Теоретическое задание 1

ДПО, МО

January 23, 2021

Exercise 1

Рассмотрим задачу линейной регресии

$$Q(w) = (y - Xw)^{T}(y - Xw) \to \min_{w}$$

- 1. Найдите dQ(w) и $d^2Q(w)$.
- 2. Выведите формулу для оптимального w.
- 3. Выведите формулу для матрицы-шляпницы (hat-matrix), связывающей вектор фактических y и вектор прогнозов $\hat{y} = H \cdot y$.

Exercise 2

Допустим, что обучающая выборка состоит из 2ℓ объектов и верно следующее: $y_i = -y_{\ell+i} \neq 0, i = 1 \dots \ell$. Рассмотрим константное предсказание a(x) = C. Найдите оптимальное значение C с точки зрения функционала MAPE.

Exercise 3

Рассмотрим задачу регрессии с одним признаком и без константы, $\hat{y}_i = w \cdot x_i$. Решите в явном виде задачи МНК со штрафом:

1.
$$Q(w) = (y - \hat{y})^T (y - \hat{y}) + \lambda w^2 //$$

2.
$$Q(w) = (y - \hat{y})^T(y - \hat{y}) + \lambda |w|$$

Exercise 4

Рассмотрим две задачи линейной регрессии с L_{1^-} и L_2 -регуляризацией и одинаковыми коэффициентами $\lambda > 0$:

$$\begin{split} \|Xw - y\|_2^2 + \lambda \|w\|_1 &\longrightarrow \min_w \\ \|Xw - y\|_2^2 + \lambda \|w\|_2 &\longrightarrow \min_w \end{split}$$

Пусть их решения равны, соответственно, $w_1^.$ и $w_2^.$ Можно ли уттверждать, что $\|w_1^.\|_1 < \|w_2^.\|_1$? А что $\|w_2^.\|_2 < \|w_1^.\|_2$?