Basics of Algorithm

Kinds of Analyses

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Best case not very useful
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs

How to measure complexity?

- Accurate running time is not a good measure.
- It depends on the machine you used.
- It depends on input.

Machine-independent

- A generic uniprocessor random-access machine (RAM) model
 - No concurrent operations
 - Each simple operation (e.g. +, -, =, *, if, for) takes 1 step.
 - Loops and subroutine calls are not simple operations.
 - All memory equally expensive to access
 - Constant word size
 - Unless we are explicitly manipulating bits

Asymptotic Analysis

- How does algorithm behave as the problem size gets very large?
- Running time depends on the size of the input
 - Larger array takes more time to sort
 - To compare two algorithms with running times f(n) and g(n), we need a **rough measure** that characterizes **how fast each function grows**
 - Look at **growth** of T(n) as $n \rightarrow \infty$.

Asymptotic Analysis

- Order of Growth
 - The low order terms in a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same order of growth

Input Size

- Input size (number of elements in the input)
 - size of an array
 - polynomial degree
 - # of elements in a matrix
 - # of bits in the binary representation of the input
 - vertices and edges in a graph

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Algorithm 1

arr[0] = 0; c_1 c_1 c_1 c_1 c_1 c_1 c_1

$$arr[N-1] = 0; c_1$$

$$c_1 + c_1 + ... + c_1 = c_1 \times N$$

Algorithm 2

$$(N+1) \times c_2 + N \times c_1 = (c_2 + c_1) \times N + c_2$$

Example

```
Algorithm 3 Cost

sum = 0; c_1

for(i=0; i<N; i++) c_2

for(j=0; j<N; j++) c_2

sum += arr[i][j]; c_3

c_1 + c_2 \times (N+1) + c_2 \times N \times (N+1) + c_3 \times N^2
```

Order of growth

 $1 << \log_2 n << n << n \log_2 n << n^2 << n^3 << 2^n << n!$

n	i.	lgn	n	nlgn	n²	n³	2 ⁿ
1	1	0.00	1	0	1	1	2
10	1	3.32	10	33	100	1,000	1024
100	1	6.64	100	664	10,000	1,000,000	1.2×10^{30}
1000	1	9.97	1000	9970	1,000,000	10 ⁹	1.1 x 10 ³⁰¹

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- Ω notation: asymptotic "greater than":
 - f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)
- **Θ notation:** asymptotic "equality":
 - f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)

Big O

- Informally, O (g(n)) is the set of all functions with a smaller or same order of growth as g(n), within a constant multiple
- If we say f(n) is in O(g(n)), it means that g(n) is an asymptotic upper bound of f(n)
 - Intuitively, it is like $f(n) \le g(n)$
- What is O(n²)?
 - The set of all functions that grow slower than or in the same order as n^2
- For example

$$n \in O(n^2)$$

 $n^2 \in O(n^2)$
 $1000n \in O(n^2)$
 $n^2 + n \in O(n^2)$
 $100n^2 + n \in O(n^2)$

But: $1/1000 \text{ n}^3 \notin O(n^2)$

Big-O

$$f(n) = O(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
 - If $f(n) = O(n^2)$, then f(n) can be larger than n^2 sometimes, **but...**
 - We can choose some constant c and some value n_0 such that for **every** value of n larger than $n_0: f(n) \le cn^2$
 - That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2
 - Or, in other words, f(n) does not grow more than a constant factor faster than n^2

Big-O Visualization

Examples

- Show that 30n+8 is O(n).
 - Show $\exists c, n_0$: 30n+8 ≤ cn, $\forall n \ge n_0$.
 - Let c=31, $n_0=8$ $cn = 31n = 30n + n \ge 30n + 8$,
 - so 30*n*+8 ≤ *cn*.

Increasing $n \rightarrow$

Back to Example

Algorithm 1

Algorithm 2

```
Cost c_1 c_2 c_1 c_2 c_3 c_4 c_5 c_5 c_5 c_5 c_5 c_6 c_7 c_8 c_9 c_9
```

Both algorithms are of the same order: O(N)

Back to Example

```
      Algorithm 3
      Cost

      sum = 0;
      c_1

      for(i=0; i<N; i++)</td>
      c_2

      for(j=0; j<N; j++)</td>
      c_2

      sum += arr[i][j];
      c_3

      c_1 + c_2 \times (N+1) + c_2 \times N \times (N+1) + c_3 \times N^2
```

This algorithm is of the order $O(N^2)$.

Big Omega – Notation

• $\Omega()$ – A **lower** bound

$$f(n) = \Omega(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

- $-n^2=\Omega(n)$
- Let c = 1, $n_0 = 2$
- For all $n \ge 2$, $n^2 > 1 \times n$

Big Omega Visualization

Θ-notation

- Big-O is not a tight upper bound. In other words $n = O(n^2)$
- Θ provides a tight bound

$$f(n) = \Theta(g(n))$$
: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

In other words,

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)) \text{ AND } f(n) = \Omega(g(n))$$

® Visualization

Example

- Prove that: $20n^3 + 7n + 1000 = \Theta(n^3)$
- Let c = 21 and $n_0 = 10$
- $21n^3 \ge 20n^3 + 7n + 1000$ for all n > 10 $n^3 \ge 7n + 5$ for all n > 10TRUE, but we also need...
- Let c = 20 and $n_0 = 10$
- $20n^3 \le 20n^3 + 7n + 1000$ for all $n \ge 10$ TRUE

Simplifying Assumptions

```
1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If f_1(n) = O(g_1(n)) and f_2(n) = O(g_2(n)), then f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))

4. If f_1(n) = O(g_1(n)) and f_2(n) = O(g_2(n)), then f_1(n) * f_2(n) = O(g_1(n)) * g_2(n)
```

Example

• Code:

```
sum = 0;
for (i=1; i <=n; i++)
    sum += n;</pre>
```

• Complexity:

Example

• Code:

```
sum = 0;
for (j=1; j<=n; j++)
    for (i=1; i<=j; i++)
        sum++;
for (k=0; k<n; k++)
        A[k] = k;</pre>
```

• Complexity:

Recursive evaluation of n!

Definition: $n! = 1 * 2 * ... *(n-1) * n \text{ for } n \ge 1 \text{ and } 0! = 1$

Recursive definition of n!: F(n) = F(n-1) * n for $n \ge 1$ and F(0) = 1

Size: n

Basic operation: Multiplication

Recurrence relation: M(n) = M(n-1) + 1

M(0)=0

Solving the recurrence for M(n)

$$M(n) = M(n-1) + 1$$
, $M(0) = 0$
 $M(n) = M(n-1) + 1$
 $= (M(n-2) + 1) + 1 = M(n-2) + 2$
 $= (M(n-3) + 1) + 2 = M(n-3) + 3$
...
 $= M(n-i) + i$
 $= M(0) + n$
 $= n$