Bivariate Distributions (Discrete)

4.1

Bivariate Distributions

- Univariate: One measurement for observed items.
 (outcome associated with one variable). E.g.
- → " Waiting time Exp
 - Number of successes in n trials
 - Number of occurrences in a unit time, etc.

Bivariate: Use 2 variables to predict an outcome.

E.g. Predict college GPA, z, using HS class rank, x, and ACT score, y, z = f(x, y)

Poll 1 die:
$$S = \{1,2,3,4,5,6\}$$
 $S = \{(1,1),(1,2),...\}$
Discrete Bivariate Distributions

Definition 4.1-1

Let X and Y be two random variables defined on a discrete space. Let S denote the corresponding two-dimensional space of X and Y, the two random variables of the discrete type. The probability that X = x and Y = y is denoted by f(x,y) = P(X = x, Y = y). The function f(x,y) is called the **joint probability** mass function (joint pmf) of X and Y and has the following properties:

(a)
$$0 \le f(x,y) \le 1$$
.
(b) $\sum_{(x,y)\in S} \sum f(x,y) = 1$.
(c) $P[(X,Y)\in A] = \sum_{(x,y)\in A} \sum f(x,y)$, where A is a subset of the space S .

Discrete Bivariate Example

$$f(x,y) = \frac{xy^2}{30}, \quad x = 1,2,3 \quad y = 1,2.$$

$$F[X=2, Y=1] = \frac{2(1)}{30} = \frac{2(1)}{30}$$

(a)
$$0 < f(x, y) < 1$$
.

(b)
$$\sum_{(x,y)\in S} \sum f(x,y) = 1.$$

(c) $P[(X, Y) \in A] = \sum_{(x,y)\in A} f(x,y)$, where A is a subset of the space S.

Discrete Bivariate Example PA

Let X and Y be two discrete random variables such that their joint distribution is given below:

e.g. f(3,0) = 0.31

Marginal pmf

Definition 4.1-2

Let X and Y have the joint probability mass function f(x,y) with space S. The probability mass function of X alone, which is called the **marginal probability** mass function of X, is defined by

$$f_X(x) = \sum_{y} f(x, y) = P(X = x), \qquad x \in S_X,$$

where the summation is taken over all possible y values for each given x in the x space S_X . That is, the summation is over all (x, y) in S with a given x value. Similarly, the **marginal probability mass function of** Y is defined by

$$f_Y(y) = \sum_{x} \underline{f(x,y)} = P(Y=y), \qquad y \in S_Y,$$

Marginal probability

$$f(y) = \begin{cases} 0.73, & y = 0 \\ 0.12, & y = 1 \\ 0.09, & y = 2 \\ 0.06, & y = 3 \end{cases}$$

			X		
		3	4	5	
	0	0.31	0.21	0.21	0.73
Y	1	0.03	0.04	0.05	0.12
	2	0.02	0.03	0.04	0.09
	3	0.01	0.02	0.03	0.06
		0.37	0.30	0.33	1.0

	X	flxl
f(x) =	345	

Independence of X and Y

X and Y are independent iff:

• for every $x \in S_x$ and $y \in S_y$,

$$P[X = x, Y = y] = P[X = x]P[Y = y]$$
i.e.,
$$f_{XY}(x, y) = f_X(x)f_Y(y)$$

Examples

Bivariate Discrete

Let
$$f(x,y) = \frac{xy^2}{30}$$
, $x = 1,2,3$ $y = 1,2$.

A) Find the marginal pmf of X: $f_X(x) = \frac{x}{6}$, $x = 1,2,3$.

B) Find the marginal pmf of Y: $f_Y(y) = \frac{y^2}{5}$, $y = 1,2$.

C) Find P[X=Y]: $P[(1,1), (2,2)]$

D) Are X and Y independent? (Yes)

Figure 4.1-3 Joint pmf $f(x, y) = \frac{xy^2}{30}$, x = 1, 2, 3 and y = 1, 2

Let f(x,y) = c(x + 2y), x = 1,2 y = 1,2,3What value must the constant c take, so that f(x, y) is a valid joint pmf?

$$f(1,1) = c(3)$$
 $f(2,1) = c(2+2(1)) = 4c$
 $f(1,2) = c(5)$ 6 c
 $f(1,3) = c(7)$ 8 c

-> C=1/33

3 Let
$$f(x,y) = 6\left(\frac{1}{4}\right)^x \left(\frac{1}{3}\right)^y$$
, $x = 1,2,3,...$ $y = 1,2,3,...$

 $\frac{1}{6}\left(\frac{1}{4}\right)^{x}\left(\frac{1}{3}\right)^{y} = 6\left(\frac{1}{4}\right)^{x} \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{x}$

A) Find an expression for the marginal pmf of x.

B) Show that the marginal pmf of x is a valid probability
$$x = 1, 2, 3, ...$$
 distribution.

Show $3(\frac{1}{4})^{x} = 3(\frac{1}{4})^{x} = 3(\frac{1}{4}$