Iterative methods:

Notation and a brief background

- Mathematical background: matrices, inner products and norms
- linear systems of equations
- Iterative processes

Transposition: If $A \in \mathbb{R}^{m \times n}$ then its transpose is a matrix $C \in \mathbb{R}^{n \times m}$ with entries

$$c_{ij} = a_{ji}, i = 1, \dots, n, j = 1, \dots, m$$

Notation : A^T .

Transpose Conjugate: for complex matrices, the transpose conjugate matrix denoted by A^H is more relevant: $A^H = \bar{A}^T = \overline{A^T}$.

- ightharpoonup We consider now only square matrices (m=n).
- ➤ Spectral radius = The maximum modulus of the eigenvalues

$$ho(A) = \max_{\lambda \in \lambda(A)} |\lambda|.$$

ightharpoonup Recall: $\lim_{k\to\infty}A^k=0$ iff ho(A)<1.

Notation & Review of some linear algebra concepts

The set of all linear combinations of a set of vectors $G=\{a_1,a_2,\ldots,a_q\}$ of \mathbb{R}^n is a vector subspace called the linear span of G. Notation

$$\mathsf{span}(G)$$
, $\mathsf{span}\;\{a_1,a_2,\ldots,a_q\}$

- If the a_i 's are linearly independent, then each vector of $span\{G\}$ admits a unique expression as a linear combination of the a_i 's. The set G is then called a *basis*
- \triangleright Recall: A matrix represents a linear mapping between two vector spaces of finite dimension n and m.

11-2 ______ Csci 8314 – March 5, 2014

ightharpoonup Trace of A = sum of diagonal elements of A.

$$\operatorname{tr}(A) = \sum_{i=1}^n a_{ii}$$
.

- ightharpoonup $\operatorname{tr}(A) = \operatorname{sum}$ of all the eigenvalues of A counted with their multiplicities.
- ightharpoonup Recall that $\det(A)$ = product of all the eigenvalues of A counted with their multiplicities.

Example: : Trace, spectral radius, and determinant of the matrix:

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$$
.

Range and null space

- $ightharpoonup \operatorname{Ran}(A) = \{Ax \mid x \in \mathbb{R}^n\}$
- Null Space: Null(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\}$
- Range = linear span of the columns of A
- Rank of a matrix $\operatorname{rank}(A) = \dim(\operatorname{Ran}(A))$
- rank (A) = the number of linearly independent columns of (A) = the number of linearly independent rows of A.
- ightharpoonup A is of full rank if $rank(A) = min\{m, n\}$. Otherwise it is rank-deficient.

Rank+Nullity theorem for an $m \times n$ matrix:

$$dim(Ran(A)) + dim(Null(A)) = n$$

Types of matrices (square)

- Symmetric matrices: $A^T = A$.
- Hermitian matrices: $A^H = A$
- Skew-symmetric matrices: $A^T = -A$.
- Skew-Hermitian matrices: $A^H = -A$.
- Normal matrices: $A^H A = A A^H$.
- Nonnegative matrices: $a_{ij} \geq 0, i,j = 1,\ldots,n$ (similar definition for nonpositive, positive, and negative matrices).
- Unitary matrices: $Q^HQ = I$.

Note: if Q is unitary then $Q^{-1} = Q^H$.

11-6 _____ Csci 8314 – March 5, 2014

Inner products and Norms

 \triangleright Inner product of 2 vectors x and y in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x, y) or $y^T x$

> For complex vectors

$$(x,y)=x_1ar{y}_1+x_2ar{y}_2+\cdots+x_nar{y}_n$$
 in \mathbb{C}^n

Note: $(x,y) = y^H x$

An important property: Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \ \ orall \ x \ \in \ \mathbb{C}^n, orall y \ \in \ \mathbb{C}^m$$

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

 \triangleright A vector norm on a vector space \mathbb{X} is a real-valued function on \mathbb{X} , which satisfies the following three conditions:

- 1. ||x|| > 0, $\forall x \in \mathbb{X}$, and ||x|| = 0 iff x = 0.
- $||\alpha x|| = |\alpha| ||x||, \quad \forall x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$
- $||x + y|| < ||x|| + ||y||, \quad \forall \ x, y \in \mathbb{X}.$
- > 3. is called the triangle inequality.

