Structural Equation Modeling

Chapter 16

Full SEM

- > You have to have:
 - Measurement model: the CFA part
 - Structural part: the relationship between the latents

Full SEM

> Reminder:

- Reflective indicators / effects indicators
 - >We assume factors cause the indicators, so the arrows go out.
- Formative indicators / cause indicators
 - >When we use items to predict a latent (arrows go into the latent).

Full SEM

- > Example of formative indicator
 - Income, education level, and occupation all predict your SES
 - Stress caused by outside factors
- > Other names:
 - Composite causes
 - MIMIC multiple indicators, multiple causes models

Measurement Model Identification Reminder

- > Identification rules of thumb:
 - Latent variables should have four indicators
 - Latent variables have three indicators AND
 - > Error variances do not covary
 - Latent variables have two indicators AND
 - > Error variances do not covary
 - >Loadings are set to equal each other.

Structural Model Identification

- Scaling is also required to identify the structural part
- > 2+ emitted paths rule
 - Composite variable must have have direct effects on two other endogenous variables

> Parceling

- When you have large structural models, they can be very complex to fit to a Full SEM if each latent variable has lots of indicators (items).
- Parceling occurs when you creating subsets of items to be able to get the model to run and to balance out the number of indicators on each latent.

> Parceling

 At the moment, this topic is still pretty controversial. Many fall into the: this is bad don't do it camp.

- > How to model?
 - Test each CFA piece separately to make sure they run.***
 - Slowly add structural paths to see if you can get the full model to work.
 - > If not, try parceling.
 - Drop non-significant paths.
- > ***if your CFA is bad, the full model will be bad too.

- > As you add the structural components, you should not see a big change in the loadings to the indicators
 - If you do, it means the model is not invariant (a fancy word for doesn't change)
 - Called interpretational confounding

When to Stop?

- > We've discussed lots of tricks to explore models and improve them.
- > When do you quit?
 - Based on theory
 - Fit indices do not greatly improve
 - Parsimony