# Laboratorio di Fisica 1 R10: Taratura di una termocoppia

Gruppo 15: Bergamaschi Riccardo, Moglia Simone, Graiani Elia30/04/2024 - 07/05/2024

#### Sommario

Il gruppo di lavoro ha determinato la curva di calibrazione di una termocoppia sfruttando punti fissi, ovvero temperature note, di svariate sostanze chimiche.

## 0 Materiali e strumenti di misura utilizzati

| Strumento di misura                                       | Soglia                                                                                                       | Portata                                                       | Sensibilità       |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|--|
| Termocoppia (tipo K)                                      | $-6.03\mathrm{mV}$                                                                                           | $50.64\mathrm{mV}$                                            | $0.01\mathrm{mV}$ |  |
| Cronometro                                                | $0.01\mathrm{s}$                                                                                             | N./A.                                                         | $0.01\mathrm{s}$  |  |
| Termometro ambientale                                     | $-20.0^{\circ}\mathrm{C}$                                                                                    | 50.0 °C                                                       | 0.5 °C            |  |
| Altro                                                     | Descrizione/Note                                                                                             |                                                               |                   |  |
| Campioni di sostanze chimi-<br>che                        | Azoto liquido, acqua distillata, etanolo, gallio e indio.                                                    |                                                               |                   |  |
| Amplificatore di voltaggio                                | Amplifica di un fattore 100 il voltaggio rilevato dalla termocoppia, rendendo possibile l'acquisizione dati. |                                                               |                   |  |
| Fornelletto e pentolino                                   | Per scaldare i campioni.                                                                                     |                                                               |                   |  |
| Cacciavite                                                | Utilizzato po<br>l'interfaccia.                                                                              | Utilizzato per collegare la termocoppia al-<br>l'interfaccia. |                   |  |
| Guanto da forno, pinzette, presine e contenitori isolanti | Per maneggi                                                                                                  | Per maneggiare i campioni in sicurezza.                       |                   |  |

## 1 Esperienza e procedimento di misura

- 1. Posizioniamo una giunzione della termocoppia (che d'ora in poi indicheremo come "giunzione fissa") in un miscuglio di acqua distillata (solida e liquida) alla temperatura costante di  $(273.1\pm0.1)\,\mathrm{K}$ .
- 2. Per ogni punto fisso, individuiamo il voltaggio  $\Delta V$  misurato dalla termocoppia, con la giunzione libera immersa nel campione, quando quest'ultimo
  effettua la transizione di fase. Tale fenomeno è individuabile nel grafico
  di  $\Delta V$  in funzione del tempo in quanto si presenta come un plateau: la
  temperatura è infatti costante fino al termine della transizione di fase.
- 3. Dopo ogni acquisizione, misuriamo la temperatura ambiente con il termometro ambientale, per assicurarci che non sia variata (al netto della sensibilità dello strumento). Per tutte le acquisizioni, abbiamo rilevato  $(21.0\pm0.5)\,^{\circ}\mathrm{C}=(294.1\pm0.5)\,\mathrm{K}$

Di seguito indichiamo i passaggi necessari, caso per caso, al raggiungimento dei diversi punti fissi, unitamente alle rispettive temperature (note a priori).

### Acqua (fusione) e azoto (ebollizione)

**Temperature**: rispettivamente,  $(273.1 \pm 0.1) \,\mathrm{K} \,\mathrm{e} \,(77.3 \pm 0.1) \,\mathrm{K}$ 

Data la considerevole quantità di ghiaccio e azoto liquido ed essendo entrambe le temperature di transizione di fase minori della temperatura ambiente, i passaggi di stato avvengono spontaneamente e per lungo tempo.

Questo ha permesso al gruppo di lavoro, in entrambi i casi, di inserire direttamente la giunzione nella miscela tra le due fasi, senza la necessità di svolgere passaggi ulteriori.

