

Numerical Integration

People Innovation Excellence

Course : Scientific Computing

Year : 2023

By : Adhe Lingga Dewi

Outlines

• Newton-Core Formulas

• Romberg Integration

• Gaussian Integration

The Antiderivative of a Function

Definition

Function F is called an **antiderivative** of f on an interval I if F(x) = f(x) for all x in I.

Theorem

If F is an antiderivative of f on an interval *I*, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

FIGURE 1

Members of the family of antiderivatives of $f(x) = x^2$

The Antiderivative of a Function

Integral Antiderivative

Definite

$$\int_{a}^{b} g(x) dx$$
Intrepetation

Indefinite

$$\int f(x) dx$$
 formula

The Antiderivative of a Function

Table of Antidifferentiation Formulas

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	sin x	$-\cos x$
f(x) + g(x)	F(x) + G(x)	sec^2x	tan x
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	sec x tan x	sec x
$\frac{1}{x}$	ln x	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
e^x	e^x	$\frac{1}{1+x^2}$	tan ⁻¹ x
b^x	$\frac{b^x}{\ln b}$	cosh x	sinh x
$\cos x$	sin x	sinh x	cosh x

Integral Function

$$0 \int ax^n dx = \frac{a}{n+1} x^{n+1} + C$$

$$0 \int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

$$\int ax^n dx = \frac{a}{n+1} x^{n+1} + C$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

$$\int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + C$$

$$\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + C$$

$$\int \frac{1}{x} dx = x |\ln x| + C$$

$$\int \ln|x| dx = x \ln|x| - x + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \frac{1}{x} dx = x \left| \ln x \right| + C$$

$$0 \int \ln|x| \, dx = x \ln|x| - x + C$$

Example 1

Find all functions t such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Solution:

1. Rewrite the given function as follows:

$$g'(x) = 4\sin x + \frac{2x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - x^{-\frac{1}{2}}$$

2. Using the formulas obtain

$$g(x) = 4(-\cos x) + \frac{2x^5}{4} + C$$
$$g(x) = -4\cos x + \frac{2}{5}x^5 - 2\sqrt{x} + C$$

Example 2

Find f if $f''(x) = 12x^2 + 6x - 4$, f(0) = 4, and f(1) = 1Solution:

1. The general antiderivative of f''(x) is:

$$f'(x) = 12\frac{x^3}{3} + 6\frac{x^2}{2} - 4x + C = 4x^3 + 3x^2 - 4x + C$$

2. Using the antidifferentiation rules once more, obtain

$$f(x) = 4\frac{x^4}{4} + 3\frac{x^3}{3} - 4\frac{x^2}{2} + Cx + D = x^4 + x^3 - 2x^2 + Cx + D$$

3. To determine C and D, use the given conditions that f(0) = 4 and f(1) = 1, so that C = -3 and D = 4. Therefore, the required function is $f(x) = x^4 + x^3 - 2x^2 - 3x + 4$

Indefinite Integral

$$g(x) = 3x^2 \quad \to \int 3x^2 \, dx = x^3$$

Derivative of a constant function is 0

$$g(x) = 3x^2 + 0 \quad \rightarrow \quad \int 3x^2 \, dx = x^3 + c, c \in \mathbb{R}$$

Why
$$+ C$$

$$= x^3 + 1000 dx$$

= $x^3 + 0.001 dx$

Find *f* if:

1.
$$f''(x) = x^2 - 4$$

2.
$$f''(x) = 4x^3 + 24x - 1$$

3.
$$f''(x) = 6x - x^4 + 3x^5$$

4.
$$f'''(x) = 2x + 3x^2$$

Exercise

The Area Problem

Definite Integral

FIGURE 1
$$S = \{(x, y) | a \le x \le b, 0 \le y \le f(x)\}$$

Find the area of the region S that lies under the curve y = f(x) from a to b. This means that S, illustrated in Figure, is bounded by the graph of a continuous function f [where $f(x) \ge 0$], the vertical lines x = a and x = b, and the x-axis.

It isn't so easy, however, to find the area of a region with curved sides. We all have an intuitive idea of what the area of a region is. But part of the area problem is to make this intuitive idea precise by giving an exact definition of area.

Introduction to Area (1/2)

Use rectangles to estimate the area under the parabola $y = x^2$ from 0 to 1.

Suppose we divide S into four strips S1, S2, S3, and S4 as in Figure.

