ARM Cortex M4 TM4C123

GPIO

By Min He

+

O

Outline

- GPIO on TM4C123
- GPIO Pins and Alternative Functions
- GPIO Registers & Register Addresses
- GPIO Initialization
- Interface basic input/output devices: Switches and LEDs
- Writing friendly code and C review: bit-wise operators and C99 Data Types and Sizes
- References

General Purpose Input/Output on TM4C123

3

GPIO I/O Pins

Pins can be assigned to as many as 8 different I/O functions: Digital I/O or an alternate function.

Can be configured for digital I/O, analog input, timer I/O, or serial I/O.

Two buses used for I/O: AHB & APB: Digital I/O ports are connected to both.

8 UART ports, 4 SSI (Synchronized Serial Interface) ports, 4 I²C ports, two 12-bit ADCs, 12 timers, a CAN port, an USB interface, and 16 PWM outputs.

43 I/O lines: $4 \times 8 + 5 + 6 = 43$

GPIO Pins: Alternative Functions

UART	Universal asynchronous receiver/transmitter. Used to interface to a computer or other devices.
SSI / SPI	Synchronous serial interface / serial peripheral interface. Used to interface eg SD cards, LCD screens. (Medium speed)
I2C	Inter-integrated circuit. (Low speed)
Timer	Periodic interrupts, input capture, output compare. Create periodic interrupts to eg measure period, pulse width, phase and frequency of a signal.
- Periodic Interrupts	Trigger interrupt when timer hits zero without busy waiting.
- Input Capture	Trigger interrupt when rising and/or falling edge is detected.
- Output Compare	Trigger interrupt with timer matches a specified value
PWM	Pulse width modulation. Control eg DC motor speeds.
ADC	Analog to digital converter. Measure the amplitude of analog signals.
Analog Comparator	Compares 2 analog signals and produces a digital output denoting which is greater.
QEI	Quadrature encoder interface. Used for tracking rotation.
USB	Universal serial bus. (High speed)
Ethernet	High speed wired networking to eg intenet or local area network (LAN).
CAN	Controller area network. (High speed)

^{*} Digital alternative functions are specified in PCTL(Port Control Register) Map.

CSULB CECS 346 7

GPIO Connectors

- The LaunchPad has four 10-pin connectors (J1 J2 J3 J4) to which you can attach your external signals.
- The top side of these connectors has male pins, and the bottom side has female sockets: supports stacking boards together to make a layered system.
- * 8 Pins not accessible: PA0-1, PC0-3, PD4-5.
- Special pins: 3.3v, 5.0v, 2 GND, RESET

J1 Pin	GPIO
1.01	3.3 V
1.02	PB5
1.03	PB0
1.04	PB1
1.05	PE4
1.06	PE5
1.07	PB4
1.08	PA5
1.09	PA6
1.10	PA7

J3 Pin	GPIO
3.01	5.0 V
3.02	GND
3.03	PD0**
3.04	PD1*
3.05	PD2
3.06	PD3
3.07	PE1
3.08	PE2
3.09	PE3
3.10	PF1

J4 Pin	GPIO
4.01	PF2
4.02	PF3
4.03	PB3
4.04	PC4
4.05	PC5
4.06	PC6
4.07	PC7
4.08	PD6
4.09	PD7
4.10	PF4

J2 Pin	GPIO
2.01	GND
2.02	PB2
2.03	PE0
2.04	PF0
2.05	RESET
2.06	PB7*
2.07	PB6**
2.08	PA4
2.09	PA3
2.10	PA2

CSULB CECS 346 7

Special Pins on Lock register and setting CR register. The LaunchPad

*From TM4C123 Datasheet [spms376e] Page 650 - 651.

- **PB6/PD0,PB7/PD1**: The LaunchPad connects PB6 to PD0, and PB7 to PD1.
- **PF0-4**: Port F PF4 through PF0 connect to the onboard three LEDs and two Push Buttons. See details on the next slide.
- **PC[3:0]:** used by JTAG. Avoid using these pins when you need to do onboard debug.
 - **PFO & PD7**: needs to be unlocked in **LOCK** register and uncommitted it by
- **PAO,1**: they are connected to UARTO.
- PC0-3: used for JTAG
- **PD4-5**: used for USB0
- PD4,5/PB0,1: All GPIO signals are 5V tolerant when configured as inputs except for PD4, PD5, PB0 and PB1, which are limited to 3.6V.

