558 5560 5558 5552 5534 5504	0.00 7.87 15.18 23.29 30.87 38.60 46.56 53.43 59.65 68.84 76.60 84.59 92.04	1.0790 0780 0769 0759 0749 0738 0729 0721 0709 0699 0688 0678	1.0711 0700 0689 0678 0668 0656 0647 0639 0626 0616	1.0543 0533 0523 0511 0501 0478 0470 0461 0448 0438 0427	1.0377 0366 0356 0344 0333 0321 0309 0309 0292 0278 0268
			100.00	0667	0595 0584	0416 0405	0245 0233

DIPHENYLAMINE + O-CRESOL

			·					
Bramley, 19	916				Dipheny	ylamine (C	₁₂ H ₁₁ N) + Guai	acol (C ₇ H ₈ O ₂)
¥	30°	40° [¶]	61°	81°	Pushin	and Vaic,1	926	
0.00	13570	8520	4170	2525		mol %	f.t.	E
7.87 15.18 23.29	12570 11650	7950 7430 6930	3830 3590 3390	2360 2240 2125		100 90	28 20,6	- 6
30.87	10720 10030 9470	6520 6200	3225 3095	2025 1955	l i	80 70	20.0	10 10
38.60 46.56 53.43	3980 8610	5910 5680	2960 2865	1880 1828	<u> </u>	60 50	18.9 23.5	10 9.5
59.65	8280 7910	5510 5280	2790 2685	1782 1723		45 40	25.6 29.3	-
63.84 76.60	7650 7420	5130 4930	2620 2565	1680 1640	}	35 30	32.5 37.1	6.0
84.59 92.04	725 5	4845	2530 2510	1610 1575		20 10	41.0 49.0	6.0
100.00	7090	4740	2310			Ö	53.6	
								
Diphenylami	Diphenylamine ($C_{12}H_{11}N$) + o-Cresol (C_7H_80)						₁₂ H ₁₁ N) + Thym	ol (C ₁₀ H ₁₄ 0)
Pushin and	Basara, 1927	7 	ه احد هر هنداند. احد سد		Pushin	, Marich and	d Rikovski,1948	
mo1 %	f.t.	E		min		mol %	f.t.	E
100	30 21	-		-	ľ	100	51	-
90 85 80	18	7.0)	1.2	ll l	90 75 60	46 39 _	25 28
75 70	14	8.6 7.8	ŝ	1.5 2.7		53	31.5 28.5	28.5 28.5
ll 65	12.8 16.8	7.9)	1.5	1	53 50 35 20	29.5 37.5	28 27
60 50	19.5 28.0	7. 7.	2	0.9 0.6		10	44 49	-:
40 20 10	35.2 44.0	8.3	2	-		0	54	
10	50.0 53. 5	-		-				
					Dipher	ylamine (($C_{12}H_{11}N$) + Van	illine (C ₈ H ₈ O ₅)
Dipheny lam	ine (C ₁₂ H ₁₁	N) + p-C	resol (C	C ₇ H ₈ O)	Pushin	Pushin, Rikovski and Milutinovitch,1949		
Pushin and	Basara, 192	7				mol %	f.t.	Е
mo	ol %	f, t.		E		100 90 80	81 74.5 68 62 55	75
14	00	36			•	70 60	62 55	35 36 37
H 9	90	27 23.5 18.5		10 15.4	8	50 40	49 42,5	38
	85 80 72	18.5		_		30	40.5	38 34
	72 65 65 55 50 40 30 20	22.2 24.1		17.3 17.3 17.3		20 10 0	45 49,5 54	33 33
	55 50	22.2 24.1 27 29 32 38 43 47.5 53.5		17.3			V-1	
	40 30	32		4/	1			
	20 10	43 47 E		-				
	0	53.5		-	1			
1								

Diphenylamir	ne (C ₁₂ H ₁₁ !	N) + Resor	cinol (C ₆ H ₆ O ₂)	Diphenylamine	(C ₁₂ H ₁₁ N) + Hy	droquinone (C ₆ H ₆ O ₂)
Kremann and	Schadinger	,1918		Kremann and Sc	hadinger, 1918	
Я	f.	.t.	E	%	f.t.	E
0 3.6 10 14 20.8 29.8 33.1 38.5 43.1 47.4 50.8 52.2 56.2 56.2 57.1 62.4 68.8 73.5 80 84.9 88.1	68 76 82 88 91 92 93 95 95	2.2 3.5 3.0 2.0 2.0 3.9 3.2 2.0 3.1 4.0 4.1 4.2 8.0 5.0 5.0 5.0 6.1	48.9 49.2 49.2 48.9 48.9 48.2 47.5	0 10.1 15.2 19.7 24.6 29.0 34.1 38.0 49.4 49.4 49.6 53.1 56.0 61.7 75.7 83.9 89.2 98.5	52.0 126.0 136.0 141.5 147.5 150.5 151.5 153.0 154.0 154.5 155.1 155.5 160.0 160.5 163.5 163.5	51.0 51.0
Vignon, 1891					(C ₁₂ H ₁₁ N) + Py	rocatechol (C ₆ H ₆ O ₂)
mol %	f.t.	mo1 %	f.t.	%	f.t.	E.
0 33.33 50 Hrynakowski	54 85 93 and Adamani	66.67 100 s,1934	101 110	0 5.3 11.8 15.3 20.6 24.5 30.9	52.3 49.0 56.0 61.0 67.5 71.0 77.0	- 48.2 48.2 48.2 - - 48.5
mol %	f.t.	E	min	32.5 37.2 41.2 43.3	77.6 80.0 83.5 83.5	-
0 6.0 7.5 14.6 21.4 27.8 33.9 39.7 45.3 55.6 55.7 60.6 65.3 69.8 74.1 78.2 82.2 82.2 86.0 89.7 93.3 96.7	54 51.0 55.5 73.0 82.5 86.0 91.0 93.0 94.0 95.0 96.0 97.0 98.5 99.0 102.0 103.0 104.0 106.0 107.0	51.0 """"""""""""""""""""""""""""""""""""	4.0 3.0 2.8 2.7 2.5 2.5 2.2 2.2 2.0 1.3 1.5 1.3 1.5 0.5	45 50.3 53.8 66.1 73.6 84.8 95.8 100	88.0 87.5 89.0 94.9 93.5 97.8 101.7 102.8	46.1

DIPHENYLAMINE + PYROGALLOL

Diphenylamine	(C ₁₂ H ₁₁ N) + Pyr	ogallol (C ₆ H ₆ O ₈)	Diphenylamine Vignon,1891	(C ₁₂ H ₁₁ N)	+β-Naphthol	(C _{1 O} H ₈ O)
Kremann and	Schadinger, 1918		mol %	f.t.	mol %	f.t.
%	f.t.	E	.0	54	66.67	99
$\begin{smallmatrix}0\\4.0\\11.4\end{smallmatrix}$	52.0 74.0 96.5	- - 51.0	33.33 50	54 72 87	100	122
17.4 21.9 25.5	96.5 104.5 108.5 110.5	-	Kremann and Sc	chadinger,19	18	
31.9 34.9 37.0	113.8 114.2 115.0	51.0	%	f.t.	E	
47.6 50.4 53.6	117.2 118.5 118.8	51.0	0 4.3 7.2	52.0 49.5 48.3	-	
57.0 61.4 66.3	119.0 119.8 120.8	50.5	11.7 14.9 16.7	46.2 44.5 44.5	43.5	i
71.2 78.1 82.5	121.5 122.0 122.5	50.5	22.1 26.3 32.0	53.1 60.5 68.0	43.8	3
90.0 100	123.5 126.0	-	37.8 48.9 52.6	75.0 85.2 87.5		;
	,		57.9 58.2 65.0	92.5 87.5 97.8	- -	
Diphenylamine	$c (C_{12}H_{11}N) + \alpha$	Naphthol (C ₁₀ II ₈ 0)	72.8 84.3 91.4 100	103.5 110.5 115.8 121.5	-	
Kremann and S	chadinger, 1918		100	121,8		
%	f.t.	E	Diphenylamine	(C ₁₂ H ₁₁ N)	+ Trichlorphen	olsym. C ₆ H ₈ OCl ₉)
0 7.2 16.6	52.0 48.2 42.7	= = = = = = = = = = = = = = = = = = = =	Giua and Cherc	chi,1919		
23.7 30.1 49.8	38.9 44.5 55.0	38.5	%	f.t.	E	
46.8 51 52.6	61.5 65.2 66.0	38,0 - -	0 7.29 10.97	53 49.9 43.8	- - -	
57.6 66.3 73.3	69.8 75.5 79.5	- - 38.0	12.12 16.45 24.63	47.7 45.8 42.2	-	
80.0 80.7 86.6 100	83.0 84.0 86.5	- - -	29.35 33.06 37.52	40 38.1 35.9	32.5 32.6 32.6	5
100	92.0		40.59 46.37 48.89	34.3 33.5	32.7 32.7 32.4	
Vignon, 1891			49.62 53.13 55.21 58.53	34.4 35.75 37.95 39.75	32.1	5
mo1 %	f.t. mol	% f.t.	61.74 64.96 68.87	42.2 44 46.4 48.7	-	
0 33.33 50	54 66. 50 100	67 72 92	71.68 78.21 83.67	48.7 51.9 54.95 57.7	- - -	
	01		88.36 93.69 100	57.7 60.6 64	- -	
				···		

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

DIPHENYLAMINE + O-NITROPHENOL

Diphenylamine	(C ₁₂ H ₁₁ N) + o	-Nitrophenol ($C_6H_5O_8N$)	53.0 58.3	74.5 77.5	- -
Giua and Cherchi	i,1919	(06115 0 3117)	65.1 78.4 87.2	80.0 85.5 89.0	- 44.0
%	f.t.	E	92.7 100	91.5 94.5	-
0 12.36 15.22 25 27.39 30.58	53.1 45.8 43.8 37.4 35.85 34.3		Diphenylamine Kremann and Scl		-Nitrophenol (C ₆ H ₅ O ₃ N)
34.94 38.21 40.04	31.7 28.4 27.1	21.7 21.6 21.6	K	f.t.	E
42.48 47.22 48.28 51.10 53.31 58.28 62.64 68.86 71.95 75.95 79.45 83.04 88.08 95.575	25.9 23.2 21.7 21.65 24.9 27.3 31.1 32.7 34.45 36.2 38 40.15 43.3 45	21.65 21.65 21.5 21.55 21.66	0 5.9 8.1 11.3 14.7 19.9 22.8 25.1 29.2 34.0 37.9 42.2 47.2 52.1 53.7	52.0 48.8 47.8 -55.0 61.0 64.5 67.0 70.0 74.0 77.0 80.5 84.0 86.5 87.5	- - - 47 - - - - - - -
Kremann and Scha	dinger,1918		60.8 67.0 78.9 85.8 93.4	91.5 95.3 100.5 104.0 108.0	47 - -
%	f.t.	£	100	111.5	-
100 95 87.7 80.5 75.9 67.5	43.5 42.0 38.8 35.5 32.5	- - - - - -	Diphenylamine Kremann and Scl		,4-Dinitrophenol (C ₆ H ₄ O ₅ N ₂)
95 87.7 80.5 75.9 67.5 62.4 53.1 47.9	38.8 35.5 32.5 28.5 25.5 20.5	- - - - - - - - - 20,5			
95 87.7 80.5 75.9 67.5 62.4 53.1	38.8 35.5 32.5 28.5 25.5	- - - - -	# 0 4.9 8.9 15.6 18.5 24.2 29.7	f.t. 52 50.5 49. 46.5 45.2 42.9 44.5	E
95 87.7 80.5 75.9 67.5 62.4 53.1 47.9 46.4 42.3 33 25.3 14.6 8.6	38.8 35.5 32.5 28.5 20.5 22.3.0 25.5 31.5 36.5 47.3 52.0	20.5 20.5 20.5 20.5 20.5	Kremann and Sci	f.t. 52 50.5 49 46.5 45.2 42.9 44.5 50 58.2	E
95 87.7 80.5 75.9 67.5 62.4 53.1 47.9 46.4 42.3 33 25.3 14.6 8.6	38.8 35.5 32.5 28.5 20.5 22.5 23.0 25.5 31.5 36.5 47.3 52.0	20.5 20.5 20.5 20.5 20.0	Kreinann and Sci	f.t. 52 50.5 49 46.5 45.2 42.9 44.5 50 58.2 64 74.2 80.5	E
95 87.7 80.5 75.9 67.5 62.4 53.1 47.9 46.4 42.3 33 25.3 14.6 8.6 0	38.8 35.5 32.5 28.5 20.5 22.5 23.0 25.5 31.5 36.5 47.3 52.0	20.5 20.5 20.5 20.5 20.0	Kreinann and Sci	f.t. 52 50.5 49 46.5 42.9 44.5 50 58.2 64 74.2 80.5 85.3 88.5 92.8 95.9	E 41.6
95 87.7 80.5 75.9 67.5 62.4 53.1 47.9 46.4 42.3 33 25.3 14.6 8.6 0	38.8 35.5 32.5 28.5 20.5 20.5 22 23.0 25.5 31.5 36.5 47.3 52.0 C _{1.2} E _{1.1} N) + m-N	20.5 20.5 20.5 20.5 20.0 	Kremann and Sci	f.t. 52 50.5 49 46.5 45.2 42.9 44.5 50 58.2 64 74.2 80.5 85.3 88.5 92.8	E

757

Dipher	nylamine (C	C ₁₂ H ₁₁ N)	+ Picrio	Acid (C ₆)	l ₃ 0 ₇ N ₃)	Dipheny	lmethylami	ne (C ₁₈ H ₁₈ I	V) + Phenol	(C ₆ H ₆ 0)
Į.	nn and Schad			•	- , -	Bramley	, 1916			i
8	f.t.	tr.t	min	E	min		Я	mo1 %	f.	t.
100 95.3 88.4	120.5 114.3 106.5	-	=		-	ł	0 7.45 5.48	0 13.54	- 9 -13	.6
84.8 84.1 79.6 77.8	102 102 95 94 90	67	-	41	4	2 2	0.75 7.10 0.5 1.5	26.27 33.75 42.00 49.5	-16 - 9 - 2 + 4	.6 .0
77.8 75.0 73.6 73.1 68.7	90 89 88.5 82.5	66 - -	-	41.2 41 41	4 - - - 4	5 7	8.8 7.5 3.4	58.0 65.0 72.5 84.3	10 16 21 30	.6 .0 .6
67.4 65.0 62.7 62.2	81.5 78.5 75. 75.1	66 67	2	40.2		10	1.0 0 E :	95.3 100 25 mol %	38, 41,	.0
59.7 58.3 57.7	72 71 69 68.9	66.5 66	- 2 -	41.0 41.0	2	*	9.8°	d 20.1°		n 20.1°
57.6 54.4 52.8 50.7 50.0	67. 66.6 66.2 66	- - -	-	42.6	- - 4.5	0.00	1.0595 0605	1.0515 0523	10960	7220 7080
49.0 44.8 44.6 44.3 35.0	65.8 62.8 62.5 62.5 56.1	- - -	-	43 42.9	- - 6.5	4.92 9.48 17.18 27.69 36.92 48.42	0615 0632 0657 0679 0708	0532 0548 0572 0593	10900 10970 11450 12260 13060	7150 7300 7640 7980
35.0 34.4 27.5 25.0 23.1 21.2 19.3	55.1 46.8 44 43.5	-	- - - -	42.9 43 43 43 42.8	10 - 14	56.87 67.10 78.79 89.30	0708 0728 0753 0782 0809	0621 0641 0665 0693 0720	14110 15020 16140 17520 18770	9450 9850 9350 9950 10480
15.5	43.9 45 47.2 47.5	-	-	42.8 43	- - -	100:00	0836	0750	20100 d	11040
7.1 6.4 0	49.5 50 52		- - -	-	- -		30°	40°	60°	80°
Giua a	nd Cherchi,					0.00 4.98 10.21 20.04	1.0438 0449 0461	1.0359 0369 03 7 9	1.0198 0207 0217	1.0040 0048 0058
	*	f.t		E		35.35 49.87 62.12	0483 0519 0552 0581	0401 0435 0467 0495	0237 0269 0301 0328	0076 0104 0136 0164
	0 5.56 14.20 17.61 21.46	53. 51. 48. 47. 45.	1 0 5	-		73.58 82.22 90.05 100.00	0607 0627 0645 0668	0521 0542 0560 0584	0354 0373 0391 0414	0188 0206 0223 0242
	25.20 28.99 32.69 36.90	44. - 49.	6	43.9 44.2 44.2 44.3		×	30°	40°	60°	80°
	40.83 44.35 47.47	54. 58. 62.	5 8 5	44.3 44.2		0.00	5130	3835	2480	1735
	49.63 50.10 54.40 58.19 61.40 64.21	64. 63. 66. 67. 79.	9 4 05	44.1 - 65.4 65.3	tr.t.	10.21 20.04 35.35 49.87 62.12	5100 5130 5190 5420 5700	3785 3760 3770 3880 4020	2435 2400 2370 2375 2395 2415	1708 1682 1650 1624 1603
	69.00 71.52 75.05 79.76 83.75	92. 98. 103.	3 15 8	62.6 63 - -	ŧ	73.58 82.22 90.05 100.00	5970 6260 6500 6730 7090	4150 4280 4400 4510 4740	2415 2445 2470 2495 2530	1594 1589 1585 1586 1585
رسوس سرمير سيند مدا ماري مرمير سيند مدا ماري مرمي مراي مداني	100.73	119:	š ======	ے وسر صواحہ اور الازامی میراد پر میں اور اس الوزامی کو کر	(1+1)					

	Diphenylme	ethylamine	(C ₁₃ H ₁₃ N)	+ o-Chlor	phenol	×	30°	40°	n 60°	80°
۱	Bramley,19	16		, -0	,,,	0.00	5130	3840	2480 2275	1735 1591
	Я		mol %	f.t.		13.83 25.90 38.35 50.52	4635 4305 4030 3805	3500 3250 3040 2850	2275 2110 1965 1850	1500 1420 1347
	0 7.2 14.1 21.3 27.5 34.0 39.9 45.4	30 55 00	0 10.04 18.94 27.83 35.14 42.33 48.60	- 9.6 -13.6 -17.6 -21.6 -25.1 -28.5 -24.2		57.58 68.76 79.34 89.62 100.00	3685 3510 3360 3215 3080 Q mix	2750 2600 2490 2390 2320 : (54 %) =	1795 1710 1638 1575 1513 0.89 cal/g	1300 1238 1180 1120 1070
	51.7 58.8 71.7 86.0	75 35 70	54.20 60.43 67.08 78.29 89.78	-18.7 -13.0 - 8.8 - 2.15 + 3.4	;				+ o-creso	1 (C ₇ H ₈ O)
ı	100	···	100	+ 8.0		Morgan	and Pettet	1935		
	%	0°	d 10°		20°	×	f. 1	t.	%	f.t.
	0.00 13.83 25.90 38.35 50.52 57.58 68.76	1.0675 0924 1147 1392 1639 1790 2032	1.0596 0842 1064 1302 1545 1692		0518 0760 0975 1212 1451 1594 1828	100 90 80 70 60 50 40	30 28 24 21 17 10 6		39 32.4 30 26.5 20 10	8 16.1 16 18 28 40 50
	79.34 89.62 100.00	2263 2494 2741	2157 2384 2626		2051 2274 2512	Dixylyl	amine s.	(C ₁₆ H ₁₉ N) + m-cres	o1 (C ₇ H ₈ O)
	%	30°	40°	l 60°	80°	Morgan	and Pettet	,1935		
	0.00 13.83	1,0439 0678	1,0360	1.0202	1.0044	Я	f.	t.	H	f.t.
	25.90 38.35 50.52 57.58 68.76 79.34 89.62 100.00	0076 0889 1122 1357 1496 1726 1945 2164 2399	0596 0803 1032 1263 1398 1624 1839 2054 2284	0432 0632 0853 1077 1204 1422 1630 1837 2060	0268 0461 0674 0891 1010 1220 1421 1620 1834	100 90 80 70 60 50 40	8 6 1 - 7 - 21 - 5 10	.5	30 21.5 20 19.4 13 10	23 30 31 31,5 36 40 50
	×	0°	η 10°		20°	Dixylyl	amine s. (C ₁₆ H ₁₉ N) + p-creso	1 (C ₇ H ₈ O)
۱	0.00	18350	10950		7250	Morgan	and Pettet	, 1935		
	13.83 25.90 38.35	16180 14590 13320 12500	9850 9080 8450	5	5470 5950 5530	%	f.	t.	%	f.t.
	50.52 57.58 68.76 79.34 89.62 100.00	12500 12160 11690 11320 11030 10790	7950 7670 7300 6990 6680 6390	5 4 4 4	5200 5020 1790 5590 1400 1210	100 90 80 70 60 50 40	34. 31 28 22 15 8 18	,5	33 30 25 20 15 10	21.7 23 28 32.3 33.5 40

Renzidine (C.a	H ₁₂ N ₂) + o-creso	ol (CaHoO)			
		y vyge	Benzidine (C ₁₂	$_{0}H_{12}N_{2}$) + Diox	kydiphenyl (C ₁₂ H ₁₀ O ₂)
Hrynakowski and	Adamanis,1938		Grimm, Gunther	and Tittus,193	
%	f.t.	E	mol %	f.t.	Е
0 10 20 30 40 50 60 70 80 90	128.0 116.4 103.5 90.0 90.7 93.0 93.0 93.0 83.8 59.8 30.0	86.6 86.4 86.1 30.0 30.5 30.5	0 10 20 30 34 40 47.5 50 60 76.5 80	129 233 256 264 265 261 246 258 265 260 250 256 267	127 127 128 180 262 (2+1) 246 246 246 257 (2+3) 249 249
			95 100	270 273	249 249 270
				273	270
Benzidine (C ₁₂	H ₁₂ N ₂) + m-cres	ol (C ₇ H ₈ O)	Benzidine (C1:	H ₁₂ N ₂) + Orc	inol (C ₇ H ₈ O ₂)
Hrynakowski and	Adamanis,1938		Pushin, Lukave		·
5	f.t.	Е	mol %	f.t.	m.t.
0 10 20 30 40 50 60 70 80 90 100	128.0 117.8 106.0 92.0 87.0 90.0 89.0 86.5 80.5 68.2 40. (1+2)	84.0 "" - - - -	100 90 80 70 60 55 50 45 40 30 20 10	108 96 113 131 141 144 145 144 141 134 118 123 128	- 96 94
Benzidine (C ₁₂	H ₁₂ N ₂) + p-creso	ol (C ₇ H ₈ O)	Benzidine (C.	H. N. A. Dave	ogallol (C ₆ H ₆ O ₃)
Hrynakowski and	Adamanis,1938		1		
K	f.t.	E	Tronov and Bort	ovoi,1954 (fig	g)
0 10 15 20 30 40 50 60 70 80 90	128.0 116.2 113.8 120.5 130.5 136.2 137.5 138.2 135.5 131.0 110.5 37.0 (1+2)	110.8 111.8 111.0 111.8 	0 20 30 40 48 50 60 65 68 77 80 100		129 107 E 128 137 (3+2) 135 E 140 (1+1) 133 128 129 95 E 99 133

Benzidine ($C_{12}H_{12}N_2$) + Trichlorphenol-s ($C_6H_30Cl_3$)	2,4-Dichloraniline (C ₆ H ₅ NCl ₂) + Picric acid
Tronov and Bortovoi,1954 (fig)	(C_6H_3 θ_7N_3) Hertel, 1924 (fig.)
mol % f.t. mol % f.t.	% f.t. % f.t.
0 129 80 100 (1+4) 20 108 90 94 40 93 99 66 E 50 90 100 67 60 93	100 123 50 104 84 100 E 34 96 67 105 16 86 56 106 (1+1) 0 64
Benzidine ($C_{12}H_{12}N_2$) + 2,4-dinitrophenol ($C_6H_40_5N_2$) Buehler and Heap,1926	2,4-Dibromaniline ($C_6H_5{ m NBr}_2$) + Picric acid ($C_6H_50_7N_8$) Hertel, 1924 (fig.)
(l+1) f.t. = 143.5-143.8	% f.t. % f.t.
p-Aminoazobenzene ($C_{12}H_{11}N_3$) + p-0xyazobenzene ($C_{12}H_{10}ON_2$)	100 124 34 122 84 108 E 16 109 67 122 4 76 E 44 124 (1+1) 0 78
Grimm, Gunther and Tittus, 1931 (fig.) mol % f.t. E	Pentachloraniline ($C_6H_2NC1_5$) + Pentachlorphenol (C_6HOC1_5) Brandstätter, 1948
0 151 - 10 144 - 20 137.5 96 30 129 96 40 120.5 96 50 110 95.5	# f.t. % f.t. 100 190 40 217 80 200 20 225
60 98.5 95.5 63.5 95 95 70 102 94.5 80 110 95 90 117 -	80 200 20 225 60 209 0 232 50 213
	α -Naphthylamine ($C_{10}H_{9}N$) + Phenol ($C_{6}H_{6}0$)
o-Bromaniline (C_6H_6NBr) + Picric acid ($C_6H_3O_7N_3$)	Philip,1903 f.t. E % f.t. E
#ertel, 1924 (fig.) # f.t. % f.t.	100 40.4 - 32.3 27.6 - 88.8 34.2 - 29.6 15.9 -
# f.t. # f.t. 100 122 50 126 83 102 E 34 113 67 125 16 84 59 128.5 (1+1) 0 36 (1+1) : tr.t. = 95°	74.1 21.6 - 26.6 25.5 24.0 69.9 17.7-16.1 - 25.5 21.3 - 66.5 16.8-15.9 - 22 25.6 24.2 61.3 20.8 5.5 17.1 31.0 - 55 24.8 - 11.7 36.9 - 46.9 27.8 - 6.2 42.5 - 41.7 28.6 - 0 48.3 -
	(1+1)

Beck,1907		The second secon		55 50	32.1 33.3	-	-	
t	0%	d 50%	100%	45 40	32.0 31.3 29.0	27.5 27.3 27.5	2.3	
51 60 75 85 95 105 115 125 135	1.098 1.078 1.071 1.065 1.059 1.048 1.033 1.022	1.075 1.060 1.055 1.040 1.029 1.015 1.003	1.043 1.031 1.016 1.008 0.998 0.983 0.974	35 30 28 25 20 15 10 0	30.2 34.3 38.4 42 49	26.5		
135	1.012	0.992 0.981	0.962 0.950	α -Naphthylam	ine (C ₁₀ H ₉	N) + m-Cr	esol (C ₇ H ₈	0)
t	0%	(water =1) 50%	100%	Pushin and Bas	sara, 1927			
51 60	11.396 8.137	9.682 6.376	3.651 2.825	mol %		f.t.	E	
75 85 95 105 115 125 135	5.115 3.947 3.144 2.565 2.153 1.724 1.453	4.009 3.084 2.435 1.976 1.619 1.373 1.207	1,935 1,579 1,314 1,023 0,876 0,849 0,803	100 90 75 70 65 60 55 50 48 45	+	5 11.4 5.4 0 4.6 9.8 15.4	-	
Thole, Muss	sell and Dun	stan,1913		48 45 44		16.3	14.0 14.7	
×	30° d	50°	30° 50°	43 37 30 25 20 15		17.8 24.6 28.4	14.5 10.1 9.3	
100 48 43.5 20.9 7.5	1.067 1.094 1.097 1.106	1.075 24 1.076 26	000 3200 900 8520 900 9000 400 10900 - 11300 - 11200	10 0		33.2 37.6 41.3 49		1+1)
Hrynakowsk	i and Jeske,			α -Naphthyla		I ₉ N) + p-(Cresol (, C ₇ H	I ₈ 0)
8	ε	*	ε	Pushin and B			 	
100 90 83 78 72 67	9.8 10.7 10.2 9.7 8.3 8.95	56 50 32 20 10	8.5 7.95 7 6.1 4.8 4.0	mol % 100 90 83 82 78 76 73 70 65	36 26 23 20 16.8	5.0 14.0 14	min - - 1.3 1.6	· • • • • • • • • • • • • • • • • • • •
α -Naphthyl	amine (C _{1 o} H	N) + o-Cres	sol (C ₇ H ₈ O)	73 70 65	20.5 23.4	14 13.8 6.7	3.6 2.2 1.6 1.3	
Pushin and	Basara,1927			60 56 50	26.0 28.3	4.0	-	
mol %	f.t.	E	min	44 40 35	28.8 28.2 27.7	24.8		
100 95 90 85 82 80 78 74 70	30 25 21.5 17.8	14.0 13.3 15.3 15.1 15.0 11.8 11.3	0.3 1.7 3.7	44 40 35 33 30 25 20 10	24.0 29.1 33.0 41 49	24.8 24.5 25.1 22.0 22.3 20.1	3.4 3.9 3.6 2.0 2.1 0.9	1)
74 70 <u>60</u>	16.5 21.5 24.3 30.1	11.8 11.3	1.2 0.7					

				2					
α	-Naphthylamine	(C _{1 O} H ₉ N)	+	Thymol	(C ₁₀ H ₁₄ 0)

Pushin, Marich and Rikovski, 1948

mol % f.t.	E
100 51	-
100 51 90 44 80 36 70 27 65 24 59 18 48 11 40 - 32 25 20 35	-
65 24 59 18	11
48 11 40 -	11 11
40 - 32 25 20 35 10 42 0 51	-
0 42	-

 α . -Naphthylamine ($C_{10}H_{9}N$) + Guaiacol ($C_{7}H_{8}O_{2}$)

Pushin and Rikovski, 1937

mol %	f.t.	mol %	f.t.
0 10 20 30 40 45	49 42 35 27 20 25.5	60 70 80 90 100	20 16 16 21,5 28
	(1-	+1)	

Pushin and Mazarovich, 1914

mol %	f.t.	E	min
0	48.5	-	_
10	41.8	-	-
20	34.0	15.4	30
25	30.7	14.8	
30 35 40 43 45 47 50 55	24.8	18.3	70
35	21.2	19.8	-
40		19.8	140
45	20.5	19.7	-
59	21.1	-	-
47	21.0	-	-
50 55	21.4	-	-
60	21.1	-	-
64	19.8		-
65	17.9	5.0	-
67	17.9 17.1	10.7	3 2
žó	15.2	10 5	-
65 67 70 71	15.3	12.5	-
75	15.5	13.5	,90
75 77	-	$\frac{13.9}{14.1}$	110
79 80	13.5		160
80	14.0	13.9	130
83	13.3	14.3 14.1	120
85	18.0		-
85 87	18.6	14.0 9,9	100
90	21.4		-
91	22.2	4.3	10
100	28.13	-	-
	- 7 - 0		

 α -Naphthylamine ($C_{1\,0}H_{9}N$) + Hydroquinone ($C_{6}H_{6}0_{2}$)

Philip and Smith, 1905

Я	f.t.	%	f.t.
100 75.1 60.8 43.5 34.4 27 19.4 14.2 11.1	169.2 157.2 148.7 134.8 125.0 114.5 98.5 76.9 65.8 61.0 57.5 unst	11.1 10.1 8.8 6.5 5.1 3.1	45.05 E 56.8 54.9 50.2 46.4 45.35 45.7 45.2 47.0 48.0

 α -Naphthylamine ($C_{10}H_{9}N$) + Pyrogallol ($C_{6}H_{6}O_{3}$)

Kremann and Zechner, 1918

48.5 45.8 41.5 41.8 39.1 36.9	32 31.8 32.7	
41,5 41.8 39.1 36.9	31.8 32.7	
41.8 39.1 36.9 - -	31.8 32.7	
39.1 36.9 - -	31.8 32.7	
36.9 - -	31.8 32.7	
- -	31.8 32.7	
- 34.0	32 7	
- 34-0	32.0	
34.0		
	32.0 32.2	
35.0	32	
37.7	-	
	31.8	
37.5	-	
40. U	-	
40.0-41.2	-	
40.9-41.2	-	
41 0	_	
46.0	30 5	
53	41.7	
61		
7 3		
90.0	-	
97.8	3 7.0	
105.5	-	
111.9	-	
110.5	-	
120.0	<u>-</u>	
126.0	-	
(1+1)		
	34.0 37.7 37.5 40.0 40.5 40.9-41.2 41.5 41.9 46.0 53 61 73 90.0 97.8 105.5 111.9 116.5 122.8 126.0 (1+1)	37.7 31.8 37.5 40.0 40.5 40.9-41.2 41.5 41.9 46.0 39.5 39.5 39.5 39.5 37.6 105.5 111.9 116.5 120.0 122.8 126.0

1-NAPHTHYLAMINE + PYROCATECHOL

α -Naphthylar	nine (C ₁₀ H ₉)	N) + Pyroca	techol (C ₆ H ₆ O ₂)	α -Naphthy	lamine (C	10H ₉ N) + m-	Nitrophenol
Philip and St	nith,1905			Kremann and	d Grasser,	1916	(C ₆ H ₅ O ₈ N)
%	f.t.	%	f.t.	%	f.t.	K	f,t,
100 90.9 65.6 54 43.5 37.6 "	103.2 94.0 83.0 71.3 56.3 45.2 41.65 42.05 (2	31.4 28 19.3 16.9 11 " +1) 8.1	42.7 43.4 40.95 31.3 38.4 36.95 41.3 48.0	100 96.7 92.7 83.2 75.4 66.2 58.6 51.2 48.3	95.0 94.5 92.0 86.0 79.2 71.0 63.0 56.0 56.3	45.1 43.9 43.8 37.5 29.9 22.8 14.6 5.5 0	55.7 55.5 54.5 52.5 46.5 40.0 35.5 44.0 48.0
α -Naphthyla	mine (C ₁₀ H ₉)	N) + Resorc	inol (C ₆ H ₆ O ₂)				
Philip and :	Smith, 1905			α -Naphthy	lamine (C	$10^{\rm H_9N}$) + p	-Nitrophenol (C ₆ H ₅ O ₃ N)
%	f.t.	% 	f.t.	Kremann an	d Grasser,	1916	
100 80	108.8 98.2 88.5	24.3 18.3	56.3 48.8	%		f.t.	E
66.8 55.9 54.4 48 " 43.4 33.4	88.5 77.5 75.25 67.1 65.05 65.05 62.6	13.3 11 7.1 0	41.0 38.0 38.6 38.2 42.1 48.1	0 3. 7. 13. 19. 28. 35.	5 6 1 4 8	48.0 46.0 43.0 37.3 45.0 58.5 65.0 65.5	33.5
Vignon,1891				36. 41. 49. 49.	8 2 8	68.0 68.2 68.2	- - -
%	mo	1 %	f.t.	54. 55. 60.	3 1 2	67.0 67.0	65.9 65.8
0 27.76 43.48 60.59 100	50	.33	50 61 67 77 110	61. 66. 71. 76. 81. 88. 92.	4 3 7 5 5 8	72.5 75.5 82.0 88.5 93.5 98.5 103.5 106.0 108.5	-
α -Naphthyla	mine (C ₁₀ H ₉	N) + o-Nitr	ophenol (C ₆ H ₅ O ₃ N)	100		109.0	- (1+1)
Kremann and	Grasser,1916	;	(06, 03)				
%	f.t.	R	f.t.				
		14.0°	10.0				
0 12.6 19.6 22.4 29.2 35.5 42 46.8 47.2 51.8 52.5	48.0 40.5 35.0 33.0 27.5 23.0 18.0 14.5 16.0	55.7 56.7 59.0 60.6 65.8 72.6 77.7 83.5 88.6 97	19.0 19.0 21.0 22.0 26.0 30.0 32.7 35.5 38.0 41.5 43.0				

		2,4-Dinitrophenol (C ₆ H ₄ O ₅ N ₂)	α-Naphthylamir	ne (C _{1 0} H ₉ N) + α	-Naphthol (C ₁₀ H ₈ O)
Buehler and Heap			Vignon, 1891		1
(1+1) f.1	:. = 107.3 - 1	07.7	8	mol %	f.t.
Kremann and Grasse	er, 1916		0 29.87	0 33.33	50 46
%	f.t.	E	46.00 63.02 100	50 66.67 100	56 70 92
0 4.1 7.2 14.6	48.0 45.0 44.0	- - -	Kremann and St	rohschneider,1918	
22.5 27.6 36.1	64.0 78.0 86.0 95.0	42	×	f.t.	E
43.3 49.6 57.1 57.4	101.5 103.5 104.5	-	100 93.2 87.8	92.0 89.0 87.0	-
61.8	104.5 103.5 100.0 94.5	- 89.9 89.7	80.2 73.8 71	82.5 78.5 77.0	-
67.3 71.9 79.6 88 95.7	97.0 103.5 108.0 109.0	- -	65.6 59.5 53.6	72.0 67.0 61.5	-
100	109.0	- (1+1)	51 50 47.2 44.6	58.0 57.0 55.0 52.0	40.5
α-Naphthylamine	(C H. N) +	m-Aminophenol	43.6 41.1 37	51.0 48.5 44.0	40.5
Kremann and Hohl		(C ₆ H ₇ ON)	36.6 31.7 30.2 25.9	43.7 41.0 41.5 42.0	40.5
F	f.t.	E	24. 20.8 18	42.5 43.0 43.0	- - -
0 2.9 8.8	48.0 45.0 41.5	-	14.4 7.9 4 0	42.5 44.5 46.2 48.0	42.0 42.0 (4+1)
13.6 17.1 19.5	38.0 36.7 45.0	36.0			سي مور شدر اسم شور شور شدر بين المواقع شور امور شدر شدر شدر سير سيرشير من اسم ديدر شور سي المواقع الحر ابدر شدر المداكم الدر اسموست من مير شد
22.3 22.4	53.3 53.0	36.0 36.0	Kofler and Brand	statter, 1943	سيواه اسر الدر الدر الدر سر هم هم هم هم هم الدر الدر الدر الدر الدر الدر الدر الدر
27.8 33.0 38.2	65.0 75.0 82.0	-	%	f.t. %	f.t.
42.9 46.6	87.0 90.5	-	100	96 30	56
50.2 52.9	93.5 95.8	-	80 70	86 25 81 20	55 47
56.7 60,2	98.5 100.5	- -	60 50	72 10 63 0	48 49
65.3 69.3 72.8	103.0 105.0	-	40		
72.8 77.3 80.1	106.5 109.0 110.0 112.1	-	E ₁ : 43° E ₂ : 47°	$E_{4}:45^{\circ}$ $E_{5}:60^{\circ}$	(4+1)
80.1 84.3 85.8	112.1	-	E ₅ : 54°		
93.5 100	112.8 115.3 118.0	-	4		
100	118.0	-			

				
α -Naphthylamine ($C_{10}H_{9}N$) + β -	Naphthol, (C ₁₀ H ₈ O)	α -Naphthylamine naphthalene ((C ₁₀ H ₉ N) + 1	,4-Dihydroxy-
Vignon,1891		Kremann, Hemmelm	mayer and Riemen	,1922
% mol %	f.t.	K	f.t.	E
0 0 29.87 33.33 46.00 50 63.02 66.67 100 100	50 66 75 92 122	100 88.5 80.4 70.4 60.4 56.3	183.0 166.0 156.0 144.0 133.0 138.0	129 128 127 128
Kremann and Strohschneider,1918	· · · · · · · · · · · · · · · · · · ·	52,3 50,1 43,6 33,7 22,7	142.0 139.0 131.0 106.0	-
% f.t.	E	14.5 5.9 0	86.0 44.0 48.3	44 44
100 122.0 91.8 113.5 81.6 102.0	-		(1 + 1)	
81.6 102.0 69.8 88.5 60.4 76.5 51.4 61.0	56.2	α -Naphthylamir naphthalene (C	ne (C _{1 O} H ₉ N) +	1,5-Dihydroxy-
43.4 64.0 39.5 66.0 36.4 65.3	- - -	II	C ₁₀ H ₈ O ₂) Imayer and Rieme	
29.8 57.0 24.5 53.4	-	×	f.t.	E
21.5 50.0 20.8 48.5 19 46.0 16 43.0 14.5 40.5	36.0 36.0	100 59.6 52.7	250.0 234.0 228.0	- - -
14.5 40.5 9.8 38.0 6 42.0 2 46.2 0 48.0	36.0	50.1 47.8 38.7 30.3	226.0 224.0 210.0 192.0	- - - 43.0
(3+2)		17.9 6.2 0	163.0 66.5 48.3	44.0
Kofler and Brandstatter,1943		α -Naphthylamin naphthalene (C	ne (C ₁₀ H ₉ N) +	1,6-Dihydroxy-
% f.t.	11		nayer and Riemer	
100 122 95 118	122 118	*	f.t.	E
95 118 90 115 80 108 70 100 60 89 50 76 45 76 40 76 30 72 20 66 10 50 5 46 0 49	114 105 95 82 65 - - - -	100 87.9 70.8 62.7 54.8 49.4 48.2 44.3 42.1 39.4 33.4 24.8 14.1 5.9	134.0 125.0 113.0 102.0 91.0 84.0 81.5 84.5 84.5 84.5	- - - - - - 76 76 - - -
		0.9	46.5 48.5 (3+2)	43.0

α-Naphthylamine	e (C _{1 o} H ₉ N) + 1	,8-Dihydroxy-	α - Naphth	ylamine (C	h ₁₀ H ₉ N) + 2,	3 - Dioxy-
naphthalene (C ₁ Kremann,Hemmelma	₀ H ₈ U ₂)		H	lene (C ₁₀ H ₈		-
%	f.t.	E	Kremann, H	emmelmayer a	nd Riemer, 1	922.
100	137.0	-	%		f.t.	E
94.4 77.5 68.4 59.1	133.0 118.5 102.0 85.5	- - 74.5	100		162.0 158.5	-
56.8 53.7	82.0 75.0	# -	83 72 67	.6	152.0 145.0 127.0	-
51.3 47.6 40.7	76.0 75.0 70.5	-	70 63	.5 .5	145.0 133.5	<u>-</u>
34.3 27.8	67.0 58.0	41.5	56 57	.9	120.0 110.0	95.0 -
22.9 16.6 10.7	52.0 41.0 46.0	# #	46. 44. 42.	.3	101.0 102.0 105.0	- 95,0
0.7	48.3	_	39. 35.	.8 .3	101.0 96.0	-
	(1.1)		31. 24. 20	.9	90.9 80.0 69.0	35.0 35.0
α -Naphthylamin thalene ($C_{10}H_8$	$(C_{10}H_{9}N) + (C_{10}H_{9}N)$	2,6-Di hydroxynaph-	15. 9. 5.	,5	47.0 41.5 44.5 48.5	35.0
Kremann, Hemmel	mayer and Rieme	r,1922	Ů	(3 + 2)	-
%	f.t.	E	β -Naphthy	lamine (C _{1.6}	H _o N) + Pher	nol (C ₆ H ₆ O)
100 57.2 51.1	216.0 180.0 170.0	-	Kremann,19		, ,	
44.2 36.2 23.8	161.0 148.0 120.0	46.0	%	f.t.	%	f.t.
12.4 5.7 0	84.0 61.0 48.3	45.0	0 7.4	109.0 104.0	52.3 57.4	82.0 80.0
α-Naphthylamin thalene (6,0Hg	e (C ₁₀ H ₉ N) +	2,7-Dihydroxynaph-	13.8 19.7 25.7 33	99.0 93.0 89.0 83.0	65.1 72.5 79.5 87.3	76.5 71.5 66.0 51.0
Kremann, Hemmel	mayer and Rieme	r,1922	38.3 43.3 47.9	83.5 83.5 83.0	95.4 100 (1+1)	37.5 40.5
%	f.t.	E				
100 80.1 72.6	186.0 176.0 168.0	- - -	β -Naphthy	lamine (C ₁₀	H ₉ N) + Pyro	catechol (C ₆ H ₆ O ₂)
67 62.7	162.0 155.0	-	Kremann an	d Csanyi,191	6	
59.1 55.7 53.5	151.0 144.0 141.0	- - -	%	f.t.	%	f.t.
50.4 45.2 38.6 27.7	137.0 124.5 109.0	-	0 4.8 9.5	109.0 104.8	41.4 45.1	77.2 27.6
27.7 18.6 9.3 2.5	83.0 62.0 35.0 45.0	35.0	15.3 20.4 26.3	100.9 96.5 92.5 85.8	51.6 57.1 62 71.3	76.4 75.0 79.5 87.0
<u> </u>	48.3	-	28 32.4 34.3 38.9	83.5 80.0 76.8 77.1	82.2 93 100	94.2 99.8 103.0

β -Naphthylamin	ne (C ₁₀ H ₉ N)	+ Resorcinol (C ₆ H ₆ O ₂)	Pushin and Riko	ovski, 1949	
Kremann and Csa	inyi,1916		mol %	f.t.	Е
% 100	f.t. 108.5-109	E -	100 90 80 70	172 167 161 153	137 139 140
93.9 87 80.2 75	106.0 102.5 98.0	-	60 55 50 45	145 141 142.5 143.5	140 141 - -
70.3 65.1 59	94.5 89.5 83.5 78.5	76 77 78.5	40 33.3 25	144.5 145 144	- - 108
54.1 48.4 45.2 44	80.0 80.9 81.3 81.1	78.5 - -	20 10 5 0	142 133 125 110	108 110 110 (1+1) -
40 38.4 32 23.8	81.0 80.9 83.5 91.5	- -			
16,9 9.6 4.2	97.0 103.0 106.0 109.0	-		ne (C _{1 o} H ₉ N) +	Pyrogallol (C ₆ H ₆ O ₈)
0	109.0	(1+1) -	Kremann and Zeo	· · · · · · · · · · · · · · · · · · ·	
Vignon, 1891			8	f.t.	E
mol %	Я	f.t.	0 3.2 7.5 14.9	109.0 107.0 107.0 116.0	- - - 105
0 33.33 50 66.67 100	0 27.76 43.48 60.59	112 76 74 69 110	18.9 21.1 27.2 35.4 38.8 41.4	119.1 120.0 121.5 121.5 120.8 119.9	-
β-Naphthylamin	e (C ₁₀ H ₉ N)	+ Hydroquinone (C ₆ H ₆ O ₂)	45.0 48.6 51.7 53.2 55.2	118.7 117.9 116.2 115.2 114.8	108.3 107.6 - -
Kremann and Csa			57.8 61.6 63.8	112.5 110.0 108.0 E	108 108.3
%	f.t.	E	66.5 70.7 75.1 80.6	110.2 113.5 115.3	108.3
0 1 3 8.4 12.2	109.0 107.5 120.5 132.5 136.5	106.0 105.6	89.8 95.8 100	118.0 122.4 124.6 126.0	- - -
14.4 17.8	139.0 140.0	-		(2+1)	
24 31.9 33.3 35.2	141.5 141.5 141.5 140.8	-	β-Naphthylamir	ne (C ₁₀ H ₉ N)+	o-Chlorphenol (C ₆ H ₅ OCl)
40	139.8	- -	Tronov and Born	tovoi,1954 (f	ig.)
40.7 45.6 46.4 56.7 59.5 68.8	139.0 138.5 143.5	138.5	mol %	f.t.	mol % f.t.
59.5 68.8 80 90.9 100	139.0 138.5 143.5 145.0 151.1 157.2 162.5 168.0 (1+2)	- - - -	0 20 40 45 50	114 96 78 72 E 74 (1+1)	60 71 80 35 95 4 E 100 8
	,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			<u> </u>	_	

β -Naphthylamine	e (C ₁₀ H ₉ N) + Gu	aiacol (C ₇ H ₈ O ₂)	β -Naphthyla	nine (C ₁₀ H ₉ N	() + m-Cresol	(С ₇ Н ₈ О)
Pushin and Vaic,	,1926	· · · · · · · · · · · · · · · · · · ·	Pushin and Ba	asara,19 27		
mo1 %	f.t.	E	mol %	f.t.	E	min
	28 22.2 21.9 15.8 23.8 32.0 32.3 40.2 46.0 47.5 57 70 81 90 97 103 110		100 98 96 94 93 92 90 85 80 70 67 65 64 63 60 53 50 48 46 42 46 30	5 0.5 - 2.2 - 10.3 14.0 27.7 35.2 47.9 48.8 49.1 50.0 56.5 70.5 72.7 74 77 80 90 90 97 104	-3.3 -3.3 -6.2 -18.0 -10.3 -10.3 -48.1 48.4 50.0 49.5 48.5 46.5 48.5 48.5	1.3 0.8 0.7 0.6 0.4 - - 0.5 0.9 1.2 0.9 0.9 0.7
mol %	f.t.	E	0	110	- (1+1) -
100 90 80 75 65 60 55 50 40 30 25 10	51 55.5 60 63 68 71 75 78 84 90 94 104	- 46 46 - - - - - - - -	β-Naphthyla Pushin and B mol % 100 97 95 93 93		E	min
β -Naphthylamine Pushin and Basar		resol (C ₇ H ₈ O)	90 89 88	33.8 38.0 39.5	28.9 23.7 26.6 28.2	
mol %	f.t. E	min min	85 80 70	48.0 57.5 67.0	23.3 23.5 19.0	-
100 98 96 95 94 93 90 88 84 80 70 60 55 55 45 40 30	- 24 - 25 37 25 41 25 49 24 56 24 64.4 23 68.8 - 69.9 - 70.2 - 72.8 70 78.5 70	2.5 .1 2.0 .0 1.3 .2 0.8	60 58 55 53 47 47 45 43 40 35 30 25 20 16 15	74.0 74.1 74.3 75.0 76.0 76 78 80 83 86.5 90 94.5 98.5 100.7 102 105	17.2 - - - 76 76 75 74.5 75 74 75.5	2.6
20 10 0	97 69 104 68 110 -	0.5 0.3 (1+1) -				

2-NAPHTHYLAMINE + 1-NAPHTHOL

β -Naphthylamine Vignon,1891	$(C_{10}H_9N) + \alpha$	-Naphthol (C ₁₀ H ₈ 0)	Kofler and B	randstätter,	1943	
mol %	76	f.t.	%	f.t.	%	f.t.
0 33.33 50 66.67	0 29.87 46.00 63.02	112 54 64 70 92	0 10 20 30 40 50	112 106 100 92 81 68	60 70 80 90 100	63 74 83 90 96
Kremann and Stro	hschneider, 1918					
%	f.t.	E	P-Naphthyla Vignon,1891	mine (C ₁₀ H ₉ P	() + β-1	Naphthol (C ₁₀ H ₈ O)
0 4.3 9.3 16.2	109.0 105.8 102.3 97.0	- - -	mol ;	%	8	f.t.
23.2 30.4 39.8 47.0 54.5 54.6	90.2 83.5 72.0 61.0 50.0 50.5 58.5	47.0 	0 33.3.50 50 66.67	46	9.87 6.00 3.02	112 68 74 93 122
62.1 68.3 70.5 79.0 86.5	68.0 70.0 78.5 84.5	47.0 47.0	Kremann and	Strohschneid	er,1918	
95.4 100	90.0 92.0	-	%	f.t	•	Е
Rheinboldt,1925			100 93.7 91.8 86.8	122. 118. 116. 117.	0 0 0	115 115
%	f.t.	Е	85.9 81.6 77.9	117. 118. 119.	0 5	- -
0.0 19.8 29.5 40.6 49.8 60.6 71.9 80.8 90.2 100.0	111.0 97.5 88.0 77.0 64.0 60.0 74.0 83.0 90.0	109.5 53.0 52.5 52.5 52.0 "" 52.5	73.8 68.4 67 62.4 60.3 55.7 51.5 47.5 42.1 39.7 37.2 34.5 27.8	120. 120. 120. 120. 119. 118. 118. 117. 116. 115, 114. 114.	2 3 0 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - - - - - - - 104
Rheinboldt and K	Kircheiser,1926		_ 13 6	111. 108. 104. 106. 109.	0 0 8	104
%	f.t.	Е	0	109.((1+2)		-
0.0 13.2 22.2 34.4 52.4 61.0 68.2 81.7 86.7 100.0	111.0 103.5 96.0 84.0 60.0 62.0 73.0 86.0 88.5 96.0	109.5 54.5 54.0 53.0 52.0 53.0 52.5 53.0 53.0 95.0				

Grimm, Gunther an	d Tittus,1931 (f	ig.)	A.Kofler,1942		
%	f.t.	E	(1+2) , naphthy1	gives two laye	ers with
100 92.5 90 80 70 60 50 40 30 20 17 10	122.5 111 114 120 123 123 121 117 113 107 102 103.5 111 (1+2)	111 111 111 111 111 111 104 103.5 103 103 103	Kofler and Baumei	ster,1942 (f	t ₂
Hrynakowski and	Szmytowna,1934		0 t ₁ and t ₂ are and 1.6128 res		168 where n _D = 1.6010
mol %	f.t.	m.t.		· · · · · · · · · · · · · · · · · · ·	
94.97 90.94 89.94	121.5 121.8 122.3 122.7	120.5 120.0 120.0	β-Naphthylamine ne (C ₁₀ H ₈ O ₂) Kremann, Hemmelma		,4-Dioxynaphthale-
84,91 79,89 74,87 69,85	122.3 122.7 122.8	120.0 120.0 119.5 118.8	%	f.t.	E
64.84 59.83 54.83 49.83 44.825 39.83 34.84 29.86 24.87 19.89 14.91 9.94 4.94	122.8 123.0 123.0 122.8 122.2 120.5 119.0 115.3 111.3 109.7 110.5 112.0	118.8 118.0 117.8 116.3 115.0 108.3 107.0 105.5 105.5 105.5	0 3.6 7.7 11.9 15.8 20.1 24 27.8 33.2 40.8 45.8 50.0 57.2 61.5	111.0 110.0 109.0 105.0 103.0 100.0 98.0 110.0 129.0 138.0 140.0 142.0 141.0	 96
Kofler and Brand	lstätter,1943		64.5 71.8 84.2 100	125.0 139.0 164.0 183.0	:
%	f.t.	m.t.		(1+1)	
100 90 80 70 60 50 40 30 20 10	122 123 123,5 125 126,5 127 125,5 121,5 114,5 109,5	122 120 122 122.5 123 119 109 109 109 112			

 β -Naphthylamine ($C_{1\,0}H_{9}N$) + 1,5-Dioxynaphtha=lene ($C_{1\,0}H_{8}0_{2}$)

Kremann, Hemmelmayer and Riemer, 1922

0 11	1.0 - 9.0 107.0
3 10 5 10.9 14.9 23.1 17 28.8 19 34.9 20 38.5 21 40.7 21 45.7 22 48.2 22 50.2 22 56.4 22 61.6 22 71.3 23 79.7 23 88.7 24	9.0

 β -Naphthylamine ($C_{1\,0}H_9N$) + 1,6-Dioxynaphtha=lene ($C_{1\,0}H_8O_2$)

Kremann, Hemmelmayer and Riemer, 1922

%	f.t.	E	
100	133.0	_	
88.2 82.4	129.0 125.0	-	
73.2 65.9	$113.0 \\ 103.0$	92.0	
59.2 52,6	$94.0 \\ 101.0$	92-91	
48.7 44.5	107.0 110.0	>2 - J1	
36.8 29.2	106.0 103.0	95,96	
22.1 8.2	107.0 110.0	"	
0.2	111.0	-	
	(3+2)		

 β -Naphthylamine ($C_{1.0}H_9N$) + 1,8-Dioxynaphtha=lene ($C_{1.0}H_8O_2$)

Kremann, Hemmelmayer and Riemer, 1922

%	f.t.	Е
100	137.0	-
92.6	135.0	_
80.4	125.0	-
72.1	110.0	_
65.5	93.0	_
60.4	111.0	75
60.3	109.5	Ħ
52.9	124.0	-
51.6	120.0	7 6
49	111.0	Ħ
46.84		75.5
46.5	95.0	76
41.5	81.0	70
27.6	95.0	_
20.0	100.5	_
13.1	105.0	_
		-
6.8	109.0	-
0	111.0	-
	(1+1)	

 $\beta\text{-Naphthylamine}$ ($C_{1\,0}H_{9}N$) + 2,6-Dioxynaphtha=lene ($C_{1\,0}H_{8}O_{2}$)

Kremann, Hemmelmayer and Riemer, 1922

%	f.t.	E
100 92.1 86.2 78.8 75.1 71.7 68.6 64.7 60.2 57.6 44.2 41.2 37.3 34.5 29.4 25.5 19 16 11 2.4	216.0 206.0 201.0 193.0 188.0 182.0 180.0 172.0 164.0 167.0 170.5 170.7 171.0 170.8 169.5 168.0 163.0 161.0 148.0 122.0 111.0	- - - - - - - - - - - - - - - - - - -
	,	

			1		
β -Naphthylamine	$e (C_{10}H_{9}N) +$	· 2,3-Dioxynaphtha=	β -Naphthylamine	$(C_{10}H_{9}N) +$	o-Ni trophenol
lene (C ₁₀ H ₈ O ₂))				$(C_6H_5O_8N)$
Kremann, Hemmelm	aver and Riem	er 1022	Kremann and Gras	ser,1916	
				<u> </u>	
%		τ.	7.	f.t.	E
/0	f.t.	E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
100	1.00			43.0	<u></u>
100	162.0 161.0	-	100.0	41.5	_
97.3 91.8	158.0	<u></u>	94.5 8 8.2	38.5	- -
84.7	153.0	-	11 83.4	36.0	25.0
78 72.6	148.0	144	77.1	46.0 51.0	35.9
66.3	149.6 156.0	<u>"</u>	74.0 71.1	55.0	~
61.1	160.0	_	68.6	5 7. 0	
58.3	163.0	144	66.7	57.0	_
53.7 50.5	168.0	-	61.2	66.5 66.0	35.8
49.5	167.5 161.0	-	60.3 57.1	70.5	-
37.3	155.0	_	51.7	75.0	-
29.6	145.0	-	45.4	80.0	_
19.4 9.6	130.0	-	35.5 26.6	87.5 93.0	-
1,6	115.0 107.0	-	19.7	97.0	-
0,0	111.0	-	8.4	104.5	-
	(1+1)		0.0	109.0	-
l	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-				
			β -Naphthylamine	(C. H.N) +	n-Nitrophenol
β -Naphthylamine	$(C_{10}H_{9}N) +$	m-Aminophenol	5 -Naphthylamine	(01011911 / 1	(C ₆ H ₅ O ₃ N)
Kremann and Hohl	,1920	(C_6H_7ON)			
d		_	Kremann and Gras	ser,1916	
%	f.t.	E			
			%	f.t.	E
9	108.8	-			
2.4	$106.9 \\ 104.5$	<u>-</u>	0.0	109.0	_ !
5.9 9.2 12.7	102.0	_	4.0	106.0	-
12.7	100.0	-	7.9	102.5	~
16.0	98.0	-	15.4 24.1	98.0 90.5	_
19.5 22.9	96.0 94.0	-	30.0	84.0	_
l 26	92.0	89.5	32.3	81.5	-
29.3 31.6	90.5		36.4	78.6 80.5	_
31.6	90.0 90.5	_	43.7	81.0	_
36.4	90.5	-	49.8 57.2 64.7	80.6	_
39	91.0	-	64.7	78.0 82.0	=
41.7		-	68.0 71.2	82.0 85.5	- 78
44.88 46.8	**	-	75.6	90.0	-0
49.0	90.0	-	81.6 89.3	96.5	-
49.6 52.3	92.0	-	89.3 96.0	103.5	<u>-</u>
52.3 52.8	93.5 93.0	-	100.0	108.0 109.0 (1-	-1)
53.3	93.8	<u>-</u>		207.0	
54.7 55.8	94.5	_			
55.8 56	95.5	-			
57.6	96.0 97.0				
1 60	98.5	91.0	1		
60.1	98.5	- ·			
63.8 66	101.5 103.3	~ -	1		
69.5 72.4	104.8	_			
72.4 75.6	106.8 108.7	-			
79.5	108.7 110.0	-			
83.3	111.8	-			
86.8	113.1	••			
91.4 96.1	115.2 117.1	_ /1.13			
100	118.0	- (1+1) -			

									6 H N	\	1
β -Naph	nthylamin	e (C ₁₀ ł	I ₉ N) + m-N	itrophen (C	101 6H ₅ O ₅ N)			diamine () + p-C1	C ₇ H ₈ O)
Kremann	n and Gra	sser, 19	016			Pushin a	nd Slad	ovic, 1928			
%		f,t.	%	f	.t.	mol %	f.t.	E	mol %	f.t.	E
100.0 88.8 81.6 71.7 62.4 59.5 57.53.5 52.7	8 5 7 4 2 1 1	95.0 91.0 85.5 75.5 64.0 62.0 62.7 63.5 63.2	46.6 45.9 40.4 30.9 21.6 14.7 10.1 3.1 0.0	6 7 8 9 9 10 10	7.0 8.0 5.0 66.0 63.8 9.5 66.5 99.0	95 95 90 87 85 84.2 80 75 66.7	33 31.6 - 106 109 110 114.2 116.9	29 28.7 -13.5 -	63 60 55 50 40 30 20 10 0	119.2 125.2 128.2 136.5 145.6 164.1 170.5	118 116.5 116.1 111 107.8 86.7
β~Napl	hthylamin	ie (C _{1 o} l	H ₉ N) + 2,4	-Dinitro (C ₆	phenol H ₄ 0 ₅ N ₂)	**************************************	اس امیر نیون امیر سیوالی کیون امیر امیر نیون سیو سام اللم کمیا	نید کیور کیورایی کام اکام اکام کام کام کام کام کام کام ک	سينامين ليمن أكام الكام المن الفياناتيان اليوا	ه خد خدیدی خورند. دند. هب ه د خد خد خد خد خدر خبران. ه	ه کمی استوانای حقی پلین کسی حیر سید. داشته حقق استوانای حقی استوانای حقی استوانای
Kremanı	n and Gra	sser, 1	916 			1-Brom-2-	naphthy	lamine (C	_{1 o} H ₈ NBr)	+ Picri	c acid
%	f.t.	E	<u>%</u>	f.t.	E	Hertel, 1	926			(C ₆ n	30 ₇ N ₃)
100.0 96.2 90.4 82.0 74.8 67.8 53.60 49.50	109.0 106.5 104.0 99.0 94.5 89.0 80.0 75.0 72.0	- - - - - 72 - - (1	45.30 40.20 34.60 32.50 24.10 18.15 11.44 4.77 0	72.3 72.0 79.0 85.0 91.5 97.0 102.0 107.0	- - - - - - - - -	mol 100 90 80 70 60 50		f.t. 116 112 136 155 171 173 (1+1	mol % 40 30 20 10 4		f.t. 170.5 150 115 96 60 66
Buehler	and Heap	, 1926									
(1+1) f	.t. = 77	.6 - 77.9°	د الله المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المواجعة المو والمواجعة المواجعة	l-Brom- Hertel,		hylamine (2,6-Dini	C _{1 o} H ₈ NBr trophenol) + (С ₆ Н ₄ 0	₅ N ₂)	
β-Naph	thy lamin		•						f.t.		:
		+ 2,7-)ioxynaphth	alene (C ₁₀ H ₈ U ₂)	m	ol %	I		11	
Kremann	n, Hemmel	mayer ar	nd Riemer,	1922		1	00	64	,5	64.5	
%	f.t.	E	8	f.t.	E		94 90		.5	_	
100 96.2 90.3 82.2 73.2 68.4 61.6 56.7 53.4	186.0 183.0 179.0 172.0 164.0 160.0 159.0 162.5 163.0	155 155 155	47.8 42.7 37.6 30.4 25.7 17.1 6.8 4.2 0	162.5 161.5 158.0 151.0 144.0 130.5 116.0 112.0	- - - - - - 108		80 70 60 50 40 30 20	75 84 89 91 90	.5 .5 (1+1)	55 65 75 82 82 85 80 89 97 102 55	1+1)
		 	* / 	در هن اسی جي هني ليي سي سي در هند اسي جيزجي فيي ليي سي اسي	=======================================						

Pyrazole ($C_8H_4N_2$) + Phenol (C_6H_60)	Piperidine ($C_5H_{11}N$) + o-Cresol (C_7H_80)
Lecat,1949	Pushin and Rikovski,1949
% b.t.	mol % f.t. mol % f.t.
0 187.5 33 191.5 Az 100 182.2	0 -11 70 29.5 50 +7 75 24.5 60 27 80 17 100 31 100 30
Pyrazole ($C_3H_4N_2$) + o-Cresol (C_7H_80)	Pushin and Matavulj,1932
Lecat;1949	mol % n _D mol % n _D
% b.t. 0 187.5 74 194.8 Az 100 191.1	40° 0 1.4431 66.6 1.5282 10.6 .4572 69.5 .5310 20.2 .4704 74.6 .5348 30.2 .4830 79.1 .5365 40.2 .4962 84.0 .5382 50.4 .5092 90 .5380 60.0 .5210 100 .5366
Piperidine ($C_5H_{11}N$) + Phenol (C_6H_60) Pushin and Matavulj, 1932 mol % $n_{ m D}$ mol % $n_{ m D}$	Piperidine ($C_5H_{11}N$) + m-Cresol (C_7H_80)
45° 0 1.4404 66.6 1.5420 10 .4540 70 .5456 20 .4678 72.9 .5495 30 .4830 75 .5511	Pushin and Matavulj,1932 mol % 20° 25° 40°
30 .4830 75 .5511 40 .4972 77 .5525 50 .5143 80 .5543 60 .5323 90 .5500 64.3 .5390 100 .5402	0 1.4534 1.4509 1.4431 9.54626 15.2 .47304628 30.0 .49264830 40.45028 - 41.65060 - 45.55098 50.0 .5201 .5176 .5100 55.35245 57.65286 59.25300 60.0 .5343 .5318 .5240 63.0 .5386 .5358 .5278 64.45374 66.7 .5430 .5401 .5320 68.6 69.4 .54545344 70.05430 .5401 .5320 68.6 69.4 .54545348 70.05430 .5401 .5320 68.6 69.4 .54545348 70.05430 .5401 .5320 68.6 69.4 .54545348 70.05430 .5401 .5320 68.6 69.4 .54545348 70.05430 .5401 .5320 68.6 69.4 .54545348 70.05430 74.6 .54995348 75.05430 74.6 .5499 75.05430 74.6 .5499 75.05440 89.75484 94.6 94.6 100.0 .5406 .5384 .5317

Piperidine (C	5H ₁₁ N) + p-Cres	ol (C ₇ H ₈ O)	Pushin and Mat	avu1j,1932		
Pushin and Sla	dovic,1928		mol %	20°	n _D	60°
100 95 90 87 80 75 70 66,7 65 60 55 50 45 40 30 25 20 10	f.t 34.4 29.5 21.5 17.0 23.5 36 40.9 42.1 41.9 39.5 33 23 9.7 -5.6 -28.6 -31.7 -27.5 -20 -12 (1+)	E	0 4.9 10.3 20 34 39.7 42.9 46.2 49.9 52.8 55.0 56.9 60.2 70.7 89.7 100.0	1.4534 -4670 .4788 -4990 .5020 .5050 .5080 .5099 -5123 .5141 .5189 .5226		4324 4386 4480 4610 4750 4812 4841 4870 4899 4917 4928 4940 4957 5000 5038 5044
Pushin and Mat	tavulj, 1932		Pushin and R	ikovski,1937 f.t.	mol %	f.t.
0 10.1 20.3 30.3 40.4	.4700 76 .4820 79 .4960 80	2.1 1.5360 .0 .5380 .6 .5394 .8 .5410	0 8 10 20 30 40 50	-11 -16.5 -12 +11.5 34.5 53.5 66	60 70 80 90 97 100	72.5 74 68 50 25.5 28
49.7 60.0 62.7 66.6 70.0	.5224 84 .5258 90 .5306 100 .5340		Pushin and Ma	tavulj,1932 20°	ⁿ D 45°	66°
 	T ₅ H ₁₁ N) + Thymol		0 10 20	1,4534	1,4406 .4558 .4712	1.4295 .4460 .4615
mo1 % 100 90 80 75 70 66.6 60 55 50 40 30 23 20 15 10 0	f.t. 51 43 31 22 15 6 7 11.5 14 7 -10 -28.5 -26.5 -21 -16 -11		30 40 45 50 55 60 63.0 63.1 65 66.7 69.0 70.0 70.6 75.0 80 90	.5518 .5567 .5611 .5630 .5640 .5644	. 4870 .5010 .5090 .5090 .5258 .5326 .5375 .5412 .5437 .5440 .5380 .5318	. 4760 . 4970 . 4970 . 5030 . 5100 . 5164

Piperidine (C ₅ H ₁₁ N) + 0	-Chlorphenol	(C ₆ H ₅ OC1)	Bramley,1916		
Pushin and Ri	kovski,1949			8	mol %	f.t.
mol %	f.t.	mol %	f.t.	0	0	-40.7
0 50 60 66.7	-11 +80 108 111	70 75 100 (1+	110 107 7	7, 82 14, 08 21, 94 36, 45 40, 02 45, 03 49, 43	6.66 12.08 19.12 26.90 35.9 41.15 45.05	-45.8 -50.3 -56.9 -35.0 -65.7 -20.2 -14.0 -10.8
Piperidine ((C ₅ H ₁₁ N) +	p-Chlorpheno	1 (C ₆ H ₅ OC1)	53.27 56.50 59.65 61.10	48.9 52.2 55.4 56.9	- 9.7 -10.2 - 4.19 - 2.15
Pushin and R	Rikovski,1949			64.51 69.29 71.68	60.45 6 5 .5	+ 2.5 5.4
mol %	f.t.	mol %	f.t.	74.42 77.32 80,67	68.0 70.9 74.15 77.75	5.4 4.0 +1.3 -17.6
0 50 60 66.7	-11 +40 65.5 70	70 75 100	68 75 34	81.96 90.24 100	79.3 88.7 100	
Pushin and)	Matavulj,1932	?		$\begin{array}{c} E_1 : 19.2 \\ E_2 : 53.7 \\ E_3 : 76.8 \end{array}$		4°
mol %	n _D	mol %	n _D			
0	65	62,6	1.5432	- 	Tikhomirova and	Efremov, 1936
9.7 19.9 29.9	1.4300 .4482 .4680 .4865	66.4 69.0 69.3	.5482 .5495 .5508	%	f.t.	E
40.3 50.0 56.4 60.0	.5080 .5224 .5340 .5398	74.9 79.6 90.0 100.0	.5545 .5560 .5552 .5480	100 95 90 85 80 77.5	41.3 36.3 28.2 16.6 1.8 1.3	- 5.6 - 2.7 - 2.5
Pyridine (C	₅ H ₅ N) + Pher	nol (C ₆ H ₆ O)		77.5 75 70.42 67.5	3.6 5.6 4.7	- 2.4
Hatcher and S	Skirrow,1917			65 60 5 7. 5	3.3 - 3.5 - 8.6	-13.7 -12.4
Z	f.t.	%	f.t.	54.34 52.5 50	- 9.3 - 9.7 -10.1	- -63.0
0 8.63 13.72 17.95 21.2 28.55 37.71 43.37 48.1 52.91 55.13 57.61	-37.5 43.5 43.0 54.0 55.5 38.0 22.0 15.5 11.0 9.5 9.0	60.14 63.15 66.7 69.8 74.5 77.42 79.7 83.6 90.93 95.24 100 (1+1)	- 5.3 - 1.0 + 2.5 + 3.8 + 2.5 - 2.0 - 2.7 + 9.5 29.3 35.6 40.8 (1+2)	45 40 35 30 25 20 15 10 5 2.5	-14.0 -20.2 -27.2 -35.4 -47.8 -55.5 -51.0 -47.0 -43.5 -42.1 -40.5	-58 -57.5 -57.3 -57.3 -59.5 -

PYRIDINE + PHENOL

Bramley, 19	016			%		đ	
%		d			50°	75°	100°
0.00 8.30 16.12 24.36 32.58 38.94 47.13 54.96 63.81 70.49 77.94 85.17 92.45 100.00	0.9819 .9916 1.0005 .0096 .0187 .0258 .0349 .0429 .0514 .0568 .0620 .0668 .0710	30° 0.9723 .9820 .9909 1.0002 .0096 .0167 .0260 .0343 .0426 .0482 .0534 .0583 .0625 .0668	0.9627 .9724 .9814 .9909 1.0005 .0077 .0173 .0257 .0341 .0397 .0449 .0498	100 90 80 75 70 60 54.34 50 40 37.3 30 25 20 10	1.0532 .0468 .0400 .0369 .0330 .0246 .0185 .0138 .0035 .0013 .0923 .9868 .9818 .9693 .9577	1.0324 .0266 .0202 .0167 .0122 .0037 0.9975 .9934 .9818 .9795 .9716 .9657 .9605 .9476 .9342	1.0118 .0064 .0000 0.9965 .9920 .9828 .9765 .9725 .9603 .9577 .9499 .9445 .9393 .9258
%	(00	d 80°	110°	Bramley,	1916		
0.00	0.9424	0.9218	0.8900	. \$	20°	η 30 °	40°
8.30 16.12 24.36 32.58 38.59 47.13 54.96 63.81 70.49 77.94 85.17 92.45 100.00	.9524 .9620 .9720 .9821 .9897 .9995 1.0003 .0168 .0226 .0279 .0327 .0369 .0414	.9324 .9428 .9532 .9639 .9718 .9821 .9910 .9995 1.0053 .0107 .0155 .0198 .0242	.9014 .9119 .9234 .9347 .9430 .9535 .9626 .9719 .9779 .9833 .9878 .9923 .9967	0.00 8.30 16.12 24.36 32.58 38.94 47.13 54.96 63.81 70.49 77.94 85.17 92.45	941 1109 1321 1597 2010 2411 3215 4370 5945 7480 9070 10040 10720 11040	821 940 1106 1339 1634 1963 2515 3245 4290 5170 6061 6625 6915 7090	714 828 965 1152 1339 1631 2042 2550 3245 3800 4305 4590 4705 4740
	d 10	% 	d	- %		η	
0.00 17.26 26.01 35.14 45.48 51.89	0.9916 1.0101 .0196 .0294 .0412 .0479	58.46 66.99 76.81 82.86 91.89 100.00	1.0544 .0618 .0700 .0742 .0787 .0836	0.00 8.30 16.12 24.36 32.53 38.94 47.13 54.96	578 656 753 879 1032 1198 1436 1727	80° 487 544 614 713 815 934 1077 1263	385 428 475 535 606 669 751 841
%	19.5° 2	d 5° 40°	45°	63.81 70.49 77.94 85.17 92.45 100.00	2065 2300 2500 2590 2590 2590 2520	1446 1580 1655 1670 1650	935 988 1013 1012 985
100 90 80 75	.0640 .0 .0606 .0	1.0626 6663 .0546 605 .0485 567 .0448	6 .0507 6 .0447 8 .0408	%	η	1580 	941
70 60 54.34 50 40 37.3 30 25 20 10	.0570 .0 .0475 .0 .0475 .0 .0387 .0 .0305 .0 .0275 .0 .0195 .0 .0144 .0 .0090 .0	530 .041(1 441 .0324 380 .0263 342 .0220 256 .0125 231 .0100 145 .0018 081 0.9969 040 .9907 9922 .9785 825 .9700	0 .0370 .0285 3 .0224 0 .0179 5 .0080 0 .0057 8 .9970 9 .9863 .9739	0.00 17.26 26.01 35.14 45.48 51.89		58.46 66.99 76.81 82.86 91.89 100.00	6800 9880 14160 16440 18800 20100

Vinogradova, Tikhomirova and Efremoff, 1936	Taboury and Lestrade, 1947
% n 25° 40° 50° 75° 100	Raman Spectra in the liquid
100 - 4150 2680 1280 88 90 7490 4120 2810 1300 7- 80 6900 3790 2700 1340 7- 75 6380 3560 2610 1270 7- 70 5600 3290 2420 1230 69 60 4110 2640 1960 1070 67	Pyridine (C_5H_5N) + Resorcinol ($C_6H_6O_2$)
54.34 3370 2180 1700 960 60 50 3090 2010 1540 900 57	0
40 2820 1600 1250 790 50 37.3 2100 1460 1190 730 50 30 1700 1220 990 640 45 25 1550 1160 950 620 42 20 1400 1040 870 570 40 10 1160 910 710 540 35 0 920 720 610 440 33	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
ر 19.5° 45°	50
100 - 37.1 90 42.39 37.8	80 80.5 - 90 100 - 100 111.3 (1+1) -
80 42.75 38.2 75 42.95 - 70 43.13 38.8 60 43.45 -	Timofeev, 1905
54.34 43.51 - 50 43.60 39.1 40 43.52 39.1	% U
37.3 43.45 - 30 43.14 38.8 25 42.10 -	20°
20 41.83 - 10 39.87 35.2 0 36.41 32.5	0 0.405 19.3 0.4120
Pushin and Matavulj,1933	initial final (by mole resorcinol)
	0 2.2 +4.67 2.2 5.3 +4.61 24.1 24.9 +3.19
20 .5111 60 .5 25.9 .5153 69.9 .5 30 .5179 79.8 .5 40 .5248 89.5 .5	318 334 344 371 387 Hrynakovski and Ellert,1939 402
50 .5306	% f.t. E
Timofeev, 1905	0 -40.2 - 5 -36.5 -45.5
% Qdil initial final (by mole phenol)	10 -8 -44.5 20 +15 -44.3 30 +33 -35 +46 +33
0 1.8 +1.57 1.8 4.1 +1.62 15.5 17.5 +1.50 33.1 34.3 +1.20 47.0 47.8 +0.63	35 +46 +33 40 +58 +33 50 +75 +35 60 +86 +78.2 65 +115.8 +78 70 +126.5 +77.8 100 +172.0 (1+2)

Pyridine (C_5H_5N) + Pyrocatechol ($C_6H_6O_2$)	Bramley,19	916			
Hrynakowski and Ellert,1939		Я	mol %		f.t.
% f.t. E) 7.13 3.08	0 5.33 9.92		-40.7 -44.6 -48.9
0 -40.2 - 10 -28.5 -45.5 15 -15 -46 20 -2 -45 30 +11 - 40 16.8 - 50 13 +9 60 20.3 10 65 35 10.5 70 46 5 80 75 7.8 90 93 - 100 105.0 (1+1) -	18 24 31 36 42 48 53 58 67 68 71	3.75 3.75 3.75 3.73 3.78 3.32 3.10 3.52 3.34 3.96 3.90 3.88	14.43 20.12 24.5 29.8 35.45 40.65 45.3 51.0 55.9 62.4 65.15 70.9	-	-48.9 -44.5 -32.45 -24.6 -16.7 -8.9 -3.9 0 -1.2 -0.95 -5.2 -9.3 -48.1 -12.8
Pyridine (C ₅ H ₅ N) + Pyrogallol (C ₆ H ₆ O ₃)	85 91	. 16 . 88 . 52 . 94	75.75 81.3 88.8 95.9 100	- + +	2.25 10.2 19.9 26.75 29.75
Hrynakovski and Ellert,1939		E: 11. 68.	9 mol % 2 mol %	-50.95° -33.8°	(1+1)
% f.t. E	K	0°	10°	d 20°	30°
0 -40.2	0.00 12.05 24.55 33.60 45.83 55.96 66.83 77.73 85.72 91.85 100.00	1.0013 .0100 .0197 .0267 .0364 .0438 .0514 .0574 .0606 .0629 .0654	0.9916 1.0005 .0104 .0178 .0279 .0355 .0430 .0491 .0522 .0545	0.9819 .9912 1.0012 .0091 .0196 .0273 .0348 .0408 .0439 .0461 .0483	0.9723 .9818 .9928 1.0005 .0112 .0190 .0265 .0324 .0356 .0376 .0399
	я	40°	60°	d 80°	110°
Pyridine (C ₅ H ₅ N) + o-Cresol (C ₇ H ₈ O) Hatcher and Skirrow, 1917 f.t. f.t.	0.00 12.05 24.55 33.60 45.83 55.91 66.83 77.73 85.72 91.85 100.00	0.9627 .9722 .9835 .9918 1.0026 .0105 .0180 .0238 .0270 .0290	0.9424 .9531 .9653 .9742 .9855 .9937 1.0013 .0070 .0099 .0117	0.9218 .9340 .9472 .9565 .9684 .9767 .9846 .9901 .9929 .9946	0.8900 .9040 .9178 .9276 .9403 .9490 .9570 .9623 .9649 .9664
19.83 41.0 78.13 -12.0 33.37 16.0 81.77 + 2.2 39.11 9.0 85.97 11.5 48.27 - 1.0 90.47 19.4	%	0°	10°	η 20°	30°
48.27 - 1.0 90.47 19.4 54.14 + 1.0 100 29.4 58.87 + 1.0 (1+1)	0.00 12.05 24.55 33.66 45.83 55.91 66.83 77.73 85.72 91.85 100.00	1323 1669 2335 3155 5315 9360 18240 31520 37700 39250 39700	1108 1396 1900 2490 3910 6310 10680 16140 18110 18370 17900	941 1176 1556 1983 2962 4455 6845 9260 10040 10010 9560	821 1022 1350 1724 2560 3625 4935 6230 6565 6450 6125

PYRIDINE + M-CRESOL

% 40°	η 60°	80° 110°	Pyridine ((C ₅ H ₅ N)	+ m-Cresol (С ₇ Н ₈ 0)		
0.00 714 12.05 886	578 703	487 385 577 451	Bramley, 1	Bramley, 1916				
24.55 1148 33.60 1436 45.83 2045	889 1069	720 543 852 615 060 732	%		mo1 %	f.t.		
55.91 2750 66.83 3575 77.73 4290 85.72 4415 91.85 4325 100.00 4100	1784 12 2181 14 2460 13 2460 13 2395 13	353 834 467 945 586 980 573 969 528 942 431 897	0 4.4 9.7 15.0 20.1 24.9 31.4	76 13 11 19	0 3.31 7.30 11.45 15.45 19.6 25.15	-40.7 -43.0 -45.9 -49.05 -52.7 -55.6 -61.5		
Pushin and Mata	vulj,1933		36.8 41.5	36.85 29.9 41.58 35.1 80.81 75.5		-67.0 -74.5 -38.3		
mol %	n _D 10° 25°	50°	91.1 96.8 100	.4	81.5 88.3 95.7 100	-20.2 - 7.1 + 1.15 4.5		
0 15.3 25.0	1.5152 1.5071 .5253 .5176 .5312 .5236	.5045	R	0°	d 10°	20°		
35.1 44.8 50.5 54.8 59.6 70.0 74.7 79.9 84.9 89 94.8 100	.5312 .5236 .5368 .5296 .5421 .5351 .5444 .5377 .5460 .5393 .5477 .5407 .5499 .5429 .5504 .5436 .5512 .5441 .5510 .5438 .5510 .5438 .5510 .5436	3 .5177 .5231 .5256 .5274 .5288 .5310 .5315 .5318 .5320 .5319	0.00 14.09 27.45 41.40 46.92 55.33 61.80 70.62 75.90 85.17 91.41 100.00	1.0013 .0098 .0181 .0264 .0375 .0377 .0418 .0439 .0467 .0479	0.9916 1.0003 .0088 .0175 .0209 .0260 .0295 .0336 .0357 .0385 .0399	0.9819 .9908 .9995 1.0086 .0121 .0174 .0211 .0254 .0275 .0303 .0318		
Bramley, 1916			%	30°	d 40°	60°		
%	U %	U	0.00 14.09 27.45	0.9723 .9813 .9902	0.9627 .9718 .9809	0.9424 .9527		
9,55 20,65 32,68 43.80	0-20° 0.395 51.9 396 63.6 400 76.5 406 87.2 414 100	0.421 .437 .458 .477 .499	41.40 46.92 55.33 61.80 70.62 75.90 85.17 91.41 100.00	. 9902 1.0033 .0089 .0128 .0172 .0193 .0221 .0237 .0253	. 9809 . 9909 . 9946 1.0003 . 0045 . 0089 . 0110 . 0139 . 0155 . 0173	.9630 .9737 .9778 .9839 .9882 .9930 .9951 .9981 .9987		
(cal/10		0 mix (cal/100 g)	Z		đ	· · · · · · · · · · · · · · · · · · ·		
37.0 1270 42.35 1545 42.75 1547 49.15 1757 50.1 1787 51.3 1811 55.15 1897	60.1 63.6 69.3 74.95 82.5	1943 1938 1928 1822 1639 1265	0.00 14.47 26.75 38.43 50.72 61.52 70.94 82.33 90.88 100.00		80° 0.9218 .9343 .9447 .9545 .9644 .9721 .9772 .9817 .9836 ,9853	0.8900 .9036 .9154 .9264 .9375 .9455 .9511 .9555 .9576		

PYRIDINE + P-CRESOL

×		η		Bramley, 191	6		
	0°	10°	20°	. 8	U	Я	U
0.00 14.09 27.45 41.40 46.92 55.33 61.80 70.62 75.90 85.17 91.41 100.00	1323 1791 2643 4280 5540 8780 12830 22050 30950 50000 64200 84400	1108 1466 2105 3250 4015 5935 8040 12850 16640 23700 28550 34600	941 1228 1770 2540 3085 4250 5585 8160 9980 13080 14810 16900	0 14.47 26.75 38.43 50.95 57.80	0-20 0.395 .397 .402 .407 .415 .420 0 mix (cal/100 g)	66.9 72.5 80.5 90.9 100	0.428 .435 .446 .460 .479
×		η		17.1	512	63.2	
0.00 14.09 27.45 41.40	821 1098 1461 2125	714 931 1240 1732	578 731 949 1267	17.1 31.75 39.0 45.75 50.95 57.8	920 1138 1306 1409 1511	66.9 72.5 80.5 90.15	1523 1472 1375 1095 622
46.92 55.33 61.80 70.62 75.90 85.17 91.41 100.00	2510 3350 4175 5570 6520 7885 8640 9470	2022 2605 3150 3995 4565 5255 5590 5925	1419 1755 2019 2425 2619 2850 2955 2995		C ₅ H ₅ N) + p-C Skirrow, 19		₇ H ₈ 0)
8	· · · · · · · · · · · · · · · · · · ·	η	·	- K			f.t.
0.00 14.47 26.75 38.43 50.72 61.52 70.94 82.33 90.88 100.00		80° 487 599 731 901 1147 1407 1629 1820 1848 1808	385 457 539 646 775 910 1010 1074 1052 1023	0 19.0 25.7 35.3 45.3 49.2 52.2 54.9 57.8 59.2 59.2 62.1 64.2	8 5 7 8 1 1 4 6 4		-37.5 -49.0 -30.0 -15.3 - 5.0 - 2.0 - 0.5 + 0.5 + 1.5 - 8.5 - 0.5 - 3.0 0
1	nd Matavul			73.7: 75.1: 84.5: 88.3: 93.9:	2 2 2 2 6 7		+ 2.0 3.5 3.3 3.0 13.5 24.0 32.0
mol	% 	25°	50°	_	(1+1)	(1+2	2)
0 20 40 44. 49. 52. 54. 59. 68. 79. 89.	7 4 8 5 9 6 5	1.5072 .5198 .5300 .5322 .5340 .5349 .5356 .5369 .5386 .5393 .5395 .5395	1.4932 .5070 .5177 .5200 .5221 .5230 .5238 .5251 .5271 .5280 .5282 .5282				

PYRIDINE + P-CRESOL

Bramley, 1916			%		d 80°	110°
0 6,66 13,98 19,94 25,60 30,47	0 4.96 10.61 15.42 20.10 24.30	f.t. -40.7 -44.8 -48.9 -53.8 -31.0 -23.0	0.00 14.06 27.48 41.10 54.03 63.11 71.88 81.72 89.95 100.00		0.9218 .9343 .9462 .9575 .9679 .9741 .9792 .9828 .9850 .9868	0.8900 .9037 .9165 .9291 .9410 .9474 .9527 .9566 .9588 .9604
34.88 40.33 45.53 50.65 56,59	28.15 33.10 37.97 42.85 48.90	-16.7 - 9.8 - 4.5 - 0.3	%	0°	η 10°	20°
59, 29 62, 62 66, 49 69, 87 73, 52 77, 62 82, 19 88, 39 93, 91 100	51.6 55.15 59.3 63.0 67.0 71.65 77.2 84.75 91.7 100	+ 2.0 + 1.4 - 2.4 - 0.95 + 2.6 5.0 6.2 4.4 - 2.4 +17.85 26.95 33.8	0.00 21.03 29.61 40.04 46.71 54.46 60.37 67.82 75.36 33.28 91.01 100.00	1323 2178 2792 4165 5795 8670 12410 19080 31200 49850 72400 98400	1108 1837 2251 3175 4205 5990 7870 11400 16750 23950 31130 39650	941 1451 1808 2535 3105 4215 5315 7365 10040 13240 16160 18950
	55.0 mol % - 1.4°	(1+2) (2+3)	%	30°	ກ 40°	60°
0.00 21.03 29.61 40.04 46.71 54.46 60.37 67.82	d 0° 10° 1.0013 0.9916 .0145 1.0051 .0200 .0108 .0265 .0176 .0305 .0219 .0351 .0267 .0385 .0302 .0419 .0338 .0445 .0365	20° 0.9819 .9957 1.0016 .0087 .0132 .0182 .0217 .0254	0.00 21.03 29.61 40.04 46.71 54.46 60.37 67.82 75.36 83.28 91.01 100.00	821 1363 1628 2115 2565 3310 4080 5265 6635 7970 9260 10540	714 1139 1370 1727 2065 2600 3115 3830 4660 5415 6020 6540	578 827 995 1245 1462 1773 2020 2348 2705 2970 3150 3280
75.36 83.28 91.01 100.00	.0445 .0365 .0464 .0386 .0477 .0400 .0487 .0412	.0283 .0306 .0320 .0335	K		80° η	110°
%	d 30° 40°	60°	0.00 14.06 27.48 41.10		487 603 7 47 955	385 460.5 551.5 676.5
21.03	0.9723 0.9627 .9865 .9773 .9926 .9836 1.0000 .9913 .0046 .9962 .0099 1.0014 .0133 .0048 .0170 .0086 .0200 .0117 .0223 .0140 .0239 .0159 .0257 .0177	0.9424 .9592 .9661 .9744 .9795 .9050 .9888 .9927 .9959 .9984 1.0005 .0026	54.03 63.11 71.88 81.72 89.95 100.00		955 1230 1463 1696 1890 1961 1937	822.5 940 1047 1120 1111 1081

Pushin and Ma	tavulj,1933			Pyridine (C ₅	H ₅ N) + 3,5-	Xylenol (C ₈ I	I ₁₀ 0)
		n _D		Parant,1950	(fig.)		
mol %	10°	_	0°	mol %	f.t.	mol %	f.t.
0 20.2 39.8 45.0 50.1 52.6	1.5157 .5272 .5370 .5393 .5412 .5419	.5 .5 .5	988 122 229 252 273 281	0 15 30 40	-40 -50 E -20 - 9	50 64 70 80	- 4 (1+1) -15 E +19 25
55.0 59.5 69.7 79.8 89.8 100.0	.5427 .5436 .5450 .5455 .5453 .5450	.5 .5 .5	288 300 319 326 326 323	Pyridine ((Parant,1950	(fig.)	Methyl-5-Ethy	lpheno 1 (C ₉ H ₁₂ O)
				mol %	f.t.	mo1 %	f.t.
Pyridine (C	(fig.)	-Xylenol (C	θ ₁ ο 0)	0 5 10 13	-40 -43 -50 -54	70 80 90 100	+10 +30 +44 +50
mol %	f.t.	mol %	f.t.				*
0 13 20 30 40 50	-40 -52 E -39 -25 -10 - 6 (1+1	57 70 80 90 100	- 8 E +36 +64 +70 +71.5	Pyridine (C Parant,1950 mol %	(fig.)	mol %	oheno1 (C ₉ H ₁₂ O)
Pyridine (C Parant,1950 mol %	(fig.)	Xylenol (C _g	f.t.	0 5 10 20 30 40	-40 -40 -47 -56 E -33 -23	50 60 70 80 90	-18 E +42 +65 +73 +82 1) +93
0 15 30 40	-40 -53 E -29 -16	60 70 80 90	+14 +40 +60 +70	Pyridine (aiacol (C ₇ H ₈	02)
50	-10 (1+1)	100	+75	mol %	f,t.	E	min
Parant,1950 mol % 0 13 20	fig.) f.t. -40 -47 E -35	mol % 60 70 80	f.t. 23 37 47 59	100 90 85 80 77 72 69 60 50 40 30 25 20	28 18.8 15.6 9.4 7.2 0 - 3.6 5.6 3.6 - -10.3 -18.7 -33.2	- 7.8 - 5.2 - 5.1 - 10.8 - 48.8 - 49.4 - 49.3 - 47.8	0.37 0.73 1.75 0.35
30 40 50	-18 - 4 +11	90	59 64	102 9 8 6 3 0	-39.0 -46.3 -42.6 -40.2 (1	-47.8 -48.4 -49.9 -47.8 -48.8	0.81 1.24 0.70 0.47

Pushin and Pin	ter, 1929		Pyridine (C	C ₅ H ₅ N) + o-Pl	neny lpheno l	(C ₁₂ H ₁₀ 0)
mol %	đ	η	Hazlet and M	Morrow, 1942		
100	30° 1,1236	4450	mol %	f.	t.	E
90 80 75 73 70 60 50 40 30 20 10	.1184 .1111 .1068 .1050 .1025 .0906 .0770 .0609 .0422 .0190 0.9955 .9757	5040 5380 5400 5420 5400 4940 4000 3300 2070 1480 1090 826	0.00 3.21 5.17 8.10 10.52 13.05 14.54 19.81 24.86 29.52 35.10 39.65	25	3.1 3.1 3.0 7.8	- -44.7 -44.4 -44.8 - - - -
Pushin and Ma	tavulj, 1933		43.11 49.39 54.88	34 38	3.2 3.0	- - -
mol %	n _D mo	1 % n _D	61.39 66.26 67.22	19	3.2 2.1 2.8	- 14.4
0 10 20 30 40 44.7 50 52.4	.5125 57	0 .5421 0 .5413	70.13 73.88 78.11 80.34 88.53 91.24 94.41 100.00	30 33 45 49 52	2.4 .4 3.9 .9 .4 .5 .1 (1+1)	
Pyridine (C ₅	Pyridine (C_5H_5N) + Thymol ($C_{10}H_{14}O$)				ny ipitenoi	(01211100)
Pushin, Maric	h and Rikovski,	1948	Hazlet and Mo	f.t.	mo1 %	f . t.
mol %	f.t. m	ol % f.t.	0.00	-41.7	44.00	38.7
100 90 80 70	44	66.7 6 20 -52 10 -44 0 -40	6.34 8.40 11.42 15.20 19.98 25.14	-45.5 -46.8 -49.3 E -41.3 -28.4 -15.2	46.03 48.12 49.83 51,13 51.64 53.80	45.6 53.0 59.7 61.0 62.1 77.4
Pushin and Ma	tavulj, 1933		28.13 29.28 30.86	- 3.3 - 1.1 2.5	55.31 65.09 66.64	87.1 124.2 127.0
mol %	20°	n _D 60°	33.76 (33.97) 36.13 (36.57)	6.0 (-10.5) 9.8 (6.0)	69.84 73.12 74.86 80.46	133.0 138.5 141.4 148.4
0 10 15.5 20.2 30.3 40.0	1.5100 .5167 .5216 .5241	1.4876 .4930 .4957 .4976 .5020	37.15 38.15 40.05	10.4 15.2 23.6 (1+1)	87.77 90.06 100.00	155.5 157.6 165.1
44.9 49.7 54.9 59.8 65.2 70.4 82.3 84.0 89.5 100.0	.5251 .5260 .5265 .5269 .5269 .5251 .5229	.5066 .5077 .5083 .5086 .5086 .5086 .5076 .5072 .5064				

Pyridine (C_5H_5N) + m-Phenylphenol ($C_{12}H_{10}0$)	Bramley, 1916
Hazlet and Morrow, 1942	% d d 20° 30°
mol % f.t. mol % f.t.	0.00 1.0013 0.9916 0.9819 0.9723 11.17 .0288 1.0190 1.0093 .9995
0.00 -41.7 49.75 34.3 2.87 -43.0 54.87 33.3 7.21 -44.3 E 59.86 26.0 9.76 -36.3 64.61 15.7 12.54 -25.3 68.68 8.8 15.92 -10.9 68.68 12.6 E 18.71 -0.9 68.98 21.5 24.97 10.4 74.92 36.5 27.67 15.2 85.36 57.9 31.62 22.2 89.87 64.0 35.75 27.2 71.1 41.19 31.9 (1+1) 100.00 75.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Pyridine (C_5H_5N) + o-Chlorphenol (C_6H_50C1)	% d 40° 60° 80° 110°
Bramley, 1916	0.00 0.9627 0.9424 0.9218 0.8900 11.17 .9896 .9696 .9498 .9198 21.62 1.0171 .9976 .9783 .9492 31.57 .0441 1.0250 1.0058 .9770 42.31 .0750 .0561 .0373 1.0080
% mo1 % f.t. 0 0 -40.7 8.22 5.22 -44.5 16.53 10.87 -49.8 23.98 16.32 -55.4 31.56 22.2 -61.4 39.04 28.3 -48.1	51.48 .1027 .0839 .0651 .0357 60.15 .1297 .1110 .0921 .0622 67.47 .1509 .1318 .1124 .0822 72.50 .1645 .1447 .1247 .0942 76.93 .1759 .1559 .1358 .1048 81.06 .1857 .1654 .1450 .1139 85.17 .1958 .1753 .1548 .1232 92.51 .2128 .1915 .1703 .1376
43.68 32.3 -40.0 49.50 37.65 -31.5 53.62 41.5 -26.45 58.33 46.3 -22.5	100.00 .2284 .2060 .1834 .1490 % 0° 10° 20° 30°
62.34 50.5 -21.7 64.31 52.6 -22.6 66.56 54.0 -23.3 69.55 58.5 -62.0 and -27.8 76.83 67.1 -38.5 and -34.5 85.49 78.4 -12.3 90.05 84.8 -4.1 93.93 90.5 +2.2 97.01 95.2 5.9 100 100 8.0 E: 23.1 mol \$ -63.0 66.1 " " -36.9 (1+1) -21.6	$ \begin{array}{ccccccccccccccccccccccccccccccc$
Pushin and Rikovski, 1949	40° 60° 80° 110°
mo1 % f.t. mo1 % f.t. 0 -42 50 -18.5 10 -48 53* -22.5 20 -58.5 57 -25.5 30 -41.5 60 -30 40 -25 80 -11.5 45 -20.5 90 +2 47 -19.5 100 (1+1) 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Pushin and l	Matavulj, 193	33		Pyridine (C_5H_5N) + p-C	hlorphenol	(C ₆ H ₅ OC1)
mol %		n _D 25° 50°			d Madgin, 1936	(fig.)	
0 10 20 30 35 40 44.8 47.1 50.0 53.1	0 1.5071 0 .5178 0 .5277 0 .5370 5 .5416 0 .5456 4.8 .5497 7.1 .5511 0 .5531 3.1 .5547		1.4932 	mol % 0 10 20 30 33 40 50	42.9 29 12.5 -10 -17.8 E -11.5 - 3.7	mo1 % 60 70 80 87 90 100	-11 (1+1) -23 -36.5 -47.5 E -45 -40.5
56.8 60 65 70 80		5561 55 7 0 5584 5593 5595	.5433 - - - -	I	Matavulj, 193		
90 100		5588 55 7 3	1.5438	mol :		0° uD	40°
Bramley, 19	16			0 10.8 20	.5	100 200 282	1.4989 .5093 .5180
0.00 8.23 16.75 19.11 28.70 31.25 38.50 42.00 49.3	0-2 0.395 .390 .383 .383 .379 .377 .375 .376	55.3 62.45 67.75 76.0 83.0 88.5 91.6 96.5	0.385 .393 .397 .404 .408 .409 .407 .407	30 40 45 49.7 54.4 58.7 64.6 69.5 79.6 89.3 100.0	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	368 447 482 512 540 5563 591 680 641 666 690	.5270 .5353 .5390 .5422 .5451 .5475 .5502 .5520 .5550 .5574
0.00 10.63 22.50 35.15 46.4		58.5 69.8 79.9 91.6 100	0.421 .424 .420 .409 .396		C_5H_5N) + o-A and Ellert,	1939	(C ₆ H ₇ ON)
39.0 44.9 53.1 58.9 61.9	Q mix 1516 1739 2024 2155 2178	% 66.0 70.0 74.9 78.0 85.0	Q mix 2131 2034 1864 1719 1511	0 10 15 20 30 40 50 60 70	-40.2 -45 -48 -34.3 +28 +76.5 +106.5 +129 +148 +174	-4 -5	0 9.5

Deili (C.H.V.) and birankanal (C.H.OV.)	Dismission and Vinilaus 1052 (6in.)
Pyridine (C_5H_5N) + m-Aminophenol (C_6H_70N)	Dionisiev and Kirilova, 1952 (fig.)
Hrynakowski and Ellert, 1939	mol % d 45° 55°
0 -40.2 - 10 -44 -54 20 -50 - 25 -30.5 -50 30 -13 -49.6	100 1.28 1.27 90 - 1.28 1.27 1.25 70 1.24 1.23 1.22 1.21 60 1.22 1.20 1.19 1.17 40 1.15 1.14 1.13 1.12 20 1.08 1.07 1.05 1.04 0 0.98 0.97 0.96 0.94
30 -13 -49.6 35 - 8.5 - 40 - 9 -13.2 45 -11.5 -13.5	Bramley, 1916
750 + 35 - 15 60 + 65.8 - 15.2 70 + 88.5 - 80 + 102.5 -	% 30° 40° ¹⁷ 60.1° 80°
100 +122.5 (2+1)	0.00 821 714 578 487 11.32 943 815 647 519
Pyridine (C_5H_5N) + o-Nitrophenol ($C_6H_50_3N$) Dionisiev and Kirilova, 1952 (fig.)	
	68.32 2450 1912 1325 992 76.79 2755 2145 1460 1080 86.96 3145 2411 1621 1195 91.25 3331 2525 1688 1240
	100.00 3650 2755 1825 1348
100 44.5 35 -42 78 33 20 -76 60 12 10 -55 40 -25 0 -38	Dionisiev and Kirilova, 1952 (fig.)
Bramley, 1916	mol % n 25° 35° 45° 55°
% d 30° 40° 60° 80° 0.00 0.9723 0.9627 0.9424 0.9218 11.32 1.0047 9947 9740 9536	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
27.58 .0544 .0442 .0232 1.0025 39.62 .0935 .0831 .0617 .0407 52.25 .1362 .1257 .1037 .0824 60.24 .1645 .1537 .1317 .1103 68.32 .1929 .1821 .1599 .1383 76.79 .2233 .2125 .1903 .1686	0 850 800 750 700 mol %
86.96 .2578 .2472 .2250 .2035 91.25 .2730 .2622 .2400 .2185 100.00 .3045 .2942 .2712 .2482	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Timofeev,	1905					Pyridine ((C ₅ H ₅ N) + 2,4-I	Dinitrophen	ol (C ₆ H ₄ O ₅ N ₂)
initial	% fi	inal	(hv m	Q dil nole pher	101)	Dionisiev ar	nd Kirilova, 19	952 (fig.)
0		1.85 1.77		-2.41	1017	mol %	f.t.	mol %	f.t.
1.85 19.55 38.3	20	1.77).7).2		-2.46 -2.71 -3.07		100 80 70 66.5 57	111.3 95 86 E 86.5 (2+1) 79 E	50 40 20 0	80 (1+1) 78 48 -39
	Pyridine (C_5H_5N) + p-Nitrophenol ($C_6H_5\theta_3N$) Dionisiev and Kirilova, 1952 (fig.)						100°	d 115°	1 2 5°
mol %		.t.	mol %	ig.)	f.t.	100 80 60	1.42	1.44 1.40 1.34 1.24	1.42 1.38 1.32
0 20 30 33.3 43	7	13 78 52 E 56 (2+1) 58 E	50 60 80 100		51.5 (1+1) 57 24 39	40 30 20 0	1.26 1.20 1.10 0.96	1.24 1.16	1.22 1.14 -
mo1 %	60°		d	7120	1020	mol %	100°	n 115°	125°
100 80 59 40 20 0	1.26 1.13 1.06 0.95	1.24 1.12 1.05 0.94	1.26 1.23 1.11 1.03 0.93	1.29 1.23 1.20 1.09 1.00 0.91	1.26 1.20 1.19	100 77 73 65 63 50 40 20	7000 7300 7700 7800 4500 2900 1100	3100 4550 4750 4850 4700 3000 2150 980 100	2550 3500 3600 3500 3450 2400 1800 960 100
mol %	60°	67°	η 87°	113°	123°	mol %	100°	и 115°	125°
100 90 80 70 60 50 40 20	7400 4200 2400 1000 500	8800 5600 3300 2000 900 500	- 6000 4400 3300 2300 1400 800 400	3000 3400 3000 2400 2000 1400 1100 700 400	2300 2400 2300 2000 1600 1300	100 80 60 40 30 25 20 10	- 20 45 72 83 87 82 54	26 58 80 90 91 89	32 64 90 96 94
mol %		87°	х 11	.3°	123°				
100 90 80 75 60 40 20		21 23 17 8 2	2 3 3 2 1	0 6 1 2 2 2 1 3	0 28 40 38 23 12 4				

Pyridine (C ₅ H ₅ N) + α -	Naphthol (C ₁₀ H ₈ O)	2-Picoline (C ₆	H ₇ N) + Picr	ic Acid (C ₆ H ₃ O ₇ N ₃)
Parant, 195		•		Pushin and Kozu	har, 1947		
mol %	f.t.	mol %	f.t.	mol %	f.t.		E
0 10 15 70	-40 -46 -55 +54	80 90 100	+70 +83 +90	100 95 90 80 77 75 65	122 118 114 102 99 107		- 91 98 99 98
Pyridine (C ₅ H ₅ N) + β-N	aphthol (C	₁₀ H ₈ O)	55 50 40 30 20 10	131 156 161 149 128 105 85 70	(1+1)	-
mol %	f.t.	mol.%	f.t.				
0 3 5 10	-40 -43 -44 -50	55 60 70 80	-20 +46 +80 +103	3-Picoline (C	•	nol (C ₆ H ₆	,0)
15	-55	100	+120	mol %	f.t.	mol %	f.t.
2-Picoline	(C ₆ H ₇ N) + (o-Chlorpheno	ol (C ₆ H ₅ 0Cl)	100 94,95 89.68	41.0 33.2 25.5	85.39 80.34 77.68	16.00 5.00 0.5
Lemmerman,	Davidson and	Wanderwerf,	1946	Azeotrope mol %	p		b.t.
100 94 90 85,9	8.0 4.7 2.5 - 2.8	mol % 45.5 42.9 41 38.5	f.t. -13.6 (1+1) -16.0 " -17.9 " -21.2 "	74.8 73.3 71.5 68.5	760 600 400 200		187.0 178.0 167.0 146.0
83.8 80 77.8 75.6 73.3 63.3	- 2.8 - 6.4 -12.0 -18.4 -23.9 -31.7 -30.0 (1+1)	38.5 36.9 34.1 31.9 29.2 26.3	-23.8 " -28.0 " -31.7 " -37.1 " -41.2 "	Lecat, 1949			
59.9 57.8 55.8 54 52.2	-23.9 " -19.2 " -15.9 " -13.6 " -11.8 " (-6.0) "	21.1 17.5 14.7 10.9 8.6 7.8	-48.1 " -51.8 " -60.0 " -66.4 " -75.6 " -81.5 "	% 0 70 100	1.	43.5 88 Az 82.2	
51.1 50.0 48	-11.1 " (-5.5) " -11.0 " (-5.3) " -11.4 "	6.6 5.1 3.7 2	-76.0 -73.6 -69.4 -66.4 -64.2				

Othmer and Savitt, 1948	3-Picoline (C_6H_7N) + o-Chlorphenol (C_6H_5OC1)
mo1 % b.t.	Lemmerman, Davidson and Vanderwerf, 1946
L V	mol % f.t. mol % f.t.
760mm 0 0 143.0 12.5 0.5 145.5 43.0 7.0 165.0 51.7 16.0 174.8 53.2 21.2 176.8 56.5 29.7 180.6 62.5 42.5 183.8 67.8 54.8 185.5 72.0 66.0 186.3 76.3 79.0 186.0 82.5 89.0 184.5 91 95.0 183.1 100 100 181.5	100 8.0 57.3 -2.0 (1+2) 96.2 6.8 55.2 -5.5 " 93.2 4.5 53.5 -10.0 " 90.1 1.5 52.3 -13.7 " 88.2 -0.5 51 -18.8 " 85.5 -4.0 50.1 -25.0 " 82.9 -7.5 49 -29.5 " 80 -12.0 50 -18.0 (1+1) 78.2 -13.2 49-18.2 " 78.8 -7.0 (1+2) 46.6 -18.8 " 77.4 -3.5 " 43.3 -21.2 " 75.9 -0.7 " 40.8 -24.6 " 74 +2.5 " 38.7 -27.8 " 71.9 5.4 " 36.5 -31.5 "
0 0 135.3 24.8 1.5 141.0 43.5 5.0 156.1 44.3 5.5 157.5 50.0 10.5 163.8	67.2 7.9 " 32 -39.9 " 63.9 6.5 " 31.5 -41.4 " 61.1 4.0 " 30.5 -45.0 " 59.1 1.5 " 30 -48.1 "
52.7 15.3 167.5 55.2 22.0 170.7 65.5 51.8 176.9 72.0 70.0 178.0 76.5 82.7 177.8 82.5 91.7 175.4 100 100 170.5	4-Picoline (C_6H_7N) + o-Chlorphenol (C_6H_5OC1) Lemmerman, Davidson and Vanderwerf, 1946
100 100 170.5 400 mm	mol % f.t. mol % f.t.
0 0 121.0 21.0 0.5 124.0 27.8 1.0 128.9 48.5 8.5 151.3 59.0 34.4 161.5 67.0 57.8 166.1 74.0 79.0 166.4 76.0 81.2 165.0 83.5 95.5 161.3 90.0 97.7 159.2 100 100 157.3 200 mm 0 92.5 1.0 110.0	100 8.0 45.5 23.6 (1+1) 95.4 6.0 43 22.0 " 90 2.2 40.1 19.0 " 85.6 -1.2 37 14.4 " 84.1 -4.0 34.2 10.1 " 82.3 -6.3 32 7.0 " 66.6 -3.5 (1+1) 29.2 2.1 " 65.1 1.4 " 26.8 -2.0 " 63.3 6.0 " 23.2 -8.1 " 61.5 10.5 " 21.3 -12.2 " 60 14.0 " 20 -14.8 " 58.1 18.1 " 17.5 -12.0 58.4 21.0 " 14 -7.9 54.4 23.4 " 10 - 4.5 52.5 24.6 " 6.3 - 2.0
47.5 7.0 126.5 55.0 24.5 139.7 61.5 43.7 143.8	50 25.5 " 2.6 0 48 24.6 " 0 + 1.6
62.5 45.0 144.1 65.5 57.0 145.1 71.5 79.0 146.3 72.0 79.4 145.0 73.5 85.5 145.2 77.0 91.7 143.5 100 100 137.1	4-Picoline (C ₆ H ₇ N) + Phenol (C ₆ H ₆ O) Lecat, 1949
	% b.t.
	0 143.1 70 188 Az 100 182.2

Othmer and	Savitt, 1948				
Az mol	% p	b.t.		ne (C ₇ H ₉ N) + Pho Savitt, 1948	enol (C ₆ H ₆ O)
68 67 66 65	.5 600	190.5 181.7 168.5 147.5	L	mol % V	b.t.
			-	760 mm	
Ł	mol %	b.t.	0	0	143.3 145.0
0 9.0 16.5 25.0 33 47 50.8 57.3	760 mm 0 0.5 1.5 2.0 3.0 12.5 19.3 32.0	144.8 146.1 148.8 152.5 159.0 174.4 179.2 185.1	13.0 24.2 33.5 45.0 48.0 54.0 60.5 62.5 80.0 81.5	0.5 1.5 4.0 13.0 20.7 31.5 44.0 66.5 83.7 86.3	150.0 155.5 167.9 174.8 177.9 181.7 185.8 185.8 185.8 184.5
62.5 67.0	48.0 64.3	188.8 190.3		600 mm	
72.0 80.5 100	82.0 92.5 100 600 mm	189.5 186.5 181.5	0 16.7 28.2 37.5 43.0	0 1.0 1.5 5.0 9.0	134.5 139.5 143.6 151.3
0 6.5 13.5 24.0 34.3 42.8 50.0 57.8 62.0 67.0	0 0.3 0.5 1.0 3.5 8.3 16.5 33.0 47.5 65.5	136.0 138.0 139.3 143.2 152.5 161.6 170.2 176.7 180.1	47.0 53.5 56.5 62.5 70.5 73.5 81.5 87.5	15.0 30.5 36.5 49.7 66.5 71.5 88.4 95.0 100	158.1 164.0 172.5 174.3 177.3 178.5 178.7 176.8 174.0 170.5
70.5 76.0 100	78.0 90.0 100 400 mm	180.9 177.5 170.5	0 13.0 33.0 39.0	0 0.5 3.0 6.0	121.0 124.5 131.2 137.5
0 10,3 18.5 44.0 53.0 53.5 58.7 61.0	0 0.3 0.5 8.3 21.8 23.2 38.0 46.0	122.6 124.1 128.0 148.3 158.7 159.5 164.0 168.5	39.0 46.8 52.0 59.0 65.0 71.0 72.5 83.0	14.8 26.8 43.0 58.0 72.0 77.0 83.3	147.0 154.9 160.4 162.9 163.8 163.6 161.5
66.0 68.5	64.5 74.0	168.4 167.8		200 mm	
73.0 100 7.0 15.0 24.0 33.5 42.3 50.0 56.5 64.0	87.5 100 200 mm 0.3 0.5 1.0 2.0 6.0 14.8 30.0 46.5 60.8 80.5	165.0 157.3 101.5 103.1 105.0 107.7 114.5 123.5 134.8 142.0	0 19.0 30.0 36.0 45.0 52.0 58.5 62.5 68.0 70.0 73.8 84.5	0 0.5 1.5 4.0 10.0 26.8 44.0 56.6 70.3 77.0 86.0 97.5	100.8 106.7 111.5 127.6 135.9 141.3 142.7 143.3 143.2 142.5 138.5 137.1
72.5 100	92.5 100	147.2 146.5 142.5 137.1			

Azeotrop	e						
mol %)	b.t.	2,4,5-Collidin	ne (C _B H ₁₁ N)) + 3-Methy1-5	ethylphenol $(C_9H_{12}O)$
Az 76.5 73.5	70 60	0 00	186.0 179.0	Parant, 1950	(fig.)	ر علي النياب عليه النام النام النام عليه النام النام النام النام النام النام النام النام النام النام	بوامي ميومون مان مايا استخامه مي ميوموني بين
73.5 69.5 67.5	40 20	00 00	164.5 143.5		<u> </u>	b.t./10 mm	ے اس میں میں میں سیاسہ میں سے میں سے <u>س</u> ے
mol %	f.t.	mol %	f.t.		100 93 90 80	113.70 114.05 114.00 113.0	
100 92.15 85.72	41.0 33.0 18.0	79.59 72.90	- 6.0 -42.0	الله المراسق المراسق من المراسق المراسق المراسق المراسق المراسق المراسق المراسق المراسق المراسق المراسق المراسق	70 60 ========	109.8 102.4	ن و الدور من من من الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور ا بن الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور الدور
Lecat, 1949				2,4,6-Collidi	ne (C ₈ H ₁₁ N) + ₀ -Cresol ((C ₇ H ₈ O)
%		b.t.		Kurtyka, 1956			
0 70 100		143 188 Az 182.2		Az : 63.0 %	(61.80 mol	%) 19 7.2 0	,°
2,6-Lutidine	(C ₇ H ₉ N) +	Picric Acio	1 (C ₆ H ₃ O ₇ N ₃)	2,4,6-Collidi	ne (C ₈ H _{1 1} N) + 3-Methyl-5	5-ethylphenol (C ₉ H ₁₂ O)
Pushin and K	ozuhar, 1947			Parant, 1950			
mol %	f.t.	mol %	f.t.	mol %	f.t.	mol %	f.t.
100 95 90 80 77 73 70	122 118 113.5 102 98 93	60 50 40 30 20 10	121 141 128 111 90 61 45 (1+1)	0 5 9 10 20 30 40	-50 -55 -56 E -50 -20 - 2 + 4	50 55 70 80 90 100	+ 5 0 + 2 +30 +45 +50
2,4-Lutidine	e (C ₇ H ₉ N) +	2,3,5-Tri	methylphenol (C ₉ H _{1,2} O)				
Parant, 1950)						
mol %	f.t.	mol %	f.t.				
15 20 30 40 50 56	-33 -18 0 + 8 +11 + 8 E	60 70 80 90 100	+45 +63 +80 +90 +93				
Az : 99. 100		1) 98°/10 mm 9°/ 10 mm					

QUINOLINE + PHENOL

Quinolin	e (C ₉ H ₇ N) + Phenol	(C ₆ H ₆ O)	%	0.00	20.10	125°	1 7 5°
Bramley,	1916					9.8°	20.1° 3635	786	547
0 5. 11. 17. 22.	26 97 61 29 44	mol % 7.06 15.70 22.65 28.20 33.00	-26.2	19.35 and -15.8 2.5 12.0 18.0 20.9	0.00 7.54 14.56 22.13 29.76 37.52 45.08 53.20 60.30 68.21	4805 6190 8100 11700 16770 26440 37500 50650 52590 47400 38360	4595 5725 7850 10580 15030 20310 24520 25290 23270 19410 16600	837 901 988 1064 1121 1155 1158 1119 1055 969	564 588 622 642 650 652 649 632 606 570
30. 34. 40. 44.	93 34	37.80 42.35 48.20 51.70		22.4 21.6 18.45 13.55	76.88 83.37 92.06 100.00	31560 24200 20100	13370 11040	918 837 770	542 513 492
46. 48. 51.	55 42	54.65 56.35 59.20 60.75	-14 -13	7.5 4 and +1.0 65 and +2.5 + 4.8	%	29.9°	40°	60°	80°
53. 57. 61. 65. 69. 73. 78. 83. 89. 94.	34 31 37 11 11 75 15	64.65 68.50 72.00 75.65 78.75 83.00 87.65 91.90 96.20	-10.	7.0 7.2 5.8 8 and +2.4 + 4.55 17.50 26.25 32.70 37.30 41.00	0.00 7.77 14.92 21.96 29.82 37.14 44.62 52.31 59.89 67.92 75.75 83.49 91.79	2943 3645 4495 5605 7425 9650 12210 14360 14800 13440 11770 10100 8440 7090	2384 2885 3455 4195 5335 6600 8870 9040 8390 7480 6560 5525 4760	1671 1950 2245 2615 3120 3645 4100 4360 4400 4100 3710 3315 2875	1250 1424 1603 1809 2071 2308 2520 2610 2582 2415 2232 2028 1786
	(2+1)		(2+3)		100.00	7090	4760	2520	1580
%	9.8°	20, 1°	d 125°	1 7 5°	Pushin,	Matavulj a	nd Rikovsk	i, 1948	<u>-</u>
0.00 7.54 14.56	1.1004 .1021 .1037	1.0925 .0944 .0960	1.0085 .0103 .0119	3 .9687	mol %	10°	25°	ⁿ D 45°	60°
22.13 29.76 37.52 45.08 53.20 60.30 68.21 76.88 83.37 92.06 100.00	.1056 .1071 .1078 .1074 .1057 .1030 .0994 .0950 .0916 .0875 .0836	. 0907 . 0992 . 0999 . 0994 . 0977 . 0950 . 0914 . 0869 . 0835 . 0791 . 0750	.0113 .0140 .0139 .0127 .0099 .0065 .0021 0.9969 .9927 .9876	3 .9707 .9705 9 .9696 7 .9648 .9643 .9602 .9550 .9492 .9445 .9389	0 10 20 29,5 40 45 47.5 50 53 55 57 60	1.631 .627 .623 .619 .614 .611 .610 .609 .607 .605 .604 .6015	1 .6203 0 .6165 0 .6127 4 .6083 8 .6056 6 .6043 2 .6029 4 .6011 8 .5997	1.6149 .6109 .6075 .6037 .5991 .5965 .5950 .5936 .5918 .5905 .5880	1.6077 .6039 .6004 .5967 .5922 .5895 .5879 .5866 .5848 .5834 .5817
%	29.9°	40°	60°	80°	64.5 70 80 89,5	.5973 .5917 .5808	7 .5858 3 .5748	.5818 .5766 .5656	.5749 .5697 .5587 .5468
0.00 7.77 14.92 21.96 29.82 37.14 44.62 52.31 59.89 67.92 75.75 83.49 91.79 100.00	1.0851 .0870 .0886 .0904 .0917 .0924 .0917 .0991 .0874 .0837 .0795 .0756 .0711	1.0773 .0792 .0808 .0823 .0838 .0843 .0837 .0820 .0793 .0755 .0713 .0672 .0628 .0584	1.0615 .0635 .0651 .0666 .0679 .0682 .0675 .0658 .0629 .0590 .0548 .0503 .0458	1.0458 .0478 .0494 .0509 .0518 .0521 .0519 .0496 .0465 .0425 .0335 .0288 .0242	100.	1,555	8 1,5492	.5536 .5402	.5332

Quinoline (C ₉ H ₇ N Pushin and Sladov		(C ₇ H ₈ O)	40 45 47.5 50 52.5 54.5 57.5	.6057 .6025 .6007 .5989 .5971 .5957	.5842 .5807 .5790 .5773 .5753 .5736
mol%	f.t.	E	II 62	.5909 .5887 .5859	.5692 .5671
100 90 85 80 70 66,7	30.3 24.4 20.7 26.6 34	18.6 18.7 18.5	65 70 80 89 89.5 100	.5805 .5805 .5693 .5578 .5452	.5644 .5589 .5482 .5366 .5240
60 60 57.5 55 55 52.5	34.5 33.7 32 30.5 26.4 31.7	27.2 - -	Quinoline (C ₉ H ₇ N Pushin and Sladov		С7Н8 0)
50 50 45 40	33.4 17 34.2 7	:	mol %	f.t.	Е
40 40 35 30 30 25 20 15 10 5	3.5 29 23 - 1.2 +14 + 5 - 4 -15.5 -22.8 -19	-30.7 -27.4 -27.7 	100 90 80 75 70 66.7 63 61.5 60 55	34.4 25.0 16 21.2 24.4 24.5 24.2 23.2 26 31 31.8	6.7 4 - - - - -
Pushin, Matavulj	and Rikovski,	1948 ⁿ D 60°	30 40 30 25 20 15 10 5	26 14 6.3 - 3.3 -12.3 -23 -19 -15 (1+2	-25.6 -27.2 -24.8 -25.4 -26
0 10 20.5 30.5 440 45	1.6310 .6250 .6194 .6141 .6090 .6058	1.6070 .6020 .5970 .5920 .5868 .5836	Pushin, Matavulj	and Rikovski,	1948
47.5 50 53 55	.6043 .6026 .6006 .5988	.5818 .5800 .5778	mol %	10°	ⁿ D 60°
57.5 60 62.5 65 70 80 90	.5968 .5945 .5922 .5895 .5842 .5738 .5620	.5761 .5742 .5718 .5697 .5670 .5616 .5502 .5384	0 15 30.5 40 45 50 52.5 55	1,6310 .6218 .6127 .6068 .6033 .5993 .5975	1.6070 .5987 .5981 .5844 .5812 .5774 .5757
Quinoline (C ₉ H ₇ N) + m-Cresol	(C ₇ H ₈ O)	57.5 59.5 64 68.5	.5933 .5909 .5865 .5821	.5715 .5693 .5651 .5607
Pushin, Matavulj a	nd Rikovski,	1948	70 79 90	.5804 .5695	.5592 .5358 .5358
mol %	10°	nD 60°	100	.5569 .5445	.538
0 10 20.5 30,5	1.6317 .6249 .6181 .6119	1,6077 ,6021 ,5962 ,5903			

796				QUINOI	_INE + (-XYLENOL AS.			
Quinoline (C ₉ H ₇	N)(b.t.	= 237,	3)+	Phenols			C ₉ H ₇ N) + 2,	5-Xylenol (С ₈ Н _{1 0} 0)
Lecat, 1949						Parant, 1950	(fig.)		
	end Comp.			Az		mol %	f.t.	mol %	f.t.
Name F	ormula	b.t.	%	b.t.	Sat.t.	0	-18	60	26
o-Xylenol as. (6H ₁₀ O	226.8	35	241.95	_	$\begin{smallmatrix} 10\\30\end{smallmatrix}$	-30 - 8	70 80	42 60
m-Xylenol C	8H ₁₀ 0	210.5	8	239.0	-	40 50	+ 6 +10	90 100	68 7 5
p-Ethylphenol (C ₈ H _{1 o} 0	218.8	11	239.5	_		(1+1)	
Thymol C	1 ₀ H ₁₄ 0	232.9	45	243.0	3				
Carvacrol C	1 oH1 40	237.85	52	244.3	-				
p-Amylphenol (L ₁₁ H ₁₆ 0	266.5	94	267.5	-	Quinoline (C ₉ H ₇ N) + 3,	5-Xylenol (C ₈ H ₁₀ O)
Mesitol (.9H ₁ 2O	220.5	15	240.4	_	Parant, 1950	(fig.)		
Pyrocatechol (6H ₆ O ₂	245.9	61	257.9	58	mol %	f.t.	mol %	f.t.
	Quinoline (C ₉ H ₇ N) + Thymol (C ₁₀ H ₁₄ O) Pushin, Matavulj and Rikovski, 1948					0 5 10 15 67	-18 -20 -23 -27 +16	70 80 90 100	+30 +45 +58 +63
mol %		20°	n _D	60°		Quinoline (C ₉ H ₇ N) + 3,	4-Xylenol (C ₈ H ₁₀ O)
0 10.5 20		5262 5150 5050		1.6070 .5960 .5862		Parant, 1950	(fig.)		
30.5 40.5 50	. !	5948 5857 5765		.5768 .5676 .5585		mol %	f.t.	mol %	f.t.
55 60 70.5 80 90 100		5715 5660 5552 5438 5331 5222		.5532 .5479 .5370 .5258 .5151 .5041	Man Byana' yana yanayaga ya saa Manaya wa yana kana kana kana	0 10 20 30 40 50	-18 -20 E + 2 +17 -24 -27 (1+1)	55 66 71 80 90 100	24 E 41 (1+2) 38 E 49 58 64
Quinoline (C	₉ H ₇ N) + 2	,3-Xy1e	nol (C ₈ H ₁₀ O)	Quinoline (C ₉ H ₇ N) + Gı	aiacol (C ₇ I	I ₈ 0 ₂)
Parant, 1950	(fig.)		, , , , , , , , , , , , , , , , , , , ,			Pushin and I	Rikovski,1937	•	
mol %	f.t.	mol	1 %	f. t		mol %	f.t.	mol %	f.t.
0 6 20 30 40 50	-18 -20 E +11 27.5 37 40 (1+1	64 70 80 90 100)))	31 45 60 67 71.		0 10 20 30 40 50	-19 -25 -19 - 2 + 9 +12 (1+1)	60 68 70 80 90	9 -0.5 +1 12 21 28

				Quinoline	(C ₉ H ₇ N) +	2,3,5-Trimethy	lphenol
Pushin and P	inter, 1919			Parant, 1	.950		(C ₉ H ₁₂ 0)
mol %	d .	·	n 	mol %	f.t.	mol %	f.t.
0 10 20 30 33,3	30° 1.123 1.126 1.126 1.125	5 5 4 8 5 10 10	450 950 050 040 540 970	0 5 10 55 60	-18 -20 -22 +40 +48	70 80 90 100	+65 82 88 93
38 40 44 46	1.124	8 11 11 11	450 650 650 570	Quinoline	(C ₉ H ₇ N) +	o-Chlorphenol	(C ₆ H ₅ 0C1)
50 60 70	1.119 1.113 1.107	9 8 9 6	950 980 77 0	Bramley,	1916		
80 90 100	1.097; 1.089; 1.0836	2 3	870 880 100	%	mol 9	f.t.	
Pushin, Matav	ulj and Rikov			0 4.45 9.58 13.13 17.15 21.34	9.62 13.18 17.20 21.4	2 27.6 and 8 -31.5 and 0 -36.9 and +15.0	26.6 -13.2 + 4.5
mo1 %	5°	30°	60°	25.60 30.27 36.51	30.33	31.5	
0 10 20 30 40 45 47.5 50 52.5 54 55 56 60 62 64 66.6	1.6332 .6278 .6224 .6172 .6119 .6087 .6069 .6052 .6033 .6022 .6015 .6007 .5988 .5970 .5951	1.6314 .6162 .6111 .6058 .6002 .5968 .5949 .5931 .5912 .5902 .5885 .5885 .5867 .5848 .5828 .5828	1.6070 .6018 .5968 .5912 .5853 .5818 .57780 .5759 .5748 .5739 .5731 .5693 .5693	42.00 48.78 55.93 63.28 69.66 74.78 79.82 84.72 89.39 93.65 97.07	42.1 48.9 56.0 63.3 69.7 74.8 79.8 84.7 89.4 93.6 97.0 100	44.4 47.3 5 44.7 5 36.0 +22.8 -18.9 and 5 - 9.9 5 - 3.4 + 6.7 5 4.2 7 6.2	5 5 5 + 6.0
70 81.5 90 100	.5870 .5737 .5636 .5509	.5745 .5611 .5514 .5386	.5593 .5463 .5366 .5239	Bramley,	1916		
				%	0°	d 10° 20°	3 0 °
Quinoline (C	₉ Н ₇ N) + 3-м	ethy 1-5-e	thylphenol (C ₉ H ₁₂ O)	0.00 16.79 32.53 42.39 48.81 50.31	.1413 . .1730 . .1927 . .2047 .	1002 1.0926 1332 .1251 1645 .1559 1839 .1750 1958 .1869 1987 .1897	1.0850 .1170 .1473 .1662 .1779
mol %	f.t.	mol %	f.t.	53,28 54,94	.2130 .2158	1987 .1897 2040 .1950 2068 .1977 2114 .2023 2190 .2097	.1860 .1885 .1932 .2003 .2108
0 5 10 7 5	-18 -19 -22 +30	80 90 100	+35 +45 +50	57.92 63.42 72.18 86.66 100.00	. 2405 . 2585	2190 .2097 2306 .2207 2476 .2365 2626 .2512	. 2003 . 2108 . 2255 . 2399

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Bramley,	1916.					Bramley	, 1916			
%	40°	60°	d 80°	110°	150°	9	г Г	U	%	U
0.00 16.79 32.53 42.39 48.81 50.31 53.28 54.94 57.92 63.42 72.18	1.0773 .1090 .1388 .1575 .1690 .1717 .1770 .1794 .1840 .1908	1.0615 .0929 .1221 .1403 .1512 .1539 .1613 .1657 .1720	1.0458 .0768 .1054 .1231 .1334 .1361 .1408 .1434 .1474 .1533 .1617	1.0213 .0518 .0791 .0953 .1050 .1073 .1119 .1140 .1176 .1233	0.9879 1.0178 .0428 .0575 .0665 .0682 .0722 .0742 .0773 .0823	0 9. 12. 19. 31. 42. 48.	19 10 50	0-352 351 350 351 362 373 380	53.0 60.5 66.1 73.95 82.55 92.3 100	0.386 399 404 408 407 403 401
86.66 100.00	. 2151	.1943 .2060	.1734 .1834	. 1414 . 1490	.0977 .1028	Bramley	, 1916			
%	0°	10°	η 20 °	30)°	8	(Q mix cal/g	%	Q mix cal/g
0.00 16.79 82.53 42.39 48.81 50.31 53.28 54.94 57.92 63.42 72.18	6830 14500 41500 112500 225000 255500 293500 301700 301400 245000 134100	4800 9500 22210 50300 77000 82500 90200 92300 92300 48150	662 1300 2362 3345 3510 3690 3725 3662 3162	20 48 20 91 20 144 50 179 20 184 20 190 50 190 20 188	920 400 900 910 880 420	33.0 38.8 43.9 46.7 47.9 50.1 51.2 51.7	5	13.50 15.48 17.20 17.86 18.17 18.26 18.35 18.35	52.6 53.6 54.7 54.75 57.5 61.4 66.75	18.30 18.24 18.10 18.04 17.38 15.79 13.70
86.66 100.00	39350 10790	18180 6390	995	0 64	110 180	Quinoli	ne (C	₉ H ₇ N) +	p-Chlorphen	no1 (C ₆ H ₅ OC1)
% 	40°	60°	80°	110°	150°	Pushin,	Matavu	lj and Ri	kovski, 194	18
0.00 16.79 32,53	2385 3710 6350	1671 2380 3595 4400	1250 1673 2222 2595	930 1 12 9 1334	666 7 45 815	mol	8	1	0° nD	60°
42,39 48,81 50,31 53,28 54,94 57,92 63,42 72,18 86,66 100,00	8960 10470 10730 10950 10980 10890 10000 7640 4330 2320	4400 4840 4900 4940 4930 4880 4525 3695 2425 1513	25 95 2760 2775 2785 2775 2700 2560 2205 1600 1070	1462 1505 1505 1502 1494 1469 1411 1266 1007 760	857 869 868 865 860 850 822 759 650 546	0 10, 20, 30 40 45 47 50 52,	5	.6 .6 .6 .6 .6	262 224 192 156 138 130 118 107	1.6070 .6037 .6008 .5978 .5943 .5926 .5917 .5904 .5893
Pushin,	Matavulj	and Rike	ovski, 1	948		56. 59. 62. 65	5 5 5	.6 .6	085 066 048 029 985	.5870 .5851 .5831 .5813 .5772
m	101 %	2.5	5° n	50	0	80 90 100		.5 .5	900 810 727	.5687 .5596 .5504
3 4 4 4 5 5 6 6	050 550 04.55 55.55 594.55 94.55	1,62 .63 .61 .61 .60 .60 .60 .59 .59	200 .62 .36 .20 .96 .81 .830 .885 .30	1,61 .600 .600 .600 .592 .592 .593 .586 .583	85 3 225 24 79 44 11 12 88					

Quinoline	(C ₉ H ₇ N)	+ o-Nitropl	nenol (C ₆ F	H ₅ O ₃ N)	Kirilova a	nd Dionisi	iev, 195	3 (f	ig.)	
K irilova	and Dionis	iev, 1953	(fig.)		mol %		45°	η	55°	
mo1 %	f.t. 43	mo1	·	3	100 80 60 40		2050 2250 2450 2450		1660 1800 2000 1950 1800	
80 60	32 20	15 0		·38 ·19	20 0		2200 1950		1550	
Bramley,	1916				mo1.%	25) 4:	5°	55°	
# 	30°	40°	60°	80°	85 75 60 50 40	0.14 0.15 0.14 0.12	0.1 0.1 0.2	16	0.13 0.22 0.23 0.22 0.18	
0.00 10.80 21.43	1.0850 .1072 .1312	1.0773 .0989 .1224	1.0615 .0823 .1050	1.0458 .0657 .0879	30 20	0.10			0.13 0.0 7 5	
30.69 41.61 49.1 6 58.20 67.04	.1520 .1760 .1940 .2142 .2341	.1430 .1667 .1844 .2045 .2242	.1249 .1479 .1651 .1846 .2038	.1069 .1291 .1458 .1649 .1836		(C ₉ H ₇ N				H ₅ O ₃ N)
77.56 82.41 86.76	. 2553 . 2659 . 2750	. 2456 . 2561 . 2651	. 2246 . 2348 . 2435	. 2038 . 2138		and Dioni:			fig.)	
91.18 95.54 100,00	.2846 (1.2943) (1.3045)	. 2746 . 2842 . 2942	. 2525 . 2617 . 2712	.2220 .2306 .2393 .2482	mol %	f.t.		mol %		. t.
	and Dioni		(fig.)		100 80 70 60 50	113 89 58 I 86 89,5	E 5 (1+1)	40 20 3 0	4	32 19 20 16
mol	% 	45°	1 55°		mol %	95°	105	d	115°	125°
100 80 60 40 20 0		1.275 1.240 1.210 1.160 1.125 1.075	1.270 1.235 1.200 1.145 1.110 1.060	المنافقة والمرافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة ا منافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المنافقة المن	0 20 40 50 60 80 90	1.05 1.10 1.16 1.18 1.21 1.25 1.28	1.03 1.08 1.14 1.17 1.19 1.24	3 1 7	1.02 1.07 1.12 1.16 1.17 1.22 1.24	1.0 1.05 1.11 1.15 1.15 1.20
Bramley,	1916				100	<u> </u>		n	1,28	1.24
*	30°	40°	60°	80°	mo1 %	85°	95°	105°	115°	125°
0.00 10.80 21.43 30.69 41.61	2940 3361 3772 4125 4495	2385 2660 2928 3160 3375	1671 1789 1897 1995 2084	1250 1321 1391 1437 1470	0 20 40 60 80 100	600 1800 3500 6500 9200	600 1600 2800 5200 6500	500 1400 2100 4000 5000	500 1200 2000 3000 3800 2900	500 1000 1500 2100 3000 2500
49.16 58.20 67.04 77.56	4680 4720 4595 4355	3465 3470 3410 3250	2122 2122 20 9 3 2024	1483 1485 1471	mol %	60°	70°	и 85°	105°	125°
77.36 82.41 86.76 91.18 95.54 100.00	4355 4220 4090 3950 3800 3650	3151 3059 2955 2855 2755	1986 1949 1900 1874 1825	1441 1421 1406 1392 1371 1348	20 40 60 70 80 90	0.1 0.5 3 4	0.3 0.8 3.5 5	0.4 1.2 4 5.5	0.6 1.8 4.5 6 13	1 2 5 11 17 20

	$(C_9H_7N) +$	2.4-Dinitropho , 1953 (fig.	$(C_6H_{\downarrow}O_5N_{2})$	Quinoline	(C ₉ H ₇ N) +	lpha -Naphthol (C	1 ₀ H ₈ 0)
mol %	f.t.	mol %	f.t.	Parant, 19	950 		
100	113.3	40	89	mo1 %	f.t.	mo1 %	f.t.
80 72 60 50	94 81 E 90 92 (1+	20 3 0	70 -20 -18	0 3 10 20	-18 -20 E +10 +24	50 60 63 70	+46 +40 +38 E +58
mol %	95°	d 115°	125°	30 40 48	+24 +33 +40 +48	80 90 100 (1+1	+78 +84
0 20 40 60 70 80	1.01 1.11 1.25 1.33 1.38	1.0 1.1 1.24 1.32 1.37 1.38	0.99 1.09 1.23 1.31 1.36 1.37	Kirilova mol %	and Dionisio	ev, 1953 (fig.	
100	~	1.44	1.40			mo1 %	f.t.
mo1 %	95°	n 115°	125°	100 80 65 50 40	95 78 40 53.5 46	28 20 4 (1+1) 0	29 24 -23 -19
0 20	2000	600 1300	500 1000	41	• •	-2) incongruent .	
40 60 70 80 100	4800 10000 9000	2700 4900 4500 4000 299 0	2200 3000 2800 2700 2500	mol %	50°	d 57° 9 7 °	107°
mol %	85°	я 95° 115°	125°	0 20 40 60	- 1.09 1.11	- 1.03 - 1.05 1.085 1.07 1.10 1.08	1.02 1.04 1.06 1.07
20 40	13 15	14 15 18 24	16 28	80 100		- 1.09 - 1.09	1.08 1.08
60 70 90		14 22 13 17 - 6	27 22 8	mol %	50°	57° 9 7 °	10 7 °
	(C ₉ H ₇ N) +	Picric Acid	(C ₆ H ₃ O ₇ N ₃)	30 40 60 70 80 100	10000 27000 25000	7000 3000 18000 3500 17000 3000 - 2500 - 1700	500 1500 2000 3000 2000 1700 1600
mol		f.t.	E	mol %	5 7 °	и 77° 97°	107°
100 96 95 93 80 70 60 55 50 40	.5	122 120 119 118 143 167 193 202 209 89	- - - 118 115 - -	10 20 40 50 70 80 90	0.004 0.005 0.005 0.004 0.007	- 0.005 0.009 0.011 0.011 0.015 0.010 0.017 - 0.019 - 0.016 - 0.011	0.007 0.013 0.018 0.020 0.023 0.018 0.010
30 20 10 5 0	1 1	66 42 10 90 15.6 (1+1)	-				

Quinoli	ne (C ₉ H	₇ N) + β-	Naphthol	l (C _{1 o} H	80)	Indole (C ₈	H ₇ N)(b. t	. = 253.5) + Ph	enols
Parant,	1950					Lecat, 1949				
m	ol %		f.t.				2nd Comp	•		Az
		I		11		Name	Formula	b.t.	%	b.t.
	0 2.5 3 5 10 20 30 40	-17 -18 - 8 - 0 +15 +18 +48 +48	B E B		5 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Tert. Amyl- phenol Carvacrol Pyrocatecho Eugenol	C ₁₀ H ₁₄ 0	266.5 237.85 245.9 254.8	88 12 15 65	268.0 254.5 255.0 251.8
	55 60 63 70 80 90			+62 +70 +65 +85 +105 +113 +120) (2+3) ; ;	Methyl-α-i	ĺ	H ₉ N) + Te		ylphenol-p (C ₁ ,H ₁₆ 0)
						;	% 	b.t.		
Kirilo mol		f.t.	1953 (mol %	fig.)	f.t.	100 	Į.	268 272. 266.		
100 80 66 52 49		121 112 (1+2) 71.5 68 55 (1+1)	40 20 1 0		51 23 -22 -19	Quinaldine Lecat, 194)(b.t.≈2 ²	16.5)	+ Phenols
mol %		·	d				2nd Co	mp.		Az
mo1 %	50°	70°	105°	115°	125°	Name	Formu1	a b.t.	%	b.t.
0 20 40 60 80 100	1.10 1.11 1.12	1.08 1.09 1.10	1.025 1.05 1.07 1.08 1.085	1.02 1.04 1.06 1.07 1.07	1.015 1.03 1.05 1.06 1.065 1.07	Xylenol-o as. Thymol Ca rvacrol Pyrocateche	C ₈ H ₁₀ O C ₁₀ H ₁₄ C ₁₀ H ₁₄ oI C ₆ H ₆ O ₂	0 232.9 0 237.8	20 5 35	250.0 3 250.8
mol %	50°	7 0°	η 105°	1150	1250	Dunidagina	/ C II N) / h + -20	7.2.	
0 20 40	2500 9000	2000 5000	700 1000 2000	600 700 1900	500 600 1800	Pyridazine Lecat, 1949)(b.t.=20	7.2)	Phenois
45 60	20000	$\begin{array}{c} 6000 \\ 11000 \end{array}$	2500 3000	2300 2400	2100 2150		2nd Comp	• 		Az
80 100	-	-	2900	2400	2100 2000	Name	Formula	b.t.	%	b.t.
taol %		105°	н 115°	125	;o	Phenol o-Cresol m-Cresol	С ₆ Н ₆ О С ₇ Н ₈ О С ₇ Н ₈ О	182,2 191,1 202,2	12 74 32	209.0 194.8 211.8
10 20 40 60 70 30 90		0.005 0.01 0.018 0.026 0.031 0.032 0.021	0.008 0.015 0.023 0.030 0.035 0.034 0.022	0.01 0.01 0.02 0.03 0.03 0.03 0.02	.8 8 5 8 6	p-Cresol m-Xylenol as. p-Ethyl- phenol Guaiacol	C ₇ H ₈ O C ₈ H ₁ OO C ₈ H ₁ OO C ₇ H ₈ O ₂	201.7 210.5 218.8 205.05	30 75 85 85	211,5 215,5 220,5 203,5

p				
Nicotine ($C_{10}H_{14}N_{2}$) + Thymol (С _{1 о} Н ₁₁ 0)	Carbazol (C ₁₂ l	H ₉ N) + Pyrocated	chol ($C_6H_6O_2$)
Lecat, 1949		Kremann and Sl	lovak, 1920	
% b.t.		%	f.t.	E
0 247.5 21 250.2 A 100 232.9	. Z	0 4.4 13.1 18.3	236.0 232.0 226.0 221.0	- - -
Nicotine ($C_{10}H_{14}N_{2}$) + o-Nitroph	nenol (C ₆ H ₅ O ₃ N)	22.5 27.0 31.4 34.7 40.7 44.5	217.0 213.0 209.0 205.9 201.0 197.5	- - - -
Babak and Udovenko, 1950		47.5 51.1 53.2 57.6	194.6 191.0 189.0	-
mol % 35° 50°	75°	57.6 63.2 67.0 71.6	184.0 178.0 173.0 167.5	- - -
100 - 1.2851 89.502496 84.37 1.2515 .2304 79.81 .2306 .2142 69.80 .1986 .1811 68.11 .1915 .1747	. 2244 . 2040 . 1858 . 1542	78.6 87.3 93.3 97.6 100	157.0 137.0 112.5 102.5 103.2	102.0 101.8 -
66.55 .1892 .1733 64.94 .1806 .1645 63.38 .1797 .1629 59.23 .1631 .1467 49.95 .1329 .1170	. 1450 . 1383 . 1370 . 1203 . 0914	Carbazol (C _{1 2})	H ₉ N) + Resorcing	ol (C ₆ H ₆ O ₂)
39.70 .1038 .0875 30.12 .0747 .0609 20.12 .0482 .0336	.0368	Kremann and Sl	ovak, 1920	
10.63 .0230 .0103 0 0.9986 0.9866	0.9888	%	f.t.	E
II F101 %	n 0° 75°	0 2.6 5.3 11.1	236.0 234.0 232.0 227.7	- - -
89.50 - 272	09.8 1561.2 23.9 1622.1 73.0 1744.6 27.4 1877.8	16.8 21.2 26.0 30.8 35.0	223.0 218.5 215.4 212.0 208.8	<u>-</u> -
69.80 7601.5 41 68.11 7831.6 42 66.55 8011.3 43 64.94 8003.6 43	22.4 2000.5 40.1 2050.7 44.0 2080.5 88.8 2090.0 87.9 2078.7	38.8 41.4 46.2 49.5 51.0	206.0 203.5 200.3 198.0 197.0	- - - -
59.23 7889.3 43 49.95 7375.2 41: 39.70 6568.5 38; 30.12 5676.0 34:	62.0 2075.5 20.4 2044.6 29.8 2004.0 21.3 1867.2	53.9 57.4 61.5 65.7 70.2	194.5 192.0 188.0 183.7 179.0	- - -
20.12 4611.6 292 10.63 3359.5 252	27.1 1684.3 23.3 1535.1 37.6 1262.6	77.1 77.1 83.6 88.4 93.4	170.0 170.0 159.1 140.0 108.0	107.2
		100	109.0	-

Carbazol (C ₁₂	H ₉ N) + Hydroqui	none ($C_6H_6O_2$)	Carbazol (C ₁₂ H	₉ N) + m-Nitrop	ohenol (C ₆ H ₅ O ₃ N)
Kremann and S	lovak, 1920		Kremann and Slo	vak, 1920	
18	f.t. ·	Е	8	f.t.	Е
0 4.2 10.7 17.1 21.6 26.0 32.3 36.8 50.1 50.5 57.5 63.2 66.2 72.1 77.0 81.3 88.2 95.0	235.8 231.8 226.0 220.5 217.1 214.5 210.3 207.8 199.6 194.0 189.0 186.7 180.5 174.0 167.5 164.3 166.8 168.0	163.2	0 6.3 10.5 17.7 26.4 35.1 40.8 47.3 51.6 56.7 61.0 67.5 71.8 75.8 81.7 85.8 93.3	236.1 231.0 227.5 221.0 213.2 205.2 199.6 192.5 186.8 180.8 177.0 168.5 162.2 153.0 138.8 127.0 99.0	- - - - - - - - - - - - - 91.8 92.0 91.8
			100	95.0	
	H ₉ N) + Pyrogall	ol ($C_6H_6O_3$)	Carbazol (C ₁₂ H	₉ N) + p-Nitrop	phenol (C ₆ H ₅ O ₃ N)
Kremann and S1	ovak, 1920 f.t.	E	Kremann and Slo	vak, 19 2 0	
0	236.0		%	f.t.	E
11.0 22.7 28.3 34.4 39.4 42.7 45.6 48.2 51.8 57.4 62.0 69.9 75.4 82.5 87.8 94.1 100 Carbazol (C ₁₂ H ₉ Kremann and Slov % 0 2 13.4 20.3 23.6 29.1 235.5 2	232.5 228.0 220.9 217.6 214.1 212.2 210.8 208.5 207.9 204.6 201.5 197.8 190.0 185.2 176.2 164.6 141.2 126.5 N) + o-Nitrophe ak, 1920 f.t. \$ 36.0 57. 25.5 61. 25.5 61. 26.8 73. 10.3 78.	f.t.	0 5.4 10.4 17.0 19.5 23.5 27.5 32.6 37.7 40.5 41.2 48.0 51.4 54.7 62.4 67.4 72.7 77.3 84.1 88.3 90.7 93.1 96.0 99.0	236.0 231.9 227.8 221.8 218.8 214.4 211.2 207.0 202.2 200.2 199.7 199.7 199.5 188.4 181.6 177.0 170.2 161.0 151.0 151.0 151.0 154.8 123.5 114.6 107.9 108.5 100.5 111.8	
	03.8 84. 95.5 89. 87.1 93. 81.0 97. 75.9 100	0 00.5			:
	رست میں اللہ میں اس کرنے سے اپنی سے سے مصر اللہ کیے اور اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	ورشتم بمهوانیده دادی جوی شدر حوی آمی است داده در میرنسی بست باشد و است است است در است است است است است است است و شدر باشتر است است به است است است است است است است است است است			

		-				
Carbazol (C ₁₂ H ₅	N) + 2,4-Dini	trophenol (C ₆ H ₄ O ₅ N ₂)	Carbazol ($C_{12}H_{9}N) + \alpha$	Naphthol (C ₁₀ H ₈ 0)
Kremann and Slov	ak, 1920		Kremann an	d Slovak, 1920)	
%	f.t.	E	%	f.1		E
0 9.0 17.7 21.1 27.4 31.9 36.5 43.3 47.7 51.8 54.9 59.8 66.5 73.0 78.4 83.0 87.9 92.2	236.5 230.5 223.0 220.5 213.2 208.0 203.1 195.0 188.2 181.2 175.5 148.5 133.0 114.5 98.6 106.0 110.0		0 6. 12. 19. 29. 37. 44. 50. 54. 55. 60. 61. 69. 75. 84. 90. 96.	1 226. 9 218. 6 209. 9 200. 3 192. 1 185. 0 180. 4 177. 7 168. 7 144. 0 122. 5 99	1 1 8 1 0 0 5 5 1 1 5 8 8 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	89.0 89.4 90.0
				l Slovak, 1920	•	. 10
		ocid (C ₆ H ₃ O ₇ N ₃)	K	f.t.	%	f.t.
Kremann and Slo	vak, 1920		<u>o</u> .	235.5 231.0	52.8	186.5
0 5.7 12.4 19.6 28.7	236.0 233.3 229.0 222.0 213.5	E	5.4 13.6 20.2 32.0 36.5 41.7 46.6 48.2	231.0 223.5 217.8 209.4 205.1 198.8 193.6 192.2	59.1 67.0 76.7 84.0 91.2 96.5	177.5 165.2 152.0 133.6 115.0 E 118.5 121.0
37.5 43.3 47.0	203.0 193.0 186.5	181.2 181.5	Acridine (C ₁₃ H ₉ N) + Phe	enol (C ₆ H ₆	0)
50.1 54.1 57.2 60.0	182.1 182.7 183.2 182.5	- - -	Kremann and	Slovak, 1920		
63.1 66.5 68.5	181.5 180.0 178.0	-	%	f.t.		E
70.2 72.8 74.8 80.7 85.7 88.9 89.2 92.0 92.3 96.1 97.3	177.0 174.0 171.0 161.5 150.5 142.0 138.8 127.1 128.0 117.0 117.8 121.0 (1+1)	113.0	0 6.8 14.7 22.4 31.2 38.9 45.9 52.8 59.6 64.8 66.8.9 75.0 80.6 89.0 96.2	90.5 99.3 91.5 84.5 83.8 79.6 77.5 58.6		87.5 - - - - - - - 35.8 36.5
			1			

									·		
Acridi	ne (C ₁₃)	H ₉ N) + Py	rocatech	о1 (С ₆ Н	60 ₂)	((₉ N) + α - vak, 1920	Naphthol (C _{1 o} H ₈ 0)
Kreman	n and S1	ovak, 19 2 0				%	f.t.	E	 %	f.t.	E
0 4.7 10.0 16.1 22.7 27.5 33.1 40.3 45.6	f.t. 106.5 105.0 122.0 131.5 136.5 140.0 143.5 143.5 139.2	E 102-101 102-101	54.0 63.8 68.3 74.0 81.2 86.7 94.4 100	f.t. 131.1 121.0 116.0 109.0 98.0 99.5 102.8	93.5 93.5	0 5.7 9.1 11.1 14.0 17.9 19.5 23.0 23.2 26.1 29.5 30.1	106.5 98.9 97.3 92.5 94.2 95.0 95.5 96.2 96.5 96.5 100.5 102.5	- - - - - - - - - - - - - - - - - - -	36.0 39.8 45.4 51.0 56.4 64.3 72.5 79.4 84.9 89.2 93.7	109.5 113.8 115.5 112.8 108.0 98.5 79.0 77.5 83.6 87.5 91.9 93.1	73.1
Acridi	ne (C ₁₃ 1	H ₉ N) + Re	sorcinol	(C ₆ H ₆ 0	₂)	\ }			aphthol (C _{1 O} H ₈ 0)
Kreman	n and S1	ovak, 1920			. من و الله الدن المنار من الدن الدن الدن الدن الدن الدن الدن	Kremann	and Slov	vak, 1920 	بر بیدند در مراجر می می می می می		
%	f.t.	E	%	f.t.	E	8	f.t.	E	·%	f.t.	E
0 5.1 12.5 19.3 22.8 26.9 33.2 51.6 56.8	106.0 128.0 126.0 176.0 179.5 179.0 160-192 142.0	(2+1	ني جنون است الشواجي است است اين جنون است السياسي است است است اين علام الله السياسي الله الله الله	101.0 120.0 109.2 96.4 99.0 103.0 106.5 107.8	94.0 95.8 96.4	0 5.0 5.5 9.3 12.7 14.1 18.4 19.5 21.8 25.4 27.9 29.2 34.5 35.3 42.4	106.5 101.5 101.5 97.2 92.7 92.5 	92.7 92.5 91.8 92.5	44.1 46.6 50.9 51.7 56.5 61.4 65.4 68.4 74.3 79.8 85.6 96.0	131.1 132.1 135.1 135.0 133.0 133.1 130.5 127.5 122.0 114.0 110.0 118.1 121.0 (2+3)	109.8
Acridi	ne (C ₁₃ I	1 ₉ N) + Hy	droquinor	ne (C ₆ H	₆ 0 ₂)					======	ر سی دستونی این این این است این این این این این این این این این این
Kremanı % 0	f.t. 106.0	E	% 5 9. 5	f.t. 178.0	E			C ₁₉ H ₁₈ N) + Picric	aciđ (C ₆ H ₃ O ₇ N ₃
4.6 10.4	185.0 202.5	105.5	66.8 72.2	$\substack{170.0\\164.0}$	159.1	mo1 %		f.t.	mo1 %	f	.t.
18.3 23.9 31.4 36.3 51.0 55.7	209.0 209.5 206.5 200.1 188.0 182.0	(2+1	76.3 83.1 90.8 95.4 100	159, 1 161, 5 164, 8 167, 1 169, 0	159.1	100 99.00 91.12 96.93 95.98 92.69 87.47 79.28 75.09 73.60 72.00 70.75 70.00 69.34 69.00 68.80	1 1 1 1 1 1 1 1 1 1 1	20,3 19,8 19,3 18,8 12,3 345,4 61,7 73,6 68,8 71,2 73,6 76,2 78,2 81,4 81,4	65.00 56.85 51.25 50.00 49.25 47.90 41.58 34.46 23.90 22.00 20.50 17.97 12.94 4.60	21 22 22 22 21 20 17 16 16 17 17	5.4 7.2 6.4 7.7 7.6 6.4 15.7 11.1 5.1 5.1 9.4 90.7 2.5 8.2 1.9 +1)

Phenylhydrazine ($C_6H_8N_2$) + Phenol (C_6H_60)

Thole, Mussell and Dunstan, 1913

%	đ	n	
 	50°		
100 79.8 59.8 49.9 46.3 37.2 19.6	1.048 1.056 1.065 1.068 1.069 1.069 1.069	3200 5250 7485 8020 8200 8050 6555 4580	

Pushin, Matavulj and Rikovski, 1949

mol %	n _D	mol %	n _D	
	4	5°		
0 10 20 30 40 50	1.5955 .5924 .5887 .5853 .5808 .5759	60 70 80 90 100	1.5705 .5634 .5560 .5489 .5402	

PhenyIhydrazine ($C_6H_8N_{\text{\tiny $\cal E$}}$) + o-Cresol (C_7H_80)

Pushin, Matavulj and Rikovski, 1949

%	n _D	%	n _D	
0 10.3 21 30.6 41 46 50	1.5980 .5921 .5866 .5816 .5759	55 59.7 65 70 80 90	1.5678 .5647 .5612 .5576 .5510 .5434	
30	.5708	100	.5364	

Phenylhydrazine ($C_6H_8N_2$) + m-Cresol (C_7H_80)

Pushin, Matavulj and Rikovski, 1949

%	ⁿ D	%	n _D	
	40)°		
0 10 20.5 24.3 29 48.2 51	1.5980 .5931 .5872 .5850 .5823 .5706 .5692	54 64 72.5 83.2 90 100	1,5662 ,5594 ,5537 ,5457 ,5408 ,5327	

Phenylhydrazine ($C_6H_8N_2$) + p-Cresol (C_7H_80)

Pushin, Matavulj and Rikovski, 1949

40° 0 1.5980 55.8 1.5643 10.3 .5921 61.7 .5597 20.5 .5862 71 .5531 30.3 .5803 79.8 .5466 40.5 .5739 88.2 .5400 43 .5726 100 .5318 51 .5675		mol %	^{n}D	mol %	$n_{\mathbf{D}}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		41	00		
		10.3 20.5 30.3 40.5 43	.5921 .5862 .5803 .5739 .5726	61.7 71 79.8 88.2	.5597 .5531 .5466 .5400	

Phenylhydrazine ($C_6H_8N_2$) + Guaiacol ($C_7H_8O_2$)

Pushin and Rikovski, 1937

mol %	f.t.	mol. %	f.t.
0 10 15 20 30 33 40	19 12.5 9 E 11.5 15.5 16 (2+1)	50 60 65 70 80 90	8.5 0 - 5.5 E + 0.5 10 20.5 28

Pushin and Pinter, 1929

mo1 %	đ	η	
	30∘		
100 90 80 70 60 55 50 40 33.3 30 20	1.1236 .1231 .1214 .1212 .1193 .1179 .1168 .1109 .1066 .1045 .1003	4450 5950 8210 10920 13150 14650 15260 15770 16060 15540 14080 12330	
0	.0962	10090	

Pushin, Matavulj and Rikovski, 1949

mol %	n _D	mo1 %	ⁿ D
	30)°	
0 10 20 30 40 50	1.6030 .5984 .5930 .5874 .5813 .5749	60 70 80 90 100	1.5680 .5616 .5546 .5475 .5386

Pheny lhydrazi	ne (C ₆ H ₈ N ₂) + Thymo	l (C ₁₀ H ₁₄ 0)	mol %	450	d 55°	65°	
Pushin, Matav	ruli and Rik	ovski, 194	9	10	45°	1,08	1.07	
0 13.3 25.7	mo1 60 0 10 20 30	%	ⁿ D 1.5880 .5765 .5660	10 20 30 40 50 60 70 80 90	1.10 1.12 1.14 1.15 1.16 1.17 1.20 1.21 1.22	1. 10 1. 12 1. 14 1. 15 1. 16 1. 19 1. 20 1. 21	1.09 1.11 1.12 1.14 1.15 1.18 1.19 1.20	
37.6 42.7 49.0 52.5 58.0 67.5 72.0 76.3 84.6	35 40 45 50 60 65 70 80		.5560 .5521 .5477 .5431 .5392 .5322 .5280 .5242 .5168	Pozharskii mol %	and Dionisie	v, 1956 η 55°	65°	
93.2 100 Phenylhydrazin Pozharskii and	90 100 EEEEEEEEEE e (C ₆ H ₈ N ₂) 	.5106 .5041	10 20 30 40 50 60 70 80 90 100	4000 4400 5500 5900 5200 4500 3200 2200 1800 1400	2900 3000 3900 3900 3500 3500 2400 1700 1400 1300	2000 2050 2400 2450 2300 2000 1800 1300 1100	
0 10 12,5 20 30 40	20 11 8 E 20 32 40	50 60 70 80 90 100	43 (1+1) 40 30 25 1 E	Pushin, Man	tavulj and Ri	kovski, 19	049	
Thole, Musse	II and Duns	tan, 1913 %	d	0 10 20 30	25° 1.6055 .6023 .5999 .5976	55 60 65 70	1.5876 .5848 .5814 .5781	
100 85.25 64.00	50 1.203 1.187 1.166	50.7 25.0 0	1.145 1.108 1.068	40 45 50	.5943 .5924 .5900	80 90 100	.5711 .5637 .5566	
53.50	1.154			Pozharskii	and Dionisie	v, 1956	(fig.)	
Thole, Musse	ell and Duns	tan, 1913		mo1 %	45°	я 55°	65°	
100 85.25 64.00 53.50	7 2015 3510 7160 8270	50.70 25.00 0	9180 6955 4580	20 30 40 50 60 70 80	0.0009 .0011 .0012 .0013 .0012 .0008	0.0007 .001 .0012 .0015 .0015 .0013	0.001 .0012 .0015 .0017 .0017 .0015 .0011	

			· 	
Phenylhydrazine ($C_6H_8N_2$) + p-Chlorphenol (C_6H_5OC1)	Pozharskii	and Dionisiev	, 1956	
Pushin and Dimitrievitch, 1939	mol %	f.t.	mol %	f.t.
mol % f.t. mol % f.t.	0 7	20 12 E	60 67	11 2 E
0 19 A I 10 18 (2+1) I	20	29 31	70	4 21
3 18.2 " 12 21 " 5 17.5 " 15 24.5 "	30 40	30	80 90	31
7 16.2 " 17.5 27 " 12 13 A II 20 28.5 "	45 50	16 E 17 (1+1)	100	+2)
[20 5 " 33.3 33.2 "	mol %	35°	d 45°	55°
20 - 1 (1+1) II 40 32 "	10	1,11	1.09	1.08
25 + 7 " 45.5 29 " 30 13.5 " 50 25.7 (2+1)II	1 20	1.12	1.11	1.10
35 19 " 54.7 20 " 40 23 " 57.8 15 "	30 40	$\frac{1.15}{1.17}$	$\frac{1.14}{1.15}$	1.13 1.14
50 26.7 (1+1) I 58.8 13.5 " 54.7 26 " 59.8 11 "	50 60	$\frac{1.18}{1.20}$	$\frac{1.17}{1.19}$	1.16 1.18
57.8 25 " 61 85 "	70	1.22	1.20	1.19
59.8 23.7 " 73 11 B I	80 90	1.24 1.25	1.23 1.24	1.22 1.23
62.7 22 " 75 14.5 "	100		1.26	1.24
64 20.5 " 78.6 21 "	mol %	35∘	ກ 45°	55°
70 10 a `'	10	6000	4000	3000
70 13.2 " 89.5 35 " 71 12 " 94.5 39.5 " 73 8.5 " 100 43 "	20	8000	5000	3 2 00
77 1 " 73 ~ 0.5 B II	30 40	10000 12400	6000 7000	4000 4600
75 3 7 "	50 60	13000 1 24 00	7100 7000	4700 4500
73 16 (1+3) I 85 20 "	70 80	10700	6000	4000
78.6 15.5 (1+3)11 94.5 30 "	90	8100 6400	5000 4000	3200 2900
61 1.5 (1+3)11 ?	100	-	3700	2600
64 4.7 " 67 7.5 " 68.8 8.5 " 70 8.7 "	Pushin, Mat	tavulj and Rik	ovski, 194	9
70 8.7 " 71 9 " Eutectics	mo1 %	ⁿ D	mol %	ⁿ D
	^	40		
8.5 mol % 15° A I - (2+1) I 22 " 25° A II - (1+1) II	10	1.5980 .5956	60 69	1.5786 .5741
22 " 25° A II - (1+1) II 48.7 " 26.7° (2+1) I - (1+1) I	22.5 29	.5919 .5901	7 9	. 5695
62.5 " 3.5° (2+1) II - (1+3) II (?)	42 50	.5857	89 100	•5646 •5593
68.7 " 15° (1+1) I - (1+3) I	30	.5826		•
72.5 " 9.2° (l+1) II - B I tr.t.	Pozharskii	and Dionisiev	, 1956	
75 " 4.3° (1+1) II - B II 75.8 " 15.9° (1+3) I - B I			ж	
75.8 " 15.9° (1+3) I - B I Complexes	mol %	35∘	45°	55≎
(2+1) 33 20 (1.1)	10			
(1+1) 26.7° (1+3) 16°	10 20	-	0.001	0.001 0.0017
	30 40	0.001 0.0017	0.001 0.0017 0.002	0.0021 0.0035
	50	0.002	0.0038	0.005
	60 70	0.0032 0.004	0.005 0.007 0.008	0.0065 0.01
	80 90	0.005 0.0045	$0.008 \\ 0.006$	0.018 0.0095
	100		0.0035	0.005

Hydrazobenzene ($C_{12}H_{12}N_2$) + o-Cresol (C_7H_8O) Azobenzene ($C_{12}H_{10}N_2$) + Hydroquinone ($C_6H_6^{\bullet}O_2$)
Hrynakowski and Adamanis, 1938	Kremann, Zechner and Weber, 1924
% f.t. E	% f.t. % f.t.
0 126.0 - 10 119.2 - 20 108.5 - 30 102.0 - 40 90.5 23.0 50 85.2 24.0 60 74.0 25.5 70 61.8 26.0 80 44.0 26.5 90 34.2 26.5 100 30.0 -	0 65 39 159 1.9 71 46.8 161 5.2 110 53.1 163 6.7 116 59.2 164 11.1 133.5 78.2 167 16.7 143 88.1 167.5 19.7 147 90.2 169 29.3 155 100 170 29.9 155 E: 55°
	Azobenzene ($C_{12}H_{10}N_2$) + Pyrocatechol ($C_6H_6O_2$)
Hydrazobenzene ($C_{1,2}H_{1,2}N_{\infty}$) + p-Cresol (Kremann, Zechner and Weber, 1924
Hrynakowski and Adamanis, 1938	% f.t. E
## f.t. E 0	0 65 12.75 60 60 19.7 67.5 24.18 71 28.4 75 60 34.56 79 41.1 83 60 46.36 84.6 50 86 50 86 6- 50.8 86 6- 50.8 86 54.55 88 60 90 65.5 91.5 71.95 93 77.5 95 84.04 97 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.02 99 89.03 89.04 95 102 100 104.5
	Azobenzene ($C_{12}H_{10}N_2$) + Orcinol ($C_7H_8O_2$)
	f.t. Pushin, Lukavetzki and Rikovski, 1948
16.3 66.5 61.2 23 76.0 69.8 1 30.8 81.5 81.2 1	88.5 92.5 92.5 97.2 01.5 06.5 111 90 108 - 100.5 62 80 97 63 70 94 64
	70 94 64 60 91 66 50 89 65 40 87.5 66 30 85 66 25 83 " 20 80 " 15 75 " 10 - " 7.5 66 " 5 66.5 " 0 68 -

			l		
Azobenzene (C_{12}	H ₁₀ N ₂) + Pyrogal	101 (C ₆ H ₆ O ₃)			
Kramann Zachnam	and Wahen 1024		l l		
Kremann, Zechner	and never, 1924		Petrucci and	Sorum, 1956	
8	f.t.	E	I		·
			%	f.t.	
0 5.58	65 85	- 65	0	67.4	
15.82 22.6	107 112	-	N -	67.4 28.7 E 44.9	:
28.16	114	=	100	44.9	
33.7 34.89	114 114	65 "			
40.2 41.1	114 114	11 11	Í		
45.4	114	Ħ	Hrynakowski and	Jeske, 1938	
50.5 59.8	114 117	-	8	ε %	ی میرمید سی میرمید اسد می اسد امیر سید امیر امید امیر امید امیرانی است.
86.9 100	123 132	-	II	ε %	
				at room t.	
			0 2	62	9.6
Azobenzene (C ₁₂ l	$H_{10}N_2$) + o-Nitro	phenol	15-16 3 29 5	3.9 62 3.9 75 3.6 82	20.2 21
		(C ₆ H ₅ O ₃ N)	39 <i>6</i>	6.6 82 6.8 100 3.8	24.6
Kremann, Zechner	and Weber, 1924			· • · · · · · · · · · · · · · · · · · ·	
%	f.t.	E			الموسى والمراس والمراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس
					
0	65 58	-	Azobenzene ($C_{12}H_{10}N_2$) + m-Nitz	ophenol
15.3 25	58 52	-			(C ₆ H ₅ O ₃ N)
30.6	48.5 44	-	Kremann, Zech	ner and Weber, 1924	ł
37.2 41.3	42	29	0	f.t.	E
46.3 49.8	38 36 33	29	Z	1.6.	
53.5 59.4	33 29	-	0	65	-
66.6	29 31	29	9.7 15.9	63 61	
69.9 7 0.5	33 32.5	29	23.8	58	58
75.8 76.2	34.5 35	29	34.6 41.9	65.5 71	58
80.9 83.7	37 37.5	π΄	44.3 47.8	71 72 73.5	- 58
85.6	39	-	51.3	75 77	N H
92.14 100	41 44	-	56.6 58.83	75 77 78	-
			62.1 64.5	79 80	58
			68.97 70.0	81.5 81	-
Sorum and Durand	, 1952		76.8	83.5	-
d			76.92 83.93	84 86.5	-
%	f.t.		84.2 90.9	87 89.5	-
<u>o</u> -	67.0		93.5 100	91 95	-
100	67.0 29.0 E 44.8			····	
			Ì		
			ĺ		
			}		
			8		

Azobenzene (C _{1 2}	H _{1 O} N ₂₀) + p-Nitrop	ohenol (C ₆ H ₅ O ₃ N)	Azobenzene ((C ₁₂ H ₁₀ N ₂) + Picri	c acid (C ₆ H ₃ O ₇ N ₃)
Kremann, Zechner	and Weber, 1924		II	ner and Weber, 192	
8	f.t.	Е	%	f.t.	E
0 14.2 23.6 29.2 36.9 48.4 60.1 67.8 73.9 84.0 92.7	65 51.8 55 64 75 84 93 98 101 107 111 113.5	- - 49 - - - 49 - -	0 8.7 17.9 32.5 42.8 49.9 55.6 60.0 67.3 78.8 84.96 92.5	65 64 61 56 74 82 89 91 98 105 110 115	- - - 56 - - - 56 - 56 - -
Sorum and Durand	, 1952		Hrynakowski an	nd Jeske, 1938	
78	f.t.		%	ε %	ε
0 - 100	67.0 50.2 E 113.5		0	at room t. 2.2 62	3,6
Petrucci and Sor	um, 1956		18 29 38 51	2.2 62 2.6 75 2.9 89 3.2 100	3.6 3.8 3.95 4.0
%	f.t.				
<u>0</u> 100	67.4 49 E 113		Azobenzene (C	₁₂ Η ₁₀ Ν ₂) + α-Ναμ	ohthol (C _{1 o} H ₈ O)
			Kremann, Zechn	er and Weber, 1924	•
Azobenzene (C ₁₂	$H_{10}N_2$) + 2,4-Dini	trophenol (C ₆ H ₄ O ₅ N ₂)	×	f.t.	E
Kremann, Zechner	and Weber, 1924		100	95.5 88.5	-
%	f.t.	E	90.9 79.5 70.2	81 75	-
0 5.2 9.8 12.9 19.7 24.7 29.3 34.8 40.5 47.3 47.4 51.6 68.2 78.6 68.2 78.6 88.8	65 64 62 61 57.5 55.5 56 61 68 75 78 85 92 99.5 106.5	54 "" "" "" ""	61.1 48.5 43.5 38.7 34.0 29.1 23.4 17.0 10.4	68 59 56 52.1 48.5 50.5 53 57 60 65	48 48.5 - 48.5 48.5 - - -
100	112	-			

A. and L. Kofler	r. 1948		Glutaroni	trile (C ₅	H ₆ N ₂) + m-(Cresol ((С ₇ Н ₈ О)
%	f.t.		Phibbs, 1	.955			
0 32	68 50 E		mol %	η	mol %	η	
100	96		100 63.8	11360 7800	33.0	6060)
Sorum and Durano	1, 1952						
%	f.t.		Benzonitr	ile (C ₇ H ₅	N)(b.t.=19	91.1) + F	Phenols
0	67.0 44.9	F	Lecat, 19	949			
100	95.5	L		2nd Comp	•	A2	
			Name	Formula	b.t.	·%	b.t.
Azobenzene (C.,	H. N.) + 8-Nan	hthol (C ₁₀ H ₈ O)	Phenol	C6H60	182.2	20	192.0
			o-Cresol	C7H80	191.1	51	195.95
Kremann, Zechner	and Weber, 192	4	m-Cresol	С ₇ Н ₈ О	202.2	89	202.5
% 	f.t.	Е	p-Cresol	C ₇ H ₈ O	201.7 ========	86 	202.1
0 10, 2 14, 2 23, 9 31 36, 4 46, 3	65 57.5 52.8 60.5 70 76 86	- 51 - - -	Benzonit		₍ N) + M ethy	l salicyl (ate C ₈ H ₈ O ₃)
52.8 60.6 72.4	91 97 105	- - -	mo:	1 %	d	(α) ^{mo}	¹ magn.
84.2 91.2 100	112.5 115 121	-	50	0	15° 1.1091	26	. 110
Kofler and Brand	stätter, 1942						
×	f.t.						
0	68 58 E						
Sorum and Durand	, 1952						
%	f.t.						
0 100	67.0 51.6 121.0	Е					

ETHYLAMINE + FORMIC ACID

XXXIII. NITROGEN	DERIVATIVES	+ ACIDS .		Dimethyl:	amine (C ₂ F	1 ₇ N) + For	mic acid ((CH ₂ O ₂)
				Bastich,	1947			
Ethylamine (C,	₂ H ₇ N) + Formi	.c acid (C	H ₂ O ₂)	mol %	f.1	t. m	o1 %	f.t.
Bastich, 1947				100	+ 8,	3	 55	+20
mol %	f.t.	mol %	f.t.	95 90	- 2 -20		50 33.3	27.2 18
100	8.3	60	-19	85 65 62.5	-39 -45		20 10	- 1 -15 -30
95 90	+ 0.5 -15.5	59 57	-21 -23	60.3	- 3,	.5 (1+1)	5	-96
85 77 75	-41.5 -34 -24	55 50 45	-13 - 3 - 9.5					
70 66.6	-14 -12.6	40 33.3	-23 -58	Trimethy	lamine (C ₃	H ₉ N) + Fo	rmic acid	(CH_2O_2)
63	-14.5	(1+2)	(1+1)	Lecat, 1	949			
Propylamine (C ₃ H ₉ N) + Isob	outyric aci	d (C ₄ H ₈ O ₂);		%	b.t	•	
Matavulj, 1939					0 24.5	35	۸	
mol %	20°	¹ D 45°			100	100	.75	
.0	1,3877	1.3725		Trimethy	lamine (C ₃	H ₉ N) + Ac	etic acid	(C ₂ H ₄ O ₂)
14.90 28.19 34.89	.4088 .4222 .4320	.3970 .4118 .4238	;	Lecat, 19	949			
45.28 47.71	.4402 .4418	.4325 .4336			<i>at</i>			
50.22 51.88 54.93	.4419 .4310 .4387	.4337 .4330 .4307	•		% 	b. t	•	
64.98 7 3.65	.431 7 .4 2 48	.423 2 .415 7	,		0 20		Az	
36.29 100	.4104 .3928	.4006 .3819			100	118	, l 	
				Isobutyla	nmine (C ₁₄ H	1 1 N) + Ace	tic acid	(C ₂ H ₄ O ₂)
Propylamine (C ₃ H ₉ N) + Isov	aleric aci	d (C ₅ H ₁₀ O ₂)	Patten, 1	902			
Matavulj and H	ojman, 1939			%	ห์	%	ж	
mol %	20°	ⁿ D 50°		0 bel 2.95	ow 0.0002	25° 68.56	28.20	
0	1.3877	1.3725		5.82 11.45	0.01316 0.1337 2.72	72.09 74.09 77.11	35.30 39.10 43.80	0 0 0
15.65 25.15 35.35	.4100 .4225 .4340	.3980 .4145 .4 2 65		13.77 15.88	5.48 9.32	79.00 80.18	47.60 49.20	0
45.47 50.08	.4413 .44 2 8	.4334 .4346		17.92 20.00 22.95	12.26 14.51 15.42	81.22 82.09 83.19	50.16 51.06 51.66	0
55.25 63.14 72.24	.4402 .4357 .4302	.4320 .4272 .4212	!	27.87 30.92	12.19 7.95	84.57 84.79	51.70 52.20))
81.31 100	.4228 .4030	.4133 .3923		34,43 38,33 41,42	5.46 2.41 1.474	85.02 88.32 91.41	51.06 45.80 34.30))
				47.38 51.96	3.27	94.18 95.69	19.60 10.82) ?
				56.49 53.03 65.87	6.45 10.50 19.20 23.20	97.34	1.94 below 0.00	ļ
				,	_0,20			

Diethylamine (C ₄ H ₁₁ N) + Formic	acid (CH ₂ O ₂)	Diethylamine (C ₄ H ₁₁ N) + Isovaleric acid
Bastich, 1947		Matavulj and Hojman, 1939
		Matavuij and nojman, 1909
mol % m.t.	f.t.	mo1 %
100 8.3 95 - 2	8.3 - 1.8	1 2050 1 2454
90 -	-16	$\begin{array}{cccc} 0 & 1.3850 & 1.3654 \\ 16.06 & .4038 & .3897 \end{array}$
85 - 65 -	-34 -20	25.23 .4169 .4030
6 5 - 60 -	+ 5.5	35.89 .4289 .4175 45.00 .4351 .4239
55 - 50 35 40 28.5	24 35,2	49.98 .4373 .4260 54.83 .4367 .4259
40 28.5	29	64,62 .4329 .4227
32 21 30 19	21.5 19	74.12 .4278 .4171
- 20	19 19	80.57 .4231 .4120 100 .4030 .3902
10 - 5 -	19	
5 - 3 - 2 -	16	
0 -	4 -49	
		Amylamine ($C_5H_{13}N$) + Acetic acid ($C_2H_4O_2$)
Diethylamine ($C_{l_{+}}H_{1 1}N$) + Isobut	yric acid (C ₄ H ₈ O ₂)	Patten, 1902 (fig.)
Matavulj, 1939		я и я и
mol % n _D mol %	n _D	25°
0 1.3696 ^{25°} 52.88	1.4255	100 below 0.0002 84.50 43.50 99.13 0.223 81.40 43.80
15.42 .3871 55.09	.4253 .4212	98.60 0.607 79.25 41.00 98.03 1.28 75.40 37.20
25.73 .3994 64.62 36.27 .4138 74.70	.4142	96.85 4.10 69.10 24.70
46.01 .4234 83.53 48.43 .4242 100	.4047 .3819	95.77 8.16 61.20 14.00 94.18 15.40 53.60 6.52
51.30 .4257	10017	93.07 20.20 37.70 2.18
		92.14 25.20 32.80 5.62 90.75 28.20 23.30 9.20
Diethylamine (C _u H ₁₁ N) + Propion	ic acid	90.01 32.90 16.98 6.03 88.47 37.80 11.30 0.117
	(C ₅ H ₆ O ₂)	87.10 40.90 5.40 0.0315
Coleman and Prideaux, 1937		85.30 43.40 0 below 0.0002
mol% d n σ	н	
25°		Triethylamine (${ m C_6H_{15}N}$) + Formic acid (${ m CH_2O_2}$)
0.0 0.7045 350 19.28 11.8 .7520 18.6 .7800	0.00 0.12 3.12	Joukovsky, 1933
23.8 .8021 - 21.57 32.3 .8410 15300 23.95 41.9 .8890 30600 29.20	7.07 16.5 13.1	% f.t. E
46.8 .9133 46100 30.97	12.5	100 + 8.5 -
50.0 .9260 55000 31.45 52.7 .9348 56200 31.56	12.1 11.9	95,2 + 5,0 -
55.6 .9422 53900 - 57.7 .9473 37900 31.63	13.6	l 82.3 -18.0 -
64.7 .9623 16800 31,32	17.5	80.1 -24.0 - 55.3 (-75.5) (-90.5)
75.9 .9820 - 30.21 80.6 .9872	29.3 32.9	$-13.5 L_1+L_2(1+1)$
84.2 .9902 87.6 .9913 - 28.13	31.0 25.2	12.4 -13.5 " " -119.5
92.4 .9906	8.29	0 -114.7 -
97.0 .9880	0.09 0.00	

Lecat, 1949					41/)E
Lecat, 1949	Triethylamine (C ₆ H ₁₅ N) + Acetic	acid ($C_2H_4O_2$)	64.98	.431 7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			70.27			
## b.t. 10	Loga+ 1040		72.52	.4305		
S	Lecat, 1949		75.11			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , , 				
12.5 16.2 Az 118.1	% b.t.		100	.0720		, ,
12.5 16.2 Az 118.1		····				
Nativariable Nati			Triothylamin	e (C.HN)	+ Isovaleric	acid
Matavulj and Hojaan, 1939			111ethy Lamin	c (C6111511)	· ISOVATELIE	(CsH1 000)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 118.1			_		(95.1109)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Matavulj and	Hojman, 1939	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					n_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	van Klooster and Douglas, 1945	· II	mol %	200		. 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				20°		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%	b.t.	0	1 4003	1 38	30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			.39	28
0.0 0.0 1.1 + 1.2 89.4 34.84 .4188 .4045 40 and 13 1.0 125.5 527.5 1 105.5 1 105.5 527.5 1 105.5		·····	25.27	.4130	.39	85
40 and 13 1.0			34.84			
61	1 40 and 13 1.0	92.6				
66. 1 147	61 1	128.5	55.17			
69.5 78 162.1z 70 99 160 78 99.5 134.5 100 100 118.2	66 1	147	65.86	.4344	.423	26
69.5 78 162.7 77.0 99.9 160 84.61 .4229 .4318 100 100 100 1118.2 84.61 .4229 .4118 100 .4031 .3902		162.5				
70	09 09 69 5 78	162.7	74 22			
78	1 70 99	160 #	84.61	.4229		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78 99.5	134.5	100	.4031		
3.87 13.5 L ₁ +L ₂ 30.5 126.5 7.91 57.0 39.5 98.8 11.8 77.6 44.5 42 20.8 126.5 46.0 20	100 100	118.2				
3.87 13.5 L ₁ +L ₂ 30.5 126.5 7.91 57.0 39.5 98.8 11.8 77.6 44.5 42 20.8 126.5 46.0 20						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	% sat.t. %	sat.t.	Octodocy lami	/ C 11 N		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			oc tauecy rami	ne (C ₁₈ H ₈ 9N) + Acetic a	CIO \
7.91 57.0 39.5 98.8 11.8 77.6 44.5 42 20.8 126.5 46.0 20 C.S.T. : 25 \$ 130°	3.87 13.5 L ₁ +L ₂ 30.5	126.5				C2114U2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.91 57.0 39.5	98.8	Pool, Harwoo	d and Ralston	1, 1945	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.8 77.6 44.5	42				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	mo 1 d		f.t.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C.S.T. : 25 % 130°		mor 76	Ŧ		71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	% d	n _o				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		u	100.0	16,63	_	-
89.6 1.045 .3950 89.9 28.0	25°		97.9	15.4	-	-
89.6 1.045 .3950 89.9 28.0	100 1.045	1.3722	96.4	14.8	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95.3 1.045	.3828	94.8 80 0	28 0	- 1	3.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	89.6 1.045		84.8	40.0	32.7 3	0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	86.5 1.041 76.75 1.030		79.8		42.6 4	0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	74.0		74.0	50.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70.1 1.017	.4208	72.0	59.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	63.6 1.009		70.8	60.4	58.3 5	1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			70.7	60.3	5	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.4 0.952		70.5 68 8	ის, პ 62. 0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46.0 0.936		68,3	63.2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.0 -		6 7. 5	64.9	- 4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0 0,720	.5770	67.4 67.1	64.8		- <u>,</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			65.2	67.7	59.1 4	6.2
Matavulj, 1939 mol %	Triethylamine ($C_6H_{15}N$) + Isobut		63.1	72.7	- 4	8.7 li
Matavulj, 1939 50.0		(Chugos)	56.9 52 4	80.9 84.0	72.5 5	6.3
mol % nD 20° 50° 14.6 73.5 0 1.4003 15.31 .4058 25.35 .4102 35.80 .4153 44.84 .4207 50.10 .4238 .4110 .4110	Matavulj, 1939	1	50.0	84.4	-	_
20° 50° 146 73.5 - - 0 1.4003 1.3839 3.7 67.9 - - 15.31 .4058 .3908 1.0 62.6 - 52.9 (1+1) 25.35 .4102 .3953 - - - 52.9 (1+1) 44.84 .4207 .4071 - <td></td> <td></td> <td>33.3</td> <td>79.5</td> <td>-</td> <td>-</td>			33.3	79.5	-	-
0 1.4003 1.3839 3.7 67.9		E00		77.1	_	_
0 1.4003 1.3839 15.31 .4058 .3908 25.35 .4102 .3953 35.80 .4153 .4012 44.84 .4207 .4071 50.10 .4238 .4110	20°	50°	6.2	70.3 70.4	-	-
15.31 .4058 .3908 .25.35 .4102 .3953 .35.80 .4153 .4012 .44.84 .4207 .4071 .50.10 .4238 .4110	0 1 4002	1 3930	3. 7	67.9		- /
44.84 .4207 .4071 50.10 .4238 .4110	15.31 4058		1.0	62.6	- 5	2.9 (1+1)
44.84 .4207 .4071 50.10 .4238 .4110	25.35 .4102	.3953				
44.84 .4207 .4071 50.10 .4238 .4110	35.80 .4153	.4012				
55.01 .4268 .4143	44.84 .4207	.4071 4110				
	55.01 .4268	.4110		_		ŀ

Ethylenediamine ($C_2H_8N_2$) + Formic acid(CH_2O_2)	
Bastich, 1947	Ethylenediamine ($C_2H_8N_2$) + o-Phthalic acid ($C_8H_60_4$)
mol % f.t. mol % f.t.	Dionisiev, 1949
	mol % f.t. E
100	0 8.5 - 2 4 - 4 1 - 6 - 1 -2 - 8 -2 -2 -2 10 6 -
Ethylenediamine ($C_2H_8N_2$) + Maleic acid ($C_0H_0O_0$) Dionisiev, 1949	23 - 20 46 - 25 110 - 33.3 212 (1+1) - 40 198 - 45 185 - 48 168
mol % f.t. E	50 175 - 55 194 -
0 8,5 - 3 7 - 6 6 4 10 4 4 13 26 - 20 80 - 25 106 - 33.3 130 -	60 212 - 66.7 232 - 75 191 - 80 165 - 85 142 - 88 137 137 92 150 138 96 163 100 197 (1+2) -
40 138 - 50 148 (1+1) - 55 143 - 60 138 - 66.7 120 - 75 109 - 80 100 - 85 90 90 90 90 90 90 90 90 90 90 90 90 90	Ethylenediamine ($C_2H_8N_2$) + Salicylic acid ($C_7H_6O_3$) Dionisiev, 1949 mol % f.t. E
Ethylenediamine ($C_2H_8N_2$) + Benzoic acid ($C_7H_6O_2$) Dionisiev, 1949 mol % f.t. E	2 8.5 - 2 7 - 6 - 2 - 10 -12 -20 13 -20 -20 20 -11 - 25 - 7 - 33.3 6 - 40 35 - 50 50 (1+1) -
0 8.5	55 44 60 37 37 66.7 58 37 75 102 80 127 90 150 100 156.5

Aniline (C_6H_7N) + Formic acid (CH_2O_2)	Kremann, Weber and Zechner, 1925
Pushin, Matavulj and al., 1940-46	% f.t. % f.t.
% mol % n _D	100 17 84.7 5 88.7 9.5 79 -4
## Mol Mol	100
69.8 16.3 33.3 0.9 67.0 16.7 29.4 - 2.6 64.5 16.5 27.7 - 4.3 60.5 15.8 25.75 - 6.4 59.0 15.3 23.3 - 9.2 57.3 15.0 22.0 - 10.7 55.5 14.3 20.65 - 12.8 52.7 13.1 (1+2) 17.7 - 17.0	1.055 1.022 0.973 0 1.021 0.988 0.953 Thole , Mussell and Dunstan, 1913
43.2 -20.9 21.3 -16.9 41.2 -20.3 16.75 -14.9 39.4 -19.8 11.9 -12.4 36.3 -19.4 10.4 -11.8 33.3 -19.4 4.8 -8.8 30.0 -19.8 3.0 -7.8 27.5 -19.8 0 -6.0 26.0 -19.2 (2+1)	25° 50° 100 1.052 1.0175 84.5 1.082 1.047 75.3 1.091 - 62.1 1.088 1.056 59.1 1.085 1.057 55.5 1.084 1.051 50.45 1.076 - 37.7 1.061 1.035 0 1.022 0.992

Sakhanov,	1913			Angelescu	and Eustatin, 1	936	
%	d	%	d	mol %	đ	mol %	d
100 99.296 98.28 95.78 91.51 86.15	1.046 1.046 1.049 1.055 1.065	83.29 77.83 73.42 71.67 64.23	1.079 1.083 1.088 1.090 1.088 1.018	100 93.54 86.46 78.90 70. 96 61.60	25° 1.0525 1.0754 1.0884 1.0910 1.0867 1.0766	51.41 40.81 28.68 15.32	1.0645 1.0515 1.0381 1.0267 1.0176
Mathews an	nd Cooke, 19	14		Klochko a	and Chanukvadze,	1938	
t	d	t	d	mo1 %		d	
	5	6 %			25°	50°	75°
25 40	1.0827 1.0657	55 70	1.0500 1.0335	100 96.18 93.48 90.28	1.042 1.061 1.069 1.072	1.014 1.034 1.041	0.985 1.004 1.011
Rabinovich	ı, 19 2 1			86.8 81.4 77.1 74.3	1.072 1.080 1.085 1.093 1.089	1.047 1.052 1.058 1.065	1.016 1.019 1.030 1.036
Z	d	%	đ	71.4	1.087	1.061 1.059	1.033 1.028
100 99.69 99.37 98.13 95.20 90.94 88.58 87.67 86.06 82.53 79.45	1,053 1,054 1,055 1,058 1,065 1,075 1,079 1,081 1,083 1,087 1,089	70.90 59.40 51.06 39.88 27.25 18.20 10 6.43 4.77	1.092 1.085 1.075 1.063 1.050 1.039 1.030 1.026 1.024	65 62.3 57.2 50.3 45.4 40.4 32.5 28.2 20.1 14 0	1.086 1.081 1.064 1.54 1.045 	1.057 1.052 1.040 1.029 1.021 - 1.007 0.996	1.027 - - 1.013 - 0.998 - - 0.985 0.976
Pound, 192	24			Faust,	1912	η 59 °	100°
R	d	F	d	100	1010	700	
100 71.31 64.195	3 1.03779 .08426 .08243	0° 60.295 41.442 0	1.08024 .06071 .01310	80 75 70 60 40 20	1010 19200 21550 22570 19550 8700 4600 3280	700 2930 3370 3540 3220 2230 1740	430 740 850 830 800 700 600 520
Pound and	Russel, 192			Sakhano	v, 1913	سے میں جب جب میں میں میں میں میں است ان	
	d	% 000	<u>d</u>		້	%	n
0 7.626 15.286 21.306 29.426 39.208 47.657 52.340	1.01201 .01913 .02672 .03379 .04419 .05677 .06700 .07200	59.155 61.915 65.380 71.427 79.944 85.403 93.392	1.07744 .08010 .08197 .08340 .07935 .07262 .05577 .03733	100 99. 98. 95. 91. 86.	296 1180 296 1180 28 1330 78 1830 51 3070	83.29 77.83 73.42 71.67 64.23	7710 12290 16180 17750 21800 3640

				Klochko a	nd Chanukvadz	ze, 1938	
Thole, Musse	11 and Duns	stan, 1913		mol %		η	
76		η			0°	35°	75°
100 84.5 75.3 62.1 59.1 55.5 50.45 37.7	25° 1340 7290 12300 21900 21400 20300 18100 11800 3620	50° 791 2960 5650 5580 5230 3820 2010	.1	100 96.18 93.48 90.28 86.8 81.4 77.1 74.3 71.4 70.0 66.7	2010 4149 9182 18099 32299 102040 145138 176409 184162 190114 183150	1080 1719 2720 4070 5691 8510 10504 11402 11600 11806 11507	660.0 523.2 1059.9 1289.9 1549.8 1869.8 2099.9 2200.2 2240.1 2209.9 2200.2 2170.1
Mathews and	Cooke, 1914	I		65.0 62.3 57.2 50.3 45.4 40.4	163132 111111 75244 56486 42698	10706 9016 7704 6510	2150.0 2090.9 1909.8 1761.7
t	η	t	n	32.5 28.2	25799 22701	5571 4480 4 2 19	1619.9
25 40	18210 7825	55 70	4188 2606	20.1 14.0 0	16498 14200 9633	3610 3300 2699	1420.0 1350.0 1159.9
Pound, 1924			,	Angelescu	and Eustatin,	1936	
%	η	%	η	mol %	σ	n _D	
		0°		 -	25°		
100 71.31 64.195	1031 1371 1604	60.295 41.442 0	1623 3226	100 93.54 86.46 78.90 70.96	29.41 30.26 31.81 34.13 34.73	1,37271 .40237 .42905 .45293	,
Pound and Rus	ssel, 19 2 4			61.60 51.41 40.81 28.68	35.83 36.82 38.02 39.02	.47251 .49213 .51033 .52744 .54429	
*	η	%	η	15.32	40.22 42.79	.56204 .57984	
0 7.626	3193	.4° 59.155 61.915	15340 15530	Glazunow,	1914		
15.286 21.306	3616 413 7 4996	65.380 71.427	15210 13220	mol %	n _D	mol %	n _D
29.426 39.208 47.667 52.340	6551 9291 12255 13813	79.944 85.403 93.392 100	8295 5183 2206 1067	100 92 75.57 71.1			1.52412 .54916 .57318 .58118
Angelescu and	l Eustatin,	1936		53.8	.51066		
mo1 %	η	mol %	n	Pushin an	d Matavulj, l	.932	
	2	5°		mo1 %	n _D	mol %	n _D
100 93.54 86.46 78.90 70.96 61.60	1400 4080 9460 15720 17810 14740	51.41 40.81 28.68 15.32 0	11180 7870 5480 4130 3400	0 10 20.6 30.3 40.2 50.5 59.4		50	1.4917 .4830 .4760 .4520 .4190 .3698

Konovalov,	1893			Pa	tten, 19	02		
	1075			-	%	н	%	н
96 88.64 84.18 79.40 75.97 75.52 72.55 70.90 68.76 67.20 66.42	2 19 25 27 27 27 27 26 26 26 25	1° .71 .42 .20 .49 .38 .33 .65 .05 .75 .48	16° 16.36 21.14 21.95		100 99.2 97.5 94.4 92.9 91.6 90.2 88.9 87.6 86.7 83.9 82.8	below 25° 0.00002 .130 .997 7.73 12.5 17.2 21.6 25.5 29.6 33.8 35.5 37.0	81,6 80,5 79,5 77,4 75,4 73,6 63,9 56,4 47,3 40,4 27,0	37.8 38.2 38.7 39.6 38.7 38.5 38.1 36.5 33.0 27.8 10.8 below 0.00002
66.29 64.91 62.67	25 25 24	.30 .12 .79	19.03 18.86		%	н	%	н
59.40 58.08 54.36 51.24 50.06 45.60 42.85 40.59 39.59 35.96 31.86 27.25 25.50 21.20 17.70 17.30 12.90 10.00 7.95 6.43 4.77 0	244 24 23 23 23 21 20 19 18 16 13 8 6 3 2 1 1 0 0 0 0 0 0	.28 .05 .53 .13 .01 .72 .58 .51 .92 .78 .36 .68 .95 .60 .65 .49 .82 .40 .13 .06 .04	18.48 17.52 17.09 16.43 - 13.97 7.87 6.38 3.59 1.69 1.51 0.86 0.42		2.29 4.74 7.06 7.20 11.35 15.2 17.0 18.0 20.3 21.9 23.4 24.8 26.3 27.3 28.9 30.2 31.4 32.5 33.7 34.7	0.0272 0.0707 0.164 0.292	37.7 38.8 39.6 40.6 41.4 42.2 43.9 44.7 46.9 47.6 49.0 49.0 49.0 50.3 51.6 53.0.7 64.7 75.5 83.3	25.6 26.7 27.3 28.0 28.4 29.5 29.5 29.7 30.6 31.5 31.8 32.0 32.2 32.2 31.9 32.6 34.3 30.7 36.5 37.3
- %	н	%	х	R	abinovic	h, 1921		
100	below 0.01	1° 90.94	14.71		Я	х	%	н
99.69 99.37 98.13 97.34 96.48 95.20 93.93 93.03 92.0	0.02 0.05 0.44 1.06 2.07 4.28 7.24 9.38 12.08	89.45 88.58 87.67 86.06 84.28 82.53 80.75 79.45 78.34	18.00 19.73 21.43 23.51 25.46 26.50 27.48 27.51 27.45		100 99.69 99.37 98.13 95.20 90.94 88.58 87.67 86.06	0.46 4.50 15.47 20.76 22.55 24.62	70.90 59.40 51.06 39.88 27.25 18.20 10 6.43 4.77	28.03 25.54 24.20 19.90 9.13 2.06 0.14 0.04
Sakhanov, 1	1913				82.53 79.45	27.87 28.94	0,,,	-
N	λ	N	λ					
4.273 2.403 1.236 0.730 0.297	25° 0.73 1.39 1.75 1.31 0.43	0.175 0.0730 0.0204 0.00943	0.20 0.11 0.12 0.15					
					- , 			

Pound, 1924				mol %	35°	и 50°	75°
mol %	ж	mol %	н				
100 97.755 96.543 92.807 85.36 79.395 74,267	30° 0.0008 2.042 5.610 22.47 37.32 38.80 36,44	73.545 70.19 52.32 41.545 28.08 15.337 0 be	36.62 28.43 27.57 15.50 2.645 0.1356 elow 0.0001	100 96.18 93.48 90.28 86.8 81.4 77.1 74.3 71.4	9.85 27.2 40.4 47.3 50.3 50.0 48.8 47.8	12.1 34.9 54.4 66.3 72.3 74.1 72.5 72.3 69.6	12.7 38.8 64.9 85.7 96.3 100 98.0 95.1
Pound, 1927				70 66.7 65 62.3	45.5 44.1 43.2	66.2 62.9 56.0	84.8 77.2 61.7
%	н	%	н	57.2 50.3	36.9 30.5	49.4 37.7	52.0 36.8
0 1.5955 1.6234 2.8880 3.3912	0.000288 0.001835 0.005095 0.005095 0.006908	30 8.2317 12.763 16.375 85.316 90.160	0.05850 0.3019 0.9927 29.31 17.53	45.4 40.4 32.5	21.8 17.2 6.58	24.1 17.7 5.86	20.6 13.3 4.04
5.3841 8.1905	0.018467 0.05804	90.9315	15.39	Heat const	ants .		
×	н	%	н				
93.874 95.7545 95.110	6.354 2.221 3.442	97.9895 98.579 98.9795	0.1737 0.0030 0.00522	Vargaftik	and Kerjentzev	, 1950	
97.374 97.9324	0.4630 0.1955	99.4554 100	0.00217 0.00082 0.00193	mo1 %	therm. cond. (cal/cm.sec)	mol %	therm. cond. (cal/cm.sec)
Trifonow ar	nd Cherbow,	1929		0 20 40	41.2 40.0 41.1	60 80 100	41.9 43.8 40.9
mol %	и	mol %	н	therm. c	ond. = thermal	conductivi	ty
92.75 83.82 72.01	20.87 27.59	48.83 35.60	17.95 8.22	Konovalov	, 1893		
Klochko and	1 Chanukyad:	ze, 1938		- 1 %	0-20°	U 20	740°
mo1 %	0°	ж 15°	25°	100 83.32 79.57 71.67	0.458	0.	487 525 547
100 96.18 93.48 90.28 86.8 81.4 77.1	3.88 10.0 12.2 11.5 10.1 8.41 7.75	6.31 16.3 22.4 -23.7 21.6 20.8	0.0008 8.17 21.8 30.0 34.7 36.1 35.0 33.5	66.11 55.33 39.46 23.85 17.33 9.24	0.511 0.523 0.522 0.515 0.510 0.501 0.472 0.461	0. 0. 0. 0. 0.	556 577 569 558 542 517 500
71.4 70 66.7 65	7.75 7.45 7.27 7.08 7.07	20.0 19.8 19.7 19.3	33.0 32.6 31.7 30.6	Timofeev,	1905		
62.3 57.2 50.3	7.07 7.28 7.35 7.41	19.1 17.7	30.0 28.6	%	U	%	U
30.3 45.4 40.4 32.5 28.2 20.1 14 0	7.41 7.00 5.98 3.96 2.36 0.61 0.093	16.3 13.5 11.2 6.06 3.17	23.5 18.3 14.3 6.71 3.15 0.63 0.095	100 54.7	0.487 0.556	0	0.4915

Konovalov,	1893			Aniline (C ₆ l	H ₇ N) + Prop	oionic acid	(C2 H6 O5)	
×	0°	mix Cal/g 20°	r _. 40°	Konovalow,	1893			
92 22		10.95	10.00	K	ж	%	и	_
83.32 79.58 71.67 66.11 59.80 55.33 39.46 23.85 18.33 9.24	13.50 16.19 17.28 17.01 13.13 7.84 5.67 2.58	10.85 12.76 15.15 16.00 15.97 15.74 12.02 6.86 4.86 2.36	10.09 11.62 13.68 14.23 - 14.13 10.62 5.82 4.32 2.15	85.68 77.70 70.32 63.54 57.39	0.67 3.62 6.07 6.84 6.45	50.60 44.49 39.24 34.10 29.51	5.07 3.45 2.08 1.09 0.54	
		mo1%	Q dil	%	0°-20°	ับ ว 20 °	°-40°	
mo1%	Q dil			100	0.450	0.4	107	
(by mole 88.58 85.76 79.63 75.13 65.75 50.28	781 962 1269 1452	13.69 24.52 32.66 50.26 65.75 75.14	242 547 838 1846 3276 4390 4973	100 75.11 69.92 64.38 59.88 54.77 45.17	0.458 0.554 0.563 0.568 0.570 0.554 0.541 0.461	0.5 0.5 0.5 0.5 0.5	578 582 586 592 580 567	
32.69 24.53 13.63	1828 1725 1682 1532	79.68 85.79 88.56	5810 6049	x	0°	nix (cal/g) 20°	40°	
Timofeev,	1905 g Final	(by	Q dil mole aniline)	80.11 75.12 69.92 68.60 64.38 59.88 54.77 53.49	10.06 11.08 11.18 11.36 11.47 10.80	6.92 8.15 9.00 9.10 9.18 9.25 8.91 8.84	- 6.34 7.12 7.20 7.22 7.18 7.08 7.01	
100 99.59 99:02 92.3	99.59. 99.02 98.15 86.9		6560 6550 6580 6 22 0	45.17 Sakhanov, 1	9.29	7.66	6.09	
68.4 56.7	64.9 54.7		2100 840	N of ani	line		λ	
Konovalov,	1907 mol % 24.53 36.30 52.59 65.75 79.68	0 mix (cal/mol 413 626 908 1139 1010	.)	0.410 0.840 1.079 1.453 1.965 0.227 0.543 0.877 1.120 1.486	5	bel (((() ()	0.001 0.004 0.012 0.039 0.110 0.001 0.001 0.005 0.013 0.042	
				1.006 1.317 1.792		0	0.003 0.004 0.007	

Aniline (C	H ₇ N) +Butyric aci	d ($C_{\mu}H_{8}O_{2}$)	Aniline (C	6H ₇ N) + Isobi	ityric acid	(C ₄ H ₈ O ₂)
Pound and Ru	issell, 1924		Matavulj, 1	939		
	d	η	mol %	20°	n _D 50°	
0 22.155 38,943 48,460 65,857 69,976 76,832 82,307	1.00508 1.00306 0.99896 0.99259 0.98517	3228 4110 4933 5495 5841 5367 4464 3609 1355	0 15.11 24.85 35.29 48.88 49.26 55.24 63.39 65.97 69.63 74.38	1.5854 .5578 .5403 .5218 .5025 .4965 .4855 .4702 .4652 .4552	1,569 .542 .524 .506 .486 .480 .454 .449	1 5 0 6 3 2 0 0 1
Konovalov, 1	893		84.12 100	.4283 .3928	.413 .379	5
%	х % 21°	н	Aniline (C	6H7N) + Vale	ric acid (C	5H _{1O} O ₂)
84.35 72.90	0.06 41.70 0.68 38	0.34 0.22	Ampola and l	Rimatori, 1897	7	
63.20 55.27	1.05 29.04 0.87 23.50	0.08 0.04	×	f.t.	Я	f.t.
Z	Q mix (ca	1/g) 40°	0 0.28 0.53 0.97	- 5.96 - 6.12 - 6.28 - 6.52	3.70 4.36 7.00 8.27	- 8.04 - 8.44 -10.02 -10.68
78.83 73.70 65.15 59.28 48.94	7.08 5.75 7.94 6.40 9.03 7.07 8.51 6.75 7.21 6.00	4.84 5.13 5.05	1.55 2.25 2.98	- 6.85 - 7.28 - 7.66	9.43 13.18	-11.20 -13.06
33.35	4.22 3.64		Aniline (C	3H ₇ N) + Isova	leric acid	(C ₅ H ₁₀ O ₂)
%	0°-20°	20°-40°		Hojman, 1939		· · · · · · · · · · · · · · · · · · ·
100 78.83 73.70 65.13 59.29 48.94 33.35	0.458 0.525 0.536 0.557 0.537 0.520 0.489 0.461	0.487 0.550 0.566 0.585 0.573 0.550 0.517	0 9.86 19.69 29.63 34.23 39,35	20° 1.5852 .5648 .5458 .5279 .5192	ⁿ D 50° 1.569 .542 .529 .512 .503)) ! !
mol %	Q dil mol %	Q dil	49.21 58.89	.5102 .4932 .4771	.4944 .4774 .4611	1
(by mole 79.81 74.74 66.41 60.72	acid) 20° (b 0.642 34.55 0.764 50.31 0.955 60.60	y mole aniline) 0.519 1.114 1.542	66.42 74.59 78.75 89.75	.4643 .4502 .4427 .4236 .4030	.4483 .4343 .4272 .4082 .3902	
50.33 34.60	1.001 66.38 1.079 74.75 0.960 77.51	1.887 2.263 2.526	Aniline (C ₆	H ₇ N.) + Palmi	tic acid (C ₁₆ H ₃₂ O ₂)
				ddison, 1938		
			mol %	f.t.	mol %	f.t.
			5 10 20 40	25 33 38 43	50 60 80 100	45 48 53.5 62.5

ANILINE + BENZOIC ACID

Aniline ((C ₆ H ₇ N) + Benz	oic acid (C7H602)			
Baskov, 1	1913			Baskov, 1913		
mol %	f.t. E	tr.t.	min	mol %	я 50°	75°
0 1.5 4 6 8 12 18 30 40	- 6.0 7.2 - 8.2 8.4 + 13 - 8.4 + 26.1 - 8.4 45.2 - 9.0 55.1 - 9.0	- - -	- (1+1)	18 25 30 34 39 40 48 50	0.03864 0.05553 - -	0.01262 0.02045 0.03698 0.04365 0.05644 0.06188 0.06579 0.06067
45 46 50		56.0 55.5 56.0	27.1 32.0 64.4	mol %	и 100°	125°
52 55 56 60 70 80 100	64.5	55.8 55.7 52.5 51.7 53.8 50.8	51.0 39.8 39.0 25.4 6.0	18 25 30 34 39 40 48 50	0.01079 0.01582 0.02190 0.02691 0.03082 0.03424 0.03582 0.03744	0.009054 0.01249 0.01994 0.0299 0.0299 0.02409 0.02500
Kremann,	Weber and Zechn	er, 19 2 5		52 56 62	0.03475 0.03288 0.02691	0.02469 0.02349 0.01765
%	f.t.	%	f.t.	70	0.01876	0.01210
8.5 10.0 12.1 14.7 16.9 23.0 28.1 32.3 34.7 37.7	- 2.5 - 0.5 + 2 6.5 11.2 22.5 32 40.0 45	40.9 42.5 49.9 58.1 61.6 70.2 77.5 85.3 92.2 100	55.8 58.5 70 82.0 87.0 98 105 110 115	75 80 85 90 95 100	0.06430 0.05585 0.04870 0.04096 0.03650 0.03650	
Pound, 19	924			105 110 115 120	0.03292 0.02912 0.02626 0.02552 0.02491	
%	н	%	и	125 130	0.02254 0.02087	
0 1.988 2.694 3.176 5.051 5.111	64 0.001087 68 0.001097 15 0.001950	7.0350 8.6760 11.224 14.888 18.156	0.002522 0.003595 0.004920 0.007344 0.01010			

Methylaniline	(C7H9N)	+	Formic	acid	(CH_2O_2)
---------------	---	-------	---	---	--------	------	---	-----------	---

Pushin, Matavulj and Rikovski, 1940-1946

	mol %		D O
٥٨	mor //	20°	40°
100	100	1.3714	1.3640
79. 3	90	.4230	.4157
63.3	80.1	.4590	. 4522
58	76. 3	.4702	.4638
-	70.4	.4850	. .
50	70.1	.4861	.4802
-	67.1	.4924	-
46.2	66 ,7	,4935	.4878
~	64.2	.4983	
42.8	63.5	-	.4941
-	63.0	.5006	-
~	60.7	.5049	
39.3	60.1	.5059	.5007
35	55.4	.5138	.5082
32.4	52.9	.5184	.5127
30.5	50.5	.5219	.5157
28.1	47.7	.5260	.5197
26.6	45.3	.5295	.5227
23.3	41.2	.5345	.5274
16.5	31.6	.5449	.53 7 9
10.1	20.8	.5553	.5468
5.1	11.3	.5625	.5538
0	0	.5709	.5609

Methylaniline (C_7H_9N) + Acetic acid ($C_2H_4O_2$)

Pushin and Matavulj, 1932

mol %	n _D	mol %	n _D
	25	0	
0 10.5 21.4 30.4 40.3 50.4 60.0	1.5684 .5572 .5454 .5336 .5204 .5055 .4894	62.7 66.6 71.4 79.6 89.8 100.0	1.4844 .4770 .4660 .4472 .4160 .3698

Konovalov, 1893

%	ж	%	н	
90.28 83.59 81.94 79.61 77.70 76.97 74.83 71.94 68.23 64.98 61.02 56.16 49.74	14.91 26.97 28.61 29.93 30.44 30.59 30.57 30.13 28.93 27.34 25.60 22.64 18.43 15.24	38.83 37.09 34.31 31.90 27.99 26.07 23.86 21.82 19.79 17.29 16.87 14.74 8.30	9.98 8.53 6.75 5.12 3.09 2.18 1.50 1.00 0.59 0.31 0.28 0.14 0.01	

Methylaniline (C_7H_9N) + Isobutyric acid ($C_4H_80_2$)

Matavulj, 1939

mol %	n	,D	
	20°	50°	
0	1,5705	1.5554	
15.19	.5475	.5327	
25.50	.5312	.5164	
35.06	.5160	.5012	
45.11	.4993	.4847	
49.05	. 4925	.4779	
55.52	.4811	.4666	
64.10	.4657	.4512	
66.39	.4613	.4469	
69.88	. 4547	. 4403	
74.08	.4468	.4325	
84.34	.4263	.4125	
100	.3928	.3798	

Methylaniline (C_7H_9N) + Isovaleric acid ($C_5H_{1\,0}0_2$)

Matavulj and Hojman, 1939

mol %	1	a^{\prime}	
	20°	50°	
0	1.5704	1.5552	
10.99	.5519	.5362	
20.46	.5363	.5212	
30.31	.5204	.5053	
39.5 6	.5052	.4902	
49.70	.4888	.4738	
59.90	.4722	. 4572	
66.52	.4614	.4468	
69 .7 5	. 4560	.4415	
79.82	.4389	.4245	
89.21	.4224	.4088	
100	.4030	.3902	

Dimethylaniline ($C_8H_{1\,1}N$) + Formic acid (CH_2O_2)

Ampola and Rimatori, 1896 and 1897

%	f.t.	%	f.t.
0	+1.96	8.32	-1.04
0.68	+1.32	10.97	-1.30
2.25	+0.32	14.51	-1.60
3.37	-0.12	18.18	-1.94
4.40	-0.44	26.85	-3.48
5.87	-0.75	35.23	-6.56

Joffé, 1952			
Я	d	nD	
100 90.44 81.66 60.46 50.96 40.50 25.08 21.00 10.98 4.77	20° 1.0492 .0627 .0638 .0395 .0255 .0077 0.9862 .9796 .9688 .9616	1,371 ,396 ,416 ,455 ,477 ,488 ,514 ,520 ,538 ,545	.8 77 44 33 80 18 82 21
Udovenko, 1940	•		
mo1 %	25°	η 45°	65°
0.00 10.08 20.10	1302.4 1363.4 1448.0	948.4 983.5 1019.7	742.9 758.5 775.7
34, 24 39, 73 49, 57 59, 78 70, 02 79, 28 84, 76 90, 25 100, 00	1643.8 1753.6 2040.4 2546.7 3351.9 4244.2 4513.5 3819.4 1106.0	1105.7 1159.6 1280.6 1487.8 1831.2 2192.5 2327.2 2085.0 826.4	814.7 859.0 896.9 992.2 1152.2 1319.8 1384.8 1302.6 644.5
	tavulj, 193		
mol %	n _D	mol %	O ⁿ D
0 10.7 20.0 30.2 40.3 48.9 58.9 59.5	25° 1.5556 .5452 .5364 .5252 .5114 .4998 .4842 .4837	62.6 66.4 69.7 70.3 75.0 80.3 90.4	1.4782 .4713 .4652 .4640 .4550 .4428 .4136 .3698
Konovalov, 189	93		
%	н	K	и
88.54 86.14 83.82 83.02	17.52 19.23 21.21 21.67	78.39 78.24 77.59 77 75.63 73 60.96 44.94 38.83 33.24 20.20	22.44 22.42 22.34 22.20 21.83 20.43 13,11 4.07 1.90 0.75 0.24 0.03 0.01
	100 90.44 81.66 60.46 50.96 40.50 25.08 21.00 10.98 4.77 0 Udovenko, 1940 mo1 \$\mathstyle{\sigma}\$ 0.00 10.08 20.10 34.24 39.73 49.57 59.78 70.02 79.28 84.76 90.25 100.00 Pushin and Marmo1 \$\mathstyle{\sigma}\$ 0 10.7 20.0 30.2 40.3 48.9 58.9 59.5 Konovalov, 189 \$\mathstyle{\sigma}\$ 99.45 98.96 97.93 96.10 95:17 94.28 92.53 90.85 88.54 86.14 83.82 83.02	## d 20°	March Marc

Patten, 1902	Dimethylaniline ($C_8H_{11}N$) + Isobutyric acid ($C_4H_8O_2$)
% и % и	Ampola and Rimatori, 1896 and 1897
25° 100 below 0.002 49.8 9.98 97.0 1.82 49.0 9.41 95.7 4.17 48.5 8.99 94.0 7.54 47.9 8.32 93.1 10.70 47.1 7.80 92.3 13.80 46.2 7.30 90.5 16.80 45.5 6.80 88.2 22.90 44.7 6.26 85.8 31.10 43:9 5.81	% f.t. % f.t. 0.51 1.96 10.67 -2.98 0.51 1.67 14.75 -4.68 1.29 1.28 20.00 -6.99 2.76 0.55 22.39 -7.97 4.98 -0.48 27.82 -10.84 6.77 -1.28
80.1 32.70 43.1 5.00 77.8 32.70 42.2 4.57 76.6 32. 10 41.1 4.34 75.2 31.50 40.2 3.63	Matavulj, 1939 mol % nD
73.1 30.20 39.1 3.16 71.1 29.50 38.5 2.70 68.6 27.60 37.4 2.32	20° 50° 0 1.5578 1.5424
66.0 25.00 36.3 1.98 64.0 23.20 35.2 1.66 62.5 21.70 33.5 1.36 60.7 19.80 32.6 1.10 59.2 18.80 31.8 0.88 58.3 18.10 30.0 0.655 57.6 17.10 28.6 0.515 56.4 16.10 27.1 0.380 55.9 15.60 25.7 0.270 55.3 15.20 24.1 0.167 54.7 14.60 22.5 0.103 54.2 13.90 20.9 0.067 53.8 13.20 19.0 0.026 53.1 12.80 17.2 0.022 52.5 12.60 16.0 0.016	14,93 .5381 .5232 25,56 .5234 .5086 35,12 .5096 .4950 45,10 .4941 .4798 50,30 .4861 .4719 52,76 .4821 .4679 65,00 .4614 .4475 65,98 .4597 .4458 70,23 .4522 .4384 72,10 .4487 .4348 73,30 .4465 .4325 84,27 .4255 .4120 100 .3928 .3798
51.9 11.60 14.7 0.011 51.3 11.00 13.4 0.008 50.7 10.40 0 below 0.002	Dimethylaniline ($C_8H_{11}N$) + Valeric acid ($C_5H_{10}O_2$)
Konovalow, 1893	Ampola and Rimatori, 1896 and 1897
% U % U 0°-20° 0°-20°	% f.t. % f.t. 0 1,96 8.34 -2.06
100 0.458 32.74 0.435 74.10 0.472 20.0 0.423 59.58 0.470 0 0.394 45.23 0.454	0 1.96 8.34 -2.06 0.48 1.27 11.26 -3.15 1.11 0.93 18.86 -6.24 2.15 0.47 21.77 -7.44 3.73 -0.22 25.20 -8.98 5.68 -1.08
% 0 mix (cal/g) 0° 20°	Dimethylaniline ($C_8H_{11}N$) + Isovaleric acid ($C_5H_{10}O_2$)
84.95 5.48 5.16 80.16 6.46 5.94 74.10 7.23 6.63 69.99 7.07 6.36	Matavulj and Hojman, 1939
69.99 7.07 6.36 59.58 6.87 6.11 45.23 5.12 4.50 32.74 3.27 2.87 20 1.92 1.60	mo1 % nD 20° 50° 0 1.5577 1.5422
mol % (a) Q dil mol % (b) Q dil 20°	10.88 .5422 .5268 20.52 .5283 .5132 30.13 .5143 .4996 35.04 .5070 .4924
91.91 364 33.51 242 89.13 445 49.49 515 85.25 537 62.48 994 79.63 578 74.82 1829 74.85 615 79.65 2262 62.46 597 85.24 3096 49.54 515 89.07 3621 33.51 480 91.93 4148 (a): amine added.	40.08
(b): acid added .	

