A LATEX Cheat Sheet for Discrete Math

1 Extending LATEX

\newcommand{\mycmd}[1]{#1}}
\operatorname*{myop}(x)

2 Basics

```
a, \mathbf{a}
a, \mathbf{a}
\Phi. \Phi
                          \Phi, \boldsymbol{\Phi}
a^{ij}
                          a^{ij}
                          a_{ij}
                          a_{i}^{j}

\frac{1}{k}a_{i}^{3}

\vec{x}

\vec{x}
                          {}_{k}^{1}a_{i}^{j}
                          \bar x
                          \vec x
                          \dot x
                          \tilde{a}
|a| (Sec. 16.2)
                          \lvert a \rvert
[a] (Sec. 16.2)
                          \lceil a \rceil
\lfloor a \rfloor (Sec. 16.2)
                          \lfloor a \rfloor
\overline{ab}
                          \overline{ab}
                          \underline{ab}
ab
\overrightarrow{AB}
                          \overrightarrow{AB}
\overleftarrow{AB}
                          \overleftarrow{AB}
\widetilde{ab}
                          \widetilde{ab}
                          \ \ensuremath{\mbox{underbrace}} \{a_{1} \ \cdots \ a_{k}\}_{k}
       = transpose
                         M^{\top}
\ell_{\perp}
                          \ell_{\bot}
                          \ell_{\parallel}
```

3 Cancellation

\usepackage{cancel}

```
\begin{array}{lll} a\neq b & \text{a \ neq b} \\ a\not\subseteq b & \text{a \ not\ subseteq b} \\ \not ha & \text{not aa} \\ \not ha & \text{not\{aa\}} \\ abc\beta & \text{cancel\{a b c \ beta\}} \\ abc\beta & \text{bcancel\{a b c \ beta\}} \\ abc\beta & \text{cancel\{a b c \ beta\}} \\ abc\beta & \text{cancelto\{\ infty\}\{a b c \ beta\}} \end{array}
```

4 Meta

5 More

 $b \longrightarrow d$

$a \sum_{c}$	\sideset{_{a}^{b}}{_{c}^{d}} \sum
$\overset{ab}{xyz}$	\overset{ab}{xyz}
$\underset{i}{\operatorname{arg min}} \{a_i\}$	$larg \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\arg\max_{a} f(a)$	$\displaystyle \operatorname{\mathbb{Q}}_{a}(a) \ \ f(a)$
$\frac{a}{b}$	\frac{a}{b}
$\frac{a}{b}$	\tfrac{a}{b}
$\sum_{i=0}^{5} i$	$\sum_{i = 0}^{5} i$
$\prod_{i=0}^{5} i$	$\prod_{i = 0}^{5} i$
$\lim_{a\to\infty} x$	<pre>\lim_{a \to \infty} x</pre>
$\frac{\mathrm{d}f(x)}{\mathrm{d}x}$	$\frac{d}{f(x)}{\mathbf{d}} x}$
a + ib	a + \mathrm{i} b
$\int_a^b f(x) \mathrm{d}x$	\int_{a}^{b} \! f(x) \mathrm{d} x
$\left[\frac{\infty}{\infty}\right]$	<pre>\left[\frac{\infty}{\infty}\right]</pre>

6 Format Patterns

$\begin{vmatrix} a & bb \\ cc & d. \end{vmatrix}$	a \begin{tabular}{ 1 } bb \\ cc \end{tabular} d.
$\begin{pmatrix} a+b \\ c+d+e \end{pmatrix}$	{\genfrac(]{0pt}{2} {a+b} {c+d+e} }
$a = \begin{cases} 1, & n \text{ is odd,} \\ 0, & \text{otherwise.} \end{cases}$	<pre>a = \begin{cases} 1, & n \text{ is odd}, \\ 0, & \text{otherwise}.</pre>
$\sum_{\substack{k \in \mathbb{Z} \\ 7 < k \\ k \leq 4}} a_k.$	<pre>\end{cases} \sum_{ \substack{ k \in \hSoZ\\ 7 < k \\ k \leq 4 } } a_{k}.</pre>

