: ملخص مادة Data structure and algorithms

تصميم لجنة الـ ICE المختصة بقسم هندسة الحاسوب و الاتصالات و الأنظمة الذكية

Data structure and algorithm Chapter 3

الهدف من هذا الشابتر: التعرف على مدى كفاءة الكود "code efficiency" و كيفية حساب هذه الكفاءة

الخوارزمية algorithm : هي طريقة التي استعملها المبرمج في كتابة البرنامج و هي التي تحدد كفاءة البرنامج , لكنها ليست البرنامج نفسها , اما طريقة حل المشكلة و تم تطبيق هذه الطريقة بالبرنامج باستعمال لغة معينة .

اذا نحن تقنيًا نقوم بحساب الخوار زمية من اجل حساب كفاءة البرنامج

البرامج تتراوح بكفاءتها, فقد يكون هناك برنامجان يقومان بنفس العمل و لكن هناك واحد افضل من الاخر بسبب ان الخوارزمية المستعملة أفضل, ما هي المقاييس التي نحكم عليها بكفاءة البرنامج ؟

- السرعة (speed): سرعة انتهاء البرنامج
- حجم البرنامج (space): المساحة المحجوزة للبرنامج على الجهاز

اذا ما هي طرق حساب كفاءة البرنامج ؟

- الحساب بالتجريب (Experimental Studies) :

و هي عبارة عن تشغيل البرنامج و حساب الوقت المستغرق الانتهائه و لكن هذه الطريقة غير عملية, الان قوة الحواسيب تتفاوت و كمية البرامج التي تعمل بالخلفية, فحتى تستطيع مقارنة برنامجان يجب ان يعملا على نفس الجهاز مع نفس الحالة التشغيلية (برامج الخلفية)

- التعبير عن البرنامج بطريقة حسابية (معادلة):

يمكن عد العمليات البدائية الموجودة في البرنامج والتعبير عنها بالنسبة للمتغير t و ثم تجربة قيم مختلفة و لكن حساب متوسط القيم مجهد لذلك من الأفضل اخذ السوء حالة للبرنامج

يوجد 7 معادلات أساسية للتعبير عن البرامج و تتراوح كفاءة هذه المعادلات واحدة عن الأخرى

الأسوء → الافضل

constant	logarithm	linear	n-log-n	quadratic	cubic	exponential
1	$\log n$	n	$n \log n$	n^2	n^3	a^n

الأساس 2 من المدخل على الخوارزمية او القيمة الذي ستتفاعل معها و أكم مرة سيلف البرنامج على ال n . م

Asymptotic Analysis

إفتراضًا ان f(n) هي المعادلة المعبرة عن الخوارزمية

اسوء نتيجة قد يحصل عليها البرنامج: big-oh: O(f(x))

افضل نتيجة قد يحصل عليها البرنامج: big – omega : Ω(f(x)) :

متوسط النتائج التي قد يحصل عليها البرنامج: big – theta Θ(f(x))

أمثلة:

Big-Oh:

- $5n^2 + 3n \log n + 2n + 5$ is $O(n^2)$
- 3logn + 2 is O(logn)
- 2^{n+2} is O(2n) $2^{n+2} = 2^n * 2^2$
- 2n + 100logn is O(n)

Big-Omega:

3nlogn – 2n is $\Omega(nlogn)$

Big-Theta:

3nlogn + 4n + 5logn is $\Theta(nlogn)$

من اجل إيجاد الـ (O(f(x)) كا لأي معادلة, بكل بساطة ابحث عن اسوء حالة من المعادلات السبع الموجودة و خذها لوحدها

• مقارنة المعادلات:

مقارنة المعادلات سهلة, فقط استخرج الـ (big-oh) و قارن بينهم مثال:

$$f(x) = 2n+4nlogn +5$$

 $y(x) = n^2+3n + 1$

هنا O(f(x)) = nlog(n) و على حسب الجدول الـ nlogn هي O(f(x)) = nlog(n) هي الأفضل إذن f(x) افضل من g(x) في أغلب الحالات

و لكن احذر , حتى قيم معينة قد تكون y(x) افضل من f(x) مثل 1 . 2 .

Operation	Examples	Complexity class		
Append	l.append(item)	O(1)		
Clear	l.clear()	0(1)		
Containment	item in/not in l	O(N)		
Сору	l.copy()	O(N)// 4//		
Delete	del I[i]	O(N)		
Extend	l.extend()	O(N)		
Equality	1== 2, 1!= 2	O(N)		
Index	1(i)	O(1)		
Iteration	for item in I:	O(N)		
Length	len(I)	O(1)		
Multiply	k*I	O(k*N)		
Min, Max	min(I), max(I)	O(N)		
Pop from end	l.pop(-1)	O(1)		
Pop intermediate	l.pop(item)	O(N)		
Remove	l.remove()	O(N)		
Reverse	l.reverse()	O(N)		
Slice	I[x:y]	О(у-х)		
Sort	l.sort()	O(N*log(N))		
Store	l[i]=item	O(1)		

من اجل التحويل الكود الى معادلة ستحتاج الى معرفة ثقل كل وحدة من هؤلاء العمليات

في حال وجدت أي عملية داخل for تضرب وزنها ب n حتى لو كانت for أخرى مثل : for ~~~

for ~~ :

 $O(n^2)$ تكون

أمثلة

(1) If the number of operations executed by algorithm A is {2 n} and by algorithm B is {8 log n}, then B is better than A for:

A. (n > 4)

B. (n < 8)

C. (n > 32)

D. (n < 32)

(2) If the number of operations executed by algorithm A is expressed by $3n + n \log n + 15$, then A complexity in terms of Big-O notation is:

 $n \log n$

(3) Assume that **there are two lists with length n** for both, and you need to write an algorithm to find **if there is at least one shared element between them**, then the Big-O notation of your algorithm is:

 $O(n^2)$

ليش: السؤال بحكي, اذا عندك ثنتين List طول كل وحدة منهم n لاقي اذا في عنصر مشترك بينهم, يعني انت بأسوء الأحوال رح تضطر تقارن كل عنصر بالليست الأولى بكل عنصر بالليست الثانية يعنى ككود:

for i in list1:

for j in list2:

if i==j : break;

(9) The complexity (Big-O) of the following lines of code is:

for i in range(len(lst)): -----

 $lst.pop(0) \longrightarrow n$

 $O(n^2)$ جوا n رح تعطي n جوا