

ELEC 441: Control Systems

Lecture 6: Discretization & Discrete-time State-space Models Solution

Dr. Abdullah Al-Digs Department of Electrical and Computer Engineering The University of British Columbia

January 23, 2025

Course Roadmap

Topics	СТ	DT
Modeling	1	\rightarrow $ullet$ \leftarrow
Stability		
Controllability/Observability		
Realization		
State Feedback/Observers		
LQR/Kalman Filter		

What is Discretization?

Discretization: is the approximation of a CT system by a DT system

Why Discretization?

- Digital Control: to realize a controller in a digital computer, we need a DT controller
- Digital Simulations: simulation of a CT system is done in discrete-time (e.g. MATLAB)

Why Discretization?

- Digital Control: to realize a controller in a digital computer, we need a DT controller
- Digital Simulations: simulation of a CT system is done in discrete-time (e.g. MATLAB)
- We can discretize before or after the controller is designed (i.e. in modelling or implementation stage)

Digital Control System

Advantages of Digital Control

- Reduced cost
 - ▶ A single digital computer can replace numerous analog controllers
- Flexibility in response to design changes
 - Future required modifications can be implemented with simple software updates, rather than expensive hardware modifications
 - Complex control algorithms can be realized easily
- Examples of microcontrollers: Arduino, Raspberry Pi, LabVIEW, etc.

Analog Controllers Inflexibility

 Consider the below analog lead compensator which utilizes operational amplifiers (Opamps)

Analog Controllers Inflexibility

 Consider the below analog lead compensator which utilizes operational amplifiers (Opamps)

 To modify the controller, we need to physically replace electrical elements

Zero-order Hold (ZOH) Discretization

Given a CT system and sampling time T, we obtain a DT system as

ZOH Descritization of State-space Models

Recall that CT state-space models are described as

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

ZOH Descritization of State-space Models

Recall that CT state-space models are described as

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

 \bullet DT state-space models are obtained analytically using ZOH with sampling time T as

$$\begin{cases} x[k+1] = A_d x[k] + B_d u[k] \\ y[k] = C_d x[k] + D_d u[k] \end{cases}$$

where

$$A_d := e^{AT}, \quad B_d := \left(\int_0^T e^{A\tau} d\tau\right) \cdot B, \quad C_d = C, \quad D_d = D$$

ZOH Descritization of State-space Models

Recall that CT state-space models are described as

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

ullet DT state-space models are obtained analytically using ZOH with sampling time T as

$$\begin{cases} x[k+1] = A_d x[k] + B_d u[k] \\ y[k] = C_d x[k] + D_d u[k] \end{cases}$$

where

$$A_d := e^{AT}, \quad B_d := \left(\int_0^T e^{A\tau} d\tau\right) \cdot B, \quad C_d = C, \quad D_d = D$$

 DT state-space models are obtained numerically using c2d.m in MATLAB

Discretization Example

UBC

• Mass with a driving force SS model

$$\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \end{cases}$$

$$u(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

where
$$x_1(t) := d(t)$$
 and $x_2(t) := \dot{d}(t)$

Discretization Example

UBC

• Mass with a driving force SS model

$$\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) & u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} & u(t) \end{cases}$$

where $x_1(t) := d(t)$ and $x_2(t) := \dot{d}(t)$

ullet Discretization by ZOH with sampling time T yields

$$A_d := e^{AT} = I + AT + \underbrace{\cdots}_{0} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \leftarrow A \text{ is a Nilpotent matrix!}$$

$$B_d := \left(\int_0^T e^{A\tau} d\tau \right) \cdot B = \left(\int_0^T \begin{bmatrix} 1 & \tau \\ 0 & 1 \end{bmatrix} d\tau \right) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix}$$

Discretization in MATLAB

Code for discretizing CT state-space models:

```
>> A = [0 1; 0 0]; % System matrix A
>> B = [0; 1]; % System matrix B
>> C = [1 0]; % System matrix C
>> D = 0; % System matrix D
>> sys = ss(A,B,C,D); % CT state-space model
>> T = 0.1; % Sampling time
>> sysd = c2d(sys,T); % Discretization
```

Discretization in MATLAB

• Code for discretizing CT state-space models:

```
>> A = [0 1; 0 0]; % System matrix A
>> B = [0; 1]; % System matrix B
>> C = [1 0]; % System matrix C
>> D = 0; % System matrix D
>> sys = ss(A,B,C,D); % CT state-space model
>> T = 0.1; % Sampling time
>> sysd = c2d(sys,T); % Discretization
```

• Discretization result:

>> sysd.a		>> sysd.b
ans =		ans =
1.0000	0.1000	0.0050
0	1.0000	0.1000

Simulations in MATLAB

• Step input response (i.e. u(t) = 1)

Simulations in MATLAB

• Sinusoidal input response (i.e. $u(t) = \sin(10t)$)

Analytical Solutions to DT State-space Models

• Discrete-time state-space models are described by

$$\begin{cases} x[k+1] = Ax[k] + Bu[k], \ x[0] = x_0 \\ y[k] = Cx[k] + Du[k] \end{cases}$$

• Analytical solution to DT state-space models is given by

$$x[k] = A^{k} \underbrace{x[0]}_{=x_{0}} + \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} \begin{bmatrix} u[k-1] \\ u[k-2] \\ \vdots \\ u[0] \end{bmatrix}$$
 (1)

$$y[k] = \underbrace{Cx[k] + Du[k]}_{\text{substituted from (1)}} \tag{2}$$

Verification of Analytical Solution

- Solving the state equation recursively, we get
 - ▶ k = 0: $x[1] = Ax[0] + Bu[0] \leftarrow$ Substituting initial conditions

▶
$$k = 1$$
: $x[2] = Ax[1] + Bu[1] = A^2x[0] + [B \quad AB] \begin{bmatrix} u[1] \\ u[0] \end{bmatrix}$

▶
$$k = 2$$
: $x[3] = Ax[2] + Bu[2] = A^3x[0] + \begin{bmatrix} B & AB & A^2B \end{bmatrix} \begin{bmatrix} u[2] \\ u[1] \\ u[0] \end{bmatrix}$

Verification of Analytical Solution

- Solving the state equation recursively, we get
 - k = 0: $x[1] = Ax[0] + Bu[0] \leftarrow$ Substituting initial conditions

▶
$$k = 2$$
: $x[3] = Ax[2] + Bu[2] = A^3x[0] + [B \quad AB \quad A^2B] \begin{bmatrix} u[2] \\ u[1] \\ u[0] \end{bmatrix}$

• By induction, we get

$$x[k] = A^{k}x[0] + \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} \begin{bmatrix} u[k-1] \\ u[k-2] \\ \vdots \\ u[0] \end{bmatrix}$$

Summary

- Discretization using (Zero-order Hold)
 - Digital control
 - Formulas for discretizing state-space models
 - Example with MATLAB code/simulations
- Solution to DT linear time-invariant systems
- Next, stability ← VERY IMPORTANT!

Note: now you can solve all the problems in Assignment 1, which is due on January 31, 2025 at 11:59 PM