NOM:

INTERRO DE COURS – SEMAINE 23

Exercice 1 – On considère la fonction g définie sur \mathbb{R} par $g(x) = x^3$ et on définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0.4$ et $u_{n+1}=g(u_n)$ pour tout $n\in\mathbb{N}$.

1. Montrer par récurrence que $u_n \in]0,1[$ pour tout $n \in \mathbb{N}$.

Solution : Je raisonne par récurrence sur $n \in \mathbb{N}$.

Je préfère utiliser l'expression équivalente $0 < u_n < 1$ à la place de $u_n \in [0,1[$.

Énoncé: Je note \mathcal{P}_n la propriété: $0 < u_n < 1$.

0 < 0.4 < 1. Ainsi \mathcal{P}_0 est vraie. **Initialisation :** Pour n = 0, $u_0 = 0.4$ et

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence, je sais que $0 < u_n < 1$, alors comme la fonction $g(x) = x^3$ est strictement croissante sur l'intervalle [0,1],

$$0 < u_n < 1 \iff g(0) < g(u_n) < g(1) \iff 0^3 = 0 < u_{n+1} < 1 = 1^3.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion: Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad 0 < u_n < 1.$$

2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

Solution : Je calcule la différence entre deux termes consécutifs. Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n^3 - u_n = u_n(u_n^2 - 1) = u_n(u_n + 1)(u_n - 1) < 0,$$

puisque j'ai montré que $0 < u_n < 1$ donc $u_n > 0$, $u_n + 1 > 1 > 0$ et $u_n - 1 < 0$. Finalement $u_{n+1} - u_n < 0$ *i.e.* $u_{n+1} < u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc bien strictement décroissante.

3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Solution: En combinant les deux questions précédentes, je sais que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et qu'elle est minorée par 0. Donc grâce au théorème de la limite monotone, j'en déduis que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

Je note ℓ sa limite, de sorte que $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} u_{n+1} = \ell$. Puisque $u_{n+1} = u_n^3$, en faisant tendre n vers l'infini et en passant à la limite, j'obtiens

$$\ell = \ell^3 \iff \ell^3 - \ell = 0 \iff \ell(\ell+1)(\ell-1) = 0 \iff \ell \in \{-1,0,1\}.$$

Comme pour tout $n \in \mathbb{N}$, $u_n \in]0,1[$, alors ℓ ne peut pas être égal à -1. Aussi $u_0 = 0.4$ et $(u_n)_{n \in \mathbb{N}}$ est décroissante donc ℓ ne peut pas valoir 1.

Alors j'en conclus que

$$\ell = \lim_{n \to +\infty} u_n = 0.$$