Universidad Tecnológica Nacional Facultad Regional Córdoba

Ingeniería Electrónica

CATEDRA

Titulo

SUBTITULO

DOCENTES XXXXXXXXXX XXXXXXXX.

XXXXXXXXXX XXXXXXXX...

COMISIÓN XRX

ALUMNOS XXXXX XXXXX, XXXXX XXXXX. XXXXX

XXXXX XXXXX, XXXXX XXXXX. XXXXX

Córdoba, 20 de octubre de 2023

CONTENIDO

1.	Introducción	3					
2.	. Marco teorico						
3.		3 3 4 4					
4.	4.3. Simulación	6 6 6 7 8					
5.	Tercer Parte	8					
6.	. Conclusión						

1. Introducción

2. Marco teorico

3. Primera Parte

3.1. Circuito

3.2. Procedimiento

- 1. Armar el circuito seleccionando un correcto valor de las resistencias en función del datasheet del UJT.
- 2. Abrir el interruptor L1 y cerrar el interruptor L2.
- 3. Variar la V_{EE} desde 0-30V y medir la corriente I_E .
- 4. Completar la tabla propuesta modificándola si fuera necesario.
- 5. Graficar la curva $I_E = f(V_{EE})$ con los datos relevados de la tabla.
- 6. Abrir el interruptor L2 y cerrar el interruptor L1.
- 7. Variar la VCC desde 0-30V y medir la corriente IB.
- 8. Completar la tabla propuesta modificándola si fuera necesario.

3.3. Simulación

3.4. Experimental

			3,5				
V_{CC}	V_{B_2}	I_B	5,5	_ _			
0	0	0	3 -				
2	1.71	0.30	3				
4	3.57	0.62	2,5				
6	5.23	0.89	2,3				
8	6.96	1.16	2				
10	8.90	1.44	2 -	•			
12	10.69	1.69	IB				
14	12.37	1.91	1,5				
16	14.27	2.14	1				
18	16.29	2.38	1 -				
20	17.82	2.54	0.5				
22	19.67	2.75	0,5				
24	22.2	2.89					
26	23.8	3.03	0				
28	25.6	3.20		0 5 10 15 20 25 20			
30	27.4	3.36		0 5 10 15 20 25 30			
	I	I		V_B			

4. Segunda Parte

4.1. Circuito

4.2. Procedimiento

- 1. Armar el circuito.
- 2. Medir y graficar la señal en OUT1
- 3. Medir y graficar la señal en OUT2
- 4. Variar el potenciómetro y observar el efecto sobre la OUT1 y la OUT2

Página 6 de 8

4.3. Simulación

4.4. Experimental

5. Tercer Parte

Parametro	Valor
η	
R_{BBO}	
$V_{EB1(SAT)}$	
$V_{(BR)B1E}$	
P_D	
$I_{\mathcal{J}}$	

6. Conclusión

Página 8 de 8