ECE 590D-001, Reinforcement Learning at Scale

Jay Hineman, Ph.D.

Geometric Data Analytics

2020

Mathematical details (restated) [?]

Following Sutton and Barto [?]

- ▶ t = time/iteration, $s, S_t \in S = \text{states}$, $a, A_t \in A(s) = \text{actions at state}$, $r, R_{t+1} \in \mathbb{R} = \text{rewards}$, $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \ldots = \text{trajectory}$
- ▶ transition function = p(s', r'|s, a) := Prob{ $S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a$ }
- ▶ probability fact: $\sum_{s',r} p(s',r|s,a) = 1$ for all $s \in \mathcal{S}, a \in \mathcal{A}(s)$
- return and discounted return:

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$
 and $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$

► ((board work)) from [?]

Mathematical specification of value and action-value (restated)

$$\begin{aligned} q_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a] \\ &= \mathbb{E}_{\pi}[\sum_{k=0} \gamma^{k} R_{(t+1)+k}|S_{t} = s, A_{t} = a], s \in \mathcal{S} \\ &= \text{Value of } s \text{ given the policy } \pi \\ v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[\sum_{k=0} \gamma^{k} R_{(t+1)+k}|S_{t} = s] \\ &= \text{action-value or } q\text{-value of } s, a \text{ given the policy } \pi \end{aligned}$$
 (1)

((board work)) on Bellman equation for v_{π} from [?]

Bellman Equation

▶ Bellman equation for value function:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

- ► Exercise: Convince yourself, perhaps by making a more explicit notation, that (3.14) in [?] is simply an expectation.
- ► Exercise: Determine the Bellman equation for action-value. See Exercise 3.17 [?].

- ➤ Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot of reward over the long run
- Since we can establish a partial ordering of policies we can talk about optimality: A policy π is defined to be better than or equal to a policy π' if its expected return is greater than or equal to that of π' for all states. In other words, $\pi \geq \pi'$ if and only if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- ▶ Denote (maybe non-uniquely) optimal policies by π_* . They share the same value function and action-value function!

optimal state-value function:

$$v_*(s) = \max_{\pi} v_{\pi}(s), ext{ for all } s \in \mathcal{S}$$

optimal action-value function:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a), ext{ for all } s \in \mathcal{S}, a \in \mathcal{A}(s)$$

Said another way:

$$\pi_* = rg \max_{\pi} q_{\pi}(s, a) = rg \max_{\pi} v_{\pi}(s), ext{ for all } s \in \mathcal{S}, a \in \mathcal{A}(s)$$

Important identity:

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

- v_{*} and q_{*} must satisfy Bellman equations. Because they are optimal "value" functions, their consistency condition can be written in a special form without reference to any specific policy.
- Belleman optimality for v_{*}

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s'),s \in \mathcal{S}]$$

▶ Belleman optimality for *q*∗

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a)[r+\gamma v_*(s'),s\in\mathcal{S},a\in\mathcal{A}(f)]$$

- ► For finite MDPs, the Bellman optimality equation has a unique solution.
- Really, Bellman equations are (nonlinear) systems on for each state or state-action pair. That means we can employ solution methods for such equations (fixed point iteration, gradient descent, etc, if the dynamics are known

Optimal Policy and Value function for Grid World, Example 3.8

► In a future homework, we will compute similar value functions for gridworld

Figure: A gridworld with optimal policy and value function, Example 3.8 [?]

Spinning up's Taxonomy

Figure: Non-exhaustive, but nice starting Taxonomy of (deep) RL methods. See also: citations.