Matrix Theory EE5609 - Assignment 1

Sandhya Addetla PhD Artificial Inteligence Department

> 08-Sep-2020 AI20RESCH14001

Abstract—This document provides a solution for the problem of finding slopes of two lines, slope of one line being double of the slope of another line. and tangent of the angle between them is 1/3.

I. PROBLEM STATEMENT

The slope of a line is double of the slope of another line. If the tangent of the angle between them is 1/3, find the slopes of the lines.

II. THEORY

Consider the lines as two directional vectors m_1 and m_2 . Angle between the two vectors can be obtained by dot product of the two vectors.

Fig. 1. Angle between two vectors

$$\theta = m_1.m_2$$

The dot product of the vectors is given by

$$m_1.m_2 = \mid m_1 \mid \mid m_2 \mid \cos \theta$$
III. SOLUTION

Here these two vectors are considered to be passing through origin. The equations for these two vectors are:-

$$y = m_1 x$$
$$y = m_2 x$$

Where m_1 and m_2 are slopes of the vectors m_1 and m_2 respectively. Let $m_1 = m$. Given $m_2 = 2m$

These vectors can be represented as below:-

$$m_1 = \begin{pmatrix} 1 \\ m \end{pmatrix} m_2 = \begin{pmatrix} 1 \\ 2m \end{pmatrix}$$

The dot product of the vectors is given by:-

$$m_1.m_2 = |m_1| |m_2| \cos \theta$$

Given that $tan\theta$ is $\frac{1}{3}$. By Pythagorus theorem, we can obtain $cos\theta$ as $\frac{3}{\sqrt{10}}$. Therefore,

$$\cos \theta = \frac{m_1.m_2}{|m_1||m_2|}$$
$$\frac{3}{\sqrt{10}} = \frac{1 \times 1 + m \times 2m}{\sqrt{1 + m^2}\sqrt{1 + 4m^2}}$$

Applying square on both sides:-

$$9 \times (1 + m^{2})(1 + 4m^{2}) = 10(1 + 2m^{2})^{2}$$
$$4m^{4} - 5m^{2} + 1 = 0$$
$$m_{1} = m = 1, -1, \frac{1}{2}, \frac{-1}{2}$$

Substituting the value of m_1 we get value of $m_2 = 2, -2, 1, -1$.

IV. CONCLUSION

The slopes m_1 and m_2 of vectors $\boldsymbol{m_1}$ and $\boldsymbol{m_2}$ for the said conditions are: -

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix}$$