Continuous Interpolation and Sampling of High-Dimensional Probability Distributions

Hongli Zhao

June 6, 2022

Why Tensor-Networks

Tensor-Network offers a representation of quantum many-body states:

$$|\Psi\rangle = \sum_{i_1\cdots i_N} C_{i_1\cdots i_N} |i_1\rangle \otimes \cdots \otimes |i_N\rangle$$

an N-particle, p-state system has p^N coefficients.

- Premise: particles have local interactions; the system can be well-approximated with fewer indices.
 - (simplified Ising model) $\exp\left(-\frac{1}{T}\sum_{i,j}J_{ij}\sigma_i\sigma_j\right)$
- Tensor-Train / Matrix Product States is an example of a *linear* tensor-network
 - represents a product measure exactly
 - can show denseness in Hilbert space
- First construed in 1992 [Fannes, Nachtergaele, Werner]¹ and 1993 [Klümper, Schadschneider, Zittartz]²
 - Rediscovered in 2011 by Ivan Oseledets³
- ¹(1992) Finitely correlated pure states. and their symmetries
- ²(1993) Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets
 - ³(2011) Tensor-Train Decomposition

Graphical Representation of a Tensor

Figure: Tensors as nodes and edges

Figure: Tensor contractions as connecting edges

Review of Tensor-Train Decomposition

And Notations

• A tensor of size $n_1 \times n_2 \times \cdots \times n_d$ requires $O(n^d)$ storage

$$\mathbf{A}(i_1, i_2, \cdots, i_d) \approx \mathbf{C}_1(i_1) \cdot \mathbf{C}_2(i_2) \cdot \cdots \cdot \mathbf{C}_d(i_d)$$

$$=\sum_{\alpha_0,\alpha_2,\cdots,\alpha_{d-1},\alpha_d}^{r_0,r_1,\cdots,r_d} \mathbf{C}_1(\alpha_0,i_1,\alpha_1) \cdot \mathbf{C}_2(\alpha_1,i_2,\alpha_2) \cdots \mathbf{C}_d(\alpha_{d-1},i_d,\alpha_d)$$

here we have *open* boundary conditions $r_0 = r_d = 1$. If $\alpha_d = \alpha_1$, it is called a *tensor-ring*.

Figure: Tensor-Train (left); Tensor-Ring (right)

Advantages:

- ▶ Storage depends linearly on *d*, but cubically on *r*
 - ★ Important to seek low-rank decompositions
- Cost of linear algebra operations ¹ depends linearly on d:

Operation	Cost
scalar add/mult.	$O(dnr^3)$
contraction	$O(dnr + dr^3)$
Hadamard product, dot product ²	$O(dnr^2 + dr^4)$
matrix-vector multiply (TT format)	$O(dn^2r^4)$

Other relevant algorithms:

- ▶ TT-Round: Given TT **A**, compress **B** such that $\frac{\|\mathbf{A} \mathbf{B}\|_F}{\|\mathbf{A}\|_F} \le \epsilon$ for some pre-specified ϵ or rank.
- ► TT-Cross (AMEn-Cross, DMRG-Cross): Given a procedure to compute tensor elements, construct a low-parametric approximation to the tensor using a small number of evaluations.

¹Implementations available in MATLAB, Python, C++, Julia (in progress)

²Can be obtained from computing a Hadamard product, then contracting with a tensor of all 1's.

Problem Statement

 We are interested in sampling from a target distribution of the Boltzmann-Gibbs form:

$$\pi(\mathbf{x}) = \frac{1}{Z_{\beta}} \exp(-\beta V(\mathbf{x}))$$

where $V: \mathbb{R}^d \to \mathbb{R}$ is some energy potential, $Z_\beta = \int_\Omega \exp(-\beta V) d\mathbf{x}$ is the partition function that is often unknown.

- Issues with metastability: transition between metastable regions is a rare event
- For non-Gaussian distributions, typically use a variant of Metropolis-Hastings MCMC
 - requires multiple evaluations to generate independent samples
- General purpose sampler for un-normalized high-dimensional and multi-modal distributions?