Diethylanilin	e (C ₁₀ H ₁₅ N)) + Acetic	acid (C ₂ H ₄ O ₂)	o-Pheny I	enediamine (C	H ₈ N ₂) + Acet	ic acid
Udovenko, 1940	0			Kremann,	Weber and Zech	ner, 1925	(C ₂ H ₁ 0 ₂)
mo1 %		đ		%	f.t.	%	f.t.
	25°	45°	65°	0.0	102 101.5	50.7 56.0	36 15
0.00		0.9134	0.8981	5.6	96 90	58.3	3
9.92 19.85	.9350 .9423	.9181 .9255	.9025 .9083	12.1 17.9	90 84	60.3 63.9	- 3 - 4
29.59	.9524	, 9349	.9170	23.0	80.0	68.3	- 7
39.86 50.22	.9628 .9772	.9448 .9590	.9260 .939 7	23.8 29.1	78.5 73	74.0 79.1	-12 - 2
59.80	.9937	.9748	.9550 .9 7 50	32.8	68	82,4	+ 3.5
70.02 74.69		.9953 1,0058	.9853	34.1 37.1	68 62	85.7 87.1	7 8
79.82 84.67	.0371	.0178 .0277	.9973 1.0072	43.0	62 53.5	93.1	14
90.27	.0476 .0531	.0342	.0147	43.1 47.8	53.5 45	$\begin{array}{c} 93.6 \\ 100.0 \end{array}$	15.5 17.0
100,00	.0427	.0201	0.9975	50.3	36		+4)
mol %		η		o-Disony)	lenediamine (C	UN \ A Duts	ric acid
	25°	45°	65°				(C ₄ H ₈ O ₂)
0.00 9.92	1929.8 2080.8	1273.5 1362.8	919.0 942.0	Kremann	, Weber and Zec		
19.85 29.59	2342.6 2721.6	1488.7 1597.1	986.5 1064.3	78	f.t.	%	f.t.
39.86	3462.2	1910.4	1218.3	100.0	- 8	51.9	45
50.22 59.80	4638.6 6399. 7	2408.1 3100.1	1454.7 1769.6	90.1	-24	50 .7	47 56
70.02	9548.0	4198.1	2283.3	87.9 80.0	-27 -37	47.9 46.0	58
74.69 79.82	10938.8 12003.6	4720.6 5159.3	2529.2 2733.5	80.0 76.2	-48 E	40.6	66 74
84.67	10947.6	4965.2	2712.0	72.9 70.2	-26 -39	$\begin{array}{c} \textbf{32.0} \\ \textbf{18.6} \end{array}$	87
90.27 100.00	6538.2 1106.0	3527.3 826.4	2168.6 644.5	64,6	+ 2	$\begin{smallmatrix} 7.1\\ 0.0\end{smallmatrix}$	95 102
				60.5 54.9		0.0	102
Mesidine (C	II N) + Ac.	otic acid	(C-H, O ₂)				
mesidine (C	911311 / 1 120	cere dera	(52.1452)	o-Pheny I	enediamine (C	$_{3}H_{8}N_{2}$) + Succ	inic acid (C ₄ H ₆ O ₄))
0'Connor, 19				Kremann	, Weber and Zec	hner, 1925	
mol %	f.t.	mol %	f.t.	%	f.t.	%	f.t.
	В			0.0	102	78.3	142
100	16.6	85.1 81.7	+ 0.1	4.1	98	88.4	142 169
93.6 89.8	$\substack{12.3\\8.1}$	80.0	- 9.3 -13.9	59.7 66.7	151 134	100.0	183
87.9	4.6			E : 1			
	(1+1	1)					
82.5 81.3	-14.7 - 7.2	46.2 41.1	$\frac{19.7}{18.9}$	o-Phenvl	enediamine (C ₆	H ₈ N ₂) + Benzo	oic acid
79.2	+ 0.1	36.7	17.8	11	ber and Zechne		$(C_7H_6O_2)$
77.4 74.9	4.3 8.7	$\frac{31.3}{26.6}$	$\frac{15.7}{13.1}$	%	f.t. E		t. E
69.8	13.8	22.4	10.0			, I.	
$\substack{66.8\\61.7}$	16.0 18.2 19.1	$\substack{18.8\\16.2}$	$\frac{6.1}{2.4}$	0	102 -	67.5 10 73.2 10	
58.1	19.1	13.0	- 25	6.8 17.0	99 - 92 -	73.2 10 73.3 10	
54.1 50.1	19.7 19.9	$\substack{10.9\\7.9}$	- 7.1 -15.9	29.7	87 -	78.5 10	101.0
				38.3 45.6	93 85 98 85	80.0 10 84.8 11)6.5 - .1 -
9.4	A . 0.4	0	4.0	53.2 57.6	101.5 - 104 -	85.1 11	1 101,8
6.0	- 9.6 - 7.7	0	- 4.9	66.2	107 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 -
				63.0	106.2 -	(1+2	!)
				l 	E : 77 % ar	nd 27.50 %	

Pushin and	Dezelic, 19	38		Kremann, Weber a	nd Zechner, 19	25
mol %	f.t.	E	min	%	f.t.	Е
0 10 15 20 27 30 35 40 42 45 48 50 52	102.5 95.7 91.5 88 84 85.5 88.3 91 92.5 95 97 98	80.5 84 " " 81.5 83 81 91	0.5 1.0 1.4 2.5 1.6 0.8 0.3 0.2 0.4 0.6 0.8	0 11.8 25.0 39.0 43.2 49.3 57.2 62.5 68.3 77.8 89.8 100.0	102 95.5 88.0 91.0 92.5 94.5 95.5 95 94 110 123 133 (1+1)	92:5
57 60	101 102.5	89 -	0.3			
63 65 66,6	103.5 104 104.3	- -	-	o-Phenylenediami	ne (C ₆ H ₈ N ₂)	+ Salicylic acid
68 70	103:5 102 102	-	1.3	Kremann, Weber a	and Zechner, 19	(C ₇ H ₆ O ₃)
73 80 90	107.5 114.5	100 99	0.7 0.5	76	f.t.	E
(1+1)	121	(1+	-	0.0 12.0 23.7	101.5 95.5 88	- 86 86
	ediamine (C		innamic acid (C ₉ H ₈ O ₂)	31.1 37.6 44.5 50.0 66.0 70.7 76.8 83.4	96 106 113 115.5 112 109 125 141	109
mol %	f.t.	Е	min	89.8 100.0	148 155	- -
0 10 20 30 40 45 47 50 53 55 58 60 63 65 66.6 69 70 73 75 78 80 90 100 (1+1)	102 96 87.5 93 96 97 97.5 98.5 99.5 100 101.5 102 102.5 105 106 109 110 113.8 113.8 125 132	87.5 "" - 98.5 98 96.5 - 102.5 102 100 99 100 100.5	0.8 1.7 1.1 0.4 - 1.7 1.2 0.9 - 0.5 - 0.9 0.8 0.7 0.6 0.5 0.7	0 4.9 10.7 16.3 22.8 27.1 32.9 38.9 42.5 46.6 48.1 E: 49 %	and Zechner, 19 1.t. 1.52 1.58 1.58 1.68 1.68 1.62 2.88 2.9 2.3 2.4 1.1 3 87 9 9 95 1.5 100 20 -21°	f.t. 0 -20 3 -20 1 -19 3 -17.5 0 -16 7 -11.5 3 + 4 2 10.5 6 16

								
m-Phenylened: Kremann, Web		-	nzoic acid (C ₇ H ₆ O ₂)	i	nediamine (C ₆ H ₈ Weber and Zechne		ylic acid (C ₇ H ₆ O ₂	,)
7,	f.t	•	Е	# %	f.t. E	 %	f.t.	 Е
0 18.6 25.1 31.8 37.7 44.8 51.3 56.8 60.2 66.8 73.1 78.9 87.5 91.3 95.5 100.0	58 57. 64. 70. 75. 80. 83. 83. 82. 88. 98 105. 113 116 119 121 (1+1)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51.2 - - - - 81.5 - - -	0.0 3.3 8.6 17.1 20.9 25.0 33.7 36.0 42.7 48.8 48.2 52.1 E ₁ : 9 % E ₂ : 73	61 - 55 38 42 38 71 - 90 - 96 - 114 - 116 - 122 - 125 - 125 - 126 - 38°	59.7 63.4 66.5 67.4 71.4 76.5 79.2 86.4 88.7 93.8 94.9 100.0	126.5 124 123 123 116 125 130 144 147 151 152 155	113 113 113 113
Pushin and D				Pheny lened	liamine (C ₆ H ₈ N ₈) + Cinnami	c acid (C ₉ H ₈ 0	₂)
mol %	f.t.	E	min	Pushin and	Dezelic, 1939			
0 10 15 20 30 35 40 43 47 50 53 56 58 60 63 66.6 70 75 80 90 100 (1+1)	62.5 55 50 55 67.5 73 75 77 79.5 81.3 83 85 86 92.5 96 98.5 101 104 107:2 114			mol # 0 10 20 25 30 33.3 35 38 40 45 47 50 53 55 58 60 63 65 66 70 73 80 90 100	f.t. 62 55 49 46 53.5 55 55.5 55.5 57 72 79 82.5 88 91 95.5 98 100 104 105 107 110 118 125 132 (1+1)	E - 45 45 46 42 42.5 40 44 - 58 57.5 56 53 55 51	min -0.6 1.6 2.2 1.4 -1.0 0.6 1.0 1.3 1.2 -1.0 0.8 0.7	
0.0 5.6 11.7 25.7	f.t. 61.5 59.0 55.5 46.5 43.5	51.7 54.5 57.1 62.0	f.t. 66.5 73.5 83.0 91.5		nediamine (C ₆ H ₁		inic acid (C ₄ H ₆	0,,)
30.3 35.3 39.9 43.0 47.3 49.0 50.6 E: 41 %	43.5 40.0 36.0 41.0 53.0 62.5 65.5	66.1 72.0 78.3 83.6 92.4 100.0	91.5 97.5 105 115 121 129.0 133	9.0 9.6 18.9 28.9	f.t. 141 134 125 E 139	% 37.5 100.0 E: 19 %	f.t. 147 183 125°	
				l				

P-PHENYLENEDIAMINE + ACETIC ACID

p-Phenylenedi	amine (C ₆ H ₈ I	N ₂) + Ac	etic acid ($C_2H_4O_2$)	p-Phenylen	ediamine (C ₆ 1	IgN ₂) + Ci	nnamic acid (C ₉ H ₈ O ₂)
Kremann, Webe	er and Zechne	r, 1925		33	eber and Zechi		
*	f.t.	%	f.t.	%	f.t.	%	f.t.
100 97.3 90.1 80.3 72.1 65.5 59 50.6 E: 83 %	16.5 11.3 13.0 15 30.5 41 53 67	46.9 42.7 35.5 26.7 16.4 8.2	73 81 93 107 122 134 141	0.0 7.7 17.0 27.2 35.1 44.0 49.7 55.0	141 138 133.5 125 120 120 120 128 140	59.5 63.3 63.7 71.2 78.2 84.8 93.5 100.0	158 180 180 110 115 121.5 130
p-Phenyleneo	diamine (C ₆ H	(aNo) + F	Benzoic acid	Pushin and	Dezelic, 1938	3	
1			(C ₇ H ₆ O ₂)	mo1 %	f.t.	Е	min
·	per and Zechn			0	140 131	<u>-</u>	_
× ×	f.t	•	E	10 15 20	127 122	115 115	0.8 1.1
0.0 5.2	141 137		-	20 25 28 30	119	114 115	1.8
11.4	131 128		126 126	30 35	115	115 115	1.7 1.0
26.5 34.8 43.3 55,2 55.3	134		-	40	122	-	
43.3	138 141		-	40 45 50 55 60 65 71	123.5 124	-	-
55,2 55.3	142 142		-	55 60	122 119	108.5 110	0.3
(j 64.0	138		-	65	119 115	108	0.4
68.7 75.6	133 118		104	1 75	110 110	-	0.7 0.6
63.4 71.7	138	.5		80 85	117.5 121.5	108	0.4
79.0	1 2 9 106		104	90	125	-	-
88.9 100.0	115 121		104	100	132	-	-
100.0	(1+1		-	§	(14	-1)	
		· 					
Pushin and W	filowitsch, 19	925		p-Phenylene	ediamine (C ₆ H	₈ N ₂) + Sal	icylic acid (C ₇ H ₆ O ₃)
mol %	f.t	•	E	Kremann, W	eber and Zechn	er, 1925	
100 90	121 113		-	%	f.1		Е
80 70	102	.5	-	0.0	0 141		-
l 65	121 128		101 98	9. 15.	7 135	i	-
60 55	133 136		<u>-</u> -	21.0	6 122	?	100
1 50	137		-	27.4 34	5 106 3 111		-
45 40	136 138		- -	34 40 45.	122	2	100
35 30	132 128		-	II 54.	5 1.36	7.3 5.8	-
25 20	121		121	60.8 68.6	8 136		107
20 10	125 131	.5 .5	-	∥ 75.0	5 115	i	107
Ŏ	140		-	81. 90. 100	l 147	,	-
E:16% and 79%	(1+1)	,		100		;	-
2.10% and 7%				(((1+1	.)	

o-Toluidine	(C ₇ H ₉ N)	+ Formic	acid ((CH ₂ O ₂)	Konovalow,	1893			
Angelescu a	nd Eustatii	1. 1936			%	ж	Я	н	
mol %	d	η 25°	ď	n _D	85.11 83.78 83.50 81.27 79.11	17.10 18.11 18.26 19.24	51.74 51.00 49.92 47.78 45.70	12.3 12.0 11.7 10.9	9 '3
100 96.13 91.87 86.91 81.05 74.08 65.40	1.2110 .2060 .1984 .1874 .1707 .1512 .1320 0.9943	1460 2440 3980 6860 10020 14000 21660 3390	39.34 40.05 40.58 41.29 41.02 41.24 41.88 40.12	1.37160 .39612 .41897 .44030 .46171 .48618 .50960 .56827	79.11 77.48 75.80 72.83 70.73 69,34 64.45 62.70 58.19 55.55	19.56 19.60 19.44 18.74 18.07 17.67 16.05 15.56 14.24 13.57	45.70 41.64 37.79 34.34 30.57 27.18 24.07 21.95 19.37	10.2 8.5 6.6 4.8 3.0 1.8 0.9 0.5	12 19 9 33 30 14 18 57
o-Toluidine O'Connor,		+ Acetic	acid (C	·2H ₄ O ₂)	Y	e (${ m C_7H_9N}$)	-		H ₆ O ₂)
mol %	f.t.	mol.	%	f.t.	mol %				n_
100 94.4 91.2	16.6 13.0 10.4	89.1 86.6 83.1		7.4 3.4 -5.9	100	0.9889	η 25° 960	27.63	1.38717
84.3 81.5 78.9 77.0 74.6 72.1 69.2 64.6 58.0		+1) 35.7 32.7 26.1 20.7 16.9 11.7 9.3 7.6		23.1 22.4 20.5 16.9 14.2 8.7 5.0 0.6 - 5.8	92.74 85.07 76.80 68.30 59.98 48.82 38.24 26.35 14.04	1.0025 .0124 .0189 .0199 .0177 .0129 .0097 .0045 0.9996 .9943	1720 2890 4290 5870 5910 5580 5020 4520 4010 3390	27, 95 28, 69 29, 81 30, 55 31, 77 34, 01 34, 78 36, 16 38, 04 40, 12	.41040 .43257 .45263 .47144 .48849 .50479 .52111 .53894 .55471
52.1 46.7 42.9	24.7 24.6 24.4	4.0 2.3 1.7		-13.8 -25.0 -33.4	o-Toluidin	e (C ₇ H ₉ N)	+ Duturi	a acid (C 4 0)
7.1 2.0	-31.5 -28.5	0		-27.7	§	and Eustatin	-	acia (Cingo2 /
Angelescu a	and Eustati	n, 1936			mol %	d	η	σ	n _D
mol %	đ	η	a	n _D	100 93.30	0.9545 .9692	1370 2360	27.76 27.23	1.39807 .42047
100 94.40 88.34 81.59 74.17 65.63 55.93 44.80 32.97 17.87	25' 1.0525 .0694 .0782 .0787 .0727 .0623 .0481 .0332 .0191 .0056 0.9943	1400 3630 8360 14070 19160 16080 11990 8170 5830 4300 3390	29 .41 29 .98 31 .51 32 .41 33 .94 34 .31 35 .34 35 .80 36 .92 38 .01 40 .12	1.37271 .40018 .42477 .44652 .46589 .48385 .50049 .51671 .53194 .54956 .56827	82. 27 73. 37 64.01 54.02 43. 68 33. 23 22. 81 11. 95 0	. 9796 . 9873 . 9917 . 9950 . 9950 . 9956 . 9957 . 9953 . 9943	3810 4810 5890 5940 5270 4840 4410 3980 3390	28.17 28.73 29.79 31.18 33.05 33.82 35.11 36.96 40.12	. 43949 . 45733 . 47320 . 49032 . 50719 . 52341 . 53828 . 55447 . 56827

o-Toluid	ine (C ₇ H ₉ N)) + Benzoic	acid (С ₇ Н ₆ О ₂)	m-Toluidine	(C ₇ H ₉ N)	· Acetic a	.cid (C	2 ₂ H ₄ O ₂)
Baskov,	1913				O'Connor, 1	921			
mol %	f.t.	Е	tr.t.	min	mol %	f.t.	mol %	,	f.t.
0 1.5 3.0 4.5 8.0	-24.3 -26.8 -29.1	-32.5 -32.0 -30.8	- - - -	- - - -	100 93.8 89.2 85.2	16.6 12.0 5.6 - 2.3	83.9 82.4 7 9.3		- 5.6 - 8.8 -21.6
13.0 20.0 25.0 35.0 45.0 48.0 49.0 50.0 52.0 58.0 66.66 75.0 100	-13.5 -3.5 +16 +42.8 63.2 67.5 69.0 70.4 75.1 83.0 91.8 100.5 121.4	-30.8 -45.0 - - - - - - - - - - - - - - - - - - -	+6.0 +6.8 6.1 6.8 6.7 5.2 1.1	6.2 22.9 27.2 30.1 21.8 11.7 7.8 3.2	82.3 79.0 75.4 71.9 68.7 64.8 58.9 54.0 84.2 80.0 77.0 73.3	(1+2) f - 0.2 + 4.0 7.2 9.4 9.9 9.9 8.9 7.0 (1+2) -14.8 - 2.2 + 2.3 5.3	orm I 49.1 42.5 37.7 34.5 28.6 23.8 19.1 13.5 form II 46.6 42.3 36.4 34.0		4.5 + 1.0 - 2.3 - 4.8 - 10.5 - 16.8 - 24.0 - 38.5 - 0.3 - 3.1 - 7.5 - 10.0
76	75°	и 100°	12	5°	67.6 63.3 55.8 52.1	7.2 6.9 4.5 2.8	28.0 24.1 20.0 16.1		-16.3 -21.9 -29.0 -38.0
3.40 5.66 11.24 16.75	0.001671 .001672 .002596 .002889	0.001258	- - - -		11.5 6.6	-36.8 -34.3	0		-31.0
34.91 38.08 41.13	.004490 .005622 .005991	0.003230 .003946		56 18	Angelescu a	and Eustatin	,1936		
48.25 51.27	.006916 .00 7 486	.004508	0,00 .00	7752 8619	mol %	đ	η	σ	n _D
52.26 53.26 54.26 55.25 61.15 69.50 77.37	,007581 .007704 .007326 .006662	0.005160 .006116 .006142 .005924 .005834 .004965	5 - 2 - 4 - 4 0.00 5 .00	7342 5449 4519	100 94.31 88.31 81.30 74.20 65.92	1.0525 .0681 .0772 .0783 .0787 .0609	25° 1400 4080 8170 15770 21340 21100 16000	29.41 29.46 30.36 31.48 32.29 32.98 33.35	1.37271 .40080 .42557 .44983 .46857 .48839 .50358
m-Toluidi	ine (C ₇ H ₉ N)	+ Formic a	acid (CH	202)	55.86 44.73 32.46 17.42 0	.0310 .0146 0.9989 .9856	10380 6420 4100 2940	33.91 34.50 35.47 37.00	.51986 .53389 .54908 .56437
Angelescu	ı and Eustati	n, 1936							
mol %	d	η	ď	n _D	m-Toluidine Angelescu a	e (C ₇ H ₉ N) and Eustatin		ic acid	(C ₃ H ₆ O ₂)
100 93,74	1.211 .201		39.34 38.02	1.37160 .39370	mo1 %	ď	η	σ	n _D
87. 15 79. 57 72. 05 62. 49 52. 68 15. 49 0	. 183 . 164 . 146 . 128 . 110 . 024 0. 985	4 2650 0 3250 8 4140 3 5890 9 8530 8 6070	38.21 38.47 38.44	.41579 .43888 .46051 .48589 sic .48589 .50877 .55924 .56437	100 92.75 85.17 78.46 68.49 59.33 49.31 38.41 26.54 14.05	0.9889 1.0046 01774 .0236 .0236 .0200 .0136 .0068 0.9991 .9919 .9856	960 1950 4210 7430 9480 9360 7720 6030 4680 3720 2940	27.63 27.82 27.92 28.69 29.75 30.80 31.84 32.77 34.14 35.27 37.00	1.38717 41073 43480 45623 47516 49194 50766 52236 53736 55199 56437

m-Toluidine	: (C ₇ H ₉ N) +	Butyric acid	(C ₄ H ₈ O ₂)						
Angelescu a	nd Eustatin,	1936		Lucass	e, Koob	and Mill	er, 1944	· · · · · · · · · · · · · · · · · · ·	
mol %	đ	η σ	n _D	mo1	%	f.t.	mol	%	f.t.
	25	o	·	0 14.0		43.8 36.4	69.5 72.5	5	48.9 48.0
100	0.9545	1370 27.76	1.39807	22.2		32.8	77.	l	44.4
91.11 82.82	.9708 .9852	2780 26.89 5030 27.39	.42217	28.3 31.1		30.8 29.7	79.9 82.7) 7	40.7 35.3
] 7 3.50	.9903	7550 28.09	.44141 .46101	32.8		27.2 32.3	85.5	5	26.5
63.73 54.11	.9934	8510 28.91	.47918	33.9 39.2		32.3 36.8	87.3 88.3		18.7 16.0
43.63	.9940 .9931	8060 29.91 6710 30.65	.49424 .50987	39.2		37.2	88.8	В	11.0
33.44 22.78	.9909 .9894	5590 32.44 4600 33.65	.5 2 438	45.7 51.1		41.6 45.2	89.2 90.2	7	6.2 7.3
12.28	.9871	3640 37.18	.53894 .55 2 93	57.3		47.6	90.2	2	7.5
0	.9856	2940 37.00	.56437	63.9 66.5		49.1 49.0	90.6 90.6		8.0 8.3
				67.0		49.2	91.3	3	9.1
p-Toluidine	(CaHoN) +	Acetic acid (CoHuOo	67.5 92.2		49.1 10.0	91.6 94.5		9.5 12.5
F	7.1.9.1	(02402 /	92.9		11.0	100		16.7
0'Connor, 1	1921				30.2 mol		8.6	(1+2)	
mol %		mol %	£ .		89.7 mol	l % 	6.4 		
moi /p	f.t.		f.t.						1 4
100	В			p-Tolu	iidine (C ₇ H ₉ N)	+ Trichle	oracetic (C ₂ H0	acid (2Cl ₃)
100 94.3	16.6 12.6	88.9 86.8	$\frac{6.1}{+2.0}$	7	1004				
91.5	10, 1	85.4	+2.0 -3.1	Kitran	1, 1924				
0	(1+				mo1	%	:	f.t.	
90.3 87.7	$0.6 \\ 13.3$	67.4 65.1	4 7.8 48.0	l				32.7 E	
87.0	17.5	60.9	47.6		35 66.7	7		84.0 (1+2	2)
85.2 82.8	25.0 32.8	55.9 52.1	46.6 44. 8	l	85			18.2 E	
81.5 77.2	36.8	46.8	41.8						
74.9	42.2 44.6	39.1 32.8	36.0 30.7	p-Tolu	idine (C ₇ H ₉ N)	+ Benzoi	c acid ($C_7H_6O_2$)
70.7	46.8	28.5	25.7	Vignor	ı, 1891				
50,7	A 10.2	24.0	21.2	mo1	Z	f.t.	mol	%	f.t.
45.7	10.2 16.7	19.0	31.3 33. 7	0		45	66.	67	85
42.3 33.8	20.2 26.0	12.5 6.7	37.0 30 8	33.3	33	4 7 55	100		121
30.4	27.9	ŏ.,	39.8 43.0	50		55			
				Baskov	, 1913				
Kremann, We	ber and Zechi	ner, 1925		mo1 %	f.t.	E	min	tr.t.	min
*	f.t.	# %	f.t.	0	43.5		6,2	-	_
	179			10	38.0	28.0 28.5	19.8 100.0	_	-
02.4	•		4	15 23	$\begin{array}{c} 36.0 \\ 31.5 \end{array}$	29.0	165.9	-	-
93.6 89.6	$13.5 \\ 11.5$	33. 8 31.4	4 12	30	39.0	29.0 29.0	94.8 68.4	-	-
1 86.1	8.5 6.0	28.2	18 23	35 40	47.0	28.0	33.1	-	-
82.9 79.6	3.0	25 21.4	26.5	46 48	51.0 52.0	27.0 28.0	12.1	-	71.0
76.3 74.2	- ^{2.8}	16.9 11.8	31 35.5	50	52.0 52.5	-	-	52.5	63.1 59.3 49.2
74.5	- 9	9.3	37	52 53.3	53.5 59.0	_	-	52,5	49.2
69.9 66.9	-12.8	6.4 0	39 44	56	63,5	-	-	53.0 52.0	44.6 32.1
		<u> </u>	···	60 70	70.0 90.5	-	-	52. 5	18.1
				80 90	104.0 112.5	-	-	50.0 45	11.2
				100	121.4	-	-		-

Kremann, We	ber and Zech	ner, 1925		×	125° ×	140°
%	f.t.	K	f.t.	0	_	0.000625
100 88.9 84.0 79.8 74.5 69.9 66.8 62.9 60.2 56.9 55.4 53.9 51.1 E: 56 \$	121 112 106.5 102 95.5 87.5 80.0 71.0 65.0 56.4 54.0 52.1 51.8 52° 28°	47.4 44.9 44.2 42.1 41.2 39.9 35.6 28.0 23.2 15.0 12.2 4.4 0	50.1 49.5 48.1 46.0 46.0 44.5 40.1 33.0 29.5 35.1 37.1 40.8 44.0	11.24 16.75 22.17 27.53 32.81 41.13 43.17 45.21 48.25 49.26 51.27 53.26 54.26 55.25 56.25 56.73 58.22 60.17	0.007630 .01275 .02656 .03103 .03129 .03702 .03981 .04524 .04991 .05269 .06127	.001773 .003232 .005738 .01062 .01842 .03527 .03876 .04984 .08210 .07118 .08045 .08224 .08596 .1251 .1072 .1441 .1413
Bartholomew	and Work, I	.926		61.15 63.10 64.06 65.03	.05834 .05618 0.05325	.1342 .1062 .1155 .1098
mol %	f.t.	mol %	f.t.	69.83 77.37 82.01	.05030 .03393 .02501	.09596 .05274
100 80 76 70	122 101 97 88 67	40 37.5 33.3 29.5	43 38 33 28 23 26,5 29	91.12 95.59 100	.008688	
60 57.2	67 58 48	28.0 25.0	28 23 26.5	t	50 mol %	и 60 mol %
54 50 45	50 45	20.0 11.2 0	29 35 43	75 80 85 90	0.1824 .1647 .1406 .1210	0.2621 .2252 .2000 .1590
Baskov, 1913	3			95 100 105 110	.09933 .08631 .07653 .06921	.1319 .1150 .09653 .08 7 95 .07960
*	50°	70°	75°	115 120 125 130 135	.06236 .05873 .05532 .05421 .05313	.07349 .06891 .06512 .06381
0 11.24 16.75 22.17 27.53	0.002062 .003588 .009662	0.002527 .003981 .007771	- - - 0.01447			namic acid ($C_9H_8O_2$)
32.81 41.13 43.17 45.21	0.1215	-	.02672	Kremann, We	eber and Zechner,	1925
48.25 49.26	0.4081	0.1745	0.08993 .1282	9	f.t.	E
51.27 53.26 54.26 55.25 56.73 58.22 60.17 61.15 63.10 64.06 65.03		.1873 .2597 .2410 .2809 .3610 	0.1869 .1873 .2002 .2222 .2500 .2565 .2581 .2667 .2345 .1945	12 22: 30 34 45 52 66 68	1.0 44 1.9 41 1.9 38 1.4 34 1.7 30 1.6 27 1.3 23 1.0 56 1.4 84 1.3 98 1.5 118 1.0 126 1.0 133	- - - 23 23 - 23 23 - - -
ž –				II .		

p-Toluidine ($\text{C}_7\text{H}_9\text{N}$) + Salicylic acid ($\text{C}_7\text{H}_6\text{O}_3$)

Kremann, Weber and Zechner, 1925

%	f.t.	E
96	155	_
95.5	151	-
82.4	128	82
71.7	102	82
66.4	90	
63.8	82	-
61	83.2	-
60.5	83.5	_
55.3	84.5	-
51,1	82	-
50.8	8 2	-
46.6	7 6	_
39	67	_
32.5	67 57	-
27.9	46	31
20.2	34.8	31
11.7	39	-
7.1	41	~
0	44	_
	(1+1)	

Bartholomew and Work, 1926

mol %	f.t.	mol %	f.t.
100	158	32	63
80	135	30	60
75	127	27.5	54
7 0	119	25	46
66 .7	109	22	
61.6	84	$2\overline{0}$	35
60	7 0	18	29
53.4	78	14.3	33
50	80		35
44.5	81	10 5	41 36 29 33 35 38
40	77.5	Ō	43
33.3	64	(1+1)

Benzylamine (C_7H_9N) + Formic acid (CH_2O_2)

Bastitch and Pushin, 1947

mo1%	f.t.	
100 90 66.7 65 60 55 50 40 33.3 20	7.7 - 9 20 55 68.5 81 71.5 61.5 50 33.2	
	(1+1)	

Ethylbenzylaniline ($C_{1\,5}H_{1\,7}N$) + Acetic acid ($C_2H_u\theta_2$)

Pushin and Tutundzic, 1933

mo1 %		н
	18°	40°
40.8	-	0.002
51.3	0.016	0.012
61.0	0.147	0.114
70.8	0.799	0.824
80.5	2.986	3.906
85.1	5,013	7.017
90.0	7.669	10.78
91.8	8.385	11.73
92.9	8,625	11.98
94.0	8.406	11.57
94.06	8.363	11.47
95.0	7.816	10.68
97.0	4.743	6.129
98.5	1.512	2.190
		21270

Diphenylamine ($C_{12}H_{11}N$) + Formic acid ($CH_2\theta_2$)

Bastitch and Pushin, 1947

mol %	sat.t.	f.t.	n.t.	E	_
100	-	7.7	-	_	
95	-	9	0	1.2	
90	_	35	33.5	-1	
80	_	41.5	-	-2	
70	48	_	45	-	
60	87	-	44	-3	
50	93	-	39	-	
40	90	-	42	_	
33.3	69	_	45	-	
30 25 20	-	47	47	-	
25	-	-	48	_	
20	_	_	49.2	-	
10	-	52	51.5	***	
0	-	_	54	-	

Diphenylamine ($C_{1\,2}H_{1\,1}N$) + Propionic acid ($C_3\,H_6\,0_2$)

Starobinets, Pamfilov and al., 1948

nol %	f.t.	σ ₁ -σ (54°)
0	53,4	_
5.36	51.65	1.3
10.10	50.05	2.2
14.40=	49.05	3.2
18.40	48.10	4.2
25.30	45.75	5.2
31.20	43.50	6.5
40.30	40.85	8.2
47.50	38.15	10.3

Diph	eny lamino	e ($C_{12}H_{11}N$)	+	Butyric	acid (C ₄ H ₈ O ₂)
_		_			-	10.10		

Starobinets, Pamfilov and al., 1948

mol %	f.t.	σ ₁ -σ (54°)
0	53.4	_
2.67	52.5	-
6.18	51.5	-
8,41	50.8	_
10.0	50.3	2.6
20.0	47.8	5.2
30.0	45,0	7.3
40.0	41.8	9.0
50.0	37.8	10.7
60.0	33.2	11.7
70.0	28.0	12.6
80.0	16.9	13.9

Deviatikh and Pamfilov, 1949

 %	f.t.	%	f.t.	
.0	53.4	50	39.6	
10	50.9	60	35.6	
20 30	47.8	70	29.8	
30	45.0	80	21.8	
40	42.6	90	1.1	

Diphenylamine ($C_{1\,2}H_{1\,1}N$) + Isovaleric acid ($C_5H_{1\,0}\theta_2$)

Starobinets, Pamfilov and al., 1948

mol ≴	f.t.	σ ₁ -σ (54°)
0	53,4	-
3 .77	52.0	1.7
7.26	50.7	3.2
10.52	50.2	5.5
13.55	49.9	6.4
16.38	48.7	7.i
21.52	47.5	8.3
28.09	46.8	10.5
38.53	41.9	11.2

Deviatikh and Pamfilov, 1949

%	f.t.	%	f.t.
0	53.4	50	38.8
10	50.3	60	33.2
20	47.8	70	28.0
30	45.0	80	16.9
40	41.8	90	- 4.1

Diphenylamine ($C_{1\,2}H_{1\,1}N$) + Isocaproic acid ($C_cH_{1\,2}O_2$)

Starobinets, Pamfilov and al., 1948

mol %	f.t.	σ ₁ -σ (54°)
0	53.4	_
6.35	51.6	4.2
11.88	49.4	5.5
16.83	48.6	6.7
21.25	47.1	7.2
25.22	45.7	7.7
28.21	44.6	8.2
32.07	43.9	8.4
35.05	43.2	8.6

Diphenylamine ($C_{1\,2}H_{1\,1}N$) + Stearic acid ($C_{1\,8}H_{3\,6}\theta_{2}$)

Eykman, 1889

%	Df.t.	%	D f.t.	
2.305 4.044 5.803 8.382	-0.59 -1.01 -1.43 -2.02	11.94 15.98 21.9	-2.81 -3.65 -4.78	

Diphenylamine ($C_{1.2}H_{1.1}N$) + Oleic acid ($C_{1.8}H_{3.4}\theta_2$)

Starobinets, Pamfilov and al., 1948

mo1 %	f.t.	σ ₁ -σ (54°)
0 1.54 2.46 3.88 5.80 14.50 27.20	53.4 52.7 52.3 52.1 51.2 49.5 46.4	4.0 5.1 6.0 6.4 8.1 9.3

Diphenylamine ($C_{1\,2}H_{1\,1}N$) + Trichloracetic acid ($C_2H0_2C1_3$)

Kitran, 1924

mol %	f.t.
5	51.3 E
33.4	114.2 (2+1)
85	19.6 E

			4 d	İ			
				Benzidine	($C_{12}H_{12}N_{2}$)	+ Melanin a	cid
Diphenylamin	$e (C_{12}H_{11}N$) + Benzoi	c acid (C ₇ H ₆ O ₂)	Adler, 193	32		
Baskov, 1914				%	f.t.	%	f.t.
mo1 %	f.t.	Е	min	0 10	128 117.5	40	117.5
0 4	53.2 51.8	49.9	21.8	20 30	117.5 117.5 117.5	50 60 70	117 117.5 117.5
8 15	59.9	50.6 49.1	84.6				
30 40 50	73.0 78.9 87.9	49.2 49.2 48.9	62.8 52.0 51.2 25.8	Benzidine	(C ₁₂ H ₁₂ N ₂)	+ Sepiamela	nin acid
60 7 5	97.4 107.4	47.9 49.7	20.0 6.9	Adler, 19	32		
100	121.4		-		%	f.t.	
Pushin and V	Vilowitech	1025 (fi	v 1		0		
	f.t.	mol %	f.t.		0-50	128 122	
mol %	121	40	77				
90 80	113 107	30 20	68 59	Benzidine	$(C_{12}H_{12}N_2)$	+ Sarcomela	nin acid
70 60 50	100 94 86	10 0	50 E 55	Adler, 19	32		
					Я	f.t.	
D 1.12	C II N)	. F	:1 (671 0)	1	0 0-50	128 122	
Benziaine (C ₁₂ H ₁₂ N ₂)	+ rormic a	cid (CH ₂ O ₂)				
Bastitch an	d Pushin, 19	947		Benzidine	(Cashana)	+ Aminohena	oic acid
	f.	t.	E	II.	(C ₁₂ H ₁₂ N ₂)	Melanin a	cid .
100 95	7. 5	7	<u> </u>	Adler, 19	32 		
95 94 50	104 22 3		<u>-</u>	ļ	%	f.t.	
45 33.3 2 5	221 181 145		101 105	10	0 0-50	128 1 20	
20 10	113 118		107				
0	128		-	Benzidine	(C ₁₂ H ₁₂ N ₂)	+ Humic aci	d
				Adler, 193	32		
				— %	f.t.	%	f.t.
						²	
				0 10 20 30	128 123 122.5 122	50 60 70	122 121.5 122 122
				30	122	70	122

1-NAPHTHYLAMINE + FORMIC ACID

			Tr			
			%	f.t.	%	f.t.
α-Naphthylamine	$(C_1_0H_9N) + F$	ormic acid (CH ₂ O ₂)	0.0 7.7	49.0 38.5	37.0 50 3	- 5.0 -18
Bastitch and Pus	shin, 1947		8.2 10.3	37.8 35.5	59.3 62.3 66.0	-11.8 - 4
mo1%	f.t.	E	14.0 16.2	30.9 28.6 24.0	69.3 72.4	+ 0.2 4.2 7
100	7.7	_	19.4 22.0 24.9	20.0 15.5	76.3 81.5 86.1	10.3 12.0
97 90	3 14 60	- 6.5 -10	28.6 31.4	$\substack{11.0\\6.0}$	86.1 92.7 97.1	14.0 15.6
80 70 66.7	89 98.5	-	34.1	0.0	100.0	17.0
60 55	116 124 127	-				
50 45 40	120 110.5	-	α-Naphthyla	mine (C ₁₀ H ₂	₉ N) + Succi	nic acid (C ₄ H ₆ O ₄)
30 20	86.5 34.9 41.5	35.2 34.9	Kremann, We	ber and Zecl	nner, 1925	
10 0	48.5	36.2	%	f.	t.	E
		(1+1)	0.0 2.0	. 4	19 16	- 44
α -Naphthylamine (C UN) + Acc	otic acid	3.6 5.4		70 35	-
	-	$(C_2H_4O_2)$	5.4 9.6 12.9	10	33 06 16	44 - -
Kremann, Weber and	d Zechner , 192	25	12.9 15.3 20.6	12 13	20 30	-
- K	f.t.	<u>E</u>	20.6 28.8 36.2 57,1	15	13	-
0.0 5.1	49 43	-	70.8 72.5	16 16	7 7	-
10.5 12.8 15.9	35 31 28	~	81.1 91.1 100	17 17 18	'9	- -
15.9 22.9 28.8	28 17 6.5	~				
29.7 33.6 33.9 38.0	7 1 0	-31 -31	α-Naphthylas	mine (C ₁₀ H ₉	N) + Benzo	ic acid (C ₇ H ₆ O ₂)
38.3 42.5	- 8 - 8 -15	-31	Baskov, 191	f [*]		
44.2 46.6 49.2	-18 -22 -28		mol %	f.t.	E	min
54.2 51.8	-27 -22 -22	-	0 6.0	48.2 44.5	20.0	10.9
55.4 57.5 57.9 60.5	-22 -20 -18	-31 -31	13.4 23.9	39.5 -	28.0 33.8 34.2	10.3 30.4 69.2
61.4	-14 -11	~	27.0 31.7 36.0	38.5 51.0	34.1 32.0	69.2 83.5 77.7
64.8 70.8 75.5	- 6 + 2.5 5	-31 -31	40.0 50.0	58.0 65.5 81.0	32.5 34.0 31.5	68.8 56.9 40.0
77.8	7 10.0	-	60.0 80.0 100	$\begin{array}{c} 90.5 \\ 106.0 \end{array}$	28.5 18.0	40.0 25.4 16.0
82.5 91.1 96.3 100.0	14 15.5 17	-		121.4		
100.0		-				
		ļ				
			I			

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

840

1-NAPHTHYLAMINE + CINNAMIC ACID

Kremann, Weber and	Zechner, 1925		α-Naphthyl	amine (C ₁₀ H ₉ N) + Cinna	amic acid (C ₉ H ₈ O ₂)
%	f.t.	E	Kremann,	Weber and Zech	ner, 1925	-
0.0	49 44	-	g.	f.	t.	E
7.4 14.7 14.9 19.1 22.2 23.4 29.4 35.6 39.4 48.6 51.4 55.2 57.8 64.3 66.6	39 39 35 36 37 52 63 68.5 82 85.4 89 91 96.5 91	33 33 33 33 	6 10 23 25 30 36 44 51 60 68 73	.0 49 .9 43 .7 40 .7 44 .9 53 .6 63 .2 71 .7 86 .1 94 .4 103 .3 110 .8 114 .9 119 .6 122	.5 .7 .1 .5	- 34 34 - 34 34 - - - -
75.3 79.1	105.5 108	-				
84.0 88.2 97.1 100.0	111.5 114 119 121	-	α-Naphthy	lamine (C _{1 o} H ₉	N) + Sal	icylic acid (C ₇ H ₆ O ₃)
Milone and Rossignol	i, 193 2 (fig.)	<u> </u>	Kremann,	Weber and Zech	ner, 1925	
% f.t.	%	f.t.	9	f.	t.	Е
0 49.5 10 43 20 34 21.5 33 E 30 55 40 72.5	50 60 70 80 90	83 95 105 112 117.5	13 22 25 27 29 31	7.0 49 7.4 38 8.3 52 8.6 73 7.7 78 9.0 78 9.1 80 9.	.5	38
Baskov, 1914			36 37	6.5 82 7.3 83 9.1 83		-
mol %	и 100° 100 (3 h. h		41 42 42 47 48	.1 88 2.4 97 2.7 96 7.1 108 3.4 110	.5	82-83
0 - 40 0.003846 48 .005330 50 .005636 52 .005248 60 .003272 100	0.003675 - .005485 0.010 .007473 - .007704 .022 .006983 - .004750 .0000 very low	-	53 60 61 70	1.3 119 1.3 117 1.3 125 1.7 126 1.8 137 1.6 146 1.5 152 1.0 155 (2+1	.5	82-83 -
Milone and Rossignoli,	1932 (fig)		Milone an	d Rossignoli,	1032	
% 0 comb (cal/g)	8	O comb (cal/g)	%	Q comb (cal/g)	 %	0 comb (cal/g)
0 8837 90 8577 80 8324 70 8115 60 7857 50 7604	40 30 20 10 100	7371 7103 6840 6582 6324	0 10 15 30 40 50	8837 8465 8637 7738 7403 7044	60 70 80 90 100	6685 6323 5959 5600 5232

	:	2-NAPHTHYLAMI)	NE + FORMIC ACID
β-Naphthylamine (C ₁₀ H ₉ N) + For	mic acid (CH ₂ O ₂)	β -Naphthylamine ($C_{10}H_{9}N$
Bastitch and Pushi	n, 1947		Kremann, Weber and Zechn
mo1%	f.t.	Е	% f.t.
100 90 80 66.7 60 55 45 40 33.3 30 20 10	7.7 - 8.5 3.5 83 105 113 111 100.8 73 70 87 100 110 (1+1)	-14 -10 - - - - - - - - - - - - - - - - - -	100 -20 97.1 -21.5 91.5 -23 84.7 -25 77.5 -18 69.6 +20 65.8 34 62.3 41 57.7 49 51.8 58 E: 80 % -27°
9-Naphthylamine (Kremann, Weber an		$(C_2H_4O_2)$	β-Naphthylamine (C ₁₀ H ₉ N Kremann, Weber and Zechn
%	f.t.	E	76 1.1.
0 7.1 10.2 11.0 16.7 19.9 20.7 25.8 30.9 33.7 35.6 40.7	110 105 102 100.5 94 90 91 84 77 76 72 65.5	- - - - - - - 7 - 7	0.0 111 8.1 110 13.6 109 18.6 108 25.4 124 30.7 129 35.7 131 41.1 133 45.0 133.5 48.0 142.5 49.1 145 E: 19 % 108°
44.2 44.9 49.9 51.8 52.3 56.6 59.9 61.4 64.8 70.5 73.7 74.5 79.8 83.0 85.5 90.5	62 59 53 51 46 42.5 26 30 +13 -2.5 +1.5 7 6 8.8 9.8 12.7	- 7 7 - 7 - 7 - 7 7 	β-Naphthylamine (C _{1 o} H ₉ N Kitran, 1924 mol % 35 50 88
91.7 94.8 95.8 100.0	13 14.5 15 17	- - -	

β-Naphthyla	amine (C ₁₀ l	H ₉ N) + Propio	nic acid (C ₃ H ₆ O ₂)
Kremann, We	ber and Zec	hner, 1925	:
Я	f.t.	K	f.t.
100 97.1 91.5 84.7 77.5 69.6 65.8 62.3 57.7 51.8 E: 80 %	-20 -21.5 -23 -25 -18 +20 34 41 49 58 -27°	46.3 39.1 34.7 30.1 26.6 21.8 16.3 10 5.3	64 73 77.0 82.5 86 90:5 96 101 106 110
β-Naphthyla			c acid C ₄ H ₆ O ₄)
%	f.t.	%	f.t.
0.0 8.1 13.6 18.6 25.4 30.7 35.7 41.1 45.0 48.0 49.1 E: 19 %	111 110 109 108 124 129 131 133 133.5 142.5 145	50.9 53.3 58.0 63.7 68.7 74.4 82.0 90.8 93.4 100.0	147 151 158 163.5 168 173.0 177 181 182.5 183
β-Naphthyla Kitran, 192		H ₉ N) + Tríchl	oracetic acid (C ₂ HOCl ₃)
mol	%	f.t.	
35 50 88		98.6 E - (1+1) 15.0 E	

β-Nap	hthylami	ne (C _{1 o} H ₉ N) + Ben	zoic acid (C ₇	H ₆ O ₂)	β-Naph	thylami	ne (C _{1 o} H ₅	N) + Sali	cylic acid	d C ₇ H ₆ O ₃)
Basko	v, 1914					Kreman	n, Webe	r and Zecl	nner, 1925		
mo1	%	f.t.	Е	min		%	f.t.	Е	%	f.t.	E
0 15 21 25 35 42 48 50 52 56 60 60 70 78		111.5 100.8 97.7 95.0 87.3 82.5 79.0 	77.5 76.3 76.8 73.3 78.5 78.7 78.5 76.5 76.5 76.5	8.1 21.4 39.4 64.1 61.5 51.7 33.9 26.1 20.8		0.0 8.5 18.3 25.5 30.5 36.4 41.2 45.0 47.3 49.2 50.3	110 105 99 93.5 91 92.5 94 95.5 96 96	91	52.2 54.8 61.8 65.1 69.9 69.7 76.5 84.4 92.4 100.0	108 121.5	96 96
100		121.4		-			and Ko	ssignoli,			
Kremar	ın. Webei	and Zechne	er. 1925			×		f.t.	<u>%</u>	f.t.	
 % 0	f.t. 110	E -	54.1 62.7	f.t. 88	E	0 10 20 30 32.		108 104 97.5 91.5 89.5 E	50 60 70 80 90 100	96 117 132 143 152 155	l
9.8 21.1 28.8	105 98 91.5	78.2	73.2 81.7	96.5 105 111	78.2 -	7	Q com	b (cal/g)		Q comb (cal/g)
35.8 43.1 49.9	85.5 80.0 84	78.2	90.2 100.0	116.5 121	- - 	0 10 20 30	التند الحمد الحمد معني معني معني م	8828 8466 8104 7734 7366	60 70 80 90	669 633 598 560	2
Basko	v, 1914					40 49	.11	7366 70 84	100	52 3	2
mol %	87°	и 100°	mol %	к 87°	100°	Pyrrol	e (С _ц Н,	;N) + Ace	etic acid (C ₂ H ₄ O ₂)	در حدر حدد حدودها احدد احدد احدد مدرحد احدد احداد احدد احدد احدد هدر احدودهد احدد احدر احداد احداد احداد
0 25 35	-	0.00715 0.01008	52	0.01133 0.00919	0.01451 0.01158	Magnan	ini, 18	89			
42 48	0.00954	0.01317 0.01509 0.01561	56 100	-	0.00766 very low	%		f.t.	×	f,	t.
در است مدیر مدیر است. حدید التی است. است است حدید التی است. است است است است. است. است. است. است.	ی کس کی خیرانی اموانی میوند به خوانی کی کی بیر کی جیزی به کام کی کی کی کی کی کی کی	ne (C _{1 o} H ₉ N) + Cinn	amic ació	1 C ₉ H ₈ O ₂)	99.	6321 4153 8 7 95	16.44 16.22 16.10 15.80	92.06 85.80 81.10 63.77	21 9. 06 7.	31 54 65 60
Kremai	nn, Webe	and Zechne	er, 1925	·	- 38	Dezeli	c and B	 elia, 1938	·	نے شیرانے کے اپ می انہوات کے الد	
8	f.t.		8	f.t.	E.	mo1 %	d	n	mol %	d	 η
0.0 4.1 7.9 11.8 13.1 19.6 24.6 30.3 33.4 35.2 40.4	110,5 109 107 105 104 100 97 92 91 89 84 83	82 82 - 82 - 82 82 82 82	44.5 50.2 50.5 51.4 54.4 58.3 64.1 70.3 76.5 84.4 89.3 100.0	82 85 89 90 94 98.5 104 110 115 121 125.5	82 - -	0 20 40 ======	0.9481 0.9750 0.9923 	1300 1296 1304	20° 60 80 99	1.0126 1.0303 1.0530	1357 1415 1479

Proved (C. H. N.) + Provi	onia paid /	(C H.O	1						
Pyrrole (C ₄ H ₅ N) + Propi	onic acia (C3 H6U2	,	N-Ethyl	pyrrole	(C ₆ H ₉ N)	+ Acetic ac	cid (CgH ₄	(U ₂)
Dezelic and Belia, 1938				Magnani	ni, 1889) 			بدر در در در در در د
mol % d n		d	n	%		f.t.	%	f.	t .
0 0.9481 1300 10 0.9482 1289 20 0.9484 1276 30 0.9548 1263	40 0 60 0 80 0).9604).9723).9835).9929	1251 1235 1194 1107	100 99.7 98.8 96.3	818	16.44 16.34 15.99 15.04	91.8023 88.6020 83.0236 77.0013	13. 12. 11. 9.	56 0 7
Pyrrole (CuH ₅ N) + Butyr				rrole (C ₆ 1	H ₉ N) + Pro		id I ₆ 0 ₂)		
Dezelic and Belia, 1938 a				mol %	d	η	mo1 %	d	 η
mol % d n		d 					20°		
0 0.9481 1300 20 0.9481 1369 40 0.9488 1464 60 0.9532 1551	70 0 80 0	0.9557 0.9560 0.9594	1599 1610 1616	0 30 50	0.9203 0.9445 0.9563	3566 3117 2377		0.9699 0.99 2 9	1736 1107
شد شدر الندر الدور الدور في طور آن الدولتان عن الدولتان على الدولتان عمر الدولتان الدولتان الدولتان الدولتان ا شدر شدر الدولتان الدولتان الدولتان الدولتان على الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان شدر الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان الدولتان	میں امین امین میں سے بھی ادائد امین امین امین سے اس امین امین میں امین بھی امین امین امین امین سے بھی میں امین امین میں میں امین امین امین امین شدن میں		در است محبر میں اسے میں میں میں اس بر اللهائی جید آسے جی میں اس آت بر اللهائی جی اسی میں اس آت	Piper	idine (C ₅ H ₁₁ N) +	Formic aci	d (CH ₂ O ₂)
2,4-Dimethyl-3-ethylpyrrol + P	e (C ₈ H ₁₃ N ropionic ac		H ₆ O ₂)	Babak	, Airap	etova and	Udovenko, 1	1950	
Dezelic and Belia, 1938				mo1	×		đ		
mol % d n	mol %	d	η			25°	50°	75°	
0 0.9142 14050 30 0.9248 10210 50 0.9322 6952	70 0.	.9505 .99 2 9	4449.6 1107	100 89.6 79.9 69.2 58.9	3 25	1.1998 .1664 .1389 .1066 .0774	1.1796 .1504 .1200 .0873 .0590	1.1564 .1285 .1010 .0673 .0419	
2,4-Dimethyl-3-ethylpyrrol + Dezelic and Belia, 1938	e (C _B H ₁₃ N Butyric ac		H ₈ O ₂)	55.8 52.3 49.6 47.6 45.2 44.0 43.5	34 57 55 21	.0674 .0609 .0571 .0497 .0405 .0340 .0304	.0506 .0438 .0340 .0254 .0216 .0109	.0304 .0239 .0147 .0066 .0004 0.9908	
mol % d η	mol %	d	η	41.4 39.4	8	.0233	.0039 0.9915	.9828 .9738	
0 0.9142 14050 30 0.9188 9620	70 0.	.9353 .9577	4920 1620	26.8 14.2 0	31	0.9525 .9054 .8567	.9329 .8782 .8313	,9111 ,8562 ,8063	
50 0.9247 7210	سیدی میپردی می میچ بدی اس سی می می در در میپردی می می می می اس می می در اس اس			mol	%	25°	ກ 50°	75°	
N-Methylpyrrole (C ₅ H ₇ N) Magnanini, 1889	+ Acetic ac	cid (C ₂	Н ₄ 0 ₂)	100 89.6 79.9 69.2 58.9	3 5 6	1154.8 4139.5 9001.6 16807.0 32730.8	981.5 2267.3 4400.2 7332.5 12216.6	682.5 1449.3 2601.9 3876.9 6216.7	
% f.t.	%	f.t	·	55.8 52,3	4	38051.4 48020.1	14464.9 17179.9	6691.5 7474.8	
100 16.44 99.1679 16.04 98.1261 15.57 95.4754 14.47	91.9857 91.1868 80.9994 78.3414	13.1 12.8 9.6 8.8	33	49.6 47.6 45.2 44.0 43.5 41.4 39.4 26.8 14.2	7 5 1 7 8 3 1	52669.8 57598.3 52568.7 40085.2 39362.4 34987.0 27943.7 8706.5 3121.5 1337.2	18287.1 19280.8 17210.6 15280.6 14680.3 12399.3 10561.1 4050.7 1680.3 840.3	7108.0 8379.5 7231.6 6850.6 6668.2 6209.6 5002.7 2233.9 1010.7 559.6	

PIPERIDINE + ACETIC ACID

			-dd					
Piperidine ((C ₅ H ₁₁ N) +	Acetic aci	d (C ₂ H ₄ O ₂)	Piperidine (C ₅ H ₁₁ N) +	- Isobutyri	acid (C	₄ Η ₈ 0 ₂)
Pushin and E	Rikovski, 19	32		Matavulj, 19	39			
	£ +	mol %	f.t.	mol %		mol %		
mol %	f.t.			20°	50°	۔ و جانب رانسو انسو انسو نیے نیے سے سے سے نسے ہیں۔	20°	50°
0 5	- 11 + 5 7	60 66.7	81 35	0 1.452	8 1.4368	49.62	1.4656 1	.4540
15	79	70	+ 5	14.71 .456	7 .4421	5 2.27	.4642	,4530
30 45	94 103	85 90	-11 0	25.06 .460		61.44 71.94	.4548	.4442
50	105 (1+1		+16.5	34.33 .463 44.52 .465		81.58	.4412 .4267	.4308 .4155
55	99.5			46.98 .466	0 .4543	100	.3928	.3798
				راحم ما المن المن المن الله اليوانيو الله المن الله المن الله الله الله الله الله الله الله الل	نوشتور کس جیرونیت الحیاض کی جی اسم ناشد بر اللب کس شیرون آخی اسم کمد کمی و ساختی بر اللب کمی امن خان اللب کمی اللب کمی و ساختی	و السر السر عليه البين الكراجية التي الميز التي ال والتي التي التي التي التي التي التي التي	ئے ہے۔ اس محالت کے طرحہ اسراف علی سی می مدہ الحالات کی الدو میں ال اس می ہے مدالت الدو الدو الدو الدو	والمر الدراسة المراس مي مي ليو. و الله الدراسة الدراس مع مع المراس و الله الدراسة الدراسة الدراسة الدراسة
Piperidine ((C ₅ H ₁₁ N) + H	Propionic ac	id (C ₃ H ₆ O ₂)	Piperidine (C ₅ H ₁₁ N)	⊦ Isovaleri	c acid (C	5H1002)
Prideaux and	Coleman, 19	36 (fig.)	، حسين شنون جود الجود المدد العلي عليه المثلث المسينانيون لمين لمين إليان المدارات المينانيون لمين المين إ	Prideaux and	Coleman,	1936 (fig	.)	
%	d	%	đ	%	đ	%	σ	
	21	50				25°		
0	0.868	60	1.028	0.0	29.83	53.9	31.68	
20	0.938	70	1.028	15.1	30.19	54.5 65.3	31.67	
40	1,002	80	1.022	30.0	30.80	65.3	29.75	Į.
50	1.024	100	0.984	40.3 48.1	$\frac{31.25}{31.82}$	77.4 89.2	27.76 26.08	
		%	~ 	51.6	31.94	100.0	24.90	
	σ .		σ	# ************************************	d	%	d	
0.0	29,83	46.5	36.58			AF 0		
15.7	30.69	51.7	35.83			25°	_	
30.1	32.82 34.70	57.3 72.7	34.75	0 20	0.868	60 7 0	0.978	ſſ
38.6 43.7	34.70 36.11	$\substack{72.7\\100.0}$	31.40 2 6.06	40	$0.912 \\ 0.958$	7 0 80	0.976 0.965	
			20.00	50	0.976	100	0.925	\
Diidi (C			/ C IX O \			د الكور المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدي والمدين المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المدير المد	شین میپرر این است است است است است است. سین است است است است است است است است.	
Pridesus and C			(Chubos)	Matavulj and	Hojman, 1			
Prideaux and C			·	mo1 %	ⁿ D 50°	mol %	20°	50°
*	d	%	d					
	2.	5°		0 1.452 14.89 .457		49.88 54.63	1.4644 1 .4614	.4528 .4503
.0	0.868	60	1.000	25.52 .460	1 .4425 5 .4474	62.96	4530	.4427
20 40	$0.922 \\ 0.980$	70 80	0.998	35.13 .463	2 ,4510	72,21	.4428	.4321
50	1.000	100	0.990 0.955	44.75 .464 46.80 .465		84.29 100	.4273 .4031	.4160 .3902
				70.00 .400			. 7001	.0702
%	σ	%	<u> </u>		رسور میں میں میں اس اس اس اس اس اس اس وعی میں میں میں اس اس اس اس اس اس اس			=======
0	29.83 2	5°		Piperidine (C ₅ H ₁₁ N)	+ Caproic a	cid (C ₆ H ₁	202)
16.9 30.0	30.50	50.8	34.39	1		=		
30.0 41.5	31.86	60.0	32.90	Prideaux and	Coleman,	1936		ł
46.0	33.27 34.06	70.2 87.1	31.04 28.17		·			
48.9	34.39	100.0	26,21	%	σ	%	σ	
						25°		
				0	29. 83		32.10	
				20.5	30.50	54.7 57.7	31.75	
				29.6	30.83	68.2 78.1	30,30	
				29.6 37.6 45.1	31.21	78.1	28.91	
				45.1 50.1	$31.55 \\ 32.06$	$\begin{array}{c} 87.7 \\ 100.0 \end{array}$	28,21 27,49	
				50.1	02.00	100.0	<i>~1</i> .49	1

%	đ	%	d	Pyridine (C ₅ H ₅ N) + For	mic acid (CH ₂ O ₂)
0 20 40	0.868 0.910 0.945	25° 60 70	0.970 0.965	Lecat, 1949			
50	0.945	80 100	0.955 0.923	76		b.t.	
mo1 %	н	mol %	х	0		115.4	
13.4	$0.16 \\ 1.33$	62.0 68.7	3.39	18 100		148.8 Az 100.75	:
22.5 31.8 42.3	4.40 4.13	76.2 78.8	3.66 3.75 3.45				
50.0 57.2	3.17 3.17	83.7	1.63	P P and N	S. Kosakewits	sh. 1933	
mo1 %	n	mol %	η				
0.0	2200 2	5° 57.6	61800	mol %	d	mo1 %	d
0.0 32.3 45.2 48.6 50.0 51.7 53.7	20400 71100 41400 58600 78500 83300	61.4 66.7 70.5 78.3 100.0	22100 80500 55100 26200 2800	0 3.55 13.62 30.87 55.71 63.86	0.984 0.992 1.006 1.036 1.113 1.149	77.95 87.49 93.11 97.04 99.04 100.0	1,211 1,216 1,226 1,229 1,227 1,226
Piperidine (C.H. N) + 1	Hontonoic ac	id (C ₇ H ₁ 40 ₂)	69.90	1.178		
Prideaux and			id (C7111 402)	Udovenko and	l Airapetova,	1947	
%	d	%	<u>d</u>	mol %	0°	d 25°	50°
0 20	0.868 ²⁵	5° 60 7 0	0.958 0.955	100.00			
40 50	0.935 0.948	80 100	0.948 0.915	100.00 96.05	1.2375	1.2088	1.1846
%	σ	 %	σ	93,81 88,59 82,43	.2394 .2359 .2273	.2134 .2138 .2042	. 1912 . 1847
0	29.83	5° 56.5	31,29	77.62 74.78	. 2185 . 2097	. 1973 . 1876	. 1730 . 1647
13.1	30.05	58.4 60.4	31.12	70.65 64.38	. 1909 . 1669	. 1680 . 1418	. 1456 . 1207
24. 5 34.5	30.26 30.50 30.84 31.03	64.5	30.82 29.70	52.54	.1118	.0912	.0701
44.5 49.1	30.84 31.03	$\substack{80.7\\89.8}$	28.60 28.19	44.26 30,41	.08 7 0 .0486	.0629 .0228	.0394 .0016
54.0	31, 23	100.0	27.97	16.05 0.00	.0198 0.9979	0.9968 .9 75 6	0.9744 .9500
ر میں میں میں میں میں سیوسی میں اس انتخاب اس اس							
Piperidine (Prideaux and			I (C ₈ H ₁₆ O ₂)	mol %	0°	ກ 25 °	50°
	d	 %	d	100.00 93.81	2821.0 5156.1	1537.2 2656.7	976.7 1616.4
				88.59 82.43	7669.9 11831.9	3 778.4 5312.4	2191.6 2872.7
20	0.868 ²³ 0.898	70 70	0.944 0.944	77.62	14940.7	$6161.0 \\ 6130.5$	3202.1 3142.8
40 50	0.924 0.938	80 100	0.938 0.908	74.78 70.65	14967.2 13065.0	5476.4	2846.3
				64.38 52.54	9255.2 4403.6	4254.7 2414. 1	2347.4 1514.5
 %			σ	52.54 44.26	2952.0	1782.7	1153 9
$0 \\ 15.0$	29.83 ²⁵	59.4 62.9	30.60	30.41 16.05 0.00	1901.9 1503.0 131 7. 5	1234.8 992.1 885.0	841.1 701.8 624.8
29.1	30.01 30.30	70.1	30.46 29.89				
29.1 43.3 49.3	30.49 30.54	79.7 87.6	29.02 28.61				
54.5 58.2	30.63 30.68	100.0	28.34				
55,2	00,00						

P.P. and N.	S. Kosakewit	sh, 1933	
mol %	ď	mol %	σ
	1	4 °	
0 3.55 13.62 30.87 55.71 63.86 69.90	37.88 38.21 38.57 39.31 43.12 44.94 46.75	77.95 87.49 93.11 97.04 99.04 100.0	47.72 46.60 43.23 40.84 39.26 37.21

Pushin, Matavulj and al., 1940-1946

8	mol %	n _D
	20°	
100 98.4 70 63.6 57.6 54.5 46.6 36.9 28 20 16.3 12.7 6	0 10 20 25 30 33, 3 40 50 60 70 75 80 90	1.3714 .4101 .4414 .4510 .4598 .4657 .4701 .4770 .4818 .4882 .4910 .4928 .4928

Udovenko and Airapetova, 1947

mol %		ж	
	0°	25°	50°
100 96.05 93.81 88.59 82.43 77.62 74.78 70.65	0.7 266.0 336.3 320.6 283.0 236.2 232.0	1.3 460.6 591.4 653.6 561.2 497.3 488.4	1.8 682.6 896.8 1017.5 918.4 837.3 822.2
70.65 64.38 52.54 44.26 30.41 16.05 0.00	237.7 231.2 166.5 98.3 27.1 3.8 0.00003	480.6 444.9 272.6 154.7 38.0 4.8 0.00007	784.1 680.2 388.3 214.6 51.4 5.8 0.00008

Pyridine (C_5H_5N) + Acetic acid ($C_2H_4O_2$)

Heterogeneous equilibria .

von Zawidzki, 1900

	%	P	P1	p_2
L	v			
	80).05°		
0.0 23.70 32.05 38.74 42.82 48.72 55.87 59.98 60.86 70.24 78.64 84.82 88.52 92.83	0.0 2.43 6.52 15.50 24.90 40.34 58.70 69.19 70.80 89.20 96.74 98.75 99.17	238.9 153.6 123.5 104.1 94.6 86.4 84.6 87.0 88.9 104.0 128.2 153.2 169.6	238.9 149.3 114.9 88.0 71.8 53.4 29.6 28.9 13.4 2.8 1.8	4.30 8.61 16.10 22.7 33.0 47.0 57.4 60.0 90.6 123.0 150.4 167.8 185.3
95.73 100	99.67 100	196.7 206.5	0.8	195.9 206.5

Swearingen and Ross, 1935

9	5	b. c.	
L	v		
	760 mm		
100.0	100.0	117.85	
92.3	99.2	122.30	
86.7	97.0	126.80	
81.4	92.0	130.15	
74.4	86.1	134,00	
66.8	76.0	136,95	
65.1	72.2	137.25	
62.0	66.5	138.05	
57.6	57.3	138.40	
56.2	54.4	138.35	
53.7	47.0	138.00	
49.3	37.6	137.20	
43.0	26.8	135.05	
32.2	14.0	130.70	
23 4	6.2	125.5	
13.8	2.5	120.55	
0.0	0.0	115.00	

Nelson and	Markham, 19	50 (fig	ç.)		von
	%			<u> </u>	mo
100 90 80 70 60 50 40 30 20	100 83 67 54 42 35 25 18 11]	.t. .40 .37 .33 .30 .28 .25 .23 .21 .19		0 2 6 11 50 51 87 87
Ŏ	5	1	15		. Pu
Swearingen	and Ross, 1	935			mo
		Az			. 5
р	b	.t	m	o1 %	15
760 760 760 800 570 380	13 12 13 12	8.25 8.20 5.00 9.85 9.40 7.50 9.50	5; 5;	8.4 " 8.9	0 5 10 15 20 25 30 35 45
190 120	8	9.50 7.10	6(6(0.2	Sw
Lecat, 1949) 				
Я	,	b.t.			
0 35 100	1	115.4 139.7 118.1	Az		1 1 2 2 3 4 4 4 5 5 5 6 6
Zieborak an	d Zieborak	ova 1955			3 44 4 5
51.1 %	b.t. = 138	1° Az	-		5
Swietoslaw	ski and Kreg	lewski, 19	954		6: 7: 7: 7:
mol %	crit.t.	mol %		crit.t.	
0 11.6 16.4 31.3 39.3 47.3	345.00 347.70 348.35 348.35 348.10 346.70	56.5 67.1 78.2 88.3 100		344.85 341.85 337.50 330.60 321.30	
					

von Zawidsk	i 1906		
TON ZUWIUSK	1, 1700.		
mol %	f.t.	mol %	f.t.
0 2.37 6.46 11.92 50.28 51.27 87.10 87.76	-42.0 -43.2 -45.8 -50.3 -42.5 -43.5 -1.30 0.0	90.65 91.87 94.73 96.28 97.39 98.97 100 (1+1	+ 6.00 8.15 12.36 13.88 15.15 15.90 16.54
Pushin and	1 Rikovski, 19	932	
mol %	f.t.	mol %	f.t.
0 5 10 15 20 25 30 35 45 50	-42 -45 -48 -51.5 -55 -59 -62 -54.5 -47 -46 (1+1)	55 60 65 66.7 68 70 75 80 90	-48.5 -52 -56 -54.5 -52 -48.5 -35.5 -22 + 4 16.5
Swearingen	and Ross, 19	934	
mol %	f.t.	mol %	f.t.
0.000 6.345 12.566 18.529	-43.5 -47.1 -50.6 -55.3	77.722 78.698 79.734 80.771	-26.9 -23.8 -20.9 -17.7

mol \$ f.t. mol \$ f.t. 0.000 -43.5 77.722 -26.9 6.345 -47.1 78.698 -23.8 12.566 -50.6 79.734 -20.9 18.529 -55.3 80.771 -17.7 24.359 -62.3 81.543 -14.7 29.943 -67.5 82.221 -13.3 35.225 -57.4 82.669 -11.9 40.268 -51.6 83.720 -9.2 45.440 -48.6 84.773 -5.8 50.004 -48.2 85.234 -4.5 54.890 -49.1 85.894 -3.0 59.594 -52.3 86.470 -0.6 63.927 -56.7 86.790 0.0 68.202 -52.9 88.568 +3.7 72.438 -47.5 90.710 6.6 74.790 -44.5 94.834 10.95 76.256 -31.8 (1+1) 100.000 16.3 </t

PYRIDINE + ACETIC ACID

Properties of phases .	Worley, 1914	
Patten, 1902 (fig.)	t d t d	
% d % d	0 vol % 25 vol % 13 0.9882 17 1.0175	
25° 100 1.0433 49.99 1.0342 95.18 .0464 36.33 .0150 83.18 .0535 21.94 0.9966 69.69 .0598 0 .9740 62.57 .0544	49 0.9545 52 0.9860 80 0.9062 76 0.9595 46 vol \$ 70 vol \$ 12 1.0585 14 1.0871 47 1.0265 49 1.0537 75 0.9975 75 1.0230	
Tsakalotos, 1908	100 vol % 14.5 1.0553 52 1.0162	
mel % d mol % d	75 0.9913	
20° 0 0.976 61.7 1.050	Mathews and Cook, 1914	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	t d t d	
51.9 1.032 100 1.0514 59.9 1.046	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Faust, 1912	Faust, 1926	==
mol % d 18.4° 40° 70° 99°	50 mol % (22°) d= 1.0326	
0 0.9874 0.9661 0.9374 0.9064 50 1.0367 1.0164 .9847 .9589	Swearingen and Ross, 1935	==
80 .0784 .0594 1.0304 .9974 82.5 .0814 .0624 .0314 .9999 85 .0829 .0639 .0299 .9964	mol % d mol.% d	
100 .0559 .0339 0.9989 .9639 Sakhanov, 1913	0.000 0.9720 78.698 1.0652 6.345 .9769 79.734 .0664 12.566 .9818 80.771 .0676 18.529 .9870 81.543 .0684	
% d % d	24.359 .9923 82.221 .0690 29.943 .9976 82.669 .0693 35.225 1.0032 83.720 .0700	
25° 100 1.046 86.78 1.055 99.459 .046 82.92 .058 99.015 .047 77.48 .061 96.977 .050 71.0 .064 91.03 .052 0 0.977	40.268 .0089 84.773 .0704 45.440 .0149 85.234 .0707 50.004 .0209 85.894 .0711 54.890 .0273 86.470 .0711 59.594 .0345 86.790 .0716 63.927 .0415 88.568 .0700 68.202 .0487 90.710 .0676 72.438 .0588 94.834 .0583	
	77.722 .0640	
	Venkatesan and Suryanarayana, 1956	
	vol % wt % mol % d	
	0 0 0 0.97301 10 10.59 13.50 .98544 20 21.05 25.99 .99669 30 31.37 37.56 1.00864 40 41.57 48.37 .02104 50 51.60 58.41 .03369 60 61.53 67.81 .04981 70 71.36 76.60 .06407 80 81.00 85.09 .07146 90 90.55 92.66 .06457 100 100 .03777	

								- • •
Tsakalotos	, 1908				mo1 %	/50	ກ 75 °	80°
%	η	%	ŋ			65°		00
0 26.2 40.3 51.9 59.9	932.9 ² 1289 1762 2188 2885		3024 5037 4421 1286		0 20 40 60 70 75 80 100	535 682 780 1080 1305 1430 1500 660	484 620 710 935 1093 1175 1257 582	465 583 670 873 1000 1070 1115 540
Faust, 19	12							
mol %		η			Venkatesan	and Suryana	rayana, 1956	
	18.4°	40°	70°	99°	%	η	%	η
0 50 80 82.5 85 100	1200 2830 5830 6130 6010 1350	800 1680 2910 2930 2850 1000	550 1000 1430 1450 1430 600	410 750 900 880.5 830 430	0 10.59 21.05 31.37 41.57 51.60	835.4 984.2 1139.0 1346.0 1648.0 2075.0	61.53 71.36 81.00 90.55	2704.0 3398.0 3624.0 2558.0 1040.0
Sakhanov,	1913		·					
%	η	%	η		ļ			
100 99.459 99.015 96.977 91.03	1110 1160 1220 1610 2780	86.78 82.92 77.48 71.0	3480 4000 3840 3790 889		Worley, 19 % 0 vol	o K		g 25 vol %
N	η	N	n		13 49 80	38.000 32.935 28.334	17 52 76	36.334 32.006 28.848
1.022 1.092 1.248	2490 2580 2840	25° 1.795 2.597 3.322	3520 3910 3800		46 vol 12 47 75	% 35.577 31.886 28.780	14 49 75	70 vol % 33.281 29:826 27.247
Mathews a	and Cook, 191	14			100 vol 14.5	% 27.195		
t	η	t	η		52 75	23.618 21.305		
0 25 40	12830 4870 2260	77 % 55 70	2070 1520					
				=====	Yajnik, Sha	rma and Bhai	radwaj, 1926	
Swearinge	n and Heck,	1934			vol %	20°	σ 40°	900
mol %	35°	ກ 45°	55	•				80°
0 20 40 60 70 75 80 85	780 1052 1270 1928 2550 2887 3170 3200 1012	660 896 1070 1520 1985 2200 2380 2350 853	58 78 92 126 158 175 186	8 8 0 5 0 5 0 0	0 10 20 30 40 50 60 70 80 90	37.22 36.52 36.02 35.20 34.58 33.95 33.08 32.15 31.68 29.68 26.71	34.32 34.27 33.71 33.01 33.67 32.15 31.45 30.65 29.61 27.49 24.75	28.32 28.32 28.31 28.08 28.02 27.78 27.37 26.79 25.37 23.52 20.80

Faust, 1926				F	atten, 1902			
mol		đ		-	×	н	Z	ж
0 50 100	22°	38.23 35.80 28.54			100 99.70 99.43 99.18 98.86 98.55	0.0002 ² 0.09567 0.2508 0.5303 0.9614 1.668	89.78 88.15 86.76 85.56 83.04	70.83 71.95 78.03 82.81 83.48 87.78
von Zawidzki,	1900				98.27 97.98 97.74	2.513 3.664 5.071	80.55	86.85 84.31 78.62
%	n _D	%	n _D		97.47 97.20 97.04	6.539 8.316 8.351	74.03 70.39 67.01 63.66 61.37 58.36	68.45 58.15 48.18
0 4.62 10.21 20.30 30.40 40.40	1.50695 .50170 .49523 .48399 .47284 .46235	50.05 60.07 70.24 79.80 90.35	1.45277 .44335 .43312 .42051 .39891 .37015		96.76 96.49 96.23 95.95 95.69 95.54 95.28 95.03 94.78	10.23 12.21 14.27 16.55 18.88 19.84 24.09 26.87 30.92 32.41	50.03 54.35 50.00 47.47 45.17 42.98	38.72 26.06 24.85 17.11 12.28 8.708 6.856 5.206 3.729
Pushin and	Matavulj, 19	932		l	94.56 94.27 94.19	34.42	40.51 38.28 36.15 33.52	2.919 2.136
mol %	10°	ⁿ D 25°	40°		93.89 93.64 93.36	38.32 40.31 42.58 45.01	28.73 25.77	1.524 1.128 0.868 0.6083
0 10.2 20.3 30.3 40.5 49.9 50.4 60.8 69.4 71.8	1.5149 .5052 .4955 .4858 .4755 .4662 .4658 .4558 .4472 .4446	1.5064 .4971 .4880 .4786 .4683 .4593 .4587 .4490 .4402 .4376	1.4980 .4892 .4802 .4712 .4614 .4522 .4520 .4419 .4331 .4305 .4273		93.14 92.92 92.68 92.42 92.19 92.02 91.68 91.43 91.18 90.99	46.95 49.46 51.64 53.20 56.64 58.01 58.61 60.22 62.12 63.83 68.86	23.43 19.73 16.56 13.13 11.16 9.48 7.51 5.50 3.36 1.14	0.4617 0.2981 0.2060 0.180 0.145 0.102 0.0613 0.0414 0.0253 0.01326 0.0002
75,8 77.8 79.8 84.7	.4399 .4374 .4346 .4261	.4330 .4305 .4276 .4190	.4258 .4232 .4203 .4122		Sakhanov, 1	913		
89.5 100	.4150 .3758	.4082 .3698	.4019 .3638		N	λ	N	λ
Venkatesan	and Suryanaı	гауапа, 1956		_	3.322 2.597 1.795 1.248	2.14 2.81 3.55 3.47 3.28	0.209 0.160 0.0635 0.0262	0.51 0.38 0.21 0.18
%	n _D	%	n _D	_	1.093 1.022 0.658	3.28 3.24 2.32	0.0218 0.0136	0.18 0.18
0 10.59 21.05	1,5040 ³⁰ .4904 .4790	61,53 71,36 81,00	1.4395 .4300 .4175	ļ	0.441 0.312	1.48 0.94	0.00723 0.00595	0.20 0.25
31.37 41.57 51.60	.4680 .4560 .4485	90.55 100	.3985 .3700		Trifonov an	d Cherbov,	1929	
				=	mol %	28	х	50°
					0 25.08 39.75 51.08 60.64 77.02 89.66	1. 5. 22. 42. 41.	78	0.45 2.40 7.13 26.86 64.17 60.11 0.22

Pushin and Tutundzic, 1933		Venkatesan	and Suryanara	ıvana. 1956	
mol % ×		× ×	н	1	ж
18°	40°	J	30	 -	
10.1 0.076 20.1 0.159 30.8 0.394 40.9 1.089 46.3 2.126 50.9 3.876	9.2 21.3 56.3 160.9 307.9 553.0	0 10.59 21.05 31.37 41.57	0.1642 .1922 .4231 1.087 3.831	51.60 61.53 71.36 81.00 90.55	14.53 41.45 71.42 82.88 49.80
57.1 9.362 60.8 15.54 66.4 27.94 70.2 38.97	1267 2068 3757	Thermal cor	nstants .		
70.2 38.97 74.8 51.35 79.8 61.08 81.1 62.58	5312 7064 8890 9178	Timofeev, 1	.905		
81.7 62.89 82.9 63.36	9398	%	U	%	U
84.8 62.81 86.5 60.71 90.1 50.19 91.1 46.06	9330 9064 7626 6865	100 78.2	0.487 0.472		0.427 0.405
94.9 22.31 96.3 11.35 97.1 7.361 98.8 0.852	3261 1678 1117 150.4	% initial	final		dil e pyridine)
Swearingen and Ross, 1934		100 98.42 92.3 86.2 80.2 75.4 60.6	98.42 92.3 86.2 80.2 75.4 71.4 56.8		6500 5790 5120 3950 3060 22530
mol % x 19.9°	29.9° 40.1°	56.8 53.5 41.4	53.5 50.4 40		1450 1300 640
0 0.012 0.013 0.014 12.247 .035 .042 .049 25.033 1.134 .163 .200 37.414 .408 .524 .652 49.678 1.781 2.295 2.863	0.015 0.021 .053 .061 .231 .266 .791 .933 3.392 3.946 7.162 8.169	Pushin, Fed	iuskin and Kr	govitsh, 194	40-1946
55.220 3.989 5.039 6.114 59.821 7.770 9.777 11.784	13.659 15.443	mol %	U	Q mi:	x cal/g
64,990 13.567 17.229 20.799 69.929 20.486 26.645 32.647 73.948 26.051 34.749 43.401 74.910 26.549 35.500 44.440 76.877 28.373 38.440 48.543 77.532 28.816 39.066 49.499 78.883 29.731 40.611 51.759 79.924 30.134 41.361 53.060 80.081 30.230 41.524 53.174 80.991 30.542 42.158 54.108 82.015 30.643 42.415 54.636 82.980 30.613 42.420 54.831 83.903 30.517 42.381 54.612 84.782 30.205 42.308 54.548 85.916 29.600 41.181 53.405 87.599 28.200 39.066 50.625 89.880 25.089 34.458 44.552	24.101 27.034 38.336 43.376 51.716 59.117 53.075 60.935 58.382 67.132 59.482 68.794 62.468 73.942 64.160 74.508 64.462 74.962 65.817 76.672 66.647 77.802 67.071 78.546 66.744 78.131 66.949 78.580 65.502 77.088 62.048 72.892 54.733 64.327	0 20 40 50 54.4 58.4 60.7 62.2 65.1 66.7 70.1 81.2	25° 0.399 0.404 0.418 0.436 0.440 	5 16 16 16 16 16 16	7.0 3.8 3.8 5.5 5.7 5.7 5.6 6.6 6.6 6.6 6.6
91.225 22.263 30.467 39.190 93.848 14.791 19.928 25.335 97.356 - 4.706 100 - 0.853	47.933 56.421 30.720 35.845 5.715 6.793 0.746 0.774				

Pyridine	(C_5H_5N)	+	Propionic	acid	($C_3H_6O_2$)

Yajnik, Bhalia and al., 1925

vol-%		η	
	20°	40°	80°
100	759	571	371
90	863	657	412
80	1047	772	474
70	1326	968	588
60	2014	1123	650
50	2144	1341	727
40	2275	1507	768
30	2549	1813	781
20	2232	1450	6 7 6
10	1555	1149	624
0	1298	724	461

Matavulj and Hojman, 1939

mo1 %	1	n _D	
	20°	60°	
0	1.5088	1.4870	
10	.4996	.4780	
20	.4897	.4690	
30	.4802	.4603	
40	. 4705	.4516	
40 50	.4608	.4422	
60	. 4505	. 4320	
65	.4450	.4263	
70	.4392	.4203	
7 5	.4330	.4140	
80	.4258	.4068	
90	.4080	.3900	
100	.3868	.3695	

Pyridine (C_5H_5N) + Butyric acid ($C_4H_8\theta_2$)

Tsakalotos, 1908

mol %	d	η
	20°	
0 18.2 35.8 47.2 57.1 74.4 84.8	0.976 0.982 0.988 0.993 0.998 0.991 0.984 0.965	932.6 1290 1996 2674 3360 3890 3474 1778

Yajnik, Bhalia and al., 19	925
----------------------------	-----

vol %		η	
·	20°	40°	80°
0	74 3	599	47 3
10	797	664	556
20	87 3	77 3	57 3
30	1031	77 7	600
40	1203	871	656
50	1574	1067	690
60	2090	1306	730
70	2557	1557	796
80	2997	1757	1017
90	2501	1478	816
100	1202	900	465

Matavulj and Hojman, 1939

mol %	n _D	·	<u></u>
	20°	50°	
0 15.54 25.75 35.21 45.99 50.17 56.44	1.5088 .4918 .4820 .4730 .4628 .4589 .4527	1.4923 .4768 .4673 .4589 .4489 .4452 .4391	
65.74 68.80 72.80 75.59 79.70 84.27	.4437 .4484 .4360 sic .4328 .4277 .4217 .3975	.4298 .4265 .4220 .4189 .4138 .4080	

Pyridine (C_5H_5N) + Isobutyric acid ($C_4H_80_2$)

Matavulj, 1939

mol %	r	D O	
	20°	50°	
0	1.5089	1.4922	
15.14	. 4922	.4762	
24.92	.4814	.4668	
35.53	. 4708	.4563	
45.99	. 4609	.4465	
49.73	. 4570	. 4429	
55.26	. 4512	.4371	
63.95	.4415	.4278	
66.79	.4381	. 4244	
69.61	.4348	.4212	
72.21	.4315	.4179	
75.12 85.37	.4278	.4142	
100	.4139	.4104	
100	.3928	.3 798	

Pyridine ($\text{C}_5\text{H}_5\text{N}$) + Valeric acid ($\text{C}_5\text{H}_{1\,0}\text{O}_2$)

Matavulj and Hojman, 1939

mol %	1	n _D	
	20°	50°	
0 10.70 20.63 30.11 35.21 39.44	1.5088 .4955 .4851 .4755	1.4921 .4798 .4700 .4612 .4568	
59.24 50.24 60.20 65.41 70.10 75.52 81.21 88.62	.4668 .4576 .4491 .4445 .4399 .4347 .4289 .4209	.4531 .4440 .4355 .4310 .4264 .4212 .4155 .4078 .3950	

Pyridine (C_5H_5N) + Isovaleric acid ($C_5H_{1\ 0}O_2$)

Matavulj and Hojman, 1939

mol %	ī	¹ D	
	20°	50°	
0 10.36 19.81 30.12 40.06 49.11 59.57 69.38 71.86	1.5089 .4961 .4858 .4752 .4650 .4570 .4476 .4381 .4358	1.4927 .4803 .4702 .4607 .4513 .4436 .4340 .4246	
74.74 79.10 88.81 100	.4327 .4277 .4165 .4030	.4192 .4141 .4033 .3902	

Pyridine (C_5H_5N) + Caproic acid ($C_6H_{12}O_2$)

Matavulj and Hojman, 1939

mol %	1	n _D	
	20°	50°	
0	1.5089	1,4922	
15.49	.4905	. 4752	
24.40	.4815	.4670	
33 .92	.4728	.4586	
45.13	. 4635	.4499	
49.55	.4600	.4466	
54,72	.4560	.4427	
64.46	.4480	.4350	
73.65	.4401	.4271	
83.10	.4314	.4189	
100	.4160	. 4040	

Pyridine (C_5H_5N) + Heptanoic acid ($C_7H_{1\,\mu}0_2$)

Matavulj and Hojman, 1939

mol %	r	u,D	
	20°	50°	
0	1.5088	1.4921	
15.57	.4888	.4738	
24.32	.4800	.4658	
35.48	.4701	.4564	
39.58	.4667	. 4533	
44.97	.4632	.4497	
50.42	.4593	.4459	
55.09	.4558	.4424	
64.92	.4487	. 4353	
69.30	.4455	.4322	
74.89	.4413	. 4280	
84.91	.4339	.4210	
100	.4222	.4101	

Pyridine (C_5H_5N) + Caprylic acid ($C_8H_{16}O_2$)

Matavulj and Hojman, 1939

mol %		D Q	
	20°	50°	
0 15, 23 25, 18 33, 18 39, 87 45, 20 50, 24 55, 00 64, 83 69, 65 74, 84 81, 96	1.5088 .4890 .4788 .4720 .4672 .4638 .4608 .4572 .4508 .4475 .4442 .4395	1.4922 .4738 .4647 .4582 .4539 .4505 .4471 .4440 .4379 .4347 .4314 .4269	
	.42/0	.4160	

Pyridine (C_5H_5N) + Pelargonic acid ($C_9H_{18}O_2$)

Matavulj and Hojman, 1939

mol %		n _D	
	20°	50°	
0 15, 18 25, 69 30, 36 33, 24 35, 43 39, 95 45, 37 50, 15 54, 83	1.5088 .4780 .4777 .4738 .4717 .4701 .4669 .4632 .4675 .4508	1.4921 .4720 .4638 .4603 .4584 .4569 .4539 .4503 .4478	
64.69 69.72 74.63 85.09	.4518 .4490 .4462 .4401 .4318	. 4392 . 4364 . 4338 . 4278 . 4198	

Pyridine (C ₅ H ₅ N) + Cap	prinic acid	(C ₁₀ H ₂₀ O ₂)	mol %	110°		d 25°	140°	
Matavulj an	Matavulj and Hojman, 1939				0.8897	·	-	-	-
mol %	30°	n _D	0°	40 50 56 62 66.66	1.0122 .0326 .0455 .0560 .0626	1.0 .0	1999 189 13 25 1440 1494	1.0059 .0182 .0304 .0362	
0 15.43 25.30 34.99 45.28 48.54 55.49 63.71	1.503 .482 .473 .466 .459 .457	8 .4 5 .4 3 .4 7 .4 9 .4	921 724 642 572 512 495 460	72 75 82 86 92 100	.0694 .0713 .0747 -	.0 .0 .0	0560 0581 0612 0698 0740 0869	.0418 .0447 .0495 .0560 .0605	
68.46 72.29 83.32	.449 .447 .445 .439	2 .4 2 .4 8 .4	1415 1390 1371 1318	mol %	0°	25°	ж 50°	70°	
Pyridine (C	.431 C ₅ H ₅ N) + Ben		(C ₇ H ₆ O ₂)	0 1 2.5 5 7.03 10.49 15.45 22.08	111.58 73.76 58.11 - 36.56 35.33	151.52 95.61 63.21 45.84 39.61 32.82 24.96 22.82	81.91 54.04 41.63 35.76 26.58 19.32 15.63	86.33 54.04 37.59 30.50 21.21 15.28 11.54	
mol %	f.t.	Е	min	24.98 34.07 35	- 32.81	18.19 17.55 15.29	10.89 9.57	10.31 6.36 6.50	
0 5.0 7.3 8.5 14.0 25.0 35.0 40.48 47.07 50.0	-38.0 -32.5 -23.0 -3.5 +17.5 32.5 36.0 41.2 43.7	-38.0 -42.2 -40.8 -40.0 -41.0 -40.2 -42.5 -43.0 +43.7	124.5 83.5 64.5 13.0 8.1	41.2 46.35 47 49 50 51 52 60 65	30,55 28,70 27,34 25,28 23,61 21,69 20,26	15.29 11.99 10.12 9.37 8.92 7.87 7.31	8.33 6.47 5.46 4.91 4.57 4.23 3.89	4.72 3.68 3.58 3.26 3.01 2.83 2.64 2.06 1.78	
52.0 54.39 57.0	43.2 42.8 50.0	+42.8 42.2 38.5	30.3 24.2	mol %	100	10	ห์ 125°	150°	
60.0 62.5 70.0 74.94 80.55	54.8 65.0 85.5 90.8 102.3 121.4	38.5 42.0 36.5 39.0 - 121.4	20.1 16.0 9.8 - - (1+1)	1 2.5 5 7.03 10.49 15.45	85.2 51.2 37.3 29.6 26.3 13.7	37 3 57 34	7.22	-	
mol %	110°	η 125°	140°	22.08 24.98 35 41.2	9.6 8.0 5.0 3.6	8 3 2	7.81 3.73	6.87 3.12	
0 40 50 56 60 62 63 66.66 69 72 75 78 82 86 92	366.5 875.6 1051.6 1280.9 1338.8 1340.8 1435.9 1552.9 1505.2 1488.0 1484.4 1498.2	709.1 855.7 1009.7 1046.7 1042.4 1106.0 1153.8 1162.2 1113.9 1142.0 1149.0 1173.4 1149.0	620.4 707.5 800.9 855.6 822.4 886.9 935.5 950.5 888.7 908.8 908.5 930.1 923.2 854.5	46.35 47 49 50 51 52 60 63 65 66.66 67 68.5 73.5 77 80 82.5 87 90 92	2.8 2.7 2.3 2.2 2.1 2.0 1.7 1.6 1.6 1.6 2.4 2.8 3.3	10 175 175 175 176 177 177 178 188 188	2.06 2.01 1.97 1.94 1.88 1.58 1.53 1.46 1.67 1.74 2.33 2.74 3.48 4.88 6.83 4.88 6.54 0.10 9.33 9.30	1.86 1.89 1.93 1.82 1.77 1.58 1.56 1.76 1.77 1.86 1.86 2.41 2.74 3.52 4.77 4.669 14.84 21.75 53,41 143.77	

			 		f				
mol %		н			α -Picoline (C_6	H ₇ N)(b.	t.= 130.	7) + Acie	is
	175°	200°	225°	250°		,			
47.5	2,28	2.42	_	_	Lecat, 1949				
49	1.95 1.86	2.25	4.90	-		2nd Comp		A	 7
50 51	$\substack{1.86\\1.80}$	2.19 2.09	6.67 5.24	-					
52	1.72	2.04	-		Name	Formula	b.t.		b.t.
60 63	1.67	2.12 2.21	9.05	57.87	Formic acid	CH ₂ O ₂	100,75	_	157
65	1.83	-		-	Acetic acid	C2H4O2	118.1	_	145
66.66 67	$\frac{1.90}{1.89}$	2.26 2.28	5. 7 3	- -	Propionic acid			_	164
68	2.05	2.37 2.31		-				وسی جد هم اسم اسی می سی می میدوسی	
68.5 73.5	1.94 2.67	$\substack{2.31\\3.08}$	5.72 7.31	43.71	אורי לאור לאור לאור לאור לאור לאור לאור לאור			و خدود خدد المدولين التي منود من من و و لدود خدد خدر المدولين الدود من من و	
75	2.82	3.25	8.62	45.67		CHNA		:1 / 6	,, , l
77 80	3.57 4.78	4.55 5.45	7.52	43.37	α-Picoline (C ₆ H ₇ N)	+ Acetic	acia (C;	n ₄ u ₂)
82.5	6.46	5.45 7.21	8.92	45.20	D 1. 1 1		1000		
87 90	12.68 23.93	20.10	16.37	38.56	Pushin and Tu	tunazic,	1933		
92 95	39.51	33.47	28.99	51.20	mol %		н		`
95	94.89	67.23	47.70	-		18	0	40°	
					20.0	0.0	.00	Λ 151	
Puridina	(C.H.N) +	• Anthranili	c acid	(C.H.O.N)	30.8 40.9	$0.0 \\ 0.3$	71	0.151 0.598	
ryridine	(0511514)	7111 (1112 (1112 12		/ / - 2 /	49.3 60.3	1.4 9.3	96	2.353	
Zhuravlev	1038				70. 3	26.9	8	13.94 42.49	
Zhuraviev	, 1750				79.9 81.9	45.4	0	76.37 81.37	
%	f.t.	%		f.t.	83.6	45.4 48.2 50.0	9	84.83	
	1,				85.6 86.3	51.4 51.7	0	86.93 87.68	l
100	145	59.	9	25.7	87.8	50.9	9	85° .7 5	
79.9 69.5	111 78	55. 50.		21.5 17	89.5 92.6	49.3 39.9	1 8	82.10 65.64	
65.6	78 55	44.		-8	97.0	11.6	6	18.91	
62	30				98.5	2.8	09	4.912	

Pyridine (C_5H_5N) +	Mandelic ac	id (C _e	,H ₈ O ₃)	β-Picoline (C_6H_7N)	+ Acetic	acid (C	,H ₄ 0 ₂)
Dunstan a	nd Thole,	1910			Herington, 19	51			
× ×	time of	flow %	†i	me of flow	Az				,
 	(in se		•••	(in sec.)					
		25°			P	%	b.	t.	
0.00	244.4		04	300.0	760	30.4	15:	2.5	
1 8.05	325.2	2 r8.	19	326.0	212	35.0	114	4.5 - 115	
1 11.02 1 15.04	363.0 426.9	r 12, r 15,	03	388.6 431.6					
					γ-Picoline (C ₆ H ₂ N)	+ Acetic	acid (Co	H.O.)
						• ,			
					Herington, 195	51			
ľ								·	
					Az				
					p	%	b.	t.	
				ļ	760	30.3		1.3	
					212	36.1	110	6,5 - 117	
								•	

$^{2,4 ext{-Lutidine}}$ ($^{\text{C}_{7}\text{H}_{9}\text{N}}$) + Acetic acid ($^{\text{C}_{2}\text{H}_{4}\text{O}_{2}}$)	2-Aminopyridine ($C_5H_6N_2$) + Palmitic acid ($C_{16}H_{3.2}O_2$)
Pushin and Tutundzic, 1933	Mod and Skau, 1956
mol %	mol % f.t. mol % f.t.
18° 40° 29.5 0.054 0.090 40.1 0.237 0.419 50.4 1.506 2.585 59.7 7.144 12.01 69.4 19.98 35.37 78.9 35.67 65.73 82.7 41.11 76.03 85.4 44.60 81.11 87.1 45.81 82.56 87.6 45.98 82.61 88.0 45.99 82.68 89.0 45.77 81.57 91.8 41.55 71.44	0 58.0 65.36 53.5 10.29 54.4 68.53 54.1 17.89 51.4 70.83 55.6 20.00 50.5 73.89 56.5 24.73 52.4 76.85 56.9 26.31 53.0 79.42 57.0 30.70 54.5 81.07 56.9 40.14 57.3 81.53 56.7 45.36 58.4 82.72 57.2 49.33 58.8 87.50 59.4 55.10 58.2 93.44 61.3 58.29 57.3 100 62.5 62.84 55.2 (1+1)
93.6 34.91 59.44 95.5 23.76 40.08 97.7 8.060 14.07	2-Aminopyridine ($C_5H_6N_2$) + Stearic acid ($C_{18}H_3_6O_2$)
97.7 8.060 14.07	Mod and Skau, 1956
2,6-Lutidine (C_7H_9N) +Acetic acid ($C_2H_4O_2$)	
Herington, 1951	
	0 58.0 62.56 61.3 5.55 56.5 68.05 62.8 9.74 55.2 77.93 65.0
Az	9.74 55.2 77.93 65.0 14.12 54.9 84.23 65.5 20.10 57.3 87.60 66.8
p % b.t.	34.66 62.1 100 69.3 49.31 64.7 (1+1)
760 27.8 148.0 212 34.4 110 -111	17.07
2-Aminopyridine ($C_5H_6N_2$) + Lauric acid ($C_{12}H_{2h}O_2$)	2-Aminopyridine ($C_5H_6N_2$) + Oleic acid Mod and Skau, 1956 ($C_{18}H_{34}O_2$)
Mod and Skau, 1956	mol % f.t. mol % f.t. II
mol % f.t. mol % f.t.	0 58.0 58.39 11.1 -
0 58.0 60.93 38.2 5.23 55.6 64.92 34.6 15.33 50.8 69.90 32.1 20.49 47.7 73.85 32.9 25.12 44.3 78.71 33.9 29.79 40.0 80.77 33.9 35.16 38.1 82.39 35.0 40.22 40.1 84.00 36.5 45.49 41.4 87.59 39.2	19.50 49.9 63.60 13.4 - 28.62 43.4 67.28 13.7 - 38.59 29.9 73.32 11.8 - 43.20 19.4 77.83 8.6 - 45.35 12.9 85.73 - 8.7 48.15 9.9 91.80 - 11.6 48.83 9.8 95.56 15.8 12.8 50.34 9.8 100 16.3 13.5 52.44 9.4 (1+1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Aminopyridine (C5H6N2) + Elaidic acid
	($C_{18}H_{34}O_2$) Mod and Skau, 1956
2-Aminopyridine ($C_5H_6N_2$) + Myristic acid ($C_{1\mu}H_{28}O_2$)	mol % f.t. mol % f.t.
Mod and Skau, 1956	
mol % f.t. mol % f.t. 0 58.0 69.32 44.5	14.15 52.8 65.76 36.6 25.42 46.0 66.83 36.7 32.15 39.9 69.50 36.4 34.07 36.7 72.95 35.6
10.29 54.2 78.94 47.2 20.57 48.9 83.32 47.6 31.38 46.8 87.73 50.2 48.67 51.3 100 53.9 64.12 46.1 (1+1)	37.94 38.2 77.66 36.0 49.23 40.1 78.11 36.3 56.44 39.3 80.29 37.6 62.88 36.3 86.42 40.6 63.15 36.1 100 (1+1) 43.8

2-Aminopyridine ($C_5 \rm{H}_6 \rm{N}_2$) + $_{\alpha}$ -Eleostearic acid ($C_{\rm{1\,gH}_5\,0} \rm{0}_2$)

Mod and Skau, 1956

mol %	f.t.	mol %	f.t.
0 11.85 32.89 36.07 39.44 41.65 45.11 50.04 52.09 53.24 57.81	58.0 52.3 35.3 29.0 25.6 26.3 27.2 27.9 27.6 27.3 24.6	62,28 64,74 65,32 68,58 70,19 78,39 82,18 83,89 85,42	26.5 26.4 26.5 26.9 28.9 38.1 41.4 42.3 43.4 48.4)

2-Aminopyridine ($C_5H_6N_{\rm g}$) + $\beta\text{-Eleostearic}$ acid ($C_{1.8}H_{3.0}O_2$)

Mod and Skau, 1956

mol %	f.t.	mol %	f.t.
			
0	58.0	56.58	58.4
12.01 14.97	52.5 51.0	59.81 63.69	57.1 58.4
20.24	48.9	66.41	58.7
24.12	50.8	71.49	57.4
28.07 36.44	$\frac{53.1}{56.3}$	75,64 80,13	60 .7 63.6
41.46	58.1	82,17	64.7
48.95	59.4	87.72	67.2
51.69	59.3	100 (1+1)	70.5
·		·	

2-Amino-3-methylpyridine ($C_6H_8N_2$) + Palmitic acid ($C_{16}H_{3\ 2}O_2$)

Mod, Magne and Skau, 1956

mol %	f.	t.	mol %	f.t	
	I	II		I	11
100	62.51		52.26	57.6	
88.33	59.9	_	50.9	56.7 E	_
83.72	57.3	_	50.9	56.7	_
83.2	57.1 E	_	00	(1+1)	
83.06	57.2	_	49.87	56.7	_
78.67	59.4	-	45.28	56.1	-
78.35	59.4	-	33.32	52.7	_
75.77	60.6	-	19.47	44.9	-
7 3.08	61.5	55.8	16.57	45.4	~
70.01	61.9	56.4	9.81	40.8	-
66.67	62.2	56.7	5.39	36.0	-
	(2+		2.38	29.2	
65.58	62.2	56.6	1.84	26.3	-
61.68	61.7	-	0	33:17	-
54.13	58.8	<u>-</u>			

2-Amino-4-methylpyridine ($C_6 H_8 N_2$) + Palmitic acid ($C_{16} H_{3/2} \theta_2$)

Mod, Magne and Skau, 1956

mol %	f.t.	mol %	f.t.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 11		I II
100 85.92 78.50 77.27 74.79 70.45 59.55 54.49	62,51 - 59,5 - 55.6 E - 58.2 - 62.8 - 77.4 - 79,3 -	49.51 43.99 39.82 33.8 30.78 19.98 10.34	79.7 - 79.2 - 77.9 70.3 74.7 E - 78.2 - 88.1 - 94.0 - 99.21 -
50	79.8 72-73 (1+1)		

2-Amino-5-methylpyridine ($C_6H_8N_2$) + Palmitic acid ($C_{16}H_{3\,2}0_2$)

Mod, Magne and Skau, 1956

mol %	f.t.	mol %	f.t.
100 88.23 83.48 80.69 72.89 71.5 69.65 60.24	62.51 59.8 57.5 55.8 50.3 49.0 E 51.2 58.4 61.2 (1+1	49.88 44.31 40.05 31.2 30.15 20.07	61.2 60.8 59.7 55.5 E 56.8 66.0 71.7 76.54

2-Amino-6-methylpyridine ($C_6H_8N_2$) + Palmitic acid ($C_{16}H_{3\;2}0_2$)

Mod, Magne and Skau, 1956

mol %	f.t.	**
	I	II
300	(2.5)	
100	62.51	-
85.28	59.0	-
81.04	56.8	-
79.15	55.7	-
75.67	53.2	_
72.8	50.8 E	-
70.36	54.0	_
65.89	58.6	52.5
61.38	61.8	
60.39	63.2	_
56.58	64.0	_
50.00	65.3	51,4 (1+1)
43.46	64.9	- (1/1/
41.14	64.3	47.5
30.18	60.7	41.5
21.95	57.2	41.0
10.11	49.4	
5.85	49.4 44.9	- - -
3.6		-
	41.5 E	~
2.30	42.5	-
0	44.22	- [
·		

		Z-AMII10-4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Palmitic	,6-dimethylpyri acid (C ₁₆ H ₃₂ O ₂ e and Skau, 195)	10N2) +
ú	101 %	f.t. I	II
877777766655554033222211	99.04 60.88 50 60.20 51 60.20 52 60.20 53 60.20 55 60.20 60.	4.8 6.5 70.2 2.6 3.3 (3.3 (1+1) 2.8 (1.4	58.6 58.9 61.1 61.5 61.9
Anabasine	e (C ₁₀ H ₁₄ N ₂) +	· Formic ac	id (CH₂O₂)
Babak, Ai	rapetova and Ud	lovenko, 19	50
mol %		d	
·	25°	50°	75°
100 80.47 67.84 37.64 23.09	1. 1998 . 2049 . 1695 . 1139 . 0768 . 0427	1.1796 .1844 .1571 .0970 .0626 .0237	1.1564 .1605 .1386 .0720 .0426 .0003
mol %		η	
·	25°	50°	75°
100 80.47 67.84 50.19 37.64	1542.8 98318.9 657157.9 4112696.5	981.5 27036.8 140646.5 2424207.1	32024.3 190234.8 38952.4
37.64 23.09	336315.2	44358.7	11787.9

2424207.1 44358.7 7138.5

3154.1

336315.2 25197.6

0

```
2,2^{\circ}-Dipyridylamine (C_{10}H_{9}N_{3})
                                + Palmitic acid ( C<sub>16</sub>H<sub>32</sub>O<sub>2</sub> )
Mod, Magne and Skau, 1956
   mol %
                        f.t.
                                           mol %
                                                                f.t.
                                           50.18
50.00
44.71
40.80
39.41
30.36
                      62.51
60.7
58.7
                                                              60.9
61.0 (1+1)
 100
   89.22
81.17
79.66
73.13
70.00
                                                              60.0
58.3 E
                      58.3
                                                              61.2
75.3
83.7
89.7
95.09
                      56.1
                      54.9 E
55.0
   69.79
                                           20.52
                      56.7
59.3
   66,19
                                           10,62
   59.68
                                             0
                       60.6
Quinoline (C_9H_7N) + Formic acid (CH_2O_2)
Pushin, Matavulj and al., 1940-1946
             %
                                  mol %
                                                             n_D
                                            20°
          100
                                  100
                                                          1.3714
                                                           .4666
.5001
.5162
.5301
.5386
.5520
                                   90
80
75
           76.5
58.8
51.7
45.5
41.6
35.3
26.3
19.2
13.3
                                   60
                                   66.7
                                   60
                                   50
40
30
25
20
10
                                                            .5848
.5971
            10.6
                                                            .6030
             8.2
3.8
                                                            .6083
                                                            .6174
                                     0
                                                            .6269
Quinoline (C_9H_7N) + Acetic acid (C_2H_4O_2)
Pushin and Rikovski, 1932
   mol %
                        f.t.
                                            mol %
                                                                 f.t.
                                                              -15 (1+1)
-16.5
-20
-27
-35.5
                                             50
                      -20.5
-25
     10
                                             55
     15
                                             60
     20
25
30
35
                                             66.7
72
75
                       -31
                       -29
-26
                                                               -24.5
                       -22
-19.5
-17
                                             80
                                                               -12
     40
45
                                                               + 6.5
                                             90
                                            100
```

		Pushin and Ma	tavulj, 19	32	
Miskidzhyan and Kirilyuk, 1956.		mol %	n _D	mol 9	n _D
mo1 % d 0° 100 1.0732 94.56 - 89.99 .1139 84.91 - 80.03 .1254 69.45 .1269 67.29 .1271	20° 1.0491 .0773 .0917 .1013 .1057 .1067 .1078	0 13.4 22.1 34.0 45.1 51.4 58.6 60.0	1.6239 .6076 .5960 .5778 .5584 .5462 .5306 .5278	62.9 66.7 70.0 75.4 80.8 89.8 100	1.5210 .5118 .5030 .4877 .4702 .4330 .3698
64.75 - 51.79 .1221 49 .1199	.1068 .1050 .1041	Patten, 1902			
47 40.38 .1191 34.54 - 30.02 .1171	.1040 .1038 .1030 .1005	% × 0.00 0.0512	% 28.1 ²	× 5°1.49	% x 56.3 17.50
19.92 .1167 9.38 .1122 0 .1107	.1001 .0968 .0939	0.16 .0512 0.33 .0522 0.49 .0531 0.65 .0538	28.9 29.8 30.5	1.69 1.86 2.02 2.19	58.2 18.80 58.7 19.70 59.8 20.70 60.8 21.50
mo1 % n	20°	0.81 .0541 1.45 .0552 2.26 .0630 3.03 .0675	31.9 32.7 33.3	2.40 2.61 2.80 3.04	62.0 22.90 63.7 24.00 64.3 25.00 66.2 25.90
100	1232 2800 5090 6280 7610 8110 8170 8040 7130 6900 6670 6090 5550 5260 4550 4080 3760 Q mix (cal/g)	3.03 .0675 3.82 .0740 4.75 .0815 5.32 .0910 6.30 .0991 6.77 .113 7.46 .123 8.17 .132 8.80 .144 9.50 .156 10.18 .173 10.81 .183 12.13 .216 13.22 .247 14.31 .288 15.67 .325 16.95 .376 18.0 .385 19.2 .392 20.4 .441 21.3 .495 22.2 .691 23.2 .776 24.2 .860 24.9 .960 25.7 1.08 26.7 1.25 27.6 1.32	34.0 34.6 35.2 36.0 36.5 37.3 37.8 40.8 41.7 43.0 44.1 45.0 46.0 47.1 48.9 50.6 51.2 52.0 53.6 54.6 55.2	3.04 3.28 3.49 3.70 3.96 4.22 4.52 4.86 5.38 6.08 6.70 7.34 8.04 8.04 9.33 10.10 11.30 11.30 12.80 12.30 12.80 13.90 14.50 15.70 16.20 16.80	66.2 25.90 67.3 26.80 68.2 27.20 69.2 28.00 70.4 28.60 71.2 29.20 72.0 29.50 72.8 29.70 73.8 29.90 75.0 30.00 76.1 30.40 78.0 29.90 78.7 29.60 80.5 29.50 82.5 27.80 84.7 25.30 84.7 25.30 84.7 25.30 84.7 18.40 90.1 14.50 91.1 13.20 91.1 13.20 91.1 10.60 94.3 6.45 97.4 1.28 100 below 0.008
25° 0 0.354 16.7 0.360 33.3 0.376	3.78	Pushin and Tu- mol %	tundzić, 19	933 	
30.3 0.370 41.7 0.392 50.0 - 50.5 0.406 60.0 - 63.0 0.426 65.0 - 70.0 - 75.0 0.447 87.5 0.467 100 0.485	8.05 10.0 11.30 12.24 12.50 12.14 11.13 7.87	29.0 38.2 49.3 59.3 67.2 69.6 75.0 81.0 84.1 86.4 88.7 90.2 91.8 94.0	18° 0.01 0.05 0.25 1.22 4.05 5.36 9.34 14.98 17.64 19.19 19.67 19.58 17.91	8 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 0.108 0.505 2.291 6.748 8.937 15.34 24.16 28.11 29.81 30.43 - 26.48

	Quinoline (C_9H_7N) + Valeric acid ($C_5H_{10}O_2$)
Quinoline (C_9H_7N) + Propionic acid ($C_3H_6O_2$)	, , , , , , , , , , , , , , , , , , , ,
Matavulj, 1939	Matavulj, 1939
mal d	mol % n _D
mo1 % n _D 20° 50°	20° 50°
	0 1.6248 1.6106
0 1.6248 1.6106	15.28 .5970 .5831
15.15 .6034 .5892 24.77 .5883 .5741	25.08 .5783 .5647 34.85 .5598 .5463
34.86 .5710 .5568	44.69 .5401 .5267
44.56 .5529 .5398 47.67 .5469 .5338	47.60 .5343 .5210 49.86 .5296 .5163
49.60 .5429 .5297	52.85 .5232 .5100
52.82 .5362 .5229 55.09 .5314 .5181	55.43 .5176 .5045 64.38 .4979 .4849
64.56 .5085 .4953	69.70 .4853 .4722
69.08 .4962 .4830 74.55 .4802 .4671	74.88 .4727 .4597 84.52 .4485 .4358
84.46 .4480 .4350	100 .4077 .3950
100 .3962 .3734	
	Quinoline (C_9H_7N) + Caproic acid ($C_6H_{12}O_2$)
Sakhanov, 1911	
molarity molarity	Matavulj, 1939
$\begin{array}{ccc} \text{modality} & \lambda & \text{modality} \\ \text{of quinolin} & \text{of quinolin} \end{array} \lambda$	mol % nD
25°	20° 50°
0.310 below 0.001 0.935 0.002 0.507 " " 1.626 0.008	0 1.6248 1.6106
0.507 " " 1.626 0.008	15.87 .5924 .5782
	24.47 .5758 .5620 35.63 .5538 .5402
Quinoline (C_9H_7N) + Butyric acid ($C_4H_8O_2$)	45.18 .5348 .5214
- A /	47.55 .5300 .5169 49.65 .5257 .5126
Matavulj, 1939	52.84 .5192 .5061
	54.56 .5154 .5024 65.36 .4927 .4799
mol % n _D	66.74 .4897 .4768
20° 50°	69.97 .4829 .4700 72.35 .4778 .4649
0 1 (4)	74.80 .4724 .4596
0 1.6249 1.6106 15.25 .5995 .5856	84.59 .4506 .4379
25.08 ,5822 ,5685	.4160 .4070
35.09 .5638 .5507 45.53 .5442 .5310	
47.70 .5392 .5260 50.07 .5339 .5207	Quinoline (C_9H_7N) + Heptanoic acid ($C_7H_{1 4}O_2$)
52.54 .5289 .5159 54.81 .5236 .5106 64.32 .5018 .4888	Matavulj, 1939
66.56 .4961 .4830	mol % n _D
69.97 .4876 .4744 72.63 .4812 .4679	20° 50°
75.28 .4740 .4608 84.77 .4467 .4336	0 1 (040 3 (10)
100 .3979 .3850	0 1.6248 1.6106 15.05 .5923 .5784
	24.96 .5715 .5581
	34.99 .5514 .5382 44.89 .5317 .5186
	47.8 5 .5260 .5130
	49.45 .5229 .5099 52.70 .5164 .5034
	1 55.18 5116 4987
	64.17 .4936 .4808 69.94 .4820 .4692
	74.37 .4730 .4604
	84.60 .4523 .4399 100 .4222 .4101

Quinoline (${ m C_9H_7N}$) + Caprylic acid (${ m C_8H_{16}O_2}$)	Quinolin	ie (C ₉ H ₇ N) + Benzoic	acid (C ₇ H	₆ 0 ₂)
Matavulj, 1939	Baskov,	1914			
mol % n _D 20° 50°	mol %	f.t.	E mi	n tr.t.	min
0 1.6248 1.6106 14.99 .5897 .5760 24.86 .5688 .5553 34.82 .5482 .5351 44.64 .5292 .5162 47.03 .5246 .5115 49.67 .5196 .5065 52.40 .5143 .5013 54.54 .5102 .4972 64.11 .4921 .4791 70.22 .4804 .4677 74.38 .4728 .4502 84.92 .4534 .4413 100 .4275 .4159	0 3 8 13 17 25 35 45 50 55 60 75 100	-22.0 -22.3 -30.0 -37.0 -11.0 +11.4 +20.6 -44.4 61.4 95.2 121.4	-41.0 4	.4055 +23.0 23.2 20.5 18.5	20.4
.410)	Baskov,	1914			
Quinoline (C_9H_7N) + Pelargonic acid ($C_9H_{18}O_2$)	mo1 %	99°	104°	d 115°	125°
Matavulj, 1939 mol % 20° 50° 0 1.6248 1.6106	0 20 50 66.6 82 100	1.0309 .0515 .0819 .0961	1.0267	1.0174 .0387 .0696 .0829 .0863	1.0085 .0304 .0612 .0742 .0781 .0769
0 1.6248 1.6106 15.30 .5869 .5731 25.19 .5649 .5517 35.31 .5440 .5310 45.07 .5253 .5122 47.73 .5202 .5071	mol %	99°	104°	η 115°	125°
50.14 .5158 .5027 52.37 .5117 .4987 55.23 .5063 .4933 64.15 .4902 .4774 69.57 .4807 .4679 75.29 .4708 .4582 84.89 .4548 .4427 100 .4317 .4198	0 10 20 35 45 50 61	752 911 1087 1455 1821 2015 2304 2481	706 852 1018 - 1590 1732 - 2148	798 - 1203 1322 1489 - 1762	730 1069 1176 1309
Quinoline (C_9H_7N) + Caprinic acid ($C_{10}H_{20}O_2$) Matavulj, 1939	68 70 73 75 82 100	2401 2380 2313 2308	2107 2082 1982 2003	1808 - 1779 1766 1378	1547 1524 1490 1188 1049
mol % n _D 30° 50°	Baskov,	1914			
0 1.6203-4 1.6106 14.83 .5808 .5720 24.69 .5590 .5502 35.01 .5376 .5290	mol %	50°	75°	и 100°	125°
35.01	25 35 45 50 55 60 63 66.6 69 75 85 100	0.00124 .0020 .0029 .00486 .0058! - - -	3 .00413 0 .00625 6 .00996	0.00315 .00602 .00978 .01427 .01686 .02154 .02222 .02341 .02171 .01901	0.00402 .00782 .01240 .01905 .02227 .02670 .02758 .02810 .02678 .02409 .00891

mo1 %	150°	น 175°	196°			
25 35	0.00457 (.00932	.01088	0.00641	Phenylhydrazine	$(C_6H_8N_2) + For$	mic acid (CH ₂ O ₂)
35 45 50 55 60	.01457 .02194	.01676 .02353	.01838 .02421	Bastitch and Pus	shin, 1947	
55 60	.02509 .02950	.02632	• -	mol %	f.t.	E
63 66.6 69	.03015 .03064 .02919	.03129 .03194 .03008	-	100	7.7	-
75 85	.02695	.02788	-	95 90 85	$\begin{array}{c} 0.5\\13\\36.8\end{array}$	-10 - 8.5 - 9
100	very			82 80	54.2 62	-
	C ₁₀ H ₁₄ N ₂) +			70 66.7	86 91	-
Babak, Ai	rapetova and L	Jdovenko, 1	1950	60 50	97 101 (1+1)	-
mol %	25°	d 50°	75°	40 37 33.3	96.5 94 91	-
100	1.1998	1.1796	1.1564	30 20	82.5	-
92.78 89.93	.2167 .2185	.1948 .1968	. 1682 . 1789	15 10	67 57.8 44	16 16.2
88.42 79.67	. 2170 . 8884	. 1961 . 167 6	.1678 .1475	5 0	32.8 19	-
75.07 73.63 73.44	. 1784 . 1769	.1524 .1528 .1489	.1332 .1329 .1298			
69.64 69.62	.1716 .1607 .1589	. 1404	.1200	Phenylhydrazine	(C ₄ H ₀ N ₂) + Ace	etic acid (C ₂ H _u O ₂
69.05 68.14	.1578 .1571	.1394 .1379 .1369	.1175 .1157			, , , , , , , , , , , , , , , , , , , ,
67.06 66.67	.1529 .1515	.1321	.1115 .1113	Trifonov and Che	erbov, 1929	
65.74 65.58 64.65	.1507 .1484 .1480	.1260 .1254 .1234	. 10 56 . 1048 . 10 2 8	mol %	f.t.	<u>E</u>
63.38 60.08	.1432	.1199	.1026 .1004 .0886	0 5	19.2 15.7	15.7
49.97 41.69	.0953 .0 7 04	.0 7 33 .0466	.0524 .0232	10	28.0 32.0	18.5 15.6
28.56 20.44	.0460 .0273	.0234	0.9995 .9835	15 20 25	38.8 48.0 53.0	14.8
11.40	.0146	0.9969 .9866	.9742 .9670	35 40	57.0 59.0	-
mol %	25°	η 50°	75 °	45 50	60.5 61.5 (1+1)	-
100	1542.8 104 7 9.4	981.5	682.5	55 60 65	58.0 56.0	-
92.78 89.93	15925.7	5112.8 6911.0	2899.1 3628.6	65 75 80	51.0 40.0 26.0	- -9,5
88.42 79.67 75.07	18987.0 45678.3 69127.6	7548.5 15835.1 10292.7	4117.1 7085.8 (?) 8056.6	83 85	12.5 - 8.8	-5.0 -8.8
73.63 73.44	69127.6 77754.1 81253.8	21004.4 21555.7	8439.3 8546.8	90 95	$\begin{array}{c} +5.0\\ 12.0 \end{array}$	-
69.64 69.62	107889.7 109862.9	26892.7 27249.8	10055.1 10318.9	100	16.2	-
69.05 68.14 67.06	112248.6 115657.9 116127.0	27356.0 27527.5 26857.1	10336.5 10247.4			
66.67 65.74	117909.8 119169.9	25915.4	9792.6 9701.7 9752.9			
65.58 64.65	117344.7 114817.0	26272.0 26219.6 25579.8	9752.9 9760.4 9470.9			
63.38 60.08	109404.2 92148.0	24230.7 20849.6 11426.6	9031.9 7781.3 4778.5			
49.97 41.69 28.56	37646.7 20565.1 10126.4	7610. 2	3305.2			
20.44 11.40	6426.6 4695.7	3964.5 2962.9 2421.3	2120.0 1658.6 1453.4			
0	3894.2	2037.6	1262.6			

Pushin and	Rikovski, 19	32					
mol %	f.	t.	E	Dan Tyrer, 1	910		
0 5 10 20 30 40 50	19 16 33 51 59 63 65	.5 .5 (1+1)	15.5 15 14 12 10	97.987 95.127 88.293	0.8978 .9030 .9133	% 25° 85.796 100	0.9167
60 66.7 70 75 85 90 100	50 33 1	.5	- - - - -	Kremann and	Zechner, 19	25	c acid (C ₄ H ₆ O ₄)
				%	f.		E
Pushin and mol %	Matavulj, 193	32 mol %	n _D	100 83.6 85.7 79.1	183 180 178 177 177	.1	- - - -
0 10 20.5 31.5 41.2 51.5 61.4 62.4	1.585 1.574 1.562 1.550 1.537 1.521 1.502 1.500	63.4 66.8 69.5 70.6 79.7 89.9	1.499 1.491 1.484 1.481 1.451 1.409	71.7 66.8 60.1 57.5 49.6 47.3 44.0 41.6 37.2 32.3 28.4 23.1	178 178 178 177 178 178 178 178 178 178	.1 .1 .1 .1	65 " " " " " " " " " "
	(C ₁₂ H ₁₀ N ₂)+		eid (C ₂ H ₄ O ₂)	19.1 18.0 14.2 8.8 4.3	178 178 178 178 178 178 65	.1	" -
<u> </u>	f.t		E				
100 95.5 91.7	17 20 24.	1	-	Azobenzene (Kremann and			cetic acid (C ₂ H ₂ O ₂ Cl ₂)
86.6 80.8 74.9	28 33. 38.		- -	× ×	f.t.	%	f.t.
69.1 63.5 58.3 53.5 49.4 47.5 43.3 39.1 29 25.4 20.2 15.4 10 4.8	41. 44. 46. 48. 49. 51. 52. 53. 54. 55. 58. 59. 61. 63. 65.	5 5 5 5	16 	100 94.6 89.3 83.6 80.6 75.5 70.2 64.9 59.5 55.0 49.6 E: - 9°	11 4.5 - 2.5 + 5 4.5 16 25 30.5 35.5 39 42	43.8 39.2 34.9 30.9 26.2 25.5 20.6 14.3 5.1	46 48.5 50 52.5 55 55 58 60.5 63

Azobenzene	(C ₁₂ H ₁₀ N ₂) + Trichloracetic a (C ₂ HO ₂ C	

Kremann and Zechner, 1925

	•	
Я	f.t.	E
100	55.5	_
92.3	46	_
91	íš	_
71.7	- 8	~
64.3	+13̈	_
57.3	28	-10
51.4	$\bar{3}\bar{6}$	-10
46.9	40	Ξ,
41.1	44.1	_
31,6	51	_
22.5	55	-10
14.3	59	
10	62	_
0	65	-

Azobenzene ($C_{1\,2}H_{1\,0}N_2$) + Benzoic acid ($C_7H_60_2$)

Kremann and Zechner, 1925

%	f.t.	E
Δ		
0	65	_
10.7	62	_
16.5	58	58
22.8	65	"
30.3	72	lt .
	72	
36.2	79	-
45.1	88	-
49.6	92	58
51.1	94	
57.0	98	_
65.1	109	
00.1	109	
72.0	102	58
79. 6	113	-
90	118	_
100	121	_

Azobenzene ($\rm C_{1\,2}H_{1\,0}N_{2}$) + p-Toluic acid ($\rm C_{8}H_{8}O_{2}$)

Pfeiffer, Angern, Wang and al., 1930

f.t.
178
175
171
166.5
160
152
143
133
118
87
66
68

Azobenzene ($C_{12}H_{10}N_{2}$) + Cinnamic acid ($C_{9}H_{8}O_{2}$)

Kremann and Zechner, 1928

%	f.t.	E	
0	65	-	
13.3	66	_	
23.8	80	62	
29.7	86		
32.8	89	-	
38.8	94	62	
43.3	98	-	
47.3	102	62	
57.4	109	-	
62.5	113	62	
69.8	117.5	_	
77.3	122.5	-	
88.2	128	_	
100	$\bar{1}\bar{3}\bar{3}$	-	

Azobenzene ($\text{C}_{1\,2}\text{H}_{1\,0}\text{N}_2$) + Salicylic acid ($\text{C}_7\text{H}_6\text{O}_3$)

Kremann and Zechner, 1928

×	f.t.	E	
100	156	_	
88.7	152	-	
79.9	148	-	
69.3	$\bar{1}\dot{4}\ddot{3}$	63.5	
61.3	139		
53.4	134	63.5	
47.9	īši	"	
47.1	130	**	
34.7	120	~	
25.8	110	63,5	
19.6	99	00.0	
15.4	9 2		
7.7	7 6	_	
0	65	_	

p-Aminoazobenzene ($C_{1.2}H_{1.1}N_{s}$) + Desoxycholic acid ($C_{2.\mu}H_{\mu,0}0_{\mu}$)

Cilento, 1951 (fig.)

mol %	f.t.	E	
0	124.5	120	
4.5	120	120	
10	142	120	
20	155	120	
30	162	120	
40 50	168	120	
50	172	120	
60	1 7 5	120	
70	178	120	
80	179 (1+4)	-	
90	176	-	
98	170	_	
100	1 7 3	~	

p-Dimethylamino	oazobenzene (C ₁₄ H ₁	₅ N ₃)	Hydrocyani	c acid (CHI	N) + Formic	acid (CH ₂ O ₂)
	+ Cholic acid (C ₂₄ H ₄₀ O ₅)				
Cilento, 1951	(fig.)		Peiker and	Coffin, 19		
mol %	f.t.	E	mol %	f.t.	mol %	f.t.
0 5 10 20 30 40 50	118 160 167 173 176 179 180	116 116 116 116 116 116 116 116	0 10 20 30 40 50	8 3 - 2 - 9 -14 -21	60 70 80 90 100	-28 -29 -29 -17 -14
66 70 80 90 100	184 (1+2) 186 188 194 198	181 181 181 181	Acetonitri Joukovsky,		+ Formic a	cid (CH ₂ O ₂)
			%	mol %	f.t.	E
	pazobenzene (C _{1 h} H ₁ + Desoxycholic aci (fig.)		100 81.4 66.2 51.4 35.4 20.8	100 79.6 63.6 48.5 32.8 19.0	+ 8.5 - 5.5 - 17.5 - 29.0 - 44 - 54.5 - 45	-54.5 -54.5 -54.5
mo1 %	f.t.	Е				
0 5 10 20 30 40 50 60 70 80 86 90 100	118 174 184 188 192 195 198 200 202 204 204 201 173	116	Acetonitr Popov, 19 5.18 9.73 14.16) + Acetic % 17.84 21.56	Q mix -285 -251.0
100	(1+4) or (1+6)					
	c (C ₁₂ H ₉ N ₂ C1) + p-0	$(C_{12}H_{10}ON_{2})$		Ralston, 19)44	c acid (C ₈ H ₁₆ O ₂)
mol %	f.t.	E		*	f.t.	
0 10 20 30 40 50 60	152.5 149 145 139 131 121 110	- - - - 78	1	30.7 91.0 00 ile (C ₂ H ₃ N	0.0 10.0 16.30) + Pelargo	onic acid (C ₉ H ₁₈ O ₂)
70 80	98 84	76.5		Ralston, 19		(L ₉ H ₁₈ U ₂)
83.5 90 100	78 84 89	76		K	f.t.	
			1	33.8 97.1 00	0.0 10.0 12.25	

Acetonitri	le (C ₂ H ₃ N)	+ Caprinic a	cid	Acetonitri	le (C ₂ H ₈ N)	+ Pentadecan	oic acid C ₁₅ H _{3 O} O ₂)
Hoerr and I	Ralston, 194		(C ₁₀ H ₂₀ O ₂)	Hoerr and R	Ralston, 1944		·
%	f.t.	%	f.t.	%	f.t.	K	f.t.
10.4 17.3 39.8	0.0 10.0 20.0	98.7	30.0 31.24	0.4 0.5 1.1 2.8	0.0 10.0 20.0 30.0	94 96.0 100	40.0 50.0 52.54
	le (C ₂ H ₅ N)	+ Undecanoio	c acid (C ₁₁ H ₂₂ O ₂)		le (C ₂ H ₃ N) Ralston, 194		cid (C ₁₆ H ₈₂ O ₂)
%	f.t.	%	f.t.	%	f.t.	%	f.t.
8.0 14.7	0.0 10.0	64.9 100	20.0 28.13	below 0.1 0.2 0.4 1.0	0.0 10.0 20.0 30.0	2.6 8.9 92.3 100	40.0 50.0 60.0 62.82
	le (C ₂ H ₅ N)		id (C ₁₂ H ₂₄ O ₂)	Acetonitri	le (C ₂ H ₃ N)	+ Margaric a	acid (C ₁₇ H ₅₄ O ₂)
%	f.t.	8	f.t.	Hoerr and	Ralston, 194	4	
1.9 2.6 7.1	$0.0 \\ 10.0 \\ 20.0$	19.7 93.9 100	30.0 40.0 43.92	% below 0.1	f.t. 10.0	% 7.6	f.t. 50.0
	le (C ₂ H ₈ N)	+ Tridecano	ic acid (C ₁₅ H ₂₆ O ₂)	0.2	20.0 30.0 40.0	97.2 100	60.0
8	f.t.	%	f.t.	Lauronitri	ie (C ₁₂ H ₂₃ N) + Acetic a	cid (C ₂ H ₄ O ₂)
1.4 1.9 5.4	0.0 10.0 20.0	17.5 98.8 100	30.0 40.0 41.76		kerd, Pool an	f.t.	
				22) 4.1	4.02 -0.7 E	
	ile (C ₂ H ₅ N Ralston, 194) + Myristic	acid ($C_{1\mu}H_{28}O_{2}$)		······································		
# #	f.t.	8	f.t.				
0.7 0.9 1.8 3.8	0.0 10.0 20.0 30.0	11.5 92.3 100	40.0 50.0 54.15				

Myristonitr	ile (C ₁₄ H ₂₇	N) + Acetic	acid (C ₂ H ₄ O ₂)	Glutaronitrile ($C_5H_6N_2$) + Aceti	c acid (C ₂ H ₄ O ₂)
Hoerr, Bink	erd, Pool an	d al., 1944		Phibbs, 1955		i
2	,	f.t.		mol %	Dv (cc/mole)	Q mix
49	0.6	19.25 8.8 E		78.8 62.8 50.0 42.0	28° - -0.51	-140 -165 - -155
Palmitonitr	ile (C ₁₆ H ₃₁	N) + Acetic	acid ($C_2H_4O_2$)	28.9 27.5 17.9	- - -	-133 -128 - 77
	erd, Pool an			mol %	η	
7/8	f.t.	Я	f.t.	100	28°	
81.6 67.6	15.2 E 20.0	8.6	30.0 31.40	64.9° 35.7	2680 4050	
	le (C ₁₈ H ₃₅ N		acid (C ₂ H ₄ O ₂)	Glutaronitrile (C ₅ H ₆ N ₂) + Propi	onic acid (C ₃ H ₆ O ₂)
%	f.t.	K	f.t.	mol %	Dv (cc/mole)	Q mix
96.9 94.9	16.4 E 20.0	67.9 0	30.0 40.88	40.0 50.0	28° -0.75	-242
Succinonitr Schreinemak) + Benzoic	acid (C ₇ H ₆ O ₂)	61.4 Tetracyanoheptan	e (C ₁₁ H ₁₂ N ₁₄) +	-263 Acetic acid (C ₂ H ₄ O ₂)
0 1.56 2.58 3.37 4.14	54.5 51 47 47 54.5	11.8 19.2 39.2 63.9 100.0	86 95.5 107 110 120	20 %	f.t. = 77.0	
6.0	66,5					

868

FORMAMIDE + METHYL ALCOHOL

	II II		H
L. MIXED OXYGEN-NITROGEN DERIVATIVES	Jehikawa 1027) + Ethyl alcohol	(C ₂ H ₆ O)
+ HYDROXYL DERIVA	/ES ISHIKAWA, 1927	بني مني المناد المناد التي ينتس المناد المناد الماد الماد الماد المناد المناد المناد المناد المناد المناد المناد	الله في هو دي دي دي دي دي الله عمر ديم شد الله الله الله الله الله الله الله الل
	11 '	đ %	d
XXXIV. MIXED OXYGEN-NITROGEN DERIVATIVES +	0 0.7	30° 8462 82. 3664	1.06641
Formamide (CH ₂ ON) + Methyl alcohol (CH ₄ C	33,4695 0.8	3404 87,4379 8522 100 7719	1.08837 1.14505
Joukovsky, 1933	Merry and Turner,	1014	ن سوی حصر الحصافی عدر بعیر امیر الحص الفار الحق الفار الحص الفار الحص الفار الحص الفار الحص الفار الحص الفار ا و حصر مصد الفقد أني حصر الحص الحص الفيد الفار الفار الحض الفار الفار الفار الفار الفار الفار الفار الفار الفار
wt% mol% f.t.	mol %	d	·
0 0 + 2.5		25°	40°
16.2 21.4 -12.7 40.1 48.5 -34.6 50.9 59.3 -44.2 65.3 72.6 -61.5 68.3 75.2 -65.6 74.4 80.4 -75.3 87.1 90.5 -103.1 100 100 -98.4	0 10 18.92 29.76 39.07 03 50.09 59.29 69.80 80.09 89.95	1.1281 1.0817 1.0427 1.0012 0.9669 0.9308 0.8995 0.8675 0.8376 0.8102	1.1104 1.0640 1.0252 0.9850 0.9499 0.9157 0.8827 0.8504 0.8207 0.7935 0.7667
Merry and Turner, 1914 (fig.)	ر میں دینے بھی جسے میں میں معراضع اللہ عمر امیوانٹ اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	ے بیٹر انسونٹیم میں میں نمیر میں میں مدم اندم اندن اندن اندے اندے اندے میں بیان انداد نے میں دیدہ میں ادبر امیں اندی میں دیدہ انداد انداد انداد انداد انداد انداد انداد انداد انداد انداد انداد اندا	و باین علی علی میں میں امیاز علی انجوانی امی علی امی امی امی امی امی امی امی امی امی ام
سے میں میں میں میں میں میں میں میں میں میں	Davis, 1918		
mol % d 25° 40°	# # # # # # # # # # # # # # # # # # #	d %	
ہے کے بنے جے بنے جی جی جی جی جی جی جی جی جی جی جی جی جی			<u>d</u>
$ \begin{bmatrix} 0 & 1,1311 & 1,11 \\ 9,80 & 1,1000 & 1,06 \\ 20,12 & 1,0699 & 1,05 \\ 30 & 1,0397 & 1,02 \\ 40 & 1,0074 & 0,99 \end{bmatrix} $	0 1. 25 1. 50 1.	25° 1331 75 0260 100 9346	0.8554 0.78506
50.22 0.9737 0.98 60.34 0.9388 0.92 70 0.9043 0.86 80 0.8670 0.8	Merry and Turner,	1914	
90 0.8284 0.8 100 0.7864 0.76	mol %	25°	40°
mo1 ≰ η 25° 40°	0 10 18,92 29,76	3359 3054 2782 2515	2379 2174 1986
	39.07 50.09 59.29 69.80 80.09 89.95	2219 2219 2010 1816 1563 1376 1229 1086	1800 1622 1465 1319 1145 1016 916 821
90 746 58 100 557 45	Davis, 1918		
	8 ,	15° 25°	35°
	50	- 335 8 3389 2577 2488 1939 1761 1412 - 1096	2066 1580 1174

	de (CH ₃ 0		opyl alcoho	1 (С _э н ₈	0)	Formamide	e (CH ₃ ON)	+ Methyl	. malate	1 (C ₆ H ₁₀	05)
						Grossmanı	n and Landa	u, 1910			
%	d	η		d	ŋ	g/100cc			(α)		
		2	25°				red yel	low gree			viol.
0 11.23	1.1281 .0818	3299 3 27 0	59.99 69.99	0.9063 .8773	2622 2396				blu _20°		
20.67	.0441	3233	79.9 7	. 8494	2223	49.978 - 24.939 -	-8.20 -10. -9.04 -15.				-17.10
29.94 39.96	.0084 0.9 72 4	3122 2985	90.03 94.55	.8223 .8108	198 7 1935	12.4945		93 -14.0	1 -16.	81 -18.17	- -19.97
49.99	.9383	2790	100	. 7 976	1928		-9.19 -11.				
	Formamide ($\rm CH_3N0$) + Butyl alcohol ($\rm C_4H_{10}O$) English and Turner, 1914						e (CH ₃ ON)	+ Methyl	l tartra	te (C ₆ H ₁	₀ 0 ₆)
%	ď	η	%	d	η	Yen-ki-ll	eng, 1936				
******			25°			 	d		 ,	`	
0	1.1214	3302	59.82	0.9056	3685	t	u	vel	(α llow) green	
$10.00 \\ 19.95$.083 2 .0445	3483 3646	69.84 80.02	.8752 .8463	35 24 3315			6.865%			
30	.0061	3 757	89.96	.8199	3142	_					
39.81 49.98	0.9716 .9370	3866 3811	95 100	.8071 .7952	3136 3368	13.5	$1.2013 \\ .1914$. 10 . 50	13.67 15.50	
						26.5 38	. 1828 . 1703	15.	.84 . 7 9	16.97 18.10	
						50.5	. 1593	17.	. 39	19,02	
Formam	ide (CH ₃	NO) + I	soamyl alco	hoI (C ₅ I	I ₁₂ 0)	60.5 70 79	. 1509 . 1426 . 1348	18.	.40 .13 .31	19.50 19.74 19.96	
Drucke	r and Kes	sel, 191	1			Lowry and	d Abram, 19	15			
%	d	η	%	d	η	w.1.		(α)	w.1.		()
	7 6.5°			00		"	25g/100cc		W. 1.	25g/100cc	
100 97.18	0.7656 .7731	951 966	100 97.18	0.8253	8834			20)°		
90.01	.7908	1005	90.01	.8315 .8497	8482 8361	6708	+12 (5			.10.50	
69.92 49.84	.8440 .9044	1178 1311	69.92 49.84	.9041 .9649	9920 11111	6438	$^{+12.65}_{13.41}$	+2.79 2.65	$\frac{4811}{4300}$	+18.72 18.74	-2.47
$\frac{30.14}{10.38}$.9726	1321 1292	30.14	1.0335	10638	5890 5782	$\substack{15.39\\15.77}$	2.22	4722 4678	18.86 18.87	
0.38	1.0901	1255	$\substack{10.38\\0.0}$.1111 .1549	85 7 6 7 553	5780 5700	15.80	2.05	4529 4378	18.7	- - -
						5461	$\frac{16.00}{16.96}$	1.28	4358	18.0 1 7. 85	-8.93
Emal ²	sh and Tu	rner 10	14			5218 5153	17.67 17.97	-	4275 4251	17 3 17.0	_
	on and I					5105 5086	18.0 7 18.14	-0.39	4137	16.0	-
%	đ	ŋ		d	ŋ			- • • •			
			25°								
0 01	1.1281	3299	69.98 79.95	0.8802	3993						
10.01 19.94	.0454	3567 3800	84.92	.8528 .8397	3 79 9 36 87	1					
29,98 39,35		4071 4252	89.86 95.01	.8272 .8219	35 7 1 35 7 9						
50.01 60		4273 4174	100	.8036	3 79 8	1					
00	. 9001	71/4									
						11					

FORMAMIDE + ETHYL TARTRATE

Formamid	e (CH ₃ ON) + E	thyl tartra	ite (C ₈ H	1406)	Dimethylform	amide (C	-	ethyl alcohol CH ₄ 0)
Winther,			d	(a)	Dawson, Lead		., 1951	
Z	d (α) _D	70	u	Д Д	t	d	η	×
100 74.671 51.103 25.687	1.20435 +7. 1.19857 +16. 1.18060 22. 1.15769 27.	00 8.866 55 5.34 60 1.899 0 (α) 87% 8.8609	5 .1395 9 .1364 .1348	8 30.13 7 30.3 33 -	25 20 10 0 -10 -20 -30 -40 -50	0.8658 .8706 .8807 .8900 .8999 .9098 .9196 .9291 .9388	638 703 855 1042 1321 1596 1991 2400 2912	0.208 .200 .167 .154 .124 .107 .0906 .0772
red yellow green pale blu dark blu		0 29.74 1 35.29 5 43.89	24.52 30.13 35.91 44.50 47.74	30.3 36.0 44.7			+ Methyl al	cohol (CH ₄ 0)
				7-7-1	Vandenberghe	., 1703	F 1	
Lowry an	nd Dickson, 1915				<u> </u>		D b.t.	
%	6708Å 5893Å	(α) 5780Å	5461Å	4358Å	90.1 83.3 77.5	· · · · · · · · · · · · · · · · · · ·	+1.40 2.66 3.56	
5 10 20 100	22.80 29.38 22.75 28.99 21.87 27.80 6.69 7.45	20° 30.50 30.01 28.76 7.52	33.73 33.20 31.86 7.50	46.75 46.30 43.89 1.62	Acetamide	(C ₂ H ₅ ON)	+ Ethyl alo	cohol (C ₂ H ₆ O)
w.1.	(α) 100%	w.1,	(α)	g/100cc	Speyers, 19	902		
)°		g/ 100cc	mo1%	 	f.t.	
6708 6438 5893 5780	+6.69 7.00 7.45 7.52	6708 6438 5893 5780	+21. 23. 27. 28.	67 73 72	81.47 67.13 43.94 21.08		0.0 18.6 42.5 62.0	
5461 5086 4800 4358 4271	7.50 6.96 5.85 1.62 0.21	5461 5086 4800 4679 4406	31. 35. 38. 40. 43.	64 82 0 3	Mortimer, mo1%	1923 f.t.	mo1%	f.t.
4261 4251 4191 4132 4033 3969	0.03 -0.14 -1.38 -2.77 -5.54 -7.62	4359 4199 4144 3960	43.68 44.7 45.4 46.0		81.5 66.2 40.9	0 20 40	24.2	60 78.5
3903 3900 3879	-10.34 -10.18 -11.22			····				

Speyers,	1902			Caprylamio	de (C ₈ H ₁₇ 0	N) + Meth	nyl alcohol	(CH ⁺ 0)
t	d		₁	Ralston,	Hoerr and P	001, 1943		
	sat.sol. 0.8562		-	%	f.t.	%	f.t.	
0.0 17.8 35.0 54.4 70.3	. 8696 . 8974 . 9416 . 9815			82.0 65.0 43.5	10.0 30.0 50.0	32.7 27.8 0	60.0 64.7 105.9	
Taimni, 19	29 η		-	Caprylami	de (C ₈ H ₁₇ 0	N) + Ethy	yl alcohol	(C ₂ H ₆ O)
40	° 35° 30° 2 5°	20° 15°	.0°	Ralston,	Hoerr and F	Pool, 1943		
69.41 - 61.41 -	1608 1805 2040 1899 2145 2458		29	×	f.t.	%	f.t.	
54.26 49.2 221	2240 2557 2951	3434 4093 3970 -	=	88.7 75.4 56.9 45.5	10.9 30.0 50.0 60.0	34.5 24.1 0	70.0 78.5 105.9	
Albanski,l	(C ₂ H ₅ ON) + Pinacol (949 f.t.			de (C ₈ H ₁₇ 6		propyl alco	hol(C _s H ₈ O)	
0 80.8	82 34.4 E 42.3		-	Я	f.t.	%	f.t.	
100	42.3			86.5 79.4 60.3 49.3	10.0 30.0 50.0 60.0	39.2 25.9 0	70.0 82.3 105.9	
Lecat, 19		43 3 3	=					
Acetamide	(C ₂ H ₅ ON) (b.t.=221.				2 1,		yl alcohol	(C ₄ H ₁₀ 0)
Name		Az		Ralston,	f.t.	Pool, 1943	f.t.	
	***	6 b.t.		85.5	10.0	19.3 7.2 0	90.0	
Glycol- monoacetate	(C ₄ H ₈ O ₃) 190.9 95	5 190.7		79.6 66.2 43.1	30.0 50.0 70.0	0	100.0 105.9	
Isobutyl- lactate	$(C_7H_{14}O_3)$ 182.15 88	3 181.5						
Isoamyl- lactate	(C ₈ H ₁₆ O ₃) 202.4 72	196.0						
11	(C ₂ H ₅ 0C1)175.8 -	175.5						

Capramide	($C_{10}H_{21}ON$)	+	${\tt Methyl}$	alcohol	($\text{CH}_{\text{4}}\textbf{0}$)	
-----------	---	------------------	---	---	----------------	---------	---	----------------------------------	---	--

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
93.7	10.0	44.5	60.0	
86.8	30.0	37.1	70.0	
59.9	50.0	0	98.5	

Capramide ($C_{10}H_{21}0N$) + Ethyl alcohol (C_2H_60)

Ralston, Hoerr and Pool, 1943

%	f.t.	K	f.t.	
95.8 89.3 69.7 53.2	10.0 30.0 50.0 60.0	36.7 22.2 0	70.0 78.5 98.5	

Capramide (C10H210N) + Isopropyl alcohol (C3H80)

Ralston, Hoerr and Pool, 1943

Я	f.t.	%	f.t.	
94.4 90.2 72.8 58.2	10.0 30.0 50.0 60.0	$\frac{41.7}{20.9}$	70.0 82.3 98.5	

Capramide ($C_{10}H_{21}0N$) + Butyl alcohol ($C_{4}H_{10}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
96.6 91.8 76.5	$10.0 \\ 30.0 \\ 50.0$	45.9 12.7 0	70.0 90.0 98.5	

Lauramide ($C_{1\,2}H_{2\,5}ON$) + Methyl alcohol ($CH_{\downarrow}O$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
95.9 88.9 56.5	10.0 30.0 50.0	37.9 32.7 0	60.0 64.7 102.4	

Lauramide ($C_{12}H_{25}ON$) + Ethyl alcohol ($C_{2}H_{6}O$)

A.W.Ralston, Hoerr and W.O.Ralston, 1943

%	f.t.	Я	f.t.	
97.3 89.8 64.0 48.5	10.0 30.0 50.0 60.0	34.8 21.3 0	70.0 78.5 102.4	

Lauramide ($C_{12}H_{25}ON$) + Isopropyl alcohol(C_3H_8O)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
96.5 89.7 67.8 53.8	10.0 30.0 50.0 60.0	39.4 22.1 0	70.0 82.3 102.4	

Lauramide ($C_{12}H_{25}ON$) + Butyl alcohol ($C_{4}H_{10}O$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
97.8 90.9 72.4 44.5	10.0 30.0 50.0 70.0	14.8 2.8 0	90.0 100.0 102.4	

Myristamide	($C_{14}H_{29}ON$)	+	Methyl	alcohol	($CH_{4}O$)
-------------	---	------------------	---	---	--------	---------	---	-----------	---

Ralston, Hoerr and Pool, 1949

K	f.t.	%	f.t.	
99.0 97.4 87.6	10.0 30.0 50.0	73.2 64.1 0	$60.0 \\ 64.7 \\ 105.1$	

Myristamide ($C_{14}H_{29}ON$) + Ethyl alcohol (C_2H_6O)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
98.8 96.4 86.9 74.9	10.0 30.0 50.0 60.0	55.3 35.9 0	70.0 78.5 105.1	

Myristamide ($C_{14}H_{29}ON$) + Isopropyl alcohol ($C_{2}H_{8}O$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
98.9 96.9 86.6 74.6	$10.0 \\ 30.0 \\ 50.0 \\ 60.0$	56.9 32.8 0	70.0 82.3 105.1	

Myristamide ($C_{14}H_{29}0N$) + Butyl alcohol ($C_{4}H_{10}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
99.2 96.4 87.3 63.3	$10.0 \\ 30.0 \\ 50.0 \\ 70.0$	26.7 8.0 0	$90.0 \\ 100.0 \\ 105.1$	

Palmitamide ($C_{16}H_{33}ON$) + Methyl alcohol ($CH_{4}O$)

Ralston, Hoerr and Pool, 1943

_	%	f.t.	%%	f.t.	
	99.5 99.2 94.2	$10.0 \\ 30.0 \\ 50.0$	7 9.8 59.5 0	60.0 64.7 107.0	

Palmitamide ($C_{16}H_{33}ON$) + Ethyl alcohol ($C_{2}H_{6}O$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
99.6 98.5 90.6 77.4	10.0 30.0 50.0 60.0	53.0 31.7 0	70.0 78.5 107.0	

Palmitamide ($C_{16}H_{88}ON$) + Isopropyl alcohol ($C_{3}H_{8}O$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
99.6 98.2 89.3 77.1	10.0 30.0 50.0 60.0	55.9 30.8 0	70.0 82.3 107.0	

Palmitamide ($C_{16}H_{33}0N$) + Butyl alcohol ($C_{4}H_{10}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
99.7 98.1 89.9 59.9	10.0 30.0 50.0 70.0	22.3 8.7 0	90.0 100.0 107.0	

Stearamide ($C_{18}H_{37}0N$) + Methyl alcohol ($CH_{14}0$)	Urea (CH ₄ 0) + M	ethyl alcohol	(CH ₄ 0)
	Vandenbergh	he, 1903		
Ralston, Hoerr and Pool, 1943	Z	D b.t.	Я	D b.t.
% f.t. % f.t. 99.6 10.0 89.0 60.0 99.3 30.0 81.2 64.7 96.6 50.0 0 109.7	97.09 91.74 90.09 89.29 84.75 84.03	+1.35 1.125 1.26 1.35 1.98 1.975	81.97 82.65 81.97 80.65 78.12 76.33	+2.285 .19 .285 .410 .740 .91
Stearamide ($C_{18}H_{87}ON$) + Ethyl alcohol ($C_{8}H_{6}O$)	Timofeev,	1894		
Steatumite (018.370)	%	f.t.	%	f.t.
Ralston, Hoerr and Pool, 1943	90.1 87.56 82.71	-12 0 +19	73.30 60.0 48.20	40 62 71
\$ f.t. \$ f.t. 99.8 10.0 66.7 70.0 99.2 30.0 45.5 78.5 94.7 50.0 0 109.7 86.6 60.0	Speyers, 1	1902		
	mo1%	f.t.	mo1%	f.t.
Stearamide ($C_{18}H_{37}ON$) + Isopropyl alcohol ($C_{3}H_{8}O$)	0.0 10.8 21.7	92.66 91.29 89.19	40.4 61.2	84.04 74.23
Ralston, Hoerr and Pool, 1943	t	đ	t	d
		sat.	sol.	
% f.t. % f.t. 99.8 10.0 64.1 70.0 99.0 30.0 37.1 82.3 93.6 50.0 0 109.7	0.0 17.4 29.7	0.8612 .8674 .8764	50.5 66.8	0.9086 .9534
83.3 60.0				
	Walton and	Wilson,	1925	
Stearamide ($C_{18}H_{37}ON$) + Butyl alcohol ($C_{4}H_{10}O$)	1	2	f.t.	
Ralston, Hoerr and Pool, 1943	- (urea 78.84) 79.73 80.44	(1+1) 18.79 18.14	
% f.t. % f.t.	80.27	80.44 82.28 83.53 88.70	16.63 15.23	
99.9 10.0 33.1 90.0 98.9 30.0 14.5 100.0	83.30 85.76 88.36	88.70 89.02 92.29 95.12	8.03 7.33 0.25	
93.3 50.0 0 109.7 69.5 70.0	88.36 89.08	96.07 96.37	-9.85 -15.20 -17.00	
	=	96.43 96.24 96.55 96.52	-17.00 -17.15 -17.45 -17.60 -18.10	
	-	96.52 96.75 96.84 96.83 97.11	-20.20 -20.55 -21.30 -24.90	
		99.68	-78.00	

			VKEA	
Urea	(CH ₄ ON ₂) -	+ Ethyl Alce	ohol (C ₂ H ₆ O)	
	ini,1931			
	K	t	р	-
	91.36 91.30	28 30 29	33.40 43.48	
	91 88.82 88.38	29 25.1 24.6	40.91 31.72	
	88.38 85.22	29	31.70 38.42	=======================================
Timofee	v, 1894			
%	f.t.	76	f.t.	
97.38 96.84 95.23 91.36	-9 0 +18 41	85.98 85.26 76.41	60 61 81	
Speyers %	f.t.	%	f.t.	
98.05 96.96 95.93	0.0 10.5 22.3	94.39 90.82 85.60	32.3 55.5 72.1	-
t	ď	t	đ	
		.sol.		
0.0 15.7 31.6	0.8213 .8113 .8060	51.5 71.5	0.8031 .8124	
Urea (CH ₄ ON ₂) + 1	Propyl alcoh	nol (C ₃ H ₈ O)	
Timofeev	v, 1894			
%	f.t.	%	f.t.	
98.38 97.53 97.50 95.55 95.13	0 19 20 39	92.82 89.07 89.58 85.34	60 80 82 98	
95.13	40	85.34 85.05	97	

Urea ($\text{CH}_{\text{\tiny μ}}0\text{N}_{\text{\tiny 2}}$) + Erythritol ($\text{C}_{\text{\tiny μ}}\text{H}_{\text{\tiny 1}\,\text{\tiny 0}}\text{O}_{\text{\tiny μ}}$)

Pushin and Dezelic, 1932

mo1%	f.t.	Е	mo1%	f.t.	E
100 90 80 70 60	118 114.5 111.5 107 101 94	- - - 59 67 75	40 30 20 10 0	86.5 78 99 117 132	77 78 77 74

Thiourea ($CH_{4}N_{2}S$) + Methyl alcohol ($CH_{4}0$) Shnidman, 1933

wt%	mo1%	f.t.	
88.05	94.60	25.11	
83.63	92.40	40.80	
77.99	90.01	53.76	
75.44	87.95	62.00	

Urethane ($C_3H_7O_2N$) + Methyl alcohol (CH_4O)

Vandenberghe, 1903

%	D b.t.	
90.9 80 75.2	+0.83 2.115 2.675	

Speyers, 1902

%	f.t.	%	f.t.	
68.82 58.30	$\begin{smallmatrix}0.0\\10.6\end{smallmatrix}$	41.42 10	22.5 40.9	
t	đ	t	d	
	sat.	sol.		
$\substack{0.0\\15.5}$	0.9565 .9902	28.2 39.5	1.021 1.044	

Urethane ($C_3H_7NO_2$) + Ethyl alcohol (C_2H_6O)	Lecat, 1949 Urethane ($C_9H_7O_2N$) (b.t.=185.25) + Alcohols.
Speyers, 1902	2 nd comp. Az
mo1% f.t. mo1% f.t.	Name Formula b.t. % b.t. Sat.t.
76.09 0.0 27.65 30.9 63.14 10.5 11.68 40.5 47.79 21.7	Heptyl (C ₇ H ₁₆ O) 176.15 71.5 174.8 20.5
t d t d	Octyl (C ₈ H ₁₈ O) 195.2 27.5 183.5 39 alcohol
sat.sol.	Isooctyl (C ₈ H ₁₈ O) 180.4 63 177.0 30 alcohol
0.0 0.8914 30.9 1.004 14.1 .9443 43.7 .044	Propylen (C ₃ H ₈ O ₂) 187.8 - 183.5 - glycol
	Pinacol (C ₆ H ₁ , 0 ₂) 174.35 - 173.5 -
Richards and Chadwell, 1919	Linalool (C ₁₀ H ₁₈ O) 198.6 - 185.0 -
% d % d	Dichlor- (C ₃ H ₆ 0Cl ₂)182.5 20 186.5 - hydrin
20°	
100 0.78922 70.657 0.86117 94.840 .80128 61.591 .88521 89.017 .81529 52.528 .91059 80.098 .83704 44.442 .93466	Urethane ($C_3H_70_2N$) + Erythritol ($C_4H_{10}0_4$)
78.930 .84001 40.779 .94495	Pushin and Dezelic, 1932
	mol% f.t. E mol% f.t. E
Taimni, 1929	100 118 - 40 105 47 90 116 - 30 103 47 - 80 114 41 20 98 47
% 40° 35° 30° 25° 20° 15°	70 112 44 10 84 48
39.2 - 1800 2044 2342 2701 3150 37.0 - 1889 2144 2486 2880	
33.3 - 2047 2340 2701 3148 - 31.2 1896 2152 2460 2849 3321 -	Urethane ($C_9H_7O_2N$) + Menthol ($C_{10}H_{20}O$)
Heathana (C. H. NO.)	Adamanis, 1933
Urethane ($C_3H_7NO_2$) + Propyl alcohol (C_5H_80)	mol% f.t. mol% f.t.
Speyers, 1902	2.9 48.0 41.0 33.8 5.9 47.5 46.0 31.5 9.1 45.5 51.4 29.5
mo1% f.t. mo1% f.t.	0.1 45.5 51.4 29.5 12.4 44.0 57.0 27.2 15.9 43.5 63.0 25.8
19.48 0.0 68.75 30.4 32.27 10.4 85.74 40.7 53.31 21.6	19, 6 41.5 69.5 26.5 23.4 40.5 76.3 29.8 27.5 38.5 83.7 33.0 31.8 37.2 91.5 37.0 36.3 35.0
t d t d	
sat.sol.· 0.0 0.8798 29.1 0.9804 13.3 .9156 42.1 1.033	Hrynakowski, 1934 E: 73.5% 25°

Methylur Scheuer,	rethane (1910	C ₄ H ₉ O ₂ N	+ Mentho	01 (C _{1 o} H	200)	Allyl is	othiocyanate	C ₄ H ₅ NS) + Methyl alcohol (CH ₄ O)
%	mol%	f.t.	%	mol%	f.t.	Joukovs	ky, 1933		
0 0.41 0.88 1.96 2.82 4.00 5.85 8.03 11.34 14.25	0 0.16 0.43 0.94 1.37 1.96 2.90 4.02 5.78	54.0 53.9 53.75 53.5 53.25 52.9 52.5 51.9 51.25 50.7	66.12 67.82 71.44 75.66 78.02 80.88 84.11 85.94 88.71	48.40 50.32 54.60 59.91 63.04 67.04 71.78 74.61 79.06 82.88	44.2 43.85 42.9 41.3 40.15 38.55 36.4 35.15 32.65	mo1% 100 90.7 63.8 20 0	30°	p 160,2 152 135.6 105.5 7.3	
17.12 20.99 26.30 33.70 37.06	7.02 5.78 7.39 9.02 11.39 14.62 19.63 22.06	50.2 49.75 49.15 48.4 48.2 47.7 47.25	84. 11 85. 94 88. 71 90. 87 92. 08 93. 06 94. 54 95. 03 95. 36 97. 15 97. 65 98. 39 99. 24	84.83 86.57 89.28 90.20 92.55	36.35 36.4 35.15 32.65 33.25 34.15 34.95 36.2 36.75	11	sothiocyanat and Miskid		;) + Ethyl alcohol 5 (C ₂ H ₆ O)
42.37 46.58 51.83 55.67	26.03 30.05 34.09 37.64	$\substack{46.6\\46.1}$	97.15 97.65 98.39 99.24	94.25 95.23 96.70	37.95 38.8 39.35 40.15 41.05	mo1%	d 20°	mol%	đ
60.50	42.41 42.51 mol%	45.2 45.2	100 d	98.44 100	42	0 20 33 50	1.0123 0.9869 .9627	70 80 90	0.8879 .8602 .8300
		55.6°	74.6°	82.2°	99.0°	60	.9342 .9127	100	.7901
0 33.38 56.80 74.28 84.39	0 14.12 38.72 58.13	1.1356 .0270 0.9611 .9234	1.1156 .0089 0.9448 .9074	1.1084 .0016 0.9382 .9010	1.0896 0.9856 .9237 .8868	mo1%	η 20 °	-15°	
84.39 92.46 100	58.13 72.21 85.50 100	.9035 .8840 .8693	.8858 .8687 .8551	. 8788 . 8625 . 8496	.8648 .8489 .8372	0 10 20	725 - 739	1242 1297	
%	mol%	55.6°	η 74. 6°	82.2°	99.0°	33 50 60 67	801 1040 1208 1293	1673 2402	
0 33.38 56.80 74.28 84.39 92.46	0 14.12 38.72 58.13 72.21 85.50	2278 2634 3051 3877 3864 4963	1371 1467 1790 1680 1874 2359	1238 1235 1453 1340 1494 1835 1850	847 835 986 855 1052 1128 1041	70 72.2 80 90 100	1290 1310 1430 1650	2464 2695 2765 2930	
92.46 100	85.50 100	4963 6290	2469 (α)	1850	1041	mo1%	20°	0° a	-18.3°
%	dark red		yello	w gı	reen	0 10	34.81 33.27 32.11	36.82	42.94
33.38 56.80 74.28 84.39	-38.288 -39.027 -38.780 -39.047	76.75 -48.036 -49.190 -48.799 -49.242	-50.0 -51.0 -51.2	87 - 5	56.750 58.213 58.203 58.354	20 33 50 60 67 70 72,2	32.11 29.86 28.58 27.71 27.25 26.05	32.51 31.25 29.82 29.18 	35.09 32.63 31.02 - 30.56
92.46	-40.290 -40.149	-50.894 -50.155	-53.6 -52.3	85 -5	50.229 59.419	80 90 100	25.25 24.03 22.6	27.06 26.09 25.2	28.72 28.04 29.08
%	pale blu		digo blue	viol.		mo1%	n _D	mol%	n _D
33.38 56.80 74.28 84.39 92.46	-79.726 -79.850 -78.618 -79.785 -82.610	-9 -9	3.256 - 5.628 8.615 7.592	-94.13 -96.21 -95.70 -96.71 -99.84 -98.58	7 3 1	0 20 33 50 60	1.5292 .5085 .4885 .4677 .4523	70 80 90 100	1.4325 .4105 .3876 .3625
				75.50					

Allyl Isothiocyanate (C ₄ H ₅ NS) + Methyl Malate 1	Methyl thiocyanate (C_8H_8NS) + Methyl malate 1 ($C_6H_{10}O_5$)					
(${ m C_6H_{10}O_5}$) Grossmann and Landau,1910	Grossmann and Landau, 1910					
g/100cc (α) red yellow green pale dark viol. blue blue	g/100cc (α) red yellow green pale dark viol. blue blue					
20° 50.135 -4.93 -5.88 -6.82 -7.64 -7.96 -8.24 25.0675 -4.51 -5.15 -5.78 -6.46 -6.86 - 12.5338 -3.83 -4.47 -5.27 -5.74 -6.06 - 5.280 -4.36 -4.73 -5.30 -5.87 -6.25 -6.82 2.640 -5.68 -6.44 -7.20 -7.95 -8.33 -	20° 49.903 -5.01 -6.01 -6.81 -7.31 -8.12 -8.02 24.975 -5.09 -6.09 -6.89 -7.33 -7.29 - 12.4875 -5.21 -6.41 -6.89 -6.89 -6.81 - 4.882 -5.54 -6.93 -8.51 -7.91 -7.12 -6.13 2.441 -5.54 -5.14 -3.96 -3.17 -2.37 -					
Allylisothiocyanate ($C_{\mu}H_{5}NS$) + Hexyl Alcohol ($C_{6}H_{1\mu}0$)						
\$ b.t.	Shnidman, 1932					
	% f.t. % f.t.					
0 152.05 - 151.8 Az 100 157.85	62.89 24.58 50.70 54.76 59.95 32.94 45.45 64.55 55.30 44.80					
Allylisothiocyanate (C_4H_5NS) + Glycol ($C_2H_6O_2$) Lecat,1949	Ammonium thiocyanate ($ ext{CH}_{ ext{h}} ext{N}_{ ext{B}} ext{S}$) + Ethyl alcohol ($ ext{C}_{ ext{2}} ext{H}_{ ext{6}} ext{0}$)					
\$ b.t.	Shnidman, 1934					
0 152.05 - 151.8 Az 100 197.4	\$\mathbb{f}\$ f.t. \$\mathbb{f}\$ f.t. 80.03 18.45 76.54 43.36 78.46 33.25 73.28 57.62					
Allyl Isocyanate (C _u H _y NO) + Ethyl Alcohol (C ₂ H ₆ O)	77.84 36.93 71.37 64.20 Methyl cyanacetate (C ₄ H ₅ O ₂ N) + Methyl alcohol					
% d n 30° (alcohol=1)	($ ext{CH}_{f \downarrow} ext{O}$)					
0 - 0.6100 11.77 0.98226 0.5879 17.25 0.96732 0.5995 33.41 0.92827 0.6512 54.55 0.88062 0.7331 76.09 0.83692 0.8523 87.72 0.8141 0.9237	# d (α magn. 25° 100 0.7891 3.430 69.15 .8687 .632 52.58 .9188 .782 0 1.1067 4.205					

	<u> </u>					1004			
Benzamide	(C ₇ H ₇ ON) + Ethyl alo	cohol (C ₂ H ₆ O)	Speyers, mol%	1902 f.t.		01%	f.t.
Speyers,	1902				94,62	0.0		.95	40.2
mol%	f.t.	mol%	f.t.		92.98 88.88 86.04	11 22 33	5 7 6 8 64	.28 .76 .67	47.4 60.9 63.3
96.92 95.75 91.28	0.0 10.4 32.6	85.56 79.14	50.4 72.3		Mortimer	·, 1923			
t	d	t	đ		mol %	f	.t.	mol %	f.t.
0.0 14.1 36.2	0.8331 .8328 .8434	57.2 72.8 sat.sol.	0.8754 .9226		87.2 78.8 68.1	3	0 20 40	53.6 36.7 0	60 80 113.0
Formanilid	e (C ₇ H ₇ ON) + Glycero	1 (C ₃ H ₈ O ₃)	====	Speyers,	1902			
.	0.4				t		đ	t	đ
Dreyer, 19							sat. s	ol.	
mo1% 0.1°	v	mo1% 10.1°	<u>v</u>		0.0 16.7 29.9	0.	8602 8698	43.9 61.7	0.9206 0.9596
0	0.599	0	0.544		29.9	0.	8924		
0.25 0.5 1.0 2.0	.575 .547 .222 .198 .189	1 2.3 4.1 7.2 11.6	.504 .458 .408 .344 .249		Kerler,				
3.9 7.3 10.7 13.8 19.6 24.2	.155 .126 .109 .073 .065	13.8 19.2 24.4	. 220 . 173 . 147		 -	larity	25°		61°
20.3		35.0°		į	1	.593 .729 .576	6.54 11.06 2 6.17	4	11.796 16.704 38.786
0 0,25	0.876 .848	0 2.3	0.898 . 72 9		ŏ	.115	50.55	2	70.532
0,25 0.5 1.0 1.7 2.0 3.9	.820 .784 .740 .716 .607	2.3 4.0 8.2 10.8 13.9	.577 .321 .201 .094		Acetanili	ide (C _g H _g	₉ 0N) + Etl	nyl alcoho	ol (C ₂ H ₆ O)
3.9 7.3 10.7	.464 .3 77				Speyers,	1902			
13.8 19.6 24.2	.315 .209 .182				mo1%	f.t.	mol%	f.t.	
		n velocity.			94.99 93.16 82.07	0.0 10.8 42.5	84.60 68.64	43.5 61.6	
Acetanilid	e (С ₈ И ₉ ОN) + Methyl	alcohol (CH ₄ 0)	Mortimer	, 1923			
Vandenberg	he, 1903				mo1%	f.t.	mo13	f.t.	
%		D b.t.			95.2 90.5	20	64.9	60	
92.59 83.33 76.33		+0.49 1.095 1.630			90.5 81.9	20 40	0	113	.0

80			ACET	AIN LI DE
Shishokin	, 1929			
mo1%	f.t.	mo1%	f.t.	
0	114	49.76 59.73	78.3	
22.54 31.23 40.25	99.2 92.9	70.03	69 57.5 45.2	
40.25	86	79.24	45.2	
Speyers,	1902			
t	d	l	t	d
		sat. sol		
0.0	0.8	3420	58.1 76.7	$0.9156 \\ 0.9596$
$0.0 \\ 17.2 \\ 39.0$	0.8	3472 3721	70.7	0.7370
Acetanil:	ide (C _B H	90N) + Ch	loral hydra	ate
				$(C_2H_3O_2Cl_3)$
Angelett	i, 1928			
n . 11	F # 1	8°		
$E_1 : 31.$				
$E_2 : 42.$	7% 2	5°		
Acetanili	ide (C ₈ H ₉	,0N) + Me	nthol (C ₁	0 0 sH ₂
Hrynakows	ski and Ac	amanis, l	933	
mo1%	f.t.	mo1%	f.t.	
100	42.5	46.3	83.0	
94.2 88.6	40.0 37.0	41.3 36.5	87.0 91.0	
85.2 83 77.5 72.1	35.0 E 38.0	31.7 27	94.0 96.8	
77.5 72.1	45.5 50.5	22.3 17.3	98.9 102.2	
66.8 61.5	56.0 64.0	17.3 13.2 8.5	105.2	
56.4	70.0 76.0	4.3	111.7 112	
51.3	70.0		116	

```
Acetyl-o.toluidine ( C9H110N ) + Methyl alcohol
                                               ( CH<sub>4</sub>0 )
Hall, Collett and Lazzell, 1933
                                             f.t.
                f.t.
                              mol%
 mo1%
                               44.52
54.45
63.55
73.50
77.66
                                             \frac{79.6}{71.0}
               110.3
               102.4 \\ 100.7
  14
                                             61.4
47.9
42.1
  16.40
25.65
                94.9
91.0
  30.50
                                              18.3
                               89.69
  36.40
40.20
                 86.5
                 83.3
Acetyl-o-toluidine ( C9H1:0N ) + Ethyl alcohol
                                               (C_2H_60)
Hall, Collett and Lazzell, 1933
   mo1%
                  f.t.
                                mo1%
                                               f.t.
                110.3
102.0
99.2
                                52.45
58.62
68.20
                                               75.2
69.9
    0
   14.50
                                               60.3
   20.05
                  93.5
87.7
   28.10
                                75.55
                                               52.3
                                 86.01
                                               34.8
23.9
   35.40
   45.06
                  80.8
                                 90.80
Acetyl-o-toluidine ( C9H110N ) + Propyl alcohol
                                                (C_3H_8O)
Hall, Collett and Lazzell, 1933
   mo1%
                  f.t.
                                mo12
                                               f.t.
                 110.3
103.2
87.4
79.2
76.2
                                59.60
67.70
79.85
84.82
                                               68.9 \\ 60.0
   13.20
36.70
                                               45.0
36.7
   46.20
50.62
 Acetyl-o-toluidine (C9H110N) + Isopropyl alcohol
                                                (C_3H_8O)
  Hall, Collett and Lazzell, 1933
    mo1%
                  f.t.
                                 mo1%
                                                f.t.
                                 58.70
66.06
74.39
76.87
78.28
88.69
                                                71.8
66.0
57.1
54.1
52.2
34.5
                 110.3
106.2
    7.20
17.50
27.50
                 100.2
                  94.4
86.7
79.8
    38.90
48.30
```

Acetyl-o-toluidine ($C_9H_{1\,1}\,0N$) + Butyl alcohol ($C_4H_{1\,0}0$)

Hall, Collett and Lazzell, 1933

mo1%	f.t.	mol%	f.t.	
0 11.80 32.20 36.90 49.65	110.3 103.5 90.6 86.7 77.2	57.86 66.60 78.42 89.50	70.8 62.1 47.7 26.5	

Acetyl-o-toluidine ($C_9H_{1,1}0N$) + Isobutyl alcohol ($C_uH_{1,0}0$)

Hall, Collett and Lazzell, 1933

mo1%	f.t.	mo1%	f.t.	
0	110.3	49.94	77.2	
12,40	103.1	57,65	72.3	
21.20	98.0	69.49	60.7	
32.08	91.4	79,26	49.2	
42.10	83.0	89.70	30.1	

Acetyl-p-toluidine ($C_9H_{1,1}0N$) + Methyl alcohol ($CH_{\nu}0$)

Pollock, Collett and Lazzell, 1946

mo1%	f.t.	mo1%	f.t.	
95.096 89.91 89.65 77.25 72.23	39.1 59.1 60.3 83.7 91.7	59.40 55.76 40.95 11.05	105.3 109.3 123.3 142.7 148.5	

Acetyl-p-toluidine ($C_9H_{11}0N$) + Ethyl alcohol (C_2H_60)

Pollock, Collett and Lazzell, 1946

 ыо1%	f.t.	mo1%	f.t.	
96,655 94,340 89,78 89	27.8 43.9 62.0 63.7 73.1	77.50 50.42 33.90	86.1 116.6 129.3 148.5	

Acetyl-p-toluidine ($C_9H_{11}0N$) + Propyl alcohol (C_9H_80)

Pollock, Collett and Lazzell, 1946

 mo1%	f.t.	mo1%	f.t.	
90.461 79.58 68.73 56.65 46.28	56.9 81.3 95.6 108.0 117.2	45.48 38.68 11.41	118.9 123.8 139.1 148.5	

Acetyl-p-toluidine ($C_9H_{1\,1}\,0N$) + Isopropyl alcohol (C_9H_B0)

Pollock, Collett and Lazzell, 1946

mol%	f.t.	mo1%	f.t.	
96.213 89.62 79.28 74.33 70.99	32.3 62.9 87.4 91.0 93.6	56.98 41.65 31.85 0	110.1 122.3 129.3 148.5	

Acetyl-p-toluidine ($C_9H_{11}0N$) + Butyl alcohol ($C_hH_{10}0$)

Pollock, Collett and Lazzell, 1946

mo1%	f.t.	mo1%	f.t.	
95.510 89.68 76.04 68.72 60.18	32.6 59.5 82.8 95.9 106.0	47.85 33.44 18.28	116.0 127.7 137.8 148.5	

Acetyl-p-toluidine ($C_9H_{11}0N$) + Isobutyl alcohol ($C_4H_{10}0$)

Pollock, Collett and Lazzell, 1946

Acetyl-p-toluidine	($C_9H_{11}ON$)	+	tert.Butyl	alcohol
				-	(C ₄ H ₁₀ O)	

Pollock, Collett and Lazzell, 1946

mo1%	f.t.	mo1%	f.t.
92.56 84.73 78.91 68.53 59.25	55.2 77.6 87.1 100.1 109.5	49.12 35.51 23.06	117.7 128.1 136.6 148.5

Capranilide ($C_{16}H_{25}N0$) + Methyl alcohol ($CH_{4}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
84.6 58.6 20	$10.0 \\ 30.0 \\ 50.0$	8.7 4.3 0	60.0 64.7 69.5	

Capranilide ($C_{16}H_{25}N0$) + Ethyl alcohol ($C_{2}H_{6}0$) (95%)

Ralston, Hoerr and Pool, 1943

%	f.t.	Z	f.t.	
74.9 55.2 21.7	10.0 30.0 50.0	8.2	60.0 69.5	

Capranilide ($C_{16}H_{25}N0$) + Isopropyl alcohol ($C_{3}H_{8}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
84.1 68.5 31.2	10.0 30.0 50.0	14.2 0	60.0 69.5	

Capranilide ($C_{16}H_{25}N0$) + Butyl alcohol ($C_{4}H_{16}C_{16}$)

Ralston, Hoerr and Pool, 1943

%	f.t.	Я	f.t.	
79.9 64.5	$\begin{smallmatrix}10.0\\30.0\end{smallmatrix}$	31.3	50.0 69.5	

Lauranilide ($C_{1\,8}H_{2\,9}N0$) + Methyl alcohol ($CH_{4}0$)

Ralston, Hoerr and Pool, 1943

Я	f.t.	%	f.t.	
97.3	10.0	18.9	60.0	
90.9	30.0	13.5	64.7	
35.1	50.0	0	77.2	

Lauranilide ($C_{18}H_{29}N0$) + Ethyl alcohol ($C_{2}H_{6}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
90.5	10.0	21.8	60.0	
81.8	30.0	6.5	70.0	
44.6	50.0	0	77.2	

Lauranilide ($C_{1\,8}H_{2\,9}N0$) + Isopropyl alcohol ($C_{9}H_{8}0$)

Ralston, Hoerr and Pool, 1943

%	f.t.	%	f.t.	
93.8 85.8 80.0 49.6	10.0 30.0 30.0 unst 50.0	28.6 9.8 . 0	60.0 70.0 77.2	

Lauranilide ($C_{18}H_{29}N0$) + Butyl alcohol ($C_{4}H_{10}0$)

Ralston, Hoerr and Pool, 1943

R	f.t.		%	f.t.	
88.6 79.4 73.0	$10.0 \\ 30.0 \\ 30.0$	II.	48.4 10.2	50.0 70.0 77.2	

Palmitanil	ide (C ₂₂ H ₃	, ₇ NO) + Me	thyl alcohol (CH ₄ 0	Stearanil	ide (CջդHդ	, ₁ NO) + Me	thyl alcohol	(CH ₄ 0)
Ralston,	Hoerr and F	Pool, 1943		Ralston,	Hoerr and	Pool, 1943		
%	f.t.	%	f.t.	- %	f.t.	%	f.t.	
99.5 99.2 94.2	10.0 30.0 50.0	79.8 59.5 0	60.0 64.7 90.2	99.9 99.8 99.0	10.0 30.0 50.0	93.8 86.2 0	60.0 64.7 94.9	
Palmitani	lide (C ₂₂ 1	H _{3 7} NO) + E	thyl alcohol (C ₂ H ₆ 0) Stearanil	ide (C ₂₄ H ₄	.1NO) + Etl	hyl alcohol	(C ₂ H ₆ O)
Ralston,	Hoerr and I	Pool, 1943		Ralston,	Hoerr and	Pool, 1943		
%	f.t.	%	f.t.	%	f.t.	Я	f.t.	
99.4 97.2 87.7 66.9	10.0 30.0 50.0 60.0	32.8 12.2 0	70.0 78.5 90.2	99.7 98.8 92.9 82.3	10.0 30.0 50.0 60.0	56.5 44,7 0	70.0 78.5 94.9	
Palmitani	lide (C _{2.2} H	•	sopropyl alcohol C ₃ H ₈ O)		lide (C ₂₄ H	((sopropyl alco C ₉ H ₈ O)	oho l
	Door and	Pag1 1042		%	f.t.	%	f.t.	
99.4	f.t.	40.9	f.t. 70.0	99.7 98.7 92.3 79.6	10.0 30.0 50.0 60.0	52.4 15.0 0	70.0 82.3 94.9	
97.7 87.7 71.8	30.0 50.0 60.0	8,8	82.3 90.2	Stearanil	ide (CջկHկ	,1NO) + Bu	tyl alcohol	(C4H100)
Palmitani	lide (C ₂₂ H	l _{s 7} NO) + Bu	utyl alcohol (C _Կ H _{1 O}		Hoerr and F			
Ralston,	Hoerr and P	ool, 1943		- % 	f.t.		f.t.	
**	f.t.	%	f.t.	- 99.4 97.9 89.9	10.0 30.0 50.0	54.1 6.5 0	70.0 90.0 94.9	
98.2 97.9 82.3	10.0 30.0 50.0	39. 8 0	70.0 90.2					
								!

Benzanilid	le (C ₁₃ H	l ₁₁ 0N) +	- Mannitol	(C ₆ H ₁ 40 ₆	;)
Kofler and	Brandst	ätter, l	1942		
%			f.t.		
100			161 E 166		
Benzanilid	e (C ₁₃ H	110N)+	Benzoin	(C _{1 4} H _{1 2} 0	2)
Vanstone,	1913		······································		
mol%	f.t.	E	mo1%	f.t.	E
100 88.81 78.81 65.84	133.0 128.3 123.6 117.6	123.0 118.0 117.6	53.97 39.09 24.38	121.8 134.3 146.9 160.8	116.6 116.6
E : 36 m	101%	116.6°			
Benzanilid				erol (C ₂₉	H ₄₈ 0)
Kofler and	Brandst	atter, 1	.942		
<u> </u>		f.	.t.		
0 E	·	16 14			
Phenyl ure	ea (C ₇ H ₈	30N ₂) +	Ethyl alc	cohol (C ₂ ł	160)
Meldrun ar		r, 1910			
g/100cc	alcohol	D	b.t.		
10.32 8.21 6.99 5.89 5.20			.998 .803 .696 .595		

_	+ MANNITOL	
	N,N-Diphenylca	pramide ($C_{22}H_{29}ON$) + Methyl alcohol ($CH_{14}O$)
	Ralston, Hoer	r and Pool, 1943
	%	f.t.
	73.5 33.4 0	10.0 30.0 47.5
	N,N-Diphenylca	epramide ($C_{22}H_{29}0N$) + Ethyl alcohol (C_2H_60)
	Ralston, Hoen	rr and Pool, 1945
١	%	f.t.
	67.4 26.7 0	10.0 30.0 47.5
	alcohol (C ₃ H	-
	Ralston, lice	rr and Pool, 1943
	<u> </u>	f.t.
	66.3 30.9 0	10.0 30.0 47.5
	N,N-Diphenyl	capramide ($C_{22}H_{29}0N$) + Butyl alcohol ($C_4H_{10}0$)
	Ralston, Hoe	rr and Pool, 1943
	%	f.t.
	63.7 30.8 0	10.0 30.0 47.5

	"
N,N-Dipheny	llauramide ($C_{24}H_{33}0N$) + Methyl alcohol ($CH_{14}0$)
Ralston, Ho	err and Pool, 1943
R	f.t.
91.8 55.3 9.4 0	10.0 30.0 50.0 57.0
N,N-Dipheny	llauramide ($C_{24} II_{33} 0N$) + Ethyl alcohol ($C_{2} II_{6} 0$)
Ralston, H	oerr and Pool, 1943
Z	f.t.
87.3 65.4 10.0 0	10.0 30.0 50.0 57.0
ho1 (C ₃ H ₈ 0	llauramide (C ₂₄ H ₃₃ ON) + Isopropyl alco-) perr and Pool, 1943
%	f.t.
82.4 56.5 9.2	10.0 30.0 50.0 57.0
	yllauramide ($C_{2k}H_{33}ON$) + Butyl alcohol ($C_{k}H_{10}O$)
	oerr and Pool, 1943
	f.t.
79.6 54.3 11.7 0	10.0 30.0 50.0 57.0
=======	

N,N-Diphenylpalmitamide ($C_{28}H_{1+1}ON$) + Methyl alcohol ($CH_{\downarrow}0$) Ralston, Hoerr and Pool, 1943 % f.t. f.t. $\substack{16.1\\6.7\\0}$ 98.3 94.8 49.7 $10.0 \\ 30.0 \\ 50.0$ $\begin{array}{c} 60.0 \\ 64.7 \\ 69.5 \end{array}$ N,N-Diphenylpalmitamide ($C_{28}H_{4\cdot 1}0N$) + Ethyl alcohol (C_2H_6O) Ralston, Hoerr and Pool, 1943 f.t. % f.t. 98.9 95.3 50 $10.0 \\ 30.0 \\ 50.0$ 15.0 $\frac{60.0}{69.5}$ N,N-Diphenylpalmitamide ($C_{2\,8}H_{4\,1}\,0\text{N}$) + Isopropyl alcohol (C_3H_80) Ralston, Hoerr and Pool, 1943 % f.t. % f.t. $10.0 \\ 30.0 \\ 50.0$ 18.2 60.0 69.5 $N,N\text{-}Diphenylpalmitamide (<math display="inline">C_{28}H_{\nu_1}0N$) + Butyl alcohol $(C_{4}H_{10}O)$ Ralston, Hoerr and Pool, 1943 % f.t. % f.t. $93.1 \\ 84.1$ $\begin{smallmatrix} 10.0\\ 30.0 \end{smallmatrix}$ 48.7 $\frac{50.0}{69.5}$

•	nylstearamic Hoerr and l		ON) + Methyl alcol	ho]
%	f.t.	%	f.t.	_
98.9 96.3 72. 9	10.0 30.0 50.0	25.0 14.3 0	60.0 64.7 72.3	
	nylstearamic		ON) + Ethyl alcoh (C ₂ H ₆ O)	01
%	f.t.	%	f.t.	
99.2 97.6 65.8	10.0 30.0 50.0	24.4 2.9 0	60.0 70.0 72.3	
cohol (C			ON) + Isopropyl a	l-
%	f.t.	%	f.t.	
95.8 90.2 71.2	10.0 30.0 50.0	30.3 3.9 0	60.0 70.0 72.3	
	nylstearami Hoerr and		ON) + Butyl alcoh (C ₄ ll ₁₀ 0)	ol
%	f.t.	%	f.t.	
95.4 87.9 59.5	10.0 30.0 50.0	3.9	70.0 72.3	
+ Menthol	(C ₁₀ II ₂₀ 0)	inobenzophe)	none (C ₁₇ H ₂₀ ON ₂)	
Pfeiffer		· · · · · · · · · · · · · · · · · · ·		
Pfeiffer,	f.t.	%	f.t.	

