Annex 1: Top 10 significant results by cluster

June 9, 2024

Contents

1	Q3.1	1 Top 10	up-r	egulat	ted t	ranscı	ripts	witho	out a	adjus	teme	ent i	for o	conf	ond	\mathbf{ant}	effe	ct		4
	1.1	Cluster 0																		 4
	1.2	Cluster 1																		 4
	1.3	Cluster 2																		 4
	1.4	Cluster 3																		 5
	1.5	Cluster 4																		5
	1.6	Cluster 5																		5
	1.7	Cluster 6																		5
	1.8	Cluster 7																		6
	1.9	Cluster 8																		6
		Cluster 9																		6
		Cluster 1				 														6
		Cluster 1																		7
		Cluster 1																		7
		Cluster 1																		7
		Cluster 1																		8
		Cluster 1																		
		Cluster 1																		8
																				8
		Cluster 1																		9
		Cluster 1																		9
		Cluster 1																		9
		Cluster 2																		9
		Cluster 2																		10
		Cluster 2																		10
		Cluster 2																		10
		Cluster 2																		10
		Cluster 2																		 11
		Cluster 2																		 11
		Cluster 2																	 •	 11
		Cluster 2																		 11
		Cluster 2																		12
		Cluster 3																		 12
	1.32	Cluster 3	1 .																	 12
				_							_		_							
2	•	Top 10	-	_			-		•											12
	2.1	Cluster 0																		12
	2.2	Cluster 1																	 •	 12
	2.3	Cluster 2																		 12
	2.4	Cluster 3																	 •	 12
	2.5	Cluster 4																		 13
	2.6	Cluster 5																		 13
	2.7	Cluster 6																		 13
	2.8	Cluster 7																		 13
	2.9	Cluster 8																		 13
		Cluster 9																		 13
	2.11	Cluster 1	0 .																	 14
	2.12	Cluster 1	1 .																	 14
	2.13	Cluster 1	2																	14

	2.14 Clus	ter 13																					 			14
	2.15 Clus	ter 14																					 			14
	2.16 Clus	ter 15																					 			15
	2.17 Clus	ter 16																					 			15
	2.18 Clus	ter 17																					 			15
	2.19 Clus	ter 18																					 			15
	2.20 Clus	ter 19																					 			16
	2.21 Clus	ter 20																					 			16
	2.22 Clus																						 			16
	2.23 Clus	ter 22																					 			16
	2.24 Clus																									16
	2.25 Clus		•				• •	• •																		16
	2.26 Clus		•								-												 			16
	2.27 Clus		•																						•	17
	2.27 Clus 2.28 Clus		•								-												 		•	17
	2.29 Clus		•								-												 		•	17
	2.29 Clus 2.30 Clus		•																						•	17
	2.30 Clus 2.31 Clus		•																							
			•																							17
	2.32 Clus	ter 31	•													• •					•		 		•	17
3	Q3.2 Top	10 ı	ın_r	മനവ	lator	d na	thw	21/6	337i	tho	11t s	din	ieto:	me	nt t	for	con	fon	dar	at d	offe	ct				17
Ü	-		_	_		_		-				-														17
		ter 1			 																					17
		ter 10																								18
		ter 11			 																					18
		ter 12	•																							18
		ter 13	•					• •																	•	18
		ter 14	•					• •																	•	18
		ter 15	•																						•	
		ter 15	•																						•	18
			•																						•	18
	3.10 Clus		•																							18
	3.11 Clus		•																							18
	3.12 Clus		•																							18
	3.13 Clus																									18
	3.14 Clus		•																							18
	3.15 Clus																									19
	3.16 Clus		•																				 		•	19
	3.17 Clus		•																						•	
	3.18 Clus		•																				 		•	19
	3.19 Clus		•											٠.				٠.			•		 	٠.	•	19
	3.20 Clus																						 			19
	3.21 Clus																						 			19
	3.22 Clus																						 		•	19
	3.23 Clus																						 			19
	3.24 Clus																						 			19
	3.25 Clus	ter 30																					 			19
	3.26 Clus	ter 31																					 			20
	3.27 Clus	ter 4																					 			20
	3.28 Clus	ter 5																					 			20
	3.29 Clus	ter 6																					 			20
	3.30 Clus	ter 7																					 			20
	3.31 Clus	ter 8																					 			20
	3.32 Clus	ter 9																					 			20
4	Q3.2 To ₁	1 0 τ	ıp-re	\mathbf{egu}	lated	d pa	thwa	ays	wi	th a	adju	ıste	mei	nt f	or	con	fon	dar	ıt e	ffe	ct					20
	4.1 Clus																						 			20
	4.2 Clus																						 			21
	4.3 Clus	ter 2																					 			21
	4.4 Clus	ter 3																					 			21
	4.5 Clus	ter 4																					 			21
	4.6 Clue	tor 5																								21

