```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv('/content/Training Dataset.csv')
df.head()
\overline{2}
          Loan_ID Gender Married Dependents
                                                Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
                                                  Graduate
                                                                                                                                                     1.0
      0 LP001002
                     Male
                               No
                                                                      No
                                                                                     5849
                                                                                                        0.0
                                                                                                                   NaN
                                                                                                                                    360.0
                                                                                                                                                                  Urban
                                                                                                                                                                                       ılı.
      1 LP001003
                     Male
                              Yes
                                            1
                                                  Graduate
                                                                                    4583
                                                                                                      1508.0
                                                                                                                  128.0
                                                                                                                                    360.0
                                                                                                                                                     1.0
                                                                                                                                                                  Rural
                                                                                                                                                                                  Ν
                                                                      No
      2 LP001005
                                                  Graduate
                                                                                    3000
                                                                                                        0.0
                                                                                                                   66.0
                                                                                                                                    360.0
                                                                                                                                                     1.0
                                                                                                                                                                  Urban
                     Male
                              Yes
                                                                     Yes
                                            0 Not Graduate
                                                                                     2583
                                                                                                     2358.0
                                                                                                                                    360.0
                                                                                                                                                                  Urban
      3 LP001006
                     Male
                              Yes
                                                                      No
                                                                                                                  120.0
                                                                                                                                                     1.0
      4 LP001008
                     Male
                               No
                                                  Graduate
                                                                      No
                                                                                     6000
                                                                                                         0.0
                                                                                                                  141.0
                                                                                                                                    360.0
                                                                                                                                                     1.0
                                                                                                                                                                  Urban
             Generate code with df
                                     View recommended plots
 Next steps:
df.shape
→ (614, 13)
df.columns
Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education',
            'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',
            'Loan_Amount_Term', 'Credit_History', 'Property_Area', 'Loan_Status'],
           dtype='object')
df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 614 entries, 0 to 613
     Data columns (total 13 columns):
                            Non-Null Count Dtype
          Column
                            -----
          Loan_ID
                            614 non-null
                                            object
      0
          Gender
                            601 non-null
                                            object
      1
                            611 non-null
      2
          Married
                                            object
         Dependents
                            599 non-null
                                            object
                            614 non-null
          Education
                                            object
          Self_Employed
                            582 non-null
                                            object
          ApplicantIncome
                            614 non-null
                                            int64
          CoapplicantIncome 614 non-null
                                            float64
      7
          LoanAmount
                            592 non-null
                                            float64
      9
          Loan_Amount_Term
                            600 non-null
                                            float64
         Credit_History
                            564 non-null
                                            float64
      10
      11 Property_Area
                            614 non-null
                                            object
      12 Loan_Status
                            614 non-null
                                            object
     dtypes: float64(4), int64(1), object(8)
     memory usage: 62.5+ KB
df.isnull().sum()
→ Loan_ID
                          0
                         13
     Gender
                         3
     Married
     Dependents
                         15
                          0
     Education
     Self_Employed
                         32
     ApplicantIncome
                          0
     CoapplicantIncome
     LoanAmount
                         22
     Loan_Amount_Term
                         14
     Credit_History
                         50
     Property_Area
                          0
     Loan_Status
                          0
     dtype: int64
df.duplicated().sum() #No Duplicates
→ 0
df.drop('Loan_ID',axis=1,inplace=True) #Unwanted Column
df['Gender'].mode()
→ 0 Male
     Name: Gender, dtype: object
df['Married'].mode()
        Yes
     Name: Married, dtype: object
df['Dependents'].mode()
\overline{\mathbf{T}}
    0
         0
     Name: Dependents, dtype: object
df['Self_Employed'].mode()
        No
     Name: Self_Employed, dtype: object
```

```
df['Gender']= df['Gender'].fillna('Male')
df['Married']= df['Married'].fillna('Yes')
df['Dependents']= df['Dependents'].fillna('0')
df['Self_Employed']= df['Self_Employed'].fillna('No')
df['LoanAmount']= df['LoanAmount'].fillna(df['LoanAmount'].mean())
df['Loan_Amount_Term']= df['Loan_Amount_Term'].fillna(df['Credit_History'].mean())
df['Credit_History']= df['Credit_History'].fillna(df['Credit_History'].mean())

df['Dependents'] = df['Dependents'].replace('3+','3')

df['Dependents'] = df['Dependents'].astype(int)
```

Axes: ylabel='Self_Employed'>

Yes
No -

200

100

Observation: In this dataset, most of them are not self_employed.

