

1 CGCGTGCAGGTGGCAGTCCTCCAAAGTACTTGTGTCCGGGTGGT
 46 GGACTGGATTCGCTGCGGAGCCCTGGAAGCTGCCTTCCTCTCC
 91 CTGTGCTTAACCAGAGGTGCCATGGGTTGGACAATGAGGCTGGT
 MetGlyTrpThrMetArgLeuVa
 136 CACAGCAGCACTGTTACTGGGTCTCATGATGGTGGTCACTGGAGA
 1ThrAlaAlaLeuLeuGlyLeuMetMetValValThrGlyAs
 181 CGAGGATGAGAACAGCCCGTGTGCCCATGAGGCCCTTGACGAG
 pGluAspGluAsnSerProCysAlaHisGluAlaLeuLeuAspGl
 226 GGACACCCCTTTGCCAGGGCCTTGAAAGTTCTACCCAGAGTT
 uAspThrLeuPheCysGlnGlyLeuGluValPheTyrProGlue
 271 GGGGAACATTGGCTGCAAGGTTGTTCTGATGTAAACAACATACAG
 uGlyAsnIleGlyCysLysValValProAspCysAsnAsnTyrAr
 316 ACAGAAAGATCACCTCCTGGATGGAGCCGATAGTCAAGTTCCCGGG
 gGlnLysIleThrSerTrpMetGluProIleValLysPheProGl
 361 GGCGTGGACGGCGAACCTATATCCTGGTGATGGTGGATCCAGA
 yAlaValAspGlyAlaThrTyrIleLeuValMetValAspProAs
 406 TGCCCCCTAGCAGAGCAGAACCCAGACAGAGATTCTGGAGACATTG
 pAlaProSerArgAlaGluProArgGlnArgPheTrpArgHisTr
 451 GCTGGTAACAGATATCAAGGGCGCCGACCTGAAGGAAGGGAAGAT
 pLeuValThrAspIleLysGlyAlaAspLeuLysGluGlyLysI1
 496 TCAGGGCCAGGAGTTATCAGCCTACCAGGCTCCCTCCCCACCGGC
 eGlnGlyGlnGluLeuSerAlaTyrGlnAlaProSerProProAl
 541 ACACAGTGGCTTCCATCGCTACCAGTTCTTGTCTATCTTCAGGA
 aHisSerGlyPheHisArgTyrGlnPhePheValTyrLeuGlnG1
 586 AGGAAAAGTCATCTCTCCTTCCCCAAGGAAAACAAAACCGAGG
 uGlyLysValIleSerLeuLeuProLysGluAsnLysThrArgGl
 631 CTCTGGAAAATGGACAGATTTCTGAACCGTTCCACCTGGGCGA
 ySerTrpLysMetAspArgPheLeuAsnArgPheHisLeuGlyGl
 676 ACCTGAAGCAAGCACCCAGGTTCATGACCCAGAACTACCAGGACTC
 uProGluAlaSerThrGlnPheMetThrGlnAsnTyrGlnAspSe
 721 ACCAACCCCTCCAGGCTCCCAGAGAAAGGGCCAGCGAGCCCAAGCA
 rProThrLeuGlnAlaProArgGluArgAlaSerGluProLysHi
 766 CAAAAAACAGGCCGAGATAAGCTGCCCTGCTAGATAAGCCGGCTTG
 sLysAsnGlnAlaGluIleAlaAlaCys
 811 CATCCGGGCATGGGCCACACTGCCAACCGACGATGTGGGTA
 856 TGGAACCCCTCTGGATACAGAACCCCTTCTTTCAAATTAAAAA
 901 AAAAAAAATCATCCAGGAAAAAAAAAAAAAAA

Fig. 1

1 GGAGGTGGGTGAGACAGGACCAGCCCTAACGCTGGTCAGGCCT
 46 GATCAAGTGCTGTGGCAGTCATGGTGCAGACGCCGAGCCTC
 MetValArgThrArgTrpGlnProH
 91 ACCCTCCGCCGCCCTGCTTCTCCTGGTGCCTCGTGTGGCTCCCC
 isProProProProLeuLeuLeuLeuValLeuValTrpLeuProG
 136 AAAGCCTGAGTCTAGACCTGATTGCCTACGTGCCGCAGATAACAG
 InSerLeuSerLeuAspLeuIleAlaTyrValProGlnIleThrA
 181 CCTGGGACCTGGAAGGGAAAGATCACAGCCACTACATTCTCTGG
 IaTrpAspLeuGluGlyLysIleThrAlaThrThrPheSerLeuG
 226 AGCAGCCTCGGTGCGTCTTGATGAGCATGTCTCAACTAAGGACA
 IuGlnProArgCysValPheAspGluHisValSerThrLysAspT
 271 CCATCTGGCTAGTGGTGGCTTCAGCAATGCCTCCAGGGACTTC
 hrIleTrpLeuValValAlaPheSerAsnAlaSerArgAspPheG
 316 AGAACCCACAGACTGCTGCTAACGATCCCACCTTCCACAGCTGC
 InAsnProGlnThrAlaAlaLysIleProThrPheProGlnLeuL
 361 TGACTGACGGCCACTATATGACATTACCCCTGTCCTGGATCAGC
 euThrAspGlyHisTyrMetThrLeuProLeuSerLeuAspGlnL
 406 TGCCATGTGAGGACCTGACCGGTGGCAGTGGAGGTGTCCCCGTGC
 euProCysGluAspLeuThrGlyGlySerGlyGlyValProValL
 451 TTGGGTGGCAATGATTGGCTGTTACCGCGACCCATTGCA
 euArgValGlyAsnAspPheGlyCysTyrGlnArgProTyrCysA
 496 ACGCCCCCTCCCCAGCCAGGGCCCTACAGTGTGAAGTTCTTG
 snAlaProLeuProSerGlnGlyProTyrSerValLysPheLeuV
 541 TAATGGATGCCGCCGCCACCAAGGCTGAGACGAAGTGGTCCA
 alMetAspAlaAlaGlyProProLysAlaGluThrLysTrpSerA
 586 ACCCCATTTATCTCCACCAAGGAAAGAATCCCAACTCCATTGACA
 snProIleTyrLeuHisGlnGlyLysAsnProAsnSerIleAspT
 631 CATGGCCTGGCCGACGGAGCCGGCTGTATGATCGTCATAACTTCCA
 hrTrpProGlyArgArgSerGlyCysMetIleValIleThrSerI
 676 TCCTCTCTGCCCTGGCCGGCTCTGCTCCTGGCTTCCCTGGCAG
 leLeuSerAlaLeuAlaGlyLeuLeuLeuLeuAlaPheLeuAlaA
 721 CTTCCACTACGCGT
 IaSerThrThrArg

Fig. 2

1 AAAGAGCTTGAGTTAGATTGAAGTAGAACATCAGTGATAGAAAATAA
 46 CAGCCGAAACAAACAAAAAGGGGACATAGTGACAATTCTCCTG
 91 GGTATTTGGCTGGAACCAACTTCCATTATCCAGAACGCTGATAA
 136 AAAAGCTTGGGAAACATGAACAAAACATTGATGAAATGTTGGAA
 181 ACCAGTTGAAACACAGTAAAACCAACTGGGTAAAATAGGACCACT
 226 TCTCTTCATCTACACTGGGATTGTCAAGAAGTGAACATGACAA
 MetThrI
 271 TACATCAATTTTGCTACTGTTCTATTCTGGGTATGCCCTGCCAC
 LeHisGlnPheLeuLeuLeuPheLeuPheTrpValCysLeuProH
 316 ATTCTGCTCTCCAGAAATAATGTTCACGTGACCAAGGACGCCGTGCCAC
 isPheCysSerProGluIleMetPheArgArgThrProValProG
 361 AGCAAAGAATTTAACGTTCACGTGACCAAGGAGTGATGGCAAAA
 InGlnArgIleLeuSerSerArgValProArgSerAspGlyLysI
 406 TTCTCCATCGTAAAAACGTGGTGGATGTGGATCAATTCT
 LeLeuHisArgGlnLysArgGlyTrpMetTrpAsnGlnPhePheL
 451 TACTTGAAGAATATAACAGGATCTGATTATCAGTACGTAGGCAAGC
 euLeuGluGluTyrThrGlySerAspTyrGlnTyrValGlyLysL
 496 TACATTCAAGACCAAGATAAAGGAGATGGATCACTCAAATATACT
 euHisSerAspGlnAspLysGlyAspGlySerLeuLysTyrIleL
 541 TATCTGGAGATGGAGCTGGTACTCTTTTATTATTGATGAAAAAA
 euSerGlyAspGlyAlaGlyThrLeuPheIleIleAspGluLysT
 586 CAGGTGATATTCATGCCACAAGGCCATTGATAGGGAGGAAAAGG
 hrGlyAspIleHisAlaThrArgArgIleAspArgGluGluLysA
 631 CCTTTTATACTCTACGCCACAAGCTATTAACAGAAGAACTCTGA
 laPheTyrThrLeuArgAlaGlnAlaIleAsnArgArgThrLeuA
 676 GGCCAGTAGAGCCAGAGTCAGAGTTGTGATCAAAATTGATA
 rgProValGluProGluSerGluPheValIleLysIleHisAspI
 721 TCAATGACAATGAGCCAACGTTCCCAGAACAGAAATCTATACAGCTA
 LeAsnAspAsnGluProThrPheProGluGluIleTyrThrAlaS
 766 GTGTTCCCGAAATGTCTGTTGTAGGTACTTCTGTGGTGCAAGTCA
 erValProGluMetSerValValGlyThrSerValValGlnValT
 811 CAGCTACAGATGCCGATGACCCTTCATATGGAACAGGCCAGAG
 hrAlaThrAspAlaAspAspProSerTyrGlyAsnSerAlaArgV
 856 TCATTACAGCATACTTCAAGGGCAGCCCTATTCTGTGGAGC
 alIleTyrSerIleLeuGlnGlyGlnProTyrPheSerValGluP
 901 CTGAAACAGGTATCATCAGGACTGCTTACCGAACATGAACAGAG
 roGluThrGlyIleIleArgThrAlaLeuProAsnMetAsnArgG

Fig. 3

946 AAAACAGAGAGCAATACCAAGTGGTCATCCAGGCCAAGACATGG
 luAsnArgGluGlnTyrGlnValValIleGlnAlaLysAspMetG
 991 GCGGCCAGATGGGAGGCTATCGGGACAACCACTGTGAACATCA
 lyGlyGlnMetGlyGlyLeuSerGlyThrThrThrValAsnIleT
 1036 CGCTGACAGATGTCAATGACAACCCACCACGTTCCCCAGAACAA
 hrLeuThrAspValAsnAspAsnProProArgPheProGlnAsnT
 1081 CTATTCATCTCGAGTTCTGAATCCTCCCCAGTTGGCACAGCCA
 hrIleHisLeuArgValLeuGluSerSerProValGlyThrAlaI
 1126 TTGGAAGTGTCAAAGCAACTGATGCTGACACTGGAAAAATGCTG
 leGlySerValLysAlaThrAspAlaAspThrGlyLysAsnAlaG
 1171 AAGTAGAATAACCGAATTATTGATGGTGACGGTACTGATATGTTG
 luValGluTyrArgIleIleAspGlyAspGlyThrAspMetPheA
 1216 ACATCGTGAUTGAGAAGGACACACAGGAAGGCATCATCACTGTGA
 spIleValThrGluLysAspThrGlnGluGlyIleIleThrValL
 1261 AAAAGCCACTCGACTATGAAAGCCGAAGACTTTACTCTGAAAG
 ysLysProLeuAspTyrGluSerArgArgLeuTyrThrLeuLysV
 1306 TCGAAGCAGAAAACACCCATGTAGATCCCCGTTTTATTACCTAG
 alGluAlaGluAsnThrHisValAspProArgPheTyrTyrLeuG
 1351 GACCATTAAAGATACTACCATAGTGAAATCTCTATAGAAGATG
 lyProPheLysAspThrThrIleValLysIleSerIleGluAspV
 1396 TGGATGAAACCTCCTGTTTTAGTAGGTCTCCTATCTGTTGAAG
 alAspGluProProValPheSerArgSerSerTyrLeuPheGluV
 1441 TTCATGAAGATATTGAAGTGGGCACAATCATTGGTACTGTAATGG
 alHisGluAspIleGluValGlyThrIleIleGlyThrValMetA
 1486 CAAGGGACCCAGATTCTATTCCAGCCCCATTAGATTTCCTTGG
 laArgAspProAspSerIleSerSerProIleArgPheSerLeuA
 1531 ATCGCCATACTGACCTTGACAGAAATCTTAAACATTCAATTAGGAA
 spArgHisThrAspLeuAspArgIlePheAsnIleHisSerGlyA
 1576 ATGGATCTCTTATACATCAAAACCTCTTGACCGTGAACATCTC
 snGlySerLeuTyrThrSerLysProLeuAspArgGluLeuSerG
 1621 AGTGGCATAATTGTTAGTTATTGCTGCTGAAATCAACAATCCCA
 lnTrpHisAsnSerLeuValIleAlaAlaGluIleAsnAsnProL
 1666 AAGAGACAAACACGCGTGGCTGTTTGTGAGAATTGGATGTTA
 ysGluThrThrArgValAlaValPheValArgIleLeuAspValA
 1711 ATGACAAATGCCAACAGTTGCTGTGTTCTATGACACTTTGTAT
 snAspAsnAlaProGlnPheAlaValPheTyrAspThrPheValC
 1756 GTGAAAATGCCAGACCAGGGCAGCTAATACAGACTATAAGTGCAG
 ysGluAsnAlaArgProGlyGlnLeuIleGlnThrIleSerAlaV