Let R_4 be the sum of the areas of these approximating rectangles, we get

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot 1^2$$

$$R_4 = \frac{14}{32} = 0.46875$$

Introduction to Area (1/2)

 $A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n = \frac{1}{3}$

FIGURE 8 Right endpoints produce upper estimates because $f(x) = x^2$ is increasing.

FIGURE 9 Left endpoints produce lower estimates because $f(x) = x^2$ is increasing.

The Area

Definition

The **area** A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

Properties of the Integral

Assume that f and g are continuous functions.

Properties of the Integral

1.
$$\int_a^b c \, dx = c(b-a)$$
, where c is any constant

2.
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

1.
$$\int_a^b c \, dx = c(b-a)$$
, where c is any constant

2. $\int_a^b \left[f(x) + g(x) \right] dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$

3. $\int_a^b c f(x) \, dx = c \int_a^b f(x) \, dx$, where c is any constant

4. $\int_a^b \left[f(x) - g(x) \right] dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx$

4.
$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

People Innovation Excellence

Numerical Integration

Numerical integration is a method used to obtain approximations of integrations that cannot be solved analytically

- Integration process → perform integration on small parts.
- Numerical integration → the integration process is faster and closer to the exact answer

BINUS UNIVERSIT

Innovation Excellence

Numerical Integration

Reimann Integration
 Trapezoid Rule
 Simpson 1/3
 Simpson 3/8
 Gaussian Integration

Gauss Legendre Integration

Integrable

Riemann Integration

Let f be a function defined on the interval [a,b].

If
$$\lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

exists, we say f that is **integrable** on [a, b].

Definite Integral

Moreover, $\int_a^b f(x)dx$ called the **definite integral** (or Riemann

integral) of f from a to b, is then given by

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Reimann Integration

Integral basis

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1}) + c_{3} f(x_{3}) + \dots + c_{n} f(x_{n})$$

Trapezoida Rule's

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{1} c_{i}f(x_{i})$$

$$= c_{0}f(x_{0}) + c_{1}f(x_{1})$$

$$= \frac{x_{1} - x_{0}}{2} [f(x_{0}) + f(x_{1})]$$

People Innovation Excellence

Trapezoida Rule's

$$\int_{a}^{b} f(x)dx \approx \int_{x_{0}}^{x_{1}} f(x)dx + \int_{x_{1}}^{x_{2}} f(x)dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x)dx$$

$$= \frac{\Delta x}{2} [f(x_0) + f(x_1)] + \frac{\Delta x}{2} [f(x_1) + f(x_2)] + \dots + \frac{\Delta x}{2} [f(x_{n-1}) + f(x_n)]$$

$$= \frac{\Delta x}{2} [f(x_0) + f(x_1) + f(x_1) + f(x_2) + \dots + f(x_{n-1}) + f(x_n)]$$

$$= \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Trapezoida Rule's

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Because,
$$L_i = \frac{\Delta x}{2} [f(x_0) + f(x_1)] \rightarrow \Delta x = \frac{b-a}{n}$$

Then,

$$L = \frac{\Delta x}{2} \left[f(x_0) + 2 \sum_{i=1}^{n=1} f(x_i) + f(x_n) \right]$$

Example 1

Calculate $\int_0^1 3x^2 dx$ using the trapezoidal method with an interval $h = \Delta x = 0.1$

χ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
f(x)	0	0.03	0.12	0.27	0.48	0.75	1.08	1.47	1.92	2.43	3

Solution:

$$L = \frac{\Delta x}{2} \left[f(x_0) + 2 \sum_{i=1}^{n=1} f(x_i) + f(x_n) \right]$$

$$L = \frac{0.1}{2} [0 + 2(0.03 + 0.12 + 0.27 + ... + 2.43) + 3]$$

$$L = \frac{0.1}{2} (20,1)$$

$$L = \frac{2.01}{2} = 1.005$$

Example 2

Approximate $\int_0^1 \sqrt{1+x^3} dx$ using the trapezoidal method with 5 strips

Solution:

In this question, n = 5, a = 0, and b = 1, so $\Delta x = \frac{b-a}{n} = \frac{1}{5} = 0.2$ Using the formula above we get:

χ	0	0.2	0.4	0.6	8.0	1
f(x)	1	1.00399	1.03150	1.100272	1.22963	1.41421

$$\int_{0}^{1} \sqrt{1+x^{3}} dx \approx \frac{\Delta x}{2} \left[f(x_{0}) + 2 \sum_{i=1}^{n=1} f(x_{i}) + f(x_{n}) \right]$$

$$= \frac{0.2}{2} [f(0) + 2[f(0.2) + f(0.4) + f(0.6) + f(0.8)] + f(1)]$$

$$= 0.1 [1 + 2(1.00399 + 1.03150 + 1.100272 + 1.22963) + 1.41421]$$

$$= 1.11499$$

Simpson 1/3 Rule's

- The approach used is a parabolic function
- This method is an extension of the trapezoidal integration method → using two heavy → weighted trapezoids at the midpoint

• Trapezoida:

$$L = \frac{\Delta x}{2} [f(x_{i-1}) + f(x_i)] + \frac{\Delta x}{2} [f(x_i) + f(x_{i+1})]$$

• Simpson 1/8, midpoint weighted 2:

$$L = \frac{\Delta x}{3} \left[f(x_{i-1}) + 2f(x_i) \right] + \frac{\Delta x}{3} \left[2f(x_i) + f(x_{i+1}) \right]$$

$$L = \frac{\Delta x}{3} [f(x_{i-1}) + 4f(x_i) + f(x_{i+1})]$$

People Innovation Excellence

Simpson 1/3 Rule's

$$\int_{a}^{b} f(x)dx \approx \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots + \int_{x_{n-2}}^{x_{n}} f(x)dx$$

$$= \frac{\Delta x}{3} [f(x_0) + 2f(x_1)] + \frac{\Delta x}{3} [2f(x_1) + f(x_2)] + \frac{\Delta x}{3} [f(x_2) + 2f(x_3)] + \frac{\Delta x}{3} [2f(x_3) + f(x_4)] + \cdots + \frac{\Delta x}{3} [f(x_{n-2}) + 2f(x_{n-1})] + \frac{\Delta x}{3} [2f(x_{n-1}) + f(x_n)]$$

$$= \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-2}) + 2f(x_{n-1}) + f(x_n)]$$

$$L = \frac{\Delta x}{3} \left[f(x_0) + 4 \sum_{i=ganjil}^{n=1} f(x_i) + 2 \sum_{i=genap}^{n=2} f(x_i) + f(x_n) \right]$$

Example

Calculate $\int_0^1 3x^2 dx$ using the simpson 1/3 method with an interval $h = \Delta x = 0.1$

χ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
f(x)	0	0.03	0.12	0.27	0.48	0.75	1.08	1.47	1.92	2.43	3

Solution:

$$L = \frac{\Delta x}{3} \left[f(x_0) + 4 \sum_{i=ganjil}^{n=1} f(x_i) + 2 \sum_{i=genap}^{n=2} f(x_i) + f(x_n) \right]$$

$$L = \frac{0.1}{3} \left[0 + 4(0.03 + 0.27 + 0.75 + 1.47 + 2.43) + 2(0.12 + 0.48 + 1.08 + 1.92) + 3 \right]$$

$$L = \frac{0.1}{3} \left[0 + 4(4.95) + 2(3.6) + 3 \right]$$

$$L = 1$$

People Innovation Excellence

Simpson 3/8 Rule's

- The approach used is a cubic function
- This method is an extension of the trapezoidal integration method → weighted trapezoids at the midpoint

Trapezoida :

$$L = \frac{\Delta x}{2} [f(x_0) + f(x_1)] + \frac{\Delta x}{2} [f(x_1) + f(x_2)] + \frac{\Delta x}{2} [f(x_2) + f(x_3)]$$

• Simpson 3/8, midpoint weighted 3:

$$L = \frac{3}{8} \Delta x \left[f(x_0 + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$

