Appendix II: Statistical analyses

Reb Bryant Shan Kothari Jeannine Cavender-Bares Stephanie J. Curran Jake J. Grossman Sarah E. Hobbie Charlotte Nash Grace C. Neumiller Craig R. See

2023-11-30

Setting up the workspace

This document is meant to provide a narrative summary to the statistical analyses accompanying the manuscript "Independent effects of tree diversity on aboveground and soil carbon pools after six years of experimental afforestation" by Bryant et al. (in review, as of 2023-12-01).

Our first step is to load a number of packages. Although this paper was a collaborative work in which multiple co-authors were working in their own R environments, all results have been checked under the package numbers listed in R v.4.2.1.

```
library(lme4) ## 1.1.32
library(lmerTest) ## 3.1.3
library(MuMIn) ## 1.47.5
library(car) ## 3.1.2
library(performance) ## 0.10.5
library(piecewiseSEM) ## 2.3.0
library(MASS) ## 7.3.57
```

Go to the working directory where you have the archived data file saved.

```
# setwd(".")
carbon_seq<-read.csv("Cseq.csv")</pre>
```

Carbon accumulation and biodiversity facets

One of the core goals of our paper is to show how carbon storage in our experimental plots was influenced by the diversity of planted trees in the first six years of the experiment. We estimated carbon storage across three pools:

- aboveground wood
- soil (0-20 cm)-expressed as change from pre-treatment soil carbon
- fine roots (0-20 cm)

Besides these pools, we also calculated overyielding for mixture plots as the difference between the observed pools and monoculture-based expectations. For aboveground wood, we further partitioned overyielding using into complementarity and selection effects, following Loreau & Hector (2001).

We considered three facets of diversity:

- species richness
- Laliberté and Legendre (2010)'s functional dispersion (FDis), as reported by Grossman et al. (2017)
- Helmus et al. (2007)'s phylogenetic species variability (PSV), as reported by Grossman et al. (2017)

The latter two are metrics of functional and phylogenetic diversity that are designed not to be dependent on species richness. However, since PSV and FDis are both 0 for monocultures, they do end up somewhat correlated with each other and with species richness. As we will see, multicollinearity does not end up being a severe problem in most cases.

In keeping with the dominant paradigm in biodiversity-ecosystem function (BEF) research, we proposed that planted tree diversity would positively influence all three carbon pools. However, we did not pose hypotheses about which specific aspects of tree diversity would matter most. As a result, we used an AICc-based framework to test all models nested within a model that includes species richness, FDis, and PSV. We select the most parsimonious model with a $\Delta AICc < 2$ from the model with the lowest AICc. (In effect, this is much like standard null hypothesis significance testing, where AICc < 2 corresponds to p > 0.05.) When there are two or more equally parsimonious such models, we selected the one with the lower AICc.

Aboveground carbon

We can start with aboveground woody carbon:

The dredge function tests all nested submodels of the specified model. Here we apply it to models both with and without block random effects. There are three blocks in the FAB1 experiment. The block effect tends to either yield a singular fit or negligible changes in model parameters—the exceptions being in analyses of macroaggregates or soil moisture. As a result, we generally do not show the output of models with the block random effect.

We can examine our AIC table, select our 'best' model, and do some basic checks of model assumptions as follows:

```
mwt_dredge ## we'll select the second model
## Global model call: lm(formula = woodyC ~ species_richness + FDis + PSV, data = carbon_seq)
## ---
## Model selection table
##
      (Int)
               FDs
                      PSV
                           spc_rch df
                                        logLik
                                                 AICc delta weight
## 8 7.941 -5.549 20.870
                           0.62920
                                    5 -499.261 1009.0 0.00
                                                             0.704
## 4 8.494 -4.251 19.140
                                    4 -501.209 1010.7 1.74
                                                             0.294
## 3 6.563
                                    3 -507.897 1022.0 13.00
                    9.453
                                                             0.001
## 7 6.662
                    9.560 -0.05419
                                    4 -507.880 1024.1 15.09
                                                             0.000
                                                             0.000
## 2 8.863
            1.263
                                    3 -517.217 1040.6 31.64
## 1 10.690
                                    2 -518.636 1041.4 32.39
                                                             0.000
## 5 9.826
                                    3 -518.053 1042.3 33.31
                           0.32500
                                                             0.000
## 6 8.788 1.147
                           0.09113 4 -517.182 1042.7 33.69
                                                             0.000
## Models ranked by AICc(x)
mwt_model<-get.models(mwt_dredge, subset = 2)[[1]]</pre>
check_model(mwt_model)
```


