การทดลองที่ B

การทำงานของ Virtual Memory และ TLB

วิชา Computer Organization and Assembly Language ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ใช้เว็บเบราส์เซอร์เปิดใช้งานซิมูเลเตอร์ ชื่อ Para Cache

https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/start.html

เอกสารอธิบาย

https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/kb.pdf

ทำการทดลอง ตามขั้นตอนต่อไปนี้

1. กดเมนู เลือก Virtual Memory ตั้งขนาดของระบบ ดังรูป

Physical Page Size (power of 2)	8
Offset Bits	2
Virtual Memory Size (power of 2)	32
TLB Entries	4
Reset	Submit

- 2. กด Submit แล้วสังเกตรายละเอียดดังนี้
 - Virtual Memory ที่อยู่ด้านขวา Instruction Breakdown แบ่งเป็น (Virtual) Page(#) และ Offset
 - Translation Lookaside Buffer (TLB) ประกอบด้วย Virtual Page# และ Physical Page# เป็นแคชชนิด Fully
 Associative ของ Page Table
 - Page Table ประกอบด้วย Index (Virtual Page#), Valid และ Physical Page# เป็นตารางเก็บการแมพปิ้ง
 ระหว่าง Virtual Page# และ Physical Page# ใน RAM เคอร์เนลมีหน้าที่บริหารจัดการตาราง Page Table นี้
 - Physical Memory หมายถึง RAM แบ่งเป็น Physical Page# ขนาดที่ผู้ใช้กำหนดและ Content ซึ่งอาศัยอยู่ในเพจนั้นๆ

อธิบายความสัมพันธ์ระหว่าง Index ของ Page Table และ Page ของ Instruction Breakdown

ำหานแกว Page เป็นเลงชี้ก่าลังของเลง 2 ซึ่งมีค่าเท่ากับ ว่านอน Index โกยว่านวน แกว Page = 3, ท่นาน Index = 23 = 8 Index

- 3. กรอกแอดเดรสที่ต้องการจะใช้คำสั่ง Load หรือ ให้โปรแกรมสุ่มหมายเลขแอดเดรสให้
 - กรอก 0 ลงในหมายเลขฐานสิบหกที่มีอยู่ในกล่องข้อความด้านขวา
 - กรอกหมายเลข 1 ในกล่องข้อความดังรูป

อธิบาย information ในรูปว่า Offset, Instruction Length และ Rows สัมพันธ์กับ Page Size และ Physical Memory Size ที่ กรอกก่อนหน้านี้อย่างไร

4. กดปุ่ม Submit หมายเลข 0 ที่กรอก โปรดสังเกต Instruction Breakdown และเครื่องหมายสีน้ำเงินบนตำแหน่งหมายเลข 0 ของ Translation Lookaside Buffer (TLB) ดังรูป อธิบายตามความเข้าใจ

น่าฝา load ลกแปลงใหม่ พากเดิมที่เป็นรานาธ ให้แปลวเป็นฐาน 2 แล้วน่างกลิดเป็น ร bits (non 3 bits usnion Page, 2 bits was ide offset

5. กดปุ่ม Next และสังเกตพื้นที่สีเหลืองว่าเกี่ยวข้องกับหมายเลข 0 ที่ Submit ไปก่อนหน้านี้อย่างไร อธิบายความสัมพันธ์ระหว่าง Instruction Breakdown 000 และเส้นสีแดงที่เชื่อมไปยัง TLB สัญลักษณ์ '-' หมายเลข Virtual Page#, Physical Page# หมายถึงอะไร

ในเส้นสีเนลืองเป็นสา 3 bits เรก ซื่ออกจากการแปลอสา load ในเป็นฐาน 2 แล้งน่ามกคัดเป็น 5 bits

- · ในเส้นสีแถงเป็นการนำเลข Page ไปดันนาในดากง TLB
- 6. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นสีชมพู อธิบายความหมาย

เมื่อน่างกง Page ไปคันเกินการกง TLB แล้ว สาปได้ที่ไม่เจอ Page ที่ดันเกไป

7. กดปุ่ม Next และสังเกตเส้นสีแดงที่เชื่อมไปยัง Index 0 ของ Page Table อธิบายว่าสัมพันธ์กับ TLB อย่างไร

เนื่องจากไม่พบ Page ในดาราง TLB จังไปคันแกที่ Page Table ชื่อ ใกษาะเริ่มจาก Index = 0

8. กดปุ่ม Next ต่อเพื่อดำเนินการต่อ โปรดสังเกตการเปลี่ยนแปลงของแถวหมายเลข 0 ใน TLB ใน Page Table และ Physical Memory

