

Learning Chaotic and Stochastic Dynamics from Noisy and Partial Observation using Variational Deep Learning

Duong Nguyen, Said Ouala, Noura Dridi, Lucas Drumetz, and Ronan Fablet

1. MOTIVATION

Source: Tandeo et el. 2015.

Dynamical systems identification under ideal conditions

Source: Brunton et al, 2016.

LabrSTICC

Source: Ouala et al, 2018.

1. MOTIVATION

2. PROPOSED FRAMEWORK

$$\mathbf{x}_{t+n} = \mathcal{F}^n(\mathbf{x}_t) + \boldsymbol{\omega}_{t+n}$$
 $\mathbf{y}_t = \Phi_t(\mathcal{H}(\mathbf{x}_t) + \boldsymbol{\varepsilon}_t)$

 $p_{\theta}(\mathbf{x}_{1:T}) = p_{\theta}(\mathbf{x}_1) \prod_{t=1}^{T-1} p_{\theta}(\mathbf{x}_{t+1}|\mathbf{x}_t)$

Dynamical model (NN model)

True states

Noisy and partial observation

Inference model
(Data assimilation)

$$q(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{y}_{1:T})$$

Observation model (\mathcal{H})

$$p_{\theta}(\mathbf{y}_{1:T}|\mathbf{x}_{1:T}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{y}_{t}|\mathbf{x}_{t})$$

2. PROPOSED FRAMEWORK

$$p_{\theta}(\mathbf{x}_{t+1}|\mathbf{x}_t)$$

Data-assimilation-based ODE Net (DAODEN)

$$\frac{\mathrm{d}\mathbf{x}_t}{dt} = f(\mathbf{x}_t)$$

 $\mathcal{F}^n(\mathbf{x}_t)$: Runge-Kutta 4

$$p_{\theta}(\mathbf{x}_{t+n}|\mathbf{x}_{t+n}) = \mathcal{N}(\boldsymbol{\mu}_{t+n}, \boldsymbol{\Sigma}_{t+n})$$
$$\boldsymbol{\mu}_{t+n} = \mathcal{F}^{n}(\mathbf{x}_{t})$$
$$\boldsymbol{\Sigma}_{t+n} = MLP(\mathbf{x}_{t}, \boldsymbol{\mu}_{t+n})$$

Data-assimilation-based Dynamical System Identification Net (DADIN)

$$\frac{\mathrm{d}\mathbf{x}_t}{dt} = f(\mathbf{x}_t) + g(\mathbf{x}_t) \mathrm{dW}_t$$

 $\mathcal{F}^n(\mathbf{x}_t)$: Euler-Maruyama

$$p_{\theta}(\mathbf{x}_{t+n}|\mathbf{x}_{t+n}) = \mathcal{N}(\boldsymbol{\mu}_{t+n}, \boldsymbol{\Sigma}_{t+n})$$
$$\boldsymbol{\mu}_{t+n} = \frac{1}{K} \sum_{s=1}^{K} \mathcal{F}^{n}(\mathbf{x}_{t}^{(s)})$$
$$\boldsymbol{\Sigma}_{t+n} = \frac{1}{K-1} \mathbf{E}_{t+n} \mathbf{E}_{t+n}^{T}$$
$$\mathbf{E}_{t+1}[s,:] = \mathbf{x}_{t+n} - \boldsymbol{\mu}_{t+n}$$

2. PROPOSED FRAMEWORK

[*] Ronan Fablet, Said Ouala, and Cedric Herzet, "Bilinear residual Neural Network for the identification and forecasting of dynamical systems," arXiv:1712.07003 [physics], Dec. 2017, arXiv: 1712.07003. [**] D. Nguyen, S. Ouala, L. Drumetz, and R. Fablet, "Em-like learning chaotic dynamics from noisy and partial observations," SciRate, Mar. 2019. [Online]. Available: https://scirate.com/arxiv/1903.10335

3. EXPERIMENTS & RESULTS

Table 1: Short-term forecasting error and very-long-term forecasting topology of data-driven models learned on noisy Lorenz-63 data.

