

Introdução ao Raspberry Pi

Este documento contém uma série de exercícios a realizar utilizando o Raspberry Pi (https://www.raspberrypi.org/products/). A figura seguinte mostra as principais portas do dispositivo.

Links para tutoriais de Raspberry Pi:

- https://pihw.wordpress.com/guides/direct-network-connection/
- http://www.circuitbasics.com/how-to-connect-to-a-raspberry-pi-directly-with-an-ethernet-cable/
- https://projects.raspberrypi.org/en/
- https://elinux.org/RPi Projects
- https://www.element14.com/community/welcome
- https://ronnyvdbr.github.io/

Alimentação:

- O Raspberry Pi necessita de alimentação de 5V (geralmente por micro USB)
- Também se pode fornecer alimentação através dos pinos GPIO (a partir de outra placa)
 - Cuidado ao fornecer alimentação a partir do arduino, uma vez que o Raspbery Pi não se protege contra sobre-voltagem. É necessário um conversor de 5V para 3,3V (se não o Raspberry Pi pode ficar danificado)
- Os pinos GPIO também podem ser usados para fornecer alimentação a outras placas (desde que a tensão seja 5V)

geralmente, um output de 3,3V é suficiente. Pode ser necessário um conversor

IMP.GE.194.0

Configuração Inicial

- Setup do cartão de memória: O Raspberry Pi necessita de um cartão de memória corretamente formatado (bootloader + sistema operativo) para funcionar. Os dois principais sistemas operativos utilizados com o Raspberry Pi são o *Raspbian* (baseado em Debian) e o *Pidora* (Baseado em Fedora).
 - a. Fazer o download do Raspberry Pi Imager¹
 - Inserir um cartão de memória com pelo menos 4GB num computador com leitor de cartões de memória
 - c. Formatar o cartão de memória utilizando o Raspberry Pi Imager

2. Ligações:

- a. Introduzir o cartão de memória formatado no Raspberry Pi
- Ligar o cabo HDMI entre o Raspberry Pi e o monitor, o cabo de rede entre o Raspberry Pi e o router (ou conectar por Wi-Fi) e o rato e o teclado nas portas USB
- c. Ligar a alimentação no micro-USB

3. Primeiro boot.

- a. Instalar o Raspbian Full e efetuar as configurações pedidas: Country / Language /
 Timezone; Password; Screen; Wi-Fi
- b. Deixar o configurador atualizar o software e reiniciar o Raspberry Pi
- 4. Configurar ligações remotas: Na consola, introduzir o comando sudo raspi-config
 - a. <u>Ativar o SSH</u>: opção 3 Interface Options | opção I2 SSH | Ativar. Testar: no computador, instalar o Putty². Criar uma ligação para o IP³ do Raspberry Pi⁴ (Hostname)
 - b. <u>Ativar o VNC</u>: opção 5 Interface Options | opção I3 VNC | Ativar. Testar: no computador, fazer instalar o VNC Viewer⁵. Criar uma ligação para o IP³ do Raspberry Pi⁴
 - c. <u>Configurar o Hostname</u>: opção 1 System options | opção S4 Hostname | Definir um hostname para o Raspberry Pi.

⁵ Download VNC viewer: https://www.realvnc.com/pt/connect/download/viewer/

IMP.GE.194.0 2/8

¹ https://www.raspberrypi.com/software/

² Download Putty: https://www.putty.org

³ Para saber qual é o IP atribuído ao Raspberry Pi, na consola, executar o comando ifconfig

⁴ Username: "pi", password: a definida durante a configuração

5. Configurar IDE NetBeans para fazer deploy via rede:

- a. Instalar o NetBeans IDE (dowload: https://netbeans.apache.org/download/index.html)
- b. No NetBeans ir ao menu "Tools" > "Java Platforms" clicar em "Add Platform" e escolher "Remote Java Standard Edition"
- c. Preencher:

Platform Name	Raspberry Pi
Host	IP do Raspberry Pi
Username	Username do Raspberry Pi (pi)
Password	Password do Raspberry Pi (idc2022)
Remote JRE Path	em princípio será /usr/lib/jvm/java-11-openjdk-armhf

d. Testar a ligação:

