Applied Economic Forecasting

4. Time Series Regressions

- The linear model with time series
- 2 Diagnostic Tests
- 3 Useful predictors for linear models
- Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Nonlinear Regressions
- 7 Correlation, causation and forecasting

Section 1

The linear model with time series

Multiple regression and forecasting

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \dots + \beta_k x_{k,t} + \varepsilon_t.$$

- y_t is the variable we want to predict:
 - the "response" variable, the regressand, the explained variable, the dependent variable
- Each $x_{j,t}$ is numerical and is called a "predictor". Assumed to be known for all past and future times.
- The coefficients β_1, \ldots, β_k measure the **marginal effects** of each predictor holding all other predictors in the model unchanged (constant).
- ε_t is a white noise error term and $\varepsilon \sim \mathbf{N}(0, \sigma^2)$.
- Even if $x_{j,t}$ does not **cause** y_t , the correlation between the two is useful for forecasting.

$\% \ \Delta$ Personal Consumption Expenditure & Income


```
fit.cons <- us change %>%
  model(TSLM(Consumption ~ Income))
fit.cons%>% report()
## Series: Consumption
## Model: TSLM
##
## Residuals:
       Min
##
                 10 Median
                                  30
                                          Max
## -2.58236 -0.27777 0.01862 0.32330 1.42229
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.54454 0.05403 10.079 < 2e-16 ***
## Income
          0.27183 0.04673 5.817 2.4e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5905 on 196 degrees of freedom
## Multiple R-squared: 0.1472, Adjusted R-squared: 0.1429
## F-statistic: 33.84 on 1 and 196 DF, p-value: 2.4022e-08
```

Quarterly Changes in Income and Consumption

How about additional predictors?

```
us_change %>% select(Production:Unemployment) %>%
  pivot_longer(-Quarter, names_to = "series") %>%
  ggplot(aes(x = Quarter, y = value, colour = series)) +
  geom_line() + facet_grid(series ~., scales = "free_y") +
  theme(legend.position = "none") +
  labs(y = "% change")
```



```
us_change %>% GGally::ggpairs(columns = 2:ncol(us_change),
    columnLabels = c("Cons", "Income", "Prod", "Savings", "Unemp"))
```


Assumptions

- The relationship between our variables (in reality) is truly linear.
- The errors are mean zero (otherwise we have a systematic bias in our forecasts)
- The errors are not autocorrelated (otherwise our forecasts are inefficient— there is more useful information remaining in residuals that should have been included in the model.)
- The errors are uncorrelated with the regressors (otherwise, there is information in the error (such as an omitted variable) that should have been included in the model.)
- For our prediction Intervals and hypothesis testing: the errors are normally distributed with a constant variance, σ^2 .

```
fit.consMR <- us_change %>% model(tslm = TSLM(Consumption ~
            Income + Production + Unemployment + Savings))
fit.consMR %>% report()
## Series: Consumption
## Model: TSLM
##
## Residuals:
##
       Min
                10 Median
                                30
                                       Max
## -0.90555 -0.15821 -0.03608 0.13618 1.15471
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.253105 0.034470 7.343 5.71e-12 ***
## Income
           ## Production 0.047173 0.023142 2.038 0.0429 *
## Unemployment -0.174685 0.095511 -1.829 0.0689 .
              -0.052890 0.002924 -18.088 < 2e-16 ***
## Savings
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3102 on 193 degrees of freedom
## Multiple R-squared: 0.7683, Adjusted R-squared: 0.7635
## F-statistic: 160 on 4 and 193 DF, p-value: < 2.22e-16
```

$\% \Delta$ in US consumption expenditure

Actual vs Predicted

```
fit.consMR %>% augment() %>%
  ggplot(aes(x = Consumption, y = .fitted)) +
  geom_point() +
  geom_abline(slope = 1, intercept = 0, col = "red", size = 1.5)
```


Goodness of Fit: R^2

A common way to summarize how well a linear regression model fits the data is via the coefficient of determination, or \mathbb{R}^2 .

 R^2 tells us how much of the variation in our dependent variable (y) is explained by the regressors $(x_i$ s).

$$R^{2} = \frac{\sum_{t=1}^{T} (\hat{y}_{t} - \bar{y})^{2}}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}} = \frac{\text{Explained (Regression) Sum of Squares}}{\text{Total Sum of Squares}}$$

Goodness of Fit: R^2

Assuming that the model has an intercept:

- If the predictions are close to the actual values, we would expect \mathbb{R}^2 to be close to 1.
- ullet If the predictions are unrelated to the actual values, then $R^2=0$

In all cases, $0 \le R^2 \le 1$.

