구글 앱스토어 Rating 예측 모델링

개요

주제

구글 앱스토어 앱의 Rating(평가점수) 예측 모델링

활용 방안

앱 업데이트 시 Rating의 변화 시뮬레이션 앱 시장에서 특정 앱의 포지션 파악 등

활용 데이터

제공받은 appstore.csv 데이터 (13개 컬럼, 10,841건)

문제 정의

타겟 변수인 Rating을 나머지 변수를 활용하여 예측 이 때 Rating은 연속적인 수치형 변수 => 회귀 모델링 문제

분석 과정

데이터 전처리 & 탐색 -> 모델 생성 & 검증 -> 최적화 & 최종 모델 선택

분석 환경

Python 언어 사용, Jupyter Notebook 환경에서 작업

활용 패키지

numpy, math 연산 pandas 데이터 조작 random 난수 생성 scikit-learn, lightgbm, keras 모델링 bayes_opt, functools 최적화, 변수 고정 matplotlib.pyplot, seaborn 시각화

전체 데이터 점검

1. 잘못 읽어들인 데이터

	App	Category	Rating	Revie	ews Si	ze I	nstalls	Туре	Price	Content Rating	Ge	nres	Last Updated		Android Ver
Life Made WI-Fi Tou	chscreen Photo Frame	1.9	19.0	3.	0M 1,00	0+	Free	0	Everyone	NaN	Februar	y 11, 2018	1.0.19	4.0 and up	NaN
		App Catego	ory Rat	ing I	Reviews	Size	Install	ls Ty	pc Price	Content Rating	Genres	Last	Updated	Current Yer	Android Ver
Life Made WI-Fi Touchs	screen Photo Fra	me LIFEST	YLE	1.9	19	3.0M	1,000)+ Fr	ree 0	Everyone	Lifestyle	Februar	y 11, 2018	1.0.19	4.0 and up

-> 열이 밀려있는 경우 복원, 결측치는 검색하여 채워넣음

2. 중복 데이터

Apı	Category	Rating	Reviews	Size	Installs	Type	Price	Content Rating	Genres	Last Updated	Current Yer	Android Ver
Во	k BUSINESS	4.2	159872	Varies with device	10,000,000+	Free	0	Everyone	Business	July 31, 2018	Varies with device	Varies with device
Во	BUSINESS	4.2	159872	Varies with device	10,000,000+	Free	0	Everyone	Business	July 31, 2018	Varies with device	Varies with device
Во	BUSINESS	4.2	159872	Varies with device	10,000,000+	Free	0	Everyone	Business	July 31, 2018	Varies with device	Varies with device

-> 10,841건 중 중복 데이터 1,181건 삭제

탁겟 변수 Rating

- 1. **결측치** -> 행 삭제 처리
- 2. **데이터 타입** -> float로 변환

	App	Category	Rating	Reviews
23	Mcqueen Coloring pages	ART_AND_DESIGN	NaN	61
1	Coloring book moana	ART_AND_DESIGN	3.9	967
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510

Category 변수

1. 범주형 변수 -> 더미 변수

	odrogory			
0	ART_AND_DESIGN	ART_AND_DESIGN	WEATHER	FAMILY
1	ART_AND_DESIGN	1	0	0
	7.111_7.1110_0231011	1	0	0
2	ART_AND_DESIGN	1	0	0
3	ART_AND_DESIGN	1	0	0
4	ART_AND_DESIGN	1	0	0

2. 분포 파악

-> 약간의 개별 분포 차이가 있어 설명변수로 활용해볼 가치가 있음

Reviews 변수

- 1. 데이터 타입 -> int로 변환
- 2. 분포 파악 -> log(x)로 변환

Size 변수

- 1. **단위 혼재** -> k(킬로바이트) 단위로 통일
- 2. 결측치 -> 중앙값으로 대체

Installs 변수

1. 데이터 타입 -> int로 변환

```
array(['10,000+', '500,000+', '5,000,000+', '50,000,000+', '100,000+',
 '50,000+', '1,000,000+', '10,000,000+', '5,000+', '100,000,000+',
'1,000,000,000+', '1,000+', '500,000,000+', '100+', '500+', '10+',
 '5+', '50+', '1+'], dtype=object)
```

array([10000,	500000,	5000000,	50000000,	100000,
	50000,	1000000,	10000000,	5000,	100000000,
	1000000000,	1000,	500000000,	100,	500,
	10,	5,	50,	1])	

