

Logistic Regression

& Classification Metrics

November 26, 2023

1. What is Classification?

Classification vs Regression

- In **Regression**, we predict a continuous variable
- In Classification, we predict a discrete variable, usually a label
- **Example**: predicting whether an email is spam
 - Labels: Spam / Not spam
 - **Features**: Sender address, keywords in the text, time of day, regular contact, etc.

Binary vs Multi-label classification

Breast cancer prediction - Binary

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	

0	0
1	0
2	0
3	0
4	0
564	0
565	0
566	0
567	0
568	1
Name:	target

Binary vs Multiclass classification

Flower classification (Iris) - Multiclass

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

2. Logistic Regression

How to build a model?

Can we use a linear regression?

$$\hat{y} = b + w_1 x_1 + \cdots + w_n x_n$$

- The equation goes from $-\infty$ to $+\infty$
- We want something that goes from **0** to **1** (representing the probability of our class)

How to build a model?

Can we use a linear regression?

$$\hat{y} = b + w_1 x_1 + \cdots + w_n x_n$$

- The equation goes from $-\infty$ to $+\infty$
- We want something that goes from 0 to 1 (representing the probability of our class)
- Introducing the Logistic function

$$\hat{y}=rac{1}{1+e^{-z}}$$

How to build a model?

• Can we use a linear regression?

$$\hat{y} = b + w_1 x_1 + \cdots + w_n x_n$$

- The equation goes from $-\infty$ to $+\infty$
- We want something that goes from 0 to 1 (representing the probability of our class)
- Introducing the Logistic function

$$\hat{y}=rac{1}{1+e^{-z}}$$
 $z=b+w_1x_1+\cdots+w_nx_n$

- This is the basis for Logistic Regression
- We can solve a binary classification problem by optimizing a linear regression

Decision boundary

How does a classifier look if we look at just two features?

3. Optimization

How do we optimize the parameters

 For linear regression we simply used the mean-squared error (MSE) as the cost

$$J(w,b)=rac{1}{m}\sum_{i=1}^m(\hat{y}-y)^2$$

- However, this function is not always convex for the logistic function
 - → This can lead us to pick the incorrect parameters that minimize our error

We can use the logistic loss, also known as the negative log-likelihood

$$L(\hat{y},y) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y}) \ L(\hat{y},y) = egin{cases} -\log(\hat{y}) & ext{, if } y=1 \ -\log(1-\hat{y}) & ext{, if } y=0 \end{cases}$$

We can use the logistic loss, also known as the negative log-likelihood

$$L(\hat{y},y) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$
 $L(\hat{y},y) = egin{cases} -\log(\hat{y}) & ext{, if } y=1 \ -\log(1-\hat{y}) & ext{, if } y=0 \end{cases}$

• The **cost function** is the the sum of the loss over all samples

$$J(w,b) = rac{1}{m} \sum_{i=1}^m L(\hat{y},y)$$

• We can use the logistic loss, also known as the negative log-likelihood

$$L(\hat{y},y) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$
 $L(\hat{y},y) = egin{cases} -\log(\hat{y}) & ext{, if } y=1 \ -\log(1-\hat{y}) & ext{, if } y=0 \end{cases}$

• The **cost function** is the the sum of the loss over all samples

$$J(w,b) = rac{1}{m} \sum_{i=1}^m L(\hat{y},y)$$

We use an optimization algorithm to calculate the parameters,
 e.g. gradient descent

$$w_i
ightarrow w_i - l_r rac{\partial J}{\partial w_i}$$

• We can use the logistic loss, also known as the negative log-likelihood

$$L(\hat{y},y) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$
 $L(\hat{y},y) = egin{cases} -\log(\hat{y}) & ext{, if } y=1 \ -\log(1-\hat{y}) & ext{, if } y=0 \end{cases}$