We must be careful when comparing models on the basis of \mathbb{R}^2 !

- The value of \mathbb{R}^2 will **never decrease** when adding an extra predictor to the model. This can lead to over-fitting.
- We could be dealing with a "spurious" regression problem.

Section 2

Diagnostic Tests

Evaluating Regression Models

The differences between the observed y values and the corresponding fitted \hat{y} values are the training-set errors or "residuals" defined as,

$$e_t = y_t - \hat{y}_t$$

= $y_t - \hat{\beta}_0 - \hat{\beta}_1 x_{1,t} - \hat{\beta}_2 x_{2,t} - \dots - \hat{\beta}_k x_{k,t}$

These residuals have the following properties:

$$\sum_{t=1}^{T} e_t = 0 \quad \text{and} \quad \sum_{t=1}^{T} x_{k,t} e_t = 0 \quad \text{for all } k.$$

gg_tsresiduals

ACF of residuals

Recall that we would like for there to be no autocorrelation in the residuals. If there is, our model forecasts are inefficient and there is some useful information (that could improve our forecasts) remaining in the residuals.

Lag 7 is potentially problematic. Conclusion from L-B Test??

```
fit.consMR %>% augment() %>%
features(.innov, ljung_box, lag = 8)
```

```
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl> ## 1 tslm 17.1 0.0290
```

A tibble: 1 x 3

Quick Notes:

Forecasts from a model with autocorrelated errors are still unbiased, and so are not "wrong", but they will usually have larger prediction intervals than they need to.

Therefore we should always look at an ACF plot of the residuals.

Histogram & Time Plot

Histogram & Time Plot

Timeplot: shows changing variability across time » Heteroskedasticity » affects prediction intervals.

Histogram: shows skewness/non-normality » affects the prediction intervals.

Residual plots

- Useful for spotting outliers and whether the linear model was appropriate.
- Scatterplot of residuals ε_t against each predictor $x_{j,t}$.
- Scatterplot residuals against the fitted values \hat{y}_t
- Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing/decreased spread.

Residual patterns

- If a plot of the residuals vs any predictor **in** the model shows a pattern, then the relationship is nonlinear.
- ② If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- **3** If a plot of the residuals vs fitted values shows a pattern, then there is *heteroskedasticity* in the errors. (Could try a transformation.)

Residuals vs Regressors

Fitted Values vs. Residuals

Spurious Regressions

In time series, we often have data that is "non-stationary"— the series does not fluctuate around a constant mean or with a constant variance.

Because of this, we can have two variables that appear to be highly correlated simply because they have the same patterns (say both are trending). Regressing non-stationary time series can lead to "spurious regressions" (think high \mathbb{R}^2 but an otherwise nonsensical relationship and results).

Spurious Regressions

Spurious Regressions

```
spur.fit <- spur %>% model(spur = TSLM(Passengers ~ Production))
spur.fit %>% report()
## Series: Passengers
## Model: TSLM
##
## Residuals:
      Min 10 Median 30
                                    Max
##
## -5.9448 -1.8917 -0.3272 1.8620 10.4210
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -7.493 1.203 -6.229 2.25e-07 ***
## Production 40.288 1.337 30.135 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.239 on 40 degrees of freedom
## Multiple R-squared: 0.9578, Adjusted R-squared: 0.9568
## F-statistic: 908.1 on 1 and 40 DF, p-value: < 2.22e-16
```

spur.fit %>% gg_tsresiduals()

Key Takeaway: just because two series move together does not mean they are related!

Section 3

Useful predictors for linear models

Trend

Linear trend

Given the general form:

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \dots + \beta_k x_{k,t} + \varepsilon_t.$$

We can introduce a trend to the model by including $x_{j,t} = t$ as a regressor,

$$y_t = \beta_0 + \beta_1 t + \varepsilon$$

where t = 1, 2, ..., T

A trend variable can be specified in the TSLM() function using trend() as a predictor.

Why would you want to include a trend?

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if No. This is called a **dummy variable**.

- A dummy variable can also be used to account for an outlier in the data. Rather than omit the outlier, a dummy variable removes its effect.
- TSLM() will automatically handle creating dummies if we were to specify a factor variable as a predictor.

