# $12n_{0140} \ (K12n_{0140})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle -219034042585u^{29} + 477658347892u^{28} + \dots + 4962190966784b + 2219335787081, \\ &- 1283291111693u^{29} + 4041034486657u^{28} + \dots + 2481095483392a + 21380565133380, \\ u^{30} - 3u^{29} + \dots - 14u - 1 \rangle \\ I_2^u &= \langle 9.19271 \times 10^{50}u^{41} + 6.53340 \times 10^{51}u^{40} + \dots + 1.68743 \times 10^{52}b + 4.76895 \times 10^{52}, \\ &- 4.05666 \times 10^{51}u^{41} - 1.46559 \times 10^{52}u^{40} + \dots + 1.18120 \times 10^{53}a - 9.05537 \times 10^{53}, \\ u^{42} + 8u^{41} + \dots + 406u + 49 \rangle \\ I_3^u &= \langle b, -u^3 + u^2 + 4a + 2u + 3, \ u^4 + u^2 - u + 1 \rangle \\ I_4^u &= \langle 8a^2 + b + 18a + 4, \ 8a^3 + 20a^2 + 8a + 1, \ u - 1 \rangle \\ I_5^u &= \langle b, -u^3 + a - u - 1, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle \\ I_6^u &= \langle au + 4b + a + u - 5, \ a^2 + 4au - 2a + 6u - 3, \ u^2 + 1 \rangle \end{split}$$

\* 6 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 89 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -2.19 \times 10^{11} u^{29} + 4.78 \times 10^{11} u^{28} + \dots + 4.96 \times 10^{12} b + 2.22 \times 10^{12}, -1.28 \times 10^{12} u^{29} + 4.04 \times 10^{12} u^{28} + \dots + 2.48 \times 10^{12} a + 2.14 \times 10^{13}, \ u^{30} - 3u^{29} + \dots - 14u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.517228u^{29} - 1.62873u^{28} + \dots + 26.8709u - 8.61739 \\ 0.0441406u^{29} - 0.0962596u^{28} + \dots + 1.16893u - 0.447249 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.146114u^{29} - 0.558009u^{28} + \dots + 11.5186u - 3.67862 \\ 0.114897u^{29} - 0.286853u^{28} + \dots - 0.242495u - 0.299101 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.120091u^{29} - 0.480458u^{28} + \dots + 10.2319u - 3.49919 \\ 0.0593413u^{29} - 0.0838619u^{28} + \dots - 0.275735u - 0.299617 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.120607u^{29} - 0.426449u^{28} + \dots + 10.4168u - 3.47317 \\ 0.0588257u^{29} - 0.137871u^{28} + \dots - 0.460615u - 0.325639 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.366931u^{29} - 1.21295u^{28} + \dots + 20.1769u - 5.68931 \\ 0.0588257u^{29} - 0.137871u^{28} + \dots - 0.460615u - 0.325639 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0625000u^{29} + 0.125000u^{28} + \dots + 2.93750u + 0.0625000 \\ \frac{1}{16}u^{29} - \frac{1}{8}u^{28} + \dots - \frac{31}{16}u - \frac{1}{16} \\ -0.0625000u^{29} + 0.250000u^{28} + \dots + 2.93750u - 0.0625000 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.473087u^{29} - 1.53247u^{28} + \dots + \frac{13}{16}u + \frac{17}{16} \\ -0.0441406u^{29} - 0.0962596u^{28} + \dots + 1.16893u - 0.447249 \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes 
$$= -\frac{29246499640993}{39697527734272}u^{29} + \frac{4877178426605}{2481095483392}u^{28} + \dots - \frac{648015885883539}{39697527734272}u - \frac{374986321947515}{39697527734272}u^{2} + \dots + \frac{3749863219475}{39697527734272}u^{2} + \dots + \frac{3749863219475}{39697527734272}u$$

| Crossings                   | u-Polynomials at each crossing            |
|-----------------------------|-------------------------------------------|
| $c_1$                       | $u^{30} + 14u^{29} + \dots - 2399u + 256$ |
| $c_2, c_4$                  | $u^{30} - 6u^{29} + \dots - 31u + 16$     |
| $c_{3}, c_{7}$              | $u^{30} - 2u^{29} + \dots - 96u - 256$    |
| $c_5, c_6$                  | $8(8u^{30} + 20u^{29} + \dots + 12u + 4)$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $u^{30} + 3u^{29} + \dots + 14u - 1$      |
| $c_{10}$                    | $u^{30} - 6u^{29} + \dots + 64u + 256$    |

