STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit

Scribe: Ali Choo and Hon Ku To

Lecture 2

14 Sep 2020

2 10 Ways of Viewing a Random Variable

Define probability space (χ, ϕ, p) where

 χ : Sample space with element ω

 $\phi: \sigma$ -algebra with element

P: Probability measure which assigns probabilities to elements of A which satisfy

- (i) $0 \le p(A) \le 1$.
- (ii) $p(\chi) = 1$
- (iii) If the element are disjoint i.e. $A_i \cap A_j = \{\emptyset\}$ for $i \neq j$, then

$$P(\bigcup_{i=1}^{n} A_i) = P(A_1 \bigcup A_2 ... \bigcup A_n) = \sum_{i=1}^{n} P(A_i).$$

2.1 Way #1. Random Variable

A function $X: \chi \to R$ such that image $X^{-1}(B)$ of any Borel set or elements of \mathcal{A} is called a random variable. A p-tipple of r.v's is called random vector.

2.2 Way #2. Distribution Function

Associated with a random vector X on (χ, \mathcal{A}, P) is a distribution function d.f.: $F(\chi) = F_{x_1,...x_p}(x_1, x_2,...,x_p) = P(\omega: X_1(\omega) \le x_1,...,X_p(\omega) \le \chi_p)$ Note that, F is right-continuous with left limits (RCLL) [or càdlàg as in "continue à droite, limite à gauche"].

2.3 Way #3. au^{th} Quantile (0 < au < 1)

For any scalar r.v X with d.f. F, the quantity $\theta(\tau) = F^{-1}(\tau) = \inf\{x : F(x) \ge \tau\}$, $\tau \in (0,1)$ is called the τ^{th} quartile of X or F. Specifically for $\tau = 1/2, \theta(1/2)$: Median, $\theta(1/4)$: Lower quartile, $\theta(3/4)$:upper quartile.

2.4 Way #4. Density Function

If the d.f.F is absolutely continues with respect to the measure μ then F has a density function w.r.t μ . We interested in case where μ' is the league measure in which case can write $F(\chi) = \int_{-\infty}^{x} f(t)dt$, $f(t) = F'(t) = \partial F(t)/\partial t$.

Theorem 1 (Radon-Nikodym). If a finite measure P is absolute continuous w.r.t. a σ finite measure μ , then there exists a non-negative measurable function f such that

$$P(A) = \int_A f d\mu = \int f 1_A d\mu.$$

This specific function f is called the Radon-Nikodym derivative of P w.r.t. μ (the density of p w.r.t. μ) denoted as $f = dp/d\mu$.

2.5 Way #5. Expectation

$$E(X) = \int X(\omega)dp(\omega) = \int_{-\infty}^{\infty} x dF(x) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(aX + bY) = aE(X) + bE(Y).$$

2.6 Way #6: Moments

The kth central moment of a random variable X is

$$\mu_k = E(\{X - E(X)\}^k), \quad k = 1, 2...$$

In particular, μ_k for the cases k=2,3,4 are closely related to the variance, skewness and kurtosis of X respectively as follows:

 $var(X) = \mu_2.$

Skewness $(X) = \mu_3/\sigma^3$, which measures the symmetry of X.

Kurtosis $(X) = \mu_4/\sigma^4$, which measures the peakedness and tail length of X.

2.7 Way #7: Moment Generating Function (MGF)

The moment generating function of X is

$$m_X(t) = E(e^{tX}) = \int e^{tX} dF(x), \quad t \in \mathbb{R}.$$

When $m_X(t)$ and its derivatives exist in some neighbourhood of 0, we have

$$E(X^k) = \underbrace{m_X^{(k)}(0)}_{\text{the kth derivative of m_X with respect to t}}, \quad k = 0, 1, 2, \dots$$

Properties:

- 1. $m_{\mu+\sigma X}(t) = e^{\mu t} m_X(\sigma t)$.
- 2. $m_{X+Y}(t) = m_X(t)m_Y(t)$ if X and Y are independent.

Illustration

Suppose we have a discrete random variable on $\{0, 1, 2, ...\}$ with $pr(X = j) = a_j$, where pr(X = j) is the probability mass function of X.

Define the "generating function" of X as

$$g(z) = \sum_{j=0}^{\infty} a_j z^j.$$

Since $\sum_{j=0}^{\infty} a_j = 1$, $|g(z)| \leq \sum_{j=0}^{\infty} |a_j| |z|^j \leq \sum_{j=0}^{\infty} a_j = 1$ for any $|z| \leq 1$.

Consider the following derivatives:

$$g'(z) = a_1 + 2a_2z + 3a_3z^2 + \dots = \sum_{j=1}^{\infty} ja_jz^{j-1},$$

$$g''(z) = 2a_2 + 6a_3z + \dots = \sum_{j=2}^{\infty} j(j-1)a_jz^{j-2},$$

$$\vdots$$

$$g^{(k)}(z) = \sum_{j=k}^{\infty} {j \choose k} k! a_j z^{j-k}.$$

Thus

$$g^{(k)}(0) = k!a_k$$
 or $a_k = (k!)^{-1}g^{(k)}(0)$.

