```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import seaborn as sns
import scipy.stats as scp

from google.colab import drive
drive.mount('/content/drive')

    Mounted at /content/drive

import warnings
warnings.filterwarnings("ignore")
```

ДЗ№6: тестируете модель из ДЗ№1 на гомоскедастичность и отсутствие автокорреляции (с помощью подходящих для этого тестов и графического анализа). При необходимости корректируете модель, если обнаружите гетероскедастичность и/или автокорреляцию.

```
data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Эконометрика/Домашнее задание 5
x = data['X']
y = data['Y']
data
```

	year	X	Υ	1
0	2000	9.2	4.762676	
1	2001	8.5	1.042202	
2	2002	8.3	8.643859	
3	2003	8.5	23.079495	
4	2004	8.9	14.970938	
5	2005	8.9	3.694779	

data = data.drop('year', axis = 1)
data.head()

		X			Υ	**	
	0	9.2	4	.76267	76		
	1	8.5	1	.04220)2		
	2	8.3	8	.64385	59		
	3	8.5	23	.07949	95		
	4	8.9	14	.97093	38		
	14	∠U	14	10.3	1	.10004.	
se	et())					

sns.set()
sns.scatterplot(x, y)

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pas warnings.warn(

import statsmodels.api as sm
results = sm.OLS.from_formula("Y ~ X", data = data).fit()

Основная модель регрессии

print(results.summary())

OLS Regression Results

========	=======	.=======			========	======	========
Dep. Variabl	e:		Υ	R-squ	ared:		0.229
Model:		OI	S	Adj.	R-squared:		0.191
Method:		Least Square	es.	F-sta	tistic:		5.947
Date:		Sat, 10 Dec 202	22	Prob	(F-statistic):		0.0242
Time:		01:29:	.7	Log-L	ikelihood:		-74.744
No. Observat	ions:	2	22	AIC:			153.5
Df Residuals	:	2	20	BIC:			155.7
Df Model:			1				
Covariance T	ype:	nonrobus	st				
========	======		-===		=========	======	========
	coef	f std err		t	P> t	[0.025	0.975]
Intercept	48.2294	18.169	2.	654	0.015	10.329	86.130
Χ	-4.9109	2.014	-2.	.439	0.024	-9.112	-0.710
	======		====		========	======	
Omnibus:		0.05			n-Watson:		1.727
Prob(Omnibus):	0.97			e-Bera (JB):		0.065
Skew:		0.03	.6	Prob(JB):		0.968
Kurtosis:		2.73	35	Cond.	No.		103.
========	======				========	======	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe

→

Считаем остатки

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pas warnings.warn(

<matplotlib.axes. subplots.AxesSubplot at 0x7ff1c36008e0>

Как следует из графика, нормального распределения остатков нет

тест ранговой корреляции Спирмена

```
rho, p = scp.spearmanr(x, abs(epsilons))
rho, p
     (0.11309030242269326, 0.6163076095411506)
# тест Глейзера
result = [0, 1, 2, 3, 4, 5]
data_1 = data
data_1.columns = ['y', 'x']
model = ['x', 'np.sqrt(x)', 'np.abs(1/x)', 'np.abs(1 / np.sqrt(x))', 'np.sqrt(x ** 3)']
result[1] = sm.OLS.from formula("np.abs(epsilons) ~ x", data = data 1).fit().tvalues['x']
result[2] = sm.OLS.from_formula("np.abs(epsilons) ~ np.sqrt(x)", data = data_1).fit().tval
result[3] = sm.OLS.from_formula("np.abs(epsilons) ~ np.abs(1/x)", data = data_1).fit().tva
result[4] = sm.OLS.from_formula("np.abs(epsilons) ~ np.abs(1 / np.sqrt(x))", data = data_1
result[5] = sm.OLS.from formula("np.abs(epsilons) ~ np.sqrt(x ** 3)", data = data 1).fit()
for i in range(5):
  print(f'Model {model[i]} t-stats : {np.abs(result[i + 1])}')
print(scp.t.isf(0.05 / 2, 20))
     Model x t-stats : 3.534415069889281
     Model np.sqrt(x) t-stats : 7.2080643450497695
     Model np.abs(1/x) t-stats : 2.61360426639657
     Model np.abs(1 / np.sqrt(x)) t-stats : 3.4610263116630597
     Model np.sqrt(x ** 3) t-stats : 9.193121635057915
     2.085963447265837
```

Из этого критерия следует, что гипотеза НО отвергается, и остатки гетероскедастичны

▼ Робустная ковариационная матрица

```
print(results.get_robustcov_results(cov_type = "HC0").summary2())
```