| Crossings                   | Riley Polynomials at each crossing              |
|-----------------------------|-------------------------------------------------|
| $c_1$                       | $y^{30} + 10y^{29} + \dots - 6849345y + 65536$  |
| $c_2, c_4$                  | $y^{30} - 14y^{29} + \dots + 2399y + 256$       |
| $c_3, c_7$                  | $y^{30} + 18y^{29} + \dots + 76800y + 65536$    |
| $c_5, c_6$                  | $64(64y^{30} - 1360y^{29} + \dots - 192y + 16)$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^{30} + 23y^{29} + \dots - 290y + 1$          |
| $c_{10}$                    | $y^{30} + 6y^{29} + \dots - 1789952y + 65536$   |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.151717 + 0.986186I  |                                       |                     |
| a = -1.190140 - 0.027428I | -5.68347 - 0.58233I                   | -8.3451 + 12.8590I  |
| b = 1.54321 - 0.20318I    |                                       |                     |
| u = 0.151717 - 0.986186I  |                                       |                     |
| a = -1.190140 + 0.027428I | -5.68347 + 0.58233I                   | -8.3451 - 12.8590I  |
| b = 1.54321 + 0.20318I    |                                       |                     |
| u = 0.783732 + 0.743673I  |                                       |                     |
| a = 0.631228 - 0.256038I  | -1.33282 - 2.23553I                   | -4.59779 + 3.41546I |
| b = -0.083764 + 0.794094I |                                       |                     |
| u = 0.783732 - 0.743673I  |                                       |                     |
| a = 0.631228 + 0.256038I  | -1.33282 + 2.23553I                   | -4.59779 - 3.41546I |
| b = -0.083764 - 0.794094I |                                       |                     |
| u = 1.09098               |                                       |                     |
| a = 1.70930               | -2.65754                              | 30.3480             |
| b = 0.608605              |                                       |                     |
| u = -0.576049 + 1.073970I |                                       |                     |
| a = -0.261951 - 0.195372I | 1.34016 + 8.01200I                    | 2.34579 - 12.49324I |
| b = -0.151381 + 0.594028I |                                       |                     |
| u = -0.576049 - 1.073970I |                                       |                     |
| a = -0.261951 + 0.195372I | 1.34016 - 8.01200I                    | 2.34579 + 12.49324I |
| b = -0.151381 - 0.594028I |                                       |                     |
| u = 0.625133 + 0.199278I  |                                       |                     |
| a = 1.38297 + 2.15219I    | -2.83148 - 0.66530I                   | -18.2240 - 6.7846I  |
| b = 0.386290 - 0.372621I  |                                       |                     |
| u = 0.625133 - 0.199278I  |                                       |                     |
| a = 1.38297 - 2.15219I    | -2.83148 + 0.66530I                   | -18.2240 + 6.7846I  |
| b = 0.386290 + 0.372621I  |                                       |                     |
| u = -0.117957 + 1.367060I |                                       |                     |
| a = 0.699932 - 0.475481I  | 6.76007 + 1.66777I                    | 0.57274 - 1.46728I  |
| b = -1.78516 + 0.43773I   |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.117957 - 1.367060I |                                       |                     |
| a = 0.699932 + 0.475481I  | 6.76007 - 1.66777I                    | 0.57274 + 1.46728I  |
| b = -1.78516 - 0.43773I   |                                       |                     |
| u = -0.244597 + 1.352860I |                                       |                     |
| a = 0.31073 + 1.77800I    | 5.09939 + 5.42433I                    | -0.68852 - 4.20178I |
| b = -0.22783 - 1.65229I   |                                       |                     |
| u = -0.244597 - 1.352860I |                                       |                     |
| a = 0.31073 - 1.77800I    | 5.09939 - 5.42433I                    | -0.68852 + 4.20178I |
| b = -0.22783 + 1.65229I   |                                       |                     |
| u = 0.259417 + 1.365310I  |                                       |                     |
| a = -0.19856 + 1.74019I   | 10.78970 - 8.07891I                   | -0.53452 + 5.22614I |
| b = -0.91810 - 1.71117I   |                                       |                     |
| u = 0.259417 - 1.365310I  |                                       |                     |
| a = -0.19856 - 1.74019I   | 10.78970 + 8.07891I                   | -0.53452 - 5.22614I |
| b = -0.91810 + 1.71117I   |                                       |                     |
| u = -0.35445 + 1.40429I   |                                       |                     |
| a = -0.544865 + 0.390463I | 7.38806 + 8.84406I                    | -1.28461 - 6.03116I |
| b = 1.65162 + 0.07394I    |                                       |                     |
| u = -0.35445 - 1.40429I   |                                       |                     |
| a = -0.544865 - 0.390463I | 7.38806 - 8.84406I                    | -1.28461 + 6.03116I |
| b = 1.65162 - 0.07394I    |                                       |                     |
| u = 0.06550 + 1.45294I    |                                       |                     |
| a = -0.04154 - 1.68423I   | 13.33180 - 0.21203I                   | 1.73134 + 0.I       |
| b = 0.69837 + 1.94525I    |                                       |                     |
| u = 0.06550 - 1.45294I    |                                       |                     |
| a = -0.04154 + 1.68423I   | 13.33180 + 0.21203I                   | 1.73134 + 0.I       |
| b = 0.69837 - 1.94525I    |                                       |                     |
| u = 0.339570 + 0.379677I  |                                       |                     |
| a = 0.592119 + 0.913683I  | -0.505428 - 1.105530I                 | -5.83661 + 6.57696I |
| b = -0.452974 - 0.318485I |                                       |                     |

