Оценка репутационных рисков при реализации аппаратно-программных комплексов

Аннотация

В работе рассматривается решение задачи анализа репутационных рисков ITкомпании, на основе построения модели жизненного цикла на стадии реализации программно-аппаратных комплексов, введения вероятностных мер для анализа рисков и обоснованного выбора решения позволяющих минимизировать потери.

Ключевые слова: модель ЖЦ, репутация, репутационные риски, аппаратнопрограммные комплекс.

Введение

Методы и средства моделирования систем составляют неотъемлемую часть методического, программного и технического обеспечения, используемого при проведении научных и экспериментальных исследований и решении задач автоматизации проектирования различных систем. В последние десятилетия расширились исследования в области автоматизации проектирования программного обеспечения (ПО). Одна из важных задач, возникающих при этом, связана с повышением производительности разработки ПО за счет использования моделей жизненного цикла (ЖЦ) аппаратно-программных комплексов и обоснованного выбора продолжительности фаз. Под моделью ЖЦ [3] будем понимать структуру, определяющую последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении ЖЦ.

В глобальном финансово-экономическом кризисе выжить в экстремальных условиях организации помогают ранее сформировавшаяся репутация и завоеванное доверие акционеров, партнеров и клиентов, а также эффективная работа по идентификации и минимизации репутационных рисков. Словарь Penguin English Dictionary[1] описывает репутацию так: «1) общее качество или характер, как его видят или судят о нем другие люди; 2) слава, известность; 3) признание другими людьми наличия той или иной особенности или свойства». Поэтому в представленной модели под репутацией компании будем понимать, некоторую численную величину, которая представляет собой оценку деятельности лица с точки зрения его деловых качеств. А репутационный риск [1] определять в качестве некоторой вероятности события, которое повлечет изменения оценки компании ключевыми группами ее корпоративной аудитории. Численная оценка репутационного риска определяется через вероятность появления риска, значимость последствий риска и вероятность обнаружения риска.

Построение и анализ модели ЖЦ

Анализ модели ЖЦ осуществляется посредством формулирования четырех основных категории процессов компании во время выполнения проекта [2]:

- Процессы соглашения процессы определяющие действия, необходимые для выработки соглашений между двумя организациями.
- Процессы организационного обеспечения проекта процессы, осуществляющие менеджмент возможностей организаций приобретать и

- доставлять продукты или услуги через инициализацию, поддержку и управление проектами.
- **Процессы проекта** процессы относящееся к планированию, оценке и управлению проектом. Принципы, связанные с этими процессами, могут применяться в любой области менеджмента организаций.
- **Технические процессы системы** процессы, используемые для определения требований к системе, преобразования требований в полезный продукт, для разрешения постоянного копирования продукта (где это необходимо), применения продукта, обеспечения требуемых услуг, поддержания обеспечения этих услуг и изъятия продукта из обращения, если он не используется при оказании услуги.

Этап реализации аппаратно-программных комплексов, входит в Технические процессы компании, рассмотрим составляющие данного этапа:

- Процесс анализа требований к программным средствам процесс установки требований к программным/аппаратным элементам системы.
- Процесс проектирования архитектуры программных средств процесс заключается в обеспечении проекта для программных средств, которые реализуются и могут быть верифицированы относительно требований.
- Процесс детального проектирования программных средств процесс заключается в обеспечении проекта для программных средств, которые реализуются и могут быть верифицированы относительно установленных требований и архитектуры программных средств, а также существенным образом детализируются для последующего кодирования и тестирования.
- **Процесс конструирования программных средств** заключается в создании исполняемых программных блоков, которые должным образом отражают проектирование программных средств.
- Процесс комплексирования программных средств заключается в объединении программных блоков и программных компонентов, создании интегрированных программных элементов, согласованных с проектом программных средств, которые демонстрируют, что функциональные и нефункциональные требования к программным средствам удовлетворяются на полностью укомплектованной или эквивалентной ей операционной платформе.
- Процесс квалификационного тестирования программных средств заключается в подтверждении того, что комплектованный программный продукт удовлетворяет установленным требованиям.

