פונקציות מרוכבות — סיכום

2024 בנובמבר 4

תוכן העניינים

3	31.10.2024 - 1ד	שיעו	1
3	מבוא	1.1	
4	תזכורת למטריקות	1.2	
5	3.11.20		
5	התכנסות ורציפות	2.1	
5	הטלה סטריאוגרפית	2.2	
6		2.3	
7	4.11.2024-1יל 1	תרגו	3
7	מנהלות	3.1	
7	שדה המרוכבים	3.2	
7	טופולוגיה וסדרות	3.3	

31.10.2024 - 1 שיעור 1

adi.glucksam@mail.huji.ac.il למרצה קוראים עדי. המייל

שיעורי הבית הפעם הם 20 אחוזים מהציון, גם פה עם התחשבות במטלות הטובות ביותר. שעת קבלה של עדי היא בימי ראשון אחרי השיעור, דהינו ב־12:00. במנצ'סטר 303.

מבוא 1.1

. בהמשך. שיעזרו לנו שיעזרו מספר סימונים מספרים הקבוע הקבוע מספרים ($x,y)\mapsto z=x+iy$ ההתאמה על־ידי מספרים מספרים נגדיר מספרים מיעזרו לנו בהמשך.

. החלק הממשי והחלק הממשי והחלק אנדיר והולק בהתאמה. בהתאמה עבור z=x+iy עבור עבור אנדיר וחלק שלם החלק הממשי וחלק מדומה בהתאמה.

נעבור להגדרת הפעולות בשדה המרוכב:

 $z\pm w=(x\pm a)+i(y\pm b)$ אז נגדיר (מרוכבים) אם z=x+iy אם אם (חיבור היכור היבור היבור הגדרה 1.2 הגדרה

 $lpha \cdot z = lpha x + ilpha y$ נגדיר על־ידי $lpha \in \mathbb{R}$ כפל בסקלר (כפל) 1.3 הגדרה

 $.z\cdot w=(x+iy)(a+ib)=xa+xib+iya+iyib=xa-yb+i(xb+ya)$ כפל של מרוכב במרוכב נגדיר על־ידי

 $.\overline{z}=\overline{x+iy}=x-y$ נסמן (conjugation), נסמן בממשיים, היא קיימת בממשיים, שלא קיימת פעולה חדשה נגדיר (הצמדה). במברה $\overline{\overline{z}}=z$

 $z \in \mathbb{R}$ אם ורק אם מתקיים השוויון ולמעשה ולמעשה $\overline{z} = x$ אז נקבל במקרה בו

 $|z|=\sqrt{z\cdot\overline{z}}$ ידי על־ידי מוחלט נגדיר ערך נגדיר נגדיר (ערך מוחלט) אנדרה 1.5 הגדרה

פעולה זו מייצגת את המרחק מהראשית במישור המרוכב, בדומה לאופן פעולת הערך המוחלט בממשיים.

$$.\frac{z}{w}=\frac{z\cdot\overline{w}}{w\cdot\overline{w}}=\frac{z\,\overline{w}}{|w|^2}=\frac{1}{|w|^2}z\cdot\overline{w}$$
ידי על-ידי על-ידי חלוקה (חלוקה) וואס הגדרה 1.6

המוגדר $\mathbb{C} o \mathbb{R}^2$ אל־ידי \mathbb{R}^2 המוגדר מרוכבים כמרחב את ניתן לבחון ניתן ניתן הממשיים) המוגדר מרוכבים כמרחב וקטורי מעל

$$z = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

ראינו כי אפשר לייצג את המרוכבים על־ידי מרחב וקטורי ממשי, ובאותו אופן ניתן לייצג את המרוכבים גם על־ידי מטריצות ועל־ידי תצוגה פולארית. בתרגול נעסוק בתצוגת המטריצות, ועתה נתעמק בהצגה פולארית.

