Homework 10 Solutions

(You must justify ALL your claims unless otherwise stated)

Problem 1

An organization consists of 13 men and 12 women.

- (a) The organization wishes to form a 10 person committee consisting of 5 men and 5 women. However, there are 2 men, call them Adam and Bob, who refuse to work together and thus cannot be on the committee together. How many such committees can be formed?
- (b) The entire organization wishes to form a line. How many ways can this be done in which at least one woman is standing next to another?

Suggested solutions:

- (a) The total number of 10-person committees is $\binom{13}{5}\binom{12}{5}$ (choosing 5 men first then 5 women). The number of committees containing both Adam and Bob is $\binom{11}{3}\binom{12}{5}$. The desired number of committees is $\binom{13}{5}\binom{12}{5}-\binom{11}{3}\binom{12}{5}$.
- (b) The number of ways of forming a line is 25!. The number of ways where no woman is next to another is $\binom{14}{12}13!12!$ (first decide the locations of the women relative to the men, then rearrange among the men and among the women). So the desired number is $25! \binom{14}{12}13!12!$.

Problem 2

3. Let a, b, k be three positive integers with a + b > k. Prove that

$$\binom{a+b}{k} = \sum_{i=0}^{k} \binom{a}{i} \binom{b}{k-i}$$

by counting in two ways argument. Use the exact form given. Do not simplify algebraically. **Suggested solution:**

Suppose there are two groups of people A and B. LHS counts the number of k-person committees out of $A \cup B$.

RHS counts the following: pick i members from A then k-i members from B (the total will be k). Apply the addition principle for i between 0 and k. (There might be invalid choices where i > a or k-i > b. It does not affect the formula because $\binom{a}{i}$ and $\binom{b}{k-i}$ are defined to be zero in those cases.)

Problem 3

If I flip a coin 20 times, I get a sequence of Heads H and tails T.

- (a) How many different sequences of heads and tails are possible?
- (b) How may different sequences of heads and tails have exactly five heads?
- (c) How many different sequences have at most 2 heads?
- (d) How many different sequences have at least 3 heads?

Suggested solutions:

- (a) 2^{20} (two choices for each flip, 20 flips in total).
- (b) $\binom{20}{5}$ (decide which flips give H).
- (c) $\binom{20}{0} + \binom{20}{1} + \binom{20}{2}$ (count the number with exactly 0 heads, 1 head and 2 heads separately).
- (d) $2^{20} {20 \choose 0} + {20 \choose 1} + {20 \choose 2}$ (the complement is at most 3 heads).

Problem 4

Let X be a finite set, let |X| = n. Define $E, O \subseteq \mathcal{P}(X)$ as follows:

$$E = \{U \subseteq X : |U| \text{ is even}\} \text{ and } O = \{U \subseteq X : |U| \text{ is odd}\}$$

(a) Use the addition principle to prove that

$$|E| = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots$$

(b) Use the addition principle to prove that

$$|O| = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

(c) Use parts (a) and (b) to conclude that, for all n > 0,

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

Suggested solutions:

(a) Let $U \in E$. Then s = |U| is even. $s = 0, 2, 4, \ldots$ For a fixed s, there are $\binom{n}{s}$ choices to pick U. By the addition principle, there are

$$|E| = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots$$

choices (it does not matter if s > n because $\binom{n}{s}$ is defined to be zero in that case).

(b) Let $U \in O$. Then t = |U| is even. $t = 1, 3, 5, \ldots$ For a fixed t, there are $\binom{n}{t}$ choices to pick U. By the addition principle, there are

$$|O| = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

choices (it does not matter if t > n because $\binom{n}{t}$ is defined to be zero in that case).

(c) Since there is a bijection between E and O, we have

$$|E| = |O|$$

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

$$\sum_{k=0}^{\infty} (-1)^k \binom{n}{k} = 0$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0 \text{ (terms are zero if } k > n)$$

Problem 5

Use the multiplication principle to prove the following:

- (a) The number of ordered pairs (A, a) such that $A \subseteq [n]$ and $a \in A$ is equal to $n \cdot 2^{n-1}$ for all n > 0.
- (b) The number of injections $[k] \to [n]$ is equal to $\binom{n}{k} \cdot k!$, for all $n, k \in \mathbb{N}$.

Suggested solutions:

- (a) We find pick a $\binom{n}{1} = n$ choices) then pick $A \subseteq [n]$ which contains a. For A, it suffices to decide whether each element $x \in [n] \setminus \{a\}$ is in A or not. There are 2 choices for each element (yes or no) and there are n-1 such elements. Therefore there are 2^{n-1} choices to form $A \ni a$. In total there are $n \cdot 2^{n-1}$ choices for (A, a).
- (b) To decide an injection $f:[k] \to [n]$, we first decide the range C of f. Since f is injective, C is of size k. Write $C = \{x_1, \ldots, x_k\}$. There are $\binom{n}{k}$ choices for C. Next we decide the values f(x) for each $x \in [k]$. It suffices to decide what the subscript i is when we say $f(x) = x_i$. Since f is injective, the output subscripts will be a permutation of [k] (if k = 3, $f(1) = x_2$, $f(2) = x_1$, $f(3) = x_3$, then the permutation is $(1,2,3) \to (2,1,3)$). The number of permutations is k!. Therefore there are $\binom{n}{k} \cdot k!$ choices.

Problem 6

Use the addition and multiplication principles to prove that, for all n > 0, the number of surjections $[n] \to [3]$ is equal to $3^n - 3 \cdot 2^n + 3$.

Suggested solution:

We first compute the number c of surjections $[n] \to [2]$. The total number of functions $[n] \to [2]$ is 2^n (each input from [n] has 2 choices). Non-surjections must has a singleton range. There are 2 choices to decide such range. Therefore $c = 2^n - 2$.

The total number of functions $[n] \to [3]$ is 3^n because each input has three possible values. We need to subtract this number by functions f whose range has at most 2 elements (then they cannot be surjective).

- In the case that the range is a singleton, we just need to decide the common value of all the inputs. There are 3 choices.
- In the case that the range is a 2-element subset, we first decide which element x to be outside of the range. There are 3 choices. Then we make sure that $f:[n] \to ([3] \setminus \{x\})$ is a surjection: otherwise the range might end up being a singleton. By the first paragraph, there are $c = 2^n 2$ such surjections. Therefore there are $3 \cdot (2^n 2)$ choices.

The desired number of surjections $[n] \rightarrow [3]$ is $3^n - (3+3\cdot(2^n-2)) = 3^n - 3\cdot 2^n + 3$.