|     | Solutions to $I_1^u$  | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|-----|-----------------------|---------------------------------------|---------------------|
| u = | 0.339570 - 0.379677I  |                                       |                     |
| a = | 0.592119 - 0.913683I  | -0.505428 + 1.105530I                 | -5.83661 - 6.57696I |
| b = | -0.452974 + 0.318485I |                                       |                     |
| u = | 1.52530 + 0.11249I    |                                       |                     |
| a = | 0.155403 + 0.304847I  | 2.40331 + 3.17859I                    | 0 3.79440I          |
| b = | 0.24118 - 1.48607I    |                                       |                     |
| u = | 1.52530 - 0.11249I    |                                       |                     |
| a = | 0.155403 - 0.304847I  | 2.40331 - 3.17859I                    | 0. + 3.79440I       |
| b = | 0.24118 + 1.48607I    |                                       |                     |
| u = | = -0.58141 + 1.45298I |                                       |                     |
| a = | 0.76540 + 1.55713I    | 12.0126 + 17.2447I                    | -2.29441 - 8.43337I |
| b = |                       |                                       |                     |
| u = | = -0.58141 - 1.45298I |                                       |                     |
| a = | 0.76540 - 1.55713I    | 12.0126 - 17.2447I                    | -2.29441 + 8.43337I |
|     | 0.78764 + 1.58037I    |                                       |                     |
| u = | -0.414284 + 0.113025I |                                       |                     |
| a = | 0.170265 - 1.051000I  | 2.31731 - 2.61856I                    | 1.56244 + 2.01080I  |
|     | -0.229191 - 1.205720I |                                       |                     |
| u = | -0.414284 - 0.113025I |                                       |                     |
| a = | 0.170265 + 1.051000I  | 2.31731 + 2.61856I                    | 1.56244 - 2.01080I  |
|     | -0.229191 + 1.205720I |                                       |                     |
|     | = -0.47748 + 1.50384I |                                       |                     |
| a = | = -0.58934 - 1.58578I | 14.1647 + 9.9224I                     | 0 4.39684I          |
|     | = -0.50245 + 1.81791I |                                       |                     |
|     | = -0.47748 - 1.50384I |                                       |                     |
| a = | = -0.58934 + 1.58578I | 14.1647 - 9.9224I                     | 0. + 4.39684I       |
|     | = -0.50245 - 1.81791I |                                       |                     |
|     | -0.0592723            |                                       |                     |
| a = | -10.2226              | -1.19030                              | -8.24210            |
| b = | -0.523532             |                                       |                     |

II. 
$$I_2^u = \langle 9.19 \times 10^{50} u^{41} + 6.53 \times 10^{51} u^{40} + \dots + 1.69 \times 10^{52} b + 4.77 \times 10^{52}, -4.06 \times 10^{51} u^{41} - 1.47 \times 10^{52} u^{40} + \dots + 1.18 \times 10^{53} a - 9.06 \times 10^{53}, \ u^{42} + 8u^{41} + \dots + 406u + 49 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0343435u^{41} + 0.124076u^{40} + \dots + 50.6244u + 7.66624 \\ -0.0544776u^{41} - 0.387181u^{40} + \dots - 17.0063u - 2.82616 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.137949u^{41} - 1.03303u^{40} + \dots - 26.6535u - 2.02469 \\ -0.0157309u^{41} - 0.0881611u^{40} + \dots + 22.8491u + 3.77512 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.162962u^{41} - 1.21826u^{40} + \dots - 71.3909u - 9.25731 \\ -0.0118963u^{41} - 0.0998927u^{40} + \dots + 18.0364u + 3.04637 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.146119u^{41} - 1.10192u^{40} + \dots - 47.1902u - 5.30246 \\ -0.0287391u^{41} - 0.216234u^{40} + \dots - 6.16428u - 0.908484 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.187628u^{41} + 1.31124u^{40} + \dots + 100.721u + 14.2062 \\ -0.0287391u^{41} - 0.216234u^{40} + \dots - 6.16428u - 0.908484 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0204082u^{41} + 0.163265u^{40} + \dots + 36.6122u + 8.28571 \\ 0.0941921u^{41} + 0.708146u^{40} + \dots + 54.1974u + 8.58973 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.175301u^{41} + 1.30821u^{40} + \dots + 114.966u + 16.9746 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0888211u^{41} + 0.511257u^{40} + \dots + 67.6307u + 10.4924 \\ -0.0544776u^{41} - 0.387181u^{40} + \dots + 17.0063u - 2.82616 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-0.137513u^{41} 1.10677u^{40} + \cdots 86.1411u 17.7083$

| Crossings                   | u-Polynomials at each crossing                |
|-----------------------------|-----------------------------------------------|
| $c_1$                       | $(u^{21} + 6u^{20} + \dots - 2u + 1)^2$       |
| $c_2, c_4$                  | $(u^{21} - 4u^{20} + \dots - 2u + 1)^2$       |
| $c_{3}, c_{7}$              | $(u^{21} - u^{20} + \dots + 4u + 8)^2$        |
| $c_5, c_6$                  | $u^{42} + 8u^{41} + \dots + 859266u + 387139$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $u^{42} - 8u^{41} + \dots - 406u + 49$        |
| $c_{10}$                    | $(u^{21} + 2u^{20} + \dots + u - 1)^2$        |

| Crossings                   | Riley Polynomials at each crossing                         |
|-----------------------------|------------------------------------------------------------|
| $c_1$                       | $(y^{21} + 22y^{20} + \dots + 66y - 1)^2$                  |
| $c_2, c_4$                  | $(y^{21} - 6y^{20} + \dots - 2y - 1)^2$                    |
| $c_{3}, c_{7}$              | $(y^{21} + 21y^{20} + \dots - 176y - 64)^2$                |
| $c_5, c_6$                  | $y^{42} - 26y^{41} + \dots - 934716639340y + 149876605321$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^{42} + 30y^{41} + \dots + 10976y + 2401$                |
| $c_{10}$                    | $(y^{21} - 8y^{20} + \dots + 17y - 1)^2$                   |

