# Networks and Link Analysis

Web Anchor Text



### The Web as a Directed Graph



A hyperlink between pages denotes author perceived relevance (quality signal)

### **Assumption 2:**

The anchor of the hyperlink describes the target page (textual context)



### **Anchor Text**

- For *ibm* how to distinguish between:
  - IBM's home page (mostly graphical)
  - IBM's copyright page (high term frequency for "ibm")
  - Rival's spam page (arbitrarily high term frequency)





### Indexing anchor text

When indexing a document *D*, include anchor text from links pointing to *D*.





## Indexing anchor text

- Can sometimes have unexpected side effects
  - Google bombing
- Can score anchor text with weight depending on the authority of the anchor page's website
  - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them



### **Many NLP Applications of Anchor Text**

- Finding synonyms
  - Federal Reserve: "Fed", "U.S. Federal Reserve Board", "U.S. Federal Reserve System", "Federal Reserve Bank"
- Finding translations of named entities
- Providing constituent boundaries for parsers

# Networks and Link Analysis

Web Anchor Text

# Networks and Link Analysis

PageRank: Overview and Markov Chains



### **Combining link structure with text**

- A good search result looks at more than just querydocument text overlap
- One factor: page popularity.
  - Pages that are pointed to by lots of other pages are popular.
  - We can use link counts as a measure of static goodness,
  - Combine link counts with the text match score



## Using link structure to measure page importance

- Simplest: use link counts as popularity measure
  - Undirected popularity:
    - Page score= **degree**: the number of in-links plus the number of out-links (3+2=5).
  - Directed popularity:
    - Page score = number of in-links (3).





### Spamming simple popularity

- Simple popularity heuristics can be spammed to give your page a high score, whether it's:
  - the number of in-links plus the number of out-links
  - number of in-links



### **Intuition of PageRank**



C has higher PageRank than E, even though E has more inlinks



### PageRank scoring

- Imagine a browser doing a random walk on web pages:
  - Start at a random page
  - At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a longterm visit rate - use this as the page's score.



### Not quite enough

- The web is full of dead-ends.
  - Random walk can get stuck in dead-ends.
  - Makes no sense to talk about long-term visit rates.





### **Teleporting**

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
  - With remaining probability (90%), go out on a random link.
  - 10% a parameter.



## Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate, the Pagerank, at which any page is visited



### Markov chains

- A Markov chain:
  - N states,
  - An N×N transition probability matrix P.
- At each step, we are in exactly one of the states.
- For  $1 \le i, j \le n$ , the matrix entry  $P_{ij}$  tells us the probability of j being the next state, given we are currently in state i.
- For all i,

$$\sum_{i=1}^{n} P_{ij} = 1$$



### **Markov** chains



Transition probability matrix P

$$P = \left(\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)$$



### **Random Surfers and Markov chains**

- Markov chains are abstractions of random walks.
- Each state
  - represents one web page
- Each transition probability
  - represents the probability of moving from one page to another
- We can derive the transition probability P from the adjacency matrix A of the web graph.



### Teleporting, more formally

- If a node has no out-links, the random surfer teleports:
  - the transition probability to each node in the N-node graph is
     1/N
- If a node has K>0 outgoing links:
  - with probability  $0 < \alpha < 1$  the surfer teleports to a random node
    - probability is  $\alpha/N$
  - with probability 1-  $\alpha$  the surfer takes a normal random walk
    - probability is  $(1-\alpha)/K$



## Deriving transition probability matrix P from adjacency matrix A

- A is the adjacency matrix of the web graph
  - A<sub>ii</sub> is 1 if there is a hyperlink from page i to page j
- If a row of A has no 1's, then replace each element by 1/N. For all other rows proceed as follows.
- Divide each 1 in A by the number of 1's in its row. Thus, if there is a row with three 1's, then each of them is replaced by 1/3
- Multiply the resulting matrix by  $(1-\alpha)$
- Add  $\alpha/N$  to every entry of the resulting matrix, to obtain P.





