

Código:	MADO-52
Versión:	01
Página	20/36
Sección ISO	8.3
Fecha de	19 de enero de 2018
emisión	l 9 de ellelo de 2016

Facultad de Ingeniería	Area/Departamento: Laboratorio de Geomática
------------------------	---

La impresión de este documento es una copia no controlada

Práctica 4

Levantamiento de un polígono con estación total

Código:	MADO-52
Versión:	01
Página	21/36
Sección ISO	8.3
Fecha de	19 de enero de 2018
emisión	

Facultad de Ingeniería

Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o fuente de energía	Riesgo asociado
1	Manipulación de instrumentos.	Daños internos y externos al equipo manipulado.
2	Terreno accidentado.	Lesiones principalmente en piernas y brazos.
3	Falta de vigilancia a los instrumentos.	Robo o extravío de los instrumentos.

2. Objetivos de aprendizaje

- Objetivos generales: El alumno aplicará los fundamentos de la Geomática requeridos en la práctica de la Ingeniería Civil
- II. Objetivos específicos: El alumno aplicará técnicas de medición con equipos electrónicos en forma directa y simultánea para ser empleadas en el levantamiento de información de campo para el desarrollo de proyectos.

3. Introducción

Uno de los métodos más empleados en los levantamientos topográficos y quizás uno de los más precisos es el levantamiento con la cinta y teodolito, estos se aplican en general a la mayor parte de los levantamientos de precisión ordinaria, excluyendo la nivelación.

La precisión de las poligonales con tránsito se ve afectada por errores angulares como errores lineales de medidas y que se pueden expresar solamente en términos muy generales. En los levantamientos de precisión ordinaria los errores lineales importantes tienen la misma probabilidad de ser sistemáticos y los errores angulares importantes son principalmente accidentales.

Los errores angulares (ea) y los errores de cierre lineal (ec) pueden clasificarse de la siguiente forma:

CLASE 1: Precisión suficiente para proyectos, red de apoyo para levantamientos a escala corriente y para agrimensura, cuando el valor del terreno es más bien bajo. ea= 1'30"1n ec= 1/1000

Código:	MADO-52
Versión:	01
Página	22/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018
CITIISIOTI	

Facultad de Ingeniería

Área/Departamento: Laboratorio de Geomática

La impresión de este documento es una copia no controlada

CLASE 2: Precisión suficiente para la mayor parte de los levantamientos topográficos y para el trazado de carreteras, vías férreas, etc. Casi todas las poligonales del teodolito están comprendidas en este caso. ea= 1'00''1n ec= 1/3000

CLASE 3: Precisión suficiente para gran parte del trabajo de planos de población, levantamiento de líneas jurisdiccionales y comprobación de planos topográficos de gran extensión. ea= 1'30"1n ec= 1/5000

CLASE 4: Precisión suficiente para levantamientos de gran exactitud, como planos de población u otros de especial importancia.

ea= 1'15"1n ec= 1/10000

El equipo utilizado es:

- Equipo tradicional: Wincha, jalones, plomada, eclímetro, nivel de mano, declinatoria, teodolito mecánico. brújula,
- Equipo electrónico: Estación total, GPS, nivel láser, wincha laser, planímetro digital.

4. Material y Equipo

- Estación total.
- Prismas y bastón
- Equipo de marcación (estacas, clavos, ficha, pintura)

Código:	MADO-52
Versión:	01
Página	23/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018

Facultad de Ingeniería Área/Departamento:
Laboratorio de Geomática

La impresión de este documento es una copia no controlada

5. Desarrollo

I. Actividad 1

- 1. Se localizará en campo un terreno donde se pueda formar una poligonal que reúna las características de la práctica.
- 2. Se centra el instrumento en el punto 1 y los prismas se colocarán uno en el punto adelante, y el otro en el punto atrás, se miden los ángulos horizontales y verticales, además de las distancias respectivas. Hacer las repeticiones necesarias según la metodología utilizada (medición simple o repeticiones).

Llenar el registro de campo. Por ejemplo, un polígono de 4 vértices el orden de medición seria como en la siguiente tabla:

REGISTRO DE CAMPO

LEVANTAMIENTO:	LEVANTÓ:
LUGAR:	FECHA:
	APARATO:

EST	P.V.	DIST. (m)	θ	Ф
1	2			
	4			
2	3			
	1			
3	4			
	2			
4	1			
	3			

Código:	MADO-52
Versión:	01
Página	24/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018

Facultad de Ingeniería

Área/Departamento: Laboratorio de Geomática

La impresión de este documento es una copia no controlada

6. Bibliografía

- BANNISTER A., Raymond. S. Técnicas modernas en topografía 1. México. Alfaomega, 2004.
- KEATES, J. S. Global Positioning System 4. Washington. The Institute of Navigation, 1986.
- KEATES, J. S. Cartographic Design & Production 3. New York. Longman, 1989
- LEVALLOIS, J. J. Géodésie Générale 2. París. Eyrolles, 1971. Tomos I y II
- LILLESAND, Thomas M., KIEFFER, Ralph. Remote Sensing and Image Interpretation 6. 6th edition. New York. John Willey & Son, 2008
- STARR, Jeffrey, ESTES, John. Geographic Information Systems an Introduction 6. New Jersey. Prentice Hall, 1990