A Branch-and-Cut Algorithm for Energy-Aware Job-Shop Scheduling

under Time-of-Use Pricing and a Peak Power Limit

Marouane Felloussi, Xavier Delorme, Paolo Gianessi Mines Saint-Etienne, LIMOS UMR 6158 CNRS, Saint-Etienne, France

February 28, 2025

ROADEF 2025, Champs-Sur-Marne, France

Outline

1. Introduction

2. Branch-and-Cut approach

- 2.1 Period-Indexed formulation
- 2.2 Capacity constraint separation
- 2.3 Extension to any valid inequality of the peak power polytope
- 2.4 Valid inequalities

3. Computational results

- 3.1 Valid inequalities and formulation comparison
- 3.2 Clique-forbidding cuts

4. Conclusion and perspectives

Outline

- 1. Introduction
- 2. Branch-and-Cut approach
- 3. Computational results
- 4. Conclusion and perspectives

Energy-Aware Job-Shop Scheduling

The Job-Shop Scheduling Problem:

- Schedule jobs with ordered operations on machines to optimize some criterion.
- Relevant problem in OR, strongly NP-hard [1].
- Modeling Approaches:
 - » Time-Indexed formulations \Rightarrow strong dual bounds, large MILPs.
 - » Disjunctive formulations \Rightarrow more compact MILPs, weak relaxations.

Energy-Aware Job-Shop Scheduling

Energy consideration:

- Production is energy-intensive, electrification of processes (etc.)
- ToU pricing:
 - » Non-regular criterion.
 - » Period-Indexed formulation.
- Peak power limit:
 - » Energy: cumulative resource.
 - » Machines: unitary resources.

Figure: Seasonal Time-of-Use pricing example [2]

Problem Definition

- Machines $m \in \mathcal{M}$ with power consumption φ_m .
- **Jobs** $j \in \mathcal{J}$ to execute over a time horizon C:
 - » Processed over an ordered subset of machines.
 - » Having constant processing times $q_{j,m} \Rightarrow$ energy consumption $\varphi_m \cdot q_{j,m}$.
 - » Direct precedence constraints.
- Operations $o \in \mathcal{O} := \mathcal{J} \times \mathcal{M}$, i.e. processing of a job on a machine.
- ToU Periods $p \in \mathcal{P}$:
 - » Duration I^p and electricity price c_p per unit.
 - » $[t^p, t^{p+1}]$, with $t^{p+1} t^p = I_p$, $t^1 = 0$ and $t^{|\mathcal{P}|} = C$.
- Peak Power Limit $\overline{\varphi}$ to respect at all times.

Problem Definition

A **feasible solution** consists of a **schedule** where each job $j \in \mathcal{J}$ processes over machines $m \in \mathcal{M}$, during one or more ToU periods in \mathcal{P} , such that:

- same-machine operations do not process simultaneously (non-overlap),
- operations may not interrupt processing (non-preemption),
- operation sequencing respects a predefined order (precedence).
- the total power usage of all machines never exceeds the limit (capacity).

Objective

The goal is to find a feasible solution minimizing the Total Energy Cost (TEC).

Instance and Solution

Machine <i>m</i>	1	2	3
Power φ_m	5	6	8

 $q_{2,m}$ $q_{3,m}$

Machine <i>m</i>	1	2	3
$q_{1,m}$	20	10	30

Job <i>j</i>	1	2	3
Sequence M_i	{1,3,2}	{2,1,3}	{2,3,1}

ToU period p	on-peak	off-peak
Tariff c ^p	0.159	0.13
Duration I^p	20	10

Makespan minimization s.t. $\overline{\varphi} = 13$ (TEC = 204.7)

Instance and Solution

Machine <i>m</i>	1	2	3
Power φ_m	5	6	8

Job <i>j</i>	1	2	3
Sequence M_j	{1,3,2}	$\{2, 1, 3\}$	${2,3,1}$

Machine <i>m</i>	1	2	3
$q_{1,m}$	20	10	30
$q_{2,m}$	5	15	10
$q_{3,m}$	10	15	20

ToU period p	on-peak	off-peak
Tariff c ^p	0.159	0.13
Duration I^p	20	10

Makespan minimization s.t. $\overline{\varphi} = 13$ (TEC = 204.7)

Instance and Solution

Machine <i>m</i>	1	2	3
Power φ_m	5	6	8

Machine <i>m</i>	1	2	3
$q_{1,m}$	20	10	30
$q_{2,m}$	5	15	10
$q_{3,m}$	10	15	20

Job <i>j</i>	1	2	3
Sequence M _i	{1,3,2}	{2,1,3}	{2,3,1}

ToU period p	on-peak	off-peak
Tariff c ^p	0.159	0.13
Duration I^p	20	10

Energy Cost minimization s.t. $\overline{\varphi} = 13$ and C_{max} (TEC = 197.1)

Short literature review

Problem class	Article	Problem*	Solution Approach
job-shop scheduling	[4] [5] [6]	$Jm TEC $ $Jm $ on/off, r_j , $d_j TEC $ $Jm P_{max} TEC $	MILP (PI) MILP (TI), B&B MILP (D,TI), MH
flexible job-shop scheduling	[7] [8]	$FJm $ on/off $ C_{max}$, TEC $FJm C_{max}$, TEC	MILP (TI), CP MILP (TI), H
flow-shop scheduling	[9]	F2 prmu, on/off TEC	MILP (PI+TI), LBBD
parallel machine scheduling	[10] [11] [12]	$Pm C_{\max}$,TEC $Rm TEC$ $Rm TEC$	MILP (TI), H MILP (PI), H MILP (PI), B&P
single machine scheduling	[13] [14]	1 batch TEC 1 batch TEC	MILP (PI,TI), CG-H MILP (PI)
RCPSP	[15] [16]	$PS prec rac{C_{\sf max}}{C_{\sf max}}$,TEC $PS prec {\sf TE}$	MH MILP (EB)

Table: An overview of related works.

^{*}Graham's 3-field notation [3]

Short literature review

Problem class	Article	Problem*	Solution Approach
job-shop scheduling	[4] [5] [6]	Jm TEC $Jm $ on/off, r_j , $d_j TEC$ $Jm P_{max} TEC$	MILP (PI) MILP (<mark>TI</mark>), B&B MILP (D, T I), MH
flexible job-shop scheduling	[7] [8]	$FJm $ on/off $ C_{\max}$, TEC $FJm C_{\max}$, TEC	MILP (<mark>TI</mark>), CP MILP (<mark>TI</mark>), H
flow-shop scheduling	[9]	F2 prmu, on/off TEC	MILP (PI+TI), LBBD
parallel machine scheduling	[10] [11] [12]	$Pm C_{\max}$,TEC $Rm $ TEC $Rm $ TEC	MILP (TI), H MILP (PI), H MILP (PI), B&P
single machine scheduling	[13] [14]	1 batch TEC 1 batch TEC	MILP (PI,TI), CG-H MILP (PI)
RCPSP	[15] [16]	$PS prec C_{\sf max}, {\sf TEC}$ $PS prec {\sf TE}$	MH MILP (EB)

Table: An overview of related works.

^{*}Graham's 3-field notation [3]

Short literature review

Problem class	Article	Problem*	Solution Approach
job-shop scheduling	this work [4] [5] [6]	$Jm P_{max} TEC$ Jm TEC $Jm $ on/off, $r_j, d_j TEC$ $Jm P_{max} TEC$	MILP (PI), B&C MILP (PI) MILP (TI), B&B MILP (D,TI), MH
flexible job-shop scheduling	[7] [8]	$FJm $ on/off $ C_{\max}$,TEC $FJm C_{\max}$,TEC	MILP (<mark>TI</mark>), CP MILP (<mark>TI</mark>), H
flow-shop scheduling	[9]	F2 prmu, on/off TEC	MILP (PI+TI), LBBD
parallel machine scheduling	[10] [11] [12]	$Pm C_{ ext{max}}$,TEC $Rm ext{TEC}$ $Rm ext{TEC}$	MILP (TI), H MILP (PI), H MILP (PI), B&P
single machine scheduling	[13] [14]	1 <i>batch</i> TEC 1 <i>batch</i> TEC	MILP (PI,TI), CG-H MILP (PI)
RCPSP	[15] [16]	$PS prec C_{ ext{max}}$,TEC PS prec TE	MH MILP (EB)

Table: An overview of related works.

