

WE CLAIM:

1. A compound represented by structure I

wherein

R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or heteroaryl group;

R^1 is independently -H, -OH or -O-Pg; R^2 is -H, -CH₃, -NH₂, or -NH-Pg;

R^3 is -H, -CH₃, -CH₂CONH₂, -CH₂CONH-Pg, -CH₂CH₂NH₂, or -CH₂CH₂NH-Pg;

R^5 is $-OH$, $-OSO_3H$, or $-OPO_2HR^a$, where R^a is hydroxy, C₁-C₆ alkyl, C₁-C₆

alkoxy, phenyl, phenoxy, *p*-halophenyl, *p*-halophenoxy, *p*-nitrophenyl, *p*-nitrophenoxy,

benzyl, benzyloxy, *p*-halobenzyl, *p*-halobenzyloxy, *p*-nitrobenzyl, or *p*-nitrobenzyloxy; R⁶ is -H, -OH, or -OSO₃H; R⁷ is -H or -CH₃; R⁴ and R⁸ are independently, hydrogen, or hydroxy and at least one of R⁴ and R⁸ is a sugar moiety of the formula

where R⁹ is independently -H, -OH, -N₃, -O-Pg, -NH₂,

15 -NH-Pg, -OPO₂R^a, or a second sugar moiety comprising one to three sugar units selected from the group consisting of

, and mixtures

thereof, wherein R^{9a} is -H, -OH, -N₃, -NH₂, -O-Pg, or -NH-Pg, R^{9b} is -OPO₂R^a, -OSO₃H, -H, -NH₂, -OH, -O-Pg, or -NH-Pg, R^{9c} is -CH₃, -CH₂OH, -CH₂N₃, -CH₂OSO₃H, -CH₂NH-Pg, -CH₂O-Pg, -CO₂H, or -CO₂-Pg, where R^a is as defined above, and no more than one R⁹ is represented by said second sugar moiety; Pg is a protecting group (i.e., -O-Pg is a hydroxy protecting group, -NH-Pg is an amino protecting group, -CH₂CONH-Pg is an amido protecting group and -CO₂-Pg is a carboxy protecting group); and pharmaceutically acceptable salts, esters, hydrates or solvates thereof.

2. The compound of Claim 1 wherein R is

10

where A, B, C and D are independently hydrogen, C₁-C₁₂ alkyl, C₂-C₁₂ alkynyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkylthio, halo, or -O-(CH₂)_m-[O-(CH₂)]_p-O-(C₁-C₁₂ alkyl) or -O-(CH₂)_q-X-E; m is 2, 3 or 4; n is 2, 3 or 4; p is 0 or 1; q is 2, 3 or 4; X is pyrrolidino, piperidino or

piperazino; and E is hydrogen, C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, benzyl or C₃-C₁₂ cycloalkylmethyl.

3. The compound of claim 2 wherein R¹ is hydroxy at each occurrence; R², R³, and R⁷ are each methyl; R is a moiety of the formula

5

R⁴ is hydroxy; R⁵ is -OPO₂HR^a, where R^a is C₁-C₄ alkyl or C₁-C₄ alkoxy; R⁸ is a sugar moiety of the formula

10 a pharmaceutically acceptable salt or solvate thereof.

4. The compound of claim 3 wherein R⁵ is hydroxy; R is a moiety of the formula

where D is hydrogen or C₃-C₇ alkoxy; R⁸ is a moiety of the formula

15 where R⁹ is independently hydrogen, hydroxy, amino, or a moiety of the formula

where R^{9b} is -OPO₂R^a, -OSO₃H, -H, -NH₂, -OH, -O-Pg, or -NH-Pg and n is 1, 2, or 3; or a pharmaceutically acceptable salt or solvate thereof.

5. The compound of claim 4 wherein D is n-pentoxy; R⁹ and R^{9a} are independently hydroxy or amino; and R^{9b} is -OH or -OPO₂R^a; or a pharmaceutical salt or solvate thereof.

6. The compound of claim 5 wherein R⁹ is hydroxy at each occurrence; and R^{9b} is -OPO₂R^a, where R^a is methyl or methoxy; or a pharmaceutical salt or solvate thereof.

5 7. A pharmaceutical formulation comprising one or more pharmaceutical carriers, diluents, or excipients and a compound of claim 1.

