In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: df=pd.read_csv("/Users/praneetcb/Documents/delhivery_data.csv")

In [4]: df.head()

Out[4]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	sou
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND:
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND:
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND:
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND:

5 rows × 24 columns

In [6]: | df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 144867 entries, 0 to 144866 Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	data	144867 non-null	object
1	trip_creation_time	144867 non-null	object
2	route_schedule_uuid	144867 non-null	object
3	route_type	144867 non-null	object
4	trip_uuid	144867 non-null	object
5	source_center	144867 non-null	object
6	source_name	144574 non-null	object
7	destination_center	144867 non-null	object
8	destination_name	144606 non-null	object
9	od_start_time	144867 non-null	object
10	od_end_time	144867 non-null	object
11	start_scan_to_end_scan	144867 non-null	float64
12	is_cutoff	144867 non-null	bool
13	cutoff_factor	144867 non-null	int64
14	cutoff_timestamp	144867 non-null	object
15	<pre>actual_distance_to_destination</pre>	144867 non-null	float64
16	actual_time	144867 non-null	float64
17	osrm_time	144867 non-null	float64
18	osrm_distance	144867 non-null	float64
19	factor	144867 non-null	float64
20	segment_actual_time	144867 non-null	float64
21	segment_osrm_time	144867 non-null	float64
22	segment_osrm_distance	144867 non-null	float64
23	segment_factor	144867 non-null	float64
dtyp	es: bool(1), float64(10), int64(1) , object(12)	
mama	ry usage: 25 6± MR		

memory usage: 25.6+ MB

```
In [7]: | df.nunique()
 Out[7]: data
                                                        2
          trip_creation_time
                                                   14817
          route_schedule_uuid
                                                    1504
          route_type
                                                        2
          trip_uuid
                                                   14817
          source_center
                                                    1508
                                                    1498
          source_name
          destination_center
                                                    1481
          destination_name
                                                    1468
          od_start_time
                                                   26369
          od_end_time
                                                   26369
          start_scan_to_end_scan
                                                    1915
          is_cutoff
                                                        2
          cutoff_factor
                                                     501
          cutoff_timestamp
                                                   93180
          actual_distance_to_destination
                                                  144515
          actual_time
                                                    3182
          osrm_time
                                                    1531
          osrm distance
                                                  138046
          factor
                                                   45641
          segment_actual_time
                                                     747
          segment_osrm_time
                                                     214
          segment_osrm_distance
                                                  113799
          segment_factor
                                                    5675
          dtype: int64
 In [8]: |df.describe()
 Out[8]:
                 start_scan_to_end_scan
                                       cutoff_factor actual_distance_to_destination
                                                                               actual_time
                                     144867.000000
                                                                144867.000000 144867.000000
                         144867.000000
           count
                           961.262986
                                         232.926567
                                                                   234.073372
                                                                                416.927527
           mean
                           1037.012769
                                         344.755577
                                                                   344.990009
                                                                                598.103621
             std
             min
                            20.000000
                                          9.000000
                                                                     9.000045
                                                                                 9.000000
                            161.000000
                                         22.000000
                                                                                 51.000000
            25%
                                                                   23.355874
            50%
                            449.000000
                                          66.000000
                                                                   66.126571
                                                                                132.000000
                           1634.000000
                                                                   286.708875
                                                                                513.000000
            75%
                                         286.000000
                                                                               4532.000000
                           7898.000000
                                        1927.000000
                                                                  1927.447705
            max
In [16]: # Converting columns to date_time object
          df['od_start_time']=pd.to_datetime(df['od_start_time'])
          df['od end time']=pd.to datetime(df['od end time'])
In [20]: # Removing null values and resetting index
          df=df.dropna(how='any')
          df=df.reset_index(drop=True)
```

```
In [21]: | df.isna().sum()
Out[21]: data
                                              0
          trip_creation_time
                                              0
                                              0
          route_schedule_uuid
          route_type
                                              0
                                              0
          trip_uuid
          source_center
                                              0
          source_name
                                              0
                                              0
          destination_center
          destination_name
                                              0
                                              0
          od_start_time
          od_end_time
                                              0
          start_scan_to_end_scan
                                              0
          is_cutoff
                                              0
          cutoff_factor
                                              0
          cutoff_timestamp
                                              0
          actual_distance_to_destination
                                              0
          actual_time
                                              0
          osrm_time
                                              0
                                              0
          osrm_distance
          factor
                                              0
          segment_actual_time
                                              0
          segment_osrm_time
                                              0
          segment_osrm_distance
                                              0
          segment_factor
                                              0
          dtype: int64
```

