積分法1

2022.8.29

復習(微分)

微分と導関数

ullet a における微分係数 f'(a)=接線の傾き $f'(a)=\lim_{z o a}rac{f(z)-f(a)}{z-a}$

微分と導関数

ullet a における微分係数 f'(a) = 接線の傾き

$$f'(a) = \lim_{z o a} rac{f(z)-f(a)}{z-a}$$

- 導関数
 - ・微分係数をxの関数f'(x)としたもの

$$y'=f'(x)=\lim_{z o x}rac{f(z)-f(x)}{z-x}$$

・ 導関数を求めることを「微分する」

微分と導関数

ullet a における微分係数 f'(a)=接線の傾き

$$f'(a) = \lim_{z o a} rac{f(z)-f(a)}{z-a}$$

- 導関数
 - ・微分係数をxの関数f'(x)としたもの

$$y'=f'(x)=\lim_{z o x}rac{f(z)-f(x)}{z-x}$$

・ 導関数を求めることを「微分する」

課題 0829-1 次の関数の導関数はどうなるか.

[1]
$$y = x^2 - 2x$$
 [2] $y = \sin x$

$$[2] \,\, y = \sin x$$

x^n の微分

- \bullet (c)' = 0 (cは定数)
- $\bullet (x)' = 1$
- $\bullet \ (x^2)' = 2x$
- $\bullet \ (x^3)' = 3x^2$
- ullet 一般に $(x^n)'=nx^{n-1}$
 - ・nは負の整数でも分数 (実数) でもよい

$$\bullet \ (f+g)' = f' + g'$$

和の微分

- $\bullet \ (f+g)' = f' + g'$
- ullet (cf)'=cf' (cは定数)

和の微分

定数倍の微分

$$\bullet (f+g)' = f' + g'$$

$$ullet$$
 $(cf)'=cf'$ $(c$ は定数) 定数

$$\bullet \ (fg)' = f'g + fg'$$

和の微分

定数倍の微分

積の微分

$$\bullet \ (f+g)' = f' + g'$$

$$\bullet$$
 $(cf)'=cf'$ $(c$ は定数)

$$\bullet \ (fg)' = f'g + fg'$$

$$ullet \left(rac{f}{g}
ight)' = rac{f'g-fg'}{g^2}$$

和の微分

定数倍の微分

積の微分

商の微分

$$\bullet \ (f+g)' = f' + g'$$

和の微分

$$ullet$$
 $(cf)'=cf'$ $(c$ は定数)

定数倍の微分

$$\bullet \ (fg)' = f'g + fg'$$

積の微分

$$ullet \left(rac{f}{g}
ight)' = rac{f'g - fg'}{g^2}$$

商の微分

•
$$(f(ax+b))'=af'(ax+b)$$
 $ax+b$ 型の微分

課題 (微分の性質) |

課題 0829-2 微分せよ.

[1]
$$y = x^4 + x^3 - x^2$$

[2]
$$y = 3x^5$$

$$[3] \; y = (x+1)\sqrt{x} \ ag{2} \ ag{2}$$

$$[4] \; y = rac{x^2+1}{x+2}$$

[5]
$$y = (2x+3)^5$$

ヒント:
$$\left(\begin{array}{c} \\ \end{array}\right)'=5$$

• $y = \sin x, \cos x, \tan x$

• $y = \sin x, \cos x, \tan x$ 角xの単位はラジアン

- $y = \sin x, \cos x, \tan x$ 角xの単位はラジアン
- $\bullet \ (\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$
- $\bullet \ (\tan x)' = \frac{1}{\cos^2 x}$

- $y = \sin x, \cos x, \tan x$ 角xの単位はラジアン
- $\bullet \ (\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$
- $\bullet \ (\tan x)' = \frac{1}{\cos^2 x}$

課題 0829-3 次の関数を微分せよ.

[1]
$$y = x + \cos x$$
 [2] $y = x \sin x$ [3] $y = \sin 4x$

e はネピアの定数

e はネピアの定数

課題 0829-4 eの値を小数点以下5位まで書け.

e はネピアの定数

課題 0829-4 e の値を小数点以下5位まで書け.

$$ullet (e^x)' = e^x$$

e はネピアの定数

課題 0829-4 e の値を小数点以下5位まで書け.

$$ullet (e^x)' = e^x$$

課題 0829-5 次の関数を微分せよ.

