Mathematical Statistics I

Chapter 4: Expected Values

Jesse Wheeler

Outline

1. Discrete random variables

2. Continuous random variables

Discrete random variables

Introduction

- This material comes primarily from Rice (2007, Chapter 4).
- We will cover the ideas of expected value, variance, as well has higher-order moments.
- This includes topics such as conditional expectation, which is one of the fundamental ideas behind many branches of statistics and machine learning.
- For instance, most regression / prediction algorithms are built with the idea of minimizing some conditional expectation.

Expectation: Discrete random variables

Definition: Expectation of discrete random variables

Let X be a discrete random variable with pmf p(x), which takes values in the space \mathcal{X} . The expected value of X is

$$E(X) = \sum_{x \in \mathcal{X}} x \, p(x),$$

provided that $\sum_{x \in \mathcal{X}} |x| \, p(x) < \infty$; otherwise, the expectation is not defined.

 This is not the most mathematically precise definition of expectation, but a more complete treatment of the topic is outside the scope of this course (See Resnick, 2019).

Expectation: Discrete random variables II

- The concept of the expected value parallels the notion of a weighted average.
- That is, we weight each possibility $x \in \mathcal{X}$ by their corresponding probability: $\sum_{x} x \, p(x)$.
- E(X) is also referred to as the mean of X, and is typically denoted μ or μ_X .
- If the function p is thought of as a weight, then E(X) is the center; that is, if we place the mass $p(x_i)$ at the points x_i , then the balancing point is E(X).
- Like with the pmf and cdf, we often use subscripts to denote which probability law we are using for the expectation, it if is not clear: $E_X(X)$.

Expectation: Discrete random variables III

Roulette

A roulette wheel has the numbers 1 through 36, as well as 0 and 00. If you bet \$1 that an odd number comes up, you win or lose \$1 according to whether that event occurs. If X denotes your net gain, X=1 with probability 18/38 and X=-1 with probability 20/28. The expected value of X is

$$E(X) = 1 \times \frac{18}{38} + (-1) \times \frac{20}{38} = -\frac{1}{19}.$$

 As you might imagine, the expected value coincides in the limit with the actual average loss per game, if you play many games (Chapter 5).

Expectation: Discrete random variables IV

 Most casino games have a negative expected value by design; you may win some money, but if a large number of games are played, the house will come out on top.

Expectation: Discrete random variables V

Geometric Random Variable

Suppose that items are produced in a plant are independently defective with probability p. If items are inspected one by one until a defective item is found, then how many items must be inspected on average?

Solution:

Expectation: Discrete random variables VI

Poisson Distribution

The $\mathsf{Poisson}(\lambda)$ distribution has $\mathsf{pmf}\ p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, for all $k \geq 0$. Thus, if $X \sim \mathsf{Pois}(\lambda)$, then what is E[X]?

Solution:

Continuous random variables

Expectation: Continuous random variables

Definition: Expectation of continuous random variables

Let X be a continuous random variable with pdf f(x), which takes values in the space \mathcal{X} . The expected value of X is

$$E(X) = \int_{x \in \mathcal{X}} x f(x) \, dx.$$

provided that $\int_{x\in\mathcal{X}}xf(x)\,dx<\infty$, otherwise the expectation is undefined.

 As before, this is not the most mathematically precise definition of expectation, but a more complete treatment of the topic is outside the scope of this course (See Resnick, 2019).

Expectation: Continuous random variables II

 \bullet We can still think of E(X) as the center of mass of the density.

Expectation: Continuous random variables III

Gamma Density

If X follows a gamma density with parameters α and λ , then the pdf of X is

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \ge 0.$$

Find E(X).

Solution.

Functions of random variables

- We are often interested in functions of random variables: Y=g(X).
- Ideas that we have already covered enable us to calculate ${\cal E}(Y).$
- ullet For instance, you could use the change-of-variables theorem to get the density of Y, then use the definition to calculate E[Y].
- ullet Fortunately, we don't have to do this. We can instead calculate E[Y] by integrating (or summing) with respect to X:

$$E[g(X)] = \int_{x \in \mathcal{X}} g(x)f(x) dx.$$

• We will justify this for the discrete analog.

