Unit 2

Number Systems

Albert Sung

For Amusement

Why do electronics engineers confuse Christmas with Halloween?

Number Systems 2-2

Outline of Unit 2

- 2.1 Introduction to Numbers
- □ 2.2 Number Systems
- □ 2.3 Real Numbers
- □ 2.4 Complex Numbers

Unit 2.1

Introduction to Numbers

Numbers

- Why do we have numbers?
- ☐ It all starts with counting: 1, 2, 3, ...
- Hence, the set of natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$.
 - Some people may include 0 to N.
- ☐ If 0 is included, it is called whole numbers.

Two dogs

How many dogs?

Addition & Subtraction

□ Addition:

$$\circ$$
 4 + 1 = 5

■ Subtraction = Inverse of Addition

$$4 = 5 - 1$$

- What if 3 5 or 3 3?
- We need negative numbers and zero.

Multiplication & Division

Multiplication:

$$\circ$$
 6 × 2 = 12

- Division: Inverse of Multiplication
 - \circ 6 = 12 / 2
- What if 12 / 5?
- We need rational numbers.

Square Numbers

■ A square number (aka. perfect square) is the product of two equal natural numbers.

- \square What if $\sqrt{-1}$?
- We need complex numbers.

Unit 2.2

Number Systems

A Brief History

- A brief history of numerical systems (5 min):
 - https://www.youtube.com/watch?v=cZH0YnFpjwU

<u>Decimal Number System</u>

- Name
 - o "decem" (Latin) means ten.
- ☐ Ten Symbols:
 - **0**, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Example:
 - 6174 is a special number called Kaprekar's constant
 - \circ 6174 = (6 * 10³) + (1 * 10²) + (7 * 10¹) + (4 * 10⁰)
 - (3.5 min video) To more about this number:
 - https://www.youtube.com/watch?v=d8TRcZklX_Q

Positional Notation

 \square The string of digits $(a_{n-1} a_{n-2} \dots a_2 a_1 a_0)_r$

n: total number of digits in a string

r: base (or radix) (an integer > 1)

 a_i : digits drawn 0 through r - 1

represents a positive integer *N* which is given by a power series:

$$N = a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + ... + a_2r^2 + a_1r + a_0$$

 \square Kaprekar's constant: $(6174)_{10}$

Other Number Systems

- □ Decimal system (base 10) is for humans.
- Number systems commonly used in the computer world:
 - OBinary (base 2)
 - Binary digit is called a bit
 - octal (base 8)
 - O Hexadecimal (base 16)

Binary	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7

Binary to Decimal Conversion

Power series expansion:

Decimal to Binary Conversion

The Division Method

- 1. Divide the given positive integer by 2
- 2. Obtain the quotient q and remainder r
- 3. Save r as the LSB
- 4. Repeat
- 5. Divide q by 2
- 6. Obtain the quotient *q* and remainder *r*
- 7. Save *r* as the next bit
- 8. **until** q becomes 0

The Division Method (Example)

Hexadecimal Number System

☐ Sixteen Symbols:

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

□ Why hex?

- A shorthand notation for binary numbers because it works out nicely for microprocessors of 8, 16, 32, and 64 bits.
- Every group of 4 bits of a binary number is represented as 1 hex digit
 - e.g., A=1010, B=1011, F=1111, O=0000, T=0111, etc.

Binary-Hexadecimal Conversion

Every four bits are converted into one hex digit:

Kaprekar's constant:

Add leading zeros to make the length a multiple of 4.

Converting hex to binary is straightforward.

Decimal-Hexadecimal Conversion

☐ Hex -> Dec: Power series expansion

$$(181E)_{16} = 1 \times 16^3 + 8 \times 16^2 + 1 \times 16^1 + 14 \times 16^0$$

= 4096 + 2048 + 16 + 14
= 6174

■ Dec -> Hec: Division Method

Least significant digit

Most significant digit

Octal Number Systems

- ☐ Eight Symbols:
 - **0**, 1, 2, 3, 4, 5, 6, 7
- Every group of 3 bits of a binary number corresponds to 1 octal digit.
- □ Conversion methods are the same as those for hexadecimal numbers.

