Linear Products

Product Index

ACF2101 7.5
ADC71 2.6*
ADC76 2.10*
ADC80 2.14*
ADC80MAH 2.18*
ADC84 2.22*
ADC85 2.22*
ADC87H2.22*
ADC574A 2.26*
ADC674A 2.36*
ADC700 2.42*
ADC701
ADC774 2.69*
ADC803 2.76*
ADC7802 2.79*
ADS5742.92*
ADS7742.105*
ADS8002.119*
ADS8012.132*
ADS8022.144*
ADS8202.156*
ADS8212.169*
ADS1210/11 2.182*
ADS7800 2.196*
ADS7803 2.207*
ADS7804 2.220*
ADS7805 2.230*
ADS7806 2.240*
ADS7807 2.258*
ADS7808 2.277*
ADS7809 2.287*
ADS7810 2.297*
ADS7811 2.306*
ADS7814 2.310*
ADS7819 2.313*
ADS7820 2.324*
ADS7821 2.330*
ADS7824 2.339*
ADS7825 2.345*
ADS7831 2.351*
ADS7833 2.361*
AFE1103E 2.373*
AFE1104E 2.381*
ALD1000 4.5
BUF600 3.1.5
BUF601 3.1.5
BUF634 3.1.20
DAC56 3.5*
DAC80 3.10*

DAC600 3.19
DAC650 3.31
DAC667 3.42
DAC700 3.51
DAC701 3.51
DAC702 3.51
DAC703 3.51
DAC707 3.61
DAC708 3.61
DAC709 3.61
DAC712 3.73
DAC714 3.84
DAC715 3.98
DAC716 3.109
DAC725 3.122
DAC729 3.129
DAC811 3.140
DAC813 3.149
DAC2813: 3.160
DAC2814 3.169
DAC2815 3.180
DAC4813 3.19
DAC4814 3.199
DAC4815
DAC7528 3.221
DAC7541 3.229 DAC7545
DAC7800 3.244
DAC7801 3.244
DAC7802 3.24
DAC8043 3.257
DF1760 8.1.25
DIV100 7.
DDC101 2.38
DSP1012.410
DSP1022.410
DSP201
DSP202
INA101 4.1
INA102 4.2
INA103 4.2
INA105 4.3
INA106 4.4
INA110 4.5
INA111 4.6
INA114 4.7
INA115 4.9
INA116 4.10
INIA447 444

INA118 4.124
INA128 4.135
INA131 4.145
INA141 4.155
INA2128 4.165
INA2141 4.175
ISO100 5.6
ISO102 5.21
ISO103 5.36
ISO106 5.21
ISO107 5.45
ISO113 5.53
ISO120 5.61
ISO121 5.61
ISO122 5.75
ISO130 5.88
ISO150 5.99
ISO164/174 5.108
ISO165/175 5.116
ISO166/176 5.124
ISO212 5.132
ISO213 5.143
ISO253 5.156
ISO254 5.165
ISO255 5.174
ISO256 5.183 ISO485 5.192
ISO806 5.203
100001 11111111111111111111111111111111
ISO808 5.227 ISO809 5.234
IVC102
IXR100
LOG100
MPC100 54*
MPC102 5.20*
MPC104 5.33*
MPC506
MPC507 5.48*
MPC508 5.59*
MPC509 5.59*
MPC800 5.69*
MPC801 5.73*
MPY100
MPY534
MPY600
MPY6347.32

NOTE: (*) This product can be found in the 1996 Burr-Brown IC Data Book—Mixed Signal Products.

Product Index

OPA272.8	OPA676	2.332	RCV420	4.230
OPA372.8	OPA678	2.336	REF01	8.4
OPA77 2.74	OPA1013	2.340	REF02	8.10
OPA111 2.23	OPA2107	2.343	REF102	
OPA121 2.26	OPA2111	2.346	REF200	8.26
OPA124	OPA2541		REF1004	
OPA128	OPA2544	management and a second	REG1117	
OPA129	OPA2604		REG5601	
OPA130/2130/41302.53	OPA2650		REG5608	
OPA131/2131/41312.60	OPA2658		SDM506	
OPA132/2132/41322.67	OPA2662		SDM507	
OPA1322132141322.74	OPA4650		SDM516	
OPA234/2234/42342.82	OPA4658		SDM517	
OPA234/2234/42342.84	OPT101		SDM862	
OPA404	OPT202			
	OPT202		SDM863	
OPA445 3.2.29	OPT210	0111 000	SDM872	
OPA5013.2.35	OPT211		SDM873	
OPA502 3.2.41	OPT301		SHC76	
OPA512 3.2.51			SHC298	
OPA5413.2.57	PCM54		SHC605	
OPA544 3.2.65	PCM55		SHC615	
OPA547/5483.2.73	PCM56		SHC702	
OPA602 2.89	PCM61		SHC803	
OPA603 2.92	PCM63		SHC804	
OPA604 2.96	PCM67/69		SHC5320	
OPA6062.108	PCM78		UAF42	
OPA6202.111	PCM1700		VCA610	
OPA621 2.127	PCM1702		VFC32	
OPA622 2.143	PCM1710		VFC100	
OPA623 2.147	PCM1712		VFC110	
OPA627 2.150	PCM1715		VFC121	
OPA628 2.163	PCM1717		VFC320	
OPA6333.2.75	PCM1718		XTR101	
OPA637 2.150	PCM1721		XTR103	
OPA6402.178	PCM1750	********************************	XTR104	
OPA641 2.191	PCM1760		XTR110	4.276
OPA642 2.204	PGA102		XTR501	
OPA643 2.219	PGA103		0804MC	3.2.100
OPA644 2.232	PGA202		100MS	5.266
OPA646 2.245	PGA203		722	5.268
OPA648 2.258	PGA204		724	5.273
OPA650 2.269	PGA205	4.206	3583	3.2.101
OPA651 2.280	PGA206	4.220	3584	3.2.106
OPA654 2.291	PGA207	4.220	3650	5.278
OPA655 2.299	PWS725	5.255	3652	5.278
OPA658 2.313	PWS726	5.255	3656	5.290
OPA660 2.326	PWS740	5.257	4127	7.61
OPA671 2.329	PWS745	5.260		
OPA675 2.332	PWS750	5.263		
2				

NOTE: (*) This product can be found in the 1996 Burr-Brown IC Data Book—Mixed Signal Products.

For information on any of these products or to receive the *Burr-Brown Mixed Signal Products IC Data Book*, call our automated literature request line at 1-520-741-3884, or contact your local sales representative.

Product Index

How to Use This Book

OPA2544 3.2.91

If you know the MODEL NUMBER.

If you know the **PRODUCT TYPE**,

If you want NEW MODELS,

If you want a PRICE,

If you want TAPE & REEL,

Use the Model Index on the INSIDE FRONT COVER.

Use the TABBED TABLE OF CONTENTS, or use the SELECTION GUIDE TABLES at the front of each tabbed section.

Use the Model Index on the INSIDE FRONT COVER or the SELECTION GUIDE TABLES at the front of each tabbed section. All new models contained in this edition are shown in **boldface**. Also, contact your local Burr-Brown representative for information on new models released since publication of this data book.

Contact your local Burr-Brown office or sales representative. See the sales office listing at the back of the book.

See TAPE & REEL INFORMATION,
Appendix B, or contact your local Burr-Brown representative.

PGA2064220

Burr-Brown Integrated Circuits Data Book

Linear Products

1996

Burr-Brown Corporation.

Street Address: 6730 S. Tucson B

Mailing Address: PO Box 11400 Turson AZ 85734

Tel: (520) 746-1111 * FAX: (520) 886-1510 * Cable: BBRCORP

For immediate Product Information or Tachnical Assistance, call 1-509-548-8132 to the USA.

World Wide Web Address

Burr-Brown FAXLine (USA/Canada Only) 1-800-548-6133

The information provided frame is believed to be reliable; however, SURR-BROWN assumes no reaponability for the use of this information, and to inaccuracions or entastions, RURIT BROWN assumes no resocratibility for the use of this information strail be entirely at the user's own user. Prices are disposit to subject to obange without redion, the price of the calculate of products described better are implied or greated to any third soft, SURR-BROWN does not sufficient or warrest eny BURR-BROWN.

mwors-mus ntegrated Circuits Moos sisd

Linear Products

LI-480 ©1996 Burr-Brown Corporation Printed in USA

Burr-Brown Corporation International Airport Industrial Park

Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706

Tel: (520) 746-1111 • FAX: (520) 889-1510 • Cable: BBRCORP

For immediate Product Information or Technical Assistance, call 1-800-548-6132 in the USA.

> World Wide Web Address http://www.burr-brown.com/

Burr-Brown FAXLine (USA/Canada Only) 1-800-548-6133

> Worldwide FAX Number 1-520-889-1510

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits or products described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Table of Contents

BURR-BROWN CORPORATION About Burr-Brown, Applications Library, Sales & Service	1
OPERATIONAL AMPLIFIERS	2
POWER OPERATIONAL AMPLIFIERS	3
INSTRUMENTATION AMPLIFIERS	4
ISOLATION PRODUCTS	5
OPTICAL SENSORS	6
SPECIAL FUNCTIONS	7
REFERENCES AND REGULATORS	8
APPENDIX A Demonstration Board Products	A
APPENDIX B Tape and Reel Information	В
APPENDIX C	С

Package Drawings (Mechanicals)

Table of Contents

BURR-BROWN CORPORATION About Burr-Brown, Applications Library, Sales & Service

OPERATIONAL AMPLIFIERS

POWER OPERATIONAL AMPLIFIERS

INSTRUMENTATION AMPLIFIERS

ISOLATION PRODUCTS

OPTICAL SENSORS

SPECIAL FUNCTIONS

REFERENCES AND REGULATORS

APPENDIX A Demonstration Board Products

Package Dravings (Mechanicals)

1 Burr-Brown Corporation

About Burr-Brown

Corporate Profile CARAU on not manual molecular Profile

Burr-Brown Corporation designs, manufactures, and markets a broad line of high-performance, standard analog and mixed signal integrated circuits used in the processing of electronic signals. Our products are used in a wide range of markets and applications, including industrial and process control, test and measurement, medical and scientific instrumentation, medical imaging, digital audio and video, telecommunications, personal computers, and multimedia.

Our product strategy is to design proprietary circuits that yield maximum functional value in our customers' applications. Many of the products, although produced in standard configurations, are strategically designed, specified, and tested to position them for targeted applications such as audio signal processing or sensor-specific signal conditioning.

Burr-Brown's products include: operational amplifiers, instrumentation amplifiers, programmable gain amplifiers, isolation amplifiers, DC/DC converters, voltage references and regulators, voltage-to-frequency converters, optoelectronic amplifiers, analog-to-digital converters, digital-to-analog converters, and "application specific" standard products. Our products are manufactured using a variety of wafer fabrication processes that include bipolar, complementary bipolar, BiCMOS and CMOS with lithography requirements down to the 0.6 micron level.

We sell our products worldwide through our direct sales force, independent sales representatives, and third-party distributors. Burr-Brown has six direct sales offices in the United States and international sales subsidiaries in France, Germany, Italy, Japan, the Netherlands, Switzerland, and the United Kingdom. Through direct sales and distributors, our

products reach over 25,000 OEM customers world-wide. Sales are divided evenly throughout the world, with approximately one-third from the United States market, one-third from Europe, and the remainder from Japan and the South East Asian region.

Burr-Brown employs over 1,900 people worldwide with manufacturing and technical facilities in Tucson, Arizona; Atsugi, Japan; and Livingston, Scotland. Located in Tucson, Arizona, corporate head-quarters also includes an integrated circuit wafer fab, assembly and test operations. Burr-Brown was incorporated in Arizona in 1956; stock is traded on NASDAQ under the symbol, BBRC.

Burr-Brown Receives ISO9001 Certification in U.S. and Europe

In September 1993, Burr-Brown Corporation received ISO9001 certification in the United States and Europe, simultaneously. In the United States, registration is recognized through the TUV Product Service Quality Registrar by the Registration Accreditation Board (RAB). Certification is accepted through the Electronics Industries Quality Registrar by the Dutch Registration Board (RCV) in Europe.

ISO9001 is the international standard for assessing the quality systems of companies that design, manufacture, and test products. Adopted by 91 member countries, it's the international quality standard for manufacturing, trade, and communications industries. Certification indicates that a formal quality system exists for all processes and that these processes are audited on a timely basis.

Applications Library

Applications Bulletins and Design Software

APPLICATIONS LIBRARY	4-20mA to 0-20mA Converter and Current Summing	AB-03
The following applications information is available from Burn Brown at no charge.	IC Building Blocks Form Complete Isolated 4-20mA Current-Loop Systems	AB-032
Call 1-800-548-6132 to order. APPLICATIONS BULLETINS	Single-Supply, Low-Power Measurements of Bridge Networks	AB-033
Increasing INA117 Differential Input Range AB-00	MFB Low-Pass Filter Design Program	AB-034
Make a Precision Current Source or Current Sink AB-002 Voltage-Reference Filters	Filter Design Program for the UAF42 Universal	pdion
Make a Precision –10V Reference		AB-036
Make a Precision ±10V Reference	Mounting Consideration for TO-2 Package	AB-037
Make a -10V to +10V Adjustable Precision	Heat Sinking—TO-3 Thermal Model	AB-038
Voltage Source	Design of the control	
Composite Op Amp Gives you the Best	Frequency-to-Voltage Conversion	AB-040
of Both Worlds	Single Supply 4-20mA Current Loop Receiver	AB-04
AC Coupling Instrumentation and Difference	Programmable-Gain Instrumentation Amplifiers	AB-042
Amplifiers		AR OAS
Single-Supply Operation of Isolation Amplifiers AB-009 ±200V Difference Amplifier with Common-mode Voltage Monitor	Improved Device Noise Performance for the	
Low Power Supply Voltage Operation of	Op Amp Performance Analysis	
REF102 10V Precision Voltage Reference AB-01		
Boost ISO120 Bandwidth to More Than 100kHz AB-012	Noise Sources in Applications Using Capacitive	ERGREUS
Increasing ADC603 Input Range	B Coupled Isolated Amplifiers	
Input Overload Protection for the RCV420		AB-048
4-20mA Current-loop Receiver	The MPC100 Analog Multiplexer Improves RF Signal Distribution	AR-040
Extending the Common-mode Range of Difference Amplifiers	Compensate Transimpedance Amplifiers Intuitively	
Boost Amplifier Output Swing With Simple	Double the Output Current to a Load with the	
Modification	Dual Of A2004 Addio Op Amp	
0-20mA Receiver Using the RCV420	Of According Flead	
Input Signals AB-019	Improved Noise Performance of the ACF2101 Switched Integrator	
Operational Amplifier and Instrumentation Amplifier Macromodels	Clamping Amplifiers Track Power Supplies	
Synchronization of ISO120/ISO121 Isolation Amplifiers AB-02	Precision IA Swings Ball-to-Ball on Single 5V Supply	AB-056
Fast Settling Low-Pass Filter	Comparison of Noise Performance	
		AR-057
Simple Output Filter Eliminates ISO Amp Output Ripple and Keeps Full Bandwidth AB-023	Simple Filter Turns Square Waves into Sine Waves	
Analog Isolation with Power	MTTF, Failrate, Reliability and Life Testing	
Boost Instrumentation Amp CMR with Common-Mode	Careful Layout Tames Sample-Hold Pedestal Errors	
Driven Supplies	OPT201 Photodiode-Amplifier Rejects	
A Low Noise, Low Distortion Design for Anti-Aliasing and Anti-Imaging Filters	Ambient Light	
High Speed Data Conversion	Digitally Programmable, Time-Continuous	
Feedback Plots Define Op Amp AC Performance AB-028	Active Filter	
Input Filtering the INA117 ±200V Difference	Voltage-to-Frequency Converters Offer Useful Options in A/D Conversion	AB-066
Amplifier	Dynamic Tests for A/D Converter Performance	
Thermal and Electrical Properties of Selected Packaging Materials	Photodiode Monitoring with On Amps	

Applications Library

Applications Bulletins and Design Software

Design and Application of Transformer-Coupled Hybri Isolation Amplifier Model 3656	d AB-078
The Key to Understanding Sources of Error in the ISO100 Isolation Amplifier	AB-079
Hybrid Isolation Amps Zap Prices and Voltage Barriers .	. AB-080
DC-to-DC Converters	AB-081
Principles of Data Acquisition and Conversion	AB-082
10MHz Analog Multiplier Carries Output Amp Breaks	AB-083
Analog-to-Digital Converter Gounding Practices Effect System Performance	AB-084
Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supply	AB-085
Switch Gains Accurately with the INA120	AB-086
Level Shifting Signals with Differential Amplifiers	AB-087
Improved Voltage Filter has Several Advantages	AB-088
A Clarification of Use High-Speed S/H to Improve Sampling ADC Performance	AB-089
Feedback Circuit Clamps Precisely	AB-090
Voltage-Feedback Amps vs Current-Feedback Amps:	
Bandwidth & Distortion Considerations	
SWOP Amplifiers Simplify RF Signal Processing	
Isolation Amps Hike Accuracy and Reliability	AB-093
Tame Photodiodes with Operational Amplifier Bootstrap	AB-094
Tips for Using the ADS78xx Family of A/D	AB-095
Build A Three Phase Sine Wave Generator With	AD-095
the UAF42	AB-096
DDC101 Evaluation Fixture PC Interface Board	AB-097
Selecting an A/D Converter	AB-098
An Easy Solution to Current Limiting an Op Amp	AB-099
Multiplexer Data Acquisition System	AB-100
Combining and Amplifier with the BUF634	AB-101
Output Spectrum and Post-LPF Design of the PCM1710	AB-102
Voltage-to-Frequency Converters Offer Useful Deltons In A/D Conversion	AB-130
An Error Analysis of the ISO102 in Small Signal Measuring	AB-161
fines no VAT ampleaded air amber and a me	- ri- 7

DC/DC Converter Noise Reduction	AB-16
Partial Discharge Testing	AB-16
Implementation and Applications of Current	
Sources and Current Receivers Coding Schemes Used with Data Converters	AB-16
Coding Schemes Used with Data Converters	AB-17
Exchanging Files on the Customer Service	
Electronic Bulletin Board	AB-17
CDAC Architecture Plus Resistor Divider Gives ADC574 Pinout with Sampling, Low-Power, New	
	AB-17
Video Operational Amplifiers	AB-17
Video Operational Amplifiers	AB-18
New Ultra High-Speed Circuit Techniques with Analog ICs	
Driving Video Output Stages with Monolithic	
Integrated Amps	AB-18
Automatic Gain Control (AGC) Using the Diamond Transistor OPA660	AB-18
Current or Voltage Feedback: The Choice Is Yours	
with the New, Flexible, Wide-Band Operational Amplifier OPA622	AB-18
External Open-Loop Gain Adjustment: Check It Out	VD-10
with the Demo Boards for the OPA623 and OPA622 .	AB-18
Building a 400MHz Wide-Band Differential Amp: It's	
a Breeze with the Diamond Transistor OPA660	
Macromodels for RF Operational Amplifiers are a Powerful Design Tool	AB-18
Powerful Design Tool	AD-10
	AB-19
There's a World of Line Drivers to Choose From	AB-19
Fiber Optic Transmission	AB-19
The Current-Feedback Operational Amplifier: A High	SUC
	AB-19
Intermodulation Distortion (IMD)	AB-19
DESIGN SOFTWARE	
FilterPro Disk	
Spice Disk A	B/E-02

Sales and Service

ABOUT THIS BOOK

To keep with the easy-to-use format we established last year, the *Burr-Brown Integrated Circuits Data Books* for 1996/97 will be similar to the 1995 books. Both the Linear Products and Mixed Signal Products books are available free from your local salesperson or representative—see **Sales Office Listings** at back of book—or by calling our literature request line at **1-800-548-6132** (US or Canada). Order both, or just the one that fits your needs.

How to Use This Book

Burr-Brown product numbers are listed in the Selection Trees and Tables at the beginning of each tabbed section. With these tools you can quickly compare specs among different products and choose the best part for your design. Products appearing in **boldface** type are new products introduced by Burr-Brown since publication of the 1995 data books.

Data sheets are arranged alphanumerically by product type, so if you know the name of the part you can find it quickly. Or, use the Product Index on the **inside front cover**, or page numbers as listed in the Selection Guide trees and tables.

CUSTOMER SERVICE Mosdow - Institute of the Customer - Inst

Burr-Brown is committed to providing the best customer service in the industry—whether it be a need for additional technical literature, technical assistance, to place an order, or to return products. For immediate assistance with any problem or inquiry, contact your local Burr-Brown salesperson or representative. See Sales Office Listings at back of book.

Direct factory assistance is available by calling the following number: **1-800-548-6132** (US or Canada; 7:00am to 5:00pm MST).

Technical Literature or to not solid A but agreed Applications Assistance south selling A moust solid

In addition to individual data sheets, Burr-Brown also provides its customers with applications bulletins, promotional samples, comprehensive brochures featuring many product types, and applications assistance by calling 1-800-548-6132 (US or Canada).

Internet

Burr-Brown information is now available on the Internet via the World Wide Web. Customers with Internet access can visit our home page at http://www.burr-brown.com/ to obtain on-line data sheets and corporate information any time of the day, any day of the year.

FAXLine

Burr-Brown's **FAXLine** is available for customers to request product literature. Call **1-800-548-6133** (USA/Canada Only) to receive a Document Catalog, complete with **FAXLine** literature order numbers. Up to three pieces of literature may be requested per call.

Prices and Quotations

Price quotations made by Burr-Brown or its authorized field sales representatives are valid for 30 days. Delivery quotations are subject to reconfirmation at the time of order placement. Please call your local sales representative or distributor (see list at the back of this book).

Placing Orders of the ISO Oct and to elegistic Annal na

You can place orders via telephone, FAX, or mail with any authorized Burr-Brown field sales office, sales representative, or authorized distributors. See **Sales Office Listings** at back of book for the office nearest you.

Sales and Service

Returns and Warranty Service

When returning products for any reason, contact Burr-Brown prior to shipping for authorization and shipping instructions. For complete instructions, contact your local salesperson or representative. Customers outside the USA should call the nearest sales office for details and informationsee International Sales Office Listing at back of

To return product, please call for your Return Material Authorization (RMA) number. Ship units prepaid and supply the original purchase order number and date, along with an explanation for the return. Upon receipt of the returned devices, Burr-Brown will verify and inform you of the warranty status, cost to repair or replace, credits, and status of replacements where applicable.

Returns and Warranty Service

When returning products for any reason, contact Burr-Brown prior to snipping for authorization and snipping instructions. For complete instructions, comact your local salesperson or representative. Customers outside the USA should call the nearest sales office for details and information—see International Sales Office Listing at back of book.

To rearn product, please call for your Return Material Authorization (RMA) number. Ship units prepaid and supply the original purchase order number and date, along with an explanation for the return. Upon receipt of the returned devices, that Brown will verify and inform you of the warranty status, cost to repair or replace, credits, and status of replacements where applicable.

2 Operational Amplifiers

The following selection guides include new products which combine exceptional performance with monolithic IC reliability and economy. Many of these products feature new package options for a maximum in design flexibility. The newest in package design, the SOT23-5, gives designers the same great Burr-Brown quality and precision in a size that economizes valuable board space.

The following highlights some of our newest developments:

OPA130 Series—Low-power FET-input op amps that combine precision dc performance with low quiescent current (530μA per amplifier). Available in single, dual, and quad configurations.

OPA131 Series—A family of single, dual and quad op amps that offer excellent overall performance for general purpose applications. Design features include 4MHz bandwidth and 10V/μs slew rate, yet quiescent current is only 1.5mA per amplifier.

OPA132 Series—High speed, precision, FET-input op amps that feature 8MHz GBW, and excellent dc performance at low cost. They are available in single, dual, and quad versions for maximum design flexibility.

OPA234 Series—A new line of single supply general purpose op amps that combine low offset voltage, high common-mode rejection, and wide supply range to provide excellent accuracy and versatility.

OPA650, OPA2650, OPA4560—A family of single, dual, and quad wideband voltage feedback amplifiers featuring low power, unity gain stable bandwidth up to 560MHz, fast 12-bit settling, and low differential gain/phase errors—ideal for medical equipment and telecommunications applications. OPA650 is available in SOT23-5 package.

OPA651—A low-power, wideband voltage feedback op amp that is decompensated for stability in gains of 2 or greater. It features 940MHz GBW and low 50mW power dissipation, and is available in 8-pin DIP, SO-8, and SOT23-5 packages.

OPA655—A new SpeedPLUS op amp that combines a wideband unity gain stable voltage feedback op amp with a FET-input stage to offer an ultra high dynamic range amplifier for ADC buffering and transimpedance applications. Available in 8-pin plastic DIP, or SO-8 surface mount packages.

OPA658—An ultra-wideband (900MHz), low power current feedback op amp featuring high slew rate, and low differential gain/phase error. Its ±5V power supply requirement makes it an excellent choice for portable applications. It is available in 8-pin DIP, 8-lead SOIC, and SOT23-5 packages.

Spice macromodels are available for many of our products. By using a simulation program with integrated circuit emphasis (SPICE), designers can simulate amplifier behavior to show circuit function and performance over a wide range of conditions and signals.

Power operational amplifiers and buffers are described in Section 3, instrumentation amplifiers in Section 4, and isolation amplifiers in Section 5.

Operational Amplifiers

OPA4132 (50pA, Quad)

OPA655 (100pA)

* DENOTES TYPICAL BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

	_	mers.
-		42
-1	100	II5
-	Ш	11%
-1	ш	17
1	-	lm
-1	lm	Шă
-	ш	llõ
-1	886	18
-		42

Product AD515 OPA27 OPA77 OPA103 OPA104	Offset Voltage Drift max (±µV/°C)	Bias Current 25°C max (pA)	Voltage at 10kHz max (nV/√Hz)	Offset Voltage 25°C max (±mV)	Open Loop Gain min (dB)	Rated Voltage Output ⁽²⁾ min (±V)	Current	Description Description Description Description Description
AD515	15	±75fA	NS	1	88	10	10	FET, Still Available
OPA27	0.6	±40nA	3.8	0.025	120	12	16.7	Bipolar
OPA37	0.6	±40nA	3.8	0.025	120	12	16.7	Bipolar
S OPA77	0.3	±2nA	11	0.025	134	12	12	Bipolar
OPA103	2	±1	25*	0.25	100	10	5	FET, Still Available
	10	±75fA	35*	0.5	100	10	5	FET, Still Available
OPA111	A 7 to 30	±1	8 10	0.25	120	Had	5.5	FET C Biodisc
OPA121	10 10 38	±5	6*	2	110	11/4	5.5	Low Cost
COPA124	27 10 38	±132	6*	0.25	120	11	5.5	FET Blacks
Data OPA121 OPA121 OPA124 OPA128 OPA128	57 50 36	±75fA	15*	0.5	110	10	5 to 20-8	FET, Ultra-Low, Bias Current
OPA129	10	±100fA	15*	2	94	10	6	FET, Ultra-Low, Bias Current
OPA130	10	±20	16	1. SWHE	120	12	18*	FET, Low Power
ÖPA131	10	±50	15*	420	94	12	25* 80* 180	a.8 LELIS, Bipoler
OPA130 OPA131 OPA132 OPA177 OPA234 OPA404 OPA602	10	50 900	8	0.5	120	12.5	40	FET, High Speed
OPA177	0.1 TO Wax	1.5nA	10*	0.025	134	12	12	Bipolar
OPA234	3 Abbah	-20nA	25(1)	0.1	110	+14/-14.5	22*	Single Supply Amp
OPA404	3*	±4	12*	0.75	92	11.5	5	FET, Quad
OPA602	2	±1	12*	0.25	92	11.5	15	Wideband, (5MHz, min)
OPA606	5	±10	13	0.5	100	12	5	Wideband, (9MHz, min)
OPA627	0.8	±5	6	0.1	112	11.5	45*	LEL SINGLE SUPPLY
OPA637	0.8	±5	6	0.1	112	11.5	45*	FET
OPA654	40*	±50	14*	3	94*	11	200*	Wideband, (750V/µs, slew rate)
OPA655	Activité à 10 ME (MANAES)	100 Jan andr	6*	2	53	2.5	25	FET
OPA671	10*	±50	12*	5.0	74	10.5	50	FET. TO THE AMELING THE STATE OF THE STATE O
OPA1013	2.5	30nA	NS	0.3	120	12	6.5	Low Power, Dual Single Supply Operation
OPA2111	2.8	±3	8	0.5	114	10	5	FET, Dual
OPA2107	. 5	±5	8*	0.5	84	11	5.5	FET, Dual
OPA2130	10	±20	16	1.	120	12	18*	FET, Low Power, Dual
OPA2131	10	±50	15*	1	94	12	25*	FET, Dual
OPA2132	10	50	8	0.5	120	12.5	40	FET, High Speed, Dual
						+14/-14.5	22*	Single Supply Amp, Dual
	Onises Voltegio Defit max (IMA/C)	Blas Gurrent 25°C max (pA)	Voltage et 10kHz max (nVVHz)	Onset Voltage 28°C max (tmV)				* DENOTES TYPICAL BOLD DENOTES NEW PRODUCT BOLD ITALIC DENOTES PRODUCT IN DEVELOPMENT

Noise

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

п		п	m	'n
	۰	-	ų,	٣
1	я	闋	ŀ	
	н	н	Ŀ	
1	ш	П	ı,	Q
1	н	w	ı	Ĺ
1	=	=	h	
1	n	п	B	ñ
1	ш	н	Ľ	2
1	ш	u	Ľ	
1	ч	w	ĸ	۶
1			ß	9

4								tome opecifications have been settinated for comparison
Product	Offset Voltage Drift max (土μV/°C)	Bias Current 25°C max (pA)	Noise Voltage at 10kHz max (nV/√Hz)	Offset Voltage 25°C max (±mV)	Open Loop Gain min (dB)	Rated Voltage Output ⁽²⁾ min (±V)	Current	PORTO DEMOLES HEAD BELL HAD DEASTON MEAL DEMOLES HEAD SHOOM OF THE DESCRIPTION
OPA2234	3	-20nA	25(1)	0.1	110	+14/-14.5	22*	Single Supply Amp, Dual
OPA4130	10	±20	16	1	120	12	18	FET, Low Power, Quad
OPA4131	10	±50	15*	12	94	12	25*	FET, Quad
OPA4132	10	±50	8	0.5	120	12.5	40*	FET, High Speed, Quad
OPA4234	3	-20nA	25(1)	0.1	110	+14/-14.5	22*	Single Supply Amp, Quad
3507	30*	±250	NS	10	77	10	10	FET, Still Available
3527	2	±2	25*	0.25	100	10	10	FET Still Available
3528	5	±150fA	40*	0.25	92	10	5	FET, Still Available
	se Voltage at 1kHz (nV/\(\sqrt{Hz}\)		25.	5.0				LEL CONTROL OF THE CO
Object .	se voltage at TKHZ (ITV/VHZ)		nies.			2.5		FET
OPA634							500.	Widebund, (750V/µs, slow rate)
								FET STREET
		- F2				11.5	12,	SINGLE SUPPLY
A OFASOS								
OPA602	5	74	15.	0.05	85			
OPA404	Single	Quiescent	Bias	Small	Offset			FET, Oued
OPA334	Supply Range	max	Current 25°C	Signal Unity Gain	Voltage 25°C			Single Supply Amp
OPA177	min to max	(mA,	max	typ	max	Temp		
Product	(V)	per amp)	(nA)	(kHz)	(±μV)	Range ⁽¹⁾	Pkg	Description
OPA234	2.7 to 36	0.3	-20	350	100	XInd	DIP, SO-8, MSOP	-8 Single, Bipolar
OPA237	2.7 to 36	0.35	±40	1.5MHz	250	XInd	SOT-23-5	Single, Bipolar
OPA1013	4 to 36	0.55	-30	750	300	Com/Ind	DIP	Dual, Bipolar
OPA2234	2.7 to 36	0.3	-20	350	100	XInd	DIP, SO-8	Dual, Bipolar
OPA2237	2.7 to 36	0.35	±40	1.5MHz	250	XInd	MSOP-8	Dual, Bipolar
OPA4234	2.7 to 36	0.3	-20	350	100	XInd	DIP, SO-14	Quad, Bipolar
OPA4237	2.7 to 36	0.35	±40	1.5MHz	250	XInd	SSOP-16	Quad, Bipolar
NOTE: (1) Com = 0°C	to 70°C, Ind = -25°C to 85°C	C. XInd = -40° C to	85°C.	0.5				PET, Still Available
OPA103								PET, Silli Avalishio
		±2nA					45	
OPA37		460mA						
AD515					98			FET, Stiff Available
Product			(nWWhis)				(±mA)	
					min		UNU -	DENOTES TYPICAL
N S					Locp Gain	Voltage Output?it		BOLD DENOTES NEW PRODUCT
NIZ.								

OPERATIONAL AMPLIFIERS

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

á	100	800
	-	C
1	ım	교
1	ıw	I."
1	1=	w
۱	ım	2
1	ıш	10
1	99	18
- 1		IZ.

Burr-Brown IC Data Book-Linear Products

Product	Offset Voltage 25°C max (±mV)	Offset Voltage Drift max (±µV/°C)	Bias Curren 25°C max (nA)	t	Small Signal Unity (min (MHz)	Gain	Power Supply Range (V)	Quiescent Current, max (mA)	Description Description Description Description
OPA27	0.025	0.6	40		5		±4.0 to ±22	4.7	Bipolar
OPA37	0.025	0.6	40		80(1)		±4.0 to ±22	4.7	Bipolar
OPA77	0.025	0.3	2		0.4		±3.0 to ±18	2.0	Bipolar
OPA130	1.0	10	25pA		1		±2.5 to ±18	0.65	FET, Low Power
OPA131	1.0	10	50pA		4*		±4.5 to ±18	1.75	FET
OPA132	0.5	10	50pA		8		±2.5 to ±18	4.8	FET, High Speed
OPA177	0.01	0.1	1.5		0.4		±3.0 to ±18	2.0	Bipolar
OPA604	5.0	8*	50pA		20*(2)		±4.5 to ±24	6.0	FET, Low Distortion (0.0003%)
OPA2130	1.0	10	25pA		1		±2.5 to ±18	0.65	FET, Low Power, Dual
OPA2131	1.0	10	50pA		4*		±4.5 to ±18	3.5	FET, Dual
OPA2132	0.5	10	50pA		8		±2.5 to ±18	4.8	FET, High Speed, Dual
OPA2604	5.0	8*	0.1		20*(2)		±4.5 to ±24	12	FET, Dual, Low Distortion (0.0003%)
OPA4130	1.0	10	25pA		1		±2.5 to ±18	0.65	FET, Low Power, Quad
OPA4131	1.0	10.00	50pA		4*		±4.5 to ±18	7.0	FET, Quad
OPA4132	380 0 0.5	10	50pA		8		±2.5 to ±18	4.8	FET, High Speed, Quad
NOTE: (1) Gain B	andwidth at Gain = 5V/V. (2) (Gain = 100.	12				Dual		
OPAB78	300' G = 1							stiling Switched Inc.	
		240					Very Fast 8	ettiing Syitched Inpi	
	100,0 = 2			2.1					ut, G = 2 minimum
	83, 6 = 1								
OPA655		510					PET, Widel		All Control of the Co
				41		500.		ial Compensation	
	470, 6 = 2	300	11.5			45	Voltage Fee	idback, Low Power,	G = 2 minimum
POLICE STATE OF THE PARTY OF TH									

Slaw Rato

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT

Vobage Feedback, Low Distortion, G = 5 minimum, Low Noise 1.8nVVHz

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

2.5

Low Distortion, Low Notes 2.5nV/VHz

Burr-Brown IC Data Book-Linear Products

HIGH SPEED - VOLTAGE FEEDBACK

Product	Small Signal at Specified Gain typ (MHz)	Slew Rate min (V/µs)	Setti Time to ±0 (ns)	,	Rated Voltag Output min (±V)		Rated Current Output min (±mA)	Description	n	* DENOTES TYPICAL BOLD DENOTES NEW PRODUCT BOLD, TRUJC DENOTES PRODUCT IN DEVELOPMENT
OPA620	300, G = 1	175	13		3		50	Low Noise 2	2.3nV/√Hz, Wideba	nd
OPA621	500, G = 2	350	15		3		50	Low Noise 2	2.3nV/√Hz, Wideba	nd, G = 2 minimum
OPA622	250, G = 1	1600*	17		3		70*	High Slew F	Rate	
OPA628	160, G = 1	310*	20		3		30	Low Distorti	ion, Low Noise 2.5r	nV/√Hz
OPA640	1.3GHz, G = 1	350*	18		2.25		25	Voltage Fee	edback, Low Noise	2.9nV/√Hz
OPA641	800, G = 2	650*	13		2.6		25	Voltage Fee	edback, Low Noise	2.8nV/√Hz, G = 2 minimum
OPA642	450, G = 1	380*	11.5		3.0		50	Voltage Fee	edback, Low Distort	tion, Low Noise 2.3nV/√Hz
OPA643	300, G = 5	1000*	16.5		3.0		50	Voltage Fee	edback, Low Distort	tion, G = 5 minimum, Low Noise 1.8nV/√Hz
OPA646	650, G = 1	180*	11.5		2.5		30	Voltage Fee	edback, Low Power	
OPA650	560, G = 1	240	10.2		2.4		+75/-65	Low Power		
OPA651	470, G = 2	300	11.5		2.4		45	Voltage Fee	edback, Low Power	, G = 2 minimum
OPA654	11, G = 1	750*	150		11		200*	FET, Extern	nal Compensation	
OPA655	400, G = 1	210	8		2.8		35	FET, Widel	band, Low Distorti	on
OPA671	33, G = 1	107*	150		10.5		50*	FET		
OPA675	100, G = 2	240	15		2.1		30	Very Fast S	Settling Switched Inj	put, G = 2 minimum
OPA676	100, G = 2	240	15		2.1		30	Very Fast S	Settling Switched In	put, G = 2 minimum
OPA678	200, G = 1	250	22		2.5		44	Very Fast S	Settling Switched In	put
OPA2650	360, G = 1	240	- 11		2.4		+75/-65	Dual		
OPA4650	360, G = 1	240	10.3		2.2	8	+75/-65	Quad		FET, Nigh Speed, Quad
OPA4131				SopA						FET, Qued
OPA4130				25pA		1		±2.6 to ±16		FET, Low Power, Qued
CPA2664						50+(3				
OPA2182	0.5			50pA					979	FET, High Speed, Dual
OPA2131-	20			50pA		4.				
OPA2156		10		25pA		1		42,5 to ±18	0.65	PET, Low Power, Dust
OPA604				SopA				±4.5 to ±24		FET, Low Distortion (0.0003%)
OPA177				1.5		0.4				Bipole:
OPA152	0.5	10		50pA				12.5 to 118	4.6	FET, High Speed
OPA131	1:0									Hall the second of the second
OPA130	4.0							12.5 to 118	0.65	PET, Low Power
OPA77										
• OPA37				40				14.0 to 122	4.7	
				40					4.7	
Livenes	SE C VOREGO THEN	Wolfago Drift niex (zpVPC)					Gain	Supply Range Range	Quiencent Current, nax (ma)	DENOTES TYPICAL BOLD DENOTES NEW PRODUCT
										BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

OPERATIONAL AMPLIFIERS

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Product	Band	I Signal width = +2V/V	Slew Rate typ (V/µs)	Settling time, to ±0.1% (ns)	Rated Voltage Output min (±V)		Rated Current Output min (±mA)		GH SPEED -	CURRENT FEEDBAC
OPA603 OPA623	160 290	-/	1000 2100	50 9	10 3.0	0.00	15 70		Flexible Operation	n, High Slew Rate
OPA644	300	7 /	2500	16.5	3.0	- 3	50		High Slew Rate	
OPA648	600		1200	9	2.75		33		Video Amplifier, F	ast Settling
OPA658	680		1700	11.5	2.5		+80/-60		Low Power	
OPA2658 OPA4658	500 450		1700	12.6 15.1	2.5 2.5	s	+80/-60 +80/-60		Dual Quad	
Star-states & Starte	Offset Voltage	Offset Voltage	Bias Current	Small Signal	Rated Voltage	Rated Current	CVE	THE STATE OF THE S	recision	SPECIAL PURPOS
Product	25°C max (±mV)	Drift max (±µV/°C)	25°C max (μA)	Bandwidth typ (MHz)	Output min (±V)	Output min (±mA)	Descrip	ption	0	
OPA660	+7*	50*	NS	850	3.7	10			ce Amp and Buffe	Color Color
OPA675	1	5	30	185, G = 10	2.1	30			= 2 minimum, TT	
OPA676	1	5	30	185, G = 10	2.1	30	Two-Ch	hannel, G	= 2 minimum, EC	L Controlled
OPA678	1 0 0	10	50	200, G = 1	2.5	30			TL & ECL Controll	ed
OPA2662 VCA610	75 NS	12* NS	6*	370 30, G = 40dB	3.4 3.0*	75 80*		onductano Controlle	ce Amp, Dual ed Gain	
The Cook America provides a New York of the Cook of th	reality interecompensated NASA (sequences) The Bain S. The British inclusive emission OB-534OB-33 There is no inclusive emission OB-544OB-33 There is no inclusive emission OB-544OB-33	to OPALY is internally compensated for a strong covering and of the OPALY is internally compensated for a second covering content of the OPALY is internally compensated for a second covering content of the OPALY is internally compensated for a second covering content of the covering coverin	otage office compand to common senc- oracidate operational analythm. The OPAZVAT is an alteration provide analythm to alteration provide and allow assertiumed this film resistors provide and allow assertiumed to common sence-	SOCKETS HIS OP-02' VDETO' VDETA	HIGH DOMER SUBBLY BETECATOR 1149B WILL HIGH CONNON-NODE BETECATOR HIGH ODEN-TOOK CYNT. 1809B WILL	FOM DEBLET STRACE FOR MORES 3'84AVAS MEX STARF	EVINSES	ВС	DENOTES TYPICAL DLD DENOTES NEW DLD, ITALIC DENOT	I PRODUCT TES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

OPA27 OPA37

Ultra-Low Noise Precision OPERATIONAL AMPLIFIERS

FEATURES

- LOW NOISE: 3.8nV/√Hz max at 1kHz
- LOW OFFSET: 25µV max
- LOW DRIFT: 0.6µV/°C
- HIGH OPEN-LOOP GAIN: 120dB min
- HIGH COMMON-MODE REJECTION: 114dB min
- HIGH POWER SUPPLY REJECTION: 100dB min
- FITS OP-07, OP-05, AD510, AD517 SOCKETS

DESCRIPTION

The OPA27/37 is an ultra-low noise, high precision monolithic operational amplifier.

Laser-trimmed thin-film resistors provide excellent long-term voltage offset stability and allow superior voltage offset compared to common zener-zap techniques.

A unique bias current cancellation circuit allows bias and offset current specifications to be met over the full -55°C to +125°C temperature range.

The OPA27 is internally compensated for unity-gain stability. The decompensated OPA37 requires a closed-loop gain ≥ 5 .

The Burr-Brown OPA27/37 is an improved replacement for the industry-standard OP-27/OP-37.

APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- PROFESSIONAL AUDIO EQUIPMENT
- TRANSDUCER AMPLIFIER
- RADIATION HARD EQUIPMENT

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $V_{CC} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted.

		OPA27	37A, OPA	27/37E	OPA2	7/37B, OPA	27/37F	OPA27/37C, OPA27/37G			ARBOMETA	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
INPUT 3814	et55r+		88	#125	9.1131	-85	175		101	CZ.	A.B.C.	
NOISE(6)	C01		100	585		62-	151130		14.77		2473	
Voltage, f _O = 10Hz			3.1	5.5		3.5	5.5		3.8	8.0	nV/√Hz	
f _O = 30Hz			2.9	4.5		3.1	4.5		3.3	5.6	nV/√Hz	
f _O = 1kHz			2.7	3.8		3.0	3.8		3.2	4.5	nV/√Hz	
f _B = 0.1Hz to 10Hz			0.07	0.18		0.08	0.18		0.09	0.25	μVр-р	
Current,(1) f _O = 10Hz		-Blos	1.7	4.0	15th	1.7	4.0		1.7		pA/√Hz	
$f_0 = 30Hz$		500	1.0	2.3	1772	1.0	2.3	11 4	1.0	Day of	pA√Hz	
f _O = 1kHz	1 1 1 1 1	6.04	0.4	0.6	c ne	0.4	0.6		0.4	0.6	pA√Hz	
OFFSET VOLTAGE (2)							A SALA			noite	esift ylaqui	
Input Offset Voltage	36	127	±6	±25	130	±12	±60	= 55V±	±25	±100	μV	
Average Drift (3)	TAMIN to TAMAX	197	±0.2	±0.6	130	±0.3	±1.3	= - 1/2	±0.4	±1.8 (6)	μV/°C	
Long Term Stability (4)	A milit		0.2	1		0.3	1.5		0.4	2.0	μV/mo	
Supply Rejection	±V _{CC} = 4 to 18V	100	134	200	100	125		94	120	1000000	dB	
An Bard Coul	±V _{CC} = 4 to 18V	000	±0.2	±10	ata:	±0.6	±10		±1	±20	μV/V	
BIAS CURRENT	204	819		1930c	613						DA A	
Input Bias Current			±11	±40	-	±13	±55		±15	±80	nA	
			TII	140		113	100		110	E 2000201516	IIA	
OFFSET CURRENT										tnemuO	metho Jugo	
Input Offset Current		25	6	35	23	8	50		10	75	nA	
IMPEDANCE		The same		90	31						- 10 F3 F5	
Common-Mode			3 2.5			2.5 2.5			2 2.5	HANGE	GΩ II pF	
VOLTAGE RANGE			1						- ografi	luqii ebo	of commo	
Common-Mode Input Range		±11	±12.3		±11	±12.3		±11	±12.3		V	
Common-Mode Rejection	V _{IN} = ±11VDC	114	128		106	125		100	122		dB	
OPEN-LOOP GAIN, DC	TIN TIN	001	001		1.DE	503	COGNER		no	hajati ako	O B A	
100 T 100 T	10.10	1181.	1000		857	1000						
Open-Loop Voltage Gain	R _L ≥2kΩ	120	126		120	125		117	124	MAG S	dB	
	$R_L \ge 1k\Omega$	118	125		118	125		B. B.	124	APTIMIZE OF	dB	
FREQUENCY RESPONSE							SHO	S JA	inte	ið egsileV	good-negt	
Gain-Bandwidth Product (5)	OPA27	5	8		5	8		5 (6)	8		MHz	
60 1 127	OPA37	45	63		45	63		45 (6)	63		MHz	
Slew Rate (5)	$V_0 = \pm 10V$,									TURE	UO CETAL	
	$R_L = 2k\Omega$									Specia	ui) adulta	
v l cers	OPA27, G = +1	1.7	1.9		1.7	1.9		1.7 (6)	1.9	100	V/µs	
V APILL	OPA37, G = +5	- 11	11.9		11	11.9		11 (6)	11.9	S IN	V/μs	
Settling Time, 0.01%	OPA27, G = +1	32	25		75	25		a.v :	25	down C 1	μs	
	OPA37, G = +5		25		400	25	in the same of the same of	70	25		μs	
RATED OUTPUT												
Voltage Output	$R_1 \ge 2k\Omega$	±12	±13.8		±12	±13.8		±12	±13.8	3108 ba	V	
	R _L ≥ 600Ω	±10	±12.8	-36	±10	±12.8		±10	±12.8	STORE ST	V	
Output Resistance	DC, Open Loop	-	70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		70		RATIR	70	6 0.8 TOTAL	Ω	
Short Circuit Current	$R_L = 0\Omega$		25	60		25	60	HI PART	25	60 (6)	mA	
POWER SUPPLY					YSSY		15 1116 121			- spetto	Supply 1	
		-	145		ANIBOS	±15			145	HO TOWER	VDC	
Rated Voltage Voltage Range,		36	±15	PAG	soV±,	±15		in comme	±15	lage	VDC	
Derated Performance		±4	-	±22	±4	bel	±22	±4	it Duration	+22	VDC	
Current, Quiescent	I _O = 0mADC	14	3	4.7	VT4	3	4.7	±4	3.3	5.7	mA	
TEMPERATURE RANGE	007	[3] 9	ICI ollasije izi	MENS I	Amas		***		List ideau	I hacifi ka	namiko	
	000	-	417 01000	10	1 1000000	La risso			ite Hange.	usiegne i	SUPPLIES.	
Specification		NIDRO FE	coM /// /	BTOW-	0.00%	+ 01 0 26+	4				n A de	
A, B, C (J, Z)		-55	The stillage of	+125	-55	W - CO-	+125	-55		+125	°°C	
E, F (J, Z)		-25	De politica de	+85	-25		+85	18)	pasH stude	edual 8	°C	
G (P, U, J, Z)		VI Commen	Street Street No.	- Sunni	TOSE.	+ Qf U"08-		-40	(2,5)	+85	°C	
Operating		400	AND PRINCIPLE		01884	d 3*0= .		Calabra and		(U	1915	
J, Z		-55	16 (+125	-55		+125	-55	1 2 3 3	+125	°C	
P, U		1	15.9	1000	27088	4	To 10 V/2000	-40	1696	+85	°C	

NOTES: (1) Measured with industry-standard noise test circuit (Figures 1 and 2). Due to errors introduced by this method, these current noise specifications should be used for comparison purposes only. (2) Offset voltage specifications on grades A and E are also guaranteed with units fully warmed up. Grades B, C, F, and G are measured with automatic test equipment after approximately 0.5 seconds from power turn-on. (3) Unnulled or nulled with 8kΩ to 20kΩ potentiometer. (4) Long-term voltage offset vs time trend line does not include warm-up drift. (5) Typical specification only on plastic package units. Slew rate varies on all units due to differing test methods. Minimum specification applies to open-loop test. (6) This parameter guaranteed by design.

For Immediate Assistance, Contact Your Local Salesperson

ELECTRICAL

At $V_{CC} = \pm 15 \text{VDC}$ and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

			OPA27	/37A, OP	A27/37E	OPA2	7/37B, OP	A27/37F	OPA27	/37C, OP/	A27/37G	
PARAMETER	CON	CONDITIONS		TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE	OPA2TESTC.		7/37B, OP				CATO					
Specification Range	YT MM	XAM	9YT	1984	XAM	977	3/18ht	+125	-55		+125	200
A, B, C (J, Z) E, F (J, Z) G (P, U, J, Z)			-55 -25		+125	-55 -25	1	+125	-55 -40		+125	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
INPUT	8 1	4.5	3.5		4.5	2.9			-40	1	+65	-
	.8	8.8	3.0		8.6	17.9					- TIGHZ	of
Input Offset Voltage A, B, C	0.0 l.f l.r	0.18 4.0 2,3	1.7	±24 ±17	±60 ±50	1.7	±45 ±33	±200 ±140		±60 ±48	±300 ±220 (3)	μV μV
Average Drift (2) Supply Rejection		to T _{A MAX}	0.4	±0.2	±0.6	0.4	±0.3	±1.3		±0.4	±1.8 (3)	μV/°C
		= 4.5 to 18V = 4.5 to 18V	96	130 130	8.0±	94	127 127	XMEAT 0	90 (3)	122 122	Voltage	dB dB
Input Bias Current	00 1 20 1 20 1 20 1 20 1 20 1 20 20	615	0.8 125 8.02	±16	±60	\$.0 467 20.2	901 ±22	±95	=noV± =poV±	±29	±150	mest gas page nA
E, F, G				±13	±60		±16	±95		±21	±150 (3)	nA
OFFSET CURRENT Input Offset Current	7.31	885	£7±		04E	172					Mineral Triangle	gui Biaa (F FSE T C
	21		8	23 12	50	8	25 14	85 85		35 20	135 135 ⁽³⁾	nA nA
VOLTAGE RANGE Common-Mode Input Range	1181		2.5 11 2.5			3.8.8.8					ebo	il-noma)o
ABC	STE TES	±11VDC	±10.3 ±10.5	±11.5 ±11.8		±10.3 ±10.5	±11.5 ±11.8	OGVE	±10.3 ±10.5 ⁽³⁾	±11.5 ±11.8	RANGE ods Input ods Rojes	HOAVIO
A, B, C	or I err		108 110	124 126		100 102	122 124	roug.	94 96 ⁽³⁾	120 0 122	P GAIN,	dB dB
	12	1	125	817		125	817	Out	S PI		I SUSSILIV	
Open-Loop Voltage Gain	R	≥ 2kΩ								HSE	GREEN YO	NEWVER
A, B, C E, F, G	8 0 a		116 118	121 123		114 117	120 122	TSA TSA	110 113 ⁽³⁾	118 120	vidtin Prod	dB dB
RATED OUTPUT								,V01s	=oV	1	(8)	etsFl we
A, B, C F F G	(8) 11	= 2kΩ = 0VDC	±11.5 ±11.7	±13.7 ±13.8		±11.0 ±11.4	±13.5 ±13.6	2kQ G=+1 G=+5 G=+1	±10.5 ±11.0 (3)	±13.3 ±13.4 25	e, 0.01%	V V mA

NOTES: (1) Offset voltage specifications on grades A and E are also guaranteed with the units fully warmed up. Grades B, C, F, and G are measured with automatic test equipment after approximately 0.5s from power turn-on. (2) Unnulled or nulled with 8kΩ to 20kΩ potentiometer. (3) This parameter guaranteed by design in P-DIP, "P" package and SOIC "U" package.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±22V
Internal Power Dissipation (1)	500mW
Input Voltage	±V _{CC}
Output Short-Circuit Duration (2)	Indefinite
Differential Input Voltage (3)	±0.7V
	±25mA
Storage Temperature Range:	
J, Z	65°C to +150°C
P, U	55°C to +125°C
Operating Temperature Range:	
A, B, C, E, F, G (J, Z)	55°C to +125°C
G (P, U)	40°C to +85°C
Lead Temperature:	
J, Z, P (soldering, 10s)	+300°C
U (soldering, 3s)	+260°C

PACKAGE TYPE	θ_{JA}	UNITS
TO-99 (J)	150	∘ °C/W
-Pin Hermetic DIP (Z)	150	°CW
-Pin Plastic DIP (P)	100	°C/W
8-Pin SOIC (U)	160	°C/W

NOTES: (1) Maximum package power dissipation vs ambient temperature. (2) To common with ±V_{CC} = 15V. (3) The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds ±0.7V, the input current should be limited to 25mA.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

CONNECTION DIAGRAMS

ORDERING INFORMATION

MODEL (1)	PACKAGE	TEMPERATURE RANGE (°C)	OFFSET VOLTAGE MAX (μV), 25°C
OPA27AJ	TO-99	-55 to +125	±25
OPA27BJ	TO-99	-55 to +125	±60
OPA27CJ	TO-99	-55 to +125	±100
OPA27EJ	TO-99	-25 to +85	±25
OPA27FJ	TO-99	-25 to +85	±60
OPA27GJ	TO-99	-40 to +85	±100
OPA27AZ	Ceramic	-55 to +125	±25
OPA27BZ	Ceramic	-55 to +125	±60
OPA27CZ	Ceramic	-55 to +125	±100 OT 3H
OPA27EZ	Ceramic	-25 to +85	±25
OPA27FZ	Ceramic	-25 to +85	±60
OPA27GZ	Ceramic	-40 to +85	±100
OPA27GP	Plastic	-40 to +85	±100
OPA27GU(2)	SOIC	-40 to +85	±100

NOTE: (1) Packages and prices for OPA37 are same as for OPA27. (2) OPA27GU may be marked OPA27U. Likewise, OPA37GU may be marked OPA37U.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
OPA27AJ	TO-99	001
OPA27BJ	TO-99	001
OPA27CJ	TO-99	001
OPA27EJ	TO-99	001
OPA27FJ	TO-99	001
OPA27GJ	TO-99	001
OPA27AZ	Ceramic	001
OPA27BZ	Ceramic	161
OPA27CZ	Ceramic	161
OPA27DZ	Ceramic	161
OPA27EZ	Ceramic	161
OPA27FZ	Ceramic	161
OPA27GZ	Ceramic	161
OPA27GP	Plastic	006
OPA27GU	SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

FIGURE 2. Low Frequency Noise.

For Immediate Assistance, Contact Your Local Salesperson

8 NC NC NC 7 2 6

OPA27 DIE TOPOGRAPHY

OPA37 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	Offset Trim	5	No Pad
2	-In	6	Output
3	+In	7	+V _{CC}
4	-V _{CC}	8	Offset Trim
		NC	No Connection

Substrate Bias: -V_{CC}

DICE INFORMATION

MECHANICAL INFORMATION

TYPICAL PERFORMANCE CURVES

	MILS (0.001")	MILLIMETERS	
Die Size	99 x 61 ±5	2.51 x 1.55 ±0.13	
Die Thickness	20 ±3	0.51 ±0.08	
Min. Pad Size	4 x 4	0.10 x 0.10	
OPA27 Transisto	r Count	47	
OPA37 Transisto	42		
Backing	Gold		

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $\pm V_{CC} = \pm 15$ VDC unless otherwise noted. INPUT OFFSET VOLTAGE CHANGE INPUT OFFSET VOLTAGE WARM-UP DRIFT DUE TO THERMAL SHOCK +10 +20 Offset Voltage Change (µV) Offset Voltage Change (µV) +5 C, G +70°C $T_A = +25$ °C to $T_A = +70$ °C 0 A, E Fluid Bath TO-99 TO-99 -20 +3 +2 Time From Power Turn-On (min) Time From Thermal Shock (min) INPUT VOLTAGE NOISE vs NOISE BANDWIDTH TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY (0.1Hz to Indicated Frequency) **vs SOURCE RESISTANCE** 100 80 60 40 Voltage Noise (nV√Hz) Noise (µVrms) 0-11 20 A, E 10 8 6 4 Voltage P Resistor Noise Only 1kHz 2 0.01 100 Noise Bandwidth (Hz) Source Resistance (Ω) VOLTAGE NOISE SPECTRAL DENSITY VS TEMP. VOLTAGE NOISE SPECTRAL DENSITY VS VS 5 A, E at 10Hz Voltage Noise (nV/√Hz) Voltage Noise (nV/√Hz) A, E 10Hz 3 A, E at 1kHz A, E 1kHz 2 -50 0 +25 +50 +100 +125

0

±5

±10

Supply Voltage (V_{CC})

±15

±20

Ambient Temperature (°C)

TYPICAL PERFORMANCE CURVES (CONT) MAMPORE JACINYT

 $T_A = +25$ °C, $\pm V_{CC} = \pm 15$ VDC unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 $T_A = +25$ °C, $\pm V_{CC} = \pm 15$ VDC unless otherwise noted.

APPLICATIONS INFORMATION

OFFSET VOLTAGE ADJUSTMENT

The OPA27/37 offset voltage is laser-trimmed and will require no further trim for most applications. Offset voltage drift will not be degraded when the input offset is nulled with a $10k\Omega$ trim potentiometer. Other potentiometer values from $1k\Omega$ to $1M\Omega$ can be used but V_{OS} drift will be degraded by an additional 0.1 to 0.2µV/°C. Nulling large system offsets by use of the offset trim adjust will degrade drift performance by approximately 3.3µV/°C per millivolt of offset. Large system offsets can be nulled without drift degradation by input summing.

The conventional offset voltage trim circuit is shown in Figure 3. For trimming very small offsets, the higher resolution circuit shown in Figure 4 is recommended.

The OPA27/37 can replace 741-type operational amplifiers by removing or modifying the trim circuit.

NOISE: BIPOLAR VERSUS PET

THERMOELECTRIC POTENTIALS

The OPA27/37 is laser-trimmed to microvolt-level input offset voltage and for very low input offset voltage drift.

Careful layout and circuit design techniques are necessary to prevent offset and drift errors from external thermoelectric potentials. Dissimilar metal junctions can generate small EMFs if care is not taken to eliminate either their sources (lead-to-PC, wiring, etc.) or their temperature difference. See Figure 11.

Short, direct mounting of the OPA27/37 with close spacing of the input pins is highly recommended. Poor layout can result in circuit drifts and offsets which are an order of magnitude greater than the operational amplifier alone.

For Immediate Assistance, Contact Your Local Salesperson

NOISE: BIPOLAR VERSUS FET

Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in many cases, so consider the effect of source resistance on overall operational amplifier noise performance. At low source impedances, the lower voltage noise of a bipolar operational amplifier is superior, but at higher impedances the high current noise of a bipolar amplifier becomes a serious liability. Above about 15k Ω the Burr-Brown OPA111 low-noise FET operational amplifier is recommended for lower total noise than the OPA27 (see Figure 5).

FIGURE 3. Offset Voltage Trim.

FIGURE 4. High Resolution Offset Voltage Trim.

FIGURE 5. Voltage Noise Spectral Density Versus Source Resistance.

COMPENSATION MEDICARE LA DISTANTA

Although internally compensated for unity-gain stability, the OPA27 may require a small capacitor in parallel with a feedback resistor (R_F) which is greater than $2k\Omega.$ This capacitor will compensate the pole generated by R_F and C_{IN} and eliminate peaking or oscillation.

INPUT PROTECTION

Back-to-back diodes are used for input protection on the OPA27/37. Exceeding a few hundred millivolts differential input signal will cause current to flow and without external current limiting resistors the input will be destroyed.

Accidental static discharge as well as high current can damage the amplifier's input circuit. Although the unit may still be functional, important parameters such as input offset voltage, drift, and noise may be permanently damaged as will any precision operational amplifier subjected to this abuse.

Transient conditions can cause feedthrough due to the amplifier's finite slew rate. When using the OP-27 as a unity-gain buffer (follower) a feedback resistor of $1k\Omega$ is recommended (see Figure 6).

FIGURE 6. Pulsed Operation.

FIGURE 7. Low-Noise RIAA Preamplifier.

FIGURE 8. Unity-Gain Inverting Amplifier.

G ≈ 50dB at 1kHz. Metal film resistors. Film capacitors. 4.99kΩ 0.01μF -W-R_L and C_L per head manufacturer's 316kΩ recommendations. -100Ω Output OPA37 $\geq 20k\Omega$ $\geq R_L$ Magnetic Tape Head

FIGURE 9. High Slew Rate Unity-Gain Inverting Amplifier.

FIGURE 10. NAB Tape Head Preamplifier.

FIGURE 11. Low Frequency Noise Comparison.

FIGURE 12. Low Noise Instrumentation Amplifier.

FIGURE 13. Hydrophone Preamplifier.

FIGURE 15. High Performance Synchronous Demodulator.

FIGURE 14. Long-Wavelength Infrared Detector Amplifier.

otects input leads from sit ourresse.

FIGURE 16. Ultra-Low Noise "N" Stage Parallel Amplifier.

For Immediate Assistance, Contact Your Local Salesperson

+10V +10V -10V -10V -10V 5μs 1kΩ OPA37 6 Output 500pF

FIGURE 17. Unity-Gain Buffer.

FIGURE 18. High Slew Rate Unity-Gain Buffer.

FIGURE 19. RF Detector and Video Amplifier.

FIGURE 20. Balanced Pyroelectric Infrared Detector.

FIGURE 21. Magnetic Tachometer.

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10526

Low Noise Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 100% Tested, 8nV√Hz max (10kHz)
- LOW BIAS CURRENT: 1pA max
- LOW OFFSET: 250µV max
- LOW DRIFT: 1μV/°C max
- HIGH OPEN-LOOP GAIN: 120dB min
- HIGH COMMON-MODE REJECTION: 100dB min

APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- OPTOELECTRONICS
- MEDICAL EQUIPMENT—CAT SCANNER
- RADIATION HARD EQUIPMENT

DESCRIPTION

The OPA111 is a precision monolithic dielectrically isolated FET (*Difet*®) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications.

Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET® amplifiers.

Very low bias current is obtained by dielectric isolation with on-chip guarding.

Laser trimming of thin-film resistors gives very low offset and drift. Extremely low noise is achieved with patented circuit design techniques. A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.

Standard 741 pin configuration allows upgrading of existing designs to higher performance levels.

BIFET® National Semiconductor Corp., Difet® Burr-Brown Corp

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $V_{CC} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted.

			OPA111AN	1		OPA111BN	Л	展验	OPA111SN	53	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT	SECTION AND ADDRESS OF THE PERSON AND ADDRES		100	1	a de la constante						
NOISE	NOUT TO T		14119	1/8/8	FRSV.			111111111111111111111111111111111111111			
Voltage, fo = 10Hz	100% Tested		40	80	100	30	60	17.10	40	80	nV/√Hz
$f_O = 100Hz$	100% Tested		15	40		11	30	1774	15	40	nV/√H;
$f_O = 1kHz$	100% Tested		8	15		7	12		8	15	nV/√H;
$f_0 = 10kHz$	100% Tested		6	8	100	6	8		6	8	nV/√H;
f _B = 10Hz to 10kHz	100% Tested	and an open	0.7	1.2	DOWNSON.	0.6	1 1 1		0.7	1.2	uVrms
f _B = 0.1Hz to 10Hz	(1)		1.6	3.3		1.2	2.5		1.6	3.3	μVp-p
Current, f _B = 0.1Hz to 10Hz	0,30,31,61		9.5	15		7.5	12		9.5	15	fAp-p
$f_0 = 0.1$ Hz thru 20kHz	(1)	no	0.5	0.8	924	0.4	0.6		0.5	0.8	fA/√H2
OFFSET VOLTAGE(2)	graphing policy	D 200 St.	0.00	51 0 25	physics	25. 2172.40	0 478 479				
Input Offset Voltage	V _{CM} = 0VDC	新型點	±100	±500	L. 31 11	±50	±250		±100	±500	μV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}		±2	±5		±0.5	±1		±2	±5	μV/°C
Supply Rejection	V _{CC} = ±10V to ±18V	90	110	ing eminutes	100	110	un teanuita	90	110	0.1005201	dB
oupply Hojouton	*66 - 710 * 10 710 *	00	±3	±31	100	±3	±10		±3	±31	μV/V
BIAS CURRENT(2)					Act of	11-11-11					
Input Bias Current	V _{CM} = 0VDC	LIC	±0.8	±2		±0.5	±1	- 8	±0.8	±2	pA
OFFSET CURRENT(2)	ment his entranal d		array in			Distance of	hode.T	20007	-	3000	
Input Offset Current	V _{CM} = 0VDC	NAROTA	±0.5	±1.5	Kem si	±0.25	±0.75	01 001	±0.5	±1.5	pA
IMPEDANCE	MORTERIA		TAG W						Levi-	ranit -	
Differential Common-Mode	PEMENT	T EQU	10 ¹³ 1 10 ¹⁴ 3			10 ¹³ 1 10 ¹⁴ 3	lar iffi	ELERU	10 ¹³ 1 10 ¹⁴ 3	ALOT	Ω II pF Ω II pF
	208/097	13.130	10 11 3			10 11 3	ASSINT W	1005 11	30770	85 Cal	as II pi
VOLTAGE RANGE	Towns and a second	140						140	****	20000 1	V
Common-Mode Input Range	FOR MEMORITOR	±10	±11		±10	±11	XSM	±10	T±11	ALC: 1	
Common-Mode Rejection	V _{IN} = ±10VDC	90	110		100	110	-1610.0	90	110	MOTH	dB
OPEN-LOOP GAIN, DC	Jacobs T. Parametri A.	THE PERSON	STATE OF		543	CHICAGO.	20 20	ON NO	COMM	11000	
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	114	125		120	125		114	125	0500	dB
FREQUENCY RESPONSE											
Unity Gain, Small Signal			2			2			2		MHz
Full Power Response	20Vp-p, $R_1 = 2k\Omega$	16	32		16	32	- 13	16	32	MOTH	kHz
Slew Rate	$V_0 = \pm 10V$, $R_L = 2k\Omega$	1	2		1	2		1	2	10 mm	V/µs
Settling Time, 0.1%	Gain = -1 , $R_1 = 2k\Omega$		6		a transfer	6		E. C. Laure	6	A SECTION AND	μѕ
0.01%	10V Step		10		Dirigora	10	DEOUG BE	HEL JOIL	10	87 V 90	μѕ
Overload Recovery,			Supplied S		Catata	anplifice	utional t	pilo (al	FYG, TS	E batelo	
50% Overdrive ⁽³⁾	Gain = −1		5	he	use in	5.01	distics a	stoemed:	5	g pario	μs
RATED OUTPUT	-144-144		ni-			cations.	бера по	itunsau	zpani ino	dina see	TT.
Voltage Output	$R_L = 2k\Omega$	±11	±12		±11	±12	em offs	±11	±12	id nain	V
Current Output	V _O = ±10VDC	±5.5	±10		±5.5	±10	19	±5.5	±10		mA
Output Resistance	DC, Open Loop		100		Andebols	100	ne .non	13 31 30	100	nec ,nu	Ω
Load Capacitance Stability	Gain = +1		1000			1000	ns TH	EE to BE	1000	us noite	pF
Short Circuit Current	Noisa-Free Cascode*	10	40		10	40	hariatel	10	40	wal use	mA
POWER SUPPLY		7						and reason	nido-an	drive re-	da I
Rated Voltage			±15			±15			±15		VDC
Voltage Range, Derated			100		F AGA S	DATE SIG	KIS91 III	ar-time?	to America	IIII TSEE	1
Performance	S 200	±5		±18	±5	los zi sa	±18	±5	drift, E	±18	VDC
Current, Quiescent	I _O = 0mADC	10103	2.5	3.5	W CHSCH	2.5	3.5	s ogias	2.5	3.5	mA
TEMPERATURE RANGE											
Specification	Ambient Temp.	-25	mkT	+85	-25	,aaid	+85	-55	uscepub	+125	°C
Operating	Ambient Temp.	-55	-0	+125	-55		+125	-55	1 1 1 m	+125	°C
Storage	Ambient Temp.	-65	8	+150	-65	0 KW 03	+150	-65	mg 1+1	+150	°C
						200			200		● °C/W

NOTES: (1) Sample tested—this parameter is guaranteed. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 15$ VDC and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

SAS APER			OPA111A	M	(OPA111BM			OPA111SM		
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE					m				Marin and I	Whitestow's energy can be	
Specification Range	Ambient Temp.	-25		+85	-25		+85	-55		+125	°C
INPUT Jaoria sing of	For Complet			TATEL				10-18			
OFFSET VOLTAGE ⁽¹⁾ Input Offset Voltage Average Drift Supply Rejection	$V_{CM} = 0VDC$ $V_{CC} = \pm 10V \text{ to } \pm 18V$	86	±220 ±2 100 ±10	±1000 ±5 ±50	90	±110 ±0.5 100 ±10	±500 ±1 ±32	86	±300 ±2 100 ±10	±1500 ±5 ±50	μV μV/°C dB μV/V
BIAS CURRENT ⁽¹⁾ Input Bias Current	V _{CM} = 0VDC	0 0	±50	±250	Q to	±30	±130	4	±820	±4100	pA
OFFSET CURRENT(1) Input Offset Current	V _{CM} = 0VDC	ia	±30	±200	acur	±15	±100	0	±510	±3100	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±10VDC	±10 86	±11	MADE S. I	±10 90	±11	egero come	±10 86	±11		V dB
OPEN-LOOP GAIN, DC	101.070.00	PAPEL	ime	A				No.	20 TH CI	E STEAL	23
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	110	120	19	114	120	er Las	110	120	W B B W	dB
RATED OUTPUT	ROMICS	PLECT	02790	0		zhoi0	yp at 1	1 SHVVV	18E: 6n	ON WO	10
Voltage Output Current Output Short Circuit Current	$R_{L} = 2k\Omega$ $V_{O} = \pm 10VDC$ $V_{O} = 0VDC$	±10.5 ±5.25 10	±11 ±10 40	0	±11 ±5.25 10	±11.5 ±10 40	SpA m	±11 ±5.25 10	±11.5 ±10 40	HO WO	V mA mA
POWER SUPPLY	TVEMENT	AL EQ	OKUBIN	0			T. T.	IN C. W.	HE IT BU	RO WO	19
Current, Quiescent	I _O = 0mADC	HON	2.5	3.5		2.5	3.5	AD 90	2.5	3.5	mA

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.

CONNECTION DIAGRAM

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA111AM	TO-99	001
OPA111BM	TO-99	001
OPA111SM	TO-99	001

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	OFFSET VOLTAGE, MAX (μV)
OPA111AM	TO-99	-25°C to +85°C	±500
OPA111BM	TO-99	-25°C to +85°C	±250
OPA111SM	TO-99	-55°C to +125°C	±500

ABSOLUTE MAXIMUM RATINGS

Supply	±18VDC
Internal Power Dissipation(1)	750mW
Differential Input Voltage(2)	±36VDC
Input Voltage Range(2)	±18VDC
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit Duration(3)	Continuous
Junction Temperature	+175°C

NOTES: (1) Packages must be derated based on $\theta_{\rm JC}=150^{\rm o}{\rm C/W}$ or $\theta_{\rm JA}=300^{\rm o}{\rm C/W}$. (2) For supply voltages less than $\pm 18{\rm VDC}$, the absolute maximum input voltage is equal to $+18{\rm V} > {\rm V_{IN}} > -{\rm V_{CC}} - 6{\rm V}$. See Figure 2. (3) Short circuit may be to power supply common only. Rating applies to $+25^{\rm o}{\rm C}$ ambient. Observe dissipation limit and T_J.

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 Request Document Number 10539

Low Cost Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 6nV/√Hz typ at 10kHz
- LOW BIAS CURRENT: 5pA max
- LOW OFFSET: 2mV max
- LOW DRIFT: 3µV/°C typ
- HIGH OPEN-LOOP GAIN: 110dB min
- HIGH COMMON-MODE REJECTION: 86dB min

APPLICATIONS

- OPTOELECTRONICS
- DATA ACQUISITION
- TEST EQUIPMENT
- MEDICAL EQUIPMENT
- RADIATION HARD EQUIPMENT

DESCRIPTION

The OPA121 is a precision monolithic dielectrically-isolated FET (*Difet®*) operational amplifier. Outstanding performance characteristics are now available for low-cost applications.

Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET® amplifiers.

Very low bias current is obtained by dielectric isolation with on-chip guarding.

Laser-trimming of thin-film resistors gives very low offset and drift. Extremely low noise is achieved with new circuit design techniques (patented). A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.

Standard 741 pin configuration allows upgrading of existing designs to higher performance levels.

OPA121 Simplified Circuit

Difet®, Burr-Brown Corp.
BIFET®, National Semiconductor Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

(VII) XAM

SPECIFICATIONS

ELECTRICAL

At $V_{CC} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted. Pin 8 connected to ground.

			OPA121KM			OPA121KP, K	U	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT								
NOISE						The state of	CHOATIO	
Voltage, fo = 10Hz	(1)	21	40		DOVO	50	apstioV	nV/√H;
f _O = 100Hz			15		OCIAL	18	afission	nV/√H;
4 4111	(4)					1		
$f_0 = 1kHz$	14781 3111 3125		8 40	82		10	nollar	nV/√H;
$f_0 = 10kHz$	OS:± (1)		6			7		nV/√Hz
f _B = 10Hz to 10kHz	(1)	-	0.7	-	-	0.8		μVrms
$f_B = 0.1 Hz$ to 10 Hz	(1)		1.6			2	COTTO	µVр-р
Current, f _B = 0.1Hz to 10Hz	(1) =23		15		1 0000	21	memus	fA, p-p
$f_0 = 0.1$ Hz thru 20kHz	(1)		0.8		perating	Dischart.1		fA/√Hz
OFFSET VOLTAGE(2)							PRIBERSO	O TERRO
	arty ovec		±0.5	±2	1 ogve	±0.5	±3	mV
Input Offset Voltage	V _{CM} = 0VDC				pnitaios	And the second second		
Average Drift	$T_A = T_{MIN}$ to T_{MAX}		±3	±10	1 Summer	±3	±10	μV/°C
Supply Rejection		86	104		86	104	RANGE	dB
	fit oft		±6 ±	±50		±6	±50	μV/V
BIAS CURRENT(2)	88 08		86	28	3GV9	±=mV	rioloejeR abo	M-nommo!
Input Bias Current	V _{CM} = 0VDC		±1	±5		±1	00±10	рА
	Device Operating		811	106	Oxs.	5.8	Voltage Galin	
OFFSET CURRENT(2)							TUST	JO GETAL
Input Offset Current	V _{CM} = 0VDC		±0.7	±4	ONS	= ±0.7	±8	pA
input Onset Current			1				TO HE	
Am	Device Operating		07±	16.25	OVDC	±=0V	200	Nament Ou
IMPEDANCE	10 40		40	07	advi	1=0Y	t Current	
Differential			10 ¹³ 1			10 ¹³ 1	FFFT.Y	ΩllpF
Common-Mode	2.5	d.lk	10 ¹⁴ II 3		DOAN	10 ¹⁴ II 3	Inessell	ΩllpF
VOLTAGE RANGE			سينسند					
Common-Mode Input Range		±10	ryttot ±11. ent	Ни bassagem i	ne in ±10 asid	5 s . (±11 to 8	set vollage, offue	O (I) VE
Common-Mode Rejection	$V_{IN} = \pm 10 VDC$	86	104		82	100		dB
OPEN-LOOP GAIN, DC	DIAGRAMS	MECTION	100		89	THE PERTIT	TE MAXIN	SOLU
Open-Loop Voltage Gain	$R_1 \ge 2k\Omega$	110	120		106	114		dB
(ndecrook) 5	LI ≤ ≤ K22	110	120		106	114		uБ
FREQUENCY RESPONSE				701VQ13				
Unity Gain, Small Signal	Substrate and C		2	Wm008		2	ver Discipation(1)	MHz
Full Power Response	20Vp-p, $R_1 = 2kΩ$		32	DGVass		32	input Voltage	kHz
Slew Rate	$V_O = \pm 10V$, $R_L = 2k\Omega$		2	DGV87±		2	e Range	V/us
Settling Time, 0.1%	Gain = -1 , $R_1 = 2k\Omega$		6			6	nceraturo Range	иѕ
0.01%				85°C to +150°C				and the second second second second
	10V Step		10	0°881+ of 0°88	~	10	pioni	μѕ
Overload Recovery, 50% Overdrive ⁽³⁾	Gain = -1		5		- waste on the state of the	5 90	emperature Ran	probabling
	Gaill = -1		3	0100 to 0.010		5		μѕ
RATED OUTPUT	NU	1. 1. 1.		D188+ of O185-				
Voltage Output	$R_L = 2k\Omega$	±11	±12		±11	±12	and sid	V
Current Output	V _O = ±10VDC	±5.5	±10	nennes	±5.5	±10	nges (soldering)	mA
	DC, Open Loop		100	Decisio.	Harmon Agent Control	100	e /soldering. 3sl	Ω
Output Resistance			1000	0 0037		1000		pF
Output Resistance Load Capacitance Stability	Gain = +1			Continuous	10	40	1-Circuit Duraller	mA
	○ Gain = +1	10	40	TRANSFER	10			THE REPORT OF THE PARTY OF THE
Load Capacitance Stability Short Circuit Current	Gain = +1	10	40	278574	10		- Situation	
Load Capacitance Stability Short Circuit Current POWER SUPPLY				0°657# M(0°06) = _N	no bessd b	et be derate) Prickages nu	OTES
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage	P-Package Place	10		(epakaaq U). V	d based on ($\theta_M = 100^{\circ} \text{CA}$	######################################): 6 = 200°C/	VDC
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range,		vzelV		(egastoaq U) V	d based on a each on a each on a each on a contract on the con	Mateb ad tea ogast±15 _M)	0; 6 = 200°C/ft cult may be to b	to transit of
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range, Derated Performance	P-Pagkage Plant U-Pagkage Plant		±15	(egarbaq U) V at aetique gnita ±18	d based on a each on a each on a each on a contract on the con	arate ad tal agent±15 _M) bylogus revo	# ±18	VDC
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent	P-Package Place	±5		(egastoaq U) V	d based on a each on a each on a each on a contract on the con	Mateb ad tea ogast±15 _M)	O of ed year fluor	to hank of
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent TEMPERATURE RANGE	I _O = 0mADC	±5	±15	(epakua U) V at aeli — prins ±18 4	o based on only. Fig. 1, 6th on T., 6th on T	±15	±18 mm 4.5	VDC mA
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent TEMPERATURE RANGE Specification	I _O = 0mADC Ambient Temperature	±5	±15	±18 4 +70	no besed b 60°00 = 40°, R. ying nomino ±5 The	arate ad tal agent±15 _M) bylogus revo	±18 4.5	VDC mA
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent TEMPERATURE RANGE Specification Operating	I _O = 0mADC Ambient Temperature Ambient Temperature	±5	±15	(epakua U) V at aeli — prins ±18 4	o based on only. Fig. 1, 6th on T., 6th on T	±15	±18 mm 4.5	VDC mA
Load Capacitance Stability Short Circuit Current POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent TEMPERATURE RANGE Specification	I _O = 0mADC Ambient Temperature	±5	±15	±18 4 +70	no besed b 60°00 = 40°, R. ying nomino ±5 The	±15	±18 4.5	VDC mA

NOTES: (1) Sample tested. (2) Offset voltage, offset current, and bias current are specified with the units fully warmed up. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (4) 100°C/W for KU grade.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

			OPA121KM	eroannoo 8 pill	L haton selwid	PA121KP, KU	Lew I breader	Von wit15
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specification Range	Ambient Temperature	o ^{XAM}	9YT	+70	ognom	соно	+70	°C
INPUT OFFSET VOLTAGE(1) Input Offset Voltage Average Drift Supply Rejection	V _{CM} = 0VDC	82	±1 ±3 94 ±20	±3 ±10 ±80	82	±1 ±3 94 ±20	±5 ±10	mV μV/°C dB μV/V
BIAS CURRENT ⁽¹⁾ Input Bias Current	V _{CM} = 0VDC Device Operating		±23	±115	0	±23	±250	pA
OFFSET CURRENT(1) Input Offset Current	V _{CM} = 0VDC Device Operating	Sr 074	±16.04	±100	ogve.		±200	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±10VDC	±10 82	±11	36.	±10 80	±11	ction (HATTER)	V dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	106	116		100	110	manul	dB
RATED OUTPUT Voltage Output Current Output Short Circuit Current	$R_L = 2k\Omega$ $V_O = \pm 10VDC$ $V_O = 0VDC$	±10.5 ±5.25	±11 0± ±10 40		±10.5 ±5.25	±11 ±10 40	Oursell Consell	V mA mA
POWER SUPPLY Current, Quiescent	I _O = 0mADC		2.5	4.5		2.5	5	mA

NOTE: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.

ABSOLUTE MAXIMUM RATINGS

and the second s	
Supply	±18VDC
11 10 0: 1 1: (1)	500mW
	±36VDC
Input Voltage Range	±18VDC
Storage Temperature Range	
M package	65°C to +150°C
P, U packages	55°C to +125°C
Operating Temperature Range	
M package	40°C to +85°C
P, U packages	25°C to +85°C
Lead Temperature	111±
M, P packages (soldering, 10s)	+300°C
U package (soldering, 3s)	+260°C
Output Short-Circuit Duration(2)	Continuous
Junction Temperature	+175°C

NOTES: (1) Packages must be derated based on $\theta_{\rm JA}=150\,^{\circ}{\rm C/W}$ (P package); $\theta_{\rm JA}=200\,^{\circ}{\rm C/W}$ (M package); $\theta_{\rm JA}=100\,^{\circ}{\rm C/W}$ (U package). (2) Short circuit may be to power supply common only. Rating applies to +25 $^{\circ}{\rm C}$ ambient. Observe dissipation limit and T_J.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾				
OPA121KM	TO-99	001				
OPA121KP	8-Pin Plastic DIP	006				
OPA121KU	8-Pin SOIC	182				

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA121KM	TO-99	0°C to +70°C
OPA121KP	8-Pin Plastic DIP	0°C to +70°C
OPA121KU	8-Pin SOIC	0°C to +70°C

CONNECTION DIAGRAMS

Low Noise Precision *Difet*® OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 6nV/√Hz (10kHz)
- LOW BIAS CURRENT: 1pA max
- LOW OFFSET: 250μV max
- LOW DRIFT: 2µV/°C max
- HIGH OPEN-LOOP GAIN: 120dB min
- HIGH COMMON-MODE REJECTION:
 100dB min
- AVAILABLE IN 8-PIN PLASTIC DIP
 AND 8-PIN SOIC PACKAGES

DESCRIPTION

The OPA124 is a precision monolithic FET operational amplifier using a **Difet** (dielectrical isolation) manufacturing process. Outstanding DC and AC performance characteristics allow its use in the most critical instrumentation applications.

Bias current, noise, voltage offset, drift, open-loop gain, common-mode rejection and power supply rejection are superior to BIFET and CMOS amplifiers. **Difet** fabrication achieves extremely low input bias currents without compromising input voltage noise performance. Low input bias current is maintained over a wide input common-mode voltage range with unique cascode circuitry. This cascode design also allows high precision input specifications and reduced susceptibility to flicker noise. Laser trimming of thin-film resistors gives very low offset and drift.

Compared to the popular OPA111, the OPA124 gives comparable performance and is available in an 8-pin PDIP and 8-pin SOIC package.

BIFET® National Semiconductor Corp., Difet® Burr-Brown Corp.

APPLICATIONS

- PRECISION PHOTODIODE PREAMP
- MEDICAL EQUIPMENT
- OPTOELECTRONICS
- DATA ACQUISITION
- TEST EQUIPMENT

NOTES: (1) Omitted on SOIC. (2) Patented.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

OPERATIONAL AMPLIFIERS

At V_{CC} = ±15VDC and T_A = +25°C unless otherwise noted.

		OI	PA124U/P		0	PA124UA/	PA	0	PA124UB/	РВ	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT NOISE			die	1 1							
Voltage, f _O = 10Hz ⁽⁴⁾			40	80		40	80		40	80	nV/√H2
$f_0 = 100 Hz^{(4)}$			15	40		15	40		15	40	nV/√Hz
$I_0 = 100HZ^{(4)}$											
$f_O = 1 \text{kHz}^{(4)}$	Berlin Committee and the second		8	15		8	15		8	15	nV/√H;
$f_0 = 10kHz^{(5)}$			6	8		6	8	1 2 1	6	8	nV/√H
$f_B = 10Hz$ to $10kHz^{(5)}$			0.7	1.2		0.7	1.2		0.7	1.2	μVrms
$f_B = 0.1Hz$ to $10Hz$			1.6	3.3		1.6	3.3		1.6	3.3	μVp-p
Current, f _B = 0.1Hz to 10Hz	BENEFAMEN AND BUSINESS	CONTRACTOR OF	9.5	15	A STREET OF	9.5	15	BOURSELLING.	9.5	15	fAp-p
$f_{O} = 0.1$ Hz thru 20kHz			0.5	0.8		0.5	0.8		0.5	0.8	fA/√Hz
OFFSET VOLTAGE(1)	- Otolici	FEED	P21738	3363	60209	OW 1	WO				
Input Offset Voltage	V _{CM} = 0VDC	W 10 1000 1	±200	±800	AND ARE IS	±150	±500		±100	±250	μV
		N 0770 SS 1			arro, Simple						
vs Temperature	$T_A = T_{MIN}$ to T_{MAX}	South E.M.	±4	±7.5	2 20 5	±2	±4		±1	±2	μV/°C
Supply Rejection	$V_{CC} = \pm 10V \text{ to } \pm 18V$	88	110	2 24 7	90	110	DE 0 7910	100	110		dB
vs Temperature	$T_A = T_{MIN}$ to T_{MAX}	84	100	the substance	86	100	A SECURE	90	100	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, whic	dB
BIAS CURRENT(1)	ELECTRICAL DELE										
Input Bias Current	V _{CM} = 0VDC	20. X X X	±1	±5		±0.5	±2	-	±0.35	±1	pA
OFFSET CURRENT(1) Input Offset Current	V _{CM} = 0VDC	OLL	±1	±5		±0.5	±1	6	±0.25	±0.5	
The second secon		21/20/20/20		IO		10.5		3337-23	10.25		pA
IMPEDANCE THE PROPERTY OF T	BOOLGOTOHA N	Meins	R9 (b)			(SPI	HOT) Sh	V/Vma	BeiON	WOTA	- 1
Differential	EQUIPMENT	JADIG	10 ¹³ II 1			1013 1	Lat 170	BRRU	10 ¹³ II 1	WOJE	ΩllpF
Common-Mode	171.388**H122/C3	THOIR	10 ¹⁴ II 3			10 ¹⁴ II 3	Aqf : II	iannu	1014 3	ALCONO.	ΩllpF
VOLTAGE RANGE	CHRUNICS	S.ISUI	40 3				XSM V.	UGS : I	OFFSE	MOT	
Common-Mode Input Range	LA CAPPERDA AND	±10	±11		±10	±11	North Date 1	±10	±11	WOJ	V
Common-Mode Rejection	V _{IN} = ±10VDC	92	110		94	110	xsm:	100	110	AARTON A	dB
vs Temperature	$T_A = T_{MIN}$ to T_{MAX}	86	100	100	86	100	SAIN:	90	100	HOH 4	dB
OPEN-LOOP GAIN, DC	7 1111				-1/1	N237-71284	as an	512 100	ARSECTO.	наін «	
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	106	125		106	125	Mer and	120	125	innor v	dB
FREQUENCY RESPONSE									- Aur	10111	
Unity Gain, Small Signal		12.00	1.5		- 4	1.5	MPLAS	A-S MI	1.5	LAVA 4	MHz
Full Power Response	20Vp-p, R _L = 2kΩ	16	32		16	32	CKAG	16	32	CHIA	kHz
Slew Rate		1	1.6		1	1.6	The state of	1	1.6		
	$V_0 = \pm 10V$, $R_L = 2k\Omega$	1			1			1			V/µs
THD _{SO} V+			0.0003			0.0003	- 6	0 / 10/2	0.0003	A PRINCE	%
Settling Time, 0.1%	Gain = -1 , $R_L = 2k\Omega$		-06			6	3	1000年度	6	Combo	μs
0.01%	10V Step	77	10			10			10		μs
Overload Recovery,			nl-		go THE	olithic	tom moi	a procis	124 is	The OPA	
50% Overdrive ⁽²⁾	Gain = -1	-0:	-05	(40	relaci le	5	5) \$e8if	s onia	5	ma Isan	μs
RATED OUTPUT		W/ / All	3	-150	DA ha	- DO 00	ibnotate	0 22000	me paim	nanufaci	
Voltage Output	$R_L = 2k\Omega$	±11	±12		±11	±12		±11	±12		V
Current Output	V _O = ±10VDC	±5.5	±10	1509	±5.5	±10	allow a	±5.5	±10	DOMESTING	mA
Output Resistance	DC, Open Loop	7	100			100	phicatio	tation at	100	ritical in	Ω
Load Capacitance Stability	Gain = +1		1000			1000			1000		
Short Circuit Current	Gaill = +1	40			10		age offs	MAYA BE		liss cur	pF
		10	40	-37	10	40	Man oga	10	40		mA
POWER SUPPLY					Cidding	Second n	ina TES	150 of 200	inners a	anian out	
Rated Voltage			±15	.235	angma.	±15		181 of 10	±15	schon ar	VDC
Voltage Range, Derated	18 S. Lous \$	±5		±18	±5	nely lev	±18	±5	mication	±18	VDC
Current, Quiescent	I _O = 0mADC	10101	2.5	3.5	in onsif	2.5	3.5	compro	2.5	3.5	mA
TEMPERATURE RANGE			T	ben	maintei	ai insmi	bias cu	moni v	od son	serioha	
Specification	T _{MIN} and T _{MAX}	-25	OmniT	+85	-25	in all a	+85	-25		+85	°C
Storage	·	-65	-0	+125	-65	voltage	+125	-65	uqui shi	+125	°C
θ Junction-Ambient: PDIP	2		90		design	90	This o	vatiuonis	90	o annim	°C/W
SOIC O	22kg \$28		100		100	100	1000	The state of the s	100		°C/W
0010			100		HOST DIE	100	11/09/12 1	BOYGET COLORS	100	PET SUPPLIE	CIVV

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up. For performance at other temperatures see Typical Performance Curves. (2) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (3) For performance at other temperatures see Typical Performance Curves. (4) Sample tested, 98% confidence. (5) Guaranteed by design.

International Airport Industrial Ports - Huilling Address PD Pox 11400 - Turson, AZ 69734 - Stoet Address: 6705 t. Turson Blued - Turson, BL 69736 - Turson Blued - Turson

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Supply	±18VDC
Internal Power Dissipation(1)	750mW
Differential Input Voltage(2)	±36VDC
Input Voltage Range(2)	±18VDC
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit Duration(3)	Continuous
Junction Temperature	+175°C

NOTES: (1) Packages must be derated based on $\theta_{\rm JA} = 90^{\circ} {\rm C/W}$ for PDIP and 100°C/W for SOIC. (2) For supply voltages less than ±18VDC, the absolute maximum input voltage is equal to +18V > $V_{\rm IN} > -V_{\rm CC} = 6V$. See Figure 2. (3) Short circuit may be to power supply common only. Rating applies to +25°C ambient. Observe dissipation limit and $T_{\rm L}$.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA124U	8-Pin SOIC	182
OPA124P	8-Pin Plastic DIP	006
OPA124UA	8-Pin SOIC	182
OPA124PA	8-Pin Plastic DIP	006
OPA124UB	8-Pin SOIC	182
OPA124PB	8-Pin Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	BIAS CURRENT pA, max	OFFSET DRIFT μV/°C, max
OPA124U	8-PIN SOIC	-25°C TO +85°C	5	7.5
OPA124P	8-Pin Plastic DIP	-25°C to +85°C	5	7.5
OPA124UA	8-Pin SOIC	-25°C to +85°C	2	4
OPA124PA	8-Pin Plastic DIP	-25°C to +85°C	2	4
OPA124UB	8-Pin SOIC	-25°C to +85°C	1 1	2
OPA124PB	8-Pin Plastic DIP	-25°C to +85°C	*0r 1	2

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

2

Burr-Brown IC Data Book-Linear Products

TYPICAL PERFORMANCE CURVES (CONT) DIAMPORPER LADISTIT

 $T_A = +25$ °C, $V_{CC} = \pm 15$ VDC unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) M903M 24/01TA01399A

be shielded along with the external input circuitry.

Lenkage convents across printed circuit bounds can easily exceed the bias current of the OPA124. To avoid leakage problems, the OPA124 should be soldered directly late a panted circuit board. Unnost care must be used in planning the board layout. A "guard" pattern should completely surround the high inspedance input leads and should be connected to a low impedance point which is at the signal.

Scanding is not required, pin 8 should be connected to ground.

APPLICATIONS INFORMATION

OFFSET VOLTAGE ADJUSTMENT

The OPA124 offset voltage is laser-trimmed and will require no further trim for most applications. In order to reduce layout leakage errors, the offset adjust capability has been removed from the SOIC versions (OPA124UB, OPA124UA, and OPA124U). The PDIP versions (OPA124PB, OPA124PA, and OPA124P) do have pins available for offset adjustment. As with most amplifiers, externally trimming the remaining offset can change drift performance by about $0.3\mu V/^{\circ}C$ for each $100\mu V$ of adjusted offset. The correct circuit configuration for offset adjust for the PDIP packages is shown in Figure 1.

INPUT PROTECTION

Conventional monolithic FET operational amplifiers require external current-limiting resistors to protect their inputs against destructive currents that can flow when input FET gate-to-substrate isolation diodes are forward-biased. Most BIFET amplifiers can be destroyed by the loss of $-V_{CC}$.

Unlike BIFET amplifiers, the **Difet** OPA124 requires input current limiting resistors only if its input voltage is greater than 6V more negative than $-V_{CC}$. A $10k\Omega$ series resistor will limit input current to a safe level with up to $\pm 15V$ input levels, even if both supply voltages are lost (Figure 2).

Static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers (both bipolar and FET types), this may cause a noticeable degradation of offset voltage and drift. Static protection is recommended when handling any precision IC operational amplifier.

GUARDING AND SHIELDING

As in any situation where high impedances are involved, careful shielding is required to reduce "hum" pickup in input leads. If large feedback resistors are used, they should also be shielded along with the external input circuitry.

Leakage currents across printed circuit boards can easily exceed the bias current of the OPA124. To avoid leakage problems, the OPA124 should be soldered directly into a printed circuit board. Utmost care must be used in planning the board layout. A "guard" pattern should completely surround the high impedance input leads and should be connected to a low impedance point which is at the signal input potential.

The amplifier substrate should be connected to any input shield or guard via pin 8 minimizing both leakage and noise pickup (see Figure 3).

If guarding is not required, pin 8 should be connected to ground.

FIGURE 1. Offset Voltage Trim for PDIP packages.

FIGURE 2. Input Current vs Input Voltage with $\pm V_{\rm CC}$ Pins Grounded.

FIGURE 3. Connection of Input Guard.

Difet® Electrometer-Grade OPERATIONAL AMPLIFIER

FEATURES

- ULTRA-LOW BIAS CURRENT: 75fA max
- LOW OFFSET: 500μV max
- LOW DRIFT: 5μV/°C max
- HIGH OPEN-LOOP GAIN: 110dB min
- HIGH COMMON-MODE REJECTION: 90dB min
- IMPROVED REPLACEMENT FOR AD515
 AND AD549

APPLICATIONS

- ELECTROMETER
- MASS SPECTROMETER
- CHROMATOGRAPH
- ION GAUGE
- PHOTODETECTOR
- RADIATION-HARD EQUIPMENT

DESCRIPTION

The OPA128 is an ultra-low bias current monolithic operational amplifier. Using advanced geometry dielectrically-isolated FET (*Difet®*) inputs, this monolithic amplifier achieves a performance level exceeding even the best hybrid electrometer amplifiers.

Laser-trimmed thin-film resistors give outstanding voltage offset and drift performance.

A noise-free cascode and low-noise processing give the OPA128 excellent low-level signal handling capabilities. Flicker noise is very low.

The OPA128 is an improved pin-for-pin replacement for the AD515.

Difet® Burr-Brown Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $V_{cc} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted. Pin 8 connected to ground.

OZIATE	0	C	PA128J	M	C	PA128K	M	OPA128LM		М	0	PA128S	M	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
				100			1							
BIAS CURRENT(1)	Parket Land		1	33	18/3			138						
Input Bias Current	V _{CM} = 0VDC,		3 30 3 3											
THE HOUSE CONTRACTORS WITH	$R_L \ge 10k\Omega$	1262	±150	±300	15500	±75	±150	BC000720	±40	±75	HUESTESS.	±75	±150	fA
OFFSET CURRENT(1)	THE PROPERTY OF THE PARTY OF TH			n 3" 11	1			100			1			
Input Offset Current	V _{CM} = 0VDC,	50	400	100	1500	Service .	il mad	3000	3500			10	101	
	R _L ≥ 10kΩ	Ed"	65	3111	101	30	S cont	3%	30			30		fA
OFFSET VOLTAGE(1)	And the President	10	25 SA AN	(8)	185 B	000	- Bo 41	APRIL N	0.0%	Phys.		500 BK	. A. T	IS THE
Input Offset Voltage	V _{CM} = 0VDC	13	±260	±1000	194	±140	±500	200	±140	±500	34.3	±140	±500	μV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}			±20			±10			±5			±10	μV/°C
Supply Rejection	A MIN TO MAA	80	120	-	90	120	5,000,000	90	120	PRIENTS	90	120	Westakeer	dB
Supply Hojoution			±1	±100	-	±1	±32		±1	±32		±1	±32	μV/V
NOISE														mark mark
Voltage: f _O = 10Hz	SNO	MA	92	막다	à.	92	6-18	3 194	92	1,43	65	92	FIA	nV/√Hz
$f_0 = 100Hz$			78			78		100	78			78		nV/√Hz
$f_O = 1kHz$	83		27	81.6	0	27	sm A	125	27	CUE	BAIR	27	ASIT	nV/√Hz
$f_0 = 10kHz$			15			15			15			15		nV/√Hz
$f_B = 10$ Hz to 10 kHz	RETEMO!	110:	2.4	BAM	0	2.4			2.4	n VII	06:17	2.4	O WC	μVrms
$f_B = 0.1$ Hz to 10Hz	HOAS	-	4	CHE	and the	4		10	4		Wuz	4	FT 30//	μVp-р
Current: $f_B = 0.1Hz$ to 10Hz	13,250		4.2	unu	-	3			2.3	am J	FRTE	3	M. AL	fA, p-p
$f_0 = 0.1Hz$ to 20kHz			0.22	HOL	9	0.16	niv	n Sb	0.12	CAS	100.	0.16	OHO	fA√Hz
IMPEDANCE	0.07	0.000	1/1/075	280	(9)	-	-2.5	172791-15	201 2012	ann	10.100	146865	a Na	LL on
Differential	nue	OHIE.	1013 1	man.	-	1013 1	7.073	ALL O	1013 1	200	No Walks	10 ¹³ II 1	3 5120	ΩllpF
Common-Mode	AND EQUIPME	14-14	1015 2	MARI	0	1015 1			1015 2			1015 2	n So	ΩllpF
			10-112			10-112	C/21.1/3	HO-	10 112	M=1.34	1414	10 112	0.00	az II pi
VOLTAGE RANGE(4)	Mark British											0300	IA OF	Av
Common-Mode Input Range	V 140VD0	±10	±12		±10	±12	86 -	±10	±12	L DA	±10	±12	ma res	dB
Common-Mode Rejection	V _{IN} = ±10VDC	80	118		90	118		90	118		90	118		UB
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	94	128		110	128		110	128	LA	110	128	20	dB
			Ove	ing the manual	5									
Unity Gain, Small Signal	(2)	0.5	1		0.5	Didli	enom	0.5	to paid	901-	0.5	4 83	LASU	MHz
Full Power Response	20Vp-p, $R_L = 2kΩ$	1	47	211	1	47	HOSE	happa	47	mizli	1501	47	snoit	kHz
Slew Rate	$V_O = \pm 10V$, $R_L = 2k\Omega$	0.5	3		1	3	-	arlq.	3	(3) TI	1.	3		V/µs
Settling Time, 0.1%	Gain = -1 , $R_L = 2k\Omega$		5			5	m aidi	Sindi	5	M27 10	11001	5	lavius	μѕ
0.01%	10V Step		10			10	exe le	15i 50	10	a per	reves	10	dema	μs
Overload Recovery,			2	1468			Hiers	TIME T	romete	clect	hybrid	ized a	th gov	o oni -
50% Overdrive ⁽³⁾	Gain = −1		5	n	-	5	42		5			5		μs
						-MOA	Shimm	RISHIO	DAIN SA	Medica	SHIELD.	HER DOS	THE LETT	TOPALA
Voltage Output	$R_L = 2k\Omega$	±10	±13	1	±10	±13		±10	±13	EBSELLO	±10	±13	1,12011	V
Current Output	$V_0 = \pm 10 \text{VDC}$	±5	±10	-	±5	±10	anisa	±5	±10	rol b	±5	±10	100	mA
Output Resistance	DC, Open Loop	10	100	La	15	100			100			100	TAL PE	Ω
Load Capacitance Stability	Gain = +1		1000	100	100	1000	gnith	med la	1000	Vol-10	pi Jupi	1000	PAIC	pF
Short Circuit Current	Guil - Ti	10	34	55	10	34	55	10	34	55	10	34	55	mA
/ hydu()		,,,	1 34	- 00	10									.110-5
						T	place	n niq-	tol-nio	bayo	igini :		I BYK	A SELL
Rated Voltage	13/85		±15		1	±15		8 3	±15			±15	LLA 5	VDC
Voltage Range,		-	TA	al I		137						1		1
Derated Performance	1 0 100	±5	4V	±18	±5		±18	±5		±18	±5		±18	VDC
Current, Quiescent	I _O = 0mADC		0.9	1.5		0.9	1.5		0.9	1.5		0.9	1.5	mA
		100	50	17 L.										
Specification	Ambient Temp.	0	3	+70	0		+70	0	A NEW T	+70	-55	19 40 13	+125	°C
Operating	Ambient Temp.	-55		+125	-55		+125	-55		+125	-55	100	+125	°C
Storage	Ambient Temp.	-65		+150	-65		+150	-65	1	+150	-65		+150	°C
θ Junction-Ambient			200			200			200			200		°C/W

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up. Bias current doubles approximately every 11°C. (2) Sample tested. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive, (4) If it is possible for the input voltage to exceed the supply voltage, a series protection resistor should be added to limit input current to 0.5mA. The input devices can withstand overload currents of 0.3mA indefinitely without damage.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 15 \text{VDC}$ and $T_A = T_{MIN}$ and T_{MAX} unless otherwise noted.

	имстони		0	PA128	JM	0	PA128	CM	0	PA128L	.M	0	PA128	SM	
PARAMETER	miss Prince	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE	RANGE							THE STATE OF		7	10 - NL			dien.	
Specification Rar	nge	Ambient Temp.	0		+70	0		+70	0		+70	-55	8	+125	°C
INPUT	mist seem C	e' v				1							THE RES		
BIAS CURRENT Input Bias Curre	The state of the s	V _{CM} = 0VDC		±2.5	±8		±1.3	±4		±0.7	±2		±43	±170	pA
OFFSET CURRE Input Offset Curr		V _{CM} = 0VDC	18	1.1			0.6			0.6			18		pA
OFFSET VOLTA Input Offset Volta Average Drift Supply Rejection	age	V _{CM} = 0VDC	74	114 ±2	±2.2mV ±20 ±200	80	114 ±2	±1mV ±10	80	114 ±2	±750 ±5 ±100	80	106 ±5	±1.5mV ±10	μV μV/°C dB μV/V
VOLTAGE RANG Common-Mode I Commmon-Mode	nput Range	V _{IN} = ±10VDC	±10 74	±11		±10 80	±11	8	±10 80	±11		±10	±11		V dB
OPEN-LOOP GA	AIN, DC		nalas			Basi					E	C. B.			
Open-Loop Volta	ige Gain	$R_L \ge 2k\Omega$	90	125		104	125		104	125	12.031%	90	122		dB
RATED OUTPUT	T			Sale A											
Voltage Output Current Output Short Circuit Cur	rrent	$R_{L} = 2k $ $V_{O} = \pm 10VDC$ $V_{O} = 0VDC$	±10 ±5 10	22		±10 ±5 10	22		±10 ±5 10	22		±10 ±5 10	18		V mA mA
POWER SUPPL	Y												Lan		
Current, Quiesce	ent	I = 0mADC		0.9	1.8		0.9	1.8		0.9	1.8		0.9	2	mA

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (2) If it is possible for the input voltage to exceed the supply voltage, a series protection resistor should be added to limit input current to 0.5mA. The input devices can withstand overload currents of 0.3mA indefinitely without damage.

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply	±18VDC
Internal Power Dissipation(1)	500mW
Differential Input Voltage	±36VDC
Input Voltage Range	±18VDC
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit Duration(2)	Continuous
Junction Temperature	+175°C

NOTES: (1) Packages must be derated based on θ_{CA} = 150°C/W or θ_{JA} = 200°C/W. (2) Short circuit may be to power supply common only. Rating applies to +25°C ambient. Observe dissipation limit and T_J.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	BIAS CURRENT, max (fA)
OPA128JM	TO-99	0°C to +70°C	±300
OPA128KM	TO-99	0°C to +70°C	±150
OPA128LM	TO-99	0°C to +70°C	±75
OPA128SM	TO-99	-55°C to +125°C	±150

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾			
OPA128JM	TO-99	001			
OPA128KM	TO-99	001			
OPA128LM	TO-99	001			
OPA128SM	TO-99	001			

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

DICE INFORMATION

OPA128 DIE TOPOGRAPHY

_					
PAD	FUNCTION				
SINATION	Offset Trim				
2	-In				
3	+In				
.or4 Time	-V _{CC}				
5	Offset Trim				
6	Output				
7	+V _{CC}				
8	Substrate				
NC	No Connection				

Substrate Bias: Isolated, normally connected to common.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	96 x 71 ±5	2.44 x 1.80 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		None

TYPICAL PERFORMANCE CURVES

T, = +25°C, ±15VDC, unless otherwise noted

OPERATIONAL AMPLIFIERS

TYPICAL PERFORMANCE CURVES (CONT) OMAMMORMARY JACOBYT

At T, = +25°C, +15VDC unless otherwise noted.

CRERATIONAL AMPLIFIERS

APPLICATIONS INFORMATION

OFFSET VOLTAGE ADJUSTMENT

The OPA128 offset voltage is laser-trimmed and will require no further trim for most applications. As with most amplifiers, externally trimming the remaining offset can change drift performance by about $0.3\mu V/^{\circ}C$ for each $100\mu V$ of adjusted effort. Note that the trim (Figure 1) is similar to operational amplifiers such as HA-5180 and AD515. The OPA128 can replace many other amplifiers by leaving the external null circuit unconnected.

FIGURE 1. Offset Voltage Trim.

INPUT PROTECTION

Conventional monolithic FET operational amplifiers' inputs must be protected against destructive currents that can flow when input FET gate-to-substrate isolation diodes are forward-biased. Most BIFET® amplifiers can be destroyed by the loss of $-V_{CC}$.

Because of its dielectric isolation, no special protection is needed on the OPA128. Of course, the differential and common-mode voltage limits should be observed.

Static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers (both bipolar and FET types), this may cause a noticeable degradation of offset voltage and drift.

Static protection is recommended when handling any precision IC operational amplifier.

GUARDING AND SHIELDING

As in any situation where high impedances are involved, careful shielding is required to reduce "hum" pickup in input leads. If large feedback resistors are used, they should also be shielded along with the external input circuitry. Leakage currents across printed circuit boards can easily exceed the bias current of the OPA128. To avoid leakage problems, it is recommended that the signal input lead of the OPA128 be wired to a Teflon standoff. If the input is to be soldered directly into a printed circuit board, utmost care must be used in planning the board layout. A "guard" pattern should completely surround the high impedance input leads and should be connected to a low impedance point which is at the signal input potential.

The amplifier case should be connected to any input shield or guard via pin 8. This insures that the amplifier itself is fully surrounded by guard potential, minimizing both leakage and noise pickup (see Figure 2).

FIGURE 2. Connection of Input Guard.

Triboelectric charge (static electricity generated by friction) can be a troublesome noise source from cables connected to the input of an electrometer amplifier. Special low-noise cable will minimize this effect but the optimum solution is to mount the signal source directly at the electrometer input with short, rigid, wiring to preclude microphonic noise generation.

FIGURE 5. FET Input Instrumentation Amplifie DNITEST

Accurately testing the OPA128 is extremely difficult due to its high level of performance. Ordinary test equipment may not be able to resolve the amplifier's extremely low bias current.

Inaccurate bias current measurements can be due to:

- 1. Test socket leakage
- 2. Unclean package
- 3. Humidity or dew point condensation
- 4. Circuit contamination from fingerprints or anti-static treatment chemicals
- 5. Test ambient temperature
- 6. Load power dissipation

BIFET® National Semiconductor Corp.

FIGURE 3. High Impedance (1015Ω) Amplifier.

FIGURE 4. Piezoelectric Transducer Charge Amplifier.

FIGURE 5. FET Input Instrumentation Amplifier for Biomedical Applications.

FIGURE 6. Low-Droop Positive Peak Detector.

 $\begin{array}{c|c}
\hline
1000M\Omega & 18k\Omega \\
\hline
2k\Omega \\
\hline
Current & 3 \\
\hline
Input & 3 \\
\hline
V_0 = -1V/nA
\end{array}$

FIGURE 7. Sensitive Photodiode Amplifier.

FIGURE 8. Current-to-Voltage Converter.

FIGURE 9. Biased Current-to-Voltage Converter.

local Aliquid Indication Park - Nothing Address: PO Box 11400 - Tocaron, AZ 85734 - Street Address: 6150 S. Tocaron Blad. - Tucaron AZ 85706

Ultra-Low Bias Current Difet® OPERATIONAL AMPLIFIER

FEATURES

- ULTRA-LOW BIAS CURRENT: 100fA max
- LOW OFFSET: 2mV max
- LOW DRIFT: 10μV/°C max
- HIGH OPEN-LOOP GAIN: 94dB min
- LOW NOISE: 15nV/√Hz at 10kHz
- PLASTIC DIP and SOIC PACKAGE

APPLICATIONS

- PHOTODETECTOR PREAMP
- CHROMATOGRAPHY
- ELECTROMETER AMPLIFIERS
- MASS SPECTROMETER
- pH PROBE AMPLIFIER
- **ION GAGE MEASUREMENT**

DESCRIPTION

The OPA129 is an ultra-low bias current monolithic operational amplifier offered in an 8-pin PDIP and SO-8 package. Using advanced geometry dielectrically-isolated FET (*Difet**) inputs, this monolithic amplifier achieves a high performance level.

Difet fabrication eliminates isolation-junction leakage current—the main contributor to input bias current with conventional monolithic FETs. This reduces input bias current by a factor of 10 to 100. Very low input bias current can be achieved without resorting to small-geometry FETs or CMOS designs which can suffer from much larger offset voltage, voltage noise, drift, and poor power supply rejection.

The OPA129's special pinout eliminates leakage current that occurs with other op amps. Pins 1 and 4 have no internal connection, allowing circuit board guard traces—even with the surface-mount package version.

OPA129 is available in 8-pin DIP and SO-8 packages, specified for operation from -40°C to +85°C.

Difet® Burr-Brown Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (600) 548-6132

SPECIFICATIONS TAMBORM ROADOAS

ELECTRICAL

At $V_S = \pm 15V$ and $T_A = +25^{\circ}C$ unless otherwise noted. Pin 8 connected to ground.

MOS MASS 1 1907 4 4 19	C	PA129PB, I	UB		Containe		
OPACE NOITIONO BENESON	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{CM} = 0V	Do	±30 ubles every	±100 10°C		(rolls)	±250	- fA
V _{CM} = 0V	1 1 1 1 1	±30		X			fA
$V_{CM} = 0V$ $V_{S} = \pm 5V \text{ to } \pm 18V$		±0.5 ±3 ±3	±2 ±10 ±100	ATRI	±1 ±5	±5	mV μV/°C μV/V
f = 10Hz f = 100Hz f = 1kHz f = 10kHz f _B = 0.1Hz to 10Hz f = 10kHz	7 m m	85 28 17 15 4 0.1	its be lis	ued circ	integr	ds that	nV/√H; nV/√H; nV/√H; nV/√H; μVp-p fA√Hz
NC. No attento	*B	10 ¹³ 1 10 ¹⁵ 2	erforman	au causo 1 subile p 2 Pendia	nge from	ge can tr	Ω pF Ω pF
V _{IN} = ±10V	±10 80	±12	benause device n	damage ause the		ore susc changes	V dB
$R_L \ge 2k\Omega$	94	120			ions.	Bottiosqs	dB
20Vp-p, $R_L = 2k\Omega$ $V_O = \pm 10V$, $R_L = 2k\Omega$ $G = -1$, $R_L = 2k\Omega$, 10V Step G = -1	1	1 47 2.5 5 10 5			:		MHz kHz V/µs µs µs µs
$R_L = 2k\Omega$ $V_O = \pm 12V$ $Gain = +1$	±12 ±6	±13 ±10 1000 ±35	±55	:			V mA pF mA
I _O = 0mA	±5	±15	±18 1.8	MHO	PRE	LJA:	V V mA
Ambient Temperature Ambient Temperature $\theta_{ m JA}$, Junction-to-Ambient	-40 -40 -40	90	+85 +125 +125	e noied.	LOOP FRE	OPEN	°C °C °C °C
	$V_{CM} = 0V$ $V_{CM} = 0V$ $V_{CM} = 0V$ $V_{S} = \pm 5V \text{ to } \pm 18V$ $f = 10Hz$ $f = $	CONDITION MIN $V_{CM} = 0V$ $V_{CM} = 0V$ $V_{CM} = 0V$ $V_{CM} = 0V$ $V_{S} = \pm 5V \text{ to } \pm 18V$ $f = 10Hz$ $f = 10Hz$ $f = 10Hz$ $f = 10kHz$ $f =$	CONDITION MIN TYP $V_{CM} = 0V$ ±30 $V_{CM} = 0V$ ±30 $V_{CM} = 0V$ ±0.5 ±3 ±3 $V_{CM} = 0V$ ±0.5 ±3 ±1 ±10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTES: (1) High-speed automated test. (2) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

·	
Differential Input Voltage	V- to V+
Input Voltage Range	V- to V+
Storage Temperature Range	-40°C to +125°C
Operating Temperature Range	-40°C to +125°C
Lead Temperature (soldering, 10s; SOIC 3s)	+300°C
Output Short Circuit Duration(1)	Continuous
Junction Temperature (T _J)	+150°C

NOTE: (1) Short circuit may be to power supply common at +25°C ambient.

MODEL	PACKAGE	NUMBER(1)
OPA129P	8-pin Plastic DIP	006
OPA129PB	8-pin Plastic DIP	006
OPA129U	8-pin SOIC	182
OPA129UB	8-pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

A

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

CONNECTION DIAGRAM

TYPICAL PERFORMANCE CURVES

T_A = +25°C, +15VDC, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

T_A = +25°C, +15VDC, unless otherwise noted.

OPA129

TYPICAL PERFORMANCE CURVES (CONT) CMAMPORPED JACISTYT

T_A = +25°C, +15VDC, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 $T_A = +25$ °C, +15VDC, unless otherwise noted.

APPLICATIONS INFORMATION

NON-STANDARD PINOUT

The OPA129 uses a non-standard pinout to achieve lowest possible input bias current. The negative power supply is connected to pin 5—see Figure 1. This is done to reduce the leakage current from the V- supply (pin 4 on conventional op amps) to the op amp input terminals. With this new pinout, sensitive inputs are separated from both power supply pins.

FIGURE 1. Offset Adjust Circuit.

OFFSET VOLTAGE TRIM

The OPA129 has no conventional offset trim connections. Pin 1, next to the critical inverting input, has no internal connection. This eliminates a source of leakage current and allows guarding of the input terminals. Pin 1 and pin 4, next to the two input pins, have no internal connection. This allows an optimized circuit board layout with guarding—see "circuit board layout."

Due to its laser-trimmed input stage, most applications do not require external offset voltage trimming. If trimming is required, the circuit shown in Figure 1 can be used. Power supply voltages are divided down, filtered and applied to the non-inverting input. The circuit shown is sensitive to variation in the supply voltages. Regulation can be added, if needed.

GUARDING AND SHIELDING

Ultra-low input bias current op amps require precautions to achieve best performance. Leakage current on the surface of circuit board can exceed the input bias current of the amplifier. For example, a circuit board resistance of $10^{12}\Omega$ from a power supply pin to an input pin produces a current of 15pA—more than one-hundred times the input bias current of the op amp.

To minimize surface leakage, a guard trace should completely surround the input terminals and other circuitry connecting to the inputs of the op amp. The DIP package should have a guard trace on both sides of the circuit board. The guard ring should be driven by a circuit node equal in potential to the op amp inputs—see Figure 2. The substrate, pin 8, should also be connected to the circuit board guard to assure that the amplifier is fully surrounded by the guard potential. This minimizes leakage current and noise pick-up.

Careful shielding is required to reduce noise pickup. Shielding near feedback components may also help reduce noise pick-up.

Triboelectric effects (friction-generated charge) can be a troublesome source of errors. Vibration of the circuit board, input connectors and input cables can cause noise and drift. Make the assembly as rigid as possible. Attach cables to avoid motion and vibration. Special low noise or low leakage cables may help reduce noise and leakage current. Keep all input connections as short possible. Surface-mount components may reduce circuit board size and allow a more rigid assembly.

current. Pin 1 and pin 4 have no internal connection. This allows ample circuit board space for a guard ring surrounding the op amp input pins—even with the tiny SO-8 surfacemount package. Figure 3 shows suggested circuit board layouts. The guard ring should be connected to pin 8 (substrate) as shown. It should be driven by a circuit node equal in potential to the input terminals of the op amp—see Figure 2 for common circuit configurations.

TESTING

Accurately testing the OPA129 is extremely difficult due to its high performance. Ordinary test equipment may not be able to resolve the amplifier's extremely low bias current. Inaccurate bias current measurements can be due to:

- 1. Test socket leakage,
- 2. Unclean package,
- 3. Humidity or dew point condensations,
- 4. Circuit contamination from fingerprints or anti-static treatment chemicals,
- 5. Test ambient temperature,
- 6. Load power dissipation,
- 7. Mechanical stress,
- 8. Electrostatic and electromagnetic interference.

FIGURE 2. Connection of Input Guard.

FIGURE 3. Suggested Board Layout for Input Guard.

FIGURE 4. Current-to-Voltage Converter.

FIGURE 5. High Impedance ($10^{15}\Omega$) Amplifier.

FIGURE 6. Piezoelectric Transducer Charge Amplifier.

FIGURE 7. Sensitive Photodiode Amplifier.

OPA130 OPA2130 OPA4130

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS

FEATURES

- LOW QUIESCENT CURRENT: 530μA/amp
- LOW OFFSET VOLTAGE: 1mV max
- HIGH OPEN-LOOP GAIN: 120dB min
- HIGH CMRR: 90dB min
- FET INPUT: I_R = 20pA max
- **EXCELLENT BANDWIDTH: 1MHz**
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- SINGLE, DUAL, AND QUAD VERSIONS

DESCRIPTION

The OPA130 series of FET-input op amps combine precision de performance with low quiescent current. Single, dual, and quad versions have identical specifications for maximum design flexibility. They are ideal for general-purpose, portable, and battery operated applications, especially with high source impedance.

OPA130 op amps are easy to use and free from phase inversion and overload problems often found in common FET-input op amps. Input cascode circuitry provides excellent common-mode rejection and maintains low input bias current over its wide input voltage range. OPA130 series op amps are stable in unity gain and provide excellent dynamic behavior over a wide range of load conditions, including high load capacitance. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.

Single and dual versions are available in 8-pin DIP and SO-8 surface-mount packages. Quad is available in 14-pin DIP and SO-14 surface-mount packages. All are specified for -40°C to +85°C operation.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

OBV130' 5130' 4130

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_I = 10$ k Ω unless otherwise noted.

OPA130	CONDITION	OPA130PA, UA OPA2130PA, UA OPA4130PA, UA			
PARAMETER		MIN	TYP	MAX	UNITS
DFFSET VOLTAGE	- Allegan				
nput Offset Voltage			±0.2	±1	mV
vs Temperature ⁽¹⁾	Operating Temperature Range		±2	±10	μV/°C
vs Power Supply	$V_{S} = \pm 2.25V \text{ to } \pm 18V$		2	20	μV/V
Channel Separation (dual and quad)	75 = 22.207 to 2.07		0.3		μV/V
IPUT BIAS CURRENT(2)		-	1		
	V _{CM} = 0V	T same	+5	±20	pA
vs Temperature	V _{CM} = 0V	THE S	See Typical Curv	е	
put Offset Current	V _{CM} = 0V	n enn enn be	±2	±20	pA
OISE	LIAMOHARE	190	USIM		
put Voltage Noise					
oise Density, f = 10Hz	CONTRACTOR CONTRACTOR OF THE STREET	TOTAL STREET, STREET, ST.	30	DECEMBER 1921	nV/√Hz
f = 100Hz			18		nV/√Hz
f = 1kHz		U 1/1 1/4	16	-	nV/√Hz
f = 10kHz		E CHANG	16	ZERU	nV/√Hz
urrent Noise Density, f = 1kHz			4		fA/√Hz
PUT VOLTAGE RANGE	qmsV	NT: 530pp	AL CORRE	QUIESCE	MOTA
ommon-Mode Voltage Range, Positive		(V+)-2	(V+)-1.5	of the same of	V.
Negative	and Taretto	(V-)+2	(V-)+1.2	4 13611U	V
ommon-Mode Rejection	$V_{CM} = -13V \text{ to } +13V$	20.00 min	105	OPEN-LO	dB
PUT IMPEDANCE	rie-		erion Cibul	0.0000	SATSTER OF
fferential HIGHO THE			1013 1	io thister	Ω∥pF
ommon-Mode	$V_{CM} = -13V \text{ to } +13V$		1013 3	NPUT: L.	Ω pF
PEN-LOOP GAIN			DESCRIPTION OF STREET	22 Tide 1 4	TANK TO A
pen-loop Voltage Gain	$V_0 = -13.8V \text{ to } +13V$	120	135	AG IMPLI	dB
4 2 6-02 9IC m9-8	$R_L = 2k\Omega$, $V_O = -13V$ to $+12V$	120	135	SUPPLY	dB
REQUENCY RESPONSE					mine a
ain-Bandwidth Product	49	DISHBY O	AND GHA	LE, DUAL,	MHz
lew Rate		The state of	2		V/µs
ettling Time: 0.1%	G = 1, 10V Step, C _L = 100pF	E II ALEST	5.5	PROPERTY AND AND AND	μѕ
0.01% OEFSA90	G = 1, 10V Step, C ₁ = 100pF	50 1	7		μs
verload Recovery Time	$G = 1, V_{IN} = \pm 15V$		2		μs
tal Harmonic Distortion + Noise	1kHz, G = 1, V _O = 3.5Vrms	t op amps	0.0003	130 series	190 9%
JTPUT *	current.	w quiescent	nnce with los	de perform	procision
Itage Output, Positive	specifi-	(V+)-2	(V+)-1.5	ago bre Jes	V2
Negative		(V-)+1.2	(V-)+1		V
Positive	$R_L = 2k\Omega$ label as	(V+)-3	(V+)-2.5	menixen i	V IOUS IN
Negative	$R_L = 2k\Omega$	(V-)+2	(V-)+1.5	al-purpose.	(V gene
ort-Circuit Current	edance.	source inn	±18	ins, especia	mA
pacitive Load Drive (Stable Operation)		The second	10	The same of the sa	nF
OWER SUPPLY	an phase	EL SOLI DIRE	CHS/ 10 030	saw schmar do	UCLATIO
pecified Operating Voltage	m-bruc	ns often	±15	and over	VETSION
perating Voltage Range	vatinosis	±2.25	to some Ind	±18	nommVo
iescent Current (per amplifier)	I _O = 0	topies abo	±530	±650	μА
MPERATURE RANGE 0814A90	de ingut	or ati wares	mornin acid	taterai med	on instrument
perating Range		-40	bias current	+85	°C
orage	H Ano ni sidali	-40	30 sense op	+125	°C
ermal Resistance, θ _{JA}	Sehavior Curva	dynamic	de excellent	vote bus a	unity ga
8-Pin DIP	ing high -in A 2	ions inchie	100	de rance el	°C/W
		MANAGER COLUMN		AND THE PARTY OF	00000
SO-8 Surface-Mount			150	Ar -	°C/W
SO-8 Surface-Mount 14-Pin DIP	fenture +in A 3	ad designs	150	acitance. I	°C/W

NOTES: (1) Guaranteed by wafer test. (2) High-speed test at T_J = 25°C.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V-	36V
Input Voltage (V-) -0.7V to	(V+) +0.7V
Output Short-Circuit ⁽¹⁾	Continuous
Operating Temperature40°C	to +125°C
Storage Temperature40°C	to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C

NOTE: (1) Short-circuit to ground, one amplifier per package.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	
Single			
OPA130PA	8-Pin Plastic DIP	006	
OPA130UA	SO-8 Surface-Mount	182	
Dual			
OPA2130PA	8-Pin Plastic DIP	006	
OPA2130UA	SO-8 Surface-Mount	182	
Quad			
OPA4130PA	14-Pin Plastic DIP	010	
OPA4130UA	SO-14 Surface-Mount	235	

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
Single OPA130PA	8-Pin Plastic DIP	-40°C to +85°C
OPA130UA	SO-8 Surface-Mount	-40°C to +85°C
Dual OPA2130PA	8-Pin Plastic DIP	-40°C to +85°C
OPA2130UA	SO-8 Surface-Mount	-40°C to +85°C
Quad OPA4130PA	14-Pin Plastic DIP	-40°C to +85°C
OPA4130UA	SO-14 Surface-Mount	-40°C to +85°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 10$ k Ω unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) ON AMPIORITY JACINYT

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 10 k\Omega$ unless otherwise noted.

APPLICATIONS INFORMATION

OPA130 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors or larger.

OPA130 op amps are free from unexpected output phasereversal common with FET op amps. Many FET-input op amps exhibit phase-reversal of the output when the input common-mode voltage range is exceeded. This can occur in voltage-follower circuits, causing serious problems in control loop applications. OPA130 series op amps are free from this undesirable behavior. All circuitry is completely independent in dual and quad versions, assuring normal behavior when one amplifier in a package is overdriven or short-circuited.

OPERATING VOLTAGE

OPA130 series op amps operate with power supplies from $\pm 2.25 \text{V}$ to $\pm 18 \text{V}$ with excellent performance. Although specifications are production tested with $\pm 15 \text{V}$ supplies, most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in the typical performance curves.

OFFSET VOLTAGE TRIM

Offset voltage of OPA130 series amplifiers is laser trimmed and usually requires no user adjustment. The OPA130 (single op amp version) provides offset voltage trim connections on pins 1 and 5. Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op amp, not to adjust system offset or offset produced by the signal source. Nulling offset that is not produced by the amplifier will change the offset voltage drift behavior of the op amp.

FIGURE 1. OPA130 Offset Voltage Trim Circuit.

INPUT BIAS CURRENT

The input bias current is approximately 5pA at room temperature and increases with temperature as shown in the typical performance curve "Input Bias Current vs Temperature"

Input stage cascode circuitry assures that the input bias current remains virtually unchanged throughout the full input common-mode range of the OPA130. See the typical performance curve "Input Bias Current vs Common-Mode Voltage."

@ SINGLE, DUAL, QUAD VERSIONS

OPA131 OPA2131 OPA4131

General Purpose FET-INPUT OPERATIONAL AMPLIFIERS

FEATURES

- FET INPUT: I = 50pA max
- LOW OFFSET VOLTAGE: 750µV max
- WIDE SUPPLY RANGE: ±4.5V to ±18V
- SLEW RATE: 10V/µs
- WIDE BANDWIDTH: 4MHz
- EXCELLENT CAPACITIVE LOAD DRIVE
- SINGLE, DUAL, QUAD VERSIONS

DESCRIPTION

The OPA131 series of FET-input op amps provides high performance at low cost. Single, dual and quad versions in industry-standard pinouts allow cost-effective design options.

The OPA131 series offers excellent general purpose performance, including low offset voltage, drift, and good dynamic characteristics.

Single, dual and quad versions are available in DIP and SOIC packages. Performance grades include commercial and industrial temperature ranges.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS TO BE SEED OF THE SPECIFIC AT IONS

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 2k\Omega$, unless otherwise noted.

	This integrated oferage can be o economends that all integral	0	PA131PA, PA2131PA, 4131PA, U	UA	0	PA131PJ, PA2131PJ, PA4131PJ,	UJ	Sparaling Ta Stange Tem
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage OPA131P, U models only vs Temperature(1) vs Power Supply OPA131P, U models only	Operating Temperature Range V _S = ±4.5V to ±18V		±0.2 ±0.2 ±2 50 50	±1 0.75 ±10 200 100	accelliar o	IOITAN	±1.5	mV mV μV/°C μV/V
INPUT BIAS CURRENT ⁽²⁾ Input Bias Current vs Temperature Input Offset Current	V _{CM} = 0V V _{CM} = 0V	See	+5 Typical Cu	±50 urve ±50	30 910 o	MONT		pA pA
NOISE Input Voltage Noise Noise Density, f = 10Hz f = 100Hz f = 1kHz f = 10kHz Current Noise Density, f = 1kHz			21 16 15 15 3		- Impolific	8-Pin Plas 8-Pin Plus 9-8 Surfac 0-8 Surfac 9-8 Surfac 8-Pin Plas	8 8	nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection OPA131P, U models only	V _{CM} = -12V to +14V	(V-)+3 70 80	80 86	(V+)-1		8-Pin Plan O-8 Surfac O-8 Surfac	9	V dB dB
INPUT IMPEDANCE Differential Common-Mode	V _{CM} = 0V		10 ¹⁰ 1 10 ¹² 3		910 53	(4-Pin Plas (4-Pin Plas (4-16*Sunta	98	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain OPA131P, U models only	V _O = -12V to +12V	94 100	110	e esseiq vi	the Alegant and	ehuit, 57-0 lib bne galv	ලේ දින්ත්ත් ප්රේක්ෂ්ර	dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.1% 0.01% Total Harmonic Distortion + Noise	G = -1, 10V Step, C _L = 100pF G = -1, 10V Step, C _L = 100pF 1kHz, G = 1, V _O = 3.5Vrms		4 10 1.5 2 0.0008		Model and	Offsald	ANFOR	MHz V/µs µs µs %
OUTPUT Voltage Output, Positive Negative Short-Circuit Current		(V+)-3 (V-)+3	(V+)-2.5 (V-)+2.5 ±25	tanages or 0	9	ACKAGE N Plasfe I	9-8	V V mA
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	l _O = 0	±4.5	±15	±18 ±1.75	gii friud friud friud	n Plastic D Surface-M Surface-M Surface-M	8-08	V V mA
TEMPERATURE RANGE Operating Range Storage Thermal Resistance, θ _{JA} 8-Pin DIP SO-8 Surface-Mount 14-Pin DIP 50-14, SOL-16 Surface-Mount		-40 -40	100 150 80 110	+85 +125 010 010		n Plastic I in Plastic I Surface M Surface-M	8-08 8-08	°C °C °C/W °C/W °C/W

^{*} Specifications same as OPA131PA, OPA131UA.

NOTES: (1) Guaranteed by wafer test. (2) High-speed test at $T_J = 25$ °C.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	36V
Input Voltage	(V-) -0.7V to (V+) +0.7V
Output Short-Circuit(1)	Continuous
Operating Temperature	
Storage Temperature	
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C

NOTE: (1) Short-circuit to ground, one amplifier per package.

PACKAGE INFORMATION

MODEL		
Single		e Typical Curva
OPA131PJ	8-Pin Plastic DIP	006
OPA131PA	8-Pin Plastic DIP	006
OPA131P	8-Pin Plastic DIP	006
OPA131UJ	SO-8 Surface-Mount	182
OPA131UA	SO-8 Surface-Mount	182
OPA131U	SO-8 Surface-Mount	182
Dual		61
OPA2131PJ	8-Pin Plastic DIP	006
OPA2131PA	8-Pin Plastic DIP	006
OPA2131UJ	SO-8 Surface-Mount	1-(4V) 182
OPA2131UA	SO-8 Surface-Mount	182 08
Quad		08
OPA4131PJ	14-Pin Plastic DIP	010
OPA4131PA	14-Pin Plastic DIP	010
OPA4131UA	SOL-16 Surface-Mount	211
OPA4131NJ	SO-14 Surface-Mount	235
OPA4131NA	SO-14 Surface-Mount	235

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

27		8000.0					
MODEL	PACKAGE	TEMPERATURE RANGE					
Single		3.5-(-9/)					
OPA131PJ	8-Pin Plastic DIP	0 to +70°C					
OPA131PA	8-Pin Plastic DIP	-40°C to +85°C					
OPA131P	8-Pin Plastic DIP	-40°C to +85°C					
OPA131UJ	SO-8 Surface-Mount	0 to +70°C					
OPA131UA	SO-8 Surface-Mount	-40°C to +85°C					
OPA131U	SO-8 Surface-Mount	-40°C to +85°C					
Dual							
OPA2131PJ	8-Pin Plastic DIP	0 to +70°C					
OPA2131PA	8-Pin Plastic DIP	-40°C to +85°C					
OPA2131UJ	SO-8 Surface-Mount	0 to +70°C					
OPA2131UA	SO-8 Surface-Mount	-40°C to +85°C					
Quad		08					
OPA4131PJ	14-Pin Plastic DIP	0 to +70°C					
OPA4131PA	14-Pin Plastic DIP	-40°C to +85°C					
OPA4131UA	SOL-16 Surface-Mount	-40°C to +85°C					
OPA4131NJ	SO-14 Surface-Mount	0 to +70°C					
OPA4131NA	SO-14 Surface-Mount	-40°C to +85°C					

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Input Voltage Noisa

Total Marmonic Distortion - Noise

Valtage Output, Positive

Operating Range

BURR-BROWN®

TYPICAL PERFORMANCE CURVES NO BOMAMROWNERS

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 2k\Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MACHINE MACHINE

APPLICATIONS INFORMATION

OPA131 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors or larger.

OPA131 series op amps are free from unexpected output phase-reversal common with FET op amps. Many FETinput op amps exhibit phase-reversal of the output when the input common-mode voltage range is exceeded. This can occur in voltage-follower circuits, causing serious problems in control loop applications. All circuitry is completely independent in dual and quad versions, assuring normal behavior when one amplifier in a package is overdriven or short-circuited.

OFFSET VOLTAGE TRIM

The OPA131 (single op amp version) provides offset voltage trim connections on pins 1 and 5. Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op amp, not system offset or offset produced by the signal source.

FIGURE 1. OPA131 Offset Voltage Trim Circuit.

INPUT BIAS CURRENT

The input bias current is approximately 5pA at room temperature and increases with temperature as shown in the typical performance curve "Input Bias Current vs Tempera-

Input bias current also varies with common-mode voltage and power supply voltage. This variation is dependent on the voltage between the negative power supply and the common-mode input voltage. The effect is shown in the typical curve "Input Bias Current vs Common-Mode Voltage."

OPA132 OPA2132 OPA4132

High Speed FET-INPUT OPERATIONAL AMPLIFIERS

FEATURES

- FET INPUT: In = 50pA max
- WIDE BANDWIDTH: 8MHz
- HIGH SLEW RATE: 20V/µs
- LOW NOISE: 8nV/√Hz (1kHz)
- LOW DISTORTION: 0.00008%
- HIGH OPEN-LOOP GAIN: 130dB (600Ω load)
- WIDE SUPPLY RANGE: ±2.5 to ±18V
- LOW OFFSET VOLTAGE: 500µV max
- SINGLE, DUAL, AND QUAD VERSIONS

DESCRIPTION

The OPA132 series of FET-input op amps provides high-speed and excellent dc performance. The combination of high slew rate and wide bandwidth provide fast settling time. Single, dual, and quad versions have identical specifications for maximum design flexibility. High performance grades are available in the single and dual versions. All are ideal for general-purpose, audio, data acquisition and communications applications, especially where high source impedance is encountered.

OPA132 op amps are easy to use and free from phase inversion and overload problems often found in common FET-input op amps. Input cascode circuitry provides excellent common-mode rejection and maintains low input bias current over its wide input voltage range. OPA132 series op amps are stable in unity gain and provide excellent dynamic behavior over a wide range of load conditions, including high load capacitance. Dual and quad versions feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.

Single and dual versions are available in 8-pin DIP and SO-8 surface-mount packages. Quad is available in 14-pin DIP and SO-14 surface-mount packages. All are specified for -40°C to +85°C operation.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

OPA2132			OPA132P, OPA2132P		OF OF			
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature(1) vs Power Supply Channel Separation (dual and quad)	Operating Temperature Range $V_8 = \pm 2.5 V \text{ to } \pm 18 V$ $R_1 = 2 k \Omega$	10 A	±0.25 ±2 5 0.2	±0.5 ±10 15	e takaya a	±0.5	±2 * 30	mV μV/°C μV/V μV/V
INPUT BIAS CURRENT Input Bias Current(2) vs Temperature Input Offset Current(2)	V _{CM} = 0V V _{CM} = 0V	See	+5 Typical Cu ±2	±50 urve ±50	rug)	4FT	regrees, reg	pA pA
NOISE Input Voltage Noise Noise Density, f = 10Hz f = 100Hz f = 1kHz f = 10kHz Current Noise Density, f = 1kHz	SE1A40		23 10 8 8 3		tam Aq0	ES:	HUTA	nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	V _{CM} = -12.5V to +12.5V	(V-)+2.5 96	±13 100	(V+)-2.5	* 86	94	N STEA	V dB
INPUT IMPEDANCE Differential Common-Mode	V _{CM} = -12.5V to +12.5V	Do.	10 ¹³ 2 10 ¹³ 6	8% 20dB /S	0.0000 :1	SOTTEC	W DIST	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$R_L = 10k\Omega$, $V_O = -14.5V$ to +13.8V $R_L = 2k\Omega$, $V_O = -13.8V$ to +13.5V $R_I = 600\Omega$, $V_O = -12.8V$ to +12.5V	110 110 110	120 126 130	2.5 to ±	104 104 104	120 120	os sup W OFFS	dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise	$\begin{aligned} G &= -1, \ 10V \ Step, \ C_L = 100pF \\ G &= -1, \ 10V \ Step, \ C_L = 100pF \\ G &= \pm 1 \end{aligned}$ $1kHz, \ G &= 1, \ V_O = 3.5Vrms \\ R_L &= 2k\Omega \\ R_L = 600\Omega \end{aligned}$	ees oi- de	8 ±20 0.7 1 0.5	VERS	N FET-input do performent and wide	JAL, Al OTTO cries of excellent lew must		MHz V/µs µs µs µs %
Negative Positive Negative Short-Circuit Current Capacitive Load Drive (Stable Opera	$R_L = 10k\Omega$ $R_L = 2k\Omega$ $R_L = 600\Omega$	(V+)-1.2 (V-)+0.5 (V+)-1.5 (V-)+1.2 (V+)-2.5 (V-)+2.2	(V+)-0.9 (V-)+0.3 (V+)-1.2 (V-)+0.9 (V+)-2.0 (V-)+1.9 ±40 Typical Co	t leson d	toual, and for maxing grades is All an quisition a where his avec to use	-	100	V V V V V mA
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	l _o = 0	±2.5	±15	±18 ±4.8	d proble amps, Ing mmon-m	overlos sput op lent ce	ion and on FBT-i	V V mA
TEMPERATURE RANGE Operating Range Storage Thermal Resistance, θ _{JA} 8-Pin DIP SO-8 Surface-Mount 14-Pin DIP SO-14 Surface-Mount	A + 8 An+ A + V B n - B n - B n -	-40 -40	100 150 80 110	+85 +125	s cimoni series of excellen ad coadii and qu oirculay tetion, ex	oper on OPAL32 provide ge of lo ce. Data pendent so inter		°C/W °C/W °C/W °C/W

^{*}Specifications same as OPA132P, OPA132U.

NOTES: (1) Guaranteed by wafer test. (2) High-speed test at T_J = 25°C.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	36V
Input Voltage	(V-) -0.7V to (V+) +0.7V
Output Short-Circuit ⁽¹⁾	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C

NOTE: (1) Short-circuit to ground, one amplifier per package.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾					
Single		TOME TO					
OPA132PA	8-Pin Plastic DIP	006					
OPA132P	8-Pin Plastic DIP	006					
OPA132UA	SO-8 Surface-Mount	182					
OPA132U	SO-8 Surface-Mount	182					
Dual		0 1-1-1-1					
OPA2132PA	8-Pin Plastic DIP	006					
OPA2132P	8-Pin Plastic DIP	006					
OPA2132UA	SO-8 Surface-Mount	182					
OPA2132U	SO-8 Surface-Mount	182					
Quad							
OPA4132PA	14-Pin Plastic DIP	010					
OPA4132UA	SO-14 Surface-Mount	235					

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
Single		Q = 1, nil channels
OPA132PA	8-Pin Plastic DIP	-40°C to +85°C
OPA132P	8-Pin Plastic DIP	-40°C to +85°C
OPA132UA	SO-8 Surface-Mount	-40°C to +85°C
OPA132U	SO-8 Surface-Mount	-40°C to +85°C
Dualing	301	100
OPA2132PA	8-Pin Plastic DIP	-40°C to +85°C
OPA2132P	8-Pin Plastic DIP	-40°C to +85°C
OPA2132UA	SO-8 Surface-Mount	-40°C to +85°C
OPA2132U	SO-8 Surface-Mount	-40°C to +85°C
Quad		
OPA4132PA	14-Pin Plastic DIP	-40°C to +85°C
OPA4132UA	SO-14 Surface-Mount	-40°C to +85°C

ELECTROSTATIC AND IN **DISCHARGE SENSITIVIT**

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

At $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 2k\Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) ONAMPORTED JACORY

At $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 2k\Omega$, unless otherwise noted

TYPICAL PERFORMANCE CURVES (CONT) MAMPO 3/13/9 JAO1917

At $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 2k\Omega$, unless otherwise noted.

OPA132 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors or larger.

OPA132 op amps are free from unexpected output phasereversal common with FET op amps. Many FET-input op amps exhibit phase-reversal of the output when the input common-mode voltage range is exceeded. This can occur in voltage-follower circuits, causing serious problems in control loop applications. OPA132 series op amps are free from this undesirable behavior. All circuitry is completely independent in dual and quad versions, assuring normal behavior when one amplifier in a package is overdriven or short-circuited.

OPERATING VOLTAGE

OPA132 series op amps operate with power supplies from ±2.5V to ±18V with excellent performance. Although specifications are production tested with ±15V supplies, most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in the typical performance curves.

OFFSET VOLTAGE TRIM

Offset voltage of OPA132 series amplifiers is laser trimmed and usually requires no user adjustment. The OPA132 (single op amp version) provides offset voltage trim connections on pins 1 and 8. Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op amp, not to adjust system offset or offset produced by the signal source. Nulling offset could degrade the offset voltage drift behavior of the op amp. While it is not possible to predict the exact change in drift, the effect is usually small.

FIGURE 1. OPA132 Offset Voltage Trim Circuit.

INPUT BIAS CURRENT

The FET-inputs of the OPA132 series provide very low input bias current and cause negligible errors in most applications. For applications where low input bias current is crucial, junction temperature rise should be minimized. The input bias current of FET-input op amps increases with temperature as shown in the typical performance curve "Input Bias Current vs Temperature."

The OPA132 series may be operated at reduced power supply voltage to minimize power dissipation and temperature rise. Using $\pm 3V$ supplies reduces power dissipation to one-fifth that at $\pm 15V$.

The dual and quad versions have higher total power dissipation than the single, leading to higher junction temperature. Thus, a warmed-up quad will have higher input bias current than a warmed-up single. Furthermore, an SOIC will generally have higher junction temperature than a DIP at the same ambient temperature because of a larger $\theta_{\rm JA}$. Refer to the specifications table.

Circuit board layout can also help minimize junction temperature rise. Temperature rise can be minimized by soldering the devices to the circuit board rather than using a socket. Wide copper traces will also help dissipate the heat by acting as an additional heat sink.

Input stage cascode circuitry assures that the input bias current remains virtually unchanged throughout the full input common-mode range of the OPA132 series. See the typical performance curve "Input Bias Current vs Common-Mode Voltage."

Tehnic MacCast - 1 5 X - 125m 889-15 10 - Innexed to Product Info: 1890: 519-1132

Precision OPERATIONAL AMPLIFIER

FEATURES LASO and to surgain Tall and

- LOW OFFSET VOLTAGE: 10µV max
- LOW DRIFT: 0.1µV/°C
- HIGH OPEN-LOOP GAIN: 130dB min
- LOW QUIESCENT CURRENT: 1.5mA typ
- REPLACES INDUSTRY-STANDARD OP AMPS: OP-07, OP-77, OP-177, AD707,

DESCRIPTION

The OPA177 and OPA77 precision bipolar op amps feature very low offset voltage and drift. Laser-trimmed offset, drift and input bias current virtually eliminate the need for costly external trimming. Their high performance and low cost make them ideally suited to a wide range of precision instrumentation.

The low quiescent current of the OPA177 and OPA77 dramatically reduce warm-up drift and errors due to

APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER

thermoelectric effects in input interconnections. They provide an effective alternative to chopper-stabilized amplifiers. The low noise of the OPA177 and OPA77 maintains accuracy. To 10 leafly melays taubs of ton

OPA177 and OPA77 performance gradeouts are available. Packaging options include 8-pin plastic DIP, 8-pin ceramic DIP, and SO-8 surface-mount packages.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

ELECTRICAL

OPATZ SPECIFICATIONS

OPA177 SPECIFICATIONS

ELECTRICAL

At $V_S = \pm 15V$, $T_A = +25$ °C unless otherwise noted.

DYTANO	7113	OPA177E			OPA177F			OPA177G			
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Long-Term Input Offset(1) Voltage Stability	00 00 A.		4 0.2	10		10 0.3	25		20 0.4	60	μV μV/Mo
Offset Adjustment Range Power Supply Rejection Ratio	$R_p = 20k\Omega$ $V_S = \pm 3V$ to $\pm 18V$	120	±3 125	5.0	115	Vens	S = MRTH of VE:t = a	110	120	oejsR viqu	mV dB
INPUT BIAS CURRENT Input Offset Current Input Bias Current	2.8 ±2.8		0.3 0.5	1 ±1.5		:	1.5 ±2		3362	2.8 ±2.8	nA nA
NOISE Input Noise Voltage Input Noise Current	1Hz to 100Hz ⁽²⁾ 1Hz to 100Hz	Q ·	85 4.5	150		(Og)-	Of of xHt.0		Density	a Voltage a Voltage	nVrms pArms
INPUT IMPEDANCE Input Resistance	Differential Mode ⁽³⁾ Common-Mode	26	45 200	7.6 35 0.73		1910	H0001 = 1 If of shift.0 101 = 1	18.5	Consity	3 Current 9 Current	MΩ GΩ
INPUT VOLTAGE RANGE Common-Mode Input Range ⁽⁴⁾ Common-Mode Rejection	V _{CM} = ±13V	±13	±14	0.22		. 19	1000t = 1	115		SISTANC	V dB
OPEN-LOOP GAIN Large Signal Voltage Gain	$R_L \ge 2k\Omega$ $V_O = \pm 10V^{(5)}$	5000	12000	da 00S	es			2000	6000	eld todas	V/mV
OUTPUT Output Voltage Swing	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±13.5 ±12.5	±14 ±13	574 0.1	生12	Vi	V _{CM} = ±1	:	ANGE L'Range ction	ETAGE Inpu Rode Inpu Rode Raja	V
Open-Loop Output Resistance	$R_L \ge 1k\Omega$	±12	±12.5	00051	8000	Votan	a Zida, Va	B	Gailn	MIAD TO	Ω
FREQUENCY RESPONSE Slew Rate Closed-Loop Bandwidth	$R_L \ge 2k\Omega$ G = +1	0.1	0.3 0.6	\$1± \$1±	110.5 112.5	: 0	M ≥ 701 A ≥ 284		: 0	singe Swis	V V/μs MHz
POWER SUPPLY Power Consumption	$V_S = \pm 15V$, No Load		40	60	212		ar sign			Tauqui O	mW
Supply Current	$V_S = \pm 3V$, No Load $V_S = \pm 15V$, No Load		3.5 1.3	4.5	1.0		R _c > 2M		SUND	ICY NEST	mW mA

ELECTRICAL

At $V_S = \pm 15V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$, unless otherwise noted.

1 18 - 1101, 40 0 3 1A 3 100	O, dilloss officialise in	otou.									
OFFSET VOLTAGE			4.5	3.5		Load	641 V8± = c				
Input Offset Voltage			10	20		15	40	77.7	20	100	μV
Average Input Offset			0.03	0.1	175	0.1	0.3	O VITTE	0.7	1.2	μV/°C
Voltage Drift(6)	FUGP, unless otherwise		OPATTEP	701 O 107+	FIGS TA		0 brus 33371	190 (0)	Ta 4 485 T	10°85- N	$V_n = \pm 16$
Power Supply Rejection Ratio	V _S = ±3V to ±18V	120	125		110	120		106	115	BEAT ROY	dB
INPUT BIAS CURRENT	007 0		db.	- 0E			Z Packan	1		egalloV to	at O legn
Input Offset Current	001 03		0.5	1.5	1000	* 8	2.2			4.5	nA
Average Input Offset Current	8.0 2	1 1	1.5	25		. 0	40		(0)	85	pA/°C
Drift(7)	1 1 8		8.0	0.3			Pedag	1 9 9		Shi	eoslip\"
Input Bias Current	8 1 1		0.5	±4		*81s	ul Vite = gV		oita*i nai	±6	nA
Average Input Bias Current			8	25			40		15	60	pA/°C
Drift ⁽⁷⁾	PA .		0.0	2.0					100	morning as	
INPUT VOLTAGE RANGE	88	1400	04	1.6					ment Drifted	Chart Cur	tugni gvA
Common-Mode Input Range	a 1 1	±13	±13.5	A.S						Current	v See
Common-Mode Rejection	V _{CM} = ±13V	120	140	8				110	MileC In	enuO epi6	dB
OPEN-LOOP GAIN									BOWA	REDATE	N TUSM
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	2000	6000	±13.5	57±			1000	4000	ugat stoll	V/mV
OUTPUT	6			1,0		V	TEN MON		noise	althur printe	- KOLIMITINO
Output Voltage Swing	$R_L \ge 2k\Omega$	±12	±13							MAD 90	VI
POWER SUPPLY	901	B 000		0000	9008	1013	OA 2002 2		XIII O	rguild'y last	ye sym.
Power Consumption	$V_S = \pm 15V$, No Load		60	75							mW
Supply Current	$V_S = \pm 15V$, No Load		2	2.5	\$3.2		B12 235		* 0	the Switt	mA

^{*} Same as specification for product to left.

NOTES: (1) Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically less than $2\mu V$. (2) Sample tested. (3) Guaranteed by design. (4) Guaranteed by CMRR test condition. (5) To insure high open-loop gain throughout the $\pm 10V$ output range, A_{OL} is tested at $-10V \le V_O \le 0V$, $0V \le V_O \le +10V$, and $-10V \le V_O \le +10V$. (6) OP177EZ and OP177FZ: TCV_{OS} is 100% tested. (7) Guaranteed by end-point limits.

OPA77 SPECIFICATIONS

ELECTRICAL

At V_S = ±15V, T_A = +25°C unless otherwise noted

	The second secon	OPA77E				OPA77F					
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Long-Term Input Offset Voltage Stability(1)	10 28 0.2		10 0.3	25		20 0.4	60		50	100	μV μV/Mo
Offset Adjustment Range Power Supply Rejection Ratio	$R_{TRIM} = 20k\Omega$ $V_S = \pm 3V \text{ to } \pm 18V$	211	±3 0.7	3		r Ve	12005 = d		egniti de Pi note	i memisi	mV μV/V
INPUT BIAS CURRENT Input Offset Current Input Bias Current	6.1		0.3	1.5 ±2		:	2.8 ±2.8		THE	AS CURP of Oursell Countries	nA nA
NOISE Input Noise Voltage Input Noise Voltage Density	0.1Hz to 10Hz ⁽²⁾ f = 10Hz ⁽²⁾ f = 100Hz ⁽²⁾		0.35 8.5 7.5	0.6 18 13		0.38	0.65 20 13.5	der dr	:	y Voltage a Cauroni	μVp-p nV/√Hz nV/√Hz
Input Noise Current Input Noise Current Density	f = 1000Hz ⁽²⁾ 0.1Hz to 10Hz f = 10Hz f = 100Hz f = 1000Hz		7.5 35 0.73 0.26 0.22	11 38 009		e e e	11.5	efilG co	BOWAI	ecnote BDATA	nV/√H: pAp-p pA/√H: pA/√H:
INPUT RESISTANCE Differential Input Resistance ⁽³⁾ Common-mode Input Resistance		26	45 200	00-	18.5		VE1 :: = 90 GH2 :: 3		noise	eR show	MΩ GΩ
INPUT VOLTAGE RANGE Common Mode Input Range Common-Mode Rejection	V _{CM} = ±13V	±13	±14 0.1	1 1 21	- 21	1:	1.6		. 00	lwg apal	V μV/V
OPEN-LOOP GAIN Large-Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	5000	12000	12.8	2000	6000	Dalt is also		ons flash	AugluO s	V/mV
OUTPUT Output Voltage Swing	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$ $R_L \ge 1k\Omega$	±13.5 ±12.5 ±12	±14 ±13 ±12.5	8.8 9.6	1		100 s j		PCNSE adin	BBM VO	V
Open-Loop Output Resistance			60	03			old Mary				Ω
FREQUENCY RESPONSE Slew Rate Closed-Loop Bandwidth	$R_L \ge 2k\Omega$ AVCL = +1	0.1	0.3 0.6	8.5 8.1		bao	187, No. L	V _S =	:	Inem	V/μs MHz
POWER SUPPLY Power Consumption	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load		50 3.5	60 4.5		betos se	wedto se	almo ,ant	les Ta	JAOI 0 G- A	mW mW

ELECTRICAL

At V_S = ±15V, −25°C ≤ T_A ≤ +85°C for OPA77EZ and OPA77FZ, 0°C ≤ T_A ≤ +70°C for OPA77FP and OPA77GP, unless otherwise noted.

OFFSET VOLTAGE	081	011		1 62	CS.		T OL ASPT	# SA .	street don't	minu Md	ng laws
Input Offset Voltage	Z Package		10	45		20	100		1103	is duns	μV
AS 24 *	P Package		10	55	5 5	20	100	100	80	150	μV
Average Input Offset ⁽⁴⁾	Z Package		0.1	0.3		0.2	0.6	E . 1	nembe n	tellO non	μV/°C
Voltage Drift	P Package		0.3	0.6		0.4	1		0.7	1.2	μV/°C
Power Supply Rejection Ratio	$V_S = \pm 3V$ to $\pm 18V$		1 91	3		*	5			menuO	μV/V
INPUT BIAS CURRENT	98		25						Jue YuQ	FERRING	il egimen
Input Offset Current Ava Input Offset Current Drift ⁽⁵⁾			0.5	2.2			4.5				nA
Input Bias Current			1.5				85	1. 1.		SBATJ	pA/°C
			2.4	±4	3 60	45	±6			gril aboli	nA .
Avg Input Bias Current Drift ⁽⁵⁾			8	40	US US	15	60		notice	lest above	pA/°C
INPUT VOLTAGE RANGE Common Mode Input Range Common-Mode Rejection	V 140V	±13	±13.5	008	3 * 055	S V013		is ji	ntsD s	SP GAIN (al Voltag	gis V s
Common-Mode Rejection	$V_{CM} = \pm 13V$		0.1	1			3				μV/V
OPEN-LOOP GAIN Large Signal Voltage Gain	$R_1 \ge 2k\Omega$, $V_0 = \pm 10V$	2000	6000	- 619	1000	4000	1168 S J		- 01	inge Swi	V/mV
OUTPUT										V.1dmili	a crattonic
Output Voltage Swing	$R_L \ge 2k\Omega$	±12	±13	90		beo.	15V, No	BeV B		HOSTATSUBA SINSTI	V
POWER SUPPLY Power Consumption	$V_S = \pm 15V$, No Load	lancoti mi	60	75				at of good	lia fol no	disolitoria	mW

^{*} Same as specification for product to left. NOTES: (1) Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs time over extended period after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5µV. (2) Sample tested. (3) Guaranteed by design. (4) OPA77E: TCV_{OS} is 100% tested on Z package. (5) Guaranteed by end-point limits.

DICE INFORMATION

ODA	77/77	DIE	TODOCE	MILION
UPAI	11111	DIE	TOPOGE	MPHY

PAD	FUNCTION
44 SOUTE	Offset Trim
2	-ln
3	nl+
4	V-
5	NC NC
6	Vo
7	V+
8	Offset Trim

Substrate Bias: -V_S
NC: No Connection.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	63 x 92 ±5	1.60 x 2.34 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Transistor Count	Precuency (Mx)	46
Backing		Gold

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±22
Differential Input Voltage	±30
Input Voltage	±\
Output Short Circuit	Continuou
Operating Temperature:	
Ceramic DIP (Z)	55°C to +125°
Plastic DIP (P), SO-8 (S)	
θ _{IA} (PDIP)	100°C/
θ _{JA} (SOIC)	160°C/
θ _{IA} (Ceramic)	148°C/
Storage Temperature:	
Ceramic DIP (Z)	65°C to +150°
Plastic DIP (P), SO-8 (S)	65°C to +125°
Junction Temperature	+150°
Lead Temperature (soldering, 10s) P, Z packages	+300°
(soldering, 3s) S package	+260°

ORDERING INFORMATION

MODEL	PACKAGE	TEMP. RANGE
OPA177FP	8-Pin Plastic DIP	-40°C to +85°C
OPA177GP	8-Pin Plastic DIP	-40°C to +85°C
OPA177GS	SO-8 Surface-Mount	-40°C to +85°C
OPA177EZ	8-Pin Ceramic DIP	-40°C to +85°C
OPA177FZ	8-Pin Ceramic DIP	-40°C to +85°C
OPA177GZ	8-Pin Ceramic DIP	-40°C to +85°C
OPA77FP	8-Pin Plastic DIP	0°C to +70°C
OPA77GP	8-Pin Plastic DIP	0°C to +70°C
OPA77EZ	8-Pin Ceramic DIP	-25°C to +85°C
OPA77FZ	8-Pin Ceramic DIP	-25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾				
OPA177FP	8-Pin Plastic DIP	006				
OPA177GP	8-Pin Plastic DIP	006				
OPA177GS	SO-8 Surface-Mount	182				
OPA177EZ	8-Pin Ceramic DIP	254				
OPA177FZ	8-Pin Ceramic DIP	254				
OPA177GZ	8-Pin Ceramic DIP	254				
OPA77FP	8-Pin Plastic DIP	006				
OPA77GP	8-Pin Plastic DIP	006				
OPA77EZ	8-Pin Ceramic DIP	254				
OPA77FZ	8-Pin Ceramic DIP	254				

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) MAMPORES LACISYT

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

OPA177/77

2

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. ESD can cause damage ranging from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

Burr-Brown's standard ESD test method consists of five 1000V positive and negative discharges (100pF in series with $1.5k\Omega$) applied to each pin.

Failure to observe proper handling procedures could result in small changes to the OPA177's input bias current.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

APPLICATIONS INFORMATION

The OPA177 is unity-gain stable, making it easy to use and free from oscillations in the widest range of circuitry. Applications with noisy or high impedance power supply lines may require decoupling capacitors close to the device pins. In most cases 0.1µF ceramic capacitors are adequate.

The OPA177 has very low offset voltage and drift. To achieve highest performance, circuit layout and mechanical conditions must be optimized. Offset voltage and drift can be degraded by small thermoelectric potentials at the op amp inputs. Connections of dissimilar metals will generate thermal potential which can mask the ultimate performance of the OPA177. These thermal potentials can be made to cancel by assuring that they are equal in both input terminals.

- Keep connections made to the two input terminals close together.
- Locate heat sources as far as possible from the critical input circuitry.
- 3. Shield the op amp and input circuitry from air currents such as cooling fans.

OFFSET VOLTAGE ADJUSTMENT

The OPA177 and OPA77 have been laser-trimmed for low offset voltage and drift so most circuits will not require external adjustment. Figure 1 shows the optional connection of an external potentiometer to adjust offset voltage. This adjustment should not be used to compensate for offsets created elsewhere in a system since this can introduce excessive temperature drift.

INPUT PROTECTION

The inputs of the OPA177 and OPA77 are protected with 500Ω series input resistors and diode clamps as shown in the simplified circuit diagram. The inputs can withstand $\pm 30 V$ differential inputs without damage. The protection diodes will, of course, conduct current when the inputs are over-driven. This may disturb the slewing behavior of unity-gain follower applications, but will not damage the op amp.

FIGURE 1. Optional Offset Nulling Circuit.

NOISE PERFORMANCE

The noise performance of the OPA177 and OPA77 is optimized for circuit impedances in the range of $2k\Omega$ to $50k\Omega.$ Total noise in an application is a combination of the op amp's input voltage noise and input bias current noise reacting with circuit impedances. For applications with higher source impedance, the OPA627 FET-input op amp will generally provide lower noise. For very low impedance applications, the OPA27 will provide lower noise.

INPUT BIAS CURRENT CANCELLATION

The input stage base current of the OPA177 is internally compensated with an equal and opposite cancellation current. The resulting input bias current is the difference between the input stage base current and the cancellation current. This residual input bias current can be positive or negative.

When the bias current is cancelled in this manner, the input bias current and input offset current are approximately the same magnitude. As a result, it is not necessary to balance the DC resistance seen at the two input terminals (Figure 2). A resistor added to balance the input resistances may actually increase offset and noise.

FIGURE 2. Input Bias Current Cancellation.

OPA234 OPA2234 OPA4234

PRELIMINARY INFORMATION SUBJECT TO CHANGE WITHOUT NOTICE

Low Power, Precision SINGLE-SUPPLY OPERATIONAL AMPLIFIERS

FEATURES

- WIDE SUPPLY RANGE:

 Single Supply: V_s = +2.7V to +36V

 Dual Supply: V_s = ±1.35V to ±18V
- GUARANTEED PERFORMANCE: +2.7V, +5V, and ±15V
- LOW QUIESCENT CURRENT: 250µA/amp
- LOW INPUT BIAS CURRENT: 20nA max
- LOW OFFSET VOLTAGE: 100µV max
- HIGH CMRR, PSRR, and A_{ol}
- SINGLE, DUAL, and QUAD VERSIONS

DESCRIPTION

The OPA234 series of low cost op amps is ideal for single supply, low voltage, low power applications. The combination of low offset voltage, high common-mode rejection, high power supply rejection, and a wide supply range provides excellent accuracy and versatility. Single, dual, and quad versions have identical specifications for maximum design flexibility. These general purpose op amps are ideal for portable and battery powered applications.

OPA234 series op amps operate from either single or dual supplies. In single supply operation, the input common-mode range extends below ground and the output can swing to within 50mV of ground. Excellent phase margin makes the OPA234 series ideal for demanding applications, including high load capacitance. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.

Single version packages are 8-lead DIP, SO-8 surface-mount, and a space-saving MSOP-8 surface-mount. Dual packages are 8-lead DIP and SO-8 surface-mount. Quad packages are 14-lead DIP and SO-14 surface-mount. All are specified for -40°C to +85°C operation.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_A = +25$ °C, $V_S = +5V$, $R_L = 10k\Omega$ connected to $V_S/2$ and $V_{OUT} = V_S/2$, unless otherwise noted.

OPA237			OPA234P, U OPA2234P, U				OPA234PA, UA OPA2234PA, UA OPA4234PA, UA				
PARAMETER	Vs	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS		
OFFSET VOLTAGE Input Offset Voltage vs Temperature(1) vs Power-Supply Channel Separation (Dual, Quad)	+5V ±15V	$V_{CM} = V_S/2 \\ V_{CM} = 0V$ Operating Temperature Range $V_S = +2.7V \text{ to } +30V, V_{CM} = 1.7V$		±30 ±30 ±0.5 3	±100 ±500 ±3 10		:	±250 * * 20	μV μV/°C μV/V μV/V		
INPUT BIAS CURRENT Input Bias Current Input Offset Current	A.	V _{CM} = V _S /2	90	-15 ±0.5	-20 ±2	2-3	JO	-50 ±5	nA nA		
NOISE Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz	36	olifier ^a Serie	mA	25 100	A				nV/√Hz fA/√Hz		
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection(2)	+5V ±15V	V _{CM} = (V-)-0.1V to (V+)-1V	-0.1 (V-)-0.1 100	106	(V+)-1 (V+)-1	90	BAL	ITAE	V V dB		
INPUT IMPEDANCE Differential Common-Mode	mp ratector these	$V_{CM} = V_S/2$	630	10 ⁶ 10 10 ⁸ 5	AROL	2-83 8	-912E, SOT-	elpnië Single Doale i	$\Omega \parallel pF$ $\Omega \parallel pF$		
OPEN-LOOP GAIN(2) Open-Loop Voltage Gain	cent cu a Sing Roatis	$V_0 = (V-)+0.25V$ to $(V+)-1V$ $R_L = 10k\Omega$ $R_L = 2k\Omega$	110 90	120 94	AGE:	IS VOLT	SSOP PESET	:bsuû D WO.	dB dB		
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.1% 0.01% Overload Recovery Time	+5V ±15V +5V ±15V	G = 1, C _L = 100pF 3V Step 10V Step 3V Step 10V Step 10V Step G = 1, V _N = V _S	Aı	350 0.2 16 42 25 46 16	IGE V to « V to ± URRE 1.5M	Y RAI Y: +2.1 ±1.35 ENT C VIDTH	SUPPL Supply: UIESC SAND)	Wipe Single Dual S Oual S OW C WIDE I	kHz V/µs µs µs µs µs µs		
OUTPUT Voltage Output, Positive Negative Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (Stable Operation)	+5V +5V +5V +5V ±15V ±15V +5V ±15V	$\begin{aligned} R_L &= 10 k \Omega \text{ to } V_S/2 \\ R_L &= 10 k \Omega \text{ to } V_S/2 \\ R_L &= 10 k \Omega \text{ to Ground} \\ R_L &= 10 k \Omega \text{ to Ground} \\ R_L &= 10 k \Omega \text{ to Ground} \\ R_L &= 10 k \Omega \text{ to Ground} \\ R_L &= 10 k \Omega \text{ to Ground} \end{aligned}$	(V+)-1 0.25 (V+)-1 0.1 (V+)-1 (V-)+0.5	(V+)-0.6 0.05 (V+)-0.65 0.05 (V+)-0.7 (V-)+0.15 ±11 ±22 1000		WERI OEVICE IDE IDE WENT	RY PO SEE I A CAS AU INS EQUIPI	BATTE PORTJ POMC MEDIC TEST I	V V V V V mA mA pF		
POWER SUPPLY Specified Operating Voltage Single Supply Dual Supply Quiescent Current (per amplifier)	+5V ±15V	the size of an MS the size of	+2.7 ±1.35	250 275	+36 ±18 300 350		:		ν ν μΑ μΑ		
TEMPERATURE RANGE Operating Range Storage Thermal Resistance, θ _{JA} 8-Pin DIP SO-8 Surface-Mount MSOP-8 Surface-Mount 14-Pin DIP SO-14 Surface-Mount *Soecifications same as OPA234P, OPA2	0 1 0 0	A 300 T835 A ni+ +V 5	-40 -40	100 150 175 80 110	+85 +125	a	70029	2	°C °		

^{*}Specifications same as OPA234P, OPA234U.

NOTES: (1) Guaranteed by wafer test. (2) For Single Supply, (V-) = 0V.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPA237 OPA2237 OPA4237

PRELIMINARY INFORMATION SUBJECT TO CHANGE WITHOUT NOTICE

SINGLE-SUPPLY OPERATIONAL AMPLIFIERS Micro Amplifier™ Series

FEATURES

MICRO-SIZE, MINIATURE PACKAGES
 Single: SOT-23-5
 Dual: MSOP-8
 Quad: SSOP-16

● LOW OFFSET VOLTAGE: 250µV max

 WIDE SUPPLY RANGE Single Supply: +2.7V to +36V Dual Supply: ±1.35V to ±18V

● LOW QUIESCENT CURRENT: 200µA

• WIDE BANDWIDTH: 1.5MHz

APPLICATIONS

- BATTERY POWERED INSTRUMENTS
- PORTABLE DEVICES
- PCMCIA CARDS
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT

DESCRIPTION

The OPA237 op amp family is one of Burr-Brown's *MicroAmplifier™* series of miniature products. In addition to small size, these devices feature low offset voltage, low quiescent current, low bias current, and a wide supply range. Single, dual and quad versions have identical specifications for maximum design flexibility. They are ideal for single supply, battery operated, and space-limited applications, such as PCMCIA cards and other portable instruments.

OPA237 series op amps can operate from either single or dual supplies. When operated from a single supply, the input common-mode range extends below ground and the output can swing to within 50mV of ground. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.

Single, dual, and quad are available in surface-mount packages. The single version's package is the ultraminiature 5-lead SOT-23. The dual version comes in a miniature MSOP-8. The quad version's package is the SSOP-16. The SSOP-16 is the same size as an SO-8 surface-mount package and the MSOP-8 is half the size of an SO-8. The SOT-23 is even smaller, half the size of an MSOP-8. Operation is specified from -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85704 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

OPA404			ANUE TIL			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS	
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply Channel Separation (dual and quad)	V _{CM} = V _S /2 Operating Temperature Range V _S = +2.7V to +36V		±100 ±0.5 10	±250 ±5 30	mV μV/°C μV/V μV/V	
INPUT BIAS CURRENT Input Bias Current Input Offset Current	$V_{CM} = (V-)-0.2V$ to $(V+)-1.5V$ $V_{CM} = (V-)-0.2V$ to $(V+)-1.5V$	rasakto keco	-15 ±5	-40 ±10	nA nA	
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz	h-Speed Pr	ill bi	1 30	9	μVp-p nV/√Hz	
NPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	V _{CM} = (V-)-0.2V to (V+)-1.5V	(V–)–0.2 85	90	(V+)-1.5	V dB	
INPUT IMPEDANCE Differential Common-Mode	APPLI		10 ⁸ 4 10 ⁹ 2	eanu	Ω pF Ω pF	
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_O = (V-)+0.5V$ to $(V+)-1$	80	90	BANDWIII CHEW BA	dB	
	G = 1 $S = +5V$, $G = 1$, $3V$ Step, $C_L = 100$ $S = +5V$, $G = 1$, $3V$ Step, $C_L = 100$		1.5 0.5 8 10	OFFSET: BIAS CUP SETTLING	MHz V/μs μs μs	
VOLTAGE OUTPUT: V _S = +2.7V or +5V Positive Negative Positive Negative Negative Negative Negative	$R_L = 100 k\Omega$ to Ground $R_L = 100 k\Omega$ to Ground $R_L = 100 k\Omega$ to $V_S/2$ $R_L = 100 k\Omega$ to $V_S/2$ $R_L = 10 k\Omega$ to $V_S/2$ $R_L = 10 k\Omega$ to $V_S/2$	(V+)-1 0.05 (V+)-1 0.1 (V+)-1 0.5	(V+)-0.75 0.01 (V+)-0.75 0.05 (V+)-0.75 0.35	DARD OU CRIPTI	V V V V	
VOLTAGE OUTPUT: V _S = ±15V Positive Negative Positive Negative	R_L = 100k Ω to Ground R_L = 100k Ω to Ground R_L = 10k Ω to Ground R_L = 10k Ω to Ground	(V+)-1 (V-)+0.5 (V+)-1.5 (V-)+1.2	(V+)-0.75 (V-)+0.3 (V+)-1 (V-)+0.8	ielecarically It offers a current tog rate.	V V V	
OUTPUT Short-Circuit Current Caoacitive Load Drive (stable operation)	978 beeg 11 G = 1 G = 5	drift, and s	±4 200 1000	is current, vi to BIFFT® a	mA pF pF	
POWER SUPPLY Specified Operating Voltage, Single Supply Specified Operating Voltage, Dual Supply Quiescent Current (per amplifier)	V _S = +2.7V to +5V V _S = ±15V	+2.7 ±1.35	200 250	+36 ±18 350 450	V V μΑ μΑ	
TEMPERATURE RANGE Operating Range Storage Thermal Resistance, θ _{JA} 5-Lead SOT-23 Surface-Mount MSOP-8 Surface-Mount SSOP-16 Surface Mount	оме пр-		200 200 150	+85 +125	°C °C °C/W °C/W °C/W	

NOTES: (1) Guaranteed by wafer-level test.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABRIDGED DATA SHEET For Complete Data Sheet Call FaxLine 1-800-548-6133 **Request Document Number 10677**

Quad High-Speed Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 6.4MHz
- HIGH SLEW RATE: 35V/µs
- LOW OFFSET: ±750µV max
- LOW BIAS CURRENT: ±4pA max
- LOW SETTLING: 1.5µs to 0.01%
- STANDARD QUAD PINOUT

OPTOELECTRONICS

- PRECISION INSTRUMENTATION

APPLICATIONS

- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DETECTOR ARRAYS

DESCRIPTION

The OPA404 is a high performance monolithic Difet®(dielectrically-isolated FET) quad operational amplifier. It offers an unusual combination of verylow bias current together with wide bandwidth and fast slew rate.

Noise, bias current, voltage offset, drift, and speed are superior to BIFET® amplifiers.

Laser-trimming of thin-film resistors gives very low offset and drift—the best available in a quad FET op

The OPA404's input cascode design allows high precision input specifications and uncompromised highspeed performance.

Standard quad op amp pin configuration allows upgrading of existing designs to higher performance levels. The OPA404 is unity-gain stable.

Difet®, Burr-Brown Corp. BIFET®, National Semiconductor Corp

International Airport Industrial Park · Mailing Address: PO Box 11400 Tel: (520) 746-1111 · Twx: 910-952-1111 · Cable: BBRCORP

 Tucson, AZ 85734 Telex: 066-6491 · FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132 ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

SPECIFICATIONS

ELECTRICAL

At $V_{CC} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted.

ETHO KAM TYT	Man AAM	OPA4	04AG, KP	KU (1)		OPA404B	G	OPA404SG			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT				+70		0					KP. KU
NOISE								Wat I'M			TUSI
Voltage: f _O = 10Hz			32							SDATIO	nV/√H
f _O = 100Hz	Vm8.1±	100	19	VimS	SELECT TO SELECT		OVDC .	inV.		ecation	nV/√H
$f_0 = 1kHz$			15	ine I	19 1			15° 11'5			nV/√H
$f_0 = 10kHz$			12		500			- : : : .		11	nV/√F
$f_B = 10Hz$ to $10kHz$			1.4		24				* 3		μVrm
$f_B = 0.1Hz$ to $10Hz$	70		0.95		88	1 75				netto	μVp-ј
Current: f _B = 0.1Hz to 10Hz			12	7.10		*	-				fA, p-
$f_0 = 0.1$ Hz thru 20kHz	0054		0.6	WIGH.	oes l	*	ortug	2.07		THEF	fA√H
OFFSET VOLTAGE								TWUT			
Input Offset Voltage	V _{CM} = 0VDC		±260	±1mV			±750			THEFFEU	μV
KP, KU And S 089	UE 1		±750	±2.5mV			OUND:	MOV.	A CONTRACTOR	memu	μV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}		±3							BOWAR	30 μV/°C
KP, KU 8.01-,8.51	+ 01±		±5	8.01	-,7,212	Ort			Range	nide Input	μV/°C
Supply Rejection	$\pm V_{CC} = 12V \text{ to } 18V$	- 80	8100		86	88	OGVON	mage V	aos	ode Rejec	dB
KP, KU		76	100		99	. 08.					dB
Channel Separation	100Hz, $R_L = 2k\Omega$		125			•			00	P GAIN	dB
BIAS CURRENT	08		88		84	28	2ld2	a	nigi	Voltage I	pool-nee
Input Bias Current	V _{CM} = 0VDC		±1	±8		*	±4			TRUTT	pA
KP, KU			±1	±12	a cr	2 754	040	9		110-71	pA
OFFSET CURRENT					Et 1	24	OCTABLE	E av		Sug	ment On
Input Offset Current	V _{CM} = 0VDC		0.5	8	034	81.	410	w aV		memuO t	pA
KP, KU			0.5	12						N NOON	pA
IMPEDANCE				2.05	8.3		OGAmi	120		Inepeal	O fosmi
Differential	L		1013 1								Ω∥ρ
Common-Mode			1014 3						OPPMOAR	same da	Ω∥ρ
VOTAGE RANGE											
Common-Mode Input Range	HOITAMAO	±10.5	+13, -11	Lee V		*		MOD	TAMRO	HAI DI	V
Common-Mode Rejection	V _{IN} = ±10VDC	88	100		92	TEMPERA					dB
KP, KU	PACKAGE	84	100		34	HAR		BOARDA			dB
OPEN-LOOP GAIN, DC	14-Pin Plastin	9)	CPPAGA		2002	4-of-020	910	sussis el	14		PARDARE
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	88	100		92	01.070	0101	Plastic I	mar	(6)	dB
FREQUENCY RESPONSE	. TAPIN Ceramid	E/	CPA404		0.488	01 O'83-	910	MITTER TO T	PAL		2A,505A,5
Gain Bandwidth	Gain = 100	4 0	6.4		5	D 078-	910	Himewood #	9.44	10000	MHz
Full Power Response	20Vp-p, $R_L = 2kΩ$	- 21	570		- 0 est-	or 0165-	910	Ministra Tr	9-41-19		kHz
Slew Rate	$V_0 = \pm 10V$, $R_1 = 2k\Omega$	24	35		28		112.00	ago'hash	am of year	LONGOLAS	V/µs
Settling Time: 0.1%	Gain = -1 , $R_L = 2k\Omega$	xibnead	0.6	2							μѕ
0.01%	C _L = 100 pF, 10V Step	A404U.	1.5			*			*		μѕ
RATED OUTPUT							601	HART	MUMME	AND ST	JUCE
Voltage Output	$R_{I} = 2k\Omega$	±11.5	+13.2, -13.	8	nvst-	*	a company of the				V
Current Output	Vo = ±10VDC	±5	±10		moder				Ofrielia	vissiū tev	mA
Output Resistance	1MHz, Open Loop	anheba	80	6	dvesa.					PoV Jugni	Ω
Load Capacitance Stability	Gain = +1	through	1000		DV8FE.				* 15	apnet e	pF
Short Circuit Current	garagas	±10	±27	±40	1081100	D- = D S	9°651-125°	U.9	Range	ตามสล้ายดส	mA
POWER SUPPLY				7 (4) 174		1				100000000000000000000000000000000000000	
Rated Voltage	inen ±18VDC the absolution of the standard to \$25°C.	esta dega	±15	p7 (2) Fg	120°1	Pro Wildre	On Par = 3	bed inched	ust tie den	Sedimon	VDC
Voltage Range,	ALIGNATIS OF CORE OF SERE	ga gnttsFl	An so i marin	aca Addis		led yanv fit	Short offe	E) S eius	BV. See F	201- 5	MA CHE
Derated Performance		±5		±18		1 3 1				*	VDC
Current, Quiescent	I _O = 0mADC	well/ c	9	10					MOTTA	RUDIA	mA
TEMPERATURE RANGE		-	1		000	DEP) Pack	"" TO "	2"		Tager	geT
Specification 300 80	Ambient Temperature	-25	14-57	+85				-55		+125	°C
KP, KU		0		+70		d No E	7 110		11.25		°C
Operating	Ambient Temperature	-55	100	+125		- and	- 1.*			13.12	°C
KP, KU	2 4 1	-25		+85		near To	717		/	1270	°C
Storage Unit 41 41 41 41 41 41 41 4	Ambient Temperature	-65		+150					1	1	°C
KP, KU	N	-40		+125		0.45	J 4	1	1	1 8 A	°C
θ Junction-Ambient		a 20V+	100			C place	-		./	To Just	°C/W
			120/100	and the second second		The second second	and the second				°C/W

NOTE: (1) OPA404KU may be marked OPA404U.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 15 \text{VDC}$ and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

		OP	A404AG, K	P, KU		OPA404BG			OPA404SG			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
TEMPERATURE RANGE Specification Range KP, KU	Ambient Temperature	-25 0	5199	+85 +70	4Y7.	041565	enom	-55		+125	°C °C	
INPUT OFFSET VOLTAGE Input Offset Voltage KP KU Average Drift KP, KU Supply Rejection	V _{CM} = 0VDC	75	±450 ±1 ±3 ±5 96	2mV ±3.5	96 91 91 91 80		±1.5mV	70	±550	±2.5mV	μV mV μV/°C μV/°C	
BIAS CURRENT Input Bias Current	V _{CM} = 0VDC	4	±32	±200	8,0		±100		±500	±5nA	pA	
OFFSET CURRENT Input Offset Current	V _{CM} = 0VDC	*	17	100	12780 12780		50	MCV	260	2.5nA	pA	
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection KP, KU	V _{IN} = ±10VDC	±10 82 80	±12.7, -10	.6	* 86	• 80°	VS1 os VS	±10 80	+12.6, -10. 88	5	V dB	
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	82	94		86		12/15, to 3/1	80	88	TMSS	ALD dB	
RATED OUTPUT Voltage Output Current Output Short Circuit Current	$R_{L} = 2k\Omega$ $V_{O} = \pm 10VDC$ $V_{O} = 0VDC$	±11.5 ±5 ±8	±12.9, -13 ±9 ±20	±50	7±.		06/0	±11	+12.7, -13. ±8	8 ITABRAU Ine•wo	V mA mA	
POWER SUPPLY Current, Quiescent	I _O = 0mADC		9.3	10.5	0.0				9.4	11	mA	

^{*} Specification same as OPA404AG.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA404KP	14-Pin Plastic DIP	0°C to +70°C
OPA404KU(1)	16-Pin Plastic SOIC	0°C to +70°C
OPA404AG	14-Pin Ceramic DIP	-25°C to +85°C
OPA404BG	14-Pin Ceramic DIP	-25°C to +85°C
OPA404SG	14-Pin Ceramic DIP	-55°C to +125°C

NOTE: (1) OPA404KU may be marked OPA404U.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾			
OPA404KP	14-Pin Plastic DIP	00 MAN 010 MAN, 00			
OPA404KU(2)	16-Pin Plastic SOIC	211			
OPA404AG	14-Pin Ceramic DIP	169			
OPA404BG	14-Pin Ceramic DIP	169			
OPA404SG	14-Pin Ceramic DIP	169			

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) OPA404KU may be marked OPA404U.

ABSOLUTE MAXIMUM RATINGS

Supply	±18VDC
Internal Power Dissipation(1)	1000mW
Differential Input Voltage(2)	±36VDC
Input Voltage Range(2)	±18VDC
Storage Temperature Range P, U = -40°C/+125°	$^{\circ}$ C, G = -65° C/+150 $^{\circ}$ C

Operating Temperature Range P, U = -25°C/+85°C, G = -55°C/+125°C	,
Lead Temperature (soldering, 10s)	,
SOIC (soldering, 3s)+260°C	,
Output Short-Circuit Duration(3) Continuous	5
Junction Temperature +175°C	,

NOTES: (1) Packages must be derated based on $\theta_{JC} = 30^{\circ}\text{C/W}$ or $\theta_{JA} = 120^{\circ}\text{C/W}$. (2) For supply voltages less than $\pm 18\text{VDC}$ the absolute maximum input voltage is equal to: $18\text{V} > V_{JN} > -V_{CC} - 8\text{V}$. See Figure 2. (3) Short circuit may be to power supply common only. Rating applies to $\pm 25^{\circ}\text{C}$ ambient. Observe dissipation limit and $T_{JV} = 10^{\circ}\text{C/W}$.

PIN CONFIGURATION

OPA602

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10753

High-Speed Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 6.5MHz
- HIGH SLEW RATE: 35V/µs
- LOW OFFSET: ±250μV max
- LOW BIAS CURRENT: ±1pA max
- FAST SETTLING TIME: 1µs to 0.01%
- UNITY-GAIN STABLE

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DATA CONVERSION

DESCRIPTION

The OPA602 is a precision, wide bandwidth FET operational amplifier. Monolithic **Difet** (dielectrically isolated FET) construction provides an unusual combination of high speed and accuracy.

Its wide-bandwidth design minimizes dynamic errors. High slew rate and fast settling time allow accurate signal processing in pulse and data conversion applications. Wide bandwidth and low distortion minimize AC errors. All specifications are rated with a $1 k\Omega$ resistor in parallel with 500pF load. The OPA602 is unity-gain stable and easily drives capacitive loads up to 1500pF.

Laser-trimmed input circuitry provides offset voltage and drift performance normally associated with precision bipolar op amps. *Difet* construction achieves extremely low input bias currents (1pA max) without compromising input voltage noise.

The OPA602's unique input cascode circuitry maintains low input bias current and precise input characteristics over its full input common-mode voltage range.

1Vs (7)
-In (2)
-In (3)
-In (3)
-In (4)
-In (5)
-Vs (4)

Difet® Burr-Brown Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At V_S = ±15VDC and T_A = +25°C unless otherwise noted

		OPA602AM/AP/AU O			OP/	A602BM/S	OPA602CM				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE	BIOCHEA BIOCHEAN	184525	POPE TO								
		DATE:				00	113 113				nV/√Hz
	For Comp	BUT Y	MAIN			23	100				
f _O = 100Hz		465	3		100	19					nV/√Hz
	Request Doct	109	194			13			*	1	nV/√Hz
f _O = 10kHz		-				12			*		nV/√Hz
f _B = 10Hz to 10kHz			*			1.4			*		μVrms
f _B = 0.1Hz to 10Hz			*			0.95	1 1 1 1 1 1		*		μVр-р
Current: f _B = 0.1Hz to 10Hz	CONTRACTOR NOT THE PURPOSE AND ADDRESS OF THE PARTY.	NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	Company of the Company	DUDAS INTERPRETATION	200527-0500	12	CHARLES AND A	COURSES!	1500 * 1000	0.00000	fAp-p
f _O = 0.1Hz to 20kHz			*			0.6			*		fA/√Hz
		-		400		0.0					170 1112
OFFSET VOLTAGE	HOISION	100	986	UG	-111	2 1 1					
Input Offset Voltage:											
M Package	V _{CM} = 0VDC	RIA	±300	±1000	13 C	±150	±500	100	±100	±250	μV
P Package	MARIE THAT THEFT AND	3.87	1	2	sed 3	0.5	3.1	199			mV
U Package			1	3							mV
Over Specified Temperature	CONTRACTOR OF THE CONTRACTOR	CONTRACT.	DESIGNATION OF THE PERSON	52005	DATES	100000	minutes a	meser out	R 25 SHE'SH	100E 45	121 201200
M Package			±550			±250	±1000		±200	±500	μV
P, U Packages			±1.5			±0.75	±1.5	100			mV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}	CIA	*	±15		±3	±5	91	CH I	±2	μV/°C
Supply Rejection	$\pm V_S = 12V \text{ to } 18V$	70		110	80	100	10	86	11 1 54	1	dB
1275	THE PARTY OF PARTY OF THE PARTY	70			30	100	-	00	WE A IT	12711	UD
BIAS CURRENT	HEORIGIN INSTRUMENTS	14 6		1. 48		20,210,0	1.8 tH	CHERL	mad	71146	SF .
Input Bias Current	V _{CM} = 0VDC	0.0	±2	±10		±1	±2	TARY	±0.5	±1	pA
Over Specified Temperature	COMPANIE STATE OF THE	0 0	±20	±500		±20	±200		±10	±100	pA
SM Grade	MAR. ULTRASDUND	10 0				±200	±2000	AL CTE	OFFS	LOW	pA
OFFSET CURRENT	TOTAL SERVICE	200			-	2 - 21	-500 Arts	mess po	PARS	1800 1	
Input Offset Current	HONESSHOWN ANDIO E	19 @	1	10	XBU	0.5	2	RAUD	0.5	1	pA
	V _{CM} = 0VDC	57 m			10.8			UNG			
Over Specified Temperature	171200 10002 20 0042	111 199	20	500	1000	20	200	SALU-S	10	100	pA
SM Grade	MOISSEVINOS AT	173.78				200	1000	ATR	116.00	THAT	pA
INPUT IMPEDANCE					P. 11						
Differential			*			1013 1			*		Ω∥pF
Common-Mode						1014 3			*		Ω pF
INPUT VOLTAGE RANGE							1.61	1341516	Sics-	101	
				bar. H		40	N.	36.1	11111	10.11	V
Common-Mode Input Range					±10.2	+13,					V
Common-Mode Rejection	V _{IN} = ±10VDC	75	. T2	dth E	88	-11 100	noision	92	8i 200	e 0PA	dB
	114		1/1	Comins	lesh) tr	NO Sid	Minac)	A sort	grae la	nortene	70
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	$R_1 \ge 1k\Omega$	75	. 0	no last	88	100	aq noi	92	BI, co	bsml	dB
	FIL≥ IK12	/5			00	100	and broke	92	dold b	ania.	QB
FREQUENCY RESPONSE		761									
Gain Bandwidth	Gain = 100	3.5	* 83	orns of	RE47b	6.5	in ag	5	wheat	wide	MHz
Full Power Response	20Vp-p, $R_L = 1kΩ$			nuose	min this	570	Marian W	all have		els sles	kHz
Slew Rate	$V_O = \pm 10V$, $R_L = 1k\Omega$	20		11111-010	24	35	ATTENDED T	28	DOM: Y	Cars Til	V/µs
Settling Time: 0.1%	Gain = -1 , $R_L = 1k\Omega$	other		оп ару	RISVEC	0.6	SC RRC	pg at 1	III 8 8 5 DI	ag Isa	μѕ
0.01%	C ₁ = 500pF, 10V Step	(8)	* 400	minim	ortion	1.0	bns ri	Similar	ed shiv	Z znoi	μѕ
2,000,00	O[= 000pr , 104 0tcp	500	- 197		LICILIE			ALC: YELDON	17.3	SOURCE	μο
RATED OUTPUT	4		64	1 8 9	HW: DB	ET 316	anona	Honds	IIIA 18	lonis :	RA.
Voltage Output	$R_L = 1k\Omega$	±11	51	PA602	±11.5	+12.9,	500g	liw le	Legge 3	istor (y V
			. (90)	ionds	withou	-13.8	sh vlie	is hon	alditte e	i rozuti	22.2
Current Output	$V_O = \pm 10 VDC$		· du	Charles	±15	±20	an fine		STORES C		mA
Output Resistance	1MHz, Open Loop		*			80			*	d605T	Ω
Load Capacitance Stability	Gain = +1			and the same	-0.0	1500	La Co		*		pF
Short Circuit Current		±25	• 98	alov B	±30	±50	CHURA 3	ro madi	ii bamii	1731-152	mA
POWER SUPPLY			735	व्यप् रांग	N Arabia	y assoc	LEGICAL CY	T STOPPING	HUNDA	Titab t	110
Rated Voltage			. 29	schier	netion	12000	Dife	prints.	do sale	said a	VDC
				1		±15		7	do . min	Barry an	VDC
Voltage Range,	2 3		3100	miliar (KEM A	(1) RIGH	BUC SI	HE MEN	II WOLL	Tamer	20
Derated Performance	3 3			*	±5	Agina	±18	TY DIRE	ii gmizi	motom	VDC
Current, Quiescent	I _O = 0mADC	N 15 0	*	*	18.57	3	4			* 3.0	mA
Over Specified Temperature	6 6	N. Y. I	* -51	my ma	CITORIS	3.5	4.5		602's	A TO	mA
TEMPERATURE RANGE	(8) (1)		451	norlo II	igni az	sore br	in Inst	Has cut	Lucyer	wof an	ist
Specification	Ambient Temperature			diev 3	-25		+85	un			°C
SM Grade	. and one remperatore		98	MIGV 3	-55	THE SELECT	+125		DI SOVICE	STATIST	°C
Operating: M Package	Ambient Temperature				-55 -55		+125		178	.301	000
	Ambient remperature	05		.05					1 1 1 1		
P, U Packages	4-11-17	-25		+85	-25		+85			1 1 2 2	°C
Storage: M Package	Ambient Temperature			*	-65		+150		on District	THUST SEE	°C
				+125	-40		+125		The second second	7.000	°C
P, U Packages		-40		+125	-40	200	TIZJ				°C/W

* Same specifications as OPA602BM.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18VDC
Internal Power Dissipation (T, ≤ +175°C)	1000mW
Differential Input Voltage	Total V _S
Input Voltage Range	
Storage Temperature Range	
M Package	65°C to +150°C
P and U Packages	
Operating Temperature Range	
M Package	55°C to +125°C
P and U Packages	25°C to + 85°C
Lead Temperature	
M and P Packages (soldering, 10s)	
	+260°C
Output Short Circuit to Ground (+25°C)	
	+175°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾				
OPA602AM	TO-99	001				
OPA602BM	TO-99	001				
OPA602CM	TO-99	001				
OPA602SM	TO-99	001				
OPA602AP	Plastic DIP	006				
OPA602BP	Plastic DIP	006				
OPA602AU	Plastic SOIC	182				

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

@ BANDWIDTH: 100MHz. G = 1 to 10

FEATURES

@ SLEW RATE: 1000V/us

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	OFFSET VOLTAGE MAX (μV) AT 25°C		
OPA602AM	TO-99	-25 to +85°C	±1000		
OPA602BM	TO-99	-25 to +85°C	±500		
OPA602CM	TO-99	-25 to +85°C	±250		
OPA602SM	TO-99	-55 to +125°C	±500		
OPA602AP	Plastic DIP	-25 to +85°C	±2000		
OPA602BP	Plastic DIP	-25 to +85°C	±1000		
OPA602AU	Plastic SOIC	-25 to +85°C	±3000		

PIN CONFIGURATIONS

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPA603

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11026

High Speed, Current-Feedback OPERATIONAL AMPLIFIER

FEATURES

- BANDWIDTH: 100MHz, G = 1 to 10
- SLEW RATE: 1000V/µs
- FAST SETTLING TIME: 50ns to 0.1%
- WIDE SUPPLY RANGE: ±4.5 to ±18V
- HIGH OUTPUT CURRENT: ±150mA peak
- 8-PIN PLASTIC MINI-DIP PACKAGE
- SOL-16 SURFACE-MOUNT PACKAGE

APPLICATIONS

- VIDEO AMPLIFIER
- PULSE AMPLIFIER
- SONAR, ULTRASOUND CIRCUITRY
- ATE PIN DRIVERS
- LINE DRIVERS
- FAST DATA ACQUISTION
- WAVEFORM GENERATORS

DESCRIPTION

The OPA603 is a high-speed current-feedback op amp with guaranteed specifications at both $\pm5V$ and $\pm15V$ power supplies. It can deliver full $\pm10V$ signals into 150Ω loads with up to $1000V/\mu s$ slew rate. This allows it to drive terminated 75Ω cables. With 150mA peak output current capability it is suitable for driving load capacitance or long lines at high speed.

In contrast with conventional op amps, the currentfeedback approach provides nearly constant bandwidth and settling time over a wide range of closedloop voltage gains.

The OPA603 is available in a plastic 8-pin dual-in-line and SOL-16 surface-mount packages, specified for the industrial temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

W/	OPASSBAPIA				OPA603AP/A	U	
PARAMETER	9YT	MUM	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT OFFSET VOLTAGE Initial vs Temperature vs Common-Mode Voltage vs Supply (tracking) Voltage vs Supply (non-tracking)(1)	8 88 88 98	50 75 56	$V_{CM} = \pm 10V$ $V_{S} = \pm 12V \text{ to } \pm 18V$ $ V_{S} = 12V \text{ to } 18V$	50 80 55	8 60 85 60	E COLTAGE 19 (I) (II) (II) (II)	mV μV/°C dB dB dB
+INPUT BIAS CURRENT Initial vs Temperature vs Common-Mode vs Supply (tracking) vs Supply (non-tracking)(1)	30 300 300 300 200		$V_{CM} = \pm 10V$ $V_{S} = \pm 12V \text{ to } \pm 18V$ $ V_{S} = 12V \text{ to } 18V$		30 200 50 150	5 500 100 300	μΑ nA/°C nA/V nA/V nA/V
-INPUT BIAS CURRENT Initial vs Temperature vs Common-Mode vs Supply (tracking) vs Supply (non-tracking)(1)	300 300 500 2500		$V_{CM} = \pm 10V$ $V_S = \pm 12V \text{ to } \pm 18V$ $ V_S = 12V \text{ to } 18V$		300 200 300 1500	25 600 500 2000	μΑ nA/°C nA/V nA/V nA/V
INPUT IMPEDANCE +Input Input Input	3.3 H.2 30 H.2				5 2 30 2	8	MΩ pF Ω pF
OPEN LOOP CHARACTERISTIC Transresistance Transcapacitance	S 056 2.5	225	V _O = ±10V VS± 4.5V	300	440 1.8	RACTERISTE	kΩ pF
OUTPUT CHARACTERISTICS Voltage Peak Current Short-Circuit Current(2) Output Resistance, Open-Loop	150 150 250 250 80		$R_L = 150\Omega$ GeV = $\sqrt{9}$ $V_O = 0V$ $V_O = 0V$	±10	±12 150 250 70	TERISTICS NO.	V mA mA
FREQUENCY RESPONSE Small-Signal Bandwidth ⁽³⁾ Gain Flatness, ±0.5dB Full-Power Bandwidth Differential Gain Differential Phase	140 65 20 0.03 0.025		G = +2 $V_O = 20Vp-p$ $f = 4.43MHz, V_O = 1V$ $f = 4.43MHz, V_O = 1V$	70 35	160 75 10 0.03 0.025	POMSE Children Social citi	MHz MHz MHz % Degrees
TIME DOMAIN RESPONSE Propagation Delay Rise and Fall Time Settling Time to 0.10% Slew Rate	15 20 80 730		G = +2 ****		10 10 50 1000	SPONSE	ns ns ns V/µs
DISTORTION 2nd Harmonic Distortion 3rd Harmonic Distortion	-67 1 -78	G	$G = +2$, $R_L = 100\Omega$, $f = 10MHz$ $V_O = 0.2Vp-p$ $V_O = 0.2Vp-p$	-60 -70	-65 -90	noine	dBc dBc
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current	ěž IS±	204		±4.5	±15	±18 ±25	V JAGUS ASWO N V V MA
TEMPERATURE RANGE Specification Storage		85- 95-		-25 -40		+85 +150	°C
THERMAL RESISTANCE, θ_{JUNCTI}	ON-AMBIENT	The same	Soldered to Printed Circuit	8	90	ANCE, SANCE	°C/W

NOTES: (1) One power supply fixed at 15V; the other supply varied from 12V to 18V. (2) Observe power derating curve. (3) See bandwidth versus gain curve, Figure 5.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS, V. = ±15V

SPECIFICATIONS, $V_s = \pm 5V$

ELECTRICAL

 $\Gamma_{\rm A}$ = +25°C, R_i = 75 Ω unless otherwise noted

0)	APASSSAPA						
PARAMETER XAM	917	55180	CONDITIONS	MIN	TYP	MAX	HUNITS
INPUT OFFSET VOLTAGE Initial vs Temperature vs Common-Mode vs Supply (tracking) vs Supply (non-tracking)(1)	8 08 88 08	98 98 38	V _{CM} = ±3V V V _S = ±4V to ±6V V _S = 4V to 6V V _S = 4V to 6V V _S	50 75 55	8 55 80 60	6 Voltage	mV mV dB dB dB dB
+INPUT BIAS CURRENT Initial vs Temperature vs Common-Mode vs Supply (tracking) vs Supply (non-tracking)(1)	98 980 98 98		V _{CM} = ±3V V V _S = ±4V to ±6V V V _S = 4V to 6V V V V V V V V V V V V V V V V V V V		30 350 100 200	5 600 200 300	μΑ nA/°C nA/V nA/V nA/V
INPUT BIAS CURRENT Initial vs Temperature vs Common-Mode vs Supply (tracking) vs Supply (non-tracking)(1).	300 200 300 1500		$V_{CM} = \pm 3V$ $V_S = \pm 4V \text{ to } \pm 6V$ $ V_S = 4V \text{ to } 6V$		300 300 500 2500	25 600 700 3000	μΑ nA/°C nA/V nA/V nA/V
+Input OM -Input O					3.3 2 30 2		MΩ pF Ω pF
OPEN LOOP CHARACTERISTIC Transresistance Transcapacitance	S 014 8.1.	390	V _O = ±2V VO(= = 0V	225	330 2.4	PACTERISTN	MHO 9000 ME90 MONTH KΩ STATES MONTH PEROPERTY
OUTPUT CHARACTERISTICS Voltage Peak Current Short-Circuit Current(2) Output Resistance, Open-Loop		07±	$R_L = 75\Omega$ SSS = A $V_O = 0V$ $VO = 0V$	±2	±2.75 150 250 80	TERISTICS IdCl Coen-Loop	V egation mA Asse MA CAm Ω bottom
FREQUENCY RESPONSE Small-Signal Bandwidth ⁽³⁾ Gain Flatness, ±0.5dB Full-Power Bandwidth Differential Gain Differential Phase	150 75 10 0.03 0.03		G = +2 1.43MHz, $V_O = 1V$, $R_L = 150\Omega$ 1.43MHz, $V_O = 1V$, $R_L = 150\Omega$		140 65 20 0.03 0.025	PONSE Woth® 1.5dB	MHz MHz MHz % Degrees
TIME DOMAIN RESPONSE Propagation Delay Rise and Fall Time Settling Time to 0.10% Slew Rate	10 16 50 1000		G = +2, R _L = 100Ω		15 20 60 750		ns ns ns V/µs
DISTORTION 2nd Harmonic Distortion 3rd Harmonic Distortion	88-	G 00-	= +2, $R_L = 100\Omega$, $f = 10MHz$ $V_O = 0.2Vp-p$ $V_O = 0.2Vp-p$	Ð	-67 -78	noine noite	MOTTACTAIC
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current	31±	6.9e		±4.5	±5 ±21	y Voltage	V JAHUS REWON MA WATER
TEMPERATURE RANGE Specification Storage		8S- 00-		-25 -40		+85 +150	C SACTOR
THERMAL RESISTANCE, θ_{JUNCTI	ON-AMBIENT		Soldered to Printed Circuit		90	DINGE, SLING	°C/W

NOTES: (1) One power supply fixed at 5V; the other supply varied from 4V to 6V. (2) Observe power derating curve. (3) See bandwidth versus gain curves, Figure 5.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	±V _s
Differential Input Voltage	±6V
Power Dissipation	See derating curve
Operating Temperature	+100°C
Storage Temperature	+150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
(soldering SOL-16 package, 3s)	+260°C

ORDERING INFORMATION

MODEL	PACKAGE	SPECIFIED TEMPERATURE RANGE
OPA603AP	Plastic DIP	-25°C to +85°C
OPA603AU	SOL-16	-25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA603AP	Plastic DIP	BATS MA 006 THU
OPA603AU	SOL-16	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

DICE INFORMATION

O DATA ACQUISITION

OPA603	DIE	TOPO	GRA	PHY

PAD	FUNCTION
DIV DOS	Noninverting Input
2	loup rigit-Vs soment
3	Laser Alignment
4	Vo (Output)
5928	+V _S
6	bleiv on RT molecul
	(Trim Sense Point)
7 7	CE
	(Compensation Capacitor
	Inverting Input

Substrate Bias: Dielectrically Isolated. Recommend tying to +V_S.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	94 x 69 ±5	2.39 x 1.75 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		Gold

FET-Input, Low Distortion OPERATIONAL AMPLIFIER

FEATURES

- LOW DISTORTION: 0.0003% at 1kHz
- LOW NOISE: 10nV/√Hz
- HIGH SLEW RATE: 25V/μs
- WIDE GAIN-BANDWIDTH: 20MHz
- UNITY-GAIN STABLE
- WIDE SUPPLY RANGE: V_s = ±4.5 to ±24V
- DRIVES 600Ω LOAD
- DUAL VERSION AVAILABLE (OPA2604)

DESCRIPTION

The OPA604 is a FET-input operational amplifier designed for enhanced AC performance. Very low distortion, low noise and wide bandwidth provide superior performance in high quality audio and other applications requiring excellent dynamic performance.

New circuit techniques and special laser trimming of dynamic circuit performance yield very low harmonic distortion. The result is an op amp with exceptional sound quality. The low-noise FET input of the OPA604 provides wide dynamic range, even with high source impedance. Offset voltage is laser-trimmed to minimize the need for interstage coupling capacitors.

The OPA604 is available in 8-pin plastic mini-DIP and SO-8 surface-mount packages, specified for the -25°C to +85°C temperature range.

APPLICATIONS

- PROFESSIONAL AUDIO EQUIPMENT
- PCM DAC I/V CONVERTER
- SPECTRAL ANALYSIS EQUIPMENT
- ACTIVE FILTERS
- TRANSDUCER AMPLIFIER
- DATA ACQUISITION

NOTE: (1) Patents Granted: #5053718, 5019789

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

PIN CONFIGURATION

SPECIFICATIONS AND AND ADDRESS AND ADDRESS

ELECTRICAL

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted. The of fundamental supplies

		Storage Temp		OPA604AP, A	U	
PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Average Drift Power Supply Rejection	uA (e8 grihobles) enut	V _S = ±5 to ±24V	80	±1 ±8 100	±5	mV μV/°C dB
INPUT BIAS CURRENT(1) Input Bias Current Input Offset Current	PACKAGE	V _{CM} = 0V V _{CM} = 0V		50 ±3		pA pA
NOISE Input Voltage Noise Noise Density: f = 10Hz f = 100Hz f = 1kHz f = 10kHz Voltage Noise, BW = 20Hz t Input Bias Current Noise Current Noise Density, f = 0		TOTAL	C NSITIVI by BSD. Bur- be handled w	10 1.5	The second second	nV/√Hz nV/√Hz nV/√Hz nV/√Hz µVp-p fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	F SO-8 Surrace-Mount stalled dirawing and dimension do: C of Surr-Brown IC Data B	$V_{CM} = \pm 12V$	±12 80	±13 100		V dB
INPUT IMPEDANCE Differential Common-Mode		ts may matric	uprio betinge	10 ¹² 8 10 ¹² 10	ice failure. F ible to damag	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain		$V_O = \pm 10V$, $R_L = 1k\Omega$	80	100		dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.01% 0.1% Total Harmonic Distortion +	Noise (THD+N)	G = 100 $20Vp\text{-p}, R_L = 1k\Omega$ G = -1, 10V Step G = 1, f = 1kHz $V_Q = 3.5Vrms, R_1 = 1k\Omega$	15	20 25 1.5 1 0.0003		MHz V/μs μs μs
OUTPUT Voltage Output Current Output Short Circuit Current Output Resistance, Open-Lo	ор	$R_{L} = 600\Omega$ $V_{O} = \pm 12V$	±11	±12 ±35 ±40 25		V mA mA
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current			±4.5	±15 ±5.3	±24 ±6	V V mA
TEMPERATURE RANGE Specification Storage Thermal Resistance ⁽²⁾ , $\theta_{\rm JA}$			-25 -40	90	+85 +125	°C/W

NOTES: (1) Typical performance, measured fully warmed-up. (2) Soldered to circuit board—see text.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±25V
Input Voltage	(V-)-1V to (V+)+1V
Output Short Circuit to Ground	
Operating Temperature	
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s) AP	+300°C
Lead Temperature (soldering, 3s) AU	+260°C

ORDERING INFORMATION

MODEL	PACKAGE	TEMP. RANGE
OPA604AP	8-Pin Plastic DIP	-25°C to +85°C
OPA604AU	SO-8 Surface-Mount	-25°C to +85°C

▲ ELECTROSTATIC

DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA604AP	8-Pin Plastic DIP	= 1 vriene (1006oM teenus
OPA604AU	SO-8 Surface-Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES UD BOMAMRORRER JADISYT

 $T_{\star} = +25^{\circ}C$, $V_{\circ} = \pm 15V$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPO 1919 JACISYT

T_A = +25°C, V_o = ±15V unless otherwise noted.

APPLICATIONS INFORMATION

OFFSET VOLTAGE ADJUSTMENT

The OPA604 offset voltage is laser-trimmed and will require no further trim for most applications. As with most amplifiers, externally trimming the remaining offset can change drift performance by about $0.3\mu V/^{\circ}C$ for each $100\mu V$ of adjusted offset. The OPA604 can replace many other amplifiers by leaving the external null circuit unconnected.

The OPA604 is unity-gain stable, making it easy to use in a wide range of circuitry. Applications with noisy or high impedance power supply lines may require decoupling capacitors close to the device pins. In most cases, a $1\mu F$ tantalum capacitor at each power supply pin is adequate.

FIGURE 1. Offset Voltage Trim.

DISTORTION MEASUREMENTS

The distortion produced by the OPA604 is below the measurement limit of virtually all commercially available equipment. A special test circuit, however, can be used to extend the measurement capabilities.

Op amp distortion can be considered an internal error source which can be referred to the input. Figure 2 shows a circuit which causes the op amp distortion to be 101 times greater than normally produced by the op amp. The addition of R_3 to the otherwise standard noninverting amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reduced by a factor of 101. This extends the measurement limit, including the effects of the signal-source purity, by a factor of 101. Note that the input signal and load applied to the op amp are the same as with conventional feedback without R_2 .

Validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with the Audio Precision System One which greatly simplifies such repetitive measurements. The measurement technique can, however, be performed with manual distortion measurement instruments.

CAPACITIVE LOADS

The dynamic characteristics of the OPA604 have been optimized for commonly encountered gains, loads and operating conditions. The combination of low closed-loop gain and capacitive load will decrease the phase margin and may lead to gain peaking or oscillations. Load capacitance reacts with the op amp's open-loop output resistance to form an additional pole in the feedback loop. Figure 3 shows various circuits which preserve phase margin with capacitive load. Request Application Bulletin AB-028 for details of analysis techniques and applications circuits.

For the unity-gain buffer, Figure 3a, stability is preserved by adding a phase-lead network, R_C and C_C. Voltage drop

across $R_{\rm C}$ will reduce output voltage swing with heavy loads. An alternate circuit, Figure 3b, does not limit the output with low load impedance. It provides a small amount of positive feedback to reduce the net feedback factor. Input impedance of this circuit falls at high frequency as op amp gain rolloff reduces the bootstrap action on the compensation network.

Figures 3c and 3d show compensation techniques for noninverting amplifiers. Like the follower circuits, the circuit in Figure 3d eliminates voltage drop due to load current, but at the penalty of somewhat reduced input impedance at high frequency.

Figures 3e and 3f show input lead compensation networks for inverting and difference amplifier configurations.

NOISE PERFORMANCE

Op amp noise is described by two parameters—noise voltage and noise current. The voltage noise determines the noise performance with low source impedance. Low noise bipolar-input op amps such as the OPA27 and OPA37 provide very low voltage noise. But if source impedance is greater than a few thousand ohms, the current noise of bipolar-input op amps react with the source impedance and

will dominate. At a few thousand ohms source impedance and above, the OPA604 will generally provide lower noise.

POWER DISSIPATION

The OPA604 is capable of driving a 600Ω load with power supply voltages up to ± 24 V. Internal power dissipation is increased when operating at high power supply voltage. The typical performance curve, Power Dissipation vs Power Supply Voltage, shows quiescent dissipation (no signal or no load) as well as dissipation with a worst case continuous sine wave. Continuous high-level music signals typically produce dissipation significantly less than worst case sine waves.

Copper leadframe construction used in the OPA604 improves heat dissipation compared to conventional plastic packages. To achieve best heat dissipation, solder the device directly to the circuit board and use wide circuit board traces.

OUTPUT CURRENT LIMIT

Output current is limited by internal circuitry to approximately ±40mA at 25°C. The limit current decreases with increasing temperature as shown in the typical curves.

FIGURE 2. Distortion Test Circuit.

FIGURE 3. Driving Large Capacitive Loads.

NOTE: Design equations and component values are approximate. User adjustment is required for optimum performance.

FIGURE 4. Three-Pole Low-Pass Filter.

FIGURE 5. Three-Pole Generalized Immittance Converter (GIC) Low-Pass Filter.

FIGURE 6. Differential Amplifier with Low-Pass Filter.

FIGURE 7. High Impedance Amplifier.

FIGURE 8. Digital Audio DAC I-V Amplifier.

FIGURE 9. Using Two OPA604 Op Amps to Double the Output Current to a Load.

SOUND QUALITY

The following discussion is provided, recognizing that not all measured performance behavior explains or correlates with listening tests by audio experts. The design of the OPA604 included consideration of both objective performance measurements, as well as an awareness of widely held theory on the success and failure of previous op amp designs.

SOUND QUALITY

The sound quality of an op amp is often the crucial selection criteria—even when a data sheet claims exceptional distortion performance. By its nature, sound quality is subjective. Furthermore, results of listening tests can vary depending on application and circuit configuration. Even experienced listeners in controlled tests often reach different conclusions.

Many audio experts believe that the sound quality of a high performance FET op amp is superior to that of bipolar op amps. A possible reason for this is that bipolar designs generate greater odd-order harmonics than FETs. To the human ear, odd-order harmonics have long been identified as sounding more unpleasant than even-order harmonics. FETs, like vacuum tubes, have a square-law I-V transfer function which is more linear than the exponential transfer function of a bipolar transistor. As a direct result of this square-law characteristic, FETs produce predominantly even-order harmonics. Figure 10 shows the transfer function of a bipolar transistor and FET. Fourier transformation of both transfer functions reveals the lower odd-order harmonics of the FET amplifier stage.

FIGURE 10. I-V and Spectral Response of NPN and IFET.

Burr-Brown IC Data Book-Linear Products

THE OPA604 DESIGN

The OPA604 uses FETs throughout the signal path, including the input stage, input-stage load, and the important phase-splitting section of the output stage. Bipolar transistors are used where their attributes, such as current capability are important, and where their transfer characteristics have minimal impact.

The topology consists of a single folded-cascode gain stage followed by a unity-gain output stage. Differential input transistors J_1 and J_2 are special large-geometry, P-channel JFETs. Input stage current is a relatively high $800\mu A$, providing high transconductance and reducing voltage noise. Laser trimming of stage currents and careful attention to symmetry yields a nearly symmetrical slew rate of $\pm 25V/\mu s$.

The JFET input stage holds input bias current to approximately 50pA or roughly 3000 times lower than common bipolar-input audio op amps. This dramatically reduces noise with high-impedance circuitry.

The drains of J_1 and J_2 are cascoded by Q_1 and Q_2 , driving the input stage loads, FETs J_3 and J_4 . Distortion reduction circuitry (patented) linearizes the open-loop response and increases voltage gain. The 20MHz bandwidth of the OPA604 further reduces distortion through the user-connected feedback loop.

The output stage consists of a JFET phase-splitter loaded into high speed all-NPN output drivers. Output transistors are biased by a special circuit to prevent cutoff, even with full output swing into 600Ω loads.

OPA606

ABRIDGED DATA SHEET

For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10598

Wide-Bandwidth Difet® OPERATIONAL AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 13MHz typ
- HIGH SLEW RATE: 35V/µs typ
- LOW BIAS CURRENT: 10pA max at T_A = +25°C
- LOW OFFSET VOLTAGE: 500µV max
- LOW DISTORTION: 0.0035% typ at 10kHz

DESCRIPTION

The OPA606 is a wide-bandwidth monolithic dielectrically-isolated FET (*Difet**) operational amplifier featuring a wider bandwidth and lower bias current than BIFET* LF156A amplifiers. Bias current is specified under warmed-up and operating conditions, as opposed to a junction temperature of +25°C.

APPLICATIONS

- OPTOELECTRONICS
- DATA ACQUISITION
- TEST EQUIPMENT
- AUDIO AMPLIFIERS

Laser-trimmed thin-film resistors offer improved offset voltage and noise performance.

The OPA606 is internally compensated for unity-gain stability.

BIFET®; National Semiconductor Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At $V_{OC} = \pm 15 VDC$ and $T_A = T_{MH}$ to T_{MAX} unless otherwise noted.

			OPA606KI	M		OPA606LN	Л		OPA606KF	AS BOUD	EUPERA
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FREQUENCY RESPONSE									(MBBAT	OV TREE	90 TU9
Gain Bandwidth	Small Signal	10	12.5	VINSE	00311	13		9	12	epotioV !	MHz
Full Power Response	20Vp-p, $R_1 = 2kΩ$	23	515		8±	550			470	310	kHz
Slew Rate	$V_0 = \pm 10V$,	22	33		25	35		20	30	nottos	V/μs
VAVe 8212 81±	$R_1 = 2k\Omega$	±10		001±	£13			1			
Settling Time(1): 0.1%	Gain = -1,		1.0			1.0			1.0	OTMER	μs
Ag 888 f81±	$R_L = 2k\Omega$	6113		988±	921±1			Vous		Inemia?	asid tup
0.01%	10V Step	0112	2.1		700	2.1		367,	2.1	-	IIS
Total Harmonic Distortion	G = +1, 20Vp-p	2:	0.0035	accu.	£14	0.0035			0.0035	URRENT Current	%
	$R_L = 2k\Omega$	62		0272	612	-		NON			eatiO tuq
	f = 10kHz									RANGE	BDATIO
INPUT OFFSET VOLTAGE(2)	013	G.F.F.	E-013:		THE !	A.012		1000	egnaR	pului apo	d-nommo
Input Offset Voltage	V _{CM} = 0VDC	98	±180	±1.5mV	28 1	±100	±500	= 18 V	±300	±3mV	μV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}	1-13	±5			±3	±5		±10	IP GAIN,	μV/°C
Supply Rejection	$V_{CC} = \pm 10V$ to $\pm 18V$	82	100		90	104		80	90	Voltage (dB
			±10	±79		±6	±32		±32	±100	μV/V
BIAS CURRENT(2)	A,012	±12.0	8.11.5		Site	8.07± [2kΩ -	-SR	1	tugi	O epatio
Input Bias Current	V _{CM} = 0VDC	014	±7	±15	01±	2 ±5	±10	Vous	±8	±25	D pA
OFFSET CURRENT(2)						1			1	ATIGAR	a gruno
Input Offset Current	V _{CM} = 0VDC	6.4	±0.6	0±10	8.8	±0.4	±5	la of	±1	±15	O pA
NOISE				- Ar - Art -							(a)
Voltage, fo = 10Hz	100% tested (L)	dn peuroe	37	D OUR UNIVE	DOTUZBE	30	40	S chiomuo	37	HOV JESTIC	nV/√Hz
100Hz	100% tested (L)		21			20	28		21		nV/√Hz
1kHz	100% tested (L)		14			13	16		14		nV/√H2
10kHz	(3)	CTION	12			11	13	MITAR	12	AM BT	nV/√Hz
20kHz	(3)		11	-		10.5	13		11		nV/√Hz
f _B = 10Hz to 10kHz	(3)		1.3		DOV814	1.2	1.5		1.3	808	μVrms
Current, fo = 0.1Hz thru 20kHz	OM (3)		1.5		1 800mm	1.3	2		1.7	ver Dissip	fA/√Hz
IMPEDANCE					SCHOOL		TOTAL PARTIE	10207120000	antern Spi	HOY JUQIN	total or a large
Differential	8 mints	ONS	1013 1	1	118VI3C	1013 1		- mar - marini	1013 1	agnur st	Ω pF
Common-Mode	0.7	estile.	1014 3		2-001-0	1014 3			1014 3	summando.	Ω pF
VOLTAGE RANGE					THE PARTY	DOMESTIC N			enned at	-knowna'	"rougont
Common-Mode Input Range		±10.5	±11.5		±11	±11.6		±10.2	±11	VINU TURNET THE	V
Common-Mode Rejection	V _{IN} = ±10VDC	80	95		85	96		78	90	e) an Itaa	dB
OPEN-LOOP GAIN, DC	X+1-1-1-1				audunifne	0			Propiesso	Liuovo-n	bulgar Shid
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	95	115		100	118		90	110	nutsteam	dB
RATED OUTPUT	0 /114				C) (2	- deroni-	and on the	ed hoteso	ed taum s	eneshad i	ri :ento
Voltage Output	$R_1 = 2k\Omega$	±11	±12.2		±12	±12.6		±11	±12	stokilov	viscuV to
Current Output	$V_0 = \pm 10 \text{VDC}$	±5	±10	-	±5	±10		±5	±10	dt or isun	mA
Output Resistance	DC, Open Loop		40		Coceeve	40		liggs nait	40	mmoo vii	Ω
Load Capacitance Stability	Gain = +1	ESU)	1000	100		1000			1000	bras timil	pFal
Short Circuit Current		10	20		10	20		10	20	-	mA
POWER SUPPLY					7-11-11						
Rated Voltage			±15			±15		MO	±15	PER HE	VDC
Voltage Range,			1	-	Acres de la			- 1	2 2 20 20 2 1 1		
Derated Performance		±5		±18	±5	SO BOAR	±18	±5		±18	VDC
Current, Quiescent	I _O = 0mADC	nT realtO	6.5	9.5	(0)	6.2	9	5	6.5	10	mA
TEMPERATURE RANGE	/ × n	4	P WITTY			100			26-O.L	- 1	MIZIBOSAS
Specification	Ambient Temperature					100			10-80		
	KM, KP, LM	- 0		+70	0	1800	+70	0	Disheals	+70	°C
Operating	Ambient Temperature	-55		+125	-55	pas subeli	+125	-40	s prilweri	+85	°C
θ _{JA} mai isano i e i	8 3	View	200	1	100,00110	200		want on a	155	- 12	°C/W

NOTES: (1) See settling time test circuit in Figure 2. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Sample tested—this parameter is guaranteed on L grade only.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 15 \text{VDC}$ and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

			OPA606K	M		OPA606L	М		OPA606K	Р	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specification Range	Ambient Temp.	9 0	Mild	+70	4Y70	1418/4	+70	1400		+70	TEM-CAS
INPUT OFFSET VOLTAGE(1) Input Offset Voltage Average Drift Supply Rejection	$V_{CM} = 0VDC$ $V_{CC} = \pm 10V \text{ to } \pm 18V$	61 083 880	±400 ±5 98 ±13	±2mV	8.51 818 8185	±335 ±3 100 ±10	±750 ±5 ±56	Ism2 .q-qV0s = 78	±750 ±10 95 ±18	±3.5mV	μV μV/°C dB μV/V
BIAS CURRENT(1) Input Bias Current	V _{CM} = 0VDC	0.1	±158	±339	0.1	±113	±226	HED PL	±181	±566	pA pA
OFFSET CURRENT ⁽¹⁾ Input Offset Current	V _{CM} = 0VDC	0.0038	±14	±226	0.000	±9	±113	(C = 41	±23	±339	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±10VDC	±10.4	±11.4 92	Umil 14	±10.9 82	±11.5	SHOO	±10 75	±10.9	JOV 138	V dB
OPEN-LOOP GAIN, DC	ORR _L ≥ 2kΩ	90	106		00 95	112	XAM ^T OL III VEFT OF VI	88	104	Itt.	d egsnevA
PATED OUTPUT Voltage Output Current Output	$R_{L} = 2k\Omega$ $V_{O} = \pm 10VDC$	±10.5 ±5	±12 ±10	275	±11.5 ±5	±12.4 ±10	ogve	±10.4 ±5	±11.8 ±10	(STMSE	MA MA
POWER SUPPLY Current, Quiescent	I _O = 0mADC	8.0±	6.6	0110	8.0±	6.4	9.5/0	Vose	6.6	10.5	o reaseso estiCmA::ii

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18VDC
	500mW
Differential Input Voltage	
	±18VDC
Storage Temperature Range	M = -65°C to +150°C
46 [25]	$P = -40^{\circ}C \text{ to } +85^{\circ}C$
Operating Temperature Range	M = -55°C to +125°C
V Itt S01±	P = -40°C to +85°C
Lead Temperature (soldering, 10s)	+300°C
Output Short-Circuit Duration(3)	Continuous
Junction Temperature	+175°C

NOTES: (1) Packages must be derated based on $\theta_{\rm IC}=15^{\circ}{\rm C/W}$ or $\theta_{\rm JA}$. (2) For supply voltages less than $\pm 18{\rm VDC}$, the absolute maximum input voltage is equal to the negative supply voltage. (3) Short circuit may be to power supply common only. Rating applies to $+25^{\circ}{\rm C}$ ambient. Observe dissipation limit and $T_{\rm J}$.

CONNECTION DIAGRAMS

SPECIFICATIONS

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA606KM	TO-99	001
OPA606LM	TO-99	001
OPA606KP	Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

Offset Trim 1 8 NC 7 +V_{CC} 4 +In 3 + CC 4 Offset Trim 5 Offset Trim

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA606KM	TO-99	0°C to 70°C
OPA606LM	TO-99	0°C to 70°C
OPA606KP	Plastic DIP	0°C to 70°C

OPA620

Wideband Precision OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 2.3nV/√Hz
- HIGH OUTPUT CURRENT: 100mA
- FAST SETTLING: 25ns (0.01%)
- GAIN-BANDWIDTH: 200MHz
- UNITY-GAIN STABLE
- LOW OFFSET VOLTAGE: ±100µV
- LOW DIFFERENTIAL GAIN/PHASE ERROR
- 8-PIN DIP, SOIC PACKAGES

DESCRIPTION

The OPA620 is a precision wideband monolithic operational amplifier featuring very fast settling time, low differential gain and phase error, and high output current drive capability.

The OPA620 is internally compensated for unity-gain stability. This amplifier has a very low offset, fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. Unlike "current-feedback" amplifier designs, the OPA620 may be

APPLICATIONS

- LOW NOISE PREAMPLIFIER
- LOW NOISE DIFFERENTIAL AMPLIFIER
- HIGH-RESOLUTION VIDEO
- HIGH-SPEED SIGNAL PROCESSING
- LINE DRIVER
- ADC/DAC BUFFER
- ULTRASOUND
- PULSE/RF AMPLIFIERS
- ACTIVE FILTERS

used in all op amp applications requiring high speed and precision.

Low noise and distortion, wide bandwidth, and high linearity make this amplifier suitable for RF and video applications. Short-circuit protection is provided by an internal current-limiting circuit.

The OPA620 is available in plastic, ceramic, and SOIC packages. Two temperature ranges are offered: -40°C to $+85^{\circ}\text{C}$ and -55°C to $+125^{\circ}\text{C}$.

BURR-BROWN

UZUMTU		OPA	A620KP,	KU, KG	(PA620S	G	C			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE		2 33 3 7			100				-	-	
Voltage: f _O = 100Hz	$R_S = 0\Omega$	The state of	10						*		nV/√Hz
f _O = 1kHz	11S = 022	11.1	5.5				The second	- 3			nV/√Hz
		1	100000000000000000000000000000000000000				F FLIN	198		100	nV/√Hz
f _O = 10kHz			3.3								
f _O = 100kHz			2.5	1000							nV/√Hz
f _O = 1MHz to 100MHz	dentification in expension of the shape	SERVER	2.3	100 2000	ET TABLE	Distant	10 0000	DOMESTICS:	STATE OF SALES	156002	nV/√Hz
f _B = 100Hz to 10MHz			8.0	1//							μV, rms
Current: f _O = 10kHz to 100MHz	noising	are Ci	2.3	lock.	ahi	WILL			*		pA/√Hz
OFFSET VOLTAGE(1)	8 1 6 1 6 1 6 1	A 8 9	B-107 E-1	20,04	10000	10 10					
Input Offset Voltage	V _{CM} = 0VDC	A. I	±200	±1mV	8º 13 8	7530	*	- 77 78	±100	±500	μV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}	M. J	±8	17.51	PAR	7	184	I TE			μV/°C
Supply Rejection	$\pm V_{CC} = 4.5V \text{ to } 5.5V$	50	60			*		55		LEYS.	dB
BIAS CURRENT	THE RESIDENCE OF THE PARTY OF T	CONTRACTOR IN	1,000,000	- Magnitud	SEA, 21211	29/22/12/19	C-4-261551		\$44 KM	STATE OF THE PARTY OF	1.150p/4
Input Bias Current	V _{CM} = 0VDC		15	30	100		*			25	μА
OFFSET CURRENT	PLACATIONS	QA				ETHE!		165	3-43 4	MB	104
Input Offset Current	V _{CM} = 0VDC	23.0	0.2	2			*	1	*		μΑ
INPUT IMPEDANCE	W NOISE PREAMPLIFE	II ®					344741	D.38 33	MICHOL	WOU	635
Differential	Open-Loop		15 1		4-0	-	TO PAYORS	A TOP	min	LIMICE	kΩ pF
Common-Mode	ATTIMATE OPEN COOP AND VAL	N.	1 1		Am0	OT THE	BARL	0 10	1140	MEAN	MΩ p
INPUT VOLTAGE RANGE	CH-RESOLUTION VIDES	110	-		(0)	(0.0)	enta	DHU	FF30	POAR	0
Common-Mode Input Range	OH SPEED SICKAL PER	±3.0	±3.5			s##M0	ne sa	restant.	HAAR.	MAG	V
Common-Mode Rejection	$V_{IN} = \pm 2.5 VDC$, $V_{O} = 0 VDC$	65	75				-	70			dB
OPEN-LOOP GAIN, DC	REVING SV	110					-410	0.755.0	HO.S.	15/41	-
Open-Loop Voltage Gain	$R_L = 100\Omega$	50	60		V±100	(E:+注引	DATA	55	OFFS	WOJ	dB
	$R_L = 50\Omega$	48	58	1000	SOAL	CHARLES		53	suin.	56600 1	dB
FREQUENCY RESPONSE	иловеля і	100								-	
Closed-Loop Bandwidth	Gain = +1V/V	9.0	300			AGES	PACK	SOIC	940	1119-8	MHz
(-3dB)	Gain = +2V/V		100					1			MHz
(555)	Gain = +5V/V	A 0	40	1 1 2						140 10	MHz
	Gain = +10V/V		20			*					MHz
Gain-Bandwidth	Gain = +10V/V	10 A 1	200	1.11				ناسانا نا			MHz
Differential Gain	3.58MHz, G = +1V/V		0.05				2/96	DITT	8885	123	%
Differential Phase			0.05				6.4	A 5 10 11	****	A AND PAGE	Degree:
	3.58MHz, G = +1V/V	Second Second	0.05	-	Lancon	Section 2	the land	inarra a	at orda	0000	Degree
Harmonic Distortion(2)	$G = +2V/V$, $f = 10MHz$, $V_0 = 2Vp-p$		04		ROHODE	Olimon,	TAN BOI	n young a	SI USU	100	4D-(3)
	Second Harmonic	y bas	-61	-50	entine	1881	ray go	realen	1511dq	na lan	dBc(3)
F II D (2)	Third Harmonic		-65	-55	d bos	7/3/119	phase	bres a	ries, le	HISTOT	dBc
Full Power Response ⁽²⁾	$V_0 = 5Vp-p$, Gain = +1V/V	w11]	16				- Control				MHz
te for RF and videa	$V_0 = 2Vp-p$, Gain = $+1V/V$	27	40	1000		1		Cilideo	ma avai	DIRDI	MHz
Slew Rate ⁽²⁾	2V Step, Gain = −1V/V	175	250	and the same	not bed		the each	Acceptant in	620 is	e OPA	V/µs
Overshoot d beblivorg at the	2V Step, Gain = -1V/V	undda	10	Anion		seemedin	illy co	in raint	61 (43.0		%
Settling Time: 0.1%	2V Step, Gain = -1V/V	nami	13	Jasti	D. WOL	g very	SEE 1	stilgm	a end	billify.	ns
0.01%	and the state of t	-	25	casto"	usi of	auh h	rooti la	Dusie	tily lso	meneur	ns
Phase Margin	Gain = +1V/V	100	60	-	V		1	(31)			Degree
Rise Time	Gain = +1V/V, 10% to 90%	SOR	-2500	SWELL	3 ,388	GOLDEN S	111302	2 Kaliff	gm* is	DOMEST.	100
	V _O = 100mVp-p; Small Signal	40%	2	PARTE LICE	OPAS	ins, the	THEOD IS	illigas	2000	bootes	ns
	V _O = 6Vp-p; Large Signal	-	22								ns
RATED OUTPUT	2 4000			18 3							
Voltage Output	$R_L = 100\Omega$	±3.0	±3.5		-						V
	$R_L = 50\Omega$	±2.5	±3.0	1 5	1 3	18	138.5				V
Output Resistance	1MHz, Gain = +1V/V	2 3 1	0.015	T.	9				*		Ω
Load Capacitance Stability	Gain = +1V/V		20	- 4	1		- 11				pF
Short Circuit Current	Continuous		±150								mA
POWER SUPPLY		1		- 1	-		- 8	Oridiane	l-nol/i		
Rated Voltage	±V _{CC}		5		1 M	1		700			VDC
Derated Performance	±V _{CC}	4.0	04	6.0	1 3	.3		1			VDC
Current, Quiescent	I _O = 0mADC	1	21	23		3	8	goldes	end .		mA
TEMPERATURE RANGE		100	MAG .			1		lug	100		
Specification: KP, KU, KG, LG	Ambient Temperature	-40		+85	-	30.			in the said		°C
SG Oti KO LO GO				7	-55	13	+125	-			°C
Operating: KG, LG, SG	Ambient Temperature			2	-55	13	+125	-55	fi to the	+125	°C
KP, KU		-40	-	+85		7		1111		141	°C
θ _{JA} KG, LG, SG	lana de la constante de la con	N.				125			125		°C/W
		- 1	00			.20			120		
KP		1	90								°C/W

* Same specifications as for KP/KU.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At V_{CC} = ±5VDC, R_L = 100 Ω , and T_A = T_{MIN} to T_{MAX} unless otherwise noted.