| Solutions to $I_2^u$                                  | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|-------------------------------------------------------|---------------------------------------|---------------------|
| u = -0.041887 + 1.002630I                             |                                       |                     |
| a = -8.74756 - 5.85633I                               | 2.07989                               | -13.37190 + 0.I     |
| b = -0.492750                                         |                                       |                     |
| u = -0.041887 - 1.002630I                             |                                       |                     |
| a = -8.74756 + 5.85633I                               | 2.07989                               | -13.37190 + 0.I     |
| b = -0.492750                                         |                                       |                     |
| u = -0.870370 + 0.220126I                             |                                       |                     |
| a = 1.199530 - 0.425810I                              | 2.22124 + 4.45806I                    | -4.43689 - 6.14529I |
| b = 1.088250 - 0.021385I                              |                                       |                     |
| u = -0.870370 - 0.220126I                             |                                       |                     |
| a = 1.199530 + 0.425810I                              | 2.22124 - 4.45806I                    | -4.43689 + 6.14529I |
| b = 1.088250 + 0.021385I                              |                                       |                     |
| u = -0.769906 + 0.433901I                             |                                       |                     |
| a = 0.483221 - 0.092871I                              | -0.56968 - 2.93752I                   | -1.02400 + 3.43881I |
| b = -0.006772 - 0.621655I                             |                                       |                     |
| u = -0.769906 - 0.433901I                             |                                       |                     |
| a = 0.483221 + 0.092871I                              | -0.56968 + 2.93752I                   | -1.02400 - 3.43881I |
| b = -0.006772 + 0.621655I                             |                                       |                     |
| u = 0.600601 + 0.944887I                              |                                       |                     |
| a = -0.154802 + 0.082043I                             | -0.56968 - 2.93752I                   | 0. + 3.43881I       |
| b = -0.006772 - 0.621655I                             |                                       |                     |
| u = 0.600601 - 0.944887I                              | 0 50000 1 0 005501                    | 0 9 49001 7         |
| a = -0.154802 - 0.082043I                             | -0.56968 + 2.93752I                   | 0 3.43881I          |
| b = -0.006772 + 0.621655I $u = -0.475850 + 1.016220I$ |                                       |                     |
| ·                                                     | 4.75904 + 0.34630I                    | 1.06526 + 0.7       |
| a = 0.272799 + 0.705259I                              | $4.70904 \pm 0.040301$                | 1.96536 + 0.I       |
| b = 0.528856 + 0.467306I $u = -0.475850 - 1.016220I$  |                                       |                     |
| a = -0.473830 - 1.010220I $a = 0.272799 - 0.705259I$  | 4.75904 - 0.34630I                    | 1.96536 + 0.I       |
|                                                       | 4.70904 - 0.040301                    | $1.00600 \pm 0.1$   |
| b = 0.528856 - 0.467306I                              |                                       |                     |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.053090 + 1.155400I  |                                       |                     |
| a = -0.058655 - 0.325592I | 1.45515 - 0.21101I                    | -6.00000 + 0.I      |
| b = -0.899194 - 0.226112I |                                       |                     |
| u = 0.053090 - 1.155400I  |                                       |                     |
| a = -0.058655 + 0.325592I | 1.45515 + 0.21101I                    | -6.00000 + 0.I      |
| b = -0.899194 + 0.226112I |                                       |                     |
| u = 0.216321 + 1.202960I  |                                       |                     |
| a = -0.33507 - 2.15389I   | 0.26332 - 2.36605I                    | 0                   |
| b = -0.157544 + 0.891019I |                                       |                     |
| u = 0.216321 - 1.202960I  |                                       |                     |
| a = -0.33507 + 2.15389I   | 0.26332 + 2.36605I                    | 0                   |
| b = -0.157544 - 0.891019I |                                       |                     |
| u = 0.474335 + 0.591031I  |                                       |                     |
| a = 1.05367 + 1.22545I    | 6.58039 + 1.36266I                    | -4.18856 - 2.27516I |
| b = 0.00145 + 1.46011I    |                                       |                     |
| u = 0.474335 - 0.591031I  |                                       |                     |
| a = 1.05367 - 1.22545I    | 6.58039 - 1.36266I                    | -4.18856 + 2.27516I |
| b = 0.00145 - 1.46011I    |                                       |                     |
| u = -0.185639 + 1.238440I |                                       |                     |
| a = -0.70977 - 2.01041I   | 5.71484 + 4.94435I                    | 0                   |
| b = -0.45321 + 1.45865I   |                                       |                     |
| u = -0.185639 - 1.238440I |                                       |                     |
| a = -0.70977 + 2.01041I   | 5.71484 - 4.94435I                    | 0                   |
| b = -0.45321 - 1.45865I   |                                       |                     |
| u = -0.021801 + 1.271800I |                                       |                     |
| a = 0.50394 + 2.30405I    | 6.58039 - 1.36266I                    | 0                   |
| b = 0.00145 - 1.46011I    |                                       |                     |