4.7	Cluster 6						 												 		21
4.8	Cluster 7						 												 		21
4.9	Cluster 8						 												 		21
4.10	Cluster 9						 												 		21
4.11	Cluster 10																		 		22
4.12	Cluster 11																		 		22
4.13	Cluster 12																		 		22
4.14	Cluster 13																		 		22
4.15	Cluster 14																		 		22
4.16	Cluster 15																		 		22
4.17	Cluster 16																		 		22
4.18	Cluster 17																		 		22
4.19	Cluster 18						 												 		22
4.20	Cluster 19																		 		22
4.21	Cluster 20																		 		22
4.22	Cluster 21																		 		22
4.23	Cluster 22																		 		23
4.24	Cluster 23																		 		23
4.25	Cluster 24																		 		23
4.26	Cluster 25						 												 		23
4.27	Cluster 26																		 		23
	Cluster 27																		 		23
4.29	Cluster 28																		 		23
4.30	Cluster 29																		 		23
	Cluster 30																		 		23
4 22	Cluster 31																				23

1 Q3.1 Top 10 up-regulated transcripts without adjustement for confondant effect

1.1 Cluster 0

	gene	log2FoldChange	padj
1	ENSG00000210156.1	2.5397	0.0000
2	ENSG00000281181.1	2.3406	0.0000
3	ENSG00000124159.15	1.8320	0.0000
4	ENSG00000223609.7	1.8241	0.0000
5	ENSG00000210140.1	1.6348	0.0000
6	ENSG00000202538.1	1.5935	0.0000
7	ENSG00000118972.1	1.5324	0.0000
8	ENSG00000086506.2	1.4671	0.0000
9	ENSG00000158578.18	1.4460	0.0000
_10	ENSG00000206172.8	1.4459	0.0000

Table 1: Top 10 up-regulated transcripts for cluster 0 $\,$

1.2 Cluster 1

	gene	log2FoldChange	padj
1	ENSG00000210156.1	2.2671	0.0000
2	ENSG00000281181.1	1.8488	0.0000
3	ENSG00000281383.1	1.4370	0.0000
4	ENSG00000202538.1	1.3242	0.0000
5	ENSG00000164821.4	1.2449	0.0000
6	ENSG00000259384.6	1.2218	0.0000
7	ENSG00000137392.9	1.1493	0.0000
8	ENSG00000172232.9	1.1267	0.0000
9	ENSG00000110245.11	1.0570	0.0000
10	ENSG00000279691.1	1.0513	0.0000

Table 2: Top 10 up-regulated transcripts for cluster 1 $\,$

1.3 Cluster 2

	gene	log2FoldChange	padj
1	ENSG00000210156.1	2.1983	0.0000
2	ENSG00000281181.1	1.9498	0.0000
3	ENSG00000210140.1	1.5320	0.0000
4	ENSG00000281383.1	1.4409	0.0000
5	ENSG00000262902.1	1.1566	0.0000
6	ENSG00000202538.1	1.1543	0.0000
7	ENSG00000179751.6	1.1436	0.0000
8	ENSG00000137392.9	1.0442	0.0000
9	ENSG00000168928.12	1.0308	0.0000

Table 3: Top 10 up-regulated transcripts for cluster 2

1.4 Cluster 3

	gene	log 2 Fold Change	padj
1	ENSG00000210154.1	2.0926	0.0000
2	ENSG00000202538.1	1.5827	0.0000
3	ENSG00000200879.1	1.4256	0.0000
4	ENSG00000259710.1	1.3485	0.0000
5	ENSG00000277581.1	1.3335	0.0000
6	ENSG00000267703.1	1.3278	0.0000
7	ENSG00000260799.1	1.3239	0.0000
8	ENSG00000169429.10	1.3133	0.0000
9	ENSG00000237070.1	1.2797	0.0000
10	ENSG00000118972.1	1.2757	0.0000

Table 4: Top 10 up-regulated transcripts for cluster 3 $\,$

1.5 Cluster 4

	gene	log2FoldChange	padj
1	ENSG00000158578.18	2.9068	0.0000
2	ENSG00000213934.6	2.9066	0.0000
3	ENSG00000260592.1	2.8063	0.0000
4	ENSG00000169877.9	2.7608	0.0000
5	ENSG00000188536.12	2.6596	0.0000
6	ENSG00000196565.13	2.4875	0.0000
7	ENSG00000215182.8	2.4850	0.0000
8	ENSG00000206177.6	2.4165	0.0000
9	ENSG00000261039.2	2.3931	0.0000
10	ENSG00000095752.6	2.3751	0.0000

Table 5: Top 10 up-regulated transcripts for cluster 4

1.6 Cluster 5

	gene	log 2 Fold Change	padj
1	ENSG00000210156.1	2.3618	0.0000
2	ENSG00000210154.1	2.2689	0.0000
3	ENSG00000281181.1	1.9596	0.0000
4	ENSG00000108342.12	1.6685	0.0000
5	ENSG00000281383.1	1.4671	0.0000
6	ENSG00000118972.1	1.4470	0.0000
7	ENSG00000202538.1	1.4464	0.0000
8	ENSG00000210140.1	1.4281	0.0000
9	ENSG00000164821.4	1.2934	0.0000
_10	ENSG00000172232.9	1.2923	0.0000