A few things are apparent here. First of all, the two retained predictors (FDis and PSV) have opposite-sign coefficients. These predictors have a positive correlation with each other across the full dataset, as shown below:

Therefore, their "effects" partly offset each other. However, their variance inflation factor (VIF) is not so high that it would ordinarily raise concerns about multicollinearity.

Perhaps more troubling are the other checks: the posterior predictive check plot, the homoskedasticity plot, and the Q-Q (normality of residuals) plot. It is common for data from BEF experiments not to strictly meet these assumptions of ordinary least-squares regression because the variance is often greatest among monocultures. To assure ourselves that our results are robust, we can use robust regression through iterated re-weighted least squares to reduce the influence of high-leverage points.

```
mwt_robust<-rlm(woodyC~species_richness+FDis+PSV,data=carbon_seq)</pre>
options(na.action = "na.fail")
mwt_robust_dredge <- dredge(mwt_robust,beta = "none",evaluate = T,rank = AICc)</pre>
options(na.action = "na.omit")
mwt robust dredge
## Global model call: rlm(formula = woodyC ~ species_richness + FDis + PSV, data = carbon_seq)
## ---
## Model selection table
##
      (Int)
               FDs
                     PSV spc_rch df
                                       logLik
                                                AICc delta weight
      5.734 -4.794 20.85 0.6500 5 -501.023 1012.5
                                                      0.00
     6.656 -3.558 19.15
                                   4 -502.384 1013.1
                                                      0.57
                                                             0.429
  3
      3.924
                   11.82
                                   3 -510.742 1027.7 15.17
                                                             0.000
     3.564
                   11.57  0.1425  4 -511.200 1030.7 18.20  0.000
## 7
```

Here, the 'best' model selected involves the same variables with similar (but not exactly the same) parameter values to when we were using OLS.

Overyielding in aboveground carbon

1 0.9372

Let's repeat the same procedure for overyielding in aboveground carbon.

```
## for the dredge function to work, we need to remove plots with NAs
carbon_seq_woodyOY<-carbon_seq[which(!is.na(carbon_seq$woodyOY)),]</pre>
mw<-lm(woodyOY~species_richness+FDis+PSV,</pre>
       data=carbon_seq_woodyOY)
## as before, the posterior predictive check and Q-Q plot
## for the OLS model reveal violations of assumptions
mw_robust<-rlm(woody0Y~species_richness+FDis+PSV,data=carbon_seq_woody0Y)</pre>
options(na.action = "na.fail")
mw_dredge <- dredge(mw, beta = "none", evaluate = T, rank = AICc)</pre>
mw_robust_dredge <- dredge(mw_robust, beta = "none", evaluate = T, rank = AICc)</pre>
options(na.action = "na.omit")
mw_dredge ## we select the first model
## Global model call: lm(formula = woodyOY ~ species_richness + FDis + PSV, data = carbon_seq_woodyOY)
## ---
## Model selection table
                      PSV spc_rch df
       (Int)
               FDs
                                       logLik AICc delta weight
## 6 -2.1370 1.2200
                           0.2501 4 -269.594 547.6 0.00 0.450
## 8 -2.2040 0.9463 0.897
                           0.2729
                                  5 -269.329 549.3 1.68 0.194
                          0.3643 4 -270.706 549.8 2.22 0.148
## 7 -1.4580
                    2.262
## 2 -2.0320 1.5830
                                   3 -271.887 550.0 2.42 0.134
## 4 -2.0420 1.5400 0.159
                                   4 -271.879 552.2 4.57 0.046
## 5 -0.1805
                           0.3808
                                  3 -273.559 553.4 5.77 0.025
## 3 -0.3916
                                   3 -276.153 558.5 10.95 0.002
                    2.463
## 1 1.0570
                                   2 -279.205 562.5 14.94 0.000
## Models ranked by AICc(x)
mw_robust_dredge ## we select the first model
## Global model call: rlm(formula = woodyOY ~ species_richness + FDis + PSV, data = carbon_seq_woodyOY)
## ---
## Model selection table
##
       (Int)
               FDs
                       PSV spc rch df
                                        logLik AICc delta weight
## 6 -1.9010 1.0570
                            0.2476 4 -269.724 547.9 0.00 0.454
## 8 -1.9020 0.8079 0.7843 0.2619 5 -269.472 549.6 1.70 0.194
## 7 -1.2420
                    2.0290
                            0.3304 4 -270.797 550.0 2.15 0.155
## 2 -1.7270 1.3700
                                    3 -272.086 550.4
                                                      2.56
                                                            0.126
## 4 -1.7240 1.3200 0.1664
                                    4 -272.082 552.6 4.71 0.043
## 5 -0.2588
                            0.3588 3 -273.683 553.6 5.75 0.026
## 3 -0.3801
                    2.3410
                                    3 -276.176 558.6 10.74 0.002
```

