Programme n°13

ELECTROCINETIQUE

EL6 Fonction de transfert (Cours et exercices)

EL7 Filtrage linéaire (Cours et exercices)

MECANIQUE

M1 Cinématique Newtonienne du point (Cours et exercices)

• Exemples de mouvements - Le mouvement rectiligne

- Le mouvement à accélération constante

- Le mouvement circulaire

• La base de Frenet - Abscisse curviligne

- La base de Frenet

Retour sur le mouvement circulaireLe vecteur vitesse et accélération

- Le rayon de courbure

Mouvement à vecteur accélération constant.	Exprimer le vecteur vitesse et le vecteur position en
Modvoment a vectori deceleration constant.	fonction du temps.
	Établir l'expression de la trajectoire en coordonnées
	cartésiennes.
Mouvement circulaire uniforme et non uniforme.	Exprimer les composantes du vecteur position, du vecteur vitesse et du vecteur accélération en coordonnées polaires planes.
Repérage d'un point dont la trajectoire est connue. Vitesse et accélération dans le repère de Frenet pour une trajectoire plane.	Situer qualitativement la direction du vecteur vitesse et du vecteur accélération pour une trajectoire plane. Exploiter les liens entre les composantes du vecteur accélération, la courbure de la trajectoire, la norme du vecteur vitesse et sa variation temporelle.

M2 Bases de la dynamique newtonienne (Cours uniquement)

Première loi de Newton - La masse

- La quantité de mouvement

- Notion de forces

- Le principe d'inertie → Particule libre, isolée

→ Principe d'inertie

• Deuxième loi de Newton - Principe fondamentale de la dynamique

Particules isoléesNotions d'équilibre

• Troisième loi de Newton - Le principe

- Conservation de la quantité de mouvement

Classification des forces - Interaction à distance → Interaction gravitationnelle

→ Interaction électromagnétique

- Forces de contact \longrightarrow Forces de liaison

→ Forces de contact

• Résoudre un problème de mécanique

2.2. Lois de Newton	
Quantité de mouvement Masse d'un système. Conservation de la masse pour système fermé.	Exploiter la conservation de la masse pour un système fermé.
Quantité de mouvement d'un point et d'un système de points. Lien avec la vitesse du centre de masse d'un système fermé.	Établir l'expression de la quantité de mouvement pour un système de deux points sous la forme : p =m v (G).

Première loi de Newton : principe d'inertie. Référentiels galiléens.	Décrire le mouvement relatif de deux référentiels galiléens.
Notion de force. Troisième loi de Newton.	Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un schéma.
Deuxième loi de Newton.	Déterminer les équations du mouvement d'un point matériel ou du centre de masse d'un système fermé dans un référentiel galiléen.
	Mettre en œuvre un protocole expérimental permettant d'étudier une loi de force par exemple à l'aide d'un microcontrôleur.

ATOMISTIQUE

AT1 Atomes et molécules

• La classification périodique - Historique

- Le tableau de Mendeleïev

- Structure en bloc

• La liaison covalente - Définition d'une liaison covalente

- Energies de liaison

- Distance interatomique

• La règle de l'octet - Schéma de Lewis des atomes

- Représentation de Lewis

- Exemples

- La charge formelle

- Limites de la règle de l'octet

4.2.1 Structure des entités chimiques

•	
Modèle de la liaison covalente Liaison covalente localisée. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Citer les ordres de grandeur de longueurs et d'énergies de liaisons covalentes. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Identifier les écarts à la règle de l'octet.

TP

Etude de la résonance en intensité dans un circuit RLC série Mesure d'impédances et de déphasages