```
In [1]:
         import sympy as sp
         import sympy.physics.vector as vec
         from mecvoo import *
        1
In [2]:
        lamda, phi = sp.symbols("lambda, phi")
         NED = vec.ReferenceFrame("NED")
         ECEF = NED.orientnew("ECEF", "Body", [phi + rad(90), -lamda, 0], "yzx")
         D NED ECEF = NED.dcm(ECEF)
        math(sp.latex(D NED ECEF))
         D NED ECEF = sp.rot axis2(-phi) @ sp.rot axis1(lamda) @ sp.rot axis2(-sp.pi / 2)
        math(sp.latex(D NED ECEF))
          [ -\sin(\phi)\cos(\lambda) - \sin(\lambda)\sin(\phi) ] 
                                             \cos{(\phi)}
             -\sin(\lambda)
                           \cos{(\lambda)}
          -\cos(\lambda)\cos(\phi) - \sin(\lambda)\cos(\phi)
                                           -\sin\left(\phi
ight) ]
          -\sin(\phi)\cos(\lambda) -\sin(\lambda)\sin(\phi)
                                            \cos\left(\phi\right)
             -\sin(\lambda) \cos(\lambda)
                                               0
          -\cos(\lambda)\cos(\phi) - \sin(\lambda)\cos(\phi)
                                           -\sin{(\phi)}
       ii
In [3]:
         # Numa Terra esférica, a coordenada será igual a um vetor na direção ECEF.x de
         # magnitude R + altitude, rotacionado em ECEF.y pela latitude e ECEF.z pela longitude
         # então, as coordenadas ECEF aplicam a rotação contrária
         def coord2vec(lon, lat, h=0, R=sp.Symbol("R")) -> vec.Vector:
             Calcula vetor de posição a partir de coordenadas geográficas e altitude e retorna
             um vetor com base ECEF
             ========
             Inputs
             lon: longitude em graus
             lat: latitude em graus
             h: altitude em metros
             Output
             lon = rad(lon)
             lat = rad(lat)
             rot = sp.rot axis3(-lon) @ sp.rot axis2(lat) # rotação "body fixed"
             maq = R + h
             base = sp.Matrix([1, 0, 0])
             return vector(mag * rot @ base, ECEF)
In [4]:
         def vec2coord(vector: vec.Vector) -> sp.Matrix:
             Calcula longitude, latitude e altitude partir do vetor da posição relativa ao
             centro da Terra e retorna uma matriz nessa ordem
             vector: vetor de posição relativo ao centro da Terra (em sistemas conectados a ECEF)
             R = sp.symbols("R")
             c_ecef = vector.to_matrix(ECEF)
             # Altitude = distância ao centro - raio da Terra
             h = sp.simplify(vector.magnitude() - R)
             # Longitude pode ser encontrada pela razão das coordenadas X e Y
             lon = sp.simplify(sp.atan2(c ecef[1], c ecef[0]))
             \# Latitude pode ser encontrada pela razão entre a coordenada Z e a projeção no plano XY
             r = sp.sqrt(c ecef[0] ** 2 + c ecef[1] ** 2)
             lat = sp.simplify(sp.atan(c_ecef[2] / r_))
             return sp.Matrix([lon, lat, h])
```

```
In [5]:
    coord_ECEF = vector(sp.symbols("X:Z"), ECEF)
    lon, lat, h = sp.Matrix(sp.symbols("lon, lat, h"))
    R = sp.symbols("R")

math(
        f"{sp.latex(coord_ECEF.to_matrix(ECEF))}_{{ECEF}} = "
        + r"R_z(-lon) R_y(lat) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ end{bmatrix} (R + h)"

P = coord2vec(lon, lat, h)
    math(
        f"{sp.latex(coord_ECEF.to_matrix(ECEF))}_{{ECEF}} = " + sp.latex(P.to_matrix(ECEF))
)

math(
        r"\begin{bmatrix} lon \\ lat \\ alt \end{bmatrix} = "
        + sp.latex(sp.Matrix(vec2coord(coord_ECEF)))
)
```

$$egin{bmatrix} X \ Y \ Z \end{bmatrix}_{ECEF} = R_z(-lon)R_y(lat) egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} (R+h) \ egin{bmatrix} X \ Y \ Z \end{bmatrix}_{ECEF} = egin{bmatrix} (R+h)\cos\left(rac{\pi lat}{180}
ight)\cos\left(rac{\pi lon}{180}
ight) \ (R+h)\sin\left(rac{\pi lon}{180}
ight)\cos\left(rac{\pi lat}{180}
ight) \ \end{pmatrix} \ egin{bmatrix} (R+h)\sin\left(rac{\pi lat}{180}
ight) \end{bmatrix}$$

$$egin{bmatrix} lon \ lat \ alt \end{bmatrix} = egin{bmatrix} ext{atan}_2\left(Y,X
ight) \ ext{atan}\left(rac{Z}{\sqrt{X^2+Y^2}}
ight) \ -R+\sqrt{X^2+Y^2+Z^2} \end{bmatrix}$$

iii

```
In [6]:
    subs2_3 = {
        lon: -48.0448584,
        lat: -15.9890146,
        h: 1221,
        R: 6378164,
    }
    math(sp.latex(P.evalf(7, subs=subs2_3).to_matrix(ECEF)))
```