Table 6: Top 10 up-regulated transcripts for cluster 5 $\,$

1.7 Cluster 6

	gene	$\log 2$ FoldChange	padj
1	ENSG00000248713.1	1.2854	0.0000
2	ENSG00000073737.16	1.0690	0.0000
3	ENSG00000223617.1	1.0666	0.0000
4	ENSG00000231013.1	1.0187	0.0000

Table 7: Top 10 up-regulated transcripts for cluster 6

1.8 Cluster 7

	gene	log2FoldChange	padj
1	ENSG00000281181.1	2.2393	0.0000
2	ENSG00000202538.1	2.1307	0.0000
3	ENSG00000174697.4	2.0061	0.0000
4	ENSG00000281383.1	1.8399	0.0000
5	ENSG00000181092.9	1.6299	0.0000
6	ENSG00000254211.5	1.6232	0.0000
7	ENSG00000124159.15	1.5154	0.0008
8	ENSG00000130876.11	1.4476	0.0000
9	ENSG00000187288.10	1.4213	0.0000
10	ENSG00000166819.11	1.4000	0.0000

Table 8: Top 10 up-regulated transcripts for cluster 7 $\,$

1.9 Cluster 8

	gene	log 2 Fold Change	padj
1	ENSG00000110680.12	2.7624	0.0000
2	ENSG00000229807.10	2.6810	0.0000
3	ENSG00000270641.1	2.3376	0.0008
4	ENSG00000134240.11	2.2957	0.0000
5	ENSG00000180053.7	2.2034	0.0000
6	ENSG00000283378.1	2.0152	0.0000
7	ENSG00000279431.1	1.8317	0.0001
8	ENSG00000178233.17	1.7337	0.0000
9	ENSG00000257647.1	1.6973	0.0000
10	ENSG00000073737.16	1.6461	0.0000

Table 9: Top 10 up-regulated transcripts for cluster 8

1.10 Cluster 9

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.3534	0.0000
2	ENSG00000281181.1	2.0067	0.0000
3	ENSG00000140465.13	1.5961	0.0000
4	ENSG00000179914.4	1.4568	0.0000
5	ENSG00000202538.1	1.4368	0.0000
6	ENSG00000210140.1	1.4310	0.0000
7	ENSG00000102854.15	1.2138	0.0000
8	ENSG00000086506.2	1.1990	0.0000
9	ENSG00000169347.16	1.1893	0.0000
_10	ENSG00000108342.12	1.1760	0.0000

Table 10: Top 10 up-regulated transcripts for cluster 9 $\,$

1.11 Cluster 10

No significant transcript

1.12 Cluster 11

	gene	log 2 Fold Change	padj
1	ENSG00000210191.1	3.8454	0.0000
2	ENSG00000223609.7	3.6328	0.0000
3	ENSG00000086506.2	3.2895	0.0000
4	ENSG00000179914.4	2.9044	0.0000
5	ENSG00000281181.1	2.6384	0.0000
6	ENSG00000158578.18	2.5955	0.0000
7	ENSG00000260592.1	2.5845	0.0000
8	ENSG00000213934.6	2.5189	0.0000
9	ENSG00000176840.11	2.5185	0.0000
10	ENSG00000283907.1	2.4638	0.0000

Table 11: Top 10 up-regulated transcripts for cluster 11 $\,$

1.13 Cluster 12

	gene	log 2 Fold Change	padj
1	ENSG00000281181.1	2.3840	0.0000
2	ENSG00000202538.1	1.8674	0.0000
3	ENSG00000151365.2	1.5169	0.0000
4	ENSG00000146678.9	1.4277	0.0000
5	ENSG00000174697.4	1.3273	0.0000
6	ENSG00000006128.11	1.2608	0.0000
7	ENSG00000128510.10	1.2010	0.0000
8	ENSG00000283907.1	1.1917	0.0000
9	ENSG00000215182.8	1.1266	0.0000
10	ENSG00000211660.3	1.1219	0.0000

Table 12: Top 10 up-regulated transcripts for cluster 12

1.14 Cluster 13

	gene	log2FoldChange	padj
1	ENSG00000140465.13	2.4286	0.0000
2	ENSG00000281181.1	2.0570	0.0000
3	ENSG00000118972.1	1.7030	0.0000
4	ENSG00000281383.1	1.6919	0.0000
5	ENSG00000283907.1	1.5013	0.0000
6	ENSG00000283209.1	1.4903	0.0000
7	ENSG00000004939.13	1.4224	0.0000
8	ENSG00000272799.1	1.4140	0.0000
9	ENSG00000279691.1	1.4105	0.0000
_10	ENSG00000262902.1	1.4102	0.0000

Table 13: Top 10 up-regulated transcripts for cluster 13 $\,$

1.15 Cluster 14

	gene	log 2 Fold Change	padj
1	ENSG00000281181.1	1.7916	0.0007
2	ENSG00000137392.9	1.7267	0.0010
3	ENSG00000202538.1	1.5840	0.0002
4	ENSG00000170890.13	1.3837	0.0015
5	ENSG00000170827.9	1.2792	0.0005
6	ENSG00000010438.16	1.1808	0.0003
7	ENSG00000162438.11	1.1525	0.0005
8	ENSG00000073737.16	1.1220	0.0001
9	ENSG00000250746.1	1.0015	0.0001

