

## Lecture 4: Model parameter estimation - gradient

Wengang Mao (Marine Technology)
Department of Mechanics and Maritime Sciences,
Chalmers University of Technology,
Goteborg, Sweden

1



#### **Contents of this lecture**

- Basic meaning of the model regression
- Define the regression (model optimization) problem
- Estimation of the regression model (parameters)
  - oEuler-Lagrange theorem (mathematically explicit solution)
  - oGradient descent algorithm (numerical approximation)
- Numerical method: the gradient descent algorithms
- Computer examples

2023-04-11



#### **Model regression (1)**

 For parametric regression models, let write them in a more general form

$$\circ \widehat{Y} = E[Y|X] = \beta_0 + \beta_1 f(X_1) + \beta_2 f(X_2) + \cdots$$

- $\circ f(X_i)$ , i = 1,2,..., represent deterministic transformation of X, such as  $X_n$ ,  $\log(X)$ ,  $\exp(X)$ ,...
- $\circ$ The regression is to find optimal values of  $\beta_0$ ,  $\beta_1$ ,..., to minimize cost function of optimization

2023-04-11

3



#### **Model regression (2)**

•For the nonparametric regression models (smoothing moving average)

$$\hat{Y} = E[Y|X] = \sum_{i=1}^{k} g(x - x_i)y_i$$

- $\circ$ Which kernels g(x) to choose for the smoothing, e.g., g(x) can be normal, box, or other functions?
- $\circ$ What parameters to choose for a picked kernel g(x)?
- ∘What is the width of the smooth, i.e., *k*?

2023-04-11

#### Model regression problem def.



#### The procedure for the general model regression is

Data (*n* obs.):  $(y^{(1)}, x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, ...), (y^{(2)}, x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, ...), ..., (y^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, ...)$ 

Hypothesis:  $\hat{f}(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots$ 

Parameters:  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ ,...

Cost Function:  $J(\beta_0,\beta_1,\dots) = \frac{1}{2n} \sum_{i=1}^n (\hat{f}(\mathbf{X}^{(i)}) - y^{(i)})^2$  OLS, Ridge, Lasso

Goal:  $\min_{\beta_0,\beta_1,...} J(\beta_0,\beta_1,...)$ 

2023-04-11

5

#### Regression: parameter estimation



• For the cost function  $J(\beta)$ , the regression is to find  $\hat{\beta}$  that can minimize J





2023-04-11

#### Regression: parameter estimation



• For the cost function  $J(\beta_0, \beta_1)$ , the regression is to find  $\hat{\beta}_0$  and  $\hat{\beta}_1$ that can minimize J



7

#### **Regression: parameter estimation**



• For the cost function  $J(\beta_0, \beta_1)$ , the regression is to find  $\hat{\beta}_0$  and  $\hat{\beta}_1$  that can minimize J



2023-04-11

# Regression: parameter estimation For a model $Y = \beta_0 + \beta_1 X$ , with data $(x_p, y_i)$ and cost function J as follows:

J



#### Regression: parameter estimation



• For the cost function  $J(\beta_0, \beta_1)$ , the regression is to find  $\hat{\beta}_0$  and  $\hat{\beta}_1$  that can minimize J



11

#### Regression: parameter estimation (1)



- When the cost function is very complex, it means that the mathematical solution to the differential equations with respect to parameters is not that straightforward.
- Some numerical methods, e.g., implementation of the gradient descent, could be used to get the parameters of a model to minimize the cost function for the regression
- Let the cost function represented by  $J(\beta_0, \beta_1)$ , the procedure to get  $\beta_0, \beta_1$  minimizing J is:

12

2023-04-11

#### Regression: parameter estimation (2)



#### • Workflow for gradient descent for numerical approximation:

- Start with some initial values ( $\beta_0 = \beta_{0,0}$ ,  $\beta_1 = \beta_{1,0}$ )
- O Updating the values of  $(\beta_0, \beta_1)$  iteratively according to the gradient of cost functions until the cost function reaches to a minimum point (not always successful for global minimum)

