Projet n°8 – Kickstarter : peut-on prévoir si un projet va réussir ou échouer ?

Plan

- 1. Contexte et enjeux du projet
- 2. Présentation du rapport

Contexte et enjeux

Contexte et objectif du projet

• Sujet étudié - La plateforme de *crowdfunding* ou financement participatif : Kickstarter

Objectif:

 Prédire avec un maximum de précision si un projet va réussir ou échouer avant qu'il ne soit lancé

• Deux phases :

- Analyse exploratoire
- Modélisation

A propos de Kickstarter

- Lancement en 2009 aux Etats-Unis
- En 2020 :
 - Accessible depuis 22 pays
 - 19 millions de personnes se sont engagées à hauteur de 5,4 milliards \$
 - Plus de 500 000 projets proposés dont environ 192 000 financés
- Plage temporelle de mon analyse :
 - 2009-2017

A propos de Kickstarter

Nombre de projets lancés sur Kickstarter entre le 28 avril 2009 et le 30 novembre 2017

A propos de Kickstarter

Proportion des pays d'origine

 Presque 80% des projets proviennent des Etats-Unis

Combien de projets aboutissent ?

- + 50 % d'échecs
- Environ 35 % de succès et 10% d'annulations

Nombre de projets par catégorie

- Les catégories les plus représentées sont :
 - Film & Video
 - Music
 - Publishing

Taux de succès par catégorie principale

Taux de succès par catégorie principale

- Music a également un taux de réussite élevé
- Dance, la catégorie la moins populaire à plus de 65% de taux de réussite

Taux de succès des sous-catégories de *Technology*

Taux de succès des sous-catégories de la catégorie *Technology*

 Apps et web à sont à – de 10 % de taux de réussite

Taux de succès des sous-catégories de Games

Taux de succès des sous-catégories de la catégorie Games

• Les jeux de société ont un taux de réussite de plus de 65%

Montant de l'objectif en fonction de l'état

Distribution de usd_goal_real en fonction de l'état du projet

- Les projets qui réussissent ont un objectif de financement plus bas
- Cette information est à pondérer.
 En effet, un objectif plus bas est plus facile à atteindre

Durée de mise en ligne, en fonction de l'état

Distribution de time par état

- Les projets qui échouent et ceux qui réussissent ont une médiane et un Q1 égalent à 29
- En général, les projets qui réussissent sont plus courts

Les variables temporelles : les jours de la semaine

- Le mardi 🕕
- Le week-end

Les variables temporelles : les mois

- Décembre 🛑
- Juillet
- Octobre

Les variables temporelles : les heures

- 14-16h 🕕
- La nuit et le matin

Modélisation

- 3 modèles ont été utilisé :
 - Algorithmes de classification supervisés
 - Implémentation à l'aide de la librairie sklearn

Nom des algorithmes	Accuracy
Régression logistique	65,1%
Support Vector Classifier	64,38%
Stochastic Gradient Boosting	68,65%

L'importance des variables

L'importance des variables utilisées par le modèle *Stochastic Gradient Boosting*

- 2 variables numériques en tête :
 - L'objectif de financement et la durée
- ... elles sont suivies par des catégories et des sous-catégories
- 12^e place : le créneau 14-16h

Recommandations business

A l'issu de mon analyse, je peux émettre plusieurs recommandations :

- Le montant de l'objectif de financement doit rester modéré
- La durée entre le lancement et la date butoir doit rester courte
- Les catégories à favoriser : Jeux de société, bandes dessinées
- Les catégories à éviter : Apps, Web
- Les moments les plus propices : entre 14 et 16 heures, le mardi et en octobre
- Les moments les moins propices : la **nuit** et le **matin**, le **week-end** et en **juillet** ou en **décembre**

Hypothèses sur les catégories

Attrait pour les projets tangibles :

- Les jeux de société
- les bandes dessinées

L'importance de la communauté :

La catégorie musicale

Présentation du rapport

Rapport d'Analyse

OpenClassrooms - Projet n°8

Structure

Le rapport fait 22 pages et contient :

- 18 graphiques et 2 tableaux
- Page de garde avec le logo et la problématique

Kickstarter : Peut-on prédire si un projet va réussir ou échouer avant qu'il soit lancé ?

J. Vangansberg

Résumé

- Un résumé à la deuxième page :
 - Contexte
 - Résultats
 - Recommandations
- Il permet de donner envie au lecteur d'aller plus loin
- Commencer par le plus important

Résumé

Le financement participatif ou *crowdfinding* connaît un essor important depuis ces 10 dernières années¹. C'est devenu une alternative aux moyens de financement classique comme les banques. Cette analyse porte sur l'une des plateformes les plus connues: Kickstarter². Cette structure existe depuis 2009 et plus de 500 000 projets y ont été proposés. 192 000 ont atteint leur objectif³. L'entreprise s'est ouverte à l'international en 2014 mais elle reste principalement utilisée par des états-uniens.