^{*}Graham's 3-field notation [3]

Main contributions

In this work, we introduce:

- a Branch-and-Cut algorithm for the $Jm|P_{max}|TEC$ based on
 - » a period-indexed MILP formulation
 - » feasibility cuts generated from knapsack minimal covers
 - » a polynomial-time separation algorithm at integer infeasible nodes
- an extension of feasibility cuts
 - » from knapsack extended covers
 - » from any valid inequality of the capacity constraint polytope
- valid inequalities to improve the linear relaxation and the B&B tree exploration

Outline

- 1. Introduction
- 2. Branch-and-Cut approach
- 3. Computational results
- 4. Conclusion and perspectives

Outline

1. Introduction

2. Branch-and-Cut approach

- 2.1 Period-Indexed formulation
- 2.2 Capacity constraint separation
- 2.3 Extension to any valid inequality of the peak power polytope
- 2.4 Valid inequalities
- 3. Computational results
- 4. Conclusion and perspectives

Variables

Processing status

$$x_{j,m}^p = \begin{cases} 1, & \text{if operation } (j,m) \text{ is processed during period } p \\ 0, & \text{otherwise} \end{cases} \quad \forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P}$$

Processing duration

 $d^p_{j,m} \in \mathbb{R}^+$: time spent processing operation (j,m) on period p. $\forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P}$

Variables

Processing status

$$x_{j,m}^p = \begin{cases} 1, & \text{if operation } (j,m) \text{ is processed during period } p \\ 0, & \text{otherwise} \end{cases}$$

$$\forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P}$$

Processing duration

 $d_{j,m}^p \in \mathbb{R}^+$: time spent processing operation (j,m) on period p.

 $\forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P}$

Starting/completion date

 $s_{j,m}, c_{j,m} \in \mathbb{R}^+$: starting and completion dates of operation (j,m)

 $\forall j \in \mathcal{J}, m \in \mathcal{M}$

Machine disjunction

$$u_{j',m}^{j,m} = \begin{cases} 1, & \text{processing of operation } (j,m) \text{ ends before start of } (j',m') \\ 0, & \text{otherwise} \end{cases} \quad \forall j < j' \in \mathcal{J}, m, m' \in \mathcal{M}$$

Objective function

Schedule total cost

The total operational cost of a schedule is minimized:

$$\min \sum_{p \in \mathcal{P}} c^p \sum_{m \in M} \varphi_m \sum_{j \in \mathcal{J}} d^p_{j,m} \tag{1}$$

- » φ_m : power of machine m,
- » c^p : cost of period p.

Core constraints

Total operation processing

$$\sum_{p\in\mathcal{P}}d_{j,m}^p=q_{j,m},\quad\forall (j,m)\in\mathcal{O}.$$
 (2)

 $q_{j,m}$: duration of (j, m)

Core constraints

Total operation processing

$$\sum_{p\in\mathcal{P}}d_{j,m}^p=q_{j,m},\quad\forall (j,m)\in\mathcal{O}.$$
 (2)

 $q_{j,m}$: duration of (j,m)

Machine disjunction

(def.)
$$c_{j,m} - s_{j',m'} \leqslant \alpha_{j,m}^{j',m'} (1 - u_{j,m}^{j',m'}), \qquad \forall (j,m), (j',m') \in \mathcal{O} : j \neq j'$$
 (3a) $u_{j,m}^{j',m} + u_{j',m}^{j,m} = 1, \qquad \forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j'$ (3b)

 $\alpha_{i,i',m}$: constant

Core constraints

Total operation processing

$$\sum_{j\in\mathcal{D}} d_{j,m}^{\rho} = q_{j,m}, \quad \forall (j,m) \in \mathcal{O}.$$
 (2)

 $q_{j,m}$: duration of (j,m)

Machine disjunction

(def.)
$$c_{j,m} - s_{j',m'} \leqslant \alpha_{j,m}^{j',m'} (1 - u_{j,m}^{j',m'}),$$

$$\forall (j,m), (j',m') \in \mathcal{O} : j \neq j'$$
 (3a)

$$u_{j,m}^{j',m} + u_{j',m}^{j,m} = 1,$$
 $\forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j'$ (3b)

 $\alpha_{i,i',m}$: constant

Precedence

$$c_{j,m} \leqslant s_{j,m'}, \quad \forall j \in \mathcal{J}, \forall m,m' \in \mathcal{M}: (j,m) \prec (j,m').$$

(4)

Variable linking

Variable linking: x and d

$$d_{j,m}^{p} \leqslant \min\{I^{p}, \overline{d}_{j,m}^{p}, q_{j,m}\} \cdot x_{j,m}^{p}, \quad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}.$$
 (5)

 I^p : length of period p

Variable linking

Variable linking: x and d

$$d_{j,m}^{p} \leqslant \min\{I^{p}, \overline{d}_{j,m}^{p}, q_{j,m}\} \cdot x_{j,m}^{p}, \quad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}.$$
 (5)

 I^p : length of period p

Variable linking: x, d and s

$$d_{j,m}^{p} \leqslant t^{p+1} - s_{j,m} + \gamma_{j,m}^{p} \cdot (1 - x_{j,m}^{p}),$$

$$\forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, \tag{6a}$$

$$d_{j,m}^p \leqslant c_{j,m} - t^p \cdot x_{j,m}^p,$$

$$\forall (j, m) \in \mathcal{O}, \forall p \in \mathcal{P}.$$
 (6b)

These constraints guarantee non-preemption.

$$[t^p, t^{p+1}]$$
: period p $\gamma^p_{j,m}$: constant

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,

- For p = 1, (6a) \Rightarrow $x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,

- For p = 1, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,
- For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$

- For p = 1, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,
- For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
- For p = 4, (6b) $\Rightarrow d^4 \leqslant 6 5x^4$,

- For p = 1, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,
- For p = 3, (5) $\Rightarrow d^3 \le 2 \cdot x^3$
- For p = 4, (6b) $\Rightarrow d^4 \leq 6 5x^4$,
- For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,

- For p = 1, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,
- For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
- For p = 4, (6b) $\Rightarrow d^4 \leq 6 5x^4$,
- For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,
- (2) $\Rightarrow \sum_{p \in \mathcal{P}} d^p = q$

- For p = 1, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,
- For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
- For p = 4, (6b) $\Rightarrow d^4 \leq 6 5x^4$,
- For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,
- (2) $\Rightarrow \sum_{p \in \mathcal{P}} d^p = q$

$$d^1 + d^2 + d^3 + d^4 + d^5 = 4$$

- For p = 1, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
- For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 x^2)$,
- For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
- For p = 4, (6b) $\Rightarrow d^4 \le 6 5x^4$,
- For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,
- (2) $\Rightarrow \sum_{p \in \mathcal{P}} d^p = q$

Capacity constraint

- $z_{j,m}^{j',m'} \coloneqq 1 u_{j,m}^{j',m'} u_{j',m'}^{j,m}$ denotes overlap of (j,m) and (j',m').
- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ weighted graph induced by z
 - » \mathcal{V} : operations (j,m) with weights φ_m
 - » \mathcal{E} : operations overlap status
- Overlapping operations form a clique K in \mathcal{G} , of weight $\varphi[K] := \sum_{m \in K} \varphi_m$.
- Total power demand $\varphi_{\mathsf{tot}} > \overline{\varphi} \iff \mathsf{Clique} \; \mathsf{weight} \; \varphi[K] > \overline{\varphi}. \quad (\exists K \subseteq \mathcal{G})$

Capacity constraint

- $z_{j,m}^{j',m'} \coloneqq 1 u_{j,m}^{j',m'} u_{j',m'}^{j,m}$ denotes overlap of (j,m) and (j',m').
- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ weighted graph induced by z
 - » \mathcal{V} : operations (j,m) with weights φ_m
 - » \mathcal{E} : operations overlap status
- Overlapping operations form a clique K in \mathcal{G} , of weight $\varphi[K] := \sum_{m \in K} \varphi_m$.
- Total power demand $\varphi_{\mathsf{tot}} > \overline{\varphi} \iff \mathsf{Clique} \ \mathsf{weight} \ \varphi[K] > \overline{\varphi}. \quad (\exists K \subseteq \mathcal{G})$

Capacity

Forbid violating cliques:

$$\sum_{e \in E(K)} z^e \leqslant |E(K)| - 1, \quad \forall K \subseteq \mathcal{G} : \varphi[K] > \overline{\varphi}$$
(7)

Capacity constraint

- Better: forbid minimally violating cliques.
- Capacity constraint *Knapsack set* $KP^{\varphi,\overline{\varphi}} := \{x \in \{0,1\}^n : \sum_{i=1}^n \varphi_i x_i \leq \overline{\varphi}\}.$
- $C \subseteq \{1, \dots, n\}$ is a minimal cover of $KP^{\varphi, \overline{\varphi}}$ if

 - » $\sum_{i \in C} \varphi_i > \overline{\varphi}$, » $\sum_{i \in C \setminus \{j\}} \varphi_i \leqslant \overline{\varphi}$, $\forall j \in C$.
- \to If K_C induced by minimal cover $C \in C$, then any $H \subseteq K_C$ satisfies $\varphi[H] \leqslant \overline{\varphi}$.

