

FSM Mid-Internship Review

Piston Defect Detection Using Computer Vision

Priyal Salecha Nirma University

Under Mentorship of Keivalya Pandya

IITD-AIA FOUNDATION FOR SMART MANUFACTURING

Objectives

List out all objectives.

Understanding problem statement

OpenCV

Deep Learning Techniques

Computer Vision basic

Pandas and Scikit Learn

TensorFlow

Pytorch

Dataset preprocessing

Image Processing

Data Visualisation

Model Selection and Training

Model Evaluation

Cloud Computing

Timeline - Gantt chart

IITD AIA-FSM GANTT CHART

	TASKTITLE	START DATE	DUE DATE	DURATION	POT OF TASK COMPLETE	PHASE ONE			PHASE TWO			P HASE THREE			PHASE FOUR		
						WEEK 1	WEEK 2	WEEKS	WEEK4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK9	WEEK 10	WEEK 11	WEEK 12
						M T W R	FMTWR	F M T W R F	M T W R	F M T W R F	MTWRF	M T W R F	M T W R F	M T W R F	M T W R F	M T W R F	M T W R
1	WEEK 1																
1	Understanding problem statement	6/9/23	6/10/23	1	100%												
2	OpenCV	6/9/23	6/13/23	4	80%												
3	Deep Learning Techniques	6/10/23	6/12/23	2	70%												
4	Computer Vision basic	6/11/23	6/13/23	2	90%												
5	Pandas and Scikit Learn	6/12/23	6/14/23	2	80%												
6	TensorFlow	6/13/23	6/15/23	2	70%												
7	Pytorch	6/14/23	6/15/23	1	70%												
8	Dataset preprocessing	6/14/23	6/17/23	3	80%												
9	Image Processing	6/16/23	6/22/23	6	60%												
10	Data Visualisation	6/21/23	6/24/23	3	50%												
11	Model Selection and Training	6/26/23															
12	Model Evaluation	6/26/23					- Indiana										de la
11	Cloud Computing	6/27/23				-											
12	Final Report making																
												1111					


```
import cv2
# Image acquisition
camera = cv2.VideoCapture(0) # Use the default camera (change the
# Check if the camera is opened correctly
if not camera.isOpened():
    print("Unable to open the camera")
    exit()
# Read frames from the camera
ret, frame = camera.read()
# Check if the frame is read correctly
    print("Unable to read frame from the camera")
    exit()
# Release the camera
camera.release()
# Preprocessing
# Convert the image to grayscale
gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
```


es.jpg

Thank You

20bic039@nirmauni.ac.in