2 -279.264 562.6 14.79 0.000

Models ranked by AICc(x)

Robust regression tends to shrink parameter estimates slightly, but yields a qualitatively very similar model.

Overyielding is often partitioned via Loreau & Hector (2001)'s method into complementarity and selection effects. Complementarity effects (CE) are based on the mean of species' relative yields and are often taken to indicate synergistic interactions like niche partitioning or facilitation. Selection (SE) effects describe how more productive species tend to show greater (or lesser) relative boosts in productivity than average in mixtures. Although CE and SE must sum to overyielding, it is possible for one to be greater than overyielding (or even total plot biomass) if the other is negative. (It is also possible for total overyielding to be negative, in which case it may be called underyielding.) Although CE and SE are expressed in the same units as overyielding (here, kg biomass per ha), it can be hard to make sense of extreme CE or SE values in these terms. For these reasons, we choose to focus on whether they are generally positive or negative than on their actual magnitudes. Starting with the Loreau & Hector (2001) paper itself, it is common for BEF researchers to expect positive CE and non-positive SE on average across plots. This would imply that (1) species tend to overperform in mixture and (2) it is not only the most productive species that overperform in mixture. It may help to look at the data quickly before proceeding.

plot(woodyCE~species_richness,data=carbon_seq_woodyOY)

plot(woodySE~species_richness,data=carbon_seq_woodyOY)

These plots reveal that there are a couple outliers with highly positive CE and negative SE. The most extreme are plots 14 and 50, both 12-species plots. Because of the odd distribution of CE and SE values, we'll conduct both a parametric t-test and a non-parametric Wilcoxon rank sum test to check whether CE or SE differ from 0. Most research does not consider how inferences about CE or SE are influenced by skewed distribution or influential points, so the t-test is probably more consistent with how results are usually reported. However, the Wilcoxon test may be more appropriate.