Decimal-Octal Conversion

□ Oct -> Dec: Power series expansion $(14036)_8 = 1 \times 8^4 + 4 \times 8^3 + 0 \times 8^2 + 3 \times 8^1 + 6 \times 8^0$ = 4096 + 2048 + 0 + 24 + 6 = 6174

□ Dec -> Oct: Division Method

Least significant digit

Most significant digit

Christmas vs Halloween

■ Why do electronics engineers confuse Christmas with Halloween?

Unit 2.3

Real Numbers

Rational Numbers

□ Definition:

○ A number r is rational iff there exist integers a and b such that r = a / b and $b \ne 0$.

■ Are all numbers rational?

The First Irrational Number

□ **Theorem**: $\sqrt{2}$ is Irrational.

- Why does it matter?
 - https://www.youtube.com/watch?v=nT4geKdKVfw (~5 min.)
- How to prove it?

Proof (by Contradiction):

- □ Suppose $\sqrt{2} = \frac{a}{b}$, where a and b are integers. We can assume that a and b have no common factors.
 - Otherwise, we can cancel out the common factors.
- □ Squaring both sides, $2 = \frac{a^2}{b^2}$, or $2b^2 = a^2$. Therefore, a^2 is an even number.
- \square By a result of Unit 1, a is even.
- We can write a as 2k, where k is an integer. Then, $2b^2 = a^2 = 4k^2$, or $b^2 = 2k^2$. Therefore, b is an even number.
- ☐ This contradicts with the assumption that *a* and *b* have no common factor.

Q.E.D.

Decimal Representation

- □ A rational number $\frac{a}{b}$ can be represented in decimal form by long division:
 - 1) $a \div b = q_1 \dots r_1$
 - 2) $10r_1 \div b = q_2 \dots r_2$
 - 3) $10r_2 \div b = q_3 \dots r_3$ \vdots
- The decimal is either
 - terminating (if $r_i = 0$ in step i), or
 - repeating (since non-zero remainder must be 1, 2, ..., or b-1, it must repeat after at most b-1 steps.
 - Note: 1/7 repeats after 6 steps.

Rational Number	Decimal Representation
1/2	0.5
1/3	0.333333333333
1/4	0.25
1/5	0.2
1/6	0.166666666666
1/7	0.142857142857
1/8	0.125
1/9	0.1111111111111
1/10	0.1

From Decimal to a/b (examples)

■ Terminating decimal:

$$0.125 = \frac{125}{1000} = \frac{1}{8}$$
.

■ Repeating decimal:

$$0.10x - x = 1.5$$
 (subtract 1st eqn. from 2nd)

$$9x = 1.5$$

$$x = \frac{15}{90} = \frac{1}{6}$$

Does 0.99999... = 1?

- a) Yes
- b) No
- c) Neither yes nor no

Rational vs. Irrational Numbers

□ Rational numbers ↔ terminating or repeating decimals.

□ Irrational numbers ↔ non-repeating infinite decimals.

```
\circ \pi = 3.141592653589793238462643383279 ...
```

 $\circ e = 2.718281828459045235360287471352...$

Euler's Number, e

- ☐ The discovery of this constant is credited to Jacob Bernoulli in 1683.
- ☐ The constant arises from the concept of continuous compound interest:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 (see next slide)

□ Euler started to use the letter *e* for the constant in 1727 or 1728.

Continuous Compound Interest

Interest rate (initial value = \$1)	Final amount after one year
100% per year	2
50% per 6 months	$\left(1+\frac{1}{2}\right)^2=2.25$
25% per 3 months	$\left(1 + \frac{1}{4}\right)^4 = 2.44141$
(100/6)% per 2 months	$\left(1 + \frac{1}{6}\right)^6 = 2.52163$
(100/12)% per month	$\left(1 + \frac{1}{12}\right)^{12} = 2.61304$
⋮	:
(100/n)% per 1/n year Compound interest every moment	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = 2.71828$

Extension to Negative Exponents

■ A number *N* can be represented by the string below:

- 1) "." is the fractional point
- 2) The left most digit a_{n-1} is the **M**ost **S**ignificant **D**igit (MSD)
- 3) The right most digit a_{-m} is the **L**east **S**ignificant **D**igit (LSD)
- *N* is given by the power series

$$N = a_{n-1}r^{n-1} + ... + a_1r^1 + a_0r^0 + a_{-1}r^{-1} + ... + a_{-m}r^{-m}$$
Integer part
Fractional part

Fractional Number in Binary

- \Box (12.6875)₁₀
- Separate the number into two integers

$$\circ$$
 (12)₁₀ = (1100)₂

(integer part, division-by-2)

 \circ (6875)₁₀

(fractional part, multiplication-by-2)

For the fractional part,

$$0.6875 \times 2 = 1.3750$$

 $0.3750 \times 2 = 0.7500$

$$0.7500 \times 2 = 1.5000$$

$$0.5000 \times 2 = 1.0000$$

$$0.6875 = (0.1011)_2$$

MSB

If the process never ends, you may need to round off at a certain point.

