Amendments to the Claims

1	1. (currently amended) A method for processing RF radio frequency (RF)
2	signals in a multi-antenna systems, comprising:
3	generating L_t input data streams in a transmitter, where L_t is an
4	integer;
5	modulating the L_r weighted input data streams to RF signals;
6	switching the RF signals to $t \ge L_t$ RF branches, where t is an integer;
7	applying a phase-shift transformation to the RF signals by a $t \times t$
8	matrix multiplication operator Φ_t , whose output are t RF signals;
9	transmitting the t RF signals over a channel by t transmit antennas;
10	receiving the transmitted signals by r antennas in a receiver, where r
11	is an integer;
12	applying a phase-shift transformation to the r RF signals by a $r \times r$
13	matrix multiplication operator Φ_2 ;
14	selecting L_r branches from the r streams, where L_r is an integer;
15	demodulated the L _r signal streams; and
16	processing in baseband to recover output data streams corresponding
17	to the input data streams.
1	2. (original) The method of claim 1, in which each of the L_r input data
2	stream has a weight, and further comprising:
3	summing the L_r weighted data streams before the demodulating and
A	decoding

- 1 3. (original) The method of claim 1, in which the L_t input data streams are
- 2 generated by a space-time block coder.
- 4. (original) The method of claim 1, in which the L, input data streams are
- 2 generated by a space-time trellis coder.
- 1 5. (original) The method of claim 1, in which the input data streams are
- 2 space-time layered structures.
- 1 6. (original) The method of claim 1, in which $t = L_t$, and the matrix Φ_1 is an
- 2 identity matrix.
- 1 7. (original) The method of claim 1, in which $r = L_r$, and the matrix Φ_2 is an
- 2 identity matrix.
- 1 8. (original) The method of claim 1, in which entries of the matrix Φ_1 have
- 2 constant modulus phase-only terms.
- 1 9. (original) The method of claim 1, in which entries of the matrix Φ_2 have
- 2 constant modulus phase-only terms.
- 1 10. (original) The method of claim 1, in which entries of the matrices Φ_1 and
- 2 Φ_2 have constant modulus phase-only terms.
- 1 11. (currently amended) The method of claims 8 claim 8, in which the
- 2 phase-only terms adapt to an estimate of an instantaneous channel state.

- 1 12. (original) The method of claim 8, in which the phase-only terms adapt to
- 2 an estimate of an average channel state.
- 1 13. (original) The method of claim 1, in which the matrix Φ_1 is a fast Fourier
- 2 transform matrix.
- 1 14. (original) The method of claim 1, in which the matrix Φ_2 is a fast Fourier
- 2 transform matrix.
- 1 15. (original) The method of claim 1, in which the matrices Φ_1 and Φ_2 are
- 2 fast Fourier transform matrices.