

Satellitengeodäsie

Ü3: Gravitationspotential

Yara Rossi

Gravitationspotential einer Kugel

■ Für einen Punkt ausserhalb der Kugel

$$V_K^{aussen}(d) = \frac{4\pi G}{d} \int_{R_i}^{R_{i+1}} r^2 \rho(r) dr$$

■ Für einen Punkt innerhalb der Kugel

$$V_K^{innen}(d) = 4\pi G \int_{B_i}^{B_{i+1}} r \rho(r) dr$$

Gravitationsbeschleunigung einer Kugel

Bei $d \approx$ 6378, $g_{
ho=5520} \approx$ 9.81 m/s^2 ist der maximale Wert

Welche Dichte soll verwendet werden?

Das Kugeldichtemodell PREM: Preliminary Reference Earth Model¹

$$\rho(r) = B + C\frac{r}{R_K} + D\frac{r^2}{R_K^2} + E\frac{r^3}{R_K^3}$$

¹Dziewonski, Adam M.; Anderson, Don L. (June 1981). "Preliminary reference Earth model" (PDF). Physics of the Earth and Planetary Interiors. 25 (4): 297-356. Bibcode:1981PEPI...25...297D. doi:10.1016/0031-9201(81)90046-7.

PREM: Preliminary Reference Earth Model

Koeffizienten

r _{min}	r _{max}	В	С	D	Е
km	km	g/cm^3	g/cm^3	g/cm^3	g/cm³
0	1221.5	13.0885	0	-8.8381	0
1221.5	3480	12.5815	-1.2638	-3.6424	-5.5281
3480	5701	7.9565	-6.4761	5.5283	-3.0807
5701	5771	5.3197	-1.4836	0	0
5771	5971	11.2494	-8.0298	0	0
5971	6151	7.1089	-3.8045	0	0
6151	6291	2.6910	0.6924	0	0
6291	6346.6	2.6910	0.6924	0	0
6346.6	6356	2.9000	0	0	0
6356	6368	2.6000	0	0	0
6368	6371	1.0200	0	0	0

PREM: Preliminary Reference Earth Model

- Innen für alle Schichten
- Innen für alle Schichten außer der ersten und ein Teil der zweiten
- Außen für alle Schichten

Aufgabe

- Berechnen und plotten Sie das radiusabhängige Verhalten des Gravitationspotentials und der Gravitationsbeschleunigung innerhalb und außerhalb der Erde, basierend auf dem PREM-Modell
- Berechnen und plotten Sie die Gravitationsbeschleunigung mit Hilfe der Gleichung $\mathbf{a} = \nabla V$, basierend auf dem PREM-Modell
- In welchem Abstand befindet sich der maximale Absolutwert der Gravitationsbeschleunigung? Was ist der Grund dafür?

Hinweise

 Ersetzen Sie das Dichtemodell PREM in der Potentialgleichung (innen und außen). Zum Beispiel außen:

$$\begin{split} V_K^{aussen}(d) &= \frac{4\pi G}{d} \int_{R_i}^{R_{i+1}} r^2 \rho(r) dr \\ &= \frac{4\pi G}{d} \int_{R_i}^{R_{i+1}} r^2 \left[B + C \frac{r}{R_K} + D \frac{r^2}{R_K^2} + E \frac{r^3}{R_K^3} \right] dr \end{split}$$

- Löse es.
- Dies ergibt den Beitrag einer einzelnen Kugelschale von R_i bis R_{i+1}
 (Analytisch)

Hinweise

- Verwenden Sie die richtige Koeffizienten von PREM (siehe Tabelle) für jede Kugelschale, um den Wert zu berechnen
- Der Gesamtwert pro Radiuswert ist die Summe der Beiträge jeder Kugelschale
- Ähnliches gilt für die Beschleunigung
- Achtung mit den Einheiten. Verwenden Sie alle Daten in Meter-Kilogramm-Sekunde (da G in MKS gegeben ist)

Abgabe

- Deadline: Dienstag 07. Dezember 2021, 23:59 CET
- Bericht (pdf, tex, by hand): Schritte, Formeln, Ergebnissen (Einheiten und signifikante Stellen) und Interpretation,
- Code (Python oder Matlab)
- .py Dateien kommen nicht an bei mir. Deshalb als zip verschicken bitte.
- Abgabe rossiy@geod.baug.ethz.ch
- Sprechstunden: nach Absprache (nur zoom)