COMP9414/9814/3411: Artificial Intelligence 10. Perceptrons

Russell & Norvig, Section 20.5

UNSW

Outline

- Neurons Biological and Artificial
- Perceptron Learning
- Linear Separability
- Multi-Layer Networks

COMP9414/9814/3411 13s1 Perceptrons 2

Sub-Symbolic Processing

UNSW © Alan Blair, 2013

Brain Regions

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1 Perceptrons

Brain Functions

Structure of a Typical Neuron

UNSW © Alan Blair, 2013

Biological Neurons

The brain is made up of neurons (nerve cells) which have

- a cell body (soma)
- dendrites (inputs)
- an axon (outputs)
- synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshold an action potential (electrical pulse) is sent along the axon to the outputs.

Variety of Neuron Types

UNSW © Alan Blair, 2013

The Big Picture

- human brain has 100 billion neurons with an average of 10,000 synapses each
- latency is about 3-6 milliseconds
- therefore, at most a few hundred "steps" in any mental computation, but massively parallel

Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

- inputs edges, each with some weight
- outputs edges (with weights)
- an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).

The input function is the weighted sum of the activation levels of inputs.

The activation level is a non-linear transfer function *g* of this input:

activation_i =
$$g(s_i) = g(\sum_j w_{ij}x_j)$$

Some nodes are inputs (sensing), some are outputs (action)

Rosenblatt Perceptron

Transfer function

Originally, a (discontinuous) step function was used for the transfer function:

$$g(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ 0, & \text{if } s < 0 \end{cases}$$

(Later, other transfer functions were introduced, which are continuous and smooth)

Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

Examples include:

AND
$$w_1 = w_2 = 1.0, \quad w_0 = -1.5$$

OR $w_1 = w_2 = 1.0, \quad w_0 = -0.5$

NOR
$$w_1 = w_2 = -1.0, \quad w_0 = 0.5$$

Q: How can we train it to learn a new function?

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall:
$$s = w_1x_1 + w_2x_2 + w_0$$

if
$$g(s) = 0$$
 but should be 1,

if
$$g(s) = 0$$
 but should be 1, if $g(s) = 1$ but should be 0,

$$w_k \leftarrow w_k + \eta x_k$$

$$w_0 \leftarrow w_0 + \eta$$

$$w_0 \leftarrow w_0 - \eta$$

 $w_k \leftarrow w_k - \eta x_k$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_k^2\right)$$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_k^2\right)$$
 so $s \leftarrow s - \eta \left(1 + \sum_{k} x_k^2\right)$

otherwise, weights are unchanged. ($\eta > 0$ is called the **learning rate**)

Theorem: This will eventually learn to classify the data correctly, as long as they are linearly separable.

Perceptron Learning Example

Training Step 1

Training Step 2

Training Step 3

Final Outcome

UNSW

Limitations

Problem: many useful functions are not linearly separable (e.g. XOR)

Possible solution:

 x_1 XOR x_2 can be written as: $(x_1$ AND $x_2)$ NOR $(x_1$ NOR $x_2)$

Recall that AND, OR and NOR can be implemented by perceptrons.

Multi-Layer Neural Networks

Problem: How can we train it to learn a new function? (credit assignment) [stay tuned...]