| u = -0.021801 - 1.271800I |                                       |                     |
| a = 0.50394 - 2.30405I    | 6.58039 + 1.36266I                    | 0                   |
| b = 0.00145 + 1.46011I    |                                       |                     |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -1.252620 + 0.261440I |                                       |                     |
| a = -0.093957 - 0.166544I | 8.50490 + 3.89686I                    | 0                   |
| b = -0.15224 + 1.62071I   |                                       |                     |
| u = -1.252620 - 0.261440I |                                       |                     |
| a = -0.093957 + 0.166544I | 8.50490 - 3.89686I                    | 0                   |
| b = -0.15224 - 1.62071I   |                                       |                     |
| u = -1.302650 + 0.047271I |                                       |                     |
| a = 0.370885 + 0.223986I  | 7.25306 + 10.68720I                   | 0                   |
| b = 0.55439 - 1.54207I    |                                       |                     |
| u = -1.302650 - 0.047271I |                                       |                     |
| a = 0.370885 - 0.223986I  | 7.25306 - 10.68720I                   | 0                   |
| b = 0.55439 + 1.54207I    |                                       |                     |
| u = -0.226174 + 1.289570I |                                       |                     |
| a = 0.560692 + 0.745306I  | 4.75904 - 0.34630I                    | 0                   |
| b = 0.528856 - 0.467306I  |                                       |                     |
| u = -0.226174 - 1.289570I |                                       |                     |
| a = 0.560692 - 0.745306I  | 4.75904 + 0.34630I                    | 0                   |
| b = 0.528856 + 0.467306I  |                                       |                     |
| u = 0.588336 + 0.271246I  |                                       |                     |
| a = -0.350608 - 1.017080I | 5.71484 - 4.94435I                    | -5.24866 + 2.70559I |
| b = -0.45321 - 1.45865I   |                                       |                     |
| u = 0.588336 - 0.271246I  |                                       |                     |
| a = -0.350608 + 1.017080I | 5.71484 + 4.94435I                    | -5.24866 - 2.70559I |
| b = -0.45321 + 1.45865I   |                                       |                     |
| u = 0.319588 + 1.353120I  |                                       |                     |
| a = -0.014969 - 0.198168I | 2.22124 - 4.45806I                    | 0                   |
| b = 1.088250 + 0.021385I  |                                       |                     |
| u = 0.319588 - 1.353120I  |                                       |                     |
| a = -0.014969 + 0.198168I | 2.22124 + 4.45806I                    | 0                   |
| b = 1.088250 - 0.021385I  |                                       |                     |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.579219 + 0.187158I |                                       |                     |
| a = -1.56373 + 0.83045I   | 0.26332 + 2.36605I                    | -4.59037 - 2.67274I |
| b = -0.157544 - 0.891019I |                                       |                     |
| u = -0.579219 - 0.187158I |                                       |                     |
| a = -1.56373 - 0.83045I   | 0.26332 - 2.36605I                    | -4.59037 + 2.67274I |
| b = -0.157544 + 0.891019I |                                       |                     |
| u = -0.239978 + 0.362151I |                                       |                     |
| a = -3.20155 + 1.86451I   | 1.45515 + 0.21101I                    | -7.18710 - 0.57244I |
| b = -0.899194 + 0.226112I |                                       |                     |
| u = -0.239978 - 0.362151I |                                       |                     |
| a = -3.20155 - 1.86451I   | 1.45515 - 0.21101I                    | -7.18710 + 0.57244I |
| b = -0.899194 - 0.226112I |                                       |                     |
| u = 0.62069 + 1.53093I    |                                       |                     |
| a = 0.66906 - 1.34449I    | 7.25306 - 10.68720I                   | 0                   |
| b = 0.55439 + 1.54207I    |                                       |                     |
| u = 0.62069 - 1.53093I    |                                       |                     |
| a = 0.66906 + 1.34449I    | 7.25306 + 10.68720I                   | 0                   |
| b = 0.55439 - 1.54207I    |                                       |                     |
| u = 0.45894 + 1.59821I    |                                       |                     |
| a = -0.42722 + 1.36484I   | 8.50490 - 3.89686I                    | 0                   |
| b = -0.15224 - 1.62071I   |                                       |                     |
| u = 0.45894 - 1.59821I    |                                       |                     |
| a = -0.42722 - 1.36484I   | 8.50490 + 3.89686I                    | 0                   |
| b = -0.15224 + 1.62071I   |                                       |                     |
| u = -0.76320 + 1.48676I   |                                       |                     |
| a = 0.794802 + 1.042100I  | 12.12580 + 3.51416I                   | 0                   |
| b = 0.24239 - 1.67299I    |                                       |                     |
| u = -0.76320 - 1.48676I   |                                       |                     |
| a = 0.794802 - 1.042100I  | 12.12580 - 3.51416I                   | 0                   |
| b = 0.24239 + 1.67299I    |                                       |                     |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -0.60260 + 1.60806I   |                                       |            |
| a = -0.536403 - 1.053510I | 12.12580 - 3.51416I                   | 0          |
| b = 0.24239 + 1.67299I    |                                       |            |
| u = -0.60260 - 1.60806I   |                                       |            |
| a = -0.536403 + 1.053510I | 12.12580 + 3.51416I                   | 0          |
| b = 0.24239 - 1.67299I    |                                       |            |

