VARIABLES ALÉATOIRES

I Qu'est-ce-qu'une variable aléatoire?

Définition n°1. Variable aléatoire

Soit Ω un univers fini. On dit que X est une variable aléatoire réelle si X est une application de Ω dans $\mathbb R$,

c'est à dire si X associe à chaque issue de Ω un nombre réel.

Exemple n°1.

$$X:\Omega\to\mathbb{R}$$

Ici,
$$X(\omega_1) = -3.52$$
 :

L'issue ω_1 a pour image -3,52 par la variable aléatoire X

$$X(\omega_2) = 0$$
, etc....

Remarque n°1.

Toutes les issues doivent avoir une image par X (car X est une application) par contre, plusieurs issues peuvent avoir la même image.

Connaissance n°1 Des notations

Soit $a \in \mathbb{R}$. On note:

• $\{X = a\}$ l'événement « X prend la valeur a »

• $\{X \leq a\}$ l'événement « X prend une valeur inférieure ou égale à a »

• on fait la même chose avec < , > et ≥

Exemple n°2.

Remarque n°2.

Comme nous avons affaire avec des événements de Ω , on peut parler de leur probabilité.

Par exemple:

$$P([X = 0]) = P([\omega_1, \omega_4]) = P([\omega_1]) + P([\omega_2]) \dots$$

C'est pénible toutes ces accolades!

Connaissance n°2 Convention d'écriture

Soit $a \in \mathbb{R}$. On note:

• P(X = a) la probabilité de l'événement « X prend la valeur a »

• $P(X \le a)$ la probabilité de l'événement « X prend une valeur inférrieure ou égale à a »

• on fait la même chose avec < , > et ≥

Remarque n°3.

D'après la remarque n°2, on comprend que si on connaît la probabilité de chaque issue de Ω , on pourra définir toutes les probabilités de la connaissance n°2.

Loi de probabilité d'une variable aléatoire réelle II

Définition n°2. Loi de probabilité d'une variable aléatoire réelle

Soit *n* et *k* des entiers naturels ($k \le n$), soit $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ un univers fini et X une variable aléatoire réelle sur Ω prenant les valeurs x_1, x_2, \ldots, x_k .

Définir la loi de probabilité de X c'est donner la valeur de chaque $P(X = x_i)$ pour *i* allant de 1 à k.

Exemple n°3.

Distribution (ou loi) de probabilité sur Ω								
Issue ω_i	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6		
$P(\omega_i)$	0,1	0,15	0,25	0,2	0,12	0,18		

1

Total

1

Loi de probabilité de X								
\boldsymbol{x}_{i}	-3,52	-2	0	2	4,59			
$P(X=x_i)$	0,1	0,25	0,35	0,12	0,18			

- P(X = 4.59) = 0.18, P(X = 4.58) = 0
- $P(X \le 0) = P(X = -3.52) + P(X = -2) + P(X = 0) = 0.7$
- P(X < 0) = P(X = -3.52) + P(X = -2) = 0.35
- P(X > 2) = P(X = 4.59) = 0.18
- $P(X \ge 5) = 0$, P(X < 1) = 0
- $P(X \ge -32) = P(X = -3.52) + P(X = -2) + P(X = 0) + P(X = 2) + P(X = 4.59) = 1$

III Espérance d'une variable aléatoire réelle

Remarque n°4.

On cherche ici à répondre à la question : « En moyenne, combien peut-on espérer obtenir comme résultat pour X?

Définition n°3. Espérance d'une variable aléatoire réelle

Soit *n* et *k* des entiers naturels ($k \le n$), soit $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ un univers fini et X une variable aléatoire réelle sur Ω prenant les valeurs x_1 , x_2 , ..., x_k .

On appelle espérance de X et on note E(X) le réel défini par : $E(X) = \sum_{k=i}^{k} x_i P(X = x_i)$

$$E(X) = \sum_{k=i}^{k} x_i P(X = x_i)$$

Remarque n°5.

$$\sum_{k=i}^{k} x_{i} P(X=x_{i}) = x_{1} \times P(X=x_{1}) + x_{2} \times P(X=x_{2}) + \dots + x_{k} \times P(X=x_{k})$$

dans le contexte de l'exemple n°3 Exemple n°4.

$$E(X) = -3.52 \times P(X = -3.52) + (-2) \times P(X = -2) + \dots + 4.59 \times P(X = 4.59)$$

 $E(X) = -3.52 \times 0.1 + (-2) \times 0.25 + 0 \times 0.35 + 2 \times 0.12 + 4.59 \times 0.18$
 $E(X) = 0.2142$

L'espérance de X vaut 0,2142.

