

Aula 16

Sistemas de Arquivos

Prof. Ms. Alex Lima

A 4			•	•	a 1
01	lem	α r	ıa v	/Ir	tual
		U I			tuai

- 02 Mapeamento
- 03 Paginação
- 04 Tabela de páginas
- 05 Memória associativa

Armazenamento de dados

- Armazenamento na memória principal
 - Processos são temporários.
 - A memória principal é volátil e limitada.
 - Processos são propensos a falhas críticas (deadlocks).

- Arquivos armazenam permanentemente.
- Memória secundária armazena de forma permanente e possui maior capacidade.
- Arquivos podem ser compartilhados simultaneamente.

Visão geral

Memória principal

Memória externa

Processo Arquivo

- Conceito
 - Arquivo é uma unidade lógica de informação formadas por processos.
 - Função: Organização lógica de informações armazenadas de forma persistente.

- Sistema de arquivos são os módulos do sistema operacional responsáveis pelo gerenciamento de arquivos.
 - **Função**: Gerenciar como os arquivos são estruturados, nomeados, acessados, usados, protegidos, implementados e armazenados.

Arquivo

Conceito

Arquivo

Conceito

Sistema

Sistema operacional

Sistema Operacional	Sistema de arquivos
Linux	EXT3, EXT4, XFS, JFS
MacOS	HFS
Windows	FAT, NTFS
FreeBSD, OpenBSD	UFS
Sun Solaris	UFS
IBM AIX	JFS

- Nomeação de arquivos
 - Windows
 - FAT-16
 - FAT-32
 - NTFS
 - ReFS (Windows Server)

- Nomeação de arquivos
 - UNIX
 - UFS
 - FFS
 - Ext4
 - ReiserFS

- Analisando o Sistema FAT
 - O sistema FAT16 utiliza 16 bits para endereçar o espaço em disco.
 - 2¹⁶ = 65536 clusters
 - Para clusters de 32k temos:
 - 65536 x 32k = 2GB tamanho máximo da partição.

Atividade

- Analisando o Sistema FAT
 - Verifique a capacidade máxima de armazenamento do sistema com:
 - clusters de 4k, 8k, e 16k.

• Faça os cálculos para FAT16 e FAT32.

Arquivo

Analisando o Sistema NTFS

Tamanho do cluster	Maior volume	Arquivo maior	
4 KB (tamanho padrão)	16 TB	16 TB	
8 KB	32 TB	32 TB	
16 KB	64 TB	64 TB	
32 KB	128 TB	128 TB	
64 KB (tamanho máximo)	256 TB	256 TB	

Arquivo

- Nomeação
 - O nome de um arquivo pode ser dividido em 02 partes.

nome.extensão

• Indicam informações úteis ao usuário sobre o arquivo e seu formato.

Extensão	Significado
.bak	Cópia de segurança
.c	Código-fonte de programa em C
.gif	Imagem no formato Graphical Interchange Format
.hlp	Arquivo de ajuda
.html	Documento em HTML
.jpg	Imagem codificada segundo padrões JPEG
.mp3	Música codificada no formato MPEG (camada 3)
.mpg	Filme codificado no padrão MPEG
.0	Arquivo objeto (gerado por compilador, ainda não ligado)
.pdf	Arquivo no formato PDF (Portable Document File)
.ps	Arquivo PostScript
.tex	Entrada para o programa de formatação TEX
.txt	Arquivo de texto
.zip	Arquivo compactado

- Estrutura de arquivos
 - Arquivos podem ser estruturados de 3 formas principais

- Estrutura de arquivos
 - 1. Sequência de bytes
 - O arquivo é visto apenas como uma sequencia de bytes.
 - Sua execução é determinada a nível de usuário.
 - Estrutura padrão adotada pelos Unix-like e Windows.

- Estrutura de arquivos
 - 3. Estrutura indexada
 - O arquivo é visto apenas como uma sequencia de bytes.
 - Os registros podem ser de tamanho fixo ou variável.
 - Utilizado em computadores de grande porte e de uso comercial.

- Tipos de arquivos
 - 1. Diretórios
 - Arquivos do sistema para manter a estrutura do sistema de arquivos.
 - 2. Arquivos regulares
 - São arquivos que mantém as informações dos usuários.
 - 3. Arquivos especiais de bloco
 - Arquivos usados para modelar discos.
 - 4. Arquivos especiais de caracteres
 - Arquivos relacionados a dispositivos de I/O seriais como terminais, impressoras e redes.

- Tipos de arquivos
 - 1. Arquivos regulares
 - Arquivos ASCII
 - Arquivos de texto
 - Legíveis ao usuário
 - Facilità o pipeline de processos

- Tipos de arquivos
 - 1. Arquivos regulares
 - Arquivos binários
 - Estrutura interna definida pelo programa associado.

