intersil

CA3096, CA3096A, CA3096C

OBSOLETE PRODUCT
POSSIBLE SUBSTITUTE PRODUCT
HFA3096

January 2004

NPN/PNP Transistor Arrays

Applications

- Five-Independent Transistors
 - Three NPN and
 - Two PNP
- Differential Amplifiers
- DC Amplifiers
- Sense Amplifiers
- Level Shifters
- Timers
- · Lamp and Relay Drivers
- Thyristor Firing Circuits
- Temperature Compensated Amplifiers
- · Operational Amplifiers

Part Number Information

PART NUMBER (BRAND)	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CA3096AE	-55 to 125	16 Ld PDIP	E16.3
CA3096AM (3096A)	-55 to 125	16 Ld SOIC	M16.15
CA3096AM96 (3096A)	-55 to 125	16 Ld SOIC Tape and Reel	M16.15
CA3096CE	-55 to 125	16 Ld PDIP	E16.3
CA3096E	-55 to 125	16 Ld PDIP	E16.3
CA3096M (3096)	-55 to 125	16 Ld SOIC	M16.15
CA3096M96 (3096)	-55 to 125	16 Ld SOIC Tape and Reel	M16.15

Pinout

CA3096, CA3096A, CA3096C (PDIP, SOIC) TOP VIEW

Description

The CA3096C, CA3096, and CA3096A are general purpose high voltage silicon transistor arrays. Each array consists of five independent transistors (two PNP and three NPN types) on a common substrate, which has a separate connection. Independent connections for each transistor permit maximum flexibility in circuit design.

Types CA3096A, CA3096, and CA3096C are identical, except that the CA3096A specifications include parameter matching and greater stringency in I_{CBO} , I_{CEO} , and $V_{CE}(SAT)$. The CA3096C is a relaxed version of the CA3096.

CA3096, CA3096A, CA3096C Essential Differences

CHARACTERISTIC	CA3096A	CA3096	CA3096C
V _{(BR)CEO} (V) (Min)			
NPN	35	35	24
PNP	-40	-40	-24
V _{(BR)CBO} (V) (Min)			
NPN	45	45	30
PNP	-40	-40	-24
h _{FE} at 1mA			
NPN	150-500	150-500	100-670
PNP	20-200	20-200	15-200
h _{FE} at 100μA			
PNP	40-250	40-250	30-300
I _{CBO} (nA) (Max)			
NPN	40	100	100
PNP	-40	-100	-100
I _{CEO} (nA) (Max)			
NPN	100	1000	1000
PNP	-100	-1000	-1000
V _{CE} SAT (V) (Max)			
NPN	0.5	0.7	0.7
V _{IO} (mV) (Max)			
NPN	5	-	-
PNP	5	-	-
I _{IO} (μΑ) (Max)			
NPN	0.6	-	-
PNP	0.25	-	-

CA3096, CA3096A, CA3096C

Absolute Maximum Ratings		Operating Conditions
NPN	PNP	Thermal Information
Collector-to-Emitter Voltage, V _{CEO} CA3096, CA3096A	-40V -24V -40V -24V - - -40V -24V -40V -24V -10mA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. The collector of each transistor of the CA3096 is isolated from the substrate by an integral diode. The substrate (Terminal 16) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
- 3. Care must be taken to avoid exceeding the maximum junction temperature. Use the total power dissipation (all transistors) and thermal resistances to calculate the junction temperature.