 $egin{bmatrix} 4099938.0 \ -4560618.0 \ -1757221.0 \ \end{bmatrix}$

iv

```
In [7]: P_GPS = vector((10981457, -13087191, -20360055), ECEF)

R_NED = (P_GPS - P).to_matrix(NED)

# Posição em NED
math(sp.latex(R_NED.subs({phi: rad(lat), lamda: rad(lon)}).evalf(8, subs=subs2_3)))
```

```
-14869285.0
-582859.46
-15642501.0
```

```
In [8]:
            # azimute e elevação no horizonte local
            azimute = (
                sp.atan2(R NED[1], R NED[0])
                 .subs({phi: rad(lat), lamda: rad(lon)})
                 .evalf(8, subs=subs2_3)
            elevacao = (
                sp.atan(-R NED[2] / sp.sqrt(R NED[0] ** 2 + R NED[1] ** 2))
                 .subs({phi: rad(lat), lamda: rad(lon)})
                 .evalf(8, subs=subs2_3)
           math(
                 f"\\alpha = {deg(azimute).evalf()}\\deg \\\"
                 f"\\lambda = {deg(elevacao).evalf()}\\deg"
           \alpha = -177.755218410765 \deg
           \lambda = 46.4296882530791 \deg
          V
 In [9]:
            ENU = NED.orientnew("ENU", "DCM", sp.Matrix([[0, 1, 0], [1, 0, 0], [0, 0, -1]]))
            math(sp.latex(ENU.dcm(ECEF)))
           math(sp.latex(ECEF.dcm(ENU)))
                 -\sin(\lambda)
                                    \cos(\lambda)
             -\sin(\phi)\cos(\lambda) -\sin(\lambda)\sin(\phi)
                                                     \cos(\phi)
             \cos(\lambda)\cos(\phi)
                                 \sin(\lambda)\cos(\phi)
                                                     \sin (\phi)
            \left[ -\sin \left( \lambda 
ight) -\sin \left( \phi 
ight) \cos \left( \lambda 
ight) -\cos \left( \lambda 
ight) \cos \left( \phi 
ight) 
ight]
              \cos(\lambda) - \sin(\lambda)\sin(\phi) - \sin(\lambda)\cos(\phi)
                 0
                              \cos(\phi)
                                                 \sin(\phi)
          Vİ
In [10]:
            omega e = vector([0, 0, 1], ECEF) * sp.symbols("omega e")
           math(sp.latex(omega e.to matrix(ENU)))
             \omega_e \cos{(\phi)}
             \omega_e \sin{(\phi)}
          vii
In [11]:
           g = vector([0, 0, 1], NED) * sp.symbols("g")
           math(sp.latex(g.to matrix(ECEF)))
             -g\cos(\lambda)\cos(\phi)
             -g\sin(\lambda)\cos(\phi)
                 -g\sin(\phi)
          viii
In [12]:
           math(sp.latex(NED.dcm(ENU)))
            math(sp.latex(ENU.dcm(NED)))
             0 \quad 1
                      0
             1 0
                     0
                0
```

i

```
In [13]:
         t = sp.symbols("t")
          # vec.init vprinting()
         def d(x):
             return sp.diff(x, t)
         U, V, W, P, Q, R = vec.dynamicsymbols("U, V, W, P, Q, R")
         a, b, c = sp.symbols("a, b, c")
         psi, theta, phi = sp.symbols("psi, theta, phi")
          # Vetores da questão representados em Sb
         Vb = sp.Matrix([U, V, W])
         wb = sp.Matrix([P, Q, R])
          r_{=} = sp.Matrix([a, b, c])
         g = (
             sp.rot axis1(phi)
              @ sp.rot axis2(theta)
             @ sp.rot_axis3(psi)
             @ sp.Matrix([0, 0, sp.symbols("g_0")])
In [14]:
          # Primeira derivada
         di r = Vb
```

In [14]: # Primeira derivada
di_r = Vb
di_r_ = wb.cross(r_)
di_rAC = di_r + di_r_

Segunda derivada
ddi_rAC = d(di_rAC) + wb.cross(di_rAC)
math(vec.vlatex(ddi_rAC - g))

$$egin{aligned} \left[-b\dot{R}+c\dot{Q}+g_0\sin\left(heta
ight)+\left(-aQ+bP+W
ight)Q-\left(aR-cP+V
ight)R+\dot{U} \ a\dot{R}-c\dot{P}-g_0\sin\left(\phi
ight)\cos\left(heta
ight)-\left(-aQ+bP+W
ight)P+\left(-bR+cQ+U
ight)R+\dot{V} \ -a\dot{Q}+b\dot{P}-g_0\cos\left(\phi
ight)\cos\left(heta
ight)+\left(aR-cP+V
ight)P-\left(-bR+cQ+U
ight)Q+\dot{W} \end{aligned}
ight] \end{aligned}$$