Propriété n°1. espérance et transformation affine

Comme la somme des $P(X=x_i)$ vaut 1, on peut écrire que :

$$E(X) = \frac{E(X)}{1} = \frac{\sum_{i=1}^{k} x_i P(X = X_i)}{\sum_{i=1}^{k} P(X = x_i)}$$

On reconnaît la moyenne des valeurs de X pondérées par leurs probabilités respectives.

Or:

- Si on ajoute (ou soustrait) un même nombre b à toutes les valeurs d'un ensemble alors la moyenne de ces valeurs se trouve augmentée (resp. diminuée) de b.
- Si on multiplie (ou divise) par un même nombre non nul *a* toutes les valeurs d'un ensemble, alors la moyenne de ces valeurs se trouve multipliée (resp. divisée) par *a*.

Au final on peut écrire : $E(aX+b) = a \times E(X) + b$

IV Variance d'une variable aléatoire réelle

Remarque n°6.

On cherche à évaluer la « dispersion possible » des valeurs de X autour de E(X). Pour cela, comme en statistique, on va calculer la moyenne des carrés des écarts à l'espérance.

Définition n°4. Variance d'une variable aléatoire réelle

Soit $k \in \mathbb{N}$, $k \ge 1$ et soit X une variable aléatoire réelle prenant les valeurs x_1, x_2, \dots, x_k .

On appelle variance de X et on note V(X) le réel défini par :

$$V(X) = E((X-E(X))^2)$$
 c'est à dire :

$$V(X) = \sum_{i=1}^{k} (x_i - E(X))^2 \times P(X = x_i)$$

Remarque n°7.

Encore autrement dit:

$$V(X) = (x_1 - E(X))^2 \times P(X = x_1) + (x_2 - E(X))^2 \times P(X = x_2) + \dots + (x_k - E(X))^2 \times P(X = x_k)$$

Exemple n°5. Dans le contexte de l'exemple n°3

x_i	-3,52	-2	0	2	4,59	Total
$P(X=x_i)$	0,1	0,25	0,35	0,12	0,18	1

On calcule d'abord l'espérance :

E(X) = 0.2142 (on l'a fait dans l'exemple n°4)

Puis on calcule la variance :

$$V(X) = (-3.52 - 0.2142)^2 \times 0.1 + (-2 - 0.2142)^2 \times 0.25 + \dots + (4.59 - 0.2142)^2 \times 0.18$$

 $V(X) \approx 6.4654$

Propriété n°2. variance et transformation

Soit a et b deux nombres réels. $V(aX+b) = a^2 \times V(X)$

En effet,

$$V(aX+b) = \sum_{i=1}^{k} (ax_i+b-E(aX+b))^2 \times P(X=x_1)$$

$$= \sum_{i=1}^{k} (ax_i+b-aE(X)-b)^2 \times P(X=x_1)$$

$$= \sum_{i=1}^{k} (a(x_i-E(X)))^2 \times P(X=x_1)$$

$$= \sum_{i=1}^{k} a^2(x_i-E(X))^2 \times P(X=x_1)$$

$$= a^2 \sum_{i=1}^{k} (x_i-E(X))^2 \times P(X=x_1) = a^2 \times V(X)$$

Remarque n°8.

C'est bien, mais on aimerait que E(X) et V(X) aient la même unité. En effet si X est par exemple en euro alors E(X) sera en euro mais

V(X) sera en « euro au carré »...

On va donc « se débarrasser de ce carré »...

V Écart-type d'une variable aléatoire réelle

Définition n°5. écart-type d'une variable aléatoire réelle

Soit X une variable aléatoire réelle.

On appelle écart-type de X et on note $\sigma(X)$ le réel défini par :

$$\sigma(X) = \sqrt{V(X)}$$

Exemple n°6. Toujours dans le contexte de l'exemple n°3

On avait $V(X) \approx 6,4654$

Donc
$$\sigma(X) = V(X) \approx 2,5427$$

Remarque n°9. écart-type et transformation affine

$$\sigma(aX + b) = |a| \times \sigma(X)$$

VI Formule de Koenig-Huygens

Remarque n°10.