#### Acqua (ebollizione)

Temperatura:  $(373.1 \pm 0.1) \,\mathrm{K}$ 

L'unica differenza con il caso precedente è la spontaneità della transizione di fase: il gruppo di lavoro ha pertanto, preliminarmente, portato a bollore una considerevole quantità d'acqua distillata, scaldandola nel pentolino.

È stato poi sufficiente immergere la giunzione nell'acqua in ebollizione.

#### Etanolo, indio e gallio (fusione)

**Temperature**: rispettivamente,  $(158.8\pm0.1) \, \text{K}$ ,  $(302.9\pm0.1) \, \text{K}$  e  $(429.7\pm0.1) \, \text{K}$ 

A differenza dei precedenti, in questi casi i campioni hanno massa relativamente ridotta, per cui la transizione di fase è breve. È necessario dunque svolgere i seguenti passaggi:

- 1. Per prima cosa, se il campione non era già allo stato liquido (è il caso di indio e gallio), lo abbiamo portato alla fusione una prima volta fornendogli calore.
- 2. Con il campione in fase liquida, è stato possibile immergervi completamente la giunzione libera della termocoppia, per poi portare il tutto alla solidificazione sottraendo calore al sistema.
- 3. Soltanto a questo punto è stato possibile portare nuovamente il campione al punto di fusione, dopo aver avviato l'acquisizione dati.

L'indio è stato scaldato in un crogiolo, a contatto con il fornello; il gallio, invece, è stato scaldato a bagnomaria, ovvero immerso nel pentolino pieno d'acqua. Entrambi sono stati invece raffreddati semplicemente lasciandoli riposare a temperatura ambiente.

L'etanolo, al contrario, essendo liquido a  $(294.1\pm0.5)\,\mathrm{K}$ , è stato raffreddato immergendolo nell'azoto liquido e riscaldato estraendolo da quest'ultimo.

Nota. Il gruppo di lavoro ha acquisito dati durante la fusione, e non direttamente durante il congelamento, per evitare di incorrere nel fenomeno del sottoraffreddamento: sostanze come l'etanolo e il gallio, infatti, possono raffreddarsi al di sotto del punto di fusione senza cambiare fase, per poi solidificare velocemente se perturbati.

#### 2 Analisi dei dati raccolti

#### 2.1 $\Delta V$ dei punti fissi

Di seguito riportiamo, per ogni punto fisso, il relativo grafico dei dati raccolti  $\Delta V(t)$ .

A causa della presenza di rumore, abbiamo scelto di considerare come variazione di potenziale associata ad ogni punto fisso la media di tutti i punti che compongono il rispettivo plateau (evidenziato in nero).<sup>1</sup>

$$\sigma_{\overline{\Delta V}} = \frac{\sigma_{\Delta V}}{\sqrt{N}}$$

 $<sup>^1\</sup>mathrm{L}'$ errore sulla media è stato pertanto calcolato come di consueto:



$$\begin{array}{l} {\rm Acqua~(fusione)} \\ \Delta V = (0.032 \pm 0.007)\,{\rm mV} \end{array}$$



Azoto (ebollizione)  $\Delta V = (-5.652 \pm 0.013)\,\mathrm{mV}$ 



 $\begin{array}{l} {\rm Acqua~(ebollizione)} \\ \Delta V = (3.967 \pm 0.010)\,{\rm mV} \end{array}$ 



 $\begin{array}{l} {\rm Etanolo~(fusione)} \\ \Delta V = (-3.94 \pm 0.07)\,{\rm mV} \end{array}$ 



 $\begin{array}{c} {\rm Indio~(fusione)} \\ \Delta V = (6.214 \pm 0.017)\,{\rm mV} \end{array}$ 



 $\begin{array}{l} \text{Gallio (fusione)} \\ \Delta V = (1.00 \pm 0.03)\,\text{mV} \end{array}$ 

#### 2.2 Curva caratteristica della termocoppia

Per determinare la curva di calibrazione il gruppo di lavoro ha effettuato tre regressioni polinomiali, con polinomi di primo, secondo e terzo grado.

