

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. P:1
6. C:4

COURSE PLAN

Target	50% (marks)
Level-1	40% (population)
Level-2	50% (population)
Level-3	60% (population)

1. Method of Evaluation

UG	
Quizzes/Tests, Assignments (30%)	
Mid Examination (20%)	
End examination (50%)	

2. Passing Criteria

Scale	UG
Out of 10point scale	SGPA – "5.0" in each semester CGPA – "5.0" Min. Individual Course Grade – "C" Course Grade Point – "4.0"

^{*}may be keep as per Program (UG/PG)

3. Pedagogy

- Presentation,
- Class Test
- Quiz
- Assignments/ Tutorials
- Digital and analog presentations
- Concept diary (needs to be maintained by students-short and concise notes which include course concepts that he/she has understood.)
- YouTube videos as a startup
- 4. Topics introduced for the first time in the program through this course

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. C:4

5. References:

Text Books	Web resources	Jou rna	Reference books
		ls	
1. Microprocessor Architecture, Programming. Book by Ramesh Gaonkar 2. Microprocessors and interfacing, Book by Douglas Hall 3. Mano, Morris. "Digital circuits and systems." Prentice-Hal. 4. Salivahanan, Arivazhagan S. Digital Circuits And Design. 5. Mazidi, Muhammad Ali, Janice Gillispie Mazidi, and Rolin D. McKinlay. The 8051 microcontroller and embedded systems. Pearson/Prentice Hall, 2006.	https://nptel.ac.in/c ourses/108/105/10 8105102/ https://nptel.ac.in/c ourses/108/102/10 8102169/ https://nptel.ac.in/c ourses/106/105/10 6105193/		1. The Intel Microprocessors–Architecture, Book by Barry B. Brey 2. Digital Logic and Microprocessor Design with VHDL 3. Digital Electronics, Principles, Devices and Applications, Anil K. Maini, John Wiley and Sons. 4. Microprocessor 8085 And Its Interfacing Book by Sunil Mathur 5. Fundamentals of Microprocessor and Microcomputers - B. Ram

Signature of HOD/Dean	Signature of Faculty
Date:	Date:

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. P:1
6. C:4

GUIDELINES TO STUDY THE SUBJECT

Instructions to Students:

- 1. Go through the 'Syllabus' in the Black Board section of the web-site(https://learn.upes.ac.in) in order to find out the Reading List.
- 2. Get your schedule and try to pace your studies as close to the timeline as possible.
- 3. Get your on-line lecture notes (Content, videos) at <u>Lecture Notes</u> section. These are our lecture notes. Make sure you use them during this course.
- 4. Check your blackboard regularly
- 5. Go through study material
- 6. Check mails and announcements on blackboard
- 7. Keep updated with the posts, assignments and examinations which shall be conducted on the blackboard
- 8. Be regular, so that you do not suffer in any way
- 9. Cell Phones and other Electronic Communication Devices: Cell phones and other electronic communication devices (such as Blackberries/Laptops) are not permitted in classes during Tests or the Mid/Final Examination. Such devices MUST be turned off in the class room.
- 10. **E-Mail and online learning tool:** Each student in the class should have an e-mail id and a pass word to access the LMS system regularly. Regularly, important information Date of conducting class tests, guest lectures, via online learning tool. The best way to arrange meetings with us or ask specific questions is by email and prior appointment. All the assignments preferably should be uploaded on online learning tool. Various research papers/reference material will be mailed/uploaded on online learning platform time to time.
- 11. **Attendance:** Students are required to have minimum attendance of 75% in each subject. Students with less than said percentage shall NOT be allowed to appear in the end semester examination.

This much should be enough to get you organized and on your way to having a great semester! If you need us for anything, send your feedback through e-mail to your concerned faculty. Please use an appropriate subject line to indicate your message details.

There will no doubt be many more activities in the coming weeks. So, to keep up to date with all the latest developments, please keep visiting this website regularly.

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. P:1
6. C:4

RELATED OUTCOMES

1. The expected outcomes of the Program are:

P01	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
P02	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
P03	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
P05	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
100	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
P06	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice.
P07	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, demonstrate the knowledge of, and need for
	sustainable development.
P08	Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of
	the engineering practice.
P09	Individual and Teamwork : Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society, such as, being able to comprehend and write effective
	reports and design documentation, make effective presentations, and give and receive clear
	instructions.
P011	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO12	leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change

2. The expected outcomes of the Specific Program are: (upto3)

PSO1	Perform system and application programming using computer system concepts, concepts of Data
	Structures, algorithm development, problem solving and optimizing techniques.

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. C:4

PSO2	Apply software development and project management methodologies using concepts of front-end
	and back-end development and emerging technologies and platforms.
PSO3	Apply computing knowledge to assess, design and propose cyber security solutions and perform
	forensic procedures on digital systems and cyber world using tools and technologies in the area
	of cyber security and cyber forensics.