Conditional Distribution Sampling

Decompose:

$$\pi(x_1, x_2, \cdots, x_d) = \pi_1(x_1) \cdot \pi_2(x_2|x_1) \cdots \pi_d(x_d|x_1, x_2, \cdots, x_{d-1})$$

where:

$$\pi_k(x_k|x_1,x_2,\cdots,x_{k-1}) = \frac{\int \pi(x_1,\cdots,x_{k-1},x_k,x_{k+1},\cdots,x_d)dx_{k+1}\cdots dx_d}{\int \pi(x_1,\cdots,x_{k-1},x_k,\cdots,x_d)dx_k\cdots dx_d}$$

for
$$i = 1, 2, \ldots, d do$$

sample $x_i \sim \pi_i$

end

- Evaluation of high-dimensional integrals is costly
- However, a *surrogate model* can help us \rightarrow tensor-train approximation
 - ► [Dolgov 2020] Approximation and sampling of multivariate probability distributions in the tensor train decomposition

Aside: Evaluating High-Dimensional Integrals in TT Format

Let $f: \mathbb{R}^d \to \mathbb{R}$, and quadrature be given by index set $I_1 \times I_2 \times \cdots \times I_d$ (assume discretization level N), with appropriate weights \mathbf{w} for each dimension.

• (Recall 1d) Discretize
$$\mathbf{f} = \begin{pmatrix} f^1 \\ f^2 \\ \vdots \\ f^N \end{pmatrix}$$
, with $\mathbf{w} = \begin{pmatrix} w^1 \\ w^2 \\ \vdots \\ w^N \end{pmatrix}$, then:

$$\int f(x)dx \approx \sum_{k=1}^{N} \mathbf{w}_{k} \mathbf{f}_{k} = \mathbf{w}^{T} \mathbf{f}$$

(General, formal)

$$\int f(\mathbf{x}) dx_1 dx_2 \cdots dx_d \approx \sum_{i_1 i_2 \cdots i_d} \mathbf{f}_{i_1 i_2 \cdots i_d} \mathbf{w}_{i_1} \mathbf{w}_{i_2} \cdots \mathbf{w}_{i_d}$$

(General, TT) Approximate:

$$\mathbf{f}_{i_1 i_2 \cdots i_d} \approx \sum_{\alpha_0, \cdots, \alpha_{d-1}, \alpha_d} \mathbf{C}_1(\alpha_0, i_1, \alpha_1) \cdot \mathbf{C}_2(\alpha_1, i_2, \alpha_2) \cdots \mathbf{C}_d(\alpha_{d-1}, i_d, \alpha_d)$$

then:

$$\int f(\mathbf{x}) dx_1 dx_2 \cdots dx_d$$

$$\approx \sum_{i_1 i_2 \cdots i_d} \sum_{\alpha_0, \cdots, \alpha_d} \mathbf{C}_1(\alpha_0, i_1, \alpha_1) \cdots \mathbf{C}_d(\alpha_{d-1}, i_d, \alpha_d) \mathbf{w}_{i_1} \cdots \mathbf{w}_{i_d}$$

$$= \sum_{\alpha_0, \cdots, \alpha_d} \left(\sum_{i_1} \mathbf{C}_1(\alpha_0, i_1, \alpha_1) \mathbf{w}_{i_1} \right) \cdot \left(\sum_{i_2} \mathbf{C}_2(\alpha_1, i_2, \alpha_2) \mathbf{w}_{i_2} \right)$$

$$\cdots \left(\sum_{i_d} \mathbf{C}_d(\alpha_{d-1}, i_d, \alpha_d) \right)$$

$$= \mathbf{f}_{TT} \cdot \left\{ \bigotimes_{i=1}^d \mathbf{w} \right\}$$

 The above can be computed sequentially as we loop over the cores $i=1,2,\cdots,d$.

Summary of Algorithm

- Input: Cores $\{\mathbf{C}_i\}_{i=1}^d$
- Output: Samples $\{\tilde{\mathbf{x}_n}\}_{n=1}^N$ distributed according to $\tilde{\pi} \approx \pi$
- Loop over each dimension $k = 1, 2, \dots, d$
- Compute marginal PDF $p_k(x_k)$ vector:
 - ▶ If k = 1, contract all $k = 2, 3, \dots, d$ dimensions

$$p_k(x_k) = \mathbf{f}_{TT} \times_2 \mathbf{w} \times_3 \cdots \times_d \mathbf{w}$$