נוכל לבחון כל מספר כווקטור, דהינו על־ידי עוצמה וזווית. בקורס שלנו זווית היא ב־ $(-\pi,\pi]$ ו היא מודדת מרחק זוויתי מהכיוון החיובי של ציר נוכל לבחון כל מספר כווקטור, דהינו על־ידי עוצמה וזווית. בקורס שלנו זווית היא בz=x+iy סימון לזה (ובהמשך הקורס הוא יהפוך להגדרה) הוא z=x+iy בהתאם ב $z=r\cdot e^{i\theta}$. בהתאם $z=r\cdot e^{i\theta}$. בהתאם

$$e^{i heta_1}\cdot e^{i heta_2}=e^{i(heta_1+ heta_2)}$$
 כי הראו .1 הראו .1

- $?Arg(z\cdot w) = Arg(z) + Arg(w)$ ש־ ש־ מכון האם .2
 - ?1 אם התשובה היא לא, איך זה לא מתנגש עם סעיף 3

 $\sqrt[n]{z}=w$ מצאו את כל הפתרונות של מצאו את מצאו 1.2 תרגיל

פתרון

$$\sqrt[n]{z} = w \iff z = w^n = (r \cdot e^{i\theta})^n = r^n (e^{i\theta})^n$$

 $|w|=|z|^{rac{1}{n}}$ אז נקבל $|w|^n=r^n$ ולכן נקבל

נקבל בנוסף על־ידי נוסחת דה־מואר (שתגיע בהמשך הקורס)

$$(e^{i\theta})^n = e^{i\theta}(e^{i\theta})^{n-1} = e^{in\theta}$$

 $Arg(w)=rac{Arg(z)}{n}+rac{2\pi k}{n}$ ולכן ארקArg(w)=Arg(z) עבור אינו ולכן ארקנו

1.2 תזכורת למטריקות

נוכל להגדיר מטריקה על המרוכבים על־ידי שימוש בערך המוחלט שהגדרנו, דהינו נגדיר d(z,w)=|z-w|, והגדרה משרה טופולוגיה על המרוכבים על־ידי שימוש בערך המוחלט שהגדרנו. במספר תכונות נוספות:

 $B(z,r) = \{w \in \mathbb{C} \mid d(z,w) < r\}$ הגדרה על־ידי פתוח במרוכבים נגדיר כדור נגדיר פתוח נגדיר פתוח הגדרה 1.7 נגדיר פתוח

ניזכר בהגדרה של קבוצות פתוחות וסגורות:

 $\exists z \in U \exists r \in \mathbb{R}, B(z,r) \subseteq U$ אם אם תיקרא פתוחה קבוצה קבוצה וסגורה) אנדרה 1.8 הגדרה 1.8 הגדרה

. הוא קבוצה פתוחה הא $F^C=\mathbb{C}\setminus F$ הלים שלה אם סגורה סגורה תיקרא תיקר
א $F\subseteq\mathbb{C}$ הוא קבוצה קבוצה

 $\operatorname{cint}(A)=\{z\in A\mid \exists r>0, B(z,r)\subseteq A\}$ מוגדר על־ידי $A\subseteq\mathbb{C}$ שנים של קבוצה) פנים של הגדרה 1.9 (פנים של

 $\mathrm{.Ext}(A) = \mathrm{int}(\mathbb{C} \setminus A)$ ידי על-ידי של החוץ של קבוצה) אונדר הגדרה 1.10 הוץ של החוץ של הגדרה

 $.\partial A=\mathbb{C}\setminus (\mathrm{int}(A)\cup\mathrm{Ext}(A))$ הייות להיות A חוגדר השפה של קבוצה) אנדרה 1.11 השפה של השפה של השפה של השפה האדרה

 $A \cup \partial A$ הוא הוא הסגור של קבוצה) הגדרה 1.12 (סגור של קבוצה) הגדרה

היא קומפקטית אם היא היא קומפקטית היא $A\subseteq B(0,R)$ כך שיR>0 כך היא חסומה קבוצה R קבוצה קומפקטית קבוצה היא קומפקטית אם היא היא קומפקטית אם היא סגורה וחסומה.