- i. No NetBeans, criar um projeto (ex: RaspberryPi_teste0) que apenas imprima "Consegui!".
- ii. Configurar o NetBeans para que este projeto corra no Raspberry Pi
 - 1. Clicar em "File" e depois em "Project Properties (RaspberryPi_teste0)"
 - 2. Clicar em "Run" à esquerda e depois, em "Runtime Platform",
 - 3. Escolher o definido no passo anterior (Raspberry Pi) e introduzir um nome para a configuração (ex: Raspberry Pi)
 - 4. Clicar em OK em todas as janelas
- iii. Executar o projeto
- iv. Verificar, no Raspberry Pi, se na pasta /home/pi/NetBeansProjects/ apareceu uma pasta com o nome do projeto criado no NetBeans
- v. Entrar em /home/pi/NetBeansProjects/ RaspberryPi_teste0/dist e executar o jar (java -jar RaspberryPi_teste0.jar)
- vi. Deve ser imprimido "Consegui"

6. Configurar IDE NetBeans para user o pi4j:

- a. Fazer download e extrair o ZIP do pi4j para o computador: https://pi4j.com/download/pi4j-1,2.zip
- b. Criar um projeto no Netbeans (ex: RaspberryPi_teste1). Garantir que "Create Main Class" está selecionado e que a classe se chama ControlGpioExample
- c. Na árvore do projeto, clicar com o botão direito do rato em "Libraries" e de seguida em "Add Library"
- d. Criar uma biblioteca usando o nome "Pi4J-Core"
- e. Em cada Tab, usar "Add JAR/folder" para adicionar os jars extraídos:

Tab	Jar				
Classpath	pi4j-core.jar				
Sources	pi4j-core-sources.jar				
Javadoc	pi4j-core-javadoc.jar				

- f. Na classe ControlGpioExample inserir o código pretendido (referido no "Primeiro projeto Raspberry pi / gpio / java)
- g. Configurar para correr no raspberry (como na configuração anterior)
- h. Executar

IMP.GE.194.0 3/8

7. Instalar pi4j no Raspberry Pi. No terminal, executar o comando:

```
curl -sSL https://pi4j.com/install | sudo bash
```

- 8. Instalar o WiringPi no Raspberry Pi. No, terminal executar os comandos:
 - sudo apt-get update
 - sudo apt-get dist-upgrade
 - git clone https://github.com/WiringPi/WiringPi.git
 - cd WiringPi
 - ./build
- 9. Instalar MySQL (MariaDB) no Raspberry Pi:
 - a. Executar os comandos
 - sudo apt install mariadb-server
 - sudo mysql secure installation
 - b. Na configuração, executar os passos:
 - Enter
 - n + enter
 - y + enter
 - introduzir password + enter
 - voltar a introduzir a password + enter
 - n + enter
 - n + enter
 - n + enter
 - n + enter
 - c. Abrir o mysql- Executar o comando mysql -u root -p (introduzir a password definida no passo anterior)
 - d. Criar uma base de dados com apenas uma tabela (a usar no exercício 6). No mysql, executar o código:

```
create database rpi_teste;
use rpi_teste;
CREATE TABLE registo(
   datahora VARCHAR(50),
   pino VARCHAR(50),
   estado VARCHAR(50));
```


IMP.GE.194.0 4/8

Exercícios

1. Primeiro projeto raspberry pi / gpio / python

Material necessário:

- 1 Raspberry Pi
- 1 Pi Port extender
- 1 breadboard
- 2 conectores (fios)
- 1 LED
- 1 resistência (ex: 10Ω)

Procedimento:

- 1. Ligar a port extender entre a breadboard e o Raspberry Pi
- 2. Ligar o GND do port extender ao negativo da placa (fio preto na figura)
- 3. Ligar a resistência do negativo a outra parte da placa (ver figura)
- 4. Ligar o negativo do LED (perna mais curta) à resistência (ver figura)
- Ligar o positivo do LED (perna mais comprida) à porta 23 do port extender (fio laranja na figura)
- 6. No Raspberry Pi, criar o ficheiro led.py com o seguinte conteúdo:

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(23,GPIO.OUT)
print("LED on")
GPIO.output(23,GPIO.HIGH)
time.sleep(1)
print("LED off")
GPIO.output(23,GPIO.LOW)
```

7. Executar o código com o comando sudo python led.py

IMP.GE.194.0 5/8

2. Piscar 3 vezes por um segundo com python

Criar o ficheiro led3.py que, em vez de piscar o LED apenas uma vez por um segundo, pisca 3 vezes por um segundo (o tempo para o led estar aceso/apagado é de 1 segundo).

3. Piscar X vezes por Y segundos com python

Criar o ficheiro led_arg.py que, em vez de piscar o LED apenas uma vez por um segundo, ou pisca 3 vezes por um segundo, recebe dois argumentos pela linha de comandos. O primeiro argumento define quantas vezes tem de piscar. O segundo argumento define o tempo que deve estar aceso/apagado. Por exemplo, sudo python led_arg 5 1 deve piscar o LED 5 vezes por 1 segundo de cada vez.

4. Primeiro projeto Raspberry pi / gpio / java

Com a mesma configuração de hardware utilizada para o Exercício 1 com Python.

Procedimento:

- 1. No seguimento do ponto 6.f) de "6. Configurar IDE NetBeans para user o pi4j", inserir na classe ControlGpioExampleo código existente no ficheiro codigo1.txt (anexo) (neste caso o LED está ligado ao pino 29 porque, usando o WiringPi/Pi4j, a numeração é diferente, de acordo com a imagem existente na última página do documento.
- 2. Executar. Verificar que o LED pisca conforme indicado no código.

5. Mostrar na consola o estado de um botão

Ligar um botão com um dos pinos ligado aos 3.3 volts (Pi extender 1) e outro ligado ao GPIO 2 (Pi extender 13).

Procedimento:

- 1. Num novo projeto semelhante ao anterior, inserir na classe onde se encontra o main o código do ficheiro codigo2.txt (anexo).
- 2. Executar. Ao carregar no botão, deve aparecer a mudança de estado na consola.

IMP.GE.194.0 6/8

6. Guardar o estado de um botão numa base de dados

Com a mesma configuração de hardware utilizada para o Exercício 1 com Python.

Procedimento:

No projeto anterior, adaptar o código para que, em vez de a informação ser mostrada para a consola, ser guardada numa base de dados

- 1. Fazer download do ficheiro jar do conetor mysql/java⁶
- 2. Adicionar o conetor ao projeto:
 - a. Clicar com o botão direito do rato no nome do projeto > Properties
 - b. Do lado esquerdo, selecionar Libraries
 - c. Clicar em Add JAR/Folder e selecionar o ficheiro jar obtido
- 3. Substituir o código da classe main pelo existente no ficheiro codigo3.txt (anexo)
- 4. Executar. Verificar que, ao pressionar o botão, os registos são inseridos na tabela da base de dados (usar o comando SELECT * FROM registo; no mysql)

⁶ https://static.javatpoint.com/src/jdbc/mysql-connector.jar

IMP.GE.194.0 7/8

Numeração dos pinos no WiringPi

GPIO#	Raspberry NAME				•	NAME	GPIO:
GF10#					-		GFIO
	3.3 VDC Power	1		0	2	5.0 VDC Power	
8	GPIO 8 SDA1 (I2C)	ო	0	0	4	5.0 VDC Power	
9	GPIO 9 SCL1 (I2C)	2	0	0	6	Ground	
7	GPIO 7 GPCLK0	7	0	0		GPIO 15 TxD (UART)	15
	Ground	6	0	0	10	GPIO 16 RxD (UART)	16
0	GPIO 0	11	0	0	12	GPIO 1 PCM_CLK/PWM0	1
2	GPIO 2	13	0	\odot	14	Ground	
3	GPIO 3	15	0	0	16	GPIO 4	4
	3.3 VDC Power	17	0	0	18	GPIO 5	5
12	GPIO 12 MOSI (SPI)	19	0	0	20	Ground	
13	GPIO 13 MISO (SPI)	21	0	0	22	GPIO 6	6
14	GPIO 14 SCLK (SPI)	23	0	0	24	GPIO 10 CE0 (SPI)	10
	Ground	25	0	0	26	GPIO 11 CE1 (SPI)	11
30	SDA0 (I2C ID EEPROM)	27	0	0	28	SCL0 (I2C ID EEPROM)	31
21	GPIO 21 GPCLK1	29	0	0	30	Ground	
22	GPIO 22 GPCLK2	31	0	0	32	GPIO 26 PWM0	26
23	GPIO 23 PWM1	33	0	0	34	Ground	
24	GPIO 24 PCM_FS/PWM1	32	0	0	36	GPIO 27	27
25	GPIO 25	37	0	0	38	GPIO 28 PCM_DIN	28
	Ground	39	0	0	40	GPIO 29 PCM_DOUT	29
	<mark>ion! The GIPO pin nu</mark> gPi / Pi4J. This pin nu						

IMP.GE.194.0