Вступ до інтелектуального аналізу даних

Надія Іванівна Недашківська

Інститут прикладного системного аналізу Національного технічного університету України "Київський політехнічний інститут ім. Ігоря Сікорського"

Київ-2021

Основна література

- Конспект лекцій.
- 🔋 Методичні вказівки до виконання лабораторних робіт.
- Гудфеллоу Я., Бенджио И., Курвилль А.. *Глубокое обучение*. пер. с анг. А. А. Слинкина. 2-е изд., испр. М.: ДМК Пресс, 2018, 652 с.
- Себастьян Рашка, Вахид Мирджалили. Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow 2, 3-е изд.: Пер. с англ.-СПб.: Диалектика 2020.-848 с.
- Николенко С., Кадурин А., Архангельская Е. *Глубокое обучение*. СПб.: Питер, 2018, 480 с.

Основна література

- Дж. Вандер Плас. *Python для сложных задач. Наука о данных и машинное обучение*. СПб.:Питер,2018. 576с.
- Уэс Маккинли. Python и анализ данных М.: ДМК Пресс, 2015. 482 с.
- Scikit-Learn Documentation. https://scikit-learn.org/

Допоміжна література

- Бринк Х., Ричардс Дж., Феверолф М. *Машинное обучение*. СПб.: Питер, 2017. 336 с.
- Mюллер A., Гидо C. *Введение в машинное обучение с помощью Python*. M.: O'Reilly Media, 2017. 392 c.
- © Силен Д., Мейсман А., Али М. Основы Data Science и Big Data. Python и наука о данных. СПб.: Питер, 2017. 336 с.
- Maтеріали щодо машинного навчання. http://www.machinelearning.ru. 2019.

Інтелектуальний аналіз даних, Data Mining

Інтелектуальний аналіз даних — виявлення знань у великих об'ємах даних :

- раніше невідомих знань,
- нетривіальних знань,
- практично корисних знань,
- доступних для інтерпретації людиною.

(Григорій П'ятецький-Шапіро)

Поняття алгоритму машинного навчання (МН)

Алгоритм машинного навчання - це алгоритм, здатний навчатися на даних.

«Комп'ютерна програма навчається на досвіді Е відносно деякого класу задач Т і міри якості Р, якщо якість на задачах з Т, виміряна за допомогою Р, зростає із зростанням досвіду Е » (Mitchell, 1997)

Задачі МН: Класифікація

Класифікація - віднесення прикладу до одного з k **визна**-чених класів.

Алгоритм навчання (класифікатор) породжує функцію

$$f: \mathbb{R}^n \to \{1, ..., k\}$$

Приклади:

- Розпізнавання зображень, представлених матрицею значень яскравості пікселів.
- Фільтрація електронної пошти.
- Надання кредиту.

Приклад: фільтрація електронної пошти

Приклад: надання кредиту

Використання МН для задачі кредитного скорингу

Якщо імовірність Y > порогу, то давати кредит Якщо імовірність Y < порогу, то не давати кредит

Задачі МН: Регресія

Регресія - прогнозування числового значення за вхідними даними.

Алгоритм навчання породжує функцію

$$f: \mathbb{R}^n \to \mathbb{R}$$

Приклади:

- Прогнозування розміру страхової премії.
- Прогнозування майбутньої вартості цінних паперів.
- Пошук на фотографії координат прямокутника, в якому знаходиться обличчя людини.

Класифікація VS Регресія

Задачі МН: структурний вивід

Структурний вивід - на виході породжується вектор (або інша структура, яка містить кілька значень), між елементами якого існують **важливі зв'язки**. Приклади:

- транскрипція,
- машинний переклад,
- граматичний розбір,
- піксельна сегментація зображення,
- анотування доріг на аерофотознімках,
- підписування зображень.

Задачі МН: транскрипція

Транскрипція - аналіз неструктурованого представлення даних і перетворення його в дискретну текстову форму. Приклади:

- Програмі розпізнавання тексту пред'являється фотографія тексту, а вона повинна повернути текст у вигляді послідовності символів. Google Street View виконує обробку табличок з адресами будинків.
- Розпізнавання мови, коли програмі пред'являється аудіосигнал, а вона виводить послідовність символів (в компаніях Microsoft, IBM i Google).

Виявлення аномалій - нетипових подій або об'єктів.

 Приклад: виявлення шахрайства з кредитними картами на основі моделювання купівельних звичок.

