Clase I: ¿Qué es Machine Learning?

- Introducción al Machine Learning,
- 1er cuatrimestre 2019
- Ana Georgina Flesia
- http://www.famaf.unc.edu.ar/~flesia
- georgina.flesia@gmail.com
- Oficina 370

Acerca de este curso

- Programa
 http://www.famaf.unc.edu.ar/wpcontent/uploads/2019/0
 2/Flesia.pdf
- Cuando: Miércoles y viernes de 14 a 16 hs.
- Donde: Aula TIC frente a vinculación Tecnológica.
- Horario de consulta: Jueves 14 a 16 hs. Oficina 370.
- Moodle
- http://www.famaf.proed.unc.edu.ar/course/view.php?id=
 470

Bibliografía

- Mitchell, T. Machine Learning, McGraw Hill, 1997.
- Marsland,S. Machine Learning: an algorithmic perspective.
 CRC Press 2009
- Raschka, S., & Mirjalili, V. Python Machine Learning, 2nd Ed. Birmhingham, UK: Packt Publishing. 2018.
- Murphy K. Machine Learning: a probabilistic perspective. MIT Press 2012.
- Duda, R., Hart, P., Stork, D. Pattern Classification, Wiley 2002.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer series in statistics.

Pantallazo general

- Objetivo general del área
- Como construir programas de computación que mejoren
 - automáticamente
 - con nuevas experiencias

Pantallazo general

- Como construir programas de computación que mejoren automáticamente con nuevas experiencias
- Tom Mitchell, Carnegie Mellon Professor:
 - O Un programa se dice que aprende de la experiencia E con respecto a alguna clase de tareas T y medida de desempeño P si su desempeño en la tarea T, medida por P, mejora con la experiencia E.

Tareas y algoritmos

- Clase de tareas T
 - Reconocimiento de patrones
 - Creación de relaciones
 - Toma de decisiones
- La medida P y el tipo de experiencias E dividen los algoritmos en clases

Ejemplo: Reconocer digitos escritos a mano

O Un programa se dice que aprende de la experiencia E con respecto a alguna clase de tareas T y medida de desempeño P si su desempeño en la tarea T, medida por P, mejora con la experiencia E.

Hastie, Tibshirani and Friedman

8

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 1

FIGURE 1.2. Examples of handwritten digits from U.S. postal envelopes.

Ejemplo

- Tarea T: clasificar dígitos a partir de imágenes
- Medida de desempeño P: porcentaje de dígitos clasificados correctamente
- Experiencia de entrenamiento E: data base de dígitos con clasificaciones anotadas, MNIST

FIGURE 1.2. Examples of handwritten digits from U.S. postal envelopes.

Clases de algoritmos de aprendizaje

- Aprendizaje supervisado
- Descubrimiento del conocimiento
- Aprendizaje reforzado
- Aprendizaje evolutivo

Sebastian Rashka 2018

Aprendizaje Supervizado

- Aprendizaje supervisado
 - Un conjunto de muestras de entrenamiento con las respuestas correctas
 - basado en ese conjunto de entrenamiento, el algoritmo generalice automáticamente, prediciendo la etiqueta de un nuevo dato
- Esto se suele llamar también aprendizaje a partir de ejemplos.

Aprendizaje Supervizado

Aprendizaje no supervisado

- Aprendizaje no supervisado:
 - No se proveen respuestas correctas
 - El algoritmo trata de identificar similaridades entre los datos ingresados para agrupar juntos los datos con algo en común
- Se suele llamar Descubrimiento del Conocimiento

Aprendizaje no supervisado

Aprendizaje reforzado

16

 Se encuentra entre el aprendizaje supervisado y el no supervisado

• Se proveen respuestas parciales, como que el algoritmo erra pero no en qué se equivoca.

• Suele llamarse aprendizaje con un crítico porque este monitorea las respuestas pero no dice como mejorar.

Aprendizaje reforzado

Carnegie Mellon's Never Ending Language Learner

Uses tweeter to obtain feedback on new belifs.

https://www.cs.cmu.edu/link/campus-what-doescomputer-believe

Aprendizaje evolutivo

- Evolución biológica puede ser vista como un proceso:
 - organismos biológicos se adaptan para mejorar
 - su tasa de supervivencia
 - y su probabilidad de tener descendencia en su entorno.
- Modelos genéticos basados en medidas de aptitud y diferentes conceptos de mutación generan los llamados algoritmos genéticos.

Reconocimiento de Patrones

Reconocimiento de patrones: Duda, Hart, Stork

Construir una máquina capaz de reconocer patrones que mejore con la experiencias recibidas:

- Reconocimiento de frases habladas
- Identificación de huellas digitales
- Reconocimiento óptico de escritura
- Identificación de secuencias de ADN

Ejemplo Duda, Hart, Stork

 "Separar el pescado entrante en una cinta de transporte, de acuerdo con la especie, usando sensores ópticos"

Especies Salmon

Análisis del Problema

- Montar una cámara y tomar algunas imágenes de muestra para extraer características
 - × Largo
 - × Tono (color)
 - **Tamaño**
 - × Numero y forma de las aletas
 - Posición de la boca, etc...
- Este es el conjunto de las características sugeridas para explorar en el clasificador

Preprocesamiento

 Usar segmentación para aislar los peces uno de otro y con respecto al fondo

 Enviar información de cada pez al extractor de características

Extracción de características

- Extractor de características es un algoritmo que toma la imagen segmentada y calcula las características a enviar al clasificador
 - Largo
 - Ancho
 - Tamaño escamas
 - Tono

Clasificación

- Decidir el conjunto de características a usar
 - Conjunto "suficiente"
 - Conjunto "mínimo"
- Seleccionar el largo del pez como una posible característica para discriminación
- Clasificación lineal,

En promedio son distintos, pero no es suficiente....