Results: Ordinary least squares

==========		=======	======	.====:	· =======	======		==
Model:		0LS		Adj.	R-squar	ed:	0.191	
Dependent Vari	iable:	Υ		AIC:			153.488	82
Date:		2022-12-16	01:34	BIC:			155.670	93
No. Observation	ons:	22		Log-Likelihood:			-74.744	
Df Model:		1		F-sta	atistic:		6.642	
Df Residuals:		20		<pre>Prob (F-statistic):</pre>		istic):	0.0180	
R-squared:		0.229		Scale:		57.533		
	Coef.	Std.Err	·. t	:	P> t	[0.025	0.9	 75]
Intercept	48.229	4 17.308	34 2.7	865	0.0114	12.1247	7 84.3	341
Χ	-4.910	9 1.905	56 -2.5	771	0.0180	-8.8858	3 -0.9	359
Omnibus:		0.053	Dı	rbin	 -Watson:		1.7	 27
Prob(Omnibus):	:	0.974	Ja	rque	-Bera (J	B):	0.0	65
Skew:		0.016	Pr	ob(JI	B):	•	0.9	58
Kurtosis:		2.735	Co	ndit	ion No.:		103	
==========		=======	======		======	======	======	==

Из теста Уайта следует, что после робустной матрицы устранена гетероскедастичность, так как по результатам теста Уайта мы принимаем гипотезу Н0.

Метод Доступных Взвешенных Наименьших Квадратов

```
data_2 = data_1
data_2['x'] = 1 / data_2['x']
data_2['y'] = data_2['y'] * data_2['x']
```

```
fin_model = sm.OLS.from_formula("y ~ x", data = data_2)
result_dmnk = fin_model.fit()

sum_dm = result_dmnk.summary()
print(sum_dm)
```

OLS Regression Results

Dep. Variable	 :		у	R-squ	 uared:		0.992
Model:			0LS	Adj.	R-squared:		0.992
Method:		Least Squ	uares	F-sta	ntistic:		2537.
Date:		Sat, 10 Dec	2022	Prob	(F-statistic):	1.51e-22
Time:		01:3	34:58	Log-l	ikelihood:		-3.1805
No. Observation	ons:		22	AIC:			10.36
Df Residuals:			20	BIC:			12.54
Df Model:			1				
Covariance Typ	oe:	nonro	bust				
=========			-====			=======	
	coef	std err		t	P> t	[0.025	0.975]
Intercept	0.0322	0.066		0.488	0.631	-0.105	0.170
х	9.1967	0.183	5	50.369	0.000	8.816	9.578
Omnibus:	======	:=======: :	===== 5.425	====== Durbi	.n-Watson:	=======	1.749
Prob(Omnibus)	•	(0.066	Jarqu	ie-Bera (JB):		3.649
Skew:		(3.519	Prob([JB):		0.161
Kurtosis:		4	1.704	Cond	No.		2.96
=========		.=======				=======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe

```
•
```

```
y_pred = fin_model.predict(fin_model.fit().model.exog.reshape(2, 22))
y_pred[:5]
```

```
array([[ 1.20996602e+00, 2.35230778e-01, 1.20996602e+00,
        9.25766293e-01,
                         1.20996602e+00, 1.60026431e-01,
         1.20996602e+00, 1.86584444e-01, 1.20996602e+00,
         5.23307414e-02, 1.20996602e+00, 4.25316566e-01,
         1.20996602e+00,
                         2.21220514e-01, 1.20996602e+00,
        9.55816094e-02,
                         1.20996602e+00, 4.43081096e-03,
         1.20996602e+00, -1.82733993e-01, 1.20996602e+00,
        -5.36142910e-01],
       [ 1.95950704e+00, 3.25421453e-01, 1.95950704e+00,
        8.05317870e-01, 1.95950704e+00, 3.18302840e-01,
         1.95950704e+00, 6.97982460e-01, 1.95950704e+00,
        6.92071945e-04, 1.95950704e+00, 9.77440715e-01,
        1.95950704e+00, 3.78598656e-01,
                                         1.95950704e+00,
         1.92271281e-01, 1.95950704e+00, -3.46407210e-01,
         1.95950704e+00, -3.72032971e-01,
                                          1.95950704e+00,
        -4.73454024e-01],
      [ 1.11568908e+00, 2.23886635e-01, 1.11568908e+00,
                                          1.40118494e-01,
         9.40916243e-01,
                         1.11568908e+00,
         1.11568908e+00,
                         1.22261027e-01,
                                          1.11568908e+00,
```

```
5.88258305e-02, 1.11568908e+00, 3.55870634e-01,
 1.11568908e+00, 2.01425560e-01, 1.11568908e+00,
 8.34200251e-02, 1.11568908e+00, 4.85590624e-02,
 1.11568908e+00, -1.58924051e-01, 1.11568908e+00,
-5.44027890e-01],
[ 1.04332851e+00, 2.15179642e-01, 1.04332851e+00,
 9.52544314e-01, 1.04332851e+00, 1.24838515e-01,
 1.04332851e+00, 7.28907451e-02, 1.04332851e+00,
 6.38110194e-02, 1.04332851e+00, 3.02568658e-01,
 1.04332851e+00, 1.86232300e-01, 1.04332851e+00,
 7.40856196e-02, 1.04332851e+00, 8.24289086e-02,
 1.04332851e+00, -1.40649158e-01, 1.04332851e+00,
-5.50079865e-01],
[ 1.06679608e+00, 2.18003445e-01, 1.06679608e+00,
 9.48773163e-01, 1.06679608e+00, 1.29794033e-01,
 1.06679608e+00, 8.89022393e-02, 1.06679608e+00,
 6.21942508e-02, 1.06679608e+00, 3.19855257e-01,
 1.06679608e+00, 1.91159693e-01, 1.06679608e+00,
 7.71129019e-02, 1.06679608e+00, 7.14444292e-02,
 1.06679608e+00, -1.46575969e-01, 1.06679608e+00,
-5.48117122e-01]])
```

