Engenharia Elétrica 6P SENAI - campus Londrina

Departamento de Elétrica e Automação **Prof.: Me Renato Kazuo Mivamoto**

Lista de Exercícios 1: Modelagem de sistemas dinâmicos Entrega: 28/10

1) O circuito RLC em série ressonante fornece um filtro passa-faixa quando a saída é extraída do resistor, como mostra a Figura 1(a). Um filtro passa-faixa é projetado para deixar passar todas as frequências dentro de uma faixa de frequências, $\omega_1 < \omega < \omega_2$ conforme ilustra a Figura 1(b).

Figura 1: Circuito ressonante RLC. (a) Topologia; (b) resposta do filtro

- a) Modele o filtro pelas equações diferenciais ordinárias (tensão no capacitor e corrente no indutor) e implemente em blocos no ambiente Simulink. Simule a resposta da tensão no resistor (v(0)). Insira um valor constante de tensão (v_i) e discuta os resultados.
- b) Realize o mesmo procedimento solicitado em (a), porém implemente no bloco espaço de estados no ambiente Simulink.
- c) Realize o mesmo procedimento solicitado em (a), porém implemente em função de transferência no ambiente Simulink.
- d) Realize o cálculo da frequência ressonante do filtro através da análise dos autovalores da matriz A $(\lambda I A)$. Comprove a frequência ressonante através de ensaios no ambiente Simulink.
- 2) Determine que tipo de filtro é mostrado na Figura 2

Figura 2: Circuito para análise.

a) Modele o filtro pelas equações diferenciais ordinárias (tensão no capacitor e corrente no indutor) e implemente em blocos no ambiente Simulink. Insira um valor constante de tensão (v_i) e discuta os resultados.

Engenharia Elétrica 6P SENAI - campus Londrina

Departamento de Elétrica e Automação **Prof.: Me Renato Kazuo Mivamoto**

- b) Realize o mesmo procedimento solicitado em (a), porém implemente no bloco espaço de estados no ambiente Simulink.
- c) Realize o mesmo procedimento solicitado em (a), porém implemente em função de transferência no ambiente Simulink.
- d) Realize o cálculo da frequência ressonante do filtro através da análise dos autovalores da matriz A $(\lambda I A)$. Comprove a frequência ressonante através de ensaios no ambiente Simulink. Determine o tipo do filtro da Figura 2.
- 3) (OGATA, 2010) Obtenha as funções de transferência X1(s)/U(s) e X2(s)/U(s) do sistema mecânico mostrado na Figura 3.

Figura 3: Circuito para análise.

Modele o sistema em ambiente Simulink e discuta os resultados. Apresente a resposta de velocidade dos blocos.

4) Para o sistema da Figura 4, a entrada de controle é a força F que move o carrinho horizontalmente e as saídas são a posição angular do pêndulo θ e a posição horizontal do carrinho x.

Figura 4: Circuito para análise.

Engenharia Elétrica 6P SENAI - campus Londrina

Departamento de Elétrica e Automação **Prof.: Me Renato Kazuo Miyamoto**

Considerar:

M – massa do carrinho 0,5kg

m – massa do pêndulo 0,2kg

b – coeficiente de atrito para carrinho 0,1 N/m/s

1 – comprimento do centro de massa do pêndulo 0,3m

I – momento de inércia do pêndulo 0,006kgm²

F – força aplicada ao carrinho

 θ – ângulo do pêndulo

g – aceleração gravitacional 9,81 m/s²

a) Modelar o sistema em diagrama de blocos para uma entrada de degrau unitário e analisar a resposta de saída de θ e x.

- b) Altere o coeficiente de atrito b=0,001 e analise a resposta de saída de θ e x.
- c) Altere o momento de inércia I=0,06kgm² e analise a resposta de saída de θ e x.
- d) Pretende-se implementar um controle anti-sway para a planta. Elabore um controlador da família PID para manter o ângulo de Setpoint (θ) no valor desejado.