Fig. 3 Continued

1801 TAGACAAAGATGACCCTTAGGTGGACAGAAATTTCAGTT
alAspLysAspAspProLeuGlyGlyGlnLysPhePheSerL
1846 TAGCTGCTGTCAATCCAAACTCACAGTACAGGATAATGAAGATA
euAlaAlaValAsnProAsnPheThrValGlnAsnAspGluAspA
1891 ATACTGCCAGAACATCTAACAGAAAAATGGATTCAATAGACATG
snThrAlaArgIleLeuThrArgLysAsnGlyPheAsnArgHisG
1936 AAATCAGTACCTATCTCTGCCTGTGGTGATATCAGACAATGATT
luIleSerThrTyrLeuLeuProValValIleSerAspAsnAspT
1981 ACCCGATTTCAGAGCAGCACAGGCACACTGACCATTGAGTGTGTG
yrProIleGlnSerSerThrGlyThrLeuThrIleArgValCysA
2026 CTTGTGACAGCCAAGGCAACATGCAATCCTGCAGTGCTGAAGCCC
laCysAspSerGlnGlyAsnMetGlnSerCysSerAlaGluAlaL
2071 TGCTCCTCCCTGCCGGCCTCAGCACTGGGGCCTTGATGCCATCC
euLeuLeuProAlaGlyLeuSerThrGlyAlaLeuIleAlaIleL
2116 TCCTCTGCATCATCATTCTACTGGTTATAGTAGTACTGTTGAG
euLeuCysIleIleIleLeuLeuValIleValValLeuPheAlaA
2161 CTCTGAAAGGACAGCGAAAAAAAGAGCCTCTGATCTGTCAAAAG
laLeuLysGlyGlnArgLysLysGluProLeuIleLeuSerLysG
2206 AAGATATCAGAGACAACATTGTGAGCTATAACGATGAGGGTGGTG
luAspIleArgAspAsnIleValSerTyrAsnAspGluGlyGlyG
2251 GAGAGGAGGACACCCAGGCCCTTGATATCGGCACCCGTGAGGAATC
lyGluGluAspThrGlnAlaPheAspIleGlyThrLeuArgAsnP
2296 CTGCAGCCATTGAGGAAAAAAAGCTCCGGCGAGATATTATTCCAG
roAlaAlaIleGluGluLysLysLeuArgArgAspIleIleProG
2341 AACCGTTATTTATTCCTCGGAGGACTCCTACAGCTCCAGATAACA
luThrLeuPheIleProArgArgThrProThrAlaProAspAsnT
2386 CGGACGTCCGGGATTTCTTAATGAAAGGCTAAAGAGCATGATC
hrAspValArgAspPheIleAsnGluArgLeuLysGluHisAspL
2431 TTGACCCCCACCGCACCCCCCTACGACTCACTGCAACCTATGCC
euAspProThrAlaProProTyrAspSerLeuAlaThrTyrAlaT
2476 ATGAAGGAAATGATTCCATTGCTGAATCTCTGAGTCATTAGAAT
yrGluGlyAsnAspSerIleAlaGluSerLeuSerSerLeuGluS
2521 CAGGTACTACTGAAGGAGACCAAAACTACGATTACCTCCGAGAAT
erGlyThrThrGluGlyAspGlnAsnTyrAspTyrLeuArgGlut
2566 GGGGCCCTCGGTTAATAAGCTAGCAGAAATGTATGGTGGTGGGG
rpGlyProArgPheAsnLysLeuAlaGluMetTyrGlyGlyGlyG
2611 AAAGTGACAAAGACTCTAACGTAGGATATATGTTCTGTTCAAAC
luSerAspLysAspS r
2656 AAGAGAAAAGTAACCTACCCATGCTGCTCCACTTCACAAATATTT
2701 GATATTCAAGGAGCATTCTGCAGTCAGCACAAATTCTCA

Fig. 3 Continued

1 AAGATGGTAGCAAAGTAATGAGTTGAGAGTTGCTTCAGTGGTGT
 46 GTTACCGGAGATAGAAAAAATGAAGGATACAGGCTAACGGACCAA
 91 CTGCAGTGTGATGGAAACTGAGTTTAATGATGCCTCTTAGGAAA
 136 TGAECTCCAACATGTAGTACACTATTCACTTCGAGTTCTGAAT
 181 CCTCCCCAGTTGGCACAGCCATTGGAAGTGTCAAAGCAACTGATG
 226 CTGACACTGGAAAAATGCTGAAGTAGAATACCGAATTATTGATG
 271 GTGACGGTACTGATATGTTGACATCGTACTGAGAAGGACACAC
 MetPheAspIleValThrGluLysAspThrG
 316 AGGAAGGCATCATCACTGTGAAAAGCCACTCGACTATGAGAGCC
 lnGluGlyIleIleThrValLysLysProLeuAspTyrGluSerA
 361 GAAGACTTATACTCTGAAAGTCGAAGCAGAAAACACCCATGTAG
 rgArgLeuTyrThrLeuLysValGluAlaGluAsnThrHisvalA
 406 ATCCCCGTTTTATTACCTAGGACCATTAAAGATACTACCATAG
 spProArgPheTyrTyrLeuGlyProPheLysAspThrThrIleV
 451 TGAAAATCTCTATAGAAGATGTGGATGAACCTCCTGTTTTAGTA
 alLysIleSerIleGluAspValAspGluProProValPheSerA
 496 GGTCCCTCCTATCTGTTGAAGTTCATGAAGATATTGAAGTGGGCA
 rgSerSerTyrLeuPheGluValHisGluAspIleGluValGlyT
 541 CAATCATTGGTACTGTAATGCCAAGGGACCCAGATTCTATTC
 hrIleIleGlyThrValMetAlaArgAspProAspSerIleSerS
 586 GCCCCATTAGATTTCTGGATGCCATACTGACCTTGACAGAA
 erProIleArgPheSerLeuAspArgHisThrAspLeuAspArgI
 631 TCTTTAACATTCAATTGGAAATGGATCTCTTATACATCAAAAC
 lePheAsnIleHisSerGlyAsnGlySerLeuTyrThrSerLysP
 676 CTCTGACCGTGAACATCTCAGTGGCATAATTGTTAGTTATTG
 roLeuAspArgGluLeuSerGlnTrpHisAsnSerLeuValIleA
 721 CTGCTGAAATCAAACATCCAAAGAGACAACACGCGTGGCTGTT
 laAlaGluIleAsnAsnProLysGluThrThrArgValAlaValP
 766 TTGTGAGAATTTGGATGTTAATGACAATGCCAACAGTTGCTG
 heValArgIleLeuAspValAsnAspAsnAlaProGlnPheAlaV
 811 TGTCTATGACACTTTGTATGTGAAAATGCCAGACCAGGGCAGC
 alPheTyrAspThrPheValCysGluAsnAlaArgProGlyGlnL
 856 TAATACAGACTATAAGTGCAGTAGACAAAGATGACCTTTAGGTG
 euIleGlnThrIleSerAlaValAspLysAspAspProLeuGlyG
 901 GACAGAAATTTTTTCAGTTAGCTGCTGTCAATCCAAACTTCA
 lyGlnLysPhePhePheSerLeuAlaAlaValAsnProAsnPheT
 946 CAGTACAGGATAATGAAGATAACTGCCAGAATCTAACCCAGAA
 hrValGlnAspAsnGluAspAsnThrAlaArgIleLeuThrArgL

Fig. 4

991 AAAATGGATTCAATAGACATGAAATCAGTACCTATCTCTGCCTG
 ysAsnGlyPheAsnArgHisGluIleS rThrTyrLeuLeuProV
 1036 TGGTGATATCAGACAATGATTACCCGATTAGAGCACAGGCA
 alValIleSerAspAsnAspTyrProIleGlnSerSerThrGlyT
 1081 CACTGACCATTGAGTGTGCTTGTGACAGCCAAGGCAACATGC
 hrLeuThrIleArgValCysAlaCysAspSerGlnGlyAsnMetG
 1126 AATCCTGCCAGTGCTGAAGCCCTGCTCCTCCCTGCCGGCCTCAGCA
 lnSerCysSerAlaGluAlaLeuLeuLeuProAlaGlyLeuSerT
 1171 CTGGGGCCTTGATGCCATCCTCCTGCATCATCATTCTACTGG
 hrGlyAlaLeuIleAlaIleLeuLeuCysIleIleIleLeuLeuV
 1216 TTATAGTAGTACTGTTGCAGCTCTGAAAGGACAGCGAAAAAAAG
 alIleValValLeuPheAlaAlaLeuLysGlyGlnArgLysLysG
 1261 AGCCTCTGATCTTGTAAAAGAAGATATCAGAGACAAACATTGTGA
 luProLeuIleLeuSerLysGluAspIleArgAspAsnIleVals
 1306 GCTATAACGATGAGGGTGGTGGAGAGGAGGACACCCAGGCCTTG
 erTyrAsnAspGluGlyGlyGluGluAspThrGlnAlaPheA
 1351 ATATCGGCACCTTGAGGAATCCTGCAGCCATTGAGGAAAAAAAGC
 spIleGlyThrLeuArgAsnProAlaAlaIleGluGluLysLysL
 1396 TCCGGCGAGATATTATTCCAGAAACGTTATTATTCCCTCGGAGGA
 euArgArgAspIleIleProGluThrLeuPheIleProArgArgT
 1441 CTCCTACAGCTCCAGATAAACACGGACGTCCGGATTCATTAATG
 hrProThrAlaProAspAsnThrAspValArgAspPheIleAsnG
 1486 AAAGGCTAAAAGAGCATGATCTTGACCCCACCGCACCCCCCTACG
 luArgLeuLysGluHisAspLeuAspProThrAlaProProTyrA
 1531 ACTCACTTGCAACCTATGCCTATGAAGGAAATGATTCCATTGCTG
 spSerLeuAlaThrTyrAlaTyrGluGlyAsnAspSerIleAlaG
 1576 AATCTCTGAGTCATTAGAATCAGGTACTACTGAAGGAGACCAA
 luSerLeuSerSerLeuGluSerGlyThrThrGluGlyAspGlnA
 1621 ACTACGATTACCTCCGAGAATGGGGCCCTCGGTTAAATAAGCTAG
 snTyrAspTyrLeuArgGluTrpGlyProArgPheAsnLysLeuA
 1666 CAGAAATGTATGGTGGGGAAAGTGACAAAGACTCTAACGTA
 laGluMetTyrGlyGlyGluSerAspLysAspSer
 1711 GGATATATGTTCTGTTCAAACAAAGAGAAAGTAACCTACCCATGC
 1756 TGTCTCCACTTCACAATATTGATATTCAAGGAGCATTCCCTGCAG
 1801 TCAGCACAAATTCTCA

