# 《数字图像处理》期末速通教科

# 8. 图像复原

## 8.1 图像退化模型

(看一眼) p193~196 图像退化模型、图像复原.

#### [定义 8.1.1]

- (1) 在图像生成、记录、传输过程中, 由成像系统、设备或外在干扰导致图片质量下降, 称为**图像退化**.
- (2) 处理退化图像, 使其恢复原貌的过程称为图像复原.
- (3) 图像复原是在给定退化图像 g(x,y) 、了解退化的点扩散函数 h(x,y) 和噪声项 n(x,y) 的情况下, 估计原始图像 f(x,y).

#### [定义 8.1.2]

(1) 原图像 f(x,y) 受各种退化因素影响退化为 g(x,y) . 退化过程可抽象为一个退化系统 H 和加性噪声 n(x,y) 的 影响,如下图所示.



(2) 退化模型: g(x,y) = H[f(x,y)] + n(x,y).

(3) 一维离散卷积退化模型: 
$$g_e(x) = \sum_{m=0}^{M-1} f_e(m) \cdot h_e(x-m) \ (x=0,1,\cdots,M-1)$$
 .

用矩阵表示为 
$$\overrightarrow{g}=H\overrightarrow{f}$$
 ,其中向量  $\overrightarrow{g}=\begin{bmatrix}g_e(0)\\g_e(1)\\\vdots\\g_e(M-1)\end{bmatrix}$  ,向量  $\overrightarrow{f}=\begin{bmatrix}f_e(0)\\f_e(1)\\\vdots\\f_e(M-1)\end{bmatrix}$  ,矩阵 
$$H=\begin{bmatrix}h_e(0)&h_e(M-1)&\cdots&h_e(1)\\h_e(1)&h_e(0)&\cdots&h_e(2)\\\vdots&\vdots&\ddots&\vdots\\h_e(M-1)&h_e(M-2)&\cdots&h_e(0)\end{bmatrix}$$
是循环矩阵,其每一行都是前一行循环右移一位的结果.

$$H = egin{bmatrix} h_e(0) & h_e(M-1) & h_e(1) \ h_e(1) & h_e(0) & \cdots & h_e(2) \ dots & dots & \ddots & dots \ h_e(M-1) & h_e(M-2) & \cdots & h_e(0) \end{bmatrix}$$

(4) **二维离散卷积退化模型**: 
$$g_e(x,y)=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}f_e(m,n)\cdot h_e(x-m,y-n)$$
  $(x=0,1,\cdots,M-1;y=0,1,\cdots,N-1)$  .

考虑噪声, 用矩阵表示为 
$$g=Hf+\overrightarrow{n}$$
 , 其中  $g$  是图像  $f$  的退化图像, 噪声  $\overrightarrow{n}=egin{bmatrix}n_e(0)\\n_e(1)\\\vdots\\n_e(MN-1)\end{bmatrix}$  , 张量

$$H = egin{bmatrix} H_0 & H_{M-1} & \cdots & H_1 \ H_1 & H_0 & \cdots & H_2 \ dots & dots & \ddots & dots \ H_{M-1} & H_{M-2} & \cdots & H_0 \end{bmatrix}$$
 的每个部分  $H_j$  都是一个循环矩阵,由延拓函数  $h_e(x,y)$  的第 $j$  列构成, 
$$H_j = egin{bmatrix} h_e(j,0) & h_e(j,N-1) & \cdots & h_e(j,1) \ h_e(j,1) & h_e(j,0) & \cdots & h_e(j,2) \ dots & dots & dots & dots \ h_e(j,N-1) & h_e(j,N-2) & \cdots & h_e(j,0) \end{bmatrix}.$$

## 8.2 图像复原的代数方法

[**定义 8.2.1**] 图像复原的代数方法是根据二维离散卷积退化模型  $g=Hf+\overrightarrow{n}$  和关于 g 、 H 、  $\overrightarrow{n}$  的某些先验知识,确定某种最佳准则,求原图像 f 的最优估计  $\hat{f}$  .

## 8.2.1 无约束最小二乘复原

[定理 8.2.1.1] [无约束最小二乘复原] 设原图 f 是  $M \times N$  的矩阵, 且 M = N . 已知退化过程 H 和退化图像 g , 若 H 可逆, 则 f 的估计  $\hat{f} = H^{-1}g$  .

[证] 由二维离散卷积退化模型  $g=Hf+\overrightarrow{n}$  , 有 $\overrightarrow{n}=g-Hf$  .

下求  $\hat{f}$  s.t.  $H\hat{f}$  在最小二乘意义下近似 g , 即 s.t.  $\left| \overrightarrow{n} \right| = \left| \left| g - H\hat{f} \right| \right|^2$  最小.

定义**最佳准则**  $J\left(\hat{f}
ight) = \left|\left|g - H\hat{f}
ight|\right|^2 = \left(g - H\hat{f}
ight)^T \left(g - H\hat{f}
ight)$  , 则  $J\left(\hat{f}
ight)$  的最小值对应最优解。

下求 
$$J\left(\hat{f}
ight)$$
 的极小值. 令  $\dfrac{\partial J\left(\hat{f}
ight)}{\partial \hat{f}}=-2H^T\left(g-H\hat{f}
ight)=0$  ,

则  $H^T H \hat{f} = H^T g$  , 解得:  $\hat{f} = (H^T H)^{-1} H^T g$  .

M=N 时, 假设方阵 H 可逆, 则  $\hat{f}=H^{-1}(H^T)^{-1}H^Tg=H^{-1}g$  .

[**注**] 因  $\hat{f}$  的选择不受其它条件约束, 故称**无约束复原**.

## 8.2.2 约束最小二乘复原

#### [定义 8.2.2.1]

- (1) 在无约束最小二乘复原中附加约束条件, 称为约束最小二乘复原.
- (2) 约束最小二乘复原一般用 Lagrange 乘数法求解.

设对原图 f 作某一线性运算 Q.

下求在约束条件  $\left| \overrightarrow{n} \right| = \left| \left| g - H \hat{f} \right| \right|^2$  下,s.t.  $\left| \left| Q \hat{f} \right| \right|^2$  最小的 f 的估计  $\hat{f}$  .

设 Lagrange 函数  $J\left(\hat{f}
ight) = \left|\left|Q\hat{f}\right|\right|^2 + \lambda \left(\left|\left|g - H\hat{f}\right|\right|^2 - \left|\overrightarrow{n}\right|\right)$  , 其中  $\lambda$  为 Lagrange 系数.

$$\Leftrightarrow rac{\partial J\left(\hat{f}
ight)}{\partial \hat{f}} = 2Q^TQ\hat{f} - 2\lambda H^T\left(g - H\hat{f}
ight) = 0$$
 ,

则 
$$Q^TQ\hat{f}+\lambda H^TH\hat{f}-\lambda H^Tg=0$$
 , 解得:  $\hat{f}=\left(H^TH+rac{1}{\lambda}Q^TQ
ight)^{-1}H^Tg$  .

[**例 8.2.2.1**] 设退化  $\overrightarrow{y} = A\overrightarrow{x} + \overrightarrow{n}$ . 求在约束  $\min_{\overrightarrow{x}} \left| \left| \overrightarrow{x} \right| \right|_2^2$  下, s.t.  $\left| \left| \overrightarrow{n} \right| \right| = \left| \left| \overrightarrow{y} - A\overrightarrow{x} \right| \right|^2$  最小的向量  $\overrightarrow{x}$  的估计  $\overrightarrow{x}$ , 其中  $\left| \left| \overrightarrow{x} \right| \right|_2 = \left( \sum x_i^2 \right)^{\frac{1}{2}}$ .

[解] 设  $\min_{\overrightarrow{x}} \left| |\overrightarrow{x}| \right|_2^2 = C$  .

设 Lagrange 函数  $J\left(\hat{x}\right) = \left|\overrightarrow{y} - \overrightarrow{Ax}\right|^2 + \lambda \left(\left|\overrightarrow{x}\right|^2_2 - C\right)$  , 其中  $\lambda$  为 Lagrange 系数.

$$\diamondsuit rac{\partial J\left(\hat{x}
ight)}{\partial \hat{x}} = -2A^T\left(\overrightarrow{y} - A\overrightarrow{x}
ight) + 2\lambda \overrightarrow{x} = 0$$
 ,

则 
$$A^T\overrightarrow{y} - A^T A\overrightarrow{x} = \lambda \overrightarrow{x}$$
, 解得:  $\overrightarrow{x} = (A^T A + \lambda I)^{-1} A^T \overrightarrow{y}$ .

# [补充] 向量和矩阵的导数

可参考: https://www.bilibili.com/video/BV1eZ4y1w7PY/

[定义] x 和 y 分别取标量和向量时,  $\frac{\partial y}{\partial x}$  的取值如下图所示.