อธิบายบิต Valid และ Physical Page# และ Content ว่าเหตุใดจึงเปลี่ยนเป็นรูปนี้

เนื่องจากไม่พบ Page ในดากง TLB จัวทาการ load data mn Secondary Memory ลาลภใน Physical Memory

หลังจากนั้นจะ update ค่า Physical Page # = 0, Valid 1 สงใน Page Table และค่า Virtual Page # = 000, Physical Page # = 0 ลงใน MIDSTLB

9. เลื่อนหน้าต่างลงไปด้านล่าง โปรดสังเกตข้อมูล Statistics ดังรูป อธิบายข้อมูลที่ได้ว่าคำนวณอย่างไร

Statistics Hit Rate 0% 100% Miss Rate: **List of Previous Instructions:** 0 [Miss]

10. กดปุ่ม Submit หมายเลขแอดเดรส 1 ถัดไป แล้วจึงกดปุ่ม Fast Forward เพื่อเร่งการทำงานของคำสั่งให้รวดเร็วขึ้น โปรดสังเกตการ เปลี่ยนแปลงใน Instruction Breakdown, TLB, Page Table, Physical Memory, Information และ Statistics ดังนี้

Statistics

Hit Rate : 50% Miss Rate : 50%

List of Previous Instructions:

• 0 [Miss]

• 1 [TLB Hit]

อธิบายข้อมูลที่ได้ว่า Hit Rate และ Miss Rate คำนวณอย่างไร

11. กรอก แอดเดรสหมายเลข 4 และ 5 ตามรูป แล้วจึงกดปุ่ม Submit

สังเกตเลขฐานสองของ Instruction Breakdown และ TLB ดังรูป

กด Next เพื่อดำเนินการต่อจนสังเกตเห็นเส้นสีแดงเชื่อมระหว่าง TLB & Page Table

12. กด Next เพื่อดำเนินการต่อ โปรดสังเกตการเปลี่ยนใน TLB, Page Table และ Physical Memory ที่ตำแหน่ง Physical Page# หมายเลข 1 รวมถึงคอลัมน์ Content

เลื่อนหน้าต่างเพื่ออ่านค่าสถิติล่าสด

Statistics

Hit Rate : 33%

Miss Rate: 67%

List of Previous Instructions:

• 0 [Miss]

1 [TLB Hit]

4 [Miss]

อธิบายข้อมูลที่ได้ว่าคำนวณอย่างไร

$$\frac{9279 \text{ Hit rate} = 1}{1+2} = 33 \frac{1}{1}$$
, Miss rate = $\frac{2}{1+2} = 67 \frac{7}{1}$

13. กดปุ่ม Submit หมายเลข 5 แล้วกดปุ่ม Fast Forward จนได้สถิติดังนี้ จงอธิบายว่าหมายเลข 5 จึงเป็น TLB Hit

Statistics

Hit Rate : 50% Miss Rate : 50%

List of Previous Instructions:

0 [Miss]

• 1 [TLB Hit]

4 [Miss]

5 [TLB Hit]

อธิบายข้อมูลที่ได้ว่า Hit Rate และ Miss Rate คำนวณอย่างไร

Hit rate =
$$\frac{2}{2} = \frac{50}{1}$$
, Miss rate = $\frac{2}{2} = \frac{50}{1}$.

14. กรอกหมายเลข 8 และ 9 ดังรูป แล้วกด Submit

อธิบายเลขฐานสองที่ได้ตามรูปนี้

phrosologa = 8 munosoly 01000, to 3 bit uson no Page = 010, 2 bits kni no 00

15. กด Next เพื่อดำเนินการต่อ

โปรดสังเกตการเปลี่ยนใน TLB, Page Table และ Physical Memory ที่ตำแหน่ง Physical Page# หมายเลข 0 รวมถึงหมายเลข Block ใน Content

	Page Table			Physical Memory		
	Index	Valid	PhysicalPage#	Physical Page#	Content	
	0	1	0	0	Block 010 Words: 0 - 3	
	1	1	1	1	Block 001 Words: 0 - 3	
•	2	1	0			

Statistics Hit Pate

Hit Rate : 40%
Miss Rate : 60%
List of Previous Instructions :

- 0 [Miss]
- 1 [TLB Hit]
- 4 [Miss]
- 5 [TLB Hit]
- 8 [Miss]

