Методи обчислення композиції точок еліптичної кривої без використання інверсії

Терновий Володимир

Львівський національний університет ім. І.Франка

Постановка задачі

- Розглянути типи, завдання, функції, вимоги до безпеки криптографічних протоколів
- Дослідити криптогафічні протоколи, що базуються на доведенні з нульовим знанням.
- Програмно реалізувати приклад протоколу доведення з нульовим знанням для задачі відшукання гамільтонового циклу в графі.

Еліптичні криві

Кубічна крива у формі Веєрштрасса:

$$y^2 = x^3 + ax + b. (1)$$

Для прикладу на рис. 1.1 наведені кубічні криві

$$y^2 = x^3 - x$$
 ra $y^2 = x^3 - x + 1$.

Рис. 1.1. Еліптичні криві.

Кубічні криві, які не мають особливих точок називають еліптичними кривими.

Груповий закон в афінних координатах

F(q) є скінченним полем Галуа з p>3. E є еліптичною кривою над F(Q), що задається «коротким рівнянням Веєрштрасса»

$$Y^2 = X^3 + aX + b, \quad a, b \in F(q),$$
 (2)

а також $4a^3 + 27b^2 \neq 0_F$ у полі F(q). в афінних координатах груповий закон складання і подвоєння на еліптичній кривій (2) задається таким чином:

- точка на нескінченності O_E є одиничним елементом до операції додавання « + »;
- усі точки R=(x,y) є такими, що $R\neq O_E$;

Груповий закон в афінних координатах

• якщо $R_1 = (x_1, y_1)$ і $R_2 = (x_2, y_2)$ $R_1 \neq \pm R_2$ і $R_1, R_2 \neq O_E$, то сумою точок R_1 та R_2 є точка $R_3 = (x_3, y_3)$, координати якої визначаються як:

$$x_3 = r^2 - x_1 - x_2;$$

$$y_3 = r(x_1 - x_3) - y_1,$$

$$r = (y_2 - y_1)/(x_2 - x_1);$$
(3)

• якщо R = (x, y) є точка на E — така, що $R \neq O_E$ і $Y \neq O_F$, то її подвоєнням є точка $2R = (x_3, y_3)$, координати якої визначаються як:

$$x_3 = r^2 - 2x;$$

 $y_3 = r(x - x_3) - y,$ (4)
 $r = (3x^2 + a)/(2y);$

У разі якщо $R=(x,O_F)$, подвоєнням цієї точки є точка $2R=O_E.$

Геометрична інтерпретація складання двох точок

Геометрична інтерпретація складання двох точок з координатами (x_1, y_1) та (x_2, y_2) на еліптичній кривій;

Рис. 2.1. Додавання точок еліптичної кривої.

Груповий закон у проективних координатах

Проективний аналог короткого афінного рівняння Веєрштрасса:

$$Y^2Z = X^3 + aXZ^2 + bZ^3, \quad a, b \in F(Q).$$
 (5)

Еліптична крива, що задається в проективних координатах, складається з усіх точок R=(X,Y,Z) рівняння (5) так, що трійка (X,Y,Z) є розв'язком рівняння.

Груповий закон у проективних координатах

Співвідношення між точками Q кривої E, коли крива задана в афінних координатах, а точка R— у проективних координатах. В такому разі справедливі твердження:

- Якщо $Q = (X_Q, Y_Q)$ є точка в афінних координатах, то $R = (X_Q, Y_Q, 1_F)$ є відповідною точкою в проективних координатах.
- **②** Якщо R = (X, Y, Z) і $Z \neq O_F$ є розв'язком (5), то Q = (X/Z, Y/Z) є відповідною точкою в афінних координатах кривої E.
- **②** Існує тільки один розв'язок (5) із Z = 0, а саме: точка $(0_F, 1_F, 0_F)$, яка відповідає O_E .

Еліптична криптографія

Еліптичний аналог традиційної криптографії з відкритим ключем виглядає таким чином:

- Абоненти обирають і повідомляють всім форму еліптичної кривої та цілу точку G на цій кривій, яка ϵ генеруючою точкою.
- Абонент A обирає ціле число k і знаходить точку $PA = k \cdot G$ (додає точку G до самої себе k разів).
- Абонент B обирає число m і обчислює точку $PB = m \cdot G$. Потім вони обмінюються отриманими результатами і їх спільним секретним ключем стає точка $k \cdot m \cdot G$.

Вимоги до еліптичних кривих

Криптографічні еліптичні криві мають задовольняти наступним умовам:

- **9** Криві розглядаються над простими полями F_p , де р є простим числом (або над полями характеристики два: F_2^m).
- ullet Крива $E_p(a,b)$ задається в формі Веєрштраса $y^2=x^3+ax+b,$ де $a,b\in Fp$ і $(4a^3+27b^2)
 eq 0 (modp).$
- ullet На кривій має бути обрана генеруюча точка G = (xG, yG) $(xG \ {\rm i}\ yG \in Fp)$ простого порядку q, де $q > 2^{160}$ ${\rm i}\ q > 4\sqrt{p}$.
- **1** Порядок кривої N_E має ділитися на q. Результат ділення N_E/q називається кофактором.

