Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 2 «Критерии согласия и однородности выборок»

студента <u>Розинко Е.Д.</u>	группь	ы <u>Б21-524</u> .	Дата сдачи: <u>16.11.20</u>	<u> </u>
Ведущий преподаватель: <u>Трофи</u>	мов А.Г.	оценка:	подпись:	

Вариант № 4

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки критериев согласия ($goodness-of-fit\ tests$) и однородности выборок.

1. Исходные данные

Характеристики наблюдаемой случайной величины *X*:

Pa	Распределение Параметры		Математическое ожидание, <i>т</i>	Дисперсия, σ^2
	R(5, 15)	<i>R</i> (a, b)	10	8.3

Объём выборки $n_1 = 300$

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

Среднее, \overline{x}	Оценка дисперсии, s ²	Оценка с.к.о., s
10.009	8.278	2.877

2. Визуальное представление выборки

Гистограммы частот:

Примечание: для построения гистограмм использовать функцию hist (scipy.stats: histogram; matplotlib.pyplot: hist)

3. Критерий хи-квадрат

а) Статистическая гипотеза: H_0 : $X \sim N(m, \sigma)$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	68.071	0	Но отвергается	Нет
10	81.177	0	Но отвергается	Нет
15	90.323	0	Но отвергается	Нет
30	89.817	0	Но отвергается	Нет

б) Статистическая гипотеза: H_0 : $X \sim R$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	2.162	0.679	Но принимается	нет

Лабораторный практикум по курсу «Математическая статистика»

10	3.853	0.407	Но принимается	Нет
15	6.052	0.173	Но принимается	Нет
30	16.910	0.133	Но принимается	нет

в) Статистическая гипотеза: H_0 : $X \sim \chi^2(5)$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	60.079	0	Но отвергается	Нет
10	71.553	0	Но отвергается	Нет
15	95.824	0	Но отвергается	Нет
30	95.824	0	Но отвергается	нет

Примечание: при расчетах использовать функции **chi2gof**, **fitdist** (**scipy.stats: histogram**, **chisquare**)

4. Критерий Колмогорова

Статистическая гипотеза, H_0	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
$X \sim N(m, \sigma)$	0.066	0.136	Но принимается	нет
$X \sim R$	0.022	0.997	Но принимается	нет
$X \sim \chi^2(5)$	0.135	0.000	Но отвергается	нет

Примечание: при расчетах использовать функции kstest, lillietest, fitdist (scipy.stats: kstest)

Лабораторный практикум по курсу «Математическая статистика»

Примечание: для построения графиков использовать функции ecdf, cdf (scipy.stats: uniform.cdf, norm.cdf, chi2.cdf; statsmodels.distributions. empirical_distribution: ECDF)

5. Двухвыборочные критерии

Характеристики наблюдаемой случайной величины У:

Распределение	Параметры	Математическое ожидание	Дисперсия
N(10, 5)	N(m, σ)	10	25

Объём выборки $n_2 = 100$

ECDF: X, Y

Лабораторный практикум по курсу «Математическая статистика»

HIST: X, Y

Критерий	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при α = 0.05	Ошибка стат. решения
Chi- squared	$FX(\xi) = FY(\xi)$	535.510	0	Но отвергается	нет
KS-test	$FX(\xi) = FY(\xi)$	0.180	0	Но отвергается	Нет
Sign test	$FX(\xi) = FY(\xi)$	0.951	0.149	Но принимается	Нет
U-test	$FX(\xi) = FY(\xi)$	-0.490	0.624	Но принимается	нет

Примечание: при расчетах использовать функции chi2gof, kstest2, signtest, ranksum (scipy.stats: chisquare, ks_2samp; statsmodels.stats.descriptivestats. sign_test, ranksums)