Capacity constraint

- Better: forbid minimally violating cliques.
- Capacity constraint *Knapsack set* $KP^{\varphi,\overline{\varphi}} := \{x \in \{0,1\}^n : \sum_{i=1}^n \varphi_i x_i \leq \overline{\varphi}\}.$
- $C \subseteq \{1, \dots, n\}$ is a minimal cover of $KP^{\varphi, \overline{\varphi}}$ if

 - » $\sum_{i \in C} \varphi_i > \overline{\varphi}$, » $\sum_{i \in C \setminus \{j\}} \varphi_i \leqslant \overline{\varphi}$, $\forall j \in C$.
- \rightarrow If K_C induced by minimal cover $C \in C$, then any $H \subseteq K_C$ satisfies $\varphi[H] \leq \overline{\varphi}$.

Capacity

Forbid minimally violating cliques:

$$\sum_{e \in E(K_C)} z^e \leqslant |E(K_C)| - 1, \quad \forall C \in \mathcal{C}, \forall K_C \subseteq \mathcal{G}$$
(8)

Capacity constraint: numerical example

- 5 overlapping operations (a,b,c,d,e) s.t. $\varphi = [1,3,3,4,5]$ and $\overline{\varphi} = 15$.

$$(7) \Rightarrow \sum_{e \in E(K)} z^e \leq |E(K)| - 1$$

$$\Rightarrow z_a^b + z_a^c + z_a^d + z_a^e + z_b^c + z_b^d + z_b^e + z_c^d + z_c^e + z_d^e \leq 9$$

Capacity constraint

- Better: forbid minimally violating cliques.
- Capacity constraint *Knapsack set* $KP^{\varphi,\overline{\varphi}} := \{x \in \{0,1\}^n : \sum_{j=1}^n \varphi_j x_j \leqslant \overline{\varphi}\}.$
- $C \subseteq \{1, \dots, n\}$ is a minimal cover of $\mathsf{KP}^{\varphi, \overline{\varphi}}$ if

Exponentially many constraints

For each minimal cover, forbid all assignments of jobs to machines in cover, i.e. permutations

» Exponentially growing number of constraints $\sum_{C \in \mathcal{C}} \frac{|\mathcal{J}|!}{(|\mathcal{J}|-|C|)!}$

Capacity

Forbid minimally violating cliques

$$\sum_{e \in E(K_C)} z^e \leqslant |E(K_C)| - 1, \quad \forall C \in \mathcal{C}, \forall K_C \subseteq \mathcal{G}$$
(9)

Capacity constraint

- Better: forbid minimally violating cliques.
- Capacity constraint Knapsack set $KP^{\varphi,\overline{\varphi}} := \{x \in \{0,1\}^n : \sum_{j=1}^n \varphi_j x_j \leqslant \overline{\varphi}\}.$
- $C \subseteq \{1, \dots, n\}$ is a minimal cover of $\mathsf{KP}^{\varphi, \overline{\varphi}}$ if

Exponentially many constraints

For each minimal cover, forbid all assignments of jobs to machines in cover, i.e. permutations

» Exponentially growing number of constraints $\sum_{C \in \mathcal{C}} \frac{|\mathcal{J}|!}{(|\mathcal{J}|-|C|)!} \to$ dynamic separation

Capacity

Forbid minimally violating cliques

$$\sum_{e \in E(K_C)} z^e \leqslant |E(K_C)| - 1, \quad \forall C \in \mathcal{C}, \forall K_C \subseteq \mathcal{G}$$
(9)

Outline

1. Introduction

2. Branch-and-Cut approach

- 2.1 Period-Indexed formulation
- 2.2 Capacity constraint separation
- 2.3 Extension to any valid inequality of the peak power polytope
- 2.4 Valid inequalities
- 3. Computational results
- 4. Conclusion and perspectives

- At integer infeasible nodes
- Sufficient condition: no violated inequalities from minimal covers
- Scan the schedule at event middle-points
 - » Event: start or completion of an operation
 - » Power demand is constant between consecutive events, (e.g.) at middle

- At integer infeasible nodes
- Sufficient condition: no violated inequalities from minimal covers
- Scan the schedule at event middle-points
 - » Event: start or completion of an operation
 - » Power demand is constant between consecutive events, (e.g.) at middle

- At integer infeasible nodes
- Sufficient condition: no violated inequalities from minimal covers
- Scan the schedule at event middle-points
 - » Event: start or completion of an operation
 - » Power demand is constant between consecutive events, (e.g.) at middle

- At integer infeasible nodes
- Sufficient condition: no violated inequalities from minimal covers
- Scan the schedule at event middle-points
 - » Event: start or completion of an operation
 - » Power demand is constant between consecutive events, (e.g.) at middle

Outline

1. Introduction

2. Branch-and-Cut approach

- 2.1 Period-Indexed formulation
- 2.2 Capacity constraint separation
- 2.3 Extension to any valid inequality of the peak power polytope
- 2.4 Valid inequalities
- 3. Computational results
- 4. Conclusion and perspectives

Knapsack extended covers

• For a minimal cover C, an extended cover is

$$E(C) := C \cup \{j \in \mathcal{M} \mid \varphi_j \geqslant \varphi_i, \forall i \in C\}$$

• If $\{j \in \mathcal{M} \mid \varphi_j \geqslant \varphi_i, \forall i \in C\}$ non-empty \Rightarrow extended cover inequality

$$\sum_{j\in E(C)} x_j \leqslant |C| - 1$$

dominates minimal cover inequality.

• n := |E(C)|, r := |C| - 1: pick at most r among the n items.

Clique-forbidding cuts from any cover

- Let n := |E(C)|, r := |C| 1: with $n, r \in \mathbb{N}^*$ and n > r. ‡
 - » In scheduling terms: among n machines, at most r can execute simultaneously.
 - » In graph theory terms: among *n*-vertex graphs, allow at most K_r , i.e. forbid K_{r+1} .
- Idea: extremal graphs
 - » r-extremal graph: maximizes the number of edges among K_{r+1} -free graphs.
 - » $\operatorname{ex}(n,K_r)$: edge count of the *r*-extremal *n*-vertex graph \to valid UB

$$\sum_{e \in E(K_n)} z^e \leqslant \operatorname{ex}(n, K_r), \quad \forall K_n \subseteq \mathcal{G} : K_{r+1}\text{-free}$$
 (10)

» $ex(n, K_r)$ is bounded (from above) by $(1 - \frac{1}{r})\frac{n^2}{2}$ [17].

 $^{^{\}ddagger}n = r + 1$ for minimal covers

Clique-forbidding cuts from any cover

- The overlap graph \mathcal{G} , induced by z, is an interval graph
 - » $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is an *interval graph* if each $v \in \mathcal{V}$ can be assigned an interval on the real line, s.t. two intervals intersect iff the corresponding vertices are adjacent.
- In that case, we obtain a tighter UB:

Extremal interval graphs

The edge count in an n-vertex r-extremal interval graph is

$$\operatorname{ex}(n,K_r) = \binom{n-1}{2} - \binom{n-r+1}{2}.$$
(11)

Proof idea: rearrange intervals in / of right end-point and reason on complement graph.

