

Clothing-Change Feature Augmentation for Person Re-Identification

Ke Han, Shaogang Gong, Yan Huang, Liang Wang, Tieniu Tan

CVPR 2023

Presenter: Li Shangze

Date: 2023.9.27

Oyerview

Background Contribution

Motivation

Method

What is Person Re-identification?

One-modality based methods

learn clothing-independent representations solely from RGB images

> Multi-modality based methods

exploit other auxiliary information to help capture clothing-independent information

Problem 1

Existing methods' robustness to clothing variations is limited by the quite limited number and diversity of clothing in training data.

Problem 2

Direct data augmentation in the image space dramatically increases computational time and storage space, and its effectiveness on model generalization is also not directly measurable.

Problem 3

Due to the complexity of image synthesis, current generative Re-ID methods typically only model the exchange of clothes between two persons, and cannot generate plausible new clothes to expand the clothing-change library more freely.

There exist many
semantic directions in
the deep feature space.
Transforming a feature
representation along
specific directions can
result in a representation
corresponding to another
image data sample of
different semantics.

> Resolution

propose a Clothing-Change Feature Augmentation (CCFA) model for CC Re-ID by augmenting implicitly clothing-change data in the feature space

> Aim

explore the plausible feature distribution expansion that reflects meaningful clothing colour and texture variations on a person's appearance

> Advantages

- computationally more efficient
- expand significantly more new clothes that do not exist in the dataset

Challenge

Many semantic directions of feature expansion are irrelevant to clothing and are semantically meaningless.

Target

Find out meaningful directions in order to maximise the diversity of clothing-change to benefit training.

Challenge

Changing clothes may damage the identity property, i.e. person-specific unique characteristics.

Target

Maintain a person's intrinsic identity property to make meaningful clothing-change augmentation.

(1) Clothing-change covariance estimation (Phase I)

(2) Clothing-change ID-unchange augmentation (Phase II)

(3) Training with the ID-correlated augmentation strategy (Phase III)

Phase I

a clothing-change covariance estimation method

> Phase II

an augmentation generator

> Phase III

an ID-correlated augmentation strategy

(1) Clothing-change covariance estimation (Phase I)

(2) Clothing-change ID-unchange augmentation (Phase II)

(3) Training with the ID-correlated augmentation strategy (Phase III)

$$\mathcal{S} = \{({m{x}}_i, y_i, c_i)\}_{i=1}^N ~ {m{f}}$$

$$\tilde{\boldsymbol{f}}_i = \boldsymbol{f}_i + \lambda \cdot \boldsymbol{a}_i, \text{where } \boldsymbol{a}_i \sim \mathcal{N}(0, \Sigma_c)$$
 covariance vector $(\sigma_1^2, \cdots, \sigma_n^2)$

$$(\Sigma_c')_t = \mathbb{E}[\left((\boldsymbol{\mu}_t)_{y_i}^{c_i} - \boldsymbol{f}_{y_i}^{c_j}\right)^2] \ (i \neq j)$$

Same False False
$$\mathcal{L}_{D}^{clo}$$
 False \mathcal{L}_{D}^{clo} $\mathcal{L}_{D}^{clo} = -\mathbb{E}[\mathbb{1} \cdot \log(\mathcal{D}_{clo}(\boldsymbol{f}_i, \boldsymbol{f}_j)) + (1-\mathbb{1}) \cdot \log(1-\mathcal{D}_{clo}(\boldsymbol{f}_i, \boldsymbol{f}_j))]$

$$\mathcal{L}_{id} = \mathcal{L}_{ce} + \alpha \cdot \mathcal{L}_{tri}$$

$$\mathcal{L}_D^{id} = -\mathbb{E}[\mathbb{1} \cdot \log(\mathcal{D}_{id}(\boldsymbol{f}_i, \boldsymbol{f}_j)) + (1 - \mathbb{1}) \cdot \log(1 - \mathcal{D}_{id}(\boldsymbol{f}_i, \boldsymbol{f}_j))]$$

(1) Clothing-change covariance estimation (Phase I)

Criteria

- the clothing information is changed
- the identity property is not changed

(2) Clothing-change ID-unchange augmentation (Phase II)

Total loss

$$\mathcal{L}_{\mathcal{G}} = \mathcal{L}_{adv}^{\mathcal{G}} + \gamma_1 \cdot \mathcal{L}_{sta} + \gamma_2 \cdot \mathcal{L}_{cciu}$$

maximise clothing-change
minimise identity-change

$$\mathcal{L}_{cciu} = -\mathbb{E}[\log(1 - \mathcal{D}_{clo}(\boldsymbol{f_i}, \tilde{\boldsymbol{f_i}})) + \log(\mathcal{D}_{id}(\boldsymbol{f_i}, \tilde{\boldsymbol{f_i}}))]$$

$$\mathcal{L}_{sta} = \|\mathbb{E}[\boldsymbol{g}_i]\|_1 + \|\mathbb{E}[(\mathbb{E}[\boldsymbol{g}_i] - \boldsymbol{g}_i)^2] - \Sigma_c\|_1$$

$$\mathcal{L}_{adv}^{\mathcal{D}} = -\mathbb{E}[\log(\mathcal{D}_{dis}(\boldsymbol{a}_i)) + \log(1 - \mathcal{D}_{dis}(\boldsymbol{g}_i))]$$

$$\mathcal{L}_{adv}^{\mathcal{G}} = \mathbb{E}[-\log(\mathcal{D}_{dis}(oldsymbol{g}_i))]$$