t.test(carbon_seq_woodyOY\$woodyCE)

```
##
   One Sample t-test
##
##
## data: carbon_seq_woodyOY$woodyCE
## t = 2.8862, df = 103, p-value = 0.00475
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
   1.087102 5.862464
## sample estimates:
## mean of x
   3.474783
t.test(carbon_seq_woodyOY$woodySE)
##
##
   One Sample t-test
##
## data: carbon_seq_woodyOY$woodySE
## t = -2.1868, df = 103, p-value = 0.03102
```

```
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -4.6108083 -0.2250558
## sample estimates:
## mean of x
## -2.417932
wilcox.test(carbon_seq_woodyOY$woodyCE)
##
##
   Wilcoxon signed rank test with continuity correction
##
## data: carbon_seq_woodyOY$woodyCE
## V = 3315, p-value = 0.05804
## alternative hypothesis: true location is not equal to 0
wilcox.test(carbon_seq_woodyOY$woodySE)
##
## Wilcoxon signed rank test with continuity correction
##
## data: carbon_seq_woodyOY$woodySE
## V = 2630, p-value = 0.747
## alternative hypothesis: true location is not equal to 0
There is some evidence that CE differs from 0, but not much evidence that SE does.
Soil C accumulation and overyielding
We can now do the same for soil C accumulation:
carbon_seq_soilC<-carbon_seq[which(!is.na(carbon_seq$soilC)),]</pre>
mst<-lm(soilC~species_richness+FDis+PSV,data=carbon_seq_soilC)</pre>
options(na.action = "na.fail")
mst_dredge <- dredge(mst, beta = "none", evaluate = T, rank = AICc)</pre>
options(na.action = "na.omit")
mst_dredge ## we pick the first one
## ---
```

```
## Global model call: lm(formula = soilC ~ species_richness + FDis + PSV, data = carbon_seq_soilC)
## Model selection table
    (Int) FDs PSV spc_rch df
                                      logLik AICc delta weight
## 5 3.881
                          0.2712 3 -178.975 364.3 0.00 0.356
## 3 4.099
                  2.5760
                                  3 -180.022 366.4 2.09 0.125
                  0.5298   0.2406   4 -178.939   366.5   2.20   0.119
## 7 3.839
## 2 4.109 0.6608
                                  3 -180.088 366.6 2.23 0.117
                          0.3000 4 -178.959 366.6 2.24 0.116
## 6 3.901 -0.1126
## 1 4.809
                                  2 -181.616 367.4 3.09 0.076
## 8 3.823 -0.8537 2.7680 0.3294 5 -178.663 368.3 3.99 0.048
## 4 4.074 0.2645 1.6490
                                  4 -179.983 368.6 4.28 0.042
## Models ranked by AICc(x)
mst_model<-get.models(mst_dredge, subset = 1)[[1]]</pre>
check_model(mst_model)
```

Linearity Model-predicted lines should resemble observed da Reference line should be flat and horizontal

Observed data — Model-predicted da

Homogeneity of Variance

Reference line should be flat and horizontal

Influential Observations Points should be inside the contour lines

Normality of Residuals Dots should fall along the line

Standard Normal Distribution Quantiles

And for overyielding in soil C accumulation:

```
carbon_seq_soilOY<-carbon_seq[which(!is.na(carbon_seq$soilOY)),]</pre>
ms<-lm(soilOY~species_richness+FDis+PSV,data=carbon_seq_soilOY)</pre>
```

```
options(na.action = "na.fail")
ms_dredge <- dredge(ms, beta = "none", evaluate = T, rank = AICc)</pre>
options(na.action = "na.omit")
ms_dredge ## we pick the second one
## Global model call: lm(formula = soilOY ~ species_richness + FDis + PSV, data = carbon_seq_soilOY)
## ---
## Model selection table
##
        (Int)
                   FDs
                           PSV spc rch df logLik AICc delta weight
## 5 -0.57840
                                0.3115
                                         3 -81.153 169.2 0.00
      1.39500
                                         2 -82.987 170.4
      2.12400
                                         4 -80.519 170.6
## 7
                                0.3522
                                                            1.41
                                                                  0.161
                        -4.879
## 2 -2.08600
                1.4920
                                         3 -82.271 171.5
                                                            2.24
                                                                  0.106
## 6 0.05418 -0.3653
                                0.3462
                                                           2.63
                                         4 -81.129 171.9
                                                                  0.087
## 3 3.05200
                        -2.732
                                         3 -82.805 172.5
                                                            3.30
                                                                  0.062
## 4 -0.20830 1.6920 -3.863
                                         4 -81.899 173.4
                                                            4.17
                                                                  0.040
## 8 2.62100 -0.2960 -4.851
                                0.3800
                                         5 -80.503 173.5
                                                            4.28
                                                                  0.038
## Models ranked by AICc(x)
ms_model<-get.models(ms_dredge, subset = 2)[[1]]</pre>
check_model(ms_model)
  Posterior Predictive Check
                                                  Linearity
  Model-predicted lines should resemble observed da Reference line should be flat and horizontal
                                                       20
      0.15
                                                  Residuals
  Density
                                                       10
      0.10
                                                        0
      0.05
      0.00
                                                      -10
                      -5
                             0
                                   5
                                         10
                                                                   1.375
                                                                            1.400
              -10
                                                          1.350
                                                                                     1.425
                          soilOY
                                                                      Fitted values
         — Observed data — Model-predicted da
                                                  Normality of Residuals
  Homogeneity of Variance
  Reference line should be flat and horizontal
                                                  Dots should fall along the line
                                                  Sample Quantiles
                                                        2
  Std. residuals
```

1

0

-1

-2

-3

Standard Normal Distribution Quantiles

Both of these models seem to meet the assumptions guite well.