3.11.2024 - 2 שיעור 2

2.1 התכנסות ורציפות

 $\lim_{n o\infty}|z_n-z|=0$ אם $z_n o z^-$ אמר שי $z_n o z^-$, נאמר מרוכבים). תהי סדרה תהי מרוכבים) תהי מדרה 2.1 הגדרה (בים

נבחין כי זהו גבול מעל הממשיים.

 $z_n=\mathrm{Re}(z_n)=2^{1/n} \xrightarrow[n o \infty]{} 1$, שלה, שלה, מתכנסת. נבחן אם היא מתכנסת. נבחן צו בדוק אם ונבדוק $z_n=2^{1/n}+i2^{-n}$ תהי

 $z_n o 1$ ולכן ולכן . $y_n = \operatorname{Im}(z_n) = 2^{-n} \xrightarrow[x o \infty]{} 0$ באופן דומה

 $x_{2n}=\mathrm{Re}(z_{2n})=2^{1/2n}\xrightarrow{x o\infty}1$, $z_n=(-1)^n2^{1/n}+i2^{-n}$ זאת לעומת 2.2 דוגמה 2.5 לעומה

. אכל z_n ולכן ולכן $x_{2n+1}=\operatorname{Re}(z_{2n+1})=-2^{1/(2n+1)}\xrightarrow{x\to\infty}-1$ אבל

 $f(z_n) o f(z)$ מקיימת $z_n o z$ מקיימת קבר בסביבת אם לכל סדרה לכל מדרה בסביבת נאמר ש $f:G o \mathbb{C}$ מקיימת לכל $f:G o \mathbb{C}$ מקיימת בסביבת מתקיים שf:G מתקיים שf:G מתקיים שf:G מתקיים שf:G מתקיים שf:G מחרקיים שבק מתקיים שלכל מדרה ב־f:G אם לכל מתקיים שלכן מתקיים שלכן מתקיים שלכן מדרה ב־f:G אם לכל מתקיים שלכן מתקיים שלכ

 $G=\{z\in\mathbb{C}\mid \mathrm{Im}(z)
eq 0\}$ ונגדיר $f(z)=\mathrm{Re}(z)\cdot\mathrm{Im}(z)+irac{\mathrm{Re}(z)}{\mathrm{Im}(z)}$ נגדיר 2.3 נגדיר 2.3 דוגמה

אנו יודעים שיש התכנסות אם ורק אם יש התכנסות בחלק הממשיים ובחלק המדומה בנפרד, נקבל

$$\operatorname{Re}(f) = \operatorname{Re}(z) \cdot \operatorname{Im}(z) = x \cdot y$$

המדומה החלק את נבדוק ל- \mathbb{R}^2 ל- מ-כפונקציה כפונק את לכן ל-

$$\operatorname{Im}(f) = \frac{\operatorname{Re} z}{\operatorname{Im} z} = \frac{x}{y}$$

Gבים הביפה לכל f כי מהתרגיל נסיק נסיק נסיק ולכל $y \neq 0$ לכל רציפה ולכן

ניזכר בהגדרת הקשירות

הגדרה באים הבאים פתוחה, התנאים קבוצה $G \subset \mathbb{C}$ תהי (קשירות) ב-2.3 הגדרה באים שקולים:

- $U=\emptyset$ או U=G אז פתוחה אז U=G או U=G או .1

הרעיון הוא שלכל שתי נקודות, נוכל לבחור סדרת נקודות, כל שתי נקודות מחוברות בקטע ישר, ובסך הכול קיים מסלול של קטעים ישרים כאלה שמחבר את הנקודות, והחובה היא שכל הקטעים האלה מוכלים בקבוצה.

3. כל פונקציה קבועה מקומית היא קבועה.

