МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра информационных систем

ОТЧЕТ

по лабораторной работе №16 по дисциплине «Цифровая обработка информации» Тема: Спектральный анализ: непараметрические методы.

Студенты гр. 8374	Пихтовников К. С Хохрин С. С. Чертков Н. Д.
Преподаватель	Клионский Д. М.

Санкт-Петербург

2020

Цель работы:

Изучить методы непараметрического спектрального анализа случайных последовательностей в MATLAB.

Исходные данные:

Переме нная	Назначение	Значение	Идентифика тор
N _{бр}	Номер бригады	N _{6p}	Nb = 6
N	Длина последовательности	N = 128	N=128
$f_{\mathcal{A}}$	Частота дискретизации	$f_{A} = 1000 * (N_{6p} mod 5 + 1)$	Fs=2000
A ₁	Амплитуды дискретных	$A_1 = 0.8 + 0.01 N_{6p}$	A1=0.86
A ₂	гармоник	$A_2 = 1.5A_1$	A2=1.29
f ₁	Частоты дискретных	$f_1 = \frac{f_{\pi}}{8}$	f1=250
f ₂	гармоник	$f_2 = 2f_1$	f2=500
σ_1	Значения СКО	$ \begin{aligned} \sigma_1 &= 0 \\ \sigma_2 &= A_1 \end{aligned} $	Вектор sigma = [0, 0.86, 1.72,
$egin{array}{c} \sigma_2 \ \sigma_3 \ \sigma_4 \end{array}$		$ \begin{aligned} \sigma_2 &= A_1 \\ \sigma_3 &= 2A_1 \\ \sigma_4 &= 4A_1 \end{aligned} $	3.44]

Выполнение работы:

1. Проверка информативности периодограммы в зависимости от уровня шума.

Пояснить:

• влияние уровня шума на информативность периодограммы;

Для аддитивной смеси сигнала с шумом информативность периодограммы - возможность определения частот гармоник, зависит от СКО шума. Однако в общем случае при заранее неизвестном случайном сигнале существенная изрезанность периодограммы снижает ее информативность, т. к. вследствие несостоятельности она дает искаженную картину распределения средней мощности по частоте.

• при каком уровне шума невозможно визуальное различение гармоник.

Визуальное различение гармоник невозможно при уровне шума, равного 1.72 и выше

2. Проверка информативности периодограммы в зависимости от периода дискретизации по частоте.

Пояснить:

• чему равно разрешение по частоте при заданных размерностях ДПФ;

Разрешение по частоте:
$$\frac{F_s}{length(x)} = \frac{2000}{128} = 15.625$$

• при какой размерности ДПФ и почему периодограмма оказалась неинформативной;

Периодограмма оказалась неинформативной при размерности ДПФ равной 8, так как невозможно выделить все основные вершины (пики) из-за их сливания друг с другом.

• при какой размерности ДПФ периодограмма наиболее информативна (наиболее узкая и гладкая и содержит обе гармоники).

Периодограмма наиболее информативна при размерности ДПФ, равной 128.

3. Проверка оценки СПМ на асимптотическую несмещённость и состоятельность.

• Сделать вывод об оценке СПМ (16.2) нормального белого шума (смещенная, асимптотически несмещенная, состоятельная, несостоятельная).

Оценка СПМ нормального белого шума асимптотически несмещенная, т.к. смещение β стремится к 0 при $N{\to}\infty$ и состоятельная, поскольку математическое ожидание квадрата отклонения истинного значения параметра от его оценки стремится к нулю.

4. Моделирование случайной последовательности с требуемой АКФ.

Пояснить:

• какой тип КИХ-фильтра выбран и почему;

Выбран КИХ-фильтр 1-го типа, т.к. не требует проверки на соответствие типу избирательности фильтра с полученной АЧХ.

• что используется в качестве воздействия КИХ-фильтра;

В качестве воздействия КИХ-фильтра используется аддитивный белый гауссовский шум.

• что собой представляет реакция КИХ-фильтра.

Реакция КИХ-фильтра представляет собой непрерывную линию с усредненным значениям белого шума.

5. Фильтрация случайной последовательности с требуемой АКФ.