• Given in Abbott and Katchalski [18] (1979) as $ex(n, K_r) = {r \choose 2} + (n-r)(r-1)$.

- Consider $a^{\mathsf{T}} \mathbf{x} \leq b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)}\alpha^e z^e\leqslant \beta$
- Two cases
 - $a \in \{0,1\}^n$
 - » $a \notin \{0,1\}^n$

- Consider $a^{\mathsf{T}} \mathbf{x} \leq b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(\mathcal{K}_n)}\alpha^ez^e\leqslant\beta$
- Two cases
 - » $a \in \{0,1\}^n \Rightarrow \sum_{e \in \mathcal{E}} z^e \leqslant \mathrm{ex}(n, K_{b+1})$
 - » $a \notin \{0,1\}^n$

- Consider $a^{\mathsf{T}} \mathbf{x} \leq b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(\mathcal{K}_n)}\alpha^ez^e\leqslant\beta$
- Two cases
 - » $a \in \{0,1\}^n \Rightarrow \sum_{e \in \mathcal{E}} z^e \leqslant \exp(n, K_{b+1})$
 - $a \notin \{0,1\}^n \Rightarrow ?$

- Consider $a^{\mathsf{T}} \mathbf{x} \leq b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)}\alpha^e z^e\leqslant \beta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_p)} lpha^e \mathbf{z}^e \leqslant eta$

• Idea :
$$n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$$

i) Duplicate each vertex as many times as its weight

• 3

• Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.

$$\rightarrow$$
 Find a corresponding inequality $\sum\limits_{e\in E(\mathcal{K}_n)}\alpha^e z^e\leqslant \beta$

• Idea :
$$n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$$

i) Duplicate vertices $\Rightarrow \sum_{i} a_{i}$ vertices

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{\mathbf{e}\in E(\mathcal{K}_n)} lpha^{\mathbf{e}} \mathbf{z}^{\mathbf{e}} \leqslant eta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_{i} a_{i}$ vertices
 - ii) Take the (unweighted) complete graph on the resulting set of vertices

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)}\alpha^ez^e\leqslant\beta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_{i} a_{i}$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_i a_i}{2}$ edges

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)} \alpha^e z^e \leqslant \beta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_{i} a_{i}$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_i a_i}{2}$ edges
 - iii) Forbid K_{b+1} : apply previous result on extended covers

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(\mathcal{K}_n)}\alpha^ez^e\leqslant\beta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_i a_i$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_{i} a_{i}}{2}$ edges
 - iii) Forbid $K_{b+1} \Rightarrow \beta = \exp(\binom{\sum_i a_i}{2}, K_{b+1})$

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)} lpha^e z^e \leqslant eta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_i a_i$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_{i} a_{i}}{2}$ edges
 - iii) Forbid $K_{b+1} \Rightarrow \beta = \exp(\binom{\sum_i a_i}{2}, K_{b+1})$
 - iv) Merge redundant edges in inequality

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)} \alpha^e z^e \leqslant \beta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_{i} a_{i}$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_{i} a_{i}}{2}$ edges
 - iii) Forbid $K_{b+1} \Rightarrow \beta = \exp(\binom{\sum_i a_i}{2}, K_{b+1})$
 - iv) Merge redundant $\Rightarrow \alpha^e = a_u a_v$ for any e = (u, v)

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - \rightarrow Find a corresponding inequality $\sum\limits_{e\in E(\mathcal{K}_n)}\alpha^ez^e\leqslant\beta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_{i} a_{i}$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_{i} a_{i}}{2}$ edges
 - iii) Forbid $K_{b+1} \Rightarrow \beta = \exp(\binom{\sum_i a_i}{2}, K_{b+1})$
 - iv) Merge redundant $\Rightarrow \alpha^e = a_u a_v$ for any e = (u, v)
 - v) Account for edges between vertex and its duplicates

- Consider $a^{\mathsf{T}} \mathbf{x} \leqslant b$ valid for $\mathsf{conv}\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)} lpha^e z^e \leqslant eta$
- Idea : $n = \underbrace{1 + \ldots + 1}_{n \text{ times}}$
 - i) Duplicate vertices $\Rightarrow \sum_i a_i$ vertices
 - ii) Complete graph $\Rightarrow \binom{\sum_{i} a_{i}}{2}$ edges
 - iii) Forbid $K_{b+1} \Rightarrow \beta = \exp(\binom{\sum_i a_i}{2}, K_{b+1})$
 - iv) Merge redundant $\Rightarrow \alpha^e = a_u a_v$ for any e = (u, v)
 - v) Count dups $\Rightarrow \beta = \exp\left(\binom{\sum_i a_i}{2}, K_{b+1}\right) \sum_{a_u \geqslant 2} \binom{a_u}{2}$

- Consider $a^{\mathsf{T}} \mathbf{x} \leq b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$. $a \in \mathbb{R}_n^+, b \in \mathbb{R}^+$.
 - ightarrow Find a corresponding inequality $\sum\limits_{e\in E(K_n)} \alpha^e z^e \leqslant \beta$

$$\bullet \begin{cases}
\alpha^e = a_u a_v, & \text{for } e = (u, v) \\
\beta = \exp\left(\binom{\sum_i a_i}{2}, K_{b+1}\right) - \sum_{u \in \mathcal{V}: a_u \geqslant 2} \binom{a_u}{2}
\end{cases}$$

Unified formula.

- Given $\mathsf{KP}^{\varphi,\overline{\varphi}}$ where $[\varphi] = [1,3,3,4,5]$ and $\overline{\varphi} = 10$.
 - » Minimal cover: $\{1,2,3,4\} \Rightarrow \sum_{e \in E(K_{\{1,2,3,4\}})} z^e \leqslant 3$.
 - » Extended cover: $\{1,2,3,4,5\}$ $\Rightarrow \sum_{e \in E(K_{\{1,2,3,4,5\}})} z^e \leqslant 7$.
 - » Lifted cover: a = [0, 1, 1, 1, 2] and $b = 3 \Rightarrow \sum_{(u,v) \in E(K_{\{2,3,4,5\}})} a_u a_v z^{(u,v)} \leqslant 6$
 - **A** If x = [0, 0, 1, 1, 1], then $a^{T}x = 4 > b = 3$,

but
$$\sum_{e \in E(K_{\{\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\}})} \alpha^e z^e = 5 \leqslant 6.$$

A period-indexed MILP formulation

$$\begin{aligned} & \min \quad \sum_{p \in \mathcal{P}} c^p \sum_{m \in M} \varphi_m \sum_{j \in \mathcal{J}} d_{j,m}^p, \\ & [s.t.] \quad \sum_{p \in \mathcal{P}} d_{j,m}^p = q_{j,m}, & \forall (j,m) \in \mathcal{O}, & (12b) \\ & d_{j,m}^p \leqslant \min\{l^p, \overline{d}_{j,m}^p q_{j,m}\} \cdot \chi_{j,m}^p, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (12c) \\ & c_{j,m} - s_{j',m'} \leqslant \alpha_{j,m}^{j',m'} (1 - u_{j,m}^{j',m'}), & \forall (j,m), (j',m') \in \mathcal{O} : j \neq j' & (12d) \\ & u_{j,m}^{j',m'} + u_{j',m}^{j,m} = 1, & \forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j' & (12e) \\ & c_{j,m} \leqslant s_{j,m'}, & \forall j \in \mathcal{J}, \forall m, m' \in \mathcal{M} : (j,m) \prec (j,m') & (12f) \\ & d_{j,m}^p \leqslant t^{p+1} - s_{j,m} + \gamma_{j,m}^p \cdot (1 - x_{j,m}^p), & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (12g) \\ & d_{j,m}^p \leqslant c_{j,m} - t^p \cdot x_{j,m}^p, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (12h) \\ & \sum_{e \in \mathcal{E}(\mathcal{K}_C)} z^e \leqslant |\mathcal{E}(\mathcal{K}_C)| - 1, & \forall C \in \mathcal{C}, \forall \mathcal{K}_C \subseteq \mathcal{G}, & (12i) \\ & x_{j,m}^p \in \{0,1\}, d_{j,m}^p \geqslant 0, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (12j) \\ & u_{j,m'}^{j',m'} \in \{0,1\}, s_{j,m} \geqslant 0, & \forall j,j' \in \mathcal{J} : j < j', \forall m,m' \in \mathcal{M}. & (12k) \end{aligned}$$