Table 14: Top 10 up-regulated transcripts for cluster 14 $\,$

1.16 Cluster 15

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.2148	0.0000
2	ENSG00000140465.13	2.0216	0.0000
3	ENSG00000281181.1	1.7257	0.0000
4	ENSG00000086506.2	1.4677	0.0000
5	ENSG00000179914.4	1.3641	0.0000
6	ENSG00000202538.1	1.3487	0.0000
7	ENSG00000169429.10	1.2953	0.0000
8	ENSG00000266378.1	1.2936	0.0000
9	ENSG00000210195.2	1.2886	0.0000
10	ENSG00000169245.5	1.2805	0.0000

Table 15: Top 10 up-regulated transcripts for cluster 15 $\,$

1.17 Cluster 16

	gene	log2FoldChange	padj
1	ENSG00000210191.1	2.8695	0.0000
2	ENSG00000210156.1	2.6294	0.0000
3	ENSG00000086506.2	2.5888	0.0000
4	ENSG00000158578.18	2.2732	0.0000
5	ENSG00000206172.8	2.2046	0.0000
6	ENSG00000004939.13	2.1860	0.0000
7	ENSG00000260592.1	2.1850	0.0000
8	ENSG00000169877.9	2.1849	0.0000
9	ENSG00000213934.6	2.1419	0.0000
10	ENSG00000188536.12	2.1169	0.0000

Table 16: Top 10 up-regulated transcripts for cluster 16 $\,$

1.18 Cluster 17

	gene	log2FoldChange	padj
1	ENSG00000281181.1	5.1242	0.0000
2	ENSG00000281383.1	3.7459	0.0000
3	ENSG00000202538.1	3.3581	0.0000
4	ENSG00000124159.15	2.5998	0.0000
5	ENSG00000086506.2	2.4133	0.0000
6	ENSG00000105664.10	2.2957	0.0000
7	ENSG00000223609.7	2.2255	0.0002
8	ENSG00000171951.4	1.9575	0.0000
9	ENSG00000095752.6	1.8639	0.0000
10	ENSG00000149948.13	1.7847	0.0000

Table 17: Top 10 up-regulated transcripts for cluster 17 $\,$

1.19 Cluster 18

	gene	log2FoldChange	padj
1	ENSG00000128965.11	1.3977	0.0000
2	ENSG00000103888.16	1.1822	0.0002
3	ENSG00000248923.1	1.1284	0.0012

Table 18: Top 10 up-regulated transcripts for cluster 18

1.20 Cluster 19

	gene	log2FoldChange	padj
1	ENSG00000172179.11	2.4814	0.0000
2	ENSG00000259384.6	2.3679	0.0000
3	ENSG00000176840.11	2.1539	0.0000
4	ENSG00000229859.9	1.8912	0.0001
5	ENSG00000104826.12	1.7859	0.0000
6	ENSG00000140465.13	1.7765	0.0000
7	ENSG00000232810.3	1.7700	0.0000
8	ENSG00000262902.1	1.7638	0.0000
9	ENSG00000172232.9	1.7377	0.0000
10	ENSG00000170827.9	1.7109	0.0000

Table 19: Top 10 up-regulated transcripts for cluster 19 $\,$

1.21 Cluster 20

	gene	log2FoldChange	padj
1	ENSG00000202538.1	1.5443	0.0000
2	ENSG00000279431.1	1.2265	0.0000
3	ENSG00000283265.1	1.1354	0.0000
4	ENSG00000180053.7	1.1228	0.0000
5	ENSG00000108759.3	1.1075	0.0001
6	ENSG00000214940.8	1.1061	0.0002
7	ENSG00000257647.1	1.0312	0.0000
8	ENSG00000229807.10	1.0274	0.0006
9	ENSG00000122735.15	1.0225	0.0000
10	ENSG00000235832.2	1.0216	0.0000

Table 20: Top 10 up-regulated transcripts for cluster 20 $\,$

1.22 Cluster 21

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.4511	0.0000
2	ENSG00000210156.1	2.3969	0.0000
3	ENSG00000281181.1	2.0040	0.0000
4	ENSG00000140465.13	1.6920	0.0000
5	ENSG00000118972.1	1.6193	0.0000
6	ENSG00000086506.2	1.4118	0.0000
7	ENSG00000169877.9	1.3559	0.0000
8	ENSG00000169245.5	1.3555	0.0000
9	ENSG00000004939.13	1.3089	0.0000
10	ENSG00000206172.8	1.3087	0.0000

Table 21: Top 10 up-regulated transcripts for cluster 21 $\,$

1.23 Cluster 22

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.5675	0.0000
2	ENSG00000086506.2	2.0612	0.0000
3	ENSG00000202538.1	1.9462	0.0000
4	ENSG00000239839.6	1.6974	0.0000
5	ENSG00000223609.7	1.6815	0.0000
6	ENSG00000004939.13	1.6800	0.0000
7	ENSG00000213934.6	1.6040	0.0000
8	ENSG00000200879.1	1.6010	0.0000
9	ENSG00000149516.13	1.5871	0.0000
10	ENSG00000164821.4	1.5807	0.0000