Anisidine-	o (C ₇ :1 ₉ 0N) + G1	ycol (C ₂ H ₆ O ₂)
	•		
Lecat, 19	049		
%	b.	t.	
0 59	229 193	.0 .5 Az	
100	197	.4	
o-Anisid	ine (C ₇ H ₉ ON) + (Glycerol (C _s i	I ₈ 0 ₃)
Parvatil	ker and Mc Ewen, 1	924	
Я	sat.t.	Æ	sat.t.
26.91 38.75	142.5 145.0	56.43 65.75	143.0 141.0
48.31	144.5		
Anisidine	-o (C ₇ II ₉ ON) + Me	enthol (C ₁₀ ll ₂	0)
	•		
Lecat, 19	49		
%	b.	t.	
0	229	9.0 5.0 Az	
100	216	5.3	·
Lecat, 19		/1 · A1A E1	
Phenetidi	ne-o (C ₈ H ₁₁ 0N)	(b.t.=232,5)	Alcohols.
	2 nd comp.	Az	
Name	Formula b.t.	% b.t.	
Glycol	(C ₂ 1 ₆ O ₂) 197.	66.8 194.	. 8
Decyl alcohol	(C ₁₀ H ₂₂ 0) 232.1	8 48 232	.0
Diglycol	(C ₄ II ₁₀ O ₃) 245.5	5 18 225	.0
Butoxy diglycol	(C ₈ H ₁₈ O ₃) 232.1	1 48 226.	.0
Phenetidir	ne-p (C ₈ H ₁₁ ON) +	Glycol (C-H	(0,)
Lecat, 19		orjeor (cgn	6~2 /
%	b.t.	·	
0 97 100	249. 197. 197.	.9 .35 Az .4	

enetidine-	P_{p} ($C_{8}H_{1,0}N$) + Diglycol ($C_{4}H_{1,0}O_{3}$)
ecat, 1949	
%	b.t.
0 52 100	249.9 232.0 Az 245.5

Adamanis, 1933

mo1%	f.t.	mo1%	f.t.	_
0	135	58.4	107.0	
5.7	129.0	63.2	102.0	
11.3	127.5	68.0	99.5	
16.8	126.0	72.8	96.0	
22. 3	124.0	77.5	90.0	
27.6	122.0	82.1	85.0	
3 2. 9	118.5	86.7	79.5	
38 .2	116.5	91.2	70.5	
43.3	115.0	95.6	52.0	
48.4	112.0	100	42.5	
53.4	108 5			

E: 97.2 mo1% 40.0°

Phenacetine ($\rm C_{1\,0}H_{1\,3}O_{2}N$) + Quinine ($\rm C_{2\,0}H_{2\,4}O_{2}N_{2}$)

Adamanis, 1933

mo1%	f.t.	mo1%	f.t.
.0	135	40.3	137.0
2.8	133.5	45.3	142.0
5.8	131.0	50.6	144.5
9.1	130.0	56.3	148,0
12.1	129.0	62.3	151.0
15.6	128.0	68.9	155.0
19,1	126.8	75.8	158.0
22.9	123.5	83.3	163.0
26.9	124.0	91.3	166.0
31.1	128.5	100	175
35.6	132.0		

Phenacetine ($C_{10}II_{13}O_2N$) + Lactophenine ($C_{11}II_{15}O_3N$)

Kofler, 1944 (fig.)

%	f.t.	%	f.t.	
100	118	60	100	
80	109	40	114	
70	102	20	125	
65	96	0	135	

Diphenylurea ($C_{1.8}II_{1.2}ON_2$) + Borneol ($C_{1.0}H_{1.8}O$)

Medard, 1931

%	f.t.	%	f.t.	·
0 10 20 30 40	72.3 64 60 50.5 42.25	45 47.5 50 55	42.25 60 68 82	

Ally1 phenyl thiourea ($C_{1\ 0}H_{1\ 2}N_{2}S$) + Methyl alcohol ($CH_{4}0$)

Shishokin, 1929

mo1%	f.t.	mol%	f.t.	
0.0	99	61.63	71.7	
22.55	91	71.87	65.7	
29.21	86.5	80.76	59.5	
42.37	81.5	93.01	46.0	
51.30	77.2	95.43	40.0	

Allyl phenyl thiourea ($C_{1\,0}H_{1\,2}N_2S$) + Ethyl alcohol (C_2H_6O)

Shishokin, 1929

mo1%	f.t.	mo1%-	f.t.	
0.0 21.26 32.17 36.43 50.46 53.43 58.84	99 91 86.7 84.8 78.7 77.5 74.5	68.51 73.37 78.56 83.45 89.84 95.15	70.2 68.8 64.8 61.3 55.2 44.7	

SARCOSIN ANHYDRIDE + MANNITOL

000				3ARCUSI N	ARRITU	RIDE + MA	WHAI I OF				
Sarcosin	anhydride	e (C ₆ H ₁	(8N800	+ Mannit ol (C ₆ H ₁₄ O ₆		Sarcosin	anhydrio	de (C ₆ H	1002N2) + N	Menthol (C ₁	οH ₂ οΟ)
Pfeiffer	and Seyde	el, 1928	1			Pfeiffer	and Ange	ern, 1920	6		
%	f.t.	E	%	f.t.	E	%	f.t.	Е°	8	f.t.	E
0 10 19.5 30 40	146 143 138 135 145	145 128	50 60 70 80 100	152 157 160 163 166	128 " " 163	0 20 30 40 50 60	146 143 138 132 128 122	144 40 40 39 38 38	70 80 90 95 98 100	115.5 98 66 40 42 44	38 38 38 38 38 38 43
				Chloral hy (C ₂ H ₃ O ₂ Cl ₃					Ethyl alcoho	1 (C ₂ H	60)
<u> </u>	and Seyde						Jr. and H				
	f.t.	<u>E</u>		f.t.	<u>E</u>	8	n 			n _D	ر النبر حال جنور النبر حال البيرات
0 20 30 40 46 50 60 (1+1)	146.2 127 114 99.5 92 93 93 (2+1)	145 88 " " " 85	66 70 75 80 90 95 100	86 87.5 85 78.5 50 48 51.5	85 41 " " 49	0 10.9 21.2 29.2 44.7 53.4	1.4 1.4 1.4 1.4	25 1528 1430 1337 1267 121 1040	60.2 70.8 80.1 89.1 100.0	1.39 1.38 1.37 1.37 1.35	72 86 00
Sarcosin	anhydride	(C ₆ H _{1 o}	0 ₂ N ₂) +	Cholester		Antipyrin Regenboge		1 2 ON ₂)	+ Cetyl alc	ohol ((C ₁₆ H _{3 4} 0)
Pfeiffer	and Seyde	1, 1928				%	f.	t		f.t.	·
0 10 20 30 40	f.t. 146 145 144 141 143	145 143 142 141 141	51 60 80 100	f.t. 144 145 145.5 146	141 141 142 144	100 90 80 70 60 50	41 44 58 78 85 90		40 30 20 10 0	95 99. 102. 105. 108.	.5 .4
Brandsta	tter, 194	3			,	Antipyrin Regenboge		120N ₂)	+ Mannitol	(C ₆ H ₁ 40) ₆)
8	f.t.		%	f.t.		wt %		———— mo1 %	f.t.		 Е
100 97.5 96.25 95 90 85 80 70 60	151		50 40 35 34 30 20 10 0	146 (1+ 144 " 143 142 E 143 144 145 147	1)	100 90 80 70 63.5 60 54.5 50 45 40 36 36 30 20 10	1	00 90.3 80.5 70.7 64.2 66.8 55.3 50.8 45.8 45.8 45.8 36.7 30.7 20.5	160.7 158.9 157.8 156.8 154 153.1 150 152.0 150 146 145 138 129 103 108.5		- - - - - - 99 100 100 100 100

Pfeiffer	and Seyd	el, 19	28			Antipyri	ne (C ₁₁ H	120N2)	+ Butyl (C ₄ H ₇	chloral O ₂ Cl ₃)	hydrate
%	f.t.	E	K	f.t.	E	Regenhog	en, 1918				
10 20 30	112 107 120 148 155 159	110	50 60 66.6 80 100	161 162 163 164 166	104 " " 163	100 90 80	f.t. 68.8 58.5	61.1 60.5 58.5	l > >	f.t. 57.8 61 60 62.5	
Antipyrin Tsakaloto		20N ₂)	+ Chlora (C ₂ H ₃ O			72.3 81.2 70 69 68.4 67.3 67.3 65 64.8 64.4 64.2	45 50 52 54 56 53 58 50 53.2 58 51.9	56. 53. 50. 47. 43. 34. 30. 20	5 7 1 2 8	62.1 64.0 63.8 62.5 58.0 59.0 74 94 102 109	
mo1%	f.t.		mo1%	f.t.		63 (1+1)	51.9				
100 96.55 96.12 85.21 79.15 72.62 72.09	51.6 43.3 39.9 33.8 44.7 56.0 56.8		55.17 54.16 50 49.84 47.76 44.25 36.20	57.2 59.1 62.3 62.3 61.7 57.5 57.2		Pfeiffe	r and Sey	·			
66,20 62,18 57,42	61.8 60.2 57.3		25.49	77.7 108.9		<u> </u>	f.t.	E	%	f.t.	<u>E</u>
57.42	57.3			(2+	1)	0 11 20	112 105 97 85	110 66 "	60 70 80	69 63 61	56
Regenbe	ogen, 1911	3				30 38 43 50	85 73 68 70	11 11 15	85 90 100	64 68 77	72
mo1%	gr%	f.t.	mol%	gr%	f.t.	(1+1)					
100 100 49.0 53.2 50.0 60.0 91.1 90.0 38.4 50.0 46.8 62.7 85.9 84.3 27 48.2 45.0 61.2 82.8 90.9 26 43.6 40.5 55.0 80.4 78.3 36.3 39.5 36.5 49.0 75.3 72.8 52.0 32.5 29.8 58						Antipyri		120N ₂)	Menth	01 (C ₁₀ H	200)
66.7 64.1 58.7	63.8 61.1 55.6	60.9	$\frac{22.1}{11.2}$	$\frac{20.0}{10.0}$	66 88 101 109.0	K	f.t.	E	Я	f.t.	
56.2	53.0	57.3 57.2	U	0	109.0	100 93.8 89.6 85.7 84.1 76.9 71.2 68.4 65.1 60.9	41.4 37.6 35.9 33.7 35 44 53 56.5 59 66	32.5 32.5 32.5 32.9 32.5	55.6 50.3 45.3 43.2 37.3 30 20 10	71 78.5 85 88 93.5 95 103.5 105.5 108.5	

Adamanis	, 1933			
mo1%	f.t.	mol%	f.t.	
0 6.0 11.8 17.5 23.1 28.6 34.0 39.4 44.5 49.6 54.6	112 106.0 104.0 101.5 99.0 95.5 93.5 89.2 87.0 83.0 79.0	59.5 64.4 69.1 73.8 78.3 82.8 87.2 91.6 95.8	72.5 68.0 61.5 53.5 45.5 39.5 39.5 41.0 42.5	

Quercigh and Cavagnari, 1912

33.0°

E: 90% 29.5°

E: 83.7 mo1%

Angeletti, 1928

E: 81.1% 33°

Antipyrine ($C_{11}H_{12}0N_2$) + Cholesterol ($C_{27}H_{46}0$)

Pfeiffer and Seydel, 1928

%	f.t.	Е	%	f.t.	E
0 10 20 30 41	112 110 108 107 106.5	110 103 101 100 100	50 60 70 80 100	107 110 116 126 146	100 102 108 119.5

Brandstätter, 1943

%	f.t.	%	f.t.	
0 10 20 30 40 45 E: 47%	111 109 107 106 104.5 103	50 60 70 80 90 100	105 114 122 130 139 148	

Antipyrine ($C_{11}H_{12}ON_2$) + Benzyl alcohol (C_7H_8O)

Regenbogen, 1918

%	f.t.	%	f.t.	. .
59.5	-15	33.8	63	
55.4	+2	25.4	77	
49.4	22	18.8	100.5	
41.5	41.5	0	108.5	

Antipyrine ($C_{11}H_{12}ON_2$) + Neoorthoform ($C_8H_9O_8N$)

Pfeiffer and Seydel, 1928

<u> </u>	f.t.	E	%	f.t.	E
0 10 20 30 35 40 47 (1+1)	112 105 95 78 80 88 91	119 70 " " " 86	50 54 60 70 80 90 100	90 88 93 115 128 137 142	86

Acetylamino antipyrine ($C_{1.9}H_{1.5}O_{2}N_{s}$) + Neoorthoform ($C_{8}H_{9}O_{3}N$)

Pfeiffer and Seydel, 1928

%	f.t.	m.t.	%	f.t.	m.t.
0	200 179	198	55	98	92
20 30	165 145	92 "	60 70 81	108 124	"
40 50	113	11	100	133 142	139

Amygdalin ($C_{20}H_{27}O_{11}N$) + Menthol ($C_{10}H_{20}O$)

Eisenlohr and Meier, 1938

mo1%	f.t.	E	tr.t.	
0	214	_	-	
27	192	186	-	
34	202	11	_	
40	209	**	_	
50	212	-	-	
56	211 209	_	-	
62	209	_	-	
67	205	-	-	
75	202	_	33	
90	11	-	11	
94	**	-	11	
27 34 40 50 56 62 67 75 90 94 98 100	Ħ	-	11	
100	11	-	-	

			PY	RAMI DOI	+ BU
Pyramid	on (C ₁₈ II ₁		Butylch] (C ₄ II ₇ 0 ₂ (ate
Pfeiffe	r and Seyo	lel, 192	3		
Я	f.t.	E	%	f.t.	E
0 10 20 30 40 50	107.5 103 93 79.5 83 82	106 78 " " 70	60 70 80 90 100	76 65 64 71 71	58 " " 72'
(1+1)					
	on (C ₁₃ H ₁	'	Cholest	erol (C ₂₇	,II ₄₆ 0)
%	f.t.	E	%	f.t.	E
0 10 20 30 40	108 106 101.5 95 97	107 91 "	50 60 70 80 100	105 114 122 130 146	91 " " 144
Pyramid	on (C ₁₃ II ₁₇	0N ₃) +	Neoortho	oform (C ₈	H ₉ Q ₈ N)
Pfeiff	er and Seyd	el, 1928	.		
%	E	f.t.	R	E	f.t.
0 10 20 30 37 39	106 55 " "	107.5 99 89 75 59 65	41 43 50 60 80 100	55 " " " 139	73 78 96 115 134 142
Fuchsia	ne (C ₂₂ H ₂₅	0-No) +	Fthyl a	lcohol ((C-H-O)
1 4611311	(0221128	י / צייגי	ышут а	**OHOT (-21160)
Christ	lansen, 187	0			
specti	ral lines		n		
	81.2% at	room tem	p.		
B C D F G		1.4 .5 .5	0 2 61		
F G II		.3	12 85 12		
					

```
Betaine (C_5II_{11}O_2N) + Methyl alcohol (CII_4O)
Stolzenberg, 1914
     %
                                        %
                                                        f.t.
                    f.t.
 72.38
71.46
64.79
64.58
60.52
                                       60.14
58.39
58.27
54.82
55.62
                    -9.2
-8.7
                                                         41
54
52.4
71
71
                  +21.1
21
41
Betaine (C_5H_{11}O_2N) + Ethyl alcohol (C_2H_6O)
Stolzenberg, 1914
     %
                    f.t.
                                        %
                                                        f.t.
   94.62
94.45
92.09
88.44
87.98
                                       85.31
85.55
80.62
80.10
                                                        55
54.7
79
79
                    -2
-2
                  +18.3
41.5
42.5
Hyoscyamine ( C_{1.7}H_{23}ON_3 ) + Ethyl alcohol ( C_2H_6O )
Hammerschmidt, 1889
     %
                  d
                                 (a )
                                                                d
                                                                              (α)D
                                          20°
98.5930
97.6067
95.6096
95.3955
91.8405
               0.79329
.79662
.80120
                              -20.98
20.53
21.12
20.95
21.14
                                              90.9015
89.3793
87.5704
85.4310
                                                                            21.17
21.18
21.23
21.17
                                                             0.81496
                                                               .81818
                                                                .82540
                 .80218
.81122
                                                                .83139
Cytisine (C_{11}H_{14}ON_2) + Methyl alcohol (CH_4O)
Rauwerda, 1900
     %
                                                            (° )<sub>D</sub>
                                đ
                               17°
                                                           15°
                             0,8372
.8748
.9253
                                                         -117.53
111.10
103.10
 10
20
32
```

				1-leucine ma	ethvl ether h	ydrochloride	: (C ₂ H ₁ 60 2NC1)
Cytisine (C ₁	1H140N2) + Ethy	yl alcohol (C ₂ H ₆ O)	'				: (C ₇ H ₁₆ O ₂ NC1)
200	10			Takahashi a	nd Yaginama,l	930	· · · · · · · · · · · · · · · · · · ·
Rauwerda, 190		('4)		%	f.t.	%	f.t.
%	d 17°	(α) _D		59	-20	18	98 tr.t.
2	0.8055	-107.30 101		55 51	-10 0	17 14	80 90
10 20	. 8350 . 8 7 54	92.30		48 42 38	10 20	12 10	100 110
%	f,t,		f.t.	38 34	30 40	7.5 5 2	120 130
				34 29 25 22	50 60	$\stackrel{2}{0}$	140 150
76.1 66.5	26 26	56.1 46.2	15 30	<u></u>	70		
				1-leucine e	thyl ether hy	drochloride	(C ₈ H ₁₈ O ₂ NC1)
Methyl cytis:	ine ($C_{12}II_{16}ON_2$) + Methyl alcohol (CH _k O)					2.10
		* * ** *		lakahashi a	nd Yaginama,1	930	
Rauwerda, 190				%	f.t.	%	f.t.
	f.t.			78	-20	37	60
31.5 27.6	18 30			7 3	-10 0	33 29 22	70 80
				64 58	10 20 30	19	90 100
%	d	(a) _D		54 48 42	30 40	13	110 120
	17°	21°		42 40	50 52	2 0	130 140
95 90	0.8066 .8266	-198 193.5					
80 60	.8642 .9306	183.30 164.23		l-leucine i	propyl ether	hydrochlorid	le (C ₉ H ₂₀ O ₂ NC1)
				+ Propyl a	lcohol (C ₃ H ₈	0)	- 1 Jun 2 00 211C1
Methyl cytic	sine (CH., ON) + Ethyl alcohol		Takahashi	and Yaginama,	1930	
	~ (•1 211 60112	(C ₈ H ₆ O)		%	f.t.	Я	f.t.
Rauwerda, 19	900			84 79	-20	45	60
%	f.t.			79 73 71	-10 0 5.3	40 34 29	70 80
46.2	18			69 64	10 20	29 22 17	90 100 110
38.9	30		ļ	59 60	30 40	10 5	110 120 130
%	đ	(α) _D					
	17°	18.5	,		alphenylhydra	zone (C ₁₄ H ₁	$_20N_2$) +
95 90	0.8101	-170.13		Etnyl alcoh	o1 (C ₂ H ₆ O)		
80 70	.8287 .8647 .8952	167 161.5 154.53	İ	Sidgwick and	d Ewbank, 192	1	
	.0,02	134.33		%	f.t.	% f.	t.
				0	128.5 6 113.5 8	0.5 93	3.5
			į	9.8 25.1	103,4 9	0.4 83	3.4
				44.8	98.0		·
_							

Laurylamine acetate ($C_{14}H_{31}O_2N$) + Ethyi 21cohol (C_2H_6O) Herwood, Ralston and Selby, 1941 (fig.)	Heptadecylamine acetate ($C_{1.9}H_{h_1}O_2N$) + Ethyl alcohol (C_2H_6O) Harwood, Ralston and Selby, 1941
% f.t. % f.t.	% f.t. % f.t.
65 12 30 38 60 16 24 43 50 23 0 69.5 40 31	90 19 50 43 80 27 40 48 70 33 30 54 60 37 0 82.5
Tridecylamine acetate ($C_{15}H_{35}O_2N$) + Ethyl alcohol (C_2H_6O) Harwood, Ralston and Selby, 1941 (fig.) ### f.t. ### f.t.	Octadecylamine acetate ($C_{20}H_{u3}O_{2}N$) + Ethyl alcohol ($C_{2}H_{6}O$) Harwood, Ralston and Selby, 1941 (fig.)
60 13 30 36 50 19 24 40 40 27 0 67.5	% f.t. % f.t. I II I I II
Tetradecylamine acetate ($C_{16}H_{35}O_{2}N$) + Ethyl alcohol ($C_{2}H_{6}O$)	90 17 28 50 39 48 80 25 35 40 44 52.5 70 30 39 30 - 58 60 35 44 25 - 61
Harwood, Ralston and Selby, 1941 (fig.) ### f.t. ### f.t. 30	Anabasine hydrochloride ($C_{1o}H_{15}N_2C1$) + Ethyl alcohol (C_2H_60) Anabasine hydroiodide ($C_{1o}H_{15}N_2I$) Sadikov, Otroshchenko and Malikov, 1955
Pentadecylamine acetate ($C_{1.7}H_{3.7}O_2N$) + Ethyl alcohol (C_2H_6O) Harwood, Ralston and Selby, 1941 (fig.)	% HC1 f.t. % HI f.t. 70.04 0 95.82 0 60.00 20 94.1 20 39.74 78 88.91 78
% f.t. % f.t. 80 14 40 38 70 21 30 46 60 27 25 49 50 '33 0 76.5	Aphyllidine hydrochloride ($C_{15}H_{23}ON_2C1$) + Ethyl alcohol (C_2H_6O) Aphyllidine hydroiodide ($C_{15}H_{23}ON_2I$)
Cetylamine acetate (C ₁₈ H ₃₉ O ₂ N) + Ethyl alcohol	Sadikov, Otroshchenko and Malikov, 1955
$(C_2H_6\hat{0})$ Harwood, Ralston and Selby, 1941	% HCl f.t. % HI f.t.
% f.t. % f.t. I II I II	85.19 0 85.26 0 79.53 20 78.73 20 57.70 78 27.28 78
90 - 17 60 24 36 80 - 25 50 28.5 43 79.5 12 - 40 35 48 70 18 31 30 41.5 54	

100 6.8 5.10 5.												
C	Ethylmitrit	e (C ₂ H ₅ () ₂ N) + Me	thylmerc	aptan (
Grossman and Landau, 1910	Lecat, 1949	Ethyl nits	rate (C ₂ H	₅ 0 ₃ N)	+ Methyl		05)					
State Stat			b.t.				Grossmann	and Landa	u, 1910			
Rethylnitrate (CH ₀ O ₂ N) (b.t.=64.8°) + Alcohols 40,213 -3.23 -3.78 -4.18 -4.14 -4.08 - 25.1065 -2.23 -2.19 -2.07 -1.05 -1.79	0		17.4				g/100 cc					
Methylnitrate (CH ₂ O ₂ N) (b.t.=64.8°) + Alcohols 25.1065 -2.23 -2.19 -2.07 -1.04 -0.48 -0.16 4.868 -0.21 0.00 +0.82 +2.47 +3.70 4.868 -0.21 0.00 +0.82 +2.47 +3.70 4.868 -0.21 0.00 +0.82 +2.47 +3.70 4.868 -0.21 0.00 +0.81 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.70 4.868 +2.47 +3.				Az				red ye	llow	green		k viol e
Methylnitrate (CH ₆ Q ₂ N) (b.t.=64.8°) + Alcohols							40.213	-3.23 -3				
Lecat, 1949							12.5533 -	-1.51 -1	.35	-1.04 -	-0.48 -0.1	6 -
Name Formula b.t. % b.t. Dt min.	Methylnitra	te (CH ₃ O ₅	N)(b.t.	=64.8°)	+ Alco	hols						
Name	Lecat, 1949											
Methyl alcohol Chu0 64.65 27 52.5 27 27.5		2 nd comp.		Az								
Rethyl CaHe	Name 1	Formula	b.t.	% t	.t. E	t min.	Propyl ni	trate (C ₃	H ₇ O ₂ N)	(b.t.=1	10.5) + A	lcoho1s
Ethyl	Methyl	CH ₄ O	64.65		2.5		Lecat, 194	49				
Alcohol Isopropyl C ₃ H ₃ O 82.42 22 62.5 - alcohol Tert. butyl C ₄ H ₁₀ O 82.45 16 63.6 - alcohol Ethylnitrate (C ₂ H ₅ O ₃ N) (b.t.=87.7°) + Alcohols Ethylnitrate (C ₂ H ₅ O ₃ N) (b.t.=87.7°) + Alcohols Lecat, 1949 Ethyl C ₄ H ₁₀ O 117.8 32 106.5	alcohol		7 0 1		-			2nd Com	p.		Az	
Tert.butyl CuH100 82.45 16 63.6 -		C ₂ n ₆ U	78.3	o0 5	19.5	-	Name	Formula	b.t.	8	b.t.	Dt mix
alcohol Ethylnitrate (C ₂ H ₅ O ₈ N) (b.t.=87.7°) + Alcohols Lecat, 1949 2nd Comp. Az Name Formula b.t. \$ b.t. Dt min Methyl CH _u O 64.65 57 61.77 - alcohol 82 -1.6 Ethyl C ₂ H ₆ O 78.3 44 71.85 - alcohol 79 -2.2 Propyl C ₃ H ₆ O 97.2 234.3 alcohol 82.55 - Isopropyl C ₃ H ₆ O 97.2 234.3 alcohol 97.2 234.3 alcohol 97.2 234.3 alcohol 10 - 3.7 Butyl C ₂ H ₁₂ O 102.35 77 100.1 Achieved Propyl C ₃ H ₆ O 97.2 234.3 alcohol 103.7 Isopropyl C ₃ H ₆ O 82.4 4585.5 Isopropyl C ₄ H ₁ O 117.8 4 87.4585.5 alcohol 103.7 Isobutyl C ₄ H ₁ O 108.0 6.74.2 alcohol 22 84.8 - tert. Butyl C ₄ H ₁ O 82.45 55 78.1 - alcohol 22 84.8 - tert. Butyl C ₄ H ₁ O 82.45 55 78.1 - alcohol 10		C₃H ₈ O	82.42	22 6	i2. 5	-	Ethyl alcohol	CaHeo	78.3	90	75.0	-1.5
Ethylnitrate (C ₂ H ₅ O ₃ N) (b.t.=87.7°) + Alcohols Lecat, 1949	Tert.butyl (alcohol	С ₄ Н _{1 0} 0	82.45	16 6	3.6	-		C ₃ H ₈ O	97.2	70	93.7	-
Lecat, 1949							Isopropyl alcohol	C3 H80	82.4	-	81.5	-
Name Formula b.t. % b.t. Dt min	Ethylnitrat	e (C ₂ H ₅ 0	3N)(b.t.	=87.7°	+ Alco	hols		C4H1 00	117.8	32	106.5	-
Name	Lecat, 1949	مندر استدر الفهو مندر المناب الشباعات اللياد	ور احد دیدادی این سید است امیان است	ے سے سے سے المراجب سے المراج			Isobutyl alcohol	C ₄ H _{1 o} 0	108.0	53	103.5	-
Name		2nd Comp),		Az			C5H120	131.9	-	110.0	-
Methyl chu 64.65 57 61.77 - 1.6 Ethyl c2H60 78.3 44 71.85 - 2.2 Propyl C3H80 97.2 234.3 alcohol 30 82.55 - 1 Isopropyl C3H80 82.4 458.5 alcohol 103.7 Isobutyl c4H100 108.0 6.74.2 alcohol 22 84.8 - tert. Butyl C4H100 82.45 55 78.1 - alcohol tert. Amyl C5H120 102.35 5 87.0 -1.8 alcohol	Name	Formula	b.t.	%	b. t.	Dt min		1 C ₅ H ₁₂ 0	102.35	77	100.1	~
Ethyl C ₂ H ₆ O 78.3 44 71.85 - alcohol 792.2 Propyl C ₃ H ₈ O 97.2 234.3 alcohol 82.4 458.5 alcohol 47 77.0 - Butyl C ₄ H ₁ O 117.8 4 87.45 - alcohol 108.0 6.74.2 alcohol 108.0 6.74.2 alcohol 108.0 6.73.7 Isobutyl C ₄ H ₁ O 198.0 6.73.6 alcohol 22 84.8 - tert. Butyl C ₄ H ₁ O 82.45 55 78.1 - alcohol tert. Amyl C ₅ H ₁₂ O 102.35 5 87.0 -1.8 alcohol 108.0 108.0 Methoxy- C ₃ H ₈ O ₂ 124.5 20 108.0 Methoxy- C ₃ H ₈ O ₂ 124.5 20 108.0 methoxy- C ₃ H ₈ O ₂ 124		СН ₄ 0	64,65		61.77		alcohol					
Propyl C ₃ H ₈ O 97.2 234.3 glycol 30 82.55 - Isopropyl C ₃ H ₈ O 82.4 458.5 alcohol 47 77.0 - Butyl C _h H ₁₀ O 117.8 4 87.45 - alcohol 103.7 Isobutyl C _h H ₁₀ O 108.0 6.74.2 alcohol 14.0 86.4 - sec. Butyl C _h H ₁₀ O 99.5 103.6 alcohol 22 84.8 - tert. Butyl C _h H ₁₀ O 82.45 55 78.1 - alcohol tert. Amyl C ₅ H ₁₂ O 102.35 5 87.0 -1.8 alcohol	Ethy l	CaH60	78.3	44	71.8	5 -))	•				_
Isopropyl C ₃ H ₈ O 82.4 458.5 alcohol 47 77.0 - Butyl C ₄ H ₁₀ O 117.8 4 87.45 - alcohol 103.7 Isobutyl C ₄ H ₁₀ O 108.0 6.74.2 alcohol 14.0 86.4 - sec. Butyl C ₄ H ₁₀ O 99.5 103.6 alcohol 22 84.8 - tert. Butyl C ₄ H ₁₀ O 82.45 55 78.1 - alcohol tert. Amyl C ₅ H ₁₂ O 102.35 5 87.0 -1.8 alcohol	Propy1	$C_3 H_B O$	97.2	23	82.5	-4.3		€3 ngu2	144.0	20	100.0	
Butyl ChH100 117.8 4 87.45 - 3.7 Isobutyl ChH100 108.0 6.74.2 alcohol 14.0 86.4 - sec. Butyl ChH100 99.5 103.6 alcohol 22 84.8 - tert. Butyl ChH100 82.45 55 78.1 - alcohol tert. Amyl C5H120 102.35 5 87.0 -1.8 alcohol	Isopropy1	$C_3 H_8 O$	82.4		-			یے انہوں میں کس میں انہوائیں کابی کان میں بے امیان کی حمومی انہوائش میں کان کا انہوائی بہر کیونٹی انہوائی میں میں انہوائی مطالعی	ه بيم بيو دي دي اور دي د د بيم هم دي دي دي دي دي دي دي دي دي دي دي دي دي	سے میں آئے میں سے اساس کے ا سے فیم العربانی سے شہر کام آئے ا سے فیم الام میں سے شم کرآگ ا	هما المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد ا معام المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد ا	
Isobuty1 ChH100 108.0 6.74.2 alcohol 14.0 86.4 - sec. Buty1 ChH100 99.5 103.6 alcohol 22 84.8 - tert. Buty1 ChH100 82.45 55 78.1 - alcohol tert. Amy1 C5H120 102.35 5 87.0 -1.8 alcohol	Buty1	C4H100	117.8			5 - -3.7						
sec. Butyl C _h H ₁₀ 0 99.5 103.6 alcohol 22 84.8 - tert. Butyl C _h H ₁₀ 0 82.45 55 78.1 - alcohol tert. Amyl C ₅ H ₁₂ 0 102.35 5 87.0 -1.8 alcohol	Isobutyl	C4H100	108.0	6.7		-4.2						
tert. Butyl C _h H ₁₀ 0 82.45 55 78.1 - alcohol tert. Amyl C ₅ H ₁₂ 0 102.35 5 87.0 -1.8 alcohol	sec. Butyl	C4H100	99,5	10	_							
tert. Amyl C ₅ H _{1 2} O 102.35 5 87.0 -1.8 alcohol	tert. Butyl	C4H1 00	82.45			-						
l II	tert. Amyl	C5H120	102.35	5	87.0	-1.8						
alcohol 22.5 83.15 -	Allyl	C3 H60	96.85	15 22, 5	83, 19	5 -4.6						

	2 nd comp.		Az	T	
Name	Formula	b.t.	%	b.t.	Dt mix
Butyl alcohol	C ₄ H ₁₀ 0	117.8	55 70	112.8	-4.5
Isobutyl alcohol	$C_{4}H_{10}0$	208.0	64 7 0	105.6	- -4.7
Amyl alcohol	C5H120	138.2	10	122.0	-2 <u>.</u> 0
Isoamyl alcohol	C5H120	131.9	25 26	120.0	-5.5
Pentanol-2	C5H120	119.8	50 52	- 115.3	-5.5
Ethoxy- glycol	$C_{4}H_{10}O_{2}$	135.3	18	121.0	-
Methoxy- glycol	$C_8H_8O_2$	124.5	44	115.0	-
Cyclo- pentanol	C5H100	140.85	-	122.2	-

Lecat, 1949

Isoamyl nitrate ($C_5\,H_{1\,1}\,O_8N$) (b.t.= 149.75) + Alcohols.

	2nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix
Hexyl alcohol	C ₆ H ₁ 40	157.85	11	148.0	-
Cyclo hexanol	C ₆ H ₁₂ O	160.8	-	148.0	-
Methyl lactate	C411803	143.8	65	141.2	-3.8 (50%)
Ethyl lactate	C5111003	154.1	33	146.7	-1.6 (11%)
Furfuryl alcohol	C5H6O2	169.35	-	149.6	-
Ethoxy glycol	$C_{\mu}H_{10}O_{2}$	135.3	72	133.7	-
Propoxy glycol	C5H12O2	151.35	43	143.5	-

Nitromethane (CH ₃ O ₂ N) + Methyl alcohol (CH ₄ O) Joukovsky, 1933 mol	. + SUIIL	ALCOHUL			673
mol	Nitrometh	ane (CH ₉ O ₂ N) + Methy	l alcohol	(CH ₁ ,0)
100	Joukovsk	ку, 1933			
100	mo1%	P1	P ₂	р	
100		· · · · · · · · · · · · · · · · · · ·	30°		
100	100 80.5	0 26.5	160.2 139.5	160.2 166.0	
100	77.7 65.1	28.2 34.3	137.8 129.6	166.0 164.0	
Az : 90 mol % 30.0° mol % L	li 52.6	38.2 39.5	120.8 115.5	159.0	
Az : 90 mol \$ 30.0° mol \$ L V 30.0° 30 72.8 52.6 76.0 57.6 78.0 80.5 84.0 Desseigne and Belliot, 1952 \$ b.t. L V 100 100 64.7 93.3 93 64.63 87.5 87.5 64.55 73.6 81 64.85 58.3 79 65.3 41.2 76 66.2 25.7 72.7 67.5 19 67 68.9 112 62.5 71.5 6.6 60 78 3.4 57 83.9 2.3 - 89.9 0 0 100.8	10.2	42.5 46.5 47.6	90.5 54.5	133.0 101.0	
Desseigne and Belliot, 1952 Desseigne and Belliot, 1952 Solution Solu		47.0	v	47.0	
Desseigne and Belliot, 1952 Desseigne and Belliot, 1952 Solution Desseigne and Belliot, 1952 Desseigne and Belliot, 1					
Desseigne and Belliot, 1952	L				··
Desseigne and Belliot, 1952		30.0°			
Desseigne and Belliot, 1952	30 52.6	76.0			
\$ b.t. L V 100 100 64.7 93.3 93 64.63 87.5 87.5 64.55 73.6 81 64.85 58.3 79 65.3 41.2 76 66.2 25.7 72.7 67.5 19 67 68.9 12 62.5 71.5 6.6 60 78 3.4 57 83.9 2.3 - 89.9 0 0 100.8	57.6 80.5	78.0 84.0			
\$ b.t. L V 100 100 64.7 93.3 93 64.63 87.5 87.5 64.55 73.6 81 64.85 58.3 79 65.3 41.2 76 66.2 25.7 72.7 67.5 19 67 68.9 12 62.5 71.5 6.6 60 78 3.4 57 83.9 2.3 - 89.9 0 0 100.8					
\$ b.t. L V 100 100 64.7 93.3 93 64.63 87.5 87.5 64.55 73.6 81 64.85 58.3 79 65.3 41.2 76 66.2 25.7 72.7 67.5 19 67 68.9 12 62.5 71.5 6.6 60 78 3.4 57 83.9 2.3 - 89.9 0 0 100.8	Dossoiano	and Ralliat	1052		
L V 100 100 64.7 93.3 93 64.63 87.5 87.5 64.55 73.6 81 64.85 58.3 79 65.3 41.2 76 66.2 25.7 72.7 67.5 19 67 68.9 12 62.5 71.5 6.6 60 78 3.4 57 83.9 2.3 - 89.9 0 0 100.8	Dessergne			•	
93.3 93 64.63 87.5 87.5 64.55 73.6 81 64.85 58.3 79 65.3 41.2 76 66.2 25.7 72.7 67.5 19 67 68.9 12 62.5 71.5 6.6 60 78 3.4 57 83.9 2.3 - 89.9 0 0 100.8	L	•			
3.3	100	100	64.	7 63	
2.3	87.5 73.6	87.5 81	64. 64.	55 85	
2.3	58.3 41.2	79 76	65. 66.	3 2	
2.3	25.7 19	72.7 67	67. 68.	5 9	
2.3	16.6	00	71. 78	5 0	
\$ n _D \$ n _D	2.3	-	89. 100.	9 8	
20°					
100 1 2212 10 1 2724	%		<u> </u>	O ⁿ D	
93.3 .3338 12 .3770 87.5 .3365 6.6 .3804 73.6 .3428 3.4 .3823 58.3 .3503 2.3 .3832 41.2 .3593 0 .3844 25.7 .3686	100			3 2724	
73.6 .3428 3.4 .3823 58.3 .3503 2.3 .3832 41.2 .3593 0 .3844 25.7 .3686	93.3 87.5	.3338	12 6.6	.3770	
41.2 .3593 0 .3844 25.7 .3686	73.6 58.3	.3428 .3503	3.4	.3823 .3832	
	41.2 25.7	.3593 .3686	0	.3844	
					

896 			NI	TROME	THANE +	METHYL ALCOHOL
Joukovsky	, 1933					Nitromethanc ($\mathrm{CH_3O_2N}$) + Ethyl alcohol ($\mathrm{C_2H_6O}$)
mo1%	n _{He j}	mo1%	nHe	; j		Wagner, 1903
		16°				β d η (alcohol=1)
100 81.6 60.7 56.3	1.33023 .34351 .35629 .35869	43.8 35.9 18.8 0	.37	6493 6878 7635 8386		15° 0 - 0.5385 13.44 1.06964 .5003 28.75 .00814 .5143 47.92 .93804 .5704 71.77 .86532 .7037 85.27 .82924 .8210 92.469 .81092 .9015
Lecat, 19	49					
Nitrometh	ane (CH	30 ₂ N) (b.	t.= 101	,2) + A	lcohols.	
	2 nd com	p.	Az			Nitromethane (CH_3O_2N) + Propyl alcohol (C_3H_8O)
Name	Formula	b.t.	%	b.t.	Dt mix.	Fowler and Hunt, 1941
Methyl alcohol	CH ⁺ 0	64.65	89 92	64.5	or Sat.t.	% d L V L V
Ethyl alcohol	C2H60	78.3	73.2 91.4		- -2,7	25° 12.7 26.9 1.0721 1.0131
Propyl alcohol	C_8H_8O	97.2	54 55	91.1	-8.2	16.7 32.4 1.0549 0.9931 27.5 41.2 1.0109 .9653 33.0 44.3 0.9909 .9531
Isopropyl alcohol	C _s H ₈ O	82.45	69 7 3	79.4	-8.7	43.7 49.3 .9546 .9368 52.7 52.6 .9256 .9259 63.5 56.9 .8936 .9128 70.6 60.0 .8742 .9036
Butyl alcohol	C ₁₄ H _{1 0} 0	117.8	30	97.8	-8.5	78.7 65.2 .8527 .8889 88.4 75.1 .8279 .8622
Isobutyl alcohol	C4H100	108.0	40 43.5	94.6	-7 <u>.</u> 5	93.2 82.7 .8162 .8425 Az : 52.5% 89.3°
Sec. "	C4H1 00	99.5	54 55	91.1	-8.2	
Tert. "	$C_{4}H_{10}0$	82.45	68	79.4	-	Nitromethane (CH _S O ₂ N) + Isopropyl alcohol
Isoamyl alcohol	C5H120	131.9	12 20	100.6	-9.6	(C ₂ H ₈ O)
Isoamyl alc. sec.	C5H120	112.9	37	96.4	-	Schumacher and Hunt, 1942
2-Pentanol	C5H120	119.8	27 28	98.5	-9.6	% % L V L V
3-Pentanol	C5H120	116.0	32	97.4	-	2.90 17.3 58.1 66.4
Tert.Amyl alcohol	C5H120	102.35	50.5	93.1	3(Satt)	6.40 32.0 58.6 66.9 11.9 42.7 62.5 67.9 17.5 48.5 66.6 69.3
Allyl alcohol	C₃H ₆ O	96,85	57	89.3	-20.0	17.8 49.3 66.8 69.4 24.2 53.6 70.5 71.2 24.7 54.3 74.3 73.1 31.9 57.4 77.5 75.2
						$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
						47.6 63.7 85.1 79.9 47.9 63.0 88.1 82.4 53.4 65.0 91.0 85.0
						Az = 71.8% 79.3°

Nitromethane (${ m CH_3O_2N}$) + Methyl malate 1 (${ m C_6H_{1.0}O_5}$)									
Grossmann and Landau, 1910									
g/100 co	red	yellow	green (o	pale blue	dark blue	viol.			
			20°						
12.5175 4.843	-2.64 -2.27	-3.75	-3.87 -3.67 -2.89	~3.52	-3.44 -3.36 -2.48	-4.45 -2.06			
Nitromethane (CH_3O_2N) + Butanethiol ($C_4H_{1,0}S$)									
%			b.t.						
0 72 100			101.2 93.2 A 97.5	z					

Lecat, 1949

Nitroethane ($C_2H_5O_2N$) (b.t.= 114.2) + Alcohols.

	2nd comp.		A	z	
Name	Formula	b.t.	%	b.t.	Dt mix.
Propy1 alcohol	C3H80	97.2	77 80	95.0	-7.8
Buty1 alcohol	$C_{14}H_{10}0$	117.8	45 50	107.7	-7.2
Isobutyl alcohol	$C_{\mu}H_{10}0$	108.0	60	102.5	-6.5
Amylalcohol	C5H120	138.2	17	137.8	-
Tert.Amyl alcohol	C ₅ H ₁₂ O	102.35	70 75	98.6	-3.0
Isobutyl carbinol	C5H120	131.9	22 25	112.0	-7.0

Nitroethane ($C_2H_5O_2N$) + Decyl alcohol ($C_{10}H_{22}O$) Hoerr, Harwood and Ralston, 1944 % f.t. sat.t. $\frac{6.6}{14.5}$ 0.010.0 6.88 100 Nitroethane ($C_2H_50_2N$) + Dodecyl alcohol $(C_{12}H_{26}O)$ Hoerr, Harwood and Ralston, 1944 % f.t. $\substack{0.9\\4.0\\16.8\\100}$ 0.0 10.0 20.0 23.95 Nitroethane ($C_2H_50_2N$) + Tetradecyl alcohol ($C_{14}H_{30}0$) Hoerr, Harwood and Ralston, 1944 % f.t. below 0.1 10.0 20.0 30.0 38.26 12.7 100 Nitroethane ($C_2H_5O_2N$) + Cetyl alcohol ($C_{16}H_{84}O$) Hoerr, Harwood and Ralston, 1944 % f.t. $\begin{smallmatrix}20.0\\30.0\end{smallmatrix}$ below 0.1 1.6 40.0 100 49.62

Nitroethane ($C_2H_5O_2N$) + Octadecyl alcohol ($C_{18}H_{58}O$)	Nitropentaerythritol($C_5H_8O_{12}N_4$) + Isoamyl alcohol ($C_5H_{12}O$)
Hoerr, Harwood and Ralston, 1944	Urbanski and Galas, 1939 (fig.) £ Explosion velocity
below 0.1 30.0 2.6 40.0 20.3 50.0 100 57.98	(m/sec.) 0 6950 5 7000 10 7350 20 7050 30 7280
Nitroglycerin (C ₃ H ₅ O ₃ N ₃) + Methyl alcohol Hyde, 1912 (CH ₄ O) % Db.t. 85.08 +0.55 81.92 1.21 57.11 2.01	hexogene ($C_8H_6O_6N_6$) + Isoamyl alcohol ($C_5H_{12}O$) Urbanski and Galas, 1939 Explosion velocity
Nitroglycerin (C ₃ H ₅ O ₉ N ₃) + Pentaerythritol	Hexogene ($C_8H_6O_6N_6$) + Glycerol ($C_8H_8O_8$)
Hackel, 1936 (C ₅ H ₁₂ O ₄) ### f.t. E.	% Explosion velocity (in/sec.)
I 100.0 140.3 - 70.0 127.9 - 59.7 121.8 13.5 49.8 115.5 " 39.8 108.7 " 30.0 99.8 13.0 19.9 90.2 "	0 7550 10 7350 20 7500 30 7380 40 7550
14.9 81.3 12.7 10.0 69.2 12.3 7.5 59.3 12.4 5.0 49.8 12.20 2.5 36.6 12.25 1.0 12.3 12.25 0.0 12.9	Nitrocyclohexane ($C_6H_{11}O_2N$) + Methoxydiglycol ($C_5H_{12}O_3$)
11 40.0 103.0 0.5 21.2 91.3 1.0 10.3 69.7 0.0 2.5 34.2 1.1 1.1 - 1.3 0.0 1.9 -	Lecat, 1949 % b.t. 0 205.4 - 192.7 Az 100 192.95
Nitropentaerythritol ($C_5H_80_{12}N_4$) + Glycerol ($C_5H_80_5$) Urbanski and Galas, 1939	Nitrocyclohexane ($C_6H_{11}O_2N$) + Isoamyllactate ($C_8H_{16}O_8$) Lecat, 1949
Explosion velocity .	0 205.4 72 201.0 Az 100 202.4

Chlorpicri	ne (CO ₂ NC)	l ₃)(b.t.	=111.9) + A1c	ohols	Nitrobenzene ($C_6H_50_2N$) + Methyl alcohol (CH_40)
Lecat, 1949	9					Jones and Veazey, 1908
	2 nd comp.	سوامي سنغ الغار المي فصو لدنگ الكم الفير الد	Az	المنافضة التي متوسية التي يتي من	,	% τ.10 ⁴
Name	Formula	b.t.	%	b.t.	Dt.mix	100 903 608 1938 75 1054 703 200 50 1411 902 226
Ethyl alcohol	C ₂ H ₆ O	7 8.3	66 85	77.5	-0.4	50 1411 902 226 25 1929 1842 264
Propyl alcohol	$\theta_8 H_\epsilon J$	97.2	41.5 93	94.05	-1.2	
Isopropyl- alcohol	C ₃ H ₈ O	82.4	65	81.95	-3.5	Fischler, 1913 % vol% d n
Butyl alcohol	$C_{4}H_{10}0$	117.8	20 25	106.65	-0.9	25° 0.7860 560.8
Isobutyl alcohol	$C_{4}H_{10}0$	108.0	32 40	102.05	-3.2	66.34 75 .8945 676.6 39.65 50 .9988 857.0 17.96 25 1.0990 1145.0
Sec.Butyl alcohol	$C_{\mu}H_{10}0$	99.5	40	96.1	-2.8	0 0 .1965 1812.6
Tert.Butyl alcohol	$C_{\mu}H_{10}0$	82.45	63	82.25	-	."
Isoamyl alcohol	C ₅ H _{1 2} 0	131.9	$\begin{smallmatrix} 7.0\\20\end{smallmatrix}$	111,15	-1.7	Munter, 1931 % d n _D
2-Pentanol	C5H120	119.8	17	208.0	-	20.0°
3-Pentanol	C5H120	116.0	18	107.3	-	0 1.20222 1.55253
Methyl- isopropyl -carbinol	C5H, 20	112.9	20	106.5	-	36.582 1.01673 .45124 50.994 0.95662 .41757 72.859 0.87598 .37433 100 0.79059 .32872
Tert.Amyl alcohol	C5 H1 20	102.35	35	98.9	-	
Allyl alcohol	C ₃ H ₆ O	96.85	40 44	94.2	-3.0	Nitrobenzene ($C_6H_5O_2N$) + Ethyl alcohol (C_2H_6O)
Methoxy- glycol	$C_3H_8O_2$	124.5	18	110.5	-	Tribulation (C ₂ n ₅ 0 ₂ N) · E ₁ nyl alcohol (C ₂ n ₆ 0)
Ethylen- chlorhydrii	C ₂ H ₅ OC 1	128.6	8 15	108.9	-2. 3	Raoult, 1890 mol% p mol% r
Chlor-1- propanol-2	C ₃ H ₇ OC1	127.0	4	111.6	-	96.039 730,2 85.399 675.2
						92.274 704.1 82.570 665.5 83.606 684.9 80.080 657.3
Methy1hora	te (C ₃ II ₉ 0	₃ B) (b.t	.=68.7)	+ Alcol	nols.	
	2nd comp.		Az			Ampola and Carlinfanti, 1895
Name	Formula	b.t.	%	b.t.	Dt mix	% f.t. % f.t. 0 3.84 6.43 0.06
Methyl alcohol	(CII40)	64.65	32	54.6	-5	0.40 3.33 8.50 -0.41 1.15 2.52 14.82 -1.40 3.43 1.095 21.87 -2.21
Ethyl alcohol	(C ₂ II ₆ O)	78.3	25	63.0	-1.0	4.68 0.62 31.66 -3.00
Tert.Butyl	(C ₄ H ₁₀ O)	82.45	25	66.0	-	

	Walker and Henderson, 1902
Graffunder and Heymann, 1931	c U Q mix.
mol% d mol% d 25° 0 1.1925 84.07 0.8905 16.35 .1540 94.06 .8260 42.98 .0760 100 .7850 63.75 .0000 .0000 .0000	110.78
	c- g Attrobenzene 101 1 mot. gr. Attonot.
Jones and Veazey, 1908	Nitrobenzene (C ₆ H ₅ NO ₂) + Isopropyl alcohol
π τ.10 ⁴	(C ₃ H ₈ O) Ampola and Carlinfanti, 1895
100 2108 1144 337	% f.t. % f.t.
75 1912 1134 274 50 2049 1209 278 25 2274 1365 266 0 3059 1842 264	0 3.84 3.97 1.15 0.26 3.52 6.39 0.42 0.78 3.00 13.71 -0.86 1.80 2.26 20.66 -1.54 2.79 1.71 34.41 -2.37
Hirata 1000	
Hirata, 1908 vol% η(alcohol=1)vol% η(alcohol=1)	Nitrobenzene ($C_6H_5NO_2$) + sec. Butyl alcohol ($C_uH_{1,0}O$)
25°	
75 1.0230 96.875 1.0074 87.5 .0078 98.4375 .0058	Roland, 1928
93.75 .0062 99.21875 .0074	mo1% p ₂ mo1% p ₂ 29.96°
Graffunder and Heymann, 1931 mol% ε mol% ε	100 24.2 45.05 19.9 76.60 22.3 26.24 18.9 66.43 21.2 9.39 15.4
25° 0 35.22 84.07 25.80 16.35 32.88 94.06 25.10 42.98 29.71 100 24.69	39.9° 100 45.0 44.45 36.0 76.41 39.9 25.71 32.5 66.01 39.3 9.16 24.8 49.7°
	100 79.5 43.56 61.7 76.16 68.2 24.89 54.4 63.39 65.7 8.86 37.5
Scharf, 1932 vol% (\5893 Å vol% 5803 Å	
$(\alpha)^{magn}$. $(\alpha)^{3693}$ Magn.	Velimans, 1926
20° 100.00 1.870 39.65 2.868	% d (α) _D % d (α) _D
81.78 2.032 29.42 3.009 79.49 .201 10.89 3.173	20°
70.21 .355 10.02 3.362 59.56 .532 0.00 3.517 49.46 .680	0 1.2025 0 60 0.9290 8.27 16 .1155 2.37 80 .8637 10.90 39.9 .0060 5.62 100 .8069 13.87

Nitrobenzene (C ₆ H ₅ NO ₂) + Butyl alcol	nol (C ₄ H ₁₀ O)
5		Efremov, 1928
Swearingen and Heck, 1934		mol% d
πο1% η 35° 4 5° 55° 65°	75 ° 80	9.4° 25° 45°
0 1601 1327 1124 980 5 1453 1252 1081 946 10 1403 1196 1035 906 20 1350 1147 986 854 40 1339 1109 931 802 60 1411 1128 949 807 80 1580 1270 1013 836 100 2024 1553 1223 994	878 83 847 86 810 77 760 77 706 66 687 63 711 68 810 73	5 9.96 .1777 .1601 .1311 17.30 .1511 .1338 .0999 21.03 .1370 .1205 .0849 25.20 .1212 .1050 .0704 33 .30.00 .1024 .0855 .0519 34.70 .0838 .0670 .0337 39.03 .0690 .0518 .0175 44.05 .0500 .0329 0.9989
Nitrobenzene ($C_6H_5NO_2$) + Isobutyl al ($C_9H_{1,0}O$) Ampola and Carlinfanti, 1895	cohol	57.00 0.9996 0.9809 .9475 63.50 .9733 .9533 .9240 67.90 .9512 .9350 .9050 70.92 .9417 .9231 .8932 75.51 .9220 .9041 .8748 79.00 .9054 .8900 .8602 84.04 .8857 .8690 .8372
% f.t. % f.t. 0 +3.84 5.55 +0.85 0.36 3.49 11.93 -0.27 1.05 2.90 21.04 -1.00 2.14 2.19 33.13 -1.18 3.33 1.64		86,70
Wagner, 1903	η(alcohol=1)	0 1.1603 1.1397 1.1208 5.00 .1250 .1043 .0825 9.96 .1049 .0847 .0637 17.30 .0773 .0575 .0369 21.03 .0633 .0437 .0235 25.20 .0501 .0294 .0101 30.00 .0313 .0107 0.9902
15° 0	0.5493 .4891 .5022 .5277 .6372 .7591	34.70 .0135 0.9914 .9714 39.03 0.9970 .9751 .9550 44.05 .9785 .9555 .9369 51.02 .9519 .9307 .9102 57.00 .9288 .9060 .8856 63.50 .9037 .8811 .8606 67.90 .8851 .8625 .8431 70.92 .8730 .8519 .8320 75.51 .8550 .8348 .8146 79.00 .8402 .8208 .8020 - 84.04 .8181 .8002 .7797
Osipov, Panina and Lempert, 1955 mol% ε mol% ε		86.70 .8062 .7892 .7694 90.20 .7900 .7737 .7570 92.03 .7816 .7648 .7485 96.04 .7757 .7597 .7325 98.21 .7707 .7501 .7296 100 .7680 .7485 .7282
20° (500 kiloherz) 0 36 60 22.5		
20 30 80 20 40 25.5 100 18.5		-

NITROBENZENE + I SOAMYL ALCOHOL

Efremov, 1928	Nitrobenzene (C ₆ H ₅ NO ₂) + Isoamyl alcohol(C ₅ H ₁₂ O)
mol% wt% η	
9.4° 25° 45°	Drucker and Kassel, 1911
0 0 2500 1837 1292 7.84 5.00 2373 1765 1292	% d n % d n
15.59 9.86 2290 1710 1259 25.76 17.30 2231 1652 1218 30.64 21.03 2218 1637 1181 35.89 25.20 2235 1633 1177	80° 0°
	100 0.7636 807 100 0.8253 8834 90.02 .7914 816 90.02 .8541 7236 70.03 .8497 749 70.01 .9166 5263
41.60 30.00 2261 1640 1162 46.90 34.70 2297 1645 1156 51.53 39.03 2355 1664 1158	H 49 96 . 9151 697 50.00 . 9866 42111
46.90 34.70 2297 1645 1156 51.53 39.03 2355 1664 1158 56.83 44.05 2402 1697 1162 63.36 51.02 2503 1737 1183 68.73 57.00 2620 1780 1219	30.03 .9943 694 29.98 1.0703 3344 10.06 .0875 746 9.94 .1664 2865 0 .1444 831 0.00 .2206 3028
1 74.31 03.50 2778 1853 1263	
77.85 67.90 2887 1922 1317 80.96 70.92 2981 1975 1342 83.66 75.51 3150 2065 1398	
86.22 79.00 3310 2149 1429 89.69 84.04 3575 2350 1516 91.53 86.70 3756 2482 1575 93.89 90.20 4054 2663 1660 95.09 92.03 4232 2760 1692	Nitrobenzene ($C_6H_5O_2N$) + Capryl alcohol ($C_8H_{1.8}O$)
93.89 90.20 4054 2663 1660 95.09 92.03 4232 2760 1692 97.59 96.04 4835 2888 1791	Ampola and Carlinfanti, 1895
95.09 92.03 4232 2760 1692 97.59 96.04 4835 2888 1791 98.91 98.21 5162 3050 1803 100 100 5670 3320 1847	% f.t. % f.t.
557 557	0 +3.84 5.12 1.49
mol% n	0 +3.84 5.12 1.49 0.34 3.61 7.76 0.51 1.14 3.19 14.05 -1.36 2.44 2.53 20.34 -2.87 3.59 2.08 29.40 -5.05
65° 85° 105°	2.44 2.53 20.34 -2.87 3.59 2.08 29.40 -5.05
0 1003 781 655 7.84 954 737 637	
II 15.59 915 700 600	Nitrobenzene ($C_6H_5O_2N$) + Glycerol diethyl ether
25.76 873 660 560 30.64 860 636 540 35.89 840 621 518 41.60 824 606 502	(C ₇ H ₁₆ O ₈)
46.90 820 588 478 51.53 812 545 469	Ampola and Carlinfanti, 1895
	% f.t. % f.t.
68.73 798 558 437 74.31 803 550 423 77.85 810 560 422 80.96 819 564 421	0 +3.84 8.93 +0.68 0.45 3.64 12.40 -0.48
80.96 819 564 421 83.66 838 580 423 86.22 851 597 437 89.69 885 617 442	0.45 3.64 12.40 -0.48 2.51 2.82 17.38 -1.70 4.10 2.27 22.12 -3.54 6.31 1.46 30.97 -6.80
63.36 797 560 439 68.73 798 558 437 74.31 803 550 423 77.85 810 560 422 80.96 819 564 421 83.66 838 580 423 86.22 851 597 437 89.69 885 617 442 91.53 918 623 450	-0.80
95.09 978 646 460	
1 98.91 1 0 62 68 7 480	
100 1097 698 483	

Lecat, 1949	Nitrobenzene ($C_6H_5O_2N$) + Ethyl tartrate ($C_8H_{14}O_6$)
Nitrobenzene ($C_6H_5O_2N$) (u.t.= 210.75) + Alcohols.	
2 nd comp. Az	Patterson, 1908
Name Formula b.t. % b.t. Dt mix.	t d t d
or Sat.t.	0%
Glycol C ₂ H ₆ O ₂ 197.4 59 135.9 120.2	19.1 1.20444 68.7 1.1562 50.0 .17433 100.0 .1252
Diglycol C _h H ₁₀ O ₃ 245.5 10 210.0 - +0.5	2.00164%
Menthol C ₁₀ H ₂₀ 0 216.3 32.3 208.35 20	20.0 1.20317 68.5 1.1566 39.6 .18416 99.0 .1253
Borneol $C_{1,0}H_{1,8}O$ 215.0 42 207.3 82	4.99917%
1-Terpineol C _{1.0} H _{1.0} 0 218.85 1335	19.0 1.20392 62.7 1.1607 37.3 .18589 98.5 .1248
2-Terpineol C ₁₀ H ₁₈ O 210.5 204.0	10.0011%
Benzyl C ₈ H ₁₀ O 219.4 8 210.6 - carbinol 253.2	18.0 1.20428 74.3 1.1488 47.3 .17526 100.0 .1232
carbinol 253.2	47.3 .17526 100.0 .1232 19.9446%
alcohol 205.25 504.6	17.3 1.20442 79.4 1.1427
	36.5 .18532 100.0 .1219 63.0 .1589
	50.0156%
Nitrobenzene (${ m C_6H_5NO_2}$) + Methyl malate l	18.7 1.20314 66.7 1.1544 37.7 .18384 100.0 .1207
(C ₆ H ₁₀ O ₅)	100%
Grossmann and Landau, 1910	19.3 1.2064 131.2 1.0919 33.83 .19181 173.8 .0507
g/10.) cc (α)	57.35 ,1677
red yellow green pale dark viol. blue blue	t (α) _D t (α) _D
20°	2.00164%
49.814 -3.91 -4.66 -5.42 -6.10 -6.40 -6.62	16.1 38.68 56.1 33.93 27.4 37.88 78.4 31.36
24.907 -3.53 -4.38 -5.10 -5.66 -5.90 - 12.4535 -3.37 -4.18 -5.06 -5.62 -5.86 -	27.4 37.88 78.4 31.36 39.3 36.40 86.8 30.29 44.1 35.65 100.0 28.51
4.839 -3.41 -4.75 -6.20 -7.03 -7.65 -7.65 2.4195 -2.89 -4.13 -5.37 -4.55 -3.72 -	48.1 35.06
	4.99917%
	15.5 35.41 65.5 30.89 20.7 34.91 72.5 30.29 24.6 34.69 82.4 29.60
	27.7 34.41 87.4 28.88
	44.7 32.84 100.0 27.93 50.8 32.22
	10.0011%
	14.2 31.53 43.7 30.35 17.2 31.58 51.3 29.96
	19.8 31.60 58.8 29.55 21.3 31,55 74.7 28.39
	23.3 31.43 82.7 27.9 29.0 31.18 100.0 26.27
	19.9446%
	17.6 26.07 53.8 26.76 25.3 26.16 67.3 25.47
	39.8 26.07 81.0 25.04 44.7 26.06 100.0 24.26
	77.7 20.00
l l	

			, 					
	50	.0156%			Nitroben	zene (C ₆ H ₆)	02N) + Cvc	lohexanol (C ₆ H ₁₂ O)
17.7 32.0 45.9 55.1	16.88 17.66 18.25 18.51	63.3 71.7 78.6 100.0	18.72 18.88 18.97 19.08		Angla, 1			
		00%			c	^{n}D	С	$^{\rm n}\!_{ m D}$
17.8 35.3 60.4 92.9	7.64 9.39 11.45 13. 2 8	124 143 160 1 75. 0	14.35 14.75 14.95 14.99		0	1.5541	30.04	1.5310
					4.60 12.00 21.12	.5492 .5430 .5362	40.50 60.16 100	.5255 .5178 .4620
Rule, Ba	rnett and (Cunningham,	1933		c = g (yclonexano]	1 1n 100 cc	nitrobenzene.
по 1%		(α) 5461						
	20)°						
3.1 18.7 56.2		2.53 8.82 11.93 11.42			Nitrobenz Scheuer,) ₂ N) + Ment	tho1 (C ₁₀ H ₂₀ 0)
73.6		11.42			%	Fio1%	f.t.	E
Lowry and	l Dickson,	1915			0 0.45 1.38 2.55	0 0.36 1.09 2.02	5.7 5.45 5.0 4.5	- - -
%	6708 Å	(α) 5893 Å	5780 Å	5461 Å	3.90 5.91 7.81 9.29	3.10 4.72 6.26 7.47	4.0 3.35 2.85 2.65	-
100 20	6.69 19.32	7.45 24.45	7.52 26.02	7.50 29.01	10.88 13.19 14.77 16.46 18.99 22.13	8.78 10.70 12.01 13.43 15.59 18.30	4.65 8.25 10.15 12.15 14.5 16.2 17.5	2.60
		gomery, 1909			23.71 26.53 30.09 31.49 35.15	19.67 22.15 24.77 26.59 29.94	20.2 20.65 22.0	- - - -
19.925 v 50 vol%	01% 20° 20°	Dv = +0. $Dt = -1.$	•	,	35.58 38.06 41.11 44.53 49.52	30.33 33.63 35.49 38.76 43.60	22.8 22.8 23.25 23.8 24.8	- - -
					49.65 54.26	43.60 43.72 48.32	24.85 25.7	-
					56.88 58.71	50.97 52.84	26.1 26.5	-
					64.08 69.30 72. 04	58.42 64.00 67.00	27.4 28.3	-
					73,67	68.80	28.9 29.5	-
					76.32 79.06	71.76 74.85	$\frac{30.3}{31.0}$	-
					81.72 84.46	78,89 81.07	31.85 3 2.7 5	-
					86.22 88.80	84.33 86.20	33.9 34.3	- -
					90.95 9 2. 63	88.79 90.83	35.2 36.7	-
					94.60 97.26	93.25 96.43	39.6 40.3	-
					100	100	42.3	-
I					} }			

					
Dahms, 1895					t (α) _D t (α) _D
% f	.t.	%	f.t.		1.4539%
0 2.22 5.07	4.41	35.52 38.19	23.67 24.31		22.5 -47.00 32.9 -46.80 2.05718%
6.8 7.10 7.77 11.34	2.8 2.7 6.04 1.21	43.40 49.91 61.23 70.06 73.90	25.25 26.36 28.31 30.21 31.15		8.5 -47.63 39.0 -46.21 24.0 46.89 6.6542%
14.95 19.34 19.379 23.79	4.70 7.80 0.12	82.52 90.05 96.13 00	33.45 36.46 39.41 41.89		9.8 -47.37 67.2 -45.84 25.3 -46.63 78.7 -45.65 46.4 -46.29 30,4894%
Scheuer, 1910					19.1 -47.30 25.9 -46.98 22.7 -47.10 29.7 -46.84
% mo1%	55.6°	d 74.6°	82.2°	99.0°	Scheuer, 1910
0 0	1,1661	1.1477	1.1407	1.1255	<i>g</i> , (α)
11.33 9.15 36.12 30.84	. 1215	.1028 .0202	.0951 .0127	.0 786 0,9968	dark red D yellow green
51.11 45.17 68.61 63.27 86.73 83.74 100 100	0.9915 .9442 .9011 .8693	0.9730 .9282 .8874 .8551	0.9688 .9215 .8801 .8496	.9545 .9065 .8652 .8372	11.33 -28.928 -46.141 -47.995 -54.572 36.12 -37.610 -47.148 -49.154 -55.882 51.11 -38.193 -47.996 -50.024 -56.718 68.61 -39.944 -49.216 -51.252 -58.186 86.73 -39.267 -49.361 -51.458 -58.356
% mo1%	FF (0	η	02.20	00.00	100 -40.149 -50.155 -52.385 -59.419
	55.6°	74.6°	82.2°	99.0°	
0 0 11.33 9.15 36.12 30.84 51.11 45.17 68.61 63.27 86.73 83.74 100 100	1050 1001 1340 1858 2107 3734 6290	783 749 982 1149 1195 1542 2469	728 672 857 980 1000 1168 1850	581 534 663 732 698 730 1041	Nitrobenzene ($C_6H_5NO_2$) + Benzyl alcohol(C_7H_8O) Ampola and Carlinfanti, 1895
					% f.t. % f.t.
Patterson and T	Faylor 100	.5			0 +3.84 17.20 -2.44 0.62 3.46 23.74 -4.36 1.88 2.76 30.23 -6.22
t d	t	ئ d	· · · · · · · · · · · · · · · · · · ·		1.88 2.76 30.23 -6.22 3.88 1.82 37.23 -8.10 6.81 0.62
	.4539%		* - *	· · · · · · · · · · · · · · · · · · ·	0.01 0.02
19.25 1.1979 20 .1972	28.		885 745		Nitrobenzene ($C_6H_5NO_2$) + Cinnamic alcohol
19.6 1.1915 20 .1947	2 31.2 4 41.2	7 1.18	3324 7352		(C ₉ H ₁₀ O)
	6.6542%		.002		Ampola and Carlinfanti, 1895
17.05 1.1785	58 24.		7142		% f.t. % f.t.
20 .1757 30	73 47. 0.4894%	15 .l	495		0 +3.84 4.99 1.70
19.6 1.0888 20 .0884 31.6 .0777	3 41. 18 54.	2 1.00 1 .03	690 5 7 1		0.54 3.50 8.24 0.76 1.82 2.94 12.97 -0.51 2.87 2.49 20.47 -2.44 3.97 2.06
	 				

o-Dinitrobenzene ($C_6H_hO_hN_2$) + Ethyl tartrate	m-Dinitrobenzene ($C_6H_{14}O_{14}N_2$) + Triphenylcarbinol ($C_{1.9}H_{1.6}O$)
(C _B H ₁₄ 0 ₆)	Kremann, Hohl and Müller, 1921
Patterson, 1908	% f.t. % f.t.
t (α) _D 25.03% 116.1 35.16 134.2 32.05 142.4 30.95	0.0 89.0 55.2 129.8 4.3 87.8 62.5 135.0 9.9 86.0 63.0 135.0 15.1 84.0 68.3 139.0 19.5 85.0 75.3 143.1 24.4 98.5 82.8 148.5 29.8 107.0 90.8 153.0 33.8 111.5 96.4 157.0 40.9 118.0 100 159.5 47.8 124.0
o-Dinitrobenzene ($C_6H_4O_4N_2$) + Triphenyl carbinol ($C_{19}H_{16}O$)	
Kremann, Hohl and Müller, 1921	p-Dinitrobenzene ($C_6H_{\mathfrak{t}}O_{\mathfrak{t}}N_2$) + Triphenylcarbinol ($C_{10}H_{16}O$)
% f.t. % f.t.	
0.0 116.5 49.3 118.5 4.5 115.0 51.1 120.0	Kremann, Hohl and Müller, 1921
9.0 113.5 59.5 127.0 14.2 111.0 64.4 132.0 18.0 109.0 70.8 136.0 20.1 105.0 75.3 141.0 29.6 104.0 84.6 147.0 36.7 105.0 99.9 154.0 40.8 111.0 100 159.5 44.7 113.5 m-Dinitrobenzene (C ₆ H ₆ O ₄ N ₂) + Ethyl tartrate (C ₈ H ₁₄ O ₆)	% f.t. % f.t. 0.0 171.0 55.9 140.0 6.3 170.0 56.8 139.5 13.8 168.0 58.9 137.0 18.3 166.0 60.5 135.5 24.6 163.0 61.4 135.0 29.9 160.0 65.5 133.0 34.2 157.5 70.1 136.0 36.6 155.0 74.6 140.0 40.6 153.0 81.5 146.0 44.2 150.0 88.0 150.5 46.5 148.0 95.6 156.0 52.1 143.0 100.0 159.5
Patterson, 1908	Trinitrobenzene sym. ($C_6H_8O_6N_8$) + Ethyl tærtrate ($C_6H_{14}O_6$)
t d t (a)	(Can1406)
24.172%	Patterson, 1908
83.8 1.3043 81.5 18.16	t (α) _D t (α) _D
94.7 17.84 112.0 17.53	24.933% 51.38%
49.611% 68.5 1.2565 63.3 15.59 82.5 1.2425 89.3 16.03 99.4 1.2251 124.6 16.22 149.2 16.06 For 100%, see: Nitrobenzene + Ethyl tartrate	104.0 -11.26 95.9 -1.56 114.0 -8.44 117.0 +2.30 129.2 -4.76 127.4 +4.01 146.4 -1.12 For 100%, see: Nitrobenzene + Ethyl tartrate.

Trinitrobenzene sym. ($C_6H_8\theta_6N_8$) + Triphenylcarbinol ($C_{19}H_{16}\theta$)	o-Nitrotoluene ($C_7H_7O_2N$) + Ethyl tartrate ($C_8H_1 + O_6$)				
Kremann, Hohl and Müller, 1921	Patterson, 1908				
% f.t. % f.t.	t d t d				
0.0 121.5 53.7 136.0 5.5 119.0 53.8 136.6 13.1 114.0 60.6 140.0 21.1 118.0 64.7 142.0 28.9 124.0 70.7 145.0 37.0 131.0 79.4 148.0	0% 16.0 1.16742 58.0 1.1275 40.0 .14472 100.5 .1377 5.00243%				
43.4 134.0 85.9 151.0 47.5 133.0 93.9 155.0 47.7 133.0 100.0 159.0	12.0 1.17186 63.0 1.1235 39.5 .14588 101.0 .10871 10.0023%				
E ₁ : 112° E ₂ : 133° (3+2)	14.1 1.17129 62.6 1.1247 42.0 .14456 100.1 .0878 25.0094%				
o-Nitrotoluene (${ m C_7H_7O_2N}$) + Ethyl alcohol(${ m C_2H_6O}$)	15 1.17509 60 1.1313 38 .1530 101 .0915 50.21%				
Burrows and Eastwood, 1923	19.4 1.18013 57.1 1.1427 35.0 .16466 101.6 .0980				
30°	t $(\alpha)_D$ t $(\alpha)_D$				
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5.00243%				
14.22 .82051 100 1.154	10.1 37.88 54.1 32.18 14.7 37.26 63.0 31.24 23.9 35.99 67.3 30.7 39.0 33.89 100.0 27.06 48.6 32.75				
c d ⁿ (alcohol≈1)	48.6 32.75 10.0023%				
Ni trotoluene - 1.8373 40.6182 0.92469 .0621 20.3091 .85950 .0135 10.1546 .82613 .0028 5.0773 .80936 .0144 2.6386 .80129 .0027	11.5 32.99 49.4 29.77 17.5 32.59 54.1 29.45 24.6 31.84 61.2 28.93 38.6 30.68 100.0 25.54 45.6 30.11 25.0094%				
c= g nitrotoluene in 100 cc alcohol. o-Nitrotoluene ($C_7H_7O_2N$) + Methyl malate 1	10.4 25.03 51.9 24.26 14.6 25.09 56.7 24.14 24.9 24.97 66.3 23.88 38.7 24.70 100.0 22.51				
(C ₆ H ₁₀ O ₅) Grossmann and Landau, 1910	11.0 17.46 52.0 18.54 18.5 17.8 60.4 18.68 23.0 17.86 67.0 18.77 40.9 18.33 100.0 18.83				
g/100 cc (α) red yellow green pale dark viol. blue blue	For 100%, see: Nitrobenzene + Ethyl tartrate				
20° 50.073 -3.77 -4.51 -4.97 -5.43 -5.65 -5.87 25.0365 -3.40 -4.19 -4.55 -4.75 -4.95 - 12.5183 -3.04 -3.67 -4.15 -4.39 -4.47 - 5.255 -2.47 -3.24 -3.81 -4.19 -4.39 -4.38 2.6275 -1.52 -2.28 -3.04 -3.81 -3.81 -3.81					

Lecat, 1949	
o-Nitrotoluene	$(C_7H_7O_2N)$ (5.t.= 221.75) +
Alcohols.	

	2nd comp.		Az		
Name	Formula	b.t.	%	b.t. 01	Dt mix Sat.t.
Decyl alcohol	C ₁₀ H ₂₂ 0	232.8	15	221.7	-3.3
Glycol	C2H6O2	197.4	48.5	188.35	142.0
Glycerol	$C_8H_8O_8$	290,5	8	220.7	193
Diglycol	$C_{\mu}H_{10}O_{3}$	245.5	17.5 53	218.2	+0.1
Dipropylen glycol	-C ₆ H ₁ 40 ₃	229.2	10 21	216.9	+0.3
Methoxy- triglycol	$C_7 H_{16} 0_{\psi}$	245.25	10 12	220.8	-0.1
Borneol	$C_{10}H_{18}0$	215.0	7 5	213.5	-
Menthol	$C_{10}H_{20}0$	216.3	66	214.65	26
Citronel- lol	$C_{10}H_{20}0$	224.2	8 19	220.7	-2.5
Geraniol	$C_{10}H_{18}0$	229.6	38	219.8	-5.0
1-Terpineol	C ₁₀ H ₁₈ O	216.85	62 80	217.1	-3.9
2-Terpineol	C _{1 0} H _{1 8} 0	210.5	50 90	209.7	-5.2
Benzyl- carbinol	C ₈ H ₁₀ 0	219.4	5 7 60	217.6	-3.2

m-Nitrotoluene ($\rm C_7H_7O_2N$) + Ethyl alcohol ($\rm C_2H_6O$)

Wagner, 1903

С	a	η(alcohol=1)
	15°	
Nitrotoluene	-	1.8207
40.5806	0.92324	.0510
20.2903	. 85 887	.0046
10.1452	. 82633	.0006
5.0726	.80955	.9998
2.5363	.80122	.9997
c= g nitrotolue	ne in 100cc	

Lecat, 1949 $\label{eq:hamiltonian} $$\text{m-Nitrotoluene (} C_7H_70_2N$) (b.t.= 230.8^\circ) + Alcohols.$

	2 nd comp.		Αz		
Name	Formula	b.t.	%	b.t.	Dt mix.
Decy1 alcohol	C ₁₀ H ₂₂ O	232.8	40	228.2	-4.5
Geraniol	C 1 0 H 1 8 O	229.6	50 51	227.3	-4.7 -
Glycol	$C_2H_6O_2$	197.4	57	192.5	-
Glycerol	C 3H8O8	290,5	13	228.8	-
Diglycol	$C_{\mu}H_{10}O_{8}$	245.5	25	224.2	-0.2
Butoxydi- glycol	$C_8H_{18}O_8$	231.2	10 30	229.0	-0.2
Methoxytri glycol	¹⁻ С ₇ Н ₁₆ О ₄	245.25	2 3	226.4	-

m-Nitrotoluene ($C_{7}H_{7}0_{2}N$) + Methyl malate 1 ($C_{6}H_{1}{_{\odot}}0_{5}$)

Grossmann and Landau, 1910

g/100 cc	(α)							
	red	yellow	green	pale blue	dark blue	viol.		
50.845 25.4225 12.6113 4.875 2.4375	-3.44 -2.48 -1.97 -1.44 -0.41	-3.84 -2.95 -2.44 -1.64 0.00	-4.48 -3.26 -2.83 -1.23 +0.41	-4.80 -3.50 -2.60 -1.03 +0.82	-4.90 -3.46 -2.28 -0.82 +1.23	-4.86 - -0.41		

m-Nitrotolu	ene (C ₇ H ₇ 0		nyl tartrate	m-Nitrotoluene ($C_7H_7O_2N$) + Ethyl diacetyl tar-trate ($C_{12}H_{18}O_8$)
Patterson	, 1908			Scheuer, 1910
t	d	t	đ	% pale (α) pale red D yellow green blue viol.
	0%		· · · · · · · · · · · · · · · · · · ·	76.75°
17.5 38.4 56.0	1.1600 .14028 .1240 5.000	65.8 99.6	1.1147 .0832	25.92 -6.624 -9.698 -10.524 -13.389 -24.007 -22.192 49.32 -2.864 -4.927 -5.454 -7.373 -15.744 -14.225 67.74 -0.043 -1.192 -1.148 -2.796 -8.754 -12.387 80.77 +3.479 +3.139 +2.972 +2.258 -1.925 -8.221
15.5 40.8 60.8	1.16272 .13902 .1203	70.7 99.0	1.1110 .0840	92.18 +4.045 +4.064 +3.903 +3.599 +0.994 -3.277 100 +4.833 +5.173 +5.181 +5.151 +3.390 +0.195
	9.987	•		
18.3 37.1	1.16144 .1437 25.003	67.2 99.4 8%	1.1153 .0845	Lecat, 1949
18.4 35.6	1.16690 .15014	65.6 99.6	1.1207 .0882	m-Nitrotoluene (C ₇ H ₇ O ₂ N) (b.t.= 230.8°) + Alcohols.
	51,188	3%		2 nd comp. Az
20.4 39.4	1.1766 .1575	63.0 99.4	1.1342 .0976	Name Formula b.t. % b.t. Dt mix.
t	(a) D	t	(α) D	Citronellol C ₁₀ H ₂₀ 0 224.4 74 223.2 - 803.5
	5,000	44%		Menthol C ₁₀ H ₂₀ O 216.3 - 216.2 -
6.8 15.0 21.6 46.4	28.96 28.78 28.74 27.40	58.6 74.6 99.0	26.88 26.2 24.74	α -Terpineol $C_{10}H_{18}0$ 218.85 902.0 92 218.65 - Phenyl- $C_{9}H_{12}0$ 235.6 32 229.5 -2.8 propanol
	9.988	78%		propries.
7.8 17.6 28.9 38.3 45.1	24.45 24.87 25.07 25.08 24.96	49.0 69.8 81.0 98.8	24.86 24.07 23.68 22.69	p-Nitrotoluene (C ₇ H ₇ O ₂ N) + Ethyl alcohol (C ₂ H ₆ O)
	25.003	%		Wagner, 1903
7.2 12.7 30.3	17.05 17.58 18.86 51.188	61.4 79.8 99.0	19.93 20.15 20.11	molarity d "(alcohol=1) 15° 0.83733 0.9989 0.5 81563 1.0039
6.0 15.3 29.1	11.38 12.52 13.80	62.3 81.6 99.5	15.86 16.58 17.02	0.25 .80421 1.0018
} }			+ Ethyl tartrate.	Cohen, De Meester and Moesveld , 1924
				% d % d
				100 0.7810 58.27 0.9055 84.57 .8248 52.01 .9265 72.20 .8605 46.80 .9450

Lecat, 19	40	····	-			2 4-Dinitr	otoluene	(C H O. N.) + Ethyl tartrat	t o
	luene (C ₇ I	1 ₂ 0 ₂ N) (b	o.t.= :	238.9°)	+	2,4 2111111	otoruciic	C AT GOTTING	$(C_8H_{1\mu}O_6)$	
Alcohols.	·				 	Patterson	. 1908			
	2 nd comp.		Az			t	d	t	(α) _D	
Name	Formula	b.t.	%	b.t.	Sat.t.		24	.941%	υ 	
Decyl alcohol	C ₁₀ H ₂₂ 0	232.8	67	231.5	_	72.3 82.8	1.2710 .2604	63.0 91.3	13.88 14.29	
Geraniol	C, oH, 80	229.6	7 5	228.8	-	100.0	.2433	123.2	14.66	
Glycol	$C_2H_6O_2$	197.4	63,5	192.4	141,5	2 4-Dinit	rataluana	(C W.O.N	2) + Triphenylcan	
Glycerol	$C_9H_8O_8$	290.5	17	235.6	220	2,4 Dinit	rotoruene	(C)1160411	$(C_{19}H_{16}O)$	BIROL
Diglycol	$C_{\mu}II_{10}0_{3}$	238.9	35	228.75	48.5	 				
Dipropylen glycol	-C ₆ H _{1 4} O ₃	229.2	62	225.0	-			fuller, 19		
Methoxy- triglycol	C7H1604	245.25	39	231.2	-	0.0	f.t. 68.5	52.7	f.t. 122.0	
Phenyl- propanol	C ₉ H _{1 2} O	235.6	60	234.0	-	3.4 7.8 13.6	67.8 66.0 70.0	57.4 62.7 68.3	126.0 131.0 135.0	
						17.4 22.4	79.0 89.0 95.0	73.1 80.0 81.1	140.0 145.0	
p-Nitrotol	luene (C ₇ H	•	Ethyl C ₈ H ₁₄		e	26.4 31.2 37.3 42.8 50.1	100.0 107.0 113.5 119.5	89.0 94.1 100.0	146.0 152.0 155.0 159.5	
Pattersor	1, 1908					2 6-Dinit	rotoluene	/ C H.O. N	2) + Ethyl tartra	
t	d	t		đ	·		. To coruche	(071160411	$(C_8H_{14}O_6)$	
	20	. 2968%				Postsonoon	1000			
53.9 72.3	1.1298 .1120		4	1.0919		Patterson	d	t	(α) _D	
	48	.5%				<u>-</u>				
45.7 64.4	1.1487 .1300		0	1.1172 .0802		63.3 75.5	24.1 1.2792 .2668	753% 52.1 61.4	22.93 22.6	
t	(α) _D	t		(α) _D		80.5	. 2616	77.7 95.6	22.13 21.38	
	2	0.2968%				-		140.2	19.71	
45.5 51.6 65.2	19.48 19.75 20.01	80 95		20.10 20.03						
	4	8.5%				2,4,6-Tri	nitrotolu	ene (C ₇ H ₅	0_6N_8) + Ethyl alo	
43.9 70.3	14.94 16.35	95	. 2	17.16					(C ₂ H ₆ O))
	00%, see: N		ne + E	thyl tar	trate.	Desvergne	s, 1924			
						- %	f.t.	%	f.t.	
						0.70 1.95 1.89 3.57 4.42	0.3 33.0 40.1 45.0 50.0	5.7. 7.50 10.24 15.60	0 59.8 4 65.0	

2,4,6 Trinitrotoluene ($C_7H_5O_6N_3$) + Triphenylcarbinol ($C_{19}H_{16}O$)	p-Nitroanisole ($C_7H_7O_8N$) + Ethyl tartrate ($C_8H_{14}O_6$)
n	Patterson and Stevenson, 1910
Kremann, Hohl and Müller, 1921	t d t d
# f.t. % f.t.	53.84% (?)
100 159.5 42.8 129.5 95.4 156.5 41.8 126.5 93.0 154.5 40.4 127.5	35.1 1.2101 48 1.1974 41.4 .2038 57.2 .1883
90.1 153.0 38.4 126.0 I	t $(\alpha)_D$ t $(\alpha)_D$
85.1 150.5 37.2 124.0 84.0 150.0 36.7 123.5 76.2 145.5 31.8 123.0	26.08% 53.84%
84.0 150.0 36.7 123.5 76.2 145.5 31.8 123.0 73.5 143.0 28.6 118.0 69.9 143.0 24.2 116.0 66.5 139.0 25.3 114.0	52.0 6.082 20 12.5 55.8 6.25 35.1 13.63
73.5 143.0 28.6 118.0 69.9 143.0 24.2 116.0 66.5 139.0 25.3 114.0	64.8 6.515 44.4 14.23
66.5 139.0 25.3 114.0 63.5 139.0 21.9 111.0 62.9 137.0 19.3 110.0 60.1 135.5 19.1 107.0	73.6 6.075 51.3 14.58 77 6.078 57.6 14.91
57.7 136.5 14.8 102.5	و من المراح المراح المراح في المراح
54.4 133.0 14.3 97.0 53.8 134.5 11.8 89.0 49.6 132.0 8.8 84.0	o-Nitrophenetole ($C_8H_9O_3N$) + Ethyl tartrate ($C_8H_{14}O_6$)
48.6 130.0 5.4 78.0 46.2 130.0 3.8 79.0 0.0 81.0	Patterson and Stevenson, 1910
	t d t d
	25.09%
o-Nitroanisole (C ₇ H ₇ O ₈ N) + Ethyl tartrate	17.1 1.1896 4 0 .4 1.1659 33.4 .1734 54.3 .1524
(C ₈ H ₁ ₄ O ₆)	39.43%
Patterson and Stevenson, 1910	14.6 1.1948 33.3 1.1757 25.9 .1833 41 .1680
t d t d	t (a) D t (a) D
9.79%	
17.7 1.2471 42.9 1.2219 33 .2319 59.7 .2050	25.09%
33 .2319 59.7 .2050 21.17%	18.4 19.11 53.3 20.41 20. 19.2 65.5 20.6 30.6 19.7
14.9 1.2442 53.2 1.2053 35 .2237 66.4 .1919	39.43%
	15.9 15.41 29.1 16.27 20 15.75 42 17.06
t (a) _D t (a) _D	20 15.75 42 17.06 25.1 16.16
9.79%	p-Nitrophonotole (CHON) - Fitted
17.9 30.7 43.3 29.2	p-Nitrophenetole ($C_8H_90_3N$) + Ethyl tartrate (C_8H_1 ₁ $_40_6$)
20 30.6 53.2 28.3 34.5 29.5 62.8 27.7	(98-14-6)
21.17%	Patterson and Stevenson, 1910
17.4 25.35 39.3 25.1	t $(\alpha)_D$ t $(\alpha)_D$
20 25.3 50 25.2 29.1 25.4 55.8 24.8	24.37% 49.66%
For 100%, see: Nitrobenzene + Ethyl tartrate	50.1 3.88 49.4 6.475
	57.3 3.995 54.4 6.73 67.3 4.21 66.6 7.175
	82.5 4.345 69.7 7.28
	100%
	17.8 9.222 124 15.774 35.3 11.174 143 15.926
	35.3 11.174 143 15.926 60.4 13.318 160 15.88 92.9 15.022 175 15.74

o-Nitro	oaniline	(C ₆ H ₆ O ₂ !	N ₂) + Ethy	l alcoho	1 (C ₂ H ₆ O)
Collet	t and Jo	hnston, 1	926		
mo l	K	f.t.	mo1%	f.t.	
83.	86	37.7	33.39 20.73	57.6	
68. 52. 35.	51 .	47.1 51.7	$\frac{20.73}{11.30}$	62.0 65.9	
35.	70	56.7			
m-Nitro	aniline	(C ₆ H ₆ O ₂ N	1 ₂) + Ethy	l alcohol	(C ₂ H ₆ O)
Colle	tt and J	ohnston,	1926		
mo	1%	f.t.	mo1%	f.t.	
	.36	50.2	38.68	94.7	
88 76	.60 .75	65.9 78.5	30.24 17.48	98.4 104.6	
63	.75 .20	85.0 88.7	17.48 0.0	112.5	
54	.43	88.7			
p -Nitr	oaniline	(C ₆ H ₆ O ₂ N	(₂) + Ethy	l alcoho	1 (C ₂ H ₆ O)
Collett	and Joh	nston, 19	26		
molf	f	.t.	mo1%	f,t.	
97.5	5 3	4.8	55.81	113.7	
93.9 .83.0	4 9	6.2 2.0	40.26 25.55 16.17	122.8 132.3 137.2	
63.4	1 10	9.0	16.17	137.2	
Nitrona	iphthalei	ie (C ₁₀ H	0 ₂ N) +E+	thyl alcol	
. C-m-a	++: 101	7			(C ₂ H ₆ O)
	tti, 191				
t		U	t		U
	0.%	0 (505		41.36 %	F4F3
40 58		0.6393 0.7024	54.2 56.8	. 0	.5453 .5480
	61.75		56.8 61.0	C	.5644
53.	7	0.6034	10	100 %	Z202
56. 58.	6 1	0.6093 0.6153	40 58	0	.6393 .7024
- Nitro	nanh+na l	ene (C.	H ₇ O ₂ N) +	Ethyl tar	trate
a-uitto	mapn tna	.c.ic (01 (C _B H ₁₄ O ₆	
				3	
Patter	son, 190	08			
t	đ	t	đ	t	đ
10.2	214 %	25	.145 %		565 %
63.9	1.2113 1.1986	62.4 80.0	1.2023	48.9 61.6	1.2001 1.1882
$\substack{79.0\\101.0}$	1.1803	80.0 98.7	$\frac{1.1864}{1.1698}$	61.6 78.5	1,1719
				100.0	1.1517

t	(α) _D	t	(α) _D	t	(α) _D
10.	214 %	25.	L45 %	49.5	565 %
61.4 78.0 92.6 122.8	32.99 31.83 37.47 33.74	58.9 78.0 96.3 123.0 139.0	32.99 31.83 30.71 28.78 27.65	16.7 26.4 47.2 74.3 99.8	24.79 24.99 24.93 24.66 24.06
For	100 % see	: Nitrob	enzene + I	111.6 Ethyl tar	23.68 trate .

Lecat, 1949

o-Chlornitrobenzene ($C_6H_{\rm h}\theta_2NC1$)(b.t.= 246.0) + Alcohols.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	
Glycol	C2H6O2	197.4	68	193.5	
Glycerol	C3H8O3	290.5	15	242.1	
Diglycol	$C_{4}H_{10}O_{8}$	245.5	41	233.5	

o-Chlornitrobenzene ($C_6H_40_2NC1$) + Ethyl tartrate ($C_8H_{1\,4}0_6$)

Patterson and Stevenson, 1910

t	(α) _D	t	(a)D	
	25.7	3%		
24.7 30.55 40.55	7.7 .654 .638	49.2 58 8 2. 9	7.61 .5 .33	

For 100%, see: p-Nitrophenetole + Ethyl tartrate.

Lecat, 1949

m-Chlornitrobenzene ($\rm C_6H_{h}O_2NCI$) (b.t.=235.5) + Alcohols.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	
Glycol	C2H6O2	197.4	53	192.5	
Glycerol	$C_8H_8O_8$	290.5	10	232.2	
Diglycol	$C_{4}H_{10}O_{3}$	245.5	32	228.2	
Dipropylen- glycol	- C ₆ H _{1 \u03}	229.2	-	227.0	

m-Chlornitrobenzene ($C_6H_4NO_2C1$) + Ethyl tartrate ($C_6H_{14}O_6$)	p-Chlornitrobenzene ($C_6H_4NO_2C1$) + Ethy1 tartrate ($C_8H_{14}O_6$)
(Cgm, 406)	Patterson and Stevenson, 1910
Patterson and Stevenson, 1910	t (α) _p
t (a)	24.26%
28.43%	82.1 3.735
36.9 5.754 52.2 5.9 77.4 6.125 89.7 6.046 105.2 6.236	105.2 3.885 117 4.098 128.2 4.106 147.1 4.12
p-Chlornitrobenzene ($C_6H_{\psi}O_2NC1$) + Methyl alcohol	1-Chlor-2,4-dinitrobenzene (C ₆ H ₈ O ₄ N ₂ C1) + Methyl alcohol (CH ₄ O)
(CH ₄ 0)	Desvergnes, 1925
Desvergnes, 1925	1, (,
% f.t.	89.90 75.55 16 32
8.019 21.98 50	
41.70	l-Chlor-2,4,6-trinitrobenzene ($C_6H_2O_6N_3C1$) + Methyl alcohol (CH_kO)
	·
p-Chlornitrobenzene (C ₆ H _u O ₂ NCl) + Ethyl alcohol	Desvergnes, 1925
(C ₂ H ₆ O)	% f.t.
Desvergnes, 1925	90.71 17 74.18 50
% f.t.	
9.493 17 25.19 50	Tetra-Bu ty lammonium picrate ($C_{22}H_{39}O_7N_4$) + Butyl alcohol ($C_4H_{10}O$)
	Seward, 1951
Lecat, 1949 p-Chlornitrobenzene ($C_6H_0O_2NC1$) (b.t.= 239.1) +	% d n % d n
Alcohols.	100 609 0.758 24.77 7430 1.014
2 nd comp. Az	88.61 811 .790 13.59 14630 .050 74.86 1155 .838 6.64 26800 .076
Name Formula b.t. % b.t. Sat.t.	58.71 1933 .894 2.28 40300 .093 38.53 3700 .949 0 58100 .105
	% × % ×
Glycol $C_2H_6O_2$ 197.4 57.8 192.85 136.5	91°
Glycerol C ₃ H ₈ O ₃ 296.5 13 235.6 215 Diglycol C ₄ H ₁ O ₀ O ₈ 245.5 34 229.5 76	100 0 50.31 86.80 99.50 1.62 39.69 90.07
Diglycol C _u H ₁₀ O ₈ 245.5 34 229.5 76 Dipropylen- C ₆ H _{1u} O ₈ 229.2 11 228.3 - glycol	97.91 5.01 30.30 84.63 94.96 10.78 19.25 66.22 90.89 18.92 10.58 43.57 80.87 39.14 3.74 27.21 70.40 59.17 0 18.21
	60.19 75.18

914

ACETAMI DE + PHENOL

XXXV. OXYGEN-NITROGEN DERIVATIVES + PHENOLS .	mo1%	65°	d 75°	85°	
Acetamide (C_2H_5ON) + Phenol (C_6H_6O) Kremann and Wensing, 1917	0 20 30 40 50 60 70	1.03 .035 .03 .035 .035 .035	1.02 .025 .025 .030 .030	0.99 1.01 .015 .015 .02 .02	
% f.t. E % f.t. E 0.00 76.2 - 60.6 33.8 - 4.75 74.5 - 61.4 33.8 - 14.57 69.5 - 67.2 38.1 -	80 90 10 0	.035 .035 .04	.030 .03 .035	.025 .025 .025	
15.04 68.9 - 70.5 39.7 - 23.5 64.0 62.84 72.9 40.8 - 28.5 60.1 - 77.0 40.8 -	mol%	6 5 °	უ 7 5°	85°	
28.5 60.1 - 77.0 40.8 - 34.5 59.2 - 79.7 40.4 - 34.5 54.5 - 85.2 35.5 - 40.5 47.5 26.3 86.5 34.5 27.3 40.6 47.5 - 90.8 26.5 - 45.4 40.8 - 93.5 30.5 27.5 50.7 33.5 27.0 95.8 34.8 - 51.5 31.0 27.0 100.0 40.9 - 55.1 28.5 - (1+2)	0 10 20 30 40 50 60 70 80 90	3500 3100 2900 2500 2300 2100 2100 2100 2100	2200 2000 2000 2000 2000 1900 1900 1900	1300 1200 1100 1000 1000 1000 1000 1000	
mol% f.t. mol% f.t.	mo1%	6 5°	я 7 5°	85°	. ,
0 81.9 55.9 39.1 9.6 76.7 62.3 41.7 20.6 66.4 67.1 42.3 30.9 53.6 74.1 39.9 40.2 35.6 79.1 37.2 42.5 33.3 83.0 33.3 44.9 33.8 88.5 30.0 46.5 34.0 89.5 32.4 48.0 34.6 100 41.0 50.4 35.6 (1+2)	0 10 20 30 40 50 60 70 80	0.40 .26 .20 .12 .08 .03	0.72 .54 .40 .24 .15 .10	0.40 .99 .70 .50 .38 .20 .11	
Dzhelomanova, Rudenko and Dionisyev, 1956	Acetami	de (C ₂ H ₅ ON) + Pyrogal	1o1 (C ₆ H ₆ O	a)
mol% f.t. mol% f.t.	Kremann	and Zechner	, 1918	···	
0 79.4 60 40 10 74 70 42 20 62 80 38 30 52 90 30.2 E 40 38 95 38 45 29 E 100 41 (1+2)	0 3.3 11.3 16.1 17.9 22.2 23.5 28.8 31.8 35.9	76.5 75.5 71.3 67.7 60.9 58.4 52.5 46	E	20 11 11 30 44 66 70 5 86 8 108.4 126	- 10 - - - - - -

Acetamide (C_2H_5ON) + Pyrocatechol ($C_6H_6O_2$)						Acetamid	e (C ₂ H ₅ ON) + Resorc	inol (C ₆ H ₆ O	2)
Kremann a	nd Auer, 19	918				<u> </u>		1010		
%	f.t.	Е	%	f.t.	E	<u> </u>	and Auer,			
						%	f.t.	%	f.t.	
100 83.5 74.1 67.9 61.3 55.8 47.8 38.3 (2+1)	102.8 77.0 48.0 23.0 27.0 34.0 37.4 44.0	17.4 17.5 17.6 34.5	33.3 29.4 23.7 13.7 8.6 6.3 1.9	53.0 57.0 63.0 68.0 72.0 74.0 75.4 76.5	-	100 93.8 87.4 81.7 74.1 69.4 48.2 46.0 43.4	108.5 100.0 87.5 73.5 47.0 32.0 9.0 14.2 20.2	38.8 33.9 27.1 22.7 18.0 14.0 8.2 4.1 1.4	31.0 42.5 55.0 61.0 66.5 69.0 72.5 74.5 76.5	
Dzhelomanova, Rudenko and Dionisyev, 1956 (fig.)						Dzheloman	nova, Rudenl	ko and Dion	nisiev, 1956	(fig.)
mo1%	f.t.	mo1%	6	f.t.		mo1%	f.t.	mo1%	f.t.	
0 10 20 26	79.4 68 50 37.6 1	54 60 70 tr.t. 80		26 E 54 82 88		10 20 30 60	79.4 55 25 50	70 80 90 100	72 90 105 110	
30 40 50	35 33 28	90 100		100 105		mol%	95°	d 105°	115°	
mo1%	80°	d 95°	110	0		0 10 20	1.00 .02 .06	0.99 1.01 .05	0.98 1.00 .04	
10 20 30 40 50 60 70 80 100	0.990 1.07 .08 .10 .12 .14 .15	0.99 1.05 .07 .08 .11 .12 .14	0.9 1.0 .0 .0 .0 .1 .1	3 6 7 9 1 2 4		30 40 50 60 70 80 90 100	.09 .11 .14 .15 .18	.08 .10 .13 .14 .17	.07 .09 .12 .13 .16 .17 .18	
mol%						mo1%	95°	ກ 105°	115°	;
10 20 30 40 50 60 70 80 100	80° 1610 3800 4500 5200 5800 6100 6500	95° 1400 2600 3100 3400 3900 4000 4050 3900	110 200 220 240 270 280 290 280 240	0 0 0 0 0 0 0 0 0		0 10 20 30 40 50 60 70 80 90	1500 2200 3500 4300 5900 7000 8900 10800	1200 2000 3000 3500 4800 5300 6500 7500	1000 1800 2200 3000 3400 4100 5000 5500 6000 6900 7500	
mo1%	80°	и 9 5 °	110	١٠		mo1%	95°	х 105°	115°	
0 10 20 30 40 50 60 70 80 90	0.40 .60 .80 .60 .50 .40 .35 .20	0.42 .65 .88 .65 .55 .45 .40 .25 .20	0.5 .7 .9 .7 .6 .5	95 75 60 60 2 30	 	0 10 20 30 40 50 60 70 80	0.48 .30 .18 .12 .08 .04 .02 .01	0.49 .34 .24 .14 .10 .05 .04	0.50 .39 .28 .20 .13 .10 .08	

Acetami	de (C ₂ H ₅ ON)	+ Hydroquin	ione (p-C ₆ H,	60 ₂)	Lecat, 19	049 e (C ₂ H ₅ ON)	(b '+2	21 15) a	Phonols	
					Acetamiue	2 nd comp.	(b. t2	Az	rhenors	·
	and Auer, 19		·		Nome	Formula			L 4	
%	f.t. I	<u> </u>	f.t.	<u>E</u>	Name	rormula	b.t.	%	b.t.	Sat.t.
100 93.6	169 161.2	53.9	98.0 98.0	-	o-Xylenol	$(C_8H_{10}O)$	226.8	4	221.1	-
85.6 78.4	148.0 - 133.0 100	38.3	$\begin{array}{c} 91.0 \\ 81.0 \end{array}$	60.3	Thymol	(C ₁₀ H ₁₄ 0	232.9	29.5	219.9	69
70.6 68.0		33.8 3.8 29.4	74.0 64.0	$60.1 \\ 60.3$	Carvacrol				220.8	-
66.0 65.9	102.0 101.2	26.1 20.7	$61.0 \\ 65.0$	60.0	Guaiaco1	(C ₇ H ₈ O ₂)		•	204.55	20,5
61.8 60.2	101.0 100.5	9.9	$\frac{68.5}{72.0}$	-	Guethol	(C ₇ H ₈ O ₂)		-	215.0	-
(1+1)	0	76.5	~	Eugenol	(C ₁₀ H ₁₂ O ₂			220.8	59.5
					o-Chlor- phenol	(C ₆ H ₅ 0C1) 219.75	67	231.7	-
Dzhelo.	anova, Ruden	ko and Dioni	syev, 1956 (fig.)	o-Brom-	(C ₆ H ₅ 0Br) 199.8	50	223.0	-
mo1%	f.t. 15	mo1%	f.t.		phenol o-Nitro- phenol	(C ₆ H ₅ Q ₆ N) 217.2	75.8	207.7	43
0 10	79.4 73	50 60	100 tr.t, 125		Methyl- salicylate	e (C ₈ H ₈ O ₉)	222.9	7 5 7 1	205.9	80.0
83 20 30 40	65 E 65 90 98	70 80 90	140 155 165		Ethyl- salicylate	e (C ₉ H ₁₀ O ₃) 233.8	3 59.8	209.2	103.5
mo1%		100 d	171 (1+1)	Isoamyl- salicylate	(C ₁₂ H ₁₆ O ₅	277.5	5 30	220.0	- '
110176	135°	145°	155°							
0	1.8	1,7	1.6		Acetamide	e (C ₂ H ₅ ON)	+ o-Cre	sol (C,	,н ₈ 0)	
10 20 30	1.9 2.2 2.2	1.8 1.9 2.1	$ \begin{array}{c} 1.7 \\ 1.8 \\ 2.0 \end{array} $		Hrynakows	ski and Adam	anis, 19	38		
40 50	$\frac{2.3}{2.38}$	2.1 2.3	2.0 2.25		%	f.t.		f.t.		······································
60 7 0	-	-	2.35 2.4		0	81.6	60			
mo1%		η	 		10 20	76.5	70 80	28.0 -3.8		
BIO 1 /0	135°	145°	155°		30 40	71.8 65.2 58.2	90 100	+8.2 30.0	2	
0	1000	900	850		50 50	45.8		00.0	•	
10 20	1210 1600	$1050 \\ 1400$	1000 1200		Anator fil	(C II ON)		1 (C	II 0 \	
30 40	$\frac{1800}{2200}$	$\frac{1600}{1800}$	1400 1600		Acetamide	e (C ₂ H ₅ ON)	+ m-Cre	S01 (C,	,n ₈ u)	
50 60	2500	2100	1700 2000		Hrunaka	hi and ta	nnie 10	26		
70	~	-	2300			ski and Adam				
mo1%	н	mo1%	н		%	f.t.	E	%	f.t.	E
		155°			0 20	81.6 73.5		60 7 0	33.0 22.0	22.5
0 10	$0.56 \\ .40$	50 60	0.30		30 40	66.0	2.0	80 90	14.5	9.5 9.5
20 30	.40 .35 .34	70	.29		50	59.2 47.0	1.4 1	00	-2.5 4.0	-
40	.32				(1+1)					
								<u></u>		

				ACL	I AMI DE	1 1 - 61/40	-				
Acetamid	e (C ₂ H ₅ ON) + p-Cr	esol (C	₇ H ₈ O)		Acetamide	(C ₂ H ₅ ON) + m-N	itropheno	1 (C ₆ H ₅ O ₃	N)
Hrynakow	ski and Ada	amanis, 1	938			Kremann ai	nd Auer, l	918			
%	f.t.	Е	%	f.t.	E	%	f.t.	Е	%	f.t.	Е
0 10 20 30 40 50 (1+1)	81.6 75.8 71.0 63.5 48.7 32.5	20,2 20,2 19,2	60 70 80 90 100	20.5 21.0 14.5 17.8 37.0	4.5	100 92.2 81.0 76.3 71.3 65.1 60.5 60.7 55.9	95.0 80.0 44.0 41.0 51.5 50.4 47.5 47.0 47.5	25.0 25.2	55.7 52.7 47.5 41.9 36.1 30.0 23.0 13.8 0.0	44.3 43.5 50.0 56.1 61.0 64.6 68.2 72.5 76.5	42.1
Acetamid	e (C ₂ H ₅ ON) + o-Ni	tropheno	1 (C ₆ H ₅ O ₃	N)	(1+1)		- 1			
Kremann	and Auer,	1918				Dzheloman	nova, Rude	nko and	Dionisie	v, 1956 (fig.)
	f.t.	E	%	f.t.	<u>E</u>	mo1%	f.t.		mo1%	f.t.	
100 97.6 92.1 84.1 77.1 72.3 65.7 62.0	44.8 42.9 43.0 49.0 53.0 56.0 59.0 60.6	41.1 41.1	58.5 50.6 42.0 33.2 21.3 11.4	61.5 64.0 66.6 69.0 71.5 73.8 76.5	-	0 10 20 30 31.0 40 (1+1)	79. 4 70 60 50 47 E 52		50 61.5 70 80 90 100	53.1 47.8 E 68 80 88 96.4	
Sorum ar	nd Durand,	1952 f.t				Acetamide	e (C ₂ H ₅ ON) + p-	Nitropheno	ol (C ₆ H ₅ 0	3N)
0 100	· · · · · · · · · · · · · · · · · · ·	79. 40. 44.	9 E				and Auer,				· · · · · · · · · · · · · · · · · · ·
Dahalas	anova, Rud	lonko and	Dionici	ny 1056 (fig.)	%	f.t.	E		f.t.	E
mo1% 0 10 20 30 40 50	f.t. 79.4 78 75 70 65 60		mo1% 60 70 80 85 90	f.t. 55 50 45 39.5 E 42 44.3	11g.,	100 92.7 86.3 79.5 74.8 70.3 65.2 58.0 51.4 (1+1)	112.0 95.6 79.0 89.5 94.7 96.1 95.2 90.9 85.5	77.2		82.1 79.3 78.0 71.2 66.4 68.0 71.5 76.5	66. 65. 66. 66. 66.
						Dzheloman	ova, Rudei	nko and	Dionisiev	, 1956 (fig.)
						mo1%	f.t.		mol%	f.t.	
						0 10 13 20 30 40 50	79.4 70 65 E 75 84 90 95	5	60 70 71 80 90 100	90 80 78 E 98 110 113.2	

Acetamide (C_3H_5ON) + 2,4-Dinitrophenol($C_6H_4O_5N_2$)

Dzhelomanova, Rudenko and Dionisiev, 1956

mol%	f.t.	mo1%	f.t.		
0 10 20 24 30 40	79.4 74 62 60 E 68 78	50 60 70 80 90	88 90 100 105 110 114.7		

Acetamide ($\rm C_2H_5ON$) + Picric acid ($\rm C_6H_8O_7N_8$)

Dzhelomanova, Rudenko and Dionisiev, 1956 (fig.)

mo1%	f.t.	mo1%	f.t.	
0	79,4	50	95	
10	60	60	100	
20 21	42	70	105	
21	39 E	80	110	
30	50	90	115	
40	65	100	121.8	
30 40 43.5	68.8 tr.			+1)

Pushin and Kozuhar, 1947

mol %	f.t.	E	
100	122	_	
80	115	-	
70	109	-	
60	109 9 9	40	
50	87	38	
45	87 60	40 38 35	
30	47	38	
2 5	43.5	40	
20	50	4ŏ	
80 70 60 50 45 30 25 20 15 10	43.5 50 58.5	38 40 40 37	
10	67	<u>-</u>	
5	67 74	-	
Õ	80	_	
_			

Acetamide ($\text{C}_2\text{H}_5\text{ON}$) + α -Naphthol ($\text{C}_{1\text{ o}}\text{H}_8\text{O}$)

Kremann and Auer, 1918

%	f.t.	E	%	f.t.	E
100	92.0	-	43.8	56.4	-
87.4 76.5	68.5 40.0	9.2	36.9 27.9	62.0 67.5	-
67.7	12.0	9.4	21.9	70.0	-
62.2 56.6	29.8 42.1	9.0	$\frac{15.8}{12.6}$	72.0 73.0	_
49.5	51.1	-	0	73.0 76.5	_
44.5	56.0	-			

Acetamide (C_2H_5ON) + β -Naphthol ($C_{10}H_8O$)

Kremann and Auer, 1918

%	f.t.	E	%	f.t.	E
100 89.3 82.1 83.3 68.0 62.8 58.7 56.4	122.0 97.0 78.2 63.0 63.0 62.2 60.0 58.5	61.4	51.6 51.1 51.5 43.5 33.9 25.3 16.9	55.5 55.0 55.5 57.0 63.2 67.4 70.5	53.1 53.2 53.2
			0	76.5	53.1
(1+1)					

Lecat, 1949

Propionamide (C_8H_70N) (b.t.=222.2) + Pheno1s.

	2 nd comp.		Αz		
Name	Formula	b:t.	%	b.t.	Sat.t.
Methyl (salicylate	C ₈ H ₈ O ₃)	222.95	66	210.55	60.2
Ethyl (salicylate	C ₉ H ₁₀ O ₃)	233.8	53	214.5	-
p-Chlor- (phenol	C ₆ H ₅ OC1)	219.75	67	228.0	-
o-Nitro- (phenol	C ₆ H ₅ O ₃ N)	217.2	74. 5	211.05	45

Urea ($ extstyle{CH}_{4} extstyle{ON}_{2}$) + Phenol ($ extstyle{C}_{6} extstyle{H}_{6} extstyle{O}$)	Pushin and Konig, 1928
Middle 1002	mol% f.t. E min.
Philip, 1903	0 132
Kremann and Rodinis, 1906 # f.t. # f.t.	74 58 30 1.5 80 54 33 3.0° 85 49 " 3.3 90 41 " 5.7 93.5 - 36 E - 97 38 100 40.8
100.0 41.0 75.5 61.0 99.4 40.2 69.6 72.0 96.7 37.0 69.3 73.0 94.5 37.5 64.8 84.0 91.5 43.0 63.9 85.0 91.0 44.0 58.1 95.0 88.4 51.0 57.4 95.0 84.6 55.8 51.8 101.5 82.2 58.0 41.6 110.0	(1+2) Atkins, 1908 (1+2) f.t. = 61°
86.4 51.0 57.4 95.0 84.6 55.8 51.8 101.5 82.2 58.0 41.6 110.0 80.6 59.0 32.1 116.5 77.9 60.0 16.5 122.8	Dionisiev and Rudenko, 1952
80.6 59.0 32.1 116.5 77.9 60.0 16.5 122.8 76.5 62.0 0.0 129.0 76.2 60.5 (1+2)	120° 135°
Rheinboldt, 1925 wt% mol% f.t. E	90.00 0.9974 0.9898 80.00 1.0103 1.0050 70.00 1.0350 1.0247 60.00 1.0522 1.0412 50.00 1.0776 1.0680 40.00 1.1148 1.1051 30.00 1.1360 1.1254 20.00 1.1751 1.1653
0.0 0.0 132.0 131.0 9.6 6.4 129.0 61.0 19.4 13.3 125.0 " 25.4 17.9 122.0 " 27.9 19.8 121.0 60.0 33.7 24.5 118.0 " 38.3 28.4 115.0 " 40.9 30.7 113.0 " 41.4 31.1 111.5 " 47.6 36.7 107.5 " 50.3 39.3 104.0 " 52.5 41.4 102.0 " 54.6 43.4 99.0 " 61.6 50.6 90.0 " 71.1 61.1 70.0 " 74.5 65.1 60.0 59.5	10.00 - 1.1947 90.00 1020 820 80.00 1190 960 70.00 1420 1120 65.00 1560 1300 60.00 1660 1300 55.00 1780 1390 50.00 1900 1500 45.00 2050 1610 40.00 2160 1710 30.00 2390 1910 20.00 2630 2100 10.00 - 2360
75.0 65.7 60.5 59.5 78.0 69.4 60.5 34.5 81.5 73.8 59.5 34.0 86.4 80.2 55.0 " 88.5 83.1 52.0 " 91.0 86.6 48.0 " 94.5 91.6 37.0 " 96.7 94.9 37.0 " 100.0 100.0 42.5 42.0	80.00 0.05 0.22 70.00 0.24 0.414 65.00 0.28 0.51 60.00 0.35 0.62 55.00 0.45 0.80 50.00 0.60 0.97 45.00 0.73 1.10 40.00 0.87 1.28 30.00 1.14 1.61 20.00 1.42 1.95 10.00 - 2.28

Urea (CH	1,0N ₂) +	Pyrocate	chol (C ₆ H ₆	50 ₂)				н			
						90.00 80.00	$\frac{1.18}{1.40}$		$\frac{1.63}{1.88}$		
Van der H	lammen. 19	931				70.00	1.56		2.05		
						60.00 55.00	$\frac{1.54}{1.50}$		2.16 2.18		
mo1%	f.t.	E	mo 1%	f.t.	E	52.50 50.00	1.46 1.45		2.20 2.23		
		I				47.50	1.44		2.23		
100	105.2	-	50	71.3	-	45.00 42.50	1.46 1.44		2.22		
90 80	95.9 86.0	_	46.5 45	70.1 69.2	66.8	40.00 30.00	1. 5 1 1.58		2.26 2.41		
70	72.6	65.2	40	69.3	67.0	20.00	1.66		2.54		
67.5 62.5	$\substack{68.0 \\ 66.9}$	65.0 65.9	30 15	93.4 118.2	66.8	10.00	-		2.60		
60 55	68.2 71.1	65.3	0	132.9	-						
i.					ļ	1					
(A)	56.3	_				Urea (CH ₄ 0	N. \ → D	asoraino.		۵. ۱	
60 57.5	47.6	-				l brea (Cargo	M2 / T K	esorcino.	(C ₆ n ₆	02)	
55	41.5					1					
						Pushin and	König,	1928			
Pushin ar	nd Rikovs	ki. 1932				mo1%	f.t.	Е		min.	
						0	132	_		_	
mo1%	f.t.	E	mo1%	f.t.	E	15 20	116 106	72 85		0.4 0.9	
100	103	_	50	72.5	_	25 30	96.5	85		1.3	
90 80	97 89	- 54	45 43	72.5 71.5 71	71	35	-	90	E	1.9 1.6	
70	7 6	61	40	76.5	11 (7 5	40 50	98 101	"		0.9	
65 63	70 66	66 66	35 2 5	8 7 105	67.5 62.5	60	97 93	79		0.6	
ll 60	68.5	62	15 0	$\frac{118}{131}$	49	66.6 70	89	83 83.	5	1.4 1.7	
55 (1+	1) /1.0					75 80	90	84 80	E	2.4 1.5	
						90 100	100	-			
					i	(1+1)	111	_		-	
Dionisie	v and Rud	lenko, 19	52								
mo1%		d	1250			Van der Ha	mmon 10	21			
ļ 	12	20°	135°								
90.00 80.00		1594 1690	1.1482 .1561			mo1%	f.t.	E	mo1%	f.t.	E
70.00	.]	L 7 85	. 1684			100	111.0	-	45	103.5	_
60.00 50.00	.1	1878 1971	. 1740 . 1840			85 77. 5	95,6 86,8	84.1	40 32.5	99.1 93.4	- 91.1
40.00 30.00	• • •	2080 2160	. 1928			11 75	84.5	84.2 84.1	30 25	91.4	91.0
20.00		2267	.2090 .2128			70 55	$89.4 \\ 101.5$	84.1	25 10	98.6 121.8	90.8
10.00		η	. 2210			50 (1+1)	104.4	-	0	132.9	-
	- c		1000			(1/1)					
90.00 80.00	25 27	80	1920 2100								
70.00 60.00	31	60 90	2440 2780								
55.00	37	30	2880								
52.50 50.00	38	90 40	2940 2980								
47.50 45.00	38	60 50	3000 3020			1					
42.50	38	40	3010								
40.00 30.00	37	20 20	3000 2 930								
20.00 10.00	36	10	2840 27 60			1					
10.00			•								

Hrynakow	ski and Ad	damanis,	1934			Urea	(CH ₄ ON ₂) + Hydroq	uinone ((C ₆ H ₆ O ₂)	
mo1%	E	f.t.	mo1%	Е	f.t.	Pushi	n and Ko	nig, 1928				
0	-	132.5	40.4 45.5	87.0	96.5	m	ol %	f.t.	E		min.	
2.8 5.8 8.9 12.2 15.6 19.2 23.0 27.0 31.2 35.7	86.0 79.0 81.5 88.0 81.5	132.5 127.0 122.0 119.0 115.0 110.0 105.5 102.0 94.5 87.0 92.5	45.5 50.0 56.5 62.5 69.0 75.9 83.3 91.4 100 (1+1)	83.0 87.0 82.0 84.0	102.0 104.0 101.5 99.5 94.5 85.0 93.2 105.0 110.0		0 10 15 20 30 35 40 50 60 77 78	132 120 114 - 121 124 128 130 127 139 147 153	105 107 110 107 103 - 125 120		0.4 0.9 1.3 0.7 0.4	
Cohen-Ada	ad, 1949					1	00 E ₁ : 20 1	170)° E ₂	: 63	mol %	125°
%	f.t.	E	%	f.t.	E	Dioni	siev and	Rudenko, 1	.951			
0 28. 00	131 113.4	-	64.7 85.2	102.7 87.7	-		mol %	f.t.	mol	%	f.t.	
35.00 43.00 44.7 46.00 (1+1)	113.4 104.8 94.0 92.4 93.4	92.2 91.8 - 92.4	86.00 90.00 94.00 100.00	89.3 96.2 101.7 109.5	87.7 88.0 88.2		0 10 15 17.5 20 21 22 22.5	133 122.1 116.5 114 111.3 110.5	45 50 55 58 59 E 60 62.5		127. +1) 129. 128 127 126.	2 4 E
Dionisi	ev and Ruc	ienko, 19	051		· · · · · · · · · · · · · · · · · · ·		22.5 25 30	112.6 115 120	62.3 65 70 80	,	130 134. 140. 151	3 1
mo 1%	f.t.	Filo	1%	f.t.		Ι.	35 40	122.7 126	90 1 0 0		161. 171	3
0 10 20 25 26 27	133 122.5 115 88 86.5 87.5	E 7	55 60 70 75 76 77.5	101 99.4 91 87 86 84.8 E		Dioni:	siev and	Rudenko, 1	952 mol %	120°	d 135°	
28 30 40 45 50	89 92.8 99 101.5 102.5	3 8 8	79 30 35 90 90	86.1 88.6 95 101 110		75 70 65 60 50	1.1809 1.1831 1.1889	1.1665 1.1682 1.1699 1.1723 1.1780	30 1. 20 1.	1950 2211 2095 2181	1.1840 1.1901 1.1990 1.2072	
Dianiaia	r and Bude	onko 105				mol %	120° "	135°	mol %	.20° η	135°	
mol%	and Rude		mo	1% 120°	d 135°	75 70 65 62.5	- - - 4040 4060	2960 3020 3020 3030 3040	45 4 40 3 30 3	140 040 3980 3750	3020 2960 2940 2790	
90 80 70	1.1735 .1740 .1783	1,165 .171 .175	12 30 66 20	.2115	1.1900 .1976 .2063	60 55 	4100	3050 	10 3	320 020	2450 2210	
60 50	.189 .1948	. 1 7 9 . 184	01 10 10	, -	.2178		120°	135°		120°	135°	
						70 60 55 50 45	0.589 0.64 0.71 0.851	0.61 0.84 0.96 1.13 1.26	40 30 20 10	0.99 1.21 1.62 2.09	1.46 1.80 2.25 2.91	

Urea (CH	μ0N ₂) + 01	rcinol (C ₇ l	H ₈ 0 ₂)			Urea (CH	ւ ₊ 0N ₂) +	m-Cresol (С ₇ Н ₈ О)	
Pushin, L	ukavetski a	and Rikovsk	i, 1948			Kremann,	1907			
mol%	f.t.	E mo	1% f	.t.	E	%	f,t.	%	f.t.	ر القوائلة القوائلية اليوالي اليوالي التوالي الدوائل
100 90 80 70 60 55 50 45 40	108 99 87 75 86 92 98 - 102,5	- 37 - 33 - 30 75 27 74 25 73 20 - 15 71 10 - (2+1)	.3 1 1 1 1 1 1 1 1 1 1	03 03,5 03 02,5 02 10 16 23 33	102 101 101	0.0 7.7 16.3 28.8 36.4 46.6 49.3 56.8 65.0 68.7 71.0 75.8 77.7 (1+1)	131.5 129.0 126.5 124.0 122.5 119.5 119.0 115.0 106.2 101.3 94.5 86.0 80.2	77.9 82.0 82.8 84.2 86.5 86.7 88.0 89.5 90.4 91.1 92.4 92.5 93.2	79.5 65.0 64.5 63.0 59.6 59.5 52.0 51.5 49.0 45.8 40.0 35,0	
Kremann,										
%	f.t.	Я	f.t.			Ruđenko a	ınd Dioni	siev, 1955	(fig.)	
0.0 4.5 12.9 24.1	131.5 130.0 128.5 126.0	79.8 79.9 80.9 81.8	75.0 73.0 69.0 63.0			mol %		120°	đ 130°	140°
32.1 36.0 38.8 41.5 46.0 50.9 55.4 59.0 62.8	124.0 123.5 122.5 122.0 120.5 118.0 115.5 112.0 108.0	82.3 82.4 83.7 84.4 85.6 85.7 87.1 87.4 88.1	60.0 59.0 58.8 57.7 56.5 55.2 53.5 53.5			0 10 20 40 60 80 100		1.10 1.08 1.04 1.03	1.20 1.16 1.08 1.04 1.02 1.00	1:21 1:16 1.11 1.04 1.02 0:96 0.92
70.0 72.1 74.9 75.6	97.0 96.5 91.0 89.5	88.2 90.2 93.0 97.7	49.5 46.0 37.0		,	mol %		120°	n 130°	140°
77.3 77.4	84.0 81.5 ad Sladovic	100.0	28.5 31.0			0 20 40 60 80 100		245 185 145 120	248 215 170 130 105	236 225 195 155 115 95
mo1%	f.t.	Е	tr.	t.		mol %		120°	и 130°	140°
100 95 90 85 80 79 75 72 70 66,3 60 50 40 30 20 10	29.5 27.4 29.9 38 51.7 53 57.2 59 66 78 88.2 105 115 120 122 124.5 133	21.2 25.1 25.9 26.1 25.1 24.4 22.6 20.5	58 55 "	3.3 3.3 43		0 20 40 60 80 100		- 0.40 0.10 0	1.30 0.80 0.15 0.05 0	3.20 1.70 1.15 0.30 0.10

				UR	EA +		
Urea (C	H ₄ ON ₂) +	p-Cresol	(C ₇ H ₈ O)				
Kremann,	1907						
%	f.t.	%	f.t.				
0.0 13.4 28.3 33.1 38.9 42.6 45.4 46.7 51.5 52.3 58.7 60.1 62.6 64.0 72.9 74.0 75.8	131.5 127.5 124.0 122.0 120.5 119.0 117.8 115.5 115.0 111.0 111.0 109.5 108.0 103.0 95.5 93.5 90.0	76.0 77.8 79.1 81.2 81.8 82.8 85.5 87.9 89.0 89.3 89.9 91.6 93.7 95.7 97.0	83.0 78.0 74.0 64.0 59.5 57.0 41.0 36.0 25.5 24.0 22.0 22.5 28.0 31.0	(1+1)			
							
	$H_{\downarrow}ON_{2}$) + ond König,		(C ₇ H ₈ O ₂)				
mo1%	f.t.	E	mo1%	f.t.	E		
0 20 30 40 60 65	132 122 119 117 113 106	13 13 23	80 90 94 96 98 100	61 29 34.5 26 27 28	24 24 - -		
	Urea (CH_4ON_2) + Thymol ($\text{C}_{1\text{O}}\text{H}_{1\text{4}}\text{O}$) Pushin, Marich and Rikovski, 1948						
mo1%		f.t.		E			
100 95 90 80 70 60 55 50 40 30 20		51 118 130 C + 130.5 131 132 131 132 131 131 131 131 131	L ₁ + L ₂	49.5 48.5 47 45 43 43 43 43.5 44			

132

42

0

```
923
P. CR ESOL
     Urea ( CH_{\downarrow}ON_{2} ) + o-Nitrophenol ( C_{6}H_{5}O_{3}N )
    Kremann and Rodinis, 1906
                                                                   %
          %
                          f.t.
                                                                                    f.t.
        0
2.2
12.3
22.3
26.7
29.1
                        131.5
                                                             49.7
                                                                                   124.8
                        131.3
128.0
126.0 C+L<sub>1</sub>+L<sub>2</sub>
125.0
                                                             50.9
59.1
70.2
81.7
                                                                                   126.0
                        124.7
                        124.5
                                                             97.8
99.0
                                                                                   124.0
         34.8
39.1
44.1
                                                                                     93.5
                                                            100.0
                                                                                     45.0
   Urea ( CH_4ON_2 ) + m-Nitrophenol ( C_6H_5O_3N )
   Kremann and Rodinis, 1906
                                                        %
                                                                            f.t.
                               f.t.
                                                     66.1
69.1
70.8
72.7
75.5
79.2
                               132.0
129.8
127.0
125.5
122.0
                                                                            88.0
80.5
80.5
80.5
80.0
77.0
71.0
79.5
85.5
          0.0
        5.1
13.2
23.2
29.5
36.8
42.8
48.2
                               120.0
                                                     81.6
                                116.0
                                112.0
                                                     86.3
                               \begin{array}{c} 108.5 \\ 111.0 \end{array}
                                                     91.2
        \substack{51.7 \\ 52.0}
                                                     93.6
96.2
                                                                            89.5
        59.2
                                103.0
                                                     100.0
                                                                            95.0
        63.5
                                 95.0
    Urea ( CH_{\downarrow}ON_{2} ) + p-Nitrophenol ( C_{6}H_{5}O_{3}N )
    Kremann and Rodinis, 1906
          %
                              f.t.
                                                       %
                                                                          f.t.
                                                     75.2
78.6
81.3
83.3
84.2
85.7
88.7
91.5
                                                                          115.0
113.5
110.0
          0.0
                              131.5
                             130.0
127.0
123.8
122.0
119.0
        3.3
                                                                          110.0
106.5
102.0
99.0
89.5
92.5 (1+1)
        20.4
24.9
30.8
                             \begin{array}{c} 117.0 \\ 114.0 \end{array}
        34.6
43.6
                                                     94.0
        44.8
                              106.0
                                                     96.4
98.6
        60.6
                              113.5
                                                                           104.0
                              \begin{array}{c} 116.0 \\ 116.0 \end{array}
        66.5
                                                                           108.0
        72.4
                                                   100.0
                                                                           111.8
```

Rudenko	and Dionissi	ev, 1954 (1	fig.)	Urea (CH	ι _μ 0Ν ₂) + 2,	4 Dinitrophe	enol (C ₆ H ₄ O ₅ N	2)
mo1%	f.t.	mo1%	f.t.	- Duckin on	A Dibawati	1022		
0 20 30 40	132.7 118 110.7 E 113	50 60 80 100	116.2 (1+1) 109 91.5 E 113.2	mo1%	f.t.	E mol	<u></u>	E
mo1%	120°	d 130°	140°	95 90 85 80 75 65	112 110 108 106 104 102.5	- 45 - 46 - 35 - 30 - 25	5 94 0 92 5 97 0 100,5	92 91 90 89
0 10 2 0 40	1.265 .300	1.240 .255 .285	1.215 .230 .240 .270	65 60 55	100 99 97	- 13	5 105.5 5 115.5 0 131	89
60 80 100	.330 .360 .410	.315 .350 .390	.300 .330 .370	Rudenko	and Dioniss	siev, 1954 (fig.)	
mo1%	120°	η 130°	140°	mo1%	f.t.	mo 1 %	f.t.	
0 10 20 40	- 4400 5250	3000 3750 4400	2050 2650 3250 3800	0 20 30 40 (1+2)	132.7 112.5 116.4 112	50 60 80 100	101 95 107 114.7	
40 50 60 80 100	5300 5100 4400 3500	4300 4200 3700 3000	3700 3600 3100 2400	mo1%	120°	d 130°	140°	
mo 1% 0 10	1 2 0°	и 130°	140° 3.0 4.0	0 10 20 40 60 80 100	1,320 .390 .460 .520	1.210 .300 .365 .440 .510	1.205 .235 .270 .335 .410 .490	
20 30 40 60 80	1.4 1.0 0.7 0.4 0.15	2.7 2.0 1.5 1.2 0.65 0.35 0.10	3.0 2.0 1.7 1.1 0.55 0.25	mo1%	120°	η 130°	140°	
Urea (C	Urea (CH ₄ ON ₂) + Salipyrine (C ₁₈ H ₁₈ O ₄ N ₂) Hrynakowski, 1934				- 6600 6400 5200 2800 1000 200	5200 6100 5900 4700 2200 800	2000 4700 5700 5400 4100 2000 600	
E ₁ : 41	.0% 104.0°	E ₂ : 8	7.0% 70.0°	mo1%	120°	х 130°	140°	
				0 10 20 30 40 60 80 100	6.1 4.6 3.4 1.7 0.3 0	8.0 8.6 6.0 4.3 2.4 0.7 0.1	3.3 13.3 11.3 7.3 5.4 3.1 1.3 0.2	

	mol% η 125° 135° 145°
Urea (CH_40N_2) + 2,4,6-Trinitrophenol ($\text{C}_6\text{H}_30_7N_3$) Rudenko and Dionissiev, 1954	0 - 235 190 10 360 315 265 25 385 350 310 40 345 315 270 60 290 265 225 80 230 215 180 100 175 160 135
mol% m.t.	100 175 160 135
0 132.7 10 110 17 97.8 E	то1% и 150° 140° 130° 0 4.1 3.1 -
20 105 29 118 30-75 decomposition 80 132 90 123 95 116.7 E 100 121.8 (1+1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Urea (CH_1ON_2) + β -Naphthol (C_{1OH_8O})
Urea ($ ext{CH}_4 ext{ON}_2$) + lpha -Naphthol ($ ext{C}_{10} ext{H}_8 ext{0}$)	Rudenko and Dionisiev, 1955 (fig.)
Pushin and Konig, 1928	mol% f.t. mol% f.t.
mo1% f.t. E min. 0 132	0 132.7 66 107.5 20 129 74 E 104 40 122 80 108 50 114 100 122.4
40 102 59 0.9 50 93 63 1.4 60 78 65 1.9 70 68 65 2.0 80 77 53 0.7	mo1% d 125° 135° 145°
80 77 53 0.7 90 88 100 95 E: 67 mol% 65°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Rudenko and Dionisiev, 1955 (fig.)	mo1% η 125° 135° 145°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccc$
100 .08 .07 .05	mo1%

methyl urea (C ₂ H ₆ UN ₂) + Phenol (C ₆ H ₆ U) 34.8 51.6	r.t. 24.5 25.2 25.0	min. 1.2 3.5	
Kremann, 1910 51.6 58.0	25.2	1.2 3.5	
Hereberg (CHON)		3.5 2.5	
0.0 00 71 8 -2 7 Urethane (CoH*OoN)			
6.2 93.0 74.6 -5.0 12.5 89.0 77.7 -6.0	+ Phenol	(C ₆ H ₆ O)	
22.0 81.0 80.1 +2.0 Mascarelli and Pestal	ozza, 1909	9	
34.0 70.0 84.7 13.0 42.7 55.5 89.7 24.5 50.4 43.0 95.4 34.0	%	f.t.	
55.0 31.0 100.0 41.0 100 40.7 56.0 25.0 91.63 31.9 83.19 22.2 61.1 7.7 65.1 4.7	47.95 38.78 28.36 15.58	+1.7 13.1 27.8 38.5 48	
E: -7° (tr.t. = +8°)			
Dimethylurea sym. ($C_8H_80N_2$) + Phenol (C_6H_60) Lecat, 1949 Kremann, 1910 Urethane ($C_8H_70_2N$)	(b.t.=18	5,25) + Pheno	ols.
% f.t. E % f.t. E 2 nd comp.		Az	
0.0 102.0 - 67.2 13.7 - Name Formula	b.t.	% b.t.	Sat
19.3 80.0 - 72.0 14.0 - 73.2 12.7 - Phenol (C ₆ H ₆ O)	182,2 4	6.5 190.75	6.5
	191.1 30	0 193.45	8
51.6 3.7 -3 84.2 14 - E-Cresol (C ₇ H ₈ 0)	202.2 9	202.6	-
55.9 8.3 - 86.2 18.3 5.3 p-Cresol (C ₇ H ₈ O)	201.7 9	202.2	_
60.3 11.7 - 100 41 -			

(1+2)

Kremann, 1910 Z

0.0 9.2 17.4 25.0 31.2 39.2 46.0 52.1 54.7 58.7 62.2

(1+1)

f.t.

E: 84%

90

Dimethylurea asym. ($C_4H_80N_2$) + Phenol (C_6H_60)

Æ

74.2 75.7 77.4 79.6 80.6 82.6 83.6 85.8 90.0 93.4 96.7 100.0

f.t.

21 21.0 18 18.0 9.0 12.5 11.0 16.5 21.0 26.0 37.0 41.0

Urethane ($\text{C}_{3}\text{H}_{7}\text{O}_{2}\text{N}$) + Quinine ($\text{C}_{20}\text{H}_{24}\text{O}_{2}\text{N}_{2}$)

Sat.t.

Adamanis, 1933

mol%	f.t.	mo 1 %	f.t.	
100 84.3 71.8 61.6 53.2 46.0 40.0 33.5 28.9 24.8 21.3	175 164.0 158.0 147.8 140.0 135.5 129.5 124.0 119.0 114.8 110.0	18.2 15.3 12.7 10.4 8.3 6.4 4.6 3.0 1.4	104.5 98.0 87.0 76.5 60.0 43.5 44.5 45.5 48.0	

Urethane	($C_3H_70_2N$)	+	Resorcinol	(C6H60°))
----------	---	--------------	---	---	------------	---	----------	---

Mortimer, 1923

%	f.t.	R	f.t.	
46.8 56.3 68.2	40 60 80	85.5 100,0	100 110.2	

Hrynakowski and Adamanis, 1934

mol%	f.t.	Е	min.	
0 4.1 8.3 12.5 16.8 21.3 25.8 30.4 35.1 39.9 44.7 49.7 54.8 60.1 65.3 76.4 82.1 87.9 93.9	50 45.5 42.0 38.0 34.0 28.0 12.5 +5.5 -2.5 +12.0 42.0 54.5 68.0 77.0 88.0 92.5 98.0	-2.5 -2.0 -1.0 0.0 1.0 -2.0 -3.0 -2.5 -1.5 -2.5 -2.5 -2.5 -2.5 -2.5	0.5 1.0 1.5 1.5 2.5 3.0 2.7 3.7 2.7 3.0 2.0 2.3 1.7 1.3 1.0 0.8	
100	110	-	-	

Urethane ($C_3H_7O_2N$) + Guaiacol ($C_7H_8O_2$)

Pushin and Vaic, 1926

mo1%	f.t.	Е	min.
100	28	_	_
90	22 16.0	2	-
	16.0	5.2	-
70	10.0	$\begin{array}{c} \bar{5}.2\\ \bar{5}.0 \end{array}$	2.7
60	5.0	5.0	4.0
50	13.0	5.0	3.1
80 70 60 50 40 30 20	21.6	2.5	2,6
30	29.8	3.2	2.0
20	3 7. 5	3.2	2.0
10	42.5	_	_
0	48.3	_	

Urethane ($C_3H_70_2N$) + Salo1 ($C_{13}H_{10}0_3$)

Bellucci, 1912

%	f.t.	E	min.	
100	42	-	<u>.</u>	
90	42 36.5 31	29	2	
80 70 60 50 40 30 20	31	29	7	
70	31	28.8	10	
60	34	28.5	7	
50	36.5 39	29	5	
40	39	28.6	3.5	
30	41.5	28.8	2	
20	44	29	1.5	
10	47	28.4	1	
0	48.5	-	-	

Adamanis, 1933

mo 1 %	f.t.	mo1%	f.t.	
100 88.8 78.9 62.5 55.5 49.3 43.6 38.4 33.7 29.4 E: 57.5	42 36.8 34.2 31.2 30.2 33.5 35.0 36.5 37.0 38.0	25.4 21.7 18.3 15.1 12.2 9.4 7.8 4.4 2.1	39.5 41.0 41.2 42.2 43.2 44.5 45.8 47.0 48.0	

Urethane ($C_9H_70_8N$) + Picric acid ($C_6H_90_7N_8$)

Pushin and Kozukar, 1947

mo1%	f.t.	Е	mol%	f.t.	E
100 90 80 70 60 50	122	-	30 25 20 15	82	43.5
90	116	36	25	77	43.5 43
80	110	-	20	70	
70	104.5	39	15	έň	ft
60	104.5 99	41	10	70 60 44	44
50	93.5	43	ž	47	77
40	93.5 89	43	ŏ	50	_

	lurea (C ₄		(C ₆ H ₅ (Veronal (C ₈ H ₁₂ O ₉ N Hrynakowski and Ad		
Ochiai 	and Kuroya	nagi, 194 E	1 %	£ .		Я	f.t.	E
0 10.4 27.3 31.0 40.6 50	204 200 191 188.5 181 170.5	202 130 93 "	60 70 80 90 100	1.58 135 106 105 113	93 " " 111	0 10 20 30 40 50 60 70 80 90	191.0 184.0 176.0 161.5 134.2 118.5 97.8 68.7 32.0 28.2 30.0	25.0 25.0 25.1
	propionulu	ŕ		+ Resorc (C ₆ H ₆ O		Veronal (C ₈ H ₁₂ O ₃ N ₂) + m-Cre	sol (C ₇ H ₈ O)
	and Kuroy					Hrynakowski and Ad	amanis,1938	
"	f.t.	E	%	f,t.	E	K	f.t.	E
0 5 10 15.3 20.3 25.1 30.4 35.1 40.3 45 (2+1)	105.5 101.5 97 90.5 83 82 79.5 73.5 67	104 89.5 81 " 67 56.5	50 55 60 65,3 70,1 75 80,1 85 89,9	60 68 75 82 88 94 98 102.5	56 " " 65 75 108	0 20 30 40 50 60 70 80 90 95 100	191:0 166.0 151.2 139.5 122.0 105.2 86.2 23.0 10.5 4.0	- - 0 - -11.5 - 8.0 - 9.0
N,N'-Di	propionylu	rea (C ₇ 1	I _{1 2} 0 3N ₂) + p~Nitr (C ₆ H ₅ 0	-	Veronal (C ₈ H ₁₂ O ₅ N Hrynakowski and Ad		·
0chiai	and Kuroy	anagi, 19	941 	······································			f.t.	E
0 10.3 15.4 20 26.6 30 35 40 45 50.4 55	105.5 98.5 94 90.5 84 78.5 79 80.5 81 80.5	104 82 76 75 " " 76 78 73 70	60.1 63.4 70.75.2 85 89.9 95	75 72 78 88 95 101 106 109 111.5	70 " "71.5 74.82 94	0 10 20 30 40 50 60 70 75 80 90 95 100	191.0 179.8 165.0 186.0 139.0 121.5 102.0 80.0 69.2 57.5 31.5 32.2 37.0	

Succinimide ($C_4H_5O_2N$) + Phenol (C_6H_6O)

Kremann and Dietrich, 1923

%	f.t.	Е	%	f.t.	Е
100	41.5	_	45.3	68	_
88	29	27	41.8	7 5.5	_
81.3	$\frac{5}{34.5}$	27	53.7	58.0	_
72.5	42		51.4	59.0	-
64.2	5ĩ	-	35.5	83	-
60.6	53.5	-	28.8	93	59
58.6	55.5	27	17.4	108	-
54.1	58.2		4.9	120	-
51.4	58.5	-	0	123	-
49.8	59	-			

Succinimide ($C_4H_5O_2N$) + Pyrocatechol ($C_6H_6O_2$)

Kremann and Dietrich, 1923

Б	f.t.	E	%	f,t.	Е
100	104	-	43	82.5	_
92.3	97.8	-	41.1	81	-
86.4	93	-	35.2	**	77
76.8	83	7 3	34.1	82	Ħ
68.7	7 5	11	24.2	96.5	11
60.1	80.8	-	14.3	107.5	-
$\frac{62.0}{46.7}$	84	_	6.9	117	-
46.7	ű	77	0.0	123	-
(1+1)					

Succinimide ($C_4H_50_2N$) + Resorcinol ($C_6H_60_2$)

Kremann and Dietrich, 1923

%	f.t.	Е	%	f.t.	E
100	115	_	43.9	119.5	_
91.5	108	-	43.9	120	_
81.5	99	-	38.2	116	-
70.0	112	38	34.9	112	_
66.4	116	-	29.2	105.5	95.8
64.5	117	-	26.3	102	70.0
60.0	119.5	-	25.2	100	-
57.1	120	-	21,1	97.5	95.8
51.5	121.5	-	13.5	111	
51.4	122	-	5.1	119	_
47.8	121.5	-	0	123	-
(1+1)					

Succinimide ($C_4H_5\theta_2N$) + Hydroquinone ($C_6H_6\theta_2$)

Kremann and Dietrich, 1923

%	f.t.	E	%	f.t.	Е
100	169		42.9	138	_
84.0	160	-	38.6	136	-
69.2	142	135	37.2	135	
74.0	135	tt	30.2	124	107
55.5	139	-	23.1	112	
51.1	123	-	14.3	113	-
46.7	136	-	6.8	118.5	-
			0	123	-
(1+1)					

Succinimide ($\text{C}_4\text{H}_5\text{O}_2\text{N}$) + Pyrogallol ($\text{C}_6\text{H}_6\text{O}_3$)

Kremann and Dietrich, 1923

%	f.t.	E	%	f.t.	Е
100.0	130.0	_	37.8	120	-
91.3	120.5	-	37.0	118	-
83.8	107	-	29.3	104	95.0
78.6	114	104.5	22,9	100	
73.1	121	11	17.6	107	-
63.0	127	-	11.5	113	_
58.0	128	-	3.4	121	-
51.5	127.5	_	0.0	123	_
44.0	126	95.0		0	
(1+1)					

Succinimide ($C_4H_5O_2N$) + o-Nitrophenol ($C_6H_5O_3N$)

Kremann and Dietrich, 1923

%	f.t.	Е	%	f.t.	Е
100	44.5	-	48.2	89	
94.3	42.5	42.5	39.4	97	_
88.9	49.0	11	32.1	102,6	_
81.1	60.0	-	20.2	113	_
74.6	66.5	-	9.7	119	-
60.3	08	42.5	0	$1\bar{2}3$	-
54.5	85	-			

930				20CC I H	IMIDE T	M-NI I KOP					
Succinim	ide (C _ų H	502N)+	m-Nitrop	henol (C	6H5O3N)	Succinim	ide (C ₄ H	₅ 0 ₂ N)	+α-Naphi	hol (C ₁₀	н _в о)
Kremann	and Dietr	ich, 1928	}	ر عدد الله الله الله الله الله الله الله ال		Kremann a	and Dietr	ich, 19	2 3		
- %	f.t.	Е	%	f.t.	<u>E</u>	%	f.t.	Е	%	f.t.	Е
100 94.3 82.4 75.5 68.2 61.6 56.3	95 90 75 65 47 40 54	35 35	51.8 46.2 36.8 22.0 10.8 0.0	66 77 91 107 116 123	-	100 91.9 81.4 72.0 61.2 48.4	95 86.5 74 60 68 83	- - 57 - 57	42.7 44.0 24.0 14.1 5.5 0.0	90 98 108 115 120 123	57 " - - -
Succinin	ide (C _h l	H ₅ 0 ₂ N) +	p-Ni trop	henol (C ₆ H ₅ O ₈ N)	Sorum and	Durand,	1952			
Kremann	and Diet	rich, 192	3			- %		f	.t.		
100	f.t.	E	% 55. 7	f.t. 61,3	E	0 100		5	3.0 54.0 E 55.5		
85.9 81.1 74.7 69.8 67.8 65.0 62.7 62.2 57.6	114.5 93.5 86.0 74 65 68 59 60 60	58.5 - - 58.5	53.3 52.1 49.8 46.5 38.0 29.5 16.6 5.4 0.0	70 74 81 93 103 113 120.5 123.0	61.0	Succinimi Kremann	de (C _u H,			thol	
(1+1)						76	f.t.	Е	8	f.t.	Е
		trich, 1	(C ₆ H ₄ 0	nitrophen ₅ N ₈)	ol	100 95.5 84.2 71.6 69.0 66.4 59.9	121 116 103 82.0 79.1 76.5 82.1	72.5	45.3 41.3 40.0 38.4 37.5 35.9 24.8	85.5 93.2 93.3 95 95.1 99.1	85.5 - 72.5
%	f.t.	Е	K	f.t.	E	58.1 55.8	83 8 7. 0	-	17.0 9.8	$\frac{113}{118.5}$	-
100 89.8 77.6 68.9 61.6 53.6	111 103.5 92.5 85.0 91.0 97.0	- - 85	44.3 34.4 28.7 17.8 8.0 0.0	102.5 108 110.5 116 120 123	- 85 - -	53.7 52.0 47.0 (1+1)	87.5 87.5 86	-	4.8	121	-
						Succinim	ide (C ₄ H	₅ 0 ₂ N)		xynaphtha	lene
Succinin	ide (C _u l	H ₅ O ₂ N) +	Picric a	icid (C ₆ I	H ₈ O ₇ N ₃)	Kremann a	and Dietr	ich, 19	(С ₁₀ Н ₈ 0 2 3	2)	
Kremann	and Diet	rich, 192	2			%	f.t.		%	f.t.	
%	f.t.	E		f. t.	E	100	183		42.4	133.5	
0 11.6 22.8 32.6 41.4 51.7	123 120 115 110 104 97	79	59.5 67.3 78.3 89.0 100.0	87 83 99 108 121	79	77.7 66.8 61.1 52.7 50.4 47.5 43.7	162 142. 134 124. 130 131. 133	0	40.0 37.3 30.5 21.7 14.5 4.9 0.0	133.5 133.2 130 122.5 115 121 123	
						E: 114	10			(2+)	1)

Succinimide	($C_4H_50_2N$)	+	1,6-Dioxynaphthalene
					(C ₁₀ H ₈ O ₂)

Kremann and Dietrich, 1923

76	f.t.	%	f.t.	
100	134	38.4	118.5	
88 77	117 113.5	32.7 28.1	113 106	
68.5 63.6	123 125.5	$\substack{21.8\\16.3}$	93 93	
56.2 48.7	$126.5 \\ 124.5$	$\begin{array}{c} 8.1 \\ 0 \end{array}$	108 123	
43,1 F. : 10	121,5			

Succinimide ($C_u H_5 0_2 N$) + 2,3-Dioxynaphthalene ($C_{10} H_8 0_2$)

Kremann and Dietrich, 1923

%	f.t.	E	%	f.t.	E
100 90.0 77.8 73.3 65.2 64.8 60.8 58.5 54.4 53.4	162 154 143 142 147 147 149 149.5 148.6	140 - 140 - 140 -	48.1 41.6 33.8 24.3 16.8 13.3 10.2 5.8 0.0	143 138.5 130 120 113.5 108.5 117 120 123	108.5
(1+1)					

Succinimide ($C_uH_50_2N$) + 2,6-Dioxynaphthalene ($C_{10}H_80_2$)

Kremann and Dietrich, 1923

%	f.t.	E	%	f.t.	E
0	123.0	-	36.8	139	140.0
8.6	121	-	39.1	140	_
22.5	130	116.5	42.8	147	140.0
27.7	135	-	47.6	151.0	-
29.7	138	-	48.6	153	140.0
32:4	138.5	-	55,6	163	11
(2+1)					

Ethylsuccinimide ($C_6H_90_2N$) + Pheno1 (C_6H_60)

Paterno, 1896

%	f.t.	%	f.t.
98.71 95.68 91.23 88.69 84.56	-0.74 2.72 6.82 10.26 15.32	82.61 78.08 100.00	18.92 27.95 35.41

Benzamide (C_7H_70N) + Phenol (C_6H_60)

Kremann and Wenzing, 1917

%	f.t.	%	f.t.	
0.0 6.2 22.5 30.6 37.7 44.8 44.9 50.4 54.2 57.2 58.7 (1+2)	124.0 119.0 102.0 91.5 78.5 64 64.5 53.3 45 40.5 36.5	63.2 65.9 66.2 69.6 71.8 74.0 80.3 86.2 92.0 96.0	23.5 22.5 22.0 19.5 17.5 15.0 22.8 35.1 38.2 40.8	

Benzamide ($C_7 H_7 0 N$) + Pyrocatechol ($C_6 H_6 0_8$)

Kremann and Auer, 1918

%	f.t.	Е	%	f.t.	E
100	102.8	_	41.1	66.0	37.6
94.3	99.4	-	40.4	58.0	-
85.4	93.2	-	39.2	71.0	_
80.4	87.5	_	35.4	78.0	37.8
72.4	77.0	-	30.4	88.5	-
65.9	67.0	-	26.3	96.0	-
59.9	55.2	-	18.6	107.6	-
54.4	45.4	38	14.5	112.2	-
50.7	38.0	_	9.4	117.5	_
47.2	47.0	_	3.0	122.8	-
45.7	50.1	_	0.0	124.8	_
43.6	58.0	-			

932				BENZ	AMI DE 4	RESORCI	10L				
Benzamide	(C ₇ H ₇ ON) + Res	orcinol	(C ₆ H ₆ O ₂)		Benzamide	(C ₇ H ₇ ON	1) + 0-1	Ni trophen	ol (C ₆ H ₅	0 ₈ N)
Kremann	and Auer,	1918				Kremann a	nd Auer,	1918			
%	f.t.	E	%	f.t.	E	76	f.t.	Е	%	f.t.	Е
100 91.2 83.4 76.2 69.3 63.8 55.9 51.9 45.0	108.5 103.0 96.2 87.5 78.2 78.5 85.5 87.2 88.0	76.1 76.2	42.6 40.1 38.9 36.2 34.1 28.3 23.7 10.7 4.8 0.0	87.0 85.8 84.8 82.5 80.5 88.0 95.5 113.5 121.0 124.8	80.2	100 96.9 87.5 78.1 63.6 60.9 56.6	44.8 43.2 57.0 73.0 86.3 88.4 91.5	41.8	54.3 45.2 35.9 29.4 15.4	93.2 99.1 104.7 107.9 116.0 124.8	41.6
(1+1)			0.0	127.0		Benzamide	: (CaHaOl	() + m~I	Ni trophen	ol (C ₆ H ₅	0 a N)
							and Auer,			(-63	- 3 7
 Benzamide	e (C ₂ H ₂ ON) + Hvd	lroguinon	e (C ₆ H ₆ O ₂	,)	%	f.t.	E	%	f.t.	E
Kremann a	and Auer,	1918	**************************************	- (0,,		100 87.4 77.5 68.0 60.4	95.0 84.0 74.5 55.5 38.7	- - 38.7	42.6 37.0 36.8 28.5 21.1	76.0 88.0 88.1 100.4 108.5	- - - -
	f.t.	E	%	f.t.	E	55.2 50.3	44.0 56.0	11 11	$\begin{array}{c} 12.6 \\ 5.8 \\ 0.0 \end{array}$	$116.0 \\ 121.0 \\ 124.8$	-
100 86.7 75.2 69.5 64.9	169.0 161.0 152.0 145.0 139.0	-	41.2 37.7 35.6 35.0	101.0 102.0 103.0 103.2	-	44.0 (1+1)	73.0	······································	0.0	124.8	
61.3 57.7 54.4 51.5	134.2 128.0 122.2 108.5	100.0	32.4 29.1 22.3 17.9 12.3	103.8 103.5 101.8 107.0 113.0	101.1	Pushin a	nd Rikovs	ki, 1930)		*************
46.4 44.1	$103.5 \\ 100.3$	11	$\substack{8,1\\0.0}$	$\frac{118.0}{124.8}$	-	%	f.t.	<u>E</u>	%	f.t.	Е
Benzamide	(C ₇ H ₇ 0N			(C ₆ H ₆ O ₃)		0.0 11.3 22.3 33.0 43.4 53.5 54.5 56.4 57.4	128 121 112.5 102 84 58 55 49	35 31 40 41	58.4 59.3 61.4 63.3 65.2 68.1 72.8 82.2 91.1 100.0	43 41 46 50.5 53 59 68.5 81 89.5	41 "" "39 33
	f.t.	E	%	f.t.	E			····			
0 3.2	124.8 122.9		44.2 46.7	80 81.5	 75.5	Skau, 19					
7.5 14.3	$\frac{119.1}{112}$	-	E0 E	82.7 82.3 81.0	7 8	##	f.t.	Е		f.t.	E
18.4 26.4 27.7 29.4 33.3 36.4 37.6 39.5 (1+1)	106 93.3 92 89 82.5 76	76 "	50.5 55.82 59.51 70.24. 74.12 84.58 90.68 95.35	81.0 99.0 104.9 116 121 124 126.1	78	0 9,4 69,3 41,9 43.7 46,1 49,0 53,3 55,3 55,8	127.2 120.5 101.1 80.1 74.5 66.7 63.7 51.7 44.8	42.2	56.3 56.5 56.7 59.4 60.0 64.5 66 81.6	42.3 42.1 - 48.9 50.3 58.4 60.4 81.2 96.8	42.1

	, ,	ŕ	•	enol (C ₆ H	, .
Kremann	and Auer	, 1918			
%	f.t.	E	%	f.t.	E.
100	112.0	-	52.7 51.7	97.0	_
93 .7 85.1	$\substack{106.4\\96.0}$	-	51.7 46.9	97.0 97.0 96.0	_
85.1 79. 0	88.0	81.4	40.0	93.0	90.1
71.4 70.2	84.4 87.3	$\begin{array}{c} 81.5 \\ 81.6 \end{array}$	$\frac{33.3}{25.7}$	94.0 104.0	90.3
66.5	87.3 91.0	-	33.3 25.7 12.5 0.0	116.5 124.8	-
66.5 61.1 55.0	95.0 97.0	-	0.0	124.8	-
(1+1)					
Benzami	de (C ₇ H ₇ 0	3N) + α	-Naphtho	1 (C ₁₀ H ₈))
Kremann	and Auer	1918			
%	f.t.	E	%	f.t.	E
100	92.0	-	47.0	76.0	38,1
89.3 82.3	85.0		47.0 45.8	76.0 78.9 88.5	38.1 38.3
73.9	$\begin{array}{c} \textbf{76.8} \\ \textbf{66.0} \end{array}$	38.0	$\frac{40.0}{32.1}$	$\begin{array}{c} 88.5 \\ 100.0 \end{array}$	-
73.9 65.6	50.0	38.0 38.1	32.1 24.1	108.4	-
E (7		38.2	15.2 0.0	115.0	-
$\frac{56.7}{50.4}$	45.0 67.0	38.0	0.0	124.8	_
56.7 50.4	67.0	38.0	0.0	124.8	
56.7 50.4	67.0	38.0	0.0	124.8	-
50.4	67.0	38.0	0.0	124.8	-
50.4	67.0	38.0	0.0	124.8	-
50.4	67.0	38.0		124.8	-
50.7 50.4 Sorum ar	67.0	38.0 , 1952 f.	t. 4.8	124.8	-
50.7 50.4 Sorum ar	67.0	38.0 , 1952 f.	t. 4.8	124.8	
50.7 50.4 Sorum ar	67.0	38.0 , 1952 f.	t.	124.8	
50.7 50.4 Sorum ar	67.0	38.0 , 1952 f.	t. 4.8	124.8	
50.7 50.4 Sorum ar	od Durand,	38.0 , 1952 f.	t. 4.8 9.0 E 2.0		
50.7 50.4 Sorum ar	od Durand,	38.0 , 1952 f.	t. 4.8 9.0 E 2.0	ol (C _{1 o} H ₈	0)
56.7 50.4 Sorum ar % 0 100	67.0 nd Durand,	38.0 , 1952 f. 12 3 9 0N) + 3	t. 4.8 9.0 E 2.0		0)
56.7 50.4 Sorum ar % 0 100	od Durand,	38.0 , 1952 f. 12 3 9 0N) + 3	t. 4.8 9.0 E 2.0		0)
56.7 50.4 Sorum ar % 0 100	67.0 nd Durand,	38.0 , 1952 f. 12 3 9 0N) + 3	t. 4.8 9.0 E 2.0		0) E
50.7 50.4 Sorum ar # 0 100 Benzami Kremann # 100	de (C ₇ H ₇ and Auer,	38.0 1952 f. 12 3 9 0N) + 3 1918.	t. 4.8 9.0 E 2.0 -Naphth	ol (C ₁₀ H ₈	E
50.7 50.4 Sorum ar # 0 100 Benzami Kremann # 100	de (C ₇ H ₇ and Auer, f.t. 122.0 112.0	38.0 1952 f. 12 3 9 0N) + 3 1918.	t. 4.8 9.0 E 2.0 -Naphth	f.t.	E
50.7 50.4 Sorum ar 0 100 Benzami Kremann \$\mathcal{\psi}\$	de (C ₇ H ₇ and Auer, f.t. 122.0 112.0 103.0	38.0 f. 1952 f. 12 3 9 ON) + 3 1918. E	**************************************	f.t. 68.0 83.3 95.0	
Sorum ar \$\begin{array}{c} 0 \\ 100 \end{array} Benzami Kremann \$\begin{array}{c} 100 \\ 91.3 \\ 84.5 \\ 82.0 \\ 75.5	de (C ₇ H ₇ and Auer, f.t. 122.0 112.0 103.0	38.0 f. 1952 f. 12 3 9 ON) + 3 1918. E	t. 4.8 9.0 E 2.0 -Naphthe 53.4 44.4 36.4 29.4 19.4	f.t. 68.0 83.3 95.0	E
50.7 50.4 Sorum ar # 0 100 Benzami Kremann # 100	de (C ₇ H ₇ and Auer, f.t. 122.0 112.0	38.0 1952 f. 12 3 9 0N) + 3 1918.	t. 4.8 9.0 E 2.0 -Naphthe	f.t.	E

MI I KOFI	IEROL				,,,
Sorum an	nd Durand	, 195 2	-		
%		f.t			
0		124	.8		
100		56 122	.9 E		
Benzamio	le (C ₇ H ₇	ON) + 1,4 (C ₁	-Dioxyna _O H ₈ O ₂)	ph thalen e	2
Kremann	, Hemmelm	ayer and R	iemer, 1	922	
%	f.t.	Е	%	f.t.	E
100	183	<u>-</u>	37.4 31.9 24.8 17.6 8.7 0.0	100	92-9
87.3 20.5 62.5 52.5 46.5 42.2	173 160	-	24.8	$^{111}_{116}$	_
62.5	148	-	17.6	121.5	-
52,5 46.5	1 29 115	-	۵.7 0.0	125 128	_
42.2	104	92 - 91			
Kremann	, Hemmelm	ayer and R	liemer, l	922	
%	f.t.	E	%	f.t.	E
100	253	-	37.8	193	-
$\frac{81.4}{72.4}$	239 233	-	$\frac{30.9}{26.4}$	162 111	106
72.4 63.9	233 223 211 202	-	26.4 19.8	119	
53.8 49.6	202	104	12.8	125	-
49.6 47.8		106	0.5		- - -
	193	106	0.5	127 128	- - -
	193	106	0.5 0.0	127	- - -
	193	106	0.5	127	-
Benzamide	193	N) + 1,6-1	0.5	127 128	
	193 • (C ₇ H ₇ OI	N) + 1,6-1	0.5 0.0 Dioxynaph	127 128	-
	193 • (C ₇ H ₇ OI	N) + 1,6-1 (C ₁₀	0.5 0.0 Dioxynaph	127 128	E
Kremann, %	193 (C ₇ H ₇ OI Eemmelma f.t. 135	(C ₁₀)	0.5 0.0 Dioxynaph H _B O ₂) iemer, 19	127 128 hthalene 922 f.t.	
Кгемалл, % 100	193 (C ₇ H ₇ OI Eemmelma f.t. 135	(C ₁₀)	0.5 0.0 Dioxynaph H _B O ₂) iemer, 19	127 128 htthalene 922 f.t. 96 105	
Кгемалл, % 100 92.8 76.6 70.4	CopHoOI Elemmelma	N) + 1,6-1 (C ₁₀) ayer and R E	0.5 0.0 Dioxynaph H _B O ₂)	127 128 hthalene 922 f.t. 96 105 108 114	
Kremann, 100 92.8 76.6 70.4 61.3 61.2	193 Elemme Ima f.t. 135 123 112	N) + 1,6-1 (C ₁₀) ayer and R	0.5 0.0 Dioxynaph H _B O ₂) iemer, 19 \$1.0 40.3 36.2 27.5 19.7	127 128 hthalene 922 f.t. 96 105 108	E
Kremann, \$ 100 92.8 76.6 70.4 61.3 61.2	f.t. 135 123 112 + 98 93	N) + 1,6-1 (C ₁₀) ayer and R E	0.5 0.0 Dioxynaph H _B O ₂) iemer, 19 \$1.0 40.3 36.2 27.5 19.7	127 128 hthalene 922 f.t. 96 105 108 114 119 123 126	-
% 100 92.8 76.6 70.4	193 Elemme 1ma f.t. 135 123 112 + - 98	N) + 1,6-1 (C ₁₀) ayer and R E	0.5 0.0 Dioxynaph H _B O ₂)	127 128 hthalene 922 f.t. 96 105 108 114 119 123	E

934			BE	NZAMI DE	E + 2,6-C	H OXYNAPH	ITHALEN	E	
	•				θ ₀ Η ₈ Ο ₂)	Phenylaces	amide (C	28H9ON) +	Phenol (C ₆ H ₆ 0)
Kremann,	, Hemmelma	yer and	Riemer,	19 22 		Perkin, 18	396		
%	f.t.	E	% 48.6	f.t. 83	E	mo1%	t	d	t (a) magn,
100 89 79.3 69.3 58.8 54.9	137 127 118.5 106 88.5 64 72	- - - 46 "	45.4 38.1 30.3 21.9 11.9 0.0	88.5 99 110 118 124.5 128	- 46 " - -	60	67.17 77.4 65 75	1.05294 .04460 .0368 .0530	(water=1) 78.5 2.3397 39.0 2.4646 88.8 2.4030
			•		e 10H8O2)	Acetanilio		N) + Phe	nol (C ₆ H ₆ O)
# T C I M I I I	, Hemmelma f.t.	E	RIEMEI,	f.t.	E	%		f.t.	•
100 89.4 77.5 68.0 59.8	162 155 142 121 97 91	- - - - - 80	38.3 33.4 29.3 26.5 21.9 19.0	105 110 113 109 110 113	- - - 106	57.3 49.1 39.5 20.5 0.0		40 60 80 100 113	
56.8 52.7 49.3 42.6	82 86 99	79 80 -	8.1 0.0	123 128	80	Mortimer,			
(1+3)	· · · · · · · · · · · · · · · · · · ·						f.t.	%	f.t.
	, Hemmelma	yer and	Riemer,	192 2	OH ₈ 0 ₂)	100 95 90 80 69 60 55	40.5 37.5 33.0 19.5 -6.0 E +31.0 47.0 59.0	45 40 30 20 10 5	69.5 78.2 91.0 100.0 107.5 111.0 113.5
· 	f.t.	E	<u> </u>	f.t.	<u>E</u>				
100 87.4 71.8 62.9 52.2	216 204 170 141 90	85 87	49.1 39.1 31.1 19.6 9.3 0.0	105 93.5 110 119 124 128	87.5 87 84.5	Shi shokin mo1% 0 21.39	f.t. 114 102	mo1% 41.05 50.23	f.t. 76
_	de (C ₇ H ₇		•		e 1 oHgO2)	29.12 Angeletti E: 61.4	90.5	50.23 58.19	41
%	f.t.	E	%	f.t.	Е		,- <u>-</u>		
100 85.1 73.0 65.1 57.4 56.7	186 172.5 160 145 119 118	- - - 77	51.0 50.9 41.3 24.4 17.6	97 100 88 108 118 128	77 11 78 -	Perkin, mo1%	1896 t 67 77	d 1.05300 1.0450	t (\alpha)magn. (water=1)

Acetanilide (C_8H_9ON) + Resorcinol ($C_6H_6O_2$)

Angeletti, 1928

E: 46.1% 24°

Hrynakowski, 1934

E: 50% 35° (sic)

Acetanilide (C_8H_90N) + Hydroquinone ($C_6H_60_2$)

Hrynakowski and Adamanis, 1933

mol%	f.t.	mo1%	f.t.	
100 95.9 91.7 87.4 83.1 78.1 74.1 69.5 64.8 60.0	169 166 163 159.5 156.5 153.0 148.5 141.5 135.5	55.1 50.1 45.0 39.8 34.5 29.0 23.4 17.8 12.0 6.0	122.0 109.0 94.0 77.5 E 83.0 89.0 92.0 95.5 98.5 101.0	

Acetanilide (C_8H_9ON) + Salol ($C_{18}H_{10}O_3$)

Hrynakowski and Adamanis, 1933

mo1%	f.t.	mo1%	f.t.	
100	42.0	38.7	94.0	
93.8	40.0 E	34.0	96.0	
85.0	62.0	29.6	98.0	
78.1	70.0	25.3	100.0	
71.6	76.0	21.3	102.0	
65.4	79.5	17.4	104.0	
59.5	83.8	13.6	106.5	
53.9	86.5	10.0	108.5	
48.6	89.0	6.5	110.0	
43.5	92.0	3.2	112.0	
.0		0.0	112.0	

Acetanilide (C_8H_90N) + Thymol ($C_{10}H_{14}0$)

Angeletti, 1928

E: 66.7% 24.5°

Quereigh and Cabagnari, 1912

E: 67.3% 18.5°

Acetanilide (C_8H_90N) + Vanilline ($C_8H_80_8$)

Lehmann, 1914

H	f.t.	%	f.t.	
100	81.8	90	77.9	
99	80.8	85	76.0	
ÓŔ	80.6	80	75.7	
98 97	80.0	75	73.5	
96	79.9	70	73.0	
96 95	79.5	6 7	70.3	
94	ii -	60	80.0	
94 93	79.0	55	85.0	
9ž	78.8	50	91.3	
92 91	11	0	116	

Acetanilide (C_8H_90N) + Salipyrine ($C_{18}H_{18}O_4N_2$)

Hrynakowski and Adamanis, 1933

mo1%	f.t.	mol%	f.t.	
100	92.0	28,6	85.0	
88.3	85.0	24.6	88.5	
78.2	82.0	21.0	92.0	
68.6	79.0	17,7	95.0	
61.5	76.0	14,6	98.0	
54.5	72.0	11.7	101.0	
48.2	68.0	9.1	105.0	
42.6	64.0 E	4.3	110.0	
37.5	74.0	2,1	112.0	
32.8	80.0	0.0	112.0	

Acetanilide (C_8H_90N) + o-Cresol (C_7H_80)

Hrynakowski and Adamanis, 1938

%	f.t.	%	f.t.	
0	112.0	60	31.8	
20	96.2	72	11.5	
30	82.8	80	19.5	
40	70.0	90	24.2	
50	51.0	100	30.0	

Acetanilide (C_8H_90N) + m-Cresol (C_7H_80)

Hrynakowski and Adamanis, 1938

 %	f.t.	%	f.t.	
0 20 30 40	112.0 99.2 87.5 72.5	50 60 80 90 100	53.2 28.2 -3.0 3.2 4.0	

Acetanilide (C_8H_90N) + p-Cresol (C_7H_80)

Hrynakowski and Adamanis, 1938

%	f.t.	%	f.t.	
0 20 30 40 50	112.0 97.5 86.0 71.0 50.4	60 80 90 100	27.0 30.2 30.4 37.0	

Acetanilide (C_BH_90N) + 2,4-Dinitrophenol ($C_6H_40_5N_2$)

Crompton and Whiteley, 1895

mol%	f.t.	mo 1 %	f.t.	
100 82.32 73.08 63.56 58.71 53.77	112.5 104.3 99.5 94.4 89.1 86.0	50.00 35.00 22.51 15.00 0.00	79.5 88.3 97.0 103.4 113.5	

Acetanilide ($C_8 H_9 0 N$) + Quinine ($C_{2\,0} H_{2\,4} 0 N_2$)

Hrynakowski and Adamanis, 1933

mo1%	f.t.	mo1%	f.t.	
100.0 88.7 78.9 70.7 62.4 55.5 49.2 43.2 38.4 33.7	175.0 165.0 160.0 156.0 149.0 145.0 138.0 135.0 128.0	29.3 25.3 21.7 18.3 15.1 E 12.2 9.4 6.8 4.4 2.1 0.0	121.0 118.0 114.0 108.0 105.0 106.0 108.0 109.0 111.0 112.0	

Methylacetanilide ($C_9H_{1\,1}ON$) + Salo1 ($C_{1\,3}H_{1\,0}O_3$)

Angeletti, 1928

E: 79% 29°

Dimethyl diphenylurea ($C_{1.5}H_{1.6}ON_2$) + Pyrocatechol ($C_6H_6O_2$)

Medard, 1931

%	f.t.	Я	f.t.	·
0 9 16 23.5 28 36.5	118 112 102 88 82 82.5	44.5 54 61 75 100	81 76 84 94 104	

Dimethyl diphenylurea sym. ($C_{1\,5}H_{1\,6}ON_2$) + Pyrogallol ($C_6H_6O_8$)

Medard, 1931

Z	f.t.	%	f.t.	
0 7 20 27 36 45	118 115 107 116.5 118.5	50 58 60 65 100	114 108 105 107 133	

Diethyl diphenylurea sym. $(C_{17}H_{20}ON_2)$ + Pheno Médard, 1931 (C_6H_6 6	
% f.t. % f.t.	Medard, 1931
0 72.3 35 36 10 63 40 30 14.5 51 41 27.5 20 39 70 24 22.5 41 80 32.5 26 41.8 90 38 30 41 100 40	% f.t. % f.t. 0 72.3 45 14 11 60.5 63 12 20 46.5 73 18 27 31 80 23 29 26.5 89 27 35 22 100 30
Diethyl diphenylurea ($C_{17}H_{20}ON_2$) + Pyroca (C_6H_6O	techol 40 18.5
% f.t. % f.t. 0 72.3 35 63 10 62.5 40 58	Diethyldiphenylurea ($C_{17}H_{20}ON_2$) + Picric acid ($C_6H_5O_7N_5$) Giua and Guastalla, 1933
15 53,75 45 67 20 58,75 50 75 22,5 62,5 66,5 91 30 64.3 80 98 33.5 64 100 103.5	# f.t. E # f.t. E 0 73.0 - 52.22 92.8 51.8 9.33 65.0 - 59.81 101.2 - 18.33 56.8 - 65.17 105.0 - 30.13 62.0 52.0 74.03 111.4 - 35.85 70.8 51.8 82.17 116.0 - 42.93 81.1 51.5 100 121.0 -
Diethyl diphenylurea ($C_{17}H_{20}ON_2$) + Resorci ($C_6H_6O_2$ hédard, 1931	II
% f.t. % f.t. 0 72.3 33 45.5 10 60.5 40 70 17 50.0 50 85 20 39 66 97 23.5 43 100 110 30 46.5	Medard, 1931 ### f.t. ### f.t. 0 72.3 34.9 49.50 13.5 64.5 37.5 47
(1 +1)	13.5 64.5 37.5 47 18 57.5 40 52 22.5 50 50 75.5 27.5 47 100 122 (1+1)
Diethyl diphenylurea ($C_{17}H_{20}0N_2$) + Pyrogal ($C_6H_60_3$	
Medard , 1931	% f.t. % f.t.
% f.t. % f.t. 0 72.3 32 50.5 10 62.25 34.5 55 16 52.4 35 56 20 45 37 67 22 45 45 74 26 48 52 98 28 47 60 104	0 72.3 52 168 10 68 57.5 168 25 61 60 176 36 125 70 195 44 152 100 215
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)

p-Dimethylaminobenzal-p-methoxyacetophenone ($C_{1.8}H_{1.9}O_2N$) + α -Naphthol ($C_{1.0}H_80$)

Pfeiffer, 1924

%	f.t.	%	f.t.	
0 16.7 25.5 31.4 32.7 38.6 47.0	126-127 107 91-92 77 78-79 78 67	58.3 67.9 70.3 81.8 91.8	57 67-68 71 81-82 89 94	

p-Dimethylaminobenzal-p-methoxyacetophenone ($C_{1\,8}H_{1\,9}0_zN$) + β -Naphthol ($C_{1\,0}H_80$)

Pfeiffer, 1924

%	f.t.	%	f.t.	
0 13.7 25.4 36.2 44.3 54.7	126-127 109 82-83 57 58 75	61.5 75:0 88.2 94.9 100	86-87 104 114 118 122	

p-Dimethylaminobenzophenone ($C_{1.5}H_{1.5}0N$) + β -Naphthol ($C_{1.0}H_80$)

Pfeiffer, 1924

%	f.t.	%	f.t.	
0 8.9 16.4 28.2 43.2 44.4	90 80-81 72 51 41 45	51.7 50.5 73.4 90.4 100.0	67 82 101 116 122	

pp-Tetramethyldiaminobenzophenone ($C_{1.7}H_{2.0}ON_2$) + Resorcinol ($C_6H_60_2$)

Pfeiffer, 1924

%	f.t.	%	f.t.		_
100 91.1 83.7 72.0 66.7 59.2 51.6 41.7 44.0 30.6	110 108 105 100 99-100 108 116 124 130	26.9 25.7 23.9 22.7 21.8 20.3 16.8 4.7 0.0	130 129 128 130 133 140 158 170	(1+1)	

pp'Tetramethyldiaminobenzophenone ($C_{1.7}H_{2.0}ON_2$) + α -Naphthol ($C_{1.0}H_80$)

Pfeiffer, 1924

% f.t. % f.t. 0 172 45.3 83 16.1 154 54.8 67 27.8 127 55.6 65 35.0 111 66.0 67 37.8 98 81.9 87 40.3 89 90.7 90 43.1 86 100 94					
16.1 154 54.8 67 27.8 127 55.6 65 35.0 111 66.0 67 37.8 98 81.9 87 40.3 89 90.7 90	%	f.t.	%	f.t.	
(1+1)	27.8 35.0 37.8 40.3 43.1	154 127 111 98 89	54.8 55.6 66.0 81.9 90.7	67 65 67 87 90	

rp'-Tetramethyldiaminobenzophenone ($C_{1\,2}H_{2\,0}ON_2$) β -Naphthol ($C_{1\,0}H_{8}O$)

Pfeiffer, 1924

%	f.t.	%	f.t.	
0 10.7 18.2 23.4 29.7 32.7 33.8 39.6	172 161 153 145 128 119 119	43.8 50.0 56.4 65.4 75.6 85.7 92.7	104 98 89 97 108 116 120 122 (1+	1)

p-Dimethylaminobenzalacetophenone ($C_{1.7}H_{1.7}ON$) + β -Naphthol ($C_{1.0}H_{8}O_{\rm c}$)

Pfeiffer, 1924

Z	f.t.	Я	f.t.	
0 12.8 25.6 39.6 49.0	114-115 93 79 56 62-63	61.0 73.5 9013 100	88 102 114 122	

p-anisidine (C ₇ H ₉ ON) + Phenol	(C ₆ H ₆ O)			
Hrynakowski,Si	taszcewski and Szi	ıle,1937	p-anisidine (C ₇ H ₉ ON) + m-cr	esol (C ₇ H ₈ O)
ļ			- Hrynakowski a	nd Adamanis,1938	
K	f.t.	E	. %	f.t.	E
100	42.3	- 18.0			
90 85 80 75 70	30.9 25.7	21.1	20	57.8 45.5	-
80 75	24.8 32.0	21.2 21.2	20 30	45.5 35.2 24.2 13.2	13.2 12.2
70 60	43.1	21.2	40 50	13.2	12.2
50	53.8 57.2	21.0	60 70	$\begin{smallmatrix} 10.0\\ 3.0\end{smallmatrix}$	- 1.8
43 40	58.4 58.0	35.8	90 100	2.5 4.0	- 1.2
35	56.7	41.9	100		-
25 20	50.8 45.2	43.6 43.2		(1+1)	
43 40 35 25 20 15	45.5 51.0	43.3 43.8			
ŏ	57.8	73.0	p-anisidine (C ₇ H ₉ ON) + p-cre	esol (C ₇ H ₈ O)
	(1+1)		Hrynakowski ar	nd Adamanis,1938	
p-anisidine (C ₇	H ₉ ON) + Resorcin	ol (C ₆ H ₆ O ₂)	76	f.t.	E
Hrynakowski and	Jeske,1938		0 10 20 30	57.8 50.5	43.5
%	ε %	8	20	45.0 51.0	43.5
			30 40	51.0 55.8	43.0
.0	13 68 16 75	10.8	50 60	55.8 52.8	-
15 31	13 68 16 75 12.5 83	10.8 12.2 14.2 7.0	ll 70	45.0	20.0
44 58	12.5 83 9.8 100 9.6	7.0	80 90 100	31.8 27.8	20.5 20.0
	9.6		100	27.8 37.0	20.0
				(1+1)	
p-anisidine (C ₇	H ₉ ON) + o-Cresol	(C ₇ H ₈ O)			
Hrynakowski and	Adamanis,1938		p-anisidine ((C ₇ H ₉ ON) + o-amin	nophenol (C ₆ H ₇ ON)
\$	f.t.	E	Hrynakowski, St	aszewski and Szul	le,1937
0 20	57.8 44.5	38.5	%	f.t.	E
20 25 30 35 40	40.5 39.0	35.8	100	174.0	
35	39.6	31.6	90 80	173.3	-
i 50	36.0 32.2	32.0	70 60	167.8 163.0	- 45.6
60 70	35.0 32.5	-	60 50	152.3 146.0	48.1
l 80	28.5 30.0	20.0	40	132.1	47.9 50.7
100		-	20	121.8 96.2	51.3 52.2
(2+1)	(1+2))	50 40 30 20 10 5	61.6 54.1	51.0
			0	54.1 57.8	-

p-anisidine (C	₇ H ₉ ON) + m-amir	nophenol (C ₆ H ₇ ON)	p-anisidine (C ₇ H	90N) + β -	naphthol	(C ₁₀ H ₈ O)
Hrynakowski, St	eszewski and Szu	ile,1937	Hrynakowski,Stasz	ewski and S	zule, 1937	,
×	f.t.	E	Z	f.t.		E
100 90 80 70 60 50 45 40 35 30 25 15	123.4 115.8 110.1 102.0 92.1 78.7 67.6 60.9 54.3 51.4 51.3 48.2 52.3 57.8 (1+1)	50.6 50.0 51.8 51.2 42.6 45.5 45.4	100 90 85 80 75 70 65 60 54 50 40 30 25 20 15	122.7 112.5 104.8 102.5 95.0 88.5 89.1 93.1 94.0 92.8 90.0 84.1 77.3 72.9 64.7 53.9		33.6 85.1 85.2 85.2 - - - - - - - - - - - - - - - - - - -
p-anisidine (C.	H ₉ ON) + p-amir	nophenol (C ₆ H ₇ ON)	5 0	56.2 57.8 (1+1)	\$	53.0
Hrynakowski,Ste	szewski and Szul	le,1937				
K	f.t.	E	Lecat, 1949 o-Phenetidine (C ₈	H ₁₁ ON) (b.	t.= 232. 5)	+ Phenols.
100 85 50 45 30 15 10 5 2	187.2 178.6 157.5 153.1 135.8 107.2 88.3 55.4 56.8 57.8	54.2 55.0 55.4 54.3	2^{nd} comp Name Formula 0 -Xylenol ($C_8H_{10}O$) as. Thymol ($C_{10}H_{14}O$)	b.t.) 226.8) 232.9	8 54,5	b.t. Dt mix. 232.05
	₇ H ₉ ON) +:α -napl	hthol (C ₁₀ H ₈ O)	Carvacrol ($C_{10}H_{14}O$ Pyrocatechol($C_{6}H_{6}O_{2}$ Ethyl ($C_{9}H_{10}O_{3}$ salicylate	2 45.9	87.0 92 18	238.0 246.0 232.2 -0.8 (21%)
%	f.t.	E				
100 90 80 75 70 65 60 55 50 45 40 35 30 25 20 10	94.6 86.8 77.9 69.7 55.1 55.0 56.9 58.5 57.8 56.2 49.9 45.0 41.1 46.3 52.8 57.8	51.3 51.8 52.9 52.7 52.1 	p-Phenetidine (C ₈ Lecat, 1949 % b. 0 249 34 253 100 245	t. .9	Sat.t.	
			ll .			

Phenacetine	($C_{10}H_{13}O_{2}N$)	+	${\tt Resorcinol}$	(C6H6O2)	
-------------	---	----------------------	---	---	--------------------	---	--------	---	--

Hrynakowski and Adamanis, 1935

_				
mol%	. f.t.	E	min.	
100.0	110	-	_	
96.9	108.0	-	_	
93.6	107.0	-	_	
90.3	104.0	_	-	
86.8	101.0	-	-	
83.1	96.0	-	-	
79.3	92.0	69.0	0.3	
75.2	86.0	n	0.4	
71.1	78.0	**	0.6	
66.7	69.0	H.	0.9	
62.1	76.0	-	-	
60.0	76.5	-	-	
57. 3	76.0	-		
5 2.7	74.0	74.0	-	
52.2	7 5.0	11	0.8	
46.9	84.0	**	0.6	
41.2	92.0	11	0,2	
35.3	101.0	11	0.3	
29,0	109.0	-	-	
22,4	115.0	-	-	
15.4	121.0	-	-	
7.7	126.0	-	-	
0	135	-	-	
(2+3)				
(2.0)				

Hrynakowski, 1934

E₁: 41.0 % 74° E₂: 55.0 % 69°

Phenacetine ($C_{1\,0}H_{1\,3}\theta_2N$) + Thymol ($C_{1\,0}H_{1\,4}\theta$)

Quercigh and Cavagnari, 1912

E: 71.5 % 30°

Phenacetine ($C_{10}H_{13}O_2N$) + Salol ($C_{13}H_{10}O_3$)

Quercigh and Cavagnari, 1912

E: 96 % 37.5°

tio1%	f.t.	mo1%	f.t.
0.	$\frac{135}{130.5}$	50.6 55.7	108.0 105.0
4.2 8.5 12.9	127.5 126.0	60.9 66.2	101.8 98.0
17.3 21.9	123.5 121.8	71.6 77.1	94.5 90.0
26.5 31.1	119.2 117.5	82.6 88.3	84.5 77.5
35.9 40.7	114.8 112.5	94.1 100	67.5 42
45.6	110.5	100	42

p-Azoxyanisole ($C_{1\,u}H_{1\,u}O_{3}N_{2}$) + Hydroquinone ($C_{6}H_{6}O_{2}$)

40.0°

de Kock, 1904

E: 97.6mo1%

Adamanis, 1933

mo1%	clearing point	f.t.	E
0 2.25 4.5 6.4 7.8 8.75	135.0 129.4-130.3 123.3-124.6 117.6-119.4 114.7-116.6 111.4-113.9	114 113.2 112.75 112.2 111.6 111.4	- 105 104 105
12 15 25.6 40 50.3 59.8 74.8	105.8 99.6 - - - - -	110.0 109.2 106.2 128.1 140.2 145.8 153.6	106.05 105.8

Azophenyl bis (ethylcarbonate)($C_{18}H_{18}O_6N_2$) + Anisolazophenol ($C_{13}H_{12}O_2N_2$)

Walter, 1889

mo1%	f.t.	clearing point	
100 58.3 48.2	142 - - 97	56 81 92 121.5	

Azophenyl bis (ethylcarbonate) + Phenetolazophenol ($C_{1\,B}H_{1\,B}O_6N_2$) ($C_{1\,\mu}H_{1\,\mu}O_2N_2$)

Walter, 1889

mo1%	f.t.	clearing point
0	97	121.5
46.0	-	99
47.0 65.8	-	98
65.8	-	84.5
00	126	70

SARCOSIN ANHYDRIDE + PYROCATECHOL

Sarcosin	anhydride	(C ₆ H ₁₀ O ₂ N	2) + Pyrocatechol	-
	and Wang,		$(C_6H_6O_2)$	
	<i>f</i> +	m.t.		
%	f.t.	M. L.		
.0	146.5	144		
14 16	131 128	111.2 111.2		
24 35	118 128	111.5 114		
3 7	129	115 122	(1+1)	
40 53	130 126.5	118.9	(1+1)	
55 5 7	125 123	118.9 119	1	
61	123,3	119.2	(1.0)	
64 66	122.9 122.5	110 100	(1+2)	
70 80	119.5 105.5	89 88.3	i	
90	96	.88		
100	105	104		
				=
Sarcosii		le (C ₆ H _{1 o} 0	₂ N ₂) + Resacetophe-	
none ((engus) and Wang,	1027		
	and nang,			
- %	f.t.	%	f.t.	
0	146.5	58	118	
20	130	65	123.6	
35 43	111 114	68.2 72	124.9 (1+2) 123.8	
48	117.6	80	122.8	
51.7 56	118 117.2	1+1) 88 100	130.5 143	
	······································	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
Sarcasin	anhydride	/ C.H. O.N	2) + p-Oxybenzophe-	=
	13H ₁₀ O ₂)	(6111 00 21	12 / + p-oxypenzopne-	
mone (c	1311002 /			
Pfeiffe	r and Wang	, 1927		
		·		
- %	f.t.	%	f.t.	
0	146.5	65	87	
30 40	128.2 113	70 74	89 93.8	
50	96.8	85	110	
55 58.2	88 91.6	100 (1+1)	132.5	
Sarcosin	anhydride	(C(H100aN	2) + 2,5-Dioxybenzo	<u> </u>
	(C _{1 s} H _{1 o} O _s		a , =,~ ~j Delize	•
•				
Pfeiffer	and Wang,	1927		
- %	f.t.	%	f.t.	
0	146.5	65	96	
21 35	133 119	70 7 5	98.5 100.3 (1+2)	
45	106	80	90	
45 52 55	92 83 93	86 90	101.5 111	
60	93	100	122	
				:

Sarcosin anhydride ($C_6H_{10}O_2N_2$) + o_{10} '-Dioxybenzophenone ($C_{18}H_{10}O_8$)

Pfeiffer and Wang, 1927

%	f.t.	Ε.	
0 15 43	146.5 137.5	144 77.8	
43	114	77.4	
60	86.3	77.8	
70 75 82	87.3	77.8	
7 5	88.9	76	(1+2)
82	83.6	53	
90 96	7 6	53	
96	60.2	76 53 53 53 59	
100	59.5	59	

Sarcosin anhydride ($C_6H_{1\,0}O_2N_2$) + 2-0xy-5-methoxybenzophenone ($C_{1\,4_1}H_{1\,2}O_3$)

Pfeiffer and Wang, 1927

%	f.t.	Е .	%	f.t.	E
0 15 24 36 44.4 52	146.5 141 137.2 131 125.5 121	144 73.8 74.5	70 79 84.7 91 100	105 89.5 76.5 79 84	73.8 73.4 74.2 74.5 83

Sarcosin anhydride ($C_6H_{1\,\,0}O_2N_2$) + Methyl-poxybenzoate ($C_8H_8O_3$)

Pfeiffer and Seydel, 1928

%	Е	f.t.	%	Ε.	f.t.
0 20 40 50 55 60	145 83 "	147 132 108 87 91 96.5	70 75 80 85 90 100	93 " " 124	99 97 101 109 117 127
			(1+	1)	

Sarcosin anhydride ($C_6H_{1\,0}O_2N_2$) + o-Aminophenol (C_6H_70N)

Pfeiffer and Seydel, 1928

%	f.t.	E	%	f.t.	Е
0	146	145	45	101	98
10	137	93	50	100	11
10 20	124	ir T	50 55	114	11
30	108	11	60	127	It
30 35	95	17	70	148	11
40	99	11	80	160	**
	• •		100	174	174
(1+1)				, ,	_,,

Copyrighted Materials

Copyright © 1959 Knovel Retrieved from www.knovel.com

SARCOSIN ANHYDRIDE + NEO-ORTHOFORM

Sarcosin anhydride ($C_6H_{10}O_2N_2$) + α -Naphthol $(C_{10}H_80)$ Pfeiffer and Wang, 1927 % f.t. Е f.t. 64 67 70 114.8 115.3 111.3 146.5 133 117 122.6 125.2 125.9 112 112 112.5 112.5 111.3 20 30 114.6 79 103.9 92.8 77.3 **7**5 **8**0 69 42 45 50.3 113 85 te 124.8 122 90 84.6 Ħ 55 59 100 95 (1+1)(1+2)Sarcosin anhydride ($C_6H_{10}O_2N_2$) + β -Naphthol $(C_{10}H_80)$ Pfeiffer and Wang, 1927 f.t. % f.t. E 125.5 126.2 125.3 114.2 116 122.5 146.5 129 144 115.5 62.5 67 70.9 122.2 122.2 94.5 95 19.9 26.7 30.9 119.4 121.2 115 114.8 115 80 95 42.3 130.6 97.3 50 5**5**.3 130 100 120 130.3 121 (1+1)134° (1+2)127° Sarcosin anhydride ($C_6H_{10}O_2N_2$) + 1-0xyanthraquinone ($C_{1}H_8O_8$) Pfeiffer and Wang, 1927 % f.t. % f.t. E 146.5 144 131 144.5 153 161.3 177 192.5 131 142.8 139 55 16 25 66.6 135 130.5 33.4 134.5 100 190 Sarcosin anhydride ($C_6H_{10}O_2N_2$) + 1-0xy-2-Methoxyanthraquinone ($C_{1\ 5}H_{1\ 0}O_{i_{+}}$) Pfeiffer and Wang, 1927

f.t.

146.5

144 142

160 174

0 8 12.4

24 36 %

47.2 64.1 78.2

100

144 138

138

139

138.5

f.t.

199

210 206

184.2

E

138.5 139 139

224

943

,	anhydride	(C ₆ H	100 ₂ N ₂)	+ Neo-or (C ₈ H ₉ 0	
Pfeiffer	and Seydel	, 1928			
%	f.t.	Е	%	f.t.	E
0 10 20 30 40 50 54 (1+1)	146 142 133 128 139 144 145	145 121 "" "" 135	60 70 80 85 90 100	144 139 123 127 135 142	118 " " 139
Sarcosin	anhydride	(C ₆ H ₁	002N2)	Benzene	-azo-p-
cresol (C ₁₃ H ₁₂ ON ₂))			
Pfeiffer	and Wang,	1927			
%	f.t.	E	%	f.t.	E
0 12 24 32 44 52	146.5 142 136.5 134.8 130.0 123.5	96.2 95.2 95.6 95	61 70 76 83 90 100	115 106 98 99 103.5 108	94.5 " 95 95 106
Sarcosin	anhydride	(C ₆ H ₁	₀ 0 ₂ N ₂) -	+ Benzene	-azo-β
	$(C_{16}H_{12}ON_{2}$ and Wang, 1				
			J.	f.t.	
Pfeiffer	and Wang, 1		74 77,5 82 90 100	f.t. 109. 114. 118 123 129	85
Pfeiffer 0 20 34 46.6 65.2 Sarcosin	f.t. 146.5 140 132 127.2 116 anhydride	1927 - - (С ₆ Н	74 77.5 82 90 100	109. 114. 118 123 129	5
Pfeiffer 0 20 34 46.6 65.2 Sarcosin	f.t. 146.5 140 132 127.2 116 anhydride	1927	74 77.5 82 90 100	109, 114, 118 123 129 + Quinize	5
Pfeiffer 0 20 34 46.6 65.2 Sarcosin	f.t. 146.5 140 132 127.2 116 anhydride	1927 - - (С ₆ Н	74 77.5 82 90 100	109, 114, 118 123 129 + Quinize	5
Pfeiffer 0 20 34 46.6 65.2 Sarcosin	and Wang, 1 f.t. 146.5 140 132 127.2 116 anhydride and Wang, f.t. 146.5 143	1927 (C ₆ H	74 77.5 82 90 100	109. 114. 118 123 129 + Quinize (C _{1 u} H ₈ C	5 nrin O _k)

p-Dimethylaminobenzaldehyde ($C_9H_{1\,1}0N$) + Pheno1 ($C_6H_60)$

Osipenko and Titchenko, 1941

mo1%	f.t.	mo1%	f.t.
0 14.93 28.4 34.6 40.5 46 50	73 60.5 45 36.5 30.5 33 35.8(1+1)	61.22 70.35 78,76 86.4 94.26	25.5 2.5 7 18 31.5

p-Dimethylaminobenzaldehyde ($C_9H_{1\,1}\,0N$) + Pyrocatechol ($C_6H_6\,0_2$)

Osipenko and Titchenko, 1941

mo1%	f.t.	mol%	f.t.	
0 13 25 33.3 36.5 47.5	73 65 58 61.8(2+1) 60.5	57.4 67 76 84.5 92.5	46.5 42.5 64 87 97 105	

p-Dimethylaminobenzaldehyde (C_9H_{11} 9N) + Resorcinol ($C_6H_6O_8$)

Osipenko and Titchenko, 1941

mo1%	f.t.	mol%	f.t.
0 13 25 36.5 47.5	73 61.5 44.5 63 71.5 72.8(1+1)	57.5 67 76 84.5 92.5	67 60 72.5 92 102.5

p-Dimethylaminobenzaldehyde ($C_9 H_{1\,1}\,0N$) + hydroquinone ($C_6 H_6\,0_2$)

Osipenko and Titchenko, 1941

mol%	f.t.	mo1%	f.t.	
0	73	36.5	112	
13	70	47.5	106	
25	109.5	57.5	119.5	
33.3	114 (2+1)	67	138	

Allyl-phenyl-thiourea ($C_{10}H_{12}N_2S$)+ Phenol(C_6H_60)

Shishokin and Muskina, 1938

mo1%	f.t.	mo1%	f.t.
0 19.5 29.1 39.8 49.5	99 91 87 82.5 73	49.7 60.4 70.3 79.3	73 65 53.5 38

Sulfonal ($\text{C}_7\text{H}_{1\,6}\text{O}_4\text{S}_2$) + Thymol ($\text{C}_{1\,0}\text{H}_{1\,4}\text{O}$)

Quercigh and Cavagnari, 1912

E: 72% 29°

Sulfonal ($\rm C_7H_{16}O_4S_2$) + Salol ($\rm C_{13}H_{10}O_3$)

Quercigh and Cavagnari, 1912

E: 82.5% 34°

Nicotinamide	(C ₆ H ₆ ON ₂) +	Pyrocatech	ol (C ₆ H ₆ O ₂)	2-Merc
L. and A. Ko	fler, 1943		ĺ	Ochia:
d	 			
×	I	f.t. II	III	× ×
				0 5
0 16	129 112 E	-	-	10 15
(4+1)	112 E 112.5	- 95 E (+I)	-	20
-	-	91 E (+11)) - 75 E	25 30
41	102 E	-	75 E	35 40
(1+1)	103	99 E (+I) 100	- 79	(3+
- 6 2	96.5 E	95 E (+II))	
- (1+2)	-	_	57 E	2-Merc
79	97 85 E	-	-	phenol
100	104	<u> </u>		0chia
Nicotinamide	$(C_6H_6ON_2) +$	2 4-Dinitr	onhenol	II —————
Micotinamia	Compone ,	($C_6H_4O_5N_2$)	/// [%]
L. and A. Ko	ofler, 1943			0 5,:
%	£	.t.		10 15
76	I 1			20 25
0	129	120		30
-	120 E	129 117	E	35 40.2
complex	130 102 E	126 99	E	45.2 50
100	113	113		
				2-Merc
Nicotinomido	(C ₆ H ₆ ON ₂) +	2 5-Dinitr	anhana l	(C ₇ H ₁
Nicotinamide	(Cintons)		$C_6H_4O_5N_2$)	
L. and A. Ko	fler, 1943			0cl.iai
				%
%	I f.	t.		0
	<u>-</u>			10-20 30
0 -	129 119 E	129 114	E	39.9 49.8
complex	124 97 E	115 94		49.0
100	105	105	E	
Nicotinamide	$c (C_6H_6ON_2) +$	2.6-Dinitr	ophenol	2-Merc
		($C_6H_4O_5N_2$)	(C ₇ H ₁
L. and A. Ko	fler, 1943			0chia
X	f.t	. ,,		
	I			
0	129	129 105	F	0 10-40
complex	108 E 116	112		49.8 59.8
100	57 E 59	56 59	Ŀ	
				II

2-Mercar	to-4-methy	lthiazo	1 (C ₄ H ₅ N	S ₂) + Re	esorcinol
	•		- ,		C6H6O2)
	. 1 77		2.41		
Uchiai	and Kuroya	nagi, 19	941		
Z	f.t.	E	%	f.t.	E
0	90	07	E0.		
0 5	89 84	87 82	50 55	69 66	62
10	93	84	60	72	
15 20	94 94.5	89 73	70 80.5	85 96	11
25	93.5	64	85	100	63
30 35	91	62	90 95	103	71
35 40	88.5 82	62	100	$\begin{array}{c} 107 \\ 110 \end{array}$	91 108
(3+1)					
	oto-4-methy		$1 (C_4H_5N$	$(S_2) + p$	-Nitro-
phenol .	$(C_6H_5O_8N)$)			
0chiai	and Kuroya	nagi. 1	941		
% 	f.t.	E	%	f.t.	E
0	39	87	51.4	95.5	93.5
5.2	84	71	55	95.5 95	88.5
10 15	79.5 74	70	60	94	86.5 86.5
20	74 78	11	65 70	92.2 89.5	86.5 86.5
20 25	84	11	75	91.5	86.5
30 35	88.5 91	11 11	80	97	86.5
40.2	93	74	$\frac{85.1}{90}$	102 106	86.5 87
45.2	94.5 95.2	84	95	110	90
50	95.2	92	100	113(1+1) ¹¹¹
2-Merca	pto-4-methy	y1-5-imi	dazole(et	hyl)carbo	onate
	0 ₃ N ₂ S) + R				· • • -
710	- 3 2- /		- , -06	· z '	
Ocl.iai	and Kuroyan	nagi, 19	41		
%	f.t.	E	%	f.t.	
			, , , , , , , , , , , , , , , , , , ,	1	
0	2 29	227	59.6	123	7 8
10-20	-	-	70	86	11
30 39.9	197 178	78	79.8 89.9	94 105	" 88
39.9 49.8	153,5	u	100	110	108
					
2-Merca:	to-4-methy	/1-5-imi	dazolo(c+	kullan mba	nn+-
/ CU /	NE \ =	. N:	uazore(et	my1/carbo	ona t e
(L7H10) ₃ N ₂ S) + p	-Nitrop	nenol (C	₆ H ₅ O ₃ N)	

Ochiai and Kuroyanagi, 1941

E

f.t.

