※ 애널리스트 보고서 제목의 정보력 검증: 텍스트 어조를 중심으로

요약	● 애널리스트 보고서 제목에서 추출한 텍스트 어조의 정보력 검증
	● Data: 2009년 ~ 2018년 한국에서 발행된 애널리스트 보고서 자료
	● Purpose: 정보변수와 발표일 주변 5일 간의 누적초과수익률과의 관계를 살펴
	· · ·
	Result:
	- 추천의견 변경, 목표주가 변경, 텍스트 어조에 대해 유의미한 시장반응을 발
	견
	- 특히 제목 텍스트의 어조(tone)는 다른 정보 변수들을 통제한 후에도 유의미
	한 시장 반응 발견
	- 부정적 어조의 정보력이 더 큼↑
	- 소규모 기업, 애널리스트 수가 ↓인 기업 = 정보효과 ↑
	- 어조의 정보력을 증권사 및 애널리스트의 특성에 따라 구분했을 때 증권사의
	특성은 유의미한 반면, 애널리스트 특성은 유의미한 결과 X
주제어	애널리스트 보고서, 추천의견, 목표주가, 이익예측치, 텍스트 분석, 어조
자료	● 애널리스트 보고서: FnGuide의 DataGuide를 통해서 추출
	- 유가증권과 코스닥 시장 포함
	- 애널리스트 자료를 1년과 분기별 예측기준으로 제공 -> 1년 예측기준 자료
	사용
	- 2009 ~2018년 총 <mark>74,548</mark> 개의 관측치
	● 보고서 어조를 긍정어와 부정어 목록을 사용하여 측정
	● 주가 자료: FnGuide의 DataGuide를 통해서 추출
	- 주가 자료를 통해 보고서의 정보력을 검증
	● 기업의 특성변수: FnGuide의 DataGuide를 통해서 추출
	- 통제변수로 사용 - ex) 기업의 시가총액, 자기자본의 장부가치, 산업분류
변수	● 애널리스트 보고서에서 정보력을 가지고 있는 변수로 4가지 고려
	1) 추천의견
	① 매도 = 1
	② 비중축소 = 2
	③ 중립 = 3
	④ 매수 = 4
	⑤ 적극매수 = 5
	** 추천 투자등급은 증권사마다 상이하지만, 이원홈, 최수미, 김동순, 엄승섭
	의 분류방식을 그대로 사용
	** 추천변경(ΔRECOMM) = 추천의견값 – 이전보고서의 추천의견값
	ex) 2 = 추천의견이 2단계 ↑, -2 = 추천의견이 2단계 ↓

- (목표주가 이전 보고서의 목표주가)
- 2) 목표주가의 변화율 (ΔTPRC) = OI전 목표주가
- 3) 이익예측치 (ΔEPS)
- 4) 텍스트 분석을 통한 어조 변수(TONE)
- Tone = 긍정어 177개, 부정어 180개의 목록을 토대로, 애널리스트 보고서 제목의 (긍정어수 합계 부정어수 합계)
- 누적초과수익률을 통해 애널리스트 보고서 정보에 대한 시장반응을 측정
- CAR(-2,2) = 발표일자를 포함한 5일 동안의 누적초과수익률(CAR, cumulative abnormal return)
- 초과수익률(AR, abnormal return) = 개별 기업의 수익률 당일의 시장수익률
- 요약: 애널리스트 보고서의 정보변수 4개와 CAR(-2,2)의 관계를 통해 시장반응 검증 → 어떤 정보를 투자자들이 가장 유의미하게 인식하는지 파악

요약통계량

- 애널리스트의 추천의견이 낙관적인 쪽으로 치우쳐저 있음
 - 매도 = 17건(0.02%), 비중축소 = 104건(0.14%), 매수 = 53,132(71.27%)
- 미국과 비교했을 때, 한국 애널리스트의 매도의견이 더욱 희소

	매도	비중축소	중립	매수	적극매수	의견 없음	결측치	총계
리포트수	17	104	8,130	53,132	419	9,875	2,871	74,548
(%)	0.02	0.14	10.91	71.27	0.56	13.25	3.85	100
ΔRECOMM								
전체	15	100	6,734	39,735	280	_	_	46,864
-3	7	1	0	0	0			8
-2	5	23	4	0	0			32
-1	0	36	2,710	170	0			2.916
0	3	40	4,004	37,406	154			41,607
1	0		15	2,137	122			2,274
2	0		1	18	4			23
3	0	0	0	4	0			4
ΔTPRC								
관측치	15	74	5,292	39,346	280	2	109	45,118
평균	-0.196	-0.234	-0.092	0.069	0.225	-0.370	0.026	0.050
ΔEPS					215		-	
관측치	9	60	4,204	25,966	215	1,858	378	32,690
평균	0.060	-0.315	-0.142	0.035	0.167	0.067	0.018	0.014
TONE								
관측치	17	93	6,930	48,735	377	9,855	2,801	68,808
평균	-0.235	-0.054	0.083	0.184	0.143	0.192	0.165	0.173
패널 B: 대상	기업		· ·		· ·			· ·
		관측수	평균	표준편차	1사분	위 중	간값	3사분위
애널리스트수		8,420	6.09	6.66		1	3	8
기업규모(10호	(원)	7,317	1,521	8,193	8	7	204	662