III. 
$$I_3^u = \langle b, -u^3 + u^2 + 4a + 2u + 3, u^4 + u^2 - u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{1}{4}u^{2} - \frac{1}{2}u - \frac{3}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1\\-u^{2} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1\\u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{4}u^{3} - \frac{5}{4}u^{2} - \frac{1}{2}u - \frac{7}{4}\\-u^{3} + u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - u^{2} - 1\\-u^{3} + u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - u^{2}\\u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{1}{4}u^{2} - \frac{1}{2}u - \frac{3}{4}\\0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $\frac{49}{16}u^3 + \frac{43}{16}u^2 + \frac{21}{8}u \frac{163}{16}$

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_2$            | $(u-1)^4$                      |
| $c_{3}, c_{7}$        | $u^4$                          |
| <i>C</i> <sub>4</sub> | $(u+1)^4$                      |
| $c_5, c_6$            | $u^4 + 2u^3 + 3u^2 + u + 1$    |
| $c_{8}, c_{9}$        | $u^4 + u^2 - u + 1$            |
| $c_{10}$              | $u^4 + 3u^3 + 4u^2 + 3u + 2$   |
| $c_{11}, c_{12}$      | $u^4 + u^2 + u + 1$            |

| Crossings                   | Riley Polynomials at each crossing |
|-----------------------------|------------------------------------|
| $c_1, c_2, c_4$             | $(y-1)^4$                          |
| $c_{3}, c_{7}$              | $y^4$                              |
| $c_{5}, c_{6}$              | $y^4 + 2y^3 + 7y^2 + 5y + 1$       |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^4 + 2y^3 + 3y^2 + y + 1$        |
| $c_{10}$                    | $y^4 - y^3 + 2y^2 + 7y + 4$        |

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.547424 + 0.585652I  |                                       |                      |
| a = -1.112690 - 0.371716I | -2.62503 - 1.39709I                   | -10.08957 + 4.25783I |
| b = 0                     |                                       |                      |
| u = 0.547424 - 0.585652I  |                                       |                      |
| a = -1.112690 + 0.371716I | -2.62503 + 1.39709I                   | -10.08957 - 4.25783I |
| b = 0                     |                                       |                      |
| u = -0.547424 + 1.120870I |                                       |                      |
| a = 0.237691 - 0.353773I  | 0.98010 + 7.64338I                    | -8.37918 - 1.58240I  |
| b = 0                     |                                       |                      |
| u = -0.547424 - 1.120870I |                                       |                      |
| a = 0.237691 + 0.353773I  | 0.98010 - 7.64338I                    | -8.37918 + 1.58240I  |
| b = 0                     |                                       |                      |

IV. 
$$I_4^u = \langle 8a^2 + b + 18a + 4, \ 8a^3 + 20a^2 + 8a + 1, \ u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -8a^{2} - 18a - 4 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2a^{2} - 4a \\ -4a^{2} - 8a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ -2a^{2} - 4a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2a^{2} + 4a \\ -4a^{2} - 8a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2a^{2} - 4a - 2 \\ -4a^{2} - 8a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 8a^{2} + 19a + 4 \\ -8a^{2} - 18a - 4 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $3a^2 + \frac{61}{2}a \frac{5}{4}$

| Crossings        | u-Polynomials at each crossing |
|------------------|--------------------------------|
| $c_1, c_3$       | $u^3 - u^2 + 2u - 1$           |
| $c_2$            | $u^3 + u^2 - 1$                |
| $c_4$            | $u^3 - u^2 + 1$                |
| $c_5$            | $8(8u^3 - 12u^2 + 4u + 1)$     |
| $c_6$            | $8(8u^3 + 12u^2 + 4u - 1)$     |
| $c_7$            | $u^3 + u^2 + 2u + 1$           |
| $c_8, c_9$       | $(u-1)^3$                      |
| $c_{10}$         | $u^3$                          |
| $c_{11}, c_{12}$ | $(u+1)^3$                      |

| Crossings                   | Riley Polynomials at each crossing |
|-----------------------------|------------------------------------|
| $c_1, c_3, c_7$             | $y^3 + 3y^2 + 2y - 1$              |
| $c_2, c_4$                  | $y^3 - y^2 + 2y - 1$               |
| $c_5, c_6$                  | $64(64y^3 - 80y^2 + 40y - 1)$      |
| $c_8, c_9, c_{11}$ $c_{12}$ | $(y-1)^3$                          |
| $c_{10}$                    | $y^3$                              |

| Solutions to $I_4^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.00000               |                                       |                     |
| a = -0.230101 + 0.091291I | 1.37919 - 2.82812I                    | -8.13425 + 2.65834I |
| b = -0.215080 - 1.307140I |                                       |                     |
| u = 1.00000               |                                       |                     |
| a = -0.230101 - 0.091291I | 1.37919 + 2.82812I                    | -8.13425 - 2.65834I |
| b = -0.215080 + 1.307140I |                                       |                     |
| u = 1.00000               |                                       |                     |
| a = -2.03980              | -2.75839                              | -50.9820            |
| b = -0.569840             |                                       |                     |

V. 
$$I_5^u = \langle b, -u^3 + a - u - 1, u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u + 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} + u^{4} + 2u^{3} + 2u^{2} + 2u + 2 \\ -u^{5} - 2u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - u^{4} - u^{3} - 2u^{2} - u - 1 \\ u^{5} + 2u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - u^{4} - 2u^{3} - 2u^{2} - 2u - 2 \\ u^{5} + 2u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u + 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-2u^5 + 3u^3 2u^2 + 3u 8$

| Crossings        | u-Polynomials at each crossing            |
|------------------|-------------------------------------------|
| $c_1, c_2$       | $(u-1)^6$                                 |
| $c_{3}, c_{7}$   | $u^6$                                     |
| $c_4$            | $(u+1)^6$                                 |
| $c_5, c_6$       | $u^6 + 3u^5 + 4u^4 + 2u^3 + 1$            |
| $c_{8}, c_{9}$   | $u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$ |
| $c_{10}$         | $(u^3 - u^2 + 1)^2$                       |
| $c_{11}, c_{12}$ | $u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$ |

