# Notes on Coalgebras on Measurable Spaces and Coalgebraic Modal Logic

## **Contents**

#### **%START UPDATING NOTES HERE**

#### 1. Finitary Functor Preliminaries

- 1.1 Filtered Categories and the General Definition of Finitary Functors
- 1.2 Finitary Functors on Set and Examples
- 1.3 Bisimulations and Corecursion on Set-Polynomial Functors
- 1.4 Bisimulations and Corecursion on Set-Finitary Functors in General

%possibly split section between finitary functors preserving weak pullbacks and what to do about it for general finitary functors

#### 2. Categorical Measure Theory Preliminaries

%figure out notes on sections

- 2.? Some Concepts
- 2.? The Giry Monad

#### **%NEXT UPDATE NOTES HERE**

#### 3. Bisimulations In a General Category

- 3.1 Spans and Cospans in a Category
- 3.2 Bisimulations as Spans
- 3.3 Some Important Examples
- 3.4 Finitary Functors in a General Category

%talk about finitary functors on more general categories and figure out how to talk about finite presentation, coinduction, and bisimulations in that setting

#### 4. Coalgebraic Modal Logic on Set

- 4.1 Modal Logic and Kripke Semantics
- 4.2 Coalgebraic Interpretation of Kripke Models
- 4.3 Finitely Branching Hennessy-Milner Theorem and Consequences
- 4.4 Potential Ways to Generalize the Hennessy-Milner Theorem

%talk about concrete categories and possible "finite limit" condition

#### 5. Stochastic Coalgebraic Modal Logic

- 5.1 Stochastic Kripke Semantics and Coalgebraic Interpretation
- 5.2 Hennessy-Milner Theorem for Stochastic Kripke Models
- 5.3  $\mu$ CSL and Analogous Results

# 1. Finitary Functor Preliminaries

#### 1.1 Filtered Categories and the General Definition of Finitary Functors

**Defintiion 1.1.1.** A category  $\mathfrak D$  is **filtered** if every finite diagram of  $\mathfrak D$  has a cocone. A **filtered colimit** is a colimit of a diagram  $D: \mathfrak D \to \mathcal H$ , where  $\mathfrak D$  is filtered. A **directed colimit** is a colimit of a diagram having a directed poset as its diagram scheme. A functor  $F: \mathcal H \to \mathcal B$ , is called **finitary** if F preserves all filtered colimits.

%define equivalent wikipedia definition of filtered category %prove that they are equivalent %provide examples of filtered categories

%possibly change lemma into a theorem

**Lemma 1.1.2.** A functor is finitary if and only if it preserves directed colimits.

Proof.

# %FOR THIS IMPLICATION, ACTUALLY USE OTHER DEFINITION OF FILTERED CATEGORY

 $\Longrightarrow$  Suppose  $F:\mathcal{A}\to\mathcal{B}$  is finitary. Let  $(I,\leq)$  be a directed poset and  $D:(I,\leq)\to\mathcal{A}$  be a diagram. It suffices to prove that  $(I,\leq)$  is filtered. Given a finite diagram  $E:C_0\to(I,\leq)$ , we want to show that there exists  $c\in I$  that forms a cocone on E. We shall prove this result by induction on  $n:=|\mathrm{Mor}(C_0)|$ . If n=0, we have the empty category and the cone exists vacuously. For the inductive step, we set  $n+1:=|\mathrm{Mor}(C_0)|$ , and we choose a  $C_0$ -morphism  $f:X\to Y$  to omit, and have two cases.

%actually talk about a finite category in terms of a graph and a quotient of that graph generating it

Case 1. Suppose  $f: X \to Y$  is the identity morphism  $\mathrm{id}_X$  of an object with no other morphisms  $X \to Y$  or  $Y \to X$ , between it for any  $Y \neq X$ . Let  $\mathrm{C}_0{}'$  be the subcategory of  $\mathrm{C}_0{}$  with the object X (and all arrows associated to it) eliminated, and note by the inductive hypothesis that the subdiagram  $E|\mathrm{C}_0{}'$  has cocone %use the max argument

Case 2. Suppose  $f: X \to Y$  is some nonidentity morphism (and note that since we do not have the scenario in Case, we can always choose such a morphism).

%use directed property

 $\Leftarrow$  Suppose  $F: \mathcal{A} \to \mathcal{B}$  preserves directed colimits. Let  $D: \mathcal{D} \to \mathcal{A}$  be a diagram with  $\mathcal{D}$  filtered.

%PROVE THIS RESULT

%choose a colimit of a directed diagram that is a subdiagram of  ${\cal D}$  and show that it is %POSSIBLY USE THE ADJOINT FUNCTOR THOEREM

## 1.2 Finitary Functors on Set and Examples

%define fintary set functors in terms of boundedness and then in terms of filtered colimits

%possibly give examples of such functors in Set

**Definition 1.2.1**. A set functor F is **finitely bounded**, if for each element  $x \in FX$ , there exists a finite subset  $M \subset X$  such that  $x \in Fi[FM]$ , where  $i : M \hookrightarrow X$  is the inclusion map i.e.

$$FX = \bigcup_{i:M \hookrightarrow X.M \text{ finite}} Fi[FM].$$

%possibly give examples of such functors in Set

**Definition 1.2.2.** We define a **presentation** of a set functor F as an equational signature  $\Sigma$  and a natural epi-transformation  $\epsilon: P_{\Sigma} \twoheadrightarrow F$ . If  $\Sigma$  is finitary (i.e., consisting of only n-ary function symbols), we call the presentation **finitary**. We call F **finitely presentable** if such a finitary presentation exists.

%find sections of papers where this is defined %possibly give examples of such functors in Set

We now give some examples of finitary functors on Set:

%example involving  $\mathcal{P}_f$ 

**Example 1.2.3.** (Coinduction on  $\mathcal{P}_f$ )

Final Coalgebra  $\nu$ .  $\mathcal{P}_f$ :

Infinite trees (up to  $\approx$  ):

$$\Sigma := \{\emptyset, [-]_1, \dots, [-]_k, \dots\}$$
  
= signature of single  $k$ -ary function symbol for every  $k$ 

$$t, t' \in T_{\Sigma}$$

$$t\approx t'\iff \forall n(\partial_n t=\partial_n t')\Longleftrightarrow \forall n(\ell_n(t)\approx {}_n\ell_n(t))$$

 $\partial_n t := ext{quotient when you apply } \mathcal{P}_f \ n ext{-times}$ 

The final coalgebra is (v.  $H_{\Sigma}/\approx$  ,  $\tau'$ )

$$\tau':\nu.\,H_\varSigma\,/\,\approx\,\to \mathcal{P}_f(\nu.\,H_\varSigma\,/\,\approx\,)$$

$$[t] \mapsto \{[t_1], \ldots, [t_n]\}$$

$$(t_1, \ldots, t_n) = \operatorname{tail}_{\Sigma}(t)$$



Well-defined since  $\mathcal{P}_f(\nu.\,H_{\varSigma}\,/\,\approx\,)=H_{\varSigma}(\nu.\,H_{\varSigma}\,/\,\approx\,)/\,\approx\,_1$ 

$$t\approx t'\Longrightarrow\{t_1,\;\ldots,t_n\}=\{t_1',\;\ldots,t_m'\}$$

(follow from the fact that  $\ell_n(t) \approx {}_n \ell_n(t')$ )

Question: What are extensional trees?

