

Copyright © 2013 John Smith

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

-1	Part One		
1	Abstract Vector Spaces	. 7	
1.1	Binary Operation	7	
1.2	Groups, Rings, Fields	10	
1.3	Citation	11	
1.4	Lists	11	
1.4.1	Numbered List	11	
1.4.2	Bullet Points		
1.4.3	Descriptions and Definitions	11	
2	In-text Elements	13	
2.1	Theorems	13	
2.1.1	Several equations	13	
2.1.2	Single Line	13	
2.2	Definitions	13	
2.3	Notations	14	
2.4	Remarks	14	
2.5	Corollaries	14	
2.6	Propositions	14	
2.6.1	Several equations	14	
2.6.2	Single Line	14	
2.7	Examples	14	
2.7.1	Equation and Text	14	

2.7.2	Paragraph of Text	15
2.8	Exercises	15
2.9	Problems	15
2.10	Vocabulary	
Ш	Part Two	
3	Presenting Information	19
3.1	Table	19
3.2	Figure	19
	Bibliography	21
	Books	21
	Articles	21
	Index	23

Part One

1.1 1.2 1.3 1.4	Abstract Vector Spaces 7 Binary Operation Groups, Rings, Fields Citation Lists
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	In-text Elements Theorems Definitions Notations Remarks Corollaries Propositions Examples Exercises Problems Vocabulary

1.1 Binary Operation

Definition 1.1.1 — Binary Operation. A *binary operation* on a set S is a mapping of the elements of the Cartesian product $S \times S$ to S.

$$f: S \times S \to S$$
$$(x,y) \mapsto f(x,y)$$

Example 1.1 A common example of a binary operation is addition on the set of natural numbers \mathbb{N} .

$$+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$(x, y) \mapsto x + y$$
(1.1)

Definition 1.1.2 — Associative Operation. A binary operation $f: S \times S \to S$ is said to be *associative* if, for all $x, y, z \in S$, the following holds:

$$f(x, f(y, z)) = f(f(x, y), z)$$

■ Example 1.2 A common example of an associative (binary) operation is addition on the set of natural numbers \mathbb{N} . For all $x, y, z \in \mathbb{N}$, we have:

$$x + (y + z) = (x + y) + z \tag{1.2}$$

_

Definition 1.1.3 — Identifiable Operation. A binary operation $f: S \times S \to S$ is said to be *identifiable*, or *unital*, if there exists an element $e \in S$, called the *identity element* or *unit element*, such that, for all $x \in S$, the following holds:

$$f(x,e) = x = f(e,x)$$

■ Example 1.3 A common example of an identifiable (binary) operation is multiplication on the set of natural numbers \mathbb{N} . The identity element is 1, and for all $x \in \mathbb{N}$, we have:

$$x \cdot 1 = x = 1 \cdot x \tag{1.3}$$

Proposition 1.1.1 The identity element of an identifiable operation is unique.

Proof. Let e_1 and e_2 be two identity elements for the operation f. Then, for any element $x \in S$, we have:

$$f(x,e_1) = x = f(e_1,x)$$

$$f(x,e_2) = x = f(e_2,x)$$

Now, consider the element e_1 :

$$f(e_1, e_2) = e_1$$

But since e_2 is an identity element, we also have:

$$f(e_1,e_2) = e_2$$

Therefore, we conclude that $e_1 = e_2$, proving the uniqueness of the identity element.

- R Two-sided identity must be unique, but one-sided identities need not be.
- Example 1.4 *** To be asked

Definition 1.1.4 — Inverse Operation. A binary operation $f: S \times S \to S$ is said to be *invertible* if, for every element $x \in S$, there exists an element $y \in S$, called the two-sided *inverse* of x, denoted as x^{-1} , such that:

$$f(x,y) = e = f(y,x)$$

where e is the identity element of the operation.

- R Invertible operation exists if inverse operation exists, i.e. there exists an identity element.
- Example 1.5 A common example of an invertible (binary) operation is addition on the set of integers \mathbb{Z} . For every integer $x \in \mathbb{Z}$, there exists an integer y = -x such that:

$$x + (-x) = 0 = (-x) + x \tag{1.4}$$

where 0 is the identity element for addition.

