Package 'optimalFlow'

September 18, 2019

Type Package
Title What the Package Does (Title Case)
Version 0.1.0
Author Hristo Inouzhe
Maintainer Hristo Inouzhe hristo.inouzhe@gmail.com
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License Artistic-2.0
Encoding UTF-8
LazyData true
Depends dplyr, optimalFlowData, rlang (>= 0.4.0)
Imports transport, parallel, Rfast, robustbase, dbscan, randomForest, foreach, graphics, doParallel, stats
Suggests knitr, BiocStyle, ellipse, rmarkdown
VignetteBuilder knitr
biocViews Software, FlowCytometry, Technology
NeedsCompilation no
R topics documented:
calcobj 2 costWasserMatchingEllipse 3 distGaussian 4 distGaussianCov 5 distGaussianMean 5 dmnorm 6 estimationCellBarycenter 6 estimClustPar 7 estimCovCellGeneral 8 f1Score 9 f1ScoreVoting 10

2 calcobj

GaussianBarycenters	
sudstitution of the state of th	12
etini	13
nitClusters	13
center	14
abelTransfer	15
abelTransferEllipse	16
ptimalFlowClassification	17
ptimalFlowTemplates	19
daClassification	21
estr.diffax	22
estr2_eigenv	23
sclmat	24
clustWithInitialization	25
clust	26
clust_H	27
TreatSingularity	29
rimmedKBarycenter	30
rimmedMinDist	31
oteLabelTransfer	32
oteTransformation	33
v2dist	34
vasserCostFunction	34
vasserMinDist	35
vassersteinKBarycenter	36
	38
	nitClusters ccenter abelTransfer abelTransfer abelTransfer abelTransferEllipse optimalFlowClassification optimalFlowTemplates pdaClassification estr.diffax estr2_eigenv sclmat clustWithInitialization clust_ clust_H freatSingularity rimmedKBarycenter rimmedMinDist roteLabelTransfer roteTransformation v2dist vasserCostFunction vasserMinDist vasserSteinKBarycenter

Description

Calculates tclust's objective function value.

Usage

```
calcobj(X, iter, pa)
```

Arguments

Χ	Points in a multidimiensional space.
iter	Current solution obtained by tclust
ра	Parameters for using in tclust

Value

An object used internally in tclust_ with the the value for tclust's objective function.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

Examples

```
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),
matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 ,Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen" ,
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )

iter = output3$iter
pa = output3$pa

## calcobj obtains the objective function value for data,
## an input parameters and a solution, including assignment and parameters
iter_ = calcobj (X=x, iter=iter, pa=pa)
iter_$obj
```

costWasserMatchingEllipse

costWasserMatchingEllipse

Description

Calculates similarity distance based on 2-Wassertein distance between mixtures of multivariate normal distributions.

Usage

```
costWasserMatchingEllipse(test.cytometry, training.cytometries, equal.weights = FALSE)
```

Arguments

test.cytometry A clustering represented as a list of clusters. Each cluster is a list with elements mean, cov, weight and type.

training.cytometries

A list of clusterings with the same format as test.cytometry.

equal.weights

If True, weights assigned to every cluster in a partion are uniform (1/number of clusters) when calculating the similarity distance. If False, weights assigned to clusters are the proportions of points in every cluster compared to the total amount of points in the partition.

4 distGaussian

Value

Returns a vector representing the similarity distance between test.cytometry and the elements in training.cytometries.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

Examples

```
partition1 = list(list(mean = c(1,1), cov = diag(1,2), weight = 0.5, type = "1"), list(mean = c(-1,-1), cov = diag(1,2), weight = 0.5, type = "2")) partition2 = list(list(list(mean = c(1,-1), cov = diag(1,2), weight = 0.5, type = "1"), list(mean = c(-1,1), cov = diag(1,2), weight = 0.5, type = "2"))) costWasserMatchingEllipse(partition1, partition2)
```

distGaussian

distGaussian

Description

Computes the squared Wasserstein distance between two normal multivariate distributions.

Usage

```
distGaussian(N1,N2)
```

Arguments

N1 A multivariate normal distribution as list with elements mean and cov.

N2 A multivariate normal distribution as list with elements mean and cov.

Value

Wasserstein squared distance between normals.

```
distGaussian(list(mean = c(-1,-1), cov = diag(2,2)), list(mean = c(1,1), cov = diag(1,2)))
```

distGaussianCov 5

distGaussianCov	distGaussianCov

Description

Computes the componente relative to the covariances of the wasserstein distance.

Usage

```
distGaussianCov(N1,N2)
```

Arguments

N1 A multivariate normal distribution as list with elements mean and cov.

N2 A multivariate normal distribution as list with elements mean and cov.

Value

Wasserstein squared distance between normals with the same mean.

Examples

```
distGaussianCov(list(mean = c(1,1), cov = diag(2,2)), list(mean = c(1,1), cov = diag(1,2)))
```

distGaussianMean

distGaussianMean

Description

Computes the componente relative to the means of the wasserstein distance.

Usage

```
distGaussianMean(N1,N2)
```

Arguments

N1 A multivariate normal distribution as list with elements mean and cov.

N2 A multivariate normal distribution as list with elements mean and cov.

Value

A value equivalent to the squared euclidean distance between the means.

```
distGaussianMean(list(mean = c(-1,-1), cov = diag(1,2)), list(mean = c(1,1), cov = diag(1,2)))
```

dmnorm dmnorm

Description

The multivariate normal density.

Usage

```
dmnorm(X, mu, sigma)
```

Arguments

X Multivariate points.

mu Mean.

sigma COvariance matrix.

Value

The value of the multivariate normal with mean mu and covariance sigma at the points in X.

Examples

```
## Multivariate normal density
## Gives Multivariate normal density values for given mu and sigma
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
dmnorm (X=x,mu=c(0,0),sigma=diag(2))
```

estimationCellBarycenter

estimation Cell Barycenter

Description

Estimates a Wasserstein barycenter for a cluster type using a collection of partitions.