- Tipos de arquivos
 - Arquivo binário executável
 - Número mágico Identificador de executável
 - Tamanho dos segmentos
 - Endreço inicial de alocação
 - Segmentos

- Tipos de arquivos
 - Arquivo binário (archieve)
 - Conjunto de rotinas compiladas e não ligadas(linkage)
 - Cada rotina possui um cabeçalho
 - Cabeçalho
 - Informações sobre os módulos que compoem o arquivo.

Universidade Federal do Ceará - Prof. Ms. Alex Lima

- Métodos de acesso
 - 1. Acesso sequencial

Universidade Federal do Ceará - Prof. Ms. Alex Lima

- Acesso ao disco
 - O disco é dividido em trilhas;
 - As trilhas são divididas em setores de 512 B;
 - O sistema de arquivos lida com conjuntos de setores, chamados *clusters*.

- A Trilha
- **B** Setor geométrico
- C Setor de trilha
- **D** Unidade de alocação

- Métodos de acesso
 - 2. Acesso direto
 - ALERTA! Não confundir método de acesso aleatório (usado em memória principal) com arquivos de acesso aleatório.
 - Arquivos de acesso aleatório são assim chamados por que podem ser acessados em qualquer ordem.
 - Método de acesso ao disco é acesso direto.

Device Driver

- Subsistema de E/S
 - O subsistema de E/S realiza a comunicação entre aplicações e odispositivos de entrada e saída.
 - O device driver, ou simplesmente driver, realiza a tradução dos comandos do subsistema de E/S para o controlador do dispositivo.

Device Driver

- Subsistema de E/S
 - As aplicações trabalham em modo usuário.
 - O sistema operacional e os drivers em modo kernel
 - O controlador e os dispositivos de E/S são dispositivos físicos.

- Propriedades de arquivos
 - 1. Atributos
 - Informações e características específicas de cada arquivo.
 - A lista de atributos varia para cada SO.

- Operações em arquivos
 - O sistema operacional pode fornecer chamadas de sistema para: criar, gravar, ler, reposicionar, apagar e truncar arquivos
 - Criando um arquivo
 - Aloca-se espaço para o arquivo no sistema de arquivos
 - Cria-se uma entrada para o novo arquivo no diretório
 - Gravando um arquivo
 - O sistema mantém um ponteiro de gravação onde a próxima gravação será feita
 - O ponteiro de gravação é atualizado sempre que ocorre uma escrita

- Operações em arquivos
 - Lendo um arquivo
 - O sistema mantém um ponteiro de leitura demarcado onde ocorrerá a próxima leitura dentro do arquivo. Após a leitura, o ponteiro deve ser atualizado
 - Normalmente o ponteiro de gravação e o ponteiro de leitura são mantidos pelos SO's como um ponteiro só denominado ponteiro de posição corrente.
 - Reposicionando dentro de um arquivo
 - O ponteiro de posição corrente é alterado para um determinado valor
 - Essa operação também é conhecida como busca (seek) de arquivo

- Operações em arquivos
 - Apagando um arquivo
 - Procura-se no diretório o arquivo pelo nome
 - Libera-se o espaço alocado ao arquivo para que possa ser utilizado por outros
 - Apaga-se a entrada do arquivo no diretório

- Operações em arquivos
 - A maioria das operações envolve a busca do arquivo no diretório.
 - Para evitar uma busca constante, SO's possuem uma chamada de sistema open()
 - O SO mantém uma tabela de arquivos abertos contendo informações dos arquivos abertos
 - Quando uma operação em um arquivo é solicitada, o arquivo é especificado com um índice nessa tabela
 - Quando o arquivo não for mais necessário pelo processo, uma chamada de sistema close() remove a entrada do arquivo na tabela de arquivos abertos

- Operações em arquivos
 - Tabela de arquivos abertos
 - Arquivos podem ser utilizados por um ou mais processos.

- Diretório é uma estrutura de dados que contém entradas associadas aos arquivos em que cada entrada armazena informações como localização física, nome, organização e demais atributos.
 - Esquemas mais comuns para definir a estrutura lógica de um diretório
 - ✓ Diretório de um nível
 - ✓ Diretório de dois níveis
 - ✓ Diretórios estruturados em árvore
 - ✓ Diretórios como estruturas de grafo acíclico

- Diretório de um nível
 - Um único diretório contendo todos os arquivos
 - Utilizado nos primeiros computadores
 - Vantagens
 - Simplicidade
 - Capacidade de localizar os arquivos rapidamente
 - Desvantagens
 - Limitação na escolha de nomes de arquivos
 - Arquivos de vários usuários no mesmo lugar
 - Falta de organização

- Diretório de dois níveis
 - Cada usuário tem seu próprio diretório de arquivos
 - UFD = User File Directory
 - Os diretórios de usuário são internos ao diretório de arquivos mestre
 - MFD = Master File Directory
 - Quando um usuário referencia um arquivo, apenas seu próprio UFD é pesquisado
 - Usuários diferentes podem ter arquivos com o mesmo nome.
 - Esta organização é considerada uma árvore de dois níveis.

