Deep Reinforcement Learning by S. Levine CS285 - UC Berkeley

Filippo GIRUZZI

January 24, 2020

Contents

1	Intr	roduction	4		
2	Supervised Learning of behaviors				
	2.1	Goal	4		
	2.2	Algorithms	4		
	2.2	2.2.1 DAgger: Dataset Aggregation	4		
	2.3	Tips & hacks	4		
3	Intr	roduction to Reinforcement Learning	5		
	3.1	Goal	5		
	3.2	Algorithms	5		
		3.2.1 Global structure	5		
		3.2.2 Exemples	6		
4	Poli	icy Gradients	6		
	4.1	Algorithms	6		
		4.1.1 REINFORCE	6		
	4.2	Tips & hacks	6		
5	Act	or-Critic algorithms	7		
	5.1	Algorithms	7		
		5.1.1 Batch Actor-Critic	7		
		5.1.2 Online Actor-Critic	7		
	5.2	Tips & hacks	7		
6	Val	ue function methods	8		
	6.1	Algorithms	8		
		6.1.1 Policy iteration	8		
		6.1.2 Policy iteration with Dynamic programming	8		
		6.1.3 Value iteration	8		
		6.1.4 Fitted Value iteration	9		
		6.1.5 Fitted Q-iteration	9		
		6.1.6 Online Q-iteration	9		
	6.2	Tips & hacks	9		
7	Dee	ep Reinforcement Learning with Q-functions	10		
	7.1		10		
			10		
		- · · · · · · · · · · · · · · · · · · ·	10		
			10		
			11		
	7.2	•	11		
8	Adv	vanced Policy Gradients	12		
9	Mo	del-based planning	12		
-		· · · · · · · · · · · · · · · · · · ·			

10	Model-based Reinforcement Learning	12
	10.1 Algorithms	12
	10.1.1 Model-based Reinforcement Learning version 0.5	12
	10.1.2 Model-based Reinforcement Learning version 1.0	
	10.1.3 Model-based Reinforcement Learning version 1.5	12
	10.1.4 Model-based Reinforcement Learning with latent space models	13
	10.2 Tips & hacks	13
11	Model-based Policy Learning	13
	11.1 Algorithms	13
	11.1.1 Model-based Reinforcement Learning version 2.0	13
	11.1.2 DYNA: online Q-learning model-free Reinforcement Learning with a model	14
	11.1.3 General DYNA-style model-based Reinforcement Learning	14
	11.1.4 MBA: Model-based Acceleration – MVE: Model-based Value Ex-	14
	pansion – MBPO: Model-based Policy Optimization	14
	11.1.5 Divide and Conquer Reinforcement Learning	15
	11.2 Tips & hacks	15
	•	
12	Variational Inference & Generative models	15
13	Control as inference	15
	13.1 Algorithms	15
	13.1.1 Soft Q-learning	15
14	Inverse Reinforcement Learning	16
	14.1 Algorithms	
	14.1.1 Maximum Entropy Inverse Reinforcement Learning	16
	14.2 Tips & hacks	16
15	Transfer & Multi-task Learning	16
	15.1 Tips & hacks	16
16	Distributed Reinforcement Learning	17
17	Exploration	17
	17.1 Algorithms	17
	17.1.1 Pre-train & finetune	17
	17.2 Tips & hacks	17
18	Meta-learning	18
19	Information theory	18

1 Introduction

2 Supervised Learning of behaviors

2.1 Goal

Figure 1: Imitation Learning objective

2.2 Algorithms

2.2.1 DAgger: Dataset Aggregation

Algorithm 1: DAgger

Loop

- 1. Train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- **2.** Run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- **3.** Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- **4.** Aggregate $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

end

- 1. Distributional shift:
 - Use DAgger
 - Randomize input
- 2. Non-Markovian behavior: use RNN to model $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_1,\ldots,\mathbf{o}_t)$
- 3. Multi-modal behavior:
 - Output a mixture of Gaussians
 - Use latent variable models
 - ullet Use autoregressive discretization