Seasonal Dummy variables

Suppose we have quarterly retail sales data and suspect that there might be seasonality in our data (e.g. Q4 might have unusually high sales figures since we have Thanksgiving, Black Friday, Cyber Monday, and Christmas in Nov. & Dec.)

We could create our quarterly dummy variables as follows:

Quarter	$Q_{1,t}$	$Q_{2,t}$	$Q_{3,t}$
2000 Q1	1	0	0
2000 Q2	0	1	0
$2000 \mathrm{Q3}$	0	0	1
2000 Q4	0	0	0
2001 Q1	1	0	0
2001 Q2	0	1	0
2001 Q3	0	0	1
2001 Q4	0	0	0
:	÷	:	÷
A 11 T			

Dummy variables

Beware of the dummy variable trap!

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- If we omit one category, the **coefficients of the remaining** dummies are relative to that omitted category.

```
beer <- aus_production %>% select(Beer) %>% filter_index("1992 Q1"~.)
beer %>% autoplot(Beer)
```


Manual Approach

summary()

```
beer.full <- beer %>% mutate(t = row_number(),
         Q2 = ifelse(quarter(Quarter)==2,1,0),
```

```
Q3 = ifelse(quarter(Quarter)==3,1,0),
Q4 = ifelse(quarter(Quarter)==4,1,0))
```

beer.full %% lm(Beer ~ t + Q2 + Q3 + Q4, data = .) %%

```
##
## Call:
## lm(formula = Beer \sim t + Q2 + Q3 + Q4, data = .)
##
## Residuals:
##
     Min 1Q Median 3Q
                                 Max
## -42.903 -7.599 -0.459 7.991 21.789
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 441.80044 3.73353 118.333 < 2e-16 ***
## t
            ## 02
           -34.65973 3.96832 -8.734 9.10e-13 ***
## Q3 -17.82164 4.02249 -4.430 3.45e-05 ***
           72.79641 4.02305 18.095 < 2e-16 ***
## Q4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
## Multiple R-squared: 0.9243, Adjusted R-squared: 0.9199
## F-statistic: 210.7 on 4 and 69 DF, p-value: < 2.2e-16
```

Using the TSLM() function

```
fit.beer <- beer %>% model(TSLM(Beer~ trend() + season()))
fit.beer %>% report()
## Series: Beer
## Model: TSLM
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -42.9029 -7.5995 -0.4594 7.9908 21.7895
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 441.80044 3.73353 118.333 < 2e-16 ***
## trend()
               ## season()year2 -34.65973 3.96832 -8.734 9.10e-13 ***
## season()year4 72.79641 4.02305 18.095 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
## Multiple R-squared: 0.9243, Adjusted R-squared: 0.9199
## F-statistic: 210.7 on 4 and 69 DF, p-value: < 2.22e-16
```

```
fit.beer %>% augment() %>% ggplot(aes(x = Quarter)) +
  geom_line(aes(y = Beer, colour = "Actual")) +
 geom_line(aes(y = .fitted, colour = "Fitted")) +
  scale_color_manual(breaks = c("Actual", "Fitted"),
                     values = c("black", "red")) +
 labs(title = "Australian Beer Production", y = "Megalitres") +
 guides(colour = guide_legend(title = "Series"))
```


Fitted

```
fit.beer %>% augment() %>%
  ggplot(aes(y = .fitted, x = Beer)) +
  geom_point(aes(colour = factor(quarter(Quarter)))) +
  guides(colour = guide_legend(title = "Quarter")) +
  geom_abline(slope = 1, intercept = 0, col = "black") +
  labs(title = "Actual versus Predicted beer production")
```

Actual versus Predicted beer production

Intervention Variables

Other uses of dummy variables in regression models are as follows:

Spikes: An event affects y_t only at time τ . Set $D_t = 1$ if $t = \tau$, otherwise $D_t = 0$. This is usually a one time (or an outlier) event.

$$D \leftarrow ifesle(t==tau, 1, 0)$$

Steps: An event has an immediate and permanent effect on the series at and after time τ . Set $D_t=1$ if $t\geq \tau$, otherwise $D_t=0$. For example, use of Zoom due to COVID-19?

$$D \leftarrow ifesle(t>=tau, 1, 0)$$

Ramp: An event changes the trend of a series linearly at and after time τ . This means that our trend is piecewise linear. Set $D_t = t - \tau$ if $t \geq \tau$, otherwise $D_t = 0$.

