Table of Laplace Transforms

f(t)	$\mathcal{L}{f(t)} = F(s)$	f(t)	$\mathcal{L}\{f(t)\} = F(s)$
1. I	$\frac{1}{s}$	19. $e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$
2. t	$\frac{1}{s^2}$	20. $e^{at} \sinh kt$	$\frac{k}{(s-a)^2-k^2}$
3. t ⁿ	$\frac{n!}{s^{n+1}}$, <i>n</i> positive integer	21. $e^{at} \cosh kt$	$\frac{s-a}{(s-a)^2-k^2}$
4. $t^{-1/2}$	$\sqrt{\frac{\pi}{s}}$	22. tsin kt	$\frac{2ks}{(s^2+k^2)^2}$
5. t ^{1/2}	$\frac{\sqrt{\pi}}{2s^{3/2}}$	23. tcos kt	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$
6. t ^α	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \ \alpha > -1$	24. $\sin kt + kt \cos kt$	$\frac{2ks^2}{(s^2+k^2)^2}$
7. sin <i>kt</i>	$\frac{k}{s^2 + k^2}$	25. $\sin kt - kt \cos kt$	$\frac{2k^3}{(s^2+k^2)^2}$
8. cos kt	$\frac{s}{s^2 + k^2}$	26. <i>t</i> sinh <i>kt</i>	$\frac{2ks}{(s^2-k^2)^2}$
9. $\sin^2 kt$	$\frac{2k^2}{s(s^2+4k^2)}$	27. t cosh kt	$\frac{s^2 + k^2}{(s^2 - k^2)^2}$
$10. \cos^2 kt$	$\frac{s^2+2k^2}{s(s^2+4k^2)}$	$28. \frac{e^{at}-e^{bt}}{a-b}$	$\frac{1}{(s-a)(s-b)}$
11. e ^a	$\frac{1}{s-a}$	$29. \frac{ae^{at}-be^{bt}}{a-b}$	$\frac{s}{(s-a)(s-b)}$
12. sinh <i>kt</i>	$\frac{k}{s^2-k^2}$	30. $1 - \cos kt$	$\frac{k^2}{s(s^2+k^2)}$
13. cosh kt	<u>s</u>	31. $kt - \sin kt$	$\frac{k^3}{s^2(s^2+k^2)}$
14. $\sinh^2 kt$	$\frac{s^2 - k^2}{s(s^2 - 4k^2)}$	32. $\cos at - \cos bt$	$\frac{s(b^2 - a^2)}{(s^2 + a^2)(s^2 + b^2)}$
15. cosh ² kt	$\frac{s^2 - 4k^2}{s(s^2 - 4k^2)}$	33. $\sin kt \sinh kt$	$\frac{2k^2s}{s^4+4k^4}$
16. $e^{at}t$	$\frac{1}{(s-a)^2}$	34. $\sin kt \cosh kt$	$\frac{k(s^2 + 2k^2)}{s^4 + 4k^4}$
17. $e^{\alpha t}t^n$	$\frac{n!}{(s-a)^{n+1}}$. n a positive integer	35. $\cos kt \sinh kt$	$\frac{k(s^2 - 2k^2)}{s^4 + 4k^4}$
18. $e^{at}\sin kt$	/	36. $\cos kt \cosh kt$	$\frac{s^3}{s^4+4k^4}$
ACC C SALLAL	$\frac{k}{(s-a)^2+k^2}$	37. $\delta(t)$	1

38.
$$\delta(t-a)$$

39.
$$\mathcal{U}(t-a)$$

$$e^{-a}$$

$$\frac{e^{-as}}{s}$$

40.
$$J_0(kt)$$

41.
$$\frac{e^{bt}-e^{at}}{t}$$

$$\frac{1}{\sqrt{s^2 + k^2}}$$

$$\ln \frac{s - a}{s - b}$$

42.
$$\frac{2(1-\cos at)}{t}$$

$$\ln \frac{s^2 + a^2}{s^2}$$

43.
$$\frac{2(1-\cosh at)}{t}$$

$$\ln \frac{s^2 - a^2}{s^2}$$

44.
$$\frac{\sin at}{t}$$

$$\arctan\left(\frac{a}{s}\right)$$

45.
$$\frac{\sin at \cos bt}{t}$$

$$\frac{1}{2}\arctan\frac{a+b}{s} + \frac{1}{2}\arctan\frac{a-b}{s}$$

46.
$$\frac{1}{\sqrt{\pi t}}e^{-a^2t/4t}$$

$$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$$

47.
$$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$$

$$e^{-a\sqrt{s}}$$

48. erfc
$$\left(\frac{a}{2\sqrt{t}}\right)$$

$$\frac{e^{-a\sqrt{s}}}{s}$$

49.
$$2\sqrt{\frac{t}{\pi}}e^{-a^2/4t}-a \operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$

$$\frac{e^{-a\sqrt{s}}}{s\sqrt{s}}$$

50.
$$e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t}+\frac{a}{2\sqrt{t}}\right)$$

$$\frac{e^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}$$

51.
$$-e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t}+\frac{a}{2\sqrt{t}}\right)+\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$

$$\frac{be^{-\sqrt{s}}}{s(\sqrt{s}+b)}$$

52.
$$e^{at}f(t)$$

$$F(s-a)$$

53.
$$f(t-a)^0 U(t-a)$$

$$e^{-as}F(s)$$

54.
$$g(t)$$
^{OU} $(t-a)$

$$e^{-as}\mathcal{L}\{g(t+a)\}$$

55.
$$f^{(n)}(t)$$

$$s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)$$

56.
$$t^n f(t)$$

$$(-1)^n \frac{d^n}{ds^n} F(s)$$

57.
$$\int_0^t f(\tau)g(t-\tau) d\tau$$