Table 22: Top 10 up-regulated transcripts for cluster 22

1.24 Cluster 23

	gene	log2FoldChange	padj
1	ENSG00000229828.2	1.2181	0.0000
2	ENSG00000279431.1	1.2089	0.0000
3	ENSG00000223617.1	1.0312	0.0000
4	ENSG00000257647.1	1.0287	0.0000
5	ENSG00000163082.9	1.0038	0.0000

Table 23: Top 10 up-regulated transcripts for cluster 23

1.25 Cluster 24

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.3879	0.0000
2	ENSG00000210156.1	2.2983	0.0000
3	ENSG00000281181.1	2.0785	0.0000
4	ENSG00000281383.1	1.5831	0.0000
5	ENSG00000210140.1	1.4668	0.0000
6	ENSG00000202538.1	1.3899	0.0000
7	ENSG00000108342.12	1.3539	0.0000
8	ENSG00000181143.15	1.2888	0.0000
9	ENSG00000179914.4	1.2834	0.0000
10	ENSG00000137392.9	1.2742	0.0000

Table 24: Top 10 up-regulated transcripts for cluster 24

1.26 Cluster 25

	gene	log2FoldChange	padj
1	ENSG00000279431.1	1.0949	0.0000
2	ENSG00000073737.16	1.0196	0.0000

Table 25: Top 10 up-regulated transcripts for cluster 25 $\,$

1.27 Cluster 26

	gene	log 2 Fold Change	padj
1	ENSG00000210156.1	2.2537	0.0000
2	ENSG00000281181.1	1.9725	0.0000
3	ENSG00000118972.1	1.5372	0.0000
4	ENSG00000210140.1	1.4536	0.0000
5	ENSG00000163435.15	1.3491	0.0000
6	ENSG00000140465.13	1.3345	0.0000
7	ENSG00000137392.9	1.3111	0.0000
8	ENSG00000202538.1	1.2916	0.0000
9	ENSG00000210154.1	1.2621	0.0000
_10	ENSG00000168928.12	1.2578	0.0000

Table 26: Top 10 up-regulated transcripts for cluster 26 $\,$

1.28 Cluster 27

	gene	log2FoldChange	padj
1	ENSG00000281181.1	1.4906	0.0000
2	ENSG00000202538.1	1.3269	0.0000
3	ENSG00000279431.1	1.0137	0.0000

Table 27: Top 10 up-regulated transcripts for cluster 27 $\,$

1.29 Cluster 28

	gene	log 2 Fold Change	padj
1	ENSG00000210156.1	2.2717	0.0000
2	ENSG00000281181.1	2.0990	0.0000
3	ENSG00000223609.7	2.0563	0.0000
4	ENSG00000169429.10	1.7391	0.0000
5	ENSG00000281383.1	1.6064	0.0000
6	ENSG00000158578.18	1.5576	0.0000
7	ENSG00000202538.1	1.5280	0.0000
8	ENSG00000169245.5	1.5146	0.0000
9	ENSG00000118972.1	1.5026	0.0000
10	ENSG00000086506.2	1.5020	0.0000

Table 28: Top 10 up-regulated transcripts for cluster 28 $\,$

1.30 Cluster 29

	gene	log2FoldChange	padj
1	ENSG00000223609.7	3.3655	0.0000
2	ENSG00000202538.1	3.2211	0.0000
3	ENSG00000124159.15	2.6905	0.0000
4	ENSG00000105664.10	2.5587	0.0000
5	ENSG00000158578.18	2.4258	0.0000
6	ENSG00000086506.2	2.3888	0.0000
7	ENSG00000261039.2	2.3035	0.0000
8	ENSG00000171951.4	2.1793	0.0000
9	ENSG00000095752.6	2.1411	0.0000
10	ENSG00000106483.11	2.1102	0.0000

Table 29: Top 10 up-regulated transcripts for cluster 29

1.31 Cluster 30

-	gene	log2FoldChange	padj
1	ENSG00000210195.2	1.7112	0.0000

Table 30: Top 10 up-regulated transcripts for cluster 30

1.32 Cluster 31

No significant transcript

2 Q3.1 Top 10 up-regulated transcript with adjustement for confondant effect

2.1 Cluster 0

	gene	log2FoldChange	padj
1	ENSG00000223609.7	1.1369	0.0002

Table 31: Top 10 up-regulated transcripts for cluster 0 with adjustement for confondant effect

2.2 Cluster 1

No significant transcript

2.3 Cluster 2

No significant transcript

2.4 Cluster 3

	gene	log2FoldChange	padj
1	ENSG00000270640.1	1.8560	0.0000
2	ENSG00000215182.8	1.3792	0.0000
3	ENSG00000264204.2	1.1567	0.0000
4	ENSG00000159261.10	1.1012	0.0015
5	ENSG00000200879.1	1.0460	0.0002
6	ENSG00000095752.6	1.0370	0.0000

Table 32: Top 10 up-regulated transcripts for cluster 3 with adjustement for confondant effect