Answer:

extensional: All subtrees are pairwise not isomorphic

strongly extensional: All iterates of subtrees are not pairwise isomorphic

Refer to index

%example involving  $\mathfrak{D} + m$ 

**Example 1.2.4.** (Coinduction on  $\mathfrak{D} + m$ )

Next, we want to use our understanding of the finite power set functor  $\mathcal{P}_f$  to make sense fo the finite probability measure functor  $\mathfrak{D}$ , and its variants  $\mathfrak{D} + m$ :

Consider the polynomial functor  $H_{\Sigma}(X):=\mathbb{R}X+1,\; \Sigma:=\{r(-):r\in\mathbb{R}\}\cup\{*\}$ 

Then  $\nu.\,H_\Sigma$  is  $T_\Sigma$ , or  $\mathbb{R}^{\le\omega}$ , and we can define thge infinite sums partial function

 $\operatorname{Sum}:T_{\varSigma}\to\mathbb{R}$  (equivalently, a whole function  $T_{\varSigma}\to\mathbb{R}+1$ )

$$\operatorname{Sum}(\sigma) = \begin{cases} 0 & \text{if } \sigma = * \\ \sigma(0) + \operatorname{Sum}(\sigma') & \text{if } \lim_{n \to \infty} \sum_{k=0}^{n} \sigma(k) \text{ exists} \\ \uparrow & \text{otherwise} \end{cases}$$

$$* \mapsto 0$$

$$\sigma(0) + \operatorname{Sum}(\sigma')$$

The work comes from showing that

**Example 1.2.5.**  $\sigma(0) = 1/6$ ,  $\sigma' = 1/6\sigma$ 

$$\sigma = (1/6, 1/6^2, ...)$$

$$Sum(\sigma) = 1/6 + Sum(\sigma') = 1/6 + 1/6 \cdot Sum(\sigma)$$

$$Sum(\sigma) = 1/5 = 1/6/(1-1/6)$$

%Check out Corecursive algebras (ch. 7)

**Example 1.1.8.** Similar problem where we want to find the probability of the event E, where the first 1 of the dice is an odd number (after rolling the dice infinitely many times)



$$Pr[E] = 1/6 + 5/6^{2}Pr[E]$$
  
 $Pr[E] = 6/11$ 

Q: How do we talk about this in general for Markov Chains?

A: We can do so using the probability functor  $\mathfrak{D}+2$  (for the above example), or  $\mathfrak{D}+m$  for m distinct "end" states.

$$\mathfrak{D} \cong \mathcal{P}_f((-) \times (0, +\infty)) / \text{normalization}$$
$$\cong P_{\Sigma}((-) \times (0, +\infty)) / \simeq$$

$$x := ((x_1, a_1), \dots, (x_k, a_k))$$

$$y := \\ \in P_{\Sigma}(X \times (0, \infty))$$

$$x \simeq y \Longleftrightarrow \mu(x, \cdot) = \mu(y, \cdot)$$

$$\mu(x, \cdot): X \rightarrow [0, 1]$$

$$\mu(x,q) = \begin{cases} \sum_{x_s = q} a_s / (a_1 + \cdots + a_k) & \text{if } q = x_s \ 1 \le s \le k \\ 0 & \text{otherwise} \end{cases}$$

Using Theorem 4.3.26, we find  $\nu$ .  $(\mathfrak{D}+m)$  is  $(T_{\varSigma+m},\,\tau')$  with

$$t \approx t' \iff \partial_n(t) = \partial_n(t')$$

with  $\tau':T_{\varSigma+m}/\approx\to\mathfrak{D}+m(T_{\varSigma+m}/\approx)$  defined to be inverse tree tupling up to  $\approx$ 

$$[t] \mapsto \mu(t, \,\cdot\,) := \mu(\mathsf{tail}(t), \,\cdot\,)$$



$$\mu(t,t_s)=p_s$$

%rephrase this

*Next Time:* This allows us to define corecursively LongRun :  $\nu$ .  $(\mathfrak{D} + m) \rightarrow \mathfrak{D}(\nu$ .  $(\mathfrak{D} + m))$ 

%check out this paper Hella Hansen+Larry Moss paper

#### **Previous Talk Correction:**

%figure out how to reorganize this correction on Consider the polynomial functor  $H_{\Sigma}(X) := \mathbb{R}X + 1$ ,  $\Sigma := \{r(-) : r \in \mathbb{R}\} \cup \{*\}$ 

Then  $\nu.\,H_\Sigma$  is  $T_\Sigma$ , or  $\mathbb{R}^{\le\omega}$ , and we can define thee infinite sums partial function

Sum :  $T_{\Sigma} \to \mathbb{R}$  (equivalently, a whole function  $T_{\Sigma} \to \mathbb{R} + 1$ )

$$\operatorname{Sum}(\sigma) = \begin{cases} 0 & \text{if } \sigma = * \\ \sigma(0) + \operatorname{Sum}(\sigma') & \text{if } \lim_{n \to \infty} \sum_{k=0}^{n} \sigma(k) \text{ exists} \\ \uparrow & \text{otherwise} \end{cases}$$

$$T_{\Sigma}:=\mathbb{R}^{\leq\omega}$$

$$\mathbb{R}\subset\mathbb{R}^{\leq\omega}$$

%talk about super-finitary functors; On Fintary Functors 3.27-3.34 (page 21-24)

**Theorem 1.2.6.** Given a Set-functor F, the following are equivalent:

- **1.** *F* is finitary.
- **2.** *F* is finitely bounded.
- **3.** *F* is finitely presentable.

# 1.3 Bisimulations and Corecursion on Set-Polynomial Functors

To start, here's a theorem about such polynomials worth mentioning:

**Theorem 1.3.1.** Polynomial functors (defined in this more general context) preserve  $\omega$ -colimits and  $\omega^{op}$ -limits.

%prove this

**Corollary 1.3.2.** There exists initial  $\Sigma$ -algebras (or  $P_{\Sigma}$ -algebras) and final  $\Sigma$ -coalgebras (or  $P_{\Sigma}$ -coalgebras).

Given a functor F, we shall denote  $\mu$ . F as the initial F-algebra and  $\nu$ . F as the final coalgebra.

Now that we know a final  $\Sigma$ -coalgebra exists, we can derive bisimulations, a more explicit characterization of the final coalgebra, coinduction, and corecursion.

*Remark.* Given an equational signature  $\Sigma$ , note that a  $\Sigma$ -coalgebra  $(S, \alpha)$  we find

$$\alpha:S\to P_{\varSigma}S \text{ can be represented as }\alpha=\sum_{i\in\mathbb{N}}\alpha_i \text{ of partial functions}$$

$$\alpha_i = \langle o_i, tr_i \rangle : S \to \Sigma_i \times S^i, o_i : S \to \Sigma_i, tr_i : S \to S^i.$$

**Proposition 1.3.3.** (bisimulations) Given  $s, t \in S$ , we find that

$$s \sim t \iff o_i(s) = o_i(t) \text{ and } tr_i(s) \sim tr_i(t) \text{ (on } S^i),$$
  
 $\iff o_i(s) = o_i(t) \text{ and } \forall k \leq i(tr_{i,k}(s) \sim tr_{i,k}(t)) \text{ where } tr_{i,k} := \pi_k \circ tr_i.$ 

