

(19) 日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-33670

(P2002-33670A) (43)公開日 平成14年1月31日(2002.1.31)

	A		
(51) Int. Cl. 7	識別記号	FΙ	テーマコード(参考)
H03M 13/39		HO3M 13/39	5B001
G06F 11/10	320	G06F 11/10	320 K 5D045
	330		330 N 51065
			330 S
G10L 19/00		G10L 9/18	A
		審査請求	未請求 請求項の数70 OL (全14頁)
(21)出願番号	特願2001-156375(P2001-156375)	(71)出顧人	301030605
			アギア システムズ ガーディアン コー
(22)出願日	平成13年5月25日(2001.5.25)		ポレーション
			Agere Systems Guard
(31)優先権主張番号	09/579216		ian Corporation
(32)優先日	平成12年5月26日(2000.5.26)		アメリカ合衆国.32819-8698 フロリダ,
(33)優先権主張国	米国 (US)		オーランド, サウス ジョン ヤング パ
			ークウェイ 9333
		(74)代理人	100064447
			弁理士 岡部 正夫 (外11名)
:			
	•		最終頁に続く

(54) 【発明の名称】確率依存グラフにおいて汎用の符号を復号化するための方法および装置

(57)【要約】

【課題】 種々の符号の繰返し復号化を実行するための プロック並列復号化アルゴリズムおよび対応する復号化 器アーキテクチャを提供すること。

【解決手段】 ブロック並列復号化アルゴリズムおよび対応する復号化器アーキテクチャは、確率依存グラフの形で構成される1組の相互接続される処理ノードを用いる。確率依存グラフは、ビットあるいはシンボルからなるブロックを符号化するために用いられる符号によって少なくとも部分的に特徴づけられ、その処理ノードは、復号化されることになる、ビットあるいはシンボルからなるブロックのためのブロック並列復号化プロセスを実施する。確率依存グラフには、たとえば、N個一組の変数ノードとT個一組の検査ノードとを含み、N個の変数ノードのうちの1つが、復号化される所与のブロックのN個の各ビットあるいはシンボルに関連する、2ノード型の確率依存グラフが用いられる場合がある。

×

BEST AVAILABLE CUPY

【特許請求の範囲】

【請求項1】 受信されたピットあるいはシンポルを復 号化するための装置であって、

前記ピットあるいはシンボルを符号化するために用いら れる符号によって少なくとも部分的に特徴づけられる確 率依存グラフの形で実装される1組の相互接続される処 理ノードを備え、該処理ノードは、復号化されることに なる前記ピットあるいはシンボルからなる所与のプロッ クのためのプロック並列復号化プロセスを実施する装

前記確率依存グラフは、2ノード型の確 【請求項2】 率依存グラフを含む請求項1に記載の装置。

【請求項3】 前記所与のプロックは、復号化されるこ とになるN個のピットあるいはシンポルを含み、前記1 組の相互接続される処理ノードはさらに、N個一組の変 数ノードと、T個一組の検査ノードとを含み、前記N個 の変数ノードのうちの1つは、復号化されることになる 前記N個のビットあるいはシンボルそれぞれと関連する 請求項2に記載の装置。

前記プロック並列復号化プロセスは、R 20 【請求項4】 x, (i=0, 1、... N-1)を前記受信されたビ ットあるいはシンボルとし、f(.)を前記符号によっ て少なくとも部分的に決定される関数とするとき、関数 f (Rx) を前記変数ノードに接続される前記各検査 ノードに送信することによって開始される請求項3に記 載の装置。

前記関数 f (.) は、閾値関数、線形換 【請求項5】 算関数および近似指数関数のうちの少なくとも1つを含 む請求項4に記載の装置。

【請求項6】 前記ブロック並列復号化プロセスは、前 30 記検査ノードそれぞれにおいて、該検査ノードに接続さ れる前記変数ノードからの入力の関数g (.) を計算す るステップと、前記検査ノードの計算結果を前記接続さ れる変数ノードに送信するステップとを含み、前記計算 は並行して実行される請求項3に記載の装置。

【請求項7】 前記関数g(.)は、パリティ検査関 数、対数領域の双曲正接関数および対数領域の最大関数 のうちの少なくとも1つを含む請求項6に記載の装置。

【請求項8】 前記ブロック並列復号化プロセスはさら に、前記変数ノードそれぞれにおいて、該変数ノードに 40 接続される前記検査ノードからの入力の関数 h (.) を 計算するステップと、前記変数ノードの計算結果を前記 接続される検査ノードに送信するステップとを含み、前 記変数ノード計算は並行して実行される請求項6に記載 の装置。

前記関数 h (.) は、多数決関数および 【請求項9】 平均化関数のうちの少なくとも1つを含む請求項8に記 載の装置。

前記ブロック並列復号化プロセスの1 【請求項10】 回の繰返しは、前記所与のブロック内の全ての前記ビッ 50

トあるいはシンボルのための更新された推定値を生成す る請求項2に記載の装置。

【請求項11】 前記プロック並列復号化プロセスの1 回の繰返しは、前記所与のプロック内の全ての前記ピッ トあるいはシンボルのための事後確率あるいは信頼性に 対する更新された推定値を生成する請求項2に記載の装 置。

【請求項12】 前記ブロック並列復号化プロセスは、 全ての前記検査ノードが前記符号の制約条件を満たすと きに終了する請求項3に記載の装置。

【請求項13】 前記プロック並列復号化プロセスは、 最大数だけ繰り返した後に終了する請求項2に記載の装

【請求項14】 前配変数ノードにおける前配プロック 並列復号化プロセスの結果は、前記復号化されたビット あるいはシンボルの関連する事後確率あるいは信頼性の 推定値を与える請求項3に記載の装置。

【請求項15】 前記確率依存グラフは、有向確率依存 グラフを含む請求項1に記載の装置。

【請求項16】 前記1組の相互接続された処理ノード はさらに、初期レベル、少なくとも1つの中間レベルお よび最終レベルを有する複数レベルのノードを含む請求 項15に記載の装置。

前記初期レベルの前記ノードは、前記 【請求項17】 所与のプロック内の前記各ピットあるいはシンボルのた めの入力ノードを含む請求項15に記載の装置。

【請求項18】 前記レベルの前記ノードは、前記少な くとも1つの中間レベル内の前記ノードが、以前のレベ ルのノードからのみ入力を受信し、次に続くレベルのノ ードにのみ出力を供給するように構成され、順次的なプ ロック内依存性を有することなく前記各レベルにおいて 計算を実行できるようにする請求項15に記載の装置。

