TOSHIBA C2MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TCM8240MD

Ver 1.3 15/Apr/04

TENTATIVE

1.3 Mega pixel sensor chip

TCM8240MD is an area color image sensor, at 1.3 Mega-pixels of array resolution (1300x 1040), incorporating a camera signal processor. The optical format is 1/3.3 inch, of which small size is suitable for built-in camera module application. Use of the CMOS process makes possible low power consumption operations. This sensor provides superb picture quality thanks to Toshiba's advanced sensor technology and Toshiba's sophisticated signal processing technology.

Features

1. General

 Large flexibility in external clock frequency range by PLL operation (JPEG is not available in case of w/o PLL operation)

Frame rate : up to 15 fps for every resolution

Output data rate reduction for full 1.3 Mega resolution by JPEG compression
 Dual power supply : Either 2.5+/-0.2V or 2.8 +/- 0.2 V, and 1.6+/-0.1V

Operation temperature : -20 to + 60 degree C
 Storage temperature : -30 to +85 degree C

2. Sensor

• Optical size : 1/3.3 inch optical format

• Effective pixel numbers : 1300(H) x 1040(V)

Output pixel number
 Pixel pitch
 1280(H) x1024 (V) maximum
 3.3um(H)x3.3um(V) (square pixel)

• Image size : 4.29 mm(H) x 3.43mm(V)

• Color filter : Primary color filter, Bayer arrangement

3. Camera signal processing

Digital output mode

Output terminals: 8bit parallel data output along with DCLK, HBLK, and VBLK

- (1) YUV=4:2:2 or RGB=5:6:5 data (multiplexed 8bit parallel output)
- (2) JPEG encoded data (8 bit parallel) for full 1.3 Mega data
- Multi-step digital zoom for downsized VGA, QVGA, QQVGA, CIF, QCIF and subQCIF
- · Vertical and horizontal flip
- ALC (automatic luminance level control) with fluorescent flicker-less operation
- AWB (automatic white balance)
- · Automatic blemish detection and correction
- Strobe pulse for flash trigger

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or jail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating range as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions setforth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

04/12/13 1/30

CHANGE HISTORY

Specifications draft	V0.4	December 9, '03
Specifications draft	V1.0	October 14, '04
Specifications draft	V1.1	October 14, '04
Specifications draft	V1.2	November 13,'04
Specifications draft	V1.3	April 15,'05

LIST OF ABBREVIATION

VGA	Video Graphic Array
CIF	Common Intermediate Format
CDS	Correlated Double Sampling
AGC	Automatic Gain Control
ADC	Analog to Digital Converter
TG	Timing Generator
SG	Sync Signal Generator
PLL	Phase Locked Loop
VCO	Voltage Controlled Oscillator
AWB	Automatic white Balance
OB	Optical black
ALC	Automatic Luminance level control
001	Otant of Language (Co. IDEO data atman

SOI Start of Image (in JPEG data stream)
EOI End of Image (in JPEG data stream)
MCU Minimum Coded Unit
DOT Define Quantization table

DQT Define Quantization table
DHT Define Huffman Table
SOF Start of Frame

SOF Start of Frame SOS Start of Scan

DRI Define Restart Interval

04/12/13 2/30

BLOCK DIAGRAM

04/12/13 3/30

PIN DESCRIPTION

PIN No.	SYMBOL	I/O	DESCRIPTION
1	DOUT3	0	Data output
2	DOUT2	0	Data output
3	DOUT1	0	Data output
4	DOUT0	0	Data output (LSB)
5	GND		GND
6	PVDD		Power supply 2.8+/-0.2V or 2.5+/-0.2V
7	RESET	I	Reset pulse to initialize
8	SCL		Clock for I2C bus
9	GND		GND
10	SDA	I/O	Data for I2C bus
11	GND		GND
12	DVDD	l	Power supply 1.6+/-0.1V
13	EXTCLK	I	External clock input
14	STROBE	0	Trigger pulse for flash strobe
15	HBLK	0	Horizontal data blanking period
16	VBLK	0	Vertical data blanking period
17	GND		GND
18	IOVDD	I	Power supply 2.8+/-0.2V or 2.5+/-0.2V
19	DCLK	0	Clock for output data
20	GND		GND
21	DOUT7	0	Data output (MSB)
22	DOUT6	0	Data output
23	DOUT5	0	Data output
24	DOUT4	0	Data output

04/12/13 4/30

I/O INTERNAL CIRCUITS

NAME	I/O	INTERFACE CIRCUIT
RESET	_	AVDD AVDD AVDD AVDD GND,
SCL	_	AVDD GND M
SDA	I/O	AVDD GND GND GND GND
EXTCLK	_	AVDD AVDD AVDD GND M
DOUT0 to DOUT7, HBLK, VBLK, DCLK,STROBE	0	AVDD AVDD

04/12/13 5/30

CONTROL I/F

TCM8240MD control interface configuration is based on fast mode IIC bus. Register setting can be changed via IIC bus.

