TSA by JG

[TOC]

1. TSA by Jo	3
1.1 Intro	0
1.1.	1 Stationarity
1.1.	2 Trends & Seasonal Components
1.2 1.2.	1 Autocovariance
1.2.	2 Time Series Model TSM
1.3 1.3.	1 Estimation
1.3.	2 Prediction
1.4 1.4.	1 Further Prediction
1.5 1.5.	1 wold decomposition
1.5.	2 Partial Correlation
1.5.	3 ARMA Processes
1.6 1.6.	1 Spectral Analysis
1.6.	2 Predition in the frequency domain PiFD
1.6.	3 The It ^o intergral
1.7 1.7.	1 Estimation of the spectral density
1.7.	2 Linear Filters
1.8 1.8.	1 Estimation for ARMA models
1.9 1.9.	1 unit roots
1.9.	2 Multivariate Time Series MTS
1.10 1.1	.0.1 Financial Time Series
1.11 1.1	1.1 Kalman Filtering
1.12 Ap	pendix
1.1	2.1 A.1 Stochastic Processes
1.1	.2.2 A.2 Hilbert Spaces

Intro

Definition A time series model for *the observed data* $\{x_t\}$ is a specification of the joint distributions of a sequnce of random variables $\{X_t\}$ of which $\{x_t\}$ is postulated to be a realization.

Definition (IID noise) A process $\{X_t\,,\,t\,\in\,\mathbb{Z}\}$ is said to be a IID noise with mean 0 and variance σ^2 , written

$$\{X_t\} \sim \mathrm{IID}(0,\sigma^2)$$

if the random variables X_t are independent and indentically distributed with $EX_t=0$ and $Var(X_t)=\sigma^2$ (IID = Independent and Identically Distributed) or $X_t\sim i.i.d.$ for short obviously the binary process is IID(0,1) noise.

Definition Let $\{X_t, t \in T\}$ or $\{X_t\}$ for the laziness's sake, with $\mathrm{Var}(X_t) < \infty \ \forall t$ The mean function of $\{X_t\}$ is:

$$\mu_X(t) := E(X_t), \quad t \in T$$

The covariance funtion of X_t is:

$$\gamma_X(r,s) := \operatorname{Cov}(X_r,X_s)$$

Stationarity

Loosely speaking, a stochastic process is stationary, if its statistical properties do not change with time.

Definition(Stationary) The time series $\{X_t, t \in \mathbb{Z}\}$ is said to be (weakly) stationary if

- $\operatorname{Var}(X_t) < \infty$
- $\mu_X(t) = \mu$
- $\gamma_X(r,s) = \gamma_X(r+t,s+t)$

the last condition implies that $\gamma_X(r,s)$ is a funtion of r-s then:

$$\gamma_X(h) := \gamma_X(h,0)$$

The value "h" is referred to as the "lag"

Definition (ACVF) Let $\{X_t\}$ be a stationary time series. The autocovariance function (ACVF) of $\{X_t\}$ is

$$\gamma_X(h) = \operatorname{Cov}(X_{t+h}, X_t)$$

The autocorrelation function is

$$ho_X(h) := rac{\gamma_X(h)}{\gamma_X(0)}$$

Definition (White Noise) A process $\{X_t\}$ is said to be a white noise with mean μ and covariance σ^2 , written:

$$X_t \sim \mathrm{WN}(\mu, \sigma^2)$$

if
$$EX_t = \mu$$
 and $\gamma(h) = \left\{egin{array}{ll} \sigma^2 & h = 0 \ 0 & h
eq 0 \end{array}
ight.$

Trends & Seasonal Components

$$X_t = m_t + s_t + Y_t$$

be the "classical decomposition" model where:

- m_t is a slowly changing function (the "Trend Componet")
- s_t is a function with known (or given) period d (the "Seasonal Complement")
- Y_t is a stationary time series

Our aim is to estimate and extract the deterministic components m_t and s_t in hope that the residual component Y_t will turn out to be a stationary time series -- Jan Grandell

No Seasonal Components

Assume that

$$X_t = m_t + Y_t, \quad t = 1, \cdots, n$$

where, without loss of generality, $EY_t=0$.(That is beacause is $EY_t=\mu$ (the Y_t is stationary) then $X_t=(m_t+\mu)+(EY_t-\mu)$ is the form we mentioned)

Method 1 (Least Squares Estimation of m_t)

Method 2 (Smooting by means of a moving average)

Method 3 (Differencing to generate stationarity)

Trend and Seasonality

Let us go back to

$$X_t = m_t + s_t + Y_t$$

where $EY_t=0$, $s_{t+d}=s_t$ and $\sum_{k=1}^d s_k=0$. Assume that n/d is an integer.

