		Note
		Gruppe
Name Vorname	,	I
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	1	
	2	
Unterschrift der Kandidatin/des Kandidaten	3	
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik	4	
Diplomvorprüfung HÖHERE MATHEMATIK II	5	
Analysis 1 für Physiker, Prof. Dr. H. Spohn 5. September 2005, 16:30 – 18:00 Uhr	6	
Hörsaal: Reihe: Platz:	7	
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben	8	
Bearbeitungszeit: 90 min. Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter	9	
Nur von der Aufsicht auszufüllen:	·	
Hörsaal verlassen von bis	\sum_{i}	
Vorzeitig abgegeben um	\sum	
Besondere Bemerkungen:		
Musterlösung	I	Erstkorrektur

II

Aufgabe 1.				[ca. 6 Punkte]			
(a) Sei $(x_n)_{n\in\mathbb{N}}$ eine reellwertige monotone Folge. Entscheiden Sie, ob die folgenden Aussagen zutreffen:							
	richtig	falsch					
		\mathbf{X}	(x_n) be	esitzt mindestens einen Häufungswert in $\mathbb R$.			
	\mathbf{X}		Falls d	ie Folge (x_n) beschränkt ist, besitzt sie einen Grenzwert.			
	\mathbf{X}		Jeder reelle Grenzwert von (x_n) ist zugleich ein Häufungswert.				
	\mathbf{X}		Ist (x_n) unbeschränkt, so konvergiert $(\frac{1}{x_n})$ gegen 0.				
(b) Sei $f:[0,1]\to\mathbb{R}$ eine differenzierbare Funktion mit $f(0)=f(1)=0$. Entscheiden Sie, ob die folgenden Aussagen zutreffen:							
		richtig	falsch				
		X		f ist beschränkt.			
			\mathbf{X}	f' ist beschränkt.			
			\mathbf{X}	Es gibt einen Punkt $x_0 \in (0,1)$ mit $f(x_0) = 0$.			
		X		Es gibt einen Punkt $x_0 \in (0,1)$ mit $f'(x_0) = 0$.			
(c) Sei (f_n) eine Folge differenzierbarer Funktionen $f_n:[a,b]\to\mathbb{R}$ mit $\lim_{n\to\infty}f_n(x)=f(x)$ für $x\in[a,b]$, und sei $x_0\in[a,b]$. Entscheiden Sie, ob die folgenden Aussagen zutreffen:							
richtig	falsch						
	\mathbf{X}	Wenn	$ f_n(x) <$	$c \in \mathbb{R}$ für alle $x \in [a,b], n \in \mathbb{N}$, so ist $f:[a,b] \to \mathbb{R}$ stetig.			
\mathbf{X}		Wenn $ f_n(x) < c \in \mathbb{R}$ für alle $x \in [a,b], n \in \mathbb{N}$, so ist $f:[a,b] \to \mathbb{R}$ beschränkt.					
X		Wenn $\sup_{x \in [a,b]} f_n(x) - f(x) \to 0$, so ist $\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x)$.					
	X	Wenn	$\sup_{e \in [a,b]} f_n $	$f(x) - f(x) \rightarrow 0$, so ist $\lim_{n \to \infty} \lim_{x \to x_0} f'_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f'_n(x)$.			

Hinweis: Jede Zeile wird mit höchstens einem halben Punkt bewertet.

Aufgabe 2	Konvergenz	(Multiple	Choice)
Auigabe 2.	Konvergenz	(Muniple	Choice

[ca. 5 Punkte]

a) Welchen Wert besitzt die folgende Reihe?

$$\sum_{n=1}^{\infty} \left(\frac{1}{3^n} - \frac{(-1)^n}{2^n} \right) \qquad \qquad \Box \quad \frac{5}{4} \qquad \qquad \Box \quad \frac{7}{8} \qquad \qquad \boxtimes \quad \frac{5}{6} \qquad \qquad \Box \quad \frac{11}{12} \qquad \qquad \Box \quad \frac{13}{6}$$

$$\Box$$
 $\frac{5}{4}$

$$\Box$$
 $\frac{7}{8}$

$$\mathbb{Z}$$
 $\frac{5}{6}$

$$\Box \quad \frac{11}{12}$$

$$\Box \quad \frac{13}{6}$$

b) Wo liegt der Grenzwert der Reihe $\sum_{i=1}^{\infty} \frac{(-1)^n}{(1+\frac{1}{n})^n}$?

$$\square = -\infty$$

$$\square = -\infty \qquad \square \in (-\infty, 0) \qquad \square = 0 \qquad \square \in (0, \infty) \qquad \square = +\infty$$

$$\Box = 0$$

$$\square \in (0, \infty)$$

$$\Box = +\infty$$

c) Wie groß ist der Konvergenzradius der folgenden Potenzreihe?

$$\sum_{n=0}^{\infty} \sqrt{n}^{\sqrt{n}} x^n$$

$$\mathbf{X}$$
 1

$$\square$$
 0 \boxtimes 1 \square e \square $\frac{1}{e}$

d) Für welche $z \in \mathbb{C}$ konvergiert die folgende Reihe absolut? (Mehrere Antworten können zutreffen.)

$$\sum_{n=0}^{\infty} \frac{z^{n^2}}{2^n} \qquad \square \quad z=2i \qquad \square \quad z=1+i \qquad \boxtimes \quad z=1 \qquad \boxtimes \quad z=-i \qquad \boxtimes \quad z=-\frac{1}{2}$$

$$\Box \quad z = 2i$$

$$\Box \quad z = 1 + \epsilon$$

$$X = z$$

$$\mathbf{X}$$
 $z = -i$

$$\mathbf{X} \quad z = -\frac{1}{2}$$

e) Durch welchen Wert ist die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{\cos^2 x - 1}{x^2}$ bei x = 0 stetig fortsetzbar?

$$\mathbf{X} - 1$$

$$\Box$$
 nicht stetig fortsetzbar \Box $\frac{1}{2}$ \Box 2

$$\Box \frac{1}{2}$$

$$\Box$$
 0

Aufgabe 3. HDI [ca. 3 Punkte]

Definieren Sie den Begriff Stammfunktion und formulieren Sie den Fundamentalsatz (Hauptsatz) der Differential- und Integralrechnung aus der Vorlesung.

Für $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}$, heißt $F:D\to\mathbb{R}$ Stammfunktion von f, falls F differenzierbar ist und F'=f gilt.

Der Hauptsatz der Differential- und Integralrechnung besagt:

Ist $f:[a,b]\to\mathbb{R}$ stetig, so gilt für jede Stammfunktion F von f, dass

$$F(b) - F(a) = \int_{a}^{b} f(x)dx.$$

[2]

Aufgabe 4. Konvexität

[ca. 4 Punkte]

Zur Erinnerung: Die Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt konvex, wenn für alle $\alpha \in [0,1]$ und für alle $x,y \in \mathbb{R}$ gilt

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y).$$

Zeigen Sie:

Gilt für die differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$, dass ihr Graph nie unterhalb ihrer Tangenten liegt, so ist f konvex, in Formeln:

$$\forall a, b \in \mathbb{R} : f(b) \ge f(a) + (b-a)f'(a) \implies f \text{ ist konvex.}$$

Hinweis: Setzen Sie $a = (1 - \alpha)x + \alpha y$.

Beweis. Seien $\alpha \in [0,1], x,y \in \mathbb{R}$ beliebig, $a=(1-\alpha)x+\alpha y$. Zu zeigen ist

$$f(a) \le (1 - \alpha)f(x) + \alpha f(y).$$

Nach Voraussetzung gilt

$$f(x) \ge f(a) + (x - a)f'(a)$$
 und $f(y) \ge f(a) + (y - a)f'(a)$,

[2]

also auch

$$(1-\alpha)f(x) + \alpha f(y) \ge f(a) + ((1-\alpha)(x-a) + \alpha(y-a))f'(a) = f(a),$$

[1]

$$da (1 - \alpha)(x - a) + \alpha(y - a) = (1 - \alpha)\alpha(x - y) + \alpha(1 - \alpha)(y - x) = 0.$$
 [1]

Aufgabe 5. Taylorreihe

[ca. 5 Punkte]

Gegeben sei die Funktion $f(x) = \frac{1}{1+x^2}$.

a) Wie lauten die Koeffizienten a_n der Taylorreihe von f mit Entwicklungspunkt $x_0 = 0$?