Calculer la variance d'une variable aléatoire « à la main » peut vite devenir pénible. Regardons la formule de la variance d'un peu plus près :

• Gardons à l'esprit que E(X) est « juste un nombre » et donc

$$E(E(X)^2) = \sum_{i=1}^k E(X)^2 \times P(X = x_i) = E(X)^2 \times \sum_{i=1}^k P(X = x_i) = E(X)^2 \times 1$$

• Dans la même idée :

$$E(-2XE(X)) = \sum_{i=1}^{k} -2x_i E(X) \times P(X=x_i) = -2E(X) \times \sum_{i=1}^{k} x_i P(X=x_i) = -2E(X) \times E(X)$$

• On peut donc écrire :

$$V(X) = E((X - E(X))^2) = E(X^2 - 2XE(X) + (E(X))^2)$$

ou encore

$$V(X) = E(X^{2}) - 2E(XE(X)) + E((E(X))^{2})$$

et grâce aux deux premiers points :

$$V(X) = E(X^{2}) - \underbrace{2E(X)E(X)}_{-2E(X)^{2}} + \underbrace{E(X)^{2} \times 1}_{+E(X)^{2}} = E(X^{2}) - (E(X))^{2}$$

Propriété n°3. Formule de Koenig-Huygens

Soit X une variable aléatoire réelle.

$$V(X) = E(X^{2}) - (E(X))^{2}$$

Le résumé du cours VII

Variable aléatoire réelle

Soit Ω un univers fini. On dit que X est une variable aléatoire réelle si

X est une application de Ω dans \mathbb{R} , c'est à dire si X associe à chaque issue de Ω un nombre réel.

Convention d'écriture

Soit $a \in \mathbb{R}$. On note :

- P(X = a) la probabilité de l'événement « X prend la valeur a »
- $P(X \le a)$ la probabilité de l'événement « X prend une valeur inférrieure ou égale à a »
- on fait la même chose avec < , > et ≥

Soit n et k des entiers naturels ($k \le n$), soit $\Omega = [\omega_1, \omega_2, \dots, \omega_n]$ un univers fini et X une variable aléatoire réelle sur Ω prenant les valeurs x_1, x_2, \ldots, x_k .

Loi de probabilité

Définir la loi de probabilité de X c'est donner la valeur de chaque $P(X = x_i)$ pour *i* allant de 1 à *k*.

Is

Distribution (ou loi) de probabilité sur Ω	2
---	---

Distribution (ou for) de productine sur								
Issue ω_i	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6		
$P(\omega_i)$	0,1	0,15	0,25	0,2	0,12	0,18		

Total

x_i	-3,52	-2	0	2	4,59
$P(X=x_i)$	0,1	0,25	0,35	0,12	0,18

1

- P(X = 4.59) = 0.18, P(X = 4.58) = 0
- $P(X \le 0) = P(X = -3.52) + P(X = -2) + P(X = 0) = 0.7$
- P(X < 0) = P(X = -3.52) + P(X = -2) = 0.35
- P(X > 2) = P(X = 4.59) = 0.18
- $P(X \ge 5) = 0$, P(X < 1) = 0
- $P(X \ge -32) = P(X = -3.52) + P(X = -2) + P(X = 0) + P(X = 2) + P(X = 4.59) = 1$

Espérance de X

$$E(X) = \sum_{k=i}^{k} x_i P(X = x_i)$$

ou encore:
$$E(X) = x_1 \times P(X=x_1) + x_2 \times P(X=x_2) + \dots + x_k \times P(X=x_k)$$

Variance de X

$$V(X) = E((X - E(X))^{2})$$
ou encore:
$$V(X) = \sum_{i=1}^{k} (x_{i} - E(X))^{2} \times P(X = x_{i})$$

Écart-type de X

$$\sigma(X) = \sqrt{V(X)}$$

Les propriétés à retenir a et b sont des nombres réels.

Transformation affine, changement de variable (selon les livres)

 $E(aX+b) = a \times E(X) + b$

 $V(aX+b) = a^2 \times V(X)$

 $\sigma(aX + b) = |a| \times \sigma(X)$

Formule de **Koenig-Huygens**

$$V(X) = E(X^2) - (E(X))^2$$