Cours sécurité informatique: clés symétriques et asymétriques signatures numériques

Modèle de base pour la communication

- Bob, Alice veulent communiquer de façon sûre
- Trudy (l'intruse) peut intercepter, supprimer, ajouter des messages

Que peut faire un bad guy (réseau)

- espionner (eavesdrop): intercepter des messages
- insérer des messages
- imposture (impersonation): mettre de fausses adresses sources dans les paquets (parodie spoof)
- pirater (hijacking) : prendre la place de l'émetteur ou du récepteur
- dénis de service: empêcher le service de fonctionner (surcharge des ressources)

Le langage de la cryptographie

m message en clair $K_A(m)$ message chiffré avec la clé K_A $m = K_B(K_A(m))$

Comment casser ce schéma?

- attaque avec le texte chiffré seul: Trudy a le texte chiffré qu'elle peut analyser
- deux approches:
 - force brute: essayer toutes les clés
 - analyse statistique du texte

- attaque avec du texte en clair: Trudy a un texte en clair correspondant a un texte chiffré
- attaque avec du texte en clair choisi: Trudy peut obtenir des textes chiffrés à partir de textes en clair

Cryptographie symétrique

cryptographie à clés symétriques: Bob et Alice partagent la même clé (symétrique) K_S

Problème: Comment Bob et Alice obtiennent la clé?

Des clefs:

Un chiffrement très simple

chiffrement par substitution:

 chiffrement mono-alphabétique (César): substituer une lettre par une autre

```
en clair: abcdefghijklmnopqrstuvwxyz chiffré: mnbvcxzasdfghjklpoiuytrewq
```

e.g.: en clair: bob. i love you. alice chiffré: nkn. s gktc wky. mgsbc

Chiffrement clé de codage: application d'un ensemble de 26 lettres dans un ensemble de of 26 lettres

cours sécurité

Plus élaboré

- * n codes à substitution: $M_1, M_2, ..., M_n$
- motifs cycliques:
 - exemple $n=4: M_1, M_3, M_4, M_3, M_2; M_1, M_3, M_4, M_3, M_2; ...$
- pour chaque nouveau symbole utiliser cycliquement le motif de substitution suivant:
- ❖ dog: d de M₁, o de M₃, g de M₄

Clé de chiffrement: n codes à substitution, et un motif de substitution

la clé n'est pas seulement un motif de n bits

DES: chiffrement symétrique

DES: Data Encryption Standard

- US standard [NIST 1993]
- Clef symétrique 56-bit, texte en clair de 64-bit
- chiffrage par blocs avec chainage des chiffrages
- DES est-il sûr?
 - DES Challenge: 56-bit-key-encrypted phrase déchiffrée(brute force brute) en moins d'un jour
 - pas de « bonne » attaque analytique connue
- DES plus sûr:
 - 3DES: chiffrement 3 fois avec 3 clés de chiffrement

H. Fauconnier cours sécurité

DES: code symétrique

DES:

permutation initiale
16"rondes" identiques
d'application de fonctions,
chacune utilisant 48 bits
différents de la clé
permutation finale

AES: Advanced Encryption Standard

- symmetric-key le standard NIST à clé symétrique qui remplace DES (Nov 2001)
- données traitées par blocs de 128 bits
- clés de 128, 192 ou 256 bits
- un décryptage en force brute (essayer chaque clé) prenant I sec avec DES, prend I49 trillion d'année pour AES

H. Fauconnier cours sécurité

Cryptographie à clés publiques

clés symétriques

- Alice et Bob partagent une clé secrète
- Comment obtenir cette clé secrète?

clés publiques

- approche différente [Diffile Hellman76, RSA78]
- Alice et Bob ne partagent pas de clé secrète
- clé publique est connue de tous
- clé privée pour déchiffrer n'est connue que de Bob

13

Cryptographie à clés publiques (Cryptographie asymétrique)

H. Fauconnier cours sécurité

Algorithme de chiffrement

- Principe: 1 K_B^+ () et K_B^- () vérifient K_B^- (K_B^+ (K_B^+
 - (2)A partir de la clé publique K_B^{\dagger} , il est « impossible » de calculer la clé privée K_B

 $(K_B^+())$ et $K_B^-()$ sont inverses l'une de l'autre, $K_B^+()$ est facile à calculer mais à partir de $K_B^+()$ il est très difficile de calculer K_B() one-way functions)

RSA: Rivest, Shamir, Adelson

RSA: création des clés privée/publique

- I. choisir deux grands nombres premiers p et q (par exemple 1024 bits)
- 2. calculer n = pq, z = (p-1)(q-1)
- 3. choisir e(e < n) sans diviseur commun avec z(e, z sont premiers entre eux).
- 4. choisir d tel que ed-I est divisible par z. ($ed \mod z = I$).
- 5. clé publique (n,e). clé privée (n,d). K_B^+

