Національний технічний університет України « Київський політехнічний інститут імені Ігоря Сікорського» Кафедра мікроелектроніки

Лабораторна робота № 2

з дисципліни: «Схемотехніка-1. Аналогова схемотехніка» ЗВОРОТНІЙ ЗВ'ЯЗОК У ПІДСИЛЮВАЧАХ

Виконав:

студент 3-го курсу групи ДП-82 Мнацаканов Антон Станіславович Перевірила: Порєва Ганна Сергіївна

1. Мета роботи

Вивчення принципів роботи зворотного зв'язку, дослідження впливу негативного зворотного зв'язку на характеристики і параметри підсилювача.

2. Блок-схема установки для дослідження лабораторного модуля «Зворотній зв'язок у підсилювачах»

Блок-схема установки для дослідження лабораторного модуля «Зворотній зв'язок у підсилювачах» («ЗЗП») наведена на рис. 2.1.

Рис. 1.1. Блок-схема установки для дослідження лабораторного модуля «Зворотній зв'язок у підсилювачах».

3. Схема електрична принципова лабораторного модуля «Зворотній зв'язок у підсилювачах»

Рис. 1.2 Схема електрична принципова лабораторного модуля «ЗЗП»: a) схема без ЗЗ (П1-вкл), δ) схема НЗЗ по току (П2-вкл), ϵ) схема НЗЗ по напрузі (П3-вкл), ϵ) схема ЗЗ на операційному підсилювачі (П4-вкл).

Таблиця 1.1. Призначення перемикачів.

№	Призначення перемикачів
П1	Вмикає підсилювач на БТ з НЗЗ по току
П2	Вмикає підсилювач на БТ з НЗЗ по напрузі
П3	Вмикає підсилювач на ОП при K_U =10
П4	Вмикає підсилювач на ОП при K_U =100
П5	Закорочує резистор R_6 — навантаження підсилювача на БТ
П6	Закорочує резистор R_1 у підсилювачах на БТ та ОП
П7	Підключає резистори навантаження R_6 - R_7 у підсилювач на БТ, або R_5 у ОП

Таблиця 2.2. Реалізовані в лабораторному модулі схеми.

Тип 33	Перемикач замкнутий	Схема електрична принципова
Підсилювач на БТ без 33	-	+En O
Підсилювач на БТ із Н33 по току	Π1	R2 R5 KT5 3k KT6 R1 11k C3 100 R6 5,1k R7 5,1k

Таблиця 1.3. До вимірам амплітудних характеристик підсилювача $U_i = U_i(U_i)$ при $f_i = 10$ к Γ ц.

	<i>U</i> , мВ			$U_{\scriptscriptstyle 2},\mathrm{B}$				
2.0				Без 33	Н33 по	Н33 по		
Nº	Без 33	H33 по току	Н33 по напрузі	(П1- П7 викл.)	току (П1- вкл.)	напрузі (П2–вкл.)		
1	25	750	50	1,7	1,25	1,25		
2	20	650	40	1,45	1,1	1,2		
3	15	550	30	1,1	0,97	1,05		
4	10	450	20	0,8	0,8	0,93		
5	5 350 10		10	0,4	0,62	0,53		
6	1	250	1	0,08	0,44	0,052		
7		150			0,26			
8 50		50			0,092			
9		1			0,018			
10								
Description	$\mathcal{A}_{\varepsilon}^{+} = \frac{U_{ex\text{max}}^{+}}{U_{ex\text{min}}}$		<u></u>					
Визначити	Д	$\frac{1}{r} = \frac{U}{U}$	sx max sx min					

Рис. 1.3 Амплітудна характеристика підсилювача

Таблиця 1.4. До вимірюванню функцій підсилювачів.

	Показники роботи	Підс	илювач	в схемі			
№	підсилювача	Без	$H33_{I}$	$H33_{U}$	Примітки		
	шдеилювача	33	(П1)	(П2)			
1	При R_I =0 U_I = U_z , мВ	10	50	10	Натиснути П6 і встановити ручкою вихід генератора U_I . Перемикач П7 розімкнений.		
					Розімкнути Пб і виміряти		
2	При R_I =1кОм	4,7	34	0,8	вольтметром V_I напругу U_I '.		
_	(П6–розімкнений) U_I ',мВ	,		,	Перемикач П7 розімкнений.		
3	$R_{ex} = R_1 rac{U_1'}{U arepsilon - U_1'}$, Ом	886	2125	87	Обчислити вхідний опір $(R_I = I \kappa \mathrm{Om})$		
4	При відключенні $R_{H}=R_{6}+R_{7}$ U_{2xx} , мВ $(U_{I}=U_{2})$	840	94	550	Розімкнути П7 і вольтметром V_2 виміряти U_{2xx} . Перемикач П6 замкнутий.		
5	При відключенні $R_{H}=R_{6}+R_{7}$ U_{2} , мВ	650	74	470	Замкнути П7 і вольтметром V_2 виміряти напругу U_2 Перемикач П6 замкнутий.		
6	$R_{eux} = (R_6 + R_7) \frac{U_{2xx} - U_2}{U_2}$ де $R_H = R_6 + R_7 = 12$ кОм	3,5	3,24	2,04	Обчислити вихідний опір $R_{\scriptscriptstyle \it eux}$		

7	$K_U = \frac{U_2}{U_1}$	65	1,48	47	Обчислити відношення раніше виміряних U_I та U_2
8	$K_I = \frac{I_{_{^{_{\mathcal{H}}}}}}{I_1} = \frac{R_{_{\mathcal{C}\!$	4,7	0,26	0,34	Обчислити коефіцієнт передачі струму як відношення R_{ex} та R_{H} , помножене на K_{U}
9	$K_P = \frac{P_{\scriptscriptstyle H}}{P_1} = K_U \cdot K_I$	312	0,38	16	Обчислити добуток K_U и K_I
10	$f_{\!\scriptscriptstyle H}\!\!=\!\!f_{\!m\!i\!n},$ при $U_2\!\!=\!\!0,\!707\!\cdot\!U_2(f\!\!=\!\!10$ $\kappa \Gamma u\!\!\!\!/$	<10 Гц	<10Гц	<10Гц	Перемикач П6 замкнутий. Перемикач П7 замкнутий.
11	f_e = f_{max} , при U_2 = 0 ,707 \cdot U_2 (f = 10 $\kappa \Gamma u$)	122 КГц	220КГ	160КГ ц	Перемикач П6 замкнутий. Перемикач П7 замкнутий.
12	$\Delta f = f_{\scriptscriptstyle extit{B}} - f_{\scriptscriptstyle H}$	1,21 *10 ⁵	2,19 *10 ⁵	1,6 *10 ⁵	

Рис. 1.4 Амплітудна характеристика підсилювача

Таблиця 1.5. До вимірювань амплітудних характеристик підсилювача $U_z=U_z(U_t)$, при $f_z=10$ к Γ ц

No	U_{l} ,	мВ	$U_{\scriptscriptstyle 2}, \mathrm{B}$		
<u>No</u>	$K_{\nu} = 10$	$K_{\nu} = 100$	$K_{U}=10 (\Pi 3$ -вкл.)	$K_{U}=100 (\Pi 4$ -вкл.)	
1	500	45	5	4,5	
2	400	35	4	3,5	
3	300	25	3	2,5	
4	200	15	2	1,5	
5	100	5	1	0,5	
6	10		0,1		

Таблиця 1.6. До вимірювань відносної нестабільності коефіцієнта передачі напруги підсилювача при U_I =10 мВ, f_c =10 кГц (П6 – замкнутий).

Підсилювач без 33				Підсилювач із НЗЗ по току			Підсилювач із НЗЗ по напрузі				
	П7 – включити				П1, П7 – включити				П2, П7 – включити		
$R_{\scriptscriptstyle H}=$	$R_6+R_7=$	$R_{\scriptscriptstyle H} = R_{\scriptscriptstyle H}$	$R_6+R_7=$	$R_{H} = R_{6} + R_{7} = R_{6} + R_{7} =$			$R_{H} = R_{6} + R_{7} = R_{7} = R_{7} + R_{7} + R_{7} = R_{7} + R_{7} + R_{7} + R_{7} = R_{7} + R_{7$			$R_6+R_7=$	
=10	,2 кОм	=5,	1 кОм	=10,2 кОм =5,1 кОм		=10,2 кОм		=5,1 кОм			
П5-	- вимк.	П5	-вкл.	П5- вимк.		П5-вкл.		П5- вимк.		П5-вкл.	
U_{2} ,B	$K_U = \frac{U_2}{U_1}$	U'2,B	$K_{U}^{'} = \frac{U_{2}^{'}}{U_{1}}$	$U_{^2}$,B	$K_U = \frac{U_2}{U_1}$	$U_{2}^{'}$,B	$K_{U}^{'}=\frac{U_{2}^{'}}{U_{1}}$	$U_{^2,\mathrm{B}}$	$K_U = \frac{U_2}{U_1}$	$U_{2}^{'}$,B	$K_{U}^{'} = \frac{U_{2}^{'}}{U_{1}}$
0,65	65	0,54	54	14,5 мВ	1,45	12мВ	1,2	0,45	45	0,4	40
$\delta = \frac{K_i}{I}$	$\delta = \frac{K_U' - K_U}{K_U} 100\% = \frac{U_2' - U_2}{U_2} 100\%$			$\delta = \frac{K'_{U\beta} - K_{U\beta}}{K_{U\beta}} 100\% = \frac{U'_{2\beta} - U_{2\beta}}{U_{2\beta}} 100\%$			$\mathcal{S} = \frac{K'_{U\beta} - K_{U\beta}}{K_{U\beta}} 100\% = \frac{U'_{2\beta} - U_{2\beta}}{U_{2\beta}} 100\%$			$\frac{U_{2\beta}}{\beta}$ 100%	
-16,9			-17,2			-11,1					

Таблиця 1.7. До вимірюванню АЧХ підсилювача на ІОП.

	Π ри U_I	$=10_{\rm M}{\rm B}$
	K_{Uo} =10 (П3 – вкл.)	K_{Uo} =100 (П4 — вкл.)
При f_0 =10 к Γ ц виміряти U_{2o} , м B	100	1000
0,707* <i>U</i> ₂₀ , мВ	70,7	707
<i>fe</i> , Гц	460 КГц	38 КГц

Висновок: в цій лабораторній роботі ми переконались, що при підсиленні спостерігається спотворення форми та частотного складу сигналу. Ці спотворення зменшуються при роботі підсилювальних елементів в режимах, що відповідають лінійним ділянкам характеристик, тому чим вищий вхідний опір, тим меншу потужність споживає підсилювач від джерела вхідного сигналу, а чим нижчий вихідний, тим точніше узгоджується підсилювач за потужністю. Також рівень напруги, яка подається з виходу підсилювача на його вхід, у відповідності з АЧХ підсилювача є різним на різних частотах, тому різною є і дія зворотного зв'язку. В області зростання частот, зворотний зв'язок більше послаблює підсилення, ніж на частотах, де є завал АЧХ. Таким чином, нерівномірність АЧХ згладжується. Але все це справедливе лише при дійсному зворотному зв'язку.