$$D \leftarrow pmax(0, t - tau)$$

Fourier Series

An alternative to using dummy variables to capture seasonality is using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^K \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + \varepsilon_t \quad K \le \frac{m}{2}$$

- where m is the seasonal period.
- Every periodic function can be approximated by sums of sin and cos terms for large enough *K*.
- \bullet Choose K by minimizing AICc.
- Called "harmonic regression"

Fourier Series

Manual

```
beer.fourier <- beer %>% mutate(
  t = row number(),
  \cos 1 = \cos((2*pi*1*t)/4),
  \sin 1 = \sin((2*pi*1*t)/4),
  \cos 2 = \cos((2*pi*2*t)/4),
  \sin 2 = \sin((2*pi*2*t)/4)
fits1 <- beer.fourier %>% lm(Beer~ t + cos1 + cos2 + sin1 + s;
                     data = .)
fits1 %>% summary()
```

```
## Call:
## lm(formula = Beer \sim t + cos1 + cos2 + sin1 + sin2, data = .)
##
## Residuals:
##
      Min 1Q Median 3Q
                                  Max
## -44.023 -7.328 -0.939 8.086 22.181
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.469e+02 2.892e+00 154.542 < 2e-16 ***
## t
         -3.416e-01 6.705e-02 -5.095 2.98e-06 ***
## cos1 5.373e+01 2.023e+00 26.554 < 2e-16 ***
## cos2 1.443e+01 1.767e+00 8.163 1.11e-11 ***
## sin1 8.877e+00 2.025e+00 4.384 4.15e-05 ***
           9.109e+13 2.166e+14 0.420 0.675
## sin2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.3 on 68 degrees of freedom
## Multiple R-squared: 0.9245, Adjusted R-squared: 0.919
## F-statistic: 166.6 on 5 and 68 DF, p-value: < 2.2e-16
```

##

```
beer %>% model(TSLM(Beer ~ trend() + fourier(K = 2))) %>%
 report()
## Series: Beer
## Model: TSLM
##
## Residuals:
             1Q Median
##
       Min
                                30
                                       Max
## -42.9029 -7.5995 -0.4594 7.9908 21.7895
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
                   446.87920 2.87321 155.533 < 2e-16 ***
## (Intercept)
## trend()
                 ## fourier(K = 2)C1 4 8.91082 2.01125 4.430 3.45e-05 ***
## fourier(K = 2)S1_4 -53.72807 2.01125 -26.714 < 2e-16 ***
## fourier(K = 2)C2_4 -13.98958    1.42256   -9.834   9.26e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
## Multiple R-squared: 0.9243, Adjusted R-squared: 0.9199
## F-statistic: 210.7 on 4 and 69 DF, p-value: < 2.22e-16
```

via TSLM()

Notice the changing Intercepts? Which line corresponds to which quarter?

plot(fits1\$fitted.values,
 col = "red", type = "p", cex = 1, pch = 16,
 main = "Actual vs Predicted Beer Production", ylab = "Megalitres", xlatines(beer.fourier\$Beer, col = "darkblue", lwd = 1.5)

Actual vs Predicted Beer Production


```
beer %>% model(TSLM(Beer ~ trend() + fourier(K = 2))) %>%
  augment() %>% ggplot(aes(x = Quarter)) +
  geom_point(aes(y = .fitted, col = factor(quarter(Quarter)))) +
  geom_line(aes(y = Beer)) +
  guides(colour = guide_legend(title = "Quarter")) +
  labs(title = "Actual vs Predicted Beer Production", y = NULL, x = NULL)
```

Actual vs Predicted Beer Production

Section 4

Selecting predictors and forecast evaluation

Selecting predictors

- When there are many predictors, how should we choose which ones to use?
- We need a way of comparing two competing models.

What not to do!

- Plot y against a particular predictor (x_j) and if it shows no noticeable relationship, drop it.
- Do a multiple linear regression on all the predictors and drop all variables whose p values are greater than 0.05. This ignores potential correlation between our predictors.
- Maximize R^2 or minimize MSE.

The glance() function

fit.consMR %>% glance() %>% t() %>% knitr::kable(digits = 3)

.model	tslm
$r_squared$	0.7682829
$adj_r_squared$	0.7634805
sigma2	0.0962325
statistic	159.9781
p_value	3.92929e-60
df	5
log_lik	-46.6599
AIC	-456.5799
AICc	-456.1401
BIC	-436.8503
CV	0.1038972
deviance	18.57287
df.residual	193
rank	5

Comparing regression models

Computer output for regression will always give the \mathbb{R}^2 value. This is a useful summary of the model. However . . .