- ▶ If k > 1, update core k by multiplying fixed marginal densities $p(\tilde{x_1}), p(\tilde{x_2}), \dots, p(\tilde{x_{k-1}})$ of sampled entries
- Enforce non-negativity by $p_k \leftarrow |p_k(x_k)|$
- Sample p_k via Inverse Rosenblatt:

$$\tilde{x}_k \leftarrow F_k^{-1}(q_k)$$

where:

$$F_k(z) \propto \int_{-\infty}^z p_k(y) dy, q_k \sim U(0,1)$$

Comments

- ullet Although target π is non-negative, TT-Cross may introduce approximation errors that yield negative values
- Uses piecewise polynomial interpolation to construct continuous TT surrogate: (Linear case)

$$\mathbf{C}_{k}(:,x_{k},:) \leftarrow \frac{x_{k} - x_{k}^{i_{k}}}{x_{k}^{i_{k+1}} - x_{k}^{i_{k}}} \cdot \mathbf{C}_{k}(:,i_{k}+1,:) + \frac{x_{k}^{i_{k}+1} - x_{k}}{x_{k}^{i_{k+1}} - x_{k}^{i_{k}}} \cdot \mathbf{C}_{k}(:,i_{k},:)$$

 Inverse Rosenblatt may be replaced by a "smeared" discrete distribution, i.e.

$$ilde{x}_k \sim \{c_1, c_2, \cdots, c_l\}$$
 $ilde{x}_k \leftarrow ilde{x}_k + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{2}\Delta_k)$

where Δ_k is grid size

• Only has likelihood of sampled points $\{\tilde{\mathbf{x}_n}\}$, not easy to evaluate arbitrary points

Continuous TT Expansion

<u>Goal</u>: Want a surrogate TT distribution that enforces non-negativity and cheap to evaluate to arbitrary precision

• Motivating example: Let $f \in L^2(\mathbb{R})$, and an orthonormal basis $\{\phi_i\}$, then:

$$f = \sum_{i=1}^{\infty} \langle f, \phi_i \rangle \cdot \phi_i$$

• **Definition**: (Tensor product of Hilbert spaces) Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces; for each $\phi_1 \in \mathcal{H}_1, \phi_2 \in \mathcal{H}_2$, let $\phi_1 \otimes \phi_2$ denote the conjugate bilinear form acting on $\mathcal{H}_1 \otimes \mathcal{H}_2$ by:

$$(\phi_1 \otimes \phi_2)(\psi_1, \phi_1) = \langle \phi_1, \psi_1 \rangle \cdot \langle \psi_2, \phi_2 \rangle$$

a natural inner product on bilinear forms is defined by:

$$\langle \eta \otimes \mu, \phi \otimes \psi \rangle = \langle \eta, \phi \rangle \cdot \langle \mu, \psi \rangle$$

we then define $\mathcal{H}_1 \otimes \mathcal{H}_2$ as the completion of the set containing all linear combinations of the bilinear forms.

- (Theorem)
 - $oldsymbol{0} \mathcal{H}_1 \otimes \mathcal{H}_2$ is a Hilbert space
 - ② Let $\{\phi_n\}, \{\psi_m\}$ be bases for $\mathcal{H}_1, \mathcal{H}_2, \{\phi_n \otimes \psi_m\}$ is a basis for $\mathcal{H}_1 \otimes \mathcal{H}_2$.
 - **3** Let $L^2(\Omega_1, \mu_1), L^2(\Omega_2, \mu_2)$ be two separable Hilbert spaces with bases $\{\phi_n\}, \{\psi_m\},$

$$L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2)$$

is isomorphic to

$$L^2(\Omega_1,\mu_1)\otimes L^2(\Omega_2,\mu_2)$$

Recall for orthonormal bases:

$$\int_{\Omega} \phi_i^2 = 1, \int_{\Omega} \phi_i \phi_j = 0, (i \neq j)$$

Let square-integrable $f:\Omega\to\mathbb{R}$ $(\Omega\subset\mathbb{R}^d)$, let $\{\phi_i\}$ be an orthonormal basis for $L^2(\Omega)$ (e.g. Legendre polynomials). Then f has the unique decomposition:

$$f(x_1, x_2, \dots, x_d) = \sum_{i_1 i_2 \dots i_d}^{\infty} \mathbf{A}_{i_1 i_2 \dots i_d} \phi_{i_1}(x_1) \phi_{i_2}(x_2) \dots \phi_{i_d}(x_d)$$

- ullet However, $oldsymbol{A}_{i_1\cdots i_d}$ has exponential dependence on dimensions
- Seek:

$$\mathbf{A}_{i_1\cdots i_d} \approx \sum_{\alpha_0,\cdots,\alpha_d} \mathcal{C}_1(\alpha_0,i_1,\alpha_1)\cdots \mathcal{C}_d(\alpha_{d-1},i_d,\alpha_d)$$

- Questions:
 - How to obtain A?
 - 2 How to enforce non-negativity?
 - 3 Given A, how to sample efficiently from the surrogate distribution?