Proposition 1.1.2 The inverse element of an invertible operation is unique.

Proof. Let y_1 and y_2 be two inverses of an element $x \in S$. Then, by definition of inverse, we have:

$$f(x, y_1) = e = f(y_1, x)$$

$$f(x, y_2) = e = f(y_2, x)$$

Now, consider the element y_1 :

$$f(y_1, x) = e$$

But since y_2 is also an inverse of x, we can substitute e with $f(x, y_2)$:

$$f(y_1, x) = f(x, y_2) = e$$

By the associativity of the operation, we can rearrange this to:

$$y_1 = f(y_1, e) = f(y_1, f(x, y_2)) = f(f(y_1, x), y_2) = f(e, y_2) = y_2$$

Thus, the inverse element is unique.

Definition 1.1.5 — Commutative Operation. A binary operation $f: S \times S \to S$ is said to be *commutative* if, for all $x, y \in S$, the following holds:

$$f(x,y) = f(y,x)$$

■ **Example 1.6** A common example of a commutative operation is addition on the set of integers \mathbb{Z} . For all $x, y \in \mathbb{Z}$, we have:

$$x + y = y + x$$

Definition 1.1.6 — Distributive Operation. A binary operation $g: S \times S \to S$ is said to be *distributive* with respect to another binary operation $f: S \times S \to S$ if, for all $x, y, z \in S$, the following holds:

$$g(x, f(y,z)) = f(g(x,y), g(x,z))$$

 $g(f(y,z),x) = f(g(y,x), g(z,x))$

■ **Example 1.7** A common example of a distributive operation is multiplication over addition on the set of integers \mathbb{Z} . For all $x, y, z \in \mathbb{Z}$, we have:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
$$(y+z) \cdot x = y \cdot x + z \cdot x$$

_

1.2 Groups, Rings, Fields

Definition 1.2.1 — Semigroup. A *semigroup* is a set S equipped with an associative binary operation $f: S \times S \to S$.

Definition 1.2.2 — Monoid. A *monoid* is a set M equipped with a binary operation $f: M \times M \to M$ such that the following properties hold:

- 1. *Closure Property:* For all $x, y \in M$, $f(x, y) \in M$.
- 2. Associative Property
- 3. *Identifiable Property*

We say (M, f) is a monoid, and f is the *monoid operation* on the set M. A set M with a monoid operation f is the *monoid structure*.

Definition 1.2.3 — Group. A *group* is a set G equipped with a monoid operation $f: G \times G \to G$ with the additional property that every element has an inverse, *Invertible Property*.

Definition 1.2.4 — **Abelian Monoid / Group.** A monoid / group (G, f) is said to be an *abelian monoid / group* if the monoid / group operation f is commutative, *Commutative Property*.

Definition 1.2.5 — Ring. A ring is a set R equipped with two binary operations $f: R \times R \to R$ (addition) and $g: R \times R \to R$ (multiplication) such that the following properties hold:

- 1. Additive Group: (R, f) is an abelian group.
- 2. *Multiplicative Semigroup:* (R,g) is a semigroup.
- 3. Distributive Property: g with respect to f.

Definition 1.2.6 — Unital Ring. A *unital ring* is a ring R equipped with a multiplicative identity element $1 \in R$ such that for all $x \in R$, g(1,x) = g(x,1) = x.

Definition 1.2.7 — Commutative Ring. A *commutative ring* is a ring R such that the multiplication operation $g: R \times R \to R$ is commutative.

■ **Example 1.8** $(\mathbb{Z},+,\times)$ is a unital commutative ring. $(2\mathbb{Z},+,\times)$ is a commutative ring, but not unital. $(2\mathbb{Z}:=2n\mid n\in\mathbb{Z})$

Definition 1.2.8 — **Field.** A *field* is a unital commutative ring F such that every non-zero element has a multiplicative inverse.

■ Example 1.9 $(\mathbb{Q},+,\times)$, $(\mathbb{R},+,\times)$ and $(\mathbb{C},+,\times)$ are fields.

1.3 Citation

1.3 Citation

This statement requires citation [1]; this one is more specific [2, page 122].

1.4 Lists

Lists are useful to present information in a concise and/or ordered way¹.