2**2**9 185 154

%

69.7 79.6 89.5 100

f.t.

E

99 ր 111 2,4-Dimethyl-5-carbethoxypyrrole ($C_9H_{1\,8}O_2N$) + Phenol (C_6H_6O)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.	
0	123	60	68.5 53 35 23 E 28 41	
10	118	70	53	
20	113	80	35	
10 20 30 40 50	105.5	80 86	23 E	
40	95	90	2 8	
50	95 82,5	103	41	

2,4-Dimethyl-5-carbethoxypyrrole ($C_9H_{1\,8}O_2N$) + Pyrocatechol ($C_6H_6O_2$)

Dezelic, 1935

mo1%	f.t.	mo1%	f.t.	
0	123	60	77	
10 20 30 40 50	117	66	71	
20	111	70	77	
30	105.5	80	88	
40	97	90	97.5	
50	87.5	100	105	

2,4-Dimethyl-5-carbethoxypyrrole ($C_9H_{1\,3}0_2N$) + Resorcinol ($C_6H_60_2$)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.
0 10 20 30	123 117.5 110	56.5 60 70 80	74.5 E 79 87
30 40 50	104 96 85	80 90 100	96 103 110

2,4-Dimethyl-5-carbethoxypyrrole ($C_9H_{1\,3}O_2N$) + Hydroquinone ($C_6H_6O_2$)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.	
0	123	40	117	
10	117.5	50	132	
20	112	60	143	
30	107	70	152	
32	106 E	80	159	
40	117	90	167	

2,4-Dimethyl-5-carbethoxypyrrole ($C_9H_{1\,3}O_2N$) + Picric acid ($C_6H_3O_7N_3$)

Dezelic, 1935

mol%	f.t.	mo1%	f.t.	
0 10 20 30 33.3 40 (1+1)	123 117 109 102 100 tr.t.	50 60 70 80 90 100	97 94 E 102 110 115 120	

2,4-Dimethy1-3-aldehyde-5-carbethoxy-pyrrole ($C_{10}H_{13}O_{3}N$) + Pyrocatechol ($C_{6}H_{6}O_{2}$)

Dezelic, 1935

mol%	f.t.	mo1%	f.t.
0	143	50	114 (1+1)
10	137	60	112
20	129	70	103
30	118	80	88 E
36	111 E	90	97
40	112	100	105

2,5-Dimethyl-3-carbethoxy-4-aldehyde-pyrrole ($C_{10}H_{13}O_{3}N$) + Pyrocatechol ($C_{6}H_{6}O_{2}$)

Dezelic, 1935

mo1%	f.t.	mo1%	f.t.
0	150	60	70
10 20 30	143	67	70 56 E
20	137	70	61
30	126	80	84
40 50	112.5	90	97
50	95	100	105

2,4-Dimethyl-3-aldehyde-5-carbethoxy-pyrrole ($C_{1.0}H_{1.8}0_{3}N$) + Resorcinol ($C_{6}H_{6}0_{2}$)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.	
0 10 20 30 40 50	143 136,5 127,5 116,5 107 E	60 70 75 80 90 1) 100	107 95 86 E 95 105	

2,5-Dimethy1-3-carbethoxy-4-aldehyde-pyrrole
$(C_{10}H_{13}O_{3}N) + Resorcinol (C_{6}H_{6}O_{2})$

Dezelic, 1935

mo1%	f.t.	mo1%	f.t.
0 10 20 30 40 50	150 142.5 135 123 112.5 98 tr.	60 61 70 80 90 t. 100	81 80 E 90 100 107.5
.+1)	76 ti.	t. 200	111

2,4-Dimethyl-3-aldehyde-5-carbethoxypyrrole ($C_{1.0}H_{1.9}O_{3}N$) + Hydroquinone ($C_{6}H_{6}O_{2}$)

Dezelic, 1935

mo 1%	f.t.	mo1%	f.t.	
0 10 15 20 30 40 (2+1)	143 137.5 134 E 137.5 142 141	50 60 70 80 90 100	136.5 130 E 143 155 164 172	

2,5-Dimethyl-3-carbethoxy-4-aldehydepyrrole ($C_{10}H_{13}O_3N$) + Hydroquinone ($C_6H_6O_2$)

Dezelic, 1935

5101%	f.t.	mo1%	f.t.
0 10 20 30 37 40 50	150 142.5 135 125 115 E 116 117.5 (1-	57 60 70 80 90 100	116,5 E 121,5 140,5 154 163 172

2,4-Dimethyl-5-carbethoxy-3-aldehydepyrrole ($C_{10}H_{13}O_3N$) + Picric acid ($C_6H_3O_7N_3$)

Dezelic, 1935

mo 1 %	f.t.	mo1%	f.t.	
0 10 20 30 40 50	143 137 128 120 109 97 tr.	60 70 80 90 100	95.5 E 104 110 117 122	

2,4-Dimethy1-3-acety1-5-carbethoxypyrrole ($C_1\,,H_1\,_50_3N$) + Phenol (C_6H_60)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.	_
0	141	55	93 tr.t.	
10	136	60	87	
20	132	70	65	
30	126	80	47	
40	167.5	90	27 E	
50	103.5	100	41	

2,4-Dimethyl-3-acetyl-5-carbethoxy-pyrrole ($C_{11}H_{15}O_{3}N$) + Pyrocatechol ($C_{6}H_{6}O_{2}$)

Dezelic, 1935

0 141 60 93 10 139 70 79 20 132.5 77 71 E 30 123 80 79.5 40 110 90 95 41 108.5tr.t.100 105 (1+2)	mo1%	f.t.	mol%	f.t.	
	10 20 30 40 41 50	139 132.5 123 110 108.5tr	70 77 80 90	79 71 E 79.5 95	

2 4-DIMETHYL-3-ACETYL-5-CARBETHOXYLPYRROLE + RESORCINOL

2,4-Dimethyl-3-acetyl-5-carbethoxypyrrole ($C_{11}H_{1.5}0_{s}N$) + Resorcinol ($C_{6}H_{6}0_{2}$)

Dezelic, 1935

mol%	f.t.	mol%	f.t.
0 10 19 20 30 33 40	141 137 132.5 E 133 138.5 139 (2+1) 138.5	50 60 70 78 80 90 100	130.5 119 100.5 84 E 86 101 110

2,4-Dimethyl-3-acetyl-5-carbethoxypyrrole ($C_{11}H_{15}O_3N$) + Hydroquinone ($C_6H_6O_2$)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.
0 10 20 30 33 40 50	141 138.2 E 148 152.5 153 (2+1) 151	60 62 70 80 90 100	137.5 135 E 142 154 164 172

2,4-Dimethyl-3-acetyl-5-carbethoxypyrrole ($C_{11}H_{15}O_3N$) + Picric acid ($C_6H_3O_7N_3$)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.	
0 10 20 30 40 50	141 136 128 120 110 97.8tr	60 70 80 90 100	94 E 100 107.5 114 121	

Phenylmethyl-pyrazolon ($\rm C_{1\,0}H_{1\,0}ON_{2}$) + Pyrocatechol ($\rm C_{6}H_{6}O_{2}$)

Regenbogen, 1918

%	f.t.	tr.t.	%	f.t.
0	102.0	~	60.2	54.1
10.0	98.0	-	61.3	53.0
20.0	91.0	-	62.5	50
30.0	83	68.5	63.9	49°
38.5	70	68.5	65.5	60
42.0	68.8	_	6 7.7	68
44.2	68.9	-	72. 3	86
50.0	65.9	-	76.0	92.5
55.2	61.0	-	80.0	98
57.7	58.0	_	88.2	104.5
60.0	53.8	_	93 .7	114.5
60.0	55.0	_	100.0	121.0
(1+2)	(1	+1)		

Phenylmethyl-pyrazolon ($C_{1\,0}H_{1\,0}\theta N_2$) + Hydroquinone ($C_6H_6\theta_2$)

Regenbogen, 1918

%	f.t.	tr.t.	%	f.t.	E
0 10.0 20.0 30.0 38.6 42.9 46.2 50.0 54.5 56.6 59.3 60.0 61.1	168.0 164.0 157.0 149 137 132 125 118 108 105 96	91.5 93.0 95.0 94.0 94.5 95.0	63.1 65.1 65.9 67.3 69.6 72.1 72.3 76.0 80.0 88.2 93.7	96 95 95.5 93.0 90.0 87.8 89.8 85.8 87.1 84.8 101.3 112.0 121.0	
61,2 (1	96,5 +1)	(2+1)			

Antipyrine ($C_{11}H_{12}ON_2$) + Phenol (C_6H_6O)

Regenbogen, 1918

%	f.t.	Е	%	f.t.	Е
100 89.8 79.6 69.5	40.50 34.5 19	-	31.2 28.6 25.7 23.3	56.7 - 64	54.5 55 55
59.3 50.0 40.0 33.3	27.1 51 57.2	-	20.0 10.0 0.0	74 94.5 108.5	- - - +1)

Kremann and Haas, 1919	Hrynakowski and Adamanis, 1935
% f.t. E % f.t. E	mol% f.t. E min.
0 109.8 - 42.8 47.5 - 9.6 95.5 - 47.9 38 - 15.1 87 - 54.0 16.5 - 17.4 82 - 56.7-71.4 21.6 72 - 76.2 11 - 25.6 61 52.5 83.5 24 - 30.0 53.8 - 87.6 30.5 - 34.4 55.5 - 95.2 37.5 - 39.5 53 - 100.0 41 -	100 104
Antipyrine ($C_{11}H_{12}\theta N_2$) + Pyrocatechol ($C_6H_6\theta_2$) Regenbogen, 1918	63.1 73.5 58.3 75.5 58.0 0.6 55.3 58.0 " - 53.3 58.5 50 60.0(1+1) 48 59.5 50 60.0
% f.t. E % f.t. E	42.3 36.3 66.0 - -
100 103 - 34.0 57 56.2 90 100.2 - 32.4 - 57 56.2 80 91.5 - 30.8 60 57.3 70 71 - 29.6 22 - 54.8 74 - 26.6 64 - 54.8 74 - 26.6 64 - 53.9 74 - 22.6 69 - 49.3 71.5 - 22.6 66.7 - 44.9 68 - 18.8 76 66.7 44.9 68 - 18.8 76 66.7 44.12 58 - 15.5 88 - 40.0 58 - 14.7 88.5 66.0 38.2 46 - 11.8 95.5 - 36.9 36.9 40 - 6.3 10.5 - 38.5	33.4 66.5(2+1) 32.5 65.2 65.2 - 30 72.0 " 0.8 23.1 88.0 " 0.6 16 97.0 8.2 101.0 0 112
(2+1) (1+1) (1+2) 0.0 108.5 -	22.0 %: 65.2 42.0 %: 56.0 32.0 %: 59.0 66.0 %: 64.0
Kremann and Haas, 1919	
% f.t. E % f.t. E	Antipyrine ($C_{11}H_{12}ON_2$) + Resorcinol ($C_6H_6O_2$)
100	Quercigh and Cavagnari, 1912 (1+1)
47.3 67.5 8.4 99.5 - 47.2 68 56 5.5 103.5 - 44.2 62.5 57 0 109.8 - 44.1 62.5 - (1+2) (1+1) (2+1)	40.8 91.5 10 92.5 40 88 0 108.5 36.9 90.3 (1+1) (2+1)

				-		Kremann	and Haas	, 1919	·		
	and Haas,			· · · · · · · · · · · · · · · · · · ·		%	f.t.	E	K	f.t.	E
100 93.5 86.3 77.3 70.8 63.3 51.5 49.9 48.5 46.9 45.3 43.3	109 105.9 99 89 72 -69 76 80 85.5 90.5 94.5		38.3 37.0 33.5 30.3 26.7 24.6 22.8 20.9 17.5 15.3 15.0	f.t. 100.2 100:5 99.7 95.5 82.5 60.5 74.78 80.5 86.5	52.5 52.5	100 93.1 88.7 81.8 76.3 69.7 53.4 59.7 56.2 52.3 49.7 (2+3)	168 165 162,5 158 152 142 129 120 121,5 126 (2+1)	116.5	45.9 42.8 39.4 35.1 28.9 24.2 19.4 13.2 10.3 4.2 0	129 127.5 125 118 125 129 128.5 117.5 112 104.8 109.8	118 - - - 101 116.5
39.5	99. 7 (1+1)	-	$ \begin{array}{c} 10.0 \\ 8.4 \\ 0 \end{array} $	92 95.5 109.8	-						
				107.6			ldt, 1925			·	
Unungkou	ualri and A	domonic	1024				f.t.	E	%	f.t.	E
0 8.3 16.0 23.2 30.0 36.4	83 77 91	. 2 .0 .0 .0 .0 .0 E	mo1% 63.2 67.7 72.0 76.1 80.0	90.5 80.0 67.0 56.0 75.5 86.0	E	100 84.2 82.5 76.5 72.5 62.6 61.4 56.5 55.3 50.8	172.0 161.0 158.0 151.0 146.0 130.0 125.0 123.5 123.5	171.5 121.0 120.5	36.2 34.9 29.6 29.1 24 19.8 17.2 11 10.5 6.3	122.5 121.0 130.5 130.5 134.0 130.5 128.0 116.0 115.5 104.5	118.5 " 122.0 103.0 102.0 102.5
42.4 48.0 50.0 53.4 58.4	101 103 101	.0 (1+1)	83.7 89.3 90.7 93.9 97.0 100.0	95.0 100.5 105.0 107.5 110.0	!	49.4 43.5 38 (2+3)	129.5 127.5 124.0 (2+1)	118.5	4.2	109.0 113.0	102.0
Antipyrin	ne (C ₁₁ H ₁	₂ 0N ₂) +	Hydroqui	none (C ₆ 1	H ₆ O ₂)	Hrynako Eutecti	wski, 1934 cs	1			
	gen, 1918					34.0%	: 101.0 : 118.0				
100 90 80 70 61.9 61.4 60. 58.5 57.8 48.4 46.7 (2+3)	f.t. 167.5 165 158 146 130 127.5 124 121 119 121.0 126.8 127.0 (2+1)	119 	43.4 38.9 33.7 29.6 26.3 22.6 20 17.7 11.8 6.25	125.8 123 116.5 127.0 128.0 127.0 124.0 117 108.5	116.5 "- - - 101.5	S8.5% Kofler Eutect: %		f.t. 112 102 118 120 172.5	(A + com (complex (B + com	1+2)	
						Taboury (2+1)	and Gray	, 1944			

Antipyrine ($C_{11}H_{12}ON_2$) + Pyrogallol ($C_6H_6O_3$)	Antipyrine ($C_{11}H_{12}ON_2$) + m-Cresol (C_7H_8O)
Regenbogen, 1918	Regenbogen, 1918
% f.t. % f.t. E	% f.t. % f.t
100 121 32.2 60 59.1 90 116 30 50 - 80 109 28.8 64 - 70 84 25.1 64.9 - 64 50 25 40 -	39.4 0 23 71.5 35 29 13.1 94 29.7 52 0 108.5
59,2 - 20.9 68 64.0 55,1 40 20 70 - 50,1 60 16.3 84 61.9 43,8 66 15,5 89 -	Antipyrine ($C_{11}H_{12}ON_2$) + p-Cresol (C_7H_8O)
40 67 10 96 62 36.5 64 6.3 106 -	Regenbogen, 1918
36 64 0 108.3 -	% f.t. % f.t.
(1+1) (2+1)	100 33.9 30 56 93.8 30 26.1 66 88.2 24.5 22.3 77
Kremann and Haas, 1919	40 - 18 85 36.5 20 13.3 94 33.4 42 8 100.5 0 108.5
% f.t. % f.t.	
100 126 21.2 59.5 94.5 123.2 18.2 76 87.6 119.2 12.5 90 82.4 116 8.1 99.9 74.6 107 2.2 108.2 70.3 95.5 0 109.8	Antipyrine ($C_{11}H_{12}ON_2$) + Guaiacol ($C_7H_8O_2$)
63.8 59	Regenbogen, 1918
	% f.t. % f.t.
Antipyrine ($C_{11}H_{12}0N_2$) + o-Cresol (C_7H_80)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Regenbogen, 1918	44.4 30 0 108.5 40 48
% f.t. % f.t. E	
100 29.8 36.5 20 - 93.8 27.3 33.8 54.8 - 88.2 24 33.4 37 - 81.1 17 30.9 54 54 71.4 - 30 55 - 60 - 27.4 66 54	Antipyrine ($C_{11}H_{12}0N_2$) + Thymol ($C_{10}H_{14}0$)
l 58,6 19 26,1 70 -	Regenbogen, 1918
1 50 39 13.3 93.5 -	% f.t. % f.t.
46.4 46 8 99 - 43.4 50 0 108.5 - 40 53.8 36.5 56.0 (1+1)	100 48.9 40 55 93.8 45.9 31.8 75 88.2 42.8 28.5 81 83.3 40.5 24.9 87 76.1 30 20 92.5
	70.1 30 20 92.5 70-47.8 - 10 102 45.5 31 0 108.5 42.9 45
	,

952 ANTIPYRINI	E + EUGENC)L		
Antipyrine (C ₁₁ H ₁₂ ON ₂) + Eugenol (C ₁₀ H ₁₂ O ₂)	Antipyrin	e (C ₁₁ H ₁₂ ON	2) + Salol	(C ₁₃ H ₁₀ O ₃)
Regenbogen, 1918	Bellucci,	1912		
% f.t. % f.t.	-	f.t.	E	min.
55.5 31 30 85.5 50 44 19.2 98.5 44.7 62 8.6 106.5 38 73.5 0 108.5 Antipyrine (C ₁₁ H ₁₂ ON ₂) + Salicyl alcohol	100 90 80 70 60 50 40 30 20	42 35 34 53 65 75 83 91 98 104.5	30 29 29.4 29.6 30 29.1 29.7 30 29.6	- 6 12 10 9 7 6 5 3
(C ₇ H ₈ O ₂) Regenbogen, 1918	=====	112.0		
% f.t. % f.t.	Regenboge	n, 1918		
100 81.1 53.3-36.2 - 90 76.9 30 55	%	f.t.	%	f.t.
90 76.9 30 55 80 70 24.8 72 70 57 20 83 65.4 51 10 98 60 40 0 108.5	100 95.2 90.9 90 87 83.3 80	41.0 38.0 35.4 35.0 33.3 34.3 42 58	54.7 53.2 49.9 45.5 42 37.7 19.2 9.5	77 77 80.5 81.5 87 88.5
Antipyrine ($C_{11}H_{12}0N_2$) + Methyl-p-Oxybenzoate ($C_8H_80_3$)	61.4 57 Adamanis,	71 72.5	ó.°	100 107.5 108.0
Pfeiffer and Seydel, 1928	mol%	f.t.	mo1%	f.t.
## f.t. ## f.t. 0 112 50 60 20 94 60 84 35 70 80 113 40 48 100 127 45 35.5 Antifyrine (C ₁₁ H ₁₂ ON ₂) + Ethyl-p-Oxybenzoate	0 4.4 8.9 13.5 18.1 22.7 27.4 32.2 37.0 41.9 46.8	112.0 107.0 104.5 101.0 98.0 94.2 91.0 89.5 86.0 82.5 78.5	51.8 56.9 62.1 67.2 72.5 77.9 83.3 88.8 94.3	75.5 70.0 66.0 57.0 51.0 41.0 34.0 36.5 39.0 42.0
$(C_9H_{10}O_3)$	E : 82.1	l mo1% 33.() •	
Regenbogen, 1918				
## f.t. ## f.t. 100 112.0 40.6 42 90 108.5 35.1 63 80 98 30.6 76 70 80 25.4 85 63.8 68 18.1 95 58.2 54 9.1 103 53.6 25 0 108	Quercigh E: 98.99	and Cavagnar	ri, 1912	
53.6 25 0 108 46.9 -				

Antipyrine	(C ₁ ,H ₁₂ ON ₂) +	Salacetol	($C_{10}H_{10}O_{4}$)
------------	---	-----	-----------	-------------------------

Regenbogen, 1918

R	f.t.	E	%	f.t.	E
100 90 80 73.2 67.4 60.6	68.3 63.5 58 54	52.3 53.0	48.3 44.4 38.1 34 30 20	76 79.5 82.5 87.5 91.5 99	52.7 52.9
53.8 50.8	69 7 1.5	53.0	0	108.0	=

Antipyrine ($C_{1\,1}H_{1\,2}\theta N_2$) + Salipyrine ($C_{1\,8}H_{1\,8}\theta_u N_2)$

Hrynakowski and Adamanis, 1935

mo1%	f.t.	Е	min.	
0	112	_		
$\frac{0}{2.9}$	108.5	-	_	
6	106.4	-	-	
9.2	104.5	7 5.5	0.6	
12.6	103.0	n	0.9	
16.1	101.5	**	1.2	
19.8	98.0	tr	1.2	
23.7	94.5	***	2.1	
27.8	93.0	17	2.4	
32.1	90.1	11	2.7	
36.6	85.5	Ħ	3.0	
41.4	83.1	n	4.2	
46.4	7 9.5	n	4.8	
51.7	77.7	11	5.1	
5 <u>3</u> .9	7 5.5	11	-	
57.4	77 .5	11	4.8	
63.4	82.0	**	4.5	
69.8	86.5	n	3.0	
76.6	88.0	11	2.4	
83.9	89.0	tr	1.5	
91.6	90.5	~	-	
1.00	92	-	-	

Hrynakowski, 1934

E: 67% 75.5°

Antipyrine ($C_{11}H_{12}ON_2$) + o-Aminophenol (C_6H_7ON)

Pfeiffer and Seydel, 1928

%	f.t.	E	%	f.t.	E
0	112	110	40	99	52
14	95	52	50	129	- 1
20	85	11	60	148	H
2 6	72	Ħ	80	165	11
26 30 35	58	11	100	174	174
35	77	11			

Antipyrine ($C_{11}H_{12}ON_2$) + o-Nitrophenol($C_6H_5NO_8$)

Regenbogen, 1918

%	f.t.	Я	f.t.	
100 90 80 70 64 60 54.5	44.0 40.0 35.3 29.2 24.2 20.0 16.0 39.0	42.5 40 37.5 34.8 30.4 27 24 20	57 62 68 73 79 83.2 87	
44.6	51.5	$^{10}_{0}$	101 108.5	

Kremann and Haas, 1919

%	f.t.	Ė	%	f.t.	Е
100 93.6 89.4 81.4 74.7	43.5 41 39 35.3 31	- - - -	49.1 45.6 39.8 33.9 26.1	32 47 59 69.5 81.5	13
69.9 65.3 59.4 56.4 53.1	27.5 24 18.5 16.2 13	13	21.3 12.3 6.9	88 97.3 102.5 109.8	13

Antipyrine ($C_{11}H_{12}ON_2$) + m-Nitrophenol($C_6H_5NO_3$)

Regenbogen, 1918

%	f.t.	%	f.t.	E
100	93.2	40	_	_
90	87.5	4ŏ	56.9	-
80	7 8 56	37.5		-
70 64 60	56	3 7	36 55	_
64	42.5	34.8	53	-
60	.=	33.3	59	53.0
54.5	42	30.4	68.5	-
50	51	27	77	-
47.4	53	24	83	-
44.6	56	20	91	-
42.5	57. 5	10	104	-
(1+1)		0	108.5	_

Kremanı	n and Haas,	1919				Antipyr	ine (C ₁₁ E	I ₁₂ ON ₂) +	Picric a	ncid (C ₆ H	1 ₃ 0 ₇ N ₃)
%	f.t.	K	f.t.	%	f.t.		ogen, 1918				
100	94.8	32.7	56	18.6 17.3	87 88.2	%	f.t.	E	%	f.t.	E
94.9 89.2 85.3 79.3	91 85 80.2 66.5	29.7 27.0 26.6 24.5	66 71.5 73.0 77	16.0 11.7 10.2 5.1	90.6 98 98.8	100 93.8 88.2	118.9 116 135	115.9 116	44.3 39.8 34.6	176 165 135	-
75.0 71.5	56 42	22.4 22.2 20.9	81.8 81.5	4.0	103.5. 105.2	82.2 75 63	148 160.5 174	-	28.3 17.8 11.8	96 83 94	75.3 76.0
68.3 34.2	47.0	20.9	83	0	109.8	57.6 51.9 48.5	177.5 180 177	-	6.3	101.8 108.5	-
Antin	yrine (C ₁₁	HON-)	+ n-Nitro	ohenol (C/H/NO.	10.5			(1+1)		
	bogen, 1918		- p marei	, , , , , , , , , , , , , , , , , , ,	~ ₆ ,,	1	ine (~C ₁₁ 1	H ₁₂ ON ₂)	+ α -Naph	thol (C ₁₀	(0 ₈ H
%	f.t.	E	%	f.t.	Е		gen, 1918	E	%		E
100	110.0		42.5	99.2	-		f.t.	<u>E</u>		f.t.	
90 80 70	102.0 89 70	68.3 68.4	40 3 7. 5 34.8	98.8 96.3 94	-	100 90 80	94.0 89.5 7 6	-	43.7 41 36	53 61 67.5	
64 60	76.8 78.6		30.4 27	88	79.5 80.0	70 60.9	33	-	30 27.7	72 73.8	-
54.5 50	92	-	24 20	86	$\substack{80.0\\80.0}$	55.0 53.8	3 7	-	25 24.4	78.5 81	72.8
47.4 44.6	95.1 98.7		10	$\substack{98.5\\108.5}$	-	50 46.1 45.3	45 51	-	22.6 20	85 91	71.0
===	(1+1)						49	-	10 0	$104 \\ 108.5$	-
Krema	inn and Haa	s, 1919				Kremanı	n and Haas	, 1919			
K	f.t.	Е	A	f.t.	E	%	f.t.	E	%	f.t.	E
100 91.8	111.5 104.8	-	46.0 43.5	97.8 99.15	-	100 96.1	92.7 91	-	33.7 30.2	69.5 72.5	7 3
86.4 82.7 80.1	98.5 7 93	-	40.1 38.2 36.1 34.1	97.8 96.4	-	92.1 87.0	88.2 73	-	28.8 27.9	72.8 73	म स
76.9 74.	9 81.5	67 67 67	34.1 32.2	94 92 90,1	-	80.4 78.1 72.0	71 59.3	=	21.5 24.2 18.7	87.5 82.1	-
72.2 69.0	267	67	29.9 27.7	85.5 81.8	-	44.2 42.6	51	7 3	15.6 15.0	92 95.5	73
67. 65.	72.8 74.8	67	24.8 23.0	79.9 79	- - 70	39.4 37.1	58 61.5	73 73	7.9 0	96.3 104	-
64.1 63. 60.	76.3	- 67	21.8 18.5	80 86	79 79 -	34.1	68	13	····	109,9 (2+1)	_
60. 56. 53.	5 78,5	78.5	14.8 11.0 6.3	93.1 98.2 103.5	79 - -	Antipyr	ine (C ₁ ,1	H ₁₂ ON ₂)	+β-Naph	thol (C ₁	(0 ₈ H _c
51 .9 49 .	9 87.7	-	0	109.8	-	Quercig	gh and Cav	agnari, 1	1912		
	(1+2)	(1-	-1)	(2	:+1)	E: 38.	.5 % 17	.5°	· · · · · · · · · · · · · · · · · · ·		
Anti	oyrine (C ₁	1H12ON2)	+ 2,4-Din			Regenb	ogen, 191	8			. —
Krema	nn and Haas	s, 1919		(C	6H405N2)	×	f.t.	Я	f.t.	%	f.t.
Æ	f.t.	Ą.	f.t.	Æ	f.t.	100 90	119.8 113.5	40.2 39.4	51 52	25 22.6	78 82
0 3.2 8 11.8 17.2 21.5	101	26 30.4 34.5 38.9 62.2 66.2	81.5 75.5 68 58 60	70.5 76.3 80.7 86.5 93.2	77.5 86.5 93 98 104.1	80 70 43.4 43.4	97 56 45 30	39.4 35.6 31:2 30 27.7	57 66 72 74	22.6 20.7 20 10 0	87 90 102 108.2
21.5	87.9	66.2	69	100	110.5						

Kremanı	n and Haa	s, 1919				Dynami do	n / C II	ON) +	Dungant	nahal (C	.н.о.)
- K	f.t.	Е	Я	f.t.	Е	Pyramido	n (C ₁₈ H ₁	7UN ₃) +	ryrocati	echoi (C	6H6U2)
0 3.2	109.8 106.3	-	42.3 46.0	79.5 79.5	-	Regenbog	en, 1918				
5.0 7.3	$104.0 \\ 101.8$	-	50.5 54.2	73.0	67.5 67.5	8	f.t.	Е	%	f.t.	E
11.9 12.9 17.3	97 97 90.5	-	72.6 74.5 76.4	- 80	-	100 90	103.3 99.6	-	39 35.9	73.4 76.1	-
19.0 21.3	87.5 84.8	72 - - -	80.6 82.2	96 98	_	80 70	$\begin{array}{c} 92.0 \\ 78.0 \end{array}$	55.2	32.3 28.6	77.9 7 6.3	-
23.7 26.5 27.5 31.2	80.5 76.5 75.5	72	87.1 87.4 91.8	106.5 106.5 112.8	=	64 58.8 55.8	65.5 56.2	" —	24.1 20 15.5	71.3 68.4 76.3	67.8
35.7	67 75.5	-	93.8 100	115.5 122	-	52.3	62.0 64.5	_	11.8	85.6 95.2	-
38.9	78.5			(1+1)		48.3 45.2 41.7	63.9 70.0	63.0	0	100.0	+1) (1+2)
Antipyr	rine (C ₁	H ₁₂ ON ₂)	+ Betol	(C ₁₇ H ₁₂ 0	₃)						
	ogen, 191	8				Pyramido	n (C ₁₈ H ₁		Methyl-1 (C ₈ H ₈ O ₃		oate
	f.t.	Е	%	f.t.	E	Pfeiffe	r and Seyo			,	
100 90.9	91.0 84.3	-	51.5 47.3 42.2	79.5 82.5	68.8	7	f.t.	E E	%	f.t.	E
83.3 75 68.2	79.0 74		37.4 30	8 7 90 95	66	0	108	107	45	51	32
63.3 59.3	71 74.5	11	20 10	102 106	-	20 30 35	88 71 57	32 11	45 51 60 7 0	77 96	ii 11
54.9	77.5		0	108	-	40 41	43 40	-	80 100	111 120 127	" 124
Antipyı	rine (C ₁	1H12ON2)	+ Quinin	e (C ₂₀ H ₂₄	0 ₂ N ₂)	43	38	-			
Adamani	is, 1933										
mol %	f.t.	mol %	f.t.	mol %	f.t.	Pyramidon	(C ₁₉ H ₁₇	ON _s) +	o-Aminop	henol (C	6H2ON)
100 91.7	175 168.2	51.9 46.5	133.5 127.8	19.9 16.2	99.0 101.8				•		
83.9 76.7 69.9	161.5 158.0 152.5	41.5 36.7	$\frac{120.0}{111.2}$	12.7 9.3	$\substack{103.5\\105.0}$		and Seyd				
63.5 57.5	146.0 140.0	32.2 27.9 23.8	107.2 94.2 95.2	$\frac{6.1}{3.0}$	107.0 108.8 112		f.t.	Е	%	f.t.	E
E : 27	.1 mol %	91.0°				0 10 15	10 7 95 86	106 7 0	40 50	130 150	70
Dun						20 25	74 87	†1 14	60 80 100	162 171 174	" 174
Pyramid	on (C ₁₃ H	l ₁₇ 0N ₃)	+ Hydroqui	inone (C	6H602)	30	105				277
	gen, 1918										
 %	f.t.	E	%	f.t.	Е						
100 90 80	167.4 164.0 158.9	-	39 36.6 32.3	94 95.5	-						
70 64	149 140	-	28.6 24.1	97.9 95.5 93.9	92						
55.8 52.3 48.3	131.5 123 110	-	$\frac{20}{15.5}$ $\frac{11.8}{11.8}$	96.8 94.0 83	-						
41.7	95.0	92.2	6.3	93.5 102.8	73.0						
(1)	-/ (4"										

ACETYLTHIOUREA + RESORCINOL

956			·	ACETYL	.THI OURE	A + RESC	DRCI NOL				
Acetyl	thiourea (C ₃ H ₆ ONS) + Reso	orcinol (C ₆ H ₆ O ₂)	Pheny1t	hiourea (C ₇ H ₈ NS) + p-Nit	rophenol(C ₆ H ₅ O ₈ N)
0chiai	and Kuroy	anagi, l	941			Ochiai	and Kuroya	anagi, l	941		
8	f.t.	E	%	f.t.	E	%	f.t.	E	%	f.t.	E
0 10 20 30 40 50	165 159 149 138 123.5 110	163 98 79	60 70 80 90 100	90 87 98 105 110	79 " " 108	0 10 20 30 40 50	154 142 136 126 117 102	152 85 77 " 79 80	60 70 80 90 100	88 89.5 101 109 113	80 80 81 93 111
Acetyl	lthiourea ((C₃H ₆ ONS	-	itrophenol 5H ₅ O ₃ N)		Benzylt	hiourea (C ₈ H _{1 o} NS) + Reso	rcinol ((C ₆ H ₆ O ₂)
	and Kuroy					I	and Kuroya	nagi, 1	941		
%	f.t.	<u>E</u>	<u> </u>	f.t.	<u>E</u>	%	f.t.	Е	%	f.t.	E
0 10 20 30 40 50	165 161 154 144 134 123 thiourea (163 111 88 "	60 70 80 90 100	108 92 99 106.5 113	88 " " 1111	0 9.2 14.6 20 25.2 28.4 35.1 39.5 44.2	159 157 152 146 140 137 129 122 115	157 122 102 88 84 "	59.5 63.7 68 76 79.7 84.3 91 95.8	91 86 88 92 102 104 105.5 108 110	84 " " 86 93 100 108
	r and Bran			apataor (of origo	54.8	107 99	"			
%			f.t.								
0			70.5 54 E		-	Benzy1t	hiourea (C ₈ H _{1 o} NS		trophenol I ₅ 0 ₃ N)	
						Ochiai	and Kuro	yanagi,	1941		
Pheny 1	thiourea (C ₇ H ₈ NS) + Resor	cinol (C	6H6O2)	%	f.t.	E	Я	f.t.	E
0chi a	i and Kur	oyanagi,	1941			0 20 25.8	159 146.5	15 7 88	64.9 70	99 90	87
	f.t.	Е	%	f.t.	E	25.8 29.2 35.2	142.5 139 134	84 "	72 75 80	92 96	H
0 10.3 17 19 23.3 30.9	139 137 3 134 9 119	152 86 72 71	49 55.5 58 59.6 65.9 70.3	83 75.5 73 73 78 94	71	39.6 49.6 50.2 56 59.9	130.5 120.5 120 112 107	85 86	85 90 100	100.5 104 108 110	88 89.5 90 108
33 35.5 38.1 43.3 47.6	l 102	11 11 11	82 88.3 95.3 100	104 106 108 110	81.5 98 108						
-											

<u> </u>				
Tetranitro-pent Picric acid (C	aerithrite (C_5H $_6H_8O_7N_3$)	$_{8}0_{12}N_{4}$) +		Nitrobenzene ($C_6H_5O_2N$) + Phenol (C_6H_6O)
Pushin and Kozu	har, 1947			Dahms, 1895
% f.t.	E %	f.t.	E	% f.t. % f.t.
100 122 90 114 80 108 70 100 60 94 50 103	- 40 - 30 - 20 - 10 94 91	110 117 125 134 141	88 82 84 80	0.0 +5.520 50.23 -7.4 0.512 5.227 59.14 +2.7 2.472 4.255 66.13 +10.25 5.84 2.65 74.53 19.0 12.44 -0.70 80.46 24.2 24.32 -6.8 36.00 28.8 34.10 -11.6 95.590 36.26 41.22 -15.5 99.313 39.09 42.0 -16.55 100 39.59
Nitromannite ($C_6H_8O_{18}N_6$) + p-	-Nitrophenol C ₆ H ₅ O ₃ N)		43.60 -15.6
Urbanski, 1934				100
% f.t.	E %	f.t.	E	Ampola and Carlinfanti, 1895
100 114.7 90 110.6 80 108.8 70 106.1 60 103.3 50 100.5	76.9 30 90.0 20 93.4 10 94.1 0	98.0 9 101.9 9	95.6 95.6 91.2 87.0	% f.t. % f.t. 0 3.84 5.59 -0.06 1.07 2.97 7.73 -1.29 2.26 2.16 10.98 -3.26 3.58 1.34 14.72 -5.50
				Paterno, 1896
Hexogen (C ₃ H ₆	O_6N_6) + Picric a	cid (C ₆ H ₈ O ₇ N	N _s)	% Df.t. % Df.t.
				0.93 -0.55 12.52 -7.58
Urbanski and Ra	abek-Gavronska, l	.934		2.18 1.26 15.69 9.79 4.57 2.62 23.73 15.65
% f.t.	E %	f.t.	E	8.17 4.84
100 121.8 95 117.5 90 113.6 85 117.1	70 60 112.9 50 " 40 " 30	145.1 156.4 165.8 175.1	112.2 111.4 111.1	Hrynakowski, Staszewski and Szmytowna, 1937
80 126.2	" 0	205.5	-	% f.t. E % f.t. E
Nitroglycerine Kast, 1906	$(C_3H_5O_9N_3) + D$	initrochlorhy (C ₃ H ₅ O ₆		100
%	f.t.	m.t.		
9.9 20 30 12 29.4 96	+13.2 +13.4 + 9.0 + 7.0 + 4.0 - 0.8 - 8.1 + 6.8	13.1 8.0 5.5 2.8 -12.5 + 3.8		Bramley , 1916
			r gant saat unter gant gant gant dager. Hand sait sait dager dager gant gant gant gant gant gant gant gant	4.16 .1957 1975 58.64 .1233 4190 8.84 .1888 2041 71.03 .1085 5400 18.12 .1756 2208 84.68 .0927 7590 27.41 .1635 2460 100.00 .0752 11040 37.96 .1495 2845

Nitrobenz	ene (C	5H ₅ O ₂ N) +	Resorci	nol (C ₆	H ₆ O ₂)	Nitrobenzene (C	₆ H ₅ O ₂ N) + p-C1	esol (C ₇ H ₈ O)
Mortimer,	1923					Ampola and Carli	nfanti, 1895	
mo1%	f.t.	mo]	1%	f.t.		% f.t.	%	f.t.
6.6 16.0 32.2	20 40 60	83	3.3 3.3).0	80 100 110.2	·	0.58 3.54 1.52 2.95 3.27 2.02 5.96 0.51	19.95	-1,69 -3,64 -6,01 +3,84
Timmerman	ıs, 1956							
t	FP (k1)	t	FP(k1)) t	tr.t.	Ni tonala anno 1 C	T O N) (m)	. ((11 0)
0%		50	%	10	0%	Nitrobenzene (C	6H5U2N / Thym	ol (C ₁₀ n ₁₄ 0)
5.7 30 50	1 1090 2000	85 90 10 0	325 725 1050	35 45 50	250 420 450	Ampola and Carli	nfanti, 1895	
70 90	3010 4100			60 7 0	250 50	% f.t.	%	f.t.
10%		10	0%		0%	0 +3.8	34 9.15	-0.23
20 35	1000 650	(Br	idgman)	15	1100	0.46 3.5 1.60 3.0	8 13.15	-2.06 -4.20
45 50	500	7 5	$\begin{smallmatrix}&&1\\500\end{smallmatrix}$	15 25 45 65	890 525	3.31 2.3		-7.28
60 70	520 700	20	1000 1500		150 0%			
25%	1000	44 20 6 -2 -6	2000 2500	15 30	1160	Nitrobenzene (C ₆ H ₅ O ₂ N) + Pic	eric acid (C ₆ H ₈ O ₇ N ₃)
55 60	220 450		2000	50	760 430			
70 80	580 750			65	1 7 5	Mindovich and G	orbachev, 1953	(fig.)
85	1000					%	r	
Nitrobenzo	ene (C_{ϵ}	H ₅ O ₂ N) +	m-Creso	1 (С ₇ н	80)	2 10 20	0.26550 .26150 .25675) 5
Trew and S	Spencer,	1936				25	. 25425	
mo1%	d	n _D	mo1%	đ	n _D	r= specific	refraction = (n ² -1)/ (n ² +1).1/d
	,	28°						
10.1 19.3 29.3	. 194 1 . 177 . 162 . 144 . 128	.54928 .54794 .54685 .54560 .54503	59.1 69.2 78.8 89.9	1.097 .081 .063 .045 .029	1.54282 .54166 .54029 .53860 .53812	Nitrobenzene (zene.Picri c acid $_{ m 2}{ m H_90_7N_3}$) complex
34.2 51.5	.108	.54 387		.02)	.03012		Gorbachev, 195.	3 (fig.)
mo1%	d	χ	mo1%	đ	χ	%	r	
		25°				2 10	0.2654 .2637	
0 1.		.502		1.103	0.593	10 15 20	. 2627	7
27.20 . 41.48 .	152 128	.522 .543 .566 .578	73.20 87.20 100.00	.075 .051 .030	.620 .650 .672		.2617 refraction = (r	n ² -1)/(n ² +1).1/d
mol%	U	Q mix	mo1%	U	Q mix			
13.8 . 26.3 .	395	1.00 1.27 1.30	60.4 79.0 100	0.449 .490 .515	-1.03 0.57			

Nitrobe	enzene (C	6H502N		lorphenol 50Cl)							
Lecat,	1949										
%			b.t.								
0 92 100	92 219,9 Az										
Hrynakowski and Szmyt, 1938											
%	f.t.	%	f	.t.							
100 90 80 70 60 50	38.00 34.50 25.60 15.50 2.50 -11.40	30) -1() + ₁) + ₂	2.50 0.00 1.00 4.00 5.90							
Hrynako	wski and	Szmyt, l	(C ₆ H	hlorphenol 80Cl ₃)	·····						
	f.t.	E	"	f.t.	<u>E</u>						
100 88.68 80.00 75.00 69.00 62.00 56.10 (1+1)	67.00 55.30 44.30 40.00 33.70 31.40 30.80 29.30 f.t.= 31	28.70 27.00 	50.00 40.00 29.40 19.61 10.00 5.00 0.00	28.20 23.80 14.00 6.00 3.00 5.00 5.90	2.00						
o-Dinitrobenzene ($C_6H_4O_4N_2$) + m-Oxybenzaldehyde ($C_7H_6O_2$)											
Kremann	and Pogan	tsch, 19	923		~~						
%	f.t.	Е	%	f.t.	E						
0.0 9.0 21.1 30.8 39.4	115 111.5 105 100 94	- - 84 -	53.7 63.9 74.6 86.4 100	86 88 93 99 105	84 84 - -						

o-Dinitrobenzene ($C_6H_4O_4N_2$) + m-Aminophenol ($C_6\bar{H}_70N$) Kremann, Lupfer and Zawodsky, 1920 f.t. f.t. 11 100.0 117 116 95.0 85.5 75.0 70.2 56.5 56.3 53.1 48.8 45.0 40.5 36.0 31.5 25.5 21.7 112.5 107.5 105.5 97.0 89.0 81.5 84.0 87.0 89.0 92.5 95.0 97.5 88.0 89.0 101.0 103.0 17.2 12.8 8.5 105.5 158.0 110.5 115.7 0.0 m-Dinitrobenzene ($C_6H_4O_4N_2$) + Thymol ($C_{10}H_{14}O$) Pushin, Marich and Rikovski, 1948 E no1% f.t. E 5io 1% f.t. 40 30 20 10 61 100 51 47 36 37 39 39 69 76 32 90 80 43 39 84 91 70 60 46 53 39 38 50 m-Dinitrobenzene ($C_6H_{\downarrow}O_{\downarrow}N_2$) + m-0xybenzaldehyde ($C_7H_6O_2$) Kremann and Pogantsch, 1923 f.t. % f.t. 0.0 12.2 28.22 40.93 49.73 87.5 78.5 57.4 63.9 73.1 84.5 79 83 89 63 66.5 96 105 68.5 63

100

74

m-Dinitrobenzene ((m-Aminop (C ₆ H ₇ ON		m-Dini	trobenzene	(C ₆ H ₄ 0) ₄ N ₂) +	Trinitroc	resol sym.
	2 3-I 102(Efremov	and Tikho	omirova,	1927		
Kremann, Lupfer and				%	f.t.	Е	%	f.t.	Е
53.3 94.5 47.7 91.0 74 45.3 89.5	28.9 28.3 23.6 22.6 20.0 4.0 21.6 17.0 4.5 14.0 9.8 4.5 7.1 4.0	79.0 78.0 75.5 74.5 76.0 75.5 78.0 80.5 82.5 84.5 86.5 89.0	74.5 74.5 74.5	100 95 90 85 80 75 70 65 60 55	101.4 96.9 92.7 88.0 82.5 77.2 71.8 66.3 60.9 56.2 59.2	45.1 48.6 52.3 53.5 53.9 54.1 55.3 55.4 55.4	45 40 35 30 25 20 15 10 5	63.2 66.5 70.0 73.3 76.5 79.7 83.0 85.5 88.3 90.1	55.2 55.1 54.8 54.7 53.1 52.5 52.5 51.6 48.5
				m-Dinitr	obenzene	(C ₆ H ₄ O ₁	,N ₂) +	β-Naphtho	01
m-Dinitrobenzene (C ₆ H ₄ O ₄ N ₂) +	2,4-Dini	tro-	Ciuo on	d Marcellí	no 103((C ₁₀ H ₈ 0))
phenol ($C_6H_{14}O_5N_2$)				l 		E E	, %	f.t.	
Brandstätter, 1947		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	""	f.t.	<u> </u>	/0	1.1.	
% f.t. 0 91 10 86 20 80 30 73 34 70 E 40 76	% f.t 50 84 60 91 70 97 80 103 90 108 100 114	- \ 		94.0 89.46 82.08 75.54 70.05 62.04 59.01 53.07 50.20 47.55 44.29	124.0 112.7 107.5 102.5 97.0 90.2 85.0 76.0 69.2 64.5 62.1	61.3	43.60 41.75 37.62 33.77 29.07 29.65 25.61 20.40 8.39	67.0 61.6 60.4 58.5 57.2 56.5 58.3 65.5 78.0 88.9	56.1
				(1+1)	02.1				
m-Dinitrobenzene (icric aci C ₆ H ₈ O ₇ N ₈							
Hrynakowski and Ka	puzinski, 1934	,			robenzene		(n-Oxybenza C ₇ H ₆ O ₂)	ldehyde
% f.t.	<u>E</u>	min.	•	l	n and Poga				
0.0 91.0 5.0 90.9 10.0 88.2 15.0 86.6 20.0 84.0 25.0 81.0 30.0 77.2 35.0 72.4 40.0 66.8	59 62 62,2 62,2	- - - 3 6 5		0.0 13.3 25.5 34.9 40.5	171 164.5 153.5 148 142	E - - - 91 91	54.1 63.3 77.6 89.3 100.0	126.5 113 95 95 105	91 91 -
45.0 64.9 47.5 62.2 50.0 66.8 55.0 76.2 60.0 85.0 65.0 90.6	62.1 62.2 62.2 62.1 62.0 62.0	10 11 10 8 6 4		Trinitr	obenzene s	ум. (С _б	H ₉ O ₆ N ₃) + Hydroq (C ₆ H ₆ O	-
70.0 96.2 75.0 103.0	62.0	4			ough and B	eard, 19			
80.0 104.6 85.0 112.2	-	-		"	f.t.		%	f.t.	
90.0 116.0 95.0 119.0 100.0 122.5	-	-		100 90 80 70 60 57	169.5 164 157 147.5 134 129	4 3 2	0 0 0 0 1.5 0	131.5 (1 128 117 101.5 E 113 121.5	1+1)

					T		
Trinitrob sym. (C ₆	enzene sym, H ₃ 0Br ₃)	(C ₆ H ₃ O ₆ N ₃) + Tribr	omph eno l	1,3,4,5-Tetran	itrobenzene (C ₆ + Pic	$H_2O_8N_4$) ric acid ($C_6H_3O_7N_3$)
Sudboroug	h and Beard,	1911			Holleman, 1930		
tio1%	f.t.	mol%	f.t.		%	f.t.	m.t.
100 90 80 65 50	92.5 85 81 76 E 85	40 30 20 10 0	92 99 106 113.5 121.5		10 20 30 0	122 113 105 130	110 98 95 129
Trinitrob	enzene s. ((C ₆ H ₃ O ₆ N ₃)	+ Picric (C	acid ₆ H ₃ O ₇ N ₃)	o-Nitrotoluen Lecat, 1949		Methyl salicylate C ₈ H ₈ O ₅)
.%		f.t.	·		[%]	b.t.	Dt mix.
100		123.5 114 E 122			0 14 53 100	221.75 221.55 Az 222.95	-0.1
100 90	f.t. I II 122 75 121 80 121 85	% 30 20 10	f.t I 116.5 115 112	II 109 115 119	o-Nitrotolueno	b.t.	o-Chlorphenol C ₆ H ₅ OC1)
60 50	120 90 120 94 119 99 118.5 104	5 1 0	110.5 109.5 E 110	121 123 123.5	0 43 100	221.75 223.15 Az 219.75	
Trinitrobe Efremov, 1	enzene s. (C	6H ₃ O ₆ N ₃)		acid C ₆ H ₃ O ₈ N ₃)	m-Nitrotoluene	e (C ₇ H ₇ O ₂ N) + o	-Nitrophenol C ₆ H ₅ O ₃ N)
wt%	mo1%	f.t.	E	min.		Simmons jr., 193	33
100 95.0 90.0 85.0 80.0 70.0 60.0 50.0 40.0 35.0	100 94.29 88.67 83.17 77.67 66.98 56.60 46.51 36.69 31.92	175.5 169.0 162.2 156.1 149.4 135.8 122.2 106.2 89.6 83.9	73.5 78.4 79.4 82.4 82.0 83.2 93.2	25 36 50 72 100 160 320 380	p-Nitrotoluene		Pyrocatechol (C ₆ H ₆ O ₂)
30.0 20.0	31.92 27.15 17.90	89.3 99.8 111.6	83.2 82.4	310 130	# # # # # # # # # # # # # # # # # # #	b.t.	
10.0 5.0 2.5 0.0	8.81 4.29 2.18 0.0	111.6 117.4 119.5 121.4	80.0	40	0 11 100	238.9 238.7 Az 245.9	

702				1 - (40 1	KO TOLOLI					
p-Nitro	toluene (C7H7O2N) + Carv	acrol (C ₁₀ H ₁₄ 0)					
Lecat, 1	949									
%		b.t.								
0 75 100		238.9 237.7 237.85	Az							
p-Nitrot	oluene (C	7H702N) + o-Ni1	rophenol	C ₆ H ₅ O ₃ N)					
Crockford and Simmons jr., 1933										
E: 52,5 mol % 16.9°										
p-Nitrotoluene ($\rm C_7H_7O_2N$) + Picric acid ($\rm C_6H_3O_7N_3$) Pushin and Kozuhar, 1947										
mo1%	f.t.	Е	mo1%	f.t	. Е					
100 90 80 70 60 50	122 118 113.5 107.5 99.5 90	42 43.5 43 44.5	40 30 20 10 0	79 64 51 57	45 46					
	trotoluene			m-0xybe	nzaldehyde (C ₇ H ₆ O ₂)					
%	f.t.	E	%	f.t.	Е					
0.0 12.0 25.0 29.9 40.4 44.6	70.5 62.5 57 60 70 73	55 - - 55	52.4 64.2 71.2 82.3 93.8 100.0	78 85 89 95 101.5 105	55 - - - -					
	trotoluene Lupfer ar				phenol (C ₆ H ₇ ON)					
%	f.t.	E	%	f.t.	E					
100	118.0	-			65.0					
96.5 86.7 78.8 68.3 62.7 54.9 49.3 45.7 34.9	116.5 114.0 111.5 107.8 105.5 103.0 101.0	65.0	30.8 26.2 22.7 20.3 17.1 13.9 9.9 7.4 3.4 0.0	92.5 88.5 85.0 83.5 79.0 73.0 65.0 66.5	65.0					
45.7 39.1 34.9	101.0 99.5 97.0 95.0	65.0	3.4 0.0	66.5 68.5 71.0	-					

			
2,4-Dinit	rotoluene (C ₇ H ₆ O ₄ N ₂)	+ 2,4-Dinitrophenol ($C_6H_4O_5N_2$)
Brandsta	tter, 1947		
%	f.t.	%	f.t.
.0	71	50 60	83 91
10 20 26	66 61 56 E	70	98
30	64	80 90	104 109
40	74	100	114
2,4-Dini	trotoluene (C ₇ H ₆ O ₄ N ₂)	+ Picric acid (C ₆ H ₃ O ₇ N ₃)
Wogring	and Väri, 19	19	
%	f.t.	E	min.
100 90	$119.1 \\ 110.0$	49.4	 1 7
80	99.5	48.4 49.5	13 22
70 60	89.3 76.3 57.5	50.8 51.5 50	34.5 49.0
50 40	57.5	50	60.0 71.0
30	52.3 59.1	51.5	66.0
20 10	65.3	51.7 51.5 50.1 57.8	66.0 35.0 10.0
0	68.8	ر نیو سر دسوانس برور دی دسوانس اس	
Hrynakov	vski and Kapu	zinski, 19	934
%	f.t.	E	min.
0 5.υ	71.0	-	-
10.0	69.0 67.2 63.5	-	-
15.0 20.0 25.0	63.5 62.0	52.6 53.4	3 5 8
25.0 30.0	62.0 58.5 55.2	53.6 54.0	8
33.4	54 0	54.0	9 10.5 10.5
35.0 37.0	54.0 58.2 62.0	53.8 54.0	10.5 10
40.0 45.0	62.0	54.0	9
50.0	66.4 74.0 79.2 84.0	53.5	7.3
55.0 60.0	79.2 84.0	53.5 53.4	5 3.5
65.0 70.0	89.6 93.5 98.2	53.0	9 7.5 7 5 3.5 4.5 2.3 2.5
75.0	98.2	53.7 53.5 53.5 53.4 53.0 53.2 52.2	2.5
80.0 85.0	$\begin{smallmatrix} 104.0 \\ 108.0 \end{smallmatrix}$	11	-
90.0 95.0	108.0 113.0 117.0 122.5	u n	-
95.0 100.0	122.5	17	-
1			

	 -					T					
2,4-Din	i trotolue:	ne (C ₇ H	604N2)	+ β -Naph		Trinitro	toluene :	sym. (C	7H ₅ O ₆ N ₃)	+ Picric	
				(C ₁₀ H ₈ 0)	Giua, 1	91 6			(C ₆ H ₃ 0	7113)
Giua an	d Marcell	ino, 192	0			%	f.t.	Е	%	f.t.	E
%	f.t.	E	%	f.t.	E	0	80.6	_	45,95	69	56
100	122.0		44.28	74. 6		5.53 12.38	76.9 72.7	_	$52.62 \\ 63.12$	77 86.1	55.3
76.86	103.0	-	40,97	74.8	-	20.37 26.97	66.2 60	- 56	68.69 74.34	90.2 99.5	-
70.29 65.40	97.5 92.0	_	37.33 33.49	73.1 72.3	-	35.31	57.5	55.4	89.90	111.2	-
61.23 57.37	86.7 81.5	_	28.99 26.36		-	41.91 45.56	57.5 67.5 71.7	55.4 55.3	100	121.7	-
54.00 51.70	76.4	74.3	21.75	63.9	58.9		····				
49.74	74.5	_	15.97 7.77	63.2	-						
49.13 47.70	74.3 74.5	-	0	69.3	-	Taylor	and Rinke	enbach,	1923		
(1+1						%	f.t.	E	%	f.t.	
						0.0	80.27		40.00		
	_					10.45	74. 35	-	40.09 50.08	66.3 78.85	
Trinitr	otoluene				CHO N	19.99 25.24	68.4 65.35	59.8	$60.09 \\ 80.03$	$\substack{89.5\\106.7}$	
			_	ldehyde (C7H6U2)	30.20 33.70	-	59.4 59.8	100	121.8	
Kremann	and Poga	ntsch, 1	9 2 3 	ر منا حداث حم هم سوسيد حداجر	عم القبع العمر العموانسية «الله القائم القبع العمو عمو						
76	f.t.	E	%	f.t.	<u>E</u>						
0.0	81.0	_	47.1	79.5	-	Rinkenba	ch and H	la 11. 19	24		
9.2 16.0	73.8 68.8	_	54.9 67.3	83.7 89.5	65.5	78			.t.		
25.9	68.5	65.5	77.7	94.6					···		
33.9 38.2	73 75	65.5 65.5	$\begin{array}{c} 91.5 \\ 100.0 \end{array}$	$\substack{101.5\\105}$	-	85 90			10.7 14.6		
						95 100		1	18.4		•
						100		1:	21.9		
Trinitr	otoluene :	-			;						
		+ 2,4-	Dinitrop	henol (C	5H ₄ O ₅ N ₂)	Hrynalion	ski and l	Kanuzina	ski, 1934		
Campbel	l and Pri	tchard,	1947			mynakow %	f.t.	-upuc III	E	min.	
%	f.t.	E	# %	f.t.	E			0			·
0	90 1	_	40 A	01.4		0 5	82.0 79.0	0	-	-	
10.0	80.1 74.2	-	60.0 70.0	91.4 97.4	-	10 15	76.0 73.3		-	-	
20.0 30.0	67.7 64.0	62.4 62.7	$\frac{80.0}{90.0}$	102.6 107.0	_	20 25	69.0	0 5	8.2	6	
$\frac{30.0}{40.0}$ 50.0	73.7 84.3	62.7	100.0	111.2	-	30	65. 60.	8 5	8.5 9.0	8 11	
20.0	01.0					30 31 32 35 40	60.5 59.0		11	12	
E: 28	% 72.8	o				35 40	61. 68.	2	tt Tř	10	
						45 50	74.	2 5	8.8	6	
t ena	ntancouc					55	80. 86.	0 5	8.6 8.7	7 6.5	
	ntaneous stallizat	ion		y of crys	talliza-	60 65	90.4 96.6	9 5	8.0 7.8	4 3	
			croff (II	m/min.)		70 75	101.0 104.2	9		-	
60 50			$0.13 \\ 0.77$			80	107.8	8	-	-	
40 30			1,76			85 90	111.6 116.6)	-		
	47	7001-	1.8			95 100	119.0 122.5) 5	-	-	:
₫= 1.	+/ η =	12960									
						i					

Moore	e, Burkardt a	nd Mc Ewan	, 1956 (fig.)		Trinitr	otoluene sym.	(C ₇ H ₅ O ₆ N ₈		
%	đ	%	đ					(C ₆ H ₃ (18N3)
	0	0			Efremov	, 1916			
0 20	1.5450 .5 7 44	60 80	1.6400 .6732		wt%	mo1%	f.t.	E	min.
40	.6059	100	.7070		100 95.0	100 94,62	175.5 168.8	-	-
t	'n	t	η		90.0 85.0	89.29 84.92	$\frac{160.9}{155.1}$	$\frac{58.8}{61.3}$	36 50
	0 mo1%	20	mol%		80.0 70.0	78.75 68.38	148.3 139.9	62.0 66.0	7 0 110
90 80	10330 13490	100 90	9120 12590		60.0 50.0	58.16 48.09	$\substack{130.0\\116.8}$	66.8 67.2	130 160
	-01/0	80 70	17380 25120		40.0 30.0	38.18 28.42	103.1 87.7	67.6 67.6 67.7	210 290
	40 mo1%	60	38910 mo1%		25.0 20.0	23.65 18.89	78.1 68.4	66.1	320 370 250
110		120	8510		15.0 10.0	14,11 9.34 4.56	70.7 74.2 75.6	61.3	160
110 100	8920 9770	110 100	12030 16600		5.0 2.5	2.32 0	77.9 78.8	-	
90 80 70	16950 24000 37180	90 80	23450 346 7 0		0,0	· · · · · · · · · · · · · · · · · · ·	76.6		
/"						otoluene sym. (CHON) + 8 - Naph	the l
1.20	80 mo1%	3.40	100 mo1%		Pinitro	storuene sym. (C7n5U6N8	$(C_{10}H_{8})$	
130 120 110	12050	130 120	15850				1030		
100		110	21870			f.t. E	1920 %	f.t.	E
===					%				
Trini	itrataluana er	um (CH)		(Wadadaa	100 87.40 80.73	122.0 - 113.8 - 109.7 - 107.4 - 102.5 -	47.64 43.59 39.82	107.5 108.8 109.4 108.8	-
	esol (C ₇ H ₅ O ₇ N ₅		0_6N_8) + 2,4,	D-1111117FO-	76.45 70.21	107.4 102.5 100.0	34.64 30.63	107.4 105.0	-
F.f					70.21 67.63 62.76	97.7 98.0 99.5 97.5	26.20 21.56 16.57	100.0	73.5 73.5
El Fell	nov and Tikhor				60.07 57.20	102.0 98.0 105.8 -	11.91 6.15	83.5 75.5	73.5
l	f.t.	E	% f.t.	<u>E</u>	51.10 50.53	105.5 - (1+2)	0.13	79.6	-
100 95	101.4 96.6	33.4	45 48.0 40 52.3	41.3 41.0					
90 85 80	90.3 83.0	36.3 38.5	35 55.2 30 58.5	40.6 39.8 38.2	Trinitr	oxylene sym. ($\mathtt{C_8H_7O_6N_3}$		
75 70	70.5 67.5 60.0	40.2 40.8 41.2	25 61.6 20 65.6 15 69.0	38.2 37.5 36.4				(C ₆ H ₃ O	₇ N ₃)
65 60	57.8 46.5	41.2 41.3 41.3	10 72.6 5 76.4	34.5	Efremov	and Tikhomiro	va, 1928		
55 50	42.6 45.4	41.3 41.4	0 78.8	~	%		f.t.		
			· · · · · · · · · · · · · · · · · · ·		0		180.2		
	**************************************				78. 100	3	105.5 E 122.4		
					1				
l									

		TRINI	TROXYL	ENE SYM.
Trinitroxy sym. (C ₇ N	lene sym. (C ₈ H ₇ O ₆ N ₃)	+ Trinitr	ocresol
Efremov a	nd Tikhomir	ova, 1928		
R		f.t.		
82.8 100		180.2 84.6 E 101.2		
		(C ₈ H ₇ O ₆ N ₃) + Styph (C ₆ H ₈	
Efremov,	1916 1:01%	f.t.		min.
100 95.0 90.0 85.0 80.0 70.0 65.0 60.0 55.0 50.0 40.0 30.0 20.0 10.0 5.0 2.5 0	100 94.92 89.85 84.79 79.74 69.66 64.63 59.61 54.60 49.59 39.61 29.66 19.74 9.86 4.92 2.46 0	175.5 170.7 165.4 161.3 156.2 148.0 143.6 142.7 146.5 149.8 156.2 162.6 169.0 174.6 177.8 178.9 180.2	137.7 139.4 141.0 141.0 141.3 142.0 141.2 141.0 143.4 135.4 134.6	36 54 72 210 310 380 360 290 180 15 -
100		141.3 E 175.5		
	-	C ₇ H ₅ O ₃ N) +	β-Naphth (C ₁₀ H ₈ 0	
		sitka, 1928	· ·	
9.2 19.5 23.7 27.6	f.t. 44.5 39.5 34.5 33.0 40.0	39.0 47.8 59.7 77.7 100.0	60.0 73.0 87.5 106.5 122.0	:

m-Nitroben	zaldehyde	(C ₇ H ₅ O ₃ N)	Phenol (C ₆ H ₆ O)	
Schmidlin	and Lang,	1912 and La	ng, 1912 (fig.)	_
%	f.t.	%	f.t.	
100 95.0	41 38,6	50.0	-10 -14 E	
90.0	36	48.2 43.5 37.9 32.7 23.4 15.4 9.7 4.5	+1.6	
$\substack{85.0\\80.0}$	32.9 29.4 24.3	37.9 32.7	14.9 23.6	
75.0 70.0	24.3 19.8	23.4	23.6 33.7 41.7	
65.0	13.6	9.7	46.8	
$\frac{60.0}{55.0}$	+6.7 -0.8	4.5 0	51 55.5	
	···			
				=
m-Nitroben:	zaldehyde	$(C_7H_5O_8N)$		
			(C, oH ₈ O)	
Dischendo	rfer, 1928			
mo1%	f.t.	mo1%	f.t.	
0	58	46.0	61.5	
9.0 15.4	52.5 49	48.8 51.7	61.5 71.5	
18.4	48	56 .7	79.5	
23.9 33.5	48 53 58	65.0 73.7	89.5 99.5	
41.0	60.5	100.	122	
E : 17.5	5 mol% 48	3° 49 mo19	62% (1+1)	
	mo1% 46	49 mo17	02% (1.1)	_
				=
			+ Pyrocatechol (C ₆ H ₆ O ₂)	
p-Nitroben:		(C ₇ H ₅ O ₃ N)	+ Pyrocatechol	
p-Nitroben:	zaldehyde	(C ₇ H ₅ O ₃ N)	+ Pyrocatechol	
p-Nitroben: Osipenko a mo1%	zaldchyde (and Tishch f.t.	(C ₇ H ₅ O ₃ N) enko 1941 mo1%	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t.	11
p-Nitroben: Osipenko a mo1% 0 13.15	zaldehyde (and Tishch f.t. 106 96	enko 1941 mo1%	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 3 77.5	
0 0 13.15 25.55	zaldchyde (and Tishch f.t. 106 96 84.5 79	enko 1941 mo1%	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 3 77.5	
p-Nitroben: 0sipenko a mo1% 0 13.15 25.55	zaldchyde o and Tishch f.t. 106 96 84.5	(C ₇ H ₅ O ₃ N) enko 1941 mo1%	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 3 77.5	
0 0 13.15 25.55 34 43.6	zaldehyde (and Tishch f.t. 106 96 84.5 79 81	enko 1941 mo1% 57.8 67.3 25.9 84.5 92.5	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 77.5 44 83 12 92 97.5	
0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5	enko 1941 mo1% 57.8 67.3 25.8 84.5 92.5 (1+1) 100	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 3 77.5 44 83 2 92 97.5 105	
0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5	enko,1941 mo1% 57.8 67.3 25.9 84.5 92.5 (1+1) 100	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 3 77.5 44 83 22 92 97.5 105	
0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5	enko 1941 mo1% 57.8 67.3 25.8 84.5 92.5 (1+1) 100	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 3 77.5 14 83 2 92 97.5 105 β-Na ₁ ·hthol (C _{1 o} H ₈ O)	
0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0 Dischendor	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5 aldchyde (fer and Ne f.t.	mol% frac{1941}{67.3} frac{57.8}{67.3} 25.9 842.5 (1+1) 100 C ₇ H ₅ O ₃ N) + sitka, 1928	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. S5 80.5 77.5 44 83 12 92 97.5 105 β -Nar-hthol (C ₁₀ H ₈ O)	
p-Nitroben: 0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0 p-Nitrobenz: Dischendor %	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5 aldchyde (fer and Ne f.t.	enko,1941 mo1% 57.8 67.3 25.9 84.5 92.5 (1+1) 100 C ₇ H ₅ O ₃ N) + sitka, 1928 %	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 55 80.5 77.5 94 83 92 97.5 105 β-Naphthol (C ₁₀ H ₈ O) f.t. 76 75.5	
p-Nitroben: 0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0 p-Nitrobenz: Dischendor %	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5 aldchyde (fer and Ne f.t.	mol% 57.8 67.3 25.9 84.5 (1+1) 100 C ₇ H ₅ O ₃ N) + sitka, 1928 % 53.9 55.0 56.6	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 35 80.5 77.5 44 83 12 92 97.5 105 β -Narhthol (C ₁₀ H ₈ O) f.t. 76 75.5 81	
p-Nitroben: 0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0 p-Nitrobenz: Dischendor %	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5 aldchyde (fer and Ne f.t.	mol% 57.8 67.3 25.9 84.5 (1+1) 100 C ₇ H ₅ O ₃ N) + sitka, 1928 % 53.9 55.0 56.6	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 55 80.5 77.5 14 83 12 92 97.5 105 β-Narhthol (C ₁₀ H ₈ O) f.t. 76 75.5 81 84.5	
p-Nitroben: 0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0 p-Nitrobenz: Dischendor %	zaldchyde (and Tishch f.t. 106 96 84.5 79 81 83.5 aldchyde (fer and Ne f.t.	(C ₇ H ₅ O ₃ N) enko 1941 mo1% 57.8 67.3 25.9 842.5 92.5 (1+1) 100 C ₇ H ₅ O ₃ N) + sitka, 1928 % 53.9 55.0 56.6 59.8 67.1 74.4	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 55 80.5 77.5 44 83 22 97.5 105 β-Narhthol (C ₁₀ H ₈ O) f.t. 76 75.5 81 84.5 91.5 99.5	
0 sipenko a mol% 0 13.15 25.55 34 43.6 50.0 p-Nitrobenz. Dischendor	zaldehyde (f.t. 106 96 84.5 79 81 83.5 aldehyde (fer and Ne	mol% 57.8 67.3 25.9 84.5 (1+1) 100 C ₇ H ₅ O ₃ N) + sitka, 1928 % 53.9 55.0 56.6	+ Pyrocatechol (C ₆ H ₆ O ₂) f.t. 55 80.5 77.5 14 83 12 92 97.5 105 β-Narhthol (C ₁₀ H ₈ O) f.t. 76 75.5 81 84.5	

o-Nitraniline ($C_6H_60_2N_2$) + Phenol (C_6H_60)

Kremann	and	Rodinis.	1906

WI Gura IIII	and Routin	5, 1900		
Я	f.t.	%	f.t.	
0.0 10.8 13.7 24.3 30.7 37.9 43.1 48.5 49.7	68.0 58.0 51.0 46.5 40.0 33.5 28.0 18.8 18.3	54.9 59.9 64.8 71.5 77.7 85.1 92.2 97.6 100.0	11.0 13.0 17.0 22.5 28.0 32.0 36.0 39.0 40.5	

o-Nitraniline ($C_6H_60_2N_2$) + Styphnic acid ($C_6H_30_8N_3$)

Efremov, 1927

wt%	mol%	f.t.	Е	
100	100	175.5		
95 90	91.46 85.90	168.3 160.8	34.2 35.3	
85	78.89	152.8	39.7	
80	71.90	143.7	40.6	
7 5	63.77	134.1	45.0	
70 77	55.84	122.8	45.3	
67 63.97	53.36 50	$117.0 \\ 110.1$	45.0 45.5	
60	45.83	101.3	45.6	
55	40.93	90.2	45.6	
50	36.03	77.9	45.6	
45	31.16	66.5	45.5	
40 35	27.30 23.37	54.3 46.1	45.6	
30	19.45	49.7	45.6	
25	15.67	53.7	45.5	
20	11.90	5 7.2	45.2	
15	8.90	61.0	45.0	
10 5	$\frac{5.90}{2.91}$	64.3 67.0	43.3	
ő	0	69.4	39.5	
E: 64.2				

m-Nitraniline ($C_6H_6N_2O_2$) + Phenol (C_6H_6O)

Kremann and Rodinis, 1906

%	f.t.	Я	f.t.	
0,0	111.0	52,1	67.2	
	108.5	52.4	66.5	
4.3 8.4	105.3	55.6	63.5	
15.2	100.0	58.5	59.3	
20.8	96.0	62.5	55.0	
26.6	91.3	65.8	49.8	
32,4	86.0	70.5	41.0	
37. 8	81.0	78.4	28.8	
42.2	77. 5	86.2	33.0	
47.4	82.4	96.0	38.5	
49.5	69.8	100.0	40.5	
., ••	37.0		10.0	

m-Nitraniline ($C_6H_6O_2N_2$) + Orcinol ($C_7H_8O_2$)

Pushin, Lukavecki and Rikovski, 1948

mo1%	f.t.	Е	mo 1%	f.t.	Е
100	108	_	40	90	73
90	100	68	30	96	71
80	92	69	20	103	68
7ŏ	83	70	10	108	65
60	73	7 3	0	112	-
50	81	73			

m-Nitraniline ($C_6H_6O_2N_2$) + Styphnic acid ($C_6H_8O_8N_8$)

Efremov, 1927

wt%	mo1%	f.t.	E	tr.t.
100	100	175.5	-	<u>-</u>
97	94.80	170.3	-	_
95	91.46	166.3	138.8	-
90	85.90	156.8	140.1	-
85	78.8 9	146.4	140.2	-
80	71.90	143.9	140.2	
7 5	63 .77	149.3	139.4	-
7 0	55.84	153.5	138.9	-
6 7	53.36	155.1	-	-
65	50.84	155.9	-	_
63.97	50	156.2	-	- 4
60	45.83	154.3	-	199.4
55	40.93	149.7	-	102.6
50	30.03	141.9	-	104.7
47.03	33.33	135.7	_	106.8 106.7
45	31.16	130.4	_	105.6
40	27.30	118.0	_	105.6
37.23	27. 30	109.8	07.3	105.0
35 3 2. 5	23.37 21.41	$105.2 \\ 104.0$	97.2 98.5	_
30	10.45	103.1	98.6	_
25	15.67	99.7	98.5	_
22.5	13.78	98.8	~	-
20.	11.90	100.6	98.5	_
15	8.90	104.0	98.0	_
10	5.90	107.3	98.0	-
ĨŠ	2.91	110.9	93.3	_
5 2.5	1.45	112.3	-	-
0.0	0.0	113.8	-	-
E, :	17.7 wt%	140.8°		
E2 :	76.4 wt%	98.6°		
(I+1)		156.2°		
tr.t.	: 65.6 wt%	105.2°		

Kremann and Rodinis, 1906

%	f.t.	%	f.t.	
0.0	147.5	57.9	81.8	
9.4	139.0	63.5	72.0	
21.1	126.5	68.6	66.0	
30.6	115.8	73.7	55.8	
38.8	108.5	76.9	49.5	
43.3	103.5	81.8	38.5	
51.0	93.0	87.9	34.0	
51.9	91.5	94.3	37.0	
56.5	85.0	100.0	40.5	

p-Nitraniline ($C_6H_6O_2N_2$) + Orcinol ($C_7H_8O_2$)

Pushin, Lukavecki and Rikovski, 1948

mo1%	f.t.	Е	mol%	f.t.	E
100	108	_	40	115	80
90	103	80	30	126	77
80 70	94	83	20	135	-
70	94 85 85	85	10	142	7 5
60	85	85	0	148	-
50	105	83 85 85 85			

p-Nitraniline ($\text{C}_6\text{H}_6\text{O}_2\text{N}_2$) + Styphnic acid ($\text{C}_6\text{H}_8\text{O}_8\text{N}_3$)

Efremov, 1927

wt%	mol%	f.t.	E	min.
100	100	175.5	_	_
95	91.46	167.3	118.5	40
90	85,90	159.8	119.9	100
85	78.89	151.1	123.8	200
80	71.90	141.8	124.5	280
7 5	63 .77	132.2	124.7	380
70	55.84	128.5	124.7	300
6 7	53.36	129.4	120.2	140
63.97	50	129.8	- (1+	-1) -
60	45,81	128.5	106.5	60
55	40.93	125.9	109.8	140
50	36.03	122.6	112.0	260
45	31.16	118.4	112.1	380
40	27.30	114.4	112.2	500
35	23.37	114.8	112.2	500
30	19.45	119.9	112.2	420
25	15.67	124.5	112.2	340
20	11.90	129.4	112.0	260
15	8.90	134.3	110.6	180
10	5.90	138.7	108.5	120
5	2.91	143.6	106.6	40
0	0	147.0	-	-

p-Nitraniline ($C_6H_6O_2N_2$) + p-Nitrophenol ($C_6H_5O_5N$)

Grimm, Gunther and Tittus, 1931 (fig.)

mo1%	f.t.	E	mo1%	f.t.	E
100	113		50	106	89
90	107.5	89	40	115	'n
90 80	100	Ħ	30	124	**
70 65	92	PT .	40 30 20	131.5	*
65	89	Ħ	10	140	18
60	95	n	0	148	11

2,4-Dinitraniline ($C_6H_50_{\iota_8}N_8$) + 2,4-Dinitrophenol ($C_6H_{\iota_8}0_5N_2$)

Brandstätter, 1947 (fig.)

%	f.t.	%	f.t.	
100 90	114 110 106	50 40	139 148	
80 78 70 60	105 E 117	30 20 10	157 165 1 72	
60	128	0	179	

Tetryl ($C_7H_5O_8N_5$) + o-Nitrophenol ($C_6H_5O_8N$)

Efremov and Tikhomirova, 1926

mol%	f.t.	
0	126.8	
87.8	40.2 E	
.00	44.9	

Tetry1 ($C_7H_5O_8N_5$) + p-Nitrophenol ($C_6H_5O_3N$)

Efremov and Tikhomirova, 1926

mo1%	f.t.
0 50.6 100	126.8 80.6 E 113.8
100	113.8

Tetryl ($C_7H_50_8N_5$) + Picric acid ($C_6H_80_7N_8$) Taylor and Rinkenbach, 1923	Nitrosodimethylaniline ($C_8H_{10}ON_2$) + Pheno1 (C_6H_6O)
mol% f.t. E mol% f.t. E	
100 121.8 - 42 77.3 85.5 85 111.75 - 40 81.0 - 70 99.9 - 38 84.2 84.6 60 90.0 - 35 90.1 - 55 84.8 85.6 30 98.3 - 52.5 81.05 - 22.86 108.9 - 50 76.65 85.5 11.88 120.2 - 47.5 72.2 85.5 10 121.75 - 45 - 85.5 0 128.72 - (1+1)	% f.t. % f.t. 0 86.0 49.0 78.0 3.5 82.0 51.7 75.0 7.0 77.0 59.5 58.0 9.5 79.0 64.3 44.0 14.5 86.0 67.6 24.0 18.1 89.0 80.3 24.5 20.8 90.0 84.2 29.0 24.0 90.5 89.4 34.5 25.3 91.0 92.2 36.7 26.3 91.0 95.5 38.7 31.4 90.0 97.7 40.0 34.0 89.0 98.8 40.5 41.0 86.5 100 41.5
Rinkenbach and Taylor, 1924	42.1 85.0 (2+1)
% f.t. % f.t. 100 121.9 15 117.50 90 115.2 10 121.60 80 108.2 5 125.30 60 90.0 0 128.72	Bernouilli and Veillon, 1932 % f.t. % f.t.
Efremov and Tikhomirova, 1926 mol% f.t. 0 126.8	100
43 76 E 100 122.4	% d 110° 97.5° 77.5°
Tetry1 ($C_7H_5O_8N_5$) + Styphnic acid ($C_6H_3O_8N_3$) Efremov and Tikhomirova, 1926	0 0.9964 1.0073 1.0260 "0128 - 10 1.0046 .0180 1.0345 "0279 .0412 20 1.0138 .0300 .0462 " .0190 .0350 .0521
mo1% f.t. 0 126.8 25.5 83 E 100 175.5	30 .0247 .0410 .0595 " .0271 .0418 .0613 40 .0300 .0441 .0640 " .0338 .0454 .0652 50 .0375 .0488 - 60 .0454 .0560 -
Tetryl ($\rm C_7H_50_8N_5$) + 2,4,6-Trinitrocresol ($\rm C_7H_50_7N_3$) Efremov and Tikhomirova, 1926 and 1927	70 .0532 .0651 - "0695 - 80 1.0628 .0754 - " .0674 .0792 - 90 .0720 .0845 1.0975 100 .0864 .1047 -
% f.t. E % f.t. E	97.5° 77.0° 97.5° 77.0°
100 101.2 - 45 81.7 64.0 95 96.2 - 40 87.0 63.0 90 92.4 58.1 35 92.0 62.7 85 88.5 62.2 30 98.2 62.5 80 84.6 63.8 25 102.8 61.5 75 79.5 64.0 20 107.5 60.3 70 75.9 64.2 15 112.3 60.1 65 71.9 64.4 10 117.1 58.5 60 66.7 64.4 5 122.3 51.1 55 68.3 64.4 0 126.8 - 50 74.2 64.2 E (corrected): 56.7 \$ 64.4	100 771.4 1130.1 50 1081.5 1792.6 90 805.1 1193.4 40 1193.3 - 85 826.0 - 30 1360.8 - 80 852.2 1293.6 25 1450.0 - 75 874.2 1354.1 20 1568.6 - 70 905.6 1418.7 15 1697.1 - 65 938.1 - 10 1827.6 2916.5 60 984.6 1575.6 0 2104.0 -

Picramide ($C_6H_{\downarrow}0_6N_{\downarrow}$) + Dinitrophenol ($C_6H_{\downarrow}0_5N_2$)	Diethylammonium picrate ($C_{10}H_{14}\theta_7N_3$) + Picric acid ($C_6H_3\theta_7N_3$)
Campbell, Pritchard and al., 1947	Walden and Birr, 1932
% f.t. m.t, E	t d n
100 110.9	50 mol%
90 106.2 106.0 100.5 80 101.5 100.8 100.0 75 104.5 - 99 70 113.3 103.9 100.5 60 129.5 128.3 100.4	75 1.4682 9.931 - 100 .4468 26.94 39000 125 .4259 53.28 17950 25 mol%
50	75 1.4017 13.04 137900 100 .3618 35.28 43660 125 .3598 69.50 20200 0 mo1%
E: (77.5%) d ^{110°} = 1.478	75 1.3300 - 82000 100 .3111 - 32030 120 .2962 - 18310 130 .2890 - 14450 150 .2747 - 9528
<u>t</u> η	150 .2747 - 9528
110 5960 106 6390 100 7530 95 8440 91 11160	Tetraisoawylammonium picrate ($C_{26}H_{46}O_7N_4$) + Picric acid ($C_6H_3O_7N_3$)
	Walden and Birr, 1932
Picramide ($C_6H_{\rm h}O_6N_{\rm h}$) + Picric acid ($C_6H_3O_7N_3$)	t d μ η
Efremov, 1916 and 1918	50 mo1%
% f.t. E min.	75 1.2019 4.366 229300 100 .1834 15.99 59070 125 .1644 34.18 23730
0 185.2 5 181.5 10 177.6	7 5 mo1%
10 177.6	75 1.495 4.311 290200 100 .1039 14.32 73210 125 .0890 32.50 29630
40 154.5 111.10 40 50 142.7 113.5 70 60 132.4 " 120 65 126.7 " 160 70 120.9 " 200 75 115.6 113.8 260 80 114.7 113.5 190 85 117.6 112.4 50	90 1.0493 - 130400 100 .0429 - 81210 120 .0306 - 37690 130 .0244 - 27050 150 .0125 - 15170
90 119.7	o-Nitrophenyl acetate ($C_8H_70_4N$) + o-Nitrophenol ($C_6H_50_3N$) Boeseken, 1912
Campbell, Pritchard and al., 1947	mol% f.t. mol% f.t.
% f.t. E % f.t. E	
90 117.0 - 75 124.5 113.0 86 115.0 - 60 146.0 - 85 114.0 112.5-113 30 168.5 - 84 114.5 " 0 186.5 - 80 121.0 113 E: 84.5% 113°	100 44.5 33.2 14.4 94.3 42.5 31.8 14.5 88.6 40.8 30.9 15.5 81.5 38.4 22.0 20.0 72.6 35.1 15.5 25.0 65.9 32.4 8.8 30.5 57.6 29.3 2.6 34.1 50.7 25.2 0 37.5 43.1 20.1

o-Chlornitrobenzene ($C_6H_4O_2NC1$) + Pyrocatechol ($C_6H_6O_2$)	Chlor-2,4-dinitrobenzene ($C_6H_3O_4N_2C1$) + 2,4-Di-
Lecat, 1949	nitrophenol ($C_6H_4O_5N_2$)
% b.t.	Brandstätter, 1947
0 246.0 49 243.5 Az 100 245.9	% f.t. % f.t.
100 245,9	0 51 50 83 - 10 46 60 92 - 15 43 70 99
m-Chlornitrobenzene ($C_6H_4O_2NC1$) + Carvacrol ($C_{10}H_{14}O$)	20 45 80 104 30 58 90 109
Lecat, 1949	40 72 100 114 E: 17 40
% b.t.	
0 235.5 5 235.4 Az	Picric chloride (C ₆ H ₂ O ₆ N ₈ Cl) + Picric acid
100 237.85	(C ₆ H ₉ O ₇ N ₈)
p-Chlornitrobenzene ($C_6H_{\mu}O_2NC1$) + Pyrocatechol	Efremov, 1915 and 1918
Lecat, 1949	% mol% f.t. E min.
% b.t.	0 0 81.2 3 3.26 79.3 77.2 - mixed
0 239.1 17.5 236.6 Az	5 5.31 78.1 75.0 - mixed 10 10.73 74.5 70.3 - crystals. 20 21.27 67.1 61.0 -
100 245.9	25 26.47 62.7 30 31.66 58.6 56.1 390
p-Chlornitrobenzene (C ₆ H ₄ O ₂ NC1) + Carvacrol	40 41.87 74.6 57.3 430 45 46.91 81.6 56.6 390
(C _{1 o} H _{1 k} O)	50 51.94 88.0 " 360 60 61.85 96.7 54.2 280 65 66.72 100.6 53.5 210
% b.t.	70 71.59 103.6 50.7 160 80 81.21 109.6 49.4 90 85 85.94 113.0
0 239.1	90 90.66 115.6 95 95.36 118.6
78 237.4 Az 100 237.85	97.5 97.68 120.4
p-Chlornitrobenzene (C ₆ H ₄ O ₂ NC1) + p-Nitrophenol	
$(C_6H_5O_3N)$ Grimm, Gunther and Tittus, 1931 (fig.)	Grimm, Gunther and Tittus, 1931
mol% f.t. E mol% f.t. E	mol% f.t. E mol% f.t. E
0 112 - 60 66 61,5	100 122 120 40 73 59 90 119 81 31 59 "
10 104 60 66.5 61.5 " 20 96.5 " 70 64 " 30 89.5 " 80 71 "	80 115 73.5 30 60 " 70 108 67.5 20 75 62
40 82 " 90 78 60.5 50 74 60.5 100 83 -	60 100 63 10 81 70.5 50 87 60 0 85 85

Kofler a	nd Brandsi		18			1-Nitronap	hthalene (C ₁₀ H ₇ O ₂ N) + Picric act	
%	f.t. (pic		f	.t.(picri	c acid)	Efremov,	1915 and 1	918	(C ₆ H ₈ O ₇ N ₉	,
	I	loride) II	I	·	11	%	mo1%	f.t.	E	
0 10 18 20 22 26 28 30 37 40 50 60 70 80 90 100 (1+1)	83 78 73 72 70 67 65 - - - - -	61 58 56 E 55 53 E	7 8 9	3 5 7 8 2 2 1 8 8 5 2 7	56 59 62 67 70 72 78 81	100 97 95 90 80 75 70 65 60 57.5 56.43 52.5 50 40 35 30 25 20	100 96.07 93.49 87.18 75.14 69.39 63.80 58.46 53.12 50.55 50.00 45.51 43.57 33.50 28.98 24.46 20.12 15.89 11.82	122.4 117.3 114.7 108.2 95.0 87.1 78.5 70.6 63.3 60.0 58.3 52.4 48.8 46.5 45.1 46.2 52.0	47.7 49.3 50.1 50.4 52.6 54.5 54.7 35.7 35.6 35.5 35.6 33.9	
1-Nitron Senden,		e (C ₁₀ H ₇ O ₂		esorcinol C ₆ H ₆ O ₂)		10 5 2.5 0	7.75 3.82 1.94 0	46.2 52.0 54.3 56.5	35.4 35.1 - - -	
%	f.t.	K	f.t.	K	f.t.	(1+1)				
100 92.233 83 80.865 70.06 61.15 55.428 52.96	109.5 107.1 103.2 102.2 97.6 94.4 92.3 90.7	51.1 49.5 46.5 40.76 33.306 26.6 15.106 10.933	90 88.9 87.4 84 79.5 73 58.8 50.4	10.01 9.313 8.169 5.954 4.971 3.296 0.925 0	49.5 50.4 50.6 50.6 53 53.5 54.4 55.8	Jovinet, # 100 90 80 70 60	1928 f.t. 121.25 111.5 101.4 90.2 77.0	% 40 30 23 18 16	f.t. 67.8 62.9 57.8 52.6 50.0	
Senden,		ne (C ₁₀ H ₇ 0		Pyrocatec C ₆ H ₆ O ₂)		57 55 50	72.4(1 70.8 70.2	1+1) 15 10 5 0	50.4 52.5 54.5 56.4	
%	f.t.	%	f.t.	%	f.t.				30.4	
100 88.045 79.44 70.19 59.225	103.5 98.4 95 91.2 86.5	49.051 41.15 29.94 19.349 18.12	80.3 74.2 63.2 48.5 45.6	16.93 13.98 8.09 0	44.8 46.7 50.9 55.8	mo1%	f.t. 122 117	E -		
		e (C ₁₀ H ₇ O ₂	₃N) + H	ydroquino (C	ne 6H6O2)	90 85 80 75 70 65	112 109 104 99 94	5; 5; 5; 6; 6;	6 8 1	
Senden,	f,t,	¥.	f.t.	<u> </u>	f t	60 55	88. 81	5 65 60	5 6	
100 89.929 79.874 62.209 61.09 51.749	170.5 167.1 163.5 161.5 156.9 153.5	47.502 41.502 31.708 23.41 21.145	149.5 149.5 144.8 138.4 136.8 130.5	5.081 3.634 2.806 0.991 0	102 88 74.5 54.3 55.8	50 45 40 35 25 20 15 10 5	67 66. 66. 65 60 55 49 52 57	5 - 4: 4: 4: 4:	3 6	

1-NI TRONAPHTHALENE + STYPHNIC ACID

1-Nitronaphthalene	(C ₁₀ H ₇ O ₂ N)	+ Styphnic acid
				$(C_6H_3O_8N_3)$

Efremov, 1916

wt%	mo1%	f.t.	Е	min.
100.0	100.0	175.5	_	-
95 .0	93.07	170.1	-	-
90.0	86.41	164.4	44,2	9
85.0	80.13	157,2	45.0	48
80.0	73.8 6	148.3	45,2	60
70.0	62.23	135.1	46.0	110
65.0	56.74	126. 6	45.2	130
58.21	50.0	113.2	45.2	160
50.0	41.39	99.2	45.2	190
40.0	32.01	82.9	45.0	260
35.0	27.55	76. 3	45.2	300
30.0	23.24	66.9	45.0	360
25.0	19.12	61.1	45.2	420
20.0	14.0	52.8	45.2	500
15.0	11.14	46.0	-	600
10.0	7.28	47.9	44.6	210
5.0	3.59	52.3	-	-
0.0	0.0	56.5	~	-

1,5-Dimitronaphthalene ($C_{10}H_60_4N_2$) + Picric acid ($C_6H_30_7N_8$)

Urbanski and Kwiatkowski, 1934

Я	f.t.	Е	%	f.t.	E
0 10 15 20 30 40 50	215.8 209.8 205.6 202.6 195.4 187.2 177.5	97.7 98.3 105.3 108.0 107.8 112.2	60 70 80 90 95 97	166.2 153.0 135.9 117.4 118.0 122.7	113.0 113.0 113.6 113.6

1,8-Dinitronaphthalene ($C_{1.0}H_60_{\psi}N_2$) + Picric acid ($C_6H_80_7N_3$)

Urbanski and Kwiatkowski, 1934

%	f.t.	E	%	f.t.	Е
0 8 10 15	165.5	_	60	93.7	93.0
8	157.2	_	70	98.5	91.3
10	156.1	(80.3)	80	106.9	90.1
15	150.2	(79.4)	85	110.3	(79.1)
20	146.8	(83.3)	88	112.1	(78.2)
30	133.8	90.6	90	144.4	93.0
40	118.2	90.6	93	115.6	92.0
40 45	109.4	91.2	100	122.7	
50	102.3	92.2			

Nitroacenaphthene ($C_{1\,2}H_90_8N$) + Picric acid ($C_6H_90_7N_3$)

Efremov, 1915 and 1918

wt%	mo1%	f.t.	E	min.	
100	100	122.4	-	_	
97	96.56	118.4	-	_	
90	94.29	115.8	62.6	36	
8 5	88.66	110.6	68.6	50	
7 5	77.66	105.7	68.8	90	
70	72.28	100.0	69.1	140	
-	66.99	95.5	69.7	180	
60	56.59	88.2	67.1	250	
53.52	50.5	75.7	11	470	
50.52	46.40	69.7	_	650	
45	41.59	76.1	69.7	460	
40	36.68	81.4	09.7	360	
-	30.00	85.6	16	216	
30	27.14	92.7	63.0		
30	27,14	96.5	03.0	72	
10	0 05	98.8	_	_	
10	8.85		-	-	
5 2.5	4.38	100.0	-	-	
2.5	2,18	100.4	-	_	
0	0	100.9	-	-	

Nitroacenaphthene ($C_{12}H_90_2N$) + Styphnic acid ($C_6H_30_6N_3$)

Efremov, 1916

wt%	mo1%	f.t.	E	min.
100	100	175.5	_	_
97.0	96.34	171.2	-	-
95.0	93.92	168.5	-	-
90.0	87.97	161.9	-	-
85.0	82.21	155.9	77.0	96
80.0	76.47	147.3	78.2	140
75.0	70.96	139.6	79.3	190
70.0	65.46	131.5	80.3	240
60.0	54.92	107.3	80.3	380
55.18	50.90	89.3	80.3	460
50.0	44.82	81.2		460
45.0	39.97	83.2	80.2	360
$\frac{40.0}{30.0}$	35.13	85.2	80.2	280
20.0	25.82	89.2	80.0	180
15.0	16.88	93.3	78.2	90
10.0	12.58 8.28	95.4 97.1	7 6.9	48
5.0	4.10	97.1	-	-
2.5	2.05	100.1	_	-
0.0	0	100.1	_	_
J	v	100.9	-	-
				· · · · · · · · · · · · · · · · · · ·

FORMAMIDE + FORMIC ACID

XXXVI. OXYGEN-NITROGEN DERIVATIVES + ACIDS . Formamide (CH₂ON) + Formic acid (CH₂O₂) English and Turner, 1915 mo1% f.t. mo1% f.t. 46.72 43.35 41.14 38.10 100 +7.77 +1.1 (1+1) +0.7 " -0.5 " 94.83 +3.9 88.56 -0.9-2.2 -4.9 -8.7 79.4% 74.88 -10.3 -16.8 -12.7 (1+1) 30.24 -6.4 " 26.07 71.00 66.05 -6.4 -6.0 26.07 21.44 -14.1-16.360.84 59.49 54.13 -3.7 -1.6 16.59 -11.4 9.81 -5.0 +0.2 0 +2.05 49.94 +1.1 Merry and Turner, 1914 mo1% 25° 40° 25° 40° 2379 2368 2355 1,1282 1.1104 3359 .1408 .1220 3341 3314 3286 10 19.99 . 1506 . 1315 .1604 .1703 .1793 30 .1408 2342 39.99 3196 2310 49.98 .1582 305**7 22**30 2850 2557 2316 60 .1882 .1666 2065 69.85 79.95 90 .1958 .1733 1849 .2025 .2109 .2097 .1793 1685 .1835 1946 1429 100 .1846 1599 1201 Formamide (CH_3ON) + Acetic acid ($C_2H_4O_2$) English and Turner, 1915 mo1% f.t. mol% f.t. +16.60 15.60 13.71 100 42.37 -18.7 (1+2) 37.99 33.72 98.386 -22.7 95.169 -28.2 10.01 7.82 3.82 89.29 86.15 -29.3 -27.6 32.52 30.66 81.01 29.16 26.65 22.79 -25.1 74.23 68.25 64.33 -2.41 26.65 -7.55 22.79 -8.2 (1+2) 18.41 -8.4 14.94 -22.3 -16.3-11.9 60.95 57.30 -3.24 + 0.10-9.4 8.09 -11.2 -12.4 53.07 3.28 49.95 46.74 +2.05

-15.3

FORMIC A	ACID				973
Merry a	nd Turner,	1914			
mol%	d		7)		
	2 5°	40°	25°	40°	
	1 1305	1,1104	2250	2379	
9.62	1.1285 .1251	.1069	3359 3 824	2589	
20.39	.1165	.0978	4146	2899	
29.74 40.56	.1113 .1089	.0926 .0898	4316 4341	2903 2904	
49.82	.0982	.0789	4217	2791	
59,89	.0906	.0707	3864	2589	
69.42 78.95	.0815 .0723	.0604 .0518	3481 2855	2361 2029	
80.10	.0590	.0381	2001	1462	
100°	.0433	.0214	1280	987	
	1.0	1021			
	and Gross,				
mo1%	. н	mo1%	ж	·	
	2.	5°			
100.00	0.00024	46.85	0.51570		
96.00	.00436	35.52 26.59	.62920		
88.92 78.95	.03388 . 2 0140	19.99	.64180 .60540		
71.58	.30005	15.89	.51500		
63.58 55.26	.38030 .44810	4.82 0	.17720 .09140		
33,20	.44010	U	.09140		
					===
	e (CH_3ON) and Turner,		nic acid (C ₃ H ₆ O ₂)
mo1%	f.t.	mo1%	f.t.		
100					
100 92.975	-20.71 23.5	42.5 40.6			l
88.64	25.0	37.5	4 13.2 6 12.3	**	
88.64 80.78	28.5	33.8	2 11.6	11	
72.81 67.75	33.0 36.7	30.9. 29.0	3 11.2 4 12.5		
62.64	34.8(1	+1) 27.2	13.9		
58. 7 5 55.50	24.7	25.6	16.3		
55.50 52.64	23.7 21.9	" 22.70 " 19.80	5 15.4 12.4		
54.80	21.8	12.2	6.2		
48.94	20.5	8.25	3.0	2	
46.25 44.45	17.4(2- 15,6	+1) 3.93 " 0	-0.1 +2.0	7	
	nd Turner,	1914		-	==
					
mo1%	25°	40°	η 2 5°	40°	
0	1 1204	1 1104	2250	2255	
$0 \\ 1.40$	1.1294 .1264	1.1104	3359 3838	2375	
8.99	. 1217	1.044	5590	3551	
18.85	.1152 $.1050$.0971	6920	4480	
26.62 40.13	.0820	.0870 .0627	7190 6980	4708 4528	
50 .2 4	.0668	. 0484	6480	4160	
60.21 7 0.08	.0518 .0360	.0327	56 7 0	3546	ı
80.51	.0192	0.0168 0.9996	4445 3368	3546 2877 2231	
80.51 89.98	. 0030	0.9829	2150	1520	ļ
100	0.9856	0.9650	1035	843	

FORMAMIDE + BUTYRIC ACID

Formamide (CH_3ON) + Butyric acid ($C_4H_8O_2$	Formamide	(CH ₃ UN	,	+	Butyric	açıu	(C ₄ n ₈ U ₂	,
---	-----------	----------------------	---	---	---------	------	---	--	---

English and Turner, 1914

mo1%	f.t.	mo1%	f.t.	
100 81.55 72.71 67.17 58.85 56.50 52.63	-4.67 11.72 15.57 20.45 23.4 24.7 24.5(1+1)	38.13 33.63 29.97 22.55 19.33 15.97 12.66	-12.6 (2+1) 12.3 " 12.9 " 11.8 9.47 7.82 5.35	
49.81 48.20 46.17 41.58	24.3 " 18.7(2+1) 16.3 " 13.8 "	9.05 4.97 1.89 0	3.35 -0.67 +1.25 2.20	

Merry and Turner, 1914

mo1%	đ	đ)
	2 5°	40°	2 5°	40°
0	1.1287	1.1104	3359	2379
4.90	.1136	.0959	4986	3252
14.30	. 1067	.0890	7 330	4779
20,10	.0920	.0742	8510	5540
29.89	. 0679	.0502	9170	5800
40.04	. 0474	.0294	9330	5800
49.73	.0294	.0112	8410	5370
59.69	.0121	0.9941	7110	4456
69.87	0.9959	.9772	5240	3461
79,56	.9796	.9690	3534	2563
89.57	.9648	.9462	2333	1734
00	.9500	.9307	1554	1227

Formamide (CH_3ON) + Palmitic acid ($C_{16}H_{32}O_2$)

Magne, Hughes and al., 1952

f.t.	mo1%	f.t.	sat.t.
62.5	34.55	56.3	
61.1	32.54	56.1	-
60.8	28.06	56.0	-
58.7	22.17	55.9	75.4
58.5	11.38	55.8	-
58.1	3.56	55 .7	76.6
58.0	0.32	55.9	76.7
57.2	0.00	2.4	-
56.5			
	62.5 61.1 60.8 58.7 58.5 58.1 58.0 57.2	62.5 34.55 61.1 32.54 60.8 28.06 58.7 22.17 58.5 11.38 58.1 3.56 58.0 0.32 57.2 0.00	62.5 34.55 56.3 61.1 32.54 56.1 60.8 28.06 56.0 58.7 22.17 55.9 58.5 11.38 55.8 58.1 3.56 55.7 58.0 0.32 55.9 57.2 0.00 2.4

Acetamide (C_2H_50N) + Acetic acid ($C_2H_40_2$)

Othmer, 1943

mo	1%	b.t.		mo1%	b.t.
L	V		L	v	
0 3 5 10 20 30 40	0 38.7 47.2 61.5 79.2 88.0 92.5	222 212.8 208.9 199.1 183.0 168.9 157.8	50 60 70 80 90 100	95.4 97.2 98.2 98.8 99.4 100.0	148.9 140.1 132.7 126.4 121.2 118.2

Kremann, Mauermann and Oswald, 1923

	f.t.	%	f.t.	
0.0 10.7 19.3 26.4 32.4 37.4 45.6 48.9 51.9 54.5 56.8 59.1	80.0 69.0 58.5 49.0 40.5 31.6 24.0 13.5 3.0 5.5 6.2 7.0 8.0	62.4 62.9 64.6 65.7 67.5 69.4 69.6 70.7 77.7 81.5 87.9 96.1	-10.0 -10.5 -12.0 -12.5 -15.0 -16.5 -14.0 -9.5 + 1.0 + 7.5 +13.5 +16.0	

Albanski, 1949 (fig.)

mo1%	f.t.	mo 1 %	f.t.
0 20 40 50	82 62 35 +3	51.5 71.5 80 100	-2.4 tr.t. -17 E 0 +16.6
(1+1)			

Rudenko, Dzhelomanova and Dionisiev, 1955 (fig.)

mo1	%		mo1	f.t.
0 20 40 50		79.4 64 32 0	70 80 100	-16 0 +16

Bokhovkina, 1956 (fig.)

mo1	f.t.	mol%	f,t.	
0	75	60	-5	
20	60	71.	5 -17	E
40	30	80	0	
20 40 51	60 30 -2	.4 100	15	
l				

Rudenko,	Dzhelomano	va and Dion	isiev, 1955	(fig.)	Bokhovkin	a , 1956			
mol%		đ			mo1%	20°	б 60°	80°	
0 20 50 80 100	70° 1.006 .010 .002 0.996	1.000 .002 .004 .994 .984	90° 0.988 .998 .996 .986 .974		10 15 20 25 30 35 40	29.45 30.04 30.83 31.81 32.69 33.57 34.36	25.38 26.46 27.14 28.02 28.81 29.89 30.69	24.44 25.03 25.90 26.86 27.64 28.52	
	n and Bokho	vkina, 1956			45 50 55 60 70	35.04 35.93	31.46 32.34 33.22 33.81	29.68 30.47 31.31 - 32.88 34.63	
mol%	20°	d 60°	80°						
35 40 45 50 55	1.119	1.040 1.040 1.043 1.045	1.014 1.014 1.016		Rudenko, 1	Dzhelomanov	a and Dion	isiev, 1955	(fig.)
60 65	1.120 1.123 1.125	1.045 1.048	1.013 1.014			70°	80°	90°	
70 75 80 85 90	1.125 1.123 1.120 1.118 1.112	1.050 1.048 1.046 1.043 1.040 1.036	1.012 1.010 1.006 1.006 1.002 0.999		0 20 50 60 70 90	0.50 .72 .70 .62 .26	0.37 .58 .80 .80 .69	0.43 .65 .87 .89 .79	
Rudenko, mo1%	Dzhelomano	va and Dion	isiev, 1955	(fig.)	Rokhovkin	and Bakhar	/kina, 1956		***************************************
	70°	80°	90°		mo1%	and boknov	ж 1930		
0 10 30 50 70 80 100	1900 1630 1300 950 830 620	1610 1600 1360 1100 820 720 560	1420 1380 1180 920 700 600 500		30 35 40 45 50 55 60	20° 0.265 .302 .307	0.711 .796 .895 .974 1.03 .07	1.27 1.57 1.76 1.79	
Bokhovki	n and Bokho	vkina, 1956			65 70 75 80	.307 .293 .260 .199	.02 0.915 .760 .559	1.75 1.64 1.444 1.185 0.860	
mo1%	20°	უ 60°	80°		85 90	.126	.338	0,531 0,238	
30 40 50 55 60 65 70 75 80 85 90	8988 7769 6659 5852 4817 3990 3230 2529 1954	2898 2427 2059 1887 1725 1567 1423 1265 1116 981 842	1349 1170 1150 974 899 824 772 712 644 592 546						

Acetamide	(C ₂ H ₅ ON)	+ Butyric	acid (C ₄ H ₈ O ₂)
Dudonko	D-holomanov	- and Diani	1055 <i>(6)</i>	\
			siev, 1955 (fi	g.,
mo1%	f.t.	mo1%	f.t.	
0	79.4	70	3	
20	65	80	-3 -12.7 E	
40 50	44 25	91 100	-12.7 E -4	
53	10	100	-4	
10				
mo1%	# O.O.	d	200	
	70°	80°	90°	
0	-	1.000	0.992	
20	0.985	0.980	. 975	
50 80	.958	.952	.944 .915	
100	.928 .912	.922 .904	.915	
	• / • •	• / • /		
mo1%		η		
	7 0°	80°	90°	
0	_	1420	1430	
20	1700	1620 1500	1420 1310	
50	1370	1280	1100	
80	1050	950	800	
100	77 0	700	620	
mol%		ж		
	70°	80°	90°	
		·		
0 16	0 22	0.35	0.425	
20	0.33	.40	.445 .44	
30	.34 .28	.40 .36	.41	
50	. 13	. 175	.41	
70 80	06	075	. 10	
100	0.0	0.0	.06 0.0	
			····	
Acetamide	e (C ₂ H ₅ ON)	+ Valeric	acid (C ₅ H ₁₀ O ₂)
Albanski,	, 1949			
mo1%		f.t.		
0		02		
27.5		82 -42.4 E		
39.9 100.0		-33.1 tr	.t.(1+1)	
100.0		-33.5		
				

Acetamide	(C ₂ H ₅ ON)	+ Caproic a	acid (C ₆ H ₁	₂ 0 ₂)
Rudenko, D	zhelamanova	and Dioni	siev, 1955	(fig.)
mo1%	f.t.	mo1%	f,t.	~_
0 20 40 52	79.4 62 41 7.5 E	70 87 100	-12 -1.5	
mo1%		đ		• • • • • • • • • • • • • • • • • • • •
	70°	80°	90°	
0 20 50 80 100	0.97 0.93 0.90 0.88	1.00 0.96 0.92 0.89 0.865	0.99 0.95 0.91 0.88 0.85	
mo1%	 	η		
	70°	80°	90°	
0 20 40 60 80 100	2200 2300 1960 1480 1100	1600 1800 1920 1660 1400 1060	1420 1570 1600 1480 1260 1000	
mo1%		н		
	70°	80°	90°	
0 20 40 50 70 80	0.24 .13 .08 .01	0.37 .31 .16 .11 .02	0.43 .37 .19 .13 .03	

Lecat, 1949 Acetamide (C_2H_5ON) (b.t.=221.15) + Acids. 2nd comp. Αz Name Formula b.t. % b.t. Caproic ($C_6H_{12}O_2$) 205.15 -202.8 acid Heptanoic ($C_7H_{14}O_2$) 222.0 -216.5 Caprylic ($C_8H_{16}O_2$) 238.5 -219.5

acid

```
Acetamide (C_2H_5ON) + Lauric acid (C_{12}H_{24}O_2)
                                                                            Acetamide (C_2H_5ON) + Palmitic acid (C_{16}H_{32}O_2)
Albanski, 1949
                                                                            Magne and Skau, 1952
    mo1%
                                 f.t.
                                                                                                          f.t.
                                                                                mo1%
                                                                                                     1
                                                                                                                        11.
     28.2
47.7
                                 38 E
                                43 tr.t. (1+1)
43.85
                                                                                100
                                                                                                  62,45
                                                                                                 61.3
    100
                                                                                 90.37
                                                                                 80.81
                                                                                                 60.1
                                                                                 74.62
70.67
                                                                                                 59.1
                                                                                                 59.1
58.4
57.2
58.0
58.8
59.1
59.1
Magne and Skau, 1952
                                                                                 64.8
60.83
  mo1%
                          f.t.
                                                                                 55.39
50.19
                                     H.
                    1
                                                                                 50
                                                                                                          (1+1)
                                                                                 48.5
                 43.77
42.0
   100
                                                                                                                    58.7
57.7 E
58.1
                                                                                 44.93
38.2
37.91
                                                                                                 62.5
    90.01
                 40.4
39.4 E
40.8
42.1
42.8
   80.56
75.80
70.50
                                                                                 34.98
                                                                                                 70.7
                                                                                 34.52
                                                                                                                    61.0
    65.10
                                                                                 19.91
                                                                                                 77.1
                                                                                                                    67.1
68.7
69.54
    60.48
55.16
                 43.5
                                                                                  0
                                                                                                 79.72
    54.8
                 43.5
                          (1+1)
    51.89
                 48.6
    50.00
                 51.5
                                           (1+1)
                                   43.6
    47.16
                 54.9
                                   43.7
    45.8
                                   43.3
45.8
                                            Е
    44.22
                                                                            Acetamide (C_2H_50N) + Stearic acid (C_{18}H_{36}O_2)
   39.82
                 63.5
67.8
75.2
77.9
                                   51.5
    34.84
                                   56.8
    19.80
                                   64.6
67.2
     9.87
                                                                            Magne and Skau, 1952
                                   69.54
                                                                                mol%
                                                                                                            f.t.
Acetamide (C_2H_5ON) + Myristic acid (C_{14}H_{28}O_2)
                                                                                                                       H
 Magne and Skau, 1952
                                                                                100
                                                                                                  69.29
68.2
  mo1%
                         f.t.
                                                                                 90.09
                                                                                 80.28
                                                                                                  66.9
                    Ι
                                    11
                                                                                 75.12
                                                                                 65.16
 100
                53.85
                                                                                                  64.7
                                                                                 61.6
  79.92
74.94
69.71
69.0
                51.2
                                                                                                  64.0
                                                                                 59.29
55.23
50.74
                                                                                                  64.5
64.7
                50.0
                48.9
48.7 E
                                                                                                  65.4
                                                                                                          (1+1)
  68.42
66.51
                                                                                 50
                                                                                                  65.4
                48.9
49.4
                                                                                 47.91
                                                                                                  65.4
65.3
67.4
                                                                                 47.1
45.35
  65.08
                49.8
                                                                                                                    65.3
  64.09
                50,1
  59.79
59.52
52.17
                                                                                                                   65.2
64.7
                                                                                 39.82
                50.9
                                                                                 35.44
                                                                                                 73.7
                50.8
                                                                                 34.6
                50.4
51.5 (1+1)
                                                                                                                    64.7 E
                                                                                 19.89
  51.1
50.19
                                                                                                                   68.3
69.1
                                                                                  9.90
                53.5
                                                                                                 79.5
79.72
  50
                                  51.5 (1+1)
                                                                                                                   69.54
  49.05
                54.8
  48.27
                                  \frac{51.4}{51.3}
                                                                           Rudenko, Dzhelomanova and Dionisiev, 1955 (fig.)
                58.3
  46,66
  44.82
43.09
                                  51.2
                                  51,1
                                                                               mo1%
                                                                                              f.t.
  42.7
                                                                                                             mo1%
                                                                                                                            f.t.
                                  54.3
59.0
  39.99
  34.98
                                                                                              79.4
77.5
74
                                                                                                              52
                                                                                                                            58.7 E
  34.53
30.33
                70.4
                                  59.3
62.3
                                                                                20
                                                                                                              80
                                                                                                                            66
68.8
                                                                                                             100
  24.44
18.21
                                  65.1
                77.1
                                  66.9
  15.18 \\ 15.04
                                  67.5
                                  67.6
   9.63
                78.7
                79.72
                                  69.54
```

ACETAMIDE + OLEIC ACID

mo1%	70°	d 80°	90°		Acetamide	(C ₂ H ₅ ON)	+ Elaid	lic aci	d (C ₁₈ H	340°)
0	-	1.000	0,988		Mod and Sk	kau, 1952				
20 40 60 80 100	0.882 .863 .852 .850	0.920 .875 .855 .845 .835	. 905 . 863 . 850 . 838 . 830		mo1%	I 43.8	f.t.	II -		
mo1%	70°	n 80°	90°		89.69 80.53 70.13	42.5 41.5 40.2 39.6 39.9	E	-		
0 20 30 40 60 80 100	530 480 460 450	165 325 410 420 400 360 350	145 275 325 325 310 280 260		65.8 63.99 62.2 59.92 55.04 53.92 52.8 49.41 39.74 29.79	40.0 45.1 51.6 53.6 59.9 69.7 75.1	(1+1)	40.3 40.8 40.8 40.9 47.1 58.4 64.6	(1+1)	
mol%		ж. 30°	90°		20.25 9.94 0	78.1 79.4 79.7	رسن القواعل الدوائين ماليات	67.9 69.0 69.5		
0 20 30 40 70	. (36 12 34 91 0	0.44 .16 .05 .02			(C ₂ H ₅ ON)		acetic	acid (C ₂ H ₃ O ₂ C1)
				=	Albanski,	1949 (fig. f.t.) mo1%	,	f.t.	
Acetamide Mod and Si mo1%		f.t.	I (C ₁₈ H ₃₄ O ₂)		0 20 40 44.9 50	82 57 19 5.6 E 8.0 (4.7 E	65. 80 100		13.2 40 61.8	
100 95.58 90.63 87.40 85.0 82.80 78.46 78.25 75.35 69.45 69.2 65.86 63.27 60.8 60.66 51.46 29.39 17.83 0	31.6 37.7 42.3 56.0	111 100 	2 .4		Bokhovkii mo1% 100 80 65.95 55 50	na, 1956 f.t. 70 45 13.2 tr 4.7 E 8 (1+	mol 44. 40 .t. 20 01)	·	f.t. 5.6 E 16 45 80	

Bokhovk	in and Bol	chovkina, 1	956				Acetamide	(C ₂ H ₅ ON)	+ Trichlora (C ₂ HO ₂ Cl ₃		
mol%		d T oo							(C2NO2CI3	,	
30	<u>50°</u>	70° 1,026		90° 022			II	1949 (fig.			
35 40	1.035	.030 .034		027 034			mo1%	f.t.	mo1%	f.t.	
45 48 50 52 55 58 60 65 70	.048 .042 .047 .047 .049 .051 .053 .055	. 038 . 040 . 042 . 044 . 046 . 048 . 050 . 053 . 057	•	034 036 038 040 042 044 045 049			0 30 35.88 40 50	82 33 14 E 20 26.0 (I	58.3 67 75.8 80 (+1) 100	20.6 E 29.3 (1 22.3 E 35 61.8	+2)
7 5	.064	. 059	•	056			Bokhovina	and Bokhov	in, 1956		
mo1%	η 70 °	90°	mo1%	700	η	000	mo1%	f.t.	mo1%	f.t.	
30 35 40 45	1920 1950 1970 1990	1130 1150 1160 1170	55 58 60 65	70° 2010 2020 2000 1980		90° 	20 35,88 50 58.3	50 14 E 26 (1+ 20.6 E	67 75.8 -1) 90 E 100	29.3 (22.3 50 57	1+2) E
48 50 52	1990 2000 2010	1180 1180 1180	70 75	1950		1170	mo1%	50°	₫ 60°	70°	
mo1%	50°	თ 70°	90	10			30 32 38	1.061 .064 .073	1.059 .062 .070	1.057 .060	
80 75 70 65 60 55 50 45 40 35 30	40.51 40.80 41.09 41.39 41.72 41.61 41.72 41.88 42.05 42.25	37.31 37.59 37.81 38.00 38.19 38.20 38.22 38.35 38.35 38.59 38.80 39.11	34. 34. 34. 35. 35. 35. 35.	45 65 81 97 07 15 15 40 61			40 45 50 55 60 62 65 70 72 75	.075 .083 .089 .094 .099 .101 .103 .108	. 0773 . 080 . 086 . 091 . 097 . 098 . 100 . 105 . 107	.068 .070 .078 .084 .089 .094 .097 .098 .103 .105	
mo1%		я					mo1%	50°	უ 6 0 °	7 0°	
	50°	70°		90°			30	11400	65 7 0	4180	
30 35 40 45 48 50 52 55 58 60 65 70 75 80	2.81 3.21 3.54 3.68 3.87 3.94 4.15 4.30 4.38 4.43 4.43	5.33 6.10 6.59 7.14 7.49 7.74 8.24 8.33 8.45 8.45 8.45		7.74 10.0 11.7 13.3 14.1 14.8 15.6 16.1 -16.4 16.4 15.5 1.6			32 38 40 45 50 55 60 62 65 70 72 75	11640 12550 12870 13510 14770 14770 15330 15340 15380 14820 14370 13620	6670 7220 7350 7740 8140 8570 8990 9120 9240 9440 9310 9080	4370 4450 4560 4810 5050 5250 5410 5470 5450 5260 5150 4900	····

ACETAMIDE + CYANACETIC ACID

mol% σ 50° 60° 70°		Acetamide	(C ₂ H ₅ ON)	+ Benzoic aci	d (C7H6()2)
90 - 32.25 31.55 85 - 32.81 32.14 80 34.31 33.42 32.75	-	Kremann,	Mauermann	and Oswald, 1	.9 2 3	
1 75 35.02 34.10 33.46		%	f.t.	E %	f.t.	Е
72 35.51 34.63 33.89 70 35.71 34.92 34.10 65 36.40 36.05 35.09 60 37.04 36.27 35.31 55 37.23 36.51 35.79 50 37.57 36.64 36.05 45 37.82 37.05 36.32 40 38.24 37.43 36.53 38 38.87 37.21 36.74 32 38.90 38.12 37.13 30 39.15 38.28 37.36		0.00 2.34 10.24 13.50 16.14 20.63 24.24 93.33 94.33	80 79 75 73 72 69 67 64 60.5	- 98.55 - 47.52 - 53.66 - 56.47 - 59.25 - 64.99 - 70.99 - 85.46 - 94.26 100	2 49 0 42 7 38 8 47 0 63 0 79 0 102,5	38 " 37 " - -
mo1% и 50° 60° 70°			Durand, 19			
	 [%		f.t.		
30 13.8 18.6 26.0 32 13.8 19.0 26.4 38 14.0 19.1 26.5		0 -		79.0 37.2		
40 14.0 19.1 25.9 45 13.7 18.6 24.9 50 13.4 17.8 24.3		100		121.5		· · · · · · · · · · · · · · · · · · ·
50 13.4 17.8 24.3 55 13.4 17.4 24.1		Dzhelomar	nova, Rudeni	ko and Dionis	iev, 1956	(fig.)
55 13.4 17.4 24.1 60 13.6 17.3 23.8 65 13.9 17.2 23.7 70 13.9 17.0 22.9		mo1%	1130	d	1300	
70 13.9 17.0 22.9 72 14.0 16.7 22.3 75 13.4 15.9 21.0		0	112°	122°	132°	
Acetamide (C_2H_5ON) + Cyanacetic acid ((C ₃ H ₃ O ₂ N)	20 30 40 50 60 70 80	0.98 1.02 1.03 1.04 1.07 1.075 1.08	0.97 1.01 1.02 1.035 1.04 1.07 1.07 1.07	0.96 1.00 1.01 1.02 1.03 1.05 1.055 1.06	
Albanski, 1949 (fig.)		mo1%		η	·····	
mol% f.t. mol% f.t.		MO 1 /0	112°	122°	132°	j
0 82 60 57 20 60 75.65 35.9 28.2 49.6 E 80 45 40 58 100 68.8 50 62.6 (1+1)	E	0 20 30 40 50 60 70 80	1200 1530 1750 1950 2000 1990	1030 1310 1440 1640 1700 1710 1640 1600 1500	910 1150 1300 1400 1440 1450 1440 1400 1300	
		mo1%	11 2 °	и 1 22 °	132°	• • • • • • • • • • • • • • • • • • •
		0 10 20 30 40 50 60 70 80 90 100	0.3 0.65 0.75 0.60 0.42 0.30 0.19 0.08 0.05 0.02	0.3 0.72 0.86 0.70 0.50 0.35 0.22 0.98 0.05 0.02	0.3 0.85 0.98 0.85 0.60 0.42 0.21 0.09 0.05	

					,				
Acetamid	e (C ₂ H ₅ ON) + Salicyli	c acid (C7H60s)	mo1%	d	mo1%	đ	
						1619			
	and Auer,				0 20	0.95 1.02	60 70	1.12 1.14	
%	f.t.	%	f.t.	<u>E</u>	30 40	$\frac{1.05}{1.07}$	80 90	1.16 1.165	
100 93.0 87.5	157.0 144.0 137.0	53.9 53.4 52.6	58.0 57.5 56.0	52.0 51.0	50 mo1%	1.10	100	1.17	
84.9 79.2 74.5	129.5 115.8 103.5	50.6	55.2 53.4 54.5	52.2 51.9	1101%	130°	140°	150°	161°
73.1 68.1 67.6 64.3 60.9 60.0 59.0 56.5	97.8 76.0 76.0 63.0 48.2 62.2 62.4 59.5	40.7 40.7 40.5 36.5 32.9 20.4 20.5 11.2	57.0 57.5 60.0 62.2 64.1 68.1 72.3 74.2 76.5	52.0 51.5 50.2	0 20 30 40 50 60 70 80	1010 1200 1300 1400 1450 1460	980 1120 1200 1250 1320 1350	920 1030 1100 1150 1200 1250	880 1000 1040 1050 1100 1150 1200 1220
(1+1)		0	70,5	<u>-</u>	90 100	-	-	-	1230 1220
					mo1%	130°	и 140°	150°	
Rheinbolo	it, 19 2 5					130*	140*	150°	
%	f.t.	E %	f.t. 9 64.0	53.0	0 10 20 30	$0.35 \\ 0.75 \\ 1.0 \\ 1.10$	$0.35 \\ 0.90 \\ 1.45 \\ 1.45$	0.35 1.35 1.90 1.75	
100 83.2 76.9 71.1 70.7 69.1 65.4	156.5 137.0 122.0 97.0 94.0 83.0 65.0	156.0 62. 65.0 56. " 54. " 51. " 44. 64.0 30. 53.0 19.	9 61.5 5 60.0 3 58.0 7 56.0 4 66.0	55.V	40 50 60 70	1.10 1.0 0.75 0.50	1.43 1.20 0.90 0.60 0.35	1.73 1.90 1.0 0.70 0.40	
(1+1)	(3+2)	(2+1)	02,0		Acetamide	(C ₂ H ₅ ON)	+ Cinnamic	acid (C ₉ l	H ₈ O ₂)
Dzhelom	anova, Rud	enko and Dion	isyev, 195	66	Dzhelomano	va, Rudenko	and Dioni	syev, 1956	(fig.)
mol%	f.t.	mo1%	f.t.		mo1%	f.t.	mol%	f.t.	
0 10 20 27 30 40 44	79.5 72 65 56 E 58 65 70 tr	50 60 70 80 90 100	90 120 135 145 150 156		0 10 20 30 33	79.5 76 68 60 56 E	40 50 60 80 100	80 90 98 t 122 133	r.t.

10	· · · · · · · · · · · · · · · · · · ·			Propionami	de (C ₃ H ₂ 0	N) + Palm	itic acid(C	(,0 ₀ ,0 ₁)
mo1%	125°	d 135°	145°		(- 5/-	. ,		1032-27
0	0,965	0.955	0,935	Magne, Hug	hes and al	., 1952		
20 30	1.000	0.99 1.01	0.98 1.00	mo1%	f.t.	mo1%	f.t.	
40 50	1.03	1.025 1.035	1.01 1.025	100	42 5	44.94	51.5	
60	1.05 1.055	1.05	1.035	11 88.02	62.5 60.8			
70 80	1.06 1.07	$\substack{1.05\\1.06}$	1.045 1.05	79.98 74.95	59.5 58.8	40.02 39.93	58.6 58.5	
100	-	1.065	1.055	ll 67.95	57.4 55.4	39.93 37.00 28.59	61.8 69.5 74.5	
mo1%		 η		59.58 52.05	52.7 51.4	19.99	74.5	
110176	125°	135°	145°	49.32 45.96	50.1 E	$\substack{10.08\\0}$	77.7 79.8	
		1100						
20	1200 1900	1100 1600	1000 1400	Dutumomida	/ C II OV			
30 40	2300 2700	1800 2100	1600 1800	Butyramide	(C4HgON) + Palmiti	cacid (C	6H _{3 2} O ₂)
50 60	2900 3300	2400 2600	2000 2200	Magne, Hugh	hes and al	., 1952		
70	3600	2800	2300	mo1%	f.t.	mo1%	f.t.	
80 90	3 7 00	2900 3000	2400 2400	100	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
100	-	2900	2 400	100 89.58	62.5 61.2	55.66 49.98	68.7 77.4	
mo1%				79.61 69.69	59.6 5 7 .5	39.78 30.06	90.0 99.3	
110170	125°	и 135°	145°	63.0 62.73	56.0 E	15.03	108.6	
l				02.75	56.5	0	115.3	
0 10	$\begin{smallmatrix}0.30\\0.92\end{smallmatrix}$	$\substack{\textbf{0.30}\\\textbf{1.02}}$	0.30 1.15					
20 30	0.93 0.80	1.02 0.85	1.12 1.00	Isobutyram	ide (C4H9	ON) + Palm	nitic acid	(C16H32O2)
40 50	0.62 0.48	0.70 0.55	0.80 0.62					
60 70	0.28 0.15	0.35	0.40	Magne, Hugh	hes and al	., 1952		
	0.13	0.18	0,20	mo1%	f.t.	mo 1%	f.t.	
				100	62.5	49.84	88.2	
ļ				79:74	59.4	40.49	99.2	
Acetamide	(C_2H_5ON)	+ Anthrani	lic acid (C ₇ H ₇ O ₂ N)	69.92 69.0 64.23	57.5 5 7.4 E	30.05 2 0.06	110.9 117.8	
				64.23 59.94	65.4 72.2	0	127.6	
Dzheloman	ova, Rudenk	o and Dioni	siev, 1956 (fig.)					
mo1%	f.t.	mo1%	f.t.		 			
0	79,5	60	112	Stearamide	(C.aHaan)	V) + Dolmi	tic soid #	
10 20 .	7 5	70	112 120] Julianide	· ~1811370	., , , Falm1	4610 (C16H32V2)
32	65 48 E	80 90	130 140					
40 50	7 5 95	100	145	Magne, Hug	thes and a	1., 1952		
mo1%		ж		mo1%	f.t	mo1%	f.t.	
	127°	13 7 °	14 7 °	100	62.5	80.12	69.3	
0	0.30	0.20	0.20	94.57 89.8 89.33	61.9 61.4 E	68.35 51.48	69.3 77.8 88.2 97.6 108.6	
10	0.80	$0.30 \\ 1.10$	0.30 1.50	89.33 84.92	61.4 E 61.8 64.2	33.39	97.6 108.6	
20 30	$\frac{1.10}{1.15}$	$\frac{1.40}{1.50}$	1.90 2.00					
40 50	$\frac{1.10}{1.00}$	$\frac{1.40}{1.20}$	2.00 1.65					
60	0.70	0.95	1.25	1				
				i				
1				I				

Chloracetamide (C_2H_4ONC1) + Palmitic acid ($C_{16}H_{32}O_2$)	Kremann, Weber and Zechner, 1925
	mol% f.t. mol% f.t.
Magne, Hughes and al., 1952 mol% f.t. mol% f.t.	100 16 50 61 96.2 13 45.7 72.0 90.9 11 40.1 83.5
100 62.5 59.19 105.7 96.77 62.3 49.30 110.4 92.5 61.8 E 39.48 112.4 91.70 64.6 30.11 115.0 86.13 79.2 20.31 115.9 76.43 92.8 9.85 116.5 68.79 99.8 0 117.6	81.9 26 30.5 96.0 74.5 33 25.4 104 73.5 33.6 20.3 109 69.3 37.2 18.3 111 68.3 38.2 12.3 117 64.1 39 6.89 123.5 57.1 39.2 0 131.5
Urea (CH ₁ ON ₂) + Formic acid (CH ₂ O ₂)	Pushin and Rikovski, 1932
	mel% f.t. E
Bergmann and Kuznetsova, 1939 mol% f.t. mol% f.t.	100 17 - 95 13 13 91 19,5 12
mol% f.t. mol% f.t. 100 7.4 67 -11.5 97 4.6 66 -12.8 95 3.0 65 -15.5 92 -0.2 63 -8.7 88 -5.4 60 -1.0 85 -8.9 50 +28.0 82 -14.1 40 60.8 80 -20.2 30 84.1 78 -16.3 20 105.6 75 -13.4 10 122.5 72 -12.2 0 132.7 70 -11.6 (1+2)	91
Kuznetsova and Bergman, 1956	17 114 - 9 123 - 0 131 -
mol% f.t. mol% f.t.	
100.0 7.4 62.0 - 10.5 95.0 3.0 60.0 - 7.4 92.0 -0.2 58.0 - 5.5 88.0 -5.4 56.0 - 3.5 85.0 -8.9 55.5 - 3.0 82.0 -14.1 55.0 - 1.6	Vetrov, 1937 mol% f.t. E
80.0 -20.2 54.0 10.7 78.0 -16.3 50.0 32.5 75.0 -13.4 40.0 60.8 72.0 -12.2 30.0 84.1 70.0 -11.6 20.0 105.6 66.7 -11.5 10.0 122.5 66.0 -12.8 0.0 132.5 65.0 -15.5 (1+2) Urea (CH ₄ 0N ₂) + Acetic acid (C ₂ H ₄ 0 ₂) Kremann, Weber and Zechner, 1925 E ₁ : 90% 9.8° E ₂ : 60% 34-35° (1+2)	100
	14 116.8 - 10 121.5 - 5 125 - 0 132.6 -

UREA + PROPIONIC ACID

101%	f.t.	mo1%	f.t.
00	16.6	60	36.9
97	14.5	55	51.0
95	12.6	45	71.5
92	17.5	46	90.5
88	24.0	27	103.5
85	27. 3	20	109.9
80	34.0	16	114.5
7 5	37.0	11	119.7
70	38.8	5	125.9
66	39.0	0	132.7
65	38.6		

Rudenko and Dionissiev, 1954

mo1%		đ		
	80°	90°	100°	
100 80 60 40 30	1.00 1.06 1.125 1.18	0.97 1.05 1.11 1.165	0.96 1.03 1.10 1.15 1.18	

Bokhovkina, 1956

mo1%		đ	
	45°	60°	70°
95	1.049	1.033	1.023
90	.065	,050	.039
85	.082	.067	.057
80	.097	.083	.073
78	.112	.098	.089
72	.121	. 107	-
70	.126	.112	. 104
6 7	.135	.121	.113
65	.140	.126	.116
60	. 155	. 142	.132
55	. 170	. 156	.146
50	-	.167	.157

Bokhovkina, 1956

mo1%		η	
	45°	60°	70°
95	968	685	586
90	1344	883	724
85	1859	1161	904
80	2 595	1494	1149
7 5	3480	1904	1429
70	4635	2440	1760
65	5902	2968	2122
60	7328	3565	2519
55	-	4183	2960
50	-	-	3392

Bokhovkina	and Bok	hovkin, 1	956		
mo1%		C	ſ		
	45°	60°	70°	80°	
95 90 85 80 75 70 67 65 60 55	26.65 27.79 28.91 29.85 31.56 32.74 33.92 34.07 35.69 37.46	25.31 26.39 27.60 28.55 30.19 31.27 32.41 32.74 34.51 36.13 37.80	24,49 25,40 26,61 27,70 29,35 30,41 31,43 31,71 33,61 35,26 36,88	23.51 24.41 25.70 26.80 28.41 29.43 30.60 30.78 32.71 34.39 35.99	

Rudenko and Dionissiev, 1954

mo 1%		н		
	80°	90°	100°	
100 80 60 40 30	520 1200 2500 4000	500 1100 225 0 3600	480 1000 2000 3200 3800	

Urea (CH_4ON_2) + Propionic acid ($C_3H_6O_2$)

Bergmann and Kuznetsova, 1939

f.t.	mo1%	f.t.	mo1%
20.1	68	-22.4	100
22.4	6 7	-24.3	97
			95
	63		92
	60		
	54		
	48		
	29		7 8
			7 5
122.2			
132.7	0	17.5	70
22.6 32.4 44.5 68.1 83.4 104.5 112.5 122.2	66 63 60 54 48 29 19 10	-25.5 -21.9 -14.9 -13.6 -1.5 -6.4 11.5 14.6	95 92 88 85 80 78 75 72

Urea (CH	μ ₄ 0N ₂) + βι	utyric acid	I (C ₄ H ₈ O ₂)		Urea (CI	H ₄ 0N ₂) + Pε	largonic aci	d (C ₉ H ₁₈ O ₂)
Bergmann	and Kuznets	ova, 1939			Bergmann	and Kuznets	ova, 1939	
mo 1%	f.t.	mol%	f.t.		mo1%	f.t.	mo1%	f.t.
100 97 95 92 88 85 82 80 75 70	-8.3 -10.4 -11.4 -13.3 -15.2 -18.0 -18.9 +5.3 25.4 41.5	67 65 60 55 50 40 30 20 19	+51.0 57.0 68.5 81.5 92.5 107.3 114.8 118.5 126.2 132.7		100 97 96 95 92 90 88 85 80 75	10.7 9.6 8.0 13.9 18.7 37.0 44.0 57.0 72.5 84.7	70 67 65 60 50 40 30 20 10	93.5 96.3 101.7 111.3 122.5 126.8 129.3 131.7 132.3
Rudenko a	nd Dionisiev	v, 1953			Urea (CH	ո.ON。) + Laı	ıric acid (C	C18H2h02)
mo 1%	d	mo1%	đ			4-112 / 201		** ** * * *
	135				 Bergmann	and Kuznets	sova, 1939	
100 80	0.86 0.92	40 20	1.07 1.11		mol%	f.t.	mo1%	f.t.
60	1.00				100	44.0	7 5	106.5
mo 1%		η			97	43.9 43.5	70 67	112.5 115.5 121.5
	110°	120°	135°		97 94 92 88 85	61.0 74.5	60 55	127.5
100 80 60 40 20	500 800 1550 2700	40 0 100 0 180 0 315 0	200 1150 2200 3600		85 82 80	81.6 90.1 95.5	50 45 0	129.0 130.0 132.7
20	3900	4700						
Urea (CH	140N ₂) + Val	leric acid	(C ₅ H ₁₀ O ₂)		Urea (CH	₄ 0N ₂) + Suo	ccinic acid ((C ₄ H ₆ O ₄)
Downwann	and Vugnatas	Nun 1020			Kremann,	Weber and Z	echner, 1925	
mo1%	f.t.	mol%	f.t.		%	f.t.	% f.1	t.
100 95 92 88	-33.6 -36.0 -40.0	65 60 55 50	64.0 80.2 91.3 96.9 104.5 108.5		51.8 46.5 41.6 34 26.5	53 62 76.3 92 104	19.0 112 9.6 123 3.5 128 0 13	3 8
85 82 80 75 70	-26.6 -21.1 -5.5 14.5 37.2 52.2	45 40 30 20 0	108.5 116.5 122.3 132.7	į				
67	60.6							
					ì			

Urea (CH ₄ (ON ₂) + Chlo	racetic ac	id (C ₂ H ₃ O ₂ Cl)	Bokhovkir	na, 1956		****	
ļ				mo1%		d		
Pushin and	d Rikovsky,	1932		<u> </u>	65°	80°	90°	
mo1%	f.t.	E		100.0 85.12	1.356	1,343	1.33	
100 90 85 80 75 72 70 68	61 54 48.5 42.5 34 35.5 36.2 36.3	22 33.5 32.5 34 - - - (1	+2)	85.12 78.30 72.03 65.58 59.71 54.26 48.83 46.72	.355 .352 .350 .345 .340 .335 .333	.341 .336 .332 .328 .324 .319 .314	.32: .32: .31: .31: .30: .22: .29:	5 0 5 0 6
65 63	36.5 35.5	-	2)	Rudenko	and Dioni	siev, 1953	}	
60 57 55	34 36.5 38	34		mo1%	80°	η 90°	100)
68.7 65 63 60 57 55 53 50 45 40 30 20 10	39 40 54 70 93 107 118 131	40 39 37.5		100 80 60 40 30 20	210 450 800 1180	200 360 600 880 1050	190 280 480 660 800 950	
Bokhovkis	na and Bokho	wkin 1056	(f: _)	Bokhovki	na, 1956			
mo1%	f.t.	mol%	f.t.	mo1%	65°	უ 80°	90°	
100 90 80 72 60	60 56 45 40 40	50 40 20 0	45 75 100 133	85.12 78.25 72.03 65.58 59.71 54.26 48.83 46.72	3708 4992 6400 7329 8408 9272 9772 10054	2209 3059 3733 4483 5007 5503 5876	1772 2248 2757 3285 3708 4136 4325	
				40.72	10054	6086	-	
mol%	and Dionisie	d 90°	100° ·	Bokhovki	na and Bol	khovkin, l	056	
			100	mo1%		a d		
20 20	1.358 .362	1.34 .345	1.325 .332	mo1,0	60°	70°	80°	90°
40 60 70 80	.363	.345 .340 .336	.335 .328 .322 .318	100.0 92.35 85.12 78.25 72.03 65.58 59.71 54.26 48.83 43.69 38.84 34.17	36.72 37.40 39.44 41.14 42.43 43.86 44.71 45.90 47.26 48.96	35.40 36.61 38.03 39.80 41.40 42.71 43.90 45.10 46.31 47.71 48.93	34.00 35.36 36.72 38.42 40.12 41.48 42.84 44.54 44.54 45.39 46.75 48.28	32.98 34.04 36.04 37.57 38.93 40.29 42.33 43.69 44.71 45.90 47.94 49.30

Urea (CH ₄	0N ₂) + Die	hlorace	tic acid	(C ₂ H ₂ O ₂ Cl ₂)
Pushin and	Rikovsky,	1932		
mo1%	f.t.	Е		
100 96 94 90 85 85 87 66.7 63 60 55 55 54 47 45 44 40 35 30 20 10	11 8 11 20.5 32 39 45 47.5 53 56.5 61 63.5 62 61 58 74 87 103 117 131	8 7.5 6 4 4 4 7.5 47 45 - - - 49 52 58 58 54 - -	(1+2) (1+1)	
Bokhovkin	a and Bokho	ovkin, 1	956	

100 5 50 60 90 1 40 57	
100 5 50 60 90 1 40 57 80 30 30 90 70 45 20 110 60 57 0 133	

Bokhovkina, 1956

mo1%		d	
	65°	70°	7 5°
100.0	1,490	1.485	1.480
95.81	.490	.485	.480
91.74	.490	.485	.480
87.94	.488	.484	.479
80.74	.483	.479	.475
72.50	.476	.472	.468
65.05	.467	.464	.459
5 8.2 6	.458	.454	.448
52,05	.450	.444	.438
46.35	.437	.433	.427
41.10	.428	.421	.415
39.11	.420	.415	.408

mo1%	65°	, n 70°	7 5°	
100.0	1872	1681	1504	
95.81	2389	2110	1852	
91.74	3120	2672	2324	
87.94	4110	3376	2550	
80.74	6295	5029	4207	
72.50	9747	7072	5926	
65.05	11065	8970	7371	
58.26	12783	10338	8604	
52.05	14008	11426	9362	
46.35	14801	12144	9989	
41.10	15305	12674	10411	
39.11	15558	12542	10341	

Bokhovkina and Bokhovkin, 1956

mo1%			đ	
· 	65°	70°	80°	90°
100.00 89.94 80.74 72.50 65.05 58.26 52.05 46.35 41.10	31,62 32,64 34,00 35,16 35,91 36,69 37,06 37,40 38,00	30.94 32.30 33.70 34.85 35.44 36.42 36.72 37.40	29.75 31.11 32.47 33.66 35.96 35.70 36.30	29.07 30.26 31.62 32.98 34.00 34.68 35.78

Urea ($\text{CH}_{4}\text{ON}_{2}$) + Trichloracetic acid ($\text{C}_{2}\text{HO}_{2}\text{Cl}_{3}$)

Pushin and König, 1928

mo1%	f.t.	E	
0 30 35 37 40 45 50 55 60 63 65 78 80 85	132 78 - 63 74.5 80 78 71 63 56.5	53 59 59 55 	(1+1)
90 100	46 5 7	14 -	

Bokhovkina and Bokhovkin, 1955 (fig.)	Urea ($\text{CH}_40 ext{N}_2$) + Benzoic acid ($ ext{C}_7 ext{H}_6 ext{O}_2$)
mol% f.t. mol% f.t.	Pushin and Wilowitsch, 1925 (fig.)
0.0 57 50 75 10 53 57 60	mol% f.t. mol% f.t.
1 20 40 62 58	
25 27 70 70 27 30 80 85 40 60 100 133	100 121 40 90 90 116 30 102
	80 109.5 20 112
	70 100 10 121 60 90 0 130 50 78 E
Ral-hovking 1054	762
Bokhovkina, 1956 mol% d	
80° 85° 95°	Kremann, Weber and Zechner, 1925
100.0 1.564 1.557 1.553	% f.t. E % f.t. E
1 87.47 .564 557 552	100 121 - 46.9 114 -
78.77 .563 .557 .548 72.91 .561 .556 .544 67.53 .557 .551 .539	91.2 114 - 43.6 115 -
59.48 .548 .540 .527	87.0 110 - 40.4 115.5 - 86.8 109.5 - 37.7 117 - 80.8 100.5 - 30.3 117.6 - 77.1 94.5 - 30 117.5 - 75.5 91.5 - 26.6 117.5 - 70.2 80.5 - 24.6 118 - 68.9 82 - 21.0 118.5 -
46.13 512 505 402	86.8 109.5 - 37.7 117 - 80.8 100.5 - 30.3 117.6 - 77.1 94.5 - 30 117.5 - 75.5 91.5 - 26.6 117.5 - 70.2 80.5 - 24.6 118 -
40.53486 - 35.51469 -	77.1 94.5 - 30 117.5 - 75.5 91.5 - 26.6 117.5 - 70.2 80.5 - 24.6 118 - 68.9 82 - 21.0 118.5 -
	68.9 82 - 21.0 118.5 - 66.4 90 - 19.9 118.6 76.5
mol% n	63.1 91.5 <u>76.5</u> 16.5 119.5 -
80° 85° 95°	62.8 95 76.5 11.0 122 - 62.5 96 - 9.9 122 - 56.3 105 - 6.6 124 -
100.0 1989 1660 1362	62.8 95 76.5 11.0 122 - 62.5 96 - 9.9 122 - 56.3 105 - 6.6 124 - 52.9 109 - 3.1 127 - 49.0 112 76.5 0 131.0 -
87.47 4578 3971 2804 78.77 8753 6848 4821	70.5 0 131.0
72. 91 11860 8912 6560 67. 53 14655 11248 7737 59. 48 18903 14325 9408 52. 41 21714 16413 10943	
59.48 18903 14325 9408 52.41 21714 16413 10943	P. 1. 1
46.13 20714 16137 10763 40.53 18953 14196 9446	Rudenko and Dionisiev, 1953
35.51 16454 12185	mol% d
	120° 135° 150°
Bokhovking and Dakhard (3-5-	100 - 1.08 1.07 90 1.11 .095 .075
Bokhovkina and Bokhovkin, 1956	80 .125 .11 .095 60 .15 .14 .12
mo1% g g 90°	
100.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
87.47 29.97 29.64 29.30	mo1% η
67.53 34.96 34.46 33.63	120° 135° 150°
52.41 38.96 - 38.30	80 2500 1500 1000
46.13 40.63 40.52 39.96 40.53 42.62 41.36 41.16	60 4500 3600 2800 40 5500 4200 3350
35.51 43.16 43.29 42.85 30.96 45.45 45.11	30 5550 4200 3300 20 5300 4000 3000
	0 - 2800 1400

Urea (CH ₁₄)	ON ₂) + Salio	cylic acid (C ₇ H ₆ O ₃)	ĺ	Urea (CH ₄ ON ₂)	+ Phenyl	acetic aci	d (C ₈ H ₈ O	₂)
Kremann.	Weber and Ze	hner, 1925			Bokhov	kin and Cl	hesnokov,	1955		
	f.t. E	%	f.t.	<u>E</u>	mol %	f.t.	mol %	f.t.	mol %	f.t.
100 91.5 84.1 81.9 76.8 72.3 68.4 64.4 59.8 58.2	155 - 145 - 127 - 116 - 107 - 110 - 110 - 109 - 108 - 107 -	57.5 55.0 52.4 48.8 41.1 41.1 38.6 29.7 21.2 6.1	106 104 102 104 109 110 111 114 118 127	101.3	100 89.34 83.54 79.87 71.41 66.78 64.81 59.67	74.0 67.0 61.0 57.9 46.5 37.0 30.0 18.0	56.95 53.15 50.70 51.61 45.02 41.85 39.81 37.86	29.0 69.0 77.0 84.0 91.0 97.0 100.0 102.0	35.96 34.12 30.61 26.52 22.73 19.20	105.0 105.9 109.2 112.1 115.0 118.0 132.0
	(1+1)				Urea (CH ₁₄ ON ₂)	+ Cinnam	ic acid ((C ₉ H ₈ O ₂)	
Hrynakovs	ki, 1934				Kremanı	ı, Weber a	nd Zechn	er, 1925		
E ₁ : 7 5.	0% 89°	E ₂ : 48.0%	87.0°		%	f.t.	E	%	f.t.	E
Rudenko a mol%	nd Dionissie	v, 1953 (fin d 135°	g.)		0.0 9.0 15.6 25.6 37.0 44.4 45.4	131.0 129.0 128.2 126.5 123 120 119.5	-	50.1 52.7 61.0 67.8 75.3 86.3 100.0	117.5 116.5 110.1 100 100 118 133	90 - - 90 - -
20 30 40 60 80 100	1.210 1.220 1.232	1.196 1.205 1.218 1.228	1.180 1.182 1.185 1.198 1.204 1.218		Urea (+ Sarcon	melanin aci	سیانی سین المراحی امراضی امراضی بدر بی میدادم امراضی امراضی امراضی بی بی میدادم امراضی امراضی امراضی	
mo1%	* ***********************************	η			مر بیر سر سر سر شر سر سر سر س		% 	f.t.		
	120°	135°	150°				0 -50	132 118.5		
80 70 60 50 40 30 20	16500 19000 19800 18800 14800	10800 13000 15000 16600 15200 10200 2400	5500 8000 9500 12000 13000 12800 7200 1200		Urea (+ Benzot	nelanin aci	d	und man half half me den me de de de de de de de de de de de de de
					[%]		f.t.			f, t,
		ranilic acid	(C ₇ H ₇ O ₂ N	i)	0 10 20 30		132 111.5 111 102.5	40 50 60		102.5 102.5 102
mol%	d Dionissiev	, 1953 и						ندی دنی مید مید مید سی سید سید سید کارد. مید مید مید مید مید سید سید سید کارد.		
	115°	130°	145°				+ Sepian	nelanin aci	d	
90 80	-	0.9	0.7 1.2		Adler,		ندر الكان على السام الدين الكان المان الكان الكان الكان الكان الكان الكان الكان الكان الكان الكان ا			نتم الكوا النبي النبي النبي النبية النبية
60 40 20 10 0	1.6 3.0 4.7	1.9 3.7 5.5 6.7	2.3 4.3 6.8 7.9 3.8			0 10-		f.t. 132 120		ه است دست دانند الدن الدن الدن الدن الدن الدن الد
L		···			I				· · · · · · · · · · · · · · · · · · ·	

	CH ₄ ON ₂) + Aminobe	nzoic acid	.Melanin ac	id	Uretha	ne (C _s H	1 ₇ 0 ₂ N) + Dic	hloracet		202Cl2)
Adler,	f.t.	%	f.t.		Pushir	and Rik	kovski, 1932		-	
		30	111.5		mol %	f.t.	E	mol %	f.t.	E
10 20-	132 111.5 111.5	40 50	111.5		100 90 80	+11 + 5.5 - 6	- -32 -26	45 43 40	-10 -11.5 - 2.5	-13 -11.5 -11.5
Urea (CH ₄ ON ₂) + Humic a	cid			70 60 55	-25 -14.5 -10	-25 -30 -32	30 15	+18.5 +37.5 +48.5	-11.5 -15
Adler,	1932				50	- Ť	- (1+1)		740.3	_
%	f.t.	%	f.t.							
0 10 20	132 128 128	30 40 50	128 128 128.5				70 ₂ N) + Tri (C ₂) covski, 1932	chlorace HO ₂ Cl ₃)	tic acid	
			((" ()		mol %	f.t.	Е	mol %	f.t.	Е
	$e (C_8H_7O_2N) + Ac$		(C ₂ H ₁ , O ₂)		100 90	57 49	5	45 42	31.5 29	10
mo1%	f.t. E	mo1%	f.t.		80 70	35 9	8.5	30 20	19 34.5	16
		60	-8	-15	65 50	18 29	9 - (1+1)	10	24 48.5	-
100 90 80	17 - 23 0.5 - 19	50 35	+6 20.5	-16 -18					:4 (C II	
70 35	-9 -17 -15 -15	20 0	35 48.5	-21			9H ₇ O ₂ N) + Be 11owitsch, 19			602 /
				====	mo19			1%	f.t.	
Urethane	$c (C_8H_7O_8N) + Store$	earic acid	(C ₁₈ H ₈₆ O ₂)	100		121 49		60	
Eykman,	1889				90 80 70		114 30 107 25 97 20	5	40 31 E 35	
*	D f.t.	Я	D f.t.		60 50		87 10		42 48	
1.055 2.242		14.29 18.87	5.44 6.79		===					
5,084	2.21				Sec. A	cetylbut	ylamine l (C ₆ H ₁ 3ON		
liretha	ne (C ₈ H ₇ O ₂ N) + C	hloracetic	acid (C _o H _o	.0,C1)	Ba l đwi	n, 1937	34.40 g	/100 cc	(C ₂ H ₁ aci đ	,0 ₂)
CI C CHAI	ite. (Ogazyoga)				w.1.	(α)	w.1.	(α)	w.1.	(a)
	and Rikovski, 1932	2 	· · · · · · · · · · · · · · · · · · ·				20°			
mol %	f.t. E	mol %	f.t.	<u>E</u>	6708 6362 5803	-13.21 -14.72	4044 -	37.92 40.81	4811 4720	-27.52 -28.62
100 90 80	61.5 - 54 16 46 17.5	40 35	19.5	18.5 18.5	5893 5780 5536	-17.30 -18.17 -19.97	2712 _	46.09 49.06 53.1	4640 4565 4463	-29.50 -30.68 -32.12
70	35 19 21 5 21 5	33 30 20	33 .	18.5 18.5 17	5536 5219 5106 4912 4722	-19.97 -22.66 -23.89 -26.00 -28.51	3550 -	56.1 62.1 14.10	4358 4220	-34.10 -36.50
60 55 50 45	23.0 20 24.0 - (1+1) 23.0 13	10	41 48.5	14	1 4680	-29.50	5782 -	16.08 18.10	4085 3951 3759	-39.40 -43.13 -48:65
	20.0 13				4602 4554 3290 4316	-30.39 -31.39 -33.60	5461 -	18.66 20.50	3674 3605	-51.36 -53.91
					4316	-35.07	4934 -	23.26 25.70	3484 3 2 90	-59.1 -68.0

Benzamide (C_7H_7ON) + Acetic acid ($C_2H_4O_2$)

Kremann, Mauermann and Oswald, 1923

%	f.t.	Е	%	f.t.	E
0 4.93 9.42 13.48 17.20 21.09	126.5 120 114 109 103 96	- - - - -	47.41 47.69 53.02 56.13 62.29 63.83 70.15	47 46. 36.5 31.5 15	-2 "" ""
23.75 29.35 34.17 38.39 42.08 45.37	92.5 82 72 65 58 51	- - -2 11	76.15 84.00 92.57 100	3.0 3.0 8.5 13	-

Benzamide ($\text{C}_7\text{H}_7\text{ON}$) + Palmitic acid ($\text{C}_{16}\text{H}_{32}\text{O}_2$)

Magne, Hughes and al., 1952

mol%	f.t.	mo1%	f.t.	
100 95.02 88.56 86.01	62.5 61.9 60.9 60.2	78.14 64.14 50.48 32.11	71.4 90.5 104.4 115.3 126.6	
E : 84.	R mol%	60.00		

Benzamide (C_7H_7ON) + Benzoic acid ($C_7H_6O_2$)

Kremann, Mauermann and Oswald, 1923

mo1%	f.t.	mo1%	f.t.	
0.0	124.0	50.2	81.0	
$\substack{5.3\\11.5}$	120.0 116.0	51.9 53.8	82.3 83.8	
16.1 22.0	111.6 106.9	5 7.2 60.4	86.8 90.5	
27.8 33.3	100.0 94.0	63.4 68.5	93.2	
37.3	88.0	74.5	$\begin{array}{c} 98.5 \\ 104.0 \end{array}$	
43.7 44.8	81.8 79.5	79.0 86.7	107.5 112.5	
48.1 49.1	79.5 80.0	93.7 100.0	116.6 121.0	
E = 79.			141,0	

Benzamide (C_7H_7ON) + Salicylic acid ($C_7H_6O_8$)

Kremann and Auer, 1918

%	f.t.	%	f.t.	
0 5.8 10.1 14.3 20.6 24.1 26.0 29.5 33.9 34.5 37.6 40.3 42.2 43.5 44.9 (2+1)	124.8 121.0 117.3 114.6 109.0 106.0 107.0 108.0 108.3 108.5 110.1 112.0 112.4 113.5 114.0 (1+1)	46.4 48.2 50.1 52.2 53.3 53.6 58.2 64.4 67.5 71.8 76.2 83.5 92.3	114.8 115.0 115.9 116.0 116.0 115.7 115.7 115.0 114.5 121.2 130.0 135.0 143.2 151.0	

Benzamide (C_7H_7ON) + m-Oxybenzoic acid ($C_7H_6O_8$)

Kremann and Auer, 1918

%	f.t.	Е	%	f.t.	E
0 6.4 10.2 15.5 20.8 26.5 28.5 31.1 32.0 34.5 36.1 37.3 40.4 43.2	124.8 120.0 117.0 111.5 104.0 95.0 91.0 85.8 84.0 79.6 80.5 86.5 92.0	79.3 79.1 79.0 81.0	44.2 48.5 50.5 52.9 54.5 57.3 57.5 60.3 63.0 69.7 76.1 84.9 92.5	105.0 119.0 125.5 131.0 134.8 140.2 140.5 145.4 151.5 161.5 179.0 186.5 193.0	81.4
(1+1)					

Benzamide (C_7H_7ON) + p-0xybenzoic acid ($C_7H_6O_3$)

Kremann and Auer, 1918

%	f.t.	Е	%	f.t.	E
0 6,5	124.8	-	32,2	80.3	_
	120.0	-	33.5	80.1	-
11.0	116.5	-	37.4	77.0	74.5
15.0	112.0	-	39.2	76.0	74.0
17.4	110.2	-	41.2	82.5	-
19.0	108.0	-	43.1	90.1	74.3
22.7	101.5	-	49.6	106.5	-
24.1	99.0	-	54.1	119	74.9
25.8	95.5	79.8	59.8	134	
26.9	93.0	-	65.5	147	~
28.9	86.2	79.8	72.6	162	-
29.8	83.6	0.08	100	210	-
(3+1)					

Acetanilide (C_8H_90N) + Benzoic acid ($C_7H_60_2$)

Pushin and Wilowitsch, 1925 (fig.)

mo 1 %	f.t.	mo1%	f.t.	
100 90 80 60 50	121 116 100 93 84	40 30 20 10	76 E 87 96 106 115	

Hrynakowski and Adamanis, 1933

mo19	f.t.	mo1%	f.t.	
100 95. 90. 86. 81. 76. 72. 67. 62. 57.	9 116.0 113.0 6 110.5 8 108.0 1 104.0 3 100.0 4 95.0 5 90.0	47.5 42.4 37.3 32.2 26.9 21.7 16.3 10.9 5.5	82.5 76.0 I 84.0 89.0 94.0 99.0 102.0 107.0 109.0	Ē

Acetanilide (C_8H_9ON) + Aspirin ($C_9H_8O_4$)

Lacourt, 1952

%	f.t.	E
.0	115	-
10	110	82
20	104	82-83
30	97	82-83
35	93.3	82
40	86.4	81 .5-82
45	87.7	82-83
50	95	82-83
60	107.5	82
70 80 90	114.4 124.2	82 82-83
100	133 137.5-138	82

Phenylacetamide(C_8H_90N) + Palmitic acid ($C_{16}H_{32}O_2$)

Magne, Hughes and al., 1952

mo1%	f.t.	mol%	f.t.	
100 96.87 93.17 79.84 64.12	62.5 62.2 64.0 98.0 119.1	50.09 33.05 20.16	132.3 144.3 150.3 158.5	

E: 93.8 mo1% 61.9°

Phenoxyacetamide ($C_8H_90_2N$) + Palmitic acid ($C_{16}H_{32}0_2$)

Magne, Hughes and al., 1952

mol%	f.t.	mo1%	f.t.	
100 90.08 79.86 69.47 59.83	62.5 61.2 59.6 67.4 75.4	50.05 39.89 30.26 14.69	82.6 88.6 92.5 97.5 101.6	

E: 78.4 mo1% 59.4°

Benzanilide ($C_{18}H_{11}ON$) + Benzoic acid ($C_{7}H_{6}O_{2}$)

Pushin and Wilowitsch, 1925 (fig.)

mo1%	f.t.	mol%	f.t.
100	121	50	131
90	117	40	138
80	111	30	145
80 75 70	109 E	30 20	150
70	114	10	157
60	1 2 3	0	162

Ethyl p-aminobenzoate ($C_9H_{1\,1}0_2N$) + Benzoic acid ($C_7H_60_2$)

A, and L. Kofler, 1948

E: 29 % 71°

pp'-Tetramethyldiamino-benzophenone	(C ₁₇ H ₂₀ ON ₂))
+ Phenylacetic acid ($C_8H_8O_2$)		

Pfeiffer, 1885

%	f.t.	- %	f.t.	
0	172	67.5	60	
12.7	157	76.5	6 7	
24.4	140	86.7	72	
39.2	117-118	94.5	75	
52.3	92	100	76	

pp'-Tetramethyldiamino-benzophenone ($C_{1.7}H_{2.0}ON_2$) + m-Oxybenzoic acid ($C_7H_6O_8$)

Pfeiffer, 1885

%	f.t.	%	f.t.	
.0	172	43.3	149	
20 20	165 151	50 61.5	159 1 7 6	
28.9 34.7	1 27 134	$\substack{71.7\\100}$	184 199	

pp'-Tetramethyldiamino-benzophenone ($C_{17}H_{20}0N_2$) + 1-Naphthoic acid ($C_8H_{10}O_2$)

Pfeiffer, 1885

%	f.t.	%	f.t.
100 96.5 90.3 87.5 77.8 70 63.6 62.2	160 158.5 156 155 150-151 146 139 137	53.8 46.6 38.9 29.8 18.4 7.0	127 119-120 117 137 151 166 172

Antipyrine ($C_{1\,1}H_{1\,2}0N_2$) + Succinic acid ($C_4H_60_4$)

Regenbogen, 1918

%	mo 1 %	f.t.	%	mo1%	f.t.
100	100	177.1	42.4	54.0	118
90	97.5	174.3	38.6	50.0	100
80	86.4	169.6	34.2	45.3	80
70	78.8	164.5	32.6	43.5	71
63.9	73.9	160	27.7	38.0	-
59.1 54.0	69.7	153	20	28.5	64
	65.1	14 7	10	15.0	93
48.8	60.3	137	0	0.0	108.2

Antipyrine ($C_{11}H_{12}ON_2$) + Palmitic acid ($C_{16}H_{32}O_2$)

Regenbogen, 1918

f.t.	E	%	f.t.	E
63	_	46.8	86	46.2
59	-			46.3
53	-	30	108	-
48.5	_	20	11	-
56	45.8	10	11	_
64.5	46.0	0	11	-
74	46.0			
	63 59 53 48.5 56 64.5	63 - 59 - 53 - 48.5 - 56 45.8 64.5 46.0	63 - 46.8 59 - 40.3 53 - 30 48.5 - 20 56 45.8 10 64.5 46.0 0	63 - 46.8 86 59 - 40.3 93.5 53 - 30 108 48.5 - 20 " 56 45.8 10 " 64.5 46.0 0 "

Antipyrine ($\text{C}_{1\,1}\text{H}_{1\,2}\text{ON}_2$) + Dimethylglycolic acid ($\text{C}_{\text{b}}\text{H}_{\text{B}}\text{O}_3$)

Regenbogen, 1918

%	f.t.	Е	%	f.t.	E
100 90 80 70 63.7 58.5 52.4 48.6 42.8	77 74 67.5 57.5 50 42 44 50 57.5	38.5 38.5 38.0	39.3 35.6 32.3 27.4 21.7 16.5 10	59.0 60.4 59.2 58.5 74 86 99 108.2 (1+1)	56.8 57.0 57.0

Antipyrine ($C_{11}H_{12}ON_2$) + Dioxystearic acid ($C_{18}H_{36}O_4$)

Regenbogen, 1918

%	f.t.	Е	%	f.t.	E
100	121	-	50.8	90	82
90	$\bar{1}\bar{1}\bar{6}.5$	_	47.4	85.3	82 82
82.8	112.5	_	38.8	86	82.5
77.1	109.0	-	33.3	89	82.3
71.7	105.3	-	27.7	94	82.8
66.5	101	-	20	98	81.2
62.7	98.0	78.2	10	104	-
59.0	94	-	0	108.2	-
55.0	90.9	81			

Antipyrine ($C_{11}H_{12}ON_2$) + Chloracetic acid	Kremann and Marktl, 1920
(C ₂ H ₃ O ₂ C1)	% f.t. E % f.t. E
Regenbogen, 1918	0 109.1 - 45.8 63.3 - 5.7 103.5 - 48.6 61.0 -
% f.t. % f.t. E	13.9 92.6 - 49.1 59.7 - 16.5 89.2 - 52.7 65.8 57.8
100 60.8 33.5 50.4 - 92.6 58.0 33.5 - 83.3 50.8 31.7 50.0 45.7 75.8 40 30 48.2 - 70.4 28.0 29.8 42 - 67.6 21.0 24.9 60 - 59.5 - 20.1 75.5 - 48.3 32 14.7 87.5 - 44.6 40 7.4 101.5 - 40.8 45 0 108.2 - 37.1 48.5	22.3 79.5 - 56.3 75.0 - 25.1 75.0 25.1 75.0 58.0 57.7 78.2 54.0 28.3 67.1 - 62.4 90.0 - 31.7 59.5 59.5 67.8 98.8 - 36.1 65.5 - 76.1 107.5 - 38.7 67.2 - 84.0 113.2 - 40.0 67.18 - 93.5 118.1 - 42.9 66.5 - 100 121.0 - (1+1)
Antipyrine ($C_{11}H_{12}ON_2$) + Camphoric acid ($C_{10}H_{16}O_4$)	Hrynakowski, 1934 E ₁ : 49.0% 61.5° E ₂ : 31.7% 63.0°
Regenbogen, 1918 # f.t. # f.t. E	
	Hrynakowski and Adamanis, 1935 mol% f.t. E min
100 185 28.7 83.2 - 90 171 27.7 62 - 80 153 24.6 - 82 74.1 142 21.6 85 81 69.0 125 20 86 - 63.2 110 10 101 - 57.1 80 0 108.2 - 54.5-70.0 - (1+1) (2+1)	100 121.4 96.7 120.0 93.3 119.0 88.0 113.0 82.2 109.0 61.0 0.75 78.2 104.0 60.5 1.0 74.1 101.0 61.0 1.25
Antipyrine (${ m C_{11}H_{12}ON_{2}}$) + Benzoic acid (${ m C_{7}H_{6}O_{2}}$) Regenbogen, 1918	69.8 91.0 61.5 1.25 65.3 77.0 " 2.0 61.6 61.5 " - 60.6 65.0 61.0 2.25 55.8 69.0 - 50.7 70.0 - 50.0 71.0 - 45.3 69.0 61.5 0.75
% f.t. E % f.t. E	42.0 63.0 63.0 - 39.8 66.0 62.5 2.75 33.9 79.0 63.0 2.25
100 120 - 40 56 - 90 115 - 35 52.9 - 80 109.8 - 32.5 51.5 - 50 60 84 47 20 82.5 - 50 60 84 5 51.9 - 0 108.2 -	33.9 79.0 63.0 2.25 27.8 91.0 62.0 1.75 21.4 98.0 62.0 1.25 14.6 105.0 63.0 0.75 7.5 108.0 63.0 0.5 0 112 - (1+1)
(1+1)	

Antipy	rine (C, , H	120N ₂) +	Salicyl	ic acid		Antipyrin	ne (C ₁₁ H ₁	20N ₂) +	m-0xyben	zoic acid	1
			(C ₇ H ₆ O ₈)				(C7H60s)	
Regenbog	gen, 1918					Regenboge	en, 1918				
%	f.t.	Е	%	f.t.	E	%	f.t.	%	f.	t.	
100 90.0 80.0 70.0 60.0 50.0 40.0	154.9 151.5 143 133 102 85 88.8	75 75,9	35.0 32.5 30.0 20.0 10.0	86 81 80 88 99.3 108.5	75.8	100 90 80 70 64 60	196.0 190.8 181 166 156 141	55.6 51.7 48.4-24. 20 10 0	0 - 10 0 - 9 10	6	
							-	ON) :	- 4		_
Kremann	and Haas,	1919				Antipyri	ne (C _{1 1} H ₁		p-uxyner (C ₇ H ₆ O ₈		i
%	f.t.	Е	%	f.t.	Е	Regenbog	en, 1918				
0 4.2	109.8 105.8	-	49.6 50.8	82 79 79	- 72	%	f.t.	%	f.t.	. E	
3.1 18.6 25.1 28.7 31.4 33.6 36.4 38.1 41.9 45.0 47.5	101.5 86 74 74.8(1+1 78.8 " 81 " 84.8 " 87.1 " 89 " 88.7 "	72 72 72 	51.5 54.8 57.1 60.5 65.3 71.2 77.0 86.7 86.3	79 73.5 83.5 99 113.5 129 139 144 148 155	-	100 66.7° 60 55.2 52.4 50 40° 36.8	205.3 168 155 132 110 83 75 87	33.3 30 26.8 24.1 20 10	93.8 100.0 102.7 100.0 93 95.0 108.0	88.0	
Hrvnakov	vski and Ad	amanis, 1	935							· · · · · · · · · · · · · · · · · · ·	
mo1%	f.t.	E		in.		Antipyri	ne (C ₁₁ H ₁	20N2) +	Anisic a	icid (C ₈ I	H ₈ O ₈)
100 96.3	155 153.0	-		-		Regenbog					-
96.3 92.5 88.5	150.0 148.0	-		- -		%	f.t.	E	%	f.t.	
84.5 80.3 76.1 71.7	146.0 140.5 1 2 9.0	75.0 73.0	3 3	.5 .75			1.0.	L	ρ	1,6,	
67.1 62.5 57.6 57.6 47.6 42.3 36.9 34.6 31.2 25.4 19.4 16.7 0 (1+1)	118.0 94.0 75.0 85.0 90.0 90.0 72.0 75.0 85.0 92.0 102.5	75.0 74.5 75.0 74.0 - - 72.0 72.0	5 5 1 1 3	.5 .0 .5 .5 .0 0		100 90 80 70 65.6 61.8 58.2 51.0 47.6 44.7	177.8 174.0 168.0 161 155 151 143.5 130 121 111	64.1 65 65,1	42.0 38.6 34.6 30 24.8 18.7 11.8 6.3 0	102 91 70 74 84 92 99.5 103 108.0	65.7 66.0 65.8 65.7 65.3
67.1 62.5 57.6 52.7 50 47.6 42.3 36.9 34.6 31.2 25.4 13.1 6.7	118.0 94.0 75.0 85.0 90.0 90.0 72.0 75.0 85.0 92.0 102.5	75.0 74.5 75.0 74.0 - - 72.0 72.0 71.5	5 5 1 1 3	.5 .0 .75 .5 - .5 .0 -		90 80 70 65.6 61.8 58.2 51.0	174.0 168.0 161 155 151 143.5	65	38.6 34.6 30 24.8 18.7 11.8 6.3	91 70 74 84 92 99.5 103	66.0 65.8 65.7
67.1 62.5 57.6 52.7 50 47.6 42.3 36.9 31.2 25.4 13.1 6.7 0 (1+1)	118.0 94.0 75.0 85.0 89.0 90.0 72.0 75.0 80.0 85.0 92.0 102.5 112	75.0 74.5 75.0 74.0 72.0 72.0 72.0 71.5	5 5 1 1 3	.5 .0 .75 .5 - .5 .0 -		90 80 70 65.6 61.8 58.2 51.0	174.0 168.0 161 155 151 143.5	65	38.6 34.6 30 24.8 18.7 11.8 6.3	91 70 74 84 92 99.5 103	66.0 65.8 65.7

Antipyrin	ne (C ₁₁)	H ₁₂ 0N ₂)	+ Aspiri	ո (C ₉ H ₈ O _Կ	.)	Antipyri	ne (C _{1 1} H ₁		m-Nitrobe (C ₇ H ₅ O ₄ N		id
Regenboge	en, 1918					Regenbog	en, 1918				
%	f.t.	%	f.	t.		%	f.t.	E	%	f.t.	E
70 61.4 56.5 56.8 52.6 46.8 48.9 45.2 (1+1)	95 45 52 22 61 30 65 63	44. 40. 38. 30 20 10	8 5 6 5 8 9 10	5 5 1		100 90 80 74.1 68.4 64.9 60 53.6 50.0	137.5 129 116 103.5 91 74 80 90 92.3	- 67 - 64 65 - -	47.0 44.0 40.0 35.3 30.8 25.9 20	95.0 94 92 86.5 80 86.5 92.5 101 108.2	79.8 80.0 79.5
						Pyramidon	(C ₁₈ H ₁₇ ()N _o) + B	enzoic aci	d (CnH	(0,)
Antinuria	ne (C.	T. ON)	+ o-Nitr	ohenzoic a	اشداس	Regenbog				(-7	0 - 2 -
Antipyiii	ie (C ₁₁	n120M2)	+ O-MILI	onenzoic a	H ₅ O ₄ N)	9	f.t.	%	f.t.		
Regenboge	en, 1918					100	119.7	37.3	56.5		
%	f.t.	E	%	f.t.	 Е	90.0 80.0	115.0 108.5	34.6 32.4	58.0 57.7		
100	141.8	-	47.0	103.7		70.0 60.0	98.5 84	30.0 24.9	56 68		
90 80	134.0 119	69.0	44.0 40	101.5 97	-	56.5 53.1	75	20.9 16.7	76.5 83		
74.1 68.4	103 86.5	71.0 72.7	35.3	93 90	-	50.0 46.4	62 51.7 51.7	11.8	88.5 95.7		
64.0 60	80 84	_	30.8 25.9 20	84 91	83.2 83.2	43.4 40.0	$\begin{array}{c} 50.0 \\ 53.8 \end{array}$	0	102.0		
53.6 50 (1+1)	97 102.3	-	10	$1\overset{1}{0}\overset{1}{0}$ 108.2	82.5					. 1/6 1	
(1+1)						Regenboge	(C ₁₃ H ₁₇ 0 n, 1918	N ₃) + Sa	ilicylic a	C10 (C7H6	U ₃)
						%	f.t.	%	f.t.		
Antipyrin	e (C ₁₁ I	H ₁₂ ON ₂)	+ p-Nitro	benzoic a	cid	100	154.7	37.5	53		
			(C7H504			90.0 80.0	149.2 141.5	37.4 34.1	55 61.2		
Regenboge	en, 1913					70.0 63.6	115 90	32.9 27.7	63.8 71.3		
%	f.t.	E	%	f.t.	E	60.0 59.0-47.	8 -	$\substack{20.0\\13.0}$	80 90		
100	231		44.0			41.3	45.9	6.3 0	96.8 103.0		
90 80	224 216	-	40.0 35.3 30.8	$109.6 \\ 106 \\ 102$	-	Krupatki	n 1956				
74.1 68.4	205 195		30.8 25.9	98 90	87.0 87.5	**************************************	f.t.	%	f.t.		····
64.0 60.0	180 166	108.5	25.9 20.0 15.3	90 94	87.8 87.2	l	108.0				
53.6 50.0	$\begin{array}{c} 146 \\ 110.3 \end{array}$	109.2	$\frac{10.0}{5.8}$	$100.0 \\ 103.7$	-	0.0 5.0	104.0 104.0 98.0	$50.0 \\ 51.5 \\ 52.0$	84.0 82.0 83.0	E	
47.0 (1+1)	111.0	-	0	108.2	-	10.0 15.0 18.0	91.0 87.0 E	55.0 60.0	90.0 93.0		
						20.0 25.0	88.0 91.0	63.0 64.0	93.5 99.0	tr.t.	
						28.0 30.0	93.0 94.0	64.2 65.0		(1+3)	
						35.0 37.4	97.0	66.0 (+1)68.0	107.0 116.0		
						39.0 40.0	96.5 95.0	70.0 75.0	124.0 134.0		
						43.0 45.0	92.0 90.0	80.0 90.0	142.0 152.0		
						II		100.0	155.0		

Pyramidon Regenbogen) + Anisic	acid (C ₈ H ₈ O ₃)	Pyramidon Adler, 19	(C ₁₃ H ₁₇ 0N ₃) +	Aminobenzoi	c acid . Melanin acid
	%	f.t.	E	%	f.t.	%	f.t.
	100 60.0 56.8 53.3 48.2	177.8 153 150 142 132	-	0 10 20	108 99.5 99.5	30 40 50	99.5 99.5 99
	42.9 40.0 35.2 30.8 27.3 25.0 19.4 13.8	122 115 102.5 90 81 	75 77 78.8 78.8	Pyramidon Adler, 19	ı (C ₁₃ H ₁₇ 0N ₃) +	Humic acid	
	7.4	97 103	79.5	%	f.t.	%	f.t.
Pyramidon	(C ₁₃ H ₁₇ ON ₃) + Sepiame	clanin acid	0 10 20 30	108 103.5 103 103	40 50 60	103 103 103.5
Adler, 193	,				ن کے است استقباد الباق الباق الباق الباق کی الباق کے استقباد الباق کی الباق کی الباق کی الباق کی الباق کی الب الباق کا الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی ا الباق الباق کا الباق کا الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق کی الباق		
Adler, 199	% 	f.t.			nisole (C _{1 h} H _{1 h} O ₃ N		c acid (C ₈ H ₈ O ₃)
	0 10-50	108 105		Dave and	Dewar, 1954 (fi	g.) clearing	point
Pyramidon Adler, 193	·) + Sarcome	lanin acid	100 80 60 40 30 28	184 170 156 140 127	- - - - - 12	4
بر حدل حدود مند حدو الحد الدي بنيو علي حيو الحد	 %	f.t.		28 17 10	112 E 115	12- 12-	4 5
	0 10-50	108 105		0	118	130	6
Pyramidon Adler, 193	•) + Benzome	lanin acid	p-Azoxyan acid (C ₁ , de Kock,		₂) + Metho:	xycinnanic
%	f.t.	%	f.t.	mo1%	clearing point	f.t.	E
0 10 20	108 104° 103.5	30 40 50	103 103,5 103,5	0 10.4 20. 26.7 30.3 40.3 59.2 80.1 95	135, 2 130, 4-130, 8 134, 4-135, 6 136, 9-137, 6 139, 7-140, 8 146, 5-147, 5 158, 1-159, 3 172, 6-173, 8 183, 2-183, 8	114.0 3 111.6 107.8 6 111.7 8 114.7 128.0 142.9 157.8	105.4 107.4 107.2 107.6 107.6

p-Azoxyphenetole ($C_{16}H_{18}O_{3}N_{2}$)	2,4-Dimethyl-5-carbethoxy pyrrole ($C_9H_{13}O_2N$) + Chloracetic acid ($C_2H_3O_2C1$)
+ p-Methoxycinnamic acid ($C_{10}H_{10}O_{3}$)	Dezelic, 1935
Prins, 1910	mol% f.t. mol% f.t.
mol% f.t. clearing point m.t. beginn. end	0 123 60 74 10 116 70 61 20 110 80 49 E 30 103.5 90 57.6
100 167.2 167.3 - 138.4 90 159.0 160.0 125.8 135.8 80 158.2 158.4 125.6 132.2	40 96 100 62.5 50 87.5
$ \begin{array}{ccccccccccccccccccccccccccccccc$	2,4-Dimethyl-5-carbethoxy pyrrole ($C_9H_{13}O_2N$) + Benzoic acid ($C_7H_6O_2$)
0 182.2 183.8 - 166.8 0 188.0 188.3 - 173.8	Dezelic, 1935
	mol% f.t. mol% f.t.
1-Acetylpyrrole (C_6H_70N) + Acetic acid ($C_2H_4O_2$) Magnanini, 1889	0 123 60 84 E 10 118 70 94 20 111 80 104 30 105.5 90 113 40 99 100 121 50 91
% f.t. % f.t.	
100 16.44 93.3066 14.225 99.6683 16.325 91.5322 13.65 98.6490 15.97 86.9788 12.24 97.0246 15.44 84.9450 11.60	2,4-Dimethyl-5-carbethoxy pyrrole (${ m C_9H_{13}O_2N}$) + Salycilic acid (${ m C_7H_6O_3}$) Dezelic, 1935
	mol% f.t. nol% f.t.
Phenylmethylpyrazolone (${\rm C_{1o}H_{1o}ON_{2}}$) + Salicylic acid (${\rm C_{7}H_{6}O_{3}}$) Regenbogen, 1918	0 123 60 120 10 116.5 70 131.5 20 109 80 141 30 102.5 90 149 40 94.5 E 100 155 50 107
% f.t. % f.t.	
100 155.0 47.7 105 90.0 150.0 44.2 93 80 144.0 40.2 81 71.4 138.0 38.6 58 66.3 135 30.0 70 60.0 128.5 20.0 102 55.2 120 10.0 111.5 50.0 109 0.0 121.0	2,4-Dimethyl-carbethoxy-3-aldehyde pyrrole ($C_{10}H_{13}O_3N$) + Chloracetic acid ($C_2H_3O_2C1$) Dezelic, 1935
	mol% f.t. mol% f.t.
	0 143 60 74.5 tr.t. 10 135 70 72 20 127 80 63.5 30 117.5 86 51 E 40 107.5 90 55 50 93 100 61 (1+1)

2,4-Dimethyl-5-carbethoxy-3-aldehyde-pyrrole				le	
$(C_{10}H_{13}O_{3}N) +$	Benzoic	acid	(C7H602)
Dezelic, 1935				··	

mol%	f.t.	mo1%	f.t.	
0 10 20 30 40 50	143 137 130 122 111.5	60 63 70 80 90	88 86 E 94 104 113 121	

2,4-Dimethy1-5-carbethoxy-3-aldehyde-pyrrole ($C_{1.0}H_{1.3}\,0_3\,N$) + Salicylic acid ($C_7H_6\,0_3$)

Dezelic, 1935

101%	f.t.	mol%	f.t.
0	143	50	135 (1+1)
10	135	60	133.5
20	127.5	70	128 E
27	123 E	80	139
30	125	90	148
40	132	100	155

2,5-Dimethy1-3-carbethoxy-4-aldehyde-pyrrole ($C_{1.0}H_{1.3}O_{5.N}$) + Salicylic acid ($C_{7}H_{6}O_{5.S}$) Dezelic, 1935

 mo1%	f.t.		mol%	f.t.	
0 10 20 30 36 40 42 (1+1)	$\begin{array}{c} 111\\110\end{array}$	tr.t.	50 57.5 60 70 80 90 100	111.5 109 E 116 131 141 149 155	

 ${\tt 2,4-Dimethy1-3-acety1-5-carbethoxy-pyrrole}$

(
$$C_{11}H_{15}O_3N$$
) + Acetic acid ($C_2H_4O_2$)

Dezelic, 1935

mol%	f.t.	mo1%	f.t.	
0 10 20 30 40 50	141 137.5 131 126 118.5 108.5	60 70 80 90 100	97 80.5 64 38 10	

2,4-Dimethyl-3-acetyl-5-carbethoxy-pyrrole ($C_1,H_{15}O_3N$) + Succinic acid ($C_4H_6O_4$)

Dezelic, 1935

mol%	f.t.	mol%	f.t.	
0	141	50	152	
10	138	60	162.5	
20	131	70	168	
25	126.5 E	80	173	
30	131	90	178	
40	141.5	100	183	

2,4-Dimethyl-3-acetyl-5-carbethoxy pyrrole ($C_{1\,1}H_{1\,5}\,O_3\,N$) + Chloracetic acid ($C_2H_3\,O_2C1$) Dezelic, 1935

mo1%	f.t.	E	min.	
0	141	_	_	
1ŏ	135	66	0.4	
20	128	66 69 75 85	$\substack{0.4\\0.7}$	
3ŏ	120	75	i	
40	109.5	85	1.1	
45	102	83	1.4	
45 50	92.5	85.3	1.4 1.5 1.7	
55	85.5	85	1.7	
60	87	85.5		
70	76	49	_	
80	64	49 50	1	
85	60	50	2	
88	55.5	50 51,2	2.6	
90	53.5	51.6	3.2	
95	58	51.9	3.8	(1+1)
100	63	47.5	2.6 3.2 3.8 1.7	(1-1)

2,4-Dimethyl-3-acetyl-5-carbethoxy pyrrole ($C_{11}H_{15}O_3N$) + Benzoic acid ($C_7H_6O_2$)

Dezelic, 1935

mo1%	f.t.	mol%	f.t.	
0 10 20 30 40 50	141 138 131 123 114.5	60 63 70 80 90	91 87.5 E 95 105.5 114.5	

2,4-Dimethyl-3-acetyl-5-carbethoxy pyrrole ($\rm C_{1\,1}H_{1\,5}\,O_3\,N$) + Salicylic acid ($\rm C_7H_6O_3$)

Dezelic, 1935

mol%	f.t.	mo1%	f.t.	
0 10 20 30 38 50	141 136 128.5 123 113 107	58 60 70 80 90 100	106 109 127 140 149 155	
(1+1)	(2+1)			

Nicotinamide ($C_6H_60N_2$) + Palmitic acid ($C_{16}H_{52}O_2$)	Nicotinamide ($C_6H_60N_2$) + Suberic acid ($C_8H_{11}0_4$)
	L and A Kofler, 1943
L and A Kofler, 1943	% f.t.
E: 60° complex: tr.tI = 78° tr.tII = 76°	0 129 25 111 E(2+1)+A 30 107 E(1+1)+A (2+1) 115 43 114.5E(2+1)+(1+1)
Nicotinamide ($C_6H_60N_2$) + Stearic acid ($C_{18}H_{36}0_2$)	(1+1) 121 63 118 E(1+1)+B 85 131 tr.t. 100 141
L and A Kofler, 1943	
% f.t.	Nicotinamide ($C_6H_60N_2$) + Azelaic acid ($C_9H_{16}0_4$)
0 129 - 60 E 100 69	L and A Kofler, 1943
100 69 complex: tr.tI = \$4° tr.tII = \$1°	% f.t. % f.t.
	0 129 88 98 E 35 102 E 100 108 (1+1) 113
Nicotinamide ($C_6H_6ON_2$) + Glutaric acid ($C_5H_8O_4$)	
L and A Kofler, 1943	Nicotinamide ($C_6H_60N_2$) + Sebacic acid ($C_{1.0}H_{1.8}O_{+}$)
% f.t.	L and A Kofler, 1943
0 129 E 112	% f.t. % f.t.
complex 136 E 91 100 99	0 129 complex 121 E 113 E 115 complex 118 complex 133 E 116
Nicotinamide ($C_6 H_6 0 N_2$) + Adipic acid ($C_6 H_{10} 0_4$) L and A Kofler, 1943	Nicotinamide ($C_6H_60N_2$) + Dodecanedioic acid ($C_{12}H_{22}O_{\downarrow}$)
g f.t.	L and A Kofler, 1943
0 129 E 118	% f.t. stable unstable
Complex 130 E 123 Complex 124 E 121 100 152	0 129 - - 111 E (+AII) 108 E (+AIV) 26 117 E(+(2+1)) -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Nicotinamide	($C_6H_6ON_2$)	+ Hexadecanedioic acid
				$(C_{16}H_{30}O_{4})$

L. and A. Kofler, 1943

Z	f.t.	
0	129	
Ē	123	
complex E	132	
Ė	128	
complex	129	
E	120	
complex	126	

Nicotinamide ($C_6H_60N_2$) + Ethyl p-Oxybenzoate ($C_9H_{1,0}O_3$)

L. and A. Kofler, 1943

9.	f.t.	
0 50 100	129 104 E 107 (1+1) 96 E 116	

Phenacetin ($\text{C}_{\text{10}}\text{H}_{\text{18}}\text{O}_{\text{2}}\text{N})$ + Benzoic acid ($\text{C}_{7}\text{H}_{\text{6}}\text{O}_{\text{2}}$)

Kitran, 1924

E: 65.7 mol % f.t. = 86.7°

A. and L. Kofler, 1948

E: 51 % 90°

Sarcosin anhydride ($\rm C_6H_{1\,0}O_2N_2$) + Benzoic acid ($\rm C_7H_6O_2$)

Pfeiffer, Angern and al., 1930

0 146 145	
31 111 "	
40 92 "	
20 129 \$1 31 111 " 40 92 " 46 85 " 50 91 " 60 96 (2+1) "	
50 91 "	
60 96 (2+1) "	
70 95 85	
74 94 "	
80 106 "	
90 115 "	
100 125 120	

Sarcosin anhydride ($\text{C}_6\text{H}_{1\,0}\text{O}_2\text{N}_2$) + p-Toluic acid ($\text{C}_8\text{H}_8\text{O}_2$)

Pfeiffer, Angern and al., 1930

%	f.t.	E	
0	146	145	
20	136	1 0 0	
30	127	11	
20 30 35	121	U	
41	108	11	
45	105	**	
45 50	107 (1+1) 104	
55	106	et .	
60	123	H	
70	149	**	
80	162	17	
100	178	1 7 5	

Sarcosin anhydride ($C_6H_{1\,0}0_2N_2$) + p-0xybenzoic acid ($C_7H_60_3$)

Pfeiffer, Angern and al., 1930

%	f.t.	E	
0	146.5	144	
8	140	128	
0 8 15	134	128.5	
22	141	128.8	
30	146.5	128.8	
40	151 (1+1)	129	
43	160	130.5	
50	175	148	
60	186	151	
66	187 (1+2)	152	
72	185.1	179	
80	189.5	11	
88	201	R	
100	210	209	

Sarcosin anhydride ($C_6H_{1\,0}O_2N_2$) + o-Methoxybenzoic acid ($C_8H_8O_3$)

Pfeiffer, Angern and al., 1930

%	f.t.	Е	
ر,	146	145	!
20	133.5	86	
31	124	11	
40	114	.11	
45	107	Ħ	
.0 20 31 40 45 50 55	100	#	
55	89.5	11	1
60	89	tt .	
65	9 1	n	
70	91 92 (1+2)	87	
75	91	86	
80	89	#	
85	<u>9</u> 6	11	
90	9 <u>5</u>	n	
100	98	95	
70 75 80 85 90 100	90 95	n n	

Sarcosin anhydride ($C_6H_{1\,0}0_2N_2$) + p-Methoxybenzoic acid ($C_8H_60_3$)

Pfeiffer, Angern and al., 1930

%	f.t.	Е	%	f.t.	E
0 20 30 40 44 46	146.5 134 124 112 112.5 113	145 110 "	50 60 70 80 100	115 137 154 166 184	110 112 182

Sarcosin anhydride ($C_6H_{1\,0}O_2N_2$) + m-Aminobenzoic acid ($C_7H_7O_2N$)

Pfeiffer, Angern and Wang, 1927

- %	f.t.	E	%	f.t.	E
0 10 20 30 40 49 (1+1)	146 139 126 109 113 116	144 103 "	51 60 70 80 100	115.5 120 143 158 174	112 109 " 170

Sarcosin anhydride ($C_6H_{1\,0}O_2N_2$) + p-Aminobenzoic acid ($C_7H_7O_2N$)

Pfeiffer, Angern and Wang, 1927

<u>%</u>	f.t.	E	%	f.t.	Е
0 10 20 30 40 45 49	146 138.5 125 129 139 142 143	144 118.5 118.5 119 118 119 139	55 60 70 80 90 100	142 139.5 142.5 164 178 185	138 135 " " 182

Sarcosin anhydride ($C_6H_{1\,\,0}0_2N_2$) + Anthranilic acid ($C_7H_70_2N$)

Pfeiffer, Angern and Wang, 1927

%	f.t.	Е	%	f.t.	Е
0 20 40 50 55 60	146 130.5 108.5 112 118 122	144 106 106 105.5	66 70 75 85 100 (1+2)	123 121.5 119 133 144	121 117.5

Sarcosin anhydride ($C_6H_{10}O_2N_2$)

+ p-Methylaminobenzoic acid ($C_8H_9O_2N$)

Pfeiffer, Angern and Wang, 1927

%	f.t.	%	f.t.	
0 8 14 20 25 30 35 40 48 (1+1)	146.5 139.5 134 128 130 135.8 140.2 142.8	55 60 65 68 72 78 84 90 100	145 142.5 139 137.5 130.5 132.7 139.8 146 156	

Sarcosin anhydride ($C_6H_{10}O_2N_2$)

+ p-Dimethylaminobenzoic acid ($C_9H_{1,1}O_2N$)

Pfeiffer, Angern and Wang, 1927

%	f.t.	E	%	f.t.	E
0	146,5	144	36.5	143	122
15	136.8	122	42	159	n
22	130	121.8	54	184.8	n
28	126	122	70	207	121.7
34	128.8	122	100	235	233

Caprolactam ($C_6H_{11}ON$) + Palmitic acid ($C_{16}H_{32}O_2$)

van Velden, 1956

mol%	f.t.	mo1%	f.t.	
0 10.3 17.4 26.8 29.9 31.3 34.6 36.3 37.75 38.85	68.4 64.2 59.9 52.0 48.1 46.5 41.5 39.1 35.9 36.2	40.1 43.1 44.95 45.2 48.95 59.75 67.1 74.7 83.7	36.4 37.1 37.7 38.1 41.3 49.3 53.5 56.0 58.4 62.3	

E: 38.0 mol% 35.8°

Caprolactam ($C_6H_{1,1}ON$) + Adipic acid ($C_6H_{1,0}O_4$)

van Velden, 1956

f.t.	mol%	f.t.	
68.4	29.6	52.2	
66.2	32.0		
63.3	32.55		
59.9	33.4		
53.9	33.7	53.0	
47.7	34.1	55.5	
44.1 E	34.25	57.0	
44.4	34.4	58.1	
45.5	34.6	58.2	
48.9	35.95	63.6	
49.9	37.05	69.1	
51.0	40.2	82.7	
51.2	100	151.8	
52.9°			
	68.4 66.2 63.3 59.9 53.9 47.7 44.1 E 44.4 45.5 48.9 51.0 51.2	68.4 29.6 66.2 32.0 63.3 32.55 59.9 33.7 47.7 34.1 44.1 E 34.25 44.4 34.4 45.5 34.6 48.9 35.95 51.0 40.2 51.2 100	68.4 29.6 52.2 66.2 32.0 52.6 63.3 32.55 52.8 59.9 33.4 52.9 53.9 33.7 53.0 47.7 34.1 55.5 44.1 E 34.25 57.0 44.4 34.4 58.1 45.5 34.6 58.2 48.9 35.95 63.6 49.9 37.05 69.1 51.0 40.2 82.7 51.2 100 151.8

Caprolactam ($C_6H_{11}ON$) + Pimelic acid ($C_7H_{12}O_4$)

van Velden, 1956

mol%	f.t.	mol%	f.t.	
0 3.1 8.4 14.0 19.1 21.5 22.4 23.05 23.9 24.5 25.2	68.4 67.8 63.0 55.1 47.0 41.2 39.3 36.5 E 37.1 37.5 38.2	32.7 35.1 37.6 39.75 41.0 42.2 44.1 48.3 54.1 59.5 60.25	41.5 41.3 40.8 39.5 39.3 43.2 46.8 56.2 66.7 38.8 E	
25.6 28.7	$\frac{38.4}{41.0}$	$\begin{smallmatrix} 71.2\\100\end{smallmatrix}$	87.2 105.3	
(2+1)	41.7°	100	100.0	

Caprolactam ($C_6H_{11}ON$) + Benzoic acid ($C_7H_6O_2$)

van Velden, 1956

mo1%	f.t.	mo1%	f.t.	
0 2.7 10.4 15.5 20.8 24.25 26.5 29.1 30.25 31.05 32.5 33.05 34.45 35.1 36.5 37.4 40.0 40.4	68.4 67.9 61.7 56.5 50.5 45.1 41.4 36.8 35.9 30.1 29.0 26.3 27.2 27.4 29.6 30.1	42.65 44.85 46.7 49.2 50.6 51.1 52.1 52.3 52.7 53.2 53.5 53.8 54.35 44.95 58.2 62.15 64.70	31.9 33.1 33.7 34.3 34.1 33.6 33.4 34.3 37.8 39.9 41.7 49.1 58.6 69.9 77.3 122.6	

E: 35.0 mol% 25.5°

E : 52.0 mo1% 32.3°

(1+1) 34.3°

ALLYL ISOTHICYANATE + FORMIC ACID

Allyl isotl	ii ocyana	te (C	₄ H ₅ NS) +		
				(CH ₂ O ₂)	
Joukovsky,	1933				
wt%	mol%	1	f.t.	E	
100	100		8.5	-	
87.9 31.7	94.1 50		6.35	-106.5 -106.5	
13.4 6.6	25	1.	6.35 02.5	-106.5	
6.6	0	-11	02.5	-	
mo1%	wt%	sat.t.	mo1%	wt%	sat.t.
91.9 89.1	84 79.1	$\frac{10.0}{23.0}$	57.7 52.4	38.8 33.8	39.7 38.9
$\begin{array}{c} 88.1 \\ 83.5 \end{array}$	77.5 70.1	26.0 33.3	42.8 21.9	$\begin{array}{c} 25.8 \\ 11.5 \end{array}$	36.0 25.2 6.5
81.8	67.7	35.8	21.9 13.2	6.6 T.C.D	6.5
72.8 69.3	$55.4 \\ 61.2$	38.2 39.1	63.8	45.0	39.8
					· · · · · · · · · · · · · · · · · · ·
Allylphenyl	thioure	a (C	10H12N2S) + Aceti	c acid
				(C ₂ H ₄	02)
Shishokin,	1929				
mo1%	f.t.	•	mol%	f.t.	
0	99		59.18	76.7	
10.34	95 91		68.96 80.11	72.5 65.5 56.5 43.0	
28.11	89	_	89.50 94.98	56.5	
10.34 20.83 28.11 41.98 49.77	83.5 80.5	5	94.98	43.0	
Ally 1 pheny 1	thiour	ea (C.	HN.S) + Trich	loracetic
acid (C ₂ HC		-	10.112.125	,	101466116
-	_				
Shishokin,	1929				
mol%			f.t.		
0				·	
23.43			99 81.8		
23.43 31.34 40.19 55.31			74.5 69.0		
55.31			50		

		
Propy1	nitrate (C ₃ H ₇ O ₃	$_{3}N$) + Acetic acid ($C_{2}H_{4}O_{2}$)
Lecat,	1949	
%	b.t.	Dt mix.
0	110.5	-
20 23	107.5 Az	-0.5
100	118.1	-
Isobuty	yl nitrate (C _u H	$_{0}0_{3}N$) + Acetic Acid ($C_{2}H_{4}O_{2}$)
Lecat,	1949	
%	b.t.	Dt mix.
_0	123.5	
50 100	114.2 118.1	-1.0 Az
Isobuty	l nitrate (C ₄ H ₉	$0_{\rm S}N$) + Propionic acid ($C_{\rm S}H_6O_2$)
Lecat,	1949	
%	b.t.	Dt mix.
0	123.5	-
9 10	122.0 Az	-0.2
100	141.3	-
Lecat,	1949	

Isoamyl nitrate ($C_5H_{11}O_3N$) (b.t.=149.75) + Acids.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Dt mix.
Prorionic acid	C ₃ H ₆ O ₂	141.3	59	138.8	-0.3 (85%)
Butyric acid	$C_{\mu}H_{8}O_{2}$	164.0	12	147.85	-0.5 (10%)
Isobutyric &cid	C4H802	154.6	30	146.2	-0.5 (30%)

Nitromethane ($ ext{CH}_3 extbf{0}_2 ext{N}$) + Formic acid ($ ext{CH}_2 extbf{0}_2$)	Nitromethane (CH_3O_2N) + Caprylic acid ($C_8H_1_6O_2$)
Lecat, 1949	Broughton and Jones, 1936
% b.t. Dt mix.	% Sat.t. % Sat.t.
0 101.22 - 45.5 97.05 Az - 563.5 100 100.75 -	13,15 22,00 42,37 34,85 19,00 29,10 44,32 34,72 24,04 32,55 48,61 36,64 30,89 34,30 54,29 34,05 35,28 34,80 60,78 32,15 40,47 34,85 69,11 27,55
Joukovsky, 1933	
wt% no1% f.t. E	Nitromethane (CH_9O_2N) + Pelargonic acid ($C_9H_{1,8}O_2$)
100 100 +8.5 - 70.3 75.8 -2.5 - 57.9 64.6 -8.5 -	Broughton and Jones, 1936
29.7 35.9 -23 -34 11.2 14.3 -31.5 -33	% Sat.t. % Sat.t.
0 0 -28.5 -	19.71 43.80 42.10 48.55 24.21 46.30 47.41 48.55 29.96 48.05 54.83 47.60 35.14 48.50 59.36 46.55 41.10 48.55 69.28 40.85
Nitromethane ($ ext{CH}_3 ext{O}_2 ext{N}$) + Acetic acid ($ ext{C}_2 ext{H}_4 ext{O}_2$)	
Lecat, 1949	Nitromethane (CH ₃ O ₂ N) + Caprinic acid (C ₁₀ H ₂₀ O ₂)
% b.t. Dt mix.	
0 101.22 - 4 101.20 Az - 16.51.6	Hoerr, Sedgwick and Ralston, 1946
100	% f.t. sat.t. % f.t. sat.t.
	4.4 20.0 - 20.4 - 50.0 8.6 - 30.0 100 31.24 -
Nitromethane ($ ext{CH}_3 ext{O}_2 ext{N}$) + Caproic acid ($ ext{C}_6 ext{H}_{12} ext{O}_2$)	
Broughton and Jones, 1936	Nitromethane ($\text{CH}_3\text{O}_2\text{N}$) + Lauric acid ($\text{C}_{12}\text{H}_{24}\text{O}_2$)
% sat.t. % sat.t.	
22.74 -7.20 46.96 -3.50	Broughton and Jones, 1936
25.02 -6.20 50.58 -3.65 25.36 -5.85 50.79 -3.65 33.75 -3.85 52.60 -3.80	% Sat.t. % Sat.t.
33.75 -3.85 52.60 -3.80 36.83 -3.55 55.40 -4.20 38.95 -3.45 59.29 -5.25 41.35 -3.40 66.00 -8.05 43.96 -3.40 67.11 -8.30	13.48 69.10 40.72 78.90 20.18 75.20 42.10 78.80 26.01 77.65 50.44 78.60 33.29 78.70 58.12 76.95 39.34 78.80 68.23 71.85

NITROMETHANE + MYRISTIC ACID

1006 NIIKOME I HAN	E + MTRISTIC ACID
Hoerr, Sedgwick and Ralston, 1946	Nitroethane ($C_2H_5O_2N$) + Acetic acid ($C_2H_4O_2$)
% f.t. Sat.t. % f.t. Sat.t.	
1.1 20.0 - 13.6 - 60.0	Lecat, 1949
2.7 30.0 - 25.4 - 70.0 6.0 - 40.0 100 43.92	g f.t.
8.8 - 50.0	0 114.2
	30 112.4 Az 100 118.1
NI CONTRACTOR OF THE CONTRACTO	
Nitromethane (CH_3O_2N) + Myristic acid($C_{14}H_{28}O_2$)	Nitroethane ($C_2H_5O_2N$) + Caprylic acid($C_8H_1_6O_2$)
Hoerr, Sedgwick and Ralston, 1946	
% f.t. Sat.t. % f.t. Sat.t.	Hoerr and Ralston, 1944
	% f.t.
	20.1 90.0 10.3
2.2 40.0 - 16.1 - 80.0 4.5 - 50.0 100 54.15 -	100 16.30
	Nitroethane ($C_2H_5\theta_2N$) + Caprinic acid($C_{10}H_{20}\theta_2$)
Nitromethane (CH_3O_2N) + Palmitic acid ($C_{16}H_{32}O_2$)	
	Hoerr and Ralston, 1944
Broughton and Jones, 1936	# f.t.
% Sat.t. % Sat.t.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12.14 94.05 37.48 104.55 18.45 101.60 38.95 104.50	35.5 98.6 20.0 30.0
18.45 101.60 38.95 104.50 22.90 102.75 45.77 104.45 28.44 103.95 53.15 103.55	100 31.24
31.97 104.15 58.93 101.05 33.36 104.30 61.80 100.50	
34.30 104.30 72.84 92.40	
Hoerr, Sedgwick and Ralston, 1946	Nitroethane ($C_2H_5O_2N$) + Pelargonic acid ($C_9H_1RO_2$)
\$\frac{\pi}{\pi}\$f.t. Sat.t. \$\pi\$ f.t. Sat.t.	. Cgm18V2 /
0.5 20.0 - 3.9 - 60.0	Hoerr and Ralston, 1944
0.9 30.0 - 5.5 - 70.0	
1.4 40.0 - 8.2 - 80.0 2.1 50.0 - 12.8 - 90.0 100 62.82 -	31.0 95.9 0.0 10.0
	100 12.25
Nitromethane (CH_3O_2N) + Stearic acid ($C_{18}H_{36}O_2$)	Nitroethane ($C_2H_5O_2N$) + Undecanoic acid ($C_{11}H_{22}O_2$)
	(0)112222
Broughton and Jones, 1936	Hoerr and Ralston, 1944
% Sat.t.	% f.t.
37.555 114.0	7.5 11.7 0.0 10.0
40.61 " 43.33 "	56.7 20.0 100 28.13

Nitroethane ($C_2H_5\theta_2N$) + Lauric acid ($C_{12}H_{24}\theta_2$)	Nitroethane ($C_2H_5O_2N$) + Palmitic acid ($C_{16}H_{32}O_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
% f.t.	% f.t. % f.t.
$\begin{array}{cccc} 1.9 & 0.0 \\ 2.7 & 10.0 \\ 5.1 & 20.0 \\ 14.0 & 30.0 \\ 93.6 & 40.0 \end{array}$	below 0.1 20.0 9.1 50.0 0.7 30.0 94.3 60.0 2.5 40.0 100 62.82
100 43.92	Nitroethane ($C_2H_5O_2N$) + Margaric acid ($C_{17}H_{34}O_2$)
Nitroethane ($C_2H_5O_2N$) + Tridecanoic acid	Hoerr and Ralston, 1944
$(C_{13}H_{26}O_{2})$	% f.t. % f.t.
Hoerr and Ralston, 1944 \$\mathscr{g} \text{f.t.} \mathscr{g} \text{f.t.}	0.2 30.0 97.7 60.0 1.9 40.0 100 60.94 8.8 50.0
1.4 0.0 14.8 30.0 2.0 15.0 98.9 40.0 4.3 20.0 100 41.76	Nitroethane ($C_2H_5O_2N$) + Stearic acid ($C_{18}H_{86}O_2$
Nitroethane ($C_2H_5O_2N$) + Myristic acid ($C_{14}H_{28}O_2$)	Hoerr and Ralston, 1944 % f.t. % f.t.
Hoerr and Ralston, 1944 ### f.t. ### f.t.	0.3 40.0 12.3 60.0 2.6 50.0 100 69.32
0.3 0.0 9.7 40.0 0.5 10.0 92.2 50.0 1.2 20.0 100 54.15 3.2 30.0	Nitroethane ($C_2H_5O_2N$) + Oleic acid ($C_{18}H_{34}O_2$)
	Hoerr and Harwood, 1952
Nitroethane ($C_2H_5O_2N$) + Pentadecanoic acid	% f.t. % f.t.
(${ m C_{15}H_{80}O_2}$) Hoerr and Ralston, 1944	0.2 -40 3.3 0 0.8 -30 8.0 10 1.3 -20 12.5 20 2.1 -10 CST - 31.79
% f.t. % f.t.	C.S.T. = 31.7°
	Nitroethane ($C_2H_5O_2N$) + Linoleic acid ($C_{18}H_{82}O_2$) Hoerr and Harwood, 1952
	% f.t. % f.t.
	below 0,1 -40 7.7 -10
	0.4 -30 25.5 0 2.1 -20
	C.S.T. = 1.5°

CHLORPICRINE + ACETIC ACID

Chloropicrine (${ m CO_6N_5Cl}$) + Acetic acid (${ m C_2H_4O_2}$)	Udovenko and Ayrapetova, 1947			
	mo1% d 0° 25° 50°			
Lecat, 1949 % b.t. Dt mix. 0 111.9	100.00 1.2375 1.2088 1.1846 83.64 .2243 .1978 .1704 74.92 .2166 .1937 .1689 63.96 .2149 .1887 .1652 52.29 .2128 .1900 .1652 41.32 .2107 .1889 .1660 29.56 .2132 .1931 .1676 17.91 .2137 .1924 .1703 0.00 .2161 .1970 .1743			
Trimethyl phosphate ($C_3H_9O_4P$) + Acetic acid ($C_2H_4O_2$)	mo1% n 0° 25° 50°			
Pagel and Ruyle, 1944 mol% f.t. mol% f.t. mol% f.t. I	100.00 2821.0 1537.2 976.7 83.64 2993.9 1575.6 1005.4 74.02 2896.7 1592.3 1028.6 63.96 2875.8 1593.0 1025.3 52.29 2815.6 1591.1 1042.7 41.32 2787.0 1604.3 1053.9 29.56 2832.3 1635.8 1083.8 17.91 2900.6 1675.5 1113.9 0.00 3120.2 1804.2 1191.5			
91.4 10.4 44.8 -87.5 0 -62.4 89.7 8.7 41.6 -82.8	то 1% и 0° 25° 50°			
86.7 5.8 37.1 -72.9 80.8 0.7 28.8 -60.6 75.0 -8.3 19.1 -55.4 70.1 -15.2 11.3 -50.4 66.4 -22.9 0 -46.1 63.0 -30.0 Nitrobenzene (C ₆ H ₅ O ₂ N) + Formic acid (CH ₂ O ₂)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Ampola and Carlinfanti, 1895				
% f.t. % f.t. 0 +3.84 7.38 -0.68 0.54 3.35 12.42 -2.49 1.39 2.68 15.82 -3.38 2.71 1.72 25.91 -4.16	Nitrobenzene (${ m C_6H_5NO_2}$) + Acetic acid (${ m C_2H_4O_2}$) Beckmann, 1888			
4.33 0.77	% D f.t. % D f.t.			
Landolt, 1865	99.23 -0.240 84.11 -4.635 96.39 1.100 81.37 5.365 89.52 3.070			
% d n _D	Ampola and Carlinfanti, 1895			
20° 0 1.0456 1.5391	% f.t. % f.t.			
30.3 1.0858 1.4900 1.2189 1.3693	0 3.84 4.51 1.19 0.34 3.56 6.06 0.43 0.96 3.20 8.32 -0.84 1.89 2.67 11.87 -2.48 2.87 2.12 15.32 -4.12			

			MINOD	LIVE LIVE	- ISOBUT TRIC ACIL	•			1009
					Timofeev, 1905				
Dahms, 1	895				98		U		
fio1%	f.t.	mo1%	f.t.			20°			
0.0 1.27 4.12	5.50 5.10 4.28	49.36 54.24 67.07	-10. 0 -3.7 +1.3		100 23 0	.6	0.487 0.394 0.358		
10.25 22.78 31.08 37.62	2.53 -1.2 -3.75 -5.85	78.05 83.90 91.91 96.99	5.35 7.59 11.09 13.60		initial	final	Q dil (by mol		d)
43.46 44.7 45.84	-7.8 -8.25 -8.63	98.82 99.572 100	14.62 15.105 15.39		0 6.5 11.0 15.0 19.5	6.5 11.0 15.0 19.5 23.6	-260 -111 -90 -84 -64		
Baud, 191	13								
mo 1%	f.t.	mo1%	f.t.		Nitrobenzene (C	$C_6H_5NO_2$) + 1	Isobutyric	aci	đ C _u H ₈ O ₂)
100 94.9 90.2	16.70 13.55 10.80	56.5 47.3 40.0	-2.63 -8.00 E		Ampola and Carli	nfanti, 1895	5		
83.1	7.55	31.2	-5.90 -3.70		% f.t.		f.t.		
72.6 64.0	3.92 0.50	19.8 9.1 0	-0.33 +2.50 +5.60		0 3.8 0.33 3.6 1.04 3.3 2.38 2.7 4.06 2.1	2 11.25 4 15.63 9 19.93	+1.1 -0.5 -2.2 -3.7 -6.1	9 2 0	
					4.06 2.1	3 27.20			
Usanovi to	ch and Ten	enbaum, 1935			Nitrobenzene (C	6H ₅ NO ₂) + V	aleric ac	id (C ₅ H ₁₀ O ₂)
% I	mo1 %	20° 40°	d 50°	80°	Ampola and Carli				
0	0	1.0516 1.0253	1.0051	0.9831	% f.t.	%	f.t.		
15.31 26.99 32.03 36.92 58.07 62.70	9.73 27.45 27.61 42.54 49.10 54.63 73.09 77.67 93.25	.0612 .0319 .0815 .0612 .0864 .0645 .1035 .0825 .1212 .0911 .1291 .1001 .1618 .1339 .1694 .1332 .1946 .1645	.0432 .0441 .0613 .0718 .0825 .1041	.9891 1.0106 .0104 .0418 .0385 .0641 .0854 .0978 .1256	0 3.8 0.37 3.6 0.94 3.4 2.31 2.9 4.11 2.3	4 6.32 6 9.64 0 14.11 8 20.76	1.5 0.5 -0.8 -2.7 -4.3	9 1 2	
100 10	00	.2041 .1879		.1391					
% п	mo1 %		η		Nitrobenzene(C	₆ H ₅ O ₂ N) (b.	t.= 210.7	5) +	Acids.
/o "	m (1 / p	20° 40°	60°	80°	Lecat, 1949				
0	0 72	1136 851.6	644.4	55.99 56.32		2nd Comp.		A	z
5.23 14.81	9.73 27.45 27.61	1176 861.2 1180 870.8 1182 871.8	652.5 687.4	56.32 59.19	Acids	Formula	b.t.	%	b.t.
15.31 2 26.99 4	42.54	1219 893.8	687.8 713.0	59.32 62.14	Caproic	C ₆ H ₁₂ O ₂	205.15	65	202.5
36.92	49.10 54.63	1241 924.7 1270 948.9 1435 1103.6	734.7 746.0	62.98 65.82	Heptanoic	C7H14O2	222.0	12	209.5
58.07 62.70	73.09 77.67	1439 1106.2	746.0 803.2 838.2	65.82 70.98 72.25	Bromacetic	C ₂ H ₃ O ₂ Br	205,1	63	202.25
	9 3.2 5 00	1635 1123.1 1750 1128.7	$951.2 \\ 1035.0$	80.96 89.52	α-Brompropionic	C ₃ H ₅ O ₂ Br	205.8	60	203.3
					α-Chlorcrotonic	C ₃ H ₃ O ₂ C1	212,5	30	208.0

NITROBENZENE + CAPRYLIC ACID

1010 NITROBENZENE	+ CAPRYLIC ACID
Nitrobenzene ($C_6H_5O_2N$) + Caprylic acid ($C_8H_{16}O_2$)	Nitrobenzene ($C_6H_5O_2N$) + Stearic acid ($C_{18}H_{36}O_2$)
Hoerr, Sedgwick and Ralston, 1946	Hoerr, Sedgwick and Ralston, 1946
% f.t.	% f.t. % f.t.
78.5 10.0 100 16.30	below 0.1 30.0 52.8 60.0 1.4 40.0 100 69.32 8.9 50.0
Nitrobenzene ($C_6H_5O_2N$) + Caprinic acid ($C_{10}H_{20}O_2$)	Nitrobenzene ($C_6H_5O_2N$) + Oleic acid ($C_{18}H_{84}O_2$)
Hoerr, Sedgwick and Ralston, 1946	Hoerr and Harwood, 1952
% f.t.	7 f.t.
15.3 56.7 97.3 100 100 100 10.0 20.0 31.24	0 68.8 10 91.7
Nitrobenzene ($C_6H_50_2N$) + Lauric acid ($C_{12}H_{24}0_2$)	Nitrobenzene ($C_6H_5O_2N$) + Benzoic acid ($C_7H_6O_2$)
Hoerr, Sedgwick and Ralston, 1946	Mortimer, 1923
% f.t. % f.t.	mol% f.t. mol% f.t.
2.6 10.0 88.2 40.0 8.1 20.0 100 43.92 40.0 30.0	4.4 0 43.4 80 9.2 20 66.0 100 16.3 40 100.0 121.0 27.6 60
Nitrobenzene ($C_6H_5O_2N$) + Myristic acid ($C_{14}H_{28}O_2$)	Hrynakowski, Staszewski and Szmytowna, 1937
	% f.t. E % f.t. E
Hoerr, Sedgwick and Ralston, 1946 ### f.t. ### f.t. 1.3 10.0 25.5 40.0 2.9 20.0 84.8 50.0 6.6 30.0 100 54.15	- 100 121.3 - 26.6 59.2 3.8 88.4 115.6 - 17.3 44.4 3.9 78.6 107.3 - 14.1 35.5 3.9 67.7 98.6 - 8.5 15.8 3.8 55.4 89.6 2.2 3.0 4.0 3.5 44.8 80.5 3.8 0.0 5.9 -
Nitrobenzene ($C_6H_5O_2N$) + Palmitic acid ($C_{16}H_{32}O_2$)	u -Pinitrobenzene ($C_6H_{\mu}O_{\mu}N_2$) + Acetic acid ($C_2H_{\mu}O_2$)
Hoerr, Sedgwick and Ralston, 1946	Timofeev, 1894
% f.t. % f.t.	% f.t.
0.1 20.0 35.7 50.0 1.2 30.0 92.4 60.0 6.0 40.0 100 62.82	15.2 15.7 17.8 13.5 15.5 23.0

			- m	DINI I K	OBENZEN	E + PRUPIU
a-Dinitrob	enzene (C ₆	Η ₄ 0 ₄ Ν ₂)	+ Proj		cid	p-Nitroto
Timofeev,	1894					Lecat, 19
%		f.t.				
12.0		13.5				
12.9 13.45		15.5 23.45	i			Name
						Caprylic acid
o-Nitrotol	uene (C ₇ H ₇	0 ₂ N) (b.	t.=22]	1.75) + /	Acids.	Levulinic
Lecat, 194	9					Benzoic
	2 nd comp.		Az	·		acid
Name	Formula	b.t.	%	b.t.	Dt mix.	
Heptanoic acid	C7H1402	222.0	40	218.0	-	p-Nitroto
Levulinic ecid	$C_{\mu}H_{6}O_{3}$	252,0	4	221.55	-0.6 (51%)	Crockford
Chlorero- tonic acid		212,5	72	211.2	-	mo1%
						0.00
o-Nitrotol	uene (C ₇ H ₇	0 ₂ N) + I	3enzo i	c acid		5.95 11.11 16.19
		(C7H60	2)		27.71 31.99 37.96
Crockford	and Hughes,	1930				37.96
tao1%	f.t. E	mo.	L%	f.t.	E	
5.6 -	10.4 - 10.1 -	5. 62	3.2 2.5 3.2	84.3 94.3 102.74	-14.0 -14.7	p-Nitrotol
22.4	16.0 -14 39.9 -14	.0 81	1.5	109,9	-13.5 -13.0	
32.0 42.9	56.6 -13 7 1.1 -14	.8 91 .0 100	0.0	116.8 121. 7 5	-	Crockford
						mo1%
m-Nitrotol	uene (C ₇ H ₇	0 ₂ N) (b.	t.≃ 2 3	0.8)+	Acids.	100
Lecat, 194						89.9 79.8 69.8
						61.2 50.1
	2 nd comp.		Az			39.7
Name	Formula	b.t.	%	b.t.		
Heptanoic acid	C7H1402	222.0	70	200,0		
Caprylic acid	$C_8H_{16}O_2$	238,5	20	229.0	:	
Levulinic acid	C5.H803	252	15	2 29. 5		

oluene ($C_7H_7O_2N$)(b.t.=238.9) + Acids.

