Assignment 3

Deep Learning for Computer Vision

1. Objective

The goal of this assignment was to apply **convolutional neural networks** (CNNs) to a real world image classification task and compare two approaches:

- 1. Training a CNN from scratch
- 2. Using a pre trained network (transfer learning) and optionally fine-tuning it

The dataset used is Microsoft Cats vs Dogs, obtained from Kaggle.

The assignment explores how model performance changes as the training-set size increases and how transfer learning can greatly improve accuracy and efficiency.

2. Methodology

Data Preparation

- Downloaded and extracted the dataset using Kaggle API.
- Removed corrupted and grayscale images using the Python PIL library.
- Converted all images to RGB and resized them to 224×224 pixels.
- Created balanced splits for:
 - Training (varied by experiment)
 - Validation (250 per class)
 - Test (250 per class)
- Performed data augmentation using random flip, rotation, zoom, and contrast

Model 1 – CNN from Scratch

- 3 convolutional blocks with Batch Normalization and MaxPooling
- Global Average Pooling + Dropout (0.25)
- Sigmoid output for binary classification
- Optimizer: Adam (lr=1e-3)
- Loss: Binary Cross-Entropy with label smoothing (0.05)
- Regularization: L2 weight decay (1e-4) and Dropout
- Early Stopping and ReduceLROnPlateau callbacks

Model 2 - VGG16 Pre trained (Transfer Learning)

- Loaded VGG16 without top layers, with ImageNet weights
- Added:
 - 1. Global Average Pooling
 - 2. Dropout (0.2)
 - 3. Dense(1, Sigmoid)
- Two phases:
 - 1. **Transfer only:** Base frozen, train only top layers
 - 2. **Fine-tune:** Unfrozen from block4 conv1 to adapt to cats/dogs
- Optimizer: Adam (1e-4 for transfer, 1e-5 for fine-tune)

3. Results

Model 1 – From Scratch

Training per Class			
	Total Train	Best Validation Accuracy	Test Accuracy
500	1000	0.50	0.50
2000	4000	0.80	0.81
4000	8000	0.83	0.82

Model 2 – VGG16 (Transfer Learning & Fine-tuning)

Run	Phase	Train per Class	Total Train	Best Val Acc	Test Acc
vgg_transfer_tpc500	Transfer Only	500	1,000	0.888	0.902
vgg_transfer_tpc200	Transfer Only	2,000	4,000	0.954	0.966
vgg_transfer_tpc400	Transfer Only	4,000	8,000	0.984	0.978
vgg_finetune_tpc500	Fine-tuned	500	1,000	0.980	0.972
vgg_finetune_tpc200	Fine-tuned	2,000	4,000	0.974	0.988
vgg_finetune_tpc400	Fine-tuned	4,000	8,000	0.986	0.992

Graphical Trend

Observation: Both models improve with larger datasets, but transfer learning outperforms the scratch CNN at every data size.

Training Images	Scratch CNN Test Acc	VGG16 Transfer Test Acc	VGG16 Fine-tune Test Acc
1000	0.50	0.90	0.97
4000	0.81	0.97	0.99
8000	0.82	0.98	0.99

Trend Summary:

- Accuracy increases with data size for both models.
- Transfer learning achieves higher accuracy even with limited data.
- Fine-tuning further improves performance.

4. Relationship Between Training Sample Size and Network Choice

1. Training Sample Size:

- When the dataset is small (e.g., 1,000 total images), a CNN trained from scratch struggles to learn meaningful features.
- The validation and test accuracy remain close to random (≈ 0.5).

2. Choice of Network:

- Pre-trained models like **VGG16** already know general visual features from large datasets such as ImageNet.
- Even with few training images, transfer learning can achieve high accuracy because the base layers already encode edges, shapes, and textures.
- Fine-tuning allows these features to adapt to the specific cat/dog domain, giving near-perfect accuracy.

3. Conclusion:

- From Scratch: Needs thousands of samples to perform well.
- Transfer Learning: Performs well even with small datasets.
- Fine-tuning: Best overall performance and generalization.

5. Discussion and Insights

Aspect	From Scratch	Transfer Learning
Data Required	Large (8k+)	Small (~1k) works well
Training Time	Long	Short
Accuracy	~82 %	97–99 %
Generalization	Moderate	Excellent

Overfitting Risk	High on small data	Low, due to pretrained weights
------------------	--------------------	--------------------------------

Key Insight:

Transfer learning is both **data-efficient** and **performance-efficient**, especially when labeled data is limited.

As training sample size grows, both methods improve, but transfer learning consistently outperforms training from scratch.

6. Conclusion

This assignment demonstrated the effectiveness of transfer learning in image classification tasks.

- A CNN trained from scratch achieved ~82 % accuracy with 8,000 images.
- A VGG16 transfer-learning model achieved ~99 % accuracy even with smaller datasets.
- Increasing the training sample size consistently improved performance for both models.
- Fine-tuning gave the highest performance by adapting pretrained features to the new dataset.

Final takeaway:

Transfer learning provides a significant advantage when dealing with limited training data and should be the preferred approach for most practical image classification problem.

7. Submission Items

- 1. cats dogs from scratch.ipynb
- 2. cats dogs pretrained.ipynb

- $3. \ dogs_vs_cats_scratch_results_v2.csv$
- 4. dogs_vs_cats_pretrained_results.csv
- 5. Assignment3_Report.pdf