Midterm

Due date: October 14, 2019.

Rules of the game

- Use of internet is not allowed.
- You may use Lecture Notes and quote the relevant results. You can also use standard theorems from analysis.
- Logarithms are taken to the natural base.

Problems

- 1. Show the following:
 - (a) Let $X_n \to X$ in measure (probability) and let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then show that $f(X_n) \to f(X)$ in measure.
 - (b) If $E(|X_n X|) \to 0$ as $n \to \infty$, show that $X_n \to X$ in measure.
- 2. Let \mathcal{A} be an algebra or a field. Let $B \in \sigma(\mathcal{A})$. Show that there is a countable collection, \mathcal{C}_B , of sets in \mathcal{A} such that $B \in \sigma(\mathcal{C}_B)$.
- 3. Show the following:
 - (a) Prove that if Z is a Gaussian random variable with mean zero and variance 1 (standard Normal), show that for x > 0

$$P(Z > x) \le \frac{1}{x\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

(b) Let $X_1, ..., X_n, ...$ be a sequence of independent and identically distributed random variables according to the distribution of Z (standard normal). Define

$$L = \limsup_{n} \frac{X_n}{\sqrt{2\log n}}$$

Show that $P(L \le 1) = 1$.

4. Let $X_1, ..., X_n$ be a sequence of independent and identically distributed random variables with the density given by

$$f(x) = \frac{c}{(1+x^2)\log(2+x^2)}.$$

Let $U_n = \frac{X_1 + \dots + X_n}{n}$. Show that $\mathrm{E}(e^{itU_n}) \to 1$ as $n \to \infty$ for every finite t. Hence argue that $U_n \to 0$ in measure.

Note that X_n does not even have a well-defined mean