Machine Learning

What is Machine Learning

- Algorithms that enable machines to learn on data to provide predictions on unseen data
 - Supervised Learning
- Machine Learning is not Artificial Intelligence
 - It is one of the fields in Al
- Exploratory Analysis is still important!
 - Usual the first step before deep diving into ML algorithms

Machine Learning

- Efficient at learning patterns from data and linking them with labels
- Requires labeled data
 - o For some problems it is hard/expensive or even impossible to get such data
- Often hard to understand the logic behind it
 - White Box model model that is easy to understand and reason about
 - Black Box model model that is hard to comprehend

Machine Learning

Pclass	Sex	Age	 Survived		
3	male	22	 No	Train	Model
1	female	38	 Yes		Wodel

Supervised Learning

• The model can be applied to unseen data to predict label

Pclass	Sex	Age	 Survived		
1	female	50	 ?	Predict	Model
2	male	30	 ?		Model
•••			 		
				1	
					No
					No

Machine Learning vs. Programming

Programming **Traditional** Data Computer Results Handcrafted Rules -Algorithm Learning Data Machine Learning Computer Model Past Results Prediction **New Data** Computer Results Model

Python for ML

- Pandas
 - Data Analysis and Transformations
- Matplotlib
 - Data Visualization
- Numpy
 - Library for scientific computing on multi-dimensional matrices
- Scikit Learn
 - A Machine Learning Library

Machine Learning Process

- Define Problem
 - The hardest part
- Get data
 - Often connected with problem definition step
- Prepare data
 - Most tedious and time consuming, involves exploratory analysis
- Run modeling
 - Usually using a ML pipeline
- Select best model
 - The best is defined differently depending on the problem definition and business goals
- Iterate!

Data Preparation

Data Preparation

- Raw data can come in various formats
 - o Database, Json, CSV, Excel, etc.
- Data for ML should be in tabular format (pandas/numpy)
- Each row is a feature vector
 - Each feature can be seen as a dimension
 - Each instance is a point in in n-dimensional space
- ML models build decision boundaries that separate points from different classes
- Curse of dimensionality
 - As dimensions increase so does volume
 - Data becomes sparse
 - Amount of data needed grows exponentially vs growth of dimensions

Terminology

- Feature/Attribute
 - A single variable (binary, nominal, numerical)
- Instance/Feature vector
 - One entity described by features
- Label/Class/Target Variable
 - An extra information that categorizes/classifies a given instance
- Dataset
 - Collection instances

Terminology

- Typically a list of feature vectors (matrix) is called X
- The corresponding vector of class labels is called Y

Datasets

- Typically there are two datasets in ML:
 - Training Data used to train the model
 - Validation/Test Data used to validate the model (not used in training)
- The training dataset has to represent real world
 - Model will only be trained for data that it sees,
 - Model will likely fail if unseen/real world data looks different than training data
- Validation data should not be related to training data
 - Keep samples dissimilar
 - Reflect how model will be used
 - E.g. if data is timed use older samples for training and newer for validation

Data Preprocessing - Feature Scaling

- Normalization
 - \circ x -> (x min)/(max min)
 - Keeps data in 0-1 range
 - Sensitive to outliers
- Standardization
 - o x -> (x mean)/std_dev
 - Shifts mean to 0 and std_dev to 1
 - Values are not bounded
- It's good to scale the features so they have similar magnitude

Data Preprocessing - One Hot Encoding

- A lot of algorithms cannot handle categorical variables
- To this end categorical variables are encoded as binary representation
 - Create new features 1 for each of possible values
 - Fill with 1 or 0 depending whether original value correspond to new feature or not

color	color_red	color_green	color_blue
red	1	0	0
green	0	1	0
blue	0	0	1

Data Preprocessing - Discretization

- Converts numerical feature into categorical
 - Note: poor support for categorical features in sklearn
- Equal width
 - Each bin have equal width (sensitive to outliers, may produce empty bins)
- Equal Frequency
 - Each bin has same amount of instances (irregular shape)
- Supervised, e.g. Information Entropy Maximization
 - Selects bin automatically to maximize separation between classes

Data Preprocessing - Outliers removal

- Outliers often cause problems with ML algorithms
- Often is good to visualize data and do sanity check
 - Maybe data is bounded already
- Set threshold for outliers at top and/or bottom
 - o nth percentile (but check if data is not bounded, e.g. always greater than 0)
 - 4-5 standard deviations from mean (if data is normally distributed)
- Try to determine where do outliers come from
 - Human input error, malfunctioning sensors, etc.
- Handle outliers:
 - remove whole instance but what to do when outlier appears in unseen data
 - replace value with max/min threshold be sure to do such preprocessing to unseen data as well

Data Preprocessing - Missing Values

- Data may often miss some values (single or multiple features)
- Determine cause and if it could be biased
 - Hard to collect, lost, people will not provide information in survey, etc.
- Check how often values are missing
- Deal with missing values:
 - If a given feature has strong impact but is often missing potentially have model trained with and without a feature and use depending on feature availability
 - Replace missing value with avg or median value
 - Remove feature if a lot of data is missing (try with replacement first)
 - If categorical include a new category N/A
 - Model missing values based on other features increases complexity
 - E.g. Titanic dataset, if missing gender or age use mrs/miss/mr/master in name