2.5 Cluster 4

	gene	log2FoldChange	padj
1	ENSG00000171951.4	2.6749	0.0000
2	ENSG00000159261.10	2.5414	0.0001
3	ENSG00000223609.7	2.5085	0.0000
4	ENSG00000095752.6	2.2721	0.0000
5	ENSG00000261039.2	2.0630	0.0001
6	ENSG00000268941.2	2.0243	0.0003
7	ENSG00000106541.11	1.9935	0.0002
8	ENSG00000149948.13	1.8640	0.0002
9	ENSG00000124159.15	1.7444	0.0007
10	ENSG00000106483.11	1.4863	0.0000

Table 33: Top 10 up-regulated transcripts for cluster 4 with adjustement for confondant effect

2.6 Cluster 5

	gene	log 2 Fold Change	padj
1	ENSG00000163435.15	1.0765	0.0000

Table 34: Top 10 up-regulated transcripts for cluster 5 with adjustement for confondant effect

2.7 Cluster 6

No significant transcript

2.8 Cluster 7

	gene	$\log 2$ FoldChange	padj
1	ENSG00000174697.4	2.0496	0.0000
2	ENSG00000151365.2	1.7741	0.0000
3	ENSG00000181092.9	1.6654	0.0000
4	ENSG00000254211.5	1.6275	0.0000
5	ENSG00000187288.10	1.5227	0.0000
6	ENSG00000166819.11	1.4918	0.0000
7	ENSG00000130876.11	1.3605	0.0000
8	ENSG00000166828.2	1.3040	0.0001
9	ENSG00000133317.14	1.2826	0.0000
10	ENSG00000145824.12	1.1655	0.0000

Table 35: Top 10 up-regulated transcripts for cluster 7 with adjustement for confondant effect

2.9 Cluster 8

	gene	log2FoldChange	padj
1	ENSG00000229807.10	2.2735	0.0009
2	ENSG00000246375.2	1.7102	0.0000
3	ENSG00000162763.3	1.5895	0.0006
4	ENSG00000283378.1	1.5257	0.0010
5	ENSG00000241054.1	1.3848	0.0006
6	ENSG00000198734.10	1.2633	0.0001
7	ENSG00000250061.5	1.1986	0.0007

Table 36: Top 10 up-regulated transcripts for cluster 8 with adjustement for confondant effect

2.10 Cluster 9

No significant transcript

2.11 Cluster 10

	gene	log2FoldChange	padj
1	ENSG00000219073.7	1.1604	0.0001
2	ENSG00000142789.19	1.0556	0.0003

Table 37: Top 10 up-regulated transcripts for cluster 10 with adjustement for confondant effect

2.12 Cluster 11

	gene	log2FoldChange	padj
1	ENSG00000277247.1	2.8346	0.0000
2	ENSG00000189410.11	2.1225	0.0001
3	ENSG00000223609.7	1.9738	0.0014
4	ENSG00000149948.13	1.8667	0.0001
5	ENSG00000086506.2	1.8515	0.0014
6	ENSG00000124875.9	1.7872	0.0001
7	ENSG00000239839.6	1.7854	0.0014
8	ENSG00000163435.15	1.6569	0.0009
9	ENSG00000229604.2	1.6353	0.0000
10	ENSG00000101670.11	1.6247	0.0006

Table 38: Top 10 up-regulated transcripts for cluster 11 with adjustement for confondant effect

2.13 Cluster 12

	gene	log 2 Fold Change	padj
1	ENSG00000151365.2	1.4695	0.0000
2	ENSG00000174697.4	1.4452	0.0000
3	ENSG00000202538.1	1.2194	0.0000
4	ENSG00000105880.4	1.1673	0.0000
5	ENSG00000254211.5	1.1559	0.0000
6	ENSG00000181092.9	1.1122	0.0000
7	ENSG00000146678.9	1.0632	0.0005
8	ENSG00000215182.8	1.0605	0.0001
9	ENSG00000006128.11	1.0396	0.0000
_10	ENSG00000166819.11	1.0377	0.0000

Table 39: Top 10 up-regulated transcripts for cluster 12 with adjustement for confondant effect

2.14 Cluster 13

	gene	log 2 Fold Change	padj
1	ENSG00000185988.11	1.3936	0.0000
2	ENSG00000272799.1	1.1348	0.0000
3	ENSG00000279281.1	1.0549	0.0005

Table 40: Top 10 up-regulated transcripts for cluster 13 with adjustement for confondant effect

2.15 Cluster 14

	gene	log 2 Fold Change	padj
1	ENSG00000010438.16	1.1909	0.0003
2	ENSG00000162438.11	1.0712	0.0013

Table 41: Top 10 up-regulated transcripts for cluster 14 with adjustement for confondant effect

2.16 Cluster 15

	gene	log2FoldChange	padj
1	ENSG00000223609.7	1.2400	0.0000

Table 42: Top 10 up-regulated transcripts for cluster 15 with adjustement for confondant effect

2.17 Cluster 16

	gene	log2FoldChange	padj
1	ENSG00000223609.7	1.5988	0.0000
2	ENSG00000159261.10	1.5516	0.0000
3	ENSG00000215182.8	1.4767	0.0000
4	ENSG00000237070.1	1.2521	0.0000
5	ENSG00000228495.1	1.2404	0.0000
6	ENSG00000169245.5	1.2301	0.0000
7	ENSG00000241112.1	1.2216	0.0000
8	ENSG00000206177.6	1.2016	0.0000
9	ENSG00000267703.1	1.1947	0.0000
10	ENSG00000086506.2	1.1716	0.0003