- 추천의견등급↑ → 목표주가 변화율 ↑, 이익예측치 변화율 ↑, 어조도 긍정적 으로 ↑

7,317 1.154 3.302 0.509 0.870 1.374

- TONE 변수 = 애널리스트 보고서 제목의 (긍정어 수 합계 부정어 수 합계)
- TONE의 최솟값 = -3

B/M

: 긍정어는 없고 부정어만 3개 나오는 경우가 대부분

- : 긍정어와 부정어 수가 함께 나오기 보다는 한쪽으로 쏠려있는 경향 有
- TONE 최댓값 = 5
- TONE의 분포: (TONE = 1)은 70.54%, (TONE = 0)은 17.67%, (TONE = -1) 은 7.54%

● 변수들 간의 상관관계

	CAR(-2,2)	Δ RECOMM	ΔTPRC	ΔEPS	TONE
CAR(-2,2)		0.059	0.058	0.024	0.017
ΔRECOMM	0.053		0.262	0.053	0.033
ΔTPRC	0.050	0.265		0.255	0.037
ΔEPS	0.040	0.064	0.328		0.027
TONE	0.017	0.032	0.053	0.046	

실증분석 결과

1. 보고서 발표일 전후의 수익률

** AR(abnormal return, 초과수익률) = (개별 기업의 수익률 - 해당일의 시장 수익률)

 모형	관측수		AR			CAR						
王 %	七十十	AR(-1)	AR(0)	AR(1)	(-6,-1)	(-2,2)	(0,5)	(0,10)				
DOWN_GR	2,825	-0.191 (-3.458)	-0.847 (-12.420)	-0.316 (-6.040)	-0.273 (-2.360)	-1.485 (-11.864)	-1.370 (-10.638)	-1.308 (-8.352)				
UP_GR	2,227	0.373 (6.091)	0.379 (5.695)	0.132 (2.543)	0.772 (6.481)	0.977 (7.549)	0.580 (4.562)	0.654 (4.088)				
$\Delta \mathrm{TPRC}(-)$	14,485	0.040 (1.743)	-0.184 (-6.786)	-0.107 (-5.392)	-0.039 (-0.811)	-0.307 (-5.992)	-0.302 (-6.036)	-0.202 (-3.293)				
$\Delta \text{TPRC}(+)$	14,472	0.281 (12.064)	0.327 (12.954)	0.053 (2.567) 통계적으로 유의 -0.089	0.933 (19.557)	0.837 (17.009)	0.409 (8.374)	0.434 (7.128)				
$\Delta \mathrm{EPS}(-)$	15,468	0.105 (4.667)	0.022 (0.821)	-0.089 (-4.475)	0.323 (6.896)	0.093 (1.829)	-0.114 (-2.269)	-0.136 (-2.233)				
$\Delta \mathrm{EPS}(+)$	14,769	0.236 (10.288)	0.245 (9.826)	0.022 (1.088)	0.592 (12.362)	0.615 (12.709)	0.314 (6.354)	0.382 (6.166)				
NEG_TONE	4,105	-0.093 (-2.105)	-0.210 (-4.237)	-0.053 (-1.366)	-0.212 (-2.478)	-0.383 (-3.923)	-0.243 (-2.587)	-0.086 (-0.746)				
POS_TONE	12,644	0.249 (9.943)	0.262 (9.317)	0.035 (1.527)	0.701 (13.404)	0.689 (12.632)	0.331 (5.937)	0.425 (6.124)				

● 추천의견

- 추천의견 하향(DOWN_GR) 발표일의 AR(0)은 평균 -0.847%, 추천의견 상향(UP_GR) 발표일은 평균 0.379%의 초과수익률
- CAR(-6, -1)은 하향발표일 전에 -0.273%, 상향발표일 전에 0.772%로 수익률이 발표일 이전에 이미 하향하거나 상향하는 흐름

● 목표주가

- 목표주가 하향(ΔTPRC(-)) 발표일은 평균 -0.184%, 상향(ΔTPRC(+)) 발표일은 평균 0.327%의 초과수익률 -> 둘 다 통계적으로 유의
- CAR(0, 5) = 목표주가 하향 후 6일 동안의 누적수익률은 -0.302%이며, 상향은 0.409%로 조금 더 큼 -> 목표주가 발표의 경우 하향의 영향력은 약하고 상향의 영향이 더 큼

● 이익예측치

- 이익예측치 하향($\Delta \text{EPS}(-)$) 발표일은 평균 0.022%로 예측과 반대이지만 통계적 유의성은 X
- 상향(ΔEPS(+)) 발표일은 평균 0.245%의 초과수익률을 가지며 통계적으로 유