Usage

```
estimationCellBarycenter(cell, cytometries)
```

Arguments

cell Name of the cluster of interes

cytometries List of clusterings

estimClustPar 7

Value

mean Mean of the barycenter.

cov Covariance of the barycenter.

weight Weight associated to the barycenter.

type Type of the cluster.

Examples

```
partition1 = list(list(mean = c(1,1), cov = diag(1,2), weight = 0.5, type = "1"), list(mean = c(-1,-1), cov = diag(1,2), weight = 0.5, type = "2")) partition2 = list(list(mean = c(1,-1), cov = diag(1,2), weight = 0.5, type = "1"), list(mean = c(-1,1), cov = diag(1,2), weight = 0.5, type = "2")) cytometries = list(partition1, partition2) estimationCellBarycenter("1", cytometries)
```

estimClustPar

estimClustPar

Description

Obtain the best values for the model parameters, given data, input parameters and an assignment.

Usage

```
estimClustPar(X, iter, pa)
```

Arguments

X Points in a multidimiensional space.

iter Current solution obtained by tclust_.

pa Parameters for using in tclust_.

Value

An object used internally in tclust_ with the best model parameters.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

8 estimCovCellGeneral

Examples

```
## tclust_ is the function which obtain the clusters for tclust_H function
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen",
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )
##restr.diffax <- function (iter, pa)
## Apply constraints to covariance matrices
iter=output3$iter
pa=output3$pa
## estimClustPar obtains the best values for the parameters,
##given data, input parameters and an assigment.
output4=estimClustPar (X=x, iter, pa)
output4$center
output4$sigma
output4$cw
```

estimCovCellGeneral

estimCovCellGeneral

Description

Estimation of mean and covariance for a label in a partition.

Usage

```
estimCovCellGeneral(cell, cytometry, labels, type = "standard", alpha = 0.85)
```

Arguments

cell Labell of the clsuter of interest.
cytometry Data of the partition, wthout labels.

labels Labels of the partition.

type How to estimate covariance matrices of a cluster. "standard" is for using cov(),

while "robust" is for using robustbase::covMcd.

alpha Only when type = "robust". Indicates the value of alpha in robustbase::covMcd.

Value

mean Mean of the cluster.

cov Covariance of the cluster.

weight Weight associated to the cluster.

type Type of the cluster.

f1Score 9

Examples

```
estimCovCellGeneral("Basophils", Cytometry1[,1:10], Cytometry1[,11])
```

f1Score f1Score

Description

Calculates the F1 score fore each group in a partition.

Usage

```
f1Score(clustering, cytometry, noise.cells)
```

Arguments

clustering The labels of the new classification.

cytometry Data of the clustering, where the last variable are the original labels.

noise.cells An array of labels to be considered as noise.

Value

A matrix where the first row is the F1 score, the seconr row is the Precision and the third row is the Recall.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

```
f1Score(dplyr::pull(Cytometry3[c(sample(1:250,250),251:(dim(Cytometry3)[1])),],11),
Cytometry3, noise.types)
```

10 f1ScoreVoting

f1ScoreVoting

Description

Calculates the F1 score fore each group in a partition, when provided with a fuzzy classification.

Usage

```
f1ScoreVoting(voting, clustering, cytometry, nivel_sup, noise.cells)
```

Arguments

voting	A list where each entry is a vote on the respective label
clustering	Labels of the partition
cytometry	Data of the clustering, where the last variable are the original labels.
nivel_sup	level of tolerance for assigning hard clustering. Should be greater or equal than 1. Class A is assigned if class A >nivel_sup*Class B.
noise.cells	An array of labels to be considered as noise.

Value

A matrix where the first row is the F1 score, the seconr row is the Precision and the third row is the Recall.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

```
database = list(as.data.frame(Cytometry2)[which(match(Cytometry2$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry3)[which(match(Cytometry3$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry4)[which(match(Cytometry4$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry5)[which(match(Cytometry5$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry7)[which(match(Cytometry7$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry8)[which(match(Cytometry8$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry9)[which(match(Cytometry9$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry12)[which(match(Cytometry12$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
```

findClustAssig 11

```
as.data.frame(Cytometry13)[which(match(Cytometry13$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry14)[which(match(Cytometry14$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry15)[which(match(Cytometry15$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry16)[which(match(Cytometry16$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry17)[which(match(Cytometry17$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry19)[which(match(Cytometry19$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry21)[which(match(Cytometry21$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),])
templates.optimalFlow = optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)
classification.optimalFlow = optimalFlowClassification(as.data.frame(Cytometry1)[
which(match(Cytometry1$`Population ID (name)`,c("Monocytes", "CD4+CD8-",
"Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0), 1:10],database, templates.optimalFlow,
classif.method = "matching", cost.function = "ellipses", cl.paral = 1)
f1ScoreVoting(classification.optimalFlow$cluster.vote, classification.optimalFlow$cluster,
as.data.frame(Cytometry1)[which(match(Cytometry1$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),], 1.01, noise.types)
```

findClustAssig

findClustAssig

Description

Function for obtaining the assignment and trimming (mixture models and hard assignment).

Usage

```
findClustAssig(X, iter, pa)
```

Arguments

Χ	Points in a multidimiensional space.
iter	Current solution obtained by tclust
ра	Parameters for using in tclust.

12 GaussianBarycenters

Value

An object used internally in tclust_ with the assignment of the input points.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

Examples

```
##### tclust_ is the function which obtain the clusters for tclust_H function

x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen" ,
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )

iter = output3$iter
pa = output3$pa
output5 = findClustAssig(X=x, iter, pa)
```

GaussianBarycenters

GaussianBarycenters

Description

Finds the barricenter of a mixture of normals with the same mean.

Usage

```
GaussianBarycenters(matrices, weight)
```

Arguments

matrices A list of covariance matrices.

weight A vector of weights associated to the covariance matrices.

Value

Barycenter Returns the barycenter, a covariance matrix.

Variation The Wasserstein Variation.

Num. iter THe number of iterations to achieve the stopping criteria.

```
GaussianBarycenters(list(diag(2,2),diag(1,2)), c(0.5,0.5))
```

getini 13

getini getini

Description

Calculates the initial cluster sizes for initializing tclust_.

Usage

```
getini(K, no.trim)
```

Arguments

K Number of groups.

no.trim Indicates if trimming is allowed.

Value

A vector of length K indicating indices of the points to be considered for initialization.

Examples

```
## gives a random vector from a K dimensional multinomial(no.trim, pi.ini) ## with pi.ini a random vector build with random values from uniform (0,1) v=getini (K=3, no.trim=100) v
```

InitClusters

InitClusters

Description

Calculates the initial cluster assignment and initial values for the parameters

Usage

```
InitClusters(X, iter, pa)
```

Arguments

Χ	Points in a multidimiensional space.
iter	Current solution obtained by tclust
pa	Parameters for using in tclust.

14 kcenter

Value

An initial solution, based on a random subsample, in a form of an object used internally in tclust_.

Examples

```
#####EXAMPLE tclust_
##### tclust_ is the function which obtain the clusters for tclust_H function
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , K=10 ,
equal.weights = FALSE, restr.cov.value = "eigen" ,
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )
##restr.diffax <- function (iter, pa)
## Apply constraints to covariance matrices
iter=output3$iter
pa=output3$pa
#Gives an initial solution based on a random subsample
iter=InitClusters (X=x, iter=output3$iter, pa=output3$pa)
iter$cw
iter$center
iter$sigma
```

kcenter

kcenter

Description

Calculates the k-barycenter of a list on multivaraite normals for a given the number of clusters and an assignation of each normal to the respective group.

Usage

```
kcenter(points, kk, center.asigned)
```

Arguments

points List of multivariate normals, where each element is a list with values mean and

cov.

kk The number k of groups for the k-barycenter.

center.asigned A vector indicating to which group each normal should be assigned.

Value

kcenters A list of the elements of the k-barycenter, i.e., a list of k lists containing means

and covariances.

t.variation The trimmed wasserstein variation.

labelTransfer 15

Examples

```
normals = list(list(mean = c(1,1), cov = diag(2,2)),
list(mean = c(1,1), cov = diag(1,2)), list(mean = c(3,3), cov = diag(1,2)))
kcenter(normals, 2, c(1,1,2))
```

labelTransfer

labelTransfer

Description

Label transfer between a test partition and a training set of partitions.

Usage

labelTransfer(training.cytometry, test.cytometry, test.partition, equal.weights = FALSE)

Arguments

training.cytometry

List of partitions, where each partition is a dataframe wher the last column contains the labels of the partition.

test.cytometry Test data, a dataframe without labels.

test.partition Labels of a partition of the test data.

equal.weights If True, weights assigned to ever

If True, weights assigned to every cluster in a partion are uniform (1/number of clusters) when calculating the similarity distance. If False, weights assigned to clusters are the proportions of points in every cluster compared to the total amount of points in the partition.

Value

A fuzzy relabeling consistent of a transportation plan.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

```
data.example = data.frame(v1 = c(rnorm(50,2,1), rnorm(50,-2,1)), v2 = c(rnorm(50,2,1), rnorm(50,-2,1)), id = c(rep(0,50), rep(1,50))) test.labels = c(rep("a",50), rep("b", 50)) labelTransfer(data.example, data.example[,1:2], test.labels)
```

16 labelTransferEllipse

labelTransferEllipse labelTransferEllipse

Description

Label transfer between a test partition and a training partitions viewed as a mixture of gaussians.

Usage

```
labelTransferEllipse(i, test.cytometry.ellipses,
training.cytometries.barycenter, equal.weights = FALSE)
```

Arguments

i A dummy variable, should be any integral. Ment for use with lapply.

test.cytometry.ellipses

A test clustering viewed as a mixture of multivariate normal distributions.

training.cytometries.barycenter

A training partition viewed as a mixture of multivariate normal distributions.

equal.weights

If True, weights assigned to every cluster in a partion are uniform (1/number of clusters) when calculating the similarity distance. If False, weights assigned to clusters are the proportions of points in every cluster compared to the total amount of points in the partition.

Value

A fuzzy relabeling consistent of a transportation plan.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

```
partition1 = list(list(mean = c(1,1), cov = diag(1,2), weight = 0.5, type = "1"), list(mean = c(-1,-1), cov = diag(1,2), weight = 0.5, type = "2")) partition2 = list(list(mean = c(1,1), cov = diag(1,2), weight = 0.5, type = "a"), list(mean = c(-1,-1), cov = diag(1,2), weight = 0.5, type = "b")) labelTransferEllipse(1, partition2, partition1)
```

```
{\tt optimalFlowClassification}
```

optimal Flow Classification

Description

Performs a supervised classification of the input data where a database and a partition of the database are available

Usage

```
optimalFlowClassification(X, database, templates, consensus.method = "pooling",
cov.estimation = "standard", alpha.cov = 0.85,initial.method = "supervized",
alpha.tclust = 0, restr.factor.tclust = 1000,classif.method = "qda",
qda.bar = TRUE, cost.function = "points", cl.paral = 1,
equal.weights.voting = TRUE, equal.weights.template = TRUE)
```

Arguments

Χ	Datasample to be classified.
database	A list where each entry is a partition (clustering) represented as dataframe, of the same dimensions, where the last variable represents the labels of the partition.
templates	List of the consensus clusterings for every group in the partition of the database obtained by optimalFlowTemplates
consensus.metho	bo
	The consensus.method value that was used in optimalFlowTemplates.
cov.estimation	How to estimate covariance matrices in each cluster of a partition. "standard" is for using cov(), while "robust" is for using robustbase::covMcd.
alpha.cov	Only when cov.estimation = "robust". Indicates the value of alpha in robust-base::covMcd.
initial.method	Indicates how to initialize tclust. Currently only supports "supervised".
alpha.tclust	Level of trimming allowed fo tclust.
restr.factor.to	clust
	Fixes the restr.fact parameter in tclust.
classif.method	Indicates what type of supervised learning we want to do. Takes values on $c("matching", "qda", "random forest")$.
qda.bar	Only if classif.method = "qda". If True then the appropriate consensus clustering (template, prototype) is used for learning. If False, the closest partition in the appropriate group is used.
cost.function	Only if classif.method = "matching". Indicates the cost function, distance between clusters, to be used for label matching.
cl.paral	Number of cores to be used in parallel procedures.

```
equal.weights.voting
```

only when classif.method = "qda" and qda.bar =F, or when classif.method = "random forest". Indicates the weights structure when looking for the most similar partition in a group.

equal.weights.template

If True, weights assigned to every cluster in a partion are uniform (1/number of clusters). If False, weights assigned to clusters are the proportions of points in every cluster compared to the total amount of points in the partition.

Value

cluster Labels assigned to the input data.

clusterings The different partitions of the data obtained by tclust when initialized with the

templates obtained by optimalFlowTemplates.

assigned.template.index

Label of the group for which the template is closer to the data.

cluster.vote Only when classif.method = "matching". Vote on the type of every label in the

partition of the data.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

```
database = list(as.data.frame(Cytometry2)[which(match(Cytometry2$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry3)[which(match(Cytometry3$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry4)[which(match(Cytometry4$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry5)[which(match(Cytometry5$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry7)[which(match(Cytometry7$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry8)[which(match(Cytometry8$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry9)[which(match(Cytometry9$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry12)[which(match(Cytometry12$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry13)[which(match(Cytometry13$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry14)[which(match(Cytometry14$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry15)[which(match(Cytometry15$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry16)[which(match(Cytometry16$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
```

optimalFlowTemplates 19

```
as.data.frame(Cytometry17)[which(match(Cytometry17$`Population ID (name)`, c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),], as.data.frame(Cytometry19)[which(match(Cytometry19$`Population ID (name)`, c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),], as.data.frame(Cytometry21)[which(match(Cytometry21$`Population ID (name)`, c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),])

templates.optimalFlow = optimalFlowTemplates(database = database, templates.number = 5, cl.paral = 1)

classification.optimalFlow = optimalFlowClassification(as.data.frame(Cytometry1)[which(match(Cytometry1$`Population ID (name)`, c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0), 1:10], database, templates.optimalFlow, cl.paral = 1)

scoreF1.optimalFlow = optimalFlow::flScore(classification.optimalFlow$cluster, as.data.frame(Cytometry1)[which(match(Cytometry1$`Population ID (name)`, c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),], noise.types)

optimalFlowTemplates optimalFlowTemplates
```

Description

Returns a partition of the input clusterings with a respective consensus cluster for every group in the partition.

Usage

```
optimalFlowTemplates(database, database.names = NULL, cov.estimation = "standard", alpha.cov = 0.85, equal.weights.template = TRUE, hclust.method = "complete", templates.number = NA,minPts = 2, eps = 1, consensus.method = "pooling", barycenters.number = 37,bar.repetitions = 40, alpha.bar = 0.05, bar.ini.method = "plus-plus", consensus.minPts = 3, cl.paral = 1)
```

Arguments

database	A list where each entry is a partition (clustering) represented as dataframe, of the
	same dimensions, where the last variable represents the labels of the partition.
database.names	Names of the elements in the database.
cov.estimation	How to estimate covariance matrices in each cluster of a partition. "standard" is for using $cov()$, while "robust" is for using robustbase:: $covMcd$.
alpha.cov	Only when cov.estimation = "robust". Indicates the value of alpha in robust-base: covMcd

equal.weights.template

If True, weights assigned to every cluster in a partion are uniform (1/number of clusters). If False, weights assigned to clusters are the proportions of points in every cluster compared to the total amount of points in the partition.

hclust.method

Indicates what kind of hierarchical clustering to do with the similarity distances matrix of the partitions. Takes values in c("complete", "single", "average", "hdbscan", "dbscan").

templates.number

Only if hclust.method in c("complete", "single", "average"). Indicates the number of clusters to use with cutree. If set to NA (default), plots the hierarchical tree and asks the user to introduce an appropriate number of clusters.

minPts

Only if hclust.method in c("hdbscan", "dbscan"). Indicates the value of argument minPts in dbscan::dbscan and dbscan::hdbscan.

eps

Only if helust.method = "dbscan". Indicates the value of eps in dbscan::dbscan.

consensus.method

Sets the way of doing consensus clustering when clusters are viewed as Multivariate Distributions. Can take values in c("pooling", "k-barycenter", "hierarchical"). See details.

barycenters.number

Only if consensus.method = "k-barycenter". Sets the number, k, of barycenters when using k-barycenters.

bar.repetitions

Only if consensus.method = "k-barycenter". How many times to repeat the kbarycenters procedure. Equivalent to nstart in kmeans.

alpha.bar

Only if consensus.method = "k-barycenter". The level of trimming allowed during the k-barycenters procedure.

bar.ini.method Only if consensus.method = "k-barycenter". Takes values in c("rnd", "plusplus"). See details.

consensus.minPts

Only if consensus.method = "hierarchical". The value of argument minPts for dbscan::hdbscan.

Number of cores to be used in parallel procedures. cl.paral

Value

templates A list of the consensus clusterings for every group in the partition of the database.

clustering Clustering of the input partitions.

database.elliptical

Means, covariances and weights of the clusters in the input partitions.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimaltransport approach to flow cytometry gating and population matching. arXiv:1907.08006

qdaClassification 21

Examples

```
database = list(as.data.frame(Cytometry2)[which(match(Cytometry2$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry3)[which(match(Cytometry3$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry4)[which(match(Cytometry4$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry5)[which(match(Cytometry5$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry7)[which(match(Cytometry7$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry8)[which(match(Cytometry8$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry9)[which(match(Cytometry9$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry12)[which(match(Cytometry12$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry13)[which(match(Cytometry13$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry14)[which(match(Cytometry14$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry15)[which(match(Cytometry15$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry16)[which(match(Cytometry16$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry17)[which(match(Cytometry17$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry19)[which(match(Cytometry19$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry21)[which(match(Cytometry21$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),])
templates.optimalFlow = optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)
```

qdaClassification

qdaClassification

Description

GIves quadratic discriminant scores to the poiints in data for a multivariate normal.

Usage

```
qdaClassification(normal, data)
```

22 restr.diffax

Arguments

normal A list with arguments mean, covaruance and weight.

data Data frame or matrix on which to perform qda.

Value

A score for each point.

Examples

```
data.qda = cbind(rnorm(50), rnorm(50)) 
 exp(qdaClassification(list(mean = c(0,0), cov = diag(1,2), weight = 1), data.qda))
```

restr.diffax

restr.diffax

Description

Ment for applying restrictions to solutions obtained by tclust_.

Usage

```
restr.diffax(iter, pa)
```

Arguments

iter Current solution obtained by tclust_.

pa Parameters for using in tclust_.

Value

The neew restricted solution.

```
######EXAMPLE tclust_
##### tclust_ is the function which obtain the clusters for tclust_H function

x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen" ,
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )

##restr.diffax <- function (iter, pa)
## Apply constraints to covariance matrices
iter=output3$iter
pa=output3$pa</pre>
```

restr2_eigenv 23

```
pa$maxfact_e=1.1
print(iter$sigma)
iter2=restr.diffax (iter, pa)
print(iter2$sigma)
```

restr2_eigenv

restr2_eigenv

Description

Function for applying eigenvalue constraints. These are the typical constraints used in tclust.

Usage

```
restr2_eigenv(autovalues, ni.ini, factor_e, zero.tol)
```

Arguments

autovalues Matrix containin eigenvalues.

ni.ini Current sample size of the clusters.

factor_e The level of the constraints.

zero.tol Toletance level.

Value

The restricted eigenvalues

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

```
#restr2_eigenv <- function(autovalues, ni.ini, factor_e, zero.tol)
#gives optimal constrained eigenvalues
autovalues=matrix(c(2,3,4,1,2,3),nrow=2)
ni.ini=c(2,2,3)
factor_e=1.1
zero.tol=1e-9
autovalues_const= restr2_eigenv (autovalues, ni.ini, factor_e, zero.tol)
autovalues_const</pre>
```

24 sscImat

ssclmat

ssclmat

Description

Extract a matrix from the object containing covariance matrices. Ment for use inside tclust_function

Usage

```
ssclmat(x, k)
```

Arguments

- x An object used inside tclust_containing covariance matrices.
- k An integer value giving a location in an array.

Value

A covariance matrix.

```
#####EXAMPLE tclust_
##### tclust_ is the function which obtain the clusters for tclust_H function
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen",
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )
##restr.diffax <- function (iter, pa)</pre>
## Apply constraints to covariance matrices
iter=output3$iter
pa=output3$pa
pa$maxfact_e=1.1
iter2=restr.diffax (iter, pa)
##EXAMPLE extract matrix from the object containing covariance matrices
##sclmat <- function (x, k) as.matrix (x[,,k])
ssclmat(iter2$sigma,k=1)
```

tclustWithInitialization 25

tclustWithInitialization

tclust With Initialization

Description

A wrapper for the function tclust_H.

Usage

```
tclustWithInitialization(initialization, cytometry, i.sol.type = "points",
trimming = 0.05, restr.fact = 1000)
```

Arguments

initialization	Initial solution for parameters provided by the user. Can be a matrix of data containing observations and cluster assignations or can be a list spesifying a multivariate mixture of gaussians.
cytometry	A matrix or data.frame of dimension n x p, containing the observations (row-wise).
i.sol.type	Type of initial solutions in $c("points", "barycenters")$. "points" refers to a classified data matrix, while "barycenters" to a multivariate mixture.
trimming	The proportion of observations to be trimmed.
restr.fact	The constant restr.fact >= 1 constrains the allowed differences among group scatters. Larger values imply larger differences of group scatters, a value of 1 specifies the strongest restriction.

Value

cluster	A numerical vector of size n containing the cluster assignment for each observation. Cluster names are integer numbers from 1 to k, 0 indicates trimmed observations.
n_clus	Number of clusters actually found.
obj	he value of the objective function of the best (returned) solution.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26. E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006.

26 tclust_

Examples

```
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),
matrix(rnorm(100)+4,ncol=2))

## robust cluster obtention from a sample x asking for 3 clusters,
## trimming level 0.05 and constrain level 12

k=3;alpha = 0.05;restr.fact = 12
output=tclust_H (x=x, k = k, alpha = alpha, nstart = 50, iter.max = 20,
restr = "eigen", restr.fact = restr.fact, sol_ini_p = FALSE, sol_ini = NA,
equal.weights = FALSE, center = center, scale = scale, store.x = TRUE,
drop.empty.clust = TRUE, trace = 0, warnings = 3, zero.tol = 1e-16)

## cluster assignent
output2 = tclustWithInitialization(data.frame(x, output$cluster), x, "points", 0.05, 10)
```

tclust_

tclust_

Description

Function that performs robust non spherical clustering, tclust, where initial solutions are allowed.

