CREDIT RISK, SENTIMENT ANALYSIS

&

N.P.S. (NET PROMOTER SCORE)

AGENDA

- 1. Data Cleansing & Quality Check
- 2. Correlation
- 3. Voluntary Attrition & Sentiment Analysis
- 4. Involuntary Attrition & NPS
- 5. ML Model
- 6. Summary

Full List of Data Cleansing / Quality Check

1. Initial Inspection

- df.head() / df.sample() View data sample
- df.shape Rows & columns
- df.info() Check column types and nulls
- df.describe() Summary statistics
- df.columns List of column names

2. Structural Integrity

- Check for duplicate rows
- df = df.drop_duplicates()
- Check for duplicate column names
- df.columns.duplicated().any()

3. Missing Data

- Identify missing values
- df.isnull().sum()
- Decide how to handle:
 - o Drop rows: df.dropna()
 - Fill values: df.fillna(method='ffill') or use mean/median
 - Flag them: create an indicator column

4. Data Types

- Ensure correct data types
- df.dtypes
- Convert as needed
- df['date'] = pd.to_datetime(df['date'])
- df['category'] = df['category'].astype('category')

5. Outliers and Invalid Values

- Visualize with boxplots or histograms
- Use z-score or IQR method
- Check for impossible values (e.g. negative ages, invalid ZIP codes)

6. Consistency Checks

- Standardize text:
- df['column'] = df['column'].str.lower().str.strip()
- Ensure consistent units (e.g. dollars vs cents, kg vs lb)
- Align formats (e.g. phone numbers, SSNs, ICD codes)

7. Unique Identifiers

- Confirm that key columns (e.g., ID, claim number) are unique:
- df['ID'].is_unique
- Check for duplicates:
- df[df.duplicated(subset='ID')]

8. Invalid Categories or Values

- Use .unique() to inspect:
- df['status'].unique()
- Cross-check with expected values (e.g. ['active', 'inactive'])

9. Date and Time Consistency

- Convert to datetime: pd.to_datetime()
- Sort and check sequence/order
- Ensure no future dates for things like birth or service dates

10. Numerical Checks

- Check for negatives where not allowed (e.g. income, age)
- Validate ranges
- Handle infinite or NaN values
- df = df.replace([np.inf, -np.inf], np.nan)

11. Data Normalization (Optional, ML-focused)

- Scaling numeric features (MinMax or StandardScaler)
- Encoding categorical variables (Label or OneHot)

12. Column Renaming and Documentation

- Clean messy column names
- Document your data dictionary

Data Cleansing / Quality Check in Progress (1)

```
df.shape #Rows & columns (9015, 40)
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9015 entries, 0 to 9014
Data columns (total 40 columns):
                               Non-Null Count Dtype
    Column
                                               object
    CLIENTNUM
                               9015 non-null
    Attrition Flag
                                               object
                              9015 non-null
    Customer Age
                              9015 non-null
                                               int64
                                               object
    Gender
                              9015 non-null
     Dependent count
                              9015 non-null
                                               int64
    Education Level
                                               object
                              7641 non-null
    Marital Status
                                               object
                              8348 non-null
     Income Category
                                               object
                              9015 non-null
    Card Category
                              9015 non-null
                                               object
                                               int64
    Months on book
                              9015 non-null
    Total Relationship Count 9015 non-null
                                               int64
    Months Inactive 12 mon
                               9015 non-null
                                               int64
    Contacts Count 12 mon
                               9015 non-null
                                               int64
    Credit Limit
                               9015 non-null
                                               float64
     Total Revolving Bal
                                               int64
                               9015 non-null
    Avg Open To Buy
                               9015 non-null
                                               float64
    Total Amt Chng Q4 Q1
                                               float64
                               9015 non-null
```

17	Total_Trans_Amt	9015	non-null	int64			
18	Total_Trans_Ct	9015	non-null	int64			
19	Total_Ct_Chng_Q4_Q1	9015	non-null	float64			
20	Avg_Utilization_Ratio	9015	non-null	float64			
21	NB_Attrition_Prob_Yes	9015	non-null	float64			
22	NB_Attrition_Prob_No	9015	non-null	float64			
23	Churn_Type	9015	non-null	object			
24	annual_income	9015	non-null	int64			
25	monthly_income	9015	non-null	float64			
26	DTI_ratio	9015	non-null	float64			
27	DTI_Risk_Level	9015	non-null	category			
28	Credit_Score	9015	non-null	float64			
29	Loan_Default_Flag	9015	non-null	int64			
30	Number_of_Defaults	9015	non-null	int64			
31	Last_Default_Date	9015	non-null	object			
32	Default_Amount	9015	non-null	float64			
33	Bankruptcy_History	9015	non-null	object			
34	Bankruptcy_Flag	9015	non-null	int64			
35	Adjusted_Credit_Score	9015	non-null	float64			
36	Moodys_Rating	9015	non-null	category			
37	Payment_History_Flag	9015	non-null	object			
38	Payment_Risk	9015	non-null	object			
39	estimated_annual_revenue	9015	non-null	float64			
<pre>dtypes: category(2), float64(13), int64(13), object(12)</pre>							
memory usage: 2.6+ MB							