의미

- 이익예측치 하향의 누적초과수익률을 살펴보면, CAR(-2, 2)에서도 양(+)인 초 과수익률이 CAR(0, 5)에서야 음(-)의 수익률로 전환 VS. 상향의 누적초과수익률은 계속해서 양(+)의 값
- 전반적으로 EPS 예측치 발표가 목표주가 정보보다 영향력이 작으며, 상대적으로 상향의 영향력이 하향보다 더 큼

● 보고서의 어조

- 보고서의 어조가 부정적인 발표일(NEG_TONE)은 평균 -0.210%, 긍정적인 발표일(POSG_TONE)은 평균 0.262%의 초과수익률
- 주변일인 전날 AR(-1)과 다음날 AR(1)도 발표일과 동일한 방향
- CAR(-6,-1): 누적초과수익률은 부정적인 발표일 전에 -0.212%, 긍정적인 발표일 전에 0.701%로 수익률이 발표일 이전에 <u>이미</u> 하향하거나 상향하는 흐름
- CAR(0,5): 부정적 보고서 <u>이후</u> 수익률이 하락하고, 긍정적 보고서 이후 수익률은 상승하며 통계적으로도 유의미
- CAR(0,10): 하향의 경우는 5일이 지나면 하락세가 약해지지만, 상향의 경우는 5일 이후에도 상승세가 지속 --> 긍정적 발표일의 영향이 부정적 발표일보다 더 큼

- i) 추천의견 변경의 경우
- : 상향, 하향 다 의미있는 영향 & 하향의 발표일 효과가 큼
- ii) 목표주가, EPS예측치의 경우
- : 상향의 효과가 하향의 효과보다 더 뚜렷
- : EPS예측치의 경우는 하향의 효과가 거의 X
- iii) 어조 변수의 유용성을 발견
- : 긍정적인 어조의 발표일 경우의 수익률의 추세는 <u>추천의견 상향의 경우와 유</u> <u>사</u>
- : 부정적인 어조의 발표일은 목표주가 하향의 경우와 비슷

2. 애널리스 보고서 정보의 주가예측력

$$\begin{split} CAR(-2,2)_i &= \alpha_0 + \alpha_1 \Delta RECOMM_i + \alpha_2 \Delta TPRC_i + \alpha_3 \Delta EPS_i + \alpha_4 TONE_i \\ &+ \alpha_5 Nanalyst_i + \alpha_6 Size_i + \alpha_7 B/M_i + \epsilon_i \end{split}$$

- 종속변수: CAR(-2, 2) = 발표일 전후 2일을 포함한 5일의 누적초과수익률
- 설명변수:
- ΔRECOMM은 추천변경 변수
- ΔTPRC은 목표주가의 변화율
- ΔEPS은 이익예측치 변화율
- TONE은 애널리스트 보고서의 어조
- = (보고서 제목의 긍정어수 합계 부정어 수의 합계)

● 통제변수

- Nanalyst는 해당 연도에 해당 기업에 대해 보고서를 발표한 애널리스트의 수
- 기업규모(Size)는 연말의 주가에 상장주식수를 곱한 값에 로그를 취한 값
- B/M은 자기자본의 장부가치를 연말의 시가총액으로 나눈 값
- 회귀식에는 표기하지 않았지만, 산업효과와 연도효과를 통제하기 위해 산업 및 연도 더미변수를 사용

● 결과표

<丑4>

모형	(1)	(2)	(3)	(4)	(5)	(6)
- X-8	계수	(t-값)	계수	(t- 값)	계수	(t-값)	계수	(t-값)	계수	(t-값)	계수	(t-값)
Intercept	10.168	(4.362)	9.768	(4.033)	11.669	(4.788)	10.335	(4.227)	12.403	(4.895)	10.178	(4.011)
ΔRECOMM	1.298	(11.811)							0.958	(4.840)	1.012	(5.827)
ΔTPRC			1.253	(5.477)					1.297	(4.252)	1.096	(4.849)
ΔEPS					0.230	(1.319)			0.029	(0.148)		
TONE							0.294	(4.239)	0.192	(1.988)	0.232	(3.452)
Nanalyst	0.022	(1.255)	0.014	(0.743)	0.023	(1.354)	0.019	(1.029)	0.006	(0.320)	0.008	(0.398)
Size	-0.386	(-4.194)	-0.366	(-3.808)	-0.454	(-4.681)	-0.396	(-4.093)	-0.466	(-4.579)	-0.375	(-3.700)
B/M	0.283	(1.237)	0.332	(1.456)	0.386	(1.774)	0.323	(1.309)	0.479	(1.989)	0.354	(1.446)
Adj. R ²	0.014		0.016		0.012		0.010		0.027		0.021	
N	43,479		41,621		27,519		39,035		23,445		37,534	
Industry Dummy	Yes											
Year Dummy	Yes											