Write mode

Read mode

S: Start condition, P: End condition, A: Acknowledge, A: not Acknowledge

Start condition, End condition

Bit Transfer

Acknowledge

Not Acknowledge

Slave address

A6	A5	A4	А3	A2	A1	A0	R/W
0	1	1	1	1	0	1	1/0

7bit Slave address is used.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

04/12/13 6/30

INTERNAL REGISTER

0	Address		Data	(20)	(0.5)	(5.0)	(20)	(20)	(5.0)	(5.0)	Initial
1	[Dec]	[Hex]	(D7)	(D6)	(D5)	(D4)	(D3)	(D2)	(D1)	(D0)	[Hex]
2 02 STANDEYSW SRST											00
3 03 03 04 00UTOFF JPEGON PICMODE[1:0] SELRGB PICSIZ[2:0] [LRINV 0 0 0 0 0 0 0 0 0			STANDBYSW	ISRST							00
4				1		DCLKPOL	PLLMODE[3:0]				C0
Colonity			DOUTOFF	JPEGON	PICMODE[1:0]			PICSIZ[2:0]			80
To Or Or Or Or Or Or Or O	5	05								LRINV	40
8			UDINV								18
9 09 10 0A											00
10											08
11											00
12											36
13											00
14							VSUPCNT[1:0]				00
16	14	0E									AC
17											00
18											FA
19											02
20											20
21	20										B2 33
22											32
23	22	16									28
24	23	17									00
26											00
27											00
28	26	1A	H_COUNT[7:0]						III COUNTIO.01		B3
29	27		V_COUNT[3:0]		V COUNTIO-41				П-соои ([а:8]		B2 A1
30	29				F COUNT[5:0]						00
31	30		SP_COUNT[7:0]								00
33 21	31	1F					SP_COUNT[11:8	3]			04
34 22 STSET_SW STSET_POL STSET_REG ST_MODE[2:0]	32										73
STOUT_POL STOUT_W[1:0] ST_OUTSIG F			07057 011	LOTOET DOL			OTOET DEC	lot Hobers of			01
36	34	22	SISEI_SW	SISEI_POL						ET OUTEIC	07
37 25	36	23					STOUT_FOL	[31001_W[1:0]		31_001316	F0 5E
38 26	37										10
39 27 3 40 28	38	26									01
41 29	39	27									32
42 2A 43 2B 44 2C FRAME_LV[7:0] 45 2D CB_MODE[2:0] FRAME_LV[9:8] 46 2E DINSW 47 2F 48 30 49 31 APCSW 50 32 51 33 IDRS[1:0] AGMAX_PPED[0]AGMIN_PPED[0] PPEDB[0] PPEDB[0] PPEDB[0] PPEDB[0] 52 34 PPEDR[8:1] 53 35 PPEDBR[8:1] 54 36 PPEDBR[8:1] 55 37 PPEDBR[8:1] 56 38 AGMIN_PPED[8:1] 57 39 AGMAX_PPED[8:1] 58 3A 59 3B 60 3C 61 3D 62 3E PWB_R[7:0] 65 66 86 66 3C 66 3C 66 3C 66 3B AGMIN_PRED[8:1] 66 3C 66 3C 66 3C 66 3C 66 3C 67 3D 68 AGMIN_PRED[8:1] 69 3C 60 3C 6											40
43 2B		29									58
44 2C FRAME_LV[7:0] 45 2D CB_MODE[2:0] FRAME_LV[9:8] C		2A									20
45 2D CB_MODE[2:0] FRAME_LV[9:8] CC 46 2E DINSW			FRAME I VIZ:01								10 00
46		2D		CB MODE[2:0]					FRAME LV[9:8]		0E
47 2F 48 30		2E	DINSW								44
49 31 APCSW 50 32 FEB STATE ST		2F									00
50 32 February Feb			4 DOO!!!								00
51 33 IDRS[1:0] AGMAX_PPED[0]AGMIN_PPED[0] PPEDGB[0] PPEDGR[0] PPEDGR[0] CONTROL CON	49	31	APCSW								03
52 34 PPEDR[8:1] 8 53 35 PPEDGR[8:1] 7 54 36 PPEDGB[8:1] 7 55 37 PPEDB[8:1] 8 56 38 AGMIN_PPED[8:1] 8 57 39 AGMAX_PPED[8:1] 8 58 3A 8 59 3B 8 60 3C 8 61 3D 8 62 3E PWB_R[7:0] 8			IDRS[1:0]		AGMAY PREDIO	AGMIN PPEDIO	PPEDBI01	PPEDGRIM	PPEDGRIM	PPFDRINI	FF 00
53			PPEDRI8:11		INOMENT LEDÍO	TY OWN TELEDIO	j בטטנט <u>ן</u>	j. / EDOB[0]	j EDOM[0]	EDIN[0]	80
54 36 PPEDB[8:1] 55 37 PPEDB[8:1] 56 38 AGMIN_PPED[8:1] 57 39 AGMAX_PPED[8:1] 58 3A 59 3B 60 3C 61 3D 62 3E PWB_R[7:0]											78
56 38 AGMIN_PPED[8:1] 8 57 39 AGMAX_PPED[8:1] 8 58 3A 8 59 3B 8 60 3C 8 61 3D 8 62 3E PWB_R[7:0] 8	54	36	PPEDGB[8:1]								78
57 39 AGMAX_PPED[8:1]											80
58 3A 59 3B 60 3C 61 3D 62 3E PWB_R[7:0]											80
59 3B 60 3C 61 3D 62 3E PWB_R[7:0]			AGINIAA_PPED[8	0.1]							80 80
60 3C 8 8 61 3D 8 8 62 3E PWB_R[7:0] 8 6											80
61 3D 88 62 3E PWB_R[7:0] 8											80
62 3E PWB_R[7:0] 6	61	3D									80
1 63 3F IPWB GR[7:0]	62	3E	PWB_R[7:0]			·					66
00 01 1 - 1 - 2 - 4 - 1 - 1	63	3F	PWB_GR[7:0]							<u> </u>	80