People Innovation Excellence

Simpson 3/8 Rule's

$$\int_{a}^{b} f(x)dx \approx \int_{x_{0}}^{x_{3}} f(x)dx + \int_{x_{3}}^{x_{6}} f(x)dx + \dots + \int_{x_{n-3}}^{x_{n}} f(x)dx$$

$$= \frac{3}{8} \Delta x [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] + \frac{3}{8} \Delta x [f(x_3) + 3f(x_4) + 3f(x_5) + f(x_6)] + \cdots$$

$$+ \frac{3}{8} \Delta x [f(x_{n-3}) + 3f(x_{n-2}) + 3f(x_{n-1}) + f(x_n)]$$

$$= \frac{3}{8}\Delta x[f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + 3f(x_5) + 3f(x_6) + \dots + 2f(x_{n-3}) + 3f(x_{n-2})$$

$$+3f(x_{n-1})+f(x_n)$$

$$L = \frac{3}{8} \Delta x \left[f(x_0) + 3 \sum_{\substack{i=1\\1=3,6,9}}^{n=1} f(x_i) + 2 \sum_{\substack{i=3,6,9}}^{n=3} f(x_i) + f(x_n) \right]$$

Example

Calculate $\int_0^3 3x^2 dx$ using the simpson 3/8 method with an interval $h = \Delta x = 0.2$

x	0	0.2	0.4	0.6	8.0	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
f(x)	0	0.12	0.48	1.08	1.92	3	4.32	5.88	7.68	9.72	12	14.52	17.28	20.28	23.52	27

Solution:

$$L = \frac{3}{8} \Delta x \left[f(x_0) + 3 \sum_{i=1}^{n=1} f(x_i) + 2 \sum_{i=3,6,9}^{n=3} f(x_i) + f(x_n) \right]$$

$$L = \frac{3}{8} (0.2)[0 + 3(0.12 + 0.48 + 1.92 + \dots + 23.52) + 2(1.08 + 4.32 + 9.72 + 17.28) + 27$$

$$L = \frac{3}{8} (0.2)[0 + 3(89.4) + 2(32.4) + 27$$

$$L = 27$$

Romberg Integration

The composite Trapezoidal Rule

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \rightarrow \Delta x = h = \frac{b-a}{n}$$

Romberg integration combines the trapezoidal rule with Richardson extrapolation. Let us first introduce the notation $R_{i,1} = I_i$

where, as before, I_i represents the approximate value of computed by the recursive trapezoidal rule using 2^{i-1} panels.

Romberg integration starts with the computation of $R_{1,1} = I_1$ (one panel) and $R_{2,1} = I_2$ (two panels) from the trapezoidal rule.

UNIVERSITY

Romberg Integration

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \to \Delta x = h = \frac{b-a}{n}$$

$$R_{1,1} = \frac{h}{2} \left[f(a) + f(b) \right]$$

$$R_{2,1} = \frac{h}{4} \left[f(a) + 2f\left(a + \frac{h}{2}\right) + f(b) \right]$$

$$R_{3,1} = \frac{h}{8} \left[f(a) + f\left(a + \frac{h}{4}\right) + \dots + f(b) \right]$$

Romberg Integration

Romberg integration starts with the computation of $R_{1,1} = I_1$ (one panel) and $R_{2,1} = I_2$ (two panels) from the trapezoidal rule.

The array has now expanded to

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
$R_{1,1}$			
$R_{2,1}$	$R_{2,2}$		
$R_{3,1}$	$R_{3,2}$	$R_{3,3}$	
$R_{4,1}$	$R_{4,2}$	$R_{4,3}$	$R_{4,4}$

$$O(h^i) = error$$

$$R_{k,2} = R_{k,1} + \frac{R_{k,1} - R_{k-1,1}}{2^2 - 1}$$

$$R_{k,3} = R_{k,2} + \frac{R_{k,2} - R_{k-1,2}}{2^4 - 1}$$

$$R_{k,4} = R_{k,3} + \frac{R_{k,3} - R_{k-1,3}}{2^6 - 1}$$

Example

Calculate $\int_{0}^{1} \frac{1}{1+x} dx$ using the Romberg method with n = 8

n	0	1	2	3	4	5	6	7	8
x	0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1
f(x)	1	0.89	0.8	0.727	0.667	0.615	0.5174	0.533	0.5

Solution:

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
$R_{1,1}$			
$R_{2,1}$	$R_{2,2}$		
R _{3,1}	$R_{3,2}$	$R_{3,3}$	
$R_{4,1}$	$R_{4,2}$	$R_{4,3}$	$R_{4,4}$

$$R_{3,1} = \frac{h_2}{2} [f(0) + 2[f(0.25) + f(0.5) + f(0.75)] + f(1)]$$

$$R_{3,1} = 0.69702$$
*Find $R_{4,1}$ with $n = 8$

$$R_{1,1} = \frac{h_0}{2} [f(a) + f(b)]$$

$$R_{1,1} = \frac{1}{2} [f(0) + f(1)]$$

$$R_{1,1} = \frac{1}{2} (1 + 0.5) = 0.75$$

$$R_{2,1} = \frac{h_1}{2} \left[f(a) + 2f \left(a + \frac{h}{2} \right) + f(b) \right]$$

$$R_{2,1} = \frac{0.5}{2} \left[f(0) + 2f(0.5) + f(1) \right]$$

$$R_{2,1} = \frac{0.5}{2} \left[1 + 2(0.667) + 0.5 \right] = 0.70833$$

Solution:

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
0.75			
0.70833	$R_{2,2}$		
0.6972	$R_{3,2}$	$R_{3,3}$	
0.69412	$R_{4,2}$	R _{4,3}	$R_{4,4}$

Example

$$R_{k,2} = R_{k,1} + \frac{R_{k,1} - R_{k-1,1}}{2^2 - 1}$$

$$R_{k,3} = R_{k,2} + \frac{R_{k,2} - R_{k-1,2}}{2^4 - 1}$$

$$R_{k,4} = R_{k,3} + \frac{R_{k,3} - R_{k-1,3}}{2^6 - 1}$$

$$R_{2,2} = R_{2,1} + \frac{R_{2,1} - R_{1,1}}{2^2 - 1} = 0.69445$$

$$R_{3,2} = R_{3,1} + \frac{R_{3,1} - R_{2,1}}{2^2 - 1} = 0.69325 \quad R_{3,3} = R_{3,2} + \frac{R_{3,2} - R_{2,2}}{2^4 - 1} = 0.69317$$

$$R_{4,2} = R_{4,1} + \frac{R_{4,1} - R_{3,1}}{2^2 - 1} = 0.69315 \quad R_{4,3} = R_{4,2} + \frac{R_{4,2} - R_{3,2}}{2^4 - 1} = 0.69314 \quad R_{4,4} = R_{4,3} + \frac{R_{4,3} - R_{3,3}}{2^6 - 1} = 0.69314$$

$$R_{4,4} = R_{4,3} + \frac{R_{4,3} - R_{3,3}}{2^6 - 1} = 0.69314$$

People Innovation Excellence

TER JAKARTA • BEKASI • BANDUNG • MALANG • SEMARANG	4	Vears of BINUS
		Empowering Society, Building The Nation

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$	$O(h^{10})$	$O(h^{12})$	$O(h^{14})$
A_0						
A_1	B_1					
A_2	B_2	C_2				
A_3	B_3	C_3	D_3			
A_4	B_4	C_4	D_4	E_4		
A_5	B_5	C_5	D_5	E_5	F_5	
A_6	B_6	C_6	D_6	E_6	F_6	G_6

Best integration value

Gauss Integration

Gaussian formulas are also good at estimating integrals of the form :

$$\int_{a}^{b} W(x)f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})$$

W(x) = weight function, $w_i = weight,$ $x_i = nodes$

The Other Gaussian Integration:				
1.	Gauss-Chebyshev Quadrature	$\int_{-1}^{1} (1-x^2)^{-\frac{1}{2}} f(x) dx \approx \frac{\pi}{n+1} \sum_{i=0}^{n} f(x_i)$		
2.	Gauss-Laguerre Quadrature	$\int_{0}^{\infty} e^{-x} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$		
3.	Gauss-Hermite Quadrature	$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx \sum_{i=0}^{n} A_i f(x_i)$		
4.	Gauss Quadrature with Logarithmic Singularity	$\int_{0}^{1} f(x) \ln(x) dx \approx -\sum_{i=0}^{n} A_{i} f(x_{i})$		
5.	Gauss – Legendre	$\int_{-1}^{1} f(x)dx$		

Gauss – Legendre Integration

Find $\int_0^1 f(x)dx$ with Trapezoide Method.

$$\int_{-1}^{1} f(x)dx \approx \frac{h}{2} [f(x_0) + f(x_1)] = \frac{h}{2} [f(1) - f(-1)] \rightarrow h = \frac{b - a}{n}$$

$$\int_{-1}^{1} f(x)dx \approx [f(1) + f(-1)] \qquad \dots (1)$$

$$I \approx c_1 f(a) + c_2(b) \rightarrow a = -1, b = 1, c_1 = c_2 = \frac{h}{2} \qquad \dots (2)$$

Gauss – Legendre Integration

To give an idea of Gaussian quadrature, consider Figure. A straight line is drawn connecting any two points on the curve y = f(x). The points are arranged so that the straight line balances the positive and negative errors. The area calculated now is the area under the straight line, expressed as:

$$I = \int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2)$$

 \rightarrow with c_1 , c_2 , x_1 , and x_2 are any values

Gauss – Legendre Integration

$$I = \int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2)$$

Since there are four unknowns, we must have four simultaneous equations containing x_1 , x_2 , c_1 , and c_2 .