3 Introduction to Reinforcement Learning

3.1 Goal

Definition 1 (POMDP: Partially Observed Markov Process)

$$\mathcal{M} = \{ \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r \} \tag{1}$$

Definition 2 (Reinforcement Learning objective)

$$\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a})]$$
 (2)

$$\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
(3)

Definition 3 (Q-function)

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_t', \mathbf{a}_t') | \mathbf{s}_t, \mathbf{a}_t \right]$$
(4)

Definition 4 (Value function)

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_t', \mathbf{a}_t') | \mathbf{s}_t \right] = E_{\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)} \left[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \right]$$
 (5)

 $E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}\left[V^{\pi}(\mathbf{s}_1)\right]$ is the Reinforcement Learning objective.

3.2 Algorithms

3.2.1 Global structure

Figure 2: Global RL algorithm structure

3.2.2 Exemples

- 1. Policy Gradients: directly differentiate the RL objective
 - REINFORCE
 - Natural Policy Gradient
 - Trust region policy optimization
- 2. Value-based: estimate the Value function or the Q-function of the optimal policy
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted Value iteration
- 3. **Actor-critic:** estimate the Value function or the Q-function of the current policy, and use it to improve the policy
 - A3C: Asynchronous advantage Actor-critic
 - SAC: Soft Actor-critic
- 4. **Model-based:** estimate a transition model, and use it for planning, to improve a policy or else
 - DYNA
 - Guided policy search

4 Policy Gradients

4.1 Algorithms

4.1.1 REINFORCE

Algorithm 2: REINFORCE

Loop

1. Run the policy and sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$

2.
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

end

- 1. Variance reduction:
 - Causality & reward to-go: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \hat{Q}_{t}^{i}$ where the reward to-go is $\hat{Q}_{t}^{i} = \sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i})$

• Use baselines: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau) (r(\tau) - b)$ where the baseline can be $b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$

2. Off-policy Policy Gradient: use importance sampling

3. Discount factor:
$$\hat{Q}_t^i = \sum_{t'=t}^T \gamma^{t'-t} r(\mathbf{s}_{t'}^i, \mathbf{a}_{t'}^i)$$

5 Actor-Critic algorithms

5.1 Algorithms

5.1.1 Batch Actor-Critic

Algorithm 3: Batch Actor-Critic

Loop

1. Run the policy and sample $\{s_i, a_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$

2. Fit
$$\hat{V}_{\phi}^{\pi}(\mathbf{s})$$
 to $y_t^i = \sum_{t'=t}^T \gamma^{t'-t} r(\mathbf{s}_{t'}^i, \mathbf{a}_{t'}^i) = r(\mathbf{s}_t^i, \mathbf{a}_t^i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}^i)$

3. Evaluate
$$\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$$

4.
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$$

5.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

end

5.1.2 Online Actor-Critic

Algorithm 4: Online Actor-Critic

Loop

- 1. Take an action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$ and get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- **2.** Update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. Evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

end

5.2 Tips & hacks

- 1. Architecture design: use two networks or a single MTL network to fit $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ and $\hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 2. Parallel workers: use parallel workers to batch steps 2. and 4. of the Online algorithm, either synchronized or asynchronous

7

3. **n-step returns:**
$$\hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) + \gamma^n \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$$
 with $n > 1$

4. Generalized Advantage Estimation:
$$\hat{A}_{GAE}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{n=1}^{\infty} w_n \hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$
 with $w_n \propto \lambda^{n-1}$ such that $\hat{A}_{GAE}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'}$ where $\delta_{t'} = r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'})$

Value function methods 6

Algorithms 6.1

6.1.1 Policy iteration

Algorithm 5: Policy iteration

Loop

1. Evaluate
$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

2. $\pi \leftarrow \pi'$ where $\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$

end

Policy iteration with Dynamic programming 6.1.2

Algorithm 6: Policy iteration with Dynamic programming

Loop

1. Evaluate
$$V^{\pi}(\mathbf{s}) = r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \pi(\mathbf{s}))} [V^{\pi}(\mathbf{s}')]$$

