Respectfully submitted,

Christine A. Goddard, Ph.D. Registration No. 46,731

Date: September 27, 2001

WOODCOCK WASHBURN KURTZ MACKIEWICZ & NORRIS LLP One Liberty Place - 46th Floor Philadelphia, PA 19103 (215) 568-3100

VERSION WITH MARKINGS TO SHOW CHANGES MADE

In the specification:

The section on page 1 having the section heading CROSS REFERENCE TO RELATED APPLICATIONS has been amended as follows.

This application is a continuation of U.S. Ser. No. 09/349,007, filed July 7, 1999, which in turn is a continuation-in-part of U.S. Ser. No. 09/115,025, filed July 14, 1998, the disclosures of each of which are incorporated herein by reference in their entireties [the content of which is incorporated herein by reference in its entirety].

Table I on page 50 has been amended as follows.

Table I Oligonucleotides containing Staggered PS/PO linkages

Oligo #	ISIS#	<u>Sequence (5'-3')</u> ¹	Backbone	Chemistry	Target
1	18268 staggered oligomer	$5'$ - $T_SC^m_OT_SG_OA_SG_OT_SA_OG_SC^m_O$ $A_SG_OA_SG_OG_SA_OG_SC^m_OT_SC-3'$ $\underline{SEQ\ ID\ NO:\ 1}$	P=S/P=O	2'- <i>O</i> -MOE	Human ICAM -1
2	22592 staggered gapmer	5'- $\mathbf{A_s}\mathbf{T_o}\mathbf{G_s}\mathbf{C_o^m}_{\mathbf{o}}\mathbf{A_s}\mathbf{T_o}$ $\mathbf{T_s}\mathbf{C_s}^{\mathbf{m}}\mathbf{T_s}\mathbf{G_s}$ $\mathbf{C_s}^{\mathbf{m}}\mathbf{C_s}^{\mathbf{m}}\mathbf{C_s}^{\mathbf{m}}\mathbf{C_s}^{\mathbf{m}}$ $\mathbf{C_s}^{\mathbf{m}}\mathbf{C_s}$	P=S/P=O	2'- <i>O</i> -MOE & 2'-H	mouse C-raf
3	25303 staggered hemimer	$5'-G_sC^m_{s}C^m_{s}C^m_{s}A_sA_sG_sC^m_{s}T_sG_sG_sC^m_{O}$ $A_ST_OC^m_{S}C^m_{O}G_ST_OC^m_{S}A-3'$ $\underline{SEQ\ ID\ NO:\ 3}$	P=S/P=O	2'- <i>O</i> -MOE & 2'-H	Human ICAM-1

All nucleosides in bold are 2'-O-MOE (2'-O-CH₂-CH₂-O-CH₃)

Table III on page 51 has been amended as follows.

Table III
Tm Values of Human ICAM-1 Antisense Oligonucleotide
ISIS 3067 and Analogs Against RNA Target

Oligonucleotide	Modifications	Tm
ISIS 3067 (SEQ ID NO: 5)	P=S, 2'-deoxy DNA	50.1
ISIS 11910 (SEQ ID NO: 4)	P=O, 2'-deoxy DNA	58.4
ISIS 11159 (SEQ ID NO: 6)	P=S, 2'-MOE	79.2
ISIS 11158 <u>(SEQ ID NO: 7)</u>	P=O, 2'-MOE	86.6
ISIS 18268 <u>(SEQ ID NO: 8)</u>	P=O/P=S, STAGGERED 2'-	84.0
	MOE	

Table IV on page 53 has been amended as follows.

Table IV
Controlling P=S Linkages: ICAM-1 Activity
with Alternating P=S/P=O Linkages in a Uniform 2'-modified Oligomer

Isis #	Oligonucleotides Tested	
16952 (SEQ ID NO: 9)	TCTGAGTAGCAGAGGAGCTC	MOE, P=O
16953 (SEQ ID NO: 10)	GATCGCGTCGGACTATGAAG	Scrambled Control ^a
15537 (SEQ ID NO: 11)	TCTGAGTAGCAGAGGAGCTC	MOE, P=S
16954 (SEQ ID NO: 12)	GATCGCGTCGGACTATGAAG	Scrambled Control
18268 (SEQ ID NO: 13)	TCTGAGTAGCAGAGGAGCTC*	MOE, P=S/P=O
C=5-methyl -C in all sequence	uences (except C*)	

^asame base composition

In the claims:

Claims 34-51 have been added.