Abbiamo considerato come variabile indipendente la temperatura (in K) e come variabile dipendente la differenza di potenziale (in mV).

In alcune misurazioni di  $\Delta V(t)$  (in particolare: ebollizione e fusione dell'acqua, ebollizione dell'azoto e fusione del gallio) avevamo iniziato ad acquisire dati a temperatura ambiente: questo ci ha permesso di effettuare una valutazione dell'accuratezza delle curve ottenute, determinando  $T_{\rm ambiente}$  per interpolazione.

Quest'ultima è stata effettuata determinando, in tutti e tre i casi, l'unica soluzione accettabile dell'equazione (in  $T_{\rm ambiente,interpolata}$ ):

$$\Delta V_{\text{regressione}}(T_{\text{ambiente,interpolata}}) - \Delta V_{\text{ambiente}} = 0 \,\text{mV}$$

con  $\Delta V_{\rm ambiente} = (0.85 \pm 0.01) \, {\rm mV}$ , media delle differenze di potenziale registrate a temperatura ambiente. L'errore su  $T_{\rm ambiente,interpolata}$  è stato allora calcolato mediante la tradizionale propagazione degli errori.

Infine, per valutare numericamente l'accuratezza di ogni curva, abbiamo calcolato, per ciascuna, il seguente valore (numero puro):

$$\varepsilon = \frac{(T_{\rm ambiente,interpolata})_{\rm best} - (T_{\rm ambiente,misurata})_{\rm best}}{\delta T_{\rm ambiente,interpolata} + \delta T_{\rm ambiente,misurata}}$$

Questo indice gode delle seguenti proprietà:

- $T_{\text{ambiente,interpolata}}$  è consistente con  $T_{\text{ambiente,misurata}}$  se e solo se  $|\varepsilon| \leq 1$ .
- Se  $\varepsilon > 0$ , allora  $T_{\rm ambiente,interpolata}$  è una sovrastima di  $T_{\rm ambiente,misurata}$ ; viceversa, se  $\varepsilon < 0$ , allora si tratta di una sottostima.
- Più  $\varepsilon$  è vicino a 0, più accurata è la stima di  $T_{\rm ambiente}$  ottenuta mediante interpolazione (e, di conseguenza, anche la stima della curva).

Di seguito riportiamo i grafici di tutte e tre le curve, accompagnati dalle rispettive equazioni e dai valori di  $T_{\rm ambiente,interpolata}$  e  $\varepsilon$ . Esplicitiamo, inoltre, l'errore relativo su  $T_{\rm ambiente,interpolata}$ , in quanto indice della *precisione* dell'interpolazione — contrapposto al sopra citato  $\varepsilon$ .



In rosso, la curva di regressione; in rosa, la sua regione di incertezza.

Equazione della curva di regressione:

$$\Delta V_{\rm lineare}(T) = (3.337 \pm 0.005) \cdot 10^{-2} \, \rm mV \, K^{-1} \cdot T \\ + (-8.735 \pm 0.015) \, \rm mV$$

Soluzione di  $\Delta V_{\text{lineare}}(T_{\text{ambiente}}) - \Delta V_{\text{ambiente}} = 0 \,\text{mV}$ :

$$T_{\text{ambiente}} = (287.3 \pm 0.9) \,\text{K} = (14.1 \pm 0.9) \,^{\circ}\text{C}$$

Stima dell'accuratezza rispetto a  $T_{\rm ambiente, misurata}$ :

$$\varepsilon_{\mathrm{lineare}} \simeq -5.021$$

Stima della precisione (errore relativo):

$$\frac{\delta T_{\rm lineare}}{T_{\rm lineare}} \simeq 0.30\%$$



In rosso, la curva di regressione; in rosa, la sua regione di incertezza.

