

Ingeniería en Electrónica Técnicas Digitales I

EXA	men	IIIIa

Fecha: 23/09/2021

Leg:

Apellido y nombre:

Aclaraciones

Todos los diseños deben estar respaldados por tablas de verdad o diagramas de funcionamiento. Evite ambigüedades. Tampoco agregue circuitería adicional que no sea expresamente lo pedido.

Tiempo asignado al examen y criterio de evaluación

El alumno estará en contacto con los docentes, en forma virtual desde las 19 a las 21hs.

Р	а	b	C	+
1		x	x	
	3			
2			х	
	2	1,5		
3				
	1,5	1	1	
Nota:				

Problema 1

Diseñe un circuito que calcula el logaritmo en base 2 y el resto de una palabra de entrada $\mathbf{i}_{\mathbf{x}}$ no signada. Recuerde que el resto se calcula como

$$o_r = i_x - 2^{o_L}$$

Donde o_L es el logaritmo base 2.

La implementación de cada salida debe hacerse del siguiente modo

- o_L(1) suma de productos
- o_L(0) producto de sumas
- o_r(2) mux 8:1
- o_r(1) mux 4:1 y compuertas NOT
- o_r(0) mux 2:1 y compuertas NOT, AND y OR.

Aclaración: Si para alguna entrada particular no puede calcularse el logaritmo ponga a 0 las salidas.

Problema 2

Describa un circuito que satura una palabra **i_data** entrante signada de 16 bits y la convierte en una palabra de 8 bits. Además cuenta con 2 palabras de entrada adicionales **i_sat_top** e **i_sat_bottom**, ambas signadas y de 8 bits. Si la palabra entrante es superior a **i_sat_top** la salida satura al nivel de **i_sat_top**. Del mismo modo si la palabra entrante es menor a **i_sat_bottom** la salida satura a **i_sat_bottom**.

El circuito anterior se comporta del modo descripto anteriormente si y solo si **i_sat_top** es positiva e **i_sat_bottom** negativa. De no cumplirse alguna de las condiciones anteriores, el circuito saturará la palabra entrante si esta es mayor a **01111111**, saturando en un valor igual a **01111111** en su salida. Y si la entrada fuera menor a **10000000**, la salida satura a **10000000**.

Disponen multiplexores y comparadores como bloques RTL. Puede utilizar mínima lógica adicional, en tal caso justifique su incorporación con tablas de verdad.

Sugerencia: tenga en cuenta que la longitud de palabra de **i_data** es diferente a la de **i_sat_top** e **i_sat_bottom**.

Atención: respalde el circuito diseñado con diagramas o tablas de funcionamiento.

- a) Dibuje el diagrama RTL del circuito.
- **b)** Codifique en VHDL el circuito del punto **a)**.

Problema 3

Analice un contador Johnson

- a) Dibuje un contador Johnson de 3 bits. Escriba las ecuaciones de transiciones y confeccione la tabla de transiciones.
- **b)** Dibuje el diagrama de estados correspondiente al punto anterior. Identifique la secuencia principal de conteo y los estados espurios, si los hubiera. Modifique la tabla de transiciones para que los estados espurios entre en la secuencia principal en 1 ciclo reloi.
- c) Calcule su máxima frecuencia de operación sincrónica (escriba la fórmula). Indique su dependencia respecto a la longitud de palabra del contador.