

(An Autonomous Institution)

Regulations: A17

Date: 14-Alug-zบzว (คพ)

B.Tech II-Year I- Semester External Examination, Aug - 2023 (Supplementary) ELEMENTS OF ELECTRONICS ENGINEERING (CSE, IT and BT)

Time: 3 Hours Max.Marks:75

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

Bloom's Cognitive Levels of Learning (BCLL)

Remember	L1	Apply	L3	Evaluate	L5
Understand	L2	Analyze	L4	Create	L6

Part - A Max.Marks:25

ANSWER ALL QUESTIONS

		BCLL	CO(s)	Marks
1	Derive DC voltage for half wave rectifier.	L4	CO1	[2M]
2	What is the need for biasing a transistor?	L2	CO2	[2M]
3	Define holding current for SCR.	L1	CO3	[2M]
4	Define "bel" and "decibel"?	L1	CO4	[2M]
5	Write the principle in boost type voltage regulator.	L1	CO5	[2M]
6	State the important features of IC 723.	L1	CO6	[3M]
7	Define diffusion current.	L1	CO1	[3M]
8	Why a Field Effect Transistor is called so?	L2	CO4	[3M]
9	What is the use of capacitive coupling.	L2	CO5	[3M]
10	What are the limitations of three terminal regulators?	L2	CO2	[3M]

Part – B Max.Marks:50 ANSWER ANY FIVE QUESTIONS. EACH QUESTION CARRIES 10 MARKS.

11.	a) b)	Derive ripple factor and efficiency for Full Wave Rectifier. Write about Breakdown mechanisms in Zener diode.	BCLL L4 L1	CO(s) CO1	Marks [5M] [5M]
12.	a)	Explain the input and output characteristics of Common Emitter configuration with necessary diagram.	L2	CO2	[5M]
	b)	For a fixed bias configuration given the V_{cc} = 12V, V_c =6V, β = 80 , I_b = 40 μ A. Determine I_c , R_c , R_B , and V_{ce} using.	L5	CO2	[5M]
13.	a)	Explain the V-I characteristics of Silicon Controlled Rectifier.	L2	CO3	[5M]
	b)	Draw and explain about the Transfer characteristics of n-channel JFET.	L3	CO3	[5M]
14.	a)	Explain with circuit diagram a negative feedback amplifier and obtain expression for its closed loop gain.	L2	CO4	[5M]
	b)	Draw and explain the single stage CE amplifier.	L3	CO4	[5M]
15. a)		Draw and explain about RC phase shift oscillator.	L3	CO5	[5M]
	b)	Draw and explain about the Colpitts oscillator.	L3	CO5	[5M]

16.	a)	Analyze the block diagram of UPS and discuss its operation.	L4	CO6	[5M]
	b)	Design the circuit for voltage doubler.	L6	CO6	[5M]
17.	a)	Define PIV for full-wave rectifier.	L1	CO1	[4M]
	b)	Explain Current equation for CE transistor configuration.	L2	CO2	[3M]
	c)	Define transconductance and amplification factor for JFET.	L1	CO3	[3M]
18.	a)	Explain the frequency response of single stage BJT amplifier.	L2	CO4	[4M]
	b)	Determine:	L5	CO5	[3M]
		i) The frequency of a Colpitt's Oscillator if C₁=0.16μF, and L=15mH and			
		ii) If the frequency of oscillation is $10kHz$, calculate the value of C_{2}			
	c)	What is the difference between LMPS and SMPS.	L2	CO6	[3M]