【請求項19】 前記最終レベルの前記ノードの出力 は、前記所与のプロックのための伝送されたピットある いはシンボルの推定値を与える請求項15に記載の装

【請求項20】 前記最終レベルの前記ノードの出力 は、前記所与のプロックのための伝送されたピットある いはシンボルの推定値と、その関連する事後確率あるい は信頼性の推定値とを与える請求項15に記載の装置。

【請求項21】 前記ブロック並列復号化プロセスは、 Rx, (i=0、1、... N-1) を前記受信された ビットあるいはシンボルとし、f (.) を前記符号によ って少なくとも部分的に決定される関数とするとき、関 数 f (Rxi) を、前記初期レベル内の前記各ノードへ の入力として供給することにより初期化される請求項1 5に記載の装置。

【請求項22】 前記関数 f (.) は、閾値関数、線形 換算関数および近似指数関数のうちの少なくとも1つを 含む請求項21に記載の装置。

<u>TO CONTROL TO THE CO</u>

【請求項23】 前記各中間レベルの前記ノードは、前 記以前のレベルから到来する値の関数 g (.) を計算 し、前記計算の結果を次のレベルのノードに渡す請求項 15に記載の装置。

【請求項24】 前記関数g(.)は、パリティ検査関 数、対数領域の双曲正接関数、および対数領域の最大関 数のうちの少なくとも1つを含む請求項23に記載の装 置。

【請求項25】 前記レベルはそれぞれ、前記所与のブ ロック内の全ての前記ピットあるいはシンボルのための 10 更新された推定値を生成する請求項15に記載の装置。

【請求項26】 前記ノードは複数のプログラム可能な 計算ユニットを用いて実装され、前記プログラム可能な 計算ユニットは、種々の符号のための種々のプロック並 列復号化プロセスを実施するように構成を変更可能であ る請求項1に記載の装置。

前記符号はたたみ込み符号を含む請求 【請求項27】 項1に記載の装置。

【請求項28】 前記符号はたたみ込み符号に少なくと も部分的に基づく符号を含む請求項1に記載の装置。

前記符号はプロック符号を含む請求項 【請求項29】 1に記載の装置。

【請求項30】 復号化されたビットあるいはシンボル からなるワードが前記符号の有効なコードワードである か否かに関する判定は、指示されたパリティ制約条件が 満たされるか否かを判定することにより行われる請求項 2に記載の装置。

【請求項31】 復号化されたビットあるいはシンボル からなるワードが前記符号の有効なコードワードである か否かに関する判定は、復号化された前記ワードと前記 30 符号のパリティ検査行列との積がゼロベクトルになるか 否かを判定することにより行われる請求項2に記載の装 置。

【請求項32】 復号化されたビットあるいはシンボル からなるワードが前記符号の有効なコードワードである か否かに関する判定は、有効なコードワードへの収束を 示すために以前のレベルからの入力の関数を用いて行わ れる請求項15に記載の装置。

【請求項33】 受信されたピットあるいはシンボルを 復号化するための方法であって、該方法は、

前記ピットあるいはシンボルを符号化するために用いら れる符号によって少なくとも部分的に特徴づけられる確 率依存グラフの形で構成される1組の相互接続される処 理ノードに、前記受信されたビットあるいはシンボルを 適用するステップと、

前記処理ノード内で、復号化されることになる前記ビッ トあるいはシンボルからなる所与のプロックのためのブ ロック並列復号化プロセスを実施するステップとを備え る方法。

【請求項34】 前記確率依存グラフは、2ノード型の 50 きに終了する請求項35に記載の方法。

確率依存グラフを含む請求項33に記載の方法。

【請求項35】 前記所与のプロックは、復号化される ことになるN個のピットあるいはシンポルを含み、前記 1組の相互接続される処理ノードはさらに、N個一組の 変数ノードとT個一組の検査ノードとを含み、前記N個 の変数ノードのうちの1つは、復号化されることになる 前記N個のビットあるいはシンボルそれぞれに関連する 請求項34に記載の方法。

【請求項36】 前記プロック並列復号化プロセスは、 Rx, (i=0、1、... N-1) を前記受信された ピットあるいはシンボルとし、f(.)を前配符号によ って少なくとも部分的に決定される関数とするとき、関 数 f (Rx,) を前記変数ノードに接続される前配各検 査ノードに送信することにより開始される請求項35に 記載の方法。

前記関数 f (.) は、閾値関数、線形 【請求項37】 換算関数および近似指数関数のうちの少なくとも1つを 含む請求項36に記載の方法。

【請求項38】 前記プロック並列復号化プロセスは、 前記検査ノードそれぞれにおいて、該検査ノードに接続 される前記変数ノードからの入力の関数 g (.) を計算 するステップと、前記検査ノードの計算結果を前記接続 される変数ノードに送信するステップとを含み、前記計 算は並行して実行される請求項35に記載の方法。

【請求項39】 前記関数g(.)は、パリティ検査関 数、対数領域の双曲正接関数、および対数領域の最大関 数のうちの少なくとも1つを含む請求項38に記載の方

前記プロック並列復号化プロセスはさ 【請求項40】 らに、前記変数ノードそれぞれにおいて、該変数ノード に接続される前記検査ノードからの入力の関数 h (.) を計算するステップと、前記変数ノードの計算結果を前 記接続される検査ノードに送信するステップとを含み、 前記変数ノード計算は並行して実行される請求項38に 記載の方法。

前記関数 h (.) は、多数決関数およ 【請求項41】 び平均化関数のうちの少なくとも1つを含む請求項40 に記載の方法。

【請求項42】 前記プロック並列復号化プロセスの1 40 回の繰返しは、前記所与のプロック内の全ての前記ピッ トあるいはシンボルのための更新された推定値を生成す る請求項34に記載の方法。

【請求項43】 前記プロック並列復号化プロセスの1 回の繰返しは、前記所与のプロック内の全ての前記ピッ トあるいはシンボルのための事後確率あるいは信頼性に 対する更新された推定値を生成する請求項34に記載の 方法。

【請求項44】 前記ブロック並列復号化プロセスは、 全ての前記検査ノードが前記符号の制約条件を満たすと

前記プロック並列復号化プロセスは、 【請求項45】 最大数だけ繰り返した後に終了する請求項34に記載の 方法。

【請求項46】 前記変数ノードにおける前記プロック 並列復号化プロセスの結果は、前記復号化されたビット あるいはシンボルの関連する事後確率あるいは信頼性の 推定値を与える請求項35に記載の方法。

【請求項47】 前配確率依存グラフは、有向確率依存 グラフを含む請求項33に記載の方法。

【請求項48】 前記1組の相互接続された処理ノード 10 はさらに、初期レベル、少なくとも1つの中間レベルお よび最終レベルを有する複数レベルのノードを含む請求 項47に記載の方法。