CSULB CECS 346

Switches and RGB LEDs on Launchpad

GPIO Pin	Pin Function	Device
PF4	GPIO	SW1
PF0	GPIO	SW2
PF1	GPIO	RGB LED (Red)
PF2	GPIO	RGB LED (Blue)
PF3	GPIO	RGD LED (Green)

9

^{*} TM4C123G User's Guide [spmu296] Page 9

* Datasheet Page 1360

Programmable Control For GPIO Pad Configuration

Weak pull-up or pull-down resistor.

2 mA, 4 mA, and 8 mA pad drive for digital communication.

Up to four pads can sink 18 mA for high-current application.

Open drain enables.

Digital / Analog input enables.

The normal voltage range is (3.3V + - 10%).

System Control Register S

RCGCGPIO

SYSCTL_RCGC2_R: legacy way

SYSCTL RCGCGPIO: new way, recommended

Datasheet P. 340

RCGC:

Run mode Clock Gating Control

 Enable clock for GPIO ports during normal operation.

 Common Error: You will get a bus fault if you access a port without enabling its clock.

General-Purpose Input/Output Run Mode Clock Gating Control (RCGCGPIO)

Base 0x400F.E000 Offset 0x608 Type RW, reset 0x0000.0000

1

GPIO Registers
Datasheet: Chapter 10.5

• DEN: Digital Enable

DIR: Direction

• DATA: data

AFSEL: alternate function select

PCTL: Port Control

LOCK: Lock • CR: Commit

Address

• R2R/R4R/R8R: Drive Select

• PUR/PDR/ODR: Pull up/Pull Down/ Open Drain

base+\$3FC	DATA	GPIO_PORTx_DATA_R							
base+\$400	DIR	GPIO_PORTx_DIR_R							
base+\$420	AFSEL	GPIO_PORTx_AFSEL_R							
base+\$510	PUE	GPIO_PORTx_PUR_R							
base+\$51C	DEN	GPIO_PORTx_DEN_R							
base+\$524	CR	GPIO_PORTx_CR_R							
base+\$528	AMSEL	GPIO_PORTx_AMSEL_R							

	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
base+\$52C	PMC7	PMC6	PMC5	PMC4	PMC3	PMC2	PMC1	PMC0	GPIO_PORTx_PCTL_R
base+\$520			GPIO_PORTx_LOCK_R						

GPIO Port Base Addresses

Advanced

Peripheral **B**us

GPIO Port A: 0x4000.4000

GPIO Port B:

0x4000.5000 GPIO Port

C: 0x4000.6000 GPIO

Port D: 0x4000.7000

GPIO Port E: 0x4002,4000

Advanced
High-perf
Bus

GPIO Port A: 0x4005.8000

GPIO Port B:

0x4005.9000 GPIO Port

C: 0x4005.A000 GPIO

Port D: 0x4005.B000

GPIO Port E: 0x4005.C000

GPIO Port F

GPIO Port F: 0x4002.5000 0x4005.D000

See Microcontroller Data Sheet [spms376e] p678

See tm4c123gh6pm.h

Digital Enable Register

GPIODEN / GPIO_PORTx_DEN_R

- Enable digital IO on specified GPIO port pins. 0 = disabled, 1 = enabled.
- See Table 10-10 GPIO Pins with Special Considerations for special cases.

Direction Register

GPIODIR/GPIO_PORTX_DIR_R

- Set digital IO direction. Input = 0, Output = 1.
- Only used if GPIODEN = 1 for that pin.

Port Direction Register

Each digital port pin has a direction bit. This means some pins on a port may be inputs while others are outputs.