Sometimes it is convenient to index the data by period and time-unit

$$x_{j,k}=x_{k+d(j-1)},\quad k=1,\cdots,d,\,j=1,\cdots,rac{n}{d}$$

Autocovariance

Strict stationarity

spectral density

Time Series Model TSM

Estimation Estimation of μ Estimation of $\gamma(\cdot)$ and $\rho(\cdot)$ Prediction inference Prediction of Random Variables PRV **Further Prediction Further PRV** Predition for stationary time series PSTS wold decomposition **Partial Correlation** PA Partial Autocorrelation **ARMA Processes** ACVF and how to cal Prediction of ARMA **Spectral Analysis Spectral Distribution** Spectral Representation of a time series Predition in the frequency domain PiFD interpolation and detection

The It^o intergral

Estimation of the spectral density periodogram Smoothing the Periodogram SP **Linear Filters ARMA Processes Estimation for ARMA models** Yule-Walker estimation Burg's algorithm innovation algorithm hannan-Rissanen algorithm Maximum Likelihood and Lead Square Estimation **Order Selection** unit roots Multivariate Time Series MTS **Financial Time Series** Kalman Filtering State-Space Representation Prediction of Multivariate random variables

Appendix

A.1 Stochastic Processes

Definition (Stochastic Process) A stochastic process is a *family of random variables* $\{X_t, t \in T\}$ *defined on a probability space* (Ω, \mathcal{F}, P) as follows:

- Ω is a set
- \mathcal{F} is a σ -field i.e.
 - \circ (a) $\emptyset \in \mathcal{F}$
 - ullet (b) $A_i \in \mathcal{F} \quad orall \, i \in I$ then $igcup_i A_i \in \mathcal{F}$
 - ullet (c) $A\in\mathcal{F}$ then $A^c\in\mathcal{F}$
- P is a function $\mathcal{F} \to [0,1]$ satisfying:
 - $P(\Omega) = 1$
 - ullet $A_i \in \mathcal{F}$ $\forall i \in I$ and $A_i \cap A_j = \emptyset$ $\forall i \in I$ then $P(\bigcup_i A_i) = \sum_i P(A_i)$

proposition $P(A) + P(A^c) = 1$

There are definitions on Cholton's Style:

(X is $random\ variable$) iff ((X is a function $\Omega o\mathbb{R}$) and ($\{\omega\in\Omega:X(\omega)\leq x\}\in\mathcal{F}$ for all $x\in\mathbb{R}$))

and we denoted $P(X \leq x) := P(X^{-1}([-\infty,x]))$ and $P(X < x) := P(X^{-1}([-\infty,x]))$

 $(\{X_t, t \in T\})$ is stochastic process) iff $(X_t \in T)$ is random variable for all $t \in T$

and T is called index or parameter set

 $(\{X_t, t \in T\} \text{ is a time series}) \text{ iff } (T \subset \mathbb{Z})$

Definition (sample-path) The functions $\{X_t(\omega), \omega \in \Omega\}$ on T are called realizations or *sample-path* of the process $\{X_t, t \in T\}$

 $F_X, x o P(X \le x)$ is called the distribution function of a random variable X

 $F_{(.)}:(\Omega o\mathbb{R}) o(\mathbb{R} o[0,1])$ is called the distribution

The case in higher demension is similar.

 $X=(X_1,\,\cdots,X_n)^ op$ is a n-dim random variable, X_i is a random variable for $1\,\leq\,i\,\leq\,n$

Definition (The distribution of a stochastic process) let

$$\mathcal{T} := \{t \in T^n \,:\, t_i < t_j\}$$

The (finitie-dimensional) distribution function are the family $\{F_t(\cdot)\,,\,t\in\mathcal{T}\}$,

$$F_t(x) = P(X_{t_1} \leq x_1, \cdots, X_{t_n} \leq x_n) \quad t \in T^n \,,\, x \in \mathbb{R}$$

The distribution of $\{X_t, t \in T\}$ is the family $\{F_t(\cdot), t \in T\}$

obviously \mathcal{T} is a simplex

In a way, we can say:" $t \in T$ is a series of time". So the F_t is a distribution of a series of time of random variable i.e. the distribution of stochastic process. In conviencity, $F_t \sim \mathcal{T} \sim X_t \sim n$, where the symbol \sim readed as 'related to'.