A period-indexed MILP formulation

$$\min \sum_{p \in \mathcal{P}} c^p \sum_{m \in M} \varphi_m \sum_{j \in \mathcal{J}} d_{j,m}^p, \tag{12a}$$

[s.t.]
$$\sum_{p \in \mathcal{P}} d_{j,m}^p = q_{j,m}, \qquad \forall (j,m) \in \mathcal{O},$$
 (12b)

$$d_{j,m}^{p} \leqslant \min\{I^{p}, \overline{d}_{j,m}^{p} q_{j,m}\} \cdot x_{j,m}^{p}, \qquad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P},$$

$$(12c)$$

$$(124)$$
Cormulation proporties

Formulation properties

Natural date + disjunction variables / big-M formulation \Rightarrow weak LP relaxations (see e.g. [19]).

$$d_{j,m}^{p} \leqslant t^{p+1} - s_{j,m} + \gamma_{j,m}^{p} \cdot (1 - x_{j,m}^{p}), \qquad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P},$$

$$(12g)$$

$$d_{j,m}^{p} \leqslant c_{j,m} - t^{p} \cdot \mathsf{x}_{j,m}^{p}, \qquad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P},$$

$$\tag{12h}$$

$$\sum_{e \in E(K_C)} z^e \leqslant |E(K_C)| - 1, \qquad \forall C \in \mathcal{C}, \forall K_C \subseteq \mathcal{G},$$
 (12)

$$x_{j,m}^p \in \{0,1\}, d_{j,m}^p \geqslant 0,$$
 $\forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P},$ (12)

$$u_{j,m}^{j',m'} \in \{0,1\}, s_{j,m} \geqslant 0, \qquad \forall j,j' \in \mathcal{J} : j < j', \forall m,m' \in \mathcal{M}.$$
 (12k)

Outline

1. Introduction

2. Branch-and-Cut approach

- 2.1 Period-Indexed formulation
- 2.2 Capacity constraint separation
- 2.3 Extension to any valid inequality of the peak power polytope
- 2.4 Valid inequalities
- 3. Computational results
- 4. Conclusion and perspectives

Precedence inequalities

No processing of predecessors after current interval*

$$\sum_{p'=p+1}^{|\mathcal{P}|} d_{j,m}^{p'} \leqslant A_{j,m}^{p} (1 - x_{j,m'}^{p}), \quad \forall (j,m) \prec (j,m'), \forall p \leqslant |\mathcal{P}| - 1.$$
 (13)

^{*}A similar inequality holds for successors

Non-overlap inequalities

 $m \in \mathcal{M}$

• Same-machine (14a) and same-job (14b) operations non-overlap

$$\sum_{j \in \mathcal{J}} d^{p}_{j,m} \leqslant l^{p}, \qquad \forall m \in \mathcal{M}, \forall p \in \mathcal{P},$$

$$\sum_{j \in \mathcal{J}} d^{p}_{j,m} \leqslant l^{p}, \qquad \forall j \in \mathcal{J}, \forall p \in \mathcal{P}.$$
(14a)

Capacitated non-overlap inequalities

• The processing on a machine of power φ on a period \equiv item of weight φ to pack

$$\sum_{m \in \mathcal{M}} \varphi_m \sum_{j \in \mathcal{J}} d_{j,m}^p \leqslant \overline{\varphi} \cdot I^p, \quad \forall p \in \mathcal{P}.$$
 (15)

 $D_m^p := \sum_{i \in \mathcal{J}} d_{i,m}^p$: total processing on m.

Capacitated non-overlap inequalities

• The processing on a machine of power φ on a period \equiv item of weight φ to pack

$$\sum_{m \in \mathcal{M}} \varphi_m \sum_{j \in \mathcal{J}} d_{j,m}^p \leqslant \overline{\varphi} \cdot I^p, \quad \forall p \in \mathcal{P}.$$
 (15)

 $D_m^p := \sum_{j \in \mathcal{J}} d_{j,m}^p$: total processing on m.

Capacitated non-overlap inequalities

• If $a^{\mathsf{T}} \mathbf{x} \leq b$ valid for conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$ then

$$\sum_{m \in \mathcal{M}} a_m \sum_{j \in \mathcal{J}} d^p_{j,m} \leqslant b \cdot I^p, \quad \forall p \in \mathcal{P}.$$
 (15)

 $D_m^p := \sum_{i \in \mathcal{J}} d_{i,m}^p$: total processing on m.

Other inequalities

- Lifted flow cover inequalities by considering $\overline{E}_m^p := \varphi_m \sum_j d_{j,m}^p / I^p$ and X_m^p .
- If integer input data, then integer processing duration variables*

$$x_{j,m}^{p} \leqslant d_{j,m}^{p}, \quad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}.$$
 (16)

Bounds on number of processing intervals **

$$\lceil \frac{q_{j,m}}{\max_{p} I^{p}} \rceil \leqslant \sum_{p \in \mathcal{P}} x_{j,m}^{p} \leqslant \lfloor \frac{q_{j,m}}{\min_{p} I^{p}} \rfloor + 2, \quad \forall (j,m) \in \mathcal{O}.$$
 (17)

 $X_m^p := \text{machine status}$

^{*}better bound propagation with IB cuts

^{**}similar to cont. bin-packing relaxation

Outline

- 1. Introduction
- 2. Branch-and-Cut approach
- 3. Computational results
- 4. Conclusion and perspectives

Outline

- 1. Introduction
- 2. Branch-and-Cut approach
- 3. Computational results
 - 3.1 Valid inequalities and formulation comparison
 - 3.2 Clique-forbidding cuts
- 4. Conclusion and perspectives

Instance features and settings

→ Branch-and-Cut using only minimal covers and valid inequalities.

Instances in Masmoudi et al. [6], based on:

- 2 classic benchmark JSSP instances
 - » ft06 [20] with 6 machines and 6 jobs, $C_{\text{max}} = 56$,
 - » la04 [21] with 5 machines and 10 jobs, $C_{\text{max}} = 590$.
- 3 time horizons $C = \lambda \cdot C_{\mathsf{max}}$ with $\lambda \in \{1.0, 1.1, 1.2\}$,
- 2 Peak power limits $\overline{\varphi} = \alpha \sum_{m \in \mathcal{M}} \varphi_m$ with $\alpha \in \{0.7, 0.9\}$,
- 5 sets of power values φ from $\mathcal{U}[5,10]$,
- On-off peak ToU profile [6]
- \Rightarrow 30 small and 30 large instances.

Instance features and settings

→ Branch-and-Cut using only minimal covers and valid inequalities.

Instances in Masmoudi et al. [6], based on:

- 2 classic benchmark JSSP instances
 - » ft06 [20] with 6 machines and 6 jobs, $C_{\text{max}} = 56$,
 - » la04 [21] with 5 machines and 10 jobs, $C_{\text{max}} = 590$.
- 3 time horizons $C = \lambda \cdot C_{\sf max}$ with $\lambda \in \{1.0, 1.1, 1.2\}$,
- 2 Peak power limits $\overline{\varphi} = \alpha \sum_{m \in \mathcal{M}} \varphi_m$ with $\alpha \in \{0.7, 0.9\}$,
- 5 sets of power values φ from $\mathcal{U}[5,10]$,
- On-off peak ToU profile [6]
- \Rightarrow 30 small and 30 large instances.

Gurobi on Intel Xeon Gold 6132 (1 thread, 3600s TL) + Polymake for $conv\{KP^{\varphi,\overline{\varphi}}\}$.