הערך מבודדת היא שבכל המשמעות היא בפועל. $\forall z \in G, \exists r, B(z,r) \subseteq G \land f \mid_{B(z,r)} = c$ היא שבכל קבוצה הערך. לפונקציה קבוע.

הגדרה 2.4 (תחום) תחום הוא קבוצה פתוחה וקשירה.

. תחום. $G \subseteq \mathbb{C}$ רחום. $G \subseteq \mathbb{C}$ הערה כל $G \subseteq \mathbb{C}$ הערה כל

2.2 הטלה סטריאוגרפית

x,y במצב זה הצירים S^2 המידה להיות היחידה להיות נגדיר את ספירת היחידה. נגדיר במצב זה הצירים את המידה לכל S^2 במבן היחידה. לכל S^2 במבן המישור המרוכב עצמו, על־ידי S^2 בידיר S^2 נגדיר אונסוף הנקודה העליונה של ספירת היחידה. לכל S^2 בידיר אינסוף בי S^2 בידיר אינסוף אנוסמן S^2 בידיר אינסוף בידיר בידיר אונסמן אנוסמן S^2 בידיר אינסוף בידיר בידיר בידיר אונסמן אנוסמן בידיר בידייר בידיר ב

נקבל . נקבל אז $t \neq 0$ אז $t \neq 0$ אז אז אול את ולכן את נקבל את נקבל t = 0 במקרה . וב

$$t \cdot P_z + (1-t)N = (\frac{2x}{1+|z|^2}, \frac{2y}{1+|z|^2}, 1 - \frac{2}{1+|z|^2})$$

 $.\phi^{-1}:S^2 o\mathbb{C}$ נחשב את

עתה $z_0\in L_p$ בהתאם $P\in L_{z_0}$ אז $\phi^{-1}(P)=z_0$ אך עדיין אם $z_0^2+y_0^2+z_0^2=1$ דהינו ארינו, $P=(x_0,y_0,z_0)\in S^2$ אר $L_p = \{tP + (1-t)N \mid t \in \mathbb{R}\}\$

ולכן

$$Re(z_0) = tx_0$$
, $Im(z_0) = ty_0$, $\{z = 0\} \subseteq \mathbb{R}^3$

אם כך נקבל

$$tz_0 + (1-t) = 0 \iff t(z_0 - 1) = -1 \implies t = \frac{1}{1-z_0}$$

78

$$Re(z) = \frac{x_0}{1 - z_0}, \quad Im(z) = \frac{y_0}{1 - z_0}$$

. עצמו. $\mathbb{C}^*=\mathbb{C}\cup\{\infty\}$ במקום ב־ $\mathbb{C}^*=\mathbb{C}\cup\{\infty\}$ אם הנקודה מתאימה לאינסוף, ולכן נשתמש

במקרה זה גם נוכל לקבל מטריקה חדשה.

$$.
ho(z,w)=\|\phi(z)-\phi(w)\|$$
 הגדרה $z,w\in\mathbb{C}$ בארה הגדרה $.
ho^2(z,w)=\cdots=rac{|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}$ המקרה הבקבל

$$\rho(z,\infty) = \lim_{w \to \infty} \rho(z,w) = \lim_{w \to \infty} \frac{2|\frac{z}{w} - 1|}{\sqrt{1 + |z|^2} \sqrt{1 + |\frac{1}{w}|^2}} = \frac{2}{\sqrt{1 + |z|^2}}$$

 $ho(w_n,\infty) o 0$ אם אז אל א חסום אל $w_n o \infty$ אם 2.2 תרגיל

 ϕ_{-1} תחת S^2 ם ב-מעגלים למעגלים

. מישור אז מישור P_C עבור רב $C=S^2\cap P_C$ אז בהכרח אז אז מעגל על מאם לב שאם לב

$$P_C = \{(x, y, z) \mid ax + by + cz = d, a, b, c, d \in \mathbb{R}\}\$$

תהי $z \in \mathbb{C}$ המקיימת $\phi(z) \in P_C$ אז בפרט $\phi(z) \in P_C$ אז נציג מקיימת $z \in \mathbb{C}$

$$d = a \cdot \frac{2\operatorname{Re}(z)}{1 + |z|^2} + b \cdot \frac{2\operatorname{Im}(z)}{1 + |z|^2} + c\frac{|z|^2 - 1}{|z|^2 + 1} \implies d + c = 2a\operatorname{Re}(z) + 2b\operatorname{Im}(z) + |z|^2(c - d)$$