Theorem (Kolmogorov's existence theorem) The family $F_t(\cdot)$, $t \in \mathcal{T}$ are the distribution functions of some stochastic process iff for any n, $t = (t_1, \dots, t_n) \in \mathcal{T}$, $x \in \mathbb{R}^n$ and $1 \le k \le n$

$$\lim_{x_k o\infty}F_t(x)=F_{t(k)}(x(k))$$

where $t(k)=(t_1,\cdots,t_{k-1},t_{k+1},\cdots,t_n)$ and $x(k)=(x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n)$ (It is to say, t(k) is t deleted the k-th variable and x(k) is x deleted the k-th variable)

$$\phi_t(u) = \int_{\mathbb{R}^n} e^{iu'x} F_t(dx_1, \cdots, dx_n)$$

be the characteristic function of F. Then KET can be restated as follow:

$$\lim_{u_i\to 0}\phi_t(u)=\phi_{t(i)}(u(i))$$

where u(i) and t(i)

(a n-dim r.v. Y is normally distributed) iff ((Y=AX+b) where $A\in M_n(\mathbb{R})$, $X\sim N_n(0,1)$ and $b\in \mathbb{R}^n$) and apparently

$$\mu_Y := E(Y) := (E(Y_1), \cdots, E(Y_n))^{ op} = E(AX + b) = E(AX) + E(b) = A \cdot E(X) + b = A \cdot 0 + b = b$$

$$\Sigma_{YY} := \text{Cov}(Y,Y) := E([Y - E(Y)][Y - E(Y)]') = E([AX + b - b][AX + b - b]') = E(AXX'A') = A \cdot E(XX') \cdot A'$$

and

$$\phi_Y(u) = E \exp(iu'Y) = E \exp(iu'(AX + b)) = E(\exp(iu'b) * \exp(iu'AX)) = \exp(iu'b) \prod_k E \exp(i(u'A)_k X_k)$$

where $(u'A)_k$ is the k-th component of the vector u'A.

and

$$Eexp(iaX_i = \int_{-\infty}^{\infty} rac{1}{\sqrt{2\pi}} ext{exp}(iax) \exp(-x^2/2) dx = exp(-a^/2)$$

then

$$\phi_Y(u) = \exp(iu'b - rac{1}{2}u'\Sigma_{YY}u)$$

Definition (Standard Brownian Motion) A standard Brownian motion or a standard Wiener Process $\{B(t), t \geq 0\}$ is a stochastic process satisfying:

- (a) B(0) = 0
- ullet (b) for every t and $0=t_0 < t_1 < \cdots < t_n$, $\Delta_k := B(t_k) B(t_{k-1})$ are independent
- (c) $B(t)-B(s)\sim N(0,t-s)$ for $t\leq s$

(c) is saying $B(t+1) - B(t) \sim N(0,1)$ basically

Definition (Poisson Process) A Poisson Process $\{N(t), t \leq 0\}$ with a **mean rate** λ is a stochastic process statisfying:

- (a) N(0) = 0
- (b) for every t and $0=t_0 < t_1 < \cdots < t_n$, $\Delta_k := N(t_k) N(t_{k-1})$ are independent
- (c) $N(t) N(s) \sim \operatorname{Po}(\lambda(t-s))$ for $t \geq s$

Poisson (a) (b) is then same as SBM (a) (b) the diff is SBM(c) is standard but Pois(c) is a Poisson distribution.