| Crossings                   | Riley Polynomials at each crossing   |
|-----------------------------|--------------------------------------|
| $c_1, c_2, c_4$             | $(y-1)^6$                            |
| $c_3, c_7$                  | $y^6$                                |
| $c_5, c_6$                  | $y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^6 + 3y^5 + 4y^4 + 2y^3 + 1$       |
| $c_{10}$                    | $(y^3 - y^2 + 2y - 1)^2$             |

| Solutions to $I_5^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.498832 + 1.001300I  |                                       |                      |
| a = 0.122561 + 0.744862I  | -1.37919 - 2.82812I                   | -11.71191 + 2.59975I |
| b = 0                     |                                       |                      |
| u = 0.498832 - 1.001300I  |                                       |                      |
| a = 0.122561 - 0.744862I  | -1.37919 + 2.82812I                   | -11.71191 - 2.59975I |
| b = 0                     |                                       |                      |
| u = -0.284920 + 1.115140I |                                       |                      |
| a = 1.75488               | 2.75839                               | -60.423824 + 0.10I   |
| b = 0                     |                                       |                      |
| u = -0.284920 - 1.115140I |                                       |                      |
| a = 1.75488               | 2.75839                               | -60.423824 + 0.10I   |
| b = 0                     |                                       |                      |
| u = -0.713912 + 0.305839I |                                       |                      |
| a = 0.122561 + 0.744862I  | -1.37919 - 2.82812I                   | -11.71191 + 2.59975I |
| b = 0                     |                                       |                      |
| u = -0.713912 - 0.305839I |                                       |                      |
| a = 0.122561 - 0.744862I  | -1.37919 + 2.82812I                   | -11.71191 - 2.59975I |
| b = 0                     |                                       |                      |

VI. 
$$I_6^u = \langle au + 4b + a + u - 5, \ a^2 + 4au - 2a + 6u - 3, \ u^2 + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}au - \frac{1}{4}a - \frac{1}{4}u + \frac{5}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{4}au + \frac{1}{4}a - \frac{3}{4}u + \frac{13}{4} \\ \frac{1}{4}au + \frac{1}{4}a + \frac{1}{4}u - \frac{9}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}au - \frac{1}{4}a - \frac{1}{4}u + \frac{9}{4} \\ \frac{1}{4}au + \frac{3}{4}a - \frac{1}{4}u - \frac{5}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}au + \frac{1}{4}a - \frac{3}{4}u + \frac{13}{4} \\ \frac{1}{4}au + \frac{1}{4}a + \frac{1}{4}u - \frac{9}{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}au - u + \frac{7}{2} \\ \frac{1}{4}au + \frac{1}{4}a + \frac{1}{4}u - \frac{9}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{3}{4}au - \frac{3}{4}a - \frac{7}{4}u + \frac{23}{4} \\ \frac{3}{4}au + \frac{3}{4}a + \frac{3}{4}u - \frac{23}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{4}au - \frac{3}{4}a - \frac{23}{4}u - \frac{3}{4} \\ -\frac{3}{4}au + \frac{3}{4}a + \frac{1}{4}u - \frac{5}{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}au + \frac{5}{4}a + \frac{1}{4}u - \frac{5}{4} \\ -\frac{1}{4}au - \frac{1}{4}a - \frac{1}{4}u + \frac{5}{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

| Crossings                   | u-Polynomials at each crossing |
|-----------------------------|--------------------------------|
| $c_1$                       | $(u^2 - 3u + 1)^2$             |
| $c_2, c_3$                  | $(u^2+u-1)^2$                  |
| $c_4, c_7$                  | $(u^2 - u - 1)^2$              |
| <i>C</i> <sub>5</sub>       | $u^4 - 6u^3 + 18u^2 - 12u + 4$ |
| $c_6$                       | $u^4 + 6u^3 + 18u^2 + 12u + 4$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $(u^2+1)^2$                    |
| $c_{10}$                    | $u^4 + 7u^2 + 1$               |

| Crossings                    | Riley Polynomials at each crossing |
|------------------------------|------------------------------------|
| $c_1$                        | $(y^2 - 7y + 1)^2$                 |
| $c_2, c_3, c_4$ $c_7$        | $(y^2 - 3y + 1)^2$                 |
| $c_5, c_6$                   | $y^4 + 188y^2 + 16$                |
| $c_8, c_9, c_{11} \\ c_{12}$ | $(y+1)^4$                          |
| $c_{10}$                     | $(y^2 + 7y + 1)^2$                 |

| Solutions to $I_6^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 1.000000I             |                                       |            |
| a = -1.236070 + 0.236068I | -5.59278                              | -4.00000   |
| b = 1.61803               |                                       |            |
| u = 1.000000I             |                                       |            |
| a = 3.23607 - 4.23607I    | 2.30291                               | -4.00000   |
| b = -0.618034             |                                       |            |
| u = -1.000000I            |                                       |            |
| a = -1.236070 - 0.236068I | -5.59278                              | -4.00000   |
| b = 1.61803               |                                       |            |
| u = -1.000000I            |                                       |            |
| a = 3.23607 + 4.23607I    | 2.30291                               | -4.00000   |
| b = -0.618034             |                                       |            |