TI: Time-Indexed formulation

B&C₂: basic and capacitated non-overlap inequalities (14a,14b,15)

		T	TI			B&C ₂			$e\left(\frac{B\&C_2}{TI}\right)$
$\dim/\alpha/\lambda$	C	T/(%)	%root bks	#x*/x̄	T/(%)	%root bks	#×*/x̄	#cols	#rows
6×6/0.7/1.0	57	3.3	0.27%	5/5	1.1	0.27%	5/5	0.93	0.79
6×6/0.7/1.2	69	12.4	0.06%	5/5	4.0	0.06%	5/5	0.85	0.71
$6 \times 6 / 0.9 / 1.0$	55	0.3	0.21%	5/5	0.1	0.18%	5/5	0.95	0.81
6×6/0.9/1.2	66	1.0	0.33%	5/5	1.0	0.33%	5/5	0.87	0.72
5×10/0.7/1.0	865	-	0.00%	0/0	89.8	0.00%	5/5	0.10	0.07
5×10/0.7/1.2	1040	2046.2	0.00%	5/5	13.2	0.00%	5/5	0.09	0.07
5×10/0.9/1.0	680	2756.5	0.00%	1/1	49.2	0.00%	5/5	0.12	0.09
5×10/0.9/1.2	820	1671.4/(0.32%)	0.00%	4/5	4.0	0.00%	5/5	0.10	0.08

Table: Comparison of the variant B&C2 and the TI formulation [6]

• Time to optimality/(gap% at TL): B&C2 is faster

TI: Time-Indexed formulation

B&C₂: basic and capacitated non-overlap inequalities (14a,14b,15)

		T	TI			B&C ₂		relative $(\frac{B\&C_2}{TI})$	
$\dim/\alpha/\lambda$	C	T/(%)	%root bks	#x*/x̄	T/(%)	% root bks	#x*/x̄	#cols	#rows
6×6/0.7/1.0	57	3.3	0.27%	5/5	1.1	0.27%	5/5	0.93	0.79
$6 \times 6 / 0.7 / 1.2$	69	12.4	0.06%	5/5	4.0	0.06%	5/5	0.85	0.71
6×6/0.9/1.0	55	0.3	0.21%	5/5	0.1	0.18%	5/5	0.95	0.81
6×6/0.9/1.2	66	1.0	0.33%	5/5	1.0	0.33%	5/5	0.87	0.72
5×10/0.7/1.0	865	-	0.00%	0/0	89.8	0.00%	5/5	0.10	0.07
5×10/0.7/1.2	1040	2046.2	0.00%	5/5	13.2	0.00%	5/5	0.09	0.07
5×10/0.9/1.0	680	2756.5	0.00%	1/1	49.2	0.00%	5/5	0.12	0.09
5×10/0.9/1.2	820	1671.4/(0.32%)	0.00%	4/5	4.0	0.00%	5/5	0.10	0.08

Table: Comparison of the variant B&C₂ and the TI formulation [6]

- Time to optimality/(gap% at TL): B&C2 is faster
- Root relaxation strength: B&C₂ has strong root relaxations

TI: Time-Indexed formulation

B&C₂: basic and capacitated non-overlap inequalities (14a,14b,15)

		T	TI			B&C ₂			relative $(\frac{B\&C_2}{TI})$	
$\dim/\alpha/\lambda$	C	T/(%)	%root bks	#x*/x̄	T/(%)	%root bks	#×*/x̄	#cols	#rows	
6×6/0.7/1.0	57	3.3	0.27%	5/5	1.1	0.27%	5/5	0.93	0.79	
6×6/0.7/1.2	69	12.4	0.06%	5/5	4.0	0.06%	5/5	0.85	0.71	
$6 \times 6 / 0.9 / 1.0$	55	0.3	0.21%	5/5	0.1	0.18%	5/5	0.95	0.81	
6×6/0.9/1.2	66	1.0	0.33%	5/5	1.0	0.33%	5/5	0.87	0.72	
5×10/0.7/1.0	865	-	0.00%	0/0	89.8	0.00%	5/5	0.10	0.07	
5×10/0.7/1.2	1040	2046.2	0.00%	5/5	13.2	0.00%	5/5	0.09	0.07	
5×10/0.9/1.0	680	2756.5	0.00%	1/1	49.2	0.00%	5/5	0.12	0.09	
5×10/0.9/1.2	820	1671.4/(0.32%)	0.00%	4/5	4.0	0.00%	5/5	0.10	0.08	

Table: Comparison of the variant B&C2 and the TI formulation [6]

- Time to optimality/(gap% at TL): B&C2 is faster
- Root relaxation strength: : B&C₂ has strong root relaxations
- Model size: B&C₂ scales better

TI: Time-Indexed formulation

B&C₂: basic and capacitated non-overlap inequalities (14a,14b,15)

		T:	TI			B&C ₂			$e\left(\frac{B\&C_2}{TI}\right)$
$\dim/\alpha/\lambda$	C	T/(%)	%root bks	#x*/x̄	T/(%)	%root bks	#x*/x̄	#cols	#rows
6×6/0.7/1.0	57	3.3	0.27%	5/5	1.1	0.27%	5/5	0.93	0.79
6×6/0.7/1.2	69	12.4	0.06%	5/5	4.0	0.06%	5/5	0.85	0.71
$6 \times 6 / 0.9 / 1.0$	55	0.3	0.21%	5/5	0.1	0.18%	5/5	0.95	0.81
6×6/0.9/1.2	66	1.0	0.33%	5/5	1.0	0.33%	5/5	0.87	0.72
5×10/0.7/1.0	865	-	0.00%	0/0	89.8	0.00%	5/5	0.10	0.07
5×10/0.7/1.2	1040	2046.2	0.00%	5/5	13.2	0.00%	5/5	0.09	0.07
5×10/0.9/1.0	680	2756.5	0.00%	1/1	49.2	0.00%	5/5	0.12	0.09
5×10/0.9/1.2	820	1671.4/(0.32%)	0.00%	4/5	4.0	0.00%	5/5	0.10	0.08

Table: Comparison of the variant B&C₂ and the TI formulation [6]

- Time to optimality/(gap% at TL): B&C₂ is faster
- Root relaxation strength: : B&C₂ has strong root relaxations
- Model size: B&C₂ scales better
- Number of optimal/feasible solutions: : B&C₂ solves all to optimality

Instance features and settings

→ Branch-and-Cut using only minimal covers and valid inequalities.

Extend previous instances with:

- JSSP instances with ~50 operations generated as in Lawrence [21],
- 3 time horizons $C = \lambda \cdot C_{\text{max}}$ with $\lambda \in \{1.05, 1.1, 1.2\}$,
- 2 Peak power limits $\overline{\varphi} = \alpha \sum_{m \in \mathcal{M}} \varphi_m$ with $\alpha \in \{0.6, 0.7\}$,
- 4 sets of power values,
- On-off peak ToU profile [6].
- \Rightarrow 72 instances.

Gurobi on Intel Xeon Gold 6132 (1 thread, 3600s TL) + Polymake for $conv\{KP^{\varphi,\overline{\varphi}}\}$.

Valid inequalities: tree exploration

B&C₂: basic and capacitated non-overlap inequalities

B&Call: all valid inequalities

		B&C ₂			B&C _{all}	
${\tt dim}/\lambda$	Т	#nd	#×*	Т	#nd	#×*
5×10/1.05	82.9	8510	9	125.5	8649	9
5×10/1.1	67.0	5888	9	50.2	2331	10
5×10/1.2	120.4	9385	9	86.2	3145	9
6×8/1.05	66.7	8627	8	33.6	2301	8
$6 \times 8/1.1$	51.0	5152	8	55.1	2760	8
$6 \times 8/1.2$	34.8	3584	8	18.1	1080	8
$7 \times 7/1.05$	385.7	51k	6	330.8	35k	6
$7 \times 7/1.1$	119.4	19k	7	155.8	18k	7
7×7/1.2	60.1	8984	7	54.1	4297	7
all (78)	86.16	9613	71	74.81	4783	72

Table: Comparison with variant including all valid inequalities.