	IASI	PAD FUNCTION	OPA	620KP,	KU, KG	OPA620SG			OPA620LG			The state of
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
TEMPERATURE RANGE Specification: KP, KU, KG SG	, LG	Ambient Temperature	-40		+85	* -55		* +125				°C °C
	12 18 19 - Yeppily	Full Temp. $^{\circ}$ C to +70 $^{\circ}$ C \pm V $_{\rm CC}$ = 4.5V to 5.5V Full Temp., \pm V $_{\rm CC}$ = 4.5 to 5.5V	45 40	±8 60 55					50 45			μV/°C dB dB
BIAS CURRENT Input Bias Current	MAC	Full Temp., V _{CM} = 0VDC		15	40						35	μА
OFFSET CURRENT Input Offset Current	0.691° 47 ±5	Full Temp., V _{CM} = 0VDC	auv	0.2	5							μА
INPUT VOLTAGE RANGI Common-Mode Input Rang Common-Mode Rejection	ge	$V_{IN} = \pm 2.5 VDC, V_O = 0 VDC$	±2.5	±3.0 75	XT	SI ·	*	X I	* 65	(-)		V dB
OPEN LOOP GAIN, DC Open-Loop Voltage Gain		$R_L = 100\Omega$ $R_L = 50\Omega$	46 44	60 58	50974	Sag E	*	NAC LOCK	52 50	*		dB dB
RATED OUTPUT Voltage Output		0°C to +70°C, $R_L = 100\Omega$ -40°C to +85°C, $R_L = 100\Omega$ 0°C to +70°C, $R_L = 50\Omega$ -40°C to +85°C, $R_L = 50\Omega$	±3.0 ±2.75 ±2.5 ±2.25	±3.5 ±3.25 ±3.0 ±2.7	¥	RAPR	00,90	T Bło	OSOA*	*		V V V
POWER SUPPLY Current, Quiescent		I _O = 0mADC		21	25							mA

^{*} Same specifications as for KP/KU.

NOTES: (1) Offset Voltage specifications are also guaranteed with units fully warmed up. (2) Parameter is sample tested. (3) dBc = dB referred to carrier-input signal.

PIN CONFIGURATION

ORDERING INFORMATION

	OPA620 (()	(Q)
Basic Model Number ———		1	* T
Performance Grade Code —		191	71
K, $L = -40^{\circ}C$ to $+85^{\circ}C$		1 8	*
$S = -55^{\circ}C \text{ to } +125^{\circ}C$		1 1	
Package Code —		-	
G = 8-pin Ceramic DIP			15
P = 8-pin Plastic DIP			100
U = 8-pin Plastic SOIC			2
Reliability Screening			5
Q = Q-Screened		200 h	

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA620KP	8-Pin Plastic DIP	006
OPA620KU	8-pin Plastic SOIC	182
OPA602KG	8-pin Ceramic DIP	157
OPA620LG	8-Pin Ceramic DIP	157
OPA620SG	8-Pin Ceramic DIP	157

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply	±7VDC
Internal Power Dissipation(1)	See Applications Information
Differential Input Voltage	Total V _{CC}
Input Voltage Range	See Applications Information
Storage Temperature Range: KG, LG, S	65°C to +150°C
KP, KU	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Output Short Circuit to Ground (+25°C)	
Junction Temperature (T ₁)	

DICE INFORMATION

TYPICAL PERFORMANCE CURVES

At V_{CC} = ±5VDC, R_L = 100 Ω , and T_A = +25°C unless otherwise noted.

+24

+22

+20

+18

+16

+14

+12

1M

(dB)

Gain

100M

A_V = +10V/V CLOSED-LOOP

Frequency (Hz)

2

-135

-180

00 1G

OPERATIONAL AMPLIFIERS

A_V = +10V/V CLOSED-LOOP BANDWIDTH

vs OUTPUT VOLTAGE SWING

 $R_1 = 50\Omega$

100k

Frequency (Hz)

0

Output Voltage (Vp-p)

10M

Supply

Power

20

-20

- 1k

10k

100k

Frequency (Hz)

POWER SUPPLY REJECTION vs FREQUENCY

- PSR

10M

100M

OPERATIONAL AMPLIFIERS

1G

COMMON-MODE REJECTION vs INPUT COMMON-MODE VOLTAGE

SUPPLY CURRENT vs TEMPERATURE

1M

SMALL-SIGNAL TRANSIENT RESPONSE

LARGE-SIGNAL TRANSIENT RESPONSE

TYPICAL PERFORMANCE CURVES (CONT) OMAMS OF SET JACKSTON

At $V_{CC} = \pm 5 \text{VDC}$, $R_L = 100 \Omega$, and $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At V_{CC} = ±5VDC, R_L = 100 Ω , and T_A = +25°C unless otherwise noted.

APPLICATIONS INFORMATION

DISCUSSION OF PERFORMANCE

The OPA620 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA620's design uses a "classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer many disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e., one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Bias current cancellation through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling

times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA620's "classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA620. The use of low-drift thin-film resistors allows internal operating currents to be laser-trimmed at wafer-level to optimize AC performance such as bandwidth and settling time, as well as DC parameters such as input offset voltage and drift. The result is a wideband, high-frequency monolithic operational amplifier with a gain-bandwidth product of 200MHz, a 0.01% settling time of 25ns, and an input offset voltage of 100tV

WIRING PRECAUTIONS

Maximizing the OPA620's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain

general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA620, as it is with all high-frequency circuits. Oscillations at frequencies of 200MHz and above can easily occur if good grounding techniques are not used. A heavy ground plane (2 oz. copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must always be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (1µF to $10\mu F$) with very short leads are recommended. Although not required, a parallel 0.01µF ceramic may be added if desired. Surface mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Don't use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 2) Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 3) Whenever possible, solder the OPA620 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations. If sockets must be used, consider using zero-profile solderless sockets such as Augat part number 8134-HC-5P2. Alternately, Teflon® stand-

- 4) Resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits.
- 5) Surface-mount components (chip resistors, capacitors, etc) have low lead inductance and are therefore strongly recommended. Circuits using all surface-mount components with the OPA620KU (SOIC package) will offer the best AC performance. The parasitic package inductance and capacitance for the SOIC is lower than the both the Cerdip and 8-lead Plastic DIP.
- 6) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 7) Don't forget that these amplifiers use $\pm 5V$ supplies. Although they will operate perfectly well with $\pm 5V$ and $\pm 5.2V$, use of $\pm 15V$ supplies will destroy the part.
- 8) Standard commercial test equipment has not been designed to test devices in the OPA620's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 9) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 10) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

The OPA620's input offset voltage is laser-trimmed and will require no further adjustment for most applications. However, if additional adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R₃. This will reduce input bias current errors to the amplifier's offset current, which is typically only 0.2µA.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA620 incorporates on-chip ESD protection diodes as shown in Figure 2.

Teflon® E. I. Du Pont de Nemours & Co.

 R_{Trim} $A7k\Omega$ $A7k\Omega$ $V_{IN} \text{ or Ground}$ $Output Trim Range = +V_{CC}(\frac{R_2}{R_{Trim}}) \text{ to } -V_{CC}(\frac{R_2}{R_{Trim}})$ $NOTE: (1) R_3 \text{ is optional and can be used to cancel offset errors due to input his currents}$

FIGURE 1. Offset Voltage Trim.

This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

All pins on the OPA620 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

FIGURE 2. Internal ESD Protection.

The internal protection diodes are designed to withstand 2.5kV (using Human Body Model) and will provide adequate ESD protection for most normal handling procedures. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA620.

OUTPUT DRIVE CAPABILITY

The OPA620's design uses large output devices and has been optimized to drive 50Ω and 75Ω resistive loads. The

device can easily drive 6Vp-p into a 50Ω load. This high-output drive capability makes the OPA620 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Internal current-limiting circuitry limits output current to about 150mA at 25°C. This prevents destruction from accidental shorts to common and eliminates the need for external current-limiting circuitry. Although the device can withstand momentary shorts to either power supply, it is not recommended.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA620 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA620 does not require a heat sink for operation in most environments. The use of a heat sink, however, will reduce the internal thermal rise and will result in cooler, more reliable operation. At extreme temperatures and under full load conditions a heat sink is necessary. See "Maximum Power Dissipation" curve, Figure 4.

FIGURE 4. Maximum Power Dissipation.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 23mA = 230mW$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = ($\pm V_{CC}/2/4R_L$. Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

When the output is shorted to common $P_{DL} = 5V \times 150 mA = 750 mW$. Thus, $P_D = 230 mW + 750 mW \approx 1W$. Note that the short-circuit condition represents the maximum amount of internal power dissipation that can be generated. Thus, the "Maximum Power Dissipation" curve starts at 1W and is derated based on a 175°C maximum junction temperature and the junction-to-ambient thermal resistance, θ_{JA} , of each package. The variation of short-circuit current with temperature is shown in Figure 5.

FIGURE 5. Short-Circuit Current vs Temperature.

CAPACITIVE LOADS SMORTARE GRENOO JAMESHT

The OPA620's output stage has been optimized to drive resistive loads as low as $50\Omega.$ Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 20pF should be buffered by connecting a small resistance, usually 5Ω to $25\Omega,$ in series with the output as shown in Figure 6. This is particularly important when driving high capacitance loads such as flash A/D converters.

FIGURE 6. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA620 is internally compensated and is stable in unity gain with a phase margin of approximately 60°. However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain of two or greater to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of –1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA620 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

Settling time, specified in an inverting gain of one, occurs in only 25ns to 0.01% for a 2V step, making the OPA620 one of the fastest settling monolithic amplifiers commercially available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 30ns.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

In practice, settling time measurements on the OPA620 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results, a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

Figure 7 shows the test circuit used to measure settling time for the OPA620. This approach uses a 16-bit sampling oscilloscope to monitor the input and output pulses. These waveforms are captured by the sampling scope, averaged, and then subtracted from each other in software to produce the error signal. This technique eliminates the need for the traditional "false-summing junction," which adds extra parasitic capacitance. Note that instead of an additional flat-top generator, this technique uses the scope's built-in calibration source as the input signal.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase with closed-loop gain and output voltage transition as shown in the Typical Performance Curves. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

DISTORTION

The OPA620's harmonic distortion characteristics into a 50Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 8. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

Two-tone third-order intermodulation distortion (IM) is an important parameter for many RF amplifier applications. Figure 9 shows the OPA620's two-tone third-order IM intercept vs frequency. For these measurements, tones were spaced 1MHz apart. This curve is particularly useful for determining the magnitude of the third-order IM products as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA620 to operate in a gain of +2V/V and drive 2Vp-p into 50Ω at a frequency of 10MHz. Referring to Figure 9 we find that the intercept point is +40dBm. The magnitude of the third-order IM products can now be easily calculated from the expression:

Third IMD = $2(OPI^3P - P_0)$

where OPI³P = third-order output intercept, dBm

P_o = output level/tone, dBm/tone

Third IMD = third-order intermodulation ratio below each output tone, dB

For this case OPI 3 P = 40dBm, P_0 = 10dBm, and the third-order IMD = 2(40 - 10) = 60dB below either 10dBm tone. The OPA620's low IMD makes the device an excellent choice for a variety of RF signal processing applications.

NOTE: Test fixture built using all surface-mount components. Ground plane used on component side and entire fixture enclosed in metal case. Both power supplies bypassed with 10µF Tantalum || $0.01\mu F$ ceramic capacitors. It is directly connected (without cable) to TIME CAL trigger source on Sampling Scope (Data Precision's Data 6100 with Model 640-1 plug-in). Input monitored with Active Probe (Channel 1).

FIGURE 7. Settling Time Test Circuit.

FIGURE 8. 10MHz Harmonic Distortion vs Load Resistance.

NOISE FIGURE

The OPA620's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA620's Noise Figure vs Source Resistance is shown in Figure 10.

FIGURE 9. 2-Tone, 3rd Order Intermodulation Intercept vs Frequency.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models using MicroSim Corporation's PSpice are available for the OPA620. Request Burr-Brown Application Bulletin AB-167.

FIGURE 10. Noise Figure vs Source Resistance.

RELIABILITY DATA

Extensive reliability testing has been performed on the OPA620. Accelerated life testing (2000 hours) at maximum operating temperature was used to calculate MTTF at an ambient temperature of 25°C. These test results yield MTTF of: Cerdip package = 1.31E+9 Hours, Plastic DIP = 5.02E+7 Hours, and SOIC = 2.94E+7 Hours. Additional tests such as PCT have also been performed. Reliability reports are available upon request for each of the package options offered.

ENVIRONMENTAL (Q) SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected levels similar to those of MIL-STD-883.

SCREEN	METHOD
Internal Visual	Burr-Brown QC4118
Stabilization Bake	Temperature = 125°C, 24 hrs
Temperature Cycling	Temperature = -55°C to 125°C, 10 cycles
Burn-In Test	Temperature = 125°C, 160 hrs minimum
Hermetic Seal	Fine: He leak rate < 1 X 10 atm cc/s Gross: per Fluorocarbon bubble test
Electrical Tests	As described in specifications tables.
External Visual	Burr-Brown QC5150

NOTE: Q-Screening is available on SG package only.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Request DEM1135 for 8-Pin DIP, and DEM1136 for SOIC package.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FIGURE 11. Video Distribution Amplifier.

FIGURE 12. High-Q 1MHz Bandpass Filter.

FIGURE 13. Low Noise, Wideband FET Input Op Amp.

FIGURE 14. Differential Line Driver for 50Ω or 75Ω Systems.

FIGURE 15. Wideband, Fast-Settling Instrumentation Amplifier.

FIGURE 16. Unity Gain Difference Amplifier.

FIGURE 17. Differential Input Buffer Amplifier (G=-2V/V).

OPA621

Wideband Precision OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 2.3nV/√Hz
- LOW DIFFERENTIAL GAIN/PHASE ERROR
- HIGH OUTPUT CURRENT: 150mA
- FAST SETTLING: 25ns (0.01%)
- GAIN-BANDWIDTH: 500MHz
- STABLE IN GAINS: ≥ 2V/V
- LOW OFFSET VOLTAGE: ±100µV
- SLEW RATE: 500V/µs
- 8-PIN DIP, SOIC PACKAGES

DESCRIPTION

The OPA621 is a precision wideband monolithic operational amplifier featuring very fast settling time, low differential gain and phase error, and high output current drive capability.

The OPA621 is stable in gains of $\pm 2V/V$ or higher. This amplifier has a very low offset, fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. Unlike "current-feedback"

APPLICATIONS

- LOW NOISE PREAMPLIFIER
- LOW NOISE DIFFERENTIAL AMPLIFIER
- HIGH-RESOLUTION VIDEO
- LINE DRIVER
- HIGH-SPEED SIGNAL PROCESSING
- ADC/DAC BUFFER
- ULTRASOUND
- PULSE/RF AMPLIFIERS
- ACTIVE FILTERS

amplifier designs, the OPA621 may be used in all op amp applications requiring high speed and precision.

Low noise and distortion, wide bandwidth, and high linearity make this amplifier suitable for RF and video applications. Short circuit protection is provided by an internal current-limiting circuit.

The OPA621 is available in plastic, ceramic, and SOIC packages. Two temperature ranges are offered: -40°C to +85°C and -55°C to +125°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

		OP	A621KP	, KU	OP	A621K0	i, SG	OPA621LG			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE Voltage: f _O = 100Hz f _O = 1kHz f _O = 10kHz f _O = 100kHz f _O = 100kHz f _O = 10MHz to 100MHz	$R_S = 0\Omega$		10 5.5 3.3 2.5 2.3								nV/√Hz nV/√Hz nV/√Hz nV/√Hz nV/√Hz μV, rms
f _B = 100Hz to 10MHz Current: f _O = 10kHz to 100MHz			8.0 2.3						*		μν, rms pA/√Hz
OFFSET VOLTAGE ⁽¹⁾ Input Offset Voltage Average Drift Supply Rejection	V_{CM} = 0VDC T_A = T_{MIN} to T_{MAX} $\pm V_{CC}$ = 4.5V to 5.5V	50	±200 ±12 60	±1mV	A.E	90	·	55	±100 *	±500	μV μV/°C dB
BIAS CURRENT Input Bias Current	V _{CM} = 0VDC	-3.961	18	30	9.300m		DESCRIPTION OF THE PERSON OF T	10001		25	μА
OFFSET CURRENT Input Offset Current	V _{CM} = 0VDC		0.2	2				BE	AU	FA:	μА
INPUT IMPEDANCE Differential Common-Mode	Open-Loop	R	15 1	BBA	HPW	SH UAD	AV:nE	8: 2. GHB	SION	WO.	kΩ pF MΩ p
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$V_{IN} = \pm 2.5 \text{VDC}, V_O = 0 \text{VDC}$	±3.0 65	±3.5 75	An	081 [3/40	(1) Si	19UC 2:28	70	700 738	HOH FAST	V dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	$R_L = 100\Omega$ $R_L = 50\Omega$	50 48	60 58		331	NVS:	NS: 2	55 53	AAB-	MAG	dB dB
FREQUENCY RESPONSE Closed-Loop Bandwidth (–3dB) Gain-Bandwidth Differential Gain Differential Phase Harmonic Distortion ⁽²⁾	G = +2V/V, f = 10MHz, VO = 2Vp-p f = 10MHz, Second Harmonic	-675 Well	500 100 50 500 0.05 0.05	-50	23 83 6 bns	KAG KAG KAG	PAG	SOIC SOIC		WO.	MHz MHz MHz MHz % Degree
Full Power Response ⁽²⁾ Slew Rate ⁽²⁾ Overshoot Settling Time: 0.1% 0.01% Phase Margin Rise Time	Third Harmonic V _O = 5Vp-p, Gain = +2V/V V _O = 2Vp-p, Gain = +2V/V 2V Step, Gain = -2V/V 2V Step, Gain = -2V/V 2V Step, Gain = -2V/V Gain = +2V/V Gain = -2V/V Gain = -2V/V	22 55 350	-80 32 80 500 15 15 25 50	-70	L to		plus Ty Ty Ty Tow Tow Towe	na re lidedu ddetu sav s si dde melum	et loo	erent cent d s OPA pliffer erenti les di	dBc MHz MHz V/µs % ns ns Degree
RATED OUTPUT Voltage Output Output Resistance Load Capacitance Stability Short Circuit Current	$\begin{aligned} R_L &= 100\Omega \\ R_L &= 50\Omega \\ 1\text{MHz, Gain} &= +2V/V \\ \text{Gain} &= +2V/V \\ \text{Continuous} \end{aligned}$	±3.0 ±2.5	±3.5 ±3.0 0.015 15 ±150	3.4.8		* * * * *		:	* * * * *		V V Ω pF mA
POWER SUPPLY Rated Voltage Derated Performance Current, Quiescent	±V _{CC} ±V _{CC} I _O = 0mADC	4.0	5 26	6.0			-o oni	teant-n tuger			VDC VDC mA
TEMPERATURE RANGE Specification: KP, KU, KG, LG SG Operating: KG, LG, SG KP, KU KP, KU KP KU	Ambient Temperature Ambient Temperature	-40 -40	90	+85	-55 -55	125	* +125 +125	-55	125	+125	% % % % % % % % % % % % % % % % % % %

^{*} Same Specifications as for KP, KU. The Same Specifications as for KP, KU.

		OP	A621KF	, KU	OPA621KG, SG			OPA621LG			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specification: KP, KU, KG, LG SG	Ambient Temperature	-40	h (,	+85	* -55	Negeli	+125				°C °C
OFFSET VOLTAGE ⁽¹⁾ Average Drift Supply Rejection	Full Temperature Range ±V _{CC} = 4.5V to 5.5V	45	±12 60					50	*		μV/°C dB
BIAS CURRENT Input Bias Current	Full Temperature, V _{CM} = 0VDC	-	18	40			HOI	AMI	NFO	35	μΑ
OFFSET CURRENT Input Offset Current	Full Temperature, V _{CM} = 0VDC	119	0.2	5	SEASE				water	nd/Veb	μА
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±2.5VDC, V _O = 0VDC	±2.5	±3.0 75		:	:		65	88+ pr	35°C tu 55°C tu Code -	V dB
OPEN LOOP GAIN, DC Open-Loop Voltage Gain	$R_L = 100\Omega$ $R_L = 50\Omega$	46 44	60 58		:			52 50	Bru alle Dis alle	igin ©i igin Pla igin Pla icaca	dB dB
RATED OUTPUT Voltage Output	$R_L = 100\Omega$ $R_L = 50\Omega$	±3.0 ±2.5	±3.5 ±3.0		:	:		:	- bulu	E034	* O V V
POWER SUPPLY Current, Quiescent	I _O = 0mADC		26	30			ио	TAR	90%	i zo	mA

^{*} Same specifications as for KP/KU.

NOTES: (1) Offset Voltage specifications are also guaranteed with units fully warmed up. (2) Parameter is sample tested. (3) dBc = dB referred to carrier-input signal.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

ORDERING INFORMATION

	 DPA621 () () (Q)
Basic Model Number -		do II
Performance Grade Code -		
K. L = -40°C to +85°C		1 1
S = -55°C to +125°C		1 dea 1 a
Package Code -	200	
G = 8-pin Ceramic DIP		
P = 8-pin Plastic DIP		
U = 8-pin Plastic SOIC		UB III
Reliability Screening		No.
Q = Q-Screening		

ABSOLUTE MAXIMUM RATINGS

Supply	±7VDC
Internal Power Dissipation(1)	See Applications Information
Differential Input Voltage	Total V _{CC}
Input Voltage Range	See Applications Information
Storage Temperature Range KG, LG,	SG:65°C to +150°C
OUVE - N OUVESE - WKP, KU:	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3	s) +260°C
Output Short Circuit to Ground (+25°C) Continuous to Ground
Junction Temperature (T _{.1})	+175°C

NOTE: (1) Packages must be derated based on specified θ_{JA} . Maximum T_J must be observed.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA621KP	8-Pin Plastic DIP	006
OPA621KU	8-Pin Surface Mount	182
OPA621KG	8-Pin Ceramic DIP	157
OPA621SG	8-Pin Ceramic DIP	157
OPA621LG	8-Pin Ceramic DIP	157

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

DICE INFORMATION

PAD	FUNCTION	PAD	FUNCTION
1	NC	7	-V _{cc}
2	-Input	8	NC
3	+Input	9	Vout
4	NC	10	+V _{CC}
5	NC	11	NC
6	NC	12	NC
		13	NC

Substrate Bias: Negative Supply -V_{cc}.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	63 x 47 ±5	1.60 x 1.20 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		Gold
Top Metalization		Gold

TYPICAL PERFORMANCE CURVES NO BOMAMS OF REGULACION TO

At V_{CC} = ±5VDC, R_L = 100 Ω , and T_A = +25°C unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At V_{CC} = ±5VDC, R_L = 100 Ω , and T_A = +25°C unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMED REPORTED IN 1917

At V_{CC} = ±5VDC, R_L = 100 Ω , and T_A = +25°C unless otherwise noted.

Frequency (Hz)

-40

-50

-60

-70 -80

(dBc)

Distortion

G = +2V/V

 $R_L = 50\Omega$

 $V_O = 0.5Vp-p$

DISCUSSION OF PERFORMANCE

The OPA621 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA621's design uses a "Classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer many disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e. one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Bias current cancellation through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA621's "Classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA621. The use of low-drift thin-film resistors allows internal operating currents to be laser-trimmed at wafer-level to optimize AC performance such as bandwidth and settling time, as well as DC parameters such as input offset voltage and drift. The result is a wideband, high-frequency monolithic operational amplifier with a gain-bandwidth product of 500MHz, a 0.01% settling time of 25ns, and an input offset voltage of $100\mu V$.

WIRING PRECAUTIONS

Maximizing the OPA621's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA621, as it is with all high-frequency circuits.

ground plane (2oz copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must always be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (1µF to 10µF) with very short leads are recommended. Although not required, a parallel 0.01µF ceramic may be added if desired. Surface mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Don't use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 2) Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 3) Whenever possible, solder the OPA621 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations. If sockets must be used, consider using zero-profile solderless sockets such as Augat part number 8134-HC-5P2. Alternately, Teflon® standoffs located close to the amplifier's pins can be used to mount feedback components.
- 4) Resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $lk\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits.
- 5) Surface mount components (chip resistors, capacitors, etc) have low lead inductance and are therefore strongly recommended. Circuits using all surface mount components with the OPA621AU (SOIC package) will offer the best AC performance. The parasitic package inductance and capaci-

Or. Call Customer Service at 1-800-548-6132 (USA Only)

tance for the SOIC is lower than the both the Cerdip and 8-lead Plastic DIP.

- 6) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 7) Don't forget that these amplifiers use $\pm 5V$ supplies. Although they will operate perfectly well with +5V and -5.2V, use of $\pm 15V$ supplies will destroy the part.
- 8) Standard commercial test equipment has not been designed to test devices in the OPA621's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 9) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 10) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

The OPA621's input offset voltage is laser-trimmed and will require no further adjustment for most applications. However, if additional adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R3. This will reduce input bias current errors to the amplifier's offset current, which is typically only 0.2µA.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA621 incorporates on-chip ESD protection diodes as shown in Figure 2. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

All pins on the OPA621 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The internal protection diodes are designed to withstand 2.5kV (using Human Body Model) and will provide adequate ESD protection for most normal handling procedures. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA621.

FIGURE 1. Offset Voltage Trim.

OUTPUT DRIVE CAPABILITY

The OPA621's design uses large output devices and has been optimized to drive 50Ω and 75Ω resistive loads. The device can easily drive 6Vp-p into a 50Ω load. This high-output drive capability makes the OPA621 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Internal current-limiting circuitry limits output current to about 150mA at 25°C. This prevents destruction from accidental shorts to common and eliminates the need for external current-limiting circuitry. Although the device can withstand momentary shorts to either power supply, it is not recommended.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA621 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 2. Internal ESD Protection.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA621 does not require a heat sink for operation in most environments. The use of a heat sink, however, will reduce the internal thermal rise and will result in cooler, more reliable operation. At extreme temperatures and under full load conditions a heat sink is necessary. See "Maximum Power Dissipation" curve, Figure 4.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 28 \text{mA} = 280 \text{mW}$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = $(\pm V_{CC})^2/4R_L$. Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

When the output is shorted to common $P_{DL} = 5V \times 150 \text{mA}$ = 750mW. Thus, $P_D = 280 \text{mW} + 750 \text{mW} = 1 \text{W}$. Note that the short-circuit condition represents the maximum amount of internal power dissipation that can be generated. Thus, the "Maximum Power Dissipation" curve starts at 1W and is derated based on a 175°C maximum junction temperature and the junction-to-ambient thermal resistance, θ_{JA} , of each package. The variation of short-circuit current with temperature is shown in Figure 5.

FIGURE 4. Maximum Power Dissipation.

FIGURE 5. Short-Circuit Current vs Temperature.

CAPACITIVE LOADS

The OPA621's output stage has been optimized to drive resistive loads as low as 50Ω . Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 15pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 6. This is particularly important when driving high capacitance loads such as flash A/D converters.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

FIGURE 6. Driving Capacitive Loads.

COMPENSATION

The OPA621 is stable in inverting gains of \geq -2V/V and in non-inverting gains \geq +2V/V. Phase margin for both configurations is approximately 50°. Inverting and non-inverting gains of unity should be avoided. The minimum stable gains of +2V/V and -2V/V are the most demanding circuit configurations for loop stability and oscillations are most

Or, Call Customer Service at 1-800-548-6132 (USA Only)

likely to occur in these gains. If possible, use the device in a noise gain greater than three to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -2V/V is equivalent to a noise gain of 3.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA621 in a good layout is flat with frequency for higher-gain circuits. However, low-gain circuits and configurations where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closed-loop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

Settling time, specified in an inverting gain of two, occurs in only 25ns to 0.01% for a 2V step, making the OPA621 one of the fastest settling monolithic amplifiers commercially available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical

attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 30ns.

In practice, settling time measurements on the OPA621 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

Figure 7 shows the test circuit used to measure settling time for the OPA621. This approach uses a 16-bit sampling oscilloscope to monitor the input and output pulses. These waveforms are captured by the sampling scope, averaged, and then subtracted from each other in software to produce the error signal. This technique eliminates the need for the traditional "false-summing junction," which adds extra parasitic capacitance. Note that instead of an additional flattop generator, this technique uses the scope's built-in calibration source as the input signal.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase with closed-loop gain and output voltage transition as shown in the Typical Performance Curves. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

FIGURE 7. Settling Time Test Circuit.

Ine OPAO21's Harmonic Distortion characteristics into a 50Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 8. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

Two-tone, third-order intermodulation distortion (IM) is an important parameter for many RF amplifier applications. Figure 9 shows the OPA621's two-tone, third-order IM intercept vs frequency. For these measurements, tones were spaced 1MHz apart. This curve is particularly useful for determining the magnitude of the third-order IM products as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA621 to operate in a gain of +2V/V and drive 2Vp-p into 50Ω at a frequency of 10MHz. Referring to Figure 9 we find that the intercept point is +47dBm. The magnitude of the third-order IM products can now be easily calculated from the expression:

Third IMD =
$$2(OPI^3P - P_0)$$

where OPI^3P = third-order output intercept, dBm P_O = output level/tone, dBm/tone Third IMD = third-order intermodulation ratio below each output tone, dB

For this case $OPI^3P = 47dBm$, $P_O = 10dBm$, and the third-order IMD = 2(47 - 10) = 74dB below either 10dBm tone. The OPA621's low IMD makes the device an excellent choice for a variety of RF signal processing applications.

FIGURE 8. 10MHz Harmonic Distortion vs Load Resistance.

FIGURE 9. Two-Tone Third-Order Intermodulation Intercept vs Frequency.

NOISE FIGURE bonning a no posturação besel a remain

The OPA621's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA621's Noise Figure vs Source Resistance is shown in Figure 10.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models using MicroSim Corporation's PSpice are available for the OPA621. Request Burr-Brown Application Bulletin AB-167.

FIGURE 10. Noise Figure vs Source Resistance.

OPA621. Accelerated life testing (2000 hours) at maximum operating temperature was used to calculate MTTF at an ambient temperature of 25°C. These test results yield MTTF of: Cerdip package = 1.31E+9 Hours, Plastic DIP = 5.02E+7 Hours, and SOIC = 2.94E+7 Hours. Additional tests such as PCT have also been performed. Reliability reports are available upon request for each of the package options offered.

ENVIRONMENTAL (Q) SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected levels similar to those of MIL-STD-883.

SCREEN	METHOD			
Internal Visual	Burr-Brown QC4118			
Stabilization Bake	Temperature = 125°C, 24 hrs			
Temperature Cycling	Temperature = -55°C to 125°C, 10 cycle			
Burn-In Test	Temperature = 125°C, 160 hrs minimum			
Hermetic Seal	Fine: He leak rate < 1 X 10 atm cc/s Gross: Perfluorocarbon bubble test			
Electrical Tests	As described in specifications tables.			
External Visual	Burr-Brown QC5150			

NOTE: Q-Screening is available on SG package only.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Request DEM1135 for 8-Pin DIP, and DEM1136 for SOIC package.

APPLICATIONS

FIGURE 11. Unity Gain Difference Amplifier.

FIGURE 12. High-Q 1MHz Bandpass Filter

FIGURE 13. Low Noise, Wideband FET Input Op Amp.

FIGURE 14. Differential Input Buffer Amplifier (G = -2V/V).

FIGURE 15. Video Distribution Amplifier.

	GOHTSM
Subtitization Baker	Temperatura = 123°C, 24 lus
	Tamperature = 125°C, 160 tris migritum

DEMONSTRATION BOARDS

Demonstration boards to peed prototyping are available. Request DEM(135 for 8-Pm DtP, and DEM1136 for SOIC nackage.

APPLICATIONS

BURR-BROWN

OPA622

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 Request Document Number 11131

Wide-Bandwidth OPERATIONAL AMPLIFIER

FEATURES

- LARGE SIGNAL BANDWIDTH: 150MHz (AP), 200MHz (AU) (Voltage-Feedback)
- HIGH OUTPUT CURRENT: ±70mA
- SLEW RATE: 1500V/μs (AP), 1700V/μs (AU)
- DIFFERENTIAL GAIN: 0.15%
- DIFFERENTIAL PHASE: 0.08°
- EXCELLENT BANDWIDTH/SUPPLY CURRENT RATIO: 200MHz/5mA
- LOW INPUT BIAS CURRENT: -1.2µA

DESCRIPTION

The OPA622 is a monolithic amplifier component designed for precision wide-bandwidth systems including high-resolution video, RF and IF circuitry, and communications equipment. It includes a monolithic integrated current-feedback operational amplifier block and a voltage buffer block, which, when combined, form a voltage-feedback operational amplifier.

When combined as a current-feedback amplifier, it provides a 280MHz large-signal bandwidth at $\pm 2.5 V$ output level and a 1700V/µs slew rate. The output buffer stage can deliver $\pm 70 mA$ output current. The high output current capability allows the OPA622 to drive two 50Ω or 75Ω lines with $\pm 3 V$ output swing, making it ideal along with the low differential gain/phase errors for RF, IF, and video applications.

R₂ VOLTAGE-FEEDBACK No PA622 VEA BUF BUF BUF BUF BUF BUF R₀ Adjust R₀

APPLICATIONS

- BROADCAST/HDTV EQUIPMENT
- COMMUNICATIONS
- PULSE/RF AMPLIFIERS
- ACTIVE FILTER
- HIGH SPEED ANALOG SIGNAL
 PROCESSING
- MULTIPLIER OUTPUT AMP
- DIFFERENTIATOR FOR DIGITIZED VIDEO SIGNALS

The feedback buffer stage provides 700MHz bandwidth, a very high slew rate, and a very short signal delay time. It is designed primarily for interstage buffering and not for driving long cables. When combined with the current-feedback amplifier section, the OPA622 can be interconnected as a voltage-feedback amplifier with two identical high-impedance inputs. In this configuration, it features a low common-mode gain, low input offset, and, due to the delay time of the additional feedback buffer, a decrease in frequency bandwidth compared with the current-feedback configuration. Unlike "classical" operational amplifiers, the OPA622 achieves a nearly constant bandwidth over a wide gain and output voltage range. The external setting of the open-loop gain with Ros avoids a large compensation capacitor, improves the slew rate, and allows a frequency response adaption to various gains and load conditions.

nternational Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85706
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

DC-SPECIFICATION VOLTAGE-FEEDBACK AMPLIFIER (Figure 5)

At V_{CC} = ±5V, I_Q = ±5mA, G_{CL} = +2V/V, R_{LOAD} = 100 Ω , R_{SOURCE} = 50 Ω , R_Q = 430 Ω , R_{OG} = 150 Ω and T_A = +25°C, unless otherwise specified.

	The state of the s		OPA622AP, AU			
PARAMETER TO THE PARAME	CONDITIONS	MIN TYP		MAX	UNITS	
CLOSED-LOOP OUTPUT OFFSET VOLTAGE Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	$V_{CC} = \pm 4.5V \text{ to } \pm 5.5V$ $V_{CC} = +4.5V \text{ to } +5.5V$ $V_{CC} = -4.5V \text{ to } -5.5V$	-46	1 210 -50 -43 -51	±15	mV μV/°C dB dB dB	
INPUT BIAS CURRENT Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	$V_{CC} = \pm 4.5V \text{ to } \pm 5.5V$ $V_{CC} = +4.5V \text{ to } +5.5V$ $V_{CC} = -4.5V \text{ to } -5.5V$		-1.2 7 29 170 58	±4	μΑ nA/°C nA/V nA/V nA/V	
OFFSET CURRENT Input Offset Current	V _{CM} = 0V		0.1	loodbse4-ag	stleV) _{µA}	
INPUT IMPEDANCE Differential Mode	& ACTIVE FILTES	AN (135) n (150)	2.4 1	DUTPUT CO	MΩ pF	
INPUT NOISE Voltage Noise Density Signal-to-Noise Ratio	f = 100kHz to 100MHz S/N = 20 log 0.7/(V _N • $\sqrt{5MHz}$)		11 89	RENTIAL G	nV/√MHz dB	
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$V_1 = +2.5V, V_0 = 0V$	PLY	±3.2 78	LLENT BAN ENT RATIO	V dB	
RATED OUTPUT Voltage Output Closed-Loop Output Impedance Current Output	G _{CL} = +1	±3	±3.2 0.2 70	EAIS TURNI HEIPTIO	V Ω mA	
POWER SUPPLY Rated Voltage Derated Performance Quiescent Current Quiescent Current (programmable)	$R_Q = 430\Omega$, $I_Q = 0$ mA Useful Range, $I_Q = 0$ mA	±4.5 ±4.4	±5 ±5 3 to 8	±5.5 ±5.6	V V mA mA	
TEMPERATURE Operating Storage	Ambient Temperature Ambient Temperature	-40 -40	ent-feedback soltage busker voltage feedba	85 125	°C	

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±6V
Input Voltage(1)	±V _{CC} to ±0.7V
Operating Temperature	40°C to +85°C
Storage Temperature	
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Inputs are internally diode-clamped to ±V_{CC}.

PACKAGE INFORMATION

MODEL	DESCRIPTION	PACKAGE DRAWING NUMBER ⁽¹⁾	
OPA622AP	14-Pin Plastic DIP	010	
OPA622AU	SO-14 Surface-Mount	235	

NOTE:(1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	DESCRIPTION	TEMPERATURE RANGE
OPA622AP	14-Pin Plastic DIP	-40°C to +85°C
OPA622AU	SO-14 Surface-Mount	-40°C to +85°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

AC-SPECIFICATION VOLTAGE-FEEDBACK AMPLIFIER (Figure 5)

At V_{CC} = ±5V, I_{Q} = ±5mA, G_{CL} = +2V/V, R_{LOAD} = 100 Ω , R_{SOURCE} = 50 Ω , R_{Q} = 430 Ω , R_{QG} = 150 Ω and T_{A} = +25°C, unless otherwise specified.

tuani pelina pamoni		OPA622AP	OPA622AU	1922
PARAMETER	CONDITIONS	TYP	ТҮР	UNITS
FREQUENCY DOMAIN		POR LANGE		(\$P*10) A
LARGE SIGNAL Closed-Loop Bandwidth (-3dB)	V_O = 2.8Vp-p, Gain = +1V/V V_O = 2.8Vp-p, Gain = +2V/V V_O = 2.8Vp-p, Gain = +5V/V V_O = 2.8Vp-p, Gain = +10V/V V_O = 2.8Vp-p, Gain = -1V/V V_O = 2.8Vp-p, Gain = -2V/V V_O = 5.0Vp-p, Gain = +2V/V	220 200 170 110 150 160 150	250 250 230 110 250 250 200	MHz MHz MHz MHz MHz MHz MHz MHz
SMALL SIGNAL BANDWIDTH	V _O = 0.2Vp-p, Gain = +2V/V	150	170	MHz
GROUP DELAY TIME	Successful Black Flegs	1.4	1.4	ns
DIFFERENTIAL GAIN	$f = 4.43 MHz$, $R_{LOAD} = 150 \Omega$ $V_O = 0.7 V$, $Gain = +1 V/V$ $V_O = +1.4 V$, $Gain = +2 V/V$	0.12 0.15	0.12 0.15	%
DIFFERENTIAL PHASE	$f = 4.43MHz$, $R_{LOAD} = 150\Omega$ $V_O = 0.7V$, $Gain = +1V/V$ $V_O = +1.4V$, $Gain = +2V/V$	0.06 0.08	0.06 0.08	Degrees Degrees
HARMONIC DISTORTION Second Harmonic 2f Third Harmonic 3f Second Harmonic 2f Third Harmonic 3f Second Harmonic 2f Third Harmonic 3f	Gain = +2V/V $f = 10MHz$, $V_O = 2.8Vp-p$ $f = 30MHz$, $V_O = 2.8Vp-p$ $f = 50MHz$, $V_O = 2.8Vp-p$	-57 -55 -38 -43 -33 -30	-57 -55 -38 -43 -33 -30	dBc dBc dBc dBc dBc dBc
GAIN FLATNESS PEAKING	Gain = $+2V/V$ $V_O = 2.8Vp-p$, DC to 30MHz $V_O = 2.8Vp-p$, DC to 100MHz	0.12 0.3	0.12 0.3	dB dB
TIME DOMAIN	ISSU JANG TOMUN		\$31,00.1 pkg/1	OF THE OWN
Fall Time	Gain = +2V/V, 10% to 90% $V_O = 5Vp-p$, $C_L = 2pF$ Gain = +2V/V, 10% to 90% $V_O = 5Vp-p$, $C_L = 2pF$	3.5	2.7 3.2	ns ns
Positive Negative	Gain = $+2V/V$, Rise Time = 2ns $V_O = 6.2Vp-p$	1500 1300	1700 1600	V/µs Vµs
SETTLING TIME	Gain = +2V/V, Rise Time = 2ns V _O = 2Vp-p, 0.1%	30 ^V 17 ST	SO17 - 01	ns

DICE INFORMATION

OPA622AD DIE TOPOGRAPHY

PAD	FUNCTION AND VO	
1	Quiescent Current Adjustment	
2	Inverting Analog Input	
3	Non-Inverting Analog Input	
4	NC HIAMGO YONGI	
5	NC	
6	-5V Supply	
0.07 185 =	-5V Supply, Output	
8 /8 =	Inverting Buffer Output	
9948	Analog Output	
10	Analog OTA Output	
11/8.		
12	+5V Supply	
13	Non-Inverting Buffer Output	

Substrate Bias: Negative Supply

NC: No Connection

Wire Bonding: Gold wire bonding is recommended.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	57 x 69 ±5	1.44 x 1.76 ±0.13
Die Thickness	14±1	0.55 ±0.025
Min. Pad Size	4 x 4	0.10 x 0.10
Backing: Titanium	0.02+0.05,-0.0	0.0005+0.0013, -0.0
Gold	0.30 ±0.05	0.0076 ±0.0013

PIN CONFIGURATION

FUNCTIONAL DESCRIPTION

PIN NO.	DESCRIPTION	FUNCTION
1	NC	No Connection
2	Io Adjust	Quiescent Current Adjustment; typical 3-8mA
3	-In	Inverting Analog Input
4	VAVS+In mas	Noninverting Analog Input
5	-V _{cc}	Negative Supply Voltage; typical -5VDC
6	-V _{CC OUT}	Negative Supply Voltage Output Buffer; typical –5VDC
8	BUF-	Analog Output Feedback Buffer
9	Vour	Analog Output
10	OTA	Analog Output OTA
11	+V _{CC OUT}	Positive Supply Voltage Output Buffer; typical +5VDC
12	+V _{CC}	Positive Supply Voltage; typical +5VDC
13	BUF+	Analog Output/Input
14	NC	No Connection

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

OPA623

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11132

Wide Bandwidth, Current-Feedback OPERATIONAL AMPLIFIER

FEATURES

- BANDWIDTH: 350MHz, 2.8Vp-p
- HIGH OUTPUT CURRENT: ±70mA
- SLEW RATE: 2100V/µs, 5Vp-p
- DIFFERENTIAL GAIN/PHASE: 0.12%/0.05°
- LOW QUIESCENT CURRENT: ±4mA
- LOW INPUT BIAS CURRENT: 1.2µA
- RISE TIME: 1.9ns, 5Vp-p
- SETTLING TIME: 9ns, 0.1%

DESCRIPTION

The OPA623 is a current-feedback operational amplifier designed for precision wide-bandwidth systems including high-resolution video, RF and IF circuitry, and communications equipment.

The new circuit design, together with the complementary bipolar process, achieves performance previously unattainable in monolithic integrated circuit technology.

The current-feedback op amp is optimized for wide bandwidth, excellent pulse response, gain flatness, low distortion, and operation at a low quiescent current of ± 4 mA.

It provides a 350MHz large-signal bandwidth at 2.8Vp-p output voltage, as well as a 2100V/µs slew rate. The gain flatness of 0.05dB over a 30MHz bandwidth makes it suitable for HDTV designs. Another feature of the op amp is its high output current of $\pm 70 \text{mA}$, enabling it to drive two back-terminated 75Ω cables when using the amplifier as a line driver in video routers, distribution amplifiers, and analog and digital communications equipment.

APPLICATIONS

- BROADCAST/HDTV EQUIPMENT.
- HIGH-SPEED DIGITAL COMMUNICATIONS
- PULSE/RF AMPLIFIERS
- HIGH-SPEED ANALOG SIGNAL PROCESSING
- LINE DRIVING (50 Ω , 75 Ω)
- DISTRIBUTION AMP
- **CRT OUTPUT STAGE DRIVER**
- ACTIVE FILTER

The OPA623 operates from a ± 5 V supply, is specified for the extended industrial temperature range (-40°C to +85°C), and is available in 8-pin plastic SOIC and 8-pin plastic DIP.

LARGE SIGNAL PULSE RESPONSE

Output Voltage - 5Vp-p, 5ns/DIV

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

DC-SPECIFICATION

At $V_{CC} = \pm 5$ VDC, $I_{CC} = \pm 4$ mA, $R_{II} = 100\Omega$, $R_{INI} = 210\Omega$, and $T_{AMB} = \pm 25$ °C unless otherwise specified.

		OPA623AP, AU			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT OFFSET VOLTAGE Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	V_{CC} = ±4.5V to ±5.5V V_{CC} = +4.5V to +5.5V V_{CC} = -4.5V to -5.5V	45	8 125 50 47 39	±25	mV μV/°C dB dB dB
+INPUT BIAS CURRENT Initial vs Temperature	bee7-toerus	o .ritibiy	-1.2 7	±4	μΑ nA/°C
-INPUT BIAS CURRENT Initial vs Temperature	HEIRLIGMA.	HONAL	+4.5 340	±20	μA nA/°C
INPUT IMPEDANCE +Input	Berth Letter And Strate Willy Colors	A COMPANY OF THE PROPERTY OF THE	2.74 1	e restrict ordination const	MΩ pF
INPUT NOISE Voltage Noise Density Signal-to-Noise Ratio	f = 100kHz to $100MHzS/N = 0.7/(Vn \cdot \sqrt{5MHz})$		10 89	23FUT/	nV/√Hz dB
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	HIGH-SPEED DIGITAL	±3 43	±3.2 50	ROWIDTH: 350 SE OUTPUT CU	V dB
RATED OUTPUT Voltage Output Output Current Closed-Loop Output Impedance	R _L = 100Ω Gain = +2	±3 1 (1) 3 2	±3.1 ±70 0.12 1.5	EW MATELZION FERENTIAL GA W GUIESCENT	V mA Ω pF
POWER SUPPLY Rated Voltage Derated Performance Quiescent Current Rejection Ratio	DISTRIBUTION AMP O DISTRIBUTION AMP O DISTRIBUTION AMP	±4.5 ±4 ±3.5 45	±4 50	±5.5 ±6 ±4.5	VDC VDC mA dB

ELECTRICAL (FULL TEMPERATURE RANGE, -40°C to +85°C)

At V_{CC} = ±5VDC, I_{O} = ±4mA, R_{I} = 100 Ω , and R_{IN} = 210 Ω unless otherwise specified.

PARAMETER	8-pin plastic DIP.	OPA623AP, AU			gizab tari
	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT OFFSET VOLTAGE	N JAP DIS BORAJ		moundi	±30	mV
BIAS CURRENT +Input		-manakamoo s	-1.5	arond design, l	уч эн
BIAS CURRENT -Input		sionile bearg	27	±50	μА
RATED OUTPUT Voltage Output	$R_L = 100\Omega$	shire ±3 basi	±3.1	ni-feedback or	mun solt
POWER SUPPLY Quiescent Current	I _O = 0mA	-700 (±208)(10	V/01 (±4 1101)	1000 ±7°	mA

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS

AC-SPECIFICATION

At $V_{CC}=\pm5$ VDC, $I_{Q}=\pm4$ mA, $R_{L}=100\Omega$, $R_{IN}=210\Omega$, and $T_{AMB}=+25$ °C unless otherwise specified.

1207174		OPA623AP, AU		III or and	Name of
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
FREQUENCY DOMAIN		The Park of the Indian			
Large Signal Closed-Loop Bandwidth (-3dB)	$V_O = 2.8Vp-p$, $Gain = +1V/V$ $V_O = 2.8Vp-p$, $Gain = +2V/V$ $V_O = 2.8Vp-p$, $Gain = +5V/V$ $V_O = 2.8Vp-p$, $Gain = +10V/V$ $V_O = 2.8Vp-p$, $Gain = -1V/V$ $V_O = 2.8Vp-p$, $Gain = -2V/V$ $V_O = 5.0Vp-p$, $Gain = +2V/V$	molein	340 350 260 210 360 330 240		MHz MHz MHz MHz MHz MHz MHz
SMALL SIGNAL BANDWIDTH	$V_{O} = 0.2Vp-p, Gain = +2V/V$		290		MHz
GROUP DELAY TIME	Pin 3 to Pin 6, Gain = +2V/V	HIAHH	1.2	MICE	ns
DIFFERENTIAL GAIN	$G = +2V/V$, $f = 4.43MHz$, $R_L = 150\Omega$ $V_O = +1.4V$		0.12		%
DIFFERENTIAL PHASE	$G = +2V/V$, $f = 4.43MHz$, $R_L = 150\Omega$ $V_O = +1.4V$		0.05	CHES	Degrees
HARMONIC DISTORTION Second Harmonic Third Harmonic Second Harmonic Third Harmonic Second Harmonic Third Harmonic Third Harmonic	Gain = +2V/V f = 10MHz, V_O = 2.0Vp-p f = 30MHz, V_O = 2.0Vp-p f = 50MHz, V_O = 2.0Vp-p	sitifot ts	-56 -59 -30 -37 -30 -33	1.0W NOIS 127—550ns 1 137—450ns 1	dBc dBc dBc dBc dBc dBc
GAIN FLATNESS PEAKING	Gain = $+2V/V$ $V_O = 2.0Vp-p$, DC to 30MHz $V_O = 2.0Vp-p$, DC to 100MHz		0.05 0.20	DRIFT: 0.8µ	dB dB
TIME DOMAIN	DEPARTORES HEAD &		aldelo al	officers and a view	ak move
Rise Time	Gain = $+2V/V$, 10% to 90% $V_O = 2.0Vp-p$ $V_O = 5.0Vp-p$		1.4	at: Stable li	
Fall Time wolfs and dans y and among consequents	Gain = +2V/V, 10% to 90% V _O = 2.0Vp-p V _O = 5.0Vp-p	Dilama ta a la	1.4 2.6	CHIPTIC	ns ns
SLEW RATE	Gain = +2V/V, Rise Time = 1ns $V_O = 0.2Vp-p$ $V_O = 5.0Vp-p$	in a precision pula: OPA111	140 2100	te a new level usp. When con	V/µs V/µs
SETTLING TIME	Gain = $+2V/V$, Rise Time = 2ns $V_O = 2V_{p,p}$, 0.1%	is, lo var offisal eful in a broad	t has lever nor	ne CP ACCINOS ned much high	ns

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±6V
Input Voltage(1)	±V _{CC} ±0.7V
Operating Temperature40°C to +	
Storage Temperature	40°C to +125°C
Junction Temperature+1	
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Inputs are internally diode-clamped to ±V_{CC}.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA623AP	Plastic DIP	006
OPA623AU	Plastic SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANG	
OPA623AP	8-Pin Plastic DIP	-40°C to +85°C	
OPA623AU	8-Pin SOIC	-40°C to +85°C	

OPA627 OPA637

Precision High-Speed Difet® OPERATIONAL AMPLIFIERS

FEATURES

- VERY LOW NOISE: 4.5nV/√Hz at 10kHz
- FAST SETTLING TIME:
 OPA627—550ns to 0.01%
 OPA637—450ns to 0.01%
- LOW Vos: 100µV max
- LOW DRIFT: 0.8µV/°C max
- LOW I_B: 5pA max
- OPA627: Unity-Gain Stable
- OPA637: Stable in Gain ≥ 5

DESCRIPTION

The OPA627 and OPA637 **Difet** operational amplifiers provide a new level of performance in a precision FET op amp. When compared to the popular OPA111 op amp, the OPA627/637 has lower noise, lower offset voltage, and much higher speed. It is useful in a broad range of precision and high speed analog circuitry.

The OPA627/637 is fabricated on a high-speed, dielectrically-isolated complementary NPN/PNP process. It operates over a wide range of power supply voltage—±4.5V to ±18V. Laser-trimmed *Difet* input circuitry provides high accuracy and low-noise performance comparable with the best bipolar-input op amps.

APPLICATIONS

- PRECISION INSTRUMENTATION
- FAST DATA ACQUISITION
- **DAC OUTPUT AMPLIFIER**
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- HIGH-IMPEDANCE SENSOR AMPS
- HIGH-PERFORMANCE AUDIO CIRCUITRY
- ACTIVE FILTERS

High frequency complementary transistors allow increased circuit bandwidth, attaining dynamic performance not possible with previous precision FET op amps. The OPA627 is unity-gain stable. The OPA637 is stable in gains equal to or greater than five.

Difet fabrication achieves extremely low input bias currents without compromising input voltage noise performance. Low input bias current is maintained over a wide input common-mode voltage range with unique cascode circuitry.

The OPA627/637 is available in plastic DIP, SOIC and metal TO-99 packages. Industrial and military temperature range models are available.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

DICE INFORMATION

SPECIFICATIONS

ELECTRICAL

At $T_A = +25$ °C, and $V_S = \pm 15$ V, unless otherwise noted.

			627BM, BP			627AM, AI 637AM, AI		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE (1) Input Offset Voltage AP, BP, AU Grades Average Drift AP, BP, AU Grades Power Supply Rejection	V _S = ±4.5 to ±18V	106	40 100 0.4 0.8 120	100 250 0.8 2	100	130 280 1.2 2.5 116	250 500 2	μV μV μV/°C μV/°C
INPUT BIAS CURRENT (2) Input Bias Current Over Specified Temperature SM Grade Over Common-Mode Voltage Input Offset Current Over Specified Temperature SM Grade	V _{CM} = 0V V _{CM} = 0V V _{CM} = 0V V _{CM} = ±10V V _{CM} = 0V V _{CM} = 0V		1 1 0.5	5 1 50 5 1 50	090T	2 1	10 2 10 2	pA nA nA pA pA nA
NOISE Input Voltage Noise Noise Density: f = 10Hz f = 10Hz f = 10Hz f = 10Hz Voltage Noise, BW = 0.1Hz to 10Hz Input Bias Current Noise Noise Density, f = 100Hz Current Noise, BW = 0.1Hz to 10Hz	PRECHANICA Dis Size Die Trickness Min. Paz Size Trinslator Coont Backing:	FUNCTION Offset Trits Output -Vs -Vs o Convention nection opion	15 8 5.2 4.5 0.6	40 20 8 6 1.6	ICTION et Lim els	20 10 5.6 4.8 0.8 2.5 48	PAD 1 2 8 8 8	nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVp-p fA/√Hz fAp-p
INPUT IMPEDANCE Differential Common-Mode			10 ¹³ 8 10 ¹³ 7			:		Ω pF Ω pF
INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature	$V_{CM} = \pm 10.5V$ $V_O = \pm 10V, R_L = 1k\Omega$ $V_O = \pm 10V, R_I = 1k\Omega$	±11 ±10.5 106	±11.5 ±11 116	481	100 106 106	110 116 110	G INFO	V V dB
SM Grade FREQUENCY RESPONSE Slew Rate: OPA627 OPA637 OPA637 Settling Time: OPA627 0.01% OPA637 0.01% OPA637 0.01% Gain-Bandwidth Product: OPA627 OPA637 Total Harmonic Distortion + Noise	$V_0 = \pm 10V$, $R_L = 1k\Omega$ G = -1, $10V$ Step G = -4, $10V$ Step G = -1, $10V$ Step G = -1, $10V$ Step G = -4, $10V$ Step G = -4, $10V$ Step G = 1 G = 10 G = +1, $10V$	40 100	55 -135 -550 450 450 300 16 80 0.00003	65- 65- 65- 65- 65- 65- 65- 65- 65-	His DUP 33 M*tal 33 M*tal 33 M*tal 33 M*tal 33 M*tal 33 M*tal 34 M*tal 35 M*tal 36 M*tal 36 M*tal 37 M*tal 38 M*tal	Pia Pia		V/μs V/μs ns ns ns ns MHz MHz
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current	,	±4.5	±15	±18 ±7.5	Jakavi el	DITAM	INFO	V V mA
OUTPUT Voltage Output Over Specified Temperature Current Output Short-Circuit Current Output Impedance, Open-Loop	$R_L = 1k\Omega$ $V_O = \pm 10V$ $1MHz$	±11.5 ±11 ±35	±12.3 ±11.5 ±45 +70/–55 55	±100	SKADE site DIP	PA Pla	*	V mA mA Ω
TEMPERATURE RANGE Specification: AP, BP, AM, BM, AU SM Storage: AM, BM, SM AP, BP, AU θ _{J-A} : AM, BM, SM AP, BP AU		-25 -55 -60 -40	200 100 160	+85 +125 +150 +125	1010 99 Milest 99 Metal 99 Metal ottle DIP totac	OT .	:	,

* Specifications same as "B" grade.

NOTES: (1) Offset voltage measured fully warmed-up. (2) High-speed test at T_J = +25°C. See Typical Performance Curves for warmed-up performance.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPA627 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	Offset Trim	5 5	Offset Trim
2	lea -In	8 6 8	Output
3	+In	8 7 8	+V _S
4	-V _S	8 8	Substrate
		NC	No Connection

Substrate Bias: Dielectrically isolated. See data sheet for connection options.

OPA637 DIE TOPOGRAPHY

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size Die Thickness Min. Pad Size	117 x 80 ±5 20 ±3 4 x 4	2.97 x 2.03 ±0.13 0.51 ±0.08 0.10 x 0.10
Transistor Count Backing:	2721,01,0	46 None

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
001100110	9.0	05:00 - 05:00
OPA627AP	Plastic DIP	-25°C to +85°C
OPA627BP	Plastic DIP	-25°C to +85°C
OPA627AU	SOIC	-25°C to +85°C
OPA627AM	TO-99 Metal	-25°C to +85°C
OPA627BM	TO-99 Metal	-25°C to +85°C
OPA627SM	TO-99 Metal	-55°C to +125°C
OPA637AP	Plastic DIP	-25°C to +85°C
OPA637BP	Plastic DIP	-25°C to +85°C
OPA637AU	SOIC	-25°C to +85°C
OPA637AM	TO-99 Metal	-25°C to +85°C
OPA637BM	TO-99 Metal	-25°C to +85°C
OPA637SM	TO-99 Metal	-55°C to +125°C

PACKAGE INFORMATION

MODEL	DDEL PACKAGE		PACKAGE DRAWING NUMBER ⁽¹⁾		
OPA627AP	Plastic DIP	0012	006	8	
OPA627BP	Plastic DIP		006		
OPA627AU	SOIC		182		
OPA627AM	TO-99 Metal	38+	001		
OPA627BM	TO-99 Metal	4158	001		
OPA627SM	TO-99 Metal	825¢	001		
OPA637AP	Plastic DIP		006		
OPA637BP	Plastic DIP		006		
OPA637AU	SOIC		182		
OPA637AM	TO-99 Metal		001		
OPA637BM	TO-99 Metal	mone	001		
OPA637SM	TO-99 Metal		001		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	+V _s + 2V to -V _s - 2V
Differential Input Range	
Power Dissipation	1000mW
Operating Temperature	EM Gode
M Package	55°C to +125°C
P, U Package	
Storage Temperature	
M Package	65°C to +150°C
P, U Package	40°C to +125°C
Junction Temperature	
M Package	+175°C
P, U Package	+150°C
Load Tomporature (coldering 10a)	+300°C
SOIC (soldering, 3s)	+300°C +260°C

TYPICAL PERFORMANCE CURVES

At $T_A = +25$ °C, and $V_S = \pm 15$ V, unless otherwise noted.

-210

100

TYPICAL PERFORMANCE CURVES (CONT)

10

Frequency (MHz)

-10

Vs PSRR 627

and 637

1M

140

120

100

80

60 40

20

10

100

Power-Supply Rejection (dB)

POWER-SUPPLY REJECTION vs FREQUENCY

OPA627/637

OPERATIONAL AMPLIFIERS

1k

Frequency (Hz)

10k

100k

OUTPUT CURRENT LIMIT VS TEMPERATURE

OPA627 GAIN-BANDWIDTH AND SLEW RATE vs TEMPERATURE

OPA637 GAIN-BANDWIDTH AND SLEW RATE

Error Band (%)

APPLICATIONS INFORMATION

The OPA627 is unity-gain stable. The OPA637 may be used to achieve higher speed and bandwidth in circuits with noise gain greater than five. Noise gain refers to the closed-loop gain of a circuit as if the non-inverting op amp input were being driven. For example, the OPA637 may be used in a non-inverting amplifier with gain greater than five, or an inverting amplifier of gain greater than four.

When choosing between the OPA627 or OPA637, it is important to consider the high frequency noise gain of your circuit configuration. Circuits with a feedback capacitor (Figure 1) place the op amp in unity noise-gain at high frequency. These applications must use the OPA627 for proper stability. An exception is the circuit in Figure 2, where a small feedback capacitance is used to compensate for the input capacitance at the op amp's inverting input. In this case, the closed-loop noise gain remains constant with frequency, so if the closed-loop gain is equal to five or greater, the OPA637 may be used.

FIGURE 1. Circuits with Noise Gain Less than Five Require the OPA627 for Proper Stability.

OFFSET VOLTAGE ADJUSTMENT

The OPA627/637 is laser-trimmed for low offset voltage and drift, so many circuits will not require external adjustment. Figure 3 shows the optional connection of an external potentiometer to adjust offset voltage. This adjustment should not be used to compensate for offsets created elsewhere in a system (such as in later amplification stages or in an A/D converter) because this could introduce excessive temperature drift. Generally, the offset drift will change by approximately $4\mu V/^{o}C$ for 1mV of change in the offset voltage due to an offset adjustment (as shown on Figure 3).

FIGURE 2. Circuits with Noise Gain Equal to or Greater than Five May Use the OPA637.

NOISE PERFORMANCE

Some bipolar op amps may provide lower voltage noise performance, but both voltage noise and bias current noise contribute to the total noise of a system. The OPA627/637 is unique in providing very low voltage noise and very low current noise. This provides optimum noise performance over a wide range of sources, including reactive source impedances. This can be seen in the performance curve showing the noise of a source resistor combined with the

noise of an OPA627. Above a $2k\Omega$ source resistance, the op amp contributes little additional noise. Below $1k\Omega$, op amp noise dominates over the resistor noise, but compares favorably with precision bipolar op amps.

CIRCUIT LAYOUT WEDAT JOY TUSTUO XAM

As with any high speed, wide bandwidth circuit, careful layout will ensure best performance. Make short, direct interconnections and avoid stray wiring capacitance—especially at the input pins and feedback circuitry.

The case connection (pin 8 of TO-99 metal package only) should be connected to an AC ground for lowest possible pickup of external fields. While DC ground would be the most likely choice, pin 8 could also be connected to either power supply. (The case is not internally connected to the negative power supply as it is with most common op amps.) For lowest possible input bias current, the case may be driven as a guard—see Input Bias Current section. Pin 8 of the plastic DIP and SOIC versions has no internal connection.

Power supply connections should be bypassed with good high frequency capacitors positioned close to the op amp

FIGURE 3. Optional Offset Voltage Trim Circuit.

FIGURE 4. Connection of Input Guard for Lowest In.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

pins. In most cases $0.1\mu F$ ceramic capacitors are adequate. The OPA627/637 is capable of high output current (in excess of 45mA). Applications with low impedance loads or capacitive loads with fast transient signals demand large currents from the power supplies. Larger bypass capacitors such as $1\mu F$ solid tantalum capacitors may improve dynamic performance in these applications.

INPUT BIAS CURRENT

Difet fabrication of the OPA627/637 provides very low input bias current. Since the gate current of a FET doubles approximately every 10°C, to achieve lowest input bias current, the die temperature should be kept as low as possible. The high speed and therefore higher quiescent current of the OPA627/637 can lead to higher chip temperature. A simple press-on heat sink such as the Burr-Brown model 807HS (TO-99 metal package) can reduce chip temperature by approximately 15°C, lowering the I_B to one-third its warmed-up value. The 807HS heat sink can also reduce low-frequency voltage noise caused by air currents and thermoelectric effects. See the data sheet on the 807HS for details. Temperature rise in the plastic DIP and SOIC packages can be minimized by soldering the device to the circuit board. Wide copper traces will also help dissipate heat.

The OPA627/637 may also be operated at reduced power supply voltage to minimize power dissipation and temperature rise. Using $\pm 5V$ power supplies reduces power dissipation to one-third of that at $\pm 15V$. This reduces the I_B of TO-99 metal package devices to approximately one-fourth the value at $\pm 15V$.

Leakage currents between printed circuit board traces can easily exceed the input bias current of the OPA627/637. A circuit board "guard" pattern (Figure 4) reduces leakage effects. By surrounding critical high impedance input circuitry with a low impedance circuit connection at the same potential, leakage current will flow harmlessly to the low-impedance node. The case connection (TO-99 metal pack-

FIGURE 5. Clamp Circuit for Improved Overload Recovery.

age only) may also be driven at guard potential to minimize any leakage which might occur from the input pins to the case. The case is not internally connected to $-V_s$.

Input bias current may also be degraded by improper handling or cleaning. Contamination from handling parts and circuit boards may be removed with cleaning solvents and deionized water. Each rinsing operation should be followed by a 30-minute bake at 85°C.

Many FET-input op amps exhibit large changes in input bias current with changes in input voltage. Input stage cascode circuitry makes the input bias current of the OPA627/637 virtually constant with wide common-mode voltage changes. This is ideal for accurate high input-impedance buffer applications.

FIGURE 6. Driving Large Capacitive Loads.

PHASE-REVERSAL PROTECTION

The OPA627/637 has internal phase-reversal protection. Many FET-input op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This is most often encountered in non-inverting circuits when the input is driven below -12V, causing the output to reverse into the positive rail. The input circuitry of the OPA627/637 does not induce phase reversal with excessive common-mode voltage, so the output limits into the appropriate rail.

OUTPUT OVERLOAD

When the inputs to the OPA627/637 are overdriven, the output voltage of the OPA627/637 smoothly limits at approximately 2.5V from the positive and negative power supplies. If driven to the negative swing limit, recovery takes approximately 500ns. When the output is driven into the positive imit, recovery takes approximately 6µs. Output recovery of the OPA627 can be improved using the output clamp circuit shown in Figure 5. Diodes at the inverting input prevent degradation of input bias current.

As with any high-speed op amp, best dynamic performance can be achieved by minimizing the capacitive load. Since a load capacitance presents a decreasing impedance at higher frequency, a load capacitance which is easily driven by a slow op amp can cause a high-speed op amp to perform poorly. See the typical curves showing settling times as a function of capacitive load. The lower bandwidth of the OPA627 makes it the better choice for driving large capacitive loads. Figure 6 shows a circuit for driving very large load capacitance. This circuit's two-pole response can also be used to sharply limit system bandwidth. This is often useful in reducing the noise of systems which do not require the full bandwidth of the OPA627.

INPUT PROTECTION

The inputs of the OPA627/637 are protected for voltages between $+V_S+2V$ and $-V_S-2V$. If the input voltage can exceed these limits, the amplifier should be protected. The diode clamps shown in Figure 7a will prevent the input voltage from exceeding one forward diode voltage drop beyond the power supplies—well within the safe limits. If the input source can deliver current in excess of the maximum forward current of the protection diodes, use a series resistor, R_S , to limit the current. Be aware that adding resistance to the input will increase noise. The $4nV/\overline{Hz}$ theoretical thermal noise of a $1k\Omega$ resistor will add to the $4.5nV/\sqrt{\overline{Hz}}$ noise of the OPA627/637 (by the square-root of the sum of the squares), producing a total noise of $6nV/\sqrt{\overline{Hz}}$. Resistors below 100Ω add negligible noise.

Leakage current in the protection diodes can increase the total input bias current of the circuit. The specified maximum leakage current for commonly used diodes such as the 1N4148 is approximately 25nA—more than a thousand times larger than the input bias current of the OPA627/637. Leakage current of these diodes is typically much lower and may be adequate in many applications. Light falling on the

FIGURE 7. Input Protection Circuits.

junction of the protection diodes can dramatically increase leakage current, so common glass-packaged diodes should be shielded from ambient light. Very low leakage can be achieved by using a diode-connected FET as shown. The 2N4117A is specified at 1pA and its metal case shields the junction from light.

Sometimes input protection is required on I/V converters of inverting amplifiers (Figure 7b). Although in normal operation, the voltage at the summing junction will be near zero (equal to the offset voltage of the amplifier), large input transients may cause this node to exceed 2V beyond the power supplies. In this case, the summing junction should be protected with diode clamps connected to ground. Even with the low voltage present at the summing junction, common signal diodes may have excessive leakage current. Since the reverse voltage on these diodes is clamped, a diode-connected signal transistor can be used as an inexpensive low leakage diode (Figure 7b).

FIGURE 8. OPA627 Dynamic Performance, G = +1.

When driven with a very fast input step (left), common-mode transients cause a slight variation in input stage currents which will reduce output slew rate. If the input step slew rate is reduced (right), output slew rate will increase slightly.

FIGURE 9. OPA627 Dynamic Performance, G = -1.

FIGURE 10. OPA637 Dynamic Response, G = 5.

FIGURE 11. Settling Time and Slew Rate Test Circuit.

FIGURE 12. High Speed Instrumentation Amplifier, Gain = 100.

FIGURE 13. High Speed Instrumentation Amplifier, Gain = 1000.

FIGURE 14. Composite Amplifier for Wide Bandwidth.

Low Distortion Wideband OPERATIONAL AMPLIFIER

FEATURES

- EXCELLENT DIFFERENTIAL GAIN: 0.015%
- EXCELLENT DIFFERENTIAL PHASE: 0.015°
- LOW DISTORTION: 90dB SFDR
- TWO-TONE THIRD-ORDER INTERCEPT: 60dBm
- LOW NOISE: 2.5nV/√Hz
- LOW NOISE FIGURE: 9dB
- BANDWIDTH (Gain = +1): 160MHz
- 0.1dB GAIN FLATNESS: 30MHz
- LOW OFFSET VOLTAGE: 500uV

DESCRIPTION

The OPA628 is a low distortion, wideband operational amplifier. It features low differential gain error of 0.015% and low differential phase error of 0.015° at NTSC and PAL frequencies with a 150Ω load (a backterminated 75 Ω cable). The 0.1dB gain flatness to 30MHz, and the excellent differential gain and phase make the OPA628 ideal for broadcast quality video applications. In addition, the spurious free dynamic range of 90dB makes the OPA628 an excellent choice to buffer the input of precision Analog-to-Digital converters. It can also be used to provide a buffer for the output of precision high speed Digital-to-Analog converters. The two-tone third-order intercept of the OPA628 is 60dBm.

The OPA628 is a unity gain stable, voltage feedback operational amplifier. It has all of the benefits associated with voltage feedback amplifiers including high input impedance, high common mode rejection, and symmetrical differential input flexibility. The unity gain bandwidth of the OPA628 is 160MHz. The low noise of 2.5nV/√Hz and low noise figure of 9dB $(R_S = 50\Omega)$ make the OPA628 very useful in precision applications requiring wide dynamic range.

The superior distortion performance of the OPA628 is achieved by its multistage architecture which provides high open-loop gain. The distortion performance is

APPLICATIONS

- BROADCAST QUALITY VIDEO
- MEDICAL IMAGING
- LOW NOISE PREAMPLIFIER
- PRECISION ADC/DAC BUFFER
- TELECOMMUNICATIONS
- ANALYTICAL INSTRUMENTS
- ACTIVE FILTERS
- DC RESTORATION CIRCUITS

additionally enhanced by separating the power supplies to the input and output stages requiring four power supply connections as shown in the block diagram below. This separation of supplies eliminates the effects of package and wire bond parasitic capacitance and inductance. The OPA628 is powered with ±5VDC supplies for low power dissipation. The OPA628 is available in 8-pin plastic DIP and SOIC packages. The temperature range is -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400

 Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

		10.0000	OPA628AP, AU		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT NOISE	E-147 5 2015 (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985)	Company of the same	Chr. or . Market Street	Service Control of the	CLASS OF SECTION
Voltage: $R_S = 0\Omega$	f _O = 100Hz	was don't Pil	8.3		nV/√Hz
	$f_0 = 1kHz$		3.5		nv/√Hz
	f _O = 10kHz		2.6		nV/√Hz
	f _O = 100kHz		2.5		nV/√Hz
	f _O = 1MHz to 100MHz	LINE ENVI	2.5		nV/√Hz
	f _B = 100Hz to 10MHz		8.1		μVrms
Current	f _O = 100kHz to 100MHz		2.2	ACTO AND ADDRESS OF THE CALCULAR OF	pA/√Hz
Noise Figure	$R_S = 50\Omega$, $f_O = 1MHz$ to $100MHz$		9.3	2300	dB
OFFSET VOLTAGE	331470			100 and 2 to 122 pt	o and a
Input Offset Voltage	V _{CM} = 0VDC		±0.5	PENG THELE	mV
Average Drift	$T_A = T_{MIN}$ to T_{MAX}		±6, 202	CHARLES STREET, S. D.	μV/°C
Supply Rejection (PSRR)	$\pm V_{CC} = \pm 4.5V \text{ to } \pm 5.5V$	90	105	THE PRIME	dB
Over Specification Temperature	$\pm V_{CC} = \pm 4.5 \text{V to } \pm 5.5 \text{V}, T_A = T_{MIN} \text{ to } T_{MAX}$		100	DISTORTION	dB
INPUT BIAS CURRENT	CC NINA WINE WAX	19545 19545, 255 19	erana andrews erans a	CONTRACTOR CONTRACTOR	PERSONAL AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE P
Input Bias Current	V _{CM} = 0VDC	ERCEPT	15	30	μΑ
Over Specification Temperature			22	00	μΑ
Input Offset Current	$V_{CM} = OVDC$, $T_A = T_{MIN}$ to T_{MAX} $V_{CM} = OVDC$		±0.3	63 6 ±2 2 1 0 14	μА
Over Specification Temperature	$T_A = T_{MIN}$ to T_{MAX}		±0.8	REAL HERILAN	μΑ
	A MIN W MAX		Gbe .37	COM SCION	WOULE
INPUT IMPEDANCE Differential	Open-Loop	5141	30 2	LACK SPREELS	kΩ pF
Common-Mode	Open-Loop		10 6	RECEIVED FOR	MΩ pF
INPUT VOLTAGE RANGE			11100 00.34	TAP MAD	127.0 0
Common-Mode Input Range			±2.5	inv respons	WO IV
	V _ ±2.5V	90	110	No. 2. Castle of the	dB
Common-Mode Rejection (CMRR)	$V_{CM} = \pm 2.5V$	90	105		dB
Over Specification Temperature	$V_{CM} = \pm 2.5V$, $T_A = T_{MIN}$ to T_{MAX}		105		uБ
OPEN-LOOP GAIN, DC			1/3		330
Open-Loop Voltage Gain		90	100	the same of the same of	dB dB
Over Specification Temperature	$T_A = T_{MIN}$ to T_{MAX}	parotherses but	96,33,04	ID WOLLS STONE	
FREQUENCY RESPONSE	ritios to the input and output		latinotoliab we	d features h	estisiquis.
Closed-Loop Bandwidth	Gain = +1V/V		160	sail low diffica	MHz
(-3dB)	Gain = +2V/V		77	NAME OF THE PERSONS	MHz
	Gain = +5V/V		24	CONTRACTOR OF THE PARTY OF THE	MHz
Bandwidth 0.1dB Flat	Gain = $+2V/V$		30 30	(pidita) TSC/ TE	MHz
Differential Gain	3.58MHz, Gain = +2, V _O = 1.4V Ramp		0.015	and the excelle	%
Differential Phase	3.58MHz, Gain = +2, V _O = 1.4V Ramp		0.015	OPAK28 idea	degrees
Harmonic Distortion F	$R_L = 100\Omega$, $G = +1V/V$, $f = 5MHz$, $V_O = 2Vp-p$		and the second second	and the same of the same	dBc
	Second Harmonic		915/11	OBIDUR BI SER	
inge is +40°C to +85°C.	Third Harmonic		-98	di anakon elbiM	dBc
	$R_L = 500\Omega$, $G = +2V/V$, $f = 5MHz$, $V_O = 2Vp-p$ Second Harmonic		-90 diens	the input of an	dBc
	Third Harmonic		-90 -97	ar of note men the	dBc
State and an analysis	$_{L} = 500\Omega$, G = +2V/V, f = 10MHz, $V_{O} = 2Vp$ -	On the last of the	-3/		GDC
4	Second Harmonic	STOD ROLLAN-O	-83	nii u nomanada	dBc
	Third Harmonic		-87	onor-ows on	dBc
3rd-Order Intercept	f _C = 5MHz, G = +2		70	is 6048 m	dBm
3rd-Order Intercept	f _C = 10MHz, G = +2		60		dBm
Two-tone 3rd-Order Intercept	f _C = 5MHz, G = +2		60	tale a deity	dBm
Full Power Response ⁽¹⁾	$V_0 = 5Vp-p$, Gain = +1V/V		20		MHz
Tun Towor Trooportoo	$V_0 = 2Vp-p$, Gain = $+1V/V$		49	F PARTICION STR	MHz
Slew Rate	2V Step, Gain = -1V/V		310	via voltage is	V/µs
Overshoot	2V Step, Gain = -1V/V		nome 200 dair	ir imnedance.	%
Settling Time: 0.10%	2V Step, Gain = -1V/V		20	office Danier	ns
0.01%			64	TATEL BUILDING	ns
Overload Recovery Time(2)			60	to albraband a	ns
Phase Margin	Gain = +1V/V		810	of 2.5nV/ xi	degrees
Rise Time	Gain = +1V/V, 10% to 90%		France Schulde	odi wiem (C)	12 - ST
Small Signal	V _O = 100mVp-p		3	THE PARTY OF	ns
Large Signal	V _O = 6Vp-p		15	ACCERTORS LEGIN	ns
RATED OUTPUT		STANSON -	to someonida.	remitsessile and	wines with
Voltage Output	$f_{\Omega} = 1 MHz, R_{L} = 100 \Omega$	±3	AN SUREMED POLICE	THE PROPERTY AND ADDRESS OF THE PARTY AND ADDR	V
Over Specification Temperature	$f_0 = 1 \text{MHz}, R_L = 100\Omega, T_A = T_{MIN} \text{ to } T_{MAX}$	COLLAND HOUSE	±3	to the material	DOVE VS
al all all all all all all all all all	$f_O = 1 \text{MHz}, R_L = 50 \Omega$		nont ±3 h sel	nieg gool-n	go V
Output Resistance	1MHz, Gain = +1V/V		0.0005		Ω
Load Capacitance Stability	Gain = $+1V/V$, $V_O = 2Vp-p$		20		pF
Short Circuit Current	Continuous, Source		+180	the Orlandation of	mA
Short Circuit Current					

ELECTRICAL

At $V_{CC} = \pm 5 \text{VDC}$, $R_1 = 100 \Omega$ (including feedback impedance), and $T_A = +25 \,^{\circ}\text{C}$, unless otherwise noted.

PARAMETER CONDITIONS	NVV/+=vA	OPA628AP, AU			
	MIN	TYP	MAX	UNITS	
POWER SUPPLY			THE CHIE		
Rated Voltage	±V _{cc}		±5		VDC
Derated Performance	±V _{CC}	±4.5		±6	VDC
Current, Quiescent	I _O = 0mADC	1 " 11 11 11 11 11	29	32	mA
Current, Quiescent	$I_O = 0$ mADC $I_O = 0$ mADC, $T_A = T_{MIN}$ to T_{MAX}	a- 11-11-11-11-11-11-11-11-11-11-11-11-11	31	35	mA
TEMPERATURE RANGE	awaratament 6 19	00 111111			1 1 0 0
Specification: AP, AU	T _{MIN} and T _{MAX}	-40		+85	°C
Storage: AP, AU	Ambient Temperature	-55		+125	°C
θ _{JA} AP		/ / / /	90		°C/W
AU		ter HI A	100		°C/W

NOTES: (1) Full power response = slew rate/ $(2\pi Vpeak)$. (2) Time for output to resume linear operation after saturation.

ORDERING INFORMATION

MODEL	PACKAGE
OPA628AP	8-Pin Plastic DIP
OPA628AU	8-Pin SOIC

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA628AP	8-Pin Plastic DIP	006
OPA628AU	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply	±7VDC
Internal Power Dissipation(1)	See Applications Information
Differential Input Voltage	5V
Input Voltage Range	See Applications Information
Storage Temperature Range: AP, AU	55°C to +125°C
Lead Temperature (soldering, DIP 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Output Short Circuit to Ground (+25°C)	Continuous to Ground
Junction Temperature (T _J)	+175°C

NOTE: (1) Packages must be derated based on specified $\theta_{\rm JA}.$ Maximum T $_{\rm J}$ must be observed.

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures may cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

TYPICAL PERFORMANCE CURVES

At $V_{CC} = \pm 5 \text{VDC}$, $R_L = 100 \Omega$ (including feedback impedance), and $T_A = +25 ^{\circ} \text{C}$ unless otherwise noted.

OPA628

2

OPERATIONAL AMPLIFIERS

TYPICAL PERFORMANCE CURVES (CONT)

At V_{CC} = ±5VDC, R_L = 100 Ω (including feedback impedance), and T_A = +25°C unless otherwise noted

TYPICAL PERFORMANCE CURVES (CONT) MAMAGGAREG JACIGYT

At $V_{CC} = \pm 5 \text{VDC}$, $R_L = 100 \Omega$ (including feedback impedance), and $T_A = +25 ^{\circ} \text{C}$ unless otherwise noted.

DISCUSSION OF PERFORMANCE

The OPA628's classical operational amplifier architecture employs true differential and fully symmetrical inputs allowing optimal performance in either inverting or non-inverting circuit applications. All traditional circuit configurations and op amp theory apply to the OPA628. The use of low drift thin film resistors allows internal operating currents to be laser trimmed at wafer level to optimize AC performance such as distortion, bandwidth and settling time, as well as DC parameters such as input offset voltage. The result is a wideband, high frequency monolithic operational amplifier with a gain-bandwidth product of 150MHz, a spurious free dynamic range (SFDR) of 90dB, and input offset voltage of 500µV.

The layout considerations described in the "Printed Circuit Board Guidelines" section must be followed to achieve the best possible performance of the OPA628.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL subcarrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set. All PAL measurements were performed using a Rohde & Schwarz Video Analyzer UAF.

DG and DP of the OPA628 were measured with the amplifier in a gain of +2V/V with 75 Ω input impedance and the output back-terminated in 75 Ω . The input signal selected

from the generator was a 0V to 1.4V modulated ramp with sync pulse. With these conditions the test circuit shown in Figure 1 delivered a 100IRE modulated ramp to the 75 Ω input of the video analyzer. The signal averaging feature of the analyzer was used to establish a reference against which the performance of the amplifier was measured. Signal averaging was also used to measure the DG and DP of the test signal in order to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA628 is 0.015% differential gain and 0.015° differential phase to both NTSC and PAL standards. Increasing the closed-loop gain degrades the DP and DG.

GAIN FLATNESS

Small signal ±0.1dB gain flatness can be achieved up to 30MHz in a non-inverting gain of +2V/V through careful layout of the printed circuit board and frequency shaping of the feedback network. Frequency shaping is achieved empirically by placing a small capacitor in parallel with either the feedback resistor or the input resistor of the OPA628 to compensate for printed circuit parasitic capacitance. A capacitor in the range of approximately 1pF to 20pF is suggested. Printed circuit board layout design will determine if the capacitor should be placed across the feedback resistor or the input resistor.

Small signal $\pm 0.1 dB$ gain flatness of greater than 30MHz can be achieved at a gain of +1 V/V. To eliminate the effects of package lead inductance, a small value resistor should be included in the feedback path. Maximizing gain flatness for a particular layout requires optimization of the feedback resistor; an approximate value is 50Ω to 75Ω .

DISTORTION

The OPA628's Harmonic Distortion characteristics when driving a 100Ω load are shown vs frequency and vs voltage output in the Typical Performance Curves. Distortion can be further optimized by decreasing output loading as also

FIGURE 1. Configuration For Testing Differential Gain/Phase.

shown in Typical Performance Curves. Include the contribution of the feedback resistance when calculating the effective load resistance at the amplifier output. A high performance spectrum analyzer such as the HP3585B should be used to measure distortion.

Two-tone, third-order intermodulation distortion (IM) is an important parameter for many RF amplifier applications. The specification table shows the OPA628's two-tone, third order IM intercept at 5MHz and 10MHz. For these measurements, tones were spaced 200kHz apart. This data is particularly useful for determining the magnitude of the third-order IM products. The magnitude of the third-order IM products can be easily calculated from the expression:

Third IM = $2(OPI^3P - P_O)$ where OPI^3P = third-order output intercept, dBm P_O = output level/tone, dBm/tone Third IM = third-order intermodulation ratio below each output tone, dB

As an example, with $OPI^3P = 60dBm$, for $P_O = 10dBm$, the third order IM = 2(60-10) = 100dB below either 10dBm tone. The OPA628's low IM makes the device an excellent choice for a variety of RF signal processing applications. In order to obtain the full low distortion performance of the OPA628, it is imperative to follow the recommendations described in the "Printed Circuit Board Guidelines" section.

OUTPUT DRIVE CAPABILITY

The OPA628 has been optimized for low distortion performance with back terminated 50Ω and 75Ω loads $(R_{LOAD}=100\Omega$ and 150Ω , respectively). However, it is capable of driving 6Vpp into a 50Ω load with a sacrifice in distortion. This high-output drive capability makes the OPA628 an ideal choice for a wide range of RF, IF, and video applications. All transmission lines should be terminated with the characteristic impedance of the transmission line.

Internal current-limiting circuitry limits output current to about 130mA at 25°C. This prevents damage from acciden-

tal shorts to common and eliminates the need for external current-limiting circuitry. Although the device can withstand momentary shorts to either power supply, it is not recommended.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 2, the OPA628 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

NOISE FIGURE

The OPA628's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA628's Noise Figure vs Source Resistance is shown in Figure 3 for frequencies above 1MHz.

FIGURE 2. Small Signal Output Impedance vs Frequency.

FIGURE 3. Noise Figure vs Source Resistance.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

Settling time, specified in an inverting gain of one, is only 64ns to 0.01% for a 2V step. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Printed Circuit Board Guidelines." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 60ns. Settling time measurements for the OPA628 were performed in the circuit configuration of Figure 5. A sampling oscilloscope was used with signal averaging.

CAPACITIVE LOADS

Capacitive loads will decrease the OPA628's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 20pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 4. This is particularly important when driving high capacitance loads such as flash A/D converters.

FIGURE 4. Driving Capacitive Loads.

mum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/ft for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA628 is internally compensated and is stable in unity gain with a phase margin of approximately 60°. However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain of two or greater to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2V/V.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA628 in a good layout is very flat with frequency. However, some circuit configurations, such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

THERMAL CONSIDERATIONS

The OPA628 does not require a heat sink for operation in most environments. The use of a heat sink, however, will reduce the internal thermal rise and will result in cooler, more reliable operation. At extreme temperatures and under full load conditions a heat sink is necessary. See "Maximum Power Dissipation" curve, Figure 6.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V$ X 32mA = 320mW, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage (V_{OUT}) the maximum valueof P_{DL} occurs at $V_{OUT} = V_{CC}/2$, and is equal to P_{DL} , max = (V_{CC})²/4 R_L . Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

When the output is shorted to common $P_{DL} = 5V X 180 \text{mA}$ = 900mW, Thus, P_{D} , max = 320mW + 900mW $\approx 1.2 \text{W}$.

FIGURE 5. Settling Time Test Circuit.

Note that the short circuit condition represents the maximum amount of internal power dissipation that can be generated. Thus, the "Maximum Power Dissipation" curve starts at 1.2W and is derated based on a 175°C maximum junction temperature and the junction-to-ambient thermal resistance, θ_{JA} , of each package. The variation of short circuit current with temperature is shown in Figure 7.

FIGURE 6. Maximum Power Dissipation.

FIGURE 7. Short Circuit Current vs Temperature.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA628 incorporates on-chip ESD protection diodes as shown in Figure 8. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 8. Internal ESD Protection.

All pins on the OPA628 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to approximately 10mA whenever possible.

OFFSET VOLTAGE ADJUSTMENT

The OPA628's input offset voltage is laser-trimmed and will require no further adjustment for most applications. However, if additional adjustment is needed, the circuit in Figure 9 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by

the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R_3 . This will reduce error due to the amplifier's input bias current.

$$\begin{array}{c} + V_{CC} \\ 20k\Omega \\ \hline \\ 470k\Omega \\ \hline \\ V_{IN} \text{ or Ground} \\ \\ \hline \\ Output Trim Range = + V_{CC} \left(\begin{array}{c} R_2 \\ R_{Trim} \\ \hline \\ R_{Trim} \\ \hline \end{array} \right) \text{ to } - V_{CC} \left(\begin{array}{c} R_2 \\ R_{Trim} \\ \hline \\ R_{Trim} \\ \hline \end{array} \right)$$
 NOTE: (1) R_3 is optional and can be used to reduce error due to input bias currents.

FIGURE 9. Offset Voltage Trim.

SPICE MODELS of reserved for the need for the user to a spinitude sid!

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available for the OPA628. Contact Burr-Brown Applications Department to receive a SPICE diskette.

RELIABILITY DATA

Reliability reports are available upon request for each of the package options offered.

DEMONSTRATION BOARDS

Contact Burr-Brown Applications Department for availability of demonstration boards for the OPA628. There are separate demonstration boards for the DIP and SOIC packages. These demonstration boards use the PC board layouts shown in Figures 10a and 10b. They are carefully designed for optimum low distortion performance as described in the wiring precaution section.

PRINTED CIRCUIT BOARD GUIDELINES

The printed circuit board layout is critical to obtaining the full performance of the OPA628, particularly optimum distortion and gain flatness. The guidelines below should be employed to design the OPA628 printed circuit board. Conceptual layouts illustrating these guidelines for the DIP and SOIC packages are shown in Figures 10a and 10b.

- 1. Establish the primary ground plane on the IC side of the PC board. The primary ground plane is the lowest impedance ground plane, it should be as wide as possible with minimal interruptions. Connect all unused space on both sides of the board to the ground plane. The ground plane should extend beneath the body of the IC on both sides of the board. A 2-ounce copper ground plane is recommended. The input signal ground return, the load return, and the power supply common should all be connected to the same physical point to avoid ground loops which can cause unwanted feedback.
- 2. The entire physical circuit should be as small as practical.

 All signal and power supply paths should be as short and direct as possible to minimize stray capacitance and inductance which are detrimental to high frequency performance. Minimize signal trace impedance by keeping traces as wide and short as possible. Stray capacitance should be minimized, especially at high impedance nodes such as the amplifier's input terminals. In addition, stray signal coupling from the output of the amplifier back to the input should be minimized.
- 3. In general, the use of surface mount components improves performance over through-hole components by minimizing parasitics. (However, it should be noted that use of the DIP version of the OPA628 will not compromise amplifier performance.) If circuit elements with leads are used, the leads should be kept as short as possible (6mm) to minimize lead inductance. Resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1,000\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load.
- 4. As with any low distortion, wide bandwidth amplifier, power supply bypassing is extremely critical and must always be used. The system power supplies should be well bypassed at the board level with a minimum of 2.2µF tantalum capacitors. In addition, all four power supply leads should be locally bypassed to ground as close as possible to the amplifier pins. Surface mount 0.1µF capacitors will provide the best performance for local bypassing. Johanson 0.1µF capacitors (part number 250R18B104ZP4W) are used on the OPA628 demonstration board. All power supply bypass capacitors should be low impedance designs and should be located on the primary ground plane side of the PC board for the lowest impedance connection to ground. Properly bypassed and modulation free power supply lines allow optimum amplifier performance.
- The OPA628 should be soldered directly into the PC board for best performance.

-V_{CC}
Top-side and Primary Ground-plane

Bottom (as seen through board)

NOTES: (1) Pin 1 designated by rectangular pad. (2) DUT inserted Top-side. (3) Power supply by-pass caps installed at pin locations on Top-side. (4) All unused area on both sides connected to primary ground-plane. (5) Continue ground-plane under DUT both sides.

FIGURE 10a. Conceptual PCB Layout (8-pin DIP).

Top-side and Primary Ground-plane

Bottom (as seen through board)

NOTES: (1) Pad 1 designated by smallest rectangle. (2) DUT installed Top-side. (3) Power supply bypass caps installed at pad locations on Top-side. (4) All unused area on both sides connected to primary ground-plane. (5) Continue ground-plane under DUT both sides.

FIGURE 10b. Conceptual PCB Layout (8-pin SOIC).

APPLICATIONS

FIGURE 11. Video Distribution Amplifier.

NOTE: The value of R_S varies with the value of the input capacitance of the A/D converter. R_S is 0Ω for the ADC614 since the input capacitance in only 50F.

ADC INPUT CAPACITANCE	Rs
C _{IN} < 20pF	0Ω
C _{IN} > 20pF	30Ω to 50Ω

FIGURE 12. Differential Input Buffer Amplifier (G=2V/V).

FIGURE 13. Low Distortion Unity Gain Difference Amplifier.

OPA640

DEMO BOARD AVAILABLE See Appendix A

Wideband Voltage Feedback OPERATIONAL AMPLIFIER

FEATURES

- UNITY-GAIN BANDWIDTH: 1.3GHz
- UNITY-GAIN STABLE
- LOW NOISE: 2.9nV/√Hz
- LOW HARMONICS: -75dBc at 10MHz
- HIGH COMMON MODE REJECTION: 85dB
- HIGH SLEW RATE: 350V/µs

APPLICATIONS

- COMMUNICATIONS
- MEDICAL IMAGING
- TEST EQUIPMENT
- CCD IMAGING
- ADC/DAC GAIN AMPLIFIER
- HIGH-RESOLUTION VIDEO
- LOW NOISE PREAMPLIFIER
- DIFFERENTIAL AMPLIFIER
- ACTIVE FILTERS

DESCRIPTION

The OPA640 is an extremely wideband operational amplifier featuring low noise, high common mode rejection and high spurious free dynamic range.

The OPA640 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier

circuit architecture. This allows the OPA640 to be used in all op amp applications requiring high speed and precision.

Low noise, wide bandwidth, and high linearity make this amplifier suitable for a variety of RF and video applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Into: (800) 548-6132

SPECIFICATIONS (CONT.)

SPECIFICATIONS

ELECTRICAL

 $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_I = 100\Omega$, $C_I = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

Audiso, Ps, Us	GPANKOH, P. U OPI	0	PA640H, P	, U	OPA	640HSQ, PI	B, UB	
PARAMETER WALL SYT	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE						1877	YJO	TUS REWI
Input Offset Voltage			±2.0	±5	100	1.0	±2.0	mV
Average Drift,	* 22:	2.84	±10	Tate to Tag	130	±6	sons Rance	μV/°C
HSQ Grade Over Temperature	416 429		110	and the same of		±3.0	±5	mV
		60	75			13.0	13	dB
Power Supply Rejection (+V _S)	$V_{S} = \pm 4.5 \text{ to } \pm 5.5 \text{V}$					49180	nerdines no	
(-V _S)		53	60	4.0			SOMAR DE	dB
INPUT BIAS CURRENT(1)	-85	02		meidma		EU-J	1.89 A H	mother those
Input Bias Current	V _{CM} = 0V		15	25			*08H	μА
Over Specified Temperature	-CM		30	75	0.00	18	55	μА
	Land Land		30	13	196	20	75	
HSQ Grade Over Temperature					1	20		μА
Input Offset Current	V _{CM} = 0V		0.3	2.0			1.0	μА
Over Specified Temperature			0.5	2.5			2.0	μΑ
HSQ Grade Over Temperature			and Sautin	San San Salahan	4 300 F min	0.5	3.0	μА
NOISE		- Infants	INCOME.	bea mace	W. W. T. I. IV.	California e el	PERSONAL CONTRACTOR	Directory of
Input Voltage Noise Density			both to the					
f = 100Hz	ABSOLUTE MAXIMUM F		7.0			CITAM	RORME &	nV/√Hz
f = 10kHz	THE SECOND SECTION SEC		2.8					nV/√Hz
		1.0		1 24.50	20			nV/√Hz
f = 1MHz	Addes	1/2	2.8) <u>DESM</u>	-			
f = 1MHz to 500MHz	Internal Power Discipation®		2.9				- Janum	nV/√Hz
Voltage Noise, BW = 100Hz to 500M	AHz Different at Input Voltage		65		-			μVrms
Input Bias Current Noise Density	Input Voltage Range					910	Sidepitare.	图中日 = 图
f = 0.1Hz to 20kHz	Storage Temperature Range: H. H.		2.0	Set 8	2 3 1 1		Plantia DIP	pA/√Hz
Noise Figure (NF)	o q						Plastic SOI	min-6 = F1
$R_S = 1k\Omega$	artist manufactules also per discovers and it is a second		2.6				nhon Code	dB
$R_S = 50\Omega$	Lead Temperature (soldering, 10s		10.9				PRINCE AND AND	dB
INPUT VOLTAGE RANGE	HILE BUILDING		-			10. w/ 200	L sale of	order ing
	Junction Temperature (Ty)					001 W U U	A SPRING	0 10
Common-Mode Input Range	NOTE: (1) Packages must be den	±2.5	±2.85				Buscar	23 A A 1
Over Temperature		±2.5	±2.75		* (٧	a Mobaet On	EH) benee	08-0 NO
Common-Mode Rejection	$V_{CM} = \pm 0.5V$	70	85		80	88		dB
INPUT IMPEDANCE		7657	HI JODACH	/ Delschusse	BOSHWESS	ALERG CITIZE S	nioaceis.	GE11 (1) 25
Differential			15 1			orisool enti-	ni section to	kΩ pF
Common-Mode	PACKAGE IMPORMATIO		2 1					MΩ pf
	DITABLE OF AN OWN		2111					INIZZ PI
OPEN-LOOP GAIN, DC			100					
Open-Loop Voltage Gain	$V_0 = \pm 2V, R_L = 100\Omega$	50	57		53	MOI	CURAT	dB
Over Specified Temperature	$V_0 = \pm 2V, R_L = 100\Omega$	45	55					dB
FREQUENCY RESPONSE, R _{FB} = 402			31021910				17 37 37	walV.es
Closed-Loop Bandwidth	Gain = +1V/V		1.3				V. 10.5	GHz
Closed-Loop Barldwidth	Gain = +1V/V							
			280					MHz
The state of the s	Gain = +5V/V		65	8 1			301	MHz
	Gain = +10V/V		31		- 1	*		MHz
Slew Rate ⁽²⁾	G = +1, 2V Step		350	De la la	1	-	Lorent stockings	V/µs
At Minimum Specified Temperature	G = +1, 2V Step		285				mili w filuthera	V/µs
Settling Time 0.01%	G = +1, 2V Step	1000	22	. 31			Contraction.	ns
0.1%	G = +1, 2V Step	1	18		1		PARTITION OF THE PARTY OF	ns
1%	G = +1, 2V Step		4.5		1		ev-	ns
Spurious Free Dynamic Range	G = +1, 2V Step $G = +1, f = 5MHz, V_O = 2Vp-p$	1 1	85	18.0			0.4	dBc
opunous Free Dynamic Hange	G - 11 (10MH - V 0)	3 7			NAME OF TAXABLE PARTY.			
FILVILIGNIE IL	$G = +1$, $f = 10MHz$, $V_O = 2Vp-p$		75				1.515	dBc
	$G = +1$, $f = 20MHz$, $V_O = 2Vp-p$		65			100	1. 10	dBc
Gain Flatness to 0.1dB	G = +1 or +2		120	the bigory re-	erbbly by	Throughus! I	a to agu goil	MHz
Differential Gain at 3.58MHz,	$V_0 = 0V \text{ to } 1.4V, R_L = 150\Omega$		0.07	nic faul to be	etani, mig	TO SEE OF CH	ingl. benting	%
G = +2V/V	ormance degradamen to c		noths	alb tevrol vit	simetedia	original arraba	ami niq avia	ella odl ses
Differential Phase at 3.58MHz,	$V_{O} = 0V \text{ to } 1.4V, R_{L} = 150\Omega$		0.008					Degrees
G = +2V/V	The state of the s	A LONG						
OUTPUT	THE LOSOSS DAY DO STUIT DO							
	No Load		1967	Mark Street			Market 188	AT 10
Voltage Output	NO LOAD						Para Tale	
Over Specified Temperature	SSD decrees can make from	±2.6	±3.0	1 8 9 9		*	18	V
HSQ Grade Over Temperature		0.747		THE STATE OF	±2.5	±2.8	The second	V
Voltage Output	$R_L = 100\Omega$							
Over Specified Temperature		±2.25	±2.5					V
HSQ Grade Over Temperature	nay be more susceptible to			NETH 1	±2.0	±2.25	7 7 7 7 7 7	V
Current Output, +25°C	furnamente charges could	±40	±52		*	12.25		mA.
				RI FEET A				
Over Specified Temperature	sublished specifications.	±25	±45	THE PERSON	105		A. S. L. L.	mA
HSQ Grade Over Temperature					±25	±35		mA
			75			*	70.1	mA
Short Circuit Current Output Resistance	1MHz, G = +1V/V		0.2					0

ELECTRICAL

 $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

	OPARRIES, U DEL DEL BI	0	PA640H,	P, U	OPA	640HSQ, P	B, UB	
PARAMETER HAND 1977	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY							TOOT	OV TRASS
Specified Operating Voltage	T _{MIN} to T _{MAX}	- 2	±5			*	south	V
Operating Voltage Range	T _{MIN} to T _{MAX}	±4.5	1,000	±5.5				V
Quiescent Current	min max		±18	±22		an times	Over Terro	mA
Over Specified Temperature	1 25	08	±19	±24		* (.V.	Rejection	mA
TEMPERATURE RANGE	i de	88				(aV		
Specification: H, P, PB, U, UB	Ambient	-40		+85	*		Annaturus	an °C
HSQ	Ambient			VO - noV	-55		+125	°C
Thermal Resistance	θ _{JA} , Junction to Ambient	100				Bud	meantelf ba	°C/W
P An EX OS			120			o dustri	Direct Terror	°C/W
U Au Our F	0.3 2.0		170	Von neV		*	inano	°C/W
H Aur 0.9	8.5 8.0		120			*871.55	neamaT be	°C/W

NOTE: (1) Slew rate is rate of change from 10% to 90% of output voltage step.

ORDERING INFORMATION

NOTE: (1) The "B" grade of the SOIC package will be designated with a dot. Refer to the mechanical section for the location.

PIN CONFIGURATION

NOTE: (1) Making use of all four power supply pins is highly recommended, although not required. Using these four pins, instead of just pins 4 and 7, will lower the effective pin impedance and substantially lower distortion.

ABSOLUTE MAXIMUM RATINGS

Supply	±5.5VDC
Internal Power Dissipation(1)	See Applications Information
Differential Input Voltage	Total V _{CC}
Input Voltage Range	See Applications Information
Storage Temperature Range: H, HSQ	65°C to +150°C
P, PB, U,	UB40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
	+260°C
Junction Temperature (T _J)	+175°C
NOTE: (1) Packages must be derated b	ased on specified $ heta$ $_{ m JA}.$ Maximun

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA640H, HSQ	8-Pin Sidebraze DIP	157
OPA640P, PB	8-Pin DIP	006
OPA640U, UB	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES TO BOMAM ROTHER LACISITY

T_s= +25°C, V_s= ±5V, R_i = 100Ω, C_i = 2pF, R_{FB} = 402Ω and all four power supply pins are used unless otherwise noted. R_{FB} = 25Ω for a gain of +1.

TYPICAL PERFORMANCE CURVES (CONT) 30MAMRO3939 JADI9YT

 $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_t = 100\Omega$, $C_t = 2pF$, $R_{pg} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{pg} = 25\Omega$ for a gain of +1.

 T_{A} = +25°C, V_{c} = ±5V, R_{i} = 100 Ω , C_{i} = 2pF, R_{EB} = 402 Ω and all four power supply pins are used unless otherwise noted. R_{EB} = 25 Ω for a gain of +1.

APPLICATIONS INFORMATION

DISCUSSION OF PERFORMANCE

The OPA640 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA640's design uses a "Classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer some disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e. one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Cancelling offset errors (due to input bias currents) through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA640's "Classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA640.

WIRING PRECAUTIONS

Maximizing the OPA640's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and

instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA640, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2oz copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must *always* be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.01µF ceramic must also be added. Surface mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Making use of all four power supply pins will lower the effective power supply impedance seen by the input and output stages. This will improve the AC performance including lower distortion. The lowest distortion is achieved when running separate traces to $V_{\rm S1}$ and $V_{\rm S2}$. Power supply bypassing with $0.01\mu F$ and $2.2\mu F$ surface mount capacitors on the topside of the PC board is recommended. It is essential to keep the $0.01\mu F$ capacitor very close to the power supply pins. Refer to the DEM-OPA64X data sheet for the recommended layout and component placements.
- 2) Whenever possible, use surface mount. Don't use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 3) Surface mount on backside of PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA640 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 25Ω) in unity-gain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. Refer to the demonstration board layout at the end of the data sheet. A longer feedback path than this will decrease the realized bandwidth substantially.
- 6) Due to the extremely high bandwidth of the OPA640, the SOIC package is strongly recommended due its low parasitic impedance. The parasitic impedance in the PDIP and CERDIP packages causes the OPA640 to experience about 5dB of gain peaking in unity-gain configurations. This is compared with virtually no gain peaking in the SOIC package in unity-gain. The gain peaking in the PDIP and CERDIP packages is minimized in gains of 2 or greater, however. Surface mount components (chip resistors, capacitors, etc.) have low lead inductance and are also strongly recommended.

7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

- 8) Don't forget that these amplifiers use $\pm 5V$ supplies. Although they will operate perfectly well with $\pm 5V$ and $\pm 5.2V$, use of $\pm 15V$ supplies will destroy the part.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA640's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R₃. This will reduce input bias current errors to the amplifier's offset current.

FIGURE 1. Offset Voltage Trim.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA640 incor-

porates on-chip ESD protection diodes as shown in Figure 2. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 2. Internal ESD Protection.

All pins on the OPA640 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The OPA640 utilizes a fine geometry high speed process that withstands 500V using Human Body Model and 100V using the Machine Model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA640.

OUTPUT DRIVE CAPABILITY

The OPA640 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA640 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA640 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 3. Closed-Loop Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA640 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 22mA = 220mW$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = ($\pm V_{CC}$) /4 R_L . Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

A short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in Figure 4.

FIGURE 4. Output Current vs. Temperature.

CAPACITIVE LOADS

The OPA640's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 2pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the gain from +1 will improve the capacitive load drive due to increased phase margin.

FIGURE 5. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA640 is internally compensated and is stable in unity gain with a phase margin of approximately 60°. However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain of two or greater to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA640 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and

closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

Settling time, specified in an inverting gain of one, occurs in only 15ns to 0.01% for a 2V step, making the OPA640 one of the fastest settling monolithic amplifiers commercially available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 35ns.

In practice, settling time measurements on the OPA640 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase with closed-loop gain and output voltage transition as shown in the Typical Performance Curves. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

DISTORTION

The OPA640's Harmonic Distortion characteristics vs frequency and power output are shown in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance. Refer to Figure 6. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 6. 5MHz Harmonic Distortion vs Load Resistance.

The third-order intercept point is an important parameter for many RF amplifier applications. Figure 7 shows the OPA640's single tone, third-order intercept vs frequency. This curve is particularly useful for determining the magnitude of the third harmonic as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA640 to operate in a gain of +1V/V and drive 2Vp-p into 50Ω at a frequency of 10MHz. Referring to Figure 11 we find that the intercept point is +47dBm. The magnitude of the third harmonic can now be easily calculated from the expression:

Third Harmonic (dBc) =
$$2(OPI^3P - P_0)$$

where OPI^3P = third-order intercept, dBm
 P_0 = output level, dBm

For this case $OPI^3P = 47dBm$, $P_0 = 47dBm$, and the third Harmonic = 2(47 - 10) = 74dB below the fundamental tone. The OPA640's low distortion makes the device an excellent choice for a variety of RF signal processing applications.

The value for the two-tone, third-order intercept is typically 8dB lower than the single tone value.

FIGURE 7. Single-Tone, 3rd-Order Intercept Point vs Frequency.

NOISE FIGURE

The OPA640 voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA640's Noise Figure vs Source Resistance is shown in Figure 8.

FIGURE 8. Noise Figure vs Source Resistance.

ENVIRONMENTAL (Q) SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected stress levels similar to those of MIL-STD-883.

SCREEN	METHOD
Internal Visual	Burr-Brown QC4118
Stabilization Bake	Temperature = 150°C, 24 hrs
Temperature Cycling	Temperature = -65°C to 150°C, 10 cycles
Burn-In Test	Temperature = 125°C, 160 hrs minimum
Centrifuge	20,000G
Hermetic Seal	Fine: He leak rate < 5 x 10 ⁻⁸ atm cc/s, 30PSiG Gross: per Fluorocarbon bubble test, 60PSiG
Electrical Tests	As described in specifications tables.
External Visual	Burr-Brown QC5150

NOTE: Q-Screening is available on the HS package only.

APPLICATIONS

FIGURE 9. Low Noise, Wideband FET Input Op Amp.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available for the OPA640. Contact Burr-Brown Applications Department to receive a spice diskette.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64x data sheet for details.

FIGURE 10. Differential Input Buffer Amplifier (G=+2V/V).

FIGURE 11. Unity Gain Difference Amplifier.

FIGURE 12. Video Gain Amplifier.

FIGURE 13. Differential Line Driver for 50Ω or 75Ω Systems.

FIGURE 14. Wideband, Fast-Settling Instrumentation Amplifier.

OPA641

DEMO BOARD AVAILABLE See Appendix A

Wideband Voltage Feedback OPERATIONAL AMPLIFIER

FEATURES

- GAIN-BANDWIDTH: 1.6GHz
- STABLE IN GAINS ≥ 2
- LOW DIFFERENTIAL GAIN/PHASE ERRORS: 0.015%/0.006°
- HIGH SLEW RATE: 650V/µs
- FAST 12-BIT SETTLING: 18ns (0.01%)
- HIGH COMMON-MODE REJECTION: 80dB
- LOW HARMONICS: -72dBc at 10MHz

APPLICATIONS

- COMMUNICATIONS
- MEDICAL IMAGING
- TEST EQUIPMENT
- CCD IMAGING
- ADC/DAC GAIN AMPLIFIER
- HIGH-RESOLUTION VIDEO
- LOW NOISE PREAMPLIFIER
- ACTIVE FILTERS

DESCRIPTION

The OPA641 is an extremely wideband operational amplifier featuring low noise, high slew rate and high spurious free dynamic range.

The OPA641 is conservatively compensated for stability in gains of 2 or greater. This amplifier has a fully symmetrical differential input due to its "classical"

operational amplifier circuit architecture. This allows the OPA641 to be used in all op amp applications requiring high speed and precision.

Low noise, wide bandwidth, and high linearity make this amplifier suitable for a variety of RF, video, and imaging applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

		0	PA641H, F	P, U	OPA	641HSQ, P	B, UB		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OFFSET VOLTAGE Input Offset Voltage Average Drift HSQ Grade Over Temperature Power Supply Rejection (+V _S) (-V _S)	V _S = ±4.5 to ±5.5V	56 51	±2 ±10 79 58	±6	61 54	±1 ±6 ±3 82 60	±2 ±6	mV μV/°C mV dB dB	
INPUT BIAS CURRENT Input Bias Current Over Specified Temperature HSQ Grade Over Temperature Input Offset Current Over Specified Temperature HSQ Grade Over Temperature	$V_{CM} = 0V$ $V_{CM} = 0V$	olts NAI	13 20 0.2 0.5	30 90 2 2.5	Wid 90	30 * *	* 75 1.0 2.0 4.0	μΑ μΑ μΑ μΑ μΑ	
NOISE Input Voltage Noise Noise Density, $f=100\text{Hz}$ $f=10\text{Hz}$ $f=10\text{Hz}$ $f=10\text{Hz}$ $f=10\text{Hz}$ to 500MHz Voltage Noise, BW = 100Hz to 500MHz Input Bias Current Noise Density $f=0.1\text{Hz}$ to 20kHz Noise Figure (NF) $R_S=1\text{k}\Omega$ $R_S=50\Omega$	RPPLICATIONS COMMUNICATIONS MEDICAL IMAGING FEST EQUIPMENT CCD IMAGING ADDIDAC GAIN AM		8.0 2.9 2.8 2.8 63 2.0 4	SAHRIS Sans (0.00	1.6GH ≥ 2 L GAR .006° .650V/L	ES CANS RENT 012% RATE RATE	TURI N-BAND V DIFFE TORS: C H SLEW	nV/√Hz nV/√Hz nV/√Hz nV/√Hz µVrms pA√Hz dB dB	
INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection	V _{CM} = ±0.5V	±2.5 ±2.5 56	±2.85 ±2.75 78	JECTION S at 1050	* * 65	* 80	H COMI	V V dB	
INPUT IMPEDANCE Differential Common-Mode			15 1 2 1		b	OIT	CRIP	kΩ pF MΩ pF	
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain Over Specified Temperature	$V_O = \pm 2V, R_L = 100\Omega$ $V_O = \pm 2V, R_L = 100\Omega$	50 45	58 56	jo bawdeb siin wali	53 48	61	ei 146AS ennasi is	dB dB	
FREQUENCY RESPONSE, R _{FB} = 402Ω Closed-Loop Bandwidth Slew Rate ⁽¹⁾ At Minimum Specified Temperature Settling Time: 0.01% 0.1% 1% Differential Gain at 3.58MHz, G = +2V/V Differential Phase at 3.58MHz, G = +2V/V Gain Flatness Spurious Free Dynamic Range	All Four Power Pins Used $\begin{aligned} & \text{Gain} = +2\text{V/V} \\ & \text{Gain} = +5\text{V/V} \\ & \text{Gain} = +5\text{V/V} \\ & \text{Gain} = +10\text{V/V} \\ & \text{Gai} = +10\text{V/V} \\ & \text{G} = +2, 2\text{V} \text{ Step} \\ & \text{G} = +2, 100\text{ Step} \\ & \text{V}_0 = 0\text{V to 1.4V}, R_L = 150\Omega \\ & \text{G} = +2, 2\text{V} = 150\Omega \\ & \text{G} = +2, 100\text{ Step} \\ &$		800 78 39 650 550 18 13 5 0.015 0.006 0.1 78	mpensule amplifier e to its	nively or ise. This input du	son inco song to song to song	zi 140A' lio zaisz lib lsom	MHz MHz W/µs V/µs V/µs ns ns ns degrees MHz dBc dBc	
OUTPUT Voltage Output Over Specified Temperature HSQ Grade Over Temperature Voltage Output Over Specified Temperature HSQ Grade Over Temperature Current Output Over Specified Temperature HSQ Grade Over Temperature HSQ Grade Over Temperature	No Load R _L = 100Ω	±2.6 ±2.25 ±2.0 ±40 ±25	±3.0 ±2.5 ±2.3 ±55 ±50	T.M. J. M.	±2.5 ±25	±2.8		V V MA MA MA MA	

SPECIFICATIONS (CONT)

ELECTRICAL

 $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, $C_L = 2$ pF, $R_{FB} = 402\Omega$, and all four power supply pins are used unless otherwise noted.

Married Table	and the soun	OPA641H, P, U			OPA641HSQ, PB, UB			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY	- 1 de		Annual Control					
Specified Operating Voltage	T _{MIN} to T _{MAX}		±5			*	1894 JA	V
Operating Voltage Range	T _{MIN} to T _{MAX}	±4.5		±5.5	*		1	V
Quiescent Current			±15	±22		*	*	mA
Over Specified Temperature			±19	±24		*	SMR	mA
TEMPERATURE RANGE			1					
Specification: H, P, PB, U, UB	Ambient	-40		+85	*	Land Committee		°C
HSQ	Ambient				-55	7 1	+125	°C
Thermal Resistance	θ _{JA} , Junction to Ambient				15.5			
P			120				0.89_	°C/W
U	108 8		170				-	°C/W
H	5 8		120		Land	*		°C/W

NOTE: (1) Slew rate is rate of change from 10% to 90% of output voltage step.

ORDERING INFORMATION

	OPA641	()()(0
Basic Model Number -		TIT
Package Code		
H = 8-pin Sidebraze DIP		
P = 8-pin Plastic DIP		
U = 8-pin Plastic SOIC		- T7
Performance Grade Code		
$S = -55^{\circ}C \text{ to } +125^{\circ}C$		
B(1) or No Letter = -40°C to +85°C		
Reliability Screening		
Q = Q-Screened (HSQ Model Only) -		

NOTE: (1) The "B" grade of the SOIC package will be designated with a "B". Refer to the mechanical section for the location.

PIN CONFIGURATION

although not required. Using these four pins, instead of just pins 4 and 7, will lower the effective pin impedance and substantially lower distortion.

ABSOLUTE MAXIMUM RATINGS

Internal Power Dissipation(1)	Con Applications Information
	See Applications information
Differential Input Voltage	Total V _{CC}
Input Voltage Range	See Applications Information
Storage Temperature Range: H, HSQ	65°C to +150°C
P, PB, U, U	JB40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
	+260°C
Junction Temperature (T _J)	+175°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA641H, HSQ	8-Pin Cerdip	157
OPA641P, PB	8-Pin DIP	006
OPA641U, UB	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The Information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$, and all four power supply pins are used unless otherwise noted.

7

OPERATIONAL AMPLIFIERS

TYPICAL PERFORMANCE CURVES (CONT)

 $T_a = +25^{\circ}C$, $V_s = \pm 5V$, $R_i = 100\Omega$, $C_i = 2pF$, $R_{ra} = 402\Omega$, and all four power supply pins are used unless otherwise noted.

APPLICATIONS INFORMATION

DISCUSSION OF PERFORMANCE

The OPA641 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA641's design uses a "Classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer some disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e., one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Bias current cancellation through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA641's "Classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA641.

WIRING PRECAUTIONS

Maximizing the OPA641's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA641, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2 oz. copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and

can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must *always* be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.01µF ceramic must also be added. Surface mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Making use of all four power supply pins will lower the effective power supply impedance seen by the input and output stages. This will improve the AC performance including lower distortion. The lowest distortion is achieved when running separated traces to V_{S1} and V_{S2} . Power supply bypassing with $0.01\mu F$ and $2.2\mu F$ surface mount capacitors on the topside of the PC board is recommended. It is essential to keep the $0.01\mu F$ capacitor very close to the power supply pins. Refer to the DEM-OPA64x Datasheet for the recommended layout and component placement.
- 2) Whenever possible, use surface mount. Don't use point-topoint wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 3) Surface mount on the PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA641 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 25Ω) in unity-gain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely *unacceptable* in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. See the demonstration board layout at

the end of the datasheet. A longer feedback path than this will decrease the realized bandwidth substantially.

6) Due to the extremely high bandwidth of the OPA641, the SOIC package is strongly recommended due its low parasitic impedance. The parasitic impedance in the PDIP and CERDIP packages causes the OPA641 to experience about 5dB of gain peaking in unity-gain configurations. This is compared with virtually no gain peaking in the SOIC package in unity-gain. The gain peaking in the PDIP and CERDIP packages is minimized in gains of 4 or greater, however. Surface mount components (chip resistors, capacitors, etc.) also have low lead inductance and are therefore strongly recommended.

7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.

8) Don't forget that these amplifiers use ±5V supplies. Although they will operate perfectly well with +5V and -5.2V, use of ±15V supplies will destroy the part.

9) Standard commercial test equipment has not been designed to test devices in the OPA641's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.

10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.

11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible

FIGURE 1. Offset Voltage Trim.

since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R₃. This will reduce input bias current errors to the amplifier's offset current.

INPUT PROTECTION METHOD AND SEND SE H. offirW . SHOP

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA641 incorporates on-chip ESD protection diodes as shown in Figure 2. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 2. Internal ESD Protection.

All pins on the OPA641 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The OPA641 utilizes a fine geometry high speed process that withstands 500V using Human Body Model and 100V using the Machine Model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA641.

OUTPUT DRIVE CAPABILITY

The OPA641 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA641 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA641 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA641 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 24 \text{mA} = 240 \text{mW}$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = ($\pm V_{CC}$)²/4 R_L . Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

The short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in the Typical Performance Curves.

CAPACITIVE LOADS

The OPA641's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 5pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 4. This is particularly important when driving high capacitance loads such as flash A/D converters.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax

FIGURE 4. Driving Capacitive Loads.

cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA641 is internally compensated and is stable in unity gain with a phase margin of approximately 60° . However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain of two or greater to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA641 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 30ns.

In practice, settling time measurements on the OPA641 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results, a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

Figure 6 shows the test circuit used to measure settling time for the OPA641. This approach uses a 16-bit sampling oscilloscope to monitor the input and output pulses. These waveforms are captured by the sampling scope, averaged, and then subtracted from each other in software to produce the error signal. This technique eliminates the need for the traditional "false-summing junction," which adds extra parasitic capacitance. Note that instead of an additional flat-top generator, this technique uses the scope's built-in calibration source as the input signal.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase with closed-loop gain and output voltage transition. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

DISTORTION AND NOISE

The OPA641's harmonic distortion characteristics vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance (refer to Figure 5). Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

Although harmonic distortion may decrease with higher load resistances (i.e., higher feedback resistors), the effective output noise will increase due to the higher resistance. Therefore, noise or harmonic distortion may be optimized by picking the appropriate feedback resistor.

FIGURE 5. 5MHz Harmonic Distortion vs Load Resistance.

The third-order intercept point is an important parameter for many RF amplifier applications. Figure 6 shows the OPA641's single-tone third-order intercept versus frequency. This curve is particularly useful for determining the magnitude of the third harmonic as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA641 to operate in a gain of $\pm 2V/V$ and drive $\pm 2V$ -p into $\pm 100\Omega$ at a frequency of 5MHz. Referring to Figure 6 we find that the intercept point is ± 38 dBm. The magnitude of the third harmonic can now be easily calculated from the expression:

Third Harmonic (dBc) = $2(OPI^3P - P_O)$ where OPI^3P = third-order output intercept, dBm P_O = output level/tone, dBm/tone

For this case $OPI^3P = 38dBm$, $P_O = 7dBm$, and the third harmonic = 2(38 - 7) = 62dB below the fundamental tone. The OPA641's low IMD makes the device an excellent choice for a variety of RF signal processing applications. The value for the two-tone third-order intercept is typically 6dB lower than the single-tone value.

FIGURE 6. Single-Tone Third-Order Intercept Point vs Frequency.

The OPA641 voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA641's Noise Figure vs Source Resistance is shown in Figure 7.

FIGURE 7. Noise Figure vs Source Resistance.

SPICE MODELS

NOISE FIGURE

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available for the OPA641. Contact Burr-Brown Applications Department to receive a spice diskette.

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected stress levels similar to those of MIL-STD-883.

SCREEN	METHOD
Internal Visual	Burr-Brown QC4118
Stabilization Bake	Temperature = 150°C, 24 hrs
Temperature Cycling	Temperature = -65°C to 150°C, 10 cycles
Burn-In Test	Temperature = 125°C, 160 hrs minimum
Centrifuge	20,000G
Hermetic Seal	Fine: He leak rate < 5 x 1x0-8 atm cc/s, 30PSiG Gross: per Fluorocarbon bubble test, 60PSiG
Electrical Tests	As described in specifications tables.
External Visual	Burr-Brown QC5150

NOTE: Q-Screening is available on the HSQ package only.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64X Datasheet for details.

APPLICATIONS (5) JATHEMMORPHE

FIGURE 8. Video Gain Amplifier.

FIGURE 9. Wideband, Fast-Settling Instrumentation Amplifier.

FIGURE 10. Differential Gain Amplifier and Driver for 50Ω or 75Ω Systems.

FIGURE 11. Difference Amplifier with Gain.

FIGURE 12. Gain Amplifier for ADCs (G = +5V/V).

FIGURE 13. Low Noise, Wideband FET Input Op Amp.

LOW DISTORTION: -95d8c at 5MHz
 UNITY-GAIN BANDWIDTH: 450MHz

e HIGH OPEN LOOP GAIN: 95dE

HIGH COMMON WODE REJECTION: 9668
 FAST 12-8IT SETTLING: 13ns (0.61%)

WAVER & BOINE WOLLS

O HIGH OUTPUT CURRENT: ±60mA

6.007%/0.008°

DESCRIPTION

The OPA642 is a voltage feedback operational amplifier featuring an unusual combination of high open floop gain and nigh candwidth. The high open toop gain allows for minimal DC errors. The exics open loop gain at high bandwidths gives exceptionally low harmonic disordion. This makes the OPA642 compatible with high resolution and high dynamic range systems. It also offers fast settling time, low differential gain and phase error, and high output current drive causability.

The OPA642 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. This allows the OPA642 to be used in all op curp applications requiring high speed and precision.

Low distortion, low noise and high bandwidth make this amplifier suitable for a variety of RF, video, imaging and audio ambiguitions.

empilonni Algori Industrial Park - Melling Address: EO Box 11450 + Trusson, AZ 55734 + Street Address: 5730 5. Trusson Bled - Teuton, AZ 56734 + FAX: 520 288-7510 - Incrediate Product infor (600) 568-5125

DEMO BOARD AVAILABLE See Appendix A

Wideband Low Distortion OPERATIONAL AMPLIFIER

FEATURES

- LOW DISTORTION: -95dBc at 5MHz
- UNITY-GAIN BANDWIDTH: 450MHz
- UNITY-GAIN STABLE
- HIGH OPEN LOOP GAIN: 95dB
- HIGH COMMON MODE REJECTION: 90dB
- FAST 12-BIT SETTLING: 13ns (0.01%)
- LOW NOISE: 2.3nV/√Hz
- HIGH OUTPUT CURRENT: ±60mA
- VERY LOW DIFF GAIN/PHASE ERROR: 0.007%/0.008°

APPLICATIONS

- ADC/DAC GAIN AMPLIFIER
- LOW DISTORTION COMMUNICATIONS
- HIGH RESOLUTION IMAGING
- MEDICAL IMAGING
- LOW NOISE PREAMPLIFIER
- HIGH CMR DIFFERENCE AMPLIFIER
- VIDEO AMPLIFICATION
- TEST INSTRUMENTATION
- AUDIO AMPLIFICATION

DESCRIPTION

The OPA642 is a voltage feedback operational amplifier featuring an unusual combination of high open loop gain and high bandwidth. The high open loop gain allows for minimal DC errors. The extra open loop gain at high bandwidths gives exceptionally low harmonic distortion. This makes the OPA642 compatible with high resolution and high dynamic range systems. It also offers fast settling time, low differential gain and phase error, and high output current drive capability.

The OPA642 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. This allows the OPA642 to be used in all op amp applications requiring high speed and precision.

Low distortion, low noise and high bandwidth make this amplifier suitable for a variety of RF, video, imaging and audio applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω and all four power supply pins are used unless otherwise noted. R_{FB} = 25 Ω for a gain of +1.

OPA642H80, PB, UB	OPAGASA, P. U	OI	PA642H, P	, U	OPA6	42HSQ, P	B, UB	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE							Y28	GUE REWI
Input Offset Voltage			±1.5	±4		±0.5	±1.0	mV
Average Drift	2.24		4	of pract		2	speak Range	μV/°C
	904 504		The state of the s	The state of the s		±2.0	Land of the second	mV
HSQ Grade Over Temperature			XARI	17 SON 1	70		±4.0	
Power Supply Rejection	$V_S = \pm 4.5 \text{ to } \pm 5.5 \text{V}$	65	85		73	95	DOMAR RE	dB
INPUT BIAS CURRENT	884		Ines	BITA			U,9,H	
Input Bias Current	V _{CM} = 0V		25	45		*	+OSH	μΑ
Over Specified Temperature	+150		15.00	70		*		μΑ
HSQ Grade Over Temperature			to dinA-pi-	rolleriol auß			80	μА
Input Offset Current	V _{CM} = 0V		0.1	2.0				μА
Over Specified Temperature	14 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0.5	3.0		*		μА
HSQ Grade Over Temperature	100					1.0	5.0	μА
NOISE		guda e	pelicy tuo	so to 1900 as	afor ment s	oneda lo a	est at offer we	15 (1) 63
nput Voltage Noise			Section 1	Wilson Vol. Vol.		Grand Co.		
Noise Density: f = 100Hz			8.6		NAME OF STREET		1 1 2 2 1	nV/√Hz
f = 10kHz	ABSOLUTE MAXIM		2.5		14	OFFARE	ROBALIS	nV/√Hz
f = 1MHz			2.3					nV/√Hz
				1 SNBAT	10			nV/√Hz
f _B = 1MHz to 100MHz	Photography Common Septimes		2.3				and the investigation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Voltage Noise, BW = 100Hz to 100MHz	Internal Power Dissipation®		23				OBCHARLES.	μVrms
Input Bias Current Noise Density	Differential Input Voltage						exandabi@	ALC: Out I
f = 0.1MHz to 100MHz	Input Voltage Range		2.2		BU AND	* 311	dell visositi	pA/√Hz
Noise Figure	Storage Temperature Range			13 Tale 115	- 15		PEU DUSERY	
$R_S = 1k\Omega$			2.2		Park to		Pissile SON	dB
$R_S = 50\Omega$	Load Temperature (solcodin		9.5				Bride Code	dB
NPUT VOLTAGE RANGE	(Maples)				1	ala a Sa chan	le e mital	and the little
Common-Mode Input Range	Junction Temperature (T _L)_	±2.75	±3.0					V
Over Temperature	MOTE (1) Packages must be	±2.5	±2.75				poines	V
Common-Mode Rejection	$V_{CM} = \pm 0.5V$	65	85		80	92	BH) benedi	dB
INPUT IMPEDANCE	- CM - T0:01	1119	10 0 00	A Downship Se	thw epipole	7 0100 011	TO HOME O	ORT (1) CE
Differential			15 1		nedapol en	action for I	has indeed	kΩ pF
Common-Mode	MIGRAMI MOANNAG		1.3 1					MΩ pl
	MADINTER BURGUET		1.0 1					IAIZE II DI
OPEN-LOOP GAIN	V							ID.
Open-Loop Voltage Gain	$V_0 = \pm 2V, R_L = 100\Omega$	80	95		85	98	TARUDI	dB
Over Specified Temperature		80	90					dB
FREQUENCY RESPONSE	All Four Supply Pins Used		OWAGO					welV do
Closed Loop Response	Gain = +1V/V		450		professionary .		Mark Mile	MHz
Set Color	Gain = +2V/V		150		-		-	MHz
	Gain = +5V/V		45	Meg Va 1			E ON	MHz
pand dimension table, places see end of de	Gain = +10V/V		21					MHz
Slew Rate(1)	G = +1, 2V Step		380	10/4 13			S Jugni-	V/µs
At Minimum Specified Temperature	G = +1, 2V Step		340		HIT .			V/µs
Settling Time: 0.003%	G = +1, 1V Step		20	dugi:10			E hydnis	ns
0.01%			13		F	N. 1		ns
	G = +1, 1V Step			COST I	The state of		N 127-	
0.1%	G = +1, 1V Step		11.5		Deminion			ns
TAUT1% 1/39 3091	G = +1, 1V Step		3.5	E SERVICE			The second	ns
Spurious Free Dynamic Range	G = +1, f = 5MHz		92		80	95	Land Silver	dBc
	$V_0 = 2Vp-p, R_L = 100\Omega$		epuerantica	ext Audit Syn	ng ylaqua n	WOOLTHOU	to sau print	100 (1) (2)
Differ. Gain Error at 3.58MHz, G = +2V/V	$V_0 = 0V \text{ to } 1.4V, R_L = 150\Omega$		0.007	ing trail to be	ofent, a lost	of easily pr	esti, beniupa	%
Differ. Phase Error at 3.58MHz, G = +2V/V	$V_0 = 0V \text{ to } 1.4V, R_L = 150\Omega$		0.008	By lesson del	idnated s b	18 60 Finbs	mi nig evito	degrees
Supported that all jets grates TUPTUC	Smws Corporation rec	-						
Current Output, +25°C	ne handled and stered	±40	±60	Ser Forces	±50	±65	- W. I S. I. S.	mA
Over Specified Temperature	WORDS DIE DEUTEN 36	±35	±55		±40	±60		mA
Voltage Output	No Load							
Over Specified Temperature	110 2000	±3.0	±3.5		*			V
Voltage Output	$R_{l} = 100\Omega$	10.0	10.0					V
Over Specified Temperature	HL = 10022	105	10.75					1/
	The state of the s	±2.5	±2.75					V
Short Circuit Current	may be more suspens		75		100	1.30		mA
Output Resistance	0.1MHz, G = +1V/V		0.04					Ω

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS (CONT)

ELECTRICAL

 $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ fo a gain of +1.

	OPA642H, P, U	0	OPA642H, P, U		U OPA642HSQ, PB, UB			
PARAMETER XAM SYT	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY							TAGE	IOV THESE
Specified Operating Voltage	T _{MIN} to T _{MAX}		±5				enstic	V
Operating Voltage Range	T _{MIN} to T _{MAX}	±4.5		±5.5				V
Quiescent Current	T _{MIN} to T _{MAX}		±22	±29		PRIN	ver Tämpel	mA
TEMPERATURE RANGE	N 68	68	Valdir of	1.A1 = gV			nalbajeH	Man Shaw
Specification: H, P, U	Ambient	-40		+85			THERROS	°C ™
HSQ	Ambient	1	WO -	Vest	-55		+125	°C
Storage	Ambient	-55		+150	-55	- touch	+150	°C
Thermal Resistance	θ _{JA} , Junction-to-Ambient					enutes	dmaT hovG	°C/W
P Au	0.5 1.0		100	Very Very		*	mano	°C/W
UAL	0.6 3.0		125			* mut	meameT bu	°C/W
H Au Oa Oa H			100			efutes	Cour Terror	°C/W

NOTES: (1) Slew rate is rate of change from 10% to 90% of output voltage step.

ORDERING INFORMATION

Basic Model Number	OPA642	446	2)
Package Code		85	
H = 8-pin Sidebraze DIP		200	
P = 8-pin Plastic DIP		30	
U = 8-pin Plastic SOIC		90	
Performance Grade Code			
S = -55°C to +125°C			-
B ⁽¹⁾ or No Letter = -40°C to +85°C			
Reliability Screening		0.81	
Q = Q-Screened (HSQ Model Only) -		=2.75	

NOTE: (1) The "B" Grade of the SOIC package will be marked with a "B" by Pin 8. Refer to the mechanical section for the location.

PIN CONFIGURATION

NOTE: (1) Making use of all four power supply pins is highly recommended, although not required. Using these four pins, instead of just pins 4 and 7, will lower the effective pin impedance and substantially lower distortion.

ABSOLUTE MAXIMUM RATINGS

Supply	±5.5VDC
	See Applications Information
	Total V _{CC}
Input Voltage Range	See Applications Information
Storage Temperature Range	e: H, HSQ65°C to +150°C
	P, PB, U, UB40°C to +125°C
Lead Temperature (soldering	g, 10s)+300°C
(soldering	, SOIC 3s)+260°C
Junction Temperature (T _J).	+175°C
NOTE: (1) Packages must b T _J must be observed.	e derated based on specified θ _{JA} . Maximum

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA642H, HSQ	8-Pin Sidebraze DIP	2240 424 157
OPA642P, PB	8-Pin DIP	006
OPA642U, UB	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES NO BOMAMSORRES JACISYT

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

OPERATIONAL AMPLIFIERS

NOTE: The Dashed Line Represents THD + N The Actual Harmonics will be Lower.

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) MAMROTRES JACISTI

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

APPLICATIONS INFORMATION

DISCUSSION OF PERFORMANCE

The OPA642 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA642's design uses a "Classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer some disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e. one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Cancelling offset errors due to input bias currents through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA642's "Classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA642.

WIRING PRECAUTIONS

Maximizing the OPA642's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA642, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2oz copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must *always* be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.01µF ceramic must also be added. Surface mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Making use of all four power supply pins will lower the effective power supply impedance seen by the input and output stages and improve the AC performance **including lower distortion**. The lowest distortion is achieved when running separated traces to $V_{\rm S1}$ and $V_{\rm S2}$. Power supply bypassing with $0.01\mu{\rm F}$ and $2.2\mu{\rm F}$ surface mount capacitors is recommended. It is essential to keep the $0.01\mu{\rm F}$ capacitor very close to the power supply pins. Refer to the DEM-OPA64X Data Sheet for the recommended layout and component placements.
- 2) Whenever possible, use surface mount. Don't use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 3) Surface mount on backside of PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA642 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 25Ω) in unity-gain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. Refer to the demonstration board layout at the end of the data sheet. A longer feedback path than this will decrease the realized bandwidth substantially.

recommended. Circuits using all surface mount components with the OPA642U (SOIC package) will offer the best AC performance. The parasitic package inductance and capacitance for the SOIC is lower than the both the Cerdip and 8-lead Plastic DIP.

- 7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 8) Don't forget that these amplifiers use ±5V supplies. Although they will operate perfectly well with +5V and -5.2V, use of ±15V supplies will destroy the part.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA642's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with \mathbf{R}_3 . This will reduce input bias current errors to the amplifier's offset current.

FIGURE 1. Offset Voltage Trim.

vices, but any semiconductor device deserves protection from this potentially damaging source. The OPA642 incorporates on-chip ESD protection diodes as shown in Figure 2. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 2. Internal ESD Protection.

All pins on the OPA642 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The OPA642 utilizes a fine geometry high speed process that withstands 500V using the Human Body Model and 100V using the Machine Model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA642.

OUTPUT DRIVE CAPABILITY

The OPA642 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA642 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA642 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

FIGURE 3. Closed-Loop Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA642 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 27mA = 270mW$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}I$, and is equal to P_{DL} , max = ($\pm V_{CC}I^2AR_L$. Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

A short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in Figure 4.

FIGURE 4. Output Current vs Temperature.

CAPACITIVE LOADS

The OPA642's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the

amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 2pF should be buffered by connecting a small resistance, usually 10Ω to 35Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the Gain from +1 will improve the capacitive load drive due to increased phase margin.

FIGURE 5. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION IN VIEW Second and Imma London

The OPA642 is internally compensated and is stable in unity gain with a phase margin of approximately 60°. However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain of two or greater to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA642 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break

For Immediate Assistance. Contact Your Local Salesperson

frequency of this zero sufficiently high. When high closed-loop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V

Settling time, specified in an inverting gain of one, occurs in only 15ns to 0.01% for a 2V step, making the OPA642 one of the fastest settling monolithic amplifiers commercially available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 90ns.

In practice, settling time measurements on the OPA642 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL subcarrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set.

DG and DP of the OPA642 were measured with the amplifier in a gain of +2V/V with 75 Ω input impedance and the output back-terminated in 75 Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with a sync pulse.

With these conditions the test circuit shown in Figure 6 delivered a 100IRE modulated ramp to the 75Ω input of the video analyzer. The signal averaging feature of the analyzer was used to establish a reference against which the performance of the stabilish and the performance of the stabilish and the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against which the performance of the stabilish are ference against the stabilish and the stabilish are ference against the stabil

mance of the amplifier was measured. Signal averaging was also used to measure the DG and DP of the test signal in order to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA642 is 0.007% differential gain and 0.008° differential phase to both NTSC and PAL standards. Increasing the closed loop gain degrades the DP and DG.

FIGURE 6. Differential Gain and Differential Phase Test Circuit.

DISTORTION

The OPA642's Harmonic Distortion characteristics into a 100Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 7. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 7. Harmonic Distortion vs Load Resistance.

The third-order intercept point is an important parameter for many RF amplifier applications. Figure 8 shows the OPA642's single tone, third-order IM Intercept vs Frequency. This curve is particularly useful for determining the magnitude of the third harmonic as a function of frequency and load resistance. For example, assume that the application requires the OPA642 to operate in a gain of +1V/V and drive 2Vpp into 50Ω at a frequency of 5MHz. Referring to Figure 8, we find that the intercept point is +58dBm. The magnitude of the third harmonic can now be easily calculated from the expression:

Third Harmonic (dBc) = $2(OPI^3P - P_0)$ where OPI^3P = third-order output intercept, dBm P_0 = output level, dBm

For this case $OPI^3P = 58dBm$, $P_o = 10dBm$, and the third harmonic = 2(58-10) = 96dB below the fundamental. The OPA642's low distortion makes the device an excellent choice for a variety of RF signal processing applications. The two-tone third-order intercept point is approximately 8dB lower than the single tone intercept.

FIGURE 8. Single Tone, 3rd-Order Intercept vs Frequency.

NOISE FIGURE

The OPA642 voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA642's Noise Figure vs Source Resistance is shown in Figure 9.

FIGURE 9. Noise Figure vs Source Resistance.

SPICE MODELS Midma nothering of Sold Spice Spice Models

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available for the OPA642. Contact Burr-Brown Applications Department to receive a spice diskette.

ENVIRONMENTAL (Q) SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected stress levels similar to those of MIL-STD-883.

SCREEN	METHOD
Internal Visual	Burr-Brown QC4118
Stabilization Bake	Temperature = 150°C, 24 hrs
Temperature Cycling	Temperature = -65°C to 150°C, 10 cycles
Burn-In Test	Temperature = 125°C, 160 hrs minimum
Centrifuge	20,000G
Hermetic Seal	Fine: He leak rate < 5 x 10 ⁻⁸ atm cc/s, 30PSiG Gross: per Fluorocarbon bubble test, 60PSiG
Electrical Tests	As described in specifications tables.
External Visual	Burr-Brown QC5150

NOTE: Q-Screening is available on the HS package only.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64x Datasheet for details.

FIGURE 10. Video Distribution Amplifier.

FIGURE 11. High-Q 1MHz Bandpass Filter.

FIGURE 12. Low Noise, Wideband FET Input Op Amp.

FIGURE 13. Differential Line Driver for 50Ω or 75Ω Systems.

FIGURE 14. Wideband, Fast-Settling Instrumentation Amplifier.

FIGURE 15. Unity Gain Difference Amplifier.

FIGURE 16. Low Distortion Gain Amplifier for ADCs (G = -2V/V).

FIGURE 17. Gain Amplifier for High Speed Digital-to-Analog Converters Like the DAC650.

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 18. Gain Amplifier for High Speed Digital-to-Analog Converters Like the DAC600.

OPA643

DEMO BOARD AVAILABLE See Appendix A

Wideband Low Distortion OPERATIONAL AMPLIFIER

FEATURES

- LOW DISTORTION: -90dBc at 5MHz
- LOW NOISE: 1.8nV/√Hz
- GAIN-BANDWIDTH: 1.5GHz
- STABLE IN GAINS ≥ 5
- HIGH SLEW RATE: 1000V/µs
- HIGH OPEN LOOP GAIN: 95dB
- HIGH COMMON-MODE REJECTION: 90dB
- FAST 12-BIT SETTLING: 21ns (0.01%)
- LOW DIFFERENTIAL GAIN/PHASE ERROR: 0.005%/0.015°

DESCRIPTION

The OPA643 is a voltage feedback operational amplifier featuring an unusual combination of high open-loop gain and high bandwidth. The high open loop gain allows for minimal DC errors. The extra open-loop gain at high bandwidths gives exceptionally low harmonic distortion. This makes the OPA643 compatible with high resolution and high dynamic range systems. It also offers fast settling time, low differential gain and phase error, and high output current drive capability.

APPLICATIONS

- ADC/DAC GAIN AMPLIFIER
- LOW DISTORTION COMMUNICATIONS
- HIGH RESOLUTION IMAGING
- MEDICAL IMAGING
- LOW NOISE PREAMPLIFIER
- VIDEO AMPLIFICATION
- TEST INSTRUMENTATION
- AUDIO AMPLIFICATION

The OPA643 is internally compensated for stability in gains of 5 or greater. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. This allows the OPA643 to be used in all op amp applications requiring high speed and precision.

Low distortion, low noise, and high linearity make this amplifier suitable for RF, video, imaging, and audio applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 899-1510 • Immediate Product Info: (800) 548-6132

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted.

		0	PA643H, P	, U	OPA	43HSQ, P	B, UB		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OFFSET VOLTAGE		100 V			a No. 1505				
Input Offset Voltage		W. 1. 1	±2.5	±4	5 X 38	±0.5	±1.5	mV	
Average Drift			5	1	- I	3		μV/°C	
HSQ Grade Over Temperature		1	1.00	1 2 2	Ser 18 8	±2.5	±5	mV	
Power Supply Rejection (+V _S)	$V_S = \pm 4.5 \text{ to } \pm 5.5 \text{V}$	65	85		70			dB	
INPUT BIAS CURRENT(1)		-	-		A STATE OF THE PARTY OF THE PAR		10 mm 20 mm	Marie Day	
Input Bias Current	V _{CM} = 0V		19	30	1000			μА	
Over Specified Temperature	VCM = 0 V	1034	24	40	44			μА	
HSQ Grade Over Temperature		V 350	27	40	- Pilling	2.5	40	μА	
	V OV	S AL N. S	0.1	2.0	0100	*	*		
Input Offset Current	V _{CM} = 0V	19 104 11/1	0.1	3.0	N4 E.F			μА	
Over Specified Temperature			0.5	3.0	111111111111111111111111111111111111111	4.0		μА	
HSQ Grade Over Temperature	OF STATE OF VEHICLE CALCUS	2 25 10 700	CENTURE.	STATE OF THE PARTY.		1.0	5.0	μА	
NOISE		1				- TREE			
Input Voltage Noise		1.00	F TO ST		1 4 2 10 10 11	arts who	and a series of	2007	
Noise Density: f = 100Hz		TI NOSAST	10.3			100	HULL	nV/√H	
f = 10kHz	AND REAL PROPERTY.		1.9		000			nV/√H	
f = 1MHz	Into otroot a		1.8	MID 65 -1	Sh00	cortisa	STREET, NAME OF THE PARTY OF	nV/√H	
$f_B = 1MHz$ to 100MHz	B ADCIDAC GAIN		1.8	State State State	Kenna	10.11.11	110101	nV/√H	
Voltage Noise, BW = 100Hz to 100MHz	DITECTED WOLLS	200	18	N - 1	SHAV	138.1 -17	SION IN	μVrm	
Input Bias Current Noise	THE PERSON NAME OF		1 500	1 1 1 1 1 1					
Current Noise Density, f = 0.1Hz to 20kHz	B HIGH RESOLUTE	4 2 1	2.4	28	1.50	TOME	MAB-M	pA√H	
Noise Figure		100.20							
$R_S = 1k\Omega$	MEDICAL MAGIN	N. TRA	1.6		0.5	THE STATE OF	M SJSA	dB	
$R_S = 50\Omega$			7.0		10000		DOM: 100 - 10	dB	
INPUT VOLTAGE RANGE	THE BRIDE WOLL			918	100000	KI BAR V		00	
	ALTER STREET, A CONTRACT OF	±2.75	±3.0	015-261	MIND	BOOK F. D	ann W	V	
Common-Mode Input Range	PAIDEO AMPLIEN	±2.75 ±2.5		CHARLES.	1000000	The same of	ME THE FIRE	V	
Over Specified Temperature	14 10 514		±3.0	DITTORLE	80	92	MICO HE	dB	
Common-Mode Rejection	$V_{CM} = \pm 0.5V$	65	85	W 1 3 NP 18 N	80	92	W. C. C. C. C.	ФВ	
INPUT IMPEDANCE	B ALIDNO AMPLISTE		(301)	1.0) en/1	DIME	TES T	B-S1 T2	AT B	
Differential			15 1			*		kΩ p	
Common-Mode			8 1	PAH9W	HARLISA	HM:18:	HARL W	MΩ p	
OPEN-LOOP GAIN		1000			9210	nassagn	0-909	63.5	
Open-Loop Voltage Gain	$V_{\Omega} = \pm 2V, R_{L} = 100\Omega$	82	95		87			dB	
Over Specified Temperature	$V_0 = \pm 2V, R_L = 100\Omega$	80	90	13.75	82		and the second	dB	
FREQUENCY RESPONSE, R _{FB} = 402Ω	All Four Power Pins Used				1/3	C.21 0 "	1111,72	2.2.4.	
Closed-Loop Bandwidth	Gain = +5V/V		300					MHz	
Closed-Loop Bandwidth	Gain = +10V/V	22	112		and the said		FA643 19	MHz	
		75.8		Entrader vi	The Contract	Branch P	THURST		
What a said techniques state	Gain = +20V/V	rite	47	oitsaidn	co lane	nau me	animutes	MHz	
Slew Rate(1)	G = +5, 2V Step	- in	1000	Larry Ass.	inhanat d	and have	man a manife	V/µs	
At Minimum Specified Temperature	G = +5, 2V Step	HO	920	COLUMN TO A SERVICE	ALDITERS T	Rint worth	pres don	V/µs	
Settling Time: 0.003%	G = +5, 2V Step	100	60	C errors	F lemini	m nol a	solle sie	ns	
0.01%	G = +5, 2V Step	VII	21	and a contract of	del molere	of dealers	pion and	ns	
0.1%	G = +5, 2V Step	(3)	16.5	MO SOLIS S	CPONTE ANYTHRE	L HEALT	inius quo	ns	
1%	G = +5, 2V Step	3 8	7.5	di asolan	sid E .	distortio	DIRONNE	ns	
Spurious Free Dynamic Range	G = +5, f = 5MHz	200	90	old bas	80	90	tion shelis	dBc	
	$V_{O} = \pm 2Vp-p, R_{L} = 100\Omega$		mmay his 11	The second	WOITH THE PARTY OF THE	maker r	NAME OF THE PARTY	- CHEST	
Differential Gain Error at 3.58MHz G =	$+5V/V$, $V_0 = 0V$ to 1.4V, $R_L =$	150Ω	0.005	Parising I	si eralio	oals il	systems.	%	
Differential Phase Error at 3.58MHz G =	$+5V/V$, $V_0 = 0V$ to 1.4V, $R_L =$	150Ω	0.015	t been w	030 SR81	to finis r	ing legin	degree	
OUTPUT						Target and			
Voltage Output	No Load		198	A TEN		Villidaq	to evino i	CHITED	
Over Specified Temperature		±3.0	±3.25	100				V	
Voltage Output, +25°C	$R_1 = 100\Omega$					100	1000		
Over Specified Temperature	(2) (2)	±2.5	±2.75	1 2				V	
Current Output, +25°C		±40	±60	- 2	±50	±65		mA	
Over Specified Temperature		±35	±50		±40	*		mA	
Output Resistance	1MHz, G = +5V/V	100	0.035	1	1.40	*		Ω	
POWER SUPPLY	111112, 0 = 754/4	-	0.000					24	
		100	1.5						
Specified Operating Voltage			±5					V	
Operating Voltage Range		±4.5	34	±5.5			100	V	
Quiescent Current			±22	±27				mA	
Over Specified Temperature			±23	±29			1	mA	
TEMPERATURE RANGE	e production		THE RESTRE		7 7 5 A 7 1 1	12/2001			
Specification: H, P, U	Ambient	-40		+85				°C	
HSQ	Ambient				-55		+125	°C	
Thermal Resistance	θ _{JA} , Junction to Ambient			- S	-00	4	TILO		
P	JA, Junction to Ambient		120	The second second	1		100	°C/W	
U					1				
Н			170 120	1 2 2	(1)			°C/W	

NOTE: (1) The "B" grade of the SOIC package will be marked with a "B" by Pin 8. Refer to the mechanical section for the location.

PIN CONFIGURATION

NOTE: (1) Making use of all four power supply pins is highly recommended, although not required. Using these four pins, instead of just pins 4 and 7, will lower the effective pin impedance and substantially lower distortion.

on
cc
on
C
C
C
C
°C
ım
00000

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA643H, HSQ	8-Pin Cerdip	157
OPA643P, PB	8-Pin DIP	006
OPA643U, UB	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES

80 100 120 140

Ambient Temperature (°C)

-60 -40 -20 0 20 40 60

(¥m¥) 70

50

Output Current (

TYPICAL PERFORMANCE CURVES (CONT) MAMAGGAGG LAGIGYT

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω and all four power supply pins are used unless otherwise noted.

HARMONIC DISTORTION vs FREQUENCY

5MHz HARMONIC DISTORTION vs OUTPUT SWING

10MHz HARMONIC DISTORTION vs OUTPUT SWING

AUDIO PRECISION THD+N vs FREQUENCY

TYPICAL PERFORMANCE CURVES (CONT)

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω and all four power supply pins are used unless otherwise noted.

APPLICATIONS INFORMATION

DISCUSSION OF PERFORMANCE

The OPA643 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA643's design uses a "Classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer some disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e., one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Cancelling offset errors (due to input bias currents) through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA643's "Classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA643.

WIRING PRECAUTIONS

Maximizing the OPA643's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all

printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA643, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2 oz. copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must *always* be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.01µF ceramic must also be added. Surface-mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

dissertion is achieved with high immedance loads

For Immediate Assistance, Contact Your Local Salesperson

Points to Remember

- 1) Making use of all four power supply pins will lower the effective pin impedance seen by the input and output stages. This will improve the AC performance **including lower distortion**. The lowest distortion is achieved when running separated traces to V_{S1} and V_{S2} . Power supply bypassing with $0.01\mu F$ and $2.2\mu F$ surface mount capacitors is recommended. It is essential to keep the $0.01\mu F$ capacitor very close to the power supply pins. Refer to the demonstration board figure at the end of the data sheet for the recommended layout and component placements.
- 2) Whenever possible, use surface mount. Don't use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 3) Surface mount on backside of PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA643 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 25Ω) in unity-gain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. A longer feedback path than this will decrease the realized bandwidth substantially. Refer to the demonstration board layout at the end of the data sheet.
- 6) Surface-mount components (chip resistors, capacitors, etc.) have low lead inductance and are therefore strongly recommended. Circuits using all surface-mount components with the OPA643U (SOIC package) will offer the best AC performance. The parasitic package impedance for the SOIC is lower than the both the Cerdip and 8-lead Plastic DIP.
- 7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.

- 8) Don't forget that these amplifiers use $\pm 5V$ supplies. Although they will operate perfectly well with +5V and -5.2V, use of $\pm 15V$ supplies will destroy the part.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA643's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R₃. This will reduce input bias current errors to the amplifier's offset current, which is typically only 0.2µA.

FIGURE 1. Offset Voltage Trim.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA643 incorporates on-chip ESD protection diodes as shown in Figure 2. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 2. Internal ESD Protection.

All pins on the OPA643 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The OPA643 utilizes a fine geometry high speed process that withstands 500V using the Human Body Model and 100V using the Machine Model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA643.

OUTPUT DRIVE CAPABILITY

The OPA643 has been optimized to drive 30Ω , 75Ω , and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA643 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA643 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 3. Closed-Loop Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA643 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 29 \text{mA} = 290 \text{mW}$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = ($\pm V_{CC})^2/4R_L$. Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

Note that the short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of short-circuit output current with temperature is shown in the Figure 4.

FIGURE 4. Short-Circuit Output Current vs Temperature.

resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 10pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the gain from +5 will improve the capacitive load drive due to increased phase margin.

FIGURE 5. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA643 is internally compensated and is stable in a noise gain of 5 or greater with a phase margin of approximately 60° . Higher gains will improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -5V/V is equivalent to a noise gain of 6.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA643 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedwith large time constants.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

Settling time, specified in a non-inverting gain of 5, occurs in only 15ns to 0.01% for a 2V output step, making the OPA643 one of the fastest settling monolithic amplifiers commercially available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 90ns.

In practice, settling time measurements on the OPA643 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results, a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DB) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL subcarrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set. All PAL measurements were performed using a Rohde & Schwarz Video Analyzer UAF.

DG and DP of the OPA643 were measured with the amplifier in a gain of +5V/V with 75 Ω input impedance and the output back-terminated in 75 Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with sync pulse.

With these conditions the test circuit shown in Figure 1 delivered a 100IRE modulated ramp to the 75 Ω input of the video analyzer. The signal averaging feature of the analyzer

Or, Call Customer Service at 1-800-548-6132 (USA Only)

was used to establish a reference against which the performance of the amplifier was measured. Signal averaging was also used to measure the DG and DP of the test signal in order to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA643 is 0.005% differential gain and 0.015° differential phase to both NTSC and PAL standards. Increasing the closed-loop gain degrades the DP and DG.

FIGURE 6. Configuration for Testing Differential Gain/Phase.

DISTORTION

The OPA643's Harmonic Distortion characteristics into a 100Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 7. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 7. 5MHz Harmonic Distortion vs Load Resistance.

The third-order intercept point is an important parameter for many RF amplifier applications. Figure 8 shows the OPA643's single-tone third-order intercept vs frequency. This curve is particularly useful for determining the magni-

tude of the third harmonic as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA643 to operate in a gain of +5V/V and drive 2Vp-p into 50Ω at a frequency of 5MHz. Referring to Figure 8 we find that the intercept point is +47dBm. The magnitude of the third harmonic can now be easily calculated from the expression:

Third Harmonic (dBc) = $2(OPI^3P - P_O)$ where OPI^3P = third-order output intercept, dBm P_O = output level, dBm

For this case $OPI^3P = 47dBm$, $P_0 = 10dBm$, and the third-order IMD = 2(47 - 10) = 74dB below the fundamental. The OPA643's low distortion makes the device an excellent choice for a variety of RF signal processing applications.

FIGURE 8. Single-Tone 3rd-Order Intermodulation Intercept vs Frequency.

NOISE FIGURE

The OPA643 voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA643's Noise Figure vs Source Resistance is shown in Figure 9.

FIGURE 9. Noise Figure vs Source Resistance.

ENVIRONMENTAL (Q) SCREENING haids and to about

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected stress levels similar to those of MIL-STD-883.

DPASS'S TO METHOD MEROS The
Burr-Brown QC4118
Temperature = 150°C, 24 hrs
Temperature = -65°C to 150°C, 10 cycles
Temperature = 125°C, 160 hrs minimum
20,000G
Fine: He leak rate < 5 x 10 ⁻⁸ atm cc/s, 30PSiG Gross: per Fluorocarbon bubble test, 60PSiG
As described in specifications tables.
Burr-Brown QC5150

NOTE: Q-Screening is available on the HS package only.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available for the OPA643. Contact Burr-Brown Applications Department to receive a spice diskette.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64X Datasheet for details.

APPLICATIONS

FIGURE 10. Low Noise, Wideband FET Input Op Amp.

FIGURE 11. Differential Input Buffer Amplifier (G=+5V/V).

BURR-BROWN®

FIGURE 12. Video Distribution Amplifier.

FIGURE 13. Differential Gain Amplifier and Driver for 50Ω and 75Ω Systems.

FIGURE 14. Wideband, Fast-Settling Instrumentation Amplifier with Two High Impedance Inputs.

OPA644

DEMO BOARD AVAILABLE See Appendix A

Low Distortion Current Feedback OPERATIONAL AMPLIFIER

FEATURES

- SLEW RATE: 2500V/µs
- VERY LOW DIFFERENTIAL GAIN/PHASE ERROR: 0.008%/0.009°
- LOW DISTORTION AT 5MHz: -85dBc
- HIGH BANDWIDTH: 500MHz
- CLEAN PULSE RESPONSE
- HIGH OPEN LOOP TRANSIMPEDANCE: 2.0MΩ
- HIGH LINEARITY
- FAST 12-BIT SETTLING: 21ns to 0.01%
- UNITY-GAIN STABLE

APPLICATIONS

- HIGH-SPEED SIGNAL PROCESSING
- HIGH-RESOLUTION VIDEO
- PULSE AMPLIFICATION
- COMMUNICATIONS
- ADC/DAC GAIN AMPLIFIER
- RF AMPLIFICATION
- MEDICAL IMAGING
- AUDIO AMPLIFICATION

DESCRIPTION

The OPA644 is a wideband precision current feedback operational amplifier featuring exceptionally high open loop transimpedance and high slew rate. The current feedback architecture allows for excellent large signal bandwidth, even at high gains. The high transimpedance allows this op amp to be used in applications requiring 16 bits or more of accuracy. This extra transimpedance at high bandwidths gives very low distortion and low differential gain and phase errors. The high slew rate and well-behaved pulse response allow for superior large signal amplification in a variety of RF, video and other signal processing applications. Fabricated on an advanced complementary bipolar process, the OPA644 offers exceptional performance in monolithic form.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-11111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω and all four power supply pins are used unless otherwise noted.

	d's message	C	PA644H, P		UPA	644HSQ, P	D, UB	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE							EDMAR BA	
Input Offset Voltage	G = +10		±2.5	±6		±2	±3	mV
Average Drift	38-1 The 18-18-18-18-18-18-18-18-18-18-18-18-18-1		20			10	DSH	μV/°C
HSQ Grade Average Drift					W 1	20	35	μV/°C
Power Supply Rejection	$V_S = \pm 4.5 \text{ to } \pm 5.5 \text{V}$	40	65		60	75		dB
INPUT BIAS CURRENT(1)	00							700
Non-Inverting	120 031		±20	±40		±15	±20	μА
Over Specified Temperature	(2) Time for the putpert to excurse (±24	±90	more words	±20	±50	μА
HSQ Grade Over Temperature	I car seem as magnety and tun anner can		of supplies of	TO SERVICE SEC	Print House	35	60	μА
Inverting			±2	±25			±10	μА
Over Specified Temperature			±4	±35	4 11 11	±3	±25	μА
HSQ Grade Over Temperature	I MINISTANI STILL HOOGA				1	±5	±25	μА
NOISE								
Input Voltage Noise Density	G = +10		1 1	6.5,000	6			
f = 100Hz	management of the second of th		10.3		The same		- melencia	nV/√Hz
f = 1kHz			2.9				- munnum	nV/√Hz
f = 10kHz	amanan eganov nagni latinarsenu i		1.9		100	* 010	Chartenan	nV/√Hz
f = 1MHz	Liegus Vollage Nauge automateur		1.9				CHIT O'CONTO	nV/√Hz
f _B = 100Hz to 200MHz	Plange Lemourame Religion H.		33.6				CASS CONTRACTOR	μVrms
Inverting Input Bias Current			00.0			9	Production of	μνιτιιδ
Noise Density: f = 10MHz	Lead Tamperdure (corpens)		15		Annessa.	1000	DOLL AND THE	pA/√Hz
Non-Inverting Input Current	CAS TRUBLISHOW		15		MISSELS A	WARRIED THE CO.	6714 01 01	pr/ vnz
Noise Density: f = 10MHz	Limited Temperature (Tg) malanagme Findings.		15			201- 01 O.7	18/19/	pA√Hz
	not set tron experient (1) trust	-	13	thorton of	The agency	- 0100 at	to objects from	pAVVIIZ
INPUT VOLTAGE RANGE	T ₁ must be classified.	100	10.05	5 5 5	medicosi el	tol mileon	Inchanton	ent of v
Common-Mode Input Range		±2.0	±2.25					
Over Specified Temperature	V .0V	±1.8	±2.1		4.5	0.5		V
Common-Mode Rejection	V _{CM} = ±2V	35	55		45	65		dB
INPUT IMPEDANCE	PACKALLS INPURING			fant	SHAPPING A	1603 51851	- PERILIPINA	
Non-Inverting			500 1.0	-				kΩ pF
Inverting	TANAMA		20	(UIB.)	212	46		Ω
Open-Loop Transimpedance	$V_O = \pm 2V$, $R_L = 1k\Omega$	1.4	2.0					MΩ
FREQUENCY RESPONSE, R _{FB} = 402					Emmal .	7		
Closed-Loop Bandwidth	G = +1V/V		500	10 No. 13			F 39	MHz
	G = +2V/V		300	may I		1	Total Control	MHz
	G = +5V/V		180	, Va		*	S Juonta	MHz
	G = +10V/V		125	18.4			ON HOSPINE	MHz
	G = +20V/V		80	SeeduD	1		E Juania	MHz
Slew Rate ⁽¹⁾	G = +2, 2V Step		2500					V/µs
Settling Time: 0.01%	G = +2, 2V Step		21	Waste			5 15V-	ns
0.1%	G = +2, 2V Step		16.5		The contract	*		ns
1%	G = +2, 2V Step		5.5		TV- II			ns
Overload Recovery Time(2)	China manager and		60	in abalance	J. C.			ns
Spurious Free Dynamic Range	G = -1, $f = 5.0MHz$		84	Buolivelial Str	Will Middles a	86	FIO HELL GENE	dBc
	V _O = 2Vp-p		ALTERNATION AS	oid sank so mil	seam frond a	pot eason go	No. permpe	
	G = -1, f = 20MHz		Angunes	SIGN REPART NO	I nestedue t	SES SOTUDS	Auto 1965 BAILD	dBc
Differential Gain Error at 3.58MHz	$G = +2V/V, V_O = 0V \text{ to } 1.4V$		0.008				-	%
	$R_L = 150\Omega$				100			
Differential Phase Error at 3.58MHz	$G = +2V/V, V_O = 0V \text{ to } 1.4V$		0.009		Mary Alley			Degrees
	$R_L = 150\Omega$						1 1	
Gain Flatness to 1dB	G = +1	30 N	250			*		MHz
OUTPUT	COST OFFICE CHE LINES LOCAL		1 1 3 1	UZNE				
Current Output	to complete device failure?	±40	±60		±50	±66		mA
Over Specified Temperature	security of allelines some control of	±30	±45	53 W L 3	±40	±50		mA
Voltage Output	No Load						EXT 2 1 1	
Over Specified Temperature	van am extra tittioo saganda	±3.0	±3.5					V
Voltage Output	$R_L = 100\Omega$							
Over Specified Temperature		±2.75	±3.25					V
Short Circuit Current			75	W. Tr				mA
Output Resistance	1MHz, G = +2V/V		0.2					Ω
POWER SUPPLY			U.E.					24
Specified Operating Voltage	T to T		±5					V
Operating Voltage Range	T _{MIN} to T _{MAX}	±4.5	13	15.5				
Quiescent Current	T _{MIN} to T _{MAX}	±4.5	140	±5.5				V
Guiescent Current	T _{MIN} to T _{MAX}		±18	±26				mA

SPECIFICATIONS (CONT)

ELECTRICAL

T_A = +25°C, V_S = ±5V, R_L = 100Ω, C_L = 2pF, R_{FB} = 402Ω and all four power supply pins are used unless otherwise noted. R_{FB} = 25Ω for a gain of +1.

		490		DEAGLER, P. I	0	PA644H, F	P, U	OPA	644HSQ, P	B UB		
PARAMETER XAM 977		MUSE	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS		
TEMPERATURE RANGE										BOAT	PISCT VOL	
Specification: H, P, U					-40	- 15	+85	*		Bosto	°C	
HSQ								-55		+125	°C A	
Thermal Resistance, θ_{IA}									- 6	C some A	nero cen	
Pal		08			0a 1	120	- 54.5 to 4		*	nollosieR	°C/W	
U		1		-	-	170				STATISTICS OF	°C/W	
H san long.						120				A SEPTEMBER	°C/W	

NOTES: (1) Slew rate is rate of change from 10% to 90% of the output voltage step. (2) Time for the output to resume linear operation after saturation.

ORDERING INFORMATION

OPA644	() ()
Basic Model Number	10.3
Package Code —	8.8
H = 8-pin Sidebraze DIP	1.9
P = 8-pin Plastic DIP	0.1
U = 8-pin Plastic SOIC	0.88
Performance Grade Code —	
SQ = -55°C to +125°C, Reliability Screened	
B(1) or No Letter = -40°C to +85°C	

NOTE: (1) The "B" Grade of the SOIC package will be marked with a "B" by pin 8. Refer to the mechanical section for the location.

PIN CONFIGURATION (All Packages)

Top View						Cerdip/	DIP/SOIC
	NC	1	7		8	+V _{S2} ⁽¹⁾	
	-Input	2	-	\	7	+V _{S1}	
	+Input	3	+		6	Output	
	-V _{S1}	4			5	-V _{S2} ⁽¹⁾	

NOTE: (1) Making use of all four power supply pins is highly recommended, although not required. Using these four pins, instead of just pins 4 and 7, will lower the effective pin impedance and substantially lower distortion.

ABSOLUTE MAXIMUM RATINGS

±5.5VDC
See Applications Information
Total V _{CC}
See Applications Information
265°C to +150°C
U, UB40°C to +125°C
+300°C
3s)+260°C
+175°C
d based on specified $ heta_{ m JA}$. Maximum

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA644H, HSQ	8-Pin Cerdip	A B81109839 157/EU03/F
OPA644P, PB	8-Pin DIP	006
OPA644U, UB	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

80

Output Current (±mA)

50

-60 -40 -20

0

20 40

Ambient Temperature (°C)

60 80

OPERATIONAL AMPLIFIERS

100 120 140

15

12

9

3

0

-3

-6

-9

-12

1M

Gain

Closed-Loop Phase

10M

Bandwidth

= 335MHz

-45

-90

-135

-180

1G

OPERATIONAL AMPLIFIERS

2

Frequency (Hz)

Frequency (Hz)

G = +2V/V CLOSED-LOOP

100M

SMALL SIGNAL BANDWIDTH

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) MAMPORE JACISTY

 $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_I = 100\Omega$, $C_I = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

APPLICATIONS INFORMATION

THEORY OF OPERATION

This current feedback architecture offers the following important advantages over voltage feedback architectures: (1) the high slew rate allows the large signal performance to approach the small signal performance, and: (2) there is very little bandwidth degradation at higher gain settings.

The current feedback architecture of the OPA644 provides the traditional strength of excellent large signal response with the unusual addition of very high open-loop transimpedance. This high open-loop transimpedance allows the OPA644 to be used in applications requiring 16 bits or more of accuracy and dynamic linearity.

DC GAIN TRANSFER CHARACTERISTICS

The circuit in Figure 1 shows the equivalent circuit for calculating the DC gain. When operating the device in the inverting mode, the input signal error current ($I_{\rm E}$) is amplified by the open-loop transimpedance gain ($T_{\rm O}$). The output signal generated is equal to $T_{\rm O}$ x $I_{\rm E}$. Negative feedback is applied through $R_{\rm FB}$ such that the device operates at a gain equal to $-R_{\rm FB}/R_{\rm FF}$.

FIGURE 1. Equivalent Circuit.

For non-inverting operation, the input signal is applied to the non-inverting (high impedance buffer) input. The output (buffer) error current (I_E) is generated at the low impedance inverting input. The signal generated at the output is fed back to the inverting input such that the overall gain is (1 + R_{FF}/R_1).

Where a voltage-feedback amplifier has two symmetrical high impedance inputs, a current feedback amplifier has a low inverting (buffer output) impedance and a high noninverting (buffer input) impedance.

The closed-loop gain for the OPA644 can be calculated using the following equations:

Inverting Gain = $(-R_{FB}/R_{FF})/(1+1/Loop Gain)$ (1)

Non-inverting Gain = $(1 + R_{FB}/R_{FF})/(1 + 1/Loop Gain)$ (2)

where: Loop Gain = $T(o)/(R_{FB}) \times (1/(1+T(o)/(R_{FB}/R_{FF}))$

At higher gains the small value inverting input impedance (R_{INV}) causes an apparent loss in bandwidth. This can be seen from the equation:

Factual =
$$F_{IDEAL}/(1 + (R_{INV}/R_{FB}) (1 + R_{FB}/R_{FF}))$$
 (3)

This loss in bandwidth at high gains can be corrected without affecting stability by lowering the value of the feedback resistor from the specified value of 402Ω .

OFFSET VOLTAGE AND NOISE

The output offset is the algebraic sum of the input voltage and current sources that influence DC operation. The output offset is calculated by the following equation:

Output Offset Voltage =
$$\pm Ib_N \times R_N (1 + R_{FB}/R_G) \pm V_{IO}$$
 (4)
 $(1 + R_{FB}/R_G) \pm Ib_I \times R_{FB}$

If all terms are divided by the gain $(1 + R_F/R_G)$ it can be observed that input referred offsets improve as gain increases.

The effective noise at the output of the amplifier can be determined by taking the root sum of the squares of equation 4 and applying the spectral noise values found in the Typical Performance Curve graph section. This applies to noise from the op amp only. Note that both the noise figure and equivalent input offset voltages improve as the closed-loop gain increases (by keeping $R_{\rm F}$ fixed and reducing $R_{\rm I}$ with $R_{\rm N}=0\Omega$).

FIGURE 2. Output Offset Voltage Equivalent Circuit.

INCREASING BANDWIDTH AT HIGH GAINS

The closed-loop bandwidth can be extended at high gains by reducing the value of the feedback resistor R_{FB} (refer to Figure 1). This bandwidth reduction is caused by the feedback current being split between R_S and R_{FF} . As the gain increases (for a fixed R_{FB}), more feedback current is shunted through R_{FF} , which reduces closed-loop bandwidth. To maintain specified bandwidth, the following equations can be used to approximate R_F and R_I for any gain from ± 1 to ± 15 :

 $R_I = (424 + 8G)/G$ (inverting)

-- rr (.= . oon(o i) (non inverting)

G = Closed-loop gain X (m) NoYT = misO good remove

WIRING PRECAUTIONS

Maximizing the OPA644's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA644, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2 oz. copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must *always* be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.01µF ceramic must also be added. Surface-mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

1) Making use of all four power supply pins will lower the effective power supply inductance seen by the input and output stages. This will improve the AC performance including lower distortion. The lowest distortion is achieved when running separated traces to V_{S1} and V_{S2} . Power supply bypassing with $0.01\mu F$ and $2.2\mu F$ surface-mount capacitors is recommended. It is essential to keep the $0.01\mu F$ capacitor very close to the power supply pins. Refer to the demonstration board figure in the DEM-OPA64X datasheet for the recommended layout and component placements.

detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.

- 3) Surface mount on the backside of the PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA644 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 25Ω) in unity-gain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. A longer feedback path than this will decrease the realized bandwidth substantially. Refer to the demonstration board layout at the end of the datasheet.
- 6) Surface-mount components (chip resistors, capacitors, etc.) have low lead inductance and are therefore strongly recommended. Circuits using all surface-mount components with the OPA644U (SOIC package) will offer the best AC performance. The parasitic package impedance for the SOIC is lower than the both the Cerdip and 8-lead Plastic DIP.
- 7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 8) Don't forget that these amplifiers use $\pm 5V$ supplies. Although they will operate perfectly well with +5V and -5.2V, use of $\pm 15V$ supplies will destroy the part.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA644's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.

be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA644 incorporates on-chip ESD protection diodes as shown in Figure 3. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 3. Internal ESD Protection.

All pins on the OPA644 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The OPA644 utilizes a fine geometry high speed process that withstands 500V using the Human Body Model and 100V using the machine model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA644.

OUTPUT DRIVE CAPABILITY

The OPA644 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA644 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 4, the OPA644 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 4. Closed-Loop Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA644 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5 V$, $P_{DQ} = 10 V \times 26 mA = 260 mW$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = ($\pm V_{CC}/2/4 R_L$. Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

The short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in the Typical Performance Curves.

CAPACITIVE LOADS

The OPA644's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 5pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters.

FIGURE 5. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA644 is internally compensated and is stable in unity gain with a phase margin of approximately 70° . (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA644 in a good layout is very flat with frequency.

DISTORTION

The OPA644's harmonic distortion characteristics into a 100Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 6. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 6. 5MHz Harmonic Distortion vs Load Resistance.

The third-order intercept is an important parameter for many RF amplifier applications. Figure 6 shows the OPA644's single tone third-order intercept vs frequency. This curve is particularly useful for determining the magnitude of the third harmonic as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA644 to operate in a gain of +2V/V and drive 2Vp-p into 50Ω at a frequency of 10MHz. Referring to Figure 6 we find that the intercept point is +50dBm. The magnitude of the third harmonic can now be easily calculated from the expression:

Third Harmonic (dBc) = $2(OPI^3P - P_O)$ where OPI^3P = third-order output intercept, dBm P_O = output level, dBm For this case $OPI^3P = 60dBm$, $P_0 = 10dBm$, and the third harmonic = 2(50-10) = 80dB below the fundamental. The OPA644's low distortion makes the device an excellent choice for a variety of RF signal processing applications.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL subcarrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set.

DG and DP of the OPA644 were measured with the amplifier in a gain of ± 2 V/V with 75Ω input impedance and the output back-terminated in 75Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with sync pulse. With these conditions the test circuit shown in Figure 7 delivered a 100IRE modulated ramp to the 75Ω input of the video analyzer. The signal averaging feature of the analyzer was used to establish a reference against which the performance of the amplifier was measured. Signal averaging was also used to measure the DG and DP of the test signal in order to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA644 is 0.008% differential gain and 0.009° differential phase to both NTSC and PAL standards.

FIGURE 7. Configuration for Testing Differential Gain/Phase.

NOISE FIGURE

The OPA644's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA644's Noise Figure vs Source Resistance is shown in Figure 8.

FIGURE 8. Noise Figure vs Source Resistance.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models using MicroSim Corporation's PSpice are available for the OPA644. Contract Burr-Brown applications departments to receive a SPICE Diskette.

ENVIRONMENTAL (Q) SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected stress levels similar to those of MIL-STD-883.

SCREEN	METHOD
Internal Visual	Burr-Brown QC4118
Stabilization Bake	Temperature = 150°C, 24 hrs
Temperature Cycling	Temperature = -55°C to 125°C, 10 cycles
Burn-In Test	Temperature = 125°C, 160 hrs minimum
Centrifuge	20,000G
Hermetic Seal	Fine: He leak rate < 5 X 10 ⁻⁸ atm cc/s, 30pPSiG Gross: per Fluorocarbon bubble test, 30pPSiG
Electrical Tests	As described in specifications tables.
External Visual	Burr-Brown QC5150

NOTE: Q-Screening is available on HS package only.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64X datasheet for details.

APPLICATIONS

FIGURE 9. Low Distortion Video Amplifier.

FIGURE 10. Output Amplification for the DAC650.

FIGURE 11. Output Amplification for the DAC600.

FIGURE 12. Wideband, Fast-Settling Instrumentation Amplifier.

FIGURE 13. Low Distortion Gain Amplifier (G = +5V/V).

OPA646

DEMO BOARD AVAILABLE See Appendix A

Low Power, Wide Bandwidth OPERATIONAL AMPLIFIER

FEATURES

- LOW POWER: 55mW
- UNITY-GAIN BANDWIDTH: 650MHz
- UNITY-GAIN STABLE
- FAST 12-BIT SETTLING: 15ns (0.01%)
- LOW INPUT BIAS CURRENT: 2μA
- LOW HARMONICS: -82dBc at 5MHz
- LOW DIFFERENTIAL GAIN/PHASE ERRORS: 0.025%/0.08°

APPLICATIONS

- TELECOMMUNICATIONS
- MEDICAL IMAGING
- CCD IMAGING
- PORTABLE EQUIPMENT
- ACTIVE FILTERS
- VIDEO AMPLIFICATION
- ADC/DAC GAIN AMPLIFIER
- HIGH SPEED INTEGRATORS

DESCRIPTION

The OPA646 is a low power, wideband voltage feedback operational amplifier. It features a high bandwidth of 650MHz as well as a 12-bit settling time of only 15ns. Its low input bias current and wide bandwidth allows it to be used for high speed integrator and active filter designs. Its low distortion gives exceptional performance for telecommunications, medical imaging and video applications.

The OPA646 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. Its unusual combination of speed, accuracy and low power make it an ideal choice for many portable, multichannel and other high speed applications where power is at a premium.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω and all four power supply pins are used unless otherwise noted. R_{FB} = 25 Ω for a gain of +1.

3			0	PA646H, P	, U	OPA	46HSQ, P	B, UB	
Imput Officer Voltage Average Drift HSG Grade Over Temperature Poure Supply Rejection (-Vg) (-Vg	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Blas Current	Input Offset Voltage Average Drift HSQ Grade Over Temperature Power Supply Rejection (+V _S)	$V_S = \pm 4.5 \text{ to } \pm 5.5 \text{V}$		±20	±8		±12 ±5 *		μV/°C mV dB
Injust Voltage Noise	Input Bias Current Over Specified Temperature HSQ Grade Over Temperature Input Offset Current Over Specified Temperature		SIW IAM	0.4	7 1.5	MOJ 90		10	μΑ μΑ μΑ μΑ
NPUT VOLTAGE RANGE	Input Voltage Noise Noise Density: f = 100Hz f = 10kHz f = 1MHz f = 1MHz f = 1MHz to 100MHz Voltage Noise, BW = 100Hz to 100MHz Input Bias Current Noise Current Noise Density, f = 0.1Hz to 20kHz Noise Figure (NF) R _S = 10kΩ	The OPA646 is a low sack operational as candwidth of 650MH. St only 15ns. Its low eardwidth allows it to		7.5 7.1 7.2 141 1.1		:DNID:	er: 65 N BAN N STAL	W POW ITY-GA	
Differential Common-Mode $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature	exceptional performs nedlest imaging and	±2.5	±3.0	ic at 55	1027 10	TMRRE	RAH W	V
Open-Loop Voltage Gain Over Specified Temperature FIREQUENCY RESPONSE, $R_{FB} = 402\Omega$ All Four Power Pins Used $G = +1VV$ $G = \pm 2VV$ $G = \pm 2VV$ $G = \pm 2VV$ $G = \pm 2VV$ $G = \pm 100V$	Differential					591/	oita	A: 10	kΩ pF
Closed-Loop Bandwidth	Open-Loop Voltage Gain							ROOSI	
Voltage Output $P_{L} = 250\Omega$ $P_{L} = 250\Omega$ $P_{L} = 100\Omega$ $P_{L} = 10\Omega$	Rise Time Fall Time Settling Time: 0.01% 0.1% 1% Over-Voltage Recovery ⁽²⁾ Spurious Free Dynamic Range Differential Gain Error at 3.58MHz G = Gain Flatness to 0.1dB	G = +1VV $G = +2V/V$ $G = +5V/V$ $G = +10V/V$ $G = +1, 2V Step$ $1V Step$ $1V Step$ $G = +1, 2V Ste$	150Ω 150Ω	160 45 22 180 155 5.3 5.9 15 11.5 6 65 82 0.025 0.08		NOIT/	HAGE ING E EQUI LTERS PLIFIC GAIN A ED INT	RTABL TIVE FI JEO AN CIDAC	ns ns ns ns ns dBc
HSQ Grade Over Temperature ±25 ±35 mA Short Circuit Current 60 * mA	Voltage Output Over Specified Temperature HSQ Grade Over Temperature Voltage Output Over Specified Temperature HSQ Grade Over Temperature Voltage Output Over Specified Temperature HSQ Grade Over Temperature Current Output, +25°C to max Temp Over Specified Temperature HSQ Grade Over Temperature HSQ Grade Over Temperature HSQ Grade Over Temperature	R _L = 250Ω	±2.5 ±2.0 ±40	±2.7 ±2.5 ±52 ±48	Town I Lime	±2.3 ±2.0 ±2.0 ±2.0	±2.5 ±2.5 ±2.5 ±2.3	toM	V V V V MA mA

SPECIFICATIONS (CONT)

ELECTRICAL

At T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω and all four power supply pins are used unless otherwise noted. R_{FB} = 25 Ω for a gain of +1.

		OPA646H, P, U			OPA646HSQ, PB, UB			
PARAMETER MOTTO LEG STOOM MOMENT	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature HSQ Grade Over Temperature	T _{MIN} to T _{MAX} T _{MIN} to T _{MAX}	±4.5	±5 ±5.25 ±6.5	±5.5 ±6.5 ±7.5	•	* * ±7.5	* * ±8.5	V V mA mA mA
TEMPERATURE RANGE Specification: H, P, PB, U, UB HSQ Thermal Resistance P U H	Ambient Ambient θ_{JA} , Junction to Ambient	-40	120 170 120	+85	* 55		+125	°C °C °C/W °C/W °C/W

NOTE: (1) Slew rate is rate of change from 10% to 90% of output voltage step. (2) Recovery time to linear operation after a 50% overload recovery.

ORDERING INFORMATION

Basic Model Number	OPA646	44
Package Code		
H = 8-pin Sidebraze DIP		
P = 8-pin Plastic DIP		
U = 8-pin Plastic SOIC		
Performance Grade Code		A property in
SQ = -55°C to +125°C, Reliabili	ity Screened	
B(1) or No Letter = -40°C to +85		Market 1

NOTE: (1) The "B" grade of the SOIC package will be marked with a "B" by Pin 8. Refer to the mechanical section for the location.

PIN CONFIGURATION

NOTE: (1) Making use of all four power supply pins is highly recommended, although not required. Using these four pins, instead of just pins 4 and 7, will lower the effective pin impedance and substantially lower distortion.

ABSOLUTE MAXIMUM RATINGS

TYPICAL PERFORMANCE CURVES

Supply	
	See Applications Information
Storage Temperature Range: H, H	SQ65°C to +150°C
P, Pl	B, U, UB40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC	3s)+260°C
Junction Temperature (T _J)	+175°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA646H, HSQ	8-Pin Cerdip	157
OPA646P, PB	8-Pin DIP	006
OPA646U, UB	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (CONT) MAMBORRES L'ADISVI

At $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_L = 100\Omega$, $C_L = 2pF$, $R_{FB} = 402\Omega$ and all four power supply pins are used unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

APPLICATIONS INFORMATION

DISCUSSION OF PERFORMANCE

The OPA646 provides a level of speed and precision not previously attainable in monolithic form. Unlike current feedback amplifiers, the OPA646's design uses a "classical" operational amplifier architecture and can therefore be used in all traditional operational amplifier applications. While it is true that current feedback amplifiers can provide wider bandwidth at higher gains, they offer some disadvantages. The asymmetrical input characteristics of current feedback amplifiers (i.e., one input is a low impedance) prevents them from being used in a variety of applications. In addition, unbalanced inputs make input bias current errors difficult to correct. Cancelling offset errors (due to input bias currents) through matching of inverting and non-inverting input resistors is impossible because the input bias currents are uncorrelated. Current noise is also asymmetrical and is usually significantly higher on the inverting input. Perhaps most important, settling time to 0.01% is often extremely poor due to internal design tradeoffs. Many current feedback designs exhibit settling times to 0.01% in excess of 10 microseconds even though 0.1% settling times are reasonable. Such amplifiers are completely inadequate for fast settling 12-bit applications.

The OPA646's "classical" operational amplifier architecture employs true differential and fully symmetrical inputs to eliminate these troublesome problems. All traditional circuit configurations and op amp theory apply to the OPA646.

WIRING PRECAUTIONS

Maximizing the OPA646's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed

amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA646, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2 oz. copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must always be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.01µF ceramic must also be added. Surface-mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to

tion-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Making use of all four power supply pins will lower the effective power supply impedance seen by the input and output stages. This will improve the AC performance including lower distortion. The lowest distortion is achieved when running separated traces to V_{S1} and V_{S2} . Power supply bypassing with $0.01\mu F$ and $2.2\mu F$ surface-mount capacitors on the topside of the PC Board is recommended. It is essential to keep the $0.01\mu F$ capacitor very close to the power supply pins. Refer to the DEM-OPA64X Data Sheet for the recommended layout and component placements.
- 2) Whenever possible, use surface mount. Don't use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 3) Surface mount on backside of PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA646 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 25Ω) in unity-gain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. Refer to the demonstration board layout at the end of the datasheet. A longer feedback path than this will decrease the realized bandwidth substantially.
- 6) Surface-mount components (chip resistors, capacitors, etc.) have low lead inductance and are therefore strongly recommended. Circuits using all surface-mount components with the OPA646U (SOIC package) will offer the best AC performance. The parasitic package inductance and capacitance for the SOIC is lower than the both the Cerdip and 8-lead Plastic DIP.

- current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 8) Don't forget that these amplifiers use $\pm 5V$ supplies. Although they will operate perfectly well with +5V and -5.2V, use of $\pm 15V$ supplies will destroy the part.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA646's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 1 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with \mathbf{R}_3 . This will reduce input bias current errors to the amplifier's offset current.

FIGURE 1. Offset Voltage Trim.

INPUT PROTECTION

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection

This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

All pins on the OPA646 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

FIGURE 2. Internal ESD Protection.

The OPA646 utilizes a fine geometry high speed process that withstands 500V using the Human Body Model and 100V using the Machine Model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA646.

OUTPUT DRIVE CAPABILITY

The OPA646 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA646 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA646 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

THERMAL CONSIDERATIONS

The OPA646 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

tion and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_{CC} = \pm 5V$, $P_{DQ} = 10V \times 7.5 mA = 75 mW$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$) the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_{CC}/2$, and is equal to P_{DL} , max = ($\pm V_{CC}$)²/4 R_L . Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

A short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in Figure 4.

FIGURE 4. Output Current vs Temperature.

CAPACITIVE LOADS noisciraib raway lamenti

The OPA646's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 10pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the gain from +1 will improve the capacitive load drive due to increased phase margin.

FIGURE 5. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA646 is internally compensated and is stable in unity gain with a phase margin of approximately 60°. However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain of two or greater to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA646 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve

the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (tee network) is recommended to avoid using large value resistors with large time constants.

by means of a pair of back-to-back reveramit DNITTES

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the value of the output transition, a 2V step. Thus, settling time to 0.01% requires an error band of $\pm 200\mu V$ centered around the final value of 2V.

Settling time, specified in an inverting gain of one, occurs in only 15ns to 0.01% for a 2V step, making the OPA646 one of the fastest settling monolithic amplifiers commercially available. Settling time increases with closed-loop gain and output voltage change as described in the Typical Performance Curves. Preserving settling time requires critical attention to the details as mentioned under "Wiring Precautions." The amplifier also recovers quickly from input overloads. Overload recovery time to linear operation from a 50% overload is typically only 65ns.

In practice, settling time measurements on the OPA646 prove to be very difficult to perform. Accurate measurement is next to impossible in all but the very best equipped labs. Among other things, a fast flat-top generator and high speed oscilloscope are needed. Unfortunately, fast flat-top generators, which settle to 0.01% in sufficient time, are scarce and expensive. Fast oscilloscopes, however, are more commonly available. For best results a sampling oscilloscope is recommended. Sampling scopes typically have bandwidths that are greater than 1GHz and very low capacitance inputs. They also exhibit faster settling times in response to signals that would tend to overload a real-time oscilloscope.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase with closed-loop gain and output voltage transition. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

OUTPUT DRIVE CAPABILITY

DISTORTION

The OPA646's harmonic distortion characteristics into a 100Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be significantly improved by increasing the load resistance as illustrated in Figure 6. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 6. 5MHz Harmonic Distortion vs Load Resistance with $R_v = 402\Omega$.

NOISE FIGURE

The OPA646 voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA646's Noise Figure vs Source Resistance is shown in Figure 7.

FIGURE 7. Noise Figure vs Source Resistance.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available for the OPA646. Contact Burr-Brown Applications Department to receive a spice diskette.

ENVIRONMENTAL (Q) SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown "Q-Screening" on the HSQ grade provides environmental screening to our standard industrial products, thus enhancing reliability. The screening illustrated in the following table is performed to selected stress levels similar to those of MIL-STD-883.

SCREEN	METHOD
Internal Visual	Burr-Brown QC4118
Stabilization Bake	Temperature = 150°C, 24 hrs
Temperature Cycling	Temperature = -65°C to 150°C, 10 cycles
Burn-In Test	Temperature = 125°C, 160 hrs minimum
Centrifuge	20000G
Hermetic Seal	Fine: He leak rate < 5 x 10 ⁻⁸ atm cc/s, 30PSiG Gross: per Fluorocarbon bubble test, 60PSiG
Electrical Tests	As described in specifications tables.
External Visual	Burr-Brown QC5150

NOTE: Q-Screening is available on the HS package only.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64X Data Sheet for details.

FIGURE 8. Low Power Video Amplifier.

(-) 0 +5V

(+) 0 1 1 1 1 1 2 1 7

(1) R₁ (1) R₂ 2kΩ

NOTE: (1) Select J₁, J₂ and R₁, R₂ to set input stage current for optimum performance.

FIGURE 9. High-Q 1MHz Bandpass Filter.

FIGURE 10. Low Power, Wideband FET Input Op Amp.

FIGURE 11. Differential Line Driver for 50Ω or 75Ω Systems.

FIGURE 12. Wideband, Fast-Settling Instrumentation Amplifier.

FIGURE 13. Unity Gain Difference Amplifier.

FIGURE 15. A High Speed Integrator.

FIGURE 14. Differential Input Buffer Amplifier (G = +2V/V).

FIGURE 16. Single Supply Operation.

Matter Address: PO Box 11400 - Tucson, AZ S5TM -

OPA648

DEMO BOARD AVAILABLE See Appendix A

ULTRA-WIDEBAND CURRENT FEEDBACK OPERATIONAL AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 1GHz
- LOW DIFFERENTIAL GAIN/PHASE ERRORS: 0.02%/0.02°
- GAIN FLATNESS: 0.1dB to 100MHz
- FAST SLEW RATE: 1200V/μs
- CLEAN PULSE RESPONSE
- **UNITY GAIN STABLE**

APPLICATIONS

- HIGH-SPEED SIGNAL PROCESSING
- HIGH-RESOLUTION CRT PREAMP
- HIGH-RESOLUTION VIDEO
- PULSE AMPLIFICATION
- IF SIGNAL PROCESSING
- DAC I/V CONVERSION
- ADC BUFFER

DESCRIPTION

The OPA648 is an ultra high bandwidth current feedback operational amplifier. The current feedback architecture also allows for a very high slew rate, which gives excellent large signal bandwidth, even at high gains. The high slew rate and well-behaved pulse response allow for superior large signal amplification in a variety of RF, video and other signal processing applications. Fabricated on an advanced complementary bipolar process, the OPA648 offers exceptional performance in monolithic form.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS MOTTARILE PRINCE MA

ELECTRICAL

 $\rm T_A=+25^{\circ}C,~V_S=\pm5V,~R_L=100\Omega,~C_L=2pF,~and~R_{FB}=243\Omega$ unless otherwise noted.

	389	20027 - of 2000	OPA6	48H, P, U	
PARAMETER	CONDITIONS	O'ds MIN O'02	TYP	MAX	UNITS
FREQUENCY RESPONSE		0.000± """"	×111(110)	(so the distriction of a	Uranagman ne
Small Signal Bandwidth(1)	G = +1		1.0	(soldering, SO-8 b	GHz
nu la l	G = +2	0.975+	600	(¿T) 910%	MHz
Slew Rate(2)	G = +2, 1V Step	ed 6 yr. Maximum	1200	befereb ed faum care	V/µs
Settling Time				.heyd	reusi be obse
0.01%	G = +2, 1V Step		20		ns
0.1%	G = +2, 1V Step		9		ns
1%	G = +2, 1V Step		3		ns
Spurious Free Dynamic Range	$G = +2$, $f = 5.0MHz$, $V_O = 2Vp-p$		60	PORMATION	dBc
gate, garger ge, egos pre-	$G = +2$, $f = 20.0MHz$, $V_O = 2Vp-p$		51		dBc
Differential Gain, G = +2	3.58MHz, $V_0 = 1.4Vp-p$, $R_L = 150\Omega$		0.02		%
Differential Phase, G = +2	$3.58MHz$, $V_{O} = 1.4Vp-p$, $R_{L} = 150\Omega$	MURABEREN	0.02	PACKAGE	degrees
Gain Flatness	DC to 100MHz	77.	0.1	Mario Camero Cicles	dB
OFFSET VOLTAGE		900	9KL sh	Waling Single-W	CONTRA
Input Offset Voltage	Electrostatic discharge can c	581	±2	±6	mV
Average Drift	formance degradation to core	301	±10	W 838 20 11 15	μV/°C
Power Supply Rejection Ratio	$V_S = \pm 4.5 \text{ to } \pm 5.5 \text{V}$	ateo to 45 aga ag	58	led drawing and dies	dΒ
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL STREET	CIT INVESTIGATION DOLL	ARDINO COLO
INPUT BIAS CURRENT	and stoned using appropriate	THE PERSON	- NO CAR 10 10	11.0.00	and the state of
Non-Inverting	TOTAL CONTRACT OF THE PARTY OF		±12	±65	μΑ
Over Specified Temperature			±30	±95	μА
Inverting his hatergare golden	to complete device failure.		±20	±65	и и и и А
Over Specified Temperature	be more susceptible to dama		±50	±95	μА
NOISE	changes could cause the de-	BRUTARES	37		
Input Voltage Noise		RANGE	1.	PACKAGE	
Noise Density, f = 100Hz	fications	10°C to 185°C	10.4	4.000	nV/√Hz
f = 1kHz			2.3	Pin Ceramic Sidebio	nV/√Hz
f = 10kHz		10°C to +85°C	2.3	Pin Plastic Single-W	nV/√Hz
f = 1MHz		19°C to +85°C	2.3	8-Fin Surface Mos	nV/√Hz
Voltage Noise, BW = 10Hz to 200MH	-tz		32.5		μVrms
Input Bias Current Noise					
Current Noise Density, f = 0.1Hz to 2	20kHz		15		pA/√Hz
INPUT VOLTAGE RANGE					
Common-Mode Input Range		±2	±2.25		V
Common-Mode Rejection	$V_{CM} = \pm 0.5V$	35	55		dB
	VCM - ±0.5 V	33	33		UD
INPUT IMPEDANCE			22 0.75		kΩ pF
Non-inverting					
Non-inverting Inverting			20		Ω
Non-inverting					
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE	$V_O = \pm 2V, R_L = 1k\Omega$	100			
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance	$V_{O} = \pm 2V$, $R_{L} = 1k\Omega$	100	20		Ω
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT	$V_0 = \pm 2V$, $R_L = 1k\Omega$		165		Ω kΩ
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output	$V_O = \pm 2V$, $R_L = 1k\Omega$	33	20 165 45		Ω kΩ mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature			165		Ω kΩ
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output	$V_O=\pm 2V,\ R_L=1k\Omega$ No Load	33 25	165 45 40		Ω kΩ mA mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Votage Output Over Specified Temperature	No Load	33 25 ±2.75	20 165 45 40 ±3.0		Ω kΩ mA mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output		33 25 ±2.75 ±2.2	20 165 45 40 ±3.0 ±2.5		MA mA V V
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Over Specified Temperature	No Load	33 25 ±2.75	20 165 45 40 ±3.0 ±2.5 ±2.3		MA mA V V V
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current	No Load $R_L = 150\Omega$	33 25 ±2.75 ±2.2	20 165 45 40 ±3.0 ±2.5 ±2.3 75		MA mA V V V mA
Non-inverting Inverting DPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance	No Load	33 25 ±2.75 ±2.2	20 165 45 40 ±3.0 ±2.5 ±2.3		MA mA V V V
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Stort-Circuit Current Output Resistance POWER SUPPLY	No Load $R_L = 150\Omega$ $1 \text{MHz}, \ G = +2 \text{V/V}$	33 25 ±2.75 ±2.2	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08		MA mA V V V mA Ω
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage	No Load $R_L = 150\Omega$ $1 \text{MHz, } G = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$	33 25 ±2.75 ±2.2 ±2.0	20 165 45 40 ±3.0 ±2.5 ±2.3 75		MA mA V V V mA Ω
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Operating Voltage Operating Voltage Operating Voltage	No Load $R_L = 150\Omega$ $1 \text{MHz}, \ G = +2 \text{V/V}$	33 25 ±2.75 ±2.2	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08	±5.5	MA mA V V mA Ω
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Stort-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Ouiescent Current	No Load $R_L = 150\Omega$ $1 \text{MHz, } G = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$	33 25 ±2.75 ±2.2 ±2.0	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5	±20	MA mA V V V mA Ω V V mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Operating Voltage Operating Voltage Operating Voltage	No Load $R_L = 150\Omega$ $1 \text{MHz, } G = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$	33 25 ±2.75 ±2.2 ±2.0	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08		MA mA V V mA Ω
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Stort-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Quiescent Current Over Specified Temperature	No Load $R_L = 150\Omega$ $1 \text{MHz, } G = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$	33 25 ±2.75 ±2.2 ±2.0	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5	±20	MA mA V V V mA Ω V V mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE	No Load $R_L = 150\Omega$ $1 \text{MHz, } G = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$	33 25 ±2.75 ±2.2 ±2.0	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5	±20	MA mA V V V mA Ω V V mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Operating Voltage Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification	No Load $R_L = 150\Omega$ $1 \text{MHz, } G = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$	33 25 ±2.75 ±2.2 ±2.0 ±4.5	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5	±20 ±23 +85	MA mA V V V MA Ω V V MA MA MA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Stort-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification Storage	No Load $R_L = 150\Omega$ $1 \text{MHz, G} = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $Ambient$	33 25 ±2.75 ±2.2 ±2.0	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5	±20 ±23	MA mA v v v mA Ω v v mA Ω mA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Stort-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Ouiescent Current	No Load $R_L = 150\Omega$ $1 \text{MHz, G} = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $Ambient$	33 25 ±2.75 ±2.2 ±2.0 ±4.5	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5 ±13 ±15	±20 ±23 +85	MA mA V V V mA Ω V V MA
Non-inverting Inverting OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance OUTPUT Current Output Over Specified Temperature Voltage Output Over Specified Temperature Voltage Output Over Specified Temperature Short-Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification Storage Thermal Resistance, θ _{JA}	No Load $R_L = 150\Omega$ $1 \text{MHz, G} = +2 \text{V/V}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $Ambient$	33 25 ±2.75 ±2.2 ±2.0 ±4.5	20 165 45 40 ±3.0 ±2.5 ±2.3 75 0.08 ±5	±20 ±23 +85	MA mA V V V MA Ω V V MA MA MA

NOTES: (1) Bandwidth can be degraded by a non-optimal PC board layout. Refer to the DEM-OPA64X datasheet for layout recommendations. (2) Slew rate is the rate of change from 10% to 90% of the output voltage step.

Supply	±5.5VDC
Internal Power Dissipation(1)	See Thermal Considerations
Differential Input Voltage	Total V _S
Input Voltage Range	±5V
Storage Temperature Range: H	65°C to +150°C
ETIMO XAMP	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SO-8 3s)	+260°C
Junction Temperature (T _J)	+175°C
NOTE: (1) Packages must be derated ba	sed on specified $ heta_{JA}$. Maximum

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA648H	8-Pin Ceramic Sidebraze DIP	157
OPA648P	8-Pin Plastic Single-Wide DIP	006
OPA648U	8-Pin Surface Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA648H	8-Pin Ceramic Sidebraze DIP	-40°C to +85°C
OPA648P	8-Pin Plastic Single-Wide DIP	-40°C to +85°C
OPA648U	8-Pin Surface Mount	-40°C to +85°C

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES 110 30MAMRO3839 JACISMT

 $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, $C_L = 2$ pF, and $R_{FB} = 243\Omega$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPIOTINE JACINY

 $T_A = +25$ °C, $V_S = \pm 5$ V, $R_1 = 100\Omega$, $C_1 = 2$ pF, and $R_{FB} = 243\Omega$ unless otherwise noted.

APPLICATIONS INFORMATION

THEORY OF OPERATION

This current feedback architecture offers the following important advantages over voltage feedback architectures: (1) the high slew rate allows the large signal performance to approach the small signal performance, and: (2) there is less bandwidth degradation at higher gain settings.

DC GAIN TRANSFER CHARACTERISTICS

The circuit in Figure 1 shows the equivalent circuit for calculating the DC gain. When operating the device in the inverting mode, the input signal error current (I_E) is amplified by the open-loop transimpedance gain (T_O). The output signal generated is equal to T_O X I_E . Negative feedback is applied through R_{FB} such that the device operates at a gain equal to $-R_{FB}/R_{FE}$.

FIGURE 1. Equivalent Circuit.

For non-inverting operation, the input signal is applied to the non-inverting (high impedance buffer) input. The output (buffer) error current ($I_{\rm E}$) is generated at the low impedance inverting input. The signal generated at the output is fed back to the inverting input such that the overall gain is (1 + $R_{\rm FB}/R_{\rm FE}$).

Where a voltage-feedback amplifier has two symmetrical high impedance inputs, a current feedback amplifier has a low inverting (buffer output) impedance and a high noninverting (buffer input) impedance.

The closed-loop gain for the OPA648 can be calculated using the following equations:

Inverting Gain =
$$\frac{-\left(\frac{R_{FB}}{R_{FF}}\right)}{1 + \frac{1}{\text{Loop Gain}}}$$
 (1)

Non-Inverting Gain =
$$\frac{\left[1 + \frac{R_{FB}}{R_{FF}}\right]}{1 + \frac{1}{\text{Loop Gain}}}$$
where Loop Gain =
$$\frac{T_0}{\left(\frac{R_{FB}}{R_{FF}}\right)}$$

At higher gains the small value inverting input impedance causes an apparent loss in bandwidth. This can be seen from the equation:

$$f_{\text{ACTUAL}} \text{BW} = \frac{f_{\text{IDEAL}} \text{BW}}{\left[1 + \left(\frac{R_{\text{S}}}{R_{\text{FB}}}\right) \times \left(1 + \frac{R_{\text{FB}}}{R_{\text{FF}}}\right)\right]}$$
(3)

OFFSET VOLTAGE AND NOISE

The output offset is the algebraic sum of the input voltage and current sources that influence DC operation. The output offset is calculated by the following equation:

recuback resistor from the specifica value of 270%2.

Output Offset Voltage =
$$\pm Ib_N \times R_N (1 + R_{FB}/R_G) \pm V_{IO} (4)$$

 $(1 + R_{FB}/R_G) \pm Ib_I \times R_{FB}$

If all terms are divided by the gain $(1+R_{\text{F}}/R_{\text{G}})$, it can be observed that input referred offsets improve as gain increases.

The effective noise at the output of the amplifier can be determined by taking the root sum of the squares of equation 4 and applying the spectral noise values found in the Typical Performance Curve–graph section. This applies to noise from the op amp only. Note that both the noise figure and equivalent input offset voltages improve as the closed-loop gain increases (by keeping $R_{\rm F}$ fixed and reducing $R_{\rm I}$ with $R_{\rm N}=0\Omega$).

FIGURE 2. Output Offset Voltage Equivalent Circuit.

WIRING PRECAUTIONS

Maximizing the OPA648's capability requires some wiring precautions and high-frequency layout techniques. Oscillation, ringing, poor bandwidth and settling, gain peaking, and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths. They should also be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit element leads should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray, parasitic circuits.

Grounding is the most important application consideration for the OPA648, as it is with all high-frequency circuits. Oscillations at high frequencies can easily occur if good signal pickup, provide a low resistance, low inductance common return path for signal and power, and can conduct heat from active circuit package pins into ambient air by convection.

Supply bypassing is extremely critical and must *always* be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.1µF ceramic must also be added. Surface-mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember

- 1) Making use of all four power supply pins will lower the effective power supply inductance seen by the input and output stages. This will improve the AC performance including lower distortion. The lowest distortion is achieved when running separated traces to V_{S1} and V_{S2}. Power supply bypassing with 0.01µF and 2.2µF surface mount capacitors is recommended. It is essential to keep the 0.1µF capacitor very close to the power supply pins. Refer to the demonstration board figure in the DEM-OPA64X datasheet for the recommended layout and component placements. (2) Whenever possible, use surface mount. Don't use pointto-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if it must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback. The same transfer of the most and
- 3) Surface mount on the backside of the PC Board. Good component selection is essential. Capacitors used in critical locations should be a low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA648 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade AC performance or produce oscillations.
- 5) Use a small feedback resistor (usually 243Ω) in unitygain voltage follower applications for the best performance. For gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are abso-

lutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. A longer feedback path than this will decrease the realized bandwidth substantially. Refer to the demonstration board layout at the end of the datasheet.

- 6) Surface-mount components (chip resistors, capacitors, etc.) have low lead inductance and are therefore strongly recommended. Circuits using all surface-mount components with the OPA648U (SO-8 package) will offer the best AC performance. The parasitic package impedance for the SO-8 is lower than the both the 8-pin Ceramic and 8-pin Plastic DIP.
- 7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 8) Don't forget that these amplifiers use ±5V supplies. Although they will operate perfectly well with +5V and -5.2V, use of ±15V supplies will destroy the part.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA648's speed range. Benchtop op amp testers and ATE systems will require a special test head to successfully test these amplifiers.
- 10) Terminate transmission line loads. Unterminated lines, such as coaxial cable, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- 11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

INPUT PROTECTION with a spool broom standing of

Static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The OPA648 incorporates on-chip ESD protection diodes as shown in Figure 3. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 3. Internal ESD Protection.

All pins on the OPA648 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the input voltage exceeds either power supply

by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA or so whenever possible.

The OPA648 utilizes a fine geometry high speed process that withstands 500V using the Human Body Model and 100V using the machine model. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA648.

OUTPUT DRIVE CAPABILITY

The OPA648 has been optimized to drive 75Ω and 100Ω resistive loads. This high-output drive capability makes the OPA648 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 4, the OPA648 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance swith frequency since loop gain is decreasing with frequency.

FIGURE 4. Output Resistance vs Frequency.

THERMAL CONSIDERATIONS

The OPA648 does not require a heat sink for operation in most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_S = \pm 5V$, $P_{DQ} = 10V \times 23mA = 230mW$,

Or, Call Customer Service at 1-800-548-6132 (USA Only)

max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage ($\pm V_{OUT}$), the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_s/2$, and is equal to P_{DL} , max = ($\pm V_s$)²/4 R_L . Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

The short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in the Typical Performance Curves.

CAPACITIVE LOADS AND X HOARD MED of release

The OPA648's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 5pF should be buffered by connecting a small resistance, usually 5Ω to 40Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters.

FIGURE 5. Driving Capacitive Loads.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

COMPENSATION

The OPA648 is internally compensated and is stable in unity gain with a phase margin of approximately 68°. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA648 in a good layout is very flat with frequency.

DISTORTION

The OPA648's harmonic distortion characteristics into a 100Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in

Figure 6. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 6. 5MHz Harmonic Distortion vs Load Resistance.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL subcarrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set.

DG and DP of the OPA648 were measured with the amplifier in a gain of +2V/V with 75Ω input impedance and the output back-terminated in 75Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with sync pulse. With these conditions the test circuit shown in Figure 7 delivered a 100IRE modulated ramp to the 75Ω input of the video analyzer. The signal averaging feature of the analyzer was used to establish a reference against which the performance of the amplifier was measured. Signal averaging was also used to measure the DG and DP of the test signal in order to

FIGURE 7. Configuration for Testing Differential Gain/Phase.

performance. Typical performance of the OPA648 is 0.02% differential gain and 0.02° differential phase to both NTSC and PAL standards.

NOISE FIGURE

For RF applications, Noise Figure (NF) is often the preferred noise specification instead of Noise Spectral Density since it allows system noise performance to be more easily calculated. The OPA648's Noise Figure vs Source Resistance is shown in Figure 8.

FIGURE 8. Noise Figure vs Source Resistance.

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE Macromodels using PSpice are available for the OPA648. Contract Burr-Brown applications departments to receive a SPICE Diskette.

DEMONSTRATION BOARDS 100 sometime of land of the land

Demonstration boards to speed prototyping are available. Refer to the DEM-OPA64X (LI-445) data sheet for details.

APPLICATIONS

FIGURE 9. Low Distortion Video Amplifier.

OPA650

Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER

FEATURES

- LOW POWER: 50mW
- UNITY GAIN STABLE BANDWIDTH: 560MHz
- LOW HARMONICS: -77dBc at 5MHz
- FAST SETTLING TIME: 20ns to 0.01%
- LOW INPUT BIAS CURRENT: 5µA
- DIFFERENTIAL GAIN/PHASE ERROR: 0.01%/0.03°
- HIGH OUTPUT CURRENT: 85mA

APPLICATIONS

- HIGH RESOLUTION VIDEO
- BASEBAND AMPLIFIER
- **CCD IMAGING AMPLIFIER**
- ULTRASOUND SIGNAL PROCESSING
- ADC/DAC GAIN AMPLIFIER
- ACTIVE FILTERS
- HIGH SPEED INTEGRATORS
- DIFFERENTIAL AMPLIFIER

DESCRIPTION

The OPA650 is a low power, wideband voltage feedback operational amplifier. It features a high bandwidth of 560MHz as well as a 12-bit settling time of only 20ns. The low distortion allows its use in communications applications, while the wide bandwidth and true differential input stage make it suitable for use in a variety of active filter applications. Its low distortion gives exceptional performance for telecommunications, medical imaging and video applications.

The OPA650 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. Its unusual combination of speed, accuracy and low power make it an outstanding choice for many portable, multi-channel and other high speed applications, where power is at a premium.

The OPA650 is also available in dual (OPA2650) and quad (OPA4650) configurations.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (600) 548-6132

SPECIFICATIONS

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , and R_{FB} = 402 Ω unless otherwise noted. R_{FB} = 25 Ω for a gain of +1.

OCOMIO	and the second	OP	A650P, L	J, N	OPA6	50PB, UI	B, NB	J155
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FREQUENCY RESPONSE Closed-Loop Bandwidth ⁽²⁾	G = +1 G = +2 G = +5		560 140 37		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	*(1)		MHz MHz MHz MHz
Gain Bandwidth Product Slew Rate Over Specified Temperature	G = +10 G = +1, 2V Step		18 180 240 220			*		MHz V/µs V/µs
Rise Time Fall Time Settling Time 0.01% 0.1% 1% Spurious Free Dynamic Range	0.2V Step 0.2V Step G = +1, 2V Step G = +1, 2V Step G = +1, 2V Step G = +1, 2V Step G = +1, f = 5.0 MHz, V ₀ = 2Vp-p	a w	1 19.6 10.2 6.3	nd,)PE	sds	bil)		ns ns ns ns ns
Differential Gain Differential Phase Bandwidth for 0.1dB Gain Flatness	$\begin{array}{c} R_L = 100\Omega \\ R_L = 200\Omega \\ G = +1, NTSC, V_O = 1.4 Vp, R_L = 150\Omega \\ G = +1, NTSC, V_O = 1.4 Vp, R_L = 150\Omega \\ G = +2 \end{array}$	A Section Control of	73 77 0.01 0.03 25		3	ani	ITA:	dBc dBc % Degrees MHz
INPUT OFFSET VOLTAGE Input Offset Voltage Average Drift Power Supply Rejection (+V _S) (-V _S)	wood wol as 10co APO and a complete and sensitive as well as w	60 47	±1 ±3 76 53	±5 NA8 3	70 50	0.6	±2.5	mV μV/°C dB dB
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current Over Temperature	$V_{CM} = 0V$ $V_{CM} = 0V$	0196	5 0.5	20 30 1 3	NICS: VG TIN IAS CI	0.2	10 20 0.5 2	μΑ μΑ μΑ μΑ
Integrated Noise, BW = 10Hz to 100	gives exceptional performa- tions, medical imaging and The OPA650 is internally co- stability. This amplifier has a central input due to its "cl.zHM	:ROF	43 9.4 8.4 8.4 8.4	VPHA	L GAN	ENTA .03° UPPU	R3 440 July 10. D H211	nV/√ <u>Hz</u> nV/√ <u>Hz</u> nV/√ <u>Hz</u> nV/√Hz μVrms
Current Noise Density, f = 0.1MHz to	Bo = 10kQ		1.2 4 19.5	S	MOIT	CAT	LIGO	pA√Hz dB dB
INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection	The OPA650 is also availab Tue, V5.0 ± 2.00 (configuration)	±2.2 65	±2.8	IER JAJER	70	A CIMA	ASEB CD IN	V V dB
INPUT IMPEDANCE Differential Common-Mode		Dinie	15 1	AL PE	note c	C GA	LO(O)Q)	kΩ pF MΩ pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature	$V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	45 43	51	OTAR	46 44	PEED	OTIVE	dB dB
OUTPUT Voltage Output Over Specified Temperature	No Load R _I = 250Ω R ₂ = 100Ω	±2.2 ±2.2 ±2.0	±3.0 ±2.5 ±2.3	A3FHL!	±2.4 ±2.4 ±2.2	ENTIA	AERAN	V V V
Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance	R _L = 100Ω 0.1MHz, G = +1	75 65 65 35	110 85 150 0.08	Thewil-no	* * * * * *	*		mA mA mA mA mA
POWER SUPPLY	D = Ineruo O 1	±4.5	±5 ±5.1	±5.5 ±7.75		±5.1	* ±6.5	V V mA
Specified Operating Voltage Derated Voltage Range Quiescent Current Over Specified Temperature	toniM			±8.75	100		±7.5	mA

NOTES: (1) An asterisk (*) specifies the same value as the grade to the left. (2) Frequency response can be strongly influenced by PC board parasitics. The OPA650 is nominally compensated assuming 2pF parasitic load. The demonstration board, DEM-OPA65xP, shows a low parasitic layout for this device.

ABSOLUTE MAXIMUM RATINGS

Supply	
Internal Power Dissipation	See Thermal Conditions
Differential Input Voltage	±1.2V
Input Voltage Range	±V _S
Storage Temperature Range: P, PB, U, UB	
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Junction Temperature (T _J)	+175°C

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published speci-

Top View NC

PIN CONFIGURATION

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	PACKAGE MARKING ⁽²⁾	ORDERING NUMBER
OPA650U	SO-8 Surface Mount	182	-40°C to +85°C	OPA650U	OPA650U
OPA650UB	SO-8 Surface Mount	182	-40°C to +85°C	OPA650UB	OPA650UB
OPA650P	8-Pin Plastic DIP	006	-40°C to +85°C	OPA650P	OPA650P
OPA650PB	8-Pin Plastic DIP	006	-40°C to +85°C	OPA650PB	OPA650PB

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) The "B" grade of the SO-8 and DIP packages will be marked with a "B" by pin 8.

ADVANCE PACKAGE INFORMATION(2)

		PACKAGE DRAWING NUMBER ⁽¹⁾		PACKAGE MARKING	ORDERING NUMBER
MODEL	PACKAGE		TEMPERATURE RANGE		
OPA650N OPA650NB	5-Pin SOT23-5 5-Pin SOT23-5	331 331	-40°C to +85°C -40°C to +85°C	=	=

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) The SOT23-5 will be available in tape and reel only by August, 1996.

TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for Gain of +1.

At $T_A=+25^{\circ}C$, $V_S=\pm5V$, $R_L=100\Omega$, and $R_{FB}=402\Omega$ unless otherwise noted. $R_{FB}=25\Omega$ for Gain of +1.

TYPICAL PERFORMANCE CURVES (CONT)

At T_A = +25°C, V_S = ±5V, R_L = 100 Ω , and R_{FB} = 402 Ω unless otherwise noted. R_{FB} = 25 Ω for Gain of +1.

TYPICAL PERFORMANCE CURVES (CONT) DIVAMPORATE JACIETY

At $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for Gain of +1: may 0.000 = 90 for 0.000 = 90 f

DISCUSSION OF PERFORMANCE

The OPA650 is a low power, wideband voltage feedback operational amplifier. Each channel is internally compensated to provide unity gain stability. The OPA650's voltage feedback architecture features true differential and fully symmetrical inputs. This minimizes offset errors, making the OPA650 well suited for implementing filter and instrumentation designs. The OPA650's AC performance is optimized to provide a gain bandwidth product of 180MHz and a fast 0.1% settling time of 10.2ns, which is an important consideration in high speed data conversion applications. Along with its excellent settling characteristics, the low DC input offset of ±1mV and drift of ±3µV/°C support high accuracy requirements. In applications requiring a higher slew rate and wider bandwidth, such as video and high bit rate digital communications, consider the current feedback OPA658.

CIRCUIT LAYOUT AND BASIC OPERATION

Achieving optimum performance with a high frequency amplifier like the OPA650 requires careful attention to layout parasitics and selection of external components, Recommendations for PC board layout and component selection include:

- a) Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability; on the non-inverting input it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- b) Minimize the distance (<0.25") from the two power pins to high frequency $0.1\mu F$ decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger ($2.2\mu F$ to $6.8\mu F$) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- c) Careful selection and placement of external components will preserve the high frequency performance of the OPA650. Resistors should be a very low reactance type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in a high frequency application.

Since the output pin and the inverting input pin are most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the package pins. Other network components, such as noninverting input termination resistors, should also be placed close to the package. Even with a low parasitic capacitance shunting external resistors, excessively high resistor values can create significant time constants and degrade performance. Good metal film or surface mount resistors have approximately 0.2pF in shunt with the resistor. For resistor values > 1.5k Ω , this adds a pole and/or zero below 500MHz that can affect circuit operation. Keep resistor values as low as possible consistent with output loading considerations. The 402 Ω feedback used for the Typical Performance Plots is a good starting point for design. Note that a 25 Ω feedback resistor, rather than a direct short, is suggested for a unity gain follower. This effectively reduces the Q of what would otherwise be a parasitic inductance (the feedback wire) into the parasitic capacitance at the inverting input.

d) Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set $R_{\rm ISO}$ from the plot of recommended $R_{\rm ISO}$ vs capacitive load. Low parasitic loads may not need an $R_{\rm ISO}$ since the OPA650 is nominally compensated to operate with a 2pF parasitic load.

If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and desired trace dimensions, a matching series resistor into the trace from the output of the amplifier is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

- If the 6dB attenuation loss of a doubly terminated line is unacceptable, a long trace can be series-terminated at the source end only. This will help isolate the line capacitance from the op amp output, but will not preserve signal integrity as well as a doubly terminated line. If the shunt impedance at the destination end is finite, there will be some signal attenuation due to the voltage divider formed by the series and shunt impedances.
- e) Socketing a high speed part like the OPA650 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable response. Best results are obtained by soldering the part onto the board. If socketing for the DIP package is desired, high frequency flush mount pins (e.g., McKenzie Technology #710C) can give good results.

power supplies. A 10% tolerance on the supplies, or an ECL –5.2V for the negative supply, is within the maximum specified total supply voltage of 11V. Higher supply voltages can break down internal junctions possibly leading to catastrophic failure. Single supply operation is possible as long as common mode voltage constraints are observed. The common mode input and output voltage specifications can be interpreted as a required headroom to the supply voltage. Observing this input and output headroom requirement will allow non-standard or single supply operation. Figure 1 shows one approach to single-supply operation.

FIGURE 1. Single Supply Operation.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 2 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R_3 . This will reduce input bias current errors to the amplifier's offset current.

FIGURE 2. Offset Voltage Trim.

ESD damage has been well recognized for MOSFET devices, but any semiconductor device is vulnerable to this potentially damaging source. This is particularly true for very high speed, fine geometry processes.

ESD damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, ESD handling precautions are strongly recommended when handling the OPA650.

0.1% settling time of 10.2as, which is an important consi-

OUTPUT DRIVE CAPABILITY

The OPA650 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive a 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA650 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as driving A/D converters require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA650 maintains very low-closed loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA650 will not require heatsinking under most operating conditions. Maximum desired junction temperature will limit the maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed +175°C.

Operating junction temperature (T_J) is given by $T_A + P_D\theta_{JA}$. The total internal power dissipation (P_D) is a combination of the total quiescent power (P_{DQ}) and the power dissipated in of the output stage (P_{DL}) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. P_{DL} will depend on the required output signal and load

when the output is a fixed DC voltage equal to 1/2 of either supply voltage (assuming equal bipolar supplies). Under this condition, $P_{DL} = V_S^2/(4 \cdot R_L)$ where R_L includes feedback network loading. Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation. As an example, compute the maximum T_J for an OPA650N at $A_V = +2$, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, $\pm V_S = \pm 5 V$, with the output at $IV_S/2I$, and the specified maximum $T_A = +85^{\circ}\text{C}$. $P_D = 10V \cdot 8.75 \text{mA} + (5^2)/(4 \cdot (100\Omega | 804\Omega)) = 158 \text{mW}$. Maximum $T_J = +85^{\circ}\text{C} + 0.158 \text{W} \cdot 150^{\circ}\text{C/W} = 109^{\circ}\text{C}$.

DRIVING CAPACITIVE LOADS

The OPA650's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 10pF should be isolated by connecting a small resistance, usually 15Ω to 30Ω , in series with the output as shown in Figure 4. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the gain from +1 will improve the capacitive load drive due to increased phase margin.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

FIGURE 4. Driving Capacitive Loads.

FREQUENCY RESPONSE COMPENSATION

The OPA650 is internally compensated and is stable in unity gain with a phase margin of approximately 60°. However, the unity gain buffer is the most demanding circuit configuration for loop stability and oscillations are most likely to occur in this gain. If possible, use the device in a noise gain greater than one to improve phase margin and reduce the susceptibility to oscillation. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Frequency response for other gains are shown in the Typical Performance Curves.

layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high-frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (teenetwork) is recommended to avoid using large value resistors with large time constants.

PULSE SETTLING TIME to exceed the state of t

High speed amplifiers like the OPA650 are capable of extremely fast settling time with a pulse input. Excellent frequency response flatness and phase linearity are required to get the best settling times. As shown in the specifications table, settling time for a ±1V step at a gain of +1 for the OPA650 is extremely fast. The specification is defined as the time required, after the input transition, for the output to settle within a specified error band around its final value. For a 2V step, 1% settling corresponds to an error band of ±20mV, 0.1% to an error band of ±2mV, and 0.01% to an error band of ±0.2mV. For the best settling times, particularly into an ADC capacitive load, little or no peaking in the frequency response can be allowed. Using the recommended R_{ISO} for capacitive loads will limit this peaking and reduce the settling times. Fast, extremely fine scale settling (0.01%) requires close attention to ground return currents in the supply decoupling capacitors. For highest performance, consider the OPA642 which isolates the output stage decoupling from the rest of the amplifier.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. The percentage change in closed-loop gain over a specified change in output voltage level is defined as DG. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. DG and DP are both specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase closed-loop gain and output voltage transition. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DISTORTION AND Selection of the Company of the Comp

The OPA650's harmonic distortion characteristics into a 100Ω load are shown versus frequency and power output in the typical performance curves. Distortion can be significantly improved by increasing the load resistance as illustrated in Figure 5. Remember to include the contribution of the feedback network when calculating the effective load resistance seen by the amplifier.

NOISE FIGURE

The OPA650 voltage noise spectral density is specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA650's Noise Figure vs Source Resistance is shown in Figure 6.

SPICE MODELS AND EVALUATION BOARD

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance, SPICE models and evaluation PC boards (DEM-OPA65xP) are available for the OPA650. Contact the Burr-Brown Applications Department to receive a SPICE diskette.

FIGURE 5. 5MHz Harmonic Distortion vs Load Resistance.

FIGURE 6. Noise Figure vs Source Resistance.

TYPICAL APPLICATION

FIGURE 7. Low Distortion Video Amplifier.

FIGURE 8. Layout Detail For DEM-OPA65X Demonstration Board.

FIGURE 9a. Evaluation Board Silkscreen (Bottom). 9b. Evaluation Board Silkscreen (Top). 9c. Evaluation Board Layout (Solder Side). 9d. Evaluation Board Layout (Layout Side).

Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER

FEATURES

- STABLE IN GAINS: ≥ 2V/V
- LOW POWER: 50mW
- GAIN-BANDWIDTH: 940MHz at G = 2
- FAST SETTLING TIME: 16ns to 0.01%
- LOW HARMONICS: -78dB at 5MHz
- LOW INPUT BIAS CURRENT: 4µA
- DIFFERENTIAL GAIN/PHASE ERROR: 0.01%/0.025°
- LOW VOLTAGE NOISE: 4.6nV/√Hz

APPLICATIONS

- HIGH RESOLUTION VIDEO
- MONITOR PREAMPLIFIER
- CCD IMAGING AMPLIFIER
- ULTRASOUND SIGNAL PROCESSING
- ADC/DAC GAIN AMPLIFIER
- BASEBAND SIGNAL PROCESSING

DESCRIPTION

The OPA651 is a low power, wideband voltage feedback operational amplifier. It features a bandwidth at $G=\pm 2$ of 470MHz as well as a 12-bit settling time of only 16ns. The wide bandwidth and true differential input stage make it suitable for use in a variety of applications. Its low distortion gives exceptional performance for telecommunications, medical imaging and video applications.

