Wasserpark

a) Die nachstehende Abbildung 1 zeigt einen Springbrunnen mit mehreren Wasserstrahlen. In Abbildung 2 sind in einem Koordinatensystem zwei dieser Wasserstrahlen als Graphen der quadratischen Funktionen *f* und *g* modellhaft dargestellt.

Abbildung 1:

Bildquelle: Katy Warner, CC BY-SA 2.0, https://ccsearch.creativecommons.org/photos/54e58cad-a5ae-43ce-b292-443ae82b920b [18.12.2019].

Abbildung 2:

Der Graph der Funktion g ergibt sich durch Verschiebung des Graphen der Funktion f.

1) Kreuzen Sie den zutreffenden Zusammenhang zwischen f und g an. [1 aus 5] [0/1 P.]

g(x) = f(x+2)	
$g(x) = f(2 \cdot x)$	
g(x) = f(x) + 2	
g(x) = f(x-2)	
g(x) = f(x) - 2	

2) Stellen Sie eine Gleichung der quadratischen Funktion f auf.

[0/1 P.]

3) Berechnen Sie den Steigungswinkel von f an der Stelle x = -1.

[0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

b) Die Grundfläche eines Beckens in einem Wasserpark entspricht dem Viereck *ABCD* (siehe nachstehende Abbildung).

1) Stellen Sie eine Formel zur Berechnung des Flächeninhalts *F* des Vierecks *ABCD* auf. Verwenden Sie dabei die beschrifteten Seitenlängen und Winkel.

$$F = \underline{\hspace{1cm}} [0/1 P.]$$

Es gilt: a = 3 m, b = 1.2 m, c = 1.9 m, d = 2.4 m und $\beta = 113^{\circ}$

2) Berechnen Sie den Winkel δ .

[0/1 P.]

c) Über einem Wasserbecken hängt ein Scheinwerfer. Dieser ist im Punkt A befestigt (siehe nachstehende modellhafte Abbildung). Die Gewichtskraft \overrightarrow{F} wird in die Kraft \overrightarrow{F}_1 (in Richtung der Haltestange h_1) und die Kraft \overrightarrow{F}_2 (in Richtung der Haltestange h_2) zerlegt.

1) Veranschaulichen Sie in der obigen Abbildung die Kräftezerlegung mithilfe eines Kräfteparallelogramms. [0/1 P.]

Es gilt:
$$\alpha = 40^{\circ}$$
 und $|\overrightarrow{F}| = 100 \text{ N}$

2) Berechnen Sie $|\overrightarrow{F}_2|$.

[0/1 P.]

Bundesministerium

Bildung, Wissenschaft und Forschung

Möglicher Lösungsweg

a1)

a2)
$$f(x) = a \cdot x^2 + 3$$

 $f(1) = 0$ oder $0 = a \cdot 1^3 + 3$
 $a = -3$
 $f(x) = -3 \cdot x^2 + 3$

- **a3)** $arctan(f'(-1)) = 80,53...^{\circ}$
- a1) Ein Punkt für das richtige Ankreuzen.
- a2) Ein Punkt für das richtige Aufstellen der Gleichung der quadratischen Funktion f.
- a3) Ein Punkt für das richtige Berechnen des Steigungswinkels.

b1)
$$F = \frac{a \cdot b \cdot \sin(\beta)}{2} + \frac{c \cdot d \cdot \sin(\delta)}{2}$$

b2)
$$e = \overline{AC} = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\beta)} = 3,64...$$

 $\delta = \arccos\left(\frac{c^2 + d^2 - e^2}{2 \cdot c \cdot d}\right) = 115,2...^{\circ}$

- b1) Ein Punkt für das richtige Aufstellen der Formel.
- **b2)** Ein Punkt für das richtige Berechnen des Winkels δ .

Bundesministerium Bildung, Wissenschaft und Forschung

c1)

c2)
$$|\vec{F}_2| = \frac{100}{\cos(40^\circ)}$$
 $|\vec{F}_2| = 130,5...$ N

- c1) Ein Punkt für das richtige Veranschaulichen der Kräftezerlegung. c2) Ein Punkt für das richtige Berechnen von $|\overrightarrow{F}_2|$.