Пояснить:

• что называют трендом во временной области;

Трендом, в общем случае, являются медленные закономерные изменения параметров исследуемого процесса.

• чему равны значения АЧХ и АЧХ (дБ) на частоте среза.

Частота среза — это частота, на которой значение АЧХ-фильтра падает до $1/\sqrt{2} = 0.707$ от своей величины в полосе пропускания. АЧХ на частоте среза падает примерно до уровня -3 дБ.

6. Расчёт периодограммы.

Пояснить:

• Связь между графиками;

Второй график представляет периодограмму для децибел. В случае мощностей связывающая формула приобретает вид $S(f)(дБ/\Gamma \mu) = 10lgS(f)$.

7. Расчёт периодограммы Даньелла.

Пояснить:

• при каком значении К периодограмма Даньелла наименее осциллирующая;

Периодограмма Даньелла наименее осциллирующая при значении К=20.

• как изменилась интенсивность осцилляций периодограммы Даньелла по сравнению с периодограммой.

Интенсивность осцилляций уменьшилась.

8. Расчёт периодограммы Бартлетта.

Пояснить:

• При какой длине фрагмента L периодограмма Бартлетта наименее осциллирующая;

Периодограмма Бартлетта наименее осциллирующая при значении L=10.

• как изменилась интенсивность осцилляций периодограмм Бартлетта по сравнению с периодограммами Даньелла.

Интенсивность осцилляций уменьшилась.

9. Расчёт периодограммы Уэлча.

Пояснить:

• при какой длине фрагмента L периодограмма Уэлча наименее осциллирующая;

При длине фрагмента L равной 25 периодограмма Уэлча наименее осциллирующая.

• как изменилась интенсивность осцилляций периодограмм Уэлча по сравнению с периодограммой и периодограммами Даньелла и Бартлетта.

Интенсивность осцилляций у периодограмм Уэлча ниже по сравнению с периодограммами Даньелла и Бартлетта.

10. Расчёт оценки СПМ по методу Блэкмана-Тьюки.

Пояснить:

- при каком окне оценка СПМ по методу Блэкмана—Тьюки наименее осциллирующая;
- как изменилась интенсивность осцилляций оценки СПМ по методу Блэкмана—Тьюки по сравнению с периодограммой и периодограммами Даньелла, Бартлетта и Уэлча.
 - 11. Определение показателей качества оценок СПМ.

СКО периодограммы: 4.5е-6;

Добротность периодограммы: 0.65

СКО периодограмм Даньелла:

K=5: 2.8e-6

K=10: 2.5e-6

K=20: 22e-6

Добротность периодограмм Даньелла:

K=5: 1.66

K=10: 2.08

K=20: 2.60

СКО периодограмм Бартлетта:

L=100: 1.56e-8

L=50: 1.76e-8

L=25: 1.95e-8

Добротность радиограмм Бартлетта:

L=100: 5.3

L=50: 4.2

L=25: 3.4

СКО периодограмм Уэлча:

L=100: 2.49e-8

L=50: 2.33e-8

L=25: 1.91e-8

Добротность периодограмм Уэлча:

L=100: 2.3

L=50: 2.4

L=25: 3.5

СКО оценок СПМ по методу Блэкмана-Тьюки:

Прямоугольное окно: 2.8е-6

Окно Хэмминга: 2.4е-6

Окно Чебышева: 2.2 е-6

Добротность оценок СПМ по методу Блэкмана-Тьюки:

Прямоугольное окно: 1.67

Окно Хэмминга: 2.29

Окно Чебышева: 2.57

Пояснить:

• какая из оценок СПМ является наилучшей и наихудшей по критериям СКО и добротности;

Наилучшей оценкой СПМ по критериям СКО и добротности является оценка Бартлета, а наихудшей оценка Даньелла.

• соответствие между показателями качества и графиками оценок СПМ.

Чем меньше СКО, тем выше качество оценки СПМ.

12. Построение спектрограммы.

Пояснить, с какой целью строится спектрограмма.

Спектрограмма — частотно-временное распределение, которое отображается цветом на плоскости время-частота и характеризует распределение частотных компонент сигнала во времени. Она строится для того, чтобы показать зависимость спектральной плотности мощности сигнала от времени.