R L Circuit
analysis

(~ 3 weeks)

Intro:

Physics 116A - Amby Electronics

Grading

MEI - 15%

MEL - 157.

FE - 207.

4,5 - 302.

HW -20%

-> Linte: HW can be trand in (solf-ornded) for 50% -> Once Winit credit at end of ten.

Text: The Art of Electronics

be alarmed if you don't follow everthing!

Lectures: Will loosely follow tent.

You should take notes while reading,
in case exens are open note.

Review: Change on potential energy force DU (A7B) = - Vesus - SEidx If we choose paten tial U(x) = - & Find? Electronstatics. $V(\vec{x}) = \frac{U(\vec{x})}{\Delta c}$ -) E. JR seek high V seek low V

Volt is at useful scale in many contents.

- your car battery (12) toward (1200)

- Kinetic energy of photo-electron (~lev)

- cmb energy density 0.25 eV/cm³

Conservation Laws for circuits

KCL

$$\frac{1}{3}$$

$$\frac{1}$$

- Now In is continuously dissolved, and Hz go substeed out, producing the energy that drives the correct!

(Extra Note) Chenistry: (Not for ledsa) Oxidation is loss of electron, Reduction is sain of electron, ("OIL RIG") Reduction CJ O + Mg -> CJ + Mg O Oxidation

Cu + Mg Co + Mg reduction

Reduction Potentials: $E^{\circ}(V)$ $2H^{+} + 2e^{-} \rightarrow H_{2}(9)$ $C^{\circ}(V)$ $C^{\circ}(V)$

* Actual value will very with PH.

(Nernst Formula) *

Single Drise Model

$$\vec{p} = \vec{p} + q E(t - t_0)$$

renson
$$(t - t_0) = \frac{\gamma}{2}$$
 If
 γ is non-time between collisions. We
around by refining $(t - t_0) = \gamma$

Relikation Tie Vermi!

$$\frac{d\vec{p}}{dt} = 0 \qquad \Rightarrow \frac{d\vec{p}}{dt} = -\frac{\vec{p}}{\gamma}$$

where T is relixation the

$$\vec{p}(t) = \vec{p}_0 \exp(-t/\gamma_e)$$

Current Persity

$$I = \Delta Q$$

g n A Ux

$$\frac{T}{A} = q \cap Ux$$

A -ax - b N

Cinem Relationship Detween current
and applied field (unlid)

Temperature dependence -- does not work

Failure of Prode model was evidence

for Quantum teory

for E, I dom
$$V = EL$$

Exercise 1:

$$+\frac{1}{2}\sum_{k=1}^{\infty}R=2kR$$
or *Vbak*

$$S_{0} = 0 = (+V_{0}) - IR$$

$$\Rightarrow I = \frac{V_{0}}{R} = \frac{3V}{2KN} = \frac{3}{2} mA$$

(best to draw positive correct,

* Alvers draw corrent directions and

$$rac{1}{\sqrt{2}}$$
 R_{1} R_{2}

$$I = I_1 + I_2$$

$$V = I_1R_1 = I_2R_2$$

$$IRev = I_1 R_1$$

$$Rev = \frac{I_1}{I} R_1$$

$$I_1 R_1 = I_2 R_2 = (I - I_1) R_2$$

$$I_1 = \pm \frac{R_2}{R_1 + R_2}$$

Exercise 4: Show from Drode Model:

$$R \sim \frac{d}{A}$$

Series: $R_{ex} \sim \frac{d_1 + d_2}{A} = R_1 + R_2$

Perallel: $R_{ex} \sim \frac{A}{L} = \frac{A}{R_1 + A_2} = \frac{1}{R_1 + R_2}$

IV Curves and operating Pointy

Therein Equivalent Giresits

Because of superposition pricince of E+M; consisting three components always has a circuity consisting of R, V, and I-sources have a linear I U correct

RT 3

Uth is open circuit uslinge Iss is short circuit current RTh = Uth / Isc

Equivalent Therein IN (F 0

Voltage Visider

V= IR, + IR2

Vout = IRZ

Vout = R2 V = R, +R2

Uout = R2 R, +R2

From TE, nearly any restistic source together a voltage divider:

RSC & RLOAD

Good Designs have Cushally) RSRC CC RLOND

TE,

Current Pivider

$$\frac{I_{,R_{,}}}{I_{,R_{,}}} = \frac{V}{V} = 1$$

$$= \frac{\Gamma_1}{\Gamma_2} = \frac{R_2}{R_1}$$

For open - aircoit voltage our enlier calcolatus

of II still halds:

$$U_{Th} = U_1 - I_1 R_1$$

$$= U_1 - \frac{U_1 - U_2}{R_1 + R_2} R_1$$

$$U_{th} = \frac{R_2 U_1 + R_1 U_2}{R_1 + R_2}$$

But for Isc corrects chave (I, # I2 + I3)

 $I_1 = I_3 + I_7$ $I_7 + I_2 = I$

 $I_2 = I_3 + I_5$

 $I = I_1 + I_5$

$$V_{1} - I_{1}R_{1} - V_{2} + I_{5}R_{2} = 0$$

$$V_{2} - I_{5}R_{2} = 0$$

$$(atter loop not reeded!)$$

$$I_{5} = \frac{U_{2}}{R_{2}}R_{2}$$

$$V_{1} - I_{1}R_{1} - V_{2} + \frac{U_{2}}{R_{2}}R_{2}$$

$$V_{1} - I_{1}R_{1} - V_{2} + \frac{U_{2}}{R_{2}}R_{2}$$

$$I_{1} = \frac{U_{1}}{R_{1}} + \frac{U_{2}}{R_{2}}$$

$$I_{2} = \frac{U_{1}R_{2} + U_{2}R_{1}}{R_{1}R_{2}}$$

$$I_{3} = \frac{U_{1}R_{2} + U_{2}R_{1}}{R_{1}R_{2}}$$

$$I_{4} = \frac{V_{1}N_{2}}{R_{1}R_{2}} = \frac{R_{2}U_{1} + R_{1}U_{2}}{R_{1}R_{2}}$$

$$I_{5} = \frac{V_{1}N_{2}}{R_{1}R_{2}} = \frac{R_{1}R_{2}}{R_{1}U_{1} + R_{1}U_{2}}$$

$$I_{6} = \frac{R_{1}R_{2}}{R_{1}R_{2}} = \frac{R_{1}R_{2}}{R_{1}R_{2}}$$

$$I_{7} = \frac{R_{1}R_{2}}{R_{1}R_{2}} = \frac{R_{1}R_{2}}{R_{2}}$$

Because of superposition principle,

you can solve any circle by

setting U=0 for all but one wolkinge

source at a time, then add

contributions

Corolly;

For TE resistance, you can

short all voltage source, god

calculate effective resistance of

network.

Costly, you can restrice a sub-network (between two termin.)

T.E. (provided you don't dedicted you don't core about dedicts of

Fast way 111 RZ & Uth (Uz=0) + Uth (U,=0) U, R2 + U2 R, +R2 URZ + UZR, R, + R2 $R_1 R_2$ $R_1 + R_2$

$$\begin{aligned}
Solver & C & 1 \\
Ey &= -\frac{2}{8} & A \\
V &= -\int dy \left(-\frac{2}{8} & A \right) \\
&= -\int dy \left(-\frac{2}{8} & A \right)
\end{aligned}$$

$$Q = \frac{\xi_0 A}{d} V$$

$$Q = CV$$

$$C = \xi_0 A$$

$$C = \frac{\xi_0 A}{d}$$

Units:
$$iF = \frac{C}{V} = \frac{As}{N} = \frac{s}{N}$$

$$(F. N = s) / 1/$$

Exercise 1 Fran

C= 20 A Deduce

Cap for capacitos in parallel and in

$$\frac{1}{2} \cdot \frac{Ce_2}{e_2} = \frac{Ae_1}{2} = \frac{1}{d_1 + d_2}$$

$$\frac{1}{Ce_2} = \frac{d_1}{2A} + \frac{d_2}{2A} = \frac{1}{C_1} + \frac{1}{C_2}$$

Exercise
$$\frac{2}{4}$$

$$\frac{1}{4}$$

$$\frac{1}$$

$$V = \frac{q}{Cex} = \frac{q_1}{C_1} + \frac{q_2}{C_2} = \frac{q}{C_1} + \frac{q}{C_2}$$

$$\frac{1}{Cex} = \frac{1}{C_1} + \frac{1}{C_2}$$

Exercise 3

Current in Solenois

TXB = Mo F (BrB dA = MO ST. dA SB.UT = MO SF.UF Bl = M. (Il. ~) B = Mo I 7

$$\begin{bmatrix} L \end{bmatrix} = H = \frac{\sqrt{s}}{A} = \Lambda s$$

$$(H/\Lambda = s)$$

$$I = I_1 + I_2$$

$$dI = dI$$

$$I = I_1 + I_2 \qquad \Rightarrow \qquad \frac{dI}{dt} = \frac{dI_1}{dt} + \frac{dI_2}{dt}$$

$$V = L \frac{dI}{dx}$$
 => $\frac{U}{L_2}$

$$=) \frac{1}{L_{e_2}} = \frac{1}{L_1} + \frac{1}{L_2}$$

Exercise 2

Exercise: From

L~~~ A

can you guess equivalent inductance for

Series inductors.

