

FUNDAMENTOS DE EBOGRAMAGIÓN Resueltos en PSeint

Capitulo 1: Elementos de entorno de algoritmo y programación

Información y procesamiento de la información

Algoritmo y Programa

Lenguaje de programación

Metodologías para la solución de problemas por medio de computadora

Capítulo 2: Entidades Primitivas:

Descarga e instalar PSeInt

Identificadores

Tipos de datos

Operación de asignación

Entrada y salida de información

Operadores y Operandos

Funciones Internas

Ejercicios:

Ejercicio 1: Escribir la siguiente expresión en forma de expresión algorítmica.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ejercicio 2: Determinar la solución lógica de la siguiente operación:

$$((3+5*8) < 3 \text{ y } ((\frac{-6}{4}) + 2 < 2)) \text{ o } (a>b)$$

Ejercicio 3: Hacer un programa para intercambiar el valor de 2 variables.

Capitulo 3: Representación de Algoritmos

Diagrama de Flujo

Diagrama Estructurado N-S (Nassi-Schneideman)

Pseudocódigo

Capítulo 4: Estructuras Secuenciales:

Ejercicio 1: Calcular la cantidad de segundos que están incluidos en el número de horas, minutos y segundos ingresados por el usuario.

Ejercicio 2: Hacer un programa para ingresar el radio de un circulo y se reporte su área y la longitud de la circunferencia.

Ejercicio 3: Un maestro desea saber qué porcentaje de hombres y que porcentaje de mujeres hay en un grupo de estudiantes.

Ejercicio 4: Un profesor prepara tres cuestionarios para una evaluación final: A, B y C. Se sabe que se tarda 5 minutos en revisar el cuestionario A, 8 en revisar el cuestionario B y 6 en el C. La cantidad de exámenes de cada tipo se entran por teclado. ¿Cuántas horas y cuántos minutos se tardará en revisar todas las evaluaciones?

Ejercicio 5: Una tienda ofrece un descuento del 15% sobre el total de la compra y un cliente desea saber cuánto deberá pagar finalmente por su compra.

Ejercicio 6: Un alumno desea saber cuál será su calificación final en la materia de Algoritmos. Dicha calificación se compone de los siguientes porcentajes:

- 55% del promedio de sus tres calificaciones parciales.
- 30% de la calificación del examen final.
- 15% de la calificación de un trabajo final.

Capítulo 5: Estructuras Condicionales

Condicional simple

Condicional Doble

Condicional Múltiple

Ejercicio 1: Ingrese un número entero y reportar si es par o impar.

Ejercicio 2: Determinar si un alumno aprueba o reprueba un curso, sabiendo que aprobará si su promedio de tres calificaciones es mayor o igual a 70; reprueba caso contrario.

Ejercicio 3: En un almacén se hace un 20% de descuento a los clientes cuya compra supere los \$100. ¿Cuál será la cantidad que pagará una persona por su compra?

Ejercicio 4: Leer 2 números; si son iguales que los multiplique, si el primero es mayor que el segundo que los reste y si no que los sume.

Ejercicio 5: Leer tres números diferentes e imprimir el número mayor de los tres.

Ejercicio 6: Una frutería ofrece las manzanas con descuento según la siguiente tabla:

Número de kilos comprados	% Descuento
0 - 2	0%
2.01 - 5	10%
5.01 - 10	15%
10.01 en adelante	20%

Determinar cuánto pagará una persona que compre manzanas en esa frutería.

Ejercicio 7: Elaborar un programa que me muestre los días de las semanas cuando ingrese los siete primeros números.

Ejercicio 8: Elaborar un programa que me muestre el significado de aniversario de cada década hasta los 60.

Bodas de Hojalata	10 años
Bodas de Porcelana	20 años
Bodas de Perlas	30 años
Bodas de Rubí	40 años
Bodas de Oro	50 años
Bodas de Diamante	60 años

Ejercicio 9: Hacer un programa que tenga un menú con las siguientes opciones:

- Opción 1: Elevar un número a una potencia X
- Opción 2: Sacar la raíz cuadrada de un número
- Opción 3: Salir

Capítulo 6: Estructuras Repetitivas:

Ciclo con un número determinado de iteraciones:

Para Hasta ConPaso Hacer

Ciclo con un número indeterminado de iteraciones:

Mientras Que

Repetir Hasta Que

Ejercicio 1: Calcular la suma de los "N" primeros números.