- 모형 (3)의 ΔEPS만이 통계적 유의성 X --> 회귀계수: 0.230, t-value: 1.319
- 모형 (5)에서 4개의 변수를 모두 사용하였을 때, Δ RECOMM와 Δ TPRC, TONE 은 여전히 통계적으로 유의 VS. Δ EPS는 유의미 X
- 모형 (5)의 관측치는 23,445개=전체 표본의 1/2 <-- ΔEPS 관측 표본 작아서
- 모형 (6)에서는 ΔEPS 변수를 제외
- : Δ RECOMM, Δ TPRC와 TONE 3개 변수 모두 통계적으로 유의미하며, 특히 TONE 변수의 유의성이 강하게 발견

변수들이 내포하는 정보의 상황에 따라 세분한 새로운 변수를 사용하여 분석

$$\begin{split} CAR(-2,2)_i &= \alpha_0 + \alpha_{1A} \textit{UP-GR}_i + \alpha_{1B} \textit{DOWN-GR}_i + \alpha_2 \Delta \textit{TPRC}_i \\ &+ \alpha_{4A} \textit{POS-TONE}_i + \alpha_{4B} \textit{NEG-TONE}_i \\ &+ \alpha_5 \textit{Nanalyst}_i + \alpha_6 \textit{Size}_i + \alpha_7 \textit{B/M}_i + \epsilon_i \end{split}$$

ΔRECOMM (추천변경)

- ΔRECOMM>0일 때 --> 상향(upgrade) UP_GR = 1 ΔRECOMM<0일 때 --> UP_GR = 0
- ΔRECOMM<0일 때 --> 하향(downgrade) DOWN_GR = 1 나머지일 때 --> DOWN_GR = 0

TONE

- TONE>0일 때 --> POS_TONE = 1 나머지일 때 --> POS_TONE = 0
- TONE<0일 때 --> NEG_TONE= 1 나머지일 때 --> NEG_TONE= 0
- 통제 변수(애널리스트 수(Nanalyst)와 기업규모(Size), B/M) 그대로 사용
- ΔEPS 변수는 제외
- 결과표

<표5>

				_								
	(1)	(2	()	(;	3)	(4	1)	(5	j)	(6	i)
모형 -	계수	(t-갋)	계수	(t-갋)	계수	(t-갋)	계수	(t-값)	계수	(t-굷t)	계수	(t-갋)
Intercept	0.377	(1.897)	10.349	(4.468)	0.278	(1.357)	10.288	(4.379)	0.606	(2.965)	10.296	(4,309)
UP_GR	0.594	(3.178)	0.607	(3.401)			통계적	으로 유의 X	0.198	(1.118)	0.211	(1.280)
DOWN_GR	-1.852	(-10.877)	-1.883	(-11.046)					-1.514	(-6.043)	-1.529	(-6.086)
Δ TPRC									1.055	(4.942)	1.074	(5.006)
POS_TONE					0.137	(1.502)	0.163	(1.816)	0.080	(0.843)	0.104	(1.106)
NEG_TONE					-0.531	(-4.614)	-0.577	(-5.416)	-0.491	(-4.350)	-0.542	(-5.188)
Nanaly st			0.023	(1.298)			0.023	(1.285)			0.014	(0.734)
Size			-0.389	(-4.241)			-0.390	(-4.198)			-0.374	(-3.923)
B/M			0.287	(1.259)			0.293	(1.284)			0.330	(1.450)
Adj. R ²	0.009		0.015		0.003		0.010		0.013		0.020	
N	43,608		43,479		43,608		43,479		41,738		41,621	
Industry Dummy	Yes		Yes		Yes		Yes		Yes		Yes	
Year Dummy	Yes		Yes		Yes		Yes		Yes		Yes	

- 모형 (1)에서 UP_GR와 DOWN_GR는 각각 회귀계수 0.594(t-값 = 3.18), -1.852 (t-값 = -10.88)로 모두 통계적으로 유의
- 추천변경 하향의 경우 애널리스트 보고서 발표로 수익률이 -1.85% 정도 하락하며, 상향의 경우는 0.59% 정도 상승
- 애널리스트 하향 추천의견이 상향 의견보다 더 큰 정보력을 가지고 있음
- 모형 (2)에서 통제변수들을 추가한 경우도 결과는 비슷
- 모형 (3)에서 POS_TONE과 NEG_TONE은 각각 회귀계수 0.137(t-값 = 1.50), 0.531 (t-값 = -4.61)
- TONE 변수를 긍정과 부정으로 구분하였을 때, 이 역시 부정의 경우 하락하는 수익률이 더 큼
- 모형 (5)는 추천변경, 어조 변수, 목표주가 변수를 사용
- 모형 (6)은 추천변경, 어조 변수, 목표주가 변수, 통제변수

- 모형 (5)와 (6)의 추천변경 상향(UP_GR)과 긍정적 어조(POS_TONE) 변수는 양(+)의 회귀계수를 가지기는 하지만 통계적 유의성 X
- 반면 추천변경 하향(DOWN_GR)와 부정적 어조(NEG_TONE) 변수는 음(-)의 회 귀계수를 가지며 통계적으로도 유의미
- 애널리스트 보고서의 내용이 <mark>부정적일 때가</mark> 긍정적일 때보다 <u>시장에 미치는</u> 영향력이 큰 비대칭성이 존재함을 보여준다

