Введение в финансовую математику

Лекция 3: Производные цен опционов по параметрам ("греки")

26 мая 2020

Определения

Приращение цены

Пусть $V=V(x,\tau,r,\sigma)$ — цена опциона или фьючерса, где x — цена базового актива (фьючерса или акции), τ — время до экспирации, r — безрисковая ставка, σ — волатильность.

Изменение цены за малый промежуток времени можно разложить в виде

$$V(S + \Delta S, \tau - \Delta \tau, r + \Delta r, \sigma + \Delta \sigma) - V(S, \tau, r, \sigma) =$$

$$= \frac{\partial V}{\partial S} \Delta S - \frac{\partial V}{\partial \tau} \Delta \tau + \frac{\partial V}{\partial r} \Delta r + \frac{\partial V}{\partial \sigma} \Delta \sigma + \frac{\partial^2 V}{\partial S^2} (\Delta S)^2 + \dots$$

Производные цены по параметрам называются греками (greeks).

Греки позволяют вычислить изменение стоимости контракта при малом изменении параметров.

Основные греки

Первого порядка Второго порядка Дельта
$$\Delta = \frac{\partial V}{\partial S}$$
 Гамма $\Gamma = \frac{\partial^2 V}{\partial S^2}$ Тета $\theta = -\frac{\partial V}{\partial \tau}$ Шарм $\mathrm{Charm} = -\frac{\partial^2 V}{\partial \tau \partial S}$ Вега $\mathcal{V} = \frac{\partial V}{\partial \sigma}$ Ванна $\mathrm{Vanna} = \frac{\partial^2 V}{\partial \sigma \partial S}$ Ро $\rho = \frac{\partial V}{\partial r}$ Вомма (волга) $\mathrm{Vomma} = \frac{\partial^2 V}{\partial \sigma^2}$

- Основные, о которых дальше пойдет речь, дельта, тета, гамма, вега.
- В модели Блэка-Шоулса греки для опционов можно вычислить явно.
- Для базового актива (акции/фьючерса) $\Delta=1$, остальные греки равны 0.

Греки для опционов в модели Блэка–Шоулса (при r=0)

Ось x — страйк опциона.

(При r=0 тета, вега и греки второго порядка равны для опционов колл и пут.)

Знаки греков

	Опцион колл	Опцион пут	Базовый актив
Дельта	+	_	1
Тета	_*	_ **	0
Вега	+	+	0
Гамма	+	+	0
Ро	+	_	0

 $^{^*}$ кроме случая $S\gg K$ и r<0 ** кроме случая $S\ll K$ и r>0

Знаки удобно запомнить, если интерпретировать опционы как страховку.

Греки и оценка риска портфеля

Свойство линейности

В силу линейности дифференцирования, греки портфеля вычисляются как сумма греков отдельных позиций.

Пример 1: стрэнгл (strangle)

"Длинный" колл + "длинный" пут.

("Длинная" позиция означает купленный контракт, "короткая" - проданный.)

Если $K_1 = K_2$, то называют стрэддл (straddle).

Греки для короткого стрэддла

Параметры: F = K = 70000.

Пример 2: опционная "бабочка"

2 длинных колла + 2 коротких колла.

Упражнение: используя паритет пут–колл, докажите, что бабочку можно также получить как $\operatorname{Put}_{K-\varepsilon} - \operatorname{Put}_K - \operatorname{Call}_K + \operatorname{Call}_{K+\varepsilon} = \operatorname{Strangle}_{K\pm\varepsilon} - \operatorname{Straddle}_K$.

Греки для длинной бабочки

Параметры: F=K=70000, $\varepsilon=5000$.

Подробнее о дельте, гамме, тете, веге

Дельта и гамма

Портфель называется дельта-нейтральным, если $\Delta=0$, и дельта-гамма-нейтральным, если $\Delta=\Gamma=0$. Для поддержания нейтральности портфель нужно постоянно перебалансировать (продавать/покупать контракты).

- Δ -нейтральный портфель слабо подвержен изменениям в цене базового актива (но, все-таки, подвержен, если $\Gamma \neq 0$).
- В модели Блэка–Шоулса хеджирование, по сути, является операцией сведения к Δ - Γ -нейтральному портфелю (при этом важно, что σ и r постоянны).

Утверждение. В модели Блэка–Шоулса для любой самофинансируемой стратегии со стоимостью портфеля V и ценой базового актива x выполнено

$$\theta + \frac{\sigma^2}{2}x^2\Gamma = r(V - x\Delta)$$

(это сразу следует из уравнения Блэка-Шоулса).

Тета и временная стоимость опционов

Стоимость опциона можно разложить на внутреннюю и временную:

$$V = V^{\mathsf{внутр}} + V^{\mathsf{врем}},$$

где

- $V^{\text{внутр}} = (K x)^+$ или $(x K)^+$ премия за исполнение сейчас;
- ullet $V^{
 m врем} = V V^{
 m внутр}$ премия за риск продавцу опциона.

Таким образом, тета представляет скорость уменьшения ("распад") временной стоимости:

$$\theta = -rac{\partial V^{
m Bpem}}{\partial au}.$$

Вега

В модели Блэка–Шоулса параметр σ постоянен, но в реальности волатильность меняется, что дополнительно влияет на изменение цены опционов.

Поправку на изменение волатильности можно задавать вегой $\mathcal{V}=\dfrac{\partial V}{\partial \sigma}.$

Пример изменения волатильности за неделю:

Пример: изменения греков опционной бабочки при изменении волатильности

Покупка и продажа волатильности

 Δ - Γ -нейтральная стратегия позволяет "торговать" волатильностью:

- V > 0 ставка на рост волатильности,
- V < 0 ставка на падение волатильности.

В модели Блэка—Шоулса трудность в том, что волатильность на разных страйках и разных датах экспирации меняется не на одинаковую величину \implies нельзя просто сложить веги опционов, входящих в портфель.