The registers of gray mesh (unassigned registers) are not able to read and write via I^2C bus. "*" registers are read only.

Don't touch TESTMODE registers.

04/12/13 7/30

Address	Address	Data							Initial
[Dec]	[Hex]	(D7) (D6)	(D5)	(D4)	(D3)	(D2)	(D1)	(D0)	lHex]
64		PWB_GB[7:0]							80
65		PWB_B[7:0]							96
66	42	PWB_BM[1:0]	PWB_GBM[1:0]	PWB_GRM[1:0]		PWB_RM[1:	0]	41
67	43	LSCSW							00
68		LSC_RG[7:0]							FF
69	45	LSC_GG[7:0]							FF
70	46	LSC_BG[7:0] HLCC_SW							FF
71 72	47 48	ALC_SW F_AUTO	_SW F_AUTO_DLY[1.01	ALC_SSW	ALC_CSW[2:	01		84 85
73	49	ALCL[7:0]	_3W F_AUTO_DET[1.0]	ALC_33W	ALC_COW[2.	oj		50
74	4A	ALC_MODE[4:0]					ALCL[9:8]		48
75		ALC_DLY[1:0]	ALCH[5:0]				1.202[0.0]		C7
76		ALC_DLY[9:2]	1						00
77		L8P100S[7:0]							EE
78		ALC_SPD[3:0]			L8P100S[11:8]				14
79	4F	L8P120S[7:0]							1C
80	50	ALC_HOLD			L8P120S[11:8]				04
81	51	EVS_MIN[7:0]							00
82	52	EVS_SW[1:0]	EVS_CUDSW				EVS_MIN[9:	8]	20
83	53	EVS_MAX[7:0]					- Invo 1471111		FF
84	54	EVS_MODE[4:0]			MUCCIO OI		EVS_MAX[9	:8]	03
85	55	HS_ES_LIM[2:0]			MHSS[3:0]				80
86 87	56 57	MES[7:0] MES[15:8]							3B 01
88	58	LS_ES_LIM[3:0]					MES[17:16]		50
89		MDG[7:0]					WIES[17.10]		00
90	5A	AG_MIN[7:0]							3F
91	5B	AG_MAX[7:0]							E7
92	5C	MAG[7:0]							80
93		ALC_AG_POLE					MAG[9:8]		03
94	5E	ASC_AG[7:0]							00
95	5F	ACDET_SW AC5060	IZ ACDET_DLY[1	:0]			ASC_AG[9:8	3]	43
96	60								08
97	61								08
98	62								00
99	63								80
100	64	IDDE OW			LIDDE ODIA OL		libbe of the	^1	00
101	65	IDRE_SW APBC_SW PBC_SV	V[2.0]		IDRE_CR[1:0]		IDRE_CL[1:	υ <u>l</u>	80
102 103	66 67	APBC_SW PBC_SV PBC_MODE[7:0]	ง[3:0]						D8 BF
103	68	PBC1LV[7:0]							10
104	69	PBC2LV[7:0]							10
106	6A	PBC3LV[7:0]							60
107	6B	PBC4LV[7:0]						!	18
108	6C	VDS_HLPFSW[1:0]	HDS_VLPFSW	[1:0]					02
109	6D		ODE[1:0]	AWB_LOCK					21
110	6E	AWB_WAIT[1:0]	YLCUT_SW	RGBCUT_SW		AWB_PN[2:0]		06
111	6F								00
112	70								40
113	71								C0
114	72								80
115	73								80
116	74								80
117	75								88
118 119	76 77								10 F0
120	78	YLCUT_L[7:0]							40
121		YLCUT_H[7:0]							C0
122	7A	UVIS NC[7:0]							08
123	7B	AWB_SSP[7:0]							FF
124	7C	AWB_MSP[7:0]							FF
125		WBG_SMIN[7:0]							33
126	7E	WBG_SMAX[7:0]							50
127	7F	WBG_MMIN[7:0]							20

