Operacijska Istraživanja - Prva lab. vježba

Branimir Ivić, 0036516863

Tekst zadatka

Poduzeće Gricko pravi tri vrste mješavina grickalica. Za različite mješavine potrebno je različito vrijeme pripreme mješavine. Za prvu je potrebno 0.125 sati, za drugu 0.15 sati, a za treću 0.1 sata za svaku vrećicu. Svaka vrećica je iste zapremine koja iznosi pola litra. Troškovi proizvodnje vrećica su 3 eura za prvu, 3.5 eura za drugu i 3 eura za treću mješavinu. Mješavine se skladište u prostor veličine 0.15 m3 i šalju u prodaju jednom tjedno. Stroj za miješanje može raditi do 40 sati tjedno. Potrebno je napraviti tjedni plan proizvodnje kojim se ostvaruje maksimalna zarada (vodeći računa i o troškovima proizvodnje) ako su prodajne cijene jedne vrećice 7 eura za prvu, 8 eura za drugu i 6.5 eura za treću mješavinu.

Matematički model problema

Dakle, imamo dva ograničenja: prostor i radno vrijeme stroja. Prostor je ograničen na 150 dm³ gdje je svaka vrećica 0.5 dm³, a stroj može raditi 40 sati tjedno. Trebamo maksimizirati profit (cijena jedne grickalice oduzimamo s cijenom proizvodnje).

Primalna jednadžba

```
\max Z = (7-3)x_1 + (8-3.5)x_2 + (6.5-3)x_3 = 4x_1 + 4.5x_2 + 3.5x_3

Ograničenja:

0.125x_1 + 0.15x_2 + 0.1x_3 \le 40 (ograničenje radnih sati)

0.5x_1 + 0.5x_2 + 0.5x_3 \le 150 (ograničenje prostora)

x_1, x_2, x_3 \ge 0 (ograničenje nenegativnih brojeva)
```

Dualna jednadžba

```
\min W = 40y_1 + 150y_2
Ograničenja:
0.125y_1 + 0.5y_2 \ge 4 (ograničenje x_1)
0.15y_1 + 0.5y_2 \ge 4.5 (ograničenje x_2)
0.1y_1 + 0.5y_2 \ge 3.5 (ograničenje x_3)
y_1, y_2 \ge 0 (ograničenje nenegativnih brojeva)
```

Rješenja

Numeričko rješenje je postignuto python ekstenzijom PuLP, dok je grafičko postignuto geogebrom. Softersko rješenje pythonom sadrži primalni i dualni model u svojem kodu.

Funkcija cilja

Postoji jedan optimum i taj optimum funkcije cilja iznosi Z = W = 1250 eura (€) profita.

Primalne varijable

```
Result - Optimal solution found
Objective value:
                               1250.000000000
Enumerated nodes:
Total iterations:
                               0
Time (CPU seconds):
                               0.02
Time (Wallclock seconds):
                               0.02
Option for printingOptions changed from normal to all
Total time (CPU seconds):
                           0.03
                                     (Wallclock seconds):
                                                                0.03
Grickalica_1 : 0.0
Grickalica_2 : 200.0
Grickalica_3 : 100.0
```

 $x_1 = 0$ $x_2 = 200$ $x_3 = 100$

Dualne varijable

```
Result - Optimal solution found
Objective value:
                               1250.000000000
Enumerated nodes:
                               0
Total iterations:
                               0
Time (CPU seconds):
                               0.02
Time (Wallclock seconds):
                               0.02
Option for printingOptions changed from normal to all
Total time (CPU seconds):
                           0.04
                                      (Wallclock seconds):
                                                                 0.04
y1: 20.0
y2 : 3.0
```

$$y_1 = 20$$
$$y_2 = 3$$

Grafičko (Geogebra) rješenje

U geogebri ograničenje prostora je crvena ploha dok je ograničenje radnih sati plava ploha. Rešetke na plohama su izjednačenje funkcije cilja sa ograničenjem tj0.5x+0.5y+0.5z=4x+4.5y+3.5z gdje su $x=x_1,y=x_2,z=x_3$ te radimo samo sa nenegativnim vrijednostima (ograničenje nenegativnih brojeva). Isto tako I za ograničenje radnih sati. Presjek ovih dvaju ploha daje (pravac) feasible space odnosno prostor svih rješenja koji zadovoljavaju ograničenja. Optimum je točka za koju pravac ima najveću vrijednosti, a to je x=0,y=200,z=100.

Resursi

Iskorištenost resursa

Resursi su u potpunosti iskorišteni jer je prostor od 0.15 m³ i radno vrijeme stroja od 40 sati u potpunosti iskorišteni da bi se dostigao optimum. Dakle, nema slobodnog prostora niti vremena.

Ograničenje prostora: $0.125x_1 + 0.15x_2 + 0.1x_3 \le 40 \text{ (ograničenje radnih sati)}$ $0.5x_1 + 0.5x_2 + 0.5x_3 \le 150$ $0.5*0 + 0.5*200 + 0.5*100 \le 150$ $100 + 50 \le 150$ $150 \le 150$ Ograničenje radnih sati: $0.125x_1 + 0.15x_2 + 0.1x_3 \le 40$ $0.125*0 + 0.15*200 + 0.1*100 \le 40$ $30 + 10 \le 40$ $40 \le 40$

Analiza osjetljivosti

Za analizu osjetljivosti mijenjamo vrijednosti ograničenja te gledamo shadow price.

Shadow Price (SP) =
$$\frac{Z_B - Z_A}{C_B - C_A}$$

gdje postoje strojevi A i B. A je originalni stroj dok je B stroj s novim ograničenjima.

$$SP(+1 \ radni \ sat) = \frac{1270 - 1250}{41 - 40} = 20$$

$$SP(-1 \ radni \ sat) = \frac{1230 - 1250}{39 - 40} = 20$$

$$SP(+1 \ dm^3) = \frac{1253 - 1250}{151 - 150} = 3$$

$$SP(-1 \ dm^3) = \frac{1247 - 1250}{149 - 150} = 3$$

Vidimo da svaki dodatna radni sat dodaje po 20 eura profita i obratno. Također vidimo da svaki dodatni dm³ prostora dodaje 3 eura profita i obratno.

Cijeli brojevi

Potrebno je koristiti cijele brojeve jer stroj ne može proizvesti pola vrećice grickalice, već za istu vrstu grickalica mora praviti međusobno identične grickalice (tj bez varijacija).