【請求項49】 前記初期レベルの前記ノードは、前記 所与のプロック内の前記各ビットあるいはシンボルのた めの入力ノードを含む請求項47に記載の方法。

【請求項50】 前記レベルの前記ノードは、前記少な くとも1つの中間レベル内の前記ノードが、以前のレベ ルのノードからのみ入力を受信し、次に続くレベルのノ ードにのみ出力を供給するように構成され、順次的なブ 20 ロック内依存性を有することなく前記各レベルにおいて 計算を実行できるようにする請求項47に記載の方法。

【請求項51】 前記最終レベルの前記ノードの出力 は、前記所与のブロックのための伝送されたビットある いはシンボルの推定値を与える請求項47に記載の方 法。

【請求項52】 前記最終レベルの前記ノードの出力 は、前記所与のプロックのための伝送されたビットある いはシンボルの推定値と、その関連する事後確率あるい は信頼性の推定値とを与える請求項47に記載の方法。

【請求項53】 前記プロック並列復号化プロセスは、 Rx, (i=0、1、... N-1) を前記受信された ピットあるいはシンボルとし、f(.)を前記符号によ って少なくとも部分的に決定される関数とするとき、関 数f(Rxi)を、前記初期レベル内の前記各ノードへ の入力として供給することにより初期化される請求項4 7に記載の方法。

【請求項54】 前記関数f(.)は、閾値関数、線形 換算関数および近似指数関数のうちの少なくとも1つを 含む請求項53に記載の方法。

【請求項55】 前記各中間レベルの前記ノードは、前 記以前のレベルから到来する値の関数g (.) を計算 し、前記計算の結果を次のレベルのノードに渡す請求項 47に記載の方法。

【請求項56】 前記関数g(.)は、パリティ検査関 数、対数領域の双曲正接関数、および対数領域の最大関 数のうちの少なくとも1つを含む請求項55に記載の方 法。

【請求項57】 前記レベルはそれぞれ、前記所与のブ ロック内の全ての前記ピットあるいはシンボルのための 50

更新された推定値を生成する請求項47に記載の方法。 前記ノードは複数のプログラム可能な 【請求項58】 計算ユニットを用いて実装され、該プログラム可能な計 算ユニットは、種々の符号のための種々のプロック並列 復号化プロセスを実施するように構成を変更可能である 請求項33に記載の方法。

前記符号はたたみ込み符号を含む請求 【請求項59】 項33に記載の方法。

前記符号はたたみ込み符号に少なくと 【請求項60】 も部分的に基づく符号を含む請求項33に記載の方法。

【請求項61】 前記符号はプロック符号を含む請求項 33に記載の方法。

【請求項62】 復号化されたピットあるいはシンボル からなるワードが前記符号の有効なコードワードである か否かに関する判定は、指示されたパリティ制約条件が 満たされるか否かを判定することにより行われる請求項 34に記載の方法。

【請求項63】 復号化されたビットあるいはシンボル からなるワードが前記符号の有効なコードワードである か否かに関する判定は、復号化された前記ワードと前記 符号のパリティ検査行列との積がゼロベクトルになるか 否かを判定することにより行われる請求項34に記載の

【請求項64】 復号化されたビットあるいはシンボル からなるワードが前記符号の有効なコードワードである か否かに関する判定は、有効なコードワードへの収束を 示すために以前のレベルからの入力の関数を用いて行わ れる請求項47に記載の方法。

【請求項65】 受信されたビットあるいはシンボルを 復号化するための装置であって、

確率依存グラフの形に構成される1組のノードを実装す るための1つあるいは複数の計算ユニットを備え、該計 算ユニットは、前記ピットあるいはシンボルを符号化す るために用いられる符号によって少なくとも部分的に特 徴づけられ、前記1組のノードは、復号化されることに なる前記ピットあるいはシンボルからなる所与のプロッ クにブロック並列復号化プロセスを提供するように構成 される装置。

前記計算ユニットはそれぞれ、前記ノ 【請求項66】 40 ードのうちの特定の1つのノードに対応する請求項65 に記載の装置。

前記計算ユニットはそれぞれ、前記ノ 【請求項67】 ードのうちの多数のノードに対応する請求項65に記載

【請求項68】 受信されたビットあるいはシンボルを 復号化するための方法であって、該方法は、

確率依存グラフの形で構成される1組のノードを実装 し、かつ前記ビットあるいはシンボルを符号化するため に用いられる符号によって少なくとも部分的に特徴づけ られる1組の1つあるいは複数の計算ユニットに、前記

Q

受信されたピットあるいはシンボルを適用するステップ *ト*

前記ノード内に、復号化されることになる前記ピットあるいはシンボルからなる所与のプロックのためのプロック並列復号化プロセスを実装するステップとを備える方法。

【請求項69】 前記計算ユニットはそれぞれ、前記ノードのうちの特定の1つのノードに対応する請求項68に記載の方法。

【請求項70】 前記計算ユニットはそれぞれ、前記ノードのうちの多数のノードに対応する請求項68に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は全般に情報の符号化および復号化技術に関し、より詳細には、符号化された情報信号を復号化する際に用いるための復号化器アルゴリズムおよびアーキテクチャに関する。

[0002]

【従来の技術】符号化は、デジタル情報を伝送する際に、ビットあるいはパケット誤り率を低減するために幅広く用いられている。多くの応用形態では、この目的を果たすために、たたみ込み符号が用いられる。たたみ込み符号は、ステートマシンによって定義され、状態の遷移は符号化されることになる入力ビットによって決定される。たたみ込み符号あるいはたたみ込み符号に基づく符号の場合、ビタビアルゴリズムと最大事後確率(MAP)アルゴリズムの2つが、最もよく用いられる復号化アルゴリズムである。

【0003】ビタビアルゴリズムはA. J. Viterbiによる「Error bounds for convolutional codes and an asymptotically optimum decoding algorithm」(IEEE Trans.Inform. Theory, Vol. IT-13, pp. 260-269, April 1967)に記載されており、参照して本明細書に援用している。そのアルゴリズムは、トレリスと呼ばれる時間的に展開される状態遷移図を通して最も可能性の高いパスを見つけることにより、受信されたピットあるいはシンボルを復号化する。

【0004】図1は、従来のブロック直列ピタピ復号化器100を示す。復号化器100はS個の分岐メトリッ 40クユニット (BMU) 102を備えており、それぞれ102-jで示されている (ただしj=0、1、...Sー1である)。BMU102-jのうちの所与の1つのものは、1ピットあるいはシンボルを受信する入力と、対応する加算-比較-選択ユニット (ACSU) 104-jの入力に接続される出力とを備える。また、BMU102-jおよびACSU104-jは、図面においてそれぞれBMU,およびACSU,で示される。ACSU104の組の出力は、受信されたピットあるいはシンボルから復号化されたピットを生成する残存メモリユニ 50

