As pointed out recently for the sulfoxidation of thioethers,⁹ the most interesting aspect of oxidations with in situ generated unstable peroxynitrous acid is the short reaction time. Short reaction times may well be a crucial factor in the case of sulfur compounds of pharmaceutical and biological interest, which are not stable enough to stand longer reaction times with the oxidant H₂O₂.

Thompson and co-workers reported that thiolato sulfur atoms coordinated to cobalt(III) can be rapidly oxidized by H₂O₂ via oxoperoxo complexes of tungsten(VI) and molybdenum(VI), formed in solution by equilibration of H₂O₂ with tungstate and molybdate, respectively.^{5a-c} The present data show (see Table S2 in the Supporting Information) that, from the kinetic point of view, ON-OOH (even when generated in situ) can well compete with the reactivity of the species WO(O₂)₂ and MoO-(O₂)₂. The advantage of the catalytic activation of H₂O₂ by HNO₂ might be that HNO₂ is a nonexpensive, commercial

chemical which, in the presence of an excess of H₂O₂, forms finally nitric acid. Nitric acid and nitrate, respectively, are simple byproducts which need not to be recovered.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, Verband der Chemischen Industrie e.V. and Otto-Röhm-Stiftung. The authors appreciate the assistance of Frank Maass in the computer-aided evaluation of the rate data.

Supporting Information Available: Rate constants for the sulfoxidation of CoS by H_2O_2 (Table S1), comparison of rate constants reported for the sulfoxidation of CoS (Table S2), and Figure S1 plot of rate constant $k_{\rm exp}$ vs $[H_2O_2]$ for the sulfoxidation of CoS by H_2O_2 (Figure S1). This material is available free of charge via the Internet at http://pubs.acs.org.

IC981423T

Additions and Corrections

1998, Volume 37

Duane A. Friesen, Toru Kajita, Earl Danielson, and Thomas J. Meyer*: Preparation and Photophysical Properties of Amide-Linked, Polypyridylruthenium-Derivatized Polystyrene.

Pages 2759–2761. The "average" lifetimes $\langle \tau \rangle$ from the fits to eq 5 were erroneously obtained by eq 19 in ref 44:

$$\langle \tau \rangle_{\text{WW}} = \frac{1}{k\beta} \Gamma(\frac{1}{\beta}); \quad \Gamma(\frac{1}{\beta}) = \int_0^\infty x^{\left(\frac{1}{\beta} - 1\right)} e^{-x} dx$$

This is the expression for average lifetimes obtained from fits to eq 4. The correct expression for the average lifetimes from fits to eq 5 is

$$\langle \tau \rangle_{\text{DWW}} = \frac{1}{k^{\beta} \beta} \frac{1}{\Delta t^{\beta - 1}}$$

This expression was obtained by integration of eq 5. For β < 1 at t = 0, eq 5 gives the physically unreasonable result that $I(t) = \infty$. The experimental data were refit from point $t = 0 + \Delta t$, where Δt is the experimental time resolution. The average

Table 1. Photophysical Properties of [PS-CH₂CH₂NHCO(Ru^{II}_nMe_{m-n})](PF₆)_{2n} in CH₃CN at 25–28 °C

salt	$\langle \tau \rangle$ (ns)
[PS-CH ₂ CH ₂ NHCO(Ru ^{II} ₂ Me ₉)](PF ₆) ₄	1213
[PS-CH ₂ CH ₂ NHCO(Ru ^{II} ₇ Me ₄)](PF ₆) ₁₄	1025
$[PS-CH_2CH_2NHCO(Ru^{II}_{11})](PF_6)_{22}$	861
$[PS-CH_2CH_2NHCO(Ru^{II}_5Me_{13})](PF_6)_{10}$	1195
[PS-CH2CH2NHCO(RuII13Me5)](PF6)26	975
[PS-CH2CH2NHCO(RuII18)](PF6)36	905
[PS-CH2CH2NHCO(RuII8Me17)](PF6)16	1220
[PS-CH2CH2NHCO(RuII21Me4)](PF6)42	523
[PS-CH2CH2NHCO(RuII25)](PF6)50	471

lifetimes $\langle \tau \rangle$ in Tables 1–3 have been recalculated by using this procedure by Dr. Milan Sykora and Ms. Kimberly A. Maxwell. The average lifetimes calculated by correct expression show dramatic dependencies on Ru^{II} content (Table 1) and excitation power (Table 2). There is no apparent dependence of the $\langle \tau \rangle$ on the monitoring wavelength (Table 3) in agreement with the observation in the original report.

Table 2. Irradiance Dependence (at 650 nm) of the Kinetic Decay Parameters for Eq 5 in CH_3CN at 25-28 °C

pulse energy (µJ/mm²)	$\langle \tau \rangle$ (ns)	pulse energy (µJ/mm²)	$\langle \tau \rangle$ (ns)
[PS-C	H ₂ CH ₂ NH($CO(Ru^{II}_{18})](PF_6)_{36}$	
8.1	635	1.6	848
5.4	703	0.8	959
4.1	724	0.3	1018
3.1	778		
[PS-CH ₂	CH ₂ NHCO	$O(Ru^{II}_5Me_{13})](PF_6)_{10}$	
6.2	904	1.4	1043
3.6	990	0.9	1195
2.3	1024	0.3	1200
[PS-CH	2CH2NHC	$O(Ru^{II}_2Me_9)](PF_6)_4$	
6.4	1131	0.9	1213

Table 3. Dependence of Emission Decay Kinetics (Eq 5) on Monitoring Wavelength in CH_3CN

$\lambda_{monitor}$ (nm)	$\langle \tau \rangle$ (ns)	λ_{monitor} (nm)	$\langle \tau \rangle$ (ns)
[]	S-CH ₂ CH ₂ NHO	$CO(Ru^{II}_{18})](PF_6)_{36}$	
600	793	700	964
625	949	725	982
650	959	750	945
675	994		
[PS	-CH ₂ CH ₂ NHCC	$(Ru^{II}_5Me_{13})](PF_6)_{10}$	
600	1012	700	1150
625	1107	725	1157
650	1195	750	1120
675	1150	800	1157

10.1021/ic990543d Published on Web 06/19/1999