

THE SOUTH AFRICAN MATHEMATICS OLYMPIAD

Senior First Round 2019 Solutions

1. Answer A

$$2^{0} + 3^{1} + 1^{2019} = 1 + 3 + 1 = 5.$$

2. Answer C

There are 60 minutes in an hour, and there are 60 seconds in a minute, so there are $60 \times 60 = 3600$ seconds in an hour. Therefore there are 3600/40 = 90 seconds in one-fortieth of an hour.

3. Answer A

$$3^2 = 9$$
 and $2^3 = 8$, and $9 > 8$.

4. Answer E

$$27\ 000 = 3^3 \times 10^3$$
, so $\sqrt[3]{27\ 000} = 3 \times 10 = 30$.

5. Answer B

In four weeks there are four Mondays. If Harry eats fish on a Monday, he will not eat fish on the following Monday (and vice versa), because the number of days in a week is seven, which is odd. Therefore Harry will eat fish on two of the four Mondays.

6. Answer C

Since digits can be repeated, there are ten choices for each of the three digits, so the number of codes is $10 \times 10 \times 10 = 10^3 = 1000$.

7. Answer E

If the edges of the cube are x m long, then the total area of the six faces is $6x^2$, which equals $216 \,\mathrm{m}^2$. Therefore $x^2 = 216/6 = 36$, so x = 6. Finally, the volume of the cube is $x^3 = 6^3 = 216 \,\mathrm{m}^3$.

8. Answer B

In two hours at 280 km/h, Steve will travel $280 \times 2 = 560$ km. This distance is 70 laps, so the length of each lap is 560/70 = 8 km.

9. Answer D

Suppose the squares have sides of length ℓ . Since point B is four squares to the right of point A, it follows from the x-co-ordinates that $6+4\ell=38$, so $\ell=8$. Next, point C is two squares to the left of and below B, so the co-ordinates of C are $(38-2\ell, 36-2\ell)=(38-16, 36-16)=(22, 20)$.

10. Answer D

again.)

The angles in an equilateral triangle are all 60° , so the other angles between the straight line and the triangles are $180^{\circ} - 60^{\circ} - 75^{\circ} = 45^{\circ}$ and $180^{\circ} - 60^{\circ} - 65^{\circ} = 55^{\circ}$. The third angle in the bottom triangle is therefore $180^{\circ} - 45^{\circ} - 55^{\circ} = 80^{\circ}$. Finally, $x + 60^{\circ} + 80^{\circ} = 180^{\circ}$, so $x = 40^{\circ}$. (Alternatively, using exterior angles, we have $45^{\circ} + 55^{\circ} = x + 60^{\circ}$, giving $x = 40^{\circ}$

11. Answer B

 $(x+y)^5 = 32 = 2^5$, so x+y=2. (This is the only real solution.) Next, $x-y=2^4=16$, and subtracting the equations gives 2y=2-16=-14, so y=-7.

12. Answer C

There are ten multiples of 28 less than 300. The LCM (least common multiple) of 28 and 12 is $84 = 3 \times 28$. It follows that three of the multiples of 28, 3×28 , 6×28 and 9×28 , are also multiples of 12, leaving seven multiples of 28.

13. Answer D

The number of sweets in bag 1 is the difference between the total in all five bags and the number in bags 2, 3, 4 and 5, which is 100 - 43 - 30 = 27.

14. Answer C

For $n \ge 5$, the units digit of n! is zero, because n! is divisible by both 2 and 5. Thus 1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33, which has units digit 3.

15. Answer E

If x is the fourth root of the number, then $x^2 - x = 12$, so (x - 4)(x + 3) = 0, giving x = 4 or x = -3. However, square roots and fourth roots must be positive by definition, so x = 4 and the required number is $4^4 = 256$.

(Alternatively, use trial and error: 16 and 256 are the only options that have integer fourth roots.)

16. Answer E

The lower shaded area can be cut in two and fitted exactly into a 2×2 square, so it has area 4. The upper shaded area is the difference between a 4×4 square and a quarter-circle with radius 4, so its area is $16 - \frac{1}{4}\pi 4^2 = 16 - 4\pi$. The total shaded area is $20 - 4\pi$.

17. Answer D

Since EH = ET = ER, it follows that triangle HTR lies in a semicircle with centre E. Thus $H\widehat{T}R = 90^{\circ}$, and by Pythagoras' therem $TR^2 = HR^2 - HT^2 = 17^2 - 15^2 = 289 - 225 = 64$, so TR = 8.

18. Answer D

Let each child receive one banana; we must then count the possible ways of distributing the remaining three:

Distribution	Number
One child receives all three	4
One child receives two and another child receives one	$4 \times 3 = 12$
Three children receive one each	4

This gives a total of 4 + 12 + 4 = 20 ways of distributing the bananas.

19. Answer C

(We need the inequality $(1+x)^n > 1 + nx$ for n > 1 and x > 0, which simply says that compound interest is greater than simple interest.)

Since $D = (2^6)^{1663} = 2^{9978}$, $A = 2^{10029}$ and $B = (2^5)^{2020} = 2^{10100}$, it is clear that D < A < B. Next,

$$\frac{C}{B} = \frac{1}{32}(1 + \frac{1}{32})^{2019} > \frac{1}{32}(1 + \frac{2019}{32}) = \frac{2051}{1024} > 1$$
, so $C > B$.

(Clearly, E is close to D and is not a candidate for the greatest number. In fact, D < E < A.)

20. Answer B

First, a geometric solution:

Drop a perpendicular from C to the extension of line GB and label it H. Then, determining the side lengths of the three squares adjacent to BC, from their given areas, it follows that $CH = 3\sqrt{3} + \sqrt{3} + 2\sqrt{3} = 6\sqrt{3}$. Triangles AGB and BHC are congruent (\angle , \angle , S). Hence, $GB = 6\sqrt{3}$. This implies that $FB = 6\sqrt{3} - 2\sqrt{3} = 4\sqrt{3}$, since GB = GF + FB. From the similarity between triangles ADE and EFB, we now have $AD = \sqrt{3}$. Thus, the area of the tilted square $AB^2 = AB^2 + AG^2 = 3^2 \times 3 + 6^2 \times 3 = 135$ square units.

Now, an alternative trigonometric solution: Note that all the right-angled triangles in the figure are similar to one another. If α denotes the smallest angle in each triangle, then the bottom right side of the tilted square is $(\sqrt{27} + \sqrt{3} + \sqrt{12}) \sec \alpha = 6\sqrt{3} \sec \alpha$. The bottom left side is $\sqrt{12} \sec \alpha + \sqrt{12} \csc \alpha = 2\sqrt{3}(\sec \alpha + \csc \alpha)$. Thus $2 \sec \alpha = \csc \alpha$, giving $\tan \alpha = \frac{1}{2}$ and $\sec^2 \alpha = \frac{5}{4}$. The area of the tilted square is $(6\sqrt{3} \sec \alpha)^2 = 108 \times \frac{5}{4} = 135$.