%prove this

**Theorem 1.3.4.** (coinduction on  $\Sigma$ ) The final  $\Sigma$ -coalgebra  $(T_{\Sigma}, \tau_{\Sigma})$  is the set of infinite  $\Sigma$ -trees and the map  $\tau_{\Sigma} := \langle \mathsf{head}_{\Sigma}, \mathsf{tail}_{\Sigma} \rangle$  of inverse tree tupling with

$$\begin{split} \operatorname{head}_{\Sigma}(t) &= \operatorname{top\ vertex\ coloring\ }(\in \Sigma) \\ \operatorname{tail}_{\Sigma}(t) &= \operatorname{the\ } i\text{-tuple\ of\ }\Sigma\text{-trees\ consisting\ of\ all\ the\ branches\ of\ head}_{\Sigma}(t), \\ \operatorname{where\ } i &:= \operatorname{arity}\Big(\operatorname{head}_{\Sigma}(t)\Big). \end{split}$$

We find given t = t', we have

$$t=t' \Longleftrightarrow \operatorname{head}_{_{\Sigma}}(t) = \operatorname{head}_{_{\Sigma}}(t') \text{ and } \operatorname{tail}_{_{\Sigma}}(t) \sim \operatorname{tail}_{_{\Sigma}}(t') \left(\operatorname{in} \, T_{_{\Sigma}}^{i}\right).$$

**Theorem 1.3.5.** (corecursion on n-ary  $T_{\Sigma}$  operations) Given a family  $f_{i,0}: T_{\Sigma}^n \to \Sigma_i, \ f_{i,1}: T_{\Sigma}^n \to \left(T_{\Sigma}^n\right)^i$  of partial functions indexed by  $i \in \mathbb{N}$  s.t.

$$\alpha := \sum_{i \in \mathbb{N}} \langle f_{i,0}, f_{i,1} \rangle : T_{\Sigma}^n \to P_{\Sigma} T_{\Sigma}^n,$$

forms a  $\Sigma$ -coalgebra, there is a uniquely determined operation  $g:T^n_\Sigma\to T_\Sigma$  defined by

$$\operatorname{head}_{\Sigma}(g(\vec{t})) = f_{i,0}(\vec{t}),$$
$$\operatorname{tail}_{\Sigma}(g(\vec{t})) = g(f_{i,0}(\vec{t})),$$

for some  $i \in \mathbb{N}$ .

# 1.3 Bisimulations and Corecursion on Set-Finitary Functors

**%REORGANIZE THIS SECTION** 

# **Bisimulations of Finitary Functors:**

Given a finitary set functor F, note that F preserves weak pullbacks %doesn't preserve weak pullbacks

Examples.

$$\emptyset \mapsto \emptyset$$

$$A \mapsto *$$

$$\epsilon: P_{\Sigma} \twoheadrightarrow F$$

Let's assume that F preserves weak pullbacks. Let  $s \sim t$  denote the relation on  $(S, \alpha)$  (defined to be a  $P_{\Sigma}$ -coalgebra (note that  $(S, \alpha^{\varepsilon})$  is an F-coalgebra) if there exists a bisimulation on S. We know that

Let  $T_{\Sigma}$  be the infinite  $\Sigma$ -trees





We know that  $[[-]]^{P_{\Sigma}}$  is a  $P_{\Sigma}$ -homomorphism (but using naturality of  $\epsilon$ , we can show that  $[[-]]^{P_{\Sigma}}$  is also a F-homomorphism)

For 
$$\alpha: S \to P_{\Sigma}S$$
, define  $\alpha^{\epsilon} := \epsilon_{S}\alpha: S \to FS$ 

 $au_{\Sigma}$  is inverse tree tupling of  $T_{\Sigma}$ 

$$\tau_{\Sigma}^{\epsilon} = \epsilon_{T_{\Sigma}} \tau_{\Sigma}$$

Define 
$$[[-]]^F: (S, \alpha^{\epsilon}) \to (\nu, F, \tau_F) \cong (T_{\Sigma}/\approx , \overline{\tau_{\Sigma}^{\epsilon}})$$

$$\begin{split} s \sim t &\iff [[s]]^F = [[t]]^F \\ &\iff \circ [[s]]^{P_{\Sigma}} = \approx \circ [[t]]^{P_{\Sigma}} \\ &\iff \overline{\tau_{\Sigma}^{\epsilon}} \approx [[s]]^{P_{\Sigma}} = \overline{\tau_{\Sigma}^{\epsilon}} \approx [[t]]^{P_{\Sigma}} \end{split}$$

$$\iff F \approx \tau_{\Sigma}^{\epsilon}[[s]]^{P_{\Sigma}} = F \approx \tau_{\Sigma}^{\epsilon}[[t]]^{P_{\Sigma}}$$

$$\iff F \approx \epsilon_{T_{\Sigma}}\tau_{\Sigma}[[s]]^{P_{\Sigma}} = F \approx \epsilon_{T_{\Sigma}}\tau_{\Sigma}[[t]]^{P_{\Sigma}}$$

$$\iff F \approx \epsilon_{T_{\Sigma}}F[[-]]^{P_{\Sigma}}\alpha(s) = F \approx \epsilon_{T_{\Sigma}}F[[-]]^{P_{\Sigma}}\alpha(t)$$

# Long Run Probability:

LongRun: 
$$\nu$$
.  $(\mathfrak{D} + m) \rightarrow (\mathfrak{D} + m)(\nu . (\mathfrak{D} + m))$ 

$$\mathfrak{D}(\nu.\,(\mathfrak{D}+m))\subset (\mathfrak{D}+m)(\nu.\,(\mathfrak{D}+m)\cong \nu.\,(\mathfrak{D}+m)$$

$$\nu.(\mathfrak{D}+m)=T_{\Sigma+m}/\approx$$

$$[t] \in T_{\Sigma+m} / \approx , t \in T_{\Sigma+m}$$

$$\mathsf{LongRun}([t]) = \begin{cases} \delta_k & \text{if } t = k \ (1 \leq k \leq m) \\ \sum_{t' \in \mathsf{tail}(t)} \mu(t,t') \cdot \mathsf{LongRun}([t']) & \text{else} \end{cases}$$

NOTE: It is clear how one would define a function by corecursion on  $T_{\Sigma+m}$  (and this LongRun function utilizes the same case structure for  $T_{\Sigma+m}$ )

**Example 1.4.1.** Let t be the following tree



Note that in this example, we can set m=2 (since there are two end states in this example), and let  $\perp$  be failure and  $\top$  be success. Using this definition of LongRun, we get that

$$\begin{aligned} \mathsf{LongRun}([t]) &= 5/6 \cdot \mathsf{LongRun}([t']) + 1/6 \cdot \mathsf{LongRun}(\top) \\ &= 5/6 \mathsf{LongRun}([t']) + 1/6 \cdot \delta_{\top} \end{aligned}$$

LongRun([t']) = 
$$5/6 \cdot \text{LongRun}([t]) + 1/6 \cdot \text{LongRun}(\perp)$$
  
=  $5/6 \cdot \text{LongRun}([t]) + 1/6 \cdot \delta_{\perp}$ 

Claim:

We can determine that using linear systems if we regard LongRun([t]) as a probability vector.



**Example 1.4.2.** Let's consider the markov chain

$$M = \begin{bmatrix} 1/4 & 3/4 \\ 2/3 & 1/3 \end{bmatrix}$$

In  $T_{\varSigma+m}$  /  $\,\cong\,$  , we can talk about M as the following two probability trees  $t_{M,1}$  ,  $t_{M,2}$ 



To find LongRun( $[t_{M,1}]$ ) = LongRun( $[t_{M,2}]$ ), we solve for the linear system we get by applying the coalgebraic definition, which is

$$\mathsf{LongRun}([t_{M,1}]) = 1/4\mathsf{LongRun}([t_{M,1}]) + 3/4\mathsf{LongRun}([t_{M,2}])$$

$$LongRun([t_{M,2}]) = 2/3LongRun([t_{M,1}]) + 1/3LongRun([t_{M,2}])$$

The solution is the probability vector that solves the matrix system

$$Mw = w$$
$$(M - I)w = 0$$

The question that I next want to answer is how we go about defining operations on  $T_{\Sigma+m}/\cong$  corecursively. The key to this puzzle is finding out more about the bisimulations on  $(\mathfrak{D}+m)$ -coalgebras, or more generally, any finitary functor F.

