1) [10 pts] Define the fundamental group of a space X at basepoint x_0 . Be precise about any equivalence relations involved.

2) [10 pts] What is the fundamental group of the space X obtained by taking two circles and identifying 2 distinct points on one circle with 2 distinct points on the other?

3) [7 pts] If X is a topological space, and γ is a loop based at x_0 in X, what is the effect of adjoining a 2-cell by $e^2 = \gamma$ to $\pi_1(X, x_0)$?

4) [10 pts] What is the fundamental group of the space obtained from part 2 by filling in one region?

5) [10 pts] State the (simplified) Van Kampen Theorem.

6) [12 pts] Let X be a path connected space. Recall that the suspension of X, called S(X) = SX, is defined by

$$S(X) = X \times I / \sim$$

where $(x,0) \sim (y,0)$ and $(x,1) \sim (y,1)$ for all $x,y \in X$. That is, we pinch the sides of the interval to a point. Find $\pi_1(SX)$. (**Hint:** Since we know nothing about X, it may be wise to divide the space along I using Question 5.)

7) [20 pts] Shrinking Wedge of Circles: Let X be the subspace of \mathbb{R}^2 formed by taking a wedge sum at the origin of all the circles C_n of radius $\frac{1}{n}$ centered at $(0, \frac{1}{n})$. We will show that this easily obtained space X has an uncountable fundamental group:

i. [5 pts] The group $G = \prod_{i=1}^{\infty} \mathbb{Z}$ is the ordered set of infinitely many integers. Show that it is uncountable (for example, by injecting \mathbb{R} into it).

ii. [8 pts] Show that for $\mathbf{a}=(a_1,a_2,\ldots)\in G$, there is $\gamma_{\mathbf{a}}\in\pi_1(X)$ such that $\gamma_{\mathbf{a}}$ loops a_1 -times around C_1 , then a_2 -times around C_2 , and so on (say on timescale $\left[\frac{1}{n+1},\frac{1}{n}\right]$). In particular, show continuity at t=0 (ϵ - δ may be useful).

iii. [7 pts] Show that the γ_a are non-homotopic, by considering retractions $r_n: X \to C_n$ sending all other circles to the origin.¹

 $[\]overline{{}^1\mathrm{Note \ this}}$ also distinguishes the space X from $\vee_{i=1}^{\infty}S^1$, which has countable fundamental group $\mathbb{Z}^{*\infty}$.

8) [5 pts] Define a covering space.

9) [10 pts] Let $X = \bigcup_{\alpha} X_{\alpha}$ be a locally finite open cover of X. If $\tilde{X} = \coprod_{\alpha} X_{\alpha}$ is the disjoint union of the open sets in the cover, show that $p: \tilde{X} \to X$ is a covering space.²

²Therefore, nice open covers can be viewed as covering spaces. Recall locally finite means every point is in only finitely many X_{α} .

10) [10 pts] Consider the cover of $X = S^1 \vee S^1$ given by the following picture. Present and describe in words $G(\tilde{X})$, the group of deck transformations of \tilde{X} over X.

11) [Extra Credit 10] Let X and Y be path connected, locally connected spaces, and let \tilde{X} and \tilde{Y} be their respective universal covering spaces (so that \tilde{X} and \tilde{Y} are simply connected). Show that if $X \simeq Y$, then $\tilde{X} \simeq \tilde{Y}$. (**Hint:** Lifting properties!)

$$\begin{array}{ccc} \tilde{X} & \tilde{Y} \\ p \downarrow & & \downarrow q \\ X & \stackrel{f}{\longleftarrow} & Y \end{array}$$

You may use the following without proof: $X \xrightarrow{f} Y$ is a homotopy equivalence if there exists $g,h: Y \to X$ with $g \circ f \simeq Id_X$ and $f \circ h \simeq Id_Y$.