Ejercicio 2: Se desea calcular independientemente la suma de los números pares e impares comprendidos entre 1 y 50.

Ejercicio 3: Leer 10 números e imprimir cuantos son positivos, cuantos negativos y cuantos neutros.

Ejercicio 4: Suponga que se tiene un conjunto de calificaciones de un grupo de 10 alumnos. Realizar un algoritmo para calcular la calificación promedio y la calificación más baja de todo el grupo.

Ejercicio 5: Calcular el factorial de un número mayor o igual a 0.

Ejercicio 6: Calcular la siguiente sumatoria de los "N" elementos: S = 1 + 4 + 9 + ...

Ejercicio 7: Ingresar "N" enteros, visualizar la suma de los números pares de la lista, cuántos números pares existen y cuál es el promedio de los números impares.

Ejercicio 8: Dada las horas trabajadas de 5 personas y la tarifa de pago calcular el salario, y la sumatoria de todos los salarios.

Ejercicio 9: Calcular la suma de los "N" términos de la siguiente serie:

$$S = 1 - 1 + 1 - 1 + 1 - 1 + \dots 1$$

2 3 4 5 6 N

Ejercicio 10: Ingresar "N" números, calcular el máximo y mínimo de ellos.

Ejercicio 11: Imprimir la serie de los "N" términos de la serie de Fibonacci.

Ejercicio 12: Calcular la sumatoria:

$$S = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \frac{x^n}{n!}$$

Capítulo 7: Arreglos:

¿Qué es un Arreglo?

Representación de un Arreglo

Arreglos Unidimensionales

Ejercicio 1: Crea un arreglo unidimensional con un tamaño de 5 (números reales), pregúntale al usuario los valores y calcula la suma y promedio de todos ellos.

Ejercicio 2: Crear un arreglo unidimensional donde el usuario indique el tamaño por teclado, luego llenar el arreglo con números aleatorios entre 1 - 100 y por último mostrar los elementos del arreglo.

Ejercicio 3: Crea un arreglo unidimensional con "N" caracteres, lee los elementos por teclado, guardarlos en el arreglo y muéstralos en el orden inverso al introducido.

Ejercicio 4: Crea un arreglo unidimensional con "N" números, lee los elementos por teclado, guardarlos en el arreglo, calcula cuál de los números es el mayor de todos y además cuál es el menor de todos.

Ejercicio 5: Leer 8 números enteros dentro de un arreglo. Debemos mostrarlos en el siguiente orden: el primero, el último, el segundo, el penúltimo, el tercero, etc.

Ejercicio 6: Leer por teclado una serie de 5 números reales. El programa debe indicarnos si los números están ordenados de forma creciente, decreciente, o si están desordenados.

Ejercicio 7: Crear un programa que lea por teclado un arreglo de 6 números y la desplace una posición hacia abajo: el primero pasa a ser el segundo, el segundo pasa a ser el tercero y así sucesivamente. El último pasa a ser el primero.

Ejercicio 8: Leer 5 elementos numéricos que se introducirán ordenados de forma creciente. Éstos los guardaremos en un arreglo de tamaño 6. Leer un número N, e insertarlo en el lugar adecuado para que el arreglo continúe ordenado.

Ejercicio 9: Leer por teclado un arreglo de 5 elementos numéricos y una posición (entre 0 y 4). Eliminar el elemento situado en la posición dada sin dejar huecos.

Ejercicio 10: Leer dos arreglos de 5 números enteros cada uno, que estarán ordenados crecientemente. Copiar (fusionar) los dos arreglos en un tercero, de forma que los números sigan ordenados.

Capitulo 8 Ordenamiento

Algoritmos de Ordenación:

Método Burbuja: Algoritmo

Método de Inserción: Algoritmo

Método de Selección: Algoritmo

Capitulo 9 Búsqueda

Búsqueda Secuencial: Algoritmo

Búsqueda Binaria: Algoritmo

Capítulo 10: Cadena de Caracteres:

Juego de Caracteres

Funciones de Cadena de Caracteres

Ejercicio 1: Diseñe un programa que permita ingresar una cadena de caracteres, y detecte cuántas vocales tiene.