949

	2 nd comp.		Az		
Name	Formula	b.t.	%	b.t.	Sat.t
Caprylic acid	C ₈ H ₁₆ O ₂	238.5	38	235.0	-
Levulinic acid	$C_{4}H_{6}O_{8}$.	252	22	236.4	~
Benzoic acid	C7H6O2	250.8	11	237.4	47

oluene ($C_7H_7O_2N$) + Benzoic acid($C_7H_6O_2$)

and Hughes, 1930

f.t.	ЕЕ	mo1%	f.t.	E
51.5	-	42.85	70.3	44.1
48.4	"	53.18	83.1	ti tr
51.2	n	62,50	88.2 94.0	"
$\begin{array}{c} 58.1 \\ 65.0 \end{array}$	11	95.60 100.00	119.3 121.75	
	51.5 50.25 48.4 46.3 51.2 58.1	51.5 50.25 44.1 48.4 " 46.3 " 51.2 "	51.5 - 42.85 50.25 44.1 47.99 48.4 " 53.18 46.3 " 57.69 51.2 " 62.50 58.1 " 95.60	51.5 - 42.85 70.3 50.25 44.1 47.99 77.3 48.4 " 53.18 83.1 46.3 " 57.69 88.2 51.2 " 62.50 94.0 58.1 " 95.60 119.3

uene ($C_7H_7O_2N$) + Salicylic acid $(C_7H_6O_3)$

and Zurburg, 1930

mo1%	f.t.	mol%	f.t.	
100 89.9 79.8 69.8 61.2 50.1 39.7	158.3 152.0 145.8 139.0 131.0 123.9 114.0	29.7 19.5 12.5 5.1 1.9	102.6 88.0 68.3 49.4 50.45	

2, 4-DINITROTOLUENE + BENZOIC ACID

		2,4,6-Tris	nitrotoluen	e (C ₇ H ₅ O ₆ N	s) + Salicylic (C ₇ H ₆ O ₈)	
2,4-Dinitrotoluene ($C_7H_6O_4N_5$		Crockford	l and Zurbu	rg, 1930		
	$(C_7H_6O_2)$	mo1%	f.t.	mo1%	f.t.	
Crockford and Hughes, 1930		100 90	158.3	40.9 30	$120.0 \\ 107.9$	
mol % f.t.	Е	80 70	152.7 147.1 140.6	19.9 10	93.4 76.3	
0.00 69.75 14.3 65.3 26.7 59.8 39.0 72.3	- 59.4 59.4	59.9 55.1	134.0 130.1	3 0	79.0 80.1	
50.0 83.1 60.0 91.6 69.1 99.7 77.8 106.9 85.7 113.3 93.1 118.2 100.0 121.75	59.4 59.4 59.4 59.4 59.4 59.4	benzoic ac	cid (C ₇ H ₃ O ₈	_B N _a)	₃) + 2,4,6-Tri	nitro-
		Burkardt mo1%	and Moore,			
2,4-Dinitrotolucne (C,H ₆ O ₄ N ₂ Crockford and Zurburg, 1930) + Salicylic acid ($C_7H_6O_3$)	0 8 10 20 30	80 75 E 100 150 174	50 60 70 80 90	198 207 214 221 227	
mol% f.t. mol%	f.t.	40	187	100	233	
100 158.3 39.7 91.2 154.3 29.3 84.4 150.5 20.4 74.6 144.0 10.1 64.4 137.2 2.0 48.6 124.5 0	102.3 86.8 66.3	acid (C2	=	, ,) + Trichlorac	etic
						
2,4,6-Trimitrotoluene (C ₇ H ₅ ($^{0}_{6}\mathrm{N_{3}}$) + Benzoic acid ($^{0}_{7}\mathrm{H_{6}O_{2}}$)	100 90.8 82.2 73.3 64.4 55.2	57.3 52.9 46.5 38.2 27.8 13.5	49.5 41.6 31.4 20.2 11.1	5.6 16.1 26.3 33.4 37.8 42.9	
Crockford and Hughes, 1930						
0.00 80.8 13.8 75.5 20.0 70.3 38.9 77.5 50.0 88.6 62.0 103.9	64.5 64.5 64.5 64.5 64.5 64.5	acid (C ₂	-	, , ,	+ Trichlorace	tic
77.6 109.4 85.6 113.8 96.4 110.9	64.5 64.5	mo1%	f.t.	mo1%	f.t	
96.4 119.9 100.0 121.79	5 -	100 91.0 83.9 77.4 70.2 62.3 54.4	57.3 51.6 46.1 39.8 31.6 20.4 6.0-14.	57.8 39.0 30.4 20.3 11.9	21.7 29.8 37.7 45.4 49.9 55.7	

m-Ni trob	enzaldehyde (C7H5O3N		zoic acid	
Passerini	, 1924		(671	1602)	
%	f.t.	E m	in.	tr.t.	min.
0 6.7 13.4 20 26.7 33.4 36.7 40 43.4 46.7 50 66.7 73.4 80.0 87.0 93.4 100.0	58 51 48 57 66 73 77	8 15 " 1	 - - 5 3		15 14 13 12 9 6 3 1
acid (C ₂)	nzaldehyde (0 0 0 0 0 0 0 0 0 0 0 0 0) + Tric	hloraceti	ic
mo1%	f.t.	mo1%	f.t	•	
100 91.4 84.1 75.7 65.5 59.3	57.3 52.2 46.0 37.4 33.6 46.0	52.5 44.6 35.3 21.9 12.2	57. 68. 78. 90. 97. 104.	3	
	eronal (C ₈ H ₅ (Trichlora C ₂ HO ₂ Cl		id
mol%	f.t.	mo1%	f.t.		
100 91.0 82.9 74.4 66.8 57.0	57.9 52.3 45.4 37.3 28.9-32.9 46.1	48.4 38.0 26.1 14.5 0	55.9 66.2 76.9 85.2 94.1		

o-Chlorni	trobenzer	ne (C ₆	H#0 SNC	1) +	Formic	acid
					(CH ₂ 0 ₂	;)
Bruni ar	nd Berti,	1900				
wt%	mo1%	f.t.	wt%		mol%	f.t.
100	100	+7.1	45.3	0	72.68	23.35
99,235	99.772 99.552	6.93 6. 77 5	41.5	0	70.46	23.50 23.75
98.512 97.333	99.552 99.190	6.775 6.57	37.0 32.8	5 0	66.47 60.92	23.75 24.05
96.603	98,983	6,45	32.8 28.7 23.2 20.8	2	58.91	24.10
96.603 94.976 93.176	98.478 97.906	6.17 5.97	23.2	9	51.40 47.44 43.47	24.30 24.55
1 90.967	97.418	5.97 5.70 8.95	18.3 17.1	8	43.47	24.7 24.8
83.63 76.92 72.14	94.474 91.597	15.90 18.2	13.2	6	41.41 34.19	25.3
72.14 67.54	89.65 87.44	$\frac{18.2}{20.1}$	12.6	2 6	33.14 21.65	25.3 25.4 26.7
63.76	85.44	21.3	7.4 5.5 2.7	1	16.48	27.35
57.55 52.57 48.02	81.93 78.76	22.2	2.7 0	4	9.23 0	29.35 32.1
48.92	75.56	22.8 23.1	•		Ü	02.1
o-Chlorni	trobenzen	e (C ₆ I	I ₄ O ₂ NC1) +	Benzoi	c acid
		. •	. ~ -		(C ₇ H ₆ O	
					, , ,	
Lecat, 1	949				·	 -
%			b.t.			
0			246.0	٠.		
33 100			243.0 250.8	AZ		
		- / 6	H 0 NO			
m-Chiorn	i trobenze	ne (C ₆	H ₄ U ₂ NC	1).	-	
į					(C ₇ H ₁ 1	,U ₂)
Lecat,	1949					
%			b.t.			
0	···					
-			235.5 221.5	Az		
100			222.0			
n-Chlorn	itrobenze	ene (C	H, O.N	(1)	(b.t.=2	39.1) +
Acids.			0 4 2	•	,	,
	949					
	nd	m17		Az		
	2 (0	mp.		AZ		
Name	Formul	a l	o.t.	%	b.t.	Sat.t.
Caprylic acid	C ₈ H ₁₆	02 2	38.5	-	235.5	-
Levulinic acid	C5H80	s 25	52	22	237.0	-
Benzoic acid	C7H60	2 25	50.8	16	237.7	5 86

1014

METHYL ALCOHOL + PHENOL

	1			
	Methyl a	lcohol (C	H ₄ 0) + Res	sorcinol (C ₆ H ₆ O ₂)
M. TWO HYDROXYL DERIVATIVES .	Shakhpar	onov and M	artinova, 1	953
	mol%		p	
XXXVII. TWO HYDROXYL DERIVATIVES OF DIFFERENT SERIES		0°	20°	25°
	0	29.50	96,20	123,90
	2 5	28.37 27.42	93.30 91.85	120.90 117.50
Methyl alcohol (CH _h 0) + Phenol (C ₆ H ₆ 0)	10	24.70 21.62	80.40	104.00
, , , , , , , , , , , , , , , , , , ,	15 20	20, 25	71.10 63.90	93.40 82.65
Maria I man Calman and a second	25	18.40	60,30	77.80
Weissenberger, Schuster and Schuler, 1924	mo1%		à (mg/	(cc) in V
mol% p mol% p	111012	0°	20°	25°
15°		0.05550	0.1/00	0.0180
77 8.5 40 43 66.7 14 33.3 48	0 2 5	0.05550 .05330	0.1683 .1632	0.2139 .2081
57 31 28. 6 51	5 10	.05160 .04650	.1610 .1408	. 2024 . 1794
50 36 0 71.4	15	. 04075	. 1263	. 1609
	20 25	.03810 .03660	.1119 .1057	. 140 7 . 1340
Weissenberger, Henke and Sperling, 1925	Taimni,	1929		
mol% p mol% p	%		η (wat	or=1\
2 0°	~	35°	30°	25°
75 11.1 40 44.2 60 21.4 25 63.6				· · · · · · · · · · · · · · · · · · ·
60 21.4 25 63.6 50 31.7 0 96.0	59.8 61.6	0.1601	0.1726 .2006	0.2187 .2550
	63.3 64.5	. 1823 . 2022	. 2293	. 2975
	04.0		. 2575	.3332
Weissenberger, Schuster and Schuler, 1924	50.5	20°	15°	10°
mol% n o mol% n o	59.8 61.6	0.2818 .3280	0.3682	0.4854 .5883
(water=1) (water=1)	63.3 64.5	.3896 .4404	0.5216	-
71.3 5.15 0.576 40 2.06 0.513				
66.3 4.46 .578 33.3 1.66 .500	Timofeev	. 1905		
57 3.27 .557 50 2.74 .541	**************************************	,	U	
	<u></u>	20°	· · · · · · · · · · · · · · · · · · ·	
	,	203	.	
Methyl alcohol (CH _u O) + Pyrogallol (C ₆ H ₆ O ₃)	0 34		0.600 .570	
		· · · · · · · · · · · · · · · · · · ·		······································
Weissenberger, Schuster and Henke, 1925		8		Q di1.
14	initia	<u> </u>	final	(by mole resorc.)
	0		1.56	0
20°	1.56 3.1 13.7		$\substack{3.10\\13.7}$	0 -0.27
28.6 49.4 25 57.2	13.7 16.0		16.0 25.9	-0.66
25 57.2 22.2 64.0	25.9		28.1	-0.88 -1.35
	28.1 32.4		32.4 34.0	-1.39 -1.66
	0			
	0.94 3.75		0.94 3.75	0
	18.4 44.1		18.4 20.0	-0.43 -0.86
	44.1		44.6	-2.08

Methyl alcohol ($CH_{14}O$) + o-Cresol (C_7H_8O)	mol% n o mol% n
N to all ones Salvadan and Mainage 1005	(water=1) (water=1)
Weissenberger, Schuster and Wojnoff, 1925	
mol% p mol% p	66.7 6.01 0.521 28.6 1.61 0.420 50 4.05 .481 25 .48 .431
15° 66.7 15.0 28.6 49.0 50 29.0 25 53.0 40 37.5 22.2 56.7 33.3 43.9	50 4.05 .481 25 .48 .431 40 2.72 .448 22.2 .32 .415 33.3 2.01 .431
mol% η σ mol% η σ (water=1) (water=1)	Methyl alcohol ($CH_{k}O$) + Thymol ($C_{10}H_{1k}O$)
15°	
66,7 4,88 0,550 28 1,63 0,429 50 3,07 ,493 25 ,44 ,413	Teitelbaum, Gortalova and Gamelina, 1950
40 2.31 .466 22.2 .28 .400	mol% d n mol% d n
33,3 1,88 .447	20°
Methyl alcohol (CH ₄ O) + m-Cresol (C ₇ H ₈ O)	100 0.8560 826 30 0.8315 774 80 .8526 799 20 .8325 732 60 .8467 799 0 .7923 578 40 .8378 793
Weissenberger, Schuster and Wojnoff, 1925	7
mol% p mol% p	Zoppellari, 1905
15°	% t d n _D
66.7 15.6 28.6 52.0 50 29.2 25 55.1 40 40.0 22.2 57.0 33.3 47.7	7.5875 7.7 0.81581 1.34607 14.1324 7.1 .82799 .35766 22.6825 9.7 .83937 .37183 34.3995 16.3 .85506 .39075
mol% n o mol% n o (water=1) (water=1)	
15°	
66.7 2.47 0.508 28.6 1.20 7 0.436 50 1.96 .482 25 1.42 .432 40 1.57 .463 22.2 1.30 .422	Methyl alcohol ($ ext{CH}_4 ext{O}$) + p-Chlorphenol ($ ext{C}_6 ext{H}_5 ext{OCl}$)
33.3 1.36 .448	Weissenberger, Schuster and Lielacher, 1925
	mol% p
	20°
Methyl alcohol (CH ₄ O) + p-Cresol (C ₇ H ₈ O) Weissenberger, Schuster and Wojnoff, 1925	10 82.0 20 65.9 30 50.0 40 34.0 50 25.3
7.4	20,0
mo1% p mo1% p	
15° 66.7 16.4 28 48.2 50 31.0 25 52.4 40 37.9 22 55.9 33.3 43.4	

Methyl alcohol ($\text{CH}_{\text{4}}\theta$) + Picric acid ($\text{C}_{6}\text{H}_{3}\,\text{N}_{3}\,\theta_{7}$)

Vandenberghe, 1899

%	D b.t.	d (at b.t.)
5.00 9.15 12.62 19.62	+0.175 .338 .495 .72	0.773 .794 .82 .854

P.P. and M.S. Kosakewitsch, 1933

mo1%	đ	σ	
	13°		
0 0.53 1.10 2.13	0.747 .811 .833 .859	23.30 23.40 23.71 24.12	

Methyl alcohol (CII_40) + α -Naphthol ($\text{C}_{1\,0}\text{II}_80$)

Weissenberger, Schuster and Mayer, 1924

mo1%	р	mo1%	p	
	2	20°		
33,2 29,4 28,6	53 63 66	25 20.8 18	71 76 79	
		ŋ	σ	·
		(water=]	L)	
		20°	······································	
33.2 24.7 20.8 18		3.1 1.8 1.5 1.3	0.496 .456 .428 .404	

Ethyl alcohol (C_2H_60) + Phenol (C_6H_60) Weissenberger, Schuster and Schüler, 1924

mol%	p	mo1%	p	
	1.	5°		
66.2 56.2 49.3	6.1 9.4 13	39.1 33.3 24.4	16 19 24	

Weissenberger, Henke and Sperling, 1925

mo1%	p	mo1%	p	
	20)		
7 5	4.4	40 25	20.9	
60 50	9.8 14.7	25 0	29.9 44.0	

Paterno, 1896

%	D f.t.	%	D f.t.	
99.66	-0.52	92.81	12.11	
99.07	1.44	91.57	14.43	
97.97	3.26	90.50	17.50	
97.20	4.54	88.85	20.25	
95.97	6.86	85.44	27.05	

Perrakis 1925

mo1%	f.t.	mo1%	f.t.
100 92.71 83.85 80.62 74.91	+39.9 32.55 22.8 17.1 9.9	69.09 61.00 59.00 50.77	+2.6 -4.7 15.2 -30.0

Bedson and Williams, 1881

%	t	d	%	t	d	
0 20.64 34.84	20 25 20 25 20 25 20 25	0.8019 0.7976 0.8540 0.8487 0.887 0.883	48.85 100	20 20 25 40 45	0.9213 0.8019 0.7976 1.0591 1.0545	

Weissenberger, Schuster and Schüler , 1924	% Q dil. initial final (by mole phenol)
mol% η mol% σ (water=1) (water=1)	0 0.5 -0.60 0.5 2.9 -0.57 2.9 5.2 -0.72 5.2 7.4 -0.76
76.5 6.21 72.5 0.449 65.9 4.10 65.8 .447 56.6 3.25 56.2 .441 46.7 2.52 46.3 .431 40 2.12 39.2 .427 33.3 1.82 33.2 .422 22.8 1.55 24.2 .414	5.2 7.4 -0.76 54.1 55.1 -1.62 55.1 56.1 -1.70 56.1 57.1 -1.68
	Ethyl alcohol ($C_2 II_6 O$) + Pyrocatechol ($C_6 II_6 O_2$)
Morgan and Scarlett jr, 1917	Weissenberger, Henke and Bregmann, 1925
% o % o	mol% p mol% p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 14.8 20 25.2 34 15.0 14 30.8 25 22.5 0 36.77
25.40 23.190 0 23.090 0 20.367	mol% η σ mol% η σ (water=1) (water=1)
Bedson and Williams, 1881	17°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.1 7.8 0.40 57.8 4.4 0.39 60.6 4.6 .39 57.1 4.3 .38 59.9 6.3 .40 56.2 3.6 " 59.5 6.8 .40 55.6 3.2 " 59.2 6.1 .39 54.9 2.9 " 58.5 5.2 .39
34.84 20 .41584 .42578 .43147 25 .41371 .42348 .42952 48.85 20 .43680 .44827 .45523 100 40 1.53618 1.55496 - 45 .53386 .55263 -	Walker, Collett and Lazzell, 1931
Hartwig, 1891	mol% f.t.
mol % ×. 1010 τ.105 18° 0 9.0 187.9 0.17 - 20.86	100.00 104.5 96.05 101.7 69.84 81.5 59.10 67.9 45.45 43.1
0.7 10.1 34.41 61.6 - 34.41 100 0.1269 -	Ethyl alcohol (C_2H_6O) + Resorcinol ($C_6H_6O_2$)
Timofeev, 1905	
g U	weissenberger, Henke and Bregmann, 1925 mol% p mol% p
0 0.5933	17°
8 0.576 57.1 0.512	34 12.6 17 25.4 29 16.0 14 26.8 25 18.6 11 29.0 20 22.3 0 36.77

ETHYL ALCOHOL + HYDROQUINONE

Shakhparonov and Martinova, 1953	Speyers, 1902
mo1% P	mol% t d
0° 15° 20° 25°	sat.sol.
0 12.75 32.60 43.92 59.07 2 12.25 32.22 43.64 58.72 5 11.52 30.83 41.95 56.91 10 10.06 27.50 37.55 51.12 20 8.11 21.57 29.22 39.56 30 5.01 15.17 20.63 28.02	34.37 0.0 1.033 37.69 14.1 .036 41.84 36.1 .054 47.07 62.5 .077 50.03 81.4 .107
Speyers, 1902	Weissenberger, Henke and Bregmann, 1925
mol% f.t.	mol% η σ mol% η σ
34.37 0.0 38.69 9.2	(water=1) (water=1)
41.84 31.8 50.6 47.07 73.1 50.03	36 26,3 0.41 22 7.1 0.39 34 19.6 .41 20 6.0 .38 33 16.8 .40 18 5.1 .38 29 12.6 .40 1738
N	
Mortimer, 1923 mol% f.t. mol% f.t.	Ethyl alcohol (C_2H_60) + Hydroquinone ($C_6H_60_2$)
35.4 0 50.7 60 38.9 20 64.0 80 43.8 40 100.0 110.2	Walker, Collettt and Lazzell, 1931 mol% f.t. mol% f.t.
Walker, Collettt and Lazzell, 1931	100.00 172.9 44.33 115.1 93.85 167.9 34.71 91.2 67.61 146.0 22.18 43.0 57.05 134.5
mol% f.t.	
53,13 60,1 67,85 83,8 81,92 95,8 100,00 109,4	Ethyl alcohol (C_2H_6O) + Pyrogallol ($C_6H_6O_3$)
	Weissenberger, Schuster and Henke, 1926
Shakhparonov and Martinova, 1953	mol% p n σ
mo1% d(V)(mg/cc) in V 0° 15° 20° 25°	(water=1) 20°
0 0.03450 0.0837 0.1105 0.1478 2 .03310 .0826 .1096 .1452 5 .03105 .0790 .1056 .1408 10 .02720 .0705 .0945 .1266 20 .02190 .0552 .0726 .0979 30 .01351 .0389 .0519 .0694	28.6 23.5 1.43 0.428 25 25.3 1.42 .407 22.2 27.2 0.83 .388 20 29.8 0.65 .363

Ethyl alcohol	1 (C ₂ H ₆ O)	+ o-Cre	sol (C ₇ H ₈ O)	Perrakis,	1925			
 Weissenberger	r and Piatt	i, 19 2 4		mol %		v		Q mix
mo1%		mo1%	p		cal/g	cal	/mole	
89.3 73.5 66.7 62.1 49.5	2.8 5.3 7.3	43.5 37.4 33.3 25 22.2	18.8 22.8 26.0 29.0 30.4	100 80.09 76.81 63.01 54.39 47.92 41.45	0.505 0.528 0.529 0.536 0.541 0.544	54. 50. 49. 45. 41.	595 130	0.191 0.216 0.327 0.385 0.424 0.431
Perrakis, 192	25			33.62 23.82 17.16	0.553 0.559 0.564	36. 33. 31. 29.	970 944	0.410 0.308 0.239 0.159
mo1%	f.t.	mo1%	f.t.	9.31 7.00	0.568 0.571 0.580	28. 26.	747	0.127
100 91.31 83.00 76.89	29.05 22.60 14.00 8.3	71.10 65.84 56.39 48.40	+1.7 -4.0 -17.2 -31		ohol (C ₂ H ₆ 0			
mo1%	d	Dv	(cc/mole)	Leng 1 are	onor (Canto) + m C1	esor (C ₉)	180)
	30°			Weissenher	ger and Piat	ri. 1924		
100 76,96	1.0365 1.0053		- -0.447	mo1%	p	mo1%		· · · · · · · · · · · · · · · · · · ·
63,35 52,06 39,70 39,10 25,55 25,25 7,01	0.9825 .9603 .9312 .9297 .8906 .8896 .8210 .7868		.653 .770 .796 .794 .725 .719 .351	80 66.7 61.7 51.8 42.5	6.0 9.2 11.4 15.8 20.1	36.4 33.3 28.6 25	24.3 26.0 28.1 29.2	
Weissenberger	and Piatti	i, 1924			· · · · · · · · · · · · · · · · · · ·		 ,	
) (water=1;)	mo1%	η (water=1)	Piatti, 19	930-31 b.t.	mo1%	b. t.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18° 48 20 14 51	23 19.1 15.5 5.78	1.95 .83 .65 .36	100 90 80 70 60 50	201.5 176.5 152.4 130.5 115.8 105.4	40 30 20 10 0	97.2 90.9 85.8 81.1 78.3	
	(water=1)	mo1%	σ (water=1)				- 	
	18	•		Piatti, 1				
66.7 56.2	.459 .446 .440	29 23 19.1	0.418 .409 .407	mo1%	η (water=1)	mo1%	n (wate	r=1)
40.3 ,	.434 .431 .425	15.5 0	.399 .301			8°		
=======================================	, T &U			73 59.2 43.2 35.2	6.29 4.56 3.10 2.60	27.9 21.4 15.4 0	2.18 1.82 1.51 1.14	

Piatti, 1930-31	Ethyl alcohol (C_2H_6O) + Cresol (C_7H_8O)
mol% n 0° 10° 20° 30° 40° 50° 60°	Berl and Schwebel, 1922
100 95000 43900 20800 10000 6180 4380 3370	% p % p
90 59400 17100 12500 6990 4930 3520 2810 80 36600 12500 9180 5570 4070 2990 2400	0° 20°
70 20700 9450 6870 4580 3380 2560 2060 60 12500 7500 5270 3760 2870 2220 1800	9.99 0.62 1.43 0.21
50 8730 5980 4220 3140 2450 1940 1610	12.81 1.03 5.73 1.23
l 30 4940 3320 2660 2110 1770 1480 1280 l	18.37 1.59 12.24 3.30 24.23 2.40 19.87 6.92
20 3510 2600 2110 1700 1460 1240 1120	24.07 8.15
10 2510 1910 1700 1420 1200 1010 991 0 1920 1570 1280 1080 925 800 725	
Weissenberger and Piatti, 1924	Ethyl alcohol (C_2H_6O) + Guaiacol ($C_7H_8O_2$)
mol% σ mol% σ	Weissenberger, Henke and Bregmann, 1925
(water=1) (water=1)	mol% p n o
18°	(water=1)
100 0.437 35.1 0.407 73 .430 21.4 .390	80 7.8
∥ 58.2 .425 15.3 .377 ∣	67 12.0 5.2 0.55 50 14.5 4.1 .50
52.1 .421 0 .301 43.2 .415	40 21.8 3.3 .47
	34 25.0 3.0 .45 29 27.0 2.6 .43
Ethyl alcohol (C ₂ H ₆ O) + p-Cresol (C ₂ H ₈ O)	
Confo / F profesor (Congo)	
Weissenberger and Piatti, 1924	Ethyl alcohol ($C_2 H_6 O$) + Salol ($C_{13} H_{10} O_3$)
mol% p mol% p	Campetti, 1917
18°	t Ü
85.5 4.0 43.1 19.2	0%
78.1 5.5 36.4 24.0 66.7 8.0 33.3 26.1	40 0.6393
57.5 12.0 25 29.7 50 15.3 0 39.05	58 0.7024
	52,13%
mo1% η mo1% η	40.30 0.5540 44.12 0.5572
(water=1) (water=1)	
18°	87.55%
73 7.36 38 2.05 62.1 5.05 21.1 1.70	40.06 0.4418 44.12 0.4516
62.1 5.05 21.1 1.70 52.1 3.54 15.4 1.14	100%
35.2 2.46	100% 44.1 0.3908
mol% σ mol% σ	U,0908
(water=1) (water=1)	
18°	
100 .0.437 38 0.396 73 .428 21.1 .388	
52.1 .418 15.4 .383	
35.2 .405 0 .301	

ETHYL ALCOHOL + SALICYLIC ALDEHYDE

Ethyl alcohol	(C_2H_60)	+	Salicylic	aldehyde
					(C ₇ H ₆ O ₂)	

Weissenberger, Henke and Bregmann, 1925

mo1%	p	η (wate	er=1)
	1	7°	
67 50 40 34 29 25 20	16.3 27.3 28.6 29.8 30.7 31.3 32.4	2.1 1.8 1.7 1.6 0.75	0.52 .50 .49 .47 0.45

Ethyl alcohol (C_2H_60) + o-Nitrophenol ($C_6H_50_3\,M$)

Carrick, 1922

%	f.t.	%	f.t.
100 91.22 86.68 66.67 41.03	44 41.3 37.3 34.3 30.2	25.54 18.09 15.64 11.50 9.22	23.1 17.3 12.4 6.7

Ethyl alcohol (C_2H_60) + m-Nitrophenol ($C_6H_50_3N$)

Carrick, 1922

%	f.t.	%	f.t.	
100 91.72 89.49 84.71 80.87 77.54	93 85.0 77.2 65.5 57.5 50.7	75.20 69.03 64.75 58.94 53.87	45.5 30.5 23.4 11.0 1.0	

Ethyl alcohol (C_2H_60) + p-Nitrophenol($C_6H_50_3N$)

Carrick, 1922

- %	f.t.	1/2	f.t.	
100 91.05 88.89 84.50 80.60 76.16	114 89.8 81.1 71.2 62.7 52.7	73.61 71.01 65.96 61.70 57.23 53.65	45.2 38.6 26.1 18.5 10.0	

Ethyl alcohol ($\text{C}_{\text{2}}\text{H}_{6}0$) + Picric acid ($\text{C}_{6}\text{H}_{3}\,0_{7}\text{N}_{3}$)

Vandenberghe, 1899

%	D b.t.	d (at b.t.)
2.25	+0.115	0.747
6.03	.395 .5	.767
9.78	.5	.791 .835 .874
16,44	.815	. 835
21.70	1.04	. 874

Ethyl alcohol (C_2H_60) + 4-Brom-l-naphthylamine. 2,6-Dinitrophenol ($C_{16}H_{1\,2}O_5N_3Br$)

Hertel and Frank, 1934

ner cer un	d ITunk, 17	, T		
%	f.t.	%	f.t.	
red fo	rm	yello	w form	
6.2 11.0 26.1 40.5 46.2 56.5 100.0	-72 -48 0 +24 30 40 84.5	2.9 6.1 12.9 23.1 30.6 38.1 50.0 100.0	-71 -32 0 +23 32 40 50 91.5	

Ethyl alcohol (C_2H_60) + o-Chlorphenol (C_6H_50C1)

Peel, Madgin and Briscoe, 1928 50 vol% Dv= -2.2% Dt= +14.25°

Propyl alcohol	($C_3 H_8 O$)	+	${\tt Resorcinol}$	(C6H6O2)	
----------------	---	-------------	---	---	--------------------	---	--------	---	--

Timofeev, 1905

		Q diss.
initial	final	(by mole resorc.)
0	6.2	-0.33
6.2	11.6	-0.62
11.6	16.5	-0.92
16.5	20.8	-1.07
20.8	24.8	-1.28
24.8	28.3	-1.48

Propyl alcohol (C_3H_80) + Picric acid ($C_6H_30_7N_3$)

Vandenberghe, 1899

	.,		
%	D h.t.	d (at b.t.)	
3.22 5.53 8.35 11.89 18.94 23.54	+0.24 .385 .575 .815 1.24 1.49	0.748 .758 .771 .789 .828 .858	

Isopropy1 alcohol (C_3H_80) + Phenol (C_6H_60)

Weissenberger, Henke and Sperling, 1925

mo1%	р	
	20°	
75 60 50 40 25	1.8 5.2 10.6 16.2 26.0	

Butyl alcohol ($C_4H_{10}0$) + Resorcinol ($C_6H_60_2$)

Shakhparonov and Martinova; 1953

mo1%	I)	d (in	mg/cc) in V
	20°	25°	20°	25°
0 2	4.80 .70	6.98 6.99	0.01950 .01910	0.02790 .02795
5 10	. 64	5.78 6.11	.01885	.02710 .02445
15 20 25	3.76 .49 .26	5.60 5.17 4.61	.01530 .01420 .01325	.02240 .02065 .01842
30	2.87	3.90	.01168	.01560

Isobuty1 alcohol ($C_4H_{10}O$) + Phenol (C_6H_6O)

Weissenberger, Henke and Sperling, 1925

mo1%	p	
20)°	
75	0.5	
60	1.6	
75 60 50 40 25	1.6 2.6 3.6 5.4	
40	3.6	
25	5.4	

Trimethylcarbinol ($C_4H_{10}O$) + Phenol (C_6H_6O)

Paterno and Montemartini, 1894

%	f.t.	R	f.t.
0 1.224 3.054 6.303 9.794 12.366 15.003 16.054 17.438 18.317 19.197 20.110 20.942 23.413	18.79 17.68 15.89 12.44 8.76 5.425 3.235 3.555 5.710 6.465 7.785 8.735 9.415 12.085	25. 326 27. 112 28. 948 30. 354 33. 085 78. 995 80. 943 82. 457 84. 196 88. 661 91. 827 97. 135 99. 030	13.49 14.87 16.15 16.62 17.74 3.89 6.075 9.08 14.45 (2+1) 21.77 26.85 and 33.905 36.03 37.07 (1+2)

Paterno	and	Ampola.	1897
---------	-----	---------	------

%	f.t.	E	%	f.t.
0 1.91 5.49 8.96 12.62 17.10 18.10 20.28 23.05 29.23 30.13 34.17 35.08 37.31 39.46 41.90 42.77 45.77 45.77 45.75 51.49 551.49 54.18 (2+1)	24, 95 23, 38 19, 70 15, 86 11, 25 9, 65 10, 69 13, 66 16, 21 18, 85 20, 60 19, 95 22, 60 23, 10 23, 28 23, 11 23, 29 22, 54 21, 80 21, 60 20, 07 18, 17 16, 44 15, 44 (1+2)	8.34 8.14 	56. 29 56. 58 58. 06 59. 34 59. 45 60. 57 60. 92 62. 12 62. 29 63. 36 64. 42 65. 83 67. 34 67. 34 71. 24 72. 73 74. 66 75. 44 76. 99 77. 85 79. 14 80. 78 100. 0	13.10 12.85 10.95 9.34 10.07 7.54 10.79 4.48 12.05 13.13 12.99 13.68 14.17 14.83 15.56 15.66 15.75 15.54 15.14 17 14.04 9.30 12.24 40.87

Paterno	and Mie	li, 1908			
%	d		%	d	
	2 5°	46°	 	2 5°	46°
100.00 79.63 48.25	1.0032 0.9105	1.04546 0.9852 0.8918	29.23 24.87 0.00	0.8571 .8442 .78248	0.8375 .8238 .7561

Trimethylcarbinol ($C_u H_{1\,\,0} 0$) + Pyrocatechol ($C_6 H_6 0_2$)

Kremann and Wlk, 1919

%	f.t.	E	%	f.t.	Е
0 4.4 8.4 12.8 17.6 23.4 27.9 32.1 37.6	23 19.8 16 13 19 23 26.5 28.7	9.5	52.1 54.8 55.7 57.9 58.4 58.6 61.1 63.6 64.1	29 35 39.5 41 39 43.2 51 59	24.3
41.6 42.9 44.8 48.0 50.0 50.6 (2+1)	29 29 28 26 26 26,5	24.5 24.3	69.1 74.9 79.2 84.2 93.0 100	68.9 69.7 81 92 99.5 103	- 69 " - -

Trimethylcarbino1 ($C_{\mu}H_{10}0$) + Resorcino1 ($C_{6}H_{6}0_{2}$)

Kremann and Wlk, 1919

	f.t.	E	%	f.t.	Е
0	23	_	56.9	45.8	
4.3	20.6	_	57.9	45.8	-
8.8	13.7	9	58.5	45.7	-
12.5	12. 3	9	59.8	45.8	-
18.9	24	-	63,9	5 3	45.5-45.1
22.9	29.9	-	65.0	53.5	-
28.8	36.9	-	65,4	58	45,5-45,1
32.6	42.8	-	68. 7	69	-
33.8	43	-	69.1	68	
37.7	46.2	-	70.4	70	43.5
40.6	47.3	-	71.8	7 3.4	43.5
40.8	46.9	-	73.1	77. 5	_
42.7	47.3	-	76.4	82.5	43.5
45.3	47	-	80.3	88.5	43.5
47.5	46.5		82.0	91	-
49.4	44.8	43.5	89.3	100.5	-
49.7	45.1	43.5	95.3	106.5	-
52.6	43.5	-	100	109	-
53.5	44	-			
54.8	45	-	(1+1)	(2+1)	

Trimethylcarbinol ($C_uH_{1\ 0}O$) + Hydroquinone ($C_6H_6O_2$)

Kremann and Wik, 1919

%	f.t.	Е	R	f.t.	Е	
100 86.5 71.6 21.8 16.8	171 168 167 72 59	-	12.0 5.8 2.2 0	54 41 22.5 23	22 22	

Trimethylcarbinol ($C_4H_{1\ 0}0$) + Pyrogallol ($C_6H_60_5$)

Kremann and Wlk, 1919

%	f.t.	E	%	f.t.	E	
100	126		36.9	54.2		
87.6	112	_	31,6	51.9	_	
83.8	108.5	_	28.1	49.1	-	
76.9	99.5		24.1	45.5	-	
72.2	94	54.2	21.3	43	-	
65.7 59.1	84 75,2	_	$\frac{18.8}{15.5}$	40 35,5	-	
54.0	63.5	54.2	12.5	30	16	
48.5	55.7	54.2	10.9	27.5	'n	
44.8	56.2	-	5.8	18.1	11	
41.8	55.9	-	1.8	22.1	n	
41.6	55.5	-	0	2 3	-	
(2+1)						

Trimethylcarbinol ($C_{\mu}H_{10}0$) + Thymol ($C_{10}H_{1\mu}0$)

Paterno and Ampola, 1897

%	f.t.	%	f.t.	
0.0 1.01 3.47 7.56 10.43 13.51 16.48 19.31 20.26 23.94 24.41 30.01 34.10	24.97 24.47 22.97 20.02 17.87 15.47 12.16 9.87 6.74 2.31 -2.27 -7.17 -12.82 below -20	72.13 74.75 78.28 79.98 83.55 86.87 90.54 95.90 99.18 100.0	-3.72 +9.28 +15.60 18.84 25.33 31.11 37.71 43.89 48.15 49.12	

Trimethylcarbinol	(CuH100)	+	o-Nitrophenol
·					$(C_6H_5O_3N)$

Kremann, Mauermann and al., 1923

Ж	f.t.	E	76	f.t.	Е
100.0	45	_	48.34	36	_
90.0	43	-	43.36	35	_
84.90	41	11	42.24	34.5	11
70.25	37	ū	36.72	32	- 11
60.00	32	tr	28.25	26	
55.14	30	17	15.72	16	11
54.90	33	31	4.45	18	"
50.74	33 35	-	0.00	21	_
48.39	36	_	0.00		
	50				
(2+1)					

Trimethylcarbinol ($C_4H_{1\,0}O$) + m-Nitrophenol ($C_6H_5O_8N$)

Kremann, Mauermann and al., 1923

%	f.t.	E	%	f.t.	E
100	95	_	42.18	32	1
92.03	87	-	40.00	30	1
80.65	74	28	33.16	22	1
75.75	67.5	28	28.54	15.5	-
66.04	52	_	23.18	7	1
59.53	35	28	17.60	5	1
53.26	32	28	11,20	13	-
49.84	34	-	6.66	18	-
44.91	34	-	0	24	-
(2+1)					

Trimethylcarbinol ($C_{\rm h}H_{1\,0}0$) + p-Nitrophenol ($C_{6}H_{5}0_{3}\,N$)

Kremann, Mauermann and al., 1923

%	f.t.	Е	%	f.t.	Е
100 93.07 84.36 76.90	114 103 90 73	- - 23	42.32 38.60 38.35 35.64	35 32.5 32 30	- 7 -
68.30 56.82 56.66	53 34 30.5	# # #	32.16 28.00 22.19	27 22 14	7 - -
53.64 47.8 44.84 (2+1)	30 3 7 36	- 7 -	17.93 9.70 0	8 17 24	7

Trimethylcarbino1 ($C_uH_{1\,\,0}0$) + 2,4-Dinitropheno1 ($C_cH_uO_5N_2)$

Kremann, Mauermann and al., 1923

%	f.t.	E	%	f.t.	E
100	111	_	49.21	82	20
91.32	99	-	40.27	77	11
88.81	94.5	85	31.38	69	11
86.2	89.0	85	17.73	55	tr
82.75	85.0	-	9.64	39.5	11
78.07	87.0	-	7.08	34	71
72.52	89.0	-	3, 2 3	20	11
63.18	88.0	-	0	24	_
(1+1)					

Trimethylcarbinol ($C_{4}H_{10}0$) + α -Naphthol ($C_{10}H_{8}0$)

Kremann and Wlk, 1919

%	f.t.	E	%	f,t.	
100	92.5	-	44.7	-2.0	
93.6 87.8	87.9 79	-	40.2 38.9	7.5 10.5	
81.7 84.2	71 56.8	-	35.5 31.3	10.0 -5.5	
66.5 59.9	36.5 16	-	28.5 21.1 13.8	+3.2 5.0 11.2	
58.5 58.1	11.4 +8 -1.8	-3 -3	7.2 3.2	17.1 20.8	
54.3 54.3	+0.7	-3	0.2	+23	
49.9 48.6	+1.0 +0.9	_	(2+1)		

Trimethylcarbinol ($C_4H_{10}0$) + β -Naphthol($C_{10}H_80$)

Kremann and Wlk, 1919

%	f.t.	Е	%	f.t.	E	
100	122	_	46.3	24	_	
95 .7	116	-	43.3	23.5	-	
90.5	109.5	-	41.6	21.5	-	
85.2	101.9	-	33.1	14	-	
78.5	93.5	-	25.9	8	4	
74.4	86	-	21.2	8 5 7.9	4	
66.2	69	-	17. 3	7.9	4	
59.9	54.3	23	15.3	11.1	_	
55.5	39.5	23	11.8	13.5	-	
55.1	40	-	8.6	16	-	
50.8	2 3.5	-	6.6	18	-	
50.3	23.5	-	3.3	20.7	-	
46.6	24	-	0	23	-	
(2+1)						

Heptanol (C ₇ H ₁₆ O) + Phenol (C ₆ H ₆ O)	Decanol ($C_{10}H_{22}0$) + Thymol ($C_{10}H_{14}0$)
Lecat, 1949	Lecat, 1949
% b.t.	% b.t.
0 176.15 72 185.0 Az 100 182.2	0 232.8 58 234.7 Az 100 232.9
Octylalcohol ($C_8 H_{18} O$) + PhenoI ($C_6 H_6 O$)	Decanol ($C_{10}H_{22}0$) + o-Nitrophenol ($C_6H_50_5N$)
Lecat, 1949	Lecat, 1949
% b.t.	% b.t.
0 195.2 8 195.4 Az 100 182.2	0 232.8 90 216.5 Az 100 217.2
Octylalcohol ($C_8H_{18}O$) + o-Bromphenol (C_6H_5OBr)	Tetradecanol ($C_{14}H_{30}0$) + m-Cresol ($C_{7}H_{8}0$) Othmer, Savitt and al., 1949 (fig.)
% b.t.	mol% (at b.t.)
0 195.2 50 204.0 Az 100 194.8	L V 20 57 40 80 60 90
0 ctanol-2 ($C_8H_{18}O$) + Phenol (C_6H_6O)	80 97
Lecat, 1949	Tetradecanol (C_{1} $_{4}$ H_{3} $_{0}$ 0) + p-Cresol (C_{7} H_{8} 0)
% b.t.	
0 180.4 64 185.2 Az	0thmer, Savitt and al., 1949 (fig;) mol% (at b.t.)
100 182.2	L V
Octanol-2 ($C_8H_{18}O$) + o-Chlorphenol (C_6H_5OC1)	20 43 40 76 60 88 80 95
Lecat, 1949	
% b.t.	
0 180.4 25 183.5 Az 100 175.7	

Glycol ($C_2H_6O_2$) + o	o-Cresol (C ₇)	н _в о)		Propoxyglycol	$(C_5H_{12}O_2) + Phenol (C_6H_6O)$
Kurtyka, 1956				Lecat, 1949	
Az : 26.0% (37.98 m	101%) 189	.52°	S	%	b.t.
Glycol (C ₂ H ₆ O ₂) + m				0 90 100	151.35 182.65 Az 182.2
Othmer, Savitt and al mol% L	(at b.t.)	g.)		Propoxyglycol	($C_5H_{12}O_2$) + Ethylactate ($C_5H_{10}O_3$)
20	22 27			Lecat, 1949	
27 40 60	35		¥	%	b.t.
80	52 78			0 5 100	151,35 151,33 Az 154,1
Glycol ($C_2H_6O_2$) + p-	Cresol (CpH	60)	ľ		
Othmer, Savitt and al.	. 1949 (fig	.)		Butoxyglycol ($C_6H_{14}O_2$) + Pheno1 (C_6H_6O)
	at b.t.)	·	∦	Lecat, 1949	
L	v			8	b.t.
20 28 40 60 80	21 28 46 52 73			0 63 100	171.15 186.35 Az 182.2
Lecat, 1949 Glycol (C ₂ H ₆ O ₂) (b.	.t.=197.4) +	Ph enols		Butoxyglycol (C ₆ H ₁ ₄ O ₂) + o-Cresol (C ₇ H ₈ O)
2 nd comp,	Az			Lecat, 1949	
Name Formula	b.t. %		ot mix Sat.t.	%	b.t.
o-Cresol C ₇ H ₈ O m-Cresol C ₇ H ₈ O	191.1 73 202.2 25 42		4.5 3.3	0 87 100	171.15 191.35 Az 191.1
p-Cresol C ₇ H ₈ O	201.7 45	195.5	_		
, ,	226.8 11	197.2	-	Propylenglycol	$(C_8H_8O_8) + o-Nitrophenol$
Thymol C ₁₀ H ₁₄ 0		195.5	-		$(C_6H_5O_3N)$
5	205.05 54	190.4	-	Lecat, 1949	
Guethal CaH 1002	216.5 37	193.0	-	%	b.t.
Monomethyl- C ₇ H ₈ O ₂ resorcinol	243.8 20	195.5	-	0 38 100	187.8 186.0 Az 217.2
Eugenol C ₁₀ H ₁₂ O ₂	254.8 10	196.8	-		
o-Nitror C ₆ H ₅ O ₃ N phenol	217.2 51	189,35	-		

Pinacol (C ₆ H ₁₄ O ₂)	+ Phenol (C ₆ H ₆ O)
Lecat, 1949	
Я	b.t.
0 71 100	174.35 185.5 Az 182.2
Pinacol (C ₆ H ₁ , 0 ₂)	+ o-Cresol (C ₇ H ₈ O)
Lecat, 1949	
% 	b.t.
0 92 100	174.35 191.5 Az 191.1
Pinacol (C ₆ H ₁₄ O ₂) Lecat, 1949	+ Propyl lactate (C ₆ H ₁₂ O ₅)
R	b.t.
0 100	174.35 170.5 Az 172.7
Pinacol (C ₆ H ₁ μ 0 ₂)	+ Dichlorhydrin sym. (C ₃ H ₆ OCl ₂)
Lecat, 1949	
X	b.t.
0 45 100	174.35 173.6 Az 175.8

Lecat, 1949

Glycolmonoacetate ($C_{1\mu}H_{8}0_{3}$) (b.t.=190.9) + Phenols.

	2 nd comp	•	Az		
Name	Formula	b.t.	8	b.t.	Dt mix.
Pheno1	C6H60	182.2	35	197.5	-
o-Cresol	C7H80	191.1	51	199.45	-
m-Cresol	C7H80	202.2	69	206.5	+3.5
p-Cresol	C7H80	201.7	67	206.0	-
m-Xylenol as.	C ₈ H _{1 o} 0	210.5	82	212.0	-

Diglycol (
$$C_4H_{10}O_3$$
) + m-Cresol (C_7H_8O)

Othmer, Savitt and al., 1949 (fig.)

	mol% (a	t b.t.)	
L		V	
80 60 40 20		58 30 14 4	

Diglycol (
$$C_4H_{10}\theta_3$$
) + p-Cresol ($C_7H_8\theta$)

Othmer, Savitt and al., 1949 (fig.)

	mol% (at b.t.)	
L	V	
80	59	
80 60 40 20	59 31	
40	14 5	
20	5	

Lecat, 194	19					Butoxydig	lycol (C ₈	H ₁₈ O ₃) +			ite
Diglycol	(C ₄ H ₁₀ O ₃)) (b.t.=24	45.5) +	Phenol	s.				(C ₉ H ₁	003)	
	2 nd comp.	•	Az			Lecat, 19	49				
Name	Formula	b.t.	%	b. t.	Sat.t.	#			.t.	·	
Methoxy- triglycol	С ₇ Н _{1 6} О ь	245.0	78	245.25	-	0 46 100		23 22: 23:	1.2 5.2 Az 3.8		
Thymo1	C10H140	232,9	87	232.25	33	Lecat, 19	40				
Carvacrol	$C_{10}H_{14}0$	237.85	7 3	236.0	-	Lecat, 19	49				
Pyrocatecho	01 C ₆ H ₆ O ₂	245.9	54	259.5	-	Dipropyle	nglycol (C ₆ H ₁ 4O ₃) (b.t	=229.2)	+Phenols
o-Nitropher	101C ₆ H ₅ O ₃ N	217.2	89.5	216.0	42	 	2 nd comp				
Methyl salicylate	C8H803	222.95	84	220.55	-				Az		
Ethy1	CoH, oOs	233.8	70	225,15	66.5	Name	Formula	b.t.	% 	b.t.	
salicylate						Methyl- salicylate	C8H8O3	222.95	65	213.0	
Lecat, 194	19					Pyrocatech	101 C ₆ H ₆ O ₂	245.9	88	253.0	
Ethoxydigl	vcol (C.B	. 0- 1 /5	+ -201	0) · P		Ethyl-					
				.y) + Ph	enois.	salicylate	e C ₉ H ₁₀ O ₃	233.8	45	218.2	
	2 nd comp.		Az			o-Nitrophe	eno 1 C ₆ H ₅ O ₃	N 217.2	-	215.0	
Name	Formula	b.t.	%	b.t.							
Pheno1	С6Н60	182.2	36	208.0		Lecat, 1	949				
o-Cresol	C7H80	191.1	30	205.5		Market 1			. (-102.05) + Pho-
p-Cresol	C7H80	202.7	50	209.0		Methoxyd	iglycol ((D. t	.=192.95	nols.
							2 nd comp		Az		
Butoxydigl	ycol (C ₈ H		Methyls		te	Name	Formula	b.t.	%	b.t.	
		,	- Eugus	,		Phenol	C6H60	182.2	39	199.65	
Lecat, 194	9	· · · · · · · · · · · · · · · · · · ·				o-Cresol	C7H80	191.1	48	201.5	
*	· · · · · · · · · · · · · · · · · · ·	b.	t.			p-Cresol	С ₇ Н ₈ О	201.7	70	208.0	
_0		231	. 2). 7_Az								
78 100		220 222).7 Az 2,95								
											
						11					

Carbitol ($C_6H_{14}O_3$) + m-Cresol (C_7H_8O)	Triglycol ($C_6H_{14}O_4$) + Isoamylsalicylate ($C_{12}H_{16}O_3$)
Othmer, Savitt and al., 1949 (fig.)	Lecat, 1949
mol% (at b.t.) L V	% b.t.
20 9.5 40 26 60 54 69 69 80 88	0 288.7 70 269.0 Az 100 277.5
Carbitol (C ₆ H ₁₄ O ₈) + p-Cresol (C ₇ H ₈ O)	Methoxytriglycol (C ₇ H ₁₆ O _ե) + Methylsalicylate (C ₈ H ₈ O ₃) Lecat, 1949
Othmer, Savitt and al., 1949 (fig.)	% b.t.
mol% (at b.t.) L V	0 245.25 92 222.0 Az 100 222.95
20 10 40 29 60 56 65 65 80 85	Methoxytriglycol ($C_7H_{16}O_4$) + Ethylsalicylate ($C_9H_{10}O_3$)
Methylcarbitol (${ m C_5H_{12}O_3}$) + m-Cresol (${ m C_7H_8O}$)	Lecat, 1949
	% b.t.
Othmer, Savitt and al., 1949 (fig.) mol% (at b.t.) L V	0 245.25 72 227.7 Az 100 233.8
20 10 40 25 60 57 66 66 80 86	Glycerol diethyl ether ($C_7H_{16}O_3$) + Phenol(C_6H_6O)
	Paterno, 1896
	% Df.t. % Df.t.
Methylcarbitol (${ m C_7H_{12}O_3}$) + p-Cresol (${ m C_7H_8O}$)	99.78 -0.16 94.84 -3.34 99.39 0.39 93.19 4.82 98.79 0.73 89.96 8.12 98.10 1.14 88.95 8.92
Othmer, Savitt and al., 1949 (fig.)	97.13 1.77 85.73 -12.39 95.86 -2.63
mol% (at b.t.) L V	
20 9 40 25 60 53 67 67 80 87	

GLYCEROL + METHYLRESORCINOL

Glycerol ($C_3 H_8 O_3$) + Methylresorcinol	(C7H8O2)

Lecat, 1949

%	b.t.	
0 7 100	243.8 242.2 Az 290.5	

Glycerol (
$$C_3H_8O_3$$
) + Guethol ($C_8H_{10}O_2$)

Parvatiker and Mc Ewen, 1924

%	sat.t.	
79.37 63.71 48.68 44.42 35.30	183.0 192.0 192.8 192.9 191.0	

Glycerol (
$$C_3H_8O_3$$
) + Salicylic aldehyde($C_2H_6O_2$)

Mc Ewen, 1923

%	Sat.t.	%	Sat.t.
95.60	106.5	48.32	176.5
91.38 77.02	143.5 1 7 0.5	41.82 26.54	1 7 5.5 165.5
58.67 58.67	176.5 176.5	$13.30 \\ 5.36$	148.5 91.5
52.22	176.6	5.00	91.3

Glycerol (
$$C_3H_8O_3$$
) + Guaiacol ($C_7H_8O_2$)

Poppe, 1934

Homogeneous negative curve, around 63° ; separation in two layers for 1% water.

Erythritol (
$$C_{4}H_{10}O_{4}$$
) + Phenol ($C_{6}H_{6}O$)

Pushin and Dezelic, 1932

0 118 - 60 103.2 37 10 114.5 - 70 98 " 20 112 33 80 88 " 30 110 32 90 69 38 40 108 33 100 41 -	mol%	f.t.	Е	mo1%	f.t.	E	
50 105.5 36	10 20 30	114.5 112 110	- 33 32 33 36	70 80 90	98 88 69	7) 14	

Erythritol (
$$C_4H_{10}O_4$$
) + Resorcinol ($C_6H_6O_2$)

Pushin and Dezelic, 1932

mol%	f.t.	E	mo1%	f.t.	Е	
0 10 20 30 40 50	118 114 110 105 98 89.5	74 74 77.5 78 79	60 70 80 90 100	80 85 94 102.5 111	79 79 65 -	

Mannitol (
$$C_6H_{14}O_6$$
) + α -Naphthol ($C_{10}H_8O$)

Kofler and Brandstätter, 1942

	f.t.	
0 E	166 119	

Lecat, 1949

Lactates + Phenol (b.t. = 182.2)

Name	Formula	b.t.	Az %	b.t.
Propyllactate	C ₆ H _{1 2} O ₃	171.7	72	185.9
Isopropyllactate	C6H12O3	166.8	80	184,5
Isobutyllactate	C7H1 4O3	182.15	46	189.05

Isobutyllactate ($C_7H_{1\mu}O_3$) + o-Cresol (C_7H_8O)	Ethyl tartrate	$(C_8H_{14}O_6) + Pho$	eno1 (C ₆ H ₆ O)
Lecat, 1949	Patterson and	Stevenson, 1910	
% b.t.	t	d t	d
0 182.15	85.21%		. 15%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.4	.0787 21.4 .0725 37.9	1, 1050 .0903
		.0539 58.2 .0431 78.1	.0721 .0538
	51.8%	9 9.8 35	.0332
Lecat, 1949		,1404 14.6	1.1665
	46.5	.1252 35.5 .1133 55.8	. 1451 . 1261
Isoamyllactate ($C_8H_{16}O_3$) (b.t.=202.4) + Phenols.	_ 99.2	.0878 83.4 .0640	.0997
2 nd comp. Az	25.61%		.76%
Name Formula b.t. % b.t.	28.7	. 1755 13.5 . 1635 38.4	1,1837 ,1606
Phenol C ₆ H ₆ 0 182.2 12 203.5		.1499 58.4 .1284 82.1	. 1412 . 11 7 6
o-Cresol C ₇ H ₈ 0 191.1 25 204.2		(α) _D t	(α) _D
m-Cresol C ₇ H ₈ O 202.2 50 207.6	85.21%		6.15%
p-Cresol C ₇ H ₈ O 201.7 48 207.25	11	38.5 18.8	34.25
m-Xylenol C ₈ H _{1.0} 0 210.5 70 212.2 as.	30.75 52.3	35.47 20 30.96 32.4	34.2 32.32
	1 69.5	29.10 41.9 26.85 53.5	30.98 29.55
Methyl malate 1 ($C_6H_{10}O_5$) + Salicylaldehyde	-1	65.5 96.9	28.42 25.7
(C ₇ H ₆ O ₂)	51.8%	130.4 3	23,65 5.22%
Grossmann and Landau, 1910	19	23.99 20	17.05
c ($lpha$) red yellow green pale dark viol	39	23.94 20.9 23.44 64.9	17.10 18.38
blue blue	92.3	22.62 100.3 21.83 126 20.54	18.78 18.52
20°	25.61%		0.76%
49.922 -6.21 -6.31 -7.51 -9.21 -9.61 -10.3 24.961 -5.85 -6.77 -8.65 -10.74 -12.14 -	20	13.78 19.95 13.82 20	12.30 12.37
12.4805 -5.44 -8.49 -9.86 -11.70 -13.46 - 4.965 -5.44 -7.25 -9.06 -10.88 -12.89 -	53.5 76.5	15.60 55.5 16.38 87.1	12.37 14.62 15.90
2.4825 -5.24 -6.04 -7.25 -8.06 -10.88 - c= g malate in 100cc	89.7	16.76 117.2	16.62
Moshed released / C.H. O.N. Political	For 0%, see:	Ethyl tartrate	+ Salicylic aldehyde
Methyl malate 1 ($C_6H_{10}O_5$) + Ethyl salicylate ($C_9H_{10}O_3$)			
Grossmann and Landau, 1910	-		
c (α) red yellow green pale dark vio			
blue blue	-		
20° 50,363	- I		
25.1815 -5.24 -6.35 -7.43 -8.78 -9.45 -	'		
12.5908 -4.92 -5.96 -6.91 -8.18 -8.50 - 4.854 -4.74 -5.77 -6.80 -7.42 -8.03 -7.8 2.427 -4.53 -5.36 -6.59 -6.59 -6.18 -	3		
0.07 0.10	_		
	=		

Ethyl tartrate ($C_8H_{14}O_6$) + Pyrocatechol ($C_6H_6O_8$)	Ethyl tartrate ($C_8H_{14}O_6$) + Pyrogallol ($C_6H_6O_3$)
Patterson and Stevenson, 1910	Patterson and Stevenson, 1910
t (α) _D	% (α) _D
25.19%	25.07%
41.4 12.12 68.9 13.04 94.3 13.40 103.7 13.53	49.5 11.884 78.9 12.868 108.6 13,344
Ethyl tartrate ($C_8H_{14}O_6$) + Resorcinol ($C_6H_6O_2$)	Ethyl tartrate ($C_8 H_{14} O_6$) + Phloroglucinol ($C_6 H_6 O_3$)
Patterson and Stevenson, 1910	Patterson, and Stevenson, 1910
t (α) _D	β (α) _D
25,88%	25.67%
15.9 16.25 47.7 16.86 74.3 16.89 104.2 16.644	69.5 17.48 93.6 17.43 104.1 17.10
Ethyl tartrate ($C_8H_{14}O_6$) + Hydroquinone ($C_6H_6O_2$)	Ethyl tartrate ($C_8H_{14}O_6$) + $_{\alpha}$ -Naphthol ($C_{10}H_8O$) Patterson and Stevenson, 1910
Patterson and Stevenson, 1910	% (α) _D
t (α) _D	74.76%
25.53%	105.6 7.276 121.5 6.732
70.3 18.1 105 17.5	0.702
136.5 16.53	Ethyl tartrate ($C_8H_{14}O_6$) + β -Naphthol ($C_{10}H_8O$)
	Patterson and Stevenson, 1910
	% (α) _D
	70.99%
	132.7 10.92 150 9.988

Ethyl tartrate ($C_8H_{1ullet}\theta_6$) + Salicylic aldehyde	t d t d
(C ₇ H ₆ O ₂)	0%
Patterson, 1916	-23.0 1.2484 96.0 1.1287 0.0 .2254 115.6 .1088 15.5 .2097 159.5 .0646
t (α) t (α)	38.55 1865 193.0 .0308 59.4 .1656 223.5 .0003
0%	****
6980 Å 6708 Å	t d t d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79.786%
0.0 5.07 0.0 5.17 15.5 6.39 15.5 6.64 38.55 8.01 38.55 8.35 59.4 9.21 59.4 9.57 96.25 10.49 96.0 11.05 114.9 10.93 115.1 11.51 133.3 11.30 133.4 11.87	18.5 1.1752 71.3 1.1234 43.0 .1516 100.0 .0948
159.1 11.58 159.5 12.11 194.2 11.62 192.5 12.28 223.5 11.58 223.5 12.07	
223.5 11.58 223.5 12.07 6450 Å 6232 Å	t (α) t (α)
	79.786% 6907.5 Å 6234.4 Å
-23.0 2.60 -25.0 2.07 0.0 5.42 15.5 6.84 15.5 7.03 38.6 8.71 38.6 9.04 59.7 10.032 59.8 10.47 95.7 11.61 115.6 12.80 114.7 12.61 133.3 13.07 133.7 12.51 159.8 13.55 158.8 12.82 193.0 13.64 193.2 12.95 223.5 13.45 223.5 12.75 5769 Å 5460 Å 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
190.0 15.53 158.5 16.54 223.5 15.41 190.0 16.81 223.5 16.71	
4326 Д	Ethyl tartrate ($C_8H_{1u}O_6$) + 2,4-Dinitrophenol
-27.0 -2.61 -24.5 -10.81 -23.0 -1.85 0.0 -3.10	(C ₆ H ₄ O ₅ N ₂)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Patterson and Stevenson, 1910
15.5 6.18 59.6 9.95 38.6 9.78 94.5 14.63 59.8 12.35 114.9 16.46	t (α) _D
94.9 15.60 133.3 17.82	24.85%
115.0 16.77 159.8 19.28 133.3 17.63 191.6 20.43 159.1 18.45 223.5 20.81 194.0 19.02 223.5 18.80	84.5 10.696 107 11.272 121.5 11.564

Ethyl tartrate (C ₈ H _{1 w} O ₆) + o-Nitrophenol	Ethanolamine (C_2H_70N) + Phenol (C_6H_60)					
(C ₆ H ₅ O ₅ N)	Dionisiev and Kosareva, 1955 (fig.)					
Patterson and Stevenson, 1910	Dionisiev mol%	f.t.	mo1%	fig.)		
t d t d t d						
76.11% 48.88% 25.05%	100 80 68	41.5 23 E 32	40 29 0	-20 E (+10)		
47.7 1,2603 56.8 1,2323 12.5 1,2558 65.9 ,2416 78.2 ,2086 27.1 ,2385 78.1 ,2295 97.3 ,1878 49.4 ,2164	50	15	v	(10)	(1+2)	
78,1 ,2295 97,3 ,1878 49,4 ,2164 72,5 ,1910	mo1%		<u> </u>			
		35°	45°	55°		
t (α) _D t (α) _D t (α) _D 76,11% 48,88% 25,05%	100 80	1.08	1.07	1.05		
' ' '	60 40	.09	.08 .07	.06 .07		
60.1 16.20 56.8 14.31 16 9.74 81.4 16.98 78.2 15.35 43.4 12.14 112.2 17.66 97.3 16.08 87.3 14.38	20	.05	.04	.06		
112.2 17.66 97.3 16.08 87.3 14.38 115.1 14.21		.02	.00	0.98		
For 0%, see: Ethyl tartrate + Salicylic aldehyde.	mo1%	250	η.			
		35°	45°	55°		
	100 80	19000	13000	3000 800 0		
Ethyl t ^o rtrate (C ₈ H ₁₊ O ₆) + m-Nitrophenol	60 50	56000 68000	30000 33000	20000 22000		
(C ₆ H ₅ O ₃ N)	30 20	48000 35000	23000 18000	12000 10000		
Patterson and Stevenson, 1910	0	13000	8000	5000		
t (a)	mol%		×			
50.24%		35°	45°	55°		
35.4 15.5 41.4 15.68	90 7 0	3 13	5 20	7 23		
50.3 15.665 57.7 15.55	50 30	18 20	20 23 25	30 30		
10.00	10	18	25 22 0	28 0		
	ļ	·, · · · · · · · · · · · · · · · · · ·	·			
Ethyl tartrate (C.H., O.) + n-Nithonborn					C !! C .	
Ethy1 tartrate ($C_8H_{14}O_6$) + p-Nitropheno1 ($C_6H_5O_5N$)	1		₇ 0N) + Pyro		c ₆ H ₆ U ₂)	
Patterson and Stayeness 1919	mo1%	·	mo1%			
Patterson and Stevenson, 1910 $t \qquad (\alpha)_D \qquad t \qquad (\alpha)_D$	[f.t.		f.t.	. 1 \	
	0 10	10 -3	50 60	60 (1 52		
	15	−9 E +5	65 80	50 E 75		
105.9 11.262 72.6 17.624 120 10.646 94.5 16.878	20 30 40	40 50	90 100	90 105		
105.7 16.274						
N.B. In some cases Patterson writes α instated or (α) .	mo1%	đ 70°	80°	o1% 7 0	o 80°	
					 -	
	0 10	$0.99 \\ 1.02 \\ 1.08$	1 01	50 1.1 60 1.2 70 1.2	9 1.18 2 1.20 3 1.22 3 1.21	
	20 30	1.08 1.12	1.10	70 1.2 80 1.2	3 1.22 3 1.21	
	40	1.16	1.14			
li .	11					

mo1%					mol%		14	
MO176	70°	უ 80 ∘	90°			80°	и 90°	100°
0 10 20 30 40 50 60 70 80 85	3000 5000 12000 25000 41000 86000 68000 40000	2000 3000 8000 14000 26000 60000 38000 20000	500 2000 5000 10000 17000 30000 20000 10000 7000 6000		0 10 20 30 40 50 60	0 30 45 40 30 20 10	0 40 65 55 45 30 22	0 45 80 78 70 55 45
mo1%	70°	я 80°	90°		Ethanola	mine (C ₂ H ₇	ON) + Hydro	quinone (C ₆ H ₆ O ₂)
0 10	0 60	0 80	0 82		Dionisie	v and Kosar	eva, 1956 (fig.)
20 30 40	80	100 100	160		mo1%	f.t.	mol%	f.t.
50 60 70 80	80 64 45 40 30 20	75 80 70 50 45	130 124 115 110 92 80		0 10 18 25 36 40	10 2 -2 -5 E +50 62	50 60 70 80 90 100	77 (1+1) 67 E 122 150 160 172
Ethanola	umine (C ₂]	H ₇ 0N) + Re	sorcinol (C ₆ H	₆ 0 ₂)	mol%	90°	d 100°	110°
		reva, 1956			0 10	$\substack{1.0\\1.03}$	$\substack{0.9 \\ 1.02}$	0.8 1.0
0 10 15 20	10 4 0 -10 -15	50 55 60 70 E 80	60 (1- 53 38 E 78	-1)	20 30 40 50 60	1.06 1.1 1.14 1.18 1.2	1.05 1.08 1.12 1.14 1.18	1.02 1.05 1.10 1.12 1.14
20 25 30 40	-15 +10 40	E 80 90 100	74 93 110		mol%	90°	η 100°	110°
0 10 20 30	d 80° 1.0 .05 .08 .12	100° 0.90 1.0 .05 .10	80° 40 1.16 50 .19 60 .21	1.14 .16 .18	0 10 20 30 40 50 60	2000 4000 7000 14000 29000 35000 30000	1000 3000 5000 10000 14000 24000 22000	500 2000 4000 8000 10000 13000
mo1%	80°	η 90 °	1000		mo1%	90°	и 100°	110°
0 20 30 40 50 60	2000 4000 12000 35000 70000 65000	4500 2000 8000 20000 30000 28000	200 1000 4000 10000 14000 12000		0 10 20 30 40 50 60	0 20 26 32 60 64 58	0 22 40 60 74 83 80	0 25 48 64 80 85 83

ETHANOLAMINE + O-CHLORPHENOL

Ethanolamine (C_2H_7ON) + o-Chlorphenol (C_6H_5OC1)			Chloral	hydrate (C ₂	H ₃ 0 ₂ C1 ₃)	+ Salol (C ₁₃ H ₁₀ O ₃)	
Dionisiev	and Kosareva	. 1955 (fi	(σ.)	Bellucci	, 1912			
mo1%	f.t.	mo1%	f.t.	- %	f.t.	E	min.	
100 90 80 67 (1+2)	7 71 81 87.5	50 30 6 0	80 60 -3 +10	100 90 80 70 60 50 40 30 20	42 35 28,5 22,1 18 24 30 35 41 47 51,4	14 " 13.8 13.2 13.6 14 13.7	4 8 12 14 11 8.5 6 3	
Ethanolami	ine (C ₂ H ₇ ON) + p-Chlo	rphenol (C ₆ H ₅ OC1	0	51,4	-		
Dionisiev	and Kosarev	a, 1955 (f	ig.)	_				
mo1%	f.t.	mo1%	f.t.	Cyclohe	canol (C_6H_1	20) + Pher	no1 (C ₆ H ₆	(0)
100 79 E 66.7 50	37 -7 +17 10	40 20 E 0	-22 +10	Lecat, 7	1949			
(1+2)						b. t.	· · · · · · · · · · · · · · · · · · ·	
mol%	40°	d 50°	60°	0 89 100		160.8 182.9 182.2	Az 2	
100 80 60 40 20	1.25 1.24 1.23 1.17 1.12 1.02	1.23 1.22 1.21 1.15 1.10 1.01	1.22 1.21 1.20 1.14 1.08 0.99	8	lli and Pesta	alozza, 190 %	08-09 f.t.	
mol%	40°	n 50°	60°	100.00 93.21 88.68 85.30	40.7 35.4 31.1 27.7	59.03 55.09 51.29 45.81 41.04	16.2 14.4 11.6 4.3	
100 80 60 50 20	8000 20000 50000 58000 28000 10000	4000 11000 26000 31000 16000 7000	2000 9000 15000 19000 12000 4000	85.30 82.20 79.33 76.19 73.15 70.34 68.59 66.99 64.23	27.7 23.4 19.5 19.6 19.8 19.8 19.4 19.4	41.04 37.41 32.49 29.05 25.73 8.01 3.58	-1.6 -6.8 -16.8 -25.3 -34.3 -24.0 -1.4 +20.0	(1+1)
mo1%	40°	и 50°	60°	L	Z	C	····	
90 70 50 30 20 10 0	3 12 17 23 74 64 0	5 18 23 35 79 75 0	8 23 34 50 84 80	53.1 44.01		58.05 45.95		

1, 2-METHYLCYCLOHEXANOL + PHENOL

Hudlicky, 1949	Lecat, 1949
% п п _D	Menthol (C ₁₀ H ₂₀ 0) (b.t.=216.3) + Phenols.
25°	2 nd comp. Az
0 46000 1.4646 90 37100 1.4725 20 27600 1.4802	Name Formula b.t. % b.t. Sat.t.
	Guethol C _B H ₁₀ O ₂ 216.5 - 216.0 -
	p-Chlor- C ₆ H ₅ OC1 219.75 57.5 223.5 -
1,2-Methylcyclohexanol ($C_7H_{14}O$) + Phenol(C_6H_6O)	o-Nitro- C ₆ H ₅ O ₃ N 217.2 46 212.1 35 phenol
Lecat, 1949	
% b.t.	
0 168.5 80 183.1 Az	Menthol (C ₁₀ H ₂₀ O) + Salol (C ₁₃ H ₁₀ O ₃)
100 182, 2	Bellucci, 1912
	% f.t. % f.t.
Menthol ($C_{10}H_{20}0$) + Phenol (C_6H_60)	100 42 40 28.5 90 34.5 30 30 80 30.5 20 32.5 70 28.5 10 35 60 28 0 41.9
Friedrichs, 1919 $\%$ d $(\alpha)_D$ $\%$ d $(\alpha)_D$	50 28
18°	Adamanis, 1933
75 1.0297 -47.16 60 1.0013 -46.44 70 .0205 46.74 55 0.99252 46.39 65 .0112 46.51 50 0.98365 46.36	mol% f.t. mol% f.t.
Menthol ($C_{10}H_{20}0$) + Eugenol ($C_{10}H_{12}0_2$) Friedrichs, 1919	93.3 38.0 37.5 29.8 86.8 35.8 32.8 30.5 80.6 34.8 28.3 31.2 74.5 33.8 23.9 32.0 68.7 32.5 19.6 33.5 63.1 31.5 15.5 34.5 57.6 30.5 11.4 35.5 52.3 29.5 7.5 37.0 47.2 29.0 3.7 38.8 42.3 29.0 0 42.5
% d $(\alpha)_D$ % d $(\alpha)_D$	E: 45.2 mo1% 28.5°
18°	
90 1.0498 -48.96 65 1.00455 47.84 85 .0406 48.52 60 0.9959 47.73 80 .0314 48.30 55 .98718 47.63 75 .0234 48.13 50 .97884 47.56 70 .0134 47.98	Menthol ($C_{10}H_{20}0$) + Sesame oil ($C_{7}H_{6}0_{3}$) Castiglioni, 1934
77,70	% d n % d n
	100 0.9185 5247.0 85 0.9155 4404.2 95 .9176 4995.5 80 .9146 4109.5 90 .9166 4690.7 75 -

Menthol ($C_{10}H_{20}0$) + Quinine ($C_{20}H_{24}0_2N_2$)	Citronellol ($C_{10}H_{20}O$) + o-Nitrophenol ($C_6H_5O_3N$)
Adamanis, 1933	Lecat, 1949
mol% f.t. mol% f.t.	% b.t.
100 175 90.5 169.5 28.3 102.8 81.9 164.2 24.3 94.0 73.2 156.8 20.0 84.2 65.8 152.5 17.1 72.8	0 224.4 78 214.5 Az 100 217.2
52.9 137.0 10.7 30.5 47.2 130.5 7.8 33.0 41.9 122.8 5.1 36.0	Citronellol (C ₁₀ H ₂₀ O) + Eugenol (C ₁₀ H ₁₂ O ₂)
35.2 118.8 2.5 39.5 30.6 110.5 0 42.5	Brauer, 1929
E: 12.0 mo1% 28.0°	wt% mol% b.t.
Citronellol ($C_{10}H_{20}O$) + Phenol (C_6H_6O)	10 mm 100 100 121.6 90 89.5 119.1 70 69.1 114.5 50 48.8 111.3 30 29.1 109.0 10 9.6 107.1 Az 0 0 108.0
Brauer, 1929	
wt% mol% b.t.	Geraniol ($C_{10}H_{18}O$) + Thymol ($C_{10}H_{14}O$)
10 mm 100 100 72.0 82 86.2 74.5 50 62.8 80.0 10 14.3 104.0	Lecat, 1949
0 0 108.0	% b.t.
Citronellol ($C_{10}H_{20}O$) + Resorcinol ($C_6H_6O_2$)	0 229.6 59 235.6 Az 100 232.9
Brauer, 1929	
wt% mo1% b.t. 10 mm	Geraniol ($C_{1.0}H_{1.8}0$) + Carvacrol ($C_{1.0}H_{1.4}0$)
100 100 152.9 77 82.6 133.0 54 62.5 125.0	lecat, 1949
32 40.0 117.5	% b.t.
10 13.5 110.7 0 0.0 108.0	0 229.6 85 238.2 Az 100 237.85
Citronellol ($C_{10}H_{20}O$) + Thymol ($C_{10}H_{14}O$)	
Lecat, 1949	
\$ b.t.	
0 224.4 75 233.8 Az 100 232.9	

1-TERPINEOL + P-CHLORPHENOL

α -Terpineol ($C_{10}H_{18}O$) + p-Chlorphenol ($C_{6}H_{5}OC1$)	Terpin hydrate ($C_{10}H_{22}O_{5}$) + Salol ($C_{13}H_{10}O_{5}$)
Lecat, 1949 # b.t. 0 218.85 51 225.7 Az 100 219.75	Angeletti, 1928 E: 97% 39° Borneol (C ₁₀ H ₁₈ O) + p-Chlorphenol (C ₆ H ₅ OC1)
α-Terpineol (C ₁₀ H ₁₈ O) + p-Ethylphenol (C ₈ H ₁₀ O) Lecat, 1949 % b.t. 0 218.85 58 219.7 Az	Lecat, 1949 # b.t. Sat.t. 0 215.0 - 55 222.5 - 15 Az 100 219.75 -
100 218.8 β-Terpineol (C _{1 O} H _{1 8} O) + o-Nitrophenol (C ₆ H ₅ O ₅ N) Lecat, 1949	Borneol ($C_{10}H_{18}0$) + o-Nitrophenol ($C_{6}H_{5}0_{5}N$) Lecat, 1949 \$\%\$b.t. Sat.t.
% b.t. 0 210.5 22 209.0 Az 100 217.2	0 215.0 - 40 211.8 123 Az 100 217.2 -
Stigmasterol ($C_{29}H_{48}0$) + Methyl-p-oxybenzoate ($C_{8}H_{8}0_{3}$) Kofler and Brandstätter, 1942 ### F.t.	
0 167 E 117	
Stigmasterol ($C_{29}H_{48}0$) + β -Naphthol ($C_{10}H_{8}0$) Kofler and Brandstätter, 1942 $f.t.$ 0 167	
- 100 E	

BENZYL ALCOHOL + PHENOL

1040 BENZIL ALC	CHOL TRENCL
Benzyl alcohol (C_7H_80) + Phenol (C_6H_60)	Phenylpropanol ($C_9H_{12}0$) + Carvacrol ($C_{14}H_{14}0$)
Paterno, 1896	Lecat, 1949
% Df.t.	% b.t.
99.10 -0.59 97.68 1.52 96.07 2.61 93.89 4.22 90.54 6.77 83.21 13.28	0 235,6 58 238,5 Az 100 237,85
Lecat, 1949	Benzhydrol ($C_{13}H_{12}O$) + Phenol (C_6H_6O)
Benzyl alcohol (C ₇ H ₈ O) (b.t.=205.25) + Phenols.	Lang, 1912 and Schmidlin and Lang, 1912 # f.t. # f.t.
2 nd comp. Az	
Name Formula b.t. % b.t. Dt mix	1 10.0 50.0 50.5 40.0
m-Cresol C ₇ H ₈ O 202.2 37 206.6 3.0	1 20.2 45.7 74.9 41.4
p-Cresol C ₇ H ₈ 0 201.7 45 195.5 -	27.9 42.4 83.0 36.9 28.9 42.8 85.5 35.4
Guaiacol C _B H _B O ₂ 205.05 57 204.35 -	1 33.7 44.2 88.2 33.5
	34.3 45.3 91.9 33.9 39.6 47.5 96.5 38.7 (1+2)
Lecat, 1949	Kremann and Drazil, 1924
Benzyl carbinol (C _R H ₁₀ 0) (b.t.=219.4) + Phenols,	% f.t. E % f.t. E
2 nd comp. Az	- 100 41.5 - 45.9 46.5 - 45.9 45.5 - 41.7
Name Formula b.t. % b.t. Sat.t.	77.5 34 30 26.3 37 - 69.2 41.5 " 19.7 44 -
p-Ethyl- C ₈ H ₁₀ 0 218.8 55 220.5 - phenol	48.1 40.8 -
p-Chlor- C ₆ H ₅ OC1 219.75 52.5 227.7 20 pheno1	(1+2)
o-Nitro- C ₆ H ₅ O ₃ N 217.2 59 214.0 - phenol	
	Benzhydrol ($C_{13}H_{12}O$) + Pyrocatechol ($C_6H_6O_2$)
Phenylpropanol ($C_9H_{12}O$) + Thymol ($C_{10}H_{14}O$)	Kremann and Drazil, 1924
Lecat, 1949	% f.t. E % f.t. E
% b.t.	100.0 103.5 - 36.5 67 55
0 235.6 38 236.5 Az 100 232.9	85.0 98 - 28.8 61.5 " 73.6 92 - 18.9 55 " 62.7 85 55 9.0 60.5 - 51.2 77.0 - 0 64.5 - 44.2 72.5 -

Benzhydrol	(C13H12O)	+	Resorcinol	(C6H602)	
------------	---	---------	---	---	------------	---	--------	---	--

Kremann and Drazil, 1924

%	f.t.	E	%	f.t.	E
100	115	-	39.7	65 51	44.2
85.7	106	-	31.1	51	44.0
74.9	98.5	-	21.7	48	44.2
65.7	92	-	13.2	48 55.5	~
58.1	84.5	-	6.5	60	~
48.2	74	-	0	64.5	~

Benzhydrol ($C_{13}H_{12}0$) + Hydroquinone ($C_{6}H_{6}0_{2}$)

Kremann and Drazil, 1924

%	f.t.		f.t.	Е	
100.0	169	46.5	140.5	58	
89.9	165	34.4	130	-	
81.2	161	25	120	-	
74.4	158	16.5	108	58	
67.0	154	7.3	91	58	
59.4	150	4	75	-	
53.9	147	0	64.8	-	

Benzhydrol ($\rm C_{13}\,H_{1\,2}0$) + Pyrogallol ($\rm C_6H_6O_3$)

Kremann and Drazil, 1924

%	f.t.	%	f.t.	
0 12.8 27.1 36.1 42.2 44.8 E: 53°	65 60 60 71 77 80	49.0 61.6 72.8 87.9 100.0	84.2 97.5 109 122.5 131	

Benzhydrol ($C_{13}H_{12}O$) + α -Naphthol ($C_{10}H_{8}O$)

Kremann and Drazil, 1924

Я	f.t.	%	f.t.	Е	
100 92.0	95 90.5	49.1 39.7	51.5 31	18	
83.8	85	28.7	30	FF .	
73.7 66.3	77.5 71	$\frac{21.9}{13.5}$	40.5 50	-	
60.4	66	6.2	58	-	
50.2	53.5	0	64.5	-	

Benzhydrol ($C_{1\, 3}\, H_{1\, 2}0$) + β -Naphthol ($C_{1\, 0}H_{8}0$)

Kremann and Drazil, 1924

%	f.t.	%	f.t.	Е	
100 85.1 76.9 67.7 58.9 51.5 46.0 41.5	121 113 107 100.5 91.5 84 77 71	38.8 38.1 36.0 32.5 30.0 26.0 15.6 8.4	65 62 61.5 62 60 56 51.5 58.9	- 61 - - 47 47	
		0	64.5	(3+2	?)

Benzhydrol ($C_{13}H_{12}O$) + o-Nitrophenol ($C_6H_5O_5N$)

Kremann and Drazil, 1924

%	f.t.	Е	%	f.t.	E	-
100 94.1 84.0 73.9 65.0 57.9	44.5 43 39.5 35.5 32.0 32.0	29.0 29.0	51.9 45.0 37.8 28.5 20.6 10.3	36 40 44 49.5 54 60 64.5	29.0 29.0	-

Benzhydrol ($C_{13}H_{12}0$) + m-Nitrophenol ($C_6H_50_3N$)

Kremann and Drazil, 1924

%	f.t.	%	f.t.	
100 92.5 83.6 75.5 66.6 61.8 56.0 50.4 E: 38°	95 91 85.5 80.5 74 71 67	41.4 32.6 26.6 20.3 13.4 7.5	53 41 44 51 57 61.5 64.5	

BENZHYDROL + P-NITROPHENOL

Benzhydrol	($C_{13}H_{12}0$)	+	p-Nitrophenol	($C_6H_5O_3N$)
------------	---	-----------------	---	---	---------------	---	----------------

Kremann and Drazil, 1924

%	f.t.	%	f.t.	
100 87.7 79.7 69.3 62.8 61.5	114.5 108 103 95 91 90 82	45.5 37.8 35.6 29.5 23.3 12.3	71.5 59 54 42 41.8 54 64.5	
54.3 52.6	82 81	0 E: 36°	04,5	

Benzhydrol ($C_{13}\,H_{1\,2}0$) + 2,4-Dinitrophenol ($C_6H_4O_5\,N_2$)

Kremann and Drazil, 1924

%	f.t.	E	%	f.t.	E
100	112.5	_	50.7	85.5	_
88.6	108	-	50.4	85	-
77.0	101	_	42.3	79.5	51
70.5	97.5	51	36.9	75.0	ñ
63.3	93.5	_	27.5	65	tr
62.2	93	_	20.1	65 53	-
56.3	89	-	8.4	59	-
56.2	89	-	0	64.5	-

Benzhydrol ($\text{C}_{13}\,\text{H}_{12}0$) + Picric acid ($\text{C}_6\text{H}_3\,\text{O}_7\text{N}_3$)

Kremann and Drazil, 1924

%	f.t.	E	%%	f.t.	E
100	121.5	-	46.0	113	_
93.4	119	-	43.5	110	_
83.7	124	113	36.8	96	_
79.6	128	-	30.7	85	_
7 5.6	130.5	_	23.3	70 65 57	54.5
72.4	131	-	20.6	65	"
65.8	130	-	11.7	57	_
59,1	127	-	0	64.5	_
56.0	124	-		- ***	
52.7	121.5	-			
(1+2)					

Triphenylcarbinol ($C_{19}H_{16}O$) + Phenol ($C_{6}H_{6}O$)

Kremann and W1k , 1919

%	f.t.	E	%	f.t.	E	
0	159,3	-	54,5	75	_	
13.1	137.5	-	59.1	68	-	
23.9	122	-	64.7	58.2	-	
34.6	108	-	73.5	41.9	_	
37.2	103.9	-	82.4	34.5	32	
43.2	93.8	-	90.1	37.8	_	
48.7	85.5	32	95.9	39.8	_	
51.3	80	-	100	41	_	
51.4	80	-				

Triphenylcarbinol ($C_{1\,9}H_{1\,6}O$) + Pyrocatechol ($C_6H_6O_2$)

Kremann and Wlk , 1919

%	f.t.	E	%	f.t.	E	
100 91.0 76.7 69.6 63.7 59.1 58.3 56.9 55.2 54.7	103 98 89. 1 84 78. 9 78 78. 1 79. 2 80 80	76 76 76	50.7 47.8 45.5 39.8 37.4 33.4 31.1 25.4 6.4	81.2 81.5 81 80 77.5 66 92 115.5 140	76 76 - - 66 " - 66	
53.5 51.7 (1+2)	81 81.1	~	0	159.2	-	

Triphenylcarbinol ($C_{1\,9}H_{1\,6}0$) + Hydroquinone ($C_6H_60_2$)

Kremann and Wlk , 1919

%	f.t.	E	%	f.t.	E
100	169	_	48,3	150.9	145
88.4	166.5	-	46.3	151.4	140
84.4	165	_	46.2	151.6	_
76.7	162.2	-	42.8	150.9	_
70.7	159.1	-	38.0	149.9	_
65.5	156.2	-	34.1	148,2	_
63.1	154.2	145	30.0	147	_
56.5	150.1		25.2	144.5	139.8
56.4	150	145	22.3	142.6	tr
55.2	149.1	139.8	16.9	141.5	n
53.8	147.2	145	13.8	143.9	_
51.1	148	-	8.5	149.1	139.8
49.6	150.2	139.8	0	159.2	
(1+2)					

Tripheny	lcarbinol	(C ₁₉ H ₁₆	+ (0;	Resorcinol(C ₆ H ₆ 0	٤)
Kremann	and Wlk,	1919			
%	f.t.	Е	%	f.t.	
100 89.6 86.3 75.6 71.3 64.8 64.5 61.2 58.9 56.5 53.9 51.4 50.5 48.5 47.5 45.2	108.9 103 99.2 97 95.5 97 96.1 94.2 92.3 94 183.5 94.2 189.9 92 130	95.5 86.0 86.0 "" 86.0	-	102 105 109 113 116 120 126 128 133 139 138 143.5 148 145.9 155.5 159.3	
	Hohl and		1921	(C ₆ H ₆ O ₃)	
%	f.t.	%		f.t.	
100 89.3 82.0 70.4 60.2 55.1 49.8 45.1 39.6 39.5 35.7	132.0 121.0 113.0 101.5 88.5 82.5 79.0 94.0 96.0 96.0	35. 33. 26. 23. 19. 16. 7. 3.	2 6 9 5 7 0	91.0 86.5 86.0 92.0 103.0 113.0 128.0 140.0 151.0	
(2+3)					
				ما المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد المورد ال المورد	
Tripheny	lcarbinol	(C ₁₉ H ₁	60)+	o-Nitrophenol (C ₆ H ₅ O ₃ N)	
Kremann,	Hohl and	Müller,	1921		
Kremann,	Hohl and	Müller,	1921	f.t.	

159.5 154.0 150.6 143.0 138.5 132.5 126.0 120.5 116.0 109.1

0.0 6.0 9.8 17.6 22.4 28.8 34.1 40.0 44.7 51.7 56.8 62.7 69.7 74.4 82.2 88.0 92.4 94.6 100.0 104.0 96.5 87.0 80.0 66.5 51.0 42.0 42.7 44.7

10E KES	UKCINUL			1043
Tripheny	ylcarbinol	(С ₁₉ Н ₁₆	0) + m-Nitrophen ($C_6H_5O_3N$)	iol
Kremann	, Hohl and	Muller,	1921	
%	f.t.	%	f.t.	
100	95.5	45.8	115.0	
95.2 87.7 83.0 76.0	94.0 91.0	42.9 38.3 33.0	120.0 126.0	
83.0	89 N	33.0	132.5 133.0	
76.0 68.3	87.0 84.0	32.4	$\substack{133.0\\138.0}$	
62.1	85.0	22.8	142.5	
55.4 49.6	$96.0 \\ 106.0$	$\substack{13.4\\0.0}$	150.0 159.0	
Tripheny	/lcarbinol	(C, oH, 6	0) + p~Nitrophen	οl
		-1310	$(C_6H_5O_3N)$	0.1
Kremann,	, Hohl and	Muller.	1921	
-	f.t.	%	f.t.	
				
$0.0 \\ 6.1 \\ 11.2$	159.5 153.2 147.8 143.0	52.6 58.1	107.0 102.0	
$\begin{array}{c} 11.2 \\ 16.6 \end{array}$	147.8	62.0	98.5	
10 8	139.5	68.6 73.6	99.0 101.5	
24 5	139.5 134.5 131.5	79.4 84.2	101.5 103.3 105.0	
28.5 31.8 36.8	129.0	8,88	107.0	
$\frac{36.8}{41.1}$	124.0 120.0	92.1	108.0 110.0	
44.4 48.7	115.5 110.8	97.2 100.0	111.5	
48./	110.8			
	س جم والمحاددة			
				
Triphenyl	carbinol ((C ₁₉ II ₁₆ 0) + 2,4-Dinitrop	henol
			$(C_6H_{\mu}O_5N_2)$	
Kremann,	Mauermann	and al.,	1923	
%	f.t.	%	f.t.	
100.0	111.0	54.34	121.0	
100.0 95.70 90.35 85.39	109.0 106.5	53.11 46.34	121.0	
85.39	103.4	42.89	126.0 129.0	
XII 97	$100.5 \\ 103.5$	32.89 17.14	129.0 136.5 147.0	
76.98 69.78 62.58	109.0 106.5 103.4 100.5 103.5 109.0	42.89 32.89 17.14 4.85	155.5 159.0	
62.58 E ₁ : 10	114.0	0.0	159.0	
L1 . 10	0.5-			

	Furfuryl alcohol ($C_5H_6O_2$) + Phenol (C_6H_6O) Lecat, 1949
Triphenylcarbinol ($C_{1.9}H_{1.6}O$) + Picric acid ($C_{6}H_{3.0}O_{7}N_{3}$)	% b.t.
	0 169.35
Kremann, Hohl and Muller, 1921	0 169,35 70 187.0 Az 100 182.2
% f.t. % f.t.	
100.0 122.0 45.7 138.5 94.8 120.0 44.3 137.0	Benzaldoxime anti (C ₇ H ₂ ON) + Ethyl tartrate
84.8 115.0 41.2 135.0	Patterson and McMillan, 1907 (C ₈ H ₁₄ 0 ₆)
62.7 126.5 27.6 133.0	T d (α)D
55.2 134.0 9.1 150.5	0% 18 1,11232 -
49.7 137.0 0.0 159.0 48.8 138.0	22 1.10854 - 26 1.10573 -
(1+1)	38 1.0957 -
	10.372 \$\frac{1}{21.5} 1,11976 -
	26.0 1.1160 - 7.26 27.5 1.11483 -
Triphenylcarbinol ($C_{19}H_{16}O$) + α -Naphthol	1.1096 -
$(C_1 \circ H_8 O)$	40.5 1.1037 -
1 1 10 1	44.5 1.1003 - 56.1 1.0905 + 1.07 78.5 1.0710 + 6.30
Kremann and Welz, 1919	ll 96.0 1.0565 + 9.31
% f.t. % f.t. E	109.0 1.0456 +11.43 122.5 1.0392 +13.08
0 159.2 48.0 91.7 -	134.0 1.0245 -14.30 22.819%
11.3 146 52.0 81.3 - 16.1 141 54.0 79 60	16.0 1.1365 -0.37 17.5 1.1352 0.22
22.1 132.3 56.2 72.1 " 27.4 126.5 64.6 63.1 - 30.5 122.1 71.9 66 60	22 1.1313 - 26.1 1.1274 1.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.0 1.1261 - 34.5 1.1204 -
39.6 107.2 87.3 83 - 43.2 99.5 95.5 89.2 -	38.0 1.1168 3.36
47.5 91.9 100 92.5 -	45 1,1112 -
	56.4 1 ₋ 1101 658
	68.1 1.0905 8.73 77.7 1.0823
Triphenylcarbinol ($C_{19}H_{16}O$) + β -Naphthol	82.3 1.0780 10.80 1.0660 12.45
(C _{1 O} H ₈ O)	117.5 1.0484 14.69
Kremann and Welz, 1919	49.6228 # 14.3 1.1640 10.58
% f.t. E % f.t. E	13.8 1.1644 10.51 18 1.1605 -
0 159.2 - 46.4 92.2 -	20.5 1.1582 10.94
$3.8 \ \overline{152.9} - \overline{51.2} \ 88.1 \sim$	28.75 1.1504 -
10.9 141.1 - 53.5 89.2 - 14.7 135.9 - 54.0 89.5 86 17.0 132.1 - 57.9 93.1 "	79.90% 15.9 1.1938 12.71
$\frac{21.0}{126.2}$ - $\frac{62.7}{97}$ -	16.4 1.1932 12.85 41.2 1.1680 13.79
28.1 117 86 69.3 101.5 -	44.6 1.1647 - 47.5 1.1616 -
37.1 104.3 86 84.9 111 -	54.8 1.1539 -
41.6 98.5 - 100 121.5 -	61.3 1.1474 14.52 64.75 1.1443 - 74.0 1.1348 -
44.3 95 -	79.5 1.1285 15.52
	94.4 1.1130 16.26
	For 100 %, see : Methyl alcohol + Ethyl tartrate

Acetoxime (C ₃ H ₇ ON) + Acetic :	acid ($C_2H_4O_2$)		lcohol (CH ₄ 0)) + Formic
Beckmann, 18			%	d 18°	
	Df.t. %	D f.t.		18°	0°
99.72 97.79 94.61 91.11	-0.155 89.13 1.19 87.17 2.93 83.17 5.01	7.485	66.87 38.12 24.30 19.08 9.81	.8727 .8553 .8283	4.380 5 1.299 1 1.033 1 0.770 1
Camphoroxime	e-d (C ₁₀ H ₁₇ ON) +	Acetic acid(C ₂ H ₄ O ₂)	4.86	.8119 .7937	-
Beckmann, 18			Methyl a	Icohol (CH40) + Acetic
	f.t. %	D f.t.			
99.13 -0. 96.96 0.	.207 84.03 .725 80.18	-3.895 4.950	Pickerin		
92.89 1.	.680 76.22 .690	6.090	# ************************************	f.t.	%
	e (C ₇ H ₇ ON) + Acet	tic acid ($C_2H_4O_2$)	100 96.186 92.276 88.276 84.152 79.889 75.594 71.142	16,63 12,36 8,19 4,24 - 0,12 4,98 10,06 16,27	66,569 66,569 61,868 57,036 52,064 52,064 46,949 41,686
Beckmann, 18	388		66.569	-24.17	
% D f	.t. %	D f.t.	1		
97.54 0.	157 89.01 850 83.46	~3.905 6.040	Hartwig	, 1888 and 1891	·
94.13 2.	020 78.18	8.215	%	18° 0°	я 18°
Benzaldoxime	e ethyl ether (C_9 A	$H_{1,1}$ ON) + Acetic acid ($C_2H_4O_2$)	100 50.5 33.55 20.27 6.44	1.0582 0.9167 0.11 .8785 0.13 .8427 0.15 .8103 0.12 .7941(19°)	8 0.227
Beckmann, 18	388				
<u> </u>	D f.t.		Timofeev	, 1905	
99.18 96.24 91.91	-0.245 1.085 2.320		initia1	% final	Q m
85.56 82.01	4.135 5.170		100 96.0	96.0 91.4	-22 -3
			91.4 87.6 58.4	87.6 84.2 56.1	+44 +7 +5
					(by 1
			0	7.5	+13

	lcohol (CH _h ()) + Fo	rmic aci	d (CH;	,0,2)
×	d 18°	0.°	я 18°	3()°
100 66.87 38.12 24.30 19.08 9.81 4.86 0	1.2198 .0266 0.9241 .8727 .8553 .8283 .8119 .7937	4.380 1.299 1.033 0.770 0.240	5.595 1.795 1.250 1.019 0.344	-	594 1 65 -
Methyl a	alcohol (CH ₁₄ 6) + Ac	etic aci	d (C ₂ I	i ₄ 0 ₂)
Pickerii	ng, 1893			<u></u>	
%	f.t.	%	f.t	·	
100 96.186 92.276 88.265 84.152 79.889 75.594 71.142 66.569	16.63 12.36 8.19 4.24 - 0.12 4.98 10.06 16.27 -24.17	66. 66. 61. 57. 52. 52. 46.	868 036 064 064 9 4 9	- 23 25 30 36 44 44 55 76	.87 sic .07 sic .37 .87 .57 .57 .57 .57 .57
Hartwig	, 1 8 88 and 18	91			
%	d 18° 0	° 1	и L8° ;	30°	τ 10 ³
100 50.5 33.55 20.27 6.44 0	.8785 0. .8427 0.	112 0 138 0 150 0 128 0	.191 0 .227 0 .225 0 .175 0	.218 .289 .296 .221	59.3 31.2 23.8 14.7
Timofeev	, 1905				
	%		Q mix		***************************************
initial	final	(by mole	alcoho	1)
100 96.0 91.4 87.6 58.4	96.0 91.4 87.6 84.2 56.1	,	-221 -38.2 +46.8 +78.1 +50.1	الدنده. الدنده	
0 7.5 15.7	7.5 15.7 22.2	(+181 +158 +146	acid)	

1040					~E CO110E				
Methyl Al	cohol (СН ₄ 0) +	Propioni	c acid(C	3H ₆ O ₂)	Methyl alco	ohol (CH ₄	0) + Capri	c acid (C ₁₀ H ₂₀ O ₂)
Baume and	l Pamfil,	1914				Hoerr and R	Ralston, 1	944	
%	mo1%	f.t.	%	mo1%	f.t.	%		f.t.	
0 5.15 8.79 10.56 15.40 16.17 20.62	0 2.3 4.0 4.9 7.3 7.7 10.1 16.3	-94.4 -95.9 -97.7 -90.3 -85.9 -84.7 -81.4	50.48 55.13 58.22 68.61 75.02 80.02 85.11 90.57	30.6 34.7 37.6 48.6 56.5 63.4 71.2 80.6	-57.3 -54.0 -52.7 -44.9 -38.6 -34.2 -30.0 -26.9	44.4 64.3 83.6 99.0 100.0	shall (CII)	0 10 20 30 31,24	
33.51 40.44 43.92	17.9 22.7 25.3	-65.7 -63.0 -59.0	96.71 100	92.7 100	-22.4 -19.5	methyl alco	mor (cn ₄ ,	0) + Undeca (C _{1 1} H	
						Hoerr and R	Ralston, 1	944	
						78		f.t.	
Methyl a	lcohol (CH40) +	Butyric	acid ((C4H8O2)	E1 2	·		——————————————————————————————————————
Hartwig,	1888-189	01				51.2 70.2 88.1 100		0 10 20 28,13	
%	đ		ж		τ.10%				
 	18°	0°	18°	30°					
100 43.66 23.27 11.88	0.9620 .8623 .8346 .8159 .7937	0.062 .065 .074	0.092 .098 .102	0.122 .126 .126	23.3 29.4 12.5			₄ 0) + Laur	ic acid ($C_{12}H_{24}O_{2}$)
"	.7707					Timofeev,	1894	······································	
						%		f.t.	
Methyl a	lcohol (СН ₄ 0)	- Capryli	c acid (C ₈ H ₁₆ O ₂)	14.8 58.6		0 21	
Hoerr at	nd Ralsto	n, 1944							
%		f	. t.						
36.8			0			Hoerr and	Ralston,	1944	
92.9 100		1:	0 6.30			<u> </u>	f.t.	%	f.t.
						11.3 29.1 54.6	0 10 20	79.3 95.7 100	30 40 43.92
Methyl a	lcohol (CH ₁₄ 0) +	Pelargon	ic acid	(C ₉ H ₁₈ O ₂)				
	d Ralston		<u>.</u>	·		Methyl alo	cohol (CH	- '	ecanoic acid H ₂₆ O ₂)
			.t.			Hoerr and	Ralston		
83.6 97.9		1	0 0 2 25			#	f.t.	%	f.t.
100		1	2.25						······································
						11.2 32.7 59.7	0 10 20	83.7 99.3 100	30 40 41.76
(

Methyl alcohol ($ ext{CH}_{14} ext{O}$) + Myristic acid ($ ext{C}_{14} ext{H}_{28} ext{O}_2$)	Methyl alcohol (CH_4O) + Stearic acid ($C_{18}H_{36}O_2$)
Timofeev, 1894	Hoerr and Ralston, 1944
g f.t.	% f.t. % f.t.
2.81 0 21.2 21 59.2 31.5	0.1 20 43.8 50 1.8 30 83.9 60 10.5 40 100.0 69.32
Hoerr and Ralston, 1944	
% f.t. % f.t.	Methyl alcohol (CH_{40}) + Erucic acid ($C_{22}H_{42}O_{2}$)
2.7 0 77.8 40 5.5 10 96.4 50 14.8 20 100.0 54.15 42.9 30	Timofeev, 1894 # f.t.
Methyl alcohol ($ ext{CH}_{f k} 0$) + Pentadecanoic acid ($ ext{C}_{15} ext{H}_{3} ext{O}_{2}$)	2.25 -2 60,4 +18 62.0 +21.4 100.0 +34
Hoerr and Ralston, 1944	Methyl alcohol (CH ₄ 0) + Oleic acid ($C_{18}H_{5,4}O_{2}$)
% f.t. % f.t.	
	Hoerr and Harwood, 1952
4.8 10 97.2 50	% f.t. % f.t.
14.1 20 100.0 52.54 42.9 30	
Methyl alcohol ($ ext{CH}_40$) + Palmitic acid ($ ext{C}_{16} ext{H}_{32} ext{O}_2$)	Dennhardt, 1899
Hoerr and Ralston, 1944	% t d κ τ
% f.t. % f.t.	8° 25° 30° 25°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.49 21 0.8152 0.0827 0.0915 0.093 0.014 18.40 18 .8127 .341 .3732 .3986 .012 36.00 22 .8270 .1534 .177 .190 .019 52.20 22 .8445 .0590 .0590 .0794 .026
Mark Jack Jack Jack Jack Jack Jack Jack Jac	Nested aleabat (CHO) aliantia and (CHO)
Methyl alcohol ($CH_{4}O$) + Margaric acid ($C_{17}H_{34}O_{2}$)	Methyl alcohol (CH_{10}) + Linoleic acid ($C_{18}H_{32}O_{2}$)
Hoerr and Ralston, 1944	Hoerr and Harwood, 1952
% f.t. % f.t.	% f.t.
0.1 0 39.3 40 0.7 10 83.3 50 2.4 20 99.2 60 9.0 30 100.0 60.94	3.2 -50 9.0 -40 32.5 -30 70.0 -20 94.9 -10 100.0 -5.3

1048 MEITIL ALCOHO	T T T T T T T T T T T T T T T T T T T
Methyl alcohol ($ ext{CH}_{f k}0$) + Oxalic acid ($ ext{C}_2 ext{H}_2 ext{O}_{f k}$)	Methyl alcohol ($ ext{CH}_{4} ext{O}$) + Malic acid ($ ext{C}_{4} ext{H}_{6} ext{O}_{5}$)
P.P. and M.S. Kosakewitsch, 1933	Timofeev, 1894
mol% d o mol% d o	% f.t.
12° 0 0.797 23.30 4.43 0.852 25.07 0.80 .809 23.65 7.43 .888 25.32 2.22 .824 24.17 12.0 .940 28.28	55.5 0 62.1 18.8 63.5 19.0 62.4 19.5 100.0 100
Methyl alcohol ($ ext{CH}_{14} ext{O}$) + Malonic acid ($ ext{C}_{3} ext{O}_{14} ext{H}_{1_{4}}$)	Nasini and Gennari, 1895
Timofeev, 1894	20°
# f.t. # f.t.	25.000 0.94520
42.7 -18.5 52.5 +19 43.5 -15 53.3 +19.5 47.3 0 100 132	52,420 1,08603
	P.P. and M.S. Kosakewitsch, 1933
	mol% d σ
Methyl alcohol ($ ext{CH}_{ ext{ t}}0$) + Succinic acid ($ ext{C}_{ ext{ t}} ext{H}_{ ext{ t}}0_{ ext{ t}}$)	20°
Timofeev, 1894	0.00 0.791 23.01 1.63 .819 23.73 4.21 .861 24.81
% f.t. % f.t.	8.13 .918 26.13
9.5 -1 22.30 +39 16.1 +20 100 185 16.46 +23	Nasini and Gennari, 1895
	β (α) red D green pale dark blue blue
P.P. and M.S. Kosakewitsch, 1933	20°
mol% d ♂ 20°	15.830 -7.17 -8.76 -10.88 -11.33 -11.72 25.000 -5.39 -6.98 -8.14 -8.88 - 52.420 -0.85 -0.65 +0.30 +0.33 +1.70
$\begin{array}{cccc} 0 & 0.791 & 23.01 \\ 1.10 & .303 & 23.39 \end{array}$	
2.30 .819 23.78	
4.02 .841 24.37	Methyl alcohol ($ ext{CH}_{ extbf{h}}$ 0) + Tartaric acid ($ ext{C}_{ extbf{h}}$ H $_{6}$ 0 $_{6}$)
	Timofeev, 1894
	g f.t.
	40.3 -3
	41.2 +19.2 42.3 +23 43.6 +39

Methyl alcohol (CH ₄ O) + Benzoic	acid (C ₇ H ₆ O ₂)	Methy1	alcohol	(СН ₄ 0)	+ Phenyl	acetic ac	d
Timofeev, 1894		Timofe	ev, 1894				
% f.t. % f.t.		8	f. t	•	%	f.t.	
23.1 -18 40.1 +19. 24.3 -13 41.7 +23 33.5 +3	2	50.6 53.2 59.2	-17 -13 0	7	0.8	+19.4 20 76	
Vandenberghe, 1903							
% D b.t.							
6.54 +0.47 13.04 1.032 18.03 1.507		ļ		(CH ₁₄ 0)	+ Pheny (C ₉ H ₁	lpropionic _o 0 ₂)	acid
2.91 0.16			ev, 1894				
5,66 0.41 9,09 0,655	ļ.	%	f.	t.	<u>%</u>	f.t.	
8.26 0.62 17.35 1.425 23.67 2.05		55.8 57.6 66.9	-10	5.0	82.8 83.8 00	+19.6 20 47	
5.66 0.37 12.28 0.905 20.00 1.705							
6.54 0.68 15.25 1.405 21.26 1.94	:	Methy1	alcohol	(CH ₄ 0)	+ Cinnam	nic acid (С9Н8О2)
		Timofe	ev, 1894		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
P.P. and M.S. Kosakewitsch, 1933		%	f.1		% 	f.t.	
mol% d o mol%	đ đ	8.1 9.3	-18. -12.	0 2 5 10	2.4	+19.5 133	
12°		13.0	0	0 10	v	100	
0 0.797 23.30 4.53 1.39 .812 23.73 7.56 2.69 .824 24.09 11.16	0.842 24.86 .869 25.90 .898 26.77	Chatta	rii ord D	105	0		
Chatterji and Bose, 1950		%	rji and E	······································	и		
% н			25°	30°	35°	40°	45°
25° 30° 35° 41.9 0.04689	- 0.05447	21.1 25.1	0.09268 .08537 .08018	0.0872	0.0939	0.1009	0.1 228 .1151 .1152
41.9 0.04689 43.7 0.03769 0.04066 .04393 45.204276 47.503981 48.803795	0.04790 .05156 04933 04652 0.04128 .04430	28.8	.07390	.0805	.0879	.0942	.1018

Methyl alcohol (CH ₄ 0) + Salicylic	acid (C ₇ H ₆ O ₅	Methy	l alcohol	(CH ₄ 0) +	Phthalic	acid (C ₈)	1604)
Vandenberghe, 19	003		Timot	feev, 1894				
×	D b.t.		%			f.t.		
7.4 13.8 20.6	+0.49 0.975 1.58		15, 19, 20, 19,	.5 .4		-2 +19 21.4 22		i
13.0 19.4	0.92 1.46							===='
14.5 23.1	0.995 1.86		Chat	terji and	Bose, 1950	 		·
		· · · · · · · · · · · · · · · · · · ·	- %	25°	30°	и 35°	40°	45°
Timofeev, 1894			16.3					
28.4	f.t. -3		16.3 21.7 25.6 30.7	0.4133 	,4617	0.5270 0.5045	0.5947 0.5630	0.6290 .6540 .6540 .6306
30.2 37.6 39.2	0 +19.2 +23							
			= Methy	l alcohol	(CH ₁₄ 0) +	o-Aminobe		l
Chatterji and B	ose, 1950		Char	torii and		671170211	,	
78	х		4	terji and	Bose, 1950	ж	 	
25°	30° 35°	40° 4		30°	35°	40°	45°	
34.6 - 37.0 - 39.2 0.03020 40.7 - 42.6 -	0.03470 - .03392 - .03310 0.03642 .03271 - .03178 0.03475	041	0 26.4 0 29.8 72 34.9	0.6247 -	0.5845 .6247 .6533 .6627	0.6724 0.6860	.708	3 3 0
Methyl alcohol	(CH ₄ 0) + Mandelic	acid (C ₈ H ₈ O ₃)	Methy	l alcohol	(CH ₄ 0) +	o-Nitrob C ₇ H ₅ O ₄ N		
\$	f.t.	·		eev, 1894			······································	
51,1	0		- %		f.t			
100	16.5 118		36 51	.3	0 22			

Chatterji and Bose, 1950	Ethyl alcohol (C_2H_60) + Formic acid (CH_2O_2)
% N	
25° 30° 35° 40° 45°	Landolt, 1865
36.4 0.4578 0.6053 45.0 .4456 0.4820 0.5196 0.5570 .5940 51.5 .4190 .4210 .4594 .4922 .5624 53.1 .39085256	% d n _D 20° 0 0,8011 1,3606
	50 .9602 .3610
	100 1.2211 .3693
Methyl alcohol ($ ext{CH}_{f 4} ext{O}$) + m-Nitrobenzoic acid ($ ext{C}_7 ext{H}_5 ext{O}_4 ext{N}$)	Hartwig, 1888
Timofeev, 1894	% н т.10 ³
% f.t.	1.91 - 0.073
41.9 0 53.5 19 57.1 21.5 100 141	5.05 0.070 .099 0.123 20.0 9.52 .125 .171 .203 21.0 15.20 .221 .312 .379 20.8 18.24 .335 .466 .537 20.2 22.09 .541 .714 .844 20.1 27.72 .850 1.080 1.239 17.1
Chatterji and Bose, 1950	63.96 4.209 5.054 5.557 15.3
% ×	
25° 30° 35° 40° 45°	Ethyl alcohol (C_2H_60) + Acetic acid ($C_2H_40_2$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pickering, 1893 ### ### ### ########################
50.5 .1271 0.1758 0.1596 0.1426 .1924	100 16.626 64.225 -13.51
Methyl alcohol ($CH_{\downarrow}\theta$) + Camphoric acid ($C_{10}H_{16}\theta_{\downarrow}$)	98.824 15.67 62.150 -15.68 97.752 14.83 59.508 -18.04 96.491 13.80 56.578 -21.71 95.396 13.07 53.576 -25.47
Timofeev, 1894	l 91.813 10.32 49.024 -32.57
% f.t.	88.687 8.02 46.757 -35.47 85.676 5.35 44.489 -39.47 82.730 3.09 41.732 -42.37
53.8 0 56.7 22.5	82.730 3.09 41.732 -42.37 79.835 0.71 38.785 -48.87 77.091 -1.54 36.924 -50.92 74.535 -3.99 34.118 -57.97
56.7 22.5 100 187	71.765 -6.21 31.959 -63.27 69.174 -8.59 28.511 -69.27
	66.773 -10.21 26.414 -74.97
	Hartwig, 1888
	% d % d
	18°
	100 1.0582 25.00 0.8519 75.7 0.9796 6.29 0.8080 47.06 0.9047 0 0.7937

Hammick and Andrew, 1929	Hartwig, 1888
mol% d mol% d	% и т.10 ³
25° 0.00 0.7898 55.50 0.9384 22.62 .8540 74.14 0.9863 42.41 .9062 100.00 1.051	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Drutman, 1955 mol% d	
0° 20° 40° 60°	Timofeev, 1905
100 - 1.052 1.028 1.008	% U
93.22036 .017 0.9957 89.96032 .008 .9872 87.05 1.042 .021 .002 .9813 84.42 .036 .017 0.9965 .9750 83.00 .033 .013 .9942 .9720 81.07 .028 .008 .9862 .9660 71.76 .005 .9900 .9665 .9425 68.20 0.9940 .9760 .9548 .9342	20° 100 0.487 85.6 .499 74 .506 0 .5933
64.50 .9852 .9663 .9453 .9250 61.28 .9773 .9562 .9392 .9163 56.94 .9665 .9510 .9270 .8990 50.59 .9454 .9227 .9083 .8906 45.87 .9340 .9176 .9004 .8750	g Q mix initial final (by mole alco- hol)
39,25 .9143 .9000 .8782 .8603 30,31 .8912 .8742 .8550 .8360 20,12 .8637 .8475 .8280 .8104 10,04 .8372 .8183 .8045 .7876 0 .8080 .7930 .7750 .7592	100 95.1 -410 95.1 90.6 -258 90.6 86.8 -167 50.4 47.8 +106
N.B. For data after reaction, see author	Longtin, 1942 (fig.)
Bingham, White and al., 1913	mol% Q mix mol% Q mix
t n	23°
0% 25% 50% 75% 100% 25 1149 1340 1250 1143 1099 35 991 1117 1042 951 916 45 867 941 878 810 775 55 763 806 750 690 640 65 676 700 647 589 554	10 - 5.95 60 -47.6 20 -11.9 70 -54.3 30 -17.8 80 -52.3 40 -23.9 90 -35.7 50 -35.7
65 676 700 647 589 554 75 607 609 550 504 469	Ethyl alcohol (C_2H_60) + Butyric acid ($C_4H_80_2$)
Hammick and Andrew, 1929	Hartwig, 1888
mol% o mol% o	% d % 7.10 ⁵
25° 0.00 21,90 55.50 26.07 22.62 24.06 74.14 27.10 42.41 25.75 100.00 28.52	100 0.9620

ETHYL ALCOHOL + CAPRYLIC ACID

Ethyl alcohol (C_2H_6O) + Caprylic acid ($C_8H_{16}O_2$)	Ethyl alcohol (C_2H_60) + Lauric acid ($C_{12}H_{24}0_2$)
Ethyl alcohol (C21160) . Capitile acid (C3111602)	
Ralston and Hoerr, 1942	Timofeev, 1894 % f.t.
ß f.t.	
72.4 91.2 10 100 16.30	20.5 57.3 21
Ethyl alcohol (C_2H_6O) + Pelargonic acid ($C_9H_{1.8}O_2$)	Ralston and Hoerr, 1942 % f.t. % f.t.
Ralston and Hoerr, 1942	16,9 0 74.5 30 29,4 10 93.9 40 51,2 20 100.0 43,86
79.7 0 97 10 100 12,24	Ekwall and Mylius, 1933
100 12.24	% f.t.
Ethyl alcohol (C_2H_60) + Capric acid ($C_{10}H_{80}0_2$)	17.2 0 26.5 +8 32.6 12 42.1 16.5
Ralston and Hoerr, 1942 # f,t,	Ethyl alcohol (C_2H_6O) + Tridecanoic acid ($C_{13}H_{26}O_2$)
37.7 0 48.3 10 81.5 20 99 30 100 30.92	Ralston and Hoerr, 1942 % f.t. % f.t.
Ethyl alcohol (C_2H_60) + Undecanoic acid ($C_{11}H_{22}O_2$)	13.4 0 77.1 30 25.6 10 98.5 40 51.0 20 100.0 41.76
Ralston and Hoerr, 1942	Ethyl alcohol (C_2H_60) + Myristic acid ($C_{11}H_{28}O_2$)
\$ f.t.	Ralston and Hoerr, 1942
46.0 0 65.5 10	% f.t. % f.t.
87.6 100 28.13	6.6 0 72.5 40 8.9 10 94.0 50 19.3 20 100.0 53.78 45.9 30

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

1054

ETHYL ALCOHOL + PENTADECANOIC ACID

Ethyl alcohol(95%) (C_2H_6O) + Pentadecanoic acid ($C_{15}H_{3.0}O_2$)	Ethyl alco	ohol (C ₂ H	60) + Oleic	acid (C ₁₈	H _{3 4} 0&)
Ralston and Hoerr, 1942	Dennhardt,	, 1899			
% f.t. % f.t.	%		t	d	
3.7 0 74.7 40 6.7 10 96.1 50 16.3 20 100.0 52.49 44.0 30	4.51 11.18 18.47 36.16 53.12		23.6 22.0 21.8 22.2 21.0	0.7953 .8028 .8048 .8256 .8445	
Ethyl alcohol(99.4%) (C_2H_60) + Palmitic acid ($C_{16}H_{32}O_2$)	4.51	18°	я 25° 0.0298	30° 0.0323	τ 0.016
Ralston and Hoerr, 1942	11.18 18.47 36.16 53.12	.0278 .0330 .0922	.0304 .0379 .1015	.0350 .0416 .1108	.012 .018 .013
% f.t. % f.t.	53.12	.0108	.0120	.0127	.014
1.85 0 48.5 40 3.1 10 76.2 50 6.7 20 96.3 60 19.3 30 100.0 62.41	Laing, 19	918			
	molarity	<u> </u>	ď	н	
Ethyl alcohol(99.4%) (C_2H_60) + Margaric acid ($C_{1.7}H_{3.4}0_2$)	1,536 0,955 .811 .564 .482 .319		60° 0.8368 .7961 .7905 .7794 .7761 .7695	0.0157 .0401 .0540 .0552 .0656 .0560	
Ralston and Hoerr, 1942 # f.t. # f.t.	.238 .095		.7656 .7593	.0504 .0417	
	.044 .011		.7568 .7542	.0242 .0121	
2.0 0 52.4 40 2.9 10 79.5 50 6.2 20 98.8 60 18.2 30 100 60.94	.008		.7540	.0121	
	Ethyl alc	ohol (C ₂ I	1 ₆ 0) + Malon	nic acid ((C ₃ H ₄ O ₄)
Ethyl alcohol(99.4%) (C_2H_60) + Stearic acid ($C_{1.2}H_{3.6}0_2$)	Timofeev,	1894			
Ralston and Hoerr, 1942	%	f.t.	Х	f.t.	
% f.t. % f.t.	30.0 30.7	-18.5 -15	$\frac{40.1}{41.3}$	+19 +19.5	
0.42 0 18.5 40 1.08 10 51.2 50 2.20 20 80.0 60 5.1 30 100.0 69.20	35.3	0	100	132	

Ethyl alcohol (C_2H_6O) + Methylsuccinic acid d ($C_5H_8O_4$)			Ethyl al	cohol (C		-Methylglut C ₆ H ₁₀ O ₄)	aric acid d
Berner and and	Leonardsen, 1939		Berner	and Leona	rdsen, 1939	9	
%	d	(α) _D	%		đ		(α) _D
2,169 4,136 10,405 27,68 47,03	20° 0.7990 .8052 .8262 .891 .968	+16.88 16.59 16.40 15.73 15.27	5. 24. 44. 53.	013	0.8078 .8703 .9441 .9837		21.74 21.38 21.22 21.25
Ethyl alcohol	(C ₂ H ₆ O) + Ethyl (C ₆ H ₁				(C7H12O4)	aric acid d
Berner and Le	onardsen, 1939				rdsen, 1939	9	(-)
I	α) _D %	(α) _D)	d 20°		(α) _D
5.149 +20 10.771 20 15.914 20 21.396 20	20° 0.78 37.823 0.32 51.213 0.25 60.569 0.15 73.059 9.95	19.87 19.39 19.13 18.82	5. 11. 21. 43. 60.	841 864 057 469 855 384 459	0.799 .809 .824 .855 .929 .988 1.047		+14.32 14.12 14.00 13.81 13.90 14.24 14.84
acid-1 (C ₆ H ₁ ,		imethylsuccinic		lcohol (v, 1894	C ₂ H ₆ O) + 1	Maleic acid	1 (C ₄ H ₄ O ₄)
	onardsen, 1939	()	%	 	f. 1	t.	
	d 20°	(α) _D	30.	2	0		·
7.978 17.965 30,111	0.8143 .8482	-5.77 6.79	34.		22.		
41.875	.8910 .9343	8.09 9.33	Ethyl a	lcohol (C ₂ H ₆ O) +)	Malic acid	(C ₄ H ₆ O ₅)
Ethyl alcohol succinic acid	$(C_2H_6O) + \alpha$ -Meth d $(C_7H_{12}O_4)$	nyl-α'-ethyl-	Nasini	and Genna	ri, 1895		
Berner and Leo	nardsen, 1939		%	đ		α)	
×	d	(α) _D			red	D pale	
	20° I (f.t.=180°	·)	21,400	0.89188	20° -5.73 -7		′1
7.645 11.883 23.758 37.177	0,8120 .8214 .8573 .9007	+7.97 7.79 7.19 6.47					
	II (f.t.=81°	·)	}				
5.263 10.330 18.177	0.8063 .8213 .8448	+13.55 13.79 14.72					

ETHYL ALCOHOL + TARTARIC ACID

Ethyl alcohol (C_2H_6O) + Tartaric acid ($C_4H_6O_6$)	Ethyl alcohol (C_2H_6O) + Citric acid bydrate ($C_6H_{10}O_8$)
Beckmann, 1890	Gerlach, 1889
% Db.t. % Db.t.	% d
1.64 +0.122 9.16 0.781 3.47 .271 12.87 1.161 6.27 .521 17.66 1.683	15° 0 0.7972 11.111 8456 16.666 8722 33.333 .9593 100 1.552
Timofeev, 1894	
% f.t.	
18.3 -3 21.6 +19.2 22.4 +23 24.1 +39	Ethyl alcohol (C_2H_60) + Trichloracetic acid ($C_2H0_2Cl_3$) Pushin and Rikovski, 1935
	mol% f.t. E mol% f.t. E
Tammann and Hirschberg, 1894	101/6
% relative vol. 0° 10° 20° 30°	35 -53.5 - 70 +13.5 -40.5 40 -45 - 80 34 - 45 -40 - 90 49 -
0 1 1.01071 1.02165 1.03303 12.78 1 .01000 .02034 .03097 25.07 1 .00970 .01941 .02989	50 -38 -33 100 57 - 55 -25 -38.5 (1+2)
Winther, 1902	
% d 20° 30° 40° 50°	Ethyl alcohol ($ extsf{C}_2 extsf{H}_6 extsf{O}$) + Benzoic acid ($ extsf{C}_7 extsf{H}_6 extsf{O}_2$)
19.73 0.8931 0.8844 0.8757 0.8667 16.18 8736 .8648 .8562 .8472 11.63 .8480 .8395 .8308 .8218 6.45 .8199 .8122 .8022 .7937	Vandenberghe, 1903 % D b.t.
t (α) t (α) t (α) t (α) red yellow green pale blue dark blue 19.73%	6.54 +0.652 11.50 1.232 14.53 1.642 19.35 2.267
18.0 4.14 18.0 4.14 18.0 3.06 18.0 -2.04 18.0 -4.76 28.4 5.32 30.2 6.25 29.9 5.50 29.4 +1.92 28.9 -0.86 41.4 7.07 43.0 8.13 42.9 8.01 42.0 5.33 42.6 +3.60	3.19 0.37 9.83 1.035
16.18%	6.54 0.761 12.28 0.777 12.28 0.770
16.5 3.39 16.0 3.03 16.1 1.80 16.4 -3.46 16.3 -6.42 28.7 5.00 29.5 5.28 28.3 4.49 27.6 +0.50 27.5 -2.14 42.1 6.65 43.5 7.75 43.2 7.53 42.7 +4.70 43.1 +3.04 11.63%	Timofeev, 1894
14.9 3.43 14.6 2.82 14.6 1.21 14.8 -3.63 14.7 -6.65	% f.t.
27.8 4.70 28.9 5.32 28.8 4.40 29.2 +0.41 28.6 -2.15 41.4 6.42 42.0 7.26 42.0 6.84 41.8 +3.94 42.0 +2.38 6.45%	20.3 -18 21.2 -13 28.8 +3
14.0 3.01 14.0 2.26 14.0 1.32 14.0 -3.76 14.0 -6.01 25.6 4.38 29.0 4.97 28.2 5.15 27.3 +1.14 26.4 -1.71 41.6 6.00 43.2 6.98 43.1 7.37 42.1 +5.28 42.5 +3.87	34.4 +19.2 35.9 +23

Guillaume, 1946	Ethyl alcohol (C_2H_6O) + Phenylacetic acid ($C_8H_8O_2$)
% d n (α) magn. 106 * 5780 Å	Timofeev, 1894
20°	% f.t. % f.t.
20.04 0.8572 1.3963 4.842 * in radians, Gauss, centim.	39.7 -17 64.4 +19.4 41.5 -13 65.1 +20 50.7 0 100 +76
P.P. and M.S. Kosakewitsch, 1933	
mol% d o mol% d o	
20°	Ethyl alcohol (C_2H_60) + Phenylpropionic acid ($C_9H_{10}O_2$)
0 0.784 22.72 2.87 0.811 23.16 0.44 .793 22.81 6.27 .833 23.82 1.15 .798 22.94 9.77 .855 24.66	Timofeev, 1894
	% f.t. % f.t.
Timofeev, 1905	46.0 -18.5 78.8 +20 48.0 -16.0 100 +47 77.2 +19.6
% U	
20° 0 0.5933 2.5 .576 12 .567 12.25 .569 14.25 .560	Ethyl alcohol (C_2H_6O) + Cinnamic acid ($C_9H_8O_2$) Timofeev, 1894
% Q dil. (by mole acid)	% f.t. % f.t.
initial final	6.74 ~18 18.0 +19.5
0 1.25 -2.92 1.25 3.7 -2.98	8.0 -12.5 100 +133 11.3 0
3.7 6.0 -3.00 6.0 8.1 -3.05	
8.1 10.2 -3.06 10.2 12.2 -3.10 0 2.46 -2.83 2.46 4.8 -3.04	Ethyl alcohol (C_2H_6O) + Mandelic acid ($C_8H_8O_3$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Timofeev, 1894
9.2 11.2 -3.01 11.2 13.2 -3.07	% f.t.
	46.7 0
	53.6 16.5 100 118

Ethyl alcohol (C_2H_6O) + Phthalic acid ($C_8H_6O_4$)	Ethyl alcohol (C_2H_6O) + m-Digallic acid ($C_{1\mu}H_{1\rho}O_{9}$)
Timofeev, 1894	Rakshit, 1925
۶ f.t.	% d % d
8.2 -2 11.0 +19 11.65 +21.4 11.4 +22	0 0.7989 10 0.8535 1 0.8046 30 0.9577 5 0.8267
Ethyl alcohol (C_2H_6O) + Salicylic acid ($C_7H_6O_3$)	Ethyl alcohol (C_2H_6O) + $m ext{-}0xybenzoic$ acid ($C_7H_6O_3$)
Beckmann, 1890	Sidgwick and Ewbank, 1921 % f.t.
% Db.t. % Db.t.	100 201.3
1.35 +0.122 8.18 0.722 2.68 .229 11.81 1.087 5.02 .434 14.74 1.394	81.7 169.0 61.3 132.0 39.6 65.0
Vandenberghe, 1903	Ethyl alcohol (C_2H_6O) + p-Oxybenzoic acid ($C_7H_6O_3$)
% Db.t. % Db.t.	
3.85 +0.305 12.28 1.170 8.26 0.740 17.35 1.80	Sidgwick and Ewbank, 1921 # f.t.
Timofeev, 1894 # f.t.	100 213.0 82.9 184.0 60.9 136.5 38.75 67.0
26.7 -3 28.9 0 33.3 +19.2 35.1 +23	Ethyl alcohol (C_2H_6O) + o-Aminobenzoic acid ($C_7H_7O_2N$)
	Timofeev, 1905
Sidgwick and Ewbank, 1921 ### f.t.	% Q dil. (by mole acid) initial final
40.6 60.4 85.2 81.2 125.2 100.0 159.0	0 5.3 -2.55 5.3 9.1 -2.63 9.1 12.1 -2.82 12.1 15.0 -2.88
Tammann and Hirschberg, 1894	
% relative vol. 0° 10° 20° 30°	
0 1 1.01071 1.02165 1.03303 5.90 1 .01039 .02120 .03227 15.90 1 .01003 .02049 .03118 33.30 1 .00970 .01991 .02991	
	<u> </u>

Ethyl alcohol (C_2H_60) + o-Nitrobenzoic acid ($C_7H_50_4N$)	Propyl alcohol (C_3H_80) + Propionic acid ($C_3H_60_2$)
Timofeev, 1894	Verschaffelt, 1894
% f.t.	% п _D % п _D
23.3 42.57 100 22 147	20° 100 1.38659 55.04 1.38931 74.21 .38898 45.13 .38899 64.94 .38927 0 .38517
Ethyl alcohol (C_2H_6O) + m-Nitrobenzoic acid ($C_7H_5O_4N$) Timofeev, 1894	Propyl alcohol (C_5H_80) + Lauric acid ($C_{12}H_{84}0_2$)
% f.t.	Timofeev, 1894
33.6	% f.t.
42.3 19 43.9 21.5 100 141	21.5 52.6 21
Propyl alcohol (C₃H₀0) ◆ Acetic acid (C₂H₀0₂) Pickering, 1893 mo1% f.t. mo1% f.t. 100 16.626 56.939 -13.87 93.171 14.13 51.964 -19.47 92.247 11.81 51.964 -19.17 88.224 9.31 46.727 -24.67 84.099 6.89 41.589 -31.07 79.866 4.19 37.592 -38.87 76.521 1.24 37.592 -38.87 76.521 1.24 37.592 -40.07 71.060 -2.31 30.593 -50.67 66.479 -6.21 24.844 -60.67 61.773 -9.34 24.844 -60.67 61.773 -9.34 24.844 -59.17 61.773 -10.27 18.911 -70.17	Propyl alcohol (C ₃ H ₈ O) + Myristic acid (C ₁₄ H ₂₈ O ₂) Timofeev, 1894 # f.t. 5.6 O 31.2 21 55.3 36.5 Propyl alcohol (C ₃ H ₈ O) + Erucic acid (C ₂₂ H ₄₂ O ₂)
Timofeev, 1905	Timofeev, 1894 # f.t.
% Q mix initial final (by mole alcohol)	10.2 -2 60.5 +18
100 94.5 -600 94.5 88.7 -426 72.1 69.2 -149 (by mole acid) 0 8.3 -302 8.3 15.0 -246 15.0 20.4 -216	60.5 +18 63.0 21.4 100 34

PROPYL ALCOHOL + OXALIC ACID

Propyl alcohol (C_3H_80) + Oxalic acid ($C_2H_2O_4$)	Propyl alcohol (C_3H_80) + Camphoric acid ($C_{10}H_{16}0_{4}$)
Chatterji and Bose, 1950	
% 35° × 45°	Timofeev, 1894
13.8 0.9330 0.9816	f.t.
22,2 2,3990 2,5710 30,7 4,4640 4,7940	29.7 0 37.9 22,5
36.4 6.1140 6.5940 38.2 - 7.0550	100
Propyl alcohol (C_3H_80) + Malonic acid ($C_3H_h0_{\downarrow}$)	Propyl alcohol ($ m C_3H_80$) + Benzoic acid ($ m C_7H_60_2$)
Timofeev, 1894	Timofeev, 1894
% f.t. % f.t.	% f.t.
	14.5 -18
19.5 -18.5 29.5 +19 20.2 -15 30.7 +19.5 24.3 0 100 132	15.7 -13 23.1 +3
24.3 0 100 132	28.2 +19.2 29.8 23
	Chatterji and Bose, 1950
Propyl alcohol (C_3H_80) + Maleic acid ($C_4H_40_4$)	<i>a</i>
Timefees 1004	⁷⁶ 25° 30° 35° 40° 45°
Timofeev, 1894 % f.t.	19.4 - 0.002198 0.002761
	24.5 0.001859 0.002034 0.002189 0.002383 0.002554 0.001918 - 0.002424
20.0 24.3 22.5	36.8 - 0.001789 0.002236 39.5 - 0.001599 0.001710 0.001802 0.001918
Propyl alcohol (C_3H_80) + Malic acid ($C_4H_60_5$)	
	Propyl alcohol (C ₃ H ₈ O) + Phenylacetic acid
Nasini and Gennari, 1895	(C ₈ H ₈ O ₂)
% d (α)	Timofeev, 1894
red D green pale dark blue blue	
21.145 0.90122 -3.30 -3.62 -3.92 -3.88 -3.07	29.4 -17 56.8 +19.4
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	li .

Propyl alcohol (C_3H_80) + Phenylpropionic acid ($C_9H_{10}O_2$)	Propyl alcohol (C_3H_80) + Mandelic acid ($C_8H_80_3$)
	Timofeev, 1894
Timofeev, 1894	% f.t.
% f.t. % f.t. 35.0 -18.5 73.9 +20.0 39.0 -16.0 100 +47 73.4 +19.6	35.0 0 43.0 16.5 100 118
Propyl alcohol (C_3H_80) + Cinnamic acid ($C_9H_80_2$)	Propyl alcohol (C_3H_80) + o-Nitrobenzoic acid ($C_7H_50_{ m h}$ N)
% н 25° 30° 35° 40° 45°	% f.t.
10.0 - 0.005624 0.007093 18.2 0.005922 0.006511 0.007158 0.007720 0.008280 22.2 - 0.006486 0.005461 24.9 - 0.006410 0.007158 0.007759 0.008461	17.7 0 31.0 22 100 147
Propyl alcohol (C_3H_80) + Salicylic acid ($C_7H_60_3$)	Propyl alcohol (C ₃ H ₈ O) + m-Nitrobenzoic acid (C ₇ H ₅ O ₄ N)
Timofeev, 1894	Timofeev, 1894 g f.t.
% f.t.	
20.7 -3 21.6 0 26.3 +19.2 28.3 +23	24.1 0 31.0 19 32.5 21.5 100 141
Timofeev, 1905	Chatterji and Bose, 1950
% Q diss.	25° 30° 35° 40° 45°
initial final (by mole acid) 0	37.9 0.001428 0.001622 0.001828 0.002031 0.002248 41.4001581002223 45.6001381002174 0.00164
1.23 4.2 -3.11 4.2 7.0 -3.23 7.0 9.6 -3.35 9.6 12.1 -3.46 12.1 14.4 -3.59 14.4 22.7 -3.85	48.6001497 0.001724 0.001946 .002154 53.4001375002038

ISOPROPYL ALCOHOL + CAPRYLIC ACID

Isopropyl ald	cohol (C_8H_80) + Caprylic acid ($C_8H_160_2$)
Hoerr and Ra	lston, 1944
%	f.t.
73.7 90.0 100.0	0 10 16.30
Isopropyl al	cohol (C_5H_80) + Pelargonic acid ($C_9H_{18}0_2$)
Hoerr and Ra	lston, 1944
Я	f.t.
80.8 96.7 100.0	0 10 12.25
Isopropyl al	cohol (C_0H_80) + Capric acid ($C_{10}H_{20}O_2$)
K	f.t.
40.1 58.3 78.3 98.3 100.0	0 10 20 30 31.24
Isopropyl al	cohol ($C_5H_8\theta$) + Undecanoic acid ($C_{11}H_{22}O_2$)
Hoerr and Ra	ston, 1944
Я	f.t.
45.1 64.6 84.4 100.0	0 10 20 28.13

L + CAPRY	LIC ACID	ı		
Isopropyl	alcohol (C ₃ H ₈ O) + I	auric acid C ₁₂ H ₂₄ O ₂)	
Hoerr and	Ralston,	1944		
78	f.t.	%	f.t.	
17.7 30.6 50.0	0 10 20	71.7 92.7 100.0	30 40 43,92	
Isopropyl	alcohol	(C ₃ H ₈ O) +	Tridecanoic acid	1
Hoerr and	Ralston,	1944		
 	f.t.	%	f.t.	
18.1 34.2 55.6	0 10 20	77.3 98.5 100.0	30 40 41.76	:
		(Myristic acid $C_{14}H_{28}O_{2}$)	
Hoerr and	f.t.	######################################		
		<u>-</u>	f.t.	
6.7 12.0 24.0 45.1	0 10 20 30	69.7 92.4 100.0	40 50 54,15	
	alcohol (,	Pentadecanoic ac C ₁₅ H ₃₀ O ₂)	id
%	f.t.	%	f.t.	
5.8 11.7 25.6 48.7	0 10 20 30	73.1 95.4 100.0	40 50 52.54	

Isopropyl alcohol (C_3H_80) + Palmitic acid ($C_{16}H_{32}0_2$)	Butyl alcohol ($C_{4}H_{10}0$) + Caprylic acid ($C_{8}H_{16}\theta_{2}$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
% f.t. % f.t.	g f.t.
2.36 0 48.5 40 4.4 10 73.0 50 9.8 20 96.1 60 24.4 30 100.0 62.82	69.2 0 88.2 10 100 16.30
Isopropyl alcohol (C_3H_80) + Margaric acid ($C_{17}H_{54}0_2$)	Butyl alcohol ($C_4H_{10}O$) + Pelargonic acid ($C_9H_{18}O_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
% f.t. % f.t.	% f.t.
1.2 0 52.0 40 2.9 10 77.5 50 9.7 20 98.5 60 27.5 30 100.0 60.94	78.0 0 96.2 10 100 12.25
Isopropyl alcohol (C_3H_8O) + Stearic acid ($C_{18}H_36O_2$)	Butyl alcohol ($C_uH_{10}0$) + Capric acid ($C_{10}H_{20}0_2$)
Hoerr and Ralston, 1944	Hoerr and Ralston, 1944
% f.t. % f.t.	, f.t.
0.1 0 27.6 40 0.4 10 54.2 50 2.0 20 80.8 60 9.1 30 100.0 69.32	37.1 0 50.7 10 73.7 20 98.0 30 100 31.24
Isopropyl alcohol (C_3H_80) + Oleic acid ($C_{18}H_{34}O_2$)	
Hoerr and Harwood, 1952 # f.t. # f.t.	Butyl alcohol ($C_uH_{10}0$) + Undecanoic acid ($C_{11}H_{22}0_2$)
	Hoerr and Ralston, 1944
1.1 -40 35.5 -10 3.1 -30 69.3 0 10.3 -20 22.0 +10 100.0 +13.38	# f.t. 39.0 0 56.7 10
Isopropyl alcohol (C_3H_80) + Linoleic acid ($C_{18}H_{32}0_2$)	80.6 20 100 28.13
Hoerr and Harwood, 1952	
% f.t. % f.t.	
5.7 -50 67.0 -20 10.5 -40 91.5 -10 31.1 -30 100.0 -5.3	

1004			DOTTE ALCOH	_
Butyl alo	cohol (C ₄ H	₁₀ 0) + Lat	uric acid (C ₁₂ H ₂₄ O ₂)	
Hoerr and	Ralston,	1944		
%	f.t.	%	f.t.	
17.6 27.1 45.4	0 10 20	68.5 91.5 100	30 40 43.92	
		and pulse and pu		=
Butyl al	.cohol (C ₄ l	H ₁₀ 0) + Tr	idecanoic acid	

Butyl alcohol ($C_{4}H_{10}0$) + Tridecanoic acid ($C_{13}H_{26}0_{2}$)

Hoerr and Ralston, 1944

 %	f.t.	%	f.t.	
17.7	0	74.7	30	
28.5	10	98.3	40	
50.0	20	100	41.76	

Butyl alcohol ($C_{\rm h}H_{1\,0}0$) + Myristic acid ($C_{1\,\rm h}H_{2\,8}\theta_2$)

Hoerr and Ralston, 1944

R	f.t.	%,	f.t.	
6.8 11.6 22.3 41.5	0 10 20 30	66.0 90.7 100	40 50 54.15	

Butyl alcohol ($C_u H_{1\,0} 0$) + Pentadecanoic acid ($C_{1\,5} H_{3\,0} O_2$)

Hoerr and Ralston, 1944

%	f.t.	8	f.t.	
6.6 11.1 22.1 42.5	0 10 20 30	68.8 94.4 100	40 50 52.54	

Butyl alcohol ($C_{\rm h}H_{1\,0}0$) + Palmitic acid ($\mathcal{C}_{1\,6}H_{3\,2}0_2$)

Hoerr and Ralston, 1944

%	f.t.	%	f.t.	
1.9	0	45.7	40	
4.0	10	70.9	50	
9.5	20	95.1	60	
23.1	30	100	62.82	

Butyl alcohol ($C_{\rm q}H_{1\,0}0$) + Margaric acid ($C_{1\,7}H_{3\,{\rm q}}0_2$)

Hoerr and Ralston, 1944

% f.t. % f.t.	
1.6 0 46.0 40 3.5 10 73.3 50 8.7 20 98.0 60 21.5 30 100.0 60.94	

Butyl alcohol ($C_4H_{1\,0}O$) + Stearic acid ($C_{1\,8}H_{3\,6}O_2$)

Hoerr and Ralston, 1944

%	f.t.	%	f.t.	
0.2 1.6 8.3 26.6	10 20 30 40	52.6 78.7 100.0	50 60 69.32	

Butyl alcohol ($C_{4}H_{1\,0}0$) + Oleic acid ($C_{1\,8}H_{3\,4}O_{2})$

Hoerr and Harwood, 1952

%	f.t.	%	f.t.	
1.3 3.8 13.2	-40 -30 -20	36.1 50.0 90.5 100.0	-10 0 +10 +13.38	

Butyl alcohol (C _u H ₁₀ 0) + Linoleic acid	Butyl alcohol (C ₄ H ₁₀ O) + m-Oxybenzoic acid
(C ₁₈ H ₃₂ O ₂)	(C ₇ H ₆ O ₃)
Hoerr and Harwood, 1952	Sidgwick and Ewbank,1921
% f.t. % f.t.	% f.t. % f.t.
7.4 -50 64.3 -20 15.9 -40 89.7 -10 35.9 -30 100.0 - 5.3	100 201.3 40.8 115.0 84.7 180.3 20.7 36.5 59.2 151.2
Butyl alcohol ($C_uH_{1,0}O$) + Benzoic acid ($C_7H_6O_2$) P.P. And M.S. Kosakewitsch, 1933	Butyl alcohol ($C_4H_{10}O$) + p-Oxybenzoic acid ($C_7H_6O_3$)
mol% d o	Sidgwick and Ewbank, 1921
20°	% f.t. % f.t.
0 0.809 24.92 1.81 .819 25.23 3.81 .827 25.48 7.75 .843 25.97 11.31 .861 26.52	100 213.0 39.45 116.1 85.5 193.8 25.08 62.0 62.4 167.0 19.50 32.5
Butyl alcohol (C ₄ H ₁₀ O) + Salicylic acid	Butyl alcohol ($C_{\rm h}H_{10}0$) + o-Aminobenzoic acid ($C_{7}H_{7}0_{2}N$)
Butyl alcohol ($C_4H_{10}O$) . Safetylle acid ($C_7H_6O_3$)	Chatterji and Bose, 1950
Sidgwick and Ewbank, 1921	25° 30° 35° 40° 45°
% f.t.	4.17 0.001724 0.002390
100 159.0 79.2 121.6 48.9 85.6 28.88 38.0 24.36 24.0	10.8 .002630
24.00	
Chatterji and Bose, 1950	Butyl alcohol ($C_{4}H_{10}0$) + o-Nitrobenzoic acid ($C_{7}H_{5}0_{4}N$)
% X	Chatterji and Bose, 1950
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. % × 25° 30° 35° 40° 45°
18.5 0.006334 0.007075 0.007715 0.008206 0.008786 21.7 ? - 0.007428 0.009080 25.0 - 0.007947 0.008565 0.009281 0.009853	10 (0 005991 0 007665

ISOBUTYL ALCOHOL + ACETIC ACID

Isobutyl alcoho	$1 (C_{4}H_{10}0$	+ Acetic acid	$(C_2H_4O_2)$
-----------------	-------------------	---------------	---------------

Ti	mofeev.	1905
11	moreev.	1 700

Z		Q mix	
initial	final	(by mole acid)	
0 8.3 15.7 21.5 26.3	8.3 15.7 21.5 26.3 30.7	-582 -446 -358 -305 -265	

Isobutyl alcohol ($C_{4}H_{1\,0}0$) + Isobutyric acid ($C_{4}H_{8}0_{2}$)

Verschaffelt, 1894

 %	n _D	%	n _D	
	20°			
100 54.23 44.58	1.39290 .39633 .39660	33.93 22.78 0	1,39674 .39660 .39576	

Isobutyl alcohol ($C_{u}H_{1\,0}0$) + Lauric acid ($C_{1\,2}H_{2\,u}0_{2})$

Timofeev, 1894

×	f.t.	······································
18.4 49.7	0 21	

Isobutyl alcohol ($C_{\iota\mu}H_{1\,\,0}0$) + Malonic acid ($C_3\,H_{\iota\mu}0_{\iota\mu}$)

Timofeev, 1894

*	f.t.	
17.5 21.2 100	0 19 132	

Isobutyl alcohol ($C_{t_i}H_{1\,\,0}0$) + Maleic acid ($C_{t_i}H_{t_i}0_{t_i}$)

Timofeev, 1894

%	f.t.	
14.2 17.5	0 22.5	

Isobutyl alcohol ($C_{\rm h}H_{1\,0}0$) + Salicylic acid ($C_{7}H_{6}0_{5}$)

Timofeev, 1905

%		Q mix	
initial	final	(by mole acid)	
0 1.24 7.0 12.1	1.24 7.0 12.1 14.5	-3.90 -4.17 -4.29 -4.32	

tert. Butyl alcohol ($C_{4}H_{1\,o}\textbf{0}$) + Trichloracetic acid ($C_{2}H0Cl_{3}$)

Pushin and Rikovski, 1935

mol%	f.t.	mo1%	f.t.	
100 90 80 65 60 55 50 (1+1)	57 46.5 31 4 -13 -7 -3.5	45 40 35 20 10 0	-8 -17 -27 -18 8 25	

Amyl alcohol ($C_5 H_{12} O$) + Acetic acid ($C_2 H_{4} O_2$)	Cetyl alcohol ($C_{16}H_{34}0$) + Chloracetic acid ($C_2H_30_2C1$)
Hartwig, 1888-1891	Mameli and Mannessier, 1913
	I 11
% μ τ.10 ³ 0° 18° 30°	% f.t. % f.t.
5.92 0.00189 0.00249 0.00273 24.0 16.63 .00414 .00493 .00543 15.2 44.21 .00598 .00795 .00899 23.9 53.640090623.8	100 61.40 100 55.70 80.81 57.10 83.60 53.10 75.89 55.80 69.50 49.60 59.87 51.50 59.79 45.60 46.36 44.10 51.27 39.40 39.76 39.00 46.73 34.40 35.87 33.90 43.51 31.10
Amyl alcohol (${ m C_5H_{12}O}$) + Butyric acid (${ m C_4H_8O_2}$) Hartwig, 1888-1891	17.90 25.40 42.39 30.65 15.64 26.30 21.49 24.30 15.40 26.50 18.98 24.70 15.04 26.70 15.75 26.10 14.50 26.90 15.26 26.60 13.88 27.30 13.19 27.95 2.74 42.00 6.33 35.78 0 47.70 5.84 37.50 0 47.70
% н т.10 ³	0 47.70
0° 18° 30°	
6.19 0.00165 0.00212 0.00248 15.0 28.56 .00346 .00418 .00452 16.8 37.53 .00305 .00366 .00385 15.6	Cetyl alcohol ($C_{16}H_{34}0$) + Trichloracetic ac ($C_2H0_2Cl_3$)
37,53 .00305 .00366 .00385 15.6	Pushin and Rikovski, 1935
	mol% f.t. mol% f.t.
Amyl alcohol ($C_5H_{12}O$) + Oleic acid ($C_{18}H_{34}O_2$) Dennhardt, g g g g g g g g	100 57 50 14.5 90 49 40 23 80 35.5 30 31 70 14.5 20 40 65 4 10 46.5 60 6.5 0 50
25° 18° 25° 30° 25°	
5.49 0.8136 0.00138 0.00164 0.00188 0.022 13.59 .8228 .00112 .00128 .00143 .018 26.8800186 .00206 .00218 .014	Cetyl alcohol ($C_{16}H_{34}0$) + Apocholic acid ($C_{24}H_{38}0_4$)
Isoamyl alcohol ($C_5H_{12}O$) + Benzoic acid($C_7H_6O_2$)	Rheinboldt, 1929
P.P. and M.S. Kosakewitsch, 1933	% f.t. E % f.t. E
mo1% d σ	0.0 49.5 48.5 80.0 176.0 68.
20° 0 0,809 24.38 2.27 .821 24.74 4.81 .829 24.96 8.84 .843 25.40 14.17 .861 25.94	10.0 143.0 46.0 85.0 176.5 111. 20.5 158.0 " 90.0 177.0 160. 30.1 167.0 " 91.0 177.2 165. 39.7 169.5 " 96.0 174.0 160. 49.9 171.5 " 98.0 172.5 160. 60.0 174.0 " 100.0 172.0 167. 70.0 174.5 47.0 (1+8)

Cety1	alcohol (C ₁₆ H ₃₄ 0) + Cho1	ic acid ((C ₂₄ H ₄₀ O ₅)	Erythrito	1 (C ₄ H ₁₀ O ₄) + Palmitic	acid (C ₁₆ H	3202)
Rheinb	oldt, 192)		م المستخدد العالم المسارات		D. A.	.d. N 14.	1022		
%	f.t.	Е	%	f.t.	E	 	nd Dezelic,			
0.0 10.0 20.0	48.8 157.0 167.0	46.5 45.0	59.8 69.9 80.0	183.5 186.5 189.5	- - -]	101 %	f.	t. L ₂	
30.1 40.1 50.0	173.0 176.5 180.5	- -	90.2 100.0 (1+8	192.0 195.0	52.0 113.0		0 10 20 30	118 118 118 118	58 58 58	
Cetyl	alcohol (C ₁₆ H ₃₄ 0		xycholic H ₄₀ O ₄)	acid		40 50 60 70 80 90	118 118 118 118 118	58 58 58 58 58 58	
Rheinb	ooldt, 192	9								
%	f.t.	Е	%	f.t.	E					
0.0 16.4 30.7 51.0	49.5 160.0 167.0 175.0	48.5 47.0 48.0	84.6 90.0 95.0 97.0	184.0 184.8 183.0 181.0	105.0 164.0 160.5 160.0	Erythrito	(C ₄ H ₁₀ O ₄) + Chloracet (C ₂ H ₃ O ₂ Cl		
73.0 79.8	$\substack{181.5\\183.0}$	53.5	100.0	172.0	168.0	Pushin a	nd Dezelic,	1932		
 			(1+8)			mol%	f.t.	E mol%	f.t.	E
	alcohol (_	esoxychol H ₄₀ 0 ₄)	ic acid	0 10 20 30 40 50	118 114 110 105 98 89	- 60 - 70 - 80 - 90 - 100	78 66 44.5 55 62	32 36 44.5 43.5
76	f.t.	Е	%	f.t.	E					
0.0 4.6 10.4 20.4	48.5 114.5 149.0 161.5	46.5 45.5	49.8 59.9 70.0 79.9	176.5 130.8 134.5 189.0	45.5	Erythrite	1 (C _h H ₁₀ O _h) + Trichlor (C ₂ HO ₂ Cl		
30.4 39.8	$\frac{167.5}{171.8}$	11	$\begin{smallmatrix} 90.0 \\ 100.0 \end{smallmatrix}$	192.5 196.5	53.0 193.5	Pushin a	nd Dezelic,	1932		_
						mo1%	f.t.	mol%	f.t.	
	1 (C ₆ H ₅₄ C	(C2HO2C13		l	0 10 30 40 50 60	118 114 106 97 85 74	70 80 85 90 100	64 55 52 54 58	
mol%	f.t.	E	mo1%	f.1	t. E					
100 90 80 75 73 70 66.7 65 63 60	57 47 28.5 22 24 25.5 26 25 30 35.5	13 18 - - - 21 23	55 50 45 40 30 25 20 10	41 . 44 . 42 . 33 . 27 . 20 . 24 . 36 . 42 . (1+2)	.5 - 16 17 .5 18 15					

Erythri	tol (Cul	(100 ₄) +	Benzoic	acid (C ₇ 1	1602)
Pushin	and Dezel	ic. 1932			
mo1%	f. t.	E	mo1%	f.t.	E
					
0 10	118 116.5	~	60 65	$\frac{112.6}{112.9}$	112
20	116.5 115.5	111 5	70	114.2	"
30 40	114.2 113.5	111.5 112	80 90	$\frac{116.5}{118.5}$	110
50	113	112	100	121	-
David to a	: + - 1			: 1 . (0	17 O A
Erythr	itoi (C ₄	н ₁₀ 0 ₄) -	- Cinnami	c acid (C	H ₈ U ₂)
Pushin	and Deze	lic, 1933	2		
mo1%	f.t.	E	mol%	f.t.	E
	110				114
0 10	118 120	118	60 70	125.5 126.5	116 110
20 30	122 123	tr tr	80 90	128 130	106
30 40	123.5	,,	100	130 132	105
50	124.5	117			
					
			·· 7		
Mannito	or (C ₆ H ₁			etic acid	
		(C ⁵ HOC1 ³)		
Pushin	and Riko	vski. 193	5		
mo1%		f,t,	E		
1110176		1			
100		57			
90 80		44 75	39.5		
70		110	-		
0		160	-		
					

Mannitol ($C_6H_{14}O_6$) + Salicylic acid ($C_7H_6O_5$)						
Kofle	r and B	randstäti	er, 1942	?		
	ž.		f.t.			
]	O E		166 150			
Manni	tol (C ₆ l	Η ₁₄ 0 ₆) +	Methyl	p-oxybenz	oate(C ₈	Н ₈ 0 ₃)
Kofle	r and B	randstätt	er, 1942			
	f		f.t.			
(H	2		166 124			
Kofler and Brandstätter, 1942 # f.t. 0 166 E 132						
Saccharose ($C_{12}H_{22}O_{11}$) + Formic acid (CH_2O_2)						
c	mann an	d Bloch,				
	red	yellow	(α) green	pale blue	dark blue	viol
5.713 12.685 18.877 c= g s:	30.98 24.63 19.49 accharo	39.95 31.22 24.47 se in 100	20° 47.49 37.12 28.22) cc	55.41 44.41 36.13	67.58 51.77 41.03	72.61 57.20 46.02

-Methyl malate 1 ($C_6 H_{10} O_5$) + Formic acid ($C H_2 O_2$)	Methyl malate (${ m C_6H_{10}O_5}$) + Butyric acid (${ m C_hH_8O_2}$)
Grossmann and Landau, 1910	Grossmann and Landau, 1910
	c (α)
c (α) red yellow green pale dark viol. blue blue	red yellow green pale dark viol. blue blue
20°	20°
50.381 -10.82 -13.26 -15.94 -19.25 -21.04 -22.75 25.362 -13.80 -19.52 -20.90 -25.43 -28.78 -30.16 12.559 -17.84 -22.85 -27.31 -33.60 -37.03 -40.69 5.1855-20.35 -26.81 -32.01 -39.53 -43.87 -47.05 2.447 -22.89 -29.02 -35.15 -42.50 -46.79 -51.29	50.217 -1.47 -1.65 -1.61 -1.10 -0.80 -0.24 25.1085 +0.12 +0.40 +1.08 +1.67 +2.39 - 12.5543 +0.88 +1.27 +2.31 +3.58 +4.94 - 4.918 +2.44 +3.05 +4.07 +5.69 +6.51 +7.93 2.459 +2.85 +3.66 +5.29 +7.73 +9.35 -
Methyl malate l ($C_6H_{10}O_5$) + Acetic acid ($C_2H_4O_2$)	Methyl malate $(C_6H_{10}O_5)$ + Isobutyric acid $(C_8H_8O_8)$
Grossmann and Landau, 1910	Grossmann and Landau, 1910
c (α)	c (α)
red yellow green pale dark viol. blue blue	red yellow green pale dark viol. blue blue
20°	20°
50,210 -2.21 -2.49 -2.59 -2.47 -2.37 -2.11 25.105 -1.43 -1.55 -1.47 -1.16 -0.80 - 12,5525 -1.19 -1.04 -0.80 -0.40 -0.16 - 4,921 -1.02 -0.81 -0.41 -0.00 +0.81 +1.63 2,4605 0.00 +0.41 +1.63 +4.06 +6.10 -	50.499 -1.27 -1.41 -1.31 -0.77 -0.46 +0.10 25.2495 +0.44 +0.91 +1.62 +2.93 +3.49 - 12.6248 +1.19 +1.74 +2.93 +4.59 +5.62 - 4.901 +3.27 +4.69 +6.33 +8.37 +10.00 +11.63 2.4505 +4.49 +6.12 +8.57 +11.83 +15.10 -
Methyl malate $(C_6H_{10}O_5)$ + Propionic acid $(C_3H_6O_2)$	Methyl malate $(C_6H_{10}O_5)$ + Heptanoic acid $(C_7H_{14}O_2)$
Grossmann and Landau, 1910	Grossmann and Landau, 1910
c (α)	
red yellow green pale dark viol. blue blue	c (α) red yellow green pale dark viol. blue blue
20°	20°
42.957 -1.62 -1.80 -1.62 -1.38 -1.12 -1.68 24.9785 -0.40 -0.20 +0.24 +0.92 +1.48 - 12.4893 +0.56 +0.96 +1.60 +2.64 +3.20 - 4.890 +1.02 +1.84 +3.07 +4.29 +5.11 +5.93 2.445 +1.64 +2.86 +4.91 +6.54 +7.36 -	50.254 -0.04 +0.52 -0.96 +1.79 +2.43 +2.98 25.127 +1.27 +1.75 +3.10 +3.98 +5.25 +6.37

Ethyl tartrate ($C_8 H_{1 4} O_6$) + Formic acid ($CH_2 O_2$)	Lactamide	d (C ₃ H ₇ O ₂	₂ N) + Malic	acid 1 (C_4	H ₆ O ₅)
Grossmann and Landau, 1910	Timmermans	s, Van Land	ker and Jaf	f e , 1939	
c (α)	mo1%	f.t.	mo1%	f.t.	
red yellow green pale dark viol. blue blue 20°	100 79.7 67.6	102 105	38.6 21.1 10.7	106 " 102	
50.569 +9.71 +11.17 +12.50 +12.81 +12.79 +12.10 24.085 +13.04 +15.28 +17.60 +19.31 +19.64 +20.39 13.168 +13.82 +16.40 +19.14 +20.96 +21.42 +21.95	64.4	"	ŏ	54	
5.219 +14.56 +17.24 +22.03 +25.10 +26.06 +26.83 2.6735 +16.08 +19.26 +23.56 +26.18 +26.93 +27.68 100 +7.01 +7.58 +7.77 +6.54 +5.77 +3.98	Lactamide 1	l (C ₃ H ₇ O ₂ N	V) + Malic	acid (C ₄ H ₆ 0	5)1
c= g tartrate in 100 cc	Timmerman	s, Van Land	ker and Jaf	fe, 1939	
	mol%	f.t.	mol%	f.t.	
Chloral hydrate ($C_2H_3O_2Cl_3$) + Acetic acid ($C_2H_4O_2$)	100 73.9 66.2 60.3	102 104 105 104	30.0 7.5 0	106 97 54	
Beckmann, 1888					
% D f.t. % D f.t. 99.74 0.095 89.89 -3.080 98.83 .385 86.62 4.140	Lactamide	d (C ₃ H ₇ O ₂	N) + Tartar	ic acid d (C	(4H6O6)
98.83 .385 86.62 4.140 97.61 .755 83.89 5.050 95.33 1.450 79.74 6.555	Timmermans	, Van Lanc	ker and Jaft	, fe. 1939	
92.16 2.390	mo1%	f.t.	mo1%	f.t.	
Chloral alcoholate ($C_uH_7O_2Cl_3$) + Acetic acid ($C_2H_uO_2$)	100 62.8 36.0 35.7	173.6 171 168 168	18.3 13.9 5.8 0.0	165 161 154 54	
	I notemide 1	/ C U O N	\+ Tartari	acid d (C	ш о)
Beckmann, 1888	Lactamide I	. Canyuan	, lattaili	- acia u (C	4116 0 6)
% Df.t. % Df.t	Timmermans	, Van Lanc	ker and Jaft	, fe, 1939	
99.43 -0.160 86.71 -3.255 98.42 .410 83.53 4.105 96.41 .495 81.53 4.665	mo1%	f.t.	mol%	f.t.	
96.41 .495 81.53 4.665 94.42 1.335 78.95 90.25 2.350	100 74.1 53.3 48.1	173.6 169 162 159	32.5 27.1 24.5	160 157 162	
	46.4	157	10.0	145 54	

LACTAMIDE D + 1-BROMPROPIONIC ACID L

Lactamide d (C ₃ H ₇ O ₂ N)	+ α -Brompropionic acid 1	L
			$(C_3H_5O_2Br)$	

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	mo1%	f.t.	
100	+0.7	50.0	+9.2	
79.9	-2.3	26.0	+33.3	
72.4	-6.1	0	+54	

E: 65 mo1%

Lactamide 1 ($C_{5}H_{7}0_{2}N)+$ $\alpha\text{-Brompropionic}$ acid 1 ($C_{5}H_{5}0_{2}\mathrm{Br}$)

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	mol%	f.t.
100 82.4 59.8 46.6	+0.7 -1.0 +1.2 +11.1	36.2 30.1 0	+21.3 30.0 54

E: 65 mol%

Lactamide d ($C_3H_7O_2N$) + Chlorsuccinic acid d ($C_uH_5O_4C1$)

Feinberg, 1939

mo1%	f.t.	
0	54	
28.0	172	
51.2	168	
74.0 100.0	158 168	
100.0	108	

Lactamide 1 ($C_{5}H_{7}0_{2}N$) + Chlorsuccinic acid d ($C_{u}H_{5}0_{u}\text{Cl}$)

Feinberg, 1939

mo1%	f.t.	mo1%	f.t.
0 29.2 54.3 60.1	54 171 169 166	73.2 76.4 100	158 159 168

Lactamide d ($C_5 \, H_7 0_2 N$) + Dichlorsuccinic acid d ($C_u H_u 0_u C \mathbf{1}_2$)

Timmermans, Van Lancker and Jæffe, 1939

mo1%	f.t.	E	mo1%	f.t.	Е	
0 19.7 37.5	54 71 101	- 46 45	57.4 72.7 100.0	127 144 168	47 47	

E: 10 mo1%

Lactamide 1 ($C_0H_{7}0_2N$) + Dichlorsuccinic acid d ($C_{t_0}H_{t_0}0_{t_0}C1_2$)

Timmermans, Van Lancker and Jaffe, 1939

mol%	f.t.	m.t.	mo1%	f.t.	m.t.
0 20.6	54 75	- 47	60.1 69.9	117	55
24.8	86	47	80.2	136 149	63 65
40.2 41.7	$\begin{array}{c} 103 \\ 105 \end{array}$	48 47	100.0	168	-
E: 10	mo1%	(1+2)			

Lactamide d ($C_3 H_7 O_2 N$) + Chlormalic acid I d ($C_n H_5 O_5 C1$)

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	mo1%	f.t.	
100 60.2 40.3 22.3	174.5 163 160 156	9.0 6.9 0	140 125 54	

Lactamide 1 ($C_{\delta}H_{7}0_{2}N$) + Chlormalic acid I d ($C_{u}H_{5}0_{5}C1$)

Timmermans, Van Lancker and Jaffe, 1939

			,	
mo1%	f.t.	mol%	f.t.	
100 52.0 46.8	174.5 156 154	22.9 2.6 0	152 117 54	

Lactamide d	$C_3H_70_2N$) + Chlormali	c acid II l
	(C4H505C1)

Timmermans, Van Lancker and Jaffe, 1939

mo 1 %	f,t.	mol%	f.t.	
100 59.8 28.1 21.4	171 159 149 146	9.1 2.6 0	128 83 54	

Lactamide 1 ($C_3H_70_2N$) + Chlormalic acid II 1 ($C_4H_50_5C1$)

Tirmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	mol%	f.t.	
100	171	6.3	1 0 9	
51.5	153	1.9	84	
32.0	159	0	54	

Lactamide 1 ($C_3\,H_7\,0_2N$) + Alanine d ($C_3\,H_7\,0_2N$)

Timmermans, Van Lancker and Jaffe, 1939

mol%	f.t.	Е	
100 46.5 40.0 18.1 0.0 E:	297 236 228 213 5 mol# 54	48 48 47	

Lactamide 1 ($C_3H_7O_2N$) + Alanine 1 ($C_3H_7O_2N$)

Timmermans, Van Lancker and Jaffe, 1939

,			,		
mo1%	f.t.	Е	mol%	f.t.	E
100	297	_	23.2	215	48
60 38.4	243	54 50	14.7	206	48 47
38.4	230	50	0.0	54	-

Lactamide d ($\text{C}_{\text{3}}\,\text{H}_{7}^{}\,\text{O}_{\text{2}}\text{N}$) + Asparagine ~1 (C_4H_8O_3N_2)

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	E	mol%	f.t.	E
100	238	-	39.9	215	55
69.3	225	-	25.1	200	50
55. 3	221	68	0	54	-

E: 4 mo1%

Lactamide I ($\text{C}_{_{3}}\text{H}_{7}\text{O}_{2}\text{N}$) + Asparagine I ($\text{C}_{_{4}}\text{H}_{_{8}}\text{O}_{_{3}}\text{N}_{_{2}}$)

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	E	mo1%	f.t.	E	
100 57.5 45.4	238 222 218	64 53	37.6 19.8 0	212 199 54	53 50	•

E: 4 mo1%

Lactamide 1 ($C_{\rm 3}\,{\rm H_70_{\,2}N}$) + Mandelic acid d ($C_{\rm 8}{\rm H_80_3}$)

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	E	mol%	f.t.	E
$\frac{100}{58.8}$ $\frac{50.1}{}$	133 100 89	30 30	38.0 24.6 0.0	73 62 54	30 28

E: 10 mol%

Lactamide d ($C_{3}\,H_{7}\,\theta_{2}N$) + Mandelic acid d ($C_{8}H_{8}\theta_{3}$)

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	E	mol%	f.t.	Е
100 86.9 72.6 61.4	133 121 103 97	68 60 48	47.6 37.4 25.0 0.0	92 83 67 54	29 26 28

Lactamide 1 ($\text{C}_{_{5}}\text{H}_{7}\text{O}_{_{2}}\text{N}$) + Phenylaminoacetic acid 1 ($\text{C}_{_{8}}\text{H}_{9}\text{O}_{2}\text{N}$)

Timmermans, Van Lancker and Jaffe, 1939

mol %	f.t.	E	mol %	f.t.	E
60.0 34.9 25.1	200 182	52 52 48	7.5 0.0 E : 5 m	171 54	50

Lactamide d (C₃H₇O₂N) + Phenylaminoacetic acid 1 $(C_BH_9O_2N)$

Timmermans, Van Lancker and Jaffe, 1939

mo1%	f.t.	E	mol%	f.t.	Е
100	_	-	43.8	207	50
70.4	-	53	28.9	190	51
68.5	-	52	13.3	175	49
54.9	-	50	E : 5 1	no1 %	.,

Borneol ($C_{10}H_{18}0$) + Acetic acid ($C_2H_{4}0_2$)

Beckmann, 1888

·	D f.t. (acid)	%	D f.t. (acid)
99.06 96.82 92.27	-0.240 -0.795 -1.860	87.57 82,22	-2.975 -4.235

Borneol (C₁₀H₁₈O) + Trichloracetic acid

 $(C_2HO_2Cl_3)$ Pushin and Rikovski, 1935

mol%	f.t.	mol%	f.t.	
100	57	47	44	
90	49 33.5 25 16 33	45	44 42 41	
80	33.5	42	41	
75	25	40	44	
70	16	40 35 30	44 57 76	
60	33	30	76	
80 75 70 60 55 50	40 45	0	204	
50	45	(1+1)	

Menthol ($C_{10}H_{20}0$) + Oleic acid ($C_{18}H_{34}O_{2}$)

Castiglioni, 1934

%	d	η	%	đ	η
		20°			
100 95 90	0.8980 .8995 .8996	3235.1 3201.2 3168.0	85 80 75	0.8998 .9001 .9004	3133,9 3102.0 3067,2

Menthol (C10H200) + Trichloracetic acid $(C_2HO_2Cl_3)$

Pushin and Rikovski, 1935

mo1%	f.t.	mo1%	f.t.
100 90 80 70	57 49.5 38 19.5	20 10 0	18 33 42

Hexoestrol ($C_{18}H_{22}O_2$) + (Methoxynaphthyl) α, α dimethyl- β -ethyl propionic acid ($C_{18}H_{22}O_3$)

Horeau and Jacques, 1949 (fig.) and Jacques, 1949

%	m.t.	f,t.	%	m.t.	f.t.
100 90 80 70 60 50	136 123 120 119 120 127	137 131 130 137 150 158	60 70 80 90 100	134 143 154 170 184	167 173 179 182 185

Cholesterol ($C_{27}H_{46}0$) + Palmitic acid ($C_{16}H_{3\,2}0_2)$

Efremov, Vinogradova and Tikhomirova, 1937

wt%	mo1%	f.t.	Е.	
100	100	59.2	-	
95	92.79	57.4	_	
	85.70	55.2	_	
90	79.15	53.0	_	
85		51.2	_	
82.5	75.88		22.5	
80	72.60	49.6	32.5	
7 5	66.18	45.9	46.2	
70	60.75	50.6	46.2	
65	55,30	57.4	46.0	
60	49.87	63.8	46.2	
55	45.43	70. 3	46.1	
50	40.99	77.5	46.0	
40	30,86	90.4	46.0	
30	20.77	103.8	44.8	
25	16.70	110.2	43.9	
20	12.62	117.0	41.6	
15	9.17	123.7	35.5	
	5.71	130.0	00.0	
10	2.80	137.0	_	
5			-	
U	0	143.2	-	

7	
Cholesterol ($C_{27}H_{46}O$) + Stearic acid ($C_{18}H_{36}O_2$)	Phytosterol ($C_{29}H_{48}0$) + Stearic acid ($C_{18}H_{56}0_2$)
Efremov, 1929-30	Efremov, 1929-30
% f.t. E min.	% f.t. E min.
100 67.7	100 67.7
E: 70.2% 55.3°	
Phytosterol ($C_{29}H_{48}0$) + Palmitic acid ($C_{16}H_{52}0_2$)	Stigmasterol ($C_{29}H_{48}0$) + Cinnamic acid ($C_{9}H_{8}0_{2}$) Kofler and Brandstätter, 1942
Den and Miles	\$ f.t.
Efremov, Vinogradova and Tikhomirova, 1937 wt% mol% f.t. E	0 167 - 116 E
100 100 59.2 - 95.0 92.79 56.6 - 90.0 85.70 53.0 - 85.0 79.15 48.7 37.5 82.5 75.88 46.2 45.0 80.0 72.60 45.8 -	Stigmasterol ($C_{29}H_{48}0$) + Salicylic acid ($C_{7}H_{6}0_{3}$)
75.0 66.18 51.2 45.1 70.0 60.75 56.8 45.1	Kofler and Brandstätter, 1942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	% f.t.
55.0 45.43 74.8 45.0 50.0 40.99 81.3 44.6 40.0 30.86 92.7 43.8 30.0 29.77 104.8 41.6 25.0 16.70 111.0 39.9	0 167 - 119 E
25.0 16.70 111.0 39.9 20.0 12.62 116.2 37.8 15.0 9.17 122.2 34.9 10.0 5.71 126.6 28.5 5.0 2.80 130.5 -	Benzoin ($C_{14}H_{12}O_{2}$) + Trichloracetic acid ($C_{2}HO_{2}Cl_{3}$)
	Pushin and Rikovski, 1940-46
	mol% f.t. E mol% f.t. E
	100 57 - 63 61 24 94 51.5 - 53 85 - 87 43.5 - 29.5 112 - 79.5 36 18 0 133 -

8-0xyquino	line (¢ ₉	H ₇ ON) +	Acetic	acid (C _z	H ₄ O ₂)	8-0xyqu	inoline	(C ₉ H ₇ ON) + Benzo	ic acid (C	7H602)
Dionisiev	and Dzhel	omanova,	1954 (:	fig.)		Dionisi	ev and D	zheloman	ova, 1954	(fig.)	
mo1%	f.t.	mol		f.t.	·····	mo1%	f	.t.	mo1%	f.t.	
0 20 40 50 60	75 70 61 56 50	75 90 100		25 8 16.5		0 20 35 50	7 6 5 7	6 E	66.7 80 100	95 109 121.7	
mo1%	60°	80°	mo1%	60°	1 80°	mo1%	100°	d 120°	100°	^{⊤)} 110°	120°
0 20 40 50	1.180	1.1594 .150 .140 .135	60 80 100	1.151 .125 .000	1.130 1.090 1.0105	0 20 40 50 60 70 80	1.149 .148 .140 .132 .130 .125	1.125 .130 .120 .115 .110 .105 .100	1300 1600 1800 1900 1900 1800	1050 1300 1350 1400 1400 1300	900 1050 1100 1200 1200 1100
mo1 %	60°	უ 70 °	8	0°		mo1%	,- <u>-</u>		ж. 10 ⁶		
0 20	-	2500		000			100	o	110°	120°	
40 50 60 65 (max 80	4900 6300) 6500 4200	2500 3000 3200 3750 3800 3000	20 2 2: 2:	800 000 100 250 300		0 10 20 30 40 50 60	0. 1. 2. 2.	4	0 0.3 0.8 1.3 1.9 2.2 2.05	0 0.4 0.8 1.2 1.75 2.0	
mol#	6 0 °	ж.106 70°	8	0°		70 80	ī.		1.5	1.2 0.25	
30 40 50 60 70 80 90	90 170 210 300 200	0 40 120 200 280 340 230		0 0 0		8-0xyqui	inoline (C ₉ H ₇ ON) + Salicy	lic acid(C	7H ₆ O ₃)
						11	ev and Dz	helomano	va, 1954 (fig.)	
						mo1%	f.t	•	mo1%	f.t.	
8-0xyqui	noline (C ₉ H ₇ ON)		acetic ac 0 ₂ Cl)	cid	0 3 10 20 40	75 70 85 98 115		50 67 71 80 100	120 127.5 126 E 139 156	
		helomanova				mo1%	d 130°	130°	η 1400	×.1	
	f.t		01%	f.t.					140°	130°	140°
0 2 10 20 30 40	75 73 82 90 94 97	E	50 50 70 80 87 00	98 (1+ 93 82 63 49 E 63	1)	0 20 30 40 50 60 70	1.12 .15 .17 .19 .21 .22 .23	900 1300 1900 3300 5500 7000 8200	700 1000 1600 2500 4000 5300 5600	0 50 120 170 200 210 210	0 60 140 200 250 280 280

8-0xyquinoline (C_9H_7ON) + Hydrocinnamic acid ($C_9H_1_0O_2$)	Phenol (C_6H_6O) + Formic acid (CH_2O_2)
Dionisiev and Dzhelomanova, 1954 (fig.)	Paterno, 1896
mol% f.t. mol% f.t.	% Df.t. % Df.t.
0 75 68 28.5 E 20 64 80 38 40 52 100 49 50 44	0.50 -0.73 8.14 -10.61 1.16 1.66 10.90 13.80 2.04 2.91 13.93 17.31 6.14 8.32
8-Oxyquinoline (C ₉ H ₇ ON) + Cinnamic acid (C ₉ H ₈ O ₂)	PhenoI (${ m C_6H_60}$) + Acetic acid (${ m C_2H_40_2}$) Paterno, 1896
Dionisiev and Dzhelomanova, 1954 (fig.)	% D f.t. % D f.t.
mo1% f.t. mo1% f.t. 0 75 50 99 20 62 60 108 25 60 E 80 122 40 89 100 134	0.87 -0.89 11.57 -12.08 1.96 2.07 14.16 15.02 3.12 3.39 18.23 19.22 4.24 4.51 25.02 27.92 5.50 5.61 26.19 29.18 7.58 7.57 30.33 33.93 9.83 10.49 34.11 38.92
8-0xyquinoline (C_9H_70N) + p-0xybenzoic acid ($C_7H_60_3$)	Abegg, 1902
	N (C ₆ II ₆ 0) f.t.
Dionisiev and Dzhelomanova, 1954 (fig.)	0 16.52
mol% f.t. mol% f.t.	1.211 12.015 2.143 8.085 2.893 4.62
0 75 50 160 6 67 E 60 172 10 85 70 182 20 120 80 194 30 138 90 200 40 150 100 219	Bedson and Williams, 1881
	% d n
	н н н
8-0xyquinoline (C_9H_70N) + p-Nitrobenzoic acid ($C_7H_50_4N$) Dionisiev and Dzhelomanova, 1954 (fig.)	20° 100 1.0594 1.41585 1.42572 1.43159 74.62 .0617 .43498 .44613 .45291 63.53 .0559
mol% f.t. mol% f.t.	Phenol (C_6H_6O) + Valeric acid ($C_5H_{10}O_2$)
0 75 50 182 1 72 E 60 200 10 124 70 218 20 145 80 224	Paterno, 1896
30 160 90 235 42 168.5 100 238	% Df.t. % Df.t.