For
$$f(x) = 1$$
, $f(x) = x$, $f(x) = x^2$, and $f(x) = x^3$

$$f(x) = 1 \rightarrow c_1 + c_2 = \int_{-1}^{1} 1 \, dx = x \Big|_{-1}^{1} = 1 - (-1) = 2$$

$$f(x) = x \to c_1 x_1 + c_2 x_2 = \int_{-1}^{1} x \, dx = \frac{1}{2} x^2 \Big|_{-1}^{1} = 0$$

$$f(x) = x^2 \to c_1 x_2^2 + c_2 x_2^2 = \int_{-1}^{1} x^2 \, dx = \frac{1}{2} x^3 \Big|_{-1}^{1} = 0$$

$$f(x) = x^2 \rightarrow c_1 x_1^2 + c_2 x_2^2 = \int_{-1}^{1} x^2 dx = \frac{1}{3} x^3 \Big|_{-1}^{1} = \frac{2}{3}$$

$$f(x) = x^3 \rightarrow c_1 x_1^3 + c_2 x_2^3 = \int_{-1}^{1} x^3 dx = \frac{1}{4} x^4 \Big|_{-1}^{1} = 0$$

People Innovation Excellence

Gauss – Legendre Integration

Now, we have four simultaneous equations

$$c_1 + c_2 = 2$$

$$c_1x_1 + c_2x_2 = 0$$

$$c_1x_1^2 + c_2x_2^2 = \frac{2}{3}$$

$$c_1x_1^3 + c_2x_2^3 = 0$$

So that,

$$c_1 = c_2 = 1, x_1 = \frac{1}{\sqrt{3}}, \text{ and } x_2 = -\frac{1}{\sqrt{3}}$$

$$I = \int_{-1}^{1} f(x) dx \approx f\left(\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$$

The above equation is called the 2-point Gauss-Legendre rule. With this rule, calculating the integral f(x) in the interval [-1, 1] simply evaluates the value of the function f at $x = \frac{1}{\sqrt{3}}$ and at $x = -\frac{1}{\sqrt{3}}$

Transformasi $\int_a^b f(x)dx$ to $\int_{-1}^1 f(t)dt$

We must do the transformation:

- 1. Interval [a, b] becomes interval [-1, 1]
- 2. The x variable becomes the t variable
- 3. Differential dx to dt

The intervals [a, b] and [-1, 1] are depicted by the following line diagram:

From the two lines charts we make a comparison:

$$\frac{x-a}{b-a} = \frac{t-(-1)}{1-(-1)} \to \frac{x-a}{b-a} = \frac{t+1}{2}$$

$$\to 2x - 2a = (t+1)(b-a)$$

$$\to x = \frac{bt-at+b-a+2b}{2}$$

$$\to x = \frac{a+b+bt-at}{2}$$

$$\to x = \frac{(a+b)+(b-a)t}{2} \to dx = \frac{b-a}{2}dt$$

Transformasi $\int_a^b f(x)dx$ to $\int_{-1}^1 f(t)dt$

$$\Rightarrow x = \frac{(a+b) + (b-a)t}{2}$$
$$\Rightarrow dx = \frac{b-a}{2}dt$$

Transformation $\int_a^b f(x)dx$ to $\int_{-1}^1 f(t)dt$ is performed by substituting x and dx into $\int_a^b f(x)dx$

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{(a+b)+(b-a)t}{2}\right) \frac{b-a}{2}dt = \frac{b-a}{2}dt \int_{-1}^{1} f\left(\frac{(a+b)+(b-a)t}{2}\right)dt$$

Find
$$\int_{1}^{2} (x^2 + 1) dx$$
 with Gauss – Legendre two point.