Вибір параметрів ЕЦП

Алгоритм вибору параметрів ЕЦП виглядає наступним чином:

- **0** Обрати хеш-функцію h = H(M), де M повідомлення.
- $oldsymbol{\circ}$ Обрати просте число p (характеристика поля F_p).
- ullet Обрати форму еліптичної кривої згідно описаних вище вимог, яка задає групу точок еліптичної кривої $E_p(a,b)$ і генеруючу точку $G=(x_G,y_G)$.

Генерація ключів ЕЦП

- Абонент A обирає ціле число $d_A < p$. Це є секретним ключем абонента для його підписів. Потім він обчислює відкритий ключ $P_A = d_A G$, який є точкою кривої $E_q(a,b)$.
- **②** Абонент B аналогічним чином обирає свій секретний ключ d_B та знаходить відкритий ключ для підписів P_B .
- 3 Абоненти обмінюються відкритими ключами.

Формування цифрового підпису

- **0** Обчислити значення хеш-функції повідомлення M: h = H(M), h < p;
- ② Обрати довільне ціле число k_A з інтервалу [1, p-1] (разовий ключ);
- **©** Обчислити точку $R = k_A G = (x1, y1)$
- Обчислити значення $r = x_1 mod p$. Перевірити, щоб $r \neq 0$, бо в цьому випадку підпис s не буде залежати від закритого ключа k_A . Якщо r = 0, то пара чисел (r, s) не може бути використана для цифрового підпису то повертаються до кроку 2.
- Обчислити зворотній елемент k_A^{-1} в полі F_p
- Обчислити $s = k_A^{-1}(h + d_A r) mod p$. Якщо s = 0, то значення $s^{-1} mod p$, необхідне для перевірки підпису, не існує. Тобто, у випадку s = 0 потрібно повернутися до кроку 2.

Перевірка цифрового підпису

- **①** Отримати цифровий підпис (r,s) абонента для повідомлення M;
- **②** Обчислити значення хеш-функції повідомлення h = H(M);
- **3** Обчислити зворотній елемент s^{-1} в полі F_p ;
- **4** Обчислити $u = s^{-1}hmodn, v = s^{-1}rmodp;$
- **6** Обчислити точку $R' = uG + vP_A = (x'_1, y'_1);$
- Обчислити $r' = x'_1 modp;$
- \bigcirc Підпис вірний, якщо r' = r.

Результати виконання програми

Вхідні дані:

```
С.\Windows\system32\cmd.exe

Виверіть Файл, що ністить повідонлення:
а.txt
Повідонлення "Hello" нае наступний EUII:
СЗЕ1278F8237EB1809F968C3ES907080629CED595E841CD470AD2439D78E25D6A6F7A7CB39EE94
A4926A863DBA4BC19
Виверіть Файл для звереження EUII:
D.txt
Виверіть Файл для верифікації повідонлення:
a.txt
Виверіть Файл, що ністить цифровий підпис:
b.txt
Верифікація пройшла успішно. Цифровий підпис вірний.
```

Результати виконання програми

```
С\Windows\system32\cmd.exe

Висеріть файл, що містить повідоилення:
а.txt
Повідоилення "Hello" мас наступний ЕЩП:
Я7020У20022789 DASSPOEMS89776 F0C072EBBFBC65FDE7ECA68F15457027914F279ECA09DB737387
65543C2E2C75B7AEE
Висеріть файл для зсереження ЕЩП:
Висеріть файл для вернфікаціі повідоилення:
c.txt
Висеріть файл, що містить цифровий підпис:
b.txt
Верифікація не пройшла! Цифровий підпис не вірний.
```

Рис. 6.2. Приклад невдалого виконання програми.

Висновки

- Розлянуто криптографічні протоколи, що базуються на доведенні з нульовим знанням, які є основою реалізації методів захисту інформації.
- Наведені результати програмної реалізації узгоджуються з доведеними теоретичними твердженнями.
- Актуальність криптографії росте з кожним роком, і реалізовує методи шифрування/дешифрування, електронного цифрового підпису, ідентифікації / аутентифікації які є невідемною частиною інформаційних технологій.

- Горбенко І.Д., Горбенко Ю.І. Прикладна криптологія:Теорія.Практика. Застосування: Монографія. Вид.2-ге, перероб.ідоп. — Харків: Видавництво «Форт», 2012. — 880с.
- Иванов М.А. Криптографические методы защиты информации в компьютерных системах и сетях, М.:Кудиц-Образ, 2001 г. 368с.
- Рябко Б.Я., Фионов А.Н. Основы современной криптографии и стеганографии, М.: Научный мир, 2004 г. 173с.
- O.В.Вербіцький Втуп до криптології, Львів: Видавництво наукової технічної літератури, 1998. 247 с.
- Шнайер Брюс, Фергюсон Нильс Практическая криптография, 2-е изд. М: ООО "И.Д.Вильямс 2005. 424 с.

постановка задачи
Груповий закон для еліптичні криві
Еліптичні крипота ((груп)
Еліптичні крипотрафіс Еліптична криптографіс Електронний цифровий підпис на еліптичних кривих Чисельні результати

Дякую за увагу!