Data Cleansing / Quality Check in Progress (2)

df.describe().T

	count	mean	std	min	25%	50%	75%	max
Customer_Age	10128.0	46.326521	8.016616	26.000000	41.000000	46.000000	52.000000	73.000000
Dependent_count	10128.0	2.346465	1.299112	0.000000	1.000000	2.000000	3.000000	5.000000
Months_on_book	10128.0	35.928910	7.986181	13.000000	31.000000	36.000000	40.000000	56.000000
Total_Relationship_Count	10128.0	3.812599	1.554332	1.000000	3.000000	4.000000	5.000000	6.000000
Months_Inactive_12_mon	10128.0	2.342121	1.015120	0.000000	2.000000	2.000000	3.000000	12.000000
Contacts_Count_12_mon	10128.0	2.455075	1.106440	0.000000	2.000000	2.000000	3.000000	6.000000
Credit_Limit	10128.0	8634.557178	9092.103865	1438.300000	2555.000000	4549.000000	11070.250000	35000.000000
Total_Revolving_Bal	10128.0	1162.947769	815.058178	0.000000	360.000000	1276.500000	1784.000000	2517.000000
Avg_Open_To_Buy	10128.0	7471.577814	9093.547561	3.000000	1324.750000	3474.500000	9861.750000	34516.000000
Total_Amt_Chng_Q4_Q1	10127.0	0.759941	0.219207	0.000000	0.631000	0.736000	0.859000	3.397000
Total_Trans_Amt	10127.0	4404.086304	3397.129254	510.000000	2155.500000	3899,000000	4741.000000	18484.000000
Total_Trans_Ct	10127.0	64.858695	23.472570	10.000000	45.000000	67.000000	81.000000	139.000000
Total_Ct_Chng_Q4_Q1	10127.0	0.712222	0.238086	0.000000	0.582000	0.702000	0.818000	3.714000
Avg_Utilization_Ratio	10127.0	0.274894	0.275691	0.000000	0.023000	0.176000	0.503000	0.999000
NB_Attrition_Prob_Yes	10127.0	0.159997	0.365301	0.000008	0.000099	0.000181	0.000337	0.999580
NB_Attrition_Prob_No	10127.0	0.840003	0.365301	0.000420	0.999660	0.999820	0.999900	0.999990
annual_income	9016.0	62535.457964	39300.348399	20001.000000	32856.750000	50407.000000	80095.750000	199975.000000
monthly_income	9016.0	5211.288164	3275.029033	1666.750000	2738.062500	4200.583333	6674.645833	16664,583333
DTI_ratio	9016.0	30.768135	29.151431	0.000000	6.177866	24.654816	46.680241	149.985103
Credit_Score	10128.0	640.672788	114.324010	450.000000	544.000000	635.000000	737.000000	850.000000
Loan_Default_Flag	10128.0	0.222650	0.416046	0.000000	0.000000	0.000000	0.000000	1.000000
Number_of_Defaults	10128.0	0.677626	1.432613	0.000000	0.000000	0.000000	0.000000	5.000000
Default_Amount	10128.0	2275.305247	5008.536585	0.000000	0.000000	0.000000	0.000000	19999.460000
Bankruptcy_Flag	10128.0	0.100316	0.300436	0.000000	0.000000	0.000000	0.000000	1.000000
Adjusted_Credit_Score	10128.0	625.625395	126.250679	301.000000	525.000000	622.000000	730.000000	850.000000
stimated_annual_revenue	10128.0	282.589554	163.011636	50.000000	122.000000	305.300000	406.800000	553.400000

```
# Identify categorical columns
   cat cols = df.select dtypes(include='category').columns
                                                                  Hidden Missing Value
   # Display unique values
   for col in cat cols:
       print(f"\nUnique values in '{col}':")
       print(df[col].unique())
Unique values in 'Attrition Flag':
['Attrited Customer', 'Existing Customer']
Categories (2, object): ['Attrited Customer', 'Existing Customer']
Unique values in 'Education Level':
['Undergraduate', 'Graduate', 'Unknown', 'Doctorate', 'Uneducated', 'High School', 'Post-Graduate', 'College']
Categories (8, object): ['College', 'Doctorate', 'Graduate', 'High School', 'Post-Graduate', 'Undergraduate', 'Uneducated'
Unique values in 'Marital Status':
['Single', 'Divorced', 'Married', 'Unknown']
Categories (4, object): ['Divorced', 'Married', 'Single',
Unique values in 'Income_Category':
['$60K - $80K', '$80K - $120K', '$120K +', 'Unknown', '$40K - $60K', 'Less than $40K']
Categories (6, object): ['$120K +', '$40K - $60K', '$60K - $80K', '$80K - $120K', 'Less than $40K',
Unique values in 'Card Category':
['Gold', 'Blue', 'Silver', 'Platinum']
Categories (4, object): ['Blue', 'Gold', 'Platinum', 'Silver']
Unique values in 'Attrition Type':
['Involuntary', 'Existing Customer', 'Voluntary']
Categories (3, object): ['Existing Customer', 'Involuntary', 'Voluntary']
```