▼ 95% доверительный интервал:

[0.025	0.97	75]				
-0.105 8.816	0.1 9.5	170 578				
scp.f.ppf(q = 1	- 0.05,	dfn = 1,	dfd =	len(data_2)	-	2)
4.35124350	3329288					

▼ Значимость параметров регресии:

b0 => p-value > 0.05, следовательно гипотеза Н0 принимается и параметр не значим b1 => p-value < 0.05, следовательно гипотеза Н0 отвергается и параметр значим

Значимость модели регрессии:

F-stat = 2537 > F-table = 4.351, следовательно гипотеза H0 отвергается и модель значима

Качество модели

 $R^2 = 0.992$ $R^2(adj) = 0.992$

Качество модели отличное - значение R^2 больше 0.8, кроме того различие между скорректированным коэффициентом и обычным достаточно близки между собой

Считаем остатки скорректированной модели

reg = LinearRegression().fit(data_2['x'].values.reshape(-1,1), data_2['y'].values.reshape(
epsilons = data_2['y'].values.reshape(-1,1) - reg.predict(data_2['x'].values.reshape(-1, 1)

sns.set()
sns.scatterplot(data_2['x'].values, data_2['y'].values)

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pas warnings.warn(

<matplotlib.axes._subplots.AxesSubplot at 0x7ff1c0a38b50>

sns.set()
sns.scatterplot(data_2['x'].values, epsilons.reshape(1, -1)[0])

После преобразования нет нормального распределения

▼ Тест Уайта

from statsmodels.stats.diagnostic import het_white

```
#perform White's test
white_test = het_white(fin_model.fit().resid, fin_model.fit().model.exog)

#define labels to use for output of White's test
labels = ['Test Statistic', 'Test Statistic p-value', 'F-Statistic', 'F-Test p-value']

#print results of White's test
print(dict(zip(labels, white_test))['Test Statistic p-value'])

9.111863761196062e-05
```

▼ Тест Голфреда-Кванта

p-value = 10^(-5) < 0.05 следовательно гипотеза Н0 отвергается и модель показывает гетероскедастичность после тестов Уайта и Голфреда Кванта

После применения методас робустной ковариационной матрицей качество и адекватность модели не меняется, при устранении гетероскедастичности. При этом метод ДМНК, сильно улучшил качество модели, но при этом не устранил гетероскедастичность.

▼ «Автокорреляция»

```
sns.set()
sns.scatterplot(x, y)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff1c081a1f0>

results = sm.OLS.from_formula("Y ~ X", data = data).fit()
print(results.summary())

OLS Regression Results

=========			:====		:=======:				
Dep. Variable:		Υ		R-squ	R-squared:		0.229		
Model:		OLS			R-squared:		0.191		
Method:		Least Squares		_	tistic:		5.947		
Date:		Sat, 10 Dec 2		<pre>Prob (F-statistic):</pre>):	0.0242		
Time:		01:57	7:43	Log-L	ikelihood:	•	-74.744		
No. Observat:	ions:		22	AIC:			153.5		
Df Residuals	:		20	BIC:			155.7		
Df Model:			1						
Covariance Ty	ype:	nonrob	ust						
========	======:		-===	======	========	=======	========		
	coe-	f std err		t	P> t	[0.025	0.975]		
Intercept	48.2294	 4 18.169		2.654	0.015	10.329	86.130		
X	-4.9109				0.024		-0.710		
========	======		-===	.=====	========	=======			
Omnibus:		0.	053	Durbi	n-Watson:		1.727		
Prob(Omnibus):	0.	974	Jarqu	e-Bera (JB):		0.065		
Skew:		0.	016	Prob(JB):		0.968		
Kurtosis:		2.	735	Cond.	No.		103.		
=========	======		====	======	========	=======	========		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe

from statsmodels.stats.stattools import durbin_watson

#perform Durbin-Watson test
durbin_watson(results.resid)

1.7269779188844552

По результатам теста Дарбина-Уотстона гипотеза об отсутствии антикорреляции скорее всего принимается

Платные продукты Colab - Отменить подписку

✓ 0 сек. выполнено в 04:59

X