1.375

1.400

Fitted values

1.425

1

0

-1

-2

1.350

Fine roots and overyielding

```
## total root C
carbon_seq_rootC<-carbon_seq[which(!is.na(carbon_seq$rootC)),]</pre>
mrt<-lm(rootC~species_richness+FDis+PSV,data=carbon_seq_rootC)</pre>
options(na.action = "na.fail")
mrt_dredge <- dredge(mrt, beta = "none", evaluate = T, rank = AICc)</pre>
options(na.action = "na.omit")
mrt_dredge ## we select the first model
## Global model call: lm(formula = rootC ~ species_richness + FDis + PSV, data = carbon_seq_rootC)
## Model selection table
## (Int) FDs PSV
                            spc_rch df
                                         logLik AICc delta weight
## 1 2.183
                                    2 -110.745 225.7 0.00 0.237
## 8 2.191 1.1200 -2.75600 -0.128900 5 -107.450 226.0 0.26 0.208
## 4 2.098 0.7036 -2.44400
                                     4 -108.930 226.5 0.86 0.155
                                     3 -110.389 227.2 1.50 0.112
## 2 2.056 0.1228
## 6 2.131 0.4149
                        -0.110000 4 -109.351 227.4 1.70 0.101
## 5 2.204
                         -0.006146 3 -110.736 227.9 2.19 0.080
## 3 2.165
                                     3 -110.738 227.9 2.19 0.079
                  0.06906
## 7 2.186
                  0.26150 -0.021100 4 -110.685 230.1 4.37 0.027
## Models ranked by AICc(x)
mrt_model<-get.models(mrt_dredge, subset = 1)[[1]]</pre>
check_model(mrt_model)
```

Model-predicted lines should resemble observed d Reference line should be flat and horizontal

Fitted values

Observed data — Model-predicted dat

Homogeneity of Variance

Reference line should be flat and horizontal

Normality of Residuals

Linearity

Dots should fall along the line

Standard Normal Distribution Quantiles

The selected model (with no predictors) does a poor job of meeting assumptions, but even changing out rootC for log(rootC), which meets the assumptions better, yields a 'best' model with no predictor variables. The same is true of robust regression. We move on to overyielding.

```
## overyielding in root C
carbon_seq_rootOY<-carbon_seq[which(!is.na(carbon_seq$rootOY)),]</pre>
mr<-lm(rootOY~species_richness+FDis+PSV,data=carbon_seq_rootOY)</pre>
mr robust<-rlm(root0Y~species richness+FDis+PSV,data=carbon seq root0Y)
options(na.action = "na.fail")
mr_dredge <- dredge(mr, beta = "none", evaluate = T, rank = AICc)</pre>
mr_robust_dredge <- dredge(mr_robust, beta = "none", evaluate = T, rank = AICc)</pre>
options(na.action = "na.omit")
mr_dredge ## we select the first model
```

```
## Global model call: lm(formula = rootOY ~ species_richness + FDis + PSV, data = carbon_seq_rootOY)
## ---
## Model selection table
      (Int)
                        PSV
                             spc rch df logLik AICc delta weight
##
                     -5.098
                                                              0.506
## 3 3.5240
                                       3 -54.654 116.3
                                                       0.00
## 7 3.5700
                     -4.823 -0.03245
                                      4 -54.568 118.9
                                                        2.57
                                                              0.140
## 4 3.8510 -0.18630 -4.920
                                       4 -54.605 118.9
                                                        2.64
                                                              0.135
## 1 0.5177
                                       2 -57.648 119.8
                                                              0.089
                                                        3.47
                                                        4.76
## 5 1.1020
                            -0.09082
                                      3 -57.036 121.1
                                                              0.047
## 2 1.8690 -0.58290
                                       3 -57.223 121.4
                                                        5.14
                                                              0.039
## 8 3.6110 -0.02526 -4.819 -0.03009 5 -54.568 121.9 5.56
                                                              0.031
```

```
## 6 1.3670 -0.15540
                             -0.07601 4 -57.021 123.8 7.47 0.012
## Models ranked by AICc(x)
mr_model<-get.models(mr_dredge, subset = 1)[[1]]</pre>
check_model(mr_model)
```