• Time to optimality: B&C_{all} is slightly faster

Valid inequalities: tree exploration

B&C₂: basic and capacitated non-overlap inequalities

B&Call: all valid inequalities

		B&C ₂			$B\&C_{\tt all}$	
${\tt dim}/\lambda$	Т	#nd	#×*	Т	#nd	#×*
5×10/1.05	82.9	8510	9	125.5	8649	9
$5 \times 10/1.1$	67.0	5888	9	50.2	2331	10
$5 \times 10/1.2$	120.4	9385	9	86.2	3145	9
6×8/1.05	66.7	8627	8	33.6	2301	8
$6 \times 8/1.1$	51.0	5152	8	55.1	2760	8
$6 \times 8/1.2$	34.8	3584	8	18.1	1080	8
7×7/1.05	385.7	51k	6	330.8	35k	6
$7 \times 7/1.1$	119.4	19k	7	155.8	18k	7
7×7′/1.2	60.1	8984	7	54.1	4297	7
all (78)	86.16	9613	71	74.81	4783	72

Table: Comparison with variant including all valid inequalities.

- Time to optimality: B&C_{all} is slightly faster
- Number of explored nodes: B&C_{all} explores half the number of nodes

Valid inequalities: tree exploration

B&C2: basic and capacitated non-overlap inequalities

B&Call: all valid inequalities

		B&C ₂			$B\&C_{\tt all}$	
${\tt dim}/\lambda$	Т	#nd	#×*	Т	#nd	#×*
5×10/1.05	82.9	8510	9	125.5	8649	9
$5 \times 10/1.1$	67.0	5888	9	50.2	2331	10
$5 \times 10/1.2$	120.4	9385	9	86.2	3145	9
6×8/1.05	66.7	8627	8	33.6	2301	8
$6 \times 8/1.1$	51.0	5152	8	55.1	2760	8
$6 \times 8/1.2$	34.8	3584	8	18.1	1080	8
$7 \times 7/1.05$	385.7	51k	6	330.8	35k	6
$7 \times 7/1.1$	119.4	19k	7	155.8	18k	7
7×7/1.2	60.1	8984	7	54.1	4297	7
all (78)	86.16	9613	71	74.81	4783	72

Table: Comparison with variant including all valid inequalities.

- Time to optimality: B&C_{all} is slightly faster
- Number of explored nodes: B&Call explores half the number of nodes
- Number of optimal solutions: B&C_{all} solves one more instance to optimality

Outline

- 1. Introduction
- 2. Branch-and-Cut approach
- 3. Computational results
 - 3.1 Valid inequalities and formulation comparison
 - 3.2 Clique-forbidding cuts
- 4. Conclusion and perspectives

Instance features and settings

 \rightarrow B&C_{all} with different clique-forbidding cuts.

New instances with:

- JSSP instances with ∼60 operations generated as in Lawrence [21],
- 3 time horizons $C = \lambda \cdot C_{\text{max}}$ with $\lambda \in \{1.05, 1.1, 1.2\}$,
- 2 Peak power limits $\overline{\varphi} = \alpha \sum_{m \in \mathcal{M}} \varphi_m$ with $\alpha \in \{0.6, 0.7\}$,
- 4 sets of power values $(KP^{\varphi,\overline{\varphi}})$
 - sL: small and large coefficients $a_{\mathcal{I}} \ll a_{\mathcal{J}}$,
 - WSI: weakly super increasing coefficients $a_i|a_{i+1}$,
 - KP3: three distinct coefficients $|\{a\}| = 3$,
 - 1-AS: arithmetic sequence coefficients $a_{i+1} a_i = 1$.
- On-off peak ToU profile [6]
- \Rightarrow 72 instances.

Clique-forbidding cuts

 $B\&C_{mc\, v}$: only minimal cover inequalities

 $B\&C_{mcv+fi}$: minimal cover and FI inequalities

	В	&C _{mcv}		E	8&C _{mcv+fi}		
KP type	FI char.	Т	#×*	#cuts	Т	#×*	#cuts
sL	mcv+lci	242.9	14	577	244.43	14	652
WSI	mcv	415.1	16	190	393.5	16	207
KP3	ext	288.1	12	817	314.9	12	949
1-AS	lci	377.1	15	879	258.25	16	838
all [72]	-	323.7	57	529	297.6	58	571

Table: Comparison with variant including all clique-forbidding inequalities.

• FI inequalities characterizing conv $\{KP^{\varphi,\overline{\varphi}}\}$

Clique-forbidding cuts

 $B\&C_{mcv}$: only minimal cover inequalities

B&C_{mcv+fi}: minimal cover and FI inequalities

	$B\&C_{mcv}$			E	8&C _{mcv+fi}		
KP type	FI char.	Т	#×*	#cuts	Т	#×*	#cuts
sL	mcv+lci	242.9	14	577	244.43	14	652
WSI	mcv	415.1	16	190	393.5	16	207
KP3	ext	288.1	12	817	314.9	12	949
1-AS	lci	377.1	15	879	258.25	16	838
all [72]	-	323.7	57	529	297.6	58	571

Table: Comparison with variant including all clique-forbidding inequalities.

- FI inequalities characterizing conv $\{KP^{\varphi,\overline{\varphi}}\}$
- Time to optimality: B&C_{mcv+fi} is faster on average

Clique-forbidding cuts

 $B\&C_{mcv}$: only minimal cover inequalities

 $B\&C_{mcv+fi}$: minimal cover and FI inequalities

	В	B&C _{mcv}			$B\&C_{mcv+fi}$				
KP type	FI char.	Т	#x*	#cuts	Т	#×*	#cuts		
sL	mcv+lci	242.9	14	577	244.43	14	652		
WSI	mcv	415.1	16	190	393.5	16	207		
KP3	ext	288.1	12	817	314.9	12	949		
1-AS	lci	377.1	15	879	258.25	16	838		
all [72]	-	323.7	57	529	297.6	58	571		

Table: Comparison with variant including all clique-forbidding inequalities.

- FI inequalities characterizing conv $\{\mathsf{KP}^{\varphi,\overline{\varphi}}\}$
- Time to optimality: B&C_{mcv+fi} is faster on average
- Number of optimal solutions: B&C_{mcv+fi} solves one more instance to optimality

Outline

- 1. Introduction
- 2. Branch-and-Cut approach
- 3. Computational results
- 4. Conclusion and perspectives

Conclusions

- A new model the $Jm|P_{max}|TEC$, indexed on the ToU profile periods.
- Peak power constraint separation by forbidding cliques in a B&C algorithm.
 - » using minimal cover inequalities of a knapsack set.
 - » using (any) inequalities describing its polytope.
- Different families of valid inequalities were explored.
- Compared to the SoA Time-Indexed formulation:
 - √ more compact,
 - √ as strong linear relaxations,
 - \checkmark solves all previously unsolved instances and most of the newly proposed ones.

Research perspectives and future work

 \rightarrow Find α^e and β s.t. other cover inequalities are model-defining (\iff).

Research perspectives and future work

- \rightarrow Find α^e and β s.t. other cover inequalities are model-defining (\iff).
- \rightarrow Characterizing hard instances for Period-Indexed (PI) formulations.
- → Studying PI formulations relative to the ToU profile.
- ightarrow Characterizing strong valid inequalities for PI formulations.

Research perspectives and future work

- \rightarrow Find α^e and β s.t. other cover inequalities are model-defining (\iff).
- → Characterizing hard instances for Period-Indexed (PI) formulations.
- → Studying PI formulations relative to the ToU profile.
- → Characterizing strong valid inequalities for PI formulations.
- ightarrow Generalizing to other shop-scheduling problems under ToU pricing.
- \rightarrow Solving the $Jm|P_{max}|TEC$ for any general cost function.

References I

- [1] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and jobshop scheduling. *Mathematics of operations research*, 1(2):117–129, 1976.
- [2] Clean Energy Alliance. Seasonal time-of-use pricing schemes, 2024. URL https://web.archive.org/web/20241202083629/https: //thecleanenergyalliance.org/time-of-use-pricing/.
- [3] R. Graham, E. Lawler, J. Lenstra, and A. Kan. Optimization and approximation in deterministic sequencing and scheduling: A survey. *Annals of Discrete Mathematics*, 5:287–326, 1977.
- [4] Marouane Felloussi, Xavier Delorme, and Paolo Gianessi. Minimizing energy cost in a job-shop scheduling problem under ToU pricing: a new method based on a period-indexed MILP. In *Proceedings of the 14th International Conference on Operations Research and Enterprise Systems ICORES.* INSTICC, SciTePress (to appear), 2025.
- [5] Andreas Bley and Andreas Linß. Propagation and branching strategies for job shop scheduling minimizing the weighted energy consumption. In *International Conference on Operations Research*, pages 573–580. Springer, 2022.