$$n! = \underbrace{1 \cdot 2 \cdot \ldots \cdot n}_{n}$$

$$n! = \underbrace{\text{\underbrace}\{}_{1}$$

$$\text{\underbrace}\{$$

$$1} \\ \text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$1} \\ \text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\}\}$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\}\}$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\}\}$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\{$$

$$\text{\underbrace}\}$$

$$\text{\underbrace}\{$$
 \underbrace}\ \underbrace\underbrace}\ \underbrace}\ \underbrace\underbrace}\ \under

7 Equations

1 + (2 + 3) = 1 + 5 $= 6$ $= 12/2.$	\begin{align*} 1 + (2 + 3) & = 1 + 5\\ & = 6\\ & = 12/2. \end{align*}
$\left.\frac{x^2}{3}\right _0^1$	\left. \frac{x^{2}}{3} \right _{0}^{1}

8 Spaces in Math mode

```
      aa
      a\a! negative

      aa
      a\a thin

      aa
      a\: a medium

      aa
      a\; a thick

      aa
      a\ a?

      aa
      a\quad a

      aaquad aaqquad aaqqqaad aaqqqaad aaqqqaa
```

9 Dots

10 Matrices

11 Logic

$p \implies q$	p \implies q
$p \iff q$	p \impliedby q
$p \iff q$	p \iff q
\overline{p}	\overline{p}
$\neg p$	\neg p
$p \wedge q$	p \land q
$p \lor q$	p \lor q
$p \oplus q$	p \oplus q
$p \rightarrow q$	p \rightarrow q
$p \leftrightarrow q$	p \leftrightarrow q
$p \equiv q$	p \equiv q
$p \longrightarrow q$	p \longrightarrow q
$p \longleftrightarrow q$	p \longleftrightarrow q
$\forall x \in A \ P(x)$	$\int A \ A \ P(x)$
$\forall x \in A \ P(x)$	\not \forall x \in A \ $P(x)$
$\exists x \in A \ P(x)$	\exists x \in A \ $P(x)$
$\not\exists x \in A \ P(x)$	\not \exists x \in A \ $P(x)$

12 Set Theory

v	
Ø	\emptyset
$x \in A$	x \in A
$x \notin A$	x \notin A
$\{x,y\}$	\{ x, y \}
$\{x \mid P(x)\}$	\{ x \mid P(x) \}
$A \subset B$	A \subset B
$A \not\subset B$	A \not\subset B
$A \subseteq B$	A \subseteq B
$A \subseteq B$	A \not\subseteq B
2^{A} = power set of A	2^{A}
$\mathcal{P}(A) = \text{power set of } A$	\mathcal{P}(A)
A = cardinality of A (Sec. 16.2)	\lvert A \rvert
$A \cup B$	A \cup B
$A \cap B$	A \cap B
$A \setminus B$ = set difference	A \smallsetminus B
$A \times B$ = Cartesian product	A \times B
(a,b) = ordered pair	(a, b)
\overline{A} = complement of A	\overline{A}
f^{-1} = inverse	f^{-1}
$f \circ g = \text{composition}$	f \circ g
$a \beta b$ = relation	a \beta b
$a \not \beta b$	a \cancel{\beta} b
$M_{\beta} = \text{matrix of } \beta$	aaa
$f: A \to B$ = function	f \colon A \to B
$a \mapsto f(a) = \text{mapped to}$	a \mapsto f(a)
$f \upharpoonright C$ = restriction of f to C	f \upharpoonright C
i_A = identity function of A	i_{A}
B^A = set of all functions	B^{A}
\mathbb{A}	\mathbb{A}
\mathcal{A}	\mathcal{A}

