(ii) Table for determination of diameter (D) of r

			Reading of Microscope for										
S.	Ring	Le	ft end	of	Right end of								
No.	number	ti	he ring	g	the ring								
		MSR	VSR	Total	MSR	VSR	Total						
				a (cm)			b (cm)						
	n + 19												

	Ring	Reading of Microscope for									$\frac{D_n^2}{\lambda}$	
S.		Le	ft end	of	Rig	ht end	d of	Diameter	D^2	$D_{n+p}^2 - D_n^2$ (for $p = 10$)	- 01	Mean
No.	number	the ring			the ring			$D = a \sim b$		r p	D_{n+p}^2 $4 \times$	R in
		MSR	MSR VSR Total		MSR	VSR	Total (cm)		$(cm)^2$		<i>T</i> =	(cm)
				a (cm)			b (cm)				. ~	
	n + 19)			
	n + 18											
	↓								\downarrow			
	n + 11								D_{2}^{2}			
	n + 10]			
											1	
	n + 9)			
	n + 8											
	↓								↓			
	n+1								D_{2}			
	n)			

			Read	ding of	Micros	cope j	for			1	$\frac{D_n^2}{\lambda}$	
S. Ring		Left end of			Right end of			Diameter	D^2	$D_{n+p}^2 - D_n^2$ (for $p = 10$)	101	Mean
No.	number	the ring		the ring			$D = a \sim b$		r p	$\frac{D_{n+p}^2}{4\times}$	R in	
		MSR VSR Total		MSR	VSR	Total	(cm)	$(cm)^2$	D_n^2 (fo	_ = _	(cm)	
				a (cm)			b (cm)				R	
	n + 19)			
	n + 18											
	↓								\downarrow \uparrow			
	n + 11								D^2			
	n + 10)			
	n + 9)			
	n+8											
	↓								↓			
	n+1								D^2			
	n											

Calculations. Using formula

358 B.Sc. Practi

EXPERIMENT L-28: To determine the radius of curvature of the lower suplano-convex lens by using Newton's rings apparatus.

Apparatus. Same set up as used in Expt. L27.

Formula. Radius of curvature,
$$R = \frac{\text{slope }(m)}{4\lambda}$$

where,

l = wavelength of light (Sodium lamp, l = 5893 Å)

 $m = \text{Slope of line drawn between } D_n^2 \text{ and n}$

$$= \frac{D_{n+p}^2 - D_n^2}{p}$$

Here, D_{n+p} is the diameter of $(n+p)^{th}$ ring and D_n that of n^{th} ring.

Observations.

- (i) Least count vernier of miroscope = cm
- (ii) Table for determination of diameter (D) of rings:

	Ring		Rea	ding of	Micros	cope.			_	D_n^2	
S. No.					Right end of the ring			Diameter	D^2	$D_{n+p}^2 - D_n^2$ (for $p = 10$)	1
IVO.	numoer		he rin VSR	-	MSR	_	Total b (cm)	$D = a \sim b$ (cm)	(cm) ²	D_{n+p}^2 (for	_ D_n+n
	n + 19 n + 18 \downarrow n + 11 n + 10 n + 9 n + 8 \downarrow n + 1								$D_n^2 \xrightarrow{\vdots} \qquad \begin{array}{cccc} \vdots & \vdots & \leftarrow \vdots & \vdots \\ & D_{n+p}^2 & & & \\ & & D_{n+p}^2 & & & \\ \end{array}$		

Calculations. Using formula

$$R = \frac{D_{n+p}^2 - D_n^2}{4 \times 10 \lambda}$$

radius of curvature R of plano-convex lens can be calculation.

Graph. The value of R can be determined by plotting a graph taking D^2 along Y-axis and ring number (n) along X-axis as shown in Fig. 17.7.

Two points P_1 and P_2 are taken on this graph as far apart as possible. The ordinate of P_2 is $P_2N_2 = D^2_{(n+p)}$ (say) while the ordinate of P_1 is $P_1N_1 = D^2_n$ (say).

Fig. 17.7