Lecture 12: Range Query

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

Range Query

- ☐ Query a quantity in the given range of an 1D array
 - ☐ What is the minimum in A[i...j]?
 - ☐ What is the sum of A[i...j]?
- ☐ Static array + Millions of queries
 - ☐ Totally N² queries in an array of N elements
 - \square Q queries lead to O(N*Q) complexity
 - Simply scan the range per query
 - O(N) time per query
 - Can we do better?
- ☐ Problem can extend to 2D, 3D, ... ND cases

Example

```
\square A[10] = [1, 7, 8, 2, 4, 0, 8, 1, 2, 65]
   ☐ Query 1: find the minimum in A[0:9]
       Answer: 0
   \square Query 2: find the minimum in A[6:7]
       Answer: 1
   ■ Query 3: find the minimum in A[4:6]
       Answer: 0
   ☐ Query 4: find the minimum in A[3:8]
       Answer: 0
   ☐ ... million queries to follow
```

Sparse Table (Maximum Domain)

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0								
1								
2								
3								

Sparse Table (Maximum Domain)

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0								
1								
2								
3								

entry[i][j] represent the maximum value in the range [j:j+2i)

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2							
1								
2								
3								

entry $[0][1] = max \{1^1\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4						
1								
2								
3								

entry $[0][2] = \max \{2^2\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5					
1								
2								
3								

entry $[0][3] = max \{3^3\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1				
1								
2								
3								

entry $[0][4] = \max \{4^4\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5			
1								
2								
3								

entry $[0][5] = max \{5^5\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8		
1								
2								
3								

entry $[0][6] = \max \{6^6\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	
1								
2								
3								

entry $[0][7] = max \{7^7\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point
 - \Box Covered range: j, j+1, j+2, ..., j+2ⁱ 1

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1								
2								
3								

entry $[0][8] = \max \{8^8\}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1								
2								
3								

 $entry[1][1] = max{entry[0][1], entry[0][1+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1								
2								
3								

 $entry[1][1] = max{entry[0][1], entry[0][1+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4							
2								
3								

 $entry[1][2] = max{entry[0][2], entry[0][2+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5						
2								
3								

 $entry[1][3] = max{entry[0][3], entry[0][3+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5					
2								
3								

 $entry[1][4] = max{entry[0][4], entry[0][4+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1				
2								
3								

 $entry[1][5] = max{entry[0][5], entry[0][5+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8			
2								
3								

 $entry[1][6] = max{entry[0][6], entry[0][6+1]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	
2								
3								

...

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	
2								
3								

 $entry[2][1] = max{entry[1][1], entry[1][1+2]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	
2								
3								

 $entry[2][1] = max{entry[1][1], entry[1][1+2]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	
2	5							
3								

 $entry[2][2] = max{entry[1][2], entry[1][2+2]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5						
3								

 $entry[2][3] = max{entry[1][3], entry[1][3+2]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11				
3								

 $entry[2][4] = max{entry[1][4], entry[1][4+2]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11	11			
3								

• • •

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11	11			
3								

 $entry[3][1] = max{entry[2][1], entry[2][1+4]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11	11			
3								

 $entry[3][1] = max{entry[2][1], entry[2][1+4]}$

- ☐ Sparse Table
 - \square row i: the expanded size 2^i
 - □ column j: the starting point

entry[i][j] =
max {entry[i-1][j], entry[i-1][j+mid]}

For entry[i][j] with i>0, we define mid = 2^{i-1}

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11	11			
3	11							

Final table...

- ☐ Sparse Table
 - ☐ Constructed with O(NlogN)
- \square How to query the maximum one in an interval [i...j]?
 - ☐ two sub-interval must be overlapped
 - \Box define $h = log_2(j+1-i)$
 - ☐ Min(sparse_table[h, i], sparse_table[h, j-2h])

- ☐ Sparse Table
 - ☐ Constructed with O(NlogN)
- \square How to query the maximum one in an interval [i...j]?
 - ☐ two sub-interval must be overlapped
 - \Box define $h = log_2(j+1-i)$
 - ☐ Min(sparse table[h, i], sparse table[h, j-2h])

- ☐ Sparse Table
 - ☐ Constructed with O(NlogN)
- \square How to query the maximum one in an interval [i...j]?
 - ☐ two sub-interval must be overlapped
 - \Box define $h = log_2(j+1-i)$
 - ☐ Min(sparse table[h, i], sparse table[h, j-2h])

We can answer each query with constant time!