Время выполнения работ на каждом этапе ЖЦ аппаратно-программных изделий является величиной случайной, а процессы ЖЦ — стохастическими, введем вероятностную модель ЖЦ в виде ориентированного графа состояний, вершины которого будут соответствовать этапам ЖЦ, а дуги — связям между этапами. Обозначим: $x \in X$ — множество состояний модели ЖЦ, $p_{kj}(t)$ — вероятности перехода модели из состояния k в состояние j в момент времени t. Тогда, взвесив дуги вероятностями переходов, характеризующими интенсивности перехода модели из

одного состояния в другое, получим вероятностную модель ЖЦ в виде матрицы переходных вероятностей P(t). Так как все работы на каждой фазе ЖЦ аппаратнопрограммных изделий должны быть выполнены, справедливо следующее равенство:

$$\sum_{j=0}^{n} p_{kj}(t) = 1 \tag{1}$$

Представление вероятностной модели Технических процессов при помощи цепи Маркова, отображено на Рисунке 1. На графе m_i определяются экспертами на основе статистических данных о выполнении предшествующих проектов.

Рисунок 1. Граф состояний Технических процессов компании. Для удобства анализа, цепь Маркова можно представить в виде матрицы переходов:

$$\begin{pmatrix} 1 - m_1 & m_1 & 0 & 0 & 0 & 0 \\ 0 & 1 - m_2 & m_2 & 0 & 0 & 0 \\ 0 & 0 & 1 - m_3 & m_3 & 0 & 0 \\ m_7 & 0 & 0 & 1 - m_4 - m_7 & m_4 & 0 \\ 0 & 0 & 0 & 0 & 1 - m_6 & m_6 \\ m_8 & 0 & 0 & 0 & 0 & 1 - m_8 \end{pmatrix}$$
 (2)

Определение критериев результативности

В приведенной вероятностной модели определены некоторые критерии результативности процессов, по которым определяется успешность перехода из одного состояния в другое (завершения некоторого этапа), данные критерии легко проградуировать и взвесить.

Пример составления критериев результативности на основании процесса Конструирование программных средств представлен в Таблице 1 (см. Приложение).

Генерация репутационных рисков и причин появления рисков

На основании алгоритма, по составленным критериям, смоделированы причины возникновения рисков, по которым построены модели рисков. Алгоритм основывается на прохождении списка критериев и рассмотрении для каждого из них всех возможных вариантов причин появления рисков:

- Невыполнение установленного критерия результативности (по каждому критерию);
- Нарушение плана действий при работе над процессом;
- Не достижение намеченных результатов процессом;
- Отсутствие прогресса при внесении изменений в процесс.

Пример построения причин и репутационных рисков на процессе конструирования программных средств представлен в Таблице 2 (см. Приложение).

Метод анализа видов и последствий потенциальных отказов [4]

Оценка и анализ рисков, осуществлена на основе метода анализа видов и последствий потенциальных отказов(**FMEA**).

Метод FMEA базируется на расчете ранга приоритетности риска (RPN) по формуле:

$$RPN = \widehat{P}_{\Pi} \cdot \widehat{P}_{0} \cdot \widehat{S}$$
 (3)

 $\widehat{P_{\Pi}}$ — оценка вероятности появления (оценка потенциала появления) данного вида риска; $(0 \dots 1)$

 $\widehat{P_0}$ – оценка возможности обнаружения (с помощью существующих методов) данного вида риска с целью предупреждения его реализации; (0 ... 1)

 \hat{S} — оценка значимости последствий данного вида риска при возможной его реализации (0 ... 10)

Принятие решений

Исходя из полученной величины RPN, экспертная группа принимает одно из следующих решений, при помощи экспертной функции П:

$$\Pi = \begin{cases} 0.0 < RPN \leq 0.4, & \text{принимаем решение } H_0 \\ 0.4 < RPN \leq 1.0, & \text{принимаем решение } H_1 \\ 1.0 < RPN \leq 10, & \text{принимаем решение } H_2 \end{cases}$$
 (4)

 ${
m H_0-}$ не требуется принятие предупреждающих мер; H_1- необходимо начать проработку мер по снижению риска; H_2- требуется незамедлительное принятие мер для снижения риска.

Численная оценка репутационного риска:

Метод FMEA применяется к каждой причине появления риска, и при помощи функции (3) определяется оценка причины появления риска. Следующим шагом необходимо при помощи весовой функции определить RPN репутационного риска:

$$RPN = \sum_{i=0}^{n} RPN_i \tag{4}$$

Пример расчетов оценки RPN для репутационных рисков представлен в Таблице 3 (см. Приложение).

Результирующая оценка репутационного риска:

Аналогично, при помощи значения RPN для каждого из рисков и весовой функции (4) определено значение RPN для каждого из процессов, а на основе значений RPN всех процессов компании возможно определить результирующую оценку репутационного риска компании. И, основываясь на полученных расчетах возможно принять решения по улучшению.

Приведем пример возможных улучшений, связанных с минимизацией репутационных рисков:

- Изменение плана выполнения "проблемного процесса" в случае, если такой наблюдается на основе значений RPN;
- Перераспределении вероятностей переходов у выбранной модели ЖЦ, для изменения длительности процессов;
- Выбор другой модели ЖЦ.

