

Emergent dynamics of cellular decision making in multi-node mutually repressive regulatory networks

Harshavardhan BV^a, Hanuma Sai Billakurthi^{b,#}, Sarah Adigwe^{c,#}, Kishore Hari^{d,e}, Herbert Levine^{d,e}, Tomas Gedeon^{c,*}, Mohit Kumar Jolly^{b,*}

a IISc Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, India b Department of BioEngineering, Indian Institute of Science, Bangalore, 560012, India c Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA d Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA e Department of Physics, Northeastern University, Boston, MA 02215, USA

Funding:

PMRF

E-mail: (HBV) bharshavardh@iisc.ac.in, (TG*) tgedeon@montana.edu, (MKJ*) mkjolly@iisc.ac.in

Introduction

Cell fate determination ≡ Wadington landscape Valley: Terminally differentiated cell fate Gene regulatory networks regulate trajectories

Cell-fate choices between two possible states Toggle Switch: Mutual inhibition b/w 2 cell-state specific transcription factors

Generalize to n-terminal states?

Can Toggle-n networks capture differentiation into n-terminal states?

Methods

Adjacency Matrix:

$$Adj_{ij} = \begin{cases} +1 & \text{if } i \text{ activates } j \\ -1 & \text{if } i \text{ inhibits } j \\ 0 & \text{if no interaction from } i \text{ to } j \end{cases} \qquad Adj_{ij}(\textit{Toggle}) = \begin{cases} -1 & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

Asynchronous boolean simulation with Ising formalism

$$\mathbf{x} \in \{-1, +1\}^n$$
 Where, $x_i = -1 \implies Low$; $x_i = +1 \implies High$

Choose random node k

$$x_{j}(t+1) = \begin{cases} +1 & \text{if } \sum_{i} x_{i}(t) \cdot Adj_{ij} > 0 \& j = k \\ -1 & \text{if } \sum_{i} x_{i}(t) \cdot Adj_{ij} < 0 \& j = k \\ x_{j}(t) & \text{otherwise} \end{cases}$$

Toggle-n networks allow the cell to bifurcate into precursor lineages

Theorem

Ising model update for network Tn for any $n \ge 2$, applied to any initial condition will converge to a steady state with k high states, where

$$k = \begin{cases} \frac{n}{2} & \text{n is ever} \\ \frac{n-1}{2} & \text{or } \frac{n+1}{2} & \text{n is odd} \end{cases}$$

Proof

Let A denote the set of nodes with $x_i = +1$ and B denote the set of nodes with $x_i = -1$. And, |A| = k and |B| = s, with k + s = n

$$H = -\sum_{ij} Adj_{ij}x_ix_j$$
 $H = \sum_{i \in A, j \in A, i \neq j} x_ix_j + \sum_{i \in B, j \in B, i \neq j} x_ix_j + \sum_{i \in A, j \in B} x_ix_j + \sum_{i \in B, j \in A} x_ix_j$
 $H = k(k-1) + s(s-1) - 2ks$

Consider the case when a node flips from $B \rightarrow A$. So, k' = k + 1 and s' = s - 1.

$$H' = (k+1)k + (s-1)(s-2) - 2(k+1)(s-1)$$

$$\Delta H^+ = H' - H$$

$$\Delta H^+ = 4(k-s+1)$$

By symmetry,
$$\Delta H^- = 4(s-k+1)$$

We discuss identity of lowest energy states. If the state is in the lowest energy configuration, we must have both $\Delta H^+ \ge 0$ and $\Delta H^- \ge 0$ $\frac{n-1}{2} \le k \le \frac{n+1}{2}.$

Most Monotone Boolean Functions (MBFs) support n/2 high steady states

Definition 1. A function $f_i: B^k \to B$ is a negative monotone Boolean function with respect to input x_i if $b_1 < b_2$ implies $f(b_1) \ge f(b_2)$, for all pairs $b_1 < b_2 \in B^k$ which only differ in j-th component and $b_1^j < b_2^j \in B^k$

Approach

- Construct all MBFs for Tn
- $f_i: B^{n-1} \to B$
- Count u^n where $f_i(b) = 0$
- Count v^n where $f_i(b) = 0$
- For steady state (1,0,0): $f_1(0,0) = 1$, $f_2(1,0) = 0$, $f_3(1,0) = 0$
- Calculate no. of MBFs supporting state $\phi_1^3 = v^3(0,0) \cdot u^3(1,0) \cdot u^3(1,0)$

Input in B^{n-1}	u ⁿ	v ⁿ
n=3		
(0,0)	1	5
(0,0) (1,0)	3	3
(1,1)	5	1

Outputs

- T2: (1, 4, 1)
- T3: (1, 45, 45, 1)
- T4: (1, 4104, 38416, 4104, 1)
- T5: $(1, (20^4)(167), (84^3)(148^2), (84^3)(148^2), (20^4)(167), 1)$
- T6: (1, (168⁵)(7580), (2008⁴)(7413²), (5573⁶), (2008⁴)(7413²), (168⁵)(7580), 1)

Synergy of epigenetic reprogramming & cytokine signaling required for terminal fate

Conclusion

Toggle-n networks cannot give terminally differentiated states

enci - 8.0

- n/2 factors co-expressed → bifurcating process to progenitors • Random noise peturbations → traits maintained
- Acting in asymmetric or biased manner → Differentiation to A high

Future Directions

- Unequal edge weights formal mathematical analysis
- Finding topologies that can give rise to single high states

References

- Zhou, J. X., & Huang, S. (2011). Trends Genet.
- Duddu, A. S. et al. (2024). NPJ Syst Biol Appl. • Font-Clos, F. et al. (2018). Proc Natl Acad Sci U S A.
- Gedeon, T. (2024). NPJ Syst Biol Appl.

DOI: 10.1101/2025.

03.06.641782