Statistics 203: Introduction to Regression and Analysis of Variance Functional Data

Jonathan Taylor

Today's class

■ Today's class

- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of ${\sf Err}_x, t$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- Functional data.
- A functional *t*-test.
- Mean, variance, covariance functions.
- Functional data I care about fMRI.

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

Functional data

Functional data

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of Err $_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- Last class, we talked about smoothing one function at a time.
 - B splines;
 - smoothing splines;
 - kernel smoothers.
- In a functional data setting we observe *many* functions at once, we might also observe many covariates for each curve.
- Example I will talk about later: functions are space-time images, covariates are simple: "motion correction" and "slow drift."

A two-sample functional *t*-test

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of Err_x , t
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- Suppose we observe a group of *n* paired curves: maybe the growth curves of twins separated at birth over the fi rst 18 years of life but raised in different countries with a big difference in standard of living.
- Nutrition is known to have an effect on population height: twins' curves might be different.
- We can describe this data as $(Y_{i1,t},Y_{i2,t}), 1 \le i \le n, 0 \le t \le 18$ where twins Y_{i1} are in country # 1 and Y_{i2} are in country # 2 with

$$Y_{ij,t} = \mu_{i,t} + \delta_t \cdot 1_{\{j=1\}} + \varepsilon_{ij,t}.$$

- The measurement noise ε can be assumed independent across subjects and set of twins put probably is dependent in time (μ_i would be a random effect curve for the i-th set of twins), and δ is the "nutrition effect"
- Although we never observe the *whole* curve, we should think of actually having an entire curve.

Functional t-test

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of Err_x , t
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

■ For each t, and each pair compute

$$\widehat{\delta}_t = \frac{1}{n} \sum_{i=1}^n Y_{i1,t} - Y_{i2,t},$$

Also, compute

$$\widehat{\sigma}^{2}(\widehat{\delta}_{t}) = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i1,t} - Y_{i2,t} - \widehat{\delta}_{t})^{2}$$

Natural to use

$$T_t = \frac{\widehat{\delta}_t}{\widehat{\sigma}(\widehat{\delta}_t)}$$

to test $H_{0,t}: \delta_t = 0$, i.e. at age t the "country effect" is 0.

■ Test for no effect $H_0 = \cap_t H_{0,t}$: use

$$T_{\max} = \max_{t \in [0,18]} |T_t|.$$

Smooth noise

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x\,,\,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- Problem: what is the distribution of T_{max} ? It is not χ^2 ! Depends on properties of ε .
- Maybe we model each noise ε_{ij} as a smooth Gaussian process on [0, 18].
- What is a Gaussian process? A random function such that for every collection $\{t_1, \ldots, t_k\}$ the random vector

$$(\varepsilon_{t_1},\ldots,\varepsilon_{t_k})$$

is multivariate normal.

■ A Gaussian process ε_t is completely determined by

$$\mu_t = \mathbb{E}(\mu_t), \qquad R_{t,s} = \mathsf{Cov}(\varepsilon_t, \varepsilon_s)$$

■ If n is large (so T_t is almost Gaussian itself) then the distribution of

$$\varepsilon_{\max} = \max_{t \in [0,18]} \varepsilon_t$$

depends on $Var(\dot{\varepsilon}_t)$ (known as Rice's formula).

Another approach

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

■ Perhaps a more typical FDA approach would be "dimension" reduction. That is, take each curve $Y_{ij,t}$ and express it as a linear combination of basis functions $b_k(t)$ – the projection of $Y_{ij,t}$ onto the basis

$$Y_{ij,t} = \sum_{k} c_{ij,k} b_k(t) + r_{ij,t}$$

Sometimes the remainder $r_{ij,t} = 0$ and no dimension reduction is used.

- In any case, once you have expressed each curve in a given basis, the two-sample t-test problem becomes a standard regression problem involving the coffi cients $c_{j,k}$ which is the "new data."
- With this basis approach, it is possible to impose penalties (i.e. on the second derivatives, etc.) as long as you know how to compute the penalties in your specific basis.

Penalty example: second derivative

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

■ Suppose we choose to express each curve $Y_{ij,t}$ as a linear combination of \cos waves of the form

$$b_k(t) = \cos(2\pi kt/18), 1 \le k \le m.$$

■ Then

$$b_k''(t) = c_k b_k(t), \qquad \int_0^{18} b_k(t) b_j(t) dt = \delta_{jk} c_k'.$$

■ This means that

$$\int_0^T \left(\sum_k a_k b_k''(t) \right)^2 dt = \sum_k a_k^2 c_k^2 c_k'.$$

■ Smoothing spline problem to estimate δ (penalty on integral of $\delta''(t)^2$) becomes a ridge problem.