2. $\pi \leftarrow \pi'$ where $\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$

end

Value iteration 6.1.3

Algorithm 7: Value iteration

Loop

1. Set
$$Q^{\pi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})} [V^{\pi}(\mathbf{s}')]$$

2. Set
$$V^{\pi}(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$$

6.1.4 Fitted Value iteration

Algorithm 8: Fitted Value iteration

Loop 1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ using some policy Loop 2. Set $y_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')])$ 3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(\mathbf{s}_i) - y_i||^2$ end end

6.1.5 Fitted Q-iteration

Algorithm 9: Fitted Q-iteration

Loop

1. Collect dataset
$$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$$
 using some policy

Loop

2. Set $y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$

3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$

end

end

6.1.6 Online Q-iteration

Algorithm 10: Online Q-iteration

Loop

1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ 2. $y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$ 3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$ end

- 1. **Exploration:** Use a different policy to improve exploration
 - Espilon-greedy exploration: $\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \epsilon \text{ if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ \frac{\epsilon}{|\mathcal{A}| 1} \text{ otherwise} \end{cases}$
 - Boltzmann exploration: $\pi(\mathbf{a}_t|\mathbf{s}_t) \propto \exp\left(Q_{\phi}(\mathbf{s}_t,\mathbf{a}_t)\right)$

7 Deep Reinforcement Learning with Q-functions

7.1 Algorithms

7.1.1 Q-learning with replay buffer

Algorithm 11: Q-learning with replay buffer

Loop 1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ using some policy, and add it to \mathcal{B} Loop 2. Sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathcal{B} 3. $y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$ 4. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$ end end

7.1.2 Q-learning with replay buffer and target network

Algorithm 12: Q-learning with replay buffer and target network

```
Loop

1. Save network parameters \phi' \leftarrow \phi
Loop

2. Collect dataset \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\} using some policy, and add it to \mathcal{B}
Loop

3. Sample a batch (\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i) from \mathcal{B}
4. y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi'}(\mathbf{s}_i', \mathbf{a}_i')
5. \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)
end
end
end
```

7.1.3 DQN: classic Deep Q-learning

Algorithm 13: DQN: classic Deep Q-learning

Loop

- 1. Take some action \mathbf{a}_i , observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ and add it to \mathcal{B}
- **2.** Sample a mini-batch $(\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j)$ from \mathcal{B} uniformly
- 3. Compute $y_j = r(\mathbf{s}_j, \mathbf{a}_j) + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using the target network $Q_{\phi'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$

5. Update ϕ' : copy ϕ every N steps or using Polyak averaging $\phi' \leftarrow \tau \phi' - (1 - \tau)\phi$

7.1.4 DDPG: Q-learning for continuous actions

Algorithm 14: DDPG: Deep Deterministic Policy Gradient

Loop

- 1. Take some action \mathbf{a}_i , observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ and add it to \mathcal{B}
- **2.** Sample a mini-batch $(\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j)$ from \mathcal{B} uniformly
- 3. Compute $y_j = r(\mathbf{s}_j, \mathbf{a}_j) + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta'}(\mathbf{s}'_j))$ using target nets $Q_{\phi'}$, $\mu_{\theta'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$

5.
$$\theta \leftarrow \theta + \beta \sum_{i} \frac{d\mu}{d\theta} (\mathbf{s}_{i}) \frac{dQ_{\phi}}{d\mathbf{a}} (\mathbf{s}_{j}, \mathbf{a})$$

6. Update ϕ' and θ'

end

- 1. Double Q-learning: use two networks to avoid overestimation
 - Standard Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s}', \operatorname{argmax}_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$
 - Double Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s}', \operatorname{argmax}_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}'))$

2. Multi-step returns:
$$y_t^j = \sum_{t'=t}^{t+N-1} \gamma^{t'-t} r_{t'}^j + \gamma^N \max_{\mathbf{a}_{t+N}^j} Q_{\phi'}(\mathbf{s}_{t+N}^j, \mathbf{a}_{t+N}^j)$$