So, all the information about a_k 's are "contained" within the function g and is made accessible by simply differentiating it (repeatedly) and evaluating it at 0.

This means that the distribution of a non-negative integer valued random variable is uniquely defined by its generating function.

Restricting the absolute value of X between 0 and 1 can be quite restrictive.

Write
$$E(z^X) = E(e^{-\lambda X}), 0 \le \lambda < \infty$$
.

So in the previous case,

$$E(e^{-\lambda X}) = \sum_{j=0}^{\infty} a_j e^{-\lambda x_j} = \begin{cases} \text{(discrete case)} \sum_j p_j e^{-\lambda x_j}, \\ \text{(continuous case)} \int e^{-\lambda u} f(u) \ du, \end{cases}$$

where x_j 's are all possible values of X.

This formulation is the Laplace transform of X.

Example (c.f. Casella and Berger (2002) E.g. 2.3.10: Non-unique Moments)

Consider two probability density functions given by

$$f_1(x) = \frac{1}{\sqrt{2\pi}x} e^{-(\log x)^2/2}, \ 0 \le x < \infty,$$

$$f_2(x) = f_1(x)\{1 + \sin(2\pi \log x)\}, \ 0 \le x < \infty.$$

(f_1 is the probability density function of a lognormal distribution.)

It can be shown that if $X_1 \sim f_1(x)$,

$$E(X_1^r) = e^{r^2/2}, \quad r = 0, 1, \dots$$

Suppose $X_2 \sim f_2(x)$. We have

$$E(X_2^r) = \int_0^\infty x^r f_1(x) \{1 + \sin(2\pi \log x)\} \ dx = E(X_1^r) + \int_0^\infty x^r f_1(x) \sin(2\pi \log x) \ dx.$$

Consider the transformation: $y = \log x - r$. You can show that the transformed integral is an odd function over $(-\infty, \infty)$.

Hence
$$\int_0^\infty x^r f_1(x) \sin(2\pi \log x) \ dx = 0$$
 and $E(X_1^r) = E(X_2^r)$ for $r = 0, 1, \dots$

Even though X_1 and X_2 have the same moments for all r, their probability density functions are different.

Way #8: Characteristic functions 2.8

The characteristic function of X is

$$\phi_X(t) = E(e^{itX}) = \int e^{itx} dF(x),$$

where $i^2 = -1$, $e^{itx} = \cos(tx) + i\sin(tx)$.

For multivariate case,

$$\phi_X(t) = E(e^{it^T X}),$$

where $t = (t_1, \dots, t_p)^T$, $X = (X_1, \dots, X_p)^T$. Existence: $|E(e^{itX})| \le E|e^{itX}| = E|\cos(tX) + i\sin(tX)| = E(\{\cos^2(tX) + \sin^2(tX)\}^{1/2}) = 1$.

(Because $|a+ib|^2 = (a+ib)(a-ib) = a^2 + b^2$).

Inversion Formula (See, for example, Billingsley, 1995)

$$\begin{split} f_X(x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) \; dt, \\ F_X(x) - F_X(y) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx} - e^{-ity}}{-it} \phi_X(t) \; dt \quad \text{for points of continuity of } F \; x \; \text{and} \; y. \end{split}$$

The inversion formula provides a correspondence between F (or f) and ϕ .

Any characteristic function is bounded by 1 (shown above) and is a uniformly continuous function on $\mathbb{R}^{(p)}$. [Exercise]

Theorem 2 (Uniqueness). Let X and Y be random k-vectors.

- (i) If $\phi_X(t) = \phi_Y(t)$ for all $t \in \mathbb{R}^k$, then $F_X = F_Y$.
- (ii) If $m_X(t) = m_Y(t) < \infty$ for all t in a neighbourhood of 0, then $F_X = F_Y$. (c.f. Casella and Berger, 2002 Theorem 2.3.11)

Proof. (i) For any $a = (a_1, ..., a_k)^T \in \mathbb{R}^k$, $b = (b_1, ..., b_k)^T \in \mathbb{R}^k$, and $(a, b] = (a_1, b_1] \times ... \times (a_k, b_k]$ satisfying pr_X (the boundary of (a, b]) = 0,

$$\Pr_X((a,b]) = \lim_{c \to \infty} \int_{-c}^{c} \cdots \int_{-c}^{c} \frac{\phi_X(t_1, \dots, t_k)}{(-1)^{k/2} (2\pi)^k} \prod_{j=1}^{k} \frac{e^{-it_j a_j} - e^{-it_j b_j}}{t_j} dt_j.$$

(ii) (See next lecture's note)

References

Billingsley, P. (1995), *Probability and measure*, A Wiley-Interscience publication, Wiley, 3rd ed.

Casella, G. and Berger, R. L. (2002), *Statistical inference*, Pacific Grove, Calif.]: Duxbury/Thomson Learning, 2nd ed.