3. 텍스트 어조에 대한 추가분석

- 지금까지는 애널리스트 보고서의 텍스트 어조가 추천의견 변경이나 목표 주가를 통제한 후에도 나름대로의 정보력을 가지고 있음을 확인
- 여기서는 텍스트 어조의 정보효과를 분석
- 1) 기업에 따라서 보고서 텍스트의 정보효과는 다를 수 있으므로 '기업특성변수'를 사용하여 애널리스트 보고서 텍스트 어조의 정보효과 차이 검증
 - 기업특성 변수: 기업규모 (size = log(기업의 연말 주가 X 상장주식수)), 애 널리스트 수 (기업에 대해 해당 연도 동안 보고서를 발행한 애널리스트의 수)
 - 검증을 위해 TONE 변수와 기업특성변수와의 교차항 추가하여 회귀분석 <표6>

пਐ		(1)	- 모형		(2)
모형	계수	(t-값)	7.4	계수	(t-값)
Intercept	10.343	(4.374)	Intercept	10.290	(4.353)
POS_TONE	3.000	(1.881)	POS_TONE 통계적으로 유명	x 0.340	(1.986)
POS_TONE×Size	-0.100	(-1.858)	POS_TONE×Nanalyst	-0.010	(-1.338)
NEG_TONE	-4.058	(-3.173)	NEG_TONE	-1.149	(-8.303)
NEG_TONE×Size	0.123	(2.677)	NEG_TONE×Nanalyst	0.034	(4.266)
Adj. R ²	0.010		Adj. R ²	0.010	
N	43,479		N	43,479	
Industry Dummy	Yes		Industry Dummy	Yes	
Year Dummy	Yes		Year Dummy	Yes	

- 모형 (1)에는 POS TONE×Size와 NEG TONE×Size 변수 추가
 - : 모형 (1)에서 POS_TONE×Size의 회귀계수는 -0.100(t-값 = -1.86)로 통계 적으로 유의미
 - : 긍정적 어조와 수익률 상승과의 관계가 대규모 기업에서 약해짐
 - : NEG_TONE×Size의 회귀계수는 0.123(t-값 = 2.68)로 통계적으로 유의미
 - : 부정적 어조와 수익률 하락의 관계가 대규모 기업에서 더 약함
- 모형(1)을 통해 대규모 기업보다는 소규모 기업에서 애널리스트 보고서의 정보효과가 더 강하게 나타남을 보여줌
- 모형 (2)는 텍스트 어조 TONE 변수와 애널리스트 수(Nanalyst)와의 교차항을 추가한 결과
- NEG_TONE × Nanalyst의 회귀계수는 0.034(t-값 = 4.27)로 부정적인 어조인 경우만 통계적으로 유의미
- 요약: 어조와 수익률 간의 관계가 <u>규모가 작고</u> <u>애널리스트 수가 적은</u> 기업에서 더 강함 --> 애널리스트의 수가 정보생성과 연관되어 정보 비대칭의 측정치가 됨. 이런 측면에서 애널리스트 수 ↓ -> 정보가치 ↑

- 2) 증권사의 규모가 애널리스트 보고서 정보의 질에 영향을 줄 수 있으므로 연 도별로 해당 증권사의 보고서를 발표한 대상기업의 수와 애널리스트 수 사용
 - (연도별로 해당 증권사의 보고서를 발표한 대상기업의 수)가 상위 50%
 - --> N_Firm = 1 , 아니면 N_Firm = 0
 - (연도별로 해당 증권사의 보고서를 발표한 애널리스트의 수)가 상위 50%
 - --> N_Anal = 1 , 아니면 N_Anal = 0
 - TONE 변수와 N_Firm와의 교차항, TONE 변수와 N_Anal와의 교차항 추가하여 회귀분석

<丑7>

모형 -	(]	()	모형	(2	2)
7.2	계수	(t-값)	工品	계수	(t-값)
Intercept 통계적으로 유	<u>o</u> x10.294	(4.386)	Intercept	10.289	(4.385)
POS_TONE	-0.255	(-1.413)	POS_TONE	-0.078	(-0.511)
POS_TONE×N_Firm	0.571	(3.191)	POS_TONE×N_Anal	0.326	(2.784)
NEG_TONE 통계적으로 유	<u>o</u> x−0.763	(-4.701)	NEG_TONE 통계적으로	. 유의 X0.619	(-2.854)
$NEG_TONE \times N_Firm$	0.220	(1.569)	NEG_TONE×N_Anal	0.050	(0.270)
Adj. R ²	0.010		Adj. R ²	0.010	
N	43,479		N	43,479	
Industry Dummy	Yes		Industry Dummy	Yes	
Year Dummy	Yes		Year Dummy	Yes	

- 두 모형 모두 긍정적인 어조의 교차항이 통계적으로 유의미
- POS_TONE의 회귀계수의 유의성 사라짐
- 긍정적 어조의 영향력의 대부분이 규모가 큰 증권사에서 나옴