נקבל, c=dש המקרה את נבחן את נבחן

$$c = a\operatorname{Re}(z) + b\operatorname{Im}(z) = ax + by$$

וזהו מעגל משוואת מקבלים אז מקבלים אם וזהו במישור. אם וזהו למעשה ישר למעשה וזהו

$$c + d = a2x + 2by + (x^2 + y^2)(c - d) \iff (x - A)^2 + (y - B)^2 = C^2$$

 $N
otin P_C$ אז c
eq d ואם $N
otin P_C$ אז c = d אז המשמעות היא שאם

2.3 דיפרנציאביליות

 \mathbb{R}^2 מעכשיו סביבה מרוח סביב ביבה פתוחה של ג, לדוגמה פתוחה סביבה עב כאשר הזכורת כאשר לדוגמה כדור כאשר לדוגמה כדור סביבה מעכשיו לדוגמה מיינות מ

$$rac{\partial f}{\partial x}(x_0,y_0)=\lim_{x o x_0}rac{f(x,y_0)-f(x_0,y_0)}{x-x_0}$$
דיפרנציאבילית ב־ (x_0,y_0) אם ניתן לחקור את הפונקציה על־ידי חקירת קירוב לינארי שלה, דהינו

$$\lim_{(x,y)\to(x_0,y_0)} \frac{1}{\|(x,y)-(x_0,y_0)\|} \|f(x,y)-f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)\| = 0$$

4.11.2024 - 1 תרגול 3

3.1 מנהלות

למתרגל קוראים יונתן. יש 12 תרגילים בסמסטר הזה, כולם להגשה ונלקחים 10 הטובים ביותר. הם 20% מהציון, אז חשוב להשקיע בהם. תהיה ליונתן שעת קבלה אבל הוא עוד לא קבע אותה. המייל שלו הוא yonatan.bachar@mail.huji.ac.il.

3.2 שדה המרוכבים

הגדרנו את שדה המרוכבים על־ידי

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}, \qquad i^2 = -1$$

כפי שראינו בשיעור 1, יש לנו מספר פעולות על המרוכבים.

אנו את המטריצה $M_z(w)=z\cdot w$ על־ידי איז על־ידי אנו נקבע בסיס $z\in\mathbb{C}$ במרחב וקטורי, נקבע בסיס אנו בסיס אנו בסיס בסיס z=a+bi נניח בסיס שלנו. במייצגת של ההעתקה הזו, נניח בסיס ונבדוק את הפעולה על הבסיס שלנו.

$$M_z = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

.zהעתקה זו מייצגת את הכפל ב-

מה אנחנו יכולים להגיד על ההעתקה הזו? תכונות:

$$M_{z+w} = M_z + M_w .1$$

$$M_{z \cdot w} = M_z \cdot M_w$$
 .2

$$M_{\overline{z}} = M_z^T$$
 .3

:בתצורה פולארית z את נגדיר

$$z = re^{i\theta}$$

ונקבל

$$M_z = M_{re^{i\theta}} = \begin{pmatrix} r \\ r \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

זוהי למעשה מטריצה סקלרית כפול מטריצת סיבוב.