The OPA651 is compensated for stability in gains of two or more, differentiating it from the unity gain stable OPA650. Its unusual combination of speed, accuracy and low power make it an outstanding choice for many portable, multi-channel and other high speed applications, where power is at a premium.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85704 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

ON B	IT ON	VS IS C	DPA651P,	U	OP	A651PB,	UB	Differential
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FREQUENCY RESPONSE		Or Politic NEW	The same	1 100000	- Comp	Auralia Albarra	- Company	CONT NO.
Closed-Loop Bandwidth(2)	G = +2	TANDON	470	Daniel L	- see facet	*(1)	THE STREET	MHz
	G = +5	PARTY TONE	70	A CONTRACTOR OF			Later Comment	MHz
Q84 8	G = +10	V 0317	34		and the second	E-1 6-2 5	DIRECTOR, ITE	MHz
Gain Bandwidth Product	0 0 1/ 0//		340 300					MHz
Slew Rate	G = +2, V _O = 2V step		275	WITTEN	Och	arion.	22 123	V/µs
Over Specified Temperature Rise Time	0.2V Step		0.8	FIRE	CUI	11.3		V/µs ns
Fall Time	0.2V Step	SERVICE CONTRACTOR	0.8	man .	100	0.150	Asies	ns
Settling Time 0.01%	$G = +2$, $V_O = 2V$ step	A MIANI	16.2	135	HUM	Part of	CHE	ns
0.1%	$G = +2$, $V_O = 2V$ step		11.5			*		ns
1%	$G = +2$, $V_O = 2V$ step	ricent par-	7.2	asmeb :	edino zu	o esien	tic discr	ns
Spurious Free Dynamic Range	$G = +2$, $f = 5.0$ MHz, $V_O = 2Vp-p$,	Surv. Rosen	Failure A	wanted o	talemer.	a committee	chemon	k comment
	$R_1 = 100\Omega$		67	-	and the same		1901	dBc
1 /	$R_{L} = 400\Omega$ $G = +2$, NTSC, $V_{O} = 1.4Vp$, $R_{L} = 150\Omega$	Dalification so s	78	HERRING.	HEREIGH	sbramm	10001110	dBc
Differential Gain	$G = +2$, NTSC, $V_0 = 1.4Vp$, $R_L = 1500$	2 should	0.01	stiong (ate ES	100100	gaisu	%
Differential Phase Bandwidth For 0.1dB Flatness	$G = +2$, NTSC, $V_0 = 1.4$ Vp, $R_L = 1500$ G = +2	.2	0.025	1000			1	Degrees MHz
	G = +2	degradation	43	direction.	clas mo	ni denn	(RED 598	IVITIZ
INPUT OFFSET VOLTAGE	Aligni+	directits may	helmo	to i zoois	Preci	e fellur	division.	Transport
Input Offset Voltage	and the same of th		±1	±5.0	125 2 3 1 1		±2.0	mV
Average Drift		OCE MENTAGE	±3	AV DEBIEC	70	BU 01 31	sceptide	μV/°C
Power Supply Rejection (+V _S) (-V _S)	$V_S = \pm 4.5 V \text{ to } \pm 5.5 V$	65	85 60	en ol lo	70 55	orft bar	aso blino	dB dB
		52	00		35			UD
INPUT BIAS CURRENT			13.50					CARL PAR
Input Bias Current	$V_{CM} = 0V$		4	20	- Partie		10	μА
Over Temperature	V 0V		6	30	DEMIS	MICHINA	20	μА
Input Offset Current Over Temperature	V _{CM} = 0V		0.4	1.5				μA μA
		1 30	0.9	3.0				μм
INPUT NOISE	EMPERATURE PACKAGE	T SV	MARG					
Input Voltage Noise	ADMORAN I ROMAN	100	13		HOMAGE	9 .	H Barri	nV/√Hz
Noise Density, f = 100Hz f = 10kHz		-	4.6	-	- and and other a		diman.	nV/√Hz
LITERAGI = TORFIZ	U188A9O 0°28+ tu 0°94		4.0	letter!	of benefits of	0.00		
		1-9 K B S	16	A ALLAN	Se propertor			
I = 1MHZ	MHz D1884 of Q104-		4.6	Milio	M applied	8-08		nV/√Hz
Voltage Noise, BW = 10Hz to 100	MHZ 19788A9G 5708+ of 0704-		4.6 46	HILD FI	Avidace M Plastic C	8-08		nV/√Hz μVrms
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise	MHZ TREAM OF THE PROPERTY AND THE PROPER			Alrea di	M applied	8-C8 19-8		
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz to	MHz 10 20kHz R _c = 10kΩ	no elab to boe o	46 1.1 3.2	Muc Si Si	evitore M Plastic C Plastic D	8-C8 69-8 65-8	lystatub y	μVrms pA/√Hz dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz to	MHz 1 to 20kHz	na a ab to time r	46	Hillion Gill Gill Street models,	Avidace M Plastic C	6.Pl 6.Pl 6.Pl 6.Pl 6.Pl 6.Pl 6.Pl 6.Pl	thelisteb v	μVrms pA/√Hz
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE	MHz to 20kHz R _c = 10kΩ	is a sto to the s	1.1 3.2 14	Witte Gi Si saldes rox	evitore M Plastic C Plastic D	8-0-8 in 9-8-74 drawing d	thelisteb to	μVrms pA/√Hz dB dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range	MHz to 20kHz R _c = 10kΩ		46 1.1 3.2	Minor St.	evisqu M Plastic (Plastic () od dimust 2° by pin	Ea disy to	thelisteb x	μVrms pA√Hz dB dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature	MHz 1 1 1 1 1 1 1 1 1	±3.0	46 1.1 3.2 14 ±3.5	Muc 91 91 91 Sides no.	evilope M Plastic (Plastic I Plastic I Plastic M Plastic I Plastic I Plasti	HAGE KAGE	i pelisteba promed DARES	μVrms pA√Hz dB dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection	MHz to 20kHz R _c = 10kΩ		1.1 3.2 14	Muo 91 91 Side no.	evisqu M Plastic (Plastic () od dimust 2° by pin	Ea disy to	helisteba starp ed	μVrms pA√Hz dB dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE	MHz 1 1 1 1 1 1 1 1 1	±3.0 75	46 1.1 3.2 14 ±3.5	Muse 91 91 Sides no.	evilope M Plastic (Plastic I Plastic I Plastic M Plastic I Plastic I Plasti	HAGE KAGE	belsteba stap ed	μVrms pA√Hz dB dB V V dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential	MHz $R_S = 10k\Omega$ $R_S = 50\Omega$ $V_{CM} = \pm 0.5V$	±3.0 75	46 1.1 3.2 14 ±3.5 90	skierno	ottesta Lottesta Romania ber Annia b	KAGE	toelsteps stop ed	μVrms pA√Hz dB dB V V dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE	MHz 1 1 1 1 1 1 1 1 1	±3.0 75	46 1.1 3.2 14 ±3.5	STASAS	evilope M Plastic (Plastic I Plastic I Plastic M Plastic I Plastic I Plasti	HAGE KAGE	SAR S	μVrms pA√Hz dB dB V V dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential	MHz $R_S = 10k\Omega$ $R_S = 50\Omega$ $V_{CM} = \pm 0.5V$	±3.0 75	46 1.1 3.2 14 ±3.5 90	TASAS	ottesta Lottesta Romania ber Annia b	KAGE	helistaby Framed	μVrms pA√Hz dB dB V V dB
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain	MHz 10 20kHz $R_S = 10k\Omega$ $R_S = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_1 = 100\Omega$	±3.0 75	46 1.1 3.2 14 ±3.5 90	Piles no.	ottesia I ottesia I ottesia I ottesia 80	KAGE	helistab v	pA√Hz dB dB V V dB kΩ pF MΩ pF
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN	MHz $R_S = 10k\Omega$ $R_S = 50\Omega$ $V_{CM} = \pm 0.5V$	±3.0 75	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1	Wilder no.	Flasho I Flasho I Flasho I Flasho I Romen 80	KAGE	beliateby stomed	pA√Hz dB dB V V dB kΩ pF MΩ pI
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature	MHz 10 20kHz $R_S = 10k\Omega$ $R_S = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_1 = 100\Omega$	±3.0 75	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1	Production of the second of th	ottesia I ottesia I ottesia I ottesia 80	KAGE	Pelistab v	pA/\Hz dB dB V V dB kΩ pF MΩ pI
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain	MHz 10 20kHz $R_S = 10k\Omega$ $R_S = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_1 = 100\Omega$	±3.0 75	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1	Wilder open	ottesia I ottesia I ottesia I ottesia 80	KAGE	belisteb votom ed	pA/\Hz dB dB V V dB kΩ pF MΩ pI
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT	MHz $R_S = 10 k\Omega$ $R_S = 50 \Omega$ $V_{CM} = \pm 0.5 V$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ No Load	±3.0 75	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1	Proceedings of the second seco	ottesia I ottesia I ottesia I ottesia 80	KAGE	Delistado y Companyo y	pA/\Hz dB dB V V dB kΩ pF MΩ pf
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output	MHz $R_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±3.0 ±2.5	Processing of the second secon	80 45 42 ±2.4 ±2.4	KAGE	bellateby stomed UASE	μVrms pAV/Hz
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz to Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature	MHz $R_S = 10 k\Omega$ $R_S = 50 \Omega$ $V_{CM} = \pm 0.5 V$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ No Load	±3.0 75 42 40 ±2.2 ±2.2 ±2.0	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±3.0 ±2.5 ±2.3	And S	80 45 42	KAGE	beliated of the second of the	μVrms pA/\Hz dB dB dB V V dB dB MΩ pF MΩ pI dB dB V V V V V V H MΩ M M M M M M M M
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing	MHz $R_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±3.0 ±2.5	ANG STAMS	80 45 42 ±2.4 ±2.4	KAGE	Definition and DAMES	μVrms pA/\Hz dB dB dB V V dB dB MΩ pF MΩ pf dB dB V V V V MA MA MA MA M
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature	MHz $R_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110	PARSON LESSON	80 45 42 ±2.4 ±2.4	KAGE	DARSE AVELOR	$\begin{array}{c} \mu \text{Vrms} \\ p \text{AV} / \text{Hz} \\ d \text{B} \\ d \text{B} \\ \\ \text{V} \\ \text{V} \\ d \text{B} \\ \\ \text{k} \Omega \parallel \text{pF} \\ \text{M} \Omega \parallel \text{pf} \\ d \text{B} \\ d \text{B} \\ \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{mA} \\ \\ \text{mA} \end{array}$
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature	MHz $R_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±3.0 ±2.5 ±2.3	ANGEL COOK	80 45 42 ±2.4 ±2.4	KAGE	DAR S.	pVrms pA√\Hz dB dB V V dB kΩ pF MΩ pf dB dB V V V mA mA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature Current Output Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature	MHz $R_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85	ANAS	80 45 42 ±2.4 ±2.4	KAGE	AN S.	pAV/Hz dB dB V V dB kΩ pF MΩ pf dB dB dB v V V MA mA mA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz to Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Short Circuit Current	MHz $I_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $R_{L} = 100\Omega$ $R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85	ANGERTALISMO	80 45 42 ±2.4 ±2.4	E A SE	DARSS	pVrms pA√\Hz dB dB V V dB kΩ pF MΩ pf dB dB V V mA mA mA mA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Output Resistance	MHz $R_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85	ANAS	80 45 42 ±2.4 ±2.4	KAGE	DAR S.	pAV/Hz dB dB V V dB kΩ pF MΩ pf dB dB dB v V V MA mA mA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY	MHz $R_S = 10 k\Omega$ $R_S = 50 \Omega$ $V_{CM} = \pm 0.5 V$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ $R_L = 100 \Omega$ $R_L = 100 \Omega$ $R_L = 100 \Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05	ANGERTALISMO	80 45 42 ±2.4 ±2.4	E A SE	AR S.	pVrms pA√Hz dB dB V V dB kΩ pF MΩ pF dB dB V V V N MA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature Current Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage	MHz I I I I I I I I I I I I I I I I I I I	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85	A NAMS A NAM	80 45 42 ±2.4 ±2.4	E A SE	DAGES	pVrms pA√\Hz dB dB V V dB kΩ pF MΩ pf dB dB V V mA mA mA mA Ω
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinding Over Specified Temperature Current Output, Sinding Over Specified Temperature POWER SUPPLY Specified Operating Voltage Operating Voltage Range	MHz $R_S = 10 k\Omega$ $R_S = 50 \Omega$ $V_{CM} = \pm 0.5 V$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ $V_O = \pm 2 V$, $R_L = 100 \Omega$ $R_L = 100 \Omega$ $R_L = 100 \Omega$ $R_L = 100 \Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05	TAMS TYAMS TYAMS TYAMS TYAMS TYAMS TYAMS	80 45 42 ±2.4 ±2.4	E A SE	DAR S.	μVrms pA√\Hz dB dB V V dB kΩ pF MΩ pF MΩ pF dB dB V V V V V V V V V V V V V V V V
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature Current Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current	MHz I I I I I I I I I I I I I I I I I I I	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05	±5.5 ±7.75	80 45 42 ±2.4 ±2.4	E A SE	1A.	pAV/Hz dB dB V V dB kΩ pF MΩ pF dB dB cB V V V MA mA mA mA A C V V MA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature Current Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature	MHz $I_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $No \ Load$ $R_{L} = 250\Omega$ $R_{L} = 100\Omega$ $0.1MHz, G = +2$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05	TAMS TYAMS TYAMS TYAMS TYAMS TYAMS TYAMS	80 45 42 ±2.4 ±2.4	E A SE	10.5 ±0.5 ±7.5	μVrms pA√\Hz dB dB V V dB kΩ pF MΩ pF MΩ pF dB dB V V V V V V V V V V V V V V V V
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinding Over Specified Temperature POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE	MHz $I_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $No \ Load$ $R_{L} = 250\Omega$ $R_{L} = 100\Omega$ $0.1MHz, G = +2$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05	±5.5 ±7.75 ±8.75	80 45 42 ±2.4 ±2.4	E A SE		pVrms pAV\Hz dB dB V V dB kΩ pF MΩ pF MΩ pF V V V mA mA A MA A MA M
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature Output Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Four Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification: P, U, PB, UB	MHz $I_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $No \ Load$ $R_{L} = 250\Omega$ $R_{L} = 100\Omega$ $0.1MHz, G = +2$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05	±5.5 ±7.75	80 45 42 ±2.4 ±2.4	E A SE		pAV/Hz dB dB V V dB kΩ pF MΩ pF dB dB cB V V V MA mA mA mA A C V V MA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz to Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Temperature Current Over Specified Temperature TEMPERATURE RANGE Specification: P, U, PB, UB Thermal Resistance, P _M	MHz $I_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $No \ Load$ $R_{L} = 250\Omega$ $R_{L} = 100\Omega$ $0.1MHz, G = +2$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05 ±5.1	±5.5 ±7.75 ±8.75	80 45 42 ±2.4 ±2.4	E A SE		pVrms pA√\Hz dB dB V V dB kΩ pF MΩ pF MΩ pf C V V MA
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz t Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification: P, U, PB, UB Thermal Resistance, θ _{UA} P 8-Pin DIP	MHz $I_{S} = 10k\Omega$ $R_{S} = 50\Omega$ $V_{CM} = \pm 0.5V$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$ $No \ Load$ $R_{L} = 250\Omega$ $R_{L} = 100\Omega$ $0.1MHz, G = +2$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 ±5.1	±5.5 ±7.75 ±8.75	80 45 42 ±2.4 ±2.4	E A SE		pVrms pA√\Hz dB dB V V dB kΩ pF MΩ pf dB dB V V V MA mA mA mA mA mA mA mA c C °C/W
Voltage Noise, BW = 10Hz to 100 Input Bias Current Noise Current Noise Density, f = 0.1Hz to Noise Figure (NF) INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sourcing Over Specified Temperature Temperature Current Over Specified Temperature TEMPERATURE RANGE Specification: P, U, PB, UB Thermal Resistance, P _M	MHz $R_S = 10 k\Omega$ $R_S = 50 \Omega$ $V_{CM} = \pm 0.5 V$ $V_O = \pm 2 V, R_L = 100 \Omega$ $V_O = 100 \Omega$	±3.0 75 42 40 ±2.2 ±2.2 ±2.0 75 65 65 35	46 1.1 3.2 14 ±3.5 90 60 1 2.6 1 50 ±2.5 ±2.3 110 85 150 0.05 ±5.1	±5.5 ±7.75 ±8.75	80 45 42 ±2.4 ±2.4	E A SE		µVrms pA√\Hz dB dB V dB kΩ pF MΩ pF MΩ pF Ω D V V MA

NOTES: (1) An asterisk (*) specifies the same value as the grade to the left. (2) Frequency response can be strongly influenced by PC board parasitics. The OPA651 is nominally compensated assuming 2pF parasitic load. The demonstration board, DEM-OPA65xP, shows a low parasitic layout for this device. nominally compensated assuming the parameters of the second of the secon

ABSOLUTE MAXIMUM RATINGS

Supply	±5.5V
Internal Power Dissipation(1):	See Thermal Conditions
Differential Input Voltage	±1.2V
Input Voltage Range	±V _s
Storage Temperature Range: P, PB, U,	
Lead Temperature (soldering, 10s)	+300°C
(soldering, SO-8 3s)	+260°C
Junction Temperature (T _{.1})	+175°C

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	PACKAGE MARKING ⁽²⁾	ORDERING NUMBER
OPA651U	SO-8 Surface Mount	182	-40°C to +85°C	OPA651U	OPA651U
OPA651UB	SO-8 Surface Mount	182	-40°C to +85°C	OPA651UB	OPA651UB
OPA651P	8-Pin Plastic DIP	006	-40°C to +85°C	OPA651P	OPA651P
OPA651PB	8-Pin Plastic DIP	006	-40°C to +85°C	OPA651PB	OPA651PB

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) The "B" grade of the SO-8 and DIP packages will be marked with a "B" by pin 8.

ADVANCE PACKAGE INFORMATION(2)

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER
OPA651N OPA651NB	5-Pin SOT23-5 5-Pin SOT23-5	331	-40°C to +85°C -40°C to +85°C	E - NV III	APEN-LOGIL-GAIN

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) The SOT23-5 will be available in tape and reel only by August, 1996.

TYPICAL PERFORMANCE CURVES

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , R_{FB} = 402 Ω , and G = +2, unless otherwise noted.

OPERATIONAL AMPLIFIERS

ITFIGAL PERFORMANCE CURVES (CONT) DIVAMBLE PER LACISTY

 $T_A = +25^{\circ}C$, $V_S = \pm5V$, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, and G = +2, unless otherwise noted.

DISCUSSION OF PERFORMANCE

The OPA651 is a low power, wideband voltage feedback operational amplifier, internally compensated to provide gain of +2 stability. The OPA651's voltage feedback architecture features true differential and fully symmetrical inputs. This minimizes offset errors, making the OPA651 well suited for implementing filter and instrumentation designs. The OPA651's AC performance is optimized to provide a gain bandwidth product of 340MHz and a fast 0.1% settling time of 11.5ns, which is an important consideration in high speed data conversion applications. Along with its excellent settling characteristics, the low DC input offset of $\pm 1 \mathrm{mV}$ and drift of $\pm 3 \mu \mathrm{V}^{\circ}\mathrm{C}$ support high accuracy requirements. In applications requiring a higher slew rate and wider bandwidth, such as video and high bit rate digital communications, consider the current feedback OPA658.

CIRCUIT LAYOUT AND BASIC OPERATION

Achieving optimum performance with a high frequency amplifier like the OPA651 requires careful attention to layout parasitics and selection of external components. Recommendations for PC board layout and component selection include:

- a) Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability; on the non-inverting input it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- b) Minimize the distance (< 0.25") from the two power pins to high frequency $0.1\mu F$ decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger ($2.2\mu F$ to $6.8\mu F$) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- c) Careful selection and placement of external components will preserve the high frequency performance of the OPA651. Resistors should be a very low reactance type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in a high frequency application.

Since the output pin and the inverting input pin are most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the package pins. Other network components, such as noninverting input termination resistors, should also be placed close to the package. Even with a low parasitic capacitance shunting external resistors, excessively high resistor values can create significant time constants and degrade performance. Good metal film or surface mount resistors have approximately 0.2pF in shunt with the resistor. For resistor values > 1.5k Ω , this adds a pole and/or zero below 500MHz that can affect circuit operation. Keep resistor values as low as possible consistent with output loading considerations. The 402 Ω feedback used for the Typical Performance Plots is a good starting point for design.

TYPICAL PERFORMANCE CURVES (CONT)

d) Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set $R_{\rm ISO}$ from the plot of recommended $R_{\rm ISO}$ vs capacitive load. Low parasitic loads may not need an $R_{\rm ISO}$ since the OPA651 is nominally compensated to operate with a 2pF parasitic load.

If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and desired trace dimensions, a matching series resistor into the trace from the output of the amplifier is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

If the 6dB attenuation loss of a doubly terminated line is unacceptable, a long trace can be series-terminated at the source end only. This will help isolate the line capacitance from the op amp output, but will not preserve signal integrity as well as a doubly terminated line. If the shunt impedance at the destination end is finite, there will be some signal attenuation due to the voltage divider formed by the series and shunt impedances.

e) Socketing a high speed part like the OPA651 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable response. Best results are obtained by soldering the part onto the board. If socketing for the DIP package is desired, high frequency flush mount pins (e.g., McKenzie Technology #710C) can give good results.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

The OPA651 is nominally specified for operation using ±5V power supplies. A 10% tolerance on the supplies, or an ECL –5.2V for the negative supply, is within the maximum specified total supply voltage of 11V. Higher supply voltages can break down internal junctions possibly leading to catastrophic failure. Single supply operation is possible as long as common mode voltage constraints are observed. The common mode input and output voltage specifications can be interpreted as a required headroom to the supply voltage. Observing this input and output headroom requirement will allow non-standard or single supply operation. Figure 1 shows one approach to single-supply operation.

FIGURE 1. Single Supply Operation.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 2 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R_3 . This will reduce input bias current errors to the amplifier's offset current.

FIGURE 2. Offset Voltage Trim.

ESD PROTECTION I swimber belonging a not bliggw lad

ESD damage has been well recognized for MOSFET devices, but any semiconductor device is vulnerable to this potentially damaging source. This is particularly true for very high speed, fine geometry processes.

ESD damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, ESD handling precautions are strongly recommended when handling the OPA651.

OUTPUT DRIVE CAPABILITY

The OPA651 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive a 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA651 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as driving A/D converters require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA651 maintains very low-closed loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA651 will not require heatsinking under most operating conditions. Maximum desired junction temperature will limit the maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed +175°C.

Operating junction temperature (T_J) is given by $T_A + P_D\theta_{JA}$. The total internal power dissipation (P_D) is a combination of the total quiescent power (P_{DQ}) and the power dissipated in of the output stage (P_{DL}) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. P_{DL} will depend on the required output signal and load

but would, for a grounded resistive load, be at a maximum when the output is a fixed DC voltage equal to 1/2 of either supply voltage (assuming equal bipolar supplies). Under this condition, $P_{DL}=V_{\rm S}^2/(4 {}^{\bullet}R_{L})$ where R_{L} includes feedback network loading. Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation. As an example, compute the maximum $T_{\rm J}$ for an OPA651N at $A_{\rm V}=+2$, $R_{\rm L}=100\Omega$, $R_{\rm FB}=402\Omega$, $\pm V_{\rm S}=\pm5{\rm V}$, with the output at $IV_{\rm S}/2I$, and the specified maximum $T_{\rm A}=+85^{\circ}{\rm C}$, $P_{\rm D}=10{\rm V}{}^{\bullet}8.75{\rm mA}+(5^2)/(4{}^{\bullet}(100\Omega|I804\Omega))=158{\rm mW}$. Maximum $T_{\rm J}=+85^{\circ}{\rm C}+0.158{\rm W}{}^{\bullet}150^{\circ}{\rm C/W}=109^{\circ}{\rm C}$.

DRIVING CAPACITIVE LOADS

The OPA651's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 10pF should be isolated by connecting a small resistance, usually 15Ω to 30Ω , in series with the output as shown in Figure 4. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the gain from +2 will improve the capacitive load drive due to increased phase margin.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

FIGURE 4. Driving Capacitive Loads.

FREQUENCY RESPONSE COMPENSATION

The OPA651 is internally compensated and is stable at a gain of 2 with a phase margin of approximately 60°. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Frequency response for other gains are shown in the Typical Performance Curves.

The high frequency response of the OPA651 in a good layout is very flat with frequency. However, some circuit configurations such as those where large feedback resistances are used, can produce high-frequency gain peaking. This peaking can be minimized by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop, high-frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2pF after PC board mounting), and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor, or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closedloop gains are required, a three-resistor attenuator (teenetwork) is recommended to avoid using large value resistors with large time constants.

PULSE SETTLING TIME

High speed amplifiers like the OPA651 are capable of extremely fast settling time with a pulse input. Excellent frequency response flatness and phase linearity are required to get the best settling times. As shown in the specifications table, settling time for a ±1V step at a gain of +2 for the OPA651 is extremely fast. The specification is defined as the time required, after the input transition, for the output to settle within a specified error band around its final value. For a 2V step, 1% settling corresponds to an error band of ±20mV, 0.1% to an error band of ±2mV, and 0.01% to an error band of ±0.2mV. For the best settling times, particularly into an ADC capacitive load, little or no peaking in the frequency response can be allowed. Using the recommended R_{ISO} for capacitive loads will limit this peaking and reduce the settling times. Fast, extremely fine scale settling (0.01%) requires close attention to ground return currents in the supply decoupling capacitors. For highest performance, consider the OPA642 which isolates the output stage decoupling from the rest of the amplifier.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. The percentage change in closed-loop gain over a specified change in output voltage level is defined as DG. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. DG and DP are both specified at the NTSC sub-carrier frequency of 3.58MHz. All measurements were performed using an HP 9480.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FIGURE 5. 5MHz Harmonic Distortion vs Load Resistance.

FIGURE 6. Noise Figure vs Source Resistance.

trated in Figure 5. Remember to include the contribution of the feedback network when calculating the effective load resistance seen by the amplifier.

NOISE FIGURE

The OPA651 voltage noise spectral density is specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA651's Noise Figure vs Source Resistance is shown in Figure 6.

100Ω load are shown versus frequency and power output in

the typical performance curves. Distortion can be signifi-

cantly improved by increasing the load resistance as illus-

SPICE MODELS AND EVALUATION BOARD

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models and evaluation PC boards (DEM-OPA65xP) are available for the OPA651. Contact the Burr-Brown Applications Department to receive a SPICE diskette.

TYPICAL APPLICATION

FIGURE 7. Low Distortion Video Amplifier.

FIGURE 8. Layout Detail For DEM-OPA65X Demonstration Board.

FIGURE 9a. Evaluation Board Silkscreen (Solder Side). 9b. Evaluation Board Silkscreen (Component Side). 9 c. Evaluation Board Layout (Solder Side). 9d. Evaluation Board Layout (Component Side).

OPA654

Wide Bandwidth, High Output Current Difet ® OPERATIONAL AMPLIFIER

FEATURES

- HIGH SLEW RATE: 750V/μs
- HIGH OUTPUT CURRENT: 200mA
- WIDE GAIN-BANDWIDTH: 700MHz
- FAST SETTLING: 150ns to 0.1%
- FET INPUT: I_B = 50pA max

LINE DRIVERSPIN DRIVERS

APPLICATIONS

- HIGH-SPEED DATA ACQUISITION
- WAVEFORM GENERATORS

DESCRIPTION

The OPA654 is a high-speed monolithic operational amplifier featuring 200mA output current. Fabricated using Burr-Brown's Complementary-Bipolar, *Difet* process, it provides an excellent combination of high speed and high output current.

The OPA654 is versatile, operating from power supplies ranging from $\pm 5V$ to $\pm 18V$. It can deliver up to $\pm 10V$ signals into a 50Ω load at slew rates of $750V/\mu s$. Its speed and output current make it useful for line driver and automatic test applications.

The OPA654 is externally compensated, allowing openloop gain and phase characteristics to be optimized for the desired closed-loop gain, load and dynamic characteristics.

The OPA654 is available in an 8-pin metal TO-3 package that provides excellent thermal characteristics and is specified for the industrial temperature range.

Difet ®, Burr-Brown Corp.

International Airport Industrial Park • Mailing Address: PO Elox 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

TA = +25°C, VS = ±15V unless otherwise noted.

			OPA654AM	The street cars	estrain of Eff	
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS	
FREQUENCY RESPONSE Gain-Bandwidth Product (2) Slew Rate (2.3) Settling Time (2) 0.01% 0.1%	G = -1, 20V Step G = -1, 10V Step G = -1, 10V Step	n e a de la calendar a	See Typical Curve 750 240 150	A LONDON STREET	V/μs ns ns	
1%	G = -1, 10V Step	A SALAS TO SA	85	- LATE - L.	ns	
OFFSET VOLTAGE Input Offset Voltage Average Drift Power Supply Rejection	V _S = ±5 to ±15V	72	±0.1 ±40 82	±3	mV μV/°C dB	
INPUT BIAS CURRENT(1)	consequence of a set set of the	14 Carlot 1 of 2 (12 Carlot	DESCRIPTION NOR STATE	THE PROPERTY OF THE PARTY OF TH		
Input Bias Current Input Offset Current	$V_{CM} = 0V$ $V_{CM} = 0V$		3 2	50 25	pA pA	
NOISE Input Voltage Noise Noise Density, Voltage Noise, Input Blas Current Noise Current Noise Density, f = 0.1Hz to 20kHz	f = 10Hz f = 100Hz f = 14Hz f = 10Hz f = 10Hz to 1MHz	Ar XH	115 37 19 14 85	SLEW RATE OUTPUT CUI GAIN-BANDI SETTUNG: 1	nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVp-p	
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{CM} = ±10V	±12 70	±13 76	OUTSIA	V dB	
INPUT IMPEDANCE Differential Common-Mode	The OPA654 is extention usin and phase	ic operational	10 ¹² 2.5 10 ¹² 3.2	54 is a high- entiring 200m	Ω pF Ω pF	
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_O = \pm 10V$, $R_L = 1k\Omega$ $V_O = \pm 10V$, $R_L = 50\Omega$	boshi da in los	94 82	Brown's Cong vides an excell	dB dB	
OUTPUT Voltage Output Current Output Short Circuit Current Output Resistance, Open-Loop	$R_{L} = 50\Omega$ $V_{O} = \pm 10V$ DC	n politic sup- deliver up to es of 750V/ps.	±12.3 200 325 800	opel curent 54 is versatle ng from ±5V t disinto a 50Ω	V mA mA	
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current		±5	±15	±18 ±43	V V mA	
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance, $\theta_{\rm JC}$ $\theta_{\rm JA}$	4	-25 -55 -55	15 45	+85 +125 +150	°C °	

NOTES: (1) High-speed test at $T_J = 25^{\circ}C$. (2) Varies with external phase compensation, C_1 . See typical curves for performance with other gains and C_1 . (3) Slew rate is rate of change from 10% to 90% of output voltage step.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±18V
Input Voltage	
Output Short Circuit (to ground)	10s
Operating Temperature	55°C to +125°C
Storage Temperature	55°C to +150°C
Junction Temperature	+165°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA654AM	8-Pin Metal TO-3	-25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA654AM	8-Pin Metal TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPORIES JACISTY

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

CIRCUIT LAYOUT

With any wide-bandwidth circuitry, careful circuit layout will ensure best performance. Make short, direct circuit interconnections and avoid stray wiring capacitance—especially at the inverting input pin. A component-side ground plane will help ensure low ground impedance. Do not place the ground plane under or near the inputs and feedback network.

Power supplies should be bypassed with good high-frequency capacitors positioned close to the op amp pins. In most cases, a 2.2µF solid tantalum capacitor for each power supply is adequate. The OPA654 can deliver load currents up to 200mA. Even if steady-state load currents are lower, signal transients may demand large current transients from the power supplies. It is the power supply bypass capacitors which must supply these current transients. Larger bypass capacitors such as 10µF solid tantalum capacitors may improve dynamic performance in these applications.

CASE CONNECTION

The case of the TO-3 metal package should be connected to ground. Failure to connect the case to ground will not damage the device but will degrade its AC performance. The case is internally connected to the substrate of the dielectrically isolated IC. This substrate is DC-neutral—it is not connected to the V– power supply as it would be with most analog ICs. In principle, it could be connected to any AC ground potential such as one of the power supplies, but DC ground is usually most convenient. Do not connect the case to DC potentials which exceed the power supply voltages, $\pm V_{S}.$

OFFSET ADJUSTMENT

Many applications require no external offset voltage adjustment. Figure 1a shows connection of an optional offset voltage trimming potentiometer. Use a small, non-inductive potentiometer with short connections to the trim pins. Avoid stray capacitance from the input or output nodes. The added resistors in Figure 1b help decouple the potentiometer from

COLLA POLICIA DE LA CALLA CALL

these sensitive nodes, making the type and location of the potentiometer less critical. This also reduces the trim range, providing more adjustment resolution. Do not use an offset voltage adjustment to correct for offsets produced in other circuitry since this can introduce large offset voltage drift.

COMPENSATION

The OPA654 uses external compensation capacitors. This tailors the open-loop response characteristics to the application. Its effect can be seen in the open-loop gain and phase curves.

FIGURE 1. Optional Offset Voltage Trim Circuits.

Figures 2 shows typical capacitor values for various closed-loop gains. This chart should be considered a starting point for optimizing an application. Many variables including circuit layout, source and load characteristics, and desired dynamic behavior will affect the optimum capacitor values. Capacitive loads change op amp behavior and higher compensation capacitor values are generally required. Resistor $R_{\rm S}$, shown in Figure 3, can improve the ability to drive a capacitive load. Typical values for $R_{\rm S}$ range from 5Ω to 50Ω , depending on the load and how much voltage drop can be tolerated.

y loop gain by placing the at high frequency. This	R ₂	It reduces the
R ₁	5 OPA654	V _{out}
	6 + Comp	R_{L}
To The second	$\frac{1}{C_2}$	<u>-</u>

CLOSED-LOOP GAIN	C ₁	C ₂	R ₁	R ₂
+1000	0.5pF	0	10Ω	10kΩ
+100	1pF	0	100Ω	10kΩ
+10	3pF	0	100Ω	900Ω
+1	18pF	30pF	May - 15	0

CLOSED-LOOP GAIN	C ₁	C ₂	R ₁	R ₂
-1000	0.5pF	0	10Ω	10kΩ
-100	1pF	0	100Ω	10kΩ
-10	3pF	0	100Ω	1kΩ
-1	18pF	20pF	1kΩ	1kΩ

FIGURE 2. Basic Amplifier Circuits.

Figure 3 also demonstrates a compensation technique using an additional network, R_3 - C_3 . This allows use of a smaller value for C_1 , producing a corresponding increase in slew rate. It reduces the high frequency loop gain by placing the op amp in a higher noise gain at high frequency. This technique improves large-signal response at the sacrifice of small-signal behavior. Settling time is increased and high frequency noise performance will be somewhat degraded.

FIGURE 3. High Slew Rate Compensation Circuit.

Figure 4 shows an alternative compensation network for unity gain. This technique provides a small amount of positive feedback, reducing the net negative feedback factor. Large signal response and load driving capability is improved with this approach.

The compensation for a given application can be evaluated by observing amplifier pulse response. Both small-signal and large-signal response should be checked to assure that both are acceptable. Large overshoot or many cycles of ringing in the small-signal response is a sign of instability and the circuit may require further optimization. Good practice dictates a somewhat conservative approach to allow for device-to-device variation.

POWER DISSIPATION

Many applications do not require an external heat sink. However, with high ambient temperature or heavy load conditions, a heat sink may be required. The heat sink should be electrically connected to ground—see "Connections to Case". Operate within the power derating curve (Maximum Power Dissipation vs Temperature) shown in the typical performance curve section.

Exceeding the maximum die temperature of 165°C may activate the internal thermal limit circuitry, disabling the output stage. This thermal limit is set for a junction temperature of approximately 185°C.

FIGURE 4. G = +1 Amplifier with Alternative Compensation.

The OPA654 may be operated at reduced power supply voltage, thus reducing internal power dissipation. This can eliminate the need for heat sinking in some applications.

OUTPUT CURRENT LIMIT

Output current is limited by internal circuitry to approximately 325mA at 25°C. The limit current decreases with increasing junction temperature as shown in the typical curves. The combination of current limit and thermal limit protects the device from short circuits to ground.

INPUT BIAS CURRENT

The OPA654 is fabricated with Burr-Brown's dielectrically isolated **Difet** process, giving it very low input bias current. Like other FET amplifiers, input bias current doubles for every 10°C increase in junction temperature. This increase can be minimized by providing a heat sink and, if possible, operating with reduced power supply voltage to minimize power dissipation.

OPA655

Wideband FET-Input OPERATIONAL AMPLIFIER

FEATURES

- 400MHz UNITY GAIN BANDWIDTH
- LOW INPUT BIAS CURRENT: 5pA
- HIGH INPUT IMPEDANCE: 10¹²Ω | 1.0pF
- ULTRA-LOW dG/dP: 0.006%/0.009°
- LOW DISTORTION: 90dB SFDR at 5MHz
- FAST SETTLING: 17ns (0.01%)
- HIGH OUTPUT CURRENT: 60mA
- FAST OVERDRIVE RECOVERY

APPLICATIONS

- WIDEBAND PHOTODIODE AMPLIFIER
- PEAK DETECTOR
- CCD OUTPUT BUFFER
- ADC INPUT BUFFER
- HIGH SPEED INTEGRATOR
- TEST AND MEASUREMENT FRONT END

DESCRIPTION

The OPA655 combines a very wideband, unity gain stable, voltage feedback op amp with a FET input stage to offer an ultra high dynamic range amplifier for ADC buffering and transimpedance applications. Extremely low harmonic distortion along with excellent pulse settling characteristics will support even the most demanding ADC input buffer requirements.

The broad unity gain stable bandwidth and FET input allows exceptional performance in high speed, low noise integrators.

The high input impedance and low bias current provided by the FET input is further supported by the ultra-low $6nV/\sqrt{Hz}$ input voltage noise to achieve a very low integrated noise in wideband photodiode transimpedance applications.

Broad transimpedance bandwidths are achievable given the OPA655's high 240MHz gain bandwidth product. As shown below, a –3dB bandwidth of 1MHz is provided even for a high $1M\Omega$ transimpedance gain from a 47pF source capacitance.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

			OPA655P, U	PORTOR OF THE PROPERTY.	1000
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
FREQUENCY RESPONSE Closed-Loop Response Gain-Bandwidth Product	Gain = +1V/V, V_O = 200mVp-p Gain = +2V/V, V_O = 200mVp-p Gain = +5V/V, V_O = 200mVp-p Gain = +10V/V, V_O = 200mVp-p		400 185 57 24 240	185 57 24	
Slew Rate Over Temperature	G = +1, 1V Step	210 200	290	PROFESSION AND ADDRESS.	V/μs V/μs
Rise Time Fall Time Settling Time: 0.01% 0.1% 1% Spurious-Free Dynamic Range	0.2V Step 0.2V Step G = +1, 1V Step G = +1, 1V Step G = +1, 1V Step G = +1, f = 5MHz	75	1 1 17 8 6 90		ns ns ns ns ns dBc
Differential Gain Differential Phase Bandwidth for 0.1dB flatness	$\begin{array}{c} V_O = \pm 1 V, \; R_L = 100 \Omega \\ 3.58 MHz, \; 0 \; to \; 1.4 V, \; R_L = 150 \Omega \\ 3.58 MHz, \; 0 \; to \; 1.4 V, \; R_L = 150 \Omega \\ G = +2, \; 2 Vp - p \end{array}$		0.006 0.009 30	BRUTA:	% degrees MHz
Power Supply Rejection (+V _S) (-V _S)	stable, voltage feedback	55 50	±1 ±10 70 65	TIMU <u>±2</u> IM90 3 TUQMI WO. 1 TUQMI HOR	mV μV/°C dB dB
NPUT BIAS CURRENT nput Bias Current Over Temperature nput Offset Current Over Temperature	V _{CM} = 0V V _{CM} = 0V V _{CM} = 0V V _{CM} = 0V	96/0.009° RDR at 5MH (196)	-5 ±2	-125 -8.0 ±125 ±8	pA nA pA nA
VOISE Input Voltage Noise loise Density: f = 100Hz f = 1kHz f = 10kHz f = 0.1MHz to 100MHz Integrated Voltage Noise, BW = 1MHz to 100MHz put Bias Current Noise Current Noise Density,		SomA ERV	20 8 6 6	iigh outpu iast overd PPLICAT videband p	nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVrms
f = 10Hz to 10kHz	very low integrated no.		1.3	Halfall Hist	fA√Hz
NPUT VOLTAGE RANGE Common-Mode Input Range Over Temperature Common-Mode Rejection	$V_{CM} = \pm 0.5V$	±2.5 55	±2.75	SEAN DETECT SCD OUTPUT OCHAPLE B	V V dB
NPUT IMPEDANCE Differential Common-Mode	As shown below, a -1 provided even for a hig	Я	10 ¹² 1.2 10 ¹² 1.0	HOH SPEED	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature	$V_O = \pm 2V$, $R_L = 100\Omega$ $V_O = \pm 2V$, $R_L = 100\Omega$	53 50	58	IIII GRA 103	dB dB
DUTPUT //oltage Output Over Temperature Current Output Over Temperature short-Circuit Output Current Dutput Resistance	$R_L = 100\Omega$, $G = +1$ 0.1MHz, $G = +1$	±3.0 ±2.8 ±35 ±28	±3.4 ±60 ±140 0.04		V V mA mA mA
POWER SUPPLY Specified Operating Voltage Departing Voltage Range Quiescent Current Over Temperature	T _{MIN} to T _{MAX} T _{MIN} to T _{MAX}	±4.75 ±21	±5	±5.25 ±29 ±31	V V mA mA
FEMPERATURE RANGE Specification: P, U		-40	V	+85	°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Total oupply voltage moross povice (*5 (TOTAL))
Internal Power Dissipation See Thermal Considerations
Differential Input Voltage
Common-Mode Input Voltage Range
Storage Temperature Range: P, U40°C to +125°C
Lead Temperature (soldering, 10s)+300°C
(soldering, SOIC 3s)+260°C
Junction Temperature (T _J)+175°C

PIN CONFIGURATION

NOTE: (1) Making use of all four power supply pins is highly recommended, although not required. Using these four pins, instead of pins 4 and 7 only, will reduce the effective pin impedance and substantially improve distortion.

MODEL	PACKAGE	NUMBER ⁽¹⁾
OPA655P	8-Pin Plastic DIP	006
OPA655U	8-Pin SO-8 Surface Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA655P	8-Pin Plastic DIP	-40°C to +85°C
OPA655U	8-Pin SO-8 Surface Mount	-40°C to +85°C

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) ON AMBORRAS JACISYT

 T_A = +25°C, V_S = ±5V, R_{FB} = 100 Ω , and R_L = 100 Ω , unless otherwise noted. R_{FB} = 0 for G = +1.

OPA655

Z

OPERATIONAL AMPLIFIERS

DISCUSSION OF PERFORMANCE

Amplifiers using FET input transistors operate in a similar manner to those using bipolar transistors, with some important advantages. In standard op amp applications, the very low input bias currents reduce the DC error voltage due to a high or possibly unknown source impedance. In most OPA655 applications, the output DC error will be due only to the low 1mV input offset voltage. Similarly, input noise currents will contribute very little to the total output noise in most applications. Wideband transimpedance applications (e.g., photodiode amplifiers) will particularly benefit from the low current noise combined with the OPA655's very low 6nV/\(\rightarrow\)Hz input voltage noise.

The OPA655's high gain bandwidth and very linear output stage hold the harmonic distortion below –90dBc through 5MHz for a 2Vp-p swing into 100Ω . Significantly less distortion is observed at lower frequencies and/or higher load impedance. The voltage feedback architecture supports this level of accuracy with greater than 65dB power supply and common mode rejection ratios. This very high dynamic range, along with the low DC errors and noise of the FET input stage, can provide an exceptional buffering capability for ADC's, PMT's and other applications requiring high impedance sensing of a high speed signal. For similar distortion performance with a bipolar input stage, refer to the OPA642.

OPERATING CONSIDERATIONS

Careful attention to PC board layout will deliver the exceptional performance shown in the Typical Performance Curves. Generally, very low impedance paths to the power supplies, along with low parasitic connections to the signal I/O pins are required for best performance (See Layout and Interconnect Considerations). Use of a guard ring around the noninverting input can reduce the leakage current due to common mode input signals. However, driving the guard from the inverting node, can increase the differential input capacitance, possibly leading to instability or increased broadband noise. Non-inverting buffer applications require a very low inductance short to be connected between the output and inverting input to minimize peaking in the frequency response. Use a wide trace (0.1") directly between the output and inverting input pins on the component side of the board for this connection.

The OPA655 is nominally designed to operate from ±5V supplies. The maximum voltage between the supply pins should be limited to less than 11V. Since a supply independent bias is used, very little change in AC performance is observed as the supply voltage is changed.

BASIC OP AMP CONNECTIONS

Figures 2 through 4 illustrate the basic op amp connections suitable for the OPA655. The non-inverting buffer (voltage follower) application (Figure 2) will benefit from the very

FIGURE 1. Simplified Internal Schematic.

high FET input impedance and low closed loop output impedance. Remember that a DC path to the input is still necessary; even with the ultra low FET input bias current (5pA), open or capacitively coupled sources will cause the input to saturate. For best frequency response, a direct short between the output and inverting inputs is suggested. Since the input bias currents are not necessarily correlated, matching the non-inverting source resistance with a resistor in the feedback network is not recommended.

$$\begin{array}{c} Z_1 \\ V_{\text{IN}} \\ \end{array} \begin{array}{c} 0 \\ \text{PA655} \\ \end{array} \begin{array}{c} 6 \\ \end{array} \begin{array}{c} Z_0 \\ V_0 \\ \end{array} \begin{array}{c} V_0 \\ V_{\text{IN}} \\ \end{array} = 1 \\ \text{NOTE: Power supplies and de-coupling not shown.} \end{array}$$

FIGURE 2. Non-Inverting Unity Gain Buffer.

The non-inverting amplifier configuration (Figure 3) will again present a very high input impedance to the input signal and a low output impedance drive with signal gain. The 100Ω shown for R_F will give the frequency response shown in the Typical Performance Curves. Higher values for R_F and R_1 are possible but for high frequency non-inverting op amp applications, should be limited to less than $1.0k\Omega$. The amplifier will be loaded by (R_F+R_1) in parallel with the load impedance.

FIGURE 3. Non-Inverting Op Amp.

The inverting amplifier configuration (Figure 4) offers a broadband, low DC error amplifier with a controlled input impedance. The input impedance may be set by adjusting R_1 to the desired value and then adjusting $R_{\rm F}$ to the desired gain, or by setting $R_{\rm F}$ and R_1 to the desired values then controlling the input impedance independently as the parallel combination of R_1 and an optional $R_{\rm T}$ resistor to ground. To estimate the bandwidth in any configuration, first calculate the gain as a non-inverting amplifier. This is often referred to as "noise gain" or NG, and is simply the inverse of the feedback factor $\beta_{\rm C}$

FIGURE 4. Inverting Op Amp.

$$\beta = V^-/V_0$$

Non-Inverting Gain = Noise Gain = NG = 1/B

Taking the inverting amplifier as an example, β is found by setting V_{SOURCE} to zero and calculating the voltage divider ratio from V_O to V^- :

 $R_1 + R_T \parallel R_S = \text{total resistance to ground on the inverting input}$

$$\beta = \frac{V^{-}}{V_{O}} = \frac{R_{1} + R_{T}||R_{S}}{R_{F} + R_{1} + R_{T}||R_{S}}$$

$$NG = \frac{1}{\beta} = 1 + \frac{R_F}{R_1 + R_T || R_S}$$

The resulting bandwidth is approximately the amplifier's gain bandwidth product divided by the calculated noise gain:

In practice, low noise gains (< 5) will produce a wider bandwidth than predicted due to the peaking effect of second order poles. For example, at an inverting gain of -1 from a zero ohm source impedance, this yields a non-inverting gain of 2 and an approximate signal bandwidth of 185MHz.

TYPICAL APPLICATIONS

WIDEBAND TRANSIMPEDANCE AMPLIFIER

The high gain bandwidth product and low noise of the OPA655 make it particularly suitable for wideband transimpedance applications. The front page of the data sheet shows measured results for a $1M\Omega$ transimpedance gain from a relatively large diode having 47pF parasitic capacitance. The key to broadband transimpedance applications is to set the compensation capacitance across the feedback resistor to achieve a flat, or bandlimited, frequency

FIGURE 5. Transimpedance Analysis Circuit.

FIGURE 6. Bode Analysis for Transimpedance Circuit.

The total capacitance to ground on the inverting input of the OPA655 will set the source capacitance (C_S) for analysis purposes. C_S is the sum of the diode capacitance (C_D), the common mode input capacitance C_{CM} and the differential input capacitance (CDIFF). Looking at the Bode analysis for the transimpedance configuration, at low frequencies the noise gain is 1 (0dB) but will increase for frequencies above $1/2\pi(R_F \cdot (C_S + C_F))$ due to the zero formed by the capacitance on the inverting node. It is important to note that the gain for the op amp input noise voltage will increase similarly. To get maximum bandwidth, CF is often set to form a high frequency pole at the intersection of this increasing noise gain and the open loop gain rolloff. This is accomplished by setting $1/2\pi(R_F \cdot C_F)$ equal to the geometric mean of the zero frequency and the gain bandwidth product of the op amp. If the gain bandwidth product is in Hz, and assuming that C_F << C_S, C_F may be calculated as:

$$C_{F} = \begin{bmatrix} \frac{1}{R_{F} \cdot \sqrt{\frac{(2\pi \cdot GBWP)}{(R_{F} \cdot C_{S})}}} \end{bmatrix}$$

If the intersection with the amplifier's open loop gain rolloff, the circuit would be operating with a 45° phase margin yielding a highly peaked frequency response. To reduce broadband noise and pulse response ringing, it is preferable to set this pole at a slightly lower frequency than the simplified analysis shown above. A second order analysis for the transimpedance configuration yields the following results to achieve a maximally flat Butterworth characteristic for the transimpedance frequency response. Using the OPA655's gain bandwidth product (GBW) in Hz, define a variable:

$$\alpha = R_F \cdot C_S \cdot GBW \cdot 2\pi$$
 (where $C_S = C_D + C_{CM} + C_{DIFF}$)

Then, the required C_F to produce a maximally flat frequency response is:

$$C_F = C_S \bullet \frac{\sqrt{2\alpha - 1}}{\alpha} \approx C_S \sqrt{\frac{2}{\alpha}}$$

and the resulting -3dB bandwidth for the transimpedance gain will be:

$$F_{-3dB} = GBW \bullet \sqrt{\frac{2}{\alpha + \sqrt{2\alpha - 1}}}$$

Figure 7 plots the required C_F vs R_F (given different values for the diode capacitance) to achieve the maximally flat response. Figure 8 plots the resulting bandwidth for the same range of R_F and C_D assuming C_F has been set as shown in Figure 7. These plots include a parasitic input capacitance of 2.2pF in parallel with the diode capacitance (C_D) . Very low effective values for the compensation capacitor (C_F) can be produced by splitting the feedback resistor as shown on the front page application circuit.

FIGURE 7. Compensation Capacitance vs Feedback Resistance.

FIGURE 8. Maximally Flat Bandwidth.

HIGH SPEED INSTRUMENTATION DIFFERENTIAL AMPLIFIER

Very high speed differential amplifiers can be implemented using the OPA655. The very low input bias currents allow relatively high resistor values to be used in a standard single op amp differential configuration. Alternatively, a very high input impedance differential amplifier can be implemented using a three op amp instrumentation amplifier topology as shown in Figure 9.

FIGURE 9. High Input Impedance, Broadband INA.

In this example, the OPA655's provide a differential gain of:

$$\left(1 + \frac{2R_F}{R_G}\right) = 3$$

and a common mode gain of 1 to the input of the OPA651 differential stage. The OPA651, a gain of 2 stable, broadband voltage feedback op amp, rejects the common mode signal and provides a differential gain of 1/2 the matched 50Ω load. This circuit delivers a 136MHz bandwidth at a

differential gain of 1.5V/V (3.5dB) to the matched load as shown in Figure 10. The C_T tuning capacitor is used to match the high frequency gains for the two signal paths to improve the high frequency CMRR. Using this adjustment, a CMRR > 40dB through 100MHz was achieved.

FIGURE 10. Measured Frequency Response for INA.

OPTIMIZING PERFORMANCE

DC ACCURACY

The OPA655 is laser trimmed for low input offset voltage, limiting the need for external trim circuits. In most cases, the low bias current of the FET input will not contribute significantly to the output DC error. For example, at minimum gain (G = +1) and maximum temperature (85°C), the error contribution due to the inverting input bias current would only exceed the input offset voltage for feedback resistors > (1mV/3.2nA) = 312k Ω . Only for relatively high source and/ or feedback resistor values will the input bias current contribute significantly to the output DC error. Similarly, since the two input bias currents are very low, but not tightly matched, input bias current cancellation through source impedance matching is not recommended.

Changes in the power supply voltages contribute to shifts in the input offset voltage. This can be calculated using the PSR specifications. For example, a 0.5V change in the negative power supply will show up typically as a $0.5 \text{V} \cdot 10^{(-65/20)} = 0.28 \text{mV}$ change in the input offset voltage.

Negative common mode voltage inputs can cause an increase in the input bias currents as shown in the Typical Performance Curves. This can have an effect on DC accuracy when the source and/or feedback resistors are large and the common mode input voltage approaches the negative limit of -2.5V. Positive input biases are therefore preferred for diode transimpedance applications requiring a bias voltage on the non-inverting op amp input.

FREQUENCY RESPONSE COMPENSATION

The OPA655 is internally compensated to be stable at unity gain into a 100Ω load with a nominal phase margin of 58°. This unity gain phase margin shows a slight peaking in the frequency response and requires a very low inductance shorting connection from the output pin to the inverting input pin for minimal peaking. This stable broadband performance at unity gain lends itself well to integrator and buffer applications.

Phase margin and flatness will improve at higher gains. Since phase margin is slightly load dependent, flatness in a gain of +2 can be modified by changing the loading. Very flat performance is shown in the Typical Performance Curves using a 100Ω feedback and 100Ω load. This may be peaked up by increasing the load or feedback resistors or rolled off by decreasing them. Recall that an inverting gain of -1 is equivalent to a gain of +2 for bandwidth purposes, i.e. noise gain equal to 2. The external compensation techniques developed for voltage feedback op amps can be applied to this device. For example, in the non-inverting configuration, placing a capacitor across the feedback resistor will reduce the gain to +1 starting at $f = 1/(2\pi R_F C_F)$ Hz. Alternatively, in the inverting configuration, the bandwidth may be limited without modifying the low frequency inverting gain by placing a series RC network to ground on the inverting node. This has the effect of increasing the noise gain at higher frequencies, thereby limiting the bandwidth for the inverting input signal through the gain-bandwidth product.

At higher gains, the gain-bandwidth product (240MHz) of this voltage feedback topology will limit the achievable signal bandwidth. If FET input is not required and higher bandwidths at higher gains are needed, consider the broad bandwidth available from a current feedback op amp such as the OPA658.

DRIVING CAPACITIVE LOADS

The high open loop gain and Class AB output stage of the OPA655 are optimized for driving the low impedance of doubly terminated cables. Capacitive loads directly on the output pin can decrease phase margin leading to frequency response peaking and possibly sustained oscillations. This effect is particularly pronounced at unity gain and becomes less significant at higher gains. Frequency response flatness can be maintained into a capacitive load by isolating it with a resistor as shown in Figure 11. The Typical Performance Curves show a plot of the minimum value for $R_{\rm ISO}$ to hold a flat frequency response as C_L is increased. The $1k\Omega$ shunt load across C_L shown in Figure 11 was the probe load for this measurement and should be considered optional.

PULSE AND OVERDRIVE PERFORMANCE

High speed amplifiers like the OPA655 can provide an extremely fast settling time for a pulse input. Excellent frequency response flatness and phase linearity are required

FIGURE 11. Driving a Capacitive Load.

to get the best settling times. As shown in the specifications table, settling time for a 1V step at a gain of +1 for the OPA655 is an extremely fast 8ns to 0.1%. This specification is defined as the time required, after the input transition, for the output to settle within a specified error band around its final value. For a 1V step, 0.1% settling corresponds to an error band of $\pm 1 \mathrm{mV}$. For the best settling times, little or no peaking in the frequency response can be allowed. Using the recommended $R_{\rm ISO}$ for capacitive loads will limit this peaking and reduce the settling times. Fast, extremely fine scale settling (0.01%) requires close attention to the ground return currents in the supply de-coupling capacitors, De-coupling the output stage power supply connections $(+\mathrm{V}_{\mathrm{S2}}+(-\mathrm{V}_{\mathrm{S2}}))$ separately from the main supply inputs will improve both settling and harmonic distortion performance.

As can be observed in the typical performance curves, the OPA655 recovers very quickly from an input overdrive. For non-inverting operation, recovery is immediate for negative overdrives and < 10ns for a positive going overdrive signal. For inverting mode operation, such as transimpedance amplifiers, recovery is immediate to input overdrives that do not build up input voltages that exceeds the common mode input range. Unlike older FET input amplifiers, overdriving the inputs does not cause the output to invert phase and/or latch. Inputs that exceed the positive supply voltage will, however, cause the output to reverse and swing negative—but no latching will occur.

HARMONIC DISTORTION

The Typical Performance Curves show the very low harmonic distortion that OPA655 can deliver into a 100Ω load over a wide range of operating conditions. Generally, distortion improves at lower gains, lower signal swings, lower frequencies, and higher loads. Figure 12 shows significant improvement in second harmonic distortion as the load is increased, and relative insensitivity of the third harmonic to load conditions. For measurement purposes, these distortion levels were increased from those listed in the specification table by increasing the gain to +5. Narrowband communications systems will benefit from the very low third order distortion vs load which will provide very low intermodulation spurs.

FIGURE 12. 5MHz Harmonic Distortion vs Load Resistance.

DIFFERENTIAL GAIN AND DIFFERENTIAL PHASE

The OPA655 provides one of the lowest dG/dP errors of any op amp. This specification is the change in the small signal gain and phase for a composite video color carrier frequency when the output voltage is slowly ramped over the luminance range. The specifications show less than 0.01%/0.01° for positive NTSC into a single video load. This level of performance challenges the accuracy of commercially available video test equipment. Measurements were taken using an HP9480 IC parametric test system.

OUTPUT DRIVE CAPABILITY

The guaranteed output current of ± 28 mA will drive a 100Ω load over the full guaranteed output voltage range of ± 2.8 V. These minimum performance levels are only applicable at cold temperatures, with higher output voltage and current available in most applications. Many demanding high speed applications, such as driving ADC's, require amplifiers with low, broadband, output impedance. As shown in Figure 13, the OPA655 maintains a very low closed loop output impedance over frequency. Closed loop output impedance increases with frequency as the loop gain rolls off.

FIGURE 13. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA655 will not require heatsinking under most operating conditions. Maximum desired junction temperature will limit the maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed +175°C.

Operating junction temperature (T_I) is given by $T_A + P_D \cdot \theta_{JA}$. The total internal power dissipation (P_D) is a combination of the quiescent power plus the power dissipated in the output stage to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. Ppl will depend on the required output signal and load but would, for a grounded resistive load, be at a maximum when the output is a fixed DC voltage equal to 1/2 of either supply voltage (assuming equal bipolar supplies). Under this condition $P_{DL} = V_S^2/(4 \cdot R_L)$ where R_L includes feedback network loading. Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation. As an example, compute the maximum T_I for the OPA655U at G = +2, $R_L = 100\Omega$, $R_F = 100\Omega$, $\pm V_S =$ $\pm 5V$, and at the specified maximum $T_A = 85$ °C. $P_D = 10V$ • $31\text{mA} + (5^2)/[4 \cdot (100 \parallel 200)] = 404\text{mW}$. Maximum $T_1 =$ 85°C + 0.404W • 125°C/W = 136°C.

LAYOUT AND INTERCONNECT CONSIDERATIONS

Achieving optimum performance with a high frequency amplifier like the OPA655 requires careful attention to layout parasitics and selection of external components. Suggestions include:

- Minimize parasitic capacitance to any AC ground for all
 of the signal I/O pins. Parasitic capacitance on the output
 and inverting input pins can cause instability; on the noninverting input it can react with the source impedance to
 cause unintentional bandlimiting. To reduce unwanted
 capacitance, a window around the signal I/O pins should
 be opened in all of the ground and power planes. Other wise, ground and power planes should be unbroken else where on the board.
- Minimize the distance (< 0.25") from the four power pins to high frequency 0.1μF decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. The OPA655 may be operated with only pins 4 and 7 connected as supply pins allowing a direct replacement into existing 8 pin op amp pinouts. Connecting the output stage power pins separately, and decoupling them, will give the best distortion and settling performance. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger (2.2μF to 6.8μF) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.

type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in the signal path for a high frequency application. For the lowest parasitic capacitance, consider the PR8351 style resistor from Precision Resistive Products (Phone No. 319-394-9131). These precision buffed resistors typically have less than 0.02pF shunt parasitic capacitance.

Since the output pin and inverting input pin are most sensitive to parasitic capacitance, always place the feedback, gain setting, and series output resistor (if any) as close as possible to the package pins. For a voltage follower buffer application, a wide trace (0.1") on the component side of the board between pins 6 and 2 will reduce frequency response peaking. Be sure to open up ground and power planes around this trace to limit parasitic capacitance to an AC ground on the output pin.

• Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set R_{ISO} from the plot of recommended R_{ISO} vs capacitive load. Low parasitic loads may not need an R_{ISO} since the OPA655 is nominally compensated to operate with a 5pF parasitic load.

If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and

tion device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

 Socketing a high speed part like the OPA655 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it impossible to achieve a smooth, stable response. Best results are obtained by soldering the part onto the board. If socketing for the DIP package is desired, high frequency flush mount pins (e.g. McKenzie Technology No. 710C) can give good results.

SPICE MODEL AND EVALUATION BOARDS

Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models are available on a disk from the Burr-Brown Applications Department.

The OPA655 is similar in distortion performance and identical in pinout to the OPA642. The demonstration boards developed for the OPA642 are recommended for the OPA655. The six boards available are:

Contact your local Burr-Brown sales office or distributor to order demonstration boards.

DEM-OPA64XP-F	8-pin DIP, unity gain follower configuration
DEM-OPA64XP-N	8-pin DIP, non-inverting gain configuration
DEM-OPA64XP-I	8-pin DIP, inverting gain configuration
DEM-OPA64XU-F	SO-8 Surface Mount, unity gain follower configuration
DEM-OPA64XU-N	SO-8 Surface Mount, non-inverting gain configuration
DEM-OPA64XU-I	SO-8 Surface Mount, inverting gain configuration

Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER

FEATURES

- UNITY GAIN STABLE BANDWIDTH: 900MHz
- LOW POWER: 50mW
- LOW DIFFERENTIAL GAIN/PHASE ERRORS: 0.025%/0.02°
- HIGH SLEW RATE: 1700V/µs
- GAIN FLATNESS: 0.1dB to 135MHz
- HIGH OUTPUT CURRENT (80mA)

APPLICATIONS

- MEDICAL IMAGING
- HIGH-RESOLUTION VIDEO
- HIGH-SPEED SIGNAL PROCESSING
- COMMUNICATIONS
- PULSE AMPLIFIERS
- ADC/DAC GAIN AMPLIFIER
- MONITOR PREAMPLIFIER
- CCD IMAGING AMPLIFIER

DESCRIPTION

The OPA658 is an ultra-wideband, low power current feedback video operational amplifier featuring high slew rate and low differential gain/phase error. The current feedback design allows for superior large signal bandwidth, even at high gains. The low differential gain/phase errors, wide bandwidth and low quiescent

current make the OPA658 a perfect choice for numerous video, imaging and communications applications.

The OPA658 is optimized for low gain operation and is also available in dual (OPA2658) and quad (OPA4658) configurations.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

OSSACIO		OF	PA658P, U	, N	OPA	558PB, UI	B, NB	38
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FREQUENCY RESPONSE Closed-Loop Bandwidth ⁽²⁾	G = +1 ⁽⁴⁾		900		400	*(1)	Europe v	MHz MHz
	G = +2 G = +5 G = +10		680 370 200		400			MHz MHz MHz
Slew Rate ⁽³⁾ At Minimum Specified Temperature	G = +2, 2V Step		1700 1500		1000 900	:		V/μs V/μs
Settling Time: 0.01% 0.1%	G = +2, 2V Step G = +2, 2V Step		15	par sun	ave set	at subjects	SARE L	ns ns
1% Spurious Free Dynamic Range	G = +2, 2V Step f = 5MHz, G = +2, V _O = 2Vp-p	P W	6 68 56	nd,	sde	hide	V	ns dBc dBc
Third Order Intercept Point Differential Gain	$f = 20MHz$, $G = +2$, $V_O = 2Vp$ -p f = 10MHz, 4dBm Each Tone $G = +2$, NTSC, $V_O = 1.4Vp$ -p, $R_L = 150Ω$	DIT.	40 0.025	190		:		dBm %
Differential Phase Bandwidth for 0.1dB Flatness	$G = +2$, NTSC, $V_0 = 1.4Vp-p$, $R_L = 150\Omega$ G = +2	of allowants	0.02 135 ⁽⁵⁾	DE-19693%	CASTIGRA	MINISTRA	DOM:	degree MHz
OFFSET VOLTAGE Input Offset Voltage Over Temperature Range	$V_{CM} = 0V$ $V_{S} = \pm 4.7 \text{ to } \pm 5.5V$		±3 ±5	±5.5 ±8	58	±2 ±4 67	±4.5 ±7	mV mV
Power Supply Rejection Ratio INPUT BIAS CURRENT	V _S = 14.7 to 10.3 V	55	64	rimu s	58	6/-	14000	dB
Non-Inverting Over Temperature Range	$V_{CM} = 0V$ $V_{CM} = 0V$		±5.7 ±10 ±1.1	±30 ±80 ±35	in Som	REWO	±18 ±35	μΑ μΑ μΑ
Over Temperature Range	S COMMUNICATIONS	OBRE	±30	±75	JAMN	SPECTO	O WO	μА
Input Voltage Noise Density f = 100Hz	PULSE AMPLIFIERS ADCIDAC GAIN AMP		1181	700V	:STA	N WELL	e Hoii	nV/√F
f = 2kHz f = 10kHz f = 1MHz	MONTOR PREAMPL	31	3.3 2.7 2.7	tdB td	0 :88: C C) (B	HATAJ	A MAR D HEH	nV/√F nV/√F
f _B = 100Hz to 200MHz Input Bias Current Noise Density Inverting: f = 10MHz	4 CCD IMAGING AMPL		38.2 12.6					μVrm pA/√F
Non-Inverting: f = 10MHz Noise Figure (NF)	$R_S = 50\Omega$ $R_S = 100\Omega$		12.6 10 8		MOF	rque	083	pA/√F dB dB
INPUT VOLTAGE RANGE	high eas video imaging and con	eniau	iner feat	gras l	no date	ao osb	back v	ioni
Common-Mode Input Range Over Temperature Range Common-Mode Rejection	1 boxim top at V _{CM} = ±1V	±2.5 45	±2.9 50	eg leite	ens Hib	wof bn	e ster r	V dB
INPUT IMPEDANCE Non-Inverting Inverting	anal (OPA4658) configurations, cem	diffen w quius	500 1	gains, ndwido	tgirl sa s ad obiw	th, ever	esedwii Vptussc	kΩ μ
OPEN-LOOP TRANSRESISTANCE Open-Loop Transresistance Over Temperature Range	$V_O = \pm 2V$, $R_L = 100\Omega$ $V_O = \pm 2V$, $R_L = 100\Omega$	150 100	190		200 150	250		kΩ kΩ
OUTPUT Voltage Output Over Temperature Range	No Load	±2.7 ±2.5	±2.9 ±2.75			:		V
Voltage Output Over Temperature Range	$R_L = 250\Omega$	±2.7 ±2.5	±2.9 ±2.7		:	:		V
Voltage Output Over Temperature Range Output Current, Sourcing	$R_L = 100\Omega$	±2.2 ±2.0 80	±2.8 ±2.5			:		V V mA
Over Temperature Output Current, Sinking Over Temperature		70 60 35	80		:			mA mA
Short Circuit Current Output Resistance	0.1MHz, G = +2	00	150 0.02	-	26. 0	:		mA Ω
POWER SUPPLY	7 3000	7	-					
Specified Operating Voltage Operating Voltage Range Quiescent Current Over Temperature Range	V _S = ±5V	±4.5	±5 ±5 ±5.5	±5.5 ±7.75 ±8.5		±4.5 ±4.7	±5.75 ±6.5	V V mA
TEMPERATURE RANGE Specification: P, U, N, PB, UB, NB	Currantidirer	-40	skal (+85				°C
Thermal Resistance, θ _{JA} P 8-Pin DIP U SO-8		100			:		°C/W	

NOTES: (1) An asterisk (*) specifies the same value as the grade to the left. (2) Frequency response can be strongly influenced by PC board parasitics. The demonstration board, DEM-OPA65X shows a low parasitic layout for this part. Refer to the demonstration board layout for details. (3) Slew rate is rate of change from 10% to 90% of output voltage step. (4) At G = +1, $R_{FB} = 560\Omega$ for PDIP and 402Ω for SO-8. (5) This specification is PC board layout dependent.

Supply	±5.5\
Internal Power Dissipation	See Thermal Considerations
Differential Input Voltage	±1.2\
Input Voltage Range	±V5
Storage Temperature Range: P, PB, U,	UB40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Junction Temperature (T ₁)	+175°C

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Buri-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	PACKAGE MARKING ⁽²⁾	ORDERING NUMBER
OPA658U	SO-8 Surface Mount	182	-40°C to +85°C	OPA658U	OPA658U
OPA658UB	SO-8 Surface Mount	182	-40°C to +85°C	OPA658UB	OPA658UB
OPA658P	8-Pin Plastic DIP	006	-40°C to +85°C	OPA658P	OPA658P
OPA658PB	8-Pin Plastic DIP	006	-40°C to +85°C	OPA658PB	OPA658PB

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) The "B" grade of the SO-8 and DIP packages will be marked with a "B" by pin 8.

ADVANCE PACKAGE INFORMATION(2)

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER
OPA658N OPA658NB	5-Pin SOT23-5 5-Pin SOT23-5	331 331	-40°C to +85°C -40°C to +85°C		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) The SOT23-5 will be available in tape and reel only by August, 1996.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPO 7939 JADIS

At T_A = +25°C, V_S = ± 5 V, R_L = 100Ω , and R_{FB} = 402Ω unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) 1997 240 1743 1994

At $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted.

Conventional op amps depend on feedback to drive their inputs to the same potential, however the current feedback op amp's inverting and non-inverting inputs are connected by a unity gain buffer, thus enabling the inverting input to automatically assume the same potential as the non-inverting input. This results in very low impedance at the inverting input to sense the feedback as an error current signal.

DISCUSSION OF PERFORMANCE

The OPA658 is a low-power, unity gain stable, current feedback operational amplifier which operates on $\pm 5V$ power supply. The current feedback architecture offers the following important advantages over voltage feedback architectures: (1) the high slew rate allows the large signal performance to approach the small signal performance, and (2) there is very little bandwidth degradation at higher gain settings.

The current feedback architecture of the OPA658 provides the traditional strength of excellent large signal response plus wide bandwidth, making it a good choice for use in high resolution video, medical imaging and DAC I/V Conversion. The low power requirements make it an excellent choice for numerous portable applications.

DC GAIN TRANSFER CHARACTERISTICS

The circuit in Figure 1 shows the equivalent circuit for calculating the DC gain. When operating the device in the inverting mode, the input signal error current ($I_{\rm E}$) is amplified by the open loop transimpedance gain ($T_{\rm O}$). The output signal generated is equal to $T_{\rm O}$ x $I_{\rm E}$. Negative feedback is applied through $R_{\rm FB}$ such that the device operates at a gain equal to $-R_{\rm FB}/R_{\rm FE}$.

FIGURE 1. Equivalent Circuit.

inverting input. The signal generated at the output is fed back to the inverting input such that the overall gain is $(1 + R_{FB}/R_{FF})$. Where a voltage-feedback amplifier has two symmetrical high impedance inputs, a current feedback amplifier has a low inverting (buffer output) impedance and a high non-inverting (buffer input) impedance.

The closed-loop gain for the OPA658 can be calculated using the following equations:

Inverting Gain =
$$\frac{-\left(\frac{R_{FB}}{R_{FF}}\right)}{1 + \frac{1}{\text{Loop Gain}}}$$
 (1)

Non-Inverting Gain =
$$\frac{\left[1 + \frac{R_{FB}}{R_{FF}}\right]}{1 + \frac{1}{Loop Gain}}$$
 (2)

where Loop Gain =
$$\begin{bmatrix} T_O \\ R_{FB} + R_S \left(1 + \frac{R_{FB}}{R_{FF}}\right) \end{bmatrix}$$

At higher gains the small value inverting input impedance causes an apparent loss in bandwidth. This can be seen from the equation:

nation:

$$f_{\text{ACTUAL BW}} \approx \frac{\left[f_{\left(A_{\text{V}}=+2\right)} \text{ BW}\right] x (1.25)}{\left[1 + \left(\frac{R_{\text{S}}}{R_{\text{FB}}}\right) \times \left(1 + \frac{R_{\text{FB}}}{R_{\text{FF}}}\right)\right]}$$
(3)

This loss in bandwidth at high gains can be corrected without affecting stability by lowering the value of the feedback resistor from the specified value of 402Ω .

OFFSET VOLTAGE AND NOISE

The output offset is the algebraic sum of the input offset voltage and bias current errors. The output offset for non-inverting operation is calculated by the following equation:

Output Offset Voltage =
$$\pm Ib_N \times R_N \left(1 + \frac{R_{FB}}{R_{FF}} \right) \pm V_{IO} \left(1 + \frac{R_{FB}}{R_{FF}} \right) \pm Ib_I \times R_{FB}$$
 (4)

If all terms are divided by the gain $(1 + R_{FB}/R_{FF})$ it can be observed that input referred offsets improve as gain increases. The effective noise at the output can be determined by taking

FIGURE 2. Output Offset Voltage Equivalent Circuit.

spectral noise values round in the Typical Performance Curve graph section. This applies to noise from the op amp only. Note that both the noise figure (NF) and the equivalent input offset voltages improve as the closed loop gain increases (by keeping $R_{\rm FR}$ fixed and reducing $R_{\rm FF}$ with $R_{\rm N}=0\Omega)$.

INCREASING BANDWIDTH AT HIGH GAINS

The closed-loop bandwidth can be extended at high gains by reducing the value of the feedback resistor $R_{\rm FB}$. This bandwidth reduction is caused by the feedback current being split between $R_{\rm S}$ and $R_{\rm FF}$ (refer to Figure 1). As the gain increases (for a fixed $R_{\rm FB}$), more feedback current is shunted through $R_{\rm FF}$, which reduces closed-loop bandwidth.

CIRCUIT LAYOUT AND BASIC OPERATION

Achieving optimum performance with a high frequency amplifier like the OPA658 requires careful attention to layout parasitics and selection of external components. Recommendations for PC board layout and component selection include:

- a) Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability; on the non-inverting input it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- b) Minimize the distance (< 0.25") from the two power pins to high frequency $0.1\mu\text{F}$ decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger ($2.2\mu\text{F}$ to $6.8\mu\text{F}$) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- c) Careful selection and placement of external components will preserve the high frequency performance of the OPA658. Resistors should be a very low reactance type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in a high frequency application. Since the output pin and the inverting input pin are most sensitive to parasitic capacitance, always position the feed-

sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the package pins. Other network components, such as noninverting input termination resistors, should also be placed close to the package.

The feedback resistor value acts as the frequency response compensation element for a current feedback type amplifier. nai maximany nat outterworth response white assuming a 2pF output pin parasitic. Increasing the feedback resistor will over compensate the amplifier, rolling off the frequency response, while decreasing it will decrease phase margin, peaking up the frequency response. Note that a non-inverting, unity gain buffer application still requires a feedback resistor for stability (560Ω for SO-8 and 402Ω for PDIP).

d) Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set $R_{\rm ISO}$ from the plot of recommended $R_{\rm ISO}$ vs capacitive load. Low parasitic loads may not need an $R_{\rm ISO}$ since the OPA658 is nominally compensated to operate with a 2pF parasitic load.

If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and desired trace dimensions, a matching series resistor into the trace from the output of the amplifier is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

If the 6dB attenuation loss of a doubly terminated line is unacceptable, a long trace can be series-terminated at the source end only. This will help isolate the line capacitance from the op amp output, but will not preserve signal integrity as well as a doubly terminated line. If the shunt impedance at the destination end is finite, there will be some signal attenuation due to the voltage divider formed by the series and shunt impedances.

e) Socketing a high speed part like the OPA658 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable response. Best results are obtained by soldering the part onto the board. If socketing for the DIP package is desired, high frequency flush mount pins (e.g., McKenzie Technology #710C) can give good results.

The OPA658 is nominally specified for operation using ±5V power supplies. A 10% tolerance on the supplies, or an ECL -5.2V for the negative supply, is within the maximum

specified total supply voltage of 11V. Higher supply voltages can break down internal junctions possibly leading to catastrophic failure. Single supply operation is possible as long as common mode voltage constraints are observed. The common mode input and output voltage specifications can be interpreted as a required headroom to the supply voltage. Observing this input and output headroom requirement will allow non-standard or single supply operation. Figure 3 shows one approach to single-supply operation,

FIGURE 3. Single Supply Operation.

ESD PROTECTION

ESD static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. This is particularly true for very high speed, fine geometry processes.

ESD static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA658.

OUTPUT DRIVE CAPABILITY

The OPA658 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA658 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 4, the OPA658 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 4. Closed-Loop Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA658 will not require heatsinking under most operating conditions. Maximum desired junction temperature will set a maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed 175°C.

Operating junction temperature (T_J) is given by $T_A + P_D \cdot \theta_{JA}$. The total internal power dissipation (P_D) is the sum of quiescent power (P_{DQ}) and additional power dissipated in the output stage (P_{DL}) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. P_{DL} will depend on the required output signal and load but would, for a grounded resistive load, be at a maximum when the output is fixed at a voltage equal to 1/2 either supply voltage (for equal bipolar supplies). Under this condition $P_{DL} = V_S^2/(4 \cdot R_L)$ where R_L includes feedback network loading.

Note that it is the power in the output stage and not into the load that determines internal power dissipation.

As an example, compute the maximum T_J for an OPA658N at $A_V=+2,~R_L=100\Omega,~R_{FB}=402\Omega,~\pm V_S=\pm 5 V,$ and the specified maximum $T_A=+85^{\circ}C.~P_D=10V \cdot 8.5 mA+5^2/$ [4 • (100 Ω || 804 Ω)] = 155 mW. Maximum $T_J=85^{\circ}C+0.155W \cdot 150^{\circ}C/W=108^{\circ}C.$

DRIVING CAPACITIVE LOADS

The OPA658's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 5pF should be buffered by connecting a small resistance, usually 10Ω to 35Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated with its characteristic impedance.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

FIGURE 5. Driving Capacitive Loads.

COMPENSATION

The OPA658 is internally compensated and is stable in unity gain with a phase margin of approximately 62°, and approximately 64° in a gain of +2V/V when used with the recommended feedback resistor value. Frequency response for other gains are shown in the Typical Performance Curves. The high-frequency response of the OPA658 in a good layout is very flat with frequency.

DISTORTION

The OPA658's Harmonic Distortion characteristics into a 100Ω load are shown versus frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 6. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 6. 5MHz Harmonic Distortion vs Load Resistance.

Narrowband communication channel requirements will benefit from the OPA658's wide bandwidth and low intermodulation distortion on low quiescent power. If output signal power at two closely spaced frequencies is required, third-order nonlinearities in any amplifier will cause spurious power at frequencies very near the two fundamental frequencies. If the two test frequencies, f_1 and f_2 , are specified in terms of average and delta frequency, $f_0 = (f_1 + f_2)/2$ and $\Delta f = \left| f_2 - f_1 \right|$, the two, third-order,

close-in spurious tones will appear at f_0 ± 3 • $\Delta f.$ The two tone, third-order spurious plot shown in Figure 7 indicates how far below these two equal power, closely spaced, tones the intermodulation spurious will be. The single tone power is at a matched 50Ω load. The unique design of the OPA658 provides much greater spurious free range than what a two-tone third-order intermodulation intercept specification would predict. This can be seen in Figure 7 as the spurious free range actually increases at the higher output power levels.

FIGURE 7. Third-Order Intercept Point vs Frequency.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (dG) and Differential Phase (dP) are among the more important specifications for video applications. dG is defined as the percent change in closed-loop gain over a specified change in output voltage level. dP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both dG and dP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL sub-carrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set.

dG/dP of the OPA658 were measured with the amplifier in a gain of +2V/V with 75Ω input impedance and the output back-terminated in 75Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with sync pulse. With these conditions the test circuit shown in Figure 8 delivered a 100IRE modulated ramp to the 75Ω input of the videoanalyzer. The signal averaging feature of the analyzer

FIGURE 8. Configuration for Testing Differential Gain/Phase.

to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA658 is 0.025% differential gain and 0.02° differential phase to both NTSC and PAL standards.

NOISE FIGURE

The OPA658's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA658's Noise Figure vs Source Resistance is shown in Figure 9.

FIGURE 9. Noise Figure vs Source Resistance.

analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models using MicroSim Corporation's PSpice are available for the OPA658. Contract Burr-Brown applications departments to receive a SPICE Diskette.

COMPENSATION

Characteristics and internally compensated and is stable in unity gain with a phase marger of approximately 62°, and approximately 64° in a gain of +2 V/V when used with the recomned of feedback resistor value. Frequency response for subset gains are shown in the "typical Performance Curves. The high-frequency response of the OPA658 in a good ayour is very flar with frequency.

Che OPA658's Harmonic Distortion characteristics into a 1000 load are shown versus frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in represent to include the contribution of the endback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 10. Layout Detail For Dem-OPA65X Demonstration Board.

FIGURE 11a. Evaluation Board Silkscreen (Bottom). 11b. Evaluation Board Silkscreen (Top). 11c. Evaluation Board Layout (Solder Side). 11d. Evaluation Board Layout (Layout Side).

TYPICAL APPLICATION

FIGURE 12. Low Distortion Video Amplifier.

Treatm, AZ 857) 1 - Street Address: 8730 S. Turcont Blvd. - Treatm, AZ 83704

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11072

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER AND BUFFER

FEATURES

- WIDE BANDWIDTH: 850MHz
- HIGH SLEW RATE: 3000V/µs
- LOW DIFFERENTIAL GAIN/PHASE ERROR: 0.06%/0.02°
- VERSATILE CIRCUIT FUNCTION
- EXTERNAL I_O-CONTROL

DESCRIPTION

The OPA660 is a versatile monolithic component designed for wide-bandwidth systems including high performance video, RF and IF circuitry. It includes a wideband, bipolar integrated voltage-controlled current source and voltage buffer amplifier.

The voltage-controlled current source or Operational Transconductance Amplifier (OTA) can be viewed as an "ideal transistor." Like a transistor, it has three terminals—a high-impedance input (base), a low-impedance input/output (emitter), and the current output (collector). The OTA, however, is self-biased and bipolar. The output current is zero-for-zero differential input voltage. AC inputs centered about zero produce an output current which is bipolar and centered about zero. The transconductance of the OTA can be adjusted with an external resistor, allowing bandwidth, quiescent current and gain trade-offs to be optimized.

The open-loop buffer amplifier provides 850MHz bandwidth and 3000V/µs slew rate. Used as a basic building block, the OPA660 simplifies the design of AGC amplifiers, LED driver circuits for Fiber Optic Transmission, integrators for fast pulses, fast control loop amplifiers, and control amplifiers for capacitive sensors and active filters.

The OPA660 is packaged in SO-8 surface-mount, and 8-pin plastic DIP, specified from -40°C to +85°C.

APPLICATIONS

- VIDEO/BROADCAST EQUIPMENT
- COMMUNICATIONS EQUIPMENT
- HIGH-SPEED DATA ACQUISITION
- WIDEBAND LED DRIVER
- DIRECT-FEEDBACK AMPLIFIER
- AGC-MULTIPLIER
- NS-PULSE INTEGRATOR
- CONTROL LOOP AMPLIFIER
- 400MHz DIFFERENTIAL INPUT AMPLIFIER

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROWN

SPECIFICATIONS

Typical at I_Q = 20mA, V_S = ±5V, T_A = +25°C, and R_L = 500 Ω unless otherwise specified.

Enable			OPA660AP, AU	1 (4000 1	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OTA TRANSCONDUCTANCE	V _C = 0V	75	125	200	mA/V
OTA INPUT OFFSET VOLTAGE Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	$V_B = 0$ $V_S = \pm 4.5 \text{V to } \pm 5.5 \text{V}$ $V+ = 4.5 \text{V to } 5.5 \text{V}$ $V- = -4.5 \text{V to } -5.5 \text{V}$	55 40 40	+10 50 60 45 48	±30	mV μV/°C dB dB dB
OTA B-INPUT BIAS CURRENT Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	V _S = ±4.5V to ±5.5V V+ = 4.5V to 5.5V V- = -4.5V to -5.5V		-2.1 5	±5 ±750 ±1500 ±500	μΑ nA/°C nA/V nA/V nA/V
OTA OUTPUT BIAS CURRENT Output Bias Current vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	$V_B = 0$, $V_C = 0V$ $V_S = \pm 4.5V$ to $\pm 5.5V$ V+ = 4.5V to $5.5VV- = -4.5V$ to $-5.5V$		±10 500 ±10 ±10 ±10	±20 ±25 ±25 ±25 ±25	μΑ nΑ/°C μΑ/V μΑ/V μΑ/V
OTA OUTPUT Output Current Output Voltage Compliance Output Impedance Open-Loop Gain	$I_C = \pm 1 \text{mA}$ $f = 1 \text{kHz}$	±10 ±4.0	±15 ±4.7 25k 4.2 70	BIO 088A9O	mA V Ω pF dB
BUFFER OFFSET VOLTAGE Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	V _S = ±4.5V to ±5.5V V+ =: 4.5V to 5.5V V- = -4.5V to -5.5V	55 40 40	+7 50 60 45 48	±30 A A A	mV μV/°C dB dB dB
BUFFER INPUT BIAS CURRENT Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	V _S = ±4.5V to ±5.5V V+ = 4.5V to 5.5V V- = -4.5V to -5.5V	V3+=+V	-2.1 5	±5 ±750 ±1500 ±500	μΑ nA/°C nA/V nA/V nA/V
BUFFER and OTA INPUT IMPEDANCE Input Impedance	PACKAGING IN	JuG J	1.0 2.1		MΩ pF
BUFFER INPUT NOISE Voltage Noise Density, f = 100kHz	JEGORI	nt	4		nV/√Hz
BUFFER DYNAMIC RESPONSE Small Signal Bandwidth Full Power Bandwidth Differential Gain Error Differential Phase Error Harmonic Distortion, 2nd Harmonic Slew Rate Settling Time 0.1% Rise Time (10% to 90%)	$V_O = \pm 100 \text{mV}$ $V_O = \pm 1.4 \text{V}$ $V_O = \pm 2.5 \text{V}$ 3.58MHz, at 0.7V 3.58MHz, at 0.7V f = 10MHz, $V_O = 0.5 \text{Vp-p}$ 5V Step 2V Step $V_O = 100 \text{mVp-p}$ 5V Step	ATIVITY S. Burr-Brown bandled with	850 800 570 0.06 0.02 -68 3000 25 1	ECTROS SCHARC at all integral	MHz MHz MHz MHz % Degrees dBc V/µs ns ns
Group Delay Time	DAGGAGO	puilbord race	250	migand ha isl	ps
BUFFER RATED OUTPUT Voltage Output Current Output Gain Output Impedance	$I_O = \pm 1 mA$ $R_L = 500 \Omega$ $R_L = 5 k \Omega$	±3.7 ±10 0.96	±4.2 ±15 0.975 0.99 7 2	procedures car n range from si ice failure, Pre lble to damage	ν mA ν/ν ν/ν Ω pF
POWER SUPPLY Voltage, Rated Derated Performance Quiescent Current (Programmable, Useful Range)	at yliklienssuur on namua ss VI V	±4.5	±5 ±3 to ±26	±5.5	V V mA

FAU	PUNCTION
1	Enable
2	NC PLATER
3	NC
4	OTA Input, Low Impedance
5	OTA Input, High Impedance
6	-5V Supply, Output
7	-5V Supply
8	Buffer Input
9	Buffer Output
10	+5V Supply
a _ 11_v	+5V Supply, Output
12	NC
13	OTA Output
14	NC

Substrate Bias: Negative Supply
NC: No Connection
Wire Bonding: Gold wire bonding is recommended.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	41 x 77, ±5	1.05 x 1.95, ±0.13
Die Thickness	14 ±1	0.55, ±0.025
Min. Pad Size	4 x 4	0.10 x 0.10
Backing: Titanium	0.02,+0.05,-0.0	0.0005,+0.0013, -0.0
Gold	0.30, ±0.05	0.0076, ±0.0013

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±6V
Input Voltage(1)	±V _S ±0.7V
Operating Temperature	40°C to +85°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Inputs are internally diode-clamped to ±V_S.

PACKAGING INFORMATION

MODEL	PACKAGE 3 1000	PACKAGE DRAWING NUMBER(1)
OPA660AP	8-Pin Plastic DIP	006
OPA660AU	SO-8 Surface-Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA660AP	Plastic 8-Pin DIP	-25°C to +85°C
OPA660AU	SO-8 Surface-Mount	-25°C to +85°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABRIDGED DATA SHEET

For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11120

Wide Bandwidth, Fast Settling Difet® OPERATIONAL AMPLIFIER

FEATURES

- WIDE GAIN-BANDWIDTH: 35MHz
- HIGH SLEW RATE: 100V/µs
- FAST SETTLING: 240ns to 0.01%
- FET INPUT: I_B = 50pA max
- HIGH OUTPUT CURRENT: 50mA
- WIDE SUPPLY RANGE: $V_s = \pm 4.5 // \pm 18V$

APPLICATIONS

- HIGH-SPEED DATA ACQUISITION
- OPTOELECTRONICS
- TRANSIMPEDANCE AMPLIFIER
- LINE DRIVER

DESCRIPTION

The OPA671 is a FET-input monolithic operational amplifier featuring wide bandwidth and fast settling time. Fabricated using Burr-Brown's *Difet*, complementary bipolar process, it provides an excellent combination of high speed, accuracy, and high output current

The OPA671 is versatile, operating from $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$ power supplies. It can deliver $\pm 10 \text{V}$ signals into a 200Ω load at slew rates of $100 \text{V}/\mu \text{s}$. OPA671's **Difet** input provides input bias current thousands of times lower than bipolar-input wideband op amps.

The OPA671 is internally compensated and is unity-gain stable, allowing use in the widest range of applications

The OPA671 is available in an 8-pin plastic DIP, rated for the industrial temperature range.

Difet® Burr-Brown Corporation

International Airport Industrial Park • Mailing Address: PO Eox 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

THE TRACE OF THE STATE OF THE S	- MSD-1		OPA671AP	MANUTEM SE	
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Average Drift Power Supply Rejection	$V_S = \pm 4.5 \text{ to } \pm 16.5 \text{V}$	72	±0.5 ±10 94	±5	mV μV/°C dB
INPUT BIAS CURRENT ⁽¹⁾ Input Bias Current Input Offset Current	V _{CM} = 0V V _{CM} = 0V		5 2	50	pA pA
NOISE Input Voltage Noise Noise Density, f = 100Hz f = 1kHz f = 10kHz f = 100kHz Voltage Noise, BW = 10Hz to 1MHz Input Bias Current Noise Current Noise Density, f = 10Hz to 1MHz	th, Fast Set ONAL AMPI DESCRIPTI	biwbr ITARI	24 15 12 10 60	V DIA URES	nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVp-p
NPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{CM} = ±10V	±12 74	±13	SAIN-BAND	V dB
INPUT IMPEDANCE Differential Common-Mode	time. Fabricajed usur mentary bipolar proce bitation of high and		10 ¹² 4.5 10 ¹² 6	SETTLING: IPUT: (" = 5	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_O = \pm 10V$, $R_L = 1k\Omega$ $V_O = \pm 10V$, $R_L = 200\Omega$	74 ± \	Amo3 5 399 80 78 399	OUTPUT CU SUPPLY RA	dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.01% 0.1% 1% Total Harmonic Distortion	G = -1, 10V Step G = 1, f = 100kHz V _O = 3V, R _L = 200Ω		35 107 240 150 85 0.0006	ICATIO SPEED DAT ELECTRON	MHz V/µs ns ns ns
OUTPUT Voltage Output Current Output Short Circuit Current Output Resistance, Open-Loop	$R_L = 200\Omega$ $V_O = \pm 10V$ DC	±10.5	±11.5 50 -90/+105 20	REVIEW	MA MA Ω
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current		±4.5	±15	±18 ±17	V V mA
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance, θ _{IA}	-100	-25 -40 -40	100	+85 +100 +125	%C %C %C %C

NOTE: (1) Tested without warmup at T_J = 25°C.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PAD	FUNCTION
1	-In
2	+ln
3	IQ
4	Comp In
5	Comp Out
6	-Short Circuit Bypass
7	-V
8	-V for O/P Stage
9	Balance 2A
10	Output
11	+V for O/P Stage
12	+V
13	+Short Circuit Bypass
14	Balance 2B
15	Balance 1
16	Slope
17	R _{CM}
18	R9

OPA671 DIE TOPOGRAPHY

PIN CONFIGURATION

DIE INFORMATION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±18V
Input Voltage	(V+) +1V to (V-) -1V
Storage Temperature	40°C to +125°C
Output Short-Circuit to Ground	15s
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

An integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	TEMP. RANGE
OPA671AP	8-Pin Plastic DIP	-25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA671AP	8-Pin Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

OPA675 OPA676

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 Request Document Number 10864

Wideband Switched-Input OPERATIONAL AMPLIFIER

FEATURES

• FAST SETTLING: 9ns (1%)

■ WIDE BANDWIDTH: 185MHz (A_v = 10)

● LOW OFFSET VOLTAGE: ±250µV

TWO LOGIC SELECTABLE INPUTS

• FAST INPUT SWITCHING: 8ns (TTL)

• 16-PIN DIP PACKAGE

DESCRIPTION

The OPA675 and OPA676 are wideband monolithic operational amplifiers with two independent differential inputs. Either input can be selected by an external logic signal. The OPA675 is compatible with ECL logic while the OPA676 is TTL compatible. Both amplifiers are externally compensated and feature very fast input selection speed: ECL = 4ns, TTL = 6ns. This amplifier features fully symmetrical differential inputs due to its

APPLICATIONS

- PROGRAMMABLE-GAIN AMPLIFIER
- FAST 2-INPUT MULTIPLEXER
- SYNCHRONOUS DEMODULATOR
- PULSE/RF AMPLIFIERS
- VIDEO AMPLIFIERS
- ACTIVE FILTERS

"classical" operational amplifier circuit architecture. Unlike "current-feedback" amplifier designs, the OPA675/676 may be used in all op amp applications requiring high speed and precision.

Low distortion and crosstalk make these amplifiers suitable for RF and video applications.

The OPA675 and OPA676 are available in KG (0°C to +70°C) and SG (-55°C to +125°C) grades. All grades are packaged in a 16-pin DIP.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At V_{CC} = ± 5 VDC, R_L = 150 Ω , and T_A = +25°C, unless otherwise noted.

		0		OPA675/676JG, SG		OP	A675/676	KG		
PARAMETER		200	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE(1)						1			93	WER STEPS
Voltage: f _O = 10Hz			$R_S = 0\Omega$	-04	27					nV/√H:
				2000	10	1 1			60857	nV/√H
f _O = 100Hz		920		00VX					809578	
$f_0 = 1kHz$		148	88	JAmo»	3.8				3000	nV/√H
$f_O = 10kHz$				-	2.6				DIVERS OF	nV/√H:
$f_0 = 100kHz$					2.4	1 1	-1010		100000 20	nV/√H:
f _B = 10Hz to 10MHz		100		CLEAR IN	7.9		100			μVrms
Current: f _O = 10Hz to 1MHz		01			2.7		11 - 11	*	11 - 3	pA/√H:
	3 13	65.7	L XG. SG 1 - SS L X	NoneT	neoma.					p/v vi i
OFFSET VOLTAGE(1)							(3), (3)		3-1	
Input Offset Voltage		-	V _{CM} = 0VDC		±500	±2mV		±250	±1mV	μV
Average Drift			$T_A = T_{MIN}$ to T_{MAX}		±3	±10		±1	±5	μV/°C
Supply Rejection			A FY A F FY	65	86	110	70	*	10	dB
Supply Rejection	Hyblad		$\pm V_{CC} = 4.5V \text{ to } 5.5V$	03	00		70			UB
BIAS CURRENT(1)										
Input Bias Current			V _{CM} = 0VDC	38 36	23	35	8598	BI-II	30	μА
		-	-CIM							-
OFFSET CURRENT(1)				119/7 Selvi	160,00 850	150 XXXX	H PER T	T DES T	Dat with	OCIVata way
Input Offset Current		13	V _{CM} = 0VDC	-	0.8	5				μА
INPUT IMPEDANCE(1)					100		100 TO			
		X 13		ОПТОНІ	a.llc					oll .
Differential		-			4k 2					Ω p
Common-Mode					105 5			. 9	E RANG	Ω pl
INPUT VOLTAGE RANGE(1)		130	0 08.0	QENT III	BROWN.			THE REAL PROPERTY.		1500180790
		391		14.05	105	101				1/
Common-Mode Input Range				±1.25	±2.5			1		V
Common-Mode Rejection			$V_{IN} = \pm 0.5 VDC, V_O = \pm 1.25 V$	75	100		85		300	dB
OPEN LOOP GAIN, DC(1)		1	E E E	[2] posta	TAT -	1 157	12/11/11			BIN COM
Open-Loop Voltage Gain				65	70	10.778		*	71	dB
				00	70		THE PERSON			GD
FREQUENCY RESPONSE										Santana gra
Closed-Loop Bandwidth			Gain = +2V/V	TACT IN THE	100				100	MHz
			Gain = +5V/V		145				71450	MHz
			Gain = +10V/V	7077	185		16 11 13		men	MHz
			Gain = +50V/V	TAN - W	60				10000	MHz
0								. 31	MAR BO	
Crosstalk			Gain = +10V/V, f = 100kHz		-100		1300	900	us tuget	dBC(2
			f = 1MHz	v new	-80	-1			Beingin	dBC
		-	f = 10MHz	14 100014	-68	-	-		HAPO (215)	dBC
			f = 100MHz		-35				DOM, DO	dBC
Harmonic Distortion: 10MHz			$G = +10V/V$, $R_L = 50\Omega$, $V_O = 0.5Vp-p$	7 - 1		- t 0		100	isti enal	oV one Lin
		-	Second Harmonic		-61		-		-	dBC
			Third Harmonic		-73				3	dBC
		80		Dul' page.	15050	1 1			1917 38	PANUL DISSERTE
Full Power Response			$V_0 = 2.5 \text{Vp-p}, \text{ Gain} = +10 \text{V/V}$	25	44		30		Qv 1	MHz
Slew Rate		100	Gair = +10V/V	200	350		240			V/µs
Settling Time: 1%				57 999	9		100		1000	ns
0.1%			Gair = +10V/V	- In carrie	15	3 14			HAT S.A.	ns
0.01%		GV	0.625V Output Step	1 990	25				1.3V 12	ns
		88.0		PT.000					no.	113
INPUT SELECTION(3)					Copic				- at 1	10 40 10
Transition Time			ECL: OPA675	18V/16	5				19	ns
50% In to 50% Out			TTL: OPA676		7.5				50	ns
		-	30. 50	A50					- 10	VIODELIS
DIGITAL INPUT			ENT 0.5%	1001 = 3		La Land			1	ridino est
TTL Logic Levels: V _{IL}			Logic "LO"	0		+0.8			*	V
V _{IH}			Logic "HI"	+2.0		+5	*		*	V
I _{IL}			Logic "LO", V _{II} = 0V	-	-0.05	-0.2				mA
I _{IH}			Logic "HI", V _{IH} = +2.7V		1	20			. 50	μА
ECL Logic Levels: V _{IL}		16	Logic "LO"	-1.81		-1.475			Med	V
		-		-1.15		-0.88		1		
V _{IH}			Logic "HI"	-1.15				196.8	TOPE BEEN	some V s
		A ROBERT	Logic "LO", $V_{IL} = -1.6V$	10793+	-50	-100		818 TOT DI	incarona	μА
I _{IH}			Logic "HI", V _{IH} = −1.0V		-50	-100			i mait	μА
RATED OUTPUT			The state of the s							
Voltage Output			$R_L = 150\Omega$	±2.1	±2.6					V
- onago output										
			$R_{\downarrow} = 50\Omega$	+1.25	+1.8					V
				-0.95	-1.1		-1.0			V
Current Output					±30			*		mA
Output Resistance			1MHz, Open-Loop, C _C = 5pF		5			*		Ω
Load Capacitance Stability			Gain = +2V/V	Marie I	50			*		pF
			Continuous to Gnd	FIELD IN	+45					mA
Short Circuit Current										
					45					

^{*} Same specifications as for JG.

SPECIFICATIONS (CONT)

ELECTRICAL

At V_{CC} = ±5VDC, R_L = 150 Ω , and T_A = +25°C, unless otherwise noted.

			OPAGISITSJG, SG	OPA675/676JG, SG			OPA675/676KG			
PARAMETER			CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY									3000	BSIDE TURN
Rated Voltage			±V _{CC}	R 00	5				2510	VDC
Derated Performance		±V _{CC}	4.5		6.5	*			VDC	
Current, Quiescent			I _O = 0mADC		22	30			*5148	mA
TEMPERATURE R	ANGE		0.3		7 1				21/10/13	= 01
Specification			Ambient Temp JG, KG	0		+70		child	DOMESTS TO	°C
Similar			SG	-55		+125		20,116		°C
Operating:			Ambient Temp JG, KG, SG	-55		+125	*	25-11	it of side	°C
θ_{JA}					125			*	(DEEDA)	°C/W

^{*} Same specifications as for JG.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 5$ VDC, $R_L = 150\Omega$, and $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

The state of the s		OPA	675/676J	G, SG	OP	ACC PROPERTY CARGOO		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specification	Ambient Temp JG, KG SG	0 -55		+70 +125		(righ	MAR BU	°C
OFFSET VOLTAGE Average Drift Supply Rejection	$T_{A} = T_{MIN} \text{ to } T_{MAX}$ $\pm V_{CC} = 4.5V \text{ to } 5.5V$	60	±3 85	±10	65	±1	±5	μV/°C dB
BIAS CURRENT Input Bias Current	V _{CM} = 0VDC	ra - nie	29	50		. 30	HOSETH	μА
OFFSET CURRENT Input Offset Current	V _{CM} = 0VDC	/2+ = dia 101= = di	0.8	10				μА
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$V_{IN} = \pm 0.5 VDC, V_O = \pm 1.25 V$	±2.0 60	±2.3 80		65	:		V dB
OPEN LOOP GAIN, DC Open-Loop Voltage Gain	100MHz -35	60	68	. 0	63	69	807 :noih	dB
DIGITAL INPUT TTL Logic Levels: V _{IL} V _{IH} I _{IL} I _{IH} ECL Logic Levels: V _{IL} V _{IH}	Logic "LO" Logic "HI" Logic "LO", V _{IL} = 0V Logic "HI", V _{IH} = +2.7V Logic "HI"	0 +2.0 -1.81 -1.15	-0.08 5	+0.8 +5 -0.4 50 -1.475 -0.88	:	:	eancg 281 21,0 21,0	V V mA μA V V
l _{IL}	Logic "LO", $V_{IL} = -1.6V$ Logic "HI", $V_{IH} = -1.0V$	SARO LIS	-50 -50			:	GHOR	μΑ
RATED OUTPUT Voltage Output	$R_L = 150\Omega$ $R_L = 50\Omega$	±2.0 +1.25 -0.8	±2.5 +1.6 -1.0		* -0.9	:	JuO I IV :si	V V V
POWER SUPPLY Current, Quiescent	I _O = 0mADC	HI, V _{sp}	25	35			18 19 14 194	mA

^{*} Same specifications as for JG.

NOTES: (1) Specifications are for both inputs (A and B). (2) dBC = Level referred to carrier-input signal. (3) Switching time from application of digital logic signal to input signal selection.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATIONS

PIN ASSIGNMENTS: OPA675

1	+ln A	16	+ln B
2	-In A	15	-In B
3	Offset Trim	14	DNC
4	Offset Trim	13	CHA (ECL)
5	Compensation Capacitor	12	CHA (ECL)
6	NC	11	Common
7	+V _{CC}	10	-V _{CC}
8	Output	9	NC

DNC = Do Not Connect

NC = No Internal Connection

PIN ASSIGNMENTS: OPA676

1	+In A	16	+In B
2	-In A A III	15	-In B
3	Offset Trim	14	DNC
4	Offset Trim	13	DNC
5	Compensation Capacitor	12	CHA (TTL)
6	NC	11	Common
7	+Vcc ana colding	10	-V _{CC}
8	Output	9	NC

DNC = Do Not Connect

NC = No Internal Connection

ABSOLUTE MAXIMUM RATINGS

0 1	.7/00
Supply	±7VDC
Differential Input Voltage	Total Vcc
Input Voltage Range (Analog and Digital)	±V _{CC}
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit to Ground (+25°C) Junction Temperature	Continuous to ground +175°C

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA675/76JG	16-Pin Hermetic DIP	109
OPA675/76SG	16-Pin Hermetic DIP	109
OPA675/76KG	16-Pin Hermetic DIP	109

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 Request Document Number 11136

Wideband Switched-Input OPERATIONAL AMPLIFIER

FEATURES

- FAST SETTLING: 11ns (1%)
- WIDE BANDWIDTH: 200MHz
- TWO LOGIC SELECTABLE INPUTS
- LOW OFFSET VOLTAGE: ±380µV
- FAST INPUT SWITCHING: 4ns
- ACCEPTS TTL/ECL SWITCHING SIGNALS
- UNITY GAIN STABLE
- 16-PIN DIP AND SOIC PACKAGES

DESCRIPTION

The OPA678 is a wideband monolithic operational amplifier with two independent differential inputs. Either input can be selected by an external TTL or ECL logic signal. The amplifier is externally compensated and features a very fast input selection speed, 4ns for either ECL or TTL. This amplifier features fully symmetrical differential inputs due to its "classical" operational am-

APPLICATIONS

- VIDEO AMPLIFICATION AND SWITCHING
- FAST 2-INPUT MULTIPLEXER
- PULSE/RF AMPLIFIERS
- PROGRAMMABLE-GAIN AMPLIFIER
- ACTIVE FILTERS
- SYNCHRONOUS DEMODULATOR

plifier circuit architecture. Unlike "current-feedback" amplifier designs, the OPA678 may be used in all op amp applications requiring high speed and precision.

Low distortion and crosstalk make this amplifier suitable for RF and video applications.

The OPA678 is available in DIP, SOIC, and sidebraze packages. A military temperature range part is available in the sidebraze package.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROWN

SPECIFICATIONS

ELECTRICAL

At V_{CC} = ±5VDC, R_L = 150Ω, C_{COMP} = 5pF, and T_A = +25°C unless otherwise noted.

OPABZZEG	OPASTISAG, AP, AL	OPA678AG, AP, AU		OPA678SG				
PARAMETER XAM 497 MM	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE(1) Voltage: f _O = 100Hz f _O = 1kHz f _O = 10kHz f _O = 100kHz	$F_{i,S} = 0\Omega$	ooV± doV± 2Am0 =	55 21 7.8 4.9			:	Y.I gonari tres	nV/√Hz nV/√Hz nV/√Hz nV/√Hz
$f_B = 10Hz$ to 10MHz Current: $f_O = 10Hz$ to 1MHz	88+ 05- UA .9A	EIA ome	18 2.1			:	DKAN B	μVrms pA/√Hz
OFFSET VOLTAGE ⁽¹⁾ Input Offset Voltage Offset Voltage Drift Supply Rejection	$V_{CM} = 0$ VDC $T_A = T_{MIN}$ to T_{MAX} $\pm V_{CC} = 4.5$ V to 5.5V	65	±380 ±3 71	±1.5mV ±15		±380 ±3	±1mV ±10	μV μV/°C dB
BIAS CURRENT ⁽¹⁾ Input Bias Current	V _{CM} = 0VDC		14	50				μА
OFFSET CURRENT ⁽¹⁾ Input Offset Current	V _{CM} = 0VDC	18 36	0.2	2	HEER	87.11	1.5	μА
INPUT IMPEDANCE ⁽¹⁾ Differential Common-Mode	OPASTANS, AP, AU	OFFICE	25k 2 10 ⁶ 5			:		Ω pF Ω pF
INPUT VOLTAGE RANGE ⁽¹⁾ Common-Mode Input Range Common-Mode Rejection	$V_{IN} = \pm 0.5 VDC, V_{O} = \pm 1.25 V$	2.0 75	±2.5 85		:	:	OMAN P	V dB
OPEN-LOOP GAIN, DC ⁽¹⁾ Open-Loop Voltage Gain	V0 5 21 000 x40	50	60				BOA'	dB
FREQUENCY RESPONSE Closed-Loop Bandwidth	Gain = +1V/V, C _C = 9pF	140	200				Sist fit	MHz
Crosstalk	Gain = $+2V/V$, $C_C = 7pF$ Gain = $+5V/V$, $C_C = 1pF$ Gain = $+1V/V$, $f = 100kHz$ f = 1MHz	7/2 × g	70 -102 -83			:	TOURS	MHz MHz dBC ⁽²⁾ dBC
Au T	f = 10MHz f = 100MHz	3V(0) = 60	-64 -44				oeni GE RAIS	dBC dBC
Harmonic Distortion: 5MHz	G = +1V/V, R _L = 150 Ω , V _O = 0.25Vp-p Second Harmonic Third Harmonic	v dev	-71 -82			600	Reput Re Rejects	dBC ⁽³⁾
Large Signal Response ⁽⁴⁾ Slew Rate	$V_0 = 2.5Vp-p$, Gain = +1V/V Gain = +1V/V	32 250	45 350		:	:	MAIN, DO Logo Gair	MHz V/μs
Settling Time: 19% 0.11% 0.01% Differential Gain (0V to 0.7V) Differential Phase (0V to 0.7V)	Gain = -1V/V, 1V _{OUT} Step 4.5MHz, Gain = +2V/V, C _C = 2.2pF 4.5MHz, Gain = +2V/V, C _C = 2.2pF	2.1" olga H1 siga V *0.1"	11 22 30 0.02 0.02			:	gV cost	ns ns ns % Degrees
INPUT SELECTION ⁽⁵⁾ Transition Time 50% In to 50% Out	ECL: Operation TTL: Operation	ogio "Li ogio "H" LO", V.	4 4	8 8		:	9	ns ns
DIGITAL INPUT TTL Logic Levels: V _{IL} V _{IH} I _{IL} I _{IH}	Logic "LO" Logic "HI" Logic "I.O", V _{IL} = 0V Logic "HI", V _{IH} = +2.7V	0 +2.0	-0.05 1	+0.8 +5 -0.2 20	•		. 74	V V mA μA
ECL Logic Levels: V _{IL} V _{IH} I _{IL}	Logic "LO" Logic "HI" Logic "LO", V _{IL} = -1.6V	-1.81 -1.15	-50	-1.475 - 0.88 -100	:		V.A	V V μA
I _{IH}	Logic "HI", V _{IH} = −1.0V		-50	-100	J.A.	TAL MAN	25 2.101	μА
RATED OUTPUT Voltage Output Current Output Resistance Load Capacitance Stability Short Circuit Current	$\begin{array}{c} R_L = 150\Omega \\ R_L = 50\Omega \end{array}$ $\begin{array}{c} 1 \text{MHz, Open Loop, } C_C = 5 \text{pF} \\ R_F = 100\Omega, \text{ Gain} = +1 \text{V/V, } C_C = 10 \text{pF} \\ \text{Continuous to Gnd} \end{array}$	±2.5 ±1.7 ±30	±3.75 ±2.2 ±44 5 17 +45	au o eand	geeft ist	±45	de (a)	V V mA Ω pF mA

SPECIFICATIONS (CONT)

ELECTRICAL

At V_{CC} = ±5VDC, R_L = 150Ω, C_{COMP} = 5pF, and T_A = +25°C unless otherwise noted. Next the state of the

OPARTING		OPA6	78AG, A	P, AU	(DPA678SC	à	
PARAMETER XASE SYT MINE X	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY				FILE			62	DROW TURK
Rated Voltage	±V _{CC}	Bo = 00	5				- XHOD	VDC
Derated Performance	±V _{CC}	4.5		5.5			*sHbb	VDC
Current, Quiescent	I _O = 0mADC		26	30	18. 7		25.000	mA mA
TEMPERATURE RANGE Specification	Ambient Temp AG, AP, AU SG	-40 -55		+85 +125	•		SHILL TO 1 DH2 TO 1	= o¹ °C
θJA VII VmJ± 686± Vm	AG, SG AP AU	OVO = tel	125 90 100				Pleaping egan place	°C/W

^{*} Same specifications as for OPA678AG/AP/AU.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 5$ VDC, $R_L = 150\Omega$, $C_{COMP} = 5$ pF, and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

	28412	OPA6	78AG, A	P, AU	(tomerutiiO		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specification	Ambient Temp AG/AP/AU SG	-40 V 204V	1.0± = ₁₀	+85	- -55	931	+125	°C
OFFSET VOLTAGE Input Offset Voltage Offset Voltage Drift Supply Rejection	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} $\pm V_{CC} = 4.5V$ to 5.5V	60	600 ±3 70	±2.4mV ±15		73	±2mV ±10	μV μV/°C dB
BIAS CURRENT Input Bias Current	V _{CM} = 0VDC	D ,VIVS	15	85				μА
OFFSET CURRENT Input Offset Current	V _{CM} = 0VDC		0.5	5			7	μА
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$V_{IN} = \pm 0.5 VDC, V_{O} = \pm 1.25 V$	±2.0 60	±2.5	× 2	:	* 55	Mar. SM	V dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain	38 45 VVV+ = +1VV 280 380	50	60	v i			leanquae	dB
DIGITAL INPUT TTL Logic Levels: V _{IL} V _{IH} I _{IL} I _{IH} ECL Logic Levels: V _{IL} V _{IH} I _{IL}	Logic "LO" Logic "H" Logic "LO", V _{IL} = 0V Logic "H", V _{IH} + +2.7V Logic "LO" Logic "H" Logic "H" Logic "H" Logic "H", V _{IH} = -1.6V	0 +2.0 -1.81 -1.15	-0.08 5 -50 -50	+0.8 +5 -0.4 50 -1.475 -0.88	•	(7V) (0.74)	InQ (shed) (shed) (shed) (shed)	V V mA μA V V μA μA
RATED OUTPUT Voltage Output Output Current	$R_L = 150\Omega$ $R_L = 50\Omega$	±2.5 ±1.5	±3.75 ±2.0 44		±1.5	40	nls V _n Ver In	V V mA
POWER SUPPLY Current, Quiescent	I _O = 0mADC	D.F bigo. IH" bigo.	25	35			JIV salo Visc	mA

^{*} Same specifications as for AG/AP/AU.

NOTES: (1) Specifications are for both inputs (A and B). (2) dBC = Lever representations and NOTES: (1) Specifications are for both inputs (A and B). (2) dBC = Lever representations and NOTES: (1) Specifications are for both inputs (A and B). (2) dBC = Lever representations and NOTES: (1) Specifications are for both inputs (A and B). (2) dBC = Lever representations are for both inputs (A and B). (2) dBC

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Supply	±7VDC
Differential Input Voltage	Total V _{cc}
Input Voltage Range (Analog and Digital)	±V _{cc}
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit to Ground (+25°C)	Continuous to ground
Junction Temperature	+175°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA678AG	16-Pin Hermetic DIP	109
OPA678AP	16-Pin Plastic DIP	180
OPA678AU	16-Pin SOIC	211
OPA678SG	16-Pin Hermetic DIP	s (viceus 109 ms) V

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

ELUITORIA PUT LA	OPA678 () ()
Basic Model Number	MAP PARTICIPANT PART
Performance Grade Code -	A CHITZINY CHRISCO MEAN
A: -40°C to +85°C S: -55°C to +125°C	man distinct to their se
Package Code —	S LOW QUIESCENT CURI
G: 16-pin Ceramic DIP	xem Viinos : V WO Le
P: 16-pin Plastic DIP	
U: 16-pin SOIC	H C. Aderz : Linka Anon in

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11059

Precision, Single-Supply DUAL OPERATIONAL AMPLIFIER

FEATURES

- SINGLE POWER SUPPLY OPERATION
- INPUT VOLTAGE RANGE TO GROUND
- OUTPUT SWINGS NEAR GROUND
- LOW QUIESCENT CURRENT: 550µA max
- LOW V_{os}: 300μV max
- LOW DRIFT: 2.5μV/°C max
- LOW Ios: 1.5nA max
- LOW NOISE: 0.55µVp-p, 0.1Hz to 10Hz

DESCRIPTION

The OPA1013 dual operational amplifier provides precision performance in single power supply and low power applications. It is laser trimmed for low offset voltage and drift, greatly reducing the large errors common with LM324-type op amps. Input offset current is also trimmed to reduce errors in high impedance applications.

APPLICATIONS

- PRECISION INSTRUMENTATION
- BATTERY-POWERED EQUIPMENT
- BRIDGE AMPLIFIERS
- 4-20mA CURRENT TRANSMITTERS
- VOLTAGE COMPARATOR

The OPA1013 is characterized for operation at both +5V (single supply) and ±15V power supplies. When operated from a single supply, the input common-mode range includes ground and the output can swing to within 15mV of ground. Completely independent biasing networks eliminate interaction between the two amplifiers—even when one is used as a comparator.

The OPA1013 is available in an 8-pin plastic DIP specified for the 0° C to $+70^{\circ}$ C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Tucson, AZ 85706
 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 $V_S = \pm 15V$, $V_{CM} = 0V$, $T_A = +25^{\circ}C$ unless otherwise noted.

			OPA1013CN	8	OPA1013DN8			0
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	3		±50	±300		±200	±800	μV
Time Stability	3		0.5					μV/Mo
Input Offset Current			±0.08	±1.5	PERCHASIS OF		-	nA
Input Bias Current	8		7	30				nA
Voltage Noise, BW = 0.1 to 10Hz	Subolento Bine:V		0.55			A TAX A TAX		μVр-р
Noise Density, f = 10Hz			28					nV/√Hz
f = 1kHz	ACTUAL EXPERIENCE AND OTHER		25	798	THE GOODS			nV/√Hz
Current Noise Density, f = 10Hz	DIRECTACHARCEM		0.12					pA/√Hz
Input Resistance: Differential	1.8.00	70	300					ΜΩ
Input Resistance: Common-Mode	1 00000		4		Sant Billion	1 100000		GΩ
Open-Loop Voltage Gain	$V_{\Omega} = \pm 10V$, $R_{L} = 2k\Omega$	1.2	2.9		*	阿斯勒		V/µV
30.01 to.00 E	$V_{\Omega} = \pm 10V, R_{L} = 600\Omega$	0.5	1.9					V/µV
Common-Mode Input Range	Min. Pad Size	+13.5	+13.8		9100 957	1 1 1 1 1 1 1		v
59	Transition Count	-15	-15.3			ARTHUR		V
Common-Mode Rejection	V _{CM} = +13.5 to -15V	97	114	建筑 医克丁宁		第三·第五 /		dB
Power Supply Rejection	$V_S = \pm 2 \text{ to } \pm 18V$	100	117	Market School	100000000000000000000000000000000000000	*		dB
Channel Separation	$V_{\Omega} = \pm 10V, R_{I} = 2k\Omega$	120	137					dB
Voltage Output	$R_L = 2k\Omega$	±12.5	±14	CHAPHY	0907 31	A1013 D		V
Slew Rate		0.2	0.35			*		V/µs
Quiescent Current (per amplifier)			±0.35	±0.55		*	****	mA

^{*}Specification same as OPA1013CN8.

 $V_S = +5V/0V$, $V_{CM} = 0V$, $V_O = +1.4V$, $T_A = +25^{\circ}C$ unless otherwise noted.

V05s southV		OPA1013CN8			OPA1013DN8			N6 Plan
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Short Circuit (T _A is 25°C)	banhaO-	±90	±450		±250	±950	μV
Input Offset Current	- Strangedun D	ilmaqO	±3.0	±2.0		*		nA
Input Bias Current		= DR) 03-5	10	50			T AND	nA
Open-Loop Voltage Gain	$V_O = 5mV \text{ to } 4V$	5 DOM -	0.1			//		V/µV
	$R_L = 500\Omega$					1 1		
Common-Mode Input Range		+3.5	+3.8	8360	1	****	SIAN	V
	FORTA RESENDENCE PARALO	0	-0.3		7	*		V
Voltage Output Low	No Load	HEROFTAL	15	25				mV
Low	$R_L = 600\Omega$ to Ground	anous !	5	10			8 14/14	mV
Low	I _{SINK} = 1mA		200	350				mV
High	No Load	4	4.4	8 ni + [100		V
High	$R_L = 600\Omega$ to Ground	3.4	4	and-			1 -A	V
Quiescent Current (per amplifier)			0.33	0.5		*		mA

^{*}Specification same as OPA1013CN8.

 $T_A = 0$ °C to +70°C, $V_S = \pm 15$ V, $V_{CM} = 0$ V unless otherwise noted.

	DATIDAS	OPA1013CN8			OPA1013DN8			
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	GOMB Plasto DV	OPASI	±80	±400		±230	±1000	μV
nersion tools, please sec and of da	$V_S = +5/0V, V_O = +1.4V$	BIOTES	±110	±570		±280	±1200	μV
Input Offset Voltage Drift(1)	Appendix C of Bur-Brown III	o Jesita	0.4	2.5		0.7	5	μV/°C
Input Offset Current			±0.3	±2.8		*		nA
	$V_S = +5/0V, V_O = +1.4V$		±0.5	±6		*		nA
Input Bias Current			9	38		*		nA
	$V_S = +5/0V, V_O = +1.4V$		13	90				nA
Open-Loop Voltage Gain	$V_O = \pm 10V$, $R_L = 2k\Omega$	0.7	2.2					V/µV
Common-Mode Rejection	$V_{CM} = +13 \text{ to } -15 \text{V}$	94	113		*			dB
Power Supply Rejection	$V_{S} = \pm 2 \text{ to } \pm 18V$	97	116		*	*		dB
Voltage Output	$R_L = 2k\Omega$	±12.0	±13.9		*	*		V
V _o Low	$V_S = +5/0V, R_L = 600\Omega$		6	13		*	*	mV
V _O High	$V_S = +5/0V, R_L = 600\Omega$	3.2	3.9		*	*		V
Quiescent Current (per amplifier)		No. of Sec.	±0.37	±0.6		*	*	mA
	$V_S = +5/0V, V_O = +1.4V$		0.34	0.55		*	*	mA

^{*}Specification same as OPA1013CN8.

NOTE: (1) Guaranteed by design. This specification is established to a 98% confidence level.

DICE INFORMATION

OPA1013 DIE TOPOGRAPHY

PAD	FUNCTION
of Assessed	Output A
2	−ln A
3	+In A
4	V-
5	+In B
6	−In B
7	Output B
8	V+

Substrate Bias: -Vs

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	112 x 100 ±5	2.84 x 2.54 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Transistor Count		92
Backing		Gold

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±22V
Differential Input Voltage	±30V
Input Voltage	V+ to (V-) -5V
Output Short Circuit (TA = 25°C)	Continuous
Operating Temperature:	0°C to +70°C
Storage Temperature	65 to +150°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA1013CN8	Plastic DIP	0°C to +70°C
OPA1013DN8	Plastic DIP	0°C to +70°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA1013CN8	Plastic DIP	006
OPA1013DN8	Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10863

Precision Dual Difet ® OPERATIONAL AMPLIFIER

FEATURES

- VERY LOW NOISE: 8nV/√Hz at 10kHz
- LOW Vos: 500µV max
- LOW DRIFT: 5µV/°C max
- LOW I_B: 5pA max
- FAST SETTLING TIME: 2µs to 0.01%
- UNITY-GAIN STABLE

DESCRIPTION

The OPA2107 dual operational amplifier provides precision **Difet** performance with the cost and space savings of a dual op amp. It is useful in a wide range of precision and low-noise analog circuitry and can be used to upgrade the performance of designs currently using BIFET® type amplifiers.

The OPA2107 is fabricated on a proprietary dielectrically isolated (*Difet*) process. This holds input bias currents to very low levels without sacrificing other important parameters, such as input offset voltage, drift and noise. Laser-trimmed input circuitry yields excellent DC performance. Superior dynamic performance is achieved, yet quiescent current is held to under 2.5mA per amplifier. The OPA2107 is unitygain stable.

The OPA2107 is available in plastic DIP, metal TO-99, and SOIC packages. Industrial and Military temperature range versions are available.

APPLICATIONS

- DATA ACQUISITION
- DAC OUTPUT AMPLIFIER
- OPTOELECTRONICS
- HIGH-IMPEDANCE SENSOR AMPS
- HIGH-PERFORMANCE AUDIO CIRCUITRY
- MEDICAL EQUIPMENT, CT SCANNERS

Difet® Burr-Brown Corp.
BIFET® National Semiconductor

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

TOPORTO		OPA21	07AM, SM,	AP, AU	OPA2107BM		153	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE ⁽¹⁾ Input Offset Voltage Over Specified Temperature SM Grade Average Drift Over Specified Temperature Power Supply Rejection	$V_{CM} = 0V$ $V_{S} = \pm 10 \text{ to } \pm 18V$	80	100 0.5 0.8 3 96	1mV 2 2.5 10	84	50 0.2 2 100	500 1 5	μV mV mV μV/°C
INPUT BIAS CURRENT(1)	13							
Input Bias Current Over Specified Temperature SM Grade Input Offset Current Over Specified Temperature SM Grade	V _{CM} = 0V	no	4 0.25 4 1	10 1.5 35 8 1 28		2 0.15 0.5	5 1 3 0.5	pA nA nA pA nA nA
BW = 10 to 10kHz Current: f = 0.1Hz thru 20kHz BW = 0.1Hz to 10Hz	R _S = 0	AMC	30 12 9 8 1.2 0.85 1.2 23	HSI H	100	* * * * 0.9	EATU VERY L	nV/√Hz nV/√Hz nV/√Hz nV/√Hz µVp-p µVrms fA/√Hz fAp-p
INPUT IMPEDANCE Differential Common-Mode	e DAC OUTPOF		10 ¹³ 2 10 ¹⁴ 4	X	max V/V	भूताना भूतः सन्त	ig Mon	Ω pF Ω pF
INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature SM Grade Common-Mode Rejection	V _{CM} = ±10V	±10.5 ±10.2 ±10 80	±11 ±10.5 ±10.3 94	os aug	* * * * * * * * * * * * * * * * * * *	100	LOW L FAST S JUITY-C	V V V dB
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature SM Grade	$V_O = \pm 10V$, $R_L = 2k\Omega$	82 80 80	96 94 92		84 82	100 96	1083	dB dB dB
DYNAMIC RESPONSE Slew Rate Settling Time: 0.1% 0.01% Gain-Bandwidth Product THD + Noise Channel Separation	G = +1 G = -1, 10V Step G = 100 G = +1, f = 1kHz $f = 100Hz, R_1 = 2k\Omega$	13	18 1.5 2 4.5 0.001 120	not strip with the oseful in log circu see of de-	operation in the contract of t		a lo agai	V/µs µs µs MHz % dB
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current	Pin Casor	±4.5	±15	±18 ±5		107, is isolated	: OPA2	V V mA
Output Voltage Output Over Specified Temperature SM Grade Short Circuit Current Output Resistance, Open-Loop Capacitive Load Stability	R _L = 2kΩ 1MHz G = +1	±11 ±10.5 ±10.2 ±10	±12 ±11.5 ±11.3 ±40 70 1000	nce as my inared acc. Sup plescent The OPA	leters, si Leter-t serfonns ed, yet c	on parameter of the last the l	sr import , drift a da exosi fornance	V V V mA Ω pF
TEMPERATURE RANGE Specification AP, AU, AM, BM SM		-25 -55	12, metal Military	+85 +125	ni oldel c. todu m ere ar	Mis ava C packag se version	and*SOI	°C °C
Operating AP, AU AM, BM, SM Storage		-25 -55		+85 +125				°C °C
AP, AU AM, BM, SM Thermal Resistance (θ_{J-A})		-40 -65		+125 +150				°€
AP AU AM, BM, SM			90 175 200		10	a Cosp. saniconden	isobe 1°Ti	°C/W °C/W

^{*} Specifications same as OPA2107AM. NOTE: (1) Specified with devices fully warmed up.

Differential Input Voltage	Total V _S ±4V
Operating Temperature	
M Package	55°C to +125°C
P and U Packages	
Storage Temperature M. Package	
M Package	-65°C to +150°C
P and U Packages	-40°C to +125°C
Output Short Circuit to Ground (Ta	= +25°C) Continuous
Junction Temperature	+175°C
Lead Temperature	
M and P Packages (soldering, 10)s)+300°C
U Package, SOIC (3s)	+260°C
M and P Packages (soldering, 10	

OPA2107AP	Plastic DIP	006
OPA2107AM	Metal TO-99	001
OPA2107BM	Metal TO-99	001
OPA2107SM	Metal TO-99	001
OPA2107AU	SO-8 SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION TO A DOMESTIC AND A SECOND TO A S

MODELS	PACKAGE	SPECIFICATION TEMPERATURE RANGE
OPA2107AP	Plastic DIP	−25 to +85°C
OPA2107AM	Metal TO-99	-25 to +85°C
OPA2107BM	Metal TO-99	-25 to +85°C
OPA2107SM	Metal TO-99	-55 to +125°C
OPA2107AU	SO-8 SOIC	-25 to +85°C

PIN CONFIGURATIONS

Top View - P & U Packages Out A

& LOW MOISE: 198% Tested, BnW/Miz max at

7 Out B -In A 2 +ln A 3 6 -In B -Vs 4 5 +ln B

DICE INFORMATION

PAD	FUNCTION
dispire de	Out A
2	-In A
3	+ln A
4	-V _s
5	+ln B
6	-In B
7	Out B
8	+V _s

Substrate Bias: -V_s

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	97 x 77 ±3	2.46 x 1.96 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Transistor Count		53
Backing		None

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABRIDGED DATA SHEET

For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10540

Dual Low Noise Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 100% Tested, 8nV/√Hz max at 10kHz
- LOW BIAS CURRENT: 4pA max
- LOW OFFSET: 500μV max
- LOW DRIFT: 2.8µV/°C
- HIGH OPEN-LOOP GAIN: 114dB min
- HIGH COMMON-MODE REJECTION: 96dB min

APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DETECTOR ARRAYS

DESCRIPTION

The OPA2111 is a high precision monolithic dielectrically isolated FET (*Difet*) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications.

Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET® amplifiers.

Very low bias current is obtained by dielectric isolation with on-chip guarding.

Laser trimming of thin-film resistors gives very low offset and drift. Extremely low noise is achieved with patented circuit design techniques. A cascode design allows high precision input specifications and reduced susceptibility to flicker noise.

Standard dual op amp pin configuration allows upgrading of existing designs to higher performance levels.

*Patented

OPA2111 Simplified Circuit
(Each Amplifier)

BIFET® National Semiconductor Corp., Difet® Burr-Brown Corp.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $V_{CC} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted

		0	PA2111/	AM	0	PA2111	BM	0	PA2111	SM	OP	A2111K	M, KP	Les a di sen
PARAMETER OV.	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT NOISE	100% Tested 100% Tested 100% Tested (1) (1) (1) (1)	98	40 15 8 6 0.7 1.6 15	80 40 15 8 1.2 3.3 24	oe	30 11 7 6 0.6 1.2 12	60 30 12 8 1 2.5	68	40 15 8 6 0.7 1.6 15	80 40 15 8 1.2 3.3 24	/	40 15 8 6 0.7 1.6 15	na vota	nV/√Hz nV/√Hz nV/√Hz nV/√Hz µVrms µVp-p fAp-p
$f_0 = 0.1$ Hz to 20kHz	Ans. (1) ± Ans.		0.8	1.3		0.6	1		0.8	1 10		0.8	treat	fA/√Hz
OFFSET VOLTAGE ⁽²⁾ Input Offset Voltage Average Drift Match Supply Rejection Channel Separation	$V_{CM} = 0VDC$ $T_A = T_{MIN}$ to T_{MAX}	90	±0.1 ±2 ±1 110 ±3 136	±0.75 ±6	096 00	±0.05 ±0.5 ±0.5 110 ±3 136	±0.5 ±2.8	90	±0.1 ±2 2 110 ±3 136	±0.75 ±6	86	±0.3 ±8 2 110 ±3 136	±2 ±15	mV μV/°C μV/°C dB μV/V dB
BIAS CURRENT ⁽²⁾ Input Bias Current Match	V _{CM} = 0VDC	106	±2 ±1	±8	110	±1.2 ±0.5	091 ±4	108	±2 ±1	±8		±3 2	±15	pA pA
OFFSET CURRENT ⁽²⁾ Input Offset Current	V _{CM} = 0VDC	anta E	±1.2	±6	±10.6	±0.6	±3	主10.5 主5	±1.2	±6	V	±3	±12	pA
IMPEDANCE Differential Common-Mode	40 10	or	10 ¹³ 1 10 ¹⁴ 3	04	GF	10 ¹³ 1 10 ¹⁴ 3	0 4-	01	10 ¹³ 1 10 ¹⁴ 3	(VD = 0)		10 ¹³ 1 10 ¹⁴ 3	Inanu Y.J	Ω pF Ω pF
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±10VDC	±10	±11	enstwick	±10 96	±11	porueas	±10	±11	id time ,	±10 82	±11	e flov Ja	V dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain Match	$R_L \ge 2k\Omega$	110	125	ABSC Supple	114	125		110	125		106	125	а ио	dB dB
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate Settling Time, 0.1% 0.01% Overload Recovery, 50% Overdrive ⁽³⁾	$20\text{Vp-p}, R_L = 2k\Omega$ $\text{V}_O = \pm 10\text{V}, R_L = 2k\Omega$ $\text{Gain} = -1, R_L = 2k\Omega$ 10V Step $\text{Gain} = -1$	16 1 numarec	2 32 2 6 10	Dilleri Input Stora; Opera Lead	16 1	2 32 2 6 10		16 s1 ₁₀ 0	2 32 2 6 10	4	人	2 32 2 6 10	i nio i ni- i nis	MHz kHz V/μs μs μs
RATED OUTPUT Voltage Output Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$R_L = 2k\Omega$ $V_O = \pm 10VDC$ $DC, Open-Loop$ $Gain = +1$	±10 ±5	±11 ±10 100 1000 40	PACE	±10 ±5	±11 ±10 100 1000 40	OT	±10 ±5	±11 ±10 100 1000 40		±10 ±5	±11 ±10 100 1000 40	₉ v-	V mA Ω pF mA
POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent	I _O = 0mADC	±5	±15	±18 7	±5	±15	±18	±5	±15	±18	±5	±15	±18	VDC VDC mA
TEMPERATURE RANGE	And the second	family				1177						1		
Specification Operating "M" Package "P" Package Storage "M" Package	Ambient Temp. Ambient Temp. Ambient Temp.	-25 -55 -65	i) For de r Arcond IRING	+85 +125 +150	-25 -55 -65		+85 +125 +150	-55 -55 -65	3 nl+	+125 +125 +150	0 -55 -40 -65	A (E)	+70 +125 +85 +150	လ လ လ လ
"P" Package θ Junction-Ambient			200			200			200		-40	200(4)	+85	°C/W

NOTES: (1) Sample tested—this parameter is guaranteed. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (4) Typical θ_{tA} = 150°C/W for plastic DIP.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{CC} = \pm 15 \text{VDC}$ and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

e de la la company		OI	PA2111	AM	OF	PA2111	ВМ	0	PA2111	SM	OP	A2111K	M, KP	Nates
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specification Range	Ambient Temp.	-25	XAM	+85	-25	XAM	+85	-55	990	+125	0		+70	°C
INPUT OFFSET VOLTAGE(1) Input Offset Voltage Average Drift Match Supply Rejection	V _{CM} = 0VDC	86	±0.22 ±2 1 100 ±10	±1.2 ±6	90	±0.08 ±0.5 0.5 100 ±10	±0.75 ±2.8	86	±0.3 ±2 2 100 ±10	±1.5 ±6 ±50	82	±0.9 ±8 2 100 ±10	±5 ±15	mV μV/°C μV/°C dB μV/V
BIAS CURRENT ⁽¹⁾ Input Bias Current Match	V _{CM} = 0VDC		±125	±1nA		±75	±500		±2nA 1nA	±16.3nA		±125	±500	pA pA
OFFSET CURRENT(1) Input Offset Current	V _{CM} = 0VDC		±75	±750		±38	±375		±1.3nA	±12nA	.	±75	±375	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±10VDC	±10 86	±11	0.0s 017 -84	±10 90	±11	12 371 82	±10 86	±11		±10 80	±11	ned	V dB
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain Match	$R_L \ge 2k\Omega$	106	120 5	5.12	110	120	28	106	120 5	V0 = 110V	100	120 5	nations (parket	dB dB
RATED OUTPUT Voltage Output Current Output Short Circuit Current	$R_{L} = 2k\Omega$ $V_{O} = \pm 10VDC$ $V_{O} = 0VDC$	±10.5 ±5 10	±11 ±10 40	8.04	±10.5 ±5 10	±11 ±10 40	2,t± ,	±10.5 ±5 10	±11 ±10 40	V0 = 60V	±10.5 ±5 10	±11 ±10 40	These Print Internol	V mA mA
POWER SUPPLY Current, Quiescent	I _O = 0mADC		5	8		5	8		5	8		5	10	mA

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.

CONNECTION DIAGRAMS

Top View	+V _{CC} and Case	9	TO-99
	Out A 1 Out B		
	-in A 2	В	
	+ln A 3 4 +ln B		58+ 657+
	-V _{cc}		

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABSOLUTE MAXIMUM RATINGS

	THE RESIDENCE OF THE PERSON NAMED IN
Supply	±18VDC
Internal Power Dissipation (T _{.1} ≤ +175°C)	500mW
Differential Input Voltage	Total V _{CC}
Input Voltage Range	±V _{CC}
Storage Temperature Range: "M" Package	65°C to +150°C
"P" Package	40°C to +85°C
Operating Temperature Range: "M" Package	55°C to +125°C
"P" Package	-40°C to +85°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit to Ground (+25°C)	Continuous
Junction Temperature	+175°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA2111AM	TO-99	001
OPA2111BM	TO-99	001
OPA2111KM	TO-99	001
OPA2111SM	TO-99	001
OPA2111KP	8-Pin Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	OFFSET VOLTAGE, max (mV)	
OPA2111AM	TO-99	-25°C to +85°C	±0.75	(
OPA2111BM	TO-99	-25°C to +85°C	±0.5	
OPA2111KM	TO-99	0°C to +70°C	±2	
OPA2111SM	TO-99	-55°C to +125°C	±0.75	
OPA2111KP	8-Pin Plastic DIP	0°C to +70°C	±2	

OPA2604

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

FEATURES

- LOW DISTORTION: 0.0003% at 1kHz
- LOW NOISE: 10nV/√Hz
- HIGH SLEW RATE: 25V/μs
- WIDE GAIN-BANDWIDTH: 20MHz
- UNITY-GAIN STABLE
- WIDE SUPPLY RANGE: V_c = ±4.5 to ±24V
- DRIVES 600Ω LOADS

APPLICATIONS

- PROFESSIONAL AUDIO EQUIPMENT
- PCM DAC I/V CONVERTER
- SPECTRAL ANALYSIS EQUIPMENT
- ACTIVE FILTERS
- TRANSDUCER AMPLIFIER
- DATA ACQUISITION

DESCRIPTION

The OPA2604 is a dual, FET-input operational amplifier designed for enhanced AC performance. Very low distortion, low noise and wide bandwidth provide superior performance in high quality audio and other applications requiring excellent dynamic performance.

New circuit techniques and special laser trimming of dynamic circuit performance yield very low harmonic distortion. The result is an op amp with exceptional sound quality. The low-noise FET input of the OPA2604 provides wide dynamic range, even with high source impedance. Offset voltage is laser-trimmed to minimize the need for interstage coupling capacitors.

The OPA2604 is available in 8-pin plastic mini-DIP and SO-8 surface-mount packages, specified for the -25°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Average Drift Power Supply Rejection	V _S = ±5 to ±24V	80	±1 ±8 100	±5	mV μV/°C dB
INPUT BIAS CURRENT ⁽¹⁾ Input Bias Current Input Offset Current	V _{CM} = 0V V _{CM} = 0V		100 ±4		pA pA
f = 100Hz f = 1kHz f = 10kHz Voltage Noise, BW = 20Hz to 20kHz Input Bias Current Noise	nput, Low D IONAL AMP		1.5		nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVp-p
Current Noise Density, f = 0.1Hz to 20kHz INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{CM} = ±12V	±12 80	±13 100	URES	fA/√Hz V dB
INPUT IMPEDANCE Differential Common-Mode	B POM DA	INAL IL of	10 ¹² 8 10 ¹² 10	DISTORTI	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain		80 00	100	SLEW RA	IGIW dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.01% 0.1% Total Harmonic Distortion + Noise (THD+N) Channel Separation	G = 100	of 8.15: = g	20 25 1.5 1 0.0003	Y-GAIN ST : SUPPLY ES 600Ω L	MHz V/µs µs µs % dB
OUTPUT Voltage Output Current Output Short Circuit Current Output Resistance, Open-Loop	$R_{L} = 600\Omega$ $V_{O} = \pm 12V$	tht ut operation efertance.	±12 ±35 ±40 25	JEIP I 2604 is a du ned for entit	V mA mA W
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current, Total Both Amplifiers	nd odrer (e. 6)		±15	±24 ±12	V V mA
TEMPERATURE RANGE Specification Storage Thermal Resistance ⁽²⁾ , θ _{JA}	armonic (2, 6) ceptional	20	90	+85 +125	°C/W

NOTES: (1) Typical performance, measured fully warmed-up. (2) Soldered to circuit board—see text.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±25V
Input Voltage	(V-)-1V to (V+)+1V
Output Short Circuit to Ground	Continuous
Operating Temperature	
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s) AP	+300°C
Lead Temperature (soldering, 3s) AU	+260°C

PACKAGING INFORMATION

MODEL Tig	PACKAGE	PACKAGE DRAWING NUMBER(1)
OPA2604AP	8-Pin Plastic DIP	006
OPA2604AU	SO-8 Surface-Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMP. RANGE
OPA2604AP	8-Pin Plastic DIP	-25°C to +85°C
OPA2604AU	SO-8 Surface-Mount	-25°C to +85°C

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT VOLTAGE

TYPICAL PERFORMANCE CURVES (CONT) MAMPO TREES JACIETY

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

APPLICATIONS INFORMATION

The OPA2604 is unity-gain stable, making it easy to use in a wide range of circuitry. Applications with noisy or high impedance power supply lines may require decoupling capacitors close to the device pins. In most cases $1\mu F$ tantalum capacitors are adequate.

DISTORTION MEASUREMENTS

The distortion produced by the OPA2604 is below the measurement limit of virtually all commercially available equipment. A special test circuit, however, can be used to extend the measurement capabilities.

Op amp distortion can be considered an internal error source which can be referred to the input. Figure 1 shows a circuit which causes the op amp distortion to be 101 times greater than normally produced by the op amp. The addition of R_3 to the otherwise standard non-inverting amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reduced by a factor of 101. This extends the measurement limit, including the effects of the signal-source purity, by a factor of 101. Note that the input signal and load applied to the op amp are the same as with conventional feedback without R_3 .

Validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with the Audio Precision System One which greatly simplifies such repetitive measurements. The measurement technique can, however, be performed with manual distortion measurement instruments.

CAPACITIVE LOADS

The dynamic characteristics of the OPA2604 have been optimized for commonly encountered gains, loads and operating conditions. The combination of low closed-loop gain

and capacitive load will decrease the phase margin and may lead to gain peaking or oscillations. Load capacitance reacts with the op amp's open-loop output resistance to form an additional pole in the feedback loop. Figure 2 shows various circuits which preserve phase margin with capacitive load. Request Application Bulletin AB-028 for details of analysis techniques and applications circuits.

For the unity-gain buffer, Figure 2a, stability is preserved by adding a phase-lead network, $R_{\rm C}$ and $C_{\rm C}$. Voltage drop across $R_{\rm C}$ will reduce output voltage swing with heavy loads. An alternate circuit, Figure 2b, does not limit the output with low load impedance. It provides a small amount of positive feedback to reduce the net feedback factor. Input impedance of this circuit falls at high frequency as op amp gain rolloff reduces the bootstrap action on the compensation network.

Figures 2c and 2d show compensation techniques for noninverting amplifiers. Like the follower circuits, the circuit in Figure 2d eliminates voltage drop due to load current, but at the penalty of somewhat reduced input impedance at high frequency.

Figures 2e and 2f show input lead compensation networks for inverting and difference amplifier configurations.

NOISE PERFORMANCE

Op amp noise is described by two parameters—noise voltage and noise current. The voltage noise determines the noise performance with low source impedance. Low noise bipolarinput op amps such as the OPA27 and OPA37 provide very low voltage noise. But if source impedance is greater than a few thousand ohms, the current noise of bipolar-input op amps react with the source impedance and will dominate. At a few thousand ohms source impedance and above, the OPA2604 will generally provide lower noise.

FIGURE 1. Distortion Test Circuit.

FIGURE 2. Driving Large Capacitive Loads.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

POWER DISSIPATION

The OPA2604 is capable of driving 600Ω loads with power supply voltages up to ± 24 V. Internal power dissipation is increased when operating at high power supply voltage. The typical performance curve, Power Dissipation vs Power Supply Voltage, shows quiescent dissipation (no signal or no load) as well as dissipation with a worst case continuous sine wave. Continuous high-level music signals typically produce dissipation significantly less than worst case sine waves.

Copper leadframe construction used in the OPA2604 improves heat dissipation compared to conventional plastic packages. To achieve best heat dissipation, solder the device directly to the circuit board and use wide circuit board traces.

OUTPUT CURRENT LIMIT

Output current is limited by internal circuitry to approximately ±40mA at 25°C. The limit current decreases with increasing temperature as shown in the typical curves.

FIGURE 3. Three-Pole Low-Pass Filter.

FIGURE 4. Three-Pole Generalized Immittance Converter (GIC) Low-Pass Filter.

FIGURE 5. DAC I/V Amplifier and Low-Pass Filter.

FIGURE 6. Differential Amplifier with Low-Pass Filter.

* $C_1 \approx \sqrt{\frac{C_{OUT}}{2\pi\,R_f\,f_c}}$ $R_f = Internal\ feedback\ resistance = 1.5k\Omega$ $f_c = Crossover\ frequency = 8MHz$ PCM63
20-bit D/A
Converter

0PA2504

V_O = ±3Vp
To low-pass filter.

FIGURE 7. High Impedance Amplifier.

FIGURE 8. Digital Audio DAC I-V Amplifier.

FIGURE 9. Using the Dual OPA2604 Op Amp to Double the Output Current to a Load.

PET Ves 18:12 DC Biss careful attantion in cal slow rate of 2 careful attantion in cal slow rate of 2 careful attantion in calculation in cal

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SOUND QUALITY

The following discussion is provided, recognizing that not all measured performance behavior explains or correlates with listening tests by audio experts. The design of the OPA2604 included consideration of both objective performance measurements, as well as an awareness of widely held theory on the success and failure of previous op amp designs.

SOUND QUALITY

The sound quality of an op amp is often the crucial selection criteria—even when a data sheet claims exceptional distortion performance. By its nature, sound quality is subjective. Furthermore, results of listening tests can vary depending on application and circuit configuration. Even experienced listeners in controlled tests often reach different conclusions.

Many audio experts believe that the sound quality of a high performance FET op amp is superior to that of bipolar op amps. A possible reason for this is that bipolar designs generate greater odd-order harmonics than FETs. To the human ear, odd-order harmonics have long been identified as sounding more unpleasant than even-order harmonics. FETs, like vacuum tubes, have a square-law I-V transfer function which is more linear than the exponential transfer function of a bipolar transistor. As a direct result of this square-law characteristic, FETs produce predominantly even-order harmonics. Figure 10 shows the transfer function of a bipolar transistor and FET. Fourier transformation of both transfer functions reveals the lower odd-order harmonics of the FET amplifier stage.

FIGURE 10. I-V and Spectral Response of NPN and JFET.

THE OPA2604 DESIGN

The OPA2604 uses FETs throughout the signal path, including the input stage, input-stage load, and the important phase-splitting section of the output stage. Bipolar transistors are used where their attributes, such as current capability are important and where their transfer characteristics have minimal impact.

The topology consists of a single folded-cascode gain stage followed by a unity-gain output stage. Differential input transistors J_1 and J_2 are special large-geometry, P-channel JFETs. Input stage current is a relatively high 800 μA , providing high transconductance and reducing voltage noise. Laser trimming of stage currents and careful attention to symmetry yields a nearly symmetrical slew rate of $\pm 25\text{V}/\mu\text{s}$.

The JFET input stage holds input bias current to approximately 100pA, or roughly 3000 times lower than common bipolar-input audio op amps. This dramatically reduces noise with high-impedance circuitry.

The drains of J_1 and J_2 are cascoded by Q_1 and Q_2 , driving the input stage loads, FETs J_3 and J_4 . Distortion reduction circuitry (patent pending) linearizes the open-loop response and increases voltage gain. The 20MHz bandwidth of the OPA2604 further reduces distortion through the user-connected feedback loop.

The output stage consists of a JFET phase-splitter loaded into high speed all-NPN output drivers. Output transistors are biased by a special circuit to prevent cutoff, even with full output swing into 600Ω loads.

The two channels of the OPA2604 are completely independent, including all bias circuitry. This eliminates any possibility of crosstalk through shared circuits—even when one channel is overdriven.

Dual Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER

FEATURES

- LOW POWER: 50mW/Amp
- UNITY GAIN STABLE BANDWIDTH:
 360MHz
- FAST SETTLING TIME: 20ns to 0.01%
- LOW HARMONICS: -77dBc at 5MHz
- DIFFERENTIAL GAIN/PHASE ERROR: 0.01%/0.025°
- HIGH OUTPUT CURRENT: 85mA

APPLICATIONS

- HIGH RESOLUTION VIDEO
- BASEBAND AMPLIFIER
- CCD IMAGING AMPLIFIER
- ULTRASOUND SIGNAL PROCESSING
- ADC/DAC GAIN AMPLIFIER
- ACTIVE FILTERS
- HIGH SPEED INTEGRATORS
- DIFFERENTIAL AMPLIFIER

Low Power Voltage Feedback

DESCRIPTION

The OPA2650 is a dual, low power, wideband voltage feedback operational amplifier. It features a high bandwidth of 360MHz as well as a 12-bit settling time of only 20ns. The low distortion allows its use in communications applications, while the wide bandwidth and true differential input stage make it suitable for use in a variety of active filter applications. Its low distortion gives exceptional performance for telecommunications, medical imaging and video applications.

The OPA2650 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. Its unusual combination of speed, accuracy and low power make it an outstanding choice for many portable, multi-channel and other high speed applications, where power is at a premium.

The OPA2650 is also available in single (OPA650) and quad (OPA4650) configurations.

NOTE: Diagram shows only one-half of the OPA2650.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , and R_{FB} = 402 Ω unless otherwise noted. R_{FB} = 25 Ω for a gain of +1.

		0	PA2650P	U	OPA	UB	Table 1	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
REQUENCY RESPONSE					15 km	K. DEDIVING S	retail like:	1120
Closed-Loop Bandwidth(2)	G = +1		360			*(1)		MHz
	G = +2	200	108					MHz
	G = +5		32					MHz
	G = +10		16					MHz
Gain Bandwidth Product	4 = +10		160					MHz
Slew Rate	G = +1, 2V Step		240				1 2	V/us
	G = +1, 2V Step	1000						
Over Specified Temperature	propagation to the state of exact passes their	DOMESTICAL PROPERTY.	220	STANT SEE	SELL SELL	1205-026	20,000,000	V/µs
Rise Time	0.2V Step		1			16 16 E	100	ns
Fall Time	0.2V Step	WE'S 1	190	TO THE	DAN	WW. B	25 1 1 4	ns
Settling Time 0.01%	G = +1, 2V Step	C. Sections	20	第八日本	P. 177 A	W EI * N.	C 167 M	ns
0.1%	G = +1, 2V Step		11					ns
1%	G = +1, 2V Step	100	6.7				N 33 1	ns
Spurious Free Dynamic Range	$G = +1, f = 5.0MHz, V_O = 2Vp-p$	OF EL	-0.8 Pm	3 3 6	9			1 10
opanous i ros synamis mangs	$R_L = 100\Omega$		72					dBc
	$R_L = 402\Omega$	ALCOHOL: U	77	115 120 125 1	NO. AND US	-	200000000000000000000000000000000000000	dBc
Differential Gain	C .1 NTCC V 14Vn B 1500		0.01	Sec. 27 12		*		%
	$G = +1$, NTSC, $V_0 = 1.4Vp$, $R_L = 150\Omega$				100	Sett	COMA T	
Differential Phase	$G = +1$, NTSC, $V_O = 1.4Vp$, $R_L = 150\Omega$ G = +2		0.025	1 = 9 25	- 63		F 1 5 4 1	Degree
Bandwidth for 0.1dB Gain Flatness			21					MHz
Crosstalk	Input Referred, 5MHz, Channel-to-Channel		-84	may 2333	Co. 152 -	CE CHARLES	ST. TEEST	dB
NPUT OFFSET VOLTAGE				Manage And	CALLES AND A	1 X 115 A A A A A	1000	-
Input Offset Voltage	feedback operational amplif	160	±1	#±5	HATE	±1	±3	mV
Average Drift	width of 360MHz as well a	1000	±3	111111111111111111111111111111111111111			22410	μV/°C
Power Supply Rejection (+V _S)	V _S = ±4.5V to ±5.5V	60	76		70		HMOB	dB
	VS = 14.5V 10 15.5V	47	54		50			dB
(-V _S)		47	54	05 BE	50	UTTE	REAL	GD
INPUT BIAS CURRENT	nications apparent ons, with							
Input Bias Current	sgata mgai IsitV _{CM} = 0V ami	35/41	5 0	20	MICS	OMERA	10	μА
Over Temperature				30			20	μА
Input Offset Current	$V_{CM} = 0V$	ROR	0.5	APPENDING	(AF) A	0.2	0.5	μА
Over Temperature	vCM = 0 €		0.5	3	Terms less	0.2	2	μА
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	minoriza pasionalanyo sp. 43			0		G2474	1000	μΛ
NPUT NOISE and us of logic or bits	trons, medical imaging and		3 20	Tractice.	DUAY	Lierzy I	h steem	400
nput voltage Noise		195	PLITTICID	HENT:	FOUR	UPTU	D HOR	9
Noise Density, f = 100Hz	The OPA2650 is internally	7 7 6	43		11179	. *		nV/√Hz
t = 10kHz			9.4			*		nV/√Hz
f = 1MHz	gain stability. This amplifie	The State	8.4					nV/√Hz
1 = 1141712		- 9						
f = 1MHz to 100MHz			8.4	400	40.00	2012/10/2015	11.000000	nV√Hz
Integrated Noise, BW = 10Hz to 100	MHZ La Continous Hinorio and Identina	Pist be !	84	60	THUE	[AJ	1-15	μ∨р-р
Input Bias Current Noise								-
Current Noise Density, f = 0.1MHz to	o 100MHz		1.2	STORY	KIRN 1993	Transport.	THE STATE	pA/√Hz
Noise Figure (NF)	Left of Street Age of the section of			12/4/11	STATE	merca.	A PROPERTY.	. 20
	$R_S = 10k\Omega$		4	62 Sept.	TOTAL STREET	1 19 LO K	array as a	dB
	$R_{\rm S} = 50\Omega$		19.5	road.	11.1 1100	11.	DAGNA	dB
INPUT VOLTAGE RANGE				01011011	ERRA E	DESTRU	61 250	
Common-Mode Input Range	The OPA2650 is also avail	100	±2.8	RainLi	STATE OF	UNITED ST	100 55 55	V
Over Specified Temperature	The second secon	±2.2	12.0	100 100	DIO 0	MIROS	S-1275 AV	v
	Rang (0284A9O) been been and the same been and the same same and the same same same same same same same sam	65		11 -3750	\$1200 DOWN JAN	21000	Lead of the state	
Common-Mode Rejection	$V_{CM} = \pm 0.5 V$	65	90	CHECK PRO	70	100	moni	dB
INPUT IMPEDANCE					2017 4 445	410 1400	CO SECURITY	-
Differential			15 1		2015	TUF!	LUTTON	KΩ pF
Common-Mode			16 1		-			MΩ pf
OPEN-LOOP GAIN			1011	27.000	NULTURE	73.0000	P 145115	ivian II bi
	V 10V B 1000	45	54	The second	47	No. of Contract of	Ch 1 100'110	-In
Ones Lean Vellana Onia	$V_O = \pm 2V$, $R_L = 100\Omega$	45	51	SUFFIE	47	MINE	SCIETTED!	dB
				THE THEFT	45	0.8 2 2 1 00	277. 1. 24.0	dB
Open-Loop Voltage Gain Over Specified Temperature	$V_0 = \pm 2V, R_L = 100\Omega$	43					1 KA (1)	
Over Specified Temperature	$V_0 = \pm 2V, R_L = 100\Omega$	43						
Over Specified Temperature OUTPUT	$V_O = \pm 2V$, $R_L = 100\Omega$	43						
Over Specified Temperature OUTPUT Voltage Output	$V_0 = \pm 2V$, $R_L = 100\Omega$	\$ \$	±3.0		±2.4		100	V
Over Specified Temperature OUTPUT	$V_0 = \pm 2V$, $R_L = 100\Omega$	±2.2	±3.0 +2.5		±2.4 +2.4	:		V
Over Specified Temperature OUTPUT Voltage Output	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2	±2.5		±2.4			V
Over Specified Temperature DUTPUT Voltage Output Over Specified Temperature	$V_0 = \pm 2V$, $R_L = 100\Omega$	±2.2 ±2.2 ±2.0	±2.5 ±2.3	gnkrevni				V
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2 ±2.0 75	±2.5	gripsynl- Ngri	±2.4	:		V V mA
Over Specified Temperature Output Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2 ±2.0 75 65	±2.5 ±2.3 110	grinevni Nigri	±2.4			V V mA mA
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2 ±2.0 75 65 65	±2.5 ±2.3	gritnevnih higid	±2.4			V V mA mA
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2 ±2.0 75 65	±2.5 ±2.3 110 85	grinevni lugal	±2.4			V V mA mA mA
Over Specified Temperature Output Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2 ±2.0 75 65 65	±2.5 ±2.3 110	gränevnt	±2.4			V V mA mA
Over Specified Temperature Output Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current	V_0 = $\pm 2V$, R_L = 100Ω No Load R_L = 250Ω	±2.2 ±2.2 ±2.0 75 65 65	±2.5 ±2.3 110 85	gripsynt Jugal gripsynt hygni	±2.4			V V mA mA mA mA
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance	$V_0 = \pm 2V$, $H_L = 100\Omega$ No Load $H_L = 250\Omega$ $H_L = 100\Omega$	±2.2 ±2.2 ±2.0 75 65 65	±2.5 ±2.3 110 85	gränevnt	±2.4			V V mA mA mA
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY	$V_0 = \pm 2V$, $H_L = 100\Omega$ No Load $H_L = 250\Omega$ $H_L = 100\Omega$	±2.2 ±2.2 ±2.0 75 65 65	±2.5 ±2.3 110 85 150 0.08	gränevnt	±2.4			V V MA MA MA MA MA
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage	$V_0 = \pm 2V$, $H_L = 100\Omega$ No Load $H_L = 250\Omega$ $H_L = 100\Omega$	±2.2 ±2.2 ±2.0 75 65 65 35	±2.5 ±2.3 110 85	prihevnt hight	±2.4			V V mA mA mA mA mA Ω
Over Specified Temperature OUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Curtput, Sinking Over Specified Temperature Current Curtput, Sinking Over Specified Temperature Pout Temperature Output Resistance POWER SUPPLY Specified Operating Voltage	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 65	±2.5 ±2.3 110 85 150 0.08	±5.5	±2.4			V V MA MA MA MA MA O V V
Over Specified Temperature DUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current	$V_0 = \pm 2V$, $H_L = 100\Omega$ No Load $H_L = 250\Omega$ $H_L = 100\Omega$	±2.2 ±2.2 ±2.0 75 65 65 35	±2.5 ±2.3 110 85 150 0.08	±5.5 ±15.5	±2.4		±13.5	V V MA MA MA MA MA O V V MA
Over Specified Temperature DUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Curput Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Operating Voltage Range	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 65 35	±2.5 ±2.3 110 85 150 0.08	±5.5	±2.4			V V MA MA MA MA MA O V V
Over Specified Temperature Output Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Outescent Current Over Specified Temperature	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 65 35	±2.5 ±2.3 110 85 150 0.08	±5.5 ±15.5	±2.4		±13.5	V V MA MA MA MA Ω V V MA
Over Specified Temperature DUTPUT Voltage Output Over Specified Temperature Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Dutput Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 35	±2.5 ±2.3 110 85 150 0.08	±5.5 ±15.5 ±17.5	±2.4		±13.5	V V MA MA MA MA Ω V V MA MA
Over Specified Temperature DUTPUT Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification: P, U, PB, UB	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 65 35	±2.5 ±2.3 110 85 150 0.08	±5.5 ±15.5	±2.4		±13.5	V V MA MA MA MA MA O V V MA
Over Specified Temperature Output Voltage Output Over Specified Temperature Over Specified Temperature Over Specified Temperature Over Specified Temperature Current Output, Sinking Over Specified Temperature Short Circuit Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Specified Temperature TEMPERATURE RANGE Specification: P, U, PB, UB Intermal Resistance, θ_{ijk}	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 35	±2.5 ±2.3 110 85 150 0.08 ±5 ±11	±5.5 ±15.5 ±17.5	±2.4		±13.5	V V MA
Over Specified Temperature Output Voltage Output Over Specified Temperature Current Output, Sourcing Over Specified Temperature Current Output, Sinking Over Specified Temperature Current Output Resistance POWER SUPPLY Specified Operating Voltage Operating Voltage Auiescent Current	$V_{O}=\pm 2V, \ H_{L}=100\Omega$ $No \ Load$ $H_{L}=250\Omega$ $H_{L}=100\Omega$ $0.1MHz, \ G=+1$	±2.2 ±2.2 ±2.0 75 65 35	±2.5 ±2.3 110 85 150 0.08	±5.5 ±15.5 ±17.5	±2.4		±13.5	V V MA MA MA MA Ω V V MA MA

NOTES: (1) An asterisk (*) specifies the same value as the grade to the left. (2) Frequency response can be strongly influenced by PC board parasitics. The OPA2650 is nominally compensated assuming 2pF parasitic load. The demonstration board, DEM-265xP, shows a low parasitic layout for this device.

ABSOLUTE MAXIMUM RATINGS

	±5.5V
Internal Power Dissipation See 1	Thermal Considerations
Differential Input Voltage	±1.2V
Input Voltage Range	±V _S
Storage Temperature Range: P, PB, U, UB	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Junction Temperature (T,)	+175°C

PIN CONFIGURATION

PACKAGE INFORMATION

PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
SO-8 Surface Mount	182 006		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION(1)

Section As	MODEL	PACKAGE	TEMPERATURE RANGE			
1000	OPA2650U, UB	SO-8 Surface Mount	-40°C to +85°C			
G.	OPA2650P, PB	8-Pin Plastic DIP	-40°C to +85°C			

NOTE: (1) The "B" grade of the SOIC package will be marked with a "B" by pin 8. Refer to mechanical section for the location.

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

TYPICAL PERFORMANCE CURVES (CONT) ON AMPORAGE LAC

 $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

DISCUSSION OF PERFORMANCE

The OPA2650 is a dual low power, wideband voltage feedback operational amplifier. Each channel is internally compensated to provide unity gain stability. The OPA2650's voltage feedback architecture features true differential and fully symmetrical inputs. This minimizes offset errors, making the OPA2650 well suited for implementing filter and instrumentation designs. As a dual operational amplifier, OPA2650 is an ideal choice for designs requiring multiple channels where reduction of board space, power dissipation and cost are critical. Its AC performance is optimized to provide a gain bandwidth product of 160MHz and a fast 0.1% settling time of 11ns, which is an important consideration in high speed data conversion applications. Along with its excellent settling characteristics, the low DC input offset of ±1mV and drift of ±3µV/°C support high accuracy requirements. In applications requiring a higher slew rate and wider bandwidth, such as video and high bit rate digital communications, consider the dual current feedback OPA2658.

CIRCUIT LAYOUT AND BASIC OPERATION

Achieving optimum performance with a high frequency amplifier like the OPA2650 requires careful attention to layout parasitics and selection of external components. Recommendations for PC board layout and component selection include:

- a) Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability; on the non-inverting input it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- b) Minimize the distance (<0.25") from the two power pins to high frequency $0.1\mu F$ decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger ($2.2\mu F$ to $6.8\mu F$) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- c) Careful selection and placement of external components will preserve the high frequency performance of the OPA2650. Resistors should be a very low reactance type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in a high frequency application.

Since the output pin and the inverting input pin are most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the package pins. Surface mount feedback resistors directly adjacent to the output and inverting input pins work well for the dual pinout. Other network components, such as noninverting input termination resistors, should also be placed close to the package.

Even with a low parasitic capacitance shunting the resistor, excessively high resistor values can create significant time constants and degrade performance. Good metal film or surface mount resistors have approximately 0.2pF in shunt with the resistor. For resistor values > 1.5k Ω , this adds a pole and/or zero below 500MHz that can affect circuit operation. Keep resistor values as low as possible consistent with output loading considerations. The 402 Ω feedback used for the Typical Performance Plots is a good starting point for design. Note that a 25 Ω feedback resistor, rather than a direct short, is suggested for a unity gain follower. This effectively reduces the Q of what would otherwise be a parasitic inductance (the feedback wire) into the parasitic capacitance at the inverting input.

d) Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set $R_{\rm ISO}$ from the plot of recommended $R_{\rm ISO}$ vs capacitive load. Low parasitic loads may not need an $R_{\rm ISO}$ since the OPA2650 is nominally compensated to operate with a 2pF parasitic load.

If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and desired trace dimensions, a matching series resistor into the trace from the output of the amplifier is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

If the 6dB attenuation loss of a doubly terminated line is unacceptable, a long trace can be series-terminated at the source end only. This will help isolate the line capacitance from the op amp output, but will not preserve signal integrity as well as a doubly terminated line. If the shunt impedance at the destination end is finite, there will be some signal attenuation due to the voltage divider formed by the series and shunt impedances.

e) Socketing a high speed part like the OPA2650 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable response. Best results

mount pins (e.g., McKenzie Technology #710C) can give good results.

The OPA2650 is nominally specified for operation using ±5V power supplies. A 10% tolerance on the supplies, or an ECL –5.2V for the negative supply, is within the maximum specified total supply voltage of 11V. Higher supply voltages can break down internal junctions possibly leading to catastrophic failure. Single supply operation is possible as long as common mode voltage constraints are observed. The common mode input and output voltage specifications can be interpreted as a required headroom to the supply voltage. Observing this input and output headroom requirement will allow non-standard or single supply operation. Figure 1 shows one approach to single-supply operation.

FIGURE 1. Single Supply Operation.

OFFSET VOLTAGE ADJUSTMENT

If additional offset adjustment is needed, the circuit in Figure 2 can be used without degrading offset drift with temperature. Avoid external adjustment whenever possible since extraneous noise, such as power supply noise, can be inadvertently coupled into the amplifier's inverting input terminal. Remember that additional offset errors can be created by the amplifier's input bias currents. Whenever possible, match the impedance seen by both inputs as is shown with R_3 . This will reduce input bias current errors to the amplifier's offset current.

FIGURE 2. Offset Voltage Trim.

ESD damage has been well recognized for MOSFET devices, but any semiconductor device is vulnerable to this potentially damaging source. This is particularly true for very high speed, fine geometry processes.

ESD damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, ESD handling precautions are strongly recommended when handling the OPA2650.

OUTPUT DRIVE CAPABILITY

The OPA2650 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA2650 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as driving A/D converters require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA2650 maintains very low-closed loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA2650 will not require heatsinking under most operating conditions. Maximum desired junction temperature will limit the maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed +175°C.

Operating junction temperature (T_J) is given by $T_A + P_D\theta_{JA}$. The total internal power dissipation (P_D) is a combination of the total quiescent power for all channels (P_{DQ}) and the sum of the powers dissipated in each of the output stages (P_{DL}) to deliver load power. Quiescent power is simply the specified no-load supply current times the total

resistive load, be at a maximum when the output is a fixed DC voltage equal to 1/2 of either supply voltage (assuming equal bipolar supplies). Under this condition, $P_{DL} = V_S^{2/2}$ ($4*R_L$) where R_L includes feedback network loading. Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation. As an example, compute the maximum T_J for an OPA2650U at $A_V = +2$, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, $\pm V_S = \pm 5V$, with both outputs at $IV_S/2I$, and the specified maximum $T_A = +85^{\circ}C$. $P_D = 10V*17.5mA + 2*(5^2)/(4*(100\Omega)1804\Omega)) = 316mW$. Maximum $T_T = +85^{\circ}C + 0.316W*125^{\circ}C/W = 124^{\circ}C$.

DRIVING CAPACITIVE LOADS

The OPA2650's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 10pF should be isolated by connecting a small resistance, usually 15Ω to 30Ω , in series with the output as shown in Figure 4. This is particularly important when driving high capacitance loads such as flash A/D converters. Increasing the gain from +1 will improve the capacitive load drive due to increased phase margin.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

FIGURE 4. Driving Capacitive Loads.

FREQUENCY RESPONSE COMPENSATION

Each channel of the OPA2650 is internally compensated to be stable at unity gain with a nominal 60° phase margin. This lends itself well to wideband integrator and buffer applications. Phase margin and frequency response flatness will improve at higher gains. Recall that an inverting gain of -1 is equivalent to a gain of +2 for bandwidth purposes, i.e., noise gain = 2. The external compensation techniques developed for voltage feedback op amps can be applied to this device. For example, in the non-inverting configuration,

inverting configuration, the bandwidth may be limited without modifying the inverting gain by placing a series RC network to ground on the inverting node. This has the effect of increasing the noise gain at high frequencies, thereby limiting the bandwidth for the inverting input signal through the gain-bandwidth product.

At higher gains, the gain-bandwidth of this voltage feedback topology will limit bandwidth according to the open-loop frequency response curve. For applications requiring a wider bandwidth at higher gains, consider the dual current feedback model, OPA2658. In applications where a large feedback resistor is required (such as photodiode transimpedance circuits), precautions must be taken to avoid gain peaking due to the pole formed by the feedback resistor and the summing junction capacitance. This pole can be compensated by connecting a small capacitor in parallel with the feedback resistor, creating a cancelling zero term. In other high-gain applications, use of a three-resistor "T" connection will reduce the feedback network impedance which reacts with the parasitic capacitance at the summing node.

PULSE SETTLING TIME

High speed amplifiers like the OPA2650 are capable of extremely fast settling time with a pulse input. Excellent frequency response flatness and phase linearity are required to get the best settling times. As shown in the specifications table, settling time for a ±1V step at a gain of +1 for the OPA2650 is extremely fast. The specification is defined as the time required, after the input transition, for the output to settle within a specified error band around its final value. For a 2V step, 1% settling corresponds to an error band of ±20mV, 0.1% to an error band of ±2mV, and 0.01% to an error band of ±0.2mV. For the best settling times, particularly into an ADC capacitive load, little or no peaking in the frequency response can be allowed. Using the recommended R_{ISO} for capacitive loads will limit this peaking and reduce the settling times. Fast, extremely fine scale settling (0.01%) requires close attention to ground return currents in the supply decoupling capacitors. For highest performance, consider the OPA642 which isolates the output stage decoupling from the rest of the amplifier.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are among the more important specifications for video applications. The percentage change in closed-loop gain over a specified change in output voltage level is defined as DG. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. DG and DP are both specified at the NTSC sub-carrier frequency of 3.58MHz. DG and DP increase closed-loop gain and output voltage transition. All measurements were performed using a Tektronix model VM700 Video Measurement Set.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DISTORTION

The OPA2650's harmonic distortion characteristics into a 100Ω load are shown versus frequency and power output in the typical performance curves. Distortion can be significantly improved by increasing the load resistance as illustrated in Figure 5. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 5. 5MHz Harmonic Distortion vs Load Resistance.

CROSSTALK

Crosstalk is the undesired result of the signal of one channel mixing with and reproducing itself in the output of the other channel. Crosstalk is inclined to occur in most multichannel integrated circuits. In dual devices, the effect of crosstalk is measured by driving one channel and observing the output of the undriven channel over various frequencies. The magnitude of this effect is referenced in terms of channel-to-channel crosstalk and expressed in decibels. "Input referred" points to the fact that there is a direct correlation between gain and crosstalk, therefore at increased gain, crosstalk also increases by a factor equal to that of the gain. Figure 6 illustrates the measured effect of crosstalk in the OPA2650U.

FIGURE 6. Channel-to-Channel Crosstalk.

NOISE FIGURE W ... 9 that our section egetlov viggus

The OPA2650 voltage spectral density is specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA2650's Noise Figure Vs Source Resistance is shown in Figure 7.

FIGURE 7. Noise Figure vs Source Resistance.

SPICE MODELS AND EVALUATION BOARD

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models and evaluation PC boards (DEM-OPA265xP) are available for the OPA2650. Contact the Burr-Brown Applications Department to receive a SPICE diskette.

TYPICAL APPLICATION

FIGURE 8. Low Distortion Video Amplifier.

FIGURE 9. Layout Detail for DEM-OPA265X Demonstration Board.

FIGURE 10. Evaluation Board Silkscreen (Solder Side). 10b. Evaluation Board Silkscreen (Component Side). 10c. Evaluation Board Layout (Solder Side). 10d. Evaluation Board (Component Side).

OPA2658

Dual Wideband, Low Power, Current Feedback OPERATIONAL AMPLIFIER

FEATURES

- UNITY GAIN STABLE BANDWIDTH: 750MHz
- LOW POWER: 50mW/Channel
- LOW DIFFERENTIAL GAIN/PHASE ERRORS: 0.01%/0.03°
- HIGH SLEW RATE: 1700V/µs
- PACKAGE: 8-Pin DIP and 8-Pin SO-8

APPLICATIONS

- MEDICAL IMAGING
- HIGH-RESOLUTION VIDEO
- HIGH-SPEED SIGNAL PROCESSING
- COMMUNICATIONS
- PULSE AMPLIFIERS
- ADC/DAC GAIN AMPLIFIER
- MONITOR PREAMPLIFIER
- CCD IMAGING AMPLIFIER

DESCRIPTION

The OPA2658 is a dual, ultra-wideband, low power current feedback video operational amplifier featuring high slew rate and low differential gain/phase error. The current feedback design allows for superior large signal bandwidth, even at high gains. The low differential gain/phase errors, wide bandwidth and low

quiescent current make the OPA2658 a perfect choice for numerous video, imaging and communications applications.

The OPA2658 is optimized for low gain operation, and is also available in single, OPA658 and quad, OPA4658 configurations.

SPECIFICATIONS

 $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, unless otherwise noted.

8COSAMO 6EE		OPA2658P, U			OPA2658PB, UB			To a
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FREQUENCY RESPONSE	Market New York				1205000	(Ballette	SECTION S	20000
Closed-Loop Bandwidth(2)	G = +1	42	800	100		*(1)	1 4	MHz
	G = +2		500				5.1	MHz
	G = +5	Section 1	210	1 - 1				MHz
0	G = +10		130		4000			MHz
Slew Rate ⁽³⁾	G = +2, 2V Step		1700	1 3 8 1	1000			V/µs
At Minimum Specified Temperature	0 0 01/0		1500		900			V/µs
Settling Time: 0.01%	G = +2, 2V Step	robu den	15	to the military	STATE AND SHOP	No. of Street	Biolinker Lind	110
0.1%	G = +2, 2V Step	9 10 10 1000	12.6	no one on	on Sea !	NAF S	mont	ns
1%	G = +2, 2V Step	VYU_	4.8	1828	THU	8.8 1	BULL	ns dBc
Spurious Free Dynamic Range	f = 5MHz, G = +2, V _O = 2Vp-p		55			*		dBc
Third-Order Intercept Point	f = 20MHz, G = +2, V _O = 2Vp-p	A THE RESERVE	39	3616	0		110	dBm
Differential Gain	f = 10MHz, 4dBm, each tone	WE E.	0.01	7 16	1			%
	$G = +2$, NTSC, $V_0 = 1.4Vp-p$, $R_L = 150\Omega$		0.01		100.00 000000000			degree
Differential Phase	$G = +2$, NTSC, $V_O = 1.4Vp-p$, $R_L = 150\Omega$	No. of Contract of		SALI SARKEL	NAC VERN NO			dB
Crosstalk	Input Referred, 5MHz, channel-to-channel		78					UD
OFFSET VOLTAGE	PHOTAGETORA				- 9	Bal	FFA	13
Input Offset Voltage	Political Control of the Control		±3	±5.5	343	Ame 2, 2 d	±4.5	mV
Over Temperature	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P		±5	±8	10000000	1 1000 0	±7	mV
Power Supply Rejection	$V_{S} = \pm 4.5 \text{ to } \pm 5.5 \text{V}$	55	64	MAGE	58	MAG	4.11901	dB
INPUT BIAS CURRENT	A HICH DECAM LITTORY					3	SOMIH	-
Non-Inverting	$V_{CM} = 0V$		±4.0	±30		*	±18	μА
Over Temperature	# HIGH-SPEED SIGNAL		±10	±80	mue	OWER	±35	μА
Inverting	V _{CM} = 0V	1 1	±2.9	±35	is	1 3 5		μА
Over Temperature	SHOITAOHUNNOO @	- 25	±30	±75	AITIA	FFER	a wo.	μА
NOISE	AND ADDRESS OF THE PARTY OF THE	The second		- 05	0.0000	18: 0.0	HORSE	
nput Voltage Noise Density	PULSE AMPLIFIERS							_
f = 100Hz	million asmans a		1191	V0971	:BTAI	H WEJ	B HOW	nV/√H
f = 10kHz	O ADCYDAC GAIN AMP.	1 2 -	2.7					nV/√H
f = 50kHz	NONTOR PREAMPL	8-0		bas 9	10 ni9	GE: 8	ANGKA	nV/√H
IB = 100UZ 10 ZOOMIZ	D JUNEAU TO LINOR O		38					μVrms
Input Bias Current Noise Density	@ CCD IMAGING AMPL					F		
Inverting: f =10MHz	El little Production Person A		12.6			1		pA/√H
Non-Inverting: f =10MHz		1	12.6		or some than		100 -00 00	pA/√H
Noise Figure (NF)	$R_S = 50\Omega$		10		MON.	SHIP		dBm
	$R_S = 100\Omega$		8					dBm
INPUT VOLTAGE RANGE	wer quigscent current make the	og wal	hondah	w-sule	Jaub	658 is	OPA2	bill v
Common-mode input hange			±2.9	AA - PATHER				V
Over Temperature	ing for numerous video, imag		lidgms l	SHOUST	igo oab	back v	test his	THE V
Common-mode Rejection	$V_{CM} = \pm 1V$	45	50	Second?	b and	wite wite	semin .	dB
INPUT IMPEDANCE	149					1		25111
Non-Inverting ago may well not	rge The OPA 2658 is optimized	E TOITSQ	500 1	voils at	ck desi	reedba	CULTER	kΩ p
Inverting	- 17	Tow diff	50	en deid	te nave	dihive	al hand	Ω
OPEN-LOOP TRANSIMPEDANCE	as no odestiava esta si bas	1		1 1			1	
Open-loop Transimpedance	$V_0 = \pm 2V, R_L = 100\Omega$	150	180	wide	200	assud,	ning Le	kΩ
Over Temperature	$V_{O} = \pm 2V, R_{L} = 100\Omega$	100		0.70	150			kΩ
OUTPUT	8/4							
Voltage Output	No Load	±2.7	±3.0		*			V
Over Temperature	110 2000	±2.5	±2.8					v
Voltage Output	$R_L = 250\Omega$	±2.7	±2.9	11.00				v
Over Temperature	unent Minor		±2.8					v
Voltage Output	$R_L = 100\Omega$	±2.2	±2.6					V
Over Temperature		±2.0	±2.4	10				V
Output Current, Sourcing		80	120	SVIE,	1 .			mA
Over Temperature		70		1		- 1		mA
Output Current, Sinking		60	80					mA
Over Temperature		35	30					mA
Short Circuit Current		00	150	1 1				mA
Output Resistance	0.1MHz, G = +2		0.02	4			S. I. S. D.	Ω
POWER SUPPLY	0.11mi.e, G = 7E	-	0.02	19				44
			15	1			16	V
Specified Operating Voltage	TUOV CONTRACTOR TO THE TOTAL TO THE TOTAL	+45	±5	155	-01	igni+		V
Operating Voltage Range	Poth Changels V 15V	±4.5	1110	±5.5			144.5	
Quiescent Current	Both Channels, V _S = ±5V	MODEL	±10	±15.5	±6.5		±11.5	mA
Over Temperature	N		±11	±17			±13	mA
TEMPERATURE RANGE				14.31				
Specification: P, U, PB, UB		-40	011-	+85			*	°C
Thermal Resistance, θ _{JA}				1				
			100 125	-	1			°C/W

NOTES: (1) An asterisk (*) specifies the same value as the grade to the left. (2) Frequency response can be strongly influenced by PC board parasitics. The demonstration board, DEM-OPA65X shows a low parasitic layout for this part. Refer to the demonstration board layout for details. (3) Slew rate is rate of change from 10% to 90% of output voltage step.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPERATIONAL AMPLIFIERS

ABSOLUTE MAXIMUM RATINGS

Supply	±5.5\
Internal Power Dissipation Se	ee Thermal Considerations
Differential Input Voltage	±1.2\
Input Voltage Range	±V,
Storage Temperature Range: P, PB, U, UB	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Junction Temperature (T,)	

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
OPA2658P, PB	8-Pin Plastic DIP	006		
OPA2658U, UB	8-Pin Plastic SO-8	182		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION(1)

MODEL	PACKAGE	TEMPERATURE RANGE		
OPA2658P, PB	8-Pin Plastic DIP	-40°C to +85°C		
OPA2658U, UB	8-Pin Plastic SO-8	-40°C to +85°C		

NOTE: (1) The "B" grade of the SOIC package will be marked with a "B" by pin 8. Refer to mechanical section for the location.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMAGRADA JACINYT

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , R_{FB} = 402 Ω , unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMAGERED JACISYT

 $\rm T_A$ = +25°C, $\rm V_S$ = ±5V, $\rm R_L$ = 100 Ω , $\rm R_{FB}$ = 402 Ω , unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MROFINI 2MOTTACLISTIA

 $T_A = +25$ °C, $V_S = \pm 5$ V, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, unless otherwise noted.

AFFLICATIONS INFURINGIUM

THEORY OF OPERATION

Conventional op amps depend on feedback to drive their inputs to the same potential, however the current feedback op amp's inverting and non-inverting inputs are connected by a unity gain buffer, thus enabling the inverting input to automatically assume the same potential as the non-inverting input. This results in very low impedance at the inverting input to sense the feedback as an error current signal.

DISCUSSION OF PERFORMANCE

The OPA2658 is a dual, low-power, unity gain stable, current feedback operational amplifier which operates on ±5V power supply. The current feedback architecture offers the following important advantages over voltage feedback architectures: (1) the high slew rate allows the large signal performance to approach the small signal performance, and (2) there is very little bandwidth degradation at higher gain settings.

The current feedback architecture of the OPA2658 provides the traditional strength of excellent large signal response plus wide bandwidth, making it a good choice for use in high resolution video, medical imaging and DAC I/V Conversion. The low power requirements make it an excellent choice for numerous portable applications.

DC GAIN TRANSFER CHARACTERISTICS

The circuit in Figure 1 shows the equivalent circuit for calculating the DC gain. When operating the device in the inverting mode, the input signal error current (I_E) is amplified by the open loop transimpedance gain (T_O). The output signal generated is equal to $T_O \times I_E$. Negative feedback is applied through R_{FB} such that the device operates at a gain equal to $-R_{FB}/R_{FF}$.

FIGURE 1. Equivalent Circuit. (1/2 of OPA2658)

non-inverting (high impedance buffer) input. The output (buffer) error current ($I_{\rm E}$) is generated at the low impedance inverting input. The signal generated at the output is fed back to the inverting input such that the overall gain is $(1 + R_{\rm FB}/R_{\rm FF})$. Where a voltage-feedback amplifier has two symmetrical high impedance inputs, a current feedback amplifier has a low inverting (buffer output) impedance and a high non-inverting (buffer input) impedance.

The closed-loop gain for the OPA2658 can be calculated using the following equations:

Inverting Gain =
$$\frac{-\left(\frac{R_{FB}}{R_{FF}}\right)}{1 + \frac{1}{\text{Loop Gain}}}$$

$$1 + \frac{R_{FB}}{R_{FB}}$$
(1)

Non-Inverting Gain =
$$\frac{1}{1 + \frac{1}{\text{Loop Gain}}}$$
 (2)

where Loop Gain =
$$\begin{bmatrix} T_{O} \\ R_{FB} + R_{S} \left(1 + \frac{R_{FB}}{R_{FF}}\right) \end{bmatrix}$$

At higher gains the small value inverting input impedance causes an apparent loss in bandwidth. This can be seen from the equation:

nation:

$$f_{\text{ACTUAL}} \text{ BW} \approx \frac{\left[f_{\text{(A_v = +2)}} \text{ BW} \right] x (1.25)}{\left[1 + \left(\frac{R_S}{R_{FB}} \right) \times \left(1 + \frac{R_{FB}}{R_{FF}} \right) \right]}$$
(3)

This loss in bandwidth at high gains can be corrected without affecting stability by lowering the value of the feedback resistor from the specified value of 402Ω .

OFFSET VOLTAGE AND NOISE

The output offset is the algebraic sum of the input offset voltage and bias current errors. The output offset for non-inverting operation is calculated by the following equation:

Output Offset Voltage =
$$\pm Ib_N \times R_N \left(1 + \frac{R_{FB}}{R_{FF}} \right) \pm V_{IO} \left(1 + \frac{R_{FB}}{R_{FF}} \right) \pm Ib_I \times R_{FB}$$
 (4)

If all terms are divided by the gain $(1 + R_{FB}/R_{FF})$ it can be observed that input referred offsets improve as gain increases. The effective noise at the output can be determined by taking

FIGURE 2. Output Offset Voltage Equivalent Circuit.

Note that both the noise figure (NF) and the equivalent input offset voltages improve as the closed loop gain increases (by keeping R_{FR} fixed and reducing R_{FF} with $R_N = 0\Omega$).

INCREASING BANDWIDTH AT HIGH GAINS

The closed-loop bandwidth can be extended at high gains by reducing the value of the feedback resistor $R_{\rm FB}$. This bandwidth reduction is caused by the feedback current being split between $R_{\rm S}$ and $R_{\rm FF}$ (refer to Figure 1). As the gain increases (for a fixed $R_{\rm FB}$), more feedback current is shunted through $R_{\rm FF}$, which reduces closed-loop bandwidth.

CIRCUIT LAYOUT AND BASIC OPERATION

Achieving optimum performance with a high frequency amplifier like the OPA2658 requires careful attention to layout parasitics and selection of external components. Recommendations for PC board layout and component selection include:

- a) Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability; on the non-inverting input it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- b) Minimize the distance (< 0.25") from the two power pins to high frequency 0.1µF decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger (2.2µF to 6.8µF) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- c) Careful selection and placement of external components will preserve the high frequency performance of the OPA2658. Resistors should be a very low reactance type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in a high frequency application.

Since the output pin and the inverting input pin are most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the package pins. Other network components, such as non-inverting input termination resistors, should also be placed close to the package.

The feedback resistor value acts as the frequency response compensation element for a current feedback type amplifier.

will over compensate the amplifier, rolling off the frequency response, while decreasing it will decrease phase margin, peaking up the frequency response. Note that a non-inverting, unity gain buffer application still requires a feedback resistor for stability (560Ω for SO-8 and 402Ω for PDIP).

d) Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set R_{ISO} from the plot of recommended R_{ISO} vs capacitive load. Low parasitic loads may not need an R_{ISO} since the OPA2658 is nominally compensated to operate with a 2pF parasitic load. If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and desired trace dimensions, a matching series resistor into the trace from the output of the amplifier is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

If the 6dB attenuation loss of a doubly terminated line is unacceptable, a long trace can be series-terminated at the source end only. This will help isolate the line capacitance from the op amp output, but will not preserve signal integrity as well as a doubly terminated line. If the shunt impedance at the destination end is finite, there will be some signal attenuation due to the voltage divider formed by the series and shunt impedances.

e) Socketing a high speed part like the OPA2658 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable response. Best results are obtained by soldering the part onto the board. If socketing for the DIP package is desired, high frequency flush mount pins (e.g., McKenzie Technology #710C) can give good results.

The OPA2658 is nominally specified for operation using $\pm 5V$ power supplies. A 10% tolerance on the supplies, or an ECL -5.2V for the negative supply, is within the

maximumspecified total supply voltage of 11V. Higher supply voltages can break down internal junctions possibly leading to catastrophic failure. Single supply operation is possible as long as common mode voltage constraints are observed. The common mode input and output voltage specifications can be interpreted as a required headroom to the supply voltage. Observing this input and output headroom requirement will allow non-standard or single supply operation. Figure 3 shows one approach to single-supply operation.

FIGURE 3. Single Supply Operation.

ESD PROTECTION Manifest and to depart and is

ESD static damage has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. This is particularly true for very high speed, fine geometry processes.

ESD static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, static protection is strongly recommended when handling the OPA2658.

OUTPUT DRIVE CAPABILITY

The OPA2658 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA2658 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 4, the OPA2658 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 4. Closed-Loop Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA2658 will not require heatsinking under most operating conditions. Maximum desired junction temperature will set a maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed 175°C.

Operating junction temperature (T_I) is given by $T_A + P_D\theta_{IA}$. The total internal power dissipation (P_D) is a combination of the total quiescent power for all channels (P_{DQ}) and the sum of the powers dissipated in each of the output stages (P_{DL}) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. P_{DL} will depend on the required output signal and load but would, for a grounded resistive load, be at a maximum when the output is a fixed DC voltage equal to 1/2 of either supply voltage (assuming equal bipolar supplies). Under this condition, $P_{DL} = V_S^2/(4^{\rm e}P_L)$ where P_L includes feedback network loading. Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation.

Note that it is the power in the output stage and not into the load that determines internal power dissipation.

As an example, compute the maximum T_I for an OPA2658U at A_V = +2, R_L = 100 Ω , R_{FB} = 402 Ω , $\pm V_S$ = $\pm 5V$, with both outputs at $|V_S/2|$, and the specified maximum T_A = +85°C. P_D = 10V • 17mA + 2 • (5²)/(4 • (100 Ω || 804 Ω)] = 311mW. Maximum T_I = +85°C + 0.311W • 125°C/W = 124°C.

DRIVING CAPACITIVE LOADS

The OPA2658's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 5pF should be buffered by connecting a small resistance, usually 10Ω to 35Ω , in series with the output as shown in Figure 5. This is particularly important when driving high capacitance loads such as flash A/D converters.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax

0

Or, Call Customer Service at 1-800-548-6132 (USA Only)

FIGURE 5. Driving Capacitive Loads.

cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated with its characteristic impedance.

COMPENSATION CONTROL OF COMPENSATION COMPENS

The OPA2658 is internally compensated and is stable in unity gain with a phase margin of approximately 62°, and approximately 64° in a gain of +2V/V when used with the recommended feedback resistor value. Frequency response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA2658 in a good layout is very flat with frequency.

DISTORTION

The OPA2658's Harmonic Distortion characteristics into a 100Ω load are shown versus frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 6. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 6. 5MHz Harmonic Distortion vs Load Resistance.

Narrowband communication channel requirements will benefit from the OPA2658's wide bandwidth and low intermodulation distortion on low quiescent power. If output signal power at two closely spaced frequencies is required, third-order nonlinearities in any amplifier will cause spurious power at frequencies very near the two funda-

mental frequencies. If the two test frequencies, f_1 and f_2 , are specified in terms of average and delta frequency, $f_0 = (f_1 + f_2)/2$ and $\Delta f = \left| f_2 - f_1 \right|$, the two, third-order, close-in spurious tones will appear at $f_0 \pm 3 \cdot \Delta f$. The two tone, third-order spurious plot shown in Figure 7 indicates how far below these two equal power, closely spaced, tones the intermodulation spurious will be. The single tone power is at a matched 50Ω load. The unique design of the OPA2658 provides much greater spurious free range than what a two-tone third-order intermodulation intercept specification would predict. This can be seen in Figure 7 as the spurious free range actually increases at the higher output power levels.

FIGURE 7. Third-Order Intercept Point vs Frequency.

CROSS TALK

Crosstalk is the undesired result of the signal of one channel mixing with and reproducing itself in the output of the other channel. Crosstalk is inclined to occur in most multichannel integrated circuits. In dual devices, the effect of crosstalk is measured by driving one channel and observing the output of the undriven channel over various frequencies. The magnitude of this effect is referenced in terms of channel-to-channel isolation and expressed in decibels. "Input referred" points to the fact that there is a direct correlation between gain and crosstalk, therefore at increased gain, crosstalk also increases by a factor equal to that of the gain. Figure 8 illustrates the measured effect of crosstalk in the OPA2658U.

FIGURE 8. Channel-to-Channel Crosstalk.

DIFFERENTIAL GAIN AND PHASE

Differential Gain (dG) and Differential Phase (dP) are among the more important specifications for video applications. dG is defined as the percent change in closed-loop gain over a specified change in output voltage level. dP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both dG and dP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL sub-carrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set.

dG/dP of the OPA2658 were measured with the amplifier in a gain of +2V/V with 75 Ω input impedance and the output back-terminated in 75 Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with sync pulse. With these conditions the test circuit shown in Figure 9 delivered a 100IRE modulated ramp to the 75 Ω input of the videoanalyzer. The signal averaging feature of the analyzer was used to establish a reference against which the performance of the amplifier was measured. Signal averaging was also used to measure the dg and dp of the test signal in order to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA2658 is 0.025% differential gain and 0.02° differential phase to both NTSC and PAL standards.

FIGURE 9. Configuration for Testing Differential Gain/Phase.

NOISE FIGURE

The OPA2658's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA2658's Noise Figure vs Source Resistance is shown in Figure 10.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models using MicroSim Corporation's PSpice are available for the OPA2658. Contract Burr-Brown applications departments to receive a SPICE Diskette.

FIGURE 10. Noise Figure vs Source Resistance.

TYPICAL APPLICATION

FIGURE 11. Low Distortion Video Amplifier.

FIGURE 12. Circuit Detail For the PC Board Below.

FIGURE 13a. Board Silkscreen (Bottom). 13b. Board Silkscreen (Top). 13c. Board Layout (Solder Side). 13d. Board Layout (Layout Side).

OPA2662

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 **Request Document Number 11129**

Wide-Bandwidth, Dual Power **OPERATIONAL TRANSCONDUCTANCE AMPLIFIER**

FEATURES

- 370MHz BANDWIDTH
- 58mA/ns SLEW RATE
- HIGH OUTPUT CURRENT: ±75mA
- 400Mbit/s DATA RATE
- VOLTAGE-CONTROLLED CURRENT SOURCE
- ENABLE/DISABLE FUNCTION

APPLICATIONS

- HEAD DRIVE AMPLIFIER FOR ANALOG/ DIGITAL VIDEO TAPES AND DATA RE-CORDERS
- LED AND LASER DIODE DRIVER
- HIGH CURRENT VIDEO BUFFER OR LINE
- RF OUTPUT STAGE DRIVER
- HIGH DENSITY DISK DRIVES

DESCRIPTION

The OPA2662 is a versatile driver device for ultra wide-bandwidth systems, including high-resolution video, RF and IF circuitry, communications and test equipment. The OPA2662 includes two power voltage-controlled current sources, or operational transconductance amplifiers (OTAs), in a 16-pin DIL or SOL package and is specified for the extended industrial temperature range (-40°C to +85°C). The output current is zero-for-zero differential input voltage. The OTAs provide a 250MHz large-signal bandwidth, a 58mA/ns slew rate, and each current source delivers up to ±75mA output current.

The transconductance of both OTAs can be adjusted between pin 5 and -V_{CC} by an external resistor, allowing bandwidth, quiescent current, harmonic distortion and gain trade-offs to be optimized. The output current can be set with a degeneration resistor between the emitter and GND. The current mirror ratio between the collector and emitter currents is fixed to three. Switching stages compatible to logic TTL levels make it possible to turn each OTA separately on within 30ns and off within 200ns at full power.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL
DC-SPECIFICATIONS

At $V_{cc} = \pm 5V$, $R_0 = 750\Omega$, $T_A = +25^{\circ}C$, and configured as noted under "CONDITIONS".

		OPA2662AP, AU				
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
OTA INPUT OFFSET VOLTAGE		DESCRIPTION OF			COLUMN TO THE PARTY OF THE PART	
Initial	$R_E = 50k\Omega$, $R_C = 40\Omega$		12	±30 MAM	RECVMVCY DO	
vs Temperature			35	HTGIWGMAB	μV/°C	
vs Supply (tracking)	$V_{CC} = \pm 4.5 \text{V}$ to $\pm 5.5 \text{V}$, $R_F = 50 \text{k}\Omega$, $R_C = 1 \text{k}\Omega$	100Ω, Rc = 50Ω	27	111 01111 01111	dB	
vs Supply (non-tracking)	V_{CC} = +4.5V to +5.5V, R_E = 50k Ω , R_C = 1k Ω		15		dB	
vs Supply (non-tracking)	$V_{CC} = -4.5V$ to $-5.5V$, $R_E = 50k\Omega$, $R_C = 1k\Omega$	The second secon	40		dB	
Matching	7.57 to 5.57, Tig = 50142, Tig = 1142	$n_{\rm C} = 2000, O_{\rm E} = 0$ $R_{\rm c} = 25\Omega, O_{\rm c} = 0$	2	±7	mV	
OTA B-INPUT BIAS CURRENT		1000 - F .0001	- 5R	Stat	As ish maran	
Initial	$R_E = 100\Omega$, $R_C = 40\Omega$	3 of 8	1	-1/+5	μА	
vs Temperature	30	0 01 8	-5	Janquar Jan	nA/°C	
vs Supply (tracking)	$V_{CC} = \pm 4.5 \text{V}$ to $\pm 5.5 \text{V}$, $R_F = 50 \text{k}\Omega$, $R_C = 1 \text{k}\Omega$	0.00.0	60	. 10	nA/V	
vs Supply (non-tracking)	V_{CC} = +4.5V to +5.5V, R_E = 50k Ω , R_C = 1k Ω		160	HOITHO	nA/V	
vs Supply (non-tracking)	$V_{CC} = -4.5V$ to $-5.5V$, $R_E = 50k\Omega$, $R_C = 1k\Omega$	3Hz, lc = ±37.5mA			nA/V	
Matching	VCC - 4.54 to -5.54, TE - 50132, TC - 1132		0.2	±1	иА Ви	
		America - of setting	0.2	Δ1	nine man	
OTA C-OUTPUT BIAS CURRENT	$R_E = 100\Omega$, $R_C = 1k\Omega$				alnomusH burf	
Initial office	-29	AHz, I _C = ±37.5mA	0.5	-0.5/+1.5	mAnoos	
vs Temperature	-52		1.5		μA/°C	
vs Supply (tracking)	$V_{CC} = \pm 4.5 \text{V to } \pm 5.5 \text{V}$	MHz. In w ±75mA	72	A CONTRACTOR AND	μA/V	
vs Supply (non-tracking)	$V_{CC} = +4.5V \text{ to } +5.5V$		236		μΑ/V	
vs Supply (non-tracking)	$V_{CC} = -4.5V \text{ to } -5.5V$	462 L = +37.6mA	92		μΑ/V	
Matching	00-		0.06	±0.5	mA mA	
B-INPUT IMPEDANCE	-28	America = al shin	18 = 1		second Harmonio	
Impedance	$I_Q = \pm 17 \text{mA}$		4.5 1.5		MΩ pF	
OTA INPUT NOISE		I Curve Number 3	roigyT		HOSSTALK	
Input Noise Voltage Density	f = 20kHz to 100MHz	7.5mA, f = 30MHr	4.4		nV/√Hz	
Output Noise Current Density	1 = 20Ki i2 to 100Wi i2	75mA, f = 30MHz	0.09		nA/√Hz	
Signal-to-Noise Ratio	$S/N = 20 \log \cdot (0.7/V_N \cdot \sqrt{5MHz})$		97		HOLO dB	
OTA C-RATED OUTPUT	00-	100Ω, f = 30MHz	R _E =		notaleation	
Output Voltage Compliance	$I_C = \pm 5$ mA, $R_E = 100\Omega$, $R_C = 1$ k Ω	50Ω, f = 30MHz	±3.4		V	
Output Current	$R_C = 40\Omega$, $R_F = 100\Omega$		±75			
Output Current			1/3		MIAL MA BIM	
Output Impodones	V _{IN} = ±3V	10% to 90%	451105		leo II ac	
Output Impedance, r _C	$I_Q = \pm 17 \text{mA}$	SmA Step lo	4.5 6.5	di .	kΩ pF	
OTA E-RATED OUTPUT	9.2	Steps Amos		1		
Voltage Output	$R_E = 100\Omega$, $R_C = 40\Omega$	$l_{\rm C} = 75 {\rm rm} {\rm A}$	±3.0	The state of the s	eyA wei	
DC Current Output	$R_E = 100\Omega$, $R_C = 40\Omega$	l _o = 150mA				
	$V_{IN} = \pm 4V$		±25		mA	
Voltage Gain	$V_{IN} = \pm 2.5V$					
	$R_E = 100\Omega$		0.86		V/V	
	$R_E = 50k\Omega$		0.98	HOITOBLE	V/V	
Output Impedance, r _E	$I_Q = \pm 17 \text{mA}$		16 2.2		Ω pF	
POWER SUPPLY	Un (MASGUSANU	AND THE REAL PROPERTY.	CHICATOR S			
Rated Voltage	$R_E = 50k\Omega$, $R_C = 1k\Omega$	±4.5		±5.5	VDC.	
Derated Performance	$R_E = 50k\Omega$, $R_C = 40\Omega$	±3		±6	VDC	
Positive Quiescent Current	$R_Q = 750\Omega$, $R_E = 50k\Omega$, $R_C = 1k\Omega$,	+15	+17	+18	mA	
for both OTAs(4)	Both Channels Enabled			The state of the state of		
Positive Quiescent Current	$R_O = 750\Omega$, $R_E = 50k\Omega$, $R_C = 1k\Omega$,		+4		mA	
for both OTAs(4)	Both Channels Disabled	Va of V0.5 = 3	eV Y			
Quiescent Current Range	Programmable	V8.0 of V0 = #	eV			
	$R_Q = 3k\Omega$ to 30Ω	HME ±3 q-qAm0	lc = 1	8017 ±65 170A9	MO O MA	
TEMPERATURE RANGE	06	Gray I = OV to Imp	90% F	90001 9	O lanitario di Me	
Specification	Ambient Temperature	-40 busing	10% P	+85	C of Ma	
Thermal Resistance, θ _{IA}	06	nud White Sultoning	Hispan)	nt, Positive	elemenT galifatiwa	
AP	08- (299)	e Greended Chan	90	nt. Nogrative	°C/W	
AU	The second secon	MINISTER THE PROPERTY.	100		°C/W	
			100		0/44	

NOTES: (1) Characterization sample. (2) "Typical Values" are Mean values. The average of the two amplifiers is used for amplifier specific parameters. (3) "Min" and "Max" Values are mean ±3 Standard Deviations. Worst case of the two amplifiers (Mean ±3 Standard Deviations) is used for amplifier specific parameters. (4) In the contraction of the contract

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

ELECTRICAL

OPERATIONAL AMPLIFIERS

AC-SPECIFICATION

Typical at $V_{CC}=\pm5$ VDC, $R_Q=750\Omega$, $I_C=\pm37.5$ mA ($V_{IN}=2.5$ Vpp, $R_E=100\Omega$), $I_C=\pm75$ mA ($V_{IN}=2.5$ Vpp, $R_E=50\Omega$), $R_{SOURCE}=50\Omega$, and $R_{A}=+25$ °C, unless otherwise noted.

	STATE WITH	OPA2662AP, AU			PARAMARA
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
FREQUENCY DOMAIN		See - 40100 4000	A		letin
LARGE SIGNAL BANDWIDTH $I_C = \pm 37.5 \text{mA}$ $I_C = \pm 75 \text{mA}$ $I_C = \pm 37.5 \text{mA}$ (Optimized) $I_C = \pm 75 \text{mA}$ (Optimized)		to £0.5V, Rg = 80k0, Rg = 10 + 55V, Rg = 50k0, Rg = 10 - 55V, Rg = 50k0, Rg =	150 200 370 250	ing) nacking) nacking)	1411.19
GROUP DELAY TIME Measured Input to Output (Demo Board Used)	$R_E = 100\Omega$, $R_C = 50\Omega$ B to E B to C	g = 1000, P _C = 400	1.2 2.5	THE SHIPLY 2A	ns ns
HARMONIC DISTORTION Second Harmonic Third Harmonic Second Harmonic	f = 10MHz, I _C = ±37.5mA	10 <5 SV, $R_0 = 50$ kt, $R_0 = 10 - 5$ SV, $R_0 = 50$ kt, $R_0 = 10 - 5$ SV, $R_0 = 10$ kt, $R_0 = 10$	-31 -37 -33	tracking) (racking)	JD-
Third Harmonic Second Harmonic Third Harmonic	$I = 10MHz, I_C = \pm 75HA$	e - 1000, R _C = 160	-32 -29 -32	BIAS CURRENT	dBc dBc dBc
Second Harmonic Third Harmonic Second Harmonic Third Harmonic	$f = 30MHz, I_C = \pm 75mA$ $f = 50MHz, I_C = \pm 37.5mA$	V3.24 of V5.44 = 50 V6.84 of V6.44 = 50 V6.84 of V6.44 = 50	-30 -25 -31 -30	ing) (racking) (racking)	000
Second Harmonic Third Harmonic	f = 50MHz, I _C = ±75mA	BinYFi = jol	-28 -23	HOE	dBc dBc
CROSSTALK	Typical Curve Number 3 $I_C = \pm 37.5 \text{mA}, f = 30 \text{MHz}$ $I_C = \pm 75 \text{mA}, f = 30 \text{MHz}$	- 209Hz to 100HP/z	-51 -56	IE pa Denelly rent Dansity	
FEEDTHROUGH	7.8	20 log + (0.7/V _N + v6MH2)	= MAZ	otto	Signal to-Noise P
Off Isolation	$R_E = 100\Omega$, $f = 30MHz$ $R_E = 50\Omega$, $f = 30MHz$	mA, P ₁ = 10012 P ₂ = 180	-90 -90	UTPUT ompliance	dB dB
TIME DOMAIN Rise Time	10% to 90% 75mA Step I _C	VE: = 1000 VE: = 10V AmV1: = 0	2	2.50	onstant ns
Slew Rate	150mA Step I _C I _C = 75mA I _C = 150mA	c = 10Ω, R _C = 40Ω b = 10Ω, R _c = 40Ω	2.6 37.5 58	TUSTU	mA/ns mA/ns

CHANNEL SELECTION

		OPA2662AP, AU			CHARLES GOVERN	
PARAMETER	CONDITIONS	MIN TYP		MAX	UNITS	
ENABLE INPUTS Logic 1 Voltage Logic 0 Voltage Logic 1 Current Logic 0 Current	V _{SEL} = 2.0V to 5V V _{SEL} = 0V to 0.8V	2 0 0.8 -1	1.1	V _{CC} + 0.6 0.8 10	V V µА µА	
SWITCHING CHARACTERISTICS EN to Channel ON Time EN to Channel OFF Time Switching Transient, Positive Switching Transient, Negative	I_C = 150mAp-p, f = 5MHz 90% Point of V_O = 1Vp-p 10% Point of V_O = 1Vp-p (Measured While Switching Between the Grounded Channels)	Step to 309. Temperatura	30	DOWAR 20. 8 _M	ns ns mV mV	

SPECIFICATIONS

SPECIFICATIONS (CONT)

ELECTRICAL (Full Temperature Range -40°C to +85°C)

At V_{CC} = ± 5 VDC, R_Q = 750Ω , T_A = T_{MIN} to T_{MAX} , unless otherwise noted, and configured as noted under "CONDITIONS".

& OGT W.	endingme1 holicrub	0	OPA2662AP, AU		
PARAMETER 3 0- (243	CONDITIONS	MIN TYP		MAX	UNITS
OTA INPUT OFFSET VOLTAGE Initial Matching	$R_E = 50k\Omega$, $R_C = 40\Omega$	-14]c,	12	±36 ±7.2	mV mV
OTA INPUT BIAS CURRENT Initial Matching	$R_E = 100\Omega$, $R_C = 40\Omega$	-1.9 -1.2	1 0.2	5.9 1.2	µА µА
OTA TRANSCONDUCTANCE Transconductance	I _C = 75mA, R _E = 0	580		610	mA/V
OTA C-RATED OUTPUT Output Voltage Compliance	$I_{C} = \pm 5 \text{mA}, R_{E} = 100 \Omega, R_{C} = 16 \Omega$	±3.2		SATO	V
POWER SUPPLY Positive Quiescent Current for both OTAs(4)	$R_Q = 750\Omega$, $R_E = 50k\Omega$, $R_C = 1k\Omega$, Both Channels Selected	+8 B+8	+17	+25	mA

DICE INFORMATION

PAD	FUNCTION
1	+5V Supply
2	Input, Amplifier 1
3	TTL, Amplifier 1
4 12 1	d beganning Ground
5	
6	
7	Input, Amplifier 2
0	-5v Supply
9	-5V Supply, Output 2
10	-5V Supply, Output 1
11	Buffer, Amplifier 2
12	OTA Output, Amplifier 2
13	OTA Output, Amplifier 1
14	Buffer, Amplifier 1
15	+5V Supply, Output 2
16	+5V Supply, Output 1

Substrate Bias: Negative Supply
NC: No Connection
Wire Bonding: Gold wire bonding is recommended.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size Die Thickness Min. Pad Size	57 x 69 ±5 14 ±1 4 x 4	1.44 x 1.76 ±0.13 0.55 ±0.025 0.10 x 0.10
Backing: Titanium Gold		0.0005, +0.0013, -0 0.0076, ±0.0013

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. ESD can cause damage ranging from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

Burr-Brown's standard ESD test method consists of five 1000V positive and negative discharges (100pF in series with $1.5k\Omega$) applied to each pin.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±6V
Input Voltage(1)	±V _{CC} to ±0.7V
Operating Temperature	40°C to +85°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Digital Input Voltages (EN1, EN2)	0.5 to +Vcc +0.7V

NOTE: (1) Inputs are internally diode-clamped to ±V_{cc}.

ORDERING INFORMATION THE PROPERTY OF A STORY OF THE PROPERTY O

MODEL	DESCRIPTION	TEMPERATURE RANGE
OPA2662AP	16-Pin Plastic DIP	-40°C to +85°C
OPA2662AU	16-Pin SOIC	-40°C to +85°C

PACKAGE INFORMATION

Poor Coann Jadon	PACKAGE	PACKAGE DRAWING NUMBER(1)
OPA2662AP	16-Pin Plastic DIP	180
OPA2662AU	16-Pin SOIC	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

OPA4650

Wideband, Low Power, Quad Voltage Feedback OPERATIONAL AMPLIFIER

FEATURES

- LOW POWER: 50mW/channel
- UNITY GAIN STABLE BANDWIDTH: 360MHz
- FAST SETTLING TIME: 20ns to 0.01%
- LOW INPUT BIAS CURRENT: 5µA
- DIFFERENTIAL GAIN/PHASE ERROR: 0.01%/0.025°
- 14-PIN DIP and SO-14 SURFACE MOUNT PACKAGES AVAILABLE

APPLICATIONS

- HIGH RESOLUTION VIDEO
- MONITOR PREAMPLIFIER
- CCD IMAGING AMPLIFIER
- ULTRASOUND SIGNAL PROCESSING
- ADC/DAC BUFFER AMPLIFIER
- ACTIVE FILTERS
- HIGH SPEED INTEGRATORS
- DIFFERENTIAL AMPLIFIER

DESCRIPTION

The OPA4650 is a quad, low power, wideband voltage feedback operational amplifier. It features a high bandwidth of 360MHz as well as a 12-bit settling time of only 20ns. The low input bias current allows its use in high speed integrator applications, while the wide bandwidth and true differential input stage make it suitable for use in a variety of active filter applications. Its low distortion gives exceptional performance for telecommunications, medical imaging and video applications.

The OPA4650 is internally compensated for unity-gain stability. This amplifier has a fully symmetrical differential input due to its "classical" operational amplifier circuit architecture. Its unusual combination of speed, accuracy and low power make it an outstanding choice for many portable, multi-channel and other high speed applications, where power is at a premium.

The OPA4650 is also available in single (OPA650) and dual (OPA2650) configurations.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

Closed-Loop Bandwidth ⁽¹⁾	G = +1 G = +2 G = +5		360 120 35		MHz MHz MHz
Gain Bandwidth Product Slew Rate ⁽²⁾ Over Specified Temperature	G = +10 G = +1, 2V Step		16 160 240 220		MHz MHz V/μs V/μs
Rise Time Fall Time Settling Time 0.01% 0.1% 1%	0.2V Step 0.2V Step G = +1, 2V Step G = +1, 2V Step G = +1, 2V Step	q wo	1 1 20 10.3 7.9	sdebi	ns ns ns ns ns
Spurious Free Dynamic Range	$G = +1, f = 5.0 \text{ MHz}, V_O = 2\text{Vp-p}$ $R_L = 100\Omega$ $R_1 = 402\Omega$	PERA	68 74		dBc dBc
Differential Gain Differential Phase Bandwidth for 0.1dB Flatness Crosstalk	$\begin{array}{l} G=+2, \text{NTSC}, \text{V}_O=1.4 \text{Vp}, \text{R}_L=150\Omega \\ G=+2, \text{NTSC}, \text{V}_O=1.4 \text{Vp}, \text{R}_L=150\Omega \\ G=+2 \\ \text{Input Referred, 5MHz, all hostile} \\ \text{Input Referred, 5MHz, Channel-to-Channel} \end{array}$	lennsi	0.01 0.025 21 -63 -66	ATURE W POWER	% Degrees MHz dB dB
OFFSET VOLTAGE Input Offset Voltage Average Drift Power Supply Rejection (+V _S) (-V _S)	V _S = 4.5V to 5.5V	60 47	±1 ±3 76 52	±5.5	mV μV/°C dB dB
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current Over Temperature	W SED TO SIGNATURE STORY	ENT: SµA HASE ERT	5 0.5	20 30 1.0 3.0	μΑ μΑ μΑ μΑ
INPUT NOISE Input Voltage Noise Noise Density, f = 100Hz f = 10kHz f = 1MHz f = 1MHz to 100MHz Integrated Noise, BW = 10Hz to 100MHz	#OUNT to refoculations. The OPA4650 is gain subility. Thi differential input	SURFACE E	43 9.4 8.4 8.4 84	PRI DIP 21 CKAGES I PLICAT	nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVp-p
Input Bias Current Noise Current Noise Density, f = 0.1MHz to 100MHz Noise Figure (NF)	$R_S = 10k\Omega$ $R_S = 50\Omega$	PER PER PER	1.2 4.0 19.5	H RESOL NUTOR PR D BIAGIN	pA/√Hz dBm dBm
INPUT VOLTAGE RANGE Common-Mode Input Range Over Specified Temperature Common-Mode Rejection	ING The OPA4550 is	±2.2 65	±2.8	AUGRARI GEORGE	V V dB
INPUT IMPEDANCE Differential Common-Mode	aV+	SHOT	15 1 16 1	OSSAS HE	kΩ pF MΩ pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Specified Temperature	$V_O = \pm 2V$, $R_L = 100\Omega$ $V_O = \pm 2V$, $R_L = 100\Omega$	45 43	51	(TMSRs+	dB dB
OUTPUT Voltage Output Over Specified Temperature	No Load R _L = 250Ω R _I = 100Ω	±2.2 ±2.2 ±2.0	±3.0 ±2.5 ±2.3		V V V
Current Output Over Specified Temperature	+25°C to Max Temperature	±40 ±30	±60		mA mA mA

CONDITIONS

G = +1 G = +2 G = +5

MIN

TYP

360

NOTES: (1) Frequency response can be strongly influenced by PC board parasites. The OPA4650 is nominally compensated assuming 2pF parasitic load. The demonstration board, DEM-OPA465xP, shows a low parasitic layout for this part. (2) Slew rate is rate of change from 10% to 90% of output voltage step.

0.1MHz, G = +1

All Channels

Ω

V

mA

mA

°C

°C/W

±5.5

±32

±35

+85

UNITS

MHz

MAX

Output Resistance

POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current

Over Specified Temperature

U

TEMPERATURE RANGE Specification: P, U

Thermal Resistance, θ_{JA}

PARAMETER

FREQUENCY RESPONSE

Closed-Loop Bandwidth(1)

±4.5

-40

0.08

±5

±23

75

75

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage Across Device	
Internal Power Dissipation	See Thermal Considerations
Differential Input Voltage	±2.7V
Common-Mode Input Voltage Range	±V _S
Storage Temperature Range: P, U,	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Junction Temperature (T,)	+175°C

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA4650U	SO-14 Surface Mount	235
OPA4650P	14-Pin Plastic DIP	010

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE				
OPA4650U	SO-14 Surface Mount	-40°C to +85°C				
OPA4650P	14-Pin Plastic DIP	-40°C to +85°C				

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25$ °C, $V_S = \pm 5V$, $R_L = 100\Omega$, and $R_{FB} = 402\Omega$ unless otherwise noted. $R_{FB} = 25\Omega$ for a gain of +1.

SSOLUTE MAXIMUM PATINGS

OPA4650

2

OPERATIONAL AMPLIFIERS

DISCUSSION OF PERFORMANCE

The OPA4650 is a quad low power, wideband voltage feedback operational amplifier. Each channel is internally compensated to provide unity gain stability. The OPA4650's voltage feedback architecture features true differential and fully symmetrical inputs. This minimizes offset errors, making the OPA4650 well suited for implementing filter and instrumentation designs. As a quad operational amplifier, OPA4650 is an ideal choice for designs requiring multiple channels where reduction of board space, power dissipation and cost are critical. Its ac performance is optimized to provide a gain bandwidth product of 160MHz and a fast 0.1% settling time of 10.3ns, which is an important consideration in high speed data conversion applications. Along with its excellent settling characteristics, the low dc input offset of ±1mV and drift of ±3µV/°C support high accuracy requirements. In applications requiring a higher slew rate and wider bandwidth, such as video and high bit rate digital communications, consider the quad current feedback OPA4658.

CIRCUIT LAYOUT AND BASIC OPERATION

Achieving optimum performance with a high frequency amplifier like the OPA4650 requires careful attention to layout parasitics and selection of external components. Recommendations for PC board layout and component selection include:

- a) Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability; on the non-inverting input it can react with the source impedance to cause unintentional bandlimiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- b) Minimize the distance (<0.25") from the two power pins to high frequency $0.1\mu F$ decoupling capacitors. At the pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. Larger ($2.2\mu F$ to $6.8\mu F$) decoupling capacitors, effective at lower frequencies, should also be used. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- c) Careful selection and placement of external components will preserve the high frequency performance of the OPA4650. Resistors should be a very low reactance type. Surface mount resistors work best and allow a tighter overall layout. Metal film or carbon composition axially-leaded resistors can also provide good high frequency performance. Again, keep their leads as short as possible. Never use wirewound type resistors in a high frequency application.

Since the output pin and the inverting input pin are most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the package pins. Surface mount feedback resistors directly adjacent to the output and inverting input pins work well for the quad pinout. Other network components, such as non-inverting input termination resistors, should also be placed close to the package.

Even with a low parasitic capacitance shunting the resistor, excessively high resistor values can create significant time constants and degrade performance. Good metal film or surface mount resistors have approximately 0.2pF in shunt with the resistor. For resistor values > 1.5k Ω , this adds a pole and/or zero below 500MHz that can affect circuit operation. Keep resistor values as low as possible consistent with output loading considerations. The 402 Ω feedback used for the Typical Performance Plots is a good starting point for design. Note that a 25 Ω feedback resistor, rather than a direct short, is suggested for a unity gain follower. This effectively reduces the Q of what would otherwise be a parasitic inductance (the feedback wire) into the parasitic capacitance at the inverting input.

d) Connections to other wideband devices on the board may be made with short direct traces or through on-board transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 to 100 mils) should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set $R_{\rm ISO}$ from the plot of recommended $R_{\rm ISO}$ vs capacitive load. Low parasitic loads may not need an $R_{\rm ISO}$ since the OPA4650 is nominally compensated to operate with a 2pF parasitic load.

If a long trace is required and the 6dB signal loss intrinsic to doubly terminated transmission lines is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50Ω environment is not necessary on board, and in fact a higher impedance environment will improve distortion as shown in the distortion vs load plot. With a characteristic impedance defined based on board material and desired trace dimensions, a matching series resistor into the trace from the output of the amplifier is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance will be the parallel combination of the shunt resistor and the input impedance of the destination device; the total effective impedance should match the trace impedance. Multiple destination devices are best handled as separate transmission lines, each with their own series and shunt terminations.

If the 6dB attenuation loss of a doubly terminated line is unacceptable, a long trace can be series-terminated at the source end only. This will help isolate the line capacitance from the op amp output, but will not preserve signal integrity as well as a doubly terminated line. If the shunt impedance at the destination end is finite, there will be some signal attenuation due to the voltage divider formed by the series and shunt impedances.

e) Socketing a high speed part like the OPA4650 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket creates an extremely troublesome parasitic network which can make it almost

impossible to achieve a smooth, stable response. Best results are obtained by soldering the part onto the board. If socketing for the DIP package is desired, high frequency flush mount pins (e.g., McKenzie Technology #710C) can give good results.

The OPA4650 is nominally specified for operation using ±5V power supplies. A 10% tolerance on the supplies, or an ECL –5.2V for the negative supply, is within the maximum specified total supply voltage of 11V. Higher supply voltages can break down internal junctions possibly leading to catastrophic failure. Single supply operation is possible as long as common mode voltage constraints are observed. The common mode input and output voltage specifications can be interpreted as a required headroom to the supply voltage. Observing this input and output headroom requirement will allow non-standard or single supply operation. Figure 1 shows one approach to single-supply operation.

FIGURE 1. Single Supply Operation.

OFFSET VOLTAGE ADJUSTMENT

One simple way to null the initial offset voltage while retaining the low offset drift of the OPA4650 is shown in Figure 2. The $20k\Omega$ potentiometer and the $47k\Omega$ series resistor R_{TRIM} create a small correction current which is summed into the inverting node. The $0.1\mu F$ capacitor keeps high-frequency power supply noise from coupling into the signal path. Although the initial offset will be nulled to zero with this technique, issues of temperature drift must also be considered. The additional resistor R_3 is shown matched to the parallel combination R_1 and R_2 (the R_{TRIM} path is assumed to be negligible in this calculation). This will eliminate the first-order offset drift due to input bias current leaving only the input offset current (I_{OS}) drift multiplied by the feedback resistor R_2 .

ESD PROTECTION

ESD damage has been a well recognized source of degradation for MOSFET type circuits, but any semiconductor device can be vulnerable to damage. This becomes more of an issue for very high speed processes like that used for the

FIGURE 2. Offset Voltage Trim.

OPA4650. ESD damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. ESD handling precautions are strongly recommended when handling the OPA4650.

OUTPUT DRIVE CAPABILITY

The OPA4650 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 1Vp-p into a 75Ω load. This high output drive capability makes the OPA4650 an ideal choice for a wide range of RF, IF and video applications. In many cases, additional buffer amplifiers are unnecessary.

Many demanding high speed applications, such as driving Analog-to-Digital converters, require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitance at the input of a flash A/D converter. As shown in Figure 3, the OPA4650 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing.

FIGURE 3. Small-Signal Output Impedance vs Frequency.

THERMAL CONSIDERATIONS

The OPA4650 will not require heatsinking under most operating conditions. Maximum desired junction temperature will limit the maximum allowed internal power dissipation as described below. In no case should the maximum junction temperature be allowed to exceed +175°C.

Operating junction temperature (T_I) is given by T_A + $P_D\theta_{IA}$. The total internal power dissipation (P_D) is a combination of the total quiescent power for all channels (PDO) and the sum of the powers dissipated in each of the output stages (PDI) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. PDI, will depend on the required output signal and load but would, for a grounded resistive load, be at a maximum when the output is a fixed dc voltage equal to 1/2 of either supply voltage (assuming equal bipolar supplies). Under this condition, $P_{DL} = V_S^2 / V_S^2$ (4•R_I) where R_I includes feedback network loading. Note that it is the power dissipated in the output stage and not in the load that determines internal power dissipation. As an example, compute the maximum T₁ for an OPA4650U at $A_V = +2$, $R_L = 100\Omega$, $R_{FB} = 402\Omega$, $\pm V_S = \pm 5V$, with all 4 outputs at $IV_S/2I$, and the specified maximum $T_A = +85$ °C. $P_D = 10V \cdot 35 \text{mA} + 4 \cdot (5^2)/(4 \cdot (100\Omega || 804\Omega)) = 631 \text{mW}.$ Maximum $T_1 = +85^{\circ}C + 0.641W \cdot 75^{\circ}C/W = 133^{\circ}C$.

DRIVING CAPACITIVE LOADS

The OPA4650's output stage has been optimized to drive low resistive loads. Capacitive loads will decrease phase margin which may result in high frequency oscillations or peaking. Capacitive loads greater than 10pF should be isolated by connecting a small resistance (15 Ω to 30Ω) in series with the output as shown in Figure 4. This is especially important when driving the capacitive input of high-speed A/D converters. Increasing the gain from +1 will improve the capacitive load drive due to increased phase margin.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/ft for RG-58) will not load the amplifier when the cable is source and load terminated in its characteristic impedance.

FIGURE 4. Driving Capacitive Loads.

FREQUENCY RESPONSE COMPENSATION

Each channel of the OPA4650 is internally compensated to be stable at unity gain with a nominal 60° phase margin. This lends itself well to wideband integrator and buffer applications. Phase margin and frequency response flatness will improve at higher gains. Recall that an inverting gain of -1 is equivalent to a gain of +2 for bandwidth purposes, i.e., noise gain = 2. The external compensation techniques developed for voltage feedback op amps can be applied to this device. For example, in the non-inverting configuration, placing a capacitor across the feedback resistor will reduce the gain to +1 starting at $f = (1/2\pi R_E C_E)$. Alternatively, in the inverting configuration, the bandwidth may be limited without modifying the inverting gain by placing a series RC network to ground on the inverting node. This has the effect of increasing the noise gain at high frequencies, thereby limiting the bandwidth for the inverting input signal through the gain-bandwidth product.

At higher gains, the gain-bandwidth of this voltage feedback topology will limit bandwidth according to the open-loop frequency response curve. For applications requiring a wider bandwidth at higher gains, consider the quad current feedback model, OPA4658. In applications where a large feedback resistor is required (such as photodiode transimpedance circuits), precautions must be taken to avoid gain peaking due to the pole formed by the feedback resistor and the summing junction capacitance. This pole can be compensated by connecting a small capacitor in parallel with the feedback resistor, creating a cancelling zero term. In other high-gain applications, use of a three-resistor "T" connection will reduce the feedback network impedance which reacts with the parasitic capacitance at the summing node.

PULSE SETTLING TIME PROPERTY & STUDE

High speed amplifiers like the OPA4650 are capable of extremely fast settling time with a pulse input. Excellent frequency response flatness and phase linearity are required to get the best settling times. As shown in the specifications table, settling time for a ±1V step at a gain of +1 for the OPA4650 is extremely fast. The specification is defined as the time required, after the input transition, for the output to settle within a specified error band around its final value. For a 2V step, 1% settling corresponds to an error band of ±20mV, 0.1% to an error band of ±2mV, and 0.01% to an error band of ±0.2mV. For the best settling times, particularly into an ADC capacitive load, little or no peaking in the frequency response can be allowed. Using the recommended R_{ISO} for capacitive loads will limit this peaking and reduce the settling times. Fast, extremely fine scale settling (0.01%) requires close attention to ground return currents in the supply decoupling capacitors. For highest performance, consider the OPA642 which isolates the output stage decoupling from the rest of the amplifier.

among the more important specifications for video applications. The percentage change in closed-loop gain over a specified change in output voltage level is defined as DG. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. For the OPA4650, DG and DP are both specified at the NTSC color sub-carrier frequency of 3.58MHz and measured using industry standard video test equipment.

DISTORTION ALL (40 ARCAL) = 1 is grained 14 or miss safe

The OPA4650's harmonic distortion characteristics for a 100Ω load are shown in the Typical Performance Curves. Distortion can be improved by increasing the load resistance as illustrated in Figure 5. Remember to include the contribution of the feedback network when calculating the effective load resistance seen by the amplifier.

FIGURE 5. Harmonic Distortion vs Load Resistance.

CROSSTALK salar a thin on it anither that vising the

Crosstalk is the undesired coupling of one channel's signal into the output of the other channels. Crosstalk is a consideration in all multichannel integrated circuits. The effect of crosstalk is measured by driving one ("channel-to-channel") or more ("all-hostile") channels and observing the output of the undriven channel. The magnitude of this effect is expressed in the crosstalk specification as decibels of gain. "Input referred" points to the fact that there is a direct correlation between gain and crosstalk, therefore output crosstalk increases proportionally at higher gains.

In quad devices, the effect of all-hostile crosstalk is observed by driving all three channels concurrently and measuring the output of the undriven fourth channel. The plots in Figure 6 illustrate both channel-to-channel and all-hostile crosstalk for the OPA4650.

FIGURE 6. Channel-to-Channel Isolation and All Hostile Crosstalk.

NOISE FIGURE

The voltage and current noise spectral density are shown in the Typical Performance Curves. For RF and IF applications, however, Noise Figure (NF) is often the preferred specification. This specification shows a degradation in SNR through a device relative to the thermal noise of the source impedance alone.

The NF for the OPA4650, using 1MHz spot noise numbers and an unterminated non-inverting input, is shown in Figure 7.

FIGURE 7. Noise Figure vs Source Resistance.

SPICE MODELS AND EVALUATION BOARD

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models and evaluation PC boards (DEM-OPA465xP) are available for the OPA4650. Contact the Burr-Brown Applications Department to receive a SPICE diskette.

FIGURE 8. State-Variable Biquadratic Filter.

FIGURE 9. Circuit Detail for the DEM-OPA465xP Board.

FIGURE 10a. Board Silkscreen (Bottom). 10b. Board Silkscreen (Top). 10c. Board Layout (Solder Side). 10d. Board Layout (Component Side).

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

CHILIDANA

OPA4658

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER

FEATURES

- GAIN BANDWIDTH: 900MHz at G = 2
- GAIN OF 2 STABLE
- LOW POWER: 50mW PER AMP
- LOW DIFF GAIN/PHASE ERRORS: 0.015%/0.02°
- HIGH SLEW RATE: 1700V/µs
- PACKAGE: 14-Pin DIP and 14-Pin SOIC

APPLICATIONS

- MEDICAL IMAGING
- HIGH-RESOLUTION VIDEO
- HIGH-SPEED SIGNAL PROCESSING
- COMMUNICATIONS
- PULSE AMPLIFIERS
- ADC/DAC GAIN AMPLIFIER
- MONITOR PREAMPLIFIER
- CCD IMAGING AMPLIFIER

DESCRIPTION

The OPA4658 is a quad ultra-wideband, low power current feedback video operational amplifier featuring high slew rate and low differential gain/phase error. The current feedback design allows for superior large signal bandwidth, even at high gains. The low differential gain/phase errors, wide bandwidth and low

quiescent current make the OPA4658 a perfect choice for numerous video, imaging and communications applications.

The OPA4658 is internally compensated for stability in gains of 2 or greater. The OPA4658 is also available in dual, OPA2658 and single, OPA658 configurations.