CSULB CECS 346

Data Registe r

Datasheet: P.662

GPIO Data (GPIODATA)

GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4000.5000
GPIO Port C (APB) base: 0x4000.5000
GPIO Port C (APB) base: 0x4000.7000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4000.7000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (APB) base: 0x4002.5000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4002.5000

Type RW, reset 0x0000.0000

- GPIODATA / GPIO_PORTx_DATA_R
 - ✓ Used when read/write all 8 bits for this port.
 - ✓ Bits only valid if GPIODEN = 1 for that pin.
- GPIODATA_BITS / GPIO_PORTx_DATA_BITS_R
 - Used for read/write data from this port using bit-specific addressing.

Alternat **Functio** Select Registe

GPIOAFSEL / GPIO_PORTx_AFSEL_R

 Enable alternate function (instead of digital IO) per pin.

Port Control Register

- GPIOPCTL / GPIO_PORTx_PCTL_R
 - Choose which alternate function to use, per pin.
 - Each pin has 4 bits set to specify the alternative function for that pin (0 means regular I/O port)
 - Alternate functions possibilities are different per pin; Function lookup defined in data sheet [spms376e] Table 23-5 or
 - Textbook Table 4.1.

PCTL Register Setting Map - Textbook Table 4.1

IO	Ain	0	1	2	3	4	5	6	7	8	9	14
PA2		Port		SSI0Clk								
PA3		Port		SSI0Fss								
PA4		Port		SSI0Rx								
PA5		Port		SSI0Tx								
PA6		Port			I ₂ C1SCL		M1PWM2					
PA7		Port			I ₂ C1SDA		M1PWM3					
PB0		Port	U1Rx						T2CCP0			
PB1		Port	U1Tx						T2CCP1			
PB2		Port			I ₂ C0SCL				T3CCP0			
PB3		Port			I ₂ C0SDA				T3CCP1			
PB4	Ain10	Port		SSI2Clk		M0PWM2			T1CCP0	CAN0Rx		
PB5	Ain11	Port		SSI2Fss		M0PWM3			T1CCP1	CAN0Tx		
PB6		Port		SSI2Rx		M0PWM0			T0CCP0			
PB7		Port		SSI2Tx		M0PWM1			T0CCP1			
PC4	C1-	Port	U4Rx	U1Rx		M0PWM6		IDX1	WT0CCP0	U1RTS		
PC5	C1+	Port	U4Tx	UlTx		M0PWM7		PhA1	WT0CCP1	U1CTS		
PC6	C0+	Port	U3Rx					PhB1	WT1CCP0	USB0epen		
PC7	C0-	Port	U3Tx						WT1CCP1	USB0pflt		
PD0	Ain7	Port			_	M0PWM6			WT2CCP0			
PD1	Ain6	Port	SSI3Fss	SSI1Fss	I ₂ C3SDA		M1PWM1		WT2CCP1			
PD2	Ain5	Port	SSI3Rx	SSI1Rx		M0Fault0			WT3CCP0			
PD3	Ain4	Port	SSI3Tx	SSI1Tx				IDX0	WT3CCP1	USB0pflt		
PD6		Port	U2Rx			M0Fault0		PhA0	WT5CCP0			
PD7		Port	U2Tx					PhB0	WT5CCP1	NMI		
PE0	Ain3	Port	U7Rx									
PE1	Ain2	Port	U7Tx									
PE2	Ain1	Port										
PE3	Ain0	Port										
PE4	Ain9	Port	U5Rx		_	M0PWM4				CAN0Rx		
PE5	Ain8	Port	U5Tx		_	M0PWM5	M1PWM3			CAN0Tx		
PF0		Port	U1RTS	SSI1Rx	CAN0Rx		M1PWM4	PhA0	T0CCP0	NMI	C0o	
PF1		Port	U1CTS	SSI1Tx			M1PWM5	PhB0	T0CCP1		Clo	TRD1
PF2		Port		SSI1Clk		M0Fault0	M1PWM6		T1CCP0			TRD0
PF3		Port		SSI1Fss	CAN0Tx		M1PWM7		T1CCP1			TRCLK
PF4		Port					M1Fault0	IDX0	T2CCP0	USB0epen		