 \Box $a_n = (-1)^n$ für $n \in \mathbb{N}_0$

$$oxed{\Delta} \quad a_n = rac{i^n + (-i)^n}{2} ext{ für } n \in \mathbb{N}_0$$

$$\Box \quad a_n = \frac{1 + (-1)^n}{2n} \text{ für } n \in \mathbb{N}_0$$

 $\Box \quad a_n = \frac{i^n - i^{-n}}{2} \text{ für } n \in \mathbb{N}_0$

b) Wie groß ist der Konvergenzradius der Reihe $\sum_{n=0}^{\infty} a_n x^n$, mit a_n aus Teilaufgabe a)?

 $\Box \frac{1}{2}$ \boxtimes 1 \Box e \Box 0

c) Wie ergeben sich die Koeffizienten b_n der Taylorreihe $\arctan(x) = \sum_{n>0} b_n x^n$ aus den Koeffizienten a_n aus Teilaufgabe a)?

 \Box $b_n = a_n$

 \Box $b_0 = 0, \ b_n = a_{n-1} \text{ für } n \in \mathbb{N}$

 $\square \quad b_0 = 0, \ b_n = \frac{a_{n-1}}{n-1} \text{ für } n \in \mathbb{N}$

 $\Box \quad b_n = \frac{a_{n+1}}{n+1} \text{ für } n \in \mathbb{N}_0$

Aufgabe 6. Integration

[ca. 6 Punkte]

Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz und bestimmen Sie gegebenenfalls deren Wert.

a)
$$\int_{-1}^{0} \frac{dx}{\sqrt[3]{x+1}}$$

$$\Box \frac{4}{3}$$

b)
$$\int_0^1 dx \, \log x$$

$$\Box$$
 divergent \square -1 \Box -2 \Box $\frac{1}{2}$

c)
$$\int_0^\infty \frac{dx}{\sqrt{\cosh x - 1}}$$

M divergent

$$\Box$$
 1 \Box $\frac{1}{2}$ \Box

a)

$$\int_{-1}^{0} \frac{dx}{\sqrt[3]{x+1}} = \lim_{\epsilon \downarrow 0} \int_{-1+\epsilon}^{0} dx \, (x+1)^{-1/3} = \lim_{\epsilon \downarrow 0} \left[\frac{(x+1)^{2/3}}{2/3} \right]_{-1+\epsilon}^{0} = \lim_{\epsilon \downarrow 0} \frac{3}{2} \left(1 - \epsilon^{2/3} \right) = \frac{3}{2}$$

b)

$$\int_0^1\!dx\,\log x = \lim_{\epsilon\downarrow 0} \int_\epsilon^1\!dx\,1\cdot\log x = \lim_{\epsilon\downarrow 0} \left([x\log x]_\epsilon^1 - \int_\epsilon^1\!dx\right) = \lim_{\epsilon\downarrow 0} \left(-1 + \epsilon - \epsilon\log\epsilon\right) = -1$$

Dabei haben wir benutzt, dass $\lim_{\epsilon \downarrow 0} \epsilon \log \epsilon = 0$ (Regel von de l'Hospital).

c) Aus der cosh-Reihe erhalten wir

$$\cosh x - 1 = \frac{x^2}{2} \left(1 + 2 \sum_{n=1}^{\infty} \frac{x^{2n}}{(2(n+1))!} \right) \le \frac{x^2}{2} \left(2 \cosh x - 1 \right).$$

Daraus folgt

$$\int_0^\infty \frac{dx}{\sqrt{\cosh x - 1}} \ge \int_0^1 \frac{dx}{\sqrt{\cosh x - 1}} \ge \sqrt{2} \int_0^1 \frac{dx}{x\sqrt{2\cosh x - 1}} \ge \sqrt{\frac{2}{2\cosh 1 - 1}} \int_0^1 \frac{dx}{x} = \infty.$$

[2]

[2]

Aufgabe 7. Supremum einer Menge

[ca. 3 Punkte]

