DM549/DS(K)820/MM537/DM547

Lecture 2: Propositional Equivalences and Quantifiers

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

September 4, 2024

Last Time

Definition (Definition 1.1.1)

A *proposition* (et udsagn) is a declarative statement (that is, a statement that declares a fact) that is true (sand) or false (falsk) but not both.

We got to know the following **operators** through truth tables:

- the negation ¬,
- \blacksquare the conjunction \land ,
- the disjunction ∨,
- \blacksquare the implication \Rightarrow ,
- the bi-implication ⇔,
- the exclusive or \oplus .

Precedence order ("order of evaluation") **of operators:**

- \blacksquare \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- There is no consensus on the position of \oplus .

Tautologies, Contradictions, and Contingencies

Three possibilities for compound proposition:

- Always true, no matter what values propositional variables take.
 - ▶ It is called a *tautology* (tautologi).
- Never true, no matter what values propositional variables take.
 - ▶ It is called a *contradiction* (modstrid).
- Neither a tautology nor a contradiction.
 - It is called a *contingency* (kontingens).

Q: How to find out if you are not sure?

A: Construct the truth table (or apply rules that we will see later).

A Quiz

Go to pollev.com/kevs

Logical Equivalences

Definition (Definition 1.3.2)

We call two propositions s, t logically equivalent, written $s \equiv t$, if $s \Leftrightarrow t$ is a tautology.

Note:

- In other words: s and t are two ways of saying the same thing.
- To find out whether $s \equiv t$, instead of constructing the truth table for $s \Leftrightarrow t$, one can compare the truth tables for s and t.
- The symbol \equiv is not a logical operator, so $s \equiv t$ is not considered a compound proposition (while $s \Leftrightarrow t$ is).

See Tables 1.3.6–8 for many useful equivalences! We will now see the most important ones.

Distributive Laws

Distributive Laws (Example 1.3.4)

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r), \quad p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Intuition (first version): For both propositions,

- \blacksquare if p is T , full proposition is T .
- if p is F, proposition is T iff both q and r are T.

Proof (first version):

p	q	r	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	Т	Т
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F

De Morgan's Laws

De Morgan's Laws (Table 1.3.6, line 8)

$$\neg(p \land q) \equiv \neg p \lor \neg q, \quad \neg(p \lor q) \equiv \neg p \land \neg q$$

Intuition:

- If not both p and q are T, p must be F or q must be F.
- If not at least one of p and q is T, then both p and q must be F.

Proof: Exercises.

Note: This also works for more propositional variables, e.g.:

$$\neg(p \land q \land r) \equiv \neg p \lor \neg q \lor \neg r.$$

Equivalences Involving Implications (1)

Contraposition (Table 1.3.7, line 2)

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Intuition:

- If q is F, then $p \Rightarrow q$ only becomes T if p is F.
- This is what $\neg q \Rightarrow \neg p$ states.

Proof:

_	р	q	$p \Rightarrow q$	$\neg p$	$\neg q$	$\neg q \Rightarrow \neg p$
-	Т	Т	Т	F	F	Т
_	Т	F	F	F	Т	F
	F	Т	Т	T	F	Т
-	F	F	T	T	Т	T

Equivalences Involving Implications (2)

Formulation only using \land , \lor , \neg (Table 1.3.7, line 1)

$$p \Rightarrow q \equiv \neg p \lor q$$

Intuition:

- If p is F, both propositions are T.
- If p is T, for either proposition to be T, q must be T.

Proof:

р	q	$p \Rightarrow q$	$\neg q$	$\neg p \lor q$
Т	Т	Т	F	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

Equivalences Involving Implications (3)

The Implication and the Bi-implication (Table 1.3.8, line 1)

$$(p \Rightarrow q) \land (q \Rightarrow p) \equiv p \Leftrightarrow q$$

Intuition: The rewritten left-hand side $(p \Rightarrow q) \land (\neg p \Rightarrow \neg q)$ means that both p and q need to have the same truth value.

Proof:

_ <i>p</i>	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$	$p \Leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

Note: This justifies the notation of \Leftrightarrow and saying "p if and only if q".

One Last Equivalence

Table 1.3.8, line 5

$$\neg(p\Rightarrow q)\equiv p\wedge\neg q$$

Exercise (not on sheet): Find intuition and truth tables.

Other proof: Blackboard.

A Quiz

Go to pollev.com/kevs

Some Sets of Numbers

Important for this and the next lectues:

- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ is the set of *integers* (heltal),
- \blacksquare $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$ is the set of *positive integers*,
- $\mathbb{Z}^- = \{\ldots, -3, -2, -1\}$ is the set of *negative integers*,
- $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ is the set of *natural numbers*,
 - In some sources, you will find $\{1, 2, 3, \dots\}$.
- $\mathbb{Q} = \{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}^+ \}$ is the set of *rational numbers* (rationale tal),
- \blacksquare R is the set of *real numbers* (reelle tal), i.e., numbers given by:
 - ▶ any non-empty finite sequence of digits before the comma (possibly just 0)
 - ▶ and any sequence of digits after the comma (possibly the empty sequence).
- ∅ is the *empty set* (den tomme mængde).

Remark: We will talk more about sets and real numbers in later lectures!

Open Proposition

Definition

An *open proposition* (propositional function) is a statement in which one (or more) variables occur.

- The variables usually represent numbers.
- When the variables are replaced with actual values, one obtains a proposition.
- For now, we will focus on open propositions with a single variable.

The Universal Quantifier

Definition

For a propositional function P(x), the statement

$$\forall x \in D : P(x)$$

is equivalent to the statement that P(x) is true for all x in the set D. We call \forall the *universal quantifier* (alkvantor).

- Read: "for all x in D, it holds that P(x) (is true)" ("for alle x i D gælder, at P(x) (er sandt)").
- A universal quantification over the empty set is always true.

The Existential Quantifier

Definition

For a propositional function P(x), the statement

$$\exists x \in D : P(x)$$

is equivalent to the statement that there exists at least one x in the set D such that P(x) is true. We call \exists the existential quantifier (Eksistenskvantor).

- Read: "there exists x in D such that P(x) (is true)" ("der eksisterer x i D sådan, at P(x) (er sandt)").
- An existential quantification over the empty set is always false.
- The existential quantification is true as long there exists at least one x in D with the specified property, not just precisely one.

The Uniqueness Quantifier

Definition

For a propositional function P(x), the statement

$$\exists ! x \in D : P(x)$$

is equivalent to the statement that there exists precisely one x in the set D such that P(x) is true. We sometimes call $\exists !$ the *uniqueness quantifier*.

Remarks:

Read: "there exists precisely one x in D such that P(x) (is true)" ("der eksisterer præcis et x i D sådan, at P(x) (er sandt)").

More on Quantifiers

- We say that the quantifier binds variables x.
- In the above statements, we call *D* the *domain* (domæne) or universe (univers).
- We also say that we *quantify over* (kvantificerer over) D.
- When clear from the context, the domain is sometimes left out.
- Some authors leave out the colon.
- How to memorize?
 - ► for ∀II.
 - ▶ there ∃xists.
 - "!" looks a bit like "1".
- Quantifiers have a *higher* preference (i.e., they are evaluated earlier) than the operators \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow , \oplus .