ット(SMU)106に加えられる。ピタピ復号化器100の動作が以下に記載される。この説明は、復号化される所与のプロックがN個の受信されたピットあるいはシンボルを含むものと仮定している。

【0005】復号化器 100は、状態が0のパスメトリックが0になり ($PM_0=0$)、それ以外の全ての状態のパスメトリックが無限大になるように (PM

1.....s-1=∞)初期化することにより初期化される。その後、復号化アルゴリズムが、受信されたビットあるいはシンボル毎に繰り返す外部ループと、トレリス内の状態毎に繰り返す内部ループとを含む以下の再帰的な繰返しを実行する。

【0006】プロック内で、受信されたビットあるいは シンボル Rx_i (ただしi=0、1、... N-1)毎 に、トレリス内の各状態に対して、

1. 現在の状態から可能な次の状態までの各分岐に対する分岐メトリックを計算する。トレリスの所与の分岐のための分岐メトリックは、受信されたシンボルあるいはビットRx,を与えるときに、現在の状態から、その分岐が接続する状態に遷移する可能性に関する指標である。分岐メトリック計算はBMU102によって実行される。

【0007】2. 各状態に入る最小パスメトリックを見つけるために比較を実行する。パスメトリックは、以前の状態パスメトリックと、その遷移に対して関連する分岐メトリックとの和として形成される。ここで、この最小値は、次の繰返しのための状態パスメトリックになる。比較は、ACSU104において実行される。

【0008】3. 各状態に対して、比較によってどの分 30 岐に到達したかの判定をSMU106に格納する。

【0009】上記のように、この繰返しプロセスは、復号化されることになるNビットあるいはシンボルからなる受信されたプロックにおいてビットあるいはシンボル 毎に1回実行され、各ビットあるいはシンボルに対して、受信された系列の1つの更新された推定値を生成する1回の復号化の繰返しを完了する。スループットを最大にするために、状態並列アーキテクチャを用いることができ、図1に示されるように、内部ループ動作が多数の状態に対して並行して実行される。しかしながら、外部ループ動作は並行には実行されない。なぜなら、1回の繰返しから得られる各状態のための更新されたパスメトリックが、次の繰返しのための入力として必要とされるからである。

【0010】その復号化アルゴリズムは、受信されたブロックの全てのビットあるいはシンボルが処理された後に、最終的に最小のパスメトリックを有する状態を特定することにより終了する。この状態は、獲得状態(winning state)と呼ばれる。獲得状態から、そこで格納された復号化判定は、その状態を先行する状態にトレースバックされる。このトレースバックプロセスは、そのブ

9 .

ロックの開始時に対応する状態に到達するまで継続され る。これらの判定によって定義されるパスは、ピットあ るいはシンボルに関する最も伝送された可能性の高い系 列を特定し、復号化器出力を生成するために処理され

【0011】ビタビアルゴリズムとは異なり、上記のM APアルゴリズムは、伝送された系列内の各ピットある いはシンボルの最大事後確率を見つけるために、トレリ スにわたる順方向および逆方向パスを用いる。MAPア ルゴリズムは、L. R. Bahl, J. Cocke, F. Jelinekおよ びJ. Ravivによる「Optimal decoding of linear codes for minimizing symbol error rates (IEEE Trans. I nform. Theory, Vol. IT-20, pp. 284-287, March 197 4) に、より詳細に記載されており、参照して本明細書 に援用している。

【0012】ビタビおよびMAPアルゴリズムはいずれ も順次処理に基づいており、以前のピットあるいはシン ボルに対するACS計算の結果に応じて、受信されたブ ロック内の各ピットあるいはシンボルに対して動作が実 行される。この依存性により、ビットあるいはシンボル 20 レートより高いACS動作のパイプライン化が妨げら れ、それゆえ、たたみ込み符号を復号化することができ る速度を制限し、それにより、復号化器のスループット を制限する。

【0013】より高い誤り訂正能力を必要とする応用形 態では、多くの場合に、2つ以上のたたみ込み符号が直 列あるいは並列に連結して用いられる。連結される符号 の一例が、たとえば、C. Berrou, A. GlavieuxおよびP. Thitimajshimaによる「NearShannon limit error-corr ecting coding: Turbo codes」 (Proc. IEEE Int. Con f. Comm., Geneva Switzerland, 1993, pp. 1064-107 0) に記載される、いわゆるターボ符号であり、参照し て本明細書に援用している。連結された符号の復号化 は、後続の符号トレリスのために、次の符号トレリスを 次々に復号化するための入力として、1つの符号トレリ スを復号化した結果を必要とする。そのような繰返し直 列処理は、何度も、ビタビあるいはMAP復号化器のい ずれかが各トレリスを通して何度も順次にトレースし、 後続する繰返しは、以前の復号化の結果を待つ必要があ る。ハードウエアで実装されるとき、復号化アルゴリズ 40 ムの順次実施される性質は、ビットあるいはシンボル直 列アーキテクチャを必要とする。これは、実行される繰 返しの数および構成する符号の数だけビタビあるいはM AP復号化器の待ち時間を増やし、それにより、連結さ れた符号を復号化するための待ち時間が相当に長くな る。

【0014】上記のように、ピタビおよびMAPアルゴ リズムの再帰的な依存性によって、復号化器スループッ トを改善するために計算をパイプライン化することも不 可能になる。スループットを改善し、待ち時間を最小に 50

するために、より速いクロック速度で復号化器を駆動す ることはできるが、そのようなアプローチは復号化器の 電力の浪費を増加させる。連結された符号を復号化する ことに関連する電力および待ち時間の問題は、多くの場 合に、実用的な応用形態に対してそのアプローチを用い ることを制限する。さらに、そのような符号が用いられ る場合であっても、繰返しの数が制限され、それにより 待ち時間に関する要件を満たすために符号化利得を犠牲 にする場合がある。より少ない待ち時間で、そのような 符号に対する復号化の各繰返しを実行できたなら、復号 化器の性能は、実行される繰返しの数を増やすことによ り改善することができるであろう。

【0015】また、確率依存グラフ (probability depe ndency graph) を用いて、特定のクラスの符号、たとえ ば複合符号のブロック直列復号化プロセスを考案できる ことも当業者には知られている。複合符号は一般に、多 数の符号の組み合わせから生成される符号のことであ る。たとえば、参照して本明細書に援用している、F. R. KschischangおよびB. J. Freyによる「Iterative de coding of compound codes by probability propagatio n in graphical models] (IEEE Journal on Selected Areas in Comm., Vol. 16, No. 2, pp. 219-230, Feb. 1998) を参照されたい。しかしながら、これまでそのよ うな技術は、たたみ込み符号、ターボ符号あるいはその 他の連結された符号等を含む、汎用の符号のプロック並 列復号化に適用されてこなかった。ただし、汎用の符号 は、パリティ検査行列を判定することができる任意の符 号を含む。