- e₄: prediction error after 4 timesteps
- $\pi_{0.5}$: first time when the prediction error reaches 0.5 times the std of the signal.
- **rec**: reconstruction error
- λ_4 : first Lyapunov exponent

IMT A	tlantiq	ue	
Bretagne	-Pays d	e la Loire	
École Mi	nos Tálá	com	

 $(\mathbf{r} = std_{noise}/std_{signal})$

		r				
Model		8.5%	16.7%	33.3%	66.7%	
AnDA	e_4 rec $\pi_{0.5}$ λ_1	0.351±0.184 0.416±0.019 0.820±0.480 26.517±7.665	0.777±0.350 0.941±0.037 0.380±0.172 27.146±42.927	1.683±0.724 2.134±0.076 0.249±0.174 76.267±28.150	3.682±1.346 4.876±0.168 0.104±0.116 127.047±0.881	
SINDy	$e_4 \ \pi_{0.5} \ \lambda_1$	0.068±0.052 0.490±0.261 0.898±0.008	0.149±0.106 0.165±0.085 0.840±0.035	0.311±0.196 0.077±0.049 0.840±0.035	0.694±0.441 0.034±0.034 nan±nan	
BiNN	$e_4 \ \pi_{0.5} \ \lambda_1$	0.045±0.030 3.608±1.364 0.900±0.011	0.119±0.085 2.053±0.666 0.868±0.010	0.283±0.185 0.975±0.488 0.122±0.208	0.684±0.408 0.308±0.125 -0.422±0.047	
Latent-ODE	$e_4 \ \pi_{0.5} \ \lambda_1$	0.051±0.027 2.504±1.332 0.892±0.018	0.062±0.034 2.336±1.472 0.877±0.018	0.065±0.042 2.852±1.352 0.885±0.015	0.213±0.084 2.118±1.129 0.675±0.027	
BiNN_EnKS	$e_4 \\ rec \\ \pi_{0.5} \\ \lambda_1$	0.019±0.016 0.323±0.024 2.807±1.128 0.856±0.031	0.024±0.023 0.431±0.042 3.004±1.355 0.869±0.024	0.037±0.024 0.598±0.093 2.996±1.641 0.826±0.065	0.276±0.160 1.531±0.332 2.081±1.214 0.868±0.014	
DAODEN_full	e_4 rec $\pi_{0.5}$ λ_1	0.023±0.015 0.178±0.050 3.533±1.139 0.869±0.036	0.027±0.016 0.258±0.066 3.496±1.215 0.858±0.028	0.072±0.045 0.469±0.168 3.426±1.512 0.881±0.024	0.187±0.127 1.003±0.380 1.897±0.918 0.884±0.013	
DADIN_full	$e_4 \\ rec \\ \pi_{0.5} \\ \lambda_1$	0.061±0.045 0.235±0.034 3.066±1.444 0.885±0.015	0.056±0.032 0.350±0.091 3.805±1.579 0.880±0.018	0.109±0.067 0.589±0.170 2.362±0.969 0.867±0.012	0.108±0.077 0.976±0.357 2.253±0.914 0.799±0.016	

3. EXPERIMENTS & RESULTS

Fig. 1: Attactors generated by models trained on noisy data.

Fig. 2: An example of the the first dimension of the L63 system reconstructed by the inference module of our model. The observations are noisy (r = 33%) and irregularly sampled with a missing rate of 87.5%

3. EXPERIMENTS & RESULTS

Fig. 3: Learning stochastic dynamics.

Because our model uses a probabilistic formulation, it can take into account stochastic variabilities, model errors and reconstruction uncertainties

Conclusions:

- The combination of data assimilation and neural network is a very promising approach for dynamical systems identification.
- Inference schemes help models become much more robust to noise and can deal with partial/irregular sampling.
- The proposed framework is general, we can use any suitable dynamical model/inference model.
- It can capture stochasticity both in the observation and in the dynamics.

Perspectives:

- High dimensional states?
- Some components of the hidden states are never observed?

