### Politechnika Wrocławska

Wydział Informatyki i Telekomunikacji



## Sieci złożone

Sprawozdanie z laboratorium

# Autor **Dzmitry Kasko**

nr albumu: 257285

kierunek: Inżynieria systemów

28 styczeń 2022

#### Streszczenie

Celem pracy jest sprawdzenie skuteczności działania jednej z metod służących zapobieganiu rozpowszechniania się koronawirusa, którą jest kwarantanna dla osób zakażonych. Dane do badań zostały wygenerowane za pomocą zaimplementowanego generatora sieci złożonych reprezentujących populację w pewnej miejscowości. Analizę przeprowadzono z wykorzystaniem właśnie zaimplementowanego symulatora przebiegu epidemii. W rezultacie symulacji wielokrotnej udało się ustalić, że zastosowanie kwarantanny skutecznie spowalnia rozwój epidemii zwłaszcza przy stosowaniu z ograniczeniem kontaktów.

#### 1 Wstęp – sformułowanie problemu

Przekazanie choroby odbywa się podczas spotkań osobistych między osobami, więc musi być utworzona sieć reprezentująca powiązania między ludźmi z wybranej populacji. Statystyki odnośnie do liczebności rodzin w Polsce wykorzystano ze strony <a href="https://stat.gov.pl/">https://stat.gov.pl/</a> w celu odwzorowania rzeczywistych powiązań międzyludzkich.

#### 2 Opis rozwiązania

#### 2.1 Generator sieci społecznych

Do generowania sieci wykorzystano bibliotekę Networkx języka Python. Zaimplementowany został własny generator grafu ważonego, gdzie każdy wierzchołek roprozentuje osobe, a waga krawodzi jest odpowiednikiem intensywności interakcji

reprezentuje osobę, a waga krawędzi jest odpowiednikiem intensywności interakcji międzyludzkich. Generator przyjmuje dwa parametry: num\_cliques – liczba klik, num\_edges – liczba dodatkowych krawędzi.

Generowanie grafu odbywa się w kilka etapów:

- Do grafu dodawane są kliki reprezentujące rodziny. Rozmiar kliki losowany jest zgodnie z rozkładem liczby od 1 do 5 osobowych rodzin w Polsce. Wagi krawędzi w klice losowane są z rozkładu równomiernego (0.01, 0.5).
- Do grafu dodawane są krawędzie losowe łączące wierzchołki należące do różnych klik. Dodawanie krawędzi kończy się w momencie, gdy graf jest spójny.
   Wagi krawędzi losowane są z rozkładu równomiernego (0.01, 0.1).
- Do grafu dodawane jest num\_edges dodatkowych losowych krawędzi.
  Wagi krawędzi losowane są z rozkładu równomiernego (0.01, 0.1).

#### 2.2 Symulacja przebiegu epidemii

Do symulacji przebiegu epidemii wykorzystano model SIR (Susceptible, Infectious, Recovered – Podatny, Zakażony, Wyzdrowiały).

Symulacja SIR przyjmuje następujące parametry:

- G graf Networkx, reprezentujący populację, w której odbywa się przebieg epidemii
- Nb inf init = 5 początkowa liczba osób zakażonych
- Gamma = 14 średnia liczba dni potrzebna na wyzdrowienie
- T = 100 liczba kroków symulacii
- Q = 6 średnia liczba dni od zachorowania do skierowania na kwarantanne

W grafie początkowo zakażonych jest *Nb\_inf\_init* losowych osób. W każdym kroku symulacji:

 Odbywa się zakażenie osób podatnych, którzy mają połączenie z osobą zakażoną z prawdopodobieństwem równym wadze połączenia między ww. osobami.

- W przypadku, gdy stosowana jest kwarantanna, osoba przebywająca na kwarantannie nie może przekazać choroby
- Wyzdrowienie osób zakażonych, jeżeli liczba dni po zakażeniu jest >= od zmiennej losowej z rozkładu normalnego z wartością oczekiwaną = Gamma.
- W przypadku zastosowania kwarantanny skierowanie osoby zakażonej na kwarantannę, jeżeli liczba dni po zakażeniu jest >= od zmiennej losowej z rozkładu normalnego z wartością oczekiwaną = Q.

Zakazić się mogą tylko osoby podatne, ludzie wyzdrowiałe nie są zakażane.