Fig. 4 Continued

1 CAAAGGCTGGAGACAAGTGGGTGGGGTTGGTTAATTGGCA
 46 GTTGTAAATTAAATGGTCAATTAAATAGTCCGTAATTGATGGCAGC
 91 CTGCTGTGGTACATGTGTGAAAGATTATCACTTGAAATATACGGA
 136 ATGTGATAGCAGTGGCTCAGGTGGAGAGTTGCCATTCAAATTC
 181 TGCAGTGGACTGCTCTGGCTGCCTGACCCAGTGAGAGGCAAAGA

 226 ATGCACTCTTCTTGGATCCCTCGTGGAAACTACATAGAACATTAAT
 Met His Ser Ser Trp Ile Pro Arg Gly Asn Tyr Ile Glu Ser Asn

 271 CGTGATGACTGCACGGTGTCTTGATCTATGCTGTGCACCTTAAG
 Arg Asp Asp Cys Thr Val Ser Leu Ile Tyr Ala Val His Leu Lys

 316 AAGTCAGGCTATGTCTTCTTGAGTACCAAGTATGTCGACAACAAAC
 Lys Ser Gly Tyr Val Phe Phe Glu Tyr Gln Tyr Val Asp Asn Asn

 361 ATCTTCTTGAGTTCTTATTCAAAATGATCAGTGCAGGAGATG
 Ile Phe Phe Glu Phe Ile Gln Asn Asp Gln Cys Gln Glu Met

 406 GACACCACCACTGACAAGTGGTAAAACCTACAGACAATGGAGAA
 Asp Thr Thr Asp Lys Trp Val Lys Leu Thr Asp Asn Gly Glu

 451 TGGGGCTCTCATCTGTAAATGCTGAAATCAGGCACAAACATACTC
 Trp Gly Ser His Ser Val Met Leu Lys Ser Gly Thr Asn Ile Leu

 496 TACTGGAGAACTACAGGCATCCTATGGGTCTAAGGCGGTCAAG
 Tyr Trp Arg Thr Thr Gly Ile Leu Met Gly Ser Lys Ala Val Lys

 541 CCTGTGCTGGTAAAAAATATCACAAATTGAAGGGGTGGCGTACACA
 Pro Val Leu Val Lys Asn Ile Thr Ile Glu Gly Val Ala Tyr Thr

 586 TCAGAATGTTTCCTGCAAGCCAGGCACATTCAAGAACAAACCA
 Ser Glu Cys Phe Pro Cys Lys Pro Gly Thr Phe Ser Asn Lys Pro

 631 GGTCATTCAACTGCCAGGTGTCCCAGAACACCTATTCTGAG
 Gly Ser Phe Asn Cys Gln Val Cys Pro Arg Asn Thr Tyr Ser Glu

 676 AAAGGAGCCAAGAATGTATAAGGTGTAAAGACGACTCTCAATT
 Lys Gly Ala Lys Glu Cys Ile Arg Cys Lys Asp Asp Ser Gln Phe

 721 TCAGAGGAAGGATCCAGTGAGTGTACAGAGGCCCTCCCTGTACC
 Ser Glu Glu Gly Ser Ser Glu Cys Thr Glu Arg Pro Pro Cys Thr

 766 ACAAAAGACTATTCCAGATCCACTCCATGTGATGAAGAAGGA
 Thr Lys Asp Tyr Phe Gln Ile His Thr Pro Cys Asp Glu Glu Gly

 811 AAGACACAGATAATGTACAAGTGGATAGAGCCAAAATCTGCCGG
 Lys Thr Gln Ile Met Tyr Lys Trp Ile Glu Pro Lys Ile Cys Arg

 856 GAGGATCTCACAGATGCTATTAGATTGCCCTCTGGAGAGAAG
 Glu Asp Leu Thr Asp Ala Ile Arg Leu Pro Pro Ser Gly Glu Lys

 901 AAGGATTGTCCGCCCTGCAACCCCTGGATTTATAACAATGGATCA
 Lys Asp Cys Pro Pro Cys Asn Pro Gly Phe Tyr Asn Asn Gly Ser

 946 TCTTCTTGCACATCCCTGTCCTCTGGAACATTTCAGATGGAACC
 S r Ser Cys His Pro Pro Gly Thr Phe S r Asp Gly Thr

Fig. 5

991 AAAGAATGTAGACCATGTCCAGCAGGAACGGAGCCTGCACTTGGC
 LysGluCysArgProCysProAlaGlyThrGluProAlaLeuGly

 1036 TTTGAATATAAAATGGTGGAAATGTCCTTCCTGGCAACATGAAA
 PheGluTyrLysTrpTrpAsnValLeuProGlyAsnMetLysThr

 1081 TCCTGCTTCAATGTTGGAAATTCAAAGTGCAGATGGAATGAATGGT
 SerCysPheAsnValGlyAsnSerLysCysAspGlyMetAsnGly

 1126 TGGGAGGTGGCTGGAGATCATATCCAGAGTGGGGCTGGAGGTTCT
 TrpGluValAlaGlyAspHisIleGlnSerGlyAlaGlyGlySer

 1171 GACAATGATTACCTGATCTAAACTTGCATATCCCAGGATTTAAA
 AspAsnAspTyrLeuIleLeuAsnLeuHisIleProGlyPheLys

 1216 CCACCAACATCTATGACTGGAGCCACGGGTTCTGAACTAGGAAGA
 ProProThrSerMetThrGlyAlaThrGlySerGluLeuGlyArg

 1261 ATAACATTTGTCTTGAGACCCCTCTGTTAGCTGACTGTGTTTG
 IleThrPheValPheGluThrLeuCysSerAlaAspCysvalLeu

 1306 TACTTCATGGTGGATATTAATAGAAAAAGTACAAATGTGGTAGAA
 TyrPheMetValAspIleAsnArgLysSerThrAsnValValGlu

 1351 TCGTGGGGTGGAACCAAAGAAAAACAAGCTTACACCCATATCATC
 SerTrpGlyGlyThrLysGluLysGlnAlaTyrThrHisIleIle

 1396 TTCAAGAATGCAACTTTACATTACATGGGGCATTCCCAGAGAA
 PheLysAsnAlaThrPheThrTrpGlyIleProArgGlu

 1441 CTAATTCAAGGTCCAAGATAATAGACGGTCCNCCATTGACATGT
 LeuIleGlnGlyProArg

 1486 TTGAAGGATTTATTCTATTCAAC

Fig. 5 Continued

1 CGGCCCTTCTCACACTCCCTGCCCTGCTGATGTGGAACGGGGTTTG
46 GGGTTCTGCAGGGCTATTGTCGCGCTGGGAAGGGACAGGCCG
91 GGACCGGGACCTCCGCTCGCAGCCGGCCGACCAGCAGGACAGCT

136 GCCCTGAAGCTCAGAGCCGGGGCGTGCGCCATGGCCCCACACTGG
MetAlaProHisTrp

181 GCTGTCTGGCTGGCAGCAAGGCTGTGGGCCTGGGCATTGGG
AlaValTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly

226 GCTGAGGTGTGGTGGAACCTTGTGCCCGTAAGACAGTGTCTTCT
AlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer

271 GGGGAGCTGCCACGGTAGTACGGCGGTTCTCCAGACCGGCATC
GlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle

316 CAGGACTTCCTGACACTGACGGCTGACGGAGCCCCTGGCTTCTG
GlnAspPheLeuThrLeuThrLeuThrGluProThrGlyLeuLeu

361 TACGTGGCGCCCGAGAGGCCCTGTTGCCTTCAGCATGGAGGCC
TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla

406 CTGGAGCTGCAAGGAGCGATCTCCTGGGAGGCCCTGGAGAAAG
LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys

451 AAGACTGAGTGTATCCAGAAAGGAAGAACAAACCAGACCGAGTGC
LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys

496 TTCAACTTCATCCGCTTCCTGCAGCCCTACAATGCCTCCACCTG
PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu

541 TACGTCTGGCACCTACGCCCTCCAGCCCCAGTGCACCTACGTC
TyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal

586 AACATGCTCACCTTCACTTGGAGCATGGAGAGTTGAAGATGGG
AsnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly

631 AAGGGCAAGTGTCCCTATGACCCAGCTAAGGGCCATGCTGGCCTT
LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLeu

676 CTTGTGGATGGTGAGCTGTACTCGGCCACACTCAACAACTTCCTG
LeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnPheLeu

721 GGCACGGAACCCATTATCCTGCGTAACATGGGGCCCCACCACTCC
GlyThrGluProIleIleLeuArgAsnMetGlyProHisHisSer

766 ATGAAGACAGAGTACCTGGCCTTTGGCTAACGAACCTCACTTT
MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPhe

811 GTAGGCTCTGCCTATGTACCTGAGAGTGTGGCAGCTCACGGGG
ValGlySerAlaTyrValProGluSerValGlySerPheThrGly

856 GACGACGACAAGGTCTACTTCTTCAAGGGAGCGGGCAGTGGAG
AspAspAspLysValTyrPhePhePheArgGluArgAlaValGlu

Fig. 6

901 TCCGACTGCTATGCCGAGCAGGTGGTGGCTCGTGTGGCCCGTGT
 SerAspCysTyrAlaGluGlnValValAlaArgValAlaArgVal
 946 TGCAAGGGCGATATGGGGGGCGCACGGACCTGCAGAGGAAGTGG
 CysLysGlyAspMetGlyGlyAlaArgThrLeuGlnArgLysTrp
 991 ACCACGTTCTGAAGGCGCGCTGGCATGCTCTGCCCGAACTGG
 ThrThrPheLeuLysAlaArgLeuAlaCysSerAlaProAsnTrp
 1036 CAGCTCTACTTCAACCAGCTGCAGGCGATGCACACCCCTGCAGGAC
 GlnLeuTyrPheAsnGlnLeuGlnAlaMetHisThrLeuGlnAsp
 1081 ACCTCCTGGCACAAACACCACCTCTTGCGGTTTCAAGCACAG
 ThrSerTrpHisAsnThrThrPhePheGlyValPheGlnAlaGln
 1126 TGGGGTGACATGTACCTGTCGGCCATCTGTGAGTACCAGTTGGAA
 TrpGlyAspMetTyrLeuSerAlaIleCysGluTyrGlnLeuGlu
 1171 GAGATCCAGCGGGTGGTGGAGGGCCCTATAAGGAGTACCATGAG
 GluIleGlnArgValPheGluGlyProTyrLysGluTyrHisGlu
 1216 GAAGCCCAGAAGTGGGACCGCTACACTGACCCCTGTACCCAGCCCT
 GluAlaGlnLysTrpAspArgTyrThrAspProValProSerPro
 1261 CGGCCTGGCTCGTCATTAAACAACGGCATCGGCGCACGGCTAC
 ArgProGlySerCysIleAsnAsnTrpHisArgArgHisGlyTyr
 1306 ACCAGCTCCCTGGAGCTACCCGACAAACATCCTCAACTTCGTCAAAG
 ThrSerSerLeuGluLeuProAspAsnIleLeuAsnPheValLys
 1351 AAGCACCCGCTGATGGAGGAGCAGGTGGGGCCCTCGGTGGAGCCGC
 LysHisProLeuMetGluGluGlnValGlyProArgTrpSerArg
 1396 CCCCTGCTCGTGAAGAAGGGCACCAACTTCACCCACCTGGTGGGCC
 ProLeuLeuValLysLysGlyThrAsnPheThrHisLeuValAla
 1441 GACCGGGTTACAGGACTTGATGGAGCCACCTATACAGTGTGTC
 AspArgValThrGlyLeuAspGlyAlaThrTyrThrValLeuPhe
 1486 ATTGGCACAGGAGACGGCTGGCTGCTCAAGGCTGTGAGCCTGGGG
 IleGlyThrGlyAspGlyTrpLeuLeuLysAlaValSerLeuGly
 1531 CCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTGACCAGGAG
 ProTrpValHisLeuIleGluGluLeuGlnLeuPheAspGlnGlu
 1576 CCCATGAGAACGCTGGTGTATCTCAGAGCAAGAACGCTGCTCTT
 ProMetArgSerLeuValLeuSerGlnSerLysLysLeuLeuPhe
 1621 GCCGGCTCCCGCTCTCAGCTGGTGCAGCTGCCCGTGGCCGACTGC
 AlaGlySerArgSerGlnLeuValGlnLeuProValAlaAspCys
 1666 ATAAAGTATCGCTCCTGTGCAGACTGTGTCCCTGCCCGGGACCCC
 IleLysTyrArgSerCysAlaAspCysValLeuAlaArgAspPro