Table 43: Top 10 up-regulated transcripts for cluster 16 with adjustement for confondant effect

2.18 Cluster 17

	gene	log2FoldChange	padj
1	ENSG00000169429.10	1.7999	0.0000
2	ENSG00000149948.13	1.7278	0.0000
3	ENSG00000103888.16	1.6323	0.0000
4	ENSG00000124159.15	1.5569	0.0007
5	ENSG00000095752.6	1.5507	0.0003
6	ENSG00000281383.1	1.5111	0.0009
7	ENSG00000210196.2	1.4883	0.0003
8	ENSG00000171951.4	1.4869	0.0000
9	ENSG00000060718.20	1.4805	0.0005
10	ENSG00000166923.10	1.4775	0.0000

Table 44: Top 10 up-regulated transcripts for cluster 17 with adjustement for confondant effect

2.19 Cluster 18

	gene	log2FoldChange	padj
1	ENSG00000062038.13	1.3323	0.0002
2	ENSG00000248923.1	1.3163	0.0000
3	ENSG00000103888.16	1.2854	0.0001
4	ENSG00000135069.13	1.1049	0.0014

Table 45: Top 10 up-regulated transcripts for cluster 18 with adjustement for confondant effect

2.20 Cluster 19

	gene	log2FoldChange	padj
$\overline{1}$	ENSG00000172179.11	2.2017	0.0001
2	ENSG00000140465.13	1.5658	0.0003
3	ENSG00000176840.11	1.5456	0.0014
4	ENSG00000259384.6	1.4193	0.0012
5	ENSG00000256713.7	1.3759	0.0003
6	ENSG00000170827.9	1.3690	0.0005
7	ENSG00000104826.12	1.2968	0.0004
8	ENSG00000244921.2	1.2365	0.0000
9	ENSG00000198744.5	1.2041	0.0002
10	ENSG00000010438.16	1.1691	0.0012

Table 46: Top 10 up-regulated transcripts for cluster 19 with adjustement for confondant effect

2.21 Cluster 20

	gene	log2FoldChange	padj
1	ENSG00000215182.8	1.4007	0.0000

Table 47: Top 10 up-regulated transcripts for cluster 20 with adjustement for confondant effect

2.22 Cluster 21

	gene	log2FoldChange	padj
1	ENSG00000185988.11	1.0874	0.0001

Table 48: Top 10 up-regulated transcripts for cluster 21 with adjustement for confondant effect

2.23 Cluster 22

	gene	log2FoldChange	padj
1	ENSG00000239839.6	1.4162	0.0000
2	ENSG00000200879.1	1.0568	0.0009
3	ENSG00000237070.1	1.0291	0.0000
4	ENSG00000077274.8	1.0056	0.0002

Table 49: Top 10 up-regulated transcripts for cluster 22 with adjustement for confondant effect

2.24 Cluster 23

	gene	log 2 Fold Change	padj
1	ENSG00000174697.4	1.0171	0.0000

Table 50: Top 10 up-regulated transcripts for cluster 23 with adjustement for confondant effect

2.25 Cluster 24

No significant transcript

2.26 Cluster 25

	gene	log2FoldChange	padj
1	ENSG00000214940.8	1.1796	0.0000

Table 51: Top 10 up-regulated transcripts for cluster 25 with adjustement for confondant effect

2.27 Cluster 26

	gene	log 2 Fold Change	padj
1	ENSG00000163435.15	1.0422	0.0000

Table 52: Top 10 up-regulated transcripts for cluster 26 with adjustement for confondant effect

2.28 Cluster 27

No significant transcript

2.29 Cluster 28

	gene	log2FoldChange	padj
1	ENSG00000163435.15	1.1236	0.0000
2	ENSG00000159261.10	1.0506	0.0000
3	ENSG00000169429.10	1.0347	0.0000
4	ENSG00000239839.6	1.0173	0.0000

Table 53: Top 10 up-regulated transcripts for cluster 28 with adjustement for confondant effect

2.30 Cluster 29

	gene	log 2 Fold Change	padj
1	ENSG00000183813.6	3.8872	0.0000
2	ENSG00000102468.10	2.9228	0.0000
3	ENSG00000257894.2	2.2761	0.0001
4	ENSG00000178773.14	2.2342	0.0000
5	ENSG00000261039.2	1.9669	0.0000
6	ENSG00000202538.1	1.9596	0.0002
7	ENSG00000167105.7	1.9554	0.0000
8	ENSG00000215182.8	1.9496	0.0002
9	ENSG00000095752.6	1.9404	0.0000
10	ENSG00000146678.9	1.9214	0.0008

Table 54: Top 10 up-regulated transcripts for cluster 29 with adjustement for confondant effect

2.31 Cluster 30

	gene	log 2 Fold Change	padj
1	ENSG00000210195.2	1.1028	0.0000

Table 55: Top 10 up-regulated transcripts for cluster 30 with adjustement for confondant effect

