12. Aligning Language Models (Advanced)

Guest lecture by Hyung Won Chung

Instruction Finetuning and Reinforcement Learning with Human Feedback (RLHF)

Outline

Rule-based systems

Classical machine learning

· Automatic learning

Deep learning: (self-)supervised learning

• Hand-designed features → Learned features

Deep learning: RLHF

Hand-designed loss function → Learned loss function

Pretraining (general knowledge) → Instruction finetuing (Ability to respond to instructions)

- → Reward model training
- → Policy model training → Instruction finetuing (as a loop)

Instruction finetuing

- · Instruction finetuing on a mixture of academic tasks
 - o Example: Flan
 - Scaling with number of tasks and task diversity
- · Instruction finetuing on user prompts of language model APIs
 - Example: InstructGPT
 - o Academic tasks aren't reflected of how models are used in an API setting

Reward model training

Limitation of instruction finetuning: the target is the single correct answer. In RL, this is called "behavior cloning".

RL provides one way to use a learned objective.

Reward modeling (RM): ranking → score

Let p_{ij} be the probability that completion y_i is better than completion y_j

Bradley-Terry model: $\log rac{p_{ij}}{1-p_{ij}} = r(x,y_i;\phi) - r(x,y_j;\phi)$

Pairwise ranking loss for K responses

$$ext{loss}(heta) = -rac{1}{{k \choose 2}} E_{x,y_w,y_l \sim D} \left[\log(\sigma(r_{ heta}(x,y_w)) - r_{ heta}(x,y_l))
ight]$$

where $r_{\theta}(x,y)$ is the scalar output of the reward model for prompt x and completion y with parameters θ , y_w is the preferred completion out of the pair of y_w and y_l , and D is the dataset of human comparisons.

Policy model training

Once we have a RM, we maximize the expected reward

$$\max_{ heta} J(heta) = \max_{ heta} \mathbb{E}_{(X,Y) \sim D_{\pi_{ heta}}}[r(X,Y;\phi)]$$

We use iterative algorithms such as gradient ascent to solve this

$$\theta := \theta + \alpha \nabla J(\theta)$$

We add KL penalty to prevent over-optimization of the RM

Proximal Policy Optimization (PPO)

$$egin{aligned} ext{objective}(\phi) &= E_{(x,y) \sim D_{\pi^{ ext{RL}}}}[r_{ heta}(x,y) - eta \log(\pi^{ ext{RL}}_{\phi}(y \mid x)/\pi^{ ext{SFT}}(y \mid x))] + \ \gamma E_{x \sim D_{ ext{pretrain}}}[\log(\pi^{ ext{RL}}_{\phi}(x))] \end{aligned}$$

where $\pi_\phi^{\rm RL}$ is the learned RL policy, $\pi^{\rm SFT}$ is the supervised trained model, and $D_{\rm pretrain}$ is the pretraining distribution.

- $r_{\theta}(x,y)$: expected reward for the new model
- $\log(\pi_\phi^{\mathrm{RL}}(y\mid x)/\pi^{\mathrm{SFT}}(y\mid x))]$: KL divergence to avoid going too far away from the original model
- ullet $E_{x\sim D_{
 m pretrain}}[\log(\pi_\phi^{
 m RL}(x))]$: objective for GPT3 on the original data