3) 애널리스트의 특성에 따른 영향을 고려

- 애널리스트 특성을 반영한 더미변수(Dummy)와 TONE 변수의 교차항을 추가하여 회귀분석

<8莊>

			통계적으	로 유의 X				
모형 -	(1)		(2	2)	(3	3)	(4	()
7.4	계수	(t-값)	계수	(t-값)	계수	(t-값)	계수	(t-값)
Intercept	10.303	(4.369)	10.318	(4.362)	10.290	(4.361)	10.311	(4.380)
POS_TONE	0.233	(2.668)	-0.056	(-0.251)	0.000	(0.000)	0.128	(1.141)
POS_TONE×Dummy	-0.255	(-1.769)	0.253	(1.004)	0.242	(1.222)	0.172	(0.988)
NEG_TONE 통계적으로 유의	x-0.572	(-6.205)	-0.677	(-3.440)	-0.491	(-2.662)	-0.593	(-5.180)
$NEG_TONE \times Dummy$	-0.022	(-0.149)	0.117	(0.583)	-0.137	(-0.658)	0.058	(0.397)
Adj. R ²	0.010		0.010		0.010		0.010	
N	43,479		43,479		43,479		43,479	
Industry Dummy	Yes		Yes		Yes		Yes	
Year Dummy	Yes		Yes		Yes		Yes	

- 모형(1)은

애널리스트가 다루는 기업의 수가 <u>하위</u> 50% --> Dummy = 1 나머지 --> Dummy = 0

- 모형(2)은

표본기간 동안의 보고서를 제출한 경력 연수가 상위 50% --> Dummy = 1

나머지 --> Dummy = 0

- 모형(3)은

증권사를 이직한 경험이 있는 애널리스트 --> Dummy = 1

나머지 --> Dummy = 0

- 모형(4)은

베스트 애널리스트로 선정된 경험이 있으면 --> Dummy = 1

없으면 --> Dummy = 0

- ** 베스트 애널리스트 여보는 한국금융투자협회와 한국거래소가 후원하고 조선일보와 에프앤가이드가 공동으로 선정하는 애널리스트 자료 사용
- 모형 (1)에서 POS_TONE×Dummy의 회귀계수만 -0.255(t-값 = -1.769)로 통계적으로 유의미
- 애널리스트의 특성을 고려하는 것이 유의미한 정보력을 보여주지는 못한다
- 앞에서 증권사의 특성은 긍정적 어조에서 유의미한 역할을 한 것과 대조됨
- 애널리스트들의 텍스트 정보생성에 있어 <mark>증권사 수준</mark>에서는 의미있는 영향 력을 주지만, 애널리스트 개개인의 특성들까지 반영되기는 어려움

4. 강건성 검증

- 수익률에 대한 강건성 검증
- 1) 누적초과수익률(CAR) 대신 보유초과수익률(BHAR, buy-and-hold abnormal return)을 사용

<표9_패널 A>

모형 .	(1)	(2	2)	(3	3)	(4	1)
子 29	계수	(t-값)	계수	(t-값)	계수	(t-값)	계수	(t-값)
Intercept	10.486	(4.423)	9.900	(3.993)	10.429	(4.338)	10.426	(4.261)
UP_GR	0.610	(3.300)					0.191	(1.220)
DOWN_GR	-1.877	(-11.695)					-1.514	(-6.051)
Δ TPRC			1.307	(5.112)			1.131	(4.608)
POS_TONE					0.154	(1.686)	0.094	(0.992)
NEG_TONE					-0.585	(-5.429)	-0.545	(-5.166)
Nanalyst	0.023	(1.258)	0.014	(0.716)	0.023	(1.246)	0.013	(0.707)
Size	-0.393	(-4.184)	-0.371	(-3.755)	-0.395	(-4.141)	-0.379	(-3.864)
B/M	0.283	(1.227)	0.331	(1.436)	0.289	(1.252)	0.330	(1.431)
Adj. R ²	0.014		0.016		0.010		0.021	
N	43,479		41,621		43,479		41,621	
Industry Dummy	Yes		Yes		Yes		Yes	
Year Dummy	Yes		Yes		Yes		Yes	

- 보유초과수익률(BHAR)
- = 해당 종목의 5일 동안의 보유수익률 시장수익률을 사용한 5일 동안의 보 유수익률
- CAR를 사용한 결과와 크게 다르지 않음
- 2) 초과수익률을 구할 때 사용하는 벤치마크로 본문에서는 <u>시장수익률</u>을 사용하였지만, 그 대안으로 DGTW(Daniel, Grinblatt, Titman, and Wermers, 1997) 벤