Equazione della curva di regressione:

$$\begin{split} \Delta V_{\rm quadratica}(T) &= (3.13 \pm 0.04) \cdot 10^{-5} \, \mathrm{mV \, K^{-2}} \cdot T^2 \\ &+ (1.82 \pm 0.02) \cdot 10^{-2} \, \mathrm{mV \, K^{-1}} \cdot T \\ &+ (-7.26 \pm 0.02) \, \mathrm{mV} \end{split}$$

Soluzione (accettabile) di  $\Delta V_{\rm quadratica}(T_{\rm ambiente}) - \Delta V_{\rm ambiente} = 0\,{\rm mV}$ :

$$T_{\text{ambiente}} = (295.6 \pm 2.1) \,\text{K} = (22.4 \pm 2.1) \,^{\circ}\text{C}$$

Stima dell'accuratezza rispetto a  $T_{\rm ambiente, misurata}$ :

$$\varepsilon_{\rm quadratica} \simeq 0.558$$

Stima della precisione (errore relativo):

$$\frac{\delta T_{\rm quadratica}}{T_{\rm quadratica}} \simeq 0.72\%$$



In rosso, la curva di regressione; in rosa, la sua regione di incertezza.

Equazione della curva di regressione:

$$\Delta V_{\text{cubica}}(T) = (-9.4 \pm 0.8) \cdot 10^{-8} \,\text{mV K}^{-3} \cdot T^{3}$$

$$+ (10.3 \pm 0.6) \cdot 10^{-5} \,\text{mV K}^{-2} \cdot T^{2}$$

$$+ (0.23 \pm 0.14) \cdot 10^{-2} \,\text{mV K}^{-1} \cdot T$$

$$+ (-6.41 \pm 0.08) \,\text{mV}$$

Soluzione (accettabile) di  $\Delta V_{\rm cubica}(T_{\rm ambiente}) - \Delta V_{\rm ambiente} = 0\,{\rm mV}$ :

$$T_{\rm ambiente} = (294.8 \pm 18.2)\,{\rm K} = (21.6 \pm 18.2)\,{}^{\circ}{\rm C}$$

Stima dell'accuratezza rispetto a  $T_{\rm ambiente, misurata}$ :

$$\varepsilon_{\mathrm{cubica}} \simeq 0.037$$

Stima della precisione (errore relativo):

$$\frac{\delta T_{\rm cubica}}{T_{\rm cubica}} \simeq 6.18\%$$

## 3 Conclusioni

Osservando i valori di  $\varepsilon$  risulta ben chiaro che  $T_{\rm lineare}$  non è affatto compatibile con  $T_{\rm misurata}$ : possiamo dedurne che il modello linare non si adatta bene ai dati da noi raccolti.<sup>2</sup>

Al contrario, sia il modello quadratico che quello cubico ci hanno permesso di interpolare la temperatura ambiente con successo. Si osservi che  $|\varepsilon_{\rm cubica}| < |\varepsilon_{\rm quadratica}|$ : ciò suggerisce una maggiore accuratezza del modello cubico rispetto a quello quadratico.

Tuttavia, è semplice notare che l'errore relativo su  $T_{\rm cubica}$  è nettamente superiore a quello di  $T_{\rm quadratica}$ : il gruppo di lavoro ritiene che il motivo principale di questa differenza sia la complessità della funzione risolutiva utilizzata per calcolare  $T_{\rm ambiente,interpolata}$  e della sua derivata, utilizzata nel calcolo dell'errore.

Ricordiamo, inoltre, che nel modello cubico è presente, naturalmente, un parametro in più rispetto al modello quadratico; parametro a cui è associato un errore che contribuisce ulteriormente all'incertezza su  $T_{\rm ambiente,interpolata}$ .

In conclusione, il gruppo di lavoro ha ritenuto l'esperienza avvenuta con successo.

 $<sup>^2</sup>$ A dire il vero  $\varepsilon_{\text{lineare}} < -1$  non ne è l'unico indizio: anche solo l'errore sui parametri della regressione, o la distribuzione dei punti nel grafico, suggeriscono un chiaro andamento (perlomeno) quadratico.