Отчет о выполнении лабораторной работы 2.4.1 "Определение теплоты испарения жидкости"

Калашников Михаил, Б03-205

Цель работы: измерение давления насыщенного пара жидкости при разной температуре; вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

Оборудование:

- герметичный сосуд, заполненный испледуемой жидкостью;
- термостат ($\sigma_T = 0.01 \ K$);
- отсчетный микроскоп ($\sigma_h=0,3~mm$: погрешность микроскопа равна 0,1~mm, штангенциркуля -0,05~mm; прибор используется для нахождения разницы значений, погрешность удваивается).

1. Теоретическая часть

Теплота испарения жидкости может быть измерена непосредственно в процессе парообразования, однако такой метод оказывается неточен из-за потерь тепла. Другой метод, использующий формулу Клапейрона-Клаузиуса позволяет достичь большей точности. Данная формула связывает производную давления насыщенного пара P по температуре T, теплоту испарения жидкости L, объем пара V_2 и объем жидкости V_1 :

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$

При нашей точности опытов величиной V_1 можно пренебречь, а в виду того, что эксперимент проводится при пониженном давлении, можно принять газ за идеальный. Поэтому

$$V_2 = \frac{RT}{P}$$

Подставляя это в формулу Клапейрона-Клаузиуса, получим:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d (\ln P)}{d (1/T)}$$

Таким образом, теплоту испарения можно найти как касательную к графику зависимости $\ln P$ от 1/T, построенного с помощью метода наименьших квадратов.

С другой стороны, мы можем построить параболу через каждые три соседние точки на графике P(T), провести к ней касательную и на основе этой касательной вычислить теплоту испарения. Далее усредним полученную теплоту испарения, а случаную погрешность определим как среднекватрическое отклонение.

В работе я попытаюсь определить теплоту парообразования обоими методами.

2. Экспериментальная установка

Лабораторная установка представлена на рис. 1. Установка включает термостат А, экспериментальный прибор В и отсчетный микроскоп С. 1 – блок терморегулирования; 2 – ванна; 3 – индикаторное табло; 4 – ручка установки температуры; 5 - кнопка переключения режимов установки/контроля температуры; 6 – индикатор уровня жидкости; 7 – индикатор включения нагревателя; 8 – сетевой выключатель прибора; 9 – крышка; 10 – входной и выходной патрубки насоса; 11 – входной и выходной патрубки теплообменника (вода из водопровода). Экспериментальный прибор В представляет собой емкость 12, заполненную водой. B нее погружен запаянный прибор $13\ \operatorname{c}$ исследуемой жидкостью 14. Перед заполнением исследуемой жидкости воздух из запаянного прибора был удален, так что над жидкостью находится только её насыщенный пар. Давление пара определяется по ртутному манометру 15, соединенному с емкостью 13. Численная величина давления измеряется по разности показаний отсчетного микроскопа 16, настраиваемого последовательно на нижний и верхний уровни столбика ртути манометра. Показания микроскопа снимаются по шкале 17.

Рис. 1: Схема установки

3. Проведение эксперимента

- 1. Измерим разность уровней ртути с помощью миркоскопа и температуру при выключенном термостате.
- 2. Включим термостат. Начнем постепенно нагревать газ, измеряя через каждый градус его высоту столбиков ртути с помощью отсчетного микроскопа. Для повышения надежности эксперимента каждое измерение было проведено трижды. При каждом измерении так же отметим температуру. Все полученные данные занесем в таблицу 1.
- 3. В ходе эксперимента термостат был нагрет с 20 до 38 градусов Цельсия. Провести измерения при охлаждении термостата не удалось ввиду нехватки времени.

4. Обработка данных

4. Давление газа определяется формулой $P = \rho g \Delta h$, где $\Delta h = B - H$, ρ — плотность ртути, g — ускорение свободного падения ($\sigma_P = \rho_{Hg} g \sigma_h \approx 40~Pa$). По усредненным разностям высот найдем давление и занесем его в таблицу 2, а вычисленные значения $\ln P$ и 1/T — в таблицу 3. Построим графиик зависимости $\ln P$ от 1/T (рис. 1) и P(T) (рис. 2).

Проведем через точки таблицы 2 прямую с помощью метода наименьшего квадратов. Угловой коэффициент k данной прямой позволяет вычислить теплоту испарения: L=-Rk.

Теперь найдем теплоту испарения с помощью второго метода. Для каждой касательной посчитаем теплоту и занесем в таблицу 4. По данным таблицы видно, что большой разброс данных не позволяет выделить зависимость L(T).

5. Расчет погрешностей

Теперь определим погрешность измерений. В обоих способах расчета L полная погрешность ищется по формуле:

$$\sigma_L = \sqrt{\sigma_{rand}^2 + \sigma_{inst}^2}$$

Далее формулы для погрешности будут зависеть от метода обработки.

Первый метод.

Найдем случайную погрешность углового коэффициента проведенной прямой σ_k и с помощью нее посчитаем случайную погрешность L:

$$\sigma_{rand} = R\sigma_k$$

Приборная погрешность определяется по формуле погрешности косвенных измерения:

$$\varepsilon_{inst,1} = \sqrt{\varepsilon_{\Delta \ln P}^2 + \varepsilon_{\Delta 1/T}^2} = 2\sqrt{\varepsilon_{\ln P}^2 + \varepsilon_{1/T}^2} = 2\sqrt{\left(\frac{\sigma_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\varepsilon_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\varepsilon_P}{\ln P}\right)^2 + \left(\frac{\varepsilon_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\varepsilon_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\varepsilon_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\varepsilon_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\sigma_P}{P \ln P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2} = 2\sqrt{\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2$$

В качестве P и T возьмем наименьшие соответсвующие значения из таблицы 2.