400

500

300

df.groupby('Education').size().plot(kind='barh', color=sns.palettes.mpl_palette('Dark2'))

Observation: In this dataset, most of them are graduates.

df.plot(kind='scatter', x='Dependents', y='ApplicantIncome', s=32)

Observation: The more than 3+ Dependents has highest Income...

```
df['Gender'] = np.where(df['Gender']=='Male',1,0)
df['Married'] = np.where(df['Married']=='Yes',1,0)
df['Self_Employed'] = np.where(df['Self_Employed']=='Yes',1,0)
df['Education'] = np.where(df['Education']=='Graduate',1,0)
df['Loan_Status'] = np.where(df['Loan_Status']=='Y',1,0)
```


→ ▼		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status	
	609	0	0	0	1	0	2900	0.0	71.0	360.0	1.0	Rural	1	ıl.
	610	1	1	3	1	0	4106	0.0	40.0	180.0	1.0	Rural	1	
	611	1	1	1	1	0	8072	240.0	253.0	360.0	1.0	Urban	1	
	612	1	1	2	1	0	7583	0.0	187.0	360.0	1.0	Urban	1	
	613	0	0	0	1	1	4583	0.0	133.0	360.0	0.0	Semiurban	0	

df['Property_Area'].unique()

array(['Urban', 'Rural', 'Semiurban'], dtype=object)

df[details] = scaler.fit_transform(df[details])

from sklearn.preprocessing import OrdinalEncoder
order = ['Rural','Semiurban','Urban'] #Lowest to highest
encoder = OrdinalEncoder(categories=[order])
df['Property_Area']=encoder.fit_transform(df[['Property_Area']])

details = ['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term']
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

df.describe()

→		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status	
	count	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	ılı
	mean	0.817590	0.653094	0.744300	0.781759	0.133550	0.064978	0.038910	0.198860	0.705128	0.842199	1.037459	0.687296	
	std	0.386497	0.476373	1.009623	0.413389	0.340446	0.075560	0.070229	0.121617	0.137548	0.349681	0.787482	0.463973	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	0.000000	0.000000	1.000000	0.000000	0.033735	0.000000	0.132055	0.743590	1.000000	0.000000	0.000000	
	50%	1.000000	1.000000	0.000000	1.000000	0.000000	0.045300	0.028524	0.173661	0.743590	1.000000	1.000000	1.000000	
	75%	1.000000	1.000000	1.000000	1.000000	0.000000	0.069821	0.055134	0.225398	0.743590	1.000000	2.000000	1.000000	
	max	1 000000	1 000000	3 000000	1 000000	1 000000	1 000000	1 000000	1 000000	1 000000	1 000000	2 000000	1 000000	

plt.figure(figsize=(10,7))
sns.heatmap(df.corr(),annot=True)

