Isomorphism between general objects

with a simple application in topological geometry

Shigeo Hattori

January 7, 2020

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Introduction

Prerequisites are only some first chapters of graduate level texts of general topology and graph theory; (1),(2). Though, in almost all sub areas of mathematics, there are expected valuable applications of the defined new notion.

1

3

7

8

This article defines when two given general objects are said isomorphic. For example, two numbers $\forall (x,y)$ are isomorphic if and only if x=y. Contrary two points in the sense of elementary geometry are unconditionally said isomorphic.

Meanwhile two topological spaces are said isomorphic if the two are homeomorphic and their points are points of elementary geometry.

So what to do if their points are not points of elementary geometry? To keep the texts simple, let us define for the rest that all points of topology must be points of elementary geometry. And " $\forall x$ is a point" is meant in the sense of elementary geometry.

Example.1:

•
$$T1 := \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}.$$

•
$$T2 := \{t2 \mid \exists t1 :\in T1 \stackrel{\text{and}}{\wedge} t2 = \{ID(x) \mid x \in t1 \} \}.$$

Example.1 shows how to convert a topology T1 of non-points to a topology T2 of points. Namely **you convert all non-point** $\forall x$ **to a point** using a function

ID(x) which returns the identity of x. That is, it is defined that "point" is an alias of "identity". 23 Let us continue to enumerate more examples of isomorphism. (X1, p1, 321)24 $\cong (X2, p2, 321)$ if $X1 \cong X2$ by some homeomorphism $\exists f$ and f(p1) = p2. 25 $(x1, 321) \ncong (x2, 123)$ even if $x1 \cong x2$. $\{x, y\} \ncong (x, y)$ if $x \neq y$ because (x, y) :=**26** $\{\{x\}, \{x, y\}\}.$ 27 Needless to say, \cong can express more complex examples like $(X, F, k, p)_1 \cong$ 28 $(X, F, k, p)_2$ where $X_{\forall i}$ is a topological space, $F_{\forall i}$ is a set of some ambient isotopies on Space $(X_i)^*[0,1]$, $k_{\forall i}$ is an embedding into X_i and $p_{\forall i}$ is a point of X. Moreover, \cong can express that two logical expressions containing general objects are isomorphic because all logical expressions can be expressed as graphs. 2 Isomorphism between general objects A topological space X is a pair as $(\operatorname{Space}(X), T)$ where $\operatorname{Space}(X)$ denotes the set of all points of X and T denotes the topology. **Definition 2.1** (Deep member). Take $\forall (c, x, y)$ such that: c is a chain of set membership. x is the maximum member of c. y is a member of c. Then y is said a deep member of x and you write as $y \in ^{deep} x$. 41 For example: $m \in \ldots \in y \in \ldots \in x$ For example: 44 $\{y1, y2\} \in ^{deep} \{y1, y2\}$ 45 $y \in ^{deep} \{1,\{2,y\}\}$ **Definition 2.2** (Space). Space($\forall X$) := { $p \mid p \in ^{deep} X \overset{\text{and}}{\wedge} p$ is a point }. **Definition 2.3** (Nested graph). A nested graph is a graph of which some 47 vertices may be nested graphs. The graph isomorphism of nested graphs is defined to regard all vertices as points even if some vertex is a nested graph. For example, two nest graphs, $(V, E)_{i \in \{1,2\}}$ as $V_1 := \{1\}, V_2 := \{(V_1, E_1)\},$

Take $\forall G$ as a nested graph. If no vertex of G is a nested graph. Then the nest

are graph-isomorphic if $E_{\forall i}$ is empty.

