A számításelmélet alapjai I. (Hetedik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. március 26.

Tematika

 A minimális állapotszámú determinisztikus véges automata, a minimalizálási algoritmus.

Példa 1

Legyen $A=(Q,T,\delta,q_1,F)$ determinisztikus véges automata, ahol $Q=\{q_1,\ q_2,\ q_3,\ q_4,\ q_5\},\ T=\{a,\ b\},\ F=\{q_2,\ q_3\}$ és δ az alábbi táblázattal adott:

Konstruáljunk meg egy A' determinisztikus véges automatát, amely minimális állapotszámú és amelyre L(A') = L(A) teljesül!

Példa 1

- Először megállapítjuk, hogy az automata összefüggő-e vagy sem.
- Az A determinisztikus véges automatát összefüggőnek nevezzük, ha minden állapota elérhető a kezdőállapotból, azaz ha minden $p \in Q$ esetén létezik $w \in T^*$, hogy $q_0 w \Longrightarrow_A^* p$ teljesül.
- Ha nem, akkor összefüggővé tesszük.
- A továbbiakban az összefüggő automatával foglalkozunk, vagyis, ha összefüggő volt az automata, akkor az eredeti automatával, ha nem az volt, akkor legnagyobb összefüggő részautomatájával.

Példa 1

- Ezután partícionáljuk (a megkülönböztethetőség szerint ekvivalenciaosztályokra bontjuk) az állapothalmazt.
- Először az állapotok halmazát két partícióra osztjuk: F-re és Q-F-re. (Az F-beli állapotok megkülönböztethetők a Q-F-beli állapotoktól az üres szóval).
- Majd megismételjük a partíciók további partíciókra való szétbontását mindaddig, amíg a partíciók száma változatlan marad.

Példa 1

- Ez a következőképpen történik: Tekintsük egy tetszőleges partíció állapotait.
- Vegyük az a input szimbólumot és tekintsük a $\delta(p,a)$ állapotot minden p állapotra a partícióban. Ha az így nyert állapotok különböző partíciókhoz tartoznak, akkor az eredeti partíciót bontsuk szét annyi új partícióra, ahány ilyen módon meghatározott partíció keletkezett.
- Végezzük el ezt az eljárást minden input betűre és minden partícióra, addig, amíg új partíció már nem keletkezik.

Példa 1

- Ezután meghatározzuk a minimális állapotszámú automata komponenseit.
- Minden egyes B_i partícióra tekintünk egy b_i reprezentáns állapotot. Legyen $A=(Q',T,\delta',q_0',F')$, ahol Q' a partíciók reprezentánsainak halmaza. Továbbá, legyen q_0' a q_0 -t tartalmazó partíció reprezentánsa és $\delta'(b_i,a)=b_j$, ha van olyan $q_i\in B_i$ és $q_j\in B_j$, amelyre $\delta(q_i,a)=q_j$. $F'=\{b_f\}$ azon partíció reprezentánsa, amely F elemeit tartalmazza.

- Könnyen megállapítható, hogy az automata nem összefüggő, mivel a q_3 állapot nem érhető el a kezdőállapotból. (q_1 -ből közvetlenül elérhető q_4 és q_5 , q_5 -ből pedig q_2 ; q_3 egyetlen állapotból sem érhető el közvetlenül.)
- Ezután már csak a q_1, q_2, q_4, q_5 állapotokkal foglalkozunk.

- Először két partícióra bontjuk ezen állapotok halmazát: $[q_1, q_4, q_5]$, valamint $[q_2]$.
- Az a inputszimbólum hatására q_1 és q_4 ugyanazon partícióba tartozó állapotba megy át (q_4 állapot), míg q_5 nem.
- Ezért a $[q_1, q_4, q_5]$ partíciót két partícióra bontjuk: $[q_1, q_4]$, valamint $[q_5]$.
- Ezután könnyen beláthatjuk, hogy további partíciókra nem tudjuk bontani a meglévőket, mivel mind az a, mind a b inputszimbólumok hatására q_1 és q_4 ugyanazon partícióba tartozó állapotba megy át.

- Tehát a minimális állapotszámú automata állapotait reprezentáló partíciók $[q_1, q_4]$, $[q_5]$, $[q_2]$.
- Reprezentáljuk $[q_1, q_4]$ -t b_1 -gyel, $[q_5]$ -t b_2 -vel, $[q_2]$ -t b_3 -mal. Az új automata kezdőállapota b_1 lesz, elfogadó állapota b_3 , szabályait pedig az alábbi táblázattal tudjuk megadni:

Példa 2

Legyen $A=(Q,T,\delta,q_0,F)$ determinisztikus véges automata, ahol $Q=\{q_0,\ q_1,\ q_2,\ q_3,\ q_4\},\ T=\{a,\ b\},\ F=\{q_3,\ q_4\}$ és δ az alábbi táblázattal adott:

Konstruáljunk meg egy A' determinisztikus véges automatát, amely minimális állapotszámú és amelyre L(A') = L(A) teljesül!