- 3. General tips:
 - Test on easy, reliable tasks
 - Use large replay buffers
 - Start with high exploration, then gradually reduce
 - Clip gradients or use Huber loss
 - Use double Q-learning
 - Use N-step returns
 - Schedule exploration and learning rates
 - Run multiple random seeds
 - $\bullet\,$ Use DDPG for continuous actions, or other methods
 - $\bullet\,$ In practice, always initialize the buffer with some random data

8 Advanced Policy Gradients

9 Model-based planning

10 Model-based Reinforcement Learning

10.1 Algorithms

10.1.1 Model-based Reinforcement Learning version 0.5

Algorithm 15: Model-based RL version 0.5

- 1. Run some base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$, and collect $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$
- **2.** Learn the dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- **3.** Plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions

10.1.2 Model-based Reinforcement Learning version 1.0

Algorithm 16: Model-based RL version 1.0

1. Run some base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$, and collect $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$

Loop

- **2.** Learn the dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- **3.** Plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions
- **4.** Execute those actions and add the data to \mathcal{D}

 $\quad \text{end} \quad$

10.1.3 Model-based Reinforcement Learning version 1.5

Algorithm 17: Model-based RL version 1.5

1. Run some base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$, and collect $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$

Loop (every N steps)

2. Learn the dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{s}_i'||^2$

Loop

- **3.** Plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions
- 4. Execute the first planned action, and observe s' (MPC)
- 5. Append $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to \mathcal{D}

end

10.1.4 Model-based Reinforcement Learning with latent space models

Algorithm 18: Model-based RL with latent space models

1. Run some base policy $\pi_0(\mathbf{a}_t|\mathbf{o}_t)$, and collect $\mathcal{D} = \{(\mathbf{o}_i, \mathbf{a}_i, \mathbf{o}_i')\}$ Loop (every N steps) op (every N steps)
2. Learn $p_{\phi}(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}), p_{\phi}(r_{t}|\mathbf{s}_{t}), p(\mathbf{o}_{t}|\mathbf{s}_{t}), g_{\psi}(\mathbf{o}_{t})$ to maximize $\max_{\phi, \psi} \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \underbrace{\log p_{\phi}(g_{\psi}(\mathbf{o}_{t+1}^{i})|g_{\psi}(\mathbf{o}_{t}^{i}), \mathbf{a}_{t}^{i})}_{\text{latent space dynamics}} + \underbrace{\log p_{\phi}(\mathbf{o}_{t}^{i}|g_{\psi}(\mathbf{o}_{t}^{i}))}_{\text{image reconstruction}} + \underbrace{\log p_{\phi}(r_{t}^{i}|g_{\psi}(\mathbf{o}_{t}^{i}))}_{\text{reward model}}$ Loop **3.** Plan through the model to choose actions **4.** Execute the first planned action, and observe o'5. Append $(\mathbf{o}, \mathbf{a}, \mathbf{o}')$ to \mathcal{D} end end

10.2 Tips & hacks

- 1. Uncertainty-aware models:
 - Use output entropy in the networks
 - Estimate the uncertainty of the networks
 - Use Bayesian networks
 - Use bootstrap ensembles, where each model is trained on a subset sampled with replacement from the dataset

11Model-based Policy Learning

Algorithms 11.1

Model-based Reinforcement Learning version 2.0 11.1.1

Algorithm 19: Model-based RL version 2.0

1. Run some base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$, and collect $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i')\}$

Loop

- 2. Learn the dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f(\mathbf{s}_{i}, \mathbf{a}_{i}) \mathbf{s}'_{i}||^{2}$ 3. Backpropagate through $f(\mathbf{s}, \mathbf{a})$ into the policy to optimize $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})$
- 4. Run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ and add the visited $(\mathbf{s},\mathbf{a},\mathbf{s}')$ to \mathcal{D}