Functions of random variables II

Theorem 4.1: Expectation of transformed random variables

Suppose that X is a random variable and that Y=g(X) for some function g. Then,

• If X is discrete with pmf p(x):

$$E(Y) = \sum_{x} g(x) p(x),$$

provided that $\sum_{x}|g(x)|p(x)<\infty.$

• If X is continuous with pdf f(x):

$$E(Y) = \int_{-\infty}^{\infty} g(x)f(x) dx,$$

provided that $\int |g(x)|f(x) dx < \infty$.

Functions of random variables: proof

Proof:

Functions of random variables: proof II

- The proof for the continuous case is similar, but does require a measure-theoretic approach to integration.
- One important thing to note is that g(E(X)) is not usually equal to E(g(x)).
- For example, let Z be a standard normal. We know that E[Z]=0, because it's symmetric. However, $P\big(|Z|>0\big)=1$, thus we can readily deduce that $E\big[|Z|\big]\geq 0=\big|E[Z]\big|$.
- An immediate consequence is that if for all non-negative random variables X that have finite expectation, if $g(x) \leq x$ for some function g, then $E[g(X)] \leq E[X]$.

Expected value of indicator functions

- An interesting example is indicator functions.
- For example, suppose that X is a random variable. Then $Y=1[X\in A]$ for some $A\subset \mathcal{X}$ is a random variable.
- Example: Let X follow a standard normal distribution, and A=[-1,1]. Then $Y=1[X\in A]$ is defined as the random variables such that $Y(\omega)=1$ if $X(\omega)\in A$, and $Y(\omega)=0$ otherwise.

Expected value of indicator functions II

• Expectations of indicator variables are probabilities:

$$\begin{split} E(Y) &= E \big(\mathbb{1}[X \in A] \big) \\ &= \int_{x \in \mathcal{X}} \mathbb{1}[X \in A] \, f(x) \, dx \\ &= \int_{x \in A} f(x) \, dx = P(X \in A). \end{split}$$

- This fact is useful for deriving some important inequalities.
- Let X be a continuous random variable with expectation E(X). From our definition, this implies that $\int |x| \, f(x) \, dx < \infty.$

Expected value of indicator functions III

- Now suppose that for some random variable Y=g(X) such that $|Y|\leq |X|$. Then, if Y has a pdf, we can deduce that $\int |y|\,f(x)\,dx<\infty$, and therefore E[Y] exists.
- Now suppose that φ is a non-decreasing, non-negative function, and that for some $a \in \mathbb{R}$, $\varphi(a) > 0$. Then, for all $x \geq a$, $\varphi(x)/\varphi(a) \geq 1$.
- Define $Y=1[X\geq a].$ Note that for all possible outcomes $\omega\in\Omega,$

$$Y = 1[X \ge a] \le \varphi(X)/\varphi(a)1[X \ge a] \le \varphi(X)/\varphi(a).$$

Expected value of indicator functions IV

Taking expectations of both sides,

$$E(1[X \ge a]) = P(X \ge a) \le \frac{E[\varphi(X)]}{\varphi(a)} = E[\varphi(X)/\varphi(a)].$$

- This inequality is known as Markov's (general) inequality, and is very useful for bounding the probability of particular events.
- Specifically, if $\varphi(x)=|x|^p$, with p>0, then because |X| is always positive, φ is non-negative, non-decreasing, and therefore

$$P(|X| \ge a) \le \frac{E[|X|^p]}{a^p},$$

 If we restrict ourselves to the case where X is non-negative, we get the most standard version of the inequality:

$$P(X \ge a) \le E(X)/a$$
.

Markov's Inequality

• There are a

References and Acknowledgements

Resnick S (2019). A probability path. Springer.

Rice JA (2007). *Mathematical statistics and data analysis*, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA.

- Compiled on August 25, 2025 using R version 4.5.1.
- We acknowledge students and instructors for previous versions of this course / slides.