【0016】上記の説明から明らかなように、電力の浪 費を増加させることなく、スループットを改善し、待ち 時間を低減する改善された復号化アルゴリズムおよび対 応する復号化器アーキテクチャが必要とされている。

[0017]

【発明が解決しようとする課題】したがって、本発明の 目的は、たとえば、たたみ込み符号、ターボ符号あるい はたたみ込み符号またはプロック符号等に基づくその他 の連結された符号を含む、多種多様な符号の繰返し復号 化を実行するためのプロック並列復号化アルゴリズムお よび対応する復号化器アーキテクチャを提供することで ある。

[0018]

【課題を解決するための手段】本発明は、汎用の符号に 対する復号化器の問題をプロック並列形式に定式化し直 し、上記の従来のブロック直列復号化アルゴリズムおよ び復号化器アーキテクチャに固有の直列依存性を排除 し、それにより、実質的に待ち時間を低減し、スループ ットを高める点で有利である。

【0019】本発明によれば、ブロック並列復号化アル ゴリズムおよび対応する復号化器アーキテクチャは、確 率依存グラフの形に構成された1組の相互接続された処

11

理ノードを用いる。確率依存グラフは、ビットあるいは シンボルからなるプロックを符号化するために用いられ る符号によって少なくとも部分的に特徴づけられ、処理 ノードが、復号化されることになるビットあるいはシン ボルからなるプロックのためのプロック並列復号化プロ セスを実施する。

[0020]本発明の例示的な実施形態では、確率依存グラフは、N個一組の変数ノードとT個一組の検査ノードとを含む2つからなる確率依存グラフの形をなし、N個の変数ノードのうちの1つが復号化されることになる 10所与のプロックのN個のビットあるいはシンボルそれぞれに関連する。プロック並列復号化プロセスの1回の繰返しは、変数ノード内に、所与のプロックにおける全ビットあるいはシンボルのための更新された推定値を生成する。この場合のプロック並列復号化プロセスは、変数ノードに接続される各検査ノードに関数 $f(Rx_i)$ を送信することにより開始される。ただし Rx_i は、受信されたビットあるいはシンボルで、i=0、1、. . . N-1であり、f(.) は、閾値関数、線形換算関数、あるいは近似指数関数のような、符号によって少なくと 20も部分的に決定される関数である。

【0021】ブロック並列復号化プロセスは、検査ノードに接続される変数ノードからの入力の関数g()を各検査ノードにおいて並行して計算することと、これらの検査ノードの計算結果を接続される変数ノードに送信することとを含む。関数g(.)は、たとえば、パリティ検査関数、対数領域の双曲正接関数、あるいは対数領域の最大関数を含む場合がある。たとえば、関数g(.)は、パリティ検査関数、さらに現在の入力がパリティ検査の制約条件を満たす信頼性の指示値を更新するための関数を含む場合がある。付加的な信頼性更新関数には、対数領域の双曲正接関数を用いることができる。

【0022】ブロック並列復号化プロセスはさらに、各変数ノードにおいて、その変数ノードに接続される検査ノードからの入力の関数h()を並行して計算することと、これらの変数ノードの計算結果を、接続される検査ノードに送信することとを含む。関数h()には、たとえば、多数決関数あるいは平均化関数を用いることができる。

【0023】プロック並列復号化プロセスは、全ての検査ノードが符号の制約条件を満たしたとき、あるいは最大数だけ繰り返した後に終了する。終了時に、変数ノードの値が、推定、すなわち復号化される伝送ビットあるいはシンボルと、おそらく関連する事後確率あるいは信頼性とを決定する。

【0024】本発明の別の例示的な実施形態では、確率 依存グラフは、初期レベル、少なくとも1つの中間レベ ルおよび最終レベルを含む多数レベルのノードを有する 有向確率依存グラフ (directional probability depend 50

ency graph) の形をとり、順次的なプロック内依存性を 有することなく、各レベルにおいて計算を実行できるよ うに構成される。初期レベルのノードは、復号化される ことになる所与のプロック内の各ピットあるいはシンボ ルのための入力ノードを含む。各中間レベルのノード は、以前のレベルのノードからのみ入力を受信し、次に 続くレベルのノードにのみ出力を供給する。最終レベル のノードの出力は、所与のブロックのための伝送された ビットあるいはシンボルの推定値を与える。プロック並 列復号化プロセスは、この実施形態では、初期レベル内 の各ノードへの入力として、関数f(Rxi)を与える ことにより初期化される。ただし、Rxiは受信された ピットあるいはシンボルで、i=0、1、. . N-1であり、 f (.) は、閾値関数、線形換算関数、あるい は近似指数関数のような、符号によって少なくとも部分 的に決定される関数である。その後、各中間レベルのノ ードは、以前のレベルのノードから到来する値の関数g (.) を計算し、次のレベルのノードにその計算結果を 渡し、各ノードが、所与のプロック内の全ピットあるい はシンボルのための更新された推定値を生成できるよう にする。

[0025] 本発明の別の態様によれば、相互接続される処理ノードの組は、1つあるいは複数のプログラム可能な計算ユニットを用いて実装することもできる。たとえば、異なる計算ユニットを用いて、各ノードを実装することができるか、あるいは多数のノードからなる所与の組を実装することができる。そのような計算ユニットは、種々の符号のための種々のプロック並列復号化プロセスを実施するのに適した、構成を変更可能なハードウエアあるいは他の装置を含む場合がある。

[0026]

【発明の実施の形態】ここで、多数の例示的な復号化アルゴリズムおよび対応する復号化器アーキテクチャを用いて、本発明が例示されることになる。本発明の特定の実施形態は単なる例示にすぎず、本発明は、確率依存グラフによるブロック並列復号化に関連し、スループットを改善し、かつ待ち時間を低減することにより利益を得ることができる任意の復号化アルゴリズムおよび対応する復号化器アーキテクチャに、より幅広く適用することができることを理解されたい。

【0027】本明細書で用いられる用語「汎用の符号」は、一例であり、限定はしないが、関連するパリティ検査行列が構成されるか、導出されるか、そうでなければ判定される場合がある任意の符号を含むことを意図している。

【0028】用語「確率依存グラフ」は、一例であり、限定はしないが、所与のノードに関連する値の厳密な、あるいは近似的な確率が、その所与のノードに接続される1つあるいは複数のノードに関連する1つあるいは複数の値の厳密な、あるいは近似的な確率に関して表され

