Digital Design Logic

OU Robotics Club 11 Feb 2015

Boolean Algebra

Main operators: AND, OR, NOT

• AND: ___ Denoted with ∧ or •

• OR: Denoted with \vee or +

• NOT: '---- Denoted with ¬ or –

Boolean Algebra

- Some operators (such as NOR) are functionally complete
 - Any other function can be created using only that one function.
- Other useful operations:
 - NOR
 - XOR
 - Implies

K-mapping

- Visual method for simplifying logic
- Minimize gates used by grouping outputs into rectangles
- Ex: $A(WXYZ) = \sum (2,3,4,5,6,7,9,11,13,15)$

	YZ=oo	01	11	10
WX=oo	0	0	1	1
01	1	1	1	1
11	0	1	1	0
10	0	1	1	0

Datasheets

- What are they useful for?
 - Pin-out information
 - Maximum ratings
 - Electrical characteristics
 - Recommended operating conditions
 - Application notes
 - Physical dimensions
- Examples
 - 74ACo8 Digital AND gate
 - 74AC32 Digital OR gate

State Machines (Latches & Flip Flops)

- Used to hold state or memory
- Flip Flops are timed
- Latches include a "gate," often connected to a clock signal
- State can be used as an input for control or logic

Activities

- Create a circuit that lights an LED accordingly:
 - \Box (A \bullet B)+C
 - \Box (A+B)•C
- Create a 3-input majority gate or 1-bit adder.
- Create a functional SR latch.
- Make a circuit that will light three LEDs in sequence given a timing signal.