Data Communications Introduction to Physical Layer

Communications Model

- Source
 - generates data to be transmitted
- Transmitter
 - converts data into transmittable signals
- Transmission System
 - carries data from source to destination
- Receiver
 - converts received signal into data
- Destination
 - takes incoming data

Frequency, Spectrum and Bandwidth

Time Domain Concepts

- > analog signal
 - signal intensity varies smoothly with no breaks
- digital signal
 - signal intensity maintains a constant level and then abruptly changes to another level
- periodic signal
 - signal pattern repeats over time
- > aperiodic signal
 - pattern not repeated over time

Analog and Digital Signals

Periodic Signals

Varying Sine Waves $s(t) = A sin(2\pi ft + \Phi)$

Spectrum & Bandwidth

- spectrum
 - range of frequencies contained in signal
- bandwidth
 - width of spectrum
 - narrow band of frequencies containing most energy

Electromagnetic Spectrum

Analog and Digital Signals

Analog Signal

Continuous electromagnetic waves transmitted through various medium

Digital Signal

- sequence of voltage pulses that may be transmitted over a wire medium
- for example, a constant positive voltage level may represent binary 0 and a constant negative voltage level may represent binary 1

Analog Signals

Digital Signals

Transmission Impairments

ATTENUATION

- signal strength falls off with distance over any transmission medium
- varies with frequency

Noise

- Unwanted signals inserted between transmitter and receiver
- The major limiting factor in communications system performance

Shannon Capacity Formula

- considering the relation of data rate, noise and error rate
- Shannon developed formula relating these to signal to noise ratio
- SNR = (signal strength / noise strength)
- B: Bandwidth (Hz)
- capacity C = B log2(1+SNR)
 - theoretical maximum capacity
 - get much lower rates in practice

Signal Encoding Techniques

Figure 5.1 Encoding and Modulation Techniques

Digital Data, Digital Signal

digital signal

- -discrete, discontinuous voltage pulses
- -each pulse is a signal element
- -binary data encoded into signal elements

Digital Data, Digital Signal

Manchester Encoding

0: transition from high to low in the middle of interval

1: transition from low to high in the middle of interval

Used by Ethernet

Digital Data, Analog Signal

Amplitude Shift Keying

encode 0/1 by different carrier amplitudes

- -usually have one amplitude zero
- -susceptible to sudden gain changes
- -inefficient

Binary Frequency Shift Keying

two binary values represented by two different frequencies less susceptible to error than ASK

Multiple FSK

- -each signalling element represents more than one bit
- -more than two frequencies used
- -more bandwidth efficient
- -more prone to error

Phase Shift Keying

- -phase of carrier signal is shifted to represent data
- -binary PSK

two phases represent two binary digits

References

- Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2011
- Computer Networking A Top-down Approach, 6th edition, J. F. Kurose et al, Pearson, 2012