ることができるように構成された、相互接続されるノー ドの任意の表現を含むことを意図している。

【0029】例示的な実施形態において、本発明は、確 率依存グラフによって表される符号を復号化するための ブロック並列アルゴリズム、および対応するプロック並 列復号化器アーキテクチャを提供する。本発明の一態様 によれば、所与の復号化器アーキテクチャは、確率依存 グラフを物理的に具体化したものを表しており、グラフ 内のノードは計算ユニットあるいはその適切な部分に対 応しており、グラフ内のエッジはノード間の接続に対応 10 する。本発明は、確率依存グラフがプロック内に順次的 な依存性を持たず、それゆえ、ブロック並列およびパイ プライン化の両方の復号化アルゴリズムおよびアーキテ クチャを開発するための原理として用いることができる という、本発明者の認識に一部基づいている。本発明に よる復号化器アーキテクチャは、図1とともに記載され たような従来のプロック直列復号化器アーキテクチャと 比較すると、スループットと待ち時間に関して相当な利 点を提供する点で有利である。

【0030】図2および図7は、本発明によるブロック 20 並列復号化アルゴリズムのための2つの例示的な復号化 器アーキテクチャを示す。これらの例示的なアーキテク チャでは、復号化されるプロックは、N個の受信された ビットあるいはシンボルを含むものと仮定する。

【0031】図2は、本発明による2ノード型のブロッ ク並列確率依存グラフ復号化器200の例示的な実施形 態を示す。復号化器200は、2つのタイプのノード、 すなわち変数ノードおよび検査ノードを含む2ノード型 の確率依存グラフの形で実装される素子を含む。N個の 全変数ノードの場合に、所与のブロック内の全受信ビッ トあるいはシンボルが復号化されるために、1つの変数 ノードが必要とされる。検査ノードの数はTで示され、 その数は符号、およびブロック内のピットあるいはシン ボルの数によって決定される。変数ノードおよび検査ノ ードの接続性は、符号によって決定される。

【0032】図2の復号化器200では、変数ノードは 白丸によって示され、検査ノードは黒丸によって示され る。この実施形態における各ノードは、以下に記載され る動作のうちの1つあるいは複数の動作を実行すること ができる計算ユニットに対応する処理ノードであると仮 40 定される。しかしながら、変数ノードおよび検査ノード は、たとえば、スループット要件が変数ノードおよび検 査ノードの処理速度よりも低い場合に、同じ処理ノード を用いて、多数のノードが評価されるようにグループ化 されることを理解されたい。そのような構成では、1つ の計算ユニットを用いて、確率依存グラフの多数のノー ドを実装することができる。したがって、所与の処理ノ ードは、1つの専用の計算ユニット、あるいはそのよう なユニットの一部を用いて実装することができる。した がって、ここで記載される復号化器200および他の復 50 することができるかに対応する場合がある。

号化器内の各ノードは、1つの計算ユニット、あるいは 多数ノード計算ユニットの一部を表す場合がある。 【0033】復号化器200は、変数ノードに接続され

る各検査ノードに、受信された値の関数、たとえばf. (Rx1) を送信することにより初期化される。ただ し、Rx」は受信されたピットあるいはシンボルで、i = 0 、 1 、 . . . N - 1 であり、 f (.) は、符号によ って決定される関数、たとえば閾値関数、線形換算関数 あるいは近似指数関数である。この初期化は、図2の変 数ノードの左側に示される。その後、復号化器200は 以下の動作を繰り返す。

【0034】1. C₀、C₁、... C₇₋₁で示され る各検査ノードでは、その検査ノードに接続される変数 ノードからの入力のおそらく異なる関数g()を計算 する。たとえば、異なる検査ノードでは異なる関数 g (.) が用いられる場合があるか、あるいは用いられ る関数は、繰返しの数あるいは別のパラメータを用いて 変更することができる。所与の1つの検査ノードにおけ る関数g(.)には、たとえば、パリティ検査関数、対 数領域の双曲正接関数あるいは対数領域の最大関数を用 いることができる。これらの計算の結果を接続される変 数ノードに送信する。その結果は通常、接続される各変 数ノードの場合に異なる値である。これらの計算は、並 行して実行される場合もある。

【0035】2. V_0 、 V_1 、. . . . V_{N-1} で示され る各変数ノードでは、その変数ノードに接続される検査 ノードからの入力のおそらく異なる関数 h (.) を計算 する。たとえば、異なる変数ノードでは異なる関数 h (.) が用いられる場合があるか、あるいは用いられ る関数は、繰返しの数あるいは別のパラメータを用いて 変更することができる。所与の1つの変数ノードにおけ る関数 h (.) には、たとえば、多数決関数あるいは平 均化関数を用いることができる。これらの計算の結果を 接続される検査ノードに送信する。同様に、これらの計 算は並行して実行される場合がある。

【0036】このプロセスの1回の繰返しは、受信され たプロック内の全ピットあるいはシンボルに対して、1 つの更新された推定値を生成する。所与の繰返しの各計 算は、従来の復号化アルゴリズムおよびその対応するア ーキテクチャの順次的なプロック内依存性を有すること なく、ブロック内で並列に実行することができる点で有 利である。

【0037】復号化器200の復号化アルゴリズムは、 全ての検査ノードが符号の制約条件を満たしたときに、 あるいは最大数だけ繰り返した後に終了され、変数ノー ドの計算結果は、その変数のための伝送された値の復号 化された推定値を与える。繰返しの最大数は一般に特定 の実装形態に依存し、たとえば、特定の実装形態におい て利用可能な時間内で、どれだけ多くの繰返し数を達成

【0038】復号化器200の確率依存グラフは、対応する符号に関連するパリティ検査行列Hを用いて構成される場合があり、1つの変数ノードがHの各列に関連し、1つの検査ノードがHの各行に関連する。Hの全組の要素 h, m は、変数ノード n と検査ノード m との間の接続に対応する。それゆえ、復号化器内の変数ノード n に入るか、あるいは変数ノード n を離れる、グラフ内のエッジの数は、Hの列nにおける0ではないエントリの数に等しく、復号化器内の検査ノードmに入るか、あるいは検査ノードmを離れる、グラフ内のエッジの数は、Hの行mにおける0ではないエントリの数に等しい。H において行演算を実行して、グラフ内のエッジの数を低減し、復号化器の構造あるいは性能を改善することもできる。

15

【0039】変数ノードにおいてその時点で復号化されたビット x_1 (ただし $i \in \{0, 1, \dots, N-1\}$ が以下のパリティ検査行列を満足するか否かを試験することにより、復号化器 200において完了のための試験を実行することができる。

 $H \cdot x = 0$,

THE STATE OF THE PROPERTY OF THE PROPERTY OF THE STATE OF

ただし、x は復号化されたピットのベクトル $\{x_0, x_1, \ldots, x_{N-1}\}$ であり、0 はmピットゼロベクトルであり、mはパリティ検査行列の行の数と、検査ノードの数とに対応する。別の完了のための試験は、全ての検査ノードがその時点の入力によって満足されることを試験することにより実行することができる。