Usage

```
tclust_(X, K, alpha = 0.05, niter = 20, Ksteps = 10, equal.weights = FALSE,
restr.cov.value = "eigen", maxfact_e = 5, zero.tol = 1e-16, trace = 0,
sol_ini_p = FALSE, sol_ini = NA)
```

Arguments

X	Points in a multidimiensional space.
K	Number of clusters.
alpha	Level of trimming.
niter	Maximum number of iterations.
Ksteps	Maximum number of K-steps.
equal.weights restr.cov.valu	If all clusters should have equal weight in the objective function.
	Type of restriction on covariance matrices. Only "eigen" will be allowed.
maxfact_e	Level determinant constraints.
zero.tol	The zero tolerance used. By default set to 1e-16
trace	Defines the tracing level, which is set to 0 by default. Tracing level 2 gives additional information on the iteratively decreasing objective function's value.
sol_ini_p	Initial solution for parameters provided by the user TRUE/FALSE, if TRUE is stored in sol_ini.
sol_ini	Initial solution for parameters provided by the user.

tclust_H 27

Value

iter Contains the solutions of the clustering provided by tclust_.pa Parametaers used in tslucs_.X The input variables.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

Examples

```
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen" ,
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )
## cluster assigment
output3$iter$assig
plot(x,col=output3$iter$assig+1)
```

tclust_H

tclust_H

Description

A wrapper for the fucntion tclust_. Performs robust non spherical clustering, tclust, where initial solutions are allowed.

Usage

```
tclust_H(x, k = 3, alpha = 0.05, nstart = 50, iter.max = 20, restr = "eigen",
restr.fact = 12, sol_ini_p = FALSE, sol_ini = NA, equal.weights = FALSE,
center = center, scale = scale, store.x = TRUE, drop.empty.clust = TRUE,
trace = 0, warnings = 3, zero.tol = 1e-16)
```

Arguments

Х	A matrix or data.frame of dimension n x p, containing the observations (rowwise).
k	The number of clusters initially searched for.
alpha	The proportion of observations to be trimmed.
nstart	The number of random initializations to be performed. Only when $sol_ini_p = FALSE$.
iter.max	The maximum number of concentration steps to be performed. The concentration steps are stopped, whenever two consecutive steps lead to the same data partition.

28 tclust_H

restr	The type of restriction to be applied on the cluster scatter matrices. Valid values are "eigen" (default).	
restr.fact	The constant restr.fact >= 1 constrains the allowed differences among group scatters. Larger values imply larger differences of group scatters, a value of 1 specifies the strongest restriction.	
sol_ini_p	Initial solution for parameters provided by the user TRUE/FALSE, if TRUE is stored in sol_ini.	
sol_ini	Initial solution for parameters provided by the user.	
equal.weights	A logical value, specifying whether equal cluster weights (TRUE) or not (FALSE) shall be considered in the concentration and assignment steps.	
center	A center vector of length p which can optionally be specified for centering x before calculation.	
scale	A scale vector of length p which can optionally be specified for scaling x before calculation.	
store.x	A logical value, specifying whether the data matrix x shall be included in the result structure. By default this value is set to TRUE.	
drop.empty.clust		
	Logical value specifying, whether empty clusters shall be omitted in the resulting object. (The result structure does not contain center and covariance estimates of empty clusters anymore. Cluster names are reassigned such that the first l clusters ($l \le k$) always have at least one observation.	
trace	Defines the tracing level, which is set to 0 by default. Tracing level 2 gives additional information on the iteratively decreasing objective function's value.	
warnings	The warning level (0: no warnings; 1: warnings on unexpected behavior; 2: warnings if restr.fact causes artificially restricted results).	
zero.tol	The zero tolerance used. By default set to 1e-16.	

Details

This iterative algorithm initializes k clusters randomly and performs "concentration steps" in order to improve the current cluster assignment. The number of maximum concentration steps to be performed is given by iter.max. For approximately obtaining the global optimum, the system is initialized nstart times and concentration steps are performed until convergence or iter.max is reached. When processing more complex data sets higher values of nstart and iter.max have to be specified (obviously implying extra computation time). However, if more then half of the iterations would not converge, a warning message is issued, indicating that nstart has to be increased.

The parameter restr defines the cluster's shape restrictions, which are applied on all clusters during each iteration. Options "eigen"/"deter" restrict the ratio between the maximum and minimum eigenvalue/determinant of all cluster's covariance structures to parameter restr.fact. Setting restr.fact to 1, yields the strongest restriction, forcing all eigenvalues/determinants to be equal and so the method looks for similarly scattered (respectively spherical) clusters. Option "sigma" is a simpler restriction, which averages the covariance structures during each iteration (weighted by cluster sizes) in order to get similar (equal) cluster scatters.

TreatSingularity 29

Value

centers	A matrix of size p x k containing the centers (column-wise) of each cluster.
cov	An array of size p x p x k containing the covariance matrices of each cluster.
cluster	A numerical vector of size n containing the cluster assignment for each observation. Cluster names are integer numbers from 1 to k, 0 indicates trimmed observations.
par	A list, containing the parameters the algorithm has been called with (x, if not suppressed by store.x = FALSE, k, alpha, restr.fact, nstart, KStep, and equal.weights).
weights	A numerical vector of length k, containing the weights of each cluster.
obj	he value of the objective function of the best (returned) solution.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

Examples

```
## tclust_H if the function which gives clusters to the user.
## The main role of this function is to be an interface with
## the user using labels for the parameters similar to tclust
## function in tclust package
x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),
matrix(rnorm(100)+4,ncol=2))
## robust cluster obtention from a sample x asking for 3 clusters,
## trimming level 0.05 and constrain level 12
k=3; alpha = 0.05; restr.fact = 12
output=tclust_H (x=x, k = k, alpha = alpha, nstart = 50, iter.max = 20,
restr = "eigen", restr.fact = restr.fact, sol_ini_p = FALSE, sol_ini = NA,
equal.weights = FALSE, center = center, scale = scale, store.x = TRUE,
drop.empty.clust = TRUE, trace = 0, warnings = 3, zero.tol = 1e-16)
## cluster assigment
output$cluster
plot(x,col=output$cluster)
```

TreatSingularity

TreatSingularity

Description

Shows a warning message when a singularity in the curent solution of tclust_ is found.

trimmedKBarycenter

Usage

```
TreatSingularity(iter, pa)
```

Arguments

iter Current solution obtained by tclust_
pa Parameters for using in tclust_.