Smoothing spline and ridge

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of Err_x , t
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

Suppose we look at the two-sample problem in the Fourier basis but we impose a second derivative penalty. Let

$$\widehat{Y}_{ij,t} = \sum_{k=1}^{m} c_{ij,k} b_k(t)$$

be the "dimension reduced" $Y_{ij,t}$'s and

$$\delta_t = \sum_k \delta_k b_k(t)$$

be a linear combination of sine waves.

■ Problem find $\hat{\delta}_t$ that minimizes

$$L_{\lambda}(\delta) = \sum_{i=1}^{n} \left(\widehat{Y}_{i1,t} - \widehat{Y}_{i2,t} - \delta_t \right)^2 dt + \lambda \int_{0}^{18} \delta''(t)^2 dt.$$

■ Both integrals reduce to sums involving δ_k 's and $c_{ij,k}$'s: equivalent to a ridge problem.

Today's class

- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of ${\sf Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

fMRI

What is fMRI?

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- fMRI (Functional Magnetic Resonance Imaging) is a space-time recording of "metabolic activity" in the human brain
- "paradigm" (motor task, i.e. fi nger tapping or cognitive task, i.e. face recognition) increases nerve cell activity in areas associated with the "paradigm"
- increased nerve cell activity increases metabolic demand for oxygen, increases metabolic activity results in a lagged increase in oxygenated Hg (hemoglobin)
- relationship between input "paradigm" and BOLD is modelled through a transfer function, the Hemodynamic Response Function (HRF)

$$\mathsf{BOLD}_{x,t} = \beta_x^{\mathsf{Input}} \cdot (\mathsf{HRF} * \mathsf{Input})_t + \sum_{i=1}^{\kappa} \beta_{i,x} X_i + \mathsf{Err}_{x,t}.$$

Block design – finger tapping

Hemodynamic response function

Convolved design – finger tapping

Components of $Err_{x,t}$

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- physiological noise
 - ◆ cardiac noise
 - repiratory noise
 - basal metabolism
- motion artifacts
- saturation of signal
- lacktriangle other sources of error: lumped into "noise term" $\varepsilon_{x,t}$

Full model for finger tapping data

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

$$\begin{split} \mathsf{BOLD}_{x,t} &= \beta_x^{\mathsf{Input}} \cdot (\mathsf{HRF} * \mathsf{Input})_t \ + \\ &\sum_{j=1}^6 T_{j,t} \beta_{j,x}^{\mathsf{Motion}} + \sum_{j=0}^2 \beta_{j,x}^{\mathsf{Time}} t^j + \varepsilon_{x,t}. \end{split}$$

- Usually, model is fit voxel-by-voxel, usually spatial ignoring correlation between $\varepsilon_{x_1,\cdot}$ and $\varepsilon_{x_2,\cdot\cdot}$
- Most common model is a two-stage procedure: fi rst fi nd a (smoothed) AR(1) coeffi cient image at each voxel in the brain: estimate standard errors and coeffi cients with this AR(1) value at each voxel.
 - Sometimes, even correlation within time series at a single point is ignored and model is fit by OLS.
- Many people work on "improving" this basic model.

Voxel in the motor cortex

Marginally significant voxel

Real experiment: reward anticipation

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

- B. Knutson, my psychologist collaborator is interested in reward anticipation.
- Subjects play simple video game, and are told whether they can win, lose or draw on each round.
- If we contrast "win" (reward) vs. "draw" (neutral), we will find areas that are sensitive to anticipating reward.

Combining subjects: fixed effect analysis

- Today's class
- What is fMRI?
- Block design finger tapping
- Hemodynamic response function
- Convolved design finger tapping
- ullet Components of $\operatorname{Err}_{x,t}$
- Full model for finger tapping data
- Voxel in the motor cortex
- Marginally significant voxel
- Real experiment: reward anticipation
- Combining subjects: fixed effect analysis

■ For each subject *i*, compute

$$T_x^{RwAnt,i} = \frac{\widehat{\beta}_x^{RwAnt,i}}{SE(\widehat{\beta}_x^{RwAnt,i})}.$$

- Transform subject-specific comparisons to Tailarach space (common coordinates).
- Form group map

$$T_x = \frac{1}{\sqrt{n}} \sum_{i=1}^n T_x^{RwAnt,i}.$$

- Analogous to the role of T_t in "growth curve" example.
- Where to set the threshold? The uncorrected 0.05 threshold is 1.96. The generalizations of Rice's formula set the threshold around 4.5 or so. Let's look at the difference.