Algorithmisches Beweisen LAB Hornformeln

Luc Spachmann

FSU Jena

02.05.2022

Ziele

- Implementierung von SAT-Lösern
 - 2-SAT
 - Hornformeln
 - DPLL
 - CDCL (Schrittweise)

Nachtrag

- 2-SAT Algorithmus letzter Woche im worst-case nicht linear
- Kann aber modifiziert werden

Horn Formeln

- Spezielle Art von KNF
- Eine Hornklausel ist eine Klausel mit maximal einem positiven Literal
- Eine Hornformel ist eine KNF bestehend aus Horn Klauseln
- Hornformeln sind in Linearzeit lösbar (heutiger Algorithmus aber quadratisch)

$$(\neg x_1 \lor \neg x_2 \lor x_3)$$

$$(x_1 \lor \neg x_2 \lor x_3)$$

$$(\neg x_1)$$

$$(x_1)$$

Hornklausel

Keine Hornklausel

Hornklausel

Hornklausel

Alternative Sicht auf Hornformeln

Jede Hornformel ist äquivalent zu einer Implikation:

$$(\neg x_1 \lor \neg x_2 \lor x_3)$$
 äquivalent zu $x_1 \land x_2 \to x_3$
 $(x_1 \lor \neg x_2)$ äquivalent zu $x_2 \to x_1$
 $(\neg x_1 \lor \neg x_2)$ äquivalent zu $x_1 \land x_2 \to 0$
 (x_1) äquivalent zu $1 \to x_1$

Algorithmus für Hornformeln

Eingabe: Hornformel *F* 1: Sei α die leere Belegung 2: **while** Positive Unit-Klausel (x_i) existiert **do** $\alpha = \alpha \cup \{x_i\}$ 3: $F = F[\alpha]$ 4: 5: if $\emptyset \in F$ then return UNSAT 6: end if 7: 8: end while 9: Alle nicht in α enthaltenen Variablen auf 0 setzen 10: **return** SAT, α

Aufgabe: Hornformeln

- Erweiterung des Random-CNF Programms zur Erzeugung von Hornformeln
 - Wichtig: Für Hornformeln müssen auch schmalere Klauseln erlaubt sein (insbesondere Unit Klauseln)
 - Alternativ auch separates Programm möglich
- Implementierung des Algorithmus f
 ür Hornformeln
- Ausgabe einiger Statistiken:
 - Zeit
 - Speicherbedarf
 - Anzahl Unit Propagations
 - etc.