Les opérateurs booléens

image{: .center}

1. Repères historiques

```
{: .center}
```

En 1847, le britannique *George BOOLE* inventa un formalisme permettant d'écrire des raisonnements logiques : l'algèbre de Boole. La notion même d'informatique n'existait pas à l'époque, même si les calculs étaient déjà automatisés (penser à la Pascaline de 1642).

Bien plus tard, en 1938, les travaux de l'américain Claude SHANNON prouva que des circuits électriques peuvent résoudre tous les problèmes que l'algèbre de Boole peut elle-même résoudre. Pendant la deuxième guerre mondiale, les travaux d'Alan TURING puis de John VON NEUMANN poseront définitivement les bases de l'informatique moderne.

2. Algèbre de Boole

L'algèbre de Boole définit des opérations dans un ensemble qui ne contient que deux éléments notés 0 et 1, ou bien FAUX et VRAI ,ou encore False et True (en Python)

Les opérations fondamentales sont :

- la conjonction ("ET")
- la disjonction ("OU")
- la négation ("NON").

Dans toute la suite, x et y désigner ont des *Booléens* (éléments d'une algèbre de Boole) quelconques, F désigner a FAUX et V désignera VRAI.

2.1 Conjonction (AND)

• symbole usuel : & (appelé esperluette en français et ampersand en anglais)

• français : ET

• anglais (et Python): and

• notation logique : \land

• notation mathématique : .

C'est l'opération définie par:

• x & F = F

• x & V = x

Puisque l'algèbre de Boole ne contient que deux éléments, on peut étudier tous les cas possibles et les regrouper dans un tableau appelé **table de vérité**:

```
!!! abstract "Table de vérité de AND :heart:" |x| y | x & y| |:--:|:--:| |F|F|F| |F|V|F| |V|F|F| |V|V|V|
```

On représente souvent les opérateurs booléens à l'aide de portes logiques:

```
{: .center}
```

Notation usuelle en électronique : $Q = A \wedge B$

```
{: .center}
```

Exemples en Python

```
>>> n = 20
>>> (n % 10 == 0) and (n % 7 == 0)
False
>>> (n % 4 == 0) and (n % 5 == 0)
True
```

L'évaluation paresseuse Pouvez-vous prévoir le résultat du code ci-dessous

```
>>> (n % 4 == 0) and (n % 0 == 0)
```

ZeroDivisionError

Traceback (most recent call last)

ZeroDivisionError: integer division or modulo by zero

Évidemment, la division par 0 provoque une erreur.

Mais observez maintenant ce code :

```
>>> (n % 7 == 0) and (n % 0 == 0) False
```

On appelle **évaluation paresseuse** le fait que l'interpréteur Python s'arrête dès que sa décision est prise : comme le premier booléen vaut False et que la conjonction **and** est appelée, il n'est pas nécessaire d'évaluer le deuxième booléen.

2.2 Disjonction (OR)

- $\bullet\,$ symbole usuel : | appelé pipe en anglais
- français : OU
- anglais (et Python) : or
- notation logique : \vee
- notation mathématique : +

C'est l'opération définie par:

C'est l'opération définie par:

- x | V = V
- x | F = x

On en déduit la table suivante:

!!! abstract "Table de vérité de OR :heart: " |x| y | x or y| |:--:|:---:| |F|F| F| |F|V|V| |V|F|V| |V|V|V|

{: .center}

Notation usuelle en électronique : $Q = A \vee B$

{: .center}

Exemples en Python

```
>>> n = 20

>>> (n % 10 == 0) or (n % 7 == 0)

True

>>> (n % 4 == 0) or (n % 5 == 0)

True

>>> (n % 7 == 0) or (n % 3 == 0)

False
```

L'évaluation paresseuse (retour) Pouvez-vous prévoir le résultat du code ci-dessous ?

>>> (n
$$\%$$
 5 == 0) or (n $\%$ 0 == 0)

2.3 Négation (NOT)

- symbole usuel : \sim
- français : NON
- anglais (et Python) : not
- notation logique : ¬
- notation mathématique : \overline{x}

C'est l'opération définie par:

- ~V = F
- ~F = V

On en déduit la table suivante:

!!! abstract "Table de vérité de NOT :heart:" |x| ~x | |:-:|:---:| |F|V| |V|F| {: .center}

Notation usuelle en électronique : $Q = \neg A$

```
{: .center}
```

Exemples en Python

```
>>> n = 20
>>> not(n % 10 == 0)
False
```

2.4 Exercice 1

Comprendre ce mème : image{: .center width=50%}

2.5 Exercice 2

1. Ouvrir le simulateur de circuits { . target="_blank"} et créer pour chaque opération AND, OR, NOT un circuit électrique illustrant ses propriétés.

Exemple (inintéressant) de circuit : {: .center}

2. Utiliser successivement les circuits XOR, NAND et NOR et établir pour chacun leur table de vérité.

3. Fonctions composées

3.1 Disjonction exclusive XOR

(en français OU EXCLUSIF)

$$x ^ y = (x & ~y) | (~x & y)$$

!!! abstract "Table de vérité de XOR :heart: " $|\mathtt{x}|$ y | x ^ y| |:--:|:---:| |F|F| F| |F|V|V| |V|F|V| |V|V|F|

{: .center}

{: .center}

Le XOR joue un rôle fondamental en cryptographie car il possède une propriété très intéressante : $(x \land y) \land y = x$

Si x est un message et y une clé de chiffrage, alors $x \wedge y$ est le message chiffré. Mais en refaisant un XOR du message chiffré avec la clé y, on retrouve donc le message x initial.

3.2 Fonction Non Et (NAND)

```
x \uparrow y = \sim (x \& y)
```

!!! abstract "Table de vérité de NAND :heart: " |x| y | x † y| |:--:|:---:| |F|F| V| |F|V|V| |V|F|V| |V|V|F|

{: .center}

3.3 Fonction Non Ou (NOR)

Il est temps de se reposer un peu et d'admirer cette vidéo : {: .center}

Remarque:

Les fonctions NAND ET NOR sont dites **universelles** : chacune d'entre elles peut générer l'intégralité des autres portes logiques. Il est donc possible de coder toutes les opérations uniquement avec des NAND (ou uniquement avec des NOR). Voir Wikipedia

3.4 Exercice 4

Calculer les opérations suivantes.

3.5 Calculs en Python

les opérateurs &, | et ^ sont utilisables directement en Python

```
# calcul A
>>> 12 & 7
4
# calcul B
>>> 12 | 7
15
# calcul C
>>> 12 ^ 5
9
```

Pour comprendre ces résultats, il faut travailler en binaire. Voici les mêmes calculs :

Exercice 5 : préparation du pydéfi

Objectif : chiffrer (= crypter) le mot "BONJOUR" avec la clé (de même taille) "MAURIAC".

Protocole de chiffrage : XOR entre le code ASCII des lettres de même position.

Exercice

 $\verb|+|+|$ capytale "À faire sur Capytale : Lien" Résolvez le pydéfi la clé endommagée{ $\texttt{target}="_blank"}$

Complément : propriétés des opérateurs logiques

Les propriétés suivantes sont facilement démontrables à l'aide de tables de vérités: (source : G.Connan)

```
{: .center}
```

Toutes ces lois sont aisément compréhensibles si on les transpose en mathématiques :

- & équivaut à ×
 | équivaut à +
 ¬ équivaut à -