Data Processing - Features Engineering

- Often done as part of data collection
 - Brainstorming what features may be related to the task and collecting them
- Some features may be engineered from features provided in dataset
 - E.g. divide distance traveled by trip length in hours to get avg speed
- Use domain specific knowledge, examples:
 - Body Mass Index = weight / height_in_meters^2
 - Use indices that describe physicochemical and biochemical properties of amino acids
 - Convex hull of units in a strategy game
 - Preprocessing of images so that individual objects are extracted (removes background noise)

Machine Learning Evaluation

Confusion Matrix

Matrix that hold counts of instances depending on original label and the predicted label

	Predicted class is 1	Predicted class is 0
Original class is 1	True Positive (TP)	False Negative (FN)
Original class is 0	False Positive (FP)	True Negative (TN)

Accuracy

- The most known metric
- TP + TN / (TP + FP + TN + FN)
- or Correct_predictions / All_instances
- Is accuracy of 95% good?
 - Depends on base distribution, accuracy is not good measure for imbalanced datasets
 - Consider that 99% of instance may belong to one class, 95% is then less than naive predictor who always assigns more frequently occurring class
 - But if majority of instances that belong to the other class is within those 5% that may still be a great predictor!

Beyond Accuracy

% of a given class correctly identified:

True Positive Rate (Sensitivity): TP/(TP + FN) (also known as Recall)

True Negative Rate (Specificity): TN/(TN + FP)

% of predicted that are correct:

Positive Predictive Value: TP/(TP + FP) (also know as Precision)

Negative Predictive Value: TN/(TN + FN)

Matthews correlation coefficient (MCC):

$$\frac{\mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN}}{\sqrt{(\mathit{TP} + \mathit{FP})(\mathit{TP} + \mathit{FN})(\mathit{TN} + \mathit{FP})(\mathit{TN} + \mathit{FN})}}$$

Probabilities

- Usually ML model provides probability of a class belonging to a given class
- That enables selecting cut off threshold for classification
 - Default is 50%
 - But we can change it to optimize for a given metric (Sensitivity, Specificity, MCC, etc.)
- What is more important depends on the problem
 - E.g. when performing medical pre screening checks you don't want to miss any sick patients to send for more accurate (and expensive) tests

Probabilities

- Since we have actual labels we can validate predicted probabilities
- Cross entropy loss (log loss)
 - o 0 is the perfect score
 - This score is hard to compare across different datasets so it's typically used to build the model
- Point-biserial correlation coefficient

ROC

- Receiver operating characteristic
 - Puts threshold at each possible probability value
 - Calculate TPR and FPR (FP/N) for that threshold
 - Draw the resulting line
- ROC enables to visualize prediction properties for different thresholds
 - Point (0,1) Perfect score
 - Line from (0,0) to (1,1) random predictions
- AUC Area Under Curve, common metric to summarize ROC

Beyond 2 labels...

- Accuracy (Correct_Predictions/All)
- Observed % (TC_K / C_K)
- Predicted % (TC_K / All_Predicted_As_C_K)
- R_k generalized MCC for K classes
- Log-loss works for 2 or more classes
- ROC is hard to generalize for more than two classes

Machine Learning

Building model

Hyperparameter search

- Most algorithms have parameters that guide how the algorithms work
- They have to be tuned to specific problems/data
- Typically a grid search is performed where different sets of parameters are tried
 - Model with a given set of parameters is trained and evaluated, using training set
 - The set with highest score is selected
 - There are also more complex search approaches used
- But you have to be careful when you selecting hyperparameters to make sure model still works well on unseen data

(More on hyperparameters on Sunday)

Overfitting

- Model works perfectly on Training Data, but has lower performance on unseen data
- ML techniques aim at building generalized models
 - Regularization Allow for error on training data
 - Cross Validation Split training dataset and use splits to choose best parameters for a model
 - Validation Dataset Use unseen data to evaluate model

K-fold Cross Validation

- We have one training set, but we can divide it into subsets/folds
- For example for 5-fold cross validation: divide data into 5 equal folds

1	2	3	4	5
---	---	---	---	---

Use one fold as validation and combine remaining and use as training

Test	Training	Training	Training	Training
------	----------	----------	----------	----------

K-fold Cross Validation - cont'd

Repeat to end up with 5 pairs of training-test data:

Test	Training	Training	Training	Training
Training	Test	Training	Training	Training
Training	Training	Test	Training	Training
Training	Training	Training	Test	Training
Training	Training	Training	Training	Test

- Thanks to Cross Validation set of parameters is evaluated over multiple datasets making the evaluation more robust
 - It's easy to overfit to one dataset, hard to overfit to multiple

K-fold Cross Validation

- The final model should be trained on the best set of parameters using whole dataset
 - You can also have k models and average predictions over them
- The reported classifier performance should be an average over all folds
 - Typically sum of all predictions vs avg of scores
- CV can also be used to evaluate model if there is not a lot of data
- How many folds to use?
 - Typical applications are 5 or 10, the larger data the smaller k
 - Jackknife uses as many folds as there are instances
 - The more folds the longer it will take to train the model
- If you have huge dataset it may be OK not to use CV
 - Common in deep learning

Feature Selection

- Features have a big impact on a model performance
 - A lot of them will be redundant or irrelevant.
- It's common to include feature selection as part of model training
- Find a subset of features that works best
 - There is 2ⁿ combinations of features impossible to check all of them in reasonable time
 - To this end heuristic search algorithms are used to explore features space to find a good subset (but not guaranteed to find the best)
 - Typically each subset is evaluated on training set
- Multiple benefits:
 - Simplified models
 - Shorter training time
 - Minimized chance of overfitting

(More details in Advanced ML class)