8. A method of inhibiting fungal activity comprising administering to a recipient in need of such inhibition an effective amount of a compound represented by structure I:

10 10. wherein R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or heteroaryl group; R¹ is independently -H, -OH or -O-Pg; R² is -H, -CH₃, -NH₂, or -NH-Pg; R³ is -H, -CH₃, -CH₂CONH₂, -CH₂CONH-Pg, -CH₂CH₂NH₂, or -CH₂CH₂NH-Pg; R⁵ is -OH, -OSO₃H, or -OPO₂HR^a, where R^a is hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, phenoxy, p-halophenyl, p-halophenoxy, p-nitrophenyl, p-nitrophenoxy, benzyl, benzylxy, p-halobenzyl, p-halobenzylxy, p-nitrobenzyl, or p-nitrobenzylxy; R⁶ is -H, -OH, or -OSO₃H; R⁷ is -H or -CH₃; R⁴ and R⁸ are independently, hydrogen, or hydroxy and at least one of R⁴ and R⁸ is a sugar moiety of the formula

where R⁹ is independently -H, -OH, -N₃, -O-Pg, -NH₂, -NH-Pg, -OPO₂R^a, or a second sugar moiety comprising one to three sugar units selected from the group consisting of

, and mixtures

thereof, wherein R^{9a} is -H, -OH, -N₃, -NH₂, -O-Pg, or -NH-Pg, R^{9b} is -OPO₂R^a, -OSO₃H, -H, -NH₂, -OH, -O-Pg, or -NH-Pg, R^{9c} is -CH₃, -CH₂OH, -CH₂N₃, -CH₂OSO₃H, -CH₂NH-Pg, -CH₂O-Pg, -CO₂H, or -CO₂-Pg, where R^a is as defined above, and no more than one R⁹ is represented by said second sugar moiety; Pg is a protecting group (i.e., -O-Pg is a hydroxy protecting group, -NH-Pg is an amino protecting group, -CH₂CONH-Pg is an amido protecting group and -CO₂-Pg is a carboxy protecting group); and pharmaceutically acceptable salts, esters, hydrates or solvates thereof.

9. The method of Claim 8 wherein R is

where A, B, C and D are independently hydrogen, C₁-C₁₂ alkyl, C₂-C₁₂ alkynyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkylthio, halo, or -O-(CH₂)_m-[O-(CH₂)_n]_p-O-(C₁-C₁₂ alkyl) or -O-(CH₂)_q-X-

E; m is 2, 3 or 4; n is 2, 3 or 4; p is 0 or 1; q is 2, 3 or 4; X is pyrrolidino, piperidino or piperazino; and E is hydrogen, C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, benzyl or C₃-C₁₂ cycloalkylmethyl.

10. The method of claim 8 wherein the recipient is a human.

5. 11. The method of claim 9 wherein R¹ is hydroxy at each occurrence; R², R³, and R⁷ are each methyl; R is a moiety of the formula

R⁴ is hydroxy; R⁵ is -OPO₂HR^a, where R^a is C₁-C₄ alkyl or C₁-C₄ alkoxy; R⁸ is a sugar moiety of the formula

or a pharmaceutically acceptable salt or solvate thereof.

12. The method of claim 10 wherein R⁵ is hydroxy; R is a moiety of the formula

where D is hydrogen or C₃-C₇ alkoxy; R⁸ is a moiety of the formula

15

where R⁹ is independently hydrogen, hydroxy, amino, or a moiety of the formula

where R^{9b} is -OPO₂R^a, -OSO₃H, -H, -NH₂, -OH, -O-Pg, or -NH-Pg and n is 1, 2, or 3; or a pharmaceutically acceptable salt or solvate thereof.

13. The method of claim 12 wherein D is n-pentoxy; R⁹ and R^{9a} are independently hydroxy or amino; and R^{9b} is -OH or -OPO₂R^a; or a pharmaceutical salt or solvate thereof.

5 14. The method of claim 13 wherein R⁹ is hydroxy at each occurrence; and R^{9b} is -OPO₂R^a, where R^a is methyl or methoxy; or a pharmaceutical salt or solvate thereof.

15. The method according to Claim 8 wherein the fungal activity arises from one or more fungi selected from the group consisting of *Candida albicans*, *Aspergillus fumigatis*, and *Candida parapsilosis*.