Lock & Commit Register

- **GPIOLOCK** / GPIO_PORTx_LOCK_R
 - Controls write access to GPIOCR register. Must write value 0x4C4F434B to unlock, any other value locks.
 - Read value 1 = locked, 0 = unlocked.
 - Only PC[3:0], PD7, PF0 are initially locked.
- GPIOCR / GPIO_PORTx_CR_R
 [Commit Register]
 - Determines if writes to bit is allowed in registers GPIOAFSEL, GPIOPUR, GPIOPDR, GPIODEN.
 - 0 = writes not allowed, 1 = writes allowed.
 - Pins must be unlocked in GPIOLOCK register first.
 - Default value is 0xFF for all GPIO ports except for special case pins in data sheet [spms376e] Table 23-1.

Drive Select Registers

- GPIODR2R / GPIO_PORTx_DR2R_R [2 mA Drive select]
 - 1 = 2 mA drive, 0 = controlled by GPIODR4R or GPIODR8R.
 - Default is 2mA for all pins. Last set of GPIODRxR is what is used.
- GPIODR4R / GPIO_PORTx_DR4R_R [4 mA Drive select]
 - 1 = 4 mA drive, 0 = controlled by GPIODR2R or GPIODR8R.
- **GPIODR8R** / GPIO_PORTx_DR8R_R [**8** mA **Dr**ive select]
 - 1 = 8 mA drive, 0 = controlled by GPIODR2R or GPIODR4R.

Pull-Up, Pull-Down, Open-Drain Registers

- GPIOPDR / GPIO_PORTx_PDR_R [Pull-Down select]
 - 1 = Enable internal pull down resistor, 0 = disable
- GPIOPUR / GPIO_PORTx_PUR_R[Pull-Up select]
 - 1 = Enable internal pull up resistor, 0 = disable
- GPIOODR / GPIO_PORTx_ODR_R[Open Drain select]
 - 1 = open drain, 0 = not open drain
 - Open drain applies to output only.
 - 1 = HiZ, 0 = ground (current flows into sink)
 Max sink current is 18 mA (see data sheet

GPIO Port Base Addresses

Advanced

Peripheral **B**us

GPIO Port A: 0x4000.4000

GPIO Port B:

0x4000.5000 GPIO Port

C: 0x4000.6000 GPIO

Port D: 0x4000.7000

GPIO Port E: 0x4002,4000

Advanced
High-perf
Bus

GPIO Port A: 0x4005.8000

GPIO Port B:

0x4005.9000 GPIO Port

C: 0x4005.A000 GPIO

Port D: 0x4005.B000

GPIO Port E: 0x4005.C000

GPIO Port F

See Microcontroller Data Sheet [spms376e] p678

See tm4c123gh6pm.h

Addresses for GPIO Registers

How to Calculate GPIO registers' addresses: Register address = Port Base address + Register offset.

- Ex1: calculate GPIO_PORTF_PCTL_R address
 PCTL offset: 0x52C, see datasheet page 688
 - GPIO Port F base address: 0x40025000 GPIO_PORTF_PCTL_R address: 0x40025000+0x52C=0x4002552C
- **Ex2:** calculate GPIO_PORTA_DIR_R address DIR offset: 0x400, see datasheet page 663 GPIO Port A base address: 0x40004000 GPIO_PORTF_PCTL_R address:

Finding Address for a Register in Other Modules

- 1. Find the hardware module in tm4C123 datasheet.
- 2. In « Register Description » section find the corresponding register.
- 3. Register address = Base address + Register offset.

Ex: Find the address for SYSCTL_RCGCGPIO_R Hardware module: system control Register name: RCGCGPIO, see datasheet Page 340

Base address: 0x400FE000

Run Mode Clock Gating Control Register 2 (RCGC2)

Base 0x400F.E000 Offset 0x108 Type RO, reset 0x0000.0000 USB0 RO RO RO RO RO RO RO **GPIOD GPIOC UDMA GPIOB GPIOA** reserved reserved Reset

608

Data Register Bit-Specific Addressing

- □ I/O Port bit-specific addressing is used to access port data register
 - Define address offset as 4*2b, where b is the selected bit position
 - ♦ (Alternatively, think of it as 2^b << 2)</p>
 - 256 possible bit combinations (0-8)
 - Add offsets for each bit selected to base address for the port

If we wish to access bit	Constant
7	0x0200
6	0x0100
5	0x0080
4	0x0040
3	0x0020
2	0x0010
1	0x0008
0	0x0004

If port base addr = 0x40025000

Bit specific address for bits 0 and 4

- = 0x40025000+0x0004+0x0040
- = 0x40025044

If all 8 bits: 0x400253FC

Provides friendly and atomic access to port pins.