11.1.2 DYNA: online Q-learning model-free Reinforcement Learning with a model

Algorithm 20: DYNA

Loop

- 1. Given s, pick a using some exploration policy, and observe (s, a, s', r)
- **2.** Update the models $\hat{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ and $\hat{r}(\mathbf{s}, \mathbf{a})$ using $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$
- 3. Update $Q(\mathbf{s}, \mathbf{a}) \leftarrow Q(\mathbf{s}, \mathbf{a}) + \alpha E_{\mathbf{s}', r} [r + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}') Q(\mathbf{s}, \mathbf{a})]$

Loop

- **4.** Sample $(\mathbf{s}, \mathbf{a}) \sim \mathcal{B}$ from the buffer
- 5. Update $Q(\mathbf{s}, \mathbf{a}) \leftarrow Q(\mathbf{s}, \mathbf{a}) + \alpha E_{\mathbf{s}', r} [r + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}') Q(\mathbf{s}, \mathbf{a})]$

end

end

11.1.3 General DYNA-style model-based Reinforcement Learning

Algorithm 21: General DYNA-style model-based RL

Loop

- 1. Collect some data $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. Learn the model $\hat{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a})$, and optionally $\hat{r}(\mathbf{s}, \mathbf{a})$

Loop

- 3. Sample $s \sim \mathcal{B}$ from the buffer
- **4.** Choose action **a** (from \mathcal{B} , from π or randomly)
- 5. Simulate $\mathbf{s}' \sim \hat{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a})$, and $r = \hat{r}(\mathbf{s}, \mathbf{a})$
- **6.** Train on $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ with model-free RL
- 7. (Optional) Take N more model-based steps

end

end

11.1.4 MBA: Model-based Acceleration – MVE: Model-based Value Expansion – MBPO: Model-based Policy Optimization

Algorithm 22: MBA - MVE - MBPO

Loop

- 1. Take some action \mathbf{a}_i , observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ and add it to \mathcal{B}
- **2.** Sample a mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- **3.** Use $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}_j'\}$ to update the model $\hat{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 4. Sample $\{\mathbf{s}_i\}$ from \mathcal{B}
- **5.** For each \mathbf{s}_j , perform model-based rollout with $\mathbf{a} = \pi(\mathbf{s})$
- **6.** Use all transitions $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ along the rollout to update the Q-function

11.1.5 Divide and Conquer Reinforcement Learning

Algorithm 23: Divide and Conquer RL

Loop

- 1. Optimize each local policy $\pi_{\theta_i}(\mathbf{a}_t|\mathbf{s}_t)$ on initial state \mathbf{s}_0^i w.r.t $\tilde{r}_k^i(\mathbf{s}_t,\mathbf{a}_t)$
- 2. Use samples from step 1. to train $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ to mimic each $\pi_{\theta_i}(\mathbf{a}_t|\mathbf{s}_t)$
- **3.** Update reward $\widetilde{r}_{k+1}^i(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \lambda_{k+1}^i \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$

end

11.2 Tips & hacks

- 1. Local models: use complex controllers as local models
- 2. Dynamics models: use Bayesian linear regression
- 3. Multi-task learning:
 - Use ensemble models
 - Use soft targets
 - Use distillation: train a global policy with supervised learning to mimic each policy

12 Variational Inference & Generative models

13 Control as inference

13.1 Algorithms

13.1.1 Soft Q-learning

Algorithm 24: Soft Q-learning

Loop

- 1. Take some action \mathbf{a}_i , observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ and add it to \mathcal{B}
- **2.** Sample a mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. Compute $y_j = r(\mathbf{s}_j, \mathbf{a}_j) + \gamma \operatorname{softmax}_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using the target network $Q_{\phi'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$

5. Update ϕ' : copy ϕ every N steps or using Polyak averaging $\phi' \leftarrow \tau \phi' - (1 - \tau)\phi$

14 Inverse Reinforcement Learning

14.1 Algorithms

14.1.1 Maximum Entropy Inverse Reinforcement Learning

Algorithm 25: MaxEnt IRL

Loop

- 1. Given ψ , compute backward message $\beta(\mathbf{s}_t, \mathbf{a}_t) = p(\mathcal{O}_{t:T}|\mathbf{s}_t, \mathbf{a}_t)$
- **2.** Given ψ , compute forward message $\alpha(\mathbf{s}_t) = p(\mathbf{s}_t | \mathcal{O}_{1:t-1})$
- 3. Compute $\mu_t(\mathbf{s}_t, \mathbf{a}_t) \propto \beta(\mathbf{s}_t, \mathbf{a}_t) \alpha(\mathbf{s}_t)$
- 4. Evaluate