Fig. 6 Continued

1711 TATTGCGCCTGGAGCGTCAACACCAGCCGTGTGGCCGTGGGT
TyrCysAlaTrpSerValAsnThrSerArgCysValAlaValGly

1756 GGCCACTTGGATCTTACTGATCCAGCATGTGATGACCTCGGAC
GlyHisPheGlySerLeuLeuIleGlnHisValMetThrSerAsp

1801 ACTTCAGGCATTGCAACCTCCGTGGCAGTAAGAAAGTCAGGCC
ThrSerGlyIleCysAsnLeuArgGlySerLysLysValArgPro

1846 ACTCCCCAAAACATCACGGTGGTGGCGGGCACAGACCTGGTGCTG
ThrProLysAsnIleThrValValAlaGlyThrAspLeuValLeu

1891 CCCTGCCACCTCTCCTCCACTTGGCCCCGGGTTCACTGGTATT
ProCysHisLeuSerSerThrTrpProArgGlySerValValPhe

1936 TAAACTTGCCTTCTCCTGTACAGGGCTGGAAAGGCTGTGTTAG

1981 GGGAAAAAAAGGAAAGGGTGGCCTGCTGTGGACAATGGCATACT

2026 CTCTTCCAGCCCTAGGAGGGAGGGCTCCTAACAGTGTAACTTATTG

2071 TGTCCCCGCGTATTATTGTTGTAAATATTGAGTATTTTATA

2116 TTGACAAATAAAATGGAGAAATGAAAAAAAAAAAAA

Fig. 6 Continued

1 CGGCCCTTCACACTCCTGCCCTGCTGATGTGGAACGGGGTTTG
46 GGGTTCTGCAGGGCTATTGTCGCGCTGGGGAAAGGGACAGGCCG
91 GGACCAGGACCTCCGCTCGCAGCCGGCGACCAGCAGGACAGCT

136 GCCCTGAAGCTCAGAGCCGGGCGTGCATGGCCCCACACTGG
MetAlaProHisTrp

181 GCTGTCTGGCTGGCAGCAAGGCTGTGGGCCTGGGCATTGGG
AlaValTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly

226 GCTGAGGTGTGGTGGAACCTTGTGCCGCGTAAGACAGTGTCTTCT
AlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer

271 GGGGAGCTGCCACGGTAGTACGGCGTTCTCCCAGACCGGCATC
GlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle

316 CAGGACTTCCTGACACTGACGGCTGACGGAGCCCACGGGCTTCTG
GlnAspPheLeuThrLeuThrLeuGluProThrGlyLeuLeu

361 TACGTGGCGCCCGAGAGGCCCTGTTGCCCTCAGCATGGAGGCC
TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla

406 CTGGAGCTGCAAGGAGCGATCTCCTGGGAGGCCCGTGGAGAAG
LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys

451 AAGACTGAGTGTATCCAGAAAGGAAAGAACACCAGACCGAGTGC
LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys

496 TTCAACTTCATCCGCTTCCTGCAGCCCTACAATGCCCTCCACCTG
PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu

541 TACGTCTGGCACCTACGCCCTCCAGCCAAGTGCACCTACGTC
TyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal

586 AACATGCTCACCTTCACGGAGCATGGAGAGTTGAAGATGGG
AsnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly

631 AAGGGCAAGTGTCCCTATGACCCAGCTAAGGGCCATGCTGGCCTT
LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLeu

676 CTTGTGGATGGTGAGCTGTACTCGGCCACACTCAACAACTTCCTG
LeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnpheLeu

721 GGCACGGAACCCATTATCCTCGCTAACATGGGGCCCCACCACTCC
GlyThrGluProIleIleLeuArgAsnMetGlyProHisHisSer

766 ATGAAGACAGAGTACCTGGCCTTTGGCTAACGAAACCTCACTTT
MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPhe

811 GTAGGCTCTGCCTATGTACCTGAGAGTGTGGCAGCTCACGGGG
ValGlySerAlaTyrValProGluSerValGlySerPheThrGly

856 GACGACGACAAGGTCTACTTCTTCAGGGAGCGGGCAGTGGAG
AspAspAspLysValTyrPhePhePheArgGluArgAlaValGlu

Fig. 7

901 TCCGACTGCTATGCCGAGCAGGTGGTGGCTCGTGTGGCCCCGTGTC
 SerAspCysTyrAlaGluGlnValValAlaArgValAlaArgVal
 946 TGCAAGGGCGATATGGGGGGCGCACGGACCCTGCAGAGGAAGTGG
 CysLysGlyAspMetGlyGlyAlaArgThrLeuGlnArgLysTrp
 991 ACCACGTTCTGAAGGCGGGCTGGCATGCTCTGCCCGAACTGG
 ThrThrPheLeuLysAlaArgLeuAlaCysSerAlaProAsnTrp
 1036 CAGCTCTACTTCAACCAGCTGCAGGCATGCACACCCTGCAGGAC
 GlnLeuTyrPheAsnGlnLeuGlnAlaMetHisThrLeuGlnAsp
 1081 ACCTCCTGGCACAAACACCACCTCTTGGGGTTTTCAAGCACAG
 ThrSerTrpHisAsnThrThrPhePheGlyValPheGlnAlaGln
 1126 TGGGGTGACATGTACCTGTCGGCCATCTGTGAGTACCAGTTGGAA
 TrpGlyAspMetTyrLeuSerAlaIleCysGluTyrGlnLeuGlu
 1171 GAGATCCAGCGGGTGTGAGGGCCCTATAAGGAGTACCATGAG
 GluIleGlnArgValPheGluGlyProTyrLysGluTyrHisGlu
 1216 GAAGCCCAGAAGTGGGACCGCTACACTGACCCCTGTACCCAGCCCT
 GluAlaGlnLysTrpAspArgTyrThrAspProValProSerPro
 1261 CGGCCTGGCTCGTCATTAAACAACGGCATCGCGGCCACGGCTAC
 ArgProGlySerCysIleAsnAsnTrpHisArgArgHisGlyTyr
 1306 ACCAGCTCCCTGGAGCTACCCGACAACATCCTCAACTTCGTCAAG
 ThrSerSerLeuGluLeuProAspAsnIleLeuAsnPheValLys
 1351 AAGCACCCGCTGATGGAGGAGCAGGTGGGGCCTCGGTGGAGCCGC
 LysHisProLeuMetGluGlnValGlyProArgTrpSerArg
 1396 CCCCTGCTCGTGAAGAAGGGCACCAACTTCACCCACCTGGTGGCC
 ProLeuLeuValLysLysGlyThrAsnPheThrHisLeuValAla
 1441 GACCGGGTTACAGGACTTGATGGAGGCCACCTATAACAGTGCTGTT
 AspArgValThrGlyLeuAspGlyAlaThrTyrThrValLeuPhe
 1486 ATTGGCACAGGAGACGGCTGGCTGCTCAAGGCTGTGAGCCTGGGG
 IleGlyThrGlyAspGlyTrpLeuLeuLysAlaValSerLeuGly
 1531 CCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTGACCAGGAG
 ProTrpValHisLeuIleGluLeuGlnLeuPheAspGlnGlu
 1576 CCCATGAGAACGCTGGTGTATCTCAGAGCAAGAACGCTGCTCTT
 ProMetArgSerLeuValLeuSerGlnSerLysLysLeuLeuPhe
 1621 GCCGGCTCCCGCTCTCAGCTGGTGCAGCTGCCGTGGCCGACTGC
 AlaGlySerArgSerGlnLeuValGlnLeuProValAlaAspCys
 1666 ATAAAAGTATCGCTCCTGTGCAGACTGTGTCCCTGCCGGGACCC
 IleLysTyrArgSerCysAlaAspCysValLeuAlaArgAspPro

Fig. 7 Continued

1711 TATTGCGCCTGGAGCGTCAACACCAGCCGCTGTGTGGCCGTGGGT
TyrCysAlaTrpSerValAsnThrSerArgCysValAlaValGly

1756 GGCCACTTGGATCTTACTGATCCAGCATGTGATGACCTCGGAC
GlyHisPheGlySerLeuLeuIleGlnHisValMetThrSerAsp

1801 ACTTCAGGCATTCGAAACCTCCGTGGCAGTAAGATAACAGTCAGGC
ThrSerGlyIleCysAsnLeuArgGlySerLysIleGlnSerGly

1846 CCACTNCCCCAAAACATCACGGTGTTGGCGGGCACAGACCTGGTG
ProLeuProLysAsnIleThrValValAlaGlyThrAspLeuVal

1891 CTGCCCTGCCACCTCTCCTCCAACTTGGCCCTGCCCGACTCCAAC
LeuProCysHisLeuSerSerAsnLeuAlaLeuProAspSerAsn

1936 CCCGAGGAGTCATCAGTATGAGGGGAACCCCCACCGCGTCGGCGG
ProGluGluSerSerVal

1981 ANAGCGTGGGAGGTGTAGCTCCTACTTTGCACAGGCACAGCTA
2026 TCTCAGGGACATGGCACGGGCACCTGCTCTGCTGGGACAGATAC
2071 TGCCCAGCACCCACCCGGCCATGAGGACCTGCTCTGCTCAGCAGC
2116 GGCAC TGCACTTGGTGTGGTCAACCAGGGCACCA GCTCGCAGAAGG
2161 CATCTTCTCCTCTGTGAATCACAGACACGCGGGACCCCA GGC
2206 GCCAAAATTTCAAGGCAGAAGTTNAAGATGTGTGTTGNTGTAT
2251 TTGACATGTGTTGTGTGTATGTGTGTG

Fig. 7 Continued

1 ACCGACGTCGAATATCCATGCATCCCGGTGCAGGTGGCAGACGGA
 46 CTCCGGCGGAATGGGGGGTGTGGCTGCTCCGCCAGGGTCCCCAGG
 91 GTGGGAGAGCGGCTCCGGCCACCGATGCCGGACCCCCTCTGT