A.2 Hilbert Spaces

Definition (Hilbert Space) A space \mathcal{H} is (complex) Hilbert space if:

- \mathcal{H} is a vector space i.e.
 - \circ (a) $\mathcal H$ has an addition + that $\mathcal H$ + $\mathcal H$ = $\mathcal H$
 - ullet (b) ${\cal H}$ has a multiplication $\mu:\mathbb{C}\, imes\,{\cal H} o{\cal H}$ than $\mathbb{C}\cdot{\cal H}={\cal H}$
- \mathcal{H} is a inner-product space
 - (a) $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ is bi-linear function
 - (b) $||x|| = \sqrt{\langle x, x \rangle}$ is a norm i.e $||x|| \ge 0$ and ||x|| = 0 iff x = 0
- $\mathcal H$ is complted i.e. $\{x_k\}_k$ is *cauchy series* then exists $x\in \mathcal H$ such that $\lim_{k o\infty}||x_k-x||=0$

Definition $\mathcal H$ is real Hilbert Space if $\mathbb C$ is replaced with $\mathbb R$

convergence of random variables

- ullet $(X_n \overset{m.s.}{\longrightarrow} X)$ iff $(||X_n X|| o 0)$ and X , $X_i \in L^2$ (mean-square convergence)
- ullet $(X_n\stackrel{P}{ o}X)$ iff $P(|X_n-X|>\epsilon) o 0$ for all $\epsilon>0$ (convergence in probability)
- $(X_n \xrightarrow{a.s.} X)$ iff $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega E$ where P(E) = 0 (almost sure convergence)/(convergence with probability one)

and we have:

$$X_n \xrightarrow{m.s.} X \Rightarrow X_n \xrightarrow{P} X$$

proof

$$X_n \xrightarrow{m.s.} X \Rightarrow \forall k \in \mathbb{N}^+ \, \exists n_k \in \mathbb{N}^+ (n \geq n_k \Rightarrow ||X_n - X|| < \tfrac{1}{k}) \Rightarrow (\forall \epsilon > 0 (\exists n_k \in \mathbb{N}^+ P \epsilon > \tfrac{1}{k})) \Rightarrow (\forall \epsilon \lim_{n \to \infty P(||X_n - X|| > \epsilon)} ||X_n - X|| + (-1) ||X_$$

$$X_n \xrightarrow{a.s} X \Rightarrow X_n \xrightarrow{P} X$$

proof

$$X_n(\omega) o X(\omega)$$
 for all $\omega\in\Omega-E$ is to say $P(||X_n-X||>\epsilon)=P(E)=0$ when $n o\infty$ \Box

Let \mathcal{M} be a Hilbert sub-space of \mathcal{H} i.e. $\mathcal{M} \subset \mathcal{H}$ and \mathcal{M} is Hilbert space.

Let \mathcal{M} be a subset of \mathcal{H} . The orthogonal complement of \mathcal{M} which denoted as \mathcal{M}^{\perp} :

$$\mathcal{M}^{\perp} = \{y \in \mathcal{H} : \langle y, x
angle = 0, orall x \in \mathcal{M} \}$$

Theorem (The Projection Theorem) If \mathcal{M} is a Hilbert sub-space \mathcal{H} and $x \in \mathcal{H}$ then

(i) there is a unique element $\hat{x} \in \mathcal{M}$ such that

$$||x-\hat{x}||=\inf_{y\in\mathcal{M}}||x-y||$$

(ii)
$$\hat{x} \in \mathcal{M} = \inf_{y \in \mathcal{M} \mid |x-y||}$$
 iff $\hat{x} \in \mathcal{M}$ and $x - \hat{x} \in \mathcal{M}^\perp$

 $P_{\mathcal{M}}x := \hat{x}$ is called (orthogonal) projection of x onto \mathcal{M}

Definition (Closed Spac) The closed span \bar{X} of X a subset of hilbert space is defined to be the smallest Hilber sub-space which contains X ,it is to say that for any $\mathcal M$ is a Hilbert sub-space of $\mathcal H$ that exists a Hilbert sub-space \bar{X} satisfying $X\subset\mathcal M\Rightarrow \bar{X}\subset\mathcal M$

Properties (Properties of Projections) Let \mathcal{H} be a Hilbert space and $P_{\mathcal{M}}$ be the projection then:

(i)
$$P_{\mathcal{M}}(\alpha x + \beta y) = \alpha P_{\mathcal{M}} x + \beta P_{\mathcal{M}} y \quad x\,,\,y\,\in\,\mathcal{H},\quad \alpha\,,\,\beta\,\in\,\mathbb{C}/\mathbb{R}$$

(ii)
$$\left|\left|x\right|\right|^2 = \left|\left|P_{\mathcal{M}}x\right|\right|^2 + \left|\left|(I-P_{\mathcal{M}}x)\right|\right|^2$$
 where I is the identity mapping

(iii)
$$x = P_{\mathcal{M}}x + (I - P_{\mathcal{M}}x)$$