- \bullet R^2 does not allow for "degrees of freedom".
- Adding any variable tends to increase the value of \mathbb{R}^2 , even if that variable is irrelevant.
- using \mathbb{R}^2 to determine whether a model will give good predictions will lead to overfitting.

To overcome this problem, we can use adjusted R^2 :

Adjusted R²

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

Maximizing \bar{R}^2 is equivalent to minimizing $\hat{\sigma}_e$.

$$\hat{\sigma}_e = \sqrt{\frac{1}{T - k - 1} \sum_{t=1}^{T} e_t^2}$$

Akaike's Information Criterion

$$AIC = -2\log(\mathcal{L}) + 2(k+2)$$

where \mathcal{L} is the likelihood and k is the number of predictors in the model.

Alternatively,

$$AIC = T \log \left(\frac{SSE}{T}\right) + 2(k+2),$$

- This is a *penalized likelihood* approach.
- Minimizing the AIC gives the best model for prediction.
- AIC penalizes terms more heavily than \bar{R}^2 .
- Minimizing the AIC is asymptotically (when $T \to \infty$) equivalent to minimizing MSE via leave-one-out cross-validation.

Corrected AIC

For small values of T, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed.

$$AIC_C = AIC + \frac{2(k+2)(k+3)}{T-k-3}$$

As with the AIC, the AIC_C should be **minimized**.

Schwarz's Bayesian Information Criterion

$$BIC = -2\log(\mathcal{L}) + (k+2)\log(T)$$

where \mathcal{L} is the likelihood and k is the number of predictors in the model.

Alternatively,

BIC =
$$T \log \left(\frac{\text{SSE}}{T} \right) + (k+2) \log(T)$$

- BIC penalizes terms more heavily than AIC
- Also called SBIC and SC.
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when $v = T \left[1 \frac{1}{(\log(T) 1)} \right]$.

Cross-validation

Leave-one-out

- Remove observation t from the data set, and fit the model using the remaining data. Then compute the error $(e_t^* = y_t \hat{y}_t)$ for the omitted observation.
- Not the same as the residual because the t^{th} observation was not used in estimating the \hat{y}_t .
- **3** Compute the MSE from $e_1^*, \dots e_T^*$.

```
m <- matrix(NA, nrow = 5, ncol = 5)</pre>
rownames(m) <- paste0("model", 1:5)
colnames(m) <- selects
model <- m %>% as_tibble(rownames = "rowname")
model[1,2:6] <- us_change %>% model(TSLM(Consumption ~ Income + Production +
  Unemployment + Savings )) %>% glance() %>% select_at(selects)
model[2,2:6] <- us change %% model(TSLM(Consumption ~ Income + Production +
  Unemployment)) %>% glance() %>% select_at(selects)
model[3,2:6] <- us_change %>% model(TSLM(Consumption ~ Income + Production +
  Savings)) %>% glance() %>% select at(selects)
model[4,2:6] <- us_change %>% model(TSLM(Consumption ~ Income + Unemployment +
  Savings)) %>% glance() %>% select_at(selects)
```

model[5,2:6] <- us_change %>% model(TSLM(Consumption ~ Production + Unemployment +

selects <- c("adj r squared", "CV", "AIC", "AICc", "BIC")</pre>

Savings)) %>% glance() %>% select_at(selects)

knitr::kable(model,digits = 3)

rowname	$adj_r_squared$	CV	AIC	AICc	BIC
model1	0.763	0.104	-456.580	-456.140	-436.850
model2	0.366	0.271	-262.274	-261.961	-245.833
model3	0.761	0.105	-455.178	-454.865	-438.736
model4	0.760	0.104	-454.362	-454.050	-437.921
model5	0.349	0.279	-257.138	-256.826	-240.697

Section 5

Forecasting with regression

Ex-ante versus ex-post forecasts

- Ex ante forecasts are made using only information available in advance.
 - require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
 - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecasted.

Forecasts of beer production using regression

Scenario based forecasting

- Assumes possible scenarios for the predictor variables
- Prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.

