Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Подключение библиотек для анализа данных

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV
from sklearn.neighbors import KNeighborsRegressor
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from warnings import simplefilter
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator

##warnings.simplefilter('ignore')
```

Загрузка датасета из файла FIFA 2018 Statistics.csv

```
data = pd.read_csv('FIFA 2018 Statistics.csv')
```

Проверка данных

data.head()																				
	Date	Team	Opponent	Goal Scored	Ball Possession %	Attempts	On- Target	Off- Target	Blocked	Corners		Yellow Card	Yellow & Red	Red	Man of the Match	1st Goal	Round	PSO	Goals in PSO	Ov goa
0	14- 06- 2018	Russia	Saudi Arabia	5	40	13	7	3	3	6		0	0	0	Yes	12.0	Group Stage	No	0	Nε
1	14- 06- 2018	Saudi Arabia	Russia	0	60	6	0	3	3	2		0	0	0	No	NaN	Group Stage	No	0	Nε
2	15- 06- 2018	Egypt	Uruguay	0	43	8	3	3	2	0		2	0	0	No	NaN	Group Stage	No	0	Ne
3	15- 06- 2018	Uruguay	Egypt	1	57	14	4	6	4	5		0	0	0	Yes	89.0	Group Stage	No	0	Nε
4	15- 06- 2018	Morocco	Iran	0	64	13	3	6	4	5		1	0	0	No	NaN	Group Stage	No	0	1

5 rows × 27 columns

Видим, что данные загружены корректно. Разбиения по строкам и столбцам произведены верно. Проблем с кодировкой не возникло. Узнаем размер датасета:

```
print(f'Количество записей: {data.shape[0]}\nKоличество параметров: {data.shape[1]}')
Количество записей: 128
Количество параметров: 27
```

Очистка данных

Посмотрим краткую информацию обо всех параматрах датасета:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 128 entries, 0 to 127
Data columns (total 27 columns):
                               128 non-null object
Date
Team
                               128 non-null object
Opponent
                               128 non-null object
Goal Scored
                              128 non-null int64
Ball Possession %
                             128 non-null int64
128 non-null int64
Attempts
                             128 non-null int64
On-Target
Off-Target
Blocked
Corners
Offsides
Free Kicks
                              128 non-null int64
Saves
                             128 non-null int64
Pass Accuracy %
Passes
                               128 non-null int64
Distance Covered (Kms) 128 non-null int64
Fouls Committed
                              128 non-null int64
Yellow Card
                               128 non-null int64
Yellow & Red
                              128 non-null int64
Red
                              128 non-null int64
Red
Man of the Match
                             128 non-null object
94 non-null float64
1st Goal
Round
                               128 non-null object
PSO
Goals in PSO
                             128 non-null object
128 non-null int64
                              12 non-null float64
Own goal Time
                               12 non-null float64
dtypes: float64(3), int64(18), object(6) memory usage: 27.1+ KB
```

Видим, что в датасете присутствуют нулевые значения. выведем список параметров датасета и для каждого из них найдём количество null значений.

```
for column in data.columns:
   print(f'{column}: {data[column].isnull().sum()} null values')
Date: 0 null values
Team: 0 null values
Opponent: 0 null values
Goal Scored: 0 null values
Ball Possession %: 0 null values Attempts: 0 null values
On-Target: 0 null values
Off-Target: 0 null values
Blocked: 0 null values
Corners: 0 null values
Offsides: 0 null values
Free Kicks: 0 null values
Saves: 0 null values
Pass Accuracy %: 0 null values
Passes: 0 null values
Distance Covered (Kms): 0 null values
Fouls Committed: 0 null values
Yellow Card: 0 null values
Yellow & Red: 0 null values
Red: 0 null values
Man of the Match: 0 null values 1st Goal: 34 null values
Round: 0 null values
PSO: 0 null values
Goals in PSO: 0 null values
Own goals: 116 null values
Own goal Time: 116 null values
```

Заметим, что столбцы Own goals и Own goal Time имеют большинство (116 из 128) строк, поэтому удалим эти столбцы

```
data = data.drop(['Own goals'], axis =1)

data = data.drop(['Own goal Time'], axis =1)

data.head()
```

data.head()

Date	Team	Opponent	Goal Scored	Ball Possession %	Attempts	On- Target	Off- Target	Blocked	Corners	 Distance Covered (Kms)	Fouls Committed	Yellow Card	Yellow & Red	Red	Man of the Match	1st Goal	Rc
14- 0 06- 2018	Russia	Saudi Arabia	5	40	13	7	3	3	6	 118	22	0	0	0	Yes	12.0	G S
14- 1 06- 2018	Saudi Arabia	Russia	0	60	6	0	3	3	2	 105	10	0	0	0	No	NaN	G S
15- 2 06- 2018	Egypt	Uruguay	0	43	8	3	3	2	0	 112	12	2	0	0	No	NaN	G S
15- 3 06- 2018	Uruguay	Egypt	1	57	14	4	6	4	5	 111	6	0	0	0	Yes	89.0	G S
15- 4 06- 2018	Morocco	Iran	0	64	13	3	6	4	5	 101	22	1	0	0	No	NaN	G

5 rows × 25 columns

```
total_count = data.shape[0]
num_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка 1st Goal. Тип данных float64. Количество пустых значений 34, 26.56%.

```
data_num = data[num_cols]
data_num
```

1	st Goal
0	12.0
1	NaN
2	NaN
3	89.0
4	NaN
5	90.0
6	4.0
7	24.0
8	58.0
9	62.0
10	19.0
11	23.0
12	NaN
13	59.0
14	32.0
15	NaN
16	NaN
17	56.0
18	NaN
19	35.0
20	20.0
21	50.0

```
data[np.isfinite(data['lst Goal'])]
#plt.hist(data[np.isfinite(data['lst Goal'])].values,50)
plt.hist(data['lst Goal'].dropna(),50)
plt.show()
```

```
7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 - 20 - 40 - 60 - 80
```

```
data_num_Goal = data_num[['1st Goal']]
data_num_Goal.head()
```

1st Goal 0 12.0 1 NaN 2 NaN 3 89.0 4 NaN

```
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_Goal)
mask_missing_values_only

def test_num_impute(param):
    imp_num = SimpleImputer(strategy=param)
    data_num_imp = imp_num.fit_transform(data_num_Goal)
    return data_num_imp[mask_missing_values_only]
```

```
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(data_num_MasVnrArea)
    return data_num_imp[mask_missing_values_only]
```

В дальнейшем для обучения модели можно взять категориальные признаки: Team,Opponent, Man of the Match числовые признаки: Goal scored, Ball Posession, Attempts, On-Target, Off-Targed,Fouls Committed, так как они будут иметь наибольшее влияние на предсказание результатов матчей