Time Complexity of Query

- ☐ Given an array of N elements, we have Q queries
- Naïve method
 - \Box Construction time: O(1)
 - \square Query time: O(Q*N)
- □ Sparse table method
 - ☐ Construction time: O(NlogN)
 - \square Query time: O(Q)
- ☐ What if N is too large ... ?

Practice 1

- ☐ Construct the sparse table in the minimum domain
 - ☐ Need to quickly probe the max value of A[i, j]

	1 (2)	2 (4)	3 (5)	4 (1)	5 (-5)	6 (8)	7 (11)	8 (6)
0								
1								
2								
3								

Update the Value of an Entry?

- ☐ Sometimes, we need to update the entry
 - ☐ For instance, change the 4th element to 100

	1 (2)	2 (4)	3 (5)	4 (1) (100)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	1	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11	11			
3	11							

- ☐ Sometimes, we need to update the entry
 - ☐ For instance, change the 4th element to 100

	1 (2)	2 (4)	3 (5)	4 (1) (100)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	100	-5	8	11	6
1	4	5	5	1	8	11	11	6
2	5	5	8	11	11			
3	11							

- ☐ Sometimes, we need to update the entry
 - ☐ For instance, change the 4th element to 100

	1 (2)	2 (4)	3 (5)	4 (1) (100)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	100	-5	8	11	6
1	4	5	100	100	8	11	11	6
2	5	5	8	11	11			
3	11							

- ☐ Sometimes, we need to update the entry
 - ☐ For instance, change the 4th element to 100

	1 (2)	2 (4)	3 (5)	4 (1) (100)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	100	-5	8	11	6
1	4	5	100	100	8	11	11	6
2	100	100	100	100	11			
3	11							

- ☐ Sometimes, we need to update the entry
 - ☐ For instance, change the 4th element to 100

	1 (2)	2 (4)	3 (5)	4 (1) (100)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	100	-5	8	11	6
1	4	5	100	100	8	11	11	6
2	100	100	100	100	11			
3	100							

- ☐ Sometimes, we need to update the entry
 - ☐ For instance, change the 4th element to 100

	1 (2)	2 (4)	3 (5)	4 (1) (100)	5 (-5)	6 (8)	7 (11)	8 (6)
0	2	4	5	100	-5	8	11	6
1	4	5	100	100	8	11	11	6
2	100	100	100	100	11			
3	100							

What is the complexity of updating an entry?

Updating a Sparse Table

- □ O(N) time to update a sparse table
 - □ Number of operations: $1 + 2 + 4 + 8 + 16 + ... + 2^h$
 - ☐ What is the value of h?

Range Query with Update Operation

- Operations
 - 1. Increase/decrease the value of an element
 - 2. Query the quantity within the interval [i...j]
 - 1. We will use summation for demonstration
 - 3. Update and Query can interleave
- ☐ How to solve this problem efficiently?
 - ☐ If there are many update operations
 - Sparse table may be slow

Low Bit

- ☐ The least significant bit
 - \square 000010 -> low bit at the 2nd bit
 - **□** 000111 -> low bit at the 1st bit
 - **□** 001101 -> low bit at the 1st bit
 - \Box 011000 -> low bit at the 4th bit
- ☐ How do we mask out other bits to have low bit only?
 - □ 000010 -> 000010
 - **1** 011101 -> 000001

Low Bit

- ☐ The least significant bit
 - \square 000010 -> low bit at the 2nd bit
 - **□** 000111 -> low bit at the 1st bit
 - □ 001101 -> low bit at the 1st bit
 - \square 011000 -> low bit at the 4th bit
- ☐ How do we mask out other bits to have low bit only?
 - □ 000010 -> 2's complement -> 111110
 - 000010 & 111110 = 000010
 - □ 011101 -> 2's complement -> 100011
 - 011101 & 100011 = 000001