3. The expected outcomes of the Course are: (minimum 3 and maximum 6)

CO 1	Understand the functional modules of general purpose, single purpose, custom purpose processor, and hardware & software specifications.
CO 2	Design the embedded system using microcontrollers such as 8051 MCS, and develop the code using assembly language programming.
CO 3	Develop the embedded 'C' code for different applications and interfacing units of the microcontroller.
CO 4	Analyze and develop for different case studies, specifications and sampled control-embedded applications.
CO 5	Perform inter task communication and real time scheduling for real time embedded system design and development

4. Co-Relationship Matrix

Indicate the relationships by 1- Slight (low) 2- Moderate (Medium) 3-Substantial (high)

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	2	3	3	3	2	2	1	2	2	3	3	1	1	1
CO2	3	3	3	3	3	2	2	1	2	3	3	3	1	2	2
CO3	3	3	3	3	2	2	2	1	2	3	3	3	3	3	3
CO4	3	3	1	3	3	1	1	1	2	3	3	3	3	2	3
CO5	3	3	2	3	1	2	3	1	2	3	3	3	3	2	3
Average	3	3	3	3	3	2	2	1	2	3	3	3	3	3	3

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. P:1
6. C:4

5. Course outcomes assessment plan:

Components Course Outcomes	Assignment	Test/Quiz	Mid Semester	End Semester	Any other
CO 1		✓	✓	✓	
CO 2	✓	✓	✓	✓	
СО3		✓		✓	
CO 4	✓	✓		✓	

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. P:1
6. C:4

OVERVIEW OF COURSE DELIVERY/BROAD PLAN OF COURSE COVERAGE

Course Activities:

			Planned					
S. No.	Description	From	То	No. of Ses	From	то	No. of Ses	Remarks
1.	UNIT I: Review of Fundamentals Number System: Binary and Hexadecimal; Combinational Circuits: Adder, Subtractor, Encoder-Decoder; Sequential Circuits: Flip- Flops, Register and Counters; Von Neumann Architecture, Computer Types, Functional Units, Memory System RAM, ROM, Cache, VM, etc.), Design of Basic Computer.							
2.	UNIT II: Microprocessor Vs Microcontroller Block diagram, Registers, Internal Bus Organization, Control signals, Input Output Subsystem, Serial communication and DMA features. Memory Subsystem, Interfacing of ADC, sensors, keyboard and DAC using microcontrollers; 8085							

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. P:1
6. C:4

		T	1	T	1	
	Architecture and Pin					
	Diagram					
	UNIT III: Designing ALU					
	and CU					
	· · · · · · · · · · · · · · · · · · ·					
	Opcode, Registers, CPU					
	organization, Instruction					
	formats, Timing and					
	control, Instruction cycle,					
3.	Addressing modes,					
J .	Program Control,					
	Instruction Cycle: Fetch					
	Decode and Execute,					
	Control Transfer, Control					
	memory, Micro					
	programmed vs. Hardwired					
	control unit					
	UNIT IV: MSC 51 Family					
	Study of micro controller					
	(MCS-51family- 8051) -					
	Architecture, instruction set,					
	addressing modes and					
4.	programming, Registers,					
1.	Flags, Counter and Timers,					
	Comparison of various					
	families of 8-bit micro					
	controllers. Interfacing of					
	ADC, sensors, keyboard and					
	DAC using microcontrollers.					
	UNIT V: Embedded					
5.	System and Program					
	Development Tools					
	Introduction to Embedded					
	Systems, Embedded System:					
	Categories, Requirements					
	and Design Challenges,					
	embedded computing,					
	Applications Areas, Recent					
	trends in embedded systems,					
	Development process &					
	Design, Formalisms for					
	System Design: Integration					
	and testing, Packaging					
	Configuration, Development	1	1	İ	I	

1.	Name of the Facu	ne of the Faculty: Devendra Rawat			Course Code: CSEG 3018			
2.	Course	: Microprocessor & Embedded Systems			s L:4			
3.	Program	: B. Tech CSE VI Sem			T:0			
4.	Target	: Level 3			P	:1		
					C:	4		
	tools, Linker, Compiler, Librari Tools: Kiel, Ardu Case Examples	<u> </u>						

 $Total\ No.\ of\ Instructional\ periods\ available\ for\ the\ course:\ 48\ Sessions$

Signature of HOD/Dean	Signature of Faculty
Date:	Date

Year: 2021-22

Semester: VI

1. Name of the Faculty: Devendra Rawat Course Code: CSEG 3018

2. Course : Microprocessor & Embedded Systems
3. Program : B. Tech CSE VI Sem
4. Target : Level 3
5. C:4