

Department of Advanced Control

COMBINING MODEL-BASED

AND MODEL-FREE OPTIMAL

CONTROL FOR DYNAMIC

SYSTEMS

MASTER'S THESIS PRESENTATION - HANDOUT

Pascal Peters

Paderborn, 04.05.2022

Motivation

Reinforcement Learning

- O Model-free
- O Maximize the return: $g_k = \sum_{i=0}^N \gamma^i r_{k+i+1}$
- ullet Solves Bellman equation for a horizon $N o \infty$:

$$q_{\pi}(\mathbf{x}_{\mathbf{k}}, \mathbf{u}_{\mathbf{k}}) = \mathbb{E}_{\pi} \left[R_{k+1} + \gamma q_{\pi}(\mathbf{X}_{\mathbf{k}+1}, \mathbf{U}_{\mathbf{k}+1})) \middle| \mathbf{X}_{\mathbf{k}}, \mathbf{U}_{\mathbf{k}} \right]$$

- ullet Explicit control law to determine action $oldsymbol{u}_k$
- Learn through experience and feedback

Model Predictive Control

- Model-based
- Minimize costs
- \circ Solve optimization problem for finite N-step prediction horizon
- $\, \circ \,$ Implicit control law with complexity growing with horizon length N
- Constrained optimization for safe control

Motivation

Developed System

- O Using a model to extend an off-policy actor-critic controller to achieve safe behavior
 - By monitoring actions for constraint violation
 - Modifying unsafe actions such that the system stays within the constraints
- Eliminate the dependency on prior available model knowledge by identifying model parameters online

Model Adaptive Safeguard Controller

Safeguard

- Check for possible constraint violation
 - $m{u}_k^{\mathsf{RL}}$ safe if: $\left[m{x}_k^{\mathsf{T}} \quad m{u}_k^{\mathsf{RL}^{\mathsf{T}}}\right]^{\mathsf{T}} \in \mathcal{C}$
 - $oldsymbol{u}_k^{\mathsf{RL}}$ unsafe if: $oldsymbol{\left[\boldsymbol{x}_k^\mathsf{T} \quad \boldsymbol{u}_k^{\mathsf{RL}}^\mathsf{T}\right]}^\mathsf{T} \notin \mathcal{C}$
- O Solving optimization problem for unsafe actions:

$$\begin{aligned} \textbf{\textit{u}}_k^{\text{safe}} &= \textbf{\textit{u}}_k^* = \mathop{\mathrm{argmin}}_{\textbf{\textit{u}}_k} || \, \textbf{\textit{u}}_k - \textbf{\textit{u}}_k^{\text{RL}} \, ||^2, \\ \text{s.t.} \, \textbf{\textit{u}}_k &\in \mathcal{C}_u \end{aligned}$$

Safeguard Constraints

Model Identification

Online model identification with the recursive least squares algorithm

$$\begin{split} \kappa_k &= \frac{\mathbf{P}_k \boldsymbol{\xi}_{k+1}}{\lambda_{k+1} + \boldsymbol{\xi}_{k+1}^\mathsf{T} \mathbf{P}_k \boldsymbol{\xi}_{k+1}} \\ \hat{\boldsymbol{\theta}}_{k+1} &= \hat{\boldsymbol{\theta}}_k + \kappa_k \left(\boldsymbol{\psi}_{k+1} - \boldsymbol{\xi}_{k+1}^\mathsf{T} \hat{\boldsymbol{\theta}}_k \right) \\ \mathbf{P}_{k+1} &= \left(\mathbf{I} - \kappa_k \boldsymbol{\xi}_{k+1}^\mathsf{T} \right) \mathbf{P}_k \frac{1}{\lambda_{k+1}} \end{split}$$

Update feasible set only if change of new estimates is significant:

$$\Delta \mathbf{A}_k = \frac{||\hat{\mathbf{A}}_k - \hat{\mathbf{A}}_{k-1}||_F}{||\hat{\mathbf{A}}_k||_F}, \Delta \mathbf{B}_k = \frac{||\hat{\mathbf{B}}_k - \hat{\mathbf{B}}_{k-1}||_F}{||\hat{\mathbf{B}}_k||_F}$$

Evaluation

O Double Integrator as test environment

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{u}(t),$$

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$\text{s.t.} \quad \mathbf{M}_x \, \mathbf{x} \leq \mathbf{m}_x,$$

$$\mathbf{M}_u\,\mathbf{u} \leq \mathbf{m}_u$$

Evaluation

Scaled weighted sum of errors (SWSE):

$$r_{k+1}^{\text{WSE}} = \begin{cases} -\frac{1}{f} \left(\sum_n w_n \left| \frac{x_{k,n} - x_{k,n}^{\text{ref}}}{2x_n^{\text{lim}}} \right| \right) & \text{, } \pmb{x}_{k+1} \in \pmb{\mathcal{X}} \\ r^{\text{violation}} & \text{, } \pmb{x}_{k+1} \notin \pmb{\mathcal{X}} \end{cases}$$

 ${\color{red} \circ}$ Incorporate safeguard-penalty $r^{\rm SG}$ for actuated safeguard

Metrics

- Averaged over multiple seeds
- O Cumulated reward per episode:

$$R_c = \sum_{k=1}^{N} r_k$$

Cumulated constraint violations (CCV):

$$\text{CCV} = \sum_{e=1}^{E} c_e(\mathbf{x}), \quad \text{ with } c_e(\mathbf{x}) = \begin{cases} 0 & \text{, if } \mathbf{x} \in \mathcal{X} \\ 1 & \text{, otherwise} \end{cases}$$

Reinforcement Learning Controller

Safeguard Controller

O Prior available model:

• Estimated model:

Exemplary Safeguard Controller Trajectories

o Training start:

• Training end:

Safeguard Penalty

• Prior available model with safeguard penalty:

• Estimated model with safeguard penalty:

Exemplary Control Trajectories

Cumulated Constraint Violations

Summary

- Extension of an off-policy actor-critic controller with the so called safeguard to enforce constraint satisfaction
- Utilize the feasible-set as safeguard constraints to restrain the RL controller to move in the feasible state-action space
- Use the RLS algorithm for online model estimation

Future Work

- O Use computational less expensive methods to determine the feasible set
- Extend exploration mechanism of the RL controller:
 - Utilize estimated model to employ MPC for directional, controlled exploration on basis of risk and curiosity criteria
 - providing safer exploration during the starting model identification phase
- Extensive hyperparameter optimization of full setup MASC

Thank you for your attention.