Value

A warning message.

Examples

```
######EXAMPLE tclust_
##### tclust_ is the function which obtain the clusters for tclust_H function

x=rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100)+2,ncol=2),matrix(rnorm(100)+4,ncol=2))
output3=tclust_( X=x , K=3 , alpha = 0.05 , niter = 20 , Ksteps=10 ,
equal.weights = FALSE, restr.cov.value = "eigen" ,
maxfact_e = 5 , zero.tol = 1e-16 , trace = 0 ,
sol_ini_p = FALSE , sol_ini=NA )

##restr.diffax <- function (iter, pa)
## Apply constraints to covariance matrices
iter=output3$iter
pa=output3$pa

##### It shows a warning message
##### warning ("points in the data set are concentrated in k points after trimming ")
TreatSingularity (iter, pa)</pre>
```

trimmedKBarycenter

trimmedKBarycenter

Description

Calculates K-barycenters of multivariate normal distributions with the 2-Wasserstein distance

Usage

```
trimmedKBarycenter(k, alpha0, type.ini = "rnd", reps.list)
```

trimmedMinDist 31

Arguments

k Number k of elements in the k-barycenter.

alpha0 Level of trimming.

type.ini Type of initialization in c("rnd", "plus-plus"). "rnd" makes the common random

initilaization while "plus-plus" initializes in a similar fashion to k-means++.

reps.list List of multivariate normals for which the trimmed k-barycenter should be per-

formed.

Value

variacion_wasser

Waserstein variation.

baricentro A list of k elements, each of which is a member of the k-barycenter

cluster The assignment of the original entries to each member of the k-barycenter.

Examples

```
normals = list(list(mean = c(1,1), cov = diag(2,2)), list(mean = c(1,1), cov = diag(1,2)), list(mean = c(3,3), cov = diag(1,2))) trimmedKBarycenter(2, 0, "rnd", normals)
```

trimmedMinDist

trimmedMinDist

Description

For two lists of multivaraite normals, points and centers, returns the index of which element in centers is closest to each element in points when some trimming is allowed.

Usage

```
trimmedMinDist(points, centres, alpha = 0.1)
```

Arguments

points List of multivariate normals, where each element is a list with values mean and

cov.

centres List of multivariate normals, where each element is a list with values mean and

cov.

alpha Level of triming

Value

A vector with the index of which element in centers is closest to each element in points.

32 voteLabelTransfer

Examples

```
normals = list(list(mean = c(1,1), cov = diag(2,2)),
list(mean = c(1,1), cov = diag(1,2)), list(mean = c(3,3), cov = diag(1,2)))
k_barycenter = kcenter(normals, 2, c(1,1,2))$kcenters
trimmedMinDist(normals,k_barycenter, 0)
```

voteLabelTransfer

voteLabelTransfer

Description

A wrapper for doing either labelTransfer or labelTransferEllipse

Usage

```
voteLabelTransfer(type = "points", test.partition, test.cytometry,
test.partition.ellipse, training.cytometries,training.cytometries.barycenter,
test = 1, op.syst, cl.paral = 1, equal.weights = FALSE)
```

Arguments

type "points" indicates use of labelTransfer; "ellipses" of labelTransferEllipse.

test.partition Only when type = "points". Labels of a partition of the test data.

test.cytometry Only when type = "points". Test data, a dataframe without labels.

test.partition.ellipse

Only when type = "ellipses". A test clustering viewed as a mixture of multivari-

ate normal distributions.

training.cytometries

Only when type = "points". List of partitions, where each partition is a dataframe

wher the last column contains the labels of the partition.

training.cytometries.barycenter

Only when type = "ellipses". A training partition viewed as a mixture of multi-

variate normal distributions.

test Only when type = "ellipses". A dummy variable, should be any integral. Ment

for use with lapply.

op.syst Type of system, takes values in c("unix", "windows").

cl.paral Number of cores to be used in parallel procedures.

equal.weights If True, weights assigned to every cluster in a partion are uniform (1/number

of clusters) when calculating the similarity distance. If False, weights assigned to clusters are the proportions of points in every cluster compared to the total

amount of points in the partition.

Value

final.vote A list for the votes on each cell.

complete.vote A more complete list for the votes on each cell.

voteTransformation 33

Examples

```
data.example = data.frame(v1 = c(rnorm(50,2,1), rnorm(50,-2,1)),
v2 = c(rnorm(50,2,1), rnorm(50,-2,1)), id = c(rep(0,50), rep(1,50)))
test.labels = c(rep("a",50), rep("b", 50))
voteLabelTransfer(test.partition = test.labels, test.cytometry = data.example[,1:2],
training.cytometries = list(data.example), op.syst = .Platform$0S.type)$final.vote[[1]]
```

voteTransformation

voteTransformation

Description

Transforming votes obtained by using optimalFlowTemplates + OptimalFlowClassification with consenus.method in c("hierarchical", "k-barycenter") and classif.method = "matching" and cost.function = "ellipses" to an appropriate format for using f1ScoreVoting.

Usage

```
voteTransformation(vote.0, vote.1)
```

Arguments

- vote.0 Values obtained by voteLabelTransfer
- vote.1 Original proportions of the clusters after the template obtention.