W wyniku symulacji otrzymana jest liczebność osób podatnych, zakażonych i wyzdrowiałych w poszczególnych krokach symulacji. Przykładowe wyniki symulacji przedstawione są poniżej dla grafów wygenerowanych z parametrami (n\_cliques, n\_edges) = (50, 200) - Rys. 1; (100, 0) – Rys. 2:

## Łączna liczba osób zakażonych / wyzdrowiałych ( q – przebieg z stosowaniem kwarantanny)





Rys. 2

Na powyższych wykresach widoczna jest różnica w przebiegu epidemii ze stosowaniem kwarantanny i bez. Także widoczne jest zróżnicowanie efektywności stosowania kwarantanny dla różnych populacji.

#### 3 Rezultaty obliczeń

**3.1 Plan badan**Dla zbadania efektywności stosowania kwarantanny zostały wybrane następujące wskaźniki:

- liczba dni trwania epidemii,
- procent osób, którzy zostali zakażeni
- maksymalny procent osób chorych jednocześnie

Została przeprowadzona 100-krotna symulacja dla każdej pary parametrów generatora sieci. Dla każdej wygenerowanej sieci została przeprowadzona symulacja przebiegu epidemii bez stosowania kwarantanny i ze stosowaniem kwarantanny.

Żeby ułatwić analizę skutków stosowania kwarantanny w komórkach tabeli jest przestawiony stosunek wskaźnika dla przebiegu epidemii bez kwarantanny do wskaźnika dla przebiegu epidemii z kwarantanna.

#### 3.2 Wyniki obliczeń

Liczba dni trwania epidemii (bez/z kwarantanna)i: [1]

| zzba dili ti wania epidenni (bez/ z kwarantania)i. [1] |      |      |      |  |  |
|--------------------------------------------------------|------|------|------|--|--|
| n_clique<br>n_edges                                    | 50   | 100  | 200  |  |  |
| 0                                                      | 1.65 | 1.54 | 1.09 |  |  |
| 100                                                    | 1.11 | 1.12 | 1.07 |  |  |
| 200                                                    | 1.04 | 1.05 | 1.03 |  |  |

Procent osób, którzy zostali zakażeni (bez/z kwarantanną): [1]

| n_clique<br>n_edges | 50   | 100  | 200  |
|---------------------|------|------|------|
| 0                   | 2.19 | 2.27 | 1.89 |

| 100 | 1.32 | 1.53 | 1.6  |
|-----|------|------|------|
| 200 | 1.12 | 1.25 | 1.35 |

Maksymalny procent osób chorych jednocześnie (bez/z kwarantanną): [1]

| n_clique<br>n_edges | 50   | 100  | 200  |
|---------------------|------|------|------|
| 0                   | 1.7  | 2.02 | 2.22 |
| 100                 | 1.38 | 1.59 | 1.85 |
| 200                 | 1.15 | 1.35 | 1.54 |

#### 4 Wnioski

Ponieważ dla wszystkich wskaźników otrzymaliśmy stosunek > 1, możemy stwierdzić, że stosowanie kwarantanny ma pozytywny wpływ na przebieg epidemii, bo skrócenie okresu trwania epidemii, zmniejszenie sumy zakażeń oraz liczba osób chorych jednocześnie zmniejsza obciążenie służby zdrowia w kraju.

Przy bardziej szczegółowej analizie wyników możemy wywnioskować, że stosowanie kwarantanny ma największą efektywność dla sieci, przy generowaniu których nie były dodawane dodatkowe połączenia między osobami (1-y wiersz każdej tabeli), czyli sieci mniej gęstych. Najgorsze wyniki natomiast są w 3-ich wiersza tabel, dla sieci najbardziej gęstych.

Z powyższego wynika, że kwarantanna ma największą efektywność, gdy jest stosowana wraz z ograniczeniem kontaktów międzyludzkich (np. przejście na zdalny tryb pracy, studiów)

Analiza zmiany stosunku wskaźników wg kolumn (zależność od rozmiaru sieci) nie jest pewna, ponieważ zwiększenie liczby połączeń o tą samą liczbę dla sieci o różnych rozmiarach ma zróżnicowany wpływ na gęstość sieci oraz inne parametry sieci.

#### **Dodatek**

Kody źródłowe umieszczone zostały w repozytorium GitHub:

https://github.com/dkosko/Sieci-zlozone