In []: #aggreagating data basis on trip_id, source_centre, Destination_cen

```
In [41]: | agg_columns = {
              'data' : 'first',
             'trip_creation_time' : 'first',
             'route_schedule_uuid' : 'first',
             'route_type' : 'first',
              'source_name' : 'first',
              'destination_name' : 'last',
              'start_scan_to_end_scan': 'first',
             'cutoff_timestamp': 'sum',
              'actual_distance_to_destination': 'last',
              'cutoff_factor': 'first',
              'segment_actual_time': 'sum',
              'segment_osrm_time': 'sum',
              'segment_osrm_distance': 'sum',
              'segment factor': 'first',
              'actual_time': 'last',
              'osrm_time': 'last',
              'osrm_distance': 'last',
              'factor': 'sum',
              'od_start_time': 'first',
             'od_end_time': 'last',
              'is_cutoff': 'first',
              'cutoff_factor': 'first',
              'segment_factor': 'last'
         grouped_data=df.groupby(['trip_uuid','source_center','destination_c
```

In [42]: grouped_data

Out[42]:	data	trip_creation_time	route_schedule_uuid	route_type	source_name	
	aining	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	Kanpur_Central_H_6 (Uttar Pradesh)	Gu
	aining	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	Bhopal_Trnsport_H (Madhya Pradesh)	K
	aining	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	Doddablpur_ChikaDPP_D (Karnataka)	Chił
	aining	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	Tumkur_Veersagr_I (Karnataka)	Dodda
	aining	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	Gurgaon_Bilaspur_HB (Haryana)	Chandi
	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Tirchchndr_Shnmgprm_D (Tamil Nadu)	Thisaya
	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Peikulam_SriVnktpm_D (Tamil Nadu)	Tin
	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Eral_Busstand_D (Tamil Nadu)	Tirchc
	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	Sandur_WrdN1DPP_D (Karnataka)	Bel
	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	Hospet (Karnataka)	Sar

In []: # Build some features to prepare the data for actual analysis. Extr

In []: # Destination Name: Split and extract features out of destination.

In [167]: grouped_data['destination_city']=grouped_data['destination_name'].a

```
In [160]: def name_place(x):
              # we will remove state
              x = x.split('(')[0])
              len_ = len(x.split('_'))
              if len_ >= 3:
                  return x.split('_')[1]
              # small cities have same city and place name
              if len_ == 2:
                  return x.split('_')[0]
              # now we need to deal with edge cases or imporper name conventi
              # if len(x.split('_')) == 2:
              return x.split(' ')[0]
In [168]: |grouped_data['destination_place']=grouped_data['destination_name'].
In [169]: _data['destination_state'] = grouped_data['destination_name'].apply(
In [164]: | def name_code(x):
              # we will remove state
              x = x.split('(')[0]
              if len(x.split('_')) >= 3:
                  return x.split('_')[-1]
              return 'none'
In [165]: grouped_data['destination_code']=grouped_data['destination_name'].a
```

In [180]: grouped_data[['destination_state','destination_city','destination_p

Out[180]:

	destination_state	destination_city	destination_place	destination_code
0	Haryana	Gurgaon	Bilaspur	НВ
1	Uttar Pradesh	Kanpur	Central	6
2	Karnataka	Chikblapur	ShntiSgr	D
3	Karnataka	Doddablpur	ChikaDPP	D
4	Punjab	Chandigarh	Mehmdpur	н
26217	Tamil Nadu	Thisayanvilai	UdnkdiRD	D
26218	Tamil Nadu	Tirunelveli	VdkkuSrt	1
26219	Tamil Nadu	Tirchchndr	Shnmgprm	D
26220	Karnataka	Bellary	Bellary	none
26221	Karnataka	Sandur	WrdN1DPP	D

