

Transformers

Rowel Atienza, Ph.D.
University of the Philippines
github.com/roatienza
2022

Transformer Encoder/Decoder Unit Details

Operations: Linear, Layer Norm, Activation, Tensor Multiply/Add, Softmax

Encoder Block

Types of data that transformers can process

Any

COCO 2017 Keypoint Detection Task

Input Embedding is an n-dim vector

Example: Each word is converted into a 512-dim embedding vector. In the simple example above, it is 4-dim.

The Length of the Input is *n*

Example: n could be the maximum possible length of a sentence.

Encoder with Latent Variables $oldsymbol{z}_i$

Attention between 2 words

Attention as measured by the width of the arrow

Query Key *Value*

$$Attention(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

$$d_{k} \text{ is keys/queries dim (e.g. 4)}$$

$$Attention = softmax \left(\frac{1}{\sqrt{d_k}} \right)$$

$$Attention(Q, K, V) = Z = \Box$$

Values With all things considered, this is where the attention should be What I think the features should be Queries What I think the features should be Attention = softmaxAttention(Q, K, V) = Z =

Consider an Attention Layer Examining a Digit

I can see everything that you can see. You are a part of digit 3.

Example: Let us focus on the lower-right patch only

Self-Attention

Embedding

Encoder 1 Inputs

$$\boldsymbol{x}_1^T$$

$$\mathbf{x}_{2}^{T}$$

$$\begin{bmatrix} x_3^T \end{bmatrix}$$
 Queries

$$W^Q$$

$$\boldsymbol{q}_1^T = \boldsymbol{x}_1^T W^Q$$

$$\boldsymbol{q}_2^T = \boldsymbol{x}_2^T W^Q$$

$$\boldsymbol{q}_3^T = \boldsymbol{x}_3^T W^Q$$

$$Q = XW^Q$$

Attention Layer 1 Learnable Parameters

 $\mathbf{k}_3^T = \mathbf{x}_3^T W^K$

$$K = XW^K$$

Keys

$$\boldsymbol{k}_1^T = \boldsymbol{x}_1^T W^K$$

$$\boldsymbol{k}_2^T = \boldsymbol{x}_2^T W^K$$

$$v_3^T = x_3^T W$$

$$\boldsymbol{v}_1^T = \boldsymbol{x}_1^T W^V$$

$$\boldsymbol{v}_2^T = \boldsymbol{x}_2^T W^V$$

$$\boldsymbol{v}_3^T = \boldsymbol{x}_3^T W^V$$

Values
$$V = XW^V$$

cat
$$x_1^T$$

opened
$$x_2^T$$

$$\mathbf{q}_1^T = \mathbf{x}_1^T W^Q$$

$$\boldsymbol{q}_2^T = \boldsymbol{x}_2^T W^Q$$

$$\boldsymbol{q}_3^T = \boldsymbol{x}_3^T W^Q$$

 $Q = XW^Q$

Keys

$$\boldsymbol{k}_1^T = \boldsymbol{x}_1^T W^K$$

$$\boldsymbol{k}_2^T = \boldsymbol{x}_2^T W^K$$

$$\boldsymbol{k}_3^T = \boldsymbol{x}_3^T W^K$$

$$K = XW^K$$

$$\begin{bmatrix} s_{11} = \boldsymbol{q}_1^T \boldsymbol{k}_1 \\ s_{12} = \boldsymbol{q}_1^T \boldsymbol{k}_2 \\ s_{13} = \boldsymbol{q}_1^T \boldsymbol{k}_3 \end{bmatrix}^T$$

$$\begin{bmatrix} s_{21} = \boldsymbol{q}_2^T \boldsymbol{k}_1 \\ s_{22} = \boldsymbol{q}_2^T \boldsymbol{k}_2 \\ s_{23} = \boldsymbol{q}_2^T \boldsymbol{k}_3 \end{bmatrix}^T$$

$$\begin{bmatrix} s_{31} = \boldsymbol{q}_3^T \boldsymbol{k}_1 \\ s_{32} = \boldsymbol{q}_3^T \boldsymbol{k}_2 \\ s_{33} = \boldsymbol{q}_3^T \boldsymbol{k}_3 \end{bmatrix}^T$$

 $X_3^T X = \begin{bmatrix} x_1^T \\ x_2^T \\ x_3^T \end{bmatrix} Encoder 1$ Queries Multi-Head opened _r cat (eg 8-head) Queries $Q_1 = XW_1^Q$ $Q_8 = XW_{\scriptscriptstyle \Omega}^Q$ W_1^Q W_8^Q Keys Keys $K_1 = XW_1^K$ $K_8 = XW_8^K$ W_1^K W_8^K **Values Values** $V_1 = XW_1^V$ $V_8 = XW_8^V$ W_1^V W_8^V Head 1: Z_1 Head 8: Z_8

Multi-Head (eg 8-head)

Adding Position Info to Inputs

Positional Encoding

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_k}}}\right) \quad dim = 2i \text{ is even}$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_k}}}\right) \quad dim = 2i + 1 \text{ is odd}$$

$$pos = 0,1, ... n_{pos-1}$$

$$dim = 0,1, \dots n_{dim-1}$$

Other positional encoding methods: learnable

FFN: Feed Forward Neural Network (MLP)

$$MLP(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Masking prevents Decoder 1 from seeing the future. Decoder 1 relies only on the previous outputs.

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings to the resulting sequence of vectors, and feed the patches to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, ICLR 202

Inductive Bias

Transformers lack some inductive biases inherent to CNNs, such as translation equivariance and scale invariance (w/ maxpool), and therefore do not generalize well when trained on insufficient amounts of data.

However, the picture changes if we train the models on large datasets (14M-300M images). We find that large scale training trumps inductive bias.

References

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." *arXiv preprint arXiv:2010.11929* (2020). ICLR 2021.

Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/

Transformers from Scratch, http://peterbloem.nl/blog/transformers

Transformer Family, https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

In Summary

Transformers could be the most important breakthrough in the recent history of deep learning

Transformers have been used to produce state-of-the-art performances in language, vision, audio, and multi-modal domains

Expect more development in this field in the near future

Figure 1: The Transformer - model architecture.

Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.

Code demo is next