Bit-Specific Addressing Base Address vs. Data Address

☐ Calculate Port A Data register address: GPIO PORTA DATA R

- \cdot 0x400.43FC = 0x4000.4000+0x03FC
- Allows access to all 8 bits.
- \square To access only bit 5:
- •#define PA5 (*((volatile unsigned long *)0x40004080))

PA5 = 0x20; // make PA5 high

PA5 = // make PA5 low

BA507 PA5^0x20; // toggle PA5

The **volatile** keyword is added because the value of a port can change beyond the direct action of the software. It forces the C compiler to read a new value each time through a loop and not rely on the previous value.

Port	Base address
PortA	0x40004000
PortB	0x40005000
PortC	0x40006000
PortD	0x40007000
PortE	0x40024000
PortF	0x40025000

^{*}These base addresses are for the APB bus.

Initializatio

n

- Initialization (executed once at beginning)
 - 1. Turn on Port clocks in RCGCGPIO Wait two bus cycles (eg two NOP)
 - 2. Unlock special pins (PF0, PD7, etc) + set CR register for bits used
 - 3. Clear AMSEL to disable analog
 - Clear PCTL to select GPIO
 - 5. Set DIR to 0 for input, 1 for
 - 6. output
 - 7. Clear *AFSEL* bits to 0 to select regular I/O w**eak Pukk/BPR/@P&obits resistorse paloleein ternial**
 - 8. Set *DEN* bits to 1 to enable data pins

Steps 1, 5, 8 are the minimum steps required to enable digital IO

Example: Port F Initialization PortF_Init function in C from example project HelloLaunchPad.

- PF4, PF0 are set to be inputs (onboard switches w/ internal pull-up resistors).
- PF3-1 are set to be outputs (onboard RGB LEDs).

```
75 // Subroutine to initialize port F pins for input and output
76 // PF4 and PF0 are input SW1 and SW2 respectively
77 // PF3, PF2, PF1 are outputs to the LED
78 // Inputs: None
79 // Outputs: None
80 // Notes: These five pins are connected to hardware on the LaunchPad
81 pvoid PortF Init (void) {
    SYSCTL RCGCGPIO R \mid = 0x00000020; // activate F clock
82
83
    while ((SYSCTL RCGCGPIO R&0x000000020)!=0x000000020){} // wait for the clock to be ready
84
85
    GPIO_PORTF_LOCK_R = 0x4C4F434B; // unlock PortF PF0
    86
87
    GPIO_PORTF_PCTL_R &= ~0x000FFFFF; // GPIO clear bit PCTL
88
    89
90
91
92
    GPIO PORTF DEN R \mid= 0x1F; // enable digital pins PF4-PF0
93
94 }
```


Interface Basic Input/Output Devices

- Switches
- LEDs

Switch Inputs

There are four ways to interface a switch to the microcontroller.

- We can use either positive or negative logic, and
- ☐ We can use an external resistor or select an internal resistor.
- ☐ External resistor is essentially the same as internal resistor;
- When use external resistor, use a 10 kΩ resistor; when use an internal resistor, set the corresponding PDR/PUR bit during software initialization.

Switch Configuration with External Resisters

$$negative - pressed = '0'$$

LED current v. voltage

Brightness = power = V*I

"big voltage connects to big pin"

36

How an LED Works

Interface an LED

There are four ways to interface an LED to the microcontroller.

- If the microcontroller can output the current needed by the LED, we can use the two circuits on the left.
- If the LED current is more than can be supplied by our microcontroller, we can use the two circuits on the right.