26222 rows × 4 columns

```
In []:
    # Source Name: Split and extract features out of source. City_place
In [170]: grouped_data['source_city']=grouped_data['source_name'].apply(lambd
In [172]: grouped_data['source_place']=grouped_data['source_name'].apply(name_
In [174]: grouped_data['source_code']=grouped_data['source_name'].apply(name_
In [178]: grouped_data['source_state'] = grouped_data['source_name'].apply(lambd)
```

In [181]: grouped_data[['source_state','source_city','source_place','source_c

Out[181]:

	source_state	source_city	source_place	source_code
0	Uttar Pradesh	Kanpur	Central	6
1	Madhya Pradesh	Bhopal	Trnsport	Н
2	Karnataka	Doddablpur	ChikaDPP	D
3	Karnataka	Tumkur	Veersagr	1
4	Haryana	Gurgaon	Bilaspur	НВ
•••				
26217	Tamil Nadu	Tirchchndr	Shnmgprm	D
26218	Tamil Nadu	Peikulam	SriVnktpm	D
26219	Tamil Nadu	Eral	Busstand	D
26220	Karnataka	Sandur	WrdN1DPP	D
26221	Karnataka	Hospet (Karnataka)	Hospet	none

26222 rows × 4 columns

```
In [ ]: # Trip_creation_time: Extract features like month, year and day etc
```

In [185]: grouped_data[['trip_year','trip_month','trip_hour','trip_day','trip_

Out[185]:

	trıp_year	trip_month	trip_hour	trip_day	trip_week	trip_dayofweek
0	2018.0	9.0	0.0	12.0	37	2.0
1	2018.0	9.0	0.0	12.0	37	2.0
2	2018.0	9.0	0.0	12.0	37	2.0
3	2018.0	9.0	0.0	12.0	37	2.0
4	2018.0	9.0	0.0	12.0	37	2.0
•••						•••
26217	NaN	NaN	NaN	NaN	<na></na>	NaN
26218	NaN	NaN	NaN	NaN	<na></na>	NaN
26219	NaN	NaN	NaN	NaN	<na></na>	NaN
26220	NaN	NaN	NaN	NaN	<na></na>	NaN
26221	NaN	NaN	NaN	NaN	<na></na>	NaN

26222 rows × 6 columns

```
In [ ]:
 In [ ]: |# Calculate time taken between od_start_time and od_end_time and cr
In [43]: grouped_data['od_time_diff_hour'] = (grouped_data['od_end_time']
         grouped_data['od_time_diff_hour']
Out[43]: 0
                   1260.604421
         1
                    999.505379
         2
                     58.832388
                    122.779486
         3
         4
                    834.638929
         26217
                     62.115193
         26218
                     91.087797
         26219
                     44.174403
         26220
                    287.474007
         26221
                     66.933565
```

Name: od_time_diff_hour, Length: 26222, dtype: float64

```
In [44]: grouped_data['start_scan_to_end_scan']
Out[44]: 0
                   1260.0
         1
                    999.0
         2
                     58.0
         3
                    122.0
         4
                    834.0
                     62.0
         26217
         26218
                     91.0
         26219
                     44.0
         26220
                    287.0
         26221
                     66.0
         Name: start_scan_to_end_scan, Length: 26222, dtype: float64
 In [ ]: #od_time_diff_hour is matching with start_scan_to_end_scan
In [55]: sns.boxplot(data=grouped_data, x='start_scan_to_end_scan')
         plt.show()
         sns.boxplot(data=grouped_data, x='od_time_diff_hour')
         plt.show()
```



```
In [ ]: #In-depth analysis and hypothesis testing
```

