Name: LIU, HONGYANG

Matric Number: 17201091/1

1. You are required to write code to implement either time-series clustering or density-based clustering model using the above dataset (Question 1). If you select density-based clustering approach to achieve the task, you are going to cover the following steps:

- · Importing required libraries
- Load the dataset (Question 1) into a DataFrame object
- · Visualize the data, use only two of these attributes at the time
- You may need to normalise the attribute if necessary
- · Show positive correlation between attributes if necessary
- Construct a density-based clustering model and extract cluster labels and outliers to plot your results.

Importing required libraries

```
In [1]:
```

```
import pandas as pd
import seaborn as sns, numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from collections import Counter
```

Load the dataset (Question 1) into a DataFrame object

```
In [2]:
```

```
# In question 1, we have crawled the datasets and stored in csv files
customer=pd.read_csv("customer.csv",header=0,index_col=0)
transactions=pd.read_csv("transactions.csv",header=0,index_col=0)
product=pd.read_csv("product.csv",header=0,index_col=0)
```

```
In [3]:
```

In [4]:

In [5]:

```
#calculate the customers's age column using tran_date(transaction date) and DOB
   attributes(Date or birth)

df['transaction_date'] = pd.to_datetime(df['transaction_date'], errors='coerce')
   df.insert(loc=3, column='Tran_year', value= df.transaction_date.dt.year)

df['DOB'] = pd.to_datetime(df['DOB'], errors='coerce')
   df.insert(loc=4, column='Birth_year', value= df.DOB.dt.year)

df['Tran_year']=df['Tran_year'].astype(int)
   df['Birth_year']=df['Birth_year'].astype(int)

df["age"]=df['Tran_year', 'Birth_year'], axis=1)

# check the new age column value
   df.age.head()
```

Out[5]:

- 0 33
- 1 41
- 2 22
- 3 33
- 4 22

Name: age, dtype: int64

In [6]:

```
# remove null value
df = df.dropna()

#drop duplicate value
df = df.drop_duplicates()

print("total numer of value:",len(df))
df.head()
```

total numer of value: 5952

Out[6]:

	transaction_id	customer_id	transaction_date	prod_cat_code	prod_subcat_code	Quantity
0	80712190438	270351	2014-02-28	1	1	-5
1	29258453508	270384	2014-02-27	5	3	-5
10	29258453508	270384	2014-02-20	5	3	5
14	36554696014	269345	2014-02-20	3	5	3
17	25963520987	274829	2014-02-20	4	4	3

Visualize the data, use only two of these attributes at the time

In [7]:

In [8]:

use pairplot, we could found the relationship between any of two attributes.
ax = sns.pairplot(df[Features])

In [10]:

```
#for more detail, we could use Implot to visualize any two attributes from the a
bove observation.
#e.g. age vs Total_amount
sns.lmplot('age','Total_amount', data=df,fit_reg=False)
plt.title('age vs Total_amount')
```

Out[10]:

Text(0.5, 1, 'age vs Total_amount')

In [11]:

```
#e.g. Price vs Total_amount
sns.lmplot('Price','Total_amount', data=df,fit_reg=False)
plt.title('Price vs Total_amount')
```

Out[11]:

Text(0.5, 1, 'Price vs Total_amount')

You may need to normalise the attribute if necessary

In [12]:

```
X=df[Features]

# format the categorical features
X= pd.get_dummies(X)
column = X.columns
X.head()
```

Out[12]:

	Total_amount	prod_cat_code	prod_subcat_code	Quantity	Price	Tax	City_id	age	•
0	-4265.300	1	1	-5	-772	405.300	5.0	33	_
1	-8270.925	5	3	-5	-1497	785.925	8.0	41	
10	8270.925	5	3	5	1497	785.925	8.0	41	
14	4153.695	3	5	3	1253	394.695	10.0	44	
17	1664.130	4	4	3	502	158.130	2.0	30	

In [13]:

```
# we need normalise the attributes to rescale the data
# normalise the data
data=preprocessing.scale(X)
print(data)
```

In [14]:

```
normalized = pd.DataFrame(data,columns=column)
```

In [15]:

#normalizased results
normalized.head()

Out[15]:

	Total_amount	prod_cat_code	prod_subcat_code	Quantity	Price	Tax	City_id
0	-2.478083	-1.298272	-1.317062	-3.202390	-2.217420	0.813484	-0.176899
1	-4.039266	1.328503	-0.012710	-3.202390	-3.363152	2.824340	0.873901
2	2.407882	1.328503	-0.012710	1.121807	1.368326	2.824340	0.873901
3	0.803201	0.015115	1.291641	0.256967	0.982728	0.757457	1.574434
4	-0.167101	0.671809	0.639465	0.256967	-0.204092	-0.492325	-1.227698

Show positive correlation between attributes if necessary

In [16]:

```
# Show positive correlation between attributes if necessary
plt.figure(figsize=(20,20))
corr = normalized.corr()
mask = np.zeros like(corr)
sns.heatmap(corr, mask=mask, square=True, vmin=-.20, vmax=.20)
plt.title('Correlation matrix')
Quantity = normalized['Quantity']
Total amount= normalized['Total amount']
Price= normalized['Price']
Tax = normalized['Tax']
print("The positive correlation Quantity and Total amount is {}".format((np.corr
coef(Quantity, Total amount)[0][1])))
print("The positive correlation Price and Total_amount is {}".format((np.corrcoe
f(Price, Total amount)[0][1])))
print("The positive correlation Tax and Total amount is {}".format((np.corrcoef(
Tax, Total amount)[0][1])))
```

