0.1 probit: Probit Regression for Dichotomous Dependent Variables

Use probit regression to model binary dependent variables specified as a function of a set of explanatory variables. For a Bayesian implementation of this model, see Section ??.

Syntax

```
> z.out <- zelig(Y ~ X1 + X2, model = "probit", data = mydata)
> x.out <- setx(z.out)
> s.out <- sim(z.out, x = x.out, x1 = NULL)</pre>
```

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for probit regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors via the sandwich package (see Zeileis (2004)). The default type of robust standard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

- method: Choose from
 - * "vcovHAC": (default if robust = TRUE) HAC standard errors.
 - * "kernHAC": HAC standard errors using the weights given in Andrews (1991).
 - * "weave": HAC standard errors using the weights given in Lumley and Heagerty (1999).
- order.by: defaults to NULL (the observations are chronologically ordered as in the original data). Optionally, you may specify a vector of weights (either as order.by = z, where z exists outside the data frame; or as order.by = ~z, where z is a variable in the data frame). The observations are chronologically ordered by the size of z.
- ...: additional options passed to the functions specified in method. See the sandwich library and Zeileis (2004) for more options.

Examples

Attach the sample turnout dataset:

> data(turnout)

Estimate parameter values for the probit regression:

> z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout)

> summary(z.out)

Set values for the explanatory variables to their default values.

Simulate quantities of interest from the posterior distribution.

$$> s.out <- sim(z.out, x = x.out)$$

> summary(s.out)

Model

Let Y_i be the observed binary dependent variable for observation i which takes the value of either 0 or 1.

• The stochastic component is given by

$$Y_i \sim \text{Bernoulli}(\pi_i),$$

where $\pi_i = \Pr(Y_i = 1)$.

• The *systematic component* is

$$\pi_i = \Phi(x_i\beta)$$

where $\Phi(\mu)$ is the cumulative distribution function of the Normal distribution with mean 0 and unit variance.

Quantities of Interest

• The expected value (qi\$ev) is a simulation of predicted probability of success

$$E(Y) = \pi_i = \Phi(x_i \beta),$$

given a draw of β from its sampling distribution.

- The predicted value (qi\$pr) is a draw from a Bernoulli distribution with mean π_i .
- The first difference (qi\$fd) in expected values is defined as

$$FD = Pr(Y = 1 \mid x_1) - Pr(Y = 1 \mid x).$$

• The risk ratio (qi\$rr) is defined as

$$RR = Pr(Y = 1 \mid x_1) / Pr(Y = 1 \mid x).$$

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment group is

$$\frac{1}{\sum_{i=1}^{n} t_i} \sum_{i:t_i=1}^{n} \left\{ Y_i(t_i=1) - E[Y_i(t_i=0)] \right\},\,$$

where t_i is a binary explanatory variable defining the treatment $(t_i = 1)$ and control $(t_i = 0)$ groups. Variation in the simulations are due to uncertainty in simulating $E[Y_i(t_i = 0)]$, the counterfactual expected value of Y_i for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to $t_i = 0$.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment group is

$$\frac{1}{\sum_{i=1}^{n} t_i} \sum_{i:t_i=1}^{n} \left\{ Y_i(t_i = 1) - \widehat{Y_i(t_i = 0)} \right\},\,$$

where t_i is a binary explanatory variable defining the treatment $(t_i = 1)$ and control $(t_i = 0)$ groups. Variation in the simulations are due to uncertainty in simulating $Y_i(t_i = 0)$, the counterfactual predicted value of Y_i for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to $t_i = 0$.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run z.out <- zelig(y ~ x, model = "probit", data), then you may examine the available information in z.out by using names(z.out), see the coefficients by using z.out\$coefficients, and a default summary of information through summary(z.out). Other elements available through the \$ operator are listed below.

- From the zelig() output object z.out, you may extract:
 - coefficients: parameter estimates for the explanatory variables.
 - residuals: the working residuals in the final iteration of the IWLS fit.
 - fitted.values: a vector of the in-sample fitted values.
 - linear.predictors: a vector of $x_i\beta$.
 - aic: Akaike's Information Criterion (minus twice the maximized log-likelihood plus twice the number of coefficients).
 - df.residual: the residual degrees of freedom.
 - df.null: the residual degrees of freedom for the null model.

- data: the name of the input data frame.
- From summary(z.out), you may extract:
 - coefficients: the parameter estimates with their associated standard errors, p-values, and t-statistics.
 - cov.scaled: a $k \times k$ matrix of scaled covariances.
 - cov.unscaled: a $k \times k$ matrix of unscaled covariances.
- From the sim() output object s.out, you may extract quantities of interest arranged as matrices indexed by simulation × x-observation (for more than one x-observation). Available quantities are:
 - qi\$ev: the simulated expected values, or predicted probabilities, for the specified values of x.
 - qi\$pr: the simulated predicted values drawn from the distributions defined by the predicted probabilities.
 - qi\$fd: the simulated first differences in the predicted probabilities for the values specified in x and x1.
 - qi\$rr: the simulated risk ratio for the predicted probabilities simulated from x and x1.
 - qi\$att.ev: the simulated average expected treatment effect for the treated from conditional prediction models.
 - qi\$att.pr: the simulated average predicted treatment effect for the treated from conditional prediction models.

How to Cite

To cite the *probit* Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. "probit: Probit Regression for Dichotomous Dependent Variables" in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. "Zelig: Everyone's Statistical Software," http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). "Toward A Common Framework for Statistical Analysis and Development." Journal of Computational and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The probit model is part of the stats package by Venables and Ripley (2002). Advanced users may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder (1989). Robust standard errors are implemented via the sandwich package by Zeileis (2004). Sample data are from King et al. (2000).

Bibliography

- Andrews, D. W. (1991), "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," *Econometrica*, 59, 817–858.
- King, G., Tomz, M., and Wittenberg, J. (2000), "Making the Most of Statistical Analyses: Improving Interpretation and Presentation," *American Journal of Political Science*, 44, 341–355, http://gking.harvard.edu/files/abs/making-abs.shtml.
- Lumley, T. and Heagerty, P. (1999), "Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression," *jrssb*, 61, 459–477.
- McCullagh, P. and Nelder, J. A. (1989), *Generalized Linear Models*, no. 37 in Monograph on Statistics and Applied Probability, Chapman & Hall, 2nd ed.
- Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S, Springer-Verlag, 4th ed.
- Zeileis, A. (2004), "Econometric Computing with HC and HAC Covariance Matrix Estimators," *Journal of Statistical Software*, 11, 1–17.