Phenol (C_6H_6O) + Oxalic acid ($C_2H_2O_4$)	Mameli an	d Cocconi ,	1923	<u></u>	
·	%	f.t.	%	f.t	
Schmidlin and Lang, 1912	υ,		II	I	II
(1+1)	100		56.6 35.00	-	11.8
(1+1)	97.54 82.76 81.28	51.5	55.7 34.70 - 34.46	$\frac{18.0}{17.1}$	-
	81.28 74.16	46.7	46.3 33.42 - 33.36	15.2	13.6
	67.68 64.03		38.6 32.93 36.2 32.80	$\substack{14.7\\14.1}$	-
Phenol (C_6H_60) + Succinic acid ($C_4H_6O_4$)	54.60 52.95	34.4	- 32.70 29.4 32.20 - 31.30	-	13 .7 14.4
	47.92 45.84	30.3 28.5	- 30.28	15.1	16.0
Kremann, Zechner and Drazil, 1924	45.68 44.98	-	22.8 27.90 22.6 25.33	18.2	20.6
% f.t. E % f.t.	43.35 40.12	23.2	22.6 25.03 21.1 19.43 - 13.90	-	25.4 30.4
0 41 - 54.5 155	39.52 37.54	22.2	- 10.70 15.7 0.00	33.2 42.0	
2 48 - 60.9 160 6.7 100 36 72.8 167	36.01		12.8	.2.0	
9.8 109 - 82.9 172.5 14.9 119 - 92.8 179					
23.7 130 36 97.1 181					
30.5 138 - 100 183 46.3 151 36	Učovenko,	Ayrapetov	a and Malakho	va, 1952	(fig.)
	mo1%	f.t.	mo1%	f.t.	
	0	42	50	10	
Phenol (C_6H_60) + Chloracetic acid ($C_2H_3O_2C1$)	25 43	24 3 E	75 100	35 60	
Kendall, 1916					
mol% f.t. mol% f.t.	mol%	50°	d 60°	75°	
100 61.4 37.9 23.6	0	1,0499	1,0399	1.0280	
88.5 56.0 30.0 17.4 78.1 50.4 18.5 27.1	9,70	.0745	.0638 .0856	.0525 .0736	
67.9 44.9 8.8 35.1 58.3 39.1 0 42.4	17.84 24.33	. 1133	. 1053 . 1204	.0918	
46.7 30.9	29.63 32.65	.1300 .1380	. 1307	.1116	
	39.40 48.87	. 1562 . 1916	.1491 .1852	.1324 $.1661$	
Mameli and Mannessier-Mameli, 1933	59.50 69.41	.2212 .2596	.2119 .2500	.1954 .2320	
	73.00 80.82	.2926 .3120	. 2718 . 2982	. 2548 . 2808	
E(acid I): 32,89 mol% 14.1°	88.72 100	.3327	.3230 .3 72 0	.3052 .3520	
(acid II): 35.10 mol% 11.8°					
11.0	mo1%	50°	უ 60°	7 5°	
	0	3336	2521		
	9.70 17.84	3353 3338	25 27 25 24	1742 1763	
	24.33 29.63	3308 3 277	2508	1768 1 7 71	
	32.65 39.40	3242	2505 2497	1768 1765	
	48.87 59.50	3203 3142	2493 2441	1761 1762	
	69.41	3121 3112	2435 2431	1782 1790	
	73.00 80.82	$\frac{3103}{3113}$	2427 2428	1803 1809	
	88.72 100	31 2 5	2436 2442	1819 1835	
u i	I ————		·		

Phenol ($C_6 H_6 O$) + Trichloracetic acid ($C_2 H O_2 C I_3$)	mol% n 50° 60° 75°
Kendall, 1916 mo1% f.t. 100 57.3 53.7 37.4 90.2 50.7 50.2 37.6 (1+1) 82.6 45.2 44.8 37.2 75.7 38.9 41.1 36.3 68.8 31.9 35.4 34.2 65.1 34.9 18.3 25.9 60.0 36.0 13.2 31.8 57.0 36.8 7.2 37.0 0 42.4	0 3278 2494 1737 8.83' 3569 2721 1865 14.56' 3811 2900 1977 23.00' 4127 3127 2141 30.72' 4342 3248 2238 40.75 4683 3482 2386 49.75 4779 3666 2513 59.68 5012 3778 2617 66.95 5085 3886 2706 75.50 5126 3894 2754 81.66 5115 3878 2792 89.95 5083 3837 2815 100 4797 3786 2779
Pushin and Rikovski, 1935	Phenol (C_6H_6O) + Benzoic acid ($C_7H_6O_2$)
mol% f.t. E mol% f.t. E	Mortimer, 1923
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mo1% f.t. 16.9 40 28.2 60
65 34 31.0 10 33 - 55 37.5 - 0 41 - 50 38.5 -	16.9 40 28.2 60 44.2 80 67.0 100 100 121.0
Udovenko, Ayrapetova and Malakhova, 1952 (fig.)	Moerman, 1933 mol% f.t. mol% f.t.
0 42 50 36 22.1 20 E 62.1 22 E 33 30 100 58	0.0 40.2 42.5 77.0 5.1 37.4 48.3 83.2 10.8 34.1 60.0 92.9 12.7 32.1 68.6 100.4 13.3 34.2 74.1 103.9 16.3 40.8 88.6 114.1 21.3 49.3 100.0 121.4
mol% d 50° 60° 7 5°	21.3 49.3 100.0 121.4 29.5 62.6
0 1.0518 1.0427 1.0290 8.83 .0954 .0902 .0754 14.56 .1382 .1324 .1184 23.00 .1990 .1901 .1721 30.72 .7754 sic .2030 .2004 40.75 .2942 .2869 .2704 49.75 .3445 .3323 .3150 59.68 .4015 .3917 .3638 66.95 .4445 .4337 .4160 75.50 .4863 .4770 .4586 81.66 .5195 .5074 .4863 89.95 .5667 .5462 .5330 100 .6181 .6048 .5776	Phenol (C ₆ H ₆ O) + Cinnamic acid (C ₉ H ₈ O ₂) Kremann, Zechner and Drazil, 1924 f.t. E f.t. E 0.0

Phenol (C_6H_60) + Salicylic acid ($C_7H_60_3$)	Resorcinol ($C_6H_6O_2$) + Benzoic acid ($C_7H_6O_2$)
Bailey, 1925	
% f.t. E min.	Pushin and Wilowitsch, 1925 (fig.)
0 43.80	mol% f.t. mol% f.t.
$egin{array}{cccccccccccccccccccccccccccccccccccc$	100 121 40 86 E 90 117 30 92
4.39 38.47 38.16 25 5.00 38.16 38.16 28.5 7.38 45.9 38.18 28	90 117 30 92 80 111 20 98 70 107 10 105
10.09 55.6 38.07 27.5	60 100 0 111 50 93
27.5 89.2 38.0 23	
46.0 113.5	Hrynakowski and Adamanis, 1934
94.9 157.0 100.0 160.4	mol% f.t. E min.
	100 121.4
Resprcinol ($C_6H_6O_2$) + Acetic acid ($C_2H_4O_2$)	94.5 119.0 90.0 116.0
	83.6 113.0 78.3 111.2 86.0 0.3
Mortimer, 1923	67.8 104.5 " 0.8
mol% f.t. mol% f.t.	57.5 98.0 " 1.3
82.4 20 43.7 80	52.4 94.5 " 1.7 47.4 92.2 " 1.7 42.4 87.2 " 2.5
72.8 40 19.0 100 60.6 60 0.0 110.2	41.5 86.0 " 2.5
00.0	37.5 88.5 " 2.3 32.7 90.3 " 1.7 27.0 94.2 " 1.0
Resorcinol ($C_6H_6O_2$) + Succinic acid ($C_9H_6O_4$)	23.1 96.5 " 0.5
Kremann, Zechner and Drazil, 1924	13.7 101.5 " 0.7
% f.t. E % f.t. E	9.7 104.0 4.5 106.0
0 115 - 46.9 146 -	
5.5 109.5 100 65.3 159.8 100 11.2 102 - 80.7 170.5 -	Resorcinol ($C_6H_6O_8$) + Cinnamic acid ($C_9H_8O_8$)
22.3 116 100 90.3 176.5 - 43.4 143 100 96.1 179.9 -	
39.7 138 - 100 183 - E: 12.5%	Kremann, Zechner and Drazil, 1924
L. 12.0%	% f.t. E % f.t. E
	0 115 - 44.7 90 87 5.8 113 - 54.5 99 "
Sorum and Durand, 1952	1 12.2 109.2 - 65.7 108.5 "
% f.t.	26.8 99 - 83.5 122 -
0 115:0	34.8 92 87 92 127 - 41.3 87.2 87 100 133 -
E 96,0 100 183.0	E: 41%
Resorcinol (${ m C_6H_6O_2}$) + Trichloracetic acid	
(C ₂ H0Cl ₃)	Sorum and Durand, 1952
Kitran, 1924	% f.t.
E: 70 mo1% 25°	0 115,0 E 85,0 100 133,0
E: 70 mol% 25°	100 133,0
<u> </u>	

				PYTO	CATECHOL
Pyrocat	techol (C ₆ H ₆ O ₂) + Succi	nic acid	(C ₄ H ₆ O ₄)
Kremann	,Zechner	and Dr	azil, 192	4	
%	f.t.	E	%	f.t.	
0.0 7.8 15.0 34.0 31.9 41.0 47.7 49.1 E: 13.	104 99 104 120 129.5 140 146.5 147	94 - 94 - -	53.1 53.6 59.4 64.6 72.9 83.4 92.9 100.0	151.5 152 156.5 161 167 173.5 178 183	
Pyrocat	echol ((6H ₆ O ₂) + Trichl (C ₂ H00	loracetic Cl ₃)	acid
Kitran,	1924				
E: 7 5 m	01% 34	.7°			
		C ₆ H ₆ O ₂) + Benzo	oic acid (С7Н6О2)
Lecat,	1949				
			b.t.		
0 2 100			245.9 245.85 A 250.8	z	
Pyrocate	echol (C	5H6O2)	+ Cinnam	ic acid (С9Н8О2)
Kremanr	, Zechner	and D	razil, 19	24	
78	f.t.	E	R	f.t.	Е
0.0 8.6 18.8 26.8	103.5 100 95.5 91.5	- - - 81	54.4 59.3 68.6 75.2 82.3 92.7	91 96 106.5 113	81

						
Hydroquii	none (C ₆ H	602) + Succ	inic acid	(C4H6O4)		
Kremann,	Zechner ar	nd Drazil, 1	924			
%	f.t.	E %	f.t.			
0 4.8 11.3 20.4 28.6 36.6 44.3 49.6 56.7 66.1 E: 41;	169.5 165.5 161.5 150 139 133.5 140.5 149.5	- 67.5 - 75.8 128 76.8 - 79.6 - 83.6 128 89.2 - 89.5 - 95.8 - 100	160.5 167.5 169 171 173.5 177 176 181 183			
Hydroquin	ione (C ₆ H ₆	0 ₂) + Chlor (C ₂ H ₃	acetic aci 0 ₂ Cl)	d		
Pushin,	1935					
%	f.t.	E	min.			
100 95 90 80 70 50 40 30 20	62 60.1 59 85 101 122 135 143 152 171	5 - 59 57 53 53 41 43 31 -	4.0 3.2 3.0 - - 1.2			
Hydroquin Pushin a	Hydroquinone ($C_6H_6O_2$) + Trichloracetic acid (C_2HOCl_3)					
mo1%	f.t.	E	min.	<u>~</u>		
100 95 90 85 80 75 72 70 66.7 60 50 40 30 20 10	57 69 79 85 88 90 95 100 105 119 130 140 149 157 164	90 88.5 87.5 83 79 64 64 57	2.4 1.9 1.4 1.2 0.8 0.6 0.9 1.3 1.2 1.0 0.9			

(1+2)

Hydroquinone (C ₆ H ₆ O ₂) + Cinnamic acid ($C_9H_8O_2$)	Pyrogallol (C ₆ H ₆ O ₃) + Succinic	acid (C ₄ H ₆ O ₄)
	, , , , , , , , , , , , , , , , , , ,	Kremann, Zechner and	i Drazil. 192	4
Kremann, Zechner and	Orazil, 1924			
%	f.t. E	#	f,t,	E
0 5,2 14,7 24,3 33,5 41,8 52,6 61,5	170 - 168 - 164,3 - 160,5 - 157 117 154 117 145 117 137 117 130 -	0.0 6.9 17.2 28.7 42.0 50.7 53.2 57.6 58.0 61.5	130 125 117 121 136 146 148 152 152	110
78.2 85.9	120 119 119	63.0 67.5	15 7 161,5	-
93.8	128 ~	75.7 82.5	167 172	<u>-</u>
100.0	133 -	94.0	179.5 183	_
E : 81 %		100.0 E: 21 %		-
کے اس میں میں میں بات جو اس میں اس میں اس میں امیر اس جو اس میں اس میں امیر اسے حال اس میں حال اس حال اس اس اس اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس اس میں اس میں اس میں اس میں اس اس اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس میں اس اس میں اس اس اس اس میں اس م	شود المراح وي فقع المراح وي الله كام وي الكرف في حن كام جو الكرف من أشد من الكرف الكرف الكرف المراحد المراحد أمر المراحد في من الهرفان من من المراحد في الكرف وي المراحد في الكرف وي الأم من الكرف الكرف الكرف الكرف الكرف من من من من الكرف الكرف الكرف وي الكرف وي الكرف وي الكرف وي الكرف وي الكرف الكرف الكرف الكرف الكرف الكرف الكرف			سيم منين شعبر منيد منية منيد جيم شعب القريسين اللهم الجور المند أعمر المنية الجوائد عمد
		ر. شدر است شدر است کنید است است است است است است است است است است		سین کنند امیر خدد امیر بین است نین شدر امی ساز است بین امد امیر خدد خدر است است است. اما اما اما اما اما اما اما اما اما اما
Hydroquinone (C ₆ H ₆ O ₂) + Methoxycinnamic acid ($C_{10}H_{10}O_3$)	Pyrogallol (C ₆ II ₆ O ₃) + Cinnamic	acid ($C_9H_8O_2$)
de Kock, 1904		Kremann, Zechner and	d Drazil, 192	.4
mol% f.t.	clear.point	8	f.t.	E
100 170.6 96.81 169.7 94.3 168.6 92 167.9 90 167.3 80.1 161.7 70 156.2 60 149.7 40.2 145.4 20.2 157.3 0 169.0 E: 140.8°	195.5 177.6-179.9 170.5-174.7 170.6 	0.0 12.6 27.2 34.5 39.5 42.1 48.6 52.6 53.6 57.7 60.0 66.7 81.8 92.3	130.5 126 118 115 111 110 106 104 103 103 104 107.5 118 126 133	101 101 101 101 101 101 101 101
		E:56 %		
Hydroquinone (C ₆ H ₆ O ₂) + Trichloracetic acid ($C_2HO_2Cl_3$)			
Kitran, 1924		Pyrogallol (C ₆ H ₆ O ₃) + Trichlon	racetic acid
%	f.t.	Kitran, 1924		(C ₂ HOC1 ₃)
65	77 5 F			
75 98	77.5 E 84.9 (1+3) 4.95 E	E:88 mol % 40	.2°	
	7.70 E	رسین کی بین کار در این در این دید در این دارد در در دارد دارد دارد دید دارد در این دارد دارد دارد دارد دارد در در در این خدر می در در در در در در دارد در در در دارد در در در در در در در در در در در در د		ن مادی کنید میں شدیر امیر میں اشار شدہ میٹنا امیر میں اسم میں اساد امیر کا اساد سے اساد امیر اللہ اساد اور اس با شام اس اللہ پانیا چین اللہ امیر میں اس اساد امیر اللہ اس میں سے اس اساد اس اللہ اس اللہ اس اللہ اللہ اساد ا با اماد میں اللہ اس اللہ امیر میں اساد سے شدار امیر اللہ شار میں اللہ شار میں شدہ میں شدہ اس اس

Thumal (C U O) + tastic noid (C U O)	
Thymol ($C_{10}H_{14}0$) + Acetic acid ($C_2H_40_2$)	Thymol ($C_{10}H_{14}0$) + Chloracetic acid ($C_{2}H_{3}O_{2}C1$)
Paterno and Ampola, 1897	Mameli and Cocconi, 1923
% f.t. % f.t.	% f.t. % f.t.
0.0 49.32 47.54 -5.75	I II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 61.8 56.6 35.31 - 30.5
2.89 45.82 53.82 -2.04 4.61 44.07 55.57 -1.05	93.01 59.4 - 35.09 35.4 92.63 - 54.1 32.73 - 27.6 82.39 - 51.0 32.20 - 27.1
6.43 42.02 58.07 +0.54 8.88 40.04 60.67 1.68	1 75 15 - 48 8 31 88 - 27 6
10.40 38.71 64.56 3.59	68.22 51.5 46.6 28.84 30.2 -
13.08 36.61 66.34 4.91 16.08 34.07 70.43 6.03 19.64 30.73 73.52 7.19	56.89 - 42.5 25.08 32.6 - 51.39 44.9 - 21.18 36.2 -
21.52 29.09 77.35 8.53	
25.05 26.26 81.66 9.47 28.16 22.38 85.69 10.57 32.02 18.55 89.14 11.56	44.67 - 37.2 0.00 50.0 - 40.47 39.3 34.4
33.16 17.43 92.37 12.46	
37.43 11.97 93.35 13.26 39.34 10.68 97.43 13.86	Thymol ($C_{10}H_{14}0$) + Trichloracetic acid
42.15 +7.48 99.40 14.26 43.73 -8.76 100.00 15.05	(C ₂ HO ₂ Cl ₃)
45.53 -6.99	V1-11 1014
	Kendall, 1916
Thymol ($C_{10}H_{14}0$) + Caprylic acid ($C_{8}H_{16}O_{2}$)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Lecat, 1949	84.6 46.8 28.6 32.0 76.4 39.6 21.7 37.5
% b.t.	69.1 32.1 13.6 42.4 62.0 23.5 7.0 46.1 55.2 15.0 0 49.6
0 232.9	49.4 10.1
- 232.8 Az 100 238.5	
Thymol ($C_{10}H_{14}0$) + Stearic acid ($C_{18}H_{36}0_2$)	Carvacrol ($C_{10}H_{14}0$) + Caprylic acid ($C_8H_{16}O_2$)
Eykman, 1889	Lecat, 1949
% D f.t.	% b.t.
07 537	0 237.85 25 237.6 Az
92.69 2.12	100 238.5 AZ
88,57 82,58 3.32 5.10	
	Carvacrol ($C_{10}H_{14}O$) + Benzoic acid ($C_7H_6O_2$)
	Lecat, 1949
	% b.t.
	0 237.85
	- 237.75 Az 100 250.8

1084			P-OXY	PHENYL	OCTADEC	ANE + AP	OCHOL	C ACID		_	
p-0xypheny	loctadeca	ne (C ₂₄		Apochol (C ₂₄ H ₃₈		o-Cresol	(C ₇ H ₈ () + Ch	loracetic	acid (C	SH2OSCI)
Rheinbo	ldt, 1939					Lecat,	1949				
%	f.t.	m.t.	%	f.t.	m.t.	%		b.t.	Sa	t.t.	
0.0 5.3 10.4 30.0 49.7 60.2 72.5	84.0 82.0 85.0 135.0 155.0 160.0 165.8	82.5 77.0 " " 77.5	80.0 85.0 87.9 90.3 95.2 100.0	168.5 170.0 170.5 171.0 170.5 172.0	105.0 140.0 153.0 164.0 164.0	0 54 100		191.1 187.7 189.35	37	7 Az	
						Kendall,	1916				
						mo1%	f.	ţ.	mol%	f.t.	
Orcinol Pushin,	(C ₇ H ₈ O ₂)	+ Chlo	racetic a	icid (C ₂	H ₃ O ₂ C1)	100 86.3 75.2 63.0 51.1	54 49 42 34	.2 .4 .8	30.6 27.6 17.9 8.6 0	17.4 16.7 21.8 26.6 30.4	
%	f.t.		E	min.		39.4	25	.7			
100 87.3	62 57		-	-		Mameli a	ind Cocc	oni, 192	3		
75.3 64.0 53.2 43.2	50 40 47 64 73	3	5 5 2.5	0.3 1.3 0.7 0.2	ļ	Z	f.t I	. 11	%	f.t I	
33.7 24.6 16.0 7.8 0	73 82 90 98 106	3 2	0 7 - - -	0.2		100 95.09 91.01 85.90 83.70 72.88 72.26	61.8 56.7 53.3 48.0	56.6 53.8 49.3	48.40 36.70 33.40 28.10 25.00 23.00	33.3 23.4 15.8 - 18.8	27.3 16.9 13.0
Orcinol	(C7H8O2)		nloraceti O ₂ Cl ₃)	c acid		68.24 61.11	45.6 41.6	42.6 36.1	12.50 8.44 0.00	24.4 26.7 31.0	24.4 26.7
Pushin,	Lukavetzki	and Ril	kovski, l	.948							
mol%	f.t.	E	mo1%	f.t		o-Cresol	(C7H8		ichlorace ₂ HO ₂ Cl ₃)	tic acid	
0 10 20	108 103 97	-	60 70 80	48 25 41	21 22 21	Kendal]	l, 1916				
30 40	89 78	-	90 100	51 58	20	mo1%	f	.t.	mol%	f.t.	· · · · · · · · · · · · · · · · · · ·
50	65	-				100 90.3	5 5	7.3 0.3	45.5 40.1	26.7 25.3	
	(C ₇ H ₈ O ₂)	(C ₂ H	$0_2 Br_3$)			82.7 76.0 64.6 56.0	7 4 3 3 5 2 0 1 5 2	4.4 8.3 5.6 5.3	35.0 30.2 - 23.0 14.9	23.4 20.8 9.5 15.6 21.3 26.5	
Pushin,	Lukavetzi	ci and R	ikovski,	1948		56.6 50.8	3 2	6.6 7.0 (1+1	.) 0.4	26.5 30.4	
mol%	f.t.	E	mo1%	f.t	ЕЕ						
0 10 20 30 40 50	108 101 92 83 - 88	71 73 75 76 75	60 70 80 90 100	99 108 118 127 135	108 121						

m-Cresol (C ₇ H ₈	₃ 0) + Formic acid (CH ₂ O ₂)	m-Cresol (C ₂ H ₈ O) +	Chloracetic	acid (C ₂ H ₃ O ₂ C1)	
Tsakalotos, 1	908	•	, 5			
R R	d η	Mameli and	Cocconi,	1923		
	20°	%		f.t.		
0 37.	1.034 15130			I	II	
37. 54. 70. 85. 100.	9 1.117 3129	100 79.62 68.02 63.30 51.77 51.03 39.36		61.8 52.1 - 43.9 - 35.5 26.4	56.6 46.9 40.9 31.3 21.7 14.6	
m-Cresol (C ₇ H Lecat, 1949	$ m H_80$) + Caproic acid ($ m C_6H_{12}O_2$)	32.66 - 17.9 24.44 10.2 24.13 - 22.86 8.4 18.48 0.2 16.70 -3.0 15.98 -1.8		10.2 8.4 0.2 -3.0 -1.8	5.2 3.2 5.0	
× %	b.t.	13.24 9.48 6.88	3	+0.4 +3.2 5.1 10.5	-	
0 13 100	202.2 201.9 Az 205.15		میں وقت الدین الدین الدین الدین الدین الدین الدین الدین بالدین الدین الدین الدین الدین الدین الدین الدین الدین الدین بدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین الدین ا	10.5	was was got fair and such such such such such such such such	===
		m-Cresol (Trichlorace (C ₂ HO ₂ CI ₃)	tic acid	
m-Cresol (C ₇ F	H ₈ O) + 2-Ethylcaproic acid	Kendall, 1	916			
Othmer Savit	(C ₈ H ₁₆ O ₂) et and al., 1949 (fig.)	mo1%	f.t.	mo1%	f.t.	
	(at b.t.)	100 92.9	57,3 52,5 47,4	46.6 40.4 35.6	14.1 12.9	
L	v	85.9 77.2 71.0	47.4 39.5 33.9	35.6 30.1 25.3 15.5	11.1 7.8 3.9	
80 60	66 41	62.7	24.3 16.1	15.5 8.8	-0.4 +4.5	!
40 20	24 12	56.4 51.1 (1+1)	14.4	8.8	+10.9	

p-Cresol (C_7H_8O) + Caproic acid ($C_6H_{12}O_2$)	p-Cresol (C_7H_80) + Chloracetic acid ($C_2H_30_2C1$)
Lecat, 1949	N 10 10 100
% b.t.	Mameli and Cocconi, 1923 % f.t. % f.t.
0 201.7 11 201.5 Az	% f.t. % f.t. I II I II
100 205.15	100 61.8 56.6 49.23 33.2 28.1 95.09 - 53.8 39.33 - 21.0 92.36 - 52.9 36.96 - 18.5
	85.90 - 49.3 30.39 18.1 12.7 83.70 53.3 48.3 27.88 16.0 10.7
p-Cresol (C_7H_8O) + Isocaproic acid ($C_6H_{12}O_2$) Lecat, 1949	72.88 48.0 - 22.80 15.5 - 72.26 - 42.6 20.03 17.4
8 b.t.	68.24 45.5 - 11.52 24.5 - 64.85 - 38.2 0.00 36.0 - 61.10 41.0 36.1
0 201.7 80 199.1 Az 100 199.5	
	p-Cresol (C_7H_80) + Trichloracetic acid ($C_2H0_2Cl_3$)
p-Cresol ($ extsf{C}_7 extsf{H}_8 extsf{0}$) + Stearic acid ($ extsf{C}_1 extsf{R}_3 extsf{6} extsf{0}_2$)	Kendall, 1916
F.J. 1990	mol% f.t. mol% f.t.
Eykman, 1889 % D f.t. % D f.t.	100 57.4 44.8 37.0 91.6 51.6 37.0 34.5 85.1 46.9 29.9 30.2 76.9 39.9 22.2 23.5
3.4 -1.30 14.65 -4.94 7.32 2.70 19.46 6.32 10.4 3.73	76.9 39.9 22.2 23.5 70.0 32.3 17.6 19.9 63.5 34.7 12.7 24.7 58.3 36.4 6.6 29.8 53.1 37.4 0 34.5 49.2 37.6 (1+1)
p-Cresol (C_7H_80) + 2-Ethylhexanoic acid ($C_8H_{16}0_2$)	p-Cresol (C_7H_80) + Benzoic acid ($C_7H_60_2$)
Othmer, Savitt and al., 1949 (fig.)	Da Silva, 1934
mol% at b.t. L V	mol% f.t. mol% f.t.
80 65 60 41 40 24 20 11	0 34.2 24.1 45.8 4.62 31.7 37.8 73.3 7.75 30.0 45.5 80.9 10.7 28.4 58.9 92.2 13.5 34.7 79.5 108.8 13.8 35.3 100 121.2

Eugenol ($C_{10}H_{12}\theta_2$) + Pelargonic acid($C_9H_{18}\theta_2$	Guaiacol ($C_7H_8O_2$) + Trichloracetic acid ($C_2HO_2CI_3$)
Lecat, 1949	Puchin and Dikovski 1025
% b.t.	Pushin and Rikovski, 1935 mol% f.t. E min.
0 254.8 52 250.5 Az 100 254.0	0 28
Isoeugenol ($C_{10}H_{12}\theta_2$) + Phenylacetic acid ($C_8H_8\theta_2$)	40 1 5.5 - 45 6 50 9 55 10.5 60 17 10 - 62.5 21 10 2.4 66.7 27 9.5 2.9
Lecat, 1949	70 31 8.5 3.8 75 37.5 8 3.4
.% b.t.	80 43 1 3.0 90 51 -
0 268.8 58 266.2 Az 100 266.5	100 57 (1+2)
Lecat, 1949	Guaethol ($C_8H_{10}O_2$) + Heptanoic acid ($C_7H_{14}O_2$)
Guaiacol ($C_7H_8O_2$) (b.t.= 205.05) + Acids	Lecat, 1949
Name Formula Az	% b.t.
b.t. % b.t. Caproic acid C ₆ H ₁₂ O ₂ 205.15 42 200.8 Isocaproic acid C ₆ H ₁₂ O ₂ 199.5 80 198.5	0 216.5 15 215.2 Az 100 222.0
Bromacetic acid C ₂ H ₃ O ₂ Br 205,1 40 203.7	Solicylic aldebude (CHQ)
Brompropionic $C_3 H_5 O_2 Br$ 205.8 45 204.2 acid	Salicylic aldehyde (${ m C_7H_6O_2}$) + Isocaproic acid (${ m C_6H_{12}O_2}$)
	Lecat, 1949
Guaiacol ($C_7H_8O_2$) + Chloracetic acid ($C_2H_3O_2C1$)	
Mameli and Cocconi, 1923 % f.t. % f.t.	0 196.7 - 196.4 Az 100 199.5
% f.t. % f.t. I II I II	
100 61.8 56.6 31.94 21.0 - 88.33 - 51.4 30.41 20.1 16.1 80.40 - 47.9 24.80 - 10.2 72.62 48.7 - 24.02 15.2 10.6 71.38 - 43.6 23.09 13.9 - 58.80 41.0 - 21.80 13.5 - 56.48 - 35.0 17.77 16.5 - 49.01 34.4 29.0 13.34 19.6 - 39.65 27.7 10.81 21.6 - 37.74 - 21.9 0.00 32.0 -	Salicylic aldehyde ($C_2H_6O_2$) + Trichloracetic acid ($C_2HO_2Cl_3$) Kendall and Gibbons, 1915 mol% f.t. mol% f.t.
21.7	100 57.9 74.2 32.2 91.8 52.4 63.4 13.4 83.6 44.1 55.1 -6.9

m-0xybenzaldehyde ($\rm C_7H_6O_2$) + Trichloracetic acid ($\rm C_2HO_2Cl_3$)

Kendall and Gibbons, 1915

mo1%	f.t.	mo1%	f.t.	
100 92.7 85.6 79.9 72.7 65.8	57.9 52.6 46.3 39.9 30.3 24.2	59.7 49.1 37.6 25.5 14.8	39.3 59.6 75.9 88.9 98.5	

m-0xybenzaldehyde ($\rm C_7H_6O_2$) + Benzoic acid ($\rm C_7H_6O_2$)

Kremann and Pogantsch, 1923

%	f.t.	%	f.t.	E	
100 87.5 77.5 67.7 60.1 52.3	121 116.5 111 105.5 101 96	45.3 37.4 30.4 20.0 12.1 0.0	92 87 85 91 97 105	83 " " -	

m-Oxybenzaldehyde ($C_7H_6O_2$) + Salicylic acid ($C_7H_6O_3$)

Kremann and Pogantsch, 1923

%	f.t.	E	%	f.t.	Е
100	155		33,3	107	-
86.4	150	-	26.4	98.5	-
72.9	143	90	18.4	91	90
60.9	134.5	90	10.4	9 7	-
53.0	127	-	0	105	-
39.3	114	90			

p-0xybenzaldehyde ($\rm C_7H_6O_2$) + Trichloracetic acid ($\rm C_2HO_2Cl_3$)

Kendall and Gibbons, 1915

mo1%	f.t.	mo1%	f.t.
100	57.9	52.8	67.5 (1+1)
94.0	54.6	46.0	67.1
86.7	48.8		65.9 11
79.7	41.9	38.0	79.6
• • • •	49.7 II	29.9	90.9
72.8	57.7	20.4	101.5
66.2	62.7	9.9	109.6
61.3	65.5	ó.,	115.6

Vanillin ($C_8 H_8 0_{\text{3}}$) + Chloracetic acid ($C_2 H_3 \, 0_2 C1)$

Kendall and Gibbons, 1915

mo1%	f.t.	mo1%	f.t.	
100 93.0 88.7 80.4 74.8 69.2 61.5 57.8 51.6	61.4 57.6 54.0 48.8 44.0 39.0 34.0 30.8 39.2	49.7 45.6 39.4 33.7 28.2 20.4 10.9	42.0 47.3 53.3 59.0 63.4 69.0 74.3 80.9	

Vanillin ($C_8H_8O_3$) + Trichloracetic acid ($C_2HO_2CI_3$)

Kendall and Gibbons, 1915

		-	
mo1%	f.t.	mo1%	f.t.
100 91.4 84.0 77.6 72.3 66.4 65.6 66.0 64.4 62.7 60.8 58.8 58.8 58.2 56.3 54.0	57.3 51.7 44.5 35.0 25.5 12.0 10.3 14.2(1+2) 13.8 12.8 14.6 17.8 18.0 21.2 24.0(1+1)	48.8 43.4 43.4 41.3 35.3 43.6 37.8 35.3 31.5 22.4 17.5 13.3 6.3	28.0 37.2 37.8 40.0 41.7 44.5 21.0 39.3 44.5 50.5 60.1 63.3 68.2 71.7 76.6 80.9

Vanillin ($C_8H_8O_3$) + Benzoic acid ($C_7H_6O_2$)

Lehmann, 1914

%	f.t.	%	f.t.	
0 1 2 3 4 5 6 7 8	81.8 81.5 81.0 80.5 80.0 80.0 79.4 79.0 79.0 78.2	10 15 20 25 30 35 40 45 50	77.3 76.5 74.0 72.0 80.0 83.5 90.0 90.0 90.0	

Vanillin ($C_8H_8O_3$) + Salicylic acid ($C_7H_6O_3$)	Ethyl salicylate (C ₉ H ₁₀ O ₃) + Benzoic acid
Lehmann, 1914	(C ₇ H ₆ O ₂)
% f.t. % f.t.	Lecat, 1949
0 81.8 10 78.8 1 81.3 15 76.8 2 81.1 20 75.0 3 80.6 25 73.0 4 80.3 30 90.0 5 79.5 35 102.0 6 79.3 40 108.0	% b.t. Sat.t. 0 233.8 - 94 233.65 25.5 Az 100 250.8 -
6 79.3 40 108.0 7 79.3 45 115.0 8 79.0 50 123.0 9 79.0 100 155.0	Salol ($C_{13}H_{10}O_3$) + Chloracetic acid ($C_2H_3O_2Cl$) Mameli and Mannessier, 1912-17
Vanillin ($C_8H_8O_3$) + Acetylsalicylic acid ($C_9H_8O_4$)	% f.t. % f.t. I II 100 61,40 100 56,40
Lehmann, 1914	92.39 59.42 97.92 55.90 86.34 58.00 88.73 53.40
% f.t. % f.t.	H 68,38 52.30 56,60 43,60
0 81.8 10 78.5 1 81.5 15 77.0 2 81.2 20 76.0 3 81.0 25 78.0 4 80.8 30 105.0 5 80.5 35 " 6 80.3 40 " 7 80.0 45 112 8 79.8 50 115 9 79.2 100 128	64.12 51.45 49.88 39.90 62.03 50.60 43.89 37.90 60.87 50.10 43.71 37.10 57.02 48.80 33.33 31.20 51.24 46.70 32.19 30.10 48.13 45.44 30.30 29.32 46.02 44.40 27.73 27.54 42.03 42.20 26.89 26.60 35.85 38.50 25.66 25.40
Methyl salicylate ($C_8H_8O_3$) + Levulinic acid ($C_9H_8O_3$)	33.43 36.80 23.67 25.68 30.02 33.70 22.92 26.12 27.40 32.00 20.13 28.05 25.74 30.20 19.24 29.00 25.42 30.10 16.65 29.82 24.65 28.20 9.18 34.30 22.65 27.38 5.12 36.70 16.02 30.12 3.33 38.12 9.56 34.40 0.00 40.85
% b.t. Dt mix	
0 222.95 - 6 222.75 Az - 490.9 100 252 -	Salol ($C_{13}H_{10}O_3$) + Trichloracetic acid ($C_2HO_2Cl_3$)
	Kendall and Booge, 1916
Ethyl salicylate ($C_9H_{10}O_3$) + Levulinic acid	% f.t. % f.t.
(C ₅ H ₈ O ₃)	0 41.9 35.3 21.6 4.9 39.9 41.4 15.8 12.1 36.4 49.7 8.0 15.7 34.4 80.2 39.5
Lecat, 1949 % b.t. Dt mix	19.6 32.1 85.8 45.4 23.7 29.5 91.8 51.7 27.6 27.5 100 57.9
0 233.8 - 18 230.5 Az -	32.3 23.8
52 100 252 -1.4	

BROMPHENOL + STEARIC ACID

1090		BROMPHENOL	+STEARIC A	CID			
Brompheno1	(C ₆ H ₅ 0Br) + Stear	ric acid ($C_{18}H_{36}O_2$)	o-Nitrophe	enol (C ₆ H ₅)	-	ichlorac ₂ HO ₂ Cl ₃	
Eykman, 18	89	<u> </u>	Kendall,	1916			
76	D f.t.		mol%	f.t.	mo1%	f	.t.
97.007 93.183 86.98 82.71 2,4,6-Tri-	-0.75 1.755 3.47 4.74 (Dimethylaminomethyl	1)-Phenol (C ₁₅ H ₂₇ DN ₃)	100 92.0 84.8 77.7 68.9 59.8 51.0 48.6	57.3 52.8 47.8 41.9 34.1 26.2 18.1 17.6	40.5 33.6 25.1 21.1 11.5 6.6	l 3) 3) 4	23.1 27.9 12.4 34.6 39.6 42.1 44.7
+ Acetic a	cid (C ₂ H ₄ O ₂)						
	Parry, 1956 (fig.))	o-Nitrophe	enol (C ₆ H ₅		nnamic a	cid
mol%	30°	40°	Kremann 2	Zechner and	Drazil. 1	924	
100	1 500	1 600	## Calculation	f.t.	E E	8	f.t.
90 80 70 60 50 40 30 20 10	5000 4500 3000 1000 7000 5000 4000 3000 1500	2000 2000 9500 6000 3000 2000 1500 1100	0.0 5.2 9.9 13.4 14.2 18.0 21.57 22.2	44.5 - 46.0 48.0 56.0 61.0 63.0 68.5 73.5 74.0 78.5 85.0	42.0 42.0 42.0 42.0 42.0 42.0	53.5 57.8 64.1 67.3 71.0 72.0 75.5 78.3 79.0 83.1	100 104 109 111 114 115 117
mo1%	η 50° 60°	7 0°	25.9 29.3 29.8 33.5 39.2 43.1	73.5 74.0 78.5 85.0	42.0	83.1 88.3 89.4 93.7	120 123 126 128
100 90 80 70 60	1 1 300 80 700 400 800 400 600 200	1 50 100 150 90	43.1 49.0 E: 11%	90.0 96.0	-	98.6 100	130 132.5 133
50 40	200 90 100 70	50 30					
50 40 30 20 10 0	90 60 80 50 70 40 65 35	50 30 20 15 12		nol (${ m C_6H_50}$	(C ₁	₄ H ₆ O ₄)	aid
			78	f.t.	E	%	f.t.
			0.0 5.6 6.4 10.6 15.2 16.3 19.2 23.0 25.4 33.6	96 101 105 117 128 131.5 136 141 144 150	91.5 - 91.5 91.5 91.5	42.1 47.5 48.8 54.0 54.7 62.5 65.7 74.7 82.1 89.2	155 156 158 160 161 162 166 170 172.5 177 183
1)			11				· · · · · · · · · · · · · · · · · · ·

m-Nitrophenol	($C_6H_5O_3N$)	+	$\begin{array}{c} \text{Trichloracetic acid} \\ \text{(} C_2 \text{H} 0_2 \text{C} 1_3 \end{array}$)	
---------------	---	--------------	---	---	--	---	--

Kendall, 1916

				
mo1%	f.t.	mo1%	f.t.	
100	57. 3	53.8	60.4	
92.6	53,3	39.9	71.4	
85.5	49.2	30.2	78.1	
78.4	44.9	19.4	84.7	
71.4	40.5	10,1	90.1	
64.3	50.9	0	99.3	

m-Nitrophenol ($C_6H_5O_3N$) + Cinnamic acid ($C_9H_8O_2$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	E
0.0 14.7 23.0 29.6 37.5 44.2 48.6 50.2	95 87 82 77.5 77.5 90.0	77.5 77.5 77.5 77.5	53.5 59.8 66.2 74.7 82.3 88.7 100.0	95.5 101 107 133.5 120 124.5	77.5 77.5 77.5

p-Nitrophenol ($C_6 H_5 \, 0_3 \, N$) + Succinic acid ($C_{\rm h} H_6 \, 0_{\rm h}$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	8	f.t.	
0.0 3.5 10.0 13.2 17.0 19.9 29.2 39.0 50.6 57.4	114.5 108.7 120.5 126 132 137 147 154 161.5	- 107 107 - - - - -	64.1 70.6 76.6 80.8 82.3 87.8 92.7 96.5	168.5 171.5 174.0 175.5 176.0 179.0 180.5 182.0 183.0	

E: 4.5%

p-Nitrophenol ($\rm C_6H_5\,0_3\,N$) + Trichloracetic acid ($\rm C_2H0_2Cl_3$)

Kendall, 1916

mo1%	f.t.	mol%	f.t.	
100 94.1 87.7 81.8 75.8 70.6	57.3 54.4 51.2 47.8 44.0 51.0	59.4 45.5 30.3 66.0	65.1 79.7 92.6 103.7 113.8	

p~Nitrophenol ($C_6H_5\,0_3\,N$) + Cinnamic acid ($C_9H_8\,0_2$)

Kremann, Zechner and Drazil, 1924

_	%	f.t.	E	%	f.t.	E	_
	0 4.8 8.7 12.8 18.0 21.1 30.7	114 111 108.5 104.5 101.0 98.5 91.1	- - - - - - - 83	49.0 59.2 67.9 77.0 87.2 95	93 102 109 117 123.5 129 133	83 83 - - - -	

E: 39%

Sorum and Durand, 1952

%	f.t.
0	114.0
E	78.0
100	133.0

2,4-Dinitrophenol ($C_6H_{4}0_5N_{2}$) + Succinic acid ($C_4H_60_4$)

Kremann, Zechner and Drazil, 1924

 %	f.t.	%	f.t.	
0.0	112	52.8	169	
6.3	148	54.9	169	
13.9	158	63.0	171	
23.8	162.5	69.1	172	
35.8	166,0	78.0	174	
46.2	167.5	90.1	178	
47.6	167.5	100.0	183	
E: 1%	110°			

2, 4-DINITROPHENOL + CINNAMIC ACID

$2,4 ext{-Dinitrophenol}$ ($C_6H_4O_5N_2$) + Cinnamic acid ($C_9H_8O_2$)	Picric acid ($C_6H_3O_7N_3$) + Succinic acid ($C_0H_6O_{1u}$)
Kremann, Zechner and Drazil, 1924	Kremann, Zechner and Drazil, 1924
% f.t. E	% f.t. E
0.0 112 - 9.7 106 - 16.7 101 - 18.4 100 - 20.0 99.0 91 23.1 97.0 91 26.8 95 91 28.6 93 91 33.3 91 - 41.0 91 - 43.1 94 - 45.8 96 - 47.4 97 91 50.1 100 91 51.2 101 - 51.5 101 91 58.2 107.0 91 58.2 107.0 91 58.2 112.5 91 73.3 117.5 - 65.2 112.5 91 73.3 117.5 - 92.7 130 - 92.7 130 - 100.0 133 -	# f.t. E 0.0
	Kendall, 1916
Picric acid ($C_6H_3O_7N_5$) + Acetic acid ($C_2H_kO_2$)	mol% f.t. mol% f.t.
Raoult, 1890 mol% p 118°	0 118.5 64.9 90.0 8.9 114.6 76.7 82.7 20.3 109.7 86.8 74.0 32.5 104.9 92.5 72.4 43.7 100.0 100 76.7 55.0 95.2
97.38 725.44 94.27 696.09 90.76 649.45	
	Picric acid ($C_6H_3O_7N_3$) + o-Toluic acid ($C_8H_8O_2$)
Kendall, 1916	Kendall, 1916
mol% f.t. mol% f.t.	mol% f.t. mol% f.t.
0 118.5 74.7 76.7 24.0 106.5 83.0 65.1 36.4 100.1 87.5 55.1 46.5 94.9 96.4 14.1 55.0 90.0 100 16.4	0 118.5 65.0 90.3 11.8 113.5 72.7 89.0 24.9 108.0 81.6 93.5 35.5 103.8 91.0 98.4 45.1 99.2 100.0 103.4 55.9 94.9

Picric acid	($C_6H_3 O_7N_3$) + m-Toluic	acid ($C_8H_8O_2$)
-------------	-------------------	--------------	----------------------

Kendall, 1916

mol%	f.t.	mo1%	f.t.
0	118.5	58.1	93,1
7.3	114.9	65.0	89.9
14.3	112.0	72.2	90.2
22.0	108.8	80.0	96.0
29.6	105.7	89.8	102.5
39.0	101.7	100	109.6
49.6	97.0		

Picric acid ($\text{C}_6\text{H}_8\,0_7\text{N}_3$) + Cinnamic acid (C_9H_80_2)

Kremann, Zechner and Drazil, 1924

 %	f.t.	E	
0.0	121.5	-	
8.9	115	-	
14.6	110	-	
19.3	105.5	-	
20.5	105	103	
23.5	104	-	
28.4	105	_	
28.6	105	-	
32.1	106	-	
35.2	106	_	
39.4	106.5	_	
42.2	106	_	
44.5	106	_	
48.2	105:5	105	
49.3	105	-	
53.1	107	(1+1)	
56.8	109	(1.17)	
62.1	îĭá	Ξ	
69.2	117.5	_	
77.4	122	Ξ	
84.8	126.5	_	
100.0	133.0	_	
200.0	100,0	-	

Pushin and Kozuhar, 1947

mo1%	f.t.	mol%	f.t.
0 15	1 22 114	50 55	106 105
20 23 30 33	100.5 108	60 65	104 106
30 33	103 101	70 80	110 119
40 45	103 105	100	133

 $_{\alpha}\,\text{-Naphthol}$ ($\text{C}_{\text{10}}\text{H}_{8}0$) + Succinic acid ($\text{C}_{\text{4}}\text{H}_{6}0_{\text{4}}$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	
100 95.2 90.9 87.0 83.3 76.9 74.1 69.0 64.5 58.8 52.4 43.5 35.5 31.0 25.1 16.7 13.0 9.1 4.8 0.0	183 181 179 177.5 176 174 173 170.5 168.5 167 165 165 165 165 155 151 154 148 140 135 125 110 96	90-90.5 90-90.5 90-90.5 90-90.5 90-90.5 90-90.5	
E: 2%			

 α -Naphthol ($C_{1.0}H_{8}0$) + Trichloracetic acid ($C_{2}H0_{2}CI_{3}$)

Kendall, 1916

mo1%	f.t.	mo1%	f.t.	
100 91.2 83.1 75.2 66.8 59.0 50.6	57.5 52.6 47.7 42.1 48.7 55.1 61.5	43.0 35.7 28.6 21.3 14.9 7.6	67.3 72.5 76.9 81.6 85.3 89.9 94.2	

 α -Naphthol ($C_{1\,0}H_80$) + Chloracetic acid ($C_2H_3\,0_2Cl$)

Mameli and Cocconi, 1923

Æ	f,	t.	¥	f.t.	
	I	II		I	
100	61.8	56.6	62.90	47.5	
91.04	58.5	53.1	57.69	51.7	
83.60	56.0	50.0	48.03	58.2	
72.76	51.3	46.0	33.83	69.2	
67.50	-	43.9	25.83	75.4	
66.76	48.7	45.2	0.00	94.0	

α -Naphthol ($C_{10}H_{8}$)	+	Cinnamic	acid	($c_9 H_8 o_2$)
------------------------------------	---	---	----------	------	---	---------------	---

Kremann, Zechner and Drazil, 1924

%	f.t.	Е	%	f.t.	E
0.0 12.0 23.7 28.0 32.3 34.5 38.0 41.5	95 88 80 77 73 71 70.5	68	47.0 54.6 58.5 66.4 73.7 86.0 96.2 100.0	82 92 97 106 112 124 131 133	68

E: 37%

Sorum and Durand, 1952

%	f.t.
0	95.5
E	65.0
100	133.0

 β -Naphthol ($C_{1\,0}H_{8}0$) + Succinic acid ($C_{\mu}H_{6}0_{\mu}$)

Kremann, Zechner and Drazil, 1924

_						
_	%	f.t.	Е	%	f.t.	
	0 1.4 3.6 4.5 8.3 13.1 19.1 21.7 28.5 31.5	121.5 119 121 128 136.5 143 145 150.5	117 117 117 	38.1 38.2 44.9 53.4 64.8 72.9 78.7 85.5 92.0	157 157 161 165 170 173 176 178.5 181	
	F. 3					

E: 2.5%

 β -Naphtho1 ($\text{C}_{1\,\,0}\text{H}_{8}0$) + Chloracetic acid ($\text{C}_{2}\text{H}_{3}\,0_{2}\text{Cl}$)

Mameli and Coccuni, 1923

%	f.	t.	%	f.t.	
	I	П		I	
100	61.8	56.6	72.50	47.6	
95.03	59.6	-	70.61	50.3	
92,21	58.2	_	64.90	57.4	
90.65	57.9	52,1	58.08	65.2	
83.96	54.7	-	50.97	73,2	
83.87	54.1	48.1	37.65	88.2	
75.41	50.1	44.0	20.00	105.2	
72.78	48.0	-	0.00	122.0	

 β -Naphthol ($C_{1.0}H_80$) + Trichloracetic acid ($C_2H0_2C1_3$)

Kendall, 1916

mo1%	f.t.	mo1%	f.t.	
100 93.4 88.2 80.4 74.0 67.4 62.2	57.31 53.1 49.3 43.5 49.2 58.8 67.6	55.0 46.4 36.2 25.0 13.4	77.0 86.2 95.9 105.2 113.9 121.6	

 β -Naphthol ($C_{1\,0}H_{8}0$) + Cinnamic acid ($C_{9}H_{8}0_{2}$)

Kremann, Zechner and Drazil, 1924

%	f.t.	E	%	f.t.	E	
0	121	_	59.8	100	87	
4.8	119	-	68.4	108.5	87	
13.6	114	-	74.2	114	-	
21.9	108.5	87	78,8	118	-	
31.0	101.5	-	86	1 2 3	-	
36.7	97.5	-	93.3	127	-	
43.1	91.5	87	100	133	-	
49.8	90	-				

E: 48%

Sorum and Durand, 1952

0 121.0	
E 82.0 100 133.0	

METHYL ALCOHOL + ETHYL ALCOHOL

XXXVIII. TWO ALCOHOLS AND TWO PHENOLS

Heterogeneous equilibria.

20°

Schmidt, 1921 mol %

40

30

Schmidt, 1926 mo1 %

80

70

60 50

40 30 20

10

mol %

100

90

80 70 60

10

Methyl alcohol (CH_{40}) + Ethyl alcohol ($C_{2}H_{6}0$

40°

135 147

160

172 183

195

206

60°

357 382 407

432 457

601

10°

23.6 25.9 28.7 32.1 36.4 39.2 42.1

45.8 48.3

14.8 17.1 18.3 20.7 22.4 23.6 25.2 27.1 29.3 31.9

40°

134.8

147.8 161.0

173.5

185.6 198.2 209.5

257.4

80°

858

902

948 992 1037

1082 1127 1172

1218

1263

20°

44.1 48.6 54.1 59.2 64.4 69.0 74.6 79.1

84.4

89.1 95.2

50°

221.3

242.I

261.8

413.3

60°

355

384

416

439

462

612

100° 14.8 15.8 38.3 114.3 14.0 -245.3 12.5 16.6 14.0 16.7							
1		Morris,	Munn and	Anderson,	1942		
L			%	p	P ₁	p ₂	
100		L	V				
Signature Sign	,, , ,	100	100		0	135 2	
S3.0 35.6 195.0 125.6 69.4	n ₆ 0)	85.6	74.8	152.8	38.5	114.3	
49,8		68.5		174.6	-	-	
22.8 15.4 228.5 193.4 35.1 17.3 10.6 238.5 213.1 25.4 14.0 - 245.3 213.1 25.4 14.0 - 245.3 232.3 16.7 0 0 261.5 261.5 -		49.8	35.6	198.8	125.6	69.4	
100c		22.8	15.4	217.6 228.5	193.4	35 1	
100c		17.3 14.0		238.5 245.3	213.1	25.4	
1701 1777 1853 1929 2005 2082 2157 2234 2312 2388 2464	100°	10.3		249.0	232.3	16.7	
Amer, Paxton and Van Winkle, 1956	1501			201,9	201,5		
Amer, Paxton and Van Winkle, 1956	1701						===
2005 2085 2082 2157 2234 2312 2388 2464	1929		_				
2157 2234	2005 2082	Amer,		Van Wink	le, 1956		
2312 2388 2464 78.3 100 100 68.6 34.8 24.1 75.0 75.8 67.4 66.9 21.0 14.2 75.0 75.8 67.4 66.9 21.0 14.2 72.3 59.9 47.1 65.8 12.7 8.1 71.7 56.5 43.4 65.6 9.0 6.3 70.0 45.8 32.4 64.6 0 0 78.4 86.8 96.2 113.9 121.4 130.3 140.4 148.3 156.1 162.6 25.4 67.35 63.5 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 355 384 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 355 387 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6	2157	b.t.					
760 mm 78.3 100 100 68.6 34.8 24.1 76.6 86.6 81.7 67.7 27.2 18.7 75.0 75.8 67.4 66.9 21.0 14.2 73.6 68.0 57.2 66.6 18.6 12.5 72.3 59.9 47.1 65.8 12.7 8.1 71.7 56.5 43.4 65.6 9.0 6.3 70.0 45.8 32.4 64.6 0 0 78.4 86.8 96.2 106.8 113.9 121.4 130.3 140.4 148.3 156.1 11.9 66.1 57.6 71.15 162.6 25.4 67.35 63.5 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 53.8 70.6 3355 384 44.1 69.4 88.9 76.5 53.8 70.6 3364 459 462 462 462 462 464 476 489 476 489 477 489 489 489 489 489 489 489 489 489 489	2312		L	V 	L	V	
76.6 86.6 81.7 67.7 27.2 18.7 75.0 75.8 67.4 66.9 21.0 14.2 73.6 68.0 57.2 66.6 18.6 12.5 72.3 59.9 47.1 65.8 12.7 8.1 71.7 56.5 43.4 65.6 9.0 6.3 70.0 45.8 32.4 64.6 0 0 78.4 86.8 96.2 106.8 113.9 121.4 130.3 140.4 148.3 156.1 162.6 34.6 68.3 75.1 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 355 384 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 355 387 40.6 Amer, Paxton and Van Winkle, 1953	2464			760 n	ım		
72.5 39.9 47.1 65.6 12.7 8.1 71.7 56.5 43.4 65.6 9.0 6.3 70.0 45.8 32.4 64.6 0 0 0 78.4 86.8 96.2 106.8 113.9 121.4 130.3 140.4 148.3 156.1 11.9 66.1 57.6 71.15 25.4 67.35 63.5 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 Amer, Paxton and Van Winkle, 1953 Amer, Paxton and Van Winkle, 1953 Amer, Paxton and Van Winkle, 1953 Amer, Paxton and Van Winkle, 1953 509 97.1 78.0 34.8 68.6 1589 1586 76.6 27.2 67.7 158 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9	========	78.3			8.6 34.8	24.1	
72.5 39.9 47.1 65.6 12.7 8.1 71.7 56.5 43.4 65.6 9.0 6.3 70.0 45.8 32.4 64.6 0 0 0 78.4 86.8 96.2 106.8 113.9 121.4 130.3 140.4 148.3 156.1 11.9 66.1 57.6 71.15 25.4 67.35 63.5 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 Amer, Paxton and Van Winkle, 1953 Amer, Paxton and Van Winkle, 1953 Amer, Paxton and Van Winkle, 1953 Amer, Paxton and Van Winkle, 1953 509 97.1 78.0 34.8 68.6 1589 1586 76.6 27.2 67.7 158 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9 175.8 75.0 21.0 66.9		75.0	86.6 75.8	81.7 6 67.4 6	6.9 21.0	18.7 14.2	
78.4 86.8 96.2 106.8 113.9 121.4 138.3 140.4 148.3 156.1 162.6 25.4 67.35 60° 34.6 68.3 75.1 75.8 76.5 384 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 Amer, Paxton and Van Winkle, 1953 mol% b.t. mol% b.t. mol% b.t. 100 78.3 41.0 69.4 68.3 75.1 76.5 60° 50.0 70.1 53.8 70.6		73.6 72.3	68.0 59.9	57.2 6 47.1 6	6,6 18.6 5,8 12.7	$^{12.5}_{8.1}$	
78.4 86.8 96.2 106.8 113.9 121.4 138.3 140.4 148.8 156.1 162.6 19.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10	· · · · · · · · · · · · · · · · · · ·	71.7 70.0	50,5	43,4 0	5,6 9.0 4.6 0	6.3	
86.8 96.2 106.8 113.9 121.4 130.3 140.4 148.3 156.1 162.6 25.4 67.35 60c 34.6 60c 34.6 60c 355 60c 50.0 70.1 100 78.75 53.8 70.6 Amer, Paxton and Van Winkle, 1953	30°						
96.2 1106.8 113.9 121.4 130.3 140.4 148.3 156.1 162.6 25.4 66.1 57.6 70.65 11.9 66.1 57.6 71.15 25.4 67.35 60° 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 Amer, Paxton and Van Winkle, 1953 mol% b.t. mol% b.t. 100 78.3 41.0 69.4 489 514 100 78.3 41.0 69.4 68.3 68.6 68.3 70.6 355 384 44.1 69.4 88.9 76.5 53.8 70.6 368 369 86.6 67.6 68.2 76.6 28.2 68.2 68.6 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 68.2 76.6 28.2 66.2 77.4 88.2 77.6 86.2 77.8 77.8 77.8 77.8 77.8 77.8 77.8 77	78.4			····	······································	······································	
106.8 113.9 121.4 130.3 140.4 148.3 156.1 162.6 25.4 66.3 34.6 68.3 375.1 34.6 68.3 375.1 73.0 34.6 68.3 75.1 73.0 34.6 68.3 75.1 73.0 76.5 50.0 70.1 100 78.75 53.8 70.6 Amer, Paxton and Van Winkle, 1953	96.2 1	Unuwood	1 1000				
121.4 130.3 140.4 148.8 156.1 162.6 25.4 67.35 60° 34.6 60° 34.6 60° 50.0 70.1 53.8 70.6 384 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 53.8 70.6 385 386 4 462 462 462 462 462 462 462 463 47 488 514 100 78.3 41.0 69.4 88.9 616 612 86.2 76.6 27.2 68.2 6612 86.2 76.6 23.0 66.9 68.0 73.6 73.6 74.6 18.6 66.6	106.8 113.9						
140.4 148.3 162.6 111.9 66.1 57.6 71.15 162.6 25.4 67.35 63.5 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 78.76	121.4				b. t.		
156.1	140.4						
25.4 67.35 63.5 72.0 34.6 68.3 75.1 73.0 44.1 69.4 88.9 76.5 50.0 70.1 100 78.75 384 416 439 462 462 489 514 100 78.3 41.0 69.4 529 97.1 78.0 34.8 68.6 539 97.1 78.0 34.8 68.6 563 91.6 77.4 31.7 68.2 568 86.6 76.6 27.2 67.7 57.8 75.0 21.0 66.9 73.6 74.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 68.0 72.6 18.6 66.6 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.8 78.7 78.8 78.7 78.8 78.7 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8	156.1	11.9	$\begin{array}{c} 65.1 \\ 66.1 \end{array}$	54.0 5 7. 6			
Amer, Paxton and Van Winkle, 1953	102.0		67.35 68.3	63,5	72.0		
53.8 70.6 384 416 Amer, Paxton and Van Winkle, 1953 mol% b.t. mol% b.t. 489 514 100 78.3 41.0 69.4 539 97.1 78.0 34.8 68.6 91.6 77.4 31.7 68.2 66.2 67.7 66.2 86.2 76.6 23.0 67.1 75.8 75.0 21.0 66.9 73.6 74.6 18.6 66.6	(00	44.1	69.4 70.1	88.9	76.5		
384 416 439 462 501 501 502 503 503 503 503 503 503 503 503 503 503		53.8	70.6	400	70,70		
### Aller, Faxton and van Winkle, 1953 #### #### ##########################							
462	416		xton and V	an Winkl	e, 1953		
86.6 76.6 27.2 67.7 612 86.2 76.6 23.0 67.1 75.8 75.0 21.0 66.9 73.6 74.6 18.6 66.6	462	mo1%	b.t.	mo1	% b.t.		
86.6 76.6 27.2 67.7 612 86.2 76.6 23.0 67.1 75.8 75.0 21.0 66.9 73.6 74.6 18.6 66.6	514	100					_
86.6 76.6 27.2 67.7 612 86.2 76.6 23.0 67.1 75.8 75.0 21.0 66.9 73.6 74.6 18.6 66.6	563	91.6	78.0 77.4	34 5	R 68 6		
75.8 75.0 21.0 66.9 73.6 74.6 18.6 66.6 68.0 73.6 14.8 66.1 61.9 72.6 12.7 65.8 59.9 72.3 9.0 65.6	612	86.6 86.2	76.6 76.6	27.2 23.0	2 67.7) 67.1		
68.0 73.6 14.8 66.1 61.9 72.6 12.7 65.8 59.9 72.3 9.0 65.6	======:	75.8 73.6	75.0 74.6	21.0	66.9		
59.9 72.3 9.0 65.6	1	68.0 61.9	73.6	14.8	66.1		
		59.9	72.3	9.0	65.6		
50.5 71.7 7.2 65.3 51.1 70.9 0.0 64.6		51.1	70.9	7.2 0.0	65,3 64,6		
45.8 70.0		45.8	70.0				
							=

1095

METHYL ALCOHOL + ETHYL ALCOHOL

Sapgir, 1929	Hirobe, 1925
% f.t. % f.t.	% d
0 -97.8 83.1 -129.6 8.3 -103.1 89.8 -122.5 20.0 -111.8 100 -114.1 28.6 -120.9	25.02° 0 0.7892 29.18 .7879 38.90 .7871 55.79 .7865 100 .7854
Johnson and Babb, 1956 (fig.) Mol% D Methyl alcohol	Harms, 1938 101% d mo1% d 30°
95 1.20 1.00 100 1.10 1.00	Jacobson, 1951
Proposition of all and	vol% d vol% d
Properties of phases. Herz and Kuhn, 1908 % d % d	0 0.7937 57.1 0.7935 24.7 .7940 76.1 .7929 42.6 .7934 100 .7916 49.9 .7933
25° 0.0 0.7878 58.98 0.7878 8.75 .7880 89.6 .7872 15.23 .7879 95.63 .7869 19.31 .7877 100 .7867	Schmidt, 1926 % Dv.10 ⁴ % Dv.10 ⁴
	17°
Herz, 1918	10 2.5 60 3.9 20 4.1 70 3.2 30 4.5 80 1.2 40 4.7 90 0.8 50 4.7
0.0 0.7881 58.98 0.7883 8.75 .7880 89.6 .7873 15.23 .7881 95.63 .7870 19.31 .7883 100 .7868	Jacobson, 1951
Doroshevski, 1911	vol% velocity of sound(103 m/sec.)
% d % d	20°
15° 0 0,79602 61,08 0,79452 10.63 .79573 74,90 .79423 21,22 .79549 81,31 .79408 32,03 .79520 90,10 .79388 41,21 .79496 100 .79367 49,84 .79481	0 1.1301 24.7 .1397 42.6 .1458 49.9 .1489 57.1 .1514 76.1 .1539 100 .1673

Jacobson, 1951	1017
vol% π (adiab.) vol% π (adiab.)	Morgan and Scarlett, 1917
20°	0° 30° 50°
0 99.96 57.1 96.32 24.7 93.25 76.1 95.16 42.6 97.29 100.0 93.95 49.9 96.77	100 23.090 20.756 19.200 49.75 23.395 20.909 19.235 0 23.643 21.053 19.446
Jones, 1904	Doroshevski, 1911
vol% η τ.10 ⁴	% n _D % n _D
0 903.2 608.4 194 25 1003 679.0 191 50 1259 800.9 229 75 1617 948.1 282 100 2108 1145 337	15° 0 1.33057 61.08 1.35070 10.63 .33390 74.90 .35517 21.22 .33740 81.31 .35718 32.03 .34115 90.10 .36010 41.21 .34422 100 .36330 49.84 .34697
Hirata, 1908	Amer, 1953
vol% η (ethylalcohol=1)	
25° 75 0.8218 87.5 .9062 93.75 .9500 96.875 .9744 98.4375 .9870	100 1.36152 31.7 1.34114 86.2 .35756 23.0 .33810 73.6 .35406 14.8 .33507 61.9 .35073 7.2 .33203 51.1 .34750 0.0 .32904 41.0 .34426
Herz and Kuhn, 1908 and Herz 1918	Thursday 1904
% n % n	Thwing, 1894 π ε π ε
0.0 562.1 58.98 788.5 8.75 586.2 89.6 984.3 15.23 605.0 95.63 1047 19.31 617.5 100 1092	15° 0 34.05 60 26.20 10 31.91 70 25.71 20 30.21 80 25 34
Bingham, White and al., 1913	30 28.54 90 25.36 40 27.59 100 25.02 50 26.78
% n 25° 35° 45° 55° 6	5°
73.85 880.2 746.2 635.7 545.8	4.6

METHYL ALCOHOL + PROPYL ALCOHOL

Thermal constants.	Methyl alcohol ($\text{CH}_{\downarrow}0$) + Propyl alcohol ($\text{C}_{3}\text{H}_{8}0$)
Bose, 1907	Schmidt, 1926
% U	mol% p
25°	0° 10° 20° 30°
0.0 0.6078 29.83 .5996 55.00 .5948 76.98 .5918 100 .5819	100 3.5 7.4 15.1 28.8 90 5.6 12.3 24.4 43.5 80 8.2 17.4 31.9 58.7 70 11.6 21.8 40.5 73.9 60 14.9 26.7 48.7 88.3 50 18.2 31.6 56.0 102.0 40 20.7 36.3 63.8 115.7 30 22.8 41.2 72.0 128.5 20 25.3 44.8 80.0 140.7 10 28.0 50.8 88.0 152.2 0 31.9 55.2 96.3 162.6
Hirobe, 1925	40° 50° 60°
mo1% Q mix. 25.02° 29.18 -2.1 38.90 -1.8 55.79 -0.6	100 52.7 91.3 155.4 90 75.3 126.0 201.6 80 100.6 163.8 252 70 123.8 202.2 303 60 144.5 234.6 348 50 165.8 268.4 402 40 186.0 299.3 449 30 206.2 328.0 499 20 226.3 359.7 546 10 245.8 389.2 593 0 261.7 413.3 643
Schmidt, 1926	
% Q mix (cal/g) % Q mix (cal/g)	Hill and van Winkle, 1952
16° 10 0.0024 60 0.095 20 .044 70 .094	% mol% V L b.t.
30 .064 80 .082	760 mm
40 .075 90 .050 50 .086	76.0 92.2 74.0 91 89.0 53.5 82.8 54.5 82.8 83.2 40.6 74.9 33.2 68.1 79.7 37.3 72.1 22.3 55.5 78.3 32.3 67.4 15.8 44.5 76.7 25.1 58.4 11.1 34.8 73.9 17.8 47.9 7.9 26.2 71.3 12.1 37.5 4.9 18.6 69.4 5.2 18.9 2.9 11.7 66.7
	Herz and Kuhn, 1908 and Herz, 1918
	% d % d
	25° 0 0.7878 91.8 0.7992 11.11 .7894 93.75 .7995 23.8 .7907 96.6 .7999 65.2 .7954 100 .8004

	Variable Main root and Cual 1014
Doroshevski, 1911	Kremann, Meingast and Gugl, 1914 mol% Dv
% d % d	20° 70°
15°'	25 +0.07 -0.07
	50 +0.05 -0.12 75 +0.15 +0.03
¶ 9.88 .79692 68.12 .80325	
34.63 .79936 88.04 .80582	
40.90 .80005 100 .80753	Schmidt, 1926
Kremann and Meingast, 1914	% Dv.10 ⁴ % Dv.10 ⁴
t d t d	17°
0 mo1% 25 mo1%	90 -7 40 -10 80 -10 30 -8
,-	70 -13 20 -5 60 -12 10 -3
20.0 - 10.0 - 20.8 0.7912 20.1 0.7055	50 -11
31.0 ,7818 26.8 ,7900	
51.0 .7633 60.0 ~	
60.0 - 65.8 .7500	Herz and Kuhn, 1908 and Herz 1918
50 mol% 75 mol%	% n % n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25° 0 562.1 91.8 1638
26.1 0.79405 25.0 0.7980	11.1 607.7 93.75 1772
43.8 .7794 43.8 .7819 58.1 .7670 45.0 .7805 56.0 .7710	23.8 799.7 96.6 1844 65.2 1074 100 1915
60.8 .7670	
100 mol% 100 mol%	Variation and Market and Alexander
15.5 0.8075 47.2 0.7807 28.5 .7964 60.0 .7700	Kremann and Meingast, 1914
39.4 .7875 65.1 .7653	t o t o
	0 mo1% 25 mo1%
Kremann, Meingast and Gugl, 1914	10.0 23.58 15.2 23.37 20.8 22.73 20.1 22.94 31.0 22.09 26.8 22.51 38.0 21.33 44.5 21.13
	31.0 22.09 26.8 22.51 38.0 21.33 44.5 21.13
	41.2 21.22 59.5 19.71 51.0 20.53 65.8 18.92
$egin{array}{cccc} 0 & 0.8103 & 75 & 0.8195 \ 25 & .8135 & 100 & .8208 \ \end{array}$	50 mol% 75 mol%
50 .8160	14.8 23.64 16.2 23.76
	26.1 22.83 25.0 23.19 43.8 21.64 43.8 21.84
	58.1 20.64 45.0 21.72 56.0 20.79
Hirobe, 1925	60.8 20.23 100 mol% 100 mol%
mol% d	15.5 23.94 47.2 22.00
25,05°	28.5 23.12 60.0 21.07 39.4 22.55 65.1 20.58
0 0.7884 20.38 .7916	
33.34 .7935 55.49 .7960	
100 .7998	

%	$\mathbf{q}_{\mathbf{q}}$	%	$n_{\mathbf{D}}$
	15	0	
)	1.33053	50.29	-
.37	.33312	59.62	1.36423
88.	.33603	68.12	.36900
. 29	-	78.94	.37518
.63	1.35002	88.04	.38036
.90	.35394	100	.38726

Denney and Cole, 1955

t	3	t	ε	
0	X	20%		
0 -22.5 -40.6 -62.6 -76.7 -86.0 -96.7 -103.2 -109.9	37.92 43.53 49.00 57.35 63.26 67.91 73.76 77.70 82.17	-1.6 -31.5 -70.3 -91.6 -104.0 -114.9 -148.0 -152.7	35.12 42.27 55.19 64.67 71.46 77.56 102.7 104.8	
	30%		50%	
0 -38.3 -71.1 -97.2 -115.8 -135.8 -146.3 -150.2 -154.2	33.25 42.36 52.96 64.67 74.92 89.62 98.68 102.5	0 -38.0 -72.8 -96.3 -113.2 -134.6 -141.6 -148.4	30.43 38.52 48.78 58.07 66.55 79.88 85.17 90.86	
	79%		79%	
0 -34.7 -73.1 -96.4 -109.9	26.41 32.91 42.29 50.16 55.68	-123.9 -133.1 -136.7 -142.7	62.49 67.68 69.81 73.52	

Kremann, Meingast and Gugl, 1914

m o1 %	U	Q mix	(cal/g)
		34°	16°
0 25 50 75 100	0,617 .604 .605 .615 .640	~0.448 -0.312 -0.178	-0.500 -0.415 -0.232

Hirobe, 1925		
mo1%	Q mix.	
25.05	,	
20.38 33.34 55.49	-21.8 -23.1 -17.6	

Schmidt, 1926

%	Q mix(cal/	(g) %	Q mix(cal/g)
		14°	
90 80 70 60 50	-0.18 -0.35 -0.49 -0.56 -0.55	40 30 20 10	-0.49 -0.41 -0.30 -0.17

Methyl alcohol ($\text{CH}_{\text{L}}0$) + Isopropyl alcohol (C_3H_80)

Ballard and van Winkle, 1952

ron I	%	b.t.	I/O	1%	b.t.
V	L		V	L	
		760	mm		,
4.65 10.90 20.00 31.50	9.99 21.00 33.95 47.80	66. 2 67.9 70.2 72.7	43.00 57.15 70.40 86.80	59.20 70.70 80.50 91.90	74.8 77.1 78.9 81.0

Methyl alcohol ($CH_{4}0$) + Butyl alcohol ($C_{4}H_{1\,0}0$)

Hill and van Winkle, 1952

%	% mo1%		b.t.		
V	L	V	L		
58.9 42.3 33.1 26.4 23.8 18.5 13.1 8.6 0	94.5 89.0 84.0 79.0 76.1 69.4 60.0 46.9	40.4 25.0 14.0 9.1 6.2 3.0 2.1 1.3	89.2 79.5 63.4 50.2 39.3 30.2 15.6 9.8	102.5 95.3 89.0 81.2 81.0 79.4 74.8 71.4 64.7	

Methyl	alcohol (Isobuty]			Doroshe	vski, 1911			
		`	, C4II1 00	,		- %	d	%	d	
lidovonic	a and Emid	1040			1		15	5°		
<i> </i>	o and Frid					0 5,34	0.79602 .79631	39.47 49.42	0.79854 .79943	
mol% L	50°	mol% V	60°	7 0°		14.19 19.72	.79679 .79709	70.93 89.84	.80177 .80423	
						22.55	79731	100	.80567	ļ
100 90,0	100 49.2 30.7		100 52.9	100 55.	3	=====				
80.0 70.0	30.7 21.4 15.1		34.0 23.9 17.3	36. 25. 18.	4 7					
60.0 50.0	11.1		12.7	13.	8 .	Hirobe,	1925			
40.0 30.0	7.9 5.5		$\frac{9.2}{6.4}$	10.6	9	mo1%	d	mo1%	d	
20.0 10.0	3.4 1.6		$\frac{4.0}{1.9}$	4.1	4 1	ļ	25.	05°		
0.0	0		0	0		0 14.92	0.7884 .7903	48.60 100	0.7941 .7981	
mo1%		p		· · · · · · · · · · · · · · · · · · ·		28.65	.7918	100	.7701	
	50°	6()°	70°						
100	56.0		6.0	157.0		Jänecke,	1933			
90.0 80.0	103.0 147.1	163 227	3.9 7.4	256.8 349.7		%	d	%	d	
70.0 60.0	187.6 228.3	227 287 342	2.5	434.8 518.1			1	5°		
50.0 40.0	263.3 298.4	394 443	1.8 3.7	592.6 664.5		0 25.75	0.7910 .7968	100	0.8026	
30.0 20.0	330.0 363.6	535 535).4 5.7	734.4 798.9		25.75	.7908			
10.0	363.6 392.3 422.0	535 579 620	0.6	860.1 920.1						
		·				Dorosho	vel: 1011			
mo1%	P ₁	p ₂	mo1%	P ₁	P2	borosne %	vski, 1911	%		
- 0		60°					n		n _D	
90 80	77.2 150.0	86.7 77.4	40 30	402.9 459.2	40.8				1 25710	
70 60	218.6 283.2 344.7	68.5 59.3 50.1	20 10	514.4 568.6	$\frac{21.3}{11.0}$	5.34	1.33053 .33484	39.47 49.42	1.35710 .36372 .39102	
50	344.7	50.1				14.19 22.55	. 34055 . 34620	89.84 100	.39102 .39 7 50	
										
,,,	10									!
	e, 1933			,		Jäneck	e, 1933			
L	% V	b.t.	L L	v	b.t.	%	n _D	%	n _D	
100		107.88					15	;0		
95 85 70 50	79.0 54.2	107.88 97.5 87.3 78.0	30 15 5	$9.0 \\ 3.5 \\ 1.0$	68.1 66.0 65.1	0	1.3287	46.44	1.3591	į
70 50	$\substack{33.0\\16.0}$	78.0 72.0	5 0	0	65.1 64.72	24.55 25.75	.3444 .3461	54.48 100	. 3644 . 394	
=====										
[Hirobe,	1925			
						mo1%		Q mix.		
							25.05°			
						14.92 28.65		-40.6 -39.4 -27.7		
						48.60		-27.7		

METHYL ALCOHOL + AMYL ALCOHOL

Methyl a	lcohol (C	H ₄ 0) + Amy1	alcohol (C ₅ H ₁₂ O)	mo1%	50°	р 60°	70°	
Hill and	van Winkl	e, 1952			100	17.5	32.0 106.5	57.5 165.5	
v	L	mol% V	L	b.t.	80 70 60	68.4 116.7 160.7 205.5	177.0 243.4 305.1	270.5 368.9 460.9	
82.5 54.4 34.6 21.6 10.9	99.2 95.7 91.0 84.8 72.3	27.4 14.4 6.7 3.5 2.4	87.4 76.6 59.2 45.9 35.0	122.5 113.1 99.4 87.4 79.2	50 40 30 20 10	265.7 282.8 320.3 355.7 388.6 422.0	364.7 418.9 471.8 525.9 574.0 620.0	546.3 622.1 701.4 779.0 851.1 920.1	
10.2 6.5 3.2 1.8	71.0 62.6 40.8 25.8	1.6 1.2 0.8 0.5	26,6 19,5 13,5 8,3	78.2 73.3 67.5 66.1	Hirobe, 1	925	ه الدولي فيواني الواقي اليواني فيواني فيواني م والدولي طبرات الدواني في مي الو		ی حض امدرادی امیر امیر میردنی شدن امیر در امیر امیر امیر امیر امیر امیر امیر امی
					mo1%	đ	mol%	d	
						25.0)5°		
Charpy,	1893 d	vol%	d		0 13.16 23.17	0.7886 .7930 .7957	48.60 100	0.8014 .8073	
		15°							
0 16.7 33.3 50.0	0.792 .794 .797 .801	66.7 83.3 100.0	0.805 .808 .812		Landolt,	1865			
			_t		Z	d	n _D		
			·			20°			
	alcohol (ko and Fric	•	amyl alcoh H ₁₂ 0)	nol	0 47.8 100	0.7950 .8024 .8121	1.3279 .3640 .4057		
mol% L		mo1% V				· · · · · · · · · · · · · · · · · · ·	·		
	50°			70°	Hirobe, 1	925			
90	23.			31.9	mo1%		Q mix.		
80 70	12. 6.	69.	.6 .5	17.2 11.2		25.05°			
60 50 40	5. 3. 2.	8 5.	.7	7.8 5.6	13.16		-31.6		
30 20	î 1.	8 2.	2	4.0 2.7 1.6	23.17 48.60		-44.8 -45.7		
ĩŏ	Ď	5 0.		0.8					
		p ₂ mol	Б Р1		Mothyl al	cohol (CH ₄	n) + Degyl	alaahal (C H O)
		60°			, seeily 1 ar	conor (cu ₄	o / · Decy i	arconor (C10H22U /
90	77.6 151.1	28.9 40 25.9 30	405.1 461.3	13.8 10.5	Hoerr, H	arwood and	Ralston, 19	144	
80 70 60	220.4	25.9 30 23.0 20 19.9 10	518.8 570.3	7.1 3.7	- R		f.t.		
50	347.8	16.9	0,0,0		6.6		-40.0		
i					32.7 92.9 100		-20.0 0.0 +6.88		
<u>.</u>									
					1				
					<u> </u>				

Methyl alcohol	(CH ₄ 0) + Lauryl alcohol (C ₁₂ H ₂₆ 0)				
ļ	and Ralston, 1944	Methyl alc	ohol (CH40) + Octade (C ₁₈ H ₈	=
<u> </u>	f.t.				
0.5 2.9	-40.0 -20.0		rwood and R		4
42.2 96.0	0.0	<u> </u>		f.t.	
100	+20.0 23.95	3.9 6.5 59.3 100		20.0 30.0 40.0 57.98	
Methyl alcohol	($CH_{1\mu}0$) + Tetradecyl alcohol ($C_{11\mu}H_{30}0$)	Fischer,	1940		
Hoerr, Harwood	and Ralston, 1944	mo1%	f.t.	t	r.t.
0.2 4.4 61.3 89.7	f.t. -20.0 0.0 +20.0 30.0	100 83.9 63.5 36.6	57.9 54.7 49.5 39.9		53.5
Methyl alcohol	38.26 (CH ₄ 0) + Cetyl alcohol (C, 6H ₈₄ 0)		cohol (CH _y C		xy glycol (C ₃ H ₈ O ₂)
Fischer, 1940		mo1%	^{n}D	mo1%	^{n}D
mo1%	f.t.		229)	
100.0 60.0 52.6 36.0	49.1 37.6 35.0 27.8	100 80.50 51.75	1.4021 .3961 .3808	45.50 26.60 0	1.3773 .3613 .3280
	27.0	mo1		mo19	
		L	V	L	<u> </u>
Hoerr, Harwood	and Ralston, 1944		22		
%	f.t.	11.3 17.5	1.5 2.5	53 62	9.5 11
2.9 9.1 51.2 85.5 100.0	0.0 20.0 30.0 40.0 49.62	27 33.5 38.0 41 45.5	3.5 5.3 6.5 7.3	65.5 74.5 84 87.5 95.0	12 20.5 31 37 71

METHYL ALCOHOL + GLYCEROL

	T	D	- 1055			
Methyl alcohol (CH _u O) + Glycerol (C	u		0, 1955			
methyl alcohol (chito) + diyeelol (c	311803	mo1%	<u>d</u>	mo1%	d	
			30)°		
Dulitskaya, 1945		0	0.7832	12.05 29.24	0.8943 1.0057	
mo1% p	Į.	2.34 2.95 5.31	.8067 .8125	31.26	.0167	
25° 50° 62.5°		5.31	. 8364	37.03 50.65	.0464 .1080	1
0.00 124.0 406.0 688.0				66.07 75.17 85.88	. 1631 . 1902	
17 13 110 0 359.0 602 0	1			85.88	. 2204	
52.47 76.0 243.0 402.5				100	. 2510	
72.10 48.0 153.0 255.0	1 -					
			and Jones			
		%		n, 		į
Skirrow, 1902	1		25°	35°		
% p		0	565.4	491.8		
25°		25 50	1962 9280 60730	1539 63 7 9		!
0 122		75 100	60730 330000	35520 294030		
39.6	1.	200		271000		
60.5 77.1 63	-					
	-	Guy and	Jones, 191	1		
Campbell, 1915			7)			r.10 ⁴
	\ ₋	25°	35°	45°	25-35	° 35-45°
% p % p				0%		
40°		584.	2 506.6		157	139
0 257.4 81.67 137.5 16.32 244.8 91.45 93.8		1886 965 7	1481 6512	1190 4446	274 484	240 468
43.73 222.9 93.74 62.1	#	62420 606700	35190 275100	20870 135 2 00	763 1 24 0	$\begin{array}{c} 681 \\ 1010 \end{array}$
61.72 199.6 100 0 74.47 167.1	 -					
		Danuas	0 1055		, , , , , , , , , , , , , , , , , , ,	
	-		0, 1955			
Campbell, 1915		mo1%	v	mo1%	v	
% d % d				30°		
56°		0 2.3	1092 4 1120	37.03 50.65	1478 1586	
0 0.7604 68.98 1.0620	,	2.9. 5.3	1129	66.07	1703	
9.60 .7963 76.11 .1000	5	12.0	5 1237	75.17 85.88		
33.83 .8942 83.24 .1399 43.78 .9386 90.28 .185	3	29.2 31.2	4 1405 6 1422	100	1908	
49.49 .9642 97.04 .222 65.01 1.0418 100 .2400				v=ultrasound	velocity	(m/sec.)
			1016			
			ch, 1914			
	1.	vol%	U	vo1%	U	
	ĺ		0~5	50°		
	Į.	$_{10}^{0}$	0.61614	60 70	0.62715	
	1	20	.61604 .61720	70 80	.6235 7 .62198	
		30 40	.61766 .62024	$\begin{smallmatrix} 90\\100\end{smallmatrix}$.61743 $.61230$	
		50	.62793		.01230	
L	<u></u>					

Methyl alcohol ($CH_{14}0$) + Rhamnose-1-hydrate ($C_6H_{14}O_6$)	Methyl alcohol ($CH_{l_1}0$) + Ethyl malate ($C_8H_{1l_1}0_5$)
Upson, Fluevog and Hebert, 1935	Walden, 1906
mol% f.t. mol% f.t.	% D b.t.
16.7 35.9 44.0 53.1 24.4 42.6 49.9 56.0 35.5 49.1 61.4 60.5	4.13 +0.171 6.71 +0.295 8.98 +0.415 11.27 +0.539 13.61 +0.669
Methyl alcohol (CH_{10}) + Glucose ($C_6H_{12}O_6$) Gillis and Nachtergaele, 1934	Methyl alcohol ($CH_{i_0}O$) + Methyl tartrate ($C_6H_{10}O_6$)
% f.t. % f.t.	Yen-ki-Heng, 1936
1,50 0 49.49 105	t d ^α
2.29 25 54.59 106.6 3.40 35 64.82 108.6	Hg _y Hg _g Hg _i
4.90 50 69.81 113	22.545%
9.97 76.1 74.90 117.2 15.30 87.5 78.26 119.2 24.41 98 80.21 122.8 27.59 99.5 87.20 125.9 34.45 103.5 92.00 128.5 40.00 104.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Methyl alcohol ($CH_{16}O$) + Methyl malate 1 ($C_6H_{10}O_5$)	
Walden, 1906	
% D b.t. % D b.t.	
1.40 +0.056 14.23 +0.760 4.15 .179 17.13 .959 7.52 .359 19.42 1.115 10.88 .555	
Grossmann and Landau, 1910	
g/100 cc (α)	
red yellow green pale dark viol. blue blue	
20°	
49.970 -6.30 -7.10 -8.51 -10.71 -11.61 -11.91 24.985 -6.48 -7.48 -8.93 -10.81 -11.29 - 12.4925 -6.80 -7.76 -8.73 -10.33 -10.89 - 4.854 -7.42 -8.03 -8.65 -9.68 -10.09 -10.51 2.482 -9.27 -9.27 -9.27 -9.27 -9.27 -	

METHYL ALCOHOL + ETHYL TARTRATE

Methyl alcoho	1 (CH ₄ 0) + Ethy	1 tartrate (C ₈ H ₁₄ O ₆)	Walden, 1906
			g d (a) _D
Walden, 1906	b.t. %	D b.t.	50°
2.89 +0 6.50	.092 12.61 .258 15.21 .418	+0.573	15.78 0.826 13.82 7.12 .791 13.88 2.93 .776 13.50
Patterson, 1	901		15.78 0.855 11.32 15.21 .845 11.19 7.12 .818 11.02 2.93 .805 11.18
t d	t đ	t d	2.73
100%	7 5%	50%	
16.8 1.208 37.2 .187 46.8 .178 58.3 .166 68.1 .156 76.2 .148 99.4 .124	8 32.8 .069 3 39.7 .062 5 53.2 .048 6 17.6 .085	2 34.4 .9561 6 44.6 .9460 8 51 .9395	Landolt, 1876 and 1877 # d (α) 20°
25% 14.1 0.8799 27.3 .867 36 .8581 43.2 .8515	10% 9 22 0.821 1 30.6 812	0 46.7 .7815 0 18.3 .8068	0 0.80915 - 15.3065 .85675 11.243 26.9681 .89462 11.070 39.9196 .93808 10.915 56.6527 1.00066 10.411 77.4567 .08820 9.649 100 .1989 8.309
16 0.795; 29 .7836 38.4 .774; 48 .7646) [Patterson and Montgomerie, 1909
t (α)	t (α) _D	t (α) _D	50% 39.63 vol% Dv=-1.32% Dt=+0.05°
100%	75%	50%	
10.8 6.63 11.3 6.66 16.0 7.21 20.1 7.67 25.1 8.25 29.9 8.70 33.7 9.10 37.6 9.56 46.1 10.24 55.1 10.94 67.2 .11.75 77.1 12.30 84.4 12.73 89.4 12.97 100 13.47	12.5 8.24 14.9 8.59 17.1 8.85 24.7 9.61 33.7 10.43 40.8 11.05 45.6 11.38 51.1 11.91	13 9.80 14.7 10.06 16 10.04 17 10.21 18.2 9.87 24.9 10.94 34.8 11.76 38.2 12.00 43.2 12.38 46.9 12.65 53.8 13.00	Methyl alcohol (CH ₄ 0) + Propylmercaptan (C ₃ H ₈ S) Lecat, 1949 b.t. 0
25%	10%	5%	
13.2 10.57 18.3 11.06 18.9 11.10 19.2 11.12 20 11.20 25 11.66 33.4 12.33 39.4 12.76 42.8 13.00 45.6 13.20 48.1 13.37	12.8 10.68 13 10.88 16.2 11.17 16.7 11.21 18.9 11.36 27 12.09 35.5 12.81 42.6 13.23 46.7 13.55 53 13.81	12.2 10.74 13.2 10.92 14.8 11.36 24.3 11.91 32.5 12.54 40.2 13.24 49.2 13.60	

Methyl alcohol (CH_{10}) + Cyclopentanol ($C_5H_{10}0$)							Methyl alcohol ($CH_{1}0$) + m-Methylcyclohexanol ($C_{7}H_{1}$, 0)					
Labruyere-Verhavert, 1951							Weissenberger, Schuster and Henke, 1925					
mo1%	f.t.	Е	mo1%	f.t.	E	mo1%		p			σ	
0 5.9 13.5 24.1 31.4 50.2 55.7	-97.0 -105.1 -113.1 -120.0 -124.1 -118.1 -109.1	-129.5 -129.8 -129.9 -129.9	57.5 64.6 66.9 79.4 89.1 91.7	-105.1 -95.0 -92.0 -76.0 -50.0 -44) - 5 - 5 - 1 - 3 -	66.7 50.0 40.0 33.3 28.0 25.0		37.2 57.6 69.4 77.9 82.8 84.1	8.26 4.54 3.08 2.43 1.99 1.70	••	372 364 355 333 332 322	
Methyl a	lcohol (CH ₁₄ 0) + C ₃	clohexa	no1 (C ₆ H	120)			-1 (CH 0	\	hl av. allak		
Weissenberger and Schuster, 1925						Methyl alcohol ($CH_{4}0$) + p-Methylcyclohexanol ($C_{7}H_{14}0$)						
mól% p mol% p						Weissenberger, Schuster and Henke, 1925						
		20°				mo1%		p	η (wa	ter=1)	σ	
66.7 57.1 50.0 40.0	41 51 59 68	25 20	.3	74 81 85 96		66.7 50.0 40.0		38.5 57.5 69.9		0.3 .3	377 370 359 356	
mo1%	ຫ (water=	1)	mo1%	n (wate	r=l)	33.3 28.0 25.0		77.4 82.0 81.9	2.01 1.71	.3	352 . 339	
100 66.7 57.1 50.0 41.8	14.5 5.2 3.6 2.9 2.3	20° 0.474 .439 .425 .415 .399	33.3 25.0 20.0 0.0	1.7 1.30 1.20 0.61	0.385 .366 .353 .312	Methyl	alcoho	ol (CH ₄ 0) + Borne	eol (C _{1 o} F	l ₁₈ 0)	
						//	nikov,					
Methyl al	lcohol (C	•	ethylcyc C ₇ H ₁₄ O)		l	% 	t	d	Нα	n D	н _в	
Wei ssent	erger, Sc	huster an	d Henke,	1925		22.5	21 20	0.82829 .79177	1.38397 .35930	1.38592 .36067	1.39031 .36543	
mo1%	p	η	(water=1	.) ^σ								
		20°				Darmois, 1908						
66.7 50.0	36.8 54.2	3	.71 .17	0.385 .366		%			(a) _D			
40.0 33.3 28.0 25.0	65.8 73.8 79.2 82.0	2 1	. 47 . 06 . 67 . 55	.360 .353 .348 .339		2.2 11.3 41.9 57.9 72.2	25)		~29.2 -28.8 -28.15 -28.00 ~27.6			
										er adjungsmennen gegen er geben beter geben beter geben beter geben beter geben beter geben beter geben beter g De gegen geben beter geben		

ETHYL ALCOHOL + PROPYL ALCOHOL

	_~											
Ethyl alco	ohol (C	₂ H ₆ O) +	Propy 1	alcoho	1 (C _s	H ₈ 0)	L	01% VV	p 	P ₁	p ₂	
Parks and Schwencke, 1924									60°			
% L	v	mol% L	v	b.t.		P1	0 10 20 30	0 5.1 10.3 16.0	353.3 338.2 321.4 304.8	353.3 321.1 288.3 256.0	17.1 33.1 48.8	
37.60 49.98 62.51 75.00 87.46	7.0 14.0 22.6 31.2 41.7 56.5 77.7	0 9.8 20.4 31.6 43.4 56.1 69.7 84.2	0 5.4 11.4 18.7 26.2 35.9 50.6 73.1	78.4 79.8 81.4 83.1 85 87.1 89.3 92.7 97.2	7 6 6 5 4	761 20 74 14 62 88 88 86 005	40 50 60 70 80 90 100	22.3 29.4 37.6 47.6 60.2 76.8	287.5 269.1 248.5 226.5 202.9 178.1 152.0	256.0 223.4 190.1 155.2 118.7 80.8 41.3	64.1 79.0 93.3 107.8 122.1 136.8 152.0	
 %		·	%				Doros	hevski, 1911				
L	v	L		V			%	đ	%		đ	
0 12.50 25.07 37.60 49.98	25° 0 7.4 12.5 20.7 28.5	761 mm 62.51 75.00 87.46)	39.7 54.5 73.0 100			0.00 10.72 24.39 34.18 50.22	0.79367 .79513 .79698 .79832 .80055	78. 88. 100	34	0.80292 .80448 .80592 .80753	
mol% L	v	p	P ₁	p ₂								
0		25°	59.0	0.0			Herz	and Kuhn, 19	08			
16.4 34.4	7.6 18.7	59.0 53.0 47.5	49.0 39.1	4.0 8.4			%	đ	%		d	
54.6 75.9	32.2	40.4 32.3 23.2	27.4 14.3	13.0 18.9 23.2					25°			
100 10	00		0.0	23.2	···· ·		0 8.1 17.85 56.6	.7902	91. 95.	6 2 2	0.7973 .7979 .7986 .8004	İ
Udovenko a												
mo1% L	v	p mo V	1%	p	mo1% V	þ	Herz,	1918				
	50°		70°			80°	%	d	%		đ	
40 50 60 70 80	9.9 20 15.3 19 21.5 17 28.4 16 36.4 15 46.4 13 59.1 12	0.2 16 9.0 23 7.4 30 3.7 38 9.1 48 3.6 61 8.0 77	.3 5 .8 5 .7 4 .1 4 .5 4	48.0 26.0 01.0 76.5 51.6 24.2 92.5 60.1 124.1 185.5 47.5	0 5.5 11.2 17.2 23.9 31.1 39.4 49.8 62.4 78.2		0 8.1 17.85 56.6	0.7868 .7886 5 .7902 .7920	91. 95.	6 2 2 2	0.7972 .79725 .798 .8005	
100 10	00 9	1.0 100	2	47.5	100	381.0						

Hirobe, 1925	Longinov and Prjanischnikov, 1931				
mol% d mol% d	% n _D % n _D				
25.10°	20°				
0 0.7860 64.59 0.7959 19.70 .7894 100 .7998 39.69 .7923	0 1.3632 60.5 1.3767 20 .3678 80.4 .3813 40.3 .3723 100 .3859				
Parks and Schwencke, 1924					
% mol% d % mol% d	Parks and Schwencke, 1924				
25°	% mol% n _D				
0 0 0.7863 62.51 56.1 0.7961 12.50 9.8 .7886 75.00 69.7 .7979 20.07 20.4 .7904 87.46 84.2 .8000 37.60 31.6 .7923 100 100 .8018 49.98 43.4 .7942	25° 0 0 1.3590 12,50 9.8 1.3619				
Hirata, 1908	25.07 20.4 1.3649 37.60 31.6 1.3681 49.98 43.4 1.3712 62.51 56.1 1.3742 75.00 69.7 1.3772 87.46 84.2 1.3803 100 100 1.3883				
γη (water=1) γη (water=1)	100 100 1.3883				
[%] η (water=1) % η (water=1) 25°	% mol % Q mix				
25 1,1406 3,125 1,0185 12,5 .0684 1,5625 .0088	25°				
Herz, 1918 and Herz and Kuhn, 1908	0				
25°	87.46 84.2 -3.1 100 100 -				
0 1092 88.6 1745 8.1 1128 91.2 1772 17.85 1181 95.2 1835 56.6 1423 100 1915	Hirobe, 1925				
	mol% Q mix.				
Parks and Schwencke, 1924	25.10°				
% mol% n % mol% n	19.70 -5.1 39.69 -6.5				
25°	64.59 -5.6				
0 0 1090 62.51 56.1 1522 12.50 9.8 1164 75.00 69.7 1640 25.07 20.4 1233 87.46 84.2 1754 37.60 31.6 1319 100 100 1897 49.98 43.4 1408					

ETHYL ALCOHOL + ISOPROPYL ALCOHOL

Ethyl alo	cohol (C	_е Н ₆ О)		yl alcohol	<u>,</u>	Ethyl	alcohol	(C ₂ H ₆ O)	+ Butyl	alcohol	(C ₁₄ H _{1 O}	0)
Darks ar	nd Kelley	1025	(C ₃ H ₈ O)		Brunje	s and Bog	gart, 1943	3			!
# # # # # # # # # # # # # # # # # # #	mo1%	p	Z	mo1%	p	%	· · · · · · · · · · · · · · · · · · ·	b.t.	%		b.t.	
			5°			L	v		L	V		
0	0		50.17	43.5	52.6				mm (
15.95 16.81	12.7 13.4	59.0 57.2 57.2	66.33 66.51	60.2 60.4	49.7 49.5	9.7 17.0	0.4 2.0	79.1 80.3	$\begin{array}{c} 63.1 \\ \underline{68.3} \end{array}$	25.0 30.7	90.6 93.5	
33.26 32,95	27.6 27.4	54.9 55.3 52.4	83.05 82.28 100	79.0 78.1	47.6 47.5	22.8 35.7	3.1 8.6	81.0 83.9	77.1 82.7	39.7 51.9	96.4 101.3	
50.08	43.5	52.4	100	100	44.4	36.2 44.5	4.0 11.4	83.1 85.7	88.0 92.7	62.0 77.7	105.9 111.1	
%			%			51.6 54.3	15.1 17.3	86.4 88.3	96.0 100.0	87.8 100.0	114.3 117.8	:
L	v		L	V	···	56.3	17.9	89.1			(759,4	mm)
		25°							: 			
0 16.39	$\begin{smallmatrix}0\\12.5\end{smallmatrix}$	6	66.40 8 2.77	58.2 78.5		Hellu	ig and va	an Winkle,	1953			
33.11 50.13	26.2 40.7	10	00 :	100		F			101%	b.	.t.	
						L	V	L	v	_,		
								760) mm			
Ballard	and van V	Winkle,	1952			0 18.1	0 5	$\begin{smallmatrix}0\\12.0\end{smallmatrix}$	0	78	8.4 0.7	
b.t.	mo l		b.t.	m	01%	39.8 50.7	13.5 19.3	29.1 39.0	3.2 8.8 12.9	84	1.8	
	L	V		L	v	64.7 66.0	30.5 31.3	53.2 54.7 64.3	21.4 22.1	92	7.7 2.4 2.9	
78.8	$\frac{8.50}{16.65}$	7.05 14.55	81.4	54.30	73.35	80.4	49.3	64.3 71.8	30.4 39.8	95	5.8	
79.1 79.4 79.9 80.2	17.05 25.75	23.00 35.40	81.9 80.2 80.6	54.45 65.20	85.90 40.30	84.1 91.55	55.5	76.7 87.1	43.7 61.6	99 102 107	2.1	
80.2 80.6	38.65 44.10	41.05 51.50	79.1	75.75 76.00	14.20	100	100	100	100	117	7.1	
81.0	44.80	61.55	81.4 82.3	87.60 100.00	72.70 100.00							
							es and Bo	gart, 194	3			
Parks an	d Kelley,	1925				%	n _D	%	n _l	D		
								25°			 	
"	d (Q mix.	<u>%</u>	<u>d</u> (mix.	100 94.	1.39 04 .39			3800		
_	0.70==		25°			90.	40 .39	30 37.	55 .3	3770 3731 3694		
0 15.95 16.81	0.7857 .7852	+7.3	66.33	0.7840 .7833 .7834	52.6 49.7	89. 84. 7 6.	49 .39 81 .38	09 19.	71 .	3660 3626		
33.26	.7851 .7845	$\begin{matrix} 7.2 \\ 10.2 \end{matrix}$	66.51 83.05	.7829	49.5 47.6	70.4 64.	1 3 .38	53 0.		3589		
32.95 50.08	.7841 .7839	$\substack{10.0\\12.7}$	82.28 100	.7829 .7820	47.5 44.4							
						11						

Ethyl al	cohol (C ₂ H ₆ 0		-	01	Ethyl alcohol (C ₂ H ₆ O) + sec.Butyl alcohol
Udovenko	and Frid, 19	(С ₄ Н 48	100)		(C _h H ₁₀ 0)
mol% L			200	Hellwig and van Winkle, 1953	
l	50°			80°	% mol% b.t. L V L V
100 90 80	100 66.0 46.8	100 67.5 48.7	100] 68.7 50.1	100 70.1 51.9	760 mm
70 60	34.8 26.2	36.5 27.6	37.7 28.7	39.2 30.1	0 0 0 0 78.4 11.7 5.4 7.6 3.4 78.9
50 40	19.6 14.3	20.8 15.4	21.3 16.1	23.0 17.0	25.5 13.5 17.5 8.8 80.8 26.5 13.9 18.3 10.0 81.0
30 20 10	$ \begin{array}{c} 10.1 \\ 6.3 \\ 3.1 \end{array} $	10.7 6.8 3.3	11.3 7.1 3.5	12.0 7.6 3.7	54.8 35.8 43.0 25.7 85.5
ő	0.1	0.3	0.0	ŏ.,	67.0 48.3 55.8 36.4 87.9 77.3 61.2 67.9 49.5 90.7 96.5 91.8 94.48 87.4 97.5
mo1%		p	 		100 100 100 100 99.3
	50°	60°	70°		
100 90	56.0 76.7	96.0 128.4	157.0 206.4	249.8 321.9	
90 80 7 0	96.2 115.1	158.5 187.7 214.8	251.8 297.3 337.7	386.8 453.6 513.2	Ethyl alcohol (C_2H_60) + Amyl alcohol ($C_5H_{12}0$)
60 50 40	132.4 148.3 164.6	240.5	377.8 414.4	566.8 6 20. 0	Hellwig and van Winkle, 1953
30 20	1 8 0.4 194.6	265.4 288.7 310.5	449.4 482.0	671.9 721.4	% mol% b.t.
10 0	208.8 222.0	332.8 353.3	516.1 548.0	769.2 813.0	L V L V
no1%	P ₁ P ₂	mo1%	P ₁	P ₂	760 mm
00	41.9 0/ /	60° 40	224.7	40.7	14.7 2.2 8.3 1.2 80.3 28.7 4.7 17.4 2.2 82.3
90 80 7 0	41.8 86.6 81.3 77.2 119.2 68.5	30 20	257.7 289.4	31.0 21.1	59.3 14.9 43.2 8.4 90.6 73.4 24.9 59.0 14.8 97.6 79.9 32.8 67.5 20.3 101.8
60 1	155.5 59.3 190.4 50.1	10	321.8	11.0	80.0 32.7 67.6 20.2 102.6 89.5 51.4 81.7 35.6 112.3
					93.82 65.8 88.8 50.1 119.5 98.50 86.9 97.17 77.6 130.2 99.20 93.05 98.48 87.5 132.4
]]	ski, 1911	of .			100 100 100 100 100 137.5
%	d n _D		d 	n _D	
0.00 0	.79367 1.363	5° 30 59,09	0.80022	1.38312	Hirata, 1908
6.30 12.34	.79435 .3654 .79488 .3673	42 68,54 24 89,80	.80142 .80430	.38644	% (alcohol=1)
29.06	.79670 .372 .79905 .379	95 100	, 80567	.39750	25°
					25 1,2401
Hirobe,	19 2 5				12.5 .1074 6.25 .0508 3.125 .0258
mo 1%	d		Q mix.		1.5625 .0127
	25°			***	
0 22,52	0.78 .78	354 391	-11.1		
40.86 64.81	.79	016 04 2	-15.3 -11.9		
100	.79	981 		· · · · · · · · · · · · · · · · · · ·	

Udovenko mol%(L)				alcohol	(C5H1 2U)
11.01%(2)	50°	60°	70°	80°		

mol%(L)		mo1%	(V)		
	50°	60°	70°	80°	
100 90 80 70 60	100 37.2 21.6 14.2 10.0	100 40.6 23.9 16.0 11.3	100 44.0 26.8 18.2 12.8	100 47.4 29.3 20.1 14.4	
50 40 30 20 10 0	7.1 5.0 3.4 2.1 1.0	8.0 5.7 3.0 2.4 1.1	9.2 6.6 4.5 2.8 1.3	9.4 7.4 5.1 3.1 1.5 0	

mo1%		p			
	50°	60°	70°	80°	
100	17.5	32.0	57.5	97.0	
90	42.5	71.2	117.9	185.0	
80	65.4	107.8	172.8	267.3	
70	87.8	142.9	226.5	346.1	
60	109.3	176.8	278.5	421.1	
50	129.9	208.1	327.5	488.6	
40	148.7	239.2	374.1	557.6	
30	168.1	269.1	420.0	625.2	
20	186.8	297.4	463.5	689.6	
10	204.2	326.1	506.7	751.7	
Õ	222.0	353.3	548.0	813.0	
ma 1 #	· · · · · · · · · · · · · · · · · · ·		10		

mo1%	\mathbf{p}_1	p ₂	mo1%	P ₁	Рz
		60	0		· · · · · · · · · · · · · · · · · · ·
90 80 70 60 50	42.3 82.0 120.0 156.9 191.3	28.9 25.8 22.9 19.9 16.8	40 30 20 10	225.5 258.7 290.3 322.4	13.7 10.4 7.1 3.7

Brun,	1931			
%	b.t.	%	b.t.	
	760	nm		

	700	nun	
100.00	78.80	42.00	87.20
86.55	80.30	95.45	89.75
80.70	81.75	29.05	95.10
74.25	82.50	21.78	99.80
59.95	84.95	11.67	113.50
50.05	86.90	0.00	129.50

normality	diffusion ratio (cm²/day)
20	0
6	0.45
4 2	.62 .64
ĩ	.66

<u> </u>	t	d .
100	23.0	0.8085
81.3	22.0	.8055
35.9	21	.7968
9 .2 5	22	.7983
0	21	.7901

Landolt, 1865

g/100 cc	d	g/100 cc	đ
	18.4	0	
0.0000 0.3170 0.7350 0.8832 1.2684	0.7963 .8022 .8030 .8033 .8036	2.9440 4.4160 6.3415 14.7200 22.0800	0.8040 .8048 .8050 .8065 .8075

d	
11°	
0.7859 .7917 .7952 .7967 .8073	
	0.7859 .7917 .7952 .7967

Muchin, 1913						
g/100 cc n g/100 cc n						
18.4°	Innes, 1918					
0.0000 1335 2.9440 1397 .3170 1341.8 4.4160 1410 .7350 1342.1 6.3415 1435 .8832 1355.8 14.7200 1570 1.2684 1364 22.0800 1712	wt% mol% p wt% mol% p 73° 0 0 619.0 34.8 9.26 576.7 12.1 2.54 505.1 46.7 14.3 557.6 24.5 5.82 591.0 56.0 19.5 534.7					
Öholm, 1913	Timofeev, 1894					
Normality ⁿ (water=1)	% f.t.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.5 23.9 80.4 37.0 100 50.8					
0 .21	Ethyl alcohol (C_2H_60) + Octadecyl alcohol ($C_{18}H_{88}0$)					
	Hoerr, Harwood and Ralston, 1944					
Landolt, 1865	% f.t.					
% (α) _D	0.2					
20° 100 1.4076 81.3 .3986 35.9 .3766	4.8 20.0 18.2 30.0 54.6 40.0 100 57.98					
9,25 0 .3666 0 .3620	Ethyl alcohol (C_2H_6O) + Propyl mercaptan (C_3H_8S)					
Hirobe, 1925	Lecat, 1949					
mol% Q mix.	% b.t.					
25.11° 16.98 -13.8 36.23 -16.1	0 78.3 81 63.5 Az 100 67.3					
65.60 -13.6	Ethyl alcohol (C ₂ H ₆ O) + Ethyl mercaptan(C ₂ H ₅ S)					
	Dunstan, 1908					
	% п % п					
	25° 0 1113 32.54 652.5 3.48 1048 35.97 611.9 9.47 973.1 44.76 582.1 12.30 930.5 68.05 408.3 13.88 855.9 100 209.1					

ETHYL ALCOHOL + GLYCEROL

Ethyl alcohol (C ₂ H ₆ O) + Glycerol (C ₃ H ₈ O ₃)	Schmidt and Jones, 1909
Dulitskaya, 1945	% n
mo1% p	25° 35°
25° 50° 75°	0 1110 906.8
0.00 59.0 220.0 668.0 16.77 52.0 194.8 584.0 35.42 47.5 174.5 516.5 50.70 42.5 158.0 461.5 67.86 33.0 129.0 375.0	25 4367 3188 50 20530 13230 75 108420 59710 100 633000 294030
Gerlach, 1889	Guy and Jones, 1911
% d % d	% n t
15°	25° 35° 45° 25-35° 35-45°
0 0.79721 45 0.96479 9 .82601 99 1.20185 18 .85717 100 1.26419	0 1068 868.3 729.2 0.0227 0.0191 25 4184 3061 2303 .0371 .0324 50 21230 13510 8723 .0600 .0529 75 102900 54040 31110 .0912 .0759 100 606700 276100 135200 .124 .101
Ernst, Watkins and Ruwe, 1936	Ernst, Watkins and Ruwe, 1936
% d % d	đ.
25°	, n o n _D U
0 0.7851 60 1.0288 10 .8199 70 .0797 20 .8566 80 .1366 30 .8947 90 .1932 40 .9368 100 50 .9806	25° 0 1100 22.0 1.3596 0.537 10 1520 22.9 .3701 .550 20 2230 23.9 .3799 .550 30 3490 24.2 .3898 .549 40 5830 25.4 .4005 .548 50 10400 26.1 .4109 .550
Hirata, 1908	60 20600 27.7 4226 549 70 45300 29.6 4344 549
vol% " (alcohol=1)	80 103300 32.7 .4470 .551 90 254000 38.9 .4597 .552 100 934000 62.5 .4729 .555
25°	
0.78125 1.0492 1.5625 .0814 3.125 .1746 6.25 .3958	Helmreich, 1904
12.5 25 .9600 4.1224	% U % U
	0 -5 0°
	0 0.57428 60 0.62535 ? 10 .59176 70 .62579 20 .60477 80 .62199 30 .61824 90 .61738 40 .62502 100 .61230 50 .62587

Ethyl alco	ohol (C ₂ H ₆ O) + Rhamno (C ₆ H _{1 h}		Ethyl alcoho	$1 (C_2H_60) + M$	lonoacetin	(C ₅ H ₁₀ O ₄)
linean F	luevog and Al		06)	Öholm, 1913			
mo1%	f.t.	mo1%	f.t.	normality	Diffusion rat	io	η
					(cm²/day)		''
7.93 12.6	49.3	26.1 27.5	59.2 59.8		20°		
17.2 18.7 21.5	53.6 54.5	27.9 30.7	59.9 61.1	4 2	0.33		4114
21.5	56.1			1	.40 .44		2496 1696
				0.5 0.25	.46 .47		1420 1315
Ethyl alo	cohol (C ₂ H ₆ 0) + 2-Ethe (C ₄ H ₁	exyethyl alcohol $_00_2$)	0	-		1216
Baker, Hu	bbard and al.	, 1939		Ethyl alcohol	$(C_2H_60) + Me$	thyl mala	te 1 (C ₆ H ₁₀ O ₅)
mo1%		mo1%					
L	V	L	V		Landau, 1910	1 1 7 7 1 1 7 1 1	
	at b.t.			g/100 cc		(α) n pale	dowle
2.6 5.1	$\substack{0.1\\0.7}$	50.6 56.9	11.5 15.2	red	yellow green	blue	dark viol. blue
7.9	1.1 1.5	64.1 71.2	19.6	50.399 -7.04	-7.64 -8.53	20° 3 -9.62	-11.61 -13.19
11.4 15.0 19.2	2.3 3.5	74.2	22.4 27.2 32.3	25.1995 -7.50 12.5998 -7.54	-9.01 -10.64 -9.13 -10.71	-12.54 -12.78	-13.73 - -13.89 -
22,6	3.9	79.4 83.6	42.2	4.885 -7.98	-9.83 -10.85	-11.87	-12.49 -12.90
26.1 31.5	4.9 5.7	84.4 89.2	42.3 58.4	2.578 -8.15	-10.09 -10.47	7 -11.25	-12.02 -
36.5 43.9	6.9 9.3	92.5 95.7	67.9 77.6				
	n _D	mo1%	n _D	Ethyl alcohol	$(C_2H_6O) + Et$	hyl tartr	ate (C ₈ H ₁₄ O ₆)
	30°						
100	1.4034	30	1.3799	Landolt, 187			
95 90	.4012 .4012	25 20	.3773 .3744	%	d	(α) D	
85 80	.4000	18	. 3732	l	20°		
75 70	.3987	16 14 12	.3718 .3705	0			
65	.3958	10	.3692 .3677	22.3297	0.7957 .86337	9.846	
60 55 50	.3926 .3908	8 6	.3662 .3648	35.7366 77.9774	.90892 1.083 7 3	9.618 8.780	
50 45	.3889 .3869	4 2 0	.3632 .3615	100	.1989	8.309	
40 35	.3847 .3824	Ō	.3599				
							
				<u>J</u>			

ETHYL ALCOHOL + CHLORAL HYDRATE

D-++	1001			t	d	t		d
Patterson,	d d	t	d	0.0 16.7	1.110 1.319	t.sol. 33. 40.	5 8	1.560 1.589
17.6 30.4	0.7932 .7822	0 % 41.6 58.2	0.7723 .7575	Rudolfi,	1901	همین محتود محتود است است است است است است است است است است	و حيو النب الموسود المواضوع النبو المواضوع المواضوع المواضوع المواضوع المواضوع المواضوع المواضوع المواضوع المو	
16 20.5 30.6	5,00 0.8097 .8056 .7969	013 % 38 54.4	0.7900 .7754	%	d 20° 44°	% 	20°	1 44°
17.4 38.4 55.8	0.8263 .8079 .7922	00.2	0.7826 .8240	0.0 0.5 5	0.79101 0.7700 .79325 .7723 .81192 .7931 .84438 .8227	3 20 6 40 3 60 3 80 100	0.89463 1.02080 .18445 .40141	0.87217 1.00232 .15757 .37051 .62610
13.1 15.6 18.9 33	20.0 0.8595 .8577 .8544 .8418		0.8397 .8362 .8294 .8074	*	Нα	n D 20°	н _β	.02010
16.7 19 33.3	0.9272 .9258 .9114	43.8 62.8	0.9017 .8833	0.0 0.5 5 10	1.36029 1 .36063 .36410 .36886	.36207 1. .36228 .36626	.36636 .36670 .37058 .37510	
17.5 28.9			0.9780 .9668	20 40 60 80	.37907 .40117 .42904	.38098 .40324 .43134	.38552 .40818 .43674 .47251	i
t	(α) _D	t	(α) _D	0.0		44°		
11 13.7 15.9 17 18.8 6.6 7.1 18.6	7.75 8.03 8.33 8.47 8.79 10.94 \$6.95 6.98 8.37	31.1 37.2 51.8	9.08 9.73 9.83 10.49 11.81 9.03 11.69 12.22	0.5 5 10 20 40 60 80 100	.35154 .35553 36093	.35716 .36267 .37166 .39406 .42240 .45679	.35736 .36145 .36701 .37610 .39890 .42774 .46303 .50028	
8.7 9.5 16.2 23.6 37.9	20.003 6.87	45.6 54 59.7 64.4	10.99 11.71 12.14 12.53	R	lcohol (C ₂ H ₆ O ex Ethyl tartra		ral (C ₉ H ₁	507Cl ₃)
10.2 12.4 19.7 25	6.72 7.02 7.87 8.48 9.69	40.1 44.9 51.2	10.03 10.42 11.01 11:31	ما منطقات الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدي الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين ا	w.1.	78.75 %	(α) 87.59	%
	60.01 % 6.55 6.82 7.75 7.86 see: Methyl	34 39 48.2 56.7 alcohol + E	9.06 9.56 10.44 11.24 thyl tartrate .		6708 6439 6363 6104 5893 5780 5700 5466 5461 5218 5209 5153 5105 5086 4811 4800 4678 4602 4358	29°, 39°, 31.80°, 32.76°, 35.58°, 38.34°, 39.91°, 41.08°, 44.91°, 49.34°, 50.76°, 52.02°, 58.65°, 58.83°, 62.13°, 64.33°, 72.28°, 39.31°, 39.3	29.12 31.63 32.55 35.31 38.64 40.75 44.61 49.13 50.33 51.9 58.4 58.6	3 2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Ethyl alcohol (C_2H_60) + Cyclopentanol ($C_5H_{10}0$)	Ethyl alcohol (C_2H_60) + Borneol ($C_{10}H_{18}0$)
Labruyère-Verhavert, 1951	Tammann and Hirschberg, 1894
	% d/d°
mol% f.t. E mol% f.t. E 0 -114.15 - 68.4 -91.8 -	0° 10° 20° 30°
14.7 -118.1 - 81.2 -74.4 - 31.8 -128.9 -134.6 84.7 -66.7 - 40.7 -134.0 -135.0 95.4 -48.2 - 49.6 -115.7 -135.2 97.1 -26.7 - 58.6 -104.8 -135.1 100 -19.5 -	0 1 0.9895 0.9788 0.9680 17.12 1 .9897 .9795 .9688 32.38 1 .9898 .9797 .9695
	Peacock, 1914
Ethyl alcohol (C_2H_60) + Menthol ($C_{10}H_{20}0$)	% d n _D (α) _D
	25°
Wetselaar, 1927	1.0162 0.7889 1.3613 27.4 2.736 .7921 .3635 25.8
% d n _D	3.586 .7934 .3636 25.6 5.290 .7944 .3659 25.5
15°	7.541 .7998 .3682 25.7 9.967 .8040 .3711 25.9
0 0.7940 1.3623 5 .7990 .3669	24.330 .8278 .3872 26.4 35.070 .8466 .3993 26.4
10 .8040 .3716 15 .8090 .3762	
20 .8140 .3808	Ethyl alcohol (C ₂ H ₆ O) + Tetrahydronaphthol
	(C ₁₀ H ₁₂ 0)
Castiglione, 1934	Weissenberger, Schuster and Mayer, 1924
% d n % d n	ко1% р
20°	18°
0 0.8373 1687.4 40 0.8594 3174.1 10 .8410 2007.9 50 .8612 4032.6 20 .8466 2231.8 60 .8626 5277.4 30 .8532 2658.0	40.0 33.3 28.0 27 25.0 28 0.0 29 39.05
Ethyl alcohol ($C_2 ll_6 0$) + Morpholine ($C_4 ll_9 0N$)	πο1% η (water = 1)
Wheeler Jr. and Houle, 1954	18°
	40 16.1 0.580 33.3 7.3 .333
25°	33.3 7.3 .333 25 5.7 .170
100 1.4528 39.8 1.3973	
89.1 .4430 29.2 .3872 78.8 .4337 19.9 .3786 70.8 .4267 10.9 .3700 55.3 .4121 0 .3593	Ethyl alcohol (C_2H_60) + Lupinine hydrochloride ($C_{10}H_{20}0NC1$)
46.6 .4040	Sadikov, Otroshchenko and Malikov, 1955
	% f.t.
	13.42 0 27.27 20 53.15 78
· · · · · · · · · · · · · · · · · · ·	

PROPYL ALCOHOL + ISOPROPYL ALCOHOL

	60°
Propyl alcohol (C ₈ H ₈ O) + Isopropyl alcohol (C ₈ H ₈ O) Ballard and van Winkle, 1952 b.t. mol% b.t. mol% V L V L 760 mm	88.6 82.9 17.4 84.3 101.7 78.9 70.3 31.9 75.6 107.5 71.1 61.5 43.1 68.9 112.0 65.3 54.8 52.0 63.1 115.1 54.6 41.5 71.2 50.5 121.7 44.4 32.0 86.8 40.9 127.7 35.1 24.3 100.7 32.3 133.0 24.9 16.5 115.1 22.8 137.9 15.1 9.2 130.5 13.2 143.7
97.4 0 0 0 96.1 11.00 5.75 89.7 57.25 43.55 96.0 11.10 6.10 88.5 66.00 51.90 94.2 23.25 14.55 87.0 74.80 63.10 92.8 35.10 22.85 85.8 82.25 73.05 91.4 44.35 30.95 85.3 84.95 76.75 91.4 45.00 31.25 84.1 91.75 85.85 90.0 55.45 42.00 83.4 95.25 91.00 82.3 100 100	88.6 84.1 26.5 140.0 166.5 78.9 70.1 52.6 143.2 175.8 72.1 62.5 68.4 123.2 182.4 62.4 51.9 92.1 114.0 191.4 51.7 41.5 117.0 83.0 200.0 43.9 32.0 141.0 66.0 208.0 32.2 24.3 164.5 52.8 217.3 27.3 19.3 180.0 43.1 223.1 15.1 9.5 211.5 22.2 233.7
Propyl alcohol (C_3H_80) + Butyl alcohol ($C_4H_{10}0$) Trew and Watkins, 1933 mo1% d n n_D χ	88.6 83.5 44.1 220.9 265.0 76.7 67.9 90.2 190.7 280.9 72.6 63.5 104.4 181.6 286.0 64.3 54.1 136.3 160.7 297.0 57.5 46.6 163.8 143.0 306.8 46.8 37.0 201.9 118.6 320.5 32.2 22.2 264.7 75.5 340.2 22.4 16.1 294.3 56.5 350.8 12.2 8.0 336.3 29.2 365.5
25° 0 0.80236 1966.6 1.38343 0.7870 10.09 .80331 2024.1 38515 .7874 20.00 .80402 2071.6 .38674 .7878 30.13 .80460 2435.5 .38820 .7899 40.26 .80544 2194.5 .38987 .7905 50.09 .80605 2254.0 .39218 .7926 60.55 .80653 2318.9 .39259 .7941 62.79 .80663 2326.1 .39293 .7941 79.83 .80735 2431.6 .39504 .7940 89.92 .80792 2494.1 .39634 .7933 106 .80841 2755.0 .39749 .7916	Hirobe, 1908 mol% d 25.14° 0 0.7998 28.33 .7994 40.57 .7990 67.58 .7988 100 .7981
Propyl alcohol (C ₃ H ₈ O) + Isobutyl alcohol (C ₄ H _{1O} O)	Longinov and Prjanischnikov, 1931 # n _D 20°
Udovenko and Frid, 1948 mol% L V P1 P2 P 50°	0 1.3859 20.2 .3879 39.9 .3898 57.4 .3916 79.9 .3938 100 .3959
88.6 83.0 10.1 49.6 59.7 77.2 67.5 20.7 43.1 63.8 72.1 60.8 25.8 40.0 65.8 65.3 52.0 32.4 35.1 67.5 54.6 42.9 41.0 30.9 71.9 46.8 33.9 49.6 25.4 75.0 33.1 23.7 60.4 18.8 79.2 24.9 16.0 69.2 13.2 82.4 12.2 7.7 80.1 6.7 86.8	Hirobe, 1908 mol% Q mix. 25.14° 28.33 -2.2 40.57 -2.0 67.58 -1.2

Propyl a	alcohol (C ₃ H ₈ O) + I	soamyl al C ₅ H ₁₂ O)	cohol	Ro1% Q mix.
***	4 P4 i		-912- 7		25.08°
	and Frid	·			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
mo] L	1% V	P1	P ₂	p	57.53 -0.5
		50°	·		
91.2	66.1		15.9	24.0	Propyl alcohol (C ₃ H ₈ O) + Butyl mercaptan
81.0	45.9	8.1 16.9	14.3	31.2 42.0	(C _u H _{1 o} S)
67.0 57.5	27.7 20.2	30.4 39.4	$\substack{11.6\\10.0}$	49.4	Lecat, 1949
50.2 41.6	15.6 12.2 7.6	45.8 53.5	8.5 7.4	54.3 60.9	% b.t.
31.0 22.7	5.3 2.5	62.4 71.0	5.1 4.0 2.1°	67.5 75.0	
12.0	2.5	80.2 60°	2, 1	82.3	0 97.2 59 92.0 Az 100 97.5
91.0	64.3	15.3	27.7	43.0	97.5
81.3 67.0	47.2 29.0	29.1 51.1	26.0 20.9	55.1 72.0	
57.0 50.0	20.9 20.0	66.4 74.9	17.6 18.7	84.0 93.6	Propyl alcohol (C_3H_80) + Allyl alcohol ($C_3H_6\dot{0}$)
40.4 27.0	12.5 6.4	90.0 110.0	12.9 7.5	102.9 117.5	
22.5 11.8	5.3 2.4	117.6 135.9	6,6 3.3	124.2 139.2	Wallace and Atkins, 1912
11.0	4.7	70°	3.3	107.2	% d
89.0	66.5	22.5	54.5	77.9	0°
79.3 63.0	47.2 28.5	50.8 91.7	45.5 36.5	96.3 128.2	100 0.86900 41.69 .84739
53.0 48.5	21.1 18.6	115.1 124.7	30.8 28.5	145.9 153.2	0 .81925
35.4	$\frac{11.0}{7.6}$	160.2 180.2	19.8 14.9	$180.0 \\ 195.1$	
27.0 21.7 10.9	6.1 2.6	193.2 220.1	12.6 5.9	205.8 226.0	
	- • -	80°			Lecat, 1949
91.0	69.8	37.2 79.5	86.1 76.5	123.3	% b.t. Dt mix.
79.2 64.5	49.0 31.1	136.8	61,7	156.0 198.5	0 97.2 -
$\begin{smallmatrix} 53.0 \\ 50.0 \end{smallmatrix}$	20.2 18.6	185.0 196.0	46.9 44.8	231.9 240.8	26 96.73 Az - 50 -0.5
$\frac{43.1}{32.0}$	$\substack{16.0\\10.5}$	217.6 259.7	$\frac{41.4}{30.5}$	259.0 290.2	100 96.85
$\substack{21.8\\10.9}$	6.6 3.4	298.0 337.8	$\substack{21.1\\11.9}$	319.1 349.7	
					Propyl alcohol (C_3H_80) + Glycerol ($C_3H_80_8$)
Hirobe	, 1908				
mo1%		d			Danusso, 1955
	25.08°	· · · · · · · · · · · · · · · · · · ·			mo1% d v mo1% d v
0		0.7998			30°
17.96		.8021 .8042			0 0.7966 1193 64.54 1.0979 1572
38.34 57.53 100		.8052 .8073			13.74 .8616 1252 78.53 .1618 1677
	·	.0073			31.71 .9457 1347 100 .2510 1908 45.42 1.0095 1423
					v= ultrasound velocity (m/sec.)

	The second secon						
Propyl alcol	hol (C ₃ H ₈ O) +	Methyl ma (C ₆ H ₁₀ O ₅		15.9 19.7	17.507 6.36 6.93	[%] 2 9.7	8,23
Grossmann ar	nd Landau, 1910			18.8	25 % 6.63	51.9	10.42
g/100 cc		1)	· · · · · · · · · · · · · · · · · · ·	18.9	6.67	57.9	11.01
H -			dark viol.	33.1 42.3	8.37 9.54	63.3 68.2	11.44 11.84
160	d yellow green	blue	blue		37.51 6.03		7,94
1	20	•		15.9 23.2	6.98	36	8.67
49.488 -7.07	7 -7.44 -8.7		-11.42 -11.88	19	49.834 6.30	% 52.4	9.91
24.744 -6.91 12.372 -7.27	1 -7.48 -8.4 7 -8.16 -9.8	1 - 10.10 $- 12.29$	-10.79 - -13.09 -	19	6.33	58.2	10.43
 5.213 -5.7 5	5 -6.71 -7.10	9.40	-10.36 - 10.93	28 41.2	7.39 8.81	63.6 71.2	10.91 11.56
2.4785 -8.47	7 -9.68 -10.89	9 -11,70	-14.12 -		74.99		_
				17.7 20	6.35 6.54	60.5	10.77 11.43
				33.3	8.15	69.9 73.6	11.65
Propyl alcol	hol (C_3H_80) +	Ethyl tar	rtrate $(C_8H_{14}O_6)$	47.1	9.67	79	11.89
D	1001			For 100 %,	see : Methyl al	lcohol + Et	hyl tartrate
Patterson,	1901			 			
t	đ	t	đ				
	0 %		نہیں کیے انکیان انکیانی کی اس کی انکیانی کا ان انکیانی انکار انکیانی کا انکار انکیانی کا انکار انکار کا انکار	Propvi alco	ohol (C ₃ H ₈ O)	t d-Mannito	1 (CzHzs0z)
20 23.4	0.8039 .8012	40	0.7875		(-31.80)	a radiii tu	- (
32.4	. 8012 . 7942	62.8 69.6	.7682 .7622	Umacan Eluc	416	1025	
	2,5004	%	*****	pson, riue	vog and Albert	. 1935	
16.6 20.9	0.8146 .8111	32.5	0.8017		mol %	f.t.	
1	4,9996			\			
16.7 33.2	0.8210 .8075	58 80,2	$0.7863 \\ .7661$	i	1,93 2,36	$\substack{58.8 \\ 61.5}$	
44.9	.7977	18.8	.8193		3.28 4.74	67.3 73.7	
20.5	7,713			Į.	4.74 6.31	73.7 78.6	
23.5 34.2	0.8236 .8148	58.4 7 9.6	0.7941 .7763		10.8	89.2	
45.8	. 8050	20.8	.8268		12.2 17.4	$\substack{90.9\\97.7}$	
18.9	17.507 0.8570		0.0402	<u> </u>			
10.7	25 %	28.2	0.8492				
17.7	0.8810	52.1	0.8506	Propvl alco	ohol (C ₃ H ₈ O)	+ 1-Rhamnos	se hydrate
19.0 31.6	.8802 .8691	70.6	. 8334				$(C_6II_{14}O_6)$
((37.51	. %		Unson Flue	vog and Albert.	1935	
17.8	0.9242	35.6	0.9082	- Cpson, Title	. og and Americ	+/50	
18.6	49.834 0.9696	43.8	0.9453	1	mol %	f.t.	
19.8 31.2	.9678	59.4	. 93 03		2.42	21.0	
31,2	.9571 74.9	80.2 9 %	.9099		2.43 3.32	31.0 40.0	
18	1.0833	38.3	1.0576	li e	3.61 4,43	41.3 46.1	
20.8 21	.0811 .0747	50.6 71.2	.0448 .0248		6.04	51.2	
	ب علومتها بند من حباحة حيامته الما الما الما الما الما	نے کے جو سے میرسے کے کا جو دروہ			8.04 10.33	$\substack{56.5 \\ 61.1}$	
t		t			12.44	63.2	
	2.5004	1 %	سیاف کی کی افغانک ایک و فیانک ایک ایک ایک ایک ایک ایک ایک ایک ایک ای				
16.1 19.4	6.79 7.07	29	8,58		<u> </u>		
ĺ	4,9996						
17.6 18.4	6.93 7.16	45.7 52.6	$\frac{10.36}{11.03}$				
20	7. 29 8. 49	6 2. 3	11.91				
28,3	8.49 7.718	68.8	12.61				
13	6.34	28.9	8.52	l l			
18.5 18.7	7.13 7.16	39.5 48.7	9.89 10.90	ļ			
21.3	7.55	55.1	11.55				

Isopropy	l alcohol	(C ₃ II ₈ O)	+ But			Ishikawa,	1930		
Trew and	Watkins,	1933		(C ₄ H ₁₀ 0)	R	n _D	%	n _D
				n _D				30°	
mol %		7 25°			χ	0 31.7103 51.7932	1.37355 .37888 .38268	71.5282 100	1.38637 .39163
0.00 10.26 20.12	0.78113 .78431	2008.7 2057.1		.37538 .37810	0.7939 .7936		مدن کیے نمی سے اسم اسم کے کمی المی الی اللہ اللہ اللہ اللہ اللہ اللہ اللہ	ن فيوندو الدو الدو الدو سيرسيد الدو الدو الدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو ا بدر ادوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو بدر ادوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو الدوالدو	میں نہیں امور جنور امور امور امور امور امور امور امور ام
30.20 40.45 50.86 60.02	.78713 .79009 .79299 .79542 .79756 .80083	2104.8 2145.2 2207.4 2268.6 2327.4		38086 38325 38560 38767 38967	.7952 .7947 .7963 .7974 .7962	Isopropyl Ishikawa,		_з н _в о) + Isoam	yl alcohol (C ₅ H _{1 2} O)
73.40 79.60 90.21	.80227 .80439	2405.7 2437.1 2505.9		39233 39386 39580	.7975 .7969			ي جي بروندي نمي اندم ايدم حد شد شد است است است است است ا	
100.00	.80652	2562.8		39747	.7944 .7916	% 	n _D		n _D
								300	
Isopropy	l alcohol	(C ₃ H ₈ O)		butyl ald H ₁₀ 0)	cohol	31.9686 51.9890	1,37355 ,38296 ,38913	71,8168 100	1.39534 .40405
Ballard a	and van Wi	nkle, 195	2				مير من امر بين شي مي مي مي سي مي اس مي م	ن میں انصاب اندازی اندازی اور اندازی اندازی اندازی اندازی اندازی اندازی اندازی اندازی اندازی اندازی اندازی اندا	
mo1%		b.t.		01%	b.t.	Isopropy1	alcohol (C	31180) + Decyl	alcohol (C _{1.0} H ₂₂ O)
	L		V	L		Hoerr, Has	wood and Ra	lston, 1944	(C _{1 O} n ₂₂ 0)
100 88,80	100 95.35	760 mi 108.1 106.2	m 32.30	55.90	93.7	%	f.t.	#	f.t.
74.90 57.30	88.45 78 15	103.4 99.9	24.20 17.55	45.45 36.20	91.0 88.7	12.9	-40.0	86.0	0.0
55.90 41.55 37.10	76.95 63.45 61.30	99.4 95.8 94.9	11.25 7.05 1.95	25.50 17.25 5.15	86.9 85.4 83.2	35.5	-20.0	100	+ 6.88
			0.	0	82.3				
	1056					Isopropyl	alcohol (C	$_3 II_8 0$) + Laury	l alcohol (C ₁₂ H ₂₆ O)
Toropov	, 1956					Hoerr, Han	wood and Ra	lston, 1944	
mo1%	20°	d 40		60°		%	f.t.	# 	f.t.
100 80 60	0.8016 .7993 .7963	.78	834 802	0.7696 .7664 .7627		1.5 9.1 41.9	-40.0 -20.0 0.0	93.0 100	+20.0 +23.95
40 20	.7929 .7896	.77	766 7 28	.7587 .7545		سي النبي الذي الذي التي التي التي التي التي الذي التي التي التي التي التي التي التي الت	نسون میں نسر جہدائیہ اسی اگیا جس میں خانج انسان کا انسان انسان انسان جی حالی کی جانب کا انہوں میں مزیر بہار انسان انسان انسان انسان انسان انسان کا انسان ان	ميز الغير جدد الله الحيد الدي الدي الدي أنس المن دين علي الدي الدي بدين بيان الدي الدي الدي الدي الدين الدين الدين الدين الدين الدين الدين الدين الدين بدر الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدين الدي	پونتها جور الدولول الدولان الدولان الدولان في منز الدول الدولان الدولان بوادي جود الدولان الدولان الدولان الدولان الدولان الدولان الدولان بوادي فيها الدولان الدولان الدولان الدولان الدولان الدولان الدولان
0	.7855	.70	684	.7497					
mo1%			· · · · · · · · · · · · · · · · · · ·			Isopropy:	l alcohol ($C_3 II_8 0$) + Tetra	adecyl alcohol (C ₁₄ H ₃₀ O)
	20°	4()°	60°		Hoerr, Ha	rwood and R	Calston, 1944	
100 80	4009 3536	21. 193	38 23	1233 1220		%	f.t.	%	f.t.
60 40 20 0	3163 2856 2597 2385	172 153 144 133	42 86 49	1029 940 867 798		1.2 11.3 55.2	-20.0 0.0 +20.0	84.5 100	+30.0 +38.26
	2000		· ·	7/0			لسے لیے سے سے سے اس اسی میں میں میں ہو اس اس ا لیے لیے لیے لیے نہا سے آئی آئی اس اس اس اس اس اس بین اس سے سے اس اس اس اش اس اس اس اس اس اس	ن التي حتى الثقية التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك ال يرسيق لعيد التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك ال ير التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التيك التي	کے دائیں دائیں امان امین امین میں انہیں دائیں کے اس امین میں امین میں انہیں معام اسال میں ا میں اپنے دائیں امین امین دائیں دائیں دائی دائی جی میں میں میں انہیں ایسا امیان امیان دائیں امیان دائیں دائیں د انہ میں جی دائیں دائیں امین امین دائیں دائیں دائیں دائیں آمین دائیں امین میں دائیں امین دائیں امین دائیں امین ا
									

	Butyl alco	ohol (C ₄ H	-	sobutyl alo	cohol
Isopropyl alcohol ($C_3 II_8 0$) + Cetyl alcohol ($C_1 _6 II_5 _4 0$)	T-man	1054	, ,	P4-10- 7	
Hoerr, Harwood and Ralston, 1944	Toropov,	1956			
\$ f.t.	mo1%	20°	d 40°	60°	
below 0.1 -20.0 3.0 0.0 19.2 +20.0 48.7 +30.0 80.4 +40.4 100 +49.62	100 8 0 60 40 20	0.8016 .8039 .8056 .8071 .8084 .8096	0.7862 .7883 .7900 .7915 .7930 .7941	sic .7717	
Isopropyl alcohol (C_3H_80) + Octadecyl alcohol ($C_1_8H_3_80$)	mo1%	20°	η 40°	60°	
Hoerr, Harwood and Ralston, 1944 # f.t. below 0.1 0.0	100 80 60 40 20	4009 3680 3434 3243 3078 2939	2138 2022 1937 1872 1818 1766		, ,
7.1 20.0 22.5 30.0 54.3 40.0 100 50.0	Trew and N	Watkins, 19	933		
	mo1%	đ	η	^{n}D	χ
Isopropyl alcohol (C ₃ H ₈ O) + 1-Rhamnose-hydrate (C ₆ H ₁₄ O ₆) Upson, Fluevog and Albert, 1935 mol% f.t. mol% f.t. 3.01 36.8 6.86 53.8 4.06 44.5 7.49 55.3 5.37 49.3 10.70 61.2	100 90.18 79.93 69.90 59.54 49.74 37.39 29.76 19.99 8.22	0.79806 .79882 .79984 .80056 .80142 .80205 .80300 .80376 .80434 .80542 .80601	25° 3555.6 3238.5 3110.6 3101.6 2935.4 2859.0 2772.4 2726.2 2671.9 2607.6 2556.9	1.39387 .39426 .39474 .39518 .39581 .39581 .39638 .39658 .39658 .39690 .39719 .39749	0.8094 .8102 .8111 .8112 .8131 .8080 .8069 .8025 .7995 .7995 .7900
Isopropyl alcohol (C ₃ H ₈ O) + Glycerol (C ₃ H ₈ O ₃) Danusso, 1955 mol % d v	Butyl alc		₀ 0)+ se	c.Butyl alo	cohol-d (C _u H ₁₀ 0)
30°	%	······································	d		(α) _D
0 0.7772 1125 23.61 .8928 1245	 -	· · · · · · · · · · · · · · · · · · ·	20°		<u> </u>
42.06 9836 1367 60.19 1.0729 1518 74.90 .1431 1682 91.57 .2193 1835 100 .2544 1911	0 33 100		0.8097 .8088 .8069		0 4.83 13.87
v = ultrasound velocity (m/sec.)					

Butyl al	cohol (C ₄	H ₁₀ 0) +	Isoamyl al	cohol .	,					
				(C ₅ H ₁₂ 0	,					
Trew and	Watkins,	1933								
mo 1%	d	n	n _D	χ						
		25°	<u>u</u>							
100	0.01047		1 40501	0.0070						
100 89.77	0.81047 .81002	3756.3 3620.0	1.40781 .40706	0.8060 .8056						
79.60 70.23	.80952 $.80914$	3472.2 3343.2	.406 2 5 .40538	.8057 .8031						
70.23 59.74 49.95	. 8 08 7 3	3210.5	.40449	.8001						
39.54	. 80769 . 80795	3092.8 2971.9	.40350 .40216	. 7974 . 7975						
30.04 19.85	. 80 7 50 . 80685	2750.7 2745.7	.401 2 8 .40010	.7945 .7868						
8.28	.80633	2615,2	. 39871	.7833						
0	.80589	2561.7	. 39 7 49	.7776						
					=					
Butul ale	rohol / C u	1 0 1+ D	ocyl alcoho	1 (C ₁₀ H ₂₀ (1)					
waty1 all	.oo. (C ₄ n	1100 J. D	ceji aitoni	- 1 011201	.,					
Hoerr, F	larwood and	Ralston	, 1944							
%		f	.t.							
14.8		-4	0.0							
34.7		-2	0.0							
82.6 100			0.0 6.88							
Butyl ald	ohol (C ₄ H	1, 00) + L	auryl alcol	ol (C ₁₂ H ₂₆	0)					
Hanna Ha	ad and	Dalatan	Hoerr, Harwood and Ralston, 1944							
	rwood and			 						
Hoerr, Ha	rwood and		1944 .t.		 -					
<i>%</i>	rwood and	-4	.t.							
3.5 10.2 38.7	arwood and	-4- -2-	.t.							
3.5 10.2 38.7 90.5	arwood and	-4- -2- +2	0.0 0.0 0.0 0.0 0.0							
3.5 10.2 38.7	arwood and	-4- -2- +2	0.0 0.0 0.0 0.0							
3.5 10.2 38.7 90.5 100		f -4-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	0.0 0.0 0.0 0.0 0.0 0.0 3.95							
3.5 10.2 38.7 90.5 100		f -4 -2 +2 2 1 0 0) +	.t. 0.0 0.0 0.0 0.0 0.0 3.95	alcohol						
3.5 10.2 38.7 90.5 100		f -4 -2 +2 2 1 0 0) +	0.0 0.0 0.0 0.0 0.0 0.0 3.95	alcohol	=					
3.5 10.2 38.7 90.5 100	ohol (C _u H	f -4 -2 +2 -2 -2 -1 00) +	0.0 0.0 0.0 0.0 0.0 3.95 Tetradecyl	alcohol						
3.5 10.2 38.7 90.5 100 Butyl alc		f -4 -2 +2 -2 -4 +2 -4 -6 +1 Ralston	.t. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	alcohol						
3.5 10.2 38.7 90.5 100 Butyl alc	ohol (C _u H	f -4 -2 +2 -2 -2 -1 -0) + ((1 Ralston f .	.t. 0.0 0.0 0.0 0.0 0.0 0.0 Tetradecyl C14H300) , 1944	alcohol						
3.5 10.2 38.7 90.5 100 Butyl alc	ohol (C _u H	f -4 -2 +2 -2 -2 -1 00) + ((1 Ralston f40.	.t. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	alcohol						
3.5 10.2 38.7 90.5 100 Butyl alc	ohol (C _u H	f -4 -2 2 2 2 1 1 0 0) + (0 1 Ralston f40 -20 -20	.t. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3,95 Tetradecyl CluH300) , 1944 t.	alcohol						
3.5 10.2 38.7 90.5 100 Butyl alc	ohol (C _u H	f -4 -2 +2 -2 -2 -1 00) + ((1 Ralston f40.	.t. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	alcohol						

ISOMMIL	ALCOHOL	-			1123				
Butyl al	cohol (C ₄	H _{1 0} 0)+	Cetyl alo	cohol (C	16Hs40)				
Fischer	, 1940								
mo1%	f.t.	tr	.t.	mo1%	f.t.				
100 94.1 85.9 58.1	49.1 47.8 45.7 36.6	44 44	.0	15.3 9.6 5.9	17.0 12.2 7.8				
Hoerr,	Harwood ar	nd Ralst	on, 1944						
%	f.t.	9	% f	.t.					
0.5 3.9 19.9	-20.0 0.0 +20.0	43. 73. 100	.3 4	30.0 10.0 19.62					
Butyl alc	Butyl alcohol (C _u H ₁₀ 0) + Octadecyl alcohol (C ₁₈ H ₃₈ 0)								
Fischer,	1940								
mo1%		f.t.		tr.t.					
100 81.0 64.7 41.6		57.9 54.1 49.7 42.0		53.4					
	Harwood a	nd Rals	ston, 1944						
%			f.t.						
1 8.4 21.7 47.1 100			0.0 20.0 30.0 40.0 57.98						
Butyl al	Butyl alcohol (C ₄ H ₁₀ O) + Glycerol (C ₃ H ₈ O ₃)								
Danusso									
	d	V 200	mo1%	d	<u>v</u>				
o	0.8026	30°		1 0540	1405				
23.37 36.07 44.20	.8937 .9465 .9814	1294 1354 1392	60.74 79.62 86.83 100	1.0560 .1470 .1935 .2510	1495 1661 1 77 9 1908				

v= ultrasound velocity (m/sec.)

BUTYL ALCOHOL + ETHYLENE CHLORHYDRIN

Butyl alc	ohol (C ₄ H	I ₁₀ 0) + Eth		hydrin	100	100	80°	97.0	97.0
Sanda- a	m.a. Cálla		H ₅ 0C1)		100 87.2 75.8	100 71.6 54.1	32.3 61.4	83.7 72.4	116.0 133.8
b.t.	nd Gilber mol		n _D 20°		67.7 58.7	44.5 35.0	81.6 104.1	65.4 56.1	$147.0 \\ 160.2$
D. 2.	L	V	"D		50.1 41.5	28.2 21.4	125.0 146.0	49.1 39.8	174.1 185.3
128.0 126.0	100 94.9	100 92.0	1:4402 :4373		30.0 16.7 8.0	13.7 7.0 2.6	176.4 207.9 230.4	28.1 15.6 6.6	204.5 223.5 237.0
123.2 120.8	82.0 57.0	73.4 46.2	.4301 .4181		0.0	0,0	249.8		249.8
119.5 119.0 118.6	38.4 32.1 26.3	46.2 29.9 22.2	.4103 .4079 .4058						
118.3 118.0	21.3 15.7	19.5 15.7 11.4	.4041 .4023		Toropov,	1956			
117.5 117.2	8.0	5.8 0	.4000 .3977		mo1%		đ		
						20°	40°	60°	
					0 20	0.8016 .8038	0.7862 .7885	0.7696 .772	l
lsobutyl	alcohol	(C ₄ H ₁₀ 0)	+ Isoamyl a (C ₅ H ₁₂ O)		40 60	.8056 .8070	.7904 .7919	.7742 .7759)
			, -3,		80 100	.8080 .8086	. 7 931 . 7 938	.7772 .778	ĺ
Udovenko mol:	and Frid								
L L	v	P ₁	p ₂	Þ					
100	100	50°	17.5	17.5	Hirobe, 19	908	à		
87.2 78.6	69.0 53.9	6.9 11.8	15.3	22.2	I	25,05°	u		
1 71.6	43.8 31.1	15.7 23.2 27.2 32.8	13.9 12.2 10.5	25.7 27.9 33.7 36.3	0 24.80		0. 7 981 .8008		
58.5 51.2 41.5 32.0	25.0 18.0	27.2 32.8	9.1 7.2 5.5	40.0	47.49 66.51		. 8030 . 8049		
19.4 9.0	12.4 7.0 2.8	38.7 45.2 51.3	3.4 1.5	44.2 48.6 52.8	100		. 8073		
100	100	56.0 600	32.0	56.0 32.0	Toropov, 1	05.6			
87.2 78.6	69.6 55.9	12.1 19.9	27.9 25.3	40.0 45.2	mo1%		η		
71.5 58.7	45.7 33.4	27,4 38,8	23.0 19.4	50.4 58.2		20°	40°	60°	
51.2 41.0	28.9 18.0	44.8 57.4 65.0	$\frac{18.2}{12.6}$	63.0 70.0	0	4009	2138	1233	
32.0 18.5 8.5	13.7 7.0	65.0 77.9 87.3	$\begin{array}{c} 10.3 \\ 6.1 \\ \end{array}$	75.3 84.0	20 40 60	4048 4099 4163	2173 2220 2270	1268 1305 1343	
0.5	$\frac{3.4}{0}$	96.0	3.1	90.4 96.0	80 100	4241 4366	2326 2392	1382 1423	
		7 0°							
100 87.2	$\frac{100}{71.7}$	20.0	57.5 50.7	57.5 69.3					
78.6 71.4 58.7	60.7 47.0 34.2	30.3 46.0	46.7 40.7	77.0 86.7	Longinov	and Prjani	schnikov, 19	31	
49.6 41.5	26.2 20.3	64.5 78.6 93.0	33.5 27.9 23.7	98.0 106.5	%	n _D	%	$n_{\mathbf{D}}$	
31.0 18.5	14.9 7. 0	$107.5 \\ 129.0$	18.8 9.7	106.5 116.7 126.3 138.7		2	20°		
8.0	2.6 0	145.0 157.0	3,8	138.7 148.8 157.0	0 20.2	1.3959 .3981	60.4 80.2	1.4027 .4051	
					40.3	.4005	100	.4072	

Ishikawa, 1930	Isobutyl alcohol ($C_uH_{10}0$) + d-Mannitol ($C_6H_{1u}0_6$)
30°	Upson, Fluevog and Albert, 1935
0.0000 1.39163 1.4000 1.39902	mol% f.t. mol% f.t.
19.5112 .39408 100.0000 .40405 41.6097 .39665	1.10 57.5 3.00 73.6 1.49 61.3 5.38 83.3 1.95 67.4 7.54 89.5 2.69 72.1 16.36 101.8
Hirobe, 1908	
% Q mix.	Isohutul alcohol (CN O) . I Diversity
25.05°	Isobutyl alcohol (C_4H_{100}) + 1-Rhamnose-hydrate ($C_6H_{14}0_6$)
24.80 -3.6 47.49 -1.4	Upson, Fluevog and Albert, 1935
47.49 -1.4 66.51 -1.1	mol% f.t. mol% f.t.
Isobutyl alcohol (C _u H ₁₀ 0) + Glycerol (C _s H ₈ 0 _s)	2.18 40.4 4.51 55.0 2.85 44.4 6.17 61.2 3.78 51.4 7.83 66.6
Danusso, 1955	Isobutyl alcohol ($C_4H_{10}O$) + Methyl malate 1 ($C_6H_{10}O_5$)
mol % d v	Grossmann and Landau, 1910
30°	g/100 cc (α)
0 0.7949 1178 25.05 0.8952 1264 46.34 0.9879 1363	red yellow green pale dark viol. blue blue
68.00 1.0920 1532 81.23 1.1603 1690 87.11 1.1877 1719 100 1.2544 1911 v = ultrasound velocity (m/sec.)	20° 50.238 -5.57 -6.67 -7.66 -8.76 -10.05 -10.41 25.129 -6.29 -7.20 -8.48 -9.91 -10.86 - 12.5645 -5.89 -7.08 -8.28 -9.63 -10.90 - 5.019 -2.99 -3.19 -3.39 -3.59 -3.19 -2.79 2.538 -1.97 -2.76 -2.76 -2.36 -1.97
Silhereisen, 1929	
t o interface L ₁ /L ₂	
1 0.76 5 0.444 13 0.190 10 0.038	

Patterson, 1901	Į.			t		· · · · · · · · · · · · · · · · · · ·	ď		
t	đ	t	đ	<u>-</u>	10	0%	80.97%		2.56%
6.9 41.0 53.2	0.8053 .7861 .7759	69.6 83.7	0.7615 .7482	20 30 40 50 60	1,20 .19 .18 .17	25 29 32 31	1.1021 .0924 .0828 .0733 .0637	1. 1. 0.	.0172 .0089 .9996 .9907
18.5 19.9 31 15.9 19.7	0.8179 .8165 .8076 9.99	48 63.8	0.7937 .7798 0.7925 .7774	20 30 40 50 60	41 0.93 :92 .91 .90	152 169 179	21.61% 0.8682 .8601 .8522 .8437 .8350	0	3.82% .8446 .8367 .8288 .8209 .8123
30.8 47.0	.8223 .8087	83.4	.7762	t			(α)		
14.7 14.8 26.6	0.8812 .8806 .8704	43.6 59.0 77.2	0.8557 .8423 .8252		red	yellow	green 100%	pale blue	dark blue
16 20 38.2	50.00 0.9683 .9656 .9480	52.5 67.5 77.6	0.9345 .9203 .9104	20 30 40 50 60	6.73 7.48 8.17 8.80 9.36	7.38 8.38 9.28 10.09 10.80	7.24 8.51 9.66 10.69 11.61 80.97%	4.39 6.28 7.99 9.53 10.90	2.71 4.80 6.72 8.46 10.01
17.4 33.9 47.3 18.4 19.8 27.5	1.0198 .0044 0.9916 75.00 1.0738 .0739 .0650	65 82.8 3 \$ 44.3 58.3 78.8	0.9741 .9563 1.0486 .0347 .0142	20 30 40 50 60	5.50 6.36 7.17 7.92 8.61	5.78 6.93 7.97 8.91 9.76	5.30 6.75 8.07 9.27 10.35 62.56%	1.70 3.81 5.77 7.57 9.22	-0.29 +2.08 4.29 6.34 8.23
t (α) _D		() _D t	(α) _D	20 30 40	5.09 6.00 6.84	5.18 6.38 7.48	4.54 6.03 7.48 8.79	0.68 2.96 5.50 6.94	-1.38 +1.11 3.40 5.50
13.3 5.11 13.5 5.04 25.6 6.97	27.3 7	.21 53.9 .91 63.9		50 60	7.62 8.34	8.47 9.36	9.98 41. 2 4%	8.64	7.41
16.1 5.11 16.9 5.26 20.5 5.72	41.1 8 50.2 9 25 %	.81 61.2 .46 69.2 .44 76.5	11.12 11.58	20 30 40 50 60	4.54 5.72 6.66 7.47 8.14	4.93 6.90 7.48 8.48 9.30	4.23 5.99 7.51 8.79 9.84 21.61%	0.23 2.74 4.97 6.91 8.97	-1.69 +1.18 3.68 5.81 7.58
13.2 4.28 14.9 4.52 18.1 5.01 18.7 5.13	39.0 7 48.9 8 56.9 9 50.005	.11 63.2 .75 65.6 .86 73.2 .70 78.2 \$	10.59 11.20 11.62	20 30 40 50 60	5.11 6.14 7.11 8.02 8.86	5.31 6.64 7.82 8.86 9.76	4.74 6.40 7.83 9.03 9.99	1.12 3.40 5.59 7.69 9.69	-1.01 +1.70 4.18 6.42 8.42
18.0 4.80 36.6 5.98	52.2 8	.82 78.4 .66	11.08	2 0 30	4.97 6.04	5.42 6.70	13.82% 4.70 6.15	1.46 3.88	-1.02 +1.81
12 4.28 18 4.99 20 5.29 27.7 6.35	39.8 7 52.5 9	.82 72.2 .08 78.8 .95 82.3	11.28	40 50 60	6.98 7.79 8.46	7.87 8.93 9.88	7.59 9.00 10.40	6.02 7.87 9.44	4.29 6.42 8.20
13.3 4.72 15.7 5.03 17.9 5.29 For 100 %, se	29.1 6 43.2 8 54.5 9	.79 62.5 .49 74.9	11.07						

Isobut	yl alcohol (C		opyl tart:	rate	Isobutyl alcohol ($C_4 H_{10} 0$) + Ethylene chlorhydrin ($C_2 H_5 0 C1$)
Winthe	er, 1903				Snyder and Gilbert, 1942
t		d			b.t. mol% n _D ^{25°}
	100%	78.79%	58.7	6%	L V
20 30 40 50 60	1.1389 .1306 .1212 .1120 .1027 40.85%	1.0492 .0401 .0310 .0219 .0127 23.16%	0.973 .966 .957 .944 .937	65 79 90 98	128.0 100 100 1.4402 125.7 97.0 93.1 .4385 119.6 84.7 69.5 .4313 116.5 73.6 57.6 .4251 113.3 55.8 39.5 .4161 112.2 47.6 32.4 .4123
20 30 40 50 60	0.9172 .9099 .9014 .8925 .8835	0.8645 .8566 .8486 .8402 .8317	0.84 .83 .82 .82	69 91 10	112.2 47.6 32.4 .4123 111.0 37.6 24.1 .4080 110.2 31.8 19.8 .4056 109.8 27.5 16.8 .4039 109.3 22.3 13.5 .4019 108.3 11.4 6.0 .3981 107.5 0 0 .3942
t	red yelle	(α) ow green	pale blue	dark blue	Sec.Butyl alcohol (C ₄ H ₁₀ O) + d-Mannitol (C ₆ H ₁₄ O ₆)
		100%			
20 30	10.17 11.1 10.89 12.7 11.54 13.5	81 12.98 74 14.14 57 15.20	12.77 14.46	11.98 13.86	Upson, Fluevog and Albert, 1935
40 50	12.12 14.3	31 16.15	16.02 17.44	15.59 17.16	mol% f.t. mol% f.t.
60	12.63 14.9	78.79%	18.72	18.58	1.625 53.5 4.32 73.0 2.27 60.3 7.72 83.3 3.86 66.1 19.04 100.0
20 30	9.47 10.8 10.22 11.8	35 13.21	$\frac{11.30}{13.16}$	10.38 12.48 14.35	3.56 69.5
40 50 60	10.91 12.7 11.54 13.5 12.10 14.2	15.33	14.83 16.31 17.61	14.35 15.98 17.37	Tert.Butyl alcohol ($C_{u}H_{1,0}0$) + 1-Rhamnose hydrate
20 30 40 50	9.30 10.6 10.06 11.6 10.75 12.5 11.38 13.3	66 12.95 66 14.11	11.03 12.92 14.64 16.20	10.21 12.29 14.10	(C ₆ H ₁ + 0 ₆)
60	11.38 13.3 11.94 14.1	15.15 16.60	17.60	15.91 17.46	Upson, Fluevog and Albert, 1935
		40.85%			mol% f.t.
20 30 40 50 60	9.31 10.7 10.09 11.7 10.78 12.6 11.40 13.4 11.93 14.0	3 14.29 0 15.28	11.36 13.21 14.91 16.46 17.85	10.48 12.62 14.53 16.22 17.68	3.97 42.4 5.99 53.2 7.10 57.1 8.72 62.3 11.40 67.4
		23.16%			
20 30 40 50 60	9.59 10, 10.43 11, 11.14 12, 11.73 13, 12.19 14,	.91 13.25 .82 14.35 .66 15.40	11.64 13.61 15.37 16.92 18.26	10.94 12.88 14.76 16.59 18.36	
20 30 40 50 60	9.43 10. 10.00 11. 10.55 12. 11.07 13. 11.56 13.	69 13.26 44 14.33 15 15.34	11.59 13.55 15.28 16.79 18.07	11.51 13.66 15.44 16.86 17.91	

Amyl alcohol ($C_5H_{12}O$) + Glycerol ($C_8H_8O_8$)	Hafslund and Lovell, 1946
Any 1 4200101 (25.11/22) 2250000 (25.11/22)	mol% d mol% d
Poppe, 1934	35°
C.S.T. = 61.1° dt/dp= -0.0194	100 0.8028 32.48 0.8056 85.44 .8035 16.10 .8068 69.15 .8043 0.66 .8074
Amyl alcohol ($C_5H_{12}O$) + Methyllactate ($C_4H_8O_5$)	
Lecat, 1949	Ikeda, Kepner and Webb, 1956
% b.t.	% d n_{D} $(\alpha)_{\mathrm{D}}$
0 138.2	25°
138.0 Az 100 143.8	0 0.8150 1.4088 -5.25 9.96 .8145 .4080 -4.30 20.02 .8139 .4075 -3.85
Isoamyl alcohol ($C_5H_{12}O$) + 2-Methyl butyl alcohol ($C_5H_{12}O$)	29, 86 .8125 .4073 -3.40 39, 96 .8115 .4070 -2.94 49, 96 .8105 .4066 -2.43 59, 98 .8096 .4062 -1.98 69, 56 .8085 .4058 -1.50 79, 95 .8073 .4053 -0.98
Hafslund and Lovell, 1946	89.84 .8063 .4050 -0.50 100 .8056 .4046 0
mo1% mo1% L V at b.t. L V	
91.82 91.27 48.56 46.72 90.24 89.72 44.60 42.42 86.36 85.31 42.59 40.59	Hafslund and Lovell, 1946
83.42 82.59 38.62 36.61 78.75 77.52 32.37 30.61 72.60 70.88 25.12 23.71 68.57 66.69 21.71 19.80	mol% (α) mol% (α) 850
72.60 70.88 25.12 23.71 68.57 66.69 21.71 19.80 65.17 63.57 15.51 14.68 62.85 61.05 12.05 11.38 57.63 55.57 6.25 5.74 52.12 50.37 1.42 1.33	35° 99.34 -5.6936 28.50 -5.7979 84.09 -5.7061 19.95 -5.8077 61.92 -5.7483 8.72 -5.8857 42.81 -5.7870 7.57 -5.7689
Ocon, Espatoso and Maso, 1956	Isoamyl alcohol (C5H120) + Glycerol (C3H803)
mol% b.t. mol% b.t. L V L V	Mc Ewen, 1923
95.83 95.51 131.5 57.82 55.71 129.3	% sat.t. % sat.t.
95.80 95.46 131.6 55.62 53.55 129.3 90.89 90.20 131.1 53.29 51.23 129.2 90.78 90.07 131.0 52.12 49.94 129.3 89.04 89.17 131.0 49.21 47.22 129.3 87.72 86.92 130.9 49.04 47.01 129.2 83.92 82.86 130.6 44.12 42.20 129.0 82.61 81.27 130.5 42.54 40.86 128.8	15.74 12.5 68.10 74.2 23.79 36.8 72.38 73.7 37.60 61.4 80.80 71.5 45.59 69.3 86.03 71.5 53.84 73.0 86.03 66.5 63.21 74.1 94.95 21.5
80.17 78.87 130.3 38.16 36.54 128.7 78.66 77.17 130.2 38.05 36.32 128.7 77.00 75.58 130.1 36.08 34.24 128.7 74.76 73.39 130.0 35.90 34.24 128.7 73.97 72.43 129.8 35.32 33.56 128.6 71.04 69.28 129.7 33.53 31.95 128.6 64.97 63.03 129.6 30.33 28.65 128.6 64.97 63.03 129.6 30.33 28.65 128.6 62.78 60.74 129.4 25.22 23.76 128.2 60.71 58.62 129.5 24.60 23.31 128.5 57.86 55.81 129.4 17.06 16.01 128.2	Binghan, 1918 C.S.T. = 68

		19	SOAMYL ALCOHOL +
Isoamyl a	lcohol (C ₅ F	I ₁₂ 0) + l	Ethylene chlorhydrin (C ₂ H ₅ 0Cl)
Lecat, IS	949		
%		b.t.	Dt mix.
0 75 38	1	31.9 127.9	-0.5 Az -0.3
100		28.6	-
		I _{1 2} 0) +]	Propylenchlorhydrin C _S H ₇ O ₂ Cl)
Lecat, 19		b.t.	Dt mix.
			ot MIA.
0 80		131.9	-0.5
$\begin{array}{c} 81 \\ 100 \end{array}$		127.3 127.5	Az -
	lcohol (C ₅ I and Jones, 1		Cyclohexanol (C ₆ H ₁₂ 0)
Wheeler a	and Jones, 1	952 %	n _D
Wheeler a	nnd Jones, 1 np 25 1.46472 .45721	952 % 38.98 31.85	ⁿ D 1.42617 .42232
Wheeler a	nnd Jones, 1 n _D 25 1.46472	952 % 38.98	n _D
Wheeler a % 100 89.74 80.48 69.55	n _D 25 1.46472 .45721 .45048 .44331 .43772	952 \$\frac{38.98}{31.85} 20 .20 10.49	n _D 1.42617 .42332 .41602 .41057
Wheeler a \$ 100 89.74 80.48 69.55 60.37 50.86	nd Jones, 1 n _D 25 1.46472 .45721 .45048 .44331 .43772 .43239	952 \$ 38.98 31.85 20.20 10.49 0	n _D 1.42617 .42332 .41602 .41057

b.t.

Ot mix.

%

IIIEENE CHEC		·		
Hexyl alcohol	(C ₆ H ₁ 40) + Cycl	ohexanol	(C ₆ H _{1 2} O)
Trieschmann,	1935			
mol%	a	mol%	۵	
	22°			
o	26.23	73,20	24.7	3
31.68 54.09	25.34 24.95	88,56	24.6 24.6	8
54.09	24.95	100	24.0	3
Hexyl alcohol	(C ₆ H _{1 4} 0) + Ethy]	lactate	$(C_5H_{10}O_3)$
Lecat, 1949			· · · · · · · · · · · · · · · · · · ·	
%		b.t.		Dt mix.
0		157.85		_
82 100		153.7 154.1		-1.5 Az
Heptyl alcoho	1 (С ₇ Н ₁₆ (hlorhydri H ₆ OCl ₂)	n
%		b.t.		Dt mix.
0	~	176.15		
53		174.2 A	z	-
90 100		175.8		+0.7
Heptanol (C ₇	H ₁₆ 0) + (Glycol (C2H6O2)	
Lecat, 1949	····	· · · · · · · · · · · · · · · · · · ·		
%	b.t.		ot mix	
0	176.15			
80 83	174.1	Az	-1.5	
100	197.4		-	

HEPTANOL + PROPYL LACTATE

Heptanol	(C ₇ H ₁₆ O)	+ Propyl	lactat	e (C ₆ H ₁	₂ 0 ₉)	Sec.Octy1	alcohol (C ₈ H ₁		yl tartrate H ₁₄ 0 ₆)
Lecat, 1	949					Patterson	n, 1901		
%	b.t		Dt m	ix		t	đ	t	(α) _D
90 100	176. 171. 171.	55	-0.8			18.1 28.9	0,8212 ,8131	- -	<u>.</u>
Octyl alc	ohol (C ₈ H ₁	80) + Gl	col (C2H6O2)	36.9 48.1 60.8 79.3	.8070 .7982 .7880 .7728	-	- - -
Lecat. 1	949					17.8	5% 0.8342	12.8	4.19
% 0		b.t. 195.2			t mix.	32.6 46.5 61.7 81	.8230 .8122 .7997 .7835	18.9 26 41.3	4.79 5.75 7.53
70 71		189.5			-2.5 Az		10%		
100	alcohol (C	190.9	+ =1	80 4) +	Alcohols	18.4 30.4 47 61.8 78.8	0.8471 .8379 .8247 .8123 .7982	11.6 18 25.6 47 54.9 67.5 76.4	3.68 4.60 5.53 7.97 8.73 9.92
1SUUCLY1 &	arconor (C	3111 80) (E	1	00.7 /	AICONOIS		24.99		10.63
Lecat, 194	49 					18.4 32.2	0.8895	12.1	3.27
Name	2nd Comp. Formula	b.t.	<u>%</u>	Az b.t.	Dt mix	47.9 64.4 80.3	.8783 .8652 .8511 .8374	18 25.2 41 48 56.1	3.96 5.10 7.08 7.84 8.68
Glycol Glycol	С ₂ Н ₆ О ₂ С ₄ Н ₈ О ₃	197.4 190.9	79 -	175.55 180.3	-1.6 -		50.02	63.6 72.9 79.4	9.38 10.21 10.76
monoaceta Isobutyl lactate Dichlor-	C ₇ H ₁ 40 ₅ C ₃ H ₆ 0C1 ₂	182,15 175,35	85	179.8 173.35	+0.8	19.1 34.4 46.9 66.6 81	0.9728 .9593 .9481 .9302	11.5 17.3 18.6 30.6	3.13 3.99 4.17 5.74
hydrin sy: Dichlor- hydrin as	m. C ₃ H ₆ OCl ₂	182.5	35	179.4	-	01	.9168	44 58.2 69.3 77. 5 83	7.50 8.90 9.92 10.66 10.91
nyurin as	•					17	75.01	•	
				ar an an an an an an an an an		17 29.1 50.1 65.7 81.6	1.0777 .0663 .0462 .0312 .0161	11.9 16.7 26.6 40.4 53.3 66.9 76.3 82.2	4.08 4.76 6.14 7.79 9.07 10.29 11.06 11.50
						For 100%,	see: Methyl al	cohol + Eth	yl tartrate.

METHOXYGLYCOL + METHOXYDIGLYCOL

Methyox	yglycol (C ₃ H ₈ O ₂) + Me	thoxydiglyc	ol	Butoxyglycol	(C ₆ H ₁ , O ₂) + Furfuryl alcohol (C ₅ H ₆ O ₂)
Simonet	ta and Bar	akan, 1947			Loont 1040	
t	mo1%	t	m	01%	Lecat, 1949	b.t.
	L	V	L	<u>v</u>		D. C.
,,	00.0	40.0 33	22	11.0	0 60 100	171.15 167.5 Az 169.35
25	99.0 94.0	68.0 23 54.0 22 34.0 22 27.0 23	23 42.5 52.5	11.0 91.5	100	109.35
22 25 26 23 23	87.0 77.5 71.5	34.0 22 27.0 23 17.5	76.0	93.0 9 7. 0		
23	/1.5	17.5				
mo1%	<u>u</u>	mo1%	n _D		Butoxyglycol	($C_6H_{1\mu}0_2$) + PropyI lactate ($C_6H_{12}0_3$)
	20°	25	5°		Lecat, 1949	
100 95.0	1.4260 5 .4250	100 72.50	1.4249 .4203		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b.t.
57.04 42.5	0 .4153	57.00 42.50	,4136			
38.0 24.0	0 .4094	38.00 24.00	.4090		0 55	171.15 170.75 Az 171.2
14.9. 7.5	0 .4045	7.50 0.00	.4033 .4013		100	171.2
0.0	0 .4023					
Methox	yglycol (($C_3H_8O_2$) + Etl (C_3	nylenchlorhy ₂ H ₅ OC1)	drin		ert.butyl ethylene glycol sym. f.t.= 88° + f.t.= 69°
					Backer, 1938	
Lecat,					mo1%	f.t.
<u> </u>		b.t.			_0	88.0
0 69		124.5 130.0	17		10 20	82.0-83.4 76.2-78.2
100		128.6	12		28 30	72.8-7 3.6
					33 38	73.2-74.0 73.2-74.2 73.3-74.5 (3+2)
F+hov.	~1ao1 (C	U A \ LEAT		.a	41 50	73.5-74.4 72.0-73.3
Ethoxy	giyeoi (c _i	H ₁₀ 0 ₂) + Etl. (Co	,H ₅ 0Cl)	urin	60.4 70	69,3-70,5 66,9-68,4
		, -,			80 86	65.0-68.4 64.9-65.6
Lecat,	1949			***	90 100	65.3-66.5 69.0
- %		b.t.	 	Dt mix.		
0 15		135.3 135.65				
52 100		128.6		+3.3		
100	····	140,0				

D. Josef			Tri	acontano1	(C ₃₀ H ₆₂ O)	+ Dotriaco	
Piper, 1937	± ø	f.t.	∦ թ	iner. Chibr	nall and Wil		ù
% f.	.t. %	1.1.		mol%		f.t.	
15 79 20 79	0.75 60 0.25 80 0.25 100 0.8	80 .75 82 83 .4		0 50 100		86.3-86.5 86.7 89.3-89.5	(1+1)
	(C ₂₇ H ₅₆ O) + Oc	tacosanol (C ₂₈ H ₅₈ C) P	iper, 1937 % 0 15	f.t. 86.5	60	f.t.
mo1%	f.t			20	85.9 85.9	80 100	88.2 89.5
0 50 100	81.2- 81. 83.2-	81.6 6 (1+1) 83.4	=	40 riacontano	86.5 1 (C ₃₂ H ₆₆ 0) + Tetrat (C ₃₄ H ₇	
		nacosanol (C ₂₉ H ₆₀ 0			all and Will		
Piper, Chibna	ll and Williams	, 1934]_	mo1%		f.t.	
mo1% 0 50 100	81	-81.6 .7 (1+1)		0 50 100		89.3-89.5 89.6 91.9-92.2	
	C ₂₈ H ₅₈ O) + Tri:	acontanol (C ₃₀ H ₆₂ 0		per, 1937	(fig.) f.t. 89.4 88.75 88.8 89	% 40 60 80 100	f.t. 89.2 89.9 90.8 92.1
mo1%	f.t		_				
0 50 100	83.2- 83. 86.3-	83.4		10-Epoxyoc ans.	tadecyl alco	ohol (C ₁₈ H ₃	₃₆ 0 ₂) cis +
			Wi	tnauer and	Swern, 1950)	
Piper, 1937				mol%	f.t.	mol%	f.t.
<i>%</i>	83.4 6	f.t. 0 84 0 85.1 0 86.5		0 26.57 49.17	53.5-52.6 50.2-41.4 45.6-41.0	54.46 74.91 100	43.3-41.2 46.0-40.4 48.8-48.0
15 20 30 40	83 8 83 10 83.1 83.3	0 86.5					

Allyl alcohol	(C ₃ H ₆ O) + d-Mannitol	$(C_6H_{14}O_6)$	
---------------	-----------------------------------	----------------	------------------	--

Upson, Fluevog and Albert, 1935

mo	1%	f.t.	mol%	f.t.	
		55.9 59.4 63.6 69.3	8.54 11.2 14.1	75 79.7 84.7	

Allyl alcohol ($\rm C_3H_6O$) + 1-Rhamose hydrate ($\rm C_6H_{1\,4}O_6$)

Upson, Fluevog and Albert, 1935

mol%	f.t.	mol%	f.t.	
4.03	35.8	10.72	54.5	
4.49	38.2	14.90	59.8	
6.28	46.1	15.62	60.5	
7.58	49.2	18.60	62.4	

Ally1 alcohol (C_3H_60) + Ethy1 tartrate ($C_8H_{1\,4}0_6$)

Patterson and Pollock, 1914

t	d	(α) _D	t	d	(α) _D
	28.27%			49.81%	
8.6 23.2 35.3 46.2 55.5	0.941 .9275 .9165 .9065 .8975	11.17 12.13 13.16 13.70 14.20	11.5 21.3 34.2 43.6 53.0	1.009 1.000 0.988 0.9795 0.971	10.03 10.80 11.86 12.52 13.13
For 10	0%, see: M	lethyl alc	ohol + Et	thyl tartra	ate.

Lowry and Dickson, 1924

%			(α)		
	6708Å	5893Å	5780Å	5461Å	4358Å
			20°		
100 40	6.69 9.38	7.45 11.09	$\begin{array}{c} 7.52 \\ 11.30 \end{array}$	$\begin{array}{c} 7.50 \\ 11.88 \end{array}$	$\substack{1.62\\10.00}$

Glycol ($C_2H_6O_2$) + Trimethyleneglycol ($C_3H_8O_2$)

Clendenning, 1948 (fig.)

%	f.t.	%	f.t.	
100 80 60 50	-26 -39.5 -46	30 20 0	-30 -24 -14	

Kinematic viscosity for 50% at low temperatures. (see author)

Clendenning, 1948

Kinematic viscosity for 50% at low temperatures, (see author)

Glycol (
$$C_2H_6O_2$$
) + Diglycol ($C_4H_{10}O_3$)

Skripach and Temkin, 1946

	%	b.t.	ո <mark>2</mark> 0 °
L	v		
55 61 68 72 80	9 15 25 41	142 143.5 145 147.5 153	1.4402 .4410 .4420 .4426 .4438

Glycol ($C_2H_6O_2$) + Ethoxydiglycol ($C_6H_{14}O_3$)

Curme and Johnston, 1952

Az 760 mm 70.5% 195.0°

Nycander and Gabrielson, 1954

Az (36mm): 73.4% 108.5°

Glycol (C ₂ H ₆ O ₂)	+	Methyl	malate	1	(C6H1005)
----------	--	---	---	--------	--------	---	---	---------	---

Grossmann and Landau, 1910

g/100cc	red	yellow	(α) green	pale blue	dark blue	viol,
			2 0°			
49.976 24.988 12.494 4.975 2.4875	-4.90 -4.20 -4.08 -3.62 -3.22	-5.90 -5.00 -4.80 -4.22 -4.02	-6.40 -5.64 -5.12 -4.42 -3.62	-6.90 -6.48 -5.12 -4.22 -2.81	-7.20 -6.44 -4.88 -3.82 -2.41	-7.60 -3.42

Lecat, 1949

Glycol ($C_8H_6O_2$) (b.t.= 197.4) + Alcohols.

	2 nd comp.		Az		
Name	Formula	b.t.	%	b,t.or	Dt mix. Sat.t.
Glycol monoacetate	$C_{14}H_80_2$	190.9	46 75	- 184.75	-2.9
Methoxy- diglycol	C5H12O3	192.95	50 80	192.55	+0.8
Menthol	$C_{10}H_{20}0$	216.3	51.5	188.55	17.6
Citronello1	$C_{10}H_{20}0$	224.4	63	193.5	-2.2
Linalool	$C_{10}H_{18}0$	198.6	40	182.2	+1.8
Geraniol	C, oH, 80	229.6	50 67.5	194.65	-2.5
α-Terpineol	C10H180	218.85	38 56	189.55	+0.5
β-Terpineol	$C_{1\ 0}H_{1\ 8}0$	210.5	50	185.4	-
Borneol	$C_{10}H_{18}0$	215.0	54.2	189.25	99
Benzyl alcohol	C7H80	205.25	52 53.5	193.35	-1.7
Phenyl ethanol	C ₈ H ₁₀ 0	219.4	69	194.4	-0.65
Phenyl propanol	C ₉ H ₁ ₂ O	235.6	50 75	195.5	-1.0

Glycol ($C_2H_6O_2$) + Glycerol ($C_5H_8O_5$)

Danusso, 1955

30° 0 1.1047 1643 17.26 .1309 1697 36.92 .1731 1769 57.33 .2027 1808	mol %	đ	v	
17.26 . 1309 1697 36.92 . 1731 1769 57.33 . 2027 1808		30°	ي منتو القبر هند هنده ناب الله الله الله الله الله الله الله ال	
74.74 .2253 1854 100 .2544 1911	36.92 57.33 58.95 74.74	.1309 .1731 .2027 .2049 .2253	1697 1769 1808 1815 1854	

v = ultrasound velocity (m/sec.)

Glycol (
$$\rm C_2H_6O_2$$
) + Tetrahydrofurfuryl alcohol ($\rm C_5H_{10}O_2$)

Clendenning, 1948 (fig.)

t	η (centistokes.	10°)
ے سے اسے میں سے سید شدہ اسے سدر سار د	0 %	50 %	100 %
20	1270	1130	760
10	1490	1310	910
0	1730	1500	1070
-10	1990	1760	1260
-20	_	2020	1480
-30	-	2370	1740
-40	-	2740	2020
-50	-	- '	25 10

Trimethyleneglycol ($\rm C_3H_8\theta_2$) + 2.3-Butanediol ($\rm C_4H_{10}\theta_2$)

Clendenning, 1948 (fig.)

%	f.t.	%	f.t.	
50	-33	80	+ 2	
60	-20	90	+10	
70	- 8	100	+17	

2,3-Butanediol	($C_{4}H_{10}O_{2}$)	d1	+	levo	
----------------	---	--------------------	---	----	---	------	--

Watson, Coope and Barnwell, 1951

watson,	Coope and ba	rnwell, 1951		
%	(α) _D	R	(α) _D	
		25°		
0.0 22.8 41.5 54.7	0.0 -2.04 -5.32 -6.98	65.5 83.2 100.0	-8.30 -10.58 -12.74	

2,3-Butanediol ($C_{\mathtt{u}}H_{10}\mathbf{0}_{\mathtt{2}}$) d1 + meso

Watson, Coope and Barnwell, 1951

K	n _D	%	n _D	
	25	0		
0.0 21.6 38.5 47.5	1.43102 .43219 .43334 .43396	61.0 75.6 100.0	1.43486 .43592 .43719	

2,3-Butanedio1 ($C_4H_{10}O_2$) meso + levo

Watson, Coope and Barnwell, 1951

%	n _D	R	ⁿ D	
	2.	5°		
0.0 17.1 19.2 37.7 41.3 41.4	1.4310 .4320 .4322 .4334 .4336 .4336	46.9 56.5 70.8 80.1 94.2 100.0	1.4339 .4345 .4355 .4361 .4368 .4372	

2.3-Butanediol ($C_{\rm h}H_{1\,0}\theta_{\rm 2}$) + Tetrahydrofurfuryl alcohol ($C_{\rm 5}H_{1\,0}\theta_{\rm 2}$)

Clendenning, 1948 (fig.)

	f.t.	%	f.t.	
0 10 20 30	17 11 5.5	40 50 60 65	-12.5 -28 -47 -60	

Kinematic viscosity for 50% at low temperatures (see author)

Diethylglycol ($C_6H_{14}O_2$) rac. + meso.

Young, Cristol and Weiss, 1943 (fig.)

mo1%	f.t.	mol%	f.t.	
0 10 20 21.5 30	21.7 16 11 10 E 22 38	50 60 70 80 90	48 59 68 76 83 87	

Butyl glycol ($C_6H_{14}O_2$) + Ethanolamine (C_2H_7ON)

Lecat, 1949

% 	b.t.	Dt mix.
.0	171.15	-
43 50	166.95 Az	+2.3
100	170.8	-

Glycol monoacetate ($C_4H_80_3$) + Methoxydiglycol ($C_5H_{1\,2}0_3$)

Lecat, 1949

<i>7</i> 6	p.t.	
0	190,9	
35	188.0 Az	
100	192.95	

METHOXYGLYCOL + METHOXYDIGLYCOL

Methyox	yglycol (C ₃ H ₈ O ₂) + Me	thoxydiglyc	ol	Butoxyglycol	(C ₆ H ₁ , O ₂) + Furfuryl alcohol (C ₅ H ₆ O ₂)
Simonet	ta and Bar	akan, 1947			Loont 1040	
t	mo1%	t	m	01%	Lecat, 1949	b.t.
	L	V	L	<u>v</u>		D. C.
,,	00.0	40.0 33	22	11.0	0 60 100	171.15 167.5 Az 169.35
25	99.0 94.0	68.0 23 54.0 22 34.0 22 27.0 23	23 42.5 52.5	11.0 91.5	100	109.35
22 25 26 23 23	87.0 77.5 71.5	34.0 22 27.0 23 17.5	76.0	93.0 9 7. 0		
23	/1.5	17.5				
mo1%	<u>u</u>	mo1%	n _D		Butoxyglycol	($C_6H_{1\mu}0_2$) + PropyI lactate ($C_6H_{12}0_3$)
	20°	25	5°		Lecat, 1949	
100 95.0	1.4260 5 .4250	100 72.50	1.4249 .4203		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b.t.
57.04 42.5	0 .4153	57.00 42.50	,4136			
38.0 24.0	0 .4094	38.00 24.00	.4090		0 55	171.15 170.75 Az 171.2
14.9. 7.5	0 .4045	7.50 0.00	.4033 .4013		100	171.2
0.0	0 .4023					
Methox	yglycol (($C_3H_8O_2$) + Etl (C_3	nylenchlorhy ₂ H ₅ OC1)	drin		ert.butyl ethylene glycol sym. f.t.= 88° + f.t.= 69°
					Backer, 1938	
Lecat,					mo1%	f.t.
<u> </u>		b.t.			_0	88.0
0 69		124.5 130.0	17		10 20	82.0-83.4 76.2-78.2
100		128.6	12		28 30	72.8-7 3.6
					33 38	73.2-74.0 73.2-74.2 73.3-74.5 (3+2)
F+hov.	~1ao1 (C	U A \ LEAT		.a	41 50	73.5-74.4 72.0-73.3
Ethoxy	giyeoi (c _i	H ₁₀ 0 ₂) + Etl Co	,H ₅ 0Cl)	urin	60.4 70	69,3-70,5 66,9-68,4
		, -,			80 86	65.0-68.4 64.9-65.6
Lecat,	1949			***	90 100	65.3-66.5 69.0
- %		b.t.	 	Dt mix.		
0 15		135.3 135.65				
52 100		128.6		+3.3		
100	····	140,0				

Dialysel (CH o) and the		Dioxyacet	one , monome	r (C ₃ H ₆ O ₅) + dimer	(C ₆ H _{1 2} O ₆)
Diglycol ($C_{\downarrow}II_{10}O_{3}$) + Triglycol (C ₆ H _{1 14} O ₁₄)		7.0.4			
Skripach and Temkim, 1946		Tollenaar	·	1 <i>d</i>	<i>e</i> .	+
b.t. mol.% L V	n _D 20°	mo1%	f.t.	mo1%	f.t.	
165 0 0 169 26 3 172.5 42 7 178 60 10	1.4482 .4497 .4516 .4530	0 6.4 15.4 25.5 33.2	83 82 79 79 85	46.2 61.8 70.3 100	98 107 112 117	
184 74 19 190 79 23 196 86 27 201 92 44 206 100 82	.4535 .4541 .4547 .4558	Glycero	I (C ₃ H ₈ O ₅)	+ Triglyco	oI (C ₆ H ₁ 40 ₁	.)
Diglycol (Cull 003) Phenoxygl	vcol (C _a H ₁₀ O ₂)	Lecat,	1949	• • • • • • • • • • • • • • • • • • • •		
Lecat, 1949.	5 5 10-27	× ×	· · · · · · · · · · · · · · · · · · ·	b.t.	Dt mi	x.
		0 46		290.5	-0.1	
0 245.5		63 100		285.1 Az 218.7	-	
- 244.5 100 245.2	Az					
Methoxydiglycol (C ₅ H ₁₂ O ₃) + Benz (C ₇ H		Glycerol	(C ₃ H ₈ O ₃)	► Methyl m	alate-1 (C	6H ₁₀ O ₅)
Lecat, 1949		Grossman	n and Landau	, 1910		
% b.t.	Dt mix.	g/100 cc	red yello	(α) ow green	pale d	ark viol. lue
0 205.25 - 192.5 Az	- -			20°		
100 192.95	-0 <u>.</u> 2	24.922 12.461	-3.91 -4.71 -2.57 -2:97 -2.49 -2.49	-5.52 -3.21 -2.09	-3.21 - -1.44 +	5.82 -5.42 2.93 - 0.24 -
Ethoxydiglycol ($C_6H_{1\mu}O_3$) + Isoamy: Lecat, 1949	l lactate (C ₈ H ₁₆ O ₃)		-2.42 -2.02 -2.02 -0.81	-1.41 +2.02		0.40 +1.41 3.63 ~
% b.t.						
0 201.9 38 201.0 100 202.4		Glycerol	(C ₃ H ₈ O ₃) +	Ethyl ta	rtrate (C ₈	H ₁₄ O ₆)
		Holmes,	1913			
Butoxydiglycol (CgH ₁₈ O ₃) + Gerani	ol (C ₁₀ H ₁₈ 0)		d	%	đ	
Lecat, 1949		100	150			
% b.t.		100 86.833 77.577 68.038	1.20990 .22034 .22674 .23262	54.263 47.663 42.513 37.676	1,24028 .24376 .24636	
0 232.2 - 228.5 Az 100 229.6		60.224	.23693		.24869	

GLYCEROL + CYCLOHEXANOL

Patterson, 19	001		Glycerol ($C_3H_8\theta_3$) + Cyclohexanol ($C_6H_{12}\theta$)
t	d t	đ	Danusso, 1955
	0 %	و خلید حصر سند فامل الله رسی شین الله الله الله الله الله الله الله الل	mo1% d v mo1% d v
13.2 30 54	1.2651 75.5 1.2552 99.5 1.2397	1.2256 1.2097	30°
17.1 40	4.985 % 1.2620 57 1.2475 99 9.906 %	1.2366 1.2076	0 0.9409 1448 73.44 1.1491 1613 26.75 1.0016 1478 86.76 .2004 1769 52.82 1.0763 1529 100 .2544 1911 *v= ultrasound velocity (m/.sec.)
17.3 37 57	1.2601 68.2 1.2474 99.5 1.2338		
8.5 21.4 45.2	23.455 % 1.2600 60 1.2512 100 1.2344	1.2238 1.1 94 4	Methoxytriglycol ($C_7H_{16}O_4$) + Phenoxyglycol ($C_8H_{10}O_2$)
10 36.3 55	48.125 \$ 1.2480 70 1.2269 100 1.2116	1.1993 1.1749	Lecat, 1949 % b.t.
19 45 59,5	69.93 % 1.2289 80 1.2059 97 1.1932 100 89.98 %	1.1752 1.1592 1.1575	0 245.25 45 244.0 Az 100 245.2
8 17 35 53	1,2271 72 1,2178 78 1,2004 100 1,1828	1,1643 1,1582 1,1377	Erythritol (C ₄ H ₁₀ O ₄) + Mannitol (C ₆ H ₁₄ O ₆)
t (α) _D	t (α) _D	t (α) _D	Pushin and Dezelic, 1932
1.	4.985 %		mol% f.t. E mol% f.t. E
17 9.68 26.8 10.63	35.7 11.38 47.6 12.10 9.906 %	77.5 12.88 98.2 14.13	0 118 - 50 140 100 10 114.5 110 60 147 100 16 112 111 70 152 80
12.1 8.55 17 9.07 17.2 9.01	52.7 11.43 57 11.70 65.8 12.09 23.455 \$	72.6 12.28 78 12.59 99 13.01	20 111 " 80 157 85 30 121.5 " 90 161 - 40 131 109 100 164 -
8 6.58 10.5 6.83 13 7.09 15.4 7.42	25.8 8.32 28.3 8.55 55 10.41 64.9 11.10 48.125 \$	68.8 11.28 75 11.61 100 12.39	Pentaerythritol ($C_5H_{12}O_4$) + Dipentaerythritol ($C_{10}H_{22}O_7$)
6.5 4.09 24 6.08 39.1 7.54 41.8 7.76	46.5 8.18 51.2 8.98 65.8 9.77	70.5 10.03 79 10.58 100 11.47	Friederich and Brun, 1930 (fig.)
1	69. 93 %	70 7 10 00	# f.t. % f.t.
16 4.59 19 5.11 33.9 6.98	40.6 7.71 48.5 8.42 60.8 9.22 89.98 \$	70.7 10.03 78.4 10.63 98.5 11.61	0 270 60 200 12 237 70 205 24 210 80 210 30 190 E 90 214
13 5.12 15.7 5.34 32.2 7.73 37.9 8.25	49.5 9.44 62.5 10.34 66.1 10.64 70.2 10.95	77.8 11.52 83 11.79 98.5 12.50	40 192 100 221 50 195
For 100 %, se	e: Methyl alcohol +	Ethyl tartrate .	

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

METHYL LACTATE + CYCLOPENTANOL

1139

Methyl lacta	ate ($C_4H_8O_3$) + Cyclop (C_5H_{10}		[sopropy]	l lactate	(C ₆ H _{1 2} O ₅		hylcycloh H ₁₄ 0)	exanol
Lecat, 1949			Lecat,	1949				
1/8	b.t.	Dt mix.	%		b.t.			
0 19 50 100	143.8 140.2 Az 140.85	-0.2	0 33 100		166.8 165.5 168.5	Az		
			Isoamy1	lactate (C ₈ H ₁₆ O ₃) + Linal	001 (C ₁₀	H ₁₈ 0)
Ethyl lactar	te ($C_5H_{10}O_3$) + Cyclol	exanol (C ₆ H ₁₂ 0)	Lecat, 1	949				
Lecat, 1949			%	· · · · · · · · · · · · · · · · · · ·	b	. t.		
- %	b.t.	Dt mix.	0			2.4		
0 80 94	154.1	-1.1	100		20	4.75 Az 2.4		
100	153.95 Az 160.8	_	Methyl m	ualate (C,	3II ₁₀ 0 ₅)	+ Methyl	tartrate (C ₆ H,	.0.
Propyl lacta	te ($C_6H_{12}O_8$) + Methy	lcyclohexanol-1,2	Timmerma	ins and Ve	sselovsky	, 1932		006 /
	(C ₇ H ₁	⁷ 0)	×	mo1%	f.t.	%	mol%	f.t.
Lecat, 1949			100	100	d + 48	1 50.0	47. 4	20
×	b.t.	Dt mix.	80.9 70.3	79.4 68.3	41 36	38.1 25.3	47.6 33.0 24.0	28 25 23 15
0	171.7	_	57.0 56.2	54.7 53.9	28 28	14.5	13.4	15
20 66 100	167.8 Az 168.5	-1.0	100 83.2 69.5 50.7	100 81.8 67.5 48.3	1 + 48 41 34 27.5	1 42.2 22.9 14.2	39.9 21.3 13.1	24.5 20.5 13
Isopropyl la	ctate (C ₆ H ₁₂ O ₃) + Cy.	clohexanol ₆ H ₁₂ O)		alate 1 () + Renzi	alcohol	
Lecat, 1949					-610-5	(C ₇ H ₆		
<u></u>	b.t.		Grossman	n and Land	au, 1910		-	
100	166.8 160.7 Az 160.8		g/100cc	red yell		(α) en pale blue		viol.
						20°		
			24.987 12.4935 5.112 ~	-8.28 -10	.09 -12 .53 -13 .74 -13	.45 -15. .1316. .50 -17.	91 -12.51 09 -15.61 49 -17.69 02 -18.00 00 -19.95	- - -19,76
			c=g mala	te in 100	cc			

METHYL TARTRATE d + I

Methyl tartrate (C ₆ H ₁₀ O ₆ ,) d+1	Ethyl tartrate ($C_BH_{14}O_6$) d+rac.
Roozeboom, 1885 and Adriani, 1900	Beck, 1904
% f.t. % f.t.	mol% f.t. d
0 43.3 20 78.7	at f.t.+1° 85° 90°
0.98 41.7 25 81.8 1.51 41.6 30 84.2 2.39 45.0 35 85.9 3.30 50.6 40 87.3	0 48 1.315 1.268 1.252 5 1.266 - 1.252
2.39 45.0 35 85.9 3.30 50.6 40 87.3 4.59 57.0 45 88.5 10 66.8 50 89.4	15 11252
4.59 57.0 45 88.5 10 66.8 50 89.4	20 67 1.295 1.271 " 25 "
	30 " 50 81 1.271 1.271 - 100 84 1.275 1.275 -
Centnerszwer, 1899	100 84 1.275 1.275 -
% f.t. % f.t.	mol% (water ²⁵ =1)
0.0 - 30.0 87.8	at f.t.+1° 85° 90°
1 2.4 64.4 34.9 89.6	0 159.3 14.023 11.054 5 - 14.251 -
10.2 83.5 44.4 90.3 15.2 84.3 47.2 90.1	10 10.854
20.2 86.7 50.0 - 25.1 88.0	15 10,761 20 33,415 13,971 10,748 25 - 10,587
	30 10.541
Groh, 1912	50 18.693 14.58 - 100 14.464 14.464 -
t crystallization velocity (mm/min.)	
0 %	Ethyl tartrate (C ₈ H ₁₄ O ₆) + Benzyl alcohol
35 30 3,50	(C ₇ H ₈ O)
25 3.48 15 1.79	Patterson and Stevenson, 1912
6.25 %	t d t d
25 15 0.21	90% 76.62%
12.5 %	17 1.0636 20 1.0819
45 35 0,32 25 0,26	20 .0613 21.4 .0825 46.9 .0408 45.1 .062
18.75 %	75.6 .9362 101.1 .0143
45 1.23 35 0.99	
25 %	t $(^{lpha})_{ m D}$ t $(^{lpha})_{ m D}$
55 3.33 45 3.63 35 3. 46	90% 76.62%
35 3.4 6 31.25 %	17 28.19 20 26.23 20 28.00 21.4 26.17
55 6.88 45 7.16	46.9 26.11 45.1 25.16
43.15	75.6 23.85 101.1 22.95
55 15.2 45 14.8	
50 %	
70 12.0 60 17.4	
57 17.9 55 17.9	

EthyI tartrate ($C_8H_{1\nu_0}O_6$) + β -PhenyIethyl alcohol ($C_8H_{1\nu_0}O$)	Dulcitol (C ₆ H ₁₄ O ₆) + Mannitol (C ₆ H ₁₄ O ₆)
Patterson and Stevenson, 1912	Gillot, 1904
t (a) _D t (a) _D	% f.t. % f.t.
73.7% 20	100 169.0 30 158.5 95 163.6 25 161.4 90 160.71 20 165.6 80 158.1 15 171.8 70 159.2 10 180.8 60 159.5 5 185.2 50 159.6 0 188.8
Ethyl tartrate ($C_8H_{14}O_6$) + γ -Phenylpropyl alcohol ($C_9H_{12}O$)	Dulcitol (C ₆ H ₁₄ O ₆) + Glucose (C ₆ H ₁₂ O ₆)
Patterson and Stevenson, 1912 t (α) _D t (α) _D	Gillot, 1904
- <u>v</u>	% f.t. % f.t.
75.17% 16.2 3.59 38.2 3.815 20 3.63 42 3.865 28.7 3.73	100 144.5 30 147.7 95 140.7 25.2 155.4 90 139.8 20 164.7 85 140.0 15 171.3 80 140.9 12.5 176.3 70 140.5 10 178.4 60 140.7 5 183.9
Isobutyl tartrate ($C_{12}H_{22}O_6$) d + 1 Campbell, 1929	60 140.7 5 183.9 50 139.0 0 188.8 40 140.3
% f.t. % f.t.	
0.00 69.8 32.8 53.4 E 1.57 69.0 34.10 54.5 4.19 67.7 41.44 55.9 9.43 65.2 46.52 56.8 21.26 60.0 48.64 52.0 24.24 57.0 50.60 57.2	Dulcitol (C ₆ H ₁₄ O ₆) + Saccharose (C ₁₂ H ₂₂ O ₁₁) Gillot, 1904
	% f.t. % f.t.
Methyl β - 0xy - β - phenylpivalate ($C_{12}II_{16}O_{5}$) (+)+(-) Matell, 1949-50	100 189.2 30 169.0 95 177.6 25 169.7 90 169.7 20 174.1 80 170.1 17.5 177.9 70 169.3 15 178.0 60 169.8 10 182.0 50 169.7 5 184.7 40 169.4 0 188.8
% f.t. % f.t.	107.11
0.0 71.0 74.8 65 50.0 69.5 79.8 64 55.8 69 84.5 65 58.8 68.5 89.4 67.5 64.4 67.5 94.0 69.5 69.4 66 100.0 71	Mannitol (C ₆ H ₁₄ O ₆) + Glucose (C ₆ H ₁₂ O ₆) Gillot, 1904
	\$ f.t. % f.t.
	0 169.0 60 132.8 5 161.2 70 132.9 10 157.0 80 136.1 20 144.3 90 136.8 30 135.4 95 139.1 40 134.4 100 144.4 50 132.9

MANNITOL + SACCHAROSE

Mannitol ($C_6H_{14}O_6$) + Saccharose ($C_{12}H_{22}O_{11}$)	Methyl 3,3,3-trichlor-2-oxybutyrate ($C_5H_7O_8Cl_8$) (-) + (+)
	Ross, 1936
Gillot, 1904	% f.t. % f.t. % f.t.
% f.t. % f.t. 0 169.0 60 155.6 5 166.5 70 155.8 10 162.9 80 156.6 20 157.8 90 165.7 30 158.5 95 178.1 40 157.6 100 189.2 50 155.7	0.0 62.6 41.6 58.0 73.4 50.9 5.6 59.2 41.8 57.7 76.9 49.8 10.4 56.9 50.0 58.8 78.7 48.0 16.3 51.7 53.1 58.5 78.9 48.4 22.1 48.6 57.3 58.3 82.0 50.4 22.2 48.3 62.3 57.2 85.6 52.5 25.2 49.6 65.6 55.6 89.7 56.2 28.0 52.3 65.8 55.8 94.5 58.8 35.8 56.1 68.1 55.1 100.0 62.6
Glucose (C ₆ H ₁₂ O ₆) + Saccharose (C ₁₂ H ₂₂ O ₁₁)	Lactamide (C ₃ H ₇ 0N) d + 1 Van Lancker, 1938
Gillot, 1904	mol% f.t. E nol% f.t. E
% f.t. % f.t.	100 54 - 61.4 74.5 47
100 189.2 60 139.3 95 175.8 50 135.6 92.5 169.8 40 139.8 90 165.8 30 134.8 87.5 158.0 20 139.6 85 150.4 10 140.5 80 143.9 5 141.9 70 140.7 0 144.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Lactose ($C_{12}H_{22}O_{11}$) + Saccharose ($C_{12}H_{22}O_{11}$)	Van Lancker, 1938 mol% f.t. E
Gillot, 1904 % f.t. % f.t.	100 160 - 68.8 144 55 53.5 136 48 27.5 116.5 48 0 E:6 mol% 54 -
100 189,2 50 176.8 95 184.4 40 181.2 90 182.2 30 184.5 85 180.4 20 191.7 80 180.3 10 200.1 70 176.4 5 202.3 60 173.8 0 206.0	Lactamide 1 (C_3H_70N) + Malic amide 1 ($C_4H_80_3N_2$) Van Lancker, 1938
	mol% f.t. E mol% f.t. E
	100 160 - 33.0 122 48 53.4 136 50 18.2 106 47 50.5 135 48 0 54 - 38.0 124 48 E: 5 mol%

Lactamide d (C _s	H ₇ 0N) + Tar	tramide 1 (C _u H	Ι ₆ 0 ₄ Ν ₂)	Chloral hydrate ($C_2H_3O_2Cl_3$) + Menthol ($C_{10}H_{20}O$)
Van Lancker, 1938	3			
mol% f.t.	E	mol% f.t	. Е	Pawlewski, 1893
100 205	-	43.8 179		mol% f.t. mol% f.t.
73.1 196 62.4 193 52.5 186 E: 5 mol%	60 53 50	21.5 159 0 54		0 56.5 95.29 52.5 5.28 49.9 96.71 46.7 10.55 42.6 97.50 38.5 15.76 36.3 100 39.8 20.45 43.0
Lactamide I (C _s	H ₇ ON) + Tar	tramide 1 (C ₄ H	$I_60_{\mu}N_2$)	
Van Lancker, 1938	3			
mo1%	f.t.	Е		Bis (2-Hydroxyethyl) sulfone ($C_4H_{10}O_4S$) + Bis (2-Hydroxyethyl) sulfoxyde ($C_4H_{10}O_3S$)
100 73.1 43.0	205 195 178	60 49		Rheinboldt and Giesbrecht, 1946
32.5 0	179 54	49		% f.t. m.t. % f.t. m.t.
				0.0 58.1 57.3 61.3 96.1 81.8 51.6 52.1 58.1 78.6 104.2 93.5 19.7 72.3 63.4 94.6 111.0 106.0 41.9 85.9 72.0 100.0 112.3 111.0
Malic amide (C ₄ F	$H_60_8N_2$) d	+ 1		
Timmermans and Ve				1,2-Methylcyclohexanol (C ₇ H ₁₄ O) + Furfuryl
% f.t.	<u>E</u>	% f.t.	E	alcohol (C ₅ H ₆ O ₂)
100 156 90 154 87.5 153	146	75 156 70 157-158 65 159	147	Lecat, 1949
87.5 153 85 152 80 153-154	n	62.5 160 50 163	11	% b.t.
133 154				0 168.5 - 168.3 Az 100 169.35
Tartaric amide (C ₄ H ₆ O ₄ N ₂)	d + 1		
Timmermans and Ve	esselovsky,	1932	į	Geraniol ($C_{10}H_{18}0$) + 2-Phenylethanol ($C_{8}H_{10}0$)
% f.t.	%	f.t.		Lecat, 1949
100 196	75	209		% b.t.
95 195-196 85 199	65 50	216 226		0 229.6 - 219.0 Az 100 219.4
			į	
			1	
			Į.	

1, 2-CYCLOHEXANEDIOL CIS. + TRANS.

1,2-Cyclohexanediol ($C_6H_{12}O_2$) cis + trans.	Borneol (C ₁₀ H ₁₈ O) + Benzyl alcohol (C ₇ H ₈ O)
Svirbely and Goldhagen, 1953	Lecat, 1949
% f.t. m.t. % f.t. m.t.	% b.t. Sat.t.
0.0 99.2 - 52.62 72.8 71.8 4.99 95.7 82.2 56.95 73.5 - 10.25 92.7 - 58.80 79.7 72.1 13.92 90.2 - 65.05 84.6 20.04 86.5 80.4 70.05 90.0 -	0 215.0 - 14.2 205.07 -8 Az 100 205.25 -
22.00 84.7 - 77.67 94.7 - 24.99 83.5 82.3 74.30 98.4 71.7 31.59 80.9 77.4 90.80 102.8 - 39.52 78.6 76.1 100.00 49.26 74.9 -	Borneol (C ₁₀ H ₁₈ O) + Phenylethanol (C ₈ H ₁₀ O) Lecat, 1949
E: 56.6% 71.9°	% b.t. 0 215.0
	85 214.7 Az 100 219.4
$1,4$ -Cyclohexanediol (${ m C_6H_{12}O_2}$) cis + trans.	
Coops, Dienske and Atere, 1938	α -Terpineol ($C_{10}H_{18}O$) + Phenylethanol ($C_{8}H_{10}O$)
% f.t. % f.t.	
0 112 30 103 10 108 40 104 15 103.5 45 104.5	Lecat, 1949 % b.t. Dt mix.
16 102 50 107 17 " 60 116	
18 " 70 123.5 20 102.5 85 134.5 25 " 100 143	0 218,85 - 67 217.85 -1.4 Az 100 219.4 -
(1+1) tr.t.= 102°	
Borneol (C ₁₀ H ₁₈ O) d + 1	α -Terpineol ($C_{10}H_{18}O$) + Diglycol ($C_{4}H_{10}O_{3}$)
_	Lecat, 1949
Ross and Somerville, 1926	b.t. Dt mix.
# f.t. % f.t.	0 228.85 - 52 - +0.8 86.5 217.45 Az
0.0 206.5 64.6 206.2 18.7 206.4 75.9 206.2 28.0 206.6 87.6 206.1	86.5 217.45 Az 100 245.5 -
28.0 206.6 87.6 206.1 50.5 206.4 89.5 206.8 59.2 206.0 100.0 207.2	
	Terpin ($C_{10}H_{20}O_2$) + Terpin hydrate ($C_{10}H_{22}O_3$)
Borneol d (C _{1 o} H _{1 g} O) + Fenchy1 alcohol l	
(C _{1 o} H _{1 8} 0) Fischer, 1940	
**************************************	# f.t. % f.t.
nol% f.t. E nol% f.t. E	100 123 40 116.8 90 122.8 30 112 80 122.7 20 105.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 122.7 20 105.7 70 122.5 10 95 E 60 121.3 0 105

Tetralinediol	1	($\mathtt{C_{10}H_{12}O_{2}}$)	trans +	cis.
---------------	---	---	------------------------------	---	---------	------

Lettre and Lerch , 1952 (fig.)

mo1%	f.t.	mo1%	f.t.	
0 22 30 50	152 141 E 144 148 (1+3	75 95 100	136 116 E 121	

Tetralindiol rac. ($C_{10}H_{12}O_2$) trans + cis.