[1]
$$y = e^x + x^2$$
 [2] $y = e^{2x}$ [3] $y = e^{-x}$

自然対数 $y = \log x (= \ln x)$ の微分

ネピア数 e を底とする対数

$$y = \log x \iff e^y = x$$

自然対数 $y = \log x (= \ln x)$ の微分

ネピア数 e を底とする対数

$$y = \log x \iff e^y = x$$

$$ullet \left((\log x)' = rac{1}{x}
ight)$$

自然対数 $y = \log x (= \ln x)$ の微分

ネピア数 e を底とする対数

$$y = \log x \iff e^y = x$$

$$\bullet \ |(\log x)' = \frac{1}{x}$$

課題 0829-6 次の関数を微分せよ.

[1]
$$y = \log x + e^x$$
 [2] $y = \log 2x$ [3] $y = \log(x+2)$

不定積分

• 関数の特徴を調べる

- 関数の特徴を調べる
- 微分:各点での値の変化を見る

• 関数の特徴を調べる

• 微分:各点での値の変化を見る

● 積分:個別の値より全体の値(合計)を見る

- 関数の特徴を調べる
- 微分:各点での値の変化を見る
- 積分:個別の値より全体の値 (合計) を見る

ullet x=2での傾きと全体の面積は?

- 関数の特徴を調べる
- 微分:各点での値の変化を見る
- 積分:個別の値より全体の値 (合計) を見る

ullet x=2での傾きと全体の面積は?

- 関数の特徴を調べる
- 微分:各点での値の変化を見る
- 積分:個別の値より全体の値 (合計) を見る

ullet x=2での傾きと全体の面積は?

• 定積分:全体の面積

定積分:全体の面積 それ自体は微分と無関係

- 定積分:全体の面積 それ自体は微分と無関係
- 不定積分:微分の逆計算

- 定積分:全体の面積 それ自体は微分と無関係
- 不定積分:微分の逆計算 微分と密接な関係

- 定積分:全体の面積それ自体は微分と無関係
- 不定積分:微分の逆計算 微分と密接な関係
- 微分と定積分は関係なさそうだが

定積分と不定積分

- 定積分:全体の面積 それ自体は微分と無関係
- 不定積分:微分の逆計算 微分と密接な関係
- 微分と定積分は関係なさそうだが 実は密接に関係する(17世紀に発見)

ullet 微分したら f(x) になる関数

- ullet 微分したらf(x)になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと

f(x) の不定積分 \blacksquare

- ullet 微分したらf(x)になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと
- ullet f(x) の不定積分F(x) を $\int f(x)\,dx$ と書く

- ullet 微分したらf(x)になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと
- ullet f(x) の不定積分 F(x) を $\int f(x)\,dx$ と書く

例)
$$(rac{1}{2}x^2)'=x$$
より

- ullet 微分したらf(x)になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと
- ullet f(x) の不定積分F(x) を $\int f(x)\,dx$ と書く

例)
$$(rac{1}{2}x^2)'=x$$
 より $\int x\,dx=rac{1}{2}x^2$

- ullet 微分したらf(x)になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと
- ullet f(x) の不定積分 F(x) を $\int f(x)\,dx$ と書く

例)
$$(rac{1}{2}x^2)' = x$$
 より $\int x\,dx = rac{1}{2}x^2$

ullet C が定数のとき $(rac{1}{2}x^2+C)'=x$

- ullet 微分したらf(x)になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと
- ullet f(x) の不定積分 F(x) を $\int f(x)\,dx$ と書く

例)
$$(rac{1}{2}x^2)' = x$$
 より $\int x\,dx = rac{1}{2}x^2$

ullet C が定数のとき $(rac{1}{2}x^2+C)'=x$

したがって,
$$\int x\,dx=rac{1}{2}x^2+C$$
でもある.

◆ 不定積分には +C の任意性がある.

- ◆ 不定積分には +C の任意性がある.
- この C を積分定数という.

- ◆ 不定積分には +C の任意性がある.
- この C を積分定数という.
- \bullet f(x) の不定積分を求めるには

- ◆ 不定積分には +C の任意性がある.
- この C を積分定数という.
- \bullet f(x) の不定積分を求めるには
 - (1) 微分して f(x) になる関数を求める.

- ◆ 不定積分には +C の任意性がある.
- この C を積分定数という.
- ullet f(x) の不定積分を求めるには
 - (1) 微分して f(x) になる関数を求める.
 - (2) それに+Cをつけて \int で表せばよい.

例
$$\int 1 \, dx$$

例
$$\int 1 \, dx$$

微分して1になる関数

例
$$\int 1 \, dx$$

微分して
$$1$$
になる関数 $(\Box)' = 1$

例
$$\int 1 \, dx$$

微分して
$$1$$
になる関数 $(x)'=1$

例
$$\int 1\,dx$$
 微分して 1 になる関数 $(x)'=1$ したがって $\int 1\,dx=x+C$

例
$$\int 1\,dx$$
 微分して 1 になる関数 $(x)'=1$ したがって $\int 1\,dx=x+C$

例
$$\int 1\,dx$$
 微分して 1 になる関数 $(x)'=1$ したがって $\int 1\,dx=x+C$ 例 $\int x\,dx=rac{1}{2}x^2+C$

例
$$\int 1\,dx$$
 微分して 1 になる関数 $(x)'=1$ したがって $\int 1\,dx=x+C$ 例 $\int x\,dx=rac{1}{2}x^2+C$ 課題 0 829-7 $\int x^2\,dx$ はどうなるか.

$$ullet \int 1 \, dx = x + C$$

$$\bullet \int x \, dx = \frac{1}{2}x^2 + C$$

$$ullet \int x^2\,dx = rac{1}{3}x^3 + C$$

$$ullet \int 1 \, dx = x + C$$

$$\bullet \int x \, dx = \frac{1}{2}x^2 + C$$

$$ullet \int x^2\,dx = rac{1}{3}x^3 + C$$

$$ullet \int x^3\,dx =$$

$$ullet \int 1 \, dx = x + C$$

$$\bullet \int x \, dx = \frac{1}{2}x^2 + C$$

$$ullet \int x^2\,dx = rac{1}{3}x^3 + C$$

$$ullet \int x^3\,dx = \left| \, rac{1}{4} x^4 + C
ight|$$

$$ullet \int 1\,dx = x + C$$

$$\bullet \int x \, dx = \frac{1}{2}x^2 + C$$

$$\bullet \int x^2 \, dx = \frac{1}{3} x^3 + C$$

$$ullet \int x^3\,dx = \boxed{rac{1}{4}x^4 + C}$$

$$ullet \int x^n\,dx =$$

$$ullet \int 1\,dx = x + C$$

$$\bullet \int x \, dx = \frac{1}{2}x^2 + C$$

$$\bullet \int x^2 \, dx = \frac{1}{3} x^3 + C$$

$$ullet \int x^3\,dx = \boxed{rac{1}{4}x^4 + C}$$

$$ullet \int x^n\,dx = \boxed{rac{1}{n+1}x^{n+1}+C}$$

$$ullet \int ig(f(x) + g(x)ig)\,dx = \int f(x)\,dx + \int g(x)\,dx$$

$$ullet \int ig(f(x) + g(x)ig)\,dx = \int f(x)\,dx + \int g(x)\,dx$$

$$ullet \int ig(f(x)-g(x)ig)\,dx = \int f(x)\,dx - \int g(x)\,dx$$

$$ullet \int ig(f(x) + g(x)ig)\,dx = \int f(x)\,dx + \int g(x)\,dx$$

$$ullet \int ig(f(x)-g(x)ig)\,dx = \int f(x)\,dx - \int g(x)\,dx$$

•
$$\int cf(x) \, dx = c \int f(x) \, dx$$
 (c は定数)

$$ullet \int ig(f(x) + g(x)ig) \, dx = \int f(x) \, dx + \int g(x) \, dx$$

$$ullet \int ig(f(x)-g(x)ig)\,dx = \int f(x)\,dx - \int g(x)\,dx$$

•
$$\int cf(x) \, dx = c \int f(x) \, dx$$
 (cは定数)

注) 定数の違いがあっても, = と考える

例
$$1\int (3x^2+2x+1)\,dx$$

例 1
$$\int (3x^2 + 2x + 1) dx$$

$$= \int 3x^2 dx + \int 2x dx + \int 1 dx$$

例
$$1\int (3x^2+2x+1)\,dx$$

$$=\int 3x^2\,dx+\int 2x\,dx+\int 1\,dx$$

$$=x^3+x^2+x+C\,\,(C\,\mathrm{は積分定数})$$

例
$$1\int (3x^2+2x+1)\,dx$$
 $=\int 3x^2\,dx+\int 2x\,dx+\int 1\,dx$ $=x^3+x^2+x+C$ (C は積分定数)

例
$$1\int (3x^2 + 2x + 1) dx$$

$$= \int 3x^2 dx + \int 2x dx + \int 1 dx$$

$$= x^3 + x^2 + x + C \quad (C は積分定数)$$
例 $2\int x(x-2) dx$

$$= \int (x^2 - 2x) dx$$

例
$$1\int (3x^2+2x+1)\,dx$$

$$=\int 3x^2\,dx+\int 2x\,dx+\int 1\,dx$$

$$=x^3+x^2+x+C\,\,(C\,\mathrm{は積分定数})$$
例 $2\int x(x-2)\,dx$

$$=\int (x^2-2x)\,dx$$

$$=\frac{1}{3}x^3-x^2+C\,\,(C\,\mathrm{は積分定数})$$

不定積分の計算 (課題)

課題 0829-8 次の不定積分を求めよ.

TextP19問1

$$egin{align} [1] \int (x^3-5x^2+1)\,dx & [2] \int (1-x-x^2)\,dx \ [3] \int (3x^2)\,dx & [4] \int (-3x^2+2x+3)\,dx \ [5] \int (4x^3-8x+3)\,dx & [6] \int (2x^3+4x-3)\,dx \ \end{aligned}$$

$$\bullet \int \cos x \, dx = \boxed{} (\boxed{})' = \cos x$$

$$\bullet \int \cos x \, dx = \boxed{ \qquad \qquad (\boxed{\sin x})' = \cos x}$$

$$\bullet \int \cos x \, dx = \boxed{\sin x + C} \qquad (\boxed{\sin x})' = \cos x$$

•
$$\int \cos x \, dx = [\sin x + C]$$
 $([\sin x])' = \cos x$
• $\int \sin x \, dx = [$ $([\sin x])' = \sin x$

•
$$\int \cos x \, dx = [\sin x + C]$$
 $([\sin x])' = \cos x$
• $\int \sin x \, dx = [$ $([-\cos x])' = \sin x$

•
$$\int \cos x \, dx = [\sin x + C]$$
 $([\sin x])' = \cos x$
• $\int \sin x \, dx = [-\cos x + C]$ $([-\cos x])' = \sin x$

例 1)
$$\int (\sin 3x + \cos 4x) dx$$

例 1)
$$\int (\sin 3x + \cos 4x) \, dx = -\frac{1}{3} \cos 3x + \frac{1}{4} \sin 4x + C$$

例 1)
$$\int (\sin 3x + \cos 4x) dx = -\frac{1}{3}\cos 3x + \frac{1}{4}\sin 4x + C$$

例 2)
$$\int \tan^2 x \, dx$$

例 1)
$$\int (\sin 3x + \cos 4x) dx = -\frac{1}{3}\cos 3x + \frac{1}{4}\sin 4x + C$$

例2)
$$\int an^2 x \, dx = \int rac{\sin^2 x}{\cos^2 x} \, dx$$

例 1)
$$\int (\sin 3x + \cos 4x) dx = -\frac{1}{3}\cos 3x + \frac{1}{4}\sin 4x + C$$

例 2)
$$\int an^2 x \, dx = \int rac{\sin^2 x}{\cos^2 x} \, dx = \int rac{1 - \cos^2 x}{\cos^2 x} \, dx$$