Шумозаглушення:

- ullet на вхід подається зашумлений приклад $\hat{x} \in R^n$,
- алгоритм має відновити початковий приклад x на основі зашумленого \hat{x} або повернути умовний розподіл ймовірності $p(x|\hat{x})$.

Задачі МН: синтез і вибірка

Задача синтезу і вибірки - алгоритм генерує нові приклади, схожі на навчальні дані.

Приклади:

- мультимедія,
- відеоігри.

Алгоритм генерує певний вихід за заданим входом. Приклад:

• синтез мови, вхід - написана фраза, вихід - звук.

Задачі МН: оцінка функції ймовірності та функції щільності ймовірності

Задачі оцінки функції ймовірності та функції щільності ймовірності

Алгоритм оцінює функцію $p_{model}: R^n \to R$, де

- $p_{model}(X)$ функція ймовірності, якщо X дискретна випадкова величина або
- $p_{model}(X)$ функція щільності ймовірності, якщо X неперервна випадкова величина,

в просторі, з якого були взяті приклади.

Задачі: пошук асоціативних правил

Пошук асоціативних правил - знаходження **частих** залежностей, асоціацій у вигляді правил "Якщо - То"між об'єктами або подіями.

Приклади:

- Аналіз ринкових кошиків (Basket Analysis).
- Аналіз симптомів і хвороб, що спостерігаються у пацієнтів.
- Сиквенційний аналіз. Приклад: Телекомунікаційні компанії. Встановлено послідовність збоїв $\{x_5, x_2, x_7, x_{13}, x_6\}$. Факт появи збою x_2 швидка поява збою x_7 .

Досвід в задачах МН

Алгоритми машинного навчання можна умовно розділити на три великі класи:

- з вчителем (supervised learning),
- без вчителя (unsupervised learning),
- з частковим залученням вчителя, напівконтрольоване (semi-supervised) навчання,

залежно від того, на якому досвіді, наборі даних вони можуть навчатися.

Досвід в задачах МН

Набором даних називається сукупність великого числа прикладів.

Приклад - це вектор $x \in R^n$, кожен елемент якого - **ознака**, отримана в результаті кількісного виміру деякого об'єкту чи події. Приклади також називаються **вимірами**, **точками**.

Ознаки називаються атрибутами.

Навчання з вчителем (supervised learning)

Навчання з вчителем. **Дано**: навчальна вибірка даних X, де кожен приклад включає **мітку або цільовий клас** y - це число або у загальному вигляді вектор. **Потрібно**: спрогнозувати y на основі X, розрахувати оцінку

$$\hat{p}(y|X)-?$$

Припущення: навчальні дані мають бути схожими на дані, на яких потім буде застосовуватися побудована модель.

- Класифікація.
- Регресія.
- Навчання ранжуванню (learning to rank).

Навчання з вчителем (продовження)

Навчання ранжуванню (learning to rank) - впорядкувати наявні об'єкти в порядку спадання цільової функції.

- Наприклад, на основі текстів документів і минулої поведінки користувача.
- Використовується в пошукових і рекомендаційних системах.
- Цільова функція називається релевантністю і є мірою відповідності даного документу зробленому запиту.

Навчання без вчителя (unsupervised learning)

Навчання без вчителя - виявити корисні властивості заданого набору даних.

- Кластеризація: розділити дані на наперед невідомі класи, використовуючи деяку міру схожості. Приклади:
 - персоналізація користувачів веб-сайта,
 - сегментація медичного знімку для виявлення захворювання.
- Задача оцінки щільності: оцінити розподіл, з якого отримано вхідні дані, знаючи апріорні імовірності їх появи.
- Задачі синтезу або очищення від шуму.

Навчання без вчителя (продовження)

Зниження розмірності

- Дано: вхідні дані, які мають велику розмірність.
- Потрібно: отримати представлення цих даних в просторі меншої розмірності, яке буде досить повно відображати вхідні дані. Цілі:
 - Зменшення обчислювальних витрат.
 - Сжимання даних для більш ефективного збереження інформації. Потрібне також зворотнє перетворення.
 - Отримання нових ознак (feature extraction).
 - Уникнення перенавчання.
 - Візуалізація даних.

Навчання з частковим залученням вчителя, напівконтрольоване (semi-supervised) навчання

Навчання з частковим залученням вчителя, напівконтрольоване навчання

Дано: багато нерозмічених даних.

Ідея: модель спочатку навчається на нерозмічених даних, а потім, використовуючи це наближення, донавчається на розмічених.