Solution:

#step 1 (find a and b)

$$a = 1$$

$$b = 2$$

#step 2 (find x and dx)

$$\Rightarrow x = \frac{(a+b) + (b-a)t}{2}$$

$$x = \frac{(1+2) + (2-1)t}{2} = 1.5 + 0.5t$$

$$dx = \frac{b-a}{2}dt = \frac{2-1}{2}dt$$

$$dx = 0.5 d$$

Example

#step 3 (transformation)

Transformation $\int_{1}^{2} f(x)dx$ to $\int_{-1}^{1} f(t)dt$

$$\int_{1}^{2} (x^{2} + 1) dx = \int_{-1}^{1} [(1.5 + 0.5t)^{2} + 1] 0.5dt = 0.5 \int_{-1}^{1} (1.5 + 0.5t)^{2} + 1) dt$$

$$f(x) = (1.5 + 0.5t)^{2} + 1)$$

$$f\left(\frac{1}{\sqrt{3}}\right) = \left(1.5 + 0.5\left(\frac{1}{\sqrt{3}}\right)\right)^{2} + 1 = 4.199$$

$$f\left(-\frac{1}{\sqrt{3}}\right) = \left(1.5 + 0.5\left(-\frac{1}{\sqrt{3}}\right)\right)^{2} + 1 = 2.467$$

$$\int_{1}^{2} (x^2 + 1) \, dx = 0.5 \int_{-1}^{1} (1.5 + 0.5t)^2 + 1) \, dt = 0.5 \left(f\left(\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right) \right) \approx 3.333$$

Innovation

Metode Gauss-Legendre n-titik

$$\int_{-1}^{1} f(x)dt \approx c_1 f(x_1) + c_2 f(x_2) + \dots + c_n f(x_n)$$

n	Faktor bobot	Argumen fungsi	Galat pemotongan
2	$c_1 = 1.0000000000$	$x_1 = -0.577350269$	$\approx f^{(4)}(c)$
	$c_2 = 1.0000000000$	$x_2 = 0.577350269$	
3	$c_1 = 0.555555556$	$x_1 = -0.774596669$	$\approx f^{(6)}(c)$
	$c_2 = 0.888888889$	$x_2 = 0$	
	$c_3 = 0.555555556$	$x_1 = 0.774596669$	
4	$c_1 = 0.347854845$	$x_1 = -0.861136312$	$\approx f^{(8)}(c)$
	$c_2 = 0.652145155$	$x_2 = -0.339981044$	
	$c_3 = 0.652145155$	$x_3 = 0.339981044$	
	$c_3 = 0.347854845$	$x_4 = 0.861136312$	
5	$c_1 = 0.236926885$	$x_1 = -0.906179846$	$\approx f^{(10)}(c)$
	$c_2 = 0.478628670$	$x_2 = -0.538469310$	
	$c_3 = 0.568888889$	$x_3 = 0$	
	$c_4 = 0.478628670$	$x_4 = 0.538469310$	
	$c_5 = 0.236926885$	$x_5 = 0.906179846$	
6	$c_1 = 0.171324492$	$x_1 = -0.932469514$	$\approx f^{(12)}(c)$
	$c_2 = 0.360761573$	$x_2 = -0.661209386$	
	$c_3 = 0.467913935$	$x_3 = -0.238619186$	
	$c_4 = 0.467913935$	$x_4 = 0.238619186$	
	$c_5 = 0.360761573$	$x_5 = 0.661209386$	
	$c_6 = 0.171324492$	$x_6 = 0.932469514$	

Exercise

- 1. Approximate $\int_0^{10} x^2 dx$ using the trapezoidal method with 5 strips
- 2. Approximate $\int_0^{20} x^3 dx$ using the simpson 1/3 method with n=4
- 3. Approximate $\int_0^1 \frac{1}{1+x^2} dx$ using the simpson 3/8 method with n=6

BINUS UNIVERSITY

Acknowledgement

These slides have been adapted from:

Kong, Q., Siauw, T., & Bayen, A. M. (2021). Python Programming and Numerical Methods: A Guide for Engineers and Scientists. Academic Press. ISBN: 978-0-12-819549-9

Kiusalaas, J. (2013). Numerical Methods in Engineering with Python 3. United Kingdom: Cambridge University Press. ISBN:9781107033856

additional materials

Chapra, S.C (2015). Numerical Methods for Engineers. 6st Edition. McGraw-Hill Companies, Inc. New York. ISBN. 978-981-4670-87