Tutorial 9 Solutions

In this question, assume the following predicate and constant symbols:

W(x,y): x wrote y

L(x,y): x is longer than y

N(x): x is a novel

h : Hardy

a: Austen

j: Jude the Obscure

p : Pride and Predjudice

Given these specifications, which of the predicate logic formulas below represent the sentence, 'Hardy wrote a novel which is longer than any of Austen's' in predicate logic?

- 1. $\forall x (W(h,x) \rightarrow L(x,a)))$
- 2. $\forall x \exists y (L(x,y) \rightarrow W(h,y) \land W(a,x))$
- 3. $\forall x \ \forall y \ (W(h,x) \land W(a,y) \rightarrow L(x,y)))$
- 4. $\exists x (N(x) \land W(h,x) \land \forall y (N(y) \land W(a,y) \rightarrow L(x,y)))$
- 5. $\exists x \ \forall y \ (W(h,x) \rightarrow W(a,y) \land L(x,y))$

Answer:

Option 4.

Prove the following sequents where F, G, P, and Q have arity 1, and S has arity 0 (a 'propositional atom'):

a)
$$\exists x (S \rightarrow Q(x)) \vdash S \rightarrow \exists x Q(x)$$

b)
$$\forall x P(x) \rightarrow S \vdash \exists x (P(x) \rightarrow S)$$

Solution:

a)

/	
1. $\exists x(S \rightarrow Q(x))$	premise
2.S	assumption
$3.x_0$	
$ 4. S \rightarrow Q(x_0)$	assumption
$\int 5. Q(x_0)$	→e 4,2
$\int 6. \exists x Q(x)$	∃x i 5
$7. \exists x Q(x)$	∃x e 1,3-6
8. $S \rightarrow \exists x Q(x)$	→i 2-7

1 \			
b)	1	$\forall x P(x) \to S$	prem
	2	$\neg \exists x (P(x) \to S)$	assum
	3 x_0	990 955 960 937	
	4	$\neg P(x_0)$	assum
	5	$P(x_0)$	assum
	6	1	¬e 5, 4
	7	S	⊥e 6
	8	$P(x_0) o S$	\rightarrow i 5 -7
	9	$\exists x (P(x) \to S)$	$\exists x \ \mathbf{i} \ 8$
	10	Т	¬e 9, 2
	11	$\neg \neg P(x_0)$	$\neg i\ 4{-}10$
	12	$P(x_0)$	¬¬e 11
	13	$\forall x P(x)$	$\forall x \mathbf{i} 3 - 12$
	14	S	$\rightarrow \text{e } 1,13$
	15	P(t)	assum
	16	S	copy 14
	17	$P(t) \to S$	\rightarrow i 15 $-$ 16
	18	$\exists x (P(x) \to S)$	$\exists x \ \mathbf{i} \ 17$
	19	1	¬e 18, 2
	20	$\neg\neg\exists x(P(x)\to S)$	$\neg i \ 2{-}19$
	21	$\exists x (P(x) \to S)$	$\neg \neg e \ 20$

(b)
$$S \to \exists x \, Q(x) \vdash \exists x \, (S \to Q(x))$$

(c) $\exists x \, P(x) \to S \vdash \forall x \, (P(x) \to S)$

Solution:

a) No (a)

b)

 $1.S \rightarrow \exists x \ Q(x)$ premise $2.S \lor \neg S$ LEM

3.S	assumption
$4. \; \exists x Q(x)$	→e 1,3
$5. x_0 Q(x_0)$	assumption
6.S	assumption
7. $Q(x_0)$	copy 5
$8.S \rightarrow Q(x_0)$	→i 6-7
9. $\exists x(S \rightarrow Q(x))$	∃x i 8
10 $\exists x(S \rightarrow O(x))$	$\exists x \in 4.5-9$

11. ¬S	assumption	
12.S	assumption	
13. ⊥	¬e 11,12	
$14.Q(x_0)$	⊥ e 13	
15. S \rightarrow Q(x_0)	→i 12-14	
$16.\exists x(S \rightarrow Q(x))$	∃x i 15	
17. $\exists x (S \rightarrow Q(x))$	Ve 2,3-10,11-16	

Solution c:

 $1.\exists x P(x) \rightarrow S$ premise

x_0		
2. $P(x_0)$	assumption	
$\exists x P(x)$	∃x i 2	
4. S	→e 3,1	
$5. P(x_0) \rightarrow S$	→i 2-4	
6. $\forall x (P(x) \rightarrow S)$	∀x i 2-5	

Let ϕ be $\exists x (P(y, z) \land (\forall y (\neg Q(y, x) \lor P(y, z))))$, where P and Q are predicate

symbols with two arguments.

- (a) Draw the parse tree of φ .
- (b) Identify all bound and free variable leaves in φ .