**%WRITE IDEA OF CORECURSION AND BISIMULATIONS HERE** 

# **Corecursion on Finitary Functors**

Let F be a finitary functor. Let  $\epsilon: P_{\Sigma} \twoheadrightarrow F$  be the finitary presentation and for any  $P_{\Sigma}$ -coalgebra  $(S, \alpha)$ , let  $[[-]]^{P_{\Sigma}}: (S, \alpha) \to (\nu. P_{\Sigma}, \tau_{P_{\Sigma}})$  be the canonical  $P_{\Sigma}$ -coalgebra

homomorphism, and  $[[-]]^F:(S,\alpha^\epsilon)\to (\nu,F,\tau_F)$  be the canonical F-coalgebra homomorphism (where  $\alpha^\epsilon:=\epsilon_S\alpha:S\to FS$  is an F-coalgebra structure map).

It can be shown using naturality of  $\epsilon$  that the function  $[[-]]^{P_{\Sigma}}: S \to \nu$ .  $P_{\Sigma}(\cong T_{\Sigma})$  is an F-coalgebra homomorphism  $(S, \alpha^{\epsilon}) \to (\nu . P_{\Sigma}, \tau_{P_{\Sigma}}^{\epsilon})(\cong (T_{\Sigma}, \tau_{\Sigma}))$ . Moreover, we have

$$(\nu, F, \tau_F) \cong \left(T_{\Sigma} / \approx , \overline{\tau_{\Sigma}^{\epsilon}}\right),$$

where  $\approx$  is the relation

 $x \approx y \iff \partial_n x = \partial_n y$  for all n. %explain the relation  $\partial_n x = \partial_n y$ 

and  $\overline{\tau_{\Sigma}^{\epsilon}}:T_{\Sigma}/\approx \to F(T_{\Sigma}/\approx)$  is the canonical coalgebra structure that makes  $\approx$  into an F-coalgebra homomorphism



We find by finality that since  $\approx \circ [[-]]^{P_{\Sigma}} : (S, \alpha^{\epsilon}) \to (T_{\Sigma}/\approx , \overline{\tau_{\Sigma}^{\epsilon}})$  is an F-coalgebra homomorphism, we have  $[[-]]^F = \approx \circ [[-]]^{P_{\Sigma}}$ , i.e. the commutative diagram



This gives us the following theorem:

*Notation:* Given an  $P_{\Sigma}$  coalgebra  $(S, \alpha)$ , let

 $s \sim P_{\Sigma}t \iff \exists$ a bisimulation between them in  $(S, \alpha)$  $s \sim Ft \iff \exists$ a bisimulation between them in  $(S, \alpha^{\epsilon})$ 

**Theorem 1.4.3.** Suppose a finitary functor F preserves weak-pullbacks, and  $(S, \alpha)$  is a  $P_{\Sigma}$ -coalgebra (and hence  $(S, \alpha^{\epsilon})$  is an F-coalgebra). Then for  $s, t \in S$ .

$$s \sim P_{\Sigma}t \Longrightarrow s \sim Ft$$

*Proof.* F preserving weak pullbacks guarentees the largest bisimulation  $s \sim {}_F t \iff [[s]]^F = [[t]]^F$  exists on S. It follows that

$$s \sim {}_{P_{\Sigma}}t \Longrightarrow [[s]]^{P_{\Sigma}} = [[t]]^{P_{\Sigma}}$$

$$\Longrightarrow [[s]]^{F} = \approx [[s]]^{P_{\Sigma}} = \approx [[s]]^{P_{\Sigma}} = [[t]]^{F}$$

$$\Longrightarrow s \sim {}_{F}t.$$

**Corollary 1.4.4.** (A Principle of Coinduction on Finitary Functors) Suppose a finitary functor F preserves weak-pullbacks. Then for [s],  $[t] \in T_{\Sigma}/\approx$ , we have

$$s \sim {}_{P_{\Sigma}}t \Longrightarrow [s] = [t].$$

This means that when F has the property of preserving weak pullbacks, we can use bisimulations on  $P_{\Sigma}$  to get bisimulations on F.

# 2. Categorical Measure Theory Preliminaries

#### 2.? Some Concepts

**Definition 1.** A **polish space** is a topological space that is metrizable with a complete metric, and which has a countable dense subset. (see page 13, Doberkat)

**Definition 2.** A separable measurable space (M, M) has a countable set  $(A_n)_{n \in \mathbb{N}} \subset M$  of generators which separate points, i.e. given  $x \neq x' \in M$ ,  $\exists A_n$  containing exactly one of them. (see page 20, Doberkat)

%define analytic space

**Definition 3.** The initial  $\sigma$ -algebra  $\mathcal{M}^* \subset \Delta(M, \mathcal{M})$  that makes all evaulation maps  $\mu \mapsto \mu(E)$  for  $E \in \mathcal{M}$  measurable is called the **weak\*-\sigma-algebra**, (see page 32, Doberkat) where

$$\Delta(M, \mathcal{M}) := \{ \mu : \mathcal{M} \to [0, 1] : \mu \text{ is a subprobability measure} \}.$$

We shall further denote S(M, M) as the  $\sigma$ -algebra  $(\Delta(M, M), M^*)$ .

**Definition 4.** A **stochastic relation**  $K:(M,\mathcal{M}) \rightsquigarrow (N,\mathcal{N})$  between the measurable spaces  $(M,\mathcal{M})$  and  $(N,\mathcal{N})$  is an  $\mathcal{M}-\mathcal{N}^*$ -measurable map.  $K:(M,\mathcal{M})\to S(N,\mathcal{N})$ . (page 33, Doberkat)

$$K:(M,M) \rightsquigarrow (N,N)$$
 will be denoted  $\mathfrak{K}=(M,N,K)$ .

A few things worth noting:

• The function  $S: (M, M) \mapsto (\Delta(M, M), M^*)$  is an endofunctor on Meas if we define  $f: (X, \mathcal{A}) \to (Y, \mathcal{B}) \mapsto S(f)$ , where  $S(f)(\mu)$ , for  $\mu \in S(X, \mathcal{A})$  is the pushfoward measure

$$S(f)(\mu)(B) := \mu(f^{-1}[B]), B \in \mathfrak{B}.$$
 (page 34, Doberkat)

• Given stochastic relations  $\mathcal{K} = (X, Y, K)$ ,  $\mathfrak{L} = (A, B, L)$ , we define a stochastic morphism  $F := (f, g) : \mathcal{K} \to \mathfrak{L}$  as follows:

 $f: X \twoheadrightarrow A, g: Y \twoheadrightarrow B$  measurable epimorphisms such that



commutes.

**Definition 5.** If X is an analytic space with  $\rho$  an equivalence relation on X, we say  $\rho$  is smooth if  $\exists$ sequence  $(A_n)_{n\in\mathbb{N}}$  of Borel sets such that

$$x \rho x' \iff \forall (n \in \mathbb{N})(x \in A_n \iff x' \in A_n).$$

The sequence  $(A_n)_{n\in\mathbb{N}}$  is said to determine  $\rho$ .