Claims 28-30 have been rewritten as follows.

28. (amended once) A method of treating an organism having a disease characterized by the undesired production of a protein, <u>said method comprising</u> contacting said organism with a compound of [claim 1.] <u>formula</u>:

wherein:

ISIS-4847 PATENT	
each B is a nucleobase;	
one of X_1 or X_2 is O, and the other of X_1 or X_2 is S;	
each R ₁ , is, independently, H, hydroxyl, C ₁ -C ₂₀ alkyl, C ₃ -C ₂₀ alkenyl, C ₂ -C ₂₀ alkynyl,	
halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-all	kyl,
S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, ami	no,
N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone,	
sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjuga	ate,
polyamine, polyamide, polyalkylene glycol, or polyether;	
or R_1 is a group of formula $Z-R_{22}-(R_{23})_{v_2}$	
Z is O, S, NH, or N- R_{22} - $(R_{23})_{y}$;	
R ₂₂ is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;	
R ₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro	2
nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-alkyl, NH-alkyl, N-dialkyl, O-alkyl, NH-alkyl, NH-alky	aryl,
S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido,	
hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl,	
heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyamid	oly-
alkylene glycol, polyether, a group that enhances the pharmacodynamic properties of	
oligonucleotides, or a group that enhances the pharmacokinetic properties of oligonucleotide	<u>:s;</u>
v is from 0 to about 10;	
or R ₁ has the formula:	
$-(O)_{y1} \left\{ (CH_2)_{y2} - O - N \right\}_{y3} (CH_2)_{y2} - O - E$	
wherein:	
y1 is 0 or 1;	

y2 is independently 0 to 10;

yl,
o a
nat
(

or R₁ has one of formula I or II:

can include at least one additional heteroatom selected from N and O;

$$\begin{array}{c|c}
 & C & C \\
\hline
 & Z_0 - (CH_2)q_1 \\
\hline
 & I & II
\end{array}$$

 Z_0 is O, S, or NH; q^1 is from 0 to 10;

q² is from 1 to 10;

q³ is 0 or 1;

wherein:

q⁴ is, 0, 1 or 2;

 Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and

m is 0 or 1.

29. (amended once) A method of treating an organism having a disease characterized by the undesired production of a protein, <u>said method comprising</u> contacting said organism with a compound of [claim 7.] <u>formula:</u>

wherein:

ISIS-4847

each B is a nucle	eobase;
X_1 is S;	
X_2 is O;	
each R ₁ , is, inder	bendently, H, hydroxyl, C_1 - C_{20} alkyl, C_3 - C_{20} alkenyl, C_2 - C_{20} alkynyl, halogen,
thiol, keto, carboxyl, nit	ro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-
alkyl, N-dialkyl, O-aryl	, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido,
imidazole, azido, hydraz	zino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl,
aryl, heterocycle, carbo	ocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide,
polyalkylene glycol, or	polyether;
or R ₁ is a group	of formula $Z-R_{22}-(R_{23})_{v_2}$
Z	$Z \text{ is O, S, NH, or N-R}_{22} - (R_{23})_{v}$
R	C_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;
R	223 is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso,
nitrile, trifluoromethyl,	trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-
aryl, O-aralkyl, S-aral	kyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino,
hydroxylamino, isocyan	nato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle,
intercalator, reporter mo	olecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether, a
group that enhances the	pharmacodynamic properties of oligonucleotides, or a group that enhances
the pharmacokinetic pro	operties of oligonucleotides;
v is from	o to about 10;
or R ₁ has	s the formula:
	$-(O)_{y1} \left\{ (CH_2)_{y2} - O - N \right\}_{y3} (CH_2)_{y2} - O - E$

PATENT

y1 is 0 or 1;