Value

A list for the votes on each cell.

```
vote.0 = list("1" = data.frame(cell = c(1,2), "compound.proportion" = c(0.7,0.3), "simple.proportion" = c(0.7,0.3)), "2" = data.frame(cell = c(1,2), "compound.proportion" = c(0.3,0.7), "simple.proportion" = c(0.3,0.7))) vote.1.1 = t(c(0.8,0.2)) names(vote.1.1) = c("A","B") vote.1.2 = t(c(0.2,0.8)) names(vote.1.2) = c("A","B") vote.1 = list(vote.1.1, vote.1.2) voteTransformation(vote.0, vote.1)
```

34 wasserCostFunction

w2dist w2dist

Description

The 2-Wasserstein distance between two multivariate normal distributions

Usage

```
w2dist(P,Q)
```

Arguments

P A multivariate normal distribution given as a list with arguments mean and cov.

Q A multivariate normal distribution given as a list with arguments mean and cov.

Value

The 2-Wasserstein distance between the two distributions.

Examples

```
P = list(mean = c(1,1), cov = diag(1,2))
Q = list(mean = c(0,0), cov = 1.1*diag(1,2))
w2dist(P,Q)
```

wasserCostFunction

wasserCostFunction

Description

Calculates the similarity distance matrix between elements j and i of a list of partitions.

Usage

```
wasserCostFunction(j, i, cytometries, equal.weights = FALSE)
```

Arguments

j An entry of the list of partitions.i An entry of the list of partitions.

cytometries The list of partitions.

of clusters) when calculating the similarity distance. If False, weights assigned to clusters are the proportions of points in every cluster compared to the total

amount of points in the partition.

wasserMinDist 35

Value

A similarity distance.

Examples

```
database = list(as.data.frame(Cytometry2)[which(match(Cytometry2$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry3)[which(match(Cytometry3$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry4)[which(match(Cytometry4$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry5)[which(match(Cytometry5$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry7)[which(match(Cytometry7$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry8)[which(match(Cytometry8$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry9)[which(match(Cytometry9$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry12)[which(match(Cytometry12$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry13)[which(match(Cytometry13$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry14)[which(match(Cytometry14$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry15)[which(match(Cytometry15$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry16)[which(match(Cytometry16$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry17)[which(match(Cytometry17$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry19)[which(match(Cytometry19$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],
as.data.frame(Cytometry21)[which(match(Cytometry21$`Population ID (name)`,
c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),])
templates.optimalFlow = optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)
print(wasserCostFunction(1,2,list(templates.optimalFlow$database.elliptical[[1]],
templates.optimalFlow$database.elliptical[[2]])))
```

wasserMinDist

wasserMinDist

Description

For two lists of multivariate normals calcualtes the closest member, in wasserstein distance, of the later list to each element of the former.

Usage

```
wasserMinDist(points,centres)
```

Arguments

points List of multivariate normals, where each element is a list with values mean and

cov.

centres List of multivariate normals, where each element is a list with values mean and

cov.

Value

A matrix where each column idicates the distance between the respective entry in points and the closest element in centers and the index of this closest element.

Examples

```
\label{eq:continuous} \begin{subarray}{l} normals = list(list(mean = c(1,1), cov = diag(2,2)), \\ list(mean = c(1,1), cov = diag(1,2)), list(mean = c(3,3), cov = diag(1,2))) \\ k\_barycenter = kcenter(normals, 2, c(1,1,2)) $kcenters \\ wasserMinDist(normals, k\_barycenter) \end{subarray}
```

wassersteinKBarycenter

wassersteinKBarycenter

Description

A wrapper for calculating K-barycenters of multivariate normal distributions with the 2-Wasserstein distance.

Usage

```
wassersteinKBarycenter(i = 1, k, alpha = 0, initialization = "rnd", pooled.clusters)
```

Arguments

i A dummy variable ment for use with apply.k Number k of elements in the k-barycenter.

alpha Level of trimming.

initialization Type of initialization in c("rnd", "plus-plus"). "rnd" makes the common random

initilaization while "plus-plus" initializes in a similar fashion to k-means++.

```
pooled.clusters
```

List of multivariate normals for which the trimmed k-barycenter should be performed.

Value

```
wasserstein.var
```

Wasserstein variation.

wasserstein.k.barycenter

List with three elements. Variacion_wasser is Waserstein variation. Baricentro is a list of k elements, each of which is a member of the k-barycenter. Cluster is the assignation to each barycenter of the original entries.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-transport approach to flow cytometry gating and population matching. arXiv:1907.08006

```
normals = list(list(mean = c(1,1), cov = diag(2,2)),
list(mean = c(1,1), cov = diag(1,2)), list(mean = c(3,3), cov = diag(1,2)))
wkb = wassersteinKBarycenter(1, 2, 0, "rnd", normals)
print(wkb$wasserstein.var)
print(wkb$wasserstein.k.barycente)
```

Index

```
calcobj, 2
costWasserMatchingEllipse, 3
distGaussian, 4
distGaussianCov, 5
distGaussianMean, 5
dmnorm, 6
estimationCellBarycenter, 6
estimClustPar, 7
estimCovCellGeneral, 8
f1Score, 9
f1ScoreVoting, 10
findClustAssig, 11
GaussianBarycenters, 12
getini, 13
InitClusters, 13
kcenter, 14
labelTransfer, 15
labelTransferEllipse, 16
optimalFlowClassification, 17
optimalFlowTemplates, 19
qdaClassification, 21
restr.diffax, 22
restr2_eigenv, 23
ssclmat, 24
tclust_, 26
tclust_H, 27
tclustWithInitialization, 25
TreatSingularity, 29
trimmedKBarycenter, 30
trimmedMinDist, 31
```

voteLabelTransfer, 32 voteTransformation, 33 w2dist, 34 wasserCostFunction, 34 wasserMinDist, 35 wassersteinKBarycenter, 36