Global Convergence of Least Squares EM for Demixing Two Log-Concave Densities

Engineering

Operations Research and Information Engineering

Wei Qian, Yuqian Zhang, Yudong Chen {wq34,yz2557,yudong.chen}@cornell.edu

Motivation

The Expectation Maximization (EM) algorithm has only a few theoretical guarantees for convergence despite its popularity.

- Recent progress on global convergence has focused on a balanced mixture of 2 Gaussian distributions.
- Can we develop a global convergence theory for a mixture of some broader class of distributions?

Problem Overview

Distribution Class: log-concave and rotation invariant

$$\mathcal{F} = igg\{ f: f(oldsymbol{x}) = rac{1}{C_g} \expig(-g(\|oldsymbol{x}\|_2)ig), \ g ext{ convex and increasing on } [0,\infty), \ \int f(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} = 1, \int x_i^2 f(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} = 1, orall i \in [d] ig\}.$$

Each $f \in \mathcal{F}$ generates a location-scale family consisting of the densities

$$f_{eta,\sigma}(\mathbf{x}) := rac{1}{\sigma^d} f\left(rac{\mathbf{x} - eta}{\sigma}
ight)$$

► A Balanced 2-Mixture Generative Model

$$D(\boldsymbol{\beta}^*,\sigma) := \frac{1}{2} f_{\boldsymbol{\beta}^*,\sigma} + \frac{1}{2} f_{-\boldsymbol{\beta}^*,\sigma}.$$

- ► Location Estimation Problem: Given data $X^1, \ldots, X^n \in \mathbb{R}^d$ sampled i.i.d. from the mixture distribution $D(\beta^*, \sigma)$, σ is known, how to estimate β^* ?
- ► Classical EM does not have a closed-form solution for the M-step.
- ► We analyze the Least-Squares EM (LS-EM):
 - **E-step:** Compute the conditional probabilities given β ,

$$egin{aligned} oldsymbol{
ho}_{eta,\sigma}^1(oldsymbol{X}) &:= rac{f_{eta,\sigma}(oldsymbol{X})}{f_{eta,\sigma}(oldsymbol{X}) + f_{-eta,\sigma}(oldsymbol{X})}, \ oldsymbol{
ho}_{eta,\sigma}^2(oldsymbol{X}) &:= rac{f_{-eta,\sigma}(oldsymbol{X})}{f_{eta,\sigma}(oldsymbol{X}) + f_{-eta,\sigma}(oldsymbol{X})}. \end{aligned}$$

► Least-Squares M-step: weighted least squares regression

$$M(\boldsymbol{\beta}^*, \boldsymbol{\beta}) = \underset{\boldsymbol{b}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{X} \sim D(\boldsymbol{\beta}^*, \sigma)} \left[p_{\boldsymbol{\beta}, \sigma}^1(\boldsymbol{X}) \| \boldsymbol{X} - \boldsymbol{b} \|_2^2 + p_{\boldsymbol{\beta}, \sigma}^2(\boldsymbol{X}) \| \boldsymbol{X} + \boldsymbol{b} \|_2^2 \right]$$
$$= \mathbb{E}_{\boldsymbol{X} \sim D(\boldsymbol{\beta}^*, \sigma)} \boldsymbol{X} \tanh \left(\frac{1}{2} g \left(\frac{1}{\sigma} \| \boldsymbol{X} + \boldsymbol{\beta} \|_2 \right) - \frac{1}{2} g \left(\frac{1}{\sigma} \| \boldsymbol{X} - \boldsymbol{\beta} \|_2 \right) \right).$$

Properties of Least Squares EM iterates

- **Two Dimensional Structure**: The LS-EM iterate $M(\beta^*, \beta)$ is in the span of β and β^* .
 - Invariant 1-dim subspace: in the direction of β^* or in the orthogonal direction to β^* .
- ▶ Angle Decreasing Property: The angle between the LS-EM iterate $M(\beta^*, \beta)$ and sign $(\langle \beta, \beta^* \rangle)\beta^*$ is smaller than the angle between β and sign $(\langle \beta, \beta^* \rangle)\beta^*$ when β is not orthogonal to β^* .