The registers of gray mesh (unassigned registers) are not able to read and write via I^2C bus. "*" registers are read only. Don't touch TESTMODE registers.

04/12/13 8/30

Address										Initial
[Dec]		(D7)	(D6)	(D5)	(D4)	(D3)	(D2)	(D1)	(D0)	lHex]
128	80	WBG_MMAX[7:0]]							80
129	81	WB_MRG[7:0]								40
130		WB_MBG[7:0] ST_MRG[7:0]								40 40
131 132	84	ST_MBG[7:0]								40
133	85	O1_WIDG[1.0]								00
134		CLM_G[7:0]								80
135		CLM_S[7:0]								80
136	88	CLM MIN[7:0]								00
137	89	CLM_MAX[7:0]								FF
138	8A	YUV_G[7:0]								00
139		YUV_S[7:0]								00
140		YUV_MIN[7:0]								00
141		YUV_MAX[7:0]								00
142	8E									80
143	8F	10/ 6/7 61								80
144	90	UV_G[7:0] UV_S[7:0]								80
145		UV_S[7:0]								80
146 147	92 93	CCB_SW								00 A0
147	93	55B_51V								05
149		SCLPFG[7:0]								80
150	96	CBGMIN L[7:0]								A0
151	97	CBGMIN_H[7:0]								E0
152	98	CBU_YL[7:0]								60
153	99	CBD_YL[7:0]								A8
154	9A	LCSMODE[3:0]								03
155	9B									60
156	9C									60
157		LPFMODE				RGBLPFSW[3:0]				05
158		LPF_FC[7:0]								80
159		CLM_ANRSW								00
160 161	A0 A1	CLM_GC[7:0] CLM_RMG[7:0]								08 80
162		CLM_RMB[7:0]								40
163	A3	CLM_GMR[7:0]								80
164	A4	CLM_GMB[7:0]								80
165		CLM_BMR[7:0]								40
166		CLM_BMG[7:0]								80
167	A7	MWB_RG[7:0]								80
168	A8	MWB_BG[7:0]								80
169		ABB_SW								07
170	AA									80
171	AB									00
172	AC									00
173 174	AD AE									00 80
174	AE									00
176	B0									00
177	B1									80
178		R_BKLV[7:0]								00
179	В3					R_BKLV[11:8]				08
180		G_BKLV[7:0]								00
181	B5					G_BKLV[11:8]				80
182		B_BKLV[7:0]								00
183	B7	O 4 14 O 14 17 1 0 2		loan cours		B_BKLV[11:8]				08
184	B8	GAM_SW[1:0]		GAM_SCW[5:0]						FF
185	B9			GAM_SCH[5:0] MCC_RMG[5:0]						00
186 187	BA BB			MCC_RMB[5:0]						00
188	BC			MCC_RMB[5:0]						00
189	BD			MCC_GMR[5:0]						00
190	BE			MCC_BMR[5:0]						00
191	BF			MCC_BMG[5:0]						00

The registers of gray mesh (unassigned registers) are not able to read and write via I^2C bus. "*" registers are read only. Don't touch TESTMODE registers.