13 Algebraic Structures

$[A, \oplus]$	[A,	\oplus]	
$[A, \oplus, \otimes]$	[A,	\oplus,	\otimes]

14 Number Theory

$\lceil x \rceil$	\hCeil{x}
x	\hPairingFloor{x}
[x]	\hAbs{x}
$x \mid y$	x \mid y
$x \nmid y$	x \nmid y
$x \perp y$	x \bot y
$x \perp y$	x \perp y
$x \operatorname{div} y$	$x \setminus \mathbf{mathrm}\{\mathbf{div}\} \setminus \mathbf{y}$
x rem y	$x \setminus \mathbf{mathrm\{rem\}} \setminus y$
$\log_2 x$	\log_{2} x
$\sum_{i=1}^{n} a_i$	$\sum_{i=1}^{n} a_{i}$
$\prod_{i=1}^{n} a_i$	$\prod_{i=1}^{n} a_{I}$
$\frac{x}{y}$	$frac{x}{y}$
$\sqrt[x]{y}$ $\sqrt[n]{x}$	$\sqrt[n]{x}$
$a \bmod b$	a \bmod b
$0 \equiv 3 \pmod{3}$	<pre>0 \equiv 3 \pmod{3}</pre>
$0 \equiv 3 \mod 3$	0 \equiv 3 \mod{3}
$0 \equiv 3 \ (3)$	0 \equiv 3 \pod{3}

15 Combinatorics

n! = n factorial	n!
$n^{\overline{r}} = n$ to the r rising	$n^{\langle vr} = n^{\langle vr} $
$n^{\underline{r}} = n$ to the r falling	$n^{\displaystyle r}$
$\binom{n}{r} = n$ choose r	$\min\{n\}\{r\}$
$\binom{n}{r} = n \text{ choose } r$	<pre>{n \choose r}</pre>
$\begin{bmatrix} n \\ r \end{bmatrix}$ = Stirling cycle number	<pre>{n \brack r}</pre>
$\binom{n}{r}$ = Stirling subset number	<pre>{n \brace r}</pre>
S(n,k) = Stirling number	S(n, k)
$B_n = \text{The } n \text{th Bell number}$	B {n}

16 h extensions

See the source of this document.

16.1 *h***Tags**

```
aa dd bb. aa \hDed{dd} bb. x \iff y \qquad \text{x \hDeff y} \\ x \triangleq y \qquad \text{x \hDeq y} \\ x \triangleq y \qquad \text{x \hDev y}
```

16.2 *h***Pairs**

x	\hAbs{x}	
$\lceil x \rceil$	\hCeil{x}	
$\lfloor x \rfloor$	\hFloor{x}	
x	\ x \	

16.3 *h*Sets

\mathbb{N} = The natural numbers	\hSoN
\mathbb{N}^+ = Counting numbers	\hSoNp
\mathbb{Z} = The integers	\hSoZ
\mathbb{Z}^+ = positive integers	\hSoZp
\mathbb{Z}^- = negative integers	\hSoZn
$\mathbb{Z}_{\geq 0}$ = nonnegative integers	\hSoZnn
$\mathbb{Z}_{\neq 0}^-$ = nonzero integers	\hSoZnz
$\mathbb{Z}_{\leq 0}$ = nonpositive integers	\hSoZnp
$\mathbb{Q} = $ The rational numbers	\hSoQ
\mathbb{Q}^+ = positive rational numbers	\hSoQp
\mathbb{Q}^- = negative rational numbers	\hSoQn
$\mathbb{Q}_{>0}$ = nonnegative rationals	\hSoQnn
$\mathbb{Q}_{\neq 0}^-$ = nonzero rationals	\hSoQnz
$\mathbb{Q}_{\leq 0}$ = nonpositive rationals	\hSoQnp
$\mathbb{R}=$ The real numbers	\hSoR
\mathbb{R}^+ = positive real numbers	\hSoRp
\mathbb{R}^- = negative real numbers	\hSoRn
$\mathbb{R}_{>0}$ = nonnegative reals	\hSoRnn
$\mathbb{R}_{\neq 0}^-$ = nonzero reals	\hSoRnz
$\mathbb{R}_{\leq 0}$ = nonpositive reals	\hSoRnp
$\mathbb{C} = \text{The complex numbers}$	\hSoC
$\mathbb{C}_{\neq 0}$ = nonzero complex numbers	\hSoCnz
\mathbb{P} = The set of Prime Numbers	\hSoPrimes
$\{T,F\}$	\hSoTruth
$\mathbb{B} = \{0, 1\}$	\hSoBits
2^A	\hSoSubsets{A}
$\mathcal{P}(A) = 2^A =$ The set of all subsets	\hSoPowerSet{A}
B^A =The set of all functions	\hSoFunctions{A}{B}