ANS: C ~ ~ 2 = (2) n A

n alls linerly

Injuctors are like resistors re equivolence.

* Assuming no cross -inductance *

RLC

Sumary

 $R \sim \frac{d}{R}$

C~ A

 $L \sim \frac{A}{d} n^2$

V= IR

V= -

V= L dI

serie = sum

series = q ---

Series = 30m

Soldiers to Linear Differential Ezentum L y(t) = F(t)C since

 $\angle incor$ $\triangle x(t) + By(t) = <math>\angle x(t) + B \angle y(t)$

Honosonous Diff E_{2} s Ly(t) = 0 Lx(t) = 0

=> L(ax(+) + By(+)) = 0 * "ewy to solve for soveral case" For Non-honogenous, soffices to fing one solution

have to (to)

Then $L\left(z(t) + a_{x}(t) + By(t)\right) = F(t)$ ** Also on do $L_{z_{x}}(t) = F_{x}(t)$, $L_{z_{x}}(t) = F_{x}(t) * t$ Maxwell Ezertion are linear (until
material internations are strong!)

* We'll see later, even non-liner problemy
can be linearized near the operation point! +

KVL:
$$O = V - IR - \frac{q}{c}$$
 or $V = IR + \frac{q}{c}$

$$V = \frac{dq}{dt}R + \frac{q}{c}$$

$$q = const$$
 is specially solution: $V = \frac{q}{C} \Rightarrow q = CV$

Now solve $\frac{dq}{d+}R + \frac{q}{C} = 0$

General Solution:

$$a(t) = CV + A exp(-\frac{t}{RC})$$

IF
$$v=0$$
 $\downarrow t=0$

$$w(t) = CV(1-exp(-\frac{t}{RC}))$$

$$T(t) = \frac{d_{R}}{dt} = \frac{CV}{RC} \exp(-\frac{t}{RC})$$

$$= \frac{V}{R} \exp(-\frac{t}{RC})$$

An Lerrouit

$$V = L \frac{dI}{dt} \Rightarrow I = \frac{V}{L} + const$$

$$P = IV = \frac{V^2}{L} + is increasins...$$

An LR circuit

Special solution:
$$I = const =$$
 $T = \frac{V}{R}$

Now solve:
$$O = IR + L dI$$

$$I = A exp B + dI = BI$$

General Solution:
$$I = \frac{V}{R} + A \exp\left(-\frac{t}{L/R}\right)$$

LC cruit

So capacitar charges to q = CV, and $V_{exp} = V$

$$\frac{q}{c} = L \frac{dI}{dt}$$

I = - day

9 = A coswt + B sin wt

d²q = -w²q => ω= √LC = ^{2π}/_T

I = o at tro a Bro

$$V_{cup}(t) = \frac{q(t)}{C} = V_{cus} + V_{LC}$$

$$V_{L}(t) = L \frac{dI}{dt} = V_{cus} + V_{LC}$$

$$(c) required by KVL)$$

$$V_{L}(t) = V_{cus} + V_{LC}$$

Alternating Current

so for we've dealt we direct correct,
possibly swithched on latte

- 5 v

Now well consider time verying voltages, particularly, sizes and costes:

Convention of text, AC signals lower case

$$= \frac{V_0}{\omega L} \cos \left(\omega + -\frac{\pi}{2}\right)$$

$$p = (+)^{t} \frac{\pi}{2}$$

Vanishes -1
any R!

To summuize!

Composed Imax

Vo/R

C

WC Vo

TZ

Vo/WL

TZ

Rhis resistance R

Chas reactance wc

Lhas reactance wL

But what about phase?

-> Co-plex Place!