Csci 8314 – March 5, 2014

Example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

Most common vector norms in numerical linear algebra:

$$\|x\|_1 = |x_1| + |x_2| + \dots + |x_n|, \ \|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \dots + |x_n|^2\right]^{1/2}, \ \|x\|_\infty = \max_{i=1,\dots,n} |x_i|.$$

The Cauchy-Schwartz inequality (important) is:

$$|(x,y)| \leq ||x||_2 ||y||_2.$$

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k=1,\ldots,\infty$ converges to a vector x with respect to the norm $\|\cdot\|$ if, by definition,

$$\lim_{k o\infty}\,\|x^{(k)}-x\|=0$$

- Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
- $\lim_{k \to \infty} x^{(k)} = x$ Notation:
- Note: $x^{(k)}$ converges to x iff each component $x_i^{(k)}$ of $x^{(k)}$ converges to the corresoponding component x_i of x

Matrix norms

- \triangleright Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,
 - 1. $||A|| \ge 0$, $\forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 0
 - 2. $\|\alpha A\| = |\alpha| \|A\|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$
 - 3. $||A + B|| < ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$.
- However, these will lack (in general) the right properties for composition of operators (product of matrices).
- \blacktriangleright The case of $\|.\|_2$ yields the Frobenius norm of matrices.

 \triangleright Given a matrix A in $\mathbb{C}^{m\times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

- These norms satisfy the usual properties of vector norms (see previous page).
- \blacktriangleright The matrix norm $\|.\|_n$ is induced by the vector norm $\|.\|_n$.
- Again, important cases are for $p=1,2,\infty$.

Consistency

➤ A fundamental property is consistency

$$||AB||_p \le ||A||_p ||B||_p$$
.

- ightharpoonup Consequence: $\overline{\|A^k\|_p \leq \|A\|_p^k}$
- $ightharpoonup A^k$ converges to zero if any of its p-norms is < 1
- ➤ The Frobenius norm is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2
ight)^{1/2}$$
 .

- Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.
- ➤ This norm is also consistent [but not induced from a vector norm]

Csci 8314 – March 5, 2

Important equalities:

$$\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|,$$
 $\|A\|_{\infty} = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|,$ $\|A\|_2 = \left[
ho(A^HA)
ight]^{1/2} = \left[
ho(AA^H)
ight]^{1/2},$ $\|A\|_F = \left[Tr(A^HA)
ight]^{1/2} = \left[Tr(AA^H)
ight]^{1/2}.$

14 ______ Csci 8314 – March 5, 2014

Positive-Definite Matrices

> A real matrix is said to be positive definite if

$$(Au,u)>0$$
 for all $u
eq 0$ $u\in~\mathbb{R}^n$

Let A be a real positive definite matrix. Then there is a scalar lpha>0 such that

$$(Au,u) \geq lpha \|u\|_2^2,$$

- ➤ Consider now the case of Symmetric Positive Definite (SPD) matrices.
- Consequence 1: A is nonsingular
- \triangleright Consequence 2: the eigenvalues of A are (real) positive

A few properties of Symmetric Positive Definite matrices

- ightharpoonup Diagonal entries of A are positive. More generally, ...
- lacksquare Diagonal block A(k:l,k:l), (k < l), is SPD
- For any $n \times k$ matrix X of rank k, the matrix X^TAX is SPD.
- ➤ The mapping :

$$x,y \quad o \quad (x,y)_A \equiv (Ax,y)$$

is a proper inner product on \mathbb{R}^n . The associated norm, denoted by $\|\cdot\|_A$, is called the energy norm:

$$\|x\|_A = (Ax,x)^{1/2} = \sqrt{x^T A x}$$

ightharpoonup A admits the Cholesky factorization $A=LL^T$ where L is lower triangular

1_16 Csci 8314 – March 5, 201

11-15

Iterative processes for linear systems

In contrast with "direct" methods (Gaussian Elimination) iterative methods compute a sequence of approximations $\boldsymbol{x}^{(k)}$ to the solution \boldsymbol{x} . Ideally, a good approximation is obtained in a few iterations of the process. Convergence measured by some norm.