number of G is defined to be 0. Otherwise the nested number of G is defined to	53
be $m+1$ where m denotes the maximum nested number among all its vertices	54
which are nested graphs. And G is defined to have the finite nested number.	55
Definition 2.4 (Isomorphism between vertices of nested graphs). Take $\forall (F, p_1, p_2, p_3, p_4, p_4, p_4, p_4, p_4, p_4, p_4, p_4$	2)56
such that: F is a bijection between sets of points. (p_1, p_2) are vertices. Let	57
$S_F := \operatorname{Space}(\operatorname{domain}(F) \cup \operatorname{image}(F)).$	58
Define that: $*1 \equiv (*2 \stackrel{\text{or}}{\vee} \stackrel{\text{or}}{\vee} *5).$	59
1. $p_1 \cong_F p_2$.	60
	61
2. $F(p_1) = p_2$	62
3. $p_1 = p_2 \stackrel{\text{and}}{\wedge} \varnothing = \text{Space}(\{p_1, p_2\}) \cap S_F.$	69
	63
4. take $\forall i \in \{1,2\} \stackrel{\text{and}}{\wedge} \varnothing \neq \operatorname{Space}(p_i) \cap S_F$.	64
5. If $p_{\forall i}$ is a nested graph then $p_1 \cong^F p_2$.	65
	66
$p_1 \cong^F p_2$, is defined later.	67
	68
Proposition 1. Take $\forall m :\in \mathbb{N}$. Let \mathbb{G}_m denote the set of all nested graphs	69
having nested numbers at most m . Then $*1 \to *2$.	70
1. For \mathbb{G}_m : the proposition 2 holds true.	71
2. For \mathbb{G}_m : $p1 \cong_F p2 \equiv p2 \cong_{F^{-1}} p1$.	72
<i>Proof.</i> Take $\forall (p1,p2,F)$ as a counterexample. Hence (*2 $\overset{\text{or}}{\lor}$ $\overset{\text{or}}{\lor}$ *5) of the	73
definition 2.4 holds for $(p1, p2, F)$ in place of $(p1, p2, F)$.	74
p1. Assume (*2 $\overset{\text{or}}{\vee}$ $\overset{\text{or}}{\vee}$ *4) of the definition holds for $(p1, p2, F)$.	7 5
It is clear that each logical expression of the disjunctions are logically	76
symmetric between $(p1, p2, F)$ and $(p2, p1, F^{-1})$. Hence each holds for	77
$(p2, p1, F^{-1})$ in place of $(p1, p2, F)$. A contradiction.	78
p2. Assume *5 of the definition holds for $(p1, p2, F)$. By *1 of this proposition,	7 9
the proposition 2 holds for $(p1, p2, F)$ in place of $(G1, G2, F)$ then *5	80
of the definition holds for $(p2, p1, F^{-1})$ too in place of $(p1, p2, F)$. A	81
contradiction.	82