"Phase Vectors" or "Phasors" An AC simpli V(+) = Vo cos (w++ \$) can be rearranged as v(+) = Re { Vo e (w++)} = Re { [Voeid] e junt } magnitude and phose willing free w of our specific 5"5771, V is a complex number, representing V(t) = Re { V e jwt } We call V the phase vector or the AC signal V(+) Giren: V(t) = Vo cos (wt + d) V = Voeip

$$\frac{V = V_0}{V(t)} = R_e \left\{ V = i\omega t \right\}$$

$$= R_e \left\{ V_0 = co, \omega t + i V_0 \sin \omega t \right\}$$

$$= V_0 = co, \omega t$$

$$\frac{V = \int V_0}{V(t)} = Re \left((iV_0) e^{i\omega t} \right)$$

$$= Re \left\{ \int V_0 cos \omega t + \int V_0 \int sin \omega t \right\}$$

$$= -V_0 sin \omega t$$

$$\frac{V = V \circ e^{j\phi}}{V(t)} = Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

$$= Re \left\{ V_0 e^{j\phi} \cdot e^{j\omega t} \right\}$$

* Nothing magical here, just a nice co-pact notation. -- so far! *

$$V = \alpha + bj$$

$$= \sqrt{a^2 + b^2} \exp\left(j + t \sin^{-1}\left(\frac{b}{a}\right)\right)$$

$$= \sqrt{a^2 + b^2} \exp\left(j + t \cos^{-1}\left(\frac{b}{a}\right)\right)$$

$$t \sin p = \frac{b}{a}$$

$$J(t) = \sqrt{a^2 + b^2} \cos\left(\omega t + t \cos^{-1}\left(\frac{b}{a}\right)\right)$$

So why is this useful?

 $X(t) = Re \left\{ \begin{array}{l} X e^{j\omega t} \\ \frac{dX}{dt} = Re \left\{ \begin{array}{l} X \frac{d}{dt} e^{j\omega t} \\ \end{array} \right\} \\ = Re \left\{ \begin{array}{l} (i\omega X) e^{j\omega t} \\ \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left\{ \begin{array}{l} X \\ i\omega \end{array} \right\} \\ = Re \left$

To take dt mottiply phaser by ju

Resover Ohn's Low

$$\widetilde{I} = (j \omega C) \widetilde{V}$$

ohn's La- for a Capacitor III

Phoon in L circuit

$$\widetilde{I} = \widetilde{J}_{\omega L} \qquad \widetilde{V} = (\widetilde{J}_{\omega L}) \widetilde{T}$$

Phasor's in L circuit

Ohn's Law for Inductor.

$$-\frac{\pi}{2}$$

R

To Reinp:

we replace d'iff ers vith complex algebra!

New Orn's Law:

Because Impedance follows Own's law, calculate equivalent impedance exicily as for resistance

by a logarithmic scale:

P[dB] = 10 logio (P/Po)

For electrical systems, we have

 $P = \frac{V^2}{R}$

5.

P[d3V] = 10 10910 (P/P.)

= 10 10910 (V/R)

= 20 10910 (V/Vo)

Confusion:
What is Po or Vo

Factors of 20/10

Bode Plat Chest Sheet

$$20 \log_{10} \sqrt{2} = 3$$

$$20 \log_{10} 10 = 20$$

$$20 \log_{10} 100 = 40$$

$$tan^{-1}(1) = \frac{\pi}{4} = 450$$

 $tan^{-1}(0.1) = 6$
 $tan^{-1}(10.0) = 90^{\circ} - 6^{\circ}$

interesting point (we'll see) Partire-larly or V= 1/2 V. P = 1 P. 10 109,0 (2) $-10 10910^2 = -3.01$ 20 100,0 (1/2) -10 100, (2) =-3.01 The "-3 dB" is where power drops by 1/2, voltise by 1/12.

Phose of Lowers Filter

$$\phi(H) = tw^{-1} \left(\frac{Tn(H)}{Re(H)} \right)$$

$$H = \frac{1 - 3(W/W_0)^2}{1 + (W/W_0)^2}$$

$$- \frac{(W/W_0)^2}{1 + (W/W_0)}$$

$$- \frac{1 - 3(W/W_0)^2}{1 + (W/W_0)}$$

$$- \frac{1 - 3(W/W_0)^2}{1 + (W/W_0)^2}$$

$$- \frac{1 - 3(W/W_$$

$$\frac{V_{i}t}{V_{i}t} = \frac{1-j(\omega_{i}\omega_{0})}{1+(\omega_{i}\omega_{0})^{2}}$$

$$\frac{U_{i}t}{U_{i}t} = \frac{1-j(\omega_{i}\omega_{0})^{2}}{1+(\omega_{i}\omega_{0})^{2}} = \frac{1-j(\omega_{i}\omega_{0})^{2}}{1+(\omega_{i}\omega_{0})^{2}}$$