→ <Axes: >

x=df.iloc[:,:-1] #Independent
y=df.iloc[:,-1] #Dependent

```
0.035250
       2
                                      0
                                                 1
                                                                1
                                                                                               0.000000
                                                                                                            0.082489
                                                                                                                              0.743590
                                                                                                                                                    1.0
                                                                                                                                                                    2.0
       3
                                      0
                                                 0
                                                                0
                                                                           0.030093
                                                                                               0.056592
                                                                                                            0.160637
                                                                                                                              0.743590
                                                                                                                                                    1.0
                                                                                                                                                                    2.0
                         1
                         0
                                      0
                                                                0
                                                                           0.072356
                                                                                               0.000000
                                                                                                            0.191027
                                                                                                                              0.743590
                                                                                                                                                                    2.0
                                                 1
                                                                                                                                                    1.0
                                                                ...
                                                                                                                                                     ...
                                                                                                                                                                    ...
                                      0
                                                                0
                                                                           0.034014
                                                                                               0.000000
                                                                                                            0.089725
                                                                                                                              0.743590
                                                                                                                                                    1.0
                                                                                                                                                                    0.0
      609
                0
                         0
                                                 1
                                      3
                                                                           0.048930
      610
                                                                0
                                                                                               0.000000
                                                                                                            0.044863
                                                                                                                              0.358974
                                                                                                                                                    1.0
                                                                                                                                                                    0.0
                                                                           0.097984
                                                                0
                                                                                                            0.353111
                                                                                                                                                                    2.0
      611
                                                                                               0.005760
                                                                                                                              0.743590
                                                                                                                                                    1.0
                                      2
      612
                                                                0
                                                                           0.091936
                                                                                               0.000000
                                                                                                            0.257598
                                                                                                                              0.743590
                                                                                                                                                    1.0
                                                                                                                                                                    2.0
      613
                         0
                                      0
                                                                1
                                                                           0.054830
                                                                                               0.000000
                                                                                                            0.179450
                                                                                                                              0.743590
                                                                                                                                                    0.0
                                                                                                                                                                    1.0
     614 rows × 11 columns
 Next steps:
              Generate code with x
                                      View recommended plots
\overline{\Rightarrow}
     0
            1
             0
     2
            1
     3
            1
     609
            1
     610
            1
     611
            1
     612
            1
     613
            0
     Name: Loan_Status, Length: 614, dtype: int64
#Train Test Split
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state=42)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
     (411, 11)
     (203, 11)
     (411,)
     (203,)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train,y_train)
\overline{\mathbf{T}}
      ▼ LogisticRegression
      LogisticRegression()
from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
y_pred = lr.predict(x_test)
print(accuracy_score(y_pred,y_test))
print(sns.heatmap(confusion_matrix(y_pred,y_test),annot=True))
print(classification_report(y_pred,y_test))
→ 0.7980295566502463
     Axes(0.125,0.11;0.62x0.77)
                    precision
                                 recall f1-score support
                0
                         0.46
                                   0.94
                                              0.62
                                                          35
                                   0.77
                         0.98
                                              0.86
                                                         168
                                                         203
                                              0.80
         accuracy
                                   0.86
        macro avg
                         0.72
                                              0.74
                                                         203
     weighted avg
                         0.89
                                   0.80
                                              0.82
                                                         203
                                                                      - 120
```

Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area

0.000000

0.036192

0.198860

0.172214

0.743590

0.743590

1.0

1.0

0.070489

0.054830

0

 \blacksquare

ılı

2.0

0.0

```
parameter = {
    'penalty':['11', '12', 'elasticnet'],
    'solver' : ['lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga']
}
```

- 100

- 80

60

40

- 20

1.3e+02

1

```
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import GridSearchCV
lr1 = GridSearchCV(lr,param_grid = parameter,cv=5,scoring='accuracy')
lr1.fit(x_train,y_train)
```

33

39

0

 $\overline{\Rightarrow}$

0

1

0

1

1

```
GridSearchCV

• estimator: LogisticRegression

• LogisticRegression
```

```
y_pred = lr1.predict(x_test)
print(accuracy_score(y_pred,y_test))
print(sns.heatmap(confusion_matrix(y_pred,y_test),annot=True))
print(classification_report(y_pred,y_test))
```

```
0.7980295566502463
Axes(0.125,0.11;0.62x0.77)
```

AXC3(0.123)0.	precision	recall	f1-score	support
0	0.46	0.94	0.62	35
1	0.98	0.77	0.86	168
accuracy			0.80	203
macro avg	0.72	0.86	0.74	203
weighted avg	0.89	0.80	0.82	203

from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x_train,y_train)