On the TM4C123, the maximum output current is 8 mA, the default setting for an output pin is 2 mA maximum current. To activate 8 mA mode, we set bits in the GPIO_PORTF_DR8R_R register.

Calculate Resistor Values for an LED

$$R = (3.3V - 1.6)/0.001$$

= 1.7 kOhm

$$R = (5.0-2-0.5)/0.01$$

= 250 Ohm

Example LED datasheet

Page 4: $V_f=1.7v$, test condition: 2mA

LaunchPad Switches and LEDs

- \square The ${f switches}$ on the LaunchPad
 - **♦ Negative logic**
 - ❖ Require internal pull-up (set bits in PUR)
- ☐ The PF3-1 **LEDs** are **positive logic**

Writing Friendly Gode code:

- read-modify-write instructions using bitwise operators
- Use Bit-specific
 Addressing.
 The TM4C family implements a flexible way to access port pins. This bit-specific addressing doesn't work for all the I/O registers, just the parallel port data registers.

Review C: Bitwise Boolean Operations

AND		
Α	В	A&B
0	0	0
0	1	0
1	0	0
1	1	1

OR		
Α	В	A B
0	0	0
0	1	1
1	0	1
1	1	1

EOR		
Α	В	A^B
0	0	0
0	1	1
1	0	1
1	1	0

NOT	
Α	~A
0	1
1	0

Review C: Set, Clear and Toggle Bits

 $\square Assume c = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$

- □Clear bit 5
 - $\Box c \&= \sim 0x20$
- b_7 b_6 0 b_4 b_3 b_2 b_1 b_0
- □ Note: c &= 0xDF is equivalent to above but less obvious which bit is being modified
- □Set bit 2
 - $\Box c \mid = 0x04$

b₇ b₆ b₅ b₄ b₃ 1 b₁ b₀

- □Toggle bit 1
 - \Box c $^=$ 0x02
- b_7 b_6 b_5 b_4 b_3 b_2 $\sim b_1$ b_0

42

Review C: C99 Data Type Sizes

Name	Size (Bits)	C99 Type
char	8	int8_t
unsigned char	8	uint8_t
short	16	int16_t
unsigned short	16	uint16_t
int	16	int16_t
unsigned int	16	uint16_t
long	32	int32_t
unsigned long	32	uint32_t

Name	Size (Bits)
Nibble	4
Byte	8
Half Word	16
Word	32

- ☐ Recommend to use C99 types in the code you write for clarity
- ☐ Types (especially int, long, word, half word) depend on processor + platform: These values are for TM4C
- ☐ To use C99 integer data type alias, #include "stdint.h"

Example: non-Friendly Code

```
75 // Subroutine to initialize port F pins for input and output
76 // PF4 and PF0 are input SW1 and SW2 respectively
77 // PF3, PF2, PF1 are outputs to the LED
78 // Inputs: None
79 // Outputs: None
80 // Notes: These five pins are connected to hardware on the LaunchPad
81 pvoid PortF Init(void) {
   SYSCTL RCGCGPIO R = 0x000000020; // activate F clock
82
   while ((SYSCTL RCGCGPIO R&0x00000020)!=0x00000020){} // wait for the clock to be ready
83
84
85
   GPIO PORTF LOCK R = 0x4C4F434B; // unlock PortF PF0
   86
87
   GPIO PORTF PCTL R = \sim 0 \times 0000 FFFFFF; // GPIO clear bit PCTL
88
   GPIO_PORTF_DIR_R = \sim 0 \times 11; // PF4, PF0 input
89
   90
91
92
    GPIO PORTF DEN R = 0x1F; // enable digital pins PF4-PF0
93
94 }
```