	83
Definition 2.5 (Isomorphism between nested graphs). Take $\forall F$ as a bijection between sets of points. Take $\forall \{G_i\}_{i\in\{1,2\}}$ as a pair of nested graphs. Decompose G_i as $\exists (V, E)_i$.	84 85 86
Then F is said an isomorphism from G_1 to G_2 if (*0 $\stackrel{\text{and}}{\wedge}$ *1). Define that: (*0 $\stackrel{\text{and}}{\wedge}$ *1) \equiv *2. And define that: *2 \rightarrow *3.	87 88
0. $\exists f$ as a graph isomorphism from G_1 to G_2 .	89
1. Take $\forall v :\in V_1$, then $v \cong_F f(v)$.	90
2. $(G,C)_1 \cong^F (G,C)_2$.	91
3. $(G,C)_1 \cong (G,C)_2$.	92
•	93
Proposition 2. $G_1 \cong^F G_2$. $\equiv G_2 \cong^{F^{-1}} G_1$.	94
Proof. Let DefIsoGraph be an alias for the definition 2.5. Take $\forall (G_1, G_2, F)$ as a minimum counterexample compared by the maximum nest number for G_1 . Though at least F^{-1} is a bijection between sets of points. Hence the antecedent of DefIsoGraph holds for (G_2, G_1, F^{-1}) in place of (G_1, G_2, F) except $(*0 \ \wedge \ ^*1)$ of DefIsoGraph. Hence *1 of DefIsoGraph fails for $(G_2, G_1, F^{-1}, f^{-1})$ in place of (G_1, G_2, F, f) .	95 96 97 98 99
q1. Hence: $\exists v :\in V_2 \stackrel{\text{and}}{\wedge} \neg (v \cong_{F^{-1}} f^{-1}(v)).$	101
q2. Though: $(G_1 \cong^F G_2) \to (f^{-1}(v) \cong_F f \circ f^{-1}(v)).$	102
	103
Let $\operatorname{PropCong}_F$ be an alias for the proof of the proposition 1. The right term of *q2 implies (*p1 $\overset{\text{or}}{\vee}$ *p2) of $\operatorname{PropCong}_F$.	104105
If *p1 of PropCong _F then (*q1 $\stackrel{\text{and}}{\wedge}$ *q2) is a contradiction.	106
Hence *p2 of $\operatorname{PropCong}_F$.	107
By the way, consider the right term of * q2; $(f^{-1}(v), v, F)$ is smaller than a	108
minimum counterexample. Hence (*q1 $\stackrel{\rm and}{\wedge}$ *q2) contradicts to PropCong $_F$. \Box	109
Proposition 3. Take $\forall (X_1, X_2, F)$ such that: (X_1, X_2) are topological spaces	110
homeomorphic by F as a homeomorphism from $\operatorname{Space}(X_1)$ to $\operatorname{Space}(X_2)$. Then	111
$X1 \cong^F X2$.	112

```
Proof. You can express X_i as an graph G_i as follows so that G_i is equivalent 113
to the definition of X_i. Meanwhile let MainDef be an alias for the definition 114
2.5. I show that the antecedent of MainDef holds for (F, G_{i \in \{1,2\}}) in place of 115
(F, G_{i \in \{1,2\}}).
In the rest, indices may be omitted if the meanings are clear.
    Decompose X as X := (\operatorname{Space}(X), \exists T).
Define toG(\forall S) as a function to return a graph (V, E) as follows.
                                                                                                       121
    V := \{v \mid \exists d \in S \stackrel{\text{and}}{\wedge} \text{ if } d \text{ has some member then } v = \text{toG}(d) \text{ else } v = d \} \cup \{S\}. 122
    E := \{ (d1, d2) \in V^2 \mid d1 \in d2 \}.
Then toG(Space(X_1) \cong^F toG(Space(X_2)).
    As a proof, a graph isomorphism can be defined as:
                                                                                                       125
    f := F \cup \{(\operatorname{Space}(X_1), \operatorname{Space}(X_2))\}.
    It is trivial that f is a graph isomorphism between them.
    By (*2 \overset{\text{or}}{\vee} *4) of the definition 2.4, \forall v \cong_F f(v).
Let T_{12} := \{(t1, t2) : \in T_1 * T_2 \mid F \text{ takes } t1 \text{ to } t2 \}.
                                                                                                       129
    Take \forall (t1, t2) :\in T_{12}. Then toG(t_1) \cong^F toG(t_2).
    It is clear that an analogous proof exists.
Moreover toG(T_1) \cong^F toG(T_2).
    As a proof, a graph isomorphism can be defined as:
    Let T_{12} := \{ (\text{toG}(t1), \text{toG}(t2)) \mid (t1, t2) \in T_{12} \}
    f := \{(T_1, T_2)\} \cup T_{12}.
    It is trivial that f is a graph isomorphism between them.
    By (*4 \overset{\text{or}}{\vee} *5) of the definition 2.4, \forall v \cong_F f(v).
                                                                                                       137
Finally toG(X_1) \cong^F toG(X_2).
    As a proof, a graph isomorphism can be defined as:
    f := \{(X_1, X_2)\} \cup
    \{(\text{ toG}(\text{ Space}(X_1)), \text{ toG}(\text{ Space}(X_2)))\} \cup
    \{(\text{ toG}(T_1), \text{ toG}(T_2))\}.
    It is trivial that f is a graph isomorphism between them.
    By (*4 \overset{\text{or}}{\vee} *5) of the definition 2.4, \forall v \cong_F f(v).
                                                                                                   145
```