Questions which arise:

- ➤ Why not use a direct method [always works!]
- Under which condition (s) will the method converge?
- ➤ When to stop?
- Can we estimate costs?

11-17 _____ Csci 8314 – March 5, 2014

Basic relaxation techniques

- Relaxation methods: Jacobi, Gauss-Seidel, SOR
- Basic convergence results
- Optimal relaxation parameter for SOR
- See Chapter 4 of text for details.

Basic relaxation schemes

- Relaxation schemes: methods that modify one component of current approximation at a time
- Based on the decomposition A = D E F with: D = diag(A), -E = strict lower part of A and -F = its strict upper part.

Gauss-Seidel iteration for solving Ax=b:

ightharpoonup corrects j-th component of current approximate solution, to zero the j-th component of residual for $j=1,2,\cdots,n$.

➤ Gauss-Seidel iteration can be expressed as:

$$(D-E)x^{(k+1)}=Fx^{(k)}+b$$

Can also define a backward Gauss-Seidel Iteration:

$$(D-F)x^{(k+1)} = Ex^{(k)} + b$$

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

$$\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)$$

→ successive overrelaxation, (SOR):

$$(D-\omega E)x^{(k+1)}=[\omega F+(1-\omega)D]x^{(k)}+\omega b$$

Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

$$x^{(k+1)} = Mx^{(k)} + f$$

$$egin{aligned} M_{Jac} &= D^{-1}(E+F) = I - D^{-1}A \ M_{GS} &= (D-E)^{-1}F = I - (D-E)^{-1}A \ M_{SOR} &= (D-\omega E)^{-1}(\omega F + (1-\omega)D) \ &= I - (\omega^{-1}D - E)^{-1}A \ M_{SSOR} &= I - \omega(2-\omega)(D-\omega F)^{-1}D(D-\omega E)^{-1}A \end{aligned}$$

21 Csci 8314 – March 5, 201

A few well-known results

➤ Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., matrices such that

$$|a_{ii}| > \sum_{i
eq i} |a_{ij}|, i=1,\cdots,n$$

- ightharpoonup SOR converges for $0<\omega<2$ for SPD matrices
- The optimal ω is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A.

General convergence result

Consider the iteration: $x^{(k+1)} = Gx^{(k)} + f$

- (1) Assume that ho(G)<1. Then I-G is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $x^{(0)}$.
- (2) If iteration converges for any f and $x^{(0)}$ then ho(G) < 1.

Example: Richardson's iteration

$$x^{(k+1)} = x^{(k)} + lpha(b - Ax^{(k)})$$

Assume $\Lambda(A) \subset \mathbb{R}$. When does the iteration converge?

.22 ______ Csci 8314 – March 5, 2014

A matrix has property A if it can be (symmetrically) permuted into a 2×2 block matrix whose diagonal blocks are diagonal.

$$PAP^T = egin{bmatrix} D_1 & E \ E^T & D_2 \end{bmatrix}$$

Let A be a matrix which has property A. Then the eigenvalues λ of the SOR iteration matrix and the eigenvalues μ of the Jacobi iteration matrix are related by

$$(\lambda + \omega - 1)^2 = \lambda \omega^2 \mu^2$$

 \triangleright The optimal ω for matrices with property A is given by

$$\omega_{opt} = rac{2}{1+\sqrt{1-
ho(B)^2}}$$

where \boldsymbol{B} is the Jacobi iteration matrix.

11-24 _____ Csci 8314 - March 5, 2014

An observation Introduction to Preconditioning

The iteration $x^{(k+1)}=Mx^{(k)}+f$ is attempting to solve (I-M)x=f. Since M is of the form $M=I-P^{-1}A$ this system can be rewritten as

$$P^{-1}Ax = P^{-1}b$$

where for SSOR, we have

$$P_{SSOR} = (D - \omega E) D^{-1} (D - \omega F)$$

referred to as the SSOR 'preconditioning' matrix.

In other words:

Relaxation iter. \iff Preconditioned Fixed Point Iter.

11-25 _____ Csci 8314 - March 5, 2014