**Corollary 6.**  $\rho$  is smooth  $\implies \rho \subset X \times X$  is Borel.

%prove that later

**Definition 7**. We define  $\mathfrak{B}(X)/\rho$  to be the largest  $\sigma$ -algebra C rendering the natural projection  $\eta_{\rho}: X \to X/\rho$  a  $\mathfrak{B}(X)$  – C-measurable map.

NOTE:  $\mathfrak{B}(X/\rho)$  coincides with  $\mathfrak{B}(X)/\rho$ . Moreover X is analytic  $\implies X/\rho$  is analytic.

%show what this means and show that definition 7 is a well-defined concept

**Defintion 8.** Let  $\rho$  be a smooth equivalence relation.

- **a.**  $A \subset X$  is called  $\rho$ -invariant iff  $x \in A$  and  $x \rho x' \Longrightarrow x' \in A$ .
- **b.** Denote by  $\Sigma(\mathfrak{B}(X), \rho)$  the  $\sigma$ -algebra of  $\rho$ -invariant Borel subsets of X.

(page 47, Doberkat)

%show that  $\Sigma(\mathfrak{B}(X), \rho)$  is a  $\sigma$ -algebra on X.

**Definition 9.** Given a stochastic relation  $\mathcal{K}=(X,Y,K)$  with analytic spaces X and Y, a pair  $\mathfrak{c}=(\alpha,\beta)$  of smooth equivalence relations and  $\alpha$  and  $\beta$  on X and Y, respectively, is a **congruence** if K(x)(B)=K(x')(B), whenever x  $\alpha$  x' and  $B\in \Sigma(\mathfrak{B}(Y),B)$  is invariant. (page 53-54, Doberkat)

Proposition 9. TFAE. (page 54, Doberkat)

**a.**  $\mathfrak{c}$  is a congruence for  $\mathfrak{K}$ 

**b**.  $\mathcal{K}^{|}$ :  $(X, \Sigma(\mathcal{B}(X), \alpha) \rightsquigarrow (Y, \Sigma(\mathcal{B}(Y), \beta))$  is a stochastic relation, where  $K^{|}(x)$  is the restriction of K(x) to  $\Sigma(\mathcal{B}(Y), \beta)$ .

%check that both of these definitions are congruences in the conventional sense

**Definition 10.** The factor stochastic relation  $\mathcal{K}/\mathfrak{c}$  is defined canonically through  $\mathcal{K}/\mathfrak{c} := (X/\alpha, Y/\beta, K_{\mathfrak{c}})$ , where

$$K_{\mathfrak{c}}([x]_{\alpha})(B) := K(x) \left( \eta_{\beta}^{-1}[B] \right)$$
$$(= (S(\eta_{\beta}) \circ K)(x)(B).$$

We find that  $\eta_{\mathfrak{c}}:=(\eta_{\alpha},\eta_{\beta})$  is an epimorphism  $\mathfrak{K} \twoheadrightarrow \mathfrak{K}/\mathfrak{c}$  with kernel  $\mathfrak{c}$ .

# 2.? The Giry Monad

# 3. Bisimulations in a General Category

# 3.1 Spans and Cospans in a Category

# 3.2 Bisimulations as Spans

# Bisimulations as Spans:

Definition. A span for a category C is a C-diagram of the form  $A \leftarrow C \rightarrow B$ . A cospan is span in  $C^{op}$ 

Definition. Let  $F: C \to C$  be an endofunctor. Let  $(A, \alpha)$  and  $(B, \beta)$  be F-coalgebras. A

bisimulation  $(C, \gamma)$  is some coalgebra that forms a span  $(A, \alpha) \leftarrow (C, \gamma) \rightarrow (B, \beta)$ 

NOTE: Aczel-Mendler's Definition.

It's worth asking how this definition of a bisimulation relates to the definition in Set.

NOTE: For other versions, see Sam Staton's paper from about 2010

Proposition. Suppose that F is an endofunctor on Set. Let  $(A, \alpha)$  and  $(B, \beta)$  be F-coalgebras.  $(A, \alpha)$  and  $(B, \beta) \iff \exists (R, \gamma)$  such that  $R \subset A \times B$  and

$$(A, \alpha) \stackrel{\pi_1}{\longleftarrow} (R, \gamma) \stackrel{\pi_2}{\longrightarrow} (B, \beta)$$

form a span.

Outline of the proof.

 $\leftarrow$  Trivial.

 $\implies$  Suppose they're bisimilar and choose the bisimulation.  $(A, \alpha) \xleftarrow{f} (C, \gamma) \xrightarrow{g} (B, \beta)$ . We can define

$$aRb \iff \exists c(a = f(c), b = g(c))$$

$$\gamma'((a,b)) = F\phi \circ \gamma(c_{a,b})$$
, for some choice of  $c$  s.t.  $f(c) = a$ ,  $g(c) = b$ 

Next question: How do we relate the intuition of bisimulations in Set to the abstract definition in similar categories, like finitely complete ones.

Proposition. Suppose C is a finitely complete category. Then there exists a span that is the solution of the cospan  $A \to C \leftarrow B$  that is a subobject of  $A \times B$ .

Outline of the Proof. Note that the pullback P of  $A \to C \leftarrow B$  is a subobject of  $A \times B$  (verifying this is done by a diagram chase on the (mono)morphism  $u: P \hookrightarrow A \times B$ .

Proposition. Let C be a finite complete category and let F be an endofunctor on C preserving weak pullbacks. If there is a terminal coalgebra  $(T, \tau)$ , then every pair of coalgebra  $(A, \alpha)$ ,  $(B, \beta)$  is bisimimilar and has a largest bisimulation (with respect to the relation  $u \le v \iff v$  factors u) a subobject of  $A \times B$ .

Outline of the proof. Note that

$$(A, \alpha) \xrightarrow{[[-]]_A} (T, \tau) \xleftarrow{[[-]]_B} (B, \beta)$$

is a cospan in  $\operatorname{Coalg}_F$ . Let L be the C-pullback of  $A \xrightarrow{[[-]]_A} T \xleftarrow{[[-]]_B} B$  and preservation of weak pullbacks induces a largest pullback  $(L, \gamma)$ , which is the largest subobject of  $A \times B$  that satisfies this diagram.  $\square$ 

Larsen & Skou's paper on probabilistic bisimulation Rutten and de Vink (I think) have another early paper on this topic Papers by Prakash Panangaden and his student Josee Desharnais

#### 3.3 Some Important Examples

#### 3.4 Finitary Functors in a General Category

**Defintion 3.1.** A category  $\mathfrak D$  is **filtered** if every finite diagram  $\mathfrak D$  has a cocone. A **filtered colimit** is a colimit of a diagram  $D: \mathfrak D \to \mathcal H$ , where  $\mathfrak D$  is filtered. A **directed colimit** is a colimit of a diagram having a directed poset as its diagram scheme. A functor  $F: \mathcal H \to \mathcal B$ , is called **finitary** if  $\mathcal H$  has all its filtered colimits and F preserves all filtered colimits.

**Lemma 3.2.** A functor is finitary if and only if it preserves directed colimits.

%give examples of finitary functors in this sense (in the more general categorical setting)

**Definition 3.3.** An object  $C \in C$  is called **finitely presentable (fp)** if its hom-functor C(C, -) is finitary and **finitely generated (fg)** if C(C, -) preserves directed colimits of monos (i.e. all connecting morphisms in C are monic). Subobjects  $m : M \hookrightarrow C$  of  $C \in C$  with M finitely generated are called **finitely generated subobjects**.

%give examples of this

Clearly, every fp object is fg, but not conversely in general.

