

Mathematical Foundations of Computer Science

Lecture 7: Mappings, Growth of Functions

Announcements

- Homework 2 is out. See Canvas Syllabus page for PS2.pdf
- To be submitted on Crowdmark by Oct. 11 (Tues) night (assgt will go up on Crowdmark later tonight)
- Discussion sections Wed and Thurs at 5pm.
- For any enquiries related to the course logistics (e.g., homework submissions), please send a private post on Piazza with the instructors (individual emails to me could get lost.)

Binary Relation

Binary relation: a R b or $a \sim_R b$ means a is related to b

Function is a binary relation where *every* element of domain is related to exactly one element of the codomain.

Eg. f: People \rightarrow Cities representing city of birth

Properties of Functions

• Injectivity/ One-to-one function: every element of range has at most one preimage

• Surjectivity/ Onto function: range=co-domain i.e. every element of co-domain has pre-image.

• Bijective function: both Injective and Surjective.

{a, a, 3}

Simple Example

• Consider a set $A = \{a_1, a_2, a_3, ..., a_n\}$. Show a bijective map between the power set of A, and all n-bit strings.

- (i) Injective: every n-bit string has at most one preimage
- (ii) Surjective: every n-bit string at least one preimage

 $f: \mathbb{R} \rightarrow \mathbb{R}_{t}$ \mathbb{N}

Growth Rate of Functions

Measuring Efficiency, Complexity

How do we measure the efficiency of an algorithm?

- 1. Time Complexity = the number of steps taken
- 2. Space Complexity = the number of memory cells/bits used
- 3. the amount of energies consumed
- 4. the size of a VLSI chip
- 5. the number of gates in a circuit
- 6. many more ...

Common Functions

Typically, domain and range are numbers (\mathbb{R} or \mathbb{N}).

Examples:
$$f(x) = 20x$$
, $f(n) = 2n^2 - n$, $f(n) = e^n$

Sorting numbers: $f(n) = n\log_2 n$

For algorithms: domain is natural algorithms \mathbb{N} , range is positive reals \mathbb{R}^+

Which is Bigger?

$$f(n) = 100n \log n$$
 or $g(n) = 2n^2 - n$?
 $n = 1,2,3,...$?

How do we compare?

- Consider large values of n (reason about large inputs)
- Mathematically well-defined and elegant

Asymptotic Analysis:

 Gives good qualitative understanding of function

Only higher order terms matter.

$$g(n)-2n^2-100.03n+\sqrt{1001}$$