04/12/13 9/30

Address	Address	Data							Initial
[Dec]	[Hex]	(D7) (D6)	(D5)	(D4)	(D3)	(D2)	(D1)	(D0)	[Hex]
192		HDCVHSW			HDCVH_PC				88
193		HDCVH_NC[7:0]							0F
194		HDCVH_G[7:0]							40
195		HDCHSW	HDCH_FS[1:0]		HDCH_PC				80
196	C4	HDCH_NC[7:0]							00
197	C5	HDCH_G[7:0]							00
198		HDCMHSW HDCMH_FS[2:0]			HDCMH_PC				80
199	C7	HDCMH_NC[7:0]							00
200	C8	HDCMH_G[7:0]			I				00
201		VDC_PG[1:0]			VDC_PC				08
202		VDC_NC[7:0]							0F
203		VDC_G[7:0]							40
204	CC CD	HDC_PL[7:0]							36
205		VDC_PL[7:0]							60
206 207		HDC_MG[7:0]							60 48
208	D0	VDC_MG[7:0]							60
209	D1	VDC_ING[7.0]							00
210	D2								00
210		NEPO	Y_MATSW	DA_MODE					38
212	D3	UV_ACSSW	CONTRAST_R[5:						20
213	D5	J	CONTRAST_R[5						20
214	D6		CONTRACT_B[5						20
215	D7	CONTRAST_Y[7:0]							40
216	D8	SEPIA	BRIGHT_R[5:0]						10
217	D9		BRIGHT_G[5:0]						10
218	DA		BRIGHT_B[5:0]						10
219		BRIGHT_Y[7:0]							90
220	DC	RMYA[6:0]							40
221		RMYG[7:0]							В6
222	DE	BMYA[6:0]							40
223	DF	BMYG[7:0]							8F
224	E0	AVGSW	ZOOMMODE[5:0]]					80
225	E1	ZHCORE[2:0]		ZHDTL[4:0]					88
226		ZVCORE[2:0]		ZVDTL4:0]					88
227	E3								00
228	E4								80
229	E5								10
230	E6								00
231	E7								00
232	E8	DVOTC(7:01							00
233	E9	DYQTG[7:0] DUVQTG[7:0]							10
234		טיעוט[ו:ט]							10
235 236	EB EC								00
237	ED								00
238	EE		VQTSEL[1:0]		UQTSEL[1:0]		YQTSEL[1:0]		14
239	EF		VHTSELAC	VHTSELDC	UHTSELAC	UHTSELDC	YHTSELAC	YHTSELDC	3C
240		DRI[15:8]		1	1	1			00
241		DRI[7:0]							00
242	F2								00
243	F3								00
244	F4								00
245	F5								00
246		ENCDCNT[23:16]							00
247	F7	ENCDCNT[15:8]							00
248	F8	ENCDCNT[7:0]							00
249	F9								00
250	FA	FULL_ERRN ENC_ERRN							00
251	FB								00
252	FC								00
253	FD								00
254	FE								00
255	FF								00

The registers of gray mesh (unassigned registers) are not able to read and write via I^2C bus. "*" registers are read only. Don't touch TESTMODE registers.

04/12/13 10/30

OUTLINE OF INTERNAL REGISTER

- * Frame rate setting (15ps, 7.5fps)
- * Picture size setting of digital output (4VGA, SXCA, VGA, QVGA, QQVGA, CIF, QCIF, subQCIF)
- * Selection of digital data output format (8bit YUV422, RGB565)
- * JPEG ON/OFF
- * Color signal adjustment (Carrier boost, Linear matrix, YUV matrix, saturation, etc.)
- * Luminance signal adjustment (Contrast, Brightness, Gamma, H,V edge enhancement)
- * ALC(Automatic Luminance level Control) ON/OFF
- * ALC mode setting (area selection, speed selection, flicker reduction mode setting)
- * AWB ON/OFF
- * Vertical and Horizontal flip
- * Standby mode setting
- * Some kinds of correction setting (Lens shading correction etc.)

8bit parallel image data

		YUV	mode		RGB	mode
	1st	2nd	3rd	4th	1st	2nd
DOUT0	U0(n)	Y0(n)	V0(n)	Y0(n+1)	B0	G3
DOUT1	U1(n)	Y1(n)	V1(n)	Y1(n+1)	B1	G4
DOUT2	U2(n)	Y2(n)	V2(n)	Y2(n+1)	B2	G5
DOUT3	U3(n)	Y3(n)	V3(n)	Y3(n+1)	B3	R0
DOUT4	U4(n)	Y4(n)	V4(n)	Y4(n+1)	B4	R1
DOUT5	U5(n)	Y5(n)	V5(n)	Y5(n+1)	G0	R2
DOUT6	U6(n)	Y6(n)	V6(n)	Y6(n+1)	G1	R3
DOUT7	U7(n)	Y7(n)	V7(n)	Y7(n+1)	G2	R4