Electrical Specifications For Equipment Design, At $T_A = 25^{\circ}C$

	TEST		CA3096			CA3096A			CA3096C	;	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DC CHARACTERIS	TICS FOR EACH N	IPN TRAI	NSISTOR								
I _{CBO}	$V_{CB} = 10V,$ $I_{E} = 0$	-	0.001	100	-	0.001	40	-	0.001	100	nA
I _{CEO}	V _{CE} = 10V, I _B = 0	-	0.006	1000	-	0.006	100	-	0.006	1000	nA
V _(BR) CEO	I _C = 1mA, I _B = 0	35	50	-	35	50	=	24	35	-	V
V _(BR) CBO	$I_{C} = 10\mu A,$ $I_{E} = 0$	45	100	-	45	100	-	30	80	-	V
V _(BR) CIO	$I_{CI} = 10\mu A,$ $I_{B} = I_{E} = 0$	45	100	-	45	100	-	30	80	-	V
V _{(BR)EBO}	$I_E = 10\mu A,$ $I_C = 0$	6	8	-	6	8	=	6	8	-	V
VZ	$I_Z = 10\mu A$	6	7.9	9.8	6	7.9	9.8	6	7.9	9.8	V
V _{CE} SAT	$I_C = 10mA,$ $I_B = 1mA$	-	0.24	0.7	-	0.24	0.5	-	0.24	0.7	V
V _{BE} (Note 4)	I _C = 1mA,	0.6	0.69	0.78	0.6	0.69	0.78	0.6	0.69	0.78	V
h _{FE} (Note 4)	V _{CE} = 5V	150	390	500	150	390	500	100	390	670	
$ \Delta V_{BE}/\Delta T $ (Note 4)	$I_C = 1mA$, $V_{CE} = 5V$	-	1.9	-	-	1.9	-	-	1.9	-	mV/ ^o C
DC CHARACTERIS	TICS FOR EACH P	NP TRAI	NSISTOR	-		-	-		-	-	_
I _{CBO}	$V_{CB} = -10V,$ $I_{E} = 0$	-	-0.06	-100	-	-0.006	-40	-	-0.06	-100	nA

CA3096, CA3096A, CA3096C

Electrical Specifications For Equipment Design, At $T_A = 25^{\circ}C$ (Continued)

	TEST		CA3096			CA3096A		CA3096C			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
I _{CEO}	$V_{CE} = -10V,$ $I_{B} = 0$	-	-0.12	-1000	-	-0.12	-100	-	-0.12	-1000	nA
V _(BR) CEO	$I_{C} = -100 \mu A,$ $I_{B} = 0$	-40	-75	-	-40	-75	-	-24	-30	-	V
V _{(BR)CBO}	$I_{C} = -10\mu A,$ $I_{E} = 0$	-40	-80	-	-40	-80	-	-24	-60	-	V
V _{(BR)EBO}	$I_E = -10\mu A,$ $I_C = 0$	-40	-100	-	-40	-100	-	-24	-80	-	V
V _{(BR)EIO}	$I_{EI} = 10\mu A,$ $I_{B} = I_{C} = 0$	40	100	-	40	100	-	24	80	-	V
V _{CE} SAT	$I_{C} = -1 \text{mA},$ $I_{B} = -100 \mu \text{A}$	-	-0.16	-0.4	-	-0.16	-0.4	-	-0.16	-0.4	V
V _{BE} (Note 4)	$I_{C} = -100 \mu A,$ $V_{CE} = -5 V$	-0.5	-0.6	-0.7	-0.5	-0.6	-0.7	-0.5	-0.6	-0.7	V
h _{FE} (Note 4)	$I_{C} = -100 \mu A,$ $V_{CE} = -5 V$	40	85	250	40	85	250	30	85	300	
	I _C = -1mA, V _{CE} = -5V	20	47	200	20	47	200	15	47	200	
ΔV _{BE} /ΔT (Note 4)	$I_{C} = -100 \mu A,$ $V_{CE} = -5 V$	-	2.2	-	-	2.2	-	-	2.2	-	mV/ ^o C

I_{CBO} Collector-Cutoff Current

I_{CEO} Collector-Cutoff Current V_{CE SAT} Collector-to-Emitter Saturation Voltage

 V_{Z}

Emitter-to-Base Zener Voltage

 $V_{(BR)CEO} \ \ Collector\text{-to-Emitter Breakdown Voltage} \qquad \qquad V_{BE} \qquad \quad Base\text{-to-Emitter Voltage}$

 $V_{(BR)CBO}$ Collector-to-Base Breakdown Voltage h_{FE} DC Forward-Current Transfer Ratio

 $V_{(BR)CIO} \quad \text{Collector-to-Substrate Breakdown Voltage} \\ \qquad |\Delta V_{BE}/\Delta T| \quad \text{Magnitude of Temperature Coefficient:}$

V_{(BR)EBO} Emitter-to-Base Breakdown Voltage (for each transistor)

NOTE:

4. Actual forcing current is via the emitter for this test.

Electrical Specifications For Equipment Design At T_A = 25°C (CA3096A Only)

