Dynamic Programming Class 2/2

- Priyansh Agarwal

Recursive vs Iterative DP

Recursive	Iterative
Slower (runtime)	Faster (runtime)
No need to care about the flow	Important to calculate states in a way that current state can be derived from previously calculated states
Does not evaluate unnecessary states	All states are evaluated
Cannot apply many optimizations	Can apply optimizations

Défault volu sep

Not refuired

np.sum o(N

<u>2</u>82

Transition

d/(i) = m + f (i+1) = x) + dp (1'+1). 21 g 0 **@**

gaidsinsi)

== nds

teturn o

N -) 10³ / th allo which do not have an Stacu dp (i) (j)

Apli) -> dp[i+1) $dr(i)(j) \rightarrow dr(i+1)(j)$ dp[i)[j+1] tes (10-1 - 0) tos (0-N-1) tor (0-N-1) to (N/1-0) dfling) -delinij)

desi) [j-1) desi) [j-1) dp[i] (**)

Min Jum path f (i, j) ; f (i= N-1 kl j= N-1) if (i) N-1 | 11 j) N-1) setem return Inf jf (dyli)(j) ; = -1) return de(i)(j) Aplilli) = youd (i) (j) + min (d) (iti)(j) return de(i)(i)

N-1-) 105 9[7] -> 107 [3] [109 x 103] Stackor

State (1) -

$$d\rho(0) = 1$$

$$d\rho(0) = d\rho(0)$$

$$d\rho(1) = d\rho(0) + d\rho(0)$$

$$\frac{n}{n} - \frac{states}{n} - \frac{n}{2} + \frac{n}{2}$$

$$\frac{n}{n} - \frac{n}{2} + \frac{n}{2} + \frac{n}{2} + \frac{n}{2}$$

$$\frac{n}{n} - \frac{n}{2} + \frac{n}{2} +$$

de(i) = de(i)

0 (n2) (dpli)= dp(D)+dpli) --- dplin) $dP[i] = 2 \times df(i-1)$

$$dp[i] = dp[i] + dp[i] - - - - dp[i-i] + dp[i-i]$$

$$dp[i-1] = dp[i] + dp[i] - - - - dp[i-2]$$

$$dp[i] = dp[i] + dp[i-i] + dp[i-i]$$

$$p(i) = 2 \cdot dp[i-i]$$

$$\frac{dp(n) = 1}{dp(n)} = \frac{2}{2}$$

$$\frac{dp(n) = dp(n)}{dp(n)} = \frac{2}{2}$$

$$\frac{dp(n) = 2^{n-1}}{2}$$

Matrin En ponentiation L) fibonacci nu-in o (logn) Linear Algebra without using ony (dpsanson

State -> Paramter) diff S(w 2 states de(a)(8)(0) de(a,1)(d,1)(d,1)(d,1) $C = a + \delta$ $a \neq a_1$ # 9 4 91 State optimization

E = a + 8 E = a + 8 = c

0/p 5 (e9)

Converting Recursive to Iterative

Rule 1:

All the states that a particular state depends on must be evaluated before that state

Note:

You don't have to convert Recursive to Iterative if it is not intuitive at this point.

RVII (1) - Odl(1) State Opt D((ogn)

General Technique to solve any DP problem

1. State

Clearly define the subproblem. Clearly understand when you are saying dp[i][j][k], what does it represent exactly

2. Transition:

Define a relation b/w states. Assume that states on the right side of the equation have been calculated. Don't worry about them.

3. Base Case

When does your transition fail? Call them base cases answer before hand. Basically handle them separately.

4. Final Subproblem

What is the problem demanding you to find?

tinacl susprosty

 $d\rho(n)$ $\frac{1}{2}$

Problem 1: Link

Problem 2: <u>Link</u>

Problem 3: Link

dessi)(j) = max. sum can get from sularray (i to i) provided it is run turn const

Trayes 2's turn $\rightarrow 2$ definition $\rightarrow 2$

appillij) = man. sum a player can get from sudarrey (i --- j) provided it is that players turn State Tronsition take $i \rightarrow arr[i] + [sum(i+i)(j) - dr(i+i)(j)]$ take j -> arr[j] + [sum[i][j-1] - dp[i][j-1]

arr[i] + [sum (i+1) (j) - dr(i+i) (j)]arr(j) + [sum(i)(j-1) - dr(i)(j-1)]

Final Subproblem _ > State, Problem Starte O(P/2) (n-1)

Sum (0) (n-1) - dp(0) (n-1)

Problem 1: Link

Problem 2: Link

Problem 3: Link