 \square Combining the two parts, $(12.6875)_{10} = (1100.1011)_2$.

Fractional Number in Octal

- \Box (12.6875)₁₀
- Separate the number into two integers

$$\circ$$
 (12)₁₀ = (14)₈

(integer part, division-by-8)

 \circ (6875)₁₀

(fractional part, multiplication-by-8)

☐ For the fractional part,

$$0.6875 \times 8 = 5.5$$

$$0.5 \times 8 = 4.0$$

$$0.6875 = (0.54)_8$$

LSE

☐ Therefore,

$$(12.6875)_{10} = (1100.1011)_2 = (14.54)_8.$$

Fractional Number in Hexadecimal

- \Box (12.6875)₁₀
- Separate the number into two integers
 - \circ (12)₁₀ = ($^{\circ}$)₁₆

(integer part, division-by-16)

 \circ (6875)₁₀

(fractional part, multiplication-by-16)

For the fractional part,

$$0.6875 \times 16 = 11.0$$

$$0.6875 = (0.B)_{16}$$

☐ Therefore,

$$(12.6875)_{10} = (1100.1011)_2 = (14.54)_8 = (C.B)_{16}$$

Unit 2.4

Complex Numbers

Complex Numbers

```
real part \operatorname{Re}(x+yi) := x imaginary part \operatorname{Im}(x+yi) := y (Note: It is y, not yi, so \operatorname{Im}(x+yi) is real) complex conjugate \overline{x+yi} := x-yi (negate the imaginary component)
```

- □ $\sqrt{-1}$ is represented by i in mathematics, and usually by j in EE (why?).
- Roughly speaking, a set of elements that can perform addition, subtraction, multiplication, and division (excluding division by zero) is called a field.
 - \circ Examples: \mathbb{Z} (integers), \mathbb{Q} (rational numbers), \mathbb{R} (real numbers), \mathbb{C} (complex numbers).
 - I assume that you know how to do addition, subtraction, multiplication, and division of complex numbers.

Argand Diagram

- A real number is a 1-dimensional number, a point on the straight line.
- A complex number is a two-dimensional number, a point on the 2-dimensional plane.

<u>Addition of Complex Numbers</u>

$$\Box$$
 $(a + bi) + (c + di) = (a + c)i + (b + d)i$

☐ Geometrically, it looks like this:

Multiplication by i

- Multiplying *z* by a real number *r* is the same as stretching the arrow by a factor of *r*.
 - Same as real numbers on the number line.
- Multiplying z by i is the same as rotation by 90° .
- \square Consider z = 3 + 4i.

$$2z = 6 + 8i$$

$$oldsymbol{2} zi = (3 + 4i)i = -4 + 3i$$

Rotating in 2D

Polar Form of z = a + bi

- \square Consider Its modulus is $|z| = r = \sqrt{a^2 + b^2}$.
- □ Its argument is $arg(z) = \theta = tan^{-1} \frac{y}{x}$.
 - The principal value: $-\pi < \theta \le \pi$ (measured in radians, $\pi = 180^{\circ}$)

Convert Complex Number from Rectangular Form to Polar (Trigonometric) Form

$$z = x + yi$$
 (rectangular form)

$$r = |z| = \sqrt{x^2 + y^2}$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = r(\cos\theta + i\sin\theta)$$
 (polar form)

Multiplication by a + bi

Multiplication can be easily done in polar form:

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$

$$z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

☐ It can be proved that

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)).$$

Moduli multiplied

Arguments added

de Moivre's Theorem

If $z = r(\cos \theta + i \sin \theta)$, then for all positive integer n,

$$z^n = r^n(\cos n\theta + i\sin n\theta).$$

- ☐ It can be obtained by repeated multiplication, or formally proved by mathematical induction (next slide).
- de Moivre's Theorem is also true when n is a rational number (proof omitted).
- \Box de Moivre's Theorem is a simple consequence of Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$ (not considered here).

