Colle 0 Porte outil – Sujet

Le dispositif porte-outil d'une machine d'affûtage est composé de trois solides 1, 2 et 3

Le repère $\Re_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$, avec $\left(O, \overrightarrow{z_0}\right)$ vertical ascendant, est lié au bâti $\mathbf 0$ de la machine. Il est supposé galiléen. Toutes les liaisons sont supposées parfaites.

Le repère $\Re_1 = \left(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}\right)$ est lié au support tournant 1 en liaison pivot d'axe $\left(O, \overrightarrow{z_0}\right)$ avec le bâti 0. La position de 1 par rapport à l'axe $\left(O, \overrightarrow{z_0}\right)$ est repérée par $\alpha = \left(\overrightarrow{x_0}, \overrightarrow{x_1}\right) = \left(\overrightarrow{y_0}, \overrightarrow{y_1}\right)$.

On note I_1 le moment d'inertie de **1** par rapport à l'axe $(O, \overrightarrow{z_0})$ et H le point tel que $\overrightarrow{OH} = h\overrightarrow{x_1}$.

Le repère $\Re_2 = \left(H; \overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2}\right)$ est lié au bras pivotant **2** en liaison pivot d'axe $\left(H, \overrightarrow{y_1}\right)$ avec **1**. La position de **2** est repérée par $\beta = \left(\overrightarrow{x_1}, \overrightarrow{x_2}\right) = \left(\overrightarrow{z_0}, \overrightarrow{z_2}\right)$.

On note m_2 la masse de **(2)**, de centre d'inertie H de matrice d'inertie I_H (2) = $\begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}.$

Le repère $\Re_3 = \left(G; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_2}\right)$ est lié au porte-outil (3) (avec l'outil à affûter tenu par le mandrin) en liaison pivot glissant d'axe $\left(H, \overrightarrow{z_2}\right)$ avec (2).

La position de (3) est repérée par $\gamma = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{y_2}, \overrightarrow{y_3})$ et par $\overrightarrow{HG} = \lambda \overrightarrow{z_2}$.

On note m_3 la masse de **(3)**, de centre d'inertie G de matrice d'inertie I_G (3) = $\begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_3}$.

Question 1 Justifier la forme de la matrice de la pièce (3).

Question 2 Calculer $\overrightarrow{V(G,3/0)}$.

Question 3 Indiquer la méthode permettant de calculer le torseur dynamique en G de (3) en mouvement par rapport à \Re_0 en projection sur $\overline{z_2}$.

Question 4 Calculer le moment dynamique en H appliqué à l'ensemble $\{2, 3\}$ en mouvement par rapport à \mathcal{R}_0 en projection sur $\overrightarrow{y_1}$.

Question 5 Calculer le moment dynamique en O appliqué à l'ensemble $\{1, 2, 3\}$ en mouvement par rapport à \mathcal{R}_0 en projection sur $\overrightarrow{z_0}$.

C1-05

C2-09