Obtaining coefficient tensor

• (1d example) Choose collocation points $\{x^{(j)}\}_{j=1}^N$ along with quadrature weights \mathbf{w} , a finite number of bases $\{\phi_i\}_{i=1}^M$. Let:

$$f \approx \sum_{i=1}^{M} a_i \phi_i$$

enforce equality on collocation points:

$$\begin{pmatrix}
f(x^{(1)}) \\
f(x^{(2)}) \\
\vdots \\
f(x^{(N)})
\end{pmatrix} = \begin{pmatrix}
\phi_{11} & \phi_{12} & \cdots & \phi_{1M} \\
\phi_{21} & \phi_{22} & \cdots & \phi_{2M} \\
\vdots & \cdots & \ddots & \vdots \\
\phi_{N1} & \phi_{N2} & \cdots & \phi_{NM}
\end{pmatrix} \cdot \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_M
\end{pmatrix}$$
coefficient tensor,a

then:

$$a=\Phi^{\dagger}f$$

- Comments:
 - ▶ Usually take N = p + 1
 - Pseudoinverse may be ill-conditioned

(Alternative)

$$f pprox \sum_{i=1}^{M} a_i \phi_i$$

then for $j = 1, 2, \dots, M$:

$$\int_{\Omega} \left(\sum_{i=1}^{M} a_i \phi_i \right) \phi_j = \sum_{i} \underbrace{\int_{\Omega} \phi_i \phi_j}_{=\delta_{i=j}} = a_j = \int_{\Omega} f \phi_j \approx \sum_{k=1}^{N} w_k f(x^{(k)}) \phi_j(x^{(k)})$$

• (In vector form)

$$\mathbf{a} = \mathbf{\tilde{\Phi}}^T \cdot \mathbf{f}$$

where:

$$\tilde{\mathbf{\Phi}}(:,k) \leftarrow \mathbf{w} \circ \mathbf{\Phi}(:,k)$$

Obtaining coefficient tensor: Generalization

For each dimension, the coefficients can be solved via:

$$a = D \cdot f$$

where D is some form of data matrix.

Let F be a tensor, then we have the following generalization:

$$A_{i_1\cdots i_d} = \sum_{j_1\cdots j_d} D_{i_1j_1}\cdots D_{i_dj_d} F_{j_1\cdots j_d}$$

Approximate:

$$F_{j_1\cdots j_d} \approx \sum_{\beta_0,\cdots,\beta_d} C(\beta_0,j_1,\beta_1)\cdots C_d(\beta_{d-1},j_d,\beta_d)$$

consequently:

$$\begin{split} A_{i_{1}\cdots i_{d}} \approx \\ \sum_{j_{1}\cdots j_{d}} D_{i_{1}j_{1}}\cdots D_{i_{d}j_{d}} \left(\sum_{\beta_{0},\cdots,\beta_{d}} \mathcal{C}(\beta_{0},j_{1},\beta_{1})\cdots \mathcal{C}_{d}(\beta_{d-1},j_{d},\beta_{d}) \right) \\ = \\ \sum_{\beta_{0},\cdots,\beta_{d}} \left(\sum_{j_{1}} \mathcal{C}_{1}(\beta_{0},j_{1},\beta_{1}) \cdot D_{j_{1}i_{1}}^{T} \right) \cdots \left(\sum_{j_{d}} \mathcal{C}_{d}(\beta_{d-1},j_{d},\beta_{d}) \cdot D_{j_{d}i_{d}}^{T} \right) \end{split}$$

Non-negativity on interpolated points

- Given target probability distribution $\pi(\mathbf{x})$, TT-cross $p(\mathbf{x}) = \sqrt{\pi(\mathbf{x})}$ instead
- $p(\tilde{\mathbf{x}})$ can then be evaluated in $O(dnr + dr^3)$ via tensor contraction \Rightarrow May recover $\pi(\mathbf{x}) = p^2(\mathbf{x})$
 - ightharpoonup Here $\tilde{\mathbf{x}}$ can be arbitrary because we have analytic forms of the basis