Второй метод: Случайную погрешность σ_{rand} определим как среднеквадратическое отклонение угловых коэффициентов касательных, а приборную аналогично с первым способом по формуле погрешности косвенных измерений:

$$\varepsilon_{inst,2} = \sqrt{\varepsilon_P^2 + 4\varepsilon_T^2 + \varepsilon_{\Delta P}^2 + \varepsilon_{\Delta T}^2} = \sqrt{\left(\frac{\sigma_P}{P}\right)^2 + 4\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{2\sigma_P}{P}\right)^2 + \left(\frac{2\sigma_T}{T}\right)^2} =$$

$$= \sqrt{5 < \varepsilon_P >^2 + 8 < \varepsilon_T >^2} = 2,7\%$$

$$\sigma_L = \sqrt{\sigma_{rand}^2 + (\varepsilon_{inst} \cdot L)^2}$$

В результате обработки данных первым способом было получено значение $L_1=48,2\pm0,7~\frac{kJ}{mol},$ а вторым $L_2=47\pm9~\frac{kJ}{mol}.$

6. Вывод

Оба метода обработки данных дали примерно одинаковый результат, однако точность первого метода оказалась выше более чем на порядок. Полученное значение не сильно отличается от табличного, равного $41,4~\frac{kJ}{mol}.$

7. Приложения

N	$t_1,^{\circ} C$	B_1, mm	H_1, mm	$t_2,^{\circ} C$	B_2, mm	H_2, mm	$t_3,^{\circ}C$	B_3, mm	H_3, mm
1	20,00	97,00	82,60	20,00	$96,\!85$	81,70	20,00	96,90	81,45
2	21,00	$97,\!15$	81,40	21,00	$97,\!05$	81,85	21,00	96,75	81,75
3	21,99	$98,\!50$	81,00	22,01	$97,\!55$	81,50	22,02	$97,\!55$	81,50
4	23,01	$97,\!95$	81,10	23,01	$98,\!15$	80,70	23,00	$97,\!95$	80,70
5	24,00	$98,\!80$	80,15	24,02	98,70	80,35	24,03	98,75	80,00
6	25,05	$99,\!35$	79,65	25,06	99,75	79,65	$25,\!07$	$99,\!55$	79,65
7	26,03	100,50	79,15	26,05	99,80	79,60	26,06	100,00	78,95
8	27,04	101,30	77,80	27,05	$101,\!50$	77,95	27,08	$101,\!45$	78,10
9	28,04	102,30	77,15	28,05	$102,\!15$	77,05	28,06	$102,\!00$	77,70
10	29,06	103,10	76,20	29,07	102,70	76,65	29,08	$103,\!20$	76,45
11	30,04	104,30	$75,\!35$	30,06	104,30	75,40	30,06	$104,\!50$	75,50
12	31,06	104,95	74,55	31,06	$105,\!00$	75,00	31,06	$104,\!85$	74,90
13	32,03	$105,\!60$	73,90	32,04	105,75	73,95	32,06	105,75	74,00
14	33,04	106,40	72,70	33,05	106,70	73,00	33,05	106,60	72,60
15	34,03	107,95	71,60	34,05	$107,\!65$	71,85	34,05	107,70	71,25
16	35,05	109,00	70,40	35,05	108,70	70,60	35,05	109,00	70,80
17	36,04	$110,\!25$	70,00	36,05	110,00	70,00	36,05	$110,\!35$	69,80
18	37,04	110,70	69,00	37,04	$110,\!50$	68,70	37,05	$110,\!40$	69,15
19	38,04	112,00	67,75	38,04	$112,\!40$	67,35	38,04	112,70	67,20

Таблица 1: Измерения высот ртутных столбиков

T, K	P, Pa	T, K	P, Pa	T, K	P, Pa	T, K	P, Pa
293,1	5 2150	298,21	2850	303,20	4150	308,20	5490
294,1	$5 \mid 2200$	299,20	2990	304,21	4310	309,20	5770
295,1	$6 \mid 2370$	300,21	3360	305,19	4550	310,19	5960
296,1	$6 \mid 2460$	301,20	3560	306,20	4840	311,19	6440
297,1	7 2660	302,22	3800	307,19	5190		

Таблица 2: Усреднение измеренных параметров

$\frac{1}{T}, \frac{10^3}{K}$	lnP						
3,41	7,67	3,35	7,96	3,30	8,33	3,24	8,61
3,40	7,69	3,34	8,00	3,29	8,37	$3,\!23$	8,66
3,39	7,77	3,33	8,12	3,28	8,42	3,22	8,69
3,38	7,81	3,32	8,18	3,27	8,49	3,21	8,77
3,37	7,89	3,31	8,24	3,26	8,55		

Таблица 3: Обработка усредненных параметров

T, K	L, kJ/mol	T, K	L, kJ/mol	T, K	L, kJ/mol
294,15	36	300,21	63	306,20	51
295,16	40	301,20	47	307,19	49
296,16	43	$302,\!22$	59	308,20	42
297,17	53	303,20	48	$309,\!20$	33
298,21	42	304,21	36	310,19	45
299,20	63	305,19	45		

Таблица 4: Величины L, найденные вторым методом обработки

Рис. 2: График зависимости $\ln P$ от 1/T

Рис. 3: График зависимости P(T)