US Consumption

Example

A US policy maker is interested in comparing the predicted change in consumption when there is a constant growth of 1% and 0.5% respectively for income and savings with no change in the employment rate, versus a respective decline of 1% and 0.5%, for each of the next four quarters (out-of-sample here).

```
fit.consBest <- us_change %>%
  model(TSLM(Consumption ~ Income + Savings + Unemployment))
h < -4
future <- scenarios(
  Increase = new_data(us_change, h) %>%
    mutate(Income = 1, Savings = 0.5, Unemployment = 0),
  Decrease = new data(us change, h) %>%
    mutate(Income = -1, Savings = -0.5, Unemployment = 0),
  names_to = "Scenarios")
fc <- forecast(fit.consBest, new_data = future)</pre>
```

us_change %>% autoplot(Consumption) + autolayer(fc) +
labs(title = "US Consumption: Scenario Forecasts")

Note

- The prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.
- They assume that the values of the predictors are known in advance.

Section 6

Nonlinear Regressions

Log-Log Model

$$\log y_t = \beta_0 + \beta_1 \log x_t + \varepsilon_t$$

While this provides a non-linear functional form, the model is still linear in the parameters.

In this model, the slope, β_1 can be interpreted as an elasticity. In fact, β_1 is the anticipated percentage change in y resulting from a 1% increase in the x variable.

How?

$$\frac{d \log y}{dx} = \beta_1 \frac{\log(x)}{dx}$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \beta_1 \cdot \frac{1}{x}$$

$$\Rightarrow \beta_1 = \frac{x}{y} \cdot \frac{dy}{dx}$$

Other log tranformations

Log-linear form is specified by only transforming the forecast variable.

$$\log y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$$

Linear-log form is obtained by transforming the predictor.

$$y_t = \beta_0 + \beta_1 \log x_t + \varepsilon_t$$

Working with zeros

- Recall that in order to perform a logarithmic transformation to a variable, all of its observed values must be greater than zero.
- In the event that variable x contains zeros, we use the transformation

$$\log(x+1)$$

Nonlinear trend

Piecewise linear trend with bend at $t = \tau$

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

NOT RECOMMENDED!: to use quadratic or higher order trends in forecasting. When they are extrapolated, the resulting forecasts are often unrealistic.

Nonlinear Trend

```
boston_men <- boston_marathon %>% filter(Year >= 1924) %>%
  filter(Event == "Men's open division") %>%
  mutate(Minutes = as.numeric(Time)/60)
boston_men %>% autoplot(Minutes)
```


Nonlinear Trend?

Manually

Piecewise Linear Model

```
mod2 <- b.times %>% model(TSLM(Minutes ~ t + Dt))
aug.mod2 <- mod2 %>% augment()
gg1 <- aug.mod2 %>% ggplot(aes(x = Year)) +
  geom_line(aes(y = Minutes)) +
  geom_line(aes(y = .fitted, col = "blue"), size = 1.1) +
```

theme(legend.pos = "none") + ggtitle("Boston Marathon Winning Times")

geom_line() + ggtitle("Residuals from Piecewise Linear Model")

gg2 <- aug.mod2 %>% ggplot(aes(x = Year, y = .resid)) +

gridExtra::grid.arrange(gg1,gg2, ncol = 1)

aes(v = .fitted, colour = .model)) +

autolayer(trend.fore, alpha = 0.5, level = 95) +

title = "Boston marathon winning times")

boston_men %>%

autoplot(Minutes) +

labs(v = "Minutes",

geom_line(data = fitted(trend_fits),

Using TSLM() function

Section 7

Correlation, causation and forecasting

Correlation is not causation

- When x is useful for predicting y, it is not necessarily causing y.
- ullet e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

Multicollinearity

In regression analysis, multicollinearity occurs when:

- Two predictors are highly correlated (i.e., the correlation between them is close to ± 1).
- A linear combination of some of the predictors is highly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of another subset of predictors.

Thinking back to the Dummy variable trap

Suppose you have quarterly data and use four dummy variables, d_1, d_2, d_3, d_4 . Then $d_4 = 1 - d_1 - d_2 - d_3$ so there is perfect correlation between d_4 and $d_1 + d_2 + d_3$. Knowing d_1, d_2, d_3 will help us to perfectly predict d_4

Multicollinearity

If multicollinearity exists ...

- the numerical estimates of coefficients may be wrong (worse in Excel than in a statistics package)
- don't rely on the *p*-values to determine significance.
- the uncertainty associated with individual regression coefficients will be large. That is the variance is inflated.
- there is no problem with model *predictions* provided the predictors used for forecasting are within the range used for fitting.
- omitting variables can help.
- combining variables can help.

Section 8

Decided to put Dynamic Regressions as seperate topic