Seien $A,B\subseteq\mathbb{R}$ nichtleer und nach oben beschränkt, und sei $A+B=\{a+b\,|\,a\in A,b\in B\}$. Beweisen Sie die Ihnen aus den Übungen bekannte Tatsache, dass

$$\sup (A + B) = \sup A + \sup B.$$

Wir benutzen die Abkürzungen $\alpha = \sup A$ und $\beta = \sup B$. Sei $a \in A$, $b \in B$ beliebig. Da $a \le \alpha$ und $b \le \beta$, folgt $a + b \le \alpha + \beta$, was bedeutet, dass $\alpha + \beta$ eine obere Schranke an A + B ist. [1]

Es bleibt also zu zeigen, dass $\alpha + \beta$ die *kleinste* obere Schranke ist. Die Supremumseigenschaften von α und β liefern aber, dass für $\epsilon/2 > 0$ ein $a_0 \in A$ und ein $b_0 \in B$ existieren, sodass $a_0 > \alpha - \epsilon/2$ und $b_0 > \beta - \epsilon/2$.

Daraus folgt, dass $a_0 + b_0 > (\alpha + \beta) - \epsilon$ und somit die Behauptung. [1]

Aufgabe 8. Inhomogenes Differentialgleichungssystem

[ca. 4 Punkte]

Sei $x: \mathbb{R} \to \mathbb{R}^2$ die Lösung des inhomogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t) + b(t), \quad \text{wobei} \quad A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{und} \quad b(t) = \begin{pmatrix} e^{-t} \\ 0 \\ 0 \end{pmatrix}.$$

a) Berechnen Sie den Propagator e^{tA} . Wie lautet er bei t=1 ?

b) Berechnen Sie die erste Komponente von x(t) zur Zeit t=1 unter der Anfangsbedingung x(0)=(0,0,0) (benutzen Sie die Formel $x(t)=e^{tA}x(0)+\int_0^t\!ds\,e^{(t-s)A}b(s)$).

$$\Box \quad \frac{1}{2} \left(2e + \frac{1}{e} \right) \qquad \boxtimes \quad \frac{1}{2} \left(e - \frac{1}{e} \right) \qquad \Box \quad \frac{1}{2} \left(e - \frac{2}{e} \right) \qquad \Box \quad \frac{1}{2} \left(e + \frac{1}{e} \right)$$

a) Wir zerlegen die Matrix A in eine Summe einer Diagonalen und einer nilpotenten, die miteinander kommutieren

$$A = B + C, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Damit erhalten wir

$$e^{t(B+C)} = e^{tB}e^{tC} = \begin{pmatrix} e^t & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^t \end{pmatrix} \begin{pmatrix} 1 & 0 & 2t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e^t & 0 & 2te^t \\ 0 & 1 & 0 \\ 0 & 0 & e^t \end{pmatrix},$$

wobei wir benutzt haben, dass $e^{tB} = 1 + tB$.

[2]

b) Unter Anwendung der angegebenen Formel finden wir

$$x(t)_1 = e^t \int_0^t ds \, e^{-2s} = \frac{1}{2} e^t (1 - e^{-2t}) = \sinh t$$

An der Stelle t = 1 lautet dies also $\sinh 1 = (e - 1/e)/2$.

[2]

[ca. 4 Punkte]

Aufgabe 9. Homogenes Differentialgleichungssystem Sei $x:\mathbb{R}\to\mathbb{R}^2$ die Lösung des homogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t)$$
, wobei $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$.

Bestimmen Sie die allgemeine Lösung x(t), indem Sie die Eigenwerte und Eigenvektoren von A berechnen.

Das charakteristische Polynom lautet

$$\det(A - \lambda) = \det\begin{pmatrix} 1 - \lambda & 2 \\ 0 & 2 - \lambda \end{pmatrix} = (1 - \lambda)(2 - \lambda),$$

woraus die Eigenwerte $\lambda_1=1$ und $\lambda_2=2$ folgen.

[1]

Die beiden Eigenvektoren bestimmen sich zu

$$0 = (A - \lambda_1)v_1 = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} v_1 \quad \Rightarrow \quad v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$0 = (A - \lambda_2)v_2 = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} v_2 \quad \Rightarrow \quad v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

[2]

Schliesslich lautet die Lösung x(t) folgendermassen.

$$x(t) = c_1 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

[1]