 $chk_1 = 0 \forall i \in \{0, 1, \dots, K-1\},$ ただし、 chk_1 は、検査ノード i に対する全入力の排他的論理和である。

【0040】図3および図4は、図2の復号化器200 の硬判定実装形態における、それぞれ変数ノードおよび 検査ノードの例を示す。図3を参照すると、所与の変数 ノード300は、1組の要素302-0、302-1、 302-2、... 302-kを含み、それぞれ1組の 入力の特定の部分の重み付けされた多数決関数を実施す る。付加的な要素304は、1組の入力全体の重み付け された多数決関数を実施する。重み付けされた多数決関 数要素302-0、302-1、302-2、... 3 02-kはそれぞれ、1組の2対1マルチプレクサ30 6-0, 306-1, 306-2, . . . 306-k0 40 うちの対応する1つのマルチプレクサに判定出力を供給 する。マルチプレクサはそれぞれ共通の開始信号によっ て駆動され、その出力は、共通のクロック信号によって 駆動されるDフリップフロップ308-0、308-1、308-2、... 308-k にラッチされる。多 数決関数要素304の出力は、Dフリップフロップ31 0にラッチされ、その出力は判定信号 dec, を表す。 【0041】図4を参照すると、所与の検査ノード40 0は、1組の排他的論理和(XOR)ゲート402-0、402-1、402-2、... 402-kを備

え、それぞれ1組の入力in。、in」、in2、...in、のうちの1つを受信し、対応する1組の出力out。、out1、out2、...out、のうちの1つを生成する。検査ノード400はさらに、入力としてin。、in1、in2、...in、をそれぞれ受信し、出力として上記のchk、信号を生成する付加的なXORゲート404も備える。その後、この出力は、AXORゲート402-0、402-1、402-2、...402-kに入力として供給される。

【0042】図5および図6は、図2の復号化器200の軟判定実装形態における、変数ノードおよび検査ノードをそれぞれ示す。軟判定復号化器では、渡される各メッセージの符号に関連する信頼性が存在する。それゆえ、検査ノードは、硬判定復号化器に存在し、図4に示されるタイプのパリティ検査に加えて、信頼性を更新するように構成される回路も備える。

[0043] 図5を参照すると、軟判定復号化器のための変数ノード500の更新部分は、加算器502、および1組の減算器504-0、504-1、...504-jを備える。各変数ノードV、(ただしi \in {0、1、...N-1} 内では、受信された値Rx、は、関数f(.)、たとえば線形換算関数によって演算され、結果 Λ 、を生成する。その後、図5の変数ノード更新が、以下の式にしたがって実行される。

【数1】

$$\begin{aligned} & \text{out}_0 = \frac{1}{k} \left(\Lambda_i + \text{i} \mathbf{n}_0 + \text{i} \mathbf{n}_1 + \dots + \text{i} \mathbf{n}_j - \text{i} \mathbf{n}_0 \right) \\ & \text{out}_1 = \frac{1}{k} \left(\Lambda_i + \text{i} \mathbf{n}_0 + \text{i} \mathbf{n}_1 + \dots + \text{i} \mathbf{n}_j - \text{i} \mathbf{n}_1 \right) \\ & \vdots \\ & \text{out}_j = \frac{1}{k} \left(\Lambda_i + \text{i} \mathbf{n}_0 + \text{i} \mathbf{n}_1 + \dots + \text{i} \mathbf{n}_j - \text{i} \mathbf{n}_j \right) \end{aligned}$$

ただし k は正規化定数である。図 5 の回路のこれらの出力は、上記の信頼性を表す。

【0044】図6は、本発明による軟判定復号化器内の検査ノード600の信頼性更新回路部分の一例を示す。検査ノード600は、1組の入力関数要素602-0~602-kと、1組の出力関数要素604-0~604-kと、加算器606と、1組の減算器608-0~608-kとを備える。入力関数要素は、この例では双曲正接の自然対数を実施し、一方、出力関数要素は相補的な演算を実施する。加算器606は、入力関数要素それぞれからの出力を受信し、生成された和を各減算器に供給する。その和と個々の関数要素出力との差が、出力関数要素に適用され、対応する更新された出力が生成される。

【0045】図6に示される実装形態では、たとえば、 双曲正接とは対照的に、max-log規則を用いて検 50 査ノードを更新することにより簡略化することができ

17

る。この簡略形態を用いると、各出力 i のための信頼性 は、対数領域において実行される、入力iを除く、全て の入力の最大の信頼性として与えられる。

【数2】

$$\operatorname{out}_{i} = \exp\left(\max_{j,j\neq i}\left(\ln\left(\operatorname{in}_{j}\right)\right)\right).$$

【0046】図7は、本発明によるプロック並列ベイズ ネットワーク確率依存復号化器700の例示的な実施形 10 態を示す。復号化器700は、有向ペイズネットワーク 確率依存グラフの形で実装される要素を含む。そのグラ フは、復号化されることになるプロック内の全ピットあ るいはシンボルのための入力ノードを含む。これらの入 カノードは、図面においてレベル0で示される。そのグ ラフはさらに、任意のノードが以前のレベルからの入力 のみを有し、次に続くレベルへの出力のみを有するよう な、ノードのレベルを含む。この構成によって、計算 は、順次的なプロック内依存性を有することなく、各レ ベルにおいて実行されるようになる。復号化器の段数、 レベル当たりのノード、およびノード間に必要とされる 接続は、符号によって決定される。ノードの最終レベル は、レベル」によって示され、伝送された系列の推定値 y。、...、y_{x-} を生成する。

【0047】復号化器700は、レベル0の各ノードへ の入力として、受信された値の関数、たとえばf(Rx ,) を与えることにより初期化される。ただし、Rx; は受信されたビットあるいはシンボルで、i=0、 1、... N-1であり、f(.) は、符号によって決 定される関数、たとえば、閾値関数、線形換算関数ある いは近似指数関数である。この初期化入力は、図7のレ ベル0ノードの左側に示される。

【0048】復号化器700の各レベルは以前のレベル から到来する値のおそらく異なる関数g (.) を計算 し、この計算の結果は、復号化器700の次のレベルに 渡される。上記のように、関数g(.)には、たとえ ば、パリティ検査関数、対数領域の双曲正接関数、ある いは対数領域の最大関数を用いることができる。

【0049】この復号化プロセスの1つのレベルは、受 信されたブロック内の全ビットあるいはシンボルに対し て更新された推定値を生成する。上記のように、復号化 器の最終レベル、すなわちレベル」は、伝送された系列 の推定値 y。、... y_{K-1} を生成する。出力 K の数 は一般に入力の数よりも小さい、すなわちK<Nであろ う。

