

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL CURSO DE ENGENHARIA DA COMPUTAÇÃO AUTOR: LUAN GOMES MAGALHÃES LIMA MATERIAL AUXILIAR

TUTORIAL DE UTILIZAÇÃO DO MPLABX, PROTEUS E PICKIT3

Este documento foi construído como parte de uma atividade de Estágio Supervisionado no Laboratório de Controle da Universidade Federal do Ceará - Campus Sobral.

O tutorial foi construído com base nos seguintes recursos:

• Softwares:

MPLABX - Versão: 6.15Proteus - Versão: 8.13

• Hardwares:

- o PICkit3
- o Microprocessador PIC16F877A

1. Abra um novo projeto no MPLABX:

1.1. File → New Project

2. Escolha a categoria e o tipo do projeto:

2.1. Microchip Embedded → Standalone Project → Next

- 3. Escolha o tipo do microprocessador que será utilizado, neste tutorial será utilizado o PIC16F877A, e a ferramenta de simulação:
 - 3.1. Device → PIC16F877A*

^{*}O tipo de micro depende das especificações do projeto a ser construído.

3.2. Tool \rightarrow PICkit3 \rightarrow Next

Caso o PICKit esteja plugado na entrada USB do computador, ele aparecerá para ser selecionado, caso contrário selecione "Simulator".

- 4. Selecione o compilador utilizado, o exemplo deste tutorial será construído utilizando a linguagem C:
 - 4.1. Compiler Toolchains → XC8* → Next

*Se o código do projeto será feito utilizando a linguagem assembly, selecione "pic-as", caso seja feito utilizando a linguagem C, selecione "XC8", nesse caso será necessário baixar o compilador XC8, este compilador está disponível no site da microchip (https://www.microchip.com/en-us/tools-resources/develop/mplab-xc-compilers)

5. Nomeie para o seu projeto e após isso está criado o seu projeto

5.1. Project Name → "Nome_do_Projeto" → Finish

6. Crie os arquivos do programa (main.c e main.h)

- 6.1. Para criar o arquivo main.h, siga as instruções abaixo:
 - 6.1.1. Clique com o botão direito do mouse sobre "Header Files"

6.1.2. Header Files \rightarrow New \rightarrow xc8_header.h

Como se trata de um código escrito em C utiliza-se a opção "xc8_header.h", mas dependendo do projeto, a escolha do arquivo header pode ser diferente.

6.1.3. Em seguida nomeie o arquivo e aperte em "Finish"

6.1.4. O modelo padrão será criado, coloque todos os códigos associados ao header nesse arquivo

- 6.2. Para criar o arquivo main.c, siga as instruções abaixo:
 - 6.2.1. Clique com o botão direito do mouse sobre "Source Files"

6.2.2. Source Files \rightarrow New \rightarrow main.c

6.2.3. Em seguida nomeie o arquivo e aperte em "Finish"

6.2.4. O modelo padrão será criado, coloque todos os códigos associados ao main nesse arquivo

```
Packs x Start Page x | MPLAB X Store x | E main.h x | main.c x
Source History 👚 🔯 🐷 - 💹 - र 🔍 🐶 😓 📮 🎧 🔗 😓 🖆 🗐 🍥 🔲 🐠 🚅
2
      * File: main.c
      * Author: NOTEBOOK
3
4
5
      * Created on 5 de Setembro de 2023, 08:56
6
7
8
9
     #include <xc.h>
10
11 - void main(void) {
12
         return;
13
14
Output ×
```

7. No Proteus crie o modelo de simulação para testar o código feito no MPLABX

7.1. File \rightarrow New Project

7.2. Nomeie o arquivo e pressione em "Next"

7.3. Selecione o modelo de template, em geral utiliza-se o template padrão, "DEFAULT". Em seguida, pressione "Next"

7.4. Se for construir algum projeto de PCB, escolha o template que melhor se adequa ao seu projeto, caso contrário selecione "Do not create a PCB layout" e pressione "Next".

7.5. Pressione "Next" novamente

7.6. Pressione "Finish"

7.7. Seu modelo estará criado, agora é só construir o esquemático do projeto

Após construir os códigos no MPLABX e no PROTEUS, verifique a compilação e simulação.