例 1)
$$\int (\sin 3x + \cos 4x) \, dx = -\frac{1}{3} \cos 3x + \frac{1}{4} \sin 4x + C$$

例2)
$$\int an^2 x \, dx = \int rac{\sin^2 x}{\cos^2 x} \, dx = \int rac{1 - \cos^2 x}{\cos^2 x} \, dx$$
 $= \int \left(rac{1}{\cos^2 x} - 1
ight) dx$

例 1)
$$\int (\sin 3x + \cos 4x) \, dx = -\frac{1}{3} \cos 3x + \frac{1}{4} \sin 4x + C$$
 例 2)
$$\int \tan^2 x \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \frac{1 - \cos^2 x}{\cos^2 x} \, dx$$

$$= \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \tan x - x + C$$

例 1)
$$\int (\sin 3x + \cos 4x) dx = -\frac{1}{3}\cos 3x + \frac{1}{4}\sin 4x + C$$

例2)
$$\int an^2 x \, dx = \int rac{\sin^2 x}{\cos^2 x} \, dx = \int rac{1 - \cos^2 x}{\cos^2 x} \, dx$$
 $= \int \left(rac{1}{\cos^2 x} - 1
ight) dx = an x - x + C$

課題 0829-9 次の不定積分を求めよ.

[1]
$$\int (3 \sin x + \cos 3x) dx$$

[2] $\int (1 + \frac{1}{\cos x})(1 - \frac{1}{\cos x}) dx$

$$\bullet \int e^x \, dx = \boxed{ \qquad (e^x)' = e^x}$$

$$ullet \int e^x \, dx = igl[e^x + C igr] \quad (igl[e^x igr])' = e^x$$

$$ullet \int e^x \, dx = igl[e^x + C igr] \quad (igl[e^x igr])' = e^x \ igrt \int e^{ax} \, dx = igr[\quad (e^{ax})' = igl[ae^{ax} igr]$$

$$ullet \int e^x \, dx = igl[e^x + C igr] \, (igl[e^x igr])' = e^x \ igr dx = igl[rac{1}{a} e^{ax} + C igr] \, (e^{ax})' = igl[ae^{ax} igr]$$

$$ullet \int e^x \, dx = igl[e^x + C igr] \, (egin{array}{c} e^x igr] ' = e^x \ igrt. \ \int e^{ax} \, dx = igl[rac{1}{a} e^{ax} + C igr] \, (e^{ax})' = igl[a e^{ax} igr] \ igrt. \ \int rac{1}{x} \, dx = igr] igr[igr] ' = rac{1}{x} \ igr]$$

$$ullet \int e^x \, dx = egin{bmatrix} e^x + C \ \end{pmatrix} (egin{bmatrix} e^x \ \end{pmatrix}' = e^x \ \end{pmatrix}$$
 $ullet \int e^{ax} \, dx = egin{bmatrix} \frac{1}{a} e^{ax} + C \ \end{pmatrix} (e^{ax})' = egin{bmatrix} ae^{ax} \ \end{pmatrix}$
 $ullet \int \frac{1}{x} \, dx = egin{bmatrix} (\log x)' = rac{1}{x} \ \end{pmatrix}$

$$ullet \int e^x \, dx = egin{bmatrix} e^x + C \ \end{pmatrix} (egin{bmatrix} e^x \ \end{pmatrix}' = e^x \ \end{pmatrix}$$
 $ullet \int e^{ax} \, dx = egin{bmatrix} \frac{1}{a}e^{ax} + C \ \end{pmatrix} (e^{ax})' = egin{bmatrix} ae^{ax} \ \end{pmatrix}$
 $ullet \int \frac{1}{x} \, dx = egin{bmatrix} \log x + C \ \end{pmatrix} (egin{bmatrix} \log x \ \end{pmatrix}' = rac{1}{x}$

•
$$\int e^x \, dx = \boxed{e^x + C}$$
 $(\boxed{e^x})' = e^x$
• $\int e^{ax} \, dx = \boxed{\frac{1}{a}e^{ax} + C}$ $(e^{ax})' = \boxed{ae^{ax}}$
• $\int \frac{1}{x} \, dx = \boxed{\log x + C}$ $(\boxed{\log x})' = \frac{1}{x}$
注) $x < 0$ のとき $\int \frac{1}{x} \, dx = \log(-x) + C$