- Diretório estruturado em árvore
 - Organização de diretórios como uma árvore.
 - Permite que o usuário criem seus próprios subdiretórios e organizem seus arquivos hierarquicamente.
 - Um bit em cada entrada do diretório define a entrada como arquivo (0) ou como subdiretório (1).

- Gerenciamento de espaço livre em disco
 - O gerenciamento de espaço livre do disco utiliza estruturas de dados para manter o controle sobre quais blocos do disco estão livres e quais estão ocupados.

- As soluções clássicas são:
 - ✓ Mapa de bits
 - ✓ Lista encadeada
 - ✓ Tabela de blocos livres

- Gerenciamento de espaço livre em disco
 - O espaço livre em disco pode ser gerenciado por uma tabela denominada Mapa de Bits (Bitmap).

- Na bitmap, cada bloco é representado por um bit.
 - Bit 1 indica que o bloco está ocupado.
 - Bit 2 indica que o bloco está livre.

Trilha	Blocos
1	0101010101010101110
2	01010101101010111110
3	111110010101001101100
4	01000100100010001
5	1010101010101010101

- Gerenciamento de espaço livre em disco
 - Uma lista encadeada pode ser usada para conectar os blocos livres no disco.

• Quando necessário, uma busca linear pode ser realizada para se encontrar espaços livres ou verificar se um dado espaço está ocupado.

• Esta solução apresenta menor custo de memória que o *bitmap*.

- Gerenciamento de espaço livre em disco
 - O espaço livre em disco pode ser gerenciado por uma lista encadeada.

- Gerenciamento de espaço livre em disco
 - Tabela de blocos livres
 - A tabela armazena uma entrada para cada segmento de blocos livres.
 - A tabela armazena o número do primeiro bloco do segmento

e o número de blocos livres.

Bloco	Contador	
4	2	
10	1	
13	7	
25	20	
50	5	

- Gerenciamento de espaço livre em disco
 - Tabela de blocos livres

Bloco	Contador	
5	4	
12	2	
15	2	

• Gerenciamento de espaço livre em disco

Trilha	Blocos
1	01010101010101011110
2	010101011010101011110
3	111110010101001101100
4	010001001000100010001
5	1010101010101010101

Bitmap

Lista encadeada

Bloco	Contador	
5	4	
12	2	
15	2	

Tabela de blocos livres

- Gerenciamento de alocação em disco
 - Assim como o gerenciamento do espaço livre, o gerenciamento do espaço alocado em disco é de fundamental importancia ao SO.
 - As principais técnicas de gerenciamento de espaço alocado são:
 - Alocação contígua
 - Alocação encadeada
 - Alocação indexada

- Gerenciamento de alocação em disco
- Alocação contígua
 - Os arquivos são alocados de forma contígua na memória externa.
 - O sistema localiza um arquivo por meio de uma tabela que contém o endereço do primeiro bloco e a sua extensão em blocos.

Arquivo	Bloco	Extensão
A.txt	4	3
B.jpg	10	1
C.mkv	13	2

- Gerenciamento de alocação em disco
- Alocação contígua
 - Política de alocação
 - First-fit Aloca no primeiro espaço livre disponível.
 - Best-fit Aloca no menor espaço livre capaz de armanzenar o arquivo.
 - Worst-fit Aloca no maior espaço livre disponível.

• Caso haja espaço livre suficiente para o arquivo, mas este não seja contíguo, o disco pode ser desfragmentado para reorganizar o espaço no disco.

- Gerenciamento de alocação em disco
- Alocação encadeada
 - Os arquivos são organizadoa como um conjunto de blocos conectados logicamente.

Cada bloco deve conter um ponteiro para o bloco seguinte.

- Do ponto de vista lógico, a fragmentação não gerar problema algum nesse sistema.
- Do ponto de vista físico, arquivos fragmentados geram perda de desempenho.

- Gerenciamento de alocação em disco
 - Alocação encadeada
 - A tabela usada na alocação contígua é substituída por ponteiros entre os blocos

- Gerenciamento de espaço livre em disco
 - Alocação indexada
 - A proposta desta técnica é manter todos os segmentos de blocos do arquivo em uma estrutura chamada bloco de índice, também conhecido como i-node.

Sistemas Operacionais

- Gerenciamento de alocação em disco
- Alocação indexada
 - Solução 1 → Esquema encadeado

- Gerenciamento de alocação em disco
- Alocação indexada
 - Solução 2 → Esquema multinível

Universidade Federal do Ceará - Prof. Ms. Alex Lima

- Gerenciamento de alocação em disco
- Alocação indexada
 - Solução 2 → Esquema multinível

Sistemas Operacionais

- Gerenciamento de alocação em disco
- Alocação indexada
 - i-nodes de um nível

Sistema de arquivos

• Esquema de um sistema de arquivos

Sistemas Operacionais

Atividade

- Gerenciamento de alocação em disco
- Alocação contígua
 - Onde o arquivo A deve ser armazenado segundo cada política de alocação?