• The **cost function** is the the sum of the loss over all samples

$$J(w,b) = rac{1}{m} \sum_{i=1}^m L(\hat{y},y)$$

We use an optimization algorithm to calculate the parameters,
 e.g. gradient descent

$$w_i
ightarrow w_i - l_r rac{\partial J}{\partial w_i}$$

Optimization algorithms - measure the steepness of the landscape (1st and 2nd derivative)

4. SKLearn example

Importing data

```
import pandas as pd
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True, as_frame=True)
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	
	1 7.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	
	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	
	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	••••
1	3 11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	•••
	4 20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	
	•										

0	0
1	0
2	0
3	0
4	0
564	0
564 565	
	0
565	0 0
565 566	0 0 0

Name: target,

Splitting the data into train and test

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

Scaling the data

$$x_i^{scaled} = rac{x_i - ar{x}}{\sigma_x}$$

Scaling the data

```
x_i^{scaled} = rac{x_i - ar{x}}{\sigma_x}
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Scaling the data

```
x_i^{scaled} = rac{x_i - ar{x}}{\sigma_x}
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Training the logistic regression

```
from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression()
logistic_model.fit(X_train_scaled, y_train)
```

Training the logistic regression

```
from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression()
logistic_model.fit(X_train_scaled, y_train)
```

y pred = logistic model.predict(X test scaled)

Training the logistic regression

```
from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression()
logistic_model.fit(X_train_scaled, y_train)
```

```
y_pred = logistic_model.predict(X_test_scaled)
```

```
y proba = logistic model.predict proba(X test scaled)
array([[1.36008828e-01, 8.63991172e-01],
       [9.99977295e-01, 2.27049622e-05],
       [9.96080057e-01, 3.91994328e-03],
       [7.80003100e-04, 9.99219997e-01],
       [1.14294099e-04, 9.99885706e-01],
       [1.00000000e+00, 3.50087563e-10],
       [9.99999993e-01, 7.08653260e-09],
       [9.54663200e-01, 4.53368002e-02],
       [4.31753581e-01, 5.68246419e-01],
       [1.14096940e-03, 9.98859031e-01],
       [5.99262279e-02, 9.40073772e-01],
       [9.84076010e-01, 1.59239901e-02],
       [7.18535007e-03, 9.92814650e-01],
       [8.28290034e-01, 1.71709966e-01],
       [2.59614386e-03, 9.97403856e-01],
```

How good is our model?

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

0.9787234042553191

Pretty good!

How good is our model?

```
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
```

0.9787234042553191

Pretty good!

```
y_pred_train = logistic_model.predict(X_train_scaled)
accuracy_score(y_train, y_pred_train)
```

0.9868766404199475

Why did our accuracy fall between training and testing?

Recap

- Classification attempts to predict, for each individual in a population, to which class each individual belongs to.
- A classification problem can be either be binary or multiclass.
- Logistic Regression is a linear classification algorithm that outputs class probabilities.
- Logistic Regression uses the **negative log-likelihood** cost function to optimize parameters

5. Classification metrics

Let's import another dataset for a blood transfusion centre, whose target is whether an
individual donated blood or not (binary),

```
from sklearn.datasets import fetch openml
X, y = fetch openml(data id=1464, return X y=True, parser="pandas")
y = y.replace({"1": 0, "2": 1})
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25,random_state=42)
scaler = StandardScaler()
scaler.fit(X train)
X train scaled = scaler.transform(X train)
X test scaled = scaler.transform(X test)
logistic model = LogisticRegression()
logistic model.fit(X train scaled, y train)
y_pred = logistic_model.predict(X_test scaled)
```

How good is our model?

accuracy_score(y_test, y_pred)

0.7540106951871658

How good is our model?

accuracy_score(y_test, y_pred)

0.7540106951871658

Not too bad... But what if we always predicted the label "0"?

How good is our model?

```
accuracy_score(y_test, y_pred)
```

0.7540106951871658

Not too bad... But what if we always predicted the label "0"?

