Homework 4

ALECK ZHAO

February 22, 2017

1. Let R be a ring, assumed commutative for simplicity, and let $f \in R[x]$ be a polynomial of degree $n \ge 1$ whose leading coefficient is a unit in R, show that $R[x]/\langle f \rangle$, regarded as an R-module via the composite ring homomorphism $R \to R[x] \to R[x]/\langle f \rangle$, is a free R-module containing a basis with n elements.

Section 7.1: Modules

- 8. Let R be an integral domain. Given RM let $T(M) = \{t \in M \mid t \text{ is torsion }\}$.
 - (a) Show that T(M) is a submodule of M called the torsion submodule.

Proof. Clearly, 0 is torsion since it annihilates with every ring element, so $0 \in T(M)$. Now, if $s, t \in T(M)$, then they are both torsion, so suppose sx = ty = 0 for $x, y \in R$ nonzero. Now, we have

$$(s+t)(xy) = sxy + txy = (sx)y + (ty)x = 0$$

and since R is an integral domain, $xy \neq 0$, so s+t is also torsion. Then -s is also torsion because (-s)x = -(sx) = 0. Thus, T(M) is a subgroup of M.

Now, for any $r \in R$, we have (rs)x = r(sx) = 0, so $rs \in T(M)$, and thus T(M) is a submodule of M, as desired.

- (b) Show that T[M/T(M)] = 0. We say M/T(M) is torsion-free.
- 11. Let $M = \mathbb{Z} \oplus \mathbb{Z}$, and $K = \{(k, k) \mid k \in \mathbb{Z}\}$. Determine if $M = K \oplus X$ in case:
 - (a) $X = \{ (k, 0) \mid k \in \mathbb{Z} \}$

Solution. If $y \in K \cap X$, then y = (k, k) = (i, 0) for some k, i so $k = 0 \implies y = (0, 0)$. Now consider $(m, n) \in M$, which has a unique decomposition (m, n) = (n, n) + (m - n, 0), where $(n, n) \in K$ and $(m - n, 0) \in X$. Thus, $M = K \oplus X$.

(b) $X = \{ (0, k) \mid k \in \mathbb{Z} \}$

Solution. If $y \in K \cap X$, then y = (k, k) = (0, i) for some k, i so $k = 0 \implies y = (0, 0)$. Now consider $(m, n) \in M$, which has a unique decomposition (m, n) = (m, m) + (0, n - m), where $(m, m) \in K$ and $(0, n - m) \in X$. Thus, $M = K \oplus X$.

(c) $X = \{ (2k, 3k) \mid k \in \mathbb{Z} \}$

Solution. If $y \in K \cap X$, then y = (k, k) = (2i, 3i) for some $k, i, \text{ so } 2i = 3i \implies i = 0 \implies y = (0, 0)$. Now consider $(m, n) \in M$, which has a unique decomposition

$$(m,n) = (3m-2n, 3m-2n) + (2(n-m), 3(n-m))$$

where $(3m-2n, 3m-2n) \in K$ and $(2(n-m), 3(n-m)) \in X$. Thus, $M=K \oplus X$.

(d) $X = \{ (k, -k) \mid k \in \mathbb{Z} \}$

Solution. Suppose $(m,n) \in M$ had a decomposition (m,n) = (k,k) + (i,-i) = (k+i,k-i) for some k,i. Now, m+n=(k+i)+(k-i)=2k, so the only elements that have this decomposition are the ones where m+n is even. Thus, $M \neq K \oplus X$.

- 16. Given $_RM$, an R-linear map $\pi: M \to M$ is called a projection if $\pi^2 = \pi$.
 - (a) If π is a projection, show that $M = \pi(M) \oplus \ker \pi$.
 - (b) If $M = N \oplus K$, find a projection π such that $N = \pi(M)$ and $K = \ker \pi$.
- 23. If $_RM$ and $_RN$ are simple, prove Schur's Lemma: If $\alpha:M\to N$ is R-linear, then either $\alpha\equiv 0$ or α is an isomorphism.
- 24. Show that the following conditions on a finitely generated module P are equivalent:
 - (1) P is projective
 - (2) P is isomorphic to a direct summand of a free module.
 - (3) If α, β are R-linear and α is onto in the diagram, then γ exists such that $\alpha \gamma = \beta$.
 - (4) If $\alpha: M \to P$ is onto and R-linear, there exists $\gamma: P \to M$ such that $a\gamma = 1_P$.
- 25. Show that $\mathbb Q$ is a torsion-free $\mathbb Z$ -module that is not free.