Proof:

(Base case) It is obviously true for n = 1.

(Induction step) Assume it is true for n = k, i.e., $z^k = r^k(\cos k\theta + i\sin k\theta)$.

Consider n = k + 1.

 $z^{k+1} = r^k(\cos k\theta + i\sin k\theta) \times r(\cos \theta + i\sin \theta)$

 $= r^{k+1} [(\cos k\theta \cos \theta + \sin k\theta \sin \theta) +$

 $i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)]$

$$= r^{k+1} [\cos(k+1)\theta + i\sin(k+1)\theta]$$

Therefore, it is true for n = k + 1.

Hence, by induction, the statement is true for all positive integer n.

The Roots of Unity

- \square For brevity, we write cis θ for cos $\theta + i \sin \theta$.
 - (de Moivre's Theorem) $z^n = r^n \operatorname{cis} n\theta$.
- \square Let n be a positive integer.
- \square Consider the equation $x^n = 1$.
- 1 is obviously one of the roots.
- \square The equation has exactly n roots.
- \square They are called the n-th roots of unity.

Solve $z^3 = 1$

$$z^{3} = 1 \operatorname{cis} 0$$

 $= 1 \operatorname{cis} 2k\pi$ (k is an integer)
 $z = (\operatorname{cis} 2k\pi)^{1/3}$ (de Moivre)
 $= \operatorname{cis} \frac{2k\pi}{3}$
 $k = 0, z_{1} = \operatorname{cis} 0 = 1$
 $k = 1, z_{2} = \operatorname{cis} \frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$
 $k = 2, z_{3} = \operatorname{cis} \frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

These are the cube roots of unity.

Cube Roots of Unity

1 is clearly a root as $1^3 = 1$.

Each time, we add $\frac{2\pi}{3}$ to the argument, but left the modulus untouched.

When k = 3, we would have rotated $\frac{2k\pi}{3} = 2\pi$, so end up where we started.

By de Moivre's Theorem, ω^2 would be:

$$\omega^2 = \left(\operatorname{cis}\frac{2\pi}{3}\right)^2 = \operatorname{cis}\frac{4\pi}{3}$$

i.e., the next root! Therefore, the roots can be represented as $1, \omega, \omega^2$. Note that $\omega^3 = 1$.

$$\omega = \operatorname{cis} \frac{2\pi}{3}$$

 Z_3

n-th Roots of Unity

$$\omega = \operatorname{cis} \frac{2\pi}{n}$$

The roots are $1, \omega, \omega^2, ..., \omega^{n-1}$.

Properties

a) Sum of all roots of unity equals 0.

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = \frac{\omega^{n-1}}{\omega^{-1}} = \frac{1-1}{\omega^{-1}} = 0$$

b) ω^k and ω^{n-k} are complex conjugates.

$$\omega^{k} = \operatorname{cis} \frac{2k\pi}{n} = \operatorname{cos} \frac{2k\pi}{n} + i \operatorname{sin} \frac{2k\pi}{n}$$

$$\omega^{n-k} = \operatorname{cis} \frac{2(n-k)\pi}{n} = \operatorname{cis} \left(2\pi - \frac{2k\pi}{n}\right)$$

$$= \operatorname{cos} \frac{2k\pi}{n} - i \operatorname{sin} \frac{2k\pi}{n}$$

Example

Solve $z^4 = 2 + 2\sqrt{3} i$. *Solution:*

$$z^{4} = 4 \operatorname{cis} \frac{\pi}{3}$$

$$= 4 \operatorname{cis} \left(\frac{\pi}{3} + 2k\pi\right) \qquad (k: integer)$$

$$z = \sqrt{2} \operatorname{cis} \left(\frac{\pi}{12} + \frac{2k\pi}{4}\right)$$

The four roots can be obtained by substituting k = 0, 1, 2, 3.

$$k = 0, z = \sqrt{2} \operatorname{cis} \frac{\pi}{12},$$
 $k = 1, z = \sqrt{2} \operatorname{cis} \frac{7\pi}{12}$
 $k = 2, z = \sqrt{2} \operatorname{cis} \frac{13\pi}{12},$ $k = 3, z = \sqrt{2} \operatorname{cis} \frac{19\pi}{12}$

The World of Numbers