RandomForestClassifier ()

y_pred = rfc.predict(x_test)
print(accuracy_score(y_pred,y_test))
print(sns.heatmap(confusion_matrix(y_pred,y_test),annot=True))
print(classification_report(y_pred,y_test))

0.7881773399014779 Axes(0.125,0.11:0.62x0.77)

)	11,0.02X0.//	AXES (0.125,0.
support	f1-score	recall	precision	
41	0.62	0.85	0.49	0
162	0.85	0.77	0.95	1
203	0.79			accuracy
203	0.74	0.81	0.72	macro avg
203	0.81	0.79	0.86	weighted avg


```
parameters = {
    'criterion' : ['gini', 'entropy', 'log_loss'],
    'max_features': ['sqrt', 'log2'],
    'max_depth' : [1,2,3,4,5,6,7,8,9,10]
}
```

rfc1 = GridSearchCV(rfc,param_grid=parameters,cv=5,scoring='accuracy')
rfc1.fit(x_train,y_train)

→ GridSearchCV

• estimator: RandomForestClassifier

• RandomForestClassifier

```
y_pred1 = rfc1.predict(x_test)
print(accuracy_score(y_pred1,y_test))
print(sns.heatmap(confusion_matrix(y_pred1,y_test),annot=True))
print(classification_report(y_pred1,y_test))
```

→ 0.7980295566502463 Axes(0.125,0.11;0.62x0.77) precision recall f1-score support 0 0.46 0.94 0.62 35 1 0.98 0.77 0.86 168 0.80 203 accuracy macro avg 0.72 0.86 0.74 203 203 weighted avg 0.89 0.80 0.82


```
import xgboost as xgb
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [3, 4, 5],
    'learning_rate': [0.01, 0.1, 0.2],
    'subsample': [0.8, 1.0],
    'colsample_bytree': [0.8, 1.0]
xgb_clf = xgb.XGBClassifier(use_label_encoder=False, eval_metric='mlogloss')
grid_search = GridSearchCV(estimator=xgb_clf, param_grid=param_grid,
                          cv=3, n_jobs=-1, verbose=2)
grid_search.fit(x_train, y_train)
print(f"Best parameters found: {grid_search.best_params_}")
best_model = grid_search.best_estimator_
y_pred = best_model.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
```

Fitting 3 folds for each of 108 candidates, totalling 324 fits

Best parameters found: {'colsample_bytree': 0.8, 'learning_rate': 0.01, 'max_depth': 5, 'n_estimators': 200, 'subsample': 0.8}

Accuracy: 80.30%

```
print(accuracy_score(y_pred,y_test))
print(sns.heatmap(confusion_matrix(y_pred,y_test),annot=True))
print(classification_report(y_pred,y_test))
```

0.8029556650246306 Axes(0.125,0.11;0.62x0.77)

7.000	precision	recall	f1-score	support
0	0.47	0.94	0.63	36
1	0.98	0.77	0.87	167
accuracy			0.80	203
macro avg	0.73	0.86	0.75	203
weighted avg	0.89	0.80	0.82	203

Conclusion:

- Logistic Regression: 79.8%
- Randomforest: 79.3%
- Xgboost: 80.3%

We achieved the highest accuracy with the XGBoost model, which is 80.3%. Therefore, we are using this model for our predictions.

Start coding or $\underline{\text{generate}}$ with AI.

Testing Part:

new = pd.DataFrame([[0,0,0,1,0,2900,0.0,71.0,360.0,1.0,2.0]],columns=x.columns)
new

Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area

Output

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area

Output

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Term Credit_History Property_Area

Output

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Term Credit_History Property_Area

Output

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Term Credit_History Property_Area

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Term Credit_History Property_Area

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Term Credit_History Property_Area

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Term Credit_History Property_Area

Dependents Education Self_Employed ApplicantIncome CoapplicantIncome CoapplicantInc

output = best_model.predict(new)
print("Loan Status : ",output) # Approved

→ Loan Status : [1]