3

i

```
In [15]:
    theta, phi, nu, psi = vec.dynamicsymbols("theta, phi, nu, psi")
    ine = vec.ReferenceFrame("ine")
    cil = ine.orientnew("cil", "Axis", (theta, ine.z))
    i, j, k = cil.x, cil.y, cil.z

m = sp.sin(phi) * i + sp.cos(phi) * k
    p = m.cross(j)
    n = sp.cos(nu) * j + sp.sin(nu) * p

subs = {
        d(d(theta)): 0,
        d(d(phi)): 0,
        d(d(nu)): 0,
        d(d(spi)): 0,
}

w = d(theta) * k + d(phi) * j + d(nu) * m + d(psi) * n
math(vec.vlatex(w.to_matrix(cil)))
```

$$egin{bmatrix} -\sin{(
u)}\cos{(\phi)}\dot{\psi} + \sin{(\phi)}\dot{
u} \ \cos{(
u)}\dot{\psi} + \dot{\phi} \ \sin{(
u)}\sin{(\phi)}\dot{\psi} + \cos{(\phi)}\dot{
u} + \dot{ heta} \end{bmatrix}$$

$$\begin{bmatrix} \sin{(\nu)}\sin{(\phi)}\dot{\phi}\dot{\psi} - \cos{(\nu)}\cos{(\phi)}\dot{\nu}\dot{\psi} - \cos{(\nu)}\dot{\psi}\dot{\theta} + \cos{(\phi)}\dot{\nu}\dot{\phi} - \dot{\phi}\dot{\theta} \end{bmatrix} \\ -\sin{(\nu)}\cos{(\phi)}\dot{\psi}\dot{\theta} - \sin{(\nu)}\dot{\nu}\dot{\psi} + \sin{(\phi)}\dot{\nu}\dot{\theta} \\ \sin{(\nu)}\cos{(\phi)}\dot{\phi}\dot{\psi} + \sin{(\phi)}\cos{(\nu)}\dot{\nu}\dot{\psi} - \sin{(\phi)}\dot{\nu}\dot{\phi} \end{bmatrix}$$

4

i

Diedro positivo aumenta a estabilidade relativa a rolagem, diedro negativo diminui a estabilidade relativa a rolagem. Esse aumento e diminuição de estabilidade implicam, respectivamente, em diminuição e aumento da manobrabilidade da aeronave relativa a rolagem.

A escolha do diedro então deve levar em consideração os outros fatores que afetam a estabilidade de rolagem e o equilíbrio desejado entre estabilidade/manobrabilidade da aeronave.

ii

Enflechamento positivo aumenta a estabilidade relativa a guinada, enflechamento negativo diminui a estabilidade relativa a guinada. Esse aumento e diminuição de estabilidade implicam, respectivamente, em diminuição e aumento da manobrabilidade da aeronave relativa a guinada. Além disso, o enflechamento pode causar momento adverso de rolagem quando em manobra de rolagem.

A escolha do enflechamento então deve levar em consideração os outros fatores que afetam a estabilidade de guinada e o equilíbrio desejado entre estabilidade/manobrabilidade da aeronave.

iii

Maior alongamento implica em melhor performance de sustentação da aeronave, diminuindo perdas de ponta de asa. Entretanto, alongamento maior também causa maiores momentos fletores na asa (devido a braço de alavanca maior), e menor manobrabilidade (devido a maior momento de inércia).

A escolha do alongamento, então, deve levar em conta as velocidades de operação do projeto, a performance desejada, e o equilíbrio desejado entre estabilidade e manobrabilidade.

5

É provável que a colocação dos equipamentos, no corpo level da aeronave, tenha movido o CG da aeronave além do seu envelope de estabilidade estática. Como a instabilidade começa com pequenas ativações do profundor, é provável que o coeficiente de momento de arfagem da aeronave tenha se tornado positivo sob condições de operação. Assim, quando um pequeno momento de arfagem pica a aeronave, a mudança de ângulo de ataque aumenta o momento de arfagem, que consequentemente pica a aeronave ainda mais, até a aeronave entrar em stall. Picar a aeronave causa efeito parecido no sentido oposto.

Uma possível solução para esse problema seria mover o centro de massa da aeronave mais à frente, com o objetivo de deixálo à frente do centro aerodinâmico. Exagerar essa correção pode causar instabilidade dinâmica (apesar da estabilidade estática), onde o momento inverso gerado pela variação de ângulo de ataque faria a aeronave corrigir para um ângulo de sinal oposto, mas magnitude maior.