2. 분포 파악 -> log(x)로 변환

Type 변수

- 1. 범주형 변수
 - -> 더미 변수
- 2. 분포 파악

Price 변수

1. 데이터 타입 -> float로 변화

```
array(['0', '$4.99', '$3.99', '$6.99', '$7.99', '$5.99', '$2.99', '$3.49',
 '$1.99', '$9.99', '$7.49', '$0.99', '$9.00', '$5.49', '$10.00',
'$24.99', '$11.99', '$79.99', '$16.99', '$14.99', '$29.99',
                3.99, 6.99, 7.99, 5.99, 2.99, 3.49,
  1.99, 9.99, 7.49, 0.99, 9. , 5.49, 10. ,
                                                    24.99,
 11.99, 79.99, 16.99, 14.99, 29.99, 12.99, 2.49, 10.99,
```


3. **이상치** -> 행 삭제 처리

Content Rating 변수

- 1. 범주형 변수
 - -> 더미 변수
- 2. 분포 파악
- 3. **이상치** -> 1건 삭제

Genres

Genres 변수

1. 제1정규화

-> ';'로 구분

2. 범주형 변수

-> 더미 변수

Art & Design Pretend Play Creativity

0	Art & Design
1	Art & Design <mark>;</mark> Pretend Play
2	Art & Design
3	Art & Design
4	Art & Design Treativity
	· · · · · · · · · · · · · · · · · · ·

	1	0	0
	1	1	0
>	1	0	0
	1	0	0
	1	0	1

3. 분포 파악

Android Ver 변수

1. 데이터 타입

- -> 주번호, 부번호 까지 사용
- 2. 범주형 변수
 - -> 더미 변수
- 3. 결측치
 - -> 최빈값으로 대체
- 4. 분포 파악

Last Updated 변수

1. 데이터 타입

-> 마지막 업데이트일부터 2020-06-18까지 경과 일수

Last Updated Days from Update

January 7, 2018		893
anuary 15, 2018		885
August 1, 2018	4>	687
June 8, 2018		741
June 20, 2018		729

2. 분포 파악

모델 생성 & 검증

train, test set 분리

train (학습)

test (검증)

약 2:1로 구성

k-fold cross validation

score의 평균

-> 우연성 최소화

평가 지표

예측값과 실제값의 잔차

- 절댓값의 평균
- ... MAE
- 제곱의 평균

... MSE

Baseline 모델링

- 다중 선형 회귀 모델 (sklearn.LinearRegression 활용)
- 2 의사 결정 나무 모델 (lightGBM.LGBMRegressor 활용)
- 신경망모델 (keras.Sequential 활용)

최적화 & 최종 모델 선택

hyperparameter 최적화

머신러닝 모델 생성 시 사용자 설정값인 hyperparameter의 최적점을 찾아 성능 향상

2 의사 결정 나무 모델 bayes_opt.BayesianOptimization 활용 5회 랜덤 샘플링 후 분포 추정 45회 반복해서 최적화

3 신경망 모델

앙상블

1. Sampling

같은 알고리즘을 적용하되 데이터의 컬럼과 레코드를 샘플링하여 독립성을 높인 여러 모델 생성

2. Stacking

다른 알고리즘을 사용하는 여러 모델 생성 여러 모델에서 얻은 예측값들을 설명변수로 두고 최종 모델링

결론

최종 성능

MAE: 0.333 / MSE: 0.238

의사 결정 나무 모델에서의 주요 변수 (중요도)

선형 회귀 모델에서의 계수

Days from Update: -0.00

Reviews: 0.17

Size:-9e8

Installs: -0.15

Price: -0.07

선형 회귀 모델 생성 시

스케일링을 하지 않아 계수의 절대값이 매우 작다.

부호를 통해 Rating과의 음/양의 영향을 상관관계를 알 수 있다.

더 해볼 것

모든 변수 활용 / 파생 변수 생성

변수 선택 / 잔차가 큰 특정 구간이 있는지 확인