อธิบายข้อมูลที่ได้ว่า Hit Rate และ Miss Rate คำนวณอย่างไร

Hit rate =
$$\frac{2}{2+3} = 40\%$$
, Miss rate = $\frac{3}{2+3} = 60\%$

16. กด Submit แอดเดรสหมายเลข 9 และปุ่ม Fast Forward

เลื่อนหน้าต่างลงไปด้านล่าง โปรดสังเกตข้อมูล Statistics ดังรูป

Statistics

Hit Rate : 50%

Miss Rate:

50%

List of Previous Instructions:

- 0 [Miss]
- 1 [TLB Hit]
- 4 [Miss]
- 5 [TLB Hit]
- 8 [Miss]
- 9 [TLB Hit]

อธิบายข้อมูลที่ได้ว่า Hit Rate และ Miss Rate คำนวณอย่างไร

Hit rate =
$$\frac{3}{3+3} = \frac{50}{7}$$
, Miss rate = $\frac{3}{2+3} = \frac{50}{7}$

โปรดสังเกตหมายเลข Virtual Page# ใน TLB, Page Table และ Block 010 ใน Physical Memory

Instruct	tion Breal	kdown			
	010			01	
	3 bit			2 bit	
Translation Lo			ookaside Buffe	er	
Virtual Page# Physical Page#					
		0	000	0	
		1	001	1	
		2	010	0	
		•	_	-	
			Frai	me	Offset
▲ Page Table		● Pl	nysical Memory		
Index	Valid	PhysicalPage#		Physical Page#	Content
0	1	0		0	Block 010 Words: 0 - 3
1	1	1		1	Block 001 Words: 0 - 3
2	1	0			

√ นักศึกษาควรจะได้ผลการทดลองใน Cache Table ตรงกับรูปนี้ จงวิเคราะห์ว่าซิมูเลเตอร์ทำงานถูกต้องตามหลักการหรือไม่ เพราะเหตุใด

กูกพ้อง เพราะ การที่ใ-เข้าถึงข้อมูสาะมีการ map เพื่อห่อะหาว่า มีที่อยู่ แร้งไม่ โดยการ check ที่ TLB ถ้ามีจะเข้าไปดูทั่ Physical memory ที่เราได้ฝากข้อมูดไว้

กิจกรรมท้ายการทดลอง

1. ตั้งขนาดของ Physical Memory Size เท่ากับ 8 ดังรูป แล้วเปรียบเทียบด้วยหมายเลขแอดเดรสเดิม คือ 0, 1, 4, 5, 8, 9

Physical Page Size (power	16
of 2)	
Offset Bits	2
Virtual Memory Size	32
(power of 2)	
TLB Entries	4

2. ตั้งขนาดของ TLB Entries เท่ากับ 2 ดังรูป แล้วเปรียบเทียบด้วยหมายเลขแอดเดรสเดิม คือ 0, 1, 4, 5, 8, 9

Physical Page Size (power of 2)	8
Offset Bits	2
Virtual Memory Size (power of 2)	32
TLB Entries	2

3. ตั้งขนาดของ Virtual Memory Size เท่ากับ 16 ดังรูป แล้วเปรียบเทียบด้วยหมายเลขแอดเดรสเดิม คือ 0, 1, 4, 5, 8, 9

Physical Page Size (power of 2)	8
Offset Bits	2
Virtual Memory Size (power of 2)	16
TLB Entries	4

4. ศึกษาขนาดของ Offset โดยตั้งเท่ากับ 1 ดังรูป แล้วเปรียบเทียบด้วยหมายเลขแอดเครสเดิม คือ 0, 1, 4, 5, 8,

Physical Page Size (power	8
of 2)	
Offset Bits	1
Virtual Memory Size	32
(power of 2)	
TLB Entries	4

- 5. ค้นคว้าเพิ่มเติมเรื่อง Virtual Memory ว่าซิมูเลเตอร์ขาดองค์ประกอบและมีความสำคัญอย่างไร
- 6. เหตุใดการเปลี่ยนเทคโนโลยีของอุปกรณ์เก็บรักษาข้อมูลจากฮาร์ดดิสก์ไดรฟ์เป็นโซลิดสเตทไดรฟ์ จึงทำให้คอมพิวเตอร์ทำงานได้ เร็วขึ้น

พละ HDD ชุลักษณะเป็นแฟนดิส เพรที่จะเก็วกั้งช่อมูลใต้จ่านปีแต่บบนมุนสานดิสโปเรื่อย 3 จนกว่าจะเจอบั้งมุลที่ตั้มการ

- SDD มีการกางานแบบ flash memory chip จะเข้าถังข้อมูลได้เรือกว่า HDD
- .. จังใช้บังมูลแบบใหล้กสเตทไกรฟ์ (รอง)