How to fill up missing Income_Category?


```
# Create Income Buckets Based on Credit Limit
def infer_income_category(row):
    if row['Credit_Limit'] >= 19000:
        return '>$120K'
    elif row['Credit_Limit'] >= 15000:
        return '$80K - $120K'
    elif row['Credit_Limit'] >= 10000:
        return '$60K - $80K'
    elif row['Credit_Limit'] >= 5462:
        return '$40K - $60K'
    else:
        return 'Less than $40K'
```


Data Cleansing / Quality Check in Progress (3)

Normality Check for Numerical Variables

```
import pandas as pd
from scipy.stats import normaltest
# Select numeric columns from your DataFrame
numeric cols = df.select dtypes(include=['number']).columns
# List to store results
normality results = []
# Run the normality test on each column
for col in numeric cols:
   data = df[col].dropna()
       nor All, except one variable, are not normally distributed.
   if len(data) >= 8: # D'Agostino 8
        nor results.append({
            'Column': col,
            'K2 Statistic': round(stat, 4),
            'p value': round(p, 4),
            'Normally Distributed': normal,
            'Sample Size': len(data)
    else:
        normality results.append({
            'Column': col,
            'K2 Statistic': None,
            'p value': None,
            'Normally Distributed': 'N/A (too few samples)',
```

	Column	K2_Statistic	p_value	Normally_Distributed
0	Customer_Age	49.2823	0.000	No
1	Dependent_count	413.9960	0.000	No
2	Months_on_book	49.7030	0.000	No
3	Total_Relationship_Count	2159.6239	0.000	No
4	Months_Inactive_12_mon	1055.1569	0.000	NO
5	Contacts_Count_12_mon	0.2716	0.873	Yes
6	credit_Limit	2568.7141	0.000	No
7	Total_Revolving_Bal	4577.3041	0.000	No
8	Avg_Open_To_Buy	2561.9669	0.000	No
	1_Amt_Chng_Q4_Q1	3771.6388	0.000	No
	Total_Trans_Amt	3437.5569	0.000	No
11	Total_Trans_Ct	130.6147	0.000	No
12	Total_Ct_Chng_Q4_Q1	4624.0271	0.000	No
13	Avg_Utilization_Ratio	1632.7250	0.000	No
14	NB_Attrition_Prob_Yes	2732.4566	0.000	No
15	NB_Attrition_Prob_No	2732.4566	0.000	No
16	annual_income	1983.2656	0.000	No
17	monthly_income	1983.2656	0.000	No
18	DTI_ratio	1434.7890	0.000	No
19	Credit_Score	1018.9534	0.000	No
20	Loan_Default_Flag	1606.5908	0.000	No
21	Number_of_Defaults	3081.6887	0.000	No
22	Default_Amount	3526.4534	0.000	No
23	Bankruptcy_Flag	4991.7803	0.000	No
24	Adjusted_Credit_Score	399.5646	0.000	No
25	estimated_annual_revenue	4577.3041	0.000	No

Normality Check – Bar Chart

DEBT-TO-INCOME

DTI RATIO=

(TOTAL MONTHLY DEBT PAYMENTS / GROSS MONTHLY INCOME)×100

DTI Range	Interpretation			
0%-20%	Excellent			
21%-36%	Good			
37%–49%	Risky			
50%+	High Risk			