3.3 טופולוגיה וסדרות

 $:\mathbb{C}$ את המטריקה על

$$d(z, w) = |z - w|$$

B(z,r) מגדירה לנו טופולוגיה עם קבוצות פתוחות עם אים לנו טופולוגיה היא

. מושרות התכונות ולכן התכונות ולכן ולכן וורמי, כמרחב כמרחב או נורמי, או נורמי,

נגדיר שסדרה $|z_n| < r$ כך ש $|z_n| < r$ כך שה היא חסומה שסדרה ונאמר שסדרה ($|z_n| < r$ אם אם לכל $|z_n| < r$ מההרצאה:

 $\mathrm{.Re}(z_n) o \mathrm{Re}(z) \wedge \mathrm{Im}(z_n) o \mathrm{Im}(z)$ מענה $z_n o z$ אם ורק אם $z_n o z$

ונראה דוגמה לשימוש בטענה זו.

$$z_n = n(e^{-n} + i\sin{1\over n})$$
 נגדיר 3.1 דוגמה 3.1

 $z_n o i$ נקבל מהטענה כי

נעבור לסדרה מעניינת יותר

דוגמה נחבונן בסדרה, $f_c(z)=z^2+c$ ונגדיר נקבע נקבע 3.2 נקבע

$$z_0 = 0$$
, $z_1 = f_c(0)$, $z_n = f_c(z_{n-1})$

z=0 נקבל z=0 נקבל c=1 נקבל c=1 נקבל c=1 נקבל c=1 נקבל c=1 נקבל עבור c=1 נקבל פור עבור

הסדרה הזו מתנהגת בצורה מאוד משונה בהתאם לנקודת ההתחלה, וקשה להבין את ההתנהגות באופן כללי.

סדרה זו מהווה הבסיס להגדרה של קבוצת מנדלברוט ופרקטל מנדלברוט, קבוצה זו מוגדרת על־ידי המספרים המרוכבים שהסדרה שלהם חסומה:

$$M = \{ c \in \mathbb{C} \mid \exists r > 0, \forall n \in \mathbb{N} | f_c^n(0) | < r \}$$

.2 נסיים בתזכורת בהטלה הסטריאוגרפית שראינו בשיעור

על־ידי S^2 את הספירה חד־מימדית קומפקטיזציה בתור בתור בתור $\mathbb{C}^*=\mathbb{C}\cup\{\infty\}$, את הספירה של הגדרנו את

$$S^2 = \{(x_0, y_0, z_0) \in \mathbb{R}^3 \mid x_0^2 + y_0^2 + z_0^2 = 1\}$$

ראינו את בתונה על־ידי ההטלה, האלה, $\pi:S^2 o \mathbb{C}^*$ ראינו את

$$\pi(x_0, y_0, z_0) = \frac{x_0}{1 - z_0} + i \frac{y_0}{1 - z_0}$$

נראה עתה שתי טענות מעניינות

מענה 3.2 לכל $N \in S^2$ טענה

$$\pi(N)\overline{\pi(-N)} = -1$$

ונקבל $N=(x_0,y_0,z_0)$ ונקבל הוכחה.

$$\pi(N) \cdot \overline{\pi(-N)} = \left(\frac{x_0}{1 - z_0} + i \frac{y_0}{1 - z_0}\right) \left(-\frac{x_0}{1 + z_0} + i \frac{y_0}{1 + z_0}\right)$$

$$= \frac{-x_0^2 - y_0^2}{1 - z_0^2} + i \frac{x_0 y_0 - x_0 y_0}{1 - z_0^2}$$

$$= \frac{-(1 - z_0^2)}{1 - z_0^2}$$

$$= -1$$

טענה 3.3 לכל θ מתקיים:

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

הוכחה. נוכיח באמצעות מרוכבים

$$\begin{split} \sin(2\theta) &= \operatorname{Im}(e^{i2\theta}) = \operatorname{Im}(\left(e^{i\theta}\right)^2) \\ &= \operatorname{Im}(\left(\cos\theta + i\sin\theta\right)^2) \\ &= \operatorname{Im}(\left(\cos^2\theta - \sin^2\theta\right) + i(2\sin\theta\cos\theta)) \\ &= 2\sin\theta\cos\theta \end{split}$$

8