*Notation:* For a category  $\mathcal A$  we denote by  $\mathcal A_{fp}$  and  $\mathcal A_{fg}$  the full subcategories of  $\mathcal A$  respresenting (up to isomorphism) all finitely presentable and finitely generated objects, respectively.

**Definition 3.4.** We call  $\mathcal{A}$  a **locally finitely presentable (Ifp)** category, if it is cocomplete,  $\mathcal{A}_{fp}$  is small, and every object is a colimit of a filtered diagram in  $\mathcal{A}_{fp}$ .

**Defintiion 3.5.** for a functor F, if for every object X of  $\mathcal{A}$ , every finitely generated subobject of FX in  $\mathcal{B}$  is factorized through the image by F of a finitely generated subobject of X in  $\mathcal{A}$ , then we call F **finitely bounded**.



%give examples of this, and show that this definition generalizes the one in Set %define locally finitely generated functors and read up its uses; A New Foundation for Finitary Corecursion section 3 (page 11-17)

%talk about strict locally finite presentability and equivalent concepts; On Finitary Functors 3.9-3.16 (page 11-14)

**Theorem 3.6.** A functor between strictly Ifp categories is finitary iff it is finitely bounded.

# 4. Coalgebraic Modal Logic on Set

# 4.1 Modal Logic and Kripke Semantics

# **Overview of Kripke Models:**

#### **Nondeterministic Kripke Models:**

For a family O of n-ary modal operation symbols, Kripke models are usually defined as  $\Re = (S, R_{\tau}, [[-]]_{\Re})$ , where:

• *S* is a state space.

• 
$$R_{\tau} := (R_{\Delta})_{\Delta \in \mathcal{O}}, \ R_{\Delta} : S \to \mathcal{P}(S^{\operatorname{ar}(\Delta)}).$$

• Some valuation map  $[[-]]_{\mathcal{R}}: P \to \mathcal{P}(S)$ .

Modal Logic on this system consists of variables and connectives

$$\mathfrak{M}(\tau, P): P \mid \top \mid \neg \mid \land \mid \lor \mid \Delta \in O.$$

We can extend  $[[-]]_{\mathcal{R}}$  to a function  $\mathfrak{M}(\tau, P) \to \mathcal{P}(S)$  using recursion on the connectives, and define a satisfaction relation  $\models$  defined for  $\mathcal{R} = (S, R_{\tau}, [[-]]_{\mathcal{R}})$  as follows:

$$\Re, s \vDash p \iff s \in [[p]]_{\Re},$$
 $\Re, s \vDash \top$  (atomic cases)

$$\begin{array}{l} \mathbb{R},s\vDash\neg\phi\Longleftrightarrow\mathbb{R},s\not\vDash\phi\Longleftrightarrow s\in[[\neg\phi]]_{\mathbb{R}}:=\mathbb{P}(P)\setminus[[\phi]]_{\mathbb{R}}\\ \mathbb{R},s\vDash\phi_{1}\wedge\phi_{2}\Longleftrightarrow\mathbb{R},s\vDash\phi_{1}\text{ and }\mathbb{R},s\vDash\phi_{2}\Longleftrightarrow s\in[[\phi_{1}\wedge\phi_{2}]]_{\mathbb{R}}:=[[\phi_{1}]]_{\mathbb{R}}\wedge[[\phi_{2}]]_{\mathbb{R}}\\ \mathbb{R},s\vDash\Delta(\phi_{1},\ldots,\phi_{\operatorname{ar}(\Delta)})\Longleftrightarrow\exists(s_{1},\ldots,s_{\operatorname{ar}(\Delta)})\in R_{\Delta}(s):\mathbb{R},s_{i}\vDash\phi_{i}\text{ for }1\leq i\leq\operatorname{ar}(\Delta). \end{array}$$

We then define

$$\mathsf{Th}_{_{\mathfrak{R}}}(s) := \{ \phi \in \mathfrak{M}(\tau, P) : \mathfrak{R}, s \vDash \phi \}$$

and call it the theory of states s in  $\mathbb{R}$ .

We now turn to the semantical consequence relation  $\vDash$  . In the context of modal logic, one distinguishes between two different such relations: If  $\phi$  and  $\psi$  are modal formulas, one calls  $\psi$  a **global consequence** of  $\phi$ , if

$$\forall s \in S \ (\Re, s \vDash \phi) \Longrightarrow \forall s \in S(\Re, s \vDash \psi)$$

for all  $\Re \in \operatorname{Mod}(O, P)$ . The class of models, which globally satisfy  $\phi$  is a subclass of the models of  $\psi$ .

For  $\phi$ ,  $\psi$ , we say that  $\psi$  is a **local consequence** of  $\phi$  if

$$\forall s \in S(\mathcal{R}, s \vDash \phi \Longrightarrow \mathcal{R}, s \vDash \psi)$$

for all  $\mathbb{R} \in \mathsf{Mod}(\mathsf{O},P)$ . If  $\psi$  is a local consequence of  $\phi$ , we write  $\phi \vDash \psi$ .

First we'll do standard Kripke Models

Example 1. This is a standard kripke model S that models rolling a dice until the first one comes up after sume number of rolls. We first set

 $P = \{T, U, F\}$ , where T denotes "true", F denotes "false", and U denotes "undetermined".



$$S := \{s_1, s_2, s_3\}$$

$$\alpha : s_1 \mapsto \{s_2, s_4\}, \ s_2 \mapsto \{s_1, s_3\}, \ s_3 \mapsto \{s_3\}, \ s_4 \mapsto \{s_4\}$$

$$[[T]]_S = \{s_1\}, \ [[F]]_S = \{s_3\}, \ [[U]] = \{s_1, s_2\}$$

Example 2. Let P still be  $\{T, F, U\}$ :



$$S' := \{s_1', s_2', s_3'\}$$

$$\alpha' : s_1' \mapsto \{s_1'\}, s_2' \mapsto \{s_2\}, s_3' \mapsto \{s_1', s_2'\}$$

#### Remarks:

- 1. Homomorphism  $f: S \to S'$  mapping  $s_1, s_2 \mapsto s_3', \ s_3 \mapsto s_2', \ s_4 \mapsto s_1'$
- 2. Add probabilities to them to make these kripke models stochastic

Example 3. For  $P:=\{p_{x>q}:q\in\mathbb{Q}\cap[0,1]\}$  let  $\mathbb{Q}:=(Q,\alpha)$  be defined by

$$\alpha(r) := (r, 1] \cap \mathbb{Q}$$

$$p_{x>q}, r \vDash \mathbf{Q} \iff r > q.$$

Example 4. For  $P:=\{p_{x>q}:q\in\mathbb{Q}\cap[0,1]\}$  let  $\Re:=(R,\xi)$  be defined by

$$\xi(r):=(r,1]$$

$$p_{x>q}, r \models \Re \iff r > q.$$

#### Remarks:

1. Talks about all finite collections of open rays and left edpoint open intervals

- 2. the extension mapping  $i: Q \hookrightarrow \Re$  is a kripke model homomorphism.
- 3. One can probably verify by structural induction, and cases on an endpoints vs. points in between that Q is logically equivalent to R; however, it can also be shown that Q and R are neither behaviorally equivalent nor bisimilar.

