

BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts

Emanuele Marconato 1,2 Antonio Vergari³

¹University of Trento

Emile van Krieken³ Samuele Bortolotti ¹

Andrea Passerini ¹ Stefano Teso ¹

²University of Pisa ³University of Edinburgh

REASONING SHORTCUTS

NeSy predictors such as $\mathbf{DeepProbLog}[1]$, and \mathbf{Logic} \mathbf{Tensor} **Networks**[2], acquire concepts that comply with the knowledge.

Are learned concepts interpretable and is the model trustworthy? Not always![3]

Reasoning Shortcuts (RSs) like this might affect any NeSy predictor!

MITIGATION STRATEGI

ES	DESIDERAIA

Strategy	REQUIRES
Multi-Task Concept Sup.	tasks concepts
Reconstruction Disentanglement	(decoder)

- Concept calibration
- Performance
- Cost effectiveness

BEARS: BE AWARE OF REASONING SHORTCUTS!

Effective mitigation strategies for RSs, like concept supervision, are often impractical. If the model learns a RS what concepts can we trust?

Over-confident solutions are dangerous: impossible to be aware of wrong concepts!

OUR SOLUTION

bears combines Deep Ensembles + diversification

(\sim Bayesian NeSy) and provably optimizes for all desiderata:

$$\begin{split} \mathcal{L}_{\text{bears}} &= \mathcal{L}(\mathbf{x}, \mathbf{y}; \mathbf{K}, \theta_t) \\ &+ \gamma_1 \cdot \mathsf{KL} \big(p_{\theta_t}(\mathbf{C} \mid \mathbf{x}) \mid\mid \frac{1}{t} \sum_{j=1}^t p_{\theta_j}(\mathbf{C} \mid \mathbf{x}) \big) \\ &+ \gamma_2 \cdot H(p_{\theta_t}(\mathbf{C} \mid \mathbf{x})) \end{split}$$

EXPERIMENTS

1) An example from MNIST-Addition

Solve the sum between two

$$0 + 1 = 1$$

$$2 + 3 = 5$$

$$2 + 4 =$$

2 Active learning with bears

3 bears in real-world: BDD-OIA [4]

mECE_C	$ECE_C(F, S)$	$ECE_C(R)$	$\mathrm{ECE}_C(L)$
0.84 ± 0.01	0.75 ± 0.17	0.79 ± 0.05	0.59 ± 0.32
0.83 ± 0.01	0.72 ± 0.19	0.76 ± 0.08	0.55 ± 0.33
0.85 ± 0.01	0.84 ± 0.10	0.87 ± 0.04	0.67 ± 0.19
0.68 ± 0.01	0.26 ± 0.01	0.26 ± 0.02	0.11 ± 0.02
0.79 ± 0.01	0.62 ± 0.03	0.71 ± 0.10	0.37 ± 0.12
0.58 ± 0.01	$\boldsymbol{0.14 \pm 0.01}$	$\boldsymbol{0.10 \pm 0.01}$	$\boldsymbol{0.02 \pm 0.01}$
	0.84 ± 0.01 0.83 ± 0.01 0.85 ± 0.01 0.68 ± 0.01 0.79 ± 0.01	0.84 ± 0.01 0.75 ± 0.17 0.83 ± 0.01 0.72 ± 0.19 0.85 ± 0.01 0.84 ± 0.10 0.68 ± 0.01 0.26 ± 0.01 0.79 ± 0.01 0.62 ± 0.03	mECE $_C$ ECE $_C(F,S)$ ECE $_C(R)$ 0.84 ± 0.01 0.75 ± 0.17 0.79 ± 0.05 0.83 ± 0.01 0.72 ± 0.19 0.76 ± 0.08 0.85 ± 0.01 0.84 ± 0.10 0.87 ± 0.04 0.68 ± 0.01 0.26 ± 0.01 0.26 ± 0.02 0.79 ± 0.01 0.62 ± 0.03 0.71 ± 0.10 0.58 ± 0.01 0.14 ± 0.01 0.10 ± 0.01

REFERENCES

- [1] Manhaeve et al., DeepProbLog, NeurIPS (2018)
- [2] Donadello et al., Logic Tensor Networks, IEEE (2018)
- [3] Marconato et al., Not All Neuro-Symbolic Concepts are Created Equal: Analysis and Mitigation of Reasoning Shortcuts, NeurIPS (2023)
- [4] Xu et al., BDD-OIA dataset, CVPR (2020).

We propose bears to estimate concept uncertainty!