International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

		0	PA4658P	U	OP	A4658PB	UB	JES
PARAMETER	CONDITION	CONDITION MIN TYP MA				X MIN TYP MAX		
FREQUENCY RESPONSE Closed-Loop Bandwidth ⁽²⁾ Slew Rate ⁽³⁾ At Minimum Specified Temperature Settling Time: 0.01% 0.1% 1% Spurious Free Dynamic Range Third-Order Intercept Point Differential Gain Differential Phase Crosstalk	$\begin{array}{c} G=+2\\ G=+5\\ G=+10\\ G=+2,\ 2V\ Step\\ G=+2,\ V_0=2Vp-p\\ f=20MHz,\ G=+2,\ V_0=2Vp-p\\ f=20MHz,\ G=+2,\ V_0=2Vp-p\\ G=+2,\ NTSC,\ V_0=1.4Vp-p,\ R_L=150\Omega\\ G=+2,\ NTSC,\ V_0=1.4Vp-p,\ R_L=150\Omega\\ Input Referred,\ 5MHz,\ Three\ Active Channels\\ Input Ref$		450 195 130 1700 1500 20 15.1 4.8 66 57 38 0.015 0.02 74	sde	1000 900	*(1) * * * * * * * * * * * * * * * * * * *	SUS	MHz MHz MHz V/µs Ns Ns Ns dBc dBc dBm % degrees
OFFSET VOLTAGE Input Offset Voltage Over Temperature Power Supply Rejection	Input Referred, 5MHz, Channel-to-Channel V _S = ±4.5 to ±5.5V	55	±1.5 ±5 70	±5.5 ±8	58	±2 ±4 75	±5 ±8	dB mV mV dB
INPUT BIAS CURRENT Non-Inverting Over Temperature Inverting Over Temperature	$V_{CM} = 0V$ $V_{CM} = 0V$	= 2	±6.5 ±10 ±1.1 ±30	±30 ±80 ±35 ±75	HTCH SJEA SONO	ANDW F 1 ST	±18 ±35	µА µА µА µА
NOISE Input Voltage Noise Density f = 100Hz f = 10kHz f = 10kHz f _B = 100Hz to 200MHz Inverting Input Bias Current Noise Density: f = 10MHz		SOIC	7.2 3.3 3.3 47	ASE EI 1700VI IP and	IMPRI IATE: I-Pin D	FF GA 10.02° LEW R GE: 14	OW D JOISN BOH S ACKA	nV/√Hz nV/√Hz nV/√Hz μVrms
Non-Inverting Input Current Noise Density: f = 10MHz Noise Figure (NF)	$R_S = 100\Omega$ $R_S = 50\Omega$		12.6 9.5 11		400	mana a an		pA/√Hz dBm dBm
INPUT VOLTAGE RANGE Common-Mode Input Range Over Temperature Common-Mode Rejection	ower quiescent current make the V	±2.5 45	±2.9	w-gule	bstip	SR is a	PA90	V V dB
INPUT IMPEDANCE Non-Inverting Inverting	rror, applications.	a sando	500 1	instell	low d	one sie	slew	kΩ pF Ω
OPEN-LOOP TRANSIMPEDANCE Open-Loop Transimpedance Over Temperature	$V_{O} = \pm 2V, R_{L} = 100\Omega$ $V_{O} = \pm 2V, R_{L} = 100\Omega$	150 100	350 290	high ga wide b	200 150	360 300	omed in nigg is	kΩ kΩ
OUTPUT Voltage Output Over Temperature Voltage Output Over Temperature Voltage Output Over Temperature Current Output Over Temperature Short Circuit Current Output Resistance	No Load $R_L = 250\Omega$ $R_L = 100\Omega$ +25°C to max Temperature $1 \text{MHz}, G = +2$	±2.7 ±2.5 ±2.7 ±2.5 ±2.2 ±2.0 ±40 ±30	±3.0 ±2.75 ±3.0 ±2.7 ±2.7 ±2.5 ±50 ±48 60 0.1	0	±45 ±35	* * * * * * * * * * * * * * * * * * * *		V V V V V MA mA
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current Over Temperature	All Channels, V _S = ±5V	±4.5	±5 ±19 ±20	±5.5 ±31 ±34	* ±13	±20 ±21	±23 ±26	V V mA mA
TEMPERATURE RANGE Specification: P, U, PB, UB Thermal Resistance, θ _{JA} P U	NEWS Y	-40	120 170	+85	-0 W	:		°C/W °C/W

NOTES: (1) An asterisk (*) specifies the same value as the grade to the left. (2) Bandwidth can be affected by a non-optimal PC board layout. Refer to the demonstration board layout for details. (3) Slew rate is rate of change from 10% to 90% of output voltage step.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPERATIONAL AMPLIFIERS

Internal Power Dissipation(1)	
Differential Input Voltage	
Input Voltage Range	See Applications Information
Storage Temperature Range: P, PB,	U, UB40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(soldering, SOIC 3s)	+260°C
Junction Temperature (T _J)	
NOTE: (1) Packages must be derate	d based on specified θ_{JA} . Maximum
T, must be observed.	2 20

PIN CONFIGURATION

-		

2555054		
OPA4658P, PB	14-Pin Plastic DIP	010
OPA4658U, UB	14-Pin Plastic SOIC	235

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION(1)

MODEL	PACKAGE	TEMPERATURE RANGE				
OPA4658P, PB	14-Pin Plastic DIP	-40°C to +85°C				
OPA4658U, UB	14-Pin Plastic SOIC	-40°C to +85°C				

NOTE: (1) The "B" grade of the SOIC package will be marked with a "B" by pin 8. Refer to mechanical section for the location.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) MAMAGRARY JACISTY

 T_A = +25°C, V_S = ±5V, R_L = 100 Ω , C_L = 2pF, R_{FB} = 402 Ω , unless otherwise noted.

The current feedback architecture of the OPA4658 provides he undinoual strength of excellent large signal response also wide oandwidth, making it a good choice for use in tigh resolution video, medical imaging and digital communications. The low power requirements make it an excellent hoice for numerous portable applications.

IC DAIN TRANSFER CHARACTERISTICS

The circuit in Figure 1 shows the equivalent circuit for calculating the DC gain. When operating the device in the inverting mode, the input signal error current ($|_E$) is amplified by the open loop transimpedance gain ($|_O$). The output voltage is equal to $|_O \times |_E$. Negative feedback is applied through $|_{E_{FS}}$ such that the device operates at a gain equal to $|_{E_{FS}} = |_{E_{FS}} = |_{E_{FS$

For non-inverting operation, the input signal is applied to the non-inverting (high impedance buffer) input. The output arror current (I_B) is generated by the buffer at the low impedance inverting input. The signal generated at the opamp output is fed back to the inverting input such that the overall gain is (1 + R_{EB}/R_{eB}).

The closed-loop gain for the OPA4558 can be calculated using the following equations:

Inverting Gain =
$$\frac{-\left(\frac{R_{ep}}{R_{ep}}\right)}{1 + L_{exp}G_{ain}}$$
(1)

Non-Inverting Gain =
$$\frac{\left[1 + \frac{R_{ep}}{R_{ep}}\right]}{1 + L_{exp}G_{ain}}$$
(2)

where Loop Gain =
$$\frac{T_0}{R_{ep} + R_3\left(1 + \frac{R_{ep}}{R_{ep}}\right)}$$

RIGURE L. Equivalent Circuit.

OFFSIET YOUTAGE AND HOUSE

The output offset is the algebraic sum of the gained-up input offset voltage and effects it output sources that influence DC operation. The output offset is calculated by the following equation (refer to Figure 2):

Output Offset Voltage =
$$\pm lb_N \times R_N \left(1 + \frac{R_{PB}}{R_{PB}}\right) \pm V_{10} \left(1 + \frac{R_{PB}}{R}\right) \pm lb_1 \times R_{PB}$$

If all terms are divided by the gain $(1 + R_{\rm ep}R_{\rm pp})$ it can be observed that the input referred offset improves as gain increases. The effective souse at the output can be determined by taking the root sum of the squares of equation (4) and substituting the spectral noise values for the DC current and voltage terms (found in the specification table). This applies

DISCUSSION OF PERFORMANCE

THEORY OF OPERATION

Conventional op amps depend on feedback to drive their inputs to the same potential. In current feedback op amps, inverting and non-inverting inputs are connected by a unity gain buffer, thus enabling the inverting input to automatically assume the same potential as the non-inverting input. This results in very low impedance and significant current sourcing/sinking ability at the inverting input.

The OPA4658 is a quad low-power, gain of +2 stable, current feedback operational amplifier which operates on ±5V power supplies. The current feedback architecture offers the following important advantages over voltage feedback architectures: (1) the high slew rate allows the large signal performance to approach the small signal performance, and (2) there is very little bandwidth degradation at higher gain settings.

The current feedback architecture of the OPA4658 provides the traditional strength of excellent large signal response plus wide bandwidth, making it a good choice for use in high resolution video, medical imaging and digital communications. The low power requirements make it an excellent choice for numerous portable applications.

DC GAIN TRANSFER CHARACTERISTICS

The circuit in Figure 1 shows the equivalent circuit for calculating the DC gain. When operating the device in the inverting mode, the input signal error current ($I_{\rm E}$) is amplified by the open loop transimpedance gain ($T_{\rm O}$). The output voltage is equal to $T_{\rm O}$ X $I_{\rm E}$. Negative feedback is applied through $R_{\rm FB}$ such that the device operates at a gain equal to $-R_{\rm FB}/R_{\rm FF}$.

For non-inverting operation, the input signal is applied to the non-inverting (high impedance buffer) input. The output error current ($I_{\rm E}$) is generated by the buffer at the low impedance inverting input. The signal generated at the opamp output is fed back to the inverting input such that the overall gain is $(1 + R_{\rm FB}/R_{\rm FF})$.

The closed-loop gain for the OPA4658 can be calculated using the following equations:

Inverting Gain =
$$\frac{-\left(\frac{R_{FB}}{R_{FF}}\right)}{1 + \frac{1}{\text{Loop Gain}}}$$
 (1)

Non-Inverting Gain =
$$\frac{\left[1 + \frac{R_{FB}}{R_{FF}}\right]}{1 + \frac{1}{\text{Loop Gain}}}$$
 (2)

where Loop Gain =
$$\boxed{ \frac{T_O}{R_{FB} + R_S \left(1 + \frac{R_{FB}}{R_{FF}}\right)} }$$

At higher gains the small inverting input impedance R_S causes an apparent loss in bandwidth. This can been seen from the equation:

e equation:

$$BW_{ACTUAL} = \frac{BW_{IDEAL}}{1 + \left(\frac{R_{S}}{R_{FB}}\right) \times \left(1 + \frac{R_{FB}}{R_{FF}}\right)}$$
(3)

This loss in bandwidth at high gains can be improved without affecting stability by lowering the value of the feedback resistor from the specified value of 402Ω .

FIGURE 1. Equivalent Circuit.

OFFSET VOLTAGE AND NOISE

The output offset is the algebraic sum of the gained-up input offset voltage and effects from current sources that influence DC operation. The output offset is calculated by the following equation (refer to Figure 2):

Output Offset Voltage =
$$\pm Ib_N \times R_N \left(1 + \frac{R_{FB}}{R_{FF}} \right) \pm$$
 (4)

$$V_{IO} \left(1 + \frac{R_{FB}}{R_{FF}} \right) \pm Ib_I \times R_{FB}$$

If all terms are divided by the gain $(1 + R_{FB}/R_{FF})$ it can be observed that the input referred offset improves as gain increases. The effective noise at the output can be determined by taking the root sum of the squares of equation (4) and substituting the spectral noise values for the DC current and voltage terms (found in the specification table). This applies

FIGURE 2. Output Offset Voltage Equivalent Circuit.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

to noise from the op amp only. Note that both the noise figure (NF) and the equivalent input offset voltages improve as the closed loop gain increases (by keeping R_{FB} fixed and reducing R_{FF} with $R_N=0\Omega).$

INCREASING BANDWIDTH AT HIGH GAINS

The closed-loop bandwidth can be extended at high gains by reducing the value of the feedback resistor $R_{\rm FB}$. This bandwidth reduction is caused by the feedback current being split between $R_{\rm S}$ and $R_{\rm FF}$ (refer to Figure 1). As the gain increases (for a fixed $R_{\rm FB}$), more feedback current is shunted through $R_{\rm FF}$, which reduces closed-loop bandwidth.

WIRING PRECAUTIONS/CIRCUIT LAYOUT

Maximizing the OPA4658's capability requires some wiring precautions and use of high-frequency layout techniques. Oscillation, ringing, poor bandwidth, settling, gain peaking and instability are typical problems plaguing all high-speed amplifiers when they are improperly used. In general, all printed circuit board conductors should be wide to provide low impedance signal paths, and should be as short as possible. The entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high impedance nodes such as the amplifier's input terminals. Stray signal coupling from the output or power supplies to the inputs should be minimized. All circuit elements should be no longer than 1/4 inch (6mm) to minimize lead inductance, and low values of resistance should be used. This will minimize time constants formed with the circuit capacitances and will eliminate stray para-

As with all high-frequency circuits, grounding is the most important application consideration for the OPA4658. Oscillations at high frequencies can easily occur if good grounding techniques are not used. A heavy ground plane (2 ounce copper recommended) should connect all unused areas on the component side. Good ground planes can reduce stray signal pickup, provide a low impedance common return path for signal and power, and conduct heat from active circuit package pins into ambient air by convection. However, do not place the ground plane under or near the inputs.

Supply bypassing is extremely critical and must **always** be used, especially when driving high current loads. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (2.2µF) with very short leads are recommended. A parallel 0.1µF ceramic must also be added. Surface mount bypass capacitors will produce excellent results due to their low lead inductance. Additionally, suppression filters can be used to isolate noisy supply lines. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

Points to Remember and and goldsimeand standard (0)

- 1) Power supply bypassing with 0.1μF and 2.2μF surface mount capacitors is recommended. It is essential to keep the 0.1μF capacitor very close to the power supply pins. Refer to the demonstration board layout in Figures 12a through d.
- 2) Whenever possible, use surface mount components. Do not use point-to-point wiring as the increase in wiring inductance will be detrimental to AC performance. However, if wires must be used, very short, direct signal paths are required. The input signal ground return, the load ground return, and the power supply common should all be connected to the same physical point to eliminate ground loops, which can cause unwanted feedback.
- 3) Surface mount on the back side of the PC board. Good component selection is essential. Capacitors used in critical locations should be low inductance type with a high quality dielectric material. Likewise, diodes used in critical locations should be Schottky barrier types, such as HP5082-2835 for fast recovery and minimum charge storage. Ordinary p-n diodes will not be suitable in RF circuits.
- 4) Whenever possible, solder the OPA4658 directly into the PC board without using a socket. Sockets add parasitic capacitance and inductance, which can seriously degrade the AC performance or produce small oscillations.
- 5) Use a feedback resistor (usually 402Ω) in gain of 2 applications for the best performance. For higher gain configurations, resistors used in feedback networks should have values of a few hundred ohms for best performance. Shunt capacitance problems limit the acceptable resistance range to about $1k\Omega$ on the high end and to a value that is within the amplifier's output drive limits on the low end. Metal film and carbon resistors will be satisfactory, but wirewound resistors (even "non-inductive" types) are absolutely unacceptable in high-frequency circuits. Feedback resistors should be placed directly between the output and the inverting input on the backside of the PC board. This placement allows for the shortest feedback path and the highest bandwidth. A longer feedback path than this will decrease the realized bandwidth substantially. Refer to the demonstration board layout at the end of the data sheet.
- 6) As mentioned above, surface mount components (chip resistors, capacitors, etc.) have low lead inductance and are therefore strongly recommended. Circuits using all surface mount components with the OPA4658U (SOIC package) will offer the best AC performance. The parasitic package impedance for the SOIC is lower than the 14-pin PDIP.
- 7) Avoid overloading the output. Remember that output current must be provided by the amplifier to drive its own feedback network as well as to drive its load. Lowest distortion is achieved with high impedance loads.
- 8) These amplifiers are designed for ± 5 V supplies. Although they will operate well with +5V and -5.2V, use of ± 15 V supplies will destroy them.
- 9) Standard commercial test equipment has not been designed to test devices in the OPA4658's speed range. Bench top op amp testers and ATE systems will require a special test head to successfully test these amplifiers.

capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.

11) Plug-in prototype boards and wire-wrap boards will not be satisfactory. A clean layout using RF techniques is essential; there are no shortcuts.

ESD PROTECTION of Lineary Language and South Bondages

ESD damage has been well recognized for MOSFET devices, but any semiconductor device is vulnerable to this potentially damaging source. This is particularly true for very high speed, fine geometry processes.

ESD damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision operational amplifiers, this may cause a noticeable degradation of offset voltage and drift. Therefore, ESD handling precautions are strongly recommended when handling the OPA4658.

OUTPUT DRIVE CAPABILITY

The OPA4658 has been optimized to drive 75Ω and 100Ω resistive loads. The device can drive 2Vp-p into a 75Ω load. This high-output drive capability makes the OPA4658 an ideal choice for a wide range of RF, IF, and video applications. In many cases, additional buffer amplifiers are unneeded.

Many demanding high-speed applications such as ADC/DAC buffers require op amps with low wideband output impedance. For example, low output impedance is essential when driving the signal-dependent capacitances at the inputs of flash A/D converters. As shown in Figure 3, the OPA4658 maintains very low closed-loop output impedance over frequency. Closed-loop output impedance increases with frequency since loop gain is decreasing with frequency.

FIGURE 3. Closed-Loop Output Impedance vs Frequency.

most environments. At extreme temperatures and under full load conditions a heat sink may be necessary.

The internal power dissipation is given by the equation $P_D = P_{DQ} + P_{DL}$, where P_{DQ} is the quiescent power dissipation and P_{DL} is the power dissipation in the output stage due to the load. (For $\pm V_S = \pm 5V$, $P_{DQ} = 10V \times 34 \text{mA} = 340 \text{mW}$, max). For the case where the amplifier is driving a grounded load (R_L) with a DC voltage $(\pm V_{OUT})$ the maximum value of P_{DL} occurs at $\pm V_{OUT} = \pm V_S/2$, and is equal to P_{DL} max $= (\pm V_S)^2/4R_L$. Note that it is the voltage across the output transistor, and not the load, that determines the power dissipated in the output stage.

The short-circuit condition represents the maximum amount of internal power dissipation that can be generated. The variation of output current with temperature is shown in the Typical Performance Curves.

CAPACITIVE LOADS

The OPA4658's output stage has been optimized to drive low resistive loads. Capacitive loads, however, will decrease the amplifier's phase margin which may cause high frequency peaking or oscillations. Capacitive loads greater than 5pF should be buffered by connecting a small resistance, usually 5Ω to 25Ω , in series with the output as shown in Figure 4. This is particularly important when driving high capacitance loads such as flash A/D converters.

In general, capacitive loads should be minimized for optimum high frequency performance. Coax lines can be driven if the cable is properly terminated. The capacitance of coax cable (29pF/foot for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated with its characteristic impedance.

FIGURE 4. Driving Capacitive Loads.

COMPENSATION

The OPA4658 is internally compensated and is stable in gains of two or greater, with a phase margin of approximately 66° in a gain of +2V/V. (Note that, from a stability standpoint, an inverting gain of -1V/V is equivalent to a noise gain of 2.) Gain and phase response for other gains are shown in the Typical Performance Curves.

The high-frequency response of the OPA4658 in a good layout is very flat with frequency.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

DISTORTION

The OPA4658's Harmonic Distortion characteristics into a 100Ω load are shown vs frequency and power output in the Typical Performance Curves. Distortion can be further improved by increasing the load resistance as illustrated in Figure 5. Remember to include the contribution of the feedback resistance when calculating the effective load resistance seen by the amplifier.

FIGURE 5. 5MHz Harmonic Distortion vs Load Resistance.

The third-order intercept is an important parameter for many RF amplifier applications. Figure 6 shows the OPA4658's two tone, third-order intercept vs frequency. This curve is particularly useful for determining the magnitude of the third harmonic as a function of frequency, load resistance, and gain. For example, assume that the application requires the OPA4658 to operate in a gain of +2V/V and drive 2Vp-p into 100Ω at a frequency of 10MHz. Referring to Figure 6 we find that the intercept point is +38dBm. The magnitude of the third harmonic can now be easily calculated from the expression:

Third Harmonic (dBc) =
$$2(OPI^3P - P_O)$$

where OPI^3P = third-order output intercept, dBm
 P_O = output level, dBm

For this case $OPI^{3}P = 38dBm$, $P_{O} = 7dBm$, and the third Harmonic = 2(38 - 7) = 62dB below the fundamental. The OPA4658's low distortion makes the device an excellent choice for a variety of RF signal processing applications.

FIGURE 6. Third Order Intercept Point vs Frequency.

CROSSTALK

Crosstalk is the undesired result of the signal of one channel mixing with and reproducing itself in the output of another channel or channels. Crosstalk is inclined to occur in most multichannel integrated circuits. In quad devices, the effect of crosstalk is measured by driving three channels and observing the output of the undriven channel over various frequencies. The magnitude of this effect is referenced in terms of channel-to-channel isolation and expressed in decibels. Input referred points to the fact that there is a direct correlation between gain and crosstalk, therefore at increased gain, crosstalk also increases by a factor equal to that of the gain. Figure 7 illustrates the measured effect of crosstalk in the OPA4658U.

FIGURE 7. Channel-to-Channel Isolation (three active channels).

DIFFERENTIAL GAIN AND PHASE

Differential Gain (DG) and Differential Phase (DP) are critical specifications for video applications. DG is defined as the percent change in closed-loop gain over a specified change in output voltage level. DP is defined as the change in degrees of the closed-loop phase over the same output voltage change. Both DG and DP are specified at the NTSC sub-carrier frequency of 3.58MHz and the PAL subcarrier of 4.43MHz. All NTSC measurements were performed using a Tektronix model VM700A Video Measurement Set.

DG and DP of the OPA4658 were measured with the amplifier in a gain of +2V/V with 75Ω input impedance and the output back-terminated in 75Ω . The input signal selected from the generator was a 0V to 1.4V modulated ramp with sync pulse. With these conditions the test circuit shown in Figure 8 delivered a 100IRE modulated ramp to the 75Ω input of the video analyzer. The signal averaging feature of the analyzer

FIGURE 8. Configuration for Testing Differential Gain/Phase.

BURR-BROWN

was used to establish a reference against which the performance of the amplifier was measured. Signal averaging was also used to measure the DG and DP of the test signal in order to eliminate the generator's contribution to measured amplifier performance. Typical performance of the OPA4658 is 0.015% differential gain and 0.02° differential phase to both NTSC and PAL standards.

NOISE FIGURE disab at be express of an acitatori farmed on

The OPA4658's voltage and current noise spectral densities are specified in the Typical Performance Curves. For RF applications, however, Noise Figure (NF) is often the preferred noise specification since it allows system noise performance to be more easily calculated. The OPA4658's Noise Figure vs Source Resistance is shown in Figure 9.

SPICE MODELS

Computer simulation using SPICE is often useful when analyzing the performance of analog circuits and systems. This is particularly true for Video and RF amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. SPICE models using MicroSim Corporation's PSpice are available for the OPA4658. Contract Burr-Brown applications departments to receive a SPICE Diskette.

FIGURE 9. Noise Figure vs Source Resistance.

TYPICAL APPLICATIONS

FIGURE 10. Low Distortion Video Amplifier.

FIGURE 11. Circuit Detail for the PC Board Layout of Figure 12.

FIGURE 12a. Board Silkscreen (Bottom). 12b. Board Silkscreen (Top). 12c. Board Layout (Solder Side). 12d. Board Layout (Component Side).

VCA610

WIDEBAND VOLTAGE CONTROLLED AMPLIFIER

FEATURES

- WIDE GAIN CONTROL RANGE: 80dB
- SMALL PACKAGE: 8-pin SOIC or DIP
- WIDE BANDWIDTH: 30MHz
- LOW VOLTAGE NOISE: 2.2nV/√Hz
- FAST GAIN SLEW RATE: 300dB/µs
- EASY TO USE

DESCRIPTION

The VCA610 is a wideband, continuously variable, voltage controlled gain amplifier. It provides linear-dB gain control with high impedance inputs. It is designed to be used as a flexible gain control element in a variety of electronic systems.

The VCA610 has a gain control range of 80dB (-40dB to +40dB) providing both gain and attenuation for maximum flexibility in a small 8-pin SOIC or plastic dual-in-line package. The broad attenuation range can be used for gradual or controlled channel turn-on and turn-off for applications in which abrupt gain changes can create artifacts or other errors. In addition, the output can be disabled to provide -80dB of attenuation. Group delay variation with gain is typically less than ±2ns across a bandwidth of 1 to 15MHz.

The VCA610 has a noise figure of 3.5dB (with an $R_{\rm S}$ of 200 Ω) including the effects of both current and voltage noise. Instantaneous output dynamic range is 70dB for gains of 0dB to +40dB with 1MHz noise bandwidth. The output is capable of driving $100\Omega.$ The high speed, $300{\rm dB/\mu s},$ gain control signal is a unipolar voltage that varies the gain linearly in dB/V.

APPLICATIONS

- ULTRASOUND
- AGC AMPLIFIER
- ANALYTICAL INSTRUMENTATION
- SONAR
- ACTIVE FILTERS
- LOG AMPLIFIER
- IF CIRCUITS
- CCD CAMERAS

The VCA610 is designed with a very fast overload recovery time of only 200ns. This allows a large signal transient to overload the output at high gain, without obscuring low-level signals following closely behind. The excellent overload recovery time and distortion specifications optimize this device for low-level doppler measurements.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

ACVEIO

All specifications at $V_S = \pm 5V$, $R_L = 500\Omega$, $R_S = 0\Omega$, and $T_A = +25$ °C unless otherwise noted.

	CONDITIONS	VCA610PA, UA			VCA610P, U			11 11
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE Input Voltage Noise Input Current Noise Noise Figure	$G = +40dB, R_S = 0\Omega$ $G = -40dB to +40dB$ $G = +40dB, R_S = 200\Omega$		2.2 1.4 3.5			:		nV/√Hz pA/√Hz dB
INPUT Input Impedance Blas Current Offset Current Differential Voltage Range Common-Mode Voltage Range Common-Mode Rejection	Common-Mode All Gains All Gains	830 830	1 1 6 2 (1) ±2.5 50	o a	DAT	JOY		MΩ pF μΑ μΑ V dB
GAIN Specified Gain Range Gain Accuracy ⁽²⁾ Gain Accuracy Temperature Drift Gain with Output Disabled	$-40dB \le G \le +40dB$ $T_A = -25^{\circ}C \text{ to } +85^{\circ}C$ $+0.1V \le V_C \le +2.0V, f = 1MHz$	-40	±0.5 ±0.01 –80	+40 ±2	DE TURBON	±2 •	±4 HUTA	dB dB dB/°C dB
GAIN CONTROL Gain Scaling Factor Control Voltage (V _C) Sea Hate Settling Time: 1% Input Impedance Input Bias Current Output Offset Change(3)	$-40 dB \le G \le +40 dB$ $G = -40 dB (V_C = 0V) to +40 dB (V_C = -2V)$ $-3 dB$ $80 dB Gain Step$ $V_{IN} = 10 mVDC, \Delta G = 80 dB$ All Gains $\Delta G = 80 dB$	0	40 1 300 800 1 1 2 ±30	≟2 ±75	AOL RI E: 8-pin H: 30MI OISE: 2 FRATE:	N CONT ICKAGE IDWIDT TAGE N SLEW ISE	AG 30 AG J. AS AG 30 JOV WI IAO 73 (±125)	dB/V V MHz dB/μs ns MΩ pF μA mV
FREQUENCY RESPONSE Bandwidth, Small-Signal Bandwidth, Large-Signal Group Delay Unit-to-Unit Variation odB ≤ G ≤ +40dB −40dB ≤ G < 0dB Output Slew Rate Overload Recovery(*) Two-tone Intermodulation Distortion(*) Two-tone, 3rd Order IMD Intercept(*)	-3 dB, All Gains $V_O = 1$ Vp-p, G ≥ 0dB $f = 1 \text{ to } 15$ MHz $f = 1 \text{ to } 15$ MHz $V_O = 1$ Vp-p S mall-Signal S mall-Signal	ole, ar- is	30 25 ±1 ±2 60 200 -50 15	nduscoso t. It prov edunce	M oband, or ampliñe bigh im	P71C is a wid led gain	SORI CA610 c contro	MHz MHz ns ns V/µs ns dBc dBm
OUTPUT Voltage Swing(1) G = +40dB G = 0dB Output Voltage Limit Short-Circuit Current Instantaneous Dynamic Range (IDR)(6) G = 0dB to +40dB Offset Output Resistance	Continuous to Common V _O = 1.5Vp-p G = -40dB f = 1MHz, All Gains	±1 ±0.5 Symmetr	±1.6 ±0.75 ical to Grou ±80 70 ±2 10	nd (±10%) ±30	convolu- convolu- convolu- coth gain a small ! ne broad outrolled	electron electron viding 1 bility in kape T dual or	uriety of uriety of CA610 I OdB) pro num flex to-line pa od for gra	V V mA dB mV Ω
POWER SUPPLY Specification PSR Quiescent Current	±5V Recommended G = 0dB	±4.5 40	50 -26/+30	±5.5	other and to provid the with	taots or disabled by varia	resto aru t can bo irosp da	V dB mA
TEMPERATURE Specification Operation θ_{JA} DIP SO-8	Applies to Temperature Drift Specs	-25 -40	90 100	+85 +125	twidth of se figure e effects cous out to 400	as a bag as a noi buting the instantas of field	CA 510 inch (CA 510 inch (c noise.)	°C/W °C/W

NOTES: (1) See Input/Output Range discussion in Applications Information Section (Figure 2). (2) Gain is laser trimmed and tested at gains of -40dB, 0dB, +15dB, +25dB, and +40dB; VIN =1Vp-p for gains less than 0dB; VOUT = 1V for gains of 0dB to +40dB. (3) Output offset change from offset at G = -40dB. (4) Gain = +40dB; Input step of 2V to 2mV; time required for output to return from saturation to linear operation. (5) V_{IN} = 7mVp-p, V_{OUT} = 700mVp-p (250mVrms); Output Power = -10dBm/tone, equal amplitude tones of 5MHz ±500Hz, G = +40dB. See typical performance curves. (6) With R_S = 0Ω, and noise bandwidth of 1MHz. IDR = 20 log ($V_{ORMS}/(e_{ORMS} \times \sqrt{BW})$); where V_{ORMS} is rms output voltage, e_{ORMS} is output noise spectral density, and BW is noise bandwidth.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply	±7V
Differential Input Voltage	Total V _S
Input Voltage Range	See Input Protection Section
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, DIP, 10s)	+300°C
Lead Temperature (soldering, SOIC, 3s)	+260°C
Output Short-Circuit to Ground (+25°C)	
Junction Temperature (T _{.i})	+175°C

ORDERING AND PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾			
VCA610PA	8-pin Plastic DIP	006			
VCA610P	8-pin Plastic DIP	006			
VCA610UA	SO-8 Surface-Mount	182			
VCA610U	SO-8 Surface-Mount	V0.5-182			

NOTE:(1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

All Market Marke

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

(su)

12

10

Group Delay (

APPLICATIONS INFORMATION

CIRCUIT DESCRIPTION

The VCA610 is a wideband voltage amplifier with a voltage-controlled gain, as modeled in Figure 1. The circuit's basic voltage amplifier responds to the control of an internal gain control amplifier. At its input, the voltage amplifier presents the high impedance of a differential stage, permitting termination freedom in impedance matching. To preserve termination options, no internal circuitry connects to the input bases of this differential stage. For this reason, the user should provide DC return paths to ground for the input base currents either through a grounded termination resistor or a direct connection to ground. The differential input stage also permits rejection of common-mode signals to remove ground bounce effects. At its output, the voltage amplifier presents the low impedance of class A-B emitter-follower stage, again simplifying impedance matching. An openloop design produces wide bandwidth at all gain levels and avoids the added overload-recovery and propagation delays of feedback designs. Repeated use of differential stages minimizes offset effects for reduced feedthrough of the gain control signal. A ground-sensing, differential to single-ended converter retains the low offset in the amplifier output stage.

FIGURE 1. Block Diagram of the VCA610.

A user-applied voltage, $V_{\rm C}$, controls the amplifier's gain magnitude through a high-speed control circuit. Gain polarity can be either inverting or noninverting depending upon the amplifier input driven by the input signal. Use of the inverting input is recommended since this connection tends to minimize positive feedback from the output to the noninverting input. The gain control circuit presents the high input impedance of a noninverting op amp connection.

Control voltage V_C varies the amplifier gain according to the exponential relationship $G(V/V)=10^{-2}$ ($^{VC+1}$). This translates to the linear, logarithmic relationship $G(dB)=-40-40V_C$. Thus, G(dB) varies linearly over the specified -40dB

to +40dB range as V_C varies from 0 to -2V. Optionally, making V_C slightly positive, $\geq 0.1V$, effectively disables the amplifier, producing 80dB of attenuation.

Internally, the gain control circuit varies the amplifier gain through a time-proven method which exploits the linear relationship between the transconductance, g_{m} , of a bipolar transistor and the transistor's bias current. Varying the bias currents of differential stages varies g_{m} to control the voltage gain of the VCA610. Relying on transistor g_{m} to set gain also avoids the need for a noise-producing gain-set resistor in the amplifier input circuit. This reliance normally introduces a high thermal sensitivity to the gain. However, the VCA610 employs specialized analog signal processing that removes this thermal effect.

INPUT/OUTPUT RANGE

The VCA610's 80dB gain range allows the user to handle an exceptionally wide range of input signal levels. If the unit's input and output voltage range specifications are exceeded, however, signal distortion and amplifier overloading will occur. The VCA610's maximum input and output voltage range is best illustrated in Figure 2.

FIGURE 2. Input and Output Range.

Figure 2 plots output power vs input power for five voltage gains spaced at 20dB intervals. The 1dBm compression points occur where the actual output power (solid lines) deviates by -1dBm from the ideal output power (dashed lines). Compression is produced by different mechanisms depending on the selected gain. For example, at G = -40 dB, 1dBm compression occurs when the input signal approaches approximately 3Vp-p (13.5dBm for $R_S = 50\Omega$). Input overloading is the compression mechanism for all gains from -40dB to about -5dB. For gains between -5dB and +5dB, the compression is due to internal gain stage overloading. Compression over this gain range occurs when the output signal becomes distorted as internal gain stages become overdriven. At G = 0dB, 1dBm compression occurs when the input exceeds approximately 1.5Vp-p (7.5dBm). At gains greater than about 5dB, the compression mechanism is due to output stage overloading. Output overloading occurs

Or, Call Customer Service at 1-800-548-6132 (USA Only)

when either the maximum output voltage swing or output current is exceeded. The VCA610's high output current of $\pm 80 \text{mA}$ insures that virtually all output overloads will be limited by voltage swing rather than by current limiting. At G = +40 dB, 1 dBm compression occurs when the output voltage approaches 3 Vp-p (3.5dBm for $R_L = 500 \Omega$). Table I below summarizes these results.

GAIN RANGE	OUTPUT COMPRESSION MECHANISM	TO PREVENT OPERATE WITHIN
-40dB < G < -5dB	Input Stage Overload	Input Voltage Range
-5dB < G < +5dB	Internal Stages Overloading	Output Voltage Range
+5dB < G < +40dB	Output Stage Overload	Output Voltage Range

TABLE I. Output Signal Compression.

WIRING PRECAUTIONS

Maximizing the VCA610's capability requires some wiring precautions and high-frequency layout techniques. In general, printed circuit board conductors should be as short and as wide as possible to provide low resistance, low impedance signal paths. Stray signal coupling from the output or power supplies to the inputs should be minimized. Unused inputs should be grounded as close to the package as possible.

Low impedance ground returns for signal and power are essential. Proper supply bypassing is also extremely critical and must *always* be used. Both power supply leads should be bypassed to ground as close as possible to the amplifier pins. Tantalum capacitors (1µF to 10µF) with very short leads are recommended. Surface mount bypass capacitors will provide excellent results due to their low lead inductance.

OVERLOAD RECOVERY

As shown in Figure 2, the onset of overload occurs whenever the actual output begins to deviate from the ideal expected output. If possible, the user should operate the VCA610 within the linear regions shown in order to minimize signal distortion and overload delay time. However, instances of amplifier overload are actually quite common in Automatic Gain Control (AGC) circuits which involve the application of variable gain to signals of varying levels. The VCA610's design incorporates circuitry which allows it to recover from most overload conditions in 200ns or less. Overload recovery time is defined as the time required for the output to return from overload to linear operation following the removal of either an input or gain control overdrive signal.

OFFSET ADJUSTMENT

Where desired, the offset of the VCA610 can be removed as shown in Figure 3. This circuit simply presents a DC voltage to one of the amplifier's inputs to counteract the offset error voltage. For best offset performance, the trim adjustment should be made with the amplifier set at the maximum gain of the intended application. The offset voltage of the VCA610 varies with gain, limiting the complete offset cancellation to

FIGURE 3. Optional Offset Adjustment and Control Line Filtering.

one selected gain. Selecting the maximum gain optimizes offset performance for higher gains where high amplification of the offset effects produces the greatest output offset. Two features minimize the offset control circuit's noise contribution to the amplifier input circuit. First, making the resistance of R_2 a low value minimizes the noise directly introduced by the control circuit. This reduces both the thermal noise of the resistor and the noise produced by the resistor with the amplifier's input noise current. A second noise reduction results from capacitive bypass of the potentiometer output. This filters out power supply noise that would otherwise couple to the amplifier input.

This filtering action would diminish as the wiper position approaches either end of the potentiometer but practical conditions prevent such settings. Over its full adjustment range, the offset control circuit produces a ±5mV offset correction for the values shown. However, the VCA610 only requires one tenth of this range for offset correction, assuring that the potentiometer wiper will always be near the potentiometer center. With this setting, the resistance seen at the wiper remains high and this stabilizes the filtering function.

GAIN CONTROL

The VCA610's gain is controlled by means of a unipolar negative voltage applied between ground and the gain control input, pin 3. If use of the output disable feature is required, a ground-referenced bipolar voltage is needed. Output disable occurs for $+0.1V \le V_C \le +2V$, and produces 80dB of attenuation. The control voltage should be limited to +2V in disable mode, and -2V in the gain mode in order to prevent saturation of internal circuitry.

Performance Curves. This wide bandwidth, although useful for many applications, can allow high frequency noise to modulate the gain control input. In practice, this can be easily avoided by filtering the control input as shown in Figure 3b. $R_{\rm P}$ should be no greater than 100Ω so as not to introduce gain errors by interacting with the gain control's input bias current of $2\mu A$.

INPUT PROTECTION

Electrostatic damage (ESD) has been well recognized for MOSFET devices, but any semiconductor device deserves protection from this potentially damaging source. The VCA610 incorporates on-chip ESD protection diodes as shown in Figure 4. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 4. Internal ESD Protection.

All pins on the VCA610 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply as shown. These diodes will begin to conduct when the pin voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, diode current should be externally limited to 10mA whenever possible.

The internal protection diodes are designed to withstand 2.5kV (using Human Body Model) and provides adequate ESD protection for most normal handling procedures. However, static protection is strongly recommended since static damage can cause subtle changes in amplifier operational characteristics without necessarily destroying the device.

DEMONSTRATION BOARDS

Demonstration boards to speed prototyping are available. Request DEM-VCA610AP-C for 8-pin DIP.

APPLICATIONS

The electronically variable gain of the VCA610 suits pulseecho imaging systems well. Such applications include medical imaging, non-destructive structural inspection and sonar. nential amplifiers. The discussions below present examples of these applications.

ULTRASOUND TGC AMPLIFIER

The Figure 5 block diagram illustrates the fundamental configuration common to pulse-echo imaging systems. A piezoelectric crystal serves as both the ultrasonic pulse generator and the echo monitor transducer. A transmit/receive (T/R) switch isolates the monitor amplifier from the crystal during the pulse generation cycle and, then, connects the amplifier to the crystal during the echo monitor cycle.

FIGURE 5. Typical Ultrasound Application.

During the monitor (receive) cycle, the control voltage V_C, varies the amplifier gain. The gain is varied for three basic signal processing requirements of a transducer array based beamformer: compensation for depth attenuation effects, sometimes called Time Gain Compensation (TGC); receive apodization or windowing for reducing side lobe energy; and dynamic aperture sizing for better near field resolution.

Time gain compensation increases the amplifier's gain as the ultrasound signal moves through the material to compensate for signal attenuation versus material depth. For this purpose, a ramp signal applied to the VCA610 gain control input linearly increases the dB gain of the VCA610 with time. The gain control provides signal apodization or windowing with transducer arrays connected to amplifier arrays. Selective weighting of amplifier gains across the transducer aperture suppresses side lobe effects in the beamformer output to reduce image artifacts. Gain controlled attenuation or disabling the amplifier can be used to dynamically size the array aperture for better near field resolution. The controlled attenuation of the VCA610 minimizes switching artifacts and eliminates the bright radial rings that can result. The VCA610's 80dB gain range accommodates these functions.

WIDE-RANGE LOW-NOISE VCA

Figure 6 combines two VCA610s in series, extending the overall gain range and improving noise performance. This combination produces a gain equal to the sum of the two amplifier's logarithmic gains for a composite range of

Or, Call Customer Service at 1-800-548-6132 (USA Only)

-80 dB to +80 dB. Simply connecting V_{C1} and V_{C2} to the same 0 to -2 V gain control voltage can produce this range, however, separate control voltages for the two amplifiers offer a noise performance improvement. In that configuration, each amplifier separately controls one half the gain range in a manner that always holds G_1 at the maximum level possible.

FIGURE 6. Two Series Connected VCA610s Expand the Gain Range and Improve Noise Performance.

At higher gains, variation of $V_{\rm C2}$ alone makes VCA₂ provide all of the gain control, leaving the gain of VCA₁ fixed at its maximum of 40dB. This gain maximum corresponds to the maximum bias currents in VCA₁, minimizing this amplifier's noise. Thus, for composite circuit gains of 0dB to +80dB, $V_{\rm CA1}$ serves as a low-noise, fixed-gain preamp.

For lower composite gains, VCA₁ provides the gain control and VCA₂ acts as a fixed attenuator. There, variation of V_{C1} varies G_1 from –40dB to +40dB while V_{C2} remains fixed at 0V for G_2 = –40dB. This mode produces the –80dB to 0dB segment of the composite gain range.

WIDE-RANGE AGC AMPLIFIER

The voltage-controlled gain feature of the VCA610 makes this amplifier ideal for precision AGC applications with control ranges as large as 60dB. The AGC circuit of Figure 7 adds an op amp and diode for amplitude detection, a holding capacitor to store the control voltage and resistors R_1 through R_3 that determine attack and release times. Resistor R_4 and capacitor $C_{\rm C}$ phase compensate the AGC feedback loop. The op amp compares the positive peaks of output $V_{\rm O}$ with a DC reference voltage $V_{\rm R}$. Whenever a $V_{\rm O}$ peak exceeds $V_{\rm R}$, the OPA620 output swings positive, forward biasing the diode and charging the holding capacitor. This drives the capacitor voltage in a positive direction, reducing the amplifier gain. R_3 and the $C_{\rm H}$ largely determine the attack time of this AGC correction.

FIGURE 7. This AGC Circuit Maintains a Constant Output Amplitude for a 1000:1 Input Range.

Between gain corrections, resistor R_1 charges the capacitor in a negative direction, increasing the amplifier gain. R_1 , R_2 and C_H determine the release time of this action. Resistor R_2 forms a voltage divider with R_1 , limiting the maximum negative voltage developed on C_H . This limit prevents input overload of the VCA610's gain control circuit.

FIGURE 8. Adding Wein-bridge Feedback to the AGC Circuit of Figure 7 Produces an Amplitude Stabilized Oscillator.

STABILIZED WEIN-BRIDGE OSCILLATOR

Adding Wein-bridge feedback to the above AGC amplifier produces an amplitude-stabilized oscillator. Shown in Figure 8, this alternative requires the addition of just two resistors (R_{W1}, R_{W2}) and two capacitors (C_{W1}, C_{W2}) .

Connecting the feedback network to the amplifier's noninverting input introduces positive feedback to induce oscillation. The feedback factor displays a frequency dependence due to the changing impedances of the C_W capacitors. As frequency increases, the decreasing impedance of the C_{W2} increases the feedback factor. Simultaneously, the decreasing impedance of the C_{W1} decreases this factor.

Analysis shows that the maximum factor occurs at f = 1/2πR_wC_w, making this the frequency most conducive to oscillation. At this frequency the impedance magnitude of Cw equals Rw and inspection of the circuit shows that this condition produces a feedback factor of 1/3. Thus, selfsustaining oscillation requires a gain of three through the amplifier. The AGC circuitry establishes this gain level. Following initial circuit turn on, R₁ begins charging C_H negative, increasing the amplifier gain from its minimum. When this gain reaches three, oscillation begins at f = 1/2πR_wC_w and R₁'s continued charging effect makes the oscillation amplitude grow. This growth continues until that amplitude reaches a peak value equal to V_R. Then, the AGC circuit counteracts the R₁ effect, controlling the peak amplitude at V_R by holding the amplifier gain at a level of three. Making V_R an AC signal, rather than a DC reference, produces amplitude modulation of the oscillator output.

LOW-DRIFT WIDEBAND LOG AMP

The VCA610 can be used to provide a 250kHz (-3dB) log amp with low offset voltage and low gain drift.

The exponential gain control characteristic of the VCA610 permits simple generation of a temperature-compensated logarithmic response. Enclosing the exponential function in an op amp feedback path inverts this function, producing the log response. Figure 9 shows the practical implementation of this technique. A DC reference voltage, V_R , sets the VCA610 inverting input voltage. This makes the amplifier's output voltage $V_{OA} = - \, GV_R$ where $G = 10^{-2} \, (\text{Vc} + 1)$.

A second input voltage also influences V_{OA} through control of gain G. The feedback op amp forces V_{OA} to equal the input voltage V_{IN} connected at the op amp inverting input. Any difference between these two signals drops across R_3 , producing a feedback current that charges C_C . The resulting change in V_{OA} adjusts the gain of the VCA610 to change V_{OA} . At equilibrium, $V_{OA} = V_{IN} = -V_R 10^{-2~(V_C+1)}$. The op amp forces this equality by supplying the gain control voltage $V_C = R_1 \ V_{OL} \ I(R_1 + R_2)$. Combining the last two expressions and solving for V_{OL} yields the circuit's logarithmic response.

$$V_{OL} = -(1 + R_2/R_1) [1 + 0.5LOG (-V_{IN}/V_R)]$$

Examination of this result illustrates several circuit characteristics. First, the argument of the Log term, $-V_{IN}/V_{R}$, a function DDA and or specified an advantage of a graph of the Log term, $-V_{IN}/V_{R}$, a function DDA and or specified an advantage of the Log term, $-V_{IN}/V_{R}$, a function DDA and or specified an advantage of the Log term, $-V_{IN}/V_{R}$, a function DDA and or specified an advantage of the Log term, $-V_{IN}/V_{R}$, and $-V_{IN}/V_{R$

reveals an option and a constraint. In Figure 9, V_R represents a DC reference voltage. Optionally, making this voltage a second signal produces log-ratio operation. Either way, the Log term's argument constrains the polarities of V_R and V_{IN} . These two voltages must be of opposite polarities to ensure a positive argument. This polarity combination results when V_R connects to the inverting input of the VCA610. Alternately, switching V_R to this amplifier's noninverting input removes the minus sign of the log term's argument. Then, both voltages must be of the same polarity to produce a positive argument. In either case, the positive polarity requirement of the argument restricts V_{IN} to a unipolar range.

The above V_{OL} expression reflects a circuit gain introduced by the presence of R_1 and R_2 . This feature adds a convenient scaling control to the circuit. However, a practical matter sets a minimum level for this gain. The voltage divider formed by R_1 and R_2 attenuates the voltage supplied to the V_C terminal by the op amp. This attenuation must be great enough to prevent any possibility of an overload voltage at the V_C terminal. Such an overload saturates the VCA610's gain control circuitry, reducing the amplifier's gain. For the feedback connection of Figure 9, this overload condition permits a circuit latch. To prevent this, choose R_1 and R_2 to ensure that the op amp can not possibly deliver more than 2.5V to the V_C terminal.

FIGURE 9. Driving the Gain Control Pin of the VCA610 with a Feedback Amplifier Produces a Temperature-Compensated Log Response.

LOW-DRIFT WIDEBAND EXPONENTIAL AMP

A common use of the Log amp above involves signal companding. The inverse function, signal expanding, requires an exponential transfer function. The VCA610 produces this latter response directly as shown in Figure 10. DC reference V_R again sets the amplifier's input voltage and the input signal $V_{\rm IN}$ now drives the gain control point. Resistors R_1 and R_2 attenuate this drive to prevent overloading the gain control input. Setting these resistors at the same values as in the preceding Log amp produces an exponential amplifier with the inverse function of the Log amp.

FIGURE 10. Signal Drive of the VCA610 Gain Control Pin
Produces and Exponential Response, Re-expanding Signal Companded by Figure 9.

VOLTAGE-CONTROLLED LOW-PASS FILTER

In the circuit of Figure 11, the VCA610 serves as the variable gain element of a voltage-controlled low-pass filter. As will be described, this implementation expands the circuit's voltage swing capability over that normally achieved with the equivalent multiplier implementation. The circuit's response pole responds to control voltage V_c according to the relationship $f_p = G/2\pi R_2 C$ where $G = 10^{-2} (^{V_c} \cdot ^{1})$. With the components shown, the circuit provides a linear variation of the low-pass cutoff from 300Hz to 1MHz.

FIGURE 11. This Voltage-Tuneable Low-Pass Filter Produces a Variable Cutoff Frequency with a 3,000:1 Range.

The response control results from amplification of the feedback voltage applied to $R_2\cdot$ Consider first the case where the VCA610 produces G=1. Then, the circuit performs as if this amplifier were replaced by a short circuit. Visually doing so leaves a simple voltage amplifier with a feedback resistor bypassed by a capacitor. This basic circuit produces a response pole at $f_p=1/2\pi R_2 C$.

For G>1, the circuit applies a greater voltage to R_2 , increasing the feedback current this resistor supplies to the summing junction of the OPA620. The increased feedback current produces the same result as if R_2 had been decreased in value in the basic circuit described above. Decreasing the effective R_2 resistance moves the circuit's pole to a higher frequency, producing the $f_P=G/2\pi R_3 C$ response control.

Finite loop gain and a signal swing limitation set performance boundaries for the circuit. Both limitations occur when the VCA610 attenuates rather than amplifies the feedback signal. These two limitations reduce the circuit's utility at the lower extreme of the VCA610's gain range. For $-1 \leq V_{\rm C} \leq 0$, this amplifier produces attenuating gains in the range from 0dB to -40dB. This directly reduces the net gain in the circuit's feedback loop, increasing gain error effects. Also, this attenuation transfers an output swing limitation from the OPA620 output to the overall circuit's output. Note that OPA620 output voltage, $V_{\rm OA}$, relates to $V_{\rm O}$ through the expression $V_{\rm O} = GV_{\rm OA}$. Thus, a G < 1 limits the maximum $V_{\rm OA}$ swing to a value less than the maximum $V_{\rm OA}$ swing.

However, the circuit shown provides greater output swing than the more common multiplier implementation. The latter replaces the VCA610 of the figure with an analog multiplier having a response of $V_{\rm o}=XY/10$. Then, $X=V_{\rm oA}$ and $Y=V_{\rm c}$, making the circuit output voltage $V_{\rm o}=V_{\rm oA}V_{\rm c}/10$. Thus, the multiplier implementation amplifies $V_{\rm oA}$ by a gain of $V_{\rm c}/10$. Circuit constraints require that $V_{\rm c} \le 10$, making this gain of 10. Circuit constraints require that $V_{\rm c} \le 10$, making this gain ator and never provides amplification. As a result, the voltage swing limitation of $V_{\rm oA}$ restricts the $V_{\rm o}$ swing throughout most of the circuit's control range. Replacing the multiplier with the VCA610 shown permits equivalent gains greater >1. Then, operating the VCA610 with gains in the range of one to 100 avoids the reduction in output swing capability.

VOLTAGE-CONTROLLED HIGH-PASS FILTER

A circuit analogous to the above low-pass filter produces a voltage-controlled high-pass response. The gain control provided by the VCA610 of Figure 12 varies this circuit's response zero from 1Hz to 10kHz according to the relationship $F_Z\approx 1/2\pi G R_1 C$ where $G=10^{-2\,(V_C\,^{+}\,^{1})}$.

FIGURE 12. A Voltage-Tunable High-Pass Filter Produces a Response Zero Variable from 1Hz to 10kHz.

and R_3 with short circuits. First consider the case where the VCA610 produces G=1. Then, replacing this amplifier with short circuit leaves the operation unchanged. In this shorted state, the circuit is simply a voltage amplifier with an R–C bypass around R_1 . The resistance of this bypass, R_3 , serves only to phase compensate the circuit and practical factors make $R_3 << R_1$. Neglecting R_3 for the moment, the circuit becomes just a voltage amplifier with capacitive bypass of R_1 . This circuit produces a response zero at $f_Z=1/2\pi R_1C$.

Adding the VCA610 as shown permits amplification of the signal applied to capacitor C and produces voltage control of the frequency f_Z . Amplified signal voltage on C increases the signal current conducted by the capacitor to the op amp feedback network. The result is the same as if C had been increased in value to GC. Replacing C with this effective capacitance value produces the circuit's control expression $f_Z = 1/2\pi R_1 GC$.

Two factors limit the high-frequency performance of the resulting high-pass filter. The finite bandwidth of the op amp and the circuit's phase compensation produce response poles. These limit the frequency duration of the high-pass response. Selecting the R_3 phase compensation with the equation $R_3 = \sqrt{(R\,1/2\pi f_c C)}$ assures stability for all values of G and sets the circuit's bandwidth at $BW = \sqrt{(f_c/2\pi R_1 C)}$. Here, f_c is the unity-gain crossover frequency of the op amp used. With the components shown, BW = 100 kHz. This bandwidth provides a high-pass response duration of five decades of frequency for $f_z = 1 Hz$, dropping to one decade for $f_z = 10 kHz$.

The output voltage limit of the VCA610 imposes an input voltage limit for the filter. The expression $V_{OA} = GV_{I}$ relates these two voltages. Thus, an output voltage limit V_{OAL} constrains the input voltage to $V_{I} \le V_{OAL}/G$.

over the center frequency of a band-pass filter. Shown in Figure 13, this filter follows from the state-variable configuration with the VCA610 replacing the inverter common to that configuration. Variation of the VCA610 gain moves the filter's center frequency through a 100:1 range following the relationship $f_0 = [10^{-(V_C+1)}]/2\pi RC$.

As before, variable gain controls a circuit time constant to vary the filter response. The gain of the VCA610 amplifies or attenuates the signal driving the lower integrator of the circuit. This alters the effective resistance of the integrator time constant producing the response

$$\frac{V_O}{V_I} = \frac{-s/nRC}{s^2 + s/nRC + G/R^2C^2}$$

Evaluation of this response equation reveals a passband gain of $A_O = -1$, a bandwidth of $BW = 1/2\pi nRC$ and a selectivity of $Q = n10^{-(V_C + 1)}$. Note that variation of control voltage V_C alters O but not bandwidth.

The gain provided by the VCA610 restricts the output swing of the filter. Output signal $V_{\rm O}$ must be constrained to a level that does not drive the VCA610 output, $V_{\rm OA}$, into its saturation limit. Note that these two outputs have voltage swings related by $V_{\rm OA}$ = GV $_{\rm O}$. Thus, a swing limit $V_{\rm OAL}$ imposes a circuit output limit of $V_{\rm OL} \le V_{\rm OAL}/G$.

FIGURE 13. Adding the VCA610 to a State-Variable Filter Produces a Voltage-Controlled BandPass Filter With a Center Frequency Variable Over a 100:1 Range.

3 Power Operational Amplifiers

Burr-Brown power amplifiers are designed for high output voltage and/or high output current. Versatile power operational amplifiers can be used in virtually any op amp circuit configuration, yet can supply up to ±15A load current or ±140V output voltage.

Buffer amplifiers can be used with common op amps to drive long lines or heavy loads such as valves, voice-coils and actuators.

Choose from a wide variety of power amp types, including:

BUF634—250mA, 2000V/µs buffer amp. Used with a common op amp, this buffer amp boosts output current to 250mA and increases capacitive load drive capability. Versatile and rugged, it's available in SO-8, 8-pin DIP and 5-pin TO-220 packages.

OPA541—This monolithic power op amp delivers output current up to ±5A and operates from power supplies up to ±40V. Available in low cost plastic power SIP and hermetic 8-pin TO-3 packages.

OPA502—±10A output from ±40V supplies highlight this rugged performer. Ideal for programmable power sources, motor drivers, or even high performance audio amplifiers.

OPA544F—A new high-voltage/high-current op amp available in a surface-mount power package that solders flat on a circuit board for low profile, high density applications. Specifications include 2A output current, ±10V to ±35V power supply range, and 100pA max input bias current. It is also available in a 5-lead TO-220 plastic package.

OPA2544—This new dual version of the OPA544 packs two powerful amps in a single 11-lead plastic package that saves board space and reduces cost. It provides output of 2A, its power supply range extends to ±35V, and is designed to drive a wide variety of electro-mechanical devices.

3583—Power supply voltages up to ±150V and output current to 75mA suit many programmable V/I source or high voltage transducer applications.

3584—Power supplies to ± 150 V and slew rates to 150V/ μ s are ideal for piezoelectric transducers and electrostatic deflection circuitry.

Other products provide special features and performance. Use our detailed selection guide to locate the power amp for your application.

ell'in

0

POWER OPERATIONAL AMPLIFIERS

POWER OPERATIONAL AMPLIFIERS

High Current (Output Current, max)

(±15A) OPA512 **OPA501** (±10A) **OPA502** (±10A) OPA511 (±5A)

(±5A) **OPA541** OPA2541 (±5A, Dual)

OPA544 (±2A) OPA2544 (±2A, Dual)

3573 (±2A) (±200mA) **OPA654**

(±80mA) **OPA633**

High Voltage (Output Swing, max) (GBW, typ)

(±145V) 3582 3584 (±145V) 3583 (±140V) 3581 (±70V)

OPA445 (±35V)

3580 (±30V) **High Speed Buffers**

BUF601 (900MHz) OPA660 (850MHz) BUF600 (650MHz) OPA633 (260MHz) BUF634 (180MHz)

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Burr-Brown IC Data Book—Linear Products

											Surne apecification purposes. Rafer	POWER - HIGH CURRENT
	Product	Rated Output Current min (±mA)	Rated Supply max (±V)	Offset Voltage 25°C max (±mV)	Offset Voltage Drift max (生µV/°C)	25°C max	Small Signal Unity Gain Bandwidth typ (MHz)	Slew Rate min (V/µs)	Open Loop Gain (dB)	Temp Range ⁽¹⁾	bkd DEMOTES TYPIN BOLD, MALIC DE	
1	OPA501	10A	34	5	40	20nA	1	1.35	98	Ind	TO-3	High Current
	OPA502	10A	45	5	5*	200	2	10	103	XInd/Mil	TO-3	High Current
	OPA511	5A	22	10	65	40nA	1	1	91	Ind	TO-3	High Current, Still Available
	OPA512BM OPA512SM	10A 15A	45 45	6	65 40	30nA 20nA	4	2.5 2.5	110 110	Ind Mil	TO-3 TO-3	High Current
	OPA541BM OPA541AM	5A 5A	40 35	1 10	30 40	50 50	1.6 1.6	6	90 90	Ind/Mil Ind	TO-3 Power Plastic	Current
	OPA544	2A	35	5	10*	100	1.4	8	90	XInd	5-Pin TO-220	
	OPA547	500*	35	5	10*	1000nA	1	10*	90	XInd	TO-220, DDPAK	High Voltage and High Current
	OPA548	3A*	35	5	10*	1000nA	1	10*	90	XInd	TO-220, DDPAK	High Voltage and High Current
	OPA654	200*	18	3	40*	50	32	750	94	Ind	TO-3	Wideband
	OPA2541	5A	40	1	30	50	1.6	6	90	Ind/Mil	TO-3	Dual
	OPA2544 3573	2A 2A ⁽³⁾	35 20	5 10	10* 65	50 40nA	1.4	5 2.6	90 94	XInd/Mil Ind	TO-3, 11-Pin Plast	c Dual Still Available
	NOTES: (1) Cor	m = 0°C to $+70$ °C,	$Ind = -25^{\circ}C$ to	+85°C, XInd =	-40°C to +85°C	, Mil = -55°C to +	125°C. (2) Gain-ban	dwidth product. ((3) 5A peak.			
												Low Cost, Open Loop
								2.5M/1				High Slew Rate, Open Loop
									Xlnd			High Slew Rate, Open Loop
					andwittin (Hx)	(MHZ)						

25°C

3.3

* DENOTES TYPICAL **BOLD DENOTES NEW PRODUCT**

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

High Current and High Voltage

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

	Rated Output	utput Rated Voltage Voltage Current Gain Slew Open		Rated Voltage Voltage Current Gain Slew Open							purposes Refer to	OWER - HIGH VOLTA
Product	Current min (±mA)	Supply max (±V)	25°C max (±mV)	Drift max (±μV/°C)	25°C max (pA)	Bandwidth typ (MHz)	Rate min (V/µs)	Loop Gain (dB)	Temp Range ⁽¹⁾	Pkg	Description	
OPA445	15	35	3	10*	50	2	5	100	Ind/Mil	TO-99, DIP		
OPA547	3A*	35	5	10*	1000nA	1	10*	90	XInd	TO-220, DDPAK	High Current and High Volt	
OPA548	500*	35	5	10*	1000nA	1	10*	90	XInd	TO-220, DDPAK	High Current and High Volt	
3580	60	30	10	30	50	5	15	106	Com	TO-3	Still Available	
3581	30	70	3	25	20	5	20	112	Com	TO-3	Still Available	
3582	15	145	3	25	20	5	20	118	Com	TO-3	Still Available	
3583	75	140	3	23	20	5	30*	118	Com/Ind	TO-3		
3584	15	145	3	25	20	20(2)	150*	120	Com	TO-3		

Product	Rated Current Output min (±mA)	Rate Volta Outp min (±V)	age out	Small Signal Bandwidth (MHz)	Full Power Bandwidth (MHz)	Slew Rate typ (V/µs)	Input Impedance typ (Ω II pF)	Temp Range	1) Pkg	POWER	- HIGH SPEED BUFF Description
BUF600	20	2.5		650	320	3400	4.8M/1	XInd	DIP,		High Slew Rate, Open Loop
BUF601	20	2.5		900	320	3600	2.5M/1	XInd	DIP,		High Slew Rate, Open Loop
BUF634	250*	10		180	NS	2000	8M/8	Ind		SOIC, TO-220	Low Cost, Open Loop
OPA633		100 = -511 to		260	40	2500	1.5M/1.6	Ind	DIP		Low Cost, Open Loop
OPA660	10	3.7		850	570	3000	1M/2.1	XInd	DIP,	SOIC	Transconductance Amp and Bu
NOTES: (1) Ind = -	25°C to +85°C,	$XInd = -40^{\circ}C$	to +85°C.								
							6				Dual
										TO-220, DOFAK	filigh Voltage and Augh Cu
											High Voltage and High Cu
				10.							
										Power Plastic	
										10-3	Current
CPA512SM						4					
OPAS12BM											
	5A										
				40							
		fieled Supply fiex (19)		Offset Voltage Dyst mex (1)uv/c		Small Signal Unity Geln Sandwidth typ (MHz)	Slew Rate min (Vips)		Temp Rangefit	BOLD, ITALIC D	ICAL S NEW PRODUCT ENOTES PRODUCT IN DEVELOPM ons have been estimated for compari
BROWN											o data sheets for guaranteed specif

3.1

BUF600

HIGH-SPEED BUFFER AMPLIFIER

FEATURES

- OPEN-LOOP BUFFER
- HIGH-SLEW RATE: 3600V/µs, 5.0Vp-p
- BANDWIDTH: 320MHz, 5.0Vp-p 900MHz, 0.2Vp-p
- LOW INPUT BIAS CURRENT: 0.7μA/1.5μA
- LOW QUIESCENT CURRENT: 3mA/6mA
- GAIN FLATNESS: 0.1dB, 0 to 300MHz

DESCRIPTION

The BUF600 and BUF601 are monolithic open-loop unity-gain buffer amplifiers with a high symmetrical slew rate of up to 3600V/µs and a very wide bandwidth of 320MHz at 5Vp-p output swing. They use a complementary bipolar IC process, which incorporates pn-junction isolated high-frequency NPN and PNP transistors to achieve high-frequency performance previously unattainable with conventional integrated circuit technology.

Their unique design offers a high-performance alternative to expensive discrete or hybrid solutions.

The BUF600 and BUF601 feature low quiescent current, low input bias current, small signal delay time and phase shift, and low differential gain and phase errors.

The BUF600 with 3mA quiescent current is wellsuited for operation between high-frequency processing stages. It demonstrates outstanding performance even in feedback loops of wide-band amplifiers or phase-locked loop systems.

APPLICATIONS

- VIDEO BUFFER/LINE DRIVER
- INPUT/OUTPUT AMPLIFIER FOR MEASUREMENT EQUIPMENT
- PORTABLE SYSTEMS
- TRANSMISSION SYSTEMS
- TELECOMMUNICATIONS
- HIGH-SPEED ANALOG SIGNAL **PROCESSING**
- ULTRASOUND

The BUF601 with 6mA quiescent current and therefore lower output impedance can easily drive 50Ω inputs or 75Ω systems and cables.

The broad range of analog and digital applications extends from decoupling of signal processing stages, impedance transformation, and input amplifiers for RF equipment and ATE systems to video systems, distribution fields, IF/communications systems, and output drivers for graphic cards.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

DC SPECIFICATION

At V_{CC} = ±5V, R_{LOAD} = 10k Ω , R_{SOURCE} = 50 Ω , and T_{AMB} = +25°C, unless otherwise noted.

			BUF600AP,	AU	В	UF601AP,	AU	1
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
INPUT OFFSET VOLTAGE Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	$V_{CC} = \pm 4.5V$ to $\pm 5.5V$ $V_{CC} = +4.5V$ to $+5.5V$ $V_{CC} = -4.5V$ to $-5.5V$	-54	±15 9 -72 -55 -54	±30	-54	±15 25 -77 -55 -54	±30	mV μV/°C dB dB dB
INPUT BIAS CURRENT Initial vs Temperature vs Supply (tracking) vs Supply (non-tracking) vs Supply (non-tracking)	$V_{CC} = \pm 4.5V$ to $\pm 5.5V$ $V_{CC} = +4.5V$ to $+5.5V$ $V_{CC} = -4.5V$ to $-5.5V$	UFF	+3.5 0.4 0.15 0.5 20	-2.5/+5	3-Hí	+3.5 0.7 0.3 0.5 20	-5/+10	μΑ nA/°C μΑ/V μΑ/V nA/V
INPUT IMPEDANCE			4.8 1			2.5 1		MΩ pF
INPUT NOISE Voltage Noise Density Signal-to-Noise Ratio	f = 100kHz to 100MHz S/N = 20 Log (0.7/(Vn • √5MHz))		5.2 95			4.8 96	UTA	nV/√Hz dB
TRANSFER CHARACTERISTICS	Voltage Gain; $V_{IN} = \pm 2.5V$ $R_{LOAD} = 100\Omega$ $R_{LOAD} = 200\Omega$ $R_{LOAD} = 10k\Omega$		0.96 0.99	//us, 5.0	FER E: 36001	0.95	PEN-LO	V/V V/V V/V
RATED OUTPUT Voltage Output DC Current Output Output Impedance	$\begin{aligned} V_{\text{IN}} &= \pm 2.7V \\ R_{\text{LOAD}} &= 100\Omega \\ R_{\text{LOAD}} &= 200\Omega \\ \text{DC}, \ R_{\text{LOAD}} &= 100\Omega \end{aligned}$	±2.5 ±20	±2.6	ovpsp 2Vp-p INT: 0.7: ENT: 3m	±2.5 z±20		OW GUL OW GUE	V V mA Ω
POWER SUPPLY Rated Voltage Derated Performance Quiescent Current	PROCESSING NULTRASOUND	±4.5 ±2.6	±5 ±3	±5.5 ±3.4	±4.5 ±5.4	±5 ±6	±5.5 ±6.6	V V mA
TEMPERATURE RANGE Specification Storage	The BUF601 with 6mA quit	-40 -40		85 125	-40 -40	IPTIC	85 125	°C °C

AC SPECIFICATION I amaig to grain groups are all about

At V_{CC} = ±5V, R_{LOAD} = 200 Ω (BUF600) and 100 Ω (BUF601), R_{SOURCE} = 50 Ω , and T_{AMB} = +25°C, unless otherwise noted.

	Groupinent and ALE sylv	bill	BUF600AP,	AU	BUF601AP, AU			rates
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FREQUENCY DOMAIN	the starting of the starting	Don	Lintegral	виоцизун	oo diw s	attainnok	ously-un	prev
LARGE SIGNAL BANDWIDTH (-3dB)	$V_O = 5Vp-p, C_{OUT} = 1pF$ $V_O = 2.8Vp-p, C_{OUT} = 1pF$ $V_O = 1.4Vp-p, C_{OUT} = 1pF$	-19	320 400 700	sh-perfor	id # zieli	320 400 700	ut teatme r unique	MHz MHz MHz
SMALL SIGNAL BANDWIDTH	$V_O = 0.2Vp-p$, $C_{OUT} = 1pF$		650	OS ARTOVA	10 313131	900	dxa or av	MHz
GROUP DELAY TIME		ins	250	ature los	a local	200	BUFOU	ps
DIFFERENTIAL GAIN	$\begin{aligned} &V_{\text{IN}} = 0.3 \text{Vp-p, f} = 4.43 \text{MHz} \\ &V = 0 \text{ to } 0.7 \text{V} \\ &\text{BUF600 } R_{\text{LOAD}} = 200 \Omega \\ &R_{\text{LOAD}} = 1 \text{k} \Omega \\ &\text{BUF601 } R_{\text{LOAD}} = 100 \Omega \\ &R_{\text{LOAD}} = 500 \Omega \end{aligned}$	etn ea -lit	0.5 0.075	ing laitos ing laitos may tang	reffib we	0.4 0.05	ent, low it phase shi es. BUP600	
DIFFERENTIAL PHASE	$\begin{aligned} &V_{\text{IN}} = 0.3 \text{Vp-p, f} = 4.43 \text{MHz} \\ &V = 0 \text{ to } 0.7 \text{V} \\ &\text{BUF600 } R_{\text{LOAD}} = 200 \Omega \\ &R_{\text{LOAD}} = 1 \text{k} \Omega \\ &\text{BUF601 } R_{\text{LOAD}} = 100 \Omega \\ &R_{\text{LOAD}} = 500 \Omega \end{aligned}$	-00 H15	0.02 0.04	asinin as asinin as asinin asinin	X	feedbac	essing str ce even n hase-lock	Degrees Degrees Degrees

Or, Call Customer Service at 1-800-548-6132 (USA Only)

AC-SPECIFICATIONS (CONT) ACT ARE DELICATION MIST

At $V_{CC} = \pm 5V$, $R_{LOAD} = 200\Omega$ (BUF600) and 100Ω (BUF601), $R_{SOURCE} = 50\Omega$, and $T_{AMB} = +25^{\circ}C$, unless otherwise noted.

			В	UF600AP,	AU	В	UF601AP, A	U	n ni
PARAMETER	8	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
HARMONIC DIST	ORTION			Dava	ge; typical +	supply years	Positive		35V4
Second Harmonic		f = 10MHz, V _O = 1.4Vp-p		-65	ages typical	Supply Voil	-65		dBc
Third Harmonic				-64			-67		dBc
Second Harmonic	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$f = 30MHz, V_0 = 1.4Vp-p$	Maria de la	-51		Maj 1	-59		dBc
Third Harmonic		C ON	- 4	-56		8 57 1	-62		dBc
Second Harmonic		$f = 50MHz, V_0 = 1.4Vp-p$	Mal TV4	-43			-53		dBc
Third Harmonic	8	1 n		-48	02/4/2011		-54		dBc
GAIN FLATNESS	PEAKING	50271173				1112			
	100100	$V_O = 0.4$ Vp-p, DC to 30MHz		0.01			0.005		dB
		$V_0 = 0.4 Vp-p$, 30MHz to 300MHz		0.3			0.1		dB
LINEAR PHASE	DEVIATION								
		$V_O = 0.4$ Vp-p, DC to 30MHz		5.5		1000	3.8		Degrees
		V _O = 0.4Vp-p, 30 to 300MHz		55			45		Degrees
TIME DOMAIN						-			
RISE TIME	PUNCTION	10% to 90%, 700ps	prop	State of the state of	hidingshi nama	September September 1	TORREST AND DESCRIPTION OF THE PARTY AND ADDRESS OF THE PARTY AND ADDRE	dis.	
		1.4Vp-p Step	100	0.82	- British		0.87		ns
		2.8Vp-p Step		0.97	1		0.95		ns
		5.0Vp-p Step		1.18	menting accessed	Same print	1.13	ol.	ns
SLEW RATE	Analog Getput	4		River rece		E. White	of gran		
		$V_O = 1.4Vp-p$	1 838	1500			1500	-	V/µs
	+5V Supply	$V_0 = 2.8Vp-p$	-	2400	THE	1711	2400		V/µs
		V _O = 5.0Vp-p	1 67	3400	The second	15 m	3600		V/µs
	No. of the last of	Substitute Rias: Nagative Su	1 15	AND LESS	Aller and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEL SIS	C 65.11	

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±6V
Input Voltage(1)	±V _{CC} ±0.7V
Operating Temperature	
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Inputs are internally diode-clamped to ±V_{CC}.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
BUF600AP	Plastic 8-Pin DIP	-40°C to +85°C
BUF600AU	SO-8 Surface-Mount	-40°C to +85°C
BUF601AP	Plastic 8-Pin DIP	-40°C to +85°C
BUF601AU	SO-8 Surface-Mount	-40°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
BUF600AP	Plastic 8-Pin DIP	006
BUF600AU	SO-8 Surface-Mount	182
BUF601AP	Plastic 8-Pin DIP	006
BUF601AU	SO-8 Surface-Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FUNCTION	DESCRIPTION		
In Out	Analog Input Analog Output	obsue Ma	
+V _{CC}	Positive Supply Voltage; typical +5VD0 Negative Supply Voltage; typical –5VD		

DICE INFORMATION

PAD	FUNCTION
15 d.6/b.0	Analog Input
2	-5V Supply
3 4940.0	-5V, Output
4	Analog Output
5	+5V Supply, Output
6.88	+5V Supply

Substrate Bias: Negative Supply NC: No Connection
Wire Bonding: Gold wire bonding is recommended.

MECHANICAL INFORMATION

OI OF THE STATE OF	MILS (0.001")	MILLIMETERS
Die Size	39 x 42 ±5	0.99 x 1.07 ±0.13
Die Thickness	14 ±1	0.55 ±0.025
Minimum Pad Size	4 x 4	0.10 x 0.10
Backing: Titanium	0.02 +0.05-0.0	0.0005 +0.0013-0.0
Gold	0.30 ±0.05	0.0076 ±0.0013

to change without notice. No pate authorize or warrant any BURRI-B

vices, but any semiconductor device deserves protection from this potentially damaging source. The BUF600 and BUF601 incorporate on-chip ESD protection diodes as shown in Figure 1. This eliminates the need for the user to add external protection diodes, which can add capacitance and degrade AC performance.

FIGURE 1. Internal ESD Protection.

reverse-biased diodes to the power supplies as shown. These diodes will begin to conduct when the input voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier's power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To insure long term reliability, however, the diode current should be externally limited to 10mA or so whenever possible.

The internal protection diodes are designed to withstand 2.5kV (using the Human Body Model) and will provide adequate ESD protection for most normal handling procedures. However, static damage can cause subtle changes in amplifier input characteristics without necessarily destroying the device. In precision amplifiers, this may cause a noticeable degradation of offset and drift. Therefore, static protection is strongly recommended when handling the BUF600 and BUF601.

TYPICAL PERFORMANCE CURVES

At V_{CC} = ±5V, R_{LOAD} = 10k Ω , and T_A = 25°C unless otherwise noted.

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT)

At $V_{CC}=\pm5V$, $R_{LOAD}=10k\Omega$, and $T_A=25^{\circ}C$ unless otherwise noted.

Static damage has been well recognized for MOSPET

TYPICAL PERFORMANCE CURVES (CONT) MAMPORRED JACINYT

At V_{CC} = ±5V, R_{LOAD} = 100Ω (BUF601), R_{LOAD} = 200Ω (BUF600), and T_A = 25°C unless otherwise noted. (3) 0.003 = 0.007 (1.007103) 0.001 = 0.0

3.1

BUFFER AMPLIFIERS

AL VCC - 10 V, 11LOAD - 10022 (DO: 00 1/1 11LOAD - 2002)

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) MAMAGERS LAGISYT

At V_{CC} = ±5V, R_{LOAD} = 100 Ω (BUF601), R_{LOAD} = 200 Ω (BUF600), and T_A = 25°C unless otherwise noted. (3) 0005 = g_{LOAD} (100°108) 0005 = g_{LOAD}

DISCUSSION OF PERFORMANCE

The BUF600 and BUF601 are fabricated using a highperformance complementary bipolar process, which provides high-frequency NPN and PNP transistors with gigahertz transition frequencies (f_T). Power supplies are rated at ±6V maximum, with the data sheet parameters specified at ±5V supplies. The BUF600 and BUF601 are 3-stage open-loop buffer amplifiers consisting of complementary emitter followers with a symmetrical class AB Darlington output stage. The complementary structure provides both sink and source current capability independent of the output voltage, while maintaining constant output and input impedances. The amplifiers use no feedback, so their low-frequency gain is slightly less than unity and somewhat dependent on loading. The optimized input stage is responsible for the high slew rate of up to 3600V/µs, wide large signal bandwidth of 320MHz, and quiescent current reduction to ±3mA (BUF600) and ±6mA (BUF601). These features yield an excellent large signal bandwidth/quiescent current ratio of 320MHz, 5Vp-p at 3mA/6mA quiescent current. The complementary emitter followers of the input stage work with current sources as loads. The internal PTAT power supply controls their quiescent current and with its temperature characteristics keeps the transconductance of the buffer amplifiers constant. The Typical Performance Curves show the quiescent current variation versus temperature.

The cross current in the input stage is kept very low, resulting in a low input bias current of $0.7\mu A/1.5\mu A$ and high input impedance of $4.8M\Omega\parallel1pF/2.5M\Omega\parallel1pF$. The second stage drives the output transistors and reduces the output impedance and the feedthrough from output to input when driving RLC loads.

The input of the BUF600 and BUF601 looks like a high resistance in parallel with a 1pF capacitance. The input characteristics change very little with output loading and input voltage swing. The BUF600 and BUF601 have excellent input-to-output isolation and feature high tolerance to

variations in source impedances. A resistor between 100Ω and 250Ω in series with the buffer input lead will usually eliminate oscillation problems from inductive sources such as unterminated cables without sacrificing speed.

Another excellent feature is the output-to-input isolation over a wide frequency range. This characteristic is very important when the buffer drives different equipment over cables. Often the cable is not perfect or the termination is incorrect and reflections arise that act like a signal source at the output of the buffer.

Open-loop devices often sacrifice linearity and introduce frequency distortion when driving low load impedance. The BUF600 and BUF601, however, do not. Their design yields low distortion products. The harmonic distortion characteristics into loads greater than 100Ω (BUF601) and greater than 200Ω (BUF600) are shown in the Typical Performance Curves. The distortion can be improved even more by increasing the load resistance.

Differential gain (DG) and differential phase (DP) are among the important specifications for video applications. DG is defined as the percent change in gain over a specified change in output voltage level (0V to 0.7V.) DP is defined as the phase change in degrees over the same output voltage change. Both DG and DP are specified at the PAL subcarrier frequency of 4.43MHz. The errors for differential gain are lower than 0.5%, while those for differential phase are lower than 0.04°.

With its minimum 20mA long-term DC output current capability, 50mA pulse current, low output impedance over frequency, and stability to drive capacitive loads, the BUF601 can drive 50Ω and 75Ω systems or lines. The BUF600 with lower quiescent current and therefore higher output impedance is well-suited primarily to interstage buffering. This type of open-loop amplifier is a new and easy-to-use step to prevent an interaction between two points in complex highspeed analog circuitry.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

The buffer outputs are not current-limited or protected. If the output is shorted to ground, high currents could arise when the input voltage is ± 3.6 V. Momentary shorts to ground (a few seconds) should be avoided but are unlikely to cause permanent damage.

voltage gain of 2.5V/V, while the potentiometer of 20002

CIRCUIT LAYOUT belauibs of of disg listavo and swolls

The high-frequency performance of the BUF600 and BUF601 can be greatly affected by the physical layout of the printed circuit board. The following tips are offered as suggestions, not as absolute musts. Oscillations, ringing, poor bandwidth and settling, and peaking are all typical problems that plague high-speed components when they are used incorrectly.

- Bypass power supplies very close to the device pins. Use tantalum chip capacitors (approximately 2.2µF); a parallel 470nF ceramic chip capacitor may be added if desired. Surface-mount types are recommended due to their low lead inductance.
- PC board traces for power lines should be wide to reduce impedance or inductance.
- Make short and low inductance traces. The entire physical circuit should be as small as possible.
- Use a low-impedance ground plane on the component side to ensure that low-impedance ground is available throughout the layout.
- Do not extend the ground plane under high-impedance nodes sensitive to stray capacitances, such as the buffer's input terminals.

- Sockets are not recommended, because they add significant inductance and parasitic capacitance. If sockets must be used, consider using zero-profile solderless sockets.
- Use low-inductance and surface-mounted components.

 Using all surface-mount components will offer the best

 AC performance.
- A resistor $(100\Omega \text{ to } 250\Omega)$ in series with the input of the buffers may help to reduce peaking.
- Plug-in prototype boards and wire-wrap boards will not function well. A clean layout using RF techniques is essential—there are no shortcuts.

FIGURE 2. Test Circuit.

FIGURE 3. Test Circuit Layout.

The BUF600 and BUF601 provide power gain and isolation between source and load when used as an active tap or impedance matching device as illustrated in Figure 4. In this example, there is no output matching path between the buffer and the 75Ω line. Such matching is not needed when the distant end of the cable is properly terminated, since there is no reflected signal when the buffer isolates the source. This technique allows the full output voltage of the buffer to be applied to the load.

DRIVING CABLES

The most obvious way is to connect the cable directly to the output of the buffer. This results in a gain determined by the buffer output resistance and the characteristic impedance of the cable, assuming it is properly terminated.

Double termination of a cable is the cleanest way to drive it, since reflections are absorbed on both ends of the cable. The cable source resistor is equal to the characteristic impedance less the output resistance of the buffer amplifiers. The gain is -6dB excluding of the cable attenuation.

FIGURE 4. Impedance Converter.

In this broadcast quality circuit, the OPA623 provides a very high input impedance so that it may be used with a wide variety of signal sources including video DACs, CCD cameras, video switches or 75Ω cables. The OPA623 provides a voltage gain of 2.5V/V, while the potentiometer of 200Ω allows the overall gain to be adjusted to drive the standard signal levels into the back-terminated 75Ω cables. Back matching prevents multiple reflections in the event that the remote end of the cable is not properly terminated.

FIGURE 5. Driving Cables.

FIGURE 6. Video Distribution Amplifier.

FIGURE 7. Inside a Feedback Loop of a Voltage Feedback Amplifier (BUF601 and OPA660).

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 8. Output Buffer for an Inverting RF-Amplifier (Direct Feedback).

FIGURE 9. Input Amplifier with Baseband Video DC Restoration.

3.1

FIGURE 10. Test Circuit Frequency Response.

FIGURE 11. Test Circuit Pulse Response.

FIGURE 12. Test Circuit Differential Gain and Phase.

250mA HIGH-SPEED BUFFER

FEATURES

- HIGH OUTPUT CURRENT: 250mA
- SLEW RATE: 2000V/µs
- PIN-SELECTED BANDWIDTH: 30MHz/180MHz
- **LOW QUIESCENT CURRENT:** 1.5mA (30MHz BW)
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- INTERNAL CURRENT LIMIT
- THERMAL SHUT-DOWN
- 8-PIN DIP, SO-8, 5-PIN TO-220 **PACKAGES**

APPLICATIONS

- VALVE DRIVER
- SOLENOID DRIVER
- OP AMP CURRENT BOOSTER
- LINE DRIVER
- HEADPHONE DRIVER
- VIDEO DRIVER
- MOTOR DRIVER
- TEST EQUIPMENT
- ATE PIN DRIVER

DESCRIPTION

The BUF634 is a high speed unity-gain open-loop buffer recommended for a wide range of applications. It can be used inside the feedback loop of op amps to increase output current, eliminate thermal feedback and improve capacitive load drive.

For low power applications, the BUF634 operates on 1.5mA quiescent current with 250mA output and 2000V/µs slew rate. Bandwidth is increased from 30MHz to 180MHz by connecting pin 1 to V-.

Output circuitry is fully protected by internal current limit and thermal shut-down making it rugged and easy to use.

The BUF634 is available in a variety of packages to suit mechanical and power dissipation requirements. Types include 8-pin DIP, SO-8 surface-mount and 5-pin TO-220.

8-Pin DIP Package SO-8 Surface-Mount Package

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

	and the same of th	BUF634P, U, T						
		LOW QUIE	SCENT CURP	ENT MODE	WIDE	BANDWIDT	H MODE	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT Offset Voltage vs Temperature vs Power Supply Input Bias Current Input Impedance Noise Voltage	$\label{eq:Specified Temperature Range} \begin{split} Specified Temperature Range \\ V_S = \pm 2.25 V^{(2)} \text{ to } \pm 18 V \\ V_{IN} = 0 V \\ R_L = 100 \Omega \\ f = 10 \text{ kHz} \end{split}$		±30 ±100 0.1 ±0.5 80 8	±100 1 ±2	S NC	±5 8 8	±20	mV μV/°C mV/V μA MΩ pF nV/√Hz
GAIN	$R_L = 1k\Omega, V_O = \pm 10V$ $R_L = 100\Omega, V_O = \pm 10V$ $R_L = 67\Omega, V_O = \pm 10V$	0.95 0.85 0.8	0.99 0.93 0.9		:	*		V/V V/V V/V
OUTPUT Current Output, Continuous Voltage Output, Positive Negative Positive Negative Positive Negative Short-Circuit Current	$l_{O} = 10 \text{mA}$ $l_{O} = -10 \text{mA}$ $l_{O} = 100 \text{mA}$ $l_{O} = -100 \text{mA}$ $l_{O} = 150 \text{mA}$ $l_{O} = -150 \text{mA}$	(V+) -2.1 (V-) +2.1 (V+) -3 (V-) +4 (V+) -4 (V-) +5	±250 (V+) -1.7 (V-) +1.8 (V+) -2.4 (V-) +3.5 (V+) -2.8 (V-) +4 ±350	±0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: :	÷400	MAXAM B	mA V V V V V
DYNAMIC RESPONSE Bandwidth, –3dB Slew Rate Settling Time, 0.1% 1% Differential Gain Differential Phase	$\begin{aligned} R_L &= 1k\Omega \\ R_L &= 100\Omega \\ 20Vp-p, R_L &= 100\Omega \\ 20V Step, R_L &= 100\Omega \\ 20V Step, R_L &= 100\Omega \\ 20V Step, R_L &= 150\Omega \\ 3.58MHz, V_0 &= 0.7V, R_L &= 150\Omega \\ 3.58MHz, V_0 &= 0.7V, R_L &= 150\Omega \end{aligned}$	Any ian recomm appropti and inst ESD dated	30 20 2000 2000 50 4 2.5	TARG SEAN NUMBER 003 182	249	180 160 	ARDTIMI AR R. B. C. B. C	MHz MHz V/µs ns ns
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current, Io	more susceptific to daily classe of changes could cause day a specifications.	±2.25 ⁽²⁾	±15 000	±18 ±2	ncion table.	emilb this pri	±20	V W mA
TEMPERATURE RANGE Specification Operating Storage Thermal Shutdown Temperature, T_J Thermal Resistance, θ_{JA} θ_{JA} θ_{JA} θ_{JC}	"P" Package ⁽³⁾ "U" Package ⁽³⁾ "T" Package ⁽³⁾ "T" Package	-40 -40 -40	175 100 150 65 6	+85 +125 +125	f ·	RACKAGE PLANTO D SOCIONAL PLANTO D PLAN	B INFOR	°C °C °C °C,W °C,W °C,W
WATION WA SHOW OF THE SHOW OF	PAD PU 1 2 3 5 5 6 6	V _{IN} O-	V+ 0 V-	V _o → o	V _{IN}	1	V₀ > • • • • • • • • • • • • • • • • • • •	NOE INFO

NOTES: (1) Tests are performed on high speed automatic test equipment, at approximately 25°C junction temperature. The power dissipation of this product will cause some parameters to shift when warmed up. See typical performance curves for over-temperature performance. (2) Limited output swing available at low supply voltage. See Output voltage specifications. (3) Typical when all leads are soldered to a circuit board. See text for recommendations.

The information provided herein is believed to be reliable: however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

For Immediate Assistance, Contact Your Local Salesperson

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	±V _S
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
BUF634P	8-Pin PDIP	006
BUF634U	SO-8 Surface Mount	182
BUF634T	5-Pin TO-220	315

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

Top View 5-Pin TO-220 G = 1 1 2 3 4 5 G = 1 NOTE: Tab electrically connected to V-.

A

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
BUF634P	8-Pin Plastic DIP	-40 to +85°C
BUF634U	SO-8 Surface-Mount	-40 to +85°C
BUF634T	5-Pin TO-220	-40 to +85°C

DICE INFORMATION

BUF634	DIE	TOPO	CDA	DHY
DUF034	DIE	TUPU	GHA	PHI

PAD	FUNCTION
1	BW
2	V _{IN}
3	V-
4	Vo
5	V+

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	120 x 70 ±5	3.05 x 1.78 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Chromium-Silver

TYPICAL PERFORMANCE CURVES NO BOMAMS OF FEB JACKS IN THE TYPICAL PERFORMANCE PERFORM

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

BUF634

BUFFER AMPLIFIERS

APPLICATION INFORMATION

Figure 1 is a simplified circuit diagram of the BUF634 showing its open-loop complementary follower design.

FIGURE 1. Simplified Circuit Diagram.

Figure 2 shows the BUF634 connected as an open-loop buffer. The source impedance and optional input resistor, $R_{\rm s}$, influence frequency response—see typical curves. Power supplies should be bypassed with capacitors connected close to the device pins. Capacitor values as low as $0.1\mu{\rm F}$ will assure stable operation in most applications, but high output current and fast output slewing can demand large current transients from the power supplies. Solid tantalum $10\mu{\rm F}$ capacitors are recommended.

FIGURE 2. Buffer Connections.

High frequency open-loop applications may benefit from special bypassing and layout considerations—see "High Frequency Applications" at end of applications discussion.

OUTPUT CURRENT

The BUF634 can deliver up to ±250mA continuous output current. Internal circuitry limits output current to approximately ±350mA—see typical performance curve "Short Circuit Current vs Temperature". For many applications, however, the continuous output current will be limited by thermal effects.

The output voltage swing capability varies with junction temperature and output current—see typical curves "Output Voltage Swing vs Output Current." Although all three package types are tested for the same output performance using a high speed test, the higher junction temperatures with the DIP and SO-8 package types will often provide less output voltage swing. The TO-220 package can be used with a heat sink to reduce junction temperature, allowing maximum possible output swing.

THERMAL PROTECTION

Power dissipated in the BUF634 will cause the junction temperature to rise. A thermal protection circuit in the BUF634 will disable the output when the junction temperature reaches approximately 175°C. When the thermal protection is activated, the output stage is disabled, allowing the device to cool. Quiescent current is approximately 6mA during thermal shutdown. When the junction temperature cools to approximately 165°C the output circuitry is again enabled. This can cause the protection circuit to cycle on and off with a period ranging from a fraction of a second to several minutes or more, depending on package type, signal, load and thermal environment.

The thermal protection circuit is designed to prevent damage during abnormal conditions. Any tendency to activate the thermal protection circuit during normal operation is a sign of an inadequate heat sink or excessive power dissipation for the package type.

The 5-pin TO-220 package provides the best thermal performance. When used with a properly sized heat sink, output of the TO-220 version is not limited by thermal performance. See Application Bulletin AB-037 for details on heat sink calculations. The mounting tab of the TO-220 package is electrically connected to the V- power supply.

The DIP and SO-8 surface-mount packages are excellent for applications requiring high output current with low average power dissipation.

To achieve the best possible thermal performance with the DIP or SO-8 packages, solder the device directly to a circuit board. Since much of the heat is dissipated by conduction through the package pins, sockets will degrade thermal performance. Use wide circuit board traces on all the device pins, including pins that are not connected. With the DIP package, use traces on both sides of the printed circuit board if possible.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

OP AMP	RECOMMENDATIONS STEELING VORSUPS AND		
OPA177, OPA1013 OPA111, OPA2111 OPA121	Use Low I _Q mode. G = 1 stable.		
OPA27, OPA2107 OPA602, OPA404	Low I _Q mode is stable. Increasing C _L may cause excessive ringing or instability. Use Wide BW mode		
OPA627, OPA604 OPA2604	Use Wide BW mode, C ₁ = 200pF. G = 1 stable.		
OPA637, OPA37	Use Wide BW mode. These op amps are not G = 1 stable. Use in G > 4.		

FIGURE 3. Boosting Op Amp Output Current.

POWER DISSIPATION

Power dissipation depends on power supply voltage, signal and load conditions. With DC signals, power dissipation is equal to the product of output current times the voltage across the conducting output transistor. Power dissipation can be minimized by using the lowest possible power supply voltage necessary to assure the required output voltage swing.

For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power supply voltage. Dissipation with AC signals is lower. Application Bulletin AB-039 explains how to calculate or measure power dissipation with unusual signals and loads.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, junction temperature should be limited to 150°C, maximum. To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered. The thermal protection should trigger more than 45°C above the maximum expected ambient condition of your application.

INPUT CHARACTERISTICS

Internal circuitry is protected with a diode clamp connected from the input to output of the BUF634—see Figure 1. If the output is unable to follow the input within approximately 3V (such as with an output short-circuit), the input will conduct increased current from the input source. This is limited by the internal 200Ω resistor. If the input source can be damaged by this increase in load current, an additional resistor can be connected in series with the input.

BANDWIDTH CONTROL PIN

The –3dB bandwidth of the BUF634 is approximately 30MHz in the low quiescent current mode (1.5mA typical). To select this mode, leave the bandwidth control pin open (no connection).

Bandwidth can be extended to approximately 180MHz by connecting the bandwidth control pin to V-. This increases the quiescent current to approximately 15mA. Intermediate bandwidths can be set by connecting a resistor in series with the bandwidth control pin—see typical curve "Quiescent

Current vs Resistance" for resistor selection. Characteristics of the bandwidth control pin can be seen in the simplified circuit diagram, Figure 1.

The rated output current and slew rate are not affected by the bandwidth control, but the current limit value changes slightly. Output voltage swing is somewhat improved in the wide bandwidth mode. The increased quiescent current when in wide bandwidth mode produces greater power dissipation during low output current conditions. This quiescent power is equal to the total supply voltage, (V+)+|V-|, times the quiescent current.

BOOSTING OP AMP OUTPUT CURRENT

The BUF634 can be connected inside the feedback loop of most op amps to increase output current—see Figure 3. When connected inside the feedback loop, the BUF634's offset voltage and other errors are corrected by the feedback of the op amp.

To assure that the op amp remains stable, the BUF634's phase shift must remain small throughout the loop gain of the circuit. For a G=+1 op amp circuit, the BUF634 must contribute little additional phase shift (approximately 20° or less) at the unity-gain frequency of the op amp. Phase shift is affected by various operating conditions that may affect stability of the op amp—see typical Gain and Phase curves.

Most general-purpose or precision op amps remain unitygain stable with the BUF634 connected inside the feedback loop as shown. Large capacitive loads may require the BUF634 to be connected for wide bandwidth for stable operation. High speed or fast-settling op amps generally require the wide bandwidth mode to remain stable and to assure good dynamic performance. To check for stability with an op amp, look for oscillations or excessive ringing on signal pulses with the intended load and worst case conditions that affect phase response of the buffer.

HIGH FREQUENCY APPLICATIONS

The BUF634's excellent bandwidth and fast slew rate make it useful in a variety of high frequency open-loop applications. When operated open-loop, circuit board layout and bypassing technique can affect dynamic performance.

For best results, use a ground plane type circuit board layout and bypass the power supplies with $0.1\mu F$ ceramic chip

ringing. Best response is usually achieved with a series input resistor of 25Ω to 200Ω , depending on the signal source. Response with some loads (especially capacitive) can be improved with a resistor of 10Ω to 150Ω in series with the output.

FIGURE 4. High Performance Headphone Driver.

FIGURE 5. Pseudo-Ground Driver.

FIGURE 6. Current-Output Valve Driver.

FIGURE 7. Bridge-Connected Motor Driver.

FIGURE 8. Differential Line Driver.

3.2

High Voltage FET-Input OPERATIONAL AMPLIFIER

FEATURES

- WIDE POWER SUPPLY RANGE: ±10V to ±45V
- HIGH SLEW RATE: 10V/µs
- LOW INPUT BIAS CURRENT: 50pA max
- STANDARD-PINOUT TO-99 AND DIP **PACKAGES**

APPLICATIONS

- TEST EQUIPMENT
- HIGH VOLTAGE REGULATORS
- **POWER AMPLIFIERS**
- DATA ACQUISITION
- SIGNAL CONDITIONING

DESCRIPTION

The OPA445 is a monolithic operational amplifier capable of operation from power supplies up to ±45V and output currents of 15mA. It is useful in a wide variety of applications requiring high output voltage or large common-mode voltage swings.

The OPA445's high slew rate provides wide powerbandwidth response, which is often required for high voltage applications. FET input circuitry allows the use of high impedance feedback networks, thus minimizing their output loading effects. Laser trimming of the input circuitry yields low input offset voltage and

The OPA445 is unity-gain stable and requires no external compensation components. It is available in both industrial (-25°C to +85°C) and military (-55°C to +125°C) temperature ranges.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

At $V_s = \pm 40$ °C and $T_A = +25$ °C, unless otherwise specified.

ALLEGE STATE		OPA445SM		OPA445BM		OPA445AP			100		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT	548.02		No.	1111					THE		
OFFSET VOLTAGE Input Offset Voltage Average Drift Supply Rejection	$V_{CM} = 0V$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $V_S = \pm 10V \text{ to } \pm 50V$		0.5	1.0	80	1.0 10 110	3.0	*	2.0 15 *	5.0	mV μV/°C dB
BIAS CURRENT Input Bias Current Over Temperature	V _{CM} = 0V	NI-I	HT.	100		20	50 10		50	100 20	pA nA
OFFSET CURRENT Input Offset Current Over Temperature	V _{CM} = 0V	MINISTERNAL SAN	HART DONE	50		4	10 5		20	40 10	pA nA
IMPEDANCE Differential Common-Mode	ATIONS	OLI	49A			10 ¹³ 1 10 ¹⁴ 3		- 1	BRU	ITAB	Ω pF
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±30V, Over Temp.	H VOL	O TES		±35	95	Y RAN	SUPP	RSW0	F HOR	V
OPEN-LOOP GAIN, DC	- CALCASTA	DA PERSON			VIDAT	Ag08 :1	RRENT	un ea	IS THE	WW.	-0
Open-Loop Voltage Gain Over Temperature	$R_L = 5k\Omega$	O JAM	9 8 8	J. J.	100 97	105	ee-or	TUOM	g-dga	CHATE	dB dB
FREQUENCY RESPONSE		1000							CHO	MANUA	
Gain Bandwidth Full Power Response	Small Signal 35Vp-p, R _L = 5kΩ		:		45	2 55		1401	enune a uno	Tarre, and other	MHz
DYNAMIC RESPONSE							HEET	MICH	B LEBELL	A Com	Nell
Slew Rate Rise Time Overshoot	V ₀ = ±200mV	igh imp their ou a circui	gnizim	to Vi ob	tilgms 182 or q two nt	100	hic ope ower su tA. It is mine hi	mon's	45 is a special currents currents confecute		V/µs ns
OUTPUT	Day sian ution of	SALA	C wir			nes.	tage sw	lov aba	m-comm	ino sgra	1 10
Voltage Output, Over Temp. Current Output Output Resistance Short Circuit Current	$R_L = 5k\Omega$ $V_O = \pm 28V$ DC, Open Loop	compe lustrial (°C) ten	externa both in to +125	ed dg	±35 ±15	220 ±26	ate pro- is often	wois which FET	l5's high		W MA
POWER SUPPLY							72.13				del.
Rated Voltage, ±V _S Voltage Range, ±V _S Derated Performance Current, Quiescent	Over Temperature	0		:	±10	±40	±45 4.5				V V mA
TEMPERATURE RANGE				- Y	VV. To.	////	1.		5-13	1	
Specification Operating θ Junction-Ambient	Ambient Temperature	-55 *	(C) C)	+125	-25 -55	200	+85 +125	-25	100	+85	°C/W

^{*}Specifications same as OPA445BM.

CONNECTION DIAGRAMS

BOMER

DICE INFORMATION

OPA445	DIE	TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	Offset Trim	7	-V _S
2	-In	8	(Compensation)
3	+In	9	Output
4	NC	10	+V _S
5	-V _S	11	NC
6	Offset Trim	12	NC

Substrate Bias: Electrically connected to $-V_{\rm S}$ supply. NC: No Connection.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	88 x 72 ±5	2.24 x 1.83 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	0 25 5	Chromium-Silver

ABSOLUTE MAXIMUM RATINGS

Power Supply	±50V
Internal Power Dissipation	680mW
Differential Input Voltage	±80V
Input Voltage Range	±V _S -3V
Storage Temperature Range: M	65°C to +150°C
P	40°C to +85°C
Operating Temperature Range: M	55°C to +125°C
P	40°C to +85°C
Lead Temperature (soldering, 10s)	+300°C
Output Short-Circuit to Ground (T _A = +25°C) Junction Temperature	Continuous +175°C

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE		
OPA445AP	8-pin plastic DIP	-25°C to +85°C		
OPA445BM	8-pin TO-99	-25°C to +85°C		
OPA445SM	8-pin TO-99	-55°C to +125°C		

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA445AP	8-pin plastic DIP	006
OPA445BM	8-pin TO-99	001
OPA445SM	8-pin TO-99	001

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 40$ VDC, unless otherwise noted.

120

8 110

100

90

35

30

25

20

15

10

0

-50

-25 0

Output Current (mA)

-75 -50 -25 0 25 50 75 100 125

Voltage Gain (

OPEN-LOOP GAIN vs TEMPERATURE

Ambient Temperature (°C)

OUTPUT CURRENT vs TEMPERATURE

Short-Circuit Current

Output Current

100

125

 $V_0 = \pm 35V$

75

vs FREQUENCY

100k

MAXIMUM OUTPUT VOLTAGE SWING

1M

Voltage (70 40 40 Output V

30 20 10

0

10k

Frequency (Hz)

INPUT VOLTAGE NOISE SPECTRAL DENSITY

Temperature (°C)

50

25

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (COM) GNOTTHIAN AND STATEMENT OF THE PROPERTY OF T

The OPA445 may be operated from power supplies up to ± 45 V or a total of 90V. Power supplies should be bypassed with 0.022 μ F capacitors, or greater, near the power supply pins. Be sure that the capacitors are appropriately rated for the supply voltage used.

The OPA445 can supply output currents of 15mA and larger. This would present no problem for a standard op amp operating from $\pm 15\text{V}$ supplies. With high supply voltages, however, internal power dissipation of the op amp can be quite large. Operation from a single power supply (or unbalanced power supplies) can produce even larger power dissipation since a larger voltage is impressed across the conducting output transistor.

Dissipation should be limited to 680mW at 25°C. At temperatures above 25°C, the maximum dissipation should be derated according to the thermal resistance of the package type used.

techniques and environments. The figures provided are typical for common mounting configurations with convection air flow. Poor air circulation and use of sockets can significantly increase thermal resistance. Best thermal performance is achieved by soldering the op amp into a circuit board with wide printed circuit traces to allow greater conduction through the op amp leads. Simple clip-on heat sinks can reduce the thermal resistance of the TO-99 metal package by as much as 50°C/W.

Package thermal resistance, θ_{JC} , is affected by mounting

A short-circuit to ground will produce a typical output current of 25mA. With ±40V power supplies, this creates an internal power dissipation of 1.0W. This exceeds the maximum rating for the device, and is not recommended. Permanent damage is unlikely, however, since the short-circuit output current will diminish as the junction temperature rises.

TYPICAL APPLICATIONS

FIGURE 1. Offset Voltage Trim.

FIGURE 2. Voltage-to-Current Converter.

FIGURE 3. Programmable Voltage Source.

OPA501

High Current, High Power OPERATIONAL AMPLIFIER

FEATURES

- HIGH OUTPUT CURRENT: ±10A Peak
- WIDE POWER SUPPLY RANGE: ±10 to ±40V
- LOW QUIESCENT CURRENT: 2.6mA
- ISOLATED CASE TO-3 PACKAGE

DESCRIPTION

The OPA501 is a high output current operational amplifier. It can be used in virtually all common op amp circuits, yet is capable of output currents up to ±10A. Power supply voltages up to ±40V allow very high output power for driving motors or other electromechanical loads.

Safe operating area is fully specified, and user-set current limits provide protection for both the amplifier and load. The class-B (zero output stage bias) provides low quiescent current during small-signal conditions.

This rugged hybrid integrated circuit is packaged in a metal 8-pin TO-3 package. Both industrial and military temperature range models are available.

APPLICATIONS

- MOTOR DRIVER
- SERVO AMPLIFIER
- VALVE ACTUATOR
- SYNCRO DRIVER
- PROGRAMMABLE POWER SUPPLY

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

3.2.35

SPECIFICATIONS

ELECTRICAL

At $T_c = +25$ °C, $V_s = \pm 28$ V, (OPA501RM, AM); $V_s = \pm 34$ V (OPA501SM, BM) unless otherwise noted.

		OP	A501RM,	AM	OF	A501SM, I	вм	UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	
RATED OUTPUT ^(1, 2) Output Current Continuous ⁽³⁾ Output Voltage ⁽³⁾	$R_L = 2\Omega (RM, AM)$ $R_L = 2.6\Omega (SM, BM)$ $I_O = 10A peak$	±10 ±10 ±20	±23		* * ±26	±29		A A V
DYNAMIC RESPONSE Bandwidth, Unity Gain Full Power Bandwidth Slew Rate	Small Signal $\begin{aligned} &V_O = 40V_{P^*}P, R_L = 8\Omega\\ &R_L = 5\Omega\left(RM, AM\right)\\ &R_L = 6.5\Omega\left(SM, BM\right) \end{aligned}$	10 1.35 1.35	1 16	gh C	iH	:		MHz kHz V/μs v/μs
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Supply Voltage	-25°C < T < +85°C (AM, BM) -55°C < T < +125°C (RM, SM)		±5 ±10	±10 ±65	S No.	±2 ±10	±5 ±40	mV μV/°C μV/°C
INPUT BIAS CURRENT Initial vs Temperature vs Supply Voltage	T _{CASE} = +25°C		15 ±0.05 ±0.02	40	PPLY R	PUT CI	20	nA nA/°C nA/V
INPUT DIFFERENCE CURRENT Initial vs Temperature	T _{CASE} = +25°C -25°C < T < +85°C (AM, BM) -55°C < T < +125°C (RM, SM)		±5 ±0.01	NOTES	CUPR TO-3 P	±2 ±0.01	W ELUE	nA nA/°C nA/°C
OPEN-LOOP GAIN, DC R _L = 6.5Ω (SM, BM)	$R_L = 5\Omega$ (RM, AM)	94	115		98	115	1000	dB dB
INPUT IMPEDANCE Differential Common-mode	+V ○	lun	10 250	Institut	malio i	gid-a si	PASO1	ΜΩ ΜΩ
INPUT NOISE Voltage Noise $f_n = 10Hz$ to $10kHz$ Current Noise $f_n = 10Hz$ to $10kHz$	$f_n = 0.3Hz$ to 10Hz $f_n = 0.3Hz$ to 10Hz	5 710	3 20	to ±40V to ±40V to ±40V			μVrms pArms	μVp-р рАр-р
INPUT VOLTAGE RANGE Common-mode Voltage ⁽⁴⁾ Common-mode Rejection	Linear Operation $f = DC$, $V_{CM} = \pm (V_S -6)$	±(V _S -6)	±(V _S -3)	s ,bsilio	80	ar esns	perating	V dB
POWER SUPPLY Rated Voltage Operating Voltage Range Current, quiescent	1 1 200	±10	±28 ±2.6	±36 ±10	rqino ors	±34	±40	V V mA
TEMPERATURE RANGE Specification, RM, SM AM, BM Operating, derated	case	-55 -25	d and m	+125 +85	ige. Boti models a	-3 pack e range	F pig-8 oteogra	°C
performance, AM, BM Storage		-55 -65		+125 +150	:		:	°C
THERMAL RESISTANCE	Steady State θ_{JC}		2.0	2.2		*		°C/W

^{*}Specification same as for OPA501RM, AM.

NOTES: (1) Package must be derated based on a junction-to-case thermal resistance of 2.2°C/W or a junction-to-ambient thermal resistance of 30°C/W. (2) Safe Operating Area and Power Derating Curves must be observed. (3) With±R_{SC} = 0. Peak output current is typically greater than 10A if duty cycle and pulse width limitations are observed. Output current greater than 10A is not guaranteed. (4) The absolute maximum voltage is 3V less than supply voltage.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Power Dissipation at +25°C ^(1, 2)	
Differential Input Voltage	
Common-Mode Input Voltage	±V ₅
Operating Temperature Range	
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Junction Temperature	+200°C
Output Short-Circuit Duration(3)	Continuous

NOTES: (1) At case temperature of +25°C. Derate at 2.2°C/W above case temperature of +25°C. (2) Average dissipation. (3) Within safe operating area and with appropriate derating.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA501AM	8-Pin Metal TO-3	-25°C to +85°C
OPA501BM	8-Pin Metal TO-3	-25°C to +85°C
OPA501RM	8-Pin Metal TO-3	-55°C to +125°C
OPA501SM	8-Pin Metal TO-3	-55°C to +125°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA501AM	8-Pin Metal TO-3	030
OPA501BM	8-Pin Metal TO-3	030
OPA501RM	8-Pin Metal TO-3	030
OPA501SM	8-Pin Metal TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

OPA501

3.5

POWER OPERATIONAL AMPLIFIERS

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES

INPUT BIAS CURRENT vs TEMPERATURE 2.8 2.4 Current (Normalized) 20 1.6 1.2 Bias 0.8 0.4 0 -50 -25 0 25 50 75 100 Case Temperature (°C)

)PA501

3.2

OWER OPERATIONAL AMPLIFIERS

Grounding techniques can greatly affect the performance of a power op amp. Figure 1 shows grounds connected so that load current does not flow through signal ground connections. Power supply and load connections should be physically separated from the amplifier input and signal connections.

Power supply connections to the amplifier should be bypassed with $10\mu F$ tantalum capacitors connected close to the device pins. The capacitors should be connected to load ground as shown.

FIGURE 1. Basic Circuit Connections.

CURRENT LIMITS

The OPA501 has independent positive and negative current limit circuits. Current limits are set by the value of R^+_{SC} and R^-_{SC} . The approximate value of these resistors is:

$$R_{SC} = \frac{0.65}{I_{LIMIT}} - 0.0437\Omega$$

 I_{LIMIT} is the desired maximum current at room temperature in Amperes and R_{SC} is in ohms. The current limit value decreases with increasing temperature—see typical performance curves. The current limit resistors conduct the full amplifier output current. Power dissipation of the current limit resistors at maximum current is:

$$P_{MAX} = (I_{LIMIT})^2 R_{SC}$$

The current limit resistors can be chosen from a variety of types. Most wire-wound types are satisfactory, although some physically large resistors may have excessive inductance which can cause instability.

SAFE OPERATING AREA

Stress on the output transistor is determined by the output current and the voltage across the conducting output transistor. The power dissipated by the output transistor is equal to the product of the output current and the voltage across the conducting transistor, V_{CE} . The Safe Operating Area (SOA),

rent. SOA is reduced at high operating temperature—see Figure 3.

The safe output current decreases as V_{CE} increases. Output short-circuits are very demanding. A short-circuit to ground forces the full power supply voltage (positive or negative side) across the conducting transistor. With $V_{\rm S}=\pm30{\rm V}$, the current limit must be set for 2A to be safe for short-circuit to ground. For further information on SOA and evaluating signal and load conditions, consult Applications Bulletin AB-039.

HEAT SINKING

Most applications require a heat sink to assure that the maximum junction temperature of 200°C is not exceeded. The size of the heat sink required depends on the power dissipated by the amplifier and ambient temperature conditions. Application Bulletin AB-039 explains how to find maximum power dissipation for DC, AC, reactive loads, and other conditions. Applications Bulletin AB-038 shows how to determine heat sink requirements.

The case of the OPA501 is isolated from all circuitry and can be fastened directly to a heat sink. This eliminates cumbersome insulating hardware that degrades thermal performance. See Applications Bulletin AB-037 for information on mounting techniques and procedures.

FIGURE 2. Transistor Safe Operating Area at +25°C Case Temperature.

FIGURE 3. Transistor Safe Operating Area at +125°C Case Temperature.

OPA502

High Current, High Power OPERATIONAL AMPLIFIER

FEATURES

- HIGH OUTPUT CURRENT: 10A
- WIDE POWER SUPPLY VOLTAGE: ±10V to ±45V
- USER-SET CURRENT LIMIT
- SLEW RATE: 10V/μs
- FET INPUT: I = 200pA max
- CLASS A/B OUTPUT STAGE
- QUIESCENT CURRENT: 25mA max
- HERMETIC TO-3 PACKAGE ISOLATED CASE

DESCRIPTION

The OPA502 is a high output current operational amplifier designed to drive a wide range of resistive and reactive loads. Its complementary class A/B output stage provides superior performance in applications requiring freedom from crossover distortion. Resistor-programmable current limits provide protection for both the amplifier and the load during abnormal operating conditions. An adjustable foldover current limit can also be used to protect against potentially damaging conditions.

The OPA502 employs a custom monolithic op amp/driver circuit and rugged complementary output transistors, providing excellent DC and dynamic performance.

The industry-standard 8-pin TO-3 package is electrically isolated from all circuitry. This allows the OPA502 to be mounted directly to a heat sink without cumbersome insulating hardware which degrade thermal performance. The OPA502 is available in -40°C to +85°C and -55°C to +125°C temperature ranges.

APPLICATIONS

- MOTOR DRIVER
- SERVO AMPLIFIER
- PROGRAMMABLE POWER SUPPLY
- ACTUATOR DRIVER
- AUDIO AMPLIFIER
- TEST EQUIPMENT

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROWN

SPECIFICATIONS

ELECTRICAL

 $T_{CASE} = +25$ °C, $V_{S} = \pm 40$ V unless otherwise noted.

AUUN IV		OPA502BM						
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature vs Power Supply	Specified Temp. Range V _S = ±10V to ±45V	74	±0.5 ±5 92	±5		:	•	mV μV/°C dB
INPUT BIAS CURRENT ⁽¹⁾ Input Bias Current Input Offset Current	V _{CM} = 0V V _{CM} = 0V	CALAKTERS S	12 ±3	200	LOT TO BE LIKE		we constant	pA pA
NOISE Input Voltage Noise Noise Density, Current Noise Density,	f = 1kHz f = 1kHz	eiH .	25 3	n Cui	High			nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Input Range, Positive Negative Common-Mode Rejection	Linear Operation Linear Operation V _{CM} = ±35V	(V+) -5 (V-) +5 74	(V+) -4 (V-) +4 106		actor a seco			V V dB
INPUT IMPEDANCE Differential Common-Mode	LICATIONS OR DRIVER	APP e mon	10 ¹² 5 10 ¹² 4	Al	RENT: 1	ES VIT CUR	MUTA MUO HO	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_0 = \pm 34V, R_L = 6\Omega$	92	103	:BDA7	TOA AT	ER SUPP	NO9 EG	dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Full-Power Bandwidth Total Harmonic Distortion	$G = +10, R_L = 50\Omega$ $68Vp-p, R_L = 6\Omega$ G = +3, f = 20kHz $V_O = 20V, R_L = 8\Omega$	5 Se	2.0 10 e Typical Curv 0.06	res		CUPREN E: 10V/µ: : I _e = 200	TURNIT	MHz V/μs %
Capacitive Load OUTPUT			See Figure 6	A max	STAGE NY: 25n	TOURS T	DA 23A.	0.6
Voltage Output, Positive Negative Positive Negative	I _O = 10A I _O = 10A I _O = 1A I _O = 1A	(V+) -6 (V-) +6	(V+)-3.5 (V-) +3.6 (V+) -2.5 (V-) +3.1	-	CKAGE	TOG PA CASE	OLATED	V V V
Current Output Short Circuit Current			ee SOA Curve sistor Programn			MOITS	usos	an
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current	I _O = 0	±10	±40 ±20	±45 ±25	output cu c a wide	s a high red to driv	OPA 502 fler design	V V mA
TEMPERATURE RANGE Specification Storage Thermal Resistance, θ_{JC}	DC AC f ≥ 50Hz No Heat Sink	-40 -55	1.25 0.8 30	+85 +125 1.4 0.9	topological state of the current of	emmangor		°C/W °C/W °C/W

NOTE: (1) High-speed test at T_J = 25°C.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE		
OPA502BM	8-Pin TO-3	-40°C to +85°C		
OPA502SM	8-Pin TO-3	-55°C to +125°C		

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SOMES OBELVALIONAL VINSTILLES

PIN CONFIGURATION

TO-3 Top View +Output RCL Current -Output Drive

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	90V
Output Current	See SOA Curve
Input Voltage	(V-) -1V to (V+)+1V
Case Temperature, Operating	150°C
Junction Temperature	200°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA502BM	8-Pin TO-3	030
OPA502SM	8-Pin TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

OPA502

TYPICAL PERFORMANCE CURVES

 $T_{CASE} = +25$ °C, $V_{S} = \pm 40$ V unless otherwise noted.

-25

0

25

100

75

-50

Case Temperature (°C)

TYPICAL PERFORMANCE CURVES (CONT) MAMAGORIA JACOBY

 $T_{CASE} = +25$ °C, $V_{S} = \pm 40$ V unless otherwise noted

Power supply terminals should be bypassed with low series impedance capacitors such as ceramic or tantalum close to the device pins. Power supply wiring should have low series impedance and inductance. Figure 1 indicates the high current connections in bold lines.

Current limit is set with two external resistors—one for positive output current and one for negative output current (see Figure 1). For conventional current limit, independent of output voltage, pin 7 should be left open (see "Foldback Current Limit"). Limiting occurs when the output current causes sufficient voltage drop across R_{CL} to turn on the respective current limit transistor. The limit current decreases at high temperature (see typical performance curve "Current Limit vs Temperature).

Figure 1 also shows nominal current limit produced by standard resistor values. See also the typical performance curve "Current Limit vs Limit Resistance". The output current must flow through this resistor, so its power rating must be chosen accordingly. The table in Figure 1 shows the power dissipation of the current limit resistor during continuous current limit (room temperature). Connections from the current limit resistors to the device pins can typically add 0.02Ω to 0.05Ω to the effective value of R_{CL} . This significantly affects the current limit value for high output currents.

The current limit resistors can be chosen from a variety of types. Most common wire-wound types are satisfactory, although some physically large types may have excessive inductance which can cause problems. You should test your circuits with the exact resistor type planned for production use.

You can set different current limits for positive and negative current. Resistors are chosen with the same table of values in Figure 1.

SAFE OPERATING AREA

Stress on the output transistors is determined by the output current and the voltage across the conducting output transis-

R _{CL} (Ω)	at 25°C (A)	Power Dissipation ¹ of R _{CL} (W)
10	0.11	0.12
5	0.19	0.18
2	0.44	0.39
1400	0.78	0.61
0.68	1.22	1.0
0.5	1.65	1.4
0.3	2.73	2.2
0.2	4.0	3.2
0.15	5.4	4.4
0.1	8.1	6.6

NOTE 1: Power dissipation during continuous current limit at T_{CASE} = +25°C.

FIGURE 1. Basic Circuit Connections.

tor. The power dissipated by the output transistor is equal to the product of the output current and the voltage across the conducting transistor, V_{CE} . The Safe Operating Area (SOA curve, Figure 2) shows the permissible range of voltage and current.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

The safe output current decreases as $V_{\rm CE}$ increases. Output short-circuits are a very demanding case for SOA. A short-circuit to ground forces the full power supply voltage (V+ or V–) across the conducting transistor. With $V_{\rm S}=\pm40{\rm V}$ the current limit must be set for 3A (25°C) to be safe for continuous short-circuit to ground. For further insight on SOA, consult AB-039.

FIGURE 2. Safe Operating Area (SOA).

UNBALANCED POWER SUPPLIES

Some applications do not require equal positive and negative output voltage swing. The power supply voltages of the OPA502 do not need to be equal. Figure 3 shows a circuit designed for a positive output voltage and current. The -5V power supply voltage assures that the inputs of the OPA502 are operated within their linear common-mode range. The V+power supply could range from 15V to 85V. The total voltage (V- to V+) can range from 20V to 90V.

FIGURE 3. Unbalanced Power Supplies.

FOLDOVER CURRENT LIMIT

By connecting a resistor from pin 7 to ground, you can make the limit current vary with output voltage. The foldover limit circuit can be set to allow high output current when V_{CE} is low (high output voltage). Output current limits at a lower value under the more stressful condition when V_{CE} is high, (output voltage is low).

The behavior of this voltage-dependant current limit is described by the following equation.

$$I_{LIMIT} = \frac{0.81 + \left(\frac{0.28 \text{ V}_{0}}{\text{R}_{FO} + 20}\right)}{\text{R}_{CL}} + 0.03$$

where: V_0 is the output voltage measured with respect to ground.

 R_{FO} is the resistor connected from pin 7 to ground (in k ohms).

R_{CL} is the current limit resistor (in ohms).

The foldover limit circuitry can be set to allow large voltage and current to resistive loads, yet limit output current to a safe value with an output short circuit.

Reactive or EMF-generating loads can produce unexpected behavior with the foldover circuit driven into limiting. With a reactive load, peak output current occurs at low or zero output voltage. Compared to a resistive load, a reactive load with the same total impedance will be more likely to activate the foldover limit circuitry.

FIGURE 4. Diode Protection of Output.

OUTPUT PROTECTION

The output stage of the OPA502 is protected by internal diode clamps to the power supply terminals. These internal diodes are similar to common silicon rectifier types and may not be fast enough for adequate protection. For loads that can deliver large reverse kickback current (greater than 5A) to the output, external fast-recovery clamp diodes are recommended (Figure 4). For these diodes (internal or external) to provide the intended protection, the power supplies must provide a low impedance to a reverse current.

pulse response ringing, and in severe cases, oscillations. A low value feedback capacitor can reduce or eliminate this effect by maintaining a constant feedback factor at high frequency (see Figure 5).

Depending on the load conditions, precautions may be required when using the OPA502 in low gains. Gains less than +3V/V or -2V/V may cause oscillations, particularly with capacitive loads. Figure 6 shows several circuits for low gain and capacitive loads.

Large value feedback capacitors used to limit the closed-loop bandwidth or form an integrator may also produce instability because the closed-loop gain approaches unity at high frequency.

FIGURE 5. Compensating Input Capacitance.

The output stage of the OPASO2 is protected by internal diodes clamps to the power supply terminals. These internal diodes are smaller to common silicon reotifier types and may not be fast escuph for idequate protection. For loads that can deliver large reverse kickback our end (greater than SA) to the output, external fast-recovery clamp diodes are recommended (Figure 4). For these diodes (internal or external) to provide the intended protection, the power supplies must provide a

required depends on the power dissipated and on ambient conditions. Consult Application Bulletin AB-038 for information on determining heat sink requirements.

The case of the OPA502 is isolated from all circuitry and can be fastened directly to a heat sink. This eliminates cumbersome insulating hardware that degrades thermal performance. Consult Application Bulletin AB-037 for proper mounting techniques and procedures for TO-3 power products.

SOCKET

A mating socket, 0804MC is available for the OPA502 and can be purchased from Burr-Brown. Although not required, this socket makes interchanging parts easy, especially during design and testing.

UNSALANCED POWER SUPPLIES

Some applications do not require equal positive and negative output voltage swing. The power supply voltages of the

OPASO2 do not need to be equal, Figure 3 shows a circuit designed for a positive output voltage and current. The -SV power surply voltage assures that the inputs of the OPASO2 are presented within their linear common-mode range. The V+ power supply could range from 15V to 85V. The total voltage

FOLDOVER CORRENT LIMB

By connecting a resistor from pin 7 to ground, you can ma
the bond current year with outons voltage. The foldover in

FIGURE 6. Compensation Circuits.

FIGURE 7. Low Distortion Composite Amplifier.

FIGURE 8. Bridge Drive Circuit.

FIGURE 9. Digitally Programmable Power Supply.

OPA512

ZMOHRORE

Very-High Current—High Power OPERATIONAL AMPLIFIER

FEATURES

- WIDE SUPPLY RANGE: ±10V to ±50V
- HIGH OUTPUT CURRENT: 15A Peak
- CLASS A/B OUTPUT STAGE:
 Low Distortion
- VOLTAGE-CURRENT LIMIT PROTECTION CIRCUIT
- SMALL TO-3 PACKAGE

DESCRIPTION

The OPA512 is a high voltage, very-high current operational amplifier designed to drive a wide variety of resistive and reactive loads. Its complementary class A/B output stage provides superior performance in applications requiring freedom from cross-over distortion. User-set current limit circuitry provides protection to the amplifier and load in fault conditions. A resistor-programmable voltage-current limiter circuit may be used to further protect the amplifier from damaging conditions.

APPLICATIONS

- SERVO AMPLIFIER
- MOTOR DRIVER
- SYNCRO EXCITATION
- AUDIO AMPLIFIER
- TEST PIN DRIVER

The OPA512 employs a laser-trimmed monolithic integrated circuit to bias the output transistors, providing excellent low-level signal fidelity and high output voltage swing. The reduced internal parts count made possible with this monolithic IC improves performance and reliability.

This hybrid integrated circuit is housed in a hermetic TO-3 package and all circuitry is electrically-isolated from the case. This allows direct mounting to a chassis or heat sink without cumbersome insulating hardware and provides optimum heat transfer.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

		OPA512BM				OPA512SM		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Supply Voltage vs Power	Specified Temp. Range	1	±2 ±10 ±30 ±20	±6 ±65 ±200	.75.5	±1	±3 ±40 *	mV μV/°C μV/V μV/V
INPUT BIAS CURRENT Initial vs Temperature vs Supply Voltage	Specified Temp. Range	MA.	12 ±50 ±10	30 400	7117Y	10	20	nA pA/°C pA/V
INPUT OFFSET CURRENT Initial vs Temperature	Specfied Temp. Range	IGGA	±12 ±50	±30		±5	±10	nA pA/°C
INPUT IMPEDANCE, DC	CONTRACT OF	man a	200	E 700 10 1 10 10 10 10 10 10 10 10 10 10 10	A Friends III - PRO		marie em marie	MΩ
INPUT CAPACITANCE	PRINTED WAR C	151000	3	4 6/9/2 · 6/3	VOICE CON		1100 30	pF
VOLTAGE RANGE Common-Mode Voltage Common-Mode Rejection	Specified Temp. Range Specified Temp. Range	±(V _S – 5) 74	±(V _S -3)	I Peak	STAGE:	OUTPUT	ASS A/B w Distort	V dB
GAIN Open-Loop Gain at 10Hz Gain-Bandwidth Product, 1MHz Power Bandwidth Phase Margin	1k Ω Load Specified Temp. Range 8Ω Load 8Ω Load 8Ω Load Specified Temp. Range 8Ω Load	96 13	110 108 4 20 20	ROTECT	LUMIT P	WARREN BACKS TION	LTAGE-I TOUT TALL TO-	dB dB MHz kHz
OUTPUT Voltage Swing (1) Current, Peak Settling Time to 0.1% Slew Rate Capacitive Load	BM at 10A, SM at 15A Specified Temp. Range Io = 80mA Io = 5A 2V Step Specified Temp. Range G = 1 Specified Temp. Range G > 10	±(V _S - 6) ±(V _S - 5) ±(V _S - 5) 10 2.5	ariety musy	iot perfore rota cross cuitry pro	±(V _S -7)	a high recipier design requirive stage prorecording set current requiring reasonable reasonable seed to fin	PAS12 is innai amplisave and issure and MB output slications ion. User-inter-programmer be a may be a	V V V A µs V/µs
POWER SUPPLY Voltage Current, Quiescent	Specified Temp. Range	±10	±40 25	±45 50		anohibao	±50 35	V mA
THERMAL RESISTANCE AC Junction-to-Case ⁽³⁾ DC Junction-to-Case Junction to Air	$T_C = -55^{\circ}\text{C to } +125^{\circ}\text{C},$ f > 60Hz $T_C = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $T_C = -55^{\circ}\text{C to } +125^{\circ}\text{C}$		0.8 1.25 30	0.9 1.4		*	•	°C/W
TEMPERATURE RANGE Specified	T _C	25		+85	-55		+125	°C

^{*}Specification same as OPA512BM.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

NOTES: (1) $+V_S$ and $-V_S$ denote the postive and negative supply voltage, respectively. Total V_S is measured from $+V_S$ to $-V_S$. (2) SOA = Safe Operating Area. (3) Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	100V
Output Current: Source	
Sink	see SOA
Power Dissipation, Internal(1)	
Input Voltage: Differential	
Common-mode	±V _S
Temperature: Pins (soldering, 10s)	+300°C
Junction(1)	+200°C
Temperature Range: Storage(2)	65°C to +150°C
Operating (Case)	55°C to +125°C

NOTES: (1) Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF. (2) OPA512BM, -55°C to +100°C.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA512BM OPA512SM	8-pin TO-3 8-pin TO-3	-25°C to +85°C -55°C to +125°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA512BM	8-Pin TO-3	030
OPA512SM	8-Pin TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

CONNECTION DIAGRAM

OPA512

3 2

POWER OPERATIONAL AMPLIFIERS

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) MROTAL SMOITAGLISSA

APPLICATIONS INFORMATION

POWER SUPPLIES

Specifications for the OPA512 are based on a nominal operating voltage of ± 40 V. A single power supply or unbalanced supplies may be used as long as the maximum total operating voltage (total of $\pm V_S$ and $\pm V_S$) is not greater than 90V (100V for OPA512SM model.)

CURRENT LIMITS

Current limit resistors must be provided for proper operation. Independent positive and negative current limit values may be selected by choice of $R_{\text{CL+}}$ and $R_{\text{CL-}}$, respectively. Resistor values are calculated by:

$$R_{CL} = 0.65/I_{LIM} \text{ (amps) } -0.007$$

This is the nominal current limit value at room temperature. The maximum output current decreases at high temperature as shown in the typical performance curve. Most wirewound resistors are satisfactory, but some highly inductive types may cause loop stability problems. Be sure to evaluate performance with the actual resistors to be used in production

HEAT SINKING

Power amplifiers are rated by case temperature (not ambient temperature.) The maximum allowable power dissipation is a function of the case temperature as shown in the power derating curve. Load characteristics, signal conditions, and power supply voltage determine the power dissipated by the amplifier. The case temperature will be determined by the heat sinking conditions. Sufficient heat sinking must be provided to keep the case temperature within safe bounds given the power dissipated and ambient temperature. See Application Bulletin AB-038 for further details.

SAFE OPERATING AREA (SOA)

The safe area plot provides a comprehensive summary of the power handling limitations of a power amplifier, including maximum current, voltage and power as well as the secondary breakdown region (see Figure 1). It shows the allowable output current as a function of the power supply to output voltage differential (voltage across the conducting power device.) See Application Bulletin AB-039 for details on SOA.

VOLTAGE-CURRENT LIMITER CIRCUITRY

The voltage-current (V-I) limiter circuit provides a means to protect the amplifier from SOA damage such as a short circuit to ground, yet allows high output currents to flow

FIGURE 1. Safe Operating Area.

under normal load conditions. Sensing both the output current and the output voltage, this limiter circuit increases the current limit value as the output voltage approaches the power supply voltage (where power dissipation is low.) This type of limiting is achieved by connecting pin 7 through a programming resistor to ground. The V-I limiter circuit is governed by the equation:

$$I_{LIMIT} = \frac{0.65 + \frac{0.28 \text{ V}_{0}}{20 + \text{R}_{VI}}}{R_{CI} + 0.007}$$

where

 I_{LIMIT} is the maximum current available at a given output voltage.

 R_{VI} is the value (k Ω) of the resistor from pin 7 to ground. R_{CL} is the current limit resistor in ohms.

Vo is the instantaneous output voltage in volts.

Reactive or EMF-generating loads may produce unusual (perhaps undesirable) waveforms with the V-I limit circuit driven into limit. Since current peaks in a reactive load do not align with the output voltage peaks, the output waveform will not appear as a simple voltage-limited waveform. Response of the load to the limiter, in fact, may produce a "backfire" reaction producing unusual output waveforms.

OPA541

High Power Monolithic OPERATIONAL AMPLIFIER

FEATURES

- POWER SUPPLIES TO ±40V
- **OUTPUT CURRENT TO 10A PEAK**
- PROGRAMMABLE CURRENT LIMIT
- INDUSTRY-STANDARD PIN OUT
- FET INPUT
- TO-3 AND LOW-COST POWER PLASTIC PACKAGES

DESCRIPTION

The OPA541 is a power operational amplifier capable of operation from power supplies up to ±40V and delivering continuous output currents up to 5A. Internal current limit circuitry can be user-programmed with a single external resistor, protecting the amplifier and load from fault conditions. The OPA541 is fabricated using a proprietary bipolar/FET process.

Pinout is compatible with popular hybrid power amplifiers such as the OPA511, OPA512 and the 3573.

APPLICATIONS

- MOTOR DRIVER
- SERVO AMPLIFIER
- SYNCHRO EXCITATION
- AUDIO AMPLIFIER
- PROGRAMMABLE POWER SUPPLY

The OPA541 uses a single current-limit resistor to set both the positive and negative current limits. Applications currently using hybrid power amplifiers requiring two current-limit resistors need not be modified.

The OPA541 is available in an 11-pin power plastic package and an industry-standard 8-pin TO-3 hermetic package. The power plastic package has a copper-lead frame to maximize heat transfer. The TO-3 package is isolated from all circuitry, allowing it to be mounted directly to a heat sink without special insulators.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At T_C = +25°C and V_S = ±35VDC unless otherwise noted.

	A CONTRACTOR OF THE PARTY OF TH	OF	A541AM/AP		OP	A541BM	SM	UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT OFFSET VOLTAGE Vos vs Temperature vs Supply Voltage vs Power	Specified Temperature Range $V_S = \pm 10V$ to $\pm V_{MAX}$		±2 ±20 ±2.5 ±20	±10 ±40 ±10 ±60	SKEW COME	±0.1 ±15 *	±1 ±30	mV μV/°C μV/V μV/W
INPUT BIAS CURRENT	Monolithic	ower	9 de	50				pA
INPUT OFFSET CURRENT	Specified Temperature Range	АИО	±1	±30 5			· senter or	pA nA
INPUT CHARACTERISTICS Common-Mode Voltage Range Common-Mode Rejection Input Capacitance Input Impedance, DC	Specified Temperature Range V_{CM} = ($ \pm V_S $ $-$ 6V)	±(V _S - 6) 95	±(V _S - 3) 113 5 1	8± 07	saus s	IRE	JTA:	V dB pF TΩ
GAIN CHARACTERISTICS Open Loop Gain at 10Hz Gain-Bandwidth Product	$R_L = 6\Omega$	90	97 1.6	TO 10	RENT BLE	T CUR	USTUC BOOR	dB MHz
OUTPUT Voltage Swing Current, Peak	$I_0 = 5A$, Continuous $I_0 = 2A$ $I_0 = 0.5A$	$ \begin{array}{c} \pm (V_S - 5.5) \\ \pm (V_S - 4.5) \\ \pm (V_S - 4) \\ 9 \end{array} $	$\pm (V_S - 4.5)$ $\pm (V_S - 3.6)$ $\pm (V_S - 3.2)$ 10	RD PI	W-CO	RY-SI VID LO	NDUST ET IN O-3 A	V V V A
AC PERFORMANCE Slew Rate Power Bandwidth Settling Time to 0.1% Capacitive Load Phase Margin	$R_L=8\Omega,\ V_O=20Vrms$	6 45 3.3	10 55 2	SOA ⁽¹⁾		Pipe I is a p	ESC OPA5- peratio	V/µs kHz µs nF
POWER SUPPLY Power Supply Voltage, ±V _S Current, Quiescent	Specified Temperature Range	±10	±30	±35	poo au mismi alten la	±35	±40	Im V mA
THERMAL RESISTANCE $\theta_{\rm JC}$ (Junction-to-Case)(2) $\theta_{\rm JC}$ (2) $\theta_{\rm JA}$ (Junction-to-Ambient) OPA541AP (Plastic)	AC Output f > 60Hz DC Output No Heat Sink	is fabri- wer am- e 3573.	2.5 3 40 40	ons. The property of the control of	driw st	on faul a prop supatib i as the		°C/W °C/W °C/W
TEMPERATURE RANGE	AM, BM, AP	-25		+85	• -55		* +125	°C °C

^{*} Specification same as OPA541AM/AP.

NOTE: (1) SOA is the Safe Operating Area shown in Figure 1. (2) Plastic package may require insulator which typically adds 1°C/W.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

3.2

DICE INFORMATION

OPA541 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	NC	11	NC
2	-V _S	12	Current Sense
3	-V _S -V _S	13	+V _S
4	-V _S	14	+V _S
5	-VS	15	+V _S
6	NC	16	+V _S
7	-In	17	Current Sense
8	+ln	18	Output Drive
9	NC	19	Output Drive
10	NC	20	Output Drive
1		21	Output Drive

NOTE: For full output current capability, wire-bond all like connections of +V $_{\rm S}$, -V $_{\rm S}$ and Output Drive.

Substrate Bias: Electrically connected to -V_S supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	213 x 205 ±5	5.41 x 5.21 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	Temperalure (°C	Chromium-Silver

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	80V
Output Current	see SOA
Power Dissipation, Internal(1)	125W
Input Voltage: Differential	±V _s
Common-mode	±V _S
Temperature: Pin solder, 10s	+300°C
Junction(1)	+150°C
Temperature Range:	
AM, BM SM	001 = 9
Storage	65°C to +150°C
Operating (case)	55°C to +125°C
AP We-	
Storage	40°C to +85°C
Operating (case)	25°C to +85°C
NOTE: (1) Long term operation at the maximum j	unction temperature will

result in reduced product life. Derate internal power dissipation to achieve

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	CURRENT
OPA541AP	Power Plastic	-25°C to +85°C	5A at 25°C
OPA541AM	TO-3	-25°C to +85°C	5A at 25°C
OPA541BM	TO-3	-25°C to +85°C	5A at 25°C
OPA541SM	TO-3	-55°C to +125°C	5A at 25°C

PACKAGE INFORMATION

MODEL NOT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA541AP	Power Plastic	242
OPA541AM	TO-3	030
OPA541BM	TO-3	030
OPA541SM	TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

CURRENT LIMIT VS RESISTANCE LIMIT

Power Plastic at -25°C

Power Plastic at +85°C

vs TEMPERATURE

 R_{CL} (Ω)

TO-3 at -25°C TO-3 at +85°C

NOTE: These are averaged values $-I_{OUT}$ is typically 10% higher.

+IOUT is typically 10% lower

0.1

10 DOWNER

LIMIT (A)

0.1

0.01

INSTALLATION INSTRUCTIONS

POWER SUPPLIES

The OPA541 is specified for operation from power supplies up to ±40V. It can also be operated from unbalanced power supplies or a single power supply, as long as the total power supply voltage does not exceed 80V. The power supplies should be bypassed with low series impedance capacitors such as ceramic or tantalum. These should be located as near as practical to the amplifier's power supply pins. Good power amplifier circuit layout is, in general, like good high frequency layout. Consider the path of large power supply and output currents. Avoid routing these connections near low-level input circuitry to avoid waveform distortion and oscillations.

CURRENT LIMIT

Internal current limit circuitry is controlled by a single external resistor, R_{CL}. Output load current flows through this external resistor. The current limit is activated when the voltage across this resistor is approximately a base-emitter turn-on voltage. The value of the current limit resistor is approximately:

(AM, BM, SM)
$$R_{CL} = \frac{0.809}{|I_{LIM}|} - 0.057$$

(AP) $R_{CL} = \frac{0.813}{|I_{LIM}|} - 0.02$

Because of the internal structure of the OPA541, the actual current limit depends on whether current is positive or negative. The above $R_{\rm CL}$ gives an average value. For a given $R_{\rm CL}$, +I_{OUT} will actually be limited at about 10% below the expected level, while –I_{OUT} will be limited about 10% above the expected level.

The current limit value decreases with increasing temperature due to the temperature coefficient of a base-emitter junction voltage. Similarly, the current limit value increases at low temperatures. Current limit versus resistor value and temperature effects are shown in the Typical Performance Curves. Approximate values for R_{CL} at other temperatures may be calculated by adjusting R_{CL} as follows:

$$\Delta R_{CL} = \frac{-2mV}{|I_{LJM}|} \times (T - 25)$$

The adjustable current limit can be set to provide protection from short circuits. The safe short-circuit current depends on power supply voltage. See the discussion on Safe Operating Area to determine the proper current limit value.

Since the full load current flows through R_{CL} , it must be selected for sufficient power dissipation. For a 5A current limit on the TO-3 package, the formula yields an R_{CL} of 0.105Ω (0.143 Ω on the power plastic package due to different internal resistances). A continuous 5A through 0.105Ω would require an R_{CL} that can dissipate 2.625W.

Sinusoidal outputs create dissipation according to rms load current. For the same $R_{\rm CL}$, AC peaks would still be limited to 5A, but rms current would be 3.5A, and a current limiting resistor with a lower power rating could be used. Some applications (such as voice amplification) are assured of signals with much lower duty cycles, allowing a current resistor with a low power rating. Wire-wound resistors may be used for $R_{\rm CL}$. Some wire-wound resistors, however, have excessive inductance and may cause loop-stability problems. Be sure to evaluate circuit performance with resistor type planned for production to assure proper circuit operation.

HEAT SINKING

Power amplifiers are rated by case temperature, not ambient temperature as with signal op amps. Sufficient heat sinking must be provided to keep the case temperature within rated limits for the maximum ambient temperature and power dissipation. The thermal resistance of the heat sink required may be calculated by:

$$\theta_{HS} = \frac{T_{CASE} - T_{AMBIENT}}{P_{D} (max)}$$

Commercially available heat sinks often specify their thermal resistance. These ratings are often suspect, however, since they depend greatly on the mounting environment and air flow conditions. Actual thermal performance should be verified by measurement of case temperature under the required load and environmental conditions.

No insulating hardware is required when using the TO-3 package. Since mica and other similar insulators typically add approximately 0.7°C/W thermal resistance, their elimination significantly improves thermal performance. See Burr-Brown Application Bulletin AB-038 for further details on heat sinking. On the power plastic package, the metal tab is connected to $-\text{V}_{\text{S}}$, and appropriate actions should be taken when mounting on a heat sink or chassis.

SAFE OPERATING AREA

The safe operating area (SOA) plot provides comprehensive information on the power handling abilities of the OPA541. It shows the allowable output current as a function of the voltage across the conducting output transistor (see Figure 1). This voltage is equal to the power supply voltage minus the output voltage. For example, as the amplifier output swings near the positive power supply voltage, the voltage across the output transistor decreases and the device can safely provide large output currents demanded by the load.

FIGURE 1. Safe Operating Area.

Short circuit protection requires evaluation of SOA. When the amplifier output is shorted to ground, the full power supply voltage is impressed across the conducting output transistor. The current limit must be set to a value which is safe for the power supply voltage used. For instance, with $V_{\rm S}\pm35{\rm V}$, a short to ground would force 35V across the conducting power transistor. A current limit of 1.8A would be safe.

Reactive, or EMF-generating, loads such as DC motors can present difficult SOA requirements. With a purely reactive load, output voltage and load current are 90° out of phase. Thus, peak output current occurs when the output voltage is zero and the voltage across the conducting transistor is equal to the full power supply voltage. See Burr-Brown Application Bulletin AB-039 for further information on evaluating SOA.

REPLACING HYBRID POWER AMPLIFIERS

The OPA541 can be used in applications currently using various hybrid power amplifiers, including the OPA501, OPA511, OPA512, and 3573. Of course, the application must be evaluated to assure that the output capability and other performance attributes of the OPA541 meet the necessary requirement. These hybrid power amplifiers use two current limit resistors to independently set the positive and negative current limit value. Since the OPA541 uses only one current limit resistor to set both the positive and negative current limit, only one resistor (see Figure 4) need be installed. If installed, the resistor connected to pin 2 (TO-3 package) is superfluous, but it does no harm.

Because one resistor carries the current previously carried by two, the resistor may require a higher power rating. Minor adjustments may be required in the resistor value to achieve the same current limit value. Often, however, the change in current limit value when changing models is small compared to its variation over temperature. Many applications can use the same current limit resistor.

APPLICATIONS CIRCUITS

FIGURE 2. Clamping Output for EMF-Generating Loads.

FIGURE 3. Isolating Capacitive Loads.

FIGURE 4. Replacing OPA501 with OPA541.

FIGURE 5. Paralleled Operation, Extended SOA.

FIGURE 6. Programmable Voltage Source.

FIGURE 7. 16-Bit Programmable Voltage Source.

High-Voltage, High-Current **OPERATIONAL AMPLIFIER**

- HIGH OUTPUT CURRENT: 2A min
- WIDE POWER SUPPLY RANGE: ±10 to ±35V
- SLEW RATE: 8V/μs

FEATURES

- INTERNAL CURRENT LIMIT
- THERMAL SHUTDOWN PROTECTION
- FET INPUT: I_B = 100pA max
- 5-LEAD TO-220 PLASTIC PACKAGE
- 5-LEAD SURFACE MOUNT PACKAGE

APPLICATIONS

- MOTOR DRIVER
- PROGRAMMABLE POWER SUPPLY
- SERVO AMPLIFIER
- VALVES, ACTUATOR DRIVER
- MAGNETIC DEFLECTION COIL DRIVER

and

TO-220

AUDIO AMPLIFIER

DESCRIPTION

The OPA544 is a high-voltage/high-current operational amplifier suitable for driving a wide variety of high power loads. High performance FET op amp circuitry and high power output stage are combined on a single monolithic chip.

The OPA544 is protected by internal current limit and thermal shutdown circuits.

The OPA544 is available in industry-standard 5-lead TO-220 and 5-lead surface-mount power packages. Its copper tab allows easy mounting to a heat sink for excellent thermal performance. It is specified for operation over the extended industrial temperature range, -40°C to +85°C.

Tab is connected to V- supply.

5-I ead **Surface Mount**

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

T_{CASE} = +25°C, V_S = ±35V unless otherwise noted

OPA544			OPA544T OPA544T-1 OPA544F	B LEES B	RAUG	
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS	
DFFSET VOLTAGE nput Offset Voltage vs Temperature vs Power Supply	Specified Temperature Range $V_S = \pm 10V$ to $\pm 35V$		±1 ±10 ±10	±5 ±100	mV μV/°C μV/V	
NPUT BIAS CURRENT(1) Aput Bias Current vs Temperature Aput Offset Current	V _{CM} ≐ 0V V _{CM} = 0V	oltage	±15 See Typical Curve ±10	±100	pA pA	
IOISE nput Voltage Noise Noise Density, f = 1kHz current Noise Density, f = 1kHz	AL AMPLIF	ATION	36		nV/√Hz fA/√Hz	
NPUT VOLTAGE RANGE Common-Mode Input Range, Positive Negative Common-Mode Rejection	Linear Operation Linear Operation V _{CM} = ±V _S -6V	(V+) -6 (V-) +6 90	(V+) -4 (V-) +4 106	SHAL	V V dB	
NPUT IMPEDANCE Differential Common-Mode	tional supplifier suits high nower loads.	rior	10 ¹² 8 10 ¹² 10	POWER SUI	Ω pF Ω pF	
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_0 = \pm 30V$, $R_L = 1k\Omega$	90	103	NATE: 8VA	Valle dB	
REQUENCY RESPONSE Sain Bandwidth Product Slew Rate Sull-Power Bandwidth Settling Time 0.1% Otal Harmonic Distortion	001/ D /FO	CTIOI2	1.4 8 See Typical Curve 25 See Typical Curve	RAL CURRE MAL SHUTD VPUT: I _s = 10 IO TO-220 PL	MHz V/μs μs	
OUTPUT /oltage Output, Positive Negative Positive Negative Output Short-Circuit Current	10 = EM	(V+) -5 (V-) +5 (V+) -4.2 (V-) +4	(V+) -4.4 (V-) +3.8 (V+) -3.8 (V-) +3.1 See SOA Curves	O SURFACE LICATION OR DRIVER	MOTA SPIES	
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current	I _O = 0	±10	±35	±35 ±15	V SERV	
TEMPERATURE RANGE Operating Storage Thermal Resistance, θ_{JC} Thermal Resistance, θ_{JR} Thermal Resistance, θ_{JA}	f > 50Hz DC No Heat Sink	-40 -40	2.7 100 81 03 142 - 165	+85 +125	*C/W *C/W *C/W *C/W	

NOTES: (1) High-speed test at T_J = 25°C.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

POWER OPERATIONAL

						PAD	FUNCTION
	14 11 11	8 8 8			, TOMS	1	+ln
5						2	-In
	لدم ليا ليا		W. 10 M M M M M M			3A, 3B, 3C	V-
				7.1		4A, 4B	Vo
	77	77 77 77	77 77	*****	= 15Q45	5A, 5B, 5C	V+
7	41-41-4A	45 45 45	42 42 42	4 h 4 h 4 h	L HTT	Substrate Bias: Ir	nternally connected
					00-11-11	V- power supply.	
	-	Thirthur Thirm		Distriction	1 and 1 1 1 1 1 1		
i 🗯 i		1A	48		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		delebel		الانطساسل	08r-1-4		
					ME	ECHANICAL INF	ORMATION

MATION

PERFORMANCE CURVES

	MILS (0.001")	MILLIMETERS
Die Size	159 x 162 ±5	4.04 x 4.11 ±0.13
Die Thickness	14 ±3	0.36 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Chromium-Silver

OPA544 DIE TOPOGRAPHY

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	70V
Output Current	See SOA Curve
Input Voltage	(V-) -0.7V to (V+) +0.7V
Operating Temperature	-40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering -10s)(1)	

NOTE: (1) Vapor-phase or IR reflow techniques are recommended for soldering the OPA544F surface mount package. Wave soldering is not recommended due to excessive thermal shock and "shadowing" of nearby devices.

ORDERING/PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
OPA544T	5-Lead TO-220	315
OPA544T-1	5-Lead Stagger-Formed TO-220	323
OPA544F	5-Lead Surface-Mount	325

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES (CONT) ON AMERICA PROPERTY IN THE PERFORMANCE PROPERTY IN THE PERFORMANCE PROPERTY PROPERTY IN THE PERFORMANCE PROPERTY PROPE

 $T_{CASE} = +25$ °C, $V_{S} = \pm 35$ V unless otherwise noted.

APPLICATIONS INFORMATION

Figure 1 shows the OPA544 connected as a basic non-inverting amplifier. The OPA544 can be used in virtually any op amp configuration. Power supply terminals should be bypassed with low series impedance capacitors. The technique shown, using a ceramic and tantalum type in parallel is recommended. Power supply wiring should have low series impedance and inductance.

FIGURE 1. Basic Circuit Connections.

SAFE OPERATING AREA

Stress on the output transistors is determined by the output current and the voltage across the conducting output transistor, $V_S - V_O$. The power dissipated by the output transistor is equal to the product of the output current and the voltage across the conducting transistor, $V_S - V_O$. The Safe Operating Area (SOA curve, Figure 2) shows the permissible range of voltage and current.

The safe output current decreases as $V_s - V_O$ increases. Output short-circuits are a very demanding case for SOA. A short-circuit to ground forces the full power supply voltage (V+ or V-) across the conducting transistor. With $V_s = \pm 35$ V the safe output current is 1.5A (at 25°C). The short-circuit current is approximately 4A which exceeds the SOA. This situation will activate the thermal shutdown circuit in the OPA544. For further insight on SOA, consult Application Bulletin AB-039.

FIGURE 2. Safe Operating Area.

CURRENT LIMIT

The OPA544 has an internal current limit set for approximately 4A. This current limit decreases with increasing junction temperature as shown in the typical curve, Current Limit vs Temperature. This, in combination with the thermal shutdown circuit, provides protection from many types of overload. It may not, however, protect for short-circuit to ground, depending on the power supply voltage, ambient temperature, heat sink and signal conditions.

OPERATION

D

Or, Call Customer Service at 1-800-548-6132 (USA Only)

POWER DISSIPATION

Power dissipation depends on power supply, signal and load conditions. For dc signals, power dissipation is equal to the product of output current times the voltage across the conducting output transistor. Power dissipation can be minimized by using the lowest possible power supply voltage necessary to assure the required output voltage swing.

For resistive loads, the maximum power dissipation occurs at a dc output voltage of one-half the power supply voltage. Dissipation with ac signals is lower. Application Bulletin AB-039 explains how to calculate or measure power dissipation with unusual signals and loads.

HEATSINKING

Most applications require a heat sink to assure that the maximum junction temperature is not exceeded. The heat sink required depends on the power dissipated and on ambient conditions. Consult Application Bulletin AB-038 for information on determining heat sink requirements.

The mounting tab of the surface-mount package version should be soldered to a circuit board copper area for good heat dissipation. Figure 3 shows typical thermal resistance from junction to ambient as a function of the copper area.

THERMAL PROTECTION

The OPA544 has thermal shutdown that protects the amplifier from damage. Any tendency to activate the thermal shutdown circuit during normal operation is indication of excessive power dissipation or an inadequate heat sink.

The thermal protection activates at a junction temperature of approximately 155°C. For reliable operation, junction temperature should be limited to 150°C, maximum. To estimate the margin of safety in a complete design (including heat sink), increase the ambient temperature until the thermal protection is activated. Use worst-case load and signal conditions. For good reliability, the thermal protection should trigger more than 25°C above the maximum expected ambient condition of your application. This produces a junction temperature of 125°C at the maximum expected ambient condition.

Depending on load and signal conditions, the thermal protection circuit may produce a duty-cycle modulated output signal. This limits the dissipation in the amplifier, but the rapidly varying output waveform may be damaging to some loads. The thermal protection may behave differently depending on whether internal dissipation is produced by sourcing or sinking output current.

OUTPUT STAGE COMPENSATION

The complex load impedances common in power op amp applications can cause output stage instability. Figure 3 shows an output series R/C compensation network (1 Ω in series with 0.01 μ F) which generally provides excellent stability. Some variation in circuit values may be required with certain loads.

UNBALANCED POWER SUPPLIES

Some applications do not require equal positive and negative output voltage swing. The power supply voltages of the OPA544 do not need to be equal. For example, a -6V negative power supply voltage assures that the inputs of the OPA544 are operated within their linear common-mode range, and that the output can swing to 0V. The V+ power supply could range from 15V to 65V. The total voltage (V–to V+) can range from 20V to 70V. With a 65V positive supply voltage, the device may not be protected from damage during short-circuits because of the larger V_{CE} during this condition.

OUTPUT PROTECTION

Reactive and EMF-generating loads can return load current to the amplifier, causing the output voltage to exceed the power supply voltage. This damaging condition can be avoided with clamp diodes from the output terminal to the power supplies as shown in Figure 4. Fast-recovery rectifier diodes with a 4A or greater continuous rating are recommended.

FIGURE 3. Thermal Resistance vs Circuit Board Copper Area.

Burr-Brown IC Data Book-Linear Products

FIGURE 4. Motor Drive Circuit.

FIGURE 5. Digitally Programmable Power Supply.

OPA547 OPA548

PRELIMINARY INFORMATION SUBJECT TO CHANGE WITHOUT NOTICE

High-Voltage, High-Current **OPERATIONAL AMPLIFIERS**

FEATURES

- WIDE SUPPLY RANGE Single Supply: +8V to +70V Dual Supply: ±4V to ±35V
- HIGH OUTPUT CURRENT OPA547: 500mA **OPA548: 3A**
- WIDE OUTPUT VOLTAGE SWING
- FULLY PROTECTED: Thermal Shutdown **Adjustable Current Limit**
- OUTPUT DISABLE CONTROL
- THERMAL SHUTDOWN INDICATOR
- HIGH SLEW RATE: 10V/µs
- LOW QUIESCENT CURRENT: **8mA OPA547**
- 7-LEAD STAGGERED TO-220 and DDPAK SURFACE-MOUNT PLASTIC POWER PACKAGE

APPLICATIONS

- VALVE, ACTUATOR DRIVER
- SYNCHRO, SERVO DRIVER
- POWER SUPPLIES
- TEST EQUIPMENT
- TRANSDUCER EXCITATION
- AUDIO AMPLIFIER

Stagger-Formed TO-220 DDPAK Surface-Moun

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

DESCRIPTION

The OPA547 and OPA548 are low cost, high-voltage/ high-current operational amplifiers ideal for driving a wide variety of loads. A single laser-trimmed monolithic integrated circuit provides excellent low-level signal accuracy and high output voltage swing.

The OPA547 and OPA548 can operate from either single or dual supplies for design flexibility. In single supply operation, the input common-mode range extends below ground.

The OPA547 and OPA548 are fully protected. Internal current limit and thermal shutdown circuits prevent damage from over-temperature conditions. Current limit is accurately set from 0 to 750mA (OPA547) and from 0 to 5A (OPA548) with a single low-power resistor, R_{CL}.

The Enable/Status (E/S) pin provides two functions: an input on this pin will disable the output stage and/or the output can be monitored to determine if the device is in thermal shutdown.

The OPA547 and OPA548 packages are an industrystandard 7-lead staggered TO-220 and a 7-lead DDPAK surface-mount plastic power package. The copper tab allows easy mounting to a heat sink or circuit board for excellent thermal performance. Both products are specified for operation over the extended industrial temperature range, -40°C to +85°C.

7-Lead

3.2.73

Tab is connected

to V- supply.

SPECIFICATIONS

T_{CASE} = +25°C, V_s = ±35V, unless otherwise noted.

PARAMETER	1078376 BAPT CO. C.		HRUS		
	CONDITION	MIN	TYP	MAX	UNITS
DFFSET VOLTAGE nput Offset Voltage vs Temperature vs Power Supply	V _{CM} = 0V Operating Temperature Range V _S = ±4V to ±35V		±1 ±10 20	±5	mV μV/°C μV/V
NPUT BIAS CURRENT ⁽¹⁾ nput Bias Current vs Temperature	V _{CM} = 0V		100 0.5	500	nA nA/°C
nput Offset Current	V _{CM} = 0V	follow man	10	50	nA
NPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	Linear Operation $V_{CM} = (V-)-0.1V \text{ to } (V+)-3V$	(V–)–0.1 80	(V-)-0.2/(V+)-2 90	(V+)-3	V dB
DPEN-LOOP GAIN Dpen-Loop Voltage Gain, f = 10Hz f = 10Hz	$V_{O} = \pm 30V, R_{L} = 1k\Omega$ $V_{O} = \pm 30V, R_{L} = 60\Omega$	90	100		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: ±0.1% Fotal Harmonic Distortion + Noise, f = 1kHz	$R_L = 60\Omega$ $60Vp-p, R_L = 60\Omega$ G = -10, 60V Step $R_L = 60\Omega$		1 10 10 0.05	TURES SUPPLY BA	MHz V/μs μs %
OUTPUT: OPA547 /oltage Output, Positive	I _O = 0.5A I _O = 0.5A	(V+)-2.5 (V-)+2 (V+)-2 (V-)+1 I _{SC} = 3	(V+)-2 (V-)+1.5 (V+)-1.5 (V-)+0.7 ±500	+ R _{OL})	V V V V MA A A MA A PF
OUTPUT: OPA548 //oltage Output, Positive	l _O = 3A l _O = 0.6A l _O = 0.6A	(V+)-3.7 (V-)+3.5 (V+)-2.5 (V-)+2 $I_{SC} = 1$	(V+)-3.3 (V-)+3 (V+)-2 (V-)+1.5 ±3 0 to ±5 5000-4.75/(13750Ω 2.5 10000	+ R _{CL})	TUO V ISHT V 40H A WOJ A AMB A PF
ENABLE /STATUS (E/S) PIN Shutdown Input Mode V _{E/S} High (output enabled) V _{E/S} Low (output disabled) I _{E/S} High (output enabled)	E/S Pin Open or Pulled High E/S Pin Pulled Low E/S Pin Open or Pulled High	(V-)+2.4 V-	0 21/	V+ (V-)+0.8	V V V V
l _{E/S} Low(output disabled) Thermal Shutdown Status Output Normal Operation Thermally Shutdown lunction Temperature, Shutdown Reset from Shutdown	E/S Pin Pulled Low Sourcing up to 20μA Sinking up to 10μA	(V-)+2.4	100 (V-)+3.3 (V-)+0.2 +160 +140	(V-)+0.8	μΑ V V °C °C
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current, OPA547 OPA548 Quiescent Current, Shutdown Mode, OPA547 OPA548	I _{LIM} Connected to V—	±4	±35 ±8 ±15 ±2 ±5	±35 ±10 ±20	V V MA MA MA MA
FEMPERATURE RANGE Specified Range Operating Range Fhermal Resistance, θ _{JC} f > 50Hz	(OPA547/OPA548)	-40 -40	3.5/2.5	+85 +125	°C °C °C

NOTES: (1) High-speed test at T_J = 25°C.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

High Speed BUFFER AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 260MHz
- HIGH SLEW RATE: 2500V/µs
- HIGH OUTPUT CURRENT: 100mA
- LOW OFFSET VOLTAGE: 1.5mV
- REPLACES HA-5033
- IMPROVED PERFORMANCE/PRICE: LH0033, LTC1010, H0S200

DESCRIPTION

The OPA633 is a monolithic unity-gain buffer amplifier featuring very wide bandwidth and high slew rate. A dielectric isolation process incorporating both NPN and PNP high frequency transistors achieves performance unattainable with conventional integrated circuit technology. Laser trimming provides low input offset voltage.

High output current capability allows the OPA633 to drive 50Ω and 75Ω lines, making it ideal for RF, IF and video applications. Low phase shift allows the OPA633 to be used inside amplifier feedback loops. OPA633 is available in a low cost plastic DIP package specified for 0°C to +75°C operation.

APPLICATIONS

- OP AMP CURRENT BOOSTER
- VIDEO BUFFER
- LINE DRIVER
- A/D CONVERTER INPUT BUFFER

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

			OPA633KP			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
FREQUENCY RESPONSE Small Signal Bandwidth Full Power Bandwidth Slew Rate Rise Time, 10% to 90% Propagation Delay	$V_{O} = 1Vrms, P_{L} = 1k\Omega$ $V_{O} = 10V, V_{S} = \pm 15V, P_{L} = 1k\Omega$ $V_{O} = 500mV$	1000	260 40 2500 2.5		MHz MHz V/µs ns	
Overshoot Settling Time, 0.1% Differential Phase Error ⁽¹⁾ Differential Gain Error ⁽¹⁾ Total Harmonic Distortion	$V_O = 1Vrms$, $R_L = 1k\Omega$, $f = 100kHz$ $V_O = 1Vrms$, $R_L = 100\Omega$, $f = 100kHz$	igiH a==ai	10 50 0.1 0.1 0.005 0.02		% ns Degrees % %	
OUTPUT CHARACTERISTICS Voltage Current Resistance	$T_A = T_{MIN}$ to T_{MAX} $R_L = 1k\Omega$, $V_S = \pm 15V$	±8 ±11 ±80	±10 ±13 ±100 5	475 MILES A. D.	V V mA	
TRANSFER CHARACTERISTICS Gain	$R_L = 1k\Omega$ $T_A = T_{MIN}$ to T_{MAX}	0.93	0.95 0.99 0.95	SLEW RATE	V/V V/V V/V	
NPUT Offset Voltage vs Temperature vs Supply Blas Current Noise Voltage Resistance Capacitance	$T_A = +25^{\circ}\text{C}$ $T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $T_A = +25^{\circ}\text{C}$ $T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $10\text{Hz to } 1\text{MHz}$	54	±5 ±6 ±33 72 ±15 ±20 20 1.5 1.6	±15 ±25 ±35 ±50	mV mV μV/°C dB μA μA μVp-p MΩ pF	
POWER SUPPLY Rated Supply Voltage Operating Supply Voltage Current, Quiescent	Specified Performance Derated Performance $I_O = 0$ $I_O = 0, T_A = T_{MIN} \text{ to } T_{MAX}$	±5 ilqua rollud t	±12 21 21	±16 25 30	V V mA mA	
TEMPERATURE RANGE Specification, Ambient Operating, Ambient θ Junction, Ambient		0 -25	90	+75 +85	°C °C °C	

NOTE: (1) Differential phase error in video transmission systems is the change in phase of a color subcarrier resulting from a change in picture signal from blanked to white. Differential gain error is the change in amplitude at the color subcarrier frequency resulting from a change in picture signal from blanked to white.

PIN CONFIGURATION

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA633KP	8-Pin Plastic DIP	0°C to +75°C

ABSOLUTE MAXIMUM RATINGS

Power Supply, ±V _S	±20V
Input Voltage V _{IN}	+V _S + 2V to -V _S - 2V
Output Current (peak)	±200mA
Internal Power Dissipation (25°C)	1.95W
Junction Temperature	200°C
Storage Temperature Range	40°C to +85°C
Lead Temperature (soldering, 10s)	300°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA633KP	8-Pin Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES (CONT) MAMPORES LADISYT

At +25°C, $V_S = \pm 12V$, $R_S = 50\Omega$, $R_L = 100\Omega$, and $C_L = 10pF$, unless otherwise specified.

() E) 60

> = > 40

20

-50

Orighest

VOLTAGE GAIN vs LOAD RESISTANCE

f = 1kHz

To acto limit of a 100 over cook of the limit of limit of limits o

Load Resistance (Ω)

 $V_0 = 10Vp-p$

1.00

Voltage Gain (V/V)
0.90
0.85

0.85

125

100

GAIN ERROR VS TEMPERATURE

Temperature (°C)

rechnique must be used to achieve optimum performance. Power supply connections must be bypassed with high frequency capacitors. Many applications benefit from the use of two capacitors on each power supply—a ceramic capacitor for good high frequency decoupling and a tantalum type for lower frequencies. They should be located as close as possible to the buffer's power supply pins. A large ground plane is used to minimize high frequency ground drops and stray coupling.

Pin 6 connects to the substrate of the integrated circuit and should be connected to ground. In principle it could also be connected to $+V_S$ or $-V_S$, but ground is preferable. The additional lead length and capacitance associated with sockets may cause problems in applications requiring the highest fidelity of high speed pulses.

Depending on the nature of the input source impedance, a series input resistor may be required for best stability. This behavior is influenced somewhat by the load impedance (including any reactive effects). A value of 50Ω to 200Ω is typical. This resistor should be located close to the OPA633's input pin to avoid stray capacitance at the input which could reduce bandwidth (see Gain and Phase versus Frequency curve).

OVERLOAD CONDITIONS

The input and output circuitry of the OPA633 are not protected from overload. When the input signal and load characteristics are within the devices's capabilities, no protection circuitry is required. Exceeding device limits can result in permanent damage.

The OPA633's small package and high output current capability can lead to overheating. The internal junction temperature should not be allowed to exceed 150°C. Although failure is unlikely to occur until junction temperature exceeds 200°C, reliability of the part will be degraded significantly at such high temperatures. Since significant heat transfer takes place through the package leads, wide printed circuit traces to all leads will improve heat sinking. Sockets reduce heat transfer significantly and are not recommended.

Junction temperature rise is proportional to internal power dissipation. This can be reduced by using the minimum supply voltage necessary to produce the required output voltage swing. For instance, 1V video signals can be easily handled with ±5V power supplies thus minimizing the internal power dissipation.

Output overloads or short circuits can result in permanent damage by causing excessive output current. The 50Ω or 75Ω series output resistor used to match line impedance will, in most cases, provide adequate protection. When this resistor is not used, the device can be protected by limiting the power supply current. See "Protection Circuits."

Excessive input levels at high frequency can cause increased internal dissipation and permanent damage. See the safe

most cases, by the op amp. When high frequency inputs can exceed safe levels, the device must be protected by limiting the power supply current.

PROTECTION CIRCUITS

The OPA633 can be protected from damage due to excessive currents by the simple addition of resistors in series with the power supply pins (Figure 5a). While this limits output current, it also limits voltage swing with low impedance loads. This reduction in voltage swing is minimal for AC or high crest factor signals since only the average current from the power supply causes a voltage drop across the series resistor. Short duration load-current peaks are supplied by the bypass capacitors.

The circuit of Figure 5b overcomes the limitations of the previous circuit with DC loads. It allows nearly full output voltage swing up to its current limit of approximately 140mA. Both circuits require good high frequency capacitors (e.g., tantalum) to bypass the buffer's power supply connections.

CAPACITIVE LOADS

The OPA633 is designed to safely drive capacitive loads up to 0.01µF. It must be understood, however, that rapidly changing voltages demand large output load currents:

$$I_{LOAD} = C_{LOAD} \frac{dV}{dt}$$

Thus, a signal slew rate of 1000V/µs and load capacitance of 0.01µF demands a load current of 10A. Clearly maximum slew rates cannot be combined with large capacitive loads. Load current should be kept less than 100mA continuous (200mA peak) by limiting the rate of change of the input signal or reducing the load capacitance.

USE INSIDE A FEEDBACK LOOP

The OPA633 may be used inside the feedback path of an op amp such as the OPA602. Higher output current is achieved without degradation in accuracy. This approach may actually improve performance in precision applications by removing load-dependent dissipation from a precision op amp. All vestiges of load-dependent offset voltage and temperature drift can be eliminated with this technique. Since the buffer is placed within the feedback loop of the op amp, its DC errors will have a negligible effect on overall accuracy. Any DC errors contributed by the buffer are divided by the loop gain of the op amp.

The low phase shift of the OPA633 allows its use inside the feedback loop of a wide variety of op amps. To assure stability, the buffer must not add significant phase shift to the loop at the gain crossing frequency of the circuit—the frequency at which the open loop gain of the op amp is equal to the closed loop gain of the application. The OPA633 has a typical phase shift of less than 10° up to 70MHz, thus making it useful even with wideband op amps.

-OV_{out}

NEGATIVE PULSE RESPONSE

FIGURE 1. Coaxial Cable Driver Circuit.

 $\underset{=}{\overset{R_5}{\underset{50\Omega}{\times}}} R_5$

 \leq 50 Ω

Pulse

Generato

FIGURE 2. Dynamic Response Test Circuit.

R₉ 1kΩ C₅ R₈ 150Ω OPA602 OPA633

FIGURE 3. Precision High Current Buffer.

FIGURE 4. Buffered Inverting Amplifier.

FIGURE 5. Output Protection Circuits.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPA2541

Dual High Power OPERATIONAL AMPLIFIER

FEATURES

- OUTPUT CURRENTS TO 5A
- POWER SUPPLIES TO ±40V
- FET INPUT
- ELECTRICALLY ISOLATED CASE

APPLICATIONS

- MOTOR DRIVER
- SERVO AMPLIFIER
- SYNCRO/RESOLVER EXCITATION
- VOICE COIL DRIVER
- BRIDGE AMPLIFIER
- PROGRAMMABLE POWER SUPPLY
- AUDIO AMPLIFIER

DESCRIPTION

The OPA2541 is a dual power operational amplifier capable of operation from power supplies up to ±40V and output currents of 5A continuous. With two monolithic power amplifiers in a single package it provides unequaled functional density.

The industry-standard 8-pin TO-3 package is isolated from all internal circuitry allowing it to be mounted directly to a heat sink without insulators which degrade thermal performance. Internal circuitry limits output current to approximately 6A.

The OPA2541 is available in both industrial and military temperature range versions.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 8734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 8706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At $T_C = +25$ °C and $V_S = \pm 35$ VDC, unless otherwise noted.

I A COUNTY I AND		STORY .	OPA2541AM		OF	A2541BM,	SM	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT OFFSET VOLTAGE		-						
V _{OS} vs Temperature vs Supply Voltage vs Power	Specified Temperature Range V _S = ±10V to ±V _{MAX}		±2 ±20 ±2.5 ±20	±10 ±40 ±10 ±60		±0.25 ±15 *	±1 ±30 *	mV μV/°C μV/V μV/W
INPUT BIAS CURRENT								
I _B	Specified Temperature Range	ngm	15 Note 1	50		*	•	pA
INPUT OFFSET CURRENT	HITTLIMIA.	IMM	JIIA	HII	100			
Ios	Specified Temperature Range	et conserved	±5 Note 1	±30	depoint trace	N L POR DECRET	NAMES OF	pA
INPUT CHARACTERISTICS	Marraignoba					onoi	FTAD	100
Common-Mode Voltage Range Common-Mode Rejection Input Capacitance Input Impedance, DC	Specified Temperature Range V _{CM} = (±V _S -6V)	±(V _S -6) 95	±(V _S -3) 106 5 1	AZ O	ENTS TO	T CURI	USTUC POWER	V dB pF 10 ¹² Ω
GAIN CHARACTERISTICS	and deterois currents of 5A continu					YUK	THE THE	0
Open Loop Gain at 10Hz Gain-Bandwidth Product	$R_L = 6\Omega$	90	96 1.6	O 03T	MOSIN	LUADIF	RLECT	dB MHz
OUTPUT	The Industry-standard 8-pin TO-							
Voltage Swing Current, Continuous	I _O = 5A I _O = 2A I _O = 0.5A +25°C +85°C +125°C (SM grade only)	±(V _S -5.5) ±(V _S -4.5) ±(V _S -4) 5 4	±(V _S -4.5) ±(V _S -3.6) ±(V _S -3.2) 7.0 5.0		3	3.5	MOTOR SERVO	V V A A A
AC PERFORMANCE	militery temperature range version		635,711	PS I DUPAL	A 21-12 V - A1	Jenny	STURES	
Slew Rate Power Bandwidth Settling Time to 0.1% Capacitive Load Phase Margin Channel Separation	$R_L=8\Omega, \ V_O=20 \ \text{Vrms}$ $2 \ \text{V Step}$ Specified Temperature Range, G = 1 Specified Temperature Range, G > 10 Specified Temperature Range, R_L = 8Ω 1kHz, R_L = 6Ω	6 45	8 55 2 40 80	3.3 SOA	RSIR RSIR IOS BUR RSI	E AMPLI AMPLIE	PACOS PACOS AUDIO	V/µs kHz µs nF Degree dB
POWER SUPPLY			113. 7	A				
Power Supply Voltage, ±V _S Current, Quiescent	Specified Temperature Range Total—Both Amplifiers	±10	±30 40	±35 50	1-1/4	±35	±40 *	V mA
THERMAL RESISTANCE		(5.4)		X				
$\theta_{\rm JC}$, (Junction-to-Case) $\theta_{\rm JC}$ $\theta_{\rm JC}$ $\theta_{\rm JC}$ $\theta_{\rm JC}$ $\theta_{\rm JC}$ $\theta_{\rm JC}$	Both Amplifiers ⁽²⁾ , AC Output f > 60Hz Both Amplifiers ⁽²⁾ , DC Output One Amplifier, AC Output f > 60Hz One Amplifier, DC Output No Heat Sink		0.8 0.9 1.25 1.4 30	1.0 1.2 1.5 1.9		* * * * *	* * *	°C/W °C/W °C/W °C/W
TEMPERATURE RANGE				Tal.	Y			
Case	AM, BM SM	-25	7	+85	-55		+125	°C

^{*}Specification same as OPA2541AM.

NOTES: (1) Input bias and offset current approximately doubles for every 10°C increase in temperature. (2) Assumes equal dissipation in both amplifiers.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Output Current	see SOA
Power Dissipation, Internal ⁽¹⁾	
Input Voltage: Differential	±V _S
Common-mode	±V _S
Temperature: Pin Solder, 10s	+300°C
Temperature: Pin Solder, 10s	+150°C
Temperature Range:	
Storage	65°C to +150°C
Operating (Case)	55°C to +125°C

NOTE: (1) Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	
OPA2541AM	TO-3	030	
OPA2541BM	TO-3	030	
OPA2541SM	TO-3	030	

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA2541AM	TO-3	-25°C to +85°C
OPA2541BM	TO-3	-25°C to +85°C
OPA2541SM	TO-3	-55°C to +125°C

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C and $V_S = \pm 35$ VDC, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

T_A = +25°C and V_S = ±35VDC, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 $T_A = +25$ °C and $V_S = \pm 35$ VDC, unless otherwise noted.

INSTALLATION INSTRUCTIONS

POWER SUPPLIES

The OPA2541 is specified for operation from power supplies up to ± 40 V. It can also be operated from an unbalanced or a single power supply so long as the total power supply voltage does not exceed 80V (70V for "AM" grade). The power supplies should be bypassed with low series impedance capacitors such as ceramic or tantalum. These should be located as near as practical to the amplifier's power supply pins. Good power amplifier circuit layout is, in general, like good high-frequency layout. Consider the path of large power supply and output currents. Avoid routing these connections near low-level input circuitry to avoid waveform distortion and instability.

Signal dependent load current can modulate the power supply voltage with inadequate power supply bypassing. This can affect both amplifiers' outputs. Since the second amplifier's signal may not be related to the first, this will degrade the inherent channel separation of the OPA2541.

HEAT SINKING

Most applications will require a heat sink to prevent junction temperatures from exceeding the 150°C maximum rating. The type of heat sink required will depend on the output signals, power dissipation of each amplifier, and ambient temperature. The thermal resistance from junction-to-case, $\theta_{\rm JC}$, depends on how the power dissipation is distributed on the amplifier die.

DC output concentrates the power dissipation in one output transistor. AC output distributes the power dissipation equally between the two output transistors and therefore has lower thermal resistance. Similarly, the power dissipation may be all in one amplifier (worst case) or equally distributed between the two amplifiers (best case). Thermal resistances are provided for each of these possibilities. The case-to-junction temperature rise is the product of the power dissipation.

pation (total of both amplifiers) times the appropriate thermal resistance—

$$\Delta T_{IC} = (P_D \text{ total}) (\theta_{IC}).$$

Sufficient heat sinking must be provided to keep the case temperature within safe limits for the maximum ambient temperature and power dissipation. The thermal resistance of the heat sink required may be calculated by:

$$\theta_{HS} = (150^{\circ}\text{C} - \Delta T_{IC} - T_{A})/P_{D}$$

Commercially available heat sinks usually specify thermal resistance. These ratings are often suspect, however, since they depend greatly on the mounting environment and air flow conditions. Actual thermal performance should be verified by measurement of case temperature under the required load and environmental conditions.

No insulating hardware is required when using the OPA2541. Since mica and other similar insulators typically add 0.7°C/W thermal resistance, this is a significant advantage. See Burr-Brown Application Bulletin AB-037 for further details on heat sinking.

SAFE OPERATING AREA

The Safe Operating Area (SOA) curve provides comprehensive information on the power handling abilities of the OPA2541. It shows the allowable output current as a function of the voltage across the conducting output transistor (see Figure 1). This voltage is equal to the power supply voltage minus the output voltage. For example, as the amplifier output swings near the positive power supply voltage, the voltage across the output transistor decreases and the device can safely provide large output currents demanded by the load.

shorted to ground, the full power supply voltage is impressed across the conducting output transistor. For instance, with $V_s=\pm35V$, a short circuit to ground would impress 35V across the conducting power transistor. The maximum safe output current at this voltage is 1.8A, so the internal current limit would not protect the amplifier. The unit-to-unit variation and temperature dependence of the internal current limit suggest that it be used to handle abnormal conditions and not activated in commonly encountered circuit operation.

FIGURE 1. Safe Operating Area.

Reactive, or EMF generating loads such as DC motors can present demanding SOA requirements. With a purely reactive load, output voltage current occurs when the output voltage is zero and the voltage across the conducting transistor is equal to the full power supply voltage. See Burr-Brown Application Bulletin AB-039 for further information on evaluating SOA.

Applications with inductive or EMF-generating loads which can produce "kick back" voltage surges to the amplifiers should include clamp diodes from the output terminals to the power supplies. These diodes should be chosen to limit the peak amplifier output voltage surges to less than 2V beyond the power supply rail voltage. Common 1A rated rectifier diodes will suffice in most applications.

FIGURE 2. Clamping Output for EMF-Generating Loads.

FIGURE 3. Isolating Capacitive Loads.

FIGURE 4. Paralleled Operation, Extended SOA.

0.1µF

0-2mA

DAC80-CBI-

Protects DAC During Slewing 25kΩ

FIGURE 6. 16-Bit Programmable Voltage Source.

FIGURE 7. Bridge Amplifier Motor-Speed Controller.

FIGURE 8. Limiting Output Current.

OPA2544

High-Voltage, High-Current **DUAL OPERATIONAL AMPLIFIER**

FEATURES

- HIGH OUTPUT CURRENT: 2A min
- WIDE POWER SUPPLY RANGE: ±10V to ±35V
- SLEW RATE: 8V/µs
- INTERNAL CURRENT LIMIT
- THERMAL SHUTDOWN PROTECTION
- FET INPUT: I_B = 50pA max
- 8-PIN HERMETIC TO-3 AND 11-LEAD **PLASTIC PACKAGES**

APPLICATIONS

- MOTOR DRIVER
- PROGRAMMABLE POWER SUPPLY
- SERVO AMPLIFIER
- VALVES, ACTUATOR DRIVER
- MAGNETIC DEFLECTION COIL DRIVER
- AUDIO AMPLIFIER

Outp Out_A **TO-3** +In_B Package Electrically Isolated Top View

DESCRIPTION

The OPA2544 is a dual high-voltage/high-current operational amplifier suitable for driving a wide variety of high power loads. It provides 2A output current and power supply voltage range extends to ±35V.

The OPA2544 integrates two high performance FET op amps with high power output stages on a single monolithic chip. Internal current limit and thermal shutdown protect the amplifier and load from damage.

The OPA2544 is available in a hermetic 8-pin metal TO-3, and 11-lead plastic packages. Models are available in -40°C to +85°C, and -55°C to +125°C temperature ranges.

connected to V- Supply.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

OPA2544		OPA2544T OPA2544BM		OPA2544SM			RUS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature vs Power Supply	Specified Temp. Range $V_S = \pm 10V$ to $\pm 35V$		±1 ±10 ±10	±5 ±100				mV μV/°C μV/V
INPUT BIAS CURRENT(1) Input Bias Current vs Temperature Input Offset Current	$V_{CM} = 0V$ $V_{CM} = 0V$	Dou	±15 bles every ±10	±50 10°C ±50	parameter land 18.1	aces and a		pA pA
NOISE Input Voltage Noise Noise Density, f = 1kHz Current Noise Density, f = 1kHz	AL AMPLIFI	101	36 3	390	AL	ŲĢ		nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Input Range Positive Negative Common-Mode Rejection	Linear Operation Linear Operation $V_{CM} = \pm V_{S^*}6V$	(V+) -6 (V-) +6 90	(V+) -4 (V-) +4 106		:	93	RUT/	V V dB
INPUT IMPEDANCE Differential Common-Mode	he OPA2544 is a dual high-vational amplifier suitable for		10 ¹² 8 10 ¹² 10	2A mbi	RAENT:	UO TUP	TUO HI	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_{O} = \pm 30V, R_{L} = 15\Omega$	90	103			Vi	Et of Vi	dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Full-Power Bandwidth Settling Time 0.1% Total Harmonic Distortion	$\begin{aligned} R_L &= 15\Omega\\ 60\text{Vp-p}, \ R_L &= 15\Omega\\ G &= -10, \ 60\text{V Step} \end{aligned}$		1.4 8 Typical Cu 25 Typical Cu		NT LIM OWN PI DA max	CUARE SHUTD : la = 50	ERNAL INPUT	MHz V/μs μs
OUTPUT Voltage Output: Positive Negative Positive Negative Current Output Short-Circuit Current	$I_0 = 2A$ $I_0 = 2A$ $I_0 = 0.5A$ $I_0 = 0.5A$	(V+) -5 (V-) +5 (V+) -4.2 (V-) +4 Se	(V+) -4.4 (V-) +3.8 (V+) -3.8 (V-) +3.1 e SOA Cun ±4	ves	ES.	ACKAC	STICE	V V V V
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (total)	I _O = 0	±10	±35	±35 ±30	POWE	LISAM SIFKJ9	MARIOR TYO ALL	V V mA
TEMPERATURE RANGE Operating Range Storage, Metal TO-3 Package Plastic Package Thermal Resistance, θ _{3C} ² Thermal Resistance, θ _{3D} ²	Both Amplifiers, f > 50Hz Both Amplifiers, DC One Amplifier, f > 50Hz One Amplifier, DC No Heat Sink	-40 -65 -40	2 2.5 2.7 3 30	+85 +125 +125	-55 •	CTUATO LIPSO PEIGLE	+125	°C °C °C 'W °C /W °C /W °C /W °C /W

^{*} Specifications same as OPA2544BM.

NOTES: (1) High-speed test at $T_J = 25$ °C. (2) Calculated from total power dissipation of both amplifiers.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Case is electrically isolated.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE	
OPA2544T	11-Lead Plastic	-40°C to +85°C	
OPA2544BM	8-Pin Metal TO-3	-40°C to +85°C	
OPA2544SM	8-Pin Metal TO-3	-55°C to +125°C	

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPA2544T	11-Lead Plastic	242
OPA2544BM	8-Pin Metal TO-3	030
OPA2544SM	8-Pin Metal TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	
Output Current	See SOA Curve
Input Voltage	
Operating Temperature	55°C to +125°C
Storage Temperature, Metal TO-3 Package	55°C to +125°C
Plastic Package	40°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, -10s)	300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DICE INFORMATION

PAD	FUNCTION
1A, 1B	Out _B
2A, 2B, 2C, 2D	8 V+
3	+In _A
4	-In _A
5A, 5B	Out
6A, 6B, 6C, 6D	V-
7	+ln _B
- 8	-In _B

Substrate Bias: Internally connected to V– power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	218 x 252 ±5	8.58 x 9.92 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Chromium-Silver

OPA2544 DIE TOPOGRAPHY

OPA2544 DIE TOPOGRAPHY

KAGE INFORMATION

| PACKAGE | MIJHBERTO | MIJHBE

TYPICAL PERFORMANCE CURVES

 $T_{CASE} = +25$ °C, $V_{S} = \pm 35$ V unless otherwise noted.

100

125

CURRENT LIMIT VS TEMPERATURE

5

2

-75 -50 -25 0 25 50

Limit Current (A) 3

125

POWER OPERATIONAL AMPLIFIERS

Temperature (°C)

Temperature (°C)

APPLICATIONS INFORMATION

Figure 1 shows the OPA2544 connected as a basic non-inverting amplifier. The OPA2544 can be used in virtually any op amp configuration. Power supply terminals should be bypassed with low series impedance capacitors. The technique shown, using a ceramic and tantalum type in parallel, is recommended. Power supply wiring should have low series impedance and inductance.

FIGURE 1. Basic Circuit Connections.

short circuit is a very demanding case for SOA. A short

SAFE OPERATING AREA

Stress on the output transistors is determined by the output current and the voltage across the conducting output transistor, V_{CE} . The power dissipated by the output transistor is equal to the product of the output current and the voltage across the conducting transistor, V_{CE} . The Safe Operating Area (SOA curve, Figure 2) shows the permissible range of voltage and current.

FIGURE 2. Safe Operating Area.

The safe output current decreases as V_{CE} increases. Output short-circuit is a very demanding case for SOA. A short-circuit to ground forces the full power supply voltage (V+ or V–) across the conducting transistor. With $V_S = \pm 35 V$ the safe output current is 1.5A (at 25°C). The short-circuit current is approximately 4A which exceeds the SOA. This situation will activate the thermal shutdown circuit in the OPA2544. For further insight on SOA, consult AB-039.

CURRENT LIMIT

The OPA2544 has an internal current limit set for approximately 4A. This current limit decreases with increasing junction temperature as shown in the typical curve, Current Limit versus Temperature. This, in combination with the thermal shutdown circuit, provides protection from many types of overload. It may not, however, protect for short-circuit to ground, depending on the power supply voltage, ambient temperature, heat sink and signal conditions.

POWER DISSIPATION

Power dissipation depends on power supply, signal and load conditions. For DC signals, power dissipation is equal to the product of output current times the voltage across the conducting output transistor. Power dissipation can be minimized by using the lowest possible power supply voltage necessary to assure the required output voltage swing.

For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power supply voltage. Dissipation with AC signals is lower. Application Bulletin AB-039 explains how to calculate or measure power dissipation with unusual signals and loads.

HEATSINKING

Most applications require a heat sink to assure that the maximum junction temperature is not exceeded. The heat sink required depends on the power dissipated and on ambient conditions. Consult Application Bulletin AB-038 for information on determining heat sink requirements.

The case of the metal TO-3 model of the OPA2544 is electrically isolated from all circuitry and can be connected directly to a heat sink. This eliminates cumbersome insulating hardware that increases thermal resistance. Consult Application Bulletin AB-037 for proper mounting techniques and procedures for TO-3 power products.

The heat sink tab of the plastic package is connected to the V-power supply terminal. Lowest thermal resistance can be achieved by mounting the tab directly to a heat sink. If the heat sink cannot be electrically "hot" at V-power supply potential, insulating hardware must be used.

THERMAL PROTECTION

The OPA2544 has thermal shutdown that protects the amplifier from damage. Any tendency to activate the thermal shutdown circuit during normal operation is indication of excessive power dissipation or an inadequate heat sink.

The thermal protection activates at a junction temperature of approximately 155°C. For reliable operation, junction temperature should be limited to 150°C, maximum. To estimate the margin of safety in a complete design (including heat sink), increase the ambient temperature until the thermal protection is activated. Use worst-case load and signal conditions. For good reliability, the thermal protection should trigger more than 25°C above the maximum expected ambient condition of your application. This produces a junction temperature of 125°C at the maximum expected ambient condition.

Depending on load and signal conditions, the thermal protection circuit may produce a duty-cycle modulated output signal. This limits the dissipation in the amplifier, but the rapidly varying output waveform may be damaging to some loads. The thermal protection may behave differently depending on whether internal dissipation is produced by sourcing or sinking output current.

UNBALANCED POWER SUPPLIES

Some applications do not require equal positive and negative output voltage swing. The power supply voltages of the OPA2544 do not need to be equal. For example, a –7V negative power supply voltage assures that the inputs of the OPA2544 are operated within their linear common-mode range, and that the output can swing to 0V. The V+ power supply could range from 15V to 63V. The total voltage (V– to V+) can range from 20V to 70V. With a 63V positive supply voltage, the device may not be protected from damage during short-circuits because of the larger $V_{\rm CE}$ during this condition.

OUTPUT PROTECTION

Reactive and EMF-generating loads can return load current to the amplifier, causing the output voltage to exceed the power supply voltage. This damaging condition can be avoided with clamp diodes from the output terminal to the power supplies as shown in Figure 2. Fast-recovery rectifier diodes with a 4A or greater continuous rating are recommended.

SOCKET

An 8-pin TO-3 socket, Burr-Brown model 0804MC is available. Although not required, this socket makes mounting and interchanging parts easy, especially during design and testing.

FIGURE 3. Motor Drive Circuit.

FIGURE 5. Paralleled Operation, Extended SOA.

FIGURE 4. Bridge Drive Circuit.

Mulling Address: PO Sox 11400 . Tueson, AZ 55114 . Street Address: 8730 S. Tueson Divol.

8-Pin TO-3 Socket

FEATURES TO BE SEED TO SEED TO

- LOW CONTACT RESISTANCE
- CLOSED CONTACT ENDS
- GOLD-PLATED INNER CONTACTS
- -55°C TO +150°C TEMPERATURE RANGE

DESCRIPTION

The 0804MC is a high quality socket designed for use with Burr-Brown's 8-pin TO-3 type products such as the OPA541 and OPA512.

Although not required for use with these products, the 0804MC socket makes interchanging parts easy, especially during design and testing. Its rugged inner contacts provide positive insertion and low contact resistance. Closed contact ends prevent solder and flux contamination of the internal contacts.

The socket body is molded of glass-filled polyester and incorporates counter-sunk mounting holes and hex-nut retaining feature. It accommodates a variety of mounting hardware and mechanical designs.

1.68 0.31 Dia Vent Hole 5/16 Hex 1.00 Тур 0.16 Dia Thru Тур CSK 82° X 0.29 Dia 0.500 2 Holes Dia 0.17 Min Insertion Depth 0.37 0.67 0.12 (Typ) 0.02 Standoff (6 Places) 0.52 Max Insertion Depth

Contact Resistance: 0.02Ω Typ

Outer Contact: Brass

200u inch Tin over 100u inch Nickel Plate

Inner Contact: BeCu

30μ inch Gold over 50μ inch Nickel Plate

Socket Body: Glass-Filled Polyester, 94 V-0 rating

Operating Temperature Range: -55°C to +150°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

> BURR - BROWN® BB

High Voltage, High Current OPERATIONAL AMPLIFIER

FEATURES

- WIDE POWER SUPPLY VOLTAGE: ±70V to ±150V
- OUTPUT CURRENT TO 75mA
- SLEW RATE: 30V/µs
- FET INPUT: I_B = 20pA max
- THERMAL SHUT-DOWN PROTECTION
- HERMETIC TO-3 PACKAGE, ISOLATED CASE

DESCRIPTION

The 3583 is a high voltage, high speed hybrid operational amplifier designed for a wide variety of programmable power supply and transducer driver applications.

The 3583 operates over a wide power supply range $(\pm 50 \text{V to } \pm 150 \text{V})$ and provides outputs up to 75mA. Laser-trimmed FET input circuitry provides low offset voltage (3mV max) and low input bias current (20pA max). Thermal shut-down circuitry protects internal circuitry from excessive power dissipation.

Commercial and industrial temperature range models are available. The 3583's hermetic 8-pin TO-3 package is electrically isolated from all internal circuitry.

APPLICATIONS

- PROGRAMMABLE POWER SUPPLY
- PIEZO-ELECTRIC TRANSDUCER DRIVER
- HIGH VOLTAGE CURRENT SOURCE

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (600) 548-6132

SPECIFICATIONS

ELECTRICAL

 $T_{CASE} = +25$ °C, $V_{S} = \pm 150$ V, unless otherwise noted.

$T_{CASE} = +25$ °C, $V_{S} = \pm 150$ V, unless other	mise noted.	0.000	3583AM		- EB	3583JM	ACCOMPANY	
			100 Care 100			-	2	
PARAMETER OFFSET VOLTAGE Input Offset Voltage vs Temperature vs Power Supply vs Time	CONDITIONS Specified Temp. Range	MIN	20 50	±3 ±23	MIN	TYP	MAX	mV μV/°C μV/V μV/month
INPUT BIAS CURRENT ⁽¹⁾ Input Bias Current vs Temperature vs Power Supply Input Offset Current vs Temperature vs Power Supply	V _{CM} = 0V V _{CM} = 0V	Higi L A	Doubles Every 10°C 0.2 Doubles Every 10°C 0.2	-20 ±20	eiH HO			pA pA/V pA
NOISE Voltage, 0.01Hz to 10Hz 10Hz to 1kHz Current, 0.01Hz to 10Hz	LICATIONS	19A	5 1.7 0.3			RES	UTAE	μVp-p μVrms pAp-p
INPUT VOLTAGE RANGE Max Safe Differential Input Max Safe Common-Mode Input Common-Mode Input Range Common-Mode Rejection	Linear Operation	0 PR 0 PIE 0 HIC	(V+) + V- V- to V+ V _S -10 110	VOLTAG 75mA	OT THE	±150V	WIDE PO 170V to 170V	V dB
INPUT IMPEDANCE Differential Common-Mode			10 ¹¹ 10 10 ¹¹	XB	V/µs 20pA n	DT:J _p =	H WEJE FET INP	$\Omega \parallel pF$ $\Omega \parallel pF$
OPEN-LOOP GAIN Open-Loop Voltage Gain Open-Loop Voltage Gain	No Load, DC Rated Load, DC	94	118 105	PHOTE (GE, ISC	PACK	0H0 10	HERMET ASSE	dB dB
FREQUENCY RESPONSE Unity-Gain Bandwidth Full-Power Bandwidth Slew Rate Settling Time: 0.1%	Small-Signal $R_L = 10k\Omega$		5 60 30 12	h seed i	NC Itage, hid	ITSII	ESOF	MHz kHz V/μs μs
OUTPUT Voltage Output Current Output Short Circuit Current Load Capacitance		V _S -10 ±75	e variety of ducer driver 00t±	biw n n enen bon	gned fo	fier des	nal ampl grammat licutions	V mA mA nF
POWER SUPPLY Operating Voltage Range Quiescent Current	l ₀ = 0	±50	up to 75mA. les low offset	±150 ±8.5	provides put circui	56V) and ad FEV in	(± or V0 mmmu-ra	V mA
TEMPERATURE RANGE (CASE) Specification Operating Storage $\theta_{\rm JC} = 4^{\rm o}{\rm C/W}$		-25 -55 -55	urent (20pA tects internal on.	+85 +125 +125	d low in low0 circ ve power	/ max) at nal shut- n excessi		em °C °C °C

^{*} Specification same as 3583AM.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

NOTE: (1) Inputs may be damaged by input slew rates exceeding 1000V/µs. Inputs can be protected from signals exceeding 1000V/µs by limiting input current to 150mA with external series resistors (pins 5 and 6).

CONNECTION DIAGRAM

PACKAGING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
3583AM	8-Pin TO 3	030
3583JM	8-Pin TO 3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
3583AM	8-Pin TO-3	-25°C to +85°C
3583JM	8-Pin TO-3	0°C to +70°C

3583

3.2

TYPICAL PERFORMANCE CURVES

 $T_{CASE} = +25$ °C, $\pm V_{CC} = 150$ VDC, unless otherwise noted

 $T_{CASE} = +25$ °C, $\pm V_{CC} = 150$ VDC, unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required to operate the 3583. Power supply bypass capacitors should be connected close to the device pins. Be sure that these capacitors have an adequate voltage rating.

Input offset voltage and drift of the 3583 are laser-trimmed. Many applications require no external offset trimming. Figure 1 also shows connection of an optional offset trim potentiometer connected to pins 3 and 4.

FET input circuitry reduces the input bias current of the 3583 to less than 20pA at room temperature. Input bias current remains nearly constant throughout the full common-mode range. Input bias current approximately doubles for each 10°C increase in case temperature above 25°C. Heat sinking can help minimize this effect by reducing the case temperature.

Input circuitry of the 3583 is protected with series limiting resistors and input clamp diodes. The inputs can withstand the full rated supply voltage of $\pm 150V$ (common-mode or differential).

THERMAL PROTECTION

The 3583 has internal thermal shut-down circuitry that activates at a case temperature of approximately 150°C or higher. As this circuitry is activated, the output current drive is reduced. As the case temperature returns to less than the activation temperature, operation will return to normal. A heat sink may be required depending on load and signal conditions.

Note that a 75mA output may not be safe for all output voltages—see typical performance curve "Safe Operating Area". Applications such as current sources where output voltage may be low (or the opposite polarity of the output current) can overstress the output stage.

The thermal shut-down circuit will normally protect the amplifier during a short-circuit to ground. It will not protect against short-circuit to one of the power supplies. The typical performance curve "Safe Operating Area" shows that the large stress occurring during this high voltage condition may cause damage if it exceeds 5ms duration. The thermal protection circuitry will not activate fast enough to protect the device from short-circuits to one of the power supplies.

The package case of the 3583 is electrically isolated from all circuitry. No special insulating hardware is required. Although not absolutely required, it is recommended that the case be connected to ground.

FIGURE 1. Basic Circuit Connections.

3584

High Voltage, High Speed OPERATIONAL AMPLIFIER

FEATURES

- WIDE POWER SUPPLY VOLTAGE: ±70V to ±150V
- GAIN-BANDWIDTH PRODUCT: 50MHz
- SLEW RATE: 150V/μs
- FET INPUT: I_B = 20pA max
- THERMAL SHUT-DOWN PROTECTION
- HERMETIC TO-3 PACKAGE, ISOLATED
 CASE

DESCRIPTION

The 3584 is a high voltage, high speed hybrid operational amplifier designed for a wide variety of programmable power supply and transducer driver applications.

The 3584 operates over a wide power supply range $(\pm70\text{V to}\pm150\text{V})$ and provides outputs up to 15mA. Laser-trimmed FET input circuitry provides low offset voltage (3mV max) and low input bias current (20pA max). Thermal shut-down circuitry protects internal circuitry from excessive power dissipation.

The 3584 provides a gain-bandwidth product of 20MHz min (50MHz typical). External frequency compensation (series R/C) allows the user to optimize the bandwidth and slew rate for a particular application.

Specified temperature range is 0°C to +70°C. The 3584's hermetic 8-pin TO-3 package is electrically isolated from all internal circuitry.

APPLICATIONS

- PROGRAMABLE POWER SUPPLY
- PIEZO-ELECTRIC TRANSDUCER DRIVER
- ELECTROSTATIC TRANSDUCER DRIVER
- CRT DEFLECTION

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

 $T_{CASE} = +25$ °C, $V_{S} = \pm 150$ V, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature vs Power Supply vs Time	Specified Temperature Range		20 50	±3 ±25	mV μV/°C μV/V μV/month
INPUT BIAS CURRENT(1) Input Bias Current vs Temperature vs Power Supply Input Offset Current vs Temperature vs Power Supply	V _{CM} = 0V		Doubles Every 10°C 0.2 Doubles Every 10°C 0.2	+20	pA pA/V pA
NOISE Voltage, 0.01Hz to 10Hz 10Hz to 1kHz Current, 0.01Hz to 10Hz	200,770.00		5 1.7 0.3	600 457 600 400	μVp-p μVrms pAp-p
INPUT VOLTAGE RANGE Maximum Safe Differential Input Maximum Safe Common-Mode Input Common-Mode Input Range Common-Mode Rejection	Linear Operation	MUJ:	(V+) + V- V- to V+ V _S - 10 110	METICA M	V dB
INPUT IMPEDANCE Differential Common-Mode	1.0 SLEW RAT		10 ¹¹ 10 10 ¹¹	OUTPUT VOLT	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Open-Loop Voltage Gain	No Load, DC Rated Load, DC	100	10 bre 0005 1008 bns 120 1008 bns 005	H	dB dB
FREQUENCY RESPONSE Unity-Gain Bandwidth Gain-Bandwidth Product Full-Power Bandwidth Slew Rate Settling Time: 0.1%	Small-Signal f = 1kHz, G = 100 G = 100 G = 100 G = 100	20	7 135 150 12		MHz MHz kHz V/µs µs
OUTPUT Voltage Output Current Output Short Circuit Current Load Capacitance (Maximum)	8.0	V _S - 5 ±15	±25	100k	V mA mA nF
POWER SUPPLY Operating Voltage Range Quiescent Current	l _O = 0	±70		±150 ±6.5	V mA
TEMPERATURE RANGE Specification Operating Storage		0 -55 -55	IS COMPENSATION	+70 +125 +150	°C °C

NOTE: (1) Inputs may be damaged by input slew rates exceeding 1000V/µs. Inputs can be protected from signals exceeding 1000V/µs by limiting input current to 150mA with external series resistors (pins 5 and 6).

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

POWER OPERATIONAL AMPLIFIERS

3584JM 8-Pin TO-3 0°C to +70°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
3584JM	8-Pin TO-3	030

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

 $T_{CASE} = +25$ °C, $V_{S} = \pm 150$ V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) ON AMPLOTRES LADISVI

 $T_{CASE} = +25$ °C, $V_S = \pm 150$ V, unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required to operate the 3584. Bypass capacitors should be connected close to the device pins. Be sure that these capacitors have an adequate voltage rating.

Frequency compensation components must be connected to pin 8 for closed-loop gains of 100 or less. Recommended values are shown in Figure 1. Some adjustment in these values may be required depending on exact circuit configuration and load conditions. Be sure the compensation capacitor has a voltage rating equal to or greater than the positive power supply voltage, V+. Standard 0.25W resistors can be used for R_c.

Input offset voltage and drift of the 3584 are laser-trimmed. Many applications require no external offset trimming. Figure 1 shows connection of an optional offset trim potentiometer which connects to pins 3 and 4.

FET input circuitry reduces the input bias current of the 3584 to less than 20pA at room temperature. Input bias current remains nearly constant throughout the full common-mode range. Input bias current approximately doubles for each 10°C increase in case temperature above 25°C. Heat sinking can help minimize this effect by reducing the case temperature.

Input circuitry of the 3584 is protected with series limiting resistors and input clamp diodes. The inputs can withstand the full rated supply voltage of $\pm 150V$ (common-mode or differential).

THERMAL PROTECTION

The 3584 has internal thermal shut-down circuitry that activates at a case temperature of approximately 150°C or higher. As this circuitry is activated, the output current drive is reduced. As the case temperature returns to less than the activation temperature, operation will return to normal.

The thermal shut-down circuit will normally protect the amplifier during a short-circuit to ground. It will not protect against short-circuit to one of the power supplies. The typical performance curve "Safe Operating Area" shows that the large stress occurring during this high voltage condition may cause damage if it exceeds 5ms duration. The thermal protection circuitry will not activate fast enough to protect the device from short-circuits to one of the power supplies.

The package case of the 3584 is electrically isolated from all circuitry. No special insulating hardware is required. Although not absolutely required, it is recommended that the case be connected to ground.

FIGURE 1. Basic Circuit Connections.

4 Instrumentation Amplifiers

Instrumentation amplifiers (IAs) are much more than just precise op amps. They are closed loop amplifiers with built-in precision feedback components. Knowledgeable designers use IAs to extract low-level signals from system errors and noise.

Instrumentation amplifiers can amplify signals in the presence of large common-mode signals. They are ideal for use with all sensor types such as strain gages, load cells, thermocouples, RTDs, current shunts, chemical sensors, and physiological probes. They also make excellent universal input amplifiers for data acquisition systems.

Programmable gain amplifiers are ideal for systems that must connect to a variety of sources with varying signal levels. Products include programmable-gain IAs and op amps.

Choose from the industry's widest selection, including:

INA105, INA106—Simple G=1 and G=10 difference amplifiers... incredibly versatile circuit elements.

INA114, INA118—The industry's most versatile and accurate 8-pin IAs. INA118 features low-power operation.

INA111—High-speed, FET-input IAs using a current-feedback architecture.

INA116—Electrometer IA with ultra-low 3fA input bias current. Its 3-op amp design provides an ultra-high impedance differential input, and allows gain setting from 1 to 1000 by connecting a single external resistor.

INA103—Ultra-low 1nV/√Hz noise makes this IA ideal for microphones, bridges or other low impedance sources.

INA117—A difference amplifier with ±200V common-mode voltage range.

INA128 and INA141—Low power, general purpose IAs offering excellent accuracy and wide bandwidth, even at high gain (200kHz at G=100). INA128 gain can be set from 1 to 10,000 using a single external resistor. INA141, a fixed-gain version, uses simple pin connections to set an accurate gain of 10 or 100V/V without external resistors.

INA2128, INA2141—Industry's first dual instrumentation amplifiers—two complete IAs on a single monolithic chip. Both provide excellent accuracy and wide bandwidth at high gain (200kHz at G=100).

PGA204, **PGA205**—Programmable gain IAs great for data acquisition systems that connect to a variety of sources or needing exceptional dynamic range.

PGA206, PGA207—These are complete 3-op amp IAs with digitally selected gains. PGA206 provides gains of 1, 2, 4 and 8V/V, while PGA207 has gains of 1, 2, 5 and 10V/V. Fast settling time of 3.5 µs to 0.01% (all gains) allows fast polling of many channels.

ALD1000—A new, monolithic programmable voltage-to-current or voltage-to-voltage analog line driver circuit. Both current and voltage sensing can be performed simultaneously: current sensing is achieved through an external resistor, while voltage sensing is performed directly across the load.

XTR101, XTR103, XTR104—4-20mA current loop transmitters with built-in IAs for RTDs or bridges.

XTR501—A high current 1W bridge driver and programmable 4-20mA current transmitter designed for sensors requiring up to 600mA of sensor current.

Other popular products provide special features and performance. Use our detailed selection guide to locate the IA for your application.

2 Wire)

XTR103 (RTD, 2 Wire) XTR104 (Bridge, 2 Wire) XTR110 (0-10V, 3 Wire) XTR501 (Bridge, 3 Wire)

* DENOTES TYPICAL
BOLD DENOTES NEW PRODUCT
BOLD, ITALIC DENOTES PRODUCT IN DEVELOR

4-20mA)

Some specifications have been estimated for compa purposes. Refer to data sheets for guaranteed spec

INSTRUMENTATION AMPLIFI

RR-BROW	roduct	Gains Available	Gain Error ⁽²⁾ max (%)	Gain Drift ⁽²⁾ max ± (ppm/°C)	Non Linearity ⁽²⁾ max (%)	CMR ^(1,2) min (dB)	Voltage Drift max (μV/°C)	Signal Bandwidth ⁽²⁾ typ (kHz)	Package	Description
M S IV	NA101	1-1k ⁽³⁾	0.1	110	±0.003	106	±0.25+10/G	25	CDIP, PDIP, SOIC, TO-10	00 25μV Offset, 13nV/√Hz, High CMR INA
		1, 10, 100, 1000	0.15	15	±0.020	90	±0.25+5/G	3	CDIP, PDIP, SOIC	Low Power: 7V, 750μA
D IV	NA103	1-1k ⁽³⁾	0.1	25	±0.004	110	±0.25+5/G	800	CDIP, PDIP, SOIC	1nV/√Hz Noise, 0.0009% THD+N
_ IN	NA104	1-1k ⁽³⁾	0.15	55	±0.002	106	±0.25+10/G	25	MDIP	High Accuracy, Internal 4th Op Amp
IN	NA110	1, 10, 100, 200, 500	0.1	20	±0.010	106	±0.25+5/G	450	CDIP, PDIP, SOIC	FET-Input, 3μs t _S , 50pA I _B
IN	NA111	1-10k ⁽³⁾	0.5	110	±0.005	106	±5±100/G	450	PDIP, SOIC	FET-Input, 4µs t _S , 20pA I _B , 8-pin DIP
IN	NA114	1-10k ⁽³⁾	0.5	110	±0.002	110	±0.25+5/G	10	PDIP, SOIC	Accurate, Low cost, 8-pin DIP
IN	NA115	1-10k ⁽³⁾	0.5	110	±0.002	110	±0.25+5/G	10	SOIC	INA114 with additional pin-outs.
IN ?	IA116	1-1000	0.5	110	±0.005	86	±0.25+20/G*	70	PDIP, SOIC	Electrometer input (10fA), Guard Driv
IN	NA118	1-10k ⁽³⁾	0.5	110	±0.002	107	±0.25+5/G	100	PDIP, SOIC	Low Power: ±1.35V, 350µA. 8-pin DIP
IN	NA120	1, 10, 100, 1000	0.2	30	±0.010	106	±0.25+10/G	20	PDIP	Low Offset and Drift, High CMR
IN	IA128	1-10k ⁽³⁾	0.5	100	±0.002	120	±0.5±20/G	200	PDIP, SOIC	Low Power, 600µA, 8-pin DIP, SO-8
IN E	IA131	100	0.024	10	±0.002	110	±0.25	70	PDIP, SOIC	G = 100, 8 pin DIP, Ultra Low Gain Erro
IN	IA141	10,100	0.075	10	±0.002	117	±0.5	200	PDIP, SOIC	Low Power, 600µA
- IN	IA2128	1-10k ⁽³⁾	0.5	100	±0.002	120	±0.5+20/G	200	PDIP, SOIC	Worlds first Dual IA, High Accuracy
IN	IA2141	10, 100	0.075	10	±0.002	117	±0.5	200	PDIP, SOIC	Dual IA, 2 Fixed Gains, Low gain erro
· No	OTES: (1) DO	to 60Hz halanced source im	nedance (2) G	- 100 (3) Set w	ith external res	istor (4) G - 5	(0 (5) G = 0.5 (6)	9-1		

Offset

Small

NOTES: (1) DC to 60Hz, balanced source impedance. (2) G = 100. (3) Set with external resistor. (4) G = 50. (5) G = 0.5. (6) G = 1.

DIGITALLY PROGRAMMABLE GAIN AMPLIFI

Product	Digitally Selected Gains ⁽²⁾	Gain Error ⁽²⁾ max (%)	Gain Drift ⁽²⁾ max (ppm/°C)	Non Linearity Error ⁽²⁾ max (%)	CMR ^(1,2) min (dB)	Offset Voltage Drift ± max (μV/°C)	Small Signal Bandwidth ⁽²⁾ typ (kHz)	Package	Description
PGA100	1, 2, 4, <i>128</i>	0.02	10	0.005	NA	6*	40	CDIP	8 Multiplexed S-E ⁽³⁾ inputs, 8 Binary gains. Still Avai
PGA102	1, 10, 100	0.025	20	0.01	NA	3	250	CDIP, PDIP	3 S-E ⁽³⁾ inputs. Gain control per channel.
PGA103	1, 10, 100	0.2	30*	0.01	NA	2*	250	PDIP, SOIC	8-pin, low cost. 1 S-E input. < 3 mA lq.
PGA200	1, 10, 100, 1000	0.02	10	0.003	106	0.4	30	CDIP, PDIP	IA(3) Input. Precision hybrid. Still Available.
PGA202	1, 10, 100, 1000	0.15	60	0.012	92	13	1000	CDIP, PDIP	FET IA(3) Input. 3μs t _S , constant GBW.
PGA203	1, 2, 4, 8	0.15	15	0.012	86	27	1000	CDIP, PDIP	FET IA(3) Input. 3μs t _S , constant GBW.
PGA204	1, 10, 100, 1000	0.024	10	0.002	110	0.25	10	PDIP, SOIC	IA ⁽³⁾ Input, DC precision. ±40V protection.
PGA205	1, 2, 4, 8	0.024	10	0.002	96	0.26	80	PDIP, SOIC	IA(3) Input, DC precision. ±40V protection.
PGA206	1, 2, 4, 8	0.05	10	0.002	95	2*	600	PDIP, SOIC	$IA^{(3)}$ Input. Fast: $t_S = 3.5 \mu s$, $SR = 25 V/\mu s$.
PGA207	1, 2, 5, 10	0.05	10	0.002	95	2*	600	PDIP, SOIC	$IA^{(3)}$ Input. Fast: $t_S = 3.5\mu s$, $SR = 25V/\mu s$.
3606	1, 2, 4, 1024	0.02	10	0.01	110	5	10	CDIP	Precision Hybrid, 29 Binary Gains.

NOTES: (1) DC to 60Hz, balanced source impedance. (2) Listed specifications apply for gain values in italics from "Digitally Selected Gains" column. (3) S-E: Single-Ended input. IA: Instrumentation Amplifier inputs (differentia impedance).

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPM

Some specifications have been estimated for comparis purposes. Refer to data sheets for guaranteed specifica

Product	Supply Voltage Range (V)	Span Error (Unadj) max (%)	Non- Linearity max (%)	CMR 60Hz typ (dB)	Offset Voltage Drift max (µV/°C)	Output Zero Error ± max	Full Scale Output Error max	Package	Description of MEAN MICHAEL
RCV420	-5/11.4 to ±18	_	0.002	94	_	1.25mV	2.5mV	CDIP, PDIP	Precision 4-20mA current loop receiver.
XTR101	11.6 to 40	5	0.01	100	0.75	6μΑ	30μΑ	CDIP, PDIP, SOIC	2 Wire transmitter, selectable in/out ranges.
XTR103	9 to 40	urbedauce: (g) rie	0.01	100 4 (04.08)	2.5	50μΑ	50μΑ	PDIP, SOIC	2 Wire, RTD excitation/linearization.
XTR104	9 to 40	1 ns	0.01	100	2.5	50μΑ	50μΑ	PDIP, SOIC	2 Wire, Bridge excitation/linearization.
XTR110	13.5 to 40	0.2	0.005	O DOS	- T- C	16μΑ	32μΑ	CDIP, PDIP, SOIC	3 Wire transmitter, selectable in/out ranges.
XTR501	11.4 to 30	2.5(1)	0.025	85	50*	100μΑ	600	DIP SOIC IV	1W bridge excitation for low Z sensors.
NOTE: (1) Gain =	1. 5 0 0								

						Voltage			PRUGRAMMABLE I/V TRANSMITTERS
Product	Current Output	Span error max (5)	Voltage Output	Non Linearity max (%)		Frequency Response G = 1 (kHz)	Supply Voltage	Package	Description
ALD1000	4-20mA	1 0.025	±10V	0.05	NA	100* 3	$V_S = -15V$ $V_S = +24V$	SOIC _{DIb} bDIb	Programmable voltage-to-current or voltage-to-voltage analog driver circuit.

Product	Gain	Gain Error max (%)	Gain Drift* max (ppm/	L	lon inearity nax %)	CMR ⁽¹⁾ DC min (dB)	Offset Voltage Drift max (µV/°C)	Small Signal Bandwidth typ (kHz)	Package	DIFFERENCE AMPLIFIERS Description
INA105		0.010	5		0.001	86	10	1000	TO-99, DIP, SOIC	High Accuracy, Cost Effective
INA106	10	0.025	4*) G		0.001	86	0.2*	5000	DIP, SOIC	High Accuracy, Cost Effective
INA117		0.020	0.01.10		0.001	86	20	200	TO-99, DIP	±200VDC Common Mode, SUBSTOM DAIL SHOW
			0.5		10,002	120	H0.5420K3		PDIP, SOIC	±500VDC (V _{CM} and V _{DIFF}) Protected Input
3627	40'100	0.010	0 0 5		0.001	100	20	800	TO-99	High Accuracy, High CMR (Still Available)
NOTE: (1) DC	to 60Hz, balanced sour	co impo	dance							G = 100, 8 pin DIP, Ultra Low Gain Error
NOTE. (1) DO	to ouriz, balanced sour	ce imped	Jance.				20,612,0/0			
								3 50		
						440				
							#8'59#9\G			
MA101							F0'52*10V		CDIP, PDIP, SOIC,	TO , DENOLES LALICAT. TSRVNHZ, High CMR INATO2
URR-BROV	Gelus Available				Mon Linearity max C) (%)	o CMR(La)		Small Signal Bendwidth typ (idiz)	z _i Package	BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

ALD1000

Precision Programmable CURRENT/VOLTAGE TRANSMITTER

FEATURES

- SWITCHABLE OUTPUT ±10V OR 4-20mA
- DRIVES 1000Ω II 1μF AT 20mA
- VOLTAGE AND CURRENT SENSE
- GROUND NOISE SUPPRESSION
- ERROR DETECTION FLAG
- OUTPUT DISABLE
- ACCURACY: 0.05% max
- WIDE SUPPLY RANGE: ±11V TO +24/-15V

DESCRIPTION

This product is a monolithic programmable voltage-to-current or voltage-to-voltage analog line driver circuit. It can convert a $\pm 10 \mathrm{V}$ input into either an output voltage or current with remote sensing. It provides drive for external transistors to boost output current to greater than $\pm 25 \mathrm{mA}$ levels.

Current and voltage sensing can be performed simultaneously. Current sensing is achieved through a single external sense resistor. Voltage sensing is performed directly across the load. The logic inputs provide for both output disable and switching between constant current or constant voltage output functions. An open collector output provides an error flag for open circuit loads. The output disable function allows full control of the output even during power-on and power-off sequencing. The instrumentation amplifiers are designed to insure that load noise is not circulated within the control loop.

APPLICATIONS

- PROGRAMMABLE CONTROLLERS
- STANDARDIZED OUTPUTS FOR TERMINATION PANELS
- INDUSTRIAL PROCESS CONTROL
- PROGRAMMABLE CURRENT SOURCE
- MOTOR CONTROL SYSTEMS
- PC AND VME BASED INSTRUMENTATION
- CONDITIONER FOR STANDARD SENSOR OUTPUTS
- TEST EQUIPMENT PIN DRIVER

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

RANSMITTER	ORDITOTA				ALD1000U	und-7	13C16
SWOP INPUTS	PARAMETER	CONDITION	S	MIN	TYP	MAX	UNITS
Internal Drive Transistors 10 50 70 70 70 70 70 70 7	TRANSMITTER		17.7		8.7	0.000	
Linear Pange Max Degree High Degree H	SWOP INPUTS						
PA PA PA PA	Linear Range Min		nsistors		3	-10	
V V V V V V V V V V	Linear Range Max	5mA Load		10			
19.5 V V V V V V V V V	Input Bias Current	and the second	PER TABLES NO.	11000000000	50	NAME OF THE OWNER, OWNE	pA
	XTR OUTPUT			almont	10.5		.,
Positive Overcurrent Sense 225		Internal Drive Tran	neietore	01001			
Negative Overcurrent Sense -15		internal Drive Trai	13131013	All second to the second			
2.0gic High	Negative Overcurrent Sense			VATIVE:		10	
Ogic High	LOGIC INPUTS			Contract Contract			
Octobe Course	Logic Low					0.8	
	Logic High			4.0	2.6	Apple and the law or states a	V
DUTPUT—VOLTAGE MODE (Gain = 1 unless otherwise specified) Span Error Span Drift Span Drift Span Error Span Drift Span Error Span Drift Span Dr		CHLYMA			0	THU I	27
DUTPUT—VOLTAGE MODE (Gain = 1 unless otherwise specified) Span Error Span Er				4.0	USTUO S	0.8	
Span Error Span Drift Sp	Logio Loti		6313101	Am89 T	But II C	ACAT REV	RCI 63
Span Drift		rise specified)		Secretary and an	0.5	1 -1	9/4
				Shae Ina		na adala	
Dutput Current Min	Linear Range Min	0.1% OFF3		RESSION	ISE SUPP	-10	10 0
Dutput Current Max	Linear Range Max			10	IR Morro	ana neve	ut m.
Internal Drive Transistors 25	Output Current Min			-	2 2 2 2 2 2 2 2 2 2	-5	
Short-Circuit Current Internal Drive Transistors 0.005 0.05 0				5	25	TPUT DISA	Fig. 1887
Non-Linearity Continuarity Co				30		LYDARUS	
Thillian Uniser Voltage—HII	Non-Linearity			NOT SERVE !	0.005	0.05	%
Dutput Current MoDE (Gain = 5 with 50Ω shunt resistor unless otherwise specified) Span Error Span Drift Gain = 1(1) Span Drift Span Span Error Span Drift Span Span Span Span Span Span Span Span	Initial Offset Voltage—R11			DI ALIX		THING ST	100000
Span Error Span Drift Gain = 1(1) Span Drift	Manager to the second	Charles woulded as			20		μV/°C
Span Drift Gain = 1(1) So		nt resistor unless otherwis	se specified)				
Internal Drive Transistors(a) -5 mA mA mA mA mA mA mA m		Gain - 1(1)					
Compliance Min Compliance Max Com	Output Current Min				MACH	-5	
15	Output Current Max	Internal Drive Trans	sistors(2)	5			mA
Diffset Current Min 25				-10	onolithic p	roduct is a ro	
Diffset Current Min NSTRUMENTATION AMPLIFIERS R _{LOAD} = 10k A INPUTS Linear Input Voltage Min Common-Mode Input Voltage Min Common-Mode Input Voltage Max Tomput Bias Current Initial Offset Voltage G = 1 CMRR A OUTPUTS (with 10k Load) Dutput Voltage Max Dutput Voltage Max Dutput Voltage Min Short Circuit Current Saln Eror, G = 1 G = 5 G = 100 Non-Linearly, G = 1 G = 5 O.004 W±FS O.006 W±FS				nalog line e	nestiov-o		A GOTTON TO A
A INPUTS	Offset Current Min			25	ingni VOI:		
A INPUTS Linear Input Voltage Max Common-Mode Input Voltage Min Common-Mode Input Voltage Min Common-Mode Input Voltage Min Common-Mode Input Voltage Max No Input Bias Current Gentler Gentler Gentler Gentler A OUTPUTS (with 10k Load) Dutput Voltage Max Dutput Voltage Min Short Circuit Current Gentler Gentler	INSTRUMENTATION AMPLIFIERS RIGAD = 10k	Date of the last o	ashiyozq JI	gaiznes and	man Aliw.	ם מנ פטבופגונ	voltag
Linear Input Voltage Min Linear Input Voltage Max Common-Mode Input Voltage Min Common-Mode Input Voltage Min V _{IN} = 0 V Common-Mode Input Voltage Max N _{IN} = 0 V V Common-Mode Input Voltage Max N _{IN} = 0 V V V V V V V V V V V V V V V V V V V		eldeeld	OF HEATING W	thouse only	t mortioner	d barreday to	arith -
Common-Mode Input Voltage Min V _{IN} = 0 V V V V V V V V V	Linear Input Voltage Min				A levels.	-10	alisero _V
Variety Var	Linear Input Voltage Max			20	s sensing ca	atiov bas i	
The first of th				bieved thre	ensing is a	-10	
District Offset Voltage G = 1		$V_{IN} = 0$		20	100	ilest nausa la	
CMRR G = 10 80 100		G = 1		-500		500	
Dutput Voltage Max	CMRR					filezila menn	iliori
Dutput Voltage Max	A OUTPUTS (with 10k Load)	1	meno nA vii	nitomeli men	in section	trictzens and	ISTREE
Duply Voltage Min	Output Voltage Max			20	a my agains	THE PERSON NAMED IN	
Short Circuit Current -12 mA GAIN EQUATION (gain = 1+50k/R _Q) Gain Error, G = 1 G = 5 G = 100 Non-Linearity, G = 1 G = 5 G = 5 O.8 %±FS 0.8 %±FS 0.8 %±FS 0.004 %±FS 0.004 %±FS 0.004 %±FS				not give active	Dillia Spirit		
GAIN EQUATION (gain = 1+50k/R _G) Gain Error, G = 1 0.3 %±FS G = 5 0.6 %±FS G = 100 0.8 %±FS Non-Linearity, G = 1 0.004 %±FS G = 5 0.008 %±FS				CALCHER BIRDAY		PERCHIPO SILL	
Gain Error, G = 1 0.3 %±FS G = 5 0.6 %±FS G = 100 0.8 %±FS 0.004 %±FS 0.004 0.004 %±FS 0.008 %±FS		4-8-1	and son son	litarea pois	4 200	nedT prim	sunez
G = 5 0.6 %±FS	Gain Error, G = 1						%+FS
Non-Linearity, G = 1 0.004 %±FS G = 5 0.008 %±FS					partite salety at		
G = 5 0.008 %±FS					14, 11		
and county and and all all all all all all all all all al					Fig.		
	G = 5 G = 100					0.008	%±FS %±FS

SPECIFICATIONS (CONT)

At +V_S = 24V, -V_S = 15V, T_{AMB} = 25°C, and 2N2222, 2N2907 external transistors, unless otherwise noted.

				ALD1000U					
PARAMETER	y [sel	CONDITIONS	MIN	TYP	MAX	UNITS			
FREQUENCY RESPONSE G = 1 G = 5 G = 100 Slew Rate	27 Blas 28 0	V _O = ±10V, G = 10	8	700 400 50 4		kHz kHz kHz V/μS			
SETTLING TIME, 0.01% G = 1 G = 5 G = 100	X X X E = -23 E			20 20 30		μS μS μS			
POWER SUPPLY Quiescent Current	M 18 -	Internal Drive Transistors		5		mA			
TEMPERATURE RANGE Operating Storage	20 = V ₈ — 19 A ₁₀₁₇₂	h	-40 -65	M+ mbV	+85 +150	°C			

NOTES: (1) Gain drift depends on tempco of 50K factor on gain equation when gain is greater than 1. (2) External Drive capacity varies with configuration. See Application Note.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (±V _S)	+25V, -18V
IA Inputs	
SWOP Inputs	±V _s
Logic Inputs	
Junction Temperature	150°C
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Output Short-to-Ground at 25°C	

ORDERING INFORMATION

MODEL	PACKAGE	
ALD1000U	28-Pin SOIC	Lome SO

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ALD1000U	28-Pin SOIC	217

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

4.7

PIN CONFIGURATION

PIN ASSIGNMENTS

PIN#	NAME	DESCRIPTION	.0°008e	Lead Temporarus (soldering, 10s).
1	XTR GND	Power ground pin.	Continuous	Output Short to Grund at 25°C
2	Disable	A 5V signal puts the interna	al drive in a high impedance s	state and limits the external drive capacity.
3	Select	Selects the SWOP amp inp	ut. A 5V signal selects inputs	S N1 and P1. MOITAMROPMI DMIREOR
4	C _{c2}	C _{c1} and C _{c2} are for the exte	ernal compensation capacitor	
wo 5	can be damised by ESD.	Cc1 and Cc2 are for the exte	ernal compensation capacitor	
6	pregrated cinquits be handle	Non-inverting input to the X	TR SWOP amp 1.	
	Fullure to oblerve proper h	Inverting input to the XTR S	SWOP amp 1.	
8	A _{COM} CAUSE MOS	Signal ground for the instru	mentation amplifiers.	
9	+V _e	Positive power supply volta	ge.	
10	s from sub-ty-	Output of the instrumentation	on amplifier 1.	
am 11 mon	batargethi Vince Precision Vincerated	Non-inverting input to instru	umentation amplifier 1.	
12	damage bertag Re very samt	Gain set resistor for instrun	nentation amplifier 1.	
13	the device real to meet its	Gain set resistor for instrun	nentation amplifier 1.	
14	V _{INN1}	Inverting input of instrumen	tation amplifier 1.	
15	V _{INN2}	Inverting input of instrumen	tation amplifier 2.	
16	R _{GA2}	Gain set resistor for instrun	nentation amplifier 2.	
17	R _{GB2}	Gain set resistor for instrun	nentation amplifier 2.	
18	V _{INP2}	Non-inverting input to instru	umentation amplifier 2.	
19	V _{our2}	Output of the instrumentation	on amplifier 2.	
20	-V _s	Negative power supply volt	age.	
21	N ₂	Inverting input to the XTR S	SWOP amp 2.	
22	P ₂	Non-inverting input to the X	TR SWOP amp 2.	
23	E	Inverting input (emitter) of t	he output transconductance	amplifier.
24	X _p	Base drive for an external,	PNP, driver transistor (option	nal).
25	X _N	Base drive for an external,	NPN, driver transistor (option	nal).
26	С	Output (collector) of the out	tput transconductance amplif	fier.
27	Bias	Open collector output indic	ating an internal overcurrent	condition.
28	V _{ERR}	Open collector output indic	ating an overvoltage condition	n.

TYPICAL PERFORMANCE CURVES NO BOMAMRORRE LADIGYT

 $T_A = +25$ °C; $+V_S = 24$ V, $-V_S = -15$ V unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 $T_A = +25$ °C; $+V_S = +24V$, $-V_S = -15V$ unless otherwise noted.

BASIC OPERATION

ALD1000 FUNCTIONAL BLOCKS

The typical ALD1000 control loop comprises three primary functional blocks (see Figure 1): the current transmitter (XTR), the load, and the instrumentation amplifier (IA). The XTR can be further viewed as divided into the switchable input operational amplifier (SWOP amp), and the voltage to current, transconductance amplifier (TA). Each of these blocks plays a role in the dynamic performance of the control loop, particularly in terms of loop stability with reactive loads.

THE CURRENT TRANSMITTER (XTR)

The XTR produces the forward gain necessary for error amplification. It also controls the frequency response which must be adjusted to balance the trade-off between step response and stability when driving reactive loads.