Lettre and Lerch, 1952 (fig.)

_	mo1%	f.t.	mol%	f.t.	_
	0 15 25 50	133 126 E 133 140 (1+1)	75 90 100	131 115 E 118	

Tetralindiol trans ($C_{10}H_{12}O_2$) d + 1

Lettre and Lerch, 1952 (fig.)

mol%	f.t.
0 25 42 50	152 140 130 E 132

Tetralindiol cis - trans ($C_{10}H_{12}O_2$) d + 1

Lettre and Lerch, 1952 (fig.)

Bettie and Bere	11, 1702 (11g.)	
mo1%	f.t.	
0 25 50	148 142 138	

Menthol 1 ($C_{10}H_{20}0$) + Fenchyl alcohol 1 ($C_{10}H_{18}0$)

Fischer, 1940

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0 25.8 43.5 49.4	42.1 22.3 4.5 -4.0	+3.8 -3.5 -18.1	59.5 75.4 100	-2.2 +20.6 42.0	-17.9 -7.5

Menthol ($C_{10}H_{20}0$) + Phenyl ethanol ($C_8H_{10}0$)

Lecat, 1949

К	b.t.	Sat.t.
0 70 100	216.3 215.05 219.4	35 Az

Menthol ($C_{10}H_{20}O$) + Dibromhydrin as.

Lecat, 1949 (C₃H₆OBr₂)

%	b.t.
0	216.3
22	216.2 Az
100	219.5

3,4-di(p-Hydroxycyclohexyl)hexane rac.($C_{18}H_{34}\theta_2$) Dihydrostilbestrol rac ($C_{18}H_{22}\theta_2$)

Ungnade and Morris, 1947 (fig.)

%	f.t.	m.t.	%	f.t.	m.t.
0	133	130	50	107-108	102
5	132	120	55	107.5	Ħ
10	129	109	60	106	Ħ
ĨŠ	123	103	70	112	н
20	119	11	7 5	$\overline{116}$	11
25	105-104	11	80	118	_
27	106	19	85	122	102
30	105.5	**	90	123	106
35	106-107	и	95	125	120
40	106	102.5	100	126	125
45	107	102,0	100	120	

Epichole	stanol ((C ₂₇ H ₄₈ O)	+ Chole:			Cholesta Bonstedt		₇ H ₁₄₈ 0) +	A110-α- (C ₂₈ H ₅₀)1
Lettre ,	1932 (fig	g.)				%		f.t	•		
76	f.t.	m.t.	%	f.t.	m.t.	100		142 141			
0 25 50 7 5	181 169 156.5 143	180.5 161 149 137	82 90 100	140 134.5 141.5	135 134.5 140	75 50 25 0		141 141 142 142	. 8		
Epichole	stanol (C	₂₇ Н ₄₈ О) -	+ Copros	sterol				₇ H ₄₈ O)+	γ-Sitos	stanol ((C ₂₉ H ₅₂ O)
			(C ₂₇ H ₄	, ₈ 0)		Bonsted					
Lettre	, 1932 (f	ig.)					f.t		%	f.t.	
%	f.t.	m.t.	%	f.t.	m.t.	100 75	142 139 137	.9 4 .5 2	0 5	137.5 140.5	
0 25 50 53	181 166.5 150 150	180.5 154.5 142 141.8	62 75 92 100	145.5 136 110 99.5	129 118.5 100 98	50	137 133		0	142	
Cholest	Cholestanol ($C_{27}H_{48}0$) + Epicoprosterol ($C_{27}H_{48}0$)						, 1932 (f f.t.	7H _{1.8} 0) + ig.) m.t.	Choles	f.t.	m.t.
Lettre	, 1932 (fi	g.)				_0	141	141	60	135	131.7
% 0	f.t. 141.5	m.t.	% 65	f.t. 143.5	m.t.	10 20 30 40 50	140.5 140 139 138 136,5	138.5 137 135 132.5 132	66 70 80 90 100	132 135 140 143 145	132 132.5 133 138 145
5 17.5	138.5 133 140	128 128 128	75 82 89 92	143.5 137.5 131.5 116	115 110						
25 29 50 (1+1)	142.5 152.5	128.5 148	100	115 117	116.5	Coprost	erol (C _z	₇ H ₄₈ 0)+	Epicopi (C ₂₇ H ₄₄		
		·				Lettre	, 1932 (fig.)			
						%	f.t.	m.t.	%	f.t.	m.t.
						0 25 33 40	99.5 88 84.5 80	98 75 71.5 71.5	50 62 75 100	87 97 103.5 117	71.5 71.5 78.5 116.5
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Epicopro	Epicoprosterol ($C_{27}H_{48}0$) + Ergostanol ($C_{28}H_5$						oergostero	l (C _{2/8} H _{4.6}		rgosterol C ₂₈ H ₄₄ O)	
Lettre	, 1932 (fig.)				Lettre	, 1932 (1	fig.)			
76	f.t.	m.t.	%	f.t.	m.t.	%	f.t.	m.t.	%	f.t.	m.t.
100 93 75 50 (1+1)	140.5 137 144.5 151	13 7 135.5 138 148	43 25 10 0	147 139 124 117	140 121 115 116.5	10 20 30 40 50	172,5 172 170,5 169 168 167	172.5 170 168 175.5 163.5 163	60 70 80 90 100	165.5 163.5 162.5 161.5 161.5	161.5 161 160.5 160.5 161
Dihydroe	roergoste rgosterol , 1930 ((C ₂₈ H ₄ ,	ς 0)	+ I. or II.		rol ((ydrolumisto C ₂₈ H ₄₆ O)		Н _{н 6} 0) 4	· Dihydrol	umiste-
%	f.t.		6	f.t.		76	····	f.t.		m.t.	······
0 9 25 35 50 (1+1)	208 205 199. 202 204.	75 5 92 97	2	204.2 200 187.5 172.5 173		0 5 10 20 30 40 50 60 80		140 150 159 170 177.5 182 186 183 175		139 138.5 138.5 149.5 162.5 177.5 181.5 175.5	(1+1)
Lettre %	, 1932 (:	fig.)	II. %	f.t.	m.t.	100		165 140		150	
0 7 16 25 40 (1+1)	214 210 202 203 206	210.5 202.5 200.5 200 200	51 75 85 100	206.5 200.5 195.5 173	204.5 180.5 175.5 172		drolumiste		Н ₄₆ 0)	+ Calcif	
							, 1932 (fi				
Epidihydroergosterol (C ₂₈ H ₄₆ 0) + Ergosterol (C ₂₈ H _{4i} 0) Lettre, 1932 (fig.) \$\% \text{f.t.} & \mathrm{m.t.} & \mathrm{f.t.} & \mathrm{m.t.} \\ 0 & 214 & 212.5 & 75 & 185 & 161 \\ 25 & 202.5 & 194.5 & 80 & 182.5 & 160 \end{array}					% f.t. m.t. 0 139.5 138.5 9 136 129 25 131.5 128.5 30 130 128.5 50 133 128.5 57 131 128 75 125 118 96 117 116.8 100 118 117.5			(1+1)			
49 60	190.5	188 174	95 100	174 161.5	160 160 160.5						

DIHYDROLUMISTEROL + CALCIFEROL

	misterol (C ₂₈ H ₄₆ () + Calciferol (C ₂₈ H ₄₄ 0)		II .	ne D (C ₂₈ H ₁		Pyrocalcii	erol (C ₂₈	Н ₄₄ 0)
Lettre ,	1932 (fig.)			%		f.t.		m.t.	
% 0 25 50 68	f.t. m.t. 139.5 138.5 124 105 109 91 98 89	% f.t. 75 101 87 109.5 100 118	90 95 117	0 12.5 22 25 50 75 90 91 100	;	116.5 110 108 113 122 112 94.7		115 107.5 107 102 120 (1 97.5 95.5 94.8 94	+1)
Lumister	01 (C ₂₈ H _{4,4} 0) + Py	rocalciferol 28H ₄₄ O)			ne D (C ₂₈ H	94.8 95	Pyrovitam		
Lettre ,	1932 (fig.)					44 /	J 10 V 1 Cum	rne (eggn	440)
%	f.t.	m.t.		Lettre	, 1932 (f	ig.)			
0 25	115.5 108.5	112		%	f.t.	Е	%	f.t.	E
0 25 50 75 100	101.5 94.5 96	98 92 98 95		0 19 25 33	116 108.5 106.5 102	115 95 95 95	50 75 82 100	104 108.2 109.5 113	95 95 95 108,5
	**************************************			I					
1,	1 (C _{2β} H ₄₄ 0) + Vi:	tamine D (C _{ՁՑ} H _ե լ	0)	Pyroca	lciferol (C ₂₈ H ₄₄ 0)) + Pyrov: (C ₂₈ H		
	f.t.	m.t.		Lettre	, 1932 (fi	g.)			
0 10	114.5 112	113.5 108.5		%	f.t.		%	f.t.	
25 37.5 50 65 75 90 100	114.5 112 117.5 120 122 120 117 107.5	110 115	l+1)	0 5 25 50	96 95 115 120	(1+1)	75 92 00	116.5 110 115	
				Dihydr	ostilbestro	1 (C H.	, o0 o) + 9	itilbestral	
				1 3 3		- (- 82		C ₁₈ H ₂₀ O ₂)	
Lumistero	$1 (C_{2g}H_{\mu\mu}0) + Py$	rovitamine (C ₂₈ H	l _{μμ} 0)	Unonac	de and Morr	iss. 10/7	/ (fim)		
Lettre ,	1932 (fig.)		į	%		n. t.		t. m.t	
%	f.t. %	f.t.		100					
0 19 25 50	116 7: 108.5 9: 120 100 132.5 (1+1)	5 112		90 80 70 62 60	162 156 146 134	1 40 1 2 6	50 12 40 12 30 12 20 12 10 12	20 118 20 118 23 118	

Dihydro	ostilbestro	ol-meso (C ₁₈ H ₂₂ O;		bestro1 H ₂₀ 0 ₂)		strol (C				C ₁₈ H ₂₄ O ₂)
Ungnac	de and Mori	riss, 1947	/ (fig.))					 %	f.t.	m.t.
%	f.t.	Е	%	f.t.	E		f.t.	m.t.		<u> </u>	
0 10 20 30 40 48 60	186 178 176 174 172 170 169.5	185 1 7 0 169 168 169 168.5	65 70 74 80 92 100	169 " " 168.5 168	168	0 10 25 30 40 50	168.5 163 152 146 137 137	168 148 136 134 135 135	60 70 80 85 90 100	145 151 158 163 167 170	135 - - 144 149 168
===					=====	Benzoi	n (C ₁₄ H ₁	202)+	Hydrober	nzoin (C ₁	_Կ Ալաս
	ies, 1949		······································	Carre	and Maucl	lere, 193	31				
- %	f.t.	m.t.	<u> </u>	f.t.	m.t.	mo1%	f.	t.	mo1%	f.t.	
0 10 20 40	185 178 177 171	185 177 170 168	60 80 100	170 168 167	167 167 166	0 10 20 30 40	11	32 26 16 08.5 99 E	60 70 80 90 100	112 119 124.5 130 134	
	e and Morr	iss, 1947	(fig.)	(C ₁₈ H ₂₄ O ₂)		robenzoir			1 + 1	
		m.t.	 _	f.t.	m.t.	%	m.t.	f.t.	K.	m.t.	f.t.
0 5 15 20 30 32	187 183 176 174 168 155	186 148 140	40 56 69 76 84 100	143 141 150 157 166 170	137 136 137 148 168	0 5 10 15 20 25	148.5 148 147 145 144 148	148.5 144 140 136 133 130	55 60 65 70 75 80 85	125 130 134 138 141 144	120 122 124 127 130 133
Stilbe	estrol (C ₁	₈ H ₂₀ O ₂)		bestrol		30 35 40 45 50	137.5 134 130 125 119	127 124 122 120 119	90 95 100	145 147 148 148.5	134 140 144 148.5
Walton	1, 1943										
%	f.t.	m.t.	%	f.t.	m.t.	Methy 1	mandela	t e (C ₉ H ₁	00 ₈) (1 + 1	
0 10 20	171.5 166.5 161.5	170.5 155 147	63 64 65	140 139.5 140.5	136 136 137		erszwer,				
30 40	156.5 153	136 139	70 80	144 147	136 13 7	9		f.t.		6 	f.t.
50 60	146 144	13 7 136	100	151 151.5	141 150.5	100 95 87 75	.1 7.5 .5	54.6 52.3 50.0 47.5	54	2.5 4.8 0.0 (1+1)	48.3 49.2 50.0

%	f.t.	%	f.t.	Isobutyl ma	ndelate (C	₁₂ H ₁₆ O ₃) (1 + 1
<u> </u>				Centnerszwe	r, 1899		
100 95.2 90.9	54.4 51.2 48.5	50.0 43.0 33.9	53.3 52.6 50.3	%	f.t.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	f.t.
87.0 83.3	46.1 46.4	21.2 16.3	48.4 46.7	100	2F 2	(2.(37.0
80.0	48.2 49.7	12.8 8.9	46.8 48.8	100 95.0	35.3 33.3	62.6 54.7	37.8 38.2
80.0 66.7 57.1	50.2 52.8	4.7	52.0 54.4	87.3 75.0	32.9 37.0	50.0	38.7
ngus and	Owen, 1943			Angus and O	wen, 1943		
%	f.t.	%	f.t.		f.t.	%	f.t.
100.0	47.8	80.82	44.0	100.0	35.2	75.6	29.8
98.42	46.8	75.25	48.0	97.6 95.2	$\frac{34.1}{32.8}$	71.4 67.0	32.3 34.6
94.42 92.15	44.4 43.0	75.25 72.50 70.46	49.0 49.6	91.3	32.8 31.2	67.0 62.7	35.8
88.87	41.2	68 60	50.2	87.3 82.1	29.0 27.0	62.0 57.4	36.0 37.1
86.69 85.32	39.8 39.0	64.80 58.10	50.7 51.7	79.4	27.3	50.0	38.2
83.84	39.0 41.6	50.0	52.2	E: 80.5%	26.2°		
E: 84.	.5% 38.4	¦°					
thyl mande	elate (C _{1 o} l	H ₁₂ 0 ₃) d +	1	l-Menthyl m			d + 1
Ross, 1936	5			8	f.t.		f.t.
%	f.t.	%	f.t.	100.00	77,6	54.65	83.5
100	20.0	F0 0	20.1	94.88 89.93 86.57	76.0 73.8	50.00	83.5 83.7
83.3 75.0	29.8 22.9	50.0 45.6	28.1 27.2	86.57	73.8 72.4	45.87 41.77	83.7 83.6
75.0 71.4	22.9 17.0 16.1	40.0	25.8 24.7 (1+1	(1 85,17	72.4 72.8	36.15	82.3
	24.4 27.1 27.1	33.3 25.0	15.2	72.92	76.2 78.5	33.63 26.08	82.7 86.1
66.7	27.1	20.0	20.1 29.8	72.92 63.54 58.26	82,1	14.03	91.5
66.7 62.5	77 I		29.8	36.20	82.8	0.00	97.2
66.7	27.1			l l		(1+1)	
66.7 62.5 60.0	27.1					(1+1)	
66.7 62.5 60.0 54.6	27.1 27.1			4-0xybenztl		I ₅ ONS) + 8-	Oxyquinoleine ₉ H ₇ ON)
66.7 62.5 60.0 54.6	0wen, 1943 f.t.	K ne	f.t.		niazol (C ₇ H	i ₅ θNS) + 8~(C	
66.7 62.5 60.0 54.6	0wen, 1943 f.t. 28.4	71.03	21.8	Erlenmeyer	niazol (C ₇ H	(Cusser, 1938	₉ H ₇ ON)
66.7 62.5 60.0 54.6 Angus and % 100.00 91.40 87.40	0wen, 1943 f.t. 28.4 24.0 21.8	71.03 68.48 60.80	21.8 23.0 25.8	Erlenmeyer % f	niazol (C ₇ H and Ueberwa	i ₅ θNS) + 8~(C	
66.7 62.5 60.0 54.6 Angus and	0wen, 1943 f.t. 28.4 24.0	71.03 68.48 60.80 57.10	21.8 23.0 25.8	Erlenmeyer	niazol (C ₇ H and Ueberwa	(C ssser, 1938	9H ₇ ON) f.t. m.1
66.7 62.5 60.0 54.6 Angus and % 100.00 91.40 87.40 83.18	0wen, 1943 f.t. 28.4 24.0 21.8 19.4 18.0	71.03 68.48 60.80	21.8 23.0	Erlenmeyer # 100 7 91 77.7	and Ueberwa 7. t. m. 75.5 75 74 75 73	l ₅ ONS) + 8-1 (C asser, 1938 t. % 10.4 20.6 0.0	9H ₇ ON) f.t. m.1
66.7 62.5 60.0 54.6 Angus and \$\frac{100.00}{91.40} 87.40 83.18 76.10	0wen, 1943 f.t. 28.4 24.0 21.8 19.4 18.0	71.03 68.48 60.80 57.10	21.8 23.0 25.8	Erlenmeyer # 1 100 7 91	and Ueberwa 7. t. m. 75.5 75 74 75 73	l ₅ ONS) + 8-1 (C asser, 1938 t. % 10.4 20.6 0.0	f.t. m.t

Carvoxi	me (C,	_o H ₁₅ ON)	d + 1							
Rheimbo	ldt and	Kircheis	en, 1926							
%	f.t.	m.t.	%	f.t.	m.t.					
100 90.4 80.1 70.5 59.6 51.0	72.0 78.0 84.5 88.0 91.0 92.0	70.0 73.0 78.5 83.0 88.0 91.0	40.1 39.9 31.0 20.3 10.7 0.0	90.5 90.5 89.0 85.0 79.5 72.0	88.0 87.5 84.0 79.0 75.0 70.5					
%	f.t.	m.t.	%	f.t.	m.t.					
100 89.7 76.6 72.8 58.9 49.5	72.0 79.5 85.0 87.5 90.5 91.5	70.0 74.0 80.0 81.0 88.0 88.0	31.4 31.4 22.7 13.6 0.0 (1+1)	90.0 90.0 87.0 82.0 72.0	84.5 85.0 80.5 76.0 70.5					
Adriani	Adriani, 1900									
 %	f.t.	m.t.	%	f.t.	m.t.					
100 99 98 75 50 40 30	72.0 72.4 77.4 86.4 91.4 90.4 88.2	72.0 - 82.0 91.4 85.0	20 10 5 2 1 0	84.6 79.9 75.4 73.0 72.4 72.0	80.0 75.0 73.0 72.0					
Beck,	1904									
%	f.t.	,	d at f.	t. + 1°	n (0%=1)					
100 70 50 30 0	72.0 87.3 93.4 87.2 72.0	1.	.0140 .0100 .0084 .0106 .0160		.997 .658 .521 .659					
		•	-	none oxi e (C ₉ H ₁₅						
Kanabus	, 1950									
mo1%	f.	t.	mo1%	f.t.						
100 90 80 70 55 50	78 76 73 70 65 73	E	40 30 20 10 0	87 102 116 130 145						

Camphor	oxime (C ₁	_o H ₁₇ ON) d	+ 1
Adriani	, 1900		
%	f.t.	tr.t. I	II
0 10 20 30 40 50 60 70 80 90 95 100	118.8	112.6 110.6 109.4 109.7 110.6 112.6	- - - - 86 97 103 97 - - - -
Beck, 1	904		(0.1.2)
9.		d 115.8°	η (0%=1)
100 50		1.0110 .0108	1.00 1.00

Benzaldoxime (C_7H_70N) α + β

Cameron, 1898 % f.t. % f.t. 0 34-35 26.3 46 4.0 30.0 50.8 79 5.0 28.6 73.8 101 8.3 26.2 100 130 E: 9% 25-26 "natural" f.t.: 6% 27.7°

Schoevers, 1908	Phenol (C_6H_6 0) + Hydroquinone ($C_6H_6O_2$)
% f.t. % f.t.	
0 36 10 42.1 5 32.4 15 48.1 7 35.6 20 57.2	Jaeger, 1907 % f.t. % f.t.
5 32.4 15 48.1 7 35.6 20 57.2 8.8 39.35 100 127.5	
E: 26.2-26.4°	0 42 13.3 72.5 5 34 13.7 75 6.2 49.25 25.7 107
"natural" f.t.: 29.9°	6.2 49.25 25.7 107 8.3 53 100 161
Benzaldoxime (C_7H_7ON) $\alpha + \alpha$,	Phenol (${ m C_6H_60}$) + Pyrocatechol (${ m C_6H_60_2}$)
Beck, 1904	Jaeger, 1907
% f.t. d η(0%=1)	% f.t. % f.t.
at f.t. +1.5°	0 42 64.5 83 7.6 37 75.7 91 30 50.5 100 104
100 16.0 1.1178 1.164 75 21.0 .1160 .1251	30 50.5 100 104
50 24.9 .1151 .082 25 28.9 .1152 .073	
0 34.5 .1150 .000	Phenol (C_6H_6O) + Resorcinol ($C_6H_6O_2$)
p-Anisaldoxime ($C_8H_9O_2N$) α + β	Jaeger, 1907
p-Antisatuoxime (Cgngogn / a + p	% f.t. % f.t.
Carveth, 1899	100 110 12.5 33 70.2 39.5 0 42
% f.t.	13.7 31.5
0 100 134.0	
"natural" f.t.: 54.2°	Hrynakowski and Jeske, 1938
	at room t.
Anisaldoxime ($C_8H_9O_8N$) cis + trans	0 9.8 53 11.8 10 11.2 60.6 12.0 25 11.3 76 12.5
	40 11.8 91 11.1
Skau and Saxton, 1933	44 12.9 100 12.2
% f.t. E % f.t. E	
0 62.6 - 19.48 56.7 56.7 4.23 60.8 56.4 22.76 64 56.6 7.62 59.5 56.3 33.63 80 56.6 10.61 58.6 56.6 100 127 14.79 57.8 56.8	
"natural" f.t.: 87.7% 58.4°	

Phenol (C ₆ H ₆ O) + o-Cresol (C ₇ H ₈ O)	Dawson and Mountford, 1918
2 12 1 10/5	wt% mol% f.t. wt% mol% f.t.
Fox and Barker, 1917	0 0 40.5 36.96 33.78 19.7 9.00 7.93 35.8 39.43 36.16 19.9 14.72 13.06 32.6 42.47 39.12 19.85 15.82 14.06 32.05 46.10 42.68 19.85 21.46 19.22 28.7 48.81 45.35 19.95 24.54 22.06 27.05 58.63 55.23 20.75 28.28 25.55 24.65 69.70 66.69 22.5 30.69 27.82 23.1 75.75 73.11 24.05 31.84 28.9 23.0 80.00 77.69 24.85 34.27 31.21 21.15 86.93 85.14 26.7 34.54 31.47 21.2 91.41 90.25 27.95 36.00 32.87 20.55 100 100 30.45
	Knight, Lincoln and al., 1918 (fig.) # f.t.
Fox and Barker, 1918	0 40,6
% b.t. % b.t.	30 100 21.1 29.0
100 190.5 40 185.5 90 190 30 185 80 189 20 184 70 188 10 183 60 187.5 0 182.1 50 186.5	Fox and Barker, 1917 % d % d 15.5°
Rhodes, Wells and Murray, 1925 L V L V	100 1.0516 70 1.0597 95 .0529 65 .0610 90 .0543 60 .0623 85 .0557 55 .0636 80 .0570 75 .0584
at b.t. 6.4 5.0 65.25 59.6 18.75 14.08 66.4 60.0 24.5 20 81.9 77.3 41.1 35.2	Knight, Lincoln and al., 1918 (fig.) % d 45°
Fox and Barker, 1918	0 1.0543 30 .0450
% f.t. % f.t.	Kendall and Beaver, 1921
100 30.0 40 20 90 27 30 24 80 24 20 29 70 21 10 35 60 20 0 40.5	100 7608 0.127 30.73 8645 2.583 86.57 7835 .375 24.21 8731 3.321
	80.27 7930 .415 19.97 8757 4.196 70.00 8099 .612 12.70 8825 5.422 61.19 8235 .693 9.90 8851 6.183 50.90 8404 .885 0 8945 8.84 37.17 8565 1.686

PHENOL + M-CRESOL

	Farrand Donkar 1010
Phenol (C_6H_6O) + m-Cresol (C_7H_8O)	Fox and Barker, 1918
	% f.t. % f.t.
Fox and Barker, 1917	100 +2.4 40 20 90 -4 E 30 26
% b.t. % b.t.	80 +14 20 30 70 17 10 35
100 202.3 45 189.3 95 201.3 40 188.6 90 199.4 35 187.8 85 197.7 30 187.7 80 196.2 25 186.4	60 13 0 40.5 53 10.2 E (1+2)
75 194.8 20 185.5	V-i-l- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M 65 192.5 10 184.0 1	Knight, Lincoln and al., 1918 (fig.)
55 190.5 0 182.4	% f.t.
50 189.9	0 40.6 30 24.0
	30 100 3.0
Fox and Barker, 1918	
% b.t. % b.t.	
	Fox and Barker, 1917
100 202,2 40 188,5 90 199,5 30 187,0	% d % d
80 196.5 20 185.5 70 193.5 10 184.0 60 191.5 0 182.1	15.5°
60 191.5 0 182.1 53 190.0	100 1.0387 75 1.0476 95 .0404 70 .0492
	90 .0422 65 .0513 85 .0440 60 .0532
	80 .0457
Rhodes, Wells and Murray, 1925	Knight, Lincoln and al., 1918 (fig.)
The state of the s	% d
L V L V	45°
at b.t.	0 1.0543
2.25 1.4 48.8 35.8 8.75 5.25 72.7 58.7	30 .0413
8.75 5.25 72.7 58.7 28.0 16.9 84.0 73.8	
Dawson and Mountford, 1899	Kendall and Beaver, 1921
wt% mol% f.t. wt% mol% f.t.	mio1% п и.10 ⁸ mo1% п и.10 ⁸
	25°
11.73 10.32 35.4 70.25 67.24 25.8	100 13420 1.397 36.48 9961 4.197 87.41 12500 .592 26.75 9698 5.694
24.23 21.75 29.95 79.72 77.37 24.2	75.51 11690 .887 18.10 9598 5.923 68.63 11310 2.175 10.79 9206 6.810
11 39.98 36.66 22.8 87.54 85.97 10.5 !	61.52 10950 .587 6.99 9105 7.431
43,44 40,00 21,1 91.52 90.37 15.2 48.37 44.92 21.6 93.72 92.85 11.2 56.54 53.07 24.0 95.89 95.31 7.6	54.98 10700 .988 0 8945 8.84 48.26 10400 3.379
56.54 53.07 24.0 95.89 95.31 7.6 60.40 57.01 24.95 100 100 10.0	
(1+2)	

Howell and Robinson, 1933	Saunier, 1948 and 1950 (fig.)
% к.10 ⁸ % н.10 ⁸	% dew point bubble point
50° 100 25.9 42.50 25.6 94.60 26.2 37.42 25.3 88.30 26.3 32.53 22.5 82.97 27.9 29.35 21.6 75.73 27.2 23.47 17.8 70.33 28.3 20.14 16.8 63.72 28.3 16.30 15.5 59.92 27.1 10.61 10.6 53.57 26.7 5.32 6.7 48.18 26.6 0.0 2.1	760 mm 100 201.5 90 200.1 198.2 80 198.3 195.2 70 196.3° 193.0 60 194.4 191.0 50 192.4 189.2 40 190.4 187.7 30 188.1 186.1 20 186.2 185.0 10 184.1 183.5 0 182.2 182.2
Howell and Jackson, 1934	1,1005
wt% mol% ε wt% mol% ε	Lunge, 1882 and 1885
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 +40.5 33.26 6.0 1.39 32.5 51.65 -2.0 2.95 30.0 59.58 +1.0 4.69 28.0 68.21 5.0 7.18 26.0 76.57 13.0 12.35 24.0 83.70 20.0
Phenol (C_6H_6O) + p-Cresol (C_7H_8O)	Dawson and Mountford, 1899
Rhodes, Wells and Murray, 1925	wt% mol% f.t. wt% mol% f.t.
%	0 0 40.5 53.90 50.45 +0.1 12.50 11.06 32.35 57.50 54.06 0.75 20.04 18.00 26.8 60.55 57.17 0.8 24.50 22.02 23.9 62.88 59.59 4.65
at b.t. 8.5 5.5 67.3 55.6 25.5 16.0 78.4 68.0 43.1 30.2 80.0 70.0	24.50 22.02 23.9 62.88 59.59 4.65 29.07 26.27 19.6 68.18 65.10 10.0 33.76 30.75 15.25 76.27 73.67 16.55 38.21 34.92 11.05 79.60 77.25 19.5 42.45 39.07 6.65 83.63 81.64 22.3 43.22 39.83 4 9 84.17 82.23 22.75
Fox and Barker, 1917	45.11 41.70 2.5 91.47 90.32 28.15 47.37 43.33 +0.2 96.06 95.49 31.2 49.77 46.33 -1.4 100 100 34.15
% b.t. % b.t.	
100 201.7 45 188.1 95 200.1 40 187.5 90 198.4 35 186.8	Fox and Barker, 1917 % f.t. % f.t.
85 196.7 30 186.1 80 195.3 25 185.4	% f.t. % f.t. 100 36.0 40 +7
75 194.2 20 184.8 70 193.0 15 184.2 65 191.7 10 183.5 60 190.8 5 182.9 55 189.8 0 182.3 50 189.0	90 26 30 17 80 18 20 26 70 8 10 34 60 -2 0 40.5

PHENOL + CRESOL

	 					Phenol (C ₆ H ₆ O) +	Cresol (C ₇	H ₈ 0)	
Knight, L	incolm a	nd al., 1	1918			j.				
*		f.t.					nd Groppel,			
0		40.0				%	f.t.	%	f.t.	
30 90		15,7 26.1 34.4	l			52.7 51.9 51.0	$\frac{9.5}{10}$	25.5 24.7 23.8	26 26.5	
100		34	•			50,2	10.5 11	23.0	27 27.5 28	
%		d				49.3 48.5 47.6	11.5 12 12.5	22.1 21.3 20.4	28.5	
ļ 	25°	45	· · · · · · · · · · · · · · · · · · ·	7		ll 46.8	13 13.5	20.4 19.6 18.7	29 29.5 30	
100 90	1.0312 .03491	-				45.9 45.1 44.2	14 14.5	17.9 17.0	30.5 31	
30 0	-	1.04 .05	124 543			43.4 42.5 41.7	15 15.5 16	19.0 18.7 17.9 17.0 16.2 15.3 14.5	31.5 32 32.5	
=======================================						40.8 40	16.5	13.6 12.8	33 33.5	
	_					39.1 38.3	17 17.5 18	12.8 11.9 11.1 10.2	34 34.5	
Fox and B		.917 				37.4 36.6 35.7	18.5 19 19.5	94	35 35.5 36	
76	d		<u>d</u>			34.9 34.0	20 20.5	8.6 7.7 6.8	36.5 3 7	
100	1.0388	70	1.04			33.2 32.3 31.5	21 21.5 22	6.0 5.1	3 7. 5 38	
95 90 85 80	.0401	65 60	.05	34		31.5 30.6 29.8	22 22.5 23	4.3 3.4	38.5 39 39.5	
. 85 80 75	.0438 .0457 .0476	55 50 45	.05 .05 .05	74		28.9 28.1	23.5 24	2.6 1.7 0.9	39.5 40 40.5	
	.0470					27.2 26.4	24.5 25	Õ	41	
Kendall a	nd Beave	r. 1921				Phenol (C_6H_6O) + T	hymol (C ₁₀	Н ₁₄ 0)	
mo1%	η	ж.10 ⁸	mo1%	η	ж.10 ⁸	Paterno a	nd Ampola,	1897		
		25°				%	f.t.	%	f.t.	
100 84.02	14740 13270	1.378 2.210	36.15 24.13	10420 9835	4.972 5.863	100 99.30	49.24 48.56	56.52 54.99 53.19	14.74 13.31 11.89	
68.09 61.49	12180 11 7 50	3.012 3.423 4.201	12.17	9463 8945	7.151 8.84	99.30 98.55 97.20 96.25	48.56 47.88 46.87 46.00	51.55 50.31	9.68 8.29	
47.82	10990	4.201				96.25 94.92 93.15	46.00 44.79	48.17 46.41	7.47 9.08	
						N 92.23	44.79 43.54 42.84 41.69 40.52	44.66 41.51	$\frac{10.80}{12.90}$	
						90.95 89.35 84.15	40.52 36.84 35.43	24.72 22.33 23.32	25.82 27.57	
						82.11 79.46	33.64	23.32 17.81 15.48	28.66 30.24 31.58	
						77.42 75.30 73.72	32.30 30.80 29.75	$\frac{13.09}{11.01}$	32.82 33.86	
						73.15 71.91	29.75 26.82	9.81 6.69 4.72	35.07 36.20	
						69.17 67.55	25.09 24.38	3.30 2.27	37.12 37.78 38.30	
						65.68 62.23 60.5	22.40 20.50 19.17	1.43 0. 7 9	38.77 39.07 39.40	
						57.66	15.58	0.31	39.40 39.53	
I						ll				

Paterno, 1896	Phenol (C_6H_60) + m-Oxybenzaldehyde ($C_7H_60_8$)
% D f.t. % D f.t.	. June and Zemedeku 1920
0.79 -0.46 11.00 5.67 1.43 0.76 13.08 6.71 2.26 1.23 15.02 7.95 3.30 1.75 17.80 9.29 4.72 2.41 20.71 10.74 6.69 3.33 22.33 11.83 8.81 4.46 24.73 13.58	Kremann, Lupfer and Zawodsky, 1920
Pushin, Marich and Rikovski, 1948	20.0 00.0
mol% f.t. E mol% f.t. E	
100 31 - 40 - 12 90 44.5 - 30 19 12 80 40 11 20 26.5 14 65 30 11.5 10 34 - 50 20.5 12 0 41 -	Phenol (C ₆ H ₆ O) + p-Oxybenzaldehyde (C ₇ H ₆ O ₂) Lang, 1912 and Schmidlin and Lang, 1912 ### f.t. ### f.t. 100 115 40.0 47
Phenol (C_6H_60) + Methyl salicylate ($C_8H_80_5$) Paterno, 1896	100
0.52 -0.26 11.10 -5.50 3.32 1.54 15.16 7.72 5.40 2.51 18.86 9.84 8.15 3.92 23.20 12.54	Pheno1 (C_6H_60) + o-Chlorpheno1 (C_6H_50C1)
	% b.t.
Phenol (C_6H_60) + Salicylic aldehyde ($C_7H_60_2$) Kremann and Zechner, 1925	0 182.2 75 174.5 Az 100 176.8
% f.t. E % f.t. E	
0.0 41 - 56.5 -26.5 - 14.8 20 - 60.2 -22 - 24.2 10 - 64.6 -19 -30 33.0 3 -30 70.7 -15 -30 41.0 -7 - 77.1 -12 - 48.9 -19.5 -30 80.3 -10.5 -30	Phenol (C_6H_60) + p-Aminophenol (C_6H_70N) Kremann and Pogantsch, 1923
48.9 -19.5 -30 80.3 -10.5 -30 52.7 -30 -30 100 -7 -	% f.t. E % f.t. E
	0.0 41 - 56.5 63 - 8.3 35 - 63.2 72 - 16.3 29 - 69.8 78 - 25.9 22 22 78.7 86 - 36.6 38 22 88.8 96 - 43.6 47 22 100 105 - 48.7 54 -

PHENOL + M-AMINOPHENOL

				11					
Phenol (C_6H_6O) +	m-Aminopheno	1 (C ₆ H ₇ 0N	4)	Rheinbo	ldt, 19 2 5				
Kremann, Lupfer a	nd Zawadeko	1920		wt%	mol%	f.t.	Е		
% f.t.	E %	f.t.	E	0.0	0.0	42.5	41.5		
		71.8		16.9 37.2	3.9 7.7 19.5	42.5 39.0 47.0 71.5	36.0 36.0 36.2)	
0 40.5 2.8 38.5 5.3 36.0		76.0 76.0	15.0	9.0 16.9 37.2 55.5 61.7	$\frac{33.9}{45.1}$	82.5 85.0	36.3 51.0	3	
7.6 34.3	- 59.1 - 63.7	83 0		66.7 71.6	$\frac{45.1}{50.9}$	85.0 86.0	51.0 81.5)	
15.4 28.0 19.7 25.2	- 68.6 - 71,7	89.5 95.0 98.0	-	76.9 83.7	57.8 67.8	83.0 92.0 106.0	80.5 80.5	5	
25.2 20.5 28.6 16.2	15.4 81.4	101.0	-	91.2 94.7 98.0	81.0 88.0	112.0 118.0	81.0 81.5	i	
31.1 15.4 34.1 23.0 39.7 45.0	" 86.4 - 90.0 - 94.1	110.0 112.0	-	100.0	95.3 100.0	122.5	82.0 122.2		
43.4 55.0 46.5 67.0	- 100°°	114.5 118.0		(1+1)					
(1+1)			_					
				Phenol	(C ₂ H ₂ O) +	Styphnic a	cid (C.	LaO aN .)	
Phenol (C ₆ H ₆ O) -	+ Picric acid	(C ₆ H ₈ O ₂ N	N ₃)	leno1	, 0060) +	Stypmite a	ciu (C6n	BABMS)	
		,		Efremov	, 1931				
Philip, 1903				mo1%	f.t.	tr.t		E	
% f.t.	%	f.t.		-	······································	I	II		
0 40.4 9.8 37.5	65.0 71.9	82.3 83.0		100 92.54 87.94	175.5 168.9	-	-	-	
11 16 6 44 2	75.6 80.3 84.5	81.6 84.2		87.94 77.55	165.6 154.0	-	-	_	
23.0 55.0 33.5 65.4 48.4 75.2 52.7 77.5	87.7	91.8 97.4		77.55 69.05 60.55 57.03	145.8 136.1 131.2 127.7	112.2 114.0	43.6 48.4	-	
60.4 80.9	100	120	(1+1)	57.03 53.51 50.00	127.7 125.7 121.2	114.3 114.8	52 R	35.1 33.5 34.2	
				47.22	118.0	$114.0 \\ 114.5$	53.2 52.5 53.9 52.9	34.2 34.3 34.6 34.5 35.2	
Vmanan 1004				41.11 38.82 36.53	$115.1 \\ 112.0 \\ 108.8$	91.5	52.9 51.2	34.6 34.5	
Kremann, 1904 % f.t.	%	f.t.	·	33.33 32.12 27.72	104.5 100.9	91.2 91.5	51.2 52.3 51.5 52.8	35.2 34.5 34.8	
		······································		1 24.04	91.6 90.8	-	55.5 54.2	36.2	
0.0 41.0 8.2 38.8 14.4 39.0	63.5 65.1	83.0 83.0 85.0		20.37 17.24 14.12	87.0 82.7	_	53.3 50.3 50.7	36.7 37.1 37.2	
21.7 53.0 29.4 61.5	65.1 69.9 73.2 74.7 77.3 79.5 88.0	84.0 83.0		8.76 6.44	78.1 60.7 50.0	-	50.7 49.7	36.9 37.4 37.7 37.8	
35.3 68.0 40.2 72.0	77.3 79.5	$\begin{array}{c} 82.5 \\ 83.0 \end{array}$		4.13 1.94	40.5 40.6	-	-	37.7 37.8 37.7	
46.3 75.5 52.7 79.0	90.1	$87.0 \\ 101.5 \\ 111.5$		0 (1+1)	41.6	-	-	-	
53.7 80.0 59.9 82.0	95.8 100.0	122.5	(1+1)	(1+2) = (1+3)	all unstal	01 6			
				= =====				~	=
				ľ					

Phenol (C	C ₆ H ₆ O) + β-	Naphthol (C	(0 ₈ H ₀ ,	Pyrocatecho	ol (C ₆ H ₆ O ₂) + Resorci	nol (C ₆ H ₆ O ₂)
Migliacci	and Gargiul	o, 19 27		Jaeger, 190)7		
%	f.t.	Е	min.	%		f.t.	
0 10 15 20 225 30 40 50 60 70 80 90	43.0 36.7 33.1 22.3 30.2 40.5 54.6 67.8 80.5 91.4 102.5 112.3 122.0	26.1 26.5 26.0 26.2 26.3 26.9 26.2 25.9	540 840 1245 1260 1080 880 510 330	0 11.5 45.7 88.6 100 Senden, 192.	3 f.t.	104.0 95.5 76.0 102.5 110.0	f.t.
100						56	
	-	₂) + Hydroq	uinone (C ₆ H ₆ O ₂)	0 10.71 18.97 30.18 39.64 49.2 55	103.5 97 91.7 83.8 76.5 67.8 66.2	57.4 62.31 69.629 79.59 88.78 100	68 70 76.6 85.8 96.3 103 109.5
Jacger, 1	f.t.	%	f.t.				
100 71.5 35.6	170 153 119	26 13.9	103 97 104	Hrynakowski	and Adaman	is, 1935	
			104	mo1%	f.t.	Е	min.
Senden, 19	23			100 95.0 90.0 85.0 80.0	110.0 106.0 102.0 98.0 94.5	-	-
%	f.t.	%	f.t.	75.0 79.0	90.0 86.0	68.0	0.8
100 86.45 78.5 71.36 55.174 48.52 44.791	170.5 163 158.5 155 144 138 133	37.82 29.882 23 18.304 8.389 0	122 105.2 91 91.4 98 103.5	65.0 60.0 55.0 50.0 48.9 45.0 40.0 35.0 30.0 25.0	83.0 77.5 74.0 70.0 70.0 71.0 76.0 80.0 85.0 88.0	69.0 70.0 69.0 70.0 70.0 70.0 69.0 69.0	0.9 1.3 1.3 1.3 - - 1.0 1.1 0.8
Hrynakowsk	i, 1934			20.0 15.0 10.0 5.0	91.5 95.0 98.0 100.5 104		-
E: 29%	92.0°						
				J			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dingemans, 1937	Pyrocatechol ($C_6H_6O_2$) + m-Aminophenol (C_6H_7ON)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 109.6 45.0 75.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90.0 103.3 40.0 79.6	% f.t. E % f.t. E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70.0 89.1 20.0 92.7	
Lecat, 1949 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55.0 74.7 0 103.4	94.7 115.3 - 50.2 78.0 94.2 115.2 - 52.4 73.0 66.0
Lecat, 1949 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		90.1 113.5 - 49.9 70.5 "
Lecat, 1949	Pyrocatechol ($C_6H_6O_2$) + Thymol ($C_{10}H_{14}O$)	82.1 107.5 65.0 39.5 71.0 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lecat, 1949	78 1 104 0 - 33 3 76 1 "
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		75.6 101.0 - 30.5 78.0 - 73.9 99.5 - 27.0 80.5 - 73.4 98.2 66.0 24.8 92.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 245.9	69.6 94.5 - 21.0 86.5 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	83 232.2 Az	66.3 91.0 - 14.3 91.2 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		63.2 88.9 - 7.1 96.5 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Lecat, 1949 $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pyrocatechol ($C_6H_6O_2$) + Carvacrol ($C_{10}H_{10}O$)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(10 2)	Pyrocatechol ($C_6H_6O_2$) + Picric acid ($C_6H_3N_3O_7$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lecat, 1949	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	% b.t.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_0 245.2	% f.t. % f.t.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 236.7 Az 237.85	I 13.7 99.7 76.1 119.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.9 97.8 79.6 117.7 22.9 96.8 83.9 112.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Kremann and Pogantsch, 1923 Pyrocatechol ($C_6H_6O_2$) + Styphnic acid ($C_6H_3O_8N_3$) Pyrocatechol ($C_6H_6O_2$) + Styphnic acid ($C_6H_3O_8N_3$) Efremov, 1931 Efremov, 1931		1 48.5 116.5 95.0 112.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	' ' "	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pyrocatechol (C.H.O.) + Styphnic acid
12.6 96.5 - 60.2 68		
33) 82 61 71.5 80 - 45.9 69 61 100 105 -	12.6 96.5 - 60.2 68	Efremov. 1931
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 82 61 71.5 80 -	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45.9 69 61 100 105 -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19.68 158.2 - 80.41 113.7 "
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		35.76 138.2 123.4 86.89 103.6 98.5 42.59 128.6 89 01 100.3 698.5
59.75 128.3 - 100 104.5 - 66.39 125.8 94.6		45.71 127.3 123.0 92.58 100.4 98.8 108.4 98.8 128.6 - 95.55 102.4 98.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		50.0 129.0 - 97.74 103.8 - 54.29 126.8 - 98.86 104.5
		59.75 128.3 - 100 104.5 - 64.39 125.8 94.6

Resorcinol	(C ₆ H ₆ O ₂)	+ Hydroqui	none (C ₆ H ₆ O ₂)	Resorcinol ($C_6H_6O_2$) + Tert.Amylphenol-p ($C_{11}H_{16}O$)
Jaeger, 190	07			Lecat, 1949
%		f.t.		% b.t.
0 19.2 25.6 71.5 100		110 98 119 153 170		0 281.4 85 265.8 Az 100 266.5
Senden, 19	23			Resorcinol ($C_6H_6O_2$) + M-Oxybenzaldehyde ($C_7H_6O_2$)
%	f.t.	<u> </u>	f.t.	
0 9,9 17:068 27.4 28.463 31.1 32.458	109.5 102.3 97.4 90.4 89.4 88 95	36.91 40.01 49.97 65.79 84.46	110.5 118.5 130.5 148 162 170.5	Kremann and Pogantsch, 1923 % f.t. E % f.t. E E
	i and Adama			42.8 66 " 92.7 100 - 49.1 59 " 100 105 -
mo1%	f.t.	<u>E</u>	min.	Resorcinol ($C_6H_6O_2$) + Salol ($C_{13}H_{10}O_3$)
0 5.0 10.0 15.0 20.0 23.0 25.0 30.0 35.0 45.0 50.0 66.0 65.0 70.0 75.0 80.0 85.0 90.0	110 108.0 103.0 99.5 96.0 95.0 95.0 103.0 111.5 117.0 125.5 131.0 145.0 145.0 155.0 161.0 163.0	92.0	0.4 0.6 	Hrynakowski and Adamanis, 1934
				8.3 106.0 5.4 107.0
Dionissiev	and Rudenk	o, 1951		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
t:01%	f.t.	m o 1%	f.t.	.[
0 10 20 25 27.5 30 32.5 35	110 90 97 91 89.7 88 E 97 105	40 50 60 70 80 90 100	120 134 145 150 158 167 171	

RESORCINOL + STYPHNIC ACID

		+ Styphnic a	acid (C ₆ H ₃ O ₈ N ₃)	Resorcino	ol (C ₆ H ₆ O ₂) + Pyro	gallol (C ₆ H ₆ O ₃)	
Efremov, 1933	f.t.	tr.t.	E	Durados	itter, 1950	(fig.)			
100 93.56 89.51 80.32 72.28 64.24 57.41 51.17 50.0 45.71 42.98 40.25 35.61 33.29 30.98 27.01 23.04 19.59	175.5 172.2 169.1 162.8 155.1 148.2 141.3 134.9 132.3 127.5 123.2 122.5 121.7 120.8 118.8 116.0 112.1	115.3 120.3 122.6 124.3 125.0 123.6		% 0 10 20 27 30 32 35.5 38 50 60 70 100	1 110.5 105 98 93 90 87 84 86 95 102 109 135	f.t. II 108 102 96 91 89	90 tr.t. 89		
19,59 16,14 13,11 10,09 7,42 4,75 2,26 1,14	107.0 100.3 100.3 102.8 104.9 106.4 107.2 108.2	-	98.0 95.8 87.6		ol (C ₆ H ₆ O ₂ Lukavetzki				
E: 23.5%	98.0°	(1+1)		tio1%	f.t.	m.t.	mo1%	f.t.	m.t
Resorcinol (С6Н6О2) +α - Napht b.t.	ho1 (C ₁₀ H ₈ O)	100 90 80 70 60 50	108 102 95 86 75 65	87 77 69 64	40 30 20 10 0	77 87 96 104 111	70 80 90 100
0 30 100		281.4 280.2 Az 288.0		Resorcin	ol (C ₆ H ₆ O ₂	,) + Orc	inol hydra	te(C ₇ H _{1 o}	03)
				Pushin,	Lukavetzki	and Riko	vski, 1948		
Resorcinol (C ₆ H ₆ O ₂)	+ β-Naphtho	$01 (C_{10}H_{8}0)$	E01%	f.t.	E	5io 1%	f.t.	E
Lecat, 1949				100 90	57 53	31	50 40	43 60	31
%		b.t.		80 70 60	48 42.5 36	11 11	30 20 10	75 88 100	" "
0 15 100		281.4 280.8 Az 295		55	33	"	0	111	-
Vignon, 1891		f.t.							
0 33.33 50 66.66 100		110 90 88 100 122							

Resorcinol ($\text{C}_6\text{H}_6\text{O}_2$) + m-Aminophenol ($\text{C}_6\text{H}_7\text{ON}$)

Kremann, Lupfer and Zawodsky, 1920

%	f.t.	R	f.t.	
0 2.3 4.2 7.7 11.1 15.8 19.5 22.1 25.9	108.5 107.0 105.8 103.1 101.2 96.2 93.0 89.8 85.0	55.7 56.0 58.5 60.7 64.5 68.4 73.2 76.4 79.8	77.2 77.9 80.0 84.0 88.0 91.8 98.9 101.5	
29.4 33.0 37.0 40.3 44.8 49.3 50.7 53.3	81.0 76.0 72.5 67.0 62.0 65.0 70.0	81.7 84.1 87.5 90.4 91.9 94.1	106.2 108.3 111.0 113.0 114.2 115.0 118.0	

Resorcinol ($C_6H_6O_2$) + p-Aminophenol (C_6H_7ON)

Kremann, Lupfer and Zawodsky, 1920

%	f.t.	R.	f.t.
0 3.6 9.0 13.1 17.8 22.1 25.0	108.5 105.5 100.0 94.0 85.0 74.0 61.0	27.6 30.6 37.5 41.2 46.0 51.2	69.0 77.0 83.5 102.0 112.0 120.0

Resorcinol ($\text{C}_6\text{H}_6\text{O}_2$) + Picric acid ($\text{C}_6\text{H}_3\text{O}_7\text{N}_8$)

Philip and Smith, 1905

%	f.t.	%	f.t.	
0.0 20.3 35.4 44.8 53.7 61.4 67.6 71.1	108.8 102.1 95.8 94.7 97.9 99.65 100.3 99.8	75.7 80.4 85.0 87.2 90.2 95.0 100.0	98.9 96.6 97.8 100.8 105.2 112.6 120.25	(1+1)

Hydroquinone ($C_6H_6O_2$) + Salicylic aldehyde ($C_7H_6O_2$)

Kremann and Zechner, 1925

%	f.t.	Е	%	f.t.	Е
0.0	169.5	_	63,6	126	-
6.2	167.0	-	67.3	121	-7
20.5	160	-	72.4	115	-7
35.5	150.5	-	76.9	105	_
46.0	142	_	80.9	97	
55.1	134	-	100.0	-7	-
59.4	131	-7		•	

Hydroquinone ($C_6H_6O_2$) + m-Oxybenzaldehyde ($C_7H_6O_2$)

Kremann and Pogantsch, 1923

%	f.t.	Е	%	f.t.	Е
0	169	_	56.9	117	_
9.1	165	-	63.4	106.5	-
19.1	160	-	73.0	88	88
29.6	151.5	88	81.7	94	-
38.4	142	_	90.3	100	-
51.6	126	88	100	105	-

Hydroquinone ($C_6H_6O_2$) + m-Aminophenol (C_6H_7ON)

Kremann, Lupfer and Zawodsky, 1920

% f.t. % f.t, E 100 118.0 58.4 108.5 107.0 96.3 115.5 56.3 113.0 " 94.7 114.5 52.6 120.5 " 92.1 113.0 49.8 124.5 - 90.0 111.3 46.6 129.5 106.8 83.2 111.0 44.1 132.0 - 83.8 108.9 37.8 139.0 - 60.8 106.5 35.5 141.0 - 75.4 105.0 30.2 146.0 - 75.4 105.5 25.9 150.0 - 71.8 106.2 22.5 153.5 - 69.3 106.5 14.0 159.0 - 67.0 106.8 3.2 163.5 - 64.0 107.0 3.8 166.5 - 61.5 107.0 0 168.0 - </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
96.3	%	f.t.	%	f.t.	E	_
64.0 107.0 3.8 166.5 - 61.5 107.0 0 168.0 -	96.3 94.7 92.1 90.0 66.2 83.8 60.8 76.2 75.4 71.8 69.3	118.0 115.5 114.5 113.0 111.8 111.0 108.9 106.5 105.0 105.5 106.2 106.5	58.4 56.3 52.6 49.8 46.6 44.1 37.8 35.5 30.2 25.9 22.5	106.5 113.0 120.5 124.5 129.5 132.0 139.0 141.0 150.0 153.5 159.0	107.0	
~ · · · · · · · · · · · · · · · · · · ·	64.0	107.0	3.8	166.5	-	
		107.0	0	168.0		

HYDROQUINONE + STYPHNIC ACID

Hydroqui	none (C ₆ H ₆ O ₂) +	Styphnic ac	cid (C ₆ H ₈ O ₈ N ₈)	Pyroga1	lol (C ₆ H			zaldehyde	
Efremov,	1934					(C ₇ H ₆ O ₂)		
mo1%	1	II		i	and Poga				~~~
	f.t. E	f.t.	<u>E</u>	%	f.t.	<u>E</u>	%	f.t.	E
100 93.56 89.51 80.32 76.30 72.28 68.26 64.24	175.5 - 172.3 - 170.2 - 160.9 - 154.5 - 152.2 - 145.4 119.6	- - - - 149.1 145.2	- - - 129.9 130.8 133.8 134.0	0.0 13.0 21.7 29.9 35.2 42,6	130 120 113.5 104.5 99 91	- - - - - 69	49.1 59.1 72.1 83.5 100.0	83 69 78 91 105	69 69 - - -
61.51 57.41 54.29 54.22 51.17 48.44 45.71 42.98	136.5 121.6 133.2 121.5 131.0 121.5 128.2 121.4 122.7	141.6 136.9 136.6 136.2 137.7 139.2 140.0	134.4 134.6 134.6 134.6 134.5 133.9 133.8	Kremann	, Lupfer	and Zav	odsky, 19		
40.25 38.39	127.5 121.5	141.1 141.7	132.9	%	f.t.	E	78	f.t.	<u>E</u>
35.61 33.29 30.98 27.01 23.04 19.59 16.14 10.09 7.42 4.75 2.26 1.14	134.2 121.3 137.6 121.4 141.6 121.4 145.3 119.6 148.6 119.6 152.5 1109.9 160.4 - 162.6 - 164.1 - 166.4 - 167.5 - 168.8 -	142.3 142.6 142.3 141.5		100 92.6 87.4 81.3 74.1 70.6 68.1 64.6 59.5 57.0 51.9 49.2	118.0 114.5 111.5 107.5 107.5 101.0 97.0 95.0 91.0 85.5 83.0 80.5 77.5 79.5 83.0	77.5	43.5 40.0 36.1 35.2 33.2 31.0 27.2 23.6 19.1 15.1 10.7 6.4 3.0	86.5 92.0 97.5 98.5 100.5 104.0 110.0 114.5 118.0 122.0 125.0	77.0
(2+1)	142.6°			46.3	83.0	11	0	129.0	<u>-</u>
		(C ₇ H ₆ O ₂)	ldehyde	Pyroga1	lol (C ₆ H	I ₆ 0 ₃) +β	-Naphthol	l (C ₁₀ H ₈ 0)
Kremann %	and Zechner, 19		f.t. E	Lecat,	1949				
				%			b.t.		
0.0 6.9 18.3 29.3 38.9 48.5 49.4 51.3	132 - 121 - 112.5 - 103.5 - 93.0 - 81 -8 80.4 - 76 -	69.6 71.5 77.6 85.1 85.1 89.3 95.5	46.0 -8 44 - 35 - 19 - 19 - 8 - -6.5 - -7 -	0 22 100 =====			309 293.5 Az 295.0		

Cresol (C ₇ H ₈ O) o+m	Fox and	Barker, 1	1917		
	%	d	%	d	
Fox and Barker, 1917			15.5°		
% b.t. % b.t.	100	1.0387		0459	
100 191.2 45 196.7 95 191.7 40 197.3 90 192.3 35 197.9 85 192.7 30 198.5 80 193.2 25 199.2 75 193.8 20 129.7 70 194.3 15 200.3 65 194.7 10 201.0 60 195.3 5 201.7 55 195.7 0 202.3	95 90 85 80 75 70 65 60 55 50	.0393 .0400 .0407 .0413 .0420 .0427 .0433 .0440 .0446	35 30 25 25 20 15 10 5 0	0466 0472 0478 0486 0493 0499 0506 0512 9516	
	Kendall	and Beav	er, 1921		
Dowers and Krussferst 1010	%	η	×.108 %	n	ж.108
Dawson and Mountford, 1918			25°	,,,,,,,,,,,	
% f.t. % f.t. 0 30.45 62.80 6.5 13.74 23.95 69.28 5.8 21.69 20.00 74.39 4.6 31.31 14.6 78.69 3.6 38.75 9.4 83.25 1.7 41.64 8.5 88.02 9.3 43.68 8.3 93.39 6.6	100 84.63 69.39 64.64 60.46	13420 12160 11090 10750 10500	1.397 49.40 1.134 36.29 0.977 23.92 0.874 11.97 0.767 0	9939 9208 8582 8086 7608	633 362 184 178 127
43.68 8.3 93.39 6.6 50.64 7.9 100 10.0 56.14 7.6	Schoibo	. 1024			
	Scheiber	1934			
Fox and Barker, 1918 (fig.)	76	20.2°	η 35°	40°	
% f.t. % f.t.	0 20	9690 9560	4750	4150	
0 30.0 60 -2 10 24 70 -4 20 18 80 -8 30 11 85 -12.5 40 +2.5 tr.t. 90 -7.5 50 0 100 +2.4	40 60 80 100	10500 11090 12060 17300	5190 5750 6250 6850 7750	4330 4690 5120 5560 6220	
Knight, Lincoln and al., 1918					
% f.t. d _{25°}					
0 29.0 1.0439 10 23.85 .0428 20 18.35 .0417 30 11.85 .0402 100 3.0 .0333					

Cresol (C ₇ H ₈ O) o+p	Hill and Davis, 1926
	% f.t. % f.t.
Dawson and Mountford, 1918 f.t.	0 30.80 62.81 7.84 13.88 24.61 62.81 5.13 27.66 14.71 64.87 7.19 36.08 8.25 66.70 8.1 42.69 3.02 67.64 10.10 45.45 1.13 79.90 21.25 46.50 0 90.34 29.19 47.89 1.81 100 34.61 55.30 6.62 (1+2)
49.42 5.5 91.70 28.45 51.17 6.4 100 34.15 54.04 7.0	Kendall and Beaver, 1921 % η × .108 % η × .108
(1+2)	25°
Fox and Barker, 1918 (fig.)	100 14740 1.378 47.44 10300 0.410 84.53 13270 0.726 36.96 9612 .344 70.01 12000 .601 24.27 8854 .190 64.75 11630 .533 12.50 8209 .188
1 f.t. % f.t.	64.75 11630 .533 12.50 8209 .188 57.67 11030 .507 0 7608 .127
0 30 60 +0.5 10 24 70 10 20 16 80 18 30 10 90 26 40 +2 100 36 50 -8 E	Scheiber, 1934
Knight, Lincoln and al., 1918 (fig.)	100 20000 8060 6500 80 16630 7120 5940 60 14250 6560 5310
% f.t. % f.t.	40 12310 6000 4810 20 10750 5440 4380
0 29.0 25 12.8 5 25.8 30 8.05 10 23.05 90 26.8 15 20.15 100 34.4 20 16.7	0 9690 4750 4150
% d % d	o-Cresol (C_7H_8O) + o-Bromphenol (C_6H_5OBr)
25° 0 1.0408 25 1.0387 5 .0403 30 .0382 10 .0398 90 .0316 15 .0398 100 .0304 20 .0393	Lecat, 1949 % b.t. 0 191.1
	25 189.8 Az 100 195.0
Hill and Mosbacher, 1925	
% f.t. % f.t.	
0 30.08 52.98 +7.65 13.99 22.20 60.17 6.40 22.03 16.41 65.01 3.70 29.64 10.27 69.69 -9.28 37.11 3.70 76.05 15.67 42.20 +2.88 84.41 22.94 50.70 -6.62 100 34.80	

o-Cresol (C_7H_80) + Picric acid ($C_6H_3O_7N_3$	Cresol (C_7H_8O) m + p
	Dawson and Mountfort, 1899
Kendall, 1916	# f.t. % f.t.
mol% f.t. mol% f.t.	0 10.0 41.22 8.8
100 118.5 42.0 89.1 89.1 110.5 34.1 86.7 80.9 104.1 27.5 83.3 72.7 96.5 19.9 76.9 65.5 89.1 13.5 68.9 62.0 87.4 9.2 60.8 57.7 89.0 1.6 29.4 49.7 89.8 0 30.4	5.10 6.7 47.99 7.4 6.74 5.4 56.39 2.4 9.13 4.4 60.38 4.2 13.40 3.5 68.41 11.0 16.50 5.6 77.03 18.0 23.48 8.2 88.39 26.5 28.41 9.2 100 34.15 35.71 9.5
(1+1)	
	Parant, 1950
o-Cresol (${ m C_7H_8O}$) + ${ m Styp}$ hnic acid (${ m C_6H_3O_8h}$	Az: 27% 158.2° (200 mm)
Efremov, 1931	
mol% f.t. tr.t. E	Fox and Barker, 1917 (fig.)
100 175.5 93.45 170.2	% f.t. % f.t.
89,34 166.3	0 +2.4 60 +4 10 4 70 16 20 4.5 sic. 80 21 30 +3 90 28 40 -1 100 36 50 -8 E (4+1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 22 23 105 4 - 15 1	Scheiber, 1933
22.64 92.6 - 15.9 19.28 85.8 - 16.2	% n 20.2° 35° 40°
30.59 102.8 - 15.2 22.64 92.6 - 15.9 19.28 85.8 - 16.2 15.93 78.6 - 17.0 9.93 60.2 - 17.1 7.30 48.4 - 17.1 4.67 32.1 - 17.2 2.22 17.4 - 17.2 0 30.4 E: 17.2° 5.2wt% (1+1)	0 17300 7750 6220 20 14380 7880 6310 40 14410 7870 6250 60 14440 7880 6250 80 14750 7880 6190 100 20000 8060 6500
	Kendall and Beaver, 1921
	% η к.10 ⁸ % η к.10 ⁸
	25∘
	100 14740 1.378 37.62 13730 1.551 86.12 14500 .495 32.67 13690 .512 75.39 14320 .603 29.29 13610 .449 69.97 14250 .628 28.27 13600 .442 54.80 14000 .560 17.33 13520 .378 51.77 13930 .567 8.85 13460 .384 44.79 13850 .583 0 13420 .397

M-CRESOL + O-ETHYLPHENOL

```
m-Cresol ( C_2H_80 ) + o-Ethylphenol ( C_8H_{10}0 )
                                                                     p-Cresol (C_7H_80) + o-Ethylphenol (C_8H_{10}0)
Parant, 1950
                                                                     Parant, 1950
                                                158.00°
                                                                                                                           138.10°
Az: 50% 100 mm
                        137.90°
                                     200 mm
                                                                     Az: 50%
                                                                                 50 mm
                                                                                            120.70°
                                                                                                        47%
                                                                                                                100 mm
 m-Cresol (C_7H_80) + Xylenol-2,6 (C_8H_{10}0)
                                                                    p-Cresol (C_2H_80) + 2,6-Xylenol (C_8H_{10}0)
Parant, 1950
                                                                     Parant, 1950
               201.15°
 Az: 73%
                                                                                201.05°
                                                                     Az: 72%
m-Cresol (C_7H_80) + Picric acid (C_6H_3O_7N_8)
                                                                      p-Cresol (C_7H_80) + o-Bromphenol (C_6H_50Br)
Kendall, 1916
   mo1%
                 f.t.
                               mo1%
                                             f.t.
                                                                      Lecat, 1949
   100
                 118.5
                               32.4
                                            61.5
    90.1
                                                                                                    b.t.
                 111.4
                               28.6
                                            60.8
                                                                           %
                              23.6
19.6
                                            58.7
56.5
52.6
46.7
    81.5
                 104.8
97.5
    73.8
                                                                                                    201.7
194.0 Az
                  90.6
                               14.6
9.9
5.7
    66.6
59.8
                                                                          20
                  82.2
                                                                                                    119.50
                                                                         100
    53.1
                  74.7
                                             38.5
    45.3
                  63.3
                                             30.3
                  60.0(2+1)
                                1.1
                                             10.2
    37.4
                                             10.9
                                                                     p-Cresol ( \text{C}_7\text{H}_8\text{O} ) + Picric acid ( \text{C}_6\text{H}_3\text{O}_7\text{N}_3 )
m-Cresol (C_7H_80) + Styphnic acid (C_6H_80_8N_8)
                                                                      Kendall, 1916
                                                                                                   mol%
                                                                                                                 f.t.
                                                                       mo1%
                                                                                     f.t.
Efremov, 1931
                                                                                                                 62.3
                                                                        100
                                                                                      118.5
                                                                                                   38.8
                                                                                      112.0
103.4
93.7
86.2
                                                                         91.1
                                                                                                   32.8
27.6
                                                                                                                 58.5
   mo1%
              f.t.
                           E
                                    mo1%
                                               f.t.
                                                           Е
                                                                         80.2
                                                                                                                 54.7
                                                                         69.9
                                                                                                   22.3
                                                                                                                 49.6
              175.5
  100
                                    39.81
                                               115.0
                                                                         62.8
                                                                                                   16.9
                                                                                                                 43.1
   93.45
              Ĩ69
                          169
                                               113.7
112.9
                                    35.02
                                                                                       78.0
70.3
                                                                                                   11.1
                                                                                                                  35.5
                                                                         56.4
   89.34
              169
                                                                                                    5,9
                          169
                                    33.33
                                                                                                                 30.1
                                                                         51.0
   79.87
              169
                          169
                                    30.59
                                               110.0
                                                          0.4
                                                                                                                  34.5
                                                                                                    0
                                                                         46.5
                                                                                       65.2
   71.42
              150.1
                                    22.64
                                               101.3
                                                          2.5
                                                                         43.9
                                                                                       64.4
                                    19.28
15.93
                                                95.9
87.8
                                                          3.1
3.3
   63.81
              142.7
                                                                                                    (1+1)
   60.37
              138.5
135.7
                                                67.8
51.3
27.5
7.2
5.5
   56.93
53.76
                                     9.93
7.30
                                                          3.4
              129.8
                         109.7
              126.4
123.4
119.9
116.2
                         114.5
114.6
                                     4.67
   50.00
                                                          3.4
   47.83
45.07
                                                          3.5
                                     1.09
                         113.9
   42.44
                                                10.4
   (1+1)
```

p-Cresol (C_7H_80) + Styphnic acid ($C_6H_80_8N_3$) Efremov, 1931	3,4-Xylenol ($C_8H_{10}O$) + p-Isopropylphenol ($C_9H_{12}O$)
mol% f.t. E mol% f.t. E	Parant , 1950
100 175.5 - 42.44 107.1 16.5 93.45 170.1 - 39.81 105.8 19.8 89.34 166.2 - 37.36 103.9 22.5	Az : 58% 106.98° (10 mm)
79.87 155.7 - 33.33 101.2 22.6 71.47 147.7 97.5 30.59 98.8 25.5 63.81 135.9 107.7 22.64 88.0 26.8 60.37 131.0 110.2 19.28 81.5 27.1 56.93 126.2 110.9 15.93 73.8 27.2 53.76 122.2 110.9 9.93 59.4 27.3 50.0 115.7 111.1 7.30 48.5 27.2 47.83 111.3 - 4.67 39.3 27.3	3,4-Xylenol ($C_8H_{10}O$) + 2-Methyl-4-Ethylphenol ($C_9H_{12}O$)
45.07 109.2 11.3 2.22 30.2 27.5 0 33.8 -	Parant, 1950
(1+1)	Az: 52% 227.20°
m-Ethylphenol ($C_8H_{10}O$) + Mesitol ($C_9H_{12}O$)	
Parant, 1950	3,4-Xylenol as. (C ₈ H _{1 o} O) + p-Chlorphenol (C ₆ H ₅ OC1)
Az: 55% 172.30° (200 mm)	Lecat, 1949
	% b.t.
p-Ethylphenol ($C_8H_{10}O$) + Mesitol ($C_9H_{12}O$)	0 226.8 89 219.0 Az 100 219.75
Parant, 1950 Az: 48% 172.00° (200 mm)	Thymol ($C_{10}H_{14}0$) + Ethyl salicylate ($C_{9}H_{10}0_{3}$)
	- 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
2,4-Xylenol as. (C ₈ H _{1 o} O) + p-Chlorphenol	Lecat, 1949
2,4 Aylenol as. $(C_8 n_{10} 0)$ + p-chlorphenol $(C_6 H_5 0C1)$	% b.t.
Lecat, 1949	100 233.8
% b.t.	20 0 234.4 Az 233.8
0 210.5	
- 210.0 Az 100 219.75	Thymol (C H O) + Salal (C H O)
	Thymol (C ₁₀ H ₁₄ 0) + Salol (C ₁₃ H ₁₀ O ₃)
	Bellucci, 1912
$2,3$ -Xylenol ($C_9H_{10}O$) + Mesitol ($C_9H_{12}O$)	% f.t. % f.t.
Parant, 1950	100 42 50 23 90 34 40 29
Az: 38% 95.92° (10 mm)	90 34 40 29 80 26 30 34.5 70 18 20 40 60 17.5 10 46 0 51

THYMOL + SALIPYRINE

Thymol ($C_{10}H_{14}0$) + Salipyrine ($C_{18}H_{18}0_{4}N_{2}$)

Hrynakowski and Szmytowna, 1936

%	f.t.	E	%	f.t.	E
100	91.5	_	45	62.5	_
95	89.0	39.0	40	60.9	_
90	82.5	-	35	58.5	41.5
85	80.0	39.5	30	54.8	41.0
80	72.2	37.0	25	45.0	42,2
7 5	66.0	40.0	20	45.0	-
70	63.5	41.5	ĨŠ	45.8	41.0
65	50.5	42.5	10	47.5	-
60	50.0	42.0	Š	48.5	_
55	55.0		Ō	50.8	-
50	57.8	-	•		

Thymol ($C_{1\,0}H_{1\,\mu}0$) + Picric acid ($C_{6}H_{3}\,0_{7}N_{3}$)

Kendall, 1916

mo1%	f.t.	mo1%	f.t.	
100 89.8 81.1 75.4 69.3 62.5 53.5 51.5 47.0	118.5 113.0 108.0 105.0 102.0 99.8 96.0 96.6 96.1	42.0 36.7 32.5 28.1 22.8 16.6 3.2	94.2 91.6 89.2 86.3 81.1 71.9 48.2 49.6	

Absitol (
$$C_9H_{12}O$$
) + o-Chlorphenol (C_6H_5OC1)

Lecat, 1949

%	b.t.
0	220.5
50	217.2 Az
100	219.75

Orcinol ($\text{C}_7\text{H}_8\text{O}_2$) + Picric acid ($\text{C}_6\text{H}_3\text{O}_7\text{N}_3$)

Pushin, Lukavetzki and Rikovski, 1948

mo1%	f.t.	E	mo1%	f.t.	E
0	108		60	100	_
1ŏ	100	-	70	-	96
10 20 22		93	72 75	_	์ท
22	94		7 5	100	11
30	97	90	80	105	95
30 40	101	85	90	114.5	92
50	102	-	100	122	_
		(1+	1)		

Dimethylhydroquinone ($C_8H_{10}O_2$) + Methylethylhydroquinone ($C_9H_{12}O_2$)

Vorländer, 1938

mol%	f.t.	Е	mo1%	f.t.	E
0 8 16 28 38 48	56 51 47.5 43 37 32.5	54.5 31 30.5 30 29.5 28	58 68 80 90 100	29 30,5 32 34,5 38,5	26 28 29 32

Dimethylhydroquinone ($C_8H_{10}O_2$) + Diethylhydroquinone ($C_{10}H_{14}O_2$)

Vorländer, 1938

mo1%	f.t.	Е	mo1%	f.t.	E
0 8 16 26 30 35 36 40	55 53 49 43 41 38.5 39	38.5 ** ** ** **	45 50 60 72 82 95 100	46 50 55 60 65 71 75	38.5 39 38 38.5

•		oquinone none (C ₁	(C ₉ H ₁₂ O ₂ ₀ H ₁₄ O ₂)) +			ic aldehy	
Vorland	der, 1938					%	f.t.	
mo 1%	f.t.	m.t.	mo1%	f.t.	m.t.	100	121	
100 90 79 68 66 48	72 68 63 59 54 50	72 52 48 42 40 37	38 28 20 8 0	44.5 39 35.5 36.5 38	33.5 34 34 - -	93.9 86.0 75.7 64.2 53 45.8 43.0 (2+1)	98 83.5 64.1 54.2 51 48	
Salicyl	ic Aldehy	de (C ₇ H ₆	0 ₂) + o-	Nitrophen ₆ H ₅ O ₃ N)	ol	====	(1+1)	
Kremann	and Zech	ner, 19 2 5				Salicyl	ic aldehy	de (
%	f.t.	E	%	f.t.				
100	7	_	40.1	+12		Kroman	n and Zool	1n 01

%	f.t.	E	%	f.t.	
100	-7	_	49.1	+12	
84.8	-10.5	_	52.9	15	
80.6	-12	-	55.8	17	
75.7	-14	~	59.3	20	
70.4	-5	-	61,2	21	
67.1	-2	-14	71.9	28	
62.4	+3	-	81.3	34	
59.1	+6	14	92.5	40	
54.4	+9	-	100	44	

Salicylic aldehyde ($C_7H_6O_2$) + 2,4-Dinitrophenol ($C_6H_4O_5N_2$)

Kremann and Zechner, 1925

%	f.t.	Е	%	f.t.	
0 10 11,6 14.7 29.1 32.3 40.0	-7 -9.1 -9 -10.5 +7 +19 35	- - -14 -14 -14	41.7 49.3 54.4 60.2 72.6 84.2 94.2	41 56 63 70 85 96 106	

($C_7H_60_2$) + Picric acid $(C_6H_3O_7N_3)$

r, 19**2**5

%	f.t.	Е	%	f.t.	E
100 93.9 86.0 75.7 64.2 53 45.8 43.0 (2+1)	121 112 98 83.5 64.1 54.2 51 48 (1+1)	55 55 55 35	38.8 33.4 28.8 26.0 15.7 6.2 0.0	44 35.3 34 29 13 -6.5 -7	-6.5 -6.5 -6.5

($C_7H_6O_2$) + α -Naphthol $(C_{10}H_80)$

Kremann and Zechner, 1925

%	f.t.	%	f.t.	
100	92	41.7	5	
92.9	86	37.6	-18	
81.6	76	33.3	-16	
68.6	62	27.2	-12.5	
53.0	44	20.4	-10	
50.0	30.5	14.2	-9	
49.1	27.5	0.0	-7	

E: -20°

Salicylic aldehyde (
$$C_7H_6\theta_2$$
) + β -Naphthol ($C_{1.0}H_8\theta$)

Kremann and Zechner, 1925

%	f.t.	%	f.t.	
100	121	45.6	58	
92.1	115	40.7	50	
83.2	107	36.7	40	
74.2	98	30.8	29	
65.7	88	26.4	19	
58.2	77	22.0	- 4	
50.5	69	0	-8	
E: ~11°				

M-OXYBENZALDEHYDE + O-NITROPHENOL

m-0xybenzaldehyde	(C7H602)	+	o-Nitrophenol
					$(C_6H_5O_9N)$

Kremann and Pogantsch, 1923

%	f.t.	Е	%	f.t.	Е
100	44.5	_	42.0	78.5	41
93.6	42	_	30.8	86	_
83.9	48	41	21.2	86 92	-
75.4	54		11.3	98.8	_
68.4	60	_	0	105	_
61.1	65	_	•		

m-0xybenzaldehyde ($C_7H_6O_2$) + p-Nitrophenol ($C_6H_7O_2N$)

Kremann and Pogantsch, 1923

%	f.t.	Е	%	f.t.	Е
100	113.5	-	47.0	71	65.8
87.4	101.5	-	39.5	78.5	65.8
78.3	92	-	29.9	87	-
71.6	86	_	22.0	98	-
65.2	80	65.8	10.8	99.5	-
60.0	75	65.8	0	105	-

m-0xybenzaldehyde ($\text{C}_7\text{H}_6\text{O}_2$) + 2,4-Dinitrophenol ($\text{C}_6\text{H}_\text{h}\text{O}_5\text{N}_2$)

Kremann and Pogantsch, 1923

%	f.t.	%	f.t.	E
100	112	44.4	78	_
90.7	104	43.2	78	-
81.1	95	39.5	81.5	~
78.5	93.5	37.7	82	-
75.1	91	34.2	84	_
72.7	89	33.0	85	_
68.9	83	30.9	87	_
65.4	80.5	30.8	87	_
59.8	79	24.3	91	78
58.7	79	22.9	92	
52.8	78.5	20.1	$9\overline{4}$	_
52,3	78.5	14.0	9 7	_
48.4	78	0.0	107	_
47.7	77.8	. • •		
			(one	complex)

m-Oxybenzaldehyde ($C_7H_6O_2$) + Picric acid ($C_6H_3O_7N_3$)

Kremann and Pogantsch, 1923

%	f.t.	%	f.t.	
100 89.5 84.6 78.5 73.7 69.2 65.8 62.4 58.3	122 112 105 97 91 88 89 88	52.7 47.2 41.9 39.2 34.1 25.2 25.0 17.0 8.0	88 88.5 88 88 88 88 89 95	
53.7 53.6	88 88	0	105	

Rheinboldt, 1925

%	f.t.	E	R	f.t.	Е
100 86.4 80.8 76.0 70.0 60.7 50.3	122 108 102 96 90.5 90.5	121 87 " " 86 86	40.7 33.3 19.9 15.2 9.5	89.5 90.5 95 98 100.5 105.0	86.5 86 86 86 86.5 100

m-0xybenzaldehyde ($\rm C_7H_6O_2$) + $_{\alpha}$ -Naphthol ($\rm C_{10}H_8O)$

Kremann and Pogantsch, 1923

%	f.t.	Е	%	f.t.	E
0 6.8 20.4 29.8 38.0 44.7 53.1	105 102 94.0 87 85 75	61.5	62.1 71.2 83.5 92.2 100	65 75 85 90 96	61.5

m-Oxybenzaldehyde ($C_7 H_6 O_2$) + β -Naphthol ($C_{1\,\,0} H_8 O$)

Kremann and Pogantsch, 1923

%	f.t.	Е	%	f.t.	E
100.0	121	_	42.0	78	74
90.0	114	-	38.5		74
83.0	108	_	33.5	80 84	´ <u>-</u>
75.0	102	-	27.9	89	74
67.6	95	74	20.6	93	_
59.5	87	74	15.3	97	-
52.2	80.5	-	7.6	101	-
48.4	7 8	-	0	105	-

	/ C II O			m o)				
Vanillin	(C ₈ H ₈ U ₃) + ortno-v	anillin (C _e	3ngU3)				
Noelting	, 1910				Methylre	sorcinol (C ₇ H ₈ O _ε) +	Eugenol (C, OH, 202
%	f.t.	%	f.t.		Lecat, 1	949		
0 10	80.0 73.9	60 7 0	33.0 29.7		8		b.t.	Sat t.
20 30 40 50	67.8 60.0 52.0 43.1	80 90 100	33.7 38.8 43.8		0 86 100		290.5 251.3 Az 254.8	166
p-Dioxydi	iph eny leth	hane (C ₁₃ H ₁ er (C ₁₂ H ₁₀ 0			Methylre	sorcinol (C	7H ₈ O ₂) ◆	Isoeugenol (C ₁₀ H ₁₂ O ₂
Luttringl	haus, 1937 f.t.	(fig.)	f.t.	E	Lecat, 1	949		
			· · · · · · · · · · · · · · · · · · ·		78	······································	b.t.	
100 80 65 50	165.5 157.0 150.0 147.5	- 40 - 20 146.5 0	150.5 156 160	146 147	0 75 100		290.5 263.5 Az 268.8	
Guaiacol	(CaHaOa) + Salol (C, aH, aOa)					
Guaracor	(5911802	, - 50101 (-13-10-3		Salol (C ₁₈ H ₁₀ O ₃)	+ Betol (C	C ₁₇ H ₁₂ O ₃)
Bellucci	, 1912							
%	f.t.	%	f.t.			Isaac, 1907		
100	42	40	.9		 %	f.t.	%	f.t.
90 80 70 60 50	33 25 16.5 8 3.5	30 20 10 0	13.5 19 24.5 29	·	0 10 22 26 30 47.965	42.5 38 32.5 E 31 29 21.5	10 19.8 22 26 30 40.08	17.5 30 32.5 31 41 50
Guaiacol	(C ₇ H ₈ O ₂) + Picric a	cid (C ₆ H ₃ O ₇ N	I ₃)	Salo	01	47.97 49.57 58.46 69.66 79.89 90.99	57.5 59 67 75 81 Betol 86
!							100	92
Philip a	and Smith,	1905	f.t.		%	t.spontan. cryst.	X	t.spontan. cryst.
0.0 2.1 7.8 16.8 32.2 44.5 55.1 64.8	28.1 27.25 41.65 58.85 74.8 83.0 87.1 87.9		86,45 86,2 88,7 95,9 103,2 112,6 120,25	1)	100 89,965 80,246 71,557 60,0 59,2 51,83 47,4 39,9 35	79.0(sald 73.0 66.5 57.0 48.0 47.0 37.0 32.0 24.0 8	21.57 19.81 10.01 0 41.1 36.73 30.032 26.003 21.15	19.3 20.0 28.0 33.0 25.0 (beto1) 23.5 17.5 15.0 13
					Refract	ive indices	are additi	ve.

11/4			3	ALUL + B	MAPRINU	rL				
Salol (C	1 ₁ 9H ₁₀ O ₃)	+ β -Naphtho	1 (C _{1 o} H ₈ 0)		2-0xycha	lcone (C ₁₅ H ₁₂ O ₂) + Pic	cric acid	(C ₆ H ₃ O ₇ N ₃)
Bianchini	, 1914				Asahina,	1934	·····			
mo1%	f.t.	E	min.		mo1%	f.1	. m	o1%	f.t.	
0 10 15 20 30 40 50 60 70 80 85 90	42.5 36 34.5 43.5 60 73 85.5 94 101.5 109 114.5 119	34.5 - - - - 34.5	100 160 130 110 100 80 50 30		100.0 94.9 89.8 79.6 675.5 64.5 62.0 59.4 54.5	118 120 128 129 129 130 130	3.4 3 3.3 2 3.5 1 3.0 1 3.5 1	9.4 4.4 0.0 4.6 9.0 9.7 0.2 5.8 0.0	127.5 125.8 120.0 115.0 103.5 85.0 85.8 89.0	(2+3) 82.0°
					4-0xycha	lcone (C ₁₅ H ₁₂ O ₂		cric acid	
Quercigh	and Cavagr	nari, 1912						(υ,	6H3O7N3)	
E: 10%	34.5°				Asahina	1, 1934				
					mo1%	f .1	t. m	01%	f.t.	
8ellucci 9 0 5 10 20 30 40 50 60 70 80 90 100	f.t. 42 38.5 34 52.5 68 80 88 97.5 105 111 116.5 121.7	E	min. - 4 10 9 8 6.5 5 3.5 2 1		3,4-Meth	122 111 134 148 144 155 154 155 157 157 158 158	0.5 5 .3 4 .5 3 .3 3 .3 2 .0 2 .0 1 .0 1		157.0 157.5 156.4 156.2 155.0 158.0 159.5 164.5 170.8 175.5	(1+1) 49.5°
					Picric a	cid (C ₆	H ₃ O ₇ N ₃)			
Salol (C ₁₈ H ₁₀ O ₃)	+ Benzonap	hthol (C ₁₇ H	1,202)	Asahina	, 1934			······································	
					# **	f.t.	E	%	f.t.	<u>E</u>
0 4.9 10.1 15.1 19.6 25 29.5 34.9	f.t. 42.5 41 39 38 46 55 60.5 65.5 70	E	6 84 1 87 8 90.5 2 94 6 94 1 96.5 2 100 7 103	E 36.5 37 " " " " " " " " " " 49	100 97.3 95.2 90.0 85.8 78.7 75.3 75.0 65.9 (1+2)	122.0 120.0 116.5 119.8 123.0 126.5 127.2 127.3 128.5	113.5 "" "113.0 114.5	59.4 47.5 35.9 30.0 20.0 15.0 10.0 5.0 0.0	128.0 125.3 117.5 111.0 110.0 113.5 116.5 119.0 121.0	104.5 105.0 104.0 104.0 104.3 103.5 104.0
44.9	75 78	" 94. " 100	7 105 110	67.5			-			

Methylene	dioxychalo	one (C	C ₁₆ H ₁₂ O ₃) + 3-Naph (C _{1 0} H ₈		Chlorp	henol (C	₆ H ₅ 0C1)	o + p		
Asahina,	1934					Rinkes	, 1911				
mo1%	f.t.	E	mo1%	f.t.	E	78	f.t.	Е	%	f.t.	E
100 89.6 80 70 60 50 40	121.5 116.5 111.5 104.5 95.5 93.8 80.0	72 72 71 72 71 71 71	30 25 20 15 10 5 0	95.5 100.5 106.6 110.8 114.5 118.4 121.0	71.0 71.5 71.0 72.0 71.5 72.0	0 6.3 14.4 26.7 34.4 44.6 47.3 54.9	+8.8 +4.8 -0.6 -9.8 -16.7 -8.9 +2.7	-21.0 -20.0 -20.2 -20.2	59.6 66.4 74.0 84.1 88.8 94.7	+7.8 15.0 22.1 31.0 34.9 38.9 42.9	-21.0 - - - - - -
Naphthol	(C ₁₀ H ₈ 0)	α + β									
Vignon, 1	891	,				Bromph	enol (C ₆	H ₃ 0Br) (o + p		
 %	 	f	t			Rinkes	, 1911				
0 33.3		9	92 71			%	f.t.	E	%	f.t.	
50 66.7 100			82 98 22			0 3.8 10.6 16.8 24.0 25.8 30.4 34.5 39.4	+5.5 +3.3 -0.4 -4.6 -9.6 -10.6 -6.4 +0.9 +8.5	-11.6 -11.7	44.2 55.0 63.5 71.3 81.8 85.3 90.6	16.2 27.8 36.2 42.7 50.6 53.1 57.4 63.5	:
Crompton											
100 90 80 70 60 50	122.2 116.5 109.5 102.7 93.9 85.1	4 3 2	0 0 0 0 6.1	75.8 79.1 85.1 89.1 95.5			nol (C ₆ H , 1911 f.t.	E .	+ p 	f.t.	
						0		 -	50.2	····	
Kofler an	f.t.	II	%	f.1 I	t.	7.3 16.1 32.0 37.4 43.2	40.4 37.2 32.6 30.4 39.0 46.8	26,1	59.1 65.4 76.0 91.1 100	55.2 63.7 69.2 77.2 87.0 92.0	
10 30 40	96 91 79 76	-	50 70 90 100	87 103 116 122	100						

Trichlorphenol sym. (C ₆ H ₈ OCl ₈) +		Aminopheno	ol (C ₆ H ₇ ON) o + m	-
Tribromphenol sym. (C ₆ H ₉ OBr ₃)		•		
Wurfel and Kuster, 1904 and Kuster, 190	4	Hrynakowsl	ki and Szmyt, 1936	
	.t.	%	f.t. %	f.t.
metastable		.0	173.3 60	138
2.98 24.57 48.25 2 5.75 23.83 57.59 3 10.78 22.83 71.39 3 19.38 20.55 83.33 4	2.60 3.57 6.88 1.17 7.14 2.00 7.19	10 20 30 40 50	171 70 167 80 161 82 155 90 148 100	128 114 110.7 E 119 123.0
	0.00	Aminopheno	o1 (C_6H_70N) o + p	
sym. Trichlorphenol (C ₄ H ₃ OCl ₃)		Hrynakowsk	ki and Szmyt, 1936	
+ Styphnic acid (C ₆ H ₃ O ₈ N ₃)		%	f.t. %	f.t.
Efremov, 1931		0 10	173.3 50 171 60	155 162
mol% f.t. E mol% f.t	. E	20 30	166.5 70 161 80	170 176.5
100 175.5 - 34.96 123 93.87 170.3 - 25.75 110 87.89 165.1 55.0 21.26 101	.7 60.0	40 44	152 90 146.8 E 100	183 184.2
82.11 161.7 57.7 16.78 91 76.33 157.6 58.2 12.49 79 65.29 150.7 59.2 8.21 64 54.74 143.2 59.7 3.99 63 50.64 140.4 60.0 2.02 65 44.63 133.7 60.0 0 67	.2 60.0 .8 61.0 .2 61.0 .0 53.3	Aminopheno	ol (C ₆ H ₇ ON) m + p	
E: 8.2 wt% 60.0°		Hrynakowsk	ki and Szmyt, 1936	
		%	f.t. %	f.t.
Tribromphenol sym. ($C_6H_90Br_3$) + Acetyltribromphenol ($C_8H_50_2Br_3$)		0 10 13	123.0 50 113 60 111.8 E 70 122 80	155 162 168 178
Boeseken, 1912		20 29 30	125.4 tr.t. 90 129 100	183 184.2
mo1% f.t. mo1% f.t.		40	142	101,2
stable 0 92.5 55.9 63.9	,			
4.5 88.6 59.6 62.7 9.0 84.5 63.9 59.3 18.3 75.9 68.9 57.3	7 3 1		enol (C_6H_7ON) + o-	-
32.8 60.0 81.7 69.6) 5		Lupfer and Zawodsky,	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		%	f.t.	E
		0 17.1	$\substack{118.0\\112.0}$	-
		25.9 33.5	109.8 107.0	43-43.5
		36.9 33.5	105.5 107.0	11 11 11
		39.8 45.0 47.2	104.5 103.0 102.5	43
4		54.4 59.5	102.5 100.5 98.0	43
		63.7 68.4 73.1	97.0 97.5 93.0	43-43.5

77.5	89.0	43.5	
82.4	83.0	"	
88.9	72.0	н	
93.6	62.5	t7	
97.8	43.5	#	
100.0	44.5	_	

m-Aminophenol ($\rm C_6H_7ON$) + m-Nitrophenol ($\rm C_6H_5O_3N)$

Kremann, Lupfer and Zawodsky, 1920

K	f.t.	Ε	%	f.t.	
0 2.7 10.2 25.9 37.4 41.1 44.9	118.5 117.5 114.3 106.0 97.5 94.5 91.0	- - - - -	76.7 81.2 84.0 85.9 88.5 90.0 91.6	75.5 79.5 82.5 83.8 85.6 87.0 88.2	
50.9 58.4 65.9 71.2	84.4 76.0 66.0 70.0	66.0	93.4 95.8 97.4 100	90.0 91.8 93.0 94.5	

m-Aminophenol (C_6H_70N) + p-Nitrophenol ($C_6H_50_3N$)

Kremann, Lupfer and Zawodsky, 1920

%	f.t.	E	%	f.t.
0	118.0	_	58.2	85.0
4.6	116.0	-	58.4	84.8
11.1	113.0		61.6	84.3
16.6	109.8	-	64.7	83.0
21.3	107.5	-	66.2	82.5
28.9	103.0	71.0	69.9	81.0
34.4	99.0	-	72.8	83.2
3 7.7	96.0	72.0	76.3	87,5
42.0	93.0	-	80.6	91.5
44.8	90.0	-	84.5	95.0
47.5	88.0	-	87.9	98.5
49.8	85.0		92,2	103.0
51.3	82.5	-	96.1	107.0
54.2	81.0	-	100	111.5
56.0	85.0		(1+)	l)
		,		

m-Aminophenol (C_6H_70N) + α -Naphthol ($C_{10}H_80$)

Kremann, Lupfer and Zawodsky, 1920

%	f,t.	E	%	f.t.	E
0	118.0	_	54.7	84.2	_
$\frac{6.1}{12.3}$	115.3 112.5	-	55.0 57.0	83.5 82.0	69.5
17.4	110.0	-	57.7	81.0	-
21.7 25.7	107.5 106.0	-	59.4 63.0	79.0 76.0	-
31.3	103.1	-	65,4	73.0	-
35.2 35.5	$\substack{100.3\\100.0}$	_	67.3 69.3	71.5 71.5	69.0 69.0
37.7 41.5	98.0 96.0	_	70.4 71.4	69.3	69.3
42.2	97.0	_	72.9	71.5 71.5	69 <u>.</u> 5
44.9	93.0	-	73.9	72.6	-

45.3	93.0	_	77.7	75.0	-
47.1	92.0	69.0	79.9	77.5	-
49.2	89.8	-	83.3	80.0	-
50.5	95.5	-	86.4	82.6	-
52.6	86.0	-	88.8	84.7	-
54.0	84.5	-	90.4	86.0	-
			92.2	87.5	-
			95.3	89.5	-
			100	92.0	-

m-Aminophenol (C_6H_70N) + β -Naphthol ($C_{10}H_80$)

Kremann, Lupfer and Zawodsky, 1920

%	f.t.	%	f.t.	
0 _	118.0	54.0	99.0	
4.7 9.1	$\begin{array}{c} 116.0 \\ 114.5 \end{array}$	$\substack{58.3 \\ 61.6}$	98.7	
13.5 17.9	$\frac{112.6}{110.8}$	66.0 69.5	97.9 96.8	
22.2 27.4	$\substack{108.8\\106.2}$	74.0 76.4	96.0 98.0	
29.7 31.6	$\substack{105.2\\104.0}$	81.9 84.2	103.9 105.5	
$\frac{33.8}{36.4}$	$103.5 \\ 100.0$	85.5 88.6	105.8 109.8	
38.6 44.1	99.0 97.8	93.6 100	114.8 121.5	
47.9	98.0		121.0	
47.9 51.2	98.0 98.8	(1+1)		

p-Aminophenol (C_6H_70N) + α -Naphthol ($C_{10}H_80$)

Kremann, Lupfer and Zawodsky, 1920

%	f.t.	E	%	f.t.	
62.1 69.1 73.9 77.7 82.0 85.8	147.0 135.0 123.0 111.0 99.0 83.0	82.0 82.0 82.5 82.5 82.5	88.5 91.5 94.5 96.5 100	84.3 86.5 89.0 90.5 92.5	

p-Aminophenol (C_6H_70N) + β -Naphthol ($C_{10}H_80$)

Kremann, Lupfer and Zawodsky, 1920

%	f.t.	Е	%	f.t.	Е
43.0	160.0	_	76.4	117.0	106.0
47.6	156.0	-	81.0	109.0	106.0
52.3	152.0	106.0	84.9	107.0	
59.8	142.0	_ `	90.8	113.0	-
65.8	133.0	_	100	121.5	_
71.6		_			

NITROPHENOL 0 + M

r						a-Ni+nanh	ol (C "	.NO.) +	Picric acid	(C.H-A	-Na)	
Nitrophenol ($C_6H_5O_3N$) o + m						o-Nitrophen	or (C6H	SINUS) T	FICITE ACTO	i (C6ngU	71187	
Carrick,			Kremann and Rodinis, 1906									
%	f.t.	E	%	f.t.	Е	%	f.t.	%	f.t.			
100 90.9 83.3 76.9 79.4 66.7 62.5 58.8 55.5	93 88.8 83.9 79.2 75.4 72.3 68.6 65.1 62.7 57.1	31.5	47.3 44.5 49.2 37.5 33.4 28.6 23.1 16.7 9.1	54.2 50.2 46.8 40.4 35.2 31.6 33.5 35.9 39.1	31.7 31.7 31.5 " 31.5	0 7.3 11.7 19.6 27.1 32.8 36.9 40.1 44.5	45.5 43.0 41.5 39.0 36.0 34.5 40.0 45.5 52.5	45.8 48.1 56.1 63.5 64.6 80.5 86.9	57.3 69.0 87.3 79.0 97.5			
Nitroph	nenol (C _é	,H ₅ O ₂ N)	o + p	**************************************	o-Nitrophenol ($C_6H_5O_8N$) + Styphnic acid ($C_6H_9O_8N_3$)							
Carrick,		·				Efremov,	1931					
	f.t.	E	<u>%</u>	f.t.	E	mo1%	f.t.	E	mo1%	f.t.	E	
0 9.1 16.7 20.0 23.0 25.0 27.0 33.3 37.5 41.2	44 40.2 37.5 36.5 34.7 34.7 35.9 44.5 51.4 56.7	34.6 " 34.7 34.5 34.7 34.5	44.5 50.0 55.6 62.5 66.7 71.4 76.9 90.9 100.0	61.3 67.5 73.6 80.3 84.1 89.0 94.0 99.7 106.0 114.0	34.5 34.2 34.4 34.5 34.4	100 94.83 91.52 83.62 76.49 69.36 57.02 50.00 45.98	175.5 169.2 165.8 157.5 149.5 142.7 128.5 122.7 117.1	31.4 34.3 37.2 37.2 36.5 37.2 37.2	36.20 27.45 23.50 19.56 12.50 9.21 5.93 2.72 1.44	102.8 86.6 76.3 64.6 44.9 38.8 40.9 42.8 44.0 44.9	37.2 " 38.5 38.0	
Sorum a	Sorum and Durand, 1952						E: 16.5 wt% 37.2°					
%			.t.	 								
0 E 100		3	5.0 4.5 4.0			o-Nitrophenol ($C_6H_5O_5N$) + p-Chlorphenol (C_6H_5OC1)						
						Lecat, 19	49					
						% b.t.						
o-Nitro	o-Nitrophenol ($C_6H_50_9N$) + 2,4-Dinitrophenol ($C_6H_40_5N_2$)						0 217.2 7 217.05 Az 100 219.75					
Crompto	n and Whi	teley, l	895									
mol%	f.t		mo1%	f.t.								
0 10 15 20 25 30 38.64	46. 41. 38. 40. 51. 55. 64. 82.	0 6 0 6 8 8	60 65 70 75 80 90 100	89.7 90.9 96.4 100.9 105.2 108.8 112.5								

Nitrophenol (C ₆ H ₅ O ₅ .N) m + p	p-Nitrophenol (C ₆ H ₅ O ₃ N) + Picric acid				
	($C_6H_3O_7N_3$) Kremann and Rodinis, 1906				
Carrick, 1922	% f.t. % f.t.				
% f.t. E % f.t. E 0 93 - 47.3 61.6 61.0 9.1 87.1 - 50.0 66.3 60.8 14.7 82.6 - 54.5 70.5 60.3	0.0 113.0 57.3 81.0 3.3 112.0 60.6 79.0 13.1 107.0 63.3 81.5 20.9 103.0 65.7 83.0				
23.1 77.1 60.3 60.0 77.8 60.5 28.6 74.1 60.1 66.6 82.7 - 33.3 70.4 60.3 75.0 91.6 - 37.5 67.1 60.6 85.7 101.6 - 42.9 62.4 61.0 100 114 -	29.3 98.0 69.5 87.0 39.3 92.5 72.8 90.5 44.1 89.8 79.4 97.8 50.0 85.5 87.4 107.0 52.0 84.7 94.0 113.5 53.2 83.4 100.0 120.0 54.2 82.8				
m-Nitropheno1 ($C_6H_5O_3N$) + Picric acid ($C_6H_3O_7N_9$)	p-Nitrophenol ($C_6H_5O_3N$) + Styphnic acid ($C_6H_8O_8N_3$)				
Kremann and Rodinis, 1906	Efremov, 1931				
% f.t. % f.t.	mol% f.t. tr.t. E				
0 94.5 58.7 74.3 12.0 91.3 64.5 81.5 24.5 86.3 73.7 91.5 36.0 81.0 81.3 99.5 40.5 79.0 88.2 106.0 46.6 76.5 95.0 114.5 53.6 72.8 100.0 120.0	100 175.5 94.83 169.6				
m-Nitrophenol ($C_6H_5O_3N$) + Styphnic acid ($C_6H_3O_8N_3$) Efremov, 1931	41.09 116.0				
mol% f.t. E mol% f.t. E	1.44 111.9				
100 175.5 - 31.82 116.5 83.8 94.83 172.5 - 27.45 107.8 83.8 91.52 170.6 - 23.50 98.5 83.8	E: 13.8 wt% 99.6°				
83.62 166.0 - 19.56 91.5 84.0 69.36 157.1 84.0 16.03 87.6 83.8 57.02 143.2 83.8 12.50 89.1 83.8 49.14 139.2 84.2 9.31	2,4-Dinitrophenol ($C_6H_4O_5N_2$) + Picric acid ($C_6H_3O_7N_3$)				
41.09 129.9 83.8 2.72 94.3 -	Campbell and Pritchard, 1947				
E: 27.2 wt% 83.8°	% f.t. E % f.t. E				
	$egin{array}{cccccccccccccccccccccccccccccccccccc$				
	20.9 103.2 74.8 61.5 83.7 75.4 33.4 95.6 75.0 69.6 93.4 74.2 39.6 92.7 72.5 80.2 105.5 72.5				
	40.4 91.6 76.2 88.5 111.5 72.3 51.1 86.7 73.1 100.0 121.0 119.0				
	E: 59% 74° (by optical observation)				

2, 4-DINITROPHENOL + STYPHNIC ACID

by thermal	lanalyse E	: 56.5%	79.3°		2,4-Dinit	ropheno	1 (C ₆ H ₄ O	5N ₂) + Sty (C ₆	phnic aci	id		
% f.	t. E	%	f,t.	E	Efremov,	1931						
$ \begin{array}{ccc} 0.0 & 11 \\ 10.0 & 10 \end{array} $	1.9 - 7.3 -	55.0 60.0	30.8	79.2 79.0	mo1%	f.t.	Е	mo1%	f.t.	E		
20.0 102 30.0 95 40.0 88 40.0 90 50.0 83	2.0 - 5.9 78.4 3.0 78.5 0.2 79.3 1.0 78.6 0.9 78.8	70.0 80.0 90.0 100.0	92.5 102.4 111.7 120.7	79.1	100 93.45 87.06 75.03 63.67 58.32 52.98	175.5 170.1 165.5 153.5 141.7 135.7	70.0 73.0 74.3 74.2 74.3	38.12 33.36 28.85 24.35 20.08 15.81 7.74	106.3 97.8 88.4 77.7 80.4 87.4 100.7	74.5 74.3 74.3 74.4 74.4 72.3		
tt		of crysta	llization	(mm/min.)	50.00 42.89	126.6 116.1	74. 3	3. 7 3	106.8 111.4	-		
70 60 50 40	60 %	1.2 2.0 1.8 1.0	9		E : 28	3.5 wt%	74.4°					
30 20 13	55 %	0.4 0.1 0.0	7 4		Picric acid ($C_6H_8O_7N_8$) + Styphnic acid ($C_6H_8O_8N_8$)							
70 60 50		0.0 0.3	7	ı	Efremov,	1931						
40 30		0.5 0.4 0.2	3 3		mo1%	f.t.	m.t.	mo1%	f.t.	m.t.		
21 %	d	Ø.0°	9 d		100 96.80 94.67	175.5 169.3 165.6	166.6 162.7	43.35 38.39 28.54	119.6 115.7 106.3	113.7 110.2 103.7		
0.00 6.49 14.63 19.92 26.50 40.36	130° 1.45 .46 .46 .47 .48 .50	47.20 61.60 74.06 81.50 91.55 100.00	1.51 .53 .56 .57 .60		89.38 84.14 78.90 68.56 58.37 53.34 50.0 48.31	159.9 155.0 151.2 143.0 133.6 127.9 126.1 124.0	151.4 145.8 137.0 127.1 122.6 120.3	23.77 19.01 14.04 9.08 4.60 2.34	103.0 103.6 104.8 118.2 113.9 117.7 122.4	103.1 103.6 104.7 110.2 115.0		
60	1.58	55	1.54				······································					
نیو جنور میں اسے بھلی میں اسے اسے محمد است محمد اور میں امیر شیر میں امیر امیر محمد استواجی شاہد است	·	mol %	<u>n</u>	یر سے سے ضب ستر اس اللہ اللہ علیہ اللہ اللہ اللہ اللہ اللہ اللہ اللہ ا	Picric ac	cid (C ₆	H ₃ O ₇ N ₃)	+ Trinitro				
	0	130° 0 8 10	2670 2930		Efremov	and Tik	homirova,					
	20.0	8.19 16.72 25.62	3220 3710		%	f.t.	E		.t.	E		
10	30.0 25.62 3710 40.0 34.90 4250 50.0 44.54 4850 60.0 54.64 5730 70.0 65.21 6740 80.0 76.20 8040 90.0 87.80 9680 100.0 100.00 11780 90° 60 - 17960 55 - 15140			100 95 90 85 80 75 70 65 60 55 50	101.2 97.1 92.2 86.8 79.6 71.7 64.2 56.6 55.4 67.5	43.2 47.3 50.1 50.8 51.7 52.0 52.5 52.5 52.4 52.0 E	40 35 30 25 20 1	80.2 5 86.7 5 92.5 4 98.6 4 04.8 4	2.0 1.8 1.5 9.8 9.6 8.6 7.5 4.7			

Pioris	aid (CH	(O.N.)	No.			4-Ni tropy	yrocat e cl	101 (C ₆ F	l ₅ 0 ₄ N) +	Styphnic	acid 0 ₈ N ₃)
rierie a	C10 (C6H	307N3)	+ в-мар.	hthol (C ₁	₀ H ₈ 0)	Efremov,	1934			(C 6113	08113 /
Kuriloff	, 1897					mo1%	f.t.	Е	mo1%	f.t.	
mo1% 0 4.4	f.t. 122.2 117.0	mo1 50 50	.0 15	7.0		100 92.33 85.06	175.5 171.2 165.9 160.5	100.5 107.7	34.21 29.67 25.50	118.8 123.3 129.5	117.3 117.3
13.6 14.6 29.8 37.1 48.6	118.0 120.2 146.0 151.0 156.4	64 76	.8 15 .9 13 .6 12 .13 11	57. 0 50. 8 56. 4 57. 0 7. 0 71. 0	(1+1)	78.37 71.68 65.65 59.62 54.15 48.69 43.72 38.75	155.4 150.5 145.5 140.4 135.4 130.0 124.5	114.5 115.9 116.8 117.0 117.3 117.3 117.3	21.33 17.49 13.66 10.11 6.57 3.16	136.0 142.0 148.0 153.3 158.3 163.3 167.8	117.0 116.7 116.2 115.4 111.6 105.2
Asahina,	1024					E: 44.2	wt%	117.3°			
ASanina,	f.t.	m.t.		f.t.	m.t.						
100 90 80 70 60 50	121.5 117.0 115.2 133.5 145.5 153.0	109.0 109.2 109.3 108.0 111.0	40 30 20 10 0	156.3 154.0 142.5 121.5 122.0	135.0 109.5 109.2 109.0	2-Nitrore		(C ₆ H ₅ O ₁	N) + Styl (C ₆ 1	ohnic acio 1 ₈ 0 ₈ N ₃)	i
(1+1)						mo1%	f.t.	Е	mo1%	f,t.	E
3-Nitropy Efremov,		ol (C ₆ H ₅	0 ₄ N) +	Styphnic a	acid O ₈ N ₃)	100 95.34 92.33 85.06 78.37 71.68 59.62 48.69 38,75	175.5 170.4 166.5 159.0 154.7 151.3 138.8 127.2 116.0	68.7 72.1 72.9 73.5 85.4 75.2	29.67 21.33 17.49 13.66 10.11 6.57 3.16 1.60	105.8 89.7 84.2 77.1 76.7 79.2 82.7 83.7 84.8	75.4 75.6 75.6 75.5
mo1%	f.t.	<u>E</u>	mo1%	f.t.	<u>E</u>	E: 18.3		75.4°	Ü	04.0	-
100 92.33	175.5 169.3	-	34.21 29.67	106.3 100.3	76.4 76.3						
85.06 78.37 71.68 65.65 59.62 54.15	157.3 150.4 144.2 137.8	57.5 68.2 73.1 73.9 74.5 75.2	25.50 21.33 17.49 13.66 10.11 6.57	94.2 88.0 81.0 76.8 79.0 81.3	76.4 76.4 76.4 76.4 75.5	4-Nitror	esorcino	C ₆ H ₅ 0	(C _e	phnic aci ,H ₃ O ₈ N ₃)	d
48.69 43.72 38.75	125.4 119.2	75.8 76.2	3.16 0	83.9 85.8	73.5	Efremov,	1934				····
E : 20.		76.4 76.4°				mo1%	f.t.	E	mo1%	f.t.	Е
2 . 20,		76.4				100 95. 34 92. 33 85. 06 78. 37 71. 68 59. 62 48. 69 38. 75	175.5 170.4 166.9 159.6 152.2 145.8 132.6 117.8	70.3 70.7 76.2 76.1 76.1	29.67 25.50 21.33 17.49 13.66 6.57 3.16 1.60	88.6 82.8 77.3 83.2 89.8 101.0 106.2 108.8 112.2	76.1 76.0 76.1 75.2
						E: 30.5	wt %	76.1°			

1182			2, 4-DII	NITRORI	ESORCI
2,4-Dinitr	oresorcin	ol (C ₆ H ₄ 0		Styphnic C ₆ H ₉ O ₈ N	
Efremov,	1934				
mo 1%	f.t.	E	mo1%	f,t.	E
100 93.95 88.02 82.29 76.56 71.07 65.58 60.31 55.05 50.0 44.95 E: 39.0	175.5 170.3 165.7 159.9 154.8 143.2 137.7 131.8 125.0 118.7	87.2 96.4 102.9 104.2 104.8 105.0 105.1	40.10 35.24 30.58 25.92 21.43 16.95 12.63 8.32 4.04	112.2 106.1 109.3 115.0 120.3 125.3 130.4 135.2 139.6	105.1 105.0 105.0 104.9 103.3 100.8 95.0
4,6-Dinitro		ol (C ₆ H ₄)		Styphnic C ₆ H ₈ O ₈ N	
Efremov,		· · · · · · · · · · · · · · · · · · ·			 .
mo1%	f.t.	Е	mo1%	f.t.	E

4,0 Dimitiolesorcinoi	$(C_6H_4U_6N_2) + Sty$	onnic acid
	(C ₆ 1	$(_8N_80_8)$

175.5 172.4 169.4 163.7 158.0 152.4 147.2 71.07 65.58 60.31 55.05 44.95 35.24 147.4 152.6 158.5 164.8 176.4 187.4 147.2 147.2 147.4 147.2 146.9

Nitrohydroquinone ($C_6 H_5 \, 0_4 N$) + Styphnic acid ($C_6 H_3 \, 0_8 N_3$)

mo1%	f.t.	E	mo1%	f.t.	Е
100 92.33 85.06 78.37 71.68 65.65 59.62 54.15 48.69 43.72 38.75 34.8 wt	175.5 170.8 165.0 159.3 153.0 147.3 140.7 135.7 120.8 113.7	73.3 82.8 87.4 88.6 90.0 90.2 90.2 90.2 90.2	34.21 29.67 25.50 21.33 17.49 13.66 10.11 6.57 3.16	106.5 98.6 90.2 96.8 103.0 109.7 115.5 121.5 127.2 132.0	90.2 90.2 90.1 89.8 88.7 86.1 82.2

Styphnic	acid	(C ₆ H ₈ O ₈ N ₈) +	$_{\alpha}$ -Naphthol	(C _{1 0} H ₈ 0)
Efremov,	1934					

Styphnic acid ($C_6H_3O_8N_3$) + β -Naphthol ($C_{10}H_8O$)

(1+1)

Efremov, 1931

f.t.= 120°

D11 CHOV, 1701		
mol %	f.t.	E
0	175.5	-
0 5.0	168.9	_
8.22	163.7	_
15.91	151.1	143.3
22.88	147.6	144.0
29.84	153.0	144.0
36.00	158.4	144,2
42.16	162.5	-
47.65	165.4	-
50.00	166.3	-
53.14	166.1	-
58.06	166.0	_
62.98	161.0	109.6
66.64	157.3	112.3
71.84	152.9	112.8
79.87	140.2	113.5
87.19	128.5	113.5
93.83	116.5	113.0
97.04	116.3	_
98.52	118.4	108.6
100	121.8	
100	-23.0	
E: 113.5°	92.0 %	$f.t. = 144.2^{\circ}(1+1)$

Styphnic acid ($\text{C}_6\text{H}_3\,0_8\text{N}_3$) + Trinitrocresol ($\text{C}_6\text{H}_3\,0_7\text{N}_3$)

Efremov, 1931

%	f.t.	E	%	f.t.	Е
100	175.5	-	40.0	114.3	68.8
95.0	170.1	-	30.0	105.9	68.8
90.0	163.2	-	20.0	92.4	68.0
85.0	158.6	-	15.0	79.2	69.2
80.0	153.2	-	10.0	72.2	67.0
70.0	144.4	-	5.0	86.6	66.3
65.0	138.2	56.8	2.5	93.9	_
60.0	133.3	60.8	0	101.2	_
50.0	123.8	63.2			
E: 88.	3 wt%	68.8°			

FORMIC ACID + ACETIC ACID

XXXIX. TWO ACIDS .	mo1% Dv for 100 cc
***************************************	20° 70°
Formic acid ($ ext{CH}_2 ext{O}_2$) + Acetic acid ($ ext{C}_2 ext{H}_4 ext{O}_2$)	25 -0.04 -0.05 50 -0.10 -0.07 75 -0.13 -0.10
Alpert and Elving, 1949	mol% τ
b.t. mol% b.t. mol%	11027
L V L V 1000.8 0 0 109.7 63.9 56.5 101.0 4.5 2.7 111.1 72.3 63.8 101.1 5.7 3.2 112.3 77.1 70.5 101.5 10.8 9.1 114.1 84.9 79.9 102.7 20.2 16.6 114.7 87.3 83.3 103.8 27.3 23.0 116.0 94.7 89.9 105.1 35.8 30.1 117.0 98.6 98.6 106.1 42.8 36.6 117.5 99.3 99.8	100 0.001100 95 .001102 75 .001150 50 .001181 25 .001187 0 .001247
105.1 35.8 30.1 117.0 98.6 98.6 106.1 42.8 36.6 117.5 99.3 99.8 106.7 48.9 40.4 118.1 100 100 108.3 55.5 47.5	Kremann and Meingast, 1914
	t d t d
Jones and Murray, 1903	100 mol% 50 mol%
% f.t. % f.t.	15.2 1.0550 12.0 1.1300 25.5 .0437 20.3 .1192
1.09	36.0 .0320 25.3 .1132 46.7 .0202 42.3 .09375 55.8 .0106 59.5 .0732 65.0 .0004 75.5 .0544 75.4 0.9890 95 mol% 25 mol% 13.0 1.0662 20.8 .0547 14.0 1.1705 25.4 .0528 20.5 .1627 54.3 .0208 50.5 .1270 62.0 .1135 75 mol% 69.0 .1050
D.,,, 1012	10.2 1.0942 0 mo1% 21.0 .0820 25.5 .0769 13.0 1.2300 41.9 .0586 21.0 .2190
Baud, 1913 mol% f.t. mol% f.t.	56.9 .0405 25.0 .2138
100	67.0 .0290 35.0 .2014 46.3 .1872 55.1 .1762 65.5 .1636 75.0 .1520
	Kremann, Gugl and Meingast, 1914
Kremann, Meingast and Gugl, 1914	mo1% d 77°
mo1% d	100 1.060 0.987
100 1.0716 (1 - 0.001026 t) 95 .0807 (1 - 0.001020 t) 75 .1063 (1 - 0.001040 t) 50 .1435 (1 - 0.001030 t) 25 .1874 (1 - 0.001002 t) 0 .2452 (1 - 0.001001 t)	68.7 .107 1.028 50 .131 .053 22.7 .185 .10 0 .231 .15

FORMIC ACID + ACETIC ACID

Udovenko	and Ayrap	etova, 19	47			Kremann a	nd Meingast	, 1914	
mo 1%		d		F00		t	σ	t	d
		25°		50°		100	mol%	50	mo1%
0 4.22 11.36 25.84 38.70 58.35 76.37 93.97 100.00	1, 2375 .2309 .2113 .1824 .1577 .1258 .0972 .0746	1,2088 ,2007 ,1847 ,1578 ,1297 ,1016 ,0756 ,0518		.1846 .1728 .1577 .1284 .1033 .0758 .0455 .0240		15.2 25.5 36.0 46.7 55.3 65.0 75.4	28.08 27.50 26.49 25.66 25.01 24.21 23.26 mol%	12.0 20.3 25.3 42.3 59.5 75.5	31.95 31.19 30.68 23.91 27.54 26.30
Kremann,	Gugl and	Meingast	, 1914			13.0 20.8 25.4 54.3	28.97 28.32 27.77 25.17 mo1%	14.0 20.5 25.0 50.5 62.0 69.0	34.19 33.18 32.81 30.60 29.11 28.07
mol#	11	η (wate	r=1) 77°			10.2 21.0 25.5	29.98 29.28 28.67		riol%
100 68.7 50 22.7	1.9		1.51 .48 .47 .46 .46	5		41.9 56.9 67.0	27.35 26.06 25.01	21.0 25.0 35.0 46.3 55.1 65.5 75.0	37.63 37.19 35.86 35.16 34.09 32.42 31.49
Davis and	d Jones, l	915 and J	lones,	1915		Udovenko	o and Ayrape	etova, 1947	
%	η 15°	25°	%	η 15°	25°	mo1%	0°	и 25°	50°
100 90 80 70 60 50	1410 1558 1701 1792 1333 1942	1174 1286 1391 1463 1506 1564	40 30 20 10 0	1934 2012 2002 1967 1963	1597 1667 1607 1592 1571	0 4.22 11.36 25.34 31.75 33.75 39.57 50.37	0.74 .65 .47 .26 .18 .12 .11	1.24 1.11 0.82 .47 .33 .21 .16	1.76 :59 .20 0.71 .54 .35
Udovenko	and Ayrap	etova, 19	947			53.35 76.37 93.97 100.00	.07 .03 .0013	.06 .005	.26 .20 .09 .01 .0038
mo1%	0°	η 25 °	 .	50°					
0 4.22 11.36	2821.0 2906.9 2864.4	1537 1560 1565	. 3 . 2	976.7 977.5 989.3		Kremann,	Meingast an	đ Gugl, 191	4
25.84 33.70 58.35 76.37 93.97 100.00	2855.7 2745.0 2502.5 2165.3 1179.8	1565 1520 1424 1277 1113 1035	.5 .7 .9 .6	934.7 969.4 922.6 852.6 772.9 762.3		50 mol	¶ U=0.50	2 Q n	nix 16°=1.365 cal/g

Formic acid ($ ext{CH}_2 ext{O}_2$) + Propionic acid ($ ext{C}_3 ext{H}_6 ext{O}_2$)	% n _D % n _D
Timmermans,1958	20°
71.9 -25.0 -36 100 -20.8 -	0 1.3720 60 1.3800 10 .3733 70 .3810 20 .3735 80 .3830 30 .3750 90 .3845 40 .3765 100 .3860 50 .3778
20,8	
Acetic acid ($C_2H_4O_2$) + Propionic acid ($C_3H_6O_2$)	Kendall and Grass, 1921
	mol% и mol% и
Sumarokov and Volodutskaya, 1956	25°
mol% mol% L V L V	0 0.00024 74.63 0.00006 7.51 .00018 91.14 .00003 28.80 .00013 100 .00001 54.59 .00007
at b.t. 78.80 66.76 42.62 25.16	54.59 .00007
61.46 55.70 22.44 14.55 54.91 44.67 10.92 8.37 47.06 36.23	Acetic acid ($C_2H_4O_2$) + Butyric acid ($C_4H_8O_2$) Kahlbaum, 1893
% d % d	p b.t.
20 °	0% 50 mo1% 100 mo1%
0 1.0505 60 1.0150 10 .0409 70 .0083 20 .0378 80 .0029 30 .0285 90 0.9990 40 .0258 100 .9980 50 .0185	13 22.3 39.0 68.6 14 23.5 40.1 69.8 15 24.6 41.5 70.9 16 25.7 42.9 72.0 17 26.7 44.0 73.0 18 27.7 45.2 73.9 19 28.6 46.2 74.9 20 29.5 47.2 75.8 21 30.4 48.2 76.6
Waentig and Pescheck, 1918	22 31.2 49.2 77.4 23 32.1 50.0 78.2 24 32.9 50.8 79.0
wt% mol% d wt% mol% d	25 33.7 51.6 79.8 26 34.4 52.3 80.5
30° 100 100 0.9832 35.38 30.74 1.0202 76.96 73.03 .9946 21.22 17.93 .0256 50.59 45.36 1.0124 0 0 .0461	30 37.1 55.0 83.1 31 37.7 55.6 83.7 32 38.3 56.2 84.3 33 38.9 56.8 84.9
	34 39.4 57.4 85.5 35 40.0 57.9 86.1 36 40.5 58.4 86.6
Sumarokov and Volodutskaya, 1956	37 41.0 58.9 87.1 38 41.5 59.5 87.6
% η (centistokes . 10°3) 20° 50°	39 42.0 59.9 88.1 40 42.5 60.4 88.6 41 43.0 60.9 89.1
10 1230 910 20 1230 905 30 1220 894 40 1220 334 50 1210 384 60 1210 884 70 1210 353 30 1196 953 90 1196 337	42 43.5 61.4 89.6 43 44.0 61.9 90.0 44 44.5 62.4 90.5 45 44.9 62.9 91.0 46 45.4 63.4 91.4 47 45.8 63.8 91.8 48 46.3 64.3 92.3 49 46.7 64.8 92.7 50 47.2 65.3 93.1 51 47.6 65.8 93.5 52 - 66.2 93.9

ACETIC ACID + ISOBUTYRIC ACID

10/5	Acetic acid ($C_2H_{\rm h}O_2$) + Undecanoic acid
Landolt, 1865	(C ₁₁ H ₂₂ O ₂)
, U	Ralston and Hoerr, 1942
20° 0 20.0 1.0511 1.3720	% f.t.
47.85 20.2 1.0043 1.3644 100 20.2 0.9591 1.3973	88.9 20 100 28.13
0 20 1.0500 1.3706 2nd sample . 59.5 20 0.9912 1.3850 ————————————————————————————————————	
	Acetic acid ($C_2H_{14}O_2$) + Lauric acid ($C_{12}H_{214}O_2$)
Buchkremer , 1890	Ralston and Hoerr, 1942
% d n _D	å f.t.
20° 100 0.97225 1.39506 75.892 0.98841 .38937 53.237 1.00564 .38464 26.029 1.02878 .37938 0 1.05239 .37496	45.0 20 74.8 30 93.7 40 100.0 43.86
Acetic acid ($C_2H_uO_2$) + Isobutyric acid ($C_uH_gO_2$) Kremann, Gugl and Meingast, 1914	Acetic acid ($C_2H_4O_2$) + Tridecanoic acid ($C_{1 \rm g}H_{26}O_2$)
mol% d n(water=1)	# f.t.
11° 0 1.060 1.989 33.34 1.026 .33 50.00 1.010 .46 66.67 0.993 .34 100 0.960 .10	49.2 20 79.8 30 98.8 40 100.0 41.76 Acetic acid (C ₂ H ₄ O ₂) + Myristic acid (C ₁₄ H ₂₈ O ₂)
Kremann, Meingast and Gugl, 1914	Ralston and Hoerr, 1942
and dagi, 1717	% f.t.
61.9 vol% 10° Dv = +0.18% 51 mol% U= 0.488 Q mix 16° 0.662 col/g	9.1 20
Acetic acid ($C_2H_4\theta_2$) + Capric acid ($C_{10}H_{20}\theta_2$)	03,70
Ralston and Hoerr, 1942	
% f.t.	
85.1 20 98.8 30 100.0 30.92	

Acetic acid ($C_2H_4O_2$) + Pentadecanoic acid ($C_{15}H_{30}O_2$)	Acetic acid ($C_2H_\mu O_2$) + Monochloracetic acid ($C_2H_3O_2C1$)			
Ralston and Hoerr, 1942	Mameli an	nd Manness	ier, 1913	
% f.t.	nio 1%	f.t. I	mol%	f.t. II
8.1 20 38.3 30 77.8 40 96.3 50 100.0 52.49	100 92.65 88.46 86.79 84.70 81.69 79.08	61.65 55.15 51.10 49.87 47.93 45.15 42.65	100 98.52 96.11 90.61 81.03 74.51 67.32	56.68 55.48 54.50 48.53 39.50 33.78 23.65
Acetic acid ($C_2H_4O_2$) + Palmitic acid ($C_{16}H_{32}O_2$)	76.75 71.66 68.66 67.89 65.37	40.11 34.94 31.73 29.85 27.05	67.22 63.10 54.40 48.85 48.14	23.40 19.14 8.53 -0.10 -1.60
Ralston and Hoerr, 1942	62.63 61.85	24.41 23.00	47.46 44.17	-2.00 -5.52
# f.t. 2.10 20 7.51 30 34.1 40 75.8 50 95.8 60 100.0 62.41	58.93 58.75 56.63 55.59 51.31 49.60 47.42 45.84 43.76 38.31	19.50 19.25 15.68 14.90 10.50 5.80 3.45 0.65 -1.75 -6.83	41.79 40.19 37.15 32.80 27.95 21.63 17.90 15.61 14.89 8.34	-10.08 -8.58 -4.58 -1.58 2.02 6.17 6.22 9.32 9.96 13.02
Acetic acid (C ₂ H ₄ O ₂) + Margaric acid (C ₁₇ H ₃₄ O ₂) Ralston and Hoerr, 1942	25.93 18.96 13.34 0.00	3.47 7.67 10.65 16.67	7.66 4.33 1.39 0.00	13.42 14.88 16.10 16.67
% f.t. % f.t.	Kendall,	1914	<u> </u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mo1%	f,t.	mo1%	f.t.
37.9 40 100.0 60.94 	0 8.2 20.4 29.0 29.0 38.0	16.4 10.7 1.7 -4.5 +5.0 12.8	49.7 59.7 70.6 84.5 100.0	22.2 29.7 38.0 49.4 61.4
Ralston and Hoerr, 1942	Bokhovkin	, 1956	(fig.)	
% f.t. % f.t.	mol%	f.t.	mol%	f.t.
0.12 20 42.8 50 1.65 30 82.9 60 7.05 40 100.0 69.20	0 20 30 40	16 5 -5 +2	60 80 100	25 45 55 II
	mo1%	400	σ	(0.0
Acetic acid ($C_2H_4O_2$) + Lactic acid ($C_3H_6O_3$)	5 10 15 20	26.2 26.8 27.4 28.2	25.3 25.9 26.5 27.3	24.4 25.1 25.7
Kremann, Meingast and Gugl, 1914	25 30	28.2 28.9 29.7	28.0 28.6	25.7 26.8 27.0 27.7
50 mol% U (room temperature)= 0.536 Q mix (16°) = 0.821 ca1/g	35 40 45 50 55 60	30.4 31.0 31.7 32.5 33.1 36.6	29.3 30.1 30.7 31.4 32.0 32.7	28.4 29.0 29.6 30.3 30.8 31.4

ACETIC ACID + DICHLORACETIC ACID

	Acetic acid ($C_2H_4O_2$) + Trichloracetic acid
Kendall and Gross, 1921	(C ₂ HO ₂ Cl ₃)
ко1% и mo1% и 25° 60° 25° 60°	Kendall, 1914
0 0.00024 - 55.20 0.00527 -	mo1% f.t. mo1% f.t.
7. 25 .00098 - 68. 21 .00559 0.01554 14. 76 .00192 - 74. 8101564 23. 02 .00299 - 84. 1301533 30. 50 .00384 - 93. 2001467 40. 16 .00455 - 10001410	0 +16.4 53.9 -0.1 8.7 9.9 61.5 +15.4 15.4 3.1 69.8 28.4 24.3 -10.1 77.5 37.6 31.0 -25.3 87.2 47.3 49.0 -13.3 100 57.3
Agetic acid / C W O D > Disklamma	
Acetic acid ($C_2H_4O_2$) + Dichloracetic acid ($C_2H_2O_2Cl_2$)	Bokhovkin, 1956 (fig.) mol% f.t. mol% f.t.
Kendall, 1914	
mol% f.t. mol% f.t.	$\begin{bmatrix} 0 & 20 & 60 & +10 \\ 20 & -2 & 80 & 40 \\ 40 & -42 & 100 & 55 \\ 50 & -10 & & & \end{bmatrix}$
0 16.4 56.6 -40.8 8.6 10.3 70.3 -18.2 20.8 -0.7 82.1 -4.2 29.5 -10.8 91.4 +3.9 36.4 -21.5 100 9.7	mo1%
45.0 -37.0	5 26.2 25.1 24.3 10 26.9 25.9 24.9 15 27.5 26.6 25.6 20 28.2 27.2 26.2
Bokhovkin, 1956 (fig.)	20 28.2 27.2 26.2 25 28.8 27.9 26.9 30 29.5 28.5 27.6
mol% f.i. mol% f.t.	35 30.1 29.1 28.2 40 30.7 29.7 28.7
0 10 70 -20 20 0 80 -5 40 -30 100 +5 52 -50	45 31.1 30.2 29.3 50 31.6 30.7 29.8
mo1% σ	Kendall and Brakeley, 1921
40° 50° 60°	mol% d n mol% d n
15 28.5 27.5 26.6 20 29.2 28.1 27.3 25 29.7 28.7 27.9 30 30.3 29.2 28.5 35 30.8 29.8 29.0 40 31.3 30.3 29.5 45 31.8 30.7 30.0 50 32.3 31.2 30.4 55 32.7 31.6 30.7	25° 0 1.049 1121 43.48 1.409 4346 7.37 .129 1532 52.62 .457 5176 17.77 .223 2228 58.53 .491 5859 32.09 .337 3362 63.81 .508 6854
20.7	Kendall and Gross, 1921
65 33.3 32.2 31.4 70 33.6 32.5 31.7 75 33.8 32.7 31.9	mol% × mol% × 25° 60° 25° 60°
80 34.0 32.9 32.1 85 34.2 33.2 32.3 90 34.3 33.4 32.5	0 0.09024 - 44.87 0.00564 - 4.86 .00167 - 52.39 .00380 - 10.43 .00367 - 60.39 .00225 - 18.72 .00637 - 68.34 .00115 - 23.72 .00805 - 71.73 .00084 0.00291 27.67 .00831 - 82.37 - .00104 31.75 .00808 - 90.53 - .00038 37.99 .00710 - 100 - .00006

Acetic acid ($C_2H_4O_2$) + Benzoic acid ($C_7H_6O_2$)	Propionic acid (${ m C_3H_6O_2}$) + Isobutyric acid (${ m C_4H_8O_2}$)
Beckmann, 1888	Timmermans, 1934
% Df.t.	wt% mol% f.t. E
0.850 -0.270 4.041 1.215 9.274 2.650 17.62 4.770 19.95 5.340	
Kendall, 1924	
mol% f.t. mol% f.t.	D
100 121.0 28.3 50.9 87.6 111.5 20.8 38.2 72.6 100.3 14.5 19.2 61.0 90.1 9.7 10.4 50.6 79.1 5.2 13.0 43.4 71.5 0 16.4	Propionic acid ($C_9H_6O_2$) + Valeric acid ($C_5H_{10}O_2$) Timmermans, 1934 wt% mol% f.t. E
Mortimer, 1923 mol% f.t. mol% f.t.	100 100 -34.5 - 79.1 73.3 -51.5 - 62.8 55.05 -66.0 -62.0 51.6 43.6 -51.5 -62.6 28.25 22.2 -40.4 - 14.9 11.3 -31.8 - 0 0 -20.8 -
7.8 20 96.8 80 11.8 40 61.7 100 21.0 60 100.0 121.0	Propionic acid ($C_3H_6O_2$) + Isovaleric acid ($C_5H_{10}O_2$)
	Timmermans, 1934
Acetic acid ($C_2H_{t_k}O_2$) + Phenylacetic acid ($C_8H_8O_2$)	wt% mol% f.t. E
Bokhovkin and Chesnokov, 1955 mol% f.t. mol% f.t.	100 100 -30.0 - 74.25 67.755.5 56.7 48.7 -61.0 -55.6 48.5 40.656.0 36.0 29.8 -44.0 -55.0
0 16.6 26.52 7.7 2.27 15.1 28.94 11.5 4.67 13.6 30.60 13.8 6.75 12.0 35.02 19.8 9.94 10.6 39.82 26.6	36.0 29.8 -44.0 -55.0 23.8 18.5 -34.9 - 15.1 11.4 -30.9 - 0 0 -20.8 -
6.75 12.0 35.02 19.8 9.94 10.6 39.82 26.6 12.82 8.7 42.89 29.2 15.90 7.0 46.13 32.6 19.19 4.2 50.72 37.2 21.28 3.3 56.96 42.5 22.72 2.5 100 75 24.97 5.2	Butyric acid ($C_{14}H_{8}O_{2}$) + Pyruvic acid ($C_{2}H_{4}O_{3}$)
	Lecat, 1949
	% b.t.
	0 164.0 34 162.4 Az 100 166.8

YALERIC ACID + ISOVALERIC ACID

289 300 312 333 3435 367 388 399 401 4244 445 447 448	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35	5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9	2.0 2.5 3.0 3.5 4.0 4.5 5.0	p			Timu ———	i
103.3 104.6 105.3 105.5 107.7 107.7 108.2 108.8 109.9 110.4 111.9 111.4 111.9 112.8 113.3 113.3 114.2	89.4 90.7 91.8 92.9 94.0 95.0 96.9 97.8 98.6 99.5 100.3 101.0 102.5	73.7 74.9 76.5 77.9 79.3 80.5 82.8 84.7 96.5 88.0	63.2 66.8 69.3 71.4	100%		0 25 40 52 69 84 100	mermans,	
101.7 102.3 103.0 103.6 104.2 104.8 105.4 105.9 106.5 107.1 108.1 108.6 110.1 110.6 111.0 111.5 112.0	86.1 87.4 88.7 89.8 91.0 92.2 93.3 94.2 95.1 97.0 97.8 98.6 99.4 100.1	73.4 74.8 76.2 77.4 78.5 79.5 80.4 81.4 83.1 84.1	- - - - 69.6 71.6	75,08%	d (C ₅ H ₁₀ O ₅	4 5 1		1 (C ₅ H ₁₀ O ₂
100.4 191.0 101.7 102.3 102.9 103.5 104.2 104.7 105.9 106.5 107.0 107.6 108.1 109.6 110.5 111.0	87.0 88.3 90.6 91.7 92.8 94.8 95.7 96.6 97.4 98.3 98.9	72.2 73.6 76.1 78.3 80.2 82.1 83.9 85.5	56.7 60.8 63.6 65.7 67.5 69.0 70.7	b.t. 45.53%	(C ₂ H	-34.5 -51.5 -72.2 -77.0 -57.2 -44.0 -30.0	(C ₅ H ₁	
100.9 101.6 102.3 102.3 103.5 104.1 104.7 105.8 106.8 107.4 107.9 108.8 109.3 109.7 110.2 110.6 111.1	86.6 88.0 89.2 90.3 91.4 92.5 93.5 94.5 96.3 97.1 97.9 98.7 99.4 100.2	71.4 72.8 74.1 75.4 77.7 79.8 81.7 83.5 85.1	61.2 63.9 66.1 68.1 69.8	25.46%	chloraceti 1 ₃ 0 ₂ C1)	-80.7 -80.1	- O _ε) - E	
99. 4 100. 1 100. 7 101. 3 101. 3 101. 9 102. 5 103. 1 103. 7 104. 2 104. 7 105. 7 106. 2 106. 6 107. 1 107. 5 108. 4 108. 9 109. 7	85.4 86.6 87.8 88.9 90.0 91.0 92.0 93.9 94.8 95.6 97.2 98.7	72.9 75.1 77.1 79.1 80.8 82.4 84.0	60.7 62.9 64.7 67.9 70.5	0%	c acid		<u></u>	
	0 5.07 10.10 15.22 20.18 25.04 27.62 29.56 32.81 35.20 40.30 42.62 45.45		0 3 100	Lecat,	64 65 66 67	56	51 11 52 11 53 11	50 11
	0 4.12 8.30 12.64 16.92 21.20 23.51 25.26 28.23 30.44 35.22 37.42 40.16			1949	- 1	7.0 1 7.3 1 7.7 1 8.1 1	5.4 1 5.8 1 6.2 1	5.0 11
	-6.6 -8.2 -10.3 -12.8 -14.7 -15.8 -16.0 -15.4 -14.1 -13.7	C ₆ H ₁₂ O ₂ gers, 194 f.t.			18.5 18.8 - -	14.9 15.3 15.7 16.0 16.4 16.8 17.1 17.5 17.8	13.7 14.1 14.5 14.9	12.9 13.3
	47.29 49.56 55.14 60.32 65.20 70.73 75.69 79.99 85.09 90.21 95.73 100.00		b.t. 186.35 186.33 Az 189.35		118.0 118.3	114.4 114.8 115.2 115.5 115.9 116.2 116.6 116.9 117.3	113.2 113.6 114.0	112.4 112.8
	41.91 44.18 49.75 55.05 60.15 66.04 71.50 76.30 82.13 88.13 94.75 100.00	rlic acid	,		117.4 117.7 118.1 118.4	113.9 114.2 114.6 115.0 115.3 115.7 116.1 116.4 116.7	$113.1 \\ 113.5$	111.9 112.3 112.7
	-11.2 -8.0 -4.3 -1.6 0.9 3.7 5.9 8.1 10.2 12.6 14.8 16.7	(C ₈ H ₁₆ O ₂)			-	112.4 112.5 112.8	110.9 111.3 111.7 112.4 112.5	110.1 110.5

·			·								
Caproi	c acid (C	(4H ₁₂ O ₂)	+ Monobro (C ₂ H ₃ O ₂		cid	Capric	acid (C ₁	₀ H ₂₀ O ₂)	+ Undecar		
Lecat,	1949					Slagle	and.Ott,	1933			
. %			b.t.			mo1%	cry	stal spa	cing (in	Å)	
100			205.15 204.4 Az 205.1			100.0 89.3 79.2 69.8		25 24 24	.32 .03 .69 .55		
		6H ₁₂ O ₂)	+ Trichlo (C ₂ HO ₂ C		cid	58.2 48.2 38.1 28.6 18.8 9.3 0.0		24 23 23 23 23	.20 .71 .58 .33 .19		
Lecat,	1949										
0 45			b.t. 205.15 210.4 Az			Capric	acid (C ₁	0H20O2)	+ Lauric	acid (C ₁	₂ H ₂₄ O ₂)
100			197.55			Kulka a	nd Sandin	, 1937			
						mo1%	f,t		mo1%	f.t.	
) + Capric	acid (C ₁₀	(2 0 ₀ 2 H _c	0.0 8.3 20.1 24.4 26.6	31. 26. 21. 20. 19.	8 3	47.4 50.0 50.3 57.0 64.8	23.0 24.0 24.2 27.7 31.2	ļ
	and Roge					27.5 28.9	19.4 20.4 22.3	\$ \$	73.9 81.1	34.5 37.6	
wt%	mo1%	f.t.	wt%	mo1%	f.t.	26.6 27.5 28.9 37.5 42.7	22 22	3)	90.4 100.0	40.9 43.9	
0 4.97	$\frac{0}{4.20}$	$\frac{16.7}{15.2}$	50.66 51.22	46.22 46.78	$9.5 \\ 10.7$						
9.97 15.00 20.08 23.71	8.48 12.88 17.37 20.64	16.7 15.2 13.7 12.2 10.5 9.0 5.7 5.1	55.20 60.82 65.33 69.75 75.20	50.77 56.52 61.20 65.88 71.74 77.05	14.3 17.5 19.4 21.0	Grandal	and Roger	s, 1944			
30.02 31.38 35.23	26.43 27.69	5.1	80.04 85.01	77.05 82.61	23.0 24.7 26.6	wt%	mol%	f.t.	wt%	mo1%	f.t.
39.60 42.15 48.44	31.28 35.43 37.87 44.02	5.6 6.5 7.1 8.0	89.89 94.98 100.00	82.61 88.15 94.06 100.00	28.2 29.9 31.6	0 5.02 10.05 15.83 19.59 24.49	0 4.36 8.77 13.92 17.32 21.81 26.99	31.6 30.4 29.1 27.7 26.6 24.5	50.16 51.53 52.48 54.51 60.98 70.32 80.57	46.39 47.76 48.71 50.76 57.34 67.07	24.2 25.5 27.3 29.0 32.0 35.2
						30.06 31.70 35.39 39.58 44.85 49.04	26.99 28.53 32.02 36.03 41.15 45.28	21:8 21.4 22.0 22.7 23.5 24.0	80.57 84.85 90.73 94.94 100.00	78,10 82,81 89,38 94,17 100,00	38.7 39.9 41.5 42.7 44.2

CAPRIC ACID + MYRISTIC ACID

Paquot and Petit, 1952	Undecanoic acid (C ₁₁ H ₂₂ O ₂) + Lauric acid
mol% f.t. mol% f.t.	(C ₁₂ H ₂₄ O ₂)
0.0 31.2 36.4 21.9 5.0 28.0 46.3 22.9 8.7 26.15 50.0 23.5 12.5 24.2 52.4 24.9 17.7 21.6 56.3 26.9 20.5 20.6 66.7 31.6 22.5 20.0 77.5 35.6 25.0 19.2 88.6 39.8 26.0 19.35 94.2 41.6 28.3 20.1 100.0 43.3 32.5 21.1	Kulka and Sandin, 1937 mol% f.t. mol% f.t. 0.0 28.2 52.5 31.6 7.6 27.6 53.7 31.9 14.6 27.4 56.0 32.4 20.0 27.3 58.8 33.1 22.4 27.4 63.9 34.4 25.4 27.6 67.0 35.1 28.7 28.0 75.0 37.4 32.4 28.6 77.4 38.0 36.4 29.2 89.7 41.2 40.7 29.9 90.0 41.4 46.2 30.7 100.0 43.9
Slagle and Ott, 1933	46.2 30.7 100.0 43.9 49.1 31.1 51.3 31.5
mol% crystal spacing (in Å) 100.0 27.18 77.5 27.10 56.2 25.90 46.6 25.31 36.8 24.94 17.4 23.53 0.0 23.02	Lauric acid ($C_{12}H_{24}O_2$) + Myristic acid ($C_{14}H_{28}O_2$)
	% f.t. % f.t.
Capric acid ($C_{10}H_{20}O_2$) + Myristic acid ($C_{14}H_{28}O_2$) Paquot and Petit, 1952 mol% f.t. mol% f.t.	0 43.6 60 43.0 10 41.3 70 46.7 20 38.5 80 49.6 30 35.1 90 51.8 40 36.7 100 53.8 50 37.4
0.0 31.2 34.0 26.3 3.5 27.3 36.0 27.5 8.3 24.2 37.3 28.9 11.9 23.0 42.0 32.0 15.0 21.6 52.6 38.2 17.1 21.0 63.8 42.1 19.0 21.1 75.1 46.4 20.1 21.6 87.2 50.0 25.6 24.3 94.8 52.1 31.2 25.8 100.0 53.4	Efremov, 1929-30 % f.t. m.t. E 100

Paquot and	l Petit, 19	5 2	
mo1%	f.t.	mo1%	f.t.
0.0 4.4 8.6 13.6 17.4 22.7 24.6 26.4 28.1 32.7 37.0	43.3 41.2 39.2 37.2 35.7 34.0 33.1 33.6 33.6 34.5	42.9 46.6 51.0 55.8 61.1 66.9 72.4 83.1 94.3 100.0	36.0 36.1 36.4 38.0 40.4 42.8 44.9 48.3 51.8 53.4
Fieldes		, 1951 and l	
70	d ₁	d ₂	d ₃
diagram	um of 1955	4.12 ° 4.14 4.13 4.14 4.13 4.14 4.13 4.14 4.13 4.14 4.13 4.12 4.14 9.13 4.12 (C1,4H	
von Sydow,	1954		
R		f.t.	
0 E 100	·	44 31 53	
Lauric acid	(C ₁₂ H ₂₄ O ₂	2) + Isopen (C ₁₅ H ₃	tadecanoic acid
von Sydow,	1954		
	 	f.t.	
0 E 100		44 32 52	

Lauric a	cid (C ₁₂ H ₂ ,		lmitic acid ₆ H _{3z} O ₂)	
8	f.t.	%	f.t.	
0 10 20 30 40 50	43.6 41.5 37.1 38.3 40.1 47.0	60 70 80 90 100	51.2 54.5 57.4 59.8 62.0	

Waentig	and Pesci	neck, 191	8		
wt%	mo1%	f.t.	wt%	mo1%	f.t.
100 94.00 89.87 85.59 82.04 72.62 69.91 67.60 67.24 65.40 61.41 59.96 58.06 56.31 54.72	100 82.45 87.39 82.27 78.11 74.42 70.83 67.45 61.98 59.63 57.34 55.42 53.92 51.96 50.17	60.95 59.48 58.40 57.16 56.16 55.22 54.15 53.12 52.10 51.26 50.45 49.45 48.05 47.28 46.45 47.28 46.45 47.57	51.92 51.45 49.09 47.83 46.22 44.32 42.02 37.65 34.97 31.95 28.29 24.64 20.32 10.87 5.32	45.76 45.29 42.97 41.72 40.17 38.34 36.15 32.06 29.58 26.84 23.65 20.35 16.01 13.10 8.70 4.21	43.53 43.00 42.78 42.63 41.70 40.55 39.15 38.03 37.60 37.12 36.34 35.50 36.33 36.90 38.26 40.55 43.35
52.16	46,00	44.08			

wt%	mo1%	f.t.	E	
100	100	59.2	-	
95	93.74	56.5	55.0	
90	87.55	54.6	51.3	
85	81.65	52,5	48.0	
80	75.76	50.8	45.1	
75	70.17	48.8	42.5	
70	64.58	46.5	40.3	
65	59.27	44.8	38.3	
60	53.96	42.5	36.6	
55 50	48.90	40.3	35.1	
45	43.86 38.91	38.1	34.0	
40	33.97	35.8 33.7	33.0	
35	29.28	32.0	32.0	
30	24.59	31.0	31.2	
30 25	20, 17	31.3	30.3 30.8	
20	15.75	32.8	31.5	
15	11.66	35.0	32.5	
10	7.57	37.5	34.5	
5	3.78	40.0	JT.U	
0	0	42.7	-	
E: 27.7	% 30. 7 °			

LAURIC ACID + ISOPALMITIC ACID

Waentig and Pe	scheck, 1918			Efremov	, 1929-	30		
wt% mol%	d wt%	mo1%	d	×	f.t.	m.t.	tr.t.	
100 100 85.08 81.6' 72.12 66.90 59.36 53.30 45.72 39.69) .84 77 15.53) .8484 0	34.40 22.57 12.56 0	0.8497 .8507 .8514 .8527	100 95 90 85 80 70 60 55	67.7 66.2 65.2 64.1 63.0 60.2 57.2 55.7 52.8	65.0 62.1 59.8 57.5 53.3 49.2 47.0 46.1	29.0 30.5 31.8 32.8 34.2 35.5 35.9 36.2	
Lauric acid (C ₁₂ H ₂₄ O ₂) + Isopa (C ₁₆ H	lmitic ac	id	40 30 25 20 15	46.8 40.3 38.3 37.0 36.5	42.1 38.8 37.7 36.9 36.5	35.8 35.0	
von Sydow, 195	4			10 5	37.9 40.1 42.7	37.2 39.0	-	
mo1%	f.t.			0 E: 17.		36.5°	_	
0 50	44 33 (1+1)	(incongr	lent)	E: 17.	, 3 %			
100	31 6 2	_		Waentig	and Pes	check, 1918		
				%	mo1%	d %	mo1%	d
Lauric acid (($C_{12}H_{24}O_2$) + Isoma ($C_{17}H$	-	id	0 15.81 34.04 48.03	0 11.68 26.65 40.00	75° 0.8527 61,27 .8510 74,86 .8494 100 .8481	52.70 67.71 100	0.8470 .8455 .8436
von Sydow, 1954	<u> </u>		·					
0 E	f.t. 44 34		·	Trideca	noic aci	$d (C_{13}H_{26}O_{2})$	+ Isomyri (C ₁₄ H ₂₈	
100	60			von Syd	low, 1954	ļ		
				%		f.t.		
Lauric acid ($C_{12}H_{24}O_{2}$) + Steam	ric acid I ₈₆ 0 ₂)		0 E 100		41 39 53		
Heintz, 1855								
%	f.t. %	f.t.		Tridec	anoic ac	eid (C ₁₃ H ₂₆ 0 ₂)	+ Isopen	tadecanoic
0 10	43.6 60 41.5 70	59.0 62.0		acid (C ₁₅ H ₈₀ C)2)	•	
20 30	38.5 80 43.4 90	64.7 67.0		von Sy	dow, 195	54		
	50.8 100 55.8	69.2		9.	5	f.t.		
				0 E 100		41 40 52		
				IL				

Tridecanoic acid ($C_{13}H_{26}O_2$) + Isopalmitic acid	Myristic acid ($C_{14}H_{28}O_2$) + Isopentadecanoic acid ($C_{15}H_{30}O_2$)
(C ₁₆ H ₃₂ O ₂)	
von Sydow, 1954	von Sydow, 1954
# f.t.	# f.t.
0 41 E 34 100 62	0 54 E 47 100 52
Tridecanoic acid ($C_{1.9}H_{2.6}O_2$) + Isomargarinic acid ($C_{1.7}H_{34}O_2$)	Myristic acid ($C_{1h}H_{28}O_2$) + Palmitic acid ($C_{16}H_{32}O_2$) Efremov, 1937
von Sydow, 1954 mol% f.t.	wt% mol% f.t. m.t.
0 41 E 34 50 38 (1+1) E 37 100 60	100 100 59.2 - 95 94.63 58.0 56.5 90 88.90 55.9 54.1 85 83.46 54.3 51.5 80 78.05 52.7 49.1 75 72.75 51.1 47.3 70 67.00 42.5 45.8
Tridecanoic acid (${ m C_{1 S}H_{2 6}O_2}$) + Isostearic acid (${ m C_{1 8}H_{3 6}O_2}$)	60 57.08 47.1 43.2 55 52.04 46.0 42.5 50 47.02 44.3 41.5 55 42.08 43.5 41.1 40 37.10 42.4 40.4 35 32.39 41.3 40.0
% f.t. 0 41 E 32 100 68	25 22.77 39.8 39.8 20 18.10 39.5 39.5 15 13.50 42.2 41.0 10 9.00 44.8 42.9 5 4.25 47.5 46.3 0 0 49.8
Myristic acid ($C_{1\mu}H_{28}O_2$) + Isomyristic acid ($C_{1\mu}H_{28}O_2$)	Kulka and Sandin, 1937 mol% f.t. mol% f.t
von Sydow, 1954 # f.t. 0 54 E 39 100 53	0.0 54.1 43.7 47.3 8.7 50.4 48.5 37.3 20.3 46.7 54.7 48.7 25.4 45.5 62.6 51.9 27.5 45.2 71.7 54.7 29.4 45.4 84.0 58.3 30.6 45.6 100.0 62.3

MYRISTIC ACID + ISOPALMITIC ACID

Heintz, 1855	Myristic acid (C ₁₄ H ₂₈ O ₂) + Stearic acid
% f.t. % f.t.	(C ₁₈ H ₃₆ O ₂)
0 53.8 50 47.8 10 51.8 60 51.5 20 49.5 70 54.9 30 46.2 80 59.0 35 46.5 90 60.1 40 47.0 100 62.0	% f.t. % f.t. 0 53.8 60 60.3 10 51.7 70 62.8 20 50.4 80 65.0 30 48.2 90 67.1 40 47.8 100 69.2 50 54.5
Fieldes and Hartman, 1955 (fig.)	
mol% crystal spacing (in Å) d ₁ d ₃	Myristic acid ($C_{1 \mu}H_{2 8}O_{2}$) + Isostearic acid ($C_{1 8}H_{9 6}O_{2}$)
0 31.3 3.720 8 31.5 .775 26 33.7 .780	von Sydow, 1954
8 31.5 .775 26 33.7 .780 38 33.3 .780	mol% f.t.
38 33.3 .780 50 34.0 .780 60 35.0 .778 65 35.3 .770 77 35.2 .715 80 35.2 .71 100 35.0 .71	0 54 50 43.5 (1+1) (incongruent) E 42 100 68
Myristic acid ($C_{14}H_{28}O_2$) + Isopalmitic acid ($C_{16}H_{32}O_2$)	Myristic acid ($C_{14}H_{28}O_2$) + Isoeicosanic acid ($C_{20}H_{40}O_2$)
von Sydow, 1954	von Sydow, 1954
mol% f.t.	% f.t.
0 54 50 44 (1+1) (incongruent) E 42 100 62	0 54 E 44 100 74
Myristic acid (C_{1} ₄ $H_{28}O_2$) + Isomargarinic acid ($C_{17}H_{34}O_2$)	Isomyristic acid ($C_{14}H_{28}O_2$) + Pentadecanoic acid ($C_{15}H_{30}O_2$)
von Sydow,1954	von Sydow, 1954 % f.t.
mol% f.t.	
0 54 E 43 50 44 (1+1)	0 53 E 37 100 52
100 43 60	

Pentadecanoic ac acid (C ₁₅ H ₃₀ O ₂	cid ($C_{15}H_{30}O_2$) + Isopentadecand		anoic acid (20H ₁₄₀ O ₂)	C ₁₅ H _{S0} O ₂)	+ Isoeicosanic
von Sydow, 1954		von Syd	ow, 1954		
K	f.t.	- %		f.t.	
0 E 100	52 44 52	0 E 50 100		52 44.5 46.5 74	(l+1) (inconfruent)
	id ($C_{15}H_{30}O_2$) + Isopalmitic ac ($C_{16}H_{32}O_2$)	Isopentac	decanoic ació	l (C ₁₅ H ₃₀ 0	₂) + Palmitic acid (C ₁₆ H ₃₂ O ₂)
von Sydow, 1954	f.t.	von Syde	ow, 1954	· · · · · · · · · · · · · · · · · · ·	
		%		f.t.	
0 E 100	52 49 62	0 E 100		52 39 63	
acid (C ₁₇ H ₃₄ O ₂ von Sydow, 1954 % 0 E 50 E	f.t. 52 51 52 (1+1) 50.5	Shriner, mo1% 100 90 80	Fulton and f.t. 59.35 58.10 56.95	Burks, Jr. mo1% 40 30 20	C17H ₃₄ O ₂) , 1933 f.t. 55.30 55.95 57.15
100	60	70 60 50	56.35 55.85 55.50	10 0	58.80 60.70
Pentadecanoic ac	eid ($C_{15}H_{30}O_2$) + Isostearic aci ($C_{18}H_{36}O_2$)				
	(C ₁₈ n ₃₆ v ₂)		f.t.	mo1%	f.t.
von Sydow, 1954	f.t. 52 45.5 68	100.0 96.5 89.6 82.35 77.1 72.1 67.75	61.19 60.67 59.85 59.06 58.57 58.11 57.89 57.70	48.9 46.7 43.5 41.2 38.55 36.8 34.2	57.00 56.93 56.76 56.80 56.89 57.06 57.31
		64.2 61.1 59.3 56.6 54.3 51.5	57.70 57.56 57.47 57.35 57.25 57.12	29.45 19.7 9.9 2.5 0.0	57.89 59.54 60.84 62.18 62.67

PALMITIC ACID + ISOMARGARINIC ACID

Palmitic	acid (C ₁₆ H		Isomargarini C ₁₇ H ₃₄ O ₂)	ic acid	Carlinfa	nti and Levi-Ma	alvano, l	909
		`	-17-34-2 /		%	f.t. E	%	f.t. E
von Sydov	w, 1954	f.t.			100 95 90	68.2 - 67.10 - 65.90 61.50 64.75 -		56.25 56.25 56.10 - 55.90 -
0 E 100		63 55 60	The second secon		85 80 7 5 7 0 65 60	64.75 - 63.50 - 62.15 - 60.80 57.00 59.30 - 57.65 -	35 30 25 20 15	55.15 - 54.75 54.75 54.95 - 55.75 - 57 - 58.40 -
Palmitic	Palmitic acid ($C_{16}H_{82}O_2$) + Stearic acid ($C_{18}H_{36}O_2$)				55 52.5 (1+1)	56.60 - 56.00 56.00	5	59.60 - 61 -
Heintz,	1855							
	f.t.	%	f.t.		Twitchel	1 1014		
0 10 20	62.0 60.1 57.5	50 60 7 0	56.6 59.8 62.9			f.t.	%	f.t.
30 32.5 35 40	55.1 55.2 55.6 56.3	80 90 100	65.3 67.2 69.2		100 90 80 50	69.04 66.80 64.29 56.09	20 10 0	56.13 59.01 62.14
De Visse	r, 1898					**************************************	د هوه میباد است است است است است است است است است است	
- %	f.t.	%	f.t.		Efr e mov	, Vinogradova a	nd Tikhom	irova, 1927; 1937
100 90 80 70 60 55 54 53 52 51 50 49 48 47 46 45 44	69.32 67.02 64.73 58.76 57.20 56.85 56.63 56.50 56.44 56.42 56.40 56.39 56.38	43 42 41 40 39 38 37 36 34 32 30 29 25 20 15 10	56.31 56.25 56.19 56.10 55.88 55.75 55.62 55.38 55.12 54.85 54.92 55.46 56.53 57.80 59.31 62.618	(1+1)	wt% 100 95 90 85 80 75 70 65 60 552 50 45 40 35 30 25 20	mo1% 94.63 88.79 83.57 78.37 73.13 67.77 62.46 57.49 50.00 47.44 42.81 37.33 32.99 27.77 23.40	67.7 66.0 64.4 62.7 61.3 59.7 58.2 55.8 55.9 54.7 54.7 54.2 53.6 53.0 52.8	m.t. 64.5 62.1 60.0 58.5 57.2 56.1 55.4 54.7 54.2 53.9 53.7 53.4 52.8 52.7
Dubovitz,	1911				20 15 10	18.23 13.66	53.4 54.1	53.1 53.7
%	f.t.	%	f.t.		5 0	9.06 4.34 0	55.3 56.9 59.2	54.5 56.0
0 10 20 30 40 50	62.0 60.1 57.5 55.1 56.3 56.6	60 70 80 90 100	60.3 62.9 65 67.2 69.2		E: 29	-	07.2	
								!

Joglekar and Wa	tson, 1928 (fig.)		Ravich and	Volnova, 195	2 (fig.)		
% f.t	. % f.1	:•	% 1	f.t.	% 1	f.t.	
0 62 10 58. 20 55. 27 54. 30 54. 40 55.	9 70 61. 5 E 80 64. 55 90 67. 7 100 69.	5 5 1 0	20 5	55 53	60 80	55 56 65 68	
47 56.0	0 (1+1)		Kurnakov an	d Zhemchuzhi	ni, 1912		
Shriner, Fulton	and Burks, jr., 1933		%	pressure of	flow *		
mol% f.t.	. mol% f.t.			16°			
100 68.40 90 66.25 80 63.65 70 61.20 60 58.15 53 56.10 50 55.90	5 30 54.00 5 27.5 53.60 25 53.95 6 20 54.85 0 10 57.50		90 8 80 9 70 10 65 10 60 10 55 10 40 9 30 9	.0 .9 .8 .2 .4 .5	6.3 6.5 7.0 6.9 7.0 7.0 7.2 6.5 6.3		
Francis, Collins	s and Piper, 1937		10 6	.ō .6	8.0		
mol%	f.t. mol%	f.t.	* after 11	/2 month			
3.04 5.00 5.81 7.8 15 20.3 23.09 24.18 25.33 26.89 27.58 28.29 31.38 32.7 39.59	62.85	56.15 56.35 56.8 56.56 57.2 56.82 57.9 59.3 62.1 62.9 66.5 68.11 68.5 68.6 69.8 69.8 69.32	Efremov, 19 Freezing cur Flowing pres Rawitzer, 1 Crystalliza necessary fo	rve; E: 32. ssure curve 928 tion velocit r the format	; max.: 55	ed as time	
	(1+1)		44.3 373.4	316.7	247.8	203.4	186.7
Schuette and Vog	el, 1940 (fig.)		47.7 297.9 50.1 255.4 52.8 182.0 53.2 165.4	240.7 206.7 149.4 132.6	203.5 145.5 80.7 70.7	203.4 151.6 110.8 60.8 57.7	139.8 88.8 45.9 43.9
% f.t	. % f.t.		55.3 130.6 56.6 126.7	84.0 60,6	32.8	14.2 1.7	3.1
0 62. 10 58. 20 55. 30 54 40 55. 50 56	5 70 59 5 80 63 90 66		57.5 81.3 58.1 69.0 58.5 54.7 59.25 41.9 59.9 23.0 60.7 4.4	36.8 29.1 11.1	-	-	-

PALMITIC ACID + STEARIC ACID

t	30.1%	33.9%	39.3%	45.2%	49.65	Waentig and Pescheck, 1918
44.3 47.7 50.1 52.8 53.2 55.3 56.6	194.1 145.1 97.4 53.5 47.6 7.6	247.7 186.6 125.7 62.9 53.1 14.2	225.4 164.6 120.3 60.4 59.1 21.2	229.6 178.7 123.3 68.7 65.0 30.1 5.9	229.6 175.6 132.4 81.3 73.5 32.4 9.2	wt% mol% d wt% mol% d 75° 100 100 0.8436 39.63 37.18 0.8448 73.92 71.87 .8437 0 0 .8457 54.52 51.94 .8444
t	55.0%	60.3%	65.3%	69.8%	74.8%	Slagle and Ott, 1933 mol% crystal spacing (in Å)
44.3 47.7 50.1 52.8 53.2 55.3 56.6 57.5 58.1 58.5 59.25	225.4 181.4 146.4 77.5 76.4 36.4 10.4 0.8	263.2 206.4 151.6 85.1 83.0 42.9 21.9 3.6	274.9 213.8 180.1 111.8 103.2 59.9 36.9 19.7 6.2 2.6	297.9 260.7 215.4 140.0 126.7 72.4 49.1 34.8 23.6 16.7 8.1	301.4 266.1 231.6 151.6 140.0 93.4 73.5 52.9 43.7 35.8 28.3 11.8	100.0 39.83 89.3 39.72 72.8 39.49 47.5 38.50 23.3 38.14 9.3 35.88 0.0 35.52
t	80.1%	84.8%	90.2%	95.1%	100.0%	Fieldes and Hartman, 1956 (fig.) mol% Crystal spacing (in Å)
44.3 47.7 50.1 52.8 53.2 55.3 56.6 57.5 58.1 58.5 59.25 59.9 60.7 61.5 62.6 63.7 64.2 65.1 66.05	276.4 231.6 221.3 154.0 150.5 103.2 87.0 78.7 61.3 54.7 44.5 32.3 19.1 6.9	403.5 297.9 266.2 196.2 215.1 154.0 141.0 112.5 92.6 85.5 73.0 56.2 41.0 26.3 10.5	357.0 297.8 246.6 212.9 192.4 182.0 151.6 141.0 126.7 101.1 80.7 70.9 48.8 33.9 18.2 12.8	387.8 347.5 274.2 266.7 232.6 222.5 192.4 175.6 164.1 141.0 131.7 103.2 81.3 58.2 36.1 30.8 24.5 7.8	424.0 317.7 328.4 286.0 244.2 232.7 244.2 217.5 188.8 164.1 113.7 82.7 69.0 57.5 50.8 33.5 11.8	d ₁ d ₃ 0 35.2 3.710 20 37.3 .758 30 38.2 " 35 38.2 " 43 37.9 " 50 38.5 " 60 39.6 3.755 80 39.4 .70 100 39.4 .70 Pascal, 1914 Pascal, 1914
						0 1.4304 53.85 1.4317 10.46 .4307 70 .4320 25 .4310 90 .4327 40 .4313 100 .4335

Palmitic acid ($C_{16}H_{32}O_2$) + Isostearic acid ($C_{18}H_{36}O_2$)	Palmitic acid ($C_{16}H_{32}O_2$) + Oleic acid ($C_{18}H_{3k}O_2$)
von Sydow, 1954	Carlinfanti and Levi-Malvano, 1909
% f.t.	% f.t. m.t. % f.t. m.t.
0 63 (uncongruent) E 50.5 100 68	0 61 - 60 46.25 - 10 59.20 - 70 41.60 29 20 57.30 - 80 35 - 30 55.10 - 90 24.80 - 40 52.60 44 100 9 - 50 49.75 -
Palmitic acid ($C_{16}H_{32}\theta_2$) + Isoeicosanoic acid ($C_{20}H_{40}\theta_2$)	Twitchell, 1914 % f.t. m.t.
von Sydow, 1954 # f.t. 0 63	0 62.14 62.44 10 60.30 60.27 20 58.30 58.28 60 46.19
E 52 (1+1) 53 E 52 100 74	Efremov, 1927 and Efremov, Vinogradova and Tikhomirova, 1937
	wt% no1% f.t. E
Palmitic acid (C ₁₆ H ₃₂ O ₂) + Behenic acid (C ₂₂ H _{u,02}) Twitchell, 1914 # f.t. m.t. # f.t. 0 62.44 62.14 60 70.72 5 - 59.58 80 75.45 10 60.53 58.26 100 79.99	0 0 59.2 - 5 4.55 59.0 5.8 10 9.19 58.7 6.0 15 13.80 58.2 6.2 20 18.47 57.5 6.5 25 23.32 56.2 6.7 30 28.06 55.0 6.7 35 32.84 53.5 6.7 40 37.91 51.8 6.7 440 37.91 51.8 6.7 50 47.61 48.0 6.7 55 52.65 46.2 6.7 560 57.68 44.3 6.7
Palmitic acid (${ m C_{16}H_{32}O_{2}}$) + Lignoceric acid (${ m C_{24}H_{48}O_{2}}$) Meyer, Brod and Soyka, 1913	60 57.68 44.3 6.7 65 62.62 41.9 6.7 70 68.08 39.5 6.7 75 73.18 36.3 6.7 80 78.46 32.6 6.7 85 83.70 27.5 6.7 90 89.10 21.2 6.5 95 94.50 12.5 6.4 97.5 97.35 6.7 6.7 100 100 9.1
% f.t. % f.t.	E: 97.6% 6.7°
0 62.5 59.6 65.0-66 10.1 58.5-59 64.2 66.0-66.5 17.1 56.5-57.5 69.5 67.0-68 23.4 56.5-57 75.9 68.5-69 29.9 57.0-57.5 82.9 71.0-72 35.3 57.5-58.5 90.7 73.5-74.5 40 58.5-59 100 79.5-80	

PALMITIC ACID + ISOOLEIC ACID

Koczy	and Grien	gl, 1931				Palmiti	c acid (C ₁	6H ₃₂ O ₂)	+ Isoo	leic acid	, o
%	f.t.	m.t.	%	f.t.	m.t.	Koczy	and Griengl	, 1931		(C _{1 g} .	H _{3 14} 0 ₂)
0 10 20 30 40 50	62.0 60.5 59.0 57.0 54.5 52.0	61.0 59.5 55.5 55.0 52.5 49.0	60 70 80 90 100	48.0 43.0 36.5 23.0 14.0	45.0 40.0 34.9 24.5 9.0	0 10 20 30 40	f.t. 62.0 60.5 59.0 57.5	m.t. 61.0 59.0 57.5 55.0 53.0	70 80 82.5 90	f.t. 45.0 41.5 39,5 41.5 45.0	m.t. 41.5 37.0 36.0 37.5 40.0
Paquot	and Durre	nberger,	1951			50 60	53.0	50.0 46.5			
mo1%	f.t.	mo1%	f.t.								
0 10.4 20.8 30.1 39.3	68.7 67.0 65.1 63.1 60.9	89.4 90.0 92.3 95.0 95.3	39.4 34.0 27.4 18.3 16.0				c acid (C ₁ , 1927 and 1937		(C ₁₈ F	I ₃₄ 0 ₂)	Tikho-
49.4 61.0	57.9 53.7 49.2	96.5 96.7	11.2			wt%	mo1%	f.	t.	E	
70.5 80.5 85.2	49.2 44.0 39.7	97.7 99.0 100.0	11.2 11.9 12.3			0 5.0 10.0 12.5	0 4.56 9.51 11.49	58 56 55	. 2 . 0 . 6 . 7	-	
	ch and Vol	· · · · · · · · · · · · · · · · · · ·				15.0 20.0 25.0 30.0 35.0	13.83 18.50 23.26 28.01 32.18	53 51 49 47	.8 .6 .7	25.4 27.5 28.8 29.2 29.5	
	f.t.	*	f.t.			40.0 45.0	36.35 41.97	44	.0	29.8 30.0	
0 20 40 60	61 59 54 47	80 99 100	36 7 11		·	50.0 60.0 65.0 70.0 75.0 80.0	47.59 57,66 62.80 67.94 72.49 77.04	37 35 32 30 33	.0 .7 .2	30.1 30.1 30.1 30.1 	
Pasca %	1, 1914	a.10 ⁵ *	K	n _D	a, 10 ⁵ *	85.0 87.5 90.0 95.0 100.0	83.07 86.09 89.10 94.13 100.0	40 43	.2 .1 .4 .2 .4	29.3 24.7	į
70						D-1					
0 9.90 22.30 36.50	1 4304	35 32 31 30	70° 64.44 79.70 90.40 100	1.4375 .4395 .4410 .4415	33 37		ic acid (C nd Griengl,			oleic ació ₃ H ₃₂ O ₂)	i
50.59	.4365	30		. 1710	77	%	f.t.	m.t.	%	f.t.	m.t.
* n l=n7	⁷⁰ -a(t-70)				and continues of the	0 10 20 30 40 50	62.0 61.0 60.0 58.9 55.5 53.0	61.0 59.5 58.2 55.8 53.2 50.2	60 70 80 90 95 100	49.0 45.0 39.5 30.3 23.5 -12.0	46.6 41.5 35.3 24.5 14.0 -15.0

- ABMITTO AGIP	T BENZOIC ACID 1203
Palmitic acid ($C_{16}H_{32}O_{2}$) + Benzoic acid ($C_{7}H_{6}O_{2}$)	Palmitic acid ($C_{16}H_{82}O_2$) + Desoxycholic acid ($C_{24}H_{4\cdot 0}O_4$)
Efremov, Vinogradova and Tikhomirova, 1937	Rheinboldt, 1929
wt% mol% f.t. E	% f.t. m.t. % f.t. m.t.
0 0 59.2 - 5.0 9.95 58.5 - 10.0 18.93 57.7 51.0 15.0 26.68 56.5 - 20.0 34.42 56.0 53.5 25.0 40.89 63.0 - 30.0 47.36 68.7 54.7 40.0 58.33 83.3 54.3 50.0 67.73 94.5 55.5 60.0 75.90 104.3 54.5 70.0 83.05 111.0 54.5	0.0 62.5 61.5 89.7 184.0 170.0 9.7 140.0 60.0 93.5 183.0 171.0 30.9 167.0 61.0 95.0 182.0 164.0 50.5 174.0 " 97.2 180.0 164.0 69.5 180.0 " 100.0 172.0 168.5 85.2 183.5 130.0 (1+8)
80.0 89.36 115.0 53.7 90.0 94.97 118.5 53.3 100.0 100.00 121.4	Palmitic acid ($C_{16}H_{32}O_2$) + Hyodesoxycholic acid ($C_{24}H_{40}O_4$)
Palmitic acid (C ₁₆ H ₃₂ O ₂) + Salicylic acid	Rheinboldt, 1929
(C ₇ H ₆ O ₈)	% f.t. E % f.t. E
Efremov, Vinogradova and Tikhomirova, 1937 wt% mol% f.t. E 0 0 155.2 - 5.0 2.84 153.8 50.3	0 62.0 60.5 50.2 175.0 59.0 9.9 141.7 59.0 60.3 179.5 " 20.2 157.5 " 69.5 183.5 " 29.7 164.0 " 79.6 187.8 " 40.6 170.5 " 89.9 191.5 64.5 100.0 196.5 193.5
10.0 5.65 152.5 52.3 20.9 12.40 148.5 56.0 25.0 16.02 146.3 57.2 30.0 19.63 143.7 57.5 35.9 23.82 140.7 58.0 40.0 28.00 136.8 58.5 45.0 31.53 131.8 58.6 50.0 35.05 126.3 58.5 60.0 47.26 111.7 58.3	Palmitic acid ($C_{16}H_{92}O_2$) + Apocholic acid ($C_{24}H_{98}O_4$)
70.0 59.13 92.8 57.5 75.0 65.98 83.0 58.5	% f.t. m.t. % f.t. m.t.
80.0 72.83 74.3 58.5 85.0 77.85 64.0 58.5 90.0 82.96 56.1 58.5 95.0 91.04 57.3 58.5 97.5 95.42 58.2 57.5 100 100 59.2	0.0 62.5 61.5 90.0 179.5 157.0 10.0 141.0 61.0 93.4 178.0 162.0 32.0 162.0 " 94.6 177.5 161.5 49.8 171.0 " 96.8 176.0 161.5 69.7 176.5 " 100.0 172.0 167.5 85.8 179.0 122.5 (1+8)
Palmitic acid ($C_{16}H_{32}O_2$) + Cholic acid	Margania asid (C. II. O. N 7
(C ₂₀ H _{k0} O ₅) Rheinboldt, 1929	Margaric acid ($C_{17}H_{34}O_2$) + Isomargaric acid ($C_{17}H_{34}O_2$)
% f.t. E % f.t. E	von Sydow, 1954
0.0 62.0 60.5 68.0 181.6 -	β f.t.
5.3 131.6 55.5 80.0 186.8 - 10.5 146.5 55.3 84.4 188.5 55.5 19.6 154.6 - 89.0 190.7 " 29.8 162.0 - 95.0 192.8 " 39.7 168.9 - 100.0 195.0 193.0 51.4 174.5 -	0 61 E 53 100 60

MARGARIC ACID + STEARIC ACID

Margaric	acid (C ₁₇ H _s		earic acid ₈ H ₃₆ O ₂)	Isomarg	aric acid	(C ₁₇ H _{3 4} 0		tearic acid	
Shriner,	Fulton and E	Burks, jr, l	.933	von Syd	ow, 1954				
mo1%	f.t.	mo1%	f.t.	%		f	. t.		
100 90 80 70 60 50	68.40 66.90 65.30 63.75 62.30 61.40	40 30 20 10 0	60.65 59.95 59.35 59.30 59.35	100 ======	The state of the s	66 4 70	8		
Smith, 1	936			Stearic	acid (C ₁	₈ H ₃₆ O ₂)	+ Eicosa (C ₂₀ H ₁		
mo1%	f.t.	mol%	f.t.	Morgan	and Bowen,	1924			
0.0 4.0 9.15 17.4 21.7 23.15 24.5 26.3 30.85 34.0 37.15 40.7 44.05	61.19 61.08 60.93 60.76 60.67 60.66 60.72 60.83 61.17 61.36 61.77 62.00	46.9 49.95 51.85 54.3 57.2 64.9 71.5 77.2 85.95 96.35 100.00	62.17 62.36 62.51 62.68 62.76 62.97 64.15 65.16 66.16 67.44 68.87 69.42	100 80 75 66.7 60 52.5	f.t. 75.0 70.5 69.0 67.0 64.5 63.5		45 40 33.3 25 20 9.8	63.5 63.3 62.7 62.3 63.5 66.7 69.0	
				von Sy	dow, 1954				
Margaric von Sydow			ostearic acid $_{^{1}8}\mathrm{H}_{^{3}6}\mathrm{O}_{^{2}}$)	0 (1+1 E 100)		f.t. 70 60 (n 59 74	oncongruent)
78		f.t.							
0 E 100		61 55 68		Steario	cacid (C ₁	₈ H ₃₆ O ₂)	+ Behen (C ₂₂ H		
				Twitch	211, 1914				
Margaric	acid (C ₁₇ F		oeicosanoic acid	- %	f.t.	m.t.	%	f.t.	m.t.
von Sydo	w, 1954	(C	_{во} Н _{4 о} О _в)	0 5 10	69.30 67.29	69.04 66.80 65.26	80 60 100	75.81 71.04 79.99	- - -
7	·	f.t,							
0 E (1+1) E 100		61 52.5 55 54 74							
								_	

	···					1					
Steari	acid (C ₁	₈ H ₃₆ O ₂)	+ Ligno	ceric acid		Meldru	n, 1913	ادر در در در در در در در در در در در در د	۔ میر اس سے مدیدی امیرسے میڈ	ر من د آمان سال میں میں حجم میںوسی س	
W	Dwad and S	Sawka 101	19	(C ₂₄ H ₁	, gU ₂)	%	f	.t.	%	f.t.	
% 100 90.7	f.t. 79.5-80 74 -75) 4- 5 40	4.1 0.1	f.t. 65.5-67 65 -66		100 80 70 60 50	3	8 30.5 36.6 11.2 14.7	40 30 20 10 0	47.6 49.7 51.6 53.3 54.8	
83 71.1 65.5 60.1 55.4 50	72.5-7. 70 -7. 68 -6. 67 -6. 66.5-6. 66 -6.	1 30 8.5 24 8 10 7.5	5.4 0 4.3 6.8 9.2	63.5-64.5 63 -64 63.2-64 65.3-66.5 66.5-67 69		Twitch	nell, l	914 f.t	•	m.t.	
Stearic	acid (C ₁₈ I		Isopent (C ₂₅ H _{5 (}	tacosanoic a	acid	0 10 20 60		69. 67. 65.	27	69.04 67.24 65.35 54.47	
von Syd	ow, 1954										
- ×		f.	.t.			Efremov	, 1929	- 1930			
0 E		76 60)			%		f. t.	E	min.	
100	نباحي الدراني الجارب الدرانيونان	82	? 			0		67.7 67.1	_	~	
	anti and L	evi-Malva	no, 1909			30 35 40		66.5 65.8 64.5 63.6 62.7 61.8 60.7 59.5	6.5 " " " " " " "	90 180 240 300 360 390 450 510	
	f.t.	m.t.	%	f.t.	m.t.	45 50 55		58.3 56.6	11 11	600 660	
100 95 85 75 65 64	9 23.45 34.25 46.6 51.90 55.95	34	45 35 25 15 0	58.65 61.25 63.40 65.40 67.15 68.2	45 57 - - -	55 60 65 70 75 80 85 90 95 97.5		54.9 52.7 50.5 47.3 43.5 39.2 33.5 23.7 6.5	17 17 19 19 11 17 15	720 810 840 870 930 960 990	
						100	,	9.1	W	-	;
Fokin, 1	912					E: 98	3% 6	.5°			
%	f.t.	%	f	. t.							
100 90	5.5 29.5	40 30	δ:	9.8 2.3		Koczy	and Gri	engl, 193	31		
80 80	40.2 47.7	20 10	6	4.5 6.3		%	f.t.	m.t.	%	f.t.	m.t.
60 50	52.9 56.8	0		8.0		0 10 20 30 40 50	68.0 67.0 66.0 64.0 61.7 58.5	66.0 64.5 62.5 60.5 58.0 55.2	60 70 80 90 100	55.0 51.0 45.0 36.0 14.0	51.5 47.0 40.5 30.5 9.0

Paquot and Durren	berger, 1951			Stearic a	cid (¢ ₁	_B H ₃₆ 0 ₂) +	Elai	dic acid	ցեն _{ն Կ} Օ ₂)
mol% f.t.	mol%	f.t.		Efremov,	1929 - 19	930		•	
0 61.9 9.9 59.6 18.7 57.5 28.4 55.0 38.3 52.3 47.7 49.3 58.4 44.9 68.1 39.9 73.7 36.4 79.4 32.4	84.2 89.0 90.5 93.6 94.1 95.3 96.9 98.5	28.3 17.8 13.4 10.8 10.4 10.4 10.5 10.9 11.5 12.3		% 2.5 5.0 7.5 10 15 20 25 30 35	f.t. 67.7 67.5 67.0 66.5 66.1 65.7 64.5 63.4 62.5	35.2 36.2 36.7 26.9 37.0 37.5	- :	min	
Ravitch and Volno # f.t. 0 68 20 65 40 60 60 55	va, 1952 (fi % 80 99 100	f.t. 42 7 11		35 40 45 50 55 60 65 75 80 85 87.5 90 92.5	61.6 60.0 58.5 57.5 56.3 54.4 51.5 50.0 47.3 41.5 37.5 41.5	37.5 "" "" 37.4 37.0		320 400 450 520 520 580 760 880 880 880 920 960	
Pascal, 1914				97.5 100	43.8 45.4	-		-	
*	n _D	a.10 ⁵ *		E: 90.4	% 37.5°				
0 13,47 25,30 40,00 55,95 69,42 80 90	70° 1.4335 .4344 .4354 .4365 .4377 .4386 .4391 .4399	39 42 44 47 48 50 50		Stearic a				oleic acid gH ₈₂ O ₂) f.t.	m.t.
$\bullet n^{t} = n^{70} - \alpha (t)$.4415 -70)	44		0	68.0	66.0	60	55.0	52,0
	ر الرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المر والمرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المر	ر اللها المواقع المن في منها شهر شهر المن المناوات الله الله أنها الله الله الله الله الله الله الله ا		10 20	66.5 65.0	64.5 62.7	70 80	50.5 45.0	47.0 41.0
Stearic acid (C ₁	₈ H ₃₆ O ₂) + Iso	ooleic acid (C _{1 8} H _{3 4} O) ₂)	30 40 50	63.0 60.5 58.0	60.5 58.2 55.0	90 95 100	36.0 26.5 -12.0	30.0 16.5 -15.0
Koczy and Griengl	, 1931								
Я	f.t.	m.t.		Paquot a	nd Mercie f.t.	r, 1951		f +	
0 10 20 30 40 50 60 70 80 85.45 95	68.0 66.5 64.5 63.0 61.0 59.5 57.0 53.5 49.0 45.5 42.5 43.5	66.0 64.5 62.5 60.5 59.0 57.0 55.0 45.0 41.5 38.0 39.5 40.0		100 99.285 98.92 98.22 98.23 94.8 91.4 87.7 81.2 74.6 67.0 59.7 53.9	-6.7	49.2 44.2 40.5 38.9 35.6 27.5 25.4		+57.6 +57.6 59.1 60.2 60.55 61.35 63.2 63.7 64.15 66.4 68.0 68.7	
		ر او او او او او او او او او او او او او							

	UNISIEARIC ACID	1207
Stearic acid ($C_{18}H_{86}O_{2}$) + α -Oxystearic acid ($C_{18}H_{86}O_{3}$)	Stearic acid ($C_{18}H_{96}O_2$) + Suberic acid ($C_8H_{14}O_4$)	
Efremov, 1929-30	Efremov, 1929-30	
	% f.t. E min.	
	0 67.7	
0 67.7 - 55 61.7 57.5 5 65.7 64.5 60 64.4 58.8 10 63.7 61.4 65 67.2 61.0 15 62.0 59.0 70 70.0 63.5 20 60.0 57.8 75 73.0 66.4 25 58.5 56.4 80 75.7 69.6 30 57.0 55.5 85 78.5 73.5 35 55.9 55.2 90 81.4 77.5 40 55.5 55.0 95 84.4 82.4 45 57.1 55.7 100 87.2	0 67.7	
	70 107.0	
Stearic acid ($C_{18}H_{86}O_2$) + α , β -Dioxystearic acid ($C_{18}H_{86}O_4$)	80 121.3	
Efremov, 1929-30		
% f.t. m.t. % f.t. m.t. 0 67.7 - 55 82.5 72.5	Stearic acid ($C_{18}H_{86}O_2$) + Cholic acid ($C_{2k}H_{k_0}O_5$)	
5 66.8 64.6 60 88.3 76.4 10 65.5 62.4 65 93.5 81.1	Rheinboldt, 1929	
20 61.6 60.2 75 103.0 92.0 25 60.4 60.4 80 107.2 95.2 30 60.8 60.0 85 111.6 104.0	% f.t. E % f.t.	E
15 63.7 60.9 70 98.4 86.2 20 61.6 60.2 75 103.0 92.0 25 60.4 60.4 80 107.2 95.2 30 60.8 60.0 85 111.6 104.0 35 63.5 62.0 90 115.5 110.0 40 67.5 63.9 95 119.6 116.7 45 72.2 66.5 100 123.3 - 50 76.9 69.3 E: 27.5% 60°	0.0 69.0 67.5 59.6 182.2 5.2 143.5 61.0 70.0 185.0 10.1 156.5 " 79.4 187.8 20.0 168.0 " 89.7 191.5 30.5 173.2 " 95.1 193.0 38.9 175.7 " 100.0 195.0 49.8 179.0 "	61.0 " 61.7 193.0
Stearic acid ($C_{18}H_{86}O_2$) + Hydrocinnamic acid ($C_9H_{10}O_2$) Eykman, 1889	Stearic acid ($C_{18}H_{86}O_2$) + Desoxycholic aci ($C_{24}H_{40}O_4$)	id
% Df.t.	% f.t. m.t. % f.t.	m.t.
1.633 -0.475 3.89 1.15 9.66 2.81 15.18 4.355 19.6 5.60	0.0 69.5 68.0 90.0 186.0 10.0 150.0 67.0 92.6 185.5 30.0 170.0 68.0 95.0 184.0 50.4 178.5 " 97.0 182.0 70.0 184.0 " 100.0 172.0 85.0 185.5 140.0	175.5 170.0 165.0

(1+8)

Stearic acid ($C_{18}H_{86}O_{8}$) + Hyd (C_{5}	odesoxycholic acid	Nonadecanoic acid ($C_{19}H_{88}O_8$) + Isopentacosanoic acid ($C_{85}H_{50}O_8$)
Rheinboldt, 1929		von Sydow, 1954
% f.t. E %	f.t. E	g f.t.
0.0 69.0 67.5 50.6 4.2 143.5 65.5 59.5 10.4 156.0 " 70.6 19.8 164.5 " 80.6 29.6 169.5 " 89.6 39.7 174.7 " 100.6	182.0 " 186.0 " 189.5 " 192.5 70.5	0 69 E 62 (1+1) 64 (noncongruent) 100 82
Stearic acid ($C_{18}H_{86}O_{8}$) + A	pocholic acid _{Lu} H ₈₈ 0 ₄)	Nonadecanoic acid ($C_{19}H_{38}O_2$) + Isohexacosanoic acid ($C_{86}H_{52}O_2$) von Sydow, 1954
Rheinboldt, 1929		% f.t.
% f.t. m.t. % 0.0 69.5 68.0 90. 11.1 148.0 67.0 92.	0 180.5 172.0	0 69 E 62 100 87
11.1 148.0 67.0 92. 30.1 164.0 67.5 95. 50.5 173.0 68.0 96. 69.8 177.8 " 100. 85.3 180.0 133.0	0 179.5 164.0 9 178.0 "	9-Methylstearic acid (C ₁₉ H _{BB} O ₂) d+1
(1+8)		
		Hallgren, 1956 (fig.)
Stearic acid ($C_{18}H_{36}O_{2}$) + Tri	chloracetic acid HO ₂ Cl ₃)	mol% f.t. mol% f.t.
Pushin and Rikovski, 1940-46		0 12.7 20 36 1.5 12.5 E 30 37.5 3 20 50 39
mol% f.t. m.t. mo	1% f.t. m.t.	
100 57 - 40 90 50 24 30 80 41 26 26 70 29 29 10 60 36 22 0 50 43 19	56 20 61 - 65 -	9-Methylstearic acid (+) ($C_{19}H_{88}O_2$) + 10-Methylstearic acid (+) ($C_{19}H_{88}O_2$)
		Hallgren, 1956 (fig.)
Nonadecanoic acid (C ₁₉ H _{a8} O ₂) acid (C ₂₀ H ₄₀ O ₂) von Sydow, 1954	+ Isoeicosanoic	mol% f.t. mol% f.t. 0 12.7 30 12 10 11.5 40 18 20 9.5 E 50 18.7
# f.t.		
0 69 E 64 100 74		

		9-METHY	LSTEARIC AC	ID
		(+) (C ₁₉ H ₂		
)-Methyls	tearic acid	(-) (C ₁₉ H ₂	, ₈ 0 ₂)	
	1057 / 61.			
	1956 (fig			
mo 1%	f.t.	mo1%	f.t.	
0	$\frac{12.7}{10.5}$	20	8.5 2.2	
10	10.5	50	2.2	
				=
icosanoi	acid (C ₂	οH ₄ οO ₂) + I	lignoceric acid	
			C24H48O2)	
Meyer, Bi	rod and Soy	ka, 1913		
8	f.t.	%	f.t.	
100	80	45.2	68.5	
90.9	7 6	40.6	68	
83.0	73.5	35.1	68	
76.5	72.5 71.5	30.5	68.5	
70 64.6	70.3	25.3 17.9	68.5 69	
59.2	70	10.1	7 1	
50	69	0.0	75	
				=
		20H ₄₀ O ₂) +	Isopentacosano	1 C
acid (C ₂	₅ H ₅₀ O ₂)			
von Sydow	, 1954			
%		f.t.		
0		75		
É		68		
(1+1)		69		
E 100		68.5		
100		82		
				_
Eicosapoi	c acid (C	о. Hu . O) +	Isohexacosanoic	
acid (C2		ευ-•μυ -2 / '	2001014000411010	
uciu (C 2	6445 202 /			
von. Sydow	, 1954			
%		f.t.		
10		1		

75 67 68 (uncongruent) 87

0 E (1+1) 100

```
Heneicosanoic acid ( C21H42O2 ) +
Isotficosanoic acíd ( C_{23}H_{46}\theta_2 )
 Chibnall, Piper and Williams, 1936
   mo1%
                                 f.t.
  0
90
100
                                 74.26
78.0
79.46
 Heneicosanoic acid (C_{21}H_{42}O_2) +
 Isopentacosanoic acid ( C_{25}H_{5\,0}0_{\scriptscriptstyle E} )
  von Sydow, 1954
        %
                                   f.t.
                                   74
73
75
73.5
82
    0
E
(1+1)
E
90
        \mathbf{0}
     100
 Heneicosanoic acid ( C_{2\,1}H_{4\,2}0_2 ) +
 Isohexacosanoic acid ( C_{24}H_{32}O_2 )
von Sydow, 1954
       %
                                   f.t.
                                   74
67
69
68
87
    Ē
(1+1)
    10\overline{0}
 Behenic acid ( \text{C}_{22}\text{H}_{4\,4}\text{O}_2 ) + Tricosanoic acid
                                         ( C23H4602 )
 Chibnall, Piper and Williams, 1936
                  f.t.
                                    %
                                                 f.t.
                  80.2
78.8
77.8
76.6
                                 80
90
100
    10
20
30
```

BEHENIC ACID + TETRACOSANOIC ACID

Behenic acid ($C_{22}H_{1s}$, O_2) + Tetracosanoic acid ($C_{2u}H_{1s}$, O_2)	Behenic acid ($C_{22}H_{44}O_2$) + Oleic acid ($C_{18}H_{34}O_2$)
Chibnall, Piper and Williams, 1936	Twitchell, 1914
mol% f.t. mol% f.t.	ß f.t.
0 80.2 40 75.5 10 78.4 50 75.7 20 75 100 84.2 30 74.6	20 75.71 0 79.99
Behenic acid ($C_{22}H_{4}$, O_2) + Isopentacosanoic acid	Behenic acid (C ₂₂ H ₄₄ 0 ₂) + Erucic acid(C ₂₂ H ₄₂ 0 ₂)
$(C_{25}H_{50}O_{2})$	Mascarelli and Sanna, 1915
von Sydow, 1954	% f.t. E % f.t.
7 f.t. 0 80 E 72.5 (1+1) 73 E 71 100 82	100 33.34 - 69.68 63.0 99.02 33.19 - 61.19 67.0 98.12 33.05 - 51.88 69.59 95.80 33.38 - 41.15 72.31 94.25 38.1 33.1 29.07 74.9 91.17 44.9 " 13.24 77.5 87.09 50.9 " 3.93 78.65 79.42 57.8 - 0 79.25
Behenic acid ($C_{22}H_{44}O_2$) + Isohexacosanoic acid ($C_{26}H_{52}O_2$)	Behenic acid ($C_{22}H_{44}O_2$) + Brassidic acid ($C_{22}H_{42}O_2$) Mascarelli and Sanna, 1915
% f.t.	% f.t. E % f.t.
0 80 E 71,5 (1+1) 73 E 70 100 87	100
Behenic acid ($C_{22}H_{44}O_2$) + Isobehenic acid ($C_{22}H_{44}O_2$)	
Meyer, Brod and Soyka, 1913	Behenic acid ($C_{28}H_{44}\theta_2$) + Isocrucic acid ($C_{22}H_{42}\theta_2$)
% f.t. % f.t.	Mascarelli and Sanna, 1915
100 75.0 33 76.5 91 75.0 19.1 78.5 82.4 74.5 0 84.0 69.9 76.5	% f.t. % f.t. 100 51.50 55.62 71.3 99.26 52.4 37.95 73.8 96.60 54.4 27.57 75.2 91.40 57.7 18.04 76.8 82.88 61.15 7.71 78.2 70.05 66.7 0 79.2 60.43 69.8

Tricosanoic acid ($C_{23}H_{46}O_2$) + Tetracosanoic acid ($C_{24}H_{48}O_2$)	Tetracosanoic acid ($C_{24}H_{48}O_2$) + Isopentacosanoic
(524.14805)	acid ($C_{25}H_{50}O_{2}$)
Chibnall, Piper and Williams, 1936	von Sydow, 1954
mol% f.t. mol% f.t.	% f.t.
0 79.6 80 82.2 10 79.2 90 83.2 20 79.0 100 84.2	0 84 E 77 100 82
Tricosanoic acid ($C_{23}H_{u6}O_2$) + Pentacosanoic acid ($C_{25}H_{50}O_2$) Chibnall, Piper and Williams, 1936	Tetracosanoic acid ($C_{24}H_{48}O_2$) + Hexacosanoic acid ($C_{26}H_{52}O_2$) Piper, 1937 (fig.)
mol% f.t. mol% f.t.	% f.t. % f.t.
0 79.6 50 77.2 10 78.0 60 77.8 15 77.1 70 78.8 20 76.3 80 80.4 30 76.3 90 82.0 100 83.4	0 83.75 45 79.2 20 80 60 81.25 28 78 80 84.5 40 79 100 88
Tricosanoic acid ($C_{23}H_{46}O_2$) + Isopentacosanoic acid ($C_{25}H_{50}O_2$) von Sydow, 1954	Tetracosanoic acid ($C_{2h}H_{h,\hat{a}}\theta_2$) + Isohexacosanoic acid ($C_{26}H_{52}\theta_2$) von Sydow, 1954
% f.t.	% f.t.
0 79 (1+1) 78.5 (noncongruent) E 78 100 82	0 84 (1+1) 76.5 (noncongruent) E 75 100 87
Tricosanoic acid ($C_{23}H_{46}O_2$) + Isohexacosanoic acid ($C_{26}H_{52}O_2$)	Tetracosanoic acid ($C_{24}H_{4_18}O_2$) + Lignoceric acid ($C_{24}H_{4_18}O_2$)
von Sydow, 1954	Meyer, Brod and Soyka, 1913
% f.t.	% f.t. % f.t.
0 79 E 73 (1+1) 74.5 E 73.5 100 87	0 86 58.1 81 12.3 84 65.2 80.5 20 83 71.9 80 25.1 82.8 80.7 80 32.6 82 89.2 79 39.5 81.5 92.7 79 45.6 81.5 100 80 52.7 81

Pentacosanoic acid ($C_{25}H_{5\ 0}O_2$) + Isopentacosanoic acid ($C_{25}H_{5\ 0}O_2$)	Hexacosanoic acid ($C_{26}H_{52}O_2$) + Octacosanoic acid ($C_{28}H_{56}O_2$)
von Sydow, 1954	Piper, Chibnall and Williams, 1934
£ f.t.	mol% f.t.
0 83 E 75 100 82	0 88.0 50 83.5 100 91.1
Pentacosanoic acid ($C_{25}H_{50}\theta_2$) + Isoliexacosanoic acid ($C_{26}H_{52}\theta_2$) von Sydow, 1954 # f.t.	Piper, 1937 (fig.) % f.t. % f.t. 0 88 47 83.5 20 83.75 60 84.5 30 83 80 87.5 40 83.5 100 91
0 83 E 80 100 87	Heptacosanoic acid ($C_{27}H_{54}O_2$) + Octacosanoic acid ($C_{28}H_{56}O_2$)
Pentacosanoic acid (C ₂₅ H ₅₀ O ₂) + Heptacosanoic	Piper, Chibnall and Williams, 1934
acid (C ₂₇ H ₅₄ O ₂)	mol% f.t.
Chibnall, Piper and Williams, 1036 mol% f.t. mol% f.t.	0 87.7 50 87.6 100 91.1
100 87.7 30 80.7 50 81.1 0 83.4	Heptacosanoic acid (C ₂₇ H ₅₄ O ₂) + Non a cosanoic acid (C ₂₉ H ₅₈ O ₂)
3-Methyltetracosanoic acid ($C_{25}H_{50}O_2$) $d+1$	Piper, Chibnall and Williams, 1934
Stallberg-Stenhagen, 1948 (fig.)	(1+1) f.t.= 85.2°
% f.t. % f.t. 100 65.6 70 67.5 90 64.5 60 68.5 88 60 50 69 85 64.8 0 65.4 80 66.5 65.4	Octacosanoic acid ($C_{26}H_{56}O_{2}$) + Triacontanoic acid ($C_{30}H_{60}O_{2}$) Piper, Chibnall and Williams, 1937 and Piper 1937 (fig.)
	% f.t. % f.t. 0 90.8-91.1 50 87.1-87.3 2.5 90.4-90.6 60 87.6-87.8 5 90.0-90.2 75 89.8-90.1 10 88.7-88.9 90 92.0-92.2 25 86.6-86.8 95 92.6-92.8 30 86.3-86.5 97.5 93.1-93.3 40 86.7-86.9 100 93.8-94.0

Montanic acid (C ₂₉ H ₅₈ O ₂) + Apocholic acid	Piper, 1937 (fig.)
(C ₂₈ H ₃₈ O _\)	% f.t. % f.t.
Rheinboldt, 1926 % f.t. m.t. % f.t. m.t. 0.0 83.0 80.5 74.5 189.5 83.0	0 96.25 55 93.4 20 93.5 60 93.6 30 92.5 80 96 40 93 100 98.5
10.3 160.0 79.0 83.7 190.0 155.0 20.4 172.5 " 89.5 189.0 162.0 30.0 180.0 " 94.6 185.0 162.5 44.8 185.0 80.0 100.0 172.0 166.0 60.4 187.5 "	9.10-Epoxystearic acid ($C_{18}H_{34}O_{3}$) cis + trans
(1+8)	Witnauer and Swern, 1950 mol% f.t. m.t. mol% f.t. m.t.
Triacontanoic acid ($C_{30}H_{60}O_2$) + Dotriacontanoic acid ($C_{32}H_{64}O_2$) Piper, Chibnall and Williams, 1934	0.0 58.7 58.0 58.34 49.2 45.8 6.72 57.6 55.8 79.52 51.9 47.4 25.16 54.5 46.5 94.03 54.5 49.0 48.37 50.4 46.3 100 55.0 54.1 48.42 50.0 45.9
mol% f.t.	
0 94.0 50 90.2 100 96.3	Ketostearic acid ($C_{18}H_{34}O_3$) 9 + 10
	G.M.Robinson and R.Robinson, 1926
Piper, 1937 (fig.)	% f.t. % f.t.
% f.t. % f.t. 0 93.75 51 90.3 20 90.5 60 91	100 80,14 57,15 70,65 83,69 77,17 54,80 69,97 70,49 74,31 52,82 69,63 69,14 73,99 51,13 69,60 67,34 73,61 49,65 69,59 64,04 72,77 44,35 69,73 61,93 72,19 41,28 70,89
30 89.5 80 93.75 40 90 100 96.25	64.04 72.77 44.35 69.73 61.93 72.19 41.28 70.89 59.61 71.50 39.67 71.40 58.12 70.99 35.79 72.42
Dotriacontanoic acid ($C_{32}H_{64}O_2$) + Tetratriacontanoic acid ($C_{34}H_{68}O_2$)	9.10-Dioxystearic acid ($C_{18}H_{36}\theta_{4}$) 1 + 2
Piper, Chibnall and Williams, 1934	Witnauer and Severn, 1950
mol% f.t.	mol% f.t. m.t. mol% f.t. m.t
0 96.3 50 93.1 100 98.5	100.9 131.0 130.7 25.17 94.7 92.5 90.68 128.4 124 15.20 93.1 92.1 75.58 125.8 115 7.32 93.7 92.9 48.25 117.5 92 0 95.1 94.7 31.61 110.9 92

1214				TEXTR	AOXYSTE	AF	
Tetraox	ystearic ac	id (C ₁	_в н _{а6} 0 ₆)	1 + 2			
Nicolet	and Cox, 1	.9 22 (°f:	ig.)				
%	f.t.	m.t.	%	f.t.	m.t.	_	
0 10 20 30 40 50	153 157.8 161.6 162 164 164.6	153.5 154 157.8 160.2 161.8	60 70 80 90 100	165.2 165.6 167.2 168.6 170	162 163.6 166 167.8		
i	ystearic ac		, 00 ₆ H ₈	1 + 3			
%	, -/ \		t.				
90 100	153 140 142.1 144.5						
	xystearic a			1 + 4			
Nicolet	f.t.	1922 (f	ig.) %	f,t,			
0 80 85	153 137 136.		90 95 00	136.6 136.2 135			
Tetrao	xystea r ic a	cid (C ₁	₈ H ₃₆ O ₆) 2 + 3			
	t and Cox,		ig.)				
- ×	f.t.	%	f	.t.			
0 80 85	170 143.4 142	90 95 100		142 143.2 144.5			

Nicolo+	stearic acid		•					
HICOTEL	and Cox, 192							
	f.t.	%	f.t.					
0 80 85	170 144.5 143.8	90 95 100	141.6 138.9 135					
Tetraoxy	stearic acid	(С ₁₈ Н ₃₆ (06)3+4					
Nicolet	and Cox, 192	2 (fig.)						
%	f.t. m.t.	. %	f.t.	m.t.				
0 10 20 30 40 50	144.5 - 144.2 142 144 140 143 139 142 138 141.2 138	. 8 80 . 8 90	140.2 139.6 138.6 137.4 135	137.4 136.8 135.6 135.2				
Morrell	Crotonic acid ($C_4H_60_2$) α + 3 $$ Morrell and Hanton, 1904							
%	f.t.	%	f.t.					
100 90.5 83.2 77.35	14.96 9.6 5.28 1.95 -0.25 -1.25 -0.65	56.47 51.8 47.0 41.4 36.1 36.8	17.25 22.64 28:64 33.64 38.87					
83.2 77.35 74.7 72.05 69.6 67.3 63.95 59.97	-0.65 +6.48 10.5 14.7	26.9 18.2 0	43.96 47.52 55.71 71.96					
69.6 67.3 63.95 59.97	-0.65 +6.48 10.5 14.7	26.9 18.2 0 0 2) + Ch1e	47.52 55.71 71.96	id				
69.6 67.3 63.95 59.97	10.5 14.7 2 acid (C ₄ H ₆	26.9 18.2 0 0 2) + Ch1e	47.52 55.71 71.96 oracetic ac	id				
69.6 67.3 63.95 59.97 Crotonio	10.5 14.7 2 acid (C ₄ H ₆	26.9 18.2 0 0 2) + Ch1e	47.52 55.71 71.96 oracetic ac	id				

f.t.

f.t.