Linearity Model-predicted lines should resemble observed c Reference line should be flat and horizontal

Observed data — Model-predicted da

Homogeneity of Variance

Reference line should be flat and horizontal

Influential Observations

Points should be inside the contour lines

Normality of Residuals

Dots should fall along the line

Standard Normal Distribution Quantiles

Evidently, this model also does a poor job of meeting assumptions. Thus, we show the robust regression results to buttress the claim that the same model is selected even when high-leverage points are not allowed to be as influential.

```
options(na.action = "na.fail")
mr_robust_dredge <- dredge(mr_robust, beta = "none", evaluate = T, rank = AICc)
options(na.action = "na.omit")
mr robust dredge
## Global model call: rlm(formula = rootOY ~ species_richness + FDis + PSV, data = carbon_seq_rootOY)
## ---
## Model selection table
##
      (Int)
                 FDs
                         PSV
                             spc_rch df logLik AICc delta weight
## 3 1.6910
                      -2.632
                                       3 -56.054 119.1
                                                       0.00
## 1 0.0654
                                       2 -58.423 121.3 2.22 0.147
## 7 1.7780
                      -2.492 -0.02781 4 -55.955 121.6 2.54
                                                             0.125
## 4 1.8470 -0.079010 -2.585
                                       4 -56.005 121.8 2.64 0.119
## 5 0.3619
                             -0.04437
                                      3 -57.960 122.9 3.81 0.066
## 2 0.5933 -0.226700
                                       3 -58.165 123.3 4.22
                                                             0.054
```

-0.04512 4 -57.967 125.7 6.57 0.017

0.028

PSV is still the only variable selected, but its parameter estimate shrinks quite a bit.

8 1.6320 0.099930 -2.543 -0.03692 5 -55.959 124.6 5.54

mr_robust<-rlm(rootOY~species_richness+FDis+PSV, data=carbon_seq_rootOY)

Structural equation modeling

We use structural equation modeling (SEM) to tie together our hypotheses in a more integrative manner. Although we found no evidence elsewhere for a correlation between aboveground and soil C accumulation, SEMs allow us to directly test whether the influence of species richness on soil C accumulation is mediated by aboveground C.

We select six variables:

6 0.3433 0.009522

Models ranked by AICc(x)

- species richness (exogenous)
- percent of planted trees associated with AM fungi (exogenous)
- percent of planted trees that are conifers (exogenous)
- aboveground C (endogenous)
- macroaggregates (endogenous)
- soil C accumulation (endogenous)

The first step is to drop rows with NAs in any of these variables, then z-standardize all of them so that regression coefficients in the SEM are standardized:

As explained in the main text and Appendix I, we proposed an initial model based on a priori hypotheses and earlier data analyses. The structure of this model is as follows:

```
localfit_orig_model<-psem(</pre>
  lmer(woodyC~species_richness+percentCon+(1|block),data=carbon_seq_standard),
  lmer(macro250~percentAM+percentCon+woodyC+(1|block),data=carbon_seq_standard),
  lmer(soilC~species_richness+percentAM+percentCon+woodyC+macro250+(1|block),
     data=carbon_seq_standard)
)
summary(localfit orig model)
##
##
## Structural Equation Model of localfit_orig_model
##
## Call:
     woodyC ~ species_richness + percentCon
##
##
     macro250 ~ percentAM + percentCon + woodyC
##
     soilC ~ species_richness + percentAM + percentCon + woodyC + macro250
##
##
       AIC
   457.856
##
##
##
## Tests of directed separation:
##
                        Independ.Claim Test.Type
##
                                                      DF Crit. Value P. Value
    macro250 ~ species richness + ... coef 58.0493
##
                                                            -0.1347 0.8933
                                                             -3.9468 0.0002 ***
              woodyC ~ percentAM + ...
##
                                           coef 59.0416
##
##
## Global goodness-of-fit:
##
## Chi-Squared = 6.883 with P-value = 0.032 and on 2 degrees of freedom
## Fisher's C = 17.132 with P-value = 0.002 and on 4 degrees of freedom
##
##
## Coefficients:
##
##
     Response
                     Predictor Estimate Std.Error
                                                        DF Crit. Value P. Value
##
       woodyC species_richness
                                 0.1463
                                           0.0599 60.1193
                                                              2.4410 0.0176
##
       woodyC
                    percentCon
                                 0.8564
                                           0.0600 60.1829
                                                              14.2796 0.0000
##
    macro250
                    percentAM -0.1520
                                           0.0852 59.0404
                                                              -1.7827 0.0798
##
    macro250
                    percentCon -0.0673
                                           0.1684 59.1552
                                                              -0.3996 0.6909
                               -0.2397
                                                              -1.3710 0.1756
##
     macro250
                        woodyC
                                           0.1748 59.2409
##
        soilC species_richness
                                0.2884
                                           0.1252 59.0000
                                                               2.3031 0.0248
##
        soilC
                     percentAM
                                0.2972
                                           0.1324 59.0000
                                                               2.2439 0.0286
##
        soilC
                    percentCon -0.0085
                                           0.2725 59.0000
                                                              -0.0313 0.9751
##
        soilC
                                 0.0767
                                           0.2740 59.0000
                                                               0.2799 0.7806
                        woodyC
                      macro250
                                 0.1330
                                           0.1249 59.0000
##
        soilC
                                                              1.0648 0.2913
##
     Std.Estimate
##
           0.1463
##
           0.8564 ***
##
          -0.1520
##
          -0.0673
```

```
##
           -0.2397
##
            0.2884
            0.2972
##
##
           -0.0085
##
            0.0767
            0.1330
##
##
                       0 '***' 0.001 '**' 0.01 '*' 0.05
##
     Signif. codes:
##
##
##
   Individual R-squared:
##
##
     Response method Marginal Conditional
       woodyC
##
                 none
                           0.75
                                        0.77
##
     macro250
                           0.07
                                        0.73
                 none
##
        soilC
                 none
                           0.16
                                        0.16
```

By running <code>check_models()</code> on each subcomponent of the model, it becomes clear that percent conifer and aboveground C have moderately high VIF due to their high correlation with each other. We removed aboveground C from the model for macroaggregates and percent conifer from the model for soil C accumulation, although we caution that in any case it is a challenge to attribute anything definitely to one or the other variable.

