Line bundles induce morphisms

1 Ample and basepoint free line bundles

The story begins with the following theorem, which uses global sections of a line bundle to construct a morphism to projective space.

Theorem 1. Let A be a ring and X an A-scheme. Let \mathcal{L} be a line bundle on X and $s_0, ..., s_n \in \Gamma(X, \mathcal{L})$. Suppose that $\{s_i\}$ generate \mathcal{L} , i.e., $\bigoplus_i \mathcal{O}_X s_i \to \mathcal{L}$ is surjective. Then there is a unique morphism $f: X \to \mathbb{P}^n_A$ such that $\mathcal{L} \cong f^*\mathcal{O}(1)$ and $s_i = f^*x_i$, where x_i are the standard coordinates on \mathbb{P}^n_A .

Proof. Yang: To be continued.

Definition 2. A line bundle \mathcal{L} on a scheme X is *ample* if for every coherent sheaf \mathcal{F} on X, there exists $n_0 > 0$ such that for all $n \geq n_0$, $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is globally generated. Yang: To be continued.

Definition 3. A line bundle \mathcal{L} on a scheme X is *very ample* if there exists a closed embedding $i: X \to \mathbb{P}^n_A$ such that $\mathcal{L} \cong i^*\mathcal{O}(1)$. Yang: To be continued.

Definition 4. Let \mathcal{L} be a line bundle on a scheme X and $V \subseteq \Gamma(X, \mathcal{L})$ a subspace. The base locus of V is the closed subset

$$\mathrm{Bs}(V)=\{x\in X:s(x)=0\text{ for all }s\in V\}.$$

If $Bs(V) = \emptyset$, we say that V is base-point free. Yang: To be continued.

Definition 5. A linear system on a scheme X is a pair (\mathcal{L}, V) where \mathcal{L} is a line bundle on X and $V \subseteq \Gamma(X, \mathcal{L})$ is a subspace. The dimension of the linear system is $\dim V - 1$. A linear system is base-point free if V is base-point free. A linear system is complete if $V = \Gamma(X, \mathcal{L})$. Yang: To be continued.

Theorem 6. Let X be a scheme over a ring A and \mathcal{L} a line bundle on X. Then the following are equivalent:

- (a) \mathcal{L} is ample.
- (b) For some $n>0,\,\mathcal{L}^{\bigotimes n}$ is very ample.
- (c) For some n > 0, $\mathcal{L}^{\otimes n}$ is base-point free.
- (d) For every coherent sheaf \mathcal{F} on X, there exists $n_0 > 0$ such that for all $n \geq n_0$, $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is generated by global sections.

Yang: To be continued.

Date: August 28, 2025, Author: Tianle Yang, My Homepage

2 Asymptotic behavior

Definition 7. Let X be a scheme and \mathcal{L} a line bundle on X. The section ring of \mathcal{L} is the graded ring

$$R(X,\mathcal{L}) = \bigoplus_{n\geq 0} \Gamma(X,\mathcal{L}^{\otimes n}),$$

with multiplication induced by the tensor product of sections. Yang: To be continued.

Definition 8. A line bundle \mathcal{L} on a scheme X is *semiample* if for some n > 0, $\mathcal{L}^{\otimes n}$ is base-point free. Yang: To be continued.

Theorem 9. Let X be a scheme over a ring A and \mathcal{L} a semiample line bundle on X. Then there exists a morphism $f: X \to Y$ over A such that $\mathcal{L} \cong f^*\mathcal{O}_Y(1)$ for some very ample line bundle $\mathcal{O}_Y(1)$ on Y. Moreover, $Y = \operatorname{Proj} R(X, \mathcal{L})$ and f is induced by the natural map $R(X, \mathcal{L}) \to \Gamma(X, \mathcal{L}^{\otimes n})$. Yang: To be continued.

Definition 10. A line bundle \mathcal{L} on a scheme X is big if the section ring $R(X,\mathcal{L})$ has maximal growth, i.e., there exists $\mathcal{L} > 0$ such that

$$\dim \Gamma(X, \mathcal{L}^{\otimes n}) \geq C n^{\dim X}$$

for all sufficiently large n. Yang: To be continued.

3 Iitaka fibration

Theorem 11. Let X be a projective variety over a field k and \mathcal{L} a line bundle on X. Then there exists a unique rational map $f: X \dashrightarrow Y$ to a projective variety Y such that:

- (a) The general fiber of f is connected.
- (b) The dimension of Y is equal to the Iitaka dimension of \mathcal{L} , i.e., the transcendence degree of the section ring $R(X,\mathcal{L})$ minus one.
- (c) For some n > 0, the linear system associated to $\mathcal{L}^{\bigotimes n}$ defines the map f.

The map f is called the *Iitaka fibration* associated to \mathcal{L} . Yang: To be continued.