Példa 2

• Könnyen megállapítható, hogy az automata összefüggő (q_0 -ból közvetlenül elérhető q_0 és q_1 , q_1 -ből q_1 és q_2 , q_2 -ből q_3 és q_1 , q_3 -ból q_4 és q_1 , q_4 -ből pedig q_2 és q_1).

- Először két partícióra bontjuk ezen állapotok halmazát: $[q_0, q_1, q_2]$, valamint $[q_3, q_4]$.
- Az a inputszimbólum hatására q_0 és q_1 ugyanazon partícióba tartozó állapotba megy át (q_0 és q_1 állapot), míg q_2 nem (q_3 állapot).
- Ezért a $[q_0, q_1, q_2]$ partíciót két partícióra bontjuk: $[q_0, q_1]$, valamint $[q_2]$.
- Az a inputszimbólum hatására q_3 és q_4 különböző partícióba tartozó állapotba megy (q_4 és q_2 állapot).

- A második lépésben létrejött partíciók tehát: $[q_0, q_1], [q_2], [q_3]$ és $[q_4]$.
- A harmadik lépésben $[q_0, q_1]$ -t tovább bontjuk, ugyanis a b inputszimbólum hatására q_0 és q_1 különböző partícióba tartozó állapotba megy $(q_1$ és q_2 állapot).
- Az így létrejött partíciók tehát: $[q_0], [q_1], [q_2], [q_3]$ és $[q_4]$.
- Látható, hogy további partíciókra nem tudjuk bontani a meglévőket.

- Tehát a minimális állapotszámú automata állapotait reprezentáló partíciók: $[q_0],[q_1],[q_2],[q_3]$ és $[q_4]$.
- Reprezentáljuk $[q_0]$ -t $[b_0]$ -val, $[q_1]$ -t $[b_1]$ -gyel, $[q_2]$ -t $[b_2]$ -vel, $[q_3]$ -t $[b_3]$ -mal és $[q_4]$ -t $[q_4]$ -gyel.
- Az új automata kezdőállapota b_0 lesz, elfogadó állapotai b_3 és b_4 , szabályait pedig az alábbi táblázattal tudjuk megadni:

Példa 3

Legyen $A=(Q,T,\delta,q_1,F)$ determinisztikus véges automata, ahol $Q=\{q_0,\ q_1,\ q_2,\ q_3,\ q_4\},\ T=\{a,\ b\},\ F=\{q_1,\ q_3\}$ és δ az alábbi táblázattal adott:

Konstruáljunk meg egy A' determinisztikus véges automatát, amely minimális állapotszámú és amelyre L(A') = L(A) teljesül!

- Könnyen megállapítható, hogy az automata nem összefüggő, mivel a q_3 állapot nem érhető el a kezdőállapotból. (q_0 -ból közvetlenül elérhető q_1 és q_2 , q_1 -ből q_0 és q_4 , q_2 -ből és q_4 -ből pedig q_4 és q_1 ; q_3 egyetlen állapotból sem érhető el közvetlenül.)
- Ezután már csak a q_0 , q_1 , q_2 és q_4 állapotokkal foglalkozunk.

- Először két partícióra bontjuk ezen állapotok halmazát: $[q_0, q_2, q_4]$, valamint $[q_1]$.
- Az a inputszimbólum hatására q_2 és q_4 ugyanazon partícióba tartozó állapotba megy át (q_4 állapot), míg q_0 nem.
- Ezért a $[q_0, q_2, q_4]$ partíciót két partícióra bontjuk: $[q_2, q_4]$, valamint $[q_0]$.
- Ezután könnyen beláthatjuk, hogy további partíciókra nem tudjuk bontani a meglévőket, mivel mind az a, mind a b inputszimbólumok hatására q_2 és q_4 ugyanazon partícióba tartozó állapotba megy át.

- Tehát a minimális állapotszámú automata állapotait reprezentáló partíciók $[q_0]$, $[q_1]$, $[q_2, q_4]$.
- Reprezentáljuk $[q_0]$ -t b_0 -val, $[q_1]$ -t b_1 -gyel, $[q_2, q_4]$ -t pedig b_2 -vel.
- Az új automata kezdő- és elfogadó állapota b_1 lesz, szabályait pedig az alábbi táblázattal tudjuk megadni:

