1. Să se calculeze $\int_0^1 (x^2 + x) dx$. (5 pct.)

a)
$$\frac{1}{6}$$
; b) 1; c) $\frac{2}{3}$; d) 2; e) 3; f) $\frac{5}{6}$.

Soluție. Prin calcul direct, aplicând formula Leibnitz-Newton, obținem

$$\int_0^1 (x^2 + x) dx = \left(\frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_0^1 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}.$$

2. Suma soluțiilor ecuației $\sqrt{x^2 - 9} = 4$ este: (5 pct.)

Soluție. Radicalul există pentru $x^2 - 9 \ge 0 \Leftrightarrow x \in (-\infty, -3] \cup [3, \infty)$. Ridicând la pătrat ambii membri ai ecuației, obținem $x^2 - 9 = 16 \Leftrightarrow x^2 = 25$, deci $x \in \{\pm 5\} \subset (-\infty, -3] \cup [3, \infty)$. Prin urmare rădăcinile ecuației sunt -5 și 5, iar suma lor este 0.

3. Fie $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ Calculați A^3 . (5 pct.)

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
; b) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; d) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; e) $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$; f) $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.

Soluţie. Se observă că $A^2 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$, deci $A^3 = A^2 \cdot A = I_2 \cdot A = A$, deci $A^3 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.

4. Să se rezolve ecuația $\frac{2x+1}{x+2}=1$. (5 pct.)

a)
$$x = 1$$
; b) $x = -2$; c) $x = -\frac{1}{2}$; d) $x = 2$; e) $x = \sqrt{2}$; f) $x = \sqrt[3]{2}$.

Soluţie. Se impune condiţia $x+2\neq 0 \Leftrightarrow x\neq -2$. Ecuaţia devine 2x+1=x+2, de unde x=1.

5. Să se rezolve ecuația $3^{x+1} = 3^{4x}$. (5 pct.)

a) 2; b)
$$\frac{1}{3}$$
; c) $-\frac{1}{3}$; d) -1 ; e) $\frac{2}{3}$; f) 0.

Soluție. Din $3^{x+1} = 3^{4x}$ rezultă x + 1 = 4x, de unde $x = \frac{1}{3}$.

6. Câte numere naturale x verifică inegalitatea $x < \frac{9}{x}$? (5 pct.)

a) şase; b) două; c) patru; d) niciunul; e) unul; f) cinci.

Soluţie. Avem $x < \frac{9}{x} \Leftrightarrow \frac{x^2 - 9}{x} < 0$. Dar $x \in \mathbb{N}^* \Rightarrow x > 0$, deci inecuaţia este echivalentă cu $x^2 - 9 < 0$ și deci $x \in (-3,3)$. Cum $x \in \mathbb{N}^*$, rezultă $x \in (-3,3) \cap \mathbb{N}^* = \{1,2\}$.

7. Dacă x și y verifică sistemul $\begin{cases} 2x+y=2-3m \\ x-y=1-3m \end{cases}$, atunci x+2y este egal cu: **(5 pct.)**

a) 1; b) 0; c)
$$2m + 1$$
; d) $m - 1$; e) m ; f) 2.

Soluție. Scăzând membru cu membru ecuația a doua din prima ecuație, obținem x + 2y = 1.

8. Să se calculeze $\lim_{x\to\infty}\frac{x^2}{x^2+1}$. (5 pct.)

a) nu există limita; b) 2; c) 1; d) 0; e)
$$\frac{1}{2}$$
; f) $+\infty$.

Soluție. Dând factor forțat x^2 la numitor, simplificând și apoi trecând la limită, obținem

$$\lim_{x \to \infty} \frac{x^2}{x^2 + 1} = \lim_{x \to \infty} \frac{x^2}{x^2 (1 + \frac{1}{x^2})} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x^2}} = 1.$$

9. Produsul soluțiilor ecuației $2x^2 - 5x + 2 = 0$ este: (5 pct.)

a)
$$-\frac{5}{2}$$
; b) 0; c) 1; d) $\frac{5}{2}$; e) 4; f) -1.

Soluție. Notăm cu $x_{1,2}$ soluțiile ecuației. Din relațiile Viète, obținem $x_1x_2 = \frac{2}{2} = 1$.

10. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x^2 + 3x - e^x$. Să se calculeze f'(0). (5 pct.) a) 3; b) 1; c) e^2 ; d) $\frac{1}{2}$; e) 0; f) 2.

Soluţie. Avem $f'(x) = 3x^2 + 4x + 3 - e^x$, deci f'(0) = 3 - 1 = 2.

11. Să se calculeze $(1+i)^2$. (5 pct.)

a)
$$-i$$
; b) $2i$; c) 3; d) 0; e) i ; f) 1.

Soluție. Prin calcul direct, obținem $(1+i)^2 = 1 + 2i - 1 = 2i$.

12. Să se rezolve inecuația $\frac{x}{2} - 1 < \frac{x}{3} + 2$. (5 pct.)

a)
$$x \ge 20$$
; b) $x > 20$; c) $x \le 18$; d) $x > 24$; e) $x = 21$; f) $x < 18$.

Soluție. Inecuația se rescrie

$$\frac{x}{2} - 1 < \frac{x}{3} + 2 \Leftrightarrow \frac{x}{2} - \frac{x}{3} < 1 + 2 \Leftrightarrow \frac{x}{6} < 3 \Leftrightarrow x < 18.$$

13. Suma rădăcinilor polinomului $X^3 - 3X^2 + 2X$ este: (5 pct.)

a)
$$\frac{1}{3}$$
; b) $\frac{1}{2}$; c) 3; d) 2; e) 0; f) 1.

Soluție. Dacă x_1, x_2, x_3 sunt rădăcinile polinomului, din relațiile Viète rezultă $x_1 + x_2 + x_3 = -\frac{-3}{1} = 3$.

14. Numărul punctelor de extrem ale funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x}{x^2 + 1}$ este: (5 pct.)

Soluție. Calculăm derivata, $f'(x) = \frac{1-x^2}{(x^2+1)^2}$, iar ecuația f'(x) = 0 are soluțiile $x \in \{\pm 1\}$. Tabloul de variație este:

x	$-\infty$		-1		1		∞
$1 - x^2$	_	_	0	+	0	_	_
f'(x)	_	_	0	+	0	_	_
f(x)	×	\searrow	$-\frac{1}{2}$ (minim)	7	$\frac{1}{2}$ (maxim)	¥	¥

Prin urmare funcția are două puncte de extrem: punctul de minim local $(-1, -\frac{1}{2})$ și punctul de maxim local $(1, \frac{1}{2})$.

15. Să se rezolve ecuația $\log_2 x = -1$. (5 pct.)

a)
$$x = -\frac{1}{2}$$
; b) $x = e$; c) $x = 1$; d) $x = 0$; e) $x = 2$; f) $x = \frac{1}{2}$.

Soluție. Condiția de existența a logaritmului este x > 0. Avem $\log_2 x = -1 \Leftrightarrow x = 2^{-1} = \frac{1}{2}$.

16. Să se calculeze limita șirului $(a_n)_{n\in\mathbb{N}}$ definit prin $a_n = \sum_{k=0}^n \frac{k+1}{3^k}$. (5 pct.)

a)
$$\frac{7}{2}$$
; b) $\frac{9}{4}$; c) 2; d) $\frac{5}{2}$; e) $\frac{7}{3}$; f) 3.

Soluție. Calculăm în prealabil suma $S=1+2q+3q^2+\ldots+(n+1)q^n$. Avem

$$qS - S = (n+1)q^{n+1} - (1+q+q^2+\ldots+q^n)$$

$$= (n+1)q^{n+1} - \frac{q^{n+1}-1}{q-1}$$

$$= \frac{(n+1)q^{n+2} - (n+2)q^{n+1} + 1}{q-1},$$

de unde rezultă $S=\frac{(n+1)q^{n+2}-(n+2)q^{n+1}+1}{(q-1)^2}.$ Pentru $q=\frac{1}{3},$ obținem

$$a_n = \sum_{k=0}^{n} \frac{k+1}{3^k} = \frac{(n+1)(\frac{1}{3})^{n+2} - (n+2)(\frac{1}{3})^{n+1} + 1}{(\frac{1}{3}-1)^2},$$

de unde
$$a_n = \frac{9}{4} \left(\frac{n+1}{3^{n+2}} - \frac{n+2}{3^{n+1}} + 1 \right)$$
. Deci $\lim_{n \to \infty} a_n = \frac{9}{4}$.

17. Fie $f:(-\infty,1)\cup(1,\infty)\to\mathbb{R},\, f(x)=\frac{x^2+mx+1}{x-1}$. Să se determine $m\in\mathbb{R}$ astfel încât dreapta y=x+2 să fie asimptotă la graficul funcției f. (5 pct.)

a)
$$m = \sqrt{2}$$
; b) $m = -\sqrt{2}$; c) $m = -1$; d) $m = 1$; e) $m = 2$; f) $m = 0$.

Soluţie. Dacă dreapta y=ax+b este asimptotă la graficul funcției f pentru $x\to\infty$, atunci $a=\lim_{x\to\infty}\frac{f(x)}{x}$ și $b=\lim_{x\to\infty}(f(x)-ax)$. Prin urmare $a=\lim_{x\to\infty}\frac{x^2+mx+1}{x(x-1)}=1$ și

$$b = \lim_{x \to \infty} \left(\frac{x^2 + mx + 1}{x - 1} - x \right) = \lim_{x \to \infty} \frac{(m+1)x + 1}{x - 1} = \lim_{x \to \infty} \frac{x(m+1 + \frac{1}{x})}{x(1 - \frac{1}{x})} = \lim_{x \to \infty} \frac{m + 1 + \frac{1}{x}}{1 - \frac{1}{x}} = m + 1.$$

Rezultă m + 1 = 2, de unde m = 1.

18. Să se calculeze rația r a unei progresii aritmetice cu $a_1 = 1$ și $a_4 = 7$. (5 pct.)

a)
$$r = 6$$
; b) $r = 7$; c) $r = \frac{1}{2}$; d) $r = \sqrt{2}$; e) $r = -2$; f) $r = 2$.

Soluţie. Deoarece $a_4 = a_1 + 3r$, avem 7 = 1 + 3r, de unde r = 2.