			CA3096A						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS			
FOR TRANSISTORS Q ₁ AND Q ₂ (AS A DIFFERENTIAL AMPLIFIER)									
Absolute Input Offset Voltage	V _{IO}	$V_{CE} = 5V$, $I_{C} = 1mA$	-	0.3	5	mV			
Absolute Input Offset Current	I _{IO}		-	0.07	0.6	μΑ			
Absolute Input Offset Voltage Temperature Coefficient	$\frac{ \Delta V_{IO} }{\Delta T}$		-	1.1	-	μV/ ^o C			
FOR TRANSISTORS Q ₄ AND 0	Q ₅ (AS A DIFFER	RENTIAL AMPLIFIER)			•	•			
Absolute Input Offset Voltage	V _{IO}	$V_{CE} = -5V, I_{C} = -100\mu A$	-	0.15	5	mV			
Absolute Input Offset Current	l _{IO}	R _S = 0	-	2	250	nA			
Absolute Input Offset Voltage Temperature Coefficient	$\frac{ \Delta V_{IO} }{\Delta T}$		-	0.54	-	μV/ ^O C			

 $\textbf{Electrical Specifications} \quad \text{Typical Values Intended Only for Design Guidance At T}_{A} = 25^{\circ}\text{C}$

PARAMETER	SYMBOL		TEST CONDITIONS	TYPICAL VALUES	UNITS
DYNAMIC CHARACTERISTICS FOR EACH	NPN T	RANSIST	OR		
Noise Figure (Low Frequency)		NF	$f = 1kHz$, $V_{CE} = 5V$, $I_{C} = 1mA$, $R_{S} = 1k\Omega$	2.2	dB
Low-Frequency, Input Resistance		R _I	$f = 1.0kHz$, $V_{CE} = 5V I_{C} = 1 mA$	10	kΩ
Low-Frequency Output Resistance		R _O	$f = 1.0kHz$, $V_{CE} = 5V I_{C} = 1 mA$	80	kΩ
Admittance Characteristics					
Forward Transfer Admittance	V	9FE	$f = 1MHz$, $V_{CE} = 5V$, $I_{C} = 1mA$	7.5	mS
	УFE	b _{FE}	$f = 1MHz$, $V_{CE} = 5V$, $I_{C} = 1mA$	-j13	mS
Input Admittance	14	9IE	$f = 1MHz$, $V_{CE} = 5V$, $I_{C} = 1mA$	2.2	mS
	УІЕ	bIE	$f = 1MHz$, $V_{CE} = 5V$, $I_{C} = 1mA$	j3.1	mS
Output Admittance	1	90E	$f = 1MHz$, $V_{CE} = 5V$, $I_{C} = 1mA$	0.76	mS
	УОЕ	bOE	$f = 1MHz$, $V_{CE} = 5V$, $I_{C} = 1mA$	j2.4	mS
Gain-Bandwidth Product		f _T	V _{CE} = 5V, I _C = 1.0mA	280	MHz
			$V_{CE} = 5V$, $I_C = 5mA$	335	MHz
Emitter-To-Base Capacitance	(C _{EB}	V _{EB} = 3V	0.75	pF
Collector-To-Base Capacitance	(ССВ	V _{CB} = 3V	0.46	pF
Collector-To-Substrate Capacitance	(C _{CI}	V _{CI} = 3V	3.2	pF
DYNAMIC CHARACTERISTICS FOR EACH	PNP TE	RANSIST	OR		
Noise Figure (Low Frequency)		NF	f = 1kHz, I_C = 100μA, R_S = 1kΩ	3	dB
Low-Frequency Input Resistance		R _I	$f = 1kHz, V_{CE} = 5V, I_{C} = 100\mu A$	27	kΩ
Low-Frequency Output Resistance		R _O	$f = 1kHz, V_{CE} = 5V, I_{C} = 100\mu A$	680	kΩ
Gain-Bandwidth Product		f _T	V _{CE} = 5V, I _C = 100μA	6.8	MHz
Emitter-To-Base Capacitance	(C _{EB}	V _{EB} = -3V	0.85	pF
Collector-To-Base Capacitance	(ССВ	V _{CB} = -3V	2.25	pF
Base-To-Substrate Capacitance		C _{BI}	V _{BI} = 3V	3.05	pF

Typical Applications

FIGURE 1. FREQUENCY COMPARATOR USING CA3096

FIGURE 2. FREQUENCY COMPARATOR CHARACTERISTICS

Typical Applications (Continued)

FIGURE 3. LINE-OPERATED LEVEL SWITCH USING CA3096A OR CA3096

FIGURE 4. ONE-MINUTE TIMER USING CA3096A AND A MOSFET

Typical Applications (Continued)

FIGURE 5. CA3096A SMALL-SIGNAL ZERO VOLTAGE DETECTOR HAVING NOISE IMMUNITY

FIGURE 6. TEN-SECOND TIMER OPERATED FROM 1.5V SUPPLY USING CA3096

Typical Applications (Continued)

NOTES:

- 5. Can be operated with either dual supply or single supply.
- 6. Wide-input common mode range +5V to -5V.
- 7. Low bias current: <1μA.