Within the XTR the SWOP amp serves as the input stage. It amplifies the error between the input and output signals to produce a precise signal to the TA to drive the load. The

SWOP amp has two pairs of inputs to provide flexibility of application. The SELECT logic input can switch between two input and feedback signals. Take care, however, to insure that the loop remains stable if switching between current and voltage feedback.

The ALD1000 handles a wide range of load conditions in either a voltage or current feedback application. The frequency characteristics of the potential load conditions vary widely. To accommodate these varying frequency characteristics the XTR includes a compensation network. It consists of a simple resistor divider network which forms a single pole, high pass, RC filter when a compensation capacitor is connected externally.

The transconductance amplifier converts the output voltage of the SWOP amp into an output current to drive the load. Whether used in a current feedback or a voltage feedback loop, the ALD1000 transmitter should be viewed as a source of current not voltage. In a voltage loop, the output current is converted to a feedback voltage by the load. In a current loop the output current is converted to a feedback voltage by the shunt resistor. The external, XTR gain resistor, tied to E (Pin 23, Figure 1), sets the voltage to current ratio.

the squat resistor. The external, XTR gain resist.1 SAUDIT

THE INSTRUMENTATION AMPLIFIERS (IA)

The ALD1000 includes two, general purpose, uncommitted, 3-op amp, instrumentation amplifiers (see Figure 1). The two IAs are connected to the common power supply and operate at full supply voltage. They share the same analog common reference. Otherwise they are configured independently for maximum flexibility.

The instrumentation amplifier senses the feedback signal, reduces any common-mode component, and scales it to the level required.

A more comprehensive discussion of the instrumentation amplifiers follows in a later section.

ALD1000 LOGIC

The logic inputs used for the SWOP amp select and the XTR disable functions are simple, differential pair comparators as shown in Figure 2.

The logic outputs are open collector NPN transistors with their emitters at ground (pin 1).

FIGURE 2. Simplified Diagram of the Internal ALD1000 Logic Input Circuitry.

VOLTAGE ERROR INDICATION

The V_{ERR} error signal at pin 28 triggers when the voltage at C (pin 26) exceeds the Positive Overvoltage Sense or the Negative Overvoltage Sense (see SPECIFICATIONS) internal thresholds. When external transistors are used without connecting them to C, as shown in Figure 7, the load voltage cannot be detected. The logic signal will generally trigger to an error state (low). However, consider it indeterminate under these conditions.

INSTRUMENTATION AMPLIFIERS

SETTING THE GAIN

The IA gain is set by connecting a single, external resistor, Rg in Figure 3, between the gain set pins.

$$G = 1 + \frac{50 k\Omega}{R_G}$$

INPUT PROTECTION

The inputs of the ALD1000 instrumentation amplifiers are individually protected against over-voltage. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1ma to 5ma. Refer to the typical performance curve "Input Bias Current vs Input Voltage." The inputs are protected even if the power supplies are disconnected or turned off.

IA INPUT OVERLOAD AND INPUT COMMON-MODE RANGE

The linear voltage range of the input circuitry of the ALD1000 instrumentation amplifiers is from approximately 0.6V below the positive supply to 1V above the negative supply. However, the output swing of the input amplifiers

FIGURE 3. Simplified Schematic of the Instrumentation Amplifiers. Resistor RG Controls the Gain.

This behavior also depends in supply voltage—see performance curve "Input Common-Mode Range vs Output Voltage."

The combination of a significant differential signal and a high common-mode voltage as occurs in the current feedback configuration reduces the common-mode range. Exceeding the common-mode range results in a reduced IA output voltage. When this occurs the feedback loop can no longer balance. The forward gain of the ALD1000 amplifies this false error signal, the output voltage tries to increase, and this holds the IA in an overloaded condition.

The ALD1000 applies two defenses against this problem. First, there is a 100Ω resistor in series with the transmitter output. This resistor, which primarily provides protection from over-voltage damage to the output terminal, acts to limit the output swing under high current conditions. Second, the ALD1000's error detection circuitry signals when the transmitter output voltage exceeds rating. This serves to detect a potential lock condition.

Limiting the transmitter's output swing to within the instrumentation amplifier's input range allows the loop to recover without reducing the input signal should a transient voltage level exceed the common-mode input range. However, the common-mode range of the instrumentation amplifiers varies with application specific factors. Lock-up can occur. The application designer must provide defenses against this condition where it is warranted.

USING THE INSTRUMENTATION AMPLIFIERS WITH A FLOATING SIGNAL SOURCE

The input impedance of the ALD1000 instrumentation amplifiers are very high—about $10^6\Omega$. Within a feedback loop, as shown in the examples, this characteristic acts to minimize errors caused by loading of the feedback signal. However, if used as an amplifier for a thermocouple, microphone, or other isolated signal source a path is needed for the input bias current. This current is nominally about 100nA. Without a return path the inputs will float to a potential that exceeds the common-mode range of the amplifier. See Figure 10.

LOOP STABILITY

The stability of a closed loop system such as the intended application of the ALD1000 requires adequate phase margin. In contrast, excessive phase margin will reduce the circuit's transient response to fast changing signals. It is the intent of this section to give an insight into how the ALD1000 circuits blocks affect dynamic performance. Selection of the loop architecture and compensation can then be done empirically.

LOOP STABILITY AND THE XTR

There are two critical parameters that must be controlled to

margin which defines dynamic performance.

Loop gain is the product of the forward voltage to current ratio, the load impedance, and the IA gain. The input error voltage is converted to an output current. The output current is converted to a feedback voltage by the load impedance. The feedback voltage is gained up by the feedback IA. All three blocks affect loop stability.

The XTR gain resistor, which is connected to the E pin of the ALD1000, adjusts the voltage to current relationship. Increasing this resistor decreases loop gain. This, in turn, increases phase margin and slows step response. This resistor will typically be between 250Ω and 2500Ω .

In a voltage feedback loop the frequency at which the loop gain starts to roll off decreases with increasing capacitance. It is necessary to compensate for the loss of bandwidth caused by load capacitance. The compensation network provides this capability. Typical performance curve "Compensation Capacitor vs Load Capacitance" illustrates typical compensation capacitor values for load capacitance varying from 1pf to 1µf. Exact capacitor values will vary with the load resistance, the XTR gain resistor value, IA gain, and variability of the open loop gain of the ALD1000 SWOP amp. This curve provides a starting point for empirical selection of the compensation capacitor value.

The effect described above is much less significant with a current feedback loop since the shunt resistor's capacitance can be easily controlled. The current feedback loop will be more robust when load conditions are unknown or varying.

LOOP STABILITY AND THE INSTRUMENTATION AMPLIFIERS

The frequency characteristics and gain of the instrumentation amplifiers affect loop stability when they are used in a feedback loop. There are two main contributions. First, the IA gain directly multiplies loop gain. As a result high IA gains reduce phase margin. Second, when the input exceeds the IA range the IA output can no longer provide the necessary feedback. This can result in a lock condition. Both of these situations are discussed further below.

LOOP GAIN AND THE INSTRUMENTATION AMPLIFIERS

The ALD1000 is designed for use in a feedback loop. When one of the instrumentation amplifiers is used as the feedback amplifier its gain directly contributes to loop gain. The loop can become unstable if the loop gain is too large. Conversely, it may be possible to stabilize a difficult loop by reducing the gain of the IA.

Refer to Figure 4. In this circuit the ALD1000 is configured in a current loop with a 50Ω shunt resistor. A 20ma full scale current through the 50Ω shunt results in a 1V feedback signal. The IA must remove the common-mode level from the shunt voltage and scale the resulting differential signal up to the input signal level.

FIGURE 4. Simplified Block Diagram of a 20ma Current Loop. The IA is in a Gain of 5 to Match the 1V Full Scale Shunt Signal to the 5V Full Scale Input Signal.

Here the input signal affects loop stability. A 10V full scale input signal would require an IA gain of 10. A lower input signal, 5V as shown in Figure 4, allows the IA gain to be reduced to 5. This results in a lower loop gain and increased phase margin.

Note that it is possible to reduce the IA gain to less than 1 by using a voltage divider at the IA output.

VOLTAGE FEEDBACK AND THE INSTRUMENTATION AMPLIFIERS

The instrumentation amplifiers can be used for remote sensing in a voltage feedback loop as illustrated in Figure 5. Here the instrumentation amplifier tends to reject small ground potential differences between the source and load. The voltage loop, however, is more sensitive to reactive load impedance than the current loop. The ALD1000 emitter resistor and compensation capacitor need to be selected for the specific load conditions. Voltage feedback may not be appropriate for variable load conditions.

FIGURE 5. Simplified Block Diagram of the ALD1000 in Voltage Feedback.

USING THE ALD1000 WITH EXTERNAL DRIVE TRANSISTORS

Power dissipated by the internal driver stage affects the built-in instrumentation amplifiers compromising their accuracy. External transistors reduce the internal power dissapation.

The external transistors are configured as current sources. A PNP transistor delivers positive current. An NPN supplies the negative drive. Either or both can be used. For example a 4ma to 20ma current loop may only require a PNP transistor since negative current drive is not required. See Figure 9.

Degeneration resistors are required (refer to R_1 and R_2 in Figure 6). The value of the degeneration resistors will affect stability, load sharing with the internal driver devices, and the current limit value. These issues are covered in more detail below.

EXTERNAL TRANSISTORS AND THE CURRENT LIMIT VALUE

The ALD1000 contains circuitry to prevent damage to the internal components due to excess current. When using the internal driver stage by itself, current to the load is limited to about 20ma at room temperature. When using external drivers, the current limit depends, approximately, on the load sharing ratio between the internal and external transistors. Figure 6 illustrates the circuit relationship between the current limit circuitry and external drive transistors.

THE DEGENERATION RESISTORS

The degeneration resistors, R_1 and R_2 in Figure 6, control the load sharing between the internal and external transistors. Choose the resistor values by measuring load current, current through the external transistor, and calculating the current being supplied by the internal drive.

LOOP STABILITY AND THE DEGENERATION RESISTORS

Loop stability depends on loop gain. Because the degeneration resistors affect the voltage to current ratio of the loop the value of these resistors also affect loop gain and thus stability. Smaller resistor values will increase loop gain. It may be necessary to compensate for this by adjusting the value of the XTR gain resistor connected to the E Pin, R_4 in Figure 6.

EXTERNAL TRANSISTORS AND OUTPUT VOLTAGE SWING

The output voltage swing must be limited within the input range of the instrumentation amplifiers. The 100Ω resistor shown in Figure 6 limits output swing under high current conditions. Resistor R_3 performs this function with external transistors. R_3 must be sized to limit output swing, at the expected full load, within the input range of the instrumentation amplifiers. Refer to the section on the instrumentation amplifiers for further information.

FIGURE 6. Simplified Schematic Showing the Use of External Drive Transistors. R₁ and R₂ Provide Degeneration that Affects the Current Limit and Loop Stability. R₄ Controls the Transconductance Amplifier Gain Affecting Loop Stability and Transient Response. See the Text.

Loop stability depends on loop gain. Because the degeneration resistors affect the voltage to current ratio of the loop the value of these resistors also affect loop gain and thus stability. Smaller resistor values will increase loop gain. I may be necessary to compensate for this by adjusting the value of the XTR gain resistor connected to the E Pin. R, is

EXTERNAL TRANSISTORS AND OUTPUT

range of the instrumentation amplifiers. The 100Ω resistor shown in Figure 6 limits output swing under high current conditions. Resistor R₃ performs this function with external transistors. R₃ must be sized to timit output swag, at the expected full load, within the input range of the instrument

Signal At D1000

FIGURE 7. Using External Transistors Without Internal Drive. Note that an Overvoltage Condition Can Not Be Detected.

FIGURE 8.Using Internal Drive Transistors.

FIGURE 9. Sharing Load Between Internal Drive Transistors and Positive External Drive Transistors to Increase Load Capacity. A Similiar Configuration is Possible with the Negative External Drive Transistor.

FIGURE 10. Showing Flexibility in Application: Using Direct Voltage Feedback to Free Both IAs; Using an IA as a Differential Input; Using a Grounded Input to Provide an Off State; Providing a Ground Path for Bias Current With a Thermocouple.

INA101

ABRIDGED DATA SHEET

For Complete Data Sheet Call Fax Line 1-800-548-6133 Request Document Number 10454

High Accuracy INSTRUMENTATION AMPLIFIER

FEATURES

- LOW DRIFT: 0.25µV/°C max
- LOW OFFSET VOLTAGE: 25µV max
- LOW NONLINEARITY: 0.002%
- LOW NOISE: 13nV/√Hz
- HIGH CMR: 106dB AT 60Hz
- HIGH INPUT IMPEDANCE: 10¹⁰Ω
- 14-PIN PLASTIC, CERAMIC DIP, SOL-16, AND TO-100 PACKAGES

APPLICATIONS

- STRAIN GAGES
- THERMOCOUPLES
- RTDs
- REMOTE TRANSDUCERS
- LOW-LEVEL SIGNALS
- MEDICAL INSTRUMENTATION

DESCRIPTION

The INA101 is a high accuracy instrumentation amplifier designed for low-level signal amplification and general purpose data acquisition. Three precision op amps and laser-trimmed metal film resistors are integrated on a single monolithic integrated circuit.

The INA101 is packaged in TO-100 metal, 14-pin plastic and ceramic DIP, and SOL-16 surface-mount packages. Commercial, industrial and military temperature range models are available.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At +25°C with ±15VDC power supply and in circuit of Figure 1 unless otherwise noted.

1 72 1	B-47 3	INA101AN	/I, AG	INA101SM, SG			INA101CM, CG			INA101HP, KU			
PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
GAIN Range of Gain Gain Equation Error from Equation, DC(1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G = 1 + (40k/R _G) ±(0.04 + 0.00016G -0.02/G)	1000 ±(0.1 + 0.0003G -0.05/G)		:	7/1/2		:		·	±(0.1 + 0.00015G) -0.05/G	±(0.3 + 0.0002G) -0.10/G	V/V V/V %
Gain Temp. Coefficient ⁽³⁾ G = 1 G = 10 G = 10 G = 100 G = 1000 Nonlinearity, DC ⁽²⁾		2 20 22 22 ±(0.002 + 10 ⁻⁵ G)	5 100 110 110 ±(0.005 + 2 x 10 ⁻⁵ G)	CI	±(0.001 +10-5 G)	±(0.002 +10-5 G)	ig M	10 11 11 ±(0.001 +10-5 G)	±(0.002 +10 ⁻⁵ G)	SM	:	:	ppm/°C ppm/°C ppm/°C ppm/°C % of p-p F
RATED OUTPUT Voltage Current Output Impedance Capacitive Load	±10 ±5	±12.5 ±10 0.2 1000	VACUEAC		neriona meriona	A. C. R. N.				100			V mA Ω pF
INPUT OFFSET VOLTAGE Initial Offset at +25°C vs Temperature vs Supply vs Time		±(25 + 200/G) ±(1 + 20/G) ±(1 + 20/G)	±(50 + 400/G) ±(2 + 20/G)	ME	±10+ 100/G)	±(25 +200/G) ±(0.75 + 10/G)		±(10+ 100/G)	±(25 + 200/G) ±(0.25 + 10/G)	ZSptV VOU	±(125 + 450/G) ±(2 + 20/G)	±(250 + 900/G)	μV/°C μV/V μV/mo
INPUT BIAS CURRENT Initial Bias Current (each input) vs Temperature vs Supply Initial Offset Current vs Temperature		±15 ±0.2 ±0.1 ±15 ±0.5	±30	TO LL- LOI	±10			±5	±20 ±20	\Va8 658 1991	IOISE: 1 SMR: 10 NPUT IN	LOW N	nA nA/°C nA/V nA nA/°C
INPUT IMPEDANCE Differential Common-mode		10 ¹⁰ 3 10 ¹⁰ 3			1:-			IC DIP,	ERABI O PAC	10, 0 10-10	PLAST S, AND	SOL-1	$\Omega \parallel pF$ $\Omega \parallel pF$
INPUT VOLTAGE RANGE Range, Linear Response CMR with 1kΩ Source Imbalance DC to 60Hz, G = 1 DC to 60Hz, G = 10 DC to 60Hz, G = 100 to 1000	±10 80 96 106	±12 90 106 110			:		:	:		65 90 100	85 95 105	DESC	V dB dB dB
INPUT NOISE input Voltage Noise	aron ortu Elin	0.8 18 15 13 50 0.8 0.46 0.35	s procugot seramic DIP, a compercial, ind ge models are a	ba ba s. C	The live plastic a package pecature	do t pas	tion tion are are it.	amplifica il amplifica Three pre im resistors grated circu	nacy m el-sign nistion netal fi bic inte	vel-w policy policy policy policy policy	it is a mg ed for lo rpose dat aser crim aser crim	er design eneral pu urps and ruted on a	μV, p-p nV/√Hz nV/√Hz nV/√Hz pA, p-p pA√Hz pA/√Hz
DYNAMIC RESPONSE Small Signal, ±3d8 Flatness G = 1 G = 10 G = 100 G = 1000 G = 100 G = 1000 G = 1000	0.2	300 140 25 2.5 2.0 10 1 200 6.4 0.4 90 40 350 30 50 50	40 55 470 470 45 70 650	AVA- on AVA- on AVA-	5 0 mml	A Miles Services Communication	3	ASICAN SOF OT TOTAL SOFT OT TOTAL SOF OT TOT	MAN MODEL			W or issue of the control of the con	kHz kHz kHz kHz kHz kHz Hz kHz y/µs µs µs µs µs
Rated Voltage /oltage Range Current, Quiescent ⁽²⁾ FEMPERATURE RANGE ⁽⁵⁾	±5	±15 ±6.7	±20 ±8.5		:	:			:			:	V V mA
Specification Operation Storage	-25 -55 -65		+85 +125 +150	-55		+125	:		:	0 -25 -40		+70 +85 +85	°C °C °C

Specifications same as for INA101AM, AG.

NOTES: (1) Typically the tolerance of R_Q, will be the major source of gain error. (2) Nonlinearity is the maximum peak deviation from the best straight-line as a percentage of peak-to-peak full scale output. (3) Not including the TCR of R_Q. (4) Adjustable to zero at any one gain. (5) $\theta_{i,0}$ output stage = 113°C/W, $\theta_{i,0}$ quiescent circuitry = 19°C/W, $\theta_{i,0}$ = 63°C/W.

PIN CONFIGURATIONS

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
INA101AM	10-Pin Metal TO-100	-25°C to +85°C
INA101CM	10-Pin Metal TO-100	-25°C to +85°C
INA101AG	14-Pin Ceramic DIP	-25°C to +85°C
INA101CG	14-Pin Ceramic DIP	-25°C to +85°C
INA101HP	14-Pin Plastic DIP	0°C to +70°C
INA101KU	SOL-16 Surface-Mount	0°C to +70°C
INA101SG	14-Pin Ceramic DIP	-55°C to +125°C
INA101SM	10-Pin Metal TO-100	-55°C to +125°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
INA101AM	10-Pin Metal TO-100	007
INA101CM	10-Pin Metal TO-100	007
INA101AG	14-Pin Ceramic DIP	169
INA101CG	14-Pin Ceramic DIP	169
INA101HP	14-Pin Plastic DIP	010
INA101KU	SOL-16 Surface-Mount	211
INA101SG	14-Pin Ceramic DIP	169
INA101SM	10-Pin Metal TO-100	007

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±20V
Power Dissipation	600mW
Input Voltage Range	±V _{CC}
Output Short Circuit (to ground)	Continuous
Operating Temperature M, G Package	55°C to +125°C
P, U Package	25°C to +85°C
Storage Temperature M, G Package	65°C to +150°C
P, U Package	40°C to +85°C
Lead Temperature (soldering, 10s) M, G, P Pad	ckage +300°C
Lead Temperature (wave soldering, 3s) U Pack	

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

INA102

ABRIDGED DATA SHEET

For Complete Data Sheet Call Fax Line 1-800-548-6133 Request Document Number 10523

Low Power INSTRUMENTATION AMPLIFIER

FEATURES

- LOW QUIESCENT CURRENT: 750µA max
- INTERNAL GAINS: 1, 10, 100, 1000
- LOW GAIN DRIFT: 5ppm/°C max
- HIGH CMR: 90dB min
- LOW OFFSET VOLTAGE DRIFT: 2uV/°C max
- LOW OFFSET VOLTAGE: 100µV max
- LOW NONLINEARITY: 0.01% max
- HIGH INPUT IMPEDANCE: 10¹⁰Ω

APPLICATIONS

- AMPLIFICATION OF SIGNALS FROM SOURCES SUCH AS: Strain Gages (Weigh Scale Applications) Thermocouples
 Bridge Transducers
- REMOTE TRANSDUCER AMPLIFIER
- LOW-LEVEL SIGNAL AMPLIFIER
- MEDICAL INSTRUMENTATION
- MULTICHANNEL SYSTEMS
- BATTERY POWERED EQUIPMENT

DESCRIPTION

The INA102 is a high-accuracy monolithic instrumentation amplifier designed for signal conditioning applications where low quiescent power is desired. On-chip thin-film resistors provide excellent temperature and stability performance. State-of-the-art laser-trimming technology insures high gain accuracy and common-mode rejection while avoiding expensive external components. These features make the INA102 ideally suited for battery-powered and high-volume applications.

The INA102 is also convenient to use. A gain of 1, 10, 100, or 1000 may be selected by simply strapping the appropriate pins together. A gain drift of 5ppm/°C in low gains can then be achieved without external adjustment. When higher-than-specified CMR is required, CMR can be trimmed using the pins provided. In addition, balanced filtering can be accomplished in the output stage.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Into: (800) 548-6132

			INA102AG		1	INA102C	G	INA10	2KP/INA1	02AU	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Range of Gain Gain Equation, External, ±20%		1 G =	1 + (40k/F	1000 B _O)(1)			:			:	V/V V/V
Error, DC: G = 1	T _A = +25°C		1 + (40101	0.1			0.05			0.15	%
G = 10	$T_A = +25^{\circ}C$	-		0.1		-	0.05		-	0.35	%
G = 100	$T_A = +25^{\circ}C$			0.25			0.15			0.4	%
G = 1000	$T_A = +25^{\circ}C$	- 1		0.75		ann	0.15			0.9	%
G - 1	$T_A = T_{MIN}$ to T_{MAX}			0.16			0.08			0.21	%
G - 10				0.10			0.11			0.44	%
G 100	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX}			0.13			0.11			0.52	%
G = 1000				0.93			0.62			1.08	%
Gain Temp. Coefficient	$T_A = T_{MIN}$ to T_{MAX}	7 1		0.55		CMO1 -	0.02		100	1.00	10000
G = 1		1		10		12/911 =	5		001	OF THE	ppm/°C
G = 10			1			3q001 s					
				15			10		4-7113	. 1	ppm/°C
G = 100				20			15			001	ppm/°C
G = 1000				30			20		1 5 5	0001	ppm/°C
Nonlinearity, DC				08			10V She			. 1	C SELDO
G = 1	$T_A = +25^{\circ}C$			0.03			0.01			081	% of FS
G = 10	$T_A = +25^{\circ}C$			0.03			0.01			0001	% of FS
G = 100	$T_A = +25^{\circ}C$	-		0.05			0.02		-		% of FS
G = 1000	$T_A = +25^{\circ}C$			0.1			0.05			A.7646	% of FS
G = 1	$T_A = T_{MIN}$ to T_{MAX}			0.045			0.015			· on	% of FS
G = 10	$T_A = T_{MIN}$ to T_{MAX}	4	ma 13	0.045			0.015				% of FS
G = 100	$T_A = T_{MIN}$ to T_{MAX}	1		0.075			0.03			trunen C	% of FS
G = 1000	$T_A = T_{MIN}$ to T_{MAX}		1354	0.15		1	0.1	7		*	% of FS
RATED OUTPUT											
Voltage	$R_L = 10k\Omega$ ±	(V _{CC} - 2	2.5)						-		V
Current	B 11 COLUMN	I ±1	200					*		13	mA
Short Circuit Current(2)		-	2			*				1 24	mA
Output Impedance, G = 1000			0.1				PL > 80M				Ω
INPUT	48-		Table		13						a Commercial
			T					212	MALIE INC.		to to Notice
OFFSET VOLTAGE	ng la 50ppm "C. B., will add	ISSUE IT RECEN	d , revewer, to	1,8095		t eluloed	ns avan	HOSEN OF	ISE CIED R	TOTAS THE HIT	(6) (83)
	$T_A = +25^{\circ}C$	BUT WELL	±3	300 ±300/	G mo ,s	Nahimagi ±	100 ±200/	G	SECOND LESS A	FIRE LAURE 1	μV
INA102AU									1	500 ±300/	
vs Temperature				±5 ±10/G			±2 ±5/G		and the same of		μV/°C
vs Supply		MIDS	BA 1	±40 ±50/G			±10 ±20/G		MOITA	HURITE	μV/V
vs Time		±	(20 + 30/G	3) 010	BYREO						μV/mo
BIAS CURRENT	Pange	judioV a	ant I	1							
Initial Bias Current		I pobsis	100			Indiano.			i jan	DA Joeth I	
(Each Input)	$T_A = T_{MIN}$ to T_{MAX}	T name									1
vs Temperature	A - MIN TO IMAX	CO 1 121/40	25	50		6	30				nΔ
		to i leight	25	50		6	30		S ris	DIOLX.	nA
		omaT b	±0.1	50			30		S ris	Crorx	nA/°C
vs Supply		d Tampi on Sho	±0.1 ±0.1			Table 1			S ris	BIOTX BIOTX	nA/°C nA/V
vs Supply Initial Offset Current	$T_A = T_{MIN}$ to T_{MAX}	onaT b	±0.1 ±0.1 ±2.5	50 ±15		*	30 ±10		S ris	BIOLX BIODEX	nA/°C nA/V nA
vs Supply Initial Offset Current vs Temperature		gmaT b	±0.1 ±0.1			±2.5			S ris	ETOTA EFOSOTA	nA/°C nA/V
vs Supply Initial Offset Current vs Temperature IMPEDANCE	$T_A = T_{MIN}$ to T_{MAX}	gmaT b	±0.1 ±0.1 ±2.5 ±0.1			±2.5			S nis 5 nis 5 nis 6 se	(2 01 x (2 00 1 x (2 000 1 x (3 x 100 2	nA/°C nA/V nA nA/°C
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential		omat b lone sho	±0.1 ±0.1 ±2.5 ±0.1			±2.5			S (18) 5 (18) 5 (18) 6 (18) 6 (18)	6) 0) X 6) 00 T X 6: 000 T X 6: 000 T X	nA/°C nA/V nA nA/°C
vs Supply Initial Offset Current vs Temperature IMPEDANCE	$T_A = T_{MIN}$ to T_{MAX}	onaT b or8 seq	±0.1 ±0.1 ±2.5 ±0.1			±2.5			807 8 807 8 809 4 809 5 808 5	0 00 X 0 00 F X 0 000 F X 10 2 X 10 D 10 E X 10 D	nA/°C nA/V nA nA/°C
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode	$T_A = T_{MIN}$ to T_{MAX}	omat b lore stop DAXS	±0.1 ±0.1 ±2.5 ±0.1		no	±2.5			817 2 818 6 818 4 818 6 818 5 818 7	O OT X O OT TX E TOOT X INC. SHALL INC. SHALL ORD	nA/°C nA/V nA nA/°C
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode	T _A = T _{MIN} to T _{MAX}	(Vccl - 4	±0.1 ±0.1 ±2.5 ±0.1		no	±2.5			8in 2 8in 3 8in 4 8ie 5 8ie 5	DOTX DODEX D	nA/°C nA/V nA nA/°C
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm	(IV _{ccl} – 4	±0.1 ±0.1 ±2.5 ±0.1		no	±2.5			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DIOTX DIOTX DIOCOTX DI	nA°C nAV nA nA°C Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm	(IV _{CC} I - 4	±0.1 ±0.1 ±2.5 ±0.1		. 90	±2.5		* 75	S cist 5	COUNTY CO	nA°C nAV nA nA°C Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kQ Source Imbalance	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to $T_{MAX} \pm 0$	100007	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2		* 90 90	±2.5		* 75	s nis	DOTAL DOTAL DOST X DOST X DOST N DOST N DOST N DOST N DOST N	nA/°C nA/V nA nA/°C Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz	80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2			±2.5		* 75 * *	S nia 6 nis 7 nia	0 01X 0 001X 0 0001X 0 2 1000 0 001X 0 001X 0 001X 0 001X 0 001X	nA/°C nA/V nA nA/°C Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1 G = 10 G = 10 to 1000	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2		90	±2.5		:	S nia 6 nis 7 nia	TRIO	nA/°C nA/V nA nA/°C Ω pF Ω pF V dB dB dB
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 16Ω Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2		90	±2.5		75	sin	O OT X P COOT X P COO	nA/°C nA/V nA nA/°C Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2		90	±2.5		:	S nis	TRIO	nA°C nAV nA nA°C Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise f _B = 0.01Hz to 10Hz	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 1.5) 94 100 100		90	±2.5		:	sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TRIO	nA°C nAV nA nA°C Ω pF Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1ΚΩ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise f _B = 0.01Hz to 10Hz Density, G = 1000: f _O = 10Hz	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100		90	±2.5		:	2 nis 2 nis 3 nis	TRIO	nA°C nAV nA nA°C Ω pF Ω pF Ω pF dB dB dB
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise f _B = 0.01Hz to 10Hz Density, G = 1000: f _O = 10Hz f _O = 100Hz	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100 100		90 90	±2.5		иоп	s nis	TRIO	nA°C nAV nA nA°C Ω pF Ω pF Ω pF
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With 1kΩ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise f _B = 0.01Hz to 10Hz Density, G = 1000: f _O = 10Hz f _O = 1kHz	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100		90 90	±2.5		иоп	sin 2 sin 3 sin 4 sin 4 sin 5 sin 5 sin 6	TRIO	nA°C nAV nA nA°C Ω pF Ω pF Ω pF dB dB dB
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With $1 k\Omega$ Source Imbalance $G=1$ $G=10$ $G=10$ to $1 k\Omega$ Source Imbalance $f_B=0.01$ Hz to $1 k\Omega$ Density, $k\Omega$ = $1 k\Omega$ To $k\Omega$ = $1 k\Omega$ Density, $k\Omega$ = $1 k\Omega$ = $1 k\Omega$ To $1 k\Omega$ Density, $k\Omega$ = $1 k\Omega$ To $1 k\Omega$ Input Current Noise	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100		90 90	±2.5		иоп	2 con 6 con	TRIO	nA°C nAV nA nA°C nAV nA nA°C Ω pF Ω pF Ω pF dB dB dB dB
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With $1 \text{K}\Omega$ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise $1 \text{K}\Omega$ Source Imbalance $1 \text{K}\Omega$ Source Imbalance G = 10 G = 10 to 1000 NOISE Input Voltage Noise $1 \text{K}\Omega$ Source Imbalance $1 \text{K}\Omega$ Source Imbalance $1 \text{K}\Omega$ Source Imbalance G = 10 to 1000 NOISE Input Voltage Noise $1 \text{K}\Omega$ Source Imbalance $1 \text{K}\Omega$ Source Imbalance $1 \text{K}\Omega$ Source Imbalance $1 \text{K}\Omega$ Source Imbalance Imput Voltage Noise $1 \text{K}\Omega$ Source Imbalance Imput Current Noise $1 \text{K}\Omega$ Source Imbalance Imput Current Noise $1 \text{K}\Omega$ Source Imbalance Imput Current Noise $1 \text{K}\Omega$ Source Imbalance Imbal	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100 100		90 90 90	±2.5		KARE grains service services	5 nis	TRIO	nA°C nAV nA nA°C Ω pF Ω pF V dB dB dB HVp-p nV/Hz nV/Hz pAp-p
vs Supply Initial Offset Current vs Temperature IMPEDANCE Differential Common-Mode VOLTAGE RANGE Range, Linear Response CMR With $1 k\Omega$ Source Imbalance $G=1$ $G=10$ to 1000 NOISE Input Voltage Noise $f_0=0.01$ Hz to 10 Hz $f_0=10$ OHz $f_0=10$ Hz $f_0=10$ Hz $f_0=10$ Density, $f_0=10$ Hz to $f_0=10$ Hz lnput Current Noise $f_0=0.01$ Hz to $f_0=10$ Hz Density; $f_0=10$ Hz Density $f_0=10$ Hz to $f_0=10$ Hz Density $f_0=10$ Hz	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100 100		90 90	±2.5		иоп	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TRIKO	nA°C nAV nA nA°C Ω pF Ω pF Ω pF V dB dB dB dB μVp-p nV/√Hz nV/√Hz pAp-p pA√Hz pAp-p pA√Hz pA n nV/√Hz pA nV/√Hz nV/√Hz pA nV/√Hz nV/√/Hz nV/√/Hz nV/√/Hz nV/√/Hz nV/√//Hz nV/√//Hz nV/√///////////////////////////////////
vs Supply Initial Offset Current vs Temperature Vs Temperature IMPEDANCE Differential Common-Mode VoLTAGE RANGE Range, Linear Response CMR With $1 \text{K}\Omega$ Source Imbalance G = 1 G = 10 G = 10 to 1000 NOISE Input Voltage Noise $f_{\text{B}} = 0.01 \text{Hz}$ to 10Hz Density, G = 1000C $f_{\text{O}} = 100 \text{Hz}$ $f_{\text{O}} = 100 \text{Hz}$ Input Current Noise $f_{\text{B}} = 0.01 \text{Hz}$ to 10Hz Input Current Noise $f_{\text{B}} = 0.01 \text{Hz}$ to 10Hz	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} \pm DC to 60Hz DC to 60Hz	80 80	±0.1 ±0.1 ±2.5 ±0.1 10 ¹⁰ 2 10 ¹⁰ 2 10 ¹⁰ 2 100 100 100		90 90 90	±2.5		KARE grains service services	5 ris	TRIKO	nA°C nAV nA nA°C Ω pF Ω pF V dB dB dB

ELECTRICAL (CONT)

			INA102A	G		INA102C	G	INA102KP/INA102AU			gros
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DYNAMIC RESPONSE											
Small Signal, ±3dB Flatness	V _{OUT} = 0.1Vrms	1107	KAM	SYT	CINO .	en	DITIONOS			RE	TEMASA
G = 1 G = 10 G = 100 G = 1000	20.0		300 30 3 0.3	= 1 + (40)			T _k = +25		MOSE Jist	ain on, Estad G = 1	kHz kHz kHz kHz
Small Signal, ±1% Flatness G = 1 G = 10 G = 100 G = 100 Full Power, G = 1 to 100 Slew Rate, G = 1 to 100 Settling Time 0.1%: G = 1 G = 100 G = 1000 0.01%: G = 1 G = 100 G = 1000 G = 1000	V_{OUT} = 0.1Vrms V_{OUT} = 10V, R_L = 10kΩ V_{OUT} = 10V, R_L = 10kΩ R_L = 10kΩ, C_L = 100pF 10V Step $10V Step$	1.7 0.1	30 3 0.3 0.03 2.5 0.15 50 360 3300 60 500 4500		:		25.4 = AT (25.4 = AT (2 = 100	kHz kHz kHz kHz kHz V/µs us us us us
POWER SUPPLY	0.05		1.0			0	18 = +28°				0001 = 0
Rated Voltage Voltage Range Quiescent Current	$V_O = 0V$, $T_A = T_{MIN}$ to T_{MAX}	±3.5	±15	±18		MANU L XAME XAME KAME	Intel to the following				ν ν μΑ
TEMPERATURE RANGE										1091	OU GSTA
Specification INA102AU Operation Storage	$R_L > 50 k\Omega^{(2)}$	-25 -25 -65		+85 +85 +150	ta I		PL ≠ 10H	0 - 25 -25 -55	1000	+70 +85 +85 +125	ိ ဂ ကိ ကိ

*Specification same as for INA102AG.

NOTES: (1) The internal gain set resistors have an absolute tolerance of ±20%; however, their tracking is 50ppm/°C. R_Q will add to the gain error if gains other than 1, 10, 100, or 1000 are set externally. (2) At high temperature, output drive current is limited. An external buffer can be used if required. (3) Adjustable to zero.

PIN CONFIGURATION

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
INA102AG	16-Pin Ceramic DIP	-25°C to +85°C
INA102CG	16-Pin Ceramic DIP	-25°C to +85°C
INA102KP	16-Pin Plastic DIP	0°C to +70°C
INA102AU	16-Pin Plastic SOIC	-25°C to +85°C

ABSOLUTE MAXIMUM RATINGS

Supply		±18V
Input Voltage Range		±V _{CC}
Operating Temperature Rang	e	25°C to +85°C
Storage Temperature Range:	Ceramic	65°C to +150°C
2000	Plastic, SOIC	55°C to +125°C
Lead Temperature (soldering	, 10s)	+300°C
Output Short Circuit Duration		Continuous to Ground

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA102AG	16-Pin Ceramic DIP	senogeof 109 Lagrand
INA102CG	16-Pin Ceramic DIP	109 WW 9145
INA102KP	16-Pin Plastic DIP	180
INA102AU	16-Pin SOIC	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

INA103

Low Noise, Low Distortion INSTRUMENTATION AMPLIFIER

FEATURES

- LOW NOISE: 1nV/√Hz
- LOW THD+N: 0.0009% at 1kHz, G = 100
- HIGH GBW: 100MHz at G = 1000
- WIDE SUPPLY RANGE: ±9V to ±25V
- HIGH CMRR: >110dB
- BUILT-IN GAIN SETTING RESISTORS:
 G = 1, 100
- UPGRADES AD625

APPLICATIONS

- HIGH QUALITY MICROPHONE PREAMPS (REPLACES TRANSFORMERS)
- MOVING-COIL PREAMPLIFIERS
- DIFFERENTIAL RECEIVERS
- AMPLIFICATION OF SIGNALS FROM:
 Strain Gages (Weigh Scale Applications)
 Thermocouples
 Bridge Transducers

DESCRIPTION

The INA103 is a very low noise, low distortion monolithic instrumentation amplifier. Its current-feedback circuitry achieves very wide bandwidth and excellent dynamic response. It is ideal for low-level audio signals such as balanced low-impedance microphones. The INA103 provides near-theoretical limit noise performance for 200 Ω source impedances. Many industrial applications also benefit from its low noise and wide bandwidth.

Unique distortion cancellation circuitry reduces distortion to extremely low levels, even in high gain. Its balanced input, low noise and low distortion provide superior performance compared to transformer-coupled microphone amplifiers used in professional audio equipment.

The INA103's wide supply voltage (± 9 to $\pm 25V$) and high output current drive allow its use in high-level audio stages as well. A copper lead frame in the plastic DIP assures excellent thermal performance.

The INA103 is available in 16-pin plastic DIP, 16-pin ceramic DIP and SOL-16 surface-mount packages. Commercial and industrial temperature range models are available.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 549-6132

All specifications at $T_A = +25^{\circ}C$, $V_S = \pm 15V$ and $R_L = 2k\Omega$, unless otherwise noted.

200 3 1 3 1 3 1 3 1		INA103AG INA103BG				G	INA				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Range of Gain	CONSTITIONS	1		1000			*	*		*	V/V
Gain Equation ⁽¹⁾ Gain Error, DC G = 1 G = 100 Equation	±10V Output	G:	1 + 6kΩ 0.005 0.05 0.5	/R _G 0.05 0.25		0.003 0.04 0.1	0.01 0.1		0.07	*	V/V % %
Gain Temp. Co. G = 1 G = 100 Equation	±10V Output	0882762	10 25 25						*		ppm/°C ppm/°C ppm/°C
Nonlinearity, DC G = 1 G = 100	±10V Output	ia	0.0003	0.01	alo	0.0002 0.0006	0.002		:	*	% of FS
$\begin{array}{l} \text{OUTPUT} \\ \text{Voltage, } R_L = 600\Omega \\ R_L = 600\Omega \\ \text{Current} \\ \text{Short Circuit Current} \\ \text{Capacitive Load Stability} \end{array}$	$\begin{split} T_A &= T_{MIN} \text{ to } T_{MAX} \\ V_S &= \pm 25, \ T_A = 25^{\circ}\text{C} \\ T_A &= T_{MIN} \text{ to } T_{MAX} \end{split}$	±11.5 ±20 ±40	±12 ±21 ±70 10	ATI	*	***********	ATE	INS	*		V V mA mA nF
INPUT OFFSET VOLTAGE Initial Offset RTI (3) (KU Grade)	CATIONS HALITY MICROPHOI	LIQ O HO	(20 + 700/G)	(100 + 5000/G)		(20 + 320/G)	(50 + 2000/G)	S None	(30 + 1200/G)	(250+	μV
vs Temp G = 1 to 1000 G = 1000 vs Supply	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX} $\pm 9V$ to $\pm 25V$	U93I MIVO	1 + 20/G 1	2 4 + 60/G		0.75 + 10/ * *	G * 2 + 30/G	060.0 060%FE	1 + 20/G	5000/G)	μV μV/°C μV/°C μV/V
NPUT BIAS CURRENT	194 (O 1234	133111	0.2 + 0/0	4 + 00/G	Vile	e at Vi	2 + 30/4	AASI 3	Tidan	2 Sein	μν/ν
Initial Bias Current vs Temp Initial Offset Current	$T_A = T_{MIN}$ to T_{MAX}	ALPAN Foliati Davisi	2.5 15 0.04 0.5	12	ORS	0.03	8 40 ⁽⁴⁾ 0.5 2.5 ⁽⁴⁾	>110d N SET	MAR: N GAI	D HOI LT.JIU	μΑ nA/°C μΑ nA/°C
vs Temp INPUT IMPEDANCE Differential Mode Common-Mode	$T_A = T_{MIN}$ to T_{MAX}	aghi	60 2			*	2.5 (7)	0625	A 830	ARD9	MΩ p
INPUT VOLTAGE RANGE Common-Mode Range (5) CMR	8 is available to 16 pin p	±11	±12			*		NOI	rqıs	sor	v
G = 1 G = 100	DC to 60Hz DC to 60Hz	72 100	86 125	-one	80 110	91 129	ol,saio	y low y	is a ver	E01A5/1	dB dB
INPUT NOISE Voltage ⁽⁶⁾ 10Hz	$R_S = 0\Omega$	idaliav	2	lient mals	boxe b ris oilu	vidth an level a	e bands for low	u map sty wie is idea	ieves vi	instructory itry ach mic rest	nV/√Hz
100Hz 1kHz Current, 1kHz	teato fluir evil disa-		1.2	The ricer-	asmon sisc pu	gordin a timil	1.4 (4)	gna-we sar-the	i becon vides a	and as	nV/√Hz nV/√Hz pA/√Hz
OUTPUT NOISE Voltage A Weighted, 20Hz-20kHz	1kHz 20Hz-20kHz	luqni-	65 -100	shire	e and	alon•wo	831 1510	n san Nafit fi	nd eals	anoita:	nV/√Hz dBu
DYNAMIC RESPONSE	国で記	in Sensi	10-	-1018	uces di	idy red	on circ	ncellat	so noin	ne disto	bind
-3dB Bandwidth: G = 1 G = 100 Full Power Bandwidth	Small Signal Small Signal G = 1	JR-	6 800	.)rs Vide	dag di on pre	a in hi	als, eve and low	wel we	mely li at, tow	oed in	MHz kHz
Slew Rate THD + Noise Settling TIme 0.1%	$V_{OUT} = \pm 10V, R_L = 600\Omega$ G = 1 to 500 G = 100, f = 1kHz	R4 PA Densi	240 15 0.0009	belg -qiu	mo-jac is olbu	notets Isroier	ued to tr inprofe	e comp es nsed	onstano sitilgen	iorperi phone:	kHz V/μs %
G = 1 G = 100 Settling Time 0.01%	V _O = 20V Step	ugal+	1.7 1.5	and cvel	±25V high-	or 9±) s n cau s	gatlov ii wolfi	supply drive	sbiw s¹ current	NA 103	μs μs
G = 1 G = 100 Overload Recovery (7)	V _O = 20V Step 50% Overdrive		2 3.5 1	astic	the pl	smad on and	basilesd hog Ind	цоо А пын	How as	sagata asauta	μs μs μs

*Same specification as INA103AG.

NOTES: (1) Gains other than 1 and 100 can be set by adding an external resistor, R_0 between pins 2 and 15. Gain accuracy is a function of R_0 . (2) FS = Full Scale. (3) Adjustable to zero. (4) Guaranteed by design. (5) $V_0 = 0V$, see Typical Curves for V_{CM} vs V_0 . (6) $V_{NOSERTI} = \sqrt{V^2}_{N NPUT} + (V_{N OUTPUT}/Gain)^2 + 4KTR_0$. See Typical Curves. (7) Time required for output to return from saturation to linear operation following the removal of an input overdrive voltage.

SPECIFICATIONS (CONT)

ELECTRICAL

All specifications at $T_A = +25$ °C, $V_S = \pm 15$ V and $R_L = 2k\Omega$, unless otherwise noted.

-65°C to +125°C	90	B Pade	NA103A	G	Sensa	INA103B	G	IN	A103KP,	KU	+
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY Rated Voltage		G Packs	±15			p\$1-	Er]		F. 16	WiseffO -	V
Voltage Range Quiescent Current	Nage	±9	9	±25 12.5	evha	- (Salis	12	*	e .5	ina pisto	V mA
TEMPERATURE RANGE Specification	serature (soldering, 10s)	—25	0	+85		Sensa	01	0	0 0	+70 +85	°C
Operation Storage Thermal Resistance, θ ₁₄		-55 -65	100	+125		+V	0	-40 -40	8 -	+85	°C/W

DICE INFORMATION

INA103 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1.1/	+Input	9	V+
2	+Gain Sense	10	Output
3	+Offset Null	o sett 111	Sense
4	-Offset Null	12	-Gain Drive
5	+Gain Drive	13	-R _G
6	+R _G	1014	G = 100
7	Ref	15	- Gain Sense
8	V-	16	-Input

Substrate Bias: Electrically connected to V- supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	194 x 115 ±5	4.93 x 2.92 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Chromium-Silver

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA103AG	Ceramic DIP	109
INA103BG	Ceramic DIP	109
INA103KP	Plastic DIP	180
INA103KU	SOL-16	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMP RANGE		
INA103AG	Ceramic DIP	-25°C to +85°C		
INA103BG	Ceramic DIP	-25°C to +85°C		
INA103KP	Plastic DIP	0°C to +70°C		
INA103KU	SOL-16	0°C to +70°C		

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PIN CONFIGURATION

Top Vie	ew				DIP or	SOIC
	+ Input	1	•(1)	16	- Input	
	+ Gain Sense	2	AM	15	- Gain Sense	
	+ Offset Null	3	ин	14	G = 100	
	- Offset Null	4		13	-R _G	
	+ Gain Drive	5		12	- Gain Drive	
	+R _G	6		11	Sense	
	Ref	7	0	10	Output	
	001+ V-	8	-40	9	V+	

NOTE: (1) Pin 1 Marking—SOL-16 Package

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±25V
Input Voltage Range, Continuous	±V _S
Operating Temperature Range:	
P, U Package	40°C to +85°C
G Package	
Storage Temperature Range:	
P, U Package	40°C to +100°C
G Package	65°C to +150°C
Junction Temperature:	
P, U Package	+125°C
G Package	+150°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit to Common	Continuous

DICE INFORMATION

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) OMAMMO PRESIDENT

OFFSET VOLTAGE vs TIME FROM POWER UP (G = 100)

At $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

20

10

0

-20

0

Change In Vosi (µV)

INSTRUMENTATION AMPLIFIERS

Time (min)

nisc

TYPICAL PERFORMANCE CURVES (CONT) MAMAGORARY LADISYT

At $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for operation. Power supplies should be bypassed with $1\mu F$ tantalum capacitors near the device pins. The output Sense (pin 11) and output Reference (pin 7) should be low impedance connections. Resistance of a few ohms in series with these connections will degrade the common-mode rejection of the amplifier.

To avoid oscillations, make short, direct connection to the gain set resistor and gain sense connections. Avoid running output signals near these sensitive input nodes.

INPUT CONSIDERATIONS

Certain source impedances can cause the INA103 to oscillate. This depends on circuit layout and source or cable characteristics connected to the input. An input network consisting of a small inductor and resistor (Figure 2) can greatly reduce the tendancy to oscillate. This is especially

useful if various input sources are connected to the INA103. Although not shown in other figures, this network can be used, if needed, with all applications shown.

GAIN SELECTION

Gains of 1 or 100V/V can be set without external resistors. For G = 1V/V (unity gain) leave pin 14 open (no connection)—see Figure 4. For G = 100V/V, connect pin 14 to pin 6—see Figure 5.

Gain can also be accurately set with a single external resistor as shown in Figure 1. The two internal feedback resistors are laser-trimmed to $3k\Omega$ within approximately $\pm 0.1\%$. The temperature coefficient of these resistors is approximately $50\text{ppm/}^{\circ}\text{C}$. Gain using an external R_{G} resistor is—

$$G = 1 + \frac{6k\Omega}{R_G}$$

FIGURE 1. Basic Circuit Configuration.

Accuracy and TCR of the external R_G will also contribute to gain error and temperature drift. These effects can be directly inferred from the gain equation.

Connections available on A₁ and A₂ allow external resistors to be substituted for the internal $3k\Omega$ feedback resistors. A precision resistor network can be used for very accurate and stable gains. To preserve the low noise of the INA103, the value of external feedback resistors should be kept low. Increasing the feedback resistors to $20k\Omega$ would increase noise of the INA103 to approximately 1.5nV/VHz. Due to the current-feedback input circuitry, bandwidth would also

NOISE PERFORMANCE

The INA103 provides very low noise with low source impedance. Its 1nV/VHz voltage noise delivers near theoretical noise performance with a source impedance of 200Ω .

Relatively high input stage current is used to achieve this low noise. This results in relatively high input bias current and input current noise. As a result, the INA103 may not provide best noise performance with source impedances greater than $10k\Omega$. For source impedance greater than $10k\Omega$, consider the INA114 (excellent for precise DC applications), or the INA111 FET-input IA for high speed applications.

OFFSET ADJUSTMENT

Offset voltage of the INA103 has two components: input stage offset voltage is produced by A1 and A2; and, output stage offset is produced by A. Both input and output stage offset are laser trimmed and may not need adjustment in many applications.

FIGURE 2. Input Stabilization Network.

Offset voltage can be trimmed with the optional circuit shown in Figure 3. This offset trim circuit primarily adjusts the output stage offset, but also has a small effect on input stage offset. For a 1mV adjustment of the output voltage, the input stage offset is adjusted approximately 1µV. Use this adjustment to null the INA103's offset voltage with zero differential input voltage. Do not use this adjustment to null offset produced by a sensor, or offset produced by subsequent stages, since this will increase temperature drift.

To offset the output voltage without affecting drift, use the circuit shown in Figure 4. The voltage applied to pin 7 is summed at the output. The op amp connected as a buffer provides a low impedance at pin 7 to assure good commonmode rejection.

Figure 5 shows a method to trim offset voltage in ACcoupled applications. A nearly constant and equal input bias current of approximately 2.5µA flows into both input terminals. A variable input trim voltage is created by adjusting the balance of the two input bias return resistances through which the input bias currents must flow.

FIGURE 3. Offset Adjustment Circuit.

Offset voltage to zero. A₂, K, and C form an integrator that produces an offsetting voltage applied to one input of the INA103. This produces a –6dB/octave low frequency roll-off like the capacitor input coupling in Figure 5.

COMMON-MODE INPUT RANGE

For proper operation, the combined differential input signal and common-mode input voltage must not cause the input amplifiers to exceed their output swing limits. The linear input range is shown in the typical performance curve "Maximum Common-Mode Voltage vs Output Voltage." For a given total gain, the input common-mode range can be increased by reducing the input stage gain and increasing the output stage gain with the circuit shown in Figure 7.

FIGURE 4. Output Offsetting.

An output sense terminal allows greater gain accuracy in driving the load. By connecting the sense connection at the load, I*R voltage loss to the load is included inside the feedback loop. Current drive can be increased by connecting a current booster inside the feedback loop as shown in Figure 11.

FIGURE 5. Input Offset Adjustment for AC-Coupled Inputs.

FIGURE 6. Automatic DC Restoration.

4

FIGURE 7. Gain Adjustment of Output Stage.

FIGURE 8. Use of External Resistors for Gain Set.

A common problem with many IC op amps and instrumentation amplifiers is shown in (a). Here, the amplifier's input is driven beyond its linear common-mode range, forcing the output of the amplifier into the supply rails. The output then "folds back", i.e., a more positive input voltage now causes the output of the amplifier to go negative. The INA103 has protection circuitry to prevent fold-back, and as shown in (b), limits cleanly.

FIGURE 9. INA103 Overload Condition Performance.

FIGURE 10. Optional Circuit for Externally Trimming CMR.

FIGURE 11. Increasing Output Circuit Drive.

FIGURE 12. Microphone Preamplifier with Provision for Phantom Power Microphones.

FIGURE 13. Instrumentation Amplifier with Shield Driver.

FIGURE 14. Gain-of-100 INA103 with FET Buffers.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

INA105

Precision Unity Gain DIFFERENTIAL AMPLIFIER

FEATURES

- CMR 86dB min OVER TEMPERATURE
- GAIN ERROR: 0.01% max
- NONLINEARITY: 0.001% max
- NO EXTERNAL ADJUSTMENTS REQUIRED
- EASY TO USE
- COMPLETE SOLUTION
- HIGHLY VERSATILE
- LOW COST
- PLASTIC DIP, TO-99 HERMETIC METAL, AND SO-8 SOIC PACKAGES

APPLICATIONS

- DIFFERENTIAL AMPLIFIER
- INSTRUMENTATION AMPLIFIER BUILDING BLOCK
- UNITY-GAIN INVERTING AMPLIFIER
- GAIN-OF-1/2 AMPLIFIER
- NONINVERTING GAIN-OF-2 AMPLIFIER
- AVERAGE VALUE AMPLIFIER
- ABSOLUTE VALUE AMPLIFIER
- SUMMING AMPLIFIER
- SYNCHRONOUS DEMODULATOR
- CURRENT RECEIVER WITH COMPLIANCE TO RAILS
- 4mA TO 20mA TRANSMITTER
- VOLTAGE-CONTROLLED CURRENT SOURCE
- ALL-PASS FILTERS

DESCRIPTION

The INA105 is a monolithic Gain = 1 differential amplifier consisting of a precision op amp and on-chip metal film resistors. The resistors are laser trimmed for accurate gain and high common-mode rejection. Excellent TCR tracking of the resistors maintains gain accuracy and common-mode rejection over temperature.

The differential amplifier is the foundation of many commonly used circuits. The INA105 provides this precision circuit function without using an expensive precision resistor network. The INA105 is available in 8-pin plastic DIP, SO-8 surface-mount and TO-99 metal packages.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

	INA105AM			INA105BM			INA105KP, KU				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Initial ⁽¹⁾ Error vs Temperature Nonlinearity ⁽²⁾			1 0.005 1 0.0002	0.01 5 0.001		:			0.01	0.025	V/V % ppm/°0
OUTPUT Rated Voltage Rated Current Impedance Current Limit Capacitive Load	I _O = +20mA, -5mA V _O = 10V To Common Stable Operation	10 +20, –5	0.01 +40/-10 1000	U n JAI	olei ENT	rec ERI	9 771	: G	:		V mA Ω mA pF
INPUT Impedance ⁽³⁾ Voltage Range ⁽⁴⁾ Common-Mode Rejection ⁽⁵⁾	Differential Common-Mode Differential Common-Mode T _A = T _{MIN} to T _{MAX}	±10 ±20 80	50 50		* * 86	100	TEMP	* * 72	RES	UTA BS RM	kΩ kΩ V V dB
OFFSET VOLTAGE Initial vs Temperature vs Supply vs Time	RTO ⁽⁶⁾ , (7) ±V _S = 6V to 18V	RUME Y-GAB	50 5 1 20	250 20 25		5	10 15	00.03 00.03 ULGA	EARITY ERNAL	500	μV μV/°C μV/V μV/mo
OUTPUT NOISE VOLTAGE f _B = 0.01Hz to 10Hz f _O = 10kHz	RTO ^{(6), (8)}	NVER	2.4 60				26	orru	aeu o	ASY T	μVp- <u>r</u> nV/√H
DYNAMIC RESPONSE Small Signal Bandwidth Full Power Bandwidth Slew Rate Settling Time: 0.1% 0.01% 0.01% V	-3dB V _O = 20Vp-p V _O = 10V Step V _O = 10V Step (_{CM} = 10V Step, V _{DIFF} = 0	30 2	1 50 3 4 5 1.5		JATE	TIG M	HERME (AGES	ee-or	VERSI DST C DIP, 1 -8 SOR	IGHLY OW CO LASTIC ND SC	MHz kHz V/µs µs µs µs
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated Performance $V_0 = 0V$	±5	±15	±18 ±2			:				V V mA
TEMPERATURE RANGE Specification Operation Storage	PILTERS	-40 -55 -65	SOU B ALL	+85 +125 +150	:		:	* -40 -40		+85 +125	°C °C °C

^{*} Specification same as for INA105AM.

NOTES: (1) Connected as difference amplifier (see Figure 4). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) 25kΩ resistors are ratio matched but have ±20% absolute value. (4) Maximum input voltage without protection is 10V more than either ±15V supply (±25V). Limit I_N to 1mA. (5) With zero source impedance (see "Maintaining CMR" section). (6) Referred to output in unity-gain difference configuration. Note that this circuit has a gain of 2 for the operational amplifier's offset voltage and noise voltage. (7) Includes effects of amplifier's input bias and offset currents. (8) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network.

ABSOLUTE MAXIMUM RATINGS

Supply	±18V
Input Voltage Range	±Ve
Operating Temperature Range: M	55°C to +125°C
P, U	40°C to +85°C
Storage Temperature Range: M	65°C to +150°C
P, U	40°C to +125°C
Lead Temperature (soldering, 10s) M, P	+300°C
Wave Soldering (3s, max) U	+260°C
Output Short Circuit to Common	Continuous

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
INA105AM	TO-99 Metal	001		
INA105BM	TO-99 Metal	. 001		
INA105KP	8-Pin Plastic DIP	006		
INA105KU	8-Pin SOIC	182		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

NOTE: (1) Performance grade identifier box for small outline surface mount. Blank indicates K grade. Part is marked INA105U.

4

DICE INFORMATION

	INA ₁	05	DIE	TOP	OGR	APH'
--	------------------	----	-----	-----	-----	------

PAD	FUNCTION
1	Reference
2	-In
3	+ln
4	V-
5	Sense
6	Output
7A	V+ (Connect Both)
7B	V+ (Connect Both)
8	(Op Amp +In)
9	(Op Amp –In)

Substrate Bias: Electrically connected to V- supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	83 x 63 ±5	2.11 x 1.60 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		Gold

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE -40°C to +85°C	
INA105AM	TO-99 Metal		
INA105BM	TO-99 Metal	-40°C to +85°C	
INA105KP	8-Pin Plastic DIP	-40°C to +85°C	
INA105KU	8-Pin SOIC	-40°C to +85°C	

TYPICAL PERFORMANCE CURVES

INA105

4

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA105. Power supply bypass capacitors should be connected close to the device pins.

The differential input signal is connected to pins 2 and 3 as shown. The source impedances connected to the inputs must be nearly equal to assure good common-mode rejection. A 5Ω mismatch in source impedance will degrade the common-mode rejection of a typical device to approximately 80dB. If the source has a known mismatch in source impedance, an additional resistor in series with one input can be used to preserve good common-mode rejection.

The output is referred to the output reference terminal (pin 1) which is normally grounded. A voltage applied to the Ref terminal will be summed with the output signal. This can be used to null offset voltage as shown in Figure 2. The source impedance of a signal applied to the Ref terminal should be less than 10Ω to maintain good common-mode rejection.

Do not interchange pins 1 and 3 or pins 2 and 5, even though nominal resistor values are equal. These resistors are laser trimmed for precise resistor ratios to achieve accurate gain and highest CMR. Interchanging these pins would not provide specified performance.

FIGURE 1. Basic Power Supply and Signal Connections.

BB

NSTRUMENTATION AMPLIFIERS

FIGURE 2. Offset Adjustment.

FIGURE 3. Precision Difference Amplifier.

For low source impedance applications, an input stage using OPA27 op amps will give the best low noise, offset, and temperature drift performance. At source impedances above about 10kΩ, the bias current noise of the OPA27 reacting with the input impedance begins to dominate the noise performance. For these applications, using the OPA111 or dual OPA2111 FET input op amp will provide lower noise performance. For lower cost use the OPA121 plastic. To construct an electrometer use the OPA128.

A ₁ , A ₂	R ₁ (Ω)	R ₂ (Ω)	GAIN (V/V)	CMRR (dB)	MAX I _B	NOISE AT 1kHz (nV/√HZ)
OPA27A	50.5	2.5k	100	128	40nA	ommeads that
OPA111B	202	10k	100	110	1pA	posin 10 mgos
OPA128LM	202	10k	100	118	75fA	38

FIGURE 4. Precision Instrumentation Amplifier.

FIGURE 5. Current Receiver with Compliance to Rails.

EMINION

FIGURE 6. Precision Unity-Gain Inverting Amplifier.

FIGURE 7. ±10V Precision Voltage Reference.

FIGURE 8. ±5V Precision Voltage Reference.

FIGURE 9. Precision Unity-Gain Buffer.

FIGURE 10. Pseudoground Generator.

FIGURE 11. Precision Average Value Amplifier.

FIGURE 12. Precision (G = 2) Amplifier.

FIGURE 13. Precision Summing Amplifier.

FIGURE 14. Precision Gain = 1/2 Amplifier.

FIGURE 15. Precision Bipolar Offsetting.

FIGURE 16. Precision Summing Amplifier with Gain.

FIGURE 17. Instrumentation Amplifier Guard Drive Generator.

FIGURE 18. Precision Summing Instrumentation Amplifier.

BURR-BROWN®

FIGURE 21. Isolating Current Source.

FIGURE 24. Window Comparator with Window Span and Window Center Inputs.

FIGURE 25. Precision Voltage-Controlled Current Source with Buffered Differential Inputs and Gain.

FIGURE 26. Digitally Controlled Gain of ±1 Amplifier.

BURR-BROWN®

FIGURE 27. Boosting Instrumentation Amplifier Common-Mode Range From ±5 to ±7.5V with 10V Full-Scale Output.

FIGURE 28. Precision Absolute Value Buffer.

FIGURE 29. Precision 4-20mA Current Transmitter.

INA106

Precision Gain = 10 DIFFERENTIAL AMPLIFIER

FEATURES

- ACCURATE GAIN: ±0.025% max
- HIGH COMMON-MODE REJECTION:
 86dB min
- NONLINEARITY: 0.001% max
- EASY TO USE
- PLASTIC 8-PIN DIP, SO-8 SOIC PACKAGES

DESCRIPTION

The INA106 is a monolithic Gain = 10 differential amplifier consisting of a precision op amp and on-chip metal film resistors. The resistors are laser trimmed for accurate gain and high common-mode rejection. Excellent TCR tracking of the resistors maintains gain accuracy and common-mode rejection over temperature.

The differential amplifier is the foundation of many commonly used circuits. The INA106 provides this precision circuit function without using an expensive resistor network. The INA106 is available in 8-pin plastic DIP and SO-8 surface-mount packages.

APPLICATIONS

- G = 10 DIFFERENTIAL AMPLIFIER
- G = +10 AMPLIFIER
- G = -10 AMPLIFIER
- G = +11 AMPLIFIER
- INSTRUMENTATION AMPLIFIER

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At +25°C, $V_S = \pm 15V$, unless otherwise specified.

OCIPERI	Pelicipa					
PARAMETER	CONDITIONS	MIN TYP		MAX	UNITS	
GAIN Initial ⁽¹⁾ Error vs Temperature Nonlinearity ⁽²⁾			10 0.01 -4 0.0002	0.025	V/V % ppm/°C %	
OUTPUT Related Voltage Rated Current Impedance Current Limit Capacitive Load	I_0 = +20mA, -5mA V_0 = 10V To Common Stable Operation	10 +20, -5	0.01 +40/–10 1000		V mA Ω mA pF	
INPUT Impedance Voltage Range Common-Mode Rejection(3)	Differential Common-Mode Differential Common-Mode T _A = T _{MIN} to T _{MAX}	±1 ±11 86	10 110	TURES	kΩ kΩ V V dB	
OFFSET VOLTAGE STATE AND AND Initial VS Temperature VS Supply VS Time	PTI ⁽⁴⁾ ±V _S = 6V to 18V	:NON:	50 0.2 1 10	200	μV μV/°C μV/V μV/mo	
NOISE VOLTAGE f _B = 0.01Hz to 10Hz f _O = 10kHz	RTI(5)		1 30	SY TO USE	μVp-p nV/√Hz	
DYNAMIC RESPONSE Small Signal Full Power BW Slew Rate Settling Time: 0.1% 0.01% 0.01%	$-3dB$ $V_O = 20Vp-p$ $V_O = 10V Step$ $V_O = 10V Step$ $V_{CM} = 10V Step, V_{DIFF} = 0V$	30 2	5 50 3 5 10 5	KAGES CRIPTIC	MHz kHz V/µs µs µs µs	
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated Performance V _O = 0V	pand on-clup laser u directed ode rejection.	E	±18 ±2	V V mA	
TEMPERATURE RANGE Specification Operation Storage		0 -40 -65	e of the resist	+70 +85 +150	ô ô ô	

NOTES: (1) Connected as difference amplifier (see Figure 1). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) With zero source impedance (see "Maintaining CMR" section). (4) Includes effects of amplifiers's input bias and offset currents. (5) Includes effect of amplifier's input current noise and thermal noise contribution of resistor network.

PIN CONFIGURATION

This integral circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

INA106 DIE TOPOG	RAPHY
-------------------------	-------

PAD	FUNCTION		
1	Reference		
2	-In		
3	+In		
4	STI_VARSPONSE		
5	Sense		
6	Output		
7A, 7B	V+ (Connect Both)		
8	(Op Amp +ln)		
9	(Op Amp –In)		

Substrate Bias: Electrically connected to V- supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	83 x 63 ±5	2.11 x 1.60 ±0.13
Die Thickness	20±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing:		Gold

ABSOLUTE MAXIMUM RATINGS

DICE INFORMATION

Power Supply Voltage	±18V
Input Voltage Range	±V _S
Operating Temperature Range: P, U	40°C to +85°C
Storage Temperature Range	40°C to +85°C
Lead Temperature (soldering, 10s): P	+300°C
Wave Soldering (3s, max) U	+260°C
Output Short Circuit to Common	Continuous

PACKAGING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
INA106KP	8-Pin Plastic DIP	006		
INA106U	SO-8 Surface Mount	182		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
INA106KP	8-Pin Plastic DIP	0°C to +70°C
INA106U	SO-8 Surface Mount	0°C to +70°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT)

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for operation of the INA106. Power supply bypass capacitors should be connected close to the device pins as shown.

FIGURE 1. Basic Power Supply and Signal Connections.

The differential input signal is connected to pins 2 and 3 as shown. The source impedance connected to the inputs must be equal to assure good common-mode rejection. A 5Ω mismatch in source impedance will degrade the common-mode rejection of a typical device to approximately 86dB. If the source has a known source impedance mismatch, an additional resistor in series with one input can be used to preserve good common-mode rejection.

The output is referred to the output reference terminal (pin 1) which is normally grounded. A voltage applied to the Ref terminal will be summed with the output signal. The source impedance of a signal applied to the Ref terminal should be less than 10Ω to maintain good common-mode rejection.

Figure 2 shows a voltage applied to pin 1 to trim the offset voltage of the INA106. The known 100Ω source impedance of the trim circuit is compensated by the 10Ω resistor in series with pin 3 to maintain good CMR.

FIGURE 2. Offset Adjustment.

Referring to Figure 1, the CMR depends upon the match of the internal R_4/R_3 ratio to the R_1/R_2 ratio. A CMR of 106dB requires resistor matching of 0.005%. To maintain high CMR over temperature, the resistor TCR tracking must be better than 2ppm/°C. These accuracies are difficult and expensive to reliably achieve with discrete components.

FIGURE 3. Difference Amplifier with Gain and CMR Adjust.

FIGURE 4. Precision G = -10 Inverting Amplifier.

FIGURE 5. Voltage Follower with Input Protection.

To make a high performance high gain instrumentation amplifier, the INA106 can be combined with state-of-the-art op amps. For low source impedance applications, OPA37s will give the best noise, offset, and temperature drift. At source impedances above about $10 k\Omega$, the bias current noise of the OPA37 reacting with input impedance degrades noise. For these applications, use an OPA111 or a dual OPA2111 FET input op amp for lower noise. For an electrometer grade IA, use the OPA128—see table below.

Using the INA106 for the difference amplifier also extends the input common-mode range of the instrumentation amplifier to $\pm 10V$. A conventional IA with a unity-gain difference amplifier has an input common-mode range limited to $\pm 5V$ for an output swing of $\pm 10V$. This is because a unity-gain difference amp needs $\pm 5V$ at the input for 10V at the output, allowing only 5V additional for common-mode.

A ₁ , A ₂	R ₁ (Ω)	R ₂ (kΩ)	GAIN (V/V)	CMRR (dB)	I _b (pA)	NOISE AT 1kHz (nV/ √Hz)
OPA37A	50.5	2.5	1000	128	40000	4
OPA111B	202	10	1000	110	1	10
OPA128LM	202	10	1000	118	0.075	38

FIGURE 6. Precision Instrumentation Amplifier.

FIGURE 7. Precision Summing Amplifier.

FIGURE 8. Precision G = 11 Buffer.

Fast-Settling FET-Input INSTRUMENTATION AMPLIFIER

FEATURES

- LOW BIAS CURRENT: 50pA max
- FAST SETTLING: 4µs to 0.01%
- HIGH CMR: 106dB min; 90dB at 10kHz
- INTERNAL GAINS: 1, 10, 100, 200, 500
- VERY LOW GAIN DRIFT: 10 to 50ppm/°C
- LOW OFFSET DRIFT: 2µV/°C
- LOW COST
- PINOUT SIMILAR TO AD524 AND AD624

APPLICATIONS

- MULTIPLEXED INPUT DATA **ACQUISITION SYSTEM**
- FAST DIFFERENTIAL PULSE AMPLIFIER
- HIGH SPEED GAIN BLOCK
- AMPLIFICATION OF HIGH IMPEDANCE SOURCES

DESCRIPTION

The INA110 is a versatile monolithic FET-input instrumentation amplifier. Its current-feedback circuit topology and laser trimmed input stage provide excellent dynamic performance and accuracy. The (1) INA110 settles in 4µs to 0.01%, making it ideal for high speed or multiplexed-input data acquisition systems.

Internal gain-set resistors are provided for gains of 1, 10, 100, 200, and 500V/V. Inputs are protected for differential and common-mode voltages up to ±V_{CC}. Its very high input impedance and low input bias current make the INA110 ideal for applications requiring input filters or input protection circuitry.

The INA110 is available in 16-pin plastic and ceramic DIPs, and in the SOL-16 surface-mount package. Military, industrial and commercial temperature range grades are available.

NOTE: (1) Connect to R_G for desired gain.

International Airport Industrial Park • Mailing Address: PO Box 11400

Tucson, AZ 85734 · Street Address: 6730 S. Tucson Blvd. · Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At +25°C, $\pm V_{CC}$ = 15VDC, and R_L = 2k Ω , unless otherwise specified

W 1 X X X X X X X X X X X X X X X X X X	A A	20 Dec	INA110AG	19.000	IN	A110BG,	SG	4N	A110KP,	KU	
DADAMETER	CONDITIONS		TYP	MAX	MIN	TYP		MIN	TYP	MAX	UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MHN	IYP	MAX	UNIT
GAIN		1	No.	800		The second					V/V
Range of Gain		1		800	G 1	 - [40k/(R _g	- F00)1	1000			V/V
Gain Equation ⁽¹⁾			0.000	0.04	GETA	+ [4UN(ng					%
Gain Error, DC: G = 1			0.002	0.04		0.005	0.02				1 200
G = 10	TO STATE OF THE ST		0.01	0.1		0.005	0.05				%
G = 100	CONTRACTOR STATE	5850E0000	0.02	0.2	SHOUSEN	0.01	0.1	ON ANDRES	-	accuercino	%
G = 200			0.04	0.4		0.02	0.2				%
G = 500		right trip	0.1	1,00	1-19	0.05	0.5		1 .		%
Gain Temp. Coefficient: G = 1	fugni	-1.3	±3	±20	196	-126	±10				ppm/°
G = 10			±4	±20		±2	±10		1 1		ppm/°
G = 100	MIDI ICIA	10 17	±6	±40	ACSI	±3	±20	IAI			ppm/°
G = 200	21 11m1 11W	CA F	±10	±60	F Break E	±5	±30	0/23			ppm/°
G = 500			±25	±100		±10	±50				ppm/°
Nonlinearity, DC: G = 1	ETO ALE FAY, AND ENGINEERING PROPERTY.	DE 1983 Y 1946	±0.001	±0.01	1000	±0.0005	±0.005	100000000000000000000000000000000000000	200.00	Dotte Line	% of F
G = 10	A CONTRACTOR OF		±0.002	±0.01		±0.001	±0.005		*	*	% of F
G = 100	AND THE RESIDENCE AND	n n.on.	±0.004	±0.02	1-27	±0.002	±0.01	200	ten area a r		% of F
G = 200	CHIDINS		±0.006	±0.02	1 -7 17:27	±0.003	±0.01	55	:1171U	LAS	% of F
G = 500			±0.01	±0.04		±0.005	±0.02		*		% of F
OUTPUT	LEXED INPUT	BILLIU	M G		- 3	em Ac	06 :TM	BRAU	DEALE	WOJ	9.
Voltage, $R_1 = 2k\Omega$	Over Temperature	±10	±12.7	5 10 10		Anna I					V
Current	Over Temperature	±5	±25			96101	ot sit	NO: 4	11 126	ICAT	mA
Short-Circuit Current	HEERENTIAL I	AST D	±25		10kH	is tibo	e mim	E580	1523355	1427134	mA.
Capacitive Load	Stability	o uni	5000		111111111		o familia				pF
INPUT OFFSET VOLTAGE(2)	DA MINEZ LIGAS	- 11011	1		100,000	1900, 20	101.01	CHIA	DUNK	931111	100
Initial Offset: G. P	ICATION OF IN	MPLIF	±(100+	±(500 +	mqq0i	±(50 +	±(250 +	MIAE	LOW	YESV	μV
mila onoti aj i	23	naulo	1000/G)	5000/G)	prodelm	600/G)	3000/G)	F F 112 F 14	317 34744	A D Carl St.	P. P.
U	-	Union	1000/4)	3000/4)		000/01	3000/G)	HAG T	+(200 +	±(1000+	шν
				Section 18				10. 10	2000/G)		p.v
vs Temperature			±(2+	±(5+	1	±(1 +	±(2+		*	3000/01	μV/°(
vs remperature			20/G)	100/G)	SOA O	10/G)	50/G)	C 2000 1	scio w	DOMESTICS.	μνι
vs Supply	$V_{CC} = \pm 6V \text{ to } \pm 18V$		±(4+	±(30 +	BUM U	±(2+	±(10 +	LAH	MILES T	DOMESTIC A	μ٧/٧
vs Supply	ACC = TOA 10 T 10A		60/G)	300/G)		30/G)	180/G)	100			μνιν
DIA COURTEUR			00/0/	000/0/		00/0/	100/0/		AND NOTE OF	A	note:
BIAS CURRENT		-					1	KOIT	191.2	DZZ	The second
Initial Bias Current	Each Input	TBS	20	100	(A)	10	50				pA
Initial Offset Current		hsgoi	2	50	TRE -	intribution	25	812V S	ai Offi	in TN A	pA
Impedance: Differential		Children A	5x10 ¹² 6					400		17.12	Ω pl
Common-Mode		- VVY	2x10 ¹² 1	- iluon	iback e	ent-fee	its curr	nphilles	is none.	HARMIN'S	Ω pl
VOLTAGE RANGE	V _{IN} Diff. = 0V ⁽³⁾	AAA_P	2.400 v	201V	ad ass	as mai	n Demi	11 19	Bi bins	Ygator	07 5
Range, Linear Response	ouar V	±10	±12	n sdT	V367U3	and ad	SORGER	phone	imsavb	insiles	V
CMR with 1kΩ Source Imbalance:	THE NAME OF THE PERSON OF THE	LAAA_F	n mey	Tot for	make as a	and the same					10
G = 1	DC	70	90	100 1	80	100	0.01%	내 객들	u solos	R.OIIA	dB
G = 10	DC	87	104	BOIL	96	112	xed-ing	pigalur	1 18 b	gh spec	dB
G = 100	DC	100	110	10.182	106	116				sterns.	dB
G = 200	DC	100	110		106	116					dB
G = 500	DC	100	110	- J 70	106	116	are pro	nomice	tot-nii	g fams	dB
INPUT NOISE(4)			2 85	YOL D	skietow	976 21	Igpl V	Vnos	ins Co	COLL	DE TO
	H >H		10	10						The second second	nV/√H
Voltage, $f_O = 10kHz$ $f_B = 0.1Hz$ to 10Hz	1	- 5	10	V cc.	e or du	oltages	a apost	попин	a bim I	nunanah	
		200	1.8	bias	lugai. V	rol bas	edance	et imp	gai dgu	VISV.	μVp-p
Current, f _O = 10kHz	V	Burne 1	1.6	anni	and large	400 10	JUL OF	ASAT	11		fA/√H:
OUTPUT NOISE(4)		-	Page 1						13		
Voltage, f _O = 10kHz	%	100	65	0 30	mono	TOHERDIO	ad mdan	to stat	in sugn	Summi	nV/√H
f _B = 0.1Hz to 10Hz	20 Ve 30	ling!	8	oime	on her	nidustin.	o L6-min	aldelia	ve si Ot	LAME	μVp-p
DYNAMIC RESPONSE	13	DAG.	THE P		The same of	13	S	TOO	Late of		0
Small Signal: G = 1	-3dB	Total Control	2.5	eage.	osq Jm	011, 301	trus 61	108	in, the	bus ,art	MHz
G = 10			2.5	ange	STIME	gmes le	mmerci	and co	sindayiby	Hidary, a	MHz
G = 100	OF FRANCISCO (1) STOR		470	12.77				of	islinva	ton safe	kHz
G = 200	The second residence of		240					1000			kHz
G = 500			100								kHz
Full Power	$V_{OUT} = \pm 10V$,					14 - 6					AT 12
	G = 2 to 100	190	270								kHz
Ol D-t-	G = 2 to 100	12	17	17.6				1			V/µs
	G = 2 10 100	12	17						1 1 1 1		v/µS
					1						
Settling Time:	V = 20V Ston		1								
Settling Time: 0.1%, G = 1	V _O = 20V Step		4								μs
G = 10	V _O = 20V Step		2						:		μs
Settling Time: 0.1%, G = 1	V _O = 20V Step										

INSTRUMENTATION AMPLIFIERS

SPECIFICATIONS (CONT)

ELECTRICAL

At +25°C, $\pm V_{CC}$ 15VDC, and R_L = 2K Ω , unless otherwise specified.

(connect belly)		B2.A		INA110AG		INA110BG, SG		INA110KP, KU		KU		
PARAMETER INDICATE OF THE PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
DYNAMIC RESP	ONSE (CONT)	a		100000			- 102	AMIL	I Barre		JE TO	E88
Settling Time:	V-	7		HEED!	A Her	10 THE	STATE OF	ELLI-	1900	Marie I		198
0.01%,G = 1	ooV=	V _O = 20V Step	1.0	5	12.5		10.	1 1 1 1 1 1	1500	*		μs
G = 10	himid	9	1	3	7.5		100			1	STATE OF	μs
G = 100	Output Sonsa	0.0		4	7.5			130	1 1	2071		μѕ
G = 200		11		7	12.5	30.00	PERMI	100 to 1	Sellina.	1 . 3	11 200	μѕ
G = 500		0		16	25		MINE.		See His	THE CO		μѕ
Recovery ⁽⁵⁾	07x	50% Overdrive		1								μѕ
POWER SUPPLY		0 41		TENT	25,000	100 - 100 -	CHILL		THE PERSON			FIL
Rated Voltage	tauth Office Adjust	15 0		±15	18 THE LE	Per 18 11		Line Section	15 4			V
Voltage Range	00SX	16	±6	Sell also	±18		700 1	20.00			O. Sala	V
Quiescent Currer	nt Jbessenno	V _O = 0V	ba9	±3	±4.5		問為丹		25.21			mA
TEMPERATURE	RANGE	Strato chasa internacy	CESES	323 esc	un PT SE	SURE			1 80	13 10	0.00	20 1
Specification: A, I	8, K		-25	THE REAL	+85			15.4	0	3	+70	°C
S	MOSTAMPO	CHANGCAL IVI	134	10000		-55	CHEE	+125	A STATE OF		F-187/16	°C
Operation			-55		+125	CU12.*0110.	1000	* 00.5	-25		+85	°C
Storage	U.MM (*160.0) E	BUINA	-65		+150			*	-40		+85	°C
	9 x 89 ±6 3.53 x	e Size 139	0	100	100	YH9	AMOU	HOT BI	DOLLA	13/11×		°C/W
20 04 F	Commence of the second	actorioldT a	0		100							

^{*} Same as INA110AG

NOTES: (1) Gains other than 1, 10, 100, 200, and 500 can be set by adding an external resistor, R_G, between pin 3 and pins 11, 12 and 16. Gain accuracy is a function of R_G and the internal resistors which have a ±20% tolerance with 20ppm/°C drift. (2) Adjustable to zero. (3) For differential input voltage other than zero, see Typical Performance Curves. (4) V_{NOISERTI} = √V_N² INPUT + (V_{NOITPUT}/Gain)². (5) Tirne required for output to return from saturation to linear operation following the removal of an input overdrive voltage.

PIN CONFIGURATION

op View				DIP/SOIC
-In	1	0	16	x200
+In	2		15	Output Offset Adj.
R _G	3		14	Output Offset Adj.
Input Offset Adj.	4		13	x10
Input Offset Adj.	5		12	x100
Reference	6		11	x500
-V _{cc}	7		10	Output Sense
+V _{cc}	8		9	Output

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
INA110AG	16-Pin Ceramic DIP	-25°C to +85°C
INA110BG	16-Pin Ceramic DIP	-25°C to +85°C
INA110SG	16-Pin Ceramic DIP	-55°C to +125°C
INA110KP	16-Pin Plastic DIP	0°C to +70°C
INA110KU	SOL-16 SOIC	0°C to +70°C

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	±V _{CC}
Operating Temperature Range: G	55°C to +125°C
P, U	25°C to +85°C
Storage Temperature Range: G	65°C to +150°C
P, U	40°C to +85°C
Lead Temperature (soldering, 10s): G, P	+300°C
(soldering, 3s): U	+260°C
Output Short Circuit Duration	Continuous to Common

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA110AG	16-Pin Ceramic DIP	109
INA110BG	16-Pin Ceramic DIP	109
INA110SG	16-Pin Ceramic DIP	109
INA110KP	16-Pin Plastic DIP	180
INA110KU	SOL-16 SOIC	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

INA110 DIE TOPOGRAPHY

PAD	FUNCTION	THICAL
oect esiv	OC. ancnl+ = 2KΩ, unless other	VET DOVE !
2	+In	
3A,3B	R _G (connect both)	
4	Input Offset Adjust	
5	Input Offset Adjust	
6	Reference	
7	-V _{CC}	
8	+V _{CC}	
9	Output	
10	Output Sense	
11	x500	
12	x100	
13	x10	
14	Output Offset Adjust	
15	Output Offset Adjust	naturalle V
16	×200	

Pads 3A and 3B must be connected.

Substrate Bias: Internally connected to -V_{CC} power sup-

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	139 x 89 ±5	3.53 x 2.26 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing	n 1,10,100,200, a	Gold

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) DMAMRORRE LADISYT

 $T_A = +25$ °C, $\pm V_{CC} = 15$ VDC, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) OMAMBORRED JACINYT

 $T_A = +25$ °C, $\pm V_{CC} = 15$ VDC, unless otherwise noted.

DISCUSSION OF PERFORMANCE

A simplified diagram of the INA110 is shown on the first page. The design consists of the classical three operational amplifier configuration using current-feedback type op amps with precision FET buffers on the input. The result is an instrumentation amplifier with premium performance not normally found in integrated circuits.

The input section $(A_1$ and $A_2)$ incorporates high performance, low bias current, and low drift amplifier circuitry. The amplifiers are connected in the noninverting configuration to provide high input impedance $(10^{12}\Omega)$. Laser-trimming is used to achieve low offset voltage. Input cascoding assures low bias current and high CMR. Thin-film resistors on the integrated circuit provide excellent gain accuracy and temperature stability.

The output section (A_3) is connected in a unity-gain difference amplifier configuration. Precision matching of the four $10k\Omega$ resistors, especially over temperature and time, assures high common-mode rejection.

BASIC POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 1 shows the proper connections for power supply and signal. Supplies should be decoupled with 1µF tantalum capacitors as close to the amplifier as possible. To avoid gain and CMR errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance. Resistance in series with the reference (pin 6) will degrade CMR. To maintain stability, avoid capacitance from the output to the gain set, offset adjust, and input pins.

FIGURE 1. Basic Circuit Connection.

OFFSET ADJUSTMENT

Figure 2 shows the offset adjustment circuit for the INA110. Both the offset of the input stage and output stage can be adjusted separately. Notice that the offset referred to the

INA110's input (RTI) is the offset of the input stage plus the offset of the output stage divided by the gain of the input stage. This allows specification of offset independent of gain.

FIGURE 2. Offset Adjustment Circuit.

For systems using computer autozeroing techniques, neither offset nor offset drift are of concern. In many other applications, the factory-trimmed offset gives excellent results. When greater accuracy is desired, one adjustment is usually sufficient. In high gains (>100) adjust only the input offset, and in low gains the output offset. For higher precision in all gains, both can be adjusted by first selecting high gain and adjusting input offset and then low gain and adjusting output offset. The offset adjustment will, however, add to the drift by approximately $0.33\mu\text{V/°C}$ per $100\mu\text{V}$ of input offset voltage that is adjusted. Therefore, care should be taken when considering use of adjustment.

Output offsetting can be accomplished as shown in Figure 3 by applying a voltage to the reference (pin 6) through a buffer. This limits the resistance in series with pin 6 to minimize CMR error. Be certain to keep this resistance low. Note that the offset error can be adjusted at this reference point with no appreciable degradation in offset drift.

FIGURE 3. Output Offsetting.

Gain selection is accomplished by connecting the appropriate pins together on the INA110. Table I shows possible gains from the internal resistors. Keep the connections as short as possible to maintain accuracy.

GAIN	CONNECT PIN 3 TO PIN	GAIN ACCURACY (%)	GAIN DRIFT (ppm/°C)
The follow	ving gains have guaran	teed accuracy:	9
1	none	0.02	10
10	13	0.05	10
100	12	0.1	20
200	16	0.2	30
500	11	0.5	50
The follow	wing gains have typical	accuracy as shown:	100
300	12, 16	0.25	10
600	11, 12	0.25	40
700	11, 16	2	40
800	11, 12, 16	2	80

TABLE I. Internal Gain Connections.

Gains other than 1, 10, 100, 200, and 500 can be set by adding an external resistor, $R_{\rm G}$, between pin 3 and pins 12, 16, and 11. Gain accuracy is a function of $R_{\rm G}$ and the internal resistors which have a $\pm 20\%$ tolerance with 20ppm/°C drift. The equation for choosing $R_{\rm G}$ is shown below.

$$R_{G} = \frac{40k}{G - 1} - 50\Omega$$

Gain can also be changed in the output stage by adding resistance to the feedback loop shown in Figure 4. This is useful for increasing the total gain or reducing the input stage gain to prevent saturation of input amplifiers.

The output gain can be changed as shown in Table II. Matching of R_1 and R_3 is required to maintain high CMR. R_2 sets the gain with no effect on CMR.

OUTPUT STAGE GAIN	R ₁ AND R ₃	R ₂	
2	1.2kΩ	2.74kΩ	
saied at thise oference	1κΩ	511Ω	
10 100110	1.5kΩ	340Ω	

TABLE II. Output Stage Gain Control.

COMMON-MODE INPUT RANGE

It is important not to exceed the input amplifiers' dynamic range (see Typical Performance Curves). The differential input signal and its associated common-mode voltage should not cause the output of A_1 and A_2 (input amplifiers) to exceed approximately $\pm 10 \rm V$ with $\pm 15 \rm V$ supplies or nonlinear operation will result. Such large common-mode voltages, when the INA110 is in high gain, can cause saturation of the input stage even though the differential input is very small. This can be avoided by reducing the input stage gain and increasing the output stage gain with an H pad attenuator (see Figure 4).

OUTPUT SENSE

An output sense has been provided to allow greater accuracy in connecting the load. By attaching this feedback point to the load at the load site, IR drops due to load currents that is to be supplied, a power booster can be placed within the feedback loop as shown in Figure 5. Buffer errors are minimized by the loop gain of the output amplifier.

FIGURE 4. Gain Adjustment of Output Stage Using H Pad Attenuator.

FIGURE 5. Current Boosting the Output.

OF FET INPUT ELIMINATES DC ERRORS

Because the INA110 has FET inputs, bias currents drawn through input source resistors have a negligible effect on DC accuracy. The picoamp levels produce no more than microvolts through megohm sources. Thus, input filtering and input series protection are readily achievable.

A return path for the input bias currents must always be provided to prevent charging of stray capacitance. Otherwise, the output can wander and saturate. A $1M\Omega$ to $10M\Omega$ resistor from the input to common will return floating sources such as transformers, thermocouples, and AC-coupled inputs (see Applications section).

DYNAMIC PERFORMANCE

The INA110 is a fast-settling FET input instrumentation amplifier. Therefore, careful attention to minimize stray capacitance is necessary to achieve specified performance. High source resistance will interact with input capacitance to reduce the overall bandwidth. Also, to maintain stability, avoid capacitance from the output to the gain set, offset adjust, and input pins.

Applications with balanced-source impedance will provide the best performance. In some applications, mismatched source impedances may be required. If the impedance in the

Or, Call Customer Service at 1-800-548-6132 (USA Only)

negative input exceeds that in the positive input, stray capacitance from the output will create a net negative feedback and improve the circuit stability. If the impedance in the positive input is greater, the feedback due to stray capacitance will be positive and instability may result. The degree of positive feedback depends upon source impedance imbalance, operating gain, and board layout. The addition of a small bypass capacitor of 5pF to 50pF directly between the inputs of the IA will generally eliminate any positive feedback. CMR errors due to the input impedance mismatch will also be reduced by the capacitor.

The INA110 is designed for fast settling with easy gain selection. It has especially excellent settling in high gain. It can also be used in fast-settling unity-gain applications. As with all such amplifiers, the INA110 does exhibit significant gain peaking when set to a gain of 1. It is, however, unconditionally stable. The gain peaking can be cancelled by band-limiting the negative input to 400kHz with a simple external RC circuit for applications requiring flat response. CMR is not affected by the addition of the 400kHz RC in a gain of 1.

Another distinct advantage of the INA110 is the high frequency CMR response. High frequency noise and sharp common-mode transients will be rejected. To preserve AC CMR, be sure to minimize stray capacitance on the input lines. Matching the RCs in the two inputs will help to maintain high AC CMR.

APPLICATIONS

In addition to general purpose uses, the INA110 is designed to accurately handle two important and demanding applications: (1) inputs with high source impedances such as capacitance/crystal/photodetector sensors and low-pass filters and series-input protection devices, and (2) rapidscanning data acquisition systems requiring fast settling time. Because the user has access to the output sense, current sources can also be constructed using a minimum of external components. Figures 6 through 19 show application circuits.

FIGURE 6. Transformer-Coupled Amplifier.

FIGURE 7. Floating Source Instrumentation Amplifier.

FIGURE 8. Instrumentation Amplifier with Shield Driver.

FIGURE 9. Bridge Amplifier with 1Hz Low-Pass Input Filter.

FIGURE 10. AC-Coupled Differential Amplifier for Frequencies Greater Than 0.016Hz.

FIGURE 12. Rapid-Scanning-Rate Data Acquisition Channel with 5µs Settling to 0.01%.

FIGURE 11. Programmable-Gain Instrumentation Amplifier (Precision Noninverting or Inverting Buffer with Gain).

FIGURE 13. 60Hz Input Notch Filter.

 $R_1 = R_2 = 100 k\Omega$, $D_1 - D_4 = 2N4117A$ (1pA leakage)

Matching of RCs on inputs will affect CMR, but can be optimized by trimming R_1 or R_2 .

FIGURE 14. Input-Protected Instrumentation Amplifier.

FIGURE 15. High Common-Mode Voltage Differential Amplifier.

FIGURE 16. Digitally-Controlled Fast-Settling Programmable Gain Instrumentation Amplifier.

FIGURE 17. Differential Input FET Buffered Current

FIGURE 18. Differential Input/Differential Output
Amplifier.

High Speed FET-Input INSTRUMENTATION AMPLIFIER

FEATURES

- FET INPUT: I_B = 20pA max
- HIGH SPEED: T_s = 4μs (G = 100, 0.01%)
- LOW OFFSET VOLTAGE: 500µV max
- LOW OFFSET VOLTAGE DRIFT: 5μV/°C max
- HIGH COMMON-MODE REJECTION: 106dB min
- 8-PIN PLASTIC DIP, SOL-16 SOIC

APPLICATIONS

- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA111 is a high speed, FET-input instrumentation amplifier offering excellent performance.

The INA111 uses a current-feedback topology providing extended bandwidth (2MHz at G=10) and fast settling time (4 μ s to 0.01% at G=100). A single external resistor sets any gain from 1 to over 1000.

Offset voltage and drift are laser trimmed for excellent DC accuracy. The INA111's FET inputs reduce input bias current to under 20pA, simplifying input filtering and limiting circuitry.

The INA111 is available in 8-pin plastic DIP, and SOL-16 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 2k\Omega$, unless otherwise noted.

	8 I	2	INA111BP, BU			INA111AP, AU	To both motor	1000
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT	THE REPORT OF	0	17865 51 52	JE THENET	raced I	PERCHASI EN		
Offset Voltage, RTI	becoming of fault at bosined	Paris 16	1 20 2 2					
Initial	T _Δ = +25°C	POST	±100 ± 500/G	±500 ±2000/G		±200 ± 500/G	±1000 ±5000/G	μV
		100 00	±2±10/G	±5 ± 100/G		±2 ± 20/G	±10±100/G	μV/°C
vs Temperature	$T_A = T_{MIN}$ to T_{MAX}	MC = Old			THE AND	12120/G	110 1 100/G	
vs Power Supply	$V_S = \pm 6V \text{ to } \pm 18V$	Substa	2 +10/G	30 + 100/G			M.AMLENE	μV/V
Impedance, Differential			1012 6		1. Newski			Ω pF
Common-M		I was	1012 3		USE Intim S	3890 1500	BULLIAN INCH	Ω pF
Input Common-Mode Ra	nge V _{DIFF} = 0V	±10	±12			THE REPORT OF	THE ITEM	V
Common-Mode Rejectio	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$		11122.00	THE PARTY OF PARTY		DESIGNATION OF THE PARTY OF THE		
	G = 1	80	90	A STATE OF THE PARTY OF THE PAR	75	March St.	The banks	dB
		LINE TO THE PARTY OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				dB
	G = 10	96	110		90	THE LABOUR.		
	G = 100	106	115		100	A STATE OF THE STA		dB
- WIN A WIN	G = 1000	106	115		100	della Maria		dB
BIAS CURRENT	9	Backer	±2	±20				pA
OFFSET CURRENT			±0.1	±10				pA
NOISE VOLTAGE, RTI	$G = 1000, R_S = 0\Omega$			YH9A	RECGR	T BIG TTTA	(4)	
f = 100Hz		-	13					nV/√Hz
f = 1kHz			10				7877280141	nV/√Hz
f = 10kHz			10					nV/√Hz
$f_B = 0.1$ Hz to 10Hz		127	10			NS .	PICURATIO	μVр-р
Noise Current	111111111111111111111111111111111111111	100 mil	122		-			µ v р-р
f = 10kHz	CHARGE BE	RIG.	0.8	990				fA/√Hz
	0.50 DESERTED TO THE COMP	1000	0.0			-	17	17 0 17 12
GAIN	rouit can be damaged	bstere:	A (FOLO)D		.n 8			V/V
Gain Equation			$1 + (50k\Omega/R_G)$		8 Rg		1 6/3	
	all integrated circuits	that abus	regionate	10000	100		6	V/V
Gain Error	$G = 1$, $R_L = 10k\Omega$	duspora s	±0.01	±0.02	44.		0.05	%
	$G = 10$, $R_L = 10k\Omega$		±0.1	±0.5	- W B		e W	%
	$G = 100, R_L = 10k\Omega$	on proce	±0.15	±0.5	0, 1,	* * *	±0.7	%
	$G = 1000, R_L = 10k\Omega$	-	±0.25	±1	5 Ret		±2	%
Gain vs Temperature	G = 1	algo offern	±1	±10	1011			ppm/°C
50kΩ Resistance ⁽¹⁾	ce failure. Precision in	aveb etc.	±25	±100	16 27			ppm/°C
	ole to dair, are hecanise i	The second	empercool.	Park Till and				
Nonlinearity	G = 1		±0.0005	±0.005				% of FS
meet its publishe		could p	±0.001	±0.005	801-108		±0.01	% of FSI
	G = 100	Ricons.	±0.001	±0.005	017209	*	±0.01	% of FSI
	G = 1000	1	±0.005	±0.02			±0.04	% of FSI
OUTPUT					Jis at	10-11-11-11-11-11-11-11-11-11-11-11-11-1	O I I ON	
Voltage	$I_0 = 5 \text{mA}$, T_{MIN} to T_{MAX}	±11	±12.7					V
Load Capacitance Stabi	EL.	-	1000		15 Rg		S. BR	pF
Short Circuit Current	PACKAGE		+30/-25		in Table		TA NO	mA
FREQUENCY RESPON	geren Plastic DIP	1 1	ALCOMA !		W1 211		6 00	
		1 9	BETTARITE		13 Vi		3 10 V	101
Bandwidth, -3dB	G = 1	de lu	2		-	120 Jak	E-Marie	MHz
	G = 10	1 10	2	slouests	12 50		V at 5	MHz
	G = 100	-	450					kHz
	G = 1000		50		Win	*	8 04	kHz
Slew Rate	$V_0 = \pm 10V$, $G = 2 \text{ to } 10$	0	17	A STATE OF THE STA				V/µs
Settling Time, 0.01%	G = 1	MI 30	2	ASSESSMENT OF THE PARTY OF THE	98 011	* 1	V-17	μѕ
	G = 10		2	Be Miller of G	lame.			μѕ
	G = 100		4		284 B		8 00	μs
	G = 1000		30	I Silve on Line	- Land			μѕ
Overload Recovery	50% Overdrive	1 9	PETAMI 1					μs
POWER SUPPLY	8-Pin Plastic DIP	9	INA1118					
Voltage Range	Pin Surface Mount	±6	±15	±18		*		V
Current	$V_{IN} = 0V$	10	±3.3	±18 ±4.5				
		-		±4.5	2	EMALT ARE MI	HMEXAM BY	mA
TEMPERATURE RANG	El deskiero and dimension is	Por details	IN:STON					
Specification	of Burn-Brown IC Data Book	-40	Sheet, or A	V81 85				°C
Operating	Plastic P, U	-40	1 - 1 - 1	125	6- CV		Avenue and	°C
$\theta_{\sf JA}$	Plastic P, U	1	100	at meeting?	4.47.4	* %	an and the most	°C/W
-JA	1 145110 1 , 0		100	CONTRACTOR OF THE	100011000000000000000000000000000000000	the second of the	NA PALLINGHERS	0/44

^{*} Specification same as INA111BP.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

NOTE: (1) Temperature coefficient of the "50k Ω " term in the gain equation.

DICE INFORMATION

PAD	FUNCTION	PAD	FUNCTION
1A, 1B	R _G	6	Varie Vo
2	V-IN	7	Feedback
3	V+IN	8	V+
4	CONPAIONS	9A, 9B	R _G
5	Ref		

Pads 1A and 1B must be connected. Pads 9A and 9B must be connected.

NC = No Connection.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS	
Die Size	129 x 90 ±5	3.28 x 2.29 ±0.1	
Die Thickness	20 ±3	0.51 ±0.08	
Min. Pad Size	4 x 4	0.10 x 0.10	
Backing		Gold	

INA111 DIE TOPOGRAPHY

PIN CONFIGURATIONS

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE		
INA111AP	8-Pin Plastic DIP	-40°C to +85°C		
INA111BP	8-Pin Plastic DIP	-40°C to +85°C		
INA111AU	SOL-16 Surface-Mount	-40°C to +85°C		
INA111BU	SOL-16 Surface-Mount	-40°C to +85°C		

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
INA111AP	8-Pin Plastic DIP			
INA111BP	8-Pin Plastic DIP	006		
INA111AU 16-Pin Surface Mount		211		
INA111BU	16-Pin Surface Mount	211		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	(V-) -0.7V to (V+) +15V
Output Short-Circuit (to ground)	
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

TYPICAL PERFORMANCE CURVES NO BOMAMRO 9889 JAC19YT

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

APPLICATION INFORMATION 23

Figure 1 shows the basic connections required for operation of the INA111. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 2Ω in series with the Ref pin will cause a typical device with 90dB CMR to degrade to approximately 80dB CMR (G=1).

SETTING THE GAIN

Gain of the INA111 is set by connecting a single external resistor, R_G :

$$G = 1 + \frac{50k\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in equation 1 comes from the sum of the two internal feedback resistors. These are on-chip metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA111.

The stability and temperature drift of the external gain setting resistor, R_G, also affects gain. R_G's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance, which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that the INA111 achieves wide bandwidth over a wide range of gain. This is due to the current-feedback topology of the INA111. Settling time also remains excellent over wide gains.

FIGURE 1. Basic Connections

The INA111 exhibits approximately 6dB rise in gain at 2MHz in unity gain. This is a result of its current-feedback topology and is not an indication of instability. Unlike an op amp with poor phase margin, the rise in response is a predictable +6dB/octave due to a response zero. A simple pole at 700kHz or lower will produce a flat passband response (see Input Filtering).

The INA111 provides excellent rejection of high frequency common-mode signals. The typical performance curve, "Common-Mode Rejection vs Frequency" shows this behavior. If the inputs are not properly balanced, however, common-mode signals can be converted to differential signals. Run the $V_{\rm IN}^+$ and $V_{\rm IN}^-$ connections directly adjacent each other, from the source signal all the way to the input pins. If possible use a ground plane under both input traces. Avoid running other potentially noisy lines near the inputs.

NOISE AND ACCURACY PERFORMANCE

The INA111's FET input circuitry provides low input bias current and high speed. It achieves lower noise and higher accuracy with high impedance sources. With source impedances of $2k\Omega$ to $50k\Omega$ the INA114 may provide lower offset voltage and drift. For very low source impedance ($\leq 1k\Omega$), the INA103 may provide improved accuracy and lower noise.

OFFSET TRIMMING

The INA111 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. Low impedance must be maintained at this node to assure good common-mode rejection. The op amp shown maintains low output impedance at high frequency. Trim circuits with higher source impedance should be buffered with an op amp follower circuit to assure low impedance on the Ref pin.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA111 is extremely high—approximately $10^{12}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than 10pA. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA111 is to operate properly. Figure 3 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA111 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

FIGURE 3. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the INA111 is approximately ±12V (or 3V from the power supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the input amplifiers, A₁ and A₂. The common-mode range is related to the output voltage of the complete amplifier—see performance curve "Input Common-Mode Range vs Output Voltage".

voltage can cause the output of A_1 or A_2 to saturate. Figure 4 shows the output voltage swing of A_1 and A_2 expressed in terms of a common-mode and differential input voltages. For applications where input common-mode range must be maximized, limit the output voltage swing by connecting the INA111 in a lower gain (see performance curve "Input Common-Mode Voltage Range vs Output Voltage"). If necessary, add gain after the INA111 to increase the voltage swing.

Input-overload often produces an output voltage that appears normal. For example, consider an input voltage of +14V on one input and +15V on the other input will obviously exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to the nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA111 will be near 0V even though both inputs are overloaded

INPUT PROTECTION

Inputs of the INA111 are protected for input voltages from 0.7V below the negative supply to 15V above the positive power supply voltages. If the input current is limited to less than 1mA, clamp diodes are not required; internal junctions will clamp the input voltage to safe levels. If the input source can supply more than 1mA, use external clamp diodes as shown in Figure 5. The source current can be limited with series resistors R_1 and R_2 as shown. Resistor values greater than $10k\Omega$ will contribute noise to the circuit.

A diode formed with a 2N4117A transistor as shown in Figure 5 assures low leakage. Common signal diodes such as

predictable +6d8/octave due to a res predictable +6d8/octave due to a respective due to a

The INA111's FET input allows use of an R/C input filter without creating large offsets due to input bias current. Figure 6 shows proper implementation of this input filter to preserve the INA111's excellent high frequency commonmode rejection. Mismatch of the common-mode input capacitance (C₁ and C₂), either from stray capacitance or

FIGURE 5. Input Protection Voltage Clamp.

FIGURE 4. Voltage Swing of A₁ and A₂.

 C_3 , reduces the bandwidth and mitigates the effects of mismatch in C_1 and C_2 . Make C_3 much larger than C_1 and C_2 . If properly matched, C_1 and C_2 also improve CMR.

OUTPUT VOLTAGE SENSE (SOL-16 Package Only)

The surface-mount version of the INA111 has a separate output sense feedback connection (pin 12). Pin 12 must be connected, usually to the output terminal, pin 11, for proper operation. (This connection is made internally on the DIP version of the INA111.)

The output feedback connection can be used to sense the output voltage directly at the load for best accuracy. Figure 8 shows how to drive a load through series interconnection resistance. Remotely located feedback paths may cause instability. This can be generally be eliminated with a high frequency feedback path through C_1 .

FIGURE 6. Input Low-Pass Filter.

FIGURE 7. Bridge Transducer Amplifier.

FIGURE 8. Remote Load and Ground Sensing.

FIGURE 9. High-Pass Input Filter.

FIGURE 10. Galvanically Isolated Instrumentation Amplifier.

FIGURE 11. AC-Coupled Instrumentation Amplifier.

FIGURE 12. Voltage Controlled Current Source.

FIGURE 13. Shield Driver Circuit.

INA114

Precision INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.25μV/°C max
- LOW INPUT BIAS CURRENT: 2nA max
- HIGH COMMON-MODE REJECTION:
 115dB min
- INPUT OVER-VOLTAGE PROTECTION: ±40V
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 3mA max
- 8-PIN PLASTIC AND CERAMIC DIP, SOL-16

APPLICATIONS

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA114 is a low cost, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications.

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to ±40V without damage.

The INA114 is laser trimmed for very low offset voltage (50 μ V), drift (0.25 μ V/°C) and high common-mode rejection (115dB at G = 1000). It operates with power supplies as low as ± 2.25 V, allowing use in battery operated and single 5V supply systems. Quiescent current is 3mA maximum.

The INA114 is available in 8-pin plastic and ceramic DIPs, and SOL-16 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

421134211		IN	A114BP, BG, I	3U	IN	114AP, AG,	AU	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	CONDITIONS	IVIIIV	TTP	WAA	IVIIN	HF	WAA	UNITS
INPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability	$T_A = +25^{\circ}\text{C}$ $T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $V_S = \pm 2.25 \text{V to } \pm 18 \text{V}$		±10 + 20/G ±0.1 + 0.5/G 0.5 + 2/G ±0.2 + 0.5/G	±50 + 100/G ±0.25 + 5/G 3 + 10/G		±25 + 30/G ±0.25 + 5/G	±125 + 500/G ±1 + 10/G	μV μV/°C μV/V μV/mo
mpedance, Differential Common-Mode Input Common-Mode Range Safe Input Voltage		±11	10 ¹⁰ 6 10 ¹⁰ 6 ±13.5	±40				Ω pF Ω pF V V
Common-Mode Rejection	$V_{CM} = \pm 10V, \Delta R_S = 1k\Omega$ G = 1 G = 10 G = 100 G = 1000	80 96 110 115	96 115 120 120	Nan	75 90 106 106	90 106 110 110		dB dB dB dB
BIAS CURRENT vs Temperature	-NOIT9N	ESCI	±0.5 ±8	±2		:8:	±5	nA pA/°C
OFFSET CURRENT vs Temperature	is a low cost, reneral	e INATIA	±0.5 ±8	±2	GE: 500V	ATJOV T	±5	nA pA/°C
NOISE VOLTAGE, RTI f = 10Hz f = 100Hz f = 100Hz f = 1kHz f _B = 0.1Hz to 10Hz Noise Current	$G = 1000, R_S = 0\Omega$	ion amplif 2 3-op am de range e ingle exte	15 11 11 11 0.4	nā max nōN:	C max RRENT: 2 E REJEC	0.25µWP BIA'S CUI ION-MOD	W DRIFT W INPUT GH COMB	nV/√Hz nV/√Hz nV/√Hz μVp-p
f=1kHz f _B = 0.1Hz to 10Hz		ernal impa	0.4 0.2 18	:иопо:	пояч ва	ATLOV-I	5dB min PUT OVE	pA/√Hz pA/√Hz pAp-p
GAIN Gain Equation Range of Gain Gain Error Gain Error Gain Vs Temperature SOkΩ Resistance(1) Nonlinearity	G = 1 G = 10 G = 100 G = 1000 G = 1	e INALL4 byV), drif ection (1) pplies as erated and it is 3mA e INALL4 Ps. and St.	$\begin{array}{c} 1 + (50 \text{k}\Omega/\text{R}_{\text{G}}) \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.05 \\ \pm 0.5 \\ \pm 2.5 \\ \pm 2.5 \\ \pm 0.0001 \\ \pm 0.0005 \\ \pm 0.0005 \\ \pm 0.002 \end{array}$	10000 ±0.05 ±0.4 ±0.5 ±1 ±10 ±100 ±0.001 ±0.002 ±0.002	E: ±2.25 t RRENT: 3 SERAMIO	LY RANG DENT OU TO AND C	±0.5 ±0.7 ±2 ±10 ±0.002 ±0.004 ±0.004	V/V V/V % % % ppm/°C % of FS % of FS % of FS
OUTPUT Voltage Load Capacitance Stability Short Circuit Current	$\begin{split} I_O &= 5 mA, T_{MIN} \text{ to } T_{MAX} \\ V_S &= \pm 11.4 V, R_L = 2 k \Omega \\ V_S &= \pm 2.25 V, R_L = 2 k \Omega \end{split}$	±13.5 ±10 ±1	±13.7 ±10.5 ±1.5 1000 +20/–15		PULTER RER NTATION	UPLE AN R AMPLI STRUME	EDICAL IN	V V V pF mA
FREQUENCY RESPONSE Bandwidth, –3dB Slew Rate Settling Time, 0.01% Overload Recovery	$G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ V_0 = \pm 10V, G = 10 \\ G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ S0\% Overdrive$	0.3 PITAM	1 100 10 1 0.6 18 20 120 1100 20	\(\frac{1}{8}\)	sgalloV neilbel	MGCTISH S S S S S S S	NTA ACCI	MHz kHz kHz kHz V/µs µs µs µs µs
POWER SUPPLY Voltage Range Current	V _{IN} = 0V	±2.25	±15 ±2.2	±18 ±3	*	(S)	Į: I	V mA
TEMPERATURE RANGE Specification Operating	(11)	-40 -40	80	85 125	1:	8	Ĩ :	°C °C °C

^{*} Specification same as INA114BP/BU.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

NOTE: (1) Temperature coefficient of the "50k Ω " term in the gain equation.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

	CONTRACTOR OF THE CONTRACTOR O
Supply Voltage	±18V
Input Voltage Range	±40V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

INATIA DIE TOPOGRAPHY

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE		
INA114AP	Plastic DIP	-40°C to +85°C		
INA114BP	Plastic DIP	-40°C to +85°C		
INA114AG	Ceramic DIP	-40°C to +85°C		
INA114BG	Ceramic DIP	-40°C to +85°C		
INA114AU	Surface-Mount	-40°C to +85°C		
INA114BU	Surface-Mount	-40°C to +85°C		

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA114AP	8-Pin Plastic DIP	006
INA114BP	8-Pin Plastic DIP	006
INA114AG	8-Pin Ceramic DIP	254
INA114BG	8-Pin Ceramic DIP	254
INA114AU SOL-16 Surface-Mount		211
INA114BU	SOL-16 Surface-Mount	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

PAD

6 7 8

9A, 9B

FUNCTION

R_G V⁻IN V⁺IN V-

Ref

PAD

1A, 1B

3

be connected. NC = No Connection. FUNCTION

V_O Feedback

V+ R_G

MECHANICAL	INFORMATION

MECHANICA	L INFORMA	TION
	MILS (0.001")	MILLIMETERS
Die Size	141 x 120 ±5	3.58 x 3.05 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		Gold

Pads 1A and 1B must be connected. Pads 9A and 9B must

Substrate Bias: Internally connected to V- power supply.

INA114 DIE TOPOGRAPHY

Plastic DIP	

PACKAGE INFORMATION

TYPICAL PERFORMANCE CURVES UD BOMAMROBRES JACISYT

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

INSTRUMENTATION AMPLIFIERS

YOMEUDER SETTLING TIME vs GAIN MAGO

TYPICAL PERFORMANCE CURVES (CONT) MAMPO THE JACIST

At T_A = +25°C, V_S = ±15V, unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA114. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 5Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

SETTING THE GAIN

Gain of the INA114 is set by connecting a single external resistor, R_G :

$$G = 1 + \frac{50 \text{ k}\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in equation (1) comes from the sum of the two internal feedback resistors. These are on-chip metal film resistors which are laser trimmed to accurate absolute val-

ues. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA114.

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

NOISE PERFORMANCE

The INA114 provides very low noise in most applications. For differential source impedances less than $1k\Omega$, the INA103 may provide lower noise. For source impedances greater than $50k\Omega$, the INA111 FET-input instrumentation amplifier may provide lower noise.

Low frequency noise of the INA114 is approximately $0.4\mu Vp$ -p measured from 0.1 to 10Hz. This is approximately one-tenth the noise of "low noise" chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

VII VE 1 1111111111111

The INA114 is laser trimmed for very low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. Low impedance must be maintained at this node to assure good common-mode rejection. This is achieved by buffering trim voltage with an op amp as shown.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA114 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than $\pm 1nA$ (it can be either polarity due to cancellation circuitry). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA114 is to operate properly. Figure 3 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA114 and the input amplifiers will saturate. If the differential source resistance is low, bias current return path can be connected to one input (see thermocouple example in Figure 3). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better common-mode rejection.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the INA114 is approximately ± 13.75 V (or 1.25V from the power supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the input amplifiers, A_1 and A_2 . The common-mode range is related to the output voltage of the complete amplifier—see performance curve "Input Common-Mode Range vs Output Voltage."

FIGURE 3. Providing an Input Common-Mode Current Path.

A combination of common-mode and differential input signals can cause the output of A_1 or A_2 to saturate. Figure 4 shows the output voltage swing of A_1 and A_2 expressed in terms of a common-mode and differential input voltages. Output swing capability of these internal amplifiers is the same as the output amplifier, A_3 . For applications where input common-mode range must be maximized, limit the output voltage swing by connecting the INA114 in a lower gain (see performance curve "Input Common-Mode Voltage Range vs Output Voltage"). If necessary, add gain after the INA114 to increase the voltage swing.

Input-overload often produces an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will obviously exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA114 will be near 0V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the INA114 are individually protected for voltages up to ±40V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input

OUTPUT VOLTAGE SENSE (SOL-16 package only)

The surface-mount version of the INA114 has a separate output sense feedback connection (pin 12). Pin 12 must be connected to the output terminal (pin 11) for proper operation. (This connection is made internally on the DIP version of the INA114.)

voltage directly at the load for best accuracy. Figure 5 shows how to drive a load through series interconnection resistance. Remotely located feedback paths may cause instability. This can be generally be eliminated with a high frequency feedback path through C_1 . Heavy loads or long lines can be driven by connecting a buffer inside the feedback path (Figure 6).

FIGURE 4. Voltage Swing of A₁ and A₂.

FIGURE 5. Remote Load and Ground Sensing.

FIGURE 6. Buffered Output for Heavy Loads.

FIGURE 7. Shield Driver Circuit.

FIGURE 8. RTD Temperature Measurement Circuit.

FIGURE 9. Thermocouple Amplifier With Cold Junction Compensation.

FIGURE 10. ECG Amplifier With Right-Leg Drive.

FIGURE 11. Bridge Transducer Amplifier.

FIGURE 12. AC-Coupled Instrumentation Amplifier.

@ MEDICAL INSTRUMENTATION

FIGURE 13. Differential Voltage-to-Current Converter.

INA115

Precision INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.25µV/°C max
- LOW INPUT BIAS CURRENT: 2nA max
- HIGH COMMON-MODE REJECTION: 115dB min
- INPUT OVER-VOLTAGE PROTECTION: ±40V
- WIDE SUPPLY RANGE: ±2.25 TO ±18V
- LOW QUIESCENT CURRENT: 3mA max
- SOL-16 SURFACE-MOUNT PACKAGE

APPLICATIONS

- SWITCHED-GAIN AMPLIFIER
- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA115 is a low cost, general purpose instrumentation amplifier offering excellent accuracy. Its versatile three-op amp design and small size make it ideal for a wide range of applications. Similar to the model INA114, the INA115 provides additional connections to the input op amps, A₁ and A₂, which improve gain accuracy in high gains and are useful in forming switched-gain amplifiers.

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to ±40V without damage.

The INA115 is laser trimmed for very low offset voltage (50μV), drift (0.25μV/°C) and high commonmode rejection (115dB at G=1000). It operates with power supplies as low as ±2.25V, allowing use in battery operated and single 5V supply systems. Quiescent current is 3mA maximum.

The INA115 is available in the SOL-16 surface-mount package, specified for the -40°C to +85°C temperature range.

Tel: (520) 746-1111 · Twx: 910-952-1111 · Cable: BBRCORP

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

ELECTRICAL At T_A = +25°C, V_S = \pm 15V, R_L = 2k Ω unless otherwise noted.

ged by HSD. Burr-Brown	ningo oo may miding di	mer Salari S	INA115BU			INA115AU		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability mpedance, Differential Common-Mode	T_A = +25°C T_A = T_{MIN} to T_{MAX} V_S = ±2.25V to ±18V	programme appropriate of appropriate	±10 + 20/G ±0.1 + 0.5/G 0.5 + 2/G ±0.2 + 0.5/G 10 ¹⁰ 6 10 ¹⁰ 6	±50 + 100/G ±0.25 + 5/G 3 + 10/G	16 NG	±25 + 30/G ±0.25 + 5/G	±125 + 500/G ±1 + 10/G	μV μV/°C μV/V μV/mo Ω pF Ω pF
Input Common-Mode Range Safe Input Voltage Common-Mode Rejection	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$ G = 1 G = 10 G = 100 G = 1000	±11 80 96 110 115	96 115 120 120	±40	75 90 106 106	90 106 110	V _M 5 NO 8 V- 7	V V dB dB dB dB
BIAS CURRENT vs Temperature	epres	apply victings out Voltage	±0.5 ±8	±2	M 6	:	±5	nA pA/°C
OFFSET CURRENT vs Temperature	(orange of home	upot Stored seraling Ten	±0.5 ±8	±2			±5	nA pA/°C
NOISE VOLTAGE, RTI f = 10Hz f = 100Hz	$G = 1000, R_S = 0\Omega$	nge Tanga nction Temp ad Tempera	15 11					nV/√Hz nV/√Hz
f = 1kHz f _B = 0.1Hz to 10Hz Noise Current f=10Hz f=1kHz	NEORMATION PACKAGE	DERING	0.4 0.4 0.2	DWWARD 18	PACKAI	11017	INFORMA	nV/√Hz μVp-p pA/√Hz pA/√Hz
f _B = 0.1Hz to 10Hz		DATIBALL	18	(1) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E	MANAGES.	304	1045	pAp-p
GAIN Gain Equation Range of Gain Gain Error Gain vs Temperature 50kΩ Resistance(1) Nonlinearity	G = 1 G = 10 G = 100 G = 1000 G = 1 G = 1 G = 10 G = 100 G = 1000		1 + (50kΩ/R _G) ±0.01 ±0.02 ±0.05 ±0.5 ±2 ±25 ±0.0001 ±0.0005 ±0.0005	10000 ±0.05 ±0.4 ±0.5 ±1 ±10 ±100 ±0.001 ±0.002 ±0.002	table, plass	Invold-sosi		V/V V/V % % % ppm/°C ppm/°C % of FSF % of FSF % of FSF % of FSF
Voltage Load Capacitance Stability Short Circuit Current	$\begin{split} &I_O=5mA,T_{MIN}toT_{MAX}\\ &V_S=\pm11.4V,R_L=2k\Omega\\ &V_S=\pm2.25V,R_L=2k\Omega \end{split}$	±13.5 ±10 ±1	±13.7 ±10.5 ±1.5 1000 +20/-15			THE IS		V V V pF mA
FREQUENCY RESPONSE Bandwidth, -3dB Slew Rate Settling Time, 0.01% Overload Recovery	G = 1 G = 10 G = 100 G = 1000 G = 1000 G = 10 G = 10 G = 100 G = 100 G = 100	0.3	1 100 10 1 1 0.6 18 20 120 1100 20					MHz kHz kHz kHz kHz yµs µs µs µs µs
POWER SUPPLY Voltage Range Current	0) 3.114 V _{IN} = 0V	±2.25	±15 ±2.2	±18 ±3		* 400		V mA
TEMPERATURE RANGE Specification Operating $\theta_{ m JA}$	o Thickness 20 s n. Pad Size 4 x otino	-40 -40	80	+85 +125				°C °C °C

^{*} Specification same as INA115BU.

NOTE: (1) Temperature coefficient of the *50kΩ* term in the gain equation. (2) Output specifications are for output amplifier, A₃. A₁ and A₂ provide the same output voltage swing but have less output current drive. A, and A, can drive external loads of 25kΩ || 200pF.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATIONS

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA115AU	SOL-16 Surface-Mount	211
INA115BU SOL-16 Surface-Mount		21100001

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ITR agailov isallo

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	±40V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

PAD

2

3

4

5

MODEL	PACKAGE	TEMPERATURE RANGE		
INA115AU	SOL-16 Surface-Mount	-40°C to +85°C		
INA115BU	SOL-16 Surface-Mount	-40°C to +85°C		

DICE INFORMATION

Substrate Bias: Internally connected to V- power supply.

PAD

8

9 10

11

12

13

FUNCTION

Feedback

V+

Gain Sense₂

MECHANICAL INFORMATION

FUNCTION

V_{O1} Gain Sense

RG

V-IN

V+IN

	MILS (0.001")	MILLIMETERS
Die Size	141 x 120 ±5	3.58 x 3.05 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		_ Gold

INA115 DIE TOPOGRAPHY

TYPICAL PERFORMANCE CURVES TO BOMAMROSISES JACISTO

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

INPUT COMMON-MODE VOLTAGE RANGE

vs OUTPUT VOLTAGE

(Any Gain)

0

V_{D/2} =

-5

Output Voltage (V)

A₂ - Output

Swing Limit

Output Swing

-10

Limited by A. Output Swing

A₃ + Output

Output Swing

10

15

5

Swing Limit

INSTRUMENTATION AMPLIFIERS

10 Voltage (V)

-5

-10

-15

Common-Mode

1.0

0.8

0.2

0

-75

-50

-25 0

Slew Rate (V/µs)

SLEW RATE vs TEMPERATURE

25

Temperature (°C)

50 75

125 100

INA115

INSTRUMENTATION AMPLIFIERS

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA115. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 5Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

The INA115 has a separate output sense feedback connection (pin 12). Pin 12 must be connected (normally to the output terminal, pin 11) for proper operation. The output sense connection can be used to sense the output voltage directly at the load for best accuracy.

SETTING THE GAIN

Gain of the INA115 is set by connecting a single external resistor, $R_{\rm g}$:

$$G = 1 + \frac{50 \text{ k}\Omega}{R_G}$$
 (1)

Commonly used gains and resistor values are shown in Figure 1.

For G=1, no resistor is required, but connect pins 2-3 and connect pins 14-15. Gain peaking in G=1 can be reduced by shorting the internal $25k\Omega$ feedback resistors (see typical performance curve Gain vs Frequency). To do this, connect pins 1-2-3 and connect pins 8-14-15.

The $50k\Omega$ term in equation 1 comes from the sum of the two internal feedback resistors. These are on-chip metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA115.

The stability and temperature drift of the external gain setting resistor, $R_{\rm g}$, also affects gain. $R_{\rm g}$'s contribution to gain error and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. The "force and sense" type connections illustrated in Figure 1 help reduce the effect of interconnection resistance.

FIGURE 1. Basic Connections.

BBB

Multiplexer "on" resistance does not significantly affect gain. The resistor values required for some commonly used gain steps are shown. This circuit uses the internal $25k\Omega$ feedback resistors, so the resistor values shown cannot be scaled to a different impedance level.

Figure 3 shows an alternative switchable gain configuration. This circuit does not use the internal $25k\Omega$ feedback resistors, so the nominal values shown can be scaled to other impedance levels. This circuit is ideal for use with a precision resistor network to achieve excellent gain accuracy and lowest gain drift.

NOISE PERFORMANCE

The INA115 provides very low noise in most applications. For differential source impedances less than $1k\Omega$, the INA103 may provide lower noise. For source impedances greater than $50k\Omega$, the INA111 FET-Input Instrumentation Amplifier may provide lower noise.

Low frequency noise of the INA115 is approximately $0.4\mu Vp$ -p measured from 0.1 to 10Hz. This is approximately one-tenth the noise of "low noise" chopper-stabilized amplifiers

drift. Most applications require no external offset adjustment. Figure 4 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. Low impedance must be maintained at this node to assure good common-mode rejection. This is achieved by buffering the trim voltage with an op amp as shown.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA115 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than $\pm 1nA$ (it can be either polarity due to cancellation circuitry). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA115 is to operate properly. Figure 5 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA115 and the input amplifiers will saturate. If the differential source resistance is low, a bias current return path can be connected to one input (see thermocouple example in Figure 5). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due bias current and better common-mode rejection.

FIGURE 2. Switched-Gain Instrumentation Amplifier (minimum components).

FIGURE 3. Switched-Gain Instrumentation Amplifier (improved gain drift).

FIGURE 5. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the INA115 is approximately $\pm 13.75 \mathrm{V}$ (or $1.25 \mathrm{V}$ from the power supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the input amplifiers, A_1 and A_2 . The common-mode range is related to the output voltage of the complete amplifier—see performance curve "Input Common-Mode Range vs Output Voltage."

A combination of common-mode and differential input signals can cause the output of A_1 or A_2 to saturate. Figure 6 shows the output voltage swing of A_1 and A_2 expressed in terms of a common-mode and differential input voltages. Output swing capability of the input amplifiers, A_1 and A_2 is the same as the output amplifier, A_3 . For applications where input common-mode range must be maximized, limit the output voltage swing by connecting the INA115 in a lower gain (see performance curve "Input Common-Mode Voltage Range vs Output Voltage"). If necessary, add gain after the INA115 to increase the voltage swing.

Input-overload often produces an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will obviously exceed the linear

common-mode range of both input amplifiers. Since both input amplifiers are saturated to the nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA115 will be near 0V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the INA115 are individually protected for voltages up to ±40V. For example, a condition of –40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input current limit behavior. The inputs are protected even if the power supply voltage is zero.

OTHER APPLICATIONS

See the INA114 data sheet for other applications circuits of general interest.

FIGURE 6. Voltage Swing of A₁ and A₂.

FIGURE 7. ECG Amplifier with Right Leg Drive.

INA116

Ultra Low Input Bias Current INSTRUMENTATION AMPLIFIER

FEATURES

- LOW INPUT BIAS CURRENT: 3fA typ
- BUFFERED GUARD DRIVE PINS
- LOW OFFSET VOLTAGE: 2mV max
- HIGH COMMON-MODE REJECTION:
 84dB (G = 10)
- LOW QUIESCENT CURRENT: 1mA
- INPUT OVER-VOLTAGE PROTECTION: ±40V

APPLICATIONS

- LABORATORY INSTRUMENTATION
- pH MEASUREMENT
- ION-SPECIFIC PROBES
- LEAKAGE CURRENT MEASUREMENT

DESCRIPTION

The INA116 is a complete monolithic FET-input instrumentation amplifier with extremely low input bias current. **Difet**® inputs and special guarding techniques yield input bias currents of 3fA at 25°C, and only 25fA at 85°C. Its 3-op amp topology allows gains to be set from 1 to 1000 by connecting a single external resistor.

Guard pins adjacent to both input connections can be used to drive circuit board and input cable guards to maintain extremely low input bias current.

The INA116 is available in 16-pin plastic DIP and SOL-16 surface-mount packages, specified for the -40°C to $+85^{\circ}\text{C}$ temperature range.

Difet®; Burr-Brown Corporation

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BITAMI			INA116P, U			NA116PA, U	A	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT Offset Voltage, RTI	T 050		10.5 10.510			100	15.1510	
Initial vs Temperature	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}	S	±0.5 ±0.5/G ee Typical Cun	±2 ±2/G re ±50 ±100/G			±5 ±5/G ±100 ±200/G	mV μV/V
vs Power Supply Long-Term Stability Bias Current	$V_S = \pm 4.5 V \text{ to } \pm 18 V$		±10 ±15/G ±1 ±5/G +3	±25		:	±100 ±200/G	μV/mo fA
vs Temperature Offset Current		S	ee Typical Cun			:	±100	fA
vs Temperature mpedance, Differential	portación de entre pod	S	ee Typical Cun >1015/0.2		articularism n	Market against	100000000000000000000000000000000000000	Ω/pF
Common-Mode Voltage Range	Current	(V+)-4 (V-)+4	>10 ¹⁵ /7 (V+)-2	ni we	J:svi	IU.		Ω/pF V V
Safe Input Voltage Common-Mode Rejection	$V_{CM} = \pm 11V$, $\Delta R_S = 1k\Omega$	±40	(V-)+2.4	THEA	01 1537	PM		V
	G = 1	80	89	N 0 MEG 27	73			dB
OLSE TON TOWNS CONTROL	G = 10 G = 100	84 86	92 94		78 80	NEWS CALLED	Service of the Control of the Contro	dB dB
	$V_{CM} = \pm 5V, G = 1000$	86	94		80			dB
NOISE Voltage Noise, RTI	$G = 1000, R_S = 0\Omega$	1003	u .	-5-44-19			MUIA	217
f = 1kHz wii 1mmi-1.34	s a complete morolithic	allavila	28	A typ	RENT: 3	BIAS CUI	TURNEUT	nV/√Hz
f _B = 0.1Hz to 10Hz Current Noise	aplifier with extremel	atation at	2		MIS BYIR	GORAUS	OBABIN	μVр-р
f = 1kHz	inputs and special gr	rest. Dife	0.1	N OWN	Manc - Mrs	AT MAKE	apose un	fA/√Hz
GAIN ATCL VINO ban D	as currents of 31A at 25	id ladini pr	1 (50) 0 (5)	10.00	(A) (A) (A) (A) (A)	William Com	ARRENO LOS	
Gain Equation Range of Gain	offin ABolocian dunt do-	85°C. Its	$1+(50k\Omega/R_G)$	1000	Datas a	GON-NO	INTERIOR PRO	V/V V/V
Gain Error	gris a a G = 1 mos vd 0	101 of 1 m	±0.01	±0.05			0.1	%
ed are anotherne	G = 10 G = 100	s sinici bus	±0.25 ±0.35	±0.4 ±0.5	RENT: 1	UO THEC	±0.5 ±0.7	% %
it cable guards to	G = 100	ed to drive	±0.35	±0.5	EPROTEC	POLTAGE	10.7	%
Gain vs Temperature(1)	o and to G = 1 of viame	intain extr	±5	±10		*	±20	ppm/°C
50kΩ Resistance ⁽¹⁾⁽²⁾ Nonlinearity	G = 1 delatione s	SELECT .	±25 ±0.0005	±100 ±0.005			±100 ±0.01	ppm/°C % of FS
	G = 10	COLLEGE	±0.001	±0.005		HONE	±0.01	% of FS
he -40°C to 485°C	G = 100	amour-sons	±0.001	±0.005		*	±0.01	% of FS
OLIADO OLITOLITO	G = 1000	u ampradi	±0.005	MON	DWENTA	HISMEYP	OTABOS	% of FS
GUARD OUTPUTS Offset Voltage			±15	±50		EMENT	MEASUR	mV
Output Impedance			650		53	SOR'S OF	H-SPECK	Ω
Current Drive			+2/-0.05	75550-15	20112 A 2018	THERM	9 90000	mA
OUTPUT Voltage Positive	$R_L = 10k\Omega$	(V+) -1	(V+) -0.7	3 3 3 3 3 3 3 3 3 3 3			V 1000000000	V
Negative	$R_L = 10k\Omega$	(V-) +0.35	(V-) +0.2					V
Load Capacitance Stability Short-Circuit Current		e e	1000 +5/–12				21.450	pF mA
FREQUENCY RESPONSE		Ell	+3/-12			The same of the sa		IIIA
Bandwidth, –3dB	G = 1		800	a 1	d management		SHE)	kHz
	G = 10		500	1	Lingsage Vige	O LE		kHz
Dist	G = 100 G = 1000		70		T LINES BOTT	100	et dese	kHz kHz
Slew Rate	G = 10 to 200	22008	0.8			100	1027	V/µs
Settling Time, 0.01%	10V Step, G = 1 G = 10	4 1 3	22 25	1				μs
	G = 100		145		Mary			μs μs
Output Overload Recovery	G = 1000 50% Overdrive		400 20			a Pie	6.0	μs μs
POWER SUPPLY			1865	7 1				
Voltage Range Current	V _{IN} = 0V	±4.5	±15 ±1	±18 ±1.4	*	le Ch	wo .	V
TEMPERATURE RANGE	V _{IN} = UV		A. II	I1.4	1 Inchiant Inchiant	0 0		mA
Specification	200	-40		85	Listand			°C
Operating		-40		125	*		100	°C
θ_{JA}		The second second	80		The second second			°C/W

^{*} Specification same as INA116P

NOTE: (1) Guaranteed by wafer test. (2) Temperature coefficient of the "50k Ω " term in the gain equation.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DICE INFORMATION

PAD	FUNCTION	PAD	FUNCTION
1A, 1B	R _G	9	Ref
2	Guard -	10	_
3	V _{IN}	11	Vo
4	Guard -	12	2/10/F - 72
5	Guard +	13	V+
6	V _{IN}	14	
7	Guard +	15	
8A, 8B	V-	16A, 16B	R _G

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

ZIIII	MILS (0.001")	MILLIMETERS
Die Size	112 x 121 ±5	2.84 x 3.07 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		None

INA116 DIE TOPOGRAPHY

111371

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	±40\
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA116PA	16-Pin Plastic DIP	180
INA116P	16-Pin Plastic DIP	180
INA116UA	SOL-16 Surface-Mount	211
INA116U	SOL-16 Surface-Mount	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) MAMAGINES JACKST

 $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 10$ k Ω unless otherwise noted.

APPLICATIONS INFORMATION

Figure 1 shows the connections required for basic operation of the INA116. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the supply pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low impedance connection to assure good common-mode rejection. A resistance of 30Ω in series with this connection will cause a typical device to degrade to approximately 72dB CMR at G=1.

SETTING THE GAIN

Gain of the INA116 is set by connecting a single external resistor, R_G, as shown. The gain is—

$$G = 1 + \frac{50k\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in equation 1 is the sum of the two feedback resistors of A_1 and A_2 . These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA116.

The stability and temperature drift of R_G also affect gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain make wiring resistance important. Sockets add to the wiring resistance that will contribute additional gain error in gains of approximately 100 or greater.

OFFSET TRIMMING

The INA116 is laser trimmed for low offset voltage and offset voltage drift; most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. A voltage applied to the Ref terminal is summed at the output. Op amp A_1 provides a low source impedance for the Ref terminal, assuring good common-mode rejection.

FIGURE 1. Basic Connections.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

Input circuitry must provide an input bias current path for proper operation. Figure 3 shows resistors R_1 and R_2 to provide an input current path. Without these resistors, the inputs would eventually float to a potential that exceeds the common-mode range of the INA116 and the input amplifiers would saturate. Because of its exceedingly low input bias current, improperly biased inputs may operate normally for a period of time after power is first applied, or operate intermittently.

FIGURE 3. Providing An Input Bias Current Path.

CIRCUIT BOARD LAYOUT AND ASSEMBLY

Careful circuit board layout and assembly techniques are required to achieve the exceptionally low input bias current performance of the INA116. Guard terminals adjacent to both inputs make it easy to properly guard the critical input terminal layout. Since traces are not required to run between device pins, this layout is easily accomplished, even with the surface mount package. The guards should completely encircle their respective input connections—see Figure 4. Both sides of the circuit board should be guarded, even if only one side has an input terminal conductor. Route any timevarying signals away from the input terminals. Solder mask should not cover the input and guard traces since this can increase leakage.

FIGURE 4. Circuit Board Guard Layout.

After assembly, the circuit board should be cleaned. Commercial solvents should be chosen according to the soldering method and flux used. Solvents should be cleaned and replaced often. Solvent cleaning should be followed by a deionized water rinse and 85°C bake out.

Sockets can be used, but select and evaluate them carefully for best results. Use caution when installing the INA116 in a socket. Careless handling can contaminate the plastic near the input pins, dramatically increasing leakage current.

A proven low leakage current assembly method is to bend the input pins outward so they do not contact the circuit board. Input connections are made in air and soldered directly to the input pin. This technique is often not practical or production-worthy. It is, however, a useful technique for evaluation and testing and provides a benchmark with which to compare other wiring techniques. The circuit board guarding techniques discussed normally reduce leakage to acceptable levels.

A solid mechanical assembly is required for good results. Nearby plastic parts can be especially troublesome since a static charge can develop and the slightest motion or vibration will couple charge to the inputs. Place a Faraday shield around the whole amplifier and input connection assembly to eliminate stray fields.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

INPUT CONNECTIONS

Some applications must make high impedance input connections to external sensors or input connectors. To assure low leakage, the input should be guarded all the way to the signal source—see Figure 5. Coaxial cable can be used with the shield driven by the guard. A separate connection is required to provide a ground reference at the signal source. Triaxial cable may reduce noise pickup and provides the ground reference at the source. Drive the inner shield at guard

potential and ground the outer shield. Two separate guarded lines are required if both the inverting and non-inverting inputs are brought to the source.

The guard drive output current is limited to approximately +2mA/-50µA. For slow input signals the internal guard output can directly drive a cable shield. With fast input signals, however, the guard may not provide sufficient output current to rapidly charge the cable capacitance. An op amp buffer may be required as shown in Figure 6.

FIGURE 5. Input Cable Guarding Circuits.

FIGURE 6. Buffered Guard Drive.

FIGURE 7. pH or Ion Measurement System.

High Common-Mode Voltage DIFFERENCE AMPLIFIER

FEATURES

- ◆ COMMON-MODE INPUT RANGE: ±200V (V_S = ±15V)
- PROTECTED INPUTS: ±500V Common-Mode ±500V Differential
- UNITY GAIN: 0.02% Gain Error max
- NONLINEARITY: 0.001% max
- CMRR: 86dB min

APPLICATIONS

- CURRENT MONITOR
- BATTERY CELL-VOLTAGE MONITOR
- GROUND BREAKER
- INPUT PROTECTION
- SIGNAL ACQUISITION IN NOISY ENVIRONMENTS
- FACTORY AUTOMATION

DESCRIPTION

The INA117 is a precision unity-gain difference amplifier with very high common-mode input voltage range. It is a single monolithic IC consisting of a precision op amp and integrated thin-film resistor network. It can accurately measure small differential voltages in the presence of common-mode signals up to $\pm 200V$. The INA117 inputs are protected from momentary common-mode or differential overloads up to $\pm 500V$.

In many applications, where galvanic isolation is not essential, the INA117 can replace isolation amplifiers. This can eliminate costly isolated input-side power supplies and their associated ripple, noise and quiescent current. The INA117's 0.001% nonlinearity and 200kHz bandwidth are superior to those of conventional isolation amplifiers.

The INA117 is available in 8-pin plastic mini-DIP and SO-8 surface-mount packages, specified for the 0° C to +70°C temperature range. The metal TO-99 models are available specified for the -25°C to +85°C and -55°C to +125°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At T_A = +25°C, V_S = ±15V unless otherwise noted.

		INA	117AM,	SM	1	NA117BI	VI	IN	A117P, I	KU	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Initial (1) Error vs Temperature Nonlinearity (2)	-W-s n-		1 0.01 2 0.0002	0.05 10 0.001	J 000		0.02	1-1/	٧÷٠	(3) 10	V/V % ppm/°C %
OUTPUT Rated Voltage Rated Current Impedance Current Limit Capacitive Load	I_0 = +20mA, -5mA V_0 = 10V To Common Stable Operation	10 +20, –5	12 0.01 +49, -13 1000		\ \		7 ~	j:w		/ str	V mA Ω mA pF
INPUT Impedance Voltage Range Common-Mode Rejection (3)	Differential Common-Mode Differential Common-Mode, Continuous	±10 ±200	800 400		notice	nop on e	NeW Viet	V (become	ernally or	tol sas D	kΩ kΩ V
DC AC, 60Hz vs Temperature, DC AM, BM, P, KU SM	$V_{CM} = 400Vp-p$ $T_A = T_{MIN}$ to T_{MAX}	70 66 66 60	80 80 75 75	l vss.i	86 66 80	94 94 90	BOMIT	AH MU	MXA	a HTU	dB dB dB
OFFSET VOLTAGE Initial KU Grade (SO-8 Package) vs Temperature vs Supply vs Time	RTO (4) $T_{A} = T_{MIN} \text{ to } T_{MAX}$ $V_{S} = \pm 5V \text{ to } \pm 18V$	74	120 8.5 90 200	1000	80	•	1000	aucur 01 Jadau	600	2000	μV μV μV/°C dB μV/mo
OUTPUT NOISE VOLTAGE f _B = 0.01Hz to 10Hz f _B = 10kHz	RTO (5) Premis one private beliefed to and of tweety one of the colored	(r) BTC A no Jes	25 550	+85°C +300°C shugus	-60 (Br			_ (e0) _g	t U SO-e	to DIP an operature had Cim	μVp-p nV/√Hz
DYNAMIC RESPONSE Gain Bandwidth, -3dB Full Power Bandwidth Slew Rate Settling Time: 0.1% 0.01% 0.01%	$V_{O} = 20 \text{Vp-p}$ $V_{O} = 10 \text{V Step}$ $V_{O} = 10 \text{V Step}$ $V_{CM} = 10 \text{V Step}$, $V_{DIFF} = 0 \text{V}$	30 2	200 2.6 6.5 10 4.5	HOMA	R SHOTA	*		OITAS SBAK	6903) 49	H OM	kHz kHz V/µs µs µs µs
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated Performance $V_O = 0V$	±5	±15	±18	1707+ or 188+ or 0 188+ or 0	016 165- 165- 178-	111	old-scath isteld Ct isteld St isteld St	& 8 08 -01 -01 -01	. 10	V V mA
TEMPERATURE RANGE Specification: AM, BM, P, KU SM Operation Storage		-25 -55 -55 -65		+85 +125 +125 +150	:			0 -25 -40		+70 +85 +85	ိ လို လို လိ

^{*}Specification same as for INA117AM.

NOTES: (1) Connected as difference amplifier (see Figure 1). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) With zero source impedance (see discussion of common-mode rejection in Application Information section). (4) Includes effects of amplifier's input bias and offset currents. (5) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	U6 100
Supply Voltage	±22V
Input Voltage Range, Continuous	±200V
Common-Mode and Differential, 10s	±500V
Operating Temperature	
M Metal TO-99	55 to +125°C
P Plastic DIP and U SO-8	40 to +85°C
Storage Temperature	
M Package	65 to +150°C
P Plastic DIP and U SO-8	
Lead Temperature (soldering, 10s)	
Output Short Circuit to Common	Continuous

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
INA117P	8-Pin Plastic DIP	006		
INA117KU	SO-8 Surface Mount	182		
INA117AM	TO-99 Metal	001		
INA117BM	TO-99 Metal	001		
INA117SM	TO-99 Metal	001		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
INA117P	8-Pin Plastic DIP	0°C to +70°C
INA117KU	SO-8 Surface-Mount	0°C to +70°C
INA117AM	TO-99 Metal	-25°C to +85°C
INA117BM	TO-99 Metal	-25°C to +85°C
INA117SM	TO-99 Metal	-55°C to +125°C

sheet, or Appendix C of Burr-Brown IC Data Book.

INA117	DIF	TOPOGRAPHY

PAD	FUNCTION
r inuly is	Ref B
2	-In
3	+In
4	V-
5	Ref A
6	Output
7	V+ (connect both pads)
8	Comp
9	(Op Amp -In)
10	(Op Amp +In)

Substrate Bias: Electrically connected to –V supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	85 x 103 ±5	2.16 x 2.62 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.01 x 0.01
Backing		Gold

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

Applications with noisy or high impedance power supply lines may require decoupling capacitors close to the device pins.

The output voltage is equal to the differential input voltage between pins 2 and 3. The common mode input voltage is rejected.

Internal circuitry connected to the compensation pin 8 cancels the parasitic distributed capacitance between the feedback resistor, R₂, and the IC substrate. For specified dynamic performance, pin 8 should be grounded or connected through a 0.1µF capacitor to an AC ground such as V+.

FIGURE 1. Basic Power and Signal Connections.

COMMON-MODE REJECTION

Common-mode rejection (CMR) of the INA117 is dependent on the input resistor network, which is laser-trimmed for accurate ratio matching. To maintain high CMR, it is important to have low source impedances driving the two inputs. A 75Ω resistance in series with pin 2 or 3 will decrease CMR from 86dB to 72dB.

Resistance in series with the reference pins will also degrade CMR. A 4Ω resistance in series with pin 1 or 5 will decrease CMRR from 86dB to 72dB.

Most applications do not require trimming. Figures 2 and 3 show optional circuits that may be used for trimming offset voltage and common-mode rejection.

TRANSFER FUNCTION

Most applications use the INA117 as a simple unity-gain difference amplifier. The transfer function is:

$$V_0 = V_3 - V_2$$

V₃ and V₂ are the voltages at pins 3 and 2.

FIGURE 2. Offset Voltage Trim Circuits.

Some applications, however, apply voltages to the reference terminals (pins 1 and 5). A more complete transfer function is:

$$V_0 = V_3 - V_2 + 19 \cdot V_5 - 18 \cdot V_1$$

 V_5 and V_1 are the voltages at pins 5 and 1.

MEASURING CURRENT

The INA117 can be used to measure a current by sensing the voltage drop across a series resistor, $R_{\rm S}$. Figure 4 shows the INA117 used to measure the supply currents of a device under test. The circuit in Figure 5 measures the output current of a power supply. If the power supply has a sense connection, it can be connected to the output side of $R_{\rm S}$ to eliminate the voltage-drop error. Another common application is current-to-voltage conversion as shown in Figure 6.

FIGURE 3. CMR Trim Circuit.

FIGURE 4. Measuring Supply Currents of Device Under Test.

FIGURE 5. Measuring Power Supply Output Current.

FIGURE 6. Current to Voltage Converter.

Burr-Brown IC Data Book—Linear Products

In all cases, the sense resistor imbalances the input resistor matching of the INA117, degrading its CMR. Also, the input impedance of the INA117 loads R_S, causing gain error in the voltage-to-current conversion. Both of these errors can be easily corrected.

The CMR error can be corrected with the addition of a compensation resistor, R_C, equal in value to R_S as shown in Figures 4, 5, and 6. If R_S is less than 20Ω , the degradation in CMR is negligible and R_C can be omitted. If R_S is larger than approximately 2kΩ, trimming R_C may be required to achieve greater than 86dB CMR. This is because the actual INA117 input impedances have 1% typical mismatch.

If R_S is more than approximately 100Ω , the gain error will be greater than the 0.02% specification of the INA117. This gain error can be corrected by slightly increasing the value of R_S. The corrected value, R_S', can be calculated by-

$$R_{S}' = \frac{R_{S} \cdot 380k\Omega}{380k\Omega - R_{S}}$$

Example: For a 1V/mA transfer function, the nominal, uncorrected value for R_S would be $1k\Omega$. A slightly larger value, $R_S' = 1002.6\Omega$, compensates for the gain error due to

The 380kΩ term in the equation for R_s' has a tolerance of $\pm 25\%$, so sense resistors above approximately 400Ω may require trimming to achieve gain accuracy better than 0.02%.

Of course, if a buffer amplifier is added as shown in Figure 7, both inputs see a low source impedance, and the sense resistor is not loaded. As a result, there is no gain error or CMR degradation. The buffer amplifier can operate as a unity gain buffer or as an amplifier with non-inverting gain. Gain added ahead of the INA117 improves both CMR and signal-to-noise. Added gain also allows a lower voltage drop across the sense resistor. The OPA1013 is a good choice for the buffer amplifier since both its input and output can swing close to its negative power supply.

FIGURE 7. Current Sensing with Input Buffer.

an isolated power supply allows full $\pm 200 \text{V}$ common-mode input range.

NOISE PERFORMANCE

The noise performance of the INA117 is dominated by the internal resistor network. The thermal or Johnson noise of

Many applications may be satisfied with less than the full 200kHz bandwidth of the INA117. In these cases, the noise can be reduced with a low-pass filter on the output. The two-pole filter shown in Figure 9 limits bandwidth to 1kHz and reduces noise by more than 15:1. Since the INA117 has a 1/f noise corner frequency of approximately 100Hz, a cutoff frequency below 100Hz will not further reduce noise.

FIGURE 8. Leakage Current Measurement Circuit.

FIGURE 9. Output Filter for Noise Reduction.

FIGURE 11. Summing V_x in Output.

FIGURE 12. Common-Mode Voltage Monitoring.

FIGURE 13. Offsetting or Boosting Common-Mode Voltage Range for Reduced Power Supply Voltage Operation.

FIGURE 14. Battery Cell Voltage Monitor. Sould Not signed specified about 400 minutes of guidased specified at 100 minutes of the contract of

O DATA ACQUISITION

FIGURE 15. Measuring Amplifier Load Current.

FIGURE 16. AC-Coupled INA117.

INA118

Precision, Low Power INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µlV max
- LOW DRIFT: 0.5µV/°C max
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 110dB min
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±1.35 to ±18V
- LOW QUIESCENT CURRENT: 350µA
- 8-PIN PLASTIC DIP, SO-8

APPLICATIONS

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA118 is a low power, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (70kHz at G=100).

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to $\pm 40V$ without damage.

The INA118 is laser trimmed for very low offset voltage (50 μ V), drift (0.5 μ V/°C) and high common-mode rejection (110dB at G = 1000). It operates with power supplies as low as ± 1.35 V, and quiescent current is only 350 μ A—ideal for battery operated systems.

The INA118 is available in 8-pin plastic DIP, and SO-8 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 10$ k Ω unless otherwise noted.

	6 100	INA118PB, UB		INA118P, U				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability Impedance, Differential Common-Mode Linear Input Voltage Range Safe Input Voltage Common-Mode Rejection BIAS CURRENT vs Temperature	$\begin{split} T_{A} &= +25^{\circ}\text{C} \\ T_{A} &= T_{MIN} \text{ to } T_{MAX} \\ V_{S} &= \pm 1.35 \text{V to } \pm 18 \text{V} \\ \end{split}$ $V_{CM} &= \pm 10 \text{V}, \Delta R_{S} = 1 \text{k} \Omega \\ G &= 1 \\ G &= 10 \\ G &= 100 \\ G &= 1000 \end{split}$	(V+) - 1 (V-) + 1.1 80 97 107 110	±10±50/G ±0.2±2/G ±1.±10/G ±0.4±5/G 10 ¹⁰ 1 10 ¹⁰ 4 (V+) - 0.65 (V-) + 0.95	±50 ± 500/G ±0.5 ± 20/G ±5 ± 100/G ±40	* * 73 89 98 100	±25±100/G ±0.2±5/G	±125±1000/G ±1±20/G ±10±100/G	μV μV/°C μV/V μV/mo Ω pF Ω pF V V V V dB dB dB
OFFSET CURRENT vs Temperature	enidad		±1 ±40	±5	OPOGRA	118 DIE	±10	nA pA/°C
NOISE VOLTAGE, RTI $f = 10Hz$ $f = 10Hz$ $f = 10Hz$ $f = 16Hz$ $f = 16Hz$ to $10Hz$ Noise Current $f = 10Hz$ $f = 10Hz$ $f = 10Hz$ $f = 0.1Hz$ to $10Hz$	G = 1000, R _S = 0Ω	EA	11 10 10 0.28 2.0 0.3 80			. 101	DITARUĐI	nV/\Hz nV/\Hz nV/\Hz nV/\Hz μVp-p pA/\Hz pA/\Hz
GAIN Gain Equation Range of Gain Gain Error Gain vs Temperature 50kΩ Resistance(1) Nonlinearity	G = 1 G = 10 G = 100 G = 1000 G = 1 G = 1 G = 10 G = 1000	s integrate commends repriate p i installati O demage complete c	1 + (50kΩ/R _G) ±0.01 ±0.02 ±0.05 ±0.5 ±1 ±25 ±0.0003 ±0.0005 ±0.0005 ±0.0005	10000 ±0.024 ±0.4 ±0.5 ±1 ±10 ±100 ±0.001 ±0.002 ±0.002 ±0.002	6 R ₀ 7 V ₄ 6 V ₀ 8 R ₀ 8 R ₀	well not	±0.1 ±0.5 ±0.7 ±2 ±10 ±0.002 ±0.004 ±0.004 ±0.002	V/V V/V % % % % ppm/°C ppm/°C % of FSI % of FSI % of FSI % of FSI
OUTPUT Voltage: Positive Negative Single Supply High Single Supply Low Load Capacitance Stability Short Circuit Current	$\begin{aligned} R_L &= 10k\Omega \\ R_L &= 10k\Omega \\ V_S &= +2.7V/0V^{(2)}, \ R_L &= 10k\Omega \\ V_S &= +2.7V/0V^{(3)}, \ R_L &= 10k\Omega \end{aligned}$	(V+) - 1 (V-) + 0.35 1.8 60	(V+) - 0.8 (V-) + 0.2 2.0 35 1000 +5/-12		99	OTAN MU	MEXAME	V V V mV pF mA
FREQUENCY RESPONSE Bandwidth, –3dB Slew Rate Settling Time, 0.01% Overload Recovery	$G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ V_0 = \pm 10V, G = 10 \\ G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ S = 1000 \\ S = 0000 \\ S = 00000 \\ S = 0000 \\ S = 00000 \\ S = 0000 \\ S = 0000$	ODEL ATTRE ATTRE ATTRE ATTRE E. (1) For o	800 500 70 7 0.9 15 15 21 210 20	14		(c) 10s)	ga Chronic (no group ong original personal constant state (constant	kHz kHz kHz kHz V/µs µs µs µs µs
POWER SUPPLY Voltage Range Current	V _{IN} = 0V	±1.35	±15 ±350	±18 ±385		:	:	V μA
TEMPERATURE RANGE Specification Operating θ _{JA}		-40 -40	80	85 125		*	:	°C,W

^{*} Specification same as INA118PB, UB.

NOTE: (1) Temperature coefficient of the "50kΩ" term in the gain equation. (2) V_{CM} = 2V. Common-mode input voltage range is limited. See text for discussion of low power supply and single power supply operation.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

INA118 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
IA, 1B ⁽¹⁾	R _G	6	Vo
2	V-IN	7	V+
3	V+IN	8A, 8B(1)	R_G
4	V-		ITA spario
5	Ref		

NC = No Connection.

NOTES: (1) Connect both indicated pads.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

0.5	MILS (0.001")	MILLIMETERS
Die Size	120 x 70 ±5	3.05 x 1.78 ±0.13
Die Thickness	14 ±3	0.36 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		None

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	±40V
Output Short-Circuit (to ground)	
Operating Temperature	
Storage Temperature	40°C to +125°C
Junction Temperature	
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	
INA118P	8-Pin Plastic DIP	006	-40°C to +85°C	
INA118PB	8-Pin Plastic DIP	006	-40°C to +85°C	
INA118U	SO-8 Surface-Mount	182	-40°C to +85°C	
INA118UB	SO-8 Surface-Mount	182	-40°C to +85°C	

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES TO SOMAMROSRES DADISY

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPO 1919 JAC19Y1

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPORPER JACISYT

At T_A = +25°C, V_S = ±15V, unless otherwise noted.

±10

Power Supply Voltage (V)

±15

0

INSTRUMENTATION AMPLIFIERS

±20

Figure 1 shows the basic connections required for operation of the INA118. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 12Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G = 1).

SETTING THE GAIN

Gain of the INA118 is set by connecting a single external resistor, R_G , connected between pins 1 and 8:

$$G = 1 + \frac{50k\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in Equation 1 comes from the sum of the two internal feedback resistors of A_1 and A_2 . These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA118.

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA118 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the INA118. Settling time also remains excellent at high gain.

The INA118 exhibits approximately 3dB peaking at 500kHz in unity gain. This is a result of its current-feedback topology and is not an indication of instability. Unlike an op amp with poor phase margin, the rise in response is a predictable +6dB/octave due to a response zero. A simple pole at 300kHz or lower will produce a flat passband unity gain response.

FIGURE 1. Basic Connections.

NOISE PERFORMANCE

The INA118 provides very low noise in most applications. For differential source impedances less than $1k\Omega$, the INA103 may provide lower noise. For source impedances greater than $50k\Omega$, the INA111 FET-Input Instrumentation Amplifier may provide lower noise.

Low frequency noise of the INA118 is approximately 0.28μVp-p measured from 0.1 to 10Hz (G≥100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

OFFSET TRIMMING

The INA118 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. The op amp buffer provides low impedance at the Ref terminal to preserve good commonmode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA118 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 5 nA$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range of the INA118 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

FIGURE 3. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA118 is from approximately 0.6V below the positive supply voltage to 1V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range will be limited by the output voltage swing of amplifiers A₁ and A₂. Thus, the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA118 will be near 0V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA118 can be operated on power supplies as low as ±1.35V. Performance of the INA118 remains excellent with power supplies ranging from ±1.35V to ±18V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for a various supply voltages and gains.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

SINGLE SUPPLY OPERATION

The INA118 can be used on single power supplies of +2.7V to +36V. Figure 5 shows a basic single supply circuit. The output Ref terminal is connected to ground. Zero differential input voltage will demand an output voltage of 0V (ground). Actual output voltage swing is limited to approximately 35mV above ground, when the load is referred to ground as shown. The typical performance curve "Output Voltage vs Output Current" shows how the output voltage swing varies with output current.

With single supply operation, $V_{\rm IN}^*$ and $V_{\rm IN}^*$ must both be 1.1V above ground for linear operation. You cannot, for instance, connect the inverting input to ground and measure a voltage connected to the non-inverting input.

To illustrate the issues affecting low voltage operation, consider the circuit in Figure 5. It shows the INA118, operating from a single 3V supply. A resistor in series with the low side of the bridge assures that the bridge output

voltage is within the common-mode range of the amplifier's inputs. Refer to the typical performance curve "Input Common-Mode Range vs Output Voltage" for 3V single supply operation.

INPUT PROTECTION

The inputs of the INA118 are individually protected for voltages up to ±40V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5 to 5mA. The typical performance curve "Input Bias Current vs Input Overload Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

INSIDE THE INA118

Figure 1 shows a simplified representation of the INA118. The more detailed diagram shown here provides additional insight into its operation.

Each input is protected by two FET transistors that provide a low series resistance under normal signal conditions, preserving excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 1.5 to 5mA.

The differential input voltage is buffered by Q_1 and Q_2 and impressed across R_G , causing a signal current to flow through R_G , R_1 and R_2 . The output difference amp, A_3 , removes the common-mode component of the input signal and refers the output signal to the Ref terminal.

Equations in the figure describe the output voltages of A_1 and A_2 . The V_{BE} and IR drop across R_1 and R_2 produce output voltages on A_1 and A_2 that are approximately 1V lower than the input voltages.

 $\begin{array}{l} A_1 \ \text{Out} = V_{\text{CM}} - V_{\text{BE}} - (15\mu\text{A} * 25k\Omega) - V_{\text{O}}/2 \\ A_2 \ \text{Out} = V_{\text{CM}} - V_{\text{BE}} - (15\mu\text{A} * 25k\Omega) + V_{\text{O}}/2 \\ \text{Output Swing Range } A_1, A_2; \ (V_1) - 0.65V \ \text{to } (V_2) + 0.06V \\ \text{Amplifier Linear Input Range: } (V_1) - 0.65V \ \text{to } (V_2) + 1.1V \\ \end{array}$

FIGURE 4. INA118 Simplified Circuit Diagram.

FIGURE 5. Single-Supply Bridge Amplifier.

FIGURE 6. AC-Coupled Instrumentation Amplifier.

FIGURE 7. Thermocouple Amplifier With Cold Junction Compensation.

FIGURE 8. Differential Voltage to Current Converter.

FIGURE 9. ECG Amplifier With Right-Leg Drive.

Precision, Low Power INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.5µV/°C max
- **LOW INPUT BIAS CURRENT: 5nA max**
- HIGH CMR: 120dB min
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 700µA
- 8-PIN PLASTIC DIP, SO-8

APPLICATIONS

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA128 is a low power, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications, Current-feedback input circuitry provides wide bandwidth even at high gain (200kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to ±40V without damage.

The INA128 is laser trimmed for very low offset voltage ($50\mu V$), drift ($0.5\mu V$ /°C) and high commonmode rejection (120dB at G \geq 100). It operates with power supplies as low as $\pm 2.25V$, and quiescent current is only $700\mu A$ —ideal for battery operated systems.

The INA128 is available in 8-pin plastic DIP, and SO-8 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 10$ k Ω unless otherwise noted.

RCTAM		1 1	INA128P, U			NA128PA, UA		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability Impedance, Differential Common-Mode	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $V_S = \pm 2.25V \text{ to } \pm 18V$		±10 ±100/G ±0.2 ± 2/G ±0.2 ±20/G ±0.1 ±3/G 10 ¹⁰ 2 10 ¹¹ 9	±50±500/G ±0.5±20/G ±1±100/G		±25±100/G ±0.2±5/G *	±125±1000/G ±1±20/G ±2±200/G	μV μV/°C μV/V μV/mo Ω pF
Common-Mode Voltage Range Safe Input Voltage	19W0	(V+) - 2 (V-) + 2	(V+) - 1.4 (V-) + 1.7	±40	Pre			V V V
Common-Mode Rejection	$V_{CM} = \pm 13V$, $\Delta R_S = 1 k\Omega$ G = 1 G = 10 G = 100 G = 1000	80 100 120 120	86 106 125 130	IENT	73 93 110 110	INS.		dB dB dB dB
BIAS CURRENT vs Temperature Offset Current vs Temperature	IPTION Is a low power, gene	ESCH	±2 ±30 ±1 ±30	±5 ±5	Vuod :36	S:	±10 ±10	nA pA/°C nA pA/°C
NOISE VOLTAGE, RTI f = 10Hz f = 100Hz f = 10Hz f = 1kHz f _B = 0.1Hz to 10Hz Noise Current		otarion ar sattle 3-or a wide s ot circuits	8 0.2	xem Ar	- 1	ien dbosi	W DRIFT W INPUT SH CMR:	nV/√Hz nV/√Hz nV/√Hz μVp-p
f=10Hz f=1kHz f _B = 0.1Hz to 10Hz	t at $G = 100$).	n (200kH single exa	0.9 0.3 30	V8t±	70 ±40V 1:±2.25 ti	TECTED Y RANGE	PUTS PRO DE SUPP	pA/√Hz pA/√Hz pAp-p
GAIN Gain Equation Range of Gain Gain Error Gain vs Temperature ⁽²⁾ 50κΩ Resistance ^(2, 3) Nonlinearity	G=1 G=10 G=100 G=1000 G=1 V _O = ±13.6V, G=1 G=10 G=1000	000. Inter Vythou 1 INA128 1 INA128 1 test (50) 2 test (50) 3 test (50) 3 test (50) 4 test (50) 4 test (50)	1 + (50kΩ/R _Q) ±0.01 ±0.02 ±0.05 ±0.5 ±1 ±25 ±0.0001 ±0.0003 ±0.0005 ±0.001	10000 ±0.024 ±0.4 ±0.5 ±1 ±100 ±0.001 ±0.002 ±0.002 (Note 4)	RRENT: 7 Q-8	CENT CUI	±0.1 ±0.5 ±0.7 ±2 • ±0.002 ±0.004 ±0.004	V/V V/V % % % ppm/°C ppm/°C y of FSF % of FSF % of FSF % of FSF
OUTPUT Voltage: Positive Negative Load Capacitance Stability Short-Circuit Current	$R_L = 10k\Omega$ $R_L = 10k\Omega$	(V+) - 1.4 (V-) + 1.4	(V+) - 0.9 (V-) + 0.8 1000 +6/-15		PLINER	UPLE AM R AMPLE	ERMOCO O SENSO	V V pF mA
FREQUENCY RESPONSE Bandwidth, -3dB Slew Rate Settling Time, 0.01% Overload Recovery	G=1 G=10 G=100 G=1000 V ₀ ±10V, G=10 G=1 G=100 G=1000 G=1000 50% Overdrive	DSFA8	1.3 700 200 20 4 7 7 9 80 4	(a	Voltage Voltage	2 (Sver	TA AGGE	MHz kHz kHz kHz V/µs µs µs µs µs
POWER SUPPLY Voltage Range Current, Total	V _{IN} = 0V	±2.25	±15 ±700	±18 ±750	J •			V µA
TEMPERATURE RANGE Specification Operating θ _{JA} 8-Pin Dip SO-8 SOIC	ov c - e - c	-40 -40	80 150	85 125]:	. 18	8 .	°C/W °C/W °C

^{*} Specification same as INA128P, U.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices: and/or systems.

NOTE: (1) Input common-mode range varies with output voltage—see typical curves. (2) Guaranteed by wafer test. (3) Temperature coefficient of the " $50k\Omega$ " term in the gain equation. (4) Nonlinearity measurements in G = 1000 are dominated by noise. Typical nonlinearity is $\pm 0.001\%$.

INA128 DIE TOPOGRAPH	IY	*
----------------------	----	---

PAD	FUNCTION	PAD	FUNCTION
1A, 1B ⁽¹⁾	R _G	5	Ref
2	V¬N	6	Vo
3	V+IN	7	V+
4	V-	8A, 8B(1)	R _G

NC = No Connection.

PERFORMANCE CURVES

NOTES: (1) Connect both indicated pads.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	128 x 76 ±5	3.05 x 1.78 ±0.13
Die Thickness	14 ±3	0.35 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	THE LESS	Gold

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	±40V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE
INA128PA	8-Pin Plastic DIP	006	-40°C to +85°C
INA128P	8-Pin Plastic DIP	006	-40°C to +85°C
INA128UA	SO-8 Surface-Mount	182	-40°C to +85°C
INA128U	SO-8 Surface-Mount	182	-40°C to +85°C

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES (CONT) MAMAGINES

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

INA128

QUIESCENT CURRENT and SLEW RATE vs TEMPERATURE 0.85 Quiescent Current (µA) Rate (V/µs) 0.75 Slew Rate 0.7 3 0.65 -75 -50 -25 100 Temperature (°C)

TYPICAL PERFORMANCE CURVES (CONT) MAMAGERS

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) AMPORATION MONTAGINGS

NSTRUMENTATION AMPLIFIER

VOLTAGE NOISE 0.1 to 10Hz INPUT-REFERRED, G ≥ 100

one is simplified form

BB BB

Figure 1 shows the basic connections required for operation of the INA128. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

SETTING THE GAIN

Gain of the INA128 is set by connecting a single external resistor, R_G , connected between pins 1 and 8:

$$G = 1 + \frac{50k\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in Equation 1 comes from the sum of the two internal feedback resistors of A_1 and A_2 . These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA128.

The stability and temperature drift of the external gain setting resistor, $R_{\rm G}$, also affects gain. $R_{\rm G}$'s contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA128 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the INA128. Settling time also remains excellent at high gain.

NOISE PERFORMANCE

The INA128 provides very low noise in most applications. Low frequency noise is approximately $0.2\mu Vp$ -p measured from 0.1 to 10Hz (G \geq 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed with the output. The op amp buffer provides low impedance at the Ref terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA128 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 2nA$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range of the INA128 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA128 is from approximately 1.4V below the positive supply voltage to 1.7V above the negative supply. As a differential input voltage causes the output voltage increase, however, the linear input range will be limited by the output

FIGURE 3. Providing an Input Common-Mode Current Path.

voltage swing of amplifiers A_1 and A_2 . So the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA128 will be near 0V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA128 can be operated on power supplies as low as ± 2.25 V. Performance remains excellent with power supplies ranging from ± 2.25 V to ± 18 V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input commonmode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for ± 15 V, ± 5 V, and ± 2.5 V supplies.

FIGURE 4. ECG Amplifier With Right-Leg Drive.

FIGURE 5. Bridge Amplifier.

FIGURE 6. AC-Coupled Instrumentation Amplifier.

FIGURE 7. Thermocouple Amplifier With RTD Cold-Junction Compensation.

FIGURE 8. Differential Voltage to Current Converter.

INA131

Precision G = 100 INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.25µV/°C max
- LOW INPUT BIAS CURRENT: 2nA max
- HIGH COMMON-MODE REJECTION: 110dB min
- INPUT OVERVOLTAGE PROTECTION: ±40V
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 3mA
- 8-PIN PLASTIC DIP, SOL-16 SOIC

DESCRIPTION

The INA131 is a low cost, general purpose G = 100 instrumentation amplifier offering excellent accuracy. Its 3-op amp design and small size make it ideal for a wide range of applications.

On-chip laser trimmed resistors accurately set a fixed gain of 100. The INA131 is laser trimmed to achieve very low offset voltage (50 μ V), drift (0.25 μ V/°C), and high CMR (110dB). Internal input protection can withstand up to ± 40 V inputs without damage.

The INA131 is available in 8-pin plastic DIP and SOL-16 surface-mount packages. They are specified over the -40°C to +85°C temperature range.

APPLICATIONS

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

International Airport Industrial Park • Mailing Address: PO Box 11400

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • 1

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

T. = $\pm 25^{\circ}$ C. V. = ± 15 V. R. = 2k Ω , unless otherwise noted.

	ACCEPTATION.	11	NA131BP, E	BU	IN	A131AP, A	A131AP, AU	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability Impedance, Differential Common-Mode	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ 10 } T_{MAX}$ $V_S = \pm 2.25V \text{ to } \pm 18V$	по	±10 ±0.1 0.5 0.2 10 ¹⁰ 6 10 ¹⁰ 6	±50 ±0.25 3		±25 ±0.25 *	±125 ±1 *	μV μV/°C μV/V μV/mo Ω pF
Input Common-Mode Range Safe Input Voltage Common-Mode Rejection	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$	±11	±13.5	±40	106	110		V V dB
BIAS CURRENT vs Temperature	Om	SR 3000	±0.5 ±8	±2		CALL SHAPE OF THE	±5	nA pA/°C
OFFSET CURRENT vs Temperature	DESCRIPTION		±0.5 ±8	±2		88	±5	nA pA/°C
f = 10Hz f = 100Hz f = 1kHz f = 10kHz f _B = 0.1Hz to 10Hz Noise Current	The INAI3Ω0 = gRow cost, go instrumentation amplifier offer less 3-op amp design and same a wide mage of applications. On-chip laser trimmed resisto gain of 100. The fVA131 is because you offset wortage (50).		16 12 12 12 0.4 0.4 0.2 18	BOUV N BX DUT: 201 EJECTIO ROTECT	LYAGE: WYC ROURRE OURRE ODE RI TAGE R	SET VO T BIAS MON-M SRON-M	W INPU NO NE IdB min	nV/√Hz nV/√Hz nV/√Hz nV/√Hz µVp-p pA/√Hz pA/√Hz
Resistor Value ⁽²⁾	withstand up to :>40V inputs The INA131 is available in SOL-16 surface-mount packet		±0.01 ±10 ±5 ±0.0003	±0.024 ±40 ±10 ±0.002	NGE: ± CURRE P, SOL	PLY RA SCENT STIC D	±0.1	% % ppm/°C % of FSI
OUTPUT Voltage Load Capacitance, max Short Circuit Current	$\begin{split} &I_O=5\text{mA, T}_{\text{MIN}}\text{ to T}_{\text{MAX}}\\ &V_S=\pm11.4\text{V, R}_{\text{L}}=2\text{k}\Omega\\ &V_S=\pm2.25\text{V, R}_{\text{L}}=2\text{k}\Omega\\ &\text{Stable Operation} \end{split}$	±13.5 ±10 ±1	±13.7 10.5 1.5 1000 +20/-15		ė. Ri	OLTA HLISW	OLIC A BOOK A	V V V pF mA
FREQUENCY RESPONSE Bandwidth, -3dB Slew Rate Settling Time, 0.01% Overload Recovery	V _O = ±10V 50% Overdrive	0.3	70 0.7 100 20	NON	ATUENTA	OUPPLE OR AM NSTRU	DISENSE DISENSE	kHz V/μs μs μs
POWER SUPPLY Voltage Range Current	V _{IN} = 0V	±2.25	±15 ±2.2	±18 ±3		:	:	V mA
TEMPERATURE RANGE Specification Operating $\theta_{\rm JA}$	Pendings (Pendings)	-40 -40	100	85 125	HOV-MVO	(a) O (d)	:	°C,W

^{*} Specification same as INA131BP/BU.

NOTES: (1) $R_L = 10k\Omega$. (2) Absolute value of internal gain-setting resistors. (Gain depends on resistor ratios.)

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PAD	FUNCTION	PAD	FUNCTION
1	R _G	6	Vo
2	V-IN	7	Feedback
3	V+IN	8	V+
4	V-	9	R _G
5	Ref		

NC = No Connection.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	141 x 120 ±5	3.58 x 3.05 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing	(A)	Gold

INA131 DIE TOPOGRAPHY

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18\
Input Voltage Range	±40\
Output Short Circuit (to ground)	
Operating Temperature	
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering -10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
INA131AP	8-Pin Plastic DIP	-40°C to +85°C
INA131BP	8-Pin Plastic DIP	-40°C to +85°C
INA131AU	SOL-16 Surface-Mount	-40°C to +85°C
INA131BU	SOL-16 Surface-Mount	-40°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
INA131AP	8-Pin Plastic DIP	006
INA131BP	8-Pin Plastic DIP	006
INA131AU	SOL-16 Surface-Mount	211
INA131BU	SOL-16 Surface-Mount	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) MAMAGE PLACED IN TYPICAL PERFORMANCE CURVES (CONT) MAMAGE PROPERTY IN THE PERFORMANCE CURVES (CONT) MAMAGE PROPERTY (CONT) MAMAGE PRO

At 25°C, V_s = ±15V, unless otherwise noted.

4

TYPICAL PERFORMANCE CURVES (CONT) MAMPO 12 19 JACKS TYPICAL PERFORMANC

At 25°C, $V_s = \pm 15V$, unless otherwise noted.

Figure 1 shows the basic connections required for operation of the INA131. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 5Ω in series with the Ref pin will cause a device with 110dB CMR to degrade to approximately 106dB CMR.

SETTING THE GAIN

No external resistors are required for G=100. On-chip laser-trimmed resistors set the gain, providing excellent gain accuracy and temperature stability. Gain is distributed between the input and output stages of the INA131. Bandwidth is increased by approximately five times (compared to the INA114 in G=100). Input common-mode range is also improved (see "Input Common-Mode Range").

Although the INA131 is primarily intended for fixed G=100 applications, the gain can be increased by connecting an external resistor to the R_G pins. The internal resistors are trimmed for precise ratios, not to absolute values, so the influence of an external resistor will vary from device to

calculated by:

$$G = 100 + \frac{250 \text{ k}\Omega}{R_G} \tag{1}$$

Where: R_G is the external gain resistor.

Accuracy of the $250k\Omega$ term is $\pm 40\%$.

The stability and temperature drift of the external gain setting resistor, R_{G_i} also affects gain. R_{G_i} 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1).

NOISE PERFORMANCE

The INA131 provides very low noise in most applications. For differential source impedances less than $1k\Omega$, the INA103 may provide lower noise. For source impedances greater than $50k\Omega$, the INA111 FET-Input Instrumentation Amplifier may provide lower noise.

Low frequency noise of the INA131 is approximately $0.4\mu Vp$ -p measured from 0.1 to 10Hz. This is approximately one-tenth the noise of state-of-the-art chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

OFFSET TRIMMING

The INA131 is laser trimmed for very low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. Low impedance must be maintained at this node to assure good common-mode rejection. This is achieved by buffering trim voltage with an op amp as shown.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA131 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than $\pm 1nA$ (it can be either polarity due to cancellation circuitry). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA131 is to operate properly. Figure 3 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA131 and the input amplifiers will saturate. If the differential source resistance is low, bias current return path can be connected to one input (see thermocouple example in Figure 3). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better common-mode rejection.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the INA131 is approximately ± 13.75 V (or 1.25V from the power supplies). As the output voltage increases, however, the linear input range is limited by the output voltage swing of the input amplifiers, A_1 and A_2 . The 5V/V output stage gain of the INA131 reduces this effect. Compared to the

FIGURE 3. Providing an Input Common-Mode Current Path.

INA114 and other unity output gain instrumentation amplifiers, the INA131 provides several additional volts of input common-mode range with full output voltage swing. See the typical performance curve "Input Common-Mode Range vs Output Voltage".

Input-overload often produces an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will obviously exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to the nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA131 will be near 0V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the INA131 are individually protected for voltages up to ±40V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The typical performance curve "Input Bias Current vs Input Voltage" shows this input current limit behavior. The inputs are protected even if no power supply voltage is present.

OUTPUT VOLTAGE SENSE (SOL-16 package only)

The surface-mount version of the INA131 has a separate output sense feedback connection (pin 12). Pin 12 must be connected to the output terminal (pin 11) for proper operation. (This connection is made internally on the DIP version of the INA131.)

The output sense connection can be used to sense the output voltage directly at the load for best accuracy. Figure 4 shows how to drive a load through series interconnection resistance. Remotely located feedback paths may cause instability. This can be generally be eliminated with a high frequency feedback path through C₁. Heavy loads or long lines can be driven by connecting a buffer inside the feedback path (Figure 5).

Surface-mount package

/ version only.

Feedback
INA131

Hef 180Ω

Ref 180Ω

FIGURE 4. Remote Load and Ground Sensing.

FIGURE 5. Buffered Output for Heavy Loads.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

FIGURE 6. Shield Driver Circuit.

FIGURE 7. RTD Temperature Measurement Circuit.

FIGURE 8. Thermocouple Amplifier with Cold Junction Compensation.

FIGURE 11. Differential Voltage to Current Converter.

INA141

Precision, Low Power, G = 10, 100 INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.5μV/°C max
- ACCURATE GAIN: ±0.05% at G = 10
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 117dB min
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 750µA
- 8-PIN PLASTIC DIP, SO-8

APPLICATIONS

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA141 is a low power, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (200kHz at G = 100).

Simple pin connections set an accurate gain of 10 or 100V/V without external resistors. Internal input protection can withstand up to $\pm 40V$ without damage.

The INA141 is laser trimmed for very low offset voltage (50 μ V), drift (0.5 μ V/°C) and high common-mode rejection (117dB at G = 100). It operates with power supplies as low as ± 2.25 V, and quiescent current is only 750 μ A—ideal for battery operated systems.

The INA141 is available in 8-pin plastic DIP, and SO-8 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 10$ k Ω , unless otherwise noted.

TATAM		INA141P, U			INA141PA, UA			7. 1
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT Offset Voltage, RTI vs Temperature vs Power Supply	G = 100 G = 10 G = 100 $G = 10^{(2)}$ $V_S = \pm 2.25 \text{ to } \pm 18V, G = 100$ G = 10		±20 ±50 ±0.2 ±0.5 ±0.4 ±2	±50 ±100 ±0.5 ±2 ±1 ±10		Retaines	±125 ±250 ±1.5 ±2.5 ±3 ±20	μV μV/°C μV/°C μV/V
Long-Term Stability Impedance, Differential Common-Mode Common-Mode Voltage Rang	G = 100 G = 10	(V+) - 2	0.2 0.5 10 ¹⁰ 2 10 ¹⁰ 9 (V+) - 1.4	vo.l	nois	Preci	120	μV/mo μV/mo Ω pF Ω pF V
Safe Input Voltage Common-Mode Rejection	$V_{CM} = \pm 13V, \Delta R_S = 1k\Omega$ G = 100 G = 10	117 100	(V-) + 1.7	±40	110 93	120 100		V V dB dB
BIAS CURRENT vs Temperature Offset Current vs Temperature	HPTION is a low power, gener	ESCF	±2 ±30 ±1 ±30	±5 ±5	V::00::30	S:	±10 ±10	nA pA/°C nA pA/°C
NOISE VOLTAGE, RTI f = 10Hz f = 10Hz f = 10Hz f = 1kHz f _B = 0.1Hz to 10Hz f = 10Hz f = 10Hz f = 10Hz f = 10Hz f _B = 0.1Hz to 10Hz	$G = 100, R_S = 0\Omega$ $G = 10, R_S = 0\Omega$	station as satile 3-or a vide ut circuita n (200kH uple pin e	10 8 8 0.2 22 13 12 0.6	a 10 tA mex	max 05% at G RENT: 5 1 TO ±40V	0.5µV/°C GAIN: ±0 BIAS CUI 117dB mI	W DRIFT CURATE W INPUT 3H CMR: PUTS PRO	nV/√Hz nV/√Hz nV/√Hz µVp-p nV/√Hz nV/√Hz nV/√Hz µVp-p
Noise Current f = 10Hz f = 1kHz f _B = 0.1Hz to 10Hz	out external resistors. Athstand up to ±40V v	V/V with tion can v	0.9 0.3 30	V81±1	2: ±2.25 to RRENT: 7	Y RANGI CENT CU	DE SUPP.	pA/√Hz pA/√Hz pAp-p
GAIN Gain Error Gain vs Temperature ⁽²⁾ Nonlinearity	V _O = ±13.6V, G = 100 G = 10 G = 10, 100 G = 100 G = 10	s mynter tage (50µ de rejecui ver suppi	±0.03 ±0.01 ±2 ±0.0005 ±0.0003	±0.075 ±0.05 ±10 ±0.002 ±0.001	8-0	nc pie, s YIONS	±0.15 ±0.15 ±0.004 ±0.002	% % ppm/°C % of FSF % of FSF
OUTPUT Voltage: Positive Negative Load Capacitance Stability Short-Circuit Current	R_L = 10kΩ R_L = 10kΩ	(V+) - 1.4 (V-) + 1.4	(V+) - 0.9 (V-) + 0.9 1000 +6/-15		ABIRLIA	PLIFIER UPLE AM BLAMBLII	NDGE AM ERMCCO D. BENSO	V V pF mA
FREQUENCY RESPONSE Bandwidth, –3dB Slew Rate Settling Time, 0.01% Overload Recovery	G = 100 G = 10 $V_0 = \pm 10V, G = 10$ $V_0 = \pm 5V, G = 100$ G = 10 50% Overdrive	+85°C ter	200 1 4 9 7 4		MOITATION	STRUMIN ISITION	EDICAL IN	kHz MHz V/μs μs μs μs
POWER SUPPLY Voltage Range Current, Total	V _{IN} = 0V	±2.25	±15 ±750	±18 ±800	W revO	:		V µA
TEMPERATURE RANGE Specification Operating $\theta_{\rm JA}$ 8-Pin DIP SO-8 SOIC	40633	-40 -40	80 150	85 125	sas Verification	<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>		°C/W °C/W

^{*} Specification same as INA141P, U.

NOTE: (1) Input common-mode range varies with output voltage—see typical curves. (2) Guaranteed by wafer test.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

INSTRUMENTATION

	INA141	DIE	TOPOGRAPHY
--	---------------	-----	-------------------

PAD	FUNCTION	PAD	FUNCTION
1	J	5	Ref
2	V-IN	6	Vo
3	V+IN	7	V+
4	V-	8	J

NC = No Connection.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	128 x 76 ±5	3.05 x 1.78 ±0.13
Die Thickness	14 ±3	0.36 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Gold

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
	±40V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	-40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE
INA141PA	8-Pin Plastic DIP	006	-40°C to +85°C
INA141P	8-Pin Plastic DIP	006	-40°C to +85°C
INA141UA	SO-8 Surface-Mount	182	-40°C to +85°C
INA141U	SO-8 Surface-Mount	182	-40°C to +85°C

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

6

5

4

3

2

Slew Rate (V/µs)

INSTRUMENTATION AMPLIFIERS

0.9

QUIESCENT CURRENT and SLEW RATE

vs TEMPERATURE

TYPICAL PERFORMANCE CURVES (CONT) MAMBOTHE JACISM

At $T_A = +25$ °C and $V_S = \pm 15$ V, unless otherwise noted.

At $T_A = +25$ °C and $V_S = \pm 15$ V, unless otherwise noted.

LARGE-SIGNAL STEP RESPONSE 5V/div 5μs/div

VOLTAGE NOISE 0.1 to 10Hz INPUT-REFERRED, G = 100

INSTRUMENTATION AMPLIFIERS

Figure 1 shows the basic connections required for operation of the INA141. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

SETTING THE GAIN

Gain is selected with a jumper connection as shown in Figure 1. G=10V/V with no jumper installed. With a jumper installed, G=100V/V. To preserve good gain accuracy, this jumper must have low series resistance. A resistance of 0.5Ω in series with the jumper will decrease the gain by 0.1%.

Internal resistor ratios are laser trimmed to assure excellent gain accuracy. Actual resistor values can vary by approximately ±25% from the nominal values shown.

Gains between 10 and 100 can be achieved by connecting an external resistor to the jumper pins. This is not recommended, however, because the ±25% variation of internal resistor values makes the required external resistor value uncertain. A companion model, INA128, features accurately trimmed internal resistors so that gains from 1 to 10,000 can be set with an external resistor.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA141 achieves wide bandwidth, even at G = 100. This is due to the current-feedback topology of the INA141. Settling time also remains excellent at G = 100.

NOISE PERFORMANCE

The INA141 provides very low noise in most applications. Low frequency noise is approximately $0.2\mu Vp$ -p measured from 0.1 to 10Hz (G = 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed with the output. The op amp buffer provides low impedance at the Ref terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA141 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 2nA$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range of the INA141 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA141 is from approximately 1.4V below the positive supply voltage to 1.7V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range will be limited by the output voltage swing of amplifiers A_1 and A_2 . So the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

FIGURE 3. Providing an Input Common-Mode Current Path.

Input overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA141 will be near 0V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA141 can be operated on power supplies as low as ± 2.25 V. Performance remains excellent with power supplies ranging from ± 2.25 V to ± 18 V. Most parameters vary only slightly through this supply voltage range—see Typical Performance Curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for ± 15 V, ± 5 , and ± 2.5 V supplies.

INPUT PROTECTION

The inputs of the INA141 are individually protected for voltages up to ±40V. For example, a condition of –40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5 to 5mA. The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

FIGURE 4. ECG Amplifier With Right-Leg Drive.

FIGURE 5. Bridge Amplifier.

FIGURE 6. AC-Coupled Instrumentation Amplifier.

FIGURE 7. Thermocouple Amplifier With RTD Cold-Junction Compensation.

FIGURE 8. Differential Voltage to Current Converter.

INA2128

Dual, Low Power INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.5μV/°C max
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 120dB min
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±2.25V to ±18V
- LOW QUIESCENT CURRENT: 700µA / IA
- 16-PIN PLASTIC DIP, SOL-16

APPLICATIONS

- SENSOR AMPLIFIER
 THERMOCOUPLE, RTD, BRIDGE
- MEDICAL INSTRUMENTATION
- MULTIPLE-CHANNEL SYSTEMS
- BATTERY OPERATED EQUIPMENT

DESCRIPTION

The INA2128 is a dual, low power, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (200kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to $\pm 40V$ without damage.

The INA2128 is laser trimmed for very low offset voltage (50µV), drift (0.5µV/°C) and high common-mode rejection (120dB at $G \geq 100$). It operates with power supplies as low as $\pm 2.25 V$, and quiescent current is only 700µA per IA—ideal for battery operated and multiple-channel systems.

The INA2128 is available in 16-pin plastic DIP, and SOL-16 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

1NA2128		INA2128P, U			1	NA2128PA, U	A	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability Impedance, Differential	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $V_S = \pm 2.25 \text{V to } \pm 18 \text{V}$	i de	±10 ±100/G ±0.2 ± 2/G ±0.2 ±20/G ±0.1 ±3/G 10 ¹⁰ 2	±50±500/G ±0.5±20/G ±1±100/G		±25±100/G ±0.2±5/G *	±125±1000/G ±1±20/G ±2±200/G	μV μV/°C μV/V μV/mo Ω pF
Common-Mode Common-Mode Voltage Range	$V_O = 0V$	(V+) - 2 (V-) + 2	10 ¹¹ 9 (V+) - 1.4 (V-) + 1.7	,leu	3 :			Ω pF V V
Safe Input Voltage Common-Mode Rejection	$V_{CM} = \pm 13V, \ \Delta R_S = 1k\Omega$ $G=1$ $G=10$ $G=100$ $G=1000$	80 100 120 120	86 106 125 130	±40	73 93 110 110	6/11		dB dB dB
BIAS CURRENT	G=1000	120	±2	±5	110	- 00	±10	nA
vs Temperature Offset Current vs Temperature		e iNA212 (cumentus	±30 ±1 ±30	±5	GE: SONV	T VOLTA	±10	pA/°C nA pA/°C
NOISE VOLTAGE, RTI f = 10Hz f = 100Hz f = 10Hz f = 10Hz 0.1Hz to 10Hz Noise Current	$G = 1000, R_S = 0\Omega$	versable al for a wir ut circuit a (2003-t	10 8 8 0.2	XSON AC	a :TVBRIT 1 VOX± OT	SIAS CUI 120dili mi TECTED	WINPUT SH CMR: PUTS PRO	nV/√ <u>Hz</u> nV/√ <u>Hz</u> nV/√Hz μVp-p
f=10Hz f=1kHz f _B = 0.1Hz to 10Hz		stzoolyni ppd lana	0.9 0.3 30	V8t± of Al\Au00	E: ±2.26V REENT: 7	Y RANG CENT OU	DE SUPPI	pA/√ <u>Hz</u> pA/√Hz pAp-p
GAIN Gain Equation Range of Gain Gain Error Gain Error Gain vs Temperature ⁽²⁾ 50kΩ Resistance ^(2, 3) Nonlinearity	$G=1 \\ G=10 \\ G=100 \\ G=1000 \\ G=1 \\ V_O = \pm 13.6 V, G=1 \\ G=10 \\ G=100 \\ G=1000 \\ G=10000 \\ G=1000 \\ G=1000 \\ G=1000 \\ G=1000 \\ G=1000 \\ G=1000 \\ G=10000 \\ G=1000 \\ G=1000 \\ G=1000 \\ G=10000 \\ G=10000$	bout dam to INA212 to Enge (50) do rejecti was suppli only 700µ luple-cha	1 + (50kΩ/R _G) ±0.01 ±0.02 ±0.05 ±0.5 ±1 ±25 ±0.0001 ±0.0003 ±0.0005 ±0.001	10000 ±0.024 ±0.4 ±0.5 ±1 ±100 ±0.001 ±0.002 ±0.002 (Note 4)	SOL-16 D, BRIDG VTATION SYSTEM	TIONS TIONS IPLITER UPLE, RT UPLE, RT STRUME SARNEL SHUEL	±0.1 ±0.5 ±0.7 ±2 ± ±0.002 ±0.004 ±0.004	V/V V/V % % % ppm/°C ppm/°C y of FSF % of FSF % of FSF % of FSF
OUTPUT Voltage: Positive Negative Load Capacitance Stability Short-Circuit Current	$R_L = 10k\Omega$ $R_L = 10k\Omega$	(V+) - 1.4 (V-) + 1.4	(V+) - 0.9 (V-) + 0.8 1000 +6/-15	TVIB	EGUIPN	PERATE	O YESTY	V V pF mA
FREQUENCY RESPONSE Bandwidth, -3dB Slew Rate Settling Time, 0.01% Overload Recovery	G=1 G=10 G=100 G=1000 V _O = ±10V, G=10 G=1 G=1 G=10 G=1000 G=1000 50% Overdrive	1287 401d2 401d2 ANA	1.3 700 200 20 4 7 7 9 80 4	APA SE	Proposition 2 One-Velta	on and a		MHz kHz kHz kHz V/µs µs µs µs µs µs
POWER SUPPLY Voltage Range Current, Total	V _{IN} = 0V	±2.25	±15 ±1.4	±18 ±1.5	16 Ove-Vill	o pierv*	*	V mA
TEMPERATURE RANGE Specification Operating θ _{JA}	855) + (= 36)	-40 -40	80	85 125	. 101	1.	:	°C °C °C

^{*} Specification same as INA2128P, U.

NOTE: (1) Input common-mode range varies with output voltage—see typical curves. (2) Guaranteed by wafer test. (3) Temperature coefficient of the " $50k\Omega$ " term in the gain equation. (4) Nonlinearity measurements in G = 1000 are dominated by noise. Typical nonlinearity is ± 0.001 %.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FUNCTION

Sense

V_{OB} Ref_B

R_{GB}

	8	V- ^	16	VINB
1	NC = No Co	onnection.		
	NOTES: (1)	Connect both in	dicated pads	William Co.
	Substrate I	Bias: Internally of	onnected to	V- power suppl

PAD 9

10

11

13

14

MECHANICAL INFORMATION

FUNCTION

V_{INA}

RGA

RGA

Ref

VOA

PAD

	MILS (0.001")	MILLIMETERS
Die Size	163 x 130 ±5	4.14 x 3.30 ±0.13
Die Thickness	18±3	0.45 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	141	Gold

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	±40V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	-40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE
INA2128PA	16-Pin Plastic DIP	180	-40°C to +85°C
INA2128P	16-Pin Plastic DIP	180	-40°C to +85°C
INA2128UA	SOL-16 Surface-Mount	211	-40°C to +85°C
INA2128U	SOL-16 Surface-Mount	211	-40°C to +85°C

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) MAMPORPED LADIGNT

G = 100V/V

1M

100k

CROSSTALK vs FREQUENCY

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

G = 1000V/V G = 100V/V

120

100

60 40

20

10

100

Crosstalk (dB) 80 G = 1V/V

INPUT- REFERRED NOISE vs FREQUENCY

1k

Frequency (Hz)

10k

APPLICATION INFORMATION SEVENO EQUAMBORRES JACISTY

Figure 1 shows the basic connections required for operation of the INA2128. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminals (Ref_A and Ref_B) which are normally grounded. These must be low-impedance connections to assure good common-mode rejection. A resistance of 8Ω in series with a Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

The INA2128 has a separate output sense feedback connections Sense_A and Sense_B. These must be connected to their respective output terminals for proper operation. The output sense connection can be used to sense the output voltage directly at the load for best accuracy.

SETTING THE GAIN

Gain of the INA2128 is set by connecting a single external resistor, R_G , connected as shown:

$$G = 1 + \frac{50k\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in equation 1 comes from the sum of the two

internal feedback resistors of A_1 and A_2 . These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA2128.

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain, R_G 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that despite its low quiescent current, the INA2128 achieves wide bandwidth, even at high gain. This is due to its current-feedback topology. Settling time also remains excellent at high gain—see "Settling Time vs Gain."

NOISE PERFORMANCE

The INA2128 provides very low noise in most applications. Low frequency noise is approximately $0.2\mu Vp-p$ measured from 0.1 to 10Hz (G \geq 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

OFFSET TRIMMING

The INA2128 is laser trimmed for low offset voltage and offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed with the output. The op amp buffer provides low impedance at the Ref terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA2128 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 2nA$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range of the INA2128 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA2128 is from approximately 1.4V below the positive supply voltage to 1.7V above the negative supply. As a differential input voltage causes the output voltage increase, however, the linear input range will be limited by the output

FIGURE 3. Providing an Input Common-Mode Current Path.

voltage swing of amplifiers A_1 and A_2 . So the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage."

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA2128 will be near 0V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA2128 can be operated on power supplies as low as ±2.25V. Performance remains excellent with power supplies ranging from ±2.25V to ±18V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input commonmode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for ±15V, ±5V, and ±2.5V supplies.

The inputs of the INA2128 are individually protected for voltages up to ±40V. For example, a condition of –40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5 to 5mA. The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

FIGURE 4. Two-Axis Bridge Amplifier.

The two channels of the INA2128 are completely independent, including all bias circuitry. At DC and low frequency there is virtually no signal coupling between channels. Crosstalk increases with frequency and is dependent on circuit gain, source impedance and signal characteristics.

As source impedance increases, careful circuit layout will help achieve lowest channel crosstalk. Most crossstalk is produced by capacitive coupling of signals from one channel to the input section of the other channel. To minimize coupling, separate the input traces as far as practical from any signals associated with the opposite channel. A grounded guard trace surrounding the inputs helps reduce stray coupling between channels. Run the differential inputs of each channel parallel to each other or directly adjacent on top and bottom side of a circuit board. Stray coupling then tends to produce a common-mode signal which is rejected by the IA's input.

FIGURE 5. Sum of Differences Amplifier.

FIGURE 6. ECG Amplifier With Right-Leg Drive.

Dual, Low Power, G = 10, 100 INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.5μV/°C max
- EXCELLENT GAIN ACCURACY: ±0.05% max at G = 10
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 117dB min (G = 100)
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±2.25V to ±18V
- LOW QUIESCENT CURRENT: 750μΑ/ΙΑ
- 16-PIN PLASTIC DIP, SOL-16

APPLICATIONS

- SENSOR AMPLIFIER THERMOCOUPLE, RTD, BRIDGE
- MEDICAL INSTRUMENTATION
- MULTIPLE CHANNEL SYSTEMS

DESCRIPTION

The INA2141 is a low power, dual instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (200kHz) at G = 100.

Simple pin connections set an accurate gain of 10 or 100V/V without external resistors. Internal input protection can withstand up to $\pm 40V$ without damage.

The INA2141 is laser trimmed for very low offset voltage $(50\mu V)$, drift $(0.5\mu V)^{\circ}C)$ and high commonmode rejection (117dB at G = 100). It operates with power supplies as low as $\pm 2.25V$, and quiescent current is only 750 μ A per amplifier—ideal for battery operated systems.

Packages are 16-pin plastic DIP, and SOL-16 surface-mount, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_A = +25^{\circ}\text{C}$, $V_S = \pm 15\text{V}$, and $R_L = 10\text{k}\Omega$ unless otherwise noted.

NAPPAN			INA2141P, U		11	1100		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT Offset Voltage, RTI	G = 100 G = 10		±20 ±50	±50 ±100		:	±125 ±250	μV μV
vs Temperature	G = 100 G = 10 ⁽²⁾		±0.2 ±0.5	±0.5			±1.5 ±5	μV/°C μV/°C
vs Power Supply	$V_S = \pm 2.25 \text{ to } \pm 18V, G = 100$ G = 10	same street	±1 +2	±2 ±10	100000000000000000000000000000000000000	NEST SERVICES	±5 ±20	μV/V μV/V
Long-Term Stability	G = 100 G = 10	= 0	0.2	9 wo	1.ls	uG:		μV/mo μV/mo
Impedance, Differential Common-Mode Common-Mode Voltage Rang	CONTRACT SERVICE	(V+) - 2 (V-) + 2	10 ¹⁰ 2 10 ¹⁰ 9 (V+) - 1.4 (V-) + 1.7	NENT	NUAT	'em		Ω pF Ω pF V V
Safe Input Voltage Common-Mode Rejection	$V_{CM} = \pm 13V, \Delta R_S = 1k\Omega$ G = 100 G = 10	117	125	±40	110 93	120 100	RUTA	V dB
BIAS CURRENT		NA214	106 ±2	±5		ATJOVT	±10	nA
vs Temperature Offset Current vs Temperature	I is a low power, dur fering excellent accur sign and small gize u	to reftilg	±30	±5	max max	8.5µV/°C	±10	pA/°C nA pA/°C
f = 10Hz f = 100Hz	$G = 100, R_S = 0\Omega$	le range i uitry pro	10		TOARUU	DA HIAD Ot = D is	CELLERY OS°6 max	nV/√H;
f = 1kHz f _B = 0.1Hz to 10Hz f = 10Hz	$G = 10, R_S = 0\Omega$	OkHz at tole oin c	0.2	xsm An	RENT: 5 1 (G = 100	BIAS CUI	NY INPUT 3H CMR:	nV/√H; μVp-p nV/√H;
f = 100Hz f = 1kHz f _B = 0.1Hz to 10Hz		V/V with	01 13 12 0.6	V81+18V	VOKE OT	OPTOBLE PARE	PUTS PRO	nV/√H; nV/√H; μVp-p
Noise Current f = 10Hz f = 1kHz f _B = 0.1Hz to 10Hz	I is laser trimmed fo V), drift (0.5tV/PC) a	: IIVAZIA tage (50u	0.9 0.3 30	ARALOS	RRENT: 7	US THES	W QUIES	pA/√Hz pA/√Hz pAp-p
GAIN COLVERSIATORO II .	001 = 0 10 MBV11) no	מפ וכן פסט	ORE		01-306	ARKIT METS	PW 74 101-21	2.1.10
Gain Error Gain vs Temperature ⁽²⁾ Nonlinearity	V _O = ±13.6V, G = 100 G = 10 G = 10, 100 G = 100 G = 10	ver suppli t is only rated syst	±0.03 ±0.01 ±2 ±0.0005 ±0.0003	±0.075 ±0.05 ±10 ±0.002 ±0.001		TIONS BUILDER	±0.15 ±0.15 ±0.004 ±0.002	% ppm/°(% of FS % of FS
OUTPUT Voltage: Positive Negative Load Capacitance Stability Short-Circuit Current	R_L = 10kΩ R_L = 10kΩ	(V+) - 1.4 (V-) + 1.4	(V+) - 0.9 (V-) + 0.9 1000 +6/-15	77	D, BRIDG (TATION SYSTEM	uple, Ri Strumei Hannel	ERMOCO DICAL IN ILTIPLE C	V V pF mA
FREQUENCY RESPONSE Bandwidth, -3dB	G = 100 G = 10	61	200					kHz MHz
Slew Rate Settling Time, 0.01%	$V_O = \pm 10V, G = 10$ $V_O = \pm 5V, G = 100$ G = 10	PARSAMI NV ΩNG	4 9 7	Var-Vollage Protection 2500	VINA			V/µs µs µs
Overload Recovery	50% Overdrive	-1	4	\$ - WA	- E-cq	*		μs
POWER SUPPLY Voltage Range Current, Total	V _{IN} = 0V	±2.25	±15 ±1.5	±18 ±1.6	4 0	1 .	:	V mA
TEMPERATURE RANGE Specification Operating θ_{JA}	AV S c Rei Oka	-40 -40	80	85 125	5) s			%C %C %C

^{*} Specification same as INA2141P, U.

NOTE: (1) Input common-mode range varies with output voltage—see typical curves. (2) Guaranteed by wafer test.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DICE INFORMATION

	J		and the same	
NA21/11	DIE	TOPO	CRA	DHV

PAD	FUNCTION	PAD	FUNCTION
1	V-NA	9A, 9B ⁽¹⁾	V+
2	V _{INA}	10	Sense _B
3	JA	11	V _{OB}
4	JA	12	Ref _B
5	RefA	13	J _B
6	VOA	14	J _B
7	Sense	15	*V _{INB}
8	V-	16	VINB

NC = No Connection.

PERFORMANCE CURVES

NOTES: (1) Connect both indicated pads.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	163 x 130 ±5	4.14 x 3.30 ±0.13
Die Thickness	18±3	0.45 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Gold

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	±40V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE
INA2141PA	16-Pin Plastic DIP	180	-40°C to +85°C
INA2141P	16-Pin Plastic DIP	180	-40°C to +85°C
INA2141UA	SOL-16 Surface-Mount	211	-40°C to +85°C
INA2141U	SOL-16 Surface-Mount	211	-40°C to +85°C

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

INSTRUMENTATION AMPLIFIERS

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25$ °C, and $V_S = \pm 15$ V unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) AMPORATION MOITAGILINGA

LARGE-SIGNAL STEP RESPONSE G = 10 5V/div G = 1005us/div

Figure 1 shows the basic connections required for operation of the INA2141. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminals (Ref_A and Ref_B) which are normally grounded. These must be low-impedance connections to assure good common-mode rejection. A resistance of 8Ω in series with a Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

The INA2141 has a separate output sense feedback connections Sense_A and Sense_B. These must be connected to their respective output terminals for proper operation. The output sense connection can be used to sense the output voltage directly at the load for best accuracy.

SETTING THE GAIN

Gain of each IA can be independently selected with a jumper connection as shown in Figure 1. G = 10V/V with no jumper installed. With a jumper installed G = 100V/V. To preserve good gain accuracy, this jumper must have low series resistance. A resistance of 0.5Ω in series with the jumper will decrease the gain by 0.1%.

Internal resistor ratios are laser trimmed to assure excellent gain accuracy. Actual resistor values can vary by approximately ±25% from the nominal values shown.

Gains between 10 and 100 can be achieved by connecting an external resistor to the jumper pins. This is not recommended, however, because the $\pm 25\%$ variation of internal resistor values makes the required external resistor value uncertain. A companion model, INA2128, features accurately trimmed internal resistors so that gains from 1 to 10,000 can be set with an external resistor.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that despite its low quiescent current, the INA2141 achieves wide bandwidth, even at high gain. This is due to its current-feedback topology. Settling time also remains excellent at high gain.

NOISE PERFORMANCE

The INA2141 provides very low noise in most applications. Low frequency noise is approximately $0.2\mu Vp$ -p measured from 0.1 to 10Hz (G = 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

The INAZ141 Is laser trimmed for low offset voltage and offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed with the output. The op amp buffer provides low impedance at the Ref terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA2141 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 2nA$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range of the INA2141 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA2141 is from approximately 1.4V below the positive supply voltage to 1.7V above the negative supply. As a differential input voltage causes the output voltage increase, however, the linear input range will be limited by the output voltage swing of amplifiers A_1 and A_2 . So the linear com-

FIGURE 3. Providing an Input Common-Mode Current Path.

mon-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA2141 will be near 0V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA2141 can be operated on power supplies as low as ±2.25V. Performance remains excellent with power supplies ranging from ±2.25V to ±18V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for ±15V, ±5V, and ±2.5V supplies.

INPUT PROTECTION

The inputs of the INA2141 are individually protected for voltages up to ±40V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5 to 5mA. The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

CHANNEL CROSSTALK

No.

The two channels of the INA2141 are completely independent, including all bias circuitry. At DC and low frequency

there is virtually no signal coupling between channels. Crosstalk increases with frequency and is dependent on circuit gain, source impedance and signal characteristics.

As source impedance increases, careful circuit layout will help achieve lowest channel crosstalk. Most crossstalk is produced by capacitive coupling of signals from one channel to the input section of the other channel. To minimize coupling, separate the input traces as far as practical from any signals associated with the opposite channel. A grounded guard trace surrounding the inputs helps reduce stray coupling between channels. Run the differential inputs of each channel parallel to each other or directly adjacent on top and bottom side of a circuit board. Stray coupling then tends to produce a common-mode signal which is rejected by the IA's input.

FIGURE 4. Two-Axis Bridge Amplifier.

FIGURE 5. Sum of Differences Amplifier.

FIGURE 6. ECG Amplifier With Right-Leg Drive.

PGA102

ABRIDGED DATA SHEET

For Complete Data Sheet Call Fax Line 1-800-548-6133 Request Document Number 10579

High Speed PROGRAMMABLE GAIN AMPLIFIER

FEATURES

- DIGITALLY PROGRAMMABLE GAIN:
 G = 1, 10, 100
- LOW GAIN ERROR: 0.025% max
- FAST SETTLING: 2.8µs to 0.01%
- 16-PIN PLASTIC AND CERAMIC DIP

APPLICATIONS

- **DATA ACQUISITION AMPLIFIER**
- FIXED-GAIN AMPLIFIER
- AUTOMATIC GAIN SCALING

DESCRIPTION

The PGA102 is a high speed, digitally programmable-gain amplifier. CMOS/TTL-compatible inputs select gains of 1, 10 or 100V/V. Each gain has an independent input terminal, providing an input multiplexer function.

On-chip metal film gain-set resistors are laser-trimmed to provide excellent gain accuracy. High speed input circuitry allows multiplexing of high speed signals.

The PGA102 is available in 16-pin plastic and ceramic DIP packages. Commercial, industrial and military temperature range models are available.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

			PGA102A	3	PC	GA102BG,	SG	11	PGA102K	P	100
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN CONTRACTOR OF THE PROPERTY OF	Fall Earl 1			1111							
Inaccuracy ⁽¹⁾	$R_L = 2k\Omega$, $G = 1$		±0.007	±0.02		±0.003	±0.01		*		%
Q LOVE ROUTING A PROLE	G = 10		±0.015	±0.03		±0.01	±0.02			±0.05	%
	G = 100	E CHOKON	±0.02	±0.05	N SERON	±0.015	±0.025	SHOWE WAS	E	±0.06	%
vs Temperature	G = 1		±0.4	±5	N THE		*	100		*	ppm/°C
	G = 10		±2	±7	HOHF	*	*		*		ppm/°C
	G = 100		±7	±20	165				±9	*	ppm/°C
Nonlinearity	$R_L = 2k\Omega$, $G = 1$		0.001	0.003	N			- CO	*	*	% of FS
Troilling and	G = 10		0.002	0.005	13-10	RA N	1.43-1-1	1000	*	*	% of FS
20 10 00	G = 100		0.003	0.01	1 . ON II IV		The same	2000	2 4 4	*	% of FS
RATED OUTPUT		-		-	-	-	-	-	-	-	
Voltage	$R_L = 2k\Omega$	±10	±12.5	Page 1							V
Current	V _{OUT} = 10V	±5	±10				50.00		230	ITA:	mA
Short Circuit Current	1001	±10	±25						100	Ph. 8 3407	mA
Output Resistance	all the booms about a	45 (5/5)	0.01				125 A 5 C A	lama.		Carrier res	Ω
Load Capacitance	For Stable Operation	81 77/17	2000		19	E GAB	18AMN	BIRDU	13.4	ATION	pF
INPUT OFFSET VOLTAGE		rapitale	VIE OTEN			1			901-0	71 00	2
Initial(2)	G = 1	I, 10 e	±200	±500		±100	±250	1 -000	03.141	±1500	μV
inpet multiplexer	G = 10	mast tu	±70	±200	-1	±50	±100	12304		±600	μV
the state of the s	G = 100	12102 00	±70	±200		±50	±100	B C : D	MUSTE	±600	μV
vs Temperature	G = 1		±5	±20		*	*	The same of the	±7	±50	μV/°C
vs reinperature	G = 10	metal fi	130 ±100	±7	- X	MIC DI	CEPA	CIMA O	±3	±10	μV/°C
	G = 100	D. BENOLLI	±0.5	±3					+2	±7	μV/°C
vs Supply Voltage	±5 < V _{CC} < ±18V	ic exce	14 40.3	10					12	11	μνιο
vs Supply voltage	G = 1	awolla	±30	±70	1			10000	in the second	de Monta	μV/V
	G = 10		±8	±30				SHILL		11.15	μV/V
plastic and occamic	G = 100	102 is	±8	±30	PA CONTRACTOR						μV/V
INPUT BIAS CURRENT	Commencial India	- commit	ng Tio	100		17 20 6	BURGOLE	MOIT	21000	A ATA	brava
Initial SIAS CURRENT	T _A = +25°C	net orn	±20	±50			* 7.75	NOST PETE	100	a chemical	nA
Over Temperature		THE PARTY	±25	±60	10.00			ELPTAR.	IA HIAI	9-03XI	nA
The state of the s	T _{A MIN} to T _{A MAX}		123	100		-	5501 157	VIS WIS	0.2000	600714	IIA
ANALOG INPUT				1 3						1	
CHARACTERISTICS											
Voltage Range	Linear Operation	±10	±12								V
Resistance	1	ALC: UNK	7 X 10 ⁸		10.8%	608	6.1				Ω pF
Capacitance			4	1-	ANA	W	1			-	pr
INPUT NOISE				- 1				1 4	normoraC		
Voltage Noise	f _B = 0.1Hz to 10Hz							9	agus P		
	G = 1		4.5	10		DIE 01	DIS.7	13			μVр-р
	G = 10		1.5				-VVV	19 1			μVр-р
	G = 100		0.6			1 .	E IJION T	B B	harrima0		μVр-р
Voltage Noise Density	f _O = 1Hz, G = 1		490	1 39	la contract			9-1-3	Serve 3		nV/√Hz
	G = 10	1 a 1 m	178	19 1	12385301		Taksit				nV/√Hz
	G = 100		83	- Indian	-AAA-		-11/1				nV/√Hz
	f _O = 10Hz, G = 1	-	155					10			nV/√Hz
	G = 10		56		-			10	VisualV		nV/√Hz
	G = 100		20	V		*			*		nV/√Hz
	f _O = 100Hz, G = 1	100	93	1				l las	*		nV/√Hz
	G = 100	6	31		-			101	In A nies		nV/√Hz
	G = 100	1 0-	18								nV/√Hz
	$f_0 = 1kHz, G = 1$	7	79					17.			nV/√Hz
	G = 10	19	31						Bay.		nV/√Hz
	G = 100		18	74					*		nV/√Hz
Current Noise	f _B = 0.1Hz to 10Hz	111	76	1				10		1 185	pAp-p
Current Noise Density	f _O = 1Hz		8.8	-			-	-	Spin Rat.		pA/√Hz
	f _O = 10Hz	-	2.8	1		*		1	*		pA/√Hz
	f _O = 100Hz		0.99	1			io lateration		Variation		pA/√Hz
	f _O = 1kHz		0.43	1		*					pA/√Hz
			larvast	Gein	111-5						
DYNAMIC RESPONSE	Small Signal, G = 1	-	1500	CO CO		*			*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kHz
±3dB Bandwidth											100 0000
	G = 10		750	7			4	1000	*		kHz
	G = 10 G = 100		750 250				1				kHz kHz
	$G = 10$ $G = 100$ $V_{OUT} = \pm 10V, R_L = 2k\Omega$				8	1	13				
±3dB Bandwidth	G = 10		250		8	i ar	13		*		kHz

Interdient Atheric Industrial Flats - Stating Address PO 8at 17628 - Tudoo, AC 9776 - Street Address 9735 S. Tudoo Bird. - Tudoo, AC 97760 - Telegraph Flats - FAX (20) 89-1519 - Transcollar Fooder Indo: (983) 548-9137 - Telegraph Fooder Indo: (98

ELECTRICAL

At +25°C, ±V_{CC} = 15VDC unless otherwise specified.

SPECIFICATIONS (CONT)

		P	GA102A	G	P	GA102B	G		PGA102K	•	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DYNAMIC RESPONSE (C	CONT)	4			1						
Settling Time (0.1%)	V _{OUT} = 10V Step, G = 1	30Vn 8	1.6		10	ecupil n	THE STATE OF	14 1 1 1 1		1 5	μs
	G = 10	mail C	2.2		Na.		Dining Coming	E GIA			μs
	G = 100	and the	5.2	100		*	Partitude and Control		*		μs
Settling Time (0.01%)	V _{OUT} = 10V Step, G = 1	teato t	2.8		10	(135) m					μs
	G = 10		2.8		1000	*		100	*		μs
	G = 100	A mise 0	8.2	15-3 70 11	1.7	(01*0 ₋₉	R su				μs
Overload Recovery	50% Overdrive, G = 1	T	2.5				0				μs
Time, 0.1%	(see Performance Curve)	nisê)			- 12	(0010)	Viet				
CROSSTALK											
DC	±10V to Both Off Channels	-110	-155	tametral old	(I) STO						dB
60Hz	±10V to Both Off Channels		-144			*			*		dB
DIGITAL INPUT											
CHARACTERISTICS	ALCO TAX DOOR	and the same									
Input "Low" Threshold	V _{IL} (3) on Pin 1 or 2	MI BOI		VLTC+0.8	V1-1		80	MAR	MUMIX	AM SI	V
Input "Low" Current				1			*	-			μΑ
Input "High" Threshold	V _{IH} ⁽³⁾ on Pin 1 or 2	VLTC+2		1 1	1 to					YE	V
Input "High" Current			0.1	1 1	V±				polsniA	se Hange	μА
Logic Threshold Control	VLTC on Pin 3	-V _{cc}	SULADIA	V _{CC} - 4	V+ of fV	8.2 T 2 198	V) was		- Later C	1	V
Switching Time ⁽⁴⁾	Between Channels	1 08	serApa.	1 6	10 st 50°	D*85	CONTRACTOR OF THE	ego/ 63	G tepnati	nuliteran	μs
POWER SUPPLY	16-Pin Hermoet: DRP	2.8		1 9	100 + 125			Parviga	9		
Rated Voltage	16-Pio Plastic DIP	1 50	±15		008	*		(6K	olderfrig, 10		VDC
Voltage Range	or meson scruly land collegeth has	±5	0.000	±18	опилей в	i spontit	100,,,,,,,,,	*****	golanjirC	Hugha n	VDC
Quiescent Current	V _{OUT} = 0V	illineral.	±2.4	±3.3	102 Lat 112	-			post () a	auta Augm	mA
	No External Load,				1011-1-		m) // C		P Padset		
	V _{OUT} = ±10V			±5.3					DOLLAR DE LA		mA
TEMPERATURE RANGE		0101									
Specification, KP Grade	T _{A MIN} to T _{A MAX}	0.5						0	ALIRO	+70	°C
AG and BG Grades		-25		+85			105	-	The State of		°C
SG Grade				405	-55		+125	05		05	°C
Operating		-55		+125	C BANG		NEW T	-25	IDA9	+85	°C
Storage Thermal Resistance		-65	100	+150	35°C	of 8189		-55	6H 1*1-B1	+125	°C/W
mermai nesistance	θ_{JA}		100	1		W. W. W.		and solom	200		-C/VV

^{*} Specification same as AG grade

NOTES: (1) Gain inaccuracy is the percent error between the actual and ideal gain selected. It may be externally adjusted to zero for gains of 10 and 100. (2) Offset voltage can be adjusted for any one channel. Adjustment affects temperature drift by approximately ±0.3µV°C for each 100µV of offset adjusted. (3) Voltage on the logic threshold control pin, VLTC, adjusts the threshold for "Low" and "High" logic levels. (4) Total time to settle equals switching time plus settling time of the newly selected gain.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

±18V
±V _{CC}
- 5.6V) to +V _{CC}
-65°C to +150°C
-55°C to +125°C
+300°C
uous to Common
+175°C
+110°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
PGA102AG	16-Pin Hermetic DIP	Ledle Tirres (01 Control		
PGA102BG	16-Pin Hermetic DIP	109		
PGA102SG	16-Pin Hermetic DIP	109		
PGA102KP	16-Pin Plastic DIP	180 alloV betain		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
PGA102AG	16-Pin Hermetic DIP	-25°C to +85°C
PGA102BG	16-Pin Hermetic DIP	-25°C to +85°C
PGA102SG PGA102KP	16-Pin Hermetic DIP 16-Pin Plastic DIP	-55°C to +125°C 0°C to +70°C

TEMISERATURE PLANCE
Specification, RP Glode
AG and Ed Graces
SG Grade
SG Grade
Operating
Operating

BURR-BROWN

PGA103

Programmable Gain AMPLIFIER

FEATURES

- DIGITALLY PROGRAMABLE GAINS:
 G=1, 10, 100V/V
- CMOS/TTL-COMPATIBLE INPUTS
- LOW GAIN ERROR: ±0.05% max, G=10
- LOW OFFSET VOLTAGE DRIFT: 2μV/°C
- LOW QUIESCENT CURRENT: 2.6mA
- LOW COST
- 8-PIN PLASTIC DIP, SO-8 PACKAGES

APPLICATIONS

- DATA ACQUISITION SYSTEMS
- GENERAL PURPOSE ANALOG BOARDS
- MEDICAL INSTRUMENTATION

DESCRIPTION

The PGA103 is a programmable-gain amplifier for general purpose applications. Gains of 1, 10, or 100 are digitally selected by two CMOS/TTL-compatible inputs. The PGA103 is ideal for systems that must handle wide dynamic range signals.

The PGA103's high speed circuitry provides fast settling time, even at G=100 (8 μ s to 0.01%). Bandwidth is 250kHz at G=100, yet quiescent current is only 2.6mA. It operates from $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$ power supplies.

The PGA103 is available in 8-pin plastic DIP and SO-8 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 2$ k Ω unless otherwise specified.

			PGA103P, U			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
NPUT						
Offset Voltage, RTI						
G = 1	T ₄ = +25°C	8	+200	±1500	μV	
G = 10	1 _A -120 0	Barrier Commencer	±100	±500	μV	
G = 100			±100	±500	μV	
			±100	±300	μν	
vs Temperature	$T_A = T_{MIN}$ to T_{MAX}					
G = 1			±5	er control en en control en en	μV/°C	
G = 10	TO STATE SECTION AND ADDRESS OF THE PARTY OF	No. of Concession, Name of Street, Str	±2	N. C. S.	μV/°C	
G = 100		AND INVESTIGATION AND	±2		μV/°C	
vs Power Supply	$V_{c} = \pm 4.5 \text{V to } \pm 18 \text{V}$					
G = 1		1000	30	70	μV/V	
G = 10		ALMON TO UT AN	10	35	μV/V	
		THE REPORT OF	10.00	1.00		
G = 100		W. CINDS F	10	35	μV/V	
Impedance	CONTRACTOR SECTION	PURE RESIDENCE	108 2	BEATTER TO THE PROPERTY.	Ω pF	
INPUT BIAS CURRENT						
Initial Bias Current			±50	±150	nA	
vs Temperature			±100	VALUE OF A ST	pA/°C	
NOISE VOLTAGE, RTI	The State of the S			100 mil 1 mil 1 mil 1	7.5	
	$G = 100, R_S = 0\Omega$		40		nV/√Hz	
f = 10Hz		ADUS:	16	DORS YJJA		
T = 100HZ		140000000	11		nV/√Hz	
dications. Gains of L.10, or 10 xHat = t			11	YAWOO! S	nV/√Hz	
f _B = 0.1Hz to 10Hz			0.6	white the	μVp-p	
NOISE CURRENT		81	PERSONAL PROPERTY.	CARRIED TO LA	31423 00	
1 4011		60.00	000	CONTRACTOR LABOR	A 4 / 17	
f = 10Hz		01, Gar10		OFFIS MAS	pA/√Hz	
t = 1KHZ		0.000	0.3	Lother Street marketing	pA/√Hz	
f _B = 0.1Hz to 10Hz	The PGA103 ship	T: 2HVV°C	76	DEPSET YOU	pAp-p	
GAIN above the (300 to 0.01%). Bandwidth MAD		Amo.s	CURRENT:	THEOREM	WOJO	
		20000	A CONTRACTOR	A STATE OF THE PARTY.	26.020	
G = 1 al lastes inspecting by .00			±0.005	±0.02	%	
G = 10 og V81± of V2.4± mod as				±0.05	%	
		9700	±0.02			
G = 100		IO/GES	±0.02 ±0.04	±0.05	%	
G = 100 Gain vs Temperature		KAGES	±0.04		%	
G = 100 Gain vs Temperature G = 1		KAGES	±0.04		ppm/°C	
G = 100 Gain vs Temperature G = 1		IGGES.	±0.04		ppm/°C ppm/°C	
G = 100 Gain vs Temperature G = 1 G = 10 G = 10 G = 100		23000	±0.04		ppm/°C ppm/°C	
G = 100 Gain vs Temperature G = 1 G = 10 G = 10 G = 100		23001	±0.04 ±2 ±10		ppm/°C	
G = 100 Gain vs Temperature G = 1 G = 10 G = 10 Nonlinearity		KAGES .	±0.04 ±2 ±10 ±30	±0.2	ppm/°C ppm/°C ppm/°C	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 F = 100 G = 100 F = 1		IOAGES	±0.04 ±2 ±10 ±30 ±0.001	±0.20	ppm/°C ppm/°C ppm/°C ppm/°C	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10			±0.04 ±2 ±10 ±30 ±0.001 ±0.002	±0.20 ±0.003 ±0.005	ppm/°C ppm/°C % of FSI % of FSI	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 G = 100		KAGES BOARDS	±0.04 ±2 ±10 ±30 ±0.001	±0.20	ppm/°C ppm/°C ppm/°C ppm/°C	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT		BOARDS	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004	±0.20 ±0.003 ±0.005	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 G = 100			±0.04 ±2 ±10 ±30 ±0.001 ±0.002	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C % of FSI % of FSI % of FSI	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT		BOARDS	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT Voltage, Positive Negative		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 10 G = 100 OUTPUT OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 10		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 10 G = 100 OUTPUT OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current		(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100	supplies. The PGA103 is a SO-8 surface-mount to +85°C temperates.	(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V PF mA MHz kHz kHz	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 G = 100 Slew Rate		(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25	±0.20 ±0.003 ±0.005 ±0.01	% ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V PF mA MHz kHz	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1%	supplies. The PGA103 is a SO-8 surface-mount to +85°C temperates.	(V+) -3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9	±0.20 ±0.003 ±0.005 ±0.01	% ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA MHz kHz kHz kHz V/µs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREOUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Stew Rate Settling Time, 0.1% G = 1	supplies. The PGA103 is a SO-8 surface-mount to +85°C temperates.	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9	±0.20 ±0.003 ±0.005 ±0.01	% ppm/°C ppm/°C ppm/°C % of FSI % of FSI % of FSI V V PF mA MHz kHz kHz V/μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 1 G = 1 G = 1 G = 1	supplies. The POA IOS is a SO-8 surface mount of the POA IOS is a surface mount of the POA IOS is a surface of the	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1.5 750 250 9 2 2.2	±0.20 ±0.003 ±0.005 ±0.01	% ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA MHz kHz kHz kHz V/µs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 100	supplies. The PGA103 is a SO-8 surface-mount to +85°C temperates.	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9	±0.20 ±0.003 ±0.005 ±0.01	% ppm/°C ppm/°C ppm/°C % of FSI % of FSI % of FSI V V PF mA MHz kHz kHz V/μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 1	supplies. The POA IOS is a SO-8 surface mount of the POA IOS is a surface mount of the POA IOS is a surface of the	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1.5 750 250 9 2 2.2	±0.20 ±0.003 ±0.005 ±0.01	ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C % of FSI % of FSI V V pF mA MHz kHz kHz V/µs µs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 10 G = 10 G = 100 Settling Time, 0.01%	supplies. The POA IOS is a SO-8 surface mount of the POA IOS is a surface mount of the POA IOS is a surface of the	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5	±0.20 ±0.003 ±0.005 ±0.01	% ppm/°C ppm/°C ppm/°C % of FSI % of FSI % of FSI V V PF mA MHz kHz kHz kHz V/μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1	supplies. The POA IOS is a SO-8 surface mount of the POA IOS is a surface mount of the POA IOS is a surface of the	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1.5 750 250 9 2 2.2 6.5 2.5	±0.20 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C % of FSi % of FSi % of FSi V V pF mA MHz kHz kHz V/μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Stew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 10 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10	supplies. The POA IOS is a SO-8 surface mount of the POA IOS is a surface mount of the POA IOS is a surface of the	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5 2.5 2.5	±0.20 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C ppm/°C % of FSi % of FSi V V pF mA MHz kHz kHz V/μs μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 10 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10	supplies. The PCA103 is a SO-8 surface-mount to +85°C surporation of the So-10 surporation of th	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5 2.5 8	±0.20 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C % of FSI % of FSI % of FSI V V pF mA MHz kHz kHz V/μs μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Overload Recovery	supplies. The POA IOS is a SO-8 surface mount of the POA IOS is a surface mount of the POA IOS is a surface of the	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5 2.5 2.5	±0.20 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C ppm/°C % of FSi % of FSi V V pF mA MHz kHz kHz V/μs μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 10 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 G = 100 Settling Time, 0.01% G = 1 G = 10 C = 10	supplies. The PCA103 is a SO-8 surface-mount to +85°C surporation of the So-10 surporation of th	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5 2.5 8	±0.2 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C ppm/°C % of FSi % of FSi % of FSi V V pF mA MHz kHz kHz kHz kHz μs μs μs μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Slew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Overload Recovery Digital Logic INPUTS Digital Logic INPUTS	supplies. The PCA103 is a SO-8 surface-mount to +85°C surporation of the So-10 surporation of th	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5 2.5 8 2.5 8 2.5	±0.20 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C % of FSI % of FSI % of FSI V V pF mA MHz kHz kHz V/μs μs μs μs	
G = 100 Gain vs Temperature G = 1 G = 10 G = 100 Nonlinearity G = 1 G = 100 OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current FREQUENCY RESPONSE Bandwidth, -3dB G = 1 G = 10 G = 100 Stew Rate Settling Time, 0.1% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10 G = 10 G = 10 G = 100 Settling Time, 0.01% G = 1 G = 10	supplies. The PCA103 is a SO-8 surface-mount to +85°C surporation of the So-10 surporation of th	(V+) -3.5 (V-) +3.5	±0.04 ±2 ±10 ±30 ±0.001 ±0.002 ±0.004 (V+) -2.5 (V-) +2.5 1000 ±25 1.5 750 250 9 2 2.2 6.5 2.5 8	±0.2 ±0.003 ±0.005 ±0.01	y ppm/°C ppm/°C ppm/°C ppm/°C % of FSi % of FSi % of FSi V V pF mA MHz kHz kHz kHz kHz μs μs μs μs μs μs	

PARAMETER MANAGEMENT	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY	CA SA AA SAN SAN SAN SAN SAN SAN SAN SAN			Programme 113	
Voltage Range	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	±4.5	±15	±18	V
Current	V _{IN} = 0V		±2.6	±3.5	mA
TEMPERATURE RANGE		DE LEGISLES			
Specification	Mark Commedian	-40		+85	°C
Operating	The state of the s	-40		+125	°C
θ _{JA} : P or U Package	petalibry annti fla	(20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100		°C/W

PIN CONFIGURATION

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANG		
PGA103P	8-Pin Plastic DIP	-40°C to +85°C		
PGA103U	SO-8 Surface-Mount	-40°C to +85°C		

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	V- to V+
Logic Input Voltage Range	V- to V+
Output Short Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering,10s)	+300°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
PGA103P	8-Pin Plastic DIP	006		
PGA103U	SO-8 Surface-Mount	182		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PGA103 DIE TOPOGRAPHY

PAD	FUNCTION
1	Ao
2	A ₁
3A, 3B, 3C(1)	Ground
4A, 4B, 4C(2)	VIN
6	V-
7	Vo
8	V+

NC: No Connection

NOTES: (1) Connect all three indicated pads. (2) Connect all three indicated pads.

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	69 x 105 ±5	1.75 x 2.67 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		Gold

TEMPERATURE RA	BOANGAS	
	SO-6 Surface-Mount	

BLECTROSTATIC

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

Limited

INPUT VOLTAGE NOISE vs FREQUENCY

Frequency (Hz)

1000

100

10

Voltage Noise (nV/√Hz)

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the PGA103. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

FIGURE 1. Basic Connections.

The input and output are referred to the ground terminal, pin 3. This must be a low-impedance connection to assure good gain accuracy. A resistance of 0.1Ω in series with the ground pin will cause the gain in G=100 to decrease by approximately 0.2%.

DIGITAL INPUTS

The digital inputs, A_0 and A_1 , select the gain according to the logic table in Figure 1. The digital inputs interface directly to common CMOS and TTL logic components. The logic inputs are referenced to the ground terminal, pin 3.

