تمرین ۴. معادلهی دیفرانسیل توزیع دما در یک پره به صورت تابعی از طول پره، در شرایط پایا، به دست آمده است. معادلهی دیفرانسیل و شرایط مرزی پس از بی بعدسازی و مرتب کردن آن، به صورت زیر حاصل شده است:

$$\begin{split} &\frac{d^2\theta}{dz^2} - \phi^2\theta^{\frac{4}{3}} = 0 \;, \quad \phi^2 = m^2w^2(T_s - T_a)^{\frac{1}{3}} \\ &z = 0 \;: \; \theta = 1 \\ &z = 1 \;: \; \frac{d\theta}{dz} = - \;\psi^2\theta^{\frac{4}{3}}, \quad \psi^2 = \frac{w\alpha}{k}(T_s - T_a)^{\frac{1}{3}} \end{split}$$

الف- این معادله را با برنامهنویسی در محیط نرمافزار MATLAB به روش پرتابی حل کنید؛ ب- با کمک روش اختلافهای محدود در محیط MATLAB، مسئله را حل کرده و نتایج به دست آمده را با نتایج حاصل از بند الف مقایسه کنید.

## **Boundary Value Problems (BVPs)**

**Shooting Method** 

Finite Difference Method

Weighted Residual Methods

Linear

Nonlinear

Linear

Nonlinear

Collocation method

Sub-domaii method Leastsquare method

Moment

Galerkin method

Orthogonal Collocation Method

- انتخاب x<sub>i</sub> , step size •
- $x_i = a + ih$  g  $h = \frac{b a}{n}$
- ۲ نوشتن مشتقات اول و دوم و ... از طریق تفاضلهای محدود (به شکل مشتقات مرکزی)

$$y_i'' = \frac{1}{h^2} (y_{i+1} - 2y_i + y_{i-1}) + o(h^2)$$

مشتق دوم:

$$y'_{i} = \frac{1}{2h}(y_{i+1} - y_{i-1}) + o(h^{2})$$

• مشتق اول:

## الگوريتم:

- i=1 to n-1 فقاط تام نقاط j=1 ورحله اول حدس برای تمام نقاط j=1
  - $\begin{cases} k=1 \ to \ n-1 \\ i=1 \ to \ n-1 \end{cases}$  برای  $\frac{\partial g_i}{\partial y_k}$  و  $g_i$  تابع  $y_i^j$  در تابع  $g_i$  برای  $y_i^j$
- :  $\Delta y_i^J$ معادله و (n-1) مجهول به منظور تعیین (n-1) معادله و ۳

$$\begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & 0 & 0 & 0 & 0 \\ \frac{\partial g_2}{\partial y_1} & \frac{\partial g_2}{\partial y_2} & \frac{\partial g_2}{\partial y_3} & 0 & 0 & 0 \\ 0 & \frac{\partial g_3}{\partial y_2} & \frac{\partial g_3}{\partial y_3} & \frac{\partial g_3}{\partial y_4} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \frac{\partial g_{n-1}}{\partial y_{n-2}} & \frac{\partial g_{n-1}}{\partial y_{n-1}} \end{bmatrix} \begin{bmatrix} \Delta y_1 \\ \Delta y_2 \\ \Delta y_3 \\ \vdots \\ \Delta y_{n-1} \end{bmatrix} = - \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

- شکل ماتریس دستگاه:
- $y_i^{j+1} = y_i^j + \Delta y_i^j$  با  $y_i^{j+1}$  محاسبه \*
- ما گر فت و به مرحله  $g_i(y^{j+1}) = 0$  باشد جواب بدست آمده است در غیر این صورت  $y_i^{j+1}$  را به عنوان حدس بعدی در نظر گرفت و به مرحله Y بازگشت .
- $y_i^{j+1} = y_i^j + r\Delta y_i^j$  د. z اصلاح کرد. relaxation همچنین می توان با روش z اسلام عدید را به صورت محتاطانه تری



```
ODE: \frac{1}{h^2}(y_{i+1} - 2 * y_i + y_{i-1}) = M1 * y_i^{\frac{4}{3}}; at the first Point: y_0 = 1; at the final point: y_{i+1} - y_i = h * \left(-M2 * y_i^{\frac{4}{3}}\right)
```

```
clear; clc; close all;
% initilizations:
m = 1; w = 2; Ts =210; Ta = 180; alpha = 0.2; k = 1;
h = 0.05; % Step Size
b=1; a=0.01;
interval=b-a;
num_of_lines = round(interval/h);
global MULTING MULTING2
MULTING = m^2 * w^2 * (Ts - Ta)^(1/3);
MULTING2 = w*alpha/k*(Ts - Ta)^(1/3);
Y = zeros(num_of_lines,1);
A = zeros(num_of_lines,num_of_lines); % Coefficient Matrix
g = Y;
y0 = 1;
iter_max = 10;
threshold = 1e-3;
for iter =1 :iter_max
    % Obtain Coefficient Matrix:
    for i=1:length(Y)
        for j=1:length(Y)
            if(i==j)
            A(i,j) = h^2 * MULTING*4/3*Y(i)+2;
            elseif(abs(j-i)==1)
            A(i,j) = -1;
            end
```

```
end
        if((i>2) && (i<length(Y)))</pre>
            g(i,1) = h^2*MULTING*Y(i,1).^4/3 - Y(i+1,1) + 2*Y(i,1) - Y(i-1,1);
        elseif(i==1)
            g(i,1) = h^2*MULTING*Y(i,1).^4/3 - Y(i+1,1) + 2*Y(i,1) - y0;
        elseif(i==length(Y))
            g(i,1) = h^2*MULTING*Y(i,1).^4/3 - (-2*h*MULTING2*Y(i,1).^4/3 + Y(i,1)) + 2*Y(i,1)
        end
    end
   delta_Y = - g'*pinv(A);
   Y = Y + delta Y';
   % CHeck Convergence:
    if(norm(g)<threshold)</pre>
        return
    end
end
```

```
t = linspace(0,1,length(Y(:,1)));
figure(1)
plot(t,Y(:,1));
grid on
ylabel("y(\theta)")
xlabel("t (z)")
title("Solution of ODE using Finite Difference Method")
```