## **Computing P with teleportation**

$$P_{\alpha=0} = \begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}$$

$$P[1,*] = (1-\alpha) (0 \ 1 \ 0) + \alpha (1/N \ 1/N \ 1/N)$$

$$P[1,*] = 0.5 (0 \ 1 \ 0) + 0.5(1/3 \ 1/3 \ 1/3)$$

$$P_{\alpha=0} = \begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}$$

$$P[1,*] = 0.5 (0 1 0) + 0.5(1/3 1/3 1/3)$$

$$P_{\alpha=0.5} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

# Networks and Link Analysis

PageRank: Overview and Markov Chains

# Networks and Link Analysis

PageRank: Computation



## Computing PageRank: The probability of being in a state

- A probability (row) vector  $\mathbf{x} = (x_1, ... x_n)$  tells us where the walk is at any point.
- E.g., (000...1...000) means we're in state *i*.

More generally, the vector  $\mathbf{x} = (x_1, ... x_n)$  means the walk is in state i with probability  $x_i$ .

$$\sum_{i=1}^{n} x_i = 1$$



## Computing PageRank: Change in probability vector

- If the probability vector is  $\mathbf{x} = (x_1, ... x_n)$  at this step, what is it at the next step?
- Recall that row i of transition matrix P tells us where we go next from state i.
- So from x, our next state is distributed as xP.



### **Ergodic Markov chains**

- A Markov chain is ergodic if
  - you have a path from any state to any other
  - For any start state, after a finite transient time  $T_0$ , the probability of being in any state at a fixed time  $T>T_0$  is nonzero.





### **Ergodic Markov chains**

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
  - A steady-state probability distribution  $\pi = (\pi_1, \dots, \pi_n)$ .
  - Over a long time-period, we visit each state in proportion to this rate.
  - Thus  $\pi_i$  is the PageRank of state *i*.
- It doesn't matter where we start.



### Steady state example

- The steady state looks like a vector of probabilities  $\pi = (\pi_1, ..., \pi_n)$ :
  - $\pi_i$  is the probability that we are in state *i*.



For this example,  $\pi_1 = 1/4$  and  $\pi_2 = 3/4$ .



### How do we compute this vector?

- Let  $\pi = (\pi_I, ... \pi_n)$  denote the row vector of steadystate probabilities
- If our current position is described by  $\pi$ , then the next step is distributed as  $\pi P$ .
- But  $\pi$  is the steady state, so  $\pi = \pi P$ .
- Solving this matrix equation gives us  $\pi$ .
  - So  $\pi$  is the (left) eigenvector for **P**.
  - (Corresponds to the "principal" eigenvector of **P** with the largest eigenvalue.)
  - Transition probability matrices always have largest eigenvalue 1.



## The power iteration method of computing $\pi$

- Recall, regardless of where we start, we eventually reach the steady state  $\pi$ .
- Start with any distribution (say  $\mathbf{x}=(10...0)$ ).
- After one step, we're at xP;
- after two steps at  $xP^2$ , then  $xP^3$  and so on.
- "Eventually" means for "large" k,  $\mathbf{xP}^k = \boldsymbol{\pi}$ .
- Algorithm: multiply x by increasing powers of P until the product looks stable.



## **Example of power iteration**

$$P_{\alpha=0.5} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

Let's say surfer starts in state 1:

$$\vec{x}_0 = \begin{pmatrix} 1 & 0 & 0 \\ \vec{x}_1 = \vec{x}_0 P = \begin{pmatrix} 1/6 & 2/3 & 1/6 \end{pmatrix}$$

$$\vec{x}_2 = \vec{x}_1 P = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$



### Power iteration example (continued)

| $\vec{x}_0$           | 1    | 0    | 0    |
|-----------------------|------|------|------|
| $\vec{x}_1$           | 1/6  | 2/3  | 1/6  |
| $\vec{x}_2$           | 1/3  | 1/3  | 1/3  |
| $\vec{x}_3$           | 1/4  | 1/2  | 1/4  |
| $\vec{x}_4$           | 7/24 | 5/12 | 7/24 |
| •••                   | •••  | •••  | •••  |
| $\vec{x} = \vec{\pi}$ | 5/18 | 4/9  | 5/18 |

Node 1 PageRank

Node 2 PageRank Node 3 PageRank



### PageRank summary

- Preprocessing:
  - Given graph of links, build matrix P.
  - From it compute the PageRank vector  $\pi$ .
  - The PageRank of page i,  $\pi_i$  is between 0 and 1
- Query processing:
  - Retrieve pages meeting query.
  - Rank them by their PageRank.
  - Order is query-independent.

# Networks and Link Analysis

PageRank: Computation