The logic table in Figure 1 shows that logic "1" on both A_0 and A_1 is invalid. This logic code will not cause damage, but the amplifier output will not be predictable while this code is selected. The output will recover when a valid code is selected.

The digital inputs are not latched, so a change in logic inputs immediately selects a new gain. Switching time of the logic is approximately 0.5µs. The time to respond to gain change is equal to the switching time plus the time it takes the amplifier to settle to a new output voltage in the newly selected gain (see settling time specifications).

Many applications use an external logic latch to access gain control signals from a high speed data bus. Using an external latch isolates the high speed digital bus from sensitive analog circuitry. Locate the latch circuitry as far as practical from analog circuitry to avoid coupling digital noise into the analog circuitry.

Some applications select gain of the PGA103 with switches or jumpers. Figure 2 shows pull-up resistors connected to assure a noise-free logic "1" when the switch or jumper is off or open. Fixed-gain applications can connect the logic inputs directly to V+ or ground (or other valid logic level) without a series resistor.

FIGURE 2. Switch or Jumper-Selected Gains.

OFFSET TRIMMING

Offset voltage is laser-trimmed to typically less than $200\mu V$ (referred to input) in all three gains. The input-referred offset voltage can be different for each gain.

FIGURE 3. Offset Voltage Trim Circuit.

Figure 3 shows a circuit used to trim the offset voltage of the PGA103. An op amp buffers the trim voltage to provide a low impedance at the ground terminal. This is required to maintain accurate gain. Remember that the logic inputs, A_0 and A_1 , are referenced to this ground connection, so the logic threshold voltage will be affected by the trim voltage. This is insignificant if the offset adjustment is used only to trim offset voltage. If a large offset is used (greater than 0.1V), be sure that the logic input signals provide valid logic levels when referred to the voltage at the ground terminal, pin 3.

G = 0.1, 1, 10102kΩ PGA103 -WA Accepts inputs \geq 11.3k Ω to ±120V. D₁, D₂; IN4148 O A

FIGURE 5. Wide Input Voltage Range Amplifer.

FIGURE 4. Programmable Gain Instrumentation Amplifier.

MODEL	CHARACTERISTICS
INA103	Low Noise, 1nV/√Hz IA
INA105	G = 1 Difference Amp
INA106	G = 10 Difference Amp
INA114	Resistor-Programmed Gain, Precision
INA117	±200V C-M Input Range Difference Amp
INA111	FET Input, High Speed IA
INA131	Precision, G = 100 IA

FIGURE 6. Instrumentation Amplifier with Programmable Gain Output Amp.

Maring Address Indian 17900 - Tueson, AI forth

PGA202/203

Digitally Controlled Programmable-Gain INSTRUMENTATION AMPLIFIER

FEATURES

- DIGITALLY PROGRAMMABLE GAINS:
 DECADE MODEL—PGA202
 GAINS OF 1, 10, 100, 1000
 BINARY MODEL—PGA203
 GAINS OF 1, 2, 4, 8
- LOW BIAS CURRENT: 50pA max
- FAST SETTLING: 2µs to 0.01%
- LOW NON-LINEARITY: 0.012% max
- HIGH CMRR: 80dB min
- NEW TRANSCONDUCTANCE CIRCUITRY
- LOW COST

APPLICATIONS

- DATA ACQUISITION SYSTEMS
- AUTO-RANGING CIRCUITS
- **DYNAMIC RANGE EXPANSION**
- REMOTE INSTRUMENTATION
- TEST EQUIPMENT

DESCRIPTION

The PGA202 is a monolithic instrumentation amplifier with digitally controlled gains of 1, 10, 100, and 1000. The PGA203 provides gains of 1, 2, 4, and 8. Both have TTL or CMOS-compatible inputs for easy microprocessor interface. Both have FET inputs and a new transconductance circuitry that keeps the bandwidth nearly constant with gain. Gain and offsets are laser trimmed to allow use without any external components. Both amplifiers are available in ceramic or plastic packages. The ceramic package is specified over the full industrial temperature range while the plastic package covers the commercial range.

Covered by U.S. PATENT #4,883,422

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

PGA202/203

INSTRUMENTATION AMPLIFIERS

SPECIFICATIONS NUMBER OF THE STOLES

ELECTRICAL

At +25°C, $V_{CC} = \pm 15V$ unless otherwise noted.

	98	PG	A202/203/	AG(1)	PG/	A202/203I	BG(1)	PG/	A202/2031	(P(1)	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Error ⁽²⁾ Nonlinearity Gain vs Temperature	G < 1000 G = 1000 G < 1000 G = 1000 G < 100 G = 100 G = 100	may Sada	0.05 0.1 0.002 0.02 3 40 100	0.25 1 0.015 0.06 25 120 300	ean teu	0.08	0.15 0.5 0.012 0.04 15 60 150		**	A REPARENTAL AND A SECOND ASSESSMENT OF THE SE	% % % ppm/°C ppm/°C
RATED OUTPUT Voltage Over Specified Temperature Current Impedance	I _{OUT} ≤ 5mA See Typical Perf. Curve V _{OUT} ≤ 10V	±10 ±5	±12 ±9 ±10 0.5	Losum	ARO SE	PACK		жопл	±10	W 36	V V mA Ω
ANALOG INPUTS Common-Mode Range Absolute Max Voltage ⁽³⁾ Impedance, Differential Common-Mode	No Damage	±10	±13 10 3 10 1	±V _{CC}	CATO CATO TES TES	* *	ic D4P No DIP nic DIP	PACKA Pin Plas Pin Ceral In Ceral	41 * 41 *	. 9	V V GΩ pl
OFFSET VOLTAGE (RTI) Initial Offset at 25°C(4) vs Temperature Offset vs Time Offset vs Supply	10 ≤ V _{CC} ≤ 15		±(0.5 + 5/G) ±(3 + 50/G) 50 10 + 250/G	±(2 + 24/G) ±(24 + 240/G) 100 + 900/G	ear bar one sas	* * * *	±(1 + 12/G) ±(12 + 120/G) 50 + 450/G	Pin Ping Pin Cera Pin Cera and clim rawn IC	of Run-8	* E E eis löb to D xibrien	mV μV/°C μV/Mont μV/V
INPUT BIAS CURRENT Initial Bias Current: at 25°C at 85°C Initial Offset Current: at 25°C at 85°C	BOATA		10 640 5 320	50 3200 25 1600	aler	BOAD	DAS	MOITA	MAG	II ON	pA pA pA pA
COMMON-MODE REJECTION	G = 1 G = 10 G = 100 G = 1000	80	100 110 120 120	107+ et 0 188+ er 0 10 e 88	10 20- 35-	Pid of Pile Dille	Plasti Cerah Cerah	0001	1, 10, 100 1, 10, 100 1, 10, 100	9 0 0	dB dB dB dB
INPUT NOISE Noise Voltage 0.1 to 10Hz Noise Density at 10kHz (5)	(8)		1.7	1869 OF CT	85- 85-	RIG Sir RIG Sir	Ceran	3 8	200	0	μVp-p nV/√Hz
OUTPUT NOISE Noise Voltage 0.1 to 10Hz Density at 1kHz ⁽⁵⁾			32 400			*			*		μVp-p nV/√Hz
DYNAMIC RESPONSE Frequency Response Full Power Bandwidth Slew Rate Settling Time (0.01%) (7) Overload Recovery Time (7)	G < 1000 G = 1000 G < 1000 G = 1000 G = 1000 G = 1000 G < 1000 G = 1000	10	1000 250 400 100 20 2 10 5		15	* * * * * * * *		*	* * * * * * * * * * * * * * * * * * * *		kHz kHz kHz kHz V/µs µs µs µs µs
DIGITAL INPUTS Digital Common Range Input Low Threshold (6) Input Low Current Input High Voltage Input High Current		-V _{CC}		V _{CC} - 8 0.8 10	*		*			* * *	V V μΑ V μΑ
POWER SUPPLY Rated Voltage Voltage Range Quiescent Current		±6	±15	±18		*	*	*		*	V V mA
TEMPERATURE RANGE Specification Operating Storage θ_{JA}		-25 -55 -65	100	85 125 150	* *		:	0 -25 -40		70 85 100	W.S. S. S. S. S. S. S. S.

^{*} Same as the PGA202/203AG

NOTES: (1) All specifications apply to both the PGA202 and the PGA203. Values given for a gain of 10 are the same for a gain of 8 and other values may be interpolated. (2) Measured with a 10k load. (3) The analog inputs are internally diode clamped. (4) Adjustable to zero. (5) $V_{NOISE,(RTI)} = \sqrt{(V_{N,INPUT})^2 + (V_{N,OUTPUT}/Gain)^2}$.

(6) Threshold voltages are referenced to Digital Common. (7) From input change or gain change.

A ₁ 2 +V _{CC} 3	13 -V _{сс}	Analog and Digital Inputs	55°C to +125°C
V _{REF} 4	11 V _{OUT} Sense	Lead Temperature (soldering, 10s)	Continuous
V _{OS} Adjust 6	9 V _{OS} Adjust 8 +V _{IN}	\$0.0 000 5 5 \$0.0 000 5 5 \$0.0 5 00 5 5 \$0.0 5 00 7 5 \$0.0 5 00 7 5	Nominearry Gent vs Temperatura

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
PGA202KP	14-Pin Plastic DIP	010
PGA202AG	14-Pin Ceramic DIP	169
PGA202BG	14-Pin Ceramic DIP	169
PGA203KP	14-Pin Plastic DIP	010
PGA203AG	14-Pin Ceramic DIP	169
PGA203BG	14-Pin Ceramic DIP	169

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	GAINS	PACKAGE	TEMPERATURE RANGE	OFFSET VOLTAGE MAX (mV)
PGA202KP	1, 10, 100, 1000	Plastic DIP	0°C to +70°C	±(2 + 24/G)
PGA202AG	1, 10, 100, 1000	Ceramic DIP	-25°C to +85°C	±(2 + 24/G)
PGA202BG	1, 10, 100, 1000	Ceramic DIP	-25°C to +85°C	±(1 + 12/G)
PGA203KP	1, 2, 4, 8	Plastic DIP	0°C to +70°C	±(2 + 24/G)
PGA203AG	1, 2, 4, 8	Ceramic DIP	-25°C to +85°C	±(2 + 24/G)
PGA203BG	1, 2, 4, 8	Ceramic DIP	-25°C to +85°C	±(1 + 12/G)

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (CONT) MAMPORES LIADISTY

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMBORRES ASIGNT

 $T_A = +25$ °C, $V_S = \pm 15$ V unless otherwise noted.

PGA202/203

BURR-BROWN®

DISCUSSION OF PERFORMANCE

A simplified diagram of the PGA202/203 is shown on the first page. The design consists of a digitally controlled, differential transconductance front end stage using precision FET buffers and the classical transimpedance output stage. Gain switching is accomplished with a novel current steering technique that allows for fast settling when changing gains. The result is a high performance, programmable instrumentation amplifier with excellent speed and gain accuracy.

The input stage uses a new circuit topology that includes FET buffers to give extremely low input bias currents. The differential input voltage is converted into a differential output current with the transconductance gain selected by steering the input stage bias current between four identical input stages differing only in the value of the gain setting resistor. Each input stage is individually laser-trimmed for input offset, offset drift, and gain.

The output stage is a differential transimpedance amplifier. Unlike the classical difference amplifier output stage, the common-mode rejection is not limited by the resistor matching. However, the output resistors are laser-trimmed to help minimize the output offset and drift.

BASIC CONNECTIONS

Figure 1 shows the proper connections for power supply and signal. The power supplies should be decoupled with $1\mu F$ tantalum capacitors placed as close to the amplifier as possible for maximum performance. To avoid gain and CMR errors introduced by the external components, you should connect the grounds as indicated. Any resistance in the sense line (pin 11) or the $V_{\rm REF}$ line (pin 4) will lead to a gain error, so these lines should be kept as short as possible. To also maintain stability, avoid capacitance from the output to the input or the offset adjust pins.

FIGURE 1. Basic Circuit Connections.

OFFSET ADJUSTMENT

Figure 2 shows the offset adjustment circuits for the PGA202/203. The input offset and the output offset are both separately adjustable. Notice that because the PGA202/203 change between four different input stages to change gain, the input offset voltage will change slightly with gain. For systems using computer autozeroing techniques, neither offset nor drift is a major concern, but it should be noted that since the input offset does change with gain, these systems should perform an autozero cycle after each gain change for optimum performance.

In the output offset adjustment circuit, the choice of the buffering op amp is very important. The op amp needs to have low output impedance and a wide bandwidth to maintain full accuracy over the entire frequency range of the PGA202/203. For these reasons we recommend the OPA602 as an excellent choice for this application.

FIGURE 2. Offset Adjustment Circuits.

for the different possible values of the digital input word. The logic inputs are referred to their own separate digital common pin, which can be connected to any voltage between the minus supply and 8V below the positive supply. The gains are all internally trimmed to an initial accuracy of better than 0.1%, so no external gain adjustment is required. However, if necessary the gains can be increased by the use of an external attenuator around the output stage as shown in Figure 3. Recommended resistor values for certain selected output gains are given in Table II.

A ₁	Ao	PGA202		PGA203	
		GAIN	ERROR	GAIN	ERROR
0	0	1	0.05%	1	0.05%
0	1	10	0.05%	2	0.05%
1	0	100	0.05%	4	0.05%
1	1	1000	0.10%	8	0.05%

TABLE I. Software Gain Selection.

OUTPUT GAIN	R ₁	R ₂
2	5kΩ	5kΩ
5	2kΩ	8kΩ
10	1kΩ	9kΩ

TABLE II. Output Stage Gain Control.

FIGURE 3. Gain Increase with Buffered Attenuator.

COMMON-MODE INPUT RANGE

Unlike the classical three op amp type of circuit, the input common-mode range of the PGA202/203 does not depend on the differential input and the gain. In the standard three op amp circuit, the input common-mode signal must be kept below the maximum output voltage of the input amplifier minus 1/2 the final output voltage. If, for example, these amplifiers can swing $\pm 12V$, then to get 12V at the output you must restrict the input common-mode voltage to only 6V. The circuitry of the PGA202/203 is such that the common-mode input range applies to either input pin regardless of the output voltage.

the load at the load site, IR drops due to the load currents are eliminated since they are inside the feedback loop. Proper connection is shown in Figure 1. When more current is required, a power booster can be placed in the feedback loop as shown in Figure 4. Buffer errors are minimized by the loop gain of the output amplifier.

FIGURE 4. Current Boosting the Output.

OUTPUT FILTERING

The summing nodes of the output amplifier have also been made available to allow for output filtering. By placing matched capacitors in parallel with the existing internal capacitors as shown in Figure 5, you can lower the frequency response of the output amplifier. This will reduce the noise of the amplifier, at the cost of a slower response. The nominal frequency responses for some selected values of capacitor are shown in Table III.

FIGURE 5. Output Filtering.

CUTOFF FREQUENCY	C ₁ AND C ₂	
1MHz	None	
100kHz	47pF	
Maria	525pF	

TABLE III. Output Frequency vs Filter Capacitors.

INPUT CHARACTERISTICS

Because the PGA202/203 have FET inputs, the bias currents drawn through input source resistors have a negligible effect on DC accuracy. The picoamp currents produce no more than microvolts through megohm sources. The inputs are also internally diode clamped to the supplies. Thus, input filtering and input series protection are easily achievable.

A return path for the input bias currents must always be provided to prevent the charging of any stray capacitance. Otherwise, the amplifier could wander and saturate. A $1M\Omega$ to $10M\Omega$ resistor from the input to common will return floating sources such as thermocouples and AC-coupled inputs (see Applications Section, Figures 8 and 9).

DYNAMIC PERFORMANCE

The PGA202 and the PGA203 are fast-settling FET input programmable gain instrumentation amplifiers. Careful attention to minimize stray capacitance is necessary to achieve specified performance. High source resistance will interact with the input capacitance to reduce speed and overall bandwidth. Also, to maintain stability, avoid capacitance from the output to the input or the offset adjust pins.

Applications with balanced source impedance will provide the best performance. In some applications, mismatched source impedances may be required. If the impedance in the negative input exceeds that in the positive input, stray capacitance from the output will create a net negative feedback and improve the stability of the circuit. If, however, the impedance in the positive input is greater, then the feedback due to stray capacitance will be positive and instability may result. The degree of positive feedback will, of course, depend on the source impedance imbalance as well as the board layout and the operating gain. The addition of a small bypass capacitor of about 5 to 50pF directly across the input terminals of the PGIA will generally eliminate any instability arising from these stray capacitances. CMR errors due to the source imbalance will also be reduced by the addition of this capacitor.

The PGA202 and the PGA203 are designed for fast settling in response to changes in either the input voltage or the gain. The bandwidth and the settling times are mostly determined by the output stage and are therefore independent of gain, except at the highest gain of the PGA202 where other factors in the input stage begin to dominate.

APPLICATIONS

In addition to general purpose applications, the PGA202/203 are designed to handle two important and demanding classes of applications: inputs with high source impedances, and rapid scanning data acquisition systems requiring fast settling time. Because the user has access to output sense and output common pins, current sources can also be constructed with a minimum of external components. Some basic application circuits are shown in Figures 6 through 12.

FIGURE 6. Isolated Programmable Gain Instrumentation Amplifier.

FIGURE 7. Auto Gain Ranging.

FIGURE 8. AC-Coupled Differential Amplifier for Frequencies Above 0.16Hz.

FIGURE 9. Floating Source Programmable Gain Instrumentation Amplifier.

FIGURE 11. Programmable Differential In/Differential Out Amplifier.

FIGURE 10. Low Noise Differential Amplifier with Gains of 100, 200, 400, 800.

FIGURE 12. Programmable Current Source.

FIGURE 13. Cascaded Amplifiers.

Programmable Gain INSTRUMENTATION AMPLIFIER

FEATURES

- DIGITALLY PROGRAMMABLE GAIN: PGA204: G=1, 10, 100, 1000V/V PGA205: G=1, 2, 4, 8V/V
- LOW OFFSET VOLTAGE: 50µV max
- LOW OFFSET VOLTAGE DRIFT: 0.25μV/°C
- LOW INPUT BIAS CURRENT: 2nA max
- LOW QUIESCENT CURRENT: 5.2mA typ
- NO LOGIC SUPPLY REQUIRED
- 16-PIN PLASTIC DIP, SOL-16 PACKAGES

APPLICATIONS

- DATA ACQUISITION SYSTEM
- GENERAL PURPOSE ANALOG BOARDS
- MEDICAL INSTRUMENTATION

DESCRIPTION

The PGA204 and PGA205 are low cost, general purpose programmable-gain instrumentation amplifiers offering excellent accuracy. Gains are digitally selected: PGA204-1, 10, 100, 1000, and PGA205-1, 2, 4, 8V/V. The precision and versatility, and low cost of the PGA204 and PGA205 make them ideal for a wide range of applications.

Gain is selected by two TTL or CMOS-compatible address lines, A₀ and A₁. Internal input protection can withstand up to ±40V on the analog inputs without damage.

The PGA204 and PGA205 are laser trimmed for very low offset voltage (50µV), drift (0.25µV/°C) and high common-mode rejection (115dB at G=1000). They operate with power supplies as low as ±4.5V, allowing use in battery operated systems. Quiescent current is 5mA.

The PGA204 and PGA205 are available in 16-pin plastic DIP, and SOL-16 surface-mount packages, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 PDS-1176A

4.206

UA, SA	PCAS03	UB ,58/P	GA204BP, B	U	P	GA204AP, A	U	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT	T .0500	14 (3)(8)(0)	±10+20/G	±50+100/G	0/20 7	±25+30/G	±125+500/G	μV
Offset Voltage, RTI vs Temperature	T _A =+25°C T _A =T _{MIN} to T _{MAX}	DIR CALL	±0.1+0.5/G	±0.25+5/G	T of sugar-	±0.25+5/G	±1+10/G	μV/°C
vs Power Supply	V _S =±4.5V to ±18V	DISH	0.5+2/G	3+10/G	+ nt V2 been	*	**Cup2	μV/V
Long-Term Stability	Vg=14.0V to 110V	DIE 015	±0.2+0.5/G	0110/0			villas 3	μV/mo
Impedance, Differential		Bliving	1010 6		4.5		terminating	Ω∥pF
Common-Mode		antin	1010 6				common Mode	Ω∥pF
Input Common-Mode Range	V _O =0V (see text)	±10.5	±12.7	(2)	of east VOwn		n-Yoda Rang	V
Safe Input Voltage	(Page			±40			· epsile	Vela
Common-Mode Rejection	$V_{CM}=\pm 10V$, $\Delta R_S=1k\Omega$			Shife	SAZ VOLLA	59	noltosjefi et	
65	G=1	80	99		75	90		dB
Sh	G=10	96	114		90	106		dB
86 1 9	G=100	110	123		106	110		dB
96	G=1000	115	123		106	110		dB
BIAS CURRENT		A DE	±0.5	±2	N. William		±5	nA
vs Temperature		8.04	±8		- I m d		9)3859	pA/°C
Offset Current vs Temperature		1 000	±0.5 ±8	±2			December 1	nA pA/°C
	C>100 B 00	1 61	16		Gas Posts		AND DIVE	nV/√Hz
NOISE, Voltage, RTI(1): f=10Hz f=100Hz	G≥100, R _S =0Ω		13		Deal Red		101wt	nV/√Hz
f=1kHz	G≥100, R _S =0Ω G≥100, R _S =0Ω	21	13		Man Red	1 20	HX1ul	nV/√Hz
f _B =0.1Hz to 10Hz	G≥100, R _S =0Ω	8.0	0.4		Ges, Re-CE		0 or 1510 0m/l	μVр-р
Noise Current	GE100, 115-046	184 J. W.	0.4	1	100		7.0	ртр р
f=10Hz		3.0	0.4		11 3 1 1	*		pA/√Hz
f=1kHz		3.0	0.2	1.1				pA/√Hz
f _B =0.1Hz to 10Hz		TRE	18				ahi01 di	рАр-р
GAIN, Error	G=1 450.0	200.0	±0.005	±0.024	1-0	*	±0.05	%
30,05	G=10 450.0	Yours	±0.01	±0.024	5-0		±0.05	%
20.05	G=100	10.03	±0.01	±0.024	1-8		±0.05	%
ar 20.0±	G=1000	r6.0s	±0.02	±0.05	8-9	*	±0.1	%
Gain vs Temperature	G=1 to 1000	8.52	±2.5	±10	D of the D		ราเสอนกิจ	ppm/°C
Nonlinearity	G=1 F00.0s	1-1-200001	±0.0004	±0.001	1=2		±0.002	% of FSR
PSR 16 SF \$00.02	G=10	1,5900.1	±0.0004	±0.002	Ger	*	±0.004	% of FSR
±0.004 % of FSR	G=100 200 G	120501	±0.0004	±0.002	P=0		±0.004	% of FSR
H29 to at 1 400.0%	G=1000	95000	±0.0008	±0.01	8-6		±0.02	% of FSR
OUTPUT Voltage, Positive ⁽²⁾	I FmA T to T	(V.) 15	01.110		er		100,000	V SO
Negative ⁽²⁾	I _O =5mA, T _{MIN} to T _{MAX} I _O =-5mA, T _{MIN} to T _{MAX}	(V+)-1.5 (V-)+1.5	(V+)-1.3 (V-)+1.3	2 X0M2	of part Arm.	-	Davis	V
Load Capacitance Stability	10=-SITIA, I MIN TO I MAX	(V-)+1.5	1000	30.00	to little business	-0	minus Sumilla	pF
Short Circuit Current		72-03	+23/-17				Carpine	mA
FREQUENCY RESPONSE							MINIMARA I	Charles Manager
Bandwidth, -3dB	G=1		1		140		File	MHz
1012	G=10	400	80		12-0			kHz
1912	G=100	005	10		Ges			kHz
380	G=1000	001	1		8-8			kHz
Slew Rate	V _O =±10V, G=10	0.3	0.7	8	-D. VOTE-OV			V/µs
Settling Time ⁽³⁾ , 0.1%	G=1	22	22		1=0		ant.9	μѕ
at the second	G=10	22	23		SHO			μs
20	G=100	23	100		N=D		C. H. T.	μs
2 2424	G=1000	13	1000		8-D			μs
0.01%	G=1 G=10	63	23		TwiD		2010/0	μs
	G=10 G=100	90	28		13+2 C+4			μs
211	G=100 G=1000	50	140 1300	7 1 H 1 G 1	8=0			μs
Overload Recovery	50% Overdrive	100	70		Advance Art		- venue	μs μs
DIGITAL LOGIC	3070 01010110		,,,				387 / 369 U. P182	μο
Digital Ground Voltage, V _{DG}		V-	-W	(V+)-4			d Voltage, Ve	V
Digital Low Voltage		V-	- Ar	V _{DG} +0.8V	*	1 1	*nessing	V
Digital Input Current		14	1	DG.0.07			2752000	μА
Digital High Voltage		V _{DG} +2	Swint	V+	*		*epsito	V
POWER SUPPLY, Voltage		±4.5	±15	±18			PICK V VISO	V
Current	V _{IN} =0V	3 -48	+5.2/-4.2	±6.5	Vande		±7.5	mA
TEMPERATURE RANGE							SOME REPORTED	TARRES
Specification		-40	0.04	+85				°C
Operating		-40	1 75-	+125		THE RES		°C
$\theta_{ m JA}$		0.00	80			*		°C/W

^{*} Specification same as PGA204BP.

NOTES: (1) Input-referred noise voltage varies with gain. See typical curves. (2) Output voltage swing is tested for ±10V min on ±11.4V power supplies. (3) Includes time to switch to a new gain.

SPECIFICATIONS

ELECTRICAL

VAVOOOT 001 01 1=0 \$05AD9 PGA205 G=1, 2, 4, 8V/V

At T_A = +25°C, V_S = ±15V, and R_L = 2k Ω unless otherwise noted.

	PUALIS			T GAZOODI, DO			PGA205AP, AU		
PARAMETER	CONDITIONS	XAM	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
NPUT									709
Offset Voltage, RTI	T _A =+25°C	Dinor-o	Et 0/05+0	±10+20/G	±50+100/G	D*85 T	±25+30/G	±125+500/G	μV
vs Temperature	T _A =T _{MIN} to T _{MA}			±0.1+0.5/G	±0.25+5/G	Tolon Twa	±0.25+5/G	±1+10/G	
vs Power Supply	V _S =±4.5V to ±18		5+2/6		3+10/G	at of Ve Name	*	Supply	
	V _S =±4.5V to ±16	V			3+10/G	C. C. S.C. STAN			
Long-Term Stability		Cart N	2+0.5/G	±0.2+0.5/G				Stability	μV/mo
mpedance, Differential		His bear	Billoro	1010 6	1 1			istnerehii	
Common-Mode	S. C. L. C. L.		Slipto.	1010 6		1.50		eboM-m	ΩllpF
Input Common-Mode Range	V _O =0V (see text	t)	±10.5	±12.7	d dix	of seal Viber		ensPlabol/In	mino V La
Safe Input Voltage	0	754			±40			* accell	V mgV els
Common-Mode Rejection	V _{CM} =±10V, ΔR _S =1	(IrO	-51		Out	HA VOITE	list I	noticeton	old-nomina
Common-wode Rejection		1822	00 00	94	5,001		oV oo	unapalau es	dB
	G=1		80 80	-		75	88		
	G=2		85	100	1	80	94		dB
	G=4		90	106		85	100		dB
	G=8		95	112		89	106		dB
DIAC CURRENT					10			15	orders to Anna I
BIAS CURRENT		20	8.02	±0.5	±2			±5 TM	nA A
vs Temperature			86	±8			1	enution	
Offset Current		51	2.05	±0.5	±2		*	* 100	nA o
vs Temperature			De:	±8			*	อาเมอา	pA/°C
Noise Voltage, RTI(1): f=10Hz	C 0 B 00			19		5 00 00 m	* 240	Li date an	nV/√Hz
The state of the s	G=8, R _S =0Ω		ar.		1	G2100, Rg=0	5,710	DAY TOWNS TANK	
f=100Hz	G=8, R _S =0Ω		13	15		G2100; Rg=0	1 71.31	(#10E	nV/√Hz
f=1kHz	G=8, $R_S=0\Omega$		13	15		0≥100, R _g =0	* - si	(T=)	nV/√Hz
f _B =0.1Hz to 10Hz	G=8, R _S =0Ω		0.0	0.5	1	0mg/R .08/50	* - 28	Of ot sHit on	μVр-р
Noise Current	5, 5								THE TANK AND A
f=10Hz			8.0	0.4		100			pA/√Hz
f=1kHz			0,2	0.2	1 1 1 1		1		pA/√Hz
f _B =0.1Hz to 10Hz			187	18	138 5			sH01 of	pAp-p
GAIN, Error	G=1	10.024	30.005	±0.005	±0.024	1-0	*	±0.05	%
20.0±	G=2	10.024	10.01	±0.01	±0.024	G=10		±0.05	%
20.0x	G=4	480.01	10.01	±0.01	±0.024	001-0		±0.05	%
	G=8		50.05	±0.01	±0.024	G=1000	*	±0.05	%
Gain vs Temperature	G=1 to 8		8.5±	±2.5	±10	Gert to 1000	*	enumed	ppm/°C
Nonlinearity S00.0	G=1		14000.0	±0.00024	±0.001	1-0		±0.002	% of FSF
989 fo at 160.0±	G=2		M000.0	±0.00024	±0.002	G=10		±0.004	% of FSF
	G=4								
		200,03	1600.0	±0.00024	±0.002	G=100	1	±0.004	% of FSF
HER to at SOLOE	G=8	10.05	8000.0	±0.00024	±0.002	0001=6	i i	±0.004	% of FSR
OUTPUT									TURTUE
Voltage, Positive(2)	I _O =5mA, T _{MIN} to T	MAN	(V+)-1.5	(V+)-1.3	WY TO MICE	Of MIN TO	med *	(5)(4)(5)	on Vario
Negative ⁽²⁾	I _O =-5mA, T _{MIN} to 7		(V-)+1.5	(V-)+1.3	70.00	THE REAL PROPERTY.		(S) _{cuvito}	nal/ V
	10=-SITIA, I MIN to	MAX			I losse!	of your T. Amis	140	11000000	Street I decided
Load Capacitance Stability			1000	1000				ands Stabiling	on on pF
Short Circuit Current			23-17	+23/-17	1		1	menus	mA
FREQUENCY RESPONSE								HESPONS:	PRIORING
Bandwidth, -3dB	G=1		14	1		TwD		100.0	MHz
	G=2		000	400		01-0		900	kHz
			1. 1100		6				
	G=4		07	200		Ca100			kHz
	G=8			100		0001=D	*		kHz
Slew Rate	V _O =±10V, G=8	3	0.3	0.7	0	Vorestov. Ga			V/μs
Settling Time(3), 0.1%	G=1		22	22		TeD .		. 387 D , 18	μs
au au	G=2		23	22	Marin 3	G=10		100000000000000000000000000000000000000	μѕ
	G=4			23	-1-5				
			001			001×0	1		μs
	G=8		0001	23	1 1 - 1 - 1	Q=1000	*		μs
0.01%	G=1		152	23		TwD	*	3010.0	μs
	G=2		88	23	13-40	018	*		μs
	G=4		140	25		Gu 100			μς
	G=8		000	28		000148	*		
Overland Bankur									μs
Overload Recovery	50% overdrive		-70	70	11 11 11	SON Cyandra		cyacy	μs
DIGITAL LOGIC INPUTS		111111111111111111111111111111111111111		1 1 1 1 1 1 1			The second	No.	OJ JATIES
Digital Ground Voltage, VDG		2-1-1	V-	100	(V+)-4			V.sobjev V	V
Digital Low Voltage		V8.0+0	V-	The state of			1 1		
			V-	-	V _{DG} +0.8V				was Varg
Digital Low Current				1			WE STATE	monut	μΑ
Digital High Voltage			V _{DG} +2	S+	V+		4 1 1 1 1 1	egstio'	V
DOWED SLIPPLY Valence		6.7		145	140				110 CM
POWER SUPPLY, Voltage			±4.5	±15	±18			Public 7 Y JS	THE RV TO
Current	V _{IN} =0V	8.0±	12/-4.2	+5.2/-4.2	±6.5	Vond	*	±7.5	mA
TEMPERATURE RANGE		11.7						BOWAR BO	TAR-10-49
		20	-		1	191 2 191	120		- Pour La Contain
Specification		485	-40	1	+85				°C
Operating		+125	-40	0.0-	+125				°C
θ_{JA}			08	80					°C/W

^{*} Specification same as PGA204BP.

NOTES: (1) Input-referred noise voltage varies with gain. See typical curves. (2) Output voltage swing is tested for ±10V min on ±11.4V power supplies. (3) Includes time to switch to a new gain.

NOTE: (1) For detailed drawing	and dimen	sion table,	please	see	end	of c	lata
sheet, or Appendix C of Burr-B	rown IC Da	ta Book.					

ABSOLUTE MAXIMUM RATINGS

±18V
±40V
±V _S
Continuous
40°C to +125°C
40°C to +125°C
+150°C
+300°C

ORDERING INFORMATION

MODEL	GAINS	PACKAGE	TEMPERATURE RANGE
PGA204AP	1, 10, 100, 1000V/V	16-Pin Plastic DIP	-40 to +85°C
PGA204BP	1, 10, 100, 1000V/V	16-Pin Plastic DIP	-40 to +85°C
PGA204AU	1, 10, 100, 1000V/V	SOL-16 Surface-Mount	-40 to +85°C
PGA204BU	1, 10, 100, 1000V/V	SOL-16 Surface-Mount	-40 to +85°C
PGA205AP	1, 2, 4, 8V/V	16-Pin Plastic DIP	-40 to +85°C
PGA205BP	1, 2, 4, 8V/V	16-Pin Plastic DIP	-40 to +85°C
PGA205AU	1, 2, 4, 8V/V	SOL-16 Surface-Mount	-40 to +85°C
PGA205BU	1, 2, 4, 8V/V	SOL-16 Surface-Mount	-40 to +85°C

DC A 204/20E	DIE	TOPOGRAPI	IV

Р	AD	FUNCTION	PAD	FUNCTION	100	
17	1	V _{O1}	9	V _{O2}	1	
2	2	THUNGS BOATS	10	Ref	18	
77	3	T Brough BOSSIL	11	V _O	0	
	4	V-IN	12	Feedback		
er di	5	V+IN	13	V+	-	
0	6	V _{OS} Adj	14	Dig. Ground	3	
0	7	V _{OS} Adj	15	A ₀	16	
-	8	V-	16	A ₁	-	

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	186 x 130 ±5	4.72 x 3.30 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	V4 x 4	0.1 x 0.1
Backing	a L vivocer co	Gold

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

4

TYPICAL PERFORMANCE CURVES (CONT) MAMAGORRE JACONY

At $T_A = +25$ °C, and $V_S = \pm 15$ V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MANIFORMED LADISM'T

At $T_A = +25$ °C, and $V_S = \pm 15$ V, unless otherwise noted.

Temperature (°C)

Output Voltage (V)

0.5μV/Div

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the PGA204/205. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 5Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G=1).

The PGA204/205 has an output feedback connection (pin 12). Pin 12 must be connected to the output terminal (pin 11) for proper operation. The output Feedback connection can

The digital inputs A_0 and A_1 select the gain according to the logic table in Figure 1. Logic "1" is defined as a voltage greater than 2V above digital ground potential (pin 14). Digital ground can be connected to any potential from the V– power supply to 4V less than V+. Digital ground is normally connected to ground. The digital inputs interface directly CMOS and TTL logic components.

DIGITAL INPUTS

Approximately 1µA flows out of the digital input pins when a logic "0" is applied. Logic input current is nearly zero with a logic "1" input. A constant current of approximately

FIGURE 1 Basic Connections.

FIGURE 2. Switch or Jumper-Selected Digital Inputs.

1.3mA flows in the digital ground pin. It is good practice to return digital ground through a separate connection path so that analog ground is not affected by the digital ground current.

The digital inputs, A_0 and A_1 , are not latched; a change in logic inputs immediately selects a new gain. Switching time of the logic is approximately 1 μ s. The time to respond to gain change is effectively the time it takes the amplifier to settle to a new output voltage in the newly selected gain (see settling time specifications).

Many applications use an external logic latch to access gain control data from a high speed data bus (see Figure 7). Using an external latch isolates the high speed digital bus from sensitive analog circuitry. Locate the latch circuitry as far as practical from analog circuitry.

Some applications select gain of the PGA204/205 with switches or jumpers. Figure 2 shows pull-up resistors connected to assure a noise-free logic "1" when the switch, jumper or open-collector logic is open or off. Fixed-gain applications can connect the logic inputs directly to V+ or V- (or other valid logic level); no resistor is required.

OFFSET VOLTAGE

Voltage offset of the PGA204/205 consists of two components—input stage offset and output stage offset. Both components are specified in the specification table in equation form:

$$V_{OS} = V_{OSI} + V_{OSO} / G$$
 (1)

where

Vos total is the combined offset, referred to the input.

 V_{OSI} is the offset voltage of the input stage, A_1 and A_2 .

V_{OSO} is the offset voltage of the output difference amplifier, A₃.

 V_{OSI} and V_{OSO} do not change with gain. The composite offset voltage V_{OS} changes with gain because of the gain term in equation 1. Input stage offset dominates in high gain (G \geq 100); both sources of offset may contribute at low gain (G=1 to 10).

OFFSET TRIMMING

Both the input and output stages are laser trimmed for very low offset voltage and drift. Many applications require no external offset adjustment.

Figure 3 shows an optional input offset voltage trim circuit. This circuit should be used to adjust only the input stage offset voltage of the PGA204/205. Do this by programming

FIGURE 3. Optional Offset Voltage Trim Circuit.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

it to its highest gain and trimming the output voltage to zero with the inputs grounded. Drift performance usually improves slightly when the input offset is nulled with this procedure.

Do not use the input offset adjustment to trim system offset or offset produced by a sensor. Nulling offset that is not produced by the input amplifiers will increase temperature drift by approximately $3.3\mu V/^{\circ}C$ per 1mV of offset adjustment.

Many applications that need input stage offset adjustment do not need output stage offset adjustment. Figure 3 also shows a circuit for adjusting output offset voltage. First, adjust the input offset voltage as discussed above. Then program the device for G=1 and adjust the output to zero. Because of the interaction of these two adjustments at G=8, the PGA205 may require iterative adjustment.

The output offset adjustment can be used to trim sensor or system offsets without affecting drift. The voltage applied to the Ref terminal is summed with the output signal. Low impedance must be maintained at this node to assure good common-mode rejection. This is achieved by buffering the trim voltage with an op amp as shown.

NOISE PERFORMANCE

The PGA204/205 provides very low noise in most applications. Low frequency noise is approximately $0.4\mu Vp$ -p measured from 0.1 to 10Hz. This is approximately one-tenth the noise of "low noise" chopper-stabilized amplifiers.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the PGA204/205 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than $\pm 1nA$ (it can be either polarity due to cancellation circuitry). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the PGA204/205 is to operate properly. Figure 4 shows provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the PGA204/205 and the input amplifiers will saturate. If the differential source resistance is low, bias current return path can be connected to one input (see thermocouple example in Figure 4). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due bias current and better common-mode rejection.

Many sources or sensors inherently provide a path for input bias current (e.g. the bridge sensor shown in Figure 4). These applications do not require additional resistor(s) for proper operation.

FIGURE 4. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the PGA204/205 is approximately $\pm 12.7V$ (or 2.3V from the power supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the input amplifiers, A_1 and A_2 . The common-mode range is related to the output voltage of the complete amplifier—see performance curve "Input Common-Mode Range vs Output Voltage."

A combination of common-mode and differential input voltage can cause the output of A_1 or A_2 to saturate. Figure 5 shows the output voltage swing of A_1 and A_2 expressed in terms of a common-mode and differential input voltages. Output swing capability of these internal amplifiers is the same as the output amplifier, A_3 . For applications where input common-mode range must be maximized, limit the output voltage swing by selecting a lower gain of the PGA204/205 (see performance curve "Input Common-Mode Voltage Range vs Output Voltage"). If necessary, add gain after the PGA204/205 to increase the voltage swing.

FIGURE 5. Voltage Swing of A₁ and A₂.

Input-overload often produces an output voltage that appears normal. For example, consider an input voltage of +20V on one input and +40V on the other input will obviously exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to the nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the PGA204/205 will be near 0V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the PGA204/205 are individually protected for voltages up to ±40V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input current limit behavior. The inputs are protected even if no power supply voltage is present.

FIGURE 6. Switch-Selected PGIA.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FIGURE 7. Multiplexed-Input Programmable Gain IA.

FIGURE 8. Shield Drive Circuit.

FIGURE 9. Binary Gain Steps, G=1 to G=64.

FIGURE 10. AC-Coupled PGIA.

PGA206 PGA207

High-Speed Programmable Gain INSTRUMENTATION AMPLIFIER

FEATURES

- DIGITALLY PROGRAMMABLE GAINS: PGA206: G=1, 2, 4, 8V/V PGA207: G=1, 2, 5, 10V/V
- TRUE INSTRUMENTATION AMP INPUT
- FAST SETTLING: 3.5µs to 0.01%
- FET INPUT: I_B = 100pA max
- INPUT PROTECTION: ±40V
- LOW OFFSET VOLTAGE: 1.5mV max
- 16-PIN DIP, SOL-16 SOIC PACKAGES

APPLICATIONS

- MULTIPLE-CHANNEL DATA ACQUISITION
- MEDICAL, PHYSIOLOGICAL AMPLIFIER
- PC-CONTROLLED ANALOG INPUT BOARDS

DESCRIPTION

The PGA206 and PGA207 are digitally programmable gain instrumentation amplifiers that are ideally suited for data acquisition systems.

The PGA206 and PGA207's fast settling time allows multiplexed input channels for excellent system efficiency. FET inputs eliminate I_B errors due to analog multiplexer series resistance.

Gains are selected by two CMOS/TTL-compatible address lines. Analog inputs are internally protected for overloads up to ± 40 V, even with the power supplies off. The PGA206 and PGA207 are laser-trimmed for low offset voltage and low drift.

The PGA206 and PGA207 are available in 16-pin plastic DIP and SOL-16 surface-mount packages. Both are specified for 40°C to +85°C operation.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Into: (800) 548-6132

At $T_A = +25$ °C, $V_S = \pm 15$ V, $R_L = 2k\Omega$ unless otherwise noted.

PGA206/207

INSTRUMENTATION AMPLIFIERS

9 Voz	1 V ₀₀	PGA206P, U PGA207P, U						
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	PGA207PA, U	MAX	UNITS
vs Power Supply	All Gains $T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}, G = 8, 10$ $V_S = \pm 4.5 \text{V to } \pm 18 \text{V}$		±0.5 ±2 ±5 4.5	±1.5 ±20		±1 • ±10	±2.5 ±40	mV μV/°C μV/V μV/mo
Impedance, Differential Common-Mode Common-Mode Voltage Range ⁽¹⁾ Safe Input Voltage Common-Mode Rejection	$V_{O} = 0V$ $V_{CM} = \pm 11V, \Delta R_{S} = 1k\Omega$ $G = 1$ $G = 2$ $G = 4 \text{ or } 5$ $G = 8 \text{ or } 10$	±(V _S -4) 80 85 90 95	92 96 100 100	±40	75 80 84 84	86 90 94 94		Ω pF Ω pF V V
INPUT BIAS CURRENT	V _{IN} = 0		2	100	95.00			pA
vs Temperature Offset Current vs Temperature			ee Typical Cur 1 1 ee Typical Cur	100	07 DIE T	ind PGAS	PGA208	pA
NOISE VOLTAGE, RTI f = 10Hz f = 100Hz f = 10Hz f = 11Hz f _B = 0.1Hz to 10Hz Noise Current f = 11Hz	G = 8,10; R _S = 0Ω	ABSOLU Supply Volta Analog Input Lagic Input Output Short	30 20 18 1	A, SG	ar ar	. MO	Vol I	nV/√Hz nV/√Hz nV/√Hz μVp-p fA/√Hz
GAIN Gain Error Gain vs Temperature ⁽²⁾ Nonlinearity	All Gains, V _O = ±11V	Storage Ten- Junction Ten- Lead Temps	±0.01 ±1 ±0.0003	±0.05 ±10 ±0.002	27 18 18 18 18 18 18 18 18 18 18 18 18 18	:	±0.1 ±0.005	% ppm/°C % of FS
OUTPUT Voltage, Positive Negative Load Capacitance Stability Short-Circuit Current		(V+) -4 (V-) +4	(V+) -2.3 (V-) +1.5 1000 ±17	oV teR	11 :	:	Adjust 6 Adjust 7	V V pF mA
FREQUENCY RESPONSE Bandwidth, –3dB Slew Rate Settling Time, 0.1% 0.01% Output Overload Recovery	G = 1 G = 2 G = 4, 5 G = 8, 10 V _O = ±10V, G = 1 to 10 20V Step, All Gains 20V Step, All Gains 50% Overdrive		5 4 1.3 600 25 2 3.5 1.5	WARD BOAN	noiseann		NO ROPIN	MHz MHz MHz kHz V/µs µs µs µs
DIGITAL LOGIC INPUTS Digital Ground Voltage, V _{DG} Digital Low Voltage Digital Input Current Digital High Voltage Gain Switching Time	LECTROS DISCHARGE ted circuit con be de	V- V- V _{DG} +2	1 500	(V+) -4 V _{DG} + 0.8V V+		terra, rusto 16-Pin Pinste 12-16 Surface 16-Pin Plastic 16-Pin Plastic	18 :	V V pA V
POWER SUPPLY Voltage Range Current	V _{IN} = 0V	±4.5	±15 +12.4/–11.2	±18 ±13.5	Mount Mount sion table, old	AL-16 Eurinon AL-16 Eurinon no and dimen	ie ie asib belisteb	V mA
TEMPERATURE RANGE Specification Operating Thermal Resistance, θ_{JA}	e can range from sult device failure. Preq	-40 -40	80	+85 +125	South at	MOITAN	ROPINI D	°C °C °C,W

^{*} Specification same as PGA206P or PGA207P.

NOTES: (1) Input common-mode range varies with output voltage—see typical curves. (2) Guaranteed by wafer test.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PGA206 and PGA207 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	V ₀₁	9	V ₀₂
2		10	Ref
3	TRISAGU.	- 11	Vo
4	V _{IN}	12	Sense
5	V _{IN}	13	V+
6	V _{OS} Adjust	14	Dig. Ground
7 0	V _{OS} Adjust	15	A ₀
8	V-V-	16	A,

Substrate Bias: Internally connected to V- power supply.

MECHANICAL INFORMATION

† ≈ Đ	MILS (0.001")	MILLIMETERS
Die Size	182 x 140 ±5	4.65 x 3.56 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		None

PIN CONFIGURATION

Top View		DII
V _{O1}	1	16 A ₁ SOL-10
NC NC	2	15 A ₀
NC	3	14 Dig. Ground
V _{IN}	4	13 V+ 80.00
nga la ar VIN	5	12 Sense
V _{OS} Adjust	6	11 V _O
V _{OS} Adjust	7	10 Ref
V-	8	9 V _{O2}

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
PGA206PA	16-Pin Plastic DIP	180		
PGA206P	16-Pin Plastic DIP	180		
PGA206UA	SOL-16 Surface Mount	211		
PGA206U	SOL-16 Surface Mount	211		
PGA207PA	16-Pin Plastic DIP	180		
PGA207P	16-Pin Plastic DIP	180		
PGA207UA	SOL-16 Surface Mount	211		
PGA207U	SOL-16 Surface Mount	211		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	GAINS	PACKAGE	TEMPERATURE RANGE		
PGA206PA	1, 2, 4, 8V/V	16-Pin Plastic DIP	-40°C to +85°C		
PGA206P	1, 2, 4, 8V/V	16-Pin Plastic DIP	-40°C to +85°C		
PGA206UA	1, 2, 4, 8V/V	SOL-16 Surface-Mount	-40°C to +85°C		
PGA206U	1, 2, 4, 8V/V	SOL-16 Surface-Mount	-40°C to +85°C		
PGA207PA	1, 2, 5, 10V/V	16-Pin Plastic DIP	-40°C to +85°C		
PGA207P	1, 2, 5, 10V/V	16-Pin Plastic DIP	-40°C to +85°C		
PGA207UA	1, 2, 5, 10V/V	SOL-16 Surface-Mount	-40°C to +85°C		
PGA207U	1, 2, 5, 10V/V	SOL-16 Surface-Mount	-40°C to +85°C		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	±40V
Logic Input Voltage Range	±V _S
Output Short-Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	
Lead Temperature (soldering -10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES NO BOMAMMORRES JACIETY

At T_A = +25°C, and V_S = ±15V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMAGIARIS JACISYT

At $T_A = +25$ °C, and $V_S = \pm 15$ V, unless otherwise noted.

5V/div

wany applications use in caughilogic latch to acquire gain control data from a high speed digual bus. Using an external latch isolates the high speed digital bus from sensitive analog circultry. Locate the digital latch as far as practical from analog circultry to avoid coupling digital noise into analog input circultry.

OFFSET VOLTAGE ADJUSTMENT

The PGA206 and PGA207 are isser trimmed for very low offset voltage and drift. Many applications require no external offset adjustment. Multiplexed data acquisition systems generally correct offset by grounding the inputs of one shannel to measure offset voltage. Stored offset values for each gain are then subtracted from subsequent readings of other channels.

Figure 2 shows optional offset voltage trim circuits. Offset voltage changes with the selected gain. To adjust for low offset voltage in all gates, both input and output offsets must be trimmed.

which is 241 impedance connection to assure goodwhyar non-mode rejection. A resistance of 2Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G = 1). The cuttout series approximation (pin 12) must be connected to

The output seuse connection (pin 12) must be connected to be output terminal (pin 11) for proper operation, This connection can be made at the load for best eccuracy.

DIGITAL DURLITS

The digital inputs A₀ and A₁ select the gain according to the logic table in Figure 1. Logic "1" is defined as a voltage greater than 2V above digital ground potential (pin 14). Digital ground can be connected to any potential maging from the V- power supply to 4V less than V+. Digital ground is usually equal to analog ground potential and the ground are connected at the grown supply. The digital

A nearly constant current of approximately 1,2mA flows in the digital ground pin. It is good practice to return digital round through a separate connection path so that analog round is not affected by the digital ground current.

FIGURE 1. Basic Connections.

APPLICATIONS INFORMATION

Figure 1 shows the circuit diagram for basic operation of the PGA206 or PGA207. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 2Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G = 1).

The output sense connection (pin 12) must be connected to the output terminal (pin 11) for proper operation. This connection can be made at the load for best accuracy.

DIGITAL INPUTS

The digital inputs A_0 and A_1 select the gain according to the logic table in Figure 1. Logic "1" is defined as a voltage greater than 2V above digital ground potential (pin 14). Digital ground can be connected to any potential ranging from the V– power supply to 4V less than V+. Digital ground is usually equal to analog ground potential and the two grounds are connected at the power supply. The digital inputs interface directly to CMOS and TTL logic.

A nearly constant current of approximately 1.2mA flows in the digital ground pin. It is good practice to return digital ground through a separate connection path so that analog ground is not affected by the digital ground current. The digital inputs, A_0 and A_1 , are not latched. A change in logic input immediately selects a new gain. Switching time of the logic is approximately 500ns. The time to respond to gain change is equal to switching time, plus the time it takes the amplifier to settle to a new output voltage in the newly selected gain (see settling time specifications).

Many applications use an external logic latch to acquire gain control data from a high speed digital bus. Using an external latch isolates the high speed digital bus from sensitive analog circuitry. Locate the digital latch as far as practical from analog circuitry to avoid coupling digital noise into analog input circuitry.

OFFSET VOLTAGE ADJUSTMENT

The PGA206 and PGA207 are laser trimmed for very low offset voltage and drift. Many applications require no external offset adjustment. Multiplexed data acquisition systems generally correct offset by grounding the inputs of one channel to measure offset voltage. Stored offset values for each gain are then subtracted from subsequent readings of other channels.

Figure 2 shows optional offset voltage trim circuits. Offset voltage changes with the selected gain. To adjust for low offset voltage in all gains, both input and output offsets must be trimmed.

FIGURE 2. Optional Offset Voltage Trim Circuits.

 R_1 adjusts the offset of the input amplifiers. Output stage offset is adjusted with $R_2.\ A$ buffer op amp is required in the output offset adjustment circuit, as shown, to assure that the Ref pin is driven by a low source impedance. To adjust for low offset voltage in all gains, first adjust the input stage offset in the highest gain. Then adjust the output stage offset (R_2) in G=1. Iterate the adjustments for lowest offset in all gains.

Offset can also be adjusted under processor control with a D/A converter as shown in Figure 2. The D/A's output voltage can be reduced with a resistor divider for better adjustment resolution, but an op amp buffer following the divider is required to provide a low source impedance to the ref terminal. A different offset value is required for each amplifier gain.

INPUT BIAS CURRENT RETURN PATH

The FET inputs of the PGA206 and PGA207 provide extremely high input impedance. Still, a path must be provided for the bias current of each input. Figure 3 shows provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the linear input voltage range and the input amplifiers will saturate.

If the differential source resistance is low, a bias current return path can be connected to only one input (see thermocouple example in Figure 3). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better common-mode rejection.

Many sources or sensors inherently provide a path for input bias current (e.g. the bridge sensor shown in Figure 3). These applications do not require additional resistor(s) for proper operation.

FIGURE 3. Providing an Input Bias Current Path.

FIGURE 4. Multiplexed-Input Signal Acquisition System.

INPUT COMMON-MODE RANGE

The linear input voltage range of the PGA206 and PGA207 is from approximately 2.3V below the positive supply voltage to 1.5V above the negative supply. As a differential input voltage causes output voltage to increase, however, the linear input range is limited by the output voltage swing of amplifiers A_1 and A_2 . So the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

Input overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the PGA206 or PGA207 will be near 0V even though both inputs are overloaded. This condition can be detected by sensing the voltage on the $\rm V_{01}$ and $\rm V_{02}$ pins to determine whether they are within their linear operating range.

INPUT PROTECTION

The inputs of the PGA206 and PGA207 are individually protected for voltages up to ±40V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value. The typical performance curve "Input Overload V/I Characteristic" shows this behavior. The inputs are protected even if no power supply voltage is applied.

MULTIPLEXED INPUTS STUDENTS OF THE STUDENTS OF

The PGA206 and PGA207 are ideally suited for multiple channel data acquisition. Figure 4 shows a typical application with an analog multiplexer used to connect one of four differential input signals to a single PGA207.

Careful circuit layout will help preserve accuracy of multiplexed signals. Run the inverting and non-inverting connections of each channel parallel to each other over a ground plane, or directly adjacent on top and bottom of the circuit board. Grounded guard traces between channels help reduce stray signal pick-up.

Multiplexed signals from high impedance sources require special care. As inputs are switched by the multiplexer, charge can be injected into the source, disturbing the input signal. Since many such sources involve slow signals, a simple R/C filter at the input can be used to dramatically reduce this effect. The arrangement shown filters both the differential signal and common-mode noise.

BURR-BROWN®

FIGURE 5. Shield Drive Circuit.

FIGURE 6. Wide Gain Range Programmable IA.

Precision 4mA to 20mA CURRENT LOOP RECEIVER

FEATURES

- COMPLETE 4-20mA TO 0-5V CONVERSION
- INTERNAL SENSE RESISTORS
- PRECISION 10V REFERENCE
- BUILT-IN LEVEL-SHIFTING
- ±40V COMMON-MODE INPUT RANGE
- 0.1% OVERALL CONVERSION ACCURACY
- HIGH NOISE IMMUNITY: 86dB CMR

DESCRIPTION

The RCV420 is a precision current-loop receiver designed to convert a 4–20mA input signal into a 0–5V output signal. As a monolithic circuit, it offers high reliability at low cost. The circuit consists of a premium grade operational amplifier, an on-chip precision resistor network, and a precision 10V reference. The RCV420 features 0.1% overall conversion accuracy, 86dB CMR, and ±40V common-mode input range.

The circuit introduces only a 1.5V drop at full scale, which is useful in loops containing extra instrument burdens or in intrinsically safe applications where

APPLICATIONS

- PROCESS CONTROL
- INDUSTRIAL CONTROL
- FACTORY AUTOMATION
- DATA ACQUISITION
- SCADA
- RTUs
- ESD
- MACHINE MONITORING

transmitter compliance voltage is at a premium. The 10V reference provides a precise 10V output with a typical drift of 5ppm/°C.

The RCV420 is completely self-contained and offers a highly versatile function. No adjustments are needed for gain, offset, or CMR. This provides three important advantages over discrete, board-level designs: 1) lower initial design cost, 2) lower manufacturing cost, and 3) easy, cost-effective field repair of a precision circuit.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 741-4395 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS WHINAM STUDGES

ELECTRICAL

T = +25°C and $V_S = \pm 15$ V unless otherwise noted.

	RCV420AG			RCV420BG		RCV420KP, JP				
CHARACTERISTICS (1971 bits 40)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Initial Error Error—JP Grade	HTAREF	0.3125 0.025	0.1 _A		, me	0.05 gr		* 0.05	0.15 0.25	V/mA % of spar % of spar
vs Temp Nonlinearity ⁽¹⁾	PACKA	15 0.0002	50 0.002			25		:	I ON	ppm/°C % of spar
OUTPUT Rated Voltage (I _O = +10mA, -5mA) Rated Current (E _O = 10V) Impedance (Differential) Current Limit (To Common) Capacitive Load (Stable Operation)	10 +10, -5	0.01 +49, -13 1000	ROWROR ROVAZOR ROVAZOR ROVAZOJI BOTE (1) T		:	P NC		:	apiti hai	V mA Ω mA pF
INPUT Sense Resistance Input Impedance (Common-Mode) Common-Mode Voltage CMR ⁽²⁾ vs Temp (DC) (T _A = T _{MIN} to T _{MAX}) AC 60Hz	74.25 72 66	75 200 80 76 80	75.75 ±40	86 80	94 90 94	PAC 1 16-Pin b	70 0°884 0°884	MARIANA MARIAN	O SPILE	Ω kΩ V dB dB
OFFSET VOLTAGE (RTO) ⁽³⁾ Initial vs Temp vs Supply (±11.4V to ±18V) vs Time	74	10 90 200	1 50	80	SIO oltael	25	5-61	- al 0.0		mV μV/°C dB μV/mo
ZERO ERROR ⁽⁴⁾ Initial Initial—JP Grade vs Temp		0.01	0.05 50		*	0.025 25		0.025	0.075 0.15 span/°C	% of spar % of spar ppm of
OUTPUT NOISE VOLTAGE f _B = 0.1Hz to 10Hz f _O = 10kHz		50 800						*		μVp-p nV/√Hz
DYNAMIC RESPONSE Gain Bandwidth Full Power Bandwidth Slew Rate Settling Time (0.01%)		150 30 1.5			:			* * * *		kHz kHz V/µs µs
VOLTAGE REFERENCE Initial Trim Range ⁽⁵⁾ vs Temp ⁽⁶⁾ vs Supply (±11.4V to ±18V) vs Output Current (I _O = 0 to +10mA) vs Time Noise (0.1Hz to 10Hz) Output Current	9.995	±4 5 0.0002 0.0002 15 5	10.005 20				9.99	* * * *	10.01	V % ppm/°C %/V %/mA ppm/kHr µVp-p mA
POWER SUPPLY Rated Voltage Range ⁽⁷⁾ Quiescent Current (V _O = 0V)	-5, +11.4	±15	±18 4			:	*		*	V V mA
TEMPERATURE RANGE Specification Operation Storage	-25 -55 -65		+85 +125 +150	:			0 -25 -40		+70 +85 +85	ို့ လို့

^{*}Specification same as RCV420AG.

NOTES: (1) Nonlinearity is the max peak deviation from best fit straight line. (2) With 0 source impedance on Rcv Com pin. (3) Referred to output with all inputs grounded including Ref In. (4) With 4mA input signal and Voltage Reference connected (includes V_{OS}, Gain Error, and Voltage Reference Errors). (5) External trim slightly affects drift. (6) The "box method" is used to specify output voltage drift vs temperature. (7) I_O Ref = 5mA, I_O Rcv = 2mA.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

DIP **Top View** 16 V+ -In CT 2 15 Rcv f_B 14 +ln 3 Rcv Out V-13 Rcv Com 12 Ref Com 5 Ref In 11 NC Ref Out Ref Noise Reduction 10 Ref f_B 9 NC Ref Trim

ABSOLUTE MAXIMUM RATINGS

Supply	±22V
Input Current, Continuous	40mA
Input Current Momentary, 0.1s	250mA, 1% Duty Cycle
Common-Mode Input Voltage, Continuous	±40V
Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit to Common (Rcv and	d Ref) Continuous

PACKAGE INFORMATION

MODEL SO	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
RCV420AG	16-Pin Hermetic DIP	109 1191110		
RCV420BG	16-Pin Hermetic DIP	Amosa = 11 109 fov barsis		
RCV420KP	16-Pin Plastic DIP	AVDF - 180-up batas		
RCV420JP	16-Pin Plastic DIP	(lation #180 combone)		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL		PERFOR GRA		PAG	CKAGE	38	75.75			Sensie Resistande (Input Impedance (Common-Mode) Common-Mode Voltage Castellii
RCV420AG RCV420BG RCV420KP		-25°C to -25°C to 0°C to	+85°C	16-Pin H	lermetic DIP lermetic DIP Plastic DIP	08				Ve Temp (BC) (T _A \times T _{ANN} to T _{NAC}). AC 60Hz
RCV420JP		0°C to	+70°C	16-Pin	Plastic DIP	-08				OFFSET YOUTAGE (RTO) ⁴³ Infilial vs. Temp vs. Sipply (±11.4V to ±18V) vs. Time
% of span % of span ppm of	0.075 0.15 span/*C	0.025						10.0 01		ZERO ERROR® nitial—JP Grade ys Tomp
								800		OUTPUT NOISE VOLTAGE I ₆ = 0.1Hz to 10Hz I ₀ = 10IHz
KHZ KHZ Vyys us										DYNAMIO RESPONSE Gain Blandwidth Full Power Bandwidth Slaw Ratts Sattling Time (0.01%)
V 68 OPImpq Vice Amile Holmpq qravu Ami							300.01 0s	8000.8 8,0000.8 9,000.8 81 8		VOLTACE REFERENCE initial initial sangel® from Sangel® vs Tempel® vs Sangel® (±11.4V to ±18V) vs Cuput Current (b = 0 to +10mA) vs Ture Noice (0.14x to 104x)
							87±		a.11. a-	POWER SUPPLY Saled Vallage Faingel/) Outescent Current (V _O = DV)
							+85 +125 +150			

The information provided reven is believed to be reliable; however, BURA-BROWN assumes no responsibility for theorem consisting and to be reliable; however, BURA-BROWN assumes no responsibility for the uses to end specifications are subject to change and specifications are subject to change.

RCV420

Positive Power Supply Voltage (V)

Daniel Of Land 1997 Negative Power Supply Voltage (V)

11.4

Refer to the figure on the first page. For 0-5V output with 4-20mA input, the required transimpedance of the circuit is:

$$V_{OUT}/I_{IN} = 5V/16mA = 0.3125V/mA$$
.

To achieve the desired output (0V for 4mA and 5V for 20mA), the output of the amplifier must be offset by an amount:

$$V_{OS} = -(4mA)(0.3125V/mA) = -1.25V.$$

The input current signal is connected to either +In or -In, depending on the polarity of the signal, and returned to ground through the center tap, $C_{\rm T}$. The balanced input—two matched 75 Ω sense resistors, $R_{\rm S}$ —provides maximum rejection of common-mode voltage signals on $C_{\rm T}$ and true differential current-to-voltage conversion. The sense resistors convert the input current signal into a proportional voltage, which is amplified by the differential amplifier. The voltage gain of the amplifier is:

$$A_D = 5V/(16\text{mA})(75\Omega) = 4.1667V/V.$$

The tee network in the feedback path of the amplifier provides a summing junction used to generate the required -1.25V offset voltage. The input resistor network provides high-input impedance and attenuates common-mode input voltages to levels suitable for the operational amplifier's common-mode signal capabilities.

BASIC POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 1 shows the proper connections for power supply and signal. Both supplies should be decoupled with $1\mu F$ tantalum capacitors as close to the amplifier as possible. To avoid gain and CMR errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance. The input signal should be connected to either +In or -In, depending on its polarity, and returned to ground through the center tap, C_T . The output of the voltage reference, Ref Out, should be connected to Ref In for the

GAIN AND OFFSET ADJUSTMENT

Figure 2 shows the circuit for adjusting the RCV420 gain. Increasing the gain of the RCV420 is accomplished by inserting a small resistor in the feedback path of the amplifier. Increasing the gain using this technique results in CMR degradation, and therefore, gain adjustments should be kept as small as possible. For example, a 1% increase in gain is typically realized with a 125Ω resistor, which degrades CMR by about 6dB.

A decrease in gain can be achieved by placing matched resistors in parallel with the sense resistors, also shown in Figure 2. The adjusted gain is given by the following expression

$$V_{OUT}/I_{IN} = 0.3125 \times R_X/(R_X + R_S)$$

A 1% decrease in gain can be achieved with a $7.5 k\Omega$ resistor. It is important to match the parallel resistance on each sense resistor to maintain high CMR. The TCR mismatch between the two external resistors will effect gain error drift and CMR drift.

There are two methods for nulling the RCV420 output offset voltage. The first method applies to applications using the internal 10V reference for level shifting. For these applica-

FIGURE 2. Optional Gain Adjustment.

FIGURE 1. Basic Power Supply and Signal Connections.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

tions, the voltage reference output trim procedure can be used to null offset errors at the output of the RCV420. The voltage reference trim circuit is discussed under "Voltage Reference."

When the voltage reference is not used for level shifting or when large offset adjustments are required, the circuit in Figure 3 can be used for offset adjustment. A low impedance on the Rcv Com pin is required to maintain high CMR.

ZERO ADJUSTMENT

Level shifting the RCV420 output voltage can be achieved using either the Ref In pin or the Rcv Com pin. The disadvantage of using the Ref In pin is that there is an 8:1 voltage attenuation from this pin to the output of the RCV420. Thus, use the Rcv Com pin for large offsets, because the voltage on this pin is seen directly at the output. Figure 4 shows the circuit used to level-shift the output of the RCV420

FIGURE 3. Optional Output Offset Nulling Using External Amplifier.

FIGURE 4. Optional Zero Adjust Circuit.

using the Rcv Com pin. It is important to use a low-output impedance amplifier to maintain high CMR. With this method of zero adjustment, the Ref In pin must be connected to the Rcv Com pin.

MAINTAINING COMMON-MODE REJECTION

Two factors are important in maintaining high CMR: (1) resistor matching and tracking (the internal resistor network does this) and (2) source impedance. CMR depends on the accurate matching of several resistor ratios. The high accuracies needed to maintain the specified CMR and CMR temperature coefficient are difficult and expensive to reliably achieve with discrete components. Any resistance imbalance introduced by external circuitry directly affects CMR. These imbalances can occur by: mismatching sense resistors when gain is decreased, adding resistance in the feedback path when gain is increased, and adding series resistance on the Rcv Com pin.

The two sense resistors are laser-trimmed to typically match within 0.01%; therefore, when adding parallel resistance to decrease gain, take care to match the parallel resistance on each sense resistor. To maintain high CMR when increasing the gain of the RCV420, keep the series resistance added to the feedback network as small as possible. Whether the Rcv Com pin is grounded or connected to a voltage reference for level shifting, keep the series resistance on this pin as low as possible. For example, a resistance of 20Ω on this pin degrades CMR from 86dB to approximately 80dB. For applications requiring better than 86dB CMR, the circuit shown in Figure 5 can be used to adjust CMR.

PROTECTING THE SENSE RESISTOR

The 75Ω sense resistors are designed for a maximum continuous current of 40mA, but can withstand as much as 250mA for up to 0.1s (see absolute maximum ratings). There are several ways to protect the sense resistor from

FIGURE 5. Optional Circuit for Externally Trimming CMR.

$$R_X = V_{CC}/40mA - 75\Omega$$

and the full scale voltage drop is

$$V_{RX} = 20 \text{mA} \times R_X$$

For a system operating off of a 32V supply $R_{\rm X}=725\Omega$ and $V_{\rm RX}=14.5{\rm V}.$ In applications that cannot tolerate such a large voltage drop, use circuits 6b or 6c. In circuit 6b a power JFET and source resistor are used as a current limit. The 200Ω potentiometer, $R_{\rm X}$, is adjusted to provide a current limit of approximately 30mA. This circuit introduces a 1–4V drop at full scale. If only a very small series voltage drop at full scale can be tolerated, then a 0.032A series 217 fast-acting fuse should be used, as shown in Figure 6c.

For automatic fold-back protection, use the circuit shown in Figure 15.

VOLTAGE REFERENCE

The RCV420 contains a precision 10V reference. Figure 8 shows the circuit for output voltage adjustment. Trimming the output will change the voltage drift by approximately 0.007ppm/°C per mV of trimmed voltage. Any mismatch in TCR between the two sides of the potentiometer will also affect drift, but the effect is divided by approximately 5. The trim range of the voltage reference using this method is typically ±400mV. The voltage reference trim can be used to trim offset errors at the output of the RCV420. There is an 8:1 voltage attenuation from Ref In to Rcv Out, and thus the trim range at the output of the receiver is typically ±50mV.

The high-frequency noise (to 1MHz) of the voltage reference is typically 1mVp-p. When the voltage reference is used for level shifting, its noise contribution at the output of the receiver is typically $125\mu Vp$ -p due to the 8:1 attenuation from Ref In to Rev Out. The reference noise can be reduced by connecting an external capacitor between the Noise Reduction pin and ground. For example, $0.1\mu F$ capacitor reduces the high-frequency noise to about $200\mu Vp$ -p at the output of the reference and about $25\mu Vp$ -p at the output of the receiver.

FIGURE 6. Protecting the Sense Resistors.

FIGURE 7. Optional Voltage Reference External Trim Circuit.

FIGURE 8. RCV420 Used in Conjunction with XTR101 to Form a Complete Solution for 4-20mA Loop.

FIGURE 9. 4-20mA to 0-10V Conversion With Second-Order Active Low-Pass Filtering ($f_{-3dB} = 10$ Hz).

FIGURE 10. Isolated 4-20mA Instrument Loop (RTD shown).

NOTE: (1) R_{CM} and R_{G} are used to provide a first order correction of CMR and Gain Error, respectively. Table 1 gives typical resistor values for R_{CM} and R_{G} when as many as three RCV420s are stacked. Table II gives typical CMR and Gain Error with no correction. Further improvement in CMR and Gain Error can be achieved using a $500k\Omega$ potentiometer for R_{CM} and a 100Ω potentiometer for R_{G} .

RCV420	R _{CM} (kΩ)	$R_{G}(\Omega)$
1	00	0
2	200	7
3	67	23

TABLE 1. Typical Values for R_{CM} and R_{G} .

RCV420	CMR (dB)	GAIN ERROR %
1	94	0.025
2	68	0.075
3	62	0.200

TABLE II. Typical CMR and Gain Error Without Correction.

FIGURE 11. Series 4-20mA Receivers.

FIGURE 12. Differential Current-to-Voltage Converter.

FIGURE 13. 4-20mA to 5-0V Conversion.

FIGURE 14. Power Supply Current Monitor Circuit.

FIGURE 15. 4-20mA Current Loop Receiver with Input Overload Protection.

FIGURE 16. 0-20mA/0-5V Receiver Using RCV420.

XTR101

Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER

FEATURES

- INSTRUMENTATION AMPLIFIER INPUT Low Offset Voltage, 30μV max Low Voltage Drift, 0.75μV/°C max Low Nonlinearity, 0.01% max
- TRUE TWO-WIRE OPERATION
 Power and Signal on One Wire Pair
 Current Mode Signal Transmission
 High Noise Immunity
- DUAL MATCHED CURRENT SOURCES
- WIDE SUPPLY RANGE: 11.6V to 40V
- -40°C to +85°C SPECIFICATION RANGE
- SMALL 14-PIN DIP PACKAGE, CERAMIC AND PLASTIC

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Pressure Transmitters
 Temperature Transmitters
 Millivolt Transmitters
- RESISTANCE BRIDGE INPUTS
- THERMOCOUPLE INPUTS
- RTD INPUTS
- CURRENT SHUNT (mV) INPUTS
- PRECISION DUAL CURRENT SOURCES
- AUTOMATED MANUFACTURING
- POWER/PLANT ENERGY SYSTEM MONITORING

DESCRIPTION

MOITATHE

The XTR101 is a microcircuit, 4-20mA, two-wire transmitter containing a high accuracy instrumentation amplifier (IA), a voltage-controlled output current source, and dual-matched precision current reference. This combination is ideally suited for remote signal conditioning of a wide variety of transducers such as thermocouples, RTDs, thermistors, and strain gauge bridges. State-of-the-art design and laser-trimming, wide temperature range operation and small size make it very suitable for industrial process control applications. In addition, the optional external transistor allows even higher precision.

The two-wire transmitter allows signal and power to be supplied on a single wire-pair by modulating the power supply current with the input signal source. The transmitter is immune to voltage drops from long runs and noise from motors, relays, actuators, switches, transformers, and industrial equipment. It can be used by OEMs producing transmitter modules or by data acquisition system manufacturers.

NOTE: (1) Pins 12 and 13 are used for optional BW control.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $T_A = +25$ °C, $+V_{CC} = 24$ VDC, $R_L = 100\Omega$ with external transistor connected, unless otherwise noted

CONDITIONS Linear Operating Region Derated Performance los, lo = 4mA Alos/AT Full Scale = 20mA Vcc, Pins 7 and 8, Complianceff) At Vcc = +24V, lo = 20mA At Vcc = +40V, lo = 20mA Rs in Ω, et and es in V Rs in Ω Excluding TCR of Rs Espan ENONLINEARITY		28 ±3.9 ±10.5 ±20	20 22 38 ±10 ±20 ±40 ±40 1400	MIN	+ ±2.5 ±8 ±15	#6 ±15 ±30 •	MIN Service Se	31 ±8.5 ±10.5 ±30	* ±19 ±20 ±60 * 600 1400	MIN	31 ±8.5 •	±19 ±60	MA MA MA μA ppm, FS/P μA VDC
Linear Operating Region Derated Performance $\begin{aligned} &l_{OS}, l_O = 4mA \\ &\Delta l_{OS}/\Delta T \\ &Full Scale = 20mA \\ &V_{CC}, Pins 7 and 8, \\ &Compliance(1) \\ At V_{CC} = +24V, l_O = 20mA \\ At V_{CC} = +40V, l_O = 20mA \\ R_S \text{ in } \Omega, e_1 \text{ and } e_2 \text{ in } V \\ &R_S \text{ in } \Omega \end{aligned} Excluding TCR of R_S$	3.8 +11.6	±3.9 ±10.5 ±20	22 38 ±10 ±20 ±40 ±40 ±40 1400		±2.5 ±8 ±15	±15 ±30 *	asV+	±8.5 ±10.5	±19 ±20 ±60 *		±8.5 ±30	4	mA mA μA ppm, FS/° μA VDC
Derated Performance los, lo = 4mA	3.8 +11.6	±3.9 ±10.5 ±20	22 38 ±10 ±20 ±40 ±40 ±40 1400		±2.5 ±8 ±15	±15 ±30 *	asV+	±8.5 ±10.5	±19 ±20 ±60 *		±8.5 ±30	4	mA mA μA ppm, FS/° μA VDC
Derated Performance los, lo = 4mA	3.8 +11.6	±3.9 ±10.5 ±20	22 38 ±10 ±20 ±40 ±40 ±40 1400		±2.5 ±8 ±15	±15 ±30 *	asV+	±8.5 ±10.5	±19 ±20 ±60 *		±8.5 ±30	4	mA mA μA ppm, FS/° μA VDC
$\begin{array}{l} l_{OS}, l_{O}=4mA \\ \Delta l_{OS}/\Delta T \\ Full Scale=20mA \\ V_{CC}, Pins 7 and 8, \\ Compliance(1) \\ At V_{CC}=+24V, l_{O}=20mA \\ At V_{CC}=+40V, l_{O}=20mA \\ R_{S} \text{ in } \Omega, e_{1} \text{ and } e_{2} \text{ in } V \\ R_{S} \text{ in } \Omega \\ Excluding TCR of R_{S} \\ \frac{\ell_{S}}{\epsilon_{S}}$	+11.6	±3.9 ±10.5 ±20	38 ±10 ±20 ±40 ±40 1400		±2.5 ±8 ±15	±15 ±30 *	asV+	±8.5 ±10.5	±19 ±20 ±60 *		±8.5 ±30	4	mA μA ppm, FS/° μA VDC
$\Delta l_{OS}/\Delta T$ Full Scale = 20mA V_{CC} . Pins 7 and 8, Compliance(1) At V_{CC} = +24V, l_{O} = 20mA At V_{CC} = +40V, l_{O} = 20mA R_{S} in Ω , e_{1} and e_{2} in $V_{R_{S}}$ in Ω Excluding TCR of R_{S} ESPAN ENONLINEARITY	+11.6 -5	±3.9 ±10.5 ±20	±10 ±20 ±40 ±40 1400		±8 ±15	±15 ±30 *		±8.5 ±10.5	±20 ±60 *		±30	4	μA ppm, FS/° μA VDC
$\Delta l_{OS}/\Delta T$ Full Scale = 20mA V_{CC} . Pins 7 and 8, Compliance(1) At V_{CC} = +24V, l_{O} = 20mA At V_{CC} = +40V, l_{O} = 20mA R_{S} in Ω , e_{1} and e_{2} in $V_{R_{S}}$ in Ω Excluding TCR of R_{S} ESPAN ENONLINEARITY	+11.6 -5	±10.5 ±20	±20 ±40 ±40 600 1400		±8 ±15	±15 ±30 *		±10.5	±20 ±60 *		±30	4	ppm, FS/° μΑ VDC
Full Scale = 20mA V _{Cc} , Pins 7 and 8, Compliance(1) At V _{CC} = +24V, I _O = 20mA At V _{CC} = +40V, I _O = 20mA R _S in Ω, e ₁ and e ₂ in V R _S in Ω Excluding TCR of R _S ^E SPAN ^E NONLINEARITY	+11.6 -5	±20	±40 ±40 600 1400		±15	±30 *			±60 *			±60	μA VDC
V_{CC} , Pins 7 and 8, Compliance(1) At V_{CC} = +24V, I_0 = 20mA At V_{CC} = +40V, I_0 = 20mA R_S in Ω , e_1 and e_2 in V R_S in Ω Excluding TCR of R_S e_{SPAN} $e_{NONLINEARITY}$	-5	±30	±40 600 1400		i _O = 4mA	:		8	600			•	VDC Ω
Compliance(1) At V _{CC} = +24V, I _O = 20mA At V _{CC} = +40V, I _O = 20mA R _S in Ω, e ₁ and e ₂ in V R _S in Ω Excluding TCR of R _S ESPAN ENONLINEARITY	-5		600 1400			+ [0.0160		8	10.00		N I TES	:	Ω
At V_{CC} = +24V, I_{O} = 20mÅ At V_{CC} = +40V, I_{O} = 20mÅ R_{S} in Ω , e_{1} and e_{2} in V R_{S} in Ω Excluding TCR of R_{S} e_{SPAN} $e_{NONLINEARITY}$	-5		1400 ±100			+ 10.0160		1	10.00			:	-
At V_{CC} = +40V, I_0 = 20mA R_S in Ω , e_1 and e_2 in V R_S in Ω Excluding TCR of R_S e_{SPAN} $e_{NONLINEARITY}$	-5		1400 ±100			+ [0.0160			10.00			•	-
R _S in Ω Excluding TCR of R _S E _{SPAN} ENONLINEARITY						+ 10.0160	-	-					
R _S in Ω Excluding TCR of R _S E _{SPAN} ENONLINEARITY						+ 10 0160					1		
R _S in Ω Excluding TCR of R _S E _{SPAN} ENONLINEARITY							2 + (40/R))) (e ₂ - e)			1.33	
Excluding TCR of R _S ESPAN ENONLINEARITY						S = [0.016				MO	STAM	SORI	AV
[©] NONLINEARITY		-2.5								-		-	ppm/°C
[©] NONLINEARITY	GAR		0										%
PUNCTION I Zero Adjust Zero Adjust	GAR		0.01										%
Zero Adjust	0.0000000000000000000000000000000000000	0											%
Zero Adjust		0		100	THE PARTY	18555		ESEST!	ESPONE N	E 2018	DE 1915	LOSTELL .	%
nl-	2			100	E8-01.9	PARTY.	1,4992.6	MACH.	Alle	F (4) 3		100	
		0.4 3		3199	3,12	SEE !		1 . 3		是關 5	100	1.897	GΩ pF
ISI4	1	10 3				7 %	A MISSING	P6			S	130 1	GΩ pF
$\Delta \rho = (\rho_0 - \rho_1)(3)$	0	10110	1	* 15	SE_		81.	Los F	3 100	20 · 92	B 1		V
	3	+30		0 1961	+20	+30			+100	學派為	10 · 1	+100	μV
				1 02			3600			No.	B. 1		μV/°C
	110		1		1	20.70		122	400	110	122		dB
			150		7535 T	1			6.00				nA
		120.00	100		T.A.	1.00	SEP. I				M . 1		nA/°C
						+20	23	A 100		4. 18.5	W . 1	1.	nA
	0.64052	11.00			-		5	-			. I		nA/°C
	90	100		10.00		170					3. J	1000	dB
					Song and	anadriel	Section 1	mark Hi		3000	2 (22) (8/8)	THE P	
to Pin 7	4	5	6	13		200	110			-			V
C± US BRAN	loir(T el			88 5	0.5-5-5305	100	17.00	20,2997	says,	STATE OF	1090003	tere tild	
Size 4x4		1									*		mA
V _{CC} = 24V,													
						E-1092-5	man	- CO	100 400	Service .			
$H_2 = 5k\Omega$, Fig. 5							MONTH.	±0.2	±0.37	1 24 1 74	±0.2	±0.37	%
			±80		±30	±50	10.5						ppm/°C
													ppm/V
Wish Desert to Die 7		±8											ppm/mont
	0		V _{CC} - 3.5			1							V
		±0.014	±0.06		±0.009	±0.04		±0.031	±0.088	MUN	±0.031	±0.088	%
THE F THE E		-	±15			10		-					ppm/°C
		±10				minning.			minutarior.			ppiy, +	ppm/V
I PACKAGE		±1	HOM!		54,400	TUDVES						age, eg	ppm/mont
(4-Pin Ceramic	10	20	FITX		Digary Depos	9°C (0)	-	15	Olmen	nge, ue	15	HOGHTO.	MΩ
14-Pin Cenamic	7 1	DETO	HTX		D*006				9.50	Of only	solos) s	utmean	eT bse.)
	-40		+85		3*naes		-40	El Tain	+85	e alietu			°C
18-Pin SOIC	-55	UATO	+125		200		-40		+85	-40	BUILT BUIL	+85	°C o
anamih has paligent		ME (I)			Design		-55	-				111340 140304	°C
	V _{CC} = 24V, V _{PRN 8} – V _{PRN 10-11} = 19V R ₂ = 5kΩ, Fig. 5 With Respect to Pin 7 Tracking (1 – I _{REF} /I _{REF2}) X 100%	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

^{*}Same as XTR101AG

NOTES: (1) See Typical Performance Curves. (2) Span error shown is untrimmed and may be adjusted to zero. (3) e₁ and e₂ are signals on the –In and +In terminals with respect to the output, pin 7. While the maximum permissible Ae is 1V, it is primarily intended for much lower input signal levels, e.g., 10mV or 50mV full scale for the XTR101B grades respectively. 2mV FS is also possible with the B grade, but accuracy will degrade due to possible errors in the low value span resistance and very high amplification of offset, drift, and noise. (4) Offset voltage is trimmed with the application of a 5V common-mode voltage. Thus the associated common-mode error is removed. See Application Information section.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DICE INFORMATION

XTR101	DIE	TOPOGRA	PHY

PAD	FUNCTION	PAD	FUNCTION
1	Zero Adjust	8	+V _{CC}
2	Zero Adjust	9	RACT BUSTICS
3	-In	10	I _{REF1}
4	+In	11	I _{REF2}
5	Span	12	B Control
6	Span	13	Bandwidth
7	Out	14	Zero Adjust

NC: No Connection

Substrate Bias: Electrically connected to V- supply.

MECHANICAL INFORMATION

toagesi	MILS (0.001")	MILLIMETERS
Die Size	150 x 105 ±5	3.81 x 2.67 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing	V _{CC} = 24\	Gold

ABSOLUTE MAXIMUM RATINGS

Power Supply, +V _{CC}	40V
Input Voltage, e ₁ or e ₂	≥V _{OUT} , ≤+V _{CC}
Storage Temperature Range, Ceramic	55°C to +165°C
Plastic	55°C to +125°C
Lead Temperature (soldering 10s) G, P	+300°C
(wave soldering, 3s) U	+260°C
Output Short-Circuit Duration	Continuous +V _{CC} to I _{OUT}
Junction Temperature	+165°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
XTR101AG	14-Pin Ceramic DIP	169		
XTR101BG	14-Pin Ceramic DIP	169		
XTR101AP	14-Pin Plastic DIP	010		
XTR101AU	16-Pin SOIC	211		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

	All the state of the party of the state of t	TEMPERATURE RANGE
XTR101AG	14-Pin Ceramic DIP	-40°C to +85°C
XTR101BG	14-Pin Ceramic DIP	-40°C to +85°C
XTR101AP	14-Pin Plastic DIP	-40°C to +85°C
XTR101AU	16-Pin SOIC	-40°C to +85°C

TYPICAL PERFORMANCE CURVES (CONT) OMAMROPRES JACIES

 $T_A = +25$ °C, $+V_{CC} = 24$ VDC unless otherwise noted.

THEORY OF OPERATION

A simplified schematic of the XTR101 is shown in Figure 1. Basically the amplifiers, A_1 and A_2 , act as a single power supply instrumentation amplifier controlling a current source, A_3 and Q_1 . Operation is determined by an internal feedback loop. e_1 applied to pin 3 will also appear at pin 5 and similarly e_2 will appear at pin 6. Therefore the current in R_5 , the span setting resistor, will be $I_S = (e_2 - e_1)/R_S = e_{IN}/R_5$. This current combines with the current, I_3 , to form I_1 . The circuit is configured such that I_2 is 19 times I_1 . From this point the derivation of the transfer function is straightforward but lengthy. The result is shown in Figure 1.

Examination of the transfer function shows that I_O has a lower range-limit of 4mA when $e_{IN} = e_2 - e_1 = 0V$. This 4mA is composed of 2mA quiescent current exiting pin 7 plus 2mA from the current sources. The upper range limit of I_O is set to 20mA by the proper selection of R_S based on the upper range limit of e_{IN} . Specifically e_{IN} is chosen for a 16mA output current span for the given full scale input voltage span; i.e., $(0.016 + 40/R_S)(e_{IN})$ full scale) = 16mA. Note that

since I_O is unipolar e_2 must be kept larger than e_1 ; i.e., $e_2 \ge e_1$ or $e_{IN} \ge 0$. Also note that in order not to exceed the output upper range limit of 20mA, e_{IN} must be kept less than 1V when $R_S = \infty$ and proportionately less as R_S is reduced.

INSTALLATION AND OPERATING INSTRUCTIONS

BASIC CONNECTION

The basic connection of the XTR101 is shown in Figure 1. A difference voltage applied between input pins 3 and 4 will cause a current of 4-20mA to circulate in the two-wire output loop (through $R_{\rm L}$, $V_{\rm PS}$, and $D_{\rm 1}$). For applications requiring moderate accuracy, the XTR101 operates very cost-effectively with just its internal drive transistor. For more demanding applications (high accuracy in high gain) an external NPN transistor can be added in parallel with the internal one. This keeps the heat out of the XTR101 package

FIGURE 1. Simplified Schematic of the XTR101.

and minimizes thermal feedback to the input stage. Also in such applications where $e_{\rm IN}$ full scale is small (<50mV) and $R_{\rm SPAN}$ is small (<150 Ω), caution should be taken to consider errors from the external span circuit plus high amplification of offset drift and noise.

OPTIONAL EXTERNAL TRANSISTOR

The optional external transistor, when used, is connected in parallel with the XTR101's internal transistor. The purpose is to increase accuracy by reducing heat change inside the XTR101 package as the output current spans from 4-20mA. Under normal operating conditions, the internal transistor is never completely turned off as shown in Figure 2. This maintains frequency stability with varying external transistor characteristics and wiring capacitance. The actual "current sharing" between internal and external transistors is dependent on two factors: (1) relative geometry of emitter areas and (2) relative package dissipation (case size and thermal conductivity). For best results, the external device should have a larger base-emitter area and smaller package. It will, upon turn on, take about [0.95 (I_O - 3.3mA)]mA. However, it will heat faster and take a greater share after a few seconds.

Although any NPN of suitable power rating will operate with the XTR101, two readily available transistors are recommended.

1. 2N2222 in the TO-18 package. For power supply voltages above 24V, a 750 Ω , 1/2W resistor should be connected in series with the collector. This will limit the power dissipation to 377mW under the worst-case condi-

- tions shown in Figure 2. Thus the 2N2222 will safely operate below its 400mW rating at the upper temperature of +85°C. Heat sinking the 2N2222 will result in greatly reduced accuracy improvement and is not recommended.
- 2. TIP29B in the TO-220 package. This transistor will operate over the specified temperature and output voltage range without a series collector resistor. Heat sinking the TIP29B will result in slightly less accuracy improvement. It can be done, however, when mechanical constraints require it.

ACCURACY WITH AND WITHOUT EXTERNAL TRANSISTOR

The XTR101 has been tested in a circuit using an external transistor. The relative difference in accuracy with and without an external transistor is shown in Figure 3. Notice that a dramatic improvement in offset voltage change with supply voltage is evident for any value of load resistor.

MAJOR POINTS TO CONSIDER WHEN USING THE XTR101

- The leads to R_S should be kept as short as possible to reduce noise pick-up and parasitic resistance.
- $2. + V_{CC}$ should be bypassed with a $0.01 \mu F$ capacitor as close to the unit as possible (pin 8 to 7).
- Always keep the input voltages within their range of linear operation, +4V to +6V (e₁ and e₂ measured with respect to pin 7).

FIGURE 2. Power Calculation of XTR101 with External Transistor.

FIGURE 3. Thermal Feedback Due to Change in Output

FIGURE 4. Power Supply Operating Range.

- Always choose R_L (including line resistance) so that the voltage between pins 7 and 8 (+V_{CC}) remains within the 11.6V to 40V range as the output changes between the 4-20mA range (see Figure 4).
- 7. It is recommended that a reverse polarity protection diode (D₁ in Figure 1) be used. This will prevent damage to the XTR101 caused by a momentary (e.g., transient) or long term application of the wrong polarity of voltage between pins 7 and 8.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

8. Consider PC board layout which minimizes parasitic capacitance, especially in high gain.

SELECTING RS

 R_{SPAN} is chosen to that a given full scale input span e_{INFS} will result in the desired full scale output span of ΔI_{OFS} ,

 $[(0.0167) + (40/R_S)] \Delta e_{IN} = \Delta I_O = 16 \text{mA}.$

Solving for Rs:

$$R_{\rm S} = \frac{40}{\Delta I_{\rm o}/\Delta e_{\rm in} - 0.016\mho}$$

For example, if $\Delta e_{INFS} = 100 \text{mV}$ for $\Delta I_{OFS} = 16 \text{mA}$,

$$R_{S} = \frac{40}{16\text{mA}/100\text{mV}) - 0.016} = \frac{40}{0.16 - 0.016}$$
$$= \frac{40}{0.144} = 278\Omega$$

See Typical Performance Curves for a plot of R_S vs Δe_{INFS} . Note that in order not to exceed the 20mA upper range limit, e_{IN} must be less than 1V when $R_S = \infty$ and proportionately smaller as R_S decreases.

BIASING THE INPUTS

Because the XTR operates from a single supply both e_1 and e_2 must be biased approximately 5V above the voltage at pin 7 to assure linear response. This is easily done by using one or both current sources and an external resistor R_2 . Figure 5 shows the simplest case— a floating voltage source e_2 . The 2mA from the current sources flows through the 2.5k Ω value of R_2 and both e_1 and e_2 are raised by the required 5V with respect to pin 7. For linear operation the constraint is

$$+4V \le e_1 \le +6V$$

$$+4V \le e_2 \le +6V$$

The offset adjustment is used to remove the offset voltage of the input amplifier. When the input differential voltage (e_{IN}) equals zero, adjust for 4mA output.

FIGURE 5. Basic Connection for Floating Voltage Source.

Figure 6 shows a similar connection for a resistive transducer. The transducer could be excited either by one (as shown) or both current sources. Also, the offset adjustment has higher resolution compared to Figure 5.

CMV AND CMR

The XTR101 is designed to operate with a nominal 5V common-mode voltage at the input and will function properly with either input operating over the range of 4V to 6V with respect to pin 7. The error caused by the 5V CMV is already included in the accuracy specifications.

If the inputs are biased at some other CMV then an input offset error term is (CMV - 5)/CMRR; CMR is in dB, CMRR is in V/V.

SIGNAL SUPPRESSION AND ELEVATION

In some applications it is desired to have suppressed zero range (input signal elevation) or elevated zero range (input signal suppression). This is easily accomplished with the XTR101 by using the current sources to create the suppression/elevation voltage. The basic concept is shown in Figures 7 and 8(a). In this example the sensor voltage is derived from R_T (a thermistor, RTD, or other variable resistance element) excited by one of the 1mA current sources. The other current source is used to create the elevated zero range voltage. Figures 8(b), (c) and (d) show some of the possible circuit variations. These circuits have the desirable feature of noninteractive span and suppression/elevation adjustments. Note: It is not recommended to use the optional offset voltage null (pins 1, 2 and 14) for elevation/suppression. This trim capability is used only to null the amplifier's input offset voltage. In many applications the already low offset voltage (typically 20µV) will not need to be nulled at all. Adjusting the offset voltage to nonzero values will disturb the voltage drift by ±0.3μV/°C per 100μV or induced offset.

FIGURE 6. Basic Connection for Resistive Source.

BURR-BROWN

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 7. Elevation and Suppression Graph.

FIGURE 8. Elevation and Suppression Circuits.

APPLICATION INFORMATION

The small size, low offset voltage and drift, excellent linearity, and internal precision current sources, make the XTR101 ideal for a variety of two-wire transmitter applications. It can be used by OEMs producing different types of transducer transmitter modules and by data acquisition systems manufacturers who gather transducer data. Current mode transmission greatly reduces noise interference. The two-wire nature of the device allows economical signal conditioning

at the transducer. Thus the XTR101 is, in general, very suitable for individualized and special purpose applications.

EXAMPLE 1

RTD Transducer shown in Figure 9.

Given a process with temperature limits of +25°C and +150°C, configure the XTR101 to measure the temperature with a platinum RTD which produces 100Ω at 0°C and 200Ω at +266°C (obtained from standard RTD tables). Transmit 4mA for +25°C and 20mA for +150°C.

COMPUTING Rs:

The sensitivity of the RTD is $\Delta R/\Delta T = 100\Omega/266$ °C. When excited with a 1mA current source for a 25°C to 150°C range (i.e., 125° C span), the span of e_{IN} is $1 \text{mA} \times (100\Omega/266^{\circ}\text{C})$ X 125°C = 47mV = Δe_{IN} .

From equation 1,
$$R_S = \frac{40}{\Delta I_O / \Delta e_{IN} - 0.016\Omega}$$

$$R_{S} = \frac{40}{16\text{mA}/47\text{mV} - 0.016\text{°O}} = \frac{40}{0.3244} = 123.3\Omega$$

Span adjustment (calibration) is accomplished by trimming

COMPUTING RA:

At +25°C,
$$e'_2 = 1mA (R_T + \Delta R_T)$$

$$= 1 \text{mA} [100\Omega + \frac{100\Omega}{266^{\circ}\text{C}} \times 25^{\circ}\text{C}]$$
$$= 1 \text{mA} (109.4\Omega) = 109.4 \text{mV}$$

In order to make the lower range limit of 25°C correspond to the output lower range limit of 4mA, the input circuitry shown in Figure 9 is used.

e_{IN}, the XTR101 differential input, is made 0 at 25°C or

To opine'
$$_{2.25^{\circ}\text{C}}$$
 + V_4 = 0 may or be used in marketic ballocal and V_4

thus,
$$V_4 = e'_{2.25^{\circ}C} = 109.4 \text{mV}$$

$$R_4 = \frac{V_4}{1mA} = \frac{109.4mV}{1mA} = 109.4\Omega$$

COMPUTING R, AND CHECKING CMV:

At
$$+25^{\circ}$$
C, $e'_{2} = 109.4$ mV

At +150°C,
$$e'_2 = 1 \text{mA} (R_T + \Delta R_T)$$

= 1mA [
$$100\Omega + (\frac{100\Omega}{266^{\circ}C} \times 150^{\circ}C)$$
]
= 156.4mV

Since both e'2 and V4 are small relative to the desired 5V common-mode voltage, they may be ignored in computing R2 as long as the CMV is met.

$$R_2 = 5V/2mA = 2.5k\Omega$$

$$e_2 \min = 5V + 0.1094V$$

 $e_2 \max = 5V + 0.1564V$

The +4V to +6V CMV requirement is met.

$$e_1 = 5V + 0.1094V$$

FIGURE 9. Circuit for Example 1. To tenomo of STUDIE

EXAMPLE 2

Thermocouple Transducer shown in Figure 10.

Given a process with temperature (T_1) limits of 0°C and +1000°C, configure the XTR101 to measure the temperature with a type J thermocouple that produces a 58mV change for 1000°C change. Use a semiconductor diode for a cold junction compensation to make the measurement relative to 0°C. This is accomplished by supplying a compensating voltage, V_{R6} , equal to that normally produced by the thermocouple with its "cold junction" (T_2) at ambient. At a typical ambient of +25°C this is 1.28mV (obtained from standard thermocouple tables with reference junction of 0°C). Transmit 4mA for T_1 = 0°C and 20mA for T_1 = +1000°C. Note: $e_{IN} = e_2 - e_1$ indicates that T_1 is relative to T_2 .

ESTABLISHING Rs:

The input full scale span is 58mV ($\Delta e_{INFS} = 58\text{mV}$). R_s is found from equation (1)

$$R_{S} = \frac{40}{\Delta I_{o}/\Delta e_{IN} - 0.016 \Im}$$

$$= \frac{40}{16 \text{mA}/58 \text{mV} - 0.016 \Im} = \frac{40}{0.2599} = 153.9 \Omega$$

SELECTING R4:

 R_4 is chosen to make the output 4mA at T_{TC} = 0°C ($V_{TC}\!\!=\!-1.28mV)$ and T_D = +25°C (V_D = 0.6V). A circuit is shown in Figure 10.

 V_{TC} will be -1.28 mV when $T_{TC} = 0 ^{\circ}C$ and the reference junction is at $+25 ^{\circ}C$. e_1 must be computed for the condition of $T_D = +25 ^{\circ}C$ to make $e_{IN} = 0V$.

$$V_{D 25^{\circ}C} = 600 \text{mV}$$

 $e_{1 25^{\circ}C} = 600 \text{mV} (51/2051) = 14.9 \text{mV}$
 $e_{IN} = e_{2} - e_{1} = V_{TC} + V_{4} - e_{1}$

FIGURE 10. Thermocouple Input Circuit with Two
Temperature Regions and Diode (D) Cold
Junction Compensation.

With
$$e_{IN}=0$$
 and $V_{TC}=-1.28 mV$,
$$V_4=e_1+e_{IN}-V_{TC}$$

$$=14.9 mV+0V-(-1.28 mV)$$

$$1 mA~(R_4)=16.18 mV$$

$$R_4=16.18 \Omega$$

COLD JUNCTION COMPENSATION:

The temperature reference circuit is shown in Figure 11.

The diode voltage has the form

$$V_D = \frac{KT}{q} \ln \frac{I_{DIODE}}{I_{SAT}}$$

Typically at $T_2 = +25^{\circ}\text{C}$, $V_D = 0.6\text{V}$ and $\Delta V_D/\Delta T = -2\text{mV/°C}$. R_5 and R_6 form a voltage divider for the diode voltage V_D . The divider values are selected so that the gradient $\Delta_V D/\Delta T$ equals the gradient of the thermocouple at the reference temperature. At +25°C this is approximately $52\mu V/^{\circ}\text{C}$ (obtained from standard thermocouple table); therefore,

$$\Delta T_{C}/\Delta T = \Delta_{V}D/\Delta T \left[\frac{R_{6}}{R_{5} + R_{6}} \right]$$

$$52\mu V/^{\circ}C = 2000\mu V/^{\circ}C \left[\frac{R_{6}}{R_{5} + R_{6}} \right]$$
(2)

 R_5 is chosen as $2k\Omega$ to be much larger than the resistance of the diode. Solving for R_6 yields 51Ω .

THERMOCOUPLE BURN-OUT INDICATION

In process control applications it is desirable to detect when a thermocouple has burned out. This is typically done by forcing the two-wire transmitter current to either limit when

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 11. Cold Junction Compensation Circuit.

the thermocouple impedance goes very high. The circuits of Figures 16 and 17 inherently have down scale indication. When the impedance of the thermocouple gets very large (open) the bias current flowing into the + input (large impedance) will cause I_O to go to its lower range limit value (about 3.8mA). If up scale indication is desired the circuit of Figure 18 should be used. When the T_C opens the output will go to its upper range limit value (about 25mA or higher).

OPTIONAL INPUT OFFSET VOLTAGE TRIM

The XTR101 has provisions for nulling the input offset voltage associated with the input amplifiers. In many applications the already low offset voltages (30µV max for the B grade, 60µV max for the A grade) will not need to be nulled at all. The null adjustment can be done with a potentiometer at pins 1, 2 and 14 as shown in Figures 5 and 6. Either of these two circuits may be used. NOTE: It is not recommended to use this input offset voltage nulling capability for elevation or suppression. See the Signal Suppression and Elevation section for the proper techniques.

OPTIONAL BANDWIDTH CONTROL

Low-pass filtering is recommended where possible and can be done by either one of two techniques shown in Figure 12. C_2 connected to pins 3 and 4 will reduce the bandwidth with a cutoff frequency given by,

$$f_{CO} = \frac{15.9}{(R_1 + R_2 + R_3 + R_4) (C_2 + 3pF)}$$

This method has the disadvantage of having f_{CO} vary with R_1, R_2, R_3, R_4 , and it may require large values of R_3 and R_4 . The other method, using C_1 , will use smaller values of capacitance and is not a function of the input resistors. It is, however, more subject to nonlinear distortion caused by slew rate limiting. This is normally not a problem with the slow signals associated with most process control transducers. The relationship between C_1 and f_{CO} is shown in the Typical Performance Curves.

FIGURE 12. Optional Filtering. [12.3] 101 100 12. O ESTUDIO

APPLICATION CIRCUITS

FIGURE 13. 0-20mA Output Converter.

FIGURE 14. Bridge Input, Voltage Excitation.

FIGURE 15. Bridge Input, Current Excitation.

FIGURE 17. Thermocouple Input with Diode Cold Junction Compensation.

FIGURE 16. Thermocouple Input with RTD Cold Junction Compensation.

FIGURE 18. Thermocouple Input with RTD Cold Junction Compensation.

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 19. Dual Precision Current Sources Operated From One Supply.

The ideal output current is 1000 mg 20 (Aud) org 20 org

$$i_{O \text{ IDEAL}} = 4\text{mA} + \text{K } e_{\text{IN}}$$

K is the span (gain) term, $(0.016\Omega + (40/R_S))$

In the XTR101 there are three major components of error:

- 1. σ_0 = errors associated with the output stage.
- 2. σ_S = errors associated with span adjustment.
- 3. σ_I = errors associated with the input stage.

The transfer function including these errors is

$$i_{O ACTUAL} = (4mA + \sigma_O) + K (1 + \sigma_S)(e_{IN} + \sigma_I)$$
 (4)

When this expression is expanded, second order terms $(\sigma_S \sigma_1)$ dropped, and terms collected, the result is

$$i_{O \text{ ACTUAL}} = (4\text{mA} + \sigma_{O}) + \text{K } e_{\text{IN}} + \text{K}\sigma_{\text{I}} + \text{K}\sigma_{\text{S}} e_{\text{IN}}$$
(5)

The error in the output current is io ACTUAL - io IDEAL and can be found by subtracting equations (5) and (3).

$$i_{O ERROR} = \sigma_O + K\sigma_1 + K\sigma_S e_{IN}$$
 (6)

This is a general error expression. The composition of each component of error depends on the circuitry inside the XTR101 and the particular circuit in which it is applied. The circuit of Figure 9 will be used to illustrate the principles.

$$1. \ \sigma_{O} = I_{OS \ RTO} \tag{7}$$

2.
$$\sigma_{\rm S} = \varepsilon_{\rm NONLINEARITY} + \varepsilon_{\rm SPAN}$$
 (8)

3.
$$\sigma_{I} = V_{OSI} + (I_{B1} + R_4 - I_{B2} R_T) + \frac{\Delta V_{CC}}{PSRR} + \frac{(e_1 + e_2)/2 - 5V}{CMRR}$$

The term in parentheses may be written in terms of offset current and resistor mismatches as $I_{B1} \Delta R + I_{OS}' R_4$.

V_{OSI}* = input offset voltage

 I_{B1}^* , I_{B2}^* = input bias current

 I_{OSI}^* = input offset current $I_{OS RTO}^*$ = output offset current error

 $\Delta R = R_T - R_4 = \text{mismatch in resistor}$

 ΔV_{CC} = change supply voltage between pins 7 and 8 away from 24V nominal

PSRR* = power supply rejection ratio

CMRR* = common-mode rejection ratio

 $\varepsilon_{\text{NONLIN}}^*$ = span nonlinearity

 $\varepsilon_{\text{SPAN}}^*$ = span equation error. Untrimmed error = 5% max. May be trimmed to zero.

Items marked with an asterisk (*) can be found in the Electrical Specifications.

EXAMPLE 3

The circuit in Figure 9 with the XTR101BG specifications and the following conditions: $R_T = 109.4\Omega$ at 25°C, $R_T =$ 156.4Ω at 150°C, $I_O = 4mA$ at 25°C, $I_O = 20mA$ at 150°C, $R_S = 123.3\Omega$, $R_4 = 109\Omega$, $R_L = 250\Omega$, $R_{LINE} = 100\Omega$, $V_{DI} = 100\Omega$ 0.6V, $V_{PS} = 24V \pm 0.5\%$. Determine the % error at the upper and lower range values.

A. AT THE LOWER RANGE VALUE (T = +25°C).

$$\sigma_{I} = V_{OSI} + (I_{B1} \Delta R + I_{OS1} R_{4}) + \frac{\Delta V_{cc}}{PSRR} + \frac{(e_{1} + e_{2})/2 - 5V}{CMRR}$$

$$\Delta R = R_{T.25^{\circ}C} - R_4 = 109.4 - 109 \approx 0^{1000.0} \approx 20^{1000.0}$$

$$\Delta V_{CC} = (24 \times 0.005) + 4\text{mA} (250\Omega + 100\Omega) + 0.6V$$

= 120mV + 1400mV + 600mV
= 2120mV

$$e_1 = (2\text{mA} \times 2.5\text{k}\Omega) + (1\text{mA} \times 109\Omega) = 5.109\text{V}$$

 $e_2 = (2\text{mA} \times 2.5\text{k}\Omega) + (1\text{mA} \times 109.4\Omega)$
 $= 5.1094\text{V}$

$$(e_1 + e_2)/2 - 5 = 0.1092V$$
 AUSTOR

PSRR= 3.16 X 105 for 110dB

CMRR = 31.6×10^3 for 90dB

$$\sigma_1 = 30\mu V + (150nA \times 0 + 20nA \times 109\Omega)$$

$$\frac{2120\text{mV}}{3.16 \times 10^5} + \frac{0.1092\text{V}}{3.16 \times 10^3}$$
(10)
= 30µV + 2.18µV + 6.7µV + 3.46µV

$$\sigma_{\rm S} = \varepsilon_{\rm NONLIN} + \varepsilon_{\rm SPAN}$$

$$\sigma_{\rm S} = 0.0001 + 0.0001$$

=
$$0.0001 + 0$$
 (assumes trim of R_S)

$$I_O$$
 error = σ_O + K σ_I + K σ_S e_{IN}

$$K = 0.016 + \frac{40}{R_s} = 0.016 + \frac{40}{123.3\Omega} = 0.340$$

$$e_{IN} = e_2 - V_4 = I_{REF1} R_{T 25^{\circ}C} - I_{REF2} R_4$$

since
$$R_{T 25^{\circ}C} = R_4$$
,

$$e_{IN} = (I_{REF1} - I_{REF2}) R_4 = 0.4 \mu A X 109 \Omega$$

= 43.6 \(\mu V \)

Since the maximum mismatch of the current references is 0.04% of $1mA = 0.4\mu A$,

$$I_O$$
 error = 6μA + (0.34 \mho X 42.34μV) + (0.34 \mho X 0.0001 X 43.6μV) = 6μA + 14.40μA + 0.0015μA = 20.40μA

% error =
$$\frac{20.40\mu A}{16mA}$$
 X 100%

0.13% of span at lower range value.

B. AT THE UPPER RANGE VALUE (T = +150°C).

$$\Delta R = R_{T 150^{\circ}C} - R_4 = 156.4 - 109.4 = 47\Omega$$

$$\Delta V_{CC} = (24 \times 0.005) + 20 \text{mA} (250\Omega + 100\Omega) +$$

0.6V = 7720mV

$$e_1 = 5.109V$$

$$e_2 = (2mA \times 2.5k\Omega) + (1mA \times 156.4\Omega) = 5.156V$$

$$(e_1 + e_2)/2 - 5V = 0.1325V$$

$$\begin{split} &+ \frac{7/20\text{mV}}{3.16 \times 10^5} + \frac{0.1525 \text{ V}}{3.16 \times 10^3} \\ &= 30\mu\text{V} + 9.23\mu\text{V} + 24\mu\text{V} + 4.19\mu\text{V} \\ &= 67.42\mu\text{V} \\ &\sigma_S = 0.0001 \\ &e_{IN} = e'_2 - V_4 = I_{REF1} R_{T \, 150^{\circ}\text{C}} - I_{REF2} R_4 \\ &= (1\text{mA} \times 156.4\Omega) - (1\text{mA} \times 109\Omega) = 47\text{mV} \end{split}$$

$$I_O \text{ error } = \sigma_O + K \, \sigma_I + K \, \sigma_S \, e_{IN} = 6\mu\text{A} + \\ &(0.34 \text{T} \times 67.42\mu\text{V}) + (0.34 \text{T} \times 0.0001 \times 47000\mu\text{V}) = 6\mu\text{A} + 22.92\mu\text{A} + 1.60\mu\text{A} \\ &= 30.52\mu\text{A} \\ \% \text{ error } = \frac{30.52\mu\text{A}}{16\text{mA}} \times 100\% \end{split}$$

CONCLUSIONS

Lower Range: From equation (10) it is observed that the predominant error term is the input offset voltage $(30\mu V)$ for the B grade). This is of little consequence in many applications. $V_{OS\ RTI}$ can, however, be nulled using the pot shown in Figures 5 and 6. The result is an error of 0.06% of span instead of 0.13% if span.

= 0.19% of span at upper range value.

the result is an error of 0.09% of span instead of 0.19% span.

PROCEDURES FOR INTEGRATED CIRCUITS

All semiconductor devices are vulnerable, in varying degrees, to damage from the discharge of electrostatic energy. Such damage can cause performance degradation or failure, either immediate or latent. As a general practice, we recommend the following handling procedures to reduce the risk of electrostatic damage.

- Remove the static-generating materials, such as untreated plastic, from all areas that handle microcircuits.
- 2. Ground all operators, equipment, and work stations.
- Transport and ship microcircuits, or products incorporat ing microcircuits, in static-free, shielded containers.
- 4. Connect together all leads of each device by means of a conductive material, when the device is not connected into a circuit.
- Control relative humidity to as high a value as practical (50% recommended).

4-20mA Current Transmitter with RTD EXCITATION AND LINEARIZATION

FEATURES

- LESS THAN ±1% TOTAL ADJUSTED ERROR. -40°C TO +85°C
- RTD EXCITATION AND LINEARIZATION
- TWO OR THREE-WIRE RTD OPERATION
- WIDE SUPPLY RANGE: 9V to 40V
- HIGH PSR: 110dB min • HIGH CMR: 80dB min

DESCRIPTION

The XTR103 is a monolithic 4-20mA, two-wire current transmitter designed for Platinum RTD temperature sensors. It provides complete RTD current excitation, instrumentation amplifier, linearization, and current output circuitry on a single integrated circuit.

Versatile linearization circuitry provides a 2nd-order correction to the RTD, typically achieving a 40:1 improvement in linearity.

Instrumentation amplifier gain can be configured for a wide range of temperature measurements. Total adjusted error of the complete current transmitter, including the linearized RTD is less than ±1% over the full -40 to +85°C operating temperature range. This includes zero drift, span drift and nonlinearity. The XTR103 operates on loop power supply voltages down

The XTR103 is available in 16-pin plastic DIP and SOL-16 surface-mount packages specified for the -40°C to +85°C temperature range.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- FACTORY AUTOMATION
- SCADA

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

T_A = +25°C, V+ = 24V, and 2N6121 external transistor, unless otherwise noted.

		X	R103BP/	3U	X	FR103AP/A	U	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT Output Current Equation Total Adjusted Error (1) Output Current, Specified Range Over-Scale Limit Under Scale-Limit Full Scale Output Error Noise: 0.1Hz to 1KHz	T_{MIN} to T_{MAX} $V_{ N}=1$ V, $R_{G}=\infty$ $R_{G}=40\Omega$	l _o = \	√ _N • (0.016 34 3.6 ±15 8	+ 40/R _g) + ±1 20 40 3.8 ±50	4mA, V _{IN} in	Volts, R _g	n Ω ±2 * * ±100	Α % of FS mA mA mA μA
ZERO OUTPUT ⁽²⁾ Initial Error vs Temperature vs Supply Voltage, V+ vs Common-Mode Voltage	$V_{JN} = 0$, $R_G = \infty$ $V + = 9V \text{ to } 40V^{(3)}$ $V_{CM} = 2V \text{ to } 4V^{(3)}$	MA	4 ±5 ±0.2 0.5 0.1	±50 ±0.5 2 2	OX:	3 (01)	±100 ±1	mA μA μΑ/°C μΑ/V μΑ/V
SPAN Span Equation (Transconductance) Untrimmed Error vs Temperature ⁽⁴⁾ Nonlinearity: Ideal Input RTD Input	$R_G \ge 75\Omega$ Pt100: -200°C to +850°C $R_{LIN} = 1127\Omega$	S =	±0.16 + 4 ±0.1 ±20		OTAL AND LE	ES 0°C TC ATION	±100	A/V % ppm/°C %
Common-Mode DOTH	$R_G = \infty$ $V_{IN} = 2V$ to $4V^{(3)}$ TRABALIMON DOTAL	2 80	100 3 0.5	V001013	NGE: 91 min min	PLY RA 110dB	GUS 30 SH PSR SH CWR	GΩ
Offset Voltage vs Temperature vs Supply Voltage, V+ Input Bias Current vs Temperature Input Offset Current vs Temperature	V ₊ = 9V to 40V ⁽³⁾	110	±0.5 ±1 130 100 0.1 2 0.01	±2.5 ±2.5 250 2 20 0.25	N . arolithic	±2 O .1 9 mr . ei	25 30,81 31,03 11,03	mV μV/°C dB nA nA/°C nA
CURRENT SOURCES(5) Current Accuracy vs Temperature vs Power Supply, V+ Compliance Voltage(3) Matching vs Temperature vs Power Supply, V+	$V+ = 9V \text{ to } 40V^{(3)}$ $V+ = 9V \text{ to } 40V^{(3)}$	(V⁻ _{IN}) − 0.2	0.8 ±0.25 ±25 50 ±10	±0.5 ±50 (V+) - 5 ±0.5 ±25	vides con on amplif on a sing (typical)	M H M M M M M M M M M M M M M M M M M M	±1 ±100	mA % ppm/°C ppm/V V % ppm/°C ppm/V
POWER SUPPLY Voltage Range ⁽³⁾ , V+		9 (87	nls. To	40	in sasis	tempe	range o	wide
TEMPERATURE RANGE Specification, T_{MIN} to T_{MAX} Operating $ heta_{JA}$	Am8.0 = 61>	-40 -40	15.05 (8)	85 125	of all distributions of the second se	carized Copen rift spa	ng the lit 0 to +85	°C/W

^{*} Specification same as XTR103BP.

NOTES: (1) Includes corrected Pt100 nonlinearity for process measurement spans greater than 100°C, and over-temperature zero and span effects. Does not include initial offset and gain errors which are normally trimmed to zero at 25°C. (2) Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero. (3) Voltage measured with respect to I_o pin. (4) Does not include TCR of gain-setting resistor, R_o. (5) Measured with R_{LN} = ∞ to disable linearization feature.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

XTR103	DIE	TOPO	GRA	PHY

PAD	FUNCTION	PAD	FUNCTION
1	Zero Adj.	9	R _{LIN}
2	Zero Adj.	10	V+
3	V-IN	11	E (Emitter)
4	V+IN	12	MART I _{R1}
5	R _G	13	I _{B2}
6	R _G	14	E _{INT} (Int. Emit.)
7	lo	15	B (Base)
8	R _{LIN}	16	Zero Adj.

NC: No Connection

Substrate Bias: Internally connected to the I_o terminal (#7).

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	168 x 104 ±5	4.27 x 2.64 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	201	None

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING
XTR103AP	16-pin Plastic DIP	180
XTR103BP	16-pin Plastic DIP	180
XTR103AU	SOL-16 Surface Mount	211
XTR103BU	SOL-16 Surface Mount	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

PACKAGE	TEMPERATURE RANGE		
16-pin Plastic DIP	-40°C to +85°C		
16-pin Plastic DIP	-40°C to +85°C		
SOL-16 Surface Mount	-40°C to +85°C		
SOL-16 Surface Mount	-40°C to +85°C		
	16-pin Plastic DIP 16-pin Plastic DIP SOL-16 Surface Mount		

ABSOLUTE MAXIMUM RATINGS

Power Supply, V+ (referenced to Io pin)	40V
Input Voltage, V+IN, V-IN (referenced to Io pin)	0V to V+
Storage Temperature Range	55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Current Limit	Continuous
Junction Temperature	+165°C

ELI DIS

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES (CONT) AMAGEMIN MOTTAGILISTA

 $T_A = +25$ °C, +V = 24VDC, unless otherwise noted.

4

INSTRUMENTATION AMPLIFIERS

INPUT VOLTAGE NOISE DENSITY vs FREQUENCY A REMARKABLE A R At pronounced when the input stage is "Input Offset Voltage vs Loop

(a) this behavior. Voltage (100 10 ess 00.1 sse 1s 10k 100k Frequency (Hz)

APPLICATION INFORMATION

Figure 1 shows the basic connection diagram for the XTR103. The loop power supply, V_{PS} provides power for all circuitry. Output loop current is measured as a voltage across the series load resistor, $R_{\rm L}$.

Two matched 0.8mA current sources drive the RTD and zero-setting resistor, $R_{\rm Z}.$ The instrumentation amplifier input of the XTR103 measures the voltage difference between the RTD and $R_{\rm Z}.$ The value of $R_{\rm Z}$ is chosen to be equal to the resistance of the RTD at the low-scale (minimum) measurement temperature. $R_{\rm Z}$ can be adjusted to achieve 4mA output at the minimum measurement temperature to correct for input offset voltage and reference current mismatch of the XTR103.

 R_{CM} provides an additional voltage drop to bias the inputs of the XTR103 within their common-mode range. Resistor, $R_{\rm G}$, sets the gain of the instrumentation amplifier according to the desired temperature measurement range.

The transfer function through the complete instrumentation amplifier and voltage-to-current converter is:

$$I_O = V_{IN} \cdot (0.016 + 40/R_G) + 4mA,$$

(V_{IN} in volts, R_G in ohms, $R_{LIN} = \infty$)

where V_{IN} is the differential input voltage. With no R_G connected $(R_G=\infty),~a~0V~to~1V$ input produces a 4-20mA output current. With $R_G=25\Omega,~a~0V~to~10mV$ input produces a 4-20mA output current. Other values for R_G can be calculated according to the desired full-scale input voltage, $V_{FS},$ with the formula in Figure 1.

Negative input voltage, V_{IN} , will cause the output current to be less than 4mA. Increasingly negative V_{IN} will cause the output current to limit at approximately 3.6mA.

Increasingly positive input voltage (greater than V_{FS}) will produce increasing output current according to the transfer function, up to the output current limit of approximately 34mA.

EXTERNAL TRANSISTOR

Transistor Q₁ conducts the majority of the signal-dependent 4-20mA loop current. Using an external transistor isolates the majority of the power dissipation from the precision input and reference circuitry of the XTR103, maintaining excellent accuracy.

Since the external transistor is inside a feedback loop its characteristics are not critical. Requirements are: $V_{CEO} = 45 \text{V}$ min, $\beta = 40$ min and $P_D = 800 \text{mW}$. Power dissipation requirements may be lower if the loop power supply voltage is less than 40 V. Some possible choices for Q_1 are listed in Figure 1.

The XTR103 can be operated without this external transistor by connecting pin 11 to 14 (see Figure 2). Accuracy will be somewhat degraded by the additional internal power dissipation. This effect is most pronounced when the input stage is set for high gain (for low full-scale input voltage). The typical performance curve "Input Offset Voltage vs Loop Supply Voltage" describes this behavior.

FIGURE 1. Basic RTD Temperature Measurement Circuit.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

FIGURE 2. Operation Without External Transistor.

LOOP POWER SUPPLY

The voltage applied to the XTR103, V+, is measured with respect to the $I_{\rm O}$ connection, pin 7. V+ can range from 9V to 40V. The loop supply voltage, $V_{\rm PS}$, will differ from the voltage applied to the XTR103 according to the voltage drop on the current sensing resistor, $R_{\rm L}$ (plus any other voltage drop in the line).

If a low loop supply voltage is used, R_L must be made a relatively low value to assure that V+ remains 9V or greater for the maximum loop current of 20mA. It may, in fact, be prudent to design for V+ equal or greater than 9V with loop currents up to 34mA to allow for out-of-range input conditions. The typical performance curve "Loop Resistance vs Loop Power Supply" shows the allowable sense resistor values for full-scale 20mA.

The low operating voltage (9V) of the XTR103 allows operation directly from personal computer power supplies (12V \pm 5%). When used with the RCV420 Current Loop Receiver (Figure 8), load resistor voltage drop is limited to 1.5V.

LINEARIZATION

On-chip linearization circuitry creates a signal-dependent variation in the two matching current sources. Both current sources are varied equally according to the following equation:

 $I_{R1} = I_{R2} = 0.8 + \frac{500 \cdot V_{IN}}{R_{LIN}}$

 $(I_R \text{ in mA, } V_{IN} \text{ in volts, } R_{LIN} \text{ in ohms})$ (maximum $I_R = 1.0 \text{mA})$

This varying excitation provides a 2nd-order term to the transfer function (including the RTD) which can correct the RTD's nonlinearity. The correction is controlled by resistor R_{LIN} which is chosen according to the desired temperature measurement range. Table I provides the R_{G} , R_{Z} and R_{LIN} resistor values for a Pt100 RTD.

If no linearity correction is desired, do not connect a resistor to the R_{LIN} pins $(R_{LIN} = \infty)$. This will cause the excitation current sources to remain a constant 0.8 mA.

ADJUSTING INITIAL ERRORS

Most applications will require adjustment of initial errors. Offset errors can be corrected by adjustment of the zero resistor, R_Z .

Figure 3 shows another way to adjust zero errors using the output current adjustment pins of the XTR103. This provides a minimum of $\pm 300\mu A$ (typically $\pm 500\mu A$) adjustment around the initial low-scale output current. This is an output current adjustment which is independent of the input stage gain set

		M	EASURE	MENT TE	MPERAT	URE SPA	N AT (°C)				
T _{MIN}	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C	900°C	1000°C	
-200°C	18/90 653	18/185 838	18/286 996	18/396 1087	18/515 1131	18/645 1152	18/788 1159	18/946 1158	18/1120 1154	18/1317 1140	
-100°C	60/84 1105	60/173 1229	60/270 1251	60/374 1249	60/487 1231	60/610 1207	60/746 1181	60/895 1155	60/1061 1128	10	
0°C	100/81 1287	100/167 1258	100/260 1229	100/361 1201	100/469 1173	100/588 1145	100/718 1117	100/860 1089		To	
100°C	138/78 1211	138/162 1183	138/252 1155	138/349 1127	138/453 1100	138/567 1073	138/691 1046	1	R _z /R _g		(₹)
200°C	175/76 1137	175/157 1110	175/244 1083	175/337 1056	175/437 1030	175/546 1003	2523VS		R _{LIN}	(Values a	are in Ω .)
300°C	212/73 1066	212/152 1039	212/235 1013	212/325 987	212/422 962						
400°C	247/71 996	247/146 971	247/227 946	247/313 921		Puro.0≡					
500°C	280/68 930	280/141 905	280/219 881			NO	OTE: Valu	es shown	are for a	Pt100 RT	D.
600°C	313/66 865	313/136 841	al l	OTR ox		Do		all values	for Pt200		
700°C	345/64 803	-									
800°C	375/61 743										

TABLE I. R_Z, R_G, and R_{LIN} Resistor Values for Pt100 RTD.

FIGURE 3. Low-Scale Output Current Adjustment.

with R_G . If the input stage is set for high gain (as required with narrow temperature measurement spans) the output current adjustment may not provide sufficient range. In these cases, offset can be nulled by adjusting the value of R_Z .

TWO-WIRE AND THREE-WIRE RTD CONNECTIONS

In Figure 1, the RTD can be located remotely simply by extending the two connections to the RTD. With this two-wire connection to the RTD, line resistance will introduce error. This error can be partially corrected by adjusting the values of R_Z , R_G , and R_{LIN} .

through a third wire to the K1D. Assuming line resistance is equal in RTD lines 1 and 2, this produces a small common-mode voltage which is rejected by the XTR103.

OPEN-CIRCUIT DETECTION

The optional transistor Q_2 in Figure 4 provides predictable behavior with open-circuit RTD connections. It assures that if any one of the three RTD connections is broken, the XTR103's output current will go to either its high current limit (\approx 34mA) or low current limit (\approx 3.6mA). This is easily detected as an out-of-range condition.

REVERSE-VOLTAGE PROTECTION

Figure 5 shows two ways to protect against reversed output connection lines. Trade-offs in an application will determine which technique is better. D_1 offers series protection, but causes a 0.7V loss in loop supply voltage. This may be undesirable if V+ can approach the 9V limit. Using D_2 (without D_1) has no voltage loss, but high current will flow in the loop supply if the leads are reversed. This could damage the power supply or the sense resistor, R_L . A diode with a higher current rating is needed for D_2 to withstand the highest current that could occur with reversed lines.

SURGE PROTECTION

Long lines are subject to voltage surges which can damage semiconductor components. To avoid damage, the maximum applied voltage rating for the XTR103 is 40V. A zener diode may be used for D₂ (Figure 6) to clamp the voltage applied to the XTR103 to a safe level. The loop power supply voltage must be lower than the voltage rating of the zener diode.

FIGURE 4. Three-Wire Connection for Remotely Located RTDs.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

There are special zener diode types specifically designed to provide a very low impedance clamp and withstand large energy surges. These devices normally have a diode characteristic in the forward direction which also protects against reversed loop connections. As noted earlier, reversed loop connections would produce a large loop current, possibly damaging $R_{\rm L}$.

RADIO FREQUENCY INTERFERENCE

The long wire lengths of current loops invite radio frequency interference. RF can be rectified by the sensitive input circuitry of the XTR103 causing errors. This generally appears as an unstable output current that varies with the position of loop supply or input wiring.

If the RTD sensor is remotely located, the interference may enter at the input terminals. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current loop connections.

Bypass capacitors on the input often reduce or eliminate this interference. Connect these bypass capacitors to the I_O terminal as shown in Figure 7. Although the DC voltage at the I_O terminal is not equal to 0V (at the loop supply, V_{PS}) this circuit point can be considered the transmitter's "ground."

FIGURE 5. Reverse Voltage Protection.

FIGURE 6. Over-Voltage Surge Protection.

FIGURE 7. Input Bypassing Techniques.

FIGURE 8. ±12V-Powered Transmitter/Receiver Loop.

FIGURE 9. Isolated Transmitter/Receiver Loop.

XTR104

BUILINGUIGHS

4-20mA Current Transmitter with BRIDGE EXCITATION AND LINEARIZATION

FEATURES

- LESS THAN ±1% TOTAL ADJUSTED ERROR, -40°C TO +85°C
- BRIDGE EXCITATION AND LINEARIZATION
- WIDE SUPPLY RANGE: 9V to 40V
- LOW SPAN DRIFT: 50ppm/°C max
- HIGH PSR: 110dB min
- HIGH CMR: 80dB min

DESCRIPTION

The XTR104 is a monolithic 4-20mA, two-wire current transmitter integrated circuit designed for bridge input signals. It provides complete bridge excitation, instrumentation amplifier, linearization, and current output circuitry necessary for high impedance strain gage sensors.

The instrumentation amplifier can be used over a wide range of gain, accommodating a variety of input signals and sensors. Total adjusted error of the complete current transmitter, including the linearized bridge is less than ±1% over the full -40°C to +85°C temperature range. This includes zero drift, span drift and non-linearity for bridge outputs as low as 10mV. The XTR104 operates on loop power supply voltages down to 9V.

Linearization circuitry consists of a second, fully independent instrumentation amplifier that controls the bridge excitation voltage. It provides second-order correction to the transfer function, typically achieving a 20:1 improvement in nonlinearity, even with low cost transducers.

The XTR104 is available in 16-pin plastic DIP and SOL-16 surface-mount packages specified for the -40°C to +85°C temperature range.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- FACTORY AUTOMATION
- SCADA
- WEIGHTING SYSTEMS
- ACCELEROMETERS

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (600) 548-6132

	450	XTR104BP, BU			XT	21 162		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT Output Current Equation Total Adjusted Error (1) Current, Specified Range Over-Scale Limit Under Scale-Limit Full Scale Output Error Noise: 0.1Hz to 1kHz	T_{MIN} to T_{MAX} , $V_{FS} \ge 10$ mV, $R_B = 5$ k Ω $V_{IN} = 1$ V, $R_G = \infty$ $R_G = 40$ Ω	I ₀ = V	34 3.6 ±15 8	+ 40/R _G) + 4 ±1 20 40 3.8 ±50	mA V _{IN}	in Volts, F	R _g in Ω ±2 * * * * * ±100	Α % of FS mA mA mA μA
ZERO OUTPUT(2) Initial Error vs Temperature vs Supply Voltage, V+ vs Common-Mode Voltage	$V_{IN} = 0V$, $R_G = \infty$ $V_{+} = 9V$ to $40V^{(3)}$ $V_{CM} = 2V$ to $3V^{(3)}$	nt T NN A	4 ±5 ±0.2 0.5 0.1	±50 ±0.5 2 2	m09	:-À 300	±100 ±1	mA μΑ μΑ/°C μΑ/V μΑ/V
SPAN			100 AMAD 200		A CHANGE	0.0000000000000000000000000000000000000		
Span Equation (Transconductance) Untrimmed Error vs Temperature ⁽⁴⁾ Nonlinearity: Ideal Input Bridge Input ⁽⁵⁾	R _G ≥ 75Ω	S	= 0.016 + ±0.1 ±20 0.1	40/R _G ±1 ±50 0.01	8 1870	8:	±100	A/V % ppm/°C %
INPUT	B FACTORY AUTOMATIC	7	0.1	11.50	-85°C	OT D	(8-,80	183
Differential Range Input Voltage Range ⁽³⁾ Common-Mode Rejection Impedance: Differential Common-Mode Offset Voltage vs Temperature	V _{IN} = 2V to 3V ⁽³⁾	2 80	100 3 0.5 ±0.5	1 3 ±2.5 2.5	ON AND GE: 9V Süppmi nin.	* 2	OGE.EX E SUPPI V SPANI H PGN: 1	V V dB GΩ GΩ mV μV/°C
vs Supply Voltage, V+ Input Bias Current vs Temperature Input Offset Current vs Temperature	V+ = 9V to 40V ⁽³⁾	110	130 100 0.1 2 0.01	250 2 20 0.25	'ain	anos	H CMR.	dB nA nA/°C nA nA/°C
VOLTAGE REFERENCE ⁽⁶⁾ Voltage Accuracy vs Temperature vs Supply Voltage, V+ vs Load	V+ = 9V to 40V ⁽³⁾ I _L = 0 to 2mA	-71. 59. 50.	5 ±0.25 ±10 5	±0.5 ±50	athic 4-3 d circuit s comple s. liness	a meno ntegrate provide amplifu	±1 ±100	V % ppm/°C ppm/V ppm/m/
POWER SUPPLY Voltage Range ⁽³⁾ , V+	10.5	9	ance ste	40	y for hi	necessar	circuitry a	nighto V
TEMPERATURE RANGE Specification Operating θ_{JA}	(T _{MIN} to T _{MAX}) Derated Performance	-40 -40	W 8 WW	85 125	ther can	qes eo	manentari I gain, acc	°C °C °C

^{*} Specification same as XTR104BP.

NOTES: (1) Includes corrected second-order nonlinearity of bridge, and over-temperature zero and span effects. Does not include initial offset and span errors which are normally trimmed to zero at 25°C. (2) Describes accuracy of the 4mA low-scale current. Does not include input amplifier effects. Can be trimmed to zero. (3) Voltage measured with respect to I_o pin. (4) Does not include TCR of gain-setting resistor, R_G. (5) When configured to correct for ≤2% second-order bridge sensor nonlinearity. (6) Measured with R_{ILIM} = ∞ to disable linearization feature.

.. -55°C to +125°C

+300°C

Continuous +165°C

PACKAGE INFORMATION

Storage Temperature Range..

Output Current Limit .

Junction Temperature

Lead Temperature (soldering, 10s)

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
XTR104AP	16-Pin Plastic DIP	180
XTR104BP	16-Pin Plastic DIP	180
XTR104AU	SOL-16 Surface Mount	211
XTR104BU	SOL-16 Surface Mount	211

Input Voltage, V+IN, V-IN, V+LIN, V-LIN (referenced to IO pin) 0V to V+

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
XTR104AP	16-pin Plastic DIP	-40°C to +85°C
XTR104BP	16-pin Plastic DIP	-40°C to +85°C
XTR104AU	SOL-16 Surface Mount	-40°C to +85°C
XTR104BU	SOL-16 Surface Mount	-40°C to +85°C

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DICE INFORMATION MITAR MUMIKAM STUJOSEA

XTR104 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	V+IN	9	R _{LIN}
2	V-IN	10	V+
3	V+LIN	11	E (Emitter)
4	V- _{LIN}	12A, 12B	V _{REF}
5	R _G	13	B (Base)
6	PG → RG	14	Zero Adj.
7	lo	15	Zero Adj.
8	RIIN	16	Zero Adj.

Pads 12A and 12B must be connected. **NC:** No Connection

Substrate Bias: Internally connected to the Io terminal (#7).

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	168 x 104 ±5	4.27 x 2.64 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	100 TO 10	None

ELECTROSTATIC DISCHARGE SENSITIVITY

TYPICAL PERFORMANCE CURVES

T_A = +25°C, V+ = 24V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) AMRORMI MOITAGLISSA

 $T_A = +25^{\circ}\text{C}$, +V = 24V, unless otherwise noted.

100k

Figure 1 shows the basic connection diagram for the XTR104. The loop power supply, V_{PS} , provides power for all circuitry. Loop current is measured as a voltage across the series load resistor, $R_{\rm L}$.

A high impedance (\geq 2750 Ω) strain gage sensor can be excited directly by the 5V reference output terminal, V_R . The output terminals of the bridge are connected to the instrumentation amplifier inputs, V^+_{IN} and V^-_{IN} . The resistor, R_G , sets the gain of the instrumentation amplifier as required by the full-scale bridge voltage, V_{FS} .

The transfer function is:

$$I_O = V_{IN} \cdot (0.016 + 40/R_G) + 4mA,$$
 (1)

Where: V_{IN} is the voltage applied to the V_{IN}^+ and V_{IN}^- differential inputs (in Volts.) R_G in Ω .

With no R_G connected ($R_G = \infty$), a 0V to 1V input produces a 4 to 20mA output current. With $R_G = 25\Omega$, a 0V to 10mV input produces a 4 to 20mA output current. Other values for R_G can be calculated as follows:

$$R_{G} = \frac{2500}{\frac{1}{V_{ce}} - 1} \tag{2}$$

Where: V_{FS} is the full scale voltage applied to the V^+_{IN} and V^-_{IN} differential inputs (in Volts).

 R_G in Ω .

Under-scale input voltage (negative) will cause the output current to decrease below 4mA. Increasingly negative input will cause the output current to limit at approximately 3.6mA.

Increasingly positive input voltage (above V_{FS}) will produce increasing output current according to the transfer function, up to the output current limit of approximately 34mA.

4 to 20mA loop current. Using an external transistor isolates the power dissipation from the precision input and reference circuitry of the XTR104, maintaining excellent accuracy.

Since the external transistor is inside a feedback loop its characteristics are not critical. Many common NPN types can be used. Requirements for operation at the full loop supply voltage are: $V_{CEO} = 45V$ min, $\beta = 40$ min and $P_D = 800$ mW. Power dissipation requirements may be lower if the maximum loop power supply voltage is less than 40V. Some possible choices for Q_1 are listed in Figure 1.

LOOP POWER SUPPLY

The voltage applied to the XTR104, V+, is measured with respect to the I_O connection, pin 7. V+ can range from 9V to 40V. The loop supply voltage, V_{PS} , will differ from the voltage applied to the XTR104 according to the voltage drop on the current sensing resistor, R_L (plus any other voltage drop in the line).

If a low loop supply voltage is used, R_L must be made a relatively low value to assure that V+ remains 9V or greater for the maximum loop current of 20mA. It may, in fact, be prudent to design for V+ equal or greater than 9V with loop currents up to 34mA to allow for out-of-range input conditions. The typical performance curve "Loop Resistance vs Loop Power Supply" shows the allowable sense resistor values for full-scale 20mA.

The low operating voltage (9V) of the XTR104 allows operation directly from personal computer power supplies (12V±5%). When used with the RCV420 Current Loop Receiver (see Figure 9), load resistor voltage drop is only 1.5V at 20mA.

FIGURE 1. Bridge Sensor Application, Connected for Positive Nonlinearity.

Figure 1 shows a bridge trim circuit (R_1 , R_2). This adjustment can be used to compensate for the initial accuracy of the bridge and/or to trim the offset voltage of the XTR104. The values of R_1 and R_2 depend on the impedance of the bridge, and the trim range required. This trim circuit places an additional load on the V_R output. The effective load of the trim circuit is nearly equal to R_2 . Total load on the V_R output terminal must not exceed 2mA. An approximate value for R_1 can be calculated:

$$R_1 \approx \frac{5 \, \text{V} \cdot \text{R}_B}{4 \cdot \text{V}_{TRIM}} \tag{3}$$

Where: R_B is the resistance of the bridge. V_{TRIM} is the desired $\pm voltage$ trim range (in V).

Make R₂ equal or lower in value to R₁.

Figure 2 shows another way to adjust zero errors using the output current adjustment pins of the XTR104. This provides $\pm 500\mu A$ (typical) adjustment around the initial low-scale output current. This is an output current adjustment that is independent of the input stage gain set with R_G . If the input stage is set for high gain the output current adjustment may not provide sufficient range.

FIGURE 2. Low-scale Output Current Adjustment.

LINEARIZATION

Differential voltage applied to the linearization inputs, V^+_{LIN} , and V^-_{LIN} , causes the reference (excitation) voltage, V_R , to vary according to the following equation:

$$V_{R} = 5V + V_{LIN} \frac{K_{LIN}}{R_{LIN}}$$
 (4)

Where: V_{LIN} is the voltage applied to the V^+_{LIN} and V^-_{LIN} differential inputs (in V).

Run in O

 $K_{LIN} \approx 24000$ (approximately $\pm 20\%$ depending on variations in the fabrication of the XTR104).

 $\pm 0.5 V$ in response to the bridge output voltage. Be sure that the total load on the V_R output is less than 2mA at the maximum excitation voltage, $V_R = 5.5 V$.

Signal-dependent variation of the bridge excitation voltage provides a second-order term to the complete transfer function (including the bridge). This can be tailored to correct for bridge sensor nonlinearity. Either polarity of nonlinearity (bowing up or down) can be compensated by proper connection of the $V_{\rm LIN}$ inputs. Connecting $V^+_{\rm LIN}$ to $V^+_{\rm IN}$ and $V^-_{\rm LIN}$ to $V^-_{\rm IN}$ (Figure 1) causes V_R to increase with bridge output which compensates for a positive bow in the bridge response. Reversing the connections (Figure 3) causes V_R to decrease with increasing bridge output, to compensate for negative-bowing nonlinearity.

To determine the required value for R_{LIN} you must know the nonlinearity of the bridge sensor with constant excitation voltage. The linearization circuitry can only compensate for the parabolic portion of a sensor's nonlinearity. Parabolic nonlinearity has a maximum deviation from linear occurring at mid-scale (see Figure 4). Sensors with nonlinearity curves similar to that shown in Figure 4, but not peaking exactly at mid-scale can be substantially improved. A nonlinearity that is perfectly "S-shaped" (equal positive and negative nonlinearity) cannot be corrected with the XTR104. It may, however, be possible to improve the worst-case nonlinearity of a sensor by equalizing the positive and negative nonlinearity.

The nonlinearity, B (in % of full scale), is positive or negative depending on the direction of the bow. A maximum of $\pm 2.5\%$ nonlinearity can be corrected. An approximate value for R_{LIN} can be calculated by:

$$R_{LIN} = \frac{K_{LIN} \cdot V_{FS}}{0.2 \cdot B}$$
 (5)

Where: $K_{LIN} \approx 24000$.

V_{FS} is the full-scale bridge output (in Volts) with constant 5V excitation.

B is the parabolic nonlinearity in $\pm\%$ of full scale. R_{LIN} in Ω .

Methods for refining this calculation involve determining the actual value of K_{LIN} for a particular device (explained later).

B is a signed number (negative for a downward-bowing nonlinearity). This can produce a negative value for R_{LIN} . In this case, use the resistor value indicated (ignore the sign), but connect V^+_{LIN} to V^-_{IN} and V^-_{LIN} to V^+_{IN} as shown in Figure 3.

This approximate calculation of $R_{\rm LIN}$ generally provides about a 5:1 improvement in bridge nonlinearity.

Example: The bridge sensor depicted by the negative-bowing curve in Figure 4. Its full scale output is 10mV with constant 5V excitation. Its maximum nonlinearity, B, is -1.9% referred to full scale (occurring at mid-scale). Using equation 5:

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 3. Bridge Sensor, V_{LIN} Connected for Negative Nonlinearity.

$$R_{LIN} \approx \frac{24000 \cdot 0.01}{0.2 \cdot (-1.9)} = -632 \Omega$$

Use R_{LIN} = 632 Ω . Because the calculation yields a negative result, connect V^+_{LIN} to V^-_{IN} and V^-_{LIN} to V^+_{IN}

Gain is affected by the varying the excitation voltage. For each 1% of corrected nonlinearity, the gain must be altered by 4%. As a result, equation 2 will not provide an accurate $R_{\rm G}$ when nonlinearity correction is used. The following equation calculates the required value for $R_{\rm G}$ to compensate for this effect.

$$R_{G} = \frac{2500}{1}$$

$$(1 + 0.04 \cdot B) V_{FS} - 1$$
(6)

B must again be a signed number in this calculation—positive for positive bowing nonlinearity, and negative for a negative-bowing nonlinearity.

$$R_G = 23.32\Omega$$
 for the example above.

A more accurate value for R_{LIN} can be determined by first measuring the actual gain constant of the linearization inputs, K_{LIN} (see equation 4). Measure the change in the reference voltage, ΔV_R , in response to a measured voltage change at the linearization inputs, ΔV_{LIN} . Make this measurement with a known, temporary test value for R_{LIN} . These measurements can be made during operation of the circuit by providing stimulus to the bridge sensor, or by temporarily unbalancing the bridge with a fixed resistor in parallel with one of the bridge resistors. Calculate the actual K_{LIN} :

$$K_{LIN} = \frac{\Delta V_R \cdot R_{TEST}}{\Delta V_{LIN}} \tag{7}$$

Where: ΔV_{LIN} is the change in voltage at V_{LIN} . ΔV_R is the measured change in reference voltage, V_R . R_{TEST} is a temporary fixed value of R_{LIN} (in Ω).

FIGURE 4. Parabolic Nonlinearity.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

Then, R_{LIN} can be calculated using equation 5 using the accurate value of K_{LIN} from equation 7. K_{LIN} can be a different value for each XTR104.

It is also possible to make a real-time adjustment of R_{LIN} with a variable resistor (active circuit trimming). This is done by measuring the change in V_R in response to a zero-to- V_{FS} change in voltage applied to the V_{LIN} inputs. To correct for each 1% of nonlinearity, the excitation voltage, V_R , must make a 4% change at full-scale input. So the change in reference voltage, ΔV_R , for a full-scale change in V_{LIN} can be calculated by:

is turning selected
$$\Delta V_R = 0.2 \cdot B$$
 or one as becomes see (8)

Example: A bridge sensor has a -1.9% nonlinearity. Apply the full-scale bride output, V_{FS} (10mV), to the V_{LIN} inputs and adjust R_{LIN} for:

$$V_{R'} = 5V + 0.2 \cdot B = 4.62V$$

Note that with all the calculation and adjustment methods described above, the full-scale bridge output is no longer equal to V_{FS} because the excitation voltage at full scale is no longer 5V. All the calculations and adjustment procedures described above assume V_{FS} to be the full-scale bridge output with constant 5V excitation. It is not necessary to iterate the calculations or adjustment procedures using the new full-scale bridge output as a starting point. However, a new value for R_G must be calculated using equation 6.

A refined value for R_{LIN}, arrived at either by active circuit trimming, or by measuring linearization gain (equation 7) will improve linearity. Reduction of the original parabolic nonlinearity of the sensor can approach 40:1. Actual results will depend on higher-order nonlinearity of the sensor.

If no linearity correction is desired, make no connections to the R_{LIN} pins ($R_{LIN} = \infty$). This will cause the V_R output to remain a constant +5V. The V^+_{LIN} and V^-_{LIN} inputs should remain connected to the bridge output to keep these inputs biased in their active region.

OTHER SENSOR TYPES

The XTR104 can be used with a wide variety of inputs. Its high input impedance instrumentation amplifier is versatile and can be configured for differential input voltages from millivolts to a maximum of 1V full scale. The linear common-mode range of the inputs is from 2V to 4V, referenced to the $I_{\rm O}$ terminal, pin 7.

You can use the linearization feature of the XTR104 with any sensor whose output is ratiometric with an excitation voltage. For example, Figure 5 shows the XTR104 used with a potentiometer position sensor.

REVERSE-VOLTAGE PROTECTION

Figure 6 shows two ways to protect against reversed output connection lines. Trade-offs in an application will determine which technique is better. D_1 offers series protection, but causes a 0.7V loss in loop supply voltage. This may be undesirable if V+ can approach the 9V limit. Using D_2 (without D_1) has no voltage loss, but high current will flow in the loop supply if the leads are reversed. This could damage the power supply or the sense resistor, R_L . A diode with a higher current rating is needed for D_2 to withstand the highest current that could occur with reversed lines.

SURGE PROTECTION

Long lines may be subject to voltage surges which can damage semiconductor components. To avoid damage, the maximum applied voltage rating for the XTR104 is 40V. A zener diode can be used for D_2 (Figure 7) to clamp the voltage applied to the XTR104 to a safe level. The loop power supply voltage must be lower than the voltage rating of the zener diode.

There are special zener diode types (Figure 7) specifically designed to provide a very low impedance clamp and withstand large energy surges. These devices normally have a diode characteristic in the forward direction which also

FIGURE 5. Potentiometer Sensor Application.

The long wire lengths of current loops invite radio frequency interference. RF can be rectified by the sensitive input circuitry of the XTR104 causing errors. This generally appears as an unstable output current that varies with the position of loop supply or input wiring.

If the bridge sensor is remotely located from the XTR104, the interference may enter at the input terminals. For integrated transmitter assemblies with short connections to the sensor, the interference more likely comes from the current loop connections. and logg as a life-short sent and connection of the connections.

terminal (see Figure 7). Although the DC voltage at the Io terminal is not equal to 0V (at the loop supply, V_{PS}) this circuit point can be considered the transmitter's "ground".

LOW-IMPEDANCE BRIDGES

Low impedance bridges can be used with the XTR104 by adding series resistance to limit excitation current to ≤2mA. Equal resistance should be added to the upper and lower sides of the of the bridge (Figure 8) to keep the bridge output voltage centered at approximately 2.5V. Bridge output is reduced, so a preamplifier, as shown, may be needed to reduce offset and drift. I and to also solved A solumna.

FIGURE 6. Reverse Voltage Protection.

FIGURE 7. Over-Voltage Surge Protection.

FIGURE 9. ±12V-Powered Transmitter/Receiver Loop.

FIGURE 10. Isolated Transmitter/Receiver Loop. remailtonal Abrook Industrial Perk - Mailing Address PD 9ox 11490 - Tucson, AZ 39754 - Buret Address Tel: (250) 745-1171 - Trix: 910-552-1171 - Calmis BBRDORP - Teles: 915-6401 - FAX: (820) 808-1810

XTR110

PRECISION VOLTAGE-TO-CURRENT CONVERTER/TRANSMITTER

FEATURES

- 4mA TO 20mA TRANSMITTER
- SELECTABLE INPUT/OUTPUT RANGES: 0V to +5V, 0V to +10V Inputs 0mA to 20mA, 5mA to 25mA Outputs Other Ranges
- 0.005% MAX NONLINEARITY, 14 BIT
- PRECISION +10V REFERENCE OUTPUT
- SINGLE SUPPLY OPERATION
- WIDE SUPPLY RANGE: 13.5V to 40V

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- PRESSURE/TEMPERATURE TRANSMITTERS
- CURRENT-MODE BRIDGE EXCITATION
- GROUNDED TRANSDUCER CIRCUITS
- CURRENT SOURCE REFERENCE FOR DATA ACQUISITION
- PROGRAMMABLE CURRENT SOURCE
 FOR TEST EQUIPMENT
- POWER PLANT/ENERGY SYSTEM MONITORING

DESCRIPTION

The XTR110 is a precision voltage-to-current converter designed for analog signal transmission. It accepts inputs of 0 to 5V or 0 to 10V and can be connected for outputs of 4 to 20mA, 0 to 20mA, 5 to 25mA and many other commonly used ranges.

A precision on-chip metal film resistor network provides input scaling and current offsetting. An internal 10V voltage reference can be used to drive external circuitry.

The XTR110 is available in 16-pin plastic DIP, ceramic DIP and SOL-16 surface-mount packages. Commercial and industrial temperature range models are available.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info; (800) 548-6132

SPECIFICATIONS AMROUNT SPANOAS

ELECTRICAL

At $T_A = +25$ °C and $V_{CC} = +24$ V and $R_L = 250\Omega^{**}$, unless otherwise specified.

	16-Pin Caramid DIP	X	TR110AG, KP,	KU	15 Vac	XTR110BG	S. nomera	0
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TRANSMITTER		Er (1) For de	NOTE				A (vot)	
Transfer Function			I _o = 10	[(V _{REF} In/16) + ($V_{IN1}/4) + (V_{IN2}/2)$)]/R _{SPAN}	- A - ANDIA	40 V
Input Range: V _{IN1} (5)	Specified Performance	0		+10	u l'est		a (va)	V
V _{IN2}	Specified Performance	0		+5	REM V ST	1 5 M 2 1 1 1	A *1401 8	V
Current, Io	Specified Performance ⁽¹⁾	4		20	TT Voce		Adjust 6	mA
	Derated Performance(1)	0		40	1000		To Section	mA
Nonlinearity	16mA/20mA Span(2)		0.01	0.025	Amis Ot	0.002	0.005	% of Span
Offset Current, Ios	$I_0 = 4mA^{(1)}$				1			
Initial	(1)		0.2	0.4	Summer B	0.02	8 0.1	% of Span
vs Temperature	(1)		0.0003	0.005	-	*	0.003	% of Span/°C
vs Supply, V _{CC}	(1)		0.0005	0.005			*	% of Span/V
Span Error	I _O = 20mA		0.0003	0.003	14-11-11	1	BANK B	78 UI Spail/V
Initial	10 = 2011A (1)		0.3	0.6		0.05	0.0	% of Span
11 (1/4/94)	(1)			0.005			0.2	
vs Temperature	(1)		0.0025			0.0009	0.003	% of Span/°C
vs Supply, V _{CC}	A STATE OF THE PARTY OF THE PAR		0.003	0.005				% of Span/V
Output Resistance	From Drain of FET (Q _{EXT})(3)		10 x 10 ⁹	FURE RANGE	ARBRIGHT	BRANC	IAS PA	Ωσομ
Input Resistance	V _{IN1}		27	Acres 4		00	200.01	kΩ
	V _{IN2}		22	to +85°C		GIG simano		kΩ
	V _{REF} In		19			9iO simme		kΩ
Dynamic Response				0 +70°C		Plastic DIP		SAULTER
Settling Time	To 0.1% of Span		15	0°0%+ b	0.0	InpoM•seshu	8 or 108	μs
	To 0.01% of Span		20					μs
Slew Rate			1.3			*		mA/μs
VOLTAGE REFERENCE								
Output Voltage		+9.95	+10	+10.05	+9.98	RORE	+10.02	V
vs Temperature			35	50		15	30	ppm/°C
vs Supply, V _{CC}	Line Regulation		0.0002	0.005	don priwiertio	2500× unless	= 24V®C, R _C	%/V
vs Output Current	Load Regulation		0.0005	0.01	THE REAL PROPERTY.			%/mA
vs Time			100					ppm/1k hrs
Trim Range	IL POWER SUPPLY REGUL	-0.100		+0.25	VS FREQUEN	REGULATION	Voce UNE	V
Output Current	Specified Performance	10		BETT TO	and the sa			mA
POWER SUPPLY				THE IT				
Input Voltage, V _{CC}		+13.5		+40				V
Quiescent Current	Excluding I _O		3	4.5				mA
TEMPERATURE RANGE			8	The second	HIRT W			
Specification: AG, BG		-40	5	+85				°C
KP, KU		0		+70				°C
Operating: AG, BG	N. S.	-55		+125				°C
KP. KU		-25	4	+85				°C
,		20		100				

^{*} Specifications same as AG/KP grades. ** Specifications apply to the range of R_L shown in Typical Performance Curves.

NOTES: (1) Including internal reference. (2) Span is the change in output current resulting from a full-scale change in input voltage. (3) Within compliance range limited by (+V_{CC} - 2V) +V_{DS} required for linear operation of the FET. (4) For V_{REF} adjustment circuit see Figure 3. (5) For extended I_{REF} drive circuit see Figure 4. (5) Unit may be damaged. See section, "Input Voltage Range".

ABSOLUTE MAXIMUM RATINGS

Power Supply, +V _{CC}	40V
Input Voltage, V _{IN1} , V _{IN2} , V _{REF IN}	+V _{CC}
See text regarding safe negative input voltage ra	ange.
Storage Temperature Range: A, B	55°C to +125°C
K, U	40°C to +85°C
Lead Temperature	
(soldering, 10s) G, P	300°C
	260°C
Output Short-Circuit Duration, Gate Drive	
and V _{RFF} Force Continuous	to common and +Vcc
	40mA

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integral circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Source Resistor	1	16	+V _{CC}
Common	2	15	V _{REF} Force
V _{REF} In	3	14	Gate Drive
V _{IN1} (10V)	4	13	Source Sense
V _{IN2} (5V)	5	12	V _{REF} Sense
Zero Adjust	6	11	V _{REF} Adjust
Zero Adjust	7	10	4mA Span
Span Adjust	8	9	16mA Span

MODEL PACKAGE		NUMBER(1)
XTR110AG	16-Pin Ceramic DIP	VASA - 40V 109
XTR110BG	16-Pin Ceramic DIP	109
XTR110KP	16-Pin Plastic DIP	180
XTR110KU	SOL-16 Surface-Mount	211 211 A

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
XTR110AG	16-Pin Ceramic DIP	-40°C to +85°C
XTR110BG	16-Pin Ceramic DIP	-40°C to +85°C
XTR110KP	16-Pin Plastic DIP	0°C to +70°C
XTR110KU	SOL-16 Surface-Mount	0°C to +70°C

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_{CC} = 24$ VDC, $R_L = 250\Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MROTH 24017A01199A

XTR110

4

INSTRUMENTATION AMPLIFIERS

ave a voltage ra

BURR-BROWN

For Immediate Assistance, Contact Your Local Salesperson

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for 0 to 10V input and 4 to 20mA output. Other input voltage and output current ranges require changes in connections of pins 3, 4, 5, 9 and 10 as shown in the table of Figure 1.

The complete transfer function of the XTR110 is:

$$I_{O} = \frac{10\left[\frac{(V_{REFIN})}{16} + \frac{(V_{IN1})}{4} + \frac{(V_{IN2})}{2}\right]}{R_{SPAN}}$$
(1)

 R_{SPAN} is the internal 50 Ω resistor, R_9 , when connected as shown in Figure 1. An external R_{SPAN} can be connected for different output current ranges as described later.

EXTERNAL TRANSISTOR

An external pass transistor, $Q_{\rm EXT}$, is required as shown in Figure 1. This transistor conducts the output signal current. A P-channel MOSFET transistor is recommended. It must have a voltage rating equal or greater than the maximum power supply voltage. Various recommended types are shown in Table I.

MANUFACTURER	PART NO.	BV _{DSS} (1)	BV _{GS} (1)	PACKAGE
Ferranti	ZVP1304A	40V	20V	TO-92
	ZVP1304B	40V	20V	TO-39
	ZVP1306A	60V	20V	TO-92
	ZVP1306B	60V	20V	TO-39
International Rectifier	IRF9513	60V	20V	TO-220
Motorola	MTP8P08	80V	20V	TO-220
RCA Amos = a	RFL1P08	80V	20V	TO-39
	RFT2P08	80V	20V	TO-220
Siliconix	VP0300B	30V	40V	TO-39
(preferred)	VP0300L	30V	40V	TO-92
0 = 4m6	VP0300M	30V	40V	TO-237
	VP0808B	80V	40V	TO-39
	VP0808L	80V	40V	TO-92
	VP0808M	80V	40V	TO-237
Supertex	VP1304N2	40V	20V	TO-220
	VP1304N3	40V	20V	TO-92
	VP1306N2	60V	20V	TO-220
- Landing	VP1306N3	60V	20V	TO-92

NOTE: (1) BV_{DSS}—Drain-source breakdown voltage. BV_{GS}—Gate-source breakdown voltage.

TABLE I. Available P-Channel MOSFETs.

FIGURE 1. Basic Circuit Connection.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

If the supply voltage, $+V_{CC}$, exceeds the gate-to-source breakdown voltage of Q_{EXT} , and the output connection (drain of Q_{EXT}) is broken, Q_{EXT} could fail. If the gate-to-source breakdown voltage is lower than $+V_{CC}$, Q_{EXT} can be protected with a 12V zener diode connected from gate to source.

Two PNP discrete transistors (Darlington-connected) can be used for $Q_{\rm EXT}$ —see Figure 2. Note that an additional capacitor is required for stability. Integrated Darlington transistors are not recommended because their internal base-emitter resistors cause excessive error.

TRANSISTOR DISSIPATION

Maximum power dissipation of $Q_{\rm EXT}$ depends on the power supply voltage and full-scale output current. Assuming that the load resistance is low, the power dissipated by $Q_{\rm EXT}$ is:

$$P_{MAX} = (+V_{CC}) I_{FS}$$
 (2)

The transistor type and heat sinking must be chosen according to the maximum power dissipation to prevent overheating. See Table II for general recommendations.

PACKAGE TYPE	ALLOWABLE POWER DISSIPATION
TO-92	Lowest: Use minimum supply and at +25°C.
TO-237	Acceptable: Trade-off supply and temperature.
TO-39	Good: Adequate for majority of designs.
TO-220	Excellent: For prolonged maximum stress.
TO-3	Use if hermetic package is required.

TABLE II. External Transistor Package Type and Dissipation.

INPUT VOLTAGE RANGE

The internal op amp A_1 can be damaged if its non-inverting input (an internal node) is pulled more than 0.5V below common (0V). This could occur if input pins 3, 4 or 5 were driven with an op amp whose output could swing negative under abnormal conditions. The voltage at the input of $A_{\rm I}$ is:

$$V_{A1} = \frac{(V_{REF IN})}{16} + \frac{(V_{IN1})}{4} + \frac{(V_{IN2})}{2}$$
 (3)

This voltage should not be allowed to go more negative than -0.5V. If necessary, a clamp diode can be connected from the negative-going input to common to clamp the input voltage.

COMMON (Ground)

Careful attention should be directed toward proper connection of the common (grounds). All commons should be joined at one point as close to pin 2 of the XTR110 as possible. The exception is the I_{OUT} return. It can be returned to any point where it will not modulate the common at pin 2.

VOLTAGE REFERENCE

The reference voltage is accurately regulated at pin 12 ($V_{REF\ SENSE}$). To preserve accuracy, any load including pin

FIGURE 2. Q_{EXT} Using PNP Transistors.

FIGURE 3. Optional Adjustment of Reference Voltage.

FIGURE 4. Increasing Reference Current Drive.

3 should be connected to this point. The circuit in Figure 3 shows adjustment of the voltage reference.

The current drive capability of the XTR110's internal reference is 10mA. This can be extended if desired by adding an external NPN transistor shown in Figure 4.

OFFSET (ZERO) ADJUSTMENT

The offset current can be adjusted by using the potentiometer, R_1 , shown in Figure 5. Set the input voltage to zero and then adjust R_1 to give 4mA at the output. For spans starting

FIGURE 5. Offset and Span Adjustment Circuit for 0V to +10V Input, 4mA to 20mA Output.

at 0mA, the following special procedure is recommended: set the input to a small nonzero value and then adjust R_1 to the proper output current. When the input is zero the output will be zero. Figures 6 and 7 show graphically how offset is adjusted.

SPAN ADJUSTMENT of mendal that femology is ESPECIAL

The span is adjusted at the full-scale output current using the potentiometer, R_2 , shown in Figure 5. This adjustment is interactive with the offset adjustment, and a few iterations may be necessary. For the circuit shown, set the input voltage to +10V full scale and adjust R_2 to give 20mA full-scale output. Figures 6 and 7 show graphically how span is adjusted.

The values of R_2 , R_3 , and R_4 for adjusting the span are determined as follows: choose R_4 in series to slightly decrease the span; then choose R_2 and R_3 to increase the span to be adjustable about the center value.

LOW TEMPERATURE COEFFICIENT OPERATION

Although the precision resistors in the XTR110 track within 1ppm/°C, the output current depends upon the absolute temperature coefficient (TC) of any one of the resistors, R_6 , R_7 , R_8 , and R_9 . Since the absolute TC of the output current can have 20ppm/°C, maximum, the TC of the output current can have 20ppm/°C drift. For low TC operation, zero TC resistors can be substituted for either the span resistors (R_6 or R_7) or for the source resistor (R_9) but not both.

FIGURE 6. Zero and Span of 0V to +10V Input, 4mA to 20mA Output Configuration (see Figure 5).

FIGURE 7. Zero and Span of 0V to +10V_{IN}, 0mA to 20mA Output Configuration (see Figure 5).

EXTENDED SPAN

For spans beyond 40mA, the internal 50Ω resistor (R_9) may be replaced by an external resistor connected between pins 13 and 16.

Its value can be calculated as follows:

$$R_{EXT} = R_9 (Span_{OLD}/Span_{NEW})$$

Since the internal thin-film resistors have a 20% absolute value tolerance, measure R_9 before determining the final value of $R_{\rm EXT}$. Self-heating of $R_{\rm EXT}$ can cause nonlinearity. Therefore, choose one with a low TC and adequate power rating. See Figure 10 for application.

TYPICAL APPLICATIONS

The XTR110 is ideal for a variety of applications requiring high noise immunity current-mode signal transmission. The precision +10V reference can be used to excite bridges and transducers. Selectable ranges make it very useful as a precision programmable current source. The compact design

and low price of the XTR110 allow versatility with a minimum of external components and design engineering expense.

Figures 8 through 10 show typical applications of the XTR110.

FIGURE 8. ±200mA Current Pump.

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 9. Isolated 4mA to 20mA Channel.

FIGURE 10. 0A to 10A Output Voltage-to-Current Converter.

For other oursen ranges, scale both resistors propor

BURR-BROWN®

HIGH CURRENT BRIDGE DRIVER and 4-20mA Transmitter

FEATURES

- SENSOR EXCITATION OF 1W
- VARIABLE EXCITATION VOLTAGE:
 1.5V to 5.0V
- SINGLE SUPPLY: 11.4V to 30VDC
- **INRUSH CURRENT LIMITING**
- 4-20mA TRANSMITTER

APPLICATIONS

- GAS DETECTION SENSORS
- PELLISTOR CATALYTIC DETECTORS
- STRAIN GAGES
- HIGH CURRENT BRIDGES
- LOAD CELLS
- HOT-WIRE ANEMOMETERS

DESCRIPTION

The XTR501 contains a high efficiency DC/DC converter and 4-20mA three wire current transmitter. It provides regulated bridge excitation, optional half bridge, differential inputs and current transmitter necessary for the excitation and signal conditioning of low impedance bridge sensors and high integrity signal transmission.

The DC/DC converter is capable of supplying 1W into a regulated bridge voltage of 1.5V to 5.0V from a supply of 11.4V to 30V. The combination of a low startup current and high efficiency current step-up allows for a combined supply line resistance of up to 100Ω when exciting low impedance sensors.

The instrumentation amplifier of the current transmitter can be used over a wide range of gains, accommodating a variety of input signals and sensors.

The XTR501 is particularly suited to excitation of high current/low impedance sensors used in bridge applications allowing the use of lighter cabling leading to considerable savings on cabling costs.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

ELECTRICAL

 $T_A = +25$ °C, $V_S = 24$ V, $V_{BRIDGE} = 2$ V, $I_{LOAD} = 300$ mA unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INSTRUMENTATION AMPLIFIER/CURRENT TR SIGNAL OUTPUT Output Current Equation	ANSMITTER R _G in Ω, V _{IN} in V	I _O = 0.0	04 + 0.016 [(1 + 50ks	2/R _G)/4.94] V _{IN}	A
Output Current	Linear Operating Range	4		20	mA
Over-scale Limit	machine promote and the extremely made	25	27	Charles and the Control of	mA
Under-scale Limit			0		mA
ZERO Output Current Offset Error	BRIDGE I	RENT	4 ±50	±100	mA μA
vs Temperature	Fire a mout A		0.2		µA/°C
vs Supply Voltage	V _S = 11.4V to 30V		0.5	2	μA/V
SPAN	No. of the Salar Agencia Construction of Maria	A serious temperature			The sale of the sale
Span Equation	R _G in Ω,V _{IN} in V	Span	$= 0.016[(1 + 50k\Omega/R)]$		A/V
Untrimmed Error	G = 1		±0.2	±2.5	%
	G = 250		±1.5	±10	%
vs Temperature			50		ppm/°C
Nonlinearity 2012 Quantities of the action	$G = 1$, $I_0 = 4mA$ to 20mA		NOM OF TW	±0.025	%
three wire carrent transmitter. Tuqui	verter and 4-20mA	:810	ATTON VOLTA	TIOXE EXCIT	IRAV 6
Common-Mode Range	provides regulated	0		4.94(1)	ARRIV V
Offset Voltage	faitneesiffile ashird		16	10000	mV
vs Temperature	The state of the s		50	E SUPPLY:	μV/°C
vs Supply Voltage	essary for the exci		75		dB
Common-Mode Rejection	low impedance bri		85	MERRUD HE	dB
Impedance; Differential, Common-Mode	makeimment for		1010 6	MENAST A	Ω pF
DC/DC CONVERTER	The DC/DC conven				
BRIDGE EXCITATION VOLTAGE SOURCE		1.5	29.10	CONTRACTOR OF STREET	CO V
Output Voltage VO.5 of Vo.1 To agentlov	a regulated bridge	1.5	200	5	STATE OF STA
vs Temperature vs Long Term Stability	V _{IN} = 0V, G= 1				ppm/°C
Output Power	sherten current and		100	DETECTION	ppm/1000hi
			CONTRACTOR AND ADDRESS OF	1	W
Line Voltage Regulation	V _S = 11.4V to 30.0V		the same of the same of the same	STOR CALL	%
Load Voltage Regulation	Load Current 160mA to 340mA		0.25	DECLARATE	%
	Load Voltage 2V			SUCCESSION AND	PATT 1 20 - 201
Output Voltage Ripple	Load Current 300mA Load Voltage 2V		150		mV
Output Voltage Ripple Frequency	Load Voltage 2V		100	CRILLS	kHz
Output Short-Circuit Current	Limited Duration		2.6		A
Input Current	Output Short-Circuit		150	MINA BRIVA	-TOP mA
POWER SUPPLY	7				TO THE
Supply Voltage, V _S	ii wollummuo ilgid	11.4	24	30	V
Supply Current	applications allow		See Typical Curve		
TEMPERATURE TO STATE OF THE STA	ing to considerable				
Operating		-40		+70	°C
Storage		-40		+85	°C

NOTE: (1) Common-Mode Range is based on a multiple of a bandgap reference of 1.235V.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

	-438151915	
XTR501	24-Pin Plastic Module	-40°C to +70°C

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
XTR501	24-Pin Plastic Module	902

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

PIN DESCRIPTION

PIN	NAME	DESCRIPTION
1	G _B SET	Connect to R _{SPAN} to set transconductance.
2	G _B SENSE	Sense pin for G _B SET connect to G _A SET.
3	-V _{IN}	Inverting input to transmitter.
10	Гоит	Output Current connect through R _{SENSE} to common.
11	Common	Supply return for sense and V _B connectors.
12	Vs	Supply to XTR501 +11.4V to 30.0V.
14	V _B SET	Single resistor to common sets the bridge excitation voltage.
15	+V _B SENSE	Positive bridge sense input connect to positive excitation voltage at bridge.
16	+V _B	Positive bridge excitation voltage.
17	-V _B	Negative bridge excitation voltage.
18	V _{BB}	Output from internal half bridge connect to -V _{IN}
22	+V _{IN}	Non-Inverting input to transmitter.
23	GASENSE	Sense pin for G _A SET connect to G _A SET.
24	GASET	Connect to R _{SPAN} to set transconductance.

INSTRUMENTATION AMPLIFIERS

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = 24$ V, $V_{BRIDGE} = 2$ V, $I_{LOAD} = 300$ mA unless otherwise specified.

5

10

25

20

15

10

5 %ш

0

-5

-10

-15

-20

0

V_{IN} (mV) XTRSQ1

ABSOLUTE MAXIMUM RATINGS

30

NON-LINEARITY (High Gain)

 $V_{BRIDGE} = 2.0V$, $I_{LOAD} = 300$ mA, $V_{S} = 24V$

OUTPUT NOISE

FFT of OUTPUT NOISE

TYPICAL PERFORMANCE CURVES (CONT) DIAMPORPE JADISYT

T_A = +25°C, V_S = 24V, V_{BRIDGE} = 2V, I_{LOAD} = 300mA unless otherwise specified.

XTR501

4

INSTRUMENTATION AMPLIFIER

For Immediate Assistance. Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) OMAMIS OR 9 2 4 2 19 17

 $T_A = +25$ °C, $V_S = 24$ V, $V_{BRIDGE} = 2$ V, $I_{LOAD} = 300$ mA unless otherwise specified.

METHOD OF OPERATION

The XTR501 consists of a high efficiency DC/DC converter with current and voltage mode control and a current loop transmitter.

The pulse-width modulation controller monitors the current and voltage control signals and varies the conduction period to regulate the bridge excitation voltage, $V_{\rm R}$.

A soft-start feature is provided to negate problems caused by high in-rush currents and lead resistances, thus allowing the XTR501 to be driven through cables of up to 100Ω of supply line resistance with no reduction in performance.

A single resistor, R_{SET} , determines the regulated bridge excitation voltage which may be in the range 1.5V to 5.0V.

The gain of the transconductance amplifier, which forms the current loop transmitter, is again determined by a single resistor R_{SPAN} and allows input voltages from 25mV to drive the 4-20mA current loop.

APPLICATIONS

The XTR501 is designed to be used with a wide range of pellistor catalytic gas detectors. The pellistor gas detector consists of a matched pair of elements; an active bead which is the sensing element, and an inactive bead which is the compensating element. These elements form one side of a Wheatstone bridge arrangement. The bridge serves a dual purpose: to raise the temperature of the elements to about 500°C, which is their working temperature, and to allow detection of the presence of combustible gases through imbalance of the bridge. This happens as the pellistor increases temperature due to oxidation of the flammable gas and thus increases its resistance.

In general, pellistor catalytic gas detectors are limited in use to monitoring up to 100% of the LEL (lower explosive limit). Beyond this point ambiguous results can occur due to the inability of the pellistor to oxidize the gas as the available oxygen decreases (see Figure 3).

FIGURE 1. Basic Connection

FIGURE 2. Bridge Smoothing.

An interesting feature of pellistor elements, and those tested in the applications, is that they create a similar bridge output at LEL for almost all hydrocarbons. This feature allows a comparative measurement to be made of one gas when an instrument has been calibrated for another.

e.g. Instrument calibrated for Methane (K=112) measuring Hydrogen (K=85.8).

Actual % of LEL will be 1.31 x meter reading. (112/85.8). This is an approximation and it is recommended that for exact conversions the instrument should be calibrated using the relevant gases.

Tables of these constants can be sourced through the manufacturers of gas sensing products.

An example of the XTR501 used with a pellistor catalytic gas detector is shown in Figure 1.

To Calculate R_{SET}

See Figure 4. Point (a) will be maintained at 1.235V.

$$\begin{split} \frac{V_B - 1.235}{10k\Omega} &= \frac{1.235 \left(50 k\Omega + R_{SET}\right)}{R_{SET} 50 k\Omega} \\ \frac{50 k\Omega \left(V_B - 1.235\right)}{\left(10 k\Omega\right) \left(1.235\right)} &= \frac{50 k\Omega + R_{SET}}{R_{SET}} \\ &= 1 + \frac{50 k\Omega}{R_{SET}} \\ \\ \frac{5 \left(V_B - 1.235\right)}{1.235} - 1 &= \frac{50 k\Omega}{R_{SET}} \\ \\ R_{SET} &= \frac{\left(50 k\Omega\right) \left(1.235\right)}{5 \left(V_B - 1.235\right) - 1.235} \end{split}$$

Example:

V _B	R _{SET} Calculated	
1.5	Open	
2.0	21.858kΩ	
3.0	7.891kΩ	
4.0	4.815kΩ	
5.0	3.464kΩ	

FIGURE 3. Typical Pellistor Response.

FIGURE 4. Internal Circuit +V SET.

To Calculate R_{SPAN}

$$I_{O} = 0.004 + 0.016 \left(\frac{1 + 50 \text{k}\Omega / R_{SPAN}}{4.94} \right) V_{IN}$$

For $V_{IN} = 10 \text{mV}$ and $I_{O} = 20 \text{mA}$

$$0.02 = 0.004 + 0.016 \left(\frac{1 + 50 \text{k}\Omega / R_{SPAN}}{4.94} \right) 0.01$$

$$\frac{0.016}{(0.016)(0.01)} = \frac{1 + (50k\Omega / R_{SPAN})}{4.94}$$

$$494 = 1 + 50 k\Omega / R_{SPAN}$$

$$R_{SPAN} = \frac{50 k\Omega}{493}$$
$$= 101.4$$

i.e
$$\frac{4.94}{V_{IN}} = 1 + \frac{50 k \Omega}{R_{SPAN}} \label{eq:VIN}$$

$$R_{SPAN} = \frac{50k\Omega}{\frac{4.94}{V_{IN}} - 1}$$

exact conversions the instrument should be calibrated using

To Calculate Repr

$$\begin{split} \frac{V_{B}-1.235}{104\Omega} &= \frac{1.235 \left(50 k\Omega + R_{SET}\right)}{R_{SET}} \\ 50 k\Omega \left(V_{R}-1.235\right) &= \frac{S0 k\Omega + R_{SET}}{R_{SET}} \\ \left(10 k\Omega \lambda\right) \left(1.235\right) &= \frac{50 k\Omega}{R_{SET}} \\ &= 1 + \frac{50 k\Omega}{R_{SET}} \\ &= \frac{50 k\Omega}{1.235} - 1 = \frac{50 k\Omega}{R_{SET}} \end{split}$$

Riggy Calculated	eV.
Coen	1.5
3.48443	

$$I_{\mathrm{O}} = 0.004 + 6.016 \left(\frac{1 + 50 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{SPAN}}}{4.94}\right) \mathrm{V}_{\mathrm{BM}}$$

$$0.02 = 0.004 \pm 0.016 \left(\frac{1 + 50k\Omega / R_{SPAM}}{4.94} \right) 0.01$$

$$\frac{0.016}{(0.016)(0.01)} = \frac{1 + (30 \text{k}\Omega / \text{R}_{\text{SPAN}})}{4.94}$$

$$R_{\rm SPAN} = \frac{50 k\Omega}{493}$$

i.e
$$\frac{4.94}{V_{IN}} = 1 + \frac{50 \text{k}\Omega}{R_{SPAN}}$$

$$R_{SPAN} = \frac{50 \text{k}\Omega}{4.94}$$

5 Isolation Products

Isolation amplifiers can be used to amplify and measure low level signals in the presence of high common-mode voltages, breakground loops and/ or eliminate source ground connections, provide an interface between medical patient monitoring equipment, and provide isolation protection to electronic instruments/equipment.

Our isolation amplifiers feature three different technologies—transformer isolation, capacitor isolation, and opto-isolation. The following selection guides will help you determine the performance and functionality that best fit your requirements.

Choose from the industry's most complete line of isolation solutions including:

ISO130—Provides high isolation-mode rejection, wide bandwidth and low cost in 8-pin DIP and surface-mount packages.

ISO122—Low cost, 1500V isolation available in 16-pin plastic DIP and 28-pin SOIC packages.

ISO120—Industry's first total hermetic isolation amplifier with 0.01% linearity. It is synchronous and offered with specifications over the military temperature range.

ISO103—Unity-gain isolation amp combined with an internal isolated DC/DC converter in a space-saving, 24-pin ceramic DIP.

ISO212—Low cost, uncommitted input amplifier, differential output with an internal isolated DC/DC converter.

ISO100—Versatile, adjustable gain optically-coupled amplifier in a 18-pin DIP.

3656—Transformer-coupled amplifier with an internal isolated DC/DC converter that offers three port isolation.

ISO150—High speed, low cost dual digital transceiver that is TTL- and CMOS-compatible, available in a 24-pin plastic DIP and in a 28-lead SOIC.

ISO164 and ISO174—New, precision, input isolated programmable gain amplifiers. Capable of both fixed and variable gains, they allow flexibility of input stage for use in applications such as IPC and data acquisition systems.

ISO165 and ISO175—New, precision, input isolated instrumentation amplifiers that offer excellent accuracy. A single resistor sets any gain from 1 to 10,000. Available in a 24-pin plastic "skinny" DIP.

ISO250 Family—This new family of precision, 3-port isolated amplifiers consists of a buffer (ISO253), programmable gain (ISO254), instrumentation (ISO255), and operational (ISO256) amplifiers aimed at industrial process control applications.

ISO485 Family—A differential isolated bus transceiver that uses capacitively-coupled isolation technology to achieve high speed and low cost bus isolation. It is RS-485/RS-422 compatible.

ISO800 Family—A new series of 12- and 16-bit isolated sampling A/D converters. Use of state-of-the-art CMOS architectures and high voltage capacitors transfer data digitally across the isolation barrier thereby eliminating signal degradation.

The selection guide also includes our versatile line of isolated DC/DC converters.

With Power

Rated Continuous(1)

(kVrms)

A/D CONVERTERS
Rated Continuous(1), fs

12-BIT ISO806 (1.5kVrms, 40kHz) ISO808 (1.5kVrms, 100kHz)

150807 (1.5kVrms, 40kHz) IS0809 (1.5kVrms, 100kHz) DC/DC CONVERTERS
Rated Continuous(1)
(Vrms)

(3.5k)

PWS745 (750) PWS750 (750) 724 (1k) PWS740 (1.5k) PWS725A (1.5k) PWS726A (3.5k)

722

(Function)
ISO485 (RS-485 Transceiver)
ISO150 (Transceiver, Dual)

DIGITAL

COUPLERS

(Function)
ISC300 (RTD, Bridge, TC in)
IXR100 (RTD, 4-20mA, 2 Wire)

SENSOR

CONDITIONING

Without Power Rated Continuous⁽¹⁾ (Vrms)

ISO106 (3.5k)

ISO121 (3.5k)

ISO107 (2.5k) ISO165 (1.5k) IS0166 (1.5k) 3 PORT ISO174 (1.5k) ISO253 (1.5k) ISO175 (1.5k) ISO254 (1.5k) IS0176 (1.5k) ISO255 (1.5k) ISO182 (1.5k) ISO256 (1.5k) 3650 (2k) 3656 (3.5k) 3652 (2k)

Technology (Gain Range)

 OPTICALLY-COUPLED

 ISO100 (Variable Gain)

 3650 (Variable Gain, FET Input)

 ISO130 (G = 8, Differential in and out)

CAPACITIVE-COUPLED ISO102 (G = 1) ISO103 (G = 1) ISO106 (G = 1)

ISO107 (G = 1)
ISO113 (G = 1)
ISO113 (G = 1)
ISO120 (G = 1)
ISO122 (G = 1)
ISO122 (G = 1)
ISO164 (PGA, G = 1, 10, 100)
ISO165 (INA, Variable Gain)
ISO166 (Variable Gain)

ISO175 (INA, Variable Gain) ISO176 (Variable Gain) ISO182 (G = 1) ISO253 (G = 1) ISO254 (PGA, G = 1, 10, 100, 1000) ISO255 (INA, Variable Gain) ISO256 (Variable Gain)

TRANSFORMER-COUPLED ISO212 (Variable Gain) 3656 (Variable Gain) * DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT
BOLD, ITALIC DENOTES PRODUCT IN DEVELOPI

NOTE: (1) All isolation voltages defined at continuous AC Some specifications have been estimated for compari purposes. Refer to data sheets for guaranteed specifi

Burr-Brown IC Data Book-Linear Products

ANAI OG WITHOUT POWE

	Isolation Voltage	Isolation Voltage	Isolation Mode Rejection	Isolation Mode Rejection	Leakage Current	Gain Non-	Input Offset Voltage	Bias	Small Signal		
Product	Cont Peak (DC) (V)	Pulse/Test Peak (V)	DC typ (dB)	60Hz typ (dB)	at 240V/60Hz max (µArms)	linearity max (%)	Drift max (±µV/°C)	Current max (nA)	Bandwidth typ (kHz)	Temp ⁽¹⁾ Range	Description
ISO100	750	2500	146(4)	108(4)	0.3	0.07	2(4)	10	60	Ind	Low Drift Wide BW
ISO102	2121	4000	160	120	1.0	±0.003	250	_	70	Ind ⁽²⁾	1500Vrms Isolation, Buffer
ISO106	4950	8000	160	130	1.0	±0.025	250	_	70	Ind(2)	3500Vrms Isolation, Buffer
ISO120	2121	2500(3)	160	115	0.5	±0.01	150	_	60	Mil ⁽²⁾	1500Vrms Isolation, Buffer
ISO121	4950	5600(3)	160	115	0.5	±0.01	150	_	60	Mil(2)	3500Vrms Isolation, Buffer
ISO122	2121	2400(3)	160	140	0.5	±0.02	200*	_	50	Ind	1500Vrms Isolation, Buffer
ISO130	720	960(3)	140	140	_	±0.25	2.1*	670*	85	Ind	High IMR Wide BW, G = 8
ISO164	2121	2500(3)	115	115 (50Hz)	0.8 (50Hz)	±0.01	155	5	6	Ind	1500Vrms Isolation with PC
ISO165	2121	2500(3)	160	115	1	±0.052	1.2	±10	50	XInd	1500Vrms, INA
ISO166	2121	2500(3)	160	115	0.8	±0.062	150*	±5	6*	XInd	1500Vrms, Op Amp
ISO174	2121	2500(3)	115	115 (50Hz)	0.8 (50Hz)	±0.04	505	5	60	Ind	1500Vrms Isolation with PC
ISO175	2121	2500(3)	160	115	1 -0	±0.052	1.5	±10	50	XInd	1500Vrms, INA
ISO176	2121	2500(3)	160	115	0.8	±0.062	500*	±5	60*	XInd	1500Vrms, Op Amp
ISO182	2121	2400(3)	140	140	0.5	±0.01	200*	b Little	160	Ind	Transient Imunity = 5kV/μs
3650	2000	5000	140	120	0.35	±0.05	5	40	15	Ind	Balanced Current Input, Buff
3652	2000	5000	140	120	0.35	±0.1	25	50pA	15	Ind	Balanced

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMEN

Some specifications have been estimated for comparisor purposes. Refer to data sheets for guaranteed specificati

A/D CONVERTERS

ISO107 3500 8000 160 100 2.0 ±0.025 400 — 20 Ind 2500Vrms Isolated Input Power, Buffer ISO113 2121 5657 160 130 2.0 ±0.02 250 — 20 Ind 1500Vrms Isolated Output Power, Buffer ISO212 2121 2400(3) 160 115 2.0 ±0.025 (±30/G) 50 1 Com 750Vrms Isolated Input Power, Low Collision 150213 2120 2500(3) 160 115 3.0 ±0.025 (±35/G) 10 1 Com Instrumentation Amplifier, 2 port ISO213 1500 2500(3) 160 115 2.0 ±0.1 150 NS 50 XInd Buffer, 3 port	Isolation Voltage Cont Peak Product (V)	Isolation Voltage Pulse/Test Peak (V)	Rejection	Isolation Mode Rejection typ 60Hz (dB)	Leakage Current at 240V/60Hz max (μΑ)	Gain Non- linearity max (%)	Input Offset Voltage Drift max (±µV/°C)	Bias Current max (nA)	Small Signal Bandwidth typ (kHz)		Description DEMOLES TYPICAL BOLD DENOTES NEW PRODUCT BOLD, TIALIC DENOTES PRODUCT IN DEVELOPMENT Some specifications have been estimated for comparate
ISO113 2121 5657 160 130 2.0 ±0.02 250 — 20 Ind 1500Vrms Isolated Output Power, Buffi ISO212 2121 2400(3) 160 115 2.0 ±0.025 (±30/G) 50 1 Com 750Vrms Isolated Input Power, Low Collision ISO213 2120 2500(3) 160 115 3.0 ±0.025 (5±35/G) 10 1 Com Instrumentation Amplifier, 2 port ISO253 1500 2500(3) 160 155 2.0 ±0.1 150 NS 50 XInd Buffer, 3 port ISO254 1500 2500(3) 160 150 2.0 ±0.102 ±(1+520/G) 5 50 XInd Programmable Gain Amplifier, 3 port	ISO103 2121	5657	160	130	2.0	±0.025	250	_	20	Ind	1500Vrms Isolated Input Power, Buffer, 2 port
ISO212 2121 2400(3) 160 115 2.0 ±0.025 (±30/G) 50 1 Com 750Vrms Isolated Input Power, Low Collision 150 2120 2500(3) 160 115 3.0 ±0.025 (5±35/G) 10 1 Com Instrumentation Amplifier, 2 port ISO253 1500 2500(3) 160 115 2.0 ±0.1 150 NS 50 XInd Buffer, 3 port ISO254 1500 2500(3) 160 150 2.0 ±0.102 ±(1+520/G) 5 50 XInd Programmable Gain Amplifier, 3 port								_			2500Vrms Isolated Input Power, Buffer, 2 port
ISO213 2120 2500 ⁽³⁾ 160 115 3.0 ±0.025 (5±35/G) 10 1 Com Instrumentation Amplifier, 2 port ISO253 1500 2500 ⁽³⁾ 160 115 2.0 ±0.1 150 NS 50 XInd Buffer, 3 port ISO254 1500 2500 ⁽³⁾ 160 150 2.0 ±0.102 ±(1+520/G) 5 50 XInd Programmable Gain Amplifier, 3 port							-		20		1500Vrms Isolated Output Power, Buffer, 2 port
ISO253 1500 2500 ⁽³⁾ 160 115 2.0 ±0.1 150 NS 50 XInd Buffer, 3 port ISO254 1500 2500 ⁽³⁾ 160 150 2.0 ±0.102 ±(1+520/G) 5 50 XInd Programmable Gain Amplifier, 3 port	ISO212 2121	2400(3)	160	115	2.0	±0.025	(±30/G)	50	1	Com	750Vrms Isolated Input Power, Low Cost, 2 port
ISO254 1500 2500(3) 160 150 2.0 ±0.102 ±(1+520/G) 5 50 XInd Programmable Gain Amplifier, 3 port	SO213 2120	2500(3)	160	115	3.0	±0.025	(5 ±35/G)	10	1	Com	Instrumentation Amplifier, 2 port
	SO253 1500	2500(3)	160	115	2.0	±0.1	150	NS	50	XInd	Buffer, 3 port
ISO255 1500 2500 ⁽³⁾ 160 130 2.0 ±0.102 ±(4+510/G) 10 50 XInd Instrumentation Amplifier, 3 port	SO254 1500	2500(3)	160	150	2.0	±0.102	± (1 + 520/G)	5	50	XInd	Programmable Gain Amplifier, 3 port
	SO255 1500	2500(3)	160	130	2.0	±0.102	± (4 + 510/G)	10	50	XInd	Instrumentation Amplifier, 3 port
ISO256 1500 2500 ⁽³⁾ 160 130 2.0 ±0.1 ±1.2 ±5 50 XInd Operational Amplifier, Input, 3 port	SO256 1500	2500(3)	160	130	2.0	±0.1	±1.2	±5	50	XInd	Operational Amplifier, Input, 3 port
3656 3500 8000 160 125 0.5 ⁽²⁾ ±0.05 (5+350/G ₁) 100 30 Ind High Isolation Voltage, 3 port	3656 3500	8000	160	125	0.5(2)	±0.05	(5+ 350/G ₁)	100	30	Ind	High Isolation Voltage, 3 port

ISOLATION PRODUCTS

NOTES: All packages are DIPs except the package for the ISO212 and ISO213 is a SIP. (1) Ind = -25°C to +85°C, Com = 0°C to +70°C. XInd = -40°C to 85°C. (2) At 120V/60Hz. (3) Partial discharge test voltage, ac Vrms.

Product	Resolu- tion (Bits)	Error max (%FSR)	Range (see table, pg 43) (V)	Sampling Rate (kHz)		THD (dB, max)	Temp Range	Pkg	Desc	cription	Balanced Current Input, Buffer Balanced WD COMAEU EUS
ISO806 ISO807 ISO808 ISO809	12 16 12 16	±0.022 ±0.0046 ±0.022 ±0.006	C, D, S C, D, S C, D, E, P, R, S C, D, E, P, R, S	40 40 100 100	15 12	-90* -100* -90* -100*	Ind Ind Ind Ind	PDIP PDIP PDIP PDIP	Seria Seria	al, Isolated, Rate al, Isolated, Rate al, Isolated, Rate al, Isolated, Rate	ed 1500 Vrms ed 1500 Vrms
180165		\$2000)	180		1	70'025		T40		Mad	1600Vmns, IMA
150164				145 (60Hz)		10.01	155			hid	1500Vrms isolation with POA
		880(a)							85		High IMR Wide 8W, G = 8
	2121			140		#0°05	500.			lnd	
						±0.01					3500Vrms teolation, Buffer
160120				115							
150106							250				3500 Vrms leolation, Buffer
150102					10				7.0	[bq(s)	
			146(4)			0.07				lnd	Low Drift Wide BW
Product			(ais)	60Hz 8yp (dB)	at 240 V/60) max (µArms)		(7hM,c) wex DHB	Current max (nA)	Beindwid typ (kHz)	* DENOTES TY	
ERR.	Teofation Voltage			Mode Rejection	Lezicage Current		Officer - Voffage		Small Signal		ES NEW PRODUCT DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Burr-Brown
C
Data
Book-
-Linear
Product.

DC/DC CONVERTERS

Product	Isolation Voltage Cont Peak (V)	Isolation Voltage Pulse Test Peak (V)	Input Voltage min (VDC)	Input Voltage max (VDC)	Leakage Current 240VAC 60Hz (µA)	Current, Balanced Loads On All Outputs Rated (mA)	Current, Balanced Loads On All Outputs Max ⁽¹⁾ (mA)	Sensitivity To Input Change (V/V)	Temp ⁽²⁾ Range	Pkg	Description	8
PWS725A	2121	4000	7	18	2 2 8 8 8	±15	±40	1.15	Ind	DIP	Single ±15V Output	0
PWS726A	4950	8000	(7-)	18	2	±15	±40	1.15	Ind	DIP	Single ±15V Output	6585
PWS740	2121	4000	7	20	1.5	30(3)	60(3)	1.20	Ind	Sys(4)	Multiple Output (1-8)	
PWS745(6)	1060	1200(7)	10(5)	18(5)	1.5	±15	30	1.20(5)	Ind	Comp	Multiple Output (1-8)	
PWS750	1060	1200(7)	10(5)	18(5)	1.5	±15	30	1.20(5)	Ind	Comp	Multiple Output (1-8)	
722	3500	8000	5	16	THE	±3-40	±50	1.13	Ind	Mod	Dual ±15V Output	
724	1000	3000	5	16	1 5 3 4 5	±3-16	±60	0.63	Ind	Mod	Quad ±8V Output	

NOTES: (1) See complete Product Data Sheet for full specifications, especially regarding output current capabilities. (2) Ind = -25°C to +85°C. (3) Per channel. (4) 1 TO-3 driver per 8 channels, plus 2 DIPs per channel. (5) 15V operation. (6) PWS745-1 driver may also be used with PWS740 components. (7) Partial discharge test voltage, ac Vrms.

DIGITAL COUPLER

	Product	Voltage Cont Peak (Vrms)	Voltage Pulse Test Peak (V)	Current 240VAC 60Hz (µA)	Data Rate (MBd)*	Consumption Per Channel max (mW)	Ext Power Req	Temp ⁽¹⁾	Pkg	Descripti	ion	
1	ISO150	1500	2400(2)	0.6	80	25	Yes	XInd	DIP, SOIC	Dual Isola	ated Transceiver	10.74
	ISO485	1500	NS	NS	20	180 at 5MBit/s	Yes	XInd	DIP	RS-485 T	ransceiver	

NOTES: (1) XInd = -40°C to +85°C. (2) Partial discharge test voltage, ac Vrms.

SENSOR CONDITIONING

Product	Voltage Cont Peak (V)	Leakage Current (μArms)	Isolation Impedance	Gain Nor linearity typ	r- Frequ Respo		Reference Voltage	Isolated Power Req	Temp ⁽¹⁾ Range	Pkg	Description
ISC300	700	4	2GΩ 15pF	±0.01%	3.5Hz	_ g	Yes	No	Com	Mod	Precision Measured Channel
1.6								0 7 6	1 5 4	1 6	0.0
	Isolation	11 11 11 15	E 5 8 8	3 3 2 5	B & E -	. 0	2	11 音光 9	2 m	1 2	
	Voltage	Span	Span	Span	Input	Input	CMR		Output		
	Cont	Untrimmed	Non-	Temp Drift	Offset	vs Temp			Current	1)	
Product	(V)	Error, max (%)	linearity, typ (%)	(ppm/°C)	Voltage typ	max (μV/°C)	Supply (dB)	Range (mA)	Limit Tempo (mA) Range		Description
IXR100	2121	-2.5	0.01 (EMF)	100	500μV	5	100	4-20	32 Specia	al Mod	Two-Wire Transmitter

NOTE: (1) Special = -20°C to +70°C, Com = 0°C to 70°C

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT
BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Optically-Coupled Linear ISOLATION AMPLIFIER

FEATURES

- EASY TO USE, SIMILAR TO AN OP AMP
 V_{OUT}/I_{IN} = R_F, Current Input
 V_{OUT}/V_{IN} = R_F/R_{IN}, Voltage Input
- 100% TESTED FOR BREAKDOWN:
 750V Continuous Isolation Voltage
- ULTRA-LOW LEAKAGE: 0.3μA, max, at 240V/60Hz
- WIDE BANDWIDTH: 60kHz
- 18-PIN DIP PACKAGE

DESCRIPTION

The ISO100 is an optically-coupled isolation amplifier. High accuracy, linearity, and time-temperature stability are achieved by coupling light from an LED back to the input (negative feedback) as well as forward to the output. Optical components are carefully matched and the amplifier is actively laser-trimmed to assure excellent tracking and low offset errors.

The circuit acts as a current-to-voltage converter with a minimum of 750V (2500V test) between input and output terminals. It also effectively breaks the galvanic connection between input and output commons as indicated by the ultra-low 60Hz leakage current of 0.3µA at 250V. Voltage input operation is easily achieved by using one external resistor.

Versatility along with outstanding DC and AC performance provide excellent solutions to a variety of challenging isolation problems. For example, the ISO100 is capable of operating in many modes, including: noninverting (unipolar and bipolar) and inverting (unipolar and bipolar) configurations. Two precision current sources are provided to accomplish bipolar operation. Since these are not required for unipolar operation, they are available for external use (see Applications section).

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer Sensing
 (Thermocouples, RTD, Pressure Bridges)
 4mA to 20mA Loops
 Motor and SCR Control
 Ground Loop Elimination
- BIOMEDICAL MEASUREMENTS
- TEST EQUIPMENT
- DATA ACQUISITION

Designs using the ISO100 are easily accomplished with relatively few external components. Since V_{OUT} of the ISO100 is simply $I_{IN}R_{F}$, gains can be changed by altering one resistor value. In addition, the ISO100 has sufficient bandwidth (DC to 60kHz) to amplify most industrial and test equipment signals.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

	130010081		ISO100AF	101		ISO100BI			ISO100C	1	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION								(ent)	THERR	FSET OF	NPUT OF
Voltage		750	1				10.3			18	V
Rated Continuous, AC peak or DC ⁽¹⁾ Test Breakdown, DC	10s	2500	80.0				1 = 3 =			servicine er Supplie	V
Rejection ⁽²⁾ DC	108	2500	5							mydens is	pA/V
Rejection P DC	$R_{IN} = 10k\Omega$, Gain = 100		146								dB
AC	$R_{IN} = 1002$, $R_{IN} = 100$		400							SILIPRO	pA/V
AC	$R_{IN} = 10k\Omega$, $Gain = 100$		108							10	dB
Impedance	11N = 10K32, Gail = 100		1012 2.5			*			המותיפרכי	(raten pa	Ω pF
Leakage Current	240Vrms, 60Hz		10 112.0	0.3				(801	smoneo	holisteb)	μA, rms
	Evo vinio, coriz	1 81	4 714	0.0	1	4080.0	Link			EGTAL	Pa 19 1111
OFFSET VOLTAGE (RTI)			1.1-3		1	-20jul	MI.				or a man or
Input Stage (V _{OSI})			1 100	500			300			200	μV
Initial Offset			315	5			2	10	onsmon	200	μV/°C
vs Temperature				105			*	(90)	pertonna	100,200	μV/-C dB
vs Input Power Supplies			1 112	105		0 + 0		10.119		Ball tage	
vs Time			1						limit ing	and inter	μV/kHr
Output Stage (V _{OSO}) Initial Offset			MOIT	500	MIPOLA		300			200	μV
vs Temperature				5			2		asuta	200	μV/°C
vs Output Power Supplies			1 19 19	105			*			Dan & Jones	dΒ
vs Time			1	103					*	noltment	μV/kHr
Common-Mode Rejection Ratio(2)	60Hz, $R_F = 1M\Omega$	1 14	3							anatme0	nA/V
Common-Mode Rejection Ratio	$R_{IN} = 10k\Omega$, $Gain = 100$		90				la Total		*	participal	dB
Common-Mode Range	11N - 10N22, Gaill = 100	±10	30	-10	1016	- R A	S = 3		231	inga Swi	V
			0000							BOTTEBUS	GI JUQUU
REFERENCE CURRENT SOURCES			The state of			h d	10	11111111111			MAR
Magnitude		10.5	10.0	10.5		Bill Har w	Ox.				
Nominal	20.0 10.0	10.5	12	12.5				10.0	3-01 9:0	MS/MOUNT	μА
vs Temperature	0.01 0.05		0.00	300						150	ppm/°C
vs Power Supplies			0.3	3							nA/V
Matching 70.0 20.0	110 60.0									lest A	readilito
Nominal			50			Avac 0 =	out to			BRION	nA
vs Temperature			150					1 1 1		SHCF	ppm/°C
vs Power Supplies			0.3		1						nA/V
Compliance Voltage	The state of the s	-10	0 400	+15	1					100	V
Output Resistance		16.1.5	2 x 10 ⁹								Ω
FREQUENCY RESPONSE							(Ohs)	bold	THURS	D TEST	O THEM
Small Signal Bandwidth	Gain = 1V/μA		60	4 3				1000	*	18	kHz
Full Power Bandwidth	Gain = $1V/\mu A$, $V_0 = \pm 10V$		5			*	. THE RE		*	STUTUTE	kHz
Slew Rate		0.22	0.31					*		sligon8 a	V/µs
Settling Time	0.1%		100		A COL		Live		*		μs
TEMPERATURE RANGE										SLIGGU	REWOR
Specification		-25	14 6 3	+85		1000	*	*	192	*	°C
Operating		-40	and	+100	*	1 12 1	*		no amon	er bates	°C
Storage		-55		+100	*	Lumb 4	*	(900	sumol se	balmabi	°C
Ara * *	UNIPOL	AR OPE	RATION	14		AU01+ =	of .			Ireanut	Supply
GENERAL PARAMETERS		3-10	P III To			Autr- =	10				
nput Current Range						1 4				908	les trans
Linear Operation		-20	dia	-0.02	*		*	* (8	donanah	d para	μА
Without Damage		-1		+1			*	*(90)	semency	peligno)	mA
Input Impedance		1 79	0.1			0 = 0		10.57		memud	Ω
Output Voltage Swing	$R_L = 2k\Omega$, $R_F = 1M\Omega$	-10		0			*		limu ins	NO BUDS	V
Output Impedance	DC, Open-Loop		1200							No. of the last	Ω
GAIN A DIE MO S 12 HE SE NO		TSOC TO	constitution	S2 701 98	To pro	barana are	int and	1 mbox m	oheS is:	HEAVIT CE	CB DATE
nitial Error (adjustable to zero)	$V_O = R_F (I_{IN})$		2	5		15.50 4 7.00	2	ent regita	veb 1056	2	0/ -4 50
	A STATE OF THE PARTY OF THE PARTY					1		in the sta			% of FS
vs Temperature	ALL THE STATE OF		0.03	0.07		0.01	0.05	and the stri	0.005	0.03	%/°C
vs Time			0.05	0.4		0.00	0.4		0.00	0.07	%/kHr
Nonlinearity ⁽³⁾			0.1	0.4	18 1 1	0.03	0.1		0.02	0.07	%
CURRENT NOISE	I _{IN} = 0.2μA									100	
0.01Hz to 10Hz			20			*	27 25		*		pAp-p
10Hz			1			*	1 1 1 1 1 1		*		pA/√Hz
100Hz			0.7				PA COL				pA/√Hz

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS (CONT)

ELECTRICAL

At $T_A = +25$ °C and $\pm V_{CC} = 15$ VDC, unless otherwise specified.

	180100BP		ISO100AI	P	1	ISO100B	P	1	ISO100C	P	
PARAMETER M SYT MA	CONDITIONS	MIN	TYP	MAX	MIN	TYP	ОМАХ	MIN	TYP	MAX	UNITS
INPUT OFFSET CURRENT (I _{OS}) Initial Offset vs Temperature vs Power Supplies vs Time			1 0.05 0.1 100	10 027 0023		101		riog is	AC peak	M antinuçus akdowa, f 8 DC	nA nA/°C nA/V pA/kHr
POWER SUPPLIES Input Stage Voltage (rated performance) Voltage (derated performance) Supply Current	l _{IN} = -0.02μA	±7	±15	±18 ±2	18/0	$\Omega V_{\mu} \in \mathbb{R}^{n}$ $\Omega V_{\mu} = 0$ $\Omega V_{\mu} \in \mathbb{R}^{n}$ $\Omega V_{\mu} \in \mathbb{R}^{n}$ $\Omega V_{\mu} \in \mathbb{R}^{n}$	R _{isi} = 10 240v			AG	V V mA
Output Stage Voltage (rated performance) Voltage (derated performance) Supply Current Short Circuit Current Limit	$I_{IN} = -20\mu A$ $V_O = 0$	±76 301	+8, -1.1 ±15 ±1.1	±18 ±2 ±40					Supplies	Out Age e (Vosi) fiset inpetature ut Power se	W V V MA MA
Mr. ODD	BIPOL	AR OPE	RATION		1					080 V) 969	nd Tuqruk
GENERAL PARAMETERS Input Current Range Linear Operation Without Damage Input Impedance Output Voltage Swing Output Impedance	$R_L = 2k\Omega$, $R_F = 1M\Omega$	-10 -1 -10	0.100	+10 +1 +10	Q 001 =	β(– β) Ω. Cain	60Hz R ₂₀ = 10	1901	r Supplika notion Rati ige	* 81	μΑ mA Ω V
GAIN Initial Error (Adjustable To Zero) vs Temperature vs Time Nonlinearity ⁽³⁾	$V_{O} = R_{F} (I_{IN})$	12.5 300 3	2 0.03 0.05 0.1	5.07 0.07		1 0.01 *	2 0.05 0.1		1 0.005 *	2 0.03 0.07	% of FS %/°C %/kHr %
CURRENT NOISE 0.01Hz to 10Hz 10Hz 100Hz 1kHz	I _{IN} = 0.2μA	+15	1.5 17 7 6	-10.		* * * * * * * * * * * * * * * * * * * *			. 891	ngeratum ver Suppl se Voltage sletance	nA, p-p pA/√Hz pA/√Hz pA/√Hz
INPUT OFFSET CURRENT (I _{OS} , bip Initial Offset vs Temperature vs Power Supplies vs Time	olar ⁽⁴⁾)		40 250	200 3 0.7	Nor±	20	70 2		10 ¹¹⁵¹	35 1	nA nA/°C nA/V pA/kH
POWER SUPPLIES Input Stage Voltage (rated performance) Voltage (derated performance)	* * * * * * * * * * * * * * * * * * * *	364 0014 ±7	±15	±18			*		5000	R ZHUT	V
Supply Current Output Stage Voltage (rated performance) Voltage (derated performance) Supply Current Short Circuit Current Limit	$I_{IN} = +10\mu A$ $I_{IN} = -10\mu A$ $V_O = 0$	±7,0	+2, -1.1 +8, -1.1 ±15 ±1.1	+3, -2 +13, -2 ±18 ±2 ±40	A POPULA			•	eners	PARAN em Rang Operation Damage idence	mA mA V V mA mA

^{*} Same as ISO100AP

SOLVLIOM BUODICLE

NOTES: (1) See Typical Performance Curves for temperature effects. (2) See Theory of Operation section for definitions. For dB see Ex. 2, CM and HV errors. (3) Nonlinearity is the peak deviation from a "best fit" straight line expressed as a percent of full scale output. (4) Bipolar offset current includes effects of reference current mismatch and unipolar offset current.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS

Or, Call Customer Service at 1-800-548-6132 (USA Only)

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltages	±18V
Isolation Voltage, AC pk or DC	750V
Input Current	±1mA
Storage Temperature Range	55°C to +100°C
Lead Temperature (soldering, 10s)	+300°C
Output Short-Circuit Duration	Continuous to Ground

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO100AP	18-Pin Bottom-Braze DIP	220
ISO100BP	18-Pin Bottom-Braze DIP	220
ISO100CP	18-Pin Bottom-Braze DIP	220

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	YOMBUOPACKAGE 18 184	TEMPERATURE RANGE
ISO100AP	18-Pin Bottom-Braze DIP	-25°C to +85°C
ISO100BP	18-Pin Bottom-Braze DIP	-25°C to +85°C
ISO100CP	18-Pin Bottom-Braze DIP	-25°C to +85°C

SOLATION PRODUCTS

(µArms)

Leakage

ACL

2 Current ()

ISOLATION LEAKAGE CURRENT

vs ISOLATION VOLTAGE

Typ at 60Hz

Max at 60Hz

Isolation Voltage (kV)

ogeration las can be replaced by o voluge

Recommended

Operating Region

0 25

3

Isolation 750

DC 500

Continuous

250

Leakage Current (nA)

DC

10

5

Typ at DC

Voltage

50 75 100 125

S

Temperature (°C)

SOLATION PRODUCTS

V_T = Threshold Voltage T_T = Threshold Temperature

caused by the properties of the optical T_T≈ +65°C, V_T≈ 200VDC. Shift does not occur fo AC voltages.

BURR - BROWN

cavity.

The ISO100 is fundamentally a unity gain current amplifier intended to transfer small signals between electrical circuits separated by high voltages or different references. In most applications, an output voltage is obtained by passing the output current through the feedback resistor (R_E).

The ISO100 uses a single light emitting diode (LED) and a pair of photodiode detectors coupled together to isolate the output signal from the input.

Figure 1 shows a simplified diagram of the amplifier. IREFI and IREE2 are required only for bipolar operation to generate a midscale reference. The LED and photodiodes (D₁ and D₂) are arranged such that the same amount of light falls on each photodiode. Thus, the currents generated by the diodes match very closely. As a result, the transfer function depends upon optical match rather than absolute performance. Laser-trimming of the components improves matching and enhances accuracy, while negative feedback improves linearity. Negative feedback around A1 occurs through the optical path formed by the LED and D₁. The signal is transferred across the isolation barrier by the matched light path to D2. MOITA JOSE BY THIS HORSE MIAD TO STAR

The overall isolation amplifier is noninverting (a positive going input produces a positive going output).

INSTALLATION AND **OPERATING INSTRUCTIONS**

UNIPOLAR OPERATION

In Figure 1, assume a current, I_{IN}, flows out of the ISO100 (I_{IN} must be negative in unipolar operation). This causes the voltage at pin 15 to decrease. Because the amplifier is inverting, the output of A1 increases, driving current through

THEORY OF OPERATION the LED. As the LED light output increases, D1 responds by generating an increasing current. The current increases until the sum of the currents in and out of the input node (-Input to A₁) is zero. At that point, the negative feedback through D₁ has stabilized the loop, and the current I_{D1} equals the input current plus the bias current. As a result, no bias current flows in the source. Since D1 and D2 are matched $(I_{D1} = I_{D2})$, I_{IN} is replicated at the output via D_2 . Thus, A_1 functions as a unity-gain current amplifier, and A2 is a current-to-voltage converter, as described below.

> Current produced by D2 must either flow into A2 or RE. Since A₂ is designed for low bias current (≈10nA), almost all of the current flows through R_E to the output. The output voltage then becomes:

$$V_O = (I_{D2})R_F = (I_{D1} \pm I_{OS})R_F \approx -(-I_{IN})R_F = I_{IN}R_F$$
 (1)

where, Ios is the difference between A1 and A2 bias currents. For input voltage operation IIN can be replaced by a voltage source (V_{IN}) and series resistor (R_{IN}), since the summing node of the op amp is essentially at ground. Thus, I_{IN} = VIN/RIN.

Unipolar operation does have some constraints, however. In this mode the input current must be negative so as to produce a positive output voltage from A₁ to turn the LED on. A current more negative than 20nA is necessary to keep the LED turned on and the loop stabilized. When this condition is not met, the output may be indeterminant. Many sensors generate unidirectional signals, e.g., photoconductive and photodiode devices, as well as some applications of thermocouples. However, other applications do require bipolar operation of the ISO100.

BIPOLAR OPERATION

To activate the bipolar mode, reference currents as shown in Figure 1 are attached to the input nodes of the op amps. The input stage stabilizes just as it did in unipolar operation.

FIGURE 1. Simplified Block Diagram of the ISO100.

Or. Call Customer Service at 1-800-548-6132 (USA Only)

Assuming $I_{IN} = 0$, the photodiode has to supply all the I_{REF1} current. Again, due to symmetry, ID1 = ID2. Since the two references are matched, the current generated by D2 will equal IREF2. This results in no current flow in RE, and the output voltage will be zero. When IIN either adds or subtracts current from the input node, the current D1 will adjust to satisfy $I_{D1} = I_{IN} + I_{REF1}$. Because I_{REF1} equals I_{REF2} and I_{D1} equals I_{D2}, a current equal to I_{IN} will flow in R_F. The output voltage is then $V_O = I_{IN}R_F$. The range of allowable I_{IN} is limited. Positive I_{IN} can be as large as I_{REF1} (10.5 μ A, min). At this point, D₁ supplies no current and the loop opens. Negative IIN can be as large as that generated by D1 with maximum LED output (recommended 10µA, max).

DC ERRORS .VAAGE = SIMIL .VAAGE = SIMIL)

Errors in the ISO100 take the form of offset currents and voltages plus their drifts with temperature. These are shown in Figure 2.

 A_1 and A_2 — assumed to be ideal amplifiers.

Voso and Vost—the input offset voltages of the output and input stage, respectively. Voso appears directly at the output but, Vosi appears at the output as

$$V_{OSI} = \frac{R_{F}}{R}, \quad \forall m \in \mathcal{O} =$$
 (1)

see equation (2).

Ios the offset current. This is the current at the input necessary to make the output zero. It is equal to the combined effect of the difference between the bias currents of A₁ and A₂ and the matching errors in the optical components in the unipolar mode.

IREF1 and IREF2—reference currents that, when connected to the inputs, enable bipolar operation. The two currents are trimmed, in the bipolar mode, to minimize the IOS BIPOLAR error.

IDI and ID2—currents generated by each photodiode in response to the light from the LED. 1914 = VAV ni 99141

A,-gain error.

The output then becomes: District the becomes: District the becomes the become

$$V_{OUT} = R_F[(\frac{V_{IN} \pm V_{OS}}{R_{IN}} - I_{REFI} \pm I_{OS})(1 + A_e) + I_{REF2}] \pm V_{OSO}$$
 (2)

The total input referred offset voltage of the ISO100 can be simplified in the unipolar case by assuming that A_e = 0 and

$$V_{IN} = 0$$
:
$$V_{OUT} \approx R_F \left[\frac{\pm V_{OSI}}{R_{IN}} \pm I_{OS \ UNIPOLAR} \right] \pm V_{OSO}$$
(3)
This voltage is then referred back to the input by dividing by

This voltage is then referred back to the input by dividing by RE/RIN.

$$V_{OS (RTI)} = (\pm V_{OSI}) \pm R_{IN} (I_{OS UNIPOLAR}) + V_{OSO}/(R_F/R_{IN})$$
 (4)

Example 1. Refer to Figure 2 and Electrical Specifications

Given: IOS BIPOLAR

 $R_{IN} = 100k\Omega$

 $R_{\rm F} = 1 M \Omega$ (gain = 10)

 $V_{OSI} = +200 \mu V$

 $V_{OSO} = +200 \mu V$

Find: The total offset voltage error referred to the input and output when $V_{IN} = 0V$.

Vos total RTI

 $= \{ [\pm V_{OSI} \pm R_{IN} (I_{OS BIPOLAR}) - R_{IN} (I_{REF 1})]$

 $[1 + A_e] + R_{IN} I_{REF 2} \pm V_{OSO}/(R_p/R_{IN})$

 $= \{ [+200\mu V + 100k\Omega (35nA) - 100k\Omega (12.5\mu A)]$

 $[1.02] + 100k\Omega (12.5\mu A)$ + [1.02] +

 $\sim 1200 \mu V/(1 M\Omega/100 k\Omega)$

 $= \{[0.2\text{mV} + 3.5\text{mV} - 1.25\text{V}]$

[1.02] + 1.25V} + 0.02mV =-21.2mV of beings and in synam and bas $(_{MO}V)$

Vos total RTO

= V_{OS} total RTI x R_F/R_{IN}

= -21.2mV x 10

= -212mV

FIGURE 2. Circuit Model for DC Errors in the ISO100.

offset). The error for unipolar operation is much lower. The error due to offset current can be zeroed using circuits shown in Figures 6 and 7. The gain error is adjusted by trimming either $R_{\rm F}$ or $R_{\rm IN}$.

COMMON-MODE AND HIGH VOLTAGE ERRORS

Figure 3 shows a model of the ISO100 that can be used to analyze common-mode and high voltage behavior.

FIGURE 3. High Voltage Error Model.

Definitions of CMR and IMR

 I_{OS} is defined as the input current required to make the ISO100's output zero. CMRR and IMRR in the ISO100 are expressed as conductances. CMRR defines the relationship between a change in the applied common-mode voltage (V_{CM}) and the change in I_{OS} required to maintain the amplifier's output at zero:

CMRR (I-mode) =
$$\Delta I_{OS}/\Delta V_{CM}$$
 in nA/V (5)

CMRR (V-mode) =
$$\left[\frac{\Delta I_{OS}}{\Delta V_{CM}}\right] R_{IN} = \frac{\Delta V_{ERR\ CM}}{\Delta V_{CM}} \text{in V/V (6)}$$

IMRR defines the relationship between a change in the applied isolation mode voltage (V_{IM}) and the change in I_{OS} required to maintain the amplifier's output to zero:

IMRR (I-mode) =
$$\frac{\Delta I_{OS}}{\Delta V_{IM}}$$
 in pA/V (7)

IMRR (V-mode) =
$$\left[\frac{\Delta I_{OS}}{\Delta V_{IM}}\right] R_{IN} = \frac{\Delta V_{ERR\ IM}}{\Delta V_{IM}} \text{ in V/V (8)}$$

CMRR and IMRR in V/V are a function of R_{IN}.

 V_{IM} is the voltage between input common and output common.

V_{CM} is the common-mode voltage (noise that is present on both input lines, typically 60Hz).

that produced by application of V_{CM} and V_{IM}.

CMRR and IMRR are the common-mode and isolation-mode rejection ratios, respectively.

Total Capacitance (C₁ and C₂) is distributed along the isolation barrier. Most of the capacitance is coupled to low impedance or noncritical nodes and affects only the leakage current. Only a small capacitance (C₂) couples to the input of the second stage, and contributes to IMRR.

Example 2. Refer to Figure 3 and Electrical Specification Table.

Given:
$$V_{CM} = 1VAC$$
 peak at 60Hz, $V_{IM} = 200VDC$,
 $CMRR = 3nA/V$, $IMRR = 5pA/V$,
 $R_{IN} = 100k\Omega$, $R_F = 1M\Omega$

$$R_{\rm IN} = 100822, R_{\rm F} = 10822$$

Find: The error voltage referred to the input and output when $V_{\text{IN}} = 0V$

$$V_{ERR\ RTI} = (V_{CM})(CMRR)(R_{IN}) + (V_{IM})(IMRR)(R_{IN})$$

= 1V (3nA/V)(100k Ω)
+ 200V (5pA/V)(100k Ω)
= 0.3mV + 0.1mV
= 0.4mV

$$V_{ERR\ RTO} = V_{ERR\ RTI}\ (R_F/R_{IN})$$

= 0,4mV (10)
=4mV (with DC IMRR)

NOTE: This error is dominated by the CMRR term.

For purposes of comparing CMRR and IMRR directly with **dB specifications**, the following calculations can be performed:

CMRR in V/V = CMRR (I-mode)(
$$R_{IN}$$
)
= 3nA/V (100k Ω) = 0.3mV/V

$$CMR = 20 LOG (0.3 mV/V) = -70 dB at 60 Hz$$

IMRR in V/V = IMRR (I-mode)(
$$R_{IN}$$
) = 5pA/V(100k Ω)
= 0.5 μ V/V

$$IMR = 20 LOG (0.5 \times 10^{-6} V/V) = -126 dB at DC$$

Example 3.

In Example 3, V_{IM} is an AC signal at 60Hz and

$$IMRR = \frac{400pA}{V}$$

$$V_{ERR RTI} = V_{ERR CM} + V_{ERR IM}$$

= 0.3mV + 200V (400pA/V)(100k Ω)
= 8.3mV

 $V_{ERR\ RTO} = 83 \text{mV} \text{ (with AC IMRR)}$

worst case.

Find: Percent error of +10V full scale output

% Error =
$$\frac{V_{ERR TOTAL}}{V_{FS}} \times 100\%$$

= $\frac{378 \text{mV}}{10 \text{V}} \times 100\%$
= 3.78%

NOISE ERRORS

Noise errors in the unipolar mode are due primarily to the optical cavity. When the full 60kHz bandwidth is not needed, the output noise of the ISO100 can be limited by either a capacitor, C_F , in the feedback loop or by a low-pass filter following the output. This is shown in Figure 4. Noise in the bipolar mode is due primarily to the reference current sources, and can be reduced by the low-pass filters shown in Figure 5.

FIGURE 4. Two Circuit Techniques for Reducing Noise in the Unipolar Mode.

FIGURE 5. Circuit Techniques for Reducing Noise from the Current Sources in the Bipolar Mode.

age and offset current. V_{OSI} and V_{OSO} of the input and output amplifiers can be adjusted independently using external potentiometers. An example is shown in Figure 17. Note that V_{OSO} (500 μ V, max) appears directly at the output, but V_{OSI} appears at the output multiplied by gain (R_F/R_{IN}). In general, V_{OS} is small compared to the effect of I_{OS} (see Example 1). To adjust for I_{OS} use a circuit which intentionally unbalances the offset in one direction and then allows for adjustment back to zero.

Figure 6 shows how to adjust unipolar errors at zero input. The unipolar amplifier can be used down to zero input if it is made to be "slightly bipolar." By sampling the reference current with R_5 and R_6 , the minimum current required to keep the input stage in the linear region of operation can be established. R_7 and R_8 are adjusted to cancel the offset created in the input stage. This brings the output to zero, when the input is zero. Although the amplifier can now operate down to zero input voltage, it has only a small portion of the current drain and noise that the true bipolar configuration would have.

Adjusting the bipolar errors is illustrated in Figure 7. Each of the errors are adjusted in turn. With $V_{\rm IN}$ = "open,", $I_{\rm OS}$ is trimmed by adjusting $R_{\rm 10}$ to make the output zero. $R_{\rm G}$ is then adjusted to trim the gain error. The effects of offset voltage are removed by adjusting $R_{\rm 14}$.

FIGURE 6. Adjusting the Unipolar Amplifier Errors at Zero Input.

BURR-BROWN®

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 7. Adjusting the Bipolar Errors.

BASIC CIRCUIT CONNECTIONS

FIGURE 8. Unipolar Noninverting.

FIGURE 9. Bipolar Noninverting.

FIGURE 10. Unipolar Inverting.

FIGURE 11. Bipolar Inverting.

APPLICATION INFORMATION

The small size, low offset and drift, wide bandwidth, ultralow leakage, and low cost, make the ISO100 ideal for a variety of isolation applications. The basic mode of operation of the ISO100 will be determined by the type of signal and application.

FIGURE 4. Two Circuit Pecliniques for Reducing Noise in

Major points to consider when designing circuits with the ISO100.

- Input Common (pin 18) and –In (pin 17) should be grounded through separate lines. The Input Common can carry a large DC current and may cause feedback to the signal input.
- 2. Use shielded or twisted pair cable at the input for long
- Care should be taken to minimize external capacitance across the isolation barrier.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

- The distance across the isolation barrier, between external components and conductor patterns, should be maximized to reduce leakage and arcing.
- Although not an absolute requirement, the use of conformally-coated printed circuit boards is recommended.
- When in the unipolar mode, the reference currents (pins 8 and 16) must be terminated. I_{IN} should be greater than 20nA to keep internal LED on.
- The noise contribution of the reference currents will cause the bipolar mode to be noisier than the unipolar mode.
- 8. The maximum output voltage swing is determined by $I_{\rm IN}$ and $R_{\rm F}$.

$$V_{SWING} = I_{IN MAX} X R_F$$

 A capacitor (about 3pF) can be connected across R_F to compensate for peaking in the frequency response. The peaking is caused by the pole generated by R_F and the capacitance at the input of the output amplifier.

Figure 12 through 18 show applications of the ISO100.

FIGURE 12. Two-Port Isolation Photodiode Amplifier

FIGURE 13. Precision Bridge Isolation Amplifier (Unipolar).

FIGURE 14. Three-Port Isolation Thermocouple Amplifier (Bipolar).

FIGURE 15. Isolated Test Equipment Amplifier (Unipolar with Offsetting).

FIGURE 16. Isolated 4mA to 20mA Transmitter (Example of an isolated voltage controlled current source).

FIGURE 17. Four-Port Isolated Summing Amplifier (Unipolar).

FIGURE 18. Multiple Channel Isolation Amplifier (Bipolar) with Programmable Gain (useful in data acquisition systems).

ISO102

SIGNAL ISOLATION BUFFER AMPLIFIERS

FEATURES

- 14-BIT LINEARITY
- INDUSTRY'S FIRST HERMETIC **ISOLATION AMPLIFIERS AT LOW COST**
- EASY-TO-USE COMPLETE CIRCUIT
- RUGGED BARRIER, HV CERAMIC CAPACITORS
- 100% TESTED FOR HIGH VOLTAGE **BREAKDOWN** ISO102: 4000Vrms/10s, 1500Vrms/1min ISO106: 8000Vpk/10s, 3500Vrms/1min
- ULTRA HIGH IMR: 125dB min at 60Hz. ISO106
- WIDE INPUT RANGE: -10V to +10V
- WIDE BANDWIDTH: 70kHz
- VOLTAGE REFERENCE OUTPUT: 5VDC

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL Transducer channel isolator for thermocouples, RTDs, pressure bridges, flow meters
- 4mA TO 20mA LOOP ISOLATION
- MOTOR AND SCR CONTROL
- GROUND LOOP ELIMINATION
- BIOMEDICAL/ANALYTICAL **MEASUREMENTS**
- POWER PLANT MONITORING
- DATA ACQUISITION/TEST EQUIPMENT **ISOLATION**
- MILITARY EQUIPMENT

DESCRIPTION

The ISO102 and ISO106 isolation buffer amplifiers are two members of our series of capacitive coupled isolation products from Burr-Brown. They have the same electrical performance and they differ in accuracy. The ISO102 is rated for 1500Vrms in a 24-pin DIP. The ISO106 is rated for 3500Vrms in a 40-pin DIP. Both side-brazed DIPs are 600mil wide and have industry standard package dimensions with the exception of missing pins between input and output stages. This permits utilization of automatic insertion techniques in production. The three-chip hybrid with its generous high voltage spacing is easy to use (no external components are required).

Each buffer accurately isolates ±10V analog signals by digitally encoding the input voltage and uniquely coupling across a differential ceramic capacitive barrier. All elements necessary for operation are contained within the DIP. This provides compact signal isolation in a hermetic package.

Covered by patent number 4,748,419 and others pending.

International Airport Industrial Park • Mailing Address: PO Box 11400

Tucson, AZ 85734 · Street Address: 6730 S. Tucson Blvd. · Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

201021			ISO106B	-		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
SOLATION						
Voltage						
Rated Continuous(1)						
ISO102: AC, 60Hz	T _{MIN} to T _{MAX}	1500			Vrms	
DC	T _{MIN} to T _{MAX}	2121	DOMEST PROPERTY.	SUBSTITUTE	VDC	
ISO106: AC, 60Hz	T _{MIN} to T _{MAX}	3500		The state of	Vrms	
DC TO THE TAX TO THE T	T _{MIN} to T _{MAX}	4950	1/1/01	IATACUE	VDC	
Test Breakdown, AC, 60Hz	MIN TO MAX		4401.	SPANIE PI	100	
ISO102	10s	4000			Vrms	
ISO106	10s	8000	O PERCAPSON SECURIO	Quin Skiphisk Jan Boles	Vpk	
Isolation-Mode Rejection ⁽²⁾	V _{ISO} = Rated Continuous, 60Hz	0000			* pic	
	VISO = Mated Continuous, Conz	115	120		dB	
AC: ISO102	APPLICATIO	115	1,010	2	μVrms/V	
100400		105	1	20.2		
ISO106		125	130		dB	
			0.3	0.6	μVrms/V	
of legister for discrete-		140	160	and anyone	dB	
			0.01	0.10	μVDC/V	
Barrier Resistance		LSOS MO	1014	TION AMPE	Ω	
Barrier Capacitance		100000000000000000000000000000000000000	6	0.00000	pF	
Leakage Current	$V_{ISO} = 240 Vrms, 60 Hz$	HUDE	0.5	DO 340-01	μArms	
INPUT	AL AMOL OT AME 9	. 2500	R. HV CERA	FIRST PARKE	STATE OF	
	Detect Occupies	10	COLUMN ALL ALL	DECEMBER OF STREET	V	
Voltage Range	Rated Operation	-10 75	100	+10	AL	
Resistance	A GROUND LOOP E	75	100	an amount	kΩ	
Capacitance	A STANK SERVICE SECTION SECTION	BOAT.	OV 5	OT UNITED !	pF	
OUTPUT	@ STOMEDICALIANA			NACOX	BREA	
Voltage Range	Rated Operation	-10	/10s, 1500V	+10	n nov	
Voltago Harigo	Derated Operation	-12	Appen februar	+12	V	
Current Drive	A TUAN A STATE OF THE STATE OF	±5	10s, 3500Vm	MgVVV008 18	mA	
Short Circuit Current		9	20	50	mA	
Ripple Voltage ⁽⁶⁾	f O EMULT to 1 EMULT	State 18	20	30		
	f = 0.5MHz to $1.5MHz$		0.3	1 8	mVp-p Ω	
Resistance		10,000	0.3			
Capacitive Load Drive Capability	SUPER YOUR EQUIPMENT OF THE PROPERTY OF THE PR	10,000	OL ADI- IMP	MAR TURM	pF	
Overload Recovery Time, 0.1%	V ₀ > 12V		30	CENTRAL PROPERTY AND ADDRESS.	μѕ	
OUTPUT VOLTAGE NOISE			21 (MO 1 7)	LOBBLOOM	25000	
Voltage: f = 0.1Hz to 10Hz		DOVE : TU	300	CHERRIES	µVр-р	
f = 0.1Hz to 70kHz			16	The same of the same of	μV/√Hz	
Dynamic Range ⁽⁷⁾ : f = 0.1Hz to 70kHz	12-Bit Resolution, 1LSB, 20V FS		74		dB	
f = 0.1Hz to 280Hz	16-Bit Resolution, 1LSB, 20V FS		96		dB	
	10 51 11000101011, 1205, 201 10	-				
FREQUENCY RESPONSE				CALL MARKA	A rest wall roll	
Small Signal Bandwidth		701000000000000000000000000000000000000	70	LIVERY L. SO	kHz	
Full Power Bandwidth, 0.1% THD	$V_0 = \pm 10V$	tier amplifies	id noi 5 losi di	A CASE DEE YO	kHz	
Slew Rate is the group as bivore and	$V_0 = \pm 10V$	befquee svirion	0.5	embers of ou	V/μs	
Settling Time, 0.1%	$V_0 = -10V \text{ to } +10V$	They have the	100	month stookers	μѕ	
Overshoot, Small Signal ⁽⁸⁾	$C_1 = C_2 = 0$	AND DAME COST	40	BUSIN ANDROOM	%	
		1000 NE 303145	tell bill soci	STREET PORT	Dally Greed	
VOLTAGE REFERENCES	Market	min Land 24-pm	V008+5 01 be	ter si sollogi	ortT was	
Voltage Output, Ref ₁ , Ref ₂	No Load	+4.975		+5.025	VDC	
B Grade	No Load	+4.995	+5 101 05	+5.005	VDC	
vs Temperature		sysed bas abry	15 ±5 29	20	ppm/°C	
vs Supplies		a banks and drive	10	endage, beeken	μV/V	
vs Load		DOWN SELECTION	400	1000	μV/mA	
Current Output		-0.1	ween input an	+5	mA	
Short Circuit Current		6	14	30	mA	
POWER SUPPLIES		a i daiw bhdwl	wide and	T main to	and manageria	
Rated Voltage, ±V _{CC1} , ±V _{CC2}	Rated Performance	ALL THERE SHEET SEED SEED	gato-send an	f. "uenonpeid	V	
Voltage Pange	nateu renormance	±10 Ya	±15	±20	2017197	
Voltage Range	Nelsed	±10	Charletonia			
Quiescent Current: +V _{CC1}	No Load		+11 /DST	+15	mA	
-V _{CC1}		analog signals	-9	-12	mA	
+V _{CC2}		- 100	+25	+33	mA	
-V _{CC2}		e and uniquely	-15 gm s	-20	mA	
Dissipation: ±V _{CC1}		- ad syllinamen	300	400	mW	
±V _{CC2}		The same of the sa	600	800	mW	
TEMPERATURE RANGE	The second secon					
Specification		-25		0.5	00	
			Detect of outro face D.I.	+85	°C	
Operating ⁽⁹⁾		-25		+85	0°C	
Storage		-65		+150	°C	
Thermal Resistance, θ_{JA}		10 PO Box 11400	40	sport Industrial Park	°C/W	
sere-see (cos) $ heta_{ m JC}$ to make a labor mat		# PBRCORE - TH	12	NO WAT - TIES-	°C/W	

PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GAIN Nominal Gain			40 minut	Isalio E		. 1		V/V
Initial Error ⁽³⁾			±0.1	±0.25		0.07	0.13	% FSR
Gain vs Temperature	Cain Adjust 3		±20	±50		±12	±25	ppm FSR/°C
Nonlinearity ⁽⁴⁾	$V_0 = -10V \text{ to } +10V$		±0.007	±0.012		±0.002	±0.003	% FSR
INPUT OFFSET VOLTAGE	not not	riina)				1		ferrishme.
Initial Offset	V _{IN} = 0V	057	±25	±70		±15	±25	mV
vs Temperature		77	±250	±500		±150	±250	μV/°C
vs Power Supplies ⁽⁵⁾	Input Stage, V _{cc1} = ±10V to ±20V	0	1.4	4.0				mV/V
	Output Stage, V _{CC2} = ±10V to ±20V	-4	-1.4	0				mV/V

	4V _{ecs} 20		ISO106	8 -Vccs					
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
GAIN						1133			
Nominal Gain			1				Annan	V/V	
Initial Error(3)			±0.1	±0.25		0.07	SNOW	% FSR	
Gain vs Temperature			±20	±50		±12	±25	ppm FSR/°C	
Nonlinearity ⁽⁴⁾	$V_0 = -10V \text{ to } +10V$	(Orluging 16	±0.04	±0.075		±0.007	±0.025	% FSR	
INPUT OFFSET VOLTAGE									
Initial Offset	V _{IN} = 0V	a (purcula)	±25	±70		wog ex linbs	n bne-sylla	mV	
vs Temperature	ottage and appears internet	moleciosi e	±250	±500		±150	±250	μV/°C	
vs Power Supplies(5)	Input Stage, V _{CC1} = ±10V to ±20V	of services from	3.7	in vitasimi		and a Auril of	er traveal heres	mV/V	
again and a second film	Output Stage, V _{CC2} = ±10V to ±20V	natiov video	-3.7	di wa yan be		in the state of the	Decision Cuits	mV/V	

^{*} Specification same as model to the left.