> ID-correlated augmentation strategy

Resolution

- different augmentation on the same person
- the same augmentation on different persons

Consequence

- the intra-ID clothing variations are increased
- the inter-ID clothing variations are reduced

(1) f_i (2) \tilde{f}_i with ID-uncorrelated augmentation

(3) \tilde{f}_i with ID-correlated augmentation

(3) Training with the ID-correlated augmentation strategy (Phase III)

Algorithm 1 Training procedure of the CCFA model

Input: $M \cdot J$ images, where M and J are the numbers of persons and images per person in a mini-batch.

for each mini-batch do

Extract features by \mathcal{E} .

if Phase I then

Estimate covariance vector Σ_c via Eq. (2).

Optimise \mathcal{E} and \mathcal{C}_{id} via Eq. (3), \mathcal{D}_{clo} via Eq. (4), and \mathcal{D}_{id} via Eq. (5).

else if Phase II then

Freeze \mathcal{E} , \mathcal{D}_{clo} and \mathcal{D}_{id} .

Optimise \mathcal{G} via Eq. (10) and \mathcal{D}_{dis} via Eq. (7).

else if *Phase III* then

Freeze \mathcal{G} .

for j in range(J) do

 \mathcal{G} generates a random augmentation vector \mathbf{g}_j .

Perform ID-correlated augmentation:

$$\tilde{f}_{1j} = f_{1j} + \lambda \cdot g_j, \dots, \tilde{f}_{Mj} = f_{Mj} + \lambda \cdot g_j,$$

where f_{mj} is the feature vector of the j -th sample of the m -th person in a mini-batch, and \tilde{f}_{mj}

is the augmented feature vector.

end

Optimise \mathcal{E} and \mathcal{C}_{id} via Eq. (3).

end

Experiment

			PRCC [39]				LTCC [25]			
Method Type	Method	Modality	CC Mode		SC Mode		CC Mode		General Mode	
			mAP	Rank 1	mAP	Rank 1	mAP	Rank 1	mAP	Rank 1
Feature	SFA [19]	RGB	47.8	49.6	94.8	98.3	11.8	34.8	33.6	61.7
Augmentation	IDSA [37]	RGB	49.1	50.2	95.6	98.6	12.2	34.2	33.9	64.6
CC Re-ID	CESD [25]	RGB+pose	2 — .	-	1-	-	12.4	26.1	34.3	71.4
	SPT+ASE [39]	Sketch	=	34.4	-	64.2	_	-	_	=
	3DSL [2]	RGB+pose+sil.+3D	51.3	-	_	-	14.8	31.2	_	-
	FSAM [13]	RGB+pose+sil.	-	54.5	-	98.8	16.2	38.5	35.4	73.2
	SPS [27]	RGB+parsing	<u>57.2</u>	62.8	96.7	99.5	16.7	<u>42.1</u>	37.6	70.9
	RCSANet [15]	RGB	50.2	48.6	97.2	100	_	-	_	=
	GI-ReID [17]	RGB+sil.	37.5	-	-	-	10.4	23.7	29.4	63.2
	CAL [7]	RGB	55.8	55.2	99.8	100	<u>18.0</u>	40.1	<u>40.8</u>	<u>74.2</u>
	CCFA (Phase I)	RGB	47.5	48.1	95.3	98.0	11.4	33.8	30.6	65.7
	CCFA (Phase III)	RGB	58.4	61.2	<u>98.7</u>	<u>99.6</u>	22.1	45.3	42.5	75.8

Other methods

- only learn representations from existing data
- need auxiliary training data of other modalities

This method

- synthesize abundant meaningful new clothing variations
- only use RGB images, free of estimation errors

Experiment

Augmentation Generation	CC Mode	SC Mode
Baseline (w/o augmentation)	48.1	98.0
With $\mathcal{N}(0,\Sigma_c)$	57.6	99.2
With \mathcal{G} (ours)	61.2	99.6

Augmentation Strategy	CC Mode	SC Mode		
Baseline	48.1	98.0		
ID-uncorrelated	55.5	98.6		
ID-correlated (ours)	61.2	99.6		

Experiment

\mathcal{L}_{cciu}	\mathcal{L}_{sta}	$\mathcal{L}_{adv}^{\mathcal{G}}$	$\mathcal{L}^{\mathcal{D}}_{adv}$	CC Mode	SC Mode
×	✓	✓	✓	57.0	99.1
Use \mathcal{D}_{clo} term only	✓		✓	59.3	99.5
Use \mathcal{D}_{id} term only	✓			58.4	99.2
✓	X	✓		56.7	96.3
✓		X		37.4	71.7
✓	✓	✓	X	44.5	82.5
✓	✓	X	X	49.7	92.3
✓	/	/	/	61.2	99.6

Contribution

Implicitly augment clothing-change data in the feature space, by maximising clothingchange whilst minimising identity-change for person features.

An ID-correlated augmentation strategy is proposed to increase intra-ID clothing variations and simultaneously to reduce inter-ID clothing variations, explicitly enforcing the Re-ID model to explore clothing independent information more fully.

Present a clothing-change covariance estimation method to formulate clothing-change semantic directions of feature distribution expansion, and introduce an augmentation generator to implement the clothing-change ID-unchange augmentation.

Thank you for watching!