

UL-VIO: Ultra-lightweight Visual-Inertial Odometry with Noise Robust Test-time Adaptation

Jinho Park¹, Se Young Chun², and Mingoo Seok¹
¹Columbia University
²Seoul National University

jp4327@columbia.edu, sychun@snu.ac.kr, ms4415@columbia.edu

Table of Contents

Motivation

Learning-based VIO method

Model compression

Noise robust test-time adaptation

Conclusion

Motivation for Lightness & Robustness

Model compression

Test-time adaptation (TTA)

- Need for lightweight neural network to be hosted entirely by on-chip memory, which is of few MB in modern processors
- Robust to environmental factors and noises inducing distribution shifts

Learning-based Visual-inertial Odometry Pipeline

Given a sequence of visual and inertial inputs:

- Visual encoder E_{ν} deduces visual features from pairwise images
- Inertial encoder E_i does so from the inertial input
- **Decoder** *D* predicts pose transformation from fused features

Model Compression

- Add an **AveragePool** after the last convolutional layer in E_v . This gives us 117x reduction in E_v
- Reduce the **channel size** in E_i since the parameter number is quadratically proportional to it, attaining 8x compression in E_i
- Replace the LSTM with **fully connected layers** for the D_f . This results in 161x downsizing in D_f

Model Compression – Results

- We achieve 36x model size reduction w/ a minute (1%) increase in absolute pose estimation error
- Previous studies neglected model size consideration major bottleneck in edge deployment
- Latest Apple A16 and Qualcomm Snapdragon CPUs possess only a few MB of on-chip memory

Odometry Results

	Ours	ModeSel [39] Hard Fusion [5]
$egin{array}{c} t_{rmse} \ [\mathrm{m}] \ r_{rmse} \ (°) \ \mathrm{Model \ size} \ (\mathrm{M}) \ \end{array}$	0.0282 0.0756 0.944	$ \begin{vmatrix} \textbf{0.0178} & (-0.0104) \\ 0.0906 & (+0.0150) \\ 48.454 & (\times 51.3) \end{vmatrix} \begin{vmatrix} 0.0283 & (+0.0001) \\ \textbf{0.0402} & (-0.0354) \\ 52.598 & (\times 55.7) \end{vmatrix} $

- In KITTI, ours with model compression has a slight deviation Seq. 07 and better ego-motion in Seq. 10 than ModeSel and NASVIO
- In EuRoC dataset, ours perform comparably to ModeSel [ECCV`22] and Hard Fusion [CVPR`19] with >50X reduction.

Proposed TTA w/ Multi-modal Consistency

Keep the original VIO network intact:

Proposed TTA w/ Multi-modal Consistency

Keep the original VIO network intact:

- Visual inputs now experience **noise** from the **environment**
- Dedicate a separate inertial decoder using just the inertial feature
- Adapt the network based on inertial only feature at test-time

Dictionary-based Adaptation

Algorithm 1: Online TTA with adaptation gating

Domain distinctive feature (*ddf*)

l₂ distance-based domain search

$$\hat{\mathbf{d}} = \mu(\mathbf{o}_1) \| \sigma(\mathbf{o}_1) \| \mu(\mathbf{i}_2) \| \sigma(\mathbf{i}_2)$$

$$k_t = \underset{k \in [0,1,...,K]}{\arg \min} \|\hat{\mathbf{d}}_t - \mathbf{d}^k\|_2$$

- Forward-path generate **visual feature** x^v , which will be used for decoder in the deeper layers (Line 2)
- First layer conv output o₁ is used to generate domain distinctive feature d₁ (Line 2)
- Domain k is found using l₂ distance with the proxies {d^k} (Line 3)
- BatchNorm parameter corresponding to the domain k is updated (Line 5)

Comparison w/ Fine-tuned Baselines

Мо	odel	Clean	Multi.	Avera Blur	age pose- Rain	$egin{aligned} \mathbf{wise} \ t_{rm} \ \mathbf{Snow} \end{aligned}$	$_{se}^{}$ [m] $\left ext{Shadow} ight $	Bright.	Cont.
Source		0.059	0.154	0.261	0.176	0.191	0.203	0.226	0.250
Fine- tuned with adver. noise (FT)	Multi. Blur Rain Snow Shadow Bright. Cont.	0.099 0.115 0.289 0.091 0.085 0.091 0.093	$\begin{array}{c} 0.129 \\ 0.176 \\ 0.325 \\ 0.148 \\ \textbf{0.112} \\ 0.151 \\ 0.150 \end{array}$	0.394 0.263 0.372 0.319 0.322 0.312 0.330	0.227 0.193 0.095 0.263 0.179 0.177 0.197	$\begin{array}{c} 0.372 \\ 0.247 \\ 0.394 \\ \underline{0.183} \\ 0.243 \\ 0.226 \\ 0.219 \end{array}$	0.192 0.184 0.311 0.208 0.121 0.185 0.184	0.299 0.242 0.525 0.369 0.221 0.233 0.237	0.331 0.261 0.531 0.450 0.252 0.278 0.273
TTA	(ours)	-	0.156	0.230	0.143	0.172	0.155	0.193	0.212

- We demonstrate the effectiveness of our TTA method by comparing it with networks fine-tuned with adversarial noises
- Except for one case, e.g., multiplicative noise, our TTA method has the best or second-best accuracy

Online TTA & Trajectory Results

- Translation RMSE quickly increases when the visual corruption is applied
- TTA mitigates the increase in the error to some extent
- Noise injected causes the trajectory to be underestimated, which is alleviated w/ TTA

Continual TTA

KITTI

Time	t —											<u></u>	
Seq. Noise		Seq	. 05			Seq	. 07			Seq	. 10		Avg.
Noise	Blur	Rain	Snow	Con.	Blur	Rain	Snow	Con.	Blur	Rain	Snow	Con.	11,6.
Baseline													
TTA	0.112	0.107	0.110	0.107	0.101	0.108	0.106	0.104	0.123	0.124	0.121	0.127	0.113
ddf acc.	97.9	100	100	100	98.2	100	100	100	98.8	100	100	100	99.6

EuRoC

Time	t —			
Noise	Blur	Bright.	Contrast	Avg.
Baseline TTA	0.0255 0.0253	0.0256 0.0254	0.0276 0.0254	0.0262 0.0254
\overline{ddf} acc. (%)	95.6	100.0	100.0	98.5

- We inject different types of noise {blur, rain, snow, contrast} in a continuous manner for KITTI
- Visual corruption {blur, brightness, contrast} relatable to indoor for EuRoC
- TTA effectively reduces that translation RMSE

Conclusion

Test-time adaptation

- We achieve a network with < 1M parameter size through model compression, i.e. 36x less than SoTA
- We effectively alleviate pose estimation error with multi-modal consistency-based TTA

Thank you for listening to our work on UL-VIO:

Ultra-lightweight Visual-Inertial Odometry with Noise Robust Test-time Adaptation

Se Young Chun²

Mingoo Seok¹

¹Columbia University ²Seoul National University

jp4327@columbia.edu, sychun@snu.ac.kr, ms4415@columbia.edu