치마크 수익률을 사용

<표9_패널 B>

모형 -	(1)	(2	2)	(3	3)	(4	1)
7.8	계수	(t-값)	계수	(t-값)	계수	(t-값)	계수	(t-값)
Intercept	10.039	(4.239)	9.440	(3.894)	9.949	(4.140)	9.941	(4.143)
UP_GR	0.570	(3.209)					0.202	(0.996)
DOWN_GR	-1.866	(-11.008)					-1.531	(-6.354)
Δ TPRC			1.242	(6.061)			1.066	(5.747)
POS_TONE					0.167	(2.121)	0.101	(1.307)
NEG_TONE					-0.512	(-4.597)	-0.481	(-4.352)
Nanalyst	0.019	(1.139)	0.010	(0.559)	0.019	(1.129)	0.010	(0.554)
Size	-0.372	(-4.011)	-0.349	(-3.646)	-0.373	(-3.957)	-0.357	(-3.750)
B/M	0.207	(1.464)	0.244	(1.734)	0.213	(1.497)	0.242	(1.725)
Adj. R ²	0.013		0.015		0.008		0.019	
N	43,479		41,621		43,479		41,621	
Industry Dummy	Yes		Yes		Yes		Yes	
Year Dummy	Yes		Yes		Yes		Yes	

- 전반적으로 시장수익률을 벤치마크로 구한 CAR를 사용한 분석 결과와 크게 다르지 않음

3) CAR의 기간을 변경

<표9 패널 C>

모형 -	(1)	(2	2)	(3	3)	(4	.)
五名 -	계수	(t-값)	계수	(t-값)	계수	(t-값)	계수	(t-값)
Intercept	7.075	(4.444)	6.443	(4.153)	6.927	(4.324)	6.784	(4.384)
UP_GR	0.335	(1.817)					0.110	(0.830)
DOWN_GR	-1.502	(-11.452)					-1.244	(-7.446)
Δ TPRC			0.757	(4.675)			0.627	(4.232)
POS_TONE					0.147	(2.372)	0.067	(1.159)
NEG_TONE					-0.270	(-4.106)	-0.243	(-3.895)
Nanalyst	0.019	(1.664)	0.011	(0.897)	0.019	(1.622)	0.011	(0.917)
Size	-0.274	(-4.327)	-0.250	(-3.962)	-0.274	(-4.244)	-0.255	(-4.052)
B/M	0.260	(1.480)	0.284	(1.626)	0.263	(1.486)	0.282	(1.621)
Adj. R ²	0.010		0.009		0.006		0.012	
N	43,487		41,629		43,487		41,629	
Industry Dummy	Yes		Yes		Yes		Yes	
Year Dummy	Yes		Yes		Yes		Yes	

- 발표일 이후 6일 동안의 누적초과수익률, CAR(0, 5)을 검증
- 패널 C의 결과는 본문의 결과와 비슷
- 다음 강건성 검증은 다양한 하위표본을 사용하여 실증분석 결과를 재검토
- 1) 전체 표본기간을 하위기간으로 나눔

<표10_패널A>

	2009~2010년	2011년	2012~2013년	2014년	2015~2017년	2018년
통계조	계수 (t-값)					
POS_ TONE		-0.110 (-1.29)	0.017 (0.09)	-0.150 (-0.67)	0.410 (3.58)	0.237 (1.30)
NEG_ TONE	-0.490 (-1.54)	-0.300 (-0.98)	-0.470 (-2.03)	-0.635 (-2.85)	-0.716 (-3.34)	-1.071 (-3.71)
Adj. R ²	0.004	0.004	0.009	0.016	0.014	0.016
N	6,123	6,835	7,830	3,997	15,625	4,042

- 2009년부터 2018년까지 기간을 시장 상황에 따라 시장수익률이 양(+)인 연도 와 음(-)인 연도로 구분
- 2011년, 2014년, 2018년 = 코스피 지수가 하락한 연도 나머지 = 모두 코스피 지수가 상승한 기간
- <표 5>의 모형 (4)= TONE(POS,NEG)변수와 통제변수를 시행한 결과
- 전반적으로 NEG_TONE이 POS_TONE보다 더 유의미한 결과
- NEG_TONE의 회귀계수는 시장수익률이 음(-)인 기간이 양(+)인 기간보다 더 큼
- 시장상황이 좋은 기간에는 POS_TONE의 영향이 커지고, 시장상황이 좋은 않은 기간에는 NEG_TONE의 영향력이 더 커지는 경향 (?)
- 2) 유가증권시장과 코스닥시장으로 구분

<표10 패널B>

	유가증	·권시장	코스	코스닥시장 _{통계적으로 유의 X}		
	계수	(t-값)	계수	(t-값)		
POS_TONE	0.137	(2.159)	0.245	(0.808)		
NEG_TONE	-0.600	(-4.301)	-0.636	(-3.699)		
Adj. R ²	0.007		0.006			
N	35,998		8,454			

패널 C: 기업 규모에 따른 하위표본 검증

- POS TONE은 유가증권시장에서만 유의미
- NEG_TONE은 두 시장 모두에서 유의미
- NEG_TONE의 회귀계수는 유가증권시장이 -0.600, 코스닥시장이 -0.636으로 큰 차이 X
- 관측수에 있어서는 유가증권시장이 35,998개로 코스닥시장 8,454개 보다 3배 이상 많음
- 3) 기업규모에 따라 하위표본으로 나눔
- <표10_패널C>