NOTES: (1) 100% tested at rated continuous for one minute. (2) Isolation-mode rejection is the ratio of the change in output voltage to a change in isolation barrier voltage. It is a function of frequency as shown in the Typical Performance Curves. This is specified for barrier voltage slew rates not exceeding 100V/µs. (3) Adjustable to zero. FSR = Full Scale Range = 20V. (4) Nonlinearity is the peak deviation of the output voltage from the best fit straight line. It is expressed as the ratio of deviation to FSR. (5) Power supply rejection = change in Vo₀₅/20V supply change. (6) Ripple is the residual component of the barrier carrier frequency generated internally. (7) Dynamic range = FSR/(voltage spectral noise density x square root of user bandwidth). (8) Overshoot can be eliminated by band-limiting. (9) See "Power Dissipation vs Temperature" performance curve for limitations. (10) Band limited to 10Hz, bypass capacitors located less than 0.25" from supply pins.

ORDERING INFORMATION

MODEL 1 bettept to	PACKAGE	TEMPERATURE
ISO102	Ceramic	-25°C to +85°C
ISO102B	Ceramic	-25°C to +85°C
ISO106	Ceramic	-25°C to +85°C
ISO106B	Ceramic	-25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
ISO102	24-Pin Ceramic	208
ISO102B	24-Pin Ceramic	208
ISO106	40-Pin Ceramic	206
ISO106B	40-Pin Ceramic	206

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Without Damage	±20V
Input Voltage Range	±50V
Transient Immunity, dV/dt	100kV/µs
Continuous Isolation Voltage Across Barrier	
ISO102	1500Vrms
ISO106	
Junction Temperature	+160°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Amplifier and Reference Output	
Short Circuit Duration	Continuous to Common

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

PIN DESCRIPTIONS

Positive and negative power supply voltages and common (or ground) for the input stage. Common ₁ is the analog reference voltage for inpu signals. The voltage between Common ₁ and Common ₂ is the isolation voltage and appears across the internal high voltage barrier.
Positive and negative power supply voltages and common (or ground) for the output stage. Common ₂ is the analog reference voltage for output signals. The voltage between Common ₁ and Common ₂ is the isolation voltage and appears across the internal high voltage barrier.
Signal input pin. Input impedance is typically $100k\Omega$. The input range is rated for $\pm 10V$. The input level can actually exceed the input stage supplies. Output signal swing is limited only by the output supply voltages.
This pin is an optional signal input. A series 5kΩ potentiometer between this pin and the input signal allows a guaranteed ±1.5% gain adjustmen range. When gain adjustment is not required, the Gain Adjust should be left open. Figure 4 illustrates the gain adjustment connection.
+5V reference output. This low-drift zener voltage reference is necessary for setting the bipolar offset point of the input stage. This pin must be strapped to either Offset or Offset Adjust to allow the isolation amplifier to function. The reference is often useful for input signa conditioning circuits. See "Effect of Reference Loading on Offset" performance curve for the effect of offset voltage change with reference loading Reference, is identical to, but independent of, Reference ₂ . This output is short circuit protected.
+5V reference output. This reference circuit is identical to, but independent of, Reference ₁ . It controls the bipolar offset of the output stage through an internal connection. This output is short-circuit protected.
Offset input. This input must be strapped to Reference, unless user adjustment of bipolar offset is required.
This pin is for optional offset control. When connected to the Reference, pin through a 1kΩ potentiometer, ±150mV of adjustment range is guaranteed. Under this condition, the Offset pin should be connected to the Offset Adjust pin. When offset adjustment is not required, the Offset Adjust pin is left open. See Figure 4.
Digital common or ground. This separate ground carries currents from the digital portions of the output stage circuit. The best grounding practices require that digital common current does not flow in analog common connections. Both pins can be tied directly to a ground plane if available Difference in potentials between the Common ₂ and Digital Common pins can be ±1V. See Figure 2.
Signal output. Because the isolation amplifier has unity gain, the output signal is ideally identical to the input signal. The output is low impedance and is short-circuit protected. This signal is referenced to Common ₂ ; subsequent circuitry should have a separate "sense" connection to Common as well as V _{OUT} .
Capacitors for small signal bandwidth control. These pins connect to the internal rolloff frequency controlling nodes of the output low-pass filter Additional capacitance added to these pins will modify the bandwidth of the buffer. C_2 is always twice the value of C_1 . See "Bandwidth Control performance curve for the relationship between bandwidth and C_1 and C_2 . When no connections are made to these pins, the full small-signa bandwidth is maintained. Be sure to shield C_1 and C_2 pins from high electric fields on the PC board. This preserves AC isolation-mode rejection by reducing capacitive coupling effects.

TYPICAL PERFORMANCE CURVESTUD BOMAMA OFFIER JADISTY

 $T_A = +25$ °C, $V_{CC} = \pm 15$ VDC unless otherwise noted.

5

SOLATION PRODUCTS

 $T_A = +25$ °C, $V_{CC} = \pm 15$ VDC unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 $T_A = +25$ °C, $V_{CC} = \pm 15$ VDC unless otherwise noted.

The ISO102 and ISO106 have no galvanic connection between the input and output. The analog input signal referenced to the input common is accurately duplicated at the output referenced to the output common. Because the barrier information is digital, potentials between the two commons can assume a wide range of voltages and frequencies without influencing the output signal. Signal information remains undisturbed until the slew rate of the barrier voltage exceeds 100V/µs. The isolation amplifier's ability to reject fast dV/dt changes between the two grounds is specified as transient immunity. The amplifier is protected from damage for slew rates up to 100,000V/µs.

A simplified diagram of the ISO102 and ISO106 is shown in Figure 1. The design consists of an input voltage-controlled oscillator (VCO) also known as a voltage-to-frequency converter (VFC), differential capacitors, and output phase lock loop (PLL). The input VCO drives digital levels directly into the two 3pF barrier capacitors. The digital signal is frequency modulated and appears differentially across the barrier, while the externally applied isolation voltage appears common-mode.

FIGURE 1. Simplified Diagram of ISO102 and ISO106.

Burr-Brown IC Data Book-Linear Products

A sense amplifier detects only the differential information. The output stage decodes the frequency modulated signal by the means of a PLL. The feedback of the PLL employs a second VCO that is identical to the encoder VCO. The PLL forces the second VCO to operate at the same frequency (and phase) as the encoder VCO; therefore, the two VCOs have the same input voltage. The input voltage of the decoder VCO serves as the isolation buffer's output signal after passing through a 100kHz second-order active filter.

For a more detailed description of the internal operation of the ISO102 and ISO106, refer to *Proceedings of the 1987 International Symposium on Microelectronics*, pages 202-206

ABOUT THE BARRIER

For any isolation product, barrier composition is of paramount importance in achieving high reliability. Both the ISO102 and ISO106 utilize two 3pF high voltage ceramic coupling capacitors. They are constructed of tungsten thick film deposited in a spiral pattern on a ceramic substrate. Capacitor plates are buried in the package, making the barrier very rugged and hermetically sealed. Capacitance results from the fringing electric fields of adjacent metal runs. Dielectric strength exceeds 10kV and resistance is typically 10¹⁴Ω. Input and output circuitry are contained in separate solder-sealed cavities, resulting in the industry's first fully hermetic hybrid isolation amplifier.

Input Input Power Supplies Ground Plane V 0.1µF +V_{CC1} NC Offset Adjust NC Gain Adjust Offset Common. Reference, ISO102/106 C, Digital Common Common NC C_2 Vout NC Reference 2 VOUT +V_{CC2} -V_{CC2} __ 0.1μF 0.1uF Output Ground Output Power Supplies Plane NC-no connection necessary

FIGURE 2. Power Supply and Signal Connection.

The ISO102 and ISO106 are designed to be free from partial discharge at rated voltages. Partial discharge is a form of localized breakdown that degrades the barrier over time. Since it does not bridge the space across the barrier, it is difficult to detect. Both isolation amplifiers have been extensively evaluated at high temperature and high voltage.

POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 2 shows the proper power supply and signal connections. Each supply should be AC-bypassed to Analog Common with 0.1μF ceramic capacitors as close to the amplifier as possible. Short leads will minimize lead inductance. A ground plane will also reduce noise problems. Signal common lines should tie directly to the common pin even if a low impedance ground plane is used. Refer to Digital Common in the Pin Descriptions table.

To avoid gain and isolation-mode rejection (IMR) errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance. Any capacitance across the barrier will increase AC leakage current and may degrade high frequency IMR. The schematic in Figure 3 shows the proper technique for wiring analog and digital commons together.

DISCUSSION OF SPECIFICATIONS

The IS0102 and IS0106 are unity gain buffer isolation amplifiers primarily intended for high level input voltages on the order of 1V to 10V. They may be preceded by operational, differential, or instrumentation amplifiers that precondition a low level signal on the order of millivolts and translate it to a high level.

FIGURE 3. Technique for Wiring Analog and Digital Commons Together.

ISOLATION-MODE REJECTION

The IS0102 and IS0106 provide exceptionally high isolation-mode rejection over a wide range of isolation-mode voltages and frequencies. The typical performance curves should be used to insure operation within the recommended range. The maximum barrier voltage allowed decreases as the frequency of the voltage increases. As with all isolation amplifiers, a change of voltage across the barrier will induce leakage current across the barrier. In the case of the IS0102 and IS0106, there exists a threshold of leakage current through the signal capacitors that can cause over-drive of the decoder's sense amplifier. This occurs when the slew rate of the isolation voltage reaches $100V/\mu s$. The output will recover in about $50\mu s$ from transients exceeding $100V/\mu s$.

The first two performance curves indicate the expected isolation-mode rejection over a wide range of isolation voltage frequencies. Also plotted is the typical leakage current across the barrier at 240Vrms. The majority of the leakage current is between the input common pin and the output digital ground pin.

The IS0102 and IS0106 are intended to be continuously operated with fully rated isolation voltage and temperature without significant drift of gain and offset. See the "Gain Error/Offset Isolation Voltage" performance curve for changes in gain and offset with isolation voltage.

SUPPLY AND TEMPERATURE RANGE

The IS0102 and IS0106 are rated for +15V supplies; however, they are guaranteed to operate from ±10V to ±20V. Performance is also rated for an ambient temperature range of -25°C to +85°C. For operation outside this temperature range, refer to the "Power Dissipation vs Temperature" performance curve to establish the maximum allowed supply voltage. Supply currents are fairly insensitive to changes in supply voltage or temperature. Therefore, the maximum current limits can be used in computing the maximum junction temperature under nonrated conditions.

OPTIONAL BANDWIDTH CONTROL

The following discussion relates optimum dynamic range performance to bandwidth, noise, and settling time.

The outputs of the IS0102 and IS0106 are the outputs of a second-order low-pass Butterworth filter. Its low impedance output is rated for $\pm 5 mA$ drive and $\pm 12 V$ range with 10,000pF loads. The closed-loop bandwidth of the PLL is 70kHz, while the output filter is internally set at 100kHz. The output filter lowers the residual voltage of the barrier FM signal to below the noise floor of the output signal.

Two pins are available for optional modification of the filter's bandwidth. Only two capacitors are required. The "Bandwidth Control" performance curve gives the value of C_1 (C_2 is equal to twice C_1) for the desired bandwidth. Figure 4 illustrates the optional connection of both capacitors.

A tradeoff can be achieved between the required signal bandwidth and system dynamic range. The noise floor of the

FIGURE 4. Optional Gain Adjust, Offset Adjust, and Bandwidth Control.

output limits the dynamic range of the output signal. The noise power varies with the square root of the bandwidth of the buffer. It is recommended that the bandwidth be reduced to about twice the maximum signal bandwidth for optimum dynamic range as shown in the "Dynamic Range vs Bandwidth" performance curve. The output spectral noise density measurement is displayed in the "Output Spectral Noise Density" performance curve. The noise is flat to within 5dBvHz between 0.1Hz to 70kHz.

The overall AC gain of the buffer amplifiers is shown in two performance curves: "Gain Flatness vs Frequency" and "Gain/Phase vs Frequency." Note that with $C_1 = 100 \mathrm{pF}$ and $C_2 = 200 \mathrm{pF}$, the AC gain remains flat within $\pm 0.01 \mathrm{dB}$ up to 7kHz. The total harmonic distortion for large-signal sine wave outputs is plotted in the "Total Harmonic Distortion" performance curve. The phase-lock-loop displays slightly nonuniform rise and fall edges under maximum slew conditions. Reducing the output filter bandwidth to below 70kHz smooths the output signal and eliminates any overshoot. See the "Large Signal Transient Response" performance curve.

OPTIONAL OFFSET AND GAIN ADJUSTMENT

In many applications the factory-trimmed offset is adequate. For situations where reduced or modified gain and offset are required, adjustment of each is easy. The addition of two potentiometers as shown in Figure 4 provides for a two step calibration.

Offset should be adjusted first. Gain adjustment does not interfere with offset. The potentiometer's TCR adds only 2% to overall temperature drift. The offset and gain adjustment procedures are as follows:

- 1. Set V_{IN} to 0V and adjust R₁ to desired offset at the output.
- 2. Set V_{IN} to full scale (not zero). Adjust R₂ for desired gain.

The distance across the isolation barrier, between external components, and conductor patterns, should be maximized to reduce leakage and arcing at high voltages. Good layout techniques that reduce stray capacitance will assure low leakage current and high AC IMR. For some applications, applying conformal coating compound such as urethane is useful in maintaining good performance. This is especially true where dirt, grease or moisture can collect on the PC board surface, component surface, or component pins. Following this industry-accepted practice will give best results. particularly when circuits are operated or tested in a moisture-condensing environment. Optimum coating can be achieved by administering urethane under vacuum conditions. This allows complete coverage of all areas. Grounded rings around the C₁ and C₂ contacts on the board greatly reduce high voltage electric fields at these pins.

APPLICATIONS

The ISO102 and ISO106 isolation amplifiers are used in three categories of applications:

- 1. Accurate isolation of signals from high voltage ground potentials,
- 2. Accurate isolation of signals from severe ground noise, and
- Fault protection from high voltages in analog measurement systems.

Figures 5 through 15 show a variety of application circuits. Additional discussion of applications can be found in the December 11, 1986 issue of *Electronic Design*, pages 91-96.

FIGURE 5. Isolated Power Current Monitor for Motor Circuit. (The ISO102 allows reliable, safe measurement at high voltages.)

FIGURE 6. Isolated Power Line Monitor (0.5μA leakage current at 120Vrms).

FIGURE 7. Battery Monitor for High Voltage Charging Circuit.

FIGURE 8. Isolated RTD Temperature Amplifier.

FIGURE 10. Isolation Amplifier with Isolated Bipolar Input Reference.

FIGURE 9. Programmable-Gain Isolation Channel with Gains of 1, 10, and 100.

FIGURE 11. Low Cost Eight-Channel Isolation Amplifier Block with Channel-to-Channel Isolation.

FIGURE 12. Thermocouple Amplifier with Ground Loop Elimination, Cold Junction Compensation, and Upscale Burn-out.

FIGURE 14. Isolated Instrumentation Amplifier for 300Ω Bridge. (Reference voltage from isolation amplifier is used to excite bridge.)

FIGURE 15. Right-Leg-Driven ECG Amplifier (with defibrillator protection and calibrator).

SMALL SIGNAL MEASURING APPLICATION

High accuracy measurements of low-level signals in the presence of high isolation mode voltages can be difficult due to the errors of the isolation amplifiers themselves.

This error analysis shows that when a low drift operational amplifier is used to preamplify the low-level source signal, a low cost, simple and accurate solution is possible.

In the circuit shown in Figure 16, a 50mV shunt is used to measure the current in a 500VDC motor. The OPA27 amplifies the 50mV by 200 x to 10V full scale. The output of the OPA27 is fed to the input of the IS0102, which is a unity-gain isolation amplifier. The 5k $\!\Omega$ and 1k $\!\Omega$ potentiometers connected to the IS0102 are used to adjust the gain and offset errors to zero as described in Discussion of Specifications.

The total errors of the op amp and the ISO amp combined are approximately 0.11% of full-scale range (see Figure 17). If the op amp had not been used to preamplify the signal, the errors would have been 2.6% of FSR. Clearly, the small cost of adding the op amp buys a large performance improvement. Optimum performance, therefore, is obtained when the full $\pm 10\text{V}$ range of the ISO102/106 is utilized.

The rms noise of the IS0102 with a 120Hz bandwidth is only 0.18mVrms, which is only 0.0018% of the 10V full scale output. Therefore, even though the $16\mu V/\sqrt{Hz}$ noise spectral density specification may appear large compared to other isolation amplifiers, it does not turn out to be a significant error term. It is worth noting that even if the bandwidth is increased to 10kHz, the noise of the iso amp would only contribute 0.016%FSR error.

FIGURE 16. 50mV Shunt Measures Current in a 500VDC Motor.

 $V_{E (OPA)} = V_{D} \left\{ 1 - \frac{1}{1 + \frac{1}{\beta A_{VOL}}} \right\} + V_{OS} (1 + R_{1}/R_{F}) + I_{B} R_{1} + P.S.R. + Noise$

V_{E (OPA)} = Total Op Amp Error (RTI)

V_D = Differential Voltage (Full Scale) Across Shunt

 $\left\{1 - \frac{1}{1 + \frac{1}{\beta A_{\text{VOI}}}}\right\}$ = Gain Error Due to Finite Open Loop Gain

β = Feedback Factor

A_{VOL} = Open Loop Gain at Signal Frequency

V_{OS} = Input Offset Voltage

I_B = Input Bias Current

P.S.R. = Power Supply Rejection (µV/V) [Assuming a 5% change with ±15V supplies. Total error is twice that due to one supply.]

Noise = $5nV/\sqrt{Hz}$ (for $1k\Omega$ source resistance and 1kHz bandwidth)

ERROR _(OPA) (RTI)		GAIN ERROR	NO	OFFSET	84	P.S.R.		NOISE
V _{E (OPA)}	=	$50mV \left\{ 1 - \frac{1}{1 + \frac{1}{10^6/20}} \right\}$	$\frac{1}{100}$	{0.025mV (1 + 1/200) + 40 x 10 ⁻⁹ x 10 ⁻⁹	3}	(20μV/V x 0.75V x 2)		{5nV√120 (nVrms)}
	=	0.01mV		(0.0251mV + 0.04mV)	+	0.03mV	+	0.055 x 10 ⁻³ mVrms
Error as % of FSR After Nulling	=	0.02%	+	(0.05% + 0.08%)	+	0.06%	+	0.00011%
	=	0.01mV	+	(0mV + 0mV)	+	0.03mV	+	0.055 x 10 ⁻³ mVrms
	=	0.10mV						
Error as % of FSR*	=	0.02%	+	(0% + 0%)	+	0.06%	+	0.00011%
	=	0.08% of 50mV		meiupox d				

*FSR = Full-Scale Range. 50mV at input to op amp, or 10V at input (and output) of ISO amp.

The Errors of the Iso Amp at 25°C (RTI)

 $V_{E (ISO)} = 1/200 (V_{ISO}/IMR + V_{OS} + G.E. + Nonlinearity + P.S.R. + Noise)$

V_{E (ISO)} = Total ISO Amp Error

IMR = Isolation Mode Rejection

V_{OS} = Input Offset Voltage

V_{ISO} = V_{IMV} = Isolation Voltage = Isolation Mode Voltage

G.E. = Gain Error (% of FSR)

Nonlinearity = Peak-to-Peak deviation of output voltage from best-fit straight line. It is expressed as ratio based on full-scale range.

P.S.R. = Change in Vos/10V x Supply Change

Noise = Spectral noise density x \(\sqrt{bandwidth} \). It is recommended that bandwidth be limited to twice maximum signal bandwidth for optimum dynamic range.

ERROR _(ISO) (RTI)		IMR		Vos		G.E.		NONLINEARITY		P.S.R.		NOISE
V _{E (ISO)}	=	1/200 { 500VDC/140dB	+	70mV	+ 20V	x 0.25/100	+	0.003/100 x 20V		1.4mV x 0.75V x 2	+	16μV√120 (rms)]
	=	1/200 { 0.05mV	+	70mV	10 410	50mV	+	0.6mV	+	2.1mV	+	0.175mVrms]
Error as % of FSR After Nulling	=	0.0005%	+	0.7%	+	0.5%	+	0.006%	+	0.021%	+	0.00175%
V _{E (ISO)}	=	1/200 { 0.05mV 1/200 (3.0mV) 0.03mV	+	0mV	+	0mV	+	0.6mV	+	2.1mV	+	0.175mVrms }
Error as % of FSR				0%		0%		0.006%	+	0.021%	+	0.00175%
Total Error		V _{E (OPA)} 0.10mV 0.08% of 50mV	+ (V _{E (ISO)} 0.03mV 3% of 50mV	onq d noi	sand south	513			nvind packa ansformer coup copled signal c		
	=	0.11% of 50mV										

FIGURE 17. Op Amp and Iso Amp Error Analysis.

ISO103

Low-Cost, Internally Powered ISOLATION AMPLIFIER

FEATURES

- SIGNAL AND POWER IN ONE DOUBLE-WIDE (0.6") SIDE-BRAZED PACKAGE
- 5600Vpk TEST VOLTAGE
- 1500Vrms CONTINUOUS AC BARRIER RATING
- WIDE INPUT SIGNAL RANGE: -10V to +10V
- WIDE BANDWIDTH: 20kHz Small Signal, 20kHz Full Power
- BUILT-IN ISOLATED POWER: ±10V to ±18V Input, ±50mA Output
- MULTICHANNEL SYNCHRONIZATION CAPABILITY (TTL)
- BOARD AREA ONLY 0.72in.² (4.6cm²)

APPLICATIONS

- MULTICHANNEL ISOLATED DATA
 ACQUISITION
- ISOLATED 4-20mA LOOP RECEIVER AND POWER
- POWER SUPPLY AND MOTOR CONTROL
- GROUND LOOP ELIMINATION

DESCRIPTION

The ISO103 isolation amplifier provides both signal and power across an isolation barrier. The ceramic non-hermetic hybrid package with side-brazed pins contains a transformer-coupled DC/DC converter and a capacitor-coupled signal channel.

Extra power is available on the isolated input side for external input conditioning circuitry. The converter is protected from shorts to ground with an internal current limit, and the soft-start feature limits the initial currents from the power source. Multiple-channel synchronization can be accomplished by applying a TTL clock signal to paralleled Sync pins. The Enable con-

trol is used to turn off transformer drive while keeping the signal channel demodulator active. This feature provides a convenient way to reduce quiescent current for low power applications.

The wide barrier pin spacing and internal insulation allow for the generous 1500Vrms continuous rating. Reliability is assured by 100% barrier breakdown testing that conforms to UL1244 test methods. Low barrier capacitance minimizes AC leakage currents.

These specifications and built-in features make the ISO103 easy to use, as well as providing for compact PC board layouts.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

23 Gnd 1		2	ISO103		and the same	Confinuous		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION	100V-	0	9°C to +125	S	Minimum and a second		. Grufferegn	T.agato
Rated Continuous Voltage(1)	1 V-		300	· · · · · · · · · · · · · · · · · · ·	(3)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)		prature 10s	me T be
AC, 60Hz	T _{MIN} to T _{MAX}	1500	Continuo		Commences.	บนสย์จก	S binD of hi	Vrms
DC	T _{MIN} to T _{MAX}	2121	Confined	Marian Company	and the same of th		od i Durate	VDC
Test Breakdown, 100% AC, 60Hz	10s	5657		-		-		Vpk
Isolation-Mode Rejection	1500Vrms, 60Hz		130					dB
V. far	2121VDC		160	Ol	STAT	COTT	122	dB
Barrier Impedance			1012 9		DESCRIPTION OF THE PARTY OF THE	MARKET A	of will will seed	Ω p
Leakage Current	240Vrms, 60Hz	2.0	1	2	AND MILES	410 B T K	P. 10. E 10.	μА
GAIN		A	HIVII	ICM:		MAM	JOIL	2000
Nominal	Sense [1]		1					V/V
Initial Error		anv.	±0.12	±0.3	damaged	±0.08	±0.15	% FS
Gain vs Temperature	Gnd 2 12	- 610	±60	±100	orin best	±20	±50	ppm/°
Nonlinearity	$V_0 = -10V \text{ to } 10V$	-	±0.026	±0.075		±0.018	±0.050	% FS
rounded or driven with TTL levels.	$V_0 = -5V$ to 5V	gm	±0.009	ord avia	go of a10	ions, tank	±0.025	%FSI
INPUT OFFSET VOLTAGE	S on the can assemble to one radio			damage	an cause	n asmitan	my norte	1212/11
Initial Offset			±20	±60	alidus r	ange from	пис сап з	mV
vs Temperature		otic	±300	±500	eleccie	±100	100	μV/°C
vs Power Supplies	V _{CC2} = ±10V to ±18V		0.9	State of Sta			and and a	mV/\
vs Output Supply Load	$I_O = 0$ to ± 50 mA	list	±0.3	persona :	damag	of signings	DELIS 0100	mV/m
SIGNAL INPUT	ename I rearne	150	11 OF 16E	301420	arise the	piffico i	Change	i Dania
Voltage Range	Output Voltage in Range	±10	±15			.*noit	specifica	a v
Resistance	ISC103 24-Pm DIP		200					kΩ
SIGNAL OUTPUT	WOTE: (1) For detailed grawing and							
Voltage Range	sheet, or Appendix C of Burr-Brown II	±10	±12.5		*			V
Current Drive	요 가 보다 가도 바라 중국 :	±5	±15		*			mA
Ripple Voltage, 800kHz Carrier			25					mVp-
	400Ω/4.7nF (See Figure 4)		5		0 5 6 6			mVp-
Capacitive Load Drive			1000				Maria en	pF
Voltage Noise			4					μV/√F
FREQUENCY RESPONSE				1/4	- 1		124 113	
Small Signal Bandwidth			20					kHz
Slew Rate			1.5				4 1 1	V/µs
Settling Time	0.1%, -10/10V		75					μs
POWER SUPPLIES								
Rated Voltage, V _{CC2}			±15	120	- 17 M			V
Voltage Range		±10		±18				V
Input Current	$I_O = \pm 15 \text{mA}$		+90/-4.5					mA
	$I_O = 0mA$		+60/-4.5	5 A 194			- 11/11/11	mA
Ripple Current	No Filter		60					mAp-
. The 10 The Internal Full Page	$C_{IN} = 1\mu F$		3	100 200				mAp-
Rated Output Voltage	Load = 15mA	±14.25	±15	±15.75	*	*		V
Output	50mA Balanced Load	10		BETTE !			*	V
	100mA Single-Ended Loads	10				*	*	V
Load Regulation	Balanced Load		0.3			*		%/m/
Line Regulation			1.12				T part of a	V/V
Output Voltage vs Temperature			2.5					mV/°(
Voltage Balance Error, ±V _{CC1}			0.05	14 1 3 1				%
Voltage Ripple (800kHz)	No External Capacitors		50			100		mVp-
0.4-4 0	C _{EXT} = 1μF		5					mVp-I
Output Capacitive Load	Syno Pin Grounded (2)		1.0	1				μF
Sync Frequency	Sync-Pin Grounded (2)		1.6					MHz
TEMPERATURE RANGE		05	y 77 1	05				
Specification		-25		+85				°C
Operating		-25		+85				°C
Storage		-25		+125				°C

* Specifications same as ISO103.

NOTE: (1) Conforms to UL1244 test methods. 100% tested at 1500Vrms for 1 minute. (2) If using external synchronization with a TTL-level clock, frequency should be between 1.2MHz and 2MHz with a duty-cycle greater than 25%.

SOLATION PRODUCTS

Com 1 to Gnd 1 or Com 2 to Gnd 2	±200mV
Enable, Sync	
Continuous Isolation Voltage	1500Vrms
V _{ISO} , dv/dt	20kV/μs
Junction Temperature	150°C
Storage Temperature	25°C to +125°C
Lead Temperature,10s	
Output Short to Gnd 2 Duration	Continuous
±V _{CC1} to Gnd 1 Duration	Continuous

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO103	24-Pin DIP	231

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (CONT) ON AMAGER 34 JACISYT

 T_A = +25°C, V_{CC2} = ±15VDC, ±15mA output current unless otherwise noted.

THEORY OF OPERATION

The block diagram on the front page shows the isolation amplifier's synchronized signal and power configuration, which eliminate beat frequency interference. A proprietary 800kHz oscillator chip, power MOSFET transformer drivers, patented square core wirebonded transformer, and single chip diode bridge provide power to the input side of the isolation amplifier as well as external loads. The signal channel capacitively couples a duty-cycle encoded signal across the ceramic high-voltage barrier built into the package. A proprietary transmitter-receiver pair of integrated circuits, laser trimmed at wafer level, and coupled through a pair of matched "fringe" capacitors, result in a simple, reliable design.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows the proper power supply and signal connections. All power supply pins should be bypassed as shown with the π filter for +V_{CC2}, an option recommended if more than ±15mA are drawn from the isolated supply. Separate rectifier output pins (±V_{CC1}) and amplifier supply input pins $(\pm V_C)$ allow additional ripple filtering and/or regulation. The separate input and output common pins and output sense are low current inputs tied to the signal source ground, output ground, and output load, respectively, to minimize errors due to IR drop in long conductors. Otherwise, connect Com 1 to Gnd 1, Com 2 to Gnd 2, and Sense to VOUT at the ISO103 socket. The enable pin may be left open if the ISO103 is continuously operated. If not, a TTL low level will disable the internal DC/DC converter. The Sync input must be grounded for unsynchronized operation while a 1.2MHz to 2MHz TTL clock signal provides synchronization of multiple units. 2 and shoot graving yet badailgmoons at The ISO103 isolation amplifier contains a transformer-coupled DC/DC converter that is powered from the output side of the isolation amplifier. All power supply pins (1, 2, 3, 4, 14, and 16) of the ISO103 have an internal $0.1\mu\text{F}$ capacitor to ground. L_1 is used to slow down fast changes in the input current to the DC/DC converter. C_1 is used to help regulate the voltage ripple caused by the current demands of the converter. L_1 , C_1 , and C_2 are optional, however, recommended for low noise applications.

The DC/DC converter creates an unregulated $\pm 15 V$ output to $\pm V_{CCI}$. If the ISO103 is the only device using the DC/DC converter for power, pins 1 and 2 and pins 3 and 4 can be connected directly without C_O or L_O in the circuit. If an external capacitor is used in this configuration, it should not exceed 1 μF . This configuration is possible because the isolation amplifier and the DC/DC converter are synchronized internally.

If additional devices are powered by the DC/DC converter of the ISO103, the application may require that the ripple voltage of the ISO103 converter be attenuated. In which case, $L_{\rm O}$ and $C_{\rm O}$ should be added to the circuit. The inductor is used to attenuate the ripple current and a higher value capacitor can be used to reduce the ripple voltage even further.

OPTIONAL GAIN AND OFFSET ADJUSTMENTS

Rated gain accuracy and offset performance can be achieved with no external adjustments, but the circuit of Figure 2a may be used to provide a gain trim of $\pm 0.5\%$ for the values shown; greater range may be provided by increasing the size of R_1 and R_2 . Every $2k\Omega$ increase in R_1 will give an additional 1% adjustment range, with $R_2 \geq 2R_1$. If safety or convenience dictate location of the adjustment potentiometer on the other side of the barrier from the position shown in Figure 2a, the position of R_1 and R_2 may be reversed.

FIGURE 1. Signal and Power Connections.

Also, the small-signal bandwidth will be decreased in inverse proportion to the increase in gain. In most instances, a precision gain block at the input of the isolation amplifier will provide better overall performance.

FIGURE 2a. Gain Adjust.

FIGURE 2b. Gain Setting.

Figure 3 shows a method for trimming V_{OS} of the ISO103. This circuit may be applied to either Signal Com (input or output) as desired for safety or convenience. With the values shown, $\pm 15V$ supplies and unity gain, the circuit will provide $\pm 150 \text{mV}$ adjustment range and 0.25 mV resolution with a typical trim potentiometer. The output will have some sensitivity to power supply variations. For a $\pm 100 \text{mV}$ trim, power supply sensitivity is 8 mV/V at the output.

FIGURE 3. Vos Adjust.

OPTIONAL OUTPUT FILTER

Figure 4 shows an optional output ripple filter that reduces the 800kHz ripple voltage to <5mVp-p without compromising DC performance. The small signal bandwidth is extended above 30kHz as a result of this compensation.

FIGURE 4. Ripple Reduction.

MULTICHANNEL SYNCHRONIZATION

Synchronization of multiple ISO103s can be accomplished by connecting pin 15 of each device to an external TTL level oscillator, as shown in Figure 7. The PWS750-1 oscillator is convenient because its nominal synchronizing output frequency is 1.6MHz, resulting in a 800kHz carrier in the ISO103 (its nominal unsynchronized value). The open collector output typically switches 7.5mA to a 0.2V low level so that the external pull-up resistor can be chosen for different pull-up voltages as shown in Figure 7. The number of channels synchronized by one PWS750-1 is determined by the total capacitance of the sync voltage conductors. They must be less than 1000pF to ensure TTL level switching at 800kHz. At higher frequencies the capacitance must be proportionally lower.

Customers can supply their own TTL level synchronization logic provided the frequency is between 1.2MHz and 2MHz, and the duty cycle is greater than 25%.

Multichannel synchronization with reduced power dissipation for applications requiring less than $\pm 15 \text{mA}$ from V_{CCI} is accomplished by driving both the Sync input pin (15) and Enable pin (13) with the TTL oscillator as shown in Figure 5.

ISOLATION BARRIER VOLTAGE

The typical performance of the ISO103 under conditions of barrier voltage stress is indicated in the first two performance curves—Recommended Range of Isolation Voltage and IMR/ Leakage vs Frequency. At low barrier modulation levels, errors can be determined by the IMRR characteristic. At higher barrier voltages, typical performance is obtained as long as the dv/dt across the barrier is below the shaded area in the first curve. Otherwise, the signal channel will be interrupted, causing the output to distort, and/or shift DC level. This condition is temporary, with normal operation resuming as soon as the transient subsides. Permanent damage to the integrated circuits occurs only if transients exceed 20kV/µs. Even in this extreme case, the barrier integrity is assured.

HIGH VOLTAGE TESTING

The ISO103 was designed to reliably operate with 1500Vrms continuous isolation barrier voltage. To confirm barrier integrity, a two-step breakdown test is performed on 100% of the units. First, a 5600V peak, 60Hz barrier potential is

1500Vrms, 60Hz potential is applied for one minute to conform to UL1244. Life-test results show reliable operation under continuous rated voltage and maximum operating temperature conditions.

FIGURE 5. Reduced Power Dissipation.

FIGURE 6. Isolated 4-20mA Instrument Loop.

FIGURE 7. Synchronized-Multichannel Isolation.

SO107

High-Voltage, Internally Powered ISOLATION AMPLIFIER

FEATURES

- SIGNAL AND POWER IN ONE TRIPLE-WIDE PACKAGE
- 8000Vpk TEST VOLTAGE
- 2500Vrms CONTINUOUS AC BARRIER RATING
- WIDE INPUT SIGNAL RANGE: -10V to +10V
- WIDE BANDWIDTH: 20kHz Small Signal, 20kHz Full Power
- BUILT-IN ISOLATED POWER:
 ±10V to ±18V Input, ±50mA Output
- MULTICHANNEL SYNCHRONIZATION CAPABILITY (TTL)

DESCRIPTION

The ISO107 isolation amplifier provides both signal and power across an isolation barrier. The ceramic side-brazed hybrid package contains a transformer-coupled DC/DC converter and a capacitor-coupled signal channel.

Extra power is available on the isolated input side for external input conditioning circuitry. The converter is protected from shorts to ground with an internal current limit, and the soft-start feature limits the initial currents from the power source. Multiple-channel synchronization can be accomplished by applying a TTL clock signal to paralleled Sync pins. The Enable con-

APPLICATIONS

- MULTICHANNEL ISOLATED DATA ACQUISITION
- BIOMEDICAL INSTRUMENTATION
- POWER SUPPLY AND MOTOR CONTROL
- GROUND LOOP ELIMINATION

trol is used to turn off transformer drive while keeping the signal channel demodulator active. This feature provides a convenient way to reduce quiescent current for low power applications.

The wide barrier pin spacing and internal insulation allow for the generous 2500Vrms continuous rating. Reliability is assured by 100% barrier breakdown testing that conforms to UL544 test methods. Low barrier capacitance minimizes AC leakage currents.

These specifications and built-in features make the ISO107 easy to use, as well as providing for compact PC board layouts.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

 $T_A = +25$ °C and $V_{CC2} = \pm 15V$, ± 15 mA output current unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	
ISOLATION Rated Continuous Voltage (1) AC, 60Hz DC Test Breakdown, AC, 60Hz Isolation-Mode Rejection Barrier Impedance Leakage Current	T _{MIN} to T _{MAX} T _{MIN} to T _{MAX} 10s 2500Vrms, 60Hz 2121VDC 240Vrms, 60Hz	2500 3500 8000	100 160 10 ¹² 13 1.2	2	Vrms VDC Vpk dB dB Ω pF μA	
GAIN Nominal Initial Error Gain vs Temperature Nonlinearity	iternally Pow LAMPLIFIER	age, in	1 ±0.1 ±50 ±0.01	±0.25 ±120 ±0.025	V/V % FSR ppm/°C % FSR	
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Power Supplies	V _{CC2} = ±10V to ±18V	Control of the second second	±20 ±150 ±2	±50 ±400	mV μV/°C mV/V	
INPUT Voltage Range Resistance	Output Voltage in Range	±10	±15 200	URES	V kΩ	
SIGNAL OUTPUT Voltage Range Current Drive Ripple Voltage, 800kHz Carrier (See Figure Capacitive Load Drive Voltage Noise	ACQUISITION BIOMEDICAL IN (4)	±10 ±5	±12.5 ±15 20 1000 4	AL AND POV E-WIDE PAC Opk TEST VO Fras CONTIL OCC	V mA mVp-p pF μV/√Hz	
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate Settling Time	0.1%, -10/10V		20 1.5 75	INPUT SIGN 10 +10V	kHz V/μs μs	
POWER SUPPLIES Rated Voltage, V _{CC2} Voltage Range Input Current Ripple Current Rated Output Voltage Output Current Load Regulation Line Regulation Output Voltage vs Temperature Voltage Balance Error, ±V _{CC1} Voltage Ripple Output Capacitive Load (See Figure 1) Sync Frequency	I _O = ±15mA(2) No Filter C _{IN} = 1µF Balanced Load Single Balanced Load No External Capacitors Sync-Pin Grounded(3)	±10 ±14.25	±15 +75/-4.5 10 3 ±15 ±15 30 0.5 1.18 10 0.05 10	±18 ±15.75 ±50 100	V MA MAp-p MAp-p MAp-p V MA MA W/MA V/V MV/°C % MVp-p MHz	
Specification 2017 switze was listed	troi is used to earn off free the signal channel dence provides a convenient we	-25 -25 -25	uphlier provide blatien baurier orge contains	+85 +85 +125	°C °C	

NOTES: (1) Conforms to UL544 test methods. 100% tested at 2500Vrms for 1 minute. (2) For other conditions, see Performance Curve, Input Current (+V_{CC2}) vs Output Current. Input Current (-V_{CC2}) is constant at -4.5mA (typ) for all output currents. (3) If using external synchronization with a TTL-level clock, frequency should be between 1.2MHz and 2MHz with a duty-cycle greater than 25%.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

U O V-II-	
V _{IN} , Sense Voltage	
Com 1 to Gnd 1 or Com 2 to Gnd 2	±200mV
Enable, Sync	0V to +V _{CC2}
Continuous Isolation Voltage	2500Vrms
V _{ISO} , dv/dt	20kV/μs
Junction Temperature	150°C
Storage Temperature	25°C to +125°C
Lead Temperature, (soldering, 10s)	300°C
Output Short to Gnd 2 Duration	Continuous
±V _{CC1} to Gnd 1 Duration	Continuous

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
ISO107	32-Pin Side-Braze Ceramic	210		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

180107

SOLATION PRODUCTS

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) OTTARISTO TO VROBBIT

 $T_A = +25$ °C, $V_{CC2} = \pm 15$ VDC, ± 15 mA output current unless otherwise noted.

The block diagram on the front page shows the isolation

with the x filter for +V_{CCI} an option recommended if more

-50

2.5

Sync Frequency (MHz)

-5

Burr-Brown IC Data Book-Linear Products

5.49

S

amplifier's synchronized signal and power configuration, which eliminates beat frequency interference. A proprietary 800kHz oscillator chip, power MOSFET transformer drivers, patented square core wirebonded transformer, and single chip diode bridge provide power to the input side of the isolation amplifier as well as external loads. The signal channel capacitively couples a duty-cycle encoded signal across the ceramic high-voltage barrier built into the package. A proprietary transmitter-receiver pair of integrated circuits, laser trimmed at wafer level, and coupled through a pair of matched "fringe" capacitors, result in a simple, reliable design.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows the proper power supply and signal connections. All power supply pins should be bypassed as shown with the π filter for $+V_{\rm CC2}$ an option recommended if more than $\pm 15 \rm mA$ are drawn from the isolated supply. The separate input and output common pins and output sense are low current inputs tied to the signal source ground, output ground, and output load, respectively, to minimize errors due to IR drop in long conductors. Otherwise, connect Com 1 to Gnd 1, Com 2 to Gnd 2, and Sense to $V_{\rm OUT}$ at the ISO107 socket. The enable pin may be left open if the ISO107 is continuously operated. If not, a TTL low level will disable the internal DC/DC converter. The Sync input must be grounded for unsynchronized operation while a 1.2MHz to 2MHz TTL clock signal provides synchronization of multiple units.

with no external adjustments, but the circuit of Figure 2a may be used to provide a gain trim of $\pm 0.5\%$ for the values shown; greater range may be provided by increasing the size of R1 and R1. Every $2k\Omega$ increase in R1 will give an additional 1% adjustment range, with $R2 \ge R1$. If safety or convenience dictates location of the adjustment potentiometer on the other side of the barrier from the position shown in Figure 2a, the position of R1 and R2 may be reserved.

Gains greater than 1 may be obtained by using the circuit of Figure 2b. Note that the effect of input offset errors will be multiplied at the output in proportion to the increase in gain. Also, the small-signal bandwidth will be decreased in in-

FIGURE 2a. Gain Adjust.

FIGURE 2b. Gain Setting.

FIGURE 1. Signal and Power Connections.

will provide better overall performance.

Figure 3 shows a method for trimming V_{OS} of the ISO107. This circuit may be applied to either Signal Com (input or output) as desired for safety or convenience. With the values shown, $\pm 15V$ supplies and unity gain, the circuit will provide $\pm 150 \text{mV}$ adjustment range and 0.25 mV resolution with a typical trim potentiometer. The output will have some sensitivity to power supply variations. For a $\pm 100 \text{mV}$ trim, power supply sensitivity is 8 mV/V at the output.

FIGURE 3. Vos Adjust.

OPTIONAL OUTPUT FILTER

Figure 4 shows an optional output ripple filter that reduces the 800kHz ripple voltage to <3mVp-p without compromising DC performance. The small signal bandwidth is extended above 30kHz as a result of this compensation.

FIGURE 4. Ripple Reduction.

MULTICHANNEL SYNCHRONIZATION

Synchronization of multiple ISO107s can be accomplished by connecting pin 19 of each device to an external TTL level oscillator, as shown in Figure 6. The PWS750-1 oscillator is convenient because its nominal synchronizing output frequency is 1.6MHz, resulting in a 800kHz carrier in the ISO107 (its nominal unsynchronized value). The open collector output typically switches 7.5mA to a 0.2V low level so that the external pull-up resistor can be chosen for different pull-up voltages as shown in Figure 6. The number of channels synchronized by one PWS750-1 is determined by the total capacitance of the sync voltage conductors. They must be less than 1000pF to ensure TTL level switching at 800kHz. At higher frequencies the capacitance must be proportionally lower.

Customers can supply their own TTL level synchronization logic, provided the frequency is between 1.2MHz and 2MHz, and the duty cycle is greater than 25%.

barrier voltage stress is indicated in the first two performance curves—Recommended Range of Isolation Voltage and IMR/Leakage vs Frequency. At low barrier modulation levels, errors can be determined by the IMRR characteristic. At higher barrier voltages, typical performance is obtained as long as the dv/dt across the barrier is below the shaded area in the first curve. Otherwise, the signal channel will be interrupted, causing the output to distort, and/or shift DC level. This condition is temporary, with normal operation resuming as soon as the transient subsides. Permanent damage to the integrated circuits occurs only if transients exceed $20kV/\mu s$. Even in this extreme case, the barrier integrity is assured.

HIGH VOLTAGE TESTING

The ISO107 was designed to reliably operate with 2500Vrms continuous isolation barrier voltage. To confirm barrier integrity, a two-step breakdown test is performed on 100% of the units. First, an 8000V peak, 60Hz barrier potential is applied for 10s to verify that the dielectric strength of the insulation is above this level. Following this exposure, a 2500Vrms, 60Hz potential is applied for one minute to conform to UL544. Life-test results show reliable operation under continuous rated voltage and maximum operating temperature conditions.

APPLICATIONS STATEMENT AND THE STATEMENT AND THE

FIGURE 5. ECG Amplifier with Right Leg Drive, Defibrillator Protection, and E.S.U. Blanking.

FIGURE 6. Synchronized-Multichannel Isolation.

ISO113

Low-Cost, High-Voltage, Internally Powered OUTPUT ISOLATION AMPLIFIER

FEATURES

- SELF-CONTAINED ISOLATED SIGNAL
 AND OUTPUT POWER
- SMALL PACKAGE SIZE: Double-Wide (0.6") Sidebraze DIP
- CONTINUOUS AC BARRIER RATING: 1500Vrms
- WIDE BANDWIDTH: 20kHz Small Signal, 20kHz Full Power
- BUILT-IN ISOLATED OUTPUT POWER: ±10V to ±18V Input, ±50mA Output
- MULTICHANNEL SYNCHRONIZATION CAPABILITY
- BOARD AREA ONLY 0.72in.² (4.6cm²)

APPLICATIONS

- 4mA TO 20mA V/I CONVERTERS
- MOTOR AND VALVE CONTROLLERS
- ISOLATED RECORDER OUTPUTS
- MEDICAL INSTRUMENTATION OUTPUTS
- GAS ANALYZERS

DESCRIPTION

The ISO113 output isolation amplifier provides both signal and output power across an isolation barrier in a small double-wide DIP package. The ceramic nonhermetic hybrid package with side-brazed pins contains a transformer-coupled DC/DC converter and a capacitor-coupled signal channel.

Extra power is available on the isolated output side for driving external loads. The converter is protected from shorts to ground with an internal current limit, and the soft-start feature limits the initial currents from the power source. Multiple-channel synchronization can be accomplished by applying a TTL clock signal to paralleled Sync pins. The Enable control is used to turn off transformer drive while keeping the signal channel modulator active. This feature provides a convenient way to reduce quiescent current for low power applications.

The wide barrier pin spacing and internal insulation allow for the generous 1500Vrms continuous rating. Reliability is assured by 100% barrier breakdown testing that conforms to UL1244 test methods. Low barrier capacitance minimizes AC leakage currents.

These specifications and built-in features make the ISO113 easy to use, and provides for compact PC board layout.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At $T_A = +25$ °C and $V_{CCS} = \pm 15$ V, ± 15 mA output current unless otherwise noted

20 2 2 40x 40x 2		ISO113			ISO113B			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SOLATION Rated Continuous Voltage AC, 60Hz DC Test Breakdown, 100% AC, 60Hz Isolation-Mode Rejection	T _{MIN} to T _{MAX} T _{MIN} to T _{MAX} 10s 1500Vrms, 60Hz	1500 2121 5657	130		* *			Vrms VDC Vpk dB
Barrier Impedance Leakage Current	2121VDC 240Vrms, 60Hz	en an end	160 10 ¹² 9 1	2	l to	· 1	10.8	dB Ω pF μA
GAIN Nominal nitial Error Gain vs Temperature Nonlinearity	$V_{O} = -10V \text{ to } 10V$ $V_{O} = -5V \text{ to } 5V$	DITA	1 ±0.3 ±60 ±0.05 ±0.02	±0.5 ±100 ±0.1 ±0.04	910	* ±20 ±0.03 ±0.012	* ±50 ±0.05 ±0.02	V/V %FSR ppm/°C %FSR %FSR
NPUT OFFSET VOLTAGE nitial Offset vs Temperature vs Power Supplies vs Output Supply Load	$V_{cc2} = \pm 10 \text{ to } \pm 18V$ $I_0 = 0 \text{ to } \pm 50\text{mA}$	I T	±20 ±300 0.9 ±0.3	±60 ±500	Priosi c	±100 *	±250	mV μV/°C mV/V mV/mA
SIGNAL INPUT Voltage Range Resistance	Output Voltage in Range	±10	±15 200	Pouble-	:3219 E	ACKAG ebřeze (1,6") Sid	V kΩ
SIGNAL OUTPUT Voltage Range Current Drive Ripple Voltage, 800kHz Carrier Capacitive Load Drive Voltage Noise	400Ω/4.7nF (See Figure 4)	±10 ±5	±12.5 ±15 25 5 1000 4	ER NAT E Small PUT PO	BAARN H: 20KH ED OUN	OUS AC NDWIDT II Power ISOLAT	CHTINE SOOVINE VIDE BA OSHE FL UNLT-IN	V mA mVp-p mVp-p pF μV/√H:
REQUENCY RESPONSE mall Signal Bandwidth Slew Rate Settling Time	eer source. Muldiple-char accomplished by applyin ratelect V01/01-, .41.0 The E	pq pd	20 1.5 75	IQNO A	JI, ±80n SYNONI	16V Inp ANVEL ITY	HOLTIGH HULTIGH SAPABIL	kHz V/μs μs
POWER SUPPLIES Rated Voltage, V _{CC1} Voltage Range Input Current Ripple Current Rated Output Voltage Output Load Regulation Line Regulation Output Voltage vs Temperature Voltage Balance, ±V _{CC2} Voltage Ripple (800kHz) Output Capacitive Load Sync Frequency	I _o = ±15mA I _o = 0mA No Filter C _{IN} = 1μF Load = 15mA 50mA Balanced Load 100mA Single-Ended Load Balanced Load No External Capacitors C _{EXT} = 1μF Sync-Pin Grounded ^(c)	±10	±15 +90/-4.5 +60/-4.5 60 3 ±15 0.3 1.12 2.5 0.05 5	±18 ±15.75	NS NS OONVI VE COI NEUTA	ATIO ATIO ATIO ATIO ATIO ATIO ATIO ATIO	PLICAND I CONTROL I CONTRO	V V V MA mAp-p MAp-p V V V %/mA V/V mV/°C % mVp-p mVp-p µF MHz
TEMPERATURE RANGE Specification Operating Storage	Total Parrodulator	-25 -25 -25	Tuis	+85 +85 +125	guo	130V4 141V 130V-	:	°C °C °C

*Specifications same as ISO113.

NOTE: (1) Conforms to UL:1244 test methods. 100% tested at 1500Vrms for 1 minute. (2) If using external synchronization with a TTL-level clock, frequency should be between 1.2MHz and 2MHz with a duty-cycle greater than 25%.

Alternational Alphat industrial Park - MadDes Address PO Box 11400 - Turson, AZ 25704 - Gasal Address 870 E 70500 Blvd. - Turson, AZ 25704 - Turson Box 25000 - Turso

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
ISO113	24-Pin DIP	231		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Without Damage	
V _{IN} , Sense Voltage	±50\
Com ₁ to Gnd ₁	±200m\
Enable, Sync	Gnd to +V _{CC}
Continuous Isolation Voltage	1500Vrms
V _{ISO} , dv/dt	
Junction Temperature	+150°C
Storage Temperature	
Lead Temperature, 10s	+300°C
Output Short to Gnd Duration	Continuou
±V _{CC2} to Gnd 2 Duration	Continuou

A

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

1801

SOLATION PRODUCTS

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT)

ISOLATED SUPPLY VOLTAGE AND VOS

FIGURE 1. Signal and Power Connections.

THEORY OF OPERATION

The block diagram on the front page shows the isolation amplifier's synchronized signal and power configuration, which eliminate beat frequency interference. A proprietary 800kHz oscillator chip, power MOSFET transformer drivers, patented square core wirebonded transformer, and single chip diode bridge provide power to the output side of the isolation amplifier as well as external loads. The signal channel capacitively couples a duty-cycle encoded signal across the ceramic high-voltage barrier built into the package. A proprietary transmitter-receiver pair of integrated circuits, laser trimmed at wafer level, and coupled through a pair of matched "fringe" capacitors, results in a simple, reliable design.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows the proper power supply and signal connections. All power supply pins should be bypassed as shown with the π filter for +V_{CC1}, an option recommended if more than ±15mA are drawn from the isolated supply. Separate rectifier output pins (±V_{CC2}) and amplifier supply input pins (±V_C) allow additional ripple filtering and/or regulation. The separate input common pin and output sense are low current inputs tied to the signal source ground, and output load, respectively, to minimize errors due to IR drop in long conductors. Otherwise, connect Com 1 to Gnd 1, and Sense to V_{OUT} at the ISO113 socket. The enable pin may be left open if the ISO113 is continuously operated. If not, a TTL low level will disable the internal DC/DC converter. The Sync input must be grounded for unsynchronized operation while a 1.2MHz to 2MHz TTL clock signal provides synchronization of multiple units.

The ISO113 isolation amplifier contains a transformer-coupled DC/DC converter that is powered from the input side of the isolation amplifier. All power supply pins (2, 4, 13, 14, 15, and 16) of the ISO113 have an internal $0.1 \mu F$ capacitor to ground. L_1 is used to slow down fast changes in the input current to the DC/DC converter. C_1 is used to help regulate the voltage ripple caused by the current demands of the converter. L_1 , C_1 , and C_2 are optional, however, recommended for low noise applications.

The DC/DC converter creates an unregulated $\pm 15V$ output to $\pm V_{CC2}.$ If the ISO113 is the only device using the DC/DC converter for power, pins 13 and 14 and pins 15 and 16 can be connected directly without C_O or L_O in the circuit. If an external capacitor is used in this configuration, it should not exceed $1\mu F.$ This configuration is possible because the isolation amplifier and the DC/DC converter are synchronized internally.

If additional devices are powered by the DC/DC converter of the ISO113, the application may require that the ripple voltage of the ISO113 converter be attenuated, in which case, $L_{\rm O}$ and $C_{\rm O}$ should be added to the circuit. The inductor is used to attenuate the ripple current and a higher value capacitor can be used to reduce the ripple voltage even further.

OPTIONAL GAIN AND OFFSET ADJUSTMENTS

Rated gain accuracy and offset performance can be achieved with no external adjustments, but the circuit of Figure 2a may be used to provide a gain trim of $\pm 0.5\%$ for the values shown. Greater range may be provided by increasing the size of R_1 and $R_2.$ Every $2k\Omega$ increase in R_1 will give an additional 1%

FIGURE 2a. Gain Adjust.

FIGURE 2b. Gain Setting.

adjustment range, with $R_2 \ge 2R_1$. If safety or convenience dictate location of the adjustment potentiometer on the other side of the barrier from the position shown in Figure 2a, the position of R_1 and R_2 may be reversed.

Gains greater than 1 may be obtained by using the circuit of Figure 2b. Note that the effect of input referred errors will be multiplied at the output in proportion to the increase in gain. Also, the small-signal bandwidth will be decreased in inverse proportion to the increase in gain. In most instances, a precision gain block at the input of the isolation amplifier will provide better overall performance.

Figure 3 shows a method for trimming V_{OS} of the ISO113. This circuit may be applied to Signal Com1. With the values shown, $\pm 15 \text{V}$ supplies and unity gain, the circuit will provide $\pm 150 \text{mV}$ adjustment range and 0.25 mV resolution with a typical trim potentiometer. The output will have some sensitivity to power supply variations. For a $\pm 100 \text{mV}$ trim, power supply sensitivity is 8 mV/V at the output.

FIGURE 3. Vos Adjust.

OPTIONAL OUTPUT FILTER

Figure 4 shows an optional output ripple filter that reduces the 800 kHz ripple voltage to <5 mVp-p without compromising DC performance. The small signal bandwidth is extended above 30 kHz as a result of this compensation.

FIGURE 4. Ripple Reduction.

MULTICHANNEL SYNCHRONIZATION

Synchronization of multiple ISO113s can be accomplished by connecting pin 3 of each device to an external TTL level oscillator, as shown in Figure 7. The PWS750-1 oscillator is convenient because its nominal synchronizing output frequency is 1.6MHz, resulting in a 800kHz carrier in the ISO113 (its nominal unsynchronized value). The open collector output typically switches 7.5mA to a 0.2V low level so that the external pull up resistor can be chosen for different pull-up voltages as shown in Figure 7. The number of channels synchronized by one PWS750-1 is determined by the total capacitance of the sync voltage conductors. They must be less than 1000pF to ensure TTL level switching at 800kHz. At higher frequencies the capacitance must be proportionally lower.

Customers can supply their own TTL level synchronization logic, provided the frequency is between 1.2MHz and 2MHz, and the duty cycle is greater than 25%.

Single or multichannel synchronization with reduced power dissipation for applications requiring less than $\pm 15 \text{mA}$ from V_{CC1} is accomplished by driving both the Sync input pin (3) and Enable pin (1) with the TTL oscillator as shown in Figure 5.

FIGURE 5. Reduced Power Dissipation.

ISOLATION BARRIER VOLTAGE

The typical performance of the ISO113 under conditions of barrier voltage stress is indicated in the first two performance curves—Recommended Range of Isolation Voltage and IMR/ Leakage vs Frequency. At low barrier modulation

HIGH VOLTAGE TESTING

The ISO113 was designed to reliably operate with 1500Vrms continuous isolation barrier voltage. To confirm barrier integrity, a two-step breakdown test is performed on 100% of the units. First, an 5657V peak, 60Hz barrier potential is applied for 10s to verify that the dielectric strength of the insulation is above this level. Following this exposure, a 1500Vrms, 60Hz potential is applied for one minute to conform to UL1244. Life-test results show reliable operation under continuous rated voltage and maximum operating temperature conditions.

APPLICATIONS

FIGURE 6. Isolated Current Loop Driver.

FIGURE 7. Synchronized-Multichannel Isolation.

Precision Low Cost ISOLATION AMPLIFIER

FEATURES

- 100% TESTED FOR PARTIAL DISCHARGE
- ISO120: Rated 1500Vrms
- ISO121: Rated 3500Vrms
- HIGH IMR: 115dB at 60Hz
- USER CONTROL OF CARRIER FREQUENCY
- LOW NONLINEARITY: ±0.01% max
- BIPOLAR OPERATION: V_O = ±10V
- 0.3"-WIDE 24-PIN HERMETIC DIP, ISO120
- SYNCHRONIZATION CAPABILITY
- WIDE TEMP RANGE: -55°C to +125°C (ISO120)

DESCRIPTION

The ISO120 and ISO121 are precision isolation amplifiers incorporating a novel duty cycle modulationdemodulation technique. The signal is transmitted digitally across a 2pF differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity, which results in excellent reliability and good high frequency transient immunity across the barrier. Both the amplifier and barrier capacitors are housed in a hermetic DIP. The ISO120 and ISO121 differ only in package size and isolation voltage rating.

These amplifiers are easy to use. No external components are required for 60kHz bandwidth. With the addition of two external capacitors, precision specifications of 0.01% max nonlinearity and 150µV/°C max Vos drift are guaranteed with 6kHz bandwidth. A power supply range of ±4.5V to ±18V and low quiescent current make these amplifiers ideal for a wide range of applications.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL: Transducer Isolator for Thermocouples, RTDs, Pressure Bridges, and Flow Meters, 4mA to 20mA Loop Isolation
- GROUND LOOP ELIMINATION
- MOTOR AND SCR CONTROL
- POWER MONITORING
- ANALYTICAL MEASUREMENTS
- **BIOMEDICAL MEASUREMENTS**
- DATA ACQUISITION
- TEST EQUIPMENT

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

	100	ISO12	OBG, ISO	121BG	ISO120G, I	SO120SG	4), ISO121G		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
SOLATION	1900								
Voltage Rated Continuous ISO120: AC 60Hz	T _{MIN} to T _{MAX}	1500	116		*	WILL S		Vrms	
DC	T _{MIN} to T _{MAX}	2121	1					VDC	
ISO121: AC 60Hz		3500	1					Vrms	
	min mess			1					
DC	T _{MIN} to T _{MAX}	4950						VDC	
00% Test (AC 60Hz): ISO120	1s; Partial Discharge ≤ 5pC	2500		1 1 1 1 1		8 1 - 1		Vrms	
ISO121	1s; Partial Discharge ≤ 5pC	5600		1				Vrms	
solation Mode Rejection ISO 120: AC 60Hz	1500Vrms	resultation in the	115	PERSONAL PROPERTY.	SERVICE DA	CO. * CO.	RESERVED DOOR	dB	
DC		4	160					dB	
ISO121: AC60Hz	3500Vrms	8	115	2000	10 ± 900 ± 00			dB	
	3300 VIIIIS	1 616		16211			7 (2)	dB	
DC	AGNOR ALCOH	2 2 2 5	160	1000					
Barrier Impedance	V _{ISO} = 240Vrms, 60Hz	1. 144	1014 2	0.5	10			Ω pF μArms	
Leakage Current	The state of the state of	A MIL	0.18	0.5				μArms	
GAIN ⁽⁴⁾	V _O = ±10V							1/0/	
Nominal Gain	$C_1 = C_2 = 1000pF$		1 3	PROPERTY.	Recording To	SHU1SE	DATE OF THE PARTY	V/V	
Gain Error			±0.04	±0.1		±0.05	±0.25	%FSR	
Gain vs Temperature			±5	±20		±10	±40	ppm/°C	
Nonlinearity	NETA OF TORA		±0.005	±0.01		±0.01	±0.05	%FSR	
Nominal Gain	$C_1 = C_2 = 0$		1 -		10000	1	1 8 20 L C B-	V/V	
Gain Error			±0.04	±0.25		±0.05	±0.25	%FSR	
	O INDUSTRIAL PR		±40	10.25	R PART	±40	10.23		
Gain vs Temperature	Transducer Isola							ppm/°C	
Norminearity			±0.02	±0.1	samV00	±0.04	±0.1	%FSR	
NPUT OFFSET VOLTAGE(4)	Hibs, Pressure		11 11 11 11		amnV00	ac ban	SI-1510		
nitial Offset	$C_1 = C_2 = 1000pF$		±5	±25		±10	±50	mV	
vs Temperature			±100	±150	sH08 to	±150	±400	μV/°C	
Initial Offset	$C_1 = C_2 = 0$		±25	±100		±40	±100	mV	
			±250	745179	MAGE TO	±500	100 HH	μV/°C	
vs remperature Initial Offset	9 MOTOR AND SC		1250	11112		1300	DARK LOSS	μνιο	
	DATINGS OF COMMON AND			Total Park Ing			V1-21-070-01	1101	
	$\pm V_{S1}$ or $\pm V_{S2} = \pm 4.5V$ to $\pm 18V$		±2	sm 3610	O-L-VTI	±2	HACYLA YAZI	mV/V	
Noise	ON ANIAS VETECAS AND		4	DITTO OF SAN	92 23 13	4	Descript And	μV/√Hz	
NPUT				701t=c	V :NOIT	APERC	RAJOR		
Voltage Range(1)	BIO MEDICAL MI	±10	±15	Annual Tentral				V	
Resistance			200	TIC DIP	SMHEH	MIGHT	EIGIW-"	kΩ	
	BISHDOA ATAD &		200	CT1 1853 A	0.879.187	VEASTIN	THE PARTY OF THE P	7.53 80	
OUTPUT	O TEST EQUIPMEN			I FEMALES	July Bir	1171-2171	PARTICIPATI		
Voltage Range	NAME OF STREET	±10	±12.5	C to +1	ma	MAGE	WAT BO	V	
Current Drive		±5	±15	13 X 100 30	*****		700 A 7 A	mA	
Capacitive Load Drive			0.1				(0120)	μF	
Ripple Voltage ⁽²⁾			10	-				mVp-p	
FREQUENCY RESPONSE					3.0	SETE	1000	30	
Small Signal Bandwith	$C_1 = C_2 = 0$		60		9/3	J117	Bridge	kHz	
Siliali Signal Banuwitii				The said of				777.77	
	$C_1 = C_2 = 1000pF$		6	Hoal nois	DOTE OUR	TISOLE	NO 120 am	kHz	
Slew Rate	ed .		2		100			V/µs	
Settling Time	$V_O = \pm 10V$		GRUBBERGE	alovo t	ovel dut	ang a r	erediosin		
0.1%	$C_2 = 100pF$		50	et fatrai	a off s	rechailos	noilelub	иѕ	
0.01%	$C_1 = C_2 = 1000pF$		350			-		μѕ	
Overload Recovery Time(3)	50% Output Overload,		150	in capacit	DOMESTIC.	a 2pF	tly across	μs	
	$C_1 = C_2 = 0$		tenstics	er charac	the barr	dulation	digital and	the W	
POWER SUPPLIES		Jane	Heore a	elinest i	Didys .vi	TRANSET I	091S 1001	B 308	
Rated Voltage			15	SERVICE CONTRA	ninoise?	id boos	bas viili	deilev	
		-110	15	ncy mans	SHEET U	BET TYDO!	DHR ARR		
Voltage Range	Signal	±4.5	ned bee	±18	enti rito?	barrier.	cross the	VIIV	
Quiescent Current: V _{S1}	Comf		±4.0	±5.5	armound.			mA	
V _{S2}	7		±5.0	±6.5	STREET IS	d posmo	\$1E-8101	mA	
	5xt Osc	110	retoet br	E 5512 59	an packs	HIO TOT	SO IZIOS	a Dus	
TEMPERATURE RANGE		-25		85	-25		85	°C	
	4.								
Specification: BG and G	+V _{S1}						105	00	
Specification: BG and G SG ⁽⁴⁾	teV4	-25	ereces face	85	-55	25 500 0	125	°C	
Specification: BG and G SG ⁽⁴⁾ Operating	re ^{V+}	-25 -55	moo len	85 125	-55 -55	RS STE M	125	°C	
Specification: BG and G SG ⁽⁴⁾ Operating Storage	taV4	-25	difW	85	-55	rol ben		°C	
Specification: BG and G SG ⁽⁴⁾ Operating	egV4	-25 -55		85 125	-55 -55		125	°C	

^{*}Specifications same as ISO120BG, ISO121BG.

NOTE: (1) Input voltage range = $\pm 10V$ for V_{S1} , $V_{S2} = \pm 4.5$ VDC to ± 18 VDC. (2) Ripple frequency is at carrier frequency. (3) Overload recovery is approximately three times the settling time for other values of C_2 . (4) The SG-grade is specified -55° C to $+125^{\circ}$ C; performance of the SG in the -25° C to $+85^{\circ}$ C temperature range is the same as the BG-grade.

External Oscillator Input	±25V
Signal Common 1 to Ground 1	±1V
Signal Common 2 to Ground 2	±1V
Continuous Isolation Voltage: ISO120	1500Vrms
ISO121	3500Vrms
V _{ISO} , dv/dt	20kV/μs
Junction Temperature	150°C
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Duration	Continuous to Common

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO120G ISO120BG ISO120SG	24-Pin DIP 24-Pin DIP 24-Pin DIP	225 225 225 225
ISO121G ISO121BG	40-Pin DIP 40-Pin DIP	206 206

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

	TEMPERATURE	
MODEL	RANGE	
ISO120G	-25°C to 85°C	d d
ISO120BG	-25°C to 85°C	
ISO120SG	-55C to 125°C	
ISO121G	-25°C to 85°C	
ISO121BG	-25°C to 85°C	

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT) OMAMA OF A 3 JAC191

 $T_A = +25$ °C; $V_{S1} = V_{S2} = \pm 15V$; and $R_L = 2k\Omega$, unless otherwise noted.

SO120/121

THEORY OF OPERATION

The ISO120 and ISO121 isolation amplifiers comprise input and output sections galvanically isolated by matched 1pF capacitors built into the ceramic barrier. The input is duty-cycle modulated and transmitted digitally across the barrier. The output section receives the modulated signal, converts it back to an analog voltage and removes the ripple component inherent in the demodulation. The input and output sections are laser-trimmed for exceptional matching of circuitry common to both input and output sections.

FREE-RUNNING MODE

An input amplifier (A1, Figure 1) integrates the difference between the input current $(V_{IN}/200k\Omega)$ and a switched ±100uA current source. This current source is implemented by a switchable 200µA source and a fixed 100µA current sink. To understand the basic operation of the input section, assume that $V_{IN} = 0$. The integrator will ramp in one direction until the comparator threshold is exceeded. The comparator and sense amp will force the current source to switch; the resultant signal is a triangular waveform with a 50% duty cycle. If V_{IN} changes, the duty cycle of the integrator will change to keep the average DC value at the output of A1 near zero volts. This action converts the input voltage to a duty-cycle modulated triangular waveform at the output of A1 near zero volts. This action converts the input voltage to a duty-cycle modulated triangular waveform at the output of A1 with a frequency determined by the internal 150pF capacitor. The comparator generates a fast rise time square wave that is simultaneously fed back to keep A1 in charge balance and also across the barrier to a differential sense amplifier with high common-mode rejection characteristics. The sense amplifier drives a switched current source surrounding A2. The output stage balances the duty-cycle modulated current against the feedback current through the $200k\Omega$ feedback resistor, resulting in an average value at the Sense pin equal to V_{IN}. The sample and hold amplifiers in the output feedback loop serve to remove undesired ripple voltages inherent in the demodulation process.

SYNCHRONIZED MODE

A unique feature of the ISO120 and ISO121 is the ability to synchronize the modulator to an external signal source. This capability is useful in eliminating trouble-some beat frequencies in multi-channel systems and in rejecting AC signals and their harmonics. To use this feature, external capacitors are connected at C1 and C2 (Figure 1) to change the free-running carrier frequency. An external signal is applied to the Ext Osc pin. This signal forces the current source to switch at the frequency of the external signal. If V_{IN} is zero, and the external source has a 50% duty cycle, operation proceeds as described above, except that the switching frequency is that of the external source. If the external signal has a duty cycle other than 50%, its average value is not zero. At start-up, the current source does not switch until the integrator establishes an output equal to the average DC value of the external signal. At this point, the external signal is able to trigger the current source, producing a triangular waveform, symmetrical about the new DC value, at the output of A1. For $V_{IN} = 0$, this waveform has a 50% duty cycle. As V_{IN} varies, the waveform retains its DC offset, but varies in duty cycle to maintain charge balance around A1. Operation of the demodulator is the same as outlined above.

Synchronizing to a Sine or Triangle Wave External Clock

The ideal external clock signal for the ISO120/121 is a $\pm 4V$ sine wave or $\pm 4V$, 50% duty-cycle triangle wave. The *ext osc* pin of the ISO120/121 can be driven directly with a $\pm 3V$ to $\pm 5V$ sine or 25% to 75% duty-cycle triangle wave and the ISO amp's internal modulator/demodulator circuitry will synchronize to the signal.

Synchronizing to signals below 400kHz requires the addition of two external capacitors to the ISO120/121. Connect one capacitor in parallel with the internal modulator capacitor and connect the other capacitor in parallel with the internal demodulator capacitor as shown in Figure 1.

FIGURE 1. Block Diagram.

The value of the external modulator capacitor, C_1 , depends on the frequency of the external clock signal. Table I lists recommended values.

EXTERNAL CLOCK FREQUENCY RANGE	C ₁ , C ₂ ISO120/121 MODULATOR, DEMODULATOR EXTERNAL CAPACITOR
400kHz to 700kHz	none
200kHz to 400kHz	500pF
100kHz to 200kHz	1000pF
50kHz to 100kHz	2200pF
20kHz to 50kHz	4700pF
10kHz to 20kHz	0.01µF
5kHz to 10kHz	0.022µF

TABLE I. Recommended ISO120/121 External Modulator/ Demodulator Capacitor Values vs External Clock Frequency.

The value of the external demodulator capacitor, C_2 , depends on the value of the external modulator capacitor. To assure stability, C_2 must be greater than $0.8 \cdot C_1$. A larger value for C_2 will decrease bandwidth and improve stability:

$$f_{-3 \text{ dB}} \approx \frac{1.2}{200 \text{ k}\Omega \left(150 \text{ pF} + \text{C}_2\right)}$$

Whore

 $f_{-3dB} \approx -3dB$ bandwidth of ISO amp with external C_2 (Hz) C_2 = External demodulator capacitor (f)

For example, with $C_2=0.01\mu F$, the f_{-3dB} bandwidth of the ISO120/121 is approximately 600Hz.

Synchronizing to a 400kHz to 700kHz Square-Wave External Clock

At frequencies above 400kHz, an internal clamp and filter provides signal conditioning so that a square-wave signal can be used to directly drive the ISO120/121. A square-wave external clock signal can be used to directly drive the ISO120/121 ext osc pin if: the signal is in the 400kHz to 700kHz frequency range with a 25% to 75% duty cycle, and ±3V to ±20V level. Details of the internal clamp and filter circuitry are shown in Figure 1.

Synchronizing to a 10% to 90% homograph that a synd Duty-cycle External Clock and to Visconization and the syndrometry

With the addition of the signal conditioning circuit shown in Figure 2, any 10% to 90% duty-cycle square-wave signal can be used to drive the ISO120/121 ext osc pin. With the values shown, the circuit can be driven by a 4Vp-p TTL signal. For a higher or lower voltage input, increase or decrease the $1k\Omega$ resistor, R_X , proportionally. e.g. for a $\pm 4V$ square wave (8Vp-p) R_X should be increased to $2k\Omega$.

The value of C_X used in the Figure 2 circuit depends on the frequency of the external clock signal. Table II shows recommended capacitor values.

Note: For external clock frequencies below 400kHz, external modulator/demodulator capacitors are required on the ISO120/121 as before.

FIGURE 2. Square Wave to Triangle Wave Signal Conditioner for Driving ISO120/121 Ext Osc Pin.

FREQUENCY RANGE	C _x	
400kHz to 700kHz	30pF	1
200kHz to 400kHz	180pF	
100kHz to 200kHz	680pF	
50kHz to 100kHz	1800pF	
20kHz to 50kHz	3300pF	
10kHz to 20kHz	0.01µF	
5kHz to 10kHz	0.022µF	

TABLE II. Recommended C_x Values vs Frequency for Figure 2 Circuit.

BASIC OPERATION in a x15/00a evoda reisnespert (A

Signal and Power Connections

Figure 3 shows proper power and signal connections. Each power supply pin should be bypassed with $1\mu F$ tantalum capacitor located as close to the amplifier as possible. All ground connections should be run independently to a common point if possible. Signal Common on both input and output sections provide a high-impedance point for sensing signal ground in noisy applications. Signal Common must have a path to ground for bias current return and should be maintained within $\pm 1V$ of Gnd. The output sense pin may be

connected directly to V_{OUT} or may be connected to a remote load to eliminate errors due to IR drops. Pins are provided for use of external integrator capacitors. The C_{1H} and C_{2H} pins are connected to the integrator summing junctions and are therefore particularly sensitive to external pickup. This sensitivity will most often appear as degraded IMR or PSR performance. AC or DC currents coupled into these pins results in $V_{ERROR} = I_{ERROR} \times 200 \mathrm{k}\Omega$ at the output. Guarding of these pins to their respective Signal Common, or C_{1L} and C_{2L} is strongly recommended. For similar reasons, long traces or physically large capacitors are not desirable. If wound-foil capacitors are used, the outside foil should be connected to C_{1L} and C_{2L} , respectively.

Optional Gain and Offset Adjustments

Rated gain accuracy and offset performance can be achieved with no external adjustments, but the circuit of Figure 4a may be used to provide a gain trim of ±0.5% for values shown; greater range may be provided by increasing the size of R₁ and R₂. Every 2kΩ increase in R₁ will give an additional 1% adjustment range, with $R_2 \ge 2R_1$. If safety or convenience dictates location of the adjustment potentiometer on the other side of the barrier from the position shown in Figure 4a, the positions of R₁ and R₂ may be reversed. Gains greater than one may be obtained by using the circuit of Figure 4b. Note that the effect of input offset errors will be multiplied at the output in proportion to the increase in gain. Also, the small-signal bandwidth will be decreased in inverse proportion to the increase in gain. In most instances, a precision gain block at the input of the isolation amplifier will provide better overall performance.

Figure 5 shows a method for trimming V_{OS} of the ISO120 and ISO121. This circuit may be applied to either Signal Com (input or output) as desired for safety or convenience. With the values shown, $\pm 15 V$ supplies and unity gain, the circuit will provide $\pm 150 mV$ adjustment range and 0.25mV

FIGURE 3. Power and Signal Connections.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

resolution with a typical trim potentiometer. The output will have some sensitivity to power supply variations. For a ±100mV trim, power supply sensitivity is 8mV/V at the output.

FIGURE 4a. Gain Adjust.

FIGURE 4b. Gain Setting

FIGURE 5. Vos Adjust.

CARRIER FREQUENCY CONSIDERATIONS

As previously discussed, the ISO120 and ISO121 amplifiers transmit the signal across the iso-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, f_C. For signal frequencies above f_C/2, the behavior becomes more complex. The Signal Response vs Carrier Frequency performance curve describes this behavior graphically. The upper curve illustrates the response for input signals varying from DC to f_c/2. At input frequencies at or above $f_c/2$, the device generates an output signal component that varies in both amplitude and frequency, as shown by the lower curve. The lower horizontal scale shows the periodic variation in the frequency of the output component. Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the response go the zero. These characteristics can be exploited in certain applications. It should be noted that when C₁ is zero, the carrier frequency is nominally 500kHz and the -3dB point of the amplifier is 60kHz. Spurious signals at the

output are not significant under these circumstances unless the input signal contains significant components above 250kHz.

There are two ways to use these characteristics. One is to move the carrier frequency low enough that the troublesome signal components are attenuated to an acceptable level as shown in Signal Response vs Carrier Frequency. This in effect limits the bandwidth of the amplifier. The Synchronization Range performance curve shows the relationship between carrier frequency and the value of C_1 . To maintain stability, C_2 must also be connected and must be equal to or larger in value than C_1 . C_2 may be further increased in value for additional attenuation of the undesired signal components and provides the additional benefit of reducing the residual carrier ripple at the output. See the Bandwidth vs C_2 performance curve.

When periodic noise from external sources such as system clocks and DC/DC converters are a problem, ISO120 and ISO121 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, $f_{\rm EXT}$, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the Signal Response vs Carrier Frequency performance curve. For proper synchronization, choose C_1 as shown in the Synchronization Range performance curve. Remember that $C_2 \geq C_1$ is a necessary condition for stability of the isolation amplifier. This curve shows the range of lock at the fundamental frequency for a 4V sinusoidal signal source. The applications section shows the ISO120 and ISO121 synchronized to isolation power supplies, while Figure 6 shows circuitry with opto-isolation suitable for driving the Ext Osc input from TTL levels.

FIGURE 6. Synchronization with Isolated Drive Circuit for Ext Osc Pin.

ISOLATION MODE VOLTAGE

Isolation mode voltage (IMV) is the voltage appearing between isolated grounds Gnd 1 and Gnd 2. IMV can induce error at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds $f_{\rm C}/2$, the output will display spurious outputs in a manner similar to that described above, and the amplifier response will be identical to that shown in the Signal Response vs Carrier Frequency performance curve. This occurs

by the livik snown in livik vs Frequency performance curve and compute the amplifier response to this input-referred error signal from the data given in the Signal Response vs Carrier Frequency performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/us. For convenience, this is plotted in the typical performance curves for the ISO120 and ISO121 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltages below ±15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/us remains unchanged.

Leakage current is determined solely by the impedance of the 2pF barrier capacitance and is plotted in the Isolation Leakage Current vs Frequency curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one. Historically, Burr-Brown has chosen a deliberately conservative one: $V_{TEST} = (2 \text{ X ACrms continuous rating}) + 1000V$ for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO120 and ISO121.

Partial Discharge

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize,

discharge. It, as is the case with AC, the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. Since the ISO120 and ISO121 do not use organic insulation, partial discharge is non-destructive.

The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then derating by a factor related to expectations about system transients is an accepted practice.

Partial Discharge Testing

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE, the national standards group in Germany and an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display ≤5pC partial discharge level in a 100% production test.

- Accurate isolation of signals from high voltage ground potentials,
- 2. Accurate isolation of signals from severe ground noise and.
- 3. Fault protection from high voltages in analog measurements.

Figures 7 through 12 show a variety of Application Circuits.

APPLICATION CIRCUITS

FIGURE 7. Eight-Channel Isolated 0-20mA Loop Driver.

ISO120/121

5

ISOLATION PRODUCTS

FIGURE 8. Isolated Powerline Monitor.

FIGURE 9. Right-Leg Driven ECG Amplifier (with defibrillator protection and calibration).

FIGURE 10. Battery Monitor for a 600V Battery Power System.

FIGURE 11. Isolated 4-20mA Instrument Loop. (RTD shown).

FIGURE 12. Synchronized-Multichannel Isolation System.

Precision Lowest Cost ISOLATION AMPLIFIER

FEATURES

- 100% TESTED FOR HIGH-VOLTAGE BREAKDOWN
- RATED 1500Vrms
- HIGH IMR: 140dB at 60Hz
- BIPOLAR OPERATION: V_O = ±10V
- 16-PIN PLASTIC DIP AND 28-LEAD SOIC
- EASE OF USE: Fixed Unity Gain Configuration
- 0.020% max NONLINEARITY
- ±4.5V to ±18V SUPPLY RANGE

DESCRIPTION

The ISO122 is a precision isolation amplifier incorporating a novel duty cycle modulation-demodulation technique. The signal is transmitted digitally across a 2pF differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity, resulting in excellent reliability and good high frequency transient immunity across the barrier. Both barrier capacitors are imbedded in the plastic body of the package.

The ISO122 is easy to use. No external components are required for operation. The key specifications are 0.020% max nonlinearity, 50kHz signal bandwidth, and 200µV/°C VOS drift. A power supply range of ±4.5V to ±18V and quiescent currents of ±5.0mA on V_{S1} and ±5.5mA on V_{S2} make these amplifiers ideal for a wide range of applications.

The ISO122 is available in 16-pin plastic DIP and 28lead plastic surface mount packages.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL: Transducer Isolator, Isolator for Thermocouples, RTDs, Pressure Bridges, and Flow Meters, 4mA to 20mA Loop Isolation
- GROUND LOOP ELIMINATION
- MOTOR AND SCR CONTROL
- POWER MONITORING
- PC-BASED DATA ACQUISITION
- TEST EQUIPMENT

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At T_A = +25°C , V_{S1} = V_{S2} = ± 15 V, and R_L = $2k\Omega$ unless otherwise noted.

CCENSI		THE REAL PROPERTY.	ISO122P/U			UB		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION Voltage Rated Continuous AC 60Hz 100% Test (1) Isolation Mode Rejection Barrier Impedance Leakage Current at 60Hz	1s, 5pc PD 60Hz V _{ISO} = 240Vrms	1500 2400	140 10 ¹⁴ 2 0.18	0.5	*	•	*	VAC VAC dB Ω pF μArms
GAIN Nominal Gain Gain Error Gain vs Temperature Nonlinearity ⁽²⁾	V _O = ±10V	9W0	1 ±0.05 ±10 ±0.016	±0.50 ±0.020	19	* * ±0.025	±0.050	V/V %FSR ppm/°C %FSR
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Supply Noise	RAIFILR	IMA	±20 ±200 ±2 4	±50)SI	:		mV μV/°C mV/V μV/√Hz
INPUT Voltage Range Resistance	PLICATIONS	±10	±12.5 200			ES	AUTA	V kΩ
OUTPUT Voltage Range Current Drive Capacitive Load Drive Ripple Voltage ⁽³⁾	ples, RTDs, Press	100 ^{±5}	±12.5 ±15 0.1 20	BRATIC	v-Hoin	ro+ ust Vivi sm·V00		mA
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate Settling Time 0.1%	V _O = ±10V		50 2	±10V HLEAD Sain	ON: Vo= PAND 28 d Unity	OPERATI ASTIC DI JSE Fixe	POLAR PPINI PL ASE OF I	kHz V/μs
0.01% Overload Recover Time	BASED DATA AC	G PC	350 150			noi:	onfigura	
POWER SUPPLIES Rated Voltage Voltage Range Quiescent Current: V _{S1} V _{S2}		±4.5	±15 ±5.0 ±5.5	±18 ±7.0 ±7.0	LY RAN	ASUS V8I	± of V8.	V V mA mA
TEMPERATURE RANGE Specification Operating Storage θ_{JA} θ_{JC}		-25 -25 -40	100 65	+85 +85 +85	n istlatic e modula ransmite		ing a nove	°C/W

^{*} Specification same as ISO122P/U.

NOTES: (1) Tested at 1.6 X rated, fail on 5pC partial discharge. (2) Nonlinearity is the peak deviation of the output voltage from the best-fit straight line. It is expressed as the ratio of deviation to FSR. (3) Ripple frequency is at carrier frequency (500kHz).

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

CONNECTION DIAGRAM

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO122P	16-Pin Plastic DIP	238
ISO122JP	16-Pin Plastic DIP	238
ISO122U	28-Pin Plastic SOIC	217-1
ISO122JU	28-Pin Plastic SOIC	217-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	NONLINEARITY MAX %FSR
ISO122P	Plastic DIP	±0.020
ISO122JP	Plastic DIP	±0.050
ISO122U	Plastic SOIC	±0.020
ISO122JU	Plastic SOIC	±0.050

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
V _{IN}	±100V
Continuous Isolation Voltage	1500Vrms
Junction Temperature	+150°C
Storage Temperature	+85°C
Lead Temperature (soldering, 10s)	+300°C
Output Short to Common	Continuous

THEORY OF OPERATION

The ISO122 isolation amplifier uses an input and an output section galvanically isolated by matched 1pF isolating capacitors built into the plastic package. The input is duty-cycle modulated and transmitted digitally across the barrier. The output section receives the modulated signal, converts it back to an analog voltage and removes the ripple component inherent in the demodulation. Input and output sections are fabricated, then laser trimmed for exceptional circuitry matching common to both input and output sections. The sections are then mounted on opposite ends of the package with the isolating capacitors mounted between the two sections. The transistor count of the ISO122 is 250 transistors.

MODULATOR

An input amplifier (A1, Figure 1) integrates the difference between the input current ($V_{IN}/200k\Omega$) and a switched $\pm 100\mu A$ current source. This current source is implemented by a switchable $200\mu A$ source and a fixed $100\mu A$ current sink. To understand the basic operation of the modulator, assume that $V_{IN}=0.0V$. The integrator will ramp in one direction until the comparator threshold is exceeded. The comparator and sense amp will force the current source to switch; the resultant signal is a triangular waveform with a 50% duty cycle. The internal oscillator forces the current source to switch at 500kHz. The resultant capacitor drive is a complementary duty-cycle modulation square wave.

DEMODULATOR

The sense amplifier detects the signal transitions across the capacitive barrier and drives a switched current source into integrator A2. The output stage balances the duty-cycle

modulated current against the feedback current through the $200 k\Omega$ feedback resistor, resulting in an average value at the V_{OUT} pin equal to V_{IN} . The sample and hold amplifiers in the output feedback loop serve to remove undesired ripple voltages inherent in the demodulation process.

BASIC OPERATION

SIGNAL AND SUPPLY CONNECTIONS

Each power supply pin should be bypassed with $1\mu F$ tantalum capacitors located as close to the amplifier as possible. The internal frequency of the modulator/demodulator is set at 500kHz by an internal oscillator. Therefore, if it is desired to minimize any feedthrough noise (beat frequencies) from a DC/DC converter, use a π filter on the supplies (see Figure 4). ISO122 output has a 500kHz ripple of 20mV, which can be removed with a simple two pole low-pass filter with a 100kHz cutoff using a low cost op amp. See Figure 4.

The input to the modulator is a current (set by the $200k\Omega$ integrator input resistor) that makes it possible to have an input voltage greater than the input supplies, as long as the output supply is at least $\pm 15V$. It is therefore possible when using an unregulated DC/DC converter to minimize PSR related output errors with $\pm 5V$ voltage regulators on the isolated side and still get the full $\pm 10V$ input and output swing. An example of this application is shown in Figure 10.

CARRIER FREQUENCY CONSIDERATIONS

The ISO122 amplifier transmits the signal across the isolation barrier by a 500kHz duty cycle modulation technique. For input signals having frequencies below 250kHz, this system works like any linear amplifier. But for frequencies

FIGURE 1. Block Diagram.

above 250kHz, the behavior is similar to that of a sampling amplifier. The signal response to inputs greater than 250kHz performance curve shows this behavior graphically; at input frequencies above 250kHz the device generates an output signal component of reduced magnitude at a frequency below 250kHz. This is the aliasing effect of sampling at frequencies less than 2 times the signal frequency (the Nyquist frequency). Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the aliasing go to zero.

ISOLATION MODE VOLTAGE INDUCED ERRORS

IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds 250kHz, the output also will display spurious outputs (aliasing), in a manner similar to that for $V_{IN} > 250 \text{kHz}$ and the amplifier response will be identical to that shown in the Signal Response to Inputs Greater Than 250kHz performance curve. This occurs because IMV-induced errors behave like input-referred error signals. To predict the total error, divide the isolation voltage by the IMR shown in the IMR versus Frequency curve and compute the amplifier response to this input-referred error signal from the data given in the Signal Response to Inputs Greater Than 250kHz performance curve. For example, if a 800kHz 1000Vrms IMR is present, then a total of [(-60dB) +(-30dB)] x (1000V) = 32mV error signal at 200kHz plus a 1V, 800kHz error signal will be present at the output.

HIGH IMV dV/dt ERRORS

As the IMV frequency increases and the dV/dt exceeds 1000V/µs, the sense amp may start to false trigger, and the output will display spurious errors. The common mode current being sent across the barrier by the high slew rate is the cause of the false triggering of the sense amplifier. Lowering the power supply voltages below ±15V may decrease the dV/dt to 500V/µs for typical performance.

FIGURE 2. Basic Signal and Power Connections.

HIGH VOLTAGE TESTING

Burr-Brown Corporation has adopted a partial discharge test criterion that conforms to the German VDE0884 Optocoupler Standards. This method requires the measurement of minute current pulses (<5pC) while applying 2400Vrms, 60Hz high voltage stress across every ISO122 isolation barrier. No partial discharge may be initiated to pass this test. This criterion confirms transient overvoltage (1.6 x 1500Vrms) protection without damage to the ISO122. Lifetest results verify the absence of failure under continuous rated voltage and maximum temperature.

This new test method represents the "state-of-the art" for non-destructive high voltage reliability testing. It is based on the effects of non-uniform fields that exist in heterogeneous dielectric material during barrier degradation. In the case of void non-uniformities, electric field stress begins to ionize the void region before bridging the entire high voltage barrier. The transient conduction of charge during and after the ionization can be detected externally as a burst of 0.01-0.1µs current pulses that repeat on each AC voltage cycle. The minimum AC barrier voltage that initiates partial discharge is defined as the "inception voltage." Decreasing the barrier voltage to a lower level is required before partial discharge ceases and is defined as the "extinction voltage." We have characterized and developed the package insulation processes to yield an inception voltage in excess of 2400Vrms so that transient overvoltages below this level will not damage the ISO122. The extinction voltage is above 1500Vrms so that even overvoltage induced partial discharge will cease once the barrier voltage is reduced to the 1500Vrms (rated) level. Older high voltage test methods relied on applying a large enough overvoltage (above rating) to break down marginal parts, but not so high as to damage good ones. Our new partial discharge testing gives us more confidence in barrier reliability than breakdown/no breakdown criteria.

ower Connections. FIGURE 3. Programmable-Gain Isolation Channel with Gains of 1, 10, and 100.

FIGURE 4. Optional π Filter to Minimize Power Supply Feedthrough Noise; Output Filter to Remove 500kHz Carrier Ripple. For more information concerning output filter refer to AB-023.

FIGURE 5. Battery Monitor for a 600V Battery Power System. (Derives Input Power from the Battery.)

FIGURE 6. Thermocouple Amplifier with Ground Loop Elimination, Cold Junction Compensation, and Up-scale Burn-out.

FIGURE 7. Isolated 4-20mA Instrument Loop. (RTD shown.)

FIGURE 7. Isolated 4-20mA Instrument Loop. (RTD shown.)

FIGURE 9. Three-Port, Low-Cost, Four-Channel Isolated, Data Acquisition System.

FIGURE 10. Improved PSR Using External Regulator.

FIGURE 11. Single Supply Operation of the ISO122P Isolation Amplifier. For additional information refer to AB-009.

FIGURE 12. Input-Side Powered ISO Amp. For additional information refer to AB-024.

FIGURE 13. Powered ISO Amp with Three-Port Isolation. For additional information refer to AB-024.

ISO130

High IMR, Low Cost ISOLATION AMPLIFIER

FEATURES

- HIGH ISOLATION-MODE REJECTION: 10kV/µs (min)
- LARGE SIGNAL BANDWIDTH: 85kHz (typ)
- DIFFERENTIAL INPUT/DIFFERENTIAL OUTPUT
- VOLTAGE OFFSET DRIFT vs
 TEMPERATURE: 4.6μV/°C (typ)
- OFFSET VOLTAGE 1.8mV (max)
- INPUT REFERRED NOISE: 300µVrms (typ)
- NONLINEARITY: 0.25% (max)
- SINGLE SUPPLY OPERATION
- SIGMA-DELTA A/D CONVERTER TECHNOLOGY
- WORLDWIDE SAFETY APPROVAL: UL1577 (File No. E162573), VDE0884 (File No. 85511), CSA22.2 (File No. 88324)
- AVAILABLE IN 8-PIN PLASTIC DIP and 8-PIN GULL-WING PLASTIC SURFACE MOUNT

APPLICATIONS

- MOTOR AND SCR CONTROL
- MOTOR PHASE CURRENT SENSING
- INDUSTRIAL PROCESS CONTROL: Transducer Isolator, Isolator for Thermocouples, RTDs
- GENERAL PURPOSE ANALOG SIGNAL ISOLATION
- POWER MONITORING
- GROUND LOOP ELIMINATION

DESCRIPTION

The ISO130 is a high isolation-mode rejection, isolation amplifier suited for motor control applications. Its versatile design provides the precision and stability needed to accurately monitor motor currents in highnoise motor control environments. The ISO130 can also be used for general analog signal isolation applications requiring stability and linearity under severe noise conditions.

The signal is transmitted digitally across the isolation barrier optically, using a high-speed AlGaAs LED. The remainder of the ISO130 is fabricated on 1µm CMOS IC process. A sigma-delta analog-to-digital converter, chopper stabilized amplifiers and differential input and output topologies make the isolation amplifier suitable for a variety of applications.

The ISO130 is easy to use. No external components are required for operation. The key specifications are $10kV/\mu s$ isolation-mode rejection, 85kHz large signal bandwidth, and $4.6\mu V/^{\circ}C$ V_{OS} drift. A single power supply ranging from +4.5V to +5.5V makes this amplifier ideal for low power isolation applications.

The ISO130 is available in 8-pin plastic DIP and 8-pin plastic gull-wing surface mount packages.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At V_{IN} , V_{IN} = 0V, T_A = 25°C, V_{S1} , V_{S2} = 5.0V unless otherwise noted.

		190130P//S0130 180130U/180130			0.55	0130P/IS01 0130U/IS01		
PARAMETER XAM 9YT ISOLATION CHARACTERISTICS		9YT	1135	CONDITIONS	CH	CHARACTERISTIC		
Installation Classification	0.0		3.1-	As Per VDE0109/12.83				nitial Offset Volta
Table I								vs Temperature
Rated Mains \	/oltage ≤ 3	300Vrms			1	I-IV		vs Vs
Rated Mains \	/oltage ≤ 6	600Vrms				1-111		saV av
Climatic Classification			-			40/85/21		Power Supply 9
Pollution Degree(1)				As Per VDE0109/12.83	1MHz Square	2		and V _{sp} Tage
Maximum Working Insu	lation Volta	age (V _{IORM})		THZ to 100kHz	0	600		Vrms
Side A to Side B Test \	oltage, Me	ethod b (V _{PR})(9)	905-					ndut Voltage Rail
Partial Discharge < 5	C			$V_{PR} = 1.6 \times V_{IORM}, t_{P} = 1s$	lipping	960		Vrms
Side A to Side B Test \	oltage, Me	ethod a (V _{PR})(9)		Type and Sample Test				nitial Input Blas (
Partial Discharge < 5	C			$V_{PR} = 1.2 \times V_{IORM}, t_{P} = 60s$		720		Vrms
Highest Allowable Over	voltage (V-	TR)(9)	Tr	ansient Overvoltage, t _{TR} = 10s		6000		V _{PEAK}
Safety-Limiting Values								vs Temperature
Case Temperature (T	SI)					175		Ocumo Ocumo
Input Power (PSI (INPU	n)					80		mW _{min}
Output Power (PSI (OU	TPUT)					250		mW laine
INSULATION RELATE	SPECIFI	ICATIONS	7.61	Vrri00S > +unV > Vi	-200		00	ISDIBOPISOTS
Min. External Air Gap (clearance)		7.85		190S-	> 7		OZI S mm OZI
Min. External Tracking		page)			F. B. S.	8		mm nist
Internal Isolation Gap (d	learance)	1.5				0.5		mm me
Tracking Resistance (C	TI)					175		V / has
Isolation Group				per VDE0109		III a		3ain No linearty
	0.38			25°C, V _{ISO} = 500V	1 3 7 5 8	≥ 1011		Ω

SPECIFICATIONS

ISOLATION SPECIFICATIONS

At $V_{IN}+$, $V_{IN}-=0V$, $T_A=25$ °C, V_{S1} , $V_{S2}=5.0V$, unless otherwise noted.

			ISO130P, ISO130PB ISO130U, ISO130UP			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
ISOLATION	No. of the last of			13000		
Input-Output Surge Withstand Voltage (8, 9),	t = 1 _{MIN} , RH ≤ 50%			tolens - a	PUT SENT DESCRIPTION	
(In accordance with UL1577)	7C to 85°C	3750			Vrms	
Barrier Impedance(9)	3-68 01 33			20 1 4 5 6	87010	
Resistance	V _{ISO} = 500VDC		1013		Ω	
Capacitance	f = 1MHz		0.7		pF	
Isolation Mode Voltage Errors					WER SUPPLE	
Rising Edge Transient Immunity	V _{IM} = 1kV, ∂ V _{OUT} < 50mV	10	25		kV/μs	
Falling Edge Transient Immunity	V _{IM} = 1kV, ∂ V _{OUT} < 50mV	10	15		kV/μs	
Isolation Mode Rejection Ratio(2)			> 140		dB	

	0130P/ISO130PB	(3) (5)		ISO130P/ISO130PB ISO130U/ISO130UB		
PARAMETER	ARACYERISTIC	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT					DITRIRETOAR	OLATION CHA
Initial Offset Voltage			-1.8	-0.9	0.0	mV
vs Temperature			1.0	4.6	0.0	μV/°C
vs V _{S1}	VH			30	z egsfoV anie	
	111-2				100	
vs V _{S2}				-40	a egistoV ania	μν/ν
Power Supply Rejection;	V _{S1}				HSI	EDINGERIO DESINO
and V _{S2} Together		1MHz Square Wave, 5ns Rise/Fall Time	18	5		mV/V
Noise	998	0.1Hz to 100kHz		300	toV nadalushi i	μVrms
Input Voltage Range			-200	Mary V) of borto	200	S es 8 mV
Maximum Input Voltage Ra		Clipping at a street amount a But	Vog to	±300	3 x 5 p C	mV
Initial Input Bias Current(3)			g T	-670	Feat Voltage, 4	8 ebte nAA
vs Temperature			Visit or	3	3 < 5gC	nA/°C
Input Resistance(3)				530	Oversonesce (V	kΩ
vs Temperature				0.38	280	%/°C
Common-Mode Rejection	Ratio(4)			72	A.T. In	dB
	08		-	/ =	100 17 191	and the same of th
GAIN ⁽⁵⁾					(man)	A MARKET LANGE
Initial Gain	uva				(misme) is	A SEMBLE SUBJUST
ISO130P/ISO130U		$-200 \text{mV} < \text{V}_{\text{IN}} + < 200 \text{mV}$	7.61	8.00	8.40	V/V
ISO130PB/ISO130UB	7 4	$-200 \text{mV} < \text{V}_{\text{IN}} + < 200 \text{mV}$	7.85	7.93	8.01	V/V
Gain vs Temperature				10	ideg Path (cm)	ppm/°C
Gain vs V _{S1}				2.1	spherento) dal	ppm/mV
Gain vs V _{S2}				-0.6	(ITO) at	ppm/mV
Gain Nonlinearity			1			manufa motsain
for -200mV < V _{II}	+ < 200mV		10	0.2	0.35	%
for -100mV < V _{II}				0.1	0.25	%
vs Temperature ⁽⁶⁾	41 2 1001114	$-200 \text{mV} < \text{V}_{\text{IN}} + < 200 \text{mV}$		-0.001	0.20	% pts/°C
vs V _{S1} ⁽⁶⁾		$-200 \text{mV} < V_{\text{IN}} + < 200 \text{mV}$		-0.005		% pts/V
vs V _{S2} (6)		$-200\text{mV} < V_{\text{IN}} + < 200\text{mV}$		-0.003		% pts/V
		-2001114 < 41N+ < 2001114		-0.007		% pts/v
OUTPUT						
Voltage Range						100
High		$V_{IN}+ = +500mV$		3.61		V
Low		$V_{IN}+=-500mV$	18. 48. 4	1.18	DITAG	V
Common-Mode Voltage		-40° C < T _A < 85°C, 4.5V < V _{S1} < 5.5V	2.2	2.39	2.6	V
Current Drive ⁽⁷⁾				stucm	a highhaid	mA mA
Short-Circuit Current		V _{OUT} = 0V or V _{OUT} = V _{S2}		9.3	MOUNTAIN	mA
Output Resistance		beto	n selventio ass	V0 41 V	W O'BS - T	νο - Ω
vs Temperature				0.6		%/°C
FREQUENCY RESPONSE	1307. (SQ130PB	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	-	0.0		707 0
	SUBSTIGST USE					
Bandwidth		1000 1 0000				
-3dB MAJ XAI	M 9YY	-40°C to 85°C	50	85	E-10.11 ba-2-11	kHz
-45°				35		kHz
Rise/Fall Time (10% - 90%	6)	-40°C to 85°C		4.3	6.6	μs
Propagation Delay		0876			PC Cart II I rolls	in accordance of
to 10%		-40°C to 85°C		2.0	3.3	μs
to 50%	1013	-40°C to 85°C		3.4	5.6	μѕ
to 90%		-40°C to 85°C		6.3	9.9	μѕ
POWER SUPPLIES						40/18/10/2013
Rated Voltage			1		Itage Errors	DV ebent notale
Voltage Range	25			5.0	finummit trisian	ert spie Vone A
Quiescent Current	1 31		4.5		5.5	NT aghs Velta
	90.0	200-W 4000 T 0500 45W W	5.5)/	40.7	House notice	eri epokil nolsate
V _{S1}	V _{IN} +	= 200mV, -40°C < T _A < 85°C, 4.5V < V _{S1}	< 5.5V	10.7	15.5	mA
V _{S2}		-40°C < T _A < 85°C, 4.5V < V _{S1} < 5.5V	-	11.6	15.5	mA
TEMPERATURE RANGE						
Specification			-40		85	°C
Operating			-40	1 2 2 3	100	°C
Storage			-55		125	°C
θ _{C-A}			Line of	86		°C/W
	Carlos and the same of the same					

NOTES: (1) This part may also be used in Pollution Degree 3 environments where the rated mains voltage is 300Vrms (per DIN VDE0109/12.83). (2) IMRR = 20 log $(\partial V_{IN}/\partial V_{ISO})$. (3) Time averaged value. (4) $V_{IN+} = V_{IN-} = V_{CM-}$ CMRR = 20 log $(\partial V_{CM}/\partial V_{OS})$. (5) The slope of the best-fit line of $(V_{OUT+} - V_{OUT-})$ vs $(V_{IN+} - V_{IN-})$. (6) Change in nonlinearity vs temperature or supply voltage expressed in number of percentage points per °C or volt. (7) For best offset voltage performance. (8) For devices with minimum V_{ISO} specified at 3750Vrms, each isolation amplifier is proof-tested by applying an insulation test voltage \geq 4500Vrms for 1 second (leakage current < 5 μ A). This specification does not guarantee continuous operation. (9) Pins 1-4 are shorted together and pins 5-8 are shorted together for this test.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Supply voltages. vS1, vS2
Steady-State Input Voltage2V to V _{S1} + 0.5V
2 Second Transient Input Voltage6.0V
Output Voltages: Vour+, Vour0.5V to Vs2 + 0.5V
Lead Temperature Solder (1.6mm below seating plane, 10s) 260°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO130P	8-Pin Plastic DIP	006-3
ISO130PB	8-Pin Plastic DIP	006-3
ISO130U	8-Pin Gull-Wing Plastic Surface Mount	006-2
ISO130UB	8-Pin Gull-Wing Plastic Surface Mount	006-2

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	GAIN ERROR (MAX)
ISO130P	8-Pin Plastic DIP	±5% (mean value = 8.00)
ISO130PB	8-Pin Plastic DIP	±1% (mean value = 7.93)
	8-Pin Gull-Wing Plastic Surface Mount 8-Pin Gull-Wing Plastic Surface Mount	

150130

L.

SOLATION PRODUCTS

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

At $T_A = 25$ °C, V_{S1} , $V_{S2} = 5.0V_{DC}$, $V_{IN}+$, $V_{IN}-=0V$ unless otherwise noted.

5

SOLATION PRODUCTS

For Immediate Assistance, Contact Your Local Salesperson

THEORY OF OPERATION

The ISO130 isolation amplifier (Figure 1) uses an input and output section galvanically isolated by a high speed optical barrier built into the plastic package. The input signal is converted to a time averaged serial bit stream by use of a sigma-delta analog-to-digital converter and then optically transmitted digitally across the isolation barrier. The output section receives the digital signal and converts it to an analog voltage, which is then filtered to produce the final output signal.

Internal amplifiers are chopper-stabilized to help maintain device accuracy over time and temperature. The encoder circuit eliminates the effects of pulse-width distortion of the optically transmitted data by generating one pulse for every edge of the converter data to be transmitted. This coding scheme reduces the effects of the non-ideal characteristics of the LED, such as non-linearity and drift over time and temperature.

ISOLATION AND INSULATION SPECIFICATIONS

The performance of the isolation barrier of the ISO130 is specified with three specifications, two of which require high voltage testing. In accordance with UL1577, the barrier integrity of each isolation amplifier is proof-tested by applying an insulation test voltage greater than or equal to

4500Vrms for one second. This is to guarantee the isolation amplifier will survive a 3750V transient voltage. The barrier leakage current test limit is 5µA. Pins 1-4 are shorted together and pins 5-8 are shorted together during the test.

This test is followed by the partial discharge isolation voltage test as specified in the German VDE0884. This method requires the measurement of small current pulses (<5pico Colomb) while applying 960Vrms across every ISO130 isolation barrier. This guarantees 600Vrms continuous isolation ($V_{\rm ISO}$) voltage. No partial discharge may be initiated to pass this test. This criterion confirms transient overvoltage (1.6 x 600Vrms) protection without damage to the ISO130.

This test method represents "state of the art" for nondestructive high voltage reliability testing. It is based on the effects of nonuniform fields that exist in heterogeneous dielectric material during barrier degradation. In the case of void nonuniformities, electric field stress begins to ionize the void region before bridging the entire high voltage barrier. The transient conduction of charge during and after the ionization can be detected externally as a burst of 0.01 to 0.1µs current pulses that repeat on each AC voltage cycle. The minimum AC barrier voltage that initiates partial discharge is defined as the "inception voltage". Decreasing the barrier voltage to a lower level is required before partial discharge ceases and is defined as the "extinction voltage".

FIGURE 1. Block Diagram of ISO130 Isolation Amplifier.

FIGURE 2. Isolation Mode Rejection and Transient Immunity Test Circuit.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

Both tests are 100% production tests. The partial discharge testing of the ISO130 is performed after the UL1577 test criterion giving more confidence in the barrier reliability.

The third guaranteed isolation specification for the ISO130 is Transient Immunity (TI), which specifies the minimum rate of rise or fall of an isolation mode noise signal at which small output perturbations begin to occur. An isolation mode signal is defined as a signal appearing between the isolated grounds, GND₁ and GND₂. Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds. Under certain circumstances this voltage across the isolation barrier can induce errors at the output of the isolation amplifier. Figure 2 shows the Transient Immunity Test Circuit for the ISO130. In this test circuit a pulse generator is placed between the isolated grounds (GND₁ and GND₂). The inputs of the ISO130 are both tied to GND₁. A difference amplifier is used

FIGURE 3. Typical Transient Immunity Failure Waveform.

to gain the output signal of the ISO130. A Transient Immunity failure is determined when the output of the ISO130 changes by more than 50mV as illustrated in Figure 3.

Finally, Isolation Mode Rejection Ratio (typically >140dB for the ISO130) is defined as the ratio of differential signal gain to the isolation mode gain at 60Hz. The magnitude of the 60Hz voltage across the isolation barrier during this test is not so large as to cause Transient Immunity errors. The Isolation Mode Rejection Ratio should not be confused with the Common Mode Rejection Ratio. The Common Mode Rejection Ratio defines the relationship of differential signal gain (signal applied differentially between pins 2 and 3) to the common mode gain (input pins tied together and the signal applied to both inputs at the same time).

APPLICATIONS INFORMATION

APPLICATION CIRCUITS

Figure 4 illustrates a typical application for the ISO130. In this motor control circuit, the current that is sent to the motor is sensed by the resistor, $R_{\rm SENSE}.$ The voltage drop across this resistor is gained up by the ISO130 and then transmitted across the isolation barrier. A difference amplifier, $A_2,$ is used to change the differential output signal of the ISO130 to a single ended signal. This voltage information is then sent to the control circuitry of the motor. The ISO130 is particularly well suited for this application because of its superior Transient Immunity (10kV/ μs , max) and its excellent immunity to RF noise.

FIGURE 4. ISO130 Used to Monitor Motor Current.

value of resistance (to minimize power dissipation), a fairly low inductance (to accurately reflect high-frequency signal components), and a reasonably tight tolerance (to maintain overall circuit accuracy).

LAYOUT SUGGESTIONS

- 1. Bypass capacitors should be located as close as possible to the input and output power supply pins.
- 2. In some applications, offset voltage can be reduced by placing a 0.01µF capacitor from pin 2 and/or pin 3 to GND₁. This noise can be caused by the combination of long input leads and the switched-capacitor nature of the input circuit. This capacitor(s) should be placed as close to the isolation amplifier as possible.
- 3. The trace lengths at input should be kept short or a twisted wire pair should be used to minimize EMI and inductance effects. For optimum performance, the input signal should be as close to the input pins a possible.
- 4. A maximum distance between the input and output sides of the isolation amplifier should be maintained in the layout in order to minimize stray capacitance. This practice will help obtain optimal Isolation Mode performance. Ground planes should not pass below the device on the sent to the control circuitry of the motor. The 150 BOA
- 5. Care should be taken in selecting isolated power supplies or regulators. The ISO130 can be affected by changes in the power supply voltages. Carefully regulated power supplies are recommended.
- 6. For improved nonlinearity and nonlinearity temperature drift performance, pin 3 should be tied to GND, and the input voltage range of pin 2 should be less than 100mV.

Dual, Isolated, Bi-Directional DIGITAL COUPLER

FEATURES

- REPLACES HIGH-PERFORMANCE **OPTOCOUPLERS**
- DATA RATE: 80M Baud, typ
- LOW POWER CONSUMPTION: 25mW Per Channel, max
- TWO CHANNELS, EACH BI-DIRECTIONAL, PROGRAMMABLE BY USER
- PARTIAL DISCHARGE TESTED: 2400Vrms
- CREEPAGE DISTANCE OF 16.5mm (DIP)
- LOW COST PER CHANNEL
- PLASTIC DIP AND SOIC PACKAGES

APPLICATIONS

- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- ISOLATED UART INTERFACE
- **MULTIPLEXED DATA TRANSMISSION**
- ISOLATED PARALLEL TO SERIAL INTERFACE
- TEST EQUIPMENT
- MICROPROCESSOR SYSTEM INTERFACE
- ISOLATED LINE RECEIVER
- **GROUND LOOP ELIMINATION**

DESCRIPTION

The ISO150 is a two-channel, galvanically isolated data coupler capable of data rates of 80MBaud, typical. Each channel can be individually programmed to transmit data in either direction.

Data is transmitted across the isolation barrier by coupling complementary pulses through high voltage 0.4pF capacitors. Receiver circuitry restores the pulses to standard logic levels. Differential signal transmission rejects isolation-mode voltage transients up to 1.6kV/µs.

ISO150 avoids the problems commonly associated with optocouplers. Optically isolated couplers require high current pulses and allowance must be made for LED aging. The ISO150's Bi-CMOS circuitry operates at 25mW per channel.

ISO150 is available in a 24-pin DIP package and in a 28-lead SOIC. Both are specified for operation from -40°C to 85°C.

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

At TA = +25°C and VS = +5V, unless otherwise noted.

			CO 1500			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS	
ISOLATION PARAMETERS	V 192			I Committee of the	N H	
Rated Voltage, Continuous	60Hz	1500		Parent de Contrate	Vrms	
Partial Discharge, 100% Test(1)	1s, 5pC	2400			Vrms	
Creepage Distance (External)						
DIP—"P" Package	A THE RESERVE OF THE PARTY OF T	CONTRACTOR VICE OF	16	and the second second	mm	
SOIC—"U" Package			7.2		mm	
Internal Isolation Distance	. Bi-Directio	hotolo	0.10		mm	
Isolation Voltage Transient Immunity(2)	MATERIAL REPORT OF THE PERSON	MANDIM	1.6		kV/μs	
Barrier Impedance	AND THE RESERVE AND AND	0.0000000	>1014 7		Ω pF	
Leakage Current	240Vrms, 60Hz	LAHE	0.6		μArms	
DC PARAMETERS			GILD TWO COLUMNS WAS AND A PARTY OF THE	Contractor Statement	er er er en en er	
Logic Output Voltage, High, V _{OH}	I _{OH} = 6mA	V _S -1		Vs	V	
Low, Vol	I _{OL} = 6mA	0		0.4	V	
Logic Output Short-Circuit Current	Source or Sink		30	office other arrows to the states	mA	
Logic Input Voltage, High(3)	DITADLISEA	2		Vs	V	
Low ⁽³⁾		0		0.8	V	
Logic Input Capacitance	CA SOUR LATINETY AS	50	MAMAC SARA	HOLK STOR IS	pF	
Logic Input Current	FALIDSI JATIDIQ W	20	<1	BENIL GRANT.	nA	
Power Supply Voltage Range(3)	CONVERSION	3	5	5.5	90 V	
Power Supply Current ⁽⁴⁾	6 ISOLATED UAR		end house t	100 AT	ACT 60	
Transmit Mode			0.001	100	μА	
ATA TRANSMISSION	50MBaud		14	N POWER CO	mA mA	
Receive Mode	DC		7.2 16	W PellChan	mA	
ILLEL TO SERIAL	50MBaud		16	110000 10 4-11X	mA	
AC PARAMETERS	MIEMPAGE	HOMOHOL	EACH BI-DIN	O CHANNELS	WI .	
Data Rate, Maximum ⁽⁵⁾	C _L = 50pF	50	80	DGRAMMABL	MBaud	
Data Rate, Minimum		DC	GETESTED	HORIZO JAITE	ACL IN	
Propagation Time ⁽⁶⁾	C _L = 50pF	20		10	ns	
Propagation Delay Skew ⁽⁷⁾	C _L = 50pF	(PIP)	dar = 0.5 OMA	TRICE 2 ASS	ns	
Pulse Width Distortion ⁽⁸⁾	C _L = 50pF		110	0	ns	
Output Rise/Fall Time, 10% to 90%	GL = 50pF		9 44	759 14 00 V	ns	
Mode Switching Time		2204	D SO E PACIO	AS OUR OUTS!	ns	
Receive-to-Transmit		O-May P		PER THE CITY CO		
Transmit-to-Receive			75		ns	
TEMPERATURE RANGE			300	S. Francis Const.	1.755.65	
Operating Range		-40	100	85	°C	
Storage		-40		125	°C	
Thermal Resistance, θ _{JA}	ISO150 avoids the pri	eally isolated	Larley 75 magno-	Ol50 is a two	°C/W	

NOTES: (1) All devices receive a 1s test. Failure criterion is ≥5 pulses of ≥5pC. (2) The voltage rate-of-change across the isolation barrier that can be sustained without data errors. (3) Logic inputs are HCT-type and thresholds are a function of power supply voltage with approximately 0.4V hystersis—see text. (4) Supply current measured with both tranceivers set for the indicated mode. Supply current varies with data rate—see typical curves. (5) Calculated from the maximum Pulse Width Distortion (PWD), where Data Rate = 0.3/PWD. (6) Propagation time measured from V_{IN} = 1.5V to V_O = 2.5V. (7) The difference in propagation time of channel A and channel B in any combination of transmission directions. (8) The difference between progagation time of a rising edge and a falling edge.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Storage Temperature	40°C to +125°C
Supply Voltages, V _S	
Transmitter Input Voltage, V ₁	0.5 to V _S + 0.5V
Receiver Output Voltage, Vo	0.5 to V _S + 0.5V
R/T _x Inputs	0.5 to V _S + 0.5V
Isolation Voltage dV/dt, V _{ISO}	
D _x Short to Ground	Continuous
Junction Temperature, T.	175°C
Lead Temperature (soldering, 10s)	260°C
1.6mm below seating plane (DIP package)	300°C

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
ISO150AP	24-Pin Single-Wide DIP	243-1
ISO150AU	28-Lead SOIC	217-2

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

PIN DESCRIPTIONS

NAME	FUNCTION			
D _{1A}	Data in or data out for transceiver 1A. R/T _{1A} held low makes D _{1A} an input pin.			
R/T _{1A}	Receive/Transmit switch controlling transceiver 1A.			
V _{SA}	+5V supply pin for side A which powers transceivers 1A and 2A.			
GB	Ground pin for transceivers 1B and 2B.			
R/T _{1B}	Receive/Transmit switch controlling transceiver 1B.			
D _{1B}	Data in or data out for transceiver 1B. R/T _{1B} held low makes D _{1B} an input pin.			
D _{2B}	Data in or data out for transceiver 2B. \overline{R}/T_{2B} held low makes D_{2B} an input pin.			
R/T _{2B}	Receive/Transmit switch controlling D ₂₈ .			
V_{SB}	+5V supply pin for side B which powers transceivers 1B and 2B.			
GA	Ground pin for transceivers 1A and 2A.			
R/T _{2A}	Receive/Transmit switch controlling transceiver 2A.			
D _{2A}	Data in or data out for transceiver 2A. R/T _{2A} held low makes D _{2A} in input pin.			

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Supply Voltage, V_S (V)

Supply Voltage, V_{SS} (V)

TYPICAL PERFORMANCE CURVES (CONT) MAMPORATE

At T_A = +25°C and V_o = +5V, unless otherwise noted.

ISOLATION BARRIER

Data is transmitted by coupling complementary logic pulses to the receiver through two 0.4pF capacitors. These capacitors are built into the ISO150 package with Faraday shielding to guard against false triggering by external electrostatic fields.

The integrity of the isolation barrier of the ISO150 is verified by partial discharge testing. 2400Vrms, 60Hz, is applied across the barrier for one second while measuring any tiny discharge currents that may flow through the barrier. These current pulses are produced by localized ionization within the barrier. This is the most sensitive and reliable indicator of barrier integrity and longevity, and does not damage the barrier. A device fails the test if five or more current pulses of 5pC or greater are detected.

Conventional isolation barrier testing applies test voltage far in excess of the rated voltage to catastrophically break down a marginal device. A device that passes the test may be weakened, and lead to premature failure.

APPLICATIONS INFORMATION

Figure 1 shows the ISO150 connected for basic operation. Channel 1 is configured to transmit data from side B to A. Channel 2 is set for transmission from side A to B. The R/\overline{T} pins for each of the four transceivers are shown connected to the required logic level for the transmission direction shown. The transmission direction can be controlled by logic signals applied to the R/\overline{T} pins. Channel 1 and 2 can be independently controlled for the desired transmission direction.

FIGURE 1. Basic Operation Diagram.

LOGIC LEVELS

A single pin serves as a data input or output, depending on the mode selected. Logic inputs are CMOS with thresholds set for TTL compatibility. The logic threshold is approximately 1.3V with 5V supplies and with approximately 400mV of hysteresis. Input logic thresholds vary with the power supply voltage. Drive the logic inputs with signals that swing the full logic voltage swing. The ISO150 will use somewhat greater quiescent current if logic inputs do not swing within 0.5V of the power supply rails.

In receive mode, the data output can drive 15 standard LS-TTL loads. It will also drive CMOS loads. The output drive circuits are CMOS.

POWER SUPPLY

Separate, isolated power supplies must be connected to side A and side B to provide galvanic isolation. Nominal rated supply voltage is 5V. Operation extends from 3V to 5.5V. Power supplies should be bypassed close to the device pins on both sides of the isolation barrier.

The V_S pin for each side powers the transceivers for both channel 1 and 2. The specified supply current is the total of both transceivers on one side, both operating in the indicated mode. Supply current for one transceiver in transmit mode and one in receive mode can be estimated by averaging the specifications for transmit and receive operation. Supply current varies with the data transmission rate—see typical curves.

POWER-UP STATE

The ISO150 transmits information across the barrier only when the input-side data changes logic state. When a transceiver is first programmed for receive mode, or is powered-up in receive mode, its output is initialized "high". Subsequent changes of data applied to the input side will cause the output to properly reflect the input side data.

SIGNAL LOSS

The ISO150's differential-mode signal transmission and careful receiver design make it highly immune to voltage across the isolation barrier (isolation-mode voltage). Rapidly changing isolation-mode voltage can cause data errors. As the rate of change of isolation voltage is increased, there is a very sudden increase in data errors. Approximately 50% of ISO150s will begin to produce data errors with isolation-mode transients of $1.6 \text{kV/}\mu\text{s}$. This may occur as low as $500 \text{V/}\mu\text{s}$ in some devices. In comparison, a 1000 Vrms, 60 Hz isolation-mode voltage has a rate of change of approximately $0.5 \text{V/}\mu\text{s}$.

Still, some applications with large, noisy isolation-mode voltage can produce data errors by causing the receiver output to change states. After a data error, subsequent changes in input data will produce correct output data.

PROPAGATION DELAY AND SKEW

Logic transitions are delayed approximately 27ns through the ISO150. Some applications are sensitive to data skew—the difference in propagation delay between channel 1 and channel 2. Skew is less than 2ns between channel 1 and channel 2. Applications using more than one ISO150 must allow for somewhat greater skew from device to device. Since all devices are tested for delay times of 20ns min to 40ns max, 20ns is the largest device-to-device data skew.

MODE CHANGES

The transmission direction of a channel can be changed "on the fly" by reversing the logic levels at the channel's R/T pins on both side A and side B. Approximately 75ns after the transceiver is programmed to receive mode its output is initialized "high", and will respond to subsequent input-side changes in data.

STANDBY MODE

Quiescent current of each transceiver circuit is very low in transmit mode when input data is not changing (1nA typical). To conserve power when data transmission is not required, program both side A and B transceivers for transmit mode. Input data applied to either transceiver is ignored by the other side. High speed data applied to either transceiver will increase quiescent current.

CIRCUIT LAYOUT

The high speed of the ISO150 and its isolation barrier require careful circuit layout. Use good high speed logic layout techniques for the input and output data lines. Power supplies should be bypassed close to the device pins on both sides of the isolation barrier. Use low inductance connections. Ground planes are recommended.

Maintain spacing between side 1 and side 2 circuitry equal or greater than the spacing between the missing pins of the ISO150 (approximately 16mm for the DIP version). Sockets are not recommended.

FIGURE 2. Isolated RS-485 Interface.

CIRCUIT LAYOUT

the mgn speed of me 1501.50 and its isotation earner require careful circuit layout. Use good high speed logic layout techniques for the input and output data lines. Power supplies should be bypassed close to the device pins on both sides of the isolation bearier. Use low inductance connections. Ground planes are recommended.

Maintain spacing between side 1 and side 2 circuity equal or greater than the spacing between the missing pins of the ISO (approximately 16mm for the DIP version). Socious

nd cae in receive mode can be estimated by averaging inc perifications for transmit and receive operation. Supply urrent varies with the data transmission rate—see typical saves.

POWER-UP STATE

The ISO150 transmire information errors the barrier only when it be input-side data changes logic state. When a transceiver is first programmed for receive mode, or is powered up in receive mode, its output is initialized "high". Subsequent changes of data applied to the input side will cause the output to properly reflect the input side data.

PRO LIAMOR

The ISO150's differential-mode signal transmission and careful receiver design make it highly immune to voltage cares the isolation burrier (isolation-mode voltage can chase data errors. As changing isolation-mode voltage as chase data errors. As the rare of change of isolation voltage is increased, there is a very sudden increase in data errors. Approximately 50% of ISO150s will begin to produce data errors with isolation mode transients of 1.6kV/ss. This may occur as low as 500 V/ss in some devices. In comparison, a 1000 V/ms, 60Hz isolation-mode voltage has a rate of change of approximately 0.5V/ss.

Sidl, some applications with large, noisy isolation-mode voltage can produce data errors by causing the receiver output to change states. After a data error, subsequent changes in those data will produce correct output data.

ISO164 ISO174

Precision, Isolated PROGRAMMABLE GAIN AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
 100% TESTED FOR PARTIAL DISCHARGE
- PROGRAMMABLE GAINS OF 1, 10, 100
- HIGH IMR: 115dB at 50Hz
- LOW NONLINEARITY: ±0.01%
- LOW INPUT BIAS CURRENT: ±5nA max
- INPUTS PROTECTED TO ±40V
- BIPOLAR OPERATION: Vo = ±10V
- SYNCHRONIZATION CAPABILITY
- 24-PIN PLASTIC DIP: 0.6" Wide

DESCRIPTION

ISO164 and ISO174 are PGA input isolation amplifiers incorporating a novel duty cycle modulation-demodulation technique which provides excellent accuracy. Internal input protection can withstand up to ±40V differential inputs without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. Both the amplifier and barrier capacitors are housed in a plastic DIP. ISO164 and ISO174 differ in frequency response and linearity.

These amplifiers are easy to use. No external components are required. A power supply range of $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$ makes these amplifiers ideal for a wide range of applications.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer Isolator, Thermocouple
 Isolator, RTD Isolator, Pressure Bridge
 Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- BIOMEDICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- POWER MONITORING
- GROUND LOOP ELIMINATION

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS MOITARUD PHOD MIS

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$, unless otherwise noted.

24 A1	Very I Land	I I way		ISO164P			ISO174P		
PARAMETER 0A 22	CONDITION	NS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION ⁽¹⁾ Voltage Rated Continuous: AC 100% Test (AC 50Hz) Isolation-Mode Rejection AC 50Hz Barrier Impedance Leakage Current	T _{MIN} to T _M 1s; Partial Dischar 1500Vrms VISO = 240Vrms	ge ≤ 5pC	1500 2500	115 10 ¹⁴ 10 0.8	ounitre0	1500 2500	115 10 ¹⁴ 10 0.8	emperature imperature serature (sol art Duration	Vrms Vrms dB Ω pF μArms
GAIN Gain Error Gain vs Temperature	G = 1 G = 10 G = 100 If G = 1 G = 10 G = 10 G = 10 G = 10 G = 10		V own ith ith	±12.5 ±12.5	±0.3 ±0.3 ±0.052 ±0.054	S I A damaged damaged circ in ohr an cause	±0.06 ±42.5 ±42.5 ±42.5 ±0.04 ±0.04	±0.3 ±0.3 ±0.102 ±0.104	% ppm/°C ppm/°C ppm/°C % % %
INPUT OFFSET VOLTAGE Initial Offset	E INFORMATION	PACKAGI	-si ata		G		ange from	$0.125 + \frac{101}{G}$	o mV
vs Temperature vs Supply CMRR	G = 1 DC, G = 1 DC, G = 1		lis 190	±155	device a	damagi ausc the	±505 2 90		μV/°C mV/V dB
INPUT Voltage Range Bias Current vs Temperature Offset Current vs Temperature			±10.0	±8 ±8	±5 ±5	±10.0	±8	±5 ±5	V nA pA/°C nA pA/°C
OUTPUT Voltage Range Current Drive Capacitive Load Drive Ripple Voltage	PACKAGE 24-Pin Plastic LIP 24-Pin Plastic CIP	MODEL ISO164P ISO174P	±10 ±5	0.1		±10 ±5	0.1		V mA μF mVp-p
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate	100mVrms, G 100mVrms, G 100mVrms, G V _O = ±10V, G	= 10 = 100	BBVE	6 6 6 0.7	ANC	MRO	60 60 10 0.7	CAL	kHz kHz kHz V/µs
POWER SUPPLIES Rated Voltage Voltage Range Quiescent Current V _{S1} V _{S2}	0.0380		±4.5	15	±18 ±15 ±7.5	±4.5	15	±18 ±15 ±7.5	V V mA mA
TEMPERATURE RANGE Operating Storage		00	-40 -40		85 125	-40 -40	ifi Od ×4M.	85 125	°C

NOTE: (1) All devices receive a 1s test. Failure criterion is \geq 5 pulses of \geq 5pc.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

V _{IN} , Analog Input Voltage Range	±40V
External Oscillator Input	
Signal Common 1 to Ground 1	
Signal Common 2 to Ground 2	±1V
Continuous Isolation Voltage	1500Vrms
IMV, dv/dt	20kV/μs
Junction Temperature	150°C
Storage Temperature	40°C to 125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Duration	. Continuous to Common

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE INFORMATION

MODEL PACKAGE		PACKAGE DRAWING NUMBER ⁽¹⁾
ISO164P	24-Pin Plastic DIP	167-1
ISO174P	24-Pin Plastic DIP	167-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	BANDWIDTH			
ISO164P	24-Pin Plastic DIP	6kHz			
ISO174P	24-Pin Plastic DIP	60kHz			

TYPICAL PERFORMANCE CURVES

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$, unless otherwise noted.

1500 Vrms

100

1k

Frequency (Hz)

10k

100k

1M

100mA

10mA

1mA

100µA

10μΑ

1μΑ

10

0.1μΑ

Leakage Current (rms)

ISOLATION LEAKAGE CURRENT vs FREQUENCY

PULSE RESPONSE ISO174 (10kHz) 15 10 5 0

STEP RESPONSE ISO164

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) ON AMPROPRES JACISTYT

At T_A = +25°C, V_{S1} = V_{S2} = ± 15 V, and R_L = 2k Ω , unless otherwise noted.

BASIC OPERATION

ISO164 and ISO174 are comprised of a precision programmable gain amplifier followed by an isolation amplifier. The input and output isolation sections are galvanically isolated by matched and EMI shielded capacitors.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows power and signal connections. Each power supply pin should be bypassed with a 1 μ F tantalum capacitor located as close to the amplifier as possible. All ground connections should be run independently to a common point. Signal Common on both input and output sections provide a high-impedance point for sensing signal ground in noisy applications. Com 1 and Com 2 must have a path to ground for bias current return and should be maintained within ± 1 V of GND 1 and GND 2 respectively.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input circuitry of the ISO164/174 is approximately ±12.7V (or 2.3V from the power supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the internal amplifiers. Thus, the linear common-mode range is related to the output voltage of the complete input amplifier—see performance curves "Input Common-Mode Range vs Output Voltage."

A combination of common-mode and differential input voltage can cause the output voltage of the internal amplifiers to saturate. For applications where input common-mode range must be maximized, limit the output voltage swing by selecting a lower gain of the programmable-gain input.

Input-overload can produce an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will obviously exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the programmablegain amplifier will be near 0V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the programmable-gain amplifiers are individually protected for voltages up to ±40V. For example, a condition of +40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The inputs are protected even if no power supply is present.

SYNCHRONIZED OPERATION

ISO164 and ISO174 can be synchronized to an external signal source. This capability is useful in eliminating troublesome beat frequencies in multichannel systems and in rejecting AC signals and their harmonics. To use this feature, an external signal must be applied to the Ext Osc pin. ISO164 can be synchronized over the 100kHz to 200kHz range and ISO174 can be synchronized over the 400kHz to 700kHz range.

FIGURE 1. Basic Connections.

directly with a ±3V to ±5V sine or 25% to 75% duty-cycle triangle wave and the ISO amp's internal modulator/demodulator circuitry will synchronize to the signal.

ISO174 can also be synchronized to a 400kHz to 700kHz Square-Wave External Clock since an internal clamp and filter provide signal conditioning. A square-wave signal of 25% to 75% duty cycle, and ± 3 V to ± 20 V level can be used to directly drive the ISO174.

With the addition of the signal conditioning circuit shown in Figure 2, any 10% to 90% duty-cycle square-wave signal can be used to drive the ISO164 and ISO174 Ext Osc pin. With the values shown, the circuit can be driven by a 4Vp-p TTL signal. For a higher or lower voltage input, increase or decrease the $1k\Omega$ resistor, R_X , proportionally, e.g., for a $\pm 4V$ square-wave (8Vp-p) R_X should be increased to $2k\Omega$. The value of C_X used in the Figure 2 circuit depends on the frequency of the external clock signal. C_X should be 30pF for ISO174 and 680pF for ISO164.

FIGURE 2. Square-Wave to Triangle Wave Signal Conditioner for Driving ISO164/174 Ext Osc Pin.

CARRIER FREQUENCY CONSIDERATIONS

ISO164 and ISO174 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, f_C. For signal frequencies above $f_c/2$, the behavior becomes more complex. The "Signal Response vs Carrier Frequency" performance curve describes this behavior graphically. The upper curve illustrates the response for input signals varying from DC to $f_C/2$. At input frequencies at or above $f_C/2$, the device generates an output signal component that varies in both amplitude and frequency, as shown by the lower curve. The lower horizontal scale shows the periodic variation in the frequency of the output component. Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the response go to zero. These characteristics can be exploited in certain applications.

It should be noted that for the ISO174, the carrier frequency is nominally 500kHz and the -3dB point of the amplifier is 60kHz. Spurious signals at the output are not significant

For the ISO164, the carrier frequency is nominally 110kHz and the -3dB point of the amplifier is 6kHz.

When periodic noise from external sources such as system clocks and DC/DC converters are a problem, ISO164 and ISO174 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, f_{EXT}, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve. Figure 3 shows circuitry with opto-isolation suitable for driving the Ext Osc input from TTL levels.

FIGURE 3. Synchronization with Isolated Drive Circuit for Ext Osc Pin.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND 1 and GND 2. The IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds $f_c/2$, the output will display spurious outputs in a manner similar to that described above, and the amplifier response will be identical to that shown in the "Signal Response vs Carrier Frequency" performance curve. This occurs because IMV-induced errors behave like inputreferred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO164 and ISO174 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltages below ±15V may

Leakage current is determined solely by the impedance of the barrier capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO164 and ISO174.

Partial Discharge

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then derating by a factor related to expectations about system transients is an accepted practice.

Partial Discharge Testing

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to a voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS

The ISO164 and ISO174 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials
- · Accurate isolation of signals from severe ground noise and
- Fault protection from high voltages in analog measurements

ISO165 ISO175

Precision, Isolated INSTRUMENTATION AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
 100% TESTED FOR PARTIAL DISCHARGE
- HIGH IMR: 115dB at 50Hz
- LOW NONLINEARITY: ±0.01%
- LOW INPUT BIAS CURRENT: 10nA max
- LOW INPUT OFFSET VOLTAGE: 101mV max
- INPUTS PROTECTED TO ±40V
- BIPOLAR OPERATION: V_O = ±10V
- SYNCHRONIZATION CAPABILITY
- 24-PIN PLASTIC DIP: 0.3" Wide

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer Isolator, Thermocouple
 Isolator, RTD Isolator, Pressure Bridge
 Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- BIOMEDICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- POWER MONITORING
- GROUND LOOP ELIMINATION

DESCRIPTION

ISO165 and ISO175 are precision isolated instrumentation amplifiers incorporating a novel duty cycle modulation-demodulation technique and excellent accuracy. A single external resistor sets the gain. Internal input protection can withstand up to ±40V without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. Both the amplifier and barrier capacitors are housed in a plastic DIP. ISO165 and ISO175 differ in frequency response and linearity.

These amplifiers are easy to use. A power supply range of $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$ makes these amplifiers ideal for a wide range of applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (600) 548-6132

SPECIFICATIONS MOTTARUDIAMOO MIS

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$ unless otherwise noted.

	V _{(N+} 1)		ValSO165P			ISO175P		
PARAMETER 1 MOD 88	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION ⁽¹⁾ Voltage Rated Continuous: AC DC 100% Test (AC, 50Hz) Isolation-Mode Rejection	T _{MIN} to T _{MAX} T _{MIN} to T _{MAX} 1s; Partial Discharge ≤ 5pC	1500 2121 2500	1500403 20kV/a 1501 1501 15002 15002 15002 15002 15002 15002 15002		1500 2121 2500	lage:	reclairon vi imperature imperature erature (soli it Duration	Vrms VDC Vrms
AC 50Hz DC Barrier Impedance Leakage Current	1500Vrms VISO = 240Vrms, 50Hz		115 160 10 ¹⁴ 6 0.8	or	TATE	115 160 10 ¹⁴ 6 0.8	ELEC	dB dB Ω pF μArms
GAIN Spinster Spinster Gain Error	G = 1 G = 10 G = 100	en e	$1 + \left(\frac{50k}{R_G}\right)$ ± 0.07	±0.35	SES damaged sted circu	$1 + \left(\frac{50k}{R_G}\right)$ ± 0.07	±0.35	V/V % %
Gain vs Temperature Nonlinearity	G = 1 G = 1 G = 10 G = 100	-8	±11 ±0.01	±0.052 ±0.054	an cause subtle	±11 ±0.04	±0.102 ±0.104	ppm/°C % %
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Supply	G = 1, 100 35 AND A9 4 Total 9 n/9-45 9 Total 9 n/9-45 9 Total 9 n/9-45 9 Total 9 n/9-45	Ili ta	±	$0.125 + \frac{5}{G}$		$ \begin{array}{c c} \pm & \text{sidin} \pm \\ \pm & \text{sidin} \pm \\ \pm & \text{formal} \end{array} $	0.125 + 10 G	mV μV/°C mV/V
INPUT Voltage Range Bias Current vs Temperature Offset Current vs Temperature	IOTE: (1) Fordetailed drawing and q m	±10	±40 ±40	±10 ±10	±10	±40 ±40	±10	V nA pA/°C nA pA/°C
OUTPUT Voltage Range Current Drive Capacitive Load Drive Ripple Voltage	190 178P 24-Pin Plastic CIP 190 178P 24-Pin Plastic CIP	±10 ±5	0.1		±10 ±5	0.1 10		V mA μF mVp-p
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate	G = 1 G = 10 G = 100 $V_O = \pm 10V, G = 10$		6 6 6 0.9			60 60 50 0.9		kHz kHz kHz V/μs
POWER SUPPLIES Rated Voltage Voltage Range Quiescent Current V _{S1} V _{S2}		±4.5	15	±18 ±7.4 ±7.5	±4.5	15	±18 ±7.4 ±7.5	V V mA mA
TEMPERATURE RANGE Operating Storage		-40 -40		85 125	-40 -40		85 125	°C

NOTE: (1) All devices receive a 1s test. Failure criterion is \geq 5 pulses of \geq 5pc.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Analog Input Voltage Range	±40V
External Oscillator Input	±25V
	±1V
Com 2 to GND2	±1V
Continuous Isolation Voltage:	1500Vrms
IMV, dv/dt	20kV/μs
Junction Temperature	150°C
Storage Temperature	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Duration	

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO165P	24-Pin Plastic DIP	243-2
ISO175P	24-Pin Plastic DIP	243-2

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	BANDWIDTH
ISO165P	24-Pin Plastic DIP	6kHz
ISO175P	24-Pin Plastic DIP	60kHz

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ISOLATION PRODUCTS

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) MAMPORES JACISTY

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$ unless otherwise noted.

BASIC OPERATION

ISO165 and ISO175 instrumentation input isolation amplifiers are comprised of a precision instrumentation amplifier followed by an isolation amplifier. The input and output isolation sections are galvanically isolated and EMI shielded by matched capacitors.

Signal and Power Connections

Figure 1 shows power and signal connections. Each power supply pin should be bypassed with a $1\mu F$ tantalum capacitor located as close to the amplifier as possible. All ground connections should be run independently to a common point if possible. Signal Common on both input and output sections provide a high-impedance point for sensing signal ground in noisy applications. Com 1 and Com 2 must have a path to ground for bias current return and should be maintained within $\pm 1V$ of GND1 and GND2, respectively.

SETTING THE GAIN

Gain of the ISO165 and ISO175 is set by connecting a single external resistor R_G, connected between pins 2 and 22.

$$G = 1 + \frac{50k\Omega}{R_G} \tag{1}$$

Commonly used gains and resistor values are shown in Figure 1.

The $50k\Omega$ term in equation (1) comes from the sum of the two internal feedback resistors. These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the ISO165 and ISO175.

The stability and temperature drift of the external gain setting resistor R_G , also affects gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the

gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

INPUT COMMON-MODE RANGE

The linear voltage range of the input circuitry of the ISO165 and ISO175 are from approximately 2.5V below the positive supply voltage to 2.5V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range will be limited by the output voltage swing of the internal amplifiers. Thus, the linear common-mode input range is related to the output voltage of the complete input amplifier.

This behavior also depends on the supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage."

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the ISO165 and ISO175 will be near OV even though both inputs are overloaded.

INPUT PROTECTION and all own swints of hour and made

The inputs of the ISO165 and ISO175 are individually protected for voltages up to ± 40 V referenced to GND1. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is

FIGURE 1. Basic Connections.

turned off.

SYNCHRONIZED OPERATION

ISO165 and ISO175 can be synchronized to an external signal source. This capability is useful in eliminating trouble-some beat frequencies in multichannel systems and in rejecting AC signals and their harmonics. To use this feature, an external signal must be applied to the Ext Osc pin. ISO165 can be synchronized over the 100kHz to 200kHz range and ISO175 can be synchronized over the 400kHz to 700kHz range.

The ideal external clock signal for the ISO165 and ISO175 is a $\pm 4V$ sine wave or $\pm 4V$, 50% duty-cycle triangle wave. The Ext Osc pin of the ISO165 and ISO175 can be driven directly with a $\pm 3V$ to $\pm 5V$ sine or 25% to 75% duty-cycle triangle wave and the ISO amp's internal modulator/demodulator circuitry will synchronize to the signal.

ISO175 can also be synchronized to a 400kHz to 700kHz Square-Wave External Clock since an internal clamp and filter provide signal conditioning. A square-wave signal of 25% to 75% duty cycle, and ± 3 V to ± 20 V level can be used to directly drive the ISO175.

With the addition of the signal conditioning circuit shown in Figure 2, any 10% to 90% duty-cycle square-wave signal can be used to drive the ISO165 and ISO175 Ext Osc pin. With the values shown, the circuit can be driven by a 4Vp-p TTL signal. For a higher or lower voltage input, increase or decrease the $1k\Omega$ resistor, $R_{\rm X}$, proportionally, e.g. for a ± 4 V square-wave (8Vp-p) $R_{\rm X}$ should be increased to $2k\Omega$. The value of $C_{\rm X}$ used in the Figure 2 circuit depends on the frequency of the external clock signal. $C_{\rm X}$ should be 30pF for ISO175 and 680pF for ISO165.

FIGURE 2. Square-Wave to Triangle Wave Signal Conditioner for Driving ISO165/175 Ext Osc Pin.

CARRIER FREQUENCY CONSIDERATIONS

ISO165 and ISO175 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, f_C . For signal frequencies above $f_C/2$, the behavior becomes

upper curve mustrates the response for input signals varying from DC to $f_{\rm C}/2$. At input frequencies at or above $f_{\rm C}/2$, the device generates an output signal component that varies in both amplitude and frequency, as shown by the lower curve. The lower horizontal scale shows the periodic variation in the frequency of the output component. Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the response go to zero. These characteristics can be exploited in certain applications.

It should be noted that for the ISO175, the carrier frequency is nominally 500kHz and the -3dB point of the amplifier is 60kHz. Spurious signals at the output are not significant under these circumstances unless the input signal contains significant components above 250kHz.

For the ISO165, the carrier frequency is nominally 110kHz and the -3dB point of the amplifier is 6kHz.

When periodic noise from external sources such as system clocks and DC/DC converters are a problem, ISO165 and ISO175 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, $f_{\rm EXT}$, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve. Figure 3 shows circuitry with opto-isolation suitable for driving the Ext Osc input from TTL levels.

FIGURE 3. Synchronization with Isolated Drive Circuit for Ext Osc Pin.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND1 and GND2. The IMV can induce errors at the output as indicated by the plots of IMV versus Frequency. It should be noted that if the IMV frequency exceeds $f_{\rm C}/2$, the output will display spurious outputs in a manner similar to that described above, and the amplifier response will be identical to that shown in the

referred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO165 and ISO175 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltages below ±15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/µs remains unchanged.

Leakage current is determined solely by the impedance of the barrier capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO165 and ISO175.

PARTIAL DISCHARGE

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this gins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then derating by a factor related to expectations about system transients is an accepted practice.

PARTIAL DISCHARGE TESTING

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS

The ISO165 and ISO175 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials,
- Accurate isolation of signals from severe ground noise and,
- Fault protection from high voltages in analog measurements.

ISO166 ISO176

Precision, Isolated OPERATIONAL AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
 100% TESTED FOR PARTIAL DISCHARGE
- HIGH IMR: 115dB at 50Hz
- LOW NONLINEARITY: ±0.05%
- LOW INPUT BIAS CURRENT: ±5nA max
- LOW INPUT OFFSET VOLTAGE: ±20µV
- OP AMP INPUTS PROTECTED TO ±30V
- MOD INPUT PROTECTED TO ±100V
- BIPOLAR OPERATION: V_O = ±10V
- SYNCHRONIZATION CAPABILITY
- 24-PIN PLASTIC DIP: 0.3" Wide

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer isolator, Thermocouple
 Isolator, RTD Isolator, Pressure Bridge
 Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- BIOMEDICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- POWER MONITORING
- GROUND LOOP ELIMINATION

DESCRIPTION

ISO166 and ISO176 are precision isolation amplifiers incorporating an uncommitted operational amplifier for input conditioning, a novel duty cycle modulation-demodulation technique and excellent accuracy. Internal input protection can withstand up to ±30V differential without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. Both the amplifier and barrier capacitors are housed in a plastic DIP. ISO166 and ISO176 differ in frequency response and linearity.

These amplifiers are easy to use. No external components are required. A power supply range of $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$ makes these amplifiers ideal for a wide range of applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Tel

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Tucson, AZ 8570
 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

SPECIFICATIONS MORTARDORMOO MIG

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$ unless otherwise noted.

24 V ₁₀ -	Van 1 page 1		ISO166P		ISO176P			Editornal Circles
PARAMETER 7 mgO 65	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION(1) Voltage Rated Continuous: AC DC 100% Test (AC, 50Hz) Isolation-Mode Rejection AC 50Hz DC Barrier Impedance Leakage Current	T _{MIN} to T _{MAX} T _{MIN} to T _{MAX} 1s; Partial Discharge ≤ 5pC 1500Vrms V _{ISO} = 240Vrms, 50Hz	1500 2121 2500	115 160 10 ¹⁴ 6 0.8	e	1500 2121 2500	115 160 10 ¹⁴ 6 0.8	v nocatore emperature mostature estiture (se) voltage Ra	Vrms VDC Vrms dB dB Ω pF μArms
ISO AMP - GAIN Gain Error(2) Gain vs Temperature Nonlinearity	G = 1 G = 1 G = 1	Y	±0.05 ±10	±0.052	STATE SES	±0.05 ±10	±0.102	%FSR ppm/°C %
ISO AMP - OFFSET VOLTAGE Offset vs Temperature vs Supply	21 2 (NE)	dui dui gai	±150 ±2	650 ₂₁₁	damaged sed offic see to ob-	±500 ±2	nis has 160 on 100 an 100 an 100 an 100 an 100 an	mV μV/°C μV/V
ISO AMP - INPUT Input Resistance	MOSTARGOTHI BOARDAG	-65	200	namage.	altduz (200	area can a	kΩ
ISO AMP - OUTPUT Voltage Range Current Drive Capacitive Load Drive Ripple Voltage	MODEL PACKAGE ISO166P 24-Pin Plasto DP	±10 ±5	0.1 0.0 100 100 100 100 100 100 100 100	ion integr because device	±10 ±5	0.1 10	npiete de sore susc changes specifica	V mA μF mVp-p
OP AMP - INPUT Voltage Range Bias Current vs Temperature Offset Voltage Offset Current vs Temperature	ACTE: (1) For detailed drawing, and arrest sheet, or Appeintix C of Burn Brown M Dis DRDERING INFORMATION		±13 ±15 ±20 ±1.5	±5 ±5		±13 ±15 ±20 ±1.5	±5	V nA pA/°C μV nA pA/°C
FREQUENCY RESPONSE Small Signal Bandwidth	100mV, G = 1 100mV, G = 10 100mV, G = 100 V _O = ±10V, G = 10		6 6 6 0.3			60 60 60 0.3		kHz kHz kHz V/µs
POWER SUPPLIES Rated Voltage Voltage Range Quiescent Current Vcc1 Vcc2		±4.5	15 9 7.5	OMA ±18 rento sculh	±4.5	15 9 7.5	±18	V V mA mA
TEMPERATURE RANGE Operating Storage	PSRR Vs FREG	-40 -40	NCY	85 125	-40 -40	BOOM NO	85 125	°C

NOTE: (1) All devices receive a 1s test. Failure criterion is ≥ 5 pulses of ≥ 5pX. (2) Tested as a OPA and ISO, max ±0.35% FSR.

Op Amp Analog Input Voltage Range	±V _{S1}
External Oscillator Input	±25V
Signal Common 1 to Ground 1	±1V
Signal Common 2 to Ground 2	±1V
Continuous Isolation Voltage:	1500Vrms
IMV, dv/dt	20kV/μs
Junction Temperature	
Storage Temperature	-40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Duration	Continuous to Common
MOD Innet Vallence Dance	±100V

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO166P	24-Pin Plastic DIP	243-2
ISO176P	24-Pin Plastic DIP	243-2

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	BANDWIDTH
ISO166P	24-Pin Plastic DIP	6kHz
ISO176P	24-Pin Plastic DIP	60kHz

TYPICAL PERFORMANCE CURVES

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAMPORE JACINYT

At $T_A = +25$ °C, $V_{S1} = V_{S2} = \pm 15$ V, and $R_L = 2k\Omega$ unless otherwise noted.

BASIC OPERATION

ISO166 and ISO176 isolation amplifiers are comprised of a precision uncommitted operational amplifier followed by an isolation amplifier. The input and output isolation sections are galvanically isolated by matched and EMI shielded capacitors.

Signal and Power Connections

Figure 1 shows power and signal connections. Each power supply pin should be bypassed with a $1\mu F$ tantalum capacitor located as close to the amplifier as possible. All ground connections should be run independently to a common point. Signal Common on both input and output sections provide a high-impedance point for sensing signal ground in noisy applications. Com 1 and Com 2 must have a path to ground for bias current return and should be maintained within $\pm 1V$ of GND1 and GND2, respectively.

INPUT PROTECTION work Start entry departer notation

The amplifier inputs of ISO166 and ISO176 are protected with 500Ω series input resistors and diode clamps. The inputs can withstand $\pm 30V$ differential inputs without damage. The protection diodes will, of course, conduct current when the inputs are over-driven. This may disturb the slewing behavior of unity-gain follower applications, but it will not damage the op amp. The MOD input is a $200k\Omega$ resistor and can withstand $\pm 100V$ without damage.

INPUT BIAS CURRENT CANCELLATION (1920) 07 10 23

The input stage base current of the uncommitted op amp is internally compensated with an equal and opposite cancellation current. The resulting input bias current is the difference between the input stage base current and the cancellation current. This residual input bias current can be positive or negative.

When the bias current is cancelled in this manner, the input bias current and input offset current are approximately the same magnitude. As a result, it is not necessary to balance the DC resistance seen at the two input terminals. A resistor added to balance the input resistances may actually increase offset and noise.

SYNCHRONIZED OPERATION

ISO166 and ISO176 can be synchronized to an external signal source. This capability is useful in eliminating trouble-some beat frequencies in multichannel systems and in rejecting AC signals and their harmonics. To use this feature, an external signal must be applied to the Ext Osc pin. ISO166 can be synchronized over the 100kHz to 200kHz range and ISO176 can be synchronized over the 400kHz to 700kHz range.

The ideal external clock signal for ISO166 and ISO176 is a $\pm 4V$ sine wave or $\pm 4V$, 50% duty-cycle triangle wave. The Ext Osc pin of the ISO166 and ISO176 can be driven directly with a $\pm 3V$ to $\pm 5V$ sine or 25% to 75% duty-cycle triangle wave and the ISO amp's internal modulator/demodulator circuitry will synchronize to the signal.

FIGURE 1. Basic Connections.

tilter provide signal conditioning. A square-wave signal of 25% to 75% duty cycle, and $\pm 3V$ to $\pm 20V$ level can be used to directly drive the ISO176.

With the addition of the signal conditioning circuit shown in Figure 2, any 10% to 90% duty-cycle square-wave signal can be used to drive the ISO166 and ISO176 Ext Osc pin. With the values shown, the circuit can be driven by a 4Vp-p TTL signal. For a higher or lower voltage input, increase or decrease the $1k\Omega$ resistor, R_X , proportionally, e.g. for a $\pm 4V$ square-wave (8Vp-p) R_X should be increased on the Figure 2 circuit depends on the frequency of the external clock signal. C_X should be 30pF for ISO176 and 680pF for ISO166.

FIGURE 2. Square-Wave to Triangle Wave Signal Conditioner for Driving ISO166/176 Ext Osc Pin.

CARRIER FREQUENCY CONSIDERATIONS

ISO166 and ISO176 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, fc. For signal frequencies above $f_c/2$, the behavior becomes more complex. The Signal Response versus Carrier Frequency performance curve describes this behavior graphically. The upper curve illustrates the response for input signals varying from DC to f_c/2. At input frequencies at or above $f_C/2$, the device generates an output signal component that varies in both amplitude and frequency, as shown by the lower curve. The lower horizontal scale shows the periodic variation in the frequency of the output component. Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the response go to zero. These characteristics can be exploited in certain applications.

It should be noted that for the ISO176, the carrier frequency is nominally 500kHz and the -3dB point of the amplifier is 60kHz. Spurious signals at the output are not significant under these circumstances unless the input signal contains significant components above 250kHz.

For the ISO166, the carrier frequency is nominally 110kHz and the -3dB point of the amplifier is 6kHz.

ISO176 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, $f_{\rm EXT}$, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND1 and GND2. The IMV can induce error at the output as indicated by the plots of IMV versus Frequency. It should be noted that if the IMV frequency exceeds f_c/2, the output will display spurious outputs in a manner similar to that described above, and the amplifier response will be identical to that shown in the "Signal Response vs Carrier Frequency" performance curve. This occurs because IMV-induced errors behave like inputreferred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO166 and ISO176 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/us but falls below 20kV/us, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltages below ±15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/µs remains unchanged.

Leakage current is determined solely by the impedance of the barrier capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO166 and ISO176.

insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating.

information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS

The ISO166 and ISO176 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials.
- · Accurate isolation of signals from severe ground noise and,
- Fault protection from high voltages in analog measurements.

ISO212P

Low Cost, Two-Port Isolated, 1500Vrms ISOLATION AMPLIFIER

FEATURES

- 12-BIT ACCURACY
- 2.5mA (typ) QUIESCENT CURRENT
- LOW PROFILE (LESS THAN 0.5" HIGH)
- SMALL FOOTPRINT
- EXTERNAL POWER CAPABILITY (±8V at 5mA)
- "MASTER/SLAVES" SYNCHRONIZATION CAPABILITY
- INPUT OFFSET ADJUSTMENT
- LOW POWER (75mW)
- SINGLE 10V TO 15V SUPPLY OPERATION

DESCRIPTION

The ISO212P signal isolation amplifier is a member of a series of low-cost isolation products from Burr-Brown. The low-profile SIL plastic package allows PCB spacings of 0.5" to be achieved, and the small footprint results in efficient use of board space.

To provide isolation, the design uses high-efficiency, miniature toroidal transformers in both the signal and power paths. An uncommitted input amplifier and an isolated external bipolar supply ensure the majority of input interfacing or conditioning needs can be met. The ISO212P accepts an input voltage range of $\pm5\mathrm{V}$ for single 15V supply operation or $\pm3.0\mathrm{V}$ for single 10V supply operation.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL: Transducer Channel Isolator for Thermocouples, RTDs, Pressure Bridges, Flow Meters
- 4mA TO 20mA LOOP ISOLATION
- MOTOR AND SCR CONTROL
- GROUND LOOP ELIMINATION
- ANALYTICAL MEASUREMENTS
- POWER PLANT MONITORING
- DATA ACQUISITION/TEST EQUIPMENT ISOLATION
- MULTIPLEXED SYSTEMS WITH CHANNEL TO CHANNEL ISOLATION

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SOLATION PRODUCTS

SPECIFICATIONS WAR AN ATULOUS A

ELECTRICAL

At $T_A = +25$ °C and $V_{CC} = +15V$, unless otherwise noted.

	enture Range		ISO212JP		IS	0212KP, JP	-15	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ISOLATION Voltage Rated Continuous AC, 50Hz DC	INFORMATION	750 1060		18	1500 2120	0 8	sa ^{V4} Offset Adjus	Vrms VDC
100% Test (AC, 50Hz)	Partial Discharge 1s : <5pC	1200			2400			Vrms
AC acc DC Payrior Posistance	V _{ISO} = Rated Continuous 60Hz	ISO212JP ISO212JP-16 ISO212KP OTE: (1) Fer d	115 160			*(9)		dB dB
Barrier Capacitance Leakage Current ⁽⁸⁾	V _{ISO} = 240Vrms, 60Hz V _{ISO} = 240Vrms, 50Hz		10 ¹⁰ 12 1	2 1.6	th +V _{CC}	0 S8 0 S8	Com 2 Clork Out	Ω pF μArms μArms
GAIN Initial Error Gain vs Temperature Nonlinearity ⁽³⁾ : KP JP-15	$V_0 = -5V$ to +5V		±1 20 0.04	±2 50 0.05	7 O/P Low	0.015 0.04	0.025 0.05	% FSR ⁽²⁾ ppm of FSR/% %FSR %FSR
INPUT OFFSET VOLTAGE Offset Voltage RTI: KP JP-15 vs Temperature vs Power Supply ⁽⁴⁾ Adjustment Range	V _{CC} = 14V to 16V	±20	30 ±30/G ±1.5	±10±10/G	0 *	MOITA	±7.5 ±7.5/G ±10 ±10/G	mV mV/°C mV/V
INPUT CURRENT Bias Offset			3	50 4	75MP67 78	CKARE Plastic SIP Plastic SIP	9-82 9-82	nA nA
INPUT Voltage Range ⁽⁵⁾ Resistance	G = 1	±5	10 ¹²	0189+ at 0	-25	Pigetto SIP	38-21	SO212NP V Ω
OUTPUT Output Impedance Voltage Range Ripple Voltage ⁽⁶⁾ Ouput Compliance	Out Hi to Out Lo Min Load = $1M\Omega$ f = 0 to $100kHz$ f = 0 to $5kHz$ Out Hi or Out Lo	±5	8 0.4 7.5		*		15	kΩ V mVp-p mVrms V
FREQUENCY RESPONSE Small Signal Bandwidth Full Signal Bandwidth	I/P = 1Vp-p, -3dB G = 1 I/P = 10Vp-p, G = 1 G = 10 (-3dB)		1 200 1.8	UU BO	MAM oled.	esivaetto a	E e e 16V. unia	kHz Hz kHz
ISOLATED POWER OUTPUTS Voltage Outputs (±V _{SS 1}) ⁽⁷⁾ vs Temperature vs Load	No Load	±7.5	±8 -8 90	90**	· ·	*	J.T	VDC mV/°C mV/mA
Current Output (7) (Both Loaded) (One Loaded)		(V) Sign		5 8 100 ^V			:	mA mA
POWER SUPPLIES Rated Voltage Voltage Range ⁽⁵⁾ Quiescent Current	Rated Performance	Output Vol	15 11.4 to 16 2.5	3.5	100			V V mA
TEMPERATURE RANGE Specification Operating	-7 = 0 .V8x= _M V	0 -25	2.0	+70 +85	*	3	19	°C °C

NOTES: (1) Isolation-mode rejection is the ratio of the change in output voltage to a change in isolation barrier voltage. It is a function of frequency. (2) FSR = Full Scale Range = 10V. (3) Nonlinearity is the peak deviation of the output voltage from the best-fit straight line. It is expressed as the ratio of deviation to FSR. (4) Power Supply Rejection is the change in V_{OS}/Supply Change. (5) At V_{CC} = +10.0V, input voltage range = ±3.0V min. (6) Ripple is the residual component of the barrier carrier frequency generated internally. (7) Derated at V_{CC} < +15V. (8) Tosted at 2400Vrms, 50Hz limit 16µA. (9) Asterisk (*) same as ISO212JP.

1	Supply Voltage Without Damage	18V
	Continuous Isolation Voltage Across Barrier: JP	750Vrms
1	KP, JF	P-15 1500Vrms
1	Storage Temperature Range	25°C to 100°C
1	Lead Temperature (soldering, 10s)	+300°C
	Amplifier Output Short-Circuit Duration C	continuous to Common
+	Output Voltage Hi or Lo to Com 2	±V _{CC} /2

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO212JP	38-Pin Plastic SIP	326
ISO212JP-15	38-Pin Plastic SIP	326
ISO212KP	38-Pin Plastic SIP	326

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	OPERATING TEMPERATURE RANGE
ISO212JP	38-Pin Plastic SIP	-25°C to +85°C
ISO212JP-15	38-Pin Plastic SIP	-25°C to +85°C
ISO212KP	38-Pin Plastic SIP	-25°C to +85°C

TYPICAL PERFORMANCE CURVES

At $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DISCUSSION OF SPECIFICATIONS

The ISO212P is intended for applications where isolation and input signal conditioning are required. Best signal-to-noise performance is obtained when the input amplifier gain setting is such that V_{OUT} has a full scale range of $\pm 5V$. The bandwidth is typically 1kHz, making the device ideal for use in conjunction with sensors that monitor slowly varying processes. To power external functions or networks, 5mA at $\pm 8V$ typical is available at the isolated port.

LINEARITY PERFORMANCE

The ISO212P offers linearity performance compatible with 12-bit resolution systems (0.025%). Note that the specification is based on a best-fit straight line.

OPTIONAL OFFSET VOLTAGE ADJUSTMENT

In many applications, the untrimmed input offset voltage will be adequate. For situations where it is necessary to trim the offset, a potentiometer can be used. See Figure 1 for details. It is important to keep the traces to the offset adjust pins as short as practical, because noise can be injected into the input op amp via this route.

INPUT PROTECTION

If the ISO212P is used in systems where a transducer or sensor does not derive its power from the isolated power available from the device, then some input protection must be present to prevent damage to the input op amp when the ISO212P is not powered. A resistor of $5k\Omega$ should be included to limit the output impedance of the signal source. Where the op amp is configured for an inverting gain, then $R_{\rm IN}$ of the gain setting network can be used. For non-

inverting configurations, a separate resistor is required. Neglecting this point may also lead to problems when powering on the ISO212P.

USING ±V_{SS1} TO POWER EXTERNAL CIRCUITRY

The DC/DC converter in the ISO212P runs at a switching frequency of 25kHz. Internal rectification and filtering is sufficient for most applications at low frequencies or with no external networks connected.

The ripple on $\pm V_{SS1}$ will typically be 100 mVp-p at 25 kHz. Loading the supplies will increase the ripple unless extra filtering is added externally; a capacitor of $1\mu F$ is normally sufficient for most applications, although in some cases $10\mu F$ may be required. Noise introduced onto $\pm V_{SS1}$ should be decoupled to prevent degraded performance.

THEORY OF OPERATION

The ISO212P has no galvanic connection between the input and output. The analog input signal referenced to the input common (Com 1) is multiplied by the gain of the input amplifier and accurately reproduced at the output. The output section uses a differential design so either the HI or LO pin may be referenced to the output common (Com 2). This allows simple input signal inversion while maintaining the high impedance input configuration. A simplified diagram of the ISO212P is shown in Figure 2. The design consists of a DC/DC converter, an uncommitted input operational amplifier, a modulator circuit and a demodulator circuit. Magnetic isolation is provided by separate transformers in the power and signal paths.

The DC/DC converter provides power and synchronization signals across the isolation barrier to operate the operational amplifier and modulator circuitry. It also has sufficient capacity to power external input signal conditioning net-

FIGURE 1. Power Supply and Signal Connections Shown for Non-Inverting, Unity Gain Configuration.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

works. The uncommitted operational amplifier may be configured for signal buffering or amplification, depending on the application.

The modulator converts the input signal to an amplitude-modulated AC signal that is magnetically coupled to the demodulator by a miniature transformer providing the signal-path isolation. The demodulator recovers the input signal from the modulated signal using a synchronous technique to minimize noise and interference.

ABOUT THE BARRIER Theor of stand movers of stars

For any isolation product, barrier integrity is of paramount importance in achieving high reliability. The ISO212P uses miniature toroidal transformers designed to give maximum isolation performance when encapsulated with a high-dielectric-strength material. The internal component layout is designed so that circuitry associated with each side of the barrier is positioned at opposite ends of the package. Areas where high electric fields can exist are positioned in the center of the package. The result is that the dielectric strength of the barrier typically exceeds 3kVrms.

ISOLATION VOLTAGE RATINGS

Because a long term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a high voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one. Historically, Burr-Brown has chosen a deliberately conservative one: V_{TEST} = (2 x ACrms continuous rating) + 1000V for ten encodes, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients were not well defined.

Recent improvements in high voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO212P.

PARTIAL DISCHARGE TO THE SERVICE OF THE SERVICE OF

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high voltage stress. This ionization requires a higher applied voltage to start the discharge and a lower voltage to extinguish it once started. The higher start voltage is known as the inception voltage and the lower voltage is called the extinction voltage. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached. At this point, the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that if the discharge does not occur, the insulation system retains its integrity. If the discharge begins and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is both useful in rating the devices and in providing quality control of the manufacturing process. The inception voltage of these voids tends to be constant, so that the measurement of total charge being re-distributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure.

FIGURE 2. Simplified Diagram of Isolation Amplifier.

is directly establishes the absolute maximum voltage

This directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin.

Measuring the bulk extinction voltage provides a lower, more conservative, voltage from which to derive a safe continuous rating. In production, it's acceptable to measure at a level somewhat below the expected inception voltage and then de-rate by a factor related to expectations about the system transients. The isolation amplifier has been extensively evaluated under a combination of high temperatures and high voltage to confirm its performance in this respect. The ISO212P is free of partial discharges at rated voltages.

PARTIAL DISCHARGE TESTING IN PRODUCTION

Not only does this test method provide far more qualitative information about stress withstand levels than did previous stress tests, but it also provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers such as those of high voltage power distribution equipment for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to measure partial discharge, and VDE, the German standards group, has adopted use of this method for the testing of opto-couplers. To accommodate poorly defined transients, the part under test is exposed to a voltage that is 1.6 times the continuous rated voltage and must display < 5pC partial discharge level in a 100% production test.

INSTALLATION AND OPERATING INSTRUCTIONS

POWER SUPPLY AND SIGNAL CONNECTIONS

As with any mixed analog and digital signal component, correct decoupling and signal routing precautions must be used to optimize performance. Figure 1 shows the proper power supply and signal connections. $V_{\rm CC}$ should be bypassed to Com 2 with a 0.1µF ceramic capacitor as close to the device as possible. Short leads will minimize lead inductance. A ground plane will also reduce noise problems. If a low impedance ground plane is not used, signal common lines, and either O/P High or O/P Low pin should be tied directly to the ground at the supply and Com 2 returned via a separate trace to the supply ground.

To avoid gain and isolation mode (IMR) errors introduced by the external circuit, connect grounds as indicated in Figure 3. Layout practices associated with isolation amplifiers are very important. In particular, the capacitance associated with the barrier, and series resistance in the signal and reference leads, must be minimized. Any capacitance across

VOLTAGE GAIN MODIFICATIONS

The uncommitted operational amplifier at the input can be used to provide gain, signal inversion, active filtering or current to voltage conversion. The standard design approach for any op-amp stage can be used, provided that the full scale voltage appearing on $f_{\rm R}$ does not exceed $\pm 5{\rm V}$.

If the input op-amp is overdriven, ripple at the output will result. To prevent this, the feedback resistor should have a minimum value of $10k\Omega$.

Also, it should be noted that the current required to drive the equivalent impedance of the feedback network is supplied by the internal DC/DC converter and must be taken into account when calculating the loading added to $\pm V_{SSI}$.

Since gain inversion can be incorporated in either the input or output stage of the ISO212P, it is possible to use the input amplifier in a non-inverting configuration and preserve the high impedance this configuration offers. Signal inversion at the output is easily accomplished by connecting O/P High to Com 2 instead of O/P Low.

ISOLATED POWER OUTPUT DRIVE CAPABILITY

On the input side of the ISO212P, there are two power supplies capable of delivering 5mA at $\pm 8V$ to power external circuitry. When using these supplies with external loads, it is recommended that additional decoupling in the form of $10\mu F$ tantalum bead capacitors be added to improve the voltage regulation. Loss of linearity will result if additional filtering is not used with an output load. Again, power dissipated in the feedback loop around the input op amp must be subtracted from the available power output at $\pm V_{SSI}$.

If the ISO212P is to be used in multiple applications, care should be taken in the design of the power distribution

FIGURE 3. Technique for Connecting Com 1 and Com 2.

NOISE 7- at the outside I. = 4-to-20mA, the outside -5 BRION

Output noise is generated by residual components of the 25kHz carrier that have not been removed from the signal. This noise may be reduced by adding an output low pass filter (see Figure 8). The filter time constants should be set below the carrier frequency. The output from the ISO212P is a switched capacitor and requires a high impedance load to prevent degradation of linearity. Loads of less than $1M\Omega$ will cause an increase in noise at the carrier frequency and will appear as ripple in the output waveform. Since the output signal power is generated from the input side of the barrier, decoupling of the $\pm V_{SS\ 1}$ outputs will improve the signal to noise ratio.

SYNCHRONIZATION OF THE INTERNAL OSCILLATOR

The ISO212P has an internal oscillator and associated timing components, which can be synchronized, incorporated into the design. This alleviates the requirement for an external high-power clock driver. The typical frequency of oscillation is 50kHz. The internal clock will start when power is applied to the ISO212P and Clk In is not connected.

Because the frequencies of several ISO212Ps can be marginally different, "beat" frequencies ranging from a few Hz to a few kHz can exist in multiple amplifier applications. The design of the ISO212P accommodates "internal synchronous" noise, but a synchronous beat frequency noise will not be strongly attenuated, especially at very low frequencies if it is introduced via the power, signal, or potential grounding paths. To overcome this problem in systems where several ISO212Ps are used, the design allows synchronization of each oscillator in a system to one frequency. Do this by forcing the timing node on the internal oscillator with an

FIGURE 4. Recommended Decoupling and Power Distribution.

used as the master clock for the system. See Figure 6 and 7 for connections in multiple ISO212P installations.

CHARGE ISOLATION

When more than one ISO212P is used in synchronous mode, the charge which is returned from the timing capacitor (220pF in Figure 5) on each transition of the clock becomes significant. Figure 7 illustrates a method of isolating the "Clk Out" clamp diodes (Figure 5) from this charge.

A $22k\Omega$ resistor (recommended maximum to use) together with the $39k\Omega$ internal oscillator timing resistor (Figure 5) forms a potential divider. The ratio of these resistors should be greater than 0.6 which ensures that the input voltage triggers the inverter connected to "Clk In". If using a single resistor, then account must be taken of the paralleled timing resistors. This means that the $22k\Omega$ resistor must be halved to drive two ISO212Ps, or divided by 8 if driving 8 ISO212Ps to insure that the ratio of greater than 0.6 is maintained. The series resistors shown in Figure 7 reduce the high frequency content of the power supply current.

APPLICATIONS

The ISO212P isolation amplifier, together with a few low cost components, can isolate and accurately convert a 4-to-20mA input to a $\pm 10 \text{V}$ output with no external adjustment. Its low height (0.43" (11mm)) and small footprint (2.5" x 0.33" (57mm x 8mm)) make it the solution of choice in 0.5" board spacing systems and in all applications where board area savings are critical.

The ISO212P operates from a single +15V supply and offers low power consumption and 12-bit accuracy. On the input side, two isolated power supplies capable of supplying 5mA at $\pm 8V$ are available to power external circuitry.

FIGURE 5. Equivalent Circuit, Clock Input/Output. Inverters are CMOS.

FIGURE 6. Oscillator Connections for Synchronous Operation in Multiple ISO212P Installations.

FIGURE 7. Isolating the Clk Out Node.

APPLICATIONS FLEXIBILITY

In Figure 8, the ISO212P's +V $_{ss~l}$ isolated supply powers a REF200 to provide an accurate 100µA current source. This current is opposed by an equal but opposite current through the 75k Ω feedback resistor to establish an offset of –7.5V at $I_{in}=0$ mA. With $I_{in}=4$ -to-20mA, the output is –5 to +5V. The ratio of the 75k Ω and 3.12k Ω resistors assures the correct gain.

The polarity of the output can be reversed by simply reversing the O/P HI and O/P LO pins. This could be used in the Figure 8 circuit to change the -5V to +5V output to a +5V to -5V output range.

The primary function of the output circuitry is to add gain to produce a ±10V output and to reduce output impedance. The addition of a few resistors and capacitors provides a low pass filter with a cut-off frequency equal to the full signal bandwidth of the ISO212P, typically 200Hz. The filter response is flat to 1dB and rolls off from cut off at -12dB per octave.

The accuracy of the REF200 and external resistors eliminates the need for expensive trim pots and adjustments. The errors introduced by the external circuitry only add about 10% of the ISO212P's specified gain and offset voltage error.

FIGURE 8. Isolated 4-20mA Current Receiver with Output Filter.

FIGURE 9. Instrument Bridge Isolation Amplifier.

FIGURE 10. Photodiode Isolation Amplifier.

FIGURE 11. Thermocouple Amplifier with Ground Loop Elimination, Cold Junction Compensation and Down-Scale Burn-Out.

FIGURE 12. Isolated Current Monitoring Applications.

FIGURE 13. Isolated Temperature Sensing and Amplification.

Two-Port Isolated, Low Profile ISOLATED INSTRUMENTATION AMPLIFIER

FEATURES

- GAIN RANGE: 0.5 5000
- ±10V INPUT SIGNAL RANGE
- INSTRUMENTATION AMPLIFIER INPUTS
- ±40V INPUT OVER VOLTAGE PROTECTION
- 12-BIT ACCURACY
- LOW PROFILE (Less Than 0.5" High)
- SMALL FOOTPRINT
- EXTERNAL POWER CAPABILITY (±14V at 3mA)
- SYNCHRONIZATION CAPABILITY
- SINGLE 12V TO 15V SUPPLY OPERATION
- LOW POWER (45mW)

DESCRIPTION

ISO213 signal isolation amplifier is a member of a series of low-cost isolation products from Burr-Brown. The low-profile ZIP plastic package allows PCB spacings of 0.5" to be achieved, and the small footprint results in efficient use of board space.

To provide isolation, the design uses high-efficiency, miniature toroidal transformers in both the signal and power paths. An uncommitted instrumentation amplifier on the input and an isolated external bipolar supply ensure the majority of input interfacing or conditioning needs can be met.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL: Transducer Channel Isolator for Thermocouples, RTDs, Pressure Bridges, Flow Meters
- 4mA TO 20mA LOOP ISOLATION
- MOTOR AND SCR CONTROL
- GROUND LOOP ELIMINATION
- ANALYTICAL MEASUREMENTS
- POWER PLANT MONITORING
- DATA ACQUISITION/TEST EQUIPMENT ISOLATION
- MULTIPLEXED SYSTEMS WITH CHANNEL TO CHANNEL ISOLATION

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85704 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

do to an other other				ISO213P	LUNAZOYONEE	D3 63 L 163 C3
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
SOLATION			545.00m		THE SECTION SE	2.32 (6)
Voltage					Short said residen	C1010000000000000000000000000000000000
Rated Continuous	IN THE STATE OF					
AC, 50/60Hz			1500			Vrms
						VDC
DC	1 1 10 18		2120			VDC
Rated 1 min	1 1 5 10					
AC, 50/60Hz			2500			Vrms
100% Test (AC, 50Hz)		Partial Discharge 1s <5pC	2500			Vrms
Isolation-Mode Rejection ⁽¹⁾	elit	V _{ISO} = Rated Continuous 50/60Hz	t Isolat	109-ow		
AC	10000	A REPORT OF A THE AREA	SAR LANGES	115	TA LAND	dB
DC	J~15/4	a muniaims	BRUFFEE	160	Aluc	dB
Barrier Resistance	00 000	3 2 1 102 2 1 2 1 0 0 1 1 1 1 1	NAME OF PARTICIONS	1010	I I SHOW NO THE THE	Ω
Barrier Capacitance			AND DESCRIPTION OF THE PARTY OF	15		pF
_eakage Current(2)	CONTRACTOR OF TAXABLE	V _{ISO} = 240Vrms, 60Hz	COUNTY OF THE PARTY OF THE PART	THE COURSE STREET, SPECIAL CO.	3	μArms
Leanage Current		$V_{ISO} = 240 \text{Vrms}, 50 \text{Hz}$			2.4	μArms
GAIN	- 01	ADDITIONAL IONA			oud:	ra sis
Equation	C-8	TOT THURST THE	HE MEN STEEL	$G = (1 + 50k/R_G)/2$	Cradition	Phot I
nitial Error		G = 0.5		±0.2	±3	% FSR(8)
Gain vs Temperature	156 CO	G = 0.5		10 000 -	50	ppm of FSR/
Non-Linearity(3)	atalant le	$V_0 = -5V \text{ to } +5V, G = 0.5$		0.01	0.025	%FSR
NPUT OFFSET VOLTAGE	Grandett it	ALCOHOLD THE STATE OF THE STATE		20001411-00	NOS TURN	V012 0
	Ds, Pres	Thermocouples, R		THE PARTY OF	10510510	7010-0
Offset Voltage RTI	52%	Bridges, Flow Mete	INPUTS		±0.5 ±25/G	Tel mV
vs Temperature	-			±5 ±35/G	CHANGE CANCER	μV/°C
vs Power Supply ⁽⁴⁾	ALIORI 9	$G = 0.5, V_{CC} = 14V \text{ to } 16V$		±3	THE REPORT OF THE	mV/V
NPUT CURRENT					MULTUE	PHO
	CONTRO			±1	±10	nA.
Bias						
Dido	1 March 1 March 11 11 11 11 11 11 11 11 11 11 11 11 11	1200010000000				
Offset	FYARRE	e GROUND LOOP EL	Idnik	±1	±10	nA
Offset INPUT	TAMBA	A CHOUND LOOP EL	(dgll)	tt se Then 0.5"		nA
Offset INPUT Linear Input Range ⁽⁵⁾	WINATH SUREME	ABM JA G = 0.5 MA @	±10	±1		nA
Offset INPUT Linear Input Range(5) Common Mode Rejection	SUREME	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$	±10	±1 1°0.0 nedT ae ±12	PROPILE (LE	ANZ V
Offset NPUT Linear Input Range ⁽⁵⁾ Common-Mode Rejection	NINATIO SUREME NITORIN	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$ G = 0.5	±10	±1 ±12	±10	nA V dB
Offset INPUT Linear Input Range(5) Common Mode Rejection	NINATIO SUREME NITORIN	V_{CM} = ±10V, ΔR_S = 1k Ω G = 0.5 G = 5	±10 73 89	±12 90 110	PROPILE (LA LA FOOTPRIN RNAL POWE	nA V dB dB
Offset INPUT Linear Input Range ⁽⁵⁾ Common-Mode Rejection	NINATIO SUREME NITORIN	V_{CM} = ±10V, ΔR_S = 1k Ω G = 0.5 G = 5 G = 50	±10 73 89 98	±12 ±12 90 110 120	PROPILE (LE	v dB dB dB
Offset INPUT Linear Input Range(5) Common-Mode Rejection	NINATIO SUREME NITORIN	V_{CM} = ±10V, ΔR_S = 1k Ω G = 0.5 G = 5	±10 73 89	±12 90 110	PROPILE (LA LA FOOTPRIN RNAL POWE	nA V dB dB
Offiset NPUT Linear Input Range ⁽⁵⁾ Common-Mode Rejection	NINATIO SUREME NITORIN	$V_{CM} = \pm 10V, \ \Delta R_S = 1 k \Omega$ G = 0.5 G = 5 G = 50 G = 500	±10 73 89 98 100	±12 90 110 120 125	PROPILE (LA LA FOOTPRIN RNAL POWE	v dB dB dB
Offset INPUT Linear Input Range ⁽⁵⁾ Common-Mode Rejection	SUREME NITORIN VIEST E TEMS W	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$ G = 0.5 G = 5 G = 50 G = 500	±10 73 89 98	±12 ±12 90 110 120	PROPILE (LA LA FOOTPRIN RNAL POWE	NA V dB dB dB dB
Offset NPUT Linear Input Range(5) Common-Mode Rejection	NINATIO SUREME NITORIN	$V_{CM} = \pm 10V, \ \Delta R_S = 1 k \Omega$ G = 0.5 G = 5 G = 50 G = 500	±10 73 89 98 100	±1 ±12 90 110 120 125 1010 3	PROPILE (LA LA FOOTPRIN RNAL POWE	NA V dB dB dB dB CB D pF
Offset NPUT Inear Input Range(5) Common-Mode Rejection mpedance Differential Common-Mode	SUREME NITORIN VIEST E TEMS W	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$ G = 0.5 G = 5 G = 50 G = 500	±10 73 89 98 100	±12 90 110 120 125	PROPILE (LA LA FOOTPRIN RNAL POWE	v dB dB dB dB
Offset NPUT Inear Input Range(5) Common-Mode Rejection mpedance Differential Common-Mode	SUREME NITORIN VIEST E TEMS W	$V_{CM} = \pm 10V$, $\Delta R_S = 1k\Omega$ G = 0.5 G = 5 G = 50 G = 500	±10 73 89 98 100	±1 ±12 90 110 120 125 10 ¹⁰ 3 10 ¹⁰ 6	PROPILE (LA LA FOOTPRIN RNAL POWE	nA V dB dB dB dB CB Q pF Ω pF
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Output Impedance	SUREME NITORIN VIEST E TEMS W	$V_{OM} = \pm 10V, \Delta R_S = 1k\Omega$ G = 0.5 G = 5 G = 50 G = 500	±10 73 89 98 100 MOMARIA	±1 ±12 90 110 120 125 1010 3	PROPILE (LA LA FOOTPRIN RNAL POWE	nA V dB dB dB dB CB R R R R R R R R R R R R R
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage	INNINATION SUPPLIES TO WITEST BOTTON TO THE MEMORIA WANEL ISON	$V_{CM}=\pm 10V, \Delta R_S=1k\Omega$ $G=0.5$ $G=50$ $G=50$ $G=500$ Load = $1M\Omega$	±10 73 89 98 100	±1 ±12 90 110 120 125 1010 3 1010 6	PROPILE (LA LA FOOTPRIN RNAL POWE	NA V dB dB dB dB CB R R R R R R R R R R R R R
Offset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(6)	SUREME NITORIN VIEST E TEMS W	$V_{CM}=\pm 10V, \ \Delta R_S=1k\Omega$ $G=0.5$ $G=5$ $G=50$ $G=500$ $Load=1M\Omega$ $f=clk$	±10 73 89 98 100 MOMARIA	±1 ±12 90 110 120 125 1010 3 1010 6	PROPILE (LA LA FOOTPRIN RNAL POWE	NA V dB dB dB dB CB PF Ω pF CB NC
Diffset NPUT inear Input Range(5) Common-Mode Rejection mpedance Differential Common-Mode DUTPUT Dutput Impedance //oltage Ripple Voltage(6) Dutput Noise	INNINATION SUPPLIES TO WITEST BOTTON TO THE MEMORIA WANEL ISON	$V_{CM}=\pm 10V, \Delta R_S=1k\Omega$ $G=0.5$ $G=50$ $G=50$ $G=500$ Load = $1M\Omega$	±10 73 89 98 100 MOMARIA	±1 ±12 90 110 120 125 1010 3 1010 6	PROPILE (LA LA FOOTPRIN RNAL POWE	NA V dB dB dB dB CB R R R R R R R R R R R R R
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential	INNINATION SUPPLIES TO WITEST BOTTON TO THE MEMORIA WANEL ISON	$V_{CM}=\pm 10V, \ \Delta R_S=1k\Omega$ $G=0.5$ $G=5$ $G=50$ $G=500$ $Load=1M\Omega$ $f=clk$	±10 73 89 98 100 MGRAFIE	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20	PROPILE (LA PROPILE (LA PROPILE (LA SINA) SHRONIZATI CHE 12V TO 11 POWER (46-	NA V dB dB dB dB CB PF Ω pF CB NC
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(6) Dutput Voltse FREQUENCY RESPONSE	INNINATION SUPPLIES TO WITEST BOTTON TO THE MEMORIA WANEL ISON	$V_{CM}=\pm 10V, \ \Delta R_S=1k\Omega$ $G=0.5$ $G=5$ $G=50$ $G=500$ $Load=1M\Omega$ $f=clk$	±10 73 89 98 100 MONAPES ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20	PROPILE (LA PROPILE (LA PROPILE (LA SINA) SHRONIZATI CHE 12V TO 11 POWER (46-	NA V dB dB dB dB CB PF Ω pF CB NC
Diffset NPUT Inear Input Range(s) Common-Mode Rejection mpedance Differential Common-Mode DutPUT Dutput Impedance Voltage Ripple Voltage(s) Dutput Noise FREQUENCY RESPONSE	INNINATION SUPPLIES TO WITEST BOTTON TO THE MEMORIA WANEL ISON	$V_{CM}=\pm 10V, \ \Delta R_S=1k\Omega$ $G=0.5$ $G=5$ $G=50$ $G=500$ $Load=1M\Omega$ $f=clk$ $f=0 \text{ to } 5kHz$	±10 73 89 98 100 MGRAFIE	±1 ±12 90 110 120 125 10 ¹⁰ 3 10 ¹⁰ 6	PROPILE (LA PROPILE (LA PROPILE (LA SINA) SHRONIZATI CHE 12V TO 11 POWER (46-	nA V dB dB dB dB V Ω pF Ω pF Ω pF
Offset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(6) Dutput Noise REQUENCY RESPONSE Small Signal Bandwidth	INNIATION SUREME WITORN WITEST E MEMS WINEL IS W	$\begin{array}{c} V_{\text{OM}} = \pm 10V, \Delta R_{\text{S}} = 1k\Omega \\ G = 0.5 \\ G = 5 \\ G = 50 \\ G = 500 \\ \end{array}$ Load = $1M\Omega$ f = clk f = 0 to 5kHz	±10 73 89 98 100 MOITARE ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20	PROPILE (LA PROPILE (LA POOTPRI) RNAL POWE (AS 311A) PRONIZATI POWEO (AS 311A) ROWEO (AS 311A) REPOWEO (AS 311A) REPOWEO (AS 311A) REPOWEO (AS 311A)	nA V dB dB dB dB V nO pF Ω pF Ω pF kΩ v mVp-p μV/√Hz
Offset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(6) Dutput Noise REQUENCY RESPONSE Small Signal Bandwidth	INNIATION SUREME WITORN WITEST E MEMS WINEL IS W	$\begin{split} V_{CM} &= \pm 10V, \Delta R_S = 1k\Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1M\Omega$ f = clk f = 0 to SkHz $V_{IN} = 1V_{IP}p, -3dB, G \\ G &= 0.5$ $V_{IN} = 10V_{IN}p, -3dB, G$	±10 73 89 98 100 MONAPES ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20	PROPILE (LA PROPILE (LA PROPILE (LA SINA) SHRONIZATI CHE 12V TO 11 POWER (46-	nA V dB dB dB dB V Ω pF Ω pF Ω pF
Diffset NPUT Inear Input Range(s) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(s) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth	WINATION SUPPLIES TO Surfer Su	$\begin{array}{c} V_{\text{OM}} = \pm 10V, \Delta R_{\text{S}} = 1k\Omega \\ G = 0.5 \\ G = 5 \\ G = 50 \\ G = 500 \\ \end{array}$ Load = $1M\Omega$ f = clk f = 0 to 5kHz	±10 73 89 98 100 MOITARE ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20	PROPILE (LA PROPILE (LA POOTPRI) RNAL POWE (AS 311A) PRONIZATI POWEO (AS 311A) ROWEO (AS 311A) REPOWEO (AS 311A) REPOWEO (AS 311A) REPOWEO (AS 311A)	nA V dB dB dB dB V nO pF Ω pF Ω pF kΩ v mVp-p μV/√Hz
Offset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(6) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT	WINATION SUPPLIES TO Surfer Su	$\begin{split} V_{\text{OM}} &= \pm 10 V, \Delta R_{\text{S}} = 1 k \Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1 M \Omega$ f = clk f = clk f = 0 to 5kHz $V_{\text{IN}} = 1 V p \cdot p, -3 dB, \\ G &= 0.5 \\ V_{\text{IN}} = 10 V p \cdot p, -3 dB, \\ G &= 0.5 \end{split}$	±10 73 89 98 100 MONANA ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20	PROPILE (LA PROPILE (LA POOTPRI) RNAL POWE (AS 311A) PRONIZATI POWEO (AS 311A) ROWEO (AS 311A) REPOWEO (AS 311A) REPOWEO (AS 311A) REPOWEO (AS 311A)	nA V dB dB dB dB V II pF Ω pF Ω pF kΩ V mVp-p μV/\Flz kHz
MPUT Inear Input Range(s) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance /oltage Ripple Voltage(s) Dutput Noise PREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT /oltage Outputs (±Vss)(7)	WINATION SUPPLIES TO Surfer Su	$\begin{split} V_{CM} &= \pm 10V, \Delta R_S = 1k\Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1M\Omega$ f = clk f = 0 to SkHz $V_{IN} = 1V_{IP}p, -3dB, G \\ G &= 0.5$ $V_{IN} = 10V_{IN}p, -3dB, G$	±10 73 89 98 100 MONAPES ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 200	NOTE 100 ON THE PROPERTY AND THE POWER OF THE POWER OF THE POWER OF THE POWER OWN COST TO THE POWER OWN COST	nA V dB dB dB dB V Ω pF Ω pF Ω pF kΩ V mVp-p μV/\Hz Hz
Diffset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode Dutput Impedance //oltage Compon-Mode Dutput Impedance //oltage TreEQUENCY RESPONSE Treal Signal Bandwidth SOLATED POWER OUTPUT //oltage Outputs (±V _{SS})(7) Is Temperature	WINATION SUPPLIES TO Surfer Su	$\begin{split} V_{\text{OM}} &= \pm 10 V, \Delta R_{\text{S}} = 1 k \Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1 M \Omega$ f = clk f = clk f = 0 to 5kHz $V_{\text{IN}} = 1 V p \cdot p, -3 dB, \\ G &= 0.5 \\ V_{\text{IN}} = 10 V p \cdot p, -3 dB, \\ G &= 0.5 \end{split}$	±10 73 89 98 100 MONANA ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 200	NOTE 100 ON THE PROPERTY AND THE POWER OF THE POWER OF THE POWER OF THE POWER OWN COST TO THE POWER OWN COST	nA V dB dB dB dB V Ω pF Ω pF Ω v mVp-p μV/√Hz kHz Hz
Diffset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(6) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(7) vs Temperature vs Load	WINATION SUPPLIES TO Surfer Su	$\begin{array}{c} V_{\text{CM}} = \pm 10 V, \ \Delta R_{\text{S}} = 1 k \Omega \\ G = 0.5 \\ G = 5 \\ G = 50 \\ G = 500 \\ \end{array}$ Load = $1 M \Omega$ f = clk f = 0 to 5kHz $\begin{array}{c} V_{\text{IN}} = 1 V p \text{-} p, -3 \text{dB}, \\ G = 0.5 \\ V_{\text{IN}} = 10 V p \text{-} p, -3 \text{dB}, \\ G = 0.5 \\ \end{array}$ 3mA	±10 73 89 98 100 MOTARE ±5 ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 200 ±14 7 180	NOTE THE PROPERTY OF THE PROPE	NA V dB dB dB dB CB PF PP PP ROPE ROPE ROPE ROPE ROPE ROPE ROP
Impedance Differential Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Output Impedance Voltage Ripple Voltage(6) Output Noise PREQUENCY RESPONSE Small Signal Bandwidth Full Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V sS)(7) vs Temperature vs Load Current Output(7)	WINATION SUPPLIES TO Surfer Su	$\begin{split} V_{\text{CM}} &= \pm 10 V, \Delta R_{\text{S}} = 1 k \Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1 M \Omega$ f = clk f = 0 to $5 kHz$ $V_{\text{IN}} = 1 V p - p, -3 dB, G &= 0.5 \\ V_{\text{IN}} = 10 V p - p, -3 dB, G &= 0.5 \\ 3 mA \end{split}$	±10 73 89 98 100 MOTARIA ±5 ±5 ±5 ±5 ±13 ±10	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 200 ±14 7 180	NOTE THE PROPERTY OF THE PROPE	nA V dB dB dB dB CD II pF Ω II pF V mVp-p μV/\Hz kHz Hz VDC mV/°C mV/mA
Diffset NPUT Inear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Pilople Voltage(6) Dutput Noise PREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(7) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8) Instrumental Signal Sandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(8)	WINATION SUPPLIES TO Surfer Su	$V_{CM} = \pm 10V, \ \Delta R_S = 1k\Omega$ $G = 0.5$ $G = 5$ $G = 50$ $G = 500$ $G = 500$ $V_{IN} = 1Vp-p, -3dB, G = 0.5$ $V_{IN} = 10Vp-p, -3dB, G = 0.5$ $V_{IN} = 13Vp-p, -3dB, G = 0.5$	±10 73 89 98 100 MOTARE ±5 ±5	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 200 ±14 7 180	NOTE THE PROPERTY OF THE PROPE	NA V dB dB dB dB CB PF PP PP ROPE ROPE ROPE ROPE ROPE ROPE ROP
mpedance Differential Common-Mode Rejection mpedance Differential Common-Mode Dutput Uniput Impedance /oltage Zipple Voltage(6) Dutput Noise PREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT /oltage Outputs (±V ss)(7) rs Temperature /rs Load Current Output(7)	WINATION SUPPLIES TO Surfer Su	$V_{CM} = \pm 10V, \ \Delta R_S = 1k\Omega$ $G = 0.5$ $G = 5$ $G = 50$ $G = 500$ $G = 500$ $V_{IN} = 1Vp-p, -3dB, G = 0.5$ $V_{IN} = 10Vp-p, -3dB, G = 0.5$ $V_{IN} = 13Vp-p, -3dB, G = 0.5$	±10 73 89 98 100 MOTARIA ±5 ±5 ±5 ±5 ±13 ±10	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 200 ±14 7 180	NOTE THE PROPERTY OF THE PROPE	nA V dB dB dB dB CD II pF Ω II pF V mVp-p μV/\Hz kHz Hz VDC mV/°C mV/mA
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Output Impedance Voltage Ripple Voltage(6) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(7) vs Temperature vs Load Current Output(77) (Both Loaded) (One Loaded)	WINATION SUPPLIES TO Surfer Su	$\begin{split} V_{\text{CM}} &= \pm 10 V, \Delta R_{\text{S}} = 1 k \Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1 M \Omega$ f = clk f = 0 to $5 kHz$ $V_{\text{IN}} = 1 V p - p, -3 dB, G &= 0.5 \\ V_{\text{IN}} = 10 V p - p, -3 dB, G &= 0.5 \\ 3 mA \end{split}$	±10 73 89 98 100 MOMARIA ±5 ±5 10 and man -man -man -man -man -man -man -man -	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 200 ±14 7 180 6 6 6	PROPILE (LA FROPILE (LA FROPILE (LA SUNA) ANAL POWER (AS AS A	nA V dB dB dB dB V mVP-P μV/√Hz kHz Hz VDC mV/°C mV/mA
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Output Impedance Voltage Ripple Voltage(6) Output Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±Vss)(7) vs Temperature vs Load Current Output(7) (Both Loaded) (One Loaded) POWER SUPPLIES	WINATION SUPPLIES TO Surfer Su	$\begin{split} V_{\text{CM}} &= \pm 10 V, \Delta R_{\text{S}} = 1 k \Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1 M \Omega$ f = $c l k$ f = $c l k$ f = $0 to 5 k H z$ $V_{\text{IN}} = 1 V p - p, -3 d B, G = 0.5$ $V_{\text{IN}} = 10 V p - p, -3 d B, G = 0.5$ $3 m A$ $V_{\text{SS}} = \pm 13 V$ $V_{\text{SS}} = \pm 13 V$	±10 73 89 98 100 W MOTARIA ±5 ±5 10 10 10 10 10 10 10 10 10 10 10 10 10 1	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 200 ±14 7 180 6 6 6	NOTE THE PROPERTY OF THE PROPE	nA V dB dB dB dB CD II pF Ω pF Ω pF kΩ V mVp-p μV/√Hz Hz VDC mV/°C mV/mA mA
Offset NPUT Linear Input Range(s) Common-Mode Rejection Differential Common-Mode Differential Common-Mode Output Doutput Impedance Voltage Ripple Voltage(s) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(7) vs Temperature vs Load Current Output(7) (Both Loaded) (One Loaded) POWER SUPPLIES Rated Voltage	WINNATION SUPPRINT OF SUPPRINT OF Surface Williams of Surface Will	$V_{CM} = \pm 10V, \ \Delta R_S = 1k\Omega$ $G = 0.5$ $G = 5$ $G = 50$ $G = 500$ $G = 500$ $V_{IN} = 1Vp-p, -3dB, G = 0.5$ $V_{IN} = 10Vp-p, -3dB, G = 0.5$ $V_{IN} = 13Vp-p, -3dB, G = 0.5$	±10 73 89 98 100 MOMARIA ±5 ±5 10 and man -man -man -man -man -man -man -man -	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 200 ±14 7 180 6 6 6	PROPILE (LA FROPILE (LA FROPIL	nA V dB dB dB dB CQ pF Q pF Q pF Q pF kQ V mVp-p μV/\/Hz kHz Hz VDC mV/°C mV/mA mA
Diffset NPUT Inear Input Range(s) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Output Impedance Voltage Ripple Voltage(s) Dutput Ingedance Voltage Ripple Voltage(s) Dutput Ingedance Voltage Coutput Ingedance Voltage Coutput Ingedance Voltage Coutput Ingedance Voltage Coutput Noise TREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(7) vs Temperature vs Load Current Output(7) (Both Loaded) (One Loaded) POWER SUPPLIES Rated Voltage Voltage Range(5, 9)	WINATION SUPPLIES TO Surfer Su	$V_{CM} = \pm 10V, \ \Delta R_S = 1k\Omega$ $G = 0.5$ $G = 5$ $G = 50$ $G = 500$ $A = 0.5$ $V_{IN} = 1Vp - p, -3dB, G = 0.5$ $V_{IN} = 10Vp - p, -3dB, G = 0.5$ $3mA$ $V_{SS} = \pm 13V$	±10 73 89 98 100 MOMARIA ±5 ±5 10 and man -man -man -man -man -man -man -man -	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 ±14 7 180 6 6 11.4 to 16	PROPILE (LA FROPILE (LA FROPIL	nA V dB dB dB dB CD II pF Ω II pF kΩ V mVp-p μV/√Hz kHz Hz VDC mV/°C mV/mA mA mA
Inear Input Range(s) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Dutput Impedance Voltage Ripple Voltage(s) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±V _{SS})(7) Is Temperature Is Load Current Output(77) (Both Loaded) (One Loaded) POWER SUPPLIES Range(s, 9) Quiescent Current	WINNATION SUPPRINT OF SUPPRINT OF Surface Williams of Surface Will	$\begin{split} V_{\text{CM}} &= \pm 10 V, \Delta R_{\text{S}} = 1 k \Omega \\ G &= 0.5 \\ G &= 5 \\ G &= 50 \\ G &= 500 \end{split}$ Load = $1 M \Omega$ f = $c l k$ f = $c l k$ f = $0 to 5 k H z$ $V_{\text{IN}} = 1 V p - p, -3 d B, G = 0.5$ $V_{\text{IN}} = 10 V p - p, -3 d B, G = 0.5$ $3 m A$ $V_{\text{SS}} = \pm 13 V$ $V_{\text{SS}} = \pm 13 V$	±10 73 89 98 100 MOMARIA ±5 ±5 10 and man -man -man -man -man -man -man -man -	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 200 ±14 7 180 6 6 6	PROPILE (LA FROPILE (LA FROPIL	nA V dB dB dB dB V mV-p- p μV/√Hz kHz Hz VDC mV/°C mV/°C mV/mA
mpedance Differential Common-Mode Rejection mpedance Differential Common-Mode DUTPUT Dutput Impedance /oltage Polity Voltage(6) Dutput Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT /oltage Outputs (±V ss)(7) rs Temperature /s Load Durrent Output(7) (Both Loaded) Cone Loaded) Cone Loaded) POWER SUPPLIES Rated Voltage /oltage Range(5, 9) Zuiesscent Current TEMPERATURE RANGE	WINNATION SUPPRINT OF SUPPRINT OF Surface Williams of Surface Will	$V_{\text{CM}} = \pm 10 \text{V}, \ \Delta R_{\text{S}} = 1 \text{k} \Omega$ $G = 0.5$ $G = 5$ $G = 50$ $G = 500$ $\text{Load} = 1 \text{M} \Omega$ $f = \text{clk}$ $1 = 0 \text{ to 5kHz}$ $V_{\text{IN}} = 1 \text{Vp-p.} - 3 \text{dB,}$ $G = 0.5$ $V_{\text{IN}} = 10 \text{Vp-p.} - 3 \text{dB,}$ $G = 0.5$ 3mA $V_{\text{SS}} = \pm 13 \text{V}$ $V_{\text{SS}} = \pm 13 \text{V}$ Rated Performance No Load	±10 73 89 98 100 MOITARE ±5 ±5 100 100 100 100 100 100	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 ±14 7 180 6 6 11.4 to 16	PROPILE (LA FROPILE (LA FROPIL	nA V dB dB dB dB CB R Ω pF Ω pF Ω pF kΩ V mVp-p μV/√Hz kHz Hz VDC mV/°C mV/mA mA mA
Offset NPUT Linear Input Range(5) Common-Mode Rejection Impedance Differential Common-Mode DUTPUT Output Impedance Voltage Ripple Voltage(6) Output Noise FREQUENCY RESPONSE Small Signal Bandwidth SOLATED POWER OUTPUT Voltage Outputs (±Vss)(7) vs Temperature vs Load Current Output(7) (Both Loaded) (One Loaded) POWER SUPPLIES	WINNATION SUPPRINT OF SUPPRINT OF Surface Williams of Surface Will	$V_{CM} = \pm 10V, \ \Delta R_S = 1k\Omega$ $G = 0.5$ $G = 5$ $G = 50$ $G = 500$ $A = 0.5$ $V_{IN} = 1Vp - p, -3dB, G = 0.5$ $V_{IN} = 10Vp - p, -3dB, G = 0.5$ $3mA$ $V_{SS} = \pm 13V$	±10 73 89 98 100 MOMARIA ±5 ±5 10 and man -man -man -man -man -man -man -man -	±1 ±12 90 110 120 125 1010 3 1010 6 3 1 20 1 ±14 7 180 6 6 11.4 to 16	PROPILE (LA FROPILE (LA FROPIL	nA V dB dB dB dB CD II pF Ω II pF kΩ V mVp-p μV/√Hz kHz Hz VDC mV/°C mV/mA mA mA

NOTES: (1) Isolation-mode rejection is the ratio of the change in output voltage to a change in isolation barrier voltage. (2) Tested at 2500Vrms 50Hz limit 25µA (barrier is essentially capacitive). (3) Nonlinearity is the peak deviation of the output voltage from the best-fit straight line. It is expressed as the ratio of deviation to FSR. (4) Power Supply Rejection is the change in V_{OS}/Supply Change. (5) See max V_{OUT} and V_{IN} vs Supply Voltage in typical performance curves. (6) Ripple is the residual component of the barrier carrier frequency generated internally. (7) Derated at V_{CC} < 15V. (8) FSR = Full Scale Output Range = 10V. (9) Minimum supply voltage is given as 11.4V. This is the minimum supply to ensure a ±5V output swing can be achieved. The ISO213 actually works down to a minimum supply of 4V as shown in the typical performance curve "Max V_{OUT} and V_{IN} vs Supply Voltage."

SOLVIION SHODUCLE

Bottom View

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

150213

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO213P	38-Pin Plastic ZIP	326

0

0

0 5 -Vss

0 31 +Vcc

0

35 Clock In

ACom 2

0

Com 2 32

V_{OUT} 38

Clock Out 34

O 7 GSB

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	OPERATING TEMPERATURE RANGE	ISOLATION RATING 1 MIN
ISO213P	38-Pin Plastic ZIP	-25°C to +85°C	2500Vrms

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

SOLATION PRODUCTS

18021

DISCUSSION OF SPECIFICATIONS

ISO213 is intended for applications where isolation and input signal conditioning are required. The best signal-to-noise performance is obtained when the input amplifier gain setting is such that F_B pin has a full scale range of $\pm 10V$. The bandwidth is internally limited to typically 1kHz, making the device ideal for use in conjunction with sensors that monitor slowly varying processes. To power external functions or networks, 3mA at $\pm 14V$ typical is available at the isolated port.

LINEARITY PERFORMANCE

ISO213 offers non-linearity performance compatible with 12-bit resolution systems (0.025%). Note that the specification is based on a best-fit straight line.

INPUT PROTECTION

The inputs of ISO213 are individually protected for voltages up to ±40V. For example, a condition of –40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5mA to 5mA. The typical performance curve "Input Bias Current vs Input Overload Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

USING ±V_{SS} TO POWER EXTERNAL CIRCUITRY

The DC/DC converter in ISO213 runs at a switching frequency of 25kHz. Internal rectification and filtering is

sufficient for most applications at low frequencies with no external networks connected.

The unloaded ripple on $\pm V_{SS}$ is typically 100mVp-p at 25kHz, which increases with loading. A capacitor of 1 μ F is normally sufficient for most applications, although in some cases 10 μ F may be required. Noise introduced onto $\pm V_{SS}$ should be decoupled to prevent degraded performance.

THEORY OF OPERATION

ISO213 has no galvanic connection between the input and output. The analog input signal is multiplied by the gain of the input amplifier and accurately reproduced at the output. A simplified diagram of ISO213 is shown in Figure 2. The design consists of a DC/DC converter, an uncommitted input instrumentation amplifier, a modulator circuit and a demodulator circuit with a gain of 0.5. Magnetic isolation is provided by separate transformers in the power and signal paths.

The DC/DC converter provides power and synchronization signals across the isolation barrier to operate the instrumentation amplifier and modulator circuitry. It also has sufficient capacity to power external input signal conditioning networks. The uncommitted instrumentation amplifier may be configured for signal buffering or amplification, depending on the application.

The modulator converts the input signal to an amplitude-modulated AC signal that is magnetically coupled to the demodulator by a miniature transformer providing the signal-path isolation. The demodulator recovers the input signal from the modulated signal using a synchronous technique to minimize noise and interference.

FIGURE 1. Power Supply and Signal Connections Shown for Non-Inverting, Unity Gain Configuration.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

ABOUT THE BARRIER

For any isolation product, barrier integrity is of paramount importance in achieving high reliability. ISO213 uses miniature toroidal transformers designed to give maximum isolation performance when encapsulated with a high dielectric-strength material. The internal component layout is designed so that circuitry associated with each side of the barrier is positioned at opposite ends of the package. Areas where high electric fields can exist are positioned in the center of the package. The result is that the dielectric strength of the barrier typically exceeds 3kVrms.

ISOLATION VOLTAGE RATINGS

Because a long term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a high voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one. Historically, Burr-Brown has chosen a deliberately conservative one: $V_{TEST} = (2 \times ACrms continuous rating) + 1000V$ for ten seconds, followed by a test at rated ACrms voltage for one minute.

Recent improvements in high voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology to the manufacture and testing of ISO213.

PARTIAL DISCHARGE

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high voltage stress. This ioni-

zation requires a higher applied voltage to start the discharge and a lower voltage to extinguish it once started. The higher start voltage is known as the inception voltage and the lower voltage is called the extinction voltage. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached. At this point, the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that if the discharge does not occur, the insulation system retains its integrity. If the discharge begins and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is both useful in rating the devices and in providing quality control of the manufacturing process. The inception voltage of these voids tend to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure.

The bulk inception voltage, on the other hand, varies with the insulation system and the number of ionization defects. This directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin.

Measuring the bulk extinction voltage provides a lower, more conservative, voltage from which to derive a safe continuous rating. In production, it's acceptable to measure at a level somewhat below the expected inception voltage and then de-rate by a factor related to expectations about the

FIGURE 2. Simplified Diagram of Isolation Amplifier.

system transients. The isolation barrier has been extensively evaluated under a combination of high temperatures and high voltage to confirm its performance in this respect. ISO213 is free from partial discharges at rated voltages.

PARTIAL DISCHARGE TESTING IN PRODUCTION

This test method provides far more qualitative information about stress withstand levels than did previous stress tests. It also provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers such as those of high voltage power distribution equipment for some time. They employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to measure partial discharge, and VDE, the German standards group, has adopted use of this method for the testing of opto-couplers. To accommodate poorly defined transients, the part under test is exposed to a voltage that is 1.6 times the continuous rated voltage and must display <5pC partial discharge level in a 100% production test. Where transients are not present on an applied voltage and the bulk inception voltage is not exceeded, degradation will not take place. This is the case where OEM production testing is performed to satisfy regulatory requirements. The normal test is to apply a relatively slow ramp to a defined test voltage. Maintain that voltage for 1 minute and then ramp to zero. Where this test voltage is less than or equal to the partial discharge test voltage it can be seen that degradation will not occur. Hence ISO213 is guaranteed to withstand a continuous test voltage for 1 minute at the partial discharge test voltage.

INSTALLATION AND OPERATING INSTRUCTIONS

POWER SUPPLY AND SIGNAL CONNECTIONS

As with any mixed analog and digital signal component, correct decoupling and signal routing precautions must be used to optimize performance. Figure 1 shows the proper power supply and signal connections. $V_{\rm CC}$ should be bypassed to Com 2 with a 0.1µF ceramic capacitor and 100µH inductor as close to the device as possible. Short leads will minimize lead inductance. A ground plane will also reduce noise problems. If a low impedance ground plane is not used, signal common lines, and ACom 2 should be tied directly to the ground at the supply and Com 2 returned via a separate trace to the supply ground.

To avoid gain and isolation mode (IMR) errors introduced by the external circuit, connect grounds as indicated in Figure 3. Layout practices associated with isolation amplifiers are very important. In particular, the capacitance associated with the barrier, and series resistance in the signal and

FIGURE 3. Technique for Connecting Com 1 and Com 2.

reference leads, must be minimized. Any capacitance across the barrier will increase AC leakage and, in conjunction with ground line resistance, may degrade high frequency IMR.

VOLTAGE GAIN MODIFICATIONS

The uncommitted instrumentation amplifier at the input can be used to provide gain, signal inversion, or current to voltage conversion. The standard design approach for any instrumentation amplifier stage can be used, provided that the full scale voltage appearing on F_B does not exceed $\pm 10V$.

Also, it should be noted that the current required to drive the equivalent impedance of any feedback network is supplied by the internal DC/DC converter and must be taken into account when calculating the loading added to $\pm V_{SS}$.

ISOLATED POWER OUTPUT DRIVE CAPABILITY

On the input side of ISO213, there are two power supplies capable of delivering 3mA at $\pm 14V$ typical to power external circuitry. When using these supplies with external loads, it is recommended that additional decoupling in the form of $10\mu F$ tantalum bead capacitors, is added to improve the voltage regulation. Loss of linearity will result if additional filtering is not used with an output load. Again, power dissipated in a feedback network must be subtracted from the available power output at $\pm V_{SS}$.

If ISO213 is to be used in multiple applications, care should be taken in the design of the power distribution network, especially when all ISO213s are synchronized. It is best to use a well decoupled distribution point and to take power to each ISO213 from this point in a star arrangement as shown in Figure 4.

S

Or, Call Customer Service at 1-800-548-6132 (USA Only)

FIGURE 4. Recommended Decoupling and Power Distribution.

NOISE

Output noise is generated by residual components of the 25kHz carrier that have not been removed from the signal. This noise may be reduced by adding an output low-pass filter (see Figure 9). The filter time constant should be set below the carrier frequency. The output from ISO213 is a switched capacitor and requires a high impedance load to prevent degradation of linearity. Loads of less than $1 M \Omega$ will cause an increase in noise at the carrier frequency and will appear as ripple in the output waveform. Since the output signal power is generated from the input side of the barrier, decoupling of the $\pm V_{SS}$ outputs will improve the signal to noise ratio.

SYNCHRONIZATION OF THE INTERNAL OSCILLATOR

ISO213 has an internal oscillator and associated timing components, which can be synchronized. This alleviates the requirement for an external high-power clock driver. The typical frequency of oscillation is 50kHz. The internal clock will start when power is applied to ISO213 and Clk In is not connected.

Because the oscillator frequency of each ISO213 can be marginally different, "beat" frequencies ranging from a few Hz to a few kHz can exist in multiple amplifier applications. The design of ISO213 accommodates "internal synchronous" noise, but a synchronous beat frequency noise will not be strongly attenuated, especially at very low frequencies if it is introduced via the power, signal, or potential grounding paths. To overcome this problem in systems where several ISO213s are used, the design allows synchronization of each oscillator in a system to one frequency. Do this by forcing the timing node on the internal oscillator with an external driver connected to Clk In (Figure 5). The driver may be an external component with Series 4000 CMOS characteristics, or one ISO213 in the system can be used as the master clock for the system. An alternative where a specific frequency is not required is to lock all ISO213s together by joining all Clk Ins. This method can be used to lock an unlimited

number of ISO213s. See Figure 6, 7, and 8 for connections in multiple ISO213 installations.

FIGURE 5. Equivalent Circuit, Clock Input/Output. Inverters

FIGURE 6. Oscillator Connections for Synchronous Operation in Multiple ISO213P Installations.

FIGURE 7. Isolating the Clk Out Node.

CHARGE ISOLATION

When more than one ISO213 is used in synchronous mode, the charge which is returned from the timing capacitor (220pF in Figure 5) on each transition of the clock becomes significant. Figure 7 illustrates a method of isolating the "Clk Out" clamp diodes (Figure 5) from this charge.

A $22k\Omega$ resistor (recommended maximum) together with the $39k\Omega$ internal oscillator timing resistor (Figure 5) forms a potential divider. The ratio of these resistors should be greater than 0.6 which ensures that the input voltage triggers the inverter connected to "CIk In". If using a single resistor, then account must be taken of the paralleled timing resistors. This means that the $22k\Omega$ resistor must be halved to drive two ISO213s, or divided by 8 if driving 8 ISO213s to insure that the ratio of greater than 0.6 is maintained. The series resistors shown in Figure 7 reduce the high frequency content of the power supply current. Figure 8 can be used where a specific frequency of operation is not required.

APPLICATIONS

ISO213 isolation amplifier, together with a few low cost components, can isolate and accurately convert a 4-to-20mA input to a $\pm 10 V$ output with no external adjustment. Its low height (0.43" (11mm)) and small footprint (2.5" x 0.33" (57mm x 8mm)) make it the solution of choice in 0.5" board spacing systems and in all applications where board area savings are critical.

ISO213 operates from a single +15V supply and offers low power consumption and 12-bit accuracy. On the input side,

two isolated power supplies capable of supplying 3mA at $\pm 14V$ typical are available to power external circuitry.

APPLICATIONS FLEXIBILITY

In Figure 9, ISO213 +V $_{ss}$ isolated supply powers a REF200 to provide an accurate 200 μ A current source. This current is used via the 1.5k Ω resistor to set the output to –5V at 4mA input.

The primary function of the output circuitry is to add gain, to produce a ±10V output and to reduce output impedance. The addition of a few resistors and capacitors provides a low pass filter with a cutoff frequency equal to the full signal bandwidth of ISO213, typically 200Hz. The filter response is flat to 1dB and rolls off from cut off at -12dB per octave.

The accuracy of REF200 and external resistors eliminates the need for expensive trim pots and adjustments. The errors introduced by the external circuitry only add about 10% of ISO213 specified gain and offset voltage error.

FIGURE 8. Recommended Synchronizing Scheme.

FIGURE 9. Isolated 4-20mA Current Receiver with Output Filter.

FIGURE 10. Instrument Bridge Isolation Amplifier.

FIGURE 11. ECG Amplifier With Right-Leg Drive.

FIGURE 12. Thermocouple Amplifier With Cold Junction Compensation and Down-Scale Burn-Out.

FIGURE 13. Isolated Current Monitoring Applications.

FIGURE 14. Isolated Temperature Sensing and Amplification.

ISO253

Precision, Powered, Three-Port Isolated BUFFER AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
- 100% TESTED FOR PARTIAL DISCHARGE
- LOW NONLINEARITY: ±0.01% typ
- INPUT PROTECTED TO ±100V
- BIPOLAR OPERATION: Vo = ±10V
- SYNCHRONIZATION CAPABILITY
- 28-PIN PLASTIC DIP: 0.6" Wide

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL Transducer Isolator, Thermocouple Isolator, RTD Isolator, Pressure Bridge Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- GROUND LOOP ELIMINATION

DESCRIPTION

ISO253 is a precision three-port isolated buffer amplifier incorporating a novel duty cycle modulation-demodulation technique and has excellent accuracy. The input is protected to withstand ±100V without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. The DC/DC converter, amplifier and barrier capacitors are housed in a plastic DIP.

This amplifier is easy to use as no external components are required. A power supply range of 11V to 18V makes this amplifier ideal for a wide range of applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At $T_A = +25$ °C, $V_{S3} = 15$ V, $R_{L_i} = 2k\Omega$, and 220nF capacitors on all generated supplies, unless otherwise noted.

28 +V _e	11	uiV+	VIE	ISO253P	ACCIONAL SECURIORIS	Comit to GND I
PARAMETER V TS	S	CONDITIONS	MIN	TYP	MAX	UNITS
ISOLATION Voltage Rated Continuous: AC 100% Test (AC 50Hz) Rated One Min Isolation-Mode Rejection	E	T _{MIN} to T _{MAX} 1s; Partial Discharge ≤ 5pC	1500 2500 2500	Conlin	ure re (soldering, 10s)	Vrms Vrms Vrms
DC AC 50Hz Barrier Impedance Leakage Current	07	1500Vrms VISO = 240Vrms, 50Hz		120 95 10 ¹⁴ 2 1.4	ECTPOS	dB dB Ω pF μArms
GAIN Nominal Gain Gain Error Gain vs Temperature Nonlinearity	27 28 61	-Vss Com2 Vour	TIVITY Bur-Brown handled with	1 0.15 15 0.01	±0.3	V/V % ppm/°C %
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Supply			oper banding s. ance degrada-	150 Subtle person	proceeds Faint proceeds ca an range from	mV μV/°C mV/V
INPUT Voltage Range Resistance		PACKAGE INFO	Emz ±10 oz	±15 200	device failure susceptible to ves could on	V d kΩ
		NODEL ISOSSEP 28 NOTE: (1) For detailed a sheet, or Appendix C of	±10 ±5	0.1 25	ications.	
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate Settling Time, 0.1%		ORDERING INFO		50 0.25 50		kHz V/μs μs
POWER SUPPLIES and offered to the state of t	28-Ph	No Load 50mA Load On Two Supplies	11 25 13 12	15 40 14.5 13.2 28 1	18 55 16	V V mA V V MV/mA V/V MHz mV
TEMPERATURE RANGE Operating Storage			-40 -40		85 85	°C °C

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+18V
VIN, Analog Input Voltage Range	±100V
Com1 to GND1	±1V
Com2 to GND2	±1V
Continuous Isolation Voltage:	1500Vrms
	2500Vrms one min
IMV, dv/dt	20kV/µs
Junction Temperature	150°C
Storage Temperature	-40°C to +85°C
Lead Temperature (soldering, 10s)	+300°C
Output Short Duration	Continuous to Common

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO253P	28-Pin Plastic DIP	335

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	Sereing Time, (
ISO253P	28-Pin Plastic DIP	99UE REWOS

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or ornissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES 110 30MAM909939 JACI9YT

At T_A = +25°C, +V_{S3} = 15V, R_L = 2kΩ, and 220nF capacitors on all generated supplies, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) MAME OF REST LADISYT

At TA = +25°C, +V_{S3} = 15V, R_L = 2kΩ, and 220nF capacitors on all generated supplies, unless otherwise noted.

BASIC OPERATION

ISO253 is a precision, powered, three-port isolated buffer amplifier. The input and output sections are galvanically isolated by matched and EMI shielded capacitors built into the plastic package. The DC/DC converter input is also galvanically isolated from both the input and output supplies.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows proper power and signal connections. The power supply input pin $+V_{\rm S3}$ should be bypassed with a 2.2µF tantalum capacitor and the outputs $V_{\rm S1}$ and $V_{\rm S2}$ with 220nF ceramic capacitors located as close to the amplifier as possible. All ground connections should be run independently to a common point. Signal Common on both input and output sections provide a high-impedance point for sensing signal ground in noisy applications. Com1 and Com2 must have a path to ground for signal current returns and should be maintained within $\pm 1 \rm V$ of GND1 and GND2 respectively.

INPUT PROTECTION

The input of the buffer amplifier is protected for voltages up to $\pm 100V$. The input is a $200k\Omega$ resistor to the summing node of the input amplifier.

DC/DC CONVERTER All sold party roll and a side and a sold party

ISO253 provides a reliable solution to the need for integral

power. The high isolation rating being achieved by careful design and attention to the physical construction of the transformer. In addition to the high dielectric strength a low leakage coating increases the isolation voltage range. The soft start oscillator/driver design eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition. The DC/DC converter is synchronized to the amplifier and when multiple ISO253's are used, each channel can be synchronized via the SYNC pin.

The DC/DC converter consists of a free-running oscillator, control and switch driver circuitry, MOSFET switches, a transformer, rectifier diodes and filter capacitors all contained within the ISO253 package. The control circuitry consists of current limiting, soft start and synchronization features. In instances where several ISO253's are used in a system, beat frequencies developed between the ISO253's are a potential source of low frequency noise in the supply and ground paths. This noise may couple into the signal path and can be avoided by synchronizing the individual ISO253's together by tying the SYNC pins together or using the circuit in Figure 2 to drive the SYNC pins from an external source.

When connecting up to eight ISO253's without a driver the unit with the highest natural frequency will determine the synchronized running frequency. The SYNC pin is sensitive to capacitive loading: 150pF or less is recommended. If unused, the SYNC pin should be left open. Avoid shorting the SYNC pin directly to ground or supply potentials; otherwise damage may result.

FIGURE 1. Basic Connections.

Burr-Brown IC Data Book-Linear Products

FIGURE 2. External SYNC drive.

Soft start circuitry protects the MOSFET switches during startup. This is accomplished by holding the gate-to-source voltage of both MOSFET switches low until the free-running oscillator is fully operational. In addition, soft start circuitry and input current sensing also protects the switches. This current limiting keeps the MOSFET switches operating in their safe operating area under fault conditions or excessive loads. When either of these conditions occur, the peak input current exceeds a safe limit. The result is an approximate 5% duty cycle, 300µs drive period to the MOSFET switches. This protects the internal MOSFET switches as well as the external load from any thermal damage. When the fault or excessive load is removed, the converter resumes normal operation. A delay period of approximately 50us incorporated in the current sensing circuitry allows the output filter capacitors to fully charge after a fault is removed. This delay period corresponds to a filter capacitance of no more than 1µF at either of the output pins. This provides full protection of the MOSFET switches and also sufficiently filters the output ripple voltage. The current sensing circuitry is designed to provide thermal protection for the MOSFET switches over the operating temperature range as well. When these conditions are exceeded, the unit will go into its shutdown mode.

OUTPUT CURRENT RATINGS

The total current which can be drawn from each output supply on the ISO253 is a function of the total power drawn from all outputs. For example if three outputs are not used then maximum current can be drawn from one output. In all cases, the total maximum current that can be drawn from any combination of outputs is:

$$|I_{1+}| + |I_{1-}| + |I_{2+}| + |I_{2-}| \le 50 \text{mA}$$

+V_{S3}, GND3

The waveform of the ground return current is an 800kHz sawtooth. A capacitor between $\pm V_{S3}$ and GND3 provides a

means.) Normal power down of the $+V_{S3}$ supply is not considered instantaneous. Should a rapid break in input power occur the internal transformers voltage will rapidly rise to maintain current flow and may cause internal damage to the ISO253.

SYNCHRONIZED OPERATION

ISO253 can be synchronized to an external signal source. This capability is useful in eliminating troublesome beat frequencies in multi-channel systems and in rejecting AC signals and their harmonics. To use this feature, tie all sync pins together or apply an external signal to the SYNC pin. ISO253 can be synchronized to an external oscillator over the range 1-1.4MHz (this corresponds to a modulation frequency of 500kHz to 700kHz as SYNC is internally divided by 2).

CARRIER FREQUENCY CONSIDERATIONS

ISO253 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, fc. For signal frequencies above f_C/2, the behavior becomes more complex. The "Signal Response vs Carrier Frequency" performance curve describes this behavior graphically. The upper curve illustrates the response for input signals varying from DC to fc/ 2. At input frequencies at or above $f_c/2$, the device generates an output signal component that varies in both amplitude and frequency, as shown by the lower curve. The lower horizontal scale shows the periodic variation in the frequency of the output component. Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the response go to zero. These characteristics can be exploited in certain applications.

It should be noted that for the ISO253, the carrier frequency is nominally 400kHz and the -3dB point of the amplifier is 50kHz. Spurious signals at the output are not significant under these circumstances unless the input signal contains significant components above 200kHz.

When periodic noise from external sources such as system clocks and DC/DC converters is a problem, ISO253 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, f_{EXT}, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND1 and GND2. The IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds $f_{\rm C}/2$, the output will display spurious outputs in a manner similar to that described above, and the amplifier

Response vs Carrier Frequency" performance curve. This occurs because IMV-induced errors behave like inputreferred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO253 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltage below 15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/µs remains unchanged.

Leakage current is determined solely by the impedance of the barrier and transformer capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO253.

Partial Discharge

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will tonize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied voltage gradient across the device continues to rise, another

phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then de-rating by a factor related to expectations about system transients is an accepted practice.

Partial Discharge Testing

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS

The ISO253 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials
- Accurate isolation of signals from severe ground noise and
- Fault protection from high voltages in analog measurements

FIGURE 3. Process Current Input Isolator with Offset.

equipment, for some time, but they employed a simple measurement of RP noise to detect ionization. This method was not quantitative with regard to energy of the discharge and was not sensitive enough for small components such a isolation amplifiers. Now, however, manufacturers of Heter equipment have developed, means to quantity partial discharge. VDE in Gernany, an acknowledged leader it high-voltage test standards, has developed a standard te method to apply this powerful technique. Use of particular discharge testing is an improved method for measuring this particular.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuousrated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPIJOATIONS

the ISO253 isolation amplifiers are used in three categors of applications:

- Accurate isolation of signals from high voltage ground potentials
- Accurate isolation of signals from severe ground noise and

valive one: VTBST = (2 x ACms continuous rating) + (1000 V for 10 seconds, followed by a test at rated ACms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage mings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO253

amai Discharge

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lover voltage to maintain it or extinguish is more started. The higher start voltage is known as the moorption voltage, while the extinction-voltage is that level of voltage stress at which the discharge ceases. Just as the model insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until tis inception voltage is reached, at which point the void will conize, effectively shorting itself out. This action redistributes of extract charge within the dielectric and is known as most and each contract charge within the dielectric and is known as most and an exchange. If, as the case with AC, the applied

ISO254

Precision, Powered, Three-Port Isolated PROGRAMMABLE GAIN AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
 100% TESTED FOR PARTIAL DISCHARGE
- PROGRAMMABLE GAINS OF 1, 10, 100, 1000
- LOW NONLINEARITY: ±0.01% typ
- LOW INPUT BIAS CURRENT: ±5nA max
- LOW INPUT OFFSET VOLTAGE: 625μV max
- INPUTS PROTECTED TO ±40V
- BIPOLAR OPERATION: Vo = ±10V
- SYNCHRONIZATION CAPABILITY
- 28-PIN PLASTIC DIP: 0.6" Wide

DESCRIPTION

ISO254 is a precision three-port isolated programmable gain instrumentation amplifier incorporating a novel duty cycle modulation-demodulation technique and has excellent accuracy. Internal input protection can withstand up to ±40V input differential without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. The DC/DC converter, amplifier and barrier capacitors are housed in a plastic DIP.