```
import numpy as np
y_all_zeros = np.zeros_like(y_test)
accuracy_score(y_test, y_all_zeros)
```

0.7433155080213903

- That's not much worse than our model... What's going on?
- Can we have a more detailed look at our predictions for both classes?

6. Confusion matrix

7. Precision, Recall & F1-score

Precision

$$P = \frac{TP}{TP + FP}$$

What proportion of positive **identifications** was actually correct?

$$P = \frac{TP}{TP + FP} = 0.625$$

What proportion of positive **identifications** was actually correct? 62.5%

from sklearn.metrics import precision_score
precision_score(y_test, y_pred)

True False **Negative** 0 -**Positives** S True label **False** True **Negative Positives** Predicted label

Recall

$$R = \frac{TP}{TP + FN}$$

What proportion of **actual** positives was identified correctly?

136 0 True label Predicted label

Recall

$$R = \frac{TP}{TP + FN} = 0.104$$

What proportion of **actual** positives was identified correctly? 10.4%

from sklearn.metrics import recall_score
recall_score(y_test, y_pred)

F1-score

- What if we want a balanced mix of Precision and Recall?
- We can use the harmonic mean of the two metrics

$$F1 = 2rac{precision imes recall}{precision + recall} = rac{2TP}{2TP + FP + FN}$$

from sklearn.metrics import f1_score
f1_score(y_test, y_pred)

When to use them?

- We should look at Precision when the cost of false positive is high
 - E.g. when a false positive for an illness means someone will have to go through painful and invasive testing
- We should look at Recall when the cost of false negative is high
 - E.g. when a false negative could results in significant costs or bodily harm to someone
- We should look at **F1-score** when we want to consider false negatives and false positives equally.

8. Threshold Dependence

True Positive Rate (TPR) is the same as Recall

$$TPR = rac{TP}{TP + FN}$$

False Positive Rate (FPR) is the ratio of False Positives and the total Negatives

$$FPR = rac{FP}{FP + TN}$$

• What happens to these metrics when we change our threshold?

What if we plot one against the other?

9. ROC and PR curves

The ROC curve

- The Receiver Operating Characteristic (ROC) curve is the relation between TPR and FPR
- The Area Under the Curve (AUC) for the ROC curve is a threshold-independent metric


```
from sklearn.metrics import (
    roc_curve,
    RocCurveDisplay,
    roc_auc_score,
)
y_prob = logistic_model.predict_proba(X_test_scaled)[:,1]
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()
roc_auc_score(y_test, y_prob)
```

The ROC curve

- The Receiver Operating Characteristic (ROC) curve is the relation between TPR and FPR
- The Area Under the Curve (AUC) for the ROC curve is a threshold-independent metric


```
from sklearn.metrics import (
    roc_curve,
    RocCurveDisplay,
    roc_auc_score,
)
y_prob = logistic_model.predict_proba(X_test_scaled)[:,1]
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()
roc_auc_score(y_test, y_prob)
```

Precision-Recall Curve

- What if we do the same for the precision and recall?
- The Area Under the Curve (AUC) for the PR curve is the Average Precision
 - It is also a threshold-independent metric


```
from sklearn.metrics import (
    precision_recall_curve,
    PrecisionRecallDisplay,
    average_precision_score,
)
y_prob = logistic_model.predict_proba(X_test_scaled)[:,1]
prec, recall, _ = precision_recall_curve(y_test, y_prob)
pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot()
average_precision_score(y_test, y_prob)
```

Recap

- Accuracy doesn't show the whole picture
 - E.g. in unbalanced and multiclass data sets
- Precision and Recall can give us a deeper insight into our performance, especially when we care a lot about False Positives or False Negatives
- F1-score tries to balance Precision and Recall
- ROC curve and its AUC are threshold-independent metrics
- Precision-Recall curve and Average Precision are also threshold-independent
 - The base random-chance line depends on the data set base rate

10. Q & A