$$\nabla_{\psi} \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\psi} r_{\psi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) - \sum_{t=1}^{T} \iint \mu_{t}(\mathbf{s}_{t}, \mathbf{a}_{t}) \nabla_{\psi} r_{\psi}(\mathbf{s}_{t}, \mathbf{a}_{t}) d\mathbf{s}_{t} d\mathbf{a}_{t}$$

5. $\psi \leftarrow \psi + \eta \nabla_{\psi} \mathcal{L}$

end

14.2 Tips & hacks

1. Loss computation:

•
$$\nabla_{\psi} \mathcal{L} \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\psi} r_{\psi}(\tau_i) - \frac{1}{M} \sum_{j=1}^{M} \nabla_{\psi} r_{\psi}(\tau_j)$$

• With importance sampling:
$$\nabla_{\psi} \mathcal{L} \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\psi} r_{\psi}(\tau_{i}) - \frac{1}{\sum_{j} w_{j}} \sum_{j=1}^{M} w_{j} \nabla_{\psi} r_{\psi}(\tau_{j})$$

where $w_{j} = \frac{p(\tau) \exp r_{\psi}(\tau_{j})}{\pi(\tau_{j})} = \frac{\exp \sum_{t} r_{\psi}(\mathbf{s}_{t}, \mathbf{a}_{t})}{\prod_{t} \pi(\mathbf{a}_{t} | \mathbf{s}_{t})}$

2. IRL can be treated as a GAN

15 Transfer & Multi-task Learning

- 1. Forward transfer: train on one task, transfer to a new task
 - Finetune
 - Randomize the source domains
- 2. Multi-task transfer: train on many tasks, transfer to a new task
 - Generate highly randomized source domains
 - Model-based RL
 - Model distillation
 - Contextual policies
 - Modular policy networks

- 3. Multi-task meta-learning: learn to learn from many tasks
 - RNN-based meta-learning
 - Gradient-based meta-learning

16 Distributed Reinforcement Learning

17 Exploration

17.1 Algorithms

17.1.1 Pre-train & finetune

Algorithm 26: Pre-train & finetune

- 1. Collect demonstration data $(\mathbf{s}_i, \mathbf{a}_i)$
- 2. Initialize π_{θ} as $\max_{\theta} \sum_{i} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i})$

Loop

- **3.** Run π_{θ} to collect experience
- 4. Improve π_{θ} with any RL algorithm

end

- 1. Exploration bonus: $r^+(\mathbf{s}, \mathbf{a}) + \mathcal{B}(N(\mathbf{s}))$
 - UCB: $\mathcal{B}(N(\mathbf{s})) = \sqrt{\frac{2 \ln n}{N(\mathbf{s})}}$
 - MBIE-EB: $\mathcal{B}(N(\mathbf{s})) = \frac{1}{\sqrt{N(\mathbf{s})}}$
 - BEB: $\mathcal{B}(N(\mathbf{s})) = \frac{1}{N(\mathbf{s})}$
 - Use pseudo-counts and GANs
 - Counts encoding into hashes
 - Density modeling
 - Heuristic estimation of counts
- 2. Thomson sampling
- 3. Bootstrap
- 4. Information gain
- 5. **Data initialization:** initialize data (e.g for Q-learning) with demonstrations as off-policy data
 - Use good and bad demonstrations

 $\bullet\,$ Use importance sampling

6. Hybrid objective:
$$\underbrace{E_{\pi_{\theta}}\left[r(\mathbf{s}, \mathbf{a})\right]}_{RL} + \lambda \underbrace{\sum_{(\mathbf{s}, \mathbf{a}) \in \mathcal{D}_{demos}} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})}_{IL}$$

- 18 Meta-learning
- 19 Information theory