16.4 Labels References

Definition 18.1 \refdef{def:aa} \tag{Theorem 18.1 \refthm{thm:gauss} \temma 18.2 \reflem{lem:fermat} \text{Sec. 18} \refsec{sec:templates}

17 Math Environments

Axiom	ax
Corollary	cor
Definition	defn
Example	exmp
Exercise	exercise
Equation	align*
Lemma	lem
Notation	notation
Proof	proof
Proposition	prop
Remark	rem
Theorem	thm

18 Environment Usage

Axiom 1. aaa	\begin{ax} aaa \label{ax:one} \end{ax}
Definition 18.1. aaa <i>ddd</i> bbb.	\begin{defn} aaa \hDed{ddd} bbb. \label{def:aa} \end{defn}
Theorem 18.1 (Gauss). aaa	\begin{thm}[Gauss] aaa \label{thm:gauss} \end{thm}
Proof. aaa	\begin{proof} aaa \end{proof}
Lemma 18.2 (Fermat). <i>aaa</i>	<pre>\begin{lem}[Fermat] aaa \label{lem:fermat} \end{lem}</pre>
Corollary 18.3. aaa	<pre>\begin{cor} aaa \end{cor}</pre>
Proposition 18.4. aaa	\begin{prop} aaa \end{prop}
Remark 18.1. aaa	\begin{rem} aaa \end{rem}
Notation. aaa	\begin{notation} aaa \end{notation}

19 xymatrix


```
\xymatrix{
11
\POS[];
[d]**\dir{-};
[];[dr]**\dir{-};
\ar@/^/[r]^{\alpha_{1}}
& 12
\ar@/^/[r]^{\alpha_{7}}
\ar@/^/[1]^{\alpha_{3}}
& 13
\ar@/^/[1]^{\alpha_{9}}
//
\ar@/^/[ur]^{\alpha_{5}}
\ar@/^/[u]^{\alpha_{4}}
\ar@/^/[urr]^{\alpha_{7}}
& \bullet
& 23
\ar@/^/[11]^{\alpha_{8}}
\ar[u]^{9}
\ar[u1]^{9}
```

20 Lists

\usepackage{enumerate}

• aa	\begin{itemize} \item aa
• bb	\item bb \end{itemize}
1. aa	\begin{enumerate}
2. bb	\item da \item bb \end{enumerate}
i) aa	\begin{enumerate}[i)] \item aa
ii) bb	\item aa \item bb \end{enumerate}
a) aa	\begin{enumerate}[a)] \item aa
b) bb	\item aa \item bb \end{enumerate}

21 Math mode

inline: aaa or aaa bbb	inline:
	\$
	aaa
	\$
	or
	\(
	aaa
	\)
	bbb
display: aaa	display:
	\[' '
	aaa
	\]
bbb	bbb

Haluk O. Bingol bingol@boun.edu.tr ©2021
Permission is granted to make and distribute copies of this card Provided the copyright notice and this permission notice are preserved on all copies. https://github.com/halukbingol/zintCheatSheet-LaTeX-DiscreteMath v2021-02-03T15:48:39