Non-negativity of marginals

• Let I, J denote multi-index $\mathcal{I} = (i_1, i_2, \cdots, i_d), \mathcal{J} = (j_1, j_2, \cdots, j_d),$ and:

$$p(\mathbf{x}) = \sum_{\mathcal{I}} \mathbf{A}_{\mathcal{I}} \psi_{\mathcal{I}}(\mathbf{x})$$

where $\psi_{\mathcal{I}} = \phi_{i_1}\phi_{i_2}\cdots\phi_{i_d}$ then:

$$p(\mathsf{x})^2 = \sum_{\mathcal{I},\mathcal{J}} \mathsf{A}_{\mathcal{I}} \mathsf{A}_{\mathcal{J}} \psi_{\mathcal{I}} \psi_{\mathcal{J}}$$

substituting in tensor-train:

$$\approx \sum_{i_1,\cdots,i_d,j_1,\cdots,j_d} \mathbf{A}_{i_1\cdots i_d} \mathbf{A}_{j_1\cdots j_d} (\phi_{i_1}\phi_{j_1})\cdots (\phi_{i_d}\phi_{j_d})$$

• Then the marginal p_1 is obtained as:

$$p_{1} = \int_{\Omega_{2} \times \cdots \times \Omega_{d}} \pi(\mathbf{x}) dx_{2} \cdots dx_{d} =$$

$$\int_{\Omega_{2} \times \cdots \times \Omega_{d}} \sum_{i_{1}, \dots, i_{d}, j_{1}, \dots, j_{d}} \mathbf{A}_{i_{1} \dots i_{d}} \mathbf{A}_{j_{1} \dots j_{d}} (\phi_{i_{1}} \phi_{j_{1}}) \cdots (\phi_{i_{d}} \phi_{j_{d}}) dx_{2} \cdots dx_{d}$$

by orthonormality:

$$=\sum_{\mathcal{I},\mathcal{J}}\underbrace{\mathbf{A}_{i_1i_2\cdots i_d}\mathbf{A}_{j_1i_2\cdots i_d}}_{=:G_{i_1j_1}}(\phi_{i_1}\phi_{j_1})$$

• <u>Definition</u>: Let **T** be a multi-dimensional array with size (n_1, n_2, \dots, n_d) , the k-th unfolding refers to the matrix:

$$T_{i_1\cdots i_k,i_{k+1}\cdots i_d} = \text{reshape}(T, \text{prod}(n1:nk-1), \text{prod}(nk:nd))$$

• Let S denote the first unfolding of A, then:

$$G = SS^T$$

is positive semidefinite by construction. Then we have:

$$p_1(z) = \phi(z)^T SS^T \phi(z) = [S^T \phi(z)]^T [S^T \phi(z)]$$

Valid Probability Distribution

 The above surrogate in fact defines a distribution even though partition function of the target is unknown, if we set:

$$\mathbf{A} \leftarrow \frac{\mathbf{A}}{\left\|\mathbf{A}\right\|_F}$$

$$\begin{split} \int \tilde{\pi}(\mathbf{x}) d\mathbf{x} &= \int p(\mathbf{x})^2 d\mathbf{x} = \int \sum_{\mathcal{I}, \mathcal{J}} \mathbf{A}_{\mathcal{I}} \mathbf{A}_{\mathcal{J}} \psi_{\mathcal{I}} \psi_{\mathcal{J}} d\mathbf{x} \\ &= \sum_{i_1, \cdots, i_d, j_1, \cdots, j_d} \mathcal{A}_{i_1 \cdots i_d} \mathcal{A}_{j_1 \cdots j_d} \big(\int \phi_{i_1} \phi_{j_1} dx_1 \big) \cdots \big(\int \phi_{i_d} \phi_{j_d} dx_d \big) \\ &= \sum_{i_1, \cdots, i_d, i_1, \cdots, i_d} \mathbf{A}_{i_1 \cdots i_d}^2 = \| \mathbf{A} \|_F^2 = 1 \end{split}$$

- In addition, can put A in "left-right" QR form
 - For x_k , tensor contraction (integrating out variables $(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$) is identity

► Can essentially sample N points in O(Nd)

Questions?