 136 CTTCTGCTAGACATGCTTCTCGTTCATGCAGGCTCTTGG
 MetLeuPheLeuSerPheHisAlaGlySerTrp

 181 GAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGG
 GluSerTrpCysCysCysLeuIleProAlaAspArgProTrp

 226 GACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCC
 AspArgGlyGlnHisTrpGlnLeuGluMetAlaAspThrArgSer

 271 GTGCACGAGACTAGGTTGAGGCGGCCGTGAAGGTGATCCAGAGT
 ValHisGluThrArgPheGluAlaAlaValLysValIleGlnSer

 316 TTGCCGAAGAATGGTTATTCCAGCCAACAAATGAAATGATGCTT
 LeuProLysAsnGlySerPheGlnProThrAsnGluMetMetLeu

 361 AAATTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCGTAAA
 LysPheTyrSerPheTyrLysGlnAlaThrGluGlyProCysLys

 406 CTTTCAAGGCCTGGATTTGGGATCCTATTGGAAGATATAATGG
 LeuSerArgProGlyPheTrpAspProIleGlyArgTyrLysTrp

 451 GATGCTGGAGTCACTGGGTGATATGACCAAAGAGGAAGCCATG
 AspAlaTrpSerSerLeuGlyAspMetThrLysGluGluAlaMet

 496 ATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCA
 IleAlaTyrValGluGluMetLysLysIleIleGluThrMetPro

 541 ATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCAAGGTCCATT
 MetThrGluLysValGluGluLeuLeuArgValIleGlyProPhe

 586 TATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATA
 TyrGluIleValGluAspLysLysSerGlyArgSerSerAspIle

 631 ACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTAGAAGATCTT
 ThrSerValArgLeuGluIleSerLysCysLeuGluAspLeu

 676 GGTAATGTTCTCACTTCTACTCCAAACGCCAAACCGTTAATGGT
 GlyAsnValLeuThrSerThrProAsnAlaLysThrValAsnGly

 721 AAAGCTGAAAGCAGTGACAGTGGAGGCCAGTCTGAGGAAGAAGAG
 LysAlaGluSerSerAspSerGlyAlaGluSerGluGluGlu

 766 GCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAG
 AlaGlnGluGluValLysGlyAlaGluGlnSerAspAsnAspLys

 811 AAAATGATGAAGAAGTCAGCAGACCATAAGAATTGGAAGTCATT
 LysMetMetLysSerAlaAspHisLysAsnLeuGluValIle

Fig. 8

856 GTCACTAATGGCTATGATAAAGATGGCTTGTTCAGGATATACAG
 ValThrAsnGlyTyrAspLysAspGlyPheValGlnAspIleGln
 901 AATGACATTCATGCCAGTCTTCCCTGAATGGCAGAACGACTGAA
 AsnAspIleHisAlaSerSerLeuAsnGlyArgSerThrGlu
 946 GAAGTAAAGCCCATTGATGAAAACCTGGGGCAAAC TGAAAATCT
 GluValLysProIleAspGluAsnLeuGlyGlnThrGlyLysSer
 991 GCTGTTGCATTCAACCAAGATATAATGATGATCATGTTGAAGAT
 AlaValCysIleHisGlnAspIleAsnAspAspHisValGluAsp
 1036 GTTACAGGAATTCA CGATTGACAAGCGATT CAGACAGTGAAAGTT
 ValThrGlyIleGlnHisLeuThrSerAspSerAspSerGluVal
 1081 TACTGTGATTCTATGGAACAATTGGACAAGAAGAGTCTTAGAC
 TyrCysAspSerMetGluGlnPheGlyGlnGluSerLeuAsp
 1126 AGCTTTACGTCCAACAATGGACCATT CAGTATTACTGGGTGGT
 SerPheThrSerAsnAsnGlyProPheGlnTyrTyrLeuGlyGly
 1171 CATTCCAGTCAACCCATGGAAAATTCTGGATTCGTGAAGATATT
 HisSerSerGlnProMetGluAsnSerGlyPheArgGluAspIle
 1216 CAAGTACCTCCTGGAAATGGCACACATTGGGAAATATGCAGGTGGTT
 GlnValProProGlyAsnGlyAsnIleGlyAsnMetGlnValVal
 1261 GCAGTTGAAGGAAAAGGTGAAGTCAAGCATTGGAGGAAGATGGC
 AlaValGluGlyLysGlyGluValLysHisGlyGlyGluAspGly
 1306 AGGAATAACAGCGGAGCACCACACCGGGAGAACGAGGCGGGAGAA
 ArgAsnAsnSerGlyAlaProHisArgGluLysArgGlyGlyGlu
 1351 ACTGACGAATTCTCTAACATGTTAGAAGAGGAAGAGGACATAGGATG
 ThrAspGluPheSerAsnValArgArgGlyArgGlyHisArgMet
 1396 CAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGAAAGTGGA
 GlnHisLeuSerGluGlyThrLysGlyArgGlnValGlySerGly
 1441 GGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGC
 GlyAspGlyGluArgTrpGlySerAspArgGlySerArgGlySer
 1486 CTCAATGAGCAGATGCCCTCGTGTGATGAGACTGCAGGAGGAC
 LeuAsnGluGlnIleAlaLeuValLeuMetArgLeuGlnGluAsp
 1531 ATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAATGCTGACT
 MetGlnAsnValLeuGlnArgLeuGlnLysLeuGluMetLeuThr
 1576 GCTTGAGGCAAATCATCAACATCAACATTGCAGACTGCTCCT
 AlaLeuGlnAlaLysSerSerThrSerThrLeuGlnThrAlaPro
 1621 CAGCCCACCTCACAGAGACCCTGGTGGCCCTCGAGATGTCT
 GlnProThrS rGlnArgProSerTrpTrpProPheGluMetS r

Fig. 8 Continued

1666 CCTGGTGTGCTAACGTTGCCATCATATGGCCTTTATTGCACAG
ProGlyValLeuThrPheAlaIleIleTrpProPheIleAlaGln

1711 TGGTTGGTGTATTATACTATCAAAGAAGGAGAAGAAAAGTGAAC
TrpLeuValTyrLeuTyrTyrGlnArgArgArgArgLysLeuAsn

1756 TGAGGGAAAATGGTGTTCCTCAAGAAGACTACTGGAACTGGAT
1801 GACCTCAGAACATGAACTGGATTGTGGTGTACAAAGAAAATCTTAG
1849 TTTGTGATGATTACATTGCTTTGTTGTCCNGTAGTTAGTTG
1891 TGTACATATACACATATATATTGCACTACACAAACG

Fig. 8 Continued

卷之三

1 CATTCTAGCTGCCTGCTGCCTCCGCAGCGTCCCCCAAGCTCTCCC
 46 TGTGCTAACTGCCTGCACCTTGGACAGAGCGGGTGCGCAAATCAG
 91 AAGGATTAGTTGGGACCTGCCTGGCGACCCCATGGCATCCCCA
 MetAlaSerProA
 136 GAACCGTAACTATTGTGGCCCTCTCAGTGGCCCTGGGACTCTTCT
 rgThrValThrIleValAlaLeuSerValAlaLeuGlyLeuPheP
 181 TTGTTTCATGGGGACTATCAAGCTGACCCCCAGGCTCAGCAAGG
 heValPheMetGlyThrIleLysLeuThrProArgLeuSerLysA
 226 ATGCCTACAGTGAGATGAAACGTGCTTACAAGAGCTATGTTGAG
 spAlaTyrSerGluMetLysArgAlaTyrLysSerTyrValArgA
 271 CCCTCCCTCTGCTGAAGAAAATGGGATCAATTCCATTCTCCTCC
 laLeuProLeuLeuLysLysMetGlyIleAsnSerIleLeuLeuA
 316 GAAAAAGCATTGGTGCCCTTGAAGTGGCCTGTGGCATCGTCATGA
 rgLysSerIleGlyAlaLeuGluValAlaCysGlyIleValMett
 361 CCCTTGTGCCTGGCGTCCAAAGATGTGGCCAACCTCTTCCTAC
 hrLeuValProGlyArgProLysAspValAlaAsnPhePheLeuL
 406 TGTTGCTGGTGTGGCTGTGCTCTTCTTCCACCAGCTGGTCGGTG
 euLeuLeuValLeuAlaValLeuPhePheHisGlnLeuValGlyA
 451 ATCCTCTCAACGCTACGCCATGCTCTGGTGTGGAAATCCTGC
 spProLeuLysArgTyrAlaHisAlaLeuValPheGlyIleLeuL
 496 TCACTTGCCGCCTGCTGATTGCTCGCAAGCCGAAGACCGGTCTT
 euThrCysArgLeuLeuIleAlaArgLysProGluAspArgSerS
 541 CTGAGAAGAACCTTGCCAGGGATGCTGAGGAGCAACCCTCC
 erGluLysLysProLeuProGlyAsnAlaGluGlnProSerL
 586 TATATGAGAAGGCCCTCAGGGCAAAGTGAAGGTGTATAGAAAA
 euTyrGluLysAlaProGlnGlyLysValLysValSer

Fig. 9

1 TGCGCCCTCTGTCTGGCACTCCCTAGTGAGATGAACCCGGTACCT
 46 CAGATGAAATGCAGAAATCACCGCTTCTGCGTCGCTCACGCT
 91 GGGAGCTGTAGACCAGAGCTGTTCTATTGCCATCTGGCTC
 136 TCCCTCGAAAGATTATCACTTGAATATACTGGAAATGTGATAGCAG
 181 TGGCTCCAGGTGGAGAGTTGCCATTCAAATTCTGCAGTGGACTG
 226 CTCTGGCTGCCTGACCCAGTGAGAGGCAAAGAATGCACTTCTC
 271 CTGTGCTTCTGGAGAGTATCTAGAAATGAAGAACCAAGGTATGCAG
 MetLysAsnGlnValCysSe
 316 TAAGTGTGGTGAAGGCACCTATTCCCTGGGCAGTGGCATCAAATT
 rLysCysGlyGluGlyThrTyrSerLeuGlySerGlyIleLysPh
 361 TGATGAATGGGATGAATTGCCGGCAGGATTTCTAACATCGAAC
 eAspGluTrpAspGluLeuProAlaGlyPheSerAsnIleAlaTh
 406 ATTCATGGACACTGTGGTGGGCCCTCTGACAGCAGGCCAGACGG
 rPheMetAspThrValValGlyProSerAspSerArgProAspGl
 451 CTGTAACAACCTCTTCTGGATCCCTCGTGGAAACTACATAGAAC
 yCysAsnAsnSerSerTrpIleProArgGlyAsnTyrIleGluSe
 496 TAATCGTGACTGCACGGTGTCTTGATCTATGCTGTGCACCT
 rAsnArgAspAspCysThrValSerLeuIleTyrAlaValHisLe
 541 TAAGAAGTCAGGCTATGTCTTCTTGAGTACCAAGTATGTCGACAA
 uLysLysSerGlyTyrValPhePheGluTyrGlnTyrValAspAs
 586 CAACATCTTCTTGAGTTCTTATTCAAAATGATCAGTGCCAGGA
 nAsnIlePhePheGluPhePheIleGlnAsnAspGlnCysGlnGl
 631 GATGGACACCACCACTGACAAGTGGGTAAAACCTACAGACAATGG
 uMetAspThrThrAspLysTrpValLysLeuThrAspAsnGl
 676 AGAATGGGCTCTCATTCTGTAATGCTGAAATCAGGCACAAACAT
 yGluTrpGlySerHisSerValMetLeuLysSerGlyThrAsnIl
 721 ACTCTACTGGAGAACTACAGGCATCCTTATGGTTCTAAGGCGGT
 eLeuTyrTrpArgThrThrGlyIleLeuMetGlySerLysAlaVa
 766 CAAGCCTGTGCTGGTAAAAAATATCACATTGAAGGGTGGCGTA
 1LysProValLeuValLysAsnIleThrIleGluGlyValAlaTy
 811 CACATCAGAATTTCTTGCAAGCCAGGCACATTAGCAACAA
 rThrSerGluCysPheProCysLysProGlyThrPheSerAsnLy
 856 ACCAGGTTCATTCAACTGCCAGGTGTGTCCCAGAAACACCTATT
 sProGlySerPheAsnCysGlnValCysProArgAsnThrTyrSe
 901 TGAGAAAGGAGCCAAAGAATGTATAAGGTGTAAAGACGACTCTCA
 rGluLysGlyAlaLysGluCysIleArgCysLysAspAspSerGl
 946 ATTTCAGAGGAAGGATCCAGTGAGTGTACAGAGCGCCCTCCCTG
 nPheSerGluGlySerSerGluCysThrGluArgProProCy