13 2023-04-11

13



#### Initial values matter for approximation





15

#### (Batch) Gradient descent algorithm



#### Procedures to implement the gradient descent algorithm

- 1. Select initial values of  $(\beta_0, \beta_1)$  according to your experiences, i.e.,  $(\beta_{0,0}, \beta_{1,0})$
- 2. Choose a learning rate coefficient  $\alpha$
- 3. Estimate the gradient of the cost function J at the values of  $(\beta_{0,0}, \beta_{1,0})$ , i.e.,

$$\frac{\partial}{\partial \beta_0} J(\beta_{0,0}, \beta_{1,0})$$
, and  $\frac{\partial}{\partial \beta_1} J(\beta_{0,0}, \beta_{1,0})$ 

4. Update all the model parameters simultaneously according to the learning rate

$$\beta_{0,1} = \beta_{0,0} - \alpha \frac{\partial}{\partial \beta_0} J(\beta_{0,0}, \beta_{1,0}),$$
  
$$\beta_{1,1} = \beta_{1,0} - \alpha \frac{\partial}{\partial \beta_1} J(\beta_{0,0}, \beta_{1,0})$$

5. Repeat steps (3-4) until the cost function J convergence to a minimum point

2023-04-11

#### Stochastic Gradient descent Algor.



#### Procedures to implement the gradient descent algorithm

- 1. Select initial values of  $(\beta_0, \beta_1)$  according to your experiences, i.e.,  $(\beta_{0,0}, \beta_{1,0})$
- 2. Choose a learning rate coefficient  $\alpha$
- 3. Estimate the error of the first instance (data point), i.e.,  $\varepsilon = y_i \beta_{0,0} \beta_{1,0} X_i$
- 4. Update all the model parameters simultaneously according to the learning rate

$$\beta_{0,1} = \beta_{0,0} - \alpha \times \varepsilon,$$
  
$$\beta_{1,1} = \beta_{1,0} - \alpha \times \varepsilon \times X_i,$$

5. Repeat steps (3-4) until the parameters converge to stable parameters

2023-04-11

17

#### **Key elements in Gradient algorithm**



- Initial values of the model parameters are important for the convergence study
- ❖ Not necessarily always convergence to a global minimum cost value





2023-04-11

#### **Key elements in Gradient algorithm**



Movement of parameter update in continuous iterations



$$\beta_{0,1} = \beta_{0,0} - \alpha \frac{\partial}{\partial \beta_0} J(\beta_{0,0}, \beta_{1,0}),$$

#### Let the learning rate $\alpha$ as a positive value

- On the negative side, since the derivative is negative, the parameter increments will be positive, i.e., move right
- On the negative side, the parameter increments will move Left
- So, on both side, the parameters will move toward the minimum location of the cost function

19

#### **Key elements in Gradient algorithm**



The results will be sensitive to values of the learning rate:

- If  $\alpha$  is too small, the convergence of gradient descent will be slow
- If α is too large, the convergence can overshoot the minimum, or even diverge

$$\beta_{0,1} = \beta_{0,0} - \alpha \frac{\partial}{\partial \beta_0} J(\beta_{0,0}, \beta_{1,0}),$$



### CHALMERS

#### Key elements in Gradient algorithm

- •Should the value of α be adjusted (reduced) in each iteration when the cost function approaches to its minimum location?
- Probably not, because gradient descent can automatically help the iteration take smaller steps, because the derivative also decreases.



2023-04-11

21



#### Final remarks on gradient descent



- •For each iteration of the gradient descent method, all the data should be used to estimate the cost for the preassumed model parameters.
- •The gradient descents ideas have been also widely used in other machine learning algorithms.
- •For example, to be combined with the boosting method, the so-called XG boost method is one of the most powerful ML algorithm for the model estimation.

2023-04-11

23



#### Introduction of assignment project 2

Prediction of ship power consumption in terms of other parameters

2023-04-11