#### VII. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                                                                                                                                                                                  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$                 | $((u-1)^{10})(u^2 - 3u + 1)^2(u^3 - u^2 + 2u - 1)(u^{21} + 6u^{20} + \dots - 2u + 1)^2$ $\cdot (u^{30} + 14u^{29} + \dots - 2399u + 256)$                                                                                                       |
| $c_2$                 | $((u-1)^{10})(u^2+u-1)^2(u^3+u^2-1)(u^{21}-4u^{20}+\cdots-2u+1)^2$ $\cdot (u^{30}-6u^{29}+\cdots-31u+16)$                                                                                                                                       |
| $c_3$                 | $u^{10}(u^2 + u - 1)^2(u^3 - u^2 + 2u - 1)(u^{21} - u^{20} + \dots + 4u + 8)^2$ $\cdot (u^{30} - 2u^{29} + \dots - 96u - 256)$                                                                                                                  |
| $c_4$                 | $((u+1)^{10})(u^2-u-1)^2(u^3-u^2+1)(u^{21}-4u^{20}+\cdots-2u+1)^2$ $\cdot (u^{30}-6u^{29}+\cdots-31u+16)$                                                                                                                                       |
| $c_5$                 | $64(8u^{3} - 12u^{2} + 4u + 1)(u^{4} - 6u^{3} + 18u^{2} - 12u + 4)$ $\cdot (u^{4} + 2u^{3} + 3u^{2} + u + 1)(u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)$ $\cdot (8u^{30} + 20u^{29} + \dots + 12u + 4)(u^{42} + 8u^{41} + \dots + 859266u + 387139)$ |
| $c_6$                 | $64(8u^{3} + 12u^{2} + 4u - 1)(u^{4} + 2u^{3} + 3u^{2} + u + 1)$ $\cdot (u^{4} + 6u^{3} + 18u^{2} + 12u + 4)(u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)$ $\cdot (8u^{30} + 20u^{29} + \dots + 12u + 4)(u^{42} + 8u^{41} + \dots + 859266u + 387139)$ |
| <i>c</i> <sub>7</sub> | $u^{10}(u^2 - u - 1)^2(u^3 + u^2 + 2u + 1)(u^{21} - u^{20} + \dots + 4u + 8)^2$ $\cdot (u^{30} - 2u^{29} + \dots - 96u - 256)$                                                                                                                  |
| $c_8, c_9$            | $((u-1)^3)(u^2+1)^2(u^4+u^2-u+1)(u^6+u^5+\cdots+2u+1)$ $\cdot (u^{30}+3u^{29}+\cdots+14u-1)(u^{42}-8u^{41}+\cdots-406u+49)$                                                                                                                     |
| c <sub>10</sub>       | $u^{3}(u^{3} - u^{2} + 1)^{2}(u^{4} + 7u^{2} + 1)(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)$ $\cdot ((u^{21} + 2u^{20} + \dots + u - 1)^{2})(u^{30} - 6u^{29} + \dots + 64u + 256)$                                                                     |
| $c_{11}, c_{12}$      | $((u+1)^3)(u^2+1)^2(u^4+u^2+u+1)(u^6-u^5+\cdots-2u+1)$ $\cdot (u^{30}+3u^{29}+\cdots+14u-1)(u^{42}-8u^{41}+\cdots-406u+49)$                                                                                                                     |

## VIII. Riley Polynomials

| Crossings                   | Riley Polynomials at each crossing                                                                                                                                                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$                       | $(y-1)^{10}(y^2 - 7y + 1)^2(y^3 + 3y^2 + 2y - 1)$ $\cdot (y^{21} + 22y^{20} + \dots + 66y - 1)^2$ $\cdot (y^{30} + 10y^{29} + \dots - 6849345y + 65536)$                                                                                                         |
| $c_2, c_4$                  | $((y-1)^{10})(y^2 - 3y + 1)^2(y^3 - y^2 + 2y - 1)(y^{21} - 6y^{20} + \dots - 2y - 1)^2$ $\cdot (y^{30} - 14y^{29} + \dots + 2399y + 256)$                                                                                                                        |
| $c_{3}, c_{7}$              | $y^{10}(y^2 - 3y + 1)^2(y^3 + 3y^2 + 2y - 1)(y^{21} + 21y^{20} + \dots - 176y - 64)^2$ $\cdot (y^{30} + 18y^{29} + \dots + 76800y + 65536)$                                                                                                                      |
| $c_5, c_6$                  | $4096(64y^{3} - 80y^{2} + 40y - 1)(y^{4} + 188y^{2} + 16)(y^{4} + 2y^{3} + \dots + 5y + 1)$ $\cdot (y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)(64y^{30} - 1360y^{29} + \dots - 192y + 16)$ $\cdot (y^{42} - 26y^{41} + \dots - 934716639340y + 149876605321)$ |
| $c_8, c_9, c_{11}$ $c_{12}$ | $((y-1)^3)(y+1)^4(y^4+2y^3+\cdots+y+1)(y^6+3y^5+\cdots+2y^3+1)$ $\cdot (y^{30}+23y^{29}+\cdots-290y+1)(y^{42}+30y^{41}+\cdots+10976y+2401)$                                                                                                                      |
| $c_{10}$                    | $y^{3}(y^{2} + 7y + 1)^{2}(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot ((y^{21} - 8y^{20} + \dots + 17y - 1)^{2})(y^{30} + 6y^{29} + \dots - 1789952y + 65536)$                                                                         |