In []: #Creating aggregated values for all the tests — these are the value #and taking sum of the values that are required for test.

```
In [60]: |trip_dict = {
              'data' : 'first',
              'trip_creation_time' : 'first',
'route_schedule_uuid' : 'first',
              'route_type' : 'first',
              'trip_uuid' : 'first',
              'source_center' : 'first',
              'source_name' : 'first',
              'destination_center' : 'last',
              'destination_name' : 'last',
              'start_scan_to_end_scan' : 'sum',
              'od_time_diff_hour' : 'sum',
              'actual_distance_to_destination' : 'sum',
              'actual_time' : 'sum',
              'osrm_time' : 'sum',
              'osrm_distance' : 'sum',
              'segment_actual_time' : 'sum',
              'segment_osrm_distance' : 'sum',
              'segment_osrm_time' : 'sum',
          }
```

```
In [61]: trip=grouped_data.groupby('trip_uuid').agg(trip_dict).reset_index(d
```

In [62]: trip

Out[62]:

2]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
	0	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748
	1	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	trip- 153671042288605164
	2	training	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	trip- 153671043369099517
	3	training	2018-09-12 00:01:00.113710	thanos::sroute:f0176492- a679-4597-8332- bbd1c7f	Carting	trip- 153671046011330457
	4	training	2018-09-12 00:02:09.740725	thanos::sroute:d9f07b12- 65e0-4f3b-bec8- df06134	FTL	trip- 153671052974046625
	14782	test	2018-10-03 23:55:56.258533	thanos::sroute:8a120994- f577-4491-9e4b- b7e4a14	Carting	trip- 153861095625827784
	14783	test	2018-10-03 23:57:23.863155	thanos::sroute:b30e1ec3- 3bfa-4bd2-a7fb- 3b75769	Carting	trip- 153861104386292051
	14784	test	2018-10-03 23:57:44.429324	thanos::sroute:5609c268- e436-4e0a-8180- 3db4a74	Carting	trip- 153861106442901555
	14785	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	trip- 153861115439069069
	14786	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	trip- 153861118270144424

14787 rows × 18 columns

In []: # Visualize the relationship between two numerical values, such as

In [64]: trip[['actual_time', 'osrm_time']]

Out[64]:

	actual_time	osrm_time
0	1562.0	717.0
1	143.0	68.0
2	3347.0	1740.0
3	59.0	15.0
4	341.0	117.0
•••		
14782	83.0	62.0
14783	21.0	12.0
14784	282.0	48.0
14785	264.0	179.0
14786	275.0	68.0

14787 rows × 2 columns

```
In [70]: plt.figure(figsize=(8, 6))
   plt.scatter(trip['osrm_time'], trip['actual_time'], alpha=0.5)
   plt.plot(np.arange(0, max(trip['osrm_time'])), np.arange(0, max(tri
        plt.xlabel('OSRM Time')
        plt.ylabel('Actual Time')
        plt.title('Comparison of OSRM Time vs Actual Time')
        plt.grid(True)
        plt.show()
```


In [78]: from scipy.stats import ttest_rel, ttest_ind

In [81]: # Hypothesis testing using T-test-ind for actual time and segment a

```
In [82]: trip[['actual_time', 'segment_actual_time']]
```

Out[82]:

	actual_time	segment_actual_time
0	1562.0	1548.0
1	143.0	141.0
2	3347.0	3308.0
3	59.0	59.0
4	341.0	340.0
14782	83.0	82.0
14783	21.0	21.0
14784	282.0	281.0
14785	264.0	258.0
14786	275.0	274.0

14787 rows × 2 columns

```
In [83]: t_test, p_val = ttest_ind(trip['actual_time'],trip['segment_actual_
```

```
In [84]: # Print t-test results
print("Paired t-test results:")
print("T-statistic:", t_test)
print("P-value:", p_val)

# Interpret t-test results
alpha = 0.05
if p_val < alpha:
    print("Reject null hypothesis. There is a significant difference else:
    print("Fail to reject null hypothesis. There is no significant</pre>
```

Paired t-test results:

T-statistic: 0.499475764573994 P-value: 0.6174479719707524

Fail to reject null hypothesis. There is no significant difference

between actual_time and osrm_time.

```
In []:
```

```
In [ ]: # Visual analysis between osrm distance and segment osrm distance v
```

In [89]: trip[['osrm_distance','segment_osrm_distance']]

Out[89]:

	osrm_distance	segment_osrm_distance
0	991.3523	1320.4733
1	85.1110	84.1894
2	2354.0665	2545.2678
3	19.6800	19.8766
4	146.7918	146.7919
•••		
14782	73.4630	64.8551
14783	16.0882	16.0883
14784	58.9037	104.8866
14785	171.1103	223.5324
14786	80.5787	80.5787

14787 rows × 2 columns

```
In [91]: x_column = 'osrm_distance'
y_column = 'segment_osrm_distance'

# Create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(trip[x_column], trip[y_column], alpha=0.5)
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.title(f'Scatter Plot: {y_column} vs {x_column}')
plt.grid(True)
plt.show()
```


In []: # Visual analysis between osrm time and segment osrm time value

In [92]: trip[['osrm_time','segment_osrm_time']]

Out[92]:

osrm_time	segment_osrm_time
717.0	1008.0
68.0	65.0
1740.0	1941.0
15.0	16.0
117.0	115.0
62.0	62.0
12.0	11.0
48.0	88.0
179.0	221.0
68.0	67.0
	717.0 68.0 1740.0 15.0 117.0 62.0 12.0 48.0 179.0

14787 rows × 2 columns

```
In [93]: x_column = 'osrm_time'
y_column = 'segment_osrm_time'

# Create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(trip[x_column], trip[y_column], alpha=0.5)
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.title(f'Scatter Plot: {y_column} vs {x_column}')
plt.grid(True)
plt.show()
```


In []: # Outliers in the numerical variables (you might find outliers in a

```
In [99]: trip[num_cols].boxplot(rot=50, figsize=(25,8))
   plt.show()
```


In []: # Handle the outliers using the IQR method.

Out[103]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
0	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748
1	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	trip- 153671042288605164
2	training	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	trip- 153671043369099517
3	training	2018-09-12 00:01:00.113710	thanos::sroute:f0176492- a679-4597-8332- bbd1c7f	Carting	trip- 153671046011330457
4	training	2018-09-12 00:02:09.740725	thanos::sroute:d9f07b12- 65e0-4f3b-bec8- df06134	FTL	trip- 153671052974046625
14782	test	2018-10-03 23:55:56.258533	thanos::sroute:8a120994- f577-4491-9e4b- b7e4a14	Carting	trip- 153861095625827784
14783	test	2018-10-03 23:57:23.863155	thanos::sroute:b30e1ec3- 3bfa-4bd2-a7fb- 3b75769	Carting	trip- 153861104386292051
14784	test	2018-10-03 23:57:44.429324	thanos::sroute:5609c268- e436-4e0a-8180- 3db4a74	Carting	trip- 153861106442901555
14785	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	trip- 153861115439069069
14786	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	trip- 153861118270144424

14787 rows × 18 columns

```
In [104]: | trip[num_cols].boxplot(rot=50, figsize=(25,8))
          plt.show()
In [105]: | trip.isna().sum()
Out[105]: data
                                                 0
          trip_creation_time
                                                 0
          route_schedule_uuid
                                                 0
          route_type
                                                 0
          trip_uuid
                                                 0
          source_center
                                                 0
          source_name
                                                 0
                                                 0
          destination_center
          destination_name
                                                 0
          start_scan_to_end_scan
                                              1282
          od_time_diff_hour
                                              1275
          actual_distance_to_destination
                                              1452
          actual_time
                                              1646
          osrm_time
                                              1506
          osrm_distance
                                              1522
          segment_actual_time
                                              1644
          segment_osrm_distance
                                              1550
          segment_osrm_time
                                              1485
          dtype: int64
  In [ ]: # Do one-hot encoding of categorical variables (like route_type)
In [106]: trip['route_type'].value_counts()
Out[106]: route_type
          Carting
                      8906
          FTL
                      5881
          Name: count, dtype: int64
```