2.32 Cluster 31

No significant transcript

3 Q3.2 Top 10 up-regulated pathways without adjustement for confondant effect

3.1 Cluster 0

No significant pathway

3.2 Cluster 1

3.3 Cluster 10

No significant pathway

3.4 Cluster 11

No significant pathway

3.5 Cluster 12

No significant pathway

3.6 Cluster 13

No significant pathway

3.7 Cluster 14

	pathway	padj	NES
1	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0014	1.3558
	RHOBTB3		
NA			
NA.1			
NA.2			
NA.3			
NA.4			
NA.5			
NA.6			
NA.7			
NA.8			

Table 56: Top 10 up-regulated pathways for cluster 14

3.8 Cluster 15

No significant pathway

3.9 Cluster 16

No significant pathway

3.10 Cluster 17

No significant pathway

3.11 Cluster 18

No significant pathway

3.12 Cluster 19

No significant pathway

3.13 Cluster 2

No significant pathway

3.14 Cluster 20

3.15 Cluster 21

No significant pathway

3.16 Cluster 22

No significant pathway

3.17 Cluster 23

No significant pathway

3.18 Cluster 24

No significant pathway

3.19 Cluster 25

	pathway		padj	NES
1	REACTOME SIGNALING BY RHO GTPAS	ES MIRO GTPASES AND	0.0002	1.4481
	RHOBTB3			
NA				
NA.1				
NA.2				
NA.3				
NA.4				
NA.5				
NA.6				
NA.7				
NA.8				

Table 57: Top 10 up-regulated pathways for cluster 25

3.20 Cluster 26

No significant pathway

3.21 Cluster 27

No significant pathway

3.22 Cluster 28

No significant pathway

3.23 Cluster 29

No significant pathway

3.24 Cluster 3

No significant pathway

3.25 Cluster 30

3.26 Cluster 31

	pathway	padj	NES
1	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0004	1.4992
	RHOBTB3		
2	REACTOME INNATE IMMUNE SYSTEM	0.0010	1.3715
NA			
NA.1			
NA.2			
NA.3			
NA.4			
NA.5			
NA.6			
NA.7			

Table 58: Top 10 up-regulated pathways for cluster 31

3.27 Cluster 4

No significant pathway

3.28 Cluster 5

No significant pathway

3.29 Cluster 6

	pathway	padj	NES
1	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0013	1.4173
	RHOBTB3		
2	REACTOME METABOLISM OF RNA	0.0014	1.4036
NA			
NA.1			
NA.2			
NA.3			
NA.4			
NA.5			
NA.6			
NA.7			

Table 59: Top 10 up-regulated pathways for cluster 6

3.30 Cluster 7

No significant pathway

3.31 Cluster 8

No significant pathway

3.32 Cluster 9

No significant pathway

4 Q3.2 Top 10 up-regulated pathways with adjustement for confondant effect

4.1 Cluster 0

4.2 Cluster 1

No significant pathway

4.3 Cluster 2

No significant pathway

4.4 Cluster 3

No significant pathway

4.5 Cluster 4

No significant pathway

4.6 Cluster 5

No significant pathway

4.7 Cluster 6

	pathway	padj	NES
1	REACTOME METABOLISM OF RNA	0.0002	1.5175
2	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0003	1.5020
	RHOBTB3		
NA			
NA.1			
NA.2			
NA.3			
NA.4			
NA.5			
NA.6			
NA.7			

Table 60: Top 10 up-regulated pathways for cluster 6 with adjustement for confondant effect

4.8 Cluster 7

No significant pathway

4.9 Cluster 8

No significant pathway

4.10 Cluster 9

4.11 Cluster 10

	pathway	padj	NES
1	REACTOME SIGNALING BY NUCLEAR RECEPTORS	0.0009	1.6972
2	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0013	1.5088
3	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0009	1.4603
	RHOBTB3		
4	REACTOME METABOLISM OF RNA	0.0009	1.4597
5	REACTOME INNATE IMMUNE SYSTEM	0.0009	1.3220
NA			
NA.1			
NA.2			
NA.3			
NA.4			

Table 61: Top 10 up-regulated pathways for cluster 10 with adjustement for confondant effect

4.12 Cluster 11

No significant pathway

4.13 Cluster 12

No significant pathway

4.14 Cluster 13

No significant pathway

4.15 Cluster 14

No significant pathway

4.16 Cluster 15

No significant pathway

4.17 Cluster 16

No significant pathway

4.18 Cluster 17

No significant pathway

4.19 Cluster 18

No significant pathway

4.20 Cluster 19

No significant pathway

4.21 Cluster 20

No significant pathway

4.22 Cluster 21

4.23 Cluster 22

No significant pathway

4.24 Cluster 23

No significant pathway

4.25 Cluster 24

No significant pathway

4.26 Cluster 25

No significant pathway

4.27 Cluster 26

No significant pathway

4.28 Cluster 27

No significant pathway

4.29 Cluster 28

No significant pathway

4.30 Cluster 29

No significant pathway

4.31 Cluster 30

No significant pathway

4.32 Cluster 31