Cryogenic temperatures

Time until creation of first contaminant atom is [300]

$$\tau = \frac{\tau_s}{bN_0} = \frac{4\delta^2}{\Omega^2} \frac{\tau_{\text{eff}}}{bN_0},$$

where b is the branching ratio to contaminant states and N_0 is the total number of atoms. Using the estimates from [302] and the quasiclassical formulas in [303] we calculate how b, $\tau_{\rm eff}$ and their relevant combinations depend on the ambient temperature.

Figure 1 indicates how the branching ratio decreases when the temperature is reduced from $300~\rm K$ to $1~\rm K$. It goes down by about 1 order of magnitude for temperatures between $10~\rm K$ and $30~\rm K$, and about 2 orders of magnitude for T between 1 and $5~\rm K$. (At $77~\rm K$ the branching ratio is roughly 2-4 times smaller).

Figure 1: b(T) vs T for different nS levels of ⁸⁷Rb.

In figure 2 the

Figure 2: $\frac{\tau_{\text{eff}}(T)}{h(T)}$ vs T for different nS levels of ⁸⁷Rb.

Figure 3 shows the *coherence* time reduction due to AB (proportional to N^{-1}) can only be *fully* compensated for atom number less than

- 600 for $T \gtrsim 1$ K.
- 100 for $T \ge 5$ K.
- 15 for $T \gtrsim 50$ K.

From 1 K to 5 K one can expect to fully neutralize the AB effect for a system between 100 and 500 atoms. From $50 \, \mathrm{K}$ to $100 \, \mathrm{K}$ this would occur only with less than $15 \, \mathrm{atoms}$.

Figure 3: $\frac{\tau_{\rm eff}(T)}{\tau_{\rm eff}(300{\rm K})} \cdot \frac{1}{b(T)}$ vs T for different nS levels of ⁸⁷Rb. The y axis can be interpreted as the atom number at which the $\frac{\tau_{\rm eff}}{bN_0}$ factor becomes larger than $\tau_{\rm eff}(300{\rm K})$.

How would this help certain proposals? ...

- Reference [304, Pupillo] proposes a $N \lesssim 40$ atoms system to observe supersolid phases (This 2D system is purely repulsive, which makes me doubt is worth considering.). The AB effect would be compensated for temperatures arond 20 K.
- Ref [305, Glaetzle] proposes ealizing quantum spin ice in two dimensions using $16 \ge N_0 \le 72$. Reducing the black-body radiation temperature between 50 K and 10 K would make up for the AB decoherence effect.
- Bloch Paper using 200 atoms would require temperatures between 3 K and 5 K. (Not entirely sure since I need to check the vdW radius).

References

- [1] AB paper.
- [2] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Phys. Rev. A 79, 052504 (2009).
- [3] L. G. Dyachkov and P. M. Pankratov, J. Phys. B 27, 461 (1994).
- [4] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Phys. Rev. Lett. 104, 223002 (2010).
- [5] A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and P. Zoller, Phys. Rev. Lett. 114, 173002 (2015)