1.4.1 Numbered List

- 1. The first item
- 2. The second item
- 3. The third item

1.4.2 Bullet Points

- The first item
- The second item
- The third item

1.4.3 Descriptions and Definitions

Name Description
Word Definition
Comment Elaboration

 $^{^1} Footnote\ example...$

2.1 Theorems

This is an example of theorems.

2.1.1 Several equations

This is a theorem consisting of several equations.

Theorem 2.1.1 — Name of the theorem. In $E = \mathbb{R}^n$ all norms are equivalent. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$$
 (2.1)

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.2)

2.1.2 Single Line

This is a theorem consisting of just one line.

Theorem 2.1.2 A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$.

2.2 Definitions

This is an example of a definition. A definition could be mathematical or it could define a concept.

Definition 2.2.1 — Definition name. Given a vector space E, a norm on E is an application, denoted $||\cdot||$, E in $\mathbb{R}^+ = [0, +\infty[$ such that:

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0} \tag{2.3}$$

$$||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}|| \tag{2.4}$$

$$||x + y|| \le ||x|| + ||y|| \tag{2.5}$$

2.3 Notations

Notation 2.1. Given an open subset G of \mathbb{R}^n , the set of functions φ are:

- 1. Bounded support G;
- 2. Infinitely differentiable;

a vector space is denoted by $\mathcal{D}(G)$.

2.4 Remarks

This is an example of a remark.

The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.

2.5 Corollaries

This is an example of a corollary.

Corollary 2.5.1 — Corollary name. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

2.6 Propositions

This is an example of propositions.

2.6.1 Several equations

Proposition 2.6.1 — Proposition name. It has the properties:

$$\left| ||\mathbf{x}|| - ||\mathbf{y}|| \right| \le ||\mathbf{x} - \mathbf{y}|| \tag{2.6}$$

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.7)

2.6.2 Single Line

Proposition 2.6.2 Let $f, g \in L^2(G)$; if $\forall \varphi \in \mathcal{D}(G), (f, \varphi)_0 = (g, \varphi)_0$ then f = g.

2.7 Examples

This is an example of examples.

2.7.1 Equation and Text

■ Example 2.1 Let $G = \{x \in \mathbb{R}^2 : |x| < 3\}$ and denoted by: $x^0 = (1,1)$; consider the function:

$$f(x) = \begin{cases} e^{|x|} & \text{si } |x - x^0| \le 1/2\\ 0 & \text{si } |x - x^0| > 1/2 \end{cases}$$
 (2.8)

The function f has bounded support, we can take $A = \{x \in \mathbb{R}^2 : |x - x^0| \le 1/2 + \varepsilon\}$ for all $\varepsilon \in]0; 5/2 - \sqrt{2}[$.

2.8 Exercises 15

2.7.2 Paragraph of Text

■ Example 2.2 — Example name. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. ■

2.8 Exercises

This is an example of an exercise.

Exercise 2.1 This is a good place to ask a question to test learning progress or further cement ideas into students' minds.

2.9 Problems

Problem 2.1 What is the average airspeed velocity of an unladen swallow?

2.10 Vocabulary

Define a word to improve a students' vocabulary. **Vocabulary 2.1 — Word.** Definition of word.

Part Two

3	Presenting Information 1	9
3.1	Table	
3.2	Figure	
	Bibliography 2	21
	Books	
	Articles	
	Index 2	.3

3.1 Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table 3.1: Table caption

3.2 Figure

Figure 3.1: Figure caption

Books

[Smi12] John Smith. *Book title*. 1st edition. Volume 3. 2. City: Publisher, Jan. 2012, pages 123–200 (cited on page 11).

Articles

[Smi13] James Smith. "Article title". In: 14.6 (Mar. 2013), pages 1–8 (cited on page 11).

В	Descriptions and Definitions 1 Numbered List
Binary Operation7	N
С	Notations
Citation 11 Corollaries 14	P
D. Caritiana 12	Problems 15 Propositions 14 Several Equations 14
Definitions	Single Line14
Examples14Equation and Text14Paragraph of Text15Exercises15	R Remarks
F	Table 19 Theorems 13
Figure	Several Equations
G	V
Groups, Rings, Fields	Vocabulary
L. Committee	•
Lists	