Muestreo a partir de una distribución normal Estadística

Santiago Alférez

Febrero de 2020

Contenidos

Propiedades de media y varianza

2 Distribuciones derivadas: t y F

Teorema

Sea X_1,\cdots,X_n una muestra aleatoria de una distribución $n(\mu,\sigma^2)$, y sea $\bar{X}=(1/n)\sum_{i=1}^n X_i$ y $S^2=[1/(n-1)]\sum_{i=1}^n \left(X_i-\bar{X}\right)^2$. Entonces

- $oldsymbol{0}$ $ar{X}$ y S^2 son independientes.
- ② \bar{X} tiene una distribución $n(\mu, \sigma^2/n)$.
- **3** $(n-1)S^2/\sigma^2$ tiene una distribución cuadrada chi con n-1 grados de libertad.

Lema: hechos acerca de la distribución chi cuadrada

Se usa χ^2_p para denotar una variable aleatoria que sigue una distribución chi-cuadrada con p grados de libertad.

- Si Z es una variable aleatoria que sigue una distribución n(0,1), entonces $Z^2 \sim \chi_1^2.$
- Si X_1, \dots, X_n son independientes y $X_i \sim \chi^2_{p_i}$, entonces $X_1 + \dots + X_n$ tiene una distribución chi-cuadrada con $p_1 + \dots + p_n$ grados de libertad.

Notas

- ① Si X_1,\cdots,X_n es una muestra aleatoria de n(0,1), entonces $X_1^2+\cdots+X_n^2$ tiene una distribución chi-cuadrada con n grados de libertad.
- ② Si X_1, \cdots, X_n es una muestra aleatoria de $n(\mu, \sigma^2)$, entonces $\frac{(X_1-\mu)^2}{\sigma^2}+\cdots+\frac{(X_n-\mu)^2}{\sigma^2}$ tiene distribución chi-cuadrada con n grados de libertad.

Ejemplo

Una máquina embotelladora se puede regular para que descargue un promedio de μ onzas por botella. Se ha observado que la cantidad de llenado dispensado por la máquina tiene una variación de $\sigma^2=2.$ Una muestra de n=40 botellas llenas se seleccionan aleatoriamente de la salida de la máquina en un día determinado y se mide la cantidad de onzas (llenadas) para cada una. Encuentre la probabilidad de que la media de la muestra esté dentro de 0.5 de la media verdadera μ para esta configuración en particular.

Lema

Sea $X_j \sim n\left(\mu_j, \sigma_j^2\right), j=1,\cdots,n$, independientes. Para unas constantes a_{ij} y b_{rj} $(j=1,\cdots,n;\ i=1,\cdots,k;\ r=1,\cdots,m)$, donde $k+m\leq n$, se define

$$U_i = \sum_{j=1}^n a_{ij} X_j; \ i = 1, \dots, k, \ \mathsf{y} \ V_r = \sum_{j=1}^n b_{rj} X_j; \ r = 1, \dots, m$$

- U_i , y V_r son independientes si y sólo si $\operatorname{Cov}(U_i, V_r) = 0$. Además, $\operatorname{Cov}(U_i, V_r) = \sum_{i=1}^n a_{ij} b_{rj} \sigma_i^2$
- ② Los vectores (U_1, \cdots, U_k) y (V_1, \cdots, V_m) son independientes si y sólo si U_i es independiente de V_r para todas las parejas $(i, r)(i = 1, \cdots, k; r = 1, \cdots, m)$.

Notas sobre el lema anterior

El resultado del Lema (1) implica que para que dos variables aleatorias normales sean independientes, solo necesitamos mostrar que su covarianza es 0. Supongamos que X_1, \cdots, X_n sea una variable aleatoria de una población $n\left(\mu, \sigma^2\right)$. Deseamos saber la distribución de

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{(\bar{X} - \mu)/\sqrt{\sigma^2/n}}{\sqrt{S^2/\sigma^2}} = \frac{U}{\sqrt{V/(n-1)}}$$

donde $U \sim n(0,1)$ y $V \sim \chi^2_{n-1}$ y, U y V son independientes.

Distribución t de student

Definición

Sea X_1,\cdots,X_n una muestra aleatoria de una población $n(\mu,\sigma^2)$. La cantidad $\frac{\bar{X}-\mu}{S/\sqrt{n}}$ tiene una distribución t de Student con n-1 grados de libertad. De manera equivalente, una variable aleatoria $T\sim t_p$ si tiene un pdf dado por

$$f_T(t) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+t^2/p)^{(p+1)/2}}, \quad -\infty < t < \infty$$

Distribución t de student

Notas sobre la definición anterior

- Si p = 1, obtenemos una distribución Cauchy(0,1). En la configuración de muestra aleatoria, esto sucede cuando n = 2.
- 2 Si $T_p \sim t_p$, entonces solo existen momentos p-1. En particular,

$$E(T_p) = 0, \ p > 1 \text{ y } Var(T_p) = \frac{p}{p-2} \text{ si } p > 2$$

- No existen función generadora de momento para la distribución de Student t.
- En general, si $U \sim n(0,1), V \sim \chi_p^2$ y U y V son independientes, entonces $T_p = U/\sqrt{V/p} \sim t_p$.

Ejemplo (continuando con el anterior

Si se desea encontrar el tamaño de la muestra n de modo que la probabilidad de que la media de la muestra sea menor que 0.5 de la media real μ , sea de al menos 0.95.

Distribución F de Snedecor

Definición

- Sea X_1, \dots, X_n una muestra aleatoria de una población $n(\mu_x, \sigma_x^2)$ y Y_1, \dots, Y_m sea una muestra aleatoria de una población independiente $n(\mu_y, \sigma_y^2)$.
- La variable aleatoria $F=\frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2}$ tiene una distribución F con n-1 (grados de libertad del numerador) y m-1 (grados de libertad del denominador.)
- De manera equivalente, la variable aleatoria F tiene una distribución F con p y q grados de libertad si tiene una pdf

$$f_F(x) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{p}{q}\right)^{p/2} \frac{x^{(p/2)-1}}{[1+(p/q)x]^{(p+q)/2}}, 0 < x < \infty$$

Distribución F de Snedecor

Notas sobre la definición anterior

- En general, si $U \sim \chi_p^2$ y $V \sim \chi_q^2$ y U son independientes, entonces $F_{p,q} = \frac{U/p}{V/q}$ tiene una distribución F con p y q grados de libertad.
- 2 La distribución F se usa comúnmente en los métodos de análisis de varianza.
- Si $X \sim F_{p,q}$ entonces $1/X \sim F_{q,p}$.
- Si $X \sim t_q$, entonces $X^2 \sim F_{1,q}$.