Deep Learning for Computer Vision

NTU, Fall 2023, homework1 電機所碩一 謝宗翰 R12921A10

- Problem 1: Image Classification (25%)
- 1. Draw the network architecture of method A or B

2. Report accuracy of your models (both A, B) on the validation set.

Accuracy			
A B			
30.7%	90.2%		

3. Report your implementation details of model A.

```
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__() # 可調用nn.Moudule的函數

# 第一個卷積層
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)

# 第二個卷積層
self.conv2 = nn.Conv2d(
in_channels=32, out_channels=64, kernel_size=3, padding=1
)
self.relu2 = nn.ReLU()
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)

# 全連接層
self.fc1 = nn.Linear(in_features=29696, out_features=128)
self.relu3 = nn.ReLU()
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(in_features=128, out_features=50) # 50類
self.drop25 = nn.Dropout2d(0.25)
```

A Model					
Learning Rate Batch Size Optimizer Epochs Loss Fund			Loss Func		
0.0003	32	Ad	am	80	Cross Entropy
Train Data augmentation			Valid Data augm	entation	
No			No		

B Model					
Learning Rate	Batch Size	Optimizer	Epochs	Loss Func	
0.0005	128	Adam	50	Cross Entropy	
	Trai	in Data augmenta	tion		
basic_transform = [
Valid Data augmentation					
2 [3 1 4 5	m_val = trns.Compose trns.Resize((232, 23 trns.CenterCrop((224 trns.ToTensor(), trns.Normalize(mean=	32), interpolation=1 1, 224)),			

- 4. Report your alternative model or method in B, and describe its difference from model A.
 - 我的B用 torchvision model 的 ConvNext 進行 finetuning,把第7層前的

weight 都 freeze 住,只 train 倒數幾層捲積層及 Classifier。

```
for i, (name, param) in enumerate(model.named_parameters()):
    param.requires_grad = False
    if "classifier" in name or "7" in name:
        param.requires_grad = True
```

跟 A 比較不一樣的地方是,B 是用 pre-train 的 weight,著重在 Classifier 的 訓練,讓 pre-train model 能對提供的 dataset 進行分類。B 模型比我自己手刻的 Net 深很多,效果比我的 A 好非常多。

5. Visualize the learned visual representations of model A on the validation set by implementing PCA (Principal Component Analysis) on the output of the second last layer. Briefly explain your result of the PCA visualization.

可以看出可以略為的去劃出一條分割線,代表訓練的結果還行。但是以各個顏色(label)的分布來看,並沒有分得很開,大多數的 label 都是交疊在一起的。

6. Visualize the learned visual representation of model A, again on the output of the second last layer, but using t-SNE (t-distributed Stochastic Neighbor Embedding) instead. Depict your visualization from three different epochs including the first one and the last one. Briefly explain the above results.

Model A t-SNE Visualization	
Epoch = 1	

隨著 Epoch 越來越大,可以看出各點開始由中心開始往外擴,由訓練到 Epoch = 80 時非常明顯。但顏色跟顏色之間也都是交疊在一起,無明顯區 別。

• Problem 2: Self-Supervised Pre-training for Image Classification

1. Describe the implementation details of your SSL method for pre-training the ResNet50 backbone.

我的 SSL 採用助教提供的方法(BYOL)

- 上圖為 BYOL 的架構,他有兩個網路,分別為 Target 及 Online
- (1) 先對 Input x 做 data argmentation,得到 t 及 t'
- (2) 將t輸入至 Online 網路中經 f_{θ} 提取特徵,得到特徵向量 y_{θ} 。同時將t'輸入到 target 中,經 f_{ε} 提取特徵,得到特徵向量 y'_{ε} 。
- (3) y_{θ} 經過 MLP 網路 g_{θ} ,得到 z_{θ} 。而 y_{ε}' 經過 MLP 網路 g_{ε} ,得到 z_{ε}' 。
- (4) z_{θ} 經過 MLP 網路 q_{θ} ,得到 $q_{\theta}(z_{\theta})$,與 z_{ε}' 計算 loss
- (5) loss 參照 BYOL 的論文

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}}$$

SSL Model (BYOL)				
Learning Rate Batch Size Optimizer Epochs Loss Func				
0.01 256 Adam 10 Focal Loss				

Train Data augmentation

Valid Data augmentation

2. Please conduct the Image classification on Office-Home dataset as the downstream task. Also, please complete the following Table, which contains different image classification setting, and discuss/analyze the results.

SSL Info					
Learning Rate	Batch Size	Optimizer	Epochs	Backbone	
0.0005	128	Adam	10	Resnet50	
	Trai	in Data augmenta	tion		
Train Data augmentation basic_trans = trns.Compose(trns.Resize([128, 128]), trns.RandomHorizontalFlip(), trns.TrivialAugmentWide(), trns.ToTensor(), trns.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),					
9)					

Fine Tuning Info (ABCDE 都用此規格)				
Learning Rate Batch Size Optimizer Epochs Loss Func				
0.0005 64 Adam 100 Cross Entropy				
Train Data augmentation				

Valid Data augmentation

Discuss/Analyze the results			
A B C D E			
41% 59.5% 49.6% 53.9% 34%			

- A 為單純用 ResNet50 訓練整個 model 的結果,結果比 E 只訓練 Classifier 的好。
- B是用助教提供的 pre-train weight 去訓練整個 ResNet50, 結果優於我寫的 SSL (BYOL), 也是所有選項中最高的。
- 我用 BYOL 弄出的 C 的結果比助教提供的 pre-train weight 的 B 與 D 都低,但都比沒用 pre-train weight 訓練的模型高。
- D與E皆比B與C還低,代表單純只訓練 classifier 是完全不夠的,觀察 E與B的差距可見,我的 SSL(BYOL)提供的效果有限。

• Problem 3: Semantic Segmentation Task Definition

1. Draw the network architecture of your VGG16-FCN32s model (model A).

2. Draw the network architecture of the improved model (model B) and explain it differs from your VGG16-FCN32s model.

B model 我用 Troch Vision 的 DeepLab3 Resnet50 來 train

(原 paper 的架構)

B 跟 A 的架構大體上是差不多的,一個 Encoder 與一個 Decoder,差別不同在於他們處理 Layer 的方式不一樣。A 的 Encoder 是用 Vgg16,B 則是用 Resnet50。

DeepLabv3 使用了空洞捲積 (Dilated Convolution) 作為其主要特點,這有助於捕獲多尺度的語義資訊。它還包括了空間金字塔池化 (ASPP) 模組,用於在不同尺度上捕獲上下文資訊。DeepLabv3 基於其先進的架構和多尺度上下文資訊捕獲,通常能夠獲得更好的語義分割性能。 它在許多分割任務中表現出色,特別是在複雜場景和小目標分割方面。

3. Report mIoUs of two models on the validation set.

VGG16-FCN32 mIoU	DeepLabv3_Resnet50 mIoU
56.4%	72.9%

4. Show the predicted segmentation mask of "validation/0013_sat.jpg", "validation/0062_sat.jpg", "validation/0104_sat.jpg" during the early, middle, and the final stage during the training process of the improved model.

validation/0013_sat.jpg				
Epoch = 1	Epoch = 50			
Epoch = 100	Ans			