El largo es una característica muy pobre!

- Otras características
 - × Largo
 - × Tono (color)
 - × Tamaño
 - Numero y forma de las aletas
 - ➤ Posición de la boca, etc...
- Tono de las escamas posible característica.
- Clasificación lineal,

 $x^* \sigma$

8

4

lightness

IO

2

2

Umbral de decisión x* y Costo de clasificación

• Mover nuestro borde de decisión hacia valores menores del Tono para minimizar el costo (reducir el numero de Meros que son clasificados como Salmones!)

Todavía hay algunos salmones mal clasificados.

 Adoptar el Tono y agregar el ancho de las escamas del pez

Clasificador: Decisión Lineal, $x_2 < a x_1 + b$, clasifica (x_1, x_2) en salmón

Clasificador lineal

Otras opciones

- Podríamos agregar otras características que sean no correlacionadas con las que ya tenemos.
- Hay que tomar precauciones para no reducir el desempeño agregando características "ruidosas".
- Idealmente, el mejor borde de decisión debería ser el que provee optimo desempeño como en la figura siguiente :

Clasificador óptimo

Generalización

Sin embargo, nuestra satisfacción es prematura porque el objetivo central es designar un clasificador que clasifique correctamente un nuevo elemento

Se debe poder generalizar!

37

Objetivos del curso

- Lograr realizar en un grupo de datos dado distintos tipos de clasificaciones
 - o decidiendo las características a utilizar
 - o planteando las ecuaciones
 - o implementando en Python dichas ecuaciones
 - o generando mapas visuales de clasificación
 - o calculando tasas de error aparente y teóricas

Consideraciones adicionales de un Sistema de reconocimiento de patrones

Captación

- o Medio (cámara o micrófono) para captar los datos
- o Características del medio:
 - x ancho de banda,
 - × resolución,
 - x sensibilidad a la distorsión

Segmentación y agrupamiento de muestras

- o Patrones deberían estar separados y no solaparse
- Selección muestras de entrenamiento

Módulo de clasificación

Extracción de características

- Características discriminativas
- Características invariantes con respecto a la traslación, rotación y escala.

Clasificación

 Regla que usa el vector de características provisto para asignar el objeto a una categoría

Post Procesamiento

 Explotar la información de contexto del objeto para mejorar el desempeño

El Ciclo de Diseño

- Recolección de datos
- Elección de características
- Elección de Modelo
- Entrenamiento
- Evaluación
- Reajuste
 - o complejidad computacional.
 - o errores aceptables e inaceptables

Recolección de Datos

- Como sabemos cuando hemos recolectado una colección adecuada de ejemplos
 - o en tamaño
 - o representatividad,
 - o para entrenar
 - o y testear el sistema?

Elección de características

46

Dependen

- o problema de clasificación,
- o del sistema de visión que genera los datos,
- o del costo de obtención de los datos.

Deben ser

- o simples de extraer,
- o invariantes bajo transformaciones de la imagen
- o inmunes o resistentes al ruido de captación de la imagen.

Elección de Modelo Matemático

- Lineal
- Cuadrático
- Funcional
- Árbol
- Red neuronal
- Máquina de soporte vectorial
- etc

Entrenamiento

- Usamos datos para determinar los clasificadores.
- Muchos procedimientos diferentes para entrenar los clasificadores y elegir los modelos

Evaluación

- Medidas de desempeño bajo un modelo
 - O Tasas de error
 - Costos
- Medidas de desempeño al cambiar de un grupo de características a otro

Complejidad computacional

- Cual es el balance entre computación fácil y desempeño?
- Como escala un algoritmo en función del numero de características, patrones y categorías?

Adaptación y Aprendizaje

- Aprendizaje supervisado
 - Un oráculo provee las etiquetas de categoría y costo de cada patrón en el conjunto de entrenamiento
- Aprendizaje no supervisado
 - o El sistema forma grupos naturales de los patrones ingresados.

Clasificación y Segmentación

- Etiquetar toda una imagen como una clase
 - Imagen de interiores o de exteriores;
 - Imagen de Salmon o Imagen de Mero

Clasificación

- Dividir una imagen en regiones de diferente tipo.
 - Diferentes tipos de tejido en una imagen medica,
 - Diferentes ejemplares de peces en la cinta de transporte.

Segmentación

Clasificación en Imágenes

- 53

Nombres distintos porque son problemas distintos

• Técnicas parecidas, podemos usar las mismas técnicas en ambos problemas.

Clasificación

Clase 1

Clase 2

Clase 3

?

Segmentación

Ejemplos

Introducción Machine Learning

Ejercicios

- Estudiar el problema de clasificación de flores Iris
 - Características al recolectar los datos
 - Número de clases hipotéticas

 Estudiar cargado de datos y muestra de datos en pantalla según características elegidas.