04/12/13 11/30

DATA OUTPUT TIMING CHART

Timing chart for each output picture size

Full Mega output without JPEG

04/12/13 12/30

VGA (x1: no zooming)

VGA (at maximum magnification x2)

04/12/13 13/30

CIF (x1: no zooming)

CIF (at maximum magnification)

04/12/13 14/30

DATA(D0-D7)

QVGA (x1: no digital zooming)

QVGA (at maximum magnification. X4)

04/12/13 15/30

QCIF (x1: no digital zooming)

QCIF (at maximum magnification: x 6.67)

04/12/13 16/30

QQVGA (x1: no digital zooming)

QQVGA (at maximum magnification: x 8)

04/12/13 17/30

subQCIF (x1: no digital zooming)

subQCIF (at maximum magnification: x 10)

Remark: the downsized picture has generally intermittent output by line, but in a horizontal line the image data are put together to form a continuous stream.

04/12/13 18/30

JPEG encoded full Mega

JPEG encoded data contains the standardized marker codes such as SOI and EOI.

HBLK is set to high when JPEG data are output. The data length of one packet is multiple of MCU. It is using 8 lines buffer memories (FIFO) when JPEG encoding. It is limited for the writing not to surpass the reading because the writing speed is earlier than the reading speed. It is not limitation for low level period of HBLK.

Also, following register setting, it is available to output by 4 bytes unit (multiple). HBLK is for data enable and high level period continues clock of 4 multiples. It is not limitation for low level period of HBLK.

Also, when the JPEG data of 1V period is not 4 multiples, the data of address A5h makes to add after address FFh and address D9h because it needs to become 4 multiples.

* Setting of reading 4 bytes unit Address E6h D[3] J4BYTESW

"High" setting: JPEG output by 4 bytes unit

04/12/13 19/30

JPEG DATA FORMAT

Block diagram

JPEG data structure

The following figure shows JPEG data structure.

Data stream	SOI	DQT	SOF	DHT	SOS	Image	EOI
SOI	Marker	code	16'hFF	08			
DQT	Marker	code	16'hFF)B			
SOF	Marker	code	16'hFFC	00			
DHT	Marker	code	16'hFFC	C4			
SOS	Marker	code	16'hFF	DΑ			
Image data	MCU1 ~	MCU10)240 (for	1280 ×	1024 pi	kels)	
EOI(16bit)	Marker	code	16'hFF	09			

The following tables show the data structure of DQT,SOF,DHT and SOS respectively.

The host can adjust the picture quality mode (namely compression ratio) by sending a specific quantization table or by sending Q table gain via IIC bus.

The JPEG encoded data are once stored an internal FIFO memory before outputting.

When data overflow in FIFO happens due to locally increased JPEG data (locally very low compression), data transmission is stopped after FE code addition and an error flag is written in the register table.

After the host accesses the error flag register, the error flag is automatically reset.

04/12/13 20/30

DQT structure

	Code (Hex)	Meaning						
+00	FF	Marker Prefix						
+01	DB	DQT						
+02	00	Length of field						
	C5	2+(1+64)*3=197 (Byte)						
+04	00	Y: Pq=0, Nq=0						
+05	:	Quantization table Y:Q0						
	:	:						
	:	:						
	:	:						
	: Quantization table Y:Q63							
+45	01	U: Pq=0, Nq=1						
+46	:	Quantization table U:Q0						
	:	:						
	:	:						
	:	:						
	:	Quantization table U:Q63						
+86	02	V: Pq=0, Nq=0						
+87	:	Quantization table V:Q0						
	:	:						
	:	:						
	:	· ·						
	:	Quantization table V: Q63						

SOF structure

	Code (Hex)	Meaning
+00	FF	Marker Prefix
+01	C0	SOF
+02	00	Length of field
+03	C5	2+1+2+1+2*3=17 (Byte)
+04	00	Data precision (bits)
+05	XX	vertical lines
+06	YY	XXYY (Hex) lines
+07	WW	horizontal lines
+08	ZZ	WWZZ (Hex) lines
+09	03	Components
+0A	01	Components number (1:Y)
+0B	21	H0=2, V0=1(4:2:2)
+0C	00	Quantization designation
+0D	02	Components number (2:U)
+0E	11	H1=1, V1=1
+0F	01	Quantization designation
+10	03	Components number (2:U)
+11	11	H2=1,V2=1
+13	02	Quantization designation

04/12/13 21/30

DHT structure

	Code (Hex)	Meaning
+00	FF	Marker Prefix
+01	C4	DHT
+02	01	Length of field
	A2	2+(1+16+12+1+16+162)*2=418 (Byte)
+04	00	Table number Y-DC : 00
		DHT parameter
	10	Table number Y-AC : 10
		DHT parameter
	01	Table number C-DC : 01
		DHT parameter
	11	Table number C-AC : 11
		DHT parameter
	00	Table number Y-DC : 00
		DHT parameter
	10	Table number Y-AC : 10
		DHT parameter
	01	Table number C-DC : 01
		DHT parameter
	11	Table number C-AC : 11
		DHT parameter

Remark: the current JPEG logic core outputs two sets of Huffmann table.

