Name		

1) (20 pts) Given the following binary search tree

- a) Explain why this is a binary search tree (hint: what property does it have)
- b) Draw and/or explain how to search for key = 2.
- 2) (40 pts) Given the Fibonacci sequence

fib(n) =

0 for
$$n = 0$$

1 for $n = 1$
fib(n-2) + fib(n-1) for $n > 1$

- a) Draw the recursion tree for fib(5).
- b) Why is this a good dynamic programming problem?
- c) Write a top down algorithm for fib(n).
- d) Write a bottom up algorithm for fib(n)
- 3) (20 pts) Using the following hash function h(k) = k % 12 and collision resolution by chaining (order in linked list does not matter), draw and/or explain how the hash function hashes the below keys into a hash table
 - a) h(13)
 - b) h(14)
 - c) h(26)
 - d) Draw and/or explain the hashing processes for looking up key = 26?
- 4) (20 pts) Draw and/or explain the solution to the activity problem

Activity	a1	a2	a3	a4	a5	a6	a7	a8
Start	1	0	1	4	2	5	3	4
Finish	3	4	2	6	9	8	5	5