(1) x 是标量, y 是标量时,  $\frac{\partial y}{\partial x}$  是标量.

$$(2)\overrightarrow{x}=(x_1,\cdots,x_n)$$
 是向量,  $y$  是标量时,  $\dfrac{\partial y}{\partial \overrightarrow{x}}=\left[\dfrac{\partial y}{\partial x_1},\cdots,\dfrac{\partial y}{\partial x_n}\right]$  是行向量.

(3) 
$$x$$
 是标量,  $\overrightarrow{y}=(y_1,\cdots,y_m)$  是向量时,  $\frac{\partial \overrightarrow{y}}{\partial x}=\begin{bmatrix} \frac{\partial y_1}{\partial x}\\ \vdots\\ \frac{\partial y_m}{\partial x}\end{bmatrix}$  是列向量.

(4) $\overrightarrow{x}=(x_1,\cdots,x_n)$  是向量,  $\overrightarrow{y}=(y_1,\cdots,y_m)$  是向量时,

$$egin{aligned} rac{\partial \overrightarrow{y}}{\partial \overrightarrow{x}} = egin{bmatrix} rac{\partial y_1}{\partial \overrightarrow{x}} \\ draightarrow{\partial y_1}{\partial \overrightarrow{x}} \end{bmatrix} = egin{bmatrix} rac{\partial y_1}{\partial x_1} & \cdots & rac{\partial y_1}{\partial x_n} \\ draightarrow{\partial y_m}{\partial x_1} & \cdots & rac{\partial y_m}{\partial x_n} \end{bmatrix}$$
 是矩阵.

[例 1]

(1) 
$$\overrightarrow{x}=(x_1,x_2)$$
 时,  $\dfrac{\partial}{\partial \overrightarrow{x}}(x_1^2+2x_2^2)=\left[\dfrac{\partial}{\partial x_1}x_1^2,\dfrac{\partial}{\partial x_2}(2x_2^2)\right]=[2x_1,4x_2]$  .

(2) 设标量 a 非向量  $\overrightarrow{x}$  的函数, 标量 u 是  $\overrightarrow{x}$  的函数, 则:

| y                                                 | a                                  | $a \cdot u$                                        | $\sum x_i$   | $\left  \left  \overrightarrow{x} \right  \right ^2$ |
|---------------------------------------------------|------------------------------------|----------------------------------------------------|--------------|------------------------------------------------------|
| $\dfrac{\partial y}{\partial \overrightarrow{x}}$ | 零向量的转置 $\overset{ ightarrow}{0}^T$ | $a \frac{\partial u}{\partial \overrightarrow{x}}$ | 一向量的转置 $1^T$ | $2\overrightarrow{x^T}$                              |

(3) 设向量
$$\overrightarrow{x}\in\mathbb{R}^n$$
 , 向量 $\overrightarrow{y}\in\mathbb{R}^m$  , 则  $\dfrac{\partial\overrightarrow{y}}{\partial\overrightarrow{x}}\in\mathbb{R}^{m imes n}$  .

| y                                                                  | a                  | $\overrightarrow{x}$ | $\overrightarrow{Ax}$ | $\overrightarrow{x}^T A$ |
|--------------------------------------------------------------------|--------------------|----------------------|-----------------------|--------------------------|
| $\dfrac{\partial \overrightarrow{y}}{\partial \overrightarrow{x}}$ | 零矩阵 $0_{m	imes n}$ | 一矩阵 $1_{m	imes n}$   | A                     | $A^T$                    |

### [定理]

### (1) 基本运算的导数:

① 设标量 u 和标量 v 都是向量  $\overrightarrow{x}$  的函数, 则:

| y                                                 | u+v                                                                                                 | $u \cdot v$                                                 |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| $\dfrac{\partial y}{\partial \overrightarrow{x}}$ | $\dfrac{\partial u}{\partial \overrightarrow{x}} + \dfrac{\partial v}{\partial \overrightarrow{x}}$ | $\overrightarrow{\partial u}v+\overrightarrow{\partial v}u$ |

# ② 设向量 $\overrightarrow{u}$ 和向量 $\overrightarrow{v}$ 都是向量 $\overrightarrow{x}$ 的函数,则:

| y                                                                  | $a\cdot\overrightarrow{u}$                                          | $A\overrightarrow{u}$                                               | $\overrightarrow{u} + \overrightarrow{v}$                                                                                             | 内积 $\left\langle \overrightarrow{u},\overrightarrow{v}\right angle$                                                                                                                         |
|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\dfrac{\partial \overrightarrow{y}}{\partial \overrightarrow{x}}$ | $a \frac{\partial \overrightarrow{u}}{\partial \overrightarrow{x}}$ | $A \frac{\partial \overrightarrow{u}}{\partial \overrightarrow{x}}$ | $\dfrac{\partial \overrightarrow{u}}{\partial \overrightarrow{x}} + \dfrac{\partial \overrightarrow{v}}{\partial \overrightarrow{x}}$ | $\overrightarrow{v}^T \cdot \dfrac{\partial \overrightarrow{u}}{\partial \overrightarrow{x}} + \overrightarrow{u}^T \cdot \dfrac{\partial \overrightarrow{v}}{\partial \overrightarrow{x}}$ |