SOS structure

	Code (Hex)	Meaning
+00	FF	Marker Prefix
+01	DA	SOS
+02	00	Length of field
	0C	2+1+3*2+3=12 (Byte)
+04	03	Components in scan
+05	01	Components selector Y:01
+06	00	Huffmann table selector Y:00
+07	02	Components selector U:02
+08	11	Huffmann table selector C:11
+09	03	Components selector V:03
+0A	11	Huffmann table selector C:11
+0B	00	Scan start position in block
+0C	3F	Scan end position in block
+0D	00	Succesive approximation Bit position

04/12/13 22/30

OPERATING FLOW

The sensor chip supports the operating mode and the standby mode as shown in the following figure.

power management

In power off mode, the output pins are not in High-Z status.

In standby mode, the latest status of output pins is restored. If the host sends "Lowfixed" command before sleep command, all the output pins are set to "Low".

Powering order and timing margin are shown in the following figure.

Timing description in power sequence

04/12/13 23/30

When 1.6V power line is higher than 2.5V power line, the current is provided from 1.6V power line to 2.5V power line via internal protection diode.

When 2.5V power line is open, the current is provided to 2.5V power line from 1.6V power line via internal protection diode. Then 1V is provided at 2.5V power line and 1.6V is provided at 1.6V power line. When 2.5V power line is connected to GND, 1.6V power line is shorted to GND at low impedance.

These conditions can not be guaranteed and it need to consideration to design.

Acceptable period for command setting

The following figure shows the command acceptable period. In general the status of the next frame data is immediately reflected by the command, but in case of the commands dealing with sensor operation such as exposure time setting, the frame after next is reflected. Register setting is available between top of full mega pixel image and end of image.

The minimum period happens in case of sub QCIF maximum zooming. The command acceptable period after VBLK turns high is 36 msec for 15 fps operation and 71.5 msec for 7.5fps.

04/12/13 24/30

MAXIMUM RATING

CHARACTERISTICS	SYMBOL	RATING	UNITS
Power supply voltage	PVDD (AVDD25), IOVDD (IOVDD25, IOAVD25)	-0.3 to 3.6	V
	DVDD (AVDD15, DVDD15)	-0.3 to 3.0	V
Input voltage	V _{IN}	-0.3 to VDD+0.3	V
Storage tempature	T _{stq}	-30 to 85	Degree C

RECOMMENDED OPERATING CONDITION

CHARACTERISTICS	SYMBOL	MIN	TYP	MAX	UNITS
Power supply voltage	PVDD (AVDD25),	2.6	2.8	3.0	V
	IOVDD (IOVDD25, IOAVDD25)	2.3	2.5	2.7	V
	DVDD (AVDD15, DVDD15)	1.5	1.6	1.7	V
Input voltage	V _{IN}	0 to VDD		V	
Operating temperature	T _{OPR}	-20 to 60		Degree C	

Note:

04/12/13 25/30

^{*} If using 2.5V operation, must input setting command. (Default setting is 2.8V operation.)

ELECTRICAL CHACTERISTICS

DC Characteristics (Ta=25 degree C, PVDD=IOVDD=2.8V, DVDD=1.6V)

1. POWER CONSUMPTION

(Ta=25 degree C, PVDD=IOVDD=2.5V, DVDD=1.6V, 15fps operation, dark condition)

, <u>.</u>	ITEM		CONDITION		TYP	MAX	UNITS
	IOVDD, PVDD	Output data:		-	20	30	mA
	DVDD	Normal mode	YUV	-	100	150	mA
POWER *	IOVDD, PVDD		Output data: JPEG *	-	10	15	mA
TOWER	DVDD			ī	90	140	mA
	IOVDD, PVDD	Standby mode	Ta=60 degree C	-	-	11	μA
	DVDD	Standby mode		-	-	5100	μA

Note;

