EXERCICE 1 (Cours)

Prouver qu'une suite convergente admet une unique limite.

Exercice 2 (Cours)

Prouver qu'une suite convergente est bornée.

Exercice 3 (Cours)

Donner et démontrer le théorème de la limite monotone.

Exercice 4

Soit (u_n) et (v_n) deux suites réelles. Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse. Si l'affirmation est vraie, la prouver, sinon, donner un contre-exemple.

- 1. Si (u_n) et (v_n) divergent, alors $(u_n + v_n)$ diverge.
- 2. Si (u_n) et (v_n) divergent, alors $(u_n \times v_n)$ diverge.
- 3. Si (u_n) converge et (v_n) diverge, alors $(u_n + v_n)$ diverge.
- 4. Si (u_n) converge et (v_n) diverge, alors $(u_n \times v_n)$ diverge.
- 5. Si (u_n) n'est pas majorée, alors (u_n) tend vers $+\infty$.
- 6. Si (u_n) est positive et tend vers 0, alors (u_n) est décroissante à partir d'un certain rang.

Exercice 5

Soit (u_n) une suite à valeurs dans \mathbb{Z} et convergente. Montrer, en utilisant la définition, que la suite u est stationnaire.

EXERCICE 6

Soit (u_n) une suite convergente. La suite $(|u_n|)$ est-elle convergente?

Exercice 7

Soit (u_n) une suite de nombres réels.

- 1. On suppose que (u_n) est croissante et qu'elle admet une suite extraite convergente. Que dire de (u_n) ?
- 2. On suppose que (u_n) est croissante et qu'elle admet une suite extraite majorée. Que dire de (u_n) ?
- 3. On suppose que (u_n) n'est pas majorée. Montrer qu'elle admet une suite extraite qui diverge ves $+\infty$.

Exercice 8

Soit (u_n) une suite de nombres réels.

- 1. On suppose que (u_{2n}) et (u_{2n+1}) convergent vers la même limite. Prouver que (u_n) est convergente.
- 2. Donner un exemple de suite (u_n) telle que (u_{2n}) converge, (u_{2n+1}) converge, mais (u_n) ne converge pas.

Exercice 9

Étudier la convergence des suites définies par le terme général suivant :

a)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$
 b) $v_n = \frac{n \sin(n)}{n^2 + 1}$
c) $w_n = (-1)^n \frac{n+1}{n}$ d) $x_n = \frac{\ln(n+e^n)}{n}$
e) $y_n = \frac{\ln(n+3)}{\sqrt{\ln(\ln(n+3))}}$ f) $z_n = \frac{\ln(n!)}{n^2}$

Exercice 10

On considère la suite (a_n) définie par

$$a_n = \sum_{k=1}^n \frac{n}{n^2 + k}.$$

1. Montrer que pour tout n > 0, on a

$$\frac{n^2}{n^2 + n} \le a_n \le \frac{n^2}{n^2 + 1}.$$

2. En déduire la limite de (a_n)

Exercice 11

Soit (H_n) la suite définie par

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que pour tout $n \ge 1$, on a $H_{2n} H_n \ge \frac{1}{2}$.
- 2. En déduire que la suite (H_n) tend vers $+\infty$.