In [107]: trip['route_type']=trip['route_type'].map({'FTL':0,'Carting':1}) #

```
In [108]: trip['route_type'].value_counts()
Out[108]: route_type
               8906
          1
               5881
          Name: count, dtype: int64
 In [ ]:
 In []: # Normalize/ Standardize the numerical features using MinMaxScaler
In [111]: pip install -U scikit-learn
          Collecting scikit-learn
            Downloading scikit_learn-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
          (10.2 MB)
                                                       - 10.2/10.2 MB 1.5 MB/
          s eta 0:00:0000:010:01
          Requirement already satisfied: scipy>=1.5.0 in ./opt/anaconda3/lib
          /python3.9/site-packages (from scikit-learn) (1.10.1)
          Collecting threadpoolctl>=2.0.0
            Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB)
          Requirement already satisfied: numpy>=1.17.3 in ./opt/anaconda3/li
          b/python3.9/site-packages (from scikit-learn) (1.24.2)
          Collecting joblib>=1.1.1
            Downloading joblib-1.3.2-py3-none-any.whl (302 kB)
                                                     - 302.2/302.2 kB 1.7 MB
          /s eta 0:00:00a 0:00:01
          Installing collected packages: threadpoolctl, joblib, scikit-learn
          Successfully installed joblib-1.3.2 scikit-learn-1.3.0 threadpools
          tl-3.2.0
          Note: you may need to restart the kernel to use updated packages.
In [112]: from sklearn.preprocessing import MinMaxScaler
In [118]:
          scaler=MinMaxScaler()
          scaled data=scaler.fit transform(trip[num cols])
          scaled data=pd.DataFrame(scaled data, columns=trip[num cols].column
In [122]: | scaled data.dropna(inplace=True)
```

In [123]: scaled_data

Out[123]:

	start_scan_to_end_scan	actual_distance_to_destination	actual_time	osrm_time	osrn
1	0.117779	0.175460	0.165842	0.167568	
3	0.057764	0.022342	0.061881	0.024324	
4	0.520630	0.323794	0.410891	0.300000	
5	0.124531	0.042631	0.064356	0.045946	
6	0.056264	0.000268	0.018564	0.018919	
14782	0.175544	0.133294	0.091584	0.151351	
14783	0.027757	0.017800	0.014851	0.016216	
14784	0.298575	0.081142	0.337871	0.113514	
14785	0.243061	0.343682	0.315594	0.467568	
14786	0.247562	0.156036	0.329208	0.167568	

12723 rows × 9 columns

In [124]: scaled_data.describe()

Out[124]:

	start_scan_to_end_scan	actual_distance_to_destination	actual_time	osrm_time
count	12723.000000	12723.000000	12723.000000	12723.000000
mean	0.222940	0.173084	0.208481	0.195785
std	0.191715	0.197017	0.195731	0.195496
min	0.000000	0.000000	0.000000	0.000000
25%	0.084771	0.033879	0.064356	0.056757
50%	0.157539	0.080706	0.129950	0.118919
75%	0.300075	0.253333	0.299505	0.278378
max	0.999250	0.996260	0.997525	1.000000

Recommendation Examples:

There is a significant difference between OSRM and actual parameters.

There is a need to:

Revisit information fed to routing engine for trip planning. Check for discrepancies with transporters, if the routing engine is configured for optimum results.

North, South and West Zones comidors have significant traffic of orders. But, we have a smaller presence in Central, Eastern and North-Eastern zone. However it would be difficult to conclude this, by looking at just 2 months data. It is worth investigating and increasing our presence in these regions.

From state point of view, we have heavy traffic in Mahrashtra followed by Karnataka. This is a good indicator that we need to plan for resources on ground in these 2 states on priority. Especially, during festive seasons.

In []:	
In []:	