31.5 33.5 35.5 38.0 40.0

Crotonic acid ($C_4H_6O_2$) + Dichloracetic acid ($C_2H_2O_2Cl_2$)	Oleic acid ($C_{18}H_{34}O_2$) + Linoleic acid ($C_{18}H_{32}O_2$)	
Kendall, 1914	Koczy and Griengl, 1931	
mol% f.t. mol% f.t.	l	f.t
0 71.0 52.6 +5.1 6.4 65.5 59.6 -9.7 13.2 59.1 69.0 -18.5 19.4 52.6 82.9 -4.2 28.9 41.4 91.1 +2.7 34.7 34.0 100 9.7 44.2 20.5	80 -9.0sic. 20 70 -6.0 10	3.0 5.0 7.0 9.0 9.0
	Paquot and Mercier, 1951	
Crotonic acid ($C_4H_6O_2$) + Trichloracetic acid ($C_2HO_2Cl_3$)	% f.t. % f.t. 100 -6.7 61.5 -8.1 81.9 -8.0 59.1 -7 87.6 -8.7 57.5 -6.5 81.8 -10.0 55.1 -5.6	
Kendall, 1914	77.2 -11.5 53.8 -5.25 75.0 -12.1 51.7 -4.3 74.35 -12.25 47.6 -3.15	
mol% f.t. mol% f.t. 0 71.0 54.9 -12.7 9.0 63.7 59.3 +1.2 17.3 53.9 65.6 16.4 24.3 44.2 73.4 30.4 34.3 27.5 80.9 40.3 40.0 16.1 89.8 49.6	74.35 -12.25 47.6 -3.15 74.14 -12.3 38.4 +0.3 73.50 -12.15 26.8 3.95 72.9 -12.0 15.8 7.15 66.1 -9.5 8.3 9.1 64.9 -9.35 0 12.3	
45.8 +2.1 100 57.3 50.1 -9.9 100 57.3 Oleic acid (C ₁₈ H ₃₄ O ₂) + Isooleic acid (C ₁₈ H ₃₄ O ₂)	Isooleic acid ($C_{18}H_{84}O_{2}$) + Linoleic acid ($C_{18}H_{92}O_{2}$) Koczy and Griengl, 1931	
Koczy and Griengl, 1931 # f.t. m.t. # f.t. m.t.	% f.t. %	f
0 14.0 9.0 60 37.5 33.0 10 20.0 15.0 70 39.0 34.5 20 25.5 20.0 80 41.0 36.0 30 30.0 25.0 90 42.5 37.8 40 33.5 29.0 100 45.0 40.0	100 -15.0 40 90 5.0 30 80 15.5 20 70 22.5 10 60 26.0 0 50 29.0	3 3 3 4
Oleic acid ($C_{18}H_{34}O_2$) + Elaidic acid ($C_{18}H_{34}O_2$)	Petroselenic acid ($C_{18}H_{34}\theta_2$) cis + tra	ns
	Griffiths and Hilditch, 1932 (fig.)	
Griffiths and Hilditch, 1932 (fig.) ### f.t. ### f.t.	% f.t. % f.t.	
100 44 27.5 28 90 42.5 20 23 80 42 17.5 19 74 40 10 14 60 37.5 5 12 48 35 2.5 13 40 33 0 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

BRASSIDIC ACID + ERUCIC ACID

Brassidic acid ($C_{22}H_{42}O_2$) + Erucic acid ($C_{22}H_{42}O_2$)	Brassidic acid ($C_{22}H_{42}O_2$) + Cholic acid ($C_{20}H_{40}O_5$)
Mascarelli and Sanna, 1915	Rheinboldt, 1929 % f.t. E % f.t. E
% f.t. E % f.t.	
100 33.3 - 36.52 52.7 93.34 32.3 - 33.58 53.4 90.59 31.35 - 33.57 53.7 79.10 33.1 31.7 22.01 55.5 65.12 44.1 " 10.77 57.2 52.94 49.1 " 0 58.3 46.66 51.1 "	0.0 60.0 59.0 59.6 180.5 57.5 5.4 153.0 57.5 68.8 183.8 " 10.1 159.7 " 79.6 187.5 " 20.2 165.5 " 89:7 191.5 58.5 35.3 171.5 " 100.0 195.0 193.0 50.4 177.5 "
Griffiths and Hilditch, 1932 (fig.)	Brassidic acid ($C_{22}H_{42}O_2$) + Hyodesoxycholic acid ($C_{24}H_{44}O_4$)
% f.t. % f.t.	Rheinboldt, 1929
0 60 85 38	% f.t. E
15 58 89 35 20 57 91 32 25 56 94 32.5 40 54 95 33 52.5 51 96 33.5 60 49 100 34	0.0 60.0 59.0 10.8 157.5 58.0 19.8 173.0 " 30.0 176.5 " 40.4 179.5 " 49.9 181.6 " 60.1 184.5 " 70.3 190.5 "
Keffler and Maiden, 1936	79.8 190.5 " 89.8 193.0 62.0 100.0 196.5 193.5
mol% f.t. mol% f.t.	Erucic acid ($C_{22}H_{42}O_2$) + Isoerucic acid
0 59.80 83.5 39.10 13.8 57.85 87.0 36.15 31.5 55.10 87.0 31.15 42.8 52.80 89.6 34.20 57.0 49.65 91.2 31.60 67.8 46.45 92.0 31.95 77.5 42.75 95.1 32.60 81.0 40.70 100 33.25	(C ₂₂ H ₄₂ O ₂) Mascarelli and Sanna, 1915 # f.t. E # f.t. 0 33.3 - 44.92 40.3
Brassidic acid ($C_{22}H_{42}O_2$) + Isoerucic acid ($C_{22}H_{42}O_2$)	7.01 32.15 - 52.99 42.7 11.08 31.15 - 60.87 44.35 14.54 30.75 - 68.42 46.1 20.52 30.05 - 76.17 47.7 28.02 32.85 29.7 84.49 49.2 36.06 35.6 " 96.79 50.7 42.88 38.95 " 100 51.2
Mascarelli and Sanna, 1915 # f.t. # f.t.	Linoleic acid (C ₁₈ H ₃₂ O ₂) t,t,D,10,12+t,t,D,9,11
100	Witnauer, Nichols and Senti, 1949 mol% f.t. mol% f.t. 0

Stearoli	acid (C	18H32O2				Malonic	acid (C _s	аН _и О ₄) +	Trichlon	racetic ac	id
(C ₂₁₄ H ₄₀ O ₅)								(C ₂ HO ₂ C			
Rheinbo	ldt, 1929					Pushin	and Rikovs	ski. 1940	-46		
%	f.t.	E		f.t.	E	mo1%	f.t.	E	mo1%	f.t.	E
0.0 5.4 10.2 20.3 29.2 46.0	47.5 135.2 148.5 162.0 168.3 176.0	46.0	60.0 69.3 79.6 90.1 100.0	180.8 183.8 187.5 190.8 195.0	46.5	100 90 80 65	57 51 62.5 89.5	45.5 46 45.5	50 30 0	106 120 136	43 41
Stearolic acid ($C_{18}H_{32}O_2$) + Hyodesoxycholic acid ($C_{24}H_{44}O_{4}$)						Succini	c acid (C	C ₄ H ₆ O ₄)	+ Maleic	acid (C ₄	Η _μ Ο _μ)
Rheinbo	ldt, 1929	E	%		E	Viseur,					
	f.t.			f.t.		%	f.t.	E	%	f.t.	E
0.0 4.4 10.4 20.5 30.4 40.3	47.5 127.0 140.5 149.5 157.5 164.5	46.0 45.5 ""	49.6 60.4 70.1 80.4 89.8 100.0	170.5 177.5 182.5 187.5 192.0 196.5	45.5 " 49.0 193.5	100 85 80 60	130.3 122.6 147.2	120.3 120.3 120.4	40 20 0	162.2 174.5 182.7	120.5 120.6
Behenoli	Behenolic acid ($C_{22}H_{40}O_2$) + Cholic acid					Grimm, (Gunther an	d Tittus	, 1931 mo1%	f.t.	E
Rheinbo	ldt, 1929		(C ₂ H	4 ₀ 0 ₅)	·	100 95.5 90 83.5	130.5 125 117	129 117	50 40 30 20	153.5 161 168 175	117 - 117 117
%	f.t.	Е	R	f.t.	E	80 70	123 135	11 11	14 10	180	117 120
0.0 4.8 10.4 20.5 28.0 39.9	58.0 137.0 153.5 162.7 167.5 174.0	56.5 55.0 ""	49.8 60.0 66.8 79.6 89.9 100.0	178.5 182.5 185.2 189.5 192.5 195.0	55.0 " 57.5 195.0	Succinio	145	- ₄ Н ₆ О ₄) н	0 Fumario	185	182
						Viseur,	1926				
Behenoli	c acid (C	south s			c acid	%	f.t.	Е	%	f.t.	E
Rheinbold	it, 1929		(C ₂₄ H	₄₀ 0 ₄)		100 90 80 70	273.3 262.6 255.2 250.5	273 182.5 182.5	60 40 20	245.4 227.8 204.7	182 182 182.5
%	f.t.	E	%	f.t.	E	70	230.3	183	0	182.7	182.7
0.0 5.2 10.3 19.7 29.7 40.3	57.5 115.0 140.0 157.0 163.5 169.5	56.0 53.7 54.0	49.5 59.8 70.3 80.3 90.0 100.0	173.8 178.8 183.2 187.6 191.8 196.5	54.0 " 61.0 193.5						

GLUTARIC ACID + DIMETHYLGLUTARIC ACID

Glutaric	acid	($C_5 H_8 O_4$)	+ Dimethylglutaric acid
					(C ₇ H ₁₂ O ₄)

Fredga, 1945

mo1%	f.t.	mo1%	f.t.
100	80.0	50.4	87.0
94.8	75.7	42.2	86.4
90.1	72.0	35.1	84.9
86.2	71.2	27.6	82.7
80.9	77.0	20	86.9
75.0	80.5	$\bar{10.7}$	92.1
68.0	83.8	0	97.3
58.2	86.2	•	,

Glutaric acid ($C_5H_8O_4$) + Mesodimethylglutaric acid ($C_7H_{1\,2}O_4$)

Fredga, 1944-45

mo1%	f.t.	mo 1%	f.t.
100.0	127.1	41.2	90.0
$\begin{smallmatrix} 90.0\\ 80.4\end{smallmatrix}$	122.6 117.8	33.5 27.5	81.6 82.2
70.4 59.8	112.2 105.2	20.3 10.2	86.9 92.3
50.2	97.5	0.0	97.3

Glutaric acid ($C_5 \rm H_2 O_4$) + Rac.Dimethylglutaric acid ($C_7 \rm H_{1\,2} O_4$)

Fredga, 1944-45

mol%	f.t.	mo1%	f.t.	
100 80.6 79.9 70 60.3 50.9 44.1	140.9 135.9 130.4 124.8 117.5 110.0 103.0	38.2 32.4 25.7 16.3 8.5	95.9 86.8 83.6 89.1 93.1 97.5	

Adipic acid ($C_6H_{1\,0}0_{4}$) + Pimelic acid ($C_7H_{1\,2}0_{4})$

Houston and van Sandt, 1946

%	f.t.	m.t.	%	f.t.	m.t.
0 5 10 15 20 25 30 35 40 45 50	152.0 150.9 149.8 148.8 147.5 145.8 144.1 142.2 139.8 137.2 134.0	152.0 149.2 146.5 143.8 141.2 138.5 135.7 135.5 129.2 124.8 120.5	55 60 65 70 75 80 85 90 95	130.3 124.8 118.3 111.1 103.3 96.1 97.0 99.9 102.3 104.3	115.6 110.7 105.6 100.7 97.1 94.5 95.9 98.4 101.1 103.8

Adipic acid ($C_6 H_{1\,0} 0_4$) + Suberic acid ($C_8 H_{1\,4} 0_4$)

Houston and van Sandt, 1946

%	f.t.	m.t.	%	f.t.	m.t.
0 5 10 15 20 25 30 35 40 45 50	152.0 150.8 149.5 147.9 146.2 144.3 139.8 137.4 137.4 133.8	149.4 147.1 144.3 141.9 139.5 134.0 131.1 131.1 127.5	55 60 65 70 75 80 85 90 95	124.1 119.7 120.1 124.1 128.5 131.9 134.8 137.8 140.2 141.9	120.0 119.3 119.8 122.2 124.9 127.7 130.5 133.4 137.3 141.4

Pimelic acid ($C_7H_{12}O_4$) + Suberic acid ($C_8H_{14}O_4$)

Houston and van Sandt, 1946

%	f.t.	m.t.	%	f.t.	m.t.
0	104.3	103.8	55	121.3	112.9
5	103.6	100.8	60	124.4	116.0
10	102.2	98.2	65	127.5	119.0
15	100.6	95.8	70	130.2	122.4
20	98.2	95.8	75	132.7	125.5
25	93.6	94.0	80	135.1	128.5
30	102.3	93.2 98.4 102.1 105.8	85	137.2	131.5
35	107.0		90	139.0	134.8
40	111.1		95	140.5	138.1
45	114.8		100	141.9	141.4
50	118.2	109.3			

Pimel	ic acid (C7H12O4)	+ Aze	laic acid	(C ₉ H ₁₆ O ₄)	Suber	ic acid (С ₈ Н _{1 4} 0 ₄) + Seba	cïc acid ((C _{1 O} H _{1 8} O ₄)
Houst	on and van	Sandt, 1	946			Houst	on and var	Sandt,	1946		
%	f.t.	m.t.	%	f.t.	m.t.	78	f.t.	m.t.	%	f.t.	m.t.
0 5 10 15 20 25 30 35 40 45 50	104.3 103.1 101.4 99.6 97.5 94.9 92.7 90.0 87.4 84.1 82.5	103.8 101.4 99.2 97.1 94.5 92.2 89.5 87.0 84.3 81.3	55 60 65 70 75 80 85 90 95 100	87.2 90.1 92.6 94.8 97.0 99.2 101.4 103.4 105.3 107.0	84.9 87.8 90.4 93.0 95.4 97.9 100.2 102.5 104.6	0 5 10 15 20 25 30 35 40 45 50	141.9 140.5 138.8 136.9 134.9 132.7 130.4 127.7 124.6 120.6 116.1	141.4 139.3 137.0 134.2 132.0 129.3 126.5 123.7 120.4 117.5 114.5	55 60 65 70 75 80 85 90 95	113.7 114.0 117.2 121.6 124.8 127.4 129.5 131.2 132.3 133.1	112.8 113.0 115.3 118.6 121.2 123.8 126.0 128.5 130.6 132.8
Suber	ric acid (С8Н1404) + Aze	laic acid(C9H1604)						
Gantt	er and Hel	1, 1881				Azela:	ic acid (C ₉ H ₁₆ O ₄	+ Seba	cic acid (C ₁₀ H ₁₈ O ₄)
%	f.t.	m.t.	%	f.t.	m.t.	Uouse	on ond wome	. Co	0.47		
100	106 104	-	62 57 51	109 109	106 108	Houst %	on and van	m.t.	.946 %	f.t.	m.t.
95 90 86 81 76 72 66	103.5 98.5 98 - 100 100	- - - 98 98 98	51 42 31 21 10 0	115 123 128 130 136 140	108 - - 124 125 135	0 5 10 15 20 25 30 35	107.0 105.9 104.6 103.1 101.3 98.8 98.2 102.5 106.2 109.7 112.9	106,6 104,3 102,2 100,1 98,2 96,8 96,7 99,1 102,2 105,2 108,1	55 60 65 70 75 80 85 90	115.8 118.6 121.2 123.7 126.0 128.0	111.1 114.0 116.7 119.3 121.8 124.2
Hous	ton and va	n Sandt,	1946			40 45 50	106.2 109.7 112.9	102.2 105.2 108.1	95 100	131.3 132.4 133.1	128.6 130.8 132.8
%	f.t.	m.t.	%	f.t.	m.t.						
0 5 10 15 20 25 30 35	141.9 140.8 139.5 137.8 135.9 133.7 131.0 128.4 125.5 122.7 119.7	141.4 139.0 136.7 133.8 131.0 128.2 125.4 122.6 119.8 116.8	55 60 65 70 75 80 85 90	116.7 113.0 108.7 103.3 97.7 100.7	110.8 107.7 104.4 100.7 96.7 98.4 100.1		c acid ((C ₁₁ F	-Undecaned H ₂₀ 0 ₄)	ioic acid
40 45	125.5 122.7	119.8 116.8	95 100	102.5 104.1 105.6 107.0	104.2 106.6	%	f.t.	m.t.	%	f.t.	m.t.
50	119.7	113.8		20,10	200.0	0 5 10 15 20 25 30 35 40 45 50	107.0 106.7 105.7 105.7 104.1 102.4 100.4 98.2 95.9 93.4 90.6 89.7	106.6 104.6 102.4 100.4 98.4 96.3 94.1 91.7 89.4 88.5	55 60 65 70 75 80 85 90 95 100	92.7 95.1 97.4 99.3 101.4 103.2 105.2 107.0 108.9 110.8	90.7 93.1 95.4 97.7 99.8 102.0 104.1 106.1 108.2 110.3

4	ic acid ((C ₁₁ H ₂₀ O ₄) + 1,1	1- Undecar	nedioic	Methylsuc	ccinic acid	(C ₅ H ₈ O ₄)	d + rac.	
Houst	on and var	Sandt,	1946			Berner as	nd Leonardse	n, 1939	(fig.)	رسم امار المواهد الى عن مدر سدر المواهد المواهد
%	f.t.	m.t.	%	f.t.	m.t.	%	f.t.	%	f.t.	
0 5 10 15	133.1 132.6 131.8 130.8 129.7	132.8 131.0 129.0 126.9 124.8	55 60 65 70 75	113.8 109.9 105.6 100.4 102.5	108.0 104.7 101.8 99.0 100.2	100 75 50	112.5 111 106.5	38 25 0	103.5 E 107 115	
15 20 25 30 35 40 45 50	128.4 126.8 124.9 122.7 120.0	122.7 120.5 118.4 116.3 113.7	80 85 90 95 100	104.4 106.2 108.0 108.5 110.8	101.8 103.5 105.4 107.6 110.3		occinic acid + Isoprop	ylglutaric	acid (C ₈	H ₁₄ 0 ₄) (-)
						mol%	f.t.	mo1%	f.t.	
acid	ic acid ((C ₁₂ H ₂₂ O ₄ on and var	,)		2-Dodecane	edioic	0 12 20 25 30 35 39	115 104 100 97 92 89 89.1	61 65 69 75 79 82 86	89 87.5 87 84 80.5 79	
%	f.t.	m.t.	%	f.t.	m.t.	44 49 55	89.5 90 90	9 2 100	85 89	
0 5 10 15 20 25 30 35 40 45 50	133.1 132.7 131.9 130.0 129.8 128.4 126.6 123.6 120.1 116.0	132.8 131.0 129.0 127.0 124.9 122.8 120.6 117.8 115.0 113.1 112.0	55 60 65 70 75 80 85 90 95	112.5 113.7 116.8 120.3 122.9 124.7 125.9 127.2 128.2 129.0	111.6 112.3 114.0 116.9 119.2 121.2 122.0 124.9 126.8 128.7	Methylsu	eccinic acid	ylglutaric	acid (C ₈ I	(1+1)
						mo1%	f.t.	mo1%	f.t.	
H	ndecanedio odecanedio					0 10 20 32 40 50 56	115 106 100 90 83 74 69	61 62 70 80 90 100	64 65 69 78 83 89	
Housto	n and van	Sandt, 1	946	·						
%	f.t.	m.t.	%	f.t.	m.t.	F+bulens	ninio acid (C.H 0)	(±) ±	
0 5 10 15 20	110.8 110.2 109.3 108.0 106.0	110.3 108.3 106.2 104.0 102.2	55 60 65 70 75	116.3 118.2 119.8 121.3 122.8	111.8 114.1 116.1 118.2 120.0	u -	cinic acid (-α-ethylsucc 1951			(-)
25 30	103.6 101.6 105.2	101.2 100.8	80 85	124.2 125.7 127.0 128.2	121.9 123.8	%	f.t.	%	f.t.	
35 40 45 50	105.2 108.5 111.6 114.3	103.0 105.2 107.5 109.7	90 95 100	127.0 128.2 129.0	123.8 125.7 127.4 128.7	100 93.2 90.2 83.5 75.1	65.0 59.5 57.0 65.5 75.5	50.6 40.9 31.8 25.2 19.2 7.7 0.0	84.5 82.5 80.5 78.0 80.0	(1+1)
	, , , , 					69.7 64.3 57.7	75.5 78.5 81.5 83.0	7.7 0.0	89.5 96.5	

Ethylsuccinic acid ($C_6H_{1\,0}O_4$) (-) + $_\alpha$ -Methyl- $_\alpha$ -ethylsuccinic acid ($C_7H_{1\,2}O_4$) (-)

Porath, 1951

_	K	f.t.	%	f.t.	
	100 94.6 82.8 72.1 64.2 52.9	65.0 60.5 50.5 41.0 34.5 40.5	46.0 33.8 27.5 11.2 0.0	50.5 65.0 72.5 88.0 96.5	

Ethylsuccinic acid ($C_6H_{1\,0}O_4$) (+) + Methylsulfidesuccinic acid ($C_5H_8O_4S$) (+)

Matell, 1953

mo1%	f.t.	mol%	f.t.	
0.0 4.4 8.8 18.3 27.7 37.5	96 100 103 109.5 114	47.3 57.0 67.7 78.1 88.6 100.0	123.5 127 130 134 138 143	

Ethylsuccinic acid ($C_6H_{10}O_4$) $_\alpha$ (-) + Methylsulfide succinic acid ($C_5H_8O_4S$) (+)

Matell, 1952

mol%	f.t.	mo1%	f.t.
0.0 2.2 4.6 6.6 9.0 13.7 18.1 27.9	96 94 92.5 90.5 93 106 112.5 118.5	47.0 52.7 57.5 62.3 67.5 78.0 88.5 100.0	122 122 120.5 123 126.5 132.5 137.5
37.1	121.5	100.0	143

Ethylsuccinic acid ($C_6H_{10}O_4$) rac + Methylsulfidesuccinic acid ($C_5H_8O_4S$) rac Matell, 1953

03 67 07 78 10.5 89 14 100	3.5 129 3.0 133.5	
	03 67 07 78 10,5 89	03 67.7 123 07 78.5 129 10.5 89.0 133.5 14 100.0 137.5

Propylsuccinic acid ($C_7H_{1\,2}O_{i_1})_{(+)}$ +Hexylsuccinic acid ($C_{1\,0}H_{1\,8}O_{i_1}$) (+)

Timmermans and Van der Haegen, 1933

mo1%	f.t.	m.t.	=
0 25 50 75 100	93.9 91.8 87.7 82.2 83.2	85.7 82.7 80.5	

Propylsuccinic acid $(C_7H_{12}O_4)(-) + Hexylsuccinic acid <math>(C_{10}H_{18}O_4)(+)$

Timmermans and Van der Haegen, 1933

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
100 90 85 75 (1+1)	81.3 80.2 86.9 94.2	- 76 79 76	50 25 10 0	95.4 94.4 93.7 93.9	77 79 80

Matell, 1953

mo1%	f.t.	mo1%	f.t.	
100 87.1 76.2 65.0 53.5 44.1	83 78 69 60 48 65	35.2 25.8 17.2 7.8 0.0	76 85.5 92 99 104	

Propylsuccinic acid ($C_7H_{1\,2}0_4)$ (+) + Ethylsulfidesuccinic acid ($C_6H_{1\,0}0_4S$) (+)

Matell, 1952

mo1%	f.t.	mo1%	f.t.	_
0.0 9.4 18.2 28.1 37.6 47.4 57.7	104 106.5 108 111 112.5 114	67.8 78.0 83.6 89.1 94.2 100.0	117.5 119 120 123 125 127	

PROPYLSUCCINIC ACID (-) + ETHYLSULFIDESUCCINIC ACID (+)

Propylsuccinic acid ($\rm C_7H_{1\,2}O_4$) (~) + Ethylsulfidesuccinic acid ($\rm C_6H_{1\,0}O_4S$) (+)

Matell, 1953

mo1%	f,t.	mol%	f.t.	
0.0	104	42.2	9 7	
$\begin{array}{c} 9.3 \\ 18.4 \end{array}$	98.5 93.5	47.2 51.7	98	(2.1)
23.9 27.9	90.5 89	57.5 6 7. 7	99 109	(1+1)
30.2	91	78.1	115	
32.0 37.4	92.5 95	$\begin{smallmatrix} 89.0\\100.0\end{smallmatrix}$	121 127	

Propylsuccinic acid ($C_7H_{1\,2}0_4$) rac + Ethylsulfidesuccinic acid ($C_6H_{1\,0}0_4S$) rac

Matell, 1953

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0.0	94	93	47.3	105	93
5.1	93	90.5	5 7. 1	108	97
9.9	95	88	66.1	110	101
18.1	96.5	87.5	78.0	114	105
23.7	98	-	88.0	119.5	109
27.8	99.5	87.5	92.8	122	110.5
38.0	102	89.5	100.0	126.5	120

Isopropylsuccinic acid ($C_2H_{1\,R}0_4$) (+) + $_\alpha$ -Methyl- $_\alpha$ -Isopropylsuccinic acid ($(C_8H_{1\,4}0_4$) (+)

Porath, 1949

_	mo1%	f.t.	mo1%	f.t.	
	100.0 87.9 81.4 71.7 62.7 54.9 46.9	127.0 117.5 113.5 107.0 102.5 94.5 87.5	41.9 31.3 29.0 16.3 6.6 0.0	68.0 69.5 73.0 81.0 85.0 88.0	

Isopropylsuccinic acid ($C_7H_{12}O_{\downarrow}$)(-) + α -Methyl- α -Isopropylsuccinic acid ($C_8H_{1\downarrow}O_{\downarrow}$)(+)

Porath, 1949

mo1%	f.t.	mo1%	f.t.
100.0	127.0	46.4	107.0
93.1	122.5	38.1	106.0
88.2	118.5	29.0	102.0
82.1	117.0	22.9	95.0
75.7	113.5	16.1	87.0
70.2	109.0	8.3	81.5
63.5	106.0	5.2	85.0
59. 7	106.5	0.0	88.0
48.6	107.5		. • •
		(1	+1)

Butylsuccinic acid ($C_8H_{1\, \mu}\theta_{\mu}$) (+) + Propylsulfidesuccinic acid ($C_7H_{1\, 2}\theta_{\mu}S$) (+)

Matell, 1953

mo1%	f.t.	mo1%	f.t.	
0.0 10.4 18.2 22.9 27.4 37.7 43.6	83 82 81 80.5 80 79.5 85,5	49.4 56.3 68.6 78.0 88.0	80 94.5 103 108.5 114.5	

Butylsuccinic acid ($C_8H_{1\,\mu}0_{\mu}$) () + Propylsulfidesuccinic acid ($C_7H_{1\,2}0_{\mu}S$) (+)

Matell, 1951 and 1953

mo1%	f.t.	mo1%	f,t.	
0.0 9.7 14.1 16.6 19.7 23.3 26.8 30.9 35.2	83 75 73 71 72.5 75 78.5 80	41.7 43.4 46.4 52.0 57.0 67.9 78.6 84.0 100.0	83 83.5 90 (1+1) 95 103 109 112.5 120	ı

Butylsuccinic acid ($C_8H_{1\,\mu}0_{\mu}$) rac + Propylsulfidesuccinic acid ($C_7H_{1\,2}0_{\mu}S$) rac

Matell, 1953

mo1%	f.t.	mo1%	f.t.	
0.0	83	51.1	92	
10.1	81	60.9	98	
19.8	87	77.8	106.5	
26.1	78	88.3	113	
35.5	83	100.0	119.5	

Pentylsuccinic acid ($C_9H_{16}O_4$) (+) + (-)

Matell, 1953

mol%	f.t.	mo1%	f.t.
50.0	81	18.8	73.5
39.2	7 9	14.6	76
29.8	77	10.3	78
25,4	7 6	0.0	83

Pentylsuccinic a	eid (C ₉ H	1604)	(+) +
Butylsulfidesucc	inic acid	(C ₈ H	1404S) (+)

Matell, 1953

mo1%	f.t.	mol%	f.t.
0.0	83	47.7	90
10.4	80	57.0	97
19.4	77.5	67.9	104
27.9	75.5	79.2	110.5
32.6	74	89.4	116
37.3	80.5	100.9	120.5

Pentyl succinic acid ($C_9H_{1\,6}0_4$) (-) + Butylsulfidesuccinic acid ($C_8H_{1\,4}0_4S$) (-)

Matell, 1953

mo 1%	f.t.	mo1%	f.t.	
0.0 9.1 18.4 23.2 28.3 33.9	83 78 72 69 67	38.3 48.2 57.7 67.8 82.0 100.0	75 85 92 100 109 120.5	

Pentylsuccinic acid ($C_9H_{16}\theta_4$) rac + Butylsulfidesuccinic acid ($C_8H_{14}\theta_4S$) rac

Matell, 1953

mo1%	f.t.	mo 1%	f.t.
0.0 10.4 19.3 28.9 32.4 39.0 47.6	82 81 80 79 79 78.5 79.5	52.5 57.7 69.7 77.2 89.1 100.0	82.5 86 93 96.5 101 105

Hexylsuccinic acid ($C_{1\,0}H_{1\,8}O_{t_{\rm h}}$) (+) + (-) Matell, 1953

mo1%	f.t.	•	
	I	II	III
50.0	88	84	77. 5
55.3	83	77	-
60.4	81	76	-
70.3	7 5	-	-
84.9	76.5	73.5	-
89.8	78.5	74.5	_
94.6	81	77	-
00	83	77.5	-

Hexylsuccinic acid ($C_{10}H_{18}\theta_{4}$) (-) + Pentylsulfidesuccinic acid ($C_{9}H_{16}\theta_{4}S$) (+)

Matell, 1952

mo1%	f.t.	mo1%	f.t.	
0.0 8.9 18.7 24.3 27.3 30.4 32.4 35.0 37.4	83 78 70.5 66 63.5 62.5 69 73 79.5	41.9 47.3 52.4 57.5 67.0 77.7 88.4 100.0	36.5 91.5 96 99.5 105.5 112.5 119	

Hexylsuccinic acid ($C_{10}H_{18}\theta_{4}$)₍₊₎ + Chlorsuccinic acid ($C_{4}H_{5}\theta_{4}C1$) (+)

Machtelinckx, 1951

mo1%	f.t.	E	mo1%	f.t.	Е
0	83.8	83.7	40	104.5	80
10	82.5	82.5	55	126	82
20	79.5	79	80	158.5	83
26	79.7	79.5	100	177.5	177.5

Hexylsuccinic acid ($C_{10}Il_{18}0_{\mu}$) (+) + Chlorsuccinic acid ($C_{4}H_{5}0_{4}CI$) (-)

Machtelinckx, 1951

	وجين المقارفين مجو المداعية فتين المدائلين بهن الهو يجوا أبقد كما أنها المدائلين المدائلين المدائلين المدائلين				
mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0 20 37.5 55 60	83.8 82.5 90 112.5 115	83.7 82.5 79.5 79.5 79.5	65 70 80 90 100	117.5 118 116 146 177.5	79 82 83 85 177.5

Hexylsuccinic acid ($C_{1~0}H_{1~8}0_{+}$) rac. + Pentylsulfidesuccinic acid ($C_{9}H_{1~6}0_{+}S$) rac.

Matell, 1953

mol %	f.		mol %	f.	t.
	l	I I		I	11
0.0 5.5 9.2 11.9 14.5 18.9 23.1 26.6 29.3 33.1 36.6	88 84.5 83.5 83.5 83 84 84.5 85 85 86 86	77.5 76.5 76 75 83 70 66.5 63.5	43.3 47.2 53.3 58.5 59.2 63.7 66.7 73.0 78.3 87.9 100.0	88 88.5 90.5 84.5 91.5 93 93.5 95 102 107	68.5 73.5 79.5 - - 91

1224

Hexylsuccinic acid ($C_{10}H_{18}O_{4}$) (+) + Pentylsulfidesuccinic acid ($C_{9}H_{16}O_{4}S$) (+)

Matell, 1953

uning may an

- α -Methyl- $\!\alpha$ -ethylsuccinic acid ($\rm C_7H_{1\,2}O_{4}$) (-) +
- $^{\alpha}$ Methyl- $^{\alpha}$ -isopropylsuccinic acid ($c_{8}H_{1\,4}0_{4}$) (+)

Porath, 1951

%	f.t.	%	f.t.	
0 5.3 8.3 11.9 15.1 19.8 25.5 33.5	65.0 62.5 60.0 71.5 90.5 109.0 119.0	40.7 49.2 55.9 73.3 81.5 91.4 100.0	127.5 129.0 127.5 124.0 119.0 125.0 127.0)

- α -Methyl- α -ethylsuccinic acid ($\text{C}_{7}\text{H}_{1\,2}\theta_{4}$) (-) +
- α -Methy1- α -isopropy1succinic acid ($C_8H_{1\, \mu}0_{\mu}$) (-)

Porath, 1951

%	f.t.	%	f.t.
0	65.0	47.8	95.5
9.1	63.0	51.2	100.5
14.2	62.0	60.4	105.5
18.3 27.5	$\substack{60.5 \\ 66.0}$	63.9 7 5.3	109.5
33.2	76.0	83.9	$117.0 \\ 120.5$
39.1	85.0	100.0	127.0
46.0	95.0	200.0	127.0

 $\alpha\text{-Methyl-}\alpha\text{--}$ isopropylsuccinic acid ($C_8H_{1\,4}0_4$) d +1

Porath, 1949

mo1%	f.t.	mo1%	f.t.	
0.0	127.0	27.8	134.0	
3.8 7.6	$\frac{124.0}{122.5}$	28.7 35.4	136.0 140.5	
16.3 22.0	$\frac{124.0}{128.5}$	43.1 49.5	145.0 148.0	

 α -Methylglutaric acid ($C_6H_{1\,0}O_4$) d + 1

Berner and Leonardsen, 1939

%	f.t.	%	f.t.	
0 10 20 25	81 78 72 71	30 40 50	73.5 76 77	

Methylglutaric acid ($C_6H_{10}O_4$) (I)(-) + Dimethylglutaric acid ($C_7H_{12}O_4$) (-)

Fredga, 1947

10	C .			
mol%	f.t.	mo1%	f.t.	
100.0	80.0	45.6	52.1	
90.4	71.8	40.9	55.0	
80:1	63.6	30.5	61.4	
70.2	57.1	21.5	66.0	
64.2	53.0	10.6	71.3	
60.8	50.9	6.1	73.9	
50.7	49.3	0.0	82.9	

Methylglutaric acid ($C_6H_{10}O_{+}$) (+) + Dimethylglutaric acid ($C_7H_{12}O_{+}$) (-)

Fredga, 1947

mo1%	f.t.	mo1%	f.t.
100	80.0	62.8	82.8
96.5	77.1	55.2	84.0
93.7	74.5	50.1	84.2
89.6	73.3	41.6	83.7
87.8	74.1	33.9	81.3
84.2	75.6	17.5	78.5
82.3	76.2	21.8	74.8
79.1	76.9	16.6	74.7
75.6	77.3	12.1	76.9
72.2	78.5	6.3	79.7
69.2	80.1	0	82.9

Methylglutaric acid	$(C_6H_{10}O_4)$ (+) +
Methylthiodiglycolic	acid ($C_5H_8O_4S$) (+)

Fredga, 1947

mo1%	f.t.	mo1%	f.t.
100.0	79.4	46.1	58.0
88.7	73.7	37.2	63.8
78.0	69.0	27.0	69.0
68:5	64.7	17.0	74.7
56.6	57.3	0.0	82.9

Methylglutaric acid ($C_6H_{1\,0}\theta_{\rm h}$) (+) + Methylthiodiglycolic acid ($C_5H_8\theta_{\rm h}S$) (-)

Fredga, 1947

mo1%	f.t.	mo1%	f.t.
100.0	79.4	45.7	55.8
98.6	73.9	37.2	62.1
78.9	68.8	26.3 20.4	68.8 72. 1
65.7 57.8	$\frac{61.9}{57.2}$	9.6	77.0
49.5	53.5	ó.ŏ	82.9

Methylglutaric acid ($C_6H_{10}O_{14}$) rac + Methylthiodiglycolic acid ($C_5H_8O_{14}S$) rac

Fredga, 1947

mo1%	f.t.	mo1%	f.t.
100	86.9	42.4	60.7
92.1	82.9	31.5	61.2
78.9	77.5	23.4	65.6
70.3	74.5	14.9	69.5
62.6	71.6	10.8	71.6
51.9	65.4	0.0	76.0

Dimethylglutaric acid ($C_7H_{12}O_4$) (+) + (-)

Fredga, 1047

0.0 80.0 10.0 114.8 1.0 85.9 13.1 120.2 1.9 91.5 16.9 126.0 3.0 94.7 22.6 131.2 4.0 97.0 25.0 133.0 5.0 98.4 27.5 134.6 5.9 102.9 30.1 135.8 6.8 105.8 35.6 137.9 8.1 110.1 41.7 139.7 9.0 113.0 50.0 140.8 (1+1)	mol%	f.t.	mo1%	f.t.
	1.0	85,9	13.1	120.2
	1.9	91.5	16.9	126.0
	3.0	94.7	22.6	131.2
	4.0	97.0	25.0	133.0
	5.0	98.4	27.5	134.6
	5.9	102.9	30.1	135.8
	6.8	105.8	35.6	137.9
	8.1	110.1	41.7	139.7

Dimethylglutaric acid ($C_7H_{12}O_4$) (+) + Dilactic acid ($C_6H_{10}O_5$) (-)

Fredga, 1941

mo 1%	f.t.	mo1%	f.t.
0.0 0.7 1.3 2.0 4.3 13.0 25.6 32.4 39.6 43.9	80.0 79.1 79.0 82.1 87.8 94.3 97.2 96.7 94.9 93.3	50.0 56.0 61.9 67.2 75.0 78.2 85.4 90.3 95.2	91.6 90.8 89.4 87.7 82.9 80.0 82.2 85.9 88.5 91.1

Dimethylglutaric acid ($C_7H_{12}O_{4}$) (+) + Dilactic acid ($C_6H_{10}O_5$) (+)

Fredga, 1941

mo1%	f.t.	mol%	f.t.
0.0	80.0	57.3	71.8
10.9	79.0	63.0	74.3
22.2	76.9	69.5	76.9
28.9	74.9	75.9	78.8
35.1	72.9	83.8	82.2
42.9	69.5	92.1	86.2
49.9	68.5	100.0	91.1

Dimethylglutaric acid ($C_7H_{12}O_4$) rac + Dimethylglutaric acid(+).dilactic acid (-) ($C_{18}H_{22}O_9$)

Fredga, 1941

%	f.t.	m.t.	%	f.t.	m.t.
$0.0 \\ 5.0 \\ 12.0$	91.6 99.9 107.1	88.5 90.0 93.2	50.0 64.9 81.4	127.7 132.0 136.1	108.5 116.3 126.9
24.0 36.1	$116.0 \\ 122.1$	98.0 103.0	$90.0 \\ 100.0$	138.1 140.9	132:2 139.1

DIMETHYLGLUTARIC ACID + THIODILACTIC ACID

Dimethylglutaric acid ($C_7H_{1\,2}0_{+}$) (+) + Thiodilactic acid ($C_6H_{1\,0}0_{+}S$) (+)

Fredga, 1941

mol%	f.t.	mo1%	f.t.	
0.0 10.0 20.2 25.3 35.2	80.0 72.5 64.2 66.2 77.9	50.0 65.2 82.3 100.0	90.1 100.0 108.7 117.4	

Dimethylglutaric acid ($C_7H_{12}O_4$) (+) + Thiodilactic acid ($C_6H_{10}O_4S$) (-)

Fredga, 1941

mo1%	f.t.	mo1%	f.t.	
0.0 2.3 3.9 5.0 6.2 7.7 10.0 11.9 13.0 14.1	80.0 78.1 76.8 77.0 78.1 79.4 81.0 84.0 85.9 88.9	25.4 35.2 50.0 60.0 64.2 70.4 75.0 79.2 85.2 93.0	100.9 106.0 109.0 (1+1) 107.0 105.6 103.1 102.8 105.2 109.0 113.3 117.4	

Dimethylglutaric acid ($C_7H_{1\,2}0_{_1}$) rac + Dimethylglutaric acid (+) .thiodilactic acid (-) ($C_{1\alpha}\,H_{2\,2}0_{\,6}S$)

Fredga, 1941

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
100.0	109.0	107.0	51.3	128.1	119.1
90.0	113.8	109.7	33.9	133.0	123.8
77.8	119.0	112.3	17.6	137.0	131.0
64.8	124.0	115.3	0.0	140.9	139.1

 α , α -Dimethylglutaric acid ($C_7H_{12}O_{\psi}$) (+) + α , α -Dimercaptoglutaric acid ($C_5H_8O_{\psi}S_2$) (-)

Schotte, 1956 (fig.)

%	f.t.	%	f.t.	
0	81	60	83	
5	80 E	80 88 95	83 76 7 3 E	
10	81.5	88	73 E	
20 40 50	85	95	80 91	
40	86	100	91	
50	81.5 85 86 85.5			(1+1)

Fumaric acid ($C_{\mu}H_{\mu}0_{\mu}$) + Maleic acid ($C_{\mu}H_{\mu}0_{\mu}$)

Viseur, 1926

%	f.t.	E	
0 20 40 60 80° 100	130 126 126 126 126 273	126.6 126.5 126.6 126.7	

Maleic acid ($C_{\rm L}H_{\rm L}0_{\rm L}$) + Mandelic acid 1 ($C_{\rm B}H_{\rm B}0_{\rm B}$)

Centnerszwer, 1899

%	f.t.	%	f.t.	
100.0 89.7 80.3 70.2 59.8 50.1	132.9 125.7 119.3 115.3 115.7 122.2	40.6 30.0 19.8 9.4 0.0	128.0 130.0 131.4 133.4 137.2	

Malic acid ($C_4 II_6 O_5$) 1 + d

Timmermans and Vesselovsky, 1932

 mol %	f.t.	E
0 5 12.5 20.0 22.5 25 30 37.5	100 108 116 117 120 119 125 127	100 100 103 104-105 106 110

MALIC ACID 1 + TARTARIC ACID 1

		.H ₆ O ₅) +		acid l (C4H606)	Malic a				cinic acie (C _h I and al.,	1504CI)
mo1%	f.t.	m.t.	mo1%	f.t.	m.t.	mo1%	f.t.	m.t.	mo1%	f.t.	m. t.
0 12 25 40 50	101 119 134 143 149	99 101 112 119 123	60 75 85 100	153 161 166 173	125 131 139 171.5	0 5 10 18 27.5	102.8 107 110 127.5 136	102.5 97 97.5 96 97	37.5 57.5 67.5 77.5 100	138 152.5 167.5 170 177.5	97.5 108.5 127.5 140 177.5
Malic acid l ($C_{14}H_6O_5$) + Tartaric acid d ($C_{14}H_6O_6$) Timmermans and Heuse, 1931							acid l ((C ₄ H ₅ O ₄	ccinic ac Cl)	id 1
mo1%	f.t.	m.t.	mo1%	f.t.	m.t.	mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0 8 15 25 40 50	101 134 144 157 163 164	99 100 100 108 110 151	60 67 75 85 100	163 161 163 169 174	151 " " 173	0 5 15 25 35	101 107 124 137 147	99 99 98.5 98.5 99.5	50 65 75 100	1 57 165 1 71 1 7 9	107 121 135 177,5
			(1+1)								
Malic ac	Malic acid rac. ($C_uH_6O_5$) + Tartaric acid rac.						nckx, 195	51 and Ti	mmermans	and Mokry,	1951
Marie ac.	id ide.	(Children's	+ laitai		H ₆ O ₆)	mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
Lettre,	Barnbeck	and Staur	nau, 1936			o	102.8	102.5	47.5	146	99.5
%	f.t.	m.t.	%	f.t.	m. t.	5 10 18 37.5	103 112.5 124 137	97.5 "	57.5 77.5 85 100	152.5 167.5 170 177.5	106 137.5 147.5 177.5
0 10 20 30 40 50	131 148 159 168 176 182	130 131 132 135 138 142	60 70 80 90 100	184 189 194 199 205	152 164 176 191 204		cid d ()	С ₄ н ₆ 0 ₅)	+ Dichlor	succinic	
						Van Lan	cker, 193	9		(C ₄ H ₄ ,	0 ₄ C1 ₂)
Malic a	icid l (C4H6U5)			id d	mo1%			mo1%	f.t.	
Timmerma	ns and H	euse, 193	(C ₄ H ₅ O ₄ (.ı /		0 17.1 27.2	104 116 128	- 93 92	43.0 57.1 100	138 146 168	94 94
mo1%	f,t,	m.t.	mo1%	f.t.	m.t.		120	71	100	168	-
0 7 15 25 35	101 117 130 140 147	99 98.5 98.5 99 99.5	50 65 75 100	159 164 170 178.5	101 120 129 177						

Copyrighted Materials Copyright © 1959 Knovel Retrieved from www.knovel.com

1228 MALIC ACID 4 + DICHLORSUCCINIC ACID 1

1228		MAL	IC ACID	d + DICH	ILORSUCC	INIC AC	וסו			
Malic acid d	(C ₄ H ₆ O ₅) +	Dichlorsu		cid l	Malic ac	id 1 (C ₁	H ₆ O ₅) +	Mandel	ic acid d	C ₈ H ₈ O ₃)
Van Lancker,	1938		···		Timmerma	ns and Mo	otiuk, 19	32		
mo1%	f.t.		<u>E</u>		mo1%	نو کنن کنن میں شام شین شیر شیر شیر	f.t.		Е	
0 19.9 37.4 58.0 100	104 116 132 144 166		90 89 92 -		100 75 60 50 20	, , , , , , , , , , , , , , , , , , , 	133.1 114.2 107.6 104.2 91.8	79 79	5.2 9.0 9.2 7.2	
Malic acid 1	(C ₄ H ₆ O ₅)	+ Chlormal (C ₄ H ₅ O ₅ C		d (I)					ic acid	С ₈ н ₈ О ₃)
mo1%	f.t.	E				ns and M	otiuk, Is			
100 75 50 E : 93.7°	174.5 167.6 158.6	147. 93. 93.	6		100 50 20 0		133.1 104.6 99.2	80. 78. 99	.6	. = 78
Malic acid	f.t.	+ Chlormal (C ₄ H ₅ O ₅ C		1 (I)		eid i (C	99	Mandel	f.t.	(C ₈ H ₈ O ₃)
mo1% 100 75 50	174.5 165.0 160.1	147. 94. 93.	1 8		0.0 10.8 20.0 30,1	132. 127. 124. 118.	9 60 2 70 4 80 0 8	0.3 0.0 0.6 9.6	117.9 121.2 124.4 126.9	
25 10	154.4 129.2	93. 92.	8		41.7 50.7	114. 115.		0.0	131.3	
E: 93.7°										
Malic acid 1	(C ₄ H ₆ O ₅)	· Chlormali	c acid l	(11)		cid rac. Barnbeck				id rac. (C ₈ H ₈ O ₃)
W 1 4										
Mokry, 1933 mo1% f.		mo-1%	f.t.		700	f.t.	E	%	f.t.	E
100 17	0.5 144.0 1.6 89.8 2.3 90.2	25 10 0	144.1 124.0 102.5	89.1 88.7	100 90 80 70 60 50	119 114 107 105 112 117	118 99 " "	40 30 20 10 0	122 125 128 130 131	99 " 100 130

Tartario	acid d + 1 (C4H6O6)			Tarta	ric acid d	I (C ₄ H ₆ O ₆		orsuccinio H ₅ 0 ₄ C1)	acid l
Centner	szwer, 1899				Timme	rmans and	Heuse, 19	931		
%	f.t.	%	f.1	t	mol%	f.t.	E	mol%	f.t.	E
100 90.2 72.8 69.9 60.2 50.2	167.1 178.3 180.8 188.3 197.7 203.8	40.2 30.0 19.5 9.8 0.0	191 182 173	3.3 1.2 2.0 3.3 5.8	0 15 25 35 50	174.5 171 167 161 162.5	173 157 157 156.5 157	60 75 85 100	167 172 176 179	157 " "
Findlay	and Campbell,	1928			Macht mol%	elinckx,		mal#		
% Tindia;	f.t.	%	f.	.t.	 	f.t.	E 174	mo1%	f.t.	<u>E</u>
0 5 5.7	168.5 162.5 161 E	7 12.4 50		70 95 95	0 10 20 30 40	174.2 169 164 159 155.5	151.5 152.5		157.5 162 169 177.5	152 152.5 177.5
Taboury and Vauthier, 1945 (fig.) # f.t. 0 170 11 160				Tartar		(C ₄ H ₆ O ₆		ormalic ac 1 ₅ 0 ₅ C1)	id l I	
50 89		217 160			mo1%	f.t.	E	mo 1%	f.t.	E
Tartario	acid d (C ₄ H ₆	-	orsuccini i ₅ 0 ₄ Cl)		0 25 40 50	173.6 165.0 162.8 161.9	158.0 143.4 142.4 142.6	60 75 100	163.2 165.3 174.5	142.7 143.7 147.0
 	ns and Heuse,									
0 15 25 34	f.t. E 174 173 170 156.5 166 " 162 "	50 60 75 85	163 167 173 176	156.5 "	Tartaı Mokry,		(C ₄ H ₆ O ₆		ormalic ac	id 1 II
25 34 38 42	159 " 159.5 "	100	179	177.5	mo1%	f.t.	E	mo1%	f.t.	
	nckx, 1951				0 25 40 45 50	173.6 165.3 159.7 158.8 158.0	158 153.2 152.5 152.2 151.5	54 60 55 75 100	158.2 158.4 159.1 161.7 171.0	152.9 151.6 150.8 150.4 144.0
mol%	f.t. E	mol%	f.t.	Е						
0 10 20 30 40	174.2 174 170 - 164.5 152. 159 " 155.5 "	45 60 5 80 100	157 163 170.5 177.5	152.5						

Tartaric	acid	d	(C4H606)	+	Mandelic acid	đ
							(C ₈ H ₈ O ₃)	

Timmermans and Motiuk, 1932

mo1%	f.t.	E	mo1%	f.t.	Е
0 25 50	174 166.2 159.0	127.2 126.4	65 75 100	145.8 132.0 133.1	126,6 126,6

Tartaric acid rac ($C_{\rm u}H_60_6$) + Mandelic acid rac ($C_8H_80_8$)

Lettre, Barnbeck and Staunau, 1936

%	f.t.	Е	%	f.t.	E
100	119	118	40	199	119
90	130	119	30	201	tt
80	188	Я	20	202	tt
70	193	11	10	204	n
60	196	**	0	205	204
50	198	11			

Tartaric ac'd 1 ($\text{C}_{\text{k}}\text{H}_{6}\text{O}_{6}$) + Mandelic acid d ($\text{C}_{8}\text{H}_{8}\text{O}_{3}$)

Timmermans and Motiuk, 1932

mo1%	f.t.	E	mol%	f.t.	Е
0 25 50 E: 127	160.4	127.4 127.2	75 100	131.2 133.1	127.0

Tartaric acid 1 ($C_{\rm h}H_60_6$) + Chlorsuccinic acid 1 ($C_{\rm h}H_50_{\rm h}c1$)

Timmermans and Heuse, 1931

Е	f.t.	mo1%
172.5	173.5	0
157	166	25 50 7 5
17	162.5	50
11	172	7 5
178	179	100

Tartaric acid 1 ($C_4H_60_6$) + Dichlorsuccinic acid d ($C_4H_40_4C1_2$)

Van Lancker, 1938

mo1%	f.t.	Е	mol%	f.t.	E
0 16.5 32.8 E: 57.	173.3 166 160 5%	148 14 7	49.4 65.5 100	154 154 170	148 147

Tartaric acid 1 ($\text{C}_4\text{H}_6\text{O}_6$) + Dichlorsuccinic acid 1 ($\text{C}_4\text{H}_4\text{O}_4\text{Cl}_2$)

Van Lancker, 1938

mo1%	f.t.	Е	mo1%	f.t.	E
0 16.9 31.5 53.1 57.5	173.3 165 159 154 152	148 144 143 142	68.0 77.0 85.0 100.0	151 156 160 168	139 140 139

E: 62.5%

101 (01	ic dela i	. (С ₄ Н ₆ О ₆		μH ₅ O ₅ C1)	
Mokry,	1933				
mo1%	f.t.	Е	mo1%	f.t.	Е
0 25 40 50	173.4 164.8 162.1 161.0	158.0 144.0 142.8 142.7	60 75 100	162.3 164.5 1 74. 5	142.1 143.0 147.0

mo1%	f.t.	E	mo1%	f.t.	E
0 25	173.4 168.7	158.0 143.8	60 7 5	160.5 166.9	142.8 143.6
50 55	$161.9 \\ 159.0$	$143.0 \\ 142.4$	100	171.0	144.0

Tartaric acid rac ($C_{\mu}H_60_6$) + Chlormalic acid I ($C_{14}H_5\theta_5C1$) rac

Mokry, 1933

mo1%	f.t.	E	mo1%	f.t.	Е	
0 25 50	210.0 202.3 191.8	180.0 136.0 131.1	25 10 0	178.0 167.2 145.0	129.6 128.2	

Tartaric acid rac ($C_4H_60_6$) + Chlormalic acid rac II ($C_4H_5O_5C1$)

Mokry, 1933

mo 1 %	f.t.	Е	mo1%	f.t.	E
100 75 60 50 30 E: 15	210.0 195.8 185.6 180.6 166.3 2.5°	180.0 141.3 123.4 120.0 118.6	22.5 17.5 10 0	160.5 154.0 155.1 158.0	119.3 118.1 117.3

Mesotartaric acid ($\text{C}_{\text{4}}\text{H}_{\text{6}}\text{O}_{\text{6}}$) + Chlorsuccinic acid 1 $(C_{4}H_{5}O_{4}C1)$

Timmermans and Heuse, 1931

по1%	f.t.	m.t.	mol%	f.t.	m.t.
100 85 75 60 50	178.5 176 171 164 160	177.5 166 158 144 141	40 25 15 0	153 144 148 151	139 136 137 139-140

Mesotartaric acid ($C_4H_6O_6$) + Chlormalic acid rac I ($C_4H_5O_5C1$)

Mokry, 1933

mol%	f.t.	E	mo1%	f.t.	Ę
0 25 37.5 45 50	151.3 141.9 136.2 138.8 139.0	137.0 122.8 122.0 123.0 121.4	57.5 62.5 78 75 100	136.7 132.6 135.2 138.1 145	119.1 119.5 118.2 117.6

Dilactic acid ($C_6H_{10}O_5$) (+) + (-)

Fredga, 1947

mo1%	f.t.	mo1%	f.t.	
0.0 3.5 6.9 10.0 14.0	91.1 88.5 86.6 87.6 94.5	19.9 30.0 40.0 50.0	101.1 107.7 111.2 112.8	

Diformyltartaric acid ($C_6H_6O_8$) d + 1

Ringer, 1902

%	f.t.	%	f.t.	
0 8.5 15.0 27.5	119.2 113.6 108.4 96	34.9 44.9 50	100 103.7 104.4	

1232	CHLORACETIC ACID	+ DICHLORA	CETIC ACIE		
Chloracetic acid (C_2H_3 O_2C	l) + Dichloracetic acid (C ₂ H ₂ O ₂ Cl ₂)	Chloracet	tic acid (C		o-Toluic acid C ₈ H ₈ O ₂)
Kendall, 1914		Kendall,	1914		
% f.t. %	f.t.	mo1%	f.t.	mol%	f.t.
0 61.4 59.6 9.9 56.8 67.3 17.5 52.5 75.3 24.2 47.5 87.8 33.6 40.5 100 46.0 29.6	-5.5 -5.8	100 89.1 77.0 66.4 57.4 50.5 44.4 38.2	103.4 97.0 89.6 82.3 75.5 70.2 64.9 58.8	32.4 27.5 22.1 16.5 11.5 5.8	52.3 47.9 50.7 53.3 55.7 58.5 61.4
Chloracetic acid ($C_2H_3O_2$ acid ($C_2HO_2Cl_3$)	Cl) + Trichloracetic	Chlorace	tic acid (C		m-Toluic acid C ₈ H ₈ O ₂)
Kendall, 1914		Kendall,	1914		
% f.t. %	f,t,	mo1%	f.t.	mo1%	f.t.
0 61.4 58.3 15.2 53.5 68.1 25.5 46.5 75.9 34.5 38.9 84.5 41.8 31.0 100 48.6 22.4	33.2 39.9	100 90.1 79.6 68.4 56.9 45.2	107.6 101.0 93.6 84.7 75.3 64.1	35.7 28.4 21.2 14.4 7.7	53.9 46.7 50.5 54.2 57.7 61.4
Chloracetic acid ($C_2H_3O_2$ Kendall, 1914 mol% f.t. mo	C1) + Benzoic acid (C ₇ H ₆ O ₂)	Chlorace Kendall,			p-Toluic acid (C ₈ H ₈ O ₂)
100 121.0 33	2.0 52.6	mo1%	f.t.	mo1%	f.t.
81.0 107.2 25 69.8 96.8 21 58.5 86.1 14	5.1 48.7 1.1 50.7 1.4 54.5 5.9 58.6	100 83.1 70.4 56.9 45.4 34.0	178.6 167.2 155.8 141.8 128.5 114.0	22.7 17.1 12.9 9.3 4.7	95.5 83.1 71.1 56.8 59.1 61.4
Chloracetic acid (C ₂ H ₃ O ₂	$(C1)$ + Phenylacetic acid $(C_8H_8O_2)$				innamic acid $C_9H_8O_2$)
Kendall, 1914		Kendall,	1914		
mol% f.t.	mol% f.t.	mo1%	f.t.	mo1%	f.t.

100 89.3 77.5 68.0 54.4 44.7 36.4 136.8 128.2 118.6 109.0 95.9 83.8 70.2 31.4 25.0 19.0 13.9 8.2 60.5 48.3 51.2 54.0 57.1 61.4

mo1%	f.t.	mo1%	f.t.
100	76.7	41.6	33.6
89.5	70.1	32.9	40.0
80.9	63.8	23.9	46.7
72.5	56.9	14.9	52.7
64.8	49.9	6.7	57.9
56.6	42.3	0	61.4
49.9	35.2		- •

Dichloracetic acid	(C ₂ H ₂ O ₂ Cl ₂) +	Trichloracetic
acid ($C_2HO_2Cl_3$)			

Kendall, 1914

mo 1%	f.t.	mo1%	f.t.	
0 6.3 17.8 31.3 43.1	9.7 7.0 1.0 -7.9 -0.6	53.5 68.2 78.8 87.8	+14.5 32.9 42.5 49.6 57.3	

Dichloracetic acid ($C_2H_2O_2C1_2$) + Benzoic acid ($C_7H_6O_2.$)

Kendall, 1914

mo1%	f.t.	mol%	f.t.	
100	121.0	34.9	55,6	
81.5	104.0	29.4	52.8	
70.7	91.6	35.3	50.I	
61.1	79.1	16.9	42.6	
50.8	64.6	11.6	33.6	
48.4	61.2	8.3	25.5	
45.7	56.7	5.4	15.3	
44.3	57.8	1.8	8.6	
40,2	57.2	0	9.7	
37.4	56.4			
(1+1)	58.2°			

Dichloracetic acid ($C_z H_z \theta_z C 1_z$) + Phenylacetic acid ($C_8 H_8 \theta_2$)

Kendall, 1914

mol%	f.t.	mol%	f.t.
100 93.3 81.4 71.8 63.9 59.2 50.0	76.7 72.4 63.4 53.6 43.9 37.6 22.3	42.9 36.9 25.9 15.3 7.5	+9.0 -5.5 -14.6 -3.3 +3.5 9.7

Dichloracetic acid ($C_2 H_2 O_2 C \mathbf{1}_2$) + o-Toluic acid ($C_8 H_8 O_2$)

Kendall, 1914

mol%	f.t.	mo1%	f.t.
100	103.4	37.9	44.9 28.4
89.5 78.6	97.1 89.5	28.2 20.4 14.4	13.0 -1.9
69.1 60.7	81.6 74.1 63.0	12.4 7.1	-1.9 -1.0 +3.9
$\begin{array}{c} 51.2 \\ 43.0 \end{array}$	52.1	0.1	9.7

Dichloracetic acid ($C_2H_2O_2Cl_2$) + m-Toluic acid ($C_8H_8O_2$)

Kendall, 1914

mol%	f.t.	mo1%	f.t.	
100 87.4 74.6 66.1 56.4 46.4 35.9	107.6 98.5 87.5 79.4 68.2 53.8 35.8	28.2 23.0 17.1 11.0 6.1	19.9 6.1 -6.1 -0.2 +4.2 9.7	

Dichloracetic acid ($C_2H_2O_2Cl_2$) + p-Toluic acid ($C_8H_8O_2$)

Kendall, 1914

mol%	f.t.	mo1%	f.t.	
100 85.1 71.6 59.5 50.0 40.9 33.1	178.6 168.1 154.9 139.6 125.2 109.0 91.3	26.1 20.4 15.5 10.8 5.2 0	75.2 59.7 42.3 23.1 5.1 9.7	

Dichloracetic acid ($\rm C_2H_2O_2Cl_2$) + Cinnamic acid ($\rm C_9H_8O_2$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
100 86.1 74.1 62.8 55.0 51.5 50.0 44.8 37.3 (1+1)	136.8 124.3 111.0 97.6 86.1 80.0 80.1 79.7 77.8	29.8 24.6 17.1 12.8 7.8 6.0 4.1 1.6	74.2 69.6 61.4 54.0 42.8 35.7 24.7 8.6 9.7	

TRICHLORACETIC ACID + BENZOIC ACID

Trichloracetic	acid	($C_2HO_2CI_3$)	+ Benzoic	acid
					$(C_{2}H_{6}O_{2}$)

Kendall, 1914

mol%	f.t.	mo1%	f.t.	
100 80.1 68.3 63.6 60.1 55.5 52.0 47.1	121.0 105.6 89.7 79.9 72.8 64.0 54.4 43.1	39.2 33.3 31.5 26.7 22.5 21.9 16.7	32.6 28.1 26.6 32.3 36.9 38.0 45.0 50.5	
42.9 (1+1)	34.6 36.4°	0	57.3	

Pushin and Rikovski, 1940-46

mo1%	f.t.	Е	mol%	f.t.	E
0 10 17 20 25 30 32 35 38 40 42 43.5	57 49 42 39 34.5 28.5 28 29.5 30.5 31.3 27.5meta	16 21 26 26 26.5 25.5 24	45 47 50 55 55,5 60 65 70 80 85 100	41 45.5 52.5 64.5 66.5 73 83 90 102.5 108	30 29.5 28 29 - 24 -

Trichloracetic acid ($\rm C_2HO_2C1_3$) + Phenylacetic acid ($\rm C_8H_8O_2$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
100 90.5 81.4 70.8 63.1 55.4 47.9	76.7 70.8 63.3 51.7 40.1 25.9 9.2	41.2 34.9 28.4 20.8 11.7	10.2 21.2 31.3 41.2 49.3 57.3	

Trichloracetic acid ($\rm C_2HO_2Cl_3$) + o-Toluic acid ($\rm C_8H_8O_2$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
100 90.0 81.2 73.9 67.2 58.3 53.8 49.8 45.5 40.8 (1+1)	103.4 97.6 90.5 83.9 76.8 64.7 55.7 52.9 52.6 51.8	37.5 33.1 28.8 23.5 27.9 21.5 15.0 8.7	50.4 48.1 45.1 39.4 30.7 38.9 45.5 51.3	

Trichloracetic acid ($\rm C_2HO_2Cl_3$) + m-Toluic acid ($\rm C_8H_8O_2$)

Kendall, 1014

mo1% f.t. mo1% f.t. 100 107.6 41.9 34.6 89.3 100.2 36.7 31.3 78.1 89.8 31.4 26.2 65.7 75.3 26.5 32.4 60.2 66.6 21.0 38.6 55.7 56.9 15.9 44.1 51.4 45.4 7.7 51.5 49.6 37.3 0 57.3 45.8 36.3 0 57.3					
89.3 100.2 36.7 31.3 78.1 89.8 31.4 26.2 65.7 75.3 26.5 32.4 60.2 66.6 21.0 38.6 55.7 56.9 15.9 44.1 51.4 45.4 7.7 51.5 49.6 37.3 0 57.3	mo1%	f.t.	mo1%	f.t.	
(1+1) 37.4°	89.3 78.1 65.7 60.2 55.7 51.4 49.6 45.8	100.2 89.8 75.3 66.6 56.9 45.4 37.3 36.3	36.7 31.4 26.5 21.0 15.9 7.7	31.3 26.2 32.4 38.6 44.1 51.5	

Trichloracetic acid ($\rm C_2HO_2Cl_3$) + p-Toluic acid ($\rm C_8H_8O_2$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
100 87.2 76.2 65.5 57.6 50.1 44.8 40.0 36.9	178.6 170.4 160.1 145.9 131.9 115.5 100.2 84.1 69.1	34.5 30.5 25.7 22.3 18.1 12.9 6.9	63.5 60.3 55.7 51.8 45.0 46.6 52.2 57.3	
			(1+1)	

			TRICHLORA	CETIC A
Trichle	oracetic acid	1 (C ₂ HO ₂ C	Cl ₃) + Cinnamic (C ₉ H ₈ O ₂	
Kendall	, 1914			
mo1%	f.t.	mo1%	f.t.	
100 87.0 76.1 65.8 56.6 50.3 45.3 41.4 (1+1)	136.8 122.2 108.5 94.8 79.9 68.5 62.1 59.7	35.3 29.2 25.9 24.8 19.7 17.4 9.3	55.7 49.3 49.3 36.1 42.5 45.0 51.1 57.3	
======				
Dichlors	ropionic acio succinic acio			
	cker, 1938	1.0		
mo1%	f.t.	mo1%	f.t.	
9.1 24.2 32.0	0.7 38.0 93.0 108.0	52.7 75.0 100.0	136.0 154.0 168.0	
Dichlors	opionic acid uccinic acid ker, 1938		-	
mo1%	f,t.	mol%	f.t.	
0 17.1 33.5	0.7 74.0 108.0	46.5 60.2 100.0	126 145 168	
α-Bromli	tracosanic a gnoceric aci rod and Soyk	d (C ₂₄ H ₄ ,		
%	f.t.	%	f.t.	
0 14.5 23.2 34.4 45.2 55.3 66.5	73.5 71.5-72 70.5-71 69.5-70 69.0-69.5 68.0-68.5 67.5-68	75.1 80.4 85.9 91.2 95.8 100	67.5-68 67.0-67.5 67.0-67.5 67.0-67.3 67.0-67.5 68.5	

CID + CII	NNAMIC AC	10				123
β-Chlor	crotonic ac	id (C ₄ H ₅ O ₂ C]	l) n + iso)	
Skau a	nd·Saxton,	1933				
mo1%	f.t.		mo1%	f.t.		
100	60.5		75.0	45.7		
95.55 92.71 90.77	57.9 56.3 55.2 54.2		72.5 70.6 65.0	44.1 42.8		
88.9	55.2 54.2		61.1	46.8 50.9		
84.0 81.0 78.8	51.3 49.5 48.1	•	61.1 52.5 0.0	59.1 93.6		
78.8	48.1					
Chlor	succinic ac	id ($C_{4}H_{5}O_{4}C$	C1) d + 1		
	rszwer, 189	9				
	f.t.			f.t.		
100	175.8		39.8 29.5 20.2 10.7 0.0	154.3		
80.3	159.8		20.2	154.6 158.2		
90.2 80.3 69.6 59.8 50.1	168.4 159.8 156.4 153.7 153.8		0.0	176.1 176.1		
50,1	153.8					
	<u></u>					
Mommer	1, 1927					
%	f.t.	E	%	f.t.	E	
100	174.5		41 3	140.0	120.0	
92.8	164.6 1 155.0 1	30.2	41.3 34.3 28.0 22.5 14.3 7.2	149.0 142.5 136.2 132.3 155.0 164.6 174.5	129.0 128.7 129.7	
77.5	132.3 136.2	28.0	22.5	136.2	128.0	
65.7	136.2	28.0 29.7 28.7	7.2	$155.0 \\ 164.6$	$128.0 \\ 130.2$	
92.8 85.7 77.5 71.0 65.7 58.7 50.1	149.0 I 153.3	29.0	0	174.5	-	
Centro	regwer 100	.0				
%	rszwer, 189		%	£ .		
	f.t.			f.t.		
$\substack{50.0\\40.0}$	156.0 149.2		$\frac{20.0}{9.6}$	$\frac{162.5}{169.1}$		
30.0	149.2 158.2		$\substack{9.6\\0.0}$	169.1 1 7 6.1		

						П					
	succinic aci		•			Chlors Chlorm	uccinic a alic acid	cid 1 (C ₄ H ₅ O ₄ C1 C ₄ H ₅ O ₅ C1) +)	
Van Lan	cker, 193	8				Macht	elinckx,	1951			
mo1%	f.t.	E	mo1%	f.t.	E	mo1%	f.t.	Е	mo1%	f.t.	Е
0 35.4 45.0 52.4 E: 5	177.0 157.1 146.2 143.0	140 139.1 139.0	59.9 80.0 100.0	146.0 158.1 168.0	139.0 140.0	100 80 70 60 50	174.5 161 153 147 150	174 140 136 139 140	40 30 20 0	149 150 162 177.7	140 141 138 177.5
	· · · · · · · · · · · · · · · · · · ·					Chl		- : 1 1 /			
Chlore		aid 1 / C	u o c i \						С ₄ Н ₅ О ₄ С1 (С ₄ Н ₅ О ₅ С		
N	succinic a orsuccinic					Machte	elinckx,	1951			
						mol%	f.t.	Е	mo 1%	f.t.	Е
	encker, 19	38 E	mo.10	<i>f</i> ,	E	100 80	174.5 162	174 138	40	152	132
0 25.2	f.t. 177.0 159.5	137.0	mo1% 57.0 76.5	141.2 152.0	136.1 135.0	70 60 50	154 146 150	136 133 132	30 20 0	151 163 177.7	134 136 1 77. 5
40.1	146.0	135.0	100	166.0	130.0						
E: 50	0%					Chlore	Succinic	acid rac	(C ₄ H ₅ O ₄ (71 \ .	
									С ₄ Н ₅ О ₄ В1		
Chlors	uccinic ac	idd (C _h	H ₅ 0 ₄ C1)	+		}					
Chlorm	alic acid(II) 1(C4H5O5C1)		Mommer %	1, 1927				
Machte	linckx, 19	51				II	f.t.	m.t.	%	f.t.	m.t.
mo1%	f.t.	m.t.	mo1%	f.t.	m.t.	100 83.4	$\frac{160.2}{158.8}$	154.0	45.0 35.1	145.0 148.2	139 140
100 80	170.5 148	170 130	40 30	155 162	132 134	69.2 60.0 57.0 52.0	152.1 142.0 139.0	145.0	25.5 10.0 0.0	152.6 152.1 153.3	142 147
70 60 50	141 146 150	132 130	20 0	166 1 77. 7	140 177.5	32.0	141.5	139.0			
	150	130				Chlorsu	ccinic ac	id d (C	ևH ₅ 0ևCl)		
						11	cinic aci			•	
	succinic ac salic acid					Mommen	1027				
CITOTI	arre acru	(11) 1 (C4115 05 C1	,		%	f.t.	E	%	f.t.	E
Machte	linckx, 19	951				100		 			
mo1%	f.t.	m.t.	mo1%	f.t.	m.t.	76.6 50.3	173.3 173.5 173.6	173.3 173.3	15.5 1	74.0 1	73.5 73.7
100 80	170.5 148	170 131.5	40 30	158 165	136 140		-10.0		0.0 1	74,5	
70 60	142 146	$\begin{array}{c} 131.5 \\ 134 \end{array}$	20 0	170 177.7	144 177.5						
50	152	134	-		2						
Ī						li					

Chlorsuccinic acid d ($C_hH_5O_hC1$) + Bromsuccinic acid 1 ($C_hH_5O_hBr$)	Dichlorsuccinic acid d ($C_4H_4O_4C1_2$) + Chlormalic acid (II) 1 ($C_4H_5O_5C1$)
C	Van Lancker, 1938
Centnerszwer, 1899 ### f.t. ### f.t.	mol% f.t. E mol% f.t. E
100 175.7 40.6 157.1 90.5 168.9 30.2 161.6 79.1 163.7 20.7 164.5 70.0 160.8 10.7 171.5 59.9 157.2 0.0 176.5 50.0 157.3	100 171 - 38.6 156 148 78.8 163 147 25.0 162 148 63.2 155.5 148 0 170 E: 50 mo1%
Mommen, 1927 % f.t. E % f.t. E	Dichlorsuccinic acid 1 (C _h H _b O _h Cl ₂) + Chlormalic acid (II) 1 (C _h H ₅ O ₅ C1) Van Lancker, 1938
100 173.2 - 33.7 162.8 - 83.5 172.2 148 32.0 163.5 150	mol% f.t. E mol% f.t. E
100 173.2 - 33.7 162.8 - 83.5 172.2 148 32.0 163.5 150 70.0 166.2 149 27.9 170.1 155 60.0 156.2 147.5 17.5 172.0 159 56.5 155.2 - 4.5 173.1 163.7 49.8 155.4 148 0 174.5 - 42.0 157.6 149	100 171 - 32.5 155 146 81.5 162 145.5 24.8 161 145 66.6 155 146 0.0 168 -
(1+1)	E: 50 mo1%
Chlorsuccinic acid i ($C_uH_50_uCl$) + Bromsuccinic acid l ($C_uH_50_uBr$)	Dichlorsuccinic acid d ($C_uH_uO_uCl_2$) + Chlormalic acid (I) d ($C_uH_5O_5Cl$)
Centnerszwer, 1899	Van Lancker, 1938
% f.t. % f.t.	mol% f.t. E mol% f.t. E
0.0 175.7 60.2 159.5 10.3 172.6 70.7 155.7 19.1 169.3 80.0 154.1 30.5 165.9 90.3 153.9 40.0 165.8 100.0 156.0 50.5 163.1	100
Dichlorsuccinic acid d + 1 (C _u H _u O _u Cl ₂) Van Lancker, 1938	Dichlorsuccinic acid 1 ($C_uH_u0_uCl_2$) + Chlormalic acid (I) d ($C_uH_50_5C1$)
mol% f.t. E mol% f.t. E	Van Lancker, 1938
0 168.0 - 50 175 156.3 20.8 160.2 155 100 166 -	mol% f.t. E mol% f.t. E
29.5 163.8 155.2 100 100 100 100 100 100 100 100 100 10	100 179 - 44.6 146 138 69.75 160 140 35.5 150 137 60.65 152 138 0.0 166 - 52.2 147 138
	E: 50 mol%

Dichlorsuccinic acid d ($C_{i_4}H_{i_4}O_{i_4}C1_2$) + Alanine d ($C_{2}H_{7}O_{8}N$)	Dichlorsuccinic acid d ($C_{u}H_{u}O_{u}CI_{2}$) + Asparagine 1 ($C_{u}H_{8}O_{3}N_{2}$)
Van Lancker, 1938	Feinberg, 1939
mol% f.t. E mol% f.t. E	mol% f.t. mol% f.t.
100 297 - 52.5 167 84 83.6 208 - 43.6 161 78 69.9 178 95 0.0 170 - E: 25% 80°	100 189 49.8 128 89.4 165 36.1 138 79.4 124 28.3 142 65.7 131 24.0 147 63.4 132 3.7 168
Dichlorsuccinic acid d ($C_{i\mu}H_{i\mu}O_{i\mu}Cl_2$) + Alanine 1 ($C_3H_2O_2N$)	Dichlorsuccinic acid 1 ($C_4H_40_4C1_2$) + Asparagine 1 ($C_4H_80_9N_2$)
Van Lancker, 1938	Feinberg, 1939 mol% f.t. mol% f.t.
mol% f.t. E mol% f.t. E	
100 297 - 35.0 130 78 80.1 182 104 19.6 140 81 56.6 167 90 0.0 170 - 44.5 153 82	77.9 158 32.0 133 59.5 156 23.6 140 44.0 120 0.0 168
E: 25% 80°	Dichlorsuccinic acid d ($C_uH_bO_uCl_2$) + Mandelic acid d ($C_BH_BO_S$)
Dichlorsuccinic acid d (C _h H _h O _h Cl ₂) + Aspartic acid 1 (C _h H ₂ O _h N)	Van Lancker, 1938
	mol% f.t. E mol% f.t. E
Van Lancker, 1938 mol% f.t. E	100 133 - 52.4 126 107 75.6 117 108 37.4 144 107 62.0 114 107 0.0 168 -
100 271 - 65,5 169 141	E: 33 mo1%
50.4 156 139 26.9 162 140	
0.0 170 - E: 63%	Dichlorsuccinic acid 1 ($C_{\rm h}H_{\rm h}\theta_{\rm h}Cl_2$) + Mandelic acid d ($C_8H_8\theta_3$)
	Van Lancker, 1938
Dichlorsuccinic acid 1 (C _u H _u O _u Cl ₂) +	mol% f.t. E mol% f.t. E
Aspartic acid 1 (C _u H ₇ O _u N) Van Lancker, 1938	100 133 - 44.7 132 103 80.0 119 100 24.8 151.5 106
mol% f.t. E	61.9 111 102.5 0 166 -
100 272 -	E: 33 mo1%
100 272 - 66.0 162 138 42.5 156 138 17.6 164 136 0.0 168 -	
E: 63%	

Bromsuc	cinic acid	d d + 1	(C ₄ H ₅ O ₄	Br)		Chlorma	alic acid	(I) (C ₄	H ₅ 0 ₅ C1) d	+ 1	
Mommen,	1927					Mokry,	1933				
%	f.t.	E	%.	f.t.	.E	mo1%	f.t.	Е	mol%	f.t.	E
100 86.8 79.5 68.8 59.9 50.0	173.2 169.6 165.2 155.5 157.5	157.0 155.5 155.0 155.0	40.1 31.2 20.5 13.2 0	157.5 155.5 165.2 169.6 173.2	155.0 155.0 155.5 157.0	0.0 25.0 33.4	174.5 166.0 161.5	147.0 121.3 119.6	42.5 47.5 50.0	158.2 151.0 145.0	120.4 120.6
α,α,-Dit	rompimelio	acid (C7H10041	Br ₂) (+)	+ (-)	Chlorma	alic acid	(I) d (C4H5O5C1) + (II)	1
Schott	e, 1956 (fig.)				Mokry,			1 <i>d</i>	£ +	E
%	f.t.			f.t.		mo1%	f.t.	<u>E</u>	mo1%	f.t.	
0 10 18 20	60 56 50 E 58	30 40 50)	76 90 97		0 25 40 50	174.5 165.8 158.8 154.9	147.0 140.5 139.4 139.5	60 75 100	152.2 161.8 170.5	139.2 140.9 144.0
α,α,-Di	brompimeli	c acid (C7H1004	Br ₂) raç	+ meso	Chlorn	nalic ació	1 (1) 1 (C4H5O5C1) + (II)	1
Schott	e,1956 (f					Mokry	, 1933				
[%]	f.t.	%	f	.t.		mo1%	f.t.	<u>E</u>	mol%	f.t.	E
0 10 14 20 30 40	98 79 72 E 99 117 125	50 60 70 80 90 100	1 1 1 1	31 35 40 43 48 52		0 25 50	174.5 164.5 154.5	147.0 139.8 140.3	75 100	161.5 170.5	140.0
	richlor-β- 0 ₃ Cl ₃)	oxybutyi	ic acid	(+) + (~)		Chlorma	lic acid	(II) (C	₄ H ₅ O ₅ C1)	d + 1	
Ross,	1936					Mokry,					
%	f.t.		%	f.t.			f.t.	E	mo1%	f.t.	<u>E</u>
0.0 4.6 8.9 9.1 12.3	99.9 97.9 96.6 96.6 96.8	5 5	0.0 3.9 4.4 7.2 2.8	118.3 116.1 116.8 109.3 107.2		100 90 75	171.0 164.2 153.3	144.0 135.3 133.4	52.5 50	155.7 157.7 158.0	134.3
14.2 16.7 25.6 25.6 38.8 42.2	98.8 99.4 103.5 108.9 112.2 115.1	8 8 9 9 1 9	0.2 3.3 1.0 5.3 0.0	99.2 99.6 97.2 98.5 100.1	1+1)						
									·		

METHYLSULFIDE SUCCINIC ACID (+) + (-)

					OGINIO AC	(ID (1) 1 ()	,		
Methylsu	ılfide-succi	nic acid (C5H8O4S) (+) + (-)	S-Methyls	ulfideethyl	succinic a	cid (-) (C ₇ H ₁	₂ 0 ₄ S) +
					S-Propyl	sulfidesucc	inic acid	(+) (C ₇ H ₁₂ O ₄ S	5)
Matell,	1952				Matell,	1951 (fig.)		
mo1%	f.t.	mol%	f.t.		K	f.t.	%	f.t.	
50.0 54.8 59.8 69.9	137.5 137 136.5 134	79.7 88.8 94.8 100.0	135.5 139 141 143	(1+1)	100 90 80 70	86 84 96 100	50 35 20 0	102 101 112 120	
		nic acid (C ₆ H _{1 0} O ₄ S) (+) + (-)	(+) + (-)		acid (C ₇ H ₁₂ O	_ų S)
Matell,	1952			· · · · · · · · · · · · · · · · · · ·		1951 (fig			
mol%	I	f.t. II	111		 %	f.t.	%	f.t.	
50.0 55.4 59.9 65.0 70.0	125.5 121 119.5 117.5 115	119.5 118.5 116.5 112 111	112.5 112.5 112 111.5	5	0 12 30 50	86 81 91 93	60 80 87 100	92 96 82 86	er densimmende – gare – pagan
75.0 80.2 85.4 90.2 94.8 100.0	114.5 117.5 120 122.5 125 127	-	- - - - -	(1+1)	Butylsul		ic acid (C ₈ H ₁ , O ₄ S) (+)) + (~)
					mo1%	f.t.	mo1%	f.t.	
	sulfide-succ		(С ₇ Н _{1 2} О ₄	S) (+) + (-)	50.0 44.7 39.5 34.8 29.7	105 104 103 102 103	24.8 19.9 9.0 0.0	106.5 110 115.5 120.5	
1/2	f.t.	%	f.t.						
100 80 60 50	120 110 117 119	21	114 109 119	(1+1)	Pentyls:	ılfidesuccin	nic acid ($C_9H_{16}O_{4}S$) (4	-) + (-)
					Matell,	195 2			
					mo1%	f.t.	mo1%	f.t.	
					50.0 44.9 39.6 34.7 30.2	107 106.5 106 105 108	24.7 19.6 9.4 0.0	111.5 115 120 125	

Disulfic	ladipic ac	id (C ₆ H _{1 c}	0 ₄ S ₂) (+) + (-)	
Fredga,	1941			
mo1%	f.t.	mo1%	f.t.	
100 94.3 90.0 84.8	118.0 116.3 114.9 113.6	79.8 70.0 59.8 50.0	113.2 112.0 111.6 111.1	

Disulfide adipic acid (-)($C_6H_{1\,0}0_{\mu}S_2$) + Dithiodilactic acid (+)($C_6H_{1\,0}0_5S_2$)

Fredga, 1941

mo1%	f.t.	mo1%	f.t.	
100.0 90.3 80.2 71.4 66.7 63.6 59.8 54.8 49.9	117.5 112.8 107.5 104.2 102.1 100.9 99.0 97.0 97.1	48.2 44.6 41.2 36.4 30.9 20.1 10.8 0.0	99.8 102.0 104.0 105.9 108.2 110.4 113.2 118.0	

Disulfideadipic acid (-) ($C_6H_{1\,0}0_{\rm ts}S_2$) + Dithiodilactic acid (-) ($C_6H_{1\,0}0_5S_2$)

Fredga, 1941

mo1%	f.t.	mo1%	f.t.	
100.0	117.5	50.0	100.1	(1+1)
90.1	110.9	45.5	100.8	
80.2	106.0	42.1	102.0	
70.8	101.5	37.4	103.9	
65.3	98.8	31.1	106.7	
60.6	98.8	19.8	110.8	
57.9	99.5	9.5	113.8	
54.6	99.7	0.0	118.0	

Xantogensuccinic acid ($C_7H_{10}O_5S_2$) (+) + (-)

Fredga, 1941

mo1%	f.t.	mo1%	f.t.
0.0	132.5	19.6	139
2.8	132	28.9	143.5
5.2	130.5	40.0	147.5
10.3	132.5	50.0	149

Ethyl(carbothiolon)lactic acid (+) ($C_6H_{10}O_3S_2$) + Ethyl(carbothiolon)oxybutyric acid (+) ($C_7H_{12}O_3S_2$)

Fredga, Tenow and Bilstrom, 1943

%	f.t.	%	f.t.	
100	31.5	47.3	27.0	
90.8	27.0	32.2	43.0	
80.9	22.0	24.2	49.4	
70.1	18.0	12.9	57.2	
52.6	18.8	0.0	63.0	

Ethyl(carbothiolon)lactic acid (-) ($C_6H_{10}O_3S_2$) + Ethyl(carbothiolon)oxybutyric acid (+) ($C_7H_{12}O_3S_2$)

Fredga, Tenow and Billstrom, 1943

%	f.t.	%	f.t.	
100 96.1 93.0 90.0 85.3 71.6 67.0 53.9	31.5 27.0 24.5 25.5 35.0 46.2 47.2 50.1	50.0 39.7 29.5 25.0 20.6 12.6 0.0	50.8 49.5 47.0 48.0 51.0 56.1 63.0	

Ethyl(carbothiolon)lactic acid ($C_0H_{10}O_3S_2$) rac + Ethyl(carbothiolon)oxybutyric acid ($C_7H_{12}O_3S_2$) rac

Fredga, Tenow and Billstrom, 1943

mo1%	f.t.	mo1%	f.t.	
100 84.6 70.6 64.2 54.6	57.7 51.3 45.6 43.8 46.8	40.2 25.8 11.1 0.0	53.2 59.6 65.6 71.0	

1242 ETHYL(CARBOTHIOLON)LACTIC ACID rec. + ETHYL(CARBOTHIOLON)LACTIC ACID.ETHYL(CARBOTHIOLON)OXYBUTYIRC ACID

Ethyl (carbothiolon) lactic acid ($C_6H_1_0O_3S_2$) rac + Ethyl (carbothiolon) lactic acid. Ethyl (carbothiolon) oxybutyric acid ($C_{13}H_{28}O_6S_4$)

Fredga, Tenow and Billstrom, 1943

mo1%	f.t.	mo1%	f.t.	
100 84.6 71.2 56.0 42.2	71.0 67.5 65.0 60.7 57.1	31.5 20.0 10.1 0.0	54.0 51.4 50.5 50.8	

Ethyl(carbothiolon)oxybutyric acid (+) + (-) ($C_7H_{12}O_3S_2$)

Fredga, Tenow and Billstrom, 1943

mo1%	f.t.	mo1%	f.t.	
50.0 35.7 24.7 15.1 9.4	57.7 55.5 52.0 45.0 40.0	3.6 2.7 1.7 0.0	30.5 29.0 30.0 31.5	

Ethyl(carbothiolon)oxybutyric acid ($C_7H_{12}O_3S_2$)rac + Ethyl(carbothiolon)lactic acid.Ethyl(carbothiolon) oxybutyric acid ($C_{13}H_{22}O_6S_4$)

Fredga, Tenow and Billstrom, 1943

mo1%	f.t.	mo1%	f.t.	
100	57.7	43.0	45.1	(1+1)
84.9	54.8	28.1	46.0	
69.0	51.2	13.8	48.2	
56.1	48.7	0.0	50.8	

Xantogensuccinic acid (+) ($C_7H_{10}O_5S_2$) + Ethyl-(carbothiolon)malic acid (+) ($C_7H_{10}O_5S_2$)

Fredga, 1941

по1%	f.t.	mol%	f.t.	
0.0	132.5	50.0	131.5	
6.3	129.5	55.3	130.5	
11.3	127	60.0	130.5	
15.3	125	65.0	132.5	
21.5	123	69.9	135	
25.1	125.5	80.7	140	
30.3	127	89.9	145	
40.2	130	100.0	150	(1+1)

Ethyl(carbothiolon)malic acid ($C_7H_{10}O_5S_2$) (+) + (-)

Fredga, 1941

mol%	f.t.	mo1%	f.t.	
0.0 1.3 3.0 5.1 8.5	150 149 148.5 147 147	16.2 30.4 40.1 50.0	153.5 160 162.5 163.5	

Ethyl(carbothiolon)malic acid rac ($C_7H_{10}O_5S_{\rm g}$) + Xantogensuccinic acid.Ethyl(carbothiolon)malic acid ($C_{14}H_{20}O_{10}S_{\rm g}$)

Fredga, 1941

E01%	f.t.	mo1%	f.t.	
0.0 5.5 10.0 14.2 16.7 19.2	131.5 131 131.5 132.5 135 136.5	25.0 31.1 39.7 60.1 80.4 100.0	141 145 148.5 155.5 160 163.5	

Xantogensuccinic acid (-) ($C_7H_{10}O_5S_2$) + Ethyl(carbothiolon)malic acid (+) ($C_7H_{10}O_5S_2$)

Fredga, 1941

Į					
	mo1%	f.t.	mo1%	f.t.	
	0.0 11.6 22.1 31.2 38.4 41.0	132.5 127 122 117.5 117 119.5	50.0 60.1 74.0 87.0 100.0	126,5 133,5 140 145 150	

Xantogensuccinic acid rac ($C_7H_{10}O_5S_2$) + Ethyl(carbothiolon)malic acid rac ($C_7H_{10}O_5S_2$)

Fredga, 1941

	 			
mo1%	f.t.	mo1%	f.t.	
0.0 10.8 23.7 33.1 40.2	149 144 138.5 134.5 136	52.0 68.3 84.1 100.0	142 150 156.5 163.5	

XANTO XANTOGENSUCCINIC ACID rac. + XANTOGENSUCCINIC ACID.ETHYLCARBOTHIOLONMALIC ACID

									
			S ₂) rac. +		Camphori	c acid (C,	oH ₁₆ O ₄) d	+ 1	
Xantogen	succinic ac	id.Ethylcarl	oothiolonmali	ic acid			- •		
(C ₁₄ H ₂₀ 0		•			İ				
1 (014.1200	1004				Centners	zwer, 1906	(fig.)		
Fredga,	1041				%	f.t.	R	f.t.	
I									
mol%	f.t.	mo1%	f.t.		,0	186.5	30	195	
0.0	121 5	40.5	131.5		10 20	184 190	40 50	197 200	
0.0 10.4	131.5 129.5	51.1	135		- ·	170	00	200	
20.3 25.3	127	62.0	138.5 143						
25.3 28.0	$\frac{126}{126.5}$	$\substack{81.1\\100.0}$	149		ļ				
31.8	128		(1+	.11	Poss on	d Companyi 11	- 1026		
				1/	Ross an	d Somervill	e, 1926		
					%	f.t.	%	f.t.	
Methylhy	ydrogencampl	norate (C ₁₁	H ₁₈ 0 ₄) d +	1	100.0	107	1 2 ^	100 (
il .					100.0 95.4	187.6 185.9	47.9 40.7	199.6 196.9	
Koss and	d Somerville	=, 1920			93.5 92.7	135.9 185.4	34.4	193.4	
%	f.t.	%	f.t.		92.7 87.3	185.9	$\frac{28.1}{13.4}$	193.3 18 7. 3	
			70.1		74.4	185.0 186.5 191.3 197.2	8.9	186 .7	
0.0	74.3 70.8	61.6	$\frac{79.1}{70.4}$		56.9	197.2	5.5	186.8 187.5	
4.4 10.3	66.5	69.3 74.2	66.5		49.8	199.5	0.0	187.5	(1+1)
12.0	66.5 65.9 66.2	83.0	65.0 64.7						
12.6 17.8	66.2	$\begin{array}{c} 86.6 \\ 88.0 \end{array}$	64.6		Ì				
30.5	66.9 70.3 83.6	90.6	65.0		Ross and	Somerville,	1926		
46.1 50.1	83.6 84.6	$\begin{array}{c} 95.2 \\ 100 \end{array}$	67.1 73.5		%	f.t.	%	f.t.	
54.3	83.4	100		1+1)	ļ				
				1111	0 3, 25	188.2 187.3	25.4 31.8 38.2 42.0	193.1 197.1	
					3.25 7.30	186.4 187.2	38.2	197.1	
Ross and	Somerville	. 1926			9.15 15.30	187.2 189.3	42.0	200.5	
					10.00	109,0	50.0	202.6	
%	f.t.	%	f.t.						
0	74.4	29.35	74.8						
4,85	70.5 68.7	37.00 45.05	82.2 85.5		1				
7,45 13,45	65,6	50.00	85.9		Isocamph	oric acid (C, OH, 604)	d + 1	
19.90	6 7. 6				[70 70 4		
					1				
=====					Centners	zwer, 1906			
Cholanic	acid (C ₂₄ F		llocholanic a	icid	%	f.t.	%	f.t.	
		(($C_{2\mu}H_{40}O_{2}$)						
					0.0	171.8	60.7	188.1	
Wieland,	Dane and Ma	artins			10.6	168.0 177.8	70.0 70.5	184.2 178.1	
%	f.t.	%	f.t.	***************************************	19.9 30.0	184.5	7 9.5 90.0	166.3	
	1.1.	/0	1.1.		41.0	184.5 188.5	100.0	171.7	
o	165	60	162		50.7	189.8			(1+1)
10	161.5	70	159						
20 30	$\begin{array}{c} 157.5 \\ 160 \end{array}$	80 90	156 162.5					1 · · · · · · · · · · · · · · · · · · ·	
40	162 163.5	90 100	162.5 170						
50	163.5			(1+1)					
ı									
				1					
				ĺ					

BENZOIC ACID + PHENYLACETIC ACID

Benzoic	acid	(C7H602)	+	Phenylacetic acid
						(C ₈ H ₈ O ₂)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
0 9.0 17.9 30.0 42.1 51.3	121.0 115.2 108.5 97.8 85.3 74.0	61.7 71.1 81.1 89.9 100	57.4 56.9 63.7 69.5 76.7	

Benzoic acid ($C_7H_6\theta_2$) + o-Phthalic acid ($C_8H_6\theta_4$)

Ward and Cooper, 1930

f.t.	%	f.t.
122.7 118.8 117.2 112.3	10.000 14.37 20.00 33.33 50.00 66.67	120.1 130.3 138.2 151.6 166.5 175.1 193.3
	122.7 118.8 117.2	122.7 10.000 118.8 14.37 117.2 20.00 112.3 33.33 50.00

E: 8.7% 117.3°

Benzoic acid ($C_7H_6O_2$) + Cinnamic acid ($C_9H_8O_2$)

Kendall, 1914

mo1%	f.t.	mo1%	f.t.	
0 13.2 23.1 30.1 38.3 47.5	121.0 111.0 102.0 95.4 87.2 87.3	57.7 66.9 80.1 90.4	100.5 109.5 121.5 130.1 136.8	

A and L Kofler, 1948

E: 48.5% 83°

Sorum and Durand 1052

Sorum and Du	rand, 1952	
%	f.t.	
0 E 100	121.4 81.0 136.8	

Benzoic acid ($C_7H_6O_2$) + Salicylic acid ($C_7H_6O_3$)

Jaeger, 1907

%	f.t.	%	f.t.
0	121.4	54.3	126
17.2	119	73	145
30	115	100	156

Hrynakowski, 1934

E: 42.9% 110°

Benzoic acid ($C_7 H_6 \theta_2$) + p -Fluorbenzoic acid ($C_7 H_5 \theta_2 F$)

Koopal, 1911

mo1%	f.t.	mol%	f.t.	
0 8.4 16.6 17.6 39.3 49.3 59.9 62.8	123.7 124.2 130.2 138.2 146.0 152.0 157.7 158.6	64.5 67.0 69.4 70.0 71.8 85.0	159.6 160.7 162.0 163.0 164.0 173.7 182.6	

Benzoic acid ($C_7H_60_2$) + o-Chlorbenzoic acid ($C_7H_50_2C1$)

Bornwater and Holleman, 1912

%	f.t.	E	%	f.t.	E	
0	121.7		50.14	101.0	91.1	
3.6	119.8	-	54.84	106.1		
12,1	114.7	-	62.77	112,9		
17,35	111.2	_	70	119.1	~	
24.47	105.6	-	79.31	126.5	-	
32,45	98.8	91.1	88,11	132.6		
37.5	-	91.2	95.73	137.9	_	
43.87		91.0	100	140.7		

CHLOR	BENZOIC ACID + m				
Benzo	orbenzoic acid O ₂ C1)) + m-Chlo	C7H6O2	acid (Benzoio
Lett		, 1912	Holleman	er and l	Bornwat
%	f.t.	Z	E	f.t.	%
100 90 80 70 60 50	124.6 133.9 140.5 149.0 155.0	61.03 72.9 80.87 92.14	95.4 95.3	121.7 116.9 111.1 102.5 103.3 113.5	0 8.22 17.15 28.73 42.24 50.56
Benzo	orbenzoic acid O ₂ Cl)) + p-Chl (C ₇ H ₅	C7H6O2	acid (Benzoi
1		, 1912	Holleman	ter and	Bornwa
Baku	f.t.	%%	E	f.t.	%
mo1	155.5	29.12	-	121.7	0
0	176.6 197.6 239.0	40.73 56.21 100	115.0 115.1	118.0 136.9	6.51 9.97 19.98
10 20 30 40			·		

Lettre and Lehmann, 1938

%	f.t.	E	%	f.t.	E
100	162	_	40	100	97
90	151	97	30	107	ír.
80	141	n	20	113	h
70	130	łŧ.	īŏ	118	11
60	118	11	ő	121.5	_
50	101	11	U	1.0	

Benzoic acid ($\text{C}_7\text{H}_6\text{O}_2$) + m-lodobenzoic acid $(C_7H_5O_2I)$

Lettre and Lehmann, 1938

%	f.t.	E	%	f.t.	E
100	187	~	50	121	102
90	175	102	40	105	11
80	161	17	30	106	It
70	146	11	20	īĭĭ	11
60	131	11	10	$\bar{1}\bar{1}\bar{6}$	11
			0	121.5	_

coic acid (C7H6O2) + p-Iodobenzoic acid (C7H502I)

tre and Lehmann, 1938

%	f.t.	Е	%	f.t.	E	_
100	267	_	40	191	117	
90	257	117	30	171	n	
80	246	14	20	143	tr	
70	239	π	10	117	*	
	220	37	Ó	121.3	_	
60 50	207	If				

oic acid ($C_7H_6O_2$) + m-Nitrobenzoic acid $(C_7H_5O_4N)$

unin and Angrisani, 1915

mo1%	f.t.	Е	min.	
0 10 20 30 40 50 60 70 80 90	120 111.5 118 127 135.5 139 134.5 128.5 120 131.5 141.5	109 " 110 - 120 " "	270 250 160 60 - 50 170 350 150	(1+1)

Benzoic acid ($C_7 H_6 \theta_2$) + Furoic acid ($C_5 H_4 \theta_3$)

Mislow, 1948

%	f.t.	Е	%	f.t.	E
100 89.6 78.3 71.1 58.0 51.4	133 127.2 124.0 121.5 114.5 109.2	132 85.6 85.1 85.0 85.3 85.5	43.0 33.1 22.5 13.5	95.2 96.0 105.5 110.8 122	85.0 85.0 85.1 85.1

E: 40% 85°

Benzoic acid (C7H6O2) + 2-Thiophenecarboxylic
acid ($C_5H_4O_2S$)	

Mislow, 1948

%	f.t.	Е	%	f.t.	E	
100 91.6 82.9 79.3 69.2 61.7 58.5 55.5	128 123.8 120.4 118.6 115.2 112.0 110.2 109.2	127 94.6 94.8 94.8 95.4 94.8 95.8 95.2	44.5 29.0 23.3 16.5 14.0 9.7	104.8 109.2 111.6 116.2 117.0 120.6	95.4 94.4 94.8 95.6 95.6 97.6	

E: 37% 95°

Benzoic acid ($\text{C}_7\text{H}_6\text{O}_2$) + 3-Thiophenecarboxylic acid ($C_5H_4O_2S$)

Mislow, 1948

%	f.t.	Е	%	f.t.	E	
100	138	137	38.5	108.0	100.6	
91.5	132.6	102.9	33.8	108.8	103.0	
84.1	131.2	103.2	29.8	108.0	103.2	
75.0	122.6	103.5	23.9	115.4	105.0	
62.2	107.8	103.3	20.6	117.2	104.1	
58.6	105,4	102.6	20.0	116.0	103.6	
57.2	106.0	104.0	12.5	118.2	104.4	
52.3	104.2	101.0	10.0	119.0	104:2	
48.0	107.2	103.6	5.0	120.0	110.6	
42.2	107.0	101.0	0.0	122.0	121	

E: 60% 103°

Benzoic acid ($C_7H_6O_2$) + 2-Pyrrolcarboxylic acid $(C_5H_5O_2N)$

Mislow, 1948

%	f.t.	Е	%	f.t.	Е
100 89.7 79.4 71.3 61.7 51.9 E: 7%	190 180.4 178.4 176.2 172.8 171.2	190 116.8 115.6 113.2 115.6 116.4	38.9 29.3 18.6 9.0	165.0 158.2 153.2 127.6 122	115.0 116.8 115.4 115.6 121

Benzoic acid ($C_7 H_6 \theta_{\scriptscriptstyle \Sigma}$) + Pyrazinecarboxylic acid $(C_5H_4O_2N_2)$

Mislow, 1948

%	f.t.	Е	%	f.t.	Е
100 90.9 81.2 74.2 64.2 58.2	226 205.0 204.2 203.2 198.4 194.2	224 111.8 114.0 115.0 113.0 114.6	43.4 37.4 25.0 12.8 4.2	186.2 184.0 173.4 159.4 127.8	113.6 114.4 114.6 114.4 114.0
E: 2%	114°				

Benzoic acid ($C_7H_60_2$) + 2-Pyridinecarboxylic acid $(C_6H_5O_2N)$

Mislow, 1948

Z	f.t.	Е	%	f.t.	E	
100 88.4 81.4 69.7 61.7 53.5 E: 479	137 134.2 131.0 123.8 116.0 107.4	136 88.4 87.6 86.4 87.0 87.2	41.2 32.8 24.5 13.4	102.4 107.4 111.4 116.2 122	87.4 87.0 87.6 87.6 21	

Benzoic acid ($C_2H_6O_2$) + 3-Pyridinecarboxylic acid $(C_6H_5O_2N)$

Mislow, 1948

%	f.t.	Е	%	f.t.	E
100 91.0 80.0 71.4 54.6 40.5	233 227.6 217.6 211.2 195.8 184.0	233 115.0 115.4 115.4 114.2 115.0	33.4 20.2 11.0 3.2	169.8 142.2 117.8 120.4 122	114.6 114.0 113.6 114.0 121

E: 10% 115°

			BE	inzoic /	ACID + 4PY
Benzoio	: acid ((Ξ ₇ H ₆ O ₂)	-	idinecar I ₅ 0 ₂ N)	boxylic acio
Mislow,	, 1948				
8	f.t.	Е	%	f.t.	Е
100 91.9 63.2 46.1 38.2	314 304 282.8 265.4 264.2	312 118.6 115.4 115.0 115.0	31.6 18.2 10.6 3.9	255.4 225.2 199.4 158.8 122	115.0 114.8 115.4 115.4 121
E: 10%	6 115°				
		7H6O2)	+ 5-Thi		oxylic acid
Mislow %	f.t.	E		f.t.	E
100 92.4 78.0 67.3 50.0 E: 5%	220 203,5 199,4 195,4 185,0	218 111.4 109.6 111.0 111.2	31.0 21.5 6.7 0	172.4 152.0 120.0 122	110.6 111.0 111.6 121
Lettre	Barnbec	k and al	1., 1937	0 + m	E
%	f.t.	E	, 7 	% f	f.t. E
9 10 20 30 40 50	104 100 96 91 83 69	66	90	$egin{pmatrix} 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \end{bmatrix}$	91 66 102 " 107 " 110 " 111 -
	benzoic a				
×	f.t.	E	%	f.t	. E
0 10 15 20 30 40	104 100 94 92 110 129	85 "	50 60 70 80 90	142 152 161 169 175) !! 5 !!

1247 o-Methylbenzoic acid ($C_8H_8O_2$) + Salicylic acid $(C_7H_6O_3)$ Lettre, Barnbeck and Lege, 1936 f.t. E f.t. Е $\begin{array}{c} 105 \\ 101 \end{array}$ 60 70 80 91 92 94 94 157 104 135 10 20 30 143 149 154 157 92 92 91 92 92 95 97 90 100 40 50 o-Methylbenzoic acid ($\text{C}_8\text{H}_8\text{O}_2$) + m-Nitrobenzoic acid ($C_7H_50_4N$) Lettre, 1940 mol% f.t. E mol% f.t. Е 100 90 80 70 60 50 139 135 127 127 40 30 131 128 122 105 98 121 20 10 131 133 (1+1)

+ o-Chlorbenzoic acid (C7H5O2C1) Lettre, Barnbeck and Lege, 1936

o-Methylbenzoic acid ($C_8H_8O_2$) +

%	f.t.	m.t.
100	139	139
89 80.5	137	129
69.2	134	124
65	130 123	116 114

o-Methylbenzoic acid ($C_8H_8O_2$) + 3-Methy1-2-thiophenecarboxylic acid ($\text{C}_6\text{H}_6\text{O}_2\text{S}$)

Mislow, 1948

%	f.t.	m.t.	%	f.t.	m.t.
100 91.0 81.2 72.9 64.9 51.9	147 142.0 135.6 133.4 127.8 124.8	146 133.2 121.0 113.6 105.6 89.2	46.5 34.8 18.4 8.5 0	119.6 105.6 99.0 102.2 105	88.2 88.4 87.6 88.4 104
E: 25%	88°				

Methylbenzoic acid ($C_8H_8O_2$) m + p

Lettre, Barnbeck and al., 1937

%	f.t.	E	%	f.t.	Е
0	111	_	50	143	89
10	104	89	60	151	11
$\frac{10}{15}$	96	11	70	161	11
20	96 98	11	80	168	**
20 30	115	**	90	175	**
40	130	11	100	178	-

m-Methylbenzoic acid ($\rm C_8H_8O_2$) + m-Oxybenzoic acid ($\rm C_7H_6O_8$)

Lettre, Barnbeck and Lege, 1936

.t. E	%	f.t.	E
11 110	50	172	103
08 103	60	179	11
39 "	70	185	"
44 "	80	191	104
50 "	90	196	11
62 "	100	201	200
	11 110 08 103 39 " 44 "	11 110 50 08 103 60 39 " 70 44 " 80 50 " 90	11 110 50 172 08 103 60 179 39 " 70 185 44 " 80 191 50 " 90 196

m-Methylbenzoic acid ($\rm C_8H_8O_2$) + o-Nitrobenzoic acid ($\rm C_7H_5O_4N$)

Lettre, 1940

mo1%	f.t.	Е	mo1%	f.t.	E
100	147	_	40	102	95
90	141	106		99	19
30	134	"	30 20	97	11
70	128	79	10	103	Ħ
60	121	**	ŏ	111	11
50	113	-	Ü	(1+1)	

m-Methylbenzoic acid ($C_8H_8O_2$) + m-Chlorbenzoic acid ($C_7H_5O_2C1$)

Lettre, Barnbeck and Lege, 1936

%	f.t.	m.t.	%	f.t.	m.t.
100	153	152	40	115	110
100 90 79.4 69	148	134	30	112	109
79.4	144	122	20	111	**
69	138	114	10	11	
59.5	131	112	Ō	n	110
50	124	110			

m-Methylbenzoic acid ($C_8H_8O_2$) + p-Brombenzoic acid ($C_7H_5O_2\mathrm{Br}$)

Lettre, Barnbeck and al., 1937

%	f.t.	Е	%	f.t.	E
0	111	_	59.8	212	105
10 20 30	106	105	70	224	H
20	141	**	80	235	tt
30	166	**	90	235 246	**
40	184	11	100	251	_
40 50	196	**	-00	201	

<code>p-Methylbenzoic</code> acid ($C_8H_8\theta_2$) + p-Oxybenzoic acid ($C_7H_6\theta_3$)

Lettre, Barnbeck and Lege, 1936

×	f.t.	E	%	f.t.	Е	
0 10 20 30 40 50	179 176 171 160 169 183	177 155 " 156 155	60 70 80 90 100	192 199 204 209 214	155 " " 214	

p-Methylbenzoic acid ($\rm C_8H_8O_2$) + p-Chlorbenzoic acid ($\rm C_7H_5O_2Cl$)

Lettre, Barnbeck and Lege, 1936

%	f.t.	m.t.	%	f.t.	m.t.
100	241	239	40	202	185
88.7	238	223	30.2	193	182
80	233	212	20	187	180
69	225	202	9.8	183	178
60	220	194	0	179	177
50	212	190			***

p-Methylbenzoic acid ($C_8H_8\theta_2$) + o-Nitrobenzoic acid ($C_7H_5\theta_{\rm h}N$)

Lettre , 1940

mol%	f.t.	E	mol%	f.t.	E
100	147	_	40	151	133
96	142	128	30	161	n
80	136	н	20	170	11
70	128	"	10	177	11
60	132		0	184	_
80 70 60 50	137	_	•	101	
				(1+	1)

p-Methylbenzoic acid	($C_8H_8\theta_2$) + m-Nitrobenzoic
acid (C ₇ H ₅ O ₄ N)	

Lettre, 1940

mol%	f.t.	E	mo1%	f.t.	
1101/0			1101/6	1	
100	139	_	40	153	150
90	132	128	30	152	+00
80 7 0	141	11	20	164	**
70	149	11	$\overline{10}$	174	11
60	153	**	Ō	133	_
50	155	-		100	
				/14	11

p-Methylbenzoic acid ($C_8H_8O_2$) +

+ p-Nitrobenzoic acid ($C_7 \rm{H}_5 \, \rm{O}_{t_i} N$) Johnston and Jones, 1928

%	f.t.	m.t.	%	f.t.	m.t.
0 5.1 7.7 9.1 12.7 15.1 17.5 24.4	179.6 183.7 188.0 - 197.7 201.6 204.9 213.4	180.4 181.3 183.0 186.0	33.2 36.2 43.3 45.8 56.3 62.9 81.5	221.8 223.7 228.4 229.7 234.0 236.4 239.3 239.3	184.5 211.4 211.6 212.7 211.2 232.6 238.9

p-Methylbenzoic acid ($C_8H_8O_2$)

+ 5-Methy1-2-thiophenecarboxylic acid ($C_6H_6O_2S$)

Mislow, 1948

%	f.t.	E	%	f.t.	E
100 90.6 80.8 72.1 55.0 50.0	139 133.2 130.4 127.4 144.4 147.0	138 116.6 117.0 116.2 115.6 116.2	40.0 29.7 20.5 10.0	151.8 159.0 165.4 173.4 178.0	116.4 116.2 116.8 154.2 177

p-Methylbenzoic acid ($C_8H_8O_2$)

+ 5-Bromo-2-thiophenecarboxylic acid ($C_5H_3O_2BrS$)

Mislow, 1948

%	f.t.	E	%	f.t.	E	
100 93.4 81.0 71.5 60.2 E: 86°	141 139.6 138.2 146.2 150.6	140 134.2 134.2 133.6 133.8	50.9 42.0 30.4 13.1	157.0 162.0 168.8 175.8	135.2 135.4 134.6 154.2 177	

4-Isopropylbenzoic acid ($C_{1.0}H_{1.2}\theta_{2.}$) + 4-Dimethylaminobenzoic acid ($C_{9}H_{1.1}\theta_{2}N$)

Erlenmeyer, Harald and Meyenburg, 1938

mo1%	f.t.	E	mol%	f.t.	Е
0 20.4 40.5 60.0 80.7	239.3 224.2 213.5 185.0 146.3	118.7 117.5 116.0 116.0	90.0 93.0 96.0 100.0	119.0 117.5 119.0	113.0 111.5

Phenylacetic acid ($C_8 H_8 \bm{0_2}$) + Phenylpropionic acid ($C_9 H_1 {_0} \bm{0_2}$)

Salkowski, 1885 and 1901

%	f.t. I	%	f.t.II	
0 10 20 30 40 50 60 70 80 90 100	77 71.5 65.5 58 39.5 26.5 27 33 41.5 47.5	52.4 37.5 35 32.5	37.5 25.5 21 25.5	

Benzile orthocarbonic acid ($C_{15}H_{10}O_{4}$) α + β

Vixseboxse, 1919 - 9121

<u> </u>	f.t.
0	141.5
E	112
100	130

"natural" freezing point=132°

t	f.t.	
141 160 174 130 190 200	128-126 120-119 110-112 115-115.5 118-110.5	% and 0 unknown

maximum temperature of heating = t

Hydrocinnamic	acid	(C9H1002)	+	Cinnamic acid
						(C ₉ H ₈ O ₂)

Kofler and Brandstätter, 1943

	,		
f.t.	Я	f.t.	
49 55 60 64 72 86 96	60 70 80 84 90	105 114 121 124 129 135	
	49 55 60 64 72 86	49 60 55 70 60 80 64 84 72 90 86 100	49 60 105 55 70 114 60 80 121 64 84 124 72 90 129 86 100 135

Cinnamic acid ($C_9H_g\theta_2$) + p-Methoxycinnamic acid ($C_{1.0}H_{1.0}\theta_3$)

Walter, 1925

mo1%	f.t.	clear.point	
100 79.7 70 0	171 - 133	187 168 157 (90)	

Butyl hydrogenphthalate ($C_{12}H_{14}O_4$) d + 1

Lombaers, 1924

mol%	f.t.	m.t.	mo1%	f.t.	m.t.
0.450	46.2	_	20,420	48.6	46.8
2.150	44.7	-	28.530	50.8	47.0
2,620	43.7	-	34.925	51.6	47.7
6.045	44.8	-	42.285	52.8	52.0
12.025	46.1	-	50.000	54.1	-
			(1+1)	

Bornyl hydrogenphthalate ($C_{18}H_{22}O_4$) d + 1

Ross and Somerville, 1926

%	f.t.	K	f.t.	
0.0 8.4 21.1 40.0 50.3 51.9	161.4 160.8 160.5 160.9 161.1 162.5	61.4 73.0 90.3 94.7 100.0	162.5 162.1 161.7 162.3 162.8	(1+1)

Dibenzylacetic acid ($C_{1\,6}H_{1\,6}O_2$) + Di (α -Thenyl) acetic acid ($C_{1\,6}H_{1\,6}O_2\,S_2^*$)

Fredga, Aejmelaeus and Tollander, 1951

mo1%	f.t.	mol%	f.t.	
100.0	66.0	57.7	53.4	
89.7	62.0	48.4	59.8	
80.1	58.0	37.3	69.5	
74.0	55.7	28.7	75.2	
69.0	53.6	19.5	80.4	
63.0	51.7	0.0	88.7	

Dibenzylacetic acid ($C_{16}H_{16}O_2$) + Benzyl (α -thenyl) acetic acid ($C_{14}H_{14}O_2S$)

Fredga, Aejmelaens and Tollander, 1951

mol%	f.t.	mol%	f.t.	
100.0 89.5 79.6 69.8 59.0 51.9	66.8 65.4 64.0 62.6 61.3 66.1	40.2 28.8 20.2 10.0 0.0	72.6 78.0 81.2 85.2 88.7	

Benzylsuccinic acid ($C_{11}H_{12}O_4$) d + 1

Fredga and Palm, 1949

	,			
mo1%	f.t.	mol%	f.t.	
0.0 7.6 12.9 18.8 24.5	164.5 160.5 158.5 156 156	33.0 34.8 42.0 50.0	159.5 160 161.5 162.5	(1+1)

Benzylsuccinic acid (C1,1H1,2O4)d + α -Thenylsuccinic acid (C9H1,0O4S)d Fredga and Palm, 1949

mol%	f.t.	mo1%	f.t.	
100.0 90.5 80.1 69.3 60.1 50.5	156.5 156 154.5 154 155 156.5	40.6 29.6 20.9 10.0 0.0	157.5 159.5 161 162 164.5	

					•
Benzylsuc	cinic acid	1 (C ₁₁ H ₁	20 ₄)+		٦
α -Thenyl:	succinic aci	idd (C_9H_1	₀ 0 ₄ S)		ı
Fredga	and Palm, 1	949			
mo1%	f.t.	mo1%	f.t.		`
100.0	156.5	43.9	162.5	5	1
95.1	153.5	32.9	160		H
89.4	150	28.0	157.5 157	5	
79.9	153 155 157	24.3 19.0	156.5	5	ı
75.3	157	14.4	159		
85.5 79.9 75.3 69.7 61.3	158.5 160.5	9.9 4.4	160.5 163	•	-
50.0	163	0.0	164.5	5	
					. ∦
					•
Benzvlsu	ccinic acid	rac (C	.HO.) +		lÌ
α -ThenvI	succinic ac	id rea (C II A C \		H
w inchyi	succinic ac	iu rac. (Contoors)		1
P	1 D-1 - 1	040			
	and Palm, 1				
mo1%	f.t.	mol%	f.t.		.
100.0	165.5	39.2	160.5		∦
81.8 59.9	162	20.7 0.0	162		IJ
59.9	161	0.0	162.5		
					:
β-Phenyle Porath,	thylsuccinio	e acid (C	1 ₂ H ₁ 40 ₄)	d + 1	
%	f.t.	%	f.t.		
					I
$^0_{4.8}$	124.0-124 120.3	.5 33.8 41.6	134.3		1
9.9	120 5	45.4	$\substack{135.1\\136.1}$		l
9.9 16.7 21.9	120.7	50	136.4		H
21.9	129.1			(1+1)	1
				-	
α -Phenylh	ydrocinnami	c acid (C ₁₅ H ₁₄ O ₂)	d + 1	
Petterss	on, 1955				١
%		m.t.			j)
	I	II	111		J
0	84	_			
0 5	81	-	-		ı
7.5	79.5	-	-		1
15	80.5 84.5 88	-	-		J
20	88	-	7 5		1
25	90	- 02	76		
10 15 20 25 29 35	92 94	83 87	- 78		1
40	94.5	88	-		
44 50	95.5 96	89	$\begin{smallmatrix} 80.5\\81\end{smallmatrix}$		1
00	70	U.J	91	(1+1)	
					1
					H

 α -Phenylhydrocinnamic acid (+) ($C_{15}H_{1\,4}O_{2}$) + 2-Thenylphenylacetic acid (-) (C₁₃H₁₂O₂S) Pettersson, 1955 mo1% f.t. m.t. f.t. I Π 82.5 74 71 66 84 80.5 76 73 74 74 75 75.5 0 10 21 25 30 36 40 45 50 60 65 70 80 90 69 72 **71** 74.5 73 72 71 73.5 79 85 69 66 68 100 83 (1+1) α -Phenylhydrocinnamic acid (+) ($C_{15}H_{14}O_{2}$) + 2-Thenylphenylacetic acid (+) (C₁ ;H₁ 20 2S) Pettersson, 1955 mol% f.t. m.t. mo1% f.t. m.t. 84 87 90 91 92 92,5 82.5 84 85 87.5 89 89.5 91.5 91 89.5 87 85 88.5 87.5 84 83 83 61 70 1ŏ 20 80 30 90 100 51 (1+1) α -Phenylhydrocinnamic acid (-) ($C_{15}H_{14}O_2$) + α - (2-Thienyl)hydrocinnamic acid (+) ($C_{13}H_{12}O_2S$) Pettersson, 1955 mo1% f.t. m.t. f.t.

II

70 70.5 71.5 72 71 70.5 70

(1+1)

Ι

71.5 72

82.5 71 71 $_{\alpha}$ -Phenylhydrocinnamic acid (+) (C $_{15}H_{14}0_2$) + $_{\alpha}$ (2-Thienyl)hydrocinnamic acid (+) (C $_{18}H_{12}0_2S$)

Pettersson, 1955

mo1%	f.t.	m.t.	mol%	f.t.	m.t.	
0 13	84	82.5	60	73.5 72.5	70 69	
13 21	7 9 77	73 70.5	70 81	71.3	67.5	
30	73.5	69	86	70.5	67	
30 35 41	72.5 73	"	90 96	70 71	67.5 68	
50	"	69.5	100	72	71	
				(1+1)		

 $_{\alpha}$ -Phenylhydrocinnamic acid (+) ($C_{15}H_{14}0_{2}$) + Thenylthienylacetic acid (-) ($C_{11}H_{10}0_{2}S_{2}$)

Pettersson, 1955

mol%	f.t.	m.t.	mol%	f.t.	m.t.
0	84	82.5	55	73.5	67
11	84 81.5 79.5	77	59	72.5	66
21	79.5	77 75	68	70	64
29	77	74	75	67	tt
37	76	73	79	69.5	H
29 37 45	76 75	72	87	75	67
49	74.5	70	100	81	67 79
		(1+	1)		

 $\alpha\text{-Phenylhydrocinnamic acid (-) ($C_{15}H_{14}\theta_2$) + Thenylthienylacetic acid (-) ($C_{11}H_{10}\theta_2$S_2$)$

Pettersson, 1955

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0	84	82.5	57.5	69	63.5
10	80.5	77	69	66.5	63
19.5	78	74	79	69.5	62.5
30 39	76	72	.88	74	63
39	73.5	70	100	81	79
49	72	67			

Oxybenzoic acid ($C_7H_6O_8$) o + m

Lettre, Barnbeck and al., 1937

						_
%	f.t.	Е	%	f.t.	Е	
100	201	_	40.2	163	144	
90.5	197	144	30	146	143	
80.6	193	tf	20	150	144	
69	186	tt	9.5	155	1t	
61.4	181.5	143.5	Ó	157	-	
49.9	173	144				

Oxybenzoic acid ($C_7H_6O_3$) o + p

Lettre, Barnbeck and al., 1937

%	f.t.	E	%	f.t.	Е
100 89.9	213 210	146	42.6 32.3	176 161	146
79.4 70.3	206 201	"	20.3 10.4	149 155	н .
61	194.5	n	0.4	155	-
50	185	н			

o-Oxybenzoic acid ($C_7H_60_3$) + o-Fluorbenzoic acid ($C_7H_50_2\mathrm{F}$)

Porath and Claeson, 1950

mol%	f.t.	m.t.	mo1%	f.t.	m.t.
0.0 10.8 20.0 25.1 31.2 38.0 40.2 47.1	159.0 155.0 150.5 148.5 144.5 140.0 138.0 130.5	140.5 133.0 130.0 130.5 128.5 127.5 127.5	53.2 58.5 67.2 76.1 87.7 95.6 100.0	130.0 129.0 128.0 127.0 125.5 124.0 123.0	126.0 125.5 124.5 123.5 123.0 123.0

o-Oxybenzoic acid ($C_7H_6O_3$) + o-Chlorbenzoic ($C_7H_5O_2C1$)						
Lettre	, Barnbec	k and Le	ge, 1936			
%	f.t.	Е	%	f.t.	Е	
100	120	130	40	138	117	

 %
 f.t.
 E
 %
 f.t.
 E

 100
 139
 139
 40
 138
 117

 85
 133
 117
 30.5
 145
 "

 75
 128
 "
 20
 150
 "

 66
 123
 "
 11
 154
 "

 59
 119
 "
 0
 157
 157

 50
 128
 "

o-Oxybenzoic acid ($\text{C}_7\text{H}_6\text{O}_8$) + m^Nitrobenzoic acid ($\text{C}_7\text{H}_5\text{O}_4\text{N}$)

Lettre, 1940

mol% f.t. E mol% f.t. E

100 139 - 40 130 112
90 134 112 30 138 "
80 128 " 20 145 "
70 121 " 10 151 "
60 113 " 0 157 -

Oxybenzoic acid ($C_7H_6O_3$) m + p

Lettre, Barnbeck and al., 1937

%	f.t.	Е	%	f.t.	Е
100 89 79.9 70.2 68.8 50.1	213 209 205 199.5 192	174.5 174 174.5 174 174.5	40 31 19.6 11.4	178 184.5 190 194.5 201	174 174.5 174 174

m-Oxybenzoic acid ($C_7 H_6 0_3$) + m-Cyanobenzoic acid ($C_8 H_8 0_2 N)$

Claeson, 1956

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0 10.7 19.9 31.1 39.5 50.0	201.5 192.5 186.0 176.5 170.0 178.5	200.5 188.5 178.0 165.0 164.0 164.0	59.8 68.3 76.6 87.7 100.0	187.0 193.0 199.0 206.0 213.5	171.0 177.5 187.5 200.5 212.0

m-Oxybenzoic acid ($\rm C_7H_6O_3$) + m-Fluorbenzoic acid ($\rm C_7H_5O_2F$)

Porath and Claeson, 1950

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0.0 12.4 24.9 37.0 49.7 61.0	201.5 194.0 185.5 178.0 169.5 158.5	180.5 168.5 157.0 146.5 136.0	73.8 80.1 85.2 88.6 93.3 100.0	146.0 138.5 122.0 122.5 123.0 123.5	124.0 121.0 121.5 121.0 122.0

m-Oxybenzoic acid ($\rm C_7H_6O_3$) + m-Chlorbenzoic acid ($\rm C_7H_7O_2C1$)

Lettre, Barnbeck and Lege, 1936

%	f.t.	E	%	f.t.	E
100	153	152	40	181	139
90	150	140	30	188	11
80	145	139	20	193	tt
70	152	tr	10	198	140
60	164	11	0	201	200
50	173	1f	•		200

p-0xybenzoic	acid	(C ₇ H ₆ O ₃)	+	p-Cyanobenzoic	acid	
		$(C_8H_5O_2N)$					

Claeson, 1956

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0	214.5	213.0	67.6	216.0	213.5
10.0	205.5	198.0	76.9	219.0	217.5
19.2	198.5	190.0	87.7	221.0	219.5
28.1	192.5	198.5	93.8	221.0	219.5
37.2	200.0	190.0	97.3	220.5	219.5
48.1	207.5	201.5	99.1	219.0	218.0
58.1	212.5	209.5	100.0	219.0	218.0

p-0xybenzoic acid ($\text{C}_7\text{H}_6\text{O}_3$) + p-Fluorbenzoic acid ($\text{C}_7\text{H}_5\text{O}_2\text{F}$)

Porath and Claeson, 1950

mo1%	f.t.	m.t.	mol%	f.t.	m.t.
0.0 11.6 17.7 24.6 37.2 49.4	214.5 208.0 204.0 200.0 191.5 183.5	188.5 181.5 174.0 165.0 163.0	61.8 69.4 74.5 87.6 93.1 100.0	173.5 165.5 168.0 176.5 179.5 184.0	163.5 163.0 163.0 168.0 173.0

p-Oxybenzoic acid ($C_7H_60_3$) + p-Chlorbenzoic acid ($C_7H_70_2C1$)

Lettre, Barnbeck and Lege, 1936

%	f.t.	Е	%	f.t.	E
100	241	239	40	197	189
90	236	189	30	197	190
80	229	190	20	204	41
70	221	190	10	210	tr
60	213	191	0	214	214
60 50	205	190			

p-Oxybenzoic acid ($\text{C}_7\text{H}_6\text{O}_9$) + m-Nitrobenzoic acid ($\text{C}_7\text{H}_7\text{O}_4\text{N}$)

Lettre, 1940

 mo1%	f,t.	E	mo1%	f.t.	Е
100 90	139 133	- 127	40 30 20	180 189	155
90 80 70 60 50	140 151 157	1) ?!	20 10 0	197 205 213	# #
50	162	-		(1	+1)

Mandelic acid rac ($C_8H_8\theta_8$) + Chlorphenylacetic rac ($C_8H_7\theta_2c1$)

Lettre, Barnbeck and Lege, 1936

%	f.t.	E	%	f.t.	Е	
0	117	117	60	84	60	
10.2	113	59	70	72	59	
19.8	111	59	80	68	11	
30	106	60	90	74	11	
30 40	103	60	100	78	78	
50	95	60			• •	

Acetylmandelic acid ($C_{10}H_{10}O_{4}$) d + 1

Angus and Owen, 1943

%	f.t.	%	f.t.	
100 97.86 94.70 91.30 87.40 82.40 78.25 73.60	94.6 92.6 89.6 86.4 83.8 78.8 74.0	70.60 67.70 65.40 63.14 60.50 56.85 52.0	67.0 66.0 69.6 72.4 74.3 75.6 76.8	
E:65°	68.2%		(1+1)	

Propionylmandelic acid ($C_{1\,1}H_{1\,2}O_{+}$) d + 1

Angus and Owen, 1943

%	f.t.	%	f.t.
100 82.21 94.56 92.10 88.80 86.00 82.83 80.10 77.00 E:37.8°	68.0 65.0 62.4 60.0 56.5 54.4 50.6 48.4 44.6	73.50 71.20 69.30 68.05 64.30 57.70 52.50 50.00	41.4 39.4 40.4 42.2 47.0 49.4 50.2 50.5

 α -Phenoxypropionic acid ($C_9H_{10}O_3$) d + 1

Fredga and Matell, 1952

mo1%	f.t.	mo1%	f.t.	
0.0	86	84.7	101	(1+1)
50.0	116	89.6	93	
60.0	114.5	92.0	85	
69.5	111.5	97.1	84	
79.3	106.5	100.0	86	

			HEXAL	TIDRUMA	MDELIC
Hexahydı	omandelic	acid	(CBII14	0 ₃) rac +	+
Mandeli	acid (C	₈ H ₈ O ₃) rac		
Lettre,	Barnbeck	and St	aunau,	1936	
%	f.t.	m.t.	%	f.t.	m.t.
100	119	118	40	129	124
90 80	120 122	$\frac{118}{119}$	30 20	131	126
70	124	120	10	132 133	128 131
60	126	121	0	135	134
50	128	123			
Mandelio	acid (C	е08H8	d + 1		
entners	zwer, 189	9			
%	f.t.		%	f.t.	
0.0	132,7	3	7.7	117.9	
5.0	129.9 126.7	4	5.0	$\frac{119.2}{121.0}$	
5.0 12.5 25.0	120.7	5	0.0	121.0	
				·	(1+1)
				·	
iriani,	1900				
K	f.t.		%	f.t.	
100	132.8	6	5	115.8	
90	128.1	6	0	113.0	
80 7 5	$123.2 \\ 120.6$	5 5		$\frac{116.8}{118.0}$	
70	120.6 118.2	Ū	-	**0.0	(1+1)
·					
Angue of	nd Owen, l	043			
%	f.t.	<u></u> .	%	f.t.	
100.0	133.0		65.0	116.	
98.2 90.0	131.8	;	$\begin{array}{c} 61.7 \\ 60.0 \end{array}$	116. 117.	. U
83.8	127.7 125.1		57.6	117.	. 5
76.9 69.2	121.8 117.5		57.6 50.0	118.	0
E: 63%				(1+1)	

 $_{\alpha}\text{-Phenoxypropionic}$ acid ($C_9H_{1\,0}O_3$) d + $_{\alpha}\text{-}(1\text{-Naphthoxy})\text{propionic}$ acid d ($C_{1\,3}H_{1\,2}O_8$)

Fredga and Matell, 1952

mo1%	f.t.	mo1%	f.t.	
0.0	86	42.8	91.5	
8.2	81.5	52.3	99.5	
15.7	77.5	65.2	108.5	
24.8	72.5	74.5	113.5	
29.0	74	85.3	119	
34.9	82	100.0	126	

 α -Phenoxypropionic acid ($C_9H_{1\,0}O_9$) d + α -(1-Naphthoxy)propionic acid ($C_{1\,3}H_{1\,2}O_9$) 1

Fredga and Matell, 1952

mo1%	f.t.	mo1%	f.t.	
0.0	86	41.9	90	
8.2	81	49.8	96	
15.9	77	63.0	106	
24.8	72	73.4	112	
29.0	73	87.5	120	
33.8	81	100.0	126	

 α -Phenoxypropionic acid ($C_9 H_{10} O_3$) 1 + α -(2-Naphthoxy)propionic acid ($C_{18} H_{12} O_3$) d

Fredga and Matell, 1952

mo1%	f.t.		mol%	f	f.t.	
	L,	11		I	II	
0.0	86	_	46.0	85	84	
6.6	83	-	51.8	88 93	-	
16.6	77	-	56.2		-	
20.9	74.5	-	66.4	102	-	
24.9	77		78.1	108.5	-	
33.2	82	80.5	87.6	113.5	-	
36.8	83.5	82	100.0	119	-	
42.9	85	83.5	(1+1)			

 $_{\alpha}\text{-Phenoxypropionic}$ acid ($C_9H_{10}O_3$) $_1$ + $_{\alpha}$ -(2-Naphtoxy)propionic acid ($C_{13}H_{12}O_3$) 1

Fredga and Matell, 1952

mo1%	f.t.	mol%	f.t.	
0.0 8.0 16.4 25.0 32.9 41.3	86 82 77.5 71 67 79.5	53.0 63.9 75.1 84.4 100.0	92 101 107 112 119	

1256						TILORY II					A .
		c acid (()propioni) + ·) (C ₉ H ₉ O ₂	₉ C1)	α -Pheno	xyvaleric	acid (C	11H14Os) d + 1	
Matell,	1955					Matell	, 1955 (1	fig.)	······		
%	f.t.	E	%	f.t.	E	%	f.t.	Е	%	f.t.	E
100 88.2 76.5 65.3 55.3 45.3	104.5 99.5 93.5 87 80.5 72	103.5 65 63	35.6 26.2 17.2 8.4	66.5 72 77 81.5 86	63 " 70 85	0 4 E 10 20	86 85.5 98 107	85 83 84 84	30 40 50	111.5 114 114.5	84 87 114
		c acid () + (~) (C ₉ H ₉ (D ₉ C1)	α -Pheno	xyvaleric xycaproic , 1955 (1	acid d	(C ₁₁ H ₁₁ (C ₁₂ H ₁₁		
Matell,	1955					%	f.t.	Е	%	f.t.	E
100	f.t. 104.5	m.t. 103.5	% 35,6	f.t. 93.5	m.t. 78	0 20 30 50	86 81 78.5 75	85 77 75 73.5	60 80 100	74 73.5 77	72.5 71 75
76.7 71.4 65.9 55.5 50.1 45.6	95 92 93.5 94.5 95 95	91 94.5 80	17.0 12.8 8.5 4.3 0	84.5 80.5 81 83.5 86 (1+1)	78.5 78.5 78 78.5 85	II .	oxyvalerio oxycaproio		1 (C ₁₁ H ₁ d (C ₁₂ H ₁		
	ybutyric : yvaleric :	acid d acid d	(C ₁₀ H ₁₂ (Matel1 %	f.t.	ig.) m.t.		f.t.	m.t.
	1955 (f					0 15	86	85	60	69.5	63
%	f.t.	m.t.	%	f.t.	m.t.	25 38 E	80 75 69	65.5 65 65	73 E 90 100	66 71 76.5	64 64 7 5
0 10 20	80 68 62	79 64.5 62	60 70 80	70.5 76 80.5	64 68 73 79	50	76	68.5		(1+1)	75
30 40 50	64 64.5 66.5	61 61 61.5	90 100	84 86	79 85	I	noxycaproi 1, 1953 ar		C _{1 2} H ₁₆ O ₃) d + 1	
α -Pheno	xybutyric	acid 1	(C _{1 O} H ₁	,0 ₉) +		#	f.t.	E	 %	f.t.	 F
α -Pheno	xyvaleric	acid d	(C ₁₁ H ₁₁	(20 ₄		0.0	76.5	75	30.0	70	E .
Matell %	, 1955 (:	fig.)	K	f.t.	E	9.9 20.1 24.9	71.5 67 68.5	64	40.1 50.0 100.0	72.5 76.5 76.5	64 65 75.5 75
0 10 18 E 30 40 50	80 78 70 75.5 79 80	79 70 " " 75	60 70 77 E 90 100	79 76.5 75 83 85 (1+1)	72 " " 84.5						(1+1)

Anisic acid ($C_8H_8O_3$) + Anisal propionic acid ($C_{10}H_{12}O_3$)

Walter, 1925 (fig.)

mo1%	f.t.	clear.p.	mo1%	f.t.	clear.p.
0 20 21.0 40 41.5	184 174 - 154	155.6 152.3 149.6	56 60 67.3 80.0 100.0	129 132 	E - 145.4 143.5 140.5

Anisic acid ($C_8H_8O_3$) + Ethoxycinnamic acid ($C_{11}H_{12}O_8$)

Walter, 1925

mol%	f.t.	clear.p.	mol%	f.t.	clear.p.
100 80 60 43.5	171 - -	187 182 175 169.3	40 20 0	- 184	169 164 155.6

p-Ethoxybenzoic acid ($C_9H_{1\,0}O_3$) + p-Methoxycinnamic acid ($C_{1\,0}H_{1\,0}O_3$)

Walter, 1925

mol%	f.t.	clear.p.	mo1%	f.t.	clear.p.
100	171	187	45.5	_	175
74.7 46.5	-	181 1 7 4.5	33.8 0	- 196	172.5 (165)

Anisal propionic acid ($C_{1\,0}H_{1\,2}\theta_{8}$) + Methoxycinnamic acid ($C_{1\,0}H_{1\,0}\theta_{8}$)

Walter, 1925 (fig.)

mo1%	f.t.	clear.p.	mo1%	f.t.	clear,p.
100	171	187	40	-	159
80	-	176	20		151
60 48.5	-	169 162.5	0	154	(140.5)

Methoxycinnamic acid ($C_{10}H_{10}O_{3}$) + Cinnamenylacrylic acid ($C_{11}H_{10}O_{2}$)

Walter, 1925

mo1%	f.t.	clear point	
0 26.4 53.6 100	171 - 165.6	187 171.5 159 (131.6)	

 $\beta\text{-}0xy\text{-}\beta\text{-}phenylpivalic}$ acid ($C_{1\,1}H_{1\,4}0_3$) $-d.+\cdot 1$

Matell, 1949-50

%		· · · · · · · · · · · · · · · · · · ·		
70	f.t.		f.t.	
0.0 17.2 34.6 45.8 50.0 51.8 54.0	158 152 142.5 136 134 135 136	59.1 66.5 76.2 83.3 91.5 100.0	137.5 139 148 151.5 155	

Santonous acid d ($C_{15}H_{20}\theta_4$) + Desmotoposantonous acid 1 ($C_{15}H_{20}\theta_4$)

Levi-Malvano and Mannino, 1908

%	f.t.	K	f.t.	
100	175	50	151	
82.4	167	49.8	151	
76	164	46.9	153.6	
70.2	160	44.8	155	
65	156,6	23.1	167.4	
52.3	149	0	180	

Santonous acid 1 (C ₁₅ H	2004) +		o-Fluorb	enzoic ac	id (C ₇ H ₅) ₂ F) +	···	
Desmotroposantonous aci	d 1 ($C_{15}H_{20}O_{4}$)		o-Chlorb	enzoic ac	id (C ₇ H ₅	OC1)		
Levi-Malvano and Mannin	o, 1908		Porath a	nd Claeso	n, 1950			
% f.t.	% f.t.		mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
100 175 65.8 156.4 54.4 152 50 154	45.6 156. 26.8 167 0 180		100.0 88.3 75.7 61.1 52.5 45.4 42.1	142.0 137.5 131.5 125.0 120.5 117.5 115.5	127.5 119.5 115.5 115.0 115.5	38.1 34.4 24.6 17.4 11.7 6.8 0.0	117.5 118.0 119.0 119.5 120.5 121.5 123.0	115.5 115.0 115.5 115.0 116.5 117.0
β-Benzoylhydratropic ac	id $(C_{16}H_{14}O_{3})$	d + 1						
Bickel and Peaslee, jr	., 1948		i		ncid (C ₇ H ncid (C ₇ H			
% f.t.	% f.t.		Porath	and Claes	son, 1950			
100 182.1 90 177.8	60 160.2 56 157.3		mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
80 173.3 70 167.1	53 155.5 50 153.9		100.0 87.5 76.3 59.6	157.5 152.0 147.0 139.5	142.5 135.0 128.5	29.9 23.4 16.9 11.0	122.0 118.5 117.5 119.5	115.0
Benzylamino-succinic a	cid (C ₁₁ H ₁₈ O ₄ N)	d+1	49.4 36.3	135.0 127.5	123.5 118.0	$\substack{5.1\\0.0}$	121.5 123.5	118.5
Centnerszwer, 1899								
90.6 125.7 80.8 124.6 70.8 127.7 60.9 129.1	# f.t. 40.6 130.2 30.8 129.9 20.3 127.8 10.4 129.0 0.0 130.5			C ₈ H ₅ O ₂ N	acid (C ₇ H)	50 ₂ F)+	m-Cyanob	enzoic
50.8 131.0		(1+1)	mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
1-Asparagine-acetylman	delate (C ₁₄ H ₁₆ O	6N ₂) 1 + d	100 94.9 88.6 79.6 69.8	123.5 121.5 121.5 145.5 162.5	122.5 119.5 119.0 119.5 120.5	51.2 41.2 32.6 21.4 11.8	182.5 192.0 196.0 202.5 207.0	158.0 170.0 181.0 190.0 201.0
Adembri, 1954 (fig.)	ø + +		60.7	173.0	137.5	0	213.5	212.0
% f.t. 0 178 10 170 20 166 E 30 168 40 169.5 50 170	% f.t. 60 168 70 165 80 159 E 90 165 100 174		acid (C7H5 0C1	acid (C ₇ F) son, 1950	i ₅ 0 ₂ F)+	p-Chlorb	enzoic
		(1+1)	mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
			100.0 88.8 72.5 58.3 49.1 37.8	243.0 235.5 236.0 216.5 209.5 201.0	229.0 215.0 203.0 191.5 186.0	23.6 12.2 9.8 7.4 3.7 0.0	191.0 183.5 183.0 183.5 183.5 184.0	181.5 181.0 181.5 181.0 182.0
		:						

p-Fluorbenzoic acid ($C_7H_50_2F$) + p-Cyanobenzoic acid ($C_8H_50_2N$)	Chlorbenzoic acid (C ₇ H ₅ O ₂ Cl) m + p Bornwater and Holleman, 1912
Claeson, 1956	+
mol % f.t. m.t.	% f.t. E
0 181,5 180.0 9,9 177.5 175.5 18.3 175.5 174.5 28.2 179.5 176.0 39.5 186.0 181.0 49.5 193.0 188.5 58.9 198.5 194.0 69.1 203.0 200.0 76.6 207.0 204.0 89.8 213.5 212.0 100.0 219.0 218.0	0 155.0
	Johnston and Jones, 1928
Chlorbenzoic acid (C ₇ H ₅ O ₂ Cl) o + m	mol% f.t. mol% f.t.
Bornwater and Holleman, 1912	0.0 153.5 54.1 200.2 9.1 149.0 65.0 212.7 14.7 145.3 76.2 222.7 22.7 145.4 90.4 233.3
% f.t. E	37.1 176.0 100.0 239.5 196.2
0 140.7 - 111.13 133.7 - 22.67 125.9 - 33.38 118.8 112.2 43.6 112.2 110.6 43.42 112.0 " 47.1 111.3 110.1 50.24 114.5 109.9 51.14 114.9 " 54.49 119.2 110.3 66.18 129.6 -	m-Chlorbenzoic acid ($C_7H_5O_2C1$) + 2,5-Dichlorbenzoic acid ($C_7H_4O_2Cl_2$) Hope and Riley, 1923
80.2 141.0 - 88.53 146.9 - 100 155.0 -	mol % f.t. E
Johnston and Jones, 1928 mol% f.t. mol% f.t.	100
29.3 122.2 76.5 138.7 41.7 112.6 84.3 144.3 90.2 148.2 100 153.5	38.2 122.0 - 32.6 129.3 119.4 26.0 136.0 - 17.6 142.5 - 0 155.0 - (1+1)

Chlorbenzoic	acid	(C7H502C1)	0	+	p	
--------------	------	---	----------	---	---	---	---	--

Bormwater and Holleman, 1912

%	f.t.	Е	%	f.t.	
0 9.47 18.27 21.9 25.48	140.7 135.4 140-141 152.3 160.9	132.0 132.1	33.7 42.53 46.91 100	176.7 189.8 195.2 239.0	

Johnston and Jones, 1928

0011115 001	i una conc.	3, 1/20		
mo1%	f.t.	mol%	f.t.	
0.0 6.7 11.1 15.2 22.5 25.7 29.9	139,9 137,0 134,3 134,9 153,0 160,3 170,1	40.7 60.6 73.1 77.4 90.4 100.0	186.9 209.4 220.9 223.6 233.5 239.5	

o-Chlorbenzoic acid ($C_7H_50_2C1$) + m-Nitrobenzoic acid ($C_7H_50_4N$)

Lettre, 1940

mo1%	f.t.	E	mol%	f.t.	Е
100	139	~	40	130	124
90	133	120	30	128	-11
80	121	11	20	126	11
70	127	17	10	134	tr
60	130	17	Õ	139	_
50	131	-	·	(1+1)	ı

m-Chlorbenzoic acid ($C_7H_50_2C1$) + m-Cyanobenzoic acid ($C_8H_50_2N$)

Claeson, 1956

mol%	f.t.	m.t.	mol%	f.t.	m.t.
0 5.8 11.7 16.7 22.7 32.6 41.5	155.5 156.0 158.0 161.0 164.5 171.5	155.0 155.0 156.5 157.5 160.0 162.0 165.0	51.4 61.0 70.4 78.9 89.1 100.0	186.0 192.5 197.5 202.5 208.0 213.5	172.0 179.5 187.5 193.5 201.5 212.0

m-Chlorbenzoic acid ($C_7H_50_2C1$) + o-Nitrobenzoic acid ($C_7H_50_hN$)

Lettre, 1940

mo1%	f.t.	E	mo1%	f.t.	E
100	147	~	40	135	134
90	141	130		136	104
80	135	11	30 20	141	
80 70	131	11	10	147	11
60	134	tt	Ď	153	
50	136	_	v	100	_
	250		(1-	+1)	

m-Chlorbenzoic acid ($\rm C_7H_5\,O_2C1$) + o-Brombenzoic acid ($\rm C_7H_5\,O_2Br$)

Lettre, Barnbeck and al., 1937

%	f.t.	E	%	f.t.	Е
0	153	-	60	118	112
10	148.5	112	70	128	lt
20	143	11	80	134	113
30	136	**	90	141	11
40 50	130	н	100	146	_
50	121	11			

m-Chlorbenzoic acid ($C_7H_5\theta_2C1$) + p-Brombenzoic acid ($C_7H_5\theta_2Br$)

Lettre, Barnbeck and al., 1937

%	f.t.	Е	%	f.t.	Е
0	153	_	60	220	143
10	149	143	69.5	230	11
20	148	u	80	239	15
30	170	*1	.90	247	11
40 50	191	n	100	251	_
50	208	H		20.2	

									
p-Chlorbenzoic ac m-Brombenzoic aci		+	<u> </u>	Bromben	zoic acid	(C ₇ H ₅ O ₂	Br) o +	m	
Lettre, Barnbeck	and al., 1937			Lettre	, Barnbecl	k and al.	, 1937		
% f.t.	E %	f.t.	Е	%	f.t.	E	%	f.t.	E
0 240 10 234 20 229 30 222 40 215 49.7 204	- 60 138 70 " 79.7 " 99.1 " 100	193 178 153 147 155	138	100 90 80 70 60 50	155 148 142 135 126 114	114 113	40 30 20 10 0	122 130 136 141 146	113
p-Chlorbenzoic ac acid (C ₈ H ₅ O ₂ N)	id (C ₇ H ₅ O ₂ Cl) +	+ p-Cyano-b	enzoic	Bromber	nzoic acio	1 (C ₇ H ₅ O	eBr) o →	P	
Claeson, 1956				Lettre,	Barnbeck	and al.,	1937		
mol% f.t.	f.t. mol9		m.t.	1%	f.t.	E	%	f.t.	E
0 240.0 6.9 238.0 13.9 236.5 20.9 235.0 31.9 232.0 42.1 229.0 52.6 226.5 60.6 223.5	238.5 63.2 236.5 69.2 234.5 73.5 232.0 79.7 229.0 84.2 225.5 90.7 222.0 100.0	9 220.5 7 220.5 3 219.5 7 219.0	219.5 219.5 219.0 219.0 218.5 218.0 218.0	100 90 80 70 60 50	251 243 239 228 217 207	137	40 30 20.3 10 0	192 176 158 140 146	137 " " -
Dichlorbenzoic a	cid (C ₇ H ₄ O ₂ Cl ₂) 2,5 + 2,3		ll .	enzoic ac benzoic a	, -			
Hope and Riley,	1923		**************************************	Lettre	, 1940				
% f.t.	%	f.t.		mo1%	f.t.	Е	mol%	f.t.	Е
0 154.4 9.6 143.4 20.8 141.0 30.1 133.9 32.0 132.6 33.0 131.2 34.0 130.2 34.7 130.1	44.0 45.1 45.6 47.1 50.0 51.5 57.5	128.3 127.9 127.3 128.0 131.0 132.8 138.3 145.7		100 90 80 70 60 50	139 133 125 118 121 123	- 117 " "	40 30 20 10 0	123 129 135 141 148	121 " " " -
35.5 130.0 37.2 129.6 38.2 129.5 40.6 129.3	69.0 82.7 100.0	148.4 157.6 168.3		Bromben	zoic acid	(C ₇ H ₅ O ₂	Br) m +	Þ	
				Lettre	, Barnbec	k and al.	, 1937		
				%	f.t.	E	%	f.t.	Е
				100 90 80.3 70.3 60 50	251 247 239 231 223 210	137	40 29.7 20 10 0	198 180 156 148 155	137

m-BROMBENZOIC ACID + m-CYANOBENZOIC ACID

		id (C ₂ H ₅ (cid (C ₈ H ₅			
Claeson	, 1956				
mo1%	f.t.	m.t.	mol%	f.t.	
, , ,					

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0 6.3 10.9 13.6 19.4 25.2 37.6	150.0 146.0 143.0 142.0 150.0 157.5 173.5	148.5 144.0 137.0 136.0 136.0 136.5 142.5	48.3 57.3 67.2 76.0 83.4 91.7	184.0 189.5 195.0 200.5 204.0 209.0 213.5	160.5 171.0 182.0 189.0 196.0 203.5 212.0

p-Brombenzoic acid ($C_7 H_5 0_2 {\rm Br}$) + p-Cyanobenzoic acid ($C_8 H_5 0_2 N$)

Claeson, 1956

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
0 12.7 25.8 36.9 47.2 63.2	254.0 251.0 249.5 247.0 245.0 239.0	253.0 250.0 248.0 244.5 241.0 232.0	66.4 76.0 83.4 91.7	237.0 229.5 224.5 220.5 219.0	229.5 222.5 221.5 219.0 218.0

p-Brombenzoic acid ($C_7H_50_{\rm B}{\rm Br}$) + 5-Brom-2-thiophene carboxylic acid ($C_5H_8{\rm BrS}$)

Mislow, 1948

%	f.t.	E	%	f.t.	E
100 95.0 81.6 74.3 60.7 56.6	141 143.8 181.6 187.6 206.6 210.4	140 139.0 137.6 137.6 137.8 137.6	41.2 29.8 19.4 15.4 0 E: 97	228.4 237.8 245.6 249.0 253	137.4 137.8 137.8 137.8 252

Indbenzoic acid ($C_7H_5O_2I$) o + m

Lettre and Lehmann, 1938

%	f.t.	E	%	f.t.	Е
0	162	-	60	154	132
10	156 150	132	70 80	16 7 1 7 5	11
20 30 40 50	142	ir	90	181	11
40	135	tr	100	187	-
50	146	tr			

Iodhenzoic acid (C7H5O2I) o + p

Lettre and Lehmann, 1938

%	f.t.	Е	%	f.t.	Е	
0	162 155	153	60 70	232	153	
10 20 30	167	17	80	244 253	17	
30 40 50	188 206	17 17	90 100	260 267	-	
50	220	Ħ				

o-Iodbenzoic acid ($C_7H_50_2\mathrm{I}$) + m-Nitrobenzoic acid ($C_7H_50_4\mathrm{N}$)

Lettre . 1940

mol%	f.t.	Е	mo1%	f.t.	E
100	139	-	40	139	115
	133	116	30	146	116
90 80	126	115	20	152	115
70	118	11	10	158	116
60	121	**	.0	162	-
70 60 50	130	11	.0	102	

Iodbenzoic acid ($C_7H_5O_2I$) m + p

Lettre and Lehmann, 1938

		f.t.	E
	60	238	172
79 172	70	246	11
73 "			H
95 "	90		17
16 "			_
29 "			
	73 " 95 " 16 "	79 172 70 73 " 80 95 " 90 16 " 100	79 172 70 246 73 " 80 254 95 " 90 261 16 " 100 267

m-Iodbenzoic acid ($C_7H_5O_2I$) + m-Cyanobenzoic acid ($C_8H_5O_2N$)	$_{+}^{\alpha}$ -(2,4-Dichlorphenoxy)-propionic acid (+)(C ₉ H ₈ O ₃ Cl ₂) $_{\alpha}$ -(2,4-Dinitrophenoxy)-propionic acid (-)(C ₉ H ₈ O ₇ N ₂)
Claeson, 1956	Matell, 1953
mol% f.t. m.t. mol% f.t. m.t.	% f.t.
0 185.5 184.5 62.5 192.0 165.0 9.5 180.5 174.0 71.4 199.5 173.0 16.1 177.0 168.5 80.1 203.5 188.5 30.5 171.0 164.0 87.1 207.0 196.0 42.1 175.5 164.5 93.3 209.5 203.0 53.7 187.0 164.5 100.0 213.5 212.0	0 122.5-120.5 E 107 100 174-171.5
53.7 187.0 164.5 100.0 213.5 212.0	α -(2,4-Dichlorphenoxy)-propionic acid (-)($C_9H_89_9CL_2$) $^{\dagger}\alpha$ -(2,4-Dinitrophenoxy)-propionic acid (-)($C_9H_80_7N_2$)
p-Iodhenzoic acid ($C_7H_5O_2I$) + p-Cyanobenzoic acid ($C_8H_5O_2N$)	Matell, 1953 # f.t.
Claeson, 1956	0 122.5-120.5 E 119.5
mol% f.t. m.t. mol% f.t. m.t.	(1+1) 136 E 131
0.0 269.5 268.0 50.0 251.0 249.0 9.6 263.5 259.0 60.2 249.0 245.0 16.7 259.0 254.5 69.3 245.0 237.5 21.5 256.5 252.5 79.1 238.5 227.0 29.9 254.5 250.0 89.5 232.0 220.0 38.9 252.0 249.0 100.0 219.0 218.0	$\frac{100}{\alpha \text{ L}(2,4\text{-Dichlorphenoxy})\text{propionic acid (}C_9\text{H}_8\text{O}_8\text{Cl}_2\text{)}}{(+) + (-)}$
	Matell, 1953
α -(4-Chlorophenoxy)propionic acid ($C_9H_9O_8C1$)	% f.t. m.t.
(+) + (-) Matell, 1955	0 123 122.5 E 110 109 (1+1) 118 117
% f.t. E % f.t. E	
0 104.5 103.5 85.1 101.5 98 50.0 115.5 114.5 89.9 101.5 98 60.2 114.5 99 95.0 103 97 70.0 111.5 98 100 104.5 103.5 80.0 106 98	α -(2,4-Dichlorphenoxy)-propionic acid (+)(C ₉ H ₈ O ₈ Cla + α -(2-Naphthoxy)-propionic acid (+)(C ₁₈ H ₁₂ O ₈) Matell, 1952
	% f.t.
	100 119 - 105.5 E 0 123
	α -(2,4-Dichlorphenoxy)-propionic acid (-)($C_9H_8O_9Cl_2$) + α -(2-Naphthoxy)-propionic acid (+) ($C_{1.9}H_{1.2}O_9$)
	Matell, 1952
	mol% f.t.
	100 119 50 99 (1+1) - 95-96 E 123
y	

α (3,4-DICHLORPHENOXY)PROPIONIC ACID (+) + α (2-NAPHTHOXY)PROPIONIC ACID (+)

α -(3,4-Dichlorphenoxy)-propionic acid (+)($C_9H_8O_8CI_9$) + α -(2-Naphthoxy)-propionic acid (+) ($C_{1.8}H_{1.2}O_8$)	$_{\alpha}$ -(2,4-Dichlorphenoxy)-butyric acid (C10H1003Cl2) (+) + (-)
Matell, 1952	Matell, 1953 % f.t.
% f.t.	
100 119 E 88 O 121	0 91.6-91 E 75.5 (1+1) 82
α -(3,4-Dichlorphenoxy)-propionic acid (-)($C_9H_8O_9C1_2$ $^{\dagger}\alpha$ -(2-Naphthoxy)-propionic acid (+) ($C_{1,3}H_{1,2}O_9$)	Nitrobenzoic acids (C ₇ H ₅ O _k N)
Matell, 1952	Widnmann, 1877
\$ f.t.	g f.t.
100 119	0+m 0+p m+p
(1+1) 95 E 91-93 0 121	0 149 149 140-141 1.0 146 145 135-136 2.0 146 147 134-135 4.8 144 145 132-133 9.1 140 141 130-155
2,4,5-Trichlorphenoxypropionic acid(+)($C_9H_7O_3Cl_3$)+ 2-Naphthoxypropionic acid(-)($C_{13}H_{12}O_3$)	33.3 125 142-190 127-185 50.0 92-98 200 165-205 66.7 112-149 210-216 195-208 90.9 132-133 200-225 205-230 95.2 132-140 222-235 215-234
Matell, 1953 mol% f.t. mol% f.t.	98 132-134 228-235 232-237 99 132-135 233-237 236-238 100 140-141 238 238
0.0 144.5 63.9 116 11.8 137 71.5 114 24.3 130 76.5 110.5 34.3 124.5 80.8 109 43.7 119 87.1 112.5 49.3 118.5 92.9 115 53.5 118.5 100.0 118	Nitrobenzoic acid ($C_7H_5O_4N$) m +p
59.0 117.5	Holleman , 1914
	% f.t. % f.t. E
2,4,5-Trichlorphenoxypropionic acid(-)($C_9H_7O_3Cl_3$) + 2-Naphthoxypropionic acid (-)($C_{13}H_{12}O_3$)	100 240.0 38.0 177.6 - 83.9 228.3 31.5 164.4 - 74.7 220.9 24.2 148.4 - 65.1 212.8 20.4 - 129.7 56.0 202.2 9.1 132.8 - 49.3 195.0 0 140.8 -
Matell, 1953	
mol% f.t. m.t. mol% f.t. m.t.	
0.0 144.5 126 67.9 117.5 102.5 18.6 135 121 67.3 115.5 105 32.9 125.5 115 72.8 113 108 40.5 120 111.5 80.6 111 - 48.4 119 109 90.7 115.5 - 56.6 118.5 105 100.0 118 -	

Nitrosali	cylic acid	(C ₇ H ₅ O ₅ N) 1,2,3 + 1,2,	5
Govaert,	1929			
%	f.t.	%	f.t.	
0 3.53 8.62 13.3 18.03 23.77	144.5 142 137.7 134.7 136 151	32.24 40.09 49.48 56 68.47 82.5	167.5 177.5 186.5 193 204 217	
	obenzoic a	·	0 ₄ NCl) 1,2,5 ÷	1,2,3
%		f.t.		
0 8.0 12.7 17.0 100 E: 130.	5	164.0 159.7 157.0 154.4 185.0		+
Chlorniti	robenzoic a	ncid (C7H1,	Ο _μ NC1) 1,3,6 +	-1,3,2
Holleman.	, 1901 and	1910		
%		f.t.		
0 16.7 21.4 100		139 141.5 151.5 235		
E : 130.5	>			
Bromnitrol	penzoic aci	id (C ₇ H ₄ O ₄	NBr) 1,2,5 +]	,2,3
Holleman	, 1901 and	1 1910		
%		f.t.		
0 10.7 15.2 19.0 100 E: 140.5		180.0 172.5 169.5 166.5 191.0		
1,0,0				

Bromnitro	benzoic acid (C ₇ H ₄ O ₄ NBr) 1,3,6 + 1,3,2
Holleman,	1901 and 1910
R	f.t.
0 14.7 19.1 100	140.0 149.0 162.5 250

5-Nitro-2,4-dichlorbenzoic acid ($C_7H_3\,0_{\rm th}NC1_2$) + 5-Nitro-4-oxy-2-chlorbenzoic acid ($C_7H_{\rm th}0_5NC1$)

Grimm, Gunther and Tittus, 1931 (fig.)

mol%	f.t.	m.t.	mol%	f.t.	m.t.
0 10 20 30 40 50	202 197.5 193.5 189 184 179.5	202 196.5 191 186 180 176	60 70 80 90 100	175 170 166 162 160	171 166.5 163 160 160

 $^{\alpha}$ - 2,4-Dinitrophenoxypropionic acid (-)(C $_9H_8O_7N_2$) $^+N_7$ (2,4-Dinitrophenyl- α -alanine (+) (C $_9H_9O_6N_3$)

Matell, 1953

%	f.t.	
0 E (1+1) E 100	175-178 160 167 139.5 171.5-174	

5-Nitrohydrindene-2-carboxylic acid (C10H90 $_{\rm h}$ N) d + 1

Mills, Parker and Prowse, 1914

%	f.t.	%	f.t.	
$^{0}_{10}_{11.7}$	116 109.5 107.5 E 113.5	30 40 50	118.5 121 122.0 (1+1)	

α - (1-Naphthyl)-propionic	acid ((C ₁₃ H ₁	₂ 0 ₂) +
$\alpha - 0$	3-Thianaphthenvl)-pro	nionic	acid (CacHacOc

Sjöberg, 1956 (fig.)

mo1%	f.t.	mo1%	f.t.	
0	70	60	102	
10 20 30	60 95	70	101	
20	95	80	98	
30	100	90	84	
40 50	103	97	62	
50	103 (1+1)	100	98 84 62 66	

 $\alpha\text{-l-Naphthyl-methyl-propionic}$ acid ($\text{C}_{1\,\text{l}_{4}}\text{H}_{1\,\text{l}_{4}}\text{O}_{2}$) (+) + (-)

Matell, 1953

%	f.t.	m.t.	%	f.t.	m.t.
0.0 10.2 20.1 30.0	102 98 93 87.5	100.5 86 82 82	35.1 39.9 44.8 50.0	88 89.5 90.5 91 (1+1)	82 84 87 89.5

 α -2-Naphthyl-methyl-propionic acid ($C_{1\,4}H_{1\,4}\theta_2$) (+) + (-)

Matell, 1953

0.0 85 79.4 86 50.0 90.5 85.2 83.5 59.4 90 89.6 82	%	f.t.	<u> </u>	f.t.	_
69.8 88.5 94.9 83 77.3 86.5 100.0 85	50.0 59.4 69.8	90.5 90 88.5	85.2 89.6 94.9	83.5 82 83	

 α -2-Naphthylmethylpropionic acid (-)($C_{1\,\nu}H_{1\,\nu}0_2$) + α -2-Naphthylthia propionic acid (+)($C_{1\,3}H_{1\,2}0_2S$)

Matell, 1953

mo1%	f.t.	m.t.	mo1%	f.t.	m.t.
100.0 94.6 88.5 83.7 78.2 68.3 58.1 48.1 42.9 37.8	53.5 53 52 52.5 56 60.5 64 66 66.5	52 50 49 49.5 49.5 51 59 62.5 64 64.5	33.3 28.1 18.7 9.7 0.0	67.5 70 (67.5) 76 (68) 81 (68.5) 85 (69.5)	65 66 66.5 75 84

2-Naphthylmethylpropionic acid (+) ($C_{1\, u}H_{1\, u}\theta_2$) + 2-Naphthylthiapropionic acid ($C_{1\, u}H_{1\, u}\theta_sS$) (-)

Matell, 1953

mo 1%	f.t.	m.t.	mol%	f.t.	m.t.
100.0 96.7 92.5 89.3 83.4 76.2 67.1 62.1 57.7 54.0 47.4	53,5 53 51,5 52,5 58 63 66,5 68,5 69,5 70,5	52 48 " "50 58 62 65 66.5	38.3 33.2 28.5 19.2 16.0 9.6 0.0	73 73.5 74 74 77 (74) 81 (73) 85 (69.5)	70 71 72 72 72 72 72 72 84

 $\alpha\text{-l-Naphthoxy-propionic}$ acid (+) + (-) ($C_{13}\,H_{1\,2}\,0_{\!8}\,)$

Matell, 1951 (fig.)

%	f.t.	%	f.t.		
100 94 90 80 70 60	126 124 132 143 149 152	50 40 30 20 7 0	154 152 148 142 124 126	(1+1)	

01%	f.t.	mo1%	f.t.
00.0	126	79.4	144
97.4	125.5	69.7	150
95.0	124.5	60.2	152.5 153
92.3 88.5	128 134	55.0 50.0	153.5 (1+1)
84.6	139.5	50.0	150.5 (1.1)

 $\alpha(1{\rm -Naphthoxy})$ propionic acid (+) ($C_{13}\,{\rm H}_{12}\,0_3$) + $^{\alpha}(2{\rm -Naphthoxy})$ propionic acid (-) ($C_{13}\,{\rm H}_{12}\,0_3$)

Matell, 1951 (fig.)

mo1%	f.t.	mol%	f.t.	
100	119	40	106	
80	108	20	121	
70 57	102	0	126	
57	90			

Fredga and Matell, 1952

mo1%	f.t.	mo1%	f.t.	
100.0 84.9 69.9 60.3 57 54.9	119 111 103 95.5 (91) E	50.6 40.8 29.4 15.2 0.0	96.5 105 113.5 120 126	

 $^{\alpha}$ (1-Naphthoxy)propionic acid (-) ($\rm C_{13}H_{12}O_3$) + $^{\alpha}$ (2-Naphthoxy)propionic acid (-) ($\rm C_{13}H_{12}O_3$)

Matell, 1951 (fig.)

mo1%	f.t.	mo1%	f.t.	
100	119	48	100	
80	108	30	109	
64 50	$\begin{array}{c} 98 \\ 101 \end{array}$	20 0	116 127	

Fredga aı	nd Matell,	1952		
mo1%	f,t,	mo1%	f.t.	
100.0 84.9 75.6 69.8 65.7 62 61.7 58.8	119 111.5 105.5 102.5 99.5 98.5 98.5	55.0 50.6 45.7 41.4 35.1 29.9 15.4 0.0	100.5 101 (1+1) 100 E 102 106 109 118 126	

 $^{\alpha}$ (2-Naphthoxy)propionic acid (C13 H1203) (+) + (-)

Matell, 1951 (fig.)

%	f.t.	%	f.t.	
0 10 21 30 40 50	119 114 105 110 112 113	60 70 79 90 100	112 111 105 116 119	(1+1)

Fredga and Matell, 1952

mo1%	f,	t.	mol%	f.t.	
	I	111		I	
50.0 54.9 59.5 65.0 70.0	108.5 108 106.5 105	114 113.5 113 112 110.5	74.7 79.8 85.5 90.4 100.0	108 107 111 115 119	(1+1)

 α (2-Naphthoxy)butyric acid (+) ($C_{1\,4}H_{1\,4}\theta_{3}$) + α (2-Naphthoxy)valeric acid (-) ($C_{1\,5}H_{1\,6}\theta_{3}$)

Matell, 1955 (fig.)

%	f.t.	E	%	f.t.	E
100 80 53 E 50	141 133 115 115,5	140 115 114 114	43 E 30 10 0	115.5 125 134 135.5 (1+1	114 115 115 135

α (2-Naphthoxy)butyric α (2-Naphthoxy)valeric		
Matell, 1955 (fig.)		

%	f.t.	m.t.	%	f.t.	m.t.
100	142	141	39	123.5	122
80	136	131.5	30	125	122
60	128	125	10	132	128
50	125.5	123	0	135	134

 α (2-Naphthoxy)valeric acid ($\text{C}_{15}\text{H}_{16}\text{O}_{3}$) (+) + (-)

Matell, 1955 (fig.)

% f.t. E % f.t. E

100 142 141 60 121 119
90 137 121 58 E 120 119
80 131.5 120 50 123 122
70 126 119.5

 α (2-Naphthoxy)valeric acid (+) (C₁₅H₁₆O₅) + α (2-Naphthoxy)caproic acid (+) (C₁₆H₁₈O₅)

Matell, 1955 (fig.)

Z	f.t.	Ε.	%	f.t.	E
100 90 80 70 60	135 135 134.5 134.5 134.5	134.5 133.5 133 132 132.5	50 40 20 0	135 135.5 138 142.5	133.5 134.5 135.5 142

 $_{\alpha}$ (2-Naphthoxy)valeric acid (-) ($C_{15}\mathrm{H}_{16}\mathrm{O}_{5}$) +

 α (2-Naphthoxy)caproic acid (+) ($C_{16}H_{18}O_3$)

Matell, 1955 (fig.)

%	f.t.	Е	%	f.t.	E
100 80 54	135 125 108	135 106.5 106.5	20 10 0	129 139 142	106.5 108 142
40	122	106.5			

 $_{\alpha}$ (2-Naphthoxy)caproic acid ($\text{C}_{\text{1}}\,_{\text{6}}\text{H}_{\text{1}}\,_{\text{8}}\text{O}_{\text{3}}$) (+) + (-)

Matell, 1953

%	f.t.	E	%	f.t.	E	
0.0	135	134.5	42.4	111	108.5	
10.2	131	110	44.9	109.5	108	
20.2	125.5	109.5	47.5	109	108	
30.0	119.5	108	50.0	110	108.5	
39.9	113	108	100.0	135	134.5	

Matell, 1955 (fig.)

%	f.t.	E	%	f.t.	Е
0 10 20 30	135 130.5 125 120	110 111 108.5	40 47 E 50	113 108 110	108 108 108.5

 α (2-Naphthyl-sulfide-propionic) acid ($\rm C_{1\, h}H_{1\, 2}O_{h}S)$, (+) + (-)

Matell, 1953

%	f.t.	m.t.	%	f.t.	m.t.
0.0 50.0 59.2 70.8 79.3	54 87.5 86 82 77.5	53 85.5 78 68 60	88.8 93.9 97.6 100.0 (1+1)	68 60 54.5 54	48.5 48.5 49 53

Furoic acid ($C_5 {\rm H_u} 0_3$) + 2-Thiophenecarboxylic acid ($C_5 {\rm H_u} 0_2 S$)

Mislow, 1948

K	f.t.	ni.t.	%	f.t.	m.t.
0 7.8 18.8 33.3 37.8 49.2 57.9	133 131.0 127.2 118.0 115.2 107.6 106.8	132 120.5 112.0 102.2 100.9 100.0 98.8	71.5 78.0 85.2 90.8 95.5 100.0	113.0 115.2 122.6 123.4 126.3	101.2 101.1 106.1 106.7 111.4 127

E: 54% 100°

Furoic	acid	$(C_5H_4O_3$)	+	2-Pyrrolcarboxylic acid
					(Celle OoN)

Mislow, 1948

%	f.t.	E	%	f.t.	E
0 8.7 18.6 29.6 39.8 49.0	133 129.2 131.4 144.6 149.6	132 125.2 123.2 122.6 124.0 125.4	58.5 70.5 80.2 90.0 100.0	166.8 - 190	124.0 125.2 126.4 125.6 190

Thiophenecarboxylic acid ($\rm C_5H_4O_2S$) $\rm 1+2$

Voerman, 1907

%	f.t.	m.t.	%	f.t.	m.t.
0	126.	_	30.55	114.3	110
0.9_{-}	125.4	123.9	33.80	113.3	110.5
1.75	125.1	-	36.75	112.5	110.8
3.44	124.6	123.1	49.30	111.5	110.5
5.70	124.1	121.0	42,00	111.0	110.7
6.40	1 2 3.4	-	45.00	112.6	110.8
9.40	122.2	-	49.15	115.0	110.7
11.80	121.3	118	57.50	119.6	110.7
14.18	120.3	Ĩ16.6	61.10	121.2	111.2
15.00	120.1		66.40	124.0	116.5
20.55	117.7	113.5	76.20	128.2	123.5
22.55	117.2	112	86.00	132.6	129.5
24.70	$\bar{1}\bar{1}6.\bar{3}$	110.8	94.60	136.3	134
25.40	116.0	110.6	100	138.4	194

2-Thiophenecarboxilic acid ($C_5H_4SO_2$) + 2-Pyrrolcarboxylic acid ($C_5H_5O_2N$)

Mislow, 1948

%	f.t.	m.t.	%	f.t.	m.t.
0 9.7 19.4 29.0 38.7 E: 5%	128 129.4 140.6 154.6 158.4	127 121.8 121.8 125.0 126.4	48.2 59.4 75.5 82.6 100	164.0 - - 190	12 5 ,0 125,2 134,2 141.6 190

2-Thiophenecarboxylic acid ($C_5 H_{t_4} 0_2 S$) + 5-Thiazolcarboxylic acid ($C_u H_3 \ 0_2 NS$)

Mislow, 1948

%	f.t.	E	%	f.t.	<u>E</u>
100 94.8 80.6 64.1 53.2	220 209.4 201.8 192.2 183.6	218 118.2 115.0 114.8 115.4	36.2 25.9 5.0 0	176.2 159.6 124.6 128	114.2 114.2 116.0 127

E: 11% 116°

5-Methyl-2-thiophenecarboxylic acid ($C_6H_6O_2S$) + 5-Bromo-2-thiophenecarboxylic acid ($C_5H_3O_2SBr$)

Mislow, 1948

%	f.t.	E	%	f.t.	Е
100 88.2 80.3 74.8 71.2 62.1 50.0 47.7	141 140.2 139.0 137.8 135.4 133.0 129.0	140 135.0 128.6 127.4 119.0 118.0 117.1 117.2	39.8 36.0 27.2 24.1 15.2 11.2	125.2 127.6 128.8 131.4 133.6 136.0	117.2 117.4 117.2 117.0 124.8 128.6

E: 44% 117°

1,2-Dithiacyclopropane-3,5-dicarboxylic acid ($C_5 H_6 \theta_u S_2$) (+) + (-)

Schotte, 1956 (fig.)

%	f.t.	%	f.t.	
0	186.5	30	187.5	(1+1)
10	175 E	40	191	
20	182	50	194.5	

1,2-Dithiacycloheptane-3,7-dicarboxylic acid ($C_3H_{14_i}0_{1\epsilon}S_2$) (+) + (-)

Schotte, 1956 (fig.)

%	f.t.	%	f.t.	
0	1 7 3	50	158.5	
20	165	60	165	
20 30	160	80	179.5	
42	153 E	100	192	

TETRAGYDROTHIOPHENE-2,5-DICARBOXYLIC ACID + 1,2-DITHIACYCLOPROPANE-3,5-DICARBOXYLIC ACID

Tetrahydrothiophene-2,5-dicarboxylic acid (+) ($C_6H_8O_4S$) + 1,2-Dithiacyclopropane-3,5-dicarboxylic acid (+) ($C_5H_6O_4S_2$)

Schotte, 1956 (fig.)

%	f.t.	%	f.t.	
0 10 20 30 40 51	180 173 165.5 159.5 154 147 E	60 70 80 90 100	156 162 169.5 178 186	

Tetrahydrothiophene-2,5-dicarboxylic acid (+) ($C_6H_8O_4S$) + 1,2-Dithiacyclopropane-3,5-dicarboxylic acid (-) ($C_5H_6O_4S_2$)

Schotte, 1956 (fig.)

%	f.t.	%	f.t.	
0 20 30 36 50	180 165 158.5 155.5 158	60 63 7 0 90 100	158 157 E 163 180 187	

 α -(2-Thienyl)hydrocinnamic acid ($\rm C_{13}H_{1\,2}O_2S)$ (+) + (-)

Petterson, 1954

%	f.t.	E	%	f.t.	E
0.0 10.0 15.0 20.5 25.0	72 68.5 66.5 65.5	71 64 63.5 64 63.5	30.5 35.0 44.0 50.0	70.5 72 74 75 (1+1)	63.5 63.5 64 74

 $^{\alpha}$ -(2-Thienyl)hydrocinnamic acid (+) ($\rm C_{13}\,H_{1\,2}0_2S)$ + (2-Thenylphenylacetic) acid (+) ($\rm C_{13}\,H_{1\,2}0_2S)$

Petterson, 1954

mo1%	f.t.	E	mo1%	f.t.	E
0	72	70,5	62.5	72.5	
10.5	70.5	63	65.0	73.5	_
20.5 30.5	69	11	68.5	74.5	63
30.5	67.5	Ħ	71.0	75.5	~
41.5	65.5	"	7 9.0	78	-
49.0	68	11	87.0	80.5	_
59.0	71.5	17	100	85	83

 α -(2-Thienyl)hydrocinnamic acid (+) ($C_{13}H_{12}\theta_2S)$ + (2-Thenylphenylacetic) acid (-) ($C_{13}H_{12}\theta_2S)$

Petterson, 1954

mol%	f.t.	Е	mo1%	f.t.	E
0 13.0 20.5 31.0 40.0 51.0	72 67.5 65 61 57 57.5	70 53 - 52 52 54	60.5 70.5 80.5 90.5	64 70 75 80 85	53 53 - 83

 α (2-Thienyl)hydrocinnamic acid (+) ($C_{13}H_{12}O_2S)$ + (2-Thenyl-2-thienylacetic) acid (-) ($C_{11}H_{10}O_2S_2)$

Petterson, 1955

mo1%	f.t.	m.t.	mol%	f.t.	m.t.
0 10 20 30 40 50	72 68 66 61 66.5 68.5	71 58 "	60 70 80 90 100	70 71 72.5 76.5 81	65 66 67 72 79

 $_{\alpha}\text{-}(2\text{-Thienyl})\text{hydrocinnamic}$ acid (-) ($\text{C}_{13}\text{H}_{12}\text{O}_2\text{S})$ + (2-Thenyl-2-thienylacetic) acid (-) ($\text{C}_{11}\text{H}_{10}\text{O}_2\text{S}_2)$

Petterson, 1955

mo1%	f.t. I	m.t.	f.t. II	
0	72	71		
	69.5	66	-	
10 20 30 40 50 60 70 80 90	67 64 67.5	63.5	-	
30	64	62.5	-	
40	67.5	-	59	
50 60	70	-	57	
70	75	69 71. 5	-	
80	70 72 75 77	74	-	
	79.5	7 6	-	
100	81	79	-	

2-Thenylphenylacetic acid (+) + (-) ($C_{13}H_{12}O_2S$)

Petterson, 1954

						_
%	f.t.	E	%	f.t.	Е	_
0 10.0 20.0 25.0 30.0	85 80 75 72.5 70	83 67.5 67	34.5 40.0 45.0 50.0 (1+1)	69.5 71 71.5 72	67 67 67,5 70,5	

2-Thenylphenylacetic acid (+) ($C_{13}H_{12}O_2S$) +

2-Thenyl-2-thienyl-acetic acid (-) ($C_{11}H_{10}O_2S_2$)

Petterson, 1955

mo1%	f.t.	m.t.	mol%	f.t.	m.t.
0 10 20 30 40 50	81 76 73.5 70 67.5	79 74 70 67 65 63	60 70 80 90 100	71 73.5 77 80.5 85	63 66 68 75 83
50	66	63		(1+	L)

2-Thenylphenylacetic acid (-) ($C_{13}H_{12}O_2S$) +

2-Thenyl-2-thienyl-acetic acid (-) ($C_{11}H_{10}O_2S_2$)

Petterson, 1955

mo1%	f.t.	Е	mol%	f.t.	Е
0	81	79	50	63.5 68 74 77	0.1
1ŏ	81 77	79 62	60	68	62
2Ď	71	ti	70	74	- 11
ãŏ.		17	80	77	13
20 30 35	68 64.5	15	90	81	74
40	63	61.5	100	81 85	74 83
40 45	63 62	61	100	00	

Benzyl- α -thenylacetic acid ($C_{14}H_{14}O_2S$) + Di- α -thenyl-acetic acid ($C_{12}H_{12}O_2S_2$)

Fredga, Aejmelaens and Tollander, 1951

mol%	f.t.	mo1%	f.t.
100.0	66.0	58.6	58.4
92.9 86.0	$65.0 \\ 63.1$	49.2 39.3	59.7 60.8
81.9	62.5	29.7	62.1
74.7 68.1	60.8 59.4	19.9 11.9	63.4 64.7
64.9	58.7	0.0	66.8

Thenylthienylacetic acid ($C_{11}H_{10}O_2S_2$) (+) + (-)

Petterson, 1955

%	f.t.	m.t.	%	f.t.	m.t.
100 95 90 85 80	81 81 82 84.5 87.5	79 79 79 80 82	75 70 60 50	89.5 91.5 93 94 (1+1	84 86 90.5 92.5

 $^{\alpha}$ -Thenylsuccinic acid ($c_{9}\rm H_{10}0_{4}S$) (+) + (-)

Fredga and Palm, 1949

mo1%	f.t.	mo1%	f.t.	
0.0	156.5	18.5	156	
5.1	154	27.8	160.5	
7.2	150	40.9	163.5	
10.2	150.5	50.0	165.5	
13.0	153	65.0	162.5	

Thiazol-carboxylic acid ($C_{\rm L}H_{\rm S},0_{\rm 2}NS$) + Nicotinic acid ($C_{\rm 6}H_{\rm 5}0_{\rm 2}N$)

Mislow, 1948

%	f.t.	m.t.	%	f.t.	m.t.
100 94.1 81.0 65.2 51.7	220 209.8 206.0 206.6 208.8	218 199.0 200.8 201.4 205.0	37.7 22.2 6.7 0	217.0 223.0 232.4 233	210.8 217.4 227.0 233

E: 74% 200°

E: 13% 122°

Picolinic	acid	(C6H5O2N)	+	Nicotinic acid
				$(C_6H_5O_2N)$		

Mislow, 1948								
%	f.t.	E	%	f.t.	E			
100 92.5 80.0 71.6 60.7 51.4	233 230.2 219.2 217.4 201.2 188.0	233 125 120.4 121.6 119.8 123.0	45.8 32.7 18.4 4.5 0	186.8 167.8 138.2 136.0 137	122.2 121.6 120.2 122.2 136			

Picolinic acid ($C_6 H_5 \theta_2 N$) + Isonicotinic acid ($C_6 H_5 \theta_2 N$)

Mislow, 1948

% f.t. E % f.t. E

0 137 136 60.8 - 132.4
9.5 200.8 132.0 70.8 - "
18.4 216.8 131.4 80.5 - "
29.3 231.2 131.2 90.5 - "
39.8 - 131.2 100 314 312
46.7 - 132.4
E: 2% 132°

Picolinic acid ($C_6H_5\theta_2N$) + Pyrazine-carboxylic acid ($C_5H_4\theta_2N_2$)

Mislow,	1948				
%	f.t.	E	%	f.t.	Ε.
100 89.2 79.6 71.0 59.6 49.5	226 208.8 202.6 200.2 194.8 192.4	224 179.4 129.8 130.6 130.8 130.4	39.2 32.0 19.7 7.6 0	186.6 180.8 164.2 139.6 137	129.6 130.6 129.8 129.4 136

Nicotinic acid ($C_6H_50_2N$) + Isonicotinic acid ($C_6H_50_2N$)

Mislow,	1948				
%	f.t.	E	%	f.t.	E
0 9.0 20.0 31.1 41.7 50.5	233 232.0 224.6 258.4 271.0 280.2	233 215.8 215.6 214.0 217.0 215.0	61.7 70.5 81.2 90.0	290.0 297 297 300 314	215.6 215.0 213.2 215.2 312

Swietoslawski, Bylicki and Lisicki, 1952 (fig.)

f.t.

0 235

0	235
25	205 E
50	260
75	290
100	317

Pyrazine carboxylic acid ($C_5 H_4 \theta_2 N_2$) + Nicotinic acid ($C_6 H_5 \theta_2 N$)

Mislow, 1948

%	f.t.	m.t.	%	f.t.	m.t.
0 8.9 17.1 29.7 37.7 50.0 E: 559	226 215.6 214.0 211.6 207.6 207.0	224 212.8 208.8 207.8 205.2 201.2	59.6 71.5 77.1 88.3 100	208.6 215.2 219.8 228.6 233	202.6 202.6 202.0 213.8 233

Pyrazine-carboxylic acid ($C_5H_4\theta_2N_2$) + Isonicotinic acid ($C_6H_5\theta_2N$)

Mislow, 1948

. <u></u> %	f.t.	E	%	f.t.	E
100 89.7 79.8 70.0 61.5	226 214.2 230.8 252.2	224 206.8 207.4 208.2 207.0	51.0 40.5 27.2 13.2	- - 308 314	206.8 209.4 207.6 206.8 312
E: 88	% 207°				

Notice for Users

1. Scope of the work

The data compiled refer only to binary systems, concentrated solutions.

As components, I have accepted all kinds of substances, elements or compounds, with the exception of metallic alloys, a category covered by many other books.

As concentrated solutions, I choose to consider arbitrarily systems between 10 and 90 per cent by weight; I left also out of consideration data relating to dilute solutions, if there is only one measure between 10 and 20 %.

All data, so far as possible, have been reproduced from the original publications, if available; in other cases, the actual source of the data is given in the bibliographic reference. Preference has been given to the experimental data, rather than to values interpolated from a formula; in many cases we had to read the data from graphs, with help of a grating (this is denoted by "fig").

2. General Plan

All data are classified by systems, since values of different properties may help to caracterise their physical nature.

The systems have been arranged in four categories, one for each volume of this book, as follows:

- A. Both components are organic compounds, excepting the hydroxyl derivatives.
- B. Both components are organic compounds, one at least being a hydroxyl derivative.
- C. One at least of the components is a metallic compound.
 - D. All other systems.

In that volume are also included the general table of bibliographic references and the general table by substances.

I consider as non-metals the following twenty elements:

B - C,Si - N,P,As - 0,S,Se,Te - H,F,C1,Br,I - He,Ne,Ar,Kr,Xe

I call <u>non-metallic</u> compounds those with only these elements; and <u>organic</u> compounds all such compounds with at least one atom of C. As <u>metallic</u> compounds, I consider all those with at least one metallic atom. Ex.: CSi is an organic compound, sodium benzoate a metallic one, and HCl a non-metallic one.

3. Order of the systems

In each section, the binary mixtures are brought together in great divisions, according to the degree of physico-chemical similitude of their components; for ex., in the third volume, the first part deals with mixtures of two metallic salts, the second one with solutions of metallic salts in water and the third, with solutions of these salts in all other solvants, non-metallic or organic.

In each of these divisions, the binary mixtures are listed, according to the order of the first component, and, for each of them, according to the order of the second component; for ex., all systems with methane come first, methane + butane being listed before methane + benzene, since butane comes before benzene in my classification.

a) For <u>organic compounds</u>, the general order is: hydrocarbons, halogen derivatives, oxygen derivatives (excluding the hydroxyl ones), nitrogen, mixed oxygen and nitrogen derivatives, and last the hydroxyl derivatives of any kind.

In each of these groups, the aliphatic derivatives come first (saturated and then unsaturated), then the polymethylenes, the aromatic compounds and finally the heterocyclic ones.

The sulfur derivatives are listed after the corresponding oxygen ones, the phosphorus, after the nitrogen ones, the silicon and boron after the carbon ones. In each group, the derivatives produced by halogen substitution are placed at the end of the respective group; for ex., ethylenchlorhydrin comes at the end of the alcohol group.

In accordance with this rule, we have the following arrangement:

Hydrocarbons: paraffins, ethylenic and acetylenic hydrocarbons, polymethylenes and aromatic hydrocarbons.

Halogen derivatives: derivatives of the same hydrocarbon are grouped together, in order of the number of hydrogen atoms substituted by halogen atoms, fluorine derivatives first, then chlorine, bromine and iodine derivatives.

Oxygen derivatives: first the ether oxides, with open chain (ethyl ether) or closed ring (dioxane), the aldehydes and ketones, the anhydrides, and finally the esters.

Nitrogen derivatives: nitriles and amines.

Mixed Oxygen and Nitrogen derivatives: compounds of the amide type, and then nitroso- and nitro- derivatives.

Hydroxyl derivatives: first the alcohols and oximes, then the phenols and finally the acids.

N.B. The presence in the molecule of a chemical function listed later, relegates this compounds to the end of that category, for ex., acetoacetic esters come after the esters.

b) Metallic Compounds. Most of them are electronic compounds which are classified as follows:

The salts, oxides, sulfides, etc. come together, so long as the metal has the same electrovalency, for ex., the ferrous compounds are classified with nickel, cobalt, manganese ones. but the ferric compounds, with aluminum and chromic salts.

The metallic ions are classified in series of the same electrovalency, according to the periodical. table:

Li, Na, K, Rb, Cs, T1 - Cu+, Ag, Au+, Hg+ Be, Mg, Ca, Ba, Sr, Sn⁺⁺, Pb⁺⁺ - Zn⁺⁺, Cd⁺⁺, Hg⁺⁺, Cu⁺⁺, Mn⁺⁺, Fe⁺⁺, Ni⁺⁺, Co⁺⁺, A1, Ga, In, T1⁺⁺⁺, Cr⁺⁺⁺, Fe⁺⁺⁺, Rare: Earths - Sb⁺⁺⁺, Bi⁺⁺⁺

Ge, Ti, Th, Sn⁺⁺⁺⁺, Pb⁺⁺⁺⁺ - Uranyl.

For each metallic ion, the salts are arranged according to the valency of the anion and the oxygenated salts after all others, as follows:

fluorides, chlorides, bromides, iodides, cyanides, thiocyanates, etc.;

oxides, sulfides, selenides, etc. - nitrides, borides, carbides, silicides;

hydrates, thiohydrates - nitrites, chlorites... chlorates, bromates, iodates, nitrates; phosphites, arsenites; perchlorates - permanganates; phosphates, arsenates, etc.; carbonates, sulfites, metasilicates; sulfates, selenates, chromates, manganates; orthosilicates.

4. Order of the constants.

So far as possible, especially for systems where the data are particularly numerous, the order in which the properties are classified is as follows:

a) Heterogeneous equilibria:

Critical constants; saturates vapour pressure for the triphase equilibrium.

Vapour pressure curve; boiling curve and azeo-

Composition of liquid and vapour coexisting phases.

Densities of coexisting phases and rectilinear diameter.

Composition of the two liquid phases and eventually of the saturated vapour; critical solution point.

Freezing and melting curve; eutectic and transition points.

Equilibria of the condensed phases under high pressure.

b) Properties of phases: first for the gas, then the liquid and finally the mixed crystals:

Densities, coefficients of expansion and of compressibility.

Viscosity and surface tension.

Refractive index and optical dispersion. Dielectric constant; electrical conductivity. Optical rotatory power.

Magnetic rotation; magnetic susceptibility.

c) Thermal constants:

Specific heat; heat of solution or mixing. Heat of vaporization and fusion. Thermal conductivity.

5. Choice of units.

So far as possible, we have always used units of the c.g.s. system; when necessary, we have converted the original results into these units, so far as it did not involve the use of a coefficient whose value has changed sometimes. Ex: we could, without any ambiguity, transform specific volumes into densities, or density d_t^t into d_t^t ; but to transform molar concentration in weight concentration, if not made by the author himself, would have involved a somehow arbitrary choice of atomic weights.

All our numerical data have been taken as given in the original paper; we always gave priority to direct experimental results, rather than recalculated curves.

Here follow some additional details about the choice of units:

Viscosity: in poises . 10⁵ Surface tension: in dynes/cm

Temperature: t in centigrade; T = absolute temperature = t + 273.16

Pressure: p - in mm Hg; P - in atmospheres; $P_{kg}^{}$ - in kg/cm²

 π and τ represent pressure or temperature coefficient of the constant considered, which means its change by kg or by degree; but when it relates to volume changes, π and τ are coefficients of compressibility or expansion, as given by the formulae:

$$v_t = v_o$$
. $(1 + \tau.t)$ and $v_p = v_1$. $(1 - \pi.P)$

Specific heat: in calories / gram of mixture Heat of mixing, heat of vaporization, etc. - in calories / mole of mixture.

In case other units were exceptionally used, this is expressely stated in column headings.

N.B. Scientists of the whole world always agree to give their results in units of the metric system; only in Anglo-Saxon countries, did some authors give <u>also</u> their results in British

units, for the ease of their technicians. But in recent years some American physico-chemists, namely Sage and his co-workers, have published in Industrial and Engineering Chemistry some extensive tables of data on isotherms of mixtures of hydrocarbons, only in British units (°F, pressure in Lb/sq.in., etc.), without any corresponding tables in metric values, which makes them quite unsuitable for general use in other countries. We have made in most cases the necessary calculations to reproduce these data in metric units, but this work is so laborious and tedious that we were unable to give the complete data; and we wish to protest here with energy against this new mode of publication, which takes no notice of the international scientific public.

6. Nomenclature and bibliographical data.

A. Nomenclature.

Inside this work the common names of the substances are used, with their molecular formulae; but in the Table at the end of the 4th volume, they are classified in the same order as in the Chemical Abstracts, with the different synonyms. For ex., the compound we call ethylene chloride in the book itself, is also named: 1,2-dichlorethane, in the table.

B. Bibliographical data.

Inside the book, the data are reproduced under the name of their author, with the year of publication. The complete bibliographical reference is to be found in the alphabetical list of authors, at the end of this book.

For the transcription of Russian names, we have applied the rules used in Chemical Abstracts. But in case of a Russian author, all of whose quoted publications have been printed in Latin caracters, we have reproduced his name as he had it transcribed himself; when necessary, we give also in the list of authors, the alternative transcription of his name.

7. Symbols and abbreviations.

```
Rotatory power, for the
 α
                  length = 10 cm
(a)
                  Specific rotatory power
(\alpha)^{mol}
                  Molar
(a)<sub>magn</sub>
                  Specific magnetic rotatory
                                            power
(\alpha)_{magn}^{mol}
                  Molar
                  Dielectric constant
 ε
                  Viscosity, in poises (.10<sup>5</sup>)*
 η
                  Specific conductivity (.104)
                  Equivalent conductivity
                  Pressure coefficient (.10<sup>6</sup>)
                  Surface tension, in dynes/cm
                  Temperature coefficient
                  Magnetic susceptibility (.10<sup>6</sup>) (specific)
 C
                  Crystal
 C.S.T.
                  Critical solution temperature
 C.V.T.
                            vaporization
                  Diffusion coefficient (.10<sup>5</sup>)
                  Thermal diffusion coefficient
 \mathbf{D}_{\text{therm}}
 D b.t.
                  Boiling temperature difference
 Df.t.
                  Freezing
 \mathbf{D}_{\mathbf{D}}
                  Pressure difference
 Dt
                  Temperature
 Dv
                  Volume
 Е
                  Eutectic
                  Liquid
 M
                  Molarity
 N
                  Normal concentration
 P
                  Pressure, in atmospheres
                              in kg/cm<sup>2</sup>
 Q comb
                  Heat of combustion (cal/gram
                                               mixture)
                           dilution (cal/mole
 Q dil
                                             mixture)
 Q diss
                           dissolution
 Q melt
                           fusion
 0 mix
                           mixing
 Q trans
                           transition
 Q vap
                           vaporization
```

R	Resistivity
S	Solid
T	Absolute temperature
U	Specific heat (cal/gram mixture)
v	Vapour
aq	Aqua, water
a tm	Atmosphere
b.t.	Boiling temperature
c	g/100 cc solution
cc	Cubic centimeter
cal	Calorie (small)
crit.	Critical
d	Density (t/4)
dissoc.	Dissociation
e	Electromotive force (in volts)
f.t.	Freezing temperature
g	Gram
ī	Liter
m	Molality
mm	Millimeter
mg	Milligram
min	Minutes
mo1	Molar
m.t.	Melting temperature
n	Refractive index
p	Pressure in mm Hg
sat.t.	Saturation temperature (mutual solubility)
sol.	Solution
s. or sym.	Symmetrical
t	Temperature, centigrade
tr.t.	Transition temperature
trans.	Transition
vo1	Volume
v _o	Volume at 0%
w.l.	Wave length (in Ångström unit)
%	Weight percent
I, II, etc.	Polymorphic forms
I - II	Transition of form I into form II

^{*} The given powers for some units are systematically used in the Tables, unless otherwise stated.

____SYMBOLS AND ABBREVIATIONS_____

		D b.t.	Boiling temperature difference
α	Rotatory power, for the	D f.t.	Freezing " "
	length 10 cm	Dp	Pressure difference
(a)	Specific rotatory power	Dt	Temperature "
$(\alpha)^{mol}$	Molar " "	Dv	Volume "
(α) magn	Specific magnetic rotatory power	E	Eutectic
$(\alpha)_{mogn}^{mol}$	Molar " "	L	Liquid
· magn ε	Dielectric Constant	M	Molarity
	Viscosity, in poises (.10 ⁵)*	N	Normal concentration
η	4	P	Pressure, in atmospheres
и	Specific conductivity (.10 ⁴)	$P_{\mathbf{k}\mathbf{g}}$	" in kg/cm ²
λ	Equivalent conductivity	Q comb	Heat of combustion (cal/gram
π	Pressure coefficient (.10 ⁶)	•	mixture)
σ	Surface tension, in dynes/cm	Q dil	" dilution (cal/mole mixture)
τ	Temperature coefficient	0 diss	" dissolution "
X	Magnetic susceptibility $(.10^6)$ (specific)	Q melt	" fusion "
С	Crystal	Q mix	" mixing
C.S.T.	Critical solution temperature	Q trans	" transition "
C.V.T.	" vaporization "	Q vap	" vaporization "
D	Diffusion coefficient $(.10^5)$	R	Resistivity
D therm	Thermal diffusion coefficient	S	Solid

Т	Absolute temperature	mol	Molar	
U	Specific heat (cal/gram	m.t.	Melting temperature	
1,	vapour	n	Refractive index	
V		p	Pressure in mm Hg	
aq	Aqua, water	sat. t.	Saturation temperature (mutual solubility)	
atm	atmosphere	sol	Solution	
b.t.	Boiling temperature	s. or sym.	Symmetrical	
С	g/100 cc solution	t	Temperature, centigrade	
cc	Cubic centimeter	tr. t.	Transition temperature	
cal	Calorie (small)		Transition	
crit.	Critical	vol	Volume	
d	Density (t/4)	v _o	Volume at 0%	
dissoc.	Dissociation	w.1.	Wave length (in Ångström unit)	
e	Electromotive force (in volts)	%	Weight percent	
f.t.	Freezing temperature	I,II,etc.	Polymorphic forms	
g	Gram	I – II	Transition of form I into	
1	Liter		form II	
m	Molality			
mm	Millimeter	* The given powers for some units are		
mg	Milligram	systematically used in the Tables, unless otherwise stated.		
min	Minutes			