%standard kripke model examples in regular modal logic with diamond modality, as well as examples where Hennessy-Milner fails %examples of stochastic kripke models

#### 4.2 Coalgebraic Interpretation of Kripke Models

#### Kripke Models Done Coalgebraically:

#### Nondeterministic Case:

Can be discussed as a coalgebra for the following  $F \in \text{End}(\text{Set})$ :

$$F = \left[\prod_{\Delta \in \mathcal{O}} \mathcal{P}\left(-^{\mathsf{ar}(\Delta)}\right)\right] \times \mathcal{P}(P)$$

We find that an F-coalgebra  $(S, \alpha)$  has the data

$$\alpha := ((\alpha_{\Delta})_{\Delta \in \mathcal{O}}, \alpha_P) : S \to F(S),$$

and it can be shown that for the category  $\operatorname{Mod}(O,P)$  of objects as nonstochastic Kripke Models  $\Re$  and morphisms  $h:(S,R_{\tau},[[-]]_{\Re})\to (S',R'_{\tau},[[-]]_{\Re'})$  Kripke Model homomorphisms, i.e., functions  $h:S\to S'$  such that

$$\forall \Delta \in \mathcal{O}(R'_{\Delta}(h(s)) = h[R_{\Delta}(s)]) \text{ and } \forall (p \in P)([[p]]_{\mathcal{R}'} = h[[[p]]_{\mathcal{R}}]),$$

we have

$$\mathsf{Mod}(\tau,P) \cong \mathsf{Coalg}_F \cong \left(\prod_{\Delta \in \mathsf{O}} \mathsf{Coalg}_{_{\mathcal{P} \circ (-)}^{\mathsf{ar}(\Delta)}}\right) \times \mathsf{Coalg}_{_{\mathcal{P}(P)}},$$

%NOTE: Last isomorphism claim is incorrect

where the product  $\times$  and  $\Pi$  to the right refers to the product category in Cat.

The one point of concern is  $\alpha_P: S \to \mathcal{P}(P)$  defined by  $\alpha_P(s) \subset P$ , which on the surface looks different from  $[[-]]_{\mathcal{R}}: P \to \mathcal{P}(S)$ , but we find that that in Set, we have

$$\operatorname{Hom}_{\operatorname{Set}}(P, \mathcal{P}(S)) \cong \operatorname{Hom}_{\operatorname{Set}}(P \times S, 2) \cong \operatorname{Hom}_{\operatorname{Set}}(S, \mathcal{P}(P))$$

giving us the one-to-one correspondence:

$$\alpha_P: S \to \mathcal{P}(P) \longleftrightarrow [[-]]_{\alpha,P}: P \to \mathcal{P}(S), \ s \in [[p]]_{\alpha,P} \Longleftrightarrow p \in \alpha_P(s).$$

#### **Applying This to ◊-Modal Logic:**

Specifically, ◊-modal logic has the alphabet

$$\mathfrak{M}(\tau, P): P \mid \top \mid \neg \mid \land \mid \lor \mid \diamond$$

with  $\diamond \phi$  being the formula "it's possible that  $\phi$ ". From this, we can derive all the other connectives of modal logic, including the other modal operator  $\Box$ , from the listed connectives, as follows:

$$\bot := \neg \top 
\phi \subset \psi := \neg \phi \lor \psi, 
\Box \phi := \neg \Diamond \neg \phi 
\phi \to \psi := \Box (\phi \subset \psi)$$

and kripke models of  $\diamond$ -modal logic are the coalgebras  $(S, \alpha)$  for  $\alpha := (\alpha_{\diamond}, \alpha_P) : S \to \mathcal{P}(S) \times \mathcal{P}(P)$ .

# 4.3 Finitely Branching Hennessy-Milner Theorem and Consequences

# Behavioral Equivalence, Strong Bisimulations, and Logical Equivalence:

**Definition.** A morphism  $f: \mathbb{R} \to \mathbb{R}'$  between two Kripke models  $\mathbb{R} = (S, (R_\Delta)_{\Delta \in O}, [[-]]_{\mathbb{R}}), \mathbb{R}' = (S', (R'_\Delta)_{\Delta \in O}, [[-]]_{\mathbb{R}'})$  in the category KrMod(O, P), i.e., a morphism  $f: S \to S'$  in Set such that

1. 
$$R'_{\Delta} \circ f = \mathfrak{P} f \circ R_{\Delta}$$
, or  $(R'_{\Delta} \circ f)(s) = f[R_{\Delta}(s)]$  for all  $s \in S$ , 2.  $[[-]]_{R'} = \mathfrak{P} f \circ [[-]]_{R}$ , or  $[[p]]_{R'} = f[[[p]]_{R}]$  for all  $p \in P$ ,

is defined to be a **strong morphism** if f is surjective (or equivalently, an epimorphism in Set).

%note difference between "strong morphism" and epimorphism

**Definition**. Two Kripke models  $\Re = (S, (R_{\Delta})_{\Delta \in \mathcal{O}}, [[-]]_{\Re})$  and  $\Re' = (S', (R'_{\Delta})_{\Delta \in \mathcal{O}}, [[-]]_{\Re'})$  are:

#### 1. Logically equivalent if

$$\left\{\operatorname{Th}_{\mathcal{R}}(s): s \in S\right\} = \left\{\operatorname{Th}_{\mathcal{R}'}(s'): s' \in S'\right\},\,$$

i.e., if for every  $s \in S$ , there exists  $s' \in S'$  such that  $\operatorname{Th}_{\mathcal{R}}(s) = \operatorname{Th}_{\mathcal{R}'}(s')$ .

- 2. **Bisimilar** if there exists a span  $\mathbb{R} \stackrel{f}{\longleftarrow} \mathbb{M} \stackrel{f'}{\longrightarrow} \mathbb{R}'$  of strong morphisms f, f' in the category  $\mathsf{KrMod}(O,P)$  that is nontrivial in the sense that there exists some m in the state space M of M such that f(m) = s and f'(m) = s' (i.e. the set M is not empty).
- 3. **Behaviorly Equivalent** if there exists a cospan  $\mathbb{R} \xrightarrow{g} \mathbb{N} \xleftarrow{g'} \mathbb{R}'$  of strong morphisms g, g' in the category KrMod(O, P).

**Theorem.** (Hennessy-Milner) let  $\mathbb R$  and  $\mathbb R'$  be finitely branching Kripke models. The following are equivalent.

- 1.  $\mathbb{R}$  and  $\mathbb{R}'$  are logically equivalent.
- 2.  $\mathbb{R}$  and  $\mathbb{R}'$  are strongly bisimilar.
- 3.  $\mathbb{R}$  and  $\mathbb{R}'$  are behaviorly equivalent.

%figure out how to generalize theorem and proof to various settings %try to come up with generalization to concrete categories (and refer to notes for general categorical generalization)

# **Proving the Hennessy-Milner Theorem:**

**Theorem.** (Hennessy-Milner) let  $\Re$  and  $\Re'$  be finitely branching Kripke models. The following are equivalent.

1. S and  $S^\prime$  are logically equivalent.

- 2. S and S' are strongly bisimilar.
- 3. S and S' are behaviorly equivalent.

First, let's prove the easy stuff

**Lemma.** If  $\Phi: S \to S'$  is a kripke model morphism, then  $\mathrm{Thm}_{S'}(s) = \mathrm{Thm}_{S'}(\Phi(s))$ .

#### Corollary.

- 1. If s and s' are states in S and S' respectively such that  $s \sim s'$ , then  $\text{Thm}_{S'}(s) = \text{Thm}_{S'}(s')$ .
- 2. If  $\Phi: S \to S'$  is a strong morphism, then they are logically equivalent.
- 3. 1.  $\Longrightarrow$  2. and 1.  $\Longrightarrow$  3. of the Hennessy-Milner Theorem.

Now to prove finitely branching kripke models give us the converse of the Hennessy-Milner Theorem.