RSA: chiffrement, déchiffrement,

- 0. soit (n,e) et (n,d) obtenus précédemment
- I. message m (<n), c le message chiffré: $c = m^e \mod n$
- 2. pour déchiffrer c:

$$m = c^d \mod n$$

On a
$$m = (m^e \mod n)^d \mod n$$

H. Fauconnier cours sécurité

RSA exemple:

Bob choisit
$$p=5$$
, $q=7$. Alors $n=35$, $z=24$.
 $e=5$ (e, z premiers entre eux).
 $d=29$ (ed-1 divisible par z).

chiffrement message de 8-bits

H. Fauconnier

Chiffrement à clés publiques

RSA vérifie aussi:

$$K_B(K_B^+(m)) = m = K_B^+(K_B^-(m))$$

d'abord la clé publique ensuite la clé privée d'abord la clé privée ensuite la clé publique

Pourquoi RSA est sûr?

- A partir de la clé publique de Bob (n,e). Il est difficile de trouver d
- * « nécessite » de factoriser n sans connaître p et q.
 - On considère que factoriser un grand nombre est difficile.

H. Fauconnier cours sécurité

RSA dans la réalité

- * l'exponentiation utilisée dans RSA est coûteuse
- DES est 100 fois plus rapide que RSA
- En pratique:
 - utiliser un système à clés publiques pour établir une communication sûre et s'entendre sur une clé symétrique, utiliser cette clé pour chiffrer-déchiffrer les communications.

Clé de session, K_s

- Bob et Alice utilisent RSA pour échanger une clé symétrique K_S
- avec K_S, codage symétrique

H. Fauconnier cours sécurité

Signatures numériques

technique analogue à la signature manuelle:

- * Bob signe numériquement le document, établissant ainsi qu'il est le créateur/propriétaire du document.
- vérifiable, infalsifiable (unforgeable): Alice peut prouver à un tiers que personne d'autres que Bob n'a signé le document

attention... on suppose ici que « tout le monde » sait que la clé publique de Bob est bien la clé publique de Bob et seul Bob connaît sa clé privée

H. Fauconnier cours sécurité

Signatures numériques

simple signature numérique pour le message m:

* Bob signe m en le codant avec sa clé privée K_B , créant le message signé, K_B (m)

H. Fauconnier cours sécurité

Signatures numériques

- * si Alice reçoit m, avec la signature: m, $K_B(m)$
- * Alice vérifie que m est signé par Bob avec la clé publique de Bob K_B^+ : $K_B^+(K_B^-(m)) = m$.
- Si $K_B^+(K_B^-(m)) = m$, celui qui a signé avait la clé privée de Bob

Alice vérifie:

- → Bob a signé m
- >>> personne d'autre n'a signé m
- → Bob a signé m et pas m'

non-répudiation:

✓ Alice peut aller en justice prendre m, et la signature $K_B(m)$ et prouver que Bob a signé m

24

« Message digest »

le chiffrement de longs messages avec clé publique est très coûteux

Mais: mais on peut facilement chiffrer des empreintes (digest) de taille fixe ("fingerprint")

en appliquent H fonction de hachage à m, on obtient un digest H(m).

Propriétés des fonctions de hachage:

- E=H(M): « impossible » de trouver M connaissant E
- connaissant M et E
 impossible » de trouver M'
 tel que H(M')=H(M)=E
- « impossible » de trouver M et M' tels que H(M)=H(M')

Digest signé comme signature numérique

Bob envoie le message signé :

Alice vérifie la signature, l'intégrité du message signé:

algorithmes de Hachage

- * MD5 (RFC 1321)
 - calcule un « digest » de l 28-bit
 - à partir d'une chaîne x de l 28-bits, il est difficile de construire un msg m pour lequel le hachage par MD5 est égal à x
 - « cassé » en 2004
- * SHA-256 SHA-512

H. Fauconnier cours sécurité

e-mail sécurisé

* Alice veut envoyer un mail confidentiel à Bob

- * génère une clé symétrique privée, K_S
- chiffre le message avec K_S (pour l'efficacité)
- * chiffre aussi K_s avec la clé publique de Bob
- \bullet envoie $K_S(m)$ et $K_B^+(K_S)$ to Bob

e-mail sécurisé

* Alice veut envoyer un mail confidentiel m à Bob.

Bob:

- utilise sa clé privée pour déchiffrer et obtient K_S
- \diamond utilise K_S pour déchiffrer $K_S(m)$ pour obtenir m

H. Fauconnier cours sécurité

e-mail sécurisé (suite)

* Alice veut en plus prouver l'intégrité et authentifier le message

- * Alice signe le message (signature numérique)
- * envoie à la fois le message en clair et la signature numérique

e-mail sécurisé (suite)

* Alice veut tout: secret authentification de l'émetteur et intégrité

Alice utilise 3 clés: sa clé privée, la clé publique de Bob, et une nouvelle clé symétrique

31