Low Bit

- ☐ The least significant bit
 - **□** 000010 -> low value 1
 - **□** 000111 -> low value 0
 - **□** 001101 -> low value 0
 - □ 011000 -> low value 3
- ☐ How do we mask out other bits to have low bit only?
 - □ 000010 -> 2's complement -> 111110
 - 000010 & 111110 = 000010
 - □ 011101 -> 2's complement -> 100011
 - 011101 & 100011 = 000001
- ☐ So we can do (v & -v) to find the low bit

C++ Code to Find the Low Bit

```
int lowbit (int in) {
   return in&(-in);
}
```

Practice 2

- ☐ Layout the binary representation of the following:
 - **□** 5 & -5
 - **4** 4 & -4
 - **□** 18 & -18

What is the point?

- **☐** Observe
 - **G**: 00110
 - **□** -6: 11010
 - **□** 6 & -6 = 00010
 - \Box 6 + (6 & -6) = 00110 + 00010 = 01000 = 8

What is the point?

- ☐ Observe
 - **1**0: 01010
 - \Box -10: (01001)' = 10110
 - **□** 10 & -10 = 00010
 - \Box 10 + (10 & -10) = 01010 + 00010 = 01100 = 12
- ☐ Iterative the above operation, i.e., $a_{i+1} = a_i \& -a_i$
 - **1**2: 01100
 - \Box -12: (01011)' = 10100
 - **□** 12 & -12 = 00100
 - \square 12 + (12 & -12) = 01100 + 00100 = 10000 = 16

What is the point?

- ☐ Observe
 - **1**0: 01010
 - \Box -10: (01001)' = 10110
 - **□** 10 & -10 = 00010
 - \square 10 + (10 & -10) = 01010 + 00010 = 01100 = 12
- ☐ Iterative the above operation, i.e., $a_{i+1} = a_i \& -a_i$
 - **1**2: 01100
 - \Box -12: (01011)' = 10100
 - **□** 12 & -12 = 00100
 - \square 12 + (12 & -12) = 01100 + 00100 = 10000 = 16

Eventually the number becomes a power of 2 and so forth

Practice 3

- \Box Try running $a_{i+1} = a_i \& -a_i$ on 21 (10101'b)
 - ☐ How many iterations you end up with?

- ☐ For a given number "N", parent it to "N + (N &-N)"
 - \Box 5's parent is 5 + (5 & -5) = 6
 - \Box 6's parent is 6 + (6 & -6) = 8
 - \Box 7's parent is 7 + (7 & -7) = 8

Range Each i Covers

```
s[1] = v[1]
s[2] = v[2] + s[1]
s[3] = v[3]
s[4] = v[4] + s[3] + s[2]
s[5] = v[5]
s[6] = v[6] + s[5]
s[7] = v[7]
s[8] = v[8] + s[7] + s[6] + s[4]
```

Recap the Lowbit Function

```
Define:
   int lowbit (int in)
    return in&(-in);
ex:
lowbit(1) = 1
lowbit(2) = 2
lowbit(3) = 1
lowbit(4) = 4
```


Define:

We use the function "change" to initialize the binary indexed tree!

Time Complexity?

- \square Each entry i runs up to O(log(N)) times
- ☐ Totally O(NlogN)

Define:

```
int getsum (int end)
{
   int ans = 0;
   while(end>0)
   {
      ans += s[end];
      end -= lowbit(end);
   }
}
```

- \square How to find the summation between interval [i...j]?
 - □ call the subroutine "getsum[j] getsum[i-1]"
 - ☐ Two logN operations
- ☐ You can expand this easily to 2D as well

Complexity

Binary Indexed Tree ☐ Construction: O(NlogN) ☐ Update on one entry: O(logN) ☐ Query an interval: O(logN) \square Space: O(N) ■ Sparse Table ☐ Construction: O(NlogN) ☐ Update on one entry: O(N) ☐ Query an interval: O(1) ☐ Space: O(NlogN)