

FLOW NATCHING

If Xo, is work and Xz is dore,
the cosics way to po from Xo >>2
is linear interplation:

 $x_{t} = tx_{1} + (1-t)x_{0} \quad t \in \mathcal{O}_{i} I$

Ne ere ruverested me:

dxt => we indervous low dt x deepes vonjing t

 $\frac{dx_{t}}{dt} = x_{1} - x_{5}$

So we con try e NN that given X_t predicts X_2-X_0 and this is the WHO CE idea of Clar marching

sud × t= 4(x) 4 (x) = flow $\frac{d}{dt} \psi_{t}(x) = u_{t}(\psi_{t}(x)) = u_{t}(x_{t})$ 50 rue voy Xt changes is devenired by et which is a vector field the points into the dure viou you have to move xt to per lover ro dote! So Clow mording Ceorus mt Vic $V_{t} \Rightarrow \underbrace{\mathcal{E}_{t}}_{t} \sim \rho_{t}(x_{t}) \left[\left| V_{t}(x_{t}) - w_{t}(x_{t}) \right|^{2} \right]$

So ve liève: $= \underbrace{\text{Times of } V_{\epsilon}^{i}(x_{\epsilon}) + u_{\epsilon}^{i}(x_{\epsilon}) - 2 V_{\epsilon}(x_{\epsilon}) u_{\epsilon}(x_{\epsilon})}_{t}$ we know ruor E= Spandx so: Ext ~ Pt(xt) [2Vt(xo) ut(xol)=2) Pt(xt) ve(xt) waste We apply uverpiuelessotion: $u_{t}(x_{t}) = \int u_{t}(x_{t}(x_{t})) P_{t}(x_{t}(x_{t})) Q(x_{t}) dx_{t}$ Pt Cxtl weighting berein Which Yells is deur 1/4 relue Ree susulfuises. their rells us if Xº 18 leviely 10 50 we leave -Pe(xe (xe) a (xe) d xe p xe) d xe
Pe(xe)

= [[[[| V_{6}(x_{t}) - W_{t}(x_{t}(x_{1}) | |^{2}] + tE Cllut(xt) 113 t E [lluxxetx 1112] Do not depend on V_t 20 May ore coert onts if we went to minimize = Exerpe (xe(xo), x, ~ 2(x2) [/ V6(xt)-u (xx/x1)] u (xe(xe) 15 MVCH simples Mon y(xe) beceuse it only depends on X THUS IS colled CONDITIONAL FLOW MATCHING OBJECTIVE Ne reveules $\frac{d \psi_{t}(x)}{d \psi} : u_{t}(\psi_{t}(x)) : u_{t}(x)$ We define le CX = GeC>21× + Nt CX)

they sey x ~ N (Q6I) so (4(×0): 6(×2) Xo + Nt (x)) CANONICAL TRANSFORRATION DDPN 15 war lucer uterplotion, Frow 15 Russ Toen ve hore: $6cx_{c1}=2-t$ Nt(xr)=tx1 So we hove 46(xs)= (1-t)xottx So ve hore $\overline{\mathcal{H}}_{x_e}$ $\mathcal{H}_{e}(x_e|_{1}^{x_e})$ $\mathcal{H}_{e}(x_e|_{1}^{x_e})$ = E[||Vt(xt) - d (t(xo))||²] = E but = xz-xo

X. ~ rendom moise x, ~ dolos destrebien

then we give it in input to thee network and we solve F