FIGURE 7. CASCADE OF DIFFERENTIAL AMPLIFIERS USING CA3096A

FIGURE 8. FREQUENCY RESPONSE

Typical Performance Curves

FIGURE 9. BASE-TO-EMITTER ZENER CHARACTERISTIC (NPN)

FIGURE 10. COLLECTOR CUT-OFF CURRENT (I_{CEO}) vs TEMPERATURE (NPN)

FIGURE 11. COLLECTOR CUT-OFF CURRENT (I_{CBO}) vs TEMPERATURE (NPN)

FIGURE 12. TRANSISTOR (NPN) h_{FE} vs COLLECTOR CURRENT

FIGURE 13. $V_{\mbox{\footnotesize{BE}}}$ (NPN) vs COLLECTOR CURRENT

FIGURE 14. V_{BE} (NPN) vs TEMPERATURE

FIGURE 15. V_{CE SAT} (NPN) vs COLLECTOR CURRENT

FIGURE 16. COLLECTOR CUT-OFF CURRENT (I_{CEO}) vs TEMPERATURE (PNP)

FIGURE 17. COLLECTOR CUT-OFF CURRENT (I_{CBO}) vs TEMPERATURE (PNP)

FIGURE 18. TRANSISTOR (PNP) hFE vs COLLECTOR CURRENT

FIGURE 19. TRANSISTOR (PNP) $h_{\mbox{\scriptsize FE}}$ vs TEMPERATURE

FIGURE 20. VBE (PNP) vs COLLECTOR CURRENT

FIGURE 21. VBE (PNP) vs TEMPERATURE

FIGURE 22. MAGNITUDE OF INPUT OFFSET VOLTAGE $|V_{1O}|$ vs COLLECTOR CURRENT FOR NPN TRANSISTOR Q_1 - Q_2

FIGURE 24. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS

FIGURE 25. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS

FIGURE 26. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS

FIGURE 27. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS

FIGURE 28. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT (NPN)

FIGURE 29. CAPACITANCE vs BIAS VOLTAGE (NPN)

FIGURE 30. INPUT RESISTANCE vs COLLECTOR CURRENT

FIGURE 31. OUTPUT RESISTANCE vs COLLECTOR CURRENT

FIGURE 32. FORWARD TRANSCONDUCTANCE vs FREQUENCY

FIGURE 39. CAPACITANCE vs BIAS VOLTAGE (PNP)

Metallization Mask Layout

CA3096H

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3}$ inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57 degrees instead of 90 degrees with respect to the face of the chip. Therefore, the isolated chip is actually 7mils (0.17mm) larger in both dimensions.

Dual-In-Line Plastic Packages (PDIP)

NOTES:

- Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- Dimensions A, A1 and L are measured with the package seated in JE-DEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions.
 Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- E and eA are measured with the leads constrained to be perpendicular to datum -C-.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

		HES	MILLIM		
SYMBOL	MIN	MAX	MIN	NOTES	
Α	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54	BSC	-
e _A	0.300	BSC	7.62 BSC		6
e _B	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	1	6	1	6	9

Rev. 0 12/93

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC
PACKAGE

	INC	HES	MILLIM	ETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α	0.0532	0.0688	1.35	1.75	-	
A1	0.0040	0.0098	0.10	0.25	-	
В	0.013	0.020	0.33	0.51	9	
С	0.0075	0.0098	0.19	0.25	-	
D	0.3859	0.3937	9.80	10.00	3	
Е	0.1497	0.1574	3.80	4.00	4	
е	0.050	BSC	1.27	-		
Н	0.2284	0.2440	5.80	6.20	-	
h	0.0099	0.0196	0.25	0.50	5	
L	0.016	0.050	0.40	1.27	6	
N	1	6	16		7	
α	0°	8 ⁰	0°	8 ⁰	-	

Rev. 0 12/93

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com