MA 16200: Plane Analytic Geometry and Calculus II

Lecture 26: Manipulaiting Power Series, Term-by-Term Differentiation/Integration

Zachariah Pence

Purdue University

Sections Covered: 11.2 (Part II)

The Radius of Convergence

Theorem 1

For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only 3 possibilities:

- **1** There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.
 - This R is called the **Radius of Convergence**.
- **2** The series converges for all x.
 - By convention, $R = \infty$
- The series converges only when x = a.
 - By convention, R = 0

The radius of convergence is usually found by the Ratio or Root Test.

The Interval of Convergence

Definition 2

The **interval of convergence** for a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ is the set of all x where the series converges.

In the previous theorem,

1 In Case 1, the interval of convergence is 1 of 4 possibilities:

$$(a-R, a+R)$$
 $[a-R, a+R)$ $(a-R, a+R]$ $[a-R, a+R]$

- **2** In Case 2, the interval is $\mathbb{R} = (-\infty, \infty)$.
- 3 In Case 3, the interval is $\{a\}$.

Geometric Series Revisited

Theorem 3

The power series centered at 0:

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x}$$

when |x| < 1.

Here the radius of convergence is 1 and the interval of convergence is (-1,1).

Problem 4

Find a power series representation of the function $f(x) = \frac{1}{1+2x}$. Determine the radius and interval of convergence.

Problem 5

Find a power series representation of the function $f(x) = \frac{1}{4-x}$. Determine the radius and interval of convergence.

Problem 6

Find a power series representation of the function $f(x) = \frac{x^2}{1-x}$. Determine the radius and interval of convergence.

Problem 7

Find a power series representation of the function $f(x) = \frac{1}{1+x^2}$. Determine the radius and interval of convergence.

Problem 8

Determine the interval of convergence of:

$$\sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} \left(x - \frac{1}{2} \right)^n$$

What function does this power series converge to (on the interval of convergence)?

Combining Power Series Theorem

Theorem 9

Suppose $\sum c_n x^n \to f(x)$ on an interval I_1 and $\sum d_n x^n \to g(x)$ on an interval I_2 . This also applies when the center isn't 0 (it is just less obvious why).

- **1 Sums and Differences:** The power series $\sum (c_n \pm d_n)x^n \to f(x) + g(x)$ on $I_1 \cap I_2$.
- **2** Multiplication by x^m : Suppose m is a positive integer such that $n + m \ge 0$. Then $x^m \sum c_n x^n = \sum c_n x^{m+n} \to x^m f(x)$ on I_1 (when $x \ne 0$). When x = 0, the series converges to $\lim_{x\to 0} x^m f(x)$.
- **3 Composition:** If $h(x) = bx^m$, where m is a positive integer and b a non-zero real number, then $\sum c_n(h(x))^n \to f(h(x))$ on the set of all x such that h(x) is in l_1 .

Multiplying and Dividing Power Series (Non-Examinable)

Let
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $g(x) = \sum_{n=0}^{\infty} b_n x^n$:

■ Define the product f(x)g(x) as:

$$f(x)g(x) \stackrel{def}{=} \sum_{n=0}^{\infty} c_n x^n$$
 where $c_n = \sum_{i=0}^n a_i b_{n-i}$

If $b_0 \neq 0$, define the quotient $\frac{f(x)}{g(x)}$ as the power series $h(x) = \sum_{n=0}^{\infty} c_n x^n$ such that f(x) = h(x)g(x). The coefficients c_n are found recursively:

$$\begin{cases} c_n = \frac{1}{b_0} \left[a_n - \sum_{i=1}^n b_i c_{n-i} \right] \\ c_0 = \frac{a_0}{b_0} \end{cases}$$

The derivative and integral of a power series

Theorem 10 (Term-by-term differentiation/integration)

Suppose a power series $\sum c_n(x-a)^n \to f(x)$ when |x-a| < R:

1 Then f is differentiable (hence is continuous) and:

$$f'(x) = \frac{d}{dx} \sum_{n=0}^{\infty} c_n (x-a)^n = \sum_{n=0}^{\infty} c_n \frac{d}{dx} (x-a)^n = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$

2 f can be integrated and:

$$\int f(x) \ dx = \int \sum_{n=0}^{\infty} c_n (x-a)^n \ dx = \sum_{n=0}^{\infty} c_n \int (x-a)^n \ dx = C + \sum_{n=0}^{\infty} \frac{c}{n+1} (x-a)^{n+1}$$
where C is an arbitrary constant.

3 f, f', and $\int f \ dx$ have the same center and <u>radius</u> of convergence.

Problem 11

Find a power series representation of $f(x) = \frac{1}{(1-x)^2}$. Determine the radius and interval of convergence.

Problem 12

Find a power series representation of $f(x) = \ln(1-x)$. Determine the radius and interval of convergence.

Problem 13

Find a power series representation of $f(x) = \ln(1+x)$. Determine the radius and interval of convergence.

Problem 14

Find a power series representation of $f(x) = \ln \sqrt{1 - x^2}$. Determine the radius and interval of convergence.

Problem 15

Find a power series representation of $f(x) = \tan^{-1} x$. Determine the radius and interval of convergence.

Problem 16

Find a power series representation of $f(x) = \ln \frac{1+x}{1-x}$. Determine the radius and interval of convergence.

Problem 17

We will see in the next section that:

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}; \quad x \in (-\infty, \infty)$$

Use this to find a power series representation for $\sin x$. Determine the radius and interval of convergence.

Application (Differential Equations)

Problem 18

Show that the series $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ is a solution to the Initial Value Problem (IVP):

$$\begin{cases} f'(x) = f(x) \\ f(0) = 1 \end{cases}$$