

The Simple Moving Average Model

The Simple Moving Average Model

The simple moving average (MA) model:

$$Today = Mean + Noise + Slope * (Yesterday'sNoise)$$

More formally: $Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$

where ϵ_t is mean zero white noise (WN).

Three parameters:

- The mean μ
- The slope θ
- The WN variance

MA Processes - I

$$Today = Mean + Noise + Slope * (Yesterday's Noise)$$

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

• If slope θ is zero then:

$$Y_t = \mu + \epsilon_t$$

And Y_t is White Noise (μ, σ_ϵ^2)

MA Processes - II

$$Today = Mean + Noise + Slope * (Yesterday's Noise)$$

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

- If slope θ is **not** zero then Y_t depends on both ϵ_t and ϵ_{t-1}
 - And the process $\{Y_t\}$ is autocorrelated
- Large values of θ lead to greater autocorrelation
- Negative values of θ result in oscillatory time series

MA Examples

Autocorrelations

Only lag 1 autocorrelation non-zero for the MA model.

Let's practice!

MA Model Estimation and Forecasting

MA Processes: Changes in Inflation Rate - I

- One-month US inflation rate (in percent, annual rate)
- Monthly observations from 1950 through 1990

```
> data(Mishkin, package = "Ecdat")
> inflation <- as.ts(Mishkin[, 1])
> inflation_changes <- diff(inflation)
> ts.plot(inflation); ts.plot(inflation_changes)
```


MA Processes: Changes in Inflation Rate - II

- Inflation_changes: changes in one-month US inflation rate
- Plot the series and its sample ACF:

```
> ts.plot(inflation_changes)
> acf(inflation_changes, lag.max = 24)
```


MA Processes: Changes in Inflation Rate - III

```
Today = Mean + Noise + Slope * (Yesterday'sNoise) Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1} \epsilon_t \sim WhiteNoise(0, \sigma_{\epsilon}^2)
```

ma1
$$= \hat{\theta}$$
 , intercept $= \hat{\mu}$, sigma^2 $= \hat{\sigma}_{\epsilon}^2$

MA Processes: Fitted Values - I

 $\bullet \quad \text{MA fitted values: } \widehat{Today} = \widehat{Mean} + \widehat{Slope} * Yester\widehat{day's} Noise$

$$\hat{Y}_t = \hat{\mu} + \hat{\theta} \hat{\epsilon}_{t-1}$$

• Residuals= $Today - \widehat{Today}$

$$\hat{\epsilon}_t = Y_t - \hat{Y}_t$$

MA Processes: Fitted Values - II

```
> ts.plot(inflation_changes)
> MA_inflation_changes_fitted <- inflation_changes - residuals(MA_inflation_changes)
> points(MA_inflation_changes_fitted, type = "l", col = "red", lty = 2)
```


Forecasting

1-step ahead forecasts:

h-step ahead forecasts:

Let's practice!

Compare the AR and MA models

MA and AR processes

MA model:

$$Today = Mean + Noise + Slope * (Yesterday'sNoise)$$

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

• AR model:

$$(Today - Mean) = Slope * (Yesterday - Mean) + Noise$$

 $Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$

• Where:

$$\epsilon_t \sim WhiteNoise(0, \sigma_{\epsilon}^2)$$

MA and AR Processes: Autocorrelations

MA and AR Processes: Simulations

MA and AR Processes: Fitted Values

Changes in one-month US inflation rate

MA and AR Processes: Forecasts

Changes in one-month US inflation rate

Forecasting

Akaike Information Criterion

Bayesian Information Criterion

Let's practice!

Congratulations!

What you've learned

- Manipulating ts objects, including log() and diff()
- Time series models: white noise, random walk, autoregression, simple moving average
- Time series simulation (arima.sim), fitting (arima), and forecasting (predict)

Thank you!