Fig. 10

991 TACCACAAAAGACTATTCAGATCCATACTCCATGTGATGAAGA
 sThrThrLysAspTyrPheGlnIleHisThrProCysAspGluGl
 1036 AGGAAAGACACAGATAATGTACAAGTGGATAGAGCCCCAAATCTG
 uGlyLysThrGlnIleMetTyrLysTrpIleGluProLysIleCy
 1081 CCGGGAGGATCTCACAGATGCTATTAGATTGCCCTCTGGAGA
 sArgGluAspLeuThrAspAlaIleArgLeuProProSerGlyGl
 1126 GAAGAAGGATTGTCCGCCTTGCAACCCCTGGATTATAACAATGG
 uLysLysAspCysProProCysAsnProGlyPheTyrAsnAsnGl
 1171 ATCATCTTCTTGCCATCCCTGTCCTGGAACATTTCAGATGG
 ySerSerSerCysHisProCysProProGlyThrPheSerAspGl
 1216 AACCAAAGAATGTAGACCATGTCCAGCAGGAACGGAGCCTGCACT
 yThrLysGluCysArgProCysProAlaGlyThrGluProAlaLe
 1261 TGGCTTGAAATATAATGGTGGAAATGTCCTCCTGGCAACATGAA
 uGlyPheGluTyrLysTrpTrpAsnValLeuProGlyAsnMetLy
 1306 AACTCCTGCTTCAATGTTGGAAATTCAAAGTGCATGGAAATGAA
 sThrSerCysPheAsnValGlyAsnSerLysCysAspGlyMetAs
 1351 TGGTTGGGAGGTGGCTGGAGATCATATCCAGAGTGGGGCTGGAGG
 nGlyTrpGluValAlaGlyAspHisIleGlnSerGlyAlaGlyGl
 1396 TTCTGACAATGATTACCTGATCTTAAACTGCATATCCCAGGATT
 ySerAspAsnAspTyrLeuIleLeuAsnLeuHisIleProGlyPh
 1441 TAAACCACCAACATCTATGACTGGAGGCCACGGGTTCTGAACTAGG
 eLysProProThrSerMetThrGlyAlaThrGlySerGluLeuGl
 1486 AAGAATAACATTGTCTTGAGACCCCTGTTAGCTGACTGTGT
 yArgIleThrPheValPheGluThrLeuCysSerAlaAspCysVa
 1531 TTTGTACTTCATGGTGGATATTAAATAGAAAAAGTACAAATGTGGT
 1LeuTyrPheMetValAspIleAsnArgLysSerThrAsnValVa
 1576 AGAACATCGTGGGGTGGAACCAAAGAAAAACAAGCTTACACCCATAT
 1GluSerTrpGlyGlyThrLysGluLysGlnAlaTyrThrHisI1
 1621 CATCTTCAAGAATGCAACTTTACATTACATGGGGCATTCCCAG
 eIlePheLysAsnAlaThrPheThrPheThrTrpGlyIleProAr
 1666 AGAACTAATTCAAGGTCCAAGATAATAGACGGTTCCNCCATTGAC
 gGluLeuIleGlnGlyProArg
 1711 ATGTTGAAGGATTATTCTATTCA

Fig. 10 Continued

1 CGGCCCTCTCACACTCCTGCCCTGCTGATGTGGAACGGGGTTTG
 46 GGGTCTGCAGGGCTATTGCTGCGCTGGGGAAAGGGACAGGCCG
 91 GAACCGGGACCTCCGCTCGCAGCCGGCGACCAGCAGGACAGCT
 136 GGCCTGAAGCTCAGAGCCGGGCGTGCATGGCCCCACACTGG
 MetAlaProHisTrp
 181 GCTGTCTGGCTGCTGGCAGCAAGGCTGTGGGGCTGGCATTGGG
 AlaValTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly
 226 GCTGAGGTGTGGTGGAACCTTGTGCCCGTAAGACAGTGTCTTCT
 AlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer
 271 GGGGAGCTGGCCACGGTAGTACGGCGTTCTCCAGACCGGCATC
 GlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle
 316 CAGGACTTCCTGACACTGACGGCTGACGGAGCCCCTGGGCTTCTG
 GlnAspPheLeuThrLeuThrLeuGluProThrGlyLeuLeu
 361 TACGTGGCGCCCGAGAGGCCCTGTTGCCTTCAGCATGGAGGCC
 TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla
 406 CTGGAGCTGCAAGGAGCGATCTCCTGGGAGGCCCGTGGAGAAG
 LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys
 451 AAGACTGAGTGTATCCAGAAAGGGAAAGAACAAACCAGACCGAGTGC
 LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys
 496 TTCAACTTCATCCGCTTCCTGCAGCCCTACAATGCCTCCACCTG
 PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu
 541 TACGTCTGTGGCACCTACGCCTTCCAGCCCAAGTGCACCTACGTC
 TyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal
 586 AACATGCTCACCTCACTTGGAGCATGGAGAGTTGAAGATGGG
 AsnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly
 631 AAGGGCAAGTGTCCCTATGACCCAGCTAAGGGCCATGCTGGCCTT
 LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLeu
 676 CTTGTGGATGGTGGCTGTACTCGGCCACACTCAACAACTTCCTG
 LeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnPheLeu
 721 GGCACGGAAACCATTATCCTGCGTAACATGGGCCACCAACTCC
 GlyThrGluProIleIleLeuArgAsnMetGlyProHisHisSer
 766 ATGAAGACAGAGTACCTGGCCTTTGGCTAACGAACCTCACTTT
 MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPhe
 811 GTAGGCTCTGCCTATGTACCTGAGAGTGTGGCAGCTTACGGGG
 ValGlySerAlaTyrValProGluSerValGlySerPheThrGly
 856 GACGACGACAAGGTCTACTTCTTCAGGGAGCGGGCAGTGGAG
 AspAspAspLysValTyrPhePhePheArgGluArgAlaValGlu

Fig. 11

901 TCCGACTGCTATGCCGAGCAGGTGGTGGCTCGTGTGGCCCGTGT
 SerAspCysTyrAlaGluGlnValValAlaArgValAlaArgVal
 946 TGCAAGGGCGATATGGGGGGCGCACGGACCCTGCAGAGGAAGTGG
 CysLysGlyAspMetGlyGlyAlaArgThrLeuGlnArgLysTrp
 991 ACCACGTTCTGAAGGCAGGGCTGGCATGCTCTGCCCGAACTGG
 ThrThrPheLeuLysAlaArgLeuAlaCysSerAlaProAsnTrp
 1036 CAGCTCTACTTCAACCAGCTGCAGGCGATGCACACCCCTGCAGGAC
 GlnLeuTyrPheAsnGlnLeuGlnAlaMetHisThrLeuGlnAsp
 1081 ACCTCCTGGCACAAACACCACCTTCTTGGGGTTTTCAAGCACAG
 ThrSerTrpHisAsnThrThrPhePheGlyValPheGlnAlaGln
 1126 TGGGGTGACATGTACCTGTCGGCCATCTGTGAGTACCAAGTTGGAA
 TrpGlyAspMetTyrLeuSerAlaIleCysGluTyrGlnLeuGlu
 1171 GAGATCCAGCGGGTGTGAGGGCCCCTATAAGGAGTACCATGAG
 GluIleGlnArgValPheGluGlyProTyrLysGluTyrHisGlu
 1216 GAAGCCCAGAAGTGGGACCGCTACACTGACCCCTGTACCCAGCCCT
 GluAlaGlnLysTrpAspArgTyrThrAspProValProSerPro
 1261 CGGCCTGGCTCGTCATTAAACAACGGCATGGCGCCACGGCTAC
 ArgProGlySerCysIleAsnAsnTrpHisArgArgHisGlyTyr
 1306 ACCAGCTCCCTGGAGCTACCCGACAAACATCCTCAACTTCGTCAAG
 ThrSerSerLeuGluLeuProAspAsnIleLeuAsnPheValLys
 1351 AAGCACCCGCTGATGGAGGAGCAGGTGGGGCTCGGTGGAGCCGC
 LysHisProLeuMetGluGlnValGlyProArgTrpSerArg
 1396 CCCCTGCTCGTAAGAAGGGCACCAAACCTCACCCACCTGGTGGCC
 ProLeuLeuValLysLysGlyThrAsnPheThrHisLeuValAla
 1441 GACCGGGTTACAGGACTTGATGGAGCCACCTATAACAGTGCTGTT
 AspArgValThrGlyLeuAspGlyAlaThrTyrThrValLeuPhe
 1486 ATTGGCACAGGAGACGGCTGGCTGCTCAAGGCTGTGAGCCTGGGG
 IleGlyThrGlyAspGlyTrpLeuLeuLysAlaValSerLeuGly
 1531 CCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTGACCAGGAG
 ProTrpValHisLeuIleGluGluLeuGlnLeuPheAspGlnGlu
 1576 CCCATGAGAACGCTGGTGCTATCTCAGAGAAAAAGCTGCTCTT
 ProMetArgSerLeuValLeuSerGlnSerLysLysLeuLeuPhe
 1621 GCCGGCTCCCGCTCTCAGCTGGTGAGCTGCCGTGGCCGACTGC
 AlaGlySerArgSerGlnLeuValGlnLeuProValAlaAspCys
 1666 ATTAAGTATCGCTCCTGTGCAGACTGTGTCTCGCCCCGGGACCCC
 IleLysTyrArgSerCysAlaAspCysValLeuAlaArgAspPro

Fig. 11 Continued

1711 TATTGCGCCTGGAGCGTCAACACCAGCCGCTGTGTGGCCGTGGGT
TyrCysAlaTrpSerValAsnThrSerArgCysValAlaValGly

1756 GGCCACTCTGGATCTACTGATCCAGCATGTGATGACCTCGGAC
GlyHisSerGlySerLeuLeuIleGlnHisValMetThrSerAsp

1801 ACTTCAGGCATCTGCAACCTCCGTGGCAGTAAGAAAGTCAGGCC
ThrSerGlyIleCysAsnLeuArgGlySerLysLysValArgPro

1846 ACTCCCCAAAACATCACGGTGGTGGCGGGCACAGACCTGGTGCTG
ThrProLysAsnIleThrValValAlaGlyThrAspLeuValLeu

1891 CCCTGCCACCTCTCCTCCACTTGGCCCCGGGGTCAGTGGTATT
ProCysHisLeuSerSerThrTrpProArgGlySerValValPhe

1936 TATACTTGCCTTCTTCCTGTACAGGGCTGGGAAAGGCTGTGAG
TyrThrCysLeuLeuProValGlnGlyTrpGluArgLeuCysGlu

1981 GGGAAAAAAAGGAAAGGGTGGCCTGCTGTGGACAATGGCATACT
GlyLysLysArgLysGlyTrpAlaCysCysGlyGlnTrpHisThr

2026 CTCTTCCAGCCCTAGGAGGAGGGCTCCTAACAGTGTAACTTATTG
LeuPheGlnPro

2071 TGTCGGCGTATTTATTGTTGTAATATTGAGTATTTTATA

2116 TTGACAAATAAATGGAGAAAATGAAAAA

Fig. 11 Continued

1 CGCTCCATGTATNAGTTCATGCAGGCTCTGGGAAAGCTGGTGC
 Met Tyr --- Phe His Ala Gly Ser Trp Glu Ser Trp Cys
 46 TGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAA
 Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln
 91 CACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACT
 His Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr
 136 AGGTTTGGCGGCCGTGAAGGTGATCCAGAGTTGCCAAGAAT
 Arg Phe Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn
 181 GATTCAATTCCAGCCAACAAATGAAATGATGCTTAAATTAGC
 Asp Ser Phe Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser
 226 TTCTATAAGCAGGCAACTGAAGGACCTGTAAACTTCAAGGCCT
 Phe Tyr Lys Gln Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro
 271 GGATTTGGGATCCTATTGGAAGATATAATGGGATGCTTGGAGT
 Gly Phe Trp Asp Pro Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser
 316 TCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTT
 Ser Leu Gly Asp Met Thr Lys Glu Ala Met Ile Ala Tyr Val
 361 GAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAA
 Glu Glu Met Lys Ile Ile Glu Thr Met Pro Met Thr Glu Lys
 406 GTTGAAGAATTGCTGCGTGTCA TAGGTCCATTATGAAATTGTC
 Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu Ile Val
 451 GAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGA
 Glu Asp Lys Ser Gly Arg Ser Ser Asp Ile Thr Ser Val Arg
 496 CTGGAGAAAATCTCAAATGTTAGAAGATCTGGTAATGTTCTC
 Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp Leu Gly Asn Val Leu
 541 ACTTCTACTCCAAACGCCAAACCGTTAATGGTAAAGCTGAAAGC
 Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys Ala Glu Ser
 586 AGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCAAGAAGAA
 Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Ala Gln Glu Glu
 631 GTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAG
 Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Met Met Lys
 676 AAGTCAGCAGACCATAAGAATTGGAAAGTCATTGTCACTAATGGC
 Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly
 721 TATGATAAAAGATGGCTTGTTCAGGATATACAGAATGACATTCA
 Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His
 766 GCCAGTTCTTCCCTGAATGGCAGAACGACTGAAGAAGTAAAGCCC
 Ala S r Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro

Fig. 12

811 ATTGATGAAAACCTGGGGCAAACCTGGAAAATCTGCTGTTGCATT
 IleAspGluAsnLeuGlyGlnThrGlyLysSerAlaValCysIle
 856 CACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATT
 HisGlnAspIleAsnAspAspHisValGluAspValThrGlyIle
 901 CAGCATTGACAAGCGATTCAGACAGTGAAGTTACTGTGATTCT
 GlnHisLeuThrSerAspSerAspSerGluValTyrCysAspSer
 946 ATGGAACAATTGGACAAGAAGAGTCTTAGACAGCTTACGTCC
 MetGluGlnPheGlyGlnGluGluSerLeuAspSerPheThrSer
 991 AACAAATGGACCATTCAGTATTACTTGGGTGGTCATTCCAGTCAA
 AsnAsnGlyProPheGlnTyrTyrLeuGlyGlyHisSerSerGln
 1036 CCCATGGAAAATTCTGGATTCGTGAAGATATTCAAGTACCTCCT
 ProMetGluAsnSerGlyPheArgGluAspIleGlnValProPro
 1081 GGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGA
 GlyAsnGlyAsnIleGlyAsnMetGlnValValAlaValGluGly
 1126 AAAGGTGAAGTCAAGCATGGAGGAGAACATGGCAGGAATAACAGC
 LysGlyGluValLysHisGlyGluAspGlyArgAsnAsnSer
 1171 GGAGCACACACCGGGAGAACCGAGGCGGGAGAAACTGACGAATTC
 GlyAlaProHisArgGluLysArgGlyGlyGluThrAspGluPhe
 1216 TCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGC
 SerAsnValArgArgGlyArgHisArgMetGlnHisLeuSer
 1261 GAAGGAACCAAGGGCCGGCAGGTGGAAAGTGGAGGTGATGGGGAG
 GluGlyThrLysGlyArgGlnValGlySerGlyGlyAspGlyGlu
 1306 CGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGGCCTCAATGAGCAG
 ArgTrpGlySerAspArgGlySerArgGlySerLeuAsnGluGln
 1351 ATGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTC
 IleAlaLeuValLeuMetArgLeuGlnGluAspMetGlnAsnVal
 1396 CTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTGCAGGCA
 LeuGlnArgLeuGlnLysLeuGluThrLeuThrAlaLeuGlnAla
 1441 AAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCA
 LysSerSerThrSerThrLeuGlnThrAlaProGlnProThrSer
 1486 CAGAGACCATTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTA
 GlnArgProSerTrpTrpProPheGluMetSerProGlyValLeu
 1531 ACGTTGCCATCATATGGCCTTTATTGCACAGTGGTTGGTGTAT
 ThrPheAlaIleIleTrpProPheIleAlaGlnTrpLeuValTyr

Fig. 12 Continued

1576 TTATACTATCAAAGAAGGAGAAGAAA
LeuTyrTyrGlnArgArgArgArgLysLeuAsn

1621 TGTTTCCTCAAGAAGACTACTGGAACTGGATGACCTCAGAACATGA
1666 ACTGGATTGTGGTGGTCACAAGAAA
1711 CATTGCTTTTGTGTCAGTAGTTAGTTGTGACATATATAC
1756 ACATATATATTTGCACTACACAAACGATAAACATTAAAGGACTA
1801 ATATTGCTGATACTTGAATAATCAATCTACTAGGTTATAAGTA
1846 GTATACACAGATTACCCCTGCCCTGAACTTGAAAGGACATTAAAT
1891 TATTAATGATCATTTGGTAACATGTTACCTGATTATCTTCCATA
1936 GAGTAACATAAGCTGCTTTCAAAGGTACCATTGTGATAATGAGA
1981 TCAAATTATAAGTTATTATTTAATTCTAAATTAAATAAAA
2026 GAAAGAACAAAAA

Fig. 12 Continued

10002050-110202

20936375-0-104: 1 ..MYXFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAA 48
 |||||||
 20936375.0.1: 1 MLFLSFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAA 50
 |||||||

49 VKVIQSLPKNDSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYK 98
 |||||||
 51 VKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYK 100
 |||||||

99 WDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIV 148
 |||||||
 101 WDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIV 150
 |||||||

149 EDKKSGRSSDITSVRLEKISKCLEDLGNVLSTPNAKTVNGKAESSDSGA 198
 |||||||
 151 EDKKSGRSSDITSVRLEKISKCLEDLGNVLSTPNAKTVNGKAESSDSGA 200
 |||||||

199 ESEEEEAQEEVKGAEQSDNDKMMKKSADHKNLEVIVTNGYDKDGFVQDI 248
 |||||||
 201 ESEEEEAQEEVKGAEQSDNDKMMKKSADHKNLEVIVTNGYDKDGFVQDI 250
 |||||||

249 QNDIHASSSLNKRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGI 298
 |||||||
 251 QNDIHASSSLNKRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGI 300
 |||||||

299 QHLTSDDSEVYCDSMEQFGQEESDLSFTSNNGPFQYYLGGHSSQPMENS 348
 |||||||
 301 QHLTSDDSEVYCDSMEQFGQEESDLSFTSNNGPFQYYLGGHSSQPMENS 350
 |||||||

349 GFREDIQVPPGNIGNMQVVAVEGKGEVKHGEDGRNNSGAPHREKRG 398
 |||||||
 351 GFREDIQVPPGNIGNMQVVAVEGKGEVKHGEDGRNNSGAPHREKRG 400
 |||||||

399 ETDEFNSVRRGRGHMRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQ 448
 |||||||
 401 ETDEFNSVRRGRGHMRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQ 450
 |||||||

449 IALVLMRLQEDMQNVLRQLQKLETLTALQAKSSTSTLQTAPQPTSQRPSW 498
 |||||||
 451 IALVLMRLQEDMQNVLRQLQKLEMALTAQAKSSTSTLQTAPQPTSQRPSW 500
 |||||||

499 WPFEMSPGVLTFAIIWPFIAQWLVYLYQRRRKLN 534
 |||||||
 501 WPFEMSPGVLTFAIIWPFIAQWLVYLYQRRRKLN 536
 |||||||

Fig. 13

FFFFFTT" 0502000T

Sequences analyzed:

1. 1795045-0-77
2. 1795045-0-61

1795045077 1795045061	MKNQVCSKCGEGLYSGSCGKEDEMDLPAGESENATEMDIVACPSDSRPGCCNNSWIP MHNWIP
1795045077 1795045061	RENDZEE SNRDDCIVAVSLTAVHKKSGCIVFEEYQAVDINNEPEEFI ONDOCGEMDTHHDKAN RGVATTE SNRDDCIVAVSLTAVHKKSGCIVFEEYQAVDINNEPEEFI ONDOCGEMDTHHDKAN
1795045077 1795045061	VKAHDNGEMESHSVMIKSGCHNTDKAIVHKKSGCIVFEEYQAVDINNEPEEFI ONDOCGEMDTHHDKAN VKAHDNGEMGSHSVMIKSGCHNTDKAIVHKKSGCIVFEEYQAVDINNEPEEFI ONDOCGEMDTHHDKAN
1795045077 1795045061	PCPNSNPKCSINGOYCPRNAYSEKAYKECERCKADDSSOSEEFGSSEICERPPCIVTKDYEFOI PCPNSNPKCSINGOYCPRNAYSEKAYKECERCKADDSSOSEEFGSSEICERPPCIVTKDYEFOI
1795045077 1795045061	HHPQDEBCKQDQVWAEPPKSCREDIDPDAVEPPPSGEKRD&PPCNPGFANNIGSSSCHBGP HHPQDEBCKQDQVWAEPPKSCREDIDPDAVEPPPSGEKRD&PPCNPGFANNIGSSSCHBGP
1795045077_cura_56 1795045061_cura_54	RGVTSDEKECRCPGACHEPAICFEAKWNVIFPENMKLSCFNVGNSKCDENIGWEVAGDH PCPNSBCKECRCPGACHEPAICFEAKWNVIFPENMKLSCFNVGNSKCDENIGWEVAGDH
1795045077_cura_56 1795045061_cura_54	IOSCAGGSNDYETENHTRGTRPISWIGAGSELGRIALVEPLFCGSAOYEVLDIN IOSCAGGSNDYETENHTRGTRPISWIGAGSELGRIALVEPLFCGSAOYEVLDIN
1795045077_cura_56 1795045061_cura_54	TRKSTNAVAESWGCHAEKOYVTHLEKVNATPPEIINGTPRELIQGPR TRKSTNAVAESWGCHAEKOYVTHLEKVNATPPEIINGTPRELIQGPR

Fig. 14

Sequences analyzed:

1. 204229740132ext2_cura_56
2. Q64151_SEMAPHORIN_4C_PREC_Mus
3. Q92854_SEMAPHORIN
4. 20422974.2_Cura_54
5. 20422974.0_132_Cura_54

204229740132ext2_cura_56	YADHWAIVVAVLGELECAEMMNLVSSGELAARRRSQICD3ELEIPE
204229740132_cura_54	YADHWAIVVAVLGELECAEMMNLVSSGELAARRRSQICD3ELEIPE
204229742_cura_54	YADHWAIVVAVLGELECAEMMNLVSSGELAARRRSQICD3ELEIPE
q64151_semaphorin_4c_prec_mus	YADHWAIVVAVLGELECAEMMNLVSSGELAARRRSQICD3ELEIPE
q92854_semaphorin	YADHWAIVVAVLGELECAEMMNLVSSGELAARRRSQICD3ELEIPE
204229740132ext2_cura_56	PICCHYVENEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVE
204229740132_cura_54	PICCHYVENEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVE
204229742_cura_54	PICCHYVENEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVE
q64151_semaphorin_4c_prec_mus	HSGCHYVENEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVE
q92854_semaphorin	DRTDVYKCNFVEVNNANNTISERQHQHLYWKVSEPEDRKAFCRKCSKRCETCNVTRWOP
204229740132ext2_cura_56	YANSHIAVCCCHAAEOPKCHYVANMTHPHEGEEREDERCKCPYDDBNKHACHVYDCCEYSSN
204229740132_cura_54	YANSHIAVCCCHAAEOPKCHYVANMTHPHEGEEREDERCKCPYDDBNKHACHVYDCCEYSSN
204229742_cura_54	YANSHIAVCCCHAAEOPKCHYVANMTHPHEGEEREDERCKCPYDDBNKHACHVYDCCEYSSN
q64151_semaphorin_4c_prec_mus	YANSHIAVCCCHAAEOPKCHYVANMTHPHEGEEREDERCKCPYDDBNKHACHVYDCCEYSSN
q92854_semaphorin	LSYLSHIAVCCCHAAEOPACDHAKNTTSERKF.LGKNEDEGCRCPDPAHSYTSSYVDCELYS
204229740132ext2_cura_56	TIUNNEIGEPGEGIENWGPHTSWSKPTGAEVNEVNEPHAGSAVAPESYGSATCDDDKVAV
204229740132_cura_54	TIUNNEIGEPGEGIENWGPHTSWSKPTGAEVNEVNEPHAGSAVAPESYGSATCDDDKVAV
204229742_cura_54	TIUNNEIGEPGEGIENWGPHTSWSKPTGAEVNEVNEPHAGSAVAPESYGSATCDDDKVAV
q64151_semaphorin_4c_prec_mus	TIUNNEIGEPGEGIENWGPHTSWSKPTGAEVNEVNEPHAGSAVAPESYGSATCDDDKVAV
q92854_semaphorin	PSYNEIGEPGEGIENWGPHTSWSKPTGAEVNEVNEPHAGSAVAPESYGSATCDDDKVAV
204229740132ext2_cura_56	RDIYV2SDGTYEONAVARYVRYCKEDMVECAARTFOKMKHJUHGRVYCSAPNMOLXNOQIA
204229740132_cura_54	RDIYV2SDGTYEONAVARYVRYCKEDMVECAARTFOKMKHJUHGRVYCSAPNMOLXNOQIA
204229742_cura_54	RDIYV2SDGTYEONAVARYVRYCKEDMVECAARTFOKMKHJUHGRVYCSAPNMOLXNOQIA
q64151_semaphorin_4c_prec_mus	SFVYV2SDGTYEONAVARYVRYCKEDMVECAARTFOKMKHJUHGRVYCSAPNMOLXNOQIA
q92854_semaphorin	TEVSVIEFVFRV11PRZARCGDQEGTTRIGKWHSTKRIESRPDSCLVENMIRD

