Some symbolic tools for the Fox H-function

Le Chen

Department of Maathematics and Statistics

Auburn University

le.chen@auburn.edu, chenle02@gmail.com

November 12, 2023

In this note, we explain the code for checking the conditions of the Fox H-function [Fox61]. Here we follow the notation from Kilbas and Saigo [KS].

Let m, n, p, q be configure integers such that

$$0 < m < q$$
 and $0 < n < p$.

Let $a_i, b_j \in \mathbb{C}$ and $\alpha_i, \beta_j \in \mathbb{R}_+$ be the parameters given below:

$\in (\mathbb{C}, \mathbb{R}_+)$	Front list	Rear list	
p	$(a_1,\alpha_1),\cdots,(a_n,\alpha_n)$	$(a_{n+1},\alpha_{n+1}),\cdots,(a_p,\alpha_p)$	Upper list
q	$(b_1,\beta_1),\cdots,(b_m,\beta_m)$	$(b_{m+1},\beta_{m+1}),\cdots,(b_q,\beta_q)$	Lower list

and denote

$$H_{p,q}^{m,n}(s) := \frac{\prod_{i=1}^{n} \Gamma\left(1 - a_i - \alpha_i s\right)}{\prod_{i=n+1}^{p} \Gamma\left(a_j + \alpha_i s\right)} \times \frac{\prod_{j=1}^{m} \Gamma\left(b_j + \beta_j s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1 - b_j - \alpha_j s\right)}.$$
 (1)

Then the Fox H-function $H_{2,3}^{2,1}\left(z \middle| \begin{array}{c} \dots \\ \dots \end{array}\right)$ is defined by a Mellin-Barnes

type integral of the form

$$H_{m,n}^{p,q} \left(z \middle| \begin{array}{c} (a_1, \alpha_1), \cdots, (a_p, \alpha_p) \\ (b_1, \beta_1), \cdots, (b_q, \beta_q) \end{array} \right) \coloneqq \frac{1}{2\pi i} \int_{\mathcal{L}} H_{p,q}^{m,n}(s) z^{-s} \mathrm{d}s. \tag{2}$$

The basic assumption for the well-posedness of the Fox H-function is that two sets of poles do not overlap, i.e.,

$$\left\{b_{j\ell} = \frac{-b_j - \ell}{\beta_j}, \ell = 0, 1, \cdots\right\} \bigcap \left\{a_{ik} = \frac{1 - a_i + k}{\alpha_i}, k = 0, 1, \cdots\right\} = \emptyset.$$
(3)

The contour \mathcal{L} in (2) is given by one of the following three cases:

- 1. $\mathcal{L} = \mathcal{L}_{-\infty}$ is a left loop situated in a horizontal strip starting at point $-\infty + i\phi_1$ and terminating at point $-\infty + i\phi_2$ for some $-\infty < \phi_1 < \phi_2 < \infty$;
- 2. $\mathcal{L} = \mathcal{L}_{+\infty}$ is a right loop situated in a horizontal strip starting at point $+\infty + i\phi_1$ and terminating at point $\infty + i\phi_2$ for some $-\infty < \phi_1 < \phi_2 < \infty$;
- 3. $\mathcal{L} = \mathcal{L}_{i\gamma\infty}$ is a contour starting at point $\gamma i\infty$ and terminating at point $\gamma + i\infty$ for some $\gamma \in (-\infty, \infty)$.

We need a set of conditions to ensure the convergence of the integral in (2). To explain this, let's denote (following p. 2 of [KS])

$$a^* := \sum_{i=1}^n \alpha_i - \sum_{i=n+1}^p \alpha_i + \sum_{j=1}^m \beta_j - \sum_{j=m+1}^q \beta_j;$$
$$\Delta := \sum_{j=1}^q \beta_j - \sum_{i=1}^p \alpha_i$$
$$\delta := \prod_{n=1}^\infty \cdots$$

Figure 1: Diagram for the parameterization of the Fox H-function.

References

- [Fox61] Charles Fox. The G and H functions as symmetrical Fourier kernels. $Trans.\ Amer.\ Math.\ Soc.,\ 98:395-429,\ 1961.$
- [KS] Anatoly A. Kilbas and Megumi Saigo. *H-transforms*, volume 9 of *Analytical Methods and Special Functions*. Chapman & Hall/CRC, Boca Raton, FL. Theory and applications.