Заключение:

Рассмотренный в работе подход к выявлению репутационных рисков, подход к оценке репутационных рисков реализации аппаратно-программных комплексов, подход к принятию решений и разработанная модель жизненного цикла могут быть использованы при улучшении процесса проектирования программных средств. В работе был приведен пример использования данного алгоритма, в котором были проанализированы риски одного процесса предприятия. Недостатком представленного алгоритма является отсутствие методологии по анализу решений. В ходе дальнейших исследований будет разработан алгоритм, на основе которого будут приниматься решения, исходя из полученного анализа рисков.

Приложение:

Значения весов критериев и границ измерения в примере было определенно на основе данных предоставленных частным предприятием, в данной работе методика анализа данных не может быть разглашена. В случае использования данного алгоритма на другом предприятии, веса и границы необходимо расставлять, основываясь на статистических данных проектов и анализе экспертов.

Таблица 1. Критерии результативности процесса конструирования программных средств.

Процесс конструирования программных сред	цств			
Критерий результативности	Вес критерия	Границы измерения		
		Верхняя	Нижняя	
Отклонение от плана по ресурсам в ходе реализации ПС	0,10	8%	3%	
Отклонение от плана по срокам в ходе реализации ПС	0,10	10%	5%	
Доля некорректно работающего функционала найденная на моменте тестирования	0,30	5%	3%	
Доля не работающего функционала найденная на моменте тестирования	0,35	5%	3%	
Количество жалоб пользователей на низкую эффективность ПС связанную с низкокачественной реализацией кода.	0,15	7%	9%	

Таблица 2. Репутационные риски процесса конструирования программных средств и причины их появления.

Процесс конструирования программных средств					
Критерий результативности	Причины	Репутационные риски			

Отклонение от плана по ресурсам в ходе реализации ПС	Высокое отклонение от плана по ресурсам в ходе реализации ПС	Риск потери репутации из-за нарушения договора по затраченным ресурсам.
Отклонение от плана по срокам в ходе реализации ПС	Высокое отклонение от плана по срокам в ходе реализации ПС	Риск потери репутации из-за задержки поставки ПС.
Доля некорректно работающего функционала найденная на моменте тестирования	Высокая доля некорректно работающего функционала найденная на моменте тестирования	Риск потери репутации из-за некачественной работы ПС.
Доля не работающего функционала найденная на моменте тестирования	Высокая доля не работающего функционала найденная на моменте тестирования	Риск потери репутации из-за низкого уровня ПС по сравнению с требованиями рынка.
Количество жалоб пользователей на низкую эффективность ПС связанную с низкокачественной реализацией кода.	Нарушения плана проведения процесса конструирования ПС.	
	Недостижение запланированных результатов процессов конструирования ПС.	
	Отсутствия улучшений процессом конструирования программных средств в ходе внесения в него изменений	

Таблица 3. Репутационные риски процесса конструирования программных средств и причины их появления.

#	Процесс	Риски	RPN	Причины появления риска	RPN	p	$\widehat{P_\Pi}$	$\widehat{P_0}$	Ŝ
	Процесс	Риск потери		Отклонение от плана по ресурсам в ходе реализации ПС.	4,8	0,6	0,8	0,6	1
1	конструи рования программ ных средств	репутации из-за нарушения договора по затраченны м ресурсам.	0.6*4,8+ 0.4*3,0= 4,2	Нарушения плана проведения процесса конструирования ПС.	3,0	0,4	0,3	0,5	2

	Высокое отклонение от плана по срокам в ходе реализации ПС.	2,8	0,2	0,1	0,4	7
Риск потери репутации из-за 0,2* 0,3* 0,1*	8+ найденная на моменте 4+ тестирования.	0,8	0,3	0,4	0,1	2
задержки поставки ПС. 0,4*0,8= 1,8	Высокая доля не работающего функционала найденная на моменте тестирования.	2,4	0,1	0,2	0,3	4
	Нарушения плана проведения процесса конструирования ПС.	0,8	0,4	0,2	0,2	2

Список использованной литературы:

- [1] Гриффин Э. Управление репутационными рисками: стратегический подход.— М.: Альпина Бизнес Букс
- [2] ГОСТ Р ИСО/МЭК 12207-2010
- [3] Статья. Вероятностные модели жизненного цикла программных изделий. Вениамин Викторович Романцев
- [4] ГОСТ Р 51901.12-2007 (МЭК 60812:2006) Менеджмент риска. Метод анализа видов и последствий отказов