

Spielidee: Ball hochhalten

Von: Alexej Demerza

Für: Prof. Dr.-Ing. Jan Rexilius

Kurze Einführung:

- 1. Welchen Detektor und Tracker habe ich gewählt?
- 2. Wie bewerte ich meine Daten/Videos?
- 3. Mit welchen Parametern habe ich gearbeitet?
- 4. Was für Daten/Videos habe ich ausgewertet?
- 5. Bewertung/Visualisierung der Ergebnisse!

Wie funktioniert mein Detektor?

Sobel-Kontur-Eckendetektor:

Sobel-Operator zur Gradientenberechnung, der hilft, die Kanten und Ecken im Bild hervorzuheben.

Konturenerkennung, die auf den durch den Sobel-Operator erzeugten Gradienten Bildern basiert, um markante Punkte (Ecken) für das Tracking zu finden.

Wie funktioniert mein Tracking?

Optischer Fluss (Lucas-Kanade-Methode):

- Berechnung: Ermittelt die Bewegung jedes Punktes zwischen zwei aufeinanderfolgenden Bildern.
- Selektion: Nur signifikante Bewegungen werden zur weiteren Analyse beibehalten.

Clustering der Bewegungspunkte:

- **Gruppierung**: Punkte mit ähnlicher Bewegung werden zu Clustern zusammengefasst.
- **Tracking**: Clustern werden durch die Ungarische Methode IDs zugeordnet, um Bewegungen über die Zeit zu verfolgen.

Zusätzliche Funktion:

Gaußsche Weichzeichnung: Reduziert Bildrauschen und verbessert die Punkt-Detektion.

Bewegungsschwelle: Filtert nur signifikante Bewegungen für das Tracking.

Distanzkriterium beim Clustering: Ermöglicht das Gruppieren von Bewegungspunkten, die sich ähnlich verhalten.

Extrapolation und Alterung von Clustern: Verwaltet aktive Tracker basierend auf der Dauer ihrer Sichtbarkeit.

Glättungsfaktor (Alpha): Sorgt für eine natürliche Bewegungsdarstellung in Echtzeit-Interaktionen.

Wie bewerte ich meine Daten/Videos?

Visuelle Aspekte:

- Genauigkeit und Stabilität der Bounding Box.
- Vergleich erkannter und tatsächlicher Bewegung.
- Erkennung von Tracking-Fehlern.

Multiple Object Tracking Accuracy (MOTA):

Misst Tracking-Genauigkeit unter Berücksichtigung von Fehlalarmen, Fehldetektionen und Identitätswechseln.

• Höherer Wert = Besseres Tracking.

Mit welchen Parametern habe ich gearbeitet?

Distanzschwelle: self.distance_threshold = 280

Maximale vermisste Frames: self.max_missing_frames = 90

Bewegungsschwelle: self.still threshold = 0.6

Glättungsfaktor: self.alpha = 0.2

Mindestanzahl von Punkten: self.min_points_per_cluster = 8

Lucas-Kanade-Parameter: lk_params = dict(winSize=(80, 80), maxLevel=1,

Schwellenwert für Gradienten: cv2.threshold(magnitude, 75, 255, cv2.THRESH_BINARY)

Was für Daten/Videos habe ich ausgewertet?

Bewegungs Varianten (min. 2 Personen):

- Gehen mit Abstand
- Überschneidung
- Verschmelzung und Lösen
- Bild verlassen
- durcheinander gehen
- usw...

Umgebung & Kleidung:

- Helle Beleuchtung (Outdoor)
- Relativ Neutrale hintergründe (Mauer)
- Dunkle Oberkörper Kleidung

Gesamtanzahl der Videos: 15-20

Parameter:

distance_threshold = 150

standard: 150-280

Parameter:

distance_threshold = 600

standard: 150-280

Parameter:

max_missing_frames = 30

standard: 90

Parameter:

max_missing_frames = 150

standard: 90

Video_03 Video_04

10

Parameter:

min_points_per_cluster = 4

standard: 8-10

min_points_per_cluster = 15

standard: 8-10

Video_05 Video_06

Sequenz: Personen verfolgung mit etwas Abstand

Sequenz: Personen überschneiden sich

Sequenz: Personen überschneiden sich + gehen wieder ins Bild

Video_08

Sequenz: Personen kommt ins Bild und verschmilzt mit anderer Person

Video_09

15

Sequenz: Personen geht hinter einem hindernis her

Sequenz: Drittes kleines Objekt wird ins Bild geworfen.

Video_11 17

Fragen?