Dans cette analyse, j'utilise le Stochastic Gradient Boosting sur un jeu de données extrait de Kaggle pour définir si un projet va réussir ou échouer avant qu'il soit lancé. Le modèle a un taux d'accuracy de 68.65%. Les variables les plus importantes pour la réussite d'un projet sont : un objectif de financement raisonnable et une période de financement courte. De plus, il existe des écarts importants entre les taux de réussite des différentes catégories. En effet, moins de 10% des Apps réussissent à atteindre leur objectif tandis que ce chiffre atteint plus de 65% pour les jeux de société. Cette plateforme est plutôt adaptée aux petits projets qualitatifs qu'aux projets qui nécessitent un apport en capital important.

2

¹ Crowdfunding: Mapping EU markets and events study -European Commission

² https://www.kickstarter.com/

³ Chiffres en 2020

Plan

- Plan:
 - Chronologique
 - 3 niveaux

Table des matières

1. Introdu	ction	4
2. Nettoy	age des données	4
2.1. Do	onnées manquantes	4
1.1. Do	onnées dupliquées	5
2.2. Ty	pe de données	5
 Analys 	e exploratoire	5
3.1. La	cardinalité des variables catégorielles	6
3.2. Et	ats des projets	6
3.3. Le	s catégories et les sous-catégories	7
3.4. Le	s pays	8
3.5. Va	riables numériques :	10
	usd goal real	
3.5.2.	usd pledged real	11
3.6. Le	s variables temporelles	12
3.6.1.	Le nombre de jours	12
3.6.2.	Jours de la semaine	13
3.6.3.	Les mois	13
3.6.4.	Les heures	14
4. Prépara	ation des données	15
	ise à l'échelle des variables numériques	
4.2. Er	codage des variables catégorielles	15
	paration des données	
5. Modèle	PS	16
5.1. M	éthodes pour réduire le temps d'exécution	16
5.1.1.		
5.1.2.		
5.2. Le	s modèles	16
5.2.1.		
5.2.2.	Régression logistique	17
5.2.3.		
5.2.4.		
6. Evalua	tion du meilleur modèle : Stochastic Gradient Boosting	
	rformances	
	portance des variables	
	sion	

Rédaction: Syntaxe et temps

- Les temps
 - Utilisation du **présent** (notamment présent narratif) pour donner plus d'impact
 - Utilisation occasionnelle du passé et du futur (pour respecter une chronologie)
- Syntaxe
 - Une phrase = une idée

Rédaction: Polices et attributs du texte

- Corps du texte : Times New Roman
- Référence aux éléments du code : Courrier New
- Attributs pré-attentifs : couleur, taile, italique, gras, etc.
- Utilisation de *l'italique* pour les mots anglais et les valeurs des variables catégorielles
- Les caractères gras sont réservés aux titres

Un projet est défini comme successful si usd_goal_real est inférieur à usd_pledged_real. Par conséquent les variables: pledged, usd_pledged, usd_pledged_real mais également backers sont des data leakage⁵, c'est-à-dire que ces informations ne sont pas censées être disponibles au lancement du projet et donc au moment où l'on souhaite faire la prédiction. Ces informations ne seront donc pas utilisées dans les algorithmes.

Charte graphique

Rapport d'Analyse

Kickstarter : Peut-on prédire si un projet va réussir ou échouer avant qu'il soit lancé ?

Jérémy Vangansberg - OpenClassroom

Proportion des pays d'origine

- Nuances de gris
- Reprise de la couleur de l'entreprise : '#2bde73'
- Utilisation du style 'ggplot' :
 - Grille
 - Fond gris
 - Sans bordure (distraction visuelle)

Phase exploratoire et la phase explicative

Taux de succès des sous-catégories de la catégorie *Technology*

• Mise en valeur des éléments importants de chaque graphique

Types de graphique

3 types de graphiques ont été utilisé :

Diagramme à barres horizontales

Diagramme à barres verticales

Les graphiques non-utilisés : diagramme circulaire, scatter plot, etc.

Diagramme à barres vs pie-chart

Diagramme circulaire

Diagramme à barres horizontales

Tableaux

Nom de la variable	Description de la variable	Туре	Données non-nulles
ID	Numéro d'identifiant	Int64	378661
name	Nom	Object	378657
main_category	La catégorie principale	Object	378661
category	La sous-catégorie	Object	378661
currency	La devise locale	Object	378661
country	Pays d'origine	Object	378661
goal	Objectif de financement fixé par le créateur dans sa devise	Float64	378661
usd_goal_real	Objectif de financement en dollars fixé par le créateur	Float64	378661
launched	Date de lancement	Object	378661
deadline	Date butoir	Object	378661
pledged	Promesse de financement dans la devise locale	Float64	378661
usd_pledged	Promesse de financement en dollars (conversion faite par Kickstarter)	Float64	372041
usd_pledged_real	Promesse de financement en dollars (conversion faite par Fixer io API)	Float64	378661
backers	Nombre de personnes qui soutiennent financièrement le projet	Float64	378661
state	L'état du projet (successful, failed, canceled, suspending ou still live; soit réussi, échoué, annulé, suspendu ou en cours	Object	378661

TABLEAU 1 – Description du jeu de données

Variable	Cardinalité	
main_category	15	
category	159	
currency	14	
country	22	
state	5	