•
$$\int e^x \, dx = \boxed{e^x + C}$$
 $(\boxed{e^x})' = e^x$
• $\int e^{ax} \, dx = \boxed{\frac{1}{a}e^{ax} + C}$ $(e^{ax})' = \boxed{ae^{ax}}$
• $\int \frac{1}{x} \, dx = \boxed{\log x + C}$ $(\boxed{\log x})' = \frac{1}{x}$
注) $x < 0$ のとき $\int \frac{1}{x} \, dx = \log(-x) + C$ $(\log(ax))' = \frac{1}{x}$

 $\| \triangleright | \| \triangleright | | \mathbf{12/12}$

•
$$\int e^x \, dx = \boxed{e^x + C}$$
 $(e^x)' = e^x$
• $\int e^{ax} \, dx = \boxed{\frac{1}{a}e^{ax} + C}$ $(e^{ax})' = \boxed{ae^{ax}}$
• $\int \frac{1}{x} \, dx = \boxed{\log x + C}$ $(\log x)' = \frac{1}{x}$
注) $x < 0$ のとき $\int \frac{1}{x} \, dx = \log(-x) + C$ $(\log(ax))' = \frac{1}{x}$
合わせて $\int \frac{1}{x} \, dx = \log|x| + C$

例 1)
$$\int (e^{2x} + e^{-x}) \, dx$$

例 1)
$$\int (e^{2x} + e^{-x}) \, dx = rac{1}{2} e^{2x} - e^{-x} + C$$

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例2)
$$\int (x+\frac{1}{x}) dx$$

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例 2)
$$\int (x + \frac{1}{x}) dx = \frac{1}{2}x^2 + \log x + C \ (x > 0)$$

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例 2)
$$\int (x+rac{1}{x}) dx = rac{1}{2}x^2 + \log|x| + C \ (x < 0$$
も含む)

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例 2)
$$\int (x+rac{1}{x})\,dx = rac{1}{2}x^2 + \log|x| + C \;(x < 0$$
も含む)

例
$$3) \int (e^x + e^{-x})^2 dx$$

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例 2)
$$\int (x+rac{1}{x})\,dx = rac{1}{2}x^2 + \log|x| + C \;(x < 0$$
も含む)

例 3)
$$\int (e^x + e^{-x})^2 dx = \int ((e^x)^2 + 2e^x e^{-x} + (e^{-x})^2) dx$$

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例 2)
$$\int (x+rac{1}{x})\,dx = rac{1}{2}x^2 + \log|x| + C \;(x < 0$$
も含む)

例3)
$$\int (e^x + e^{-x})^2 dx = \int ((e^x)^2 + 2e^x e^{-x} + (e^{-x})^2) dx$$

$$= \int (e^{2x} + 2 + e^{-2x}) dx$$

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例 2)
$$\int (x+rac{1}{x})\,dx = rac{1}{2}x^2 + \log|x| + C \;(x < 0$$
も含む)

例 3)
$$\int (e^x + e^{-x})^2 dx = \int ((e^x)^2 + 2e^x e^{-x} + (e^{-x})^2) dx$$
 $= \int (e^{2x} + 2 + e^{-2x}) dx = \frac{1}{2}e^{2x} - \frac{1}{2}e^{-2x} + C$

例 1)
$$\int (e^{2x} + e^{-x}) \, dx = \frac{1}{2} e^{2x} - e^{-x} + C$$

例 2)
$$\int (x+rac{1}{x})\,dx = rac{1}{2}x^2 + \log|x| + C \;(x < 0$$
も含む)

例 3)
$$\int (e^x + e^{-x})^2 dx = \int ((e^x)^2 + 2e^x e^{-x} + (e^{-x})^2) dx$$
 $= \int (e^{2x} + 2 + e^{-2x}) dx = \frac{1}{2}e^{2x} - \frac{1}{2}e^{-2x} + C$

課題 0829-10 次の不定積分を求めよ.

$$[1] \int (2e^x + rac{3}{x}) \, dx \qquad [2] \int (e^x + 1)^2 \, dx$$