Приклад: Навчання з підкріпленням (reinforceme learning)

Навчання з вчителем і без вчителя

Розпишемо спільний розподіл для вектора $x \in R^n$:

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1,...,x_{i-1}).$$

Тобто, оцінювання p(x) (задачу без вчителя) можна представити як n задач МН з вчителем. З іншого боку.

$$p(y|x) = \frac{p(x,y)}{\sum_{z} p(x,z)}.$$

Висновок. Одні й ті ж технології МН можуть застосовуватися до розв'язання як задач з вчителем, так і без вчителя.

Задачі МН за призначенням

Описові (descriptive) задачі

Приклади:

- кластеризація,
- пошук асоціативних правил.

Прогнозні (predictive) задачі Приклади:

- класифікація,
- регресія,
- пошук асоціативних правил

Етап 1: за навчальною вибіркою будується модель

- інформація про клієнтів, яким раніше видавалися кредити на різні суми, і інформація про їхнє погашення,
- повідомлення, класифіковані вручну як спам або як лист,
- розпізнані раніше матриці зображень.

Етап 2: модель застосовується для прогнозу на нових наборах даних - об'єктах з невизначеним значенням залежної змінної

Кластеризація в порівнянні з класифікацією

- Не потрібно мати окрему залежну змінну, кластеризація - задача навчання без учителя.
- Кластеризація використовується на початкових етапах дослідження, це описова задача.

Поняття алгоритму машинного навчання (МН)

Алгоритм машинного навчання - це алгоритм, здатний навчатися на даних.

«Комп'ютерна програма навчається на досвіді Е відносно деякого класу задач Т і міри якості Р, якщо якість на задачах з Т, виміряна за допомогою Р, зростає із зростанням досвіду Е » (Mitchell, 1997)

Як вибрати міру якості - ? Розглянемо приклад задачі лінійної регресії.

Задача лінійної регресії

Вхід: вектор $x \in R^n$. Вихід: $y \in R$.

Результат моделі лінійної регресії \hat{y} - лінійна функція вхідних даних x:

$$\hat{y} = w^T x$$
,

де $w \in R^n$ - вектор параметрів - ваги.

Потрібно: покращити w так, щоб функція помилки (втрат) зменшувалася по мірі того, як алгоритм отримує новий приклад з навчального набору (X^{train}, y^{train}) :

$$X^{train} = \{x_1, x_2, ..., x_m\}, x_i \in R^n, y^{train} \in R^m.$$

Ілюстрація задачі лінійної регресії

Рис.: Приклад лінійної регресії

Задача мінімізації функції помилки на навчальному наборі

Функція помилки:

$$MSE^{train} = \frac{1}{m} \sum_{i} (\hat{y}_{i}^{train} - y_{i}^{train})^2 = \frac{1}{m} ||\hat{y}^{train} - y^{train}||^2 \rightarrow min$$

Прирівняємо градієнт MSE^{train} до нуля:

$$\frac{\partial}{\partial w} \left(\frac{1}{m} || \hat{y}^{train} - y^{train} ||^2 \right) = 0$$

$$\frac{\partial}{\partial w} \left((X^{train} w - y^{train})^T (X^{train} w - y^{train}) \right) = 0!!!!$$

$$\frac{\partial}{\partial w} \left(w^T X^{trainT} X^{train} w - 2 w^T X^{trainT} y^{train} + y^{trainT} y^{train} \right) = 0$$

$$2 X^{trainT} X^{train} w - 2 X^{trainT} y^{train} = 0$$

$$w = (X^{trainT} X^{train})^{-1} X^{trainT} y^{train}$$

Ілюстрація задачі лінійної регресії

Рис.: Мінімальне значення MSE^{train} в прикладі лінійної регресії

Міра якості в задачі лінійної регресії

Вхід:

 $X^{test} = \{(x_1, x_2, ..., x_p) | x_i \in R^n \}$ - тестовий набір даних для оцінки якості роботи моделі,

 $y^{test} = (y_1, y_2, ..., y_p)^T$ - вектор міток, який містить правильні значення y для кожного з прикладів.

Функція помилки:

$$MSE = \frac{1}{p} \sum_{i} (\hat{y}_{i}^{test} - y_{i}^{test})^{2} = \frac{1}{p} ||\hat{y}^{test} - y^{test}||^{2},$$

де \hat{y}^{test} - вектор значень прогнозу моделі на тестовому наборі, ||.|| - евклідова відстань.

Дякую за увагу!