TABLEAU 2 – Cardinalité par variable catégorielle

- **Synthétiser** un grand nombre d'informations sur un espace réduit
- Permet de résumer une information autrement que par une phrase

Références

- Utilisation des notes de bas de page
 - Effectuer une traduction
 - Citer une source
 - Donner plus de détails
- Alternative en fin de rapport

1. Introduction

Ma démarche consiste à tenter de prévoir si un projet proposé sur Kickstarter va réussir ou échouer avant qu'il soit lancé. Le jeu de données vient de la plateforme Kaggle et il contient environ 370 000 projets lancés entre 2009 et 2017. Afin d'effectuer des prédictions sur l'échec ou le succès d'un projet, je vais utiliser différents algorithmes de classification dont je comparerai la précision. Dans ce but, j'utiliserai un mélange entre des données catégorielles et des données numériques. Ces données seront préparées afin que les algorithmes puissent les utiliser dans un cadre optimal. Lorsque les différents modèles seront entraînés et testés, je sélectionnerai le meilleur d'entre eux pour approfondir son analyse.

2. Nettoyage des données

Le dataset contient 378661 entrées et 14 variables. Chaque entrée concerne un projet :

Nom de la variable	Description de la variable	Type	Données non-nulles
ID	Numéro d'identifiant	Int64	378661
name	Nom	Object	378657
main_category	La catégorie principale	Object	378661
category	La sous-catégorie	Object	378661
currency	La devise locale	Object	378661
country	Pays d'origine	Object	378661
goal	Objectif de financement fixé par le créateur dans sa devise	Float64	378661
usd_goal_real	Objectif de financement en dollars fixé par le créateur	Float64	378661
launched	Date de lancement	Object	378661
deadline	Date butoir	Object	378661
pledged	Promesse de financement dans la devise locale	Float64	378661
usd_pledged	Promesse de financement en dollars (conversion faite par Kickstarter)	Float64	372041
usd_pledged_real	Promesse de financement en dollars (conversion faite par Fixer io API)	Float64	378661
backers	Nombre de personnes qui soutiennent financièrement le projet	Float64	378661
state	L'état du projet (successful, failed, canceled, suspending ou still live*)	Object	378661

TABLEAU 1 - Description du jeu de données

Un projet est défini comme successful si usd_goal_real est inférieur à usd_pledged_real. Par conséquent les variables: pledged, usd_pledged, usd_pledged_real mais également backers sont des data leakage⁵, c'est-à-dire que ces informations ne sont pas censées être disponibles au lancement du projet et donc au moment où l'on souhaite faire la prédiction. Ces informations ne seront donc pas utilisées dans les algorithmes.

2.1. Données manquantes

Le tableau n°1 nous informe que deux variables contiennent des NaN⁶. Cependant certains datasets peuvent enregistrer les valeurs manquantes sous d'autres formes. C'est le cas ici pour

⁴ Réussi, échoué, annulé, suspendu ou en cours

⁵ Littéralement « Fuite de données »

⁶ Not a Number

Choix d'analyse - Taux de succès

Taux de succès par pays

Choix d'analyse – La distribution

Distribution de usd_pledged_real
 par main_category

Distribution de usd_goal_real par main category

Choix d'analyse – Nombre de projets / promesse médiane / taux de succès

Modélisation

- Choix des modèles
 - Deux modèles simples : Régression logistique et SVC
 - Ces méthodes permettent d'avoir un point de comparaison
 - Un modèle avancée : SGB
- Pourquoi le Stochastic Gradient Boosting?
 - Méthode ensembliste
 - Permet de sélectionner un sous-échantillon du dataset

Modélisation

- L'accent est mis
 - Sur l'implémentation
 - Le choix des paramètres
- Pas de description des modèles (lecteur technique)

5.2.2. Régression logistique

L'implémentation d'une régression logistique peut se faire en utilisant la fonction sgdclassifier() de sklearn. Il suffit d'attribuer la valeur log au paramètre loss.

Paramètres fixes:

- penalty: 'elasticnet'
- class_weight: 'balanced'

Paramètre à optimiser grâce à la fonction GridSearchCV():

• alpha: np.logspace(-6, 1, 6)

Meilleur paramètre :

• alpha: 2.51 * 10-5

accuracy_score de la régression logistique : 65.1%

Les difficultés rencontrées

- Effectuer des modélisations sur un volume de données important
- Paramétrer les graphiques pour mettre en exergue les informations souhaitées
- Ne pas pouvoir traduire certains mots anglais (accuracy)
- Détecter les *Data leakage*, on n'a **pas accès** a ces **informations** au moment de la prédiction :
 - Montant des promesses de financement
 - Nombres de soutiens

Conclusion

- Attributs pré-attentif : Faciliter la compréhension
- Charte graphique stricte : rendu professionnel
- Différence entre phase exploratoire et explicative

Pistes pour approfondir le sujet

- Utiliser des algorithmes de *Natural Language Processing* pour analyser les titres des projets
- Analyser les caractéristiques des projets au fil des années
- Utiliser Google Collab