References II

- [6] Oussama Masmoudi, Xavier Delorme, and Paolo Gianessi. Job-shop scheduling problem with energy consideration. *International Journal of Production Economics*, 216:12–22, 10 2019. ISSN 09255273. doi: 10.1016/j.ijpe.2019.03.021.
- [7] Myoung Ju Park and Andy Ham. Energy-aware flexible job shop scheduling under time-of-use pricing. *International Journal of Production Economics*, 248, 6 2022. ISSN 09255273. doi: 10.1016/j.ijpe.2022.108507.
- [8] Enda Jiang and Ling Wang. Multi-objective optimization based on decomposition for flexible job shop scheduling under time-of-use electricity prices. *Knowledge-Based Systems*, 204, 9 2020. ISSN 09507051. doi: 10.1016/j.knosys.2020.106177.
- [9] Minh Hung Ho, Faicel Hnaien, and Frederic Dugardin. Exact method to optimize the total electricity cost in two-machine permutation flow shop scheduling problem under time-of-use tariff. *Computers and Operations Research*, 144, 8 2022. ISSN 03050548. doi: 10.1016/j.cor.2022.105788.
- [10] Mauro Gaggero, Massimo Paolucci, and Roberto Ronco. Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs. *European Journal of Operational Research*, 311:845–866, 12 2023. ISSN 03772217. doi: 10.1016/j.ejor.2023.05.040.

References III

- [11] Ada Che, Shibohua Zhang, and Xueqi Wu. Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs. *Journal of Cleaner Production*, 156:688–697, 7 2017. ISSN 09596526. doi: 10.1016/j.jclepro.2017.04.018.
- [12] Jian Ya Ding, Shiji Song, Rui Zhang, Raymond Chiong, and Cheng Wu. Parallel machine scheduling under time-of-use electricity prices: New models and optimization approaches. *IEEE Transactions on Automation Science and Engineering*, 13:1138–1154, 4 2016. ISSN 15455955. doi: 10.1109/TASE.2015.2495328.
- [13] Zheng Tian and Li Zheng. Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches. *European Journal of Operational Research*, 312:512–524, 1 2024. ISSN 03772217. doi: 10.1016/j.ejor.2023.07.012.
- [14] Junheng Cheng, Feng Chu, Chengbin Chu, and Weili Xia. Bi-objective optimization of single-machine batch scheduling under time-of-use electricity prices. RAIRO - Operations Research, 50:715–732, 10 2016. ISSN 28047303. doi: 10.1051/ro/2015063.
- [15] Baigang Du, Tian Tan, Jun Guo, Yibing Li, and Shunsheng Guo. Energy-cost-aware resource-constrained project scheduling for complex product system with activity splitting and recombining. Expert Systems with Applications, 173:114754, 2021.

References IV

- [16] Margaux Nattaf, Markó Horváth, Tamás Kis, Christian Artigues, and Pierre Lopez. Polyhedral results and valid inequalities for the continuous energy-constrained scheduling problem. *Discrete Applied Mathematics*, 258:188–203, 2019.
- [17] Paul Turán. Eine extremalaufgabe aus der graphentheorie. Mat. Fiz. Lapok, 48(436-452):61 (in Hungarian), 1941.
- [18] Harvey Abbott and Meir Katchalski. A Turán type problem for interval graphs. *Discrete Mathematics*, 25(1):85–88, 1979. doi: 10.1016/0012-365X(79)90155-9.
- [19] David Applegate and William Cook. A computational study of the job-shop scheduling problem. ORSA Journal on computing, 3(2):149–156, 1991. doi: 10.1287/ijoc.3.2.149.
- [20] H Fisher and GL Thompson. Probabilistic learning combinations of local job-shop scheduling rules. Prentice Hall, Englewood Cliffs, New Jersey, pages 225–251, 1963.
- [21] Stephen Lawrence. Resouce constrained project scheduling: An experimental investigation of heuristic scheduling techniques (supplement). Graduate School of Industrial Administration, Carnegie-Mellon University, 1984.

Non-preemption inequalities (1)

No processing on the intervals after operation completion*

$$\sum_{p'=p+1}^{|\mathcal{P}|} d_{j,m}^{p'} \leqslant B_{j,m}^{p} (1 - x_{j,m}^{p} + x_{j,m}^{p+1}), \quad \forall (j,m) \in \mathcal{O}, \forall p \leqslant |\mathcal{P}| - 1.$$

$$1 - x^{3} - x^{4} = 0 \qquad d^{4} + d^{5} + d^{6} + \dots = 0$$

$$(18)$$

^{*}A similar inequality holds for operation start

Non-preemption inequalities (2)

No operation interrupts processing

$$d_{j,m}^{p} \geqslant l^{p}(x_{j,m}^{p_{1}} + x_{j,m}^{p_{2}} - 1), \quad \forall (j,m) \in \mathcal{O}, \forall p_{1} (19)$$

JSSP under ToU pricing:

- No peak power limit constraint,
- Period-Indexed formulation with basic non-overlap inequalities (Pl₂).

JSSP under ToU pricing:

- No peak power limit constraint,
- Period-Indexed formulation with basic non-overlap inequalities (Pl₂).

Subset of instances taken from [6]:

- la04 with 5 machines and 10 jobs, $C_{\text{max}} = 590$.
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

JSSP under ToU pricing:

- No peak power limit constraint,
- Period-Indexed formulation with basic non-overlap inequalities (Pl₂).

Subset of instances taken from [6]:

- la04 with 5 machines and 10 jobs, $C_{\text{max}} = 590$.
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

JSSP under ToU pricing:

- No peak power limit constraint,
- Period-Indexed formulation with basic non-overlap inequalities (Pl₂).

Subset of instances taken from [6]:

- la04 with 5 machines and 10 jobs, $C_{\text{max}} = 590$.
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

JSSP under ToU pricing:

- No peak power limit constraint,
- Period-Indexed formulation with basic non-overlap inequalities (Pl₂).

Subset of instances taken from [6]:

- la04 with 5 machines and 10 jobs, $C_{\text{max}} = 590$.
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

		TI			PI_2	
ToU profile	T/(%)	%root bks	#nd	T/(%)	%root bks	#nd
on-off (2:1)	2564.31	0.0%	28	0.14	0.0%	1
on-off (1:2)	3103.69	0.4%	925	67.89	1.0%	35K
on-off (1:1)	$(0.11\%)^*$	0.1%	407	419.35	0.1%	168K
mid-on-off	2406.81	0.5%	631	84.92	1.6%	12K

Table: Comparison of TI and PI₂ on different ToU profiles.

• Time to optimality/(gap% at TL): sensitivity to profile but PI₂ better

^{*#}opt. = 0

		TI			PI_2	
ToU profile	T/(%)	%root bks	#nd	T/(%)	%root bks	#nd
on-off (2:1)	2564.31	0.0%	28	0.14	0.0%	1
on-off (1:2)	3103.69	0.4%	925	67.89	1.0%	35K
on-off (1:1)	$(0.11\%)^*$	0.1%	407	419.35	0.1%	168K
mid-on-off	2406.81	0.5%	631	84.92	1.6%	12K

Table: Comparison of TI and PI₂ on different ToU profiles.

- Time to optimality/(gap% at TL): sensitivity to profile but Pl₂ better
- Root relaxation strength: minor impact on both

^{*}#opt. = 0

	TI			PI_2		
ToU profile	T/(%)	%root bks	#nd	T/(%)	%root bks	#nd
on-off (2:1)	2564.31	0.0%	28	0.14	0.0%	1
on-off (1:2)	3103.69	0.4%	925	67.89	1.0%	35K
on-off (1:1)	$(0.11\%)^*$	0.1%	407	419.35	0.1%	168K
mid-on-off	2406.81	0.5%	631	84.92	1.6%	12K

Table: Comparison of TI and PI₂ on different ToU profiles.

- Time to optimality/(gap% at TL): sensitivity to profile but Pl₂ better
- Root relaxation strength: minor impact on both
- Number of explored nodes: more time spent per node

^{*}#opt. = 0

Figure: UB and LB progress on an example instance with on-off (1:1) profile