Equalização de histograma

Antes de prosseguirmos, será útil analisarmos um exemplo simples. Suponha que uma imagem de 3 bits (L = 8) de dimensões 64×64 pixels (MN = 4096) tenha a distribuição de intensidade mostrada na Tabela 3.1, na qual os níveis de intensidade são números inteiros no intervalo [0, L - 1] = [0, 7].

Para valores discretos, lidamos com probabilidades (valores de histograma) e somatórios em vez de funções densidade de probabilidade e integrais *. Como mencionado anteriormente, a probabilidade de ocorrência do nível de intensidade r_k em uma imagem digital é calculada por:

$$p_r(r_k) = \frac{n_k}{MN}$$
 $K - 0, 1, 2, 3..., L - 1$

onde MN é o número total de pixels da imagem, n_k é o número de pixels com intensidade r_k , e L é o número de níveis de intensidade possíveis na imagem (por exemplo,256 para uma imagem de 8 bits)

Tabela 3.1 Distribuição de intensidades e valores de histograma para uma imagem digital de 3 bits, 64 × 64 pixels.

r_{k}	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0,19
<i>r</i> ₁ = 1	1.023	0,25
$r_2 = 2$	850	0,21
$r_3 = 3$	656	0,16
$r_4 = 4$	329	0,08
$r_{5} = 5$	245	0,06
$r_{6} = 6$	122	0,03
$r_7 = 7$	81	0,02

O histograma de nossa imagem hipotética é esboçado na Figura 3.19(a). Os valores da função de transformação de equalização de histograma são obtidos utilizando a Equação 3.3-8. Por exemplo:

$$s_0 = T(r_0) = 7\sum_{i=0}^{0} p_r(r_i) = 7p_r(r_0) = 1.33$$

$$S_0 = (23-1) *0.19 =$$

$$S_0 = (8-1) *0,19 = 1,33$$

Essa função de transformação tem o formato de uma escada, como mostra a Figura 3.19(b)

Figura 3.19 Ilustração da equalização de histograma de uma imagem de 3 bits (8 níveis de intensidade). (a) Histograma original. (b) Função de transformação. (c) Histograma equalizado.

Nesse ponto, os valores de s ainda terão frações por que foram gerados pela soma de valores de probabilidade, de forma que os arredondamos para o número inteiro mais próximo:

$$S_0 = 1,33 \rightarrow 1$$
 $S_4 = 6,23 \rightarrow 6$
 $S_1 = 3,08 \rightarrow 3$ $S_5 = 6,65 \rightarrow 7$
 $S_2 = 4,55 \rightarrow 5$ $S_6 = 6,86 \rightarrow 7$
 $S_3 = 5,67 \rightarrow 6$ $S_7 = 7,00 \rightarrow 7$

Esses são os valores do histograma equalizado. Observe que há apenas cinco níveis de intensidade distintos. Como r0=0 foi mapeado em s0=1, há 790 pixels na imagem equalizada do histograma com esse valor (Tabela 3.1). Além disso, há nessa imagem 1.023 pixels com um valor de s1=3 e 850 pixels com um valor de s2=5. Contudo, tanto r3 quanto r4 foram mapeados no mesmo valor, 6, de forma que há (656+329)=985 pixels na imagem equalizada com esse valor. De forma similar, há (245+122+81)=448 pixels com valor 7 no histograma da imagem equalizada.

Dividir esses números por MN = 4.096 gerou o histograma equalizado da Figura 3.19(c).

Como um histograma é uma aproximação de uma PDF, e nenhum novo nível de intensidade é criado no processo, histogramas perfeitamente uniformes são raros em aplicações práticas da equalização de histograma. Assim, diferentemente de seu equivalente contínuo, não pode ser provado (em geral) que a equalização de um histograma discreto resulta em um histograma uniforme.

Atividade: Gerar a equalização por histograma das imagens:

- a) Fig0316(1)(top_left).tif
 b) Fig0316(2)(2nd_from_top).tif
 c) Fig0316(3)(third_from_top).tif
 d) Fig0316(4)(bottom_left)