**Theorem.**  $W := (W, \delta)$  defined by

$$W := \left\{ \mathsf{Thm}_{(S,\alpha)}(s) : s \in S \text{ and } \alpha : S \to \mathcal{P}_f(S) \times \mathcal{P}(P) \text{ and } S \text{ is countable} \right\}$$

 $\delta$  is a final  $\mathcal{P}_f \times \mathcal{P}(P)$ -coalgebra.

**Theorem.** The relation  $\operatorname{Thm}_S(s) = \operatorname{Thm}_{S'}(s')$  for s and s' states in  $\mathcal{P}_f \times \mathcal{P}(P)$ -coalgebras  $S := (S, \alpha)$  and  $\mathcal{T} := (\mathcal{T}, \tau)$ , respectively defines a bisimulation on S.

Corollary. 2.  $\Longrightarrow$  1.

# 4.4 Potential Ways to Generalize the Hennessy-Milner Theorem

# **Generalizations of the Hennessy-Milner Theorem:**

Hennessy-Milner Theorem does not generalize to arbitrary Kripke models (in Set, that is), not even countably branching Kripke models, in spite of the countable power-set functor  $\mathcal{P}_{\omega}$  having an initial algebra.

The closest thing to a generalization of the Hennessy-Milner theorem (for countably

branching Kripke models) is the following theorem:

**Theorem.** For the modification of modal logic with countable disjunctions (and therefore countable conjunctions using negation plus DeMorgan's Laws) and states  $s,s'\in S$  for some countably branching Kripke model  $\mathfrak{K}:=(S,\alpha)$  (i.e.,  $\alpha:S\to\mathcal{P}(S)\times\mathcal{P}_{\omega}(S)$ ), we have  $\mathrm{Thm}_{\mathfrak{K}}(s)=\mathrm{Thm}_{\mathfrak{K}}(s')\Longleftrightarrow s\sim s'.$ 

(and it's worth noting that proving this theorem is pretty similar to proving the finite case, and likely generalizes to modal logic with arbitrary  $\kappa$ -length disjunctions in a Kripke model that is up to  $\kappa$ -length branching)

A good question is: Where do we go from here? Well there's two possibilities that come to mind:

1. Try to see whether analogous Hennessy-Milner Theorems work for Functors on the Category of Measurable spaces, or other categories where it makes sense to talk about states and theories (i.e., any concrete category)

%define concrete category

2. Find other ways to talk about bisimulations on varous coalgebraic settings (whether they're directly or indirectly related to modal logic). For example,  $\mathcal{P}_{\omega}$  (and more generally  $\mathcal{P}_{\kappa}$ , for any cardinal  $\kappa$ ) preserves the limit for some ordinal chain (i.e., the sequence  $\left(\mathcal{P}_{\kappa}^{\alpha}(1)|\alpha\in\mathsf{ON}\right)$  has some fixed point), and also preserves weak pullbacks. Therefore, bisimulation conditions exist. They may not be the ones we find "sexy" (in the sense of a kind of some Hennessy-Milner-type construction), but one can still find rather simple bisimulation conditions that yield some kind of coinductive condition on a given coalgebraic structure. I plan to do this much for any finitary functor.

# 5. Stochastic Coalgebraic Modal Logic

# 5.1 Stochastic Kripke Semantics and Coalgebraic Interpretation

#### **Stochastic Kripke Models:**

For a family O of *n*-ary modal operation symbols, Kripke models are usually defined as  $\mathcal{K} = ((S, \mathcal{A}), K_{\tau}, [[-]]_{\mathcal{K}})$ , where:

• S is a state (measurable) space  $(S, \mathcal{A})$ .

- $K_{\tau} := (K_{\Delta})_{\Delta \in \mathcal{O}}$ , a family of stochastic relations  $K_{\Delta} : S \leadsto S^{\operatorname{ar}(\Delta)}$
- Some valuation map  $[[-]]_{\mathcal{K}}: P \to \mathcal{F}$ .

Modal Logic on this system consists of variables and connectives

$$\Re(\tau, P): P \mid \top \mid \neg \mid \land \mid \lor \mid \Delta_q, \Delta \in O, q \in \mathbb{Q} \cap [0, 1]$$

%correct syntax

#### **Stochastic Case:**

Can be discussed as a coalgebra for the following  $G \in \text{End}(\text{Meas} \times \text{Set})$ :

$$G = \left( \left[ \prod_{\Delta \in \mathcal{O}} \mathfrak{S} \left( -^{\mathsf{ar}(\Delta)} \right) \right], \mathcal{P}(P) \right)$$

We find that an G-coalgebra  $(S, \alpha)$  has the data

$$\gamma := ((\gamma_{\Delta})_{\Delta \in \mathcal{O}}, \gamma_P) : (S, \mathcal{A}) \to G(S, \mathcal{A}).$$

NOTE: G has an additional Set input, but the Set input doesn't change the output, and the Set output is a set function  $\gamma_P: S \to \mathcal{P}(P)$ .

It can be shown that for the category StMod(O, P) of objects as stochastic Kripke models K and morphisms  $h: (S, K_{\tau}, [[-]]_{K}) \to (S', K'_{\tau}, [[-]]_{K'})$  stochastic Kripke model homomorphisms, i.e., functions  $h: S \to S'$  such that

$$\forall \Delta \in \mathcal{O}(K'_{\Delta}(h(s)) = h[K_{\Delta}(s)]) \text{ and } \forall (p \in P)([[p]]_{\mathcal{K}'} = h[[[p]]_{\mathcal{K}}]),$$

we have

$$\mathsf{StMod}(\tau,P) \cong \mathsf{Coalg}_G \cong \left(\prod_{\Delta \in \mathcal{O}} \mathsf{Coalg}_{\mathfrak{S} \circ (-)^{\mathsf{ar}(\Delta)}}\right) \times \mathsf{Coalg}_{\mathfrak{P}(P)}.$$

%NOTE: Last isomorphism claim is incorrect

Note that  $\operatorname{Coalg}_{\mathfrak{S}_{\circ}(-)^{\operatorname{ar}(\Delta)}}$ , for every  $\Delta\in O$  is a coalgebra of a Meas-endofunctor and  $\operatorname{Coalg}_{\mathfrak{P}(P)}$  is a coalgebra of a Set-endofunctor. It would be ideal if there was a way find an endofunctor

G that was completely in Meas, but the exponential trick that was used to make nondeterministic Kripke model into a Set-endofunctor is harder (and may not be able to be) employed for Stochastic Kripke models, since given a state S, we must be able to express any arbitrary Set-function  $[[-]]_{\mathcal{K}}: P \to \mathcal{A}$ , i.e. an element of  $\operatorname{Hom}_{\operatorname{Meas}}((P, \mathcal{P}(P)), (\mathcal{A}, \mathcal{P}(\mathcal{A}))$  as some  $(S, \mathcal{A})$ -measurable function to some  $\sigma$ -algebra  $(\mathcal{P}(P), [[\mathcal{A}]])$ , such that

$$\operatorname{Hom}_{\operatorname{Meas}}((S,\mathcal{A}),(\mathcal{P}(P),[[\mathcal{A}]]))\cong \operatorname{Hom}_{\operatorname{Meas}}((P,\mathcal{P}(P)),(\mathcal{A},\mathcal{P}(\mathcal{A})),$$

and it is not clear there exists a  $\sigma$ -algebra [[ $\mathcal{A}$ ]] that leads to this isomorphism. In fact, it holds that the category Meas does not contain all its exponential objects.

# 5.2 Hennessy-Milner Theorem for Stochastic Kripke Models

# 5.3 $\mu$ CSL and Analogous Results

%come up with contents based on reading course