Fig. 15A

1880250 110201

31/37

Fig. 15B

Fig. 15C

Fig. 16

Fig. 17

Fig. 18

Tissue Source	Relative Expression (%)				
	3445452	17089878	1795045.61	20422974	20936375.01
Endothelial cells	0.00	0.00	1.88	1.11	8.72
Endothelial cells (treated)	0.00	0.01	4.58	1.99	9.74
Pancreas	2.05	0.32	2.68	5.63	16.49
Pancreatic ca. CAPAN 2	0.01	0.00	0.07	1.91	40.05
Adipose	0.24	1.48	6.70	10.01	51.05
Adrenal gland	0.92	0.43	1.36	9.54	75.26
Thyroid	21.17	0.00	1.96	6.25	30.78
Salivary glands	7.59	0.13	1.56	5.67	24.66
Pituitary gland	0.05	0.07	1.11	10.73	10.81
Brain (fetal)	0.17	15.18	3.59	12.41	25.00
Brain (whole)	1.96	34.15	52.85	28.32	38.16
Brain (amygdala)	1.03	19.89	7.13	7.97	46.33
Brain (cerebellum)	4.64	29.73	76.84	29.32	55.86
Brain (hippocampus)	2.98	28.32	27.17	33.45	57.04
Brain (hypothalamus)	10.51	1.18	12.67	4.12	38.69
Brain (substantia nigra)	6.25	7.18	23.49	16.61	67.36
Brain (thalamus)	4.80	6.00	22.53	13.68	69.26
Spinal cord	1.76	4.24	7.64	29.12	50.70
CNS ca. (glio/astro) U87-MG	0.03	0.00	1.99	2.16	29.73
CNS ca. (glio/astro) U-118-MG	0.00	3.54	1.25	2.34	12.33
CNS ca. (astro) SW1783	0.00	0.17	0.00	0.74	13.03
CNS ca.* (neuro;met) SK-N-AS	0.00	0.43	4.30	10.01	93.95
CNS ca. (astro) SF-539	0.07	0.14	0.00	9.81	14.16
CNS ca. (astro) SNB-75	0.00	0.06	0.23	11.58	8.84
CNS ca. (glio) SNB-19	0.01	0.58	0.11	5.15	33.45
CNS ca. (glio) U251	0.01	0.00	0.01	1.58	8.42
CNS ca. (glio) SF-295	0.00	0.00	0.01	3.77	10.44
Heart	33.92	0.01	1.82	7.64	100.00
Skeletal muscle	100.00	0.00	1.00	3.06	79.00
Bone marrow	1.05	3.72	0.43	1.69	18.17
Thymus	0.30	0.21	4.42	6.12	28.52
Spleen	0.14	0.13	2.59	17.43	24.49
Lymph node	0.28	0.28	1.92	10.51	11.74

Fig. 19

SECX Clone Number	Tissue Expression	Length (nt)	ORF (nt)	Amino Acid Length	Calculate Molecular Weight of Encoded Protein	Protein Similarity (BLASTP Non-Redundant Composite Database)	Protein Similarity (Human Sequence)	Signal Peptide Cleavage Site (nt)	Cellular Localization	
1	3445452	Prostate Gland	932	113-796	227	25734.1	Identities 52/128 (40%); Positives 72/128 (56%) with ACC:P31044 Phosphatidylethanolamin e-Binding Protein (PEBP); 23Kd Morphine Binding Protein (P23K) <i>Rattus norvegicus</i> . 187 amino acid residues.	Identities 44/120 (36%); Positives 66/120 (55%) with ACC:P31044 Phosphatidylethanolamin e-Binding Protein (PEBP) <i>Homo sapiens</i> . 186 Amino Acid residues.	YYYY. Most likely cleavage site between positions 22 and 23; VTG-DE.	Outside - Cert=0.7380. Appears to possess a cleavable N-terminal Signal Sequence.
2	4011999	Not Known	734	66-(?)735	223	24499	Identities 55/76 (72%); Positives 61/76 (80%) with pnr: SPTREMBL-ACC:Q13670 PMS2-Related Protein HPMSR6 III <i>Homo sapiens</i> . 287 amino acid residues.	Identities 48/127 (37%); Positives 69/127 (54%) with pnr: SPTREMBL-ACC:Q75631 Uroplakin III <i>Homo sapiens</i> . 287 amino acid residues.	Plasma Membrane - Cert.=0.8056. Appears to possess a cleavable N-terminal Signal Sequence.	
3	17089878 0.5	Fetal Brain	2762	264-2630	788	88337	Identities 729/788 (92%); Positives 758/788 (96%) with ACC:PF7995 Cadherin-10 Precursor <i>Gallus gallus</i> . 789 amino acid residues. Identifies 636/650 (97%) Positives 645/650 (99%) with rat cadherin-10. 653 amino acid residues.	Identities 577/790 (73%); Positives 676/790 (85%) with ACC:P55285 Cadherin-6 Precursor (Kidney-Calmodulin) <i>Homo sapiens</i> . 790 amino acid residues.	Plasma Membrane - Cert.=0.4600. Appears to possess a cleavable N-terminal Signal Sequence.	
4	17089878 0.6	Fetal Brain	1820	285-1704	473	529226	Identities 445/473 (94%); Positives 465/473 (98%) with ACC:P7995 Cadherin-10 Precursor	Identities 346/476 (72%); Positives 415/476 (8%) with ACC:P55285, human Cadherin-6 precursor Precursor (790 aa)	Plasma Membrane - Cert.=0.7000. Apparently lacks cleavable N-terminal Signal Sequences.	

Fig. 20A

SEC No.	Clone Number	Tissue Expression	Nucleotide Length	Open Reading Frame (nt)	Amino Acid Length	Calculate Molecular Weight	Protein Similarity (BLASTP Non-Redundant Composite Database)	Protein Similarity (Human Sequence)	Signal Peptide Cleavage Site (nt)	Cellular Localization
5	1795045. 0.61	Brain, Thalamus, Pituitary Gland	1508	226-1461	411	46054.5	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:Q00276 Lymphocyte-Associated Receptor of Death 2 <i>Homo sapiens</i> . 510 amino acid residues.	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:Q00276 Lymphocyte-Associated Receptor of Death 2 <i>Homo sapiens</i> . 510 amino acid residues.		Cytoplasm- Cert.=0.4500. Appears to possess no cleavable N-terminal Signal Sequence.
6	20422974 .0.132	Lymphoid Tissue	2155	166-1938	590	66532.5	Identities 497/582 (85%); Positives 536/582 (92%) with ACC:Q64151 Semaphorin I (M-SEMA FA Factor in Neural Network Development) <i>Mus musculus</i> . 834 amino acid residues.	Identities 247/506 (48%); Positives 330/506 (65%) with ACC:Q92834 Semaphorin <i>Homo sapiens</i> . 862 Amino Acid residues.	yyyy. Most likely cleavage site between positions 20and 21; GIG- AE.	Microbody (Peroxisome)- Cert.=7480. Appears to possess a cleavable N-terminal Signal Sequence.
7	20422974 _2	Lymphoid Tissue	2284	166-1956	596	66969.8	Identities 498/585 (85%); Positives 540/585 (92%) with ACC:Q64151 Semaphorin I (M-SEMA FA Factor in Neural Network Development) <i>Mus musculus</i> . 834 amino acid residues.	Identities 265/558 (47%); Positives 353/558 (63%) with ACC:Q92834 Semaphorin <i>Homo sapiens</i> . 862 Amino Acid residues.	yyyy. Most likely cleavage site between positions 20and 21; GIG- AE.	Microbody (Peroxisome)- Cert.=7480. Appears to possess a cleavable N-terminal Signal Sequence.
8	20936375 .0.1	Kidney	1930	148-1758	536	60306.7	Identities 453/531 (85%); Positives 482/531 (90%) with ACC:P07106 Bovine DBI-Related Brain Membrane Protein.	Identities 37/91 (40%); Positives 58/91 (63%) with ACC:O75521 DBI- Related Protein <i>Homo sapiens</i> . 364 Amino acid residues.	nnny. Most likely cleavage site between positions 15 and 16; SWC- CC.	Plasma Membrane - Cert.=0.7000. Appears to possess a cleavable N-terminal Signal Sequence.
9	20936785 .0.1	Brain, Fetal Brain	930	123-626	167	18440	Identities 167/167 (100%) with Human Transmembrane Protein HTMPN-46.	Identities 167/167 (100%) with Human Transmembrane Protein HTMPN-46.	nnny. Most likely cleavage site between positions 31 and 32; TPR- LS.	Plasma Membrane - Cert.=64000. Appears to possess an uncleavable N-terminal Signal Sequence. Likely a Type IIIa Membrane Protein

Fig. 20B

SEC No.	Clone Number	Tissue Expression	Nucleotide Length	ORF	Amino Acid Length	Calculated Molecular Weight	Protein Similarity (BLASTP Non-Redundant Composite Database)	Protein Similarity (Human Sequence)	Signal Peptide Cleavage Site (nt)	Cellular Localization	
10	179_045. 0.77	Brain, Thalamus	1737	296-1690	464	51645.6	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:Q00276 Lymphocyte-Associated Receptor of Death 2 <i>Homo sapiens</i> . 510 amino acid residues.	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:Q00276 Lymphocyte-Associated Receptor of Death 2 <i>Homo sapiens</i> . 510 amino acid residues.	Cytoplasm- Cer.t.=0.4500. Appears to possess no cleavable N-terminal Signal Sequence.		
11	20422974 0.132_ex 12	Lymphoid Tissue, Aorta, Breast, Colon, Foreskin, Germ Cell, Muscle, Prostate, Spleen, Stomach, and Uterus.	2156	166-2040	624	70478.1	Identities 50/1599 (83%); Positives 54/2599 (90%) with ACC:Q92854 Semaphorin <i>Homo sapiens</i> . 862 Amino Acid residues.	Identities 50/1599 (83%); Positives 54/2599 (90%) with ACC:Q92854 Semaphorin <i>Homo sapiens</i> . 862 Amino Acid residues.	yyy. Most likely cleavage site between positions 20 and 21: GIG- AE.	Microbody (Peroxisome)- Cer.t.=7480. Appears to possess a cleavable N-terminal Signal Sequence.	
12	20946375 .0.104	Kidney	1930	7-1611	534	60037.3	Identities 453/531 (85%); Positives 482/531 (90%) with ACC:P07106 Bovine DB1-Related Brain Membrane Protein. <i>Homo sapiens</i> . 364 amino acid residues.	Identities 37/91 (40%); Positives 58/91 (63%) with ACC:O75521 DB1- Related Protein <i>Homo sapiens</i> . 364 amino acid residues.	Plasma Membrane - Cer.t.=0.7300. Appears not to possess a cleavable N-terminal Signal Sequence.		

Fig. 20C