

SEMiX® 2s

SEMiX202GB12Vs

Features

- · Homogeneous Si
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability
- UL recognised file no. E63532

Typical Applications*

- · AC inverter drives
- UPS
- Electronic Welding

Remarks

- Case temperature limited to T_C=125°C max.
- Product reliability results are valid for T_i=150°C
- Dynamic values apply to the following combination of resistors:

 $R_{Gon,main} = 1,5 \Omega$

 $R_{Goff,main} = 1,5 \Omega$

 $R_{G,X} = 2.2 \Omega$

 $R_{E,X} = 0.5 \Omega$

Values

Unit

Absolute Maximum Ratings

Conditions

Symbol

IGBT

Characte	eristics					
Symbol	Conditions	min.	typ.	max.	Unit	
IGBT	•		•			
V _{CE(sat)}	$I_C = 200 \text{ A}$ $V_{GE} = 15 \text{ V}$ chiplevel	T _j = 25 °C		1.75	2.2	V
		T _j = 150 °C		2.2	2.5	V
V _{CE0}		T _j = 25 °C		0.94	1.04	V
		T _j = 150 °C		0.88	0.98	V
r _{CE}	V _{GE} = 15 V	T _j = 25 °C		4.0	5.8	mΩ
		T _j = 150 °C		6.6	7.6	mΩ
$V_{GE(th)}$	$V_{GE}=V_{CE}$, $I_{C}=8$ mA		5.5	6	6.5	V
I _{CES}	V _{GE} = 0 V V _{CE} = 1200 V	T _j = 25 °C		0.1	0.3	mA
		T _j = 150 °C				mA
C _{ies}	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		12.0		nF
Coes		f = 1 MHz		1.18		nF
C _{res}		f = 1 MHz		1.18		nF
Q _G	V _{GE} = - 8 V+ 15 V			2200		nC
R _{Gint}	T _j = 25 °C			3.75		Ω
t _{d(on)}	$\begin{array}{c} V_{CC} = 600 \text{ V} \\ I_{C} = 200 \text{ A} \\ V_{GE} = \pm 15 \text{ V} \\ R_{G \text{ on}} = 2.9 \Omega \\ R_{G \text{ off}} = 2.9 \Omega \\ \text{di/dt}_{\text{on}} = 3800 \text{ A/µs} \\ \text{di/dt}_{\text{off}} = 2000 \text{ A/µs} \\ \text{du/dt}_{\text{off}} = 6500 \text{ V/} \\ \text{µs} \end{array}$	T _j = 150 °C		424		ns
t _r		T _j = 150 °C		64		ns
E _{on}		T _j = 150 °C		24.9		mJ
t _{d(off)}		T _j = 150 °C		619		ns
t _f		T _j = 150 °C		90		ns
E _{off}		T _j = 150 °C		24.1		mJ
R _{th(i-c)}	per IGBT				0.14	K/W

SEMiX202GB12Vs

Features

- · Homogeneous Si
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability
- UL recognised file no. E63532

Typical Applications*

- · AC inverter drives
- UPS
- Electronic Welding

Remarks

- Case temperature limited to T_C=125°C max.
- Product reliability results are valid for $T_j=150$ °C
- Dynamic values apply to the following combination of resistors:

 $R_{Gon,main} = 1,5 \Omega$

 $R_{Goff,main} = 1,5 \Omega$

 $R_{G,X} = 2.2 \Omega$ $R_{E,X} = 0.5 \Omega$

Characteristics									
Symbol	Conditions	min.	typ.	max.	Unit				
Inverse diode									
$V_F = V_{EC}$	$I_{F} = 200 \text{ A}$ $V_{GE} = 0 \text{ V}$ chip	T _j = 25 °C		2.2	2.52	V			
		T _j = 150 °C		2.1	2.5	V			
V_{F0}		T _j = 25 °C	1.1	1.3	1.5	V			
		T _j = 150 °C	0.7	0.9	1.1	V			
r _F		T _j = 25 °C	4.0	4.5	5.1	mΩ			
		T _j = 150 °C	5.3	6.3	6.8	mΩ			
I _{RRM}	$I_F = 200 \text{ A}$ $di/dt_{off} = 3900 \text{ A/}\mu\text{s}$ $V_{GE} = -15 \text{ V}$ $V_{CC} = 600 \text{ V}$	T _j = 150 °C		212		Α			
Q _{rr}		T _j = 150 °C		36		μC			
E _{rr}		T _j = 150 °C		14.5		mJ			
R _{th(j-c)}	per diode				0.26	K/W			
Module									
L _{CE}				18		nH			
R _{CC'+EE'}	was tawasinal ahin	T _C = 25 °C		0.7		mΩ			
	res., terminal-chip	T _C = 125 °C		1		mΩ			
R _{th(c-s)}	per module			0.045		K/W			
Ms	to heat sink (M5)		3		5	Nm			
Mt		to terminals (M6)	2.5		5	Nm			
						Nm			
W					250	g			
Temperat	ur Sensor								
R ₁₀₀	T _c =100°C (R ₂₅ =5 k		493 ± 5%		Ω				
B _{100/125}	R _(T) =R ₁₀₀ exp[B _{100/1}		3550 ±2%		К				

Fig. 1: Typ. output characteristic, inclusive R_{CC'+ EE'}

Fig. 2: Rated current vs. temperature $I_C = f(T_C)$

Fig. 3: Typ. turn-on /-off energy = $f(I_C)$

Fig. 4: Typ. turn-on /-off energy = $f(R_G)$

Fig. 5: Typ. transfer characteristic

Fig. 6: Typ. gate charge characteristic

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.