Two other things are apparent. One is that the block random effect for soil C reaches a singular fit, so we remove it. The other is that the tests of directed separation show conditional dependence between percent AM and woody C. Since percent AM is exogenous, we add it as a predictor of woody C. We arrive at the following model:

```
localfit full model<-psem(</pre>
  lmer(woodyC~species_richness+percentCon+percentAM+(1|block),data=carbon_seq_standard),
  lmer(macro250~percentAM+percentCon+(1|block),data=carbon_seq_standard),
  lm(soilC~species_richness+percentAM+woodyC+macro250,
     data=carbon_seq_standard)
)
summary(localfit_full_model)
##
##
## Structural Equation Model of localfit full model
##
## Call:
##
     woodyC ~ species_richness + percentCon + percentAM
     macro250 ~ percentAM + percentCon
##
     soilC ~ species richness + percentAM + woodyC + macro250
##
##
       AIC
##
##
    430.913
##
##
  Tests of directed separation:
##
##
                         Independ.Claim Test.Type
                                                        DF Crit.Value P.Value
##
     macro250 ~ species_richness + ...
                                             coef 59.0081
                                                              -0.5527 0.5825
##
              soilC ~ percentCon + ...
                                             coef 59.0000
                                                              -0.0313 0.9751
```

```
##
               macro250 ~ woodyC + ...
                                             coef 58.2852
                                                              -1.2467 0.2175
##
## --
## Global goodness-of-fit:
## Chi-Squared = NA with P-value = NA and on 3 degrees of freedom
## Fisher's C = 4.182 with P-value = 0.652 and on 6 degrees of freedom
## ---
## Coefficients:
##
     Response
##
                     Predictor Estimate Std.Error
                                                         DF Crit.Value P.Value
##
       woodyC species_richness
                                  0.1361
                                            0.0539 59.0976
                                                                2.5268 0.0142
##
                                            0.0539 59.1531
       woodyC
                    percentCon
                                  0.8635
                                                               16.0316 0.0000
##
       woodyC
                     percentAM -0.2125
                                            0.0538 59.0416
                                                               -3.9468
                                                                        0.0002
##
     macro250
                     percentAM
                                 -0.0996
                                            0.0769 60.0035
                                                               -1.2954
                                                                         0.2001
##
     macro250
                                            0.0770 60.0133
                    percentCon
                                -0.2729
                                                               -3.5439
                                                                        0.0008
##
        soilC species_richness
                                  0.2896
                                            0.1190 60.0000
                                                                2.4339
                                                                        0.0179
##
                                  0.2956
                                            0.1212 60.0000
                                                                2.4380 0.0177
        soilC
                     percentAM
##
        soilC
                         woodyC
                                  0.0690
                                            0.1217 60.0000
                                                                0.5671 0.5728
##
        soilC
                      macro250
                                  0.1340
                                            0.1198 60.0000
                                                                1.1183 0.2679
##
     Std.Estimate
##
           0.1361
           0.8635 ***
##
##
          -0.2125 ***
##
          -0.0996
##
          -0.2729 ***
##
           0.2896
##
           0.2956
##
           0.0690
##
           0.1340
##
                     0 '***' 0.001 '**' 0.01 '*' 0.05
##
     Signif. codes:
##
##
## Individual R-squared:
##
##
     Response method Marginal Conditional
##
       woodyC
                none
                          0.79
                                      0.82
     macro250
                                      0.71
##
                          0.07
                none
##
        soilC
                          0.17
                                        NA
                none
```

As the Fisher's C > 0.05 shows, this model fits better than the one above. The in-depth interpretation of this model is in the main text. We can check each of the submodels of the full SEM to make sure that it means standard assumptions.

check_model(lmer(woodyC~species_richness+percentCon+percentAM+(1|block),data=carbon_seq_standard))

Posterior Predictive Check Model-predicted lines should resemble observed dar Reference line should be flat and horizontal Density 0.3 0.2 0.1 0.0 -2 -10 woodyC

Linearity

Observed data — Model-predicted data

2

Homogeneity of Variance

Reference line should be flat and horizontal

Influential Observations Points should be inside the contour lines

Collinearity

Normality of Residuals

♦ Low (< 5)

Normality of Random Effects (block)

Dots should be plotted along the line

Theoretical Quantiles

check_model(lmer(macro250~percentAM+percentCon+(1|block),data=carbon_seq_standard))

Linearity

Model-predicted lines should resemble observed di Reference line should be flat and horizontal

Observed data — Model-predicted da

Homogeneity of Variance

Reference line should be flat and horizontal

Influential Observations

Points should be inside the contour lines

Coffinearity

Normality of Residuals

Standard Normal Distribution Quantiles

Low (< 5)

Normality of Random Effects (block)

Dots should be plotted along the line

check_model(lm(soilC~species_richness+percentAM+woodyC+macro250,data=carbon_seq_standard))

Posterior Predictive Check Model-predicted lines should resemble observed da Reference line should be flat and horizontal 0.5 0.4 Density 0.3 0.2 0.1 0.0 0 2 -2

Linearity

Observed data — Model-predicted da

Homogeneity of Variance

Reference line should be flat and horizontal

soilC

Influential Observations

Points should be inside the contour lines

Collinearity

High collinearity (VIF) may inflate parameter uncerta Dots should fall along the line

Normality of Residuals

Standard Normal Distribution Quantiles

Low (< 5)