### (2) [链式法则]

① 标量: 
$$y=f(u)$$
 ,  $u=g(x)$  , 则  $\dfrac{\partial y}{\partial x}=\dfrac{\partial y}{\partial u}\dfrac{\partial u}{\partial x}$  .

### ② 向量:

| 链式法则                                                                                                                                                                                                   | 维度                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| $rac{\partial y}{\partial \overrightarrow{x}} = rac{\partial y}{\partial u} rac{\partial u}{\partial \overrightarrow{x}}$                                                                           | $(1,n)=(1)\cdot (1,n)$      |
| $rac{\partial y}{\partial \overrightarrow{x}} = rac{\partial y}{\partial \overrightarrow{u}} rac{\partial \overrightarrow{u}}{\partial \overrightarrow{x}}$                                         | $(1,n) = (1,k) \cdot (k,n)$ |
| $\dfrac{\partial \overrightarrow{y}}{\partial \overrightarrow{x}} = \dfrac{\partial \overrightarrow{y}}{\partial \overrightarrow{u}} \dfrac{\partial \overrightarrow{u}}{\partial \overrightarrow{x}}$ | $(m,n) = (m,k) \cdot (k,n)$ |

[**例 2**] 设 $\overrightarrow{x} \in \mathbb{R}^n$  和  $\overrightarrow{w} \in \mathbb{R}^n$  是两无关的向量, 实数  $y \in \mathbb{R}$  . 设函数  $z = \left(\left\langle \overrightarrow{x}, \overrightarrow{w} \right\rangle - y\right)^2$  , 求  $\frac{\partial z}{\partial \overrightarrow{w}}$  .

[解] 
$$\Leftrightarrow \begin{cases} a = \left\langle \overrightarrow{x}, \overrightarrow{w} \right\rangle \\ b = a - y \\ z = b^2 \end{cases}$$

$$\mathbb{Q} \frac{\partial z}{\partial \overrightarrow{w}} = \frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial \overrightarrow{w}} = \frac{\partial b^2}{\partial b} \frac{\partial (a - y)}{\partial a} \frac{\partial \left\langle \overrightarrow{x}, \overrightarrow{w} \right\rangle}{\partial \overrightarrow{w}}$$

$$= (2b) \cdot 1 \cdot \overrightarrow{x}^T = 2 \left( \left\langle \overrightarrow{x}, \overrightarrow{w} \right\rangle - y \right) \overrightarrow{x}^T .$$

[**例 3**] 设  $X\in\mathbb{R}^{m imes n}$  是与向量  $\overrightarrow{w}\in\mathbb{R}^n$  无关的矩阵, 向量  $\overrightarrow{y}\in\mathbb{R}^m$  . 设函数  $z=\left|\left|\overrightarrow{Xw}-\overrightarrow{y}\right|\right|$  , 求  $\frac{\partial z}{\partial \overrightarrow{w}}$  .

[解] 
$$\Leftrightarrow \begin{cases} a = X\overrightarrow{w} \\ \overrightarrow{b} = \overrightarrow{a} - \overrightarrow{y}, \\ z = \left| |\overrightarrow{b}| \right|^2 \end{cases}$$

$$\begin{split} \mathbb{Q} \mathbb{I} & \frac{\partial z}{\partial \overrightarrow{w}} = \frac{\partial z}{\partial \overrightarrow{b}} \frac{\overrightarrow{\partial b}}{\partial \overrightarrow{a}} \frac{\overrightarrow{\partial a}}{\partial \overrightarrow{w}} = \frac{\partial \left| \overrightarrow{b} \right|^2}{\partial \overrightarrow{b}} \frac{\partial \left(\overrightarrow{a} - \overrightarrow{y}\right)}{\partial \overrightarrow{a}} \frac{\partial X\overrightarrow{w}}{\partial \overrightarrow{a}} \\ & = 2\overrightarrow{b}^T \cdot 1_{m \times m} \cdot X = 2 \left( X\overrightarrow{w} - \overrightarrow{y} \right)^T X \,. \end{split}$$