

Description

The VSM18P10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. It is ESD protested.

General Features

- V_{DS} =-100V, I_{D} =-18A $R_{DS(ON)}$ <100mΩ @ V_{GS} =-10V (Typ:85mΩ) $R_{DS(ON)}$ <120mΩ @ V_{GS} =-10V (Typ:95mΩ)
- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

- Power management in notebook computer
- Portable equipment and battery powered systems

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM18P10-T3	VSM18P10	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	-100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	-18	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-12	А
Pulsed Drain Current	I _{DM}	-100	А
Single pulse avalanche energy (Note 5)	E _{AS}	170	mJ
Maximum Power Dissipation	P _D	70	W
Derating factor		0.47	W/°C
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	R _{θJc}	2.14	°C/W
--	------------------	------	------

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V
Zero Gate Voltage Drain Current	o Gate Voltage Drain Current I _{DSS} V _{DS} =-100V,V _{GS} =0V		-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±20	μΑ
On Characteristics (Note 3)	•		•			•
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1	-1.9	-3	V
Dunin Course On State Besistance	В	V _{GS} =-10V, I _D =-16A	-	85	100	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-16A		95	120	
Forward Transconductance	G FS	V _{DS} =-50V,I _D =-10A	5	-	-	S
Dynamic Characteristics (Note4)	•		•			
Input Capacitance	C _{lss}	\/ - 50\/\/ -0\/	-	3810	-	PF
Output Capacitance	Coss	V_{DS} =-50V, V_{GS} =0V, F=1.0MHz	-	129	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	125	-	PF
Switching Characteristics (Note 4)	•		•			•
Turn-on Delay Time	t _{d(on)}		-	16	-	nS
Turn-on Rise Time	t _r	V _{DD} =-50V,I _D =-16A	-	73	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =-10V, R_{GEN} =9.1 Ω	-	34	-	nS
Turn-Off Fall Time	t _f		-	57	-	nS
Total Gate Charge	Qg	V 50VI 40A	-	70	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-50V,I _D =-16A,	-	12.5	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	15.5	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	-18	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-16A	-	88.3	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	65.9	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=-50V,VG=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

20

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

 T_C Case Temperature($^{\circ}C$)

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance

TO-263-2L Package Information

COMMON DIMENSIONS (UNITS OF MEASURE =MILLIMETER)

SYMBOL	MIN NOM		MAX		
Α	4.40	4.50	4.60		
A1	0	0.10	0.25		
A2	2,20	2,40	2,60 0,89		
b	0,76	_			
b1	0,75	0,80	0,85		
b2	1,23		1,37		
b3	1,22	1,27	1,32		
С	0,47	_	0,60		
c1	0.46	0,51	0.56		
c2	1,25	1,30	1,35		
D	9,10	9,20	9,30		
D1	8,00	_	_		
E	9.80	9.90	10.00		
E1	7.80	_			
e	2.54 BSC				
Н	14.90 15.30		15.70		
L	2.00	2.30	2.60		
L1	1.17	1.27	1.40		
L2			1,75		
L3	0.25BSC				
L4	4.60 REF				
θ	0°		8°		
θ1	1°	3°	5°		