CSULB CECS 346 44

Example: Friendly Code with Bit-Wise Operators

```
77 // Subroutine to initialize port F pins for input and output
78 // PF4 and PF0 are input SW1 and SW2 respectively
79 // PF3, PF2, PF1 are outputs to the LED
80 // Inputs: None
81 // Outputs: None
82 // Notes: These five pins are connected to hardware on the LaunchPad
83 □ void PortF Init (void) {
     SYSCTL RCGC2 R |= 0x000000020; // activate F clock
84
     while ((SYSCTL RCGC2 R&0x00000020)!=0x00000020){} // wait for the clock to be ready
85
86
87
    GPIO PORTF LOCK R = 0x4C4F434B; // unlock PortF PF0
    88
89
    GPIO PORTF PCTL R &= ~0x000FFFFFF; // GPIO clear bit PCTL
90
    GPIO_PORTF_DIR_R &= ~0x11;  // PF4,PF0 input

GPIO_PORTF_DIR_R |= 0x0E;  // PF3,PF2,PF1 output
91
92
    GPIO_PORTF_AFSEL_R &= ~0x1F; // no alternate function

GPIO_PORTF_PUR_R |= 0x11; // enable pullup resistors on PF4,PF0
93
94
     GPIO PORTF DEN R \mid= 0x1F; // enable digital pins PF4-PF0
95
96 }
```

Compared to previous slide, this code only modifies the bits it is using instead of all bits for the port initialization.

Friendly code using Bit-Specific Addressing

To access only bit 5:

#define PA5 (*((volatile unsigned long *)0x40004080))

```
PA5 = 0x20; // make PA5 high
PA5 = // make PA5 low
PA50= PA5^0x20; // toggle PA5
```

The **volatile** keyword is added because the value of a port can change beyond the direct action of the software. It forces the C compiler to read a new value each time through a loop and not rely on the previous value.

If we wish to access bit	Constant
7	0x0200
6	0x0100
5	0x0080
4	0x0040
3	0x0020
2	0x0010
1	0x0008
0	0x0004

Port	Base address
PortA	0x40004000
PortB	0x40005000
PortC	0x40006000
PortD	0x40007000
PortE	0x40024000
PortF	0x40025000

^{*}These base addresses are for the APB bus.

Avoid Magic Numbers – Use Macros to Define

Constants

```
75 #define SYSCTL RCGCGPIO PORTF 0x00000020
76 #define GPIO PORT UNLOCK CODE 0x4C4F434B
77 // Subroutine to initialize port F pins for input and output
78 // PF4 and PF0 are input SW1 and SW2 respectively
79 // PF3, PF2, PF1 are outputs to the LED
80 // Inputs: None
81 // Outputs: None
82 // Notes: These five pins are connected to hardware on the LaunchPad
83 □void PortF Init(void){
     SYSCTL RCGCGPIO R |= SYSCTL RCGCGPIO PORTF;
                                                       // activate F clock
84
85
                                                       // wait for the clock to be ready
     while ((SYSCTL RCGCGPIO R&SYSCTL RCGCGPIO PORTF) != SYSCTL RCGCGPIO PORTF) {}
86
87
88
     GPIO PORTF LOCK R = GPIO PORT UNLOCK CODE;
                                                   // unlock PortF PF0
89
     GPIO PORTF CR R |= 0x1F;
                                         // allow changes to PF4-0 :11111->0x1F
     GPIO PORTF AMSEL R &= \sim 0 \times 1 F; // disable analog function
90
     GPIO PORTF PCTL R &= \sim 0 \times 0000 FFFFF; // GPIO clear bit PCTL
91
92
     GPIO PORTF DIR R &= ~0x11;
                                   // PF4,PF0 input
93
     GPIO PORTF DIR R \mid= 0x0E; // PF3, PF2, PF1 output
94
     GPIO_PORTF_AFSEL_R &= \sim 0 \times 1F; // no alternate function
95
     GPIO_PORTF_PUR_R \mid= 0x11; // enable pullup resistors on PF4,PF0
96
     GPIO PORTF DEN R |= 0x1F; // enable digital pins PF4-PF0
97
```

CSULB CECS 346 47

Reading Materials and Assignments

Textbook Chapter 4: 4.1 - 4.2.

Tiva™ TM4C123GH6PM Microcontroller Data Sheet.

TM4C123 Launchpad User's Guide

Example Project: HelloLaunchPad

Lab Assignment: Lab 2

CSULB CECS 346