

UNIVERSITY INSTITUTE OF COMPUTING

MASTER OF COMPUTER APPLICATIONS DESIGN AND ANALYSIS OF ALGORITHMS 24CAT-611

DESIGN AND ANALYSIS OF ALGORITHMS

Course Outcome

СО	Title	Level
Numbe		
r		
CO4	Implement the major graph algorithms to	Understa
	model engineering problems	nd
CO5	Synthesize efficient algorithms in common engineering design situations	Understa nd

 General method with Examples, Multistage Graphs, Binomial Coefficient

Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

$$(a+b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^n$$

Recurrence:
$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
 for $n > k > 0$ $C(n,0) = 1$, $C(n,n) = 1$ for $n \ge 0$

Value of C(n,k) can be computed by filling a table:

	0	1	2	• •	•	<i>k</i> -1	k
0	1						
1	1	1					
•							
•							
•							
<i>n</i> -1				C (n-	1, <i>k</i> -1)	C(n-1,k)
n							C(n,k)

Computing C(n,k): pseudocode and analysis


```
ALGORITHM
                 Binomial(n, k)
    //Computes C(n, k) by the dynamic programming algorithm
    //Input: A pair of nonnegative integers n \ge k \ge 0
    //Output: The value of C(n, k)
    for i \leftarrow 0 to n do
         for j \leftarrow 0 to \min(i, k) do
             if j = 0 or j = i
                  C[i, j] \leftarrow 1
             else C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j]
    return C[n, k]
```

Time efficiency: $\Theta(nk)$

Space efficiency: $\Theta(nk)$

References

- 1) https://www.tutorialspoint.com/data_structures_algorithms/divide_and_conquer.htm
- 2) Data Structures and Algorithms made easy By Narasimha Karumanchi.
- 3) The Algorithm Design Manual, 2nd Edition by Steven S Skiena
- 4) Fundamentals of Computer Algorithms Horowitz and Sahani