3 Applications in geometrical topology	146
	147
Take $\forall (X, S, F)$ such that: X is a topological space on a set of points called	148
Space(X). S is a set of sub spaces of X. F is the set to collect: $\forall f$: Space(X)*[0,1]	149
\rightarrow Space(X) as an ambient isotopy. That is, F is the set of all such ambient isotopies.	
For ideal cases, S can be regarded as a topological space Y . To find such Y ,	151
we define a set P of paths in S as follows.	152
$P \text{ collects } \forall p : [0,1] \to S \text{ such that: } \exists s :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \forall t :\in S, \exists f :\in F \overset{\text{and}}{\wedge} \text{ take } \exists f :\in F \text{and$	153
$[0,1] \stackrel{\text{and}}{\wedge} \exists s_t :\in S \stackrel{\text{and}}{\wedge} s_{t=0} = s \stackrel{\text{and}}{\wedge} p(t) = s_t \stackrel{\text{and}}{\wedge} \text{image}(f[\text{Space}(s)^*\{t\}))$	154
])=Space(s_t). Denote P as Path(S). Recall the function ID($\forall x$) which returns	155
the identity of x . Using ID(), give some change on Path(). Make sure that the	156
input of Path() are sets of sub spaces, e.g., S. Namely, new Path(S) := $\{q \mid *1\}$	157
$\stackrel{\rm and}{\wedge}$ $\stackrel{\rm and}{\wedge}$ *3 }. In the rest, Path() refers to this new Path().	158
1. $q: [0,1] \rightarrow \text{image}(\text{ toP}[S]).$	159
2. $\exists p \in \text{old Path}(S)$.	160
3. Take $\forall t :\in [0,1]$. Then $q(t) = (\mathrm{ID} \circ p)(t)$.	161
	162
Let us check if $Path(S)$ is enough large. To do it, we use the trivial set T_X of	163
sub spaces of X; that is $T_X = \{\{x\} \mid x \in \text{Space}(X) \}.$	164
Take $\forall S$ as an instance of S such that $ \operatorname{Path}(S) \geq \operatorname{Path}(T_X) $. Take	
$\forall Y \text{ such that: } (\operatorname{Path}(S) \cong \operatorname{Path}(T_Y)) \text{ where } T_Y \text{ denotes the trivial set of sub}$	166
spaces of Y . Then we can expect that S is possibly equivalent to Y .	167
Let us check if Y is enough symmetric. If members of $Space(Y)$ are pairwise	168
Y-ambient-isomorphic then S is said ideal .	169
Definition 3.1 (Ambient-isomorphic).	170
Take $\forall (X, S, M)$ such that: X is a topological space $\overset{\text{and}}{\wedge} S$ is a set of sub spaces	171
of X. Take $\forall (s1, s2, s3) :\in S^3$. If $\exists s4 :\in S$ such that $(M, s4, s1) \cong (M, s4, s2)$	
then write: $(s1 \cong^S_M s2)$. If $s1 \cong^S_M s2 \overset{\text{and}}{\wedge} s2 \cong^S_M s3$ then write: $s1 \cong^S_M s3$.	173
Members of S are pairwise said M -ambient-isomorphic if: Take $\forall (s1,s2):\in$	
S^2 , then $s1 \cong_M^S s2$.	175

Take $\forall (X, S, F, A)$ such that: S is an ideal set of sub spaces of X. F is the set 177 to collect: $\forall f \colon \operatorname{Space}(X)^*[0,1] \to \operatorname{Space}(X)$. A is the set of all automorphisms 178