	유가증권시장				코스닥시장			
	BIG		SMALL		BIG		SMALL	
	계수	(t-값)	계수	(t-값)	계수	(t-값)	계수	(t-값)
POS_TONE	0.132	(1.900)	0.217	(0.872)	0.374	(1.365)	-0.324	(-0.434)
NEG_TONE	-0.520	(-3.400)	-1.390	(-4.587)	-0.449	(-2.224)	-1.361	(-4.554)
Adj. R ²	0.007		0.009		0.009		0.012	
N	32,627		3,371		7,007	1	1,447	

- 유가증권시장과 코스닥시장으로 구분한 후에 그 안에서 기업규모의 평균이

상위 50% 주식 = BIG

하위 50% 주식 = SMALL

- POS_TONE = 유가증권시장의 대형주(BIG)에서만 유의미
- NEG TONE = 모든 그룹에서 유의미한 값
- 소형주(SMALL)의 NEG_TONE 회귀계수가 대형주(BIG)보다 큼
- **결론** 본 연구는 애널리스트들이 제공하는 다양한 정보들의 상호관계와 정보력에 대한 종합적 분석이 주요 목적
 - 텍스트 정보가 주는 정보력도 추가하여 검증
 - 애널리스트 보고서의 제목을 추출하여 해당 텍스트가 가지는 어조(tone) 변수를 구성
 - FnGuide가 제공하는 DataGuide에서 추출한 2009년부터 2018년까지 약 5만 개의 애널리스트 보고서 자료를 사용
 - 애널리스트 보고서의 정보 변수들을 추천의견, 목표주가, 이익예측치, 텍스트 분석을 통한 어조(tone) 4가지 범주로 분류, 이들 변수들과 애널리스트 보고서 발 표일 이후 5일 간의 누적초과수익률과의 관계를 회귀분석을 통해 검증

● 주요 결과

- 1) 애널리스트 보고서 변수들 중에서 추천의견 변경, 목표주가 변화율과 어조 등 3개 범주의 변수들에 시장이 유의미하게 반응하는 것을 발견, 이익예측치 변화율 변수에 대해서는 유의미 X
- 특히 텍스트 어조 변수는 다른 정보 변수들을 통제한 후에도 유의미한 정보 력
- 어조 변수를 긍정과 부정으로 구분하였을 때 부정적 어조의 정보 효과가 강 하였다
- 2) 텍스트 어조의 정보효과는 기업의 특성에 따라 차이
- 대규모 기업보다는 소규모 기업에서, 애널리스트 수가 많은 기업보다는 애널 리스트 수가 적은 기업에서 어조의 정보 효과가 더 강함
- 3) 텍스트 어조의 정보력을 증권사 및 애널리스트의 특성에 따라 구분
- <u>규모가 큰 증권사</u>가 긍정적 어조에서 유의미한 역할을 하여 증권사의 특성은 유의미
- 애널리스트의 특성을 고려하는 것이 유의미한 정보력 X

질문

- '2. 애널리스 보고서 정보의 주가예측력' 부분에서 TONE 변수의 유의성이 강하게 발견되었다는 것의 근거가 명확히 이해되지 않음
- AR = 수익률 = 개별 기업의 수익률 시장수익률

여기서, 시장수익률은 사업분야별(ex. 은행, 전기전자, ...) 시장주익률을 의미하는 것인지?

- 통계적으로 유의하다고 결정하는 t-value값의 기준은 무엇일까?
- TONE 변수를 (긍정적 단어의 개수 부정적 단어의 개수)로 하고,
- TONE>0일 때 --> POS_TONE = 1, 나머지일 때 --> POS_TONE = 0
- TONE<0일 때 --> NEG_TONE= 1, 나머지일 때 --> NEG_TONE= 0
- TONE 변수를 생성하는 더 좋은 방법은 없을까? 예를 들면, 아래와 같은 TONE의 확률값을 어떻게 이용하면 좋을지??

title	label	neg_prob	neu_prob	pos_prob
Oil-4Q08	[{'label': 'n	0.999363	0.00054	9.75E-05
영업외손실	[{'label': 'n	0.996514	0.000749	0.002737
매각설은	[{'label': 'n	0.865556	0.133345	0.001098
설탕 출고:	[{'label': 'n	0.919116	0.077376	0.003509
3분기 둔호	[{'label': 'n	0.998085	0.001758	0.000157
3Q preview	[{'label': 'n	0.999788)118682	9.34E-05
4Q 실적 부	[{'label': 'n	0.992869	0.005779	0.001352
별도 예상[[{'label': 'n	0.999439	0.000435	0.000126

- 선형회귀분석 말고 비선형 머신러닝 방법을 도입해야하지 않을까?
- 한 단어만 있는 경우는 삭제해야 할까?

| 2012 | 2 네오위즈 | 설상가상(雪上加霜) | [['label': 'neutral', 'score': 0.9815354347229004 | 2010 | 3 DMS | 비상(現上) | [['label': 'negative', 'score': 0.9874237179756165]]