Ejercicio 2: Calcular la longitud de 2 cadenas de caracteres, y mostrar la cadena con la mayor longitud.

Ejercicio 3: Diseñe un algoritmo cuya entrada sea una Cadena, y un número entero N, cuya función sea generar la cadena dada N veces.

Ejercicio 4: Diseñe un algoritmo que elimine los espacios en blanco de un texto.

Ejercicio 5: Cambiar una cadena de caracteres, al revés

Ejercicio 6: Diseñar un algoritmo que tomando como entrada una cadena de texto nos devuelva si es o no un palíndromo. Se conoce que se denomina palíndromo a una palabra o frase que, ignorando los blancos, se lee igual de izquierda a derecha que de derecha a izquierda.

Ejercicio 7: Ingresar una frase y modificarla convirtiendo el primer carácter de cada palabra si esta fuera una letra, de minúsculas a mayúsculas.

Ejercicio 8: Sustituir todos los espacios en blanco de una frase por un asterisco (*).

Ejercicio 9: Leer una frase y contar el número de vocales (de cada una) que aparecen.

Ejercicio 10: Realizar un programa que permita contabilizar cuantas veces una subcadena se repite dentro de una frase.

Capítulo 11: Matrices:

Arreglos Bidimensionales

¿Qué son las Matrices?

Creación de Matrices en PSeInt

Ejercicio 1: Hacer un algoritmo que almacene números en una matriz de 3*4. Imprimir la suma de los números pares almacenados en la matriz.

Ejercicio 2: Hacer un algoritmo que llene una matriz de 4*4 y determine la posición [fila, columna] del número mayor almacenado en la matriz.

Ejercicio 3: Hacer un algoritmo que llene una matriz de 4*4. Calcular la suma de cada fila y almacenarla en un arreglo, la suma de cada columna y almacenarla en otro arreglo.

Ejercicio 4: Hacer un algoritmo que llene una matriz de 3*4. Sumar las columnas e imprimir que columna tuvo la máxima suma y la suma de esa columna.

Ejercicio 5: Hacer un algoritmo que llene una matriz de 4*4 y que almacene la diagonal principal en un arreglo. Imprimir el arreglo resultante.

Ejercicio 6: Hacer un algoritmo que llene una matriz de 5*5 y que almacene en la diagonal principal unos y en las demás posiciones ceros.

Capítulo 12: Modularidad:

Funciones: Sintaxis

Procedimiento: Sintaxis

Parámetro por Valor

Parámetro por Referencia

Recursividad

Ejercicio 1: Diseñar un algoritmo que pida un nombre al usuario y que despliegue en pantalla el nombre entre asteriscos. La cantidad de asteriscos debe ser la misma que caracteres en el nombre incluido espacios.

Ejercicio 2: Diseñe un algoritmo que muestre un menú al usuario con las siguientes opciones: potenciación, raíz cuadrada y terminar, que cada opción la realice una función o procedimiento.

Ejercicio 3: Desarrollar un programa que pueda calcular el valor del tipo de cambio de moneda (de tu moneda – hacia dólar y viceversa).

Ejercicio 4: Escriba un subprograma nombrado cambio() que tenga un parámetro en número entero y seis parámetros de referencia en número entero nombrados cien, cincuenta, veinte, diez, cinco y uno, respectivamente. La función tiene que considerar el valor entero transmitido como una cantidad en dólares y convertir el valor en el número menor de billetes equivalentes.

Ejercicio 5: Diseñar un algoritmo que pida al usuario 5 apellidos, los almacene en un arreglo y posteriormente muestre los apellidos ordenados alfabéticamente.

Ejercicio 6: Diseñe un algoritmo que contenga el siguiente menú:

- 1. Llenar una matriz de 4*4
- 2. Mostrar la matriz
- 3. Sumar todos los elementos de la matriz
- 4. Salir

Ejercicio 7: Escribir una función recursiva para elevar un número a una potencia.

Ejercicio 8: Implementar un subprograma recursivo que realice la serie Fibonacci.

Ejercicio 9: Implementar un subprograma recursivo que permita sumar los dígitos de un número.