10 16. A method of inhibiting parasitic activity comprising administering to a recipient in need of such inhibition an effective amount of a compound represented by structure I:

wherein R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or heteroaryl group; R¹ is independently -H, -OH or -O-Pg; R² is -H, -CH₃, -NH₂, or -NH-Pg;

15 R³ is -H, -CH₃, -CH₂CONH₂, -CH₂CONH-Pg, -CH₂CH₂NH₂, or -CH₂CH₂NH-Pg; R⁵ is -OH, -OSO₃H, or -OPO₂HR^a, where R^a is hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, phenoxy, p-halophenyl, p-halophenoxy, p-nitrophenyl, p-nitrophenoxy, benzyl,

benzyloxy, p-halobenzyl, p-halobenzyloxy, p-nitrobenzyl, or p-nitrobenzyloxy; R⁶ is -H, -

OH, or -OSO₃H; R⁷ is -H or -CH₃; R⁸ and R⁸ are independently, hydrogen, or hydroxy and

20 at least one of R⁴ and R⁸ is a sugar moiety of the formula

where R^9 is independently -H, -OH, -N₃, -O-Pg, -NH₃, -NH-Pg, -OPO₂R^a, or a second sugar moiety comprising one to three sugar units selected from the group consisting of

, and mixtures

- 5 thereof, wherein R^{9a} is -H, -OH, -N₃, -NH₂, -O-Pg, or -NH-Pg, R^{9b} is -OPO₂R^a, -OSO₃H, -H, -NH₂, -OH, -O-Pg, or -NH-Pg, R^{9c} is -CH₃, -CH₂OH, -CH₂N₃, -CH₂OSO₃H, -CH₂NH-Pg, -CH₂O-Pg, -CO₂H, or -CO₂-Pg, where R^a is as defined above, and no more than one R^9 is represented by said second sugar moiety; Pg is a protecting group (i.e., -O-Pg is a hydroxy protecting group, -NH-Pg is an amino protecting group, -CH₂CONH-Pg is an amido protecting group and -CO₂-Pg is a carboxy protecting group); and pharmaceutically acceptable salts, esters, hydrates or solvates thereof.
- 10 17. The method of Claim 16 wherein R is

where A, B, C and D are independently hydrogen, C₁-C₁₂ alkyl, C₂-C₁₂ alkynyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkylthio, halo, or -O-(CH₂)_m-[O-(CH₂)_n]_p-O-(C₁-C₁₂ alkyl) or -O-(CH₂)_q-X-

- 5 E; m is 2, 3 or 4; n is 2, 3 or 4; p is 0 or 1; q is 2, 3 or 4; X is pyrrolidino, piperidino or piperazino; and E is hydrogen, C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, benzyl or C₃-C₁₂ cycloalkylmethyl.

18. The method of claim 16 wherein the recipient is a human.

19. The method of claim 17 wherein R¹ is hydroxy at each occurrence; R², R³, and R⁷ are each methyl; R is a moiety of the formula

10 R⁴ is hydroxy; R⁵ is -OPO₂HR^a, where R^a is C₁-C₄ alkyl or C₁-C₄ alkoxy; R⁸ is a sugar moiety of the formula

or a pharmaceutically acceptable salt or solvate thereof.

- 15 20. The method of claim 19 wherein R⁵ is hydroxy; R is a moiety of the formula

where D is hydrogen or C₃-C₇ alkoxy; R⁸ is a moiety of the formula

where R⁹ is independently hydrogen, hydroxy, amino, or a moiety of the formula

5 where R^{9b} is -OPO₂R^a, -OSO₃H, -H, -NH₂, -OH, -O-Pg, or -NH-Pg and n is 1, 2, or 3; or a pharmaceutically acceptable salt or solvate thereof.

- 21. The method of claim 20 wherein D is n-pentoxy; R⁹ and R^{9a} are independently hydroxy or amino; and R^{9b} is -OH or -OPO₂R^a; or a pharmaceutical salt or solvate thereof.
- 22. The method of claim 21 wherein R⁹ is hydroxy at each occurrence; and R^{9b} is -OPO₂R^a, where R^a is methyl or methoxy; or a pharmaceutical salt or solvate thereof.
- 10 23. The method according to Claim 16 wherein the parasitic activity arises from Pneumocystis carinii.