2. EXTCLK

	ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
	HIGH level input voltage	V _{IH EXTCLK}	ı	IOVDD x 0.8	ı	-	V
Deeterolog	LOW level input voltage	V _{IL EXTCLK}	ı	-	ı	IOVDD x 0.2	V
Rectanglar shape	HIGH level input current	I _{IH EXTCLK}	V _{IN} =IOVDD	-10	ı	10	μΑ
зпарс	LOW level input current	I _{IL EXTCLK}	V _{IN} =GND	-10	-	10	μΑ
	DUTY *	-	-	45/55	-	55/45	%

Note;

3. SCL, SDA

	ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
SCL	HIGH level input voltage	V _{IH SCL}	-	IOVDD x 0.7	IOVDD	3.3	V
	LOW level input voltage	V _{IL SCL}	-	0	-	IOVDD x 0.3	V
SDA	HIGH level input voltage	V _{IH SDA}	-	IOVDD x 0.7	IOVDD	3.3	V
	LOW level input voltage	V _{IL SDA}	-	0	-	IOVDD x 0.3	V
	LOW level output voltage	V _{OL SDA}	I _{OL} =4mA	0	-	0.4	V

4. DOUT7-0, HBLK, VBLK, STROBE, DCLK

ITEM		SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
DOUT7-0, HBLK, VBLK,	HIGH level output voltage	V _{OH DATA}	I _{OH} =-2mA	2.4	IOVDD	-	V
	LOW level output voltage	V _{OL DATA}	I _{OL} =2mA	0	-	0.4	V

5. RESET

	ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
RESET	HIGH level input voltage	V _{IH RESET}	ı	IOVDD x 0.8	-	-	V
	LOW level input voltage	V _{IL RESET}	-	-	-	IOVDD x 0.2	V
	HIGH level input current	I _{IH RESET}	V _{IN} =GND	-10	-	10	μΑ
	LOW level input current	I _{IL RESET}	V _{IN} =IOVDD	-10	-	10	μΑ

04/12/13 26/30

^{*} Measurement condition: Machbeth chart(full)

^{*} JPEG table is standard.

^{*} Duty is referred to 50% level of input EXTCLK.

AC Characteristics (Ta=25 degree C, PVDD=IOVDD=2.8V, DVDD=1.6V)

1. EXTCLK

ITEM	SYMBOL	MIN	TYP	MAX	UNITS	NOTE
Clock frequesncy	f _{EXTCLK}	6	1	20	MHz	
Rise time	t _{r EXTCLK}	1	1	5	ns	* 1
Fall time	t _{f EXTCLK}	ı	ı	5	ns	ı

Note;

ALL values referred to V_{IHmin} and V_{ILmax} levels.

04/12/13 27/30

2. SCL, SDA

ITEM		SYMBOL	MIN	MAX	UNITS	NOTE
	Clock frequency	f _{SCL}	0	400	kHz	
	Low period	t _{LOW SCL}	1.3	ı	μs	
SCL	High period	t _{HIGH} SCL	0.6	1	μs	
	Rise time	t _{r SCL}	1	300	μs	
	Fall time	t _f SCL	1	300	μs	
SDA	Rise time	t _{r SDA}	ı	300	μs	
SDA	Fall time	t _{f SDA}	1	300	μs	*1
Hold time (repeated) ST After this period, the firs	ART condition t clock pulse is generated	^t HD STA	0.6	-	μs	
Setup time for a rep	eated START condition	t _{SU STA}	0.6	-	μs	
Data	hold time	t _{HD DAT}	0	•	μs	
Data	Data setup time		100	ı	μs	
Setup time for STOP condition		t _{SU STO}	0.6	-	μs	
Width of	Normal	t _{SP1}	0	50	μs	
spike pulse	Wakeup from sleep mode	t _{SP2}	0	20	μs	

Note;

 $^{^{\}ast}$ All values referred to V_{IHmin} and V_{ILmax} levels.

04/12/13 28/30

3. DOUT7-0, DCLK, HBLK, VBLK

ITEM		SYMBOL	MIN	MAX	UNITS	NOTE
DCLK	Rise time	t _{r DCLK}	-	6	μs	
	Fall time	t _{f DCLK}	-	6	μs	
DOUT7-0, HBLK, VBLK	Rise time	t _{r DATA}	-	6	μs	
	Fall time	t _{f DATA}	-	6	μs	
Data hold time		t _{HD DATA}	10	-	μs	
Data setup time		t _{SU DATA}	10	-	μs	

Note;

 $^{^{\}ast}$ All values referred to V_{OHmin} and V_{OLmax} levels.

04/12/13 29/30

Module Drawing

04/12/13 30/30