 $\underline{\text{C(=O)N(H)M}_2}$ or $\underline{\text{OC(=O)N(H)M}_2}$;

 M_2 is H or C_1 - C_8 alkyl;

ISIS-4847	PATENT
y2 is independently () to 10;
y3 is 1 to 10;	
E is C ₁ -C ₁₀ alkyl, N(0	$Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;
each Q ₁ and (Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted
alkyl, dialkylaminoalkyl, a nitrogen protecting gro	
linker to a solid support; or Q ₁ and Q ₂ , together, ar	e joined in a nitrogen protecting group or a ring
structure that can include at least one additional he	teroatom selected from N and O;
or R ₁ has one of formula I or II:	
$-\left\{-Z_0-(CH_2)q_1\right\}_{q_2}(O)_{q_3}-E$	$ \begin{array}{c} C \\ Z_1 \\ Z_2 \end{array} $ $ Z_3 $ $ Z_4 $ II
wherein:	
Z_0 is O, S, or NH;	
q ¹ is from 0 to 10;	
q^2 is from 1 to 10;	
q ³ is 0 or 1;	
q ⁴ is, 0, 1 or 2;	
$\underline{Z_4 \text{ is OM}_1, \text{SM}_1, \text{ or N(M}_1)_2;}$	

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, C(=NH)N(H) M_2 ,

ISIS-4847 PATENT
Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to
about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon
atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN ;
n is from 2 to 50; and
m is 0 or 1;
R ₂ is H, a hydroxyl protecting group, or an oligonucleotide; and
R ₃ is OH, an oligonucleotide, or a linker connected to a solid support.
30. (amended once) A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said organism with a compound
of [claim 13.] formula:
$(5') W^1 - W^2 - W^3 (3')$
wherein:
W ¹ has the Formula:

wherein:

each B is a nucleobase;

one of X_1 or X_2 is O, and the other of X_1 or X_2 is S;

each R₁, is, independently, H, hydroxyl, C₁-C₂₀ alkyl, C₃-C₂₀ alkenyl, C₂-C₂₀ alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R_1 is a group of formula $Z-R_{22}-(R_{23})_{v}$;

ISIS-4847 PATENT
Z is O, S, NH, or N- R_{22} - $(R_{23})_{\underline{v}}$;
R ₂₂ is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;
R ₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro,
nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl,
S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido,
hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl,
heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, poly-
alkylene glycol, polyether, a group that enhances the pharmacodynamic properties of
oligonucleotides, or a group that enhances the pharmacokinetic properties of oligonucleotides;
v is from 0 to about 10;
or R_1 has the formula:
$-(O)_{y1} = (CH_2)_{y2} - O - N = (CH_2)_{y2} - O - E$
y1 is 0 or 1;
y2 is independently 0 to 10;
y3 is 1 to 10;
E is C_1 - $C_{\underline{10}}$ alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;
each Q ₁ and Q ₂ is, independently, H, C ₁ -C ₁₀ alkyl, substituted alky
dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to
solid support; or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure that
can include at least one additional heteroatom selected from N and O;
or R ₁ has one of formula I or II:

wherein:
Z_0 is O, S, or NH;
q ¹ is from 0 to 10;
q^2 is from 1 to 10;
q^3 is 0 or 1;
q ⁴ is, 0, 1 or 2;
Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;
each M ₁ is, independently, H, C ₁ -C ₈ alkyl, C ₁ -C ₈ haloalkyl, C(=NH)N(H)M ₂ ,
$\underline{C(=O)N(H)M_2}$ or $OC(=O)N(H)M_2$;
M_2 is H or C_1 - C_8 alkyl;
Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or
having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are
selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated
aliphatic, aromatic, or saturated or unsaturated heterocyclic; and
Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about
10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms,
$N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN ;
n is from 2 to 50; and
<u>m is 0 or 1;</u>
R ₂ is H, a hydroxyl protecting group, or an oligonucleotide;
W ³ has the Formula:

wherein R₃ is OH, an oligonucleotide, or a linker connected to a solid support; and

W² is a plurality of covalently bound nucleosides linked by phosphodiester or phosphorothioate linkages.