The positive correlation Quantity and Total_amount is 0.800321911548 8281

The positive correlation Price and Total_amount is 0.834057874087224 5

The positive correlation Tax and Total_amount is 0.6004325840445992

Construct a density-based clustering model and extract cluster labels and outliers to plot your results.

data attributes reduction using PCA

In [19]:

Construct a density-based clustering model

In [20]:

```
from sklearn.cluster import DBSCAN
model = DBSCAN(eps=0.2, min_samples=30).fit(Df)
print(model)
```

In [21]:

```
model.labels_
```

Out[21]:

```
array([ 0, -1, 1, ..., 2, 1, 2])
```

In [22]:

```
label = pd.Series(model.labels_)
label.value_counts().plot('barh')
```

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a22cfc8d0>

extract cluster labels and outliers

In [23]:

```
# Separate outliers from clustered data
labels = model.labels_
# outlier label
outlier_label = labels[labels == -1]

# outlier datasets
outliers = Df[model.labels_==-1]

print("outlier label",outlier_label)
print("outlier datasets",outliers)
```

```
-1 -1 -1
outlier datasets
                     principal component 1 principal component 2
1
                  4.650896
                                       1.500162
185
                  2.439860
                                      -1.424890
320
                  2.316771
                                      -1.422262
1061
                  4.578399
                                       1.524293
1147
                  2.350315
                                      -1.414885
1155
                  2.518166
                                      -1.475661
1244
                  4.583476
                                      -1.331115
1655
                  2.438717
                                      -1.347964
                  2.463997
                                       1.335942
2176
2520
                 2.405861
                                      -1.533217
2785
                  2.425541
                                       1.455934
3003
                  2.254496
                                      -1.414128
                                      -1.572072
3178
                  2.534400
3726
                  2.443787
                                      -1.352899
3841
                  2.434725
                                      -1.467377
3871
                  2.410285
                                       1.414323
4119
                  4.601857
                                       1.521610
                  2.347162
4941
                                      -1.489985
5282
                  2.411298
                                      -1.329126
5518
                  2.375528
                                      -1.416984
5781
                  2.331870
                                       1.395956
```

In [24]:

```
#normal data's labels
clusters_label = labels[labels!= -1]

#normal data sets
data_points = Df[model.labels_!=-1]

print("normal data's labels",clusters_label)
print("normal data sets",data_points)
```

normal data's labels [0 1 1 ... 2 1 2]

	data's labels [0		
normal			1 principal component 2
0	3.833	3851	.479378
2	-3.716	5450	674018
3	-1.342	2601	620884
4	0.287	7023	.447791
5	-1.223		.571504
6	1.768		.419171
7	-1.520		376995
8			
	2.762		386558
9	-2.561		.241520
10	0.737		.318933
11	0.704	1626	.537232
12	-2.644	1574	549945
13	1.544	-1	.404997
14	0.372	2688 –1	.400864
15	-1.195	-1	.311780
16	1.247		.479391
17	-1.444		.594930
18	0.242		268978
19	0.527		382531
20	-2.396		.649386
21	0.912		.304450
22	-1.129		. • 549576
23	-0.929	9945 –1	.371287
24	0.093	3728 – 1	313934
25	0.454	-1	.434172
26	-0.536	5417 – 1	.249801
27	1.171	.072 –1	.336222
28	0.988		.373907
29	-0.295		.488479
30	1.100		391778
	1.100	.050	
· · ·	-0.498	2005	226207
5922			.326297
5923	-0.281		.518223
5924	-1.707		.214814
5925	0.645		.339981
5926	-3.309	9461 –1	.228903
5927	-0.877	910	.467363
5928	-0.090	0613	.488045
5929	0.397	7906 –1	. 285681
5930	1.240	929	.440722
5931	0.834		.523426
5932	0.197		353849
5933	1.535		445709
5934	1.105		388963
5935	-1.485		530579
5936	0.079		.380419
5937	-0.570		.341192
5938	-1.048		.316716
5939	-0.622		275640
5940	0.125	5982 –1	.316052
5941	-0.011	.186	.417807
5942	0.505	5051 –1	.387822
5943	0.363	3127 –1	299721
5944	0.517		.384982
5945	-1.839		218784
5946	-2.061		271842
	-2.001 -2.750		
5947			570738
5948	1.348		.307186
5949	-2.747	'945 —]	.289531

 5950
 1.125234
 1.433190

 5951
 0.884598
 -1.359647

[5931 rows x 2 columns]

Outlier label: -1

Normal data sets label: 0, 1, 2, 3,

plot your results

In [25]:

10/07/2020

/Users/liuhongyang/anaconda3/lib/python3.7/site-packages/ipykernel_l auncher.py:15: UserWarning: Matplotlib is currently using module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.

from ipykernel import kernelapp as app

Base on the model, there are five different clustering,

- the labeled represents outliers
- the other four clustering represents normal data sets

configure the eps to find more results

In [26]:

```
fig = plt.figure(figsize=(60, 60))
fig.subplots_adjust(hspace=.5, wspace=.2)
i = 1
for x in range(10, 1, -1):
    eps = 1/(11-x)
    db = DBSCAN(eps=eps, min_samples=20).fit(Df)

    core_samples_mask = np.zeros_like(model.labels_, dtype=bool)

    core_samples_mask[db.core_sample_indices_] = True

    ax = fig.add_subplot(3, 3, i)

    plt.title("Density based clustering with eps = {}".format(round(eps, 3)),fon
tsize= 35 )

    sctr = ax.scatter(principalDf.iloc[:,0],principalDf.iloc[:,1],c=model.labels
_, s=140,alpha=0.9,cmap=plt.cm.Set1)
i += 1
```


In []:			