【0050】復号化器700の確率依存グラフ内の情報 の流れは、図2の2ノード型のグラフ復号化器200の 場合のような双方向の流れでないことは明らかである。 再帰的な依存性を持たない、この有向構造は、非常に高 いスループットの復号化器を製造するためにパイプライ 50

ン化するのに非常に適している。

【0051】図8は、本発明による硬判定有向ネットワ 一ク確率依存グラフ復号化器800の一例を示す。復号 化器800は、図7に示されるタイプの復号化器の特定 の硬判定実装形態を表す。復号化器800は、相互接続 されるノードの多数のレベルを含み、変数ノードは白丸 で、検査ノードは黒丸で示される。ノードの第1のレベ ルは、レベル0で示され、それぞれ関数f(Rx,)を 受信する1組の変数ノードを含む。ただしRx, は受信 されたビットあるいはシンポルである。ノードの次のレ ベルはレベル1で示され、1組の検査ノードを含む。そ の後のレベルは、変数ノードのレベルと検査ノードのレ ベルとの間で入れ替わる。ノードの最終レベルはレベル 」で示され、伝送された系列の推定値 y。、... y к - 1 を生成する1組の変数ノードを含む。復号化器の レベル内では、変数ノードと検査ノードとの数が異なる 場合があることに留意されたい。

【0052】復号化器800内の最終レベルではない変 数ノードのレベルの各変数ノードには、図に示されるよ うにDフリップフロップの形で実装される場合があるラ ッチが関連する。たとえば、復号化器800のレベル0 の変数ノードには、ラッチ802-0、802-1、8 02-2、... 802-(N-1) が関連する。レベ ル1のような、復号化器800の検査ノードレベルで は、以前のレベルの各変数ノードに対して1つのバッフ ァが存在する。たとえば、復号化器800のレベル1 は、全N個のパッファ804-0、804-1、804 -2、... 804- (N-1) を備える。各パッファ は、以前のレベルの変数ノードのラッチの出力に接続さ れる入力と、次に続くレベルの変数ノードのラッチの入 力に接続される出力とを有する。

[0053] 復号化器800の種々のレベルの変数ノー ドと検査ノードとの間の接続は、対応する符号のパリテ ィ検査行列によって定義される。レベルの数は、その復 号化器が実行する繰返しの数を決定する。復号化器80 0内の変数ノードと検査ノードは、それぞれ図3および 図4の2ノード型の硬判定確率グラフ復号化器の変数ノ ードおよび検査ノードと同じように構成することができ

【0054】本発明の復号化器アーキテクチャの接続性 および計算ユニットは、当分野においてよく知られてい る、構成を変更可能なハードウエア技術を用いて、プロ グラム可能に行われ、それにより、同じ復号化器ハード ウエア上で多くの異なる符号を復号化できるようにす る。

【0055】本発明は、たとえば、たたみ込み符号、タ ーボ符号、ハミング符号、積符号、低密度パリティ検査 (LDPC) 符号、一般化LDPC (GLD) 符号、夕 ナーグラフ(Tanner Graph)、線形あるいは巡回プロッ ク符号、連結プロック符号等を含む幅広い符号に適用す

三世界 金麗

19

ることができる。

【0056】ここに記載された典型的な復号化器は、本発明の動作を例示することを目的としており、それゆえ任意の特定の実施形態あるいは一群の実施形態に本発明を限定するものと解釈されるべきでないことを再び強調しておきたい。たとえば、復号化器要素の特定の構成および相互接続性は、符号のような、用途に固有の要因によって変更されるであろう。さらに、ここで記載された確率依存グラフ復号化器の多くの異なるハードウエア実装形態が実現可能である。以下の請求の範囲内にある、これらのおよび多くの他の代替形態は当業者には明らかであろう。

[0057]

【発明の効果】上記のように、本発明によれば、たたみ込み符号、ターボ符号あるいはたたみ込み符号またはプロック符号等に基づくその他の連結された符号を含む、多種多様な符号の繰返し復号化を実行するためのプロック並列復号化アルゴリズムおよび対応する復号化器アーキテクチャを実現することができる。

【図面の簡単な説明】

【図1】従来のブロック直列ビタビ復号化器を示す図で

ある。

【図2】本発明の第1の例示的な実施形態による2ノード型のプロック並列確率依存グラフを示す図である。

【図3】図2に示されるように実装される硬判定復号化器において用いるための変数ノードの一例を示す図である。

【図4】図2に示されるように実装される硬判定復号化器において用いるための検査ノードの一例を示す図である。

10 【図5】図2に示されるように実装される軟判定復号化 器において用いるための変数ノードの一例を示す図であ る

【図6】図2に示されるように実装される軟判定復号化器において用いるための検査ノードの一例を示す図である。

【図7】本発明の第2の例示的な実施形態によるブロック並列有向ネットワーク確率依存グラフ復号化器を示す 図である。

【図8】図7に示されるタイプのブロック並列有向ネットワーク確率依存グラフ復号化器の例示的な硬判定実装 形態を示す図である。

【図1】

CHARLES CONTRACTOR

[図2]

[図3] [図4] عر⁴⁰⁰ x_3 , in $\{i, i \in \{0,1,...,k\}\}$ $i \neq 0$ (国み付け された) 多数関数 x_3 , in i, $i \in [0,1,...,k]$ $i \neq 1$ 日期目306~ άĸ 302-0 308-1 D Q x_0 , in ζ , $i \in [0,1,...,k]$, $i \neq 2$ 302-1 「開信305~20~1 (重み付け された) 多数関数 402-k CLK 302-2 x_s, in (, (∈ [0,1,...,k], i≠k [図6] √ ⁸⁰⁰ 602-0 608-1 604-0 in (tanh ()) 302-k tanh-1(exp()) x_2 , in $\{i \in [0,1,...,k]$ In (tanh ()) tanh-1(exp()) in 2 in (tenh()) tanh⁻¹(exp()) 606 in (tanh()) tanh⁻¹(exp()) 304 602-le 608- k in, in (tunh()) tanh-1(exp())

[図5]

[図7]

[図8]

フロントページの続き

(72)発明者 アンドリュー ジェー ブランクスピー アメリカ合衆国 07720 ニュージャーシ ィ, ブラッドレイ ピーチ, オーシャン パーク アヴェニュー 100 ピー (72)発明者 クリストファー ジョン ハウランド アメリカ合衆国 07266 ニュージャーシィ,マナラパン,エリオット ロード 5 Fターム(参考) 5B001 AA01 AA10 AA13 AC01 AC04 AE02 5D045 DA20 5J065 AC01 AD01 AD10 AG05 AH01

AH03 AH07 AH11 AH12 AH15

-c. :...8857386.75....