on S. Speaking informally, there is no room to make S more symmetric. So it 179 is natural to expect that the following paragraph is true. There exists $\exists F_A :\subset F$ and the following (*1 $\overset{\text{and}}{\wedge}$ *2) holds for F_A . Moreover 181 (*1 $\stackrel{\text{and}}{\wedge}$ *3) also holds for F_A . **1.** Take $\forall f :\in F_A$. 183 **2.** $\exists g :\in A \overset{\text{and}}{\wedge} \text{take } \forall (s_0, s_1) :\in g \overset{\text{and}}{\wedge}$ 184 $\operatorname{image}(f[\operatorname{Space}(s_0) * \{1\}] = \operatorname{Space}(s_1).$ 185 **3.** Take $\forall t :\in (0,1], \forall f_t :\in F \text{ such that } f_t(\forall x, \forall r) = f(x,t*r).$ 186 Then $f_t \in F_A$. 187 188 Let us shift the subject to how to find an ideal set S of sub spaces of a topological space X. It is natural to expect that if (X, S) are enough or absolutely 190 symmetric then S is ideal. I conjecture that: $(*0 \ \stackrel{\text{and}}{\wedge} \dots \ \stackrel{\text{and}}{\wedge} *3) \rightarrow (S \text{ is ideal })$. Conjecture 1.1. Define that: $(*0 \ \stackrel{\text{and}}{\wedge} *1) \rightarrow (X \text{ is a prime topological space})$. **0.** Take $\forall t$ as an open set of X. Then $\exists u : \subset t$ such that $X[u] \cong X$ where X[u] 194 denotes the sub space of X at u1. 1. The trivial set of sub spaces of X is ideal. **2.** Members of Space(X) are pairwise (X, S)-ambient-isomorphic. **3.** Let $S_p := \{(s,p) \mid s \in S \stackrel{\text{and}}{\wedge} p \in \text{Space}(s) \}.$ 198

Then Members of S_p are pairwise (X, S)-ambient-isomorphic.

4 Abstract conjecture	200
Conjecture 4.1 (Abstract conjecture of ideal set and metric). Take $\forall (M,X,S1,f)$ such that *A. Consider (*B \rightarrow *C). It is independent from the topological class of members of $S1$ if f is enough general for topological classes of members of instances of $S1$ with (M,X) fixed.	
The claim converges to true if generality approaches to the perfect. A. *1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3.	205
\mathbf{A} . "1 \wedge \wedge "3.	206
1. M is a metric table to define X as a prime topological space.	207
2. $S1$ is an ideal set of sub spaces of X .	208
3. f is a function on $S1$.	209
B. *1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3.	210
1. Take $\forall k1 :\in S1$	211
2. Let $S2 := \{k2 \in S1 \mid f(k2) = f(k1) \}.$	212
3. $S2$ is unique for (M, X) .	213
Unique?: For example, take $\forall x :\in \operatorname{Space}(X)$. If $S2$ is the set to collect $\forall k :\in S1$	214
such that $x \in \operatorname{Space}(k)$ then $S2$ is not unique for (M,X) in general. Instead $S2$ is unique for (M,X,x) .	215216
C. $S2$ is ideal.	217
•	218
5 Application on knots	219
Let ConjMetric be an alias for (the definition 4.1). The antecedent of ConjMetric	220
apparently holds for (M, X, K, f) in place of $(M, X, S1, f)$. And f is apparently	221
enough general as required in ConjMetric.	222
Definition 5.1 (A set of knots). Take $\forall (M, X, K, K_f)$ such that: M is a metric	223
table to define a X as a Euclidean space of 3-dimension.	224
Take $\forall k_0$ as a knot in X .	225
Let K be the union of the set to collect $\forall K_0$ such that: members of K_0 are	226
pairwise X-ambient-isomorphic $\bigwedge^{k} k_0 :\in K_0$.	227
$K_f := \{ k \in K \mid f(k_0) = f(k) \}.$	228
Definition of f :	229

• $j1(\forall k :\in K) := \{j \mid j \text{ is an orthogonal } ^1\text{projection of } k \text{ onto some infinite plane } \}.$	231232
• $j2(\forall k :\in K) := \{j \in j1(k) \mid \neg (\exists p \land p \in \text{image}(j) \land j^{-1}(p) > 2) \}.$	233 234
• $j3(\forall k:\in K):=\{n\mid \exists j \land j\in j2(k) \land n \text{ is the number of 2 double points on j}\}.$	235 236
• $f(\forall k :\in K) := \{m \mid m \text{ is the maximal member from } j3(k) \}.$	237 238
	239
References	240
[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0	241
2] Reinhard Diestel, Graph Theory, Springer-Verlag, ISBN 0-387-98976-5	242

¹Hence, j is a function from k to an infinite plane. ²Double point?: That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point represents a crossing or a tangent point.