Home exercise 3.1. (5p)

Consider the following stress state: $\sigma_{xx}=2\sigma_0$, $\sigma_{yy}=\sigma_{zz}=1.2\sigma_0$, $\tau_{xy}=1.1\sigma_0$, $\tau_{yz}=0$ and $\tau_{xz}=\alpha\sigma_0$ with $\sigma_0=100$ MPa, which can be represented in the matrix form as follows

$$\boldsymbol{\sigma} = \sigma_0 \begin{bmatrix} 2 & 1.1 & \alpha \\ 1.1 & 1.2 & 0 \\ \alpha & 0 & 1.2 \end{bmatrix}.$$

Yiled stress in uniaxial tensile test is $\sigma_{y}=240$ MPa.

Determine value of the au_{xz} stress component, i.e. value of lpha, when the material yields according to

- a) von Mises yield criterion
- b) Tresca yield criterion.

Home exercise 3.2. (5p)

A biaxial stress state is defined by σ_{xx} and τ_{xy} stress components, which can be represented in the matrix form as follows

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & 0 \\ \tau_{xy} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- a) Determine the yield locus for von Mises and Tresca yield conditions and draw (in the same figure) the results in the σ_{xx} τ_{xy} plane.
- b) Draw in the σ_1 σ_3 (principle stress) plane the failure envelope according to the Tresca yield criterion.

Home exercise 3.3. (10p)

Consider a thin-walled cylindrical metal tube (Figure 1) with the wall thickness t and inner radius R with t << R. Assume that the material behaves (in the plastic regime) according to the von Mises yield criterion: $\sqrt{3J_2} = \sigma_y$, where σ_y is the yield stress.

- a) The tube is loaded by axial force N and torque T. Express the yield criterion in terms of N and T.
- b) Determine the Lode angle when only torque T is applied.
- c) Determine the Lode angle when only axial force N is applied.
- d) The tube is loaded by axial force N. Assume that the induced stress state corresponds to half of the yield stress. Determine the amount of internal pressure p that can be applied to the inner surface of the tube before yielding occurs.

Note: Buckling is not considered.

Expression for the Lode angle: $\theta = \frac{1}{3} \arccos \left(\frac{3\sqrt{3}}{2} \frac{J_3}{J_2^{3/2}} \right)$.

Figure 1. Thin-walled cylindrical metal tube (top) and example of yield locus (bottom).