Categorical Data Insights (1)

```
cat_cols = ['Income_Category_Complete', 'DTI_Risk_Level','Moodys_Rating','Payment_History_Flag', 'Bankruptcy_Flag',]
# Set black background style
plt.style.use('dark_background')

for col in cat_cols:
    plt.figure(figsize=(10, 5))
    sns.countplot(x=col, hue='Payment_Risk', data=df)
    plt.title(f'{col} vs Payment Risk Level')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


Categorical Data Insights (2)

Categorical Data Insights (3)

Categorical Data Insights (4)

Correlation Heatmap

```
# 5. Correlation Heatmap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Calculate the correlation matrix
corr = df[num cols].corr()
# Create a mask for the upper triangle
mask = np.triu(np.ones like(corr, dtype=bool))
# Set the plot style
plt.style.use('dark background') # Optional: dark theme
# Plot the heatmap with the mask
plt.figure(figsize=(10, 8))
sns.heatmap(corr, mask=mask, annot=True, cmap='coolwarm', fmt=".
plt.title('Correlation Between Numeric Features (Lower Triangle)
plt.tight_layout()
plt.show()
```


Voluntary Churn

Sentiment Analysis – know why to help us grow

Voluntary Churn

NPS Analysis
(Net Promoter Score)
- Help us know our future

Sentiment and NPS Analysis for Voluntary Churn Customers

- By Hugging Face

CLIENTNUM	review	sentiment_label	sentiment_score sentiment_numer	c nps_category	nps_summar	nps_value
	Unable to make a payment from another credit card to close the balance because the card number is too long. I could only make a payment via DD, which I DON'T want to do. There is no information about this on their website. Can't wait to close this thing down. Customer Service - took me 10 min to go through security, clueless staff. Website appalling, no point using it as all managed by the app, which is painfully slow, not working most of the time and very limited.	NEGATIVE	1.000 -1.0	00 Detractor	93.67	0
	always paid on time because I'm very organised. However yesterday I had an email off then saying they had started a credit plan and my first payment was coming out on 25th and it was for a very shocking ammount of money. I originally thought it was fraud so I phoned up argos to then find it was a purchase I made last year that I hadn't paid off. Having looked back through my bank statements it looks like this wasn't paid however I had paid other stuff off on there more recently and cleared the card so I would have noticed the outstanding payment and paid it off. I think argos didn't show that I had this left to pay until my year was up then automatically charged me. I have no proof of any of this though because they send no emails all I have is an email of me ordering it and then my bank statement to show I never paid it		0.998 -0.9	98 Detractor	93.67	0
721243083	I Spoke with them twice this week both times the call handler was unfriendly and unhelpful.	NEGATIVE	0.997 -0.9	97 Detractor	93.67	0
	went on the phone talk to 3 different people at the customer service at Argos credit card about my card payment . All of them customer service is very poor Not freindly no helpful . 3 of them the same .	NEGATIVE	0.999 -0.9	99 Detractor	93.67	0
710047533	Customer service number not working properly can not make a payment.	NEGATIVE	1.000 -1.0	00 Detractor	93.67	0
	They say buy now pay later with no interest, when you pay after the year they will claim huge amount of interest for that year, they will take the money without even telling you or sending you an email, when you ask they will say it is the interest for that year. They are very cunning beware.	NEGATIVE	0.957 -0.9	57 Detractor	93.67	0
	Unable to make a payment from another credit card to close the balance because the card number is too long. I could only make a payment via DD, which I DON'T want to do. There is no information about this on their website. Can't wait to close this thing down. Customer Service - took me 10 min to go through security, clueless staff. Website appalling, no point using it as all managed by the app, which is painfully slow, not working most of the time and very limited.	NEGATIVE	1.000 -1.0	00 Detractor	93.67	0

Client Counts by
Churn Type / Existing Customer

Estimated Annual Revenue by Churn Type / Existing Customer

Client Counts by DTI Risk Level

Estimated Annual Revenue By DTI Risk Level

Machine Learning Models (Logistic Regression, XGBoost)

```
# Step 5: Feature Importance
# Get feature names after one-hot encodin
preprocessor.fit(X train)
feature_names = (numerical_cols.tolist()
                 list(preprocessor.named
# Get feature importances from the best
importances = best model.named steps['cla
# Create a DataFrame for visualization
feature importances = pd.DataFrame({ 'feat
feature importances = feature importances
# Plot top 20 features
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 8))
sns.barplot(x='importance', y='feature',
            data=feature importances.head
plt.title('Top 50 Important Features')
plt.tight layout()
plt.show()
```


Executive Summary (1)

Executive Summary (2):

Machine Learning Modeling

THANK YOU ALL

OTricia

Furning data into meaningful stories with actionable insights

Data Analyst | Python • Power BI • SAS • SQL • Sentiment Analysis • NPS