$$0.3 \frac{1}{\sqrt{2}} = \frac{1-j(\omega_{i}\omega_{0})^{2}}{1+(\omega_{i}\omega_{0})^{2}}$$

$$\frac{U_{i}t}{U_{i}t} = \frac{1-j(\omega_{i}\omega_{0})^{2}}{1+(\omega_{i}\omega_{0})^{2}}$$

$$= -10\log_{10} \frac{1+(\omega_{i}\omega_{0})^{2}}{1+(\omega_{i}\omega_{0})^{2}}$$

$$= -10\log_{10} \frac{1+(\omega_{i}\omega_{0})^{2}}{1+(\omega_{i}\omega_{0})^{2}}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 - 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 \text{ dB}$$

$$\omega = \omega_{0} \times 100 = 20 \text{ dB}$$

Not Included Yet . --

-> Power in RLC systems?

Transformers?

DC IV curve for R+C: (Steady State) $\frac{dq}{at} = 0$ =) I2 = 0 9 = CV IZ = O => I = I I U= IR = IR Look just like * * OC Steady - style 01/4 * interesting behavior Much more from AC gources ord transients (Leve For Ather Lal 1)

RLC Band pass Filter

$$\frac{22}{2!} = j \frac{RC}{\omega} \left(\omega^2 - \frac{1}{Lc} \right) = RC \quad \omega_0 = \frac{1}{Lc}$$

$$= j \frac{\gamma}{\omega} \left(\omega^2 - \omega_0^2 \right) = j \left(\gamma \omega_0 \right) \left(\frac{\omega}{\omega_0} - \frac{\omega_0^2}{\omega_0} \right)$$

$$|H|^{\frac{1}{2}} = \frac{1}{1 + (7w_0)^2 (\frac{y_0}{w_0} - \frac{y_0}{w_0})^2}$$

$$|H|^$$

Effect of Para, His Perallal (Not For lecture) 1 = 1 + jwc + jwh $\frac{Z_2}{z} = \frac{R}{P} + j \omega RC \left(1 - \frac{1}{\omega^2 LC}\right)$ $= \frac{R}{\Omega} + j \omega. T \left(1 - \frac{\omega_0^2}{\omega^2} \right) \qquad T = RC$ $= \frac{1}{10}$ $= \frac{R}{\rho} + j \omega_0 \tau \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$ 1+ B + 1 (w.7) (w. - w.) 1612 $(1+B)^2 + (\omega_0 \gamma)^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2$ 1 + (R/p)2 Gman = + (\frac{\omega_0 \tau}{1 + R/p})^2 (\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})^2

Fernan Diasrars

complianted

intesrals

(Feynon) ->

Complex Numbers (Amplitudes)

Rate of Process

7416

| Amplitude 12

Just a bit like

OITE EZ

V = dq R + 2

8

20 = R

Ze = jnc

Interference

 $M_{\frac{1}{2}} \sim \frac{1}{(s-m_{\frac{3}{2}})+i\Gamma_{\frac{3}{2}}}$

In OFT, like QM, processes wher fere:

Mrz = Mz Mr + MzMr

 $= \frac{\left(s-m_z^2\right)}{s\left[\left(s-m_z\right)^2 + \Gamma_z^2\right]}$

At s=nz interferce does to zero at s=mz

(CC circuit, phase goes to zero w=wo)

Double Back:

=> Power in reactive circuits

Different pricing for large reactive loads capacitor books at factories)

Transformer

Atmosform consists of two intertuned consists of two intertuned

Secondary

Trick is they store the same

DXE = - de

STRE . dA = - Sat . dA

SE. al = - St SB. dA

ESIP = - of BA = E.S/s = Vion

per l.p

Vp = np Vloop Vs = ns Vloop

=

 $\frac{\nabla p}{\nabla s} = \frac{np}{ns} = q$

Represent Load

$$R_{R} = \frac{V_{P}}{I_{P}} = \frac{\alpha V_{S}}{I_{S}/\alpha} = \alpha^{2} \frac{V_{S}}{I_{S}} = \alpha^{2} R$$

Step-Up

Step Dom

Ideal Trunsformer: Pomier In = Pomer Och

Ve = Co = a

Pin = Vp Ip = Post = Vs Is

 $= \frac{\Gamma_{\rho}}{\Gamma_{c}} = \frac{V_{S}}{V_{\rho}} = \frac{1}{\alpha}$