Figure: The LS-EM iterate has a smaller angle with β^* .

- Asymptotic Convergence: The Least-Squares EM algorithm converges to $sign(\langle \beta^0, \beta^* \rangle)\beta^*$ from any randomly initialized point β^0 that is not orthogonal to
- ► The angle decreasing property forces the iterates to converge to the correct subspace;
- \triangleright The dynamics along the β direction forces the iterates to converge to the ground truth.
- **Explicit convergence rate** in 1-D case, $z = \min(|\beta|, |\beta^*|)$:

$$|M(\beta^*,\beta) - \operatorname{sign}(\beta\beta^*)\beta^*| \le \kappa(\beta^*,\beta,\sigma) \cdot |\beta - \operatorname{sign}(\beta\beta^*)\beta^*| \tag{1}$$

- ► Gaussian: $\kappa(\beta^*, \beta, \sigma) \leq \exp(-z^2/2\sigma^2)$,
- ► Laplace: $\kappa(\beta^*, \beta, \sigma) \leq \frac{2 \exp(-\frac{\sqrt{2}}{\sigma}z)}{1 + \exp(-2\frac{\sqrt{2}}{\sigma}z)}$
- ► Logistic: $\kappa(\beta^*, \beta, \sigma) \leq \frac{4 \exp(-\frac{\pi z}{\sigma \sqrt{3}})}{1 + \exp(-\frac{2\pi z}{\sigma \sqrt{2}}) + 2 \exp(-\frac{\pi z}{\sigma \sqrt{3}})}$

Different Behaviors Compared to 2GMM

- ▶ In 1-D, the contraction in distance to the ground truth (1) holds for all $f \in \mathcal{F}$;
- In higher dimension, the contraction in ℓ_2 distance still holds for Gaussian. However, there exists some log-concave distribution such that the ℓ_2 distance strictly increases.

Robustness under Model Mis-specification

In practice, we do not know f that generates the data. Instead, we fit with some $\hat{f} \in \mathcal{F}$. The LS-EM iterate under the mis-specification setting is:

$$\widehat{M(oldsymbol{eta}^*,oldsymbol{eta}}) = \mathbb{E}_{oldsymbol{X}\sim D(oldsymbol{eta}^*,\sigma)}oldsymbol{X} anh \left(rac{1}{2}\widehat{g}\left(rac{1}{\sigma}\|oldsymbol{X}+oldsymbol{eta}\|_2
ight) - rac{1}{2}\widehat{g}\left(rac{1}{\sigma}\|oldsymbol{X}-oldsymbol{eta}\|_2
ight)
ight).$$

- Preserved properties: two dimensional structure; angle decreasing property.
- ▶ 3-fixed points: there are only 3 fixed points $\{\pm \overline{\beta}, 0\}$ in the direction of $\boldsymbol{\beta}^*$.
- ► Using Gaussian is a good choice: when f is Gaussian, $|\overline{\beta} - \beta^*| <= 10\sigma$ if the SNR $|\beta^*|/\sigma$ is moderate.

Figure: Ground truth: $f \propto \exp(-|x|)$, plot of Figure: Ground truth: $f \propto \exp(-|x|^3)$, plot of $\widehat{M}(\beta^*,\beta)$ with $g=|x|,|x|^{1.5},|x|^2$ and $|x|^3$. $\widehat{M}(\beta^*,\beta)$ with $g=|x|,|x|^{1.5},|x|^2$ and $|x|^3$.

Summary

- Two dimensional structure of the Least Squares EM under both correctly specified and mis-specified settings. Rotation invariance assumption guarantees this property;
- Angle decreasing of the Least Squares EM: convergence to the correct subspace. Log-concavity assumption and monotonicity of g guarantee this property.