8. Selecione o ícone mostrado e pressione "Build Main Project"

Após isso, o arquivo hexadecimal será criado. Conforme, mostrado abaixo.

```
Output - Pisca_Led_C (Build, Load) x

Configuration bits used 1h ( 1) of 1h word (100.0%)
ID Location space used 0h ( 0) of 4h bytes ( 0.0%)

make[2]: Leaving directory 'C:/Users/NOTEBOOK/MPLABXProjects/Pisca_Led_C.X'
make[1]: Leaving directory 'C:/Users/NOTEBOOK/MPLABXProjects/Pisca_Led_C.X'

BUILD SUCCESSFUL (total time: 6s)

Loading code from C:/Users/NOTEBOOK/MPLABXProjects/Pisca_Led_C.X/dist/default/production/Pisca_Led_C.X.production.hex...

Program loaded with pack, PIC16Fxxx_DFP, 1.4.149, Microchip
Loading completed
```

9. Descarregue o arquivo .hex no modelo do PROTEUS

9.1. Dê um duplo clique sobre o modelo. A seguinte janela será exibida

Edit Component			? ×
Part Reference:	U1	Hidden:	ОК
Part <u>V</u> alue:	PIC16F877A	Hidden:	Help
<u>E</u> lement	V		Data
PCB Package:	DIL40 ∨ 🔠	Hide All V	Hidden Pins
Program File:	\firmware\io_button_led_pic16f87	Hide All ∨	Edit Firmware
Processor Clock Frequency:	20MHz	Hide All ∨	Cancel
Program Configuration Word:	0x3FFB	Hide All ∨	Cuitei
Advanced Properties:			
Randomize Program Memory? $\qquad \qquad \lor$	No v	Hide All ∨	
Other <u>P</u> roperties:			
		^	
Exclude from Simulation	Attach hierarchy module		
Exclude from PCB Layout Exclude from Current Variant	Hide common pins Edit all properties as text		
Exclude from Current Variant	cuit aii properties as text		

9.2. Escolha o caminho que está arquivo .hex

9.3. Selecione o arquivo e pressione "Abrir"

9.4. Após isso pressione "Ok"

 No canto inferior esquerdo selecione o ícone mostrado para verificar a simulação

11. Para descarregar o arquivo no PIC16F877A, siga as etapas abaixo:

- 11.1. Conecte o PicKit3 na entrada USB do seu computador, caso ainda não esteja conectado
- 11.2. Se durante a criação do projeto no MPLABX você já tivesse selecionado o gravador, não será necessário executar as etapas 11.2 e 11.3. Caso contrário ou então se o gravador não tiver selecionado siga as instruções: Production → Set Project Configuration → Customize

11.3. Connected Hardware Tool \rightarrow PicKit3 (Modelo do gravador) \rightarrow Apply \rightarrow OK

- 11.4. Conecte o PicKit3 na entrada de dados do micros, vale destacar que as conexões devem está corretamente conectadas
- 11.5. No canto superior selecione o ícone mostrado abaixo:

Outra alternativa seria selecionar a seta ao lado ícone mostrado acima e selecionar a opção "Make and Program Device Main Project"

 A seguinte janela será aberta, indicando o cuidado com a alimentação do micro. Pressione OK

- 12. Caso deseje fornecer a tensão pelo próprio PicKit3, siga as instruções abaixo:
 - 12.1. Production \rightarrow Set Project Configuration \rightarrow Customize

12.2. PICkit 3 → Power

12.3. Selecione a opção "Power target circuit from PICkit3"

Isso faz com que o PicKit3 forneça a tensão de 5 V para o micro.

12.4. Em seguida, no canto inferior da janela. Pressione "Apply" e depois "OK"

13. Caso a gravação ocorra de forma correta, a seguinte mensagem aparecerá:

```
Output ×

PICkit 3 × Pisca_Led_C (Build, Load, ...) ×

Device Erased...

Programming...

The following memory area(s) will be programmed: program memory: start address = 0x0, end address = 0x7ff configuration memory

Programming/Verify complete
```

Observações:

- No arquivo main.h, a configuração associada ao Low-Voltage Programming (LVP) permite a programação com tensão mais baixa, essa configuração é extremamente útil para gravar o micro com voltagens reduzidas. Para ativar essa configuração, faça:

Contudo é necessário desativar essa configuração caso queira utilizar o micro com uma fonte de tensão externa, sem a necessidade do PicKit3 está plugado no projeto. Para isso, faça:

- Para gerar os bits de configuração de cada micro, é possível fazer automaticamente no próprio MPLABX. As informações relacionadas a isso podem ser vistas no seguinte link: https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits