String pattern Matching

Growth is painful.
Change is painful. But
nothing is as painful as
staying stuck
somewhere you don't
belong.

MANDY HALE

Good Evening

Content

- OI. Permutations of A in B
- 02. Rabin Karp Algo
- 03. Check if palindrome in a running stream

Given two strings A&B, A with length N
B with length M. Count all permutations of A
present in B as a substring.

Note: A & B contains lowercase characters

Tdea 1 \rightarrow Get all the substrings of B with length = A

& then check if $S_1 == S_2$ or not

Sort then &

compare

Idea 2 -> Skiding window + frequerray

$$fseq A = \begin{cases} 2 & 1 & 1 & 0 & 0 & 0 & \cdots & 3 \\ 0 & 1 & 2 & 3 & 4 & 5 & \cdots & 3 \end{cases}$$

$$a b c d e f$$

$$fseq B = \begin{cases} 2 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & \cdots & 3 \end{cases}$$

$$a b c d e f$$

$$a b c d e f$$

Pseudocode →

02. Create frequency of first window of B string for $(?=0 \rightarrow n-1)$ freqB(B[1]-'a']++;

```
if (compare (freq A, freq B) == true) ans = ans+1;
 for (i=n; i <m; i++) }
   freq B (B(i) - 'a')++; // add next char
   freqB[B[i-n]-'a']--; // drop last char
   if (compare (freq A, freq B) == true) ans = ans+1;
                TC = 0 (m)
                SC = O(26) = O(1)
  boolea compare (int () free A, int () free B)
       for (1=0; 1<25;1++)}

if (foegA[1]] = foegB(1)) return false
```

Rabin Karp Algo

02. Given a large text (String A of length N) & small pollem (string B of length M). Find the count of time B Is present as a substring in A.

Note: - MLN 24 all lowercase characters

$$A =$$
 "abcbcabca" $Am = 2$
 $B =$ "bca"

$$A = "abcababac" Am = 2$$

$$B = "aba"$$

Brute force Approach - Create all the substrings of

A with length = B & iterate & check if substring is equals to B or not

Problem → Compare two strings linear time

Compare two integers → O(1) time

$$B = \text{``acd'}$$

$$B = \text{``acd'}$$

$$B = 1 + 3 + 4 = 8$$

$$C \rightarrow 3$$

$$d \rightarrow 4$$

$$\vdots$$

$$Z \rightarrow 2$$

Avoid this collision

$$326 = 3*10^{2} + 2*10 + 6$$
] Order has some $623 = 6*10^{6} + 2*10 + 3$] weightage

$$h(acd) = a*10^{2} + C*10 + d$$

$$= 1*10^{2} + 3*10 + 4$$

$$= (34)$$

$$h(acd) = a * p^2 + c * p + d$$

$$S_1 = "aa" = 1 * 2' + 1 * 2" = 2 + 1 = 3$$

 $S_2 = "c" = 3 * 2" = 3$

Usually P=29 -> prime no. are always

preferred in hash function

Limitation

h (" yogeshyadav") -> impossible to store the hash function value in an integer or long (overflow)

To make sure, we are always in Range = mod Usually $m = 10^9 + 1$ Large prime no.

* Probability of collision

	h (S1)	h(32)	
0	100	43698	109+6

String	Hash (String)	Probability of collision
Sı	H(S,)	0
S ₂	H(S2)	<u> </u>
Sz	H (S3)	M 2/M
S ₄	H (Sy)	3/1~
· ·		
Sn	H(Sn)	n-1/m
Snor	H (Snor)	n/m

$$m = 10^{\circ} + 7$$

$$n = 10^{\circ}$$

Probability of collision =
$$\frac{10^5}{10^9+7} \approx 0.0001$$

neglect the

collision probability

Hash
$$f_n = \sum_{i=0}^{n} s[i] * p^{n-i-i}$$

M=10⁹+7

Rolling hash

function

Hash (B) = hash (acd) =
$$1 * 29^2 + 3 * 29^1 + 4$$

= $841 + 87 + 4 = 932$

$$Hash(bac) = 2 * 29^{2} + 1 * 29 + 3$$
$$= 1682 + 29 + 3$$
$$= 1714$$

hash(bac) =
$$(2 * 29^2 + 1 * 29 + 3) \%$$

Slide window

hash (acd) =
$$(2+29^2 + 1*29 + 3 - 2*29^2)*29 + 4)$$
/m

Dropped update the added

 $(1*29^2 + 3*29 + 4)$ /m

the first p value of the characters

characters

hash
$$(B) = = hash(acd) \longrightarrow 99.9\%$$
 of time
 $S_1 = = S_2$

- 01. Calculate the hash value for B string TC:0(m)
- 02. Calculate the hash value for substring $\rightarrow \tau c:o(m)$ of Δ equals to length B
- 03. Slide the window for all the TC = O(N-M)
 Substaings

10:27 pm → 10:37 pm

Q Given a running stream of characters, check at every step of the current string is palindrome

Eg: xyxyyxyx.... racecar TFTFFFFT abba

Brute force — For all the inputs, check if string is

palindrome or not by travelling on it.

TC: O(n2) SC: O(1)

$$xy = x + p + y$$

If these hash(xy) == hash(yx)

 $yx = y + p + x$

Then ? can increase my ans

hashfn

$$S_1 = 0 \longrightarrow a \longrightarrow fh = 1$$

$$\operatorname{rev}(S_1) = a \longrightarrow a \longrightarrow bh = 1$$

$$S_1 = ab \rightarrow a \times p + b \rightarrow fh = 1 + 29 + 2$$

$$\operatorname{rev}(S_1) = ba \rightarrow a + b * p \rightarrow bh = 1 + 29 * 2$$

$$5_1 = abc \rightarrow a*p^2 + b*p + c \rightarrow fh = (1*29+2)(29+3)$$

```
fh=0 bh=0, base=29, String s = \dots

p=1

for (i=0; i<n; i++)

charch=3[i]-'a'

fh=(fh+base+ch).m

bh=bh+ch*p

p=p*29

if (fh==bh) print (twe)

else print false:
```