This amplifier is easy to use as no external components are required. A power supply range of 11V to 18V makes this amplifier ideal for a wide range of applications.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer Isolator, Thermocouple
 Isolator, RTD Isolator, Pressure Bridge
 Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- BIOMEDICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- GROUND LOOP ELIMINATION

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

			ISO254P		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SOLATION Voltage Rated Continuous: AC 100% Test (AC 50Hz) Rated One Min solation-Mode Rejection	T _{MIN} to T _{MAX} 1s; Partial Discharge ≤ 5pC	1500 2500 2500			Vrms Vrms Vrms
DC AC 50Hz Barrier Impedance eakage Current	1500Vrms VISO = 240Vrms, 50Hz		120 95 10 ¹⁴ 2 1.4	2	dB dB Ω pF μArms
GAIN Gain Error Gain vs Temperature Nonlinearity	G = 1 G = 10 G = 100 G = 1000 G = 1 G = 10 G = 1000 G = 1000 G = 1	MABL	0.15 0.15 0.15 0.2 ±15 ±15 ±15 ±0.01 ±0.01	±0.3 ±0.3 ±0.102	% ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C
Superior and talebomob-note lubor accessors and famous I consistency NPUT OFFSET VOLTAGE	G = 100 G = 1000	ISCHARGE	0.01 ±0.01	±0.104	25007 2001
nitial Offset vs Temperature CMRR s Supply	damage. The sign		±(1 + 510/G) 90 1	±(0.125 +101/G)	mV μV/°C dB mV/V
Bias Current vs Temperature	This results in es frequency transical DC/DC converter, boused in a plastic	±10	±8 VOAL OT CE ±8	±5	V nA pA/°C nA pA/°C
DUTPUT /oltage Range Current Drive Apapacitive Load Drive Ripple Voltage	nents are required 18V makes this a applications.	±10 ±5	0.10 SI 25	LAN OPEHA HRONIZATE E PLASTIC D	V mA μF mVp-p
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate Settling Time, 0.1%	G = 1 G = 10 G = 100 G = 1000 G = 1000 G = 10 G = 1000	not. uple s Bridge	50 30 10 1 0.5 80 380 490 1650	LICATIO STRIAL PRO ducer lecial or, RTD lecit or, Flow Met ER MONITOR	kHz kHz kHz kHz V/µs µs µs µs µs
POWER SUPPLIES Rated Voltage Voltage Range Quiescent Current Rated Output Voltage Load Regulation Line Regulation SYNC Frequency Output Voltage Ripple	No Load 50mA Load On Two Supplies	11 25 13 12	15 40 14.5 13.2 35 1	18 55 16	V V MA V V MV/mA V/V MHz mV
TEMPERATURE RANGE Departing Storage	9	-40 -40		85 85	°C °C

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	100
ISO254P	28-Pin Plastic DIP	

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
ISO254P	28-Pin Plastic DIP	335

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

SOLATION PRODUCTS

TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}\text{C}$, $+V_{S3} = 15\text{V}$, $R_L = 2k\Omega$, and 220nF capacitors on all generated supplies, unless otherwise noted.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (CONT)

At T_A = +25°C, +V_{S3} = 15V, R_L = 2kΩ, and 220nF capacitors on all generated supplies, unless otherwise noted.

manie-gain ampinier. The input and output sections are galvanically isolated by matched and EMI shielded capacitors built into the plastic package. The DC/DC converter input is also galvanically isolated from both the input and output supplies.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows proper power and signal connections. The power supply input pin $+V_{S3}$ should be bypassed with a 2.2µF tantalum capacitor and the outputs V_{S1} and V_{S2} with 220nF ceramic capacitors located as close to the amplifier as possible. All ground connections should be run independently to a common point. Signal Common on the output section provides a low-impedance point for sensing signal ground in noisy applications. Com1 and Com2 must have a path to ground for signal current return and should be maintained within $\pm 1V$ of GND1 and GND2 respectively.

supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the internal amplifiers. Thus, the linear common-mode range is related to the output voltage of the complete input amplifier—see performance curves "Input Common-Mode Range vs Output Voltage."

A combination of common-mode and differential input voltage can cause the output voltage of the internal amplifiers to saturate. For applications where input common-mode range must be maximized, limit the output voltage swing by selecting a lower gain of the programmable-gain input.

Input-overload can produce an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the programmable-gain amplifier will be near 0V even though both inputs are overloaded.

FIGURE 1. Basic Connections.

INPUT PROTECTION

The inputs of the programmable-gain amplifiers are individually protected for voltages up to $\pm 40V$. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The inputs are protected even if no power supply is present.

DC/DC CONVERTER

ISO254 provides a reliable solution to the need for integral power. The high isolation rating being achieved by careful design and attention to the physical construction of the transformer. In addition to the high dielectric strength a low leakage coating increases the isolation voltage range. The soft start oscillator/driver design eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition. The DC/DC converter is synchronized to the amplifier and when multiple ISO254's are used, each channel can be synchronized via the SYNC pin.

The DC/DC converter consists of a free-running oscillator, control and switch driver circuitry, MOSFET switches, a transformer, rectifier diodes and filter capacitors all contained within the ISO254 package. The control circuitry consists of current limiting, soft start and synchronization features. In instances where several ISO254's are used in a system, beat frequencies developed between the ISO254's are a potential source of low frequency noise in the supply and ground paths. This noise may couple into the signal path and can be avoided by synchronizing the individual ISO254's together by tying the SYNC pins together or using the circuit in Figure 2 to drive the SYNC pins from an external source.

FIGURE 2. External SYNC drive.

When connecting up to eight ISO254's without a driver the unit with the highest natural frequency will determine the synchronized running frequency. The SYNC pin is sensitive to capacitive loading: 150pF or less is recommended. If unused, the SYNC pin should be left open. Avoid shorting the SYNC pin directly to ground or supply potentials; otherwise damage may result.

Soft start circuitry protects the MOSFET switches during startup. This is accomplished by holding the gate-to-source voltage of both MOSFET switches low until the free-running oscillator is fully operational. In addition, soft start circuitry and input current sensing also protects the switches. This current limiting keeps the MOSFET switches operating in their safe operating area under fault conditions or excessive loads. When either of these conditions occur, the peak input current exceeds a safe limit. The result is an approximate 5% duty cycle, 300us drive period to the MOSFET switches. This protects the internal MOSFET switches as well as the external load from any thermal damage. When the fault or excessive load is removed, the converter resumes normal operation. A delay period of approximately 50 µs incorporated in the current sensing circuitry allows the output filter capacitors to fully charge after a fault is removed. This delay period corresponds to a filter capacitance of no more than 1µf at either of the output pins. This provides full protection of the MOSFET switches and also sufficiently filters the output ripple voltage. The current sensing circuitry is designed to provide thermal protection for the MOSFET switches over the operating temperature range as well. When these conditions are exceeded, the unit will go into its shutdown mode.

OUTPUT CURRENT RATINGS

The total current which can be drawn from each output supply on the ISO254 is a function of the total power drawn from all outputs. For example if three outputs are not used then maximum current can be drawn from one output. In all cases, the total maximum current that can be drawn from any combination of outputs is:

$$|I_{1+}| + |I_{1-}| + |I_{2+}| + |I_{2-}| \le 50 \text{mA}$$

+V_{S3}, GND3

The waveform of the ground return current is an 800kHz sawtooth. A capacitor between $+V_{S3}$ and GND3 provides a bypass for the AC portion of this current. The power should never be instantaneously interrupted to the ISO254 (i.e., a break in the line to $+V_{S3}$ either by accidental or switch means.) Normal power down of the $+V_{S3}$ supply is not considered instantaneous. Should a rapid break in input power occur the internal transformers voltage will rapidly rise to maintain current flow and may cause internal damage to the ISO254.

SYNCHRONIZED OPERATION

ISO254 can be synchronized to an external signal source. This capability is useful in eliminating troublesome beat frequencies in multi-channel systems and in rejecting AC signals and their harmonics. To use this feature, tie all sync pins together or apply an external signal to the SYNC pin. ISO254 can be synchronized to an external oscillator over the range 1-1.4MHz (this corresponds to a modulation frequency of 500kHz to 700kHz as SYNC is internally divided by 2).

CARRIER FREQUENCY CONSIDERATIONS

ISO254 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, f_C. For signal frequencies above $f_c/2$, the behavior becomes more complex. The "Signal Response vs Carrier Frequency" performance curve describes this behavior graphically. The upper curve illustrates the response for input signals varying from DC to f_C/ 2. At input frequencies at or above $f_c/2$, the device generates an output signal component that varies in both amplitude and frequency, as shown by the lower curve. The lower horizontal scale shows the periodic variation in the frequency of the output component. Note that at the carrier frequency and its harmonics, both the frequency and amplitude of the response go to zero. These characteristics can be exploited in certain applications.

It should be noted that for the ISO254, the carrier frequency is nominally 400kHz and the -3dB point of the amplifier is 50kHz. Spurious signals at the output are not significant under these circumstances unless the input signal contains significant components above 200kHz.

When periodic noise from external sources such as system clocks and DC/DC converters are a problem, ISO254 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, $f_{\rm EXT}$, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND1 and GND2. The IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds $f_C/2$, the output will display spurious outputs in a manner similar to that described above, and the amplifier response will be identical to that shown in the "Signal Response vs Carrier Frequency" performance curve. This occurs because IMV-induced errors behave like inputreferred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve.

Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO254 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltage below 15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/µs remains unchanged.

Leakage current is determined solely by the impedance of the barrier and transformer capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO254.

Partial Discharge

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices

Or, Call Customer Service at 1-800-548-6132 (USA Only)

and providing quality control of the manufacturing process. The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then de-rating by a factor related to expectations about system transients is an accepted practice.

Partial Discharge Testing

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple

measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS

The ISO254 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials
- · Accurate isolation of signals from severe ground noise and
- Fault protection from high voltages in analog measurements

FIGURE 3. Noise Reduction in Data Acquisition System.

Precision, Powered, Three-Port Isolated INSTRUMENTATION AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
 100% Tested for Partial Discharge
- GAINS OF 1 TO 10,000
- LOW NONLINEARITY: ±0.05% typ
- LOW INPUT BIAS CURRENT: ±10nA max
- LOW INPUT OFFSET VOLTAGE
- INPUTS PROTECTED TO ±40V
- BIPOLAR OPERATION V_O = ±10V
- SYNCHRONIZATION CAPABILITY
- 28-PIN PLASTIC DIP: 0.6" Wide

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL Transducer Isolator, Thermocouple Isolator, RTD Isolator, Pressure Bridge Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- BIOMEDICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- GROUND LOOP ELIMINATION

DESCRIPTION

ISO255 is a precision three-port isolated instrumentation amplifier incorporating a novel duty cycle modulation-demodulation technique and has excellent accuracy. Internal input protection can withstand up to ±40V input differential without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. The DC/DC converter, amplifier and barrier capacitors are housed in a plastic DIP.

A power supply range of 11V to 18V makes this amplifier ideal for a wide range of applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

		Drie .		VIII	ISO255P		
PARAMETER		SF- (CONDITIONS	MIN	TYP	MAX	UNITS
SOLATION	10			nim sno smrvoo	S manifestation		
Voltage Rated Continuous:							
AC 10MD as		HAND .	T _{MIN} to T _{MAX}	1500	man communication	Annual Control of the Annual o	Vrms
100% Test (AC 50Hz)		1s; Par	tial Discharge ≤ 5pC	2500	and the same of the same of the	(soldering 70s)	Vrms
Rated One Min				2500	colono Constant	India	Vrms
Isolation-Mode Rejection		11834			The second second		
DC					120		dB
AC 50Hz		GMD2	1500Vrms		95	And the second second second	dB
Barrier Impedance		1,1100	0.1011 5011		1014 2	CUMIUS	Ω∥pF
Leakage Current		VISO	= 240Vrms, 50Hz		1.4	2	μArms
GAIN EGME TT		SeV+		YTIVITI	ENENS	DRAHO	
Gain Equation		28.1			$1 + 50k\Omega/R_G$		V/V
Gain Error		Come	G = 1	D. Burr-Brown	0.15	±0.35	bears %
			G = 10		0.15	HE STORY SHOW SANSONIS	
		tuo ^y	G = 100	handled with	0.15	±0.95	%
			G = 1000	oper handling	0.20 01	cautions. Failure	opriate pre
Gain vs Temperature		1 1 1 1 1 1	G = 1		±50	procedures can	ppm/°C
			G = 10		±50		ppm/°C
		100	G = 100	ance degrada-	±50	in range from s	ppm/°C
		Commercial	G = 1000	erated circuits	±50	device failure	ppm/°C
Nonlinearity		UHMI E	G = 1		±0.05	±0.102	%
			G = 10	se very small	±0.05	of elquidaosns	shorn sd
			G = 100	not to meet	±0.05	±0.104	%
	TO THE PERSON NAMED IN COLUMN TO THE	-	G = 1000	12 11 E	±0.05	zmite-ill	once bada
INPUT OFFSET VOLTAGE		05	1802556				
Initial Offset		- Soliesob	NOTE: (1) For			± (0.125 + 101/G)	mV
vs remperature			sheet, or Appe		± (1 + 520/G)	HOP AMADION	μV/°C
CMRR		1000000	and the same of		90		dB
vs Supply					PAGIGIDE		mV/V
INPUT		B WID			Pira Plausio DIP	30	
Voltage Range				±10			V
Bias Current		13 14 1				±10	nA
vs Temperature					±40		pA/°C
Offset Current						±10	nA
vs Temperature		The same			±40		pA/°C
OUTPUT	BITTE TO ST	1000	25,553	Personal Property	SARABAST.	processing processing party	0.000
Voltage Range		The Royal	631	±10	MARIN	UTITION	V
Current Drive				±5			mA
Capacitive Load Drive		beton obly	supplies, unless others	berareneg lis no s	0.1	= 15V; R _L = 2KΩ, so	μF
Ripple Voltage					25		mVp-p
FREQUENCY RESPONSE							N salarar
Small Signal Bandwidth			G = 1		You 50	anna	kHz
			G = 10		50		kHz
			G = 100	and the same of th	30		kHz
			G = 1000		4		kHz
Slew Rate			G = 10		0.2		V/µs
Settling Time, 0.1%			G = 1		20		μs
			G = 10		20		μѕ
			G = 100		30		μs
			G = 1000		240		μѕ
POWER SUPPLIES	/		- Op 30				- Oh -
Rated Voltage				TAIL LA	15		V
Voltage Range			No.	11	13	18	V
Quiescent Current			100	25	40	55	mA
Rated Output Voltage			No Load	13	14.5	33	V
nated Sulput Voltage		50m4 L	oad On Two Supplies	12	13.2	16	V
		JOHN L	odd On 1440 Ouppiles	14	28	10	mV/mA
Load Regulation		PRIME			1		V/V
		1	4	NOR 1 NOT	387	1.497	MHz
Line Regulation					50	1.4	mV
Line Regulation SYNC Frequency							
, , , , , ,	paeupmä				13.30 43/19/15		IIIV
Line Regulation SYNC Frequency Output Voltage Ripple TEMPERATURE RANGE					30 (3/19)		
Line Regulation SYNC Frequency Output Voltage Ripple				-40 -40	30 3132	85 85	°C

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+18V
VIN, Analog Input Voltage Range	±40V
Com1 to GND1	±1V
Com2 to GND2	±1V
Continuous Isolation Voltage:	
	2500Vrms one min
MV, dv/dt	20kV/μs
Junction Temperature	
Storage Temperature	
_ead Temperature (soldering, 10s)	+300°C
Output Short Duration	Continuous to Common

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODELVm	PACKAGE	
ISO255P	28-Pin Plastic DIP	

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO255P	28-Pin Plastic DIP	3047 JOV 335 490 TUS

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}C$, $+V_{S3} = 15V$, $R_L = 2k\Omega$, and 220nF capacitors on all generated supplies, unless otherwise noted.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES (CONT) ON AMAGGREGAL JACOBYT

 $At T_A = +25^{\circ}C, +V_{S3} = 15V, R_L = 2k\Omega, and 220nF capacitors on all generated supplies; unless otherwise noted. 9 3 100 S = 10 100 S = 1$

mentation amplifier. The input and output sections are galvanically isolated by matched and EMI shielded capacitors built into the plastic package. The DC/DC converter input is also galvanically isolated from both the input and output supplies.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows proper power and signal connections. The power supply input pin $+V_{S3}$ should be bypassed with a 2.2 μ F tantalum capacitor and the outputs V_{S1} and V_{S2} with 220nF ceramic capacitors located as close to the amplifier as possible. All ground connections should be run independently to a common point. Signal Common on the input section provides a low-impedance point for sensing signal ground in noisy applications. Com1 and Com2 must have a path to ground for signal current return and should be maintained within $\pm 1V$ of GND1 and GND2 respectively.

SETTING THE GAIN

Gain of the ISO255 is set by a single external resistor, R_G , connected between pins 1 and 2:

means of Tables
$$G=1+\frac{50k\Omega}{R_G}$$
 (1

The $50k\Omega$ term in Equation 1 comes from the sum of the two

absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the ISO255.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input circuitry of the ISO255 is approximately ±14V (or 1V from the power supplies). As the output voltage increases.

However, the linear input range will be limited by the output voltage swing of the internal amplifiers. Thus, the linear common-mode range is related to the output voltage of the complete input amplifier—see performance curves "Input Common-Mode Range vs Output Voltage."

A combination of common-mode and differential input voltage can cause the output voltage of the internal amplifiers to saturate. For applications where input common-mode range must be maximized, limit the output voltage swing by selecting a lower input gain.

Input-overload can produce an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the instrumentation amplifier will be near 0V even though both inputs are overloaded.

FIGURE 1. Basic Connections.

Burr-Brown IC Data Book-Linear Products

INPUT PROTECTION

The inputs of the amplifier are individually protected for voltages up to ±40V. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The inputs are protected even if no power supply is present.

DC/DC CONVERTER

ISO255 provides a reliable solution to the need for integral power. The high isolation rating being achieved by careful design and attention to the physical construction of the transformer. In addition to the high dielectric strength a low leakage coating increases the isolation voltage range. The soft start oscillator/driver design eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition. The DC/DC converter is synchronized to the amplifier and when multiple ISO255's are used, each channel can be synchronized via the SYNC pin.

The DC/DC converter consists of a free-running oscillator, control and switch driver circuitry, MOSFET switches, a transformer, rectifier diodes and filter capacitors all contained within the ISO255 package. The control circuitry consists of current limiting, soft start and synchronization features. In instances where several ISO255's are used in a system, beat frequencies developed between the ISO255's are a potential source of low frequency noise in the supply and ground paths. This noise may couple into the signal path and can be avoided by synchronizing the individual ISO255's together by tying the SYNC pins together or using the circuit in Figure 2 to drive the SYNC pins from an external source.

FIGURE 2. External SYNC drive.

When connecting up to eight ISO255's without a driver the unit with the highest natural frequency will determine the synchronized running frequency. The SYNC pin is sensitive to capacitive loading: 150pF or less is recommended. If unused, the SYNC pin should be left open. Avoid shorting the SYNC pin directly to ground or supply potentials; otherwise damage may result.

Soft start circuitry protects the MOSFET switches during startup. This is accomplished by holding the gate-to-source voltage of both MOSFET switches low until the free-running oscillator is fully operational. In addition, soft start circuitry and input current sensing also protects the switches. This current limiting keeps the MOSFET switches operating in their safe operating area under fault conditions or excessive loads. When either of these conditions occur, the peak input current exceeds a safe limit. The result is an approximate 5% duty cycle, 300µs drive period to the MOSFET switches. This protects the internal MOSFET switches as well as the external load from any thermal damage. When the fault or excessive load is removed, the converter resumes normal operation. A delay period of approximately 50µs incorporated in the current sensing circuitry allows the output filter capacitors to fully charge after a fault is removed. This delay period corresponds to a filter capacitance of no more than 1µF at either of the output pins. This provides full protection of the MOSFET switches and also sufficiently filters the output ripple voltage. The current sensing circuitry is designed to provide thermal protection for the MOSFET switches over the operating temperature range as well. When these conditions are exceeded, the unit will go into its shutdown mode.

OUTPUT CURRENT RATINGS

The total current which can be drawn from each output supply on the ISO255 is a function of the total power drawn from all outputs. For example if three outputs are not used then maximum current can be drawn from one output. In all cases, the total maximum current that can be drawn from any combination of outputs is:

$$\left| I_{1+} \right| + \left| I_{1-} \right| + \left| I_{2+} \right| + \left| I_{2-} \right| \le 50 \text{mA}$$

+V_{S3}, GND3

The waveform of the ground return current is an 800 kHz sawtooth. A capacitor between $+V_{S3}$ and GND3 provides a bypass for the AC portion of this current. The power should never be instantaneously interrupted to the ISO255 (i.e., a break in the line to $+V_{S3}$ either by accidental or switch means.) Normal power down of the $+V_{S3}$ supply is not considered instantaneous. Should a rapid break in input power occur the internal transformers voltage will rapidly rise to maintain current flow and may cause internal damage to the ISO255.

SYNCHRONIZED OPERATION

ISO255 can be synchronized to an external signal source. This capability is useful in eliminating troublesome beat

Or, Call Customer Service at 1-800-548-6132 (USA Only)

frequencies in multi-channel systems and in rejecting AC signals and their harmonics. To use this feature, tie all sync pins together or apply an external signal to the SYNC pin. ISO255 can be synchronized to an external oscillator over the range 1-1.4MHz (this corresponds to a modulation frequency of 500kHz to 700kHz as SYNC is internally divided by 2).

CARRIER FREQUENCY CONSIDERATIONS

ISO255 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, $f_{\rm C}$. For signal frequencies above $f_{\rm C}/2$, the behavior becomes more complex. The "Signal Response vs Carrier Frequency" performance curve describes this behavior graphically.

It should be noted that for the ISO255, the carrier frequency is nominally 400kHz and the -3dB point of the amplifier is 60kHz. Spurious signals at the output are not significant under these circumstances unless the input signal contains significant components above 200kHz.

When periodic noise from external sources such as system clocks and DC/DC converters are a problem, ISO255 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, $f_{\rm EXT}$, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND1 and GND2. IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds f_C/2, the output will display spurious outputs, and the amplifier response will be identical to that shown in the "Signal Response vs Carrier Frequency" performance curve. This occurs because IMV-induced errors behave like inputreferred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO255 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltage below 15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/µs remains unchanged.

Leakage current is determined solely by the impedance of the barrier and transformer capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO255.

Partial Discharge

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied voltage gradient across the device continues to rise, another partial discharge cycle begins. The importance of this phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk

extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then de-rating by a factor related to expectations about system transients is an accepted practice.

Partial Discharge Testing

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial

discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS

The ISO255 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials
- · Accurate isolation of signals from severe ground noise and
- Fault protection from high voltages in analog measurements

FIGURE 3. Conditioning a Bridge Circuit.

Precision, Powered, Three-Port Isolated OPERATIONAL AMPLIFIER

FEATURES

- RATED
 1500Vrms Continuous
 2500Vrms for One Minute
- 100% TESTED FOR PARTIAL DISCHARGE
- LOW NONLINEARITY: ±0.05% typ
- LOW INPUT BIAS CURRENT: ±5nA max
- INPUTS PROTECTED TO ±30V
- BIPOLAR OPERATION Vo = ±10V
- SYNCHRONIZATION CAPABILITY
- 28-PIN PLASTIC DIP: 0.6" Wide

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer Isolator, Thermocouple
 Isolator, RTD Isolator, Pressure Bridge
 Isolator, Flow Meter Isolator
- POWER MONITORING
- MEDICAL INSTRUMENTATION
- ANALYTICAL MEASUREMENTS
- BIOMEDICAL MEASUREMENTS
- DATA ACQUISITION
- TEST EQUIPMENT
- GROUND LOOP ELIMINATION

DESCRIPTION

ISO256 is a precision three-port isolation operational amplifier incorporating an uncommitted operational amplifier for input conditioning and a novel duty cycle modulation-demodulation technique which has excellent accuracy. Internal input protection can withstand up to ±30V input differential without damage. The signal is transmitted digitally across a differential capacitive barrier. With digital modulation the barrier characteristics do not affect signal integrity. This results in excellent reliability and good high frequency transient immunity across the barrier. The DC/DC converter, amplifier and barrier capacitors are housed in a plastic DIP.

A power supply range of 11V to 18V makes this amplifier ideal for a wide range of applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_A = +25^{\circ}\text{C}$, $V_{S3} = 15\text{V}$, $R_L = 2k\Omega$, and 220nF capacitors on all generated supplies, unless otherwise noted.

		Wall of the last o	ISO256P	The state of the s	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ISOLATION Voltage Rated Continuous: AC 100% Test (AC 50Hz) Rated One Minute Isolation-Mode Rejection DC	T _{MIN} to T _{MAX} 1s; Partial Discharge ≤ 5pC	1500 2500 2500	120		Vrms Vrms Vrms
AC 50Hz Barrier Impedance Leakage Current	1500Vrms VISO = 240Vrms, 50Hz	erewo	95 10 ¹⁴ 2 1.4	2 2	dB Ω pF μArms
GAIN ISO AMP Gain Error Gain vs Temperature	G = 1 G = 1	ИОПА	0.15 ±50	±0.3	% ppm/°C
Nonlinearity	G = 1		0.046	±0.1	%
INPUT OFFSET VOLTAGE OP AMP Initial Offset vs Temperature vs Supply CMRR	DESCRIP		60 ±1.2 3 115	URES	μV μV/°C μV/V dB
INPUT OP AMP	amplifier incorpor		200	rins Continu	ruuer
Voltage Range Bias Current vs Temperature	amplifier for input modulation-demod	±10	Minute 3 PA 00± AL D	rms for One	V nA pA/°C
Offset Current vs Temperature	lent accuracy. Ime up to ±30V input		±85	RABI#5JNON	nA pA/°C
INPUT ISO AMP Initial Offset vs Supply Input Resistance	signel is transmit capacitive barrier, characteristics do		±50 1 200	TOS ±100 R &	mV mV/V kΩ
OUTPUT ISO AMP Voltage Range Current Drive Capacitive Load Drive Ripple Voltage	suits in excellent transfert immunity converter, amplific in a plastic DIP.	±10 ±5	10 CAPABIL 10 Wide 10 Uni	MRONIZATIO I PLASTIC D	V mA μF mVp-p
FREQUENCY RESPONSE Small Signal Bandwidth	G = 1 G = 10 G = 100 G = 1000	.lOl.	poom4nT a	JCATIO STRIAL PRO ducer isolate	kHz kHz kHz kHz
Slew Rate Settling Time, 0.1%	G = 1 G = 10 G = 100 G = 1000	egbh8	0.2 100 400 600 950	or, RTD Isoli or, Flow Met ER MONITOR CAL MOTEU	V/µs µs µs µs µs
POWER SUPPLIES Rated Voltage Voltage Range Quiescent Current Rated Output Voltage Load Regulation	No Load 50mA Load On Two Supplies	11 25 13 12	40 14.5 13.2 28	18 55 16	V V mA V V mV/mA
Line Regulation SYNC Frequency Output Voltage Ripple	28 00017		1 to 1.4 50	IND LOOP &	V/V MHz mV
TEMPERATURE RANGE Operating Storage	27 V V S S S S S S S S S S S S S S S S S	-40 -40		85 85	°C

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL	PACKAGE	1	0 8
ISO256P	28-Pin Plastic DIP		3-

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
ISO256P	28-Pin Plastic DIP	335

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

5

SO256

SOLATION PRODUCTS

TYPICAL PERFORMANCE CURVES

At $T_A = +25$ °C, $+V_{S3} = 15$ V, $R_L = 2$ k Ω , and 220nF capacitors on all generated supplies, unless otherwise noted.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

BASIC OPERATION

ISO256 is a precision, powered, three-port isolated amplifier. The input and output sections are galvanically isolated by matched and EMI shielded capacitors built into the plastic package. The DC/DC converter input is also galvanically isolated from both the input and output supplies.

SIGNAL AND POWER CONNECTIONS

Figure 1 shows proper power and signal connections. The power supply input pin $+V_{S3}$ should be bypassed with a 2.2µF tantalum capacitor and the outputs V_{S1} and V_{S2} with 220nF ceramic capacitors located as close to the amplifier as possible. All ground connections should be run independently to a common point. Signal Common on both input and output sections provide a high-impedance point for sensing signal ground in noisy applications. Com1 and Com2 must have a path to ground for bias current return and should be maintained within $\pm 1V$ of GND1 and GND2 respectively.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input circuitry of the ISO256 is approximately ±11V.

INPUT PROTECTION

20

The inputs of the ISO256 are protected with 500Ω series

resistors and diode clamps. The inputs can withstand $\pm 30 \text{V}$ differential inputs without damage. The protection diodes will of course conduct current when the inputs are over-driven. This may disturb the slewing rate in unity gain follower applications, but will not damage the op-amp.

DC/DC CONVERTER

ISO256 provides a reliable solution to the need for integral power. The high isolation rating being achieved by careful design and attention to the physical construction of the transformer. In addition to the high dielectric strength a low leakage coating increases the isolation voltage range. The soft start oscillator/driver design eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition. The DC/DC converter is synchronized to the amplifier and when multiple ISO256's are used, each channel can be synchronized via the SYNC pin.

The DC/DC converter consists of a free-running oscillator, control and switch driver circuitry, MOSFET switches, a transformer, rectifier diodes and filter capacitors all contained within the ISO256 package. The control circuitry consists of current limiting, soft start and synchronization features. In instances where several ISO256's are used in a system, beat frequencies developed between the ISO256's are a potential source of low frequency noise in the supply and ground paths. This noise may couple into the signal path

FIGURE 1. Basic Connections.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

and can be avoided by synchronizing the individual ISO256's together by tying the SYNC pins together or using the circuit in Figure 2 to drive the SYNC pins from an external source.

When connecting up to eight ISO256's without a driver the unit with the highest natural frequency will determine the synchronized running frequency. The SYNC pin is sensitive to capacitive loading: 150pf or less is recommended. If unused, the SYNC pin should be left open. Avoid shorting the SYNC pin directly to ground or supply potentials; otherwise damage may result.

FIGURE 2. External SYNC drive.

Soft start circuitry protects the MOSFET switches during startup. This is accomplished by holding the gate-to-source voltage of both MOSFET switches low until the free-running oscillator is fully operational. In addition, soft start circuitry and input current sensing also protects the switches. This current limiting keeps the MOSFET switches operating in their safe operating area under fault conditions or excessive loads. When either of these conditions occur, the peak input current exceeds a safe limit. The result is an approximate 5% duty cycle, 300µs drive period to the MOSFET switches. This protects the internal MOSFET switches as well as the external load from any thermal damage. When the fault or excessive load is removed, the converter resumes normal operation. A delay period of approximately 50µs incorporated in the current sensing circuitry allows the output filter capacitors to fully charge after a fault is removed. This delay period corresponds to a filter capacitance of no more than 1 uf at either of the output pins. This provides full protection of the MOSFET switches and also sufficiently filters the output ripple voltage. The current sensing circuitry is designed to provide thermal protection for the MOSFET switches over the operating temperature range as well. When these conditions are exceeded, the unit will go into its shutdown mode.

OUTPUT CURRENT RATINGS

The total current which can be drawn from each output

supply on the ISO256 is a function of the total power drawn from all outputs. For example if three outputs are not used then maximum current can be drawn from one output. In all cases, the total maximum current that can be drawn from any combination of outputs is:

$$|I_{1+}| + |I_{1-}| + |I_{2+}| + |I_{2-}| \le 50 \text{mA}$$

+V_{S3}, GND3

The waveform of the ground return current is an 800 kHz sawtooth. A capacitor between $+V_{S3}$ and GND3 provides a bypass for the AC portion of this current. The power should never be instantaneously interrupted to the ISO256 (i.e., a break in the line to $+V_{S3}$ either by accidental or switch means.) Normal power down of the $+V_{S3}$ supply is not considered instantaneous. Should a rapid break, in input power occur the internal transformers voltage will rapidly rise to maintain current flow and may cause internal damage to the ISO256.

SYNCHRONIZED OPERATION THE RAISINGS BUILDING

ISO256 can be synchronized to an external signal source. This capability is useful in eliminating troublesome beat, frequencies in multi-channel systems and in rejecting AC signals and their harmonics. To use this feature, tie all sync pins together or apply an external signal to the SYNC pin. ISO256 can be synchronized to an external oscillator over the range 1-1.4MHz (this corresponds to a modulation frequency of 500kHz to 700kHz as SYNC is internally divided by 2).

CARRIER FREQUENCY CONSIDERATIONS

ISO256 amplifiers transmit the signal across the ISO-barrier by a duty-cycle modulation technique. This system works like any linear amplifier for input signals having frequencies below one half the carrier frequency, f_C. For signal frequencies above f_C/2, the behavior becomes more complex.

It should be noted that for the ISO256, the carrier frequency is nominally 400kHz and the –3dB point of the amplifier is 50kHz. Spurious signals at the output are not significant under these circumstances unless the input signal contains significant components above 200kHz.

When periodic noise from external sources such as system clocks and DC/DC converters are a problem, ISO256 can be used to reject this noise. The amplifier can be synchronized to an external frequency source, $f_{\rm EXT}$, placing the amplifier response curve at one of the frequency and amplitude nulls indicated in the "Signal Response vs Carrier Frequency" performance curve.

ISOLATION MODE VOLTAGE

Isolation Mode Voltage (IMV) is the voltage appearing between isolated grounds GND1 and GND2. IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the IMV frequency exceeds $f_{\rm C}/2$, the output will display spurious outputs in a

kesponse vs Carrier Frequency" performance curve. This occurs because IMV-induced errors behave like inputreferred error signals. To predict the total IMR, divide the isolation voltage by the IMR shown in "IMR vs Frequency" performance curve and compute the amplifier response to this input-referred error signal from the data given in the "Signal Response vs Carrier Frequency" performance curve. Due to effects of very high-frequency signals, typical IMV performance can be achieved only when dV/dT of the isolation mode voltage falls below 1000V/µs. For convenience, this is plotted in the typical performance curves for the ISO256 as a function of voltage and frequency for sinusoidal voltages. When dV/dT exceeds 1000V/µs but falls below 20kV/µs, performance may be degraded. At rates of change above 20kV/µs, the amplifier may be damaged, but the barrier retains its full integrity. Lowering the power supply voltage below 15V may decrease the dV/dT to 500V/µs for typical performance, but the maximum dV/dT of 20kV/µs remains unchanged.

Leakage current is determined solely by the impedance of the barrier and transformer capacitance and is plotted in the "Isolation Leakage Current vs Frequency" curve.

ISOLATION VOLTAGE RATINGS does to ted begot and

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter time. The relationship between actual test voltage and the continuous derated maximum specification is an important one.

Historically, Burr-Brown has chosen a deliberately conservative one: VTEST = (2 x ACrms continuous rating) + 1000V for 10 seconds, followed by a test at rated ACrms voltage for one minute. This choice was appropriate for conditions where system transients are not well defined.

Recent improvements in high-voltage stress testing have produced a more meaningful test for determining maximum permissible voltage ratings, and Burr-Brown has chosen to apply this new technology in the manufacture and testing of the ISO256.

Partial Discharge on lameter mort selon bibolog nortW

When an insulation defect such as a void occurs within an insulation system, the defect will display localized corona or ionization during exposure to high-voltage stress. This ionization requires a higher applied voltage to start the discharge and lower voltage to maintain it or extinguish it once started. The higher start voltage is known as the inception voltage, while the extinction voltage is that level of voltage stress at which the discharge ceases. Just as the total insulation system has an inception voltage, so do the individual voids. A voltage will build up across a void until its inception voltage is reached, at which point the void will ionize, effectively shorting itself out. This action redistributes electrical charge within the dielectric and is known as partial discharge. If, as is the case with AC, the applied

phenomenon is that, if the discharge does not occur, the insulation system retains its integrity. If the discharge begins, and is allowed to continue, the action of the ions and electrons within the defect will eventually degrade any organic insulation system in which they occur. The measurement of partial discharge is still useful in rating the devices and providing quality control of the manufacturing process. The inception voltage for these voids tends to be constant, so that the measurement of total charge being redistributed within the dielectric is a very good indicator of the size of the voids and their likelihood of becoming an incipient failure. The bulk inception voltage, on the other hand, varies with the insulation system, and the number of ionization defects and directly establishes the absolute maximum voltage (transient) that can be applied across the test device before destructive partial discharge can begin. Measuring the bulk extinction voltage provides a lower, more conservative voltage from which to derive a safe continuous rating. In production, measuring at a level somewhat below the expected inception voltage and then de-rating by a factor related to expectations about system transients is an accepted practice.

Partial Discharge Testing

Not only does this test method provide far more qualitative information about stress-withstand levels than did previous stress tests, but it provides quantitative measurements from which quality assurance and control measures can be based. Tests similar to this test have been used by some manufacturers, such as those of high-voltage power distribution equipment, for some time, but they employed a simple measurement of RF noise to detect ionization. This method was not quantitative with regard to energy of the discharge, and was not sensitive enough for small components such as isolation amplifiers. Now, however, manufacturers of HV test equipment have developed means to quantify partial discharge. VDE in Germany, an acknowledged leader in high-voltage test standards, has developed a standard test method to apply this powerful technique. Use of partial discharge testing is an improved method for measuring the integrity of an isolation barrier.

To accommodate poorly-defined transients, the part under test is exposed to voltage that is 1.6 times the continuous-rated voltage and must display less than or equal to 5pC partial discharge level in a 100% production test.

APPLICATIONS THEOM out to nonsetting flot ashiving

The ISO256 isolation amplifiers are used in three categories of applications:

- Accurate isolation of signals from high voltage ground potentials
- · Accurate isolation of signals from severe ground noise and
- Fault protection from high voltages in analog measurements

FIGURE 3. Isolated 4-20mA Current Receiver with O/P Filter.

The ISO/485 combines a 3-state differential line driver and a differential-input line receiver both of which operate from a single 5V power supply. The driver lifterential outputs and the receiver differential input bas ports are designed to offer minimum loading to the bus whenever the driver is disabled or $V_3 = 0$ V.

ISO485

Isolated RS-485 DIFFERENTIAL BUS TRANSCEIVER

FEATURES

- RS-485 AND RS-422 COMPATIBLE
- 100% TESTED FOR HIGH-VOLTAGE **BREAKDOWN**
- RATED 1500Vrms
- SINGLE-WIDE 24-PIN PLASTIC DIP
- EASY TO USE
- LOW POWER: 180mW typ at 5Mbit/s

APPLICATIONS

 MULTIPOINT DATA TRANSMISSION ON LONG BUS LINES IN NOISY **ENVIRONMENTS**

DESCRIPTION

The ISO485 differential, isolated bus transceiver uses Burr-Brown's capacitively coupled isolation technology to provide high-speed, low cost bus isolation. The ISO485 is designed for bi-directional data communication on multipoint bus transmission lines and meets EIA Standard RS-485 as well as EIA Standard RS-422A requirements.

The ISO485 uses high voltage 0.4pF capacitors instead of the LED and photodetector which are used in equivalent optocoupler solutions. As a consequence the part count of the isolated RS-485 channel is reduced from multiple optocoupler channels, an RS-485 transceiver chip and supporting circuitry to one ISO485. The capacitors in the ISO485 provide a high voltage barrier, 1500Vrms and greatly reduce current spikes on the power line.

The ISO485 combines a 3-state differential line driver and a differential-input line receiver both of which operate from a single 5V power supply. The driver differential outputs and the receiver differential input/ output bus ports are designed to offer minimum loading to the bus whenever the driver is disabled or $V_S = 0V$.

DE	RE	RS-485 BUS
0	0	R _X
0	1	HIGH Z
1	0	HIGH Z
1	1	Tv

International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • 00 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SOLATION PRODUCT

V _S I	
28A	
OPR	
100	
istleV	
High	L)
Low-Low-Low-Low-Low-Low-Low-Low-Low-Low-	0
nettic	4
Onlibr	0
	ISO48
-	_
adino	
	S PAGE
and the same	5
TEMP	5
eqO .	
Sites	S
Ison	I PRODUCTS
Rated	()
Panis	=
caero	2
metri-	
dislost	0
Barrie	or
Loaks	0
	-
NOTES	Z
hiporulis	0
	\subseteq
	OLATION
	4
	J
	0
	2
	9)

SPECIFICATIONS (CONT)

45008						
PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
DRIVER DC CHAP	ACTERISTICS			(CONT)	SPECIFICATIONS	AMECENER
Input Voltage						
High MIN	5.5				2	V A
Low MAX		4.75	0.8	A RESIDENCE	THE PERSON NAMED IN	V 8.V
Input Current		11 008 30	e-en isn no			
High-Level		V _{IN} = 2.4V	0 0	4 1 5 5 7 7	±1	μА
		V _{IN} = 2.4V V _{IN} = 0.4V	1 0			
Low-Level	0.4				±1	μΑ
Output Voltage	4.0.	I _{OUT} = 0	0 1		5	V Aav
Differential Output	Voltage	$I_{OA} - I_{OB} = 0$	1.5		5	V
		A STATE OF THE STA	2	2.5	5	Vav
		$R_{LOAD} = 100\Omega$				
Am	.10	$R_{LOAD} = 54\Omega$	1.5	2.5	5	75.00
Change In Magnitu	de of Differential	XI				- B _B V
Output Voltage		$R_{LOAD} = 54\Omega \text{ or } 100\Omega$			±0.5	V
Common-Mode Ou	tout Voltage	$R_{LOAD} = 54\Omega$ or 100Ω			DIAT 3 1390 0	EGMENT DO
	de of Common-Mode	TILOAD - STAR OF TOOSE	A VIB A			БИОПТОИВО
Output Voltage	do or common-wode	$R_{LOAD} = 54\Omega$ or 100Ω	separately or com-		±0.2	yra invention
Output Voltage		HLOAD = 3412 OF 10012			±0.2	ch-Level Drive
Output Current		V _{OUT} = 7V, output disabled	1 5 5 5 5			mA
V		V _{OUT} = -7V, output disabled	14 4 5 5		-0.8	
					The second secon	
Short-Circuit Outpu	t Current (1 sec max)	$V_{OUT} = -7V$		-250	laveJ-dgif	1110
	UG-	V _{OUT} = 0V	nevhQ	-150		mA
- An		V _{OUT} = V _S	19yisosi7	250		mA
		V _{OUT} = 12V		250	lava.1-wo:	mA
DIVED CHITCH	NG CHARACTERISTICS		Ngw(H)	-		
			Receiver			
Propagation Delay					200150	COLUMN COMPANY
Low-to-High Leve		$R_{LOAD} = 54\Omega$			60	ns
Propagation Delay						Орегазілд
High-to-Low Leve		$R_{LOAD} = 54\Omega$			60	ns
	pagation Delay Skew	$R_{LOAD} = 54\Omega$		10	BREVERS	ns
Output Rise Time		$R_{LOAD} = 54\Omega$	1900	10	supunitro	ns
Output Fall Time		$R_{LOAD} = 54\Omega$	Ond at	10	(100% Tear(1)	ns
RECEIVER DC CH	ADACTEDICTICS		100	T WASHINGTON	Str. deviate in ac	ISIDICI NOSPINIO
					eonstziū.	tolistnal femation
Differential-Input-Th	reshold Voltage					parloV voltale
High		$V_{OUT} = 2.7V$, $I_{OUT} = -0.4mA$		1	0.2	
Low		$V_{OUT} = 0.5V$, $I_{OUT} = 8mA$	-0.2		93	nabaga V elm
Hysteresis		NH	- 240Vrms, 61	70		mV
High-Level Output	Voltage	$V_{ID} = 200 \text{mV}, I_{OH} = 400 \mu \text{A}$	2.4			V
ow-Level Output \	/oltage	$V_{ID} = 200 \text{mV}, I_{OL} = 8 \text{mA}$	to sealing 3 s at no		0.4	TES: VI) All de
	ate Output Current	V _{OUT} = 1.4V	10 TO		±1	шА
ine Input Current		V _{IN} = 12V, other output = 0V		0.7		mA
mpat carront		$V_{IN} = -7V$, other output = 0V	A THE WAY IN THE	-0.6	100 F. W. 1911	mA
Enable-Input Curre	nt	TIN = -7 T, other output = 0V		-0.0	THE SHEET	IIIA
High		V 0.7V	THE PROPERTY.			
		V _{IH} = 2.7V			1 1	μА
Low		V _{IL} = 0.4V			1	μА
nput Resistance			12			kΩ
Short-Circuit Outpu	t Current	1 sec max		40		mA
RECEIVER SWITC	HING CHARACTERISTICS					
Propagation Delay					1 - 2 - 1	
		V 15V to 15V 0 15-5		25	00	
Low-to-High Leve		$V_{ID} = -1.5V$ to 1.5V, $C_L = 15pF$	HAR THE REAL PROPERTY.	35	60	ns
High-to-Low Leve		$V_{ID} = -1.5V$ to 1.5V, $C_L = 15pF$	The state of	30	60	ns
	pagation Delay Skew		THE RESIDENCE	10	A Principal Contract	ns
Output Rise Time		$R_L = 54\Omega$		8		ns
Output Fall Time		$R_L = 54\Omega$		8		ns
RANSCEIVER SE	PECIFICATIONS			- 40		
			00	0.5	THE REAL PROPERTY.	
Maximum Data Rat			20	35		Mbits/s
Propagation Delay			200	75	The Table of the Land	ns
Driver Output Enab		$R_L = 110\Omega$		155	200	ns
Driver Output Disal	ole Time	$R_L = 110\Omega$		185	280	ns
	Receiver to Driver		THE REST	13	PLANTE A	ns
		C _L = 15pF		110	180	ns
Receiver Output Fr						
Receiver Output Er Receiver Output Di		C _L = 15pF		120	185	110

	TROACSE					ISO485P			
PARAMETER	XAM			co	NDITION	MIN	TYP	MAX	UNITS
TRANSCEIVER SP	ECIFICATIONS (C	CONT)					8	CHARACTERISTE	DO REVISIO
Supply Voltage									pelloV tuen
VsA						3	5	5.5	V V
V _S B				8.0		4.75	5	5.25	V
Supply Current			DE	RE	RS-485 BUS				ethi Cilife
V _S A			0	0	Rx	Vep= 2.4V		5	mA
V _S A A			0	1	HIGH Z	V _{0.0} = 0.4V		0.4	mA.
V _S A			1	0	HIGH Z	0 + 100		0.4	mA
V _S A			1	1	Tx	= anl = anl	-	0.4	mA
V _S B			0	0	Rx			55	mA
V _S B			0	15	HIGH Z	R ₁₀₀₆₀ = 1000		55	mA
V _S B			1	0	HIGH Z	RLOND = 574		51	mA
V _S B			1	1	Tx	m 042 II	iab	enethed 51 williams	mA
RECOMMENDED (OPERATING				000	PLOAD = 54D or 1		ecatioV reptio eta	AA-resourced
CONDITIONS						GAGL		lagnitude of Commo	ni oosedi
Voltage at Any Bus			(separa	ately (or common-mode)	-7 - A		12	V
High-Level Driver Ir						2			V
Low-Level Driver In								0.8	Admy
Differential Receive			MI SE			Sandane "Au- = 400 A		±12	V
Output Current High	h-Level					VV- # TuoY			Iron Olical
					Driver	Vour = 0V		-60	mA
Ain				R	eceiver	Voure Vs		-400	μА
Output Current Low	/-Level					Vour 9, 121			
					Driver			60	mA
				н	eceiver		No. of the last of	8	mA
TEMPERATURE R.	ANGE					R man & SA		tuctoO leva I ri	Seed wall
Operating						-40		85	°C
Storage						-40		125	°C
ISOLATION PARA		10		4.5		P _{0,080} = 541	wester vis	ed notapagers are	tuO of fugi
Rated Voltage, Con					50Hz	1500		Finte	Vrms
Partial Discharge, 1				1	s, 5pC	2400		emil	Vrms
Creepage Distance		P" Package						DC CHARACTERS	mm ₃₃
Internal Isolation Di						The state of the s		goV blorismitTrost	mm
Isolation Voltage Tr	ransient Immunity(2	2)				Vour = 2.7V. Jour =	1.6		kV/μs
Barrier Impedance			188	8.0-		Vous # 9.5V, Your	> 1014 7		Ω pF
Leakage Current			100	240V	rms, 60Hz		0.6		μArms

NOTES: (1) All devices receive a 1s test. Failure criterion is ≥ 5 pulses of ≥ 5pC. (2) The voltage rate-of-change across the isolation barrier that can be sustained without data errors.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Supply Voltages, V _S	5.5V
Voltage at any bus terminal	10 to 15V
Enable Input Voltage	0 to V _{CC} + 0.5V
Continuous total dissipation at 25°C free-air temp	
Lead solder temperature, 260°C for 10s,	
1.6mm below seating plane	300°C
Junction Temperature	
Package thermal transfer, θ_{JA}	75°C/W

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO485P	24-Pin Single-Wide DIP	243-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

PIN ASSIGNMENTS

PIN#	NAME	DESCRIPTION			
1	R	Data Received From Transmission Line			
2	RE	Receive Switch Controlling Receiving Of Data			
3	V _{SA}	+5V Supply Pin For Side A			
10	NC	This Pin MUST Be Left Unconnected			
11	GNDB	Ground Pin For Side B. Also Connected To Pin 14			
12	A	Data, Driver Out/Receiver In			
13	В	Data, Driver Out/Receiver In			
14	GNDB	Ground Pin For Side B. Also Connected To Pin 11			
15	V _{SB}	+5V Supply Pin For Side B			
22	GND	Ground Pin For Side A			
23	DE	Driver Switch Controlling Output Of Data			
24	D	Data To Be Transmitted			

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

At T_A = +25°C, V_S = +5V, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At T_A = +25°C, V_S = +5V, unless otherwise noted.

5

SO485

ISOLATION PRODUCTS

Equation 1 holds, therefore the line must be terminated wit its characteristic impedance,

EYE PATTERNS AND ZO

noise on the transmission floo. It is also a convenient method of determining the characteristic impedance of the line. The term 'cye' comes from the shape of the trace on the oscillosscope. See Figures 2 and 3.

pseudo-noise generator circuit shown in Figure 5. Figure 2 shows the effects of the termination resistor for the three cases: $Z_T > Z_0$, $Z_0 = Z_0$, $Z_1 < Z_0$ with $Z_1 = Z_0$ the even

a calife for requirements

Agriculture and distortion of the signal

BB

duplex multi-point communication, and complies with the EIA Interface Standards summarized in Table I. The signals transmitted across the isolation barrier can achieve transmission rates up to 35Mbit/s typical. The barrier is designed to perform in harsh electrical environments without signal degradation, while providing high isolation and good transient immunity.

Referring to the block diagram on the front page, data present at the D input can be transmitted across the barrier when the data enable pin DE is a logic high. The data appears as a differential signal on the outputs A and B and within the output range 0V to +5V. The isolated side of the DE logic high also inhibits the isolated side of data read R. The input NOR gate arrangement prevents attempts to transmit and receive simultaneously. The truth table shows the conditions on the RS-485 bus for the possible states of DE and RE.

ISOLATION BARRIER

Data is transmitted by coupling complementary logic pulses to the receiver through two 0.4pF capacitors. These capacitors are built into the ISO485 package with Faraday shielding to guard against false triggering by external electrostatic fields.

The integrity of the isolation barrier of the ISO485 is verified by partial discharge testing. 2400Vrms, 50Hz, is applied across the barrier for one second while measuring any tiny discharge currents that may flow through the barrier. These current pulses are produced by localized ionization within the barrier. This is the most sensitive and reliable indicator of barrier integrity and longevity, and does not damage the barrier. A device fails the test if five or more current pulses of 5pC or greater are detected.

Conventional isolation barrier testing applies test voltage far in excess of the rated voltage to catastrophically break down a marginal device. A device that passes the test may be weakened, and lead to premature failure.

APPLICATION EXAMPLE

Consider an RS-485 network in an industrial area. The system specifications are:

- Distance between master controller and the farthest outstation 50 meters.
- · System data rate is to be 30Mbit/s.
- One daisy-chain cable will link the master controller to the outstations.

The main design considerations in implementing this system are:

- Line loading and termination
- · Selection of correct cable for requirements
- · Attenuation and distortion of the signal
- Fault protection and fail-safe operation

one line: the unit loading being derived from the $12k\Omega$ input impedance and the 12V maximum common-mode voltage. The ISO485 represents 1 unit load. We could, therefore, connect up to 31 outstations to the master controller and comply with the specification.

TERMINATION

When a signal starts to change at the output of a transmitter, the other end of the line will eventually see this change and a reflection will occur. If this reflection returns to the transmitter before the transmitted signal has reached its maximum value, the line may be considered as a "lumped parameter" model. In this case no termination is necessary because the line has a negligible effect on the system.

If the rise of the signal at the receiver T_{RISE} is much less than the time taken for the signal to go from transmitter to receiver and back again $2T_{PD}$ termination of the line is necessary. It is usual to terminate the line with its characteristic impedance, Z_{O} when the following rule applies:

$$2T_{PD} \ge 5T_{RISE} \tag{1}$$

For this installation we have selected an Alpha Wire Corporation cable, No. 6072C. The cables characteristics are shown in Figure 2. The rise time $T_{\rm RISE}$ at the receiver was measured between the 10% and 90% points.

$$T_{RISE} = 10$$
ns (2)

From Figure 1 we can see that the velocity of propagation V_P is given as 80%. Since this is the ratio of the signal speed in air, to the signal speed in the cable, we have

$$V_{\rm P} = 3 \times 10^8 \times 0.8$$

= 2.4 \times 10^8 \text{ m/s} (3)

therefore

$$T_{PD} = 1/V_P$$

= 4.2ns/m

For the cable

$$2T_{PD} = 4.2 \times 10^{-9} \times 50 \times 2$$

= 42us

Equation 1 holds, therefore the line must be terminated with its characteristic impedance.

EYE PATTERNS AND Zo

Eye patterns can be used to assess the signal distortion and noise on the transmission line. It is also a convenient method of determining the characteristic impedance of the line. The term 'eye' comes from the shape of the trace on the oscilloscope. See Figures 2 and 3.

The eye pattern was obtained using the non return zero pseudo-noise generator circuit shown in Figure 5. Figure 2 shows the effects of the termination resistor for the three cases: $Z_T > Z_O$, $Z_T = Z_O$, $Z_T < Z_O$ with $Z_T = Z_O$ the eye

Or, Call Customer Service at 1-800-548-6132 (USA Only)

pattern is clear. In practice a precision decade resistance box was used to determine the exact value of Z_T to use.

As the data rate is increased we can see from Figure 3 how the signal distortion also increases. From the graph in Figure 1 we can see that the specified attenuation figures given agree with those obtained by measurement; approximately -1.3db/100ft, at 30Mbit/s (15MHz).

FIGURE 1. Cable Characteristics.

PARAMETER		EIA-232	RS-432-A	RS-422-A	RS-485
Mode of Operation		Single-Ended	Single-Ended	Differential	Differential
Number of Drivers and Receivers		1 Driver	1 Driver	1 Driver	32 Drivers
		1 Receiver	10 Receivers	10 Receivers	32 Receivers
Maximum Cable Length (m)		15	1200 1200		1200
Maximum Data Rate (bps)		20k	100k 10M		10M
Maximum Common-Mode Voltage (V)		±25	±6	6 to -0.25	12 to -7
Driver Output	Loaded	±5	±3.6	±2	±1.5
Levels (V)	Unloaded	±15	±6	±5	±5
Driver Load (Ω)		3k to 7k	450 (min)	100 (min)	60 (min)
Driver Slew Rate		30V/μs (max)	External Control	NA	NA
Driver Output Short Circuit		500 to V _{CC}	150 to GND	150 to GND	150 to GND
Current Limit (mA)	ng agao na gami	enteres An expensive		E VI	250 to -7 or 12V
Driver Output Resistance		NA NA	NA	NA	12k
High Z state (Ω)	Power off	300	60k	60k	12k
Receiver Input Resistance (Ω)		3 to 7	4	4	12
Receiver Sensitivity		±3V	±200mV	±200mV	±200mV

TABLE I. Summary of EIA Interface Standards.

Figure 2. Eye Patterns.

Figure 3. ISO485 Signal Distortion vs Data Rate.

STUB LENGTH

If the outstations are not to act as transmission lines, they too must meet the criteria determined by equation 1. They must be seen as a lumped parameter. As a rule-of-thumb, the transition time of the pulse from the transmitter, T_{RISE} should be ten times longer than the propagation delay, pd_{STUB} down the stub to the outstation.

$$T_{RISE} \ge 10 \text{pd}_{STUB} \tag{4}$$
 From
$$pd = 1/V_p \times \text{stub length}$$

$$T_{RISE} \ge 10 \times 1/V_p \times \text{stub length}$$

$$16.5 \times 10^{-9} \ge 10 \times \frac{1}{3 \times 10^8 \times 0.8} \times 10^{-9} \times$$

START-UP CIRCUIT

Because the ISO485 is a capacitively coupled device, it is possible to power up an indeterminate state. The circuit of Figure 4 ensures that the ISO485 powers up in the receive mode, thus avoiding any conflict on the transmission line.

Figure 4. Start-up Circuit.

TRANSMIT/RECEIVE MODE

Because the ISO485 is a capacitively coupled device, indeterminate states can occur when the change from transmit to receive or, from receive to transmit is initiated. This is easily overcome by transmitting an edge prior to the data of interest. The four possible conditions which could happen are detailed in Figures 5a, 5b, 6a, and 6b. Thereafter, data is known and correct.

Don't Care RE DE

Figure 5a. Transmit to Receive.

Figure 5b. Transmit to Receive.

Figure 6a. Receive to Transmit

Figure 6b. Receive to Transmit.

FIGURE 7. NRZ Psuedo-Noise Generator.

FIGURE 8. RS-485 Line with Fail-Safe Protection.

SO806

Isolated 12-Bit Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 1500Vrms ISOLATION CONTINUOUS
- 25µS CONVERSION TIME
- 12-BIT SERIAL OUTPUT
- SINGLE +5V SUPPLY
- 28-PIN 0.6" PLASTIC DIP

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- PC-BASED DATA ACQUISITION TEST EQUIPMENT

DESCRIPTION

The ISO806 is a low-power isolated sampling ADC using state-of-the-art CMOS structures and high voltage capacitors. The ISO806 contains a complete 12-bit capacitor based SAR, ADC with S/H, clock, reference, μP interface, serial out and galvanic isolation.

Laser-trimmed scaling resistors provide standard industrial input ranges including ±10V, ±5V, 0-5V, 0-4V. They are available in 28-pin 0.6" wide plastic DIP and are specified over the industrial temperature range of -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 40kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3b, unless otherwise specified.

		有关的 一		ISO806P	The Paris of the	
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTION		1/200			12	Bit
ANALOG INPUT					3 - 15-10	
Voltage Ranges				±10, 0 to +5, 0 to +	4	V
Impedance				(See Table II)		
Capacitance	upperson annament	NOTE OF STREET	CONTROL OF THE CONTROL OF	35		pF
THROUGHPUT SPEED						
Conversion Time	6% 8%	Leurine 2 HILL	CF Front	leinal	20	μѕ
Complete Cycle	A11	Acquire and Convert	The first to the	1001/100	25	μѕ
Throughput Rate	HOSE HERT AND MINE IS A	R. A. AFO, AFO, T. H. M. PARTE A	40	N 200 200 0	0.00.00	kHz
DC ACCURACY	DINTY	VIVI JANES	311 1 1 1	-EJUL 31	A.VT.PA	
ntegral Linearity Error				±0.15	±0.9	LSB(1)
Differential Linearity Error	PETERS OF STATE OF STREET	appearance services harpings was		±0.15	±0.9	LSB
No Missing Codes				Guaranteed	10.9	Bits
Fransition Noise(2)				0.1		LSB
Full Scale Error ^(3,4)	1/1/70	DESCRIPT		0.1	±0.5	LSB %
Full Scale Error Drift	1101	1111000000		±7	TU.5	ppm/°C
		Ext. 2.5000V Ref	2011/00		er inco	ppm/°C
		Ext. 2.5000V Ref ±10V Range	suot	±0.5	I AJUSI SITI	ppm/°C mV
Bipolar Zero Error ⁽³⁾ Bipolar Zero Error Drift	rt CMOS structu	±10V Range		±0.5	±10	ppm/°C
Jnipolar Zero Error Drift Jnipolar Zero Error(3)		0V to 5V, 0V to 4V Ranges		±0.5	10	- Pro-
Inipolar Zero Error Drift		0V to 5V, 0V to 4V Hanges		±0.5	r serital ou	mV
Unipolar Zero Error Drift Power Supply Sensitivity (VDI	AR, ADC with	+4.75V < V _S < +5.25V		±0.5	±0.5	ppm/°C LSB
The second secon	G - ANA - VS/	TT.101 × VS C TO.204		1.3	A 1000-004 3"	LOD
AC ACCURACY		a basemana		910 01	1 9.6" PLAST	@ 28-PH
Spurious-Free Dynamic Rang				90		dB(5)
Total Harmonic Distortion	iges including t	$f_{IN} = 1kHz, \pm 10V$		-90	10000	dB
Signal-to-(Noise+Distortion)		f _{IN} = 1kHz, ±10V		73	CANCELL STREET, STREET	dB
Signal-to-Noise		$f_{IN} = 1kHz, \pm 10V$		73	WHAT.	dB
Useable Bandwidth ⁽⁶⁾		neads are time and		130		kHz
SAMPLING DYNAMICS		or Jruit to again	10	CESS CONTR	STRIAL PRO	IUGIAI 49
Aperture Delay			TEST	40,000	ATAO OBEA	ns
Aperture Jitter				20		ps
Overvoltage Recovery ⁽⁷⁾				750	PMENT	ns
REFERENCE	1 1 3 3 1 1 1				Charles TENT WALL	
Internal Reference Voltage		No Load	2.48	2.5	2.52	V
nternal Reference Source Cu	irrent			1		μА
(Must use external buffer.)						
nternal Reference Drift				8		ppm/°C
External Reference Voltage F	Range		2.3	2.5	2.7	V
for Specified Linearity						
External Reference Current D	rain	Ext. 2.5000V Ref			100	μА
DIGITAL INPUTS						
ogic Levels		restive Approximation Regleter s	Suoi	Clock		1416
V _{IL}			-0.3	4 4 4	1.0	V
V _{IH}			V _D -1.0		V _D +0.3V	V
I _{IL}	47	V _{IL} = 0V			±10	μА
I _{IH}		V _{IH} = 5V			±10	μА
DIGITAL OUTPUTS			DAGS		1200	
Data Coding			Binary Two	s Complement or St	raight Binary	RI _W On
VoL		I _{SINK} = 1.6mA	7	177	0.4	V
V _{OH}		I _{SOURCE} = 500μA	6 +4	0 0		v
POWER SUPPLIES	Lucio D	11 010	010 010	0 9 5 000	∑- Ωd0s	
Specified Performance		4 / 1		\$ 1 5 mm	> 12/05 DND	
V _{DIG1}		Must be ≤ V _{ANA}	+4.75	+5	+5.25	-0SV
V _{ANA}		WIGHT DO S VANA	+4.75	+5	+5.25	V
			+4.75	1-3	+5.25	v
V _{DIG2} size of famile			+4./5	4.2	+5.25	
DIG1						mA
ANA			fler	5.0		mA
				10.8		mA
I _{DIG2} Power Dissipation		$V_{ANA} = V_{DIG} = 5V$, $F_S = 40$ kHz		125		mW

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 40kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3b, unless otherwise specified.

		atloV A	ISO806P			
PARAMETER	CONDITIONS	MIN TYP		MAX	UNITS	
TEMPERATURE RANGE Specified Performance Storage		-40 -65	olog Supply Volta.	7130	AMAVA4 C ST	
Thermal Resistance, ϕ_{JA} Plastic DIP		unconnected.	75	3/4	°C/W	
ISOLATION PARAMETERS Rated Voltage, Continuous	50Hz	1500	retua Butter Out		Vrms	
Partial Discharge, 100% Test ⁽⁸⁾ Creepage Distance (External) DIP = "P" Package Internal Isolation Distance	1s, 5pC		16 0.10	A	TEAVrms or mm mm	
Barrier Impedance Leakage Current ⁽⁹⁾	240Vrms, 60Hz 240Vrms, 50Hz	y or Binary Two's		17	Ω II pF μArms μArms	

NOTES: (1) LSB means Least Significant Bit. One LSB for the ±10V input range is 4.88mV. (2) Typical rms noise at worst case transition. (3) As measured with fixed resistors shown in Figure 7b. Adjustable to zero with external potentiometer. (4) Full scale error is the worst case of –Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. (5) All specifications in dB are referred to a full-scale input. (6) Usable Bandwidth defined as Full-Scale input frequency at which Signal-to-(Noise + Distortion) degrades to 60dB. (7) Recovers to specified performance after 2 x FS input overvoltage. (8) All devices receive a 1s test. Failure criterion is ≥ 5 pulses of ≥ 5pC. (9) Tested at 2500Vrms, 50Hz limit 10µA.

ABSOLUTE MAXIMUM RATINGS

Analog Inputs: R1	V	±25V
R2	NACO 16 V	±25V
CA	V _{ANA} +0.3V	to AGND2 -0.3V
SDID IS RE		Short to AGND2,
	Momen	tary Short to VANA
Ground Voltage Di	fferences: DGND and AGND1	±0.3V
	DGND, AGND, and GND _{IS}	
V _{ANA}		7V
		+0.3V
V _{DIG}		7V
Maximum Junction	Temperature	+165°C
Internal Power Dis		
Lead Temperature	(soldering, 10s)	+300°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ISO806P	Plastic DIP	215-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY ERROR (LSB)	TYPICAL SIGNAL-TO- (NOISE + DISTORTION) RATIO (dB)	SPECIFICATION TEMPERATURE RANGE	PACKAGE
ISO806P	±0.9	70	-40°C to +85°C	Plastic DIP

2	BUSY	0	At the start of conversion BUSY goes LOV	W and stays LOW until conversion is cor	mplete.
3	+5V _{DIG2}		Isolated Digital Supply Volts.		
10	+5V _{DIG1}	X3(3)	Digital Supply Volts.	сокопоиз	PARAMETER
11	+5V _{ANA}		Analog Supply Volts.		
12	R1 _{IN}	28+ 081+	Analog Input.		
13	NC		No Connection. Leave unconnected.		Thermal Pasistenos, eja
14	R2 _{IN}		Analog Input.		
15	CAP		Reference Buffer Output. 2.2µF tantalum	capacitor to ground.	ISOLATION PARAMETERS Rated Voltage, Continuous
16	REF		Reference Input/Output. 2.2μF tantalum ca	apacitor to ground.	
17	AGND		Analog Ground.		
18	SB/BTC	1	Selects Straight Binary or Binary Two's Co	omplement for Output Data Format.	
19	DGND1	7.7	Digital Ground.		
26	DGND2		Isolated Ground.		and the second second second second second
27	DATACLK	0		8it. One LSB for the ±10V lingui range to able to zero with external potentiomater.	
28	SDATA	0	Serial Output Synchronized to DATACLK.		

TABLE I. Pin Assignments. after shall of Leaf et a widern account (A) Blood of

PIN CONFIGURATION

ANALOG INPUT RANGE	CONNECT R1 _{IN} VIA 200Ω TO	CONNECT R2 _{IN} VIA 100Ω TO	IMPEDANCE
±10V	V _{IN}	CAP	45.7kΩ
OV to 5V	AGND	V _{IN}	20.0kΩ
0V to 4V	V _{IN}	V _{IN}	21.4kΩ

TABLE II. Input Range Connections. See also Figure 3.

R/C	BUSY	DATACLK	OPERATION
1 3	PAPPAS	Output	Initiates conversion "n". Valid data from conversion "n-1" clocked out on SDATA.
0	1	X	New conversion initiated without acquisition of a new signal. Data will be invalid. R/C must be HIGH when BUSY goes HIGH.
X	0	Х	New convert commands ignored. Conversion "n" in progress.

TABLE III. Control Functions

0

FREQUENCY SPECTRUM (8192 Point FFT; f_{IN} = 15kHz, 0dB)

SOLATION AMPLIFIERS

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) MAMPORARY JACISYT

T_A = +25°C, f_S = 40kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3b, unless otherwise specified.

7FF

BASIC OPERATION

SERIAL OUTPUT

DESCRIPTION

Full-Scale Bange

Midscale

Least Significant Bit (LSB)

+Full Scale (FS - 1LSB)

One LSB Below Midscale

Figure 1 shows a basic circuit to operate the ISO806 with a ±10V input range and serial output. Taking R/C (pin 1) LOW for 40ns (12µs max) will initiate a conversion and output valid data from the previous conversion on SDATA (pin 28) synchronized to 12 clock pulses output on DATACLK (pin 27). BUSY (pin 2) will go LOW and stay LOW until the conversion is completed and the serial data has been transmitted. Data will be output in Binary Two's Complement format, MSB first, and will be valid on both the rising and falling edges of the data clock. BUSY going HIGH can be used to latch the data. All convert commands will be ignored while BUSY is LOW.

tringming with a single supply. The

ANALOG INPUT

OV to 5V

1.22mV

4.99878V

2.5V

2.49878V

1.999024V

OV

The ISO806 will begin tracking the input signal at the end of the conversion. Allowing 25µs between convert commands assures accurate acquisition of a new signal.

The offset and gain are adjusted internally to allow external trimming with a single supply. The external resistors compensate for this adjustment and can be left out if the offset and gain will be corrected in software (refer to the Calibration section).

+10

4.88mV

9.99512V

ov

4.88mV

STARTING A CONVERSION

The R/C (pin 1) LOW for a minimum of 40ns immediately puts the sample/hold of the ISO806 in the hold state and starts conversion 'n'. BUSY (pin 2) will go LOW and stay LOW until conversion 'n' is completed and the internal output register has been updated. All new convert commands during BUSY LOW will be ignored. R/C must go HIGH before BUSY goes HIGH or a new conversion will be initiated without sufficient time to acquire a new signal.

The ISO806 will begin tracking the input signal at the end of the conversion. Allowing 25µs between convert commands assures accurate acquisition of a new signal. R/C is level triggered.

READING DATA SEDMAR TURN

1111 1111 1111

1000 0000 0000

The ISO806 outputs serial data in Straight Binary or Binary Two's Complement data output format. If SB/BTC (pin 18) is HIGH, the output will be in SB format, and if LOW, the output will be in BTC format. Refer to Table IV for ideal output codes.

Reading the data through the serial port will shift the internal output registers one bit per data clock pulse.

DIGITAL OUTPUT **BINARY TWO'S COMPLEMENT** STRAIGHT BINARY OV to 4V (SB/BTC LOW) (SB/BTC HIGH) 976uV HEX HEX BINARY CODE CODE CODE **BINARY CODE** 3.999024V 0111 1111 1111 7FF 1111 1111 1111 FFF 2V 0000 0000 0000 000 1000 0000 0000 800

FFF

800

0111 1111 1111

0000 0000 0000

Table IV. Output Codes and Ideal Input Voltages.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
- t ₁	Convert Pulse Width	0.04		12	μs
t ₃	BUSY Delay from Start of Conversion		110		ns
t ₄	BUSY LOW GRAPH TO B	EQ 1	14.7	20	μѕ
t ₅	BUSY Delay after End of Conversion	Vote	90		ns
t ₆	Aperture Delay	-	40		ns
t ₇	Conversion Time		14.7	20	μs
t ₈	Acquisition Time	1	3		μs
t ₁₃	Start of Conversion to DATACLK Delay		1.4		μs
10 V t ₁₄	DATACLK Period		1.1	I	μs
t ₁₅	Data Valid to DATACLK HIGH Delay	V6+	75	\$ 000	ns
t ₁₆	Data Valid after DATACLK LOW Delay	Vj	600	- Total	ns
t ₇ + t ₈	Throughput Time	-		25	μs

TABLE V. Conversion and Data Timing. $T_A = -40^{\circ}$ C to +85°C.

FIGURE 1. Basic ±10V Operation with Serial Output.

INTERNAL DATA CLOCK (During A Conversion)

The R/C (pin 1) LOW will initiate conversion 'n' and activate the internal data clock (typically 900kHz clock rate). The ISO806 will output 12 bits of valid data, MSB first, from conversion 'n-1' on SDATA (pin 28), synchronized to 12 clock pulses output on DATACLK (pin 27). The data will be valid on both the rising and falling edges of the internal data clock. The rising edge of BUSY (pin 2) can be used to latch the data. After the 12th clock pulse, DATACLK will remain LOW until the next conversion is initiated, SDATA will also go LOW.

INPUT RANGES ATAO DAIGARA

The ISO806 offers three input ranges: standard $\pm 10V$ and 0-5V, and a 0-4V range for complete, single supply systems. Figures 3a and 3b show the necessary circuit connections for implementing each input range and optional offset and gain adjust circuitry. Offset and full scale error⁽¹⁾ specifications are tested and guaranteed with the fixed resistors shown in Figure 3b. Adjustments for offset and gain are described in the Calibration section of this data sheet.

and gain will be corrected in software (refer to the Calibration section).

The input impedance, summarized in Table II, results from the combination of the internal resistor network shown on the front page of the product data sheet and the external resistors used for each input range (see Figure 4). The input resistor divider network provides inherent overvoltage protection guaranteed to at least ± 25 V.

Analog inputs above or below the expected range will yield either positive full scale or negative full scale digital outputs respectively. There will be no wrapping or folding over for analog inputs outside the nominal range.

Note: (1) Full scale error includes offset and gain errors measured at both +FS and -FS.

CALIBRATION

HARDWARE CALIBRATION

To calibrate the offset and gain of the ISO806 in hardware, install the resistors shown in Figure 3a. Table VI lists the hardware trim ranges relative to the input for each input range.

FIGURE 2. Serial Data Timing.

FIGURE 3a. Circuit Diagrams (With Hardware Trim).

FIGURE 3b. Circuit Diagrams (Without Hardware Trim).

SOFTWARE CALIBRATION

To calibrate the offset and gain in software, no external resistors are required. However, to get the data sheet specifications for offset and gain, the resistors shown in Figure 3b are necessary. See the **No Calibration** section for more details on the external resistors. Refer to Table VII for the range of offset and gain errors with and without the external resistors.

NO CALIBRATION

See Figure 3b for circuit connections. Note that the actual voltage dropped across the external resistors is at least two orders of magnitude lower than the voltage dropped across the internal resistor divider network. This should be considered when choosing the accuracy and drift specifications of the external resistors. In most applications, 1% metal-film resistors will be sufficient.

The external resistors shown in Figure 3b may not be necessary in some applications. These resistors provide compensation for an internal adjustment of the offset and gain which allows calibration with a single supply. Not using the external resistors will result in offset and gain errors in addition to those listed in the electrical specifications section. Offset refers to the equivalent voltage of the digital output when converting with the input grounded. A positive gain error occurs when the equivalent output voltage of the digital output is larger than the analog input. Refer to Table VII for nominal ranges of gain and offset errors with and without the external resistors. Refer to Figure 4 for typical shifts in the transfer functions which occur when the external resistors are removed.

To further analyze the effects of removing any combination of the external resistors, consider Figure 5. The combination of the external and the internal resistors form a voltage divider which reduces the input signal to a 0.3125V to 2.8125V input range at the CDAC. The internal resistors are

laser trimmed to high relative accuracy to meet full specifications. The actual input impedance of the internal resistor network looking into pin 12 or pin 14 however, is only accurate to ±20% due to process variations. This should be taken into account when determining the effects of removing the external resistors.

REFERENCE

The ISO806 operates with its internal 2.5V reference. The internal reference has approximately an 8ppm/ $^{\circ}$ C drift (typical) and accounts for approximately 20% of the full scale error (FSE = $\pm 0.5\%$).

The ISO806 also has an internal buffer for the reference voltage. See Figure 6 for characteristic impedances at the input and output of the buffer with all combinations of power down and reference down.

REF

REF (pin 16) is an input for an external reference or the output for the internal 2.5V reference. A $2.2\mu F$ tantalum capacitor should be connected as close as possible to the REF pin from ground. This capacitor and the output resistance of REF create a low pass filter to bandlimit noise on the reference. Using a smaller value capacitor will introduce more noise to the reference, degrading the SNR and SINAD. The REF pin should not be used to drive external AC or DC loads. See Figure 6.

The range for the external reference is 2.3V to 2.7V and determines the actual LSB size. Increasing the reference voltage will increase the full scale range and the LSB size of the converter which can improve the SNR.

CAP

CAP (pin 15) is the output of the internal reference buffer. A 2.2µF tantalum capacitor should be placed as close as possible to the CAP pin from ground to provide optimum switching currents for the CDAC throughout the conversion cycle. This capacitor also provides compensation for the output of the buffer. Using a capacitor any smaller than 1µF can cause the output buffer to oscillate and may not have sufficient charge for the CDAC. Capacitor values larger than 2.2µF will have little affect on improving performance. See Figure 6.

The output of the buffer is capable of driving up to 1mA of current to a DC load. Using an external buffer will allow the internal reference to be used for larger DC loads and AC loads. Do not attempt to directly drive an AC load with the output voltage on CAP. This will cause performance degradation of the converter.

LAYOUT

POWER

For optimum performance, tie the analog and digital power pins to the same +5V power supply and tie the analog and digital grounds together. As noted in the electrical specifications, the ISO806 uses 50% of its isolated power for the analog circuitry. The ISO806 front end should be considered as an analog component.

INPUT RANGE	OFFSET ADJUST RANGE (mV)	GAIN ADJUST RANGE (mV)
±10V	approxim 21 ±15 is an Spr	nal : 00± ence has
0 to 5V 1 on 10	approxin4±ely 20%	not almore ±30 hour
0 to 4V	±3	(32.01 ±3021)

TABLE VI. Offset and Gain Adjust Ranges for Hardware Calibration (see Figure 3a).

The +5V power for the A/D should be separate from the +5V used for the system's digital logic. Connecting $V_{\rm DIGI}$ (pin 10) directly to a digital supply can reduce converter performance due to switching noise from the digital logic. For best performance, the +5V supply can be produced from whatever analog supply is used for the rest of the analog signal conditioning. If +12V or +15V supplies are present, a simple +5V regulator can be used. Although it is not suggested, if the digital supply must be used to power the converter, be sure to properly filter the supply. Either using a filtered digital supply or a regulated analog supply, both $V_{\rm DIGI}$ and $V_{\rm ANA}$ should be tied to the same +5V source.

GROUNDING

Two ground pins are present on the ISO806 input side. DGND1 is the digital supply ground. AGND is the analog supply ground. AGND is the ground to which all analog signals internal to the A/D are referenced. AGND is more susceptible to current induced voltage drops and must have the path of least resistance back to the power supply.

The ground pin of the A/D should be tied to an analog ground plane, separated from the system's digital logic ground, to achieve optimum performance. Both analog and digital ground planes should be tied to the "system" ground as near to the power supplies as possible. This helps to prevent dynamic digital ground currents from modulating the analog ground through a common impedance to power ground.

INPUT		OFFSET ERROR	Name of Street	GAIN ERROR			
RANGE	W/ RESISTORS	W/OUT RESIST	ORS	W/ RESISTORS	W/OUT RI	ESISTORS	
(V)	RANGE (mV)	RANGE (mV)	TYP (mV)	RANGE (% FS)	RANGE (% FS)	awolis TYPniw nis	
±10 ₀₁ eldi	-10 ≤ BPZ ≤ 10	9300 0 ≤ BPZ ≤ 35 0000	+15	$-0.4 \le G \le 0.4$ $0.15 \le G^{(1)} \le 0.15$	$-0.3 \le G \le 0.5$ $-0.1 \le G^{(1)} \le 0.2$	+0.05 +0.05	
0 to 5	-3 ≤ UPO ≤ 3	-12 ≤ UPO ≤ -3	-7.5	$-0.4 \le G \le 0.4$ $0.15 \le G^{(1)} \le 0.15$	$-1.0 \le G \le 0.1$ $-0.55 \le G^{(1)} \le -0.05$	-0.2 -0.2	
0 to 4	-3 ≤ UPO ≤ 3	-10.5 ≤ UPO ≤ -1.5	-6	$-0.4 \le G \le 0.4$ $-0.15 \le G^{(1)} \le 0.15$	$-1.0 \le G \le 0.1$ $-0.55 \le G^{(1)} \le -0.05$	-0.2 -0.2	

TABLE VII. Range of Offset and Gain Errors with and without External Resistors and live of the base of the control of the cont

SIGNAL CONDITIONING

The FET switches used for the sample hold on many CMOS A/D converters release a significant amount of charge injection which can cause the driving op amp to oscillate. The amount of charge injection due to the sampling FET switch on the ISO806 is approximately 5-10% of the amount on similar ADCs with the charge redistribution DAC (CDAC) architecture. There is also a resistive front end which attenuates any charge which is released. The end result is a

minimal requirement for the drive capability on the signal conditioning preceding the A/D. Any op amp sufficient for the signal in an application will be sufficient to drive the ISO806.

The resistive front end of the ISO806 also provides a guaranteed ±25V overvoltage protection. In most cases, this eliminates the need for external over voltage protection circuitry.

FIGURE 4. Typical Transfer Functions With and Without External Resistors.

FIGURE 5. Circuit Diagrams Showing External and Internal Resistors.

FIGURE 6. Characteristic Impedances of Internal Buffer.

SO807

Isolated 16-Bit Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 1500Vrms ISOLATION CONTINUOUS
- 25µS CONVERSION TIME
- 16-BIT SERIAL OUTPUT
- SINGLE +5V SUPPLY
- 28-PIN 0.6" PLASTIC DIP

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- PC-BASED DATA ACQUISITION TEST EQUIPMENT

DESCRIPTION

The ISO807 is a low-power isolated sampling ADC using state-of-the-art CMOS structures and high voltage capacitors. The ISO807 contains a complete 16-bit capacitor based SAR, ADC with S/H, clock, reference, μP interface, serial out and galvanic isolation.

Laser-trimmed scaling resistors provide standard industrial input ranges including ±10V, ±5V, 0-5V, 0-4V. They are available in 28-pin 0.6" wide plastic DIP and are specified over the industrial temperature range of -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 40kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3b, unless otherwise specified.

			ISO807P	The Street Street	THE PERSON
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTION	4200			12	Bit
ANALOG INPUT		Mariana			A SHARE
/oltage Ranges			±10, 0 to +5, 0 to +	4	V
mpedance			(See Table II)		
Capacitance	TERRES NO MONTH AND THE	MINISTRACTOR MANUAL NE	35	PROPERTY AND PROPERTY AND	pF
THROUGHPUT SPEED			H L T I R L I		
Conversion Time	Hame2 119.	ar ho	icinal -	20	μs
Complete Cycle	Acquire and Convert	A 1 30 43 1	REPORT OF A SECULIAR SECUL	25	μѕ
Throughput Rate	ME HOUSE AND BUILDING	40	are area area in	6 8 8 8	kHz
OC ACCURACY	VYIOU JAIL	111111111111111111111111111111111111111	1 - 2 - 1	AFUM	
ntegral Linearity Error				±3	LSB(1)
Differential Linearity Error	to englishen wattrawayana inca	storestias Lieurga	CONTRACTOR STATE	+3, -2	LSB
No Missing Codes		15		+5, -2	Bits
Transition Noise ⁽²⁾		13	0.8		LSB
Full Scale Error(3,4)	DESCRIPT		0.0	±0.5	%
Full Scale Error Drift	THE WANTE		±7	10.5	ppm/°C
	Ext 2 5000V Pot	01101	A comment of the same of the s	TA LOCAL	ppm/°C
Full Scale Error Drift Bipolar Zero Error ⁽³⁾	±10V Range	Shor	±0.5	±10	mV
Bipolar Zero Error ⁽³⁾ Bipolar Zero Error Drift	±10V Range		±0.5	COMPESSION	ppm/°C
Unipolar Zero Error Drift	0V to 5V, 0V to 4V Ranges		10.5	10	mV.
Inipolar Zero Error Drift	0V to 5V, 0V to 4V Ranges		±0.5	no Tagas.	ppm/°C
Unipolar Zero Error Drift	+4.75V < V _S < +5.25V		10.5	3000401. 7	LSB
Power Supply Sensitivity (V _{DIG} = V _{ANA} = V _S)	+4.75V < V _S < +3.25V		Y	1908 #84 3.	LOD
AC ACCURACY			910 01	10.6" PLAST	@ 28-PH
Spurious-Free Dynamic Range			100		dB(5)
Total Harmonic Distortion 11 minutes and an ass	$f_{IN} = 1kHz, \pm 10V$		-100		dB
Signal-to-(Noise+Distortion)	$f_{IN} = 1kHz, \pm 10V$		88	at other residence and above to	dB
Signal-to-Noise	f _{IN} = 1kHz, ±10V		88	TUHIAUI.	dB
Useable Bandwidth(6)	DIP and are specific		130		kHz
SAMPLING DYNAMICS	range of -40°C to +	10	ESS CONTR	STRIAL PROC	nan e
Aperture Delay		TEST	40	ATAG 6351	ns
Aperture Jitter		1021	20	ANTENNA PROPERTY	ps
Overvoltage Recovery ⁽⁷⁾			750	MENT	ns
REFERENCE					5 6 8 4
Internal Reference Voltage	No Load	2.48	2.5	2.52	V
Internal Reference Source Current			1		μА
(Must use external buffer.)					
Internal Reference Drift		1124 5 100	8		ppm/°C
External Reference Voltage Range		2.3	2.5	2.7	V
for Specified Linearity					
External Reference Current Drain	Ext. 2.5000V Ref	-		100	μА
DIGITAL INPUTS				782 1 1914	
	essive Approximation Register en		Cidal		A Part of the
V _{IL}		-0.3		1.0	V
V _{IH}		V _D -0.1	- Comment	V _D +0.3V	V
I _{IL}	V _{IL} = 0V			±10	μА
I _{IH}	V _{IH} = 5V			±10	μА
DIGITAL OUTPUTS	1	COAD		5270	
Data Coding		Binary Two	's Complement or S	Straight Binary	-O WITH
Vol	I _{SINK} = 1.6mA	TT	IT I	0.4	V
V _{OH}	I _{SOURCE} = 500µA	0 +4 0	6.0		V
	1 010	040-040	0 0 500	20:02	
Specified Performance	1 / 1		6 5 3000	\$ 20102 ON	
V _{DIG1}	Must be ≤ V _{ANA}	+4.75	+5	+5.25	v
VDIG1 VANA	MIUST DE 5 VANA	+4.75	+5	+5.25	V
*ANA		+4.75	+5	+5.25	V
V _{DIG2} and take 8 - 2		+4.75	4.2	+3.25	mA
laura.			4.2		IIIA
I _{DIG1}			FO		Α Α
I _{ANA}		retti	5.0		mA mA
	$V_{ANA} = V_{DIG} = 5V$, $F_{S} = 40$ kHz	rifer	5.0 10.8 125		mA mA mW

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 40kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3b, unless otherwise specified.

		ISO807P			S strong	
PARAMETER	CONDITIONS	MIN	atioV TYPOR Intel	MAX	UNITS	
TEMPERATURE RANGE Specified Performance		-40	vising Supply Volts.	+85	AMAYS+ C	
Storage		-65	ugni gelativ	+150	MIE OC ST	
Thermal Resistance, φ _{JA} Plastic DIP		unconnected	eveal inchantoo st 75	1	ON C/W	
SOLATION PARAMETERS	bnears of rollhedge	nuletness S to	during linguit Reference Buffer Outpu		9AO _{Vrms}	
Rated Voltage, Continuous Partial Discharge, 100% Test ⁽⁸⁾			Reference Input/Dataut		Vinis	
Creepage Distance (External) DIP = "P" Package Internal Isolation Distance	16, 000	2000	16		mm GNO	
Barrier Impedance	Complement for Output Data Fi	or Pinary Two's	>1013 15	3 1	OT8 Ω II pF 8	
Leakage Current ⁽⁹⁾	240Vrms, 60Hz 240Vrms, 50Hz		Jensi Ground.	1.7 1.4	μArms μArms	

NOTES: (1) LSB means Least Significant Bit. One LSB for the \pm 10V input range is 4.88mV. (2) Typical rms noise at worst case transition. (3) As measured with fixed resistors shown in Figure 7b. Adjustable to zero with external potentiometer. (4) Full scale error is the worst case of –Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. (5) All specifications in dB are referred to a full-scale input. (6) Usable Bandwidth defined as Full-Scale input frequency at which Signal-to-(Noise + Distortion) degrades to 60dB. (7) Recovers to specified performance after 2 x FS input overvoltage. (8) All devices receive a 1s test. Failure criterion is \geq 5 pulses of \geq 5pC. (9) Tested at 2500Vrms, 50Hz limit 10 μ A.

BSOLUTE MAX	IMUM RATINGS	ANALOG INPUT
Analog Inputs: R1 _{IN}	01	±25V
0 R2 _{IN}	940	±25V
000 05 CAP	V _{ANA} +0.3V to A	AGND2 -0.3V
	Indefinite Sho	
	Momentary	Short to VANA
Ground Voltage Differen	ices: DGND and AGND1	
	DGND, AGND, and GND _{ISO}	
V _{ANA}		
	perature	
	on	
	ering, 10s)	

PACKAGE INFORMATION

MODEL PACKAGE		PACKAGE DRAWING NUMBER ⁽¹⁾	
ISO807P	Plastic DIP	215-1	

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY ERROR (LSB)	TYPICAL SIGNAL-TO- (NOISE + DISTORTION) RATIO (dB)	SPECIFICATION TEMPERATURE RANGE	PACKAGE
ISO807P	±3	83	-40°C to +85°C	Plastic DIP

TA = -40°C to +85°C, ts - 40kHz, Vos	edge on R/C initiates a new conversion.	lixed reclasives obrown in Financials	0	110	
lete.	DW and stays LOW until conversion is comp	start of conversion BUSY goes Li	0	BUSY	2
		Digital Supply Volts.		+5V _{DIG2}	3
RETEMARAS		Supply Volts.	XAR	+5V _{DIG1}	10
EMPERATURE DANGE		Supply Volts.		+5V _{ANA}	11
		Input.	455 +150	R1 _{IN}	12
nemai Pasistance, eu		nection. Leave unconnected.		NC	13
		Input.		R2 _{IN}	14
	capacitor to ground.	nce Buffer Output. 2.2µF tantalun		CAP	15
artist Discharge, 100% Test®	capacitor to ground.	nce Input/Output. 2.2µF tantalum		REF	16
	Pr Padvaga	Ground.		AGND	17
	Complement for Output Data Format.	Straight Binary or Binary Two's		SB/BTC	18
		Ground.	1.7	DGND1	19
	240Vims, 50Hz	I Ground.	9.7	DGND2	26
TES: (1) LSS manns Loss Significat	at Bit. One LSB for the ±16V input range is	lock Output.	0	DATACLK	27
		Output Synchronized to DATACLI	0	SDATA	28

TABLE I. Pin Assignments.

PIN CONFIGURATION

ANALOG INPUT RANGE	CONNECT R1 _{IN} VIA 200Ω TO	CONNECT R2 _{IN} VIA 100Ω TO	IMPEDANCE
±10V	V _{IN}	CAP	45.7kΩ
0V to 5V	AGND	V _{IN}	20.0kΩ
0V to 4V	V _{IN}	V _{IN}	21.4kΩ

TABLE II. Input Range Connections. See also Figure 3.

17 AGND	PACKAGE DRAWING NUMBERS	PACKAGE	
16 REF	1-819		
15 CAP	in table, please see end of data. Book	led drawing and dimension C of Burn Brown IC Data	

Initiates conversion "n". Valid data from conversion "n-1" clocked out on SDATA.

New convert commands ignored. Conversion "n" in progress.

TABLE III. Control Functions

1

Output

X

New conversion initiated without acquisition of a new signal. Data will be invalid. R/C must be HIGH when BUSY goes HIGH.

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES (CONT) MAMAGRARY JACISTY

T_A = +25°C, f_S = 40kHz, V_{DiG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3b, unless otherwise specified.

BASIC OPERATION OF THE BOARD OF THE PARTY OF

SERIAL OUTPUT

Figure 1 shows a basic circuit to operate the ISO807 with a ±10V input range and serial output. Taking R/C (pin 1) LOW for 40ns (12µs max) will initiate a conversion and output valid data from the previous conversion on SDATA (pin 28) synchronized to 16 clock pulses output on DATACLK (pin 27). BUSY (pin 2) will go LOW and stay LOW until the conversion is completed and the serial data has been transmitted. Data will be output in Binary Two's Complement format, MSB first, and will be valid on both the rising and falling edges of the data clock. BUSY going HIGH can be used to latch the data. All convert commands will be ignored while BUSY is LOW.

trimming with a single supply. The

The ISO807 will begin tracking the input signal at the end of the conversion. Allowing 25µs between convert commands assures accurate acquisition of a new signal.

The offset and gain are adjusted internally to allow external trimming with a single supply. The external resistors compensate for this adjustment and can be left out if the offset and gain will be corrected in software (refer to the Calibration section).

STARTING A CONVERSION

The R/\overline{C} (pin 1) LOW for a minimum of 40ns immediately puts the sample/hold of the ISO807 in the hold state and starts conversion 'n'. \overline{BUSY} (pin 2) will go LOW and stay LOW until conversion 'n' is completed and the internal output register has been updated. All new convert commands during \overline{BUSY} LOW will be ignored. R/\overline{C} must go HIGH before \overline{BUSY} goes HIGH or a new conversion will be initiated without sufficient time to acquire a new signal.

The ISO807 will begin tracking the input signal at the end of the conversion. Allowing 25 μ s between convert commands assures accurate acquisition of a new signal. R/ \overline{C} is level triggered.

READING DATA 230MAS TUSMI

The ISO807 outputs serial data in Straight Binary or Binary Two's Complement data output format. If SB/BTC (pin 18) is HIGH, the output will be in SB format, and if LOW, the output will be in BTC format. Refer to Table IV for ideal output codes.

Reading the data through the serial port will shift the internal output registers one bit per data clock pulse.

DESCRIPTION		ANALOG INPUT	range.	DIGITAL OUTPUT				
Full-Scale Range	±10 305uV	0V to 5V	0V to 4V 61μV	to 4V (SB/BTC LOW)		STRAIGHT BINAR' (SB/BTC HIGH)		
Least Significant Bit (LSB)	305μν	76μV	σιμν		HEX		HEX	
	7			BINARY CODE	CODE	BINARY CODE	CODE	
+Full Scale (FS - 1LSB)	9.999695V	4.999924V	3.999939V	0111 1111 1111 1111	7FFF	1111 1111 1111 1111	FFFF	
Midscale	OV	2.5V	2V av	0000 0000 0000 0000	0000	1000 0000 0000 0000	8000	
One LSB Below Midscale	-305μV	2.499924V	1.999939V	1111 1111 1111 1111	FFFF	0111 1111 1111 1111	7FFF	
-Full Scale	-10V	0V	ov	1000 0000 0000 0000	8000	0000 0000 0000 0000	0000	

Table IV. Output Codes and Ideal Input Voltages.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t ₁	Convert Pulse Width	0.04		12	μs
t ₃	BUSY Delay from Start of Conversion		110		ns
t ₄	BUSY LOW	Date	18.8	20	μs
t ₅	BUSY Delay after End of Conversion	Vort	90		ns
t ₆	Aperture Delay	-	40		ns
t ₇	Conversion Time		18.8	20	μs
t ₈	Acquisition Time	×.	5		μs
t ₁₃	Start of Conversion to DATACLK Delay		1.4		μs
t ₁₄	DATACLK Period		1.1	5 000	μѕ
t ₁₅	Data Valid to DATACLK HIGH Delay	Vä	75	7	ns
t ₁₆	Data Valid after DATACLK LOW Delay	MAN-	600	- AV-	ns
t ₇ + t ₈	Throughput Time	-		25	μѕ

TABLE V. Conversion and Data Timing. $T_A = -40$ °C to +85°C.

FIGURE 1. Basic ±10V Operation with Serial Output.

INTERNAL DATA CLOCK (During A Conversion)

The R/C (pin 1) LOW will initiate conversion 'n' and activate the internal data clock (typically 900kHz clock rate). The ISO807 will output 16 bits of valid data, MSB first, from conversion 'n-1' on SDATA (pin 28), synchronized to 16 clock pulses output on DATACLK (pin 27). The data will be valid on both the rising and falling edges of the internal data clock. The rising edge of BUSY (pin 2) can be used to latch the data. After the 16th clock pulse, DATACLK will remain LOW until the next conversion is initiated, SDATA will also go LOW.

INPUT RANGES ATAO DAIGABA

The ISO807 offers three input ranges: standard $\pm 10V$ and 0-5V, and a 0-4V range for complete, single supply systems. Figures 3a and 3b show the necessary circuit connections for implementing each input range and optional offset and gain adjust circuitry. Offset and full scale error⁽¹⁾ specifications are tested and guaranteed with the fixed resistors shown in Figure 3b. Adjustments for offset and gain are described in the **Calibration** section of this data sheet.

pensate for this adjustment and can be left out if the offset and gain will be corrected in software (refer to the Calibration section).

The input impedance, summarized in Table II, results from the combination of the internal resistor network shown on the front page of the product data sheet and the external resistors used for each input range (see Figure 4). The input resistor divider network provides inherent overvoltage protection guaranteed to at least ± 25 V.

Analog inputs above or below the expected range will yield either positive full scale or negative full scale digital outputs respectively. There will be no wrapping or folding over for analog inputs outside the nominal range.

Note: (1) Full scale error includes offset and gain errors measured at both +FS

CALIBRATION

HARDWARE CALIBRATION

To calibrate the offset and gain of the ISO807 in hardware, install the resistors shown in Figure 3a. Table VI lists the hardware trim ranges relative to the input for each input range.

FIGURE 2. Serial Data Timing.

FIGURE 3a. Circuit Diagrams (With Hardware Trim).

FIGURE 3b. Circuit Diagrams (Without Hardware Trim).

SOFTWARE CALIBRATION

To calibrate the offset and gain in software, no external resistors are required. However, to get the data sheet specifications for offset and gain, the resistors shown in Figure 3b are necessary. See the **No Calibration** section for more details on the external resistors. Refer to Table VII for the range of offset and gain errors with and without the external resistors.

NO CALIBRATION

See Figure 3b for circuit connections. Note that the actual voltage dropped across the external resistors is at least two orders of magnitude lower than the voltage dropped across the internal resistor divider network. This should be considered when choosing the accuracy and drift specifications of the external resistors. In most applications, 1% metal-film resistors will be sufficient.

The external resistors shown in Figure 3b may not be necessary in some applications. These resistors provide compensation for an internal adjustment of the offset and gain which allows calibration with a single supply. Not using the external resistors will result in offset and gain errors in addition to those listed in the electrical specifications section. Offset refers to the equivalent voltage of the digital output when converting with the input grounded. A positive gain error occurs when the equivalent output voltage of the digital output is larger than the analog input. Refer to Table VII for nominal ranges of gain and offset errors with and without the external resistors. Refer to Figure 4 for typical shifts in the transfer functions which occur when the external resistors are removed.

To further analyze the effects of removing any combination of the external resistors, consider Figure 5. The combination of the external and the internal resistors form a voltage divider which reduces the input signal to a 0.3125V to 2.8125V input range at the CDAC. The internal resistors are

laser trimmed to high relative accuracy to meet full specifications. The actual input impedance of the internal resistor network looking into pin 12 or pin 14 however, is only accurate to ±20% due to process variations. This should be taken into account when determining the effects of removing the external resistors.

REFERENCE

The ISO807 operates with its internal 2.5V reference. The internal reference has approximately an 8ppm/ $^{\circ}$ C drift (typical) and accounts for approximately 20% of the full scale error (FSE = $\pm 0.5\%$).

The ISO807 also has an internal buffer for the reference voltage. See Figure 6 for characteristic impedances at the input and output of the buffer with all combinations of power down and reference down.

REF

REF (pin 16) is an input for an external reference or the output for the internal 2.5V reference. A 2.2 μ F tantalum capacitor should be connected as close as possible to the REF pin from ground. This capacitor and the output resistance of REF create a low pass filter to bandlimit noise on the reference. Using a smaller value capacitor will introduce more noise to the reference, degrading the SNR and SINAD. The REF pin should not be used to drive external AC or DC loads. See Figure 6.

The range for the external reference is 2.3V to 2.7V and determines the actual LSB size. Increasing the reference voltage will increase the full scale range and the LSB size of the converter which can improve the SNR.

CAP

CAP (pin 15) is the output of the internal reference buffer. A $2.2\mu F$ tantalum capacitor should be placed as close as possible to the CAP pin from ground to provide optimum switching currents for the CDAC throughout the conversion cycle. This capacitor also provides compensation for the output of the buffer. Using a capacitor any smaller than $1\mu F$ can cause the output buffer to oscillate and may not have sufficient charge for the CDAC. Capacitor values larger than $2.2\mu F$ will have little affect on improving performance. See Figure 6.

The output of the buffer is capable of driving up to 1mA of current to a DC load. Using an external buffer will allow the internal reference to be used for larger DC loads and AC loads. Do not attempt to directly drive an AC load with the output voltage on CAP. This will cause performance degradation of the converter.

LAYOUT

POWER

SOLVION WASTERN

For optimum performance, tie the analog and digital power pins to the same +5V power supply and tie the analog and digital grounds together. As noted in the electrical specifications, the ISO807 uses 50% of its isolated power for the analog circuitry. The ISO807 front end should be considered as an analog component.

	OFFSET ADJUST	GAIN ADJUST		
±10V	RANGE (mV)	RANGE (mV)		
0 to 5V A - 10	approxin4±ely 20%	ol sauo:±30 bas (le		
0 to 4V	±3	mor (FS08±= ±0.5%)		

TABLE VI. Offset and Gain Adjust Ranges for Hardware Calibration (see Figure 3a).

voltage will increase the full scale range and the LSB size of

The +5V power for the A/D should be separate from the +5V used for the system's digital logic. Connecting $V_{\rm DIGI}$ (pin 10) directly to a digital supply can reduce converter performance due to switching noise from the digital logic. For best performance, the +5V supply can be produced from whatever analog supply is used for the rest of the analog signal conditioning. If +12V or +15V supplies are present, a simple +5V regulator can be used. Although it is not suggested, if the digital supply must be used to power the converter, be sure to properly filter the supply. Either using a filtered digital supply or a regulated analog supply, both $V_{\rm DIGI}$ and $V_{\rm ANA}$ should be tied to the same +5V source.

GROUNDING

Two ground pins are present on the ISO807 input side. DGND1 is the digital supply ground. AGND is the analog supply ground. AGND is the ground to which all analog signals internal to the A/D are referenced. AGND is more susceptible to current induced voltage drops and must have the path of least resistance back to the power supply.

The ground pin of the A/D should be tied to an analog ground plane, separated from the system's digital logic ground, to achieve optimum performance. Both analog and digital ground planes should be tied to the "system" ground as near to the power supplies as possible. This helps to prevent dynamic digital ground currents from modulating the analog ground through a common impedance to power ground.

NO CALIBRATION

See Figure 3b for circuit connections. Note that the actual voltage dropped across the external resistors is at least two orders of magnitude lower than the voltage dropped across the internal resistor divider network. This should be considered when choosing the accuracy and drift specifications of the external resistors. In most symbolium, 1% most all films.

INPUT		OFFSET ERROR	10.00	Set John Vani GE STUR GAIN ERROR		
RANGE (V)	W/ RESISTORS W/OUT RESISTORS		W/ RESISTORS	W/OUT RESISTORS		
	RANGE (mV)	RANGE (mV) RANGE (mV) TYP (mV)		RANGE (% FS)	RANGE (% FS)	zwolls TYPniw niss
athle to ⁰ th	-10 ≤ BPZ ≤ 10	313300 ≤ BPZ ≤ 35 On 8	10113.+15	$-0.4 \le G \le 0.4$ $0.15 \le G^{(1)} \le 0.15$	$-0.3 \le G \le 0.5$ $-0.1 \le G^{(1)} \le 0.2$	+0.05
0 to 5	-3 ≤ UPO ≤ 3	-12 ≤ UPO ≤ -3	-7.5	$-0.4 \le G \le 0.4$ $0.15 \le G^{(1)} \le 0.15$	$-1.0 \le G \le 0.1$ $-0.55 \le G^{(1)} \le -0.05$	102100.2 poz anol -0.2
0 to 4	-3 ≤ UPO ≤ 3	-10.5 ≤ UPO ≤ -1.5	ion atoru	$-0.4 \le G \le 0.4$ $-0.15 \le G^{(1)} \le 0.15$	$-1.0 \le G \le 0.1$ $-0.55 \le G^{(1)} \le -0.05$	-0.2 -0.2

TABLE VII. Range of Offset and Gain Errors with and without External Resistors and large of the broading based on the control of the control

power down and reference down.

BURR-BROWN®

Or, Call Customer Service at 1-800-548-6132 (USA Only)

SIGNAL CONDITIONING

The FET switches used for the sample hold on many CMOS A/D converters release a significant amount of charge injection which can cause the driving op amp to oscillate. The amount of charge injection due to the sampling FET switch on the ISO807 is approximately 5-10% of the amount on similar ADCs with the charge redistribution DAC (CDAC) architecture. There is also a resistive front end which attenuates any charge which is released. The end result is a

minimal requirement for the drive capability on the signal conditioning preceding the A/D. Any op amp sufficient for the signal in an application will be sufficient to drive the ISO807.

The resistive front end of the ISO807 also provides a guaranteed ±25V overvoltage protection. In most cases, this eliminates the need for external over voltage protection circuitry.

FIGURE 4. Typical Transfer Functions With and Without External Resistors.

PWRD 1	PWRD 1 REFD 9	PWRD 0	PWRD C REFD D	
200				(C1) 9AD
10014	xia .		N8	

FIGURE 6. Characteristic Impedances of Internal Buffer.

FIGURE 5. Circuit Diagrams Showing External and Internal Resistors.

	PWRD 0 REFD 0	PWRD 0 REFD 1	PWRD 1 REFD 0	PWRD 1 REFD 1	
$Z_{CAP}(\Omega)$	1	1	200	200	
$Z_{REF}(\Omega)$	6k	100M	6k	100M	

FIGURE 6. Characteristic Impedances of Internal Buffer.

ISO808

Isolated 12-Bit Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 100kHz SAMPLING RATE
- 1500Vrms ISOLATION CONTINUOUS
- 10µS CONVERSION TIME
- 12-BIT SERIAL OUTPUT
- SINGLE +5V SUPPLY
- 28-PIN 0.6" PLASTIC DIP

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- PC-BASED DATA ACQUISITION TEST EQUIPMENT

DESCRIPTION

The ISO808 is a low-power isolated sampling ADC using state-of-the-art CMOS structures and high voltage capacitors. The ISO808 contains a complete 12-bit capacitor based SAR, ADC with S/H, clock, reference, μP interface, serial out and galvanic isolation.

Laser-trimmed scaling resistors provide standard industrial input ranges including ±10V, ±5V, 0-5V, 0-4V. They are available in 28-pin 0.6" wide plastic DIP and are specified over the industrial temperature range of -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At T_A = -40°C to +85°C, f_C = 100kHz, V_{DIC2} = V_{AMA} = +5V, using internal reference and fixed resistors shown in Figure 3, unless otherwise specified.

	AND THE PARTY OF T		ISO808P	El Charles S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTION				12	Bits
ANALOG INPUT Voltage Ranges Impedance Capacitance		±10V, 0	V to 5V, etc. (See See Table I 35	Table I)	pF
THROUGHPUT SPEED Conversion Time Complete Cycle Throughput Rate	Acquire and Convert	ST bott	5.7	8 10	μs μs kHz
DC ACCURACY Integral Linearity Error Differential Linearity Error No Missing Codes Transition Noise ⁽²⁾ Full Scale Error ^(3,4) Full Scale Error Drift Full Scale Error Drift Bipolar Zero Error ⁽³⁾ Bipolar Zero Error Drift Unipolar Zero Error Drift Power Supply Sensitivity (V _{DiG} = V _{ANA} = V _D)	Bipolar Ranges	snon	Guaranteed 0.1 ±7 ±2 ±2 ±2	±0.9 ±0.9 ±0.5 ±10 ±5	LSB(1) LSB LSB % ppm/>C ppm/>C mV ppm/>C MV
AC ACCURACY Spurious-Free Dynamic Range Total Harmonic Distortion Signal-to-(Noise+ Distortion) Signal-to-Noise Full-Power Bandwidth(6)	f _{IN} = 45kHz ±10V		90 -90 73 73 250	.E +SV SUPP V 0.6" PLAST	dB ⁽⁵⁾ dB dB dB kHz
SAMPLING DYNAMICS Aperture Delay Aperture Jitter Overvoltage Recovery ⁽⁷⁾	range of -40°C to	Suffi	40 cient to meet AC s	specs	ns ns ns
REFERENCE Internal Reference Voltage Internal Reference Source Current (Must use external buffer) External Reference Voltage Range	No Load	2.48	2.5 1 2.5	2.52	EQUI ν Αμ ν
for Specified Linearity External Reference Current Drain	Ext. 2.5000V Ref			100	μА
DIGITAL INPUTS Logic Levels V _{IL} V _{IH} I _{IL} I _{IH} I _{IH} IIOSIO	olpo i lo V _{IL} = 0V V _{IH} = 5V	-0.3 V _D -1.0	ecouê	1.0 V _D +0.3V ±10 ±10	V V μΑ μΑ
DIGITAL OUTPUTS Data Coding V _{OL} V _{OH}	I _{SINK} = 1.6mA I _{SOURCE} = 500μA	Binary Two's	Complement or S	±0,4 \-0	ra v
POWER SUPPLIES Specified Performance Voigs VANA Voig2 IDIG1 IANA IDIG2 POWER Dissipation	Must be \leq V _{ANA} $V_{ANA} = V_{DIG} = 5V, f_S = 100kHz$	+4.75 +4.75 +4.75	+5 +5 4.2 16 10.8 175	+5.25 +5.25 +5.25	V V V V Am Am Am WW

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 100kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3, unless otherwise specified.

		atloV v	S +öVnun		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE Specified Performance Storage		-40 -65	Analog Supply Volts. Asalog Input.	+85 +150	11 0° HIM
Thermal Resistance, φ _{JA} Plastic DIP			75		°C/W
SOLATION PARAMETERS Rated Voltage, Continuous	50Hz Malosque	1500 S .tug	Reference Buffer Out		9AO Vrms
Partial Discharge, 100% Test ⁽⁸⁾ Creepage Distance (External) DIP = "P" Package Internal Isolation Distance	1s, 5pC		16 0.10		Wind Amm
Barrier Impedance Leakage Current ⁽⁹⁾	240Vrms, 60Hz 240Vrms, 50Hz	y or Binary Two's	2015/10 ¹³ II 15 (2016)	1.7	Ω II pF μArms μArms

NOTES: (1) LSB means Least Significant Bit. One LSB for the ±10V input range is 4.88mV. (2) Typical rms noise at worst case transition. (3) As measured with fixed resistors shown in Figure 7b. Adjustable to zero with external potentiometer. (4) Full scale error is the worst case of -Full Scale on +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. (5) All specifications in dB are referred to a full-scale input. (6) Usable Bandwidth defined as Full-Scale input frequency at which Signal-to-(Noise + Distortion) degrades to 60dB. (7) Recovers to specified performance after 2 x FS input overvoltage. (8) All devices receive a 1s test. Failure criterion is ≥ 5 pulses of ≥ 5pC. (9) Tested at 2500Vrms, 50Hz limit 10µA.

ABSOLUTE MAXIMUM RATINGS

Analog Inpu	ts: R1 _{IN}	5V
Cround Volt	R2 _{IN}	5V 3V ID, ANA 3V
V _{DIG} to V _{ANA} V _{DIG} Digital Input Maximum Ji Internal Pov	,	3V 7V 3V 5°C

PACKAGE INFORMATION

MODEL	PACKAGE DESERVING	PACKAGE DRAWING
ISO808P	28-Pin Plastic DIP	unaqA 215-1 al

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MAXIMUM INTEGRAL LINEARITY ERROR (LSB)		TYPICAL SIGNAL-TO- (NOISE + DISTORTION) RATIO (dB)	SPECIFICATION TEMPERATURE RANGE (°C)	PACKAGE	
ISO808P	Data Valid state 40.9	70	-40°C to +85°C	28-Pin Plastic DIP	

JAJIRTJE	g edge on R/C initiates a new conversion.	SY high, a falling	Read/Convert. With BUS	1	RC	1
mplete.	OW and stays LOW until conversion is con	n BUSY goes L	At the start of conversion	0	BUSY	2
		olts.	Isolated Digital Supply V		+5V _{DIG2}	3
		Milki	Digital Supply Volts.	MAX	+5V _{DIG1}	10
MPERATURE RANGE			Analog Supply Volts.	-85	+5V _{ANA}	11
		-65	Analog Input.	081+	R1 _{IN}	12
			Analog Input.		R2 _N	13
			Analog Input.		R3 _N	14
OLATION PARAMETERS Bed Voltage, Continuous	n capacitor to ground.	. 2.2μF tantalur	Reference Buffer Output		CAP	15
	capacitor to ground.	2.2µF tantalum	Reference Input/Output.		REF	16
espaga Distanos (External) DIP = "P".) arrali isolation Distance	Peckage		Analog Ground.		AGND	17
anaram parame	Compliment for output data format.	or Binary Two's	Selects Straight Binary of	1	SB/BTC	18
	240Vtms, 60Hz 240Vtms 50Hz		Digital Ground.	7.1	DGND1	19
			Isolated Ground.		DGND2	26
	Bit. One LSB for the ±10V input range is able to zero with external potentionneter.		Data Clock Output.	0	DATACLK	27
	neitions, divided by the mansition voltage.)		Serial Output Synchroniz	0	SDATA	28

TABLE I. Pin Assignments.

PIN CONFIGURATION

ANALOG INPUT RANGE	CONNECT R1 _{IN} VIA 200Ω TO	CONNECT R2 _{IN} VIA 100Ω TO	CONNECT R3 _{IN}	IMPEDANCE	
±10V	V _{IN}	AGND	CAP	22.9kΩ	
±5V	AGND	V _{IN}	CAP	13.3kΩ	
±3.33	VIN	V _{IN}	CAP	10.7kΩ	
0V to 10V	AGND	V _{IN}	AGND	13.3kΩ	
0V to 5V	AGND	AGND	V _{IN}	10.0kΩ	
0V to 4V	V _{IN}	AGND	V _{IN}	10.7kΩ	

TABLE I. Input Range Connections. See Figure 3 for complete information.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t ₁	Convert Pulse Width	40		4500	ns
t ₂	BUSY Delay		120		ns
t ₃	BUSY LOW	MRO	HMI.	8	μs
Elt ₄ van	BUSY Delay after End of Conversion	1	220		ns
t ₅	Aperture Delay	F1-52	40	q	ns
t ₆	Conversion Time	went l	5.7	8	μs
t ₇	Acquisition Time	nu8 to	O xib	2	μs
t ₆ + t ₇	Throughput Time	138	9	10	μs
t ₈	R/C LOW to DATACLK Delay	BO	450	Union	ns
- t ₉	DATACLK Period		440		ns
t ₁₀	Data Valid to DATACLK HIGH Delay	20	75		ns
t ₁₁	Data Valid after DATACLK LOW Delay	100	125	91	ns

TABLE II. Conversion and Data Timing. $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.

FIGURE 2. Serial Data Timing.

SPECIFIC FUNCTION	R/C	BUSY	DATACLK	SB/BTC	OPERATION
Initiate Conversion and Output Data	0	1	Output	GAX -	Initiates Conversion "n". Data from conversion "n-1" clocked ou on DATA synchronized to 12 clock pulses output on DATACLK.
THAT I AMP SOME	1 > 0	1 00	Output	X	Initiates Conversion "n". Data from conversion "n-1" clocked ou on DATA synchronized to 12 clock pulses output on DATACLK.
Incorrect Conversions	0	0 > 1	X	X	R/C̄ must be HIGH or a new conversion will be initiated without time for acquisition.
Selecting Output Format	Х	X	X	0	Serial Data is output in Binary Two's Complement format.
	×	X	X	1	Serial Data is output in Straight Binary format

TABLE III. Control Truth Table.

				781				DIGITAL	L OUTPUT	
DIE						04	BINARY TWO COMPLEME (SB/BTC LO	NT	STRAIGHT BII	
DESCRIPTION			ANALOG	NPUT		88	HEX BINARY CODE	CODE	HEX BINARY CODE	CODE
Full-Scale Range	±10	±5	±3.33V	0V to 5V	0V to 10V	0V to 4V	V		1 Va-	520
Least Significant Bit (LSB)	4.88mV	2.44mV	1.63mV	1.22mV	2.44mV	0.98mV				
+Full Scale (FS - 1LSB)	9.99512V	4.99756V	3.33171V	4.99878V	9.99756V	3.99902V	0111 1111 1111	7FF	1111 1111 1111	FFF
Midscale	OV	0V	OV	2.5V	5V	2V	0000 0000 0000	000	1000 0000 0000	800
One LSB Below Midscale	-4.88mV	-2.44mV	-1.63mV	2.49878V	4.99756V	1.99902V	1111 1111 1111	FFF	0111 1111 1111	7FF
-Full Scale	-10V	-5V	-3.333333V	OV	OV	ov	1000 0000 0000	800	0000 0000 0000	000

TABLE IV. Output Codes and Ideal Input Voltages.

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 3a. Offset/Gain Circuits for Unipolar Input Ranges.

ISO809

Isolated 16-Bit Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 100kHz SAMPLING RATE
- 1500Vrms ISOLATION CONTINUOUS
- 10µS CONVERSION TIME
- 16-BIT SERIAL OUTPUT
- SINGLE +5V SUPPLY
- 28-PIN 0.6" PLASTIC DIP

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- PC-BASED DATA ACQUISITION TEST EQUIPMENT

DESCRIPTION

The ISO809 is a low-power isolated sampling ADC using state-of-the-art CMOS structures and high voltage capacitors. The ISO809 contains a complete 16-bit capacitor based SAR, ADC with S/H, clock, reference, μP interface, serial out and galvanic isolation.

Laser-trimmed scaling resistors provide standard industrial input ranges including ±10V, ±5V, 0-5V, 0-4V. They are available in 28-pin 0.6" wide plastic DIP and are specified over the industrial temperature range of -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

ELECTRICAL

SPECIFICATIONS

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 100kHz, V_{DIG} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3, unless otherwise specified.

980808		1808081					
PARAMETER	MAM	SYT	CONDITIONS	COMMITTONS	TYP	MAX	UNITS
RESOLUTION						12 2044	Bits
ANALOG INPUT Voltage Ranges Impedance Capacitance	081÷	75	88-	±10V,	0V to 5V, etc. (See See Table I	Table I)	egeto remai Resistan Plastic DIP PF
			1600	SOHz	- 55	BOSYSTAL Subunifo	Cl. BasifoV best
THROUGHPUT SPI Conversion Time Complete Cycle Throughput Rate	ED	ar o.to	Acquire and Convert	100 100	7.6	100% T8 (%) (Exter 01) DIP = 1 historica	μs μs kHz
DC ACCURACY Integral Linearity En		ar u=ore		240Vms, 60Hz		±4 ±4	LSB ⁽¹⁾
No Missing Codes Transition Noise(2) Full Scale Error(3.4) Full Scale Error Driff Full Scale Error Driff Bipolar Zero Error(3) Bipolar Zero Error(3) Unipolar Zero Error Unipolar Zero Error Vunipolar Zero Error Power Supply Sensi	no eignet in T- o erit sebulari t selokt) of graps t duty & selokt prift Drift	id worst case of stale range) and julency at which S id at. Failure orfice	Ext. 2.500V Ref Bipolar Ranges Bipolar Ranges Unipolar Ranges Unipolar Ranges +4.75V < V _D < +5.25V	the self-singul in occurring the self-singul in the self-self-self-self-self-self-self-self-	1.3 abivits ±7.	Transport Telephone Section	LSB % ppm/°C ppm/°C mV ppm/°C mV ppm/°C LSB
AC ACCURACY Spurious-Free Dyna Total Harmonic Dist Signal-to-(Noise+Dis Signal-to-Noise Full-Power Bandwid	ortion stortion)		$\begin{split} f_{\text{IN}} &= 45 \text{kHz} \pm 10 \text{V} \\ f_{\text{IN}} &= 45 \text{kHz} \pm 10 \text{V} \\ f_{\text{IN}} &= 45 \text{kHz} \pm 10 \text{V} \\ f_{\text{IN}} &= 45 \text{kHz} \pm 10 \text{V} \end{split}$	VSSE VSSE VSSE VSSE VSSE VSSE VSSE VSSE	100 -100 88 88 88 250	10 10 10 10 10 10 10 10 10 10 10 10 10 1	dB ⁽⁵⁾ dB dB dB dB kHz
SAMPLING DYNAM Aperture Delay Aperture Jitter Overvoltage Recove	appropriate	Suisn peaces	be handled and methods.	VC.04 arm/8881 VT. Suff	40 ficient to meet AC s	GMEG SERVERS SPECS	ns ns
REFERENCE Internal Reference \(\) Internal Reference \(\) (Must use external Reference for Specified Line External Reference	/oltage Source Current al buffer) Voltage Range parity	eceptible to	No Load Ext. 2.5000V Ref	2.48 Wm004 2.33	2.5 1 2.5	2.52	V µA V
DIGITAL INPUTS Logic Levels V _{IL} V _{IH} I _{IL}			V _{IL} = 0V	-0.3 V _D -1.0	PACY	1.0 V _D +0.3V ±10	V V µA
I _{IH}			V _{IH} = 5V	with the bris age of	olo, nidet nomen	±10	μА
Data Coding V _{OL} V _{OH}			I _{SINK} = 1.6mA I _{SOURCE} = 500µA	Binary Two's	s Complement or S	±0.4	st, ex Appendix V V
POWER SUPPLIES			JOURGE		1	OFFAMSIOSM	I OMNESS
Specified Performan	ice MC	SPECIFICATION OF THE PARTIES OF THE	Must be ≤ V _{ANA}	+4.75	(S+5) ROAR	+5.25	Vecc
V _{ANA} V _{DIG2}		-40°C to +35°		+4.75 +4.75	+5	+5.25 +5.25	V
I _{DIG1} I _{ANA} I _{DIG2} Power Dissipation			$V_{ANA} = V_{DIG} = 5V$, $f_S = 100$ kHz		4.2 21 10.8 175		mA mA mA mW

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

ELECTRICAL

At T_A = -40°C to +85°C, f_S = 100kHz, V_{DIC} = V_{ANA} = +5V, using internal reference and fixed resistors shown in Figure 3, unless otherwise specified.

	18 09027			ISO809P			
PARAMETER	XAM	44.	CONDITIONS	CHIMPTIONS	TYP	MAX	SUNITS
TEMPERATURE R	ANGE						RESOLUTION
Specified Performa	nce			-40		+85	°C
Storage		Part of the second		-65		+150	TURKE COLAMA
Thermal Resistance	, dia (side)	/ to 5V, etc. (See 1	/0.V01±		They also		Vollage Ranges
Plastic DIP		fieldaTise5			75		°C/W
SOLATION PARA	METERS	00					Bonstidage
Rated Voltage, Con	tinuous		50Hz	1500		GED	Vrms
Partial Discharge, 1	00% Test(8)	7.6	1s, 5pC	2500			Vrms
Creepage Distance		"P" Package		Acquire and Convert -	16		elov0mm/uma0
Internal Isolation Di					0.10		eis A Imm uard
Barrier Impedance					>1013 15		ΩllpF
Leakage Current(9)			240Vrms, 60Hz			1.2	μArms
and Julion.			240Vrms, 50Hz			1.0	μArms

NOTES: (1) LSB means Least Significant Bit. One LSB for the ±10V input range is 4.88mV. (2) Typical rms noise at worst case transition. (3) As measured with fixed resistors shown in Figure 7b. Adjustable to zero with external potentiometer. (4) Full scale error is the worst case of -Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. (5) All specifications in dB are referred to a full-scale input. (6) Usable Bandwidth defined as Full-Scale input frequency at which Signal-to-(Noise + Distortion) degrades to 60dB. (7) Recovers to specified performance after 2 x FS input overvoltage. (8) All devices receive a 1s test. Failure criterion is ≥ 5 pulses of ≥ 5pC. (9) Tested at 2500Vrms, 50Hz limit 10µA.

ABSOLUTE MAXIMUM RATINGS

The second secon	
Analog Inputs: R1 _{IN}	±25V
R2 _{IN}	±25V
	±25V
66 CAP	V _{ANA} +0.3V to AGND2 -0.3V
86 REF	Indefinite Short to AGND,
포터카	Momentary Short to V _{ANA}
Ground Voltage Differences	: DGND and AGND±0.3V
	DGND, AGND, and GND _{ISO} 1563Vrms
V _{ANA}	7V
V _{DIG} to V _{ANA}	+0.3V
V _{DIG}	7V
	-0.3V to V _{DIG} +0.3V
Maximum Junction Tempera	ature+165°C
Internal Power Dissipation	
Lead Temperature (solderin	g, 10s)+300°C

PACKAGE INFORMATION

OLATION AMPLIEURS

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾		
ISO809P	28-Pin Plastic DIP	215-1		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

A

ELECTROSTATIC DISCHARGE SENSITIVITY

ELECTRICAL

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

ORDERING INFORMATION

MODEL ISO809P	MAXIMUM INTEGRAL LINEARITY ERROR (LSB)	TYPICAL SIGNAL-TO- (NOISE + DISTORTION) RATIO (dB)		SPECIFICATION TEMPERATURE RANGE (°C)	PACKAGE
	±4	44.75	83	-40°C to +85°C	28-Pin Plastic DIP
Am Am	4.2				DIGI
	8.01				

to disciple will-out notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third peny. BURR-EROWN does not

Or, Call Customer Service at 1-800-548-6132 (USA Only)

PIN#	NAME	DIGITAL I/O	DESCRIPTION	
1	RC	1	Read/Convert. With BUSY high, a falling edge on R/C initiates a new conversion	on.
2	BUSY	0	At the start of conversion BUSY goes LOW and stays LOW until conversion is	complete.
3	+5V _{DIG2}		Isolated Digital Supply Volts.	
10 11	+5V _{DIG1} +5V _{ANA}		Digital Supply Volts. Analog Supply Volts.	
12	R1 _{IN}		Analog Input.	
13	R2 _N		Analog Input.	IGURE 1. Basic Conversion Tim
14	R3 _N		Analog Input. Reference Buffer Output. 2.2µF tantalum capacitor to ground.	
16	REF		Reference Input/Output. 2.2µF tantalum capacitor to ground.	- J
17	AGND		Analog Ground.	7 5 ₁₈
18	SB/BTC	1	Selects Straight Binary or Binary Two's Complement for output data format.	- Land
19	DGND1		Digital Ground.	
26	DGND2	1	Isolated Ground.	DATACLK
27	DATACLK	0	Data Clock Output.	
28	SDATA	0	Serial Output Synchronized to DATACLK.	

TABLE I. Pin Assignments.

PIN CONFIGURATION

R/C 1	28 SDATA			INPUT RANGE	CONNECT R1 _{IN} VIA 200Ω TO	CONNECT R2 _{IN} VIA 100Ω TO	CONNEC			DANCE
BUSY 2 +5V _{DIG2} 3	27 DATACLK 26 DGND2			±10V ±5V ±3.33 0V to 10V	V _{IN} AGND V _{IN} AGND	AGND V _{IN}	CA CA CA AGN	P P	13 10	9kΩ 3.3kΩ 3.7kΩ
	ERATION		21.3	0V to 5V 0V to 4V	AGND AGND V _{IN}	V _{IN} AGND AGND	V _{II}	V	10	3.3kΩ 0.0kΩ 0.7kΩ
n comercion 'n-1' clocked out k pulses output on DATACLIC.				TABLE	I. Input Rar	ige Connecti	ons. S	ee F	igure	3 for
n conversion "n-1" clacked out k pulls s output on DATACLK.				Outpu	complete	information.				
restor will be initiated without				X	1<0 0		art	nverslo	ect Co	Incom
	e for acquisition.	-	-	SYMBOL	DESC	RIPTION	MIN	TYP	MAX	UNITS
+5V _{DIG1} 10	T yian 8 in Binary 19 DGND1 19 DGND1 In Binary 2 in Straight			t ₁ × t ₂		Pulse Width Y Delay	40	120	4500	ns ns
+5V _{ANA} 11 R1 _{IN} 12 R2 _{IN} 13	18 SB/BTC 17 AGND 16 REF			t ₃	BUSY	Y LOW Delay after Conversion	nit ler	220	8	μs ns
U OU J	TIGIO			t ₅	Apertu	ire Delay	1	40		ns
	MR ISMOO 15 CAP			t ₆	Conver	sion Time	11	5.7	8	μѕ
(SB/BTC HCH)	woudrese)			t ₇		tion Time	11		2	μѕ
NE BINARY CODE COL	SINARY CODE C			t ₆ + t ₇	MALOG (BPLET)	hput Time		9	10	μs
ea minimini ea	N HART PERSON NO.	VP of V0 Vgra VBs gagges (1	V3 of V Vu8'	t ₈ t ₉ t ₁₀	DATAC Data Valid	DATACLK Delay LK Period to DATACLK	20	450 440 75	ale Ra	ns ns
20 1200 0000 0000 0000 600	0000 0000 0000 0000	VS - 2V V1.899939V	V8.5	t ₁₁ va	Data V	alid after LOW Delay	100	125	ell ell B Balov	ns

TABLE II. Conversion and Data Timing. $T_A = -40$ °C to +85°C.

FIGURE 1. Basic Conversion Timing.

FIGURE 2. Serial Data Timing.

SPECIFIC FUNCTION	R/C	BUSY	DATACLK	SB/BTC	OPERATION
Initiate Conversion and Output Data	572 7	liqui .l	Output	×	Initiates Conversion "n". Data from conversion "n-1" clocked ou on DATA synchronized to 12 clock pulses output on DATACLK.
mation,	1 > 0	EE001	Output	X	Initiates Conversion "n". Data from conversion "n-1" clocked out on DATA synchronized to 12 clock pulses output on DATACLK.
Incorrect Conversions	0	0 > 1	×	X	R/C must be HIGH or a new conversion will be initiated without time for acquisition.
Selecting Output Format	X Parent	×	X	0	Serial Data is output in Binary Two's Complement format.
	OYX8	X	X	1	Serial Data is output in Straight Binary format.

TABLE III. Control Truth Table.

40 118		VEISLE STURBOA DIGITAL							UTPUT	
6.7 8 µs							BINARY TWO'S COMP (SB/BTC LOW		STRAIGHT BINA (SB/BTC HIGH	
DESCRIPTION		amiT Juque	NALOG INP	UT V + A			BINARY CODE	HEX	BINARY CODE	HEX
Full-Scale Range	±10	±5	±3.33V	0V to 10V	0V to 5V	0V to 4V				
Least Significant Bit (LSB)	305μV	153μV	102μV	153μV	76μV	61µV		7.11		
+Full Scale (FS - 1LSB)	9.999695V	4.999847V	3.333231V	9.999847V	4.999924V	3.999939V	0111 1111 1111 1111	7FFF	1111 1111 1111 1111	FFFF
Midscale	OV	0V	OV	5V	2.5V	2V	0000 0000 0000 0000	0000	1000 0000 0000 0000	8000
One LSB Below Midscale	-305μV	-153μV	-102μV	4.999847V	2.499924V	1.999939V	1111 1111 1111 1111	FFFF	0111 1111 1111 1111	7FFF
-Full Scale	-10V	-5V	-3.333333V	OV	OV	OV	1000 0000 0000 0000	8000	0000 0000 0000 0000	0000

TABLE IV. Output Codes and Ideal Input Voltages.

(Adjust offset first at 0V, then adjust gain)

Input Range

At VO to fault to Without Trim

FIGURE 3b. Offset/Gain Circuits for Bipolar Input Ranges.

XR100

RECHICATIONS

Isolated, Self-Powered, Temperature Sensor Conditioning 4-20mA TWO-WIRE TRANSMITTER

FEATURES

- 1500Vrms ISOLATION
- TRUE TWO-WIRE OPERATION :
 Power and Signal on One Wire Pair
- RESISTANCE OR VOLTAGE INPUT
- DUAL MATCHED CURRENT SOURCES: 400µA at 7V
- WIDE SUPPLY RANGE 12V TO 36V
- PT100 RTD LINEARIZATION

DESCRIPTION

The IXR100 is an isolated 2-wire transmitter featuring loop powered operation and resistive temperature sensor conditioning (excitation and linearization). It contains a DC/DC convertor, high accuracy instrumentation amplifier with single resistor programmable span and linearization, and dual matched excitation current sources. This combination is ideally suited to a range of transducers such as thermocouples, RTDs, thermistors and strain gages. The small size makes it ideal for use in head mounted isolated temperature transmitters as well as rack and rail mounted equipment.

Pt100 NONLINEARITY CORRECTION USING IXR100

International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL:
 All Types of Isolated Transmitters;
 Pt100 RTD
 Thermocouple Inputs
 Current Shunt (mV) Inputs
- ISOLATED DUAL CURRENT SOURCES
- AUTOMATED MANUFACTURING
- POWER PLANT/ENERGY MONITORING
- GROUND LOOP ELIMINATION

The isolated two-wire transmitter allows signal transmission and device power to be supplied on a single wire-pair by modulating the power supply current with the isolated signal source. The transmitter is resistant to voltage drops from long runs and noise from motors, relays, actuators, switches, transformers and industrial equipment.

It can be used by OEMs producing isolated transmitter modules or by data acquisition system manufacturers. The IXR100 is also useful for general purpose isolated current transmission where the elimination of ground loops is important.

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Tucson, AZ 85706
 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

UUIITA			IXR100						
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS				
OUTPUT AND LOAD CHARACTERISTICS Output Current Output Current Limit Loop Supply Voltage	Linear Operating Region	4 11.6	32	20	mA mA VDC				
Load Resistance	haraus 9.11	$R_{LOAD} = (V_S - 11.6)/I_O$	singl		Ω				
ZERO Initial Error ⁽¹⁾ vs Temperature	V _{IN} = 0, R _S = ∞	ire Sen	nperatu	300 200	μΑ ppm FSR/°0				
SPAN Output Current Equation Span Equation Untrimmed Error	R_S in Ω , V_{IN} in V		$m\dot{A}$ + [0.016 + (40/R _S) S = [0.016 + (40/R _S)]		A/V				
vs Temperature Nonlinearity : EMF Input : Pt100 Input	Excluding TCR of R _S (2) (3)	72.5	50 0.01 0.1	100 0.025	ppm/°C %FSR %FSR				
INPUT Voltage Range Common-Mode Range Offset Voltage vs Temperature vs Supply	$R_S = \infty$ V_{IN+} , V_{IN-} with Respect to COM	2 10°	3	4 2.5 5	V V mV μV/°C dB				
CURRENT SOURCES Magnitude Accuracy vs Temperature Match vs Temperature	ISOLATED DUAL AUTOMATED MA POWER PLANTS	URCES:	0.4 50 25	1 100 0.5 50	mA % ppm/°C % ppm/°C				
DYNAMIC RESPONSE Settling Time	To 0.1% of Span		500	OTTOIGE	ms				
TEMPERATURE RANGE Operating Storage		-20 -40	d 2-wire transm	+70 +85	3X1 °C °C				
ISOLATION State of the second	V _{ISO}	1000 JP 1500 KP	veitation and i	onditioning (e	Vrms Vrms				

NOTES: (1) Can be adjusted to zero. (2) End point span non-linearity. (3) End point, corrected span non-linearity with a Pt100 RTD input operated from -200°C to +850°C.

ABSOLUTE MAXIMUM RATINGS

Power Supply (+V _S -I _{OUT})	40V
Input Voltage (Com to V _{IN})	9V
Storage Temperature Range	40°C to +85°C
Lead Temperature (soldering 10s)	+300°C
Output Current Limit Duration	Continuous
Power Dissipation	500mW

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
IXR100	2-Wire Transmitter	901

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that this integrated circuit be handled and stored using appropriate ESD protection methods.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DISCUSSION PROPERTY OF PERFORMANCE PROPERTY OF THE PERFORM

The IXR100 makes the design of isolated two wire 4 to 20mA transmitters easy and provides exceptional performance at very low cost. It combines several unique features not previously available in a single package. These include galvanic isolation, sensor excitation and linearization, excellent DC performance, and low zero and span drift. The IXR100 functions with voltages as low as 11.6V at the device. This allows operation with power supplies at or below 15V. When used with the RCV420 the complete 4 to 20mA current loop requires only 13.1V. If series diode protection is desired the minimum loop supply voltage is still only about 13.7V. This is especially useful in systems where the available supplies are only 15V.

BASIC CONNECTION

The basic connection of the IXR100 is shown in Figure 1. A differential voltage applied between pins 2 and 3 will cause a current of 4 to 20mA to circulate in the two wire output loop pins 28 and 18. Pins 1 and 4 supply the current excitation for resistive sensors. Pins 6 and 7 are provided for the connection of an external span resistor which increases the gain. Pins 8 and 9 provide linearity correction. Pins 10, 11 and 12 adjust the output offset current.

FUNCTIONAL DESCRIPTION

The IXR100 comprises of several functions:

- Sensor excitation
- Internal voltage regulator
 The state of the stat
- Input amplifier and V/I converter
- Linearization circuit
- DC/DC Converter

SENSOR EXCITATION liquid and to stuggi and task as

Sensor Excitation consists of two matched 0.4mA current sources. One is used to excite the resistive sensor and the other is used to excite the zero balance resistor R_Z . When the linearity correction feature is used these current sources are modulated together so that three wire operation of a Pt100 RTD is possible.

INTERNAL VOLTAGE REGULATOR

The circuitry within the IXR100 regulates the supply voltage to the DC/DC Converter, Input Amplifier, Linearization Amplifier and V/I Converter and removes the normal variations in $\rm V_S$ from these stages as the output spans from 4 to 20mA.

For Immediate Assistance, Contact Your Local Salesperson

FIGURE 1. Basic Connection for RTD.

INPUT AMPLIFIER AND V/I CONVERTER

The Input Amplifier is an instrumentation amplifier whose gain is set by R_{S} , it drives the V/I Converter to produce a 4 to 20mA output current. The Input Amplifier has a common mode voltage range of 2 to 4V with respect to COM (pin 5). Normally this requirement is satisfied by returning the currents from the RTD and zero balance resistor R_{Z} to COM through a common mode resistor R_{CM} . For most applications a single value of $3.9 \mathrm{k}\Omega$ may be used. When used with RTDs having large values of resistance R_{CM} must be chosen so that the inputs of the amplifier remain within its rated common mode range, R_{CM} should be bypassed with a $0.01 \mu \mathrm{F}$ or larger capacitor.

other is used to excite the zero balance resistor R2. When the

linearity correction feature is TIUDRIO NOITESINEAULT

The Linearity Correction Circuit is unique in several ways. A single external resistor will provide up to 50 times improvement in the basic RTD linearity. Terminal based non-linearity can be reduced to less than $\pm 0.1\%$ for all RTD temperature spans. The Linearization circuit also contains an instrumentation amplifier internally connected to the $\pm V_{IN}$ pins. The gain of this stage is set by R_{LIN} . The output controls the excitation current sources to produce an increasing excitation current as V_{IN} increases. An important feature is that the Linearity Correction is made directly to the RTD output independent of the gain of the Input Amplifier. This provides minimal interaction between R_S and R_Z . This feature can be useful at the systems level by reducing data acquisition system processor overhead previously used to linearize sensor response in software/firmware.

DC/DC CONVERTER

The DC/DC Converter transfers power from the 2 wire current loop across the barrier to the circuitry used on the input side of the isolation barrier.

PIN DESCRIPTIONS

REF1, REF2 and low zero and spergrammer DC performance, and low zero and spergrammer.

These pins provide a matched pair of current sources for sensor excitation. These current sources provide excellent thermal tracking, and when the linearization feature is used, are modulated by an equal amount. Their nominal current value is 0.4mA and their compliance voltage is:

$$V_{IN}$$
+ < V_{IREF} < (Com + 7V)

$$I_{\text{REF}} = 400 \mu A + \frac{V_{\text{REF}}}{2R_{\text{LIN}}}$$

onnection of the DXR100 is shown in Figure 1. A

These are the inputs to both the input amplifier and the linearization amplifier. Because the IXR100 has been optimized for RTD applications, the two sets of inputs are internally connected.

R_{S1}, R_{S2}

The resistor connected across these terminals determines the gain of the IXR100. For normal 4-20mA outputs:

$$R_{\rm s} = \frac{40}{0.016/(\Delta V_{\rm IN}) - 0.016} \,\Omega \tag{1}$$

RL1, RL2 neter in the description of the state of the sta

The resistor connected between these terminals determines the gain of the linearization circuit and the amount of correction applied to the RTD. Its value may be determined in several ways. Two of which are shown as follows.

- 1. Empirically by interactively adjusting R_{LIN} , R_S and R_Z to achieve best fit 4 to 20mA output. R_Z is used to set 4mA at minimum input, R_S is adjusted for 12mA with a half span input, and R_{LIN} is adjusted to give 20mA with a full span input. This may require a few iterations but is probably the most practical method for field calibration. R_{LIN} will range between 500 Ω and 1500 Ω for 100 Ω sensors (Pt100, D100, SAMA). Initially it may seem a little strange adjusting R_S for 12mA and R_{LIN} for 20mA. However, convergence is achieved much more quickly as the linearized curve passes through zero and has less effect at the mid span and the linearity trim resistor tends to adjust the transfer function more at the full span than the mid point.
- Using Table I and linear interpolation for values of span not given in the table. This will yield very accurate results for the Pt100 sensor and acceptable results for D100 and SAMA sensors.

ZERO ADJUST (OPTIONAL) OS1, OS2, OS3

The IXR100 has provision for adjusting the output offset current as shown in Figure 2. In many applications the already low offset will not need to be known at all. This trim effects the V/I converter stage and does not introduce V_{OS} drift errors that occur when the trim is performed at the input stage. If possible use R_Z to trim sensor output error to zero and use the offset control to trim the output to 4mA when $V_{IN} = 0$ V. The offset adjustment can be made with a

FIGURE 2. Basic Connection for Zero Adjust.

					SPAN	AT (°C)	1					Ama.0	
	T _{MIN} (°C)	50	100	200	300	400	500	600	700	800	900	1000		A
APPARTS	-200	573	653	839	995	1083	1131	1152	1159	1159	1154	1140		
TROS	-150	745	855	1059	1158	1197	1206	1205	1196	1175	1151	1127		
	-100	983	1105	1228	1251	1249	1231	1207	1182	1156	1129			
8V O	-50	1233	1284	1286	1262	1236	1208	1180	1152	1125	1097			
	0	1302	1287	1273	1229	1201	1173	1145	1117	1089	1			
X	50	1263	1249	1220	1192	1164	1136	1108	1081	1054	10			
0-1-1	100	1225	1211	1183	1155	1127	1100	1073	1046					
	150	1188	1174	1146	1119	1091	1064	1038	1011					
2,8	200	1151	1137	1110	1083	1056	1030	1003	S					
7 -	250	1114	1101	1074	1048	1021	995	969	1.1					
	300	1079	1066	1039	1013	987	962		•					
	350	1044	1031	1005	979	954	928	+ 13				1		
	400	1009	996	971	946	921	AAT							
	450	975	963	938	913	888								
	500	942	930	905	881	4								
	550	909	897	873	849	NOT	ES:(1)	Linearin	terpola	tion betw	veen two	horizor	ntal	
	600	877	865	841						ptable v				
9.0	650	845	834	810						will also				
	700	814	803	E 17"						IA 100Ω	nomin	al senso	ors.	
I SHE III	750 800	784 754	773			(3)	ouble F	R _{LIN} valu	e for P	Г200.				

TABLE I. R_{LIN} Values for Pt100 Sensor.

circuit shown in Figure 2a provides more range while the circuit in Figure 2b provides better resolution. Note, it is not recommended to use this adjusting procedure for zero elevation or suppression. See the signal suppression and elevation section for the proper techniques.

COM

This is the return for the two excitation currents I_{REF1} and I_{REF2} and is the reference point for the inputs.

Vs, Iout

These are the connections for the current loop V_S being the most positive connection. For correct operation these pins should have 11.6 to 36V between them.

HIGH VOLTAGE TESTING

Burr-Brown Corporation has adopted a partial discharge test criterion that conforms to the German VDE0884 Optocoupler Standards. This method requires the measurement of minute current pulses (< 5pC) while applying 2400rms, 60Hz high-voltage stress across every devices isolation barrier. No partial discharge may be initiated to pass this test. This criterion confirms transient overvoltage (1.6 x V_{RATED}) protection without damage. Life-test results verify the absence of failure under continuous rated voltage and maximum temperature.

This new test method represents the "state-of-the-art" for nondestructive high voltage reliability testing. It is based on dielectric material during barrier degradation. In the case of void non-uniformities, electric field stress begins to ionize the void region before bridging the entire high voltage barrier

The transient conduction of charge during and after the ionization can be detected externally as a burst of 0.01µs-0.1µs current pulses that repeat on each AC voltage cycle. The minimum AC barrier voltage that initiates partial discharge is defined as the "inception voltage". Decreasing the barrier voltage to a lower level is required before partial discharge ceases and is defined as the "extinction voltage".

We have designed and characterized the package to yield an inception voltage in excess of 2400Vrms so that transient overvoltages below this level will not cause any damage. The extinction voltage is above 1500Vrms so that even overvoltage-induced partial discharge will cease once the barrier voltage is reduced to the rated level. Older high voltage test methods relied on applying a large enough overvoltage (above rating) to catastrophically break down marginal parts, but not so high as to damage good ones. Our new partial discharge testing gives us more confidence in barrier reliability than breakdown/no breakdown criteria.

APPLYING THE IXR100

The IXR100 has been designed primarily to correct nonlinearities inherent in RTD sensors. It may also be used in other applications where its excellent performance makes it superior to other devices available. Examples are shown in the Applications Section.

FIGURE 3. Transient and RFI Protection Circuit.

RFI AND TRANSIENT SUPPRESSION

Radio frequency interference and transients are a common occurrence in 4-20mA loops, especially when long wiring lengths are involved. RFI usually appears as a temporary change in output and results from rectification of the radio signal by one or more stages in the amplifier. For sensors which are closely coupled to the IXR100 and are contained in a common metal housing, the usual entry for RFI is via the 4-20mA loop wiring. Coaxial bypass capacitors may be used with great effectiveness to bring these leads into the transducer housing while suppressing the RFI. Values of 100 to 1000pF are generally recommended. For sensors remote from the IXR100, coaxial capacitors can also be used to filter the excitation and signal leads. Additional low-pass filtering at the IXR100 input helps suppress RFI. The easiest way to do this is with the optional differential RC filter shown in Figure 4. Typical values for R₁ and R₂ are 100-1000Ω, and for C_1 are 100-1000pF.

Transient suppression for negative voltages can be provided by the reverse-polarity protection diodes discussed later. However, positive transients cannot be handled by these diodes and do frequently occur in field-mounted loops. A shunt zener diode is of some help, but most zener diodes suffer from limited current-handling capacity and slow turnon. Both of these characteristics can lead to device failure before the zener conducts. One type of zener, called the TRANZORB and available from General Semiconductor Industries, is especially effective in protecting against highenergy transients such as those induced by lightning or motor contactors. Choose a TRANZORB with a voltage rating close to, but exceeding, the maximum V_S which the IXR100 will see. In combination, the coaxial bypass capacitors and TRANZORB provide a very high level of protection against transients and RFI.

Figure 4. Optional Bandwidth-Limiting Circuitry.

INPUT BANDWIDTH LIMITING

Filtering at the input to the IXR100 is recommended where possible and can be done as shown in Figure 4. C_1 connected to pins 3 and 4 will reduce the bandwidth with a f_{-3dB} frequency given by:

$$f_{-3dB} = 0.159/(R_1 + R_2 + RTD + R_Z) (C_1 + 3pF)$$

This method has the disadvantage of having f_{-3dB} vary with R_1 , R_2 , RTD, and R_Z may require large values of R_1 , and R_2 . R_1 and R_2 should be matched to prevent zero errors due to input bias current.

SIGNAL SUPPRESSION AND ELEVATION

In some applications it is desired to have suppressed zero range (span elevation) or elevated zero range (span suppression). This is easily accomplished with the IXR100 by using the current sources to create the suppression/elevation voltage. The basic concept is shown in Figure 5. In this example the sensor voltage is derived from RT (a thermistor, RTD or other variable resistance element) excited by one of the 0.4mA current sources. The other current source is used to create the elevated zero range voltage. Figures 6a, 6b, 6c and 6d show some of the possible circuit variations. These circuits have the desirable feature of noninteractive span and suppression/elevation adjustments.

NOTE: Use of the optional offset null (pins 10, 11, and 12) for elevation or suppression is not recommended. This trim technique is used only to trim the IXR100's output offset current.

MAJOR POINTS TO CONSIDER WHEN USING THE IXR100

- 1. The leads to $R_{\rm S}$ and $R_{\rm LIN}$ should be kept as short as possible to reduce noise pick-up and parasitic resistance. If the linearity correction feature is not desired, the $R_{\rm LIN}$ pins are left open.
- 2. $+V_S$ should be bypassed with a $0.01\mu F$ capacitor as close to the unit as possible (pins 18 to 28).
- 3. Always keep the input voltages within their range of linear operation, +2V to +4V ($\pm V_{IN}$ measured with respect to pin 5).

Figure 5. Elevation and Suppression Graph.

(c) Elevated Zero Range
FIGURE 6. Elevation and Suppression Circuits.

- 4. The maximum input signal level (ΔV_{IN}) is 1V with R_S open and is less as R_S decreases in value.
- 5. Always return the current references to COM (pin 5) through an appropriate value of R_{CM} to keep V_{CM} within its operating range. Also, operate the current sources within their rated compliance voltage:

$$V_{IN} + \leq V_{IREF} \leq (Com + 7V)$$

- Always choose R_L, (including line resistance) so that the voltage between pins 18 and 28 (+V_S) remains within the 11.6V to 36V range as the output changes between 4mA and 20mA.
- 7. It is recommended that a reverse polarity protection diode be used. This will prevent damage to the IXR100 caused by a transient or long-term reverse bias between pins 18 and 28. This diode can be connected in either of the two positions shown in Figure 7, but each connection has its trade-off. The series-connected diode will add to the minimum voltage at which the IXR100 will operate but offers loop and device protection against both reverse connections and transients. The reverse-biased diode in parallel with the IXR100 preserves 11.6V minimum operation and offers device protection, but could allow excessive current flow in the receiving instrument if the field leads are accidently reversed. This is particularly

(b) Suppressed Zero Range

(d) Suppressed Zero Range

important if the receiving equipment has particularly low resistance or uses higher voltage supplies. In general, the series diode is recommended unless 12V operation is necessary. In either case a 1N4148 diode is suitable.

8. Use a layout which minimizes parasitic inductance and capacitance, especially in high gain.

RECOMMENDED HANDLING PROCEDURES FOR INTEGRATED CIRCUITS

All semiconductor devices are vulnerable, in varying degrees, to damage from the discharge of electrostatic energy. Such damage can cause performance degradation or failure, either immediate or latent. As a general practice, we recommend the following handling procedures to reduce the risk of electrostatic damage.

- Remove static-generating materials, such as untreated plastic, from all areas where microcircuits are handled.
- 2. Ground all operators, equipment, and work stations.
- Transport and ship microcircuits, or products incorporating microcircuits, in static-free, shielded containers.
- Connect together all leads of each device by means of a conductive material, when the device is not connected into a circuit.

Control relative humidity to as high a value as practical (50% recommended).

RTD APPLICATIONS

The IXR100 has been designed with RTD applications specifically in mind. The following information provides additional information for those applications.

TWO- AND THREE-WIRE CONNECTIONS

The IXR100 performs well with two-wire and three-wire RTD connections commonly encountered in industrial monitoring and control.

In two-wire applications, the voltage drop between the RTD and the IXR100 can be nulled by proper adjustment of R_Z , but care must be taken that this voltage drop does not vary with ambient conditions. Such variation will appear as an apparent variation in the RTD resistance and therefore as a change in measured temperature. Also, the linearity correction will interpret this change as a variation and attempt to linearize both the actual RTD signal and the resistance changes in the signal lines. For these reasons, the line resistance between the RTD and the IXR100 should be minimized by keeping line lengths short and/or using large-gauge wires. This limitation does not apply for three-wire connections.

In three-wire applications, shown in Figure 7, the RTD and $R_{\rm Z}$ lead arrangements set up a pseudo-Kelvin connection to the RTD. This occurs because the currents through the three wires are set up in opposing directions and cancel IR drops in the RTD leads. The current sources are both modulated

equally, so that use of the linearity correction does not affect the cancellation. This action is true so long as the three wires are of the same length and gauge. Because most RTD leads are twisted and bundled, this requirement is usually met with no difficulty. Care must be taken that intermediate connections such as screw terminals do not violate this assumption by introducing unequal line resistances.

RTD ZERO ELEVATION AND SUPPRESSION

The IXR100 may be operated in zero-elevated and zero-suppressed ranges by simply offsetting R_Z . It may also be used in increase-decrease applications by interchanging the physical locations of the RTD and R_Z as shown in Figure 8. Use the same values of R_Z , R_{LIN} and R_S . Again, because the current sources are matched and are modulated equally, this connection has no effect on IXR100 performance, especially in three-wire applications.

OPEN CIRCUIT DETECTION

In some applications of the IXR100, the RTD will be located remotely. In these cases, it is possible for open circuits to develop. The IXR100 responds in the following manner to breaks in each lead. The following connections refer to the RTD connections shown in Figure 7.

TERMINAL OPEN	I _{OUT} ⁽¹⁾
- LICATIONS 1	32mA
2	3.6mA
Incarization capability of the IXR100	32mA

NOTE: (1) Approximate value, The sharp of the man in the state of the

FIGURE 7. Basic 3-Wire RTD Connection for Increase-Increase Action.

FIGURE 8. Basic 3-Wire RTD Connection for Increase-Decrease Action.

OTHER APPLICATIONS

In instances where the linearization capability of the IXR100 is not required, it can still provide improved performance in several applications. Its small size, wide compliance voltage, low zero and span drift, high PSRR, high CMRR and excellent linearity makes the IXR100 ideal for a variety of other isolated two-wire transmitter applications. It can be used by OEMs producing different types of isolated transducer transmitter modules and by data acquisition systems manufacturers who gather transducer data. Current mode transmission greatly reduces noise interference. The two-wire nature of the device allows economical signal conditioning at the transducer. Thus, the IXR100 is, in general, very suitable for a wide variety of applications. Some examples, including an isolated non-linearized Pt100 case, follow.

EXAMPLE 1

Pt100 RTD without linearization shown in Figure 9.

Given a process with temperature limits of +25°C and +150°C, configure the IXR100 to measure the temperature with a Pt100 RTD which produces 109.73 Ω at 25°C and 157.31 Ω at 150°C (obtained from standard RTD tables). Transmit 4mA for +25°C and 20mA for +150°C. The change in resistance of the RTD is 47.6 Ω . When excited with a 0.4mA current source ΔV_{IN} is 0.4mA x 47.6 Ω = 19mV.

$$R_{s} = \frac{40}{0.016/(\Delta V_{IN}) - 0.016} \Omega \tag{1}$$

From Equation (1), $R_S = 48.5\Omega$. Span adjustment (calibration) is accomplished by trimming R_S .

In order to make the lower range limit of 25°C correspond to the output lower range limit at 4mA, the input circuitry shown in Figure 9 is used. V_{IN} must be 0V at 25°C and R_Z is chosen to be equal to the RTD resistance at 25°C, or 109.73 Ω . Computing R_{CM} and checking CMV:

At +25°C,
$$V_{IN+} = 43.9 \text{mV}$$

At +150°C,
$$V_{IN+} = 62.9 \text{mV}$$

Since both $V_{\rm IN+}$ and $V_{\rm Z}$ are small relative to the desired 2V common-mode voltage, they may be ignored in computing $R_{\rm CM}$ as long as the CMV is met.

$$R_{CM} = 3V/0.8mA = 3.75k\Omega$$

$$V_{IN+} \min = 3V + 0.0439V$$

$$V_{IN+}$$
 max = 3V + 0.0629V

$$V_{IN-} = 3V + 0.0439V$$

EXAMPLE 2

Thermocouple shown in Figure 10.

Given a process with temperature (T_1) limits of 0°C and +1000°C, configure the IXR100 to measure the temperature with a Type J thermocouple that produces a 58mV change for 1000°C change. Use a semiconductor diode for a cold junction compensation to make the measurement relative to 0°C. This is accomplished by supplying a compensating voltage, equal to that normally produced by the thermocouple with its "cold junction" (T_2) at ambient. At +25°C this is 1.28mV (from thermocouple tables with reference junction at 0°C). Typically, at T_2 = +25°C, V_D = 0.6V and

Or, Call Customer Service at 1-800-548-6132 (USA Only)

 $R_4 = 43.2\Omega$

 $\Delta V_D/\Delta T = -2mV/^{\circ}C$. R_5 and R_6 form a voltage divider for the diode voltage V_D . The divider values are selected so that the gradient $\Delta V_D/\Delta T$ equals the gradient of the thermocouple at the reference temperature. At +25°C this is approximately -52 μ V/°C (obtained from standard thermocouple table); therefore,

$$\begin{split} \Delta V_{TC}/\Delta T &= (\Delta V_{D}/\Delta T)(R_{6}/(R_{5}+R_{6})) \\ -52\mu V/^{\circ}C &= (-2000\mu V/^{\circ}C)(R_{6}/(R_{5}+R_{6})) \end{split} \tag{2}$$

 R_5 is chosen as 3.74k Ω to be much larger than the resistance of the diode. Solving for R_6 yields 100Ω .

Transmit 4mA for T_1 = 0°C and 20mA for T_1 = +1000°C. Note: $V_{IN} = V_{IN+} - V_{IN-}$ indicates that T_1 is relative to T_2 . The input full scale span is 58mV. R_S is found from Equation (1) and equals 153.9 Ω .

 R_4 is chosen to make the output 4mA at T_{TC} = 0°C (V_{TC} = 1.28mV) and T_D = 25°C (V_D = 0.6V).

 V_{TC} will be -1.28mV when T_{TC} = 0°C and the reference junction is at +25°C. V_4 must be computed for T_D = +25°C to make V_{IN} = 0V.

$$\begin{split} V_{D(25^{\circ}C)} &= 600 \text{mV} \\ V_{IN(25^{\circ}C)} &= 600 \text{mV} \ (100/3740) = 16.0 \text{mV} \\ V_{IN} &= V_{IN+} - V_{IN-} = V_{TC} + V_4 - V_{IN-} \\ \text{With } V_{IN} &= 0 \text{ and } V_{TC} = -1.28 \text{mV}, \\ V_4 &= V_{IN+} - V_{TC} \\ V_4 &= 16.0 \text{mV} - \ (-1.28 \text{mV}) \\ 0.4 \text{mA} \ (R_4) &= 17.28 \text{mV} \end{split}$$

THERMOCOUPLE BURN-OUT INDICATION

In process control applications it is desirable to detect when a thermocouple has burned out. This is typically done by forcing the two-wire transmitter current to the upper or lower limit when the thermocouple impedance goes very high. The circuits of Figures 10, 11 and 12 inherently have down scale indication. When the impedance of the thermocouple gets very large (open) the bias current flowing into the + input (large impedance) will cause $I_{\rm O}$ to go to its lower range limit value (about 3.6mA). If up scale indication is desired, the circuit of Figure 13 should be used. When the $T_{\rm C}$ opens, the output will go to its upper range limit value (about 32mA or higher).

FIGURE 9. Pt100 RTD Without Linearization.

FIGURE 10. Thermocouple Input Circuit with Two Temperature Regions and Diode (D) Cold Junction Compensation.

FIGURE 11. Thermocouple Input with Diode Cold Junction Compensation and Down Scale Burn-out Indication.

FIGURE 12. Thermocouple Input with RTD Cold Junction Compensation and Down Scale Burn-out Indication.

FIGURE 13. Thermocouple Input with RTD Cold Junction Compensation and Up Scale Burn-out Indication.

FIGURE 14. Isolated 4-20mA Instrument Loop.

FIGURE 15. 4-20mA to 0-20mA Output Converter.

FIGURE 13. Thermocouple input with RTD Cold Iunction Compensation and Up Scale Burn-out Indication.

PWS725A PWS726A

ABRIDGED DATA SHEET

For Complete Data Sheet
Call Fax Line 1-800-548-6133
Request Document Number 10736

Isolated, Unregulated DC/DC CONVERTERS

FEATURES

- ISOLATED ±7 TO ±18VDC OUTPUT FROM SINGLE 7 TO 18VDC SUPPLY
- ±15mA OUTPUT AT RATED VOLTAGE ACCURACY
- HIGH ISOLATION VOLTAGE PWS725A, 1500Vrms
 PWS726A, 3500Vrms
- LOW LEAKAGE CAPACITANCE: 9pF
- LOW LEAKAGE CURRENT: 2μA max, at 240VAC 50/60Hz
- HIGH RELIABILITY DESIGN
- AVAILABLE WITH OUTPUT SYNCHRONIZATION SIGNAL FOR USE WITH ISO120 AND ISO121

DESCRIPTION

The PWS725A and PWS726A convert a single 7 to 18VDC input to bipolar voltages of the same value as the input voltage. The converters are capable of providing ±15mA at rated voltage accuracy and up to ±40mA without damage. (See Output Current Rating.)

The PWS725A and PWS726A converters provide reliable, engineered solutions where isolated power is required in critical applications. The high isolation voltage rating is achieved through use of a specially-designed transformer and physical spacing. An additional high dielectric-strength, low leakage transformer coating increases the isolation rating of the PWS726A.

Reliability and performance are designed in. The bifilar wound, wirebonded transformer simultaneously provides lower output ripple than competing designs, and a higher performance/cost ratio. The soft-start oscillator/driver design assures full operation of the

- PROTECTED AGAINST OUTPUT FAULTS
- COMPACT
- LOW COST
- EASY TO APPLY—FEW EXTERNAL PARTS

APPLICATIONS

- MEDICAL EQUIPMENT
- INDUSTRIAL PROCESS EQUIPMENT
- TEST EQUIPMENT
- DATA ACQUISITION

oscillator before either MOSFET driver turns on, protects the switches, and eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition.

Special design features make these converters especially easy to apply. The compact size allows dense circuit layout while maintaining critical isolation requirements. The Input Sync connection allows frequency synchronization of multiple converters. The Output Sync is available to synchronize ISO120 and ISO121 isolation amplifiers. The Enable input allows control over output power in instances where shutdown is desired to conserve power, such as in battery-powered equipment, or where sequencing of power turn-on/turn-off is desired.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

T_A = +25°C, C_L = 1μF ceramic, V_{IN} = 15VDC, operating frequency = 800kHz, V_{OUT} = ±15VDC, C_{IN} = 1μF ceramic, I_{OUT} = ±15mA, unless otherwise specified.

at an expension of a second	All as a series of the series		PWS725A		200 2			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OGEN DATA SHEET	THE				1 24			
Rated Voltage		_	15					VDC
Input Voltage Range		7	77	18	100			VDC
Input Current 9-545-008-1 and 3 x	I _O = ±15mA No External Filtering		77 150					mA mAp-p
nput Current Ripple	L-C Input Filter, $L_{IN} = 100\mu\text{H}$, $C_{IN} = 1\mu\text{F}^{(1)}$		5					mAp-p
Burnatani (1901) Jir - Bandari	C Only, $C_{IN} = 100\mu I$, $O_{IN} = 7\mu I$	See Carlody.	60	C LENGTH INC.	48.2	0.203.72030000	Sq. Marketon	mAp-p
SOLATION	hotelunovall	han	holo	call.				
Test Voltages	Input to Output, 10 seconds	4000	11011	G/A	8000			VDC
	Input to Output, 60 seconds, min	1500	4000 400		3500			Vrms
Rated Voltage	Input to Output, Continuous, AC 60Hz		MAN	1500			3500	Vrms
	Input to Output, Continuous DC			2121			4950	VDC
Isolation Impedance	Input to Output	NAMES OF THE PARTY	1012 9	GETELLORES T	ESPACITATION	CELEVISION DE L'ALIEN	TO STATE OF	Ω∥pF
Leakage Current	Input to Output, 240Vrms, 60Hz		1.2	2.0		*	*	μА
OUTPUT					0	127631	STEEL ST	mg.
Rated Output Voltage		14.25	15	15.75	. 6		FIRM	VDC
Output Current	Balanced Loads	10.0000	15	40	The Photos	-		mA
DUTPUT PAULIS	Single-Ended	FROM	FUMIU	80	HI OI	7± 031	ISOLA	mA
Load Regulation	Balanced Loads, ±10mA < I _{OUT} < ±40mA		60	0.4	DOVE	ETTO	SINGL	%/mA
Ripple Voltage (400kHz)	No External Capacitor	30		GEVAS	TA TE	97:30	+15ma	mVp-p
	$L_O = 10\mu H$, $C_O = 1\mu F$ (Figure 1) $L_O = 0\mu H$, C_O Filter Only	27.526	10.5	See Pe	erformance		WILLIAM T	IIIAb-h
Output Switching Noise	$L_0 = 10\mu H, C_0 = 1\mu F$		1	0001	1	1	ACCUI	mVp-p
Output Capacitive Load	L ₀ = 100μH, C Filter		1	10	OV MO	SOLAT	HON	⊕μF
	C Filter Only			1			or colores	цF
Voltage Balance, V+, V-			0.04			15A, 15		%
Sensitivity to ∆V _{IN}	APPLICATIONS		1.15		amiyot	35 A. 35	TSM4	V/V
Output Voltage Temp. Coefficient		137	0 10	ACTTA	DAD B	EAKAC	I WOLL	mV/°C
Output Sync Signal	Square Wave, 50% Duty Cycle	15	30	2011000	1790 20		of the same	Vp-p
TEMPERATURE AND A STATE OF	@ INDUSTRIAL PROCESS	1.718	as whiz	i rish	MUJ SI	JAMAS	2 WOJ	10
Specification		-25		+85	21,109	AC 50	00 S 16	°C
Operating	TEST EQUIPMENT	-25		+85	TTLE	BALIBS	HOH	°C
Storage	MOTTON BOOK AWARE IN	-25		+125	1 4 1000	to the second	4 2 4 W C C C	°C

Specification same as PWS725A

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
PWS725A	32-Pin Ceramic DIP	210
PWS726A	32-Pin Ceramic DIP	A 2 CT 2 W 210 AT

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

designed transformer and physical spacing. An addi-

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PWS740

ABRIDGED DATA SHEET
For Complete Data Sheet
Call Fax Line 1-800-548-6133
Request Document Number 10758

Distributed Multi-Channel Isolated DC-TO-DC CONVERTER

FEATURES

- ISOLATED ±7 TO ±20VDC OUTPUTS
- BARRIER 100% TESTED AT 1500VAC, 60Hz
- LOWEST POSSIBLE COST PER CHANNEL
- MINIMUM PC BOARD SPACE
- 80% EFFICIENCY (8 CHANNELS, RATED LOADS)
- FLEXIBLE USE WITH PWS745
 COMPONENTS

DESCRIPTION

The PWS740 is a multichannel, isolated DC-to-DC converter with a 1500VAC continuous isolation rating. The outputs track the input voltage to the converter over the range of 7 to 20VDC. The converter's modular design, comprising three components, minimizes the cost of isolated multichannel power for the user.

APPLICATIONS

- INDUSTRIAL MEASUREMENT AND CONTROL
- DATA ACQUISITION SYSTEMS
- TEST EQUIPMENT

The PWS740-1 is a high-frequency (400kHz nominal) oscillator/driver, handling up to eight channels. This part is a hybrid containing an oscillator and two power FETs. It is supplied in a TO-3 case to provide the power dissipation necessary at full load. Transformer impedance limits the maximum input current to about 700mA at 15V input, well within the unit's thermal limits. A TTL-compatible ENABLE pin provides output shut-down if desired. A SYNC pin allows synchronization of several PWS740-1s.

The PWS740-2 is a trifilar-wound isolation transformer using a ferrite core and is encapsulated in a plastic package, allowing a higher isolation voltage rating. The PWS740-3 is a high-speed rectifier bridge in a plastic 8-pin mini-DIP package. One PWS740-2 and one PWS740-3 are used per isolated channel.

Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

Tel: (520) 746-1111 · Twx: 910-952-1111

m IC Data Book—Linear Products

 $V_{IN} = 15V$, output load on each of 8 channels = ± 15 mA, $T_A = +25$ °C unless otherwise specified.

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
PWS740 SYSTEM	BA CONTRACTOR OF THE STATE OF T		S. Structures	squire services	770.744
ISOLATION					
Rated Voltage	Continuous, AC, 50/60Hz	150		1500	VACrms
	Continuous, DO			2121	VDC
Test Voltage	10s, minimum	4000	1010110	100000000000000000000000000000000000000	VACrms
Impedance	Measured from Pin 2 to Pin 5 of the PWS740-2	a noting	1012 3	4.5	Ω∥pF
Leakage Current	240VACrms, 60Hz Per Channel	WWI.	0.5	1.5	μА
INPUT	CONTRACTOR OF OF	100			
Rated Voltage	MAIMAVNUU JU-UI-	1000	15		VDC
Voltage Range	ere travel transmission or a section and a section of	7	THE CHARLES AND A SECOND	20	VDC
Current	±30mA Output Load on 8 Channels, V _{IN} = 15V		520		mA
	Rated Output Load on 8 Channels, V _{IN} = 15V	The state of the s	300	CHITTA	mA
Current Ripple	Full Output Load on 8 Channels, V _{IN} = 15V with π Filter on Input		1000	DAM DAM	mA
OUTPUT GMA THEM	TTPUTS	o ogve	HOTEL	DEL ATER	21 60
Rated Voltage	±15mA Output Load on 8 Channels	14	15	16	VDC
Voltage at Min Load	±1mA/Channel ±400 OAV008	TAGET	30	REMERA	VDC
Voltage Range	±15mA Output Load on Each Channel +15mA Output Load on Each Channel	±7	100000	±20	VDC
V _{OUT} vs Temp		1 10000	±0.05	S ECTIVIO	V/°C
Load Regulation	±3mA < Output Load < ±30mA	DARE	0.25	DELINATING	V/mA
Tracking Regulation	V _{OUT} /V _{IN}				V/V
Ripple Voltage Noise Voltage	See Typical Performance Curves See Theory of Operation	B CHAN	HENCY	THE EFFE	2 8
Current +lout + -lout	Each Channel			60	mA
TEMPERATURE	a na yamatanoo birda a a nybrid contanting an	R PWSZ	UM BEIT	BURRELE	7 00
Specification	HETs, it is supplied in a TO	-25	STM	+85	°C
Operation	k vic zenan mitanizah rawon	-25	10 2 7 6	+85	°C
PWS740-1 OSCILLATOR/DRIVER	incedance limits the maximum		a none	a and all also	70.00
Frequency and a series of the	T	350	400	470	kHz
Cumple	The second secon		15	20	V
Enable	Drivers On Oct-or-Oct battel	7 2	billian is a	Vs	an I v
YNC pin allows syn-	A barried in awoul Drivers Off - Is notated and	C continu	a ISOOVA	0.8	VICORV
PWS740-2 ISOLATION TRANSFOR	dage to the con- chromization of several Pama	ov tagni s	s track the	The output	.gar
Isolation Test Voltage	Tablified a at 3-040 < 10s, minimum	4000	1 to agree	SEL TEVO	VACrms
a of hyteluanasma at h	60s, minimum	1500	comprisi	ilar design	VACrms
Rated Isolation Voltage	Continuous	multichan	beceloui le	1500	VACrms
Isolation Impedance	ter bower rot me busine backraft, amonths a	THE PERSON NAMED IN	1012 3	Total only o	Ω∥pF
Isolation Leakage	240VAC		0.5	1.5	μА
Primary Inductance	400kHz, Pin 1 to Pin 5		300	THE BOOK	μН
Winding Ratio	Primary/Secondary		68/76		
PWS740-3 DIODE BRIDGE					
Reverse Recovery	I _F = I _R = 50mA		40		ns
Reverse Breakdown	I _R = 100μA	55		- 1	V
Reverse Current	Hugh V _R = 40V			1.5	μА
Forward Voltage	I _F = 100mA			1.6	V

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾			
PWS740-1 Driver	TO-3	030			
PWS740-2 Transformer	6-Pin Plastic DIP	216			
PWS740-3 Rectifier	8-Pin Plastic DIP	006			

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC
DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

nents, they allow compact, optimal, and low-cost solutions to many power supply problems.

The PWS745-1 DiP oscillatoridiriver can be used to drive up to eight channels of independently isolated power. The switching idOSFETs are built into the driver to allow simple low-cost assembly of the multichannel converter. The PWS745-1 also is capable of operating at 5VDC and can be easily synchronized with TTL level signals. While offering the user an alternative to the TO-3 package of the PWS740, the

PWSZAB-I V_M DRIVE GATE
TTLoor
GND Soft Start
DRIVE GATE

PWS745

ABRIDGED DATA SHEET

For Complete Data Sheet Call Fax Line 1-800-548-6133 Request Document Number 11095

Multi-Channel Isolated DC/DC CONVERTER COMPONENTS

FEATURES PRAMOZIO

- COMPACT SIZE
- LOW COST PER CHANNEL
- DRIVES UP TO 8 CHANNELS considered beautiful beauti
- 750/1500VAC ISOLATION
- FLEXIBLE USE WITH PWS740/PWS750
 COMPONENTS
- 0.4 IN. MAXIMUM MOUNTING HEIGHT

APPLICATIONS

- INDUSTRIAL CONTROL
- GROUND-LOOP ELIMINATION
- PC-BASED DATA ACQUISITION
- POINT-OF-USE POWER CONVERSION
- 5V TO ±15V FROM DIGITAL SUPPLIES

DESCRIPTION

The PWS745 is a set of components useful in the construction of single or multi-channel isolated DC/DC converters. By themselves, or in combination with the PWS740 and PWS750 families of components, they allow compact, optimal, and low-cost solutions to many power supply problems.

The PWS745-1 DIP oscillator/driver can be used to drive up to eight channels of independently isolated power. The switching MOSFETs are built into the driver to allow simple low-cost assembly of the multichannel converter. The PWS745-1 also is capable of operating at 5VDC and can be easily synchronized with TTL level signals. While offering the user an alternative to the TO-3 package of the PWS740, the

PWS745-1 also allows the user to select varying levels of power, isolation voltage, mounting technology and system configuration by choosing among the several component families. For example, the PWS745-1 can directly drive the PWS740, PWS745, or PWS750 transformers. It also can drive the FETs of a PWS750 distributed power system. The operating frequency is compatible with the ISO120 family of isolation amplifiers and is capable of multi-channel synchronized operation to eliminate troublesome beat frequencies.

The PWS745-2 is a 15V to \pm 15V output version, while the PWS745-4 is the 5V to \pm 15V output version. The PWS740-3 high-speed bridge provides a convenient rectifier for the selected transformer output.

PWS745-2 (15V Operation)
PWS745-4 (5V Operation)

To GND

To AC

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS MORTARUE AND MA

ELECTRICAL

At $V_{\rm IN}$ = 15VDC, Output Load = \pm 15mA (PWS745-2) and $T_{\rm A}$ = 25°C unless otherwise noted. Or $V_{\rm IN}$ = 5VDC, Output Load = \pm 12mA (PWS745-4) and $T_{\rm A}$ = 25°C unless otherwise noted.

PARAMETER				8	CONDITIONS	aucunitra	MIN	TYP	MAX	UNITS
PWS745-1 OSCILLA	ATOR/	DRIVER	+	9		Ambod	4044-1	SkottuO	All Transformer	iax Load, Sum o
Frequency: Interna	OSC		TELLE !		TTL _{IN} = 0V		550	600	650	kHz
Externa	al OSC	GATE		4			500	600	1000	kHz
Supply: 15V Operat	tion			5			10	15	18	V
5V Operation	on			0			4.5	5	5.5	M BO V YO
Current				a	No Load		and the second	10		mA
					Max Load	DVBWA	PACKAGE DB	650		mA
Current Ripple				2	$C_{BYPASS} = 1 \mu F$	- (1	NUMBER	2.5	PACKAGE	mAp-p
TTL _{IN} : I _{IH}							129		10	nA
I _{IL}				8 1			088	-1	R. Pin Plant	μA
V _{IH}							2		8-Pin Plantic	V. TOWN
V _{IL}						-	Contract to the contract of the		0.8	V
Frequency						elish to time	lees eabeig ele	dimension tal	time pri 2 no beli	MHz
TTL _{OUT} : I _{OL}							3		World-115 to 0	mA as
Frequency	0				4 10			600		kHz
T, T Drive Current									50	mA
T, T Drive Voltage:	High			8			3		7	V
	Low						21	IAIC	0.7	V
PWS745-2			CIVIE			VIIIV	TIRK	12 20	RAHOS	ein a
Voltage, Rated Cont	inuous	AC 60Hz	1.50	4		-	750			Vrms
100% Test(1)					60Hz, 1s		1200		d mus limpris	Vrms
Barrier Impedance							The second second	1012 8		Ω∥pF
Leakage Current at 6	60Hz				V _{ISO} = 240Vrms, 60	Hz bel	its be hand	monto mont	150	μArms
PWS745-4						gmibusi	ave proper	ede or ormi	de l'Amountes	proprate pre
Voltage, Rated Cont	inuous	AC 60Hz		T			750	THE STATE OF THE S	1	Vrms
100% Test ⁽¹⁾		30112			60Hz, 1s		1200		an range from	
Barrier Impedance						direction l	on integrate		e device fails	Ω∥ρϜ
Leakage Current at 6	60Hz				V _{ISO} = 240Vrms, 60		ar anomal	anomali a	150	μArms
TEMPERATURE RA	NGE					ati tasm	of for noive	apse the de	nges could c	rametric char
Specification							-40		85	°C
Operation				3.1			-40		85	°C
							-40		85	°C

NOTES: (1) Tested at 1.6 rated, fail on 5pc partial discharge leakage current on five successive pulses.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Junction Temperature	150°C
Storage Temperature	85°C
Lead Temperature (soldering, 10s)	300°C
Transformer Output Short to Common	Continuous
Max Load, Sum of All Transformer Outputs	500mA
Stresses above these ratings may permanently dam	age the device.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
PWS745-1	16-Pin Plastic DIP	129
PWS745-2	8-Pin Plastic	250
PWS745-4	8-Pin Plastic	250

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

XBM

CHYPAS

1 NC NC 8
2 AC To 7
3 GND VD 6
4 AC To 5

ABRIDGED DATA SHEET For Complete Data Sheet

Call Fax Line 1-800-548-6133 **Request Document Number 10838**

Isolated, Unregulated DC/DC CONVERTER COMPONENTS

FEATURES

- 100% TESTED FOR HIGH-VOLTAGE **BREAKDOWN**
- COMPACT-SURFACE MOUNT
- MULTICHANNEL OPERATION
- 5V OR 15V INPUT OPTIONS
- FLEXIBLE USE WITH PWS740/PWS745 COMPONENTS

DESCRIPTION

The PWS750 consists of three building blocks for building a low cost DC/DC converter. With them you can optimize DC/DC converter PC board layout or build a multichannel isolated DC/DC converter. All parts are surface mount, requiring minimal space to build the converter. The modular design minimizes the cost of isolated power.

The PWS750-1U is a high-frequency (800kHz nominal) driver that can drive N-channel MOSFETs up to the size of a 1.3A 2N7010. The recommended MOSFET for individual transformer drivers is the 2N7008. The PWS750-1U is supplied in a 16-pin double-wide SO package.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL **EQUIPMENT**
- GROUND-LOOP ELIMINATION
- PC-BASED DATA ACQUISITION
- VENDING MACHINES

The PWS750-2U and PWS750-4U are split-bobbin wound isolation transformers using a ferrite core. They are encapsulated in plastic packages, allowing a high isolation voltage rating.

The PWS750-3U is a high-speed monolithic diode bridge in a plastic 8-pin SO package.

One PWS750-1U can be used to drive up to four channels (15V nominal operation). One PWS750-2U and PWS750-3U and two 2N7002 (surface mount) or 2N7008 (TO-92) MOSFETs made by Siliconix are used per isolated channel. When a PWS750-4U is used as the transformer (5V input), then two TN0604s made by Supertex must be used, due to the higher currents of the primary (lower RDS on) and the lower V_{Gs} threshold. With 5V operation only one channel can be directly driven by the PWS750-1U (a simple FET booster circuit can be used for multichannel operation; see Figure 3).

NOTES: (1) User option. (2) Use TN0604 for 5V to ±15V operation. (3) Multichannel Operation.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd.

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $T_A = 25$ °C; $+V_{IN} = +15V$; and $I_{OUT} = \pm 15$ mA balanced loads unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PWS750-1U OSCILLATOR	SECTION AND SECTIO				
Frequency: Internal OSC External OSC Supply: 15V Operation	TTL _{IN} = 0V	725 1 10	800	875 2.5 18	kHz MHz V
5V Operation	AND STREET THE THE STREET STREET STREET	4.5	5	5.5	v
T, T Drive Current T, T Drive Voltage, High Low	ted, Unregulated	8 33		50 7 0.7	mApk V V
	VERTER COMPO	NOC	10 -1	od	nA μA V
VIL TTL _{OUT} , I _{OL}	APPLICATION			0.8	V mA
PWS750-2U +V $_{ m IN}$ TO $\pm { m V}_{ m OUT}$ ISOLATION TRAI	SFORMER				
ISOLATION Voltage Rated Continuous AC 60Hz 100% Test (1) Barrier Impedance Leakage Current at 60Hz Winding Ratio	60Hz, 1s, <5pC PD V _{ISO} = 240Vrms Primary/Secondary	750 1200	10 ¹² 8 1 48/48	MESTEST MEDOWN ACT-SUF CH 1.5 NE	Vrms Vrms Ω pF μArms
PWS750-3U DIODE BRIDGE	HOME CHANGE OF	- Ciri	GH-IO-T	2 1715 1-51	10 10 0
Reverse Recovery Reverse Breakdown Reverse Current Forward Voltage	V _R = 40V	55	40	1.5 1.6	ns V μA V
PWS750-4U +5V _{IN} to ±15V _{OUT} ISOLATION TR	ANSFORMER ALOSI MONTH			-	
ISOLATION Voltage Rated Continuous AC 60Hz 100% Test (1) Barrier Impedance Leakage Current at 60Hz Winding Ratio	\/ = 240\/rme	750 1200	10 ¹² 8 1 24/70	750 consistow cost D low cost D ize DC/DC afficement sarface mo	Vrms Vrms Ω pF μArms
TEMPERATURE RANGE	distincts the	design min	ne modular	Т лэгэхио	build the c
Specification Operating Storage	Derated performance	0 -40 -40	r. high-freq	+70 +85 +85	0° PWS

NOTES: (1) Tested at 1.6 x rated, fail on 5pC partial discharge leakage current on five successive pulses at 60HZ.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATIONS

The 100MS and the module it contains are mounted and secured to a printed circuit board (PCB) by soldering the two narrow PCB solder tabs to the appropriate common. The PCB solder tab closest to the input side of the module should be soldered to the input common. The other tab should be soldered to the output common. Figure 2 illustrates the assembly of the

FIGURE 2. Assembly Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	18V
Junction Temperature	150°C
Storage Temperature	40°C to +85°C
Lead temperature (soldering, SOIC, 3s)	+260°C
Max Load, Sum of Both Outputs (PWS750-2U, 4U)	60mA

ORDERING INFORMATION

WE WINDOWS AND DESCRIPTIONS OF GROUPS AND A SECTION OF	PWS750-XU
Basic Model Number —	
Components -	
1U : High-Frequency Driver	
2U, 4U : Isolation Transformer	
3U : High-Speed Monolithic Diode Bridge	

PACKAGE INFORMATION 179190830

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
PWS750-1U	16-Pin SOIC	258
PWS750-2U	8-Pin Plastic	226
PWS750-3U	8-Pin SO	182
PWS750-4U	8-Pin Plastic	f varians bl 226

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

contine or exclude fiMI. Its envity was designed for a St.45mm x 28.45mm x 7.24mm, 20-pin hybrid parkages. The shields in the cover and base plate are in two apparate halves to maintain the electrical isolation between the adjacent rows of pins of the module it between the adjacent rows of pins of the module it halves and epoxy flow hoies, the 100MS provides a partial, but adequate low reluctance path for electromagnetic flux. The 100MS is well suited for use with isolation modules such as the Burr-Brown 3656, 722,

ASSEMBLY INSTRUCTIONS

Assemble the base plate to the module by pushing the gins of the module through the beveled holes in the base plate until the base plate and bottom of the module are in contact with each other. Place the cover

EMI SHIELD

DESCRIPTION

The 100MS is an epoxy encapsulated electromagnetic/ electrostatic interference (EMI) shield for use with circuits where sensitivity to EMI is critical. It was designed to attenuate EMI by converting electromagnetic field energy into heat that is absorbed by the shield and by shunting electrostatic fields to common. The 100MS may be used in applications to either confine or exclude EMI. Its cavity was designed for 28.45mm x 28.45mm x 7.24mm, 20-pin hybrid packages. The shields in the cover and base plate are in two separate halves to maintain the electrical isolation between the adjacent rows of pins of the module it encloses. Because of the spacing between the shield halves and epoxy flow holes, the 100MS provides a partial, but adequate low reluctance path for electromagnetic flux. The 100MS is well suited for use with isolation modules such as the Burr-Brown 3656, 722. and 724.

ASSEMBLY INSTRUCTIONS

Assemble the base plate to the module by pushing the pins of the module through the beveled holes in the base plate until the base plate and bottom of the module are in contact with each other. Place the cover

Epoxy Encapsulant

Half Cover Shield

Half Cover Shield

Base Plate Shield

Connection to Output Common

V_{ISO} = Isolation Voltage

FIGURE 1. Cross-Sectional Side View of 100MS.

over the module so the tabs are aligned and fit into the slots in the base plate. Bend the four wide shield soldering tabs protruding from the cover to make contact with the bare metal on the base plate. Solder these four tabs to insure the integrity of their connection to the base plate.

The 100MS and the module it contains are mounted and secured to a printed circuit board (PCB) by soldering the two narrow PCB solder tabs to the appropriate common. The PCB solder tab closest to the input side of the module should be soldered to the input common. The other tab should be soldered to the output common. Figure 2 illustrates the assembly of the 100MS.

FIGURE 2. Assembly Diagram.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

Specifications apply between solder tabs.

		41 38			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Isolation Voltage					
Rated Continuous, DC		3500			VDC
Rated Continuous, AC		2000			Vrms
Test	10 Seconds	8000			VDC
Capacitance			5		pF
Resistance	A TO A THE HERBORE IN CHEST OF BURNEY OF BURNEY OF		1010	THE COMMITTERS OF	Ω
Leakage Current	120V, 60Hz		0.23		μА

NOTE: Temperature changes (\(\Delta T / \Delta t \) greater than 1°C per minute below 0°C and long term storage above 100°C are not recommended.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
100MS	EMI Shield	124

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

APPLICATIONS INFORMATION

O DATA ACQUISITION SYSTEMS

MULTIPLE DEVICE ORIENTATION

A typical application for the 100MS is shown in Figure 3. Using multiple devices within 30mm of each other can cause them to interact by forming beat frequency interference outputs. The 100MS can reduce this interference by as much as a factor of 200:1 depending on the distance between the devices and their relative orientation.

Minimum EMI results when the gaps of both shields are paralleled as in Figure 3a.

FIGURE 3a. Optimum PCB Layout. Orientation for minimum EMI.

FIGURE 3b. Isolated Data Acquisition Input Circuitry. Orientation for Minimum EMI.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

722

DUAL ISOLATED DC/DC CONVERTER

FEATURES

- DUAL ISOLATED ±5V TO ±16V OUTPUTS
- HIGH BREAKDOWN VOLTAGE: 8000V Test
- LOW LEAKAGE CURRENT: <1µA at 240V/60Hz</p>
- LOW COST PER ISOLATED CHANNEL
- SMALL SIZE: 27.9mm x 27.9mm x 7.6mm (1.1" x 1.1" x 0.3")

DESCRIPTION

The 722 converts a single 5VDC to 16VDC input into a pair of bipolar output voltages of the same value as the input voltage. The converter is capable of providing a total output current of 64mA at rated voltage accuracy and up to 200mA without damage.

The two output channels are isolated from the input and from each other. They may be connected independently, in series for higher output voltage or in parallel for higher output current, as a single channel isolated DC/DC converter.

APPLICATIONS

- MEDICAL EQUIPMENT
- INDUSTRIAL PROCESS CONTROL
- TEST EQUIPMENT
- DATA ACQUISITION SYSTEMS
- NUCLEAR INSTRUMENTATION

Integrated circuit construction of the 722 reduces size and cost. High isolation breakdown voltages and low leakage currents are assured by special design and construction which includes use of a high dielectric strength, low leakage coating used on the internal assembly.

A self-contained 900kHz oscillator drives switching circuitry, which is designed to eliminate the common problem of input current spiking due to transformer saturation or crossover switching.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROWN

ICAL PERFORMANCE CURVES

SPECIFICATIONS

ELECTRICAL

 $T_A = +25$ °C, $V_{IN} = 15$ VDC, $C = 0.47 \mu F$, R_1 selected per Typical Performance Curve.

			722		Side and the	722BG		722MG			
PARAMETER TABLE	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT		125		persona					-		
Rated Input Voltage		0	15		IRRUO"	USTUC	MUMIX	A.M.		1468	VDC
Input Voltage Range(1)	Case	5		16	PITUO S	TEMIS A	NA NO	3 .		*	VDC
Input Current	Total Output Current = 12mA	100十 营	50			pi Amar	THE LO				mA
	Total Output Current = 64mA	510	105	120	31	Antico	1 * An	<16		*	mA
	Total Output Current = 64mA	3			6	120525	57	G.F.	>13		
75 8	at T _A = +85°C	C1 0	120	_000				188	22		mA
	Total Output Current = 160mA	1 3	_		3	225	275	20	05+2	10000	mA
Input Ripple ⁽²⁾	Total Output Current = 12mA	6 50	3			00000	0	155	14	/oltage	mA, pk
5	Total Output Current = 64mA Total Output Current = 160mA	56	6		-	12		117	NLB	(M)	mA, pk
3	Total Output Current = ToomA	- 3		1		12		00	-		mA, pk
ISOLATION		25 3						0	8>		
Test Voltages	Input-to-Output, 5 seconds, min	1		8000		vas	*				Vpk
	Input-to-Output, 1 minute, min	2		1-70	-	NG'A	1- Y	0 1	ne *Y	2500	Vrms
D-1-1/009 081	Channel-to-Channel, 5 seconds, min			5000							Vpk
Hated Voltages	Input-to-Output, continuous			3500			1				V
Isolation Impedance	Channel-to-Channel, continuous Input-to-Output		10110	2000	- 1						
Leakage Current ⁽³⁾	Input-to-Output, 240V, 60Hz		10 6	1							GΩ pF μA
OUTPUT				N 1111 12			1 3 7 7	100		-	
Rated Output Voltages(4)	I _{LOAD} = 3mA per Output	15.4		16.2							VDC
GULATION	I _{LOAD} = 16mA per Output	14.3		16.2	BEAT	OV TU	MI ev 3	MILIOV	TUSTU		VDC
	I _{LOAD} = 40mA per Output	101-	_	r	13.7	14.2	16.2	-	-		VDC
Output Current	Total of All Outputs	1 -		200		Amst	memus	rugtuO	eteT	*	mA
	Any One Output ⁽⁵⁾	3		100		7			100.00		mA
Load Regulation	Amar +	5	(5)	1	1	1					
Ripple Voltage	I _{LOAD} = 3mA per Output	AL X	15	1		S					mVpk
	I _{LOAD} = 16mA per Output	8	35	100	1	1	Am	S a the	nick toot	O IsloT	mVpk
Total Control	I _{LOAD} = 40mA per Output	100		1		50			. /		mVpk
Tracking Error between Dual Outputs	Balanced Loads	1 8	±100			N			1		mVDC
Sensitivity to Input		2		1		1		1	1/		1 2
Voltage Changes	Amus = 3	141 0	1.13	Amo	rent = 20		O lato	1	176		VV
Output Voltage Temperature	T _A = T _{SPECIFICATION} RANGE	3	±0.02		CS. NV 211321	and today	UK BS201		1		%/°C
Coefficient	A - I SPECIFICATION HANGE	and a	10.02	-				-		1	707 0
TEMPERATURE		01									1
Specification	I _{LOAD} ≤ 16mA per Output	-25		+85	*	12	*	*		*	°C
80 100	I _{LOAD} ≤ 40mA per Output	-25	10.11	+60	*		*	. 0		*	°C
	Output Load Current No.	-55		+125		- IV	egeniov	10000		*	°C
Junction Temperature			1	+125	- TA 1. 12		*			*	°C

^{*}Specifications same as 722.

NOTES: (1) For ambient temperature above +70°C the input voltage is 12.5V (max). The input voltage remains 16V (max) if case temperature is kept below +85°C. (2) External capacitor across "P+" to "V-" pins and 12" of #24 wire to V_{IN}. (3) Reference UL544, paragraph 27.5, Leakage Current. (4) See "Typical Performance Curves." (5) A minimum output current of 3mA at each output is recommended to maintain output voltage accuracy.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
722	20-Pin	102

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE 20-Pin	TEMPERATURE RANGE(1)		
722		-25°C to +85°C		
722BG	20-Pin	-25°C to +85°C		
722MG	20-Pin	-25°C to +85°C		

NOTE: (1) -25° C to $+60^{\circ}$ C for $I_{LOAD} \le 40$ mA per Output.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

		MAXIMUM OUTPUT CURRENT FROM ANY SINGLE OUTPUT		
		<16mA	16mA to 30mA	30mA
Input Voltage (V)	>13	1.3kΩ	820Ω	510Ω
	11 to 13	820Ω	510Ω	200Ω
	9 to	510Ω	200Ω	0Ω
	8 to 9	200Ω	0Ω	
	<8	0Ω	-	-
V+ _{EXT}		6.5V	7.5V	9.0V

NOTES: (1) Using a 104mm x 19mm x 1.6mm aluminum strip mounted to the bottom of the case with heat sink compound. (2) Total output current is the sum of the currents for each individual output.

SOLATION PRODUCTS

INSTALLATION AND OPERATING INSTRUCTIONS

Typical application connections for the 722 are shown in Figures 1 and 3. Primary power (VIN) is applied at the "P+" and "V-" terminals. The common or ground for VIN may be connected to either "P+" or "V-"; the only requirement is that "P+" and "V+" must be positive with respects to "V-".

Power for the internal oscillator and switch drivers is derived from the primary power by a voltage dropping resistor, R₁. The value of R₁ as a function of V_{IN} is shown in the Typical Performance Curves section. Alternately, voltage for the "V+" terminal may be obtained from a separate source. "V+" should be +5V to +7.5V positive with respect to "V-." If a separate source is used, the "V+" input must be applied before the "P+" input to avoid possible damage to the unit. "P+" and "V+" must remain positive with respect to "V-" at all times (including transients). If necessary, diode clamps should be put across these inputs.

The "E" pin enables the converter when connected to "V+" and disables it when connected to "V-."

An external capacitor, "C" (0.47µF ceramic), is used to reduce input ripple. It should be connected as close to the "P+" and "V-" pins as practical. Input leads to these terminals should also be kept as short as possible. Since the 722 is not internally shielded, external shielding may be appropriate in applications where RFI at the 900kHz nominal oscillator frequency is a problem.

Each output is filtered with an internal 0.22µF capacitor. Output ripple voltage can be reduced below the specified value by adding external capacitors up to 10µF between each output and its common.

For Immediate Assistance, Contact Your Local Salesperson

DISCUSSION

OUTPUT CURRENT RATINGS

At rated output voltage accuracy, the 722 is capable of providing 64mA divided among its four outputs⁽¹⁾. A minimum average output current of 3mA is recommended at each output to maintain voltage accuracy.

Output channels⁽²⁾ may be connected in series or parallel for higher output voltage or current.

ISOLATION CONFIGURATIONS

The fact that the two outputs of the 722 are isolated from the input and from each other allows both two-port and three-port isolation connections.

Figure 1 shows Burr-Brown's 3650 optically coupled isolation amplifier connected in three-port configuration. One of the 722 channels provides power to the 3650's input. The other channel supplies power to the 3650's output. The amplifier's input and output are isolated from each other and the system's power supply common. In this configuration, the 722's channel-to-channel isolation specification applies to the amplifier input-to-output voltage.

FIGURE 1. Three-Port Isolation.

Figure 3 illustrates how the 722 may provide isolated input power to the input stage of two 3650's connected in the two-port configuration. Power for the output stage is provided by the system +15V and -15V supplies. Input stages are isolated from each other and from the system supply. In this situation, the 722's input-to-output isolation specification applies to the amplifier's input-to-output voltages, while the channel-to-channel 722 specification applies to the voltage existing between "I/P Com #1" and "I/P Com #2."

NOTES: (1) "Output" denotes a single output terminal (+V or -V) and its associated common. (2) "Channel" denotes a pair of outputs (+V and -V) and their associated common.

SHORT CIRCUIT PROTECTION

The circuit in Figure 2 may be added to the input of the 722 to protect it from damage in situations where too much current is demanded from the outputs—such as a short circuit from an output to its common. The circuit limits input current to approximately 150mA for an input voltage of 15VDC (for ß of 2N2219 of 50).

FIGURE 2. Short Circuit Protection.

FIGURE 3. Two-Port Isolation with Two 3650's.

QUAD ISOLATED DC/DC CONVERTER

FEATURES

- QUAD ISOLATED ±8V OUTPUTS
- HIGH BREAKDOWN VOLTAGE:
 3000V Test
- LOW LEAKAGE CURRENT: <1μA at
 240V/60Hz
- LOW COST PER ISOLATED CHANNEL
- SMALL SIZE: 27.9mm X 27.9mm X 6.6mm (1.1" X 1.1" X 0.26")

APPLICATIONS

- MEDICAL EQUIPMENT
- INDUSTRIAL PROCESS CONTROL
- TEST EQUIPMENT
- **DATA ACQUISITION SYSTEMS**
- **NUCLEAR INSTRUMENTATION**

DESCRIPTION

The 724 converts a single 5VDC to 16VDC input into four pairs of bipolar output voltages of approximately half the output voltage. The converter is capable of providing a total output current of 128mA at rated voltage accuracy and up to 500mA without damage.

The four output channels are isolated from the input and from each other. They may be connected independently, in series for higher output voltage, or in parallel for higher output current as a single channel isolated DC/DC converter.

Integrated circuit construction of the 724 reduces size and cost. High isolation breakdown voltages and low leakage currents are assured by special design and construction which includes use of a high dielectric strength, and low leakage coating used on the internal assembly.

A self-contained 800kHz oscillator drives switching circuitry, which is designed to eliminate the common problem of input current spiking due to transformer saturation or crossover switching.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT Input Voltage Input Current	$\Sigma I_{OUT} = 24mA$	5	15 50	16	VDC mA
Input Ripple (1, 5)	Σ I _{OUT} = 128mA, 25°C Σ I _{OUT} = 128mA, 25°C Σ I _{OUT} = 24mA, C = 0.47 μ F Σ I _{OUT} = 128mA, C = 0.47 μ F		110 120 10	125 25	mA mA mA, pk mA, pk
ISOLATION Test Voltage (2) Rated Voltage (2) Isolation Impedance	Input-to-Output, 5s min Channel-to-Channel, 5s min Input-to-Output, Continuous Channel-to-Channel, Continuous Input-to-Output	אדבס ס	1001	3000 3000 1000	VDC VDC VDC VDC GΩ pF
Leakage Current	Input-to-Output, 240V/60Hz		10 6	1.0	μА
OUTPUT					
Voltage (3)	At 15V Input I _L = 3mA I _L = 16mA	8.0 7.5	8.5 7.9	9.0 8.3	V
Current for Rated Voltage	Total of All Outputs Any One Output ⁽⁴⁾	3	TUSTUO V8±	128	AU MA
Total Safe Nondestructive Current	Total of All Outputs Any One Output		N VOLTAGE	500 200	mA mA
Load Regulation ⁽³⁾ Ripple Voltage ⁽⁵⁾	I _L = 3mA	Je A	(4) 35 FR	LEAKAGE O	mV, pk
Sensitivity to Input Voltage Change	$I_{L} = 16\text{mA}$ $+I_{L} = -I_{L}$	VMNIEL	±30 0.63	200 ₃ H68 COST PER I	mV, pk mV V/V
Output Voltage Change Over Temperature	-25°C to +85°C	mm3.5 X	2	L CIZE: 27.0	%
TEMPERATURE RANGE Operating Storage		-25 -55	("	+85 +125	"r.r) °C °C

NOTES: (1) $0.47\mu\text{F}$ external capacitor across "P+" to "V-" pins and 12" of #24 wire to V_{IN} . (2) See "Isolation Voltage Ratings" on page 5. The input to output and channel to channel continuous AC rating is 700Vrms. (3) See "Typical Performance Curves." (4) A minimum output current of 3mA at each output is recommended to maintain output voltage accuracy. (5) Test bandwidth 10MHz, max.

CONNECTION DIAGRAMS

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
724	20-Pin	102

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SOLATION PRODUCTS

INSTALLATION AND OPERATING INSTRUCTIONS

Typical application connections for the 724 are shown in Figures 1 and 2. Primary power (V_{IN}) is applied at the "P+" and "V-" terminals. The common or ground for V_{IN} may be connected to either "P+" or "V-", the only requirement is that "P+" and "V+" must be positive with respect to "V-".

Power for the internal oscillator and switch drivers is derived from the primary power by a voltage dropping resistor, R_1 . The value of R_1 as a function of V_{IN} is shown in the "Typical Performance Curves" section. Alternately, voltage for the "V+" terminal may be obtained from a separate source. "V+" should be +5VDC to +7.5VDC positive with respect to "V-". If a separate source is used, the V+ input must be applied before the "P+" input to avoid possible damage to the unit. P+ and V+ must remain positive with respect to "V-" at all times (including transients). If necessary, diode clamps should be put across these inputs.

The "E" pin enables the converter when connected to "V+" and disables it when connected to "V-".

An external capacitor, "C" (0.47µF ceramic), is used to reduce input ripple. It should be connected as close to the "P+" and "V-" pins as practical. Input leads to these terminals should also be kept as short as possible. Since the 724 is not internally shielded, external shielding may be appropriate in applications where RFI at the 800kHz nominal oscillator frequency is a problem.

Each output is filtered with an internal $0.047\mu F$ capacitor. Output ripple voltage can be reduced below the specified value by adding external capacitors up to $10\mu F$ between each output and its common.

DISCUSSION

OUTPUT CURRENT RATINGS

At rated output voltage accuracy, the 724 is capable of providing 128mA divided among its eight outputs⁽¹⁾. A minimum average output current of 3mA is recommended at each output to maintain voltage accuracy.

Outputs channels⁽²⁾ may be connected in series or parallel for higher output voltage or current.

ISOLATION CONFIGURATIONS

The fact that the four outputs of the 724 are isolated from the input and from each other allows both two-port and three-port isolation connections.

Figure 1 shows two 3650 optically coupled isolation amplifiers connected in three-port configuration. Two of the 724 channels provide power to the 3650's inputs. The other channels supply power to both 3650's outputs. Each amplifier's input and output are isolated from each other and the system's power supply common. Isolation specification applies to the amplifier input-to-output voltage isolation specification.

FIGURE 1. Three-Port Isolation.

Figure 2 illustrates how the 724 may provide isolated input power to the input stage of four 3650s connected in the two-port configuration. Power for the four output stages is provided by the system +15VDC and -15VDC supplies. Input stages are isolated from each other and from the system supply. In this situation, the 724's isolation specification applies to amplifier's input-to-output voltage and to the voltage existing between any two I/P COM terminals.

ISOLATION VOLTAGE RATINGS

Since a "continuous" test is impractical in a product manufacturing situation (implies infinite test duration), it is generally accepted practice to perform a production test at a higher voltage (i.e., higher than the continuous rating) for some shorter length of time.

The important consideration is then "what is the relationship between actual test conditions and the continuous derated maximum specification?" There are several rules of thumb used throughout the industry to establish this relationship. Burr-Brown has chosen a very conservative one: $V_{TEST} = (2 \times V_{CONTINUOUS\ RATING}) + 1000V$. This relationship is appropriate for conditions where the system transient voltages are not well defined. (3) Where the real voltages are well defined or where the isolation voltage is not continuous the user may choose to use a less conservative derating to establish a specification from the test voltage.

SHORT CIRCUIT PROTECTION

The circuit in Figure 3 may be added to the input of the 724 to protect it from damage in situations where too much current is demanded from the outputs—such as a short circuit from an output to its common. The circuit limits input current to approximately 150mA for an input voltage of 15VDC (for β of 2N2219 of 50).

NOTES: (1) "Output" denotes a single output terminal (+V or -V) and its associated common. (2) "Channel" denotes a pair of outputs (+V and -V) and their associated common. (3) Reference National Electrical Manufacturers Association (NEMA) Standards Parts ICS 1-109 and ICS 1-111.

FIGURE 3. Short Circuit Protection.

FIGURE 2. Two-Port Isolation with Four 3650s.

3650 3652

Optically-Coupled Linear ISOLATION AMPLIFIERS

FEATURES

- BALANCED INPUT
- LARGE COMMON-MODE VOLTAGES: ±2000V Continuous 140dB Rejection
- ULTRA LOW LEAKAGE: 0.35μA max at 240V/60Hz 1.8pF Leakage Capacitance
- EXCELLENT GAIN ACCURACY:
 0.05% Linearity
 0.05%/1000 Hrs Stability
- WIDE BANDWIDTH: 15kHz ±3dB 1.2V/µs Slew Rate

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- DATA ACQUISITION
- INTERFACE ELEMENT
- BIOMEDICAL MEASUREMENTS
- PATIENT MONITORING
- TEST EQUIPMENT: and month months of the state of the
- CURRENT SHUNT MEASUREMENT
- GROUND-LOOP ELIMINATION
- SCR CONTROLS

DESCRIPTION

The 3650 and 3652 are optically coupled integrated circuit isolation amplifiers. Prior to their introduction commercially available isolation amplifiers had been modular or rack mounted devices using transformer coupled modulation demodulation techniques. Compared to these earlier isolation amplifiers, the 3650 and 3652 have the advantage of smaller size,

lower cost, wider bandwidth and integrated circuit reliability. Also, because they use a DC analog modulation technique as opposed to a carrier-type technique, they avoid the problems of electromagnetic interference (both transmitted and received) that most of the modular isolation amplifiers exhibit.

International Airport Industrial Park • Mailing Address: PO Box 11400 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Tucson, AZ 85706
 Telex: 066-6491
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

BURR-BROWN

SPECIFICATIONS (CONT)

SPECIFICATIONS

At +25°C and ±15VDC supply voltages, unless otherwise specified.

0V ±10mV W ±10mV W ±200µVPC 12VV	2000Vp or VDC 5000Vp		OUTPUT STAGE Output Voltage, min Output Gurrent, min	
210mV ± 10mV ± 1	2000Vp or VDC 5000Vp			
VVq	07: Vm		Sulput Offset Valuage	
	0067	et 25°C, naxel vs Tanperatura, max vs Supply vs Time Vo Time		
q-qv	1.8pF 10 ¹² Ω		0.05Ftz to 100Hz	
		Stage Only)	Power Supply (Output S	
$G_{1} = \frac{10^{8}\text{V/Amp}}{10^{8}}$ $G_{V}1 = \frac{10^{8}\text{H}_{G1} + R_{G2} + R_{IN}}{R_{G1} + R_{G2} + R_{IN}} \text{ V}$	v	$G_1 = 1.0057 \times 10^6 V/Amp^{(2)}$ $\frac{10^6}{R_{S1} + R_{S2} + R_{N} + R_{O}} V/V$		
25Ω Not Applicable		25Ω 90Ω ±30Ω		
1.5% 0.5%	0.5% ±0.02% typ ±0.05% max 50ppm/°C	1.5%(4)	0.5% ⁽⁴⁾ ±0.05% typ ±0.1% max 200ppm/°C	
	0.7V/µs min, 1.2V/µs typ 15kHz 400µs	; Instructions. (3) Trimmulo and Hinpuls for 3652 uples from one supply lead at a t	stallation and Operating tops specifications at 41 m) Load current is drawn	
	20040			
±5mV ±1mV ±25μV/°C ±10μV/°C 100μV/V 50μV/1000hrs	±0.5mV ±5μV/°C	±5mV ±50μV/°C 100μ 100μV/1		
	, S	10pA typ, Doubles Ev 1pA	very +10°C	
Effects Included In Output Offset	OT!	10g Doubles Ev 1pA	very +10°C	
" R_{IN} " = 25Ω max $10^{9}\Omega$		10 ¹		
4μVp-p 4μVrms	\$890	8μV 5μVi		
±(V -5)V ±V Not Applicable ⁽⁶⁾	55 55	±(V ±300V for	V r 10ms ⁽⁷⁾	
±V Not Applicable	17 B	±600V for	V r 10ms ⁽⁷⁾	
	nce			
±8V to ±18V ±1.2mA ⁽⁸⁾		±8V to	±18V	
	10.03% typ ±0.1% max 100ppm/°C ±0.05%/1000hrs ±0.05%/1000hrs ±0.05%/1000hrs ±1mV ±25μV/°C 110μV/°C 11	100ppm/°C	10.05% typ ±0.2% max 10.05% typ ±0.1% max 10.05% typ ±0.2% max 300ppm°C ±0.05%/1000hrs 50ppm°C ±0.05%/1000hrs ±0.000hrs ±0.00	

SPECIFICATIONS (CONT)

At +25°C and ±15VDC supply voltages, unless otherwise specified

MODEL SEES MOH, E	3650MG, HG ⁽¹⁾	3650JG	3650KG	3652MG, HG ⁽¹⁾	3652JG
OUTPUT STAGE					SOLATION
Output Voltage, min Output Current, min Output Offset Voltage	Vp or VDC 000Vp			±10V ±5mA	
at 25°C, max ⁽³⁾ vs Temperature, max vs Supply vs Time	±25mV ±900μV/°C	±10mV ±450μV/°C ±500μV/V ±1mV/1000hrs	±10mV ±300μV/°C	±25mV ±900μV/°C ±500μV/\ ±1mV/1000	
Output Noise Voltage 0.05Hz to 100Hz 10Hz to 1kHz	1.8pF 10 ¹² Ω			50μVp-p 65μVrms	
Power Supply (Output Stage Only) Voltage ("+V _{CC} " and "-V _{CC} ") Current Quiescent with ±5mA Output, max		qmA\V°	±8V to ±18V ±2.3mA typ, ±6mA max ±11mA		SAIN Sale Equation for Current Source for Voltage Source
TEMPERATURE(9)		0	892	xem	nout Resistance R
Specification DOE: 000		elcssliggA tol 0°c to +85°C			Buffer Output Imper
Operating Storage	0.5%		-40°C to +100°C -55°C to +125°C		

NOTES: (1) All electrical and mechanical specifications of the 3650MG and 3652MG are identical to the 3650HG and 3652HG, respectively, except that the following specifications apply to the 3650MG and 3652MG: (a) Isolation test voltage duration increased from 10 seconds minimum to 60 seconds minimum; (b) Input offset voltage at 25°C, max: ±10mV; vs temperature max: ±10mV°C; (c) Output offset voltage at 25°C, max: ±50mV; vs temperature max; ±1.8mV°C. (2) If used as 3650, see Installation and Operating Instructions. (3) Trimmable to zero. (4) Gain error terms specified for inputs applied through buffer amplifiers (i.e., ±1 or ±1_R pins). (5) Input stage specifications at +1 and -1 inputs for 3652 unless otherwise noted. (6) Maximum safe input current at either input is 10mA. (7) Continuous rating is 1/3 pulse rating. (8) Load current is drawn from one supply lead at a time: other supply current at quiescent level. For 3652 add 0.2mA/V of positive CMV. (9) dT/dt < 1°C/minute below 0°C, and long-term storage above 100°C is not recommended. Also limit the repeated thermal cycles to be within the 0°C to +85°C temperature range.

PIN CONFIGURATIONS

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
3650	32-Pin DIP	77 amiT av
3652	32-Pin DIP	77

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES AUG BOMAMAGERE JACIGYT

Typical at +25°C and ±15VDC power supplies, unless otherwise noted.

The isolation-mode voltage is the voltage which appears across the isolation barrier, i.e., between the input common and the output common. (See Figure 1.)

Two isolation voltages are given in the electrical specifications: "rated continuous" and "test voltage". Since it is impractical on a production basis to test a "continuous" voltage (infinite test time is implied), it is a generally accepted practice to test at a significantly higher voltage for some reasonable length of time. For the 3650 and 3652, the "test voltage" is equal to 1000V plus two times the "rated continuous" voltage. Thus, for a continuous rating of 2000V, each unit is tested at 5000V.

COMMON-MODE VOLTAGE, VCM

The common-mode voltage is the voltage midway between the two inputs of the amplifier measured with respect to input common. It is the algebraic average of the voltage applied at the amplifiers' input terminals. In the circuit in Figure 1, $(V_+ + V_-)/2 = V_{CM}$. (NOTE: Many applications involve a large system "common-mode voltage." Usually in such cases the term defined here as " V_{CM} " is negligible and the system "common-mode voltage" is applied to the amplifier as " V_{ISO} " in Figure 1.)

ISOLATION-MODE REJECTION

The isolation-mode rejection is defined by the equation in Figure 1. The isolation-mode rejection is not infinite because there is some leakage across the isolation barrier due to the isolation resistance and capacitance.

FIGURE 1. Illustration of Isolation-Mode and Common-Mode Specifications.

NOTE: (1) The only effect of decreased LED output is a slight decrease in full scale swing capability. See Typical Performance Curves.

straightline expressed as a percent of peak-to-peak run scale output (i.e. $\pm 10 \text{mV}$ at $20 \text{Vp-p} \approx 0.05\%$).

THEORY OF OPERATION

Prior to the introduction of the 3650 family optical isolation had not been practical in linear circuits. A single LED and photodiode combination, while useful in a wide range of digital isolation applications, has fundamental limitations—primarily nonlinearity and instability as a function of time and temperature.

The 3650 and 3652 use a unique technique to overcome the limitations of the single LED and photodiode isolator. Figure 2 is an elementary equivalent circuit for the 3650, which can be used to understand the basic operation without considering the cluttering details of offset adjustment and biasing for bipolar operation.

FIGURE 2. Simplified Equivalent Circuit of Linear Isolator.

Two matched photodiodes are used—one in the input (CR₃) and one in the output stage (CR₂)—to greatly reduce nonlinearities and time-temperature instabilities. Amplifier A_1 , LED CR₁, and photodiode CR₃ are used in a negative feedback configuration such that $I_1 = I_{IN}\,R_G$ (where R_G is the user supplied gain setting resistor). Since CR₂ and CR₃ are closely matched, and since they receive equal amounts of light from the LED CR₁ (i.e., $\lambda_1 = \lambda_2$), $I_2 = I_1 = I_{IN}$. Amplifier A_2 is connected as a current-to-voltage converter with $V_{OUT} = I_2\,R_K$ where R_K is an internal $1M\Omega$ scaling resistor. Thus the overall transfer function is:

$$V_{OUT} = V_{IN} \frac{10^6}{R_G}$$
, $(R_G \text{ in } \Omega \text{s})$

This improved isolator circuit overcomes the primary limitations of the single LED and photodiode combination. The transfer function is now virtually independent of any degradation in the LED output as long as the two photodiodes and optics are closely matched⁽¹⁾. Linearity is now a

function of the accuracy of the matching and is further enhanced by the use of negative feedback in the input stage. Advanced laser trimming techniques are used to further compensate for residual matching errors.

A model of the 3650 suitable for simple circuit analysis is shown in Figure 3. The output is a current dependent voltage source, $V_{\rm D}$, whose value depends on the input current. Thus, the 3650 is a transconductance amplifier with a gain of one volt per microamp. When voltage sources are used, the input current is derived by using gain setting resistors in series with the voltage source (see Installation and Operating Instructions for details). $R_{\rm IN}$ is the differential input impedance. The common-mode and isolation impedances are very high and are assumed to be infinite for this model.

FIGURE 3. Simple Model of 3650.

A simplified model of the 3652 is shown in Figure 4. The isolation and output stages are identical to the 3650. Additional input circuitry consisting of FET buffer amplifiers and input protection resistors have been added to give higher differential and common-mode input impedance $(10^{11}\Omega)$,

lower bias currents (50pA) and overvoltage protection. The $+I_R$ and $-I_R$ inputs have a 10ms pulse rating of 6000V differential and 3000V common-mode (see Definitions for a discussion of common-mode and isolation-mode voltages.) The addition of the buffer amplifiers also creates a voltage-in voltage-out transfer function with the gain set by R_{G1} and R_{G2} .

tions: "rated continuous" and "test voltage". Since it is

impractical on a production basis to test a "continuous"

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

The power supply connections for the 3650 and 3652 are shown in Figure 5. When a DC/DC converter is used for isolated power, it is placed in parallel with the isolation barrier of the amplifier. This can lower the isolation impedance and degrade the isolation-mode rejection of the overall circuit. Therefore, a high quality, low leakage DC/DC converter such as the Burr-Brown Model 722 should be used.

OFFSET VOLTAGE ADJUSTMENTS

The offset nulling circuits are identical for the 3650 and 3652 and are shown in Figure 5. The offset adjust circuitry is optional and the units will meet the stated specifications with the BAL terminals unconnected. Provisions are available to null both the input and output stage offsets. If the amplifier is operated at a fixed gain, normally only one adjustment will be used: the output stage ($10k\Omega$ adjustment) for low gains and the input stage ($50k\Omega$ adjustment) for high gains, (>10).

Use the following procedure if it is desired to null both input and output components. (For example, if the gain of the amplifier is to be switched). The input stage offset is first nulled $(50k\Omega$ adjustment) with the appropriate input signal pins connected to input common and the amplifier set at its maximum gain. The gain is then set to its minimum value and the output offset is nulled $(10k\Omega$ adjustment).

FIGURE 4. Simple Model of 3652.

FIGURE 5. Power and Offset Adjust Connections.

INPUT CONFIGURATIONS

Some possible input configurations for the 3650 and 3652 are shown in Figures 6a, 6b, 6c. Differential input sources are used in these examples. For situations with nondifferential inputs, the appropriate source term should be set to zero in the gain equations and replaced with a short in the diagrams.

Figure 6a shows the 3650 connected as a transconductance amplifier with input current sources. Voltage sources are shown in Figure 6b. In this case the voltages are converted to currents by $R_{\rm G1}$ and $R_{\rm G2}.$ As shown by the equations, they perform as gain setting resistors in the voltage transfer function. When a single voltage source is used, it is recommended (but not essential) that the gain setting resistor remain split into two equal halves in order to minimize errors due to bias currents and common-mode rejection (see Typical Performance Curves).

Figure 6c illustrates the connections for the 3652 when the FET buffer amplifiers, A_1 and A_2 , are used. This configuration provides an isolation amplifier with high input impedance (both common-mode and differential, and good common-mode and isolation-mode rejection. It is a true isolated instrumentation amplifier which has many benefits for noise rejection when source impedance imbalances are present.

In the 3652, the voltage gain of the buffer amplifiers is slightly less than unity, but the gain of the output stage has been raised to compensate for this so that the overall transfer function from the $\pm I$ or $\pm I_R$ inputs to the output is correct. It should be noted that A_1 and A_2 are buffer amplifiers. No summing can be done at the $\pm I$ or $\pm I_R$ inputs. Figure 6c shows the +I and -I inputs used. If more input voltage protection is desired, then the +I_R and -I_R inputs should be used. This will increase the input noise due to the contribution from the $1.6 M\Omega$ resistors, but will provide additional differential and common-mode protection (10ms rating of 3kV).

FIGURE 6a. 3650 with Differential Current Sources.

FIGURE 6b. 3650 with Differential Voltage Sources.

ERROR ANALYSIS

A model of the 3650 suitable for DC error analysis of offset voltage, voltage drift versus temperature, bias current, etc., is shown in Figure 7.

 A_1 and A_2 , the input and output stage amplifiers, are considered to be ideal. Separate external generators are used to model the offset voltages and bias currents. $R_{\rm IN}$ is assumed to be small relative to $R_{\rm G1}$ and $R_{\rm G2}$ and is therefore omitted from the gain equation. The feedback configuration, optics and component matching are such that $I_1 = I_2 = I_3 = I_4$. A simple circuit analysis gives the following expression for the

FIGURE 6c. 3652 with Differential Voltage Sources.

FIGURE 7. DC Error Analysis Model for 3650.

total output error voltage due to offset voltages and bias currents.

$$V_{\text{OUT-TOTAL}} = \frac{10^6}{R_{\text{GI}} + R_{\text{G2}}} [E_{\text{OSI}} + (I_{\text{B1}} R_{\text{G1}} - I_{\text{B2}} R_{\text{G2}})] + E_{\text{OSO}} (1)$$

Offset current is defined as the difference between the two bias currents I_{B1} and I_{B2} . If $I_{B1}=I_B$ and $I_{B2}=I_B+I_{OSI}$

then, for
$$R_{G1} = R_{G2}$$
, $V_{OUT} - I_B = \frac{10^6 I_{os}}{2}$

This component of error is not a function of gain and is therefore included as a part of $E_{\rm OSO}$ specifications. The output errors due to the output stage bias current are also included in $E_{\rm OSO}$. This results in a very simple equation for the total error:

$$V_{OUT-TOTAL} = \frac{10^6 E_{OSI}}{2R_{G1}} + E_{OSO} \text{ (for } R_{G1} = R_{G2}).$$
 (2)

In summary, it should be noted that equation (2) should be used only when $R_{G1}=R_{G2}$. When $R_{G1}\neq R_{G2}$, equation (1) applies.

The effects of temperature may be analyzed by replacing the offset terms with their corresponding temperature gradient terms:

$$V_{OUT} \rightarrow \Delta V_{OUT}/\Delta T$$
, $E_{OSI} \rightarrow \Delta E_{OSI}/\Delta T$, etc.

For a complete analysis of the effects of temperature, gain variations must also be considered.

OUTPUT NOISE cases and doldw satisfaces

The total output noise is given by:

$$E_{N} (RMS) = \sqrt{(E_{NI}G)^{2} + (E_{NO})^{2}}$$

where E_N (RMS) = Total output noise

E_{NI} = RMS noise of the input stage

 E_{NO} = RMS noise of the output stage $G = 10^6/(R_{G1} + R_{G2})$

E_{NO} includes the noise contribution due to the optics and the noise currents of the output stage. Errors created by the noise current of the input stage are insignificant compared to other noise sources and are therefore omitted.

COMMON-MODE AND ISOLATION-MODE REJECTION

The expression for the output error due to common-mode and isolation mode voltage is:

$$V_{OUT} = G \left[\frac{V_{CM}}{CMRR} + \frac{V_{ISO}}{IMIRR} \right]$$

GUARDING AND PROTECTION

To preserve the excellent inherent isolation characteristics of these amplifiers, the following recommended practice should be noted.

- 1. Use shielded twisted pair of cable at the input as with any instrumentation amplifier.
- Care should be taken to minimize external capacitance. A symmetrical layout of external components to achieve balanced capacitance from the input terminals to output common will preserve high IMR.
- External components and conductor patterns should be at a distance equal to or greater than the distance between the input and output terminals to prevent HV breakdown.
- Though not an absolute requirement, the use of laminated or conformally coated printed circuit boards is recommended.

APPLICATIONS

Figure 8 shows a system where isolation amplifiers (3650) are used to measure the armature current and the armature voltage of a motor.

The armature current of the motor is converted to a voltage by the calibrated shunt R_S and then amplifier (adjustable gain) and isolated by the 3650.

The armature voltage is sensed by the voltage divider (adjustable) shown and then amplified and isolated by the 3650.

The 3650 provides the advantage of accurate current measurement in the presence of high common-mode voltage. Both 3650s provide the advantage of isolating the motor ground from the control system ground. Isolated power is provided by an isolated DC/DC converter (BB Model 722 or equivalent).

The 3652 is ideally suited for patient monitoring applications as shown in Figure 9. The fact that it is a true balanced input instrumentation amplifier with very high differential and common-mode impedance means that it can greatly reduce the common-mode noise pick up due to imbalance in lead impedances that often appear in patient monitoring situations. The 3kV and 6kV shown in Figure 9 are the 10ms pulse ratings of the + $\rm I_R$ and $-\rm I_R$ inputs for the common-mode and differential input voltages with respect to input common. The rating of the isolation barrier is 2000Vpk continu-

FIGURE 8. Isolated Armature Current and Voltage Sensor.

Model 722 isolated DC/DC converter. The total leakage current for both channels at 240V 60Hz would still be less than $2\mu A$.

The block diagram in Figure 10 shows the use of isolation amplifiers in SCR control application.

FIGURE 9. 3652 Used in Patient Monitoring Application (ECG, VCG, EMG Amplifier).

FIGURE 10. 3-Phase Bidirectional SCR Control with Voltage Feedback.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Transformer Coupled ISOLATION AMPLIFIER

FEATURES

- INTERNAL ISOLATED POWER
- 8000V ISOLATION TEST VOLTAGE
- 0.5µA MAX LEAKAGE AT 120V, 60Hz
- 3-PORT ISOLATION
- IMR: 125dB REJECTION AT 60Hz
- 1" x 1" x 0.25" CERAMIC PACKAGE

APPLICATIONS

- MEDICAL
 Patient Monitoring and Diagnostic
 Instrumentation
- INDUSTRIAL
 Ground Loop Elimination and
 Off-ground Signal Measurement
- NUCLEAR Input/Output/Power Isolation

DESCRIPTION

The 3656 was the first amplifier to provide a total isolation function, both signal and power isolation, in integrated circuit form. This remarkable advancement in analog signal processing capability was accomplished by use of a patented modulation technique and miniature hybrid transformer.

Versatility and performance are outstanding features of the 3656. It is capable of operating with three

completely independent grounds (three-port isolation). In addition, the isolated power generated is available to power external circuitry at either the input or output. The uncommitted op amps at the input and the output allow a wide variety of closed-loop configurations to match the requirements of many different types of isolation applications.

This product is covered by the following United States patents: 4,066,974; 4,103,267; 4,082,908. Other patents pending may also apply upon the allowance and issuance of patents thereon. The product may also be covered in other countries by one or more international patents corresponding to the above-identified U.S. patents.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At +25°C, V± = 15VDC and 15VDC between P+ and P-, unless otherwise specified.

PARAMETER ISOLATION Voltage Rated Continuou. Test, 10s(1) Test, 60s(1) Rejection DC 60Hz, <100Ω in 60Hz, 5kΩ in I/P	us ⁽¹⁾ , DC	CONDITIONS		MIN	Jennik Signal	20	MAX	UNITS
Voltage Rated Continuou Test, 10s(1) Test, 60s(1) Rejection DC 60Hz, < 100Ω in	us ⁽¹⁾ , DC	06. 8.1			Janni2 Ham	9	ESPONSE .	IN YOUR UCH
Rated Continuous Test, $10s^{(1)}$ Test, $60s^{(1)}$ Rejection DC $60Hz$, $< 100\Omega$ in	us ⁽¹⁾ , DC	0E E.7			Jenni2 Hem	a		
Rated Continuous Test, $10s^{(1)}$ Test, $60s^{(1)}$ Rejection DC $60Hz$, $< 100\Omega$ in	ıs ⁽¹⁾ , DC	27						
Test, $10s^{(1)}$ Test, $60s^{(1)}$ Rejection DC $60Hz$, $< 100\Omega$ in	15. 7, 100	Production of the second of th	3500	0 (1000)				VDC
Test, 60s ⁽¹⁾ Rejection DC 60Hz, < 100Ω in				0 (3000)	Negation in binuacety	Incli	enira	VDC
Rejection DC 60Hz, < 100Ω in		0 163341				1.735000		
DC 60Hz, < 100Ω in		G ₁ = 10V/V	200	0 (700)	to 0:05%			Vrms
$60Hz$, $< 100\Omega$ in								
$60Hz$, $< 100\Omega$ in		5(,5/55) + 5(8)			160	0	0.7	dB
	I/P Com(2)				125	Trans.	1	dB
00HZ, 3K22 III I/F		\$(5)\(\begin{align*} (5)^2 + (1)\(\delta\)?			21-bi01-bt-x1-i0	a pl		
0050110	Come	5		100				dB
3656HG				108				
3656AG, BG, JG	i, KG			112	The same state		F IH, at Pa, P-	Jague dB
Capacitance ⁽¹⁾		15		1	6 (6.3)		60	pF
Resistance(1)			6.1		1012 (1012)	terre!		Ω
Leakage Current		120V, 60Hz			0.28		0.5	μА
		1	-					-
GAIN					NAME OF THE PARTY		Ourrandial vs C	
Equations		See Text			from #V, -V, Ve, V	APRIL .	in svi	
Accuracy of Equat	ions				(E1) ₍₂₀₀₎	V-2	ER DUT, ALAV, -V. VA	
Initial(3) 3656HG		G < 100V/V	81		-9 bris +9 naesin		1.5	%
3656AG,								%
	JG, KG	1.8	1		OmA sum) Load ⁽¹⁸⁾			
3656BG		88.0			Setween P+ and P+	1460	8 av 0.3 yaqu8	%
vs Temperature							480	ppm/°C
	3656AG, JG	92					120	ppm/°C
	3656BG, KG	08			SenA Load		60	ppm/°C
vs Time	0000000, 110				0.02 (1 + log khr			0/-
		D D D SOMO			0.02 (1 + 10g Kill)	3.)	HANGE	%
Nonlinearity	384	$R_A + R_F = R_B \ge 2M\Omega$	25	- 1		× 5.1	8AG, BG	
External Supplie			0				BHG, JG JKG	
Pins 12 and 16,	3656HG	Unipolar or Bipolar Output	332				±0.15	%
	3656AG, JG, KG		1				±0.1	%
	3656BG	The Paris of the Land of the Land	- 23			-	±0.05	%
Internal Supplies		Bipolar Output Voltage						
Output Stage	0360 101	Swing, Full Load ⁽⁴⁾	per nentro d		+0.15	reev	teu ens alesatmento ni a	%
Output Stage	mahm li as, amaa m	Swirig, Full Loads	BIE N TO JIES	point of price	±0.15	Dente	nin nd yaW (E) dayw ha	/0
OFFSET VOLTAG	E(5), RTI	ed. (6) Versus the sum of all e	eu enclaleen		on it editernuo etild bin	5 A60	allov feelfo , A bris , A to	
Initial(3), 3656HG	spect to RP Com (15Vp between P+ and P-	by soulto m		and offset currents	amon	±[4 + (40/G ₁)]	mV
3656AG.	IGM ethical viete	no.2 Honda from annu annu	er 3 Iomoits		Aure 10048 Americal	burn .	$\pm [2 + (20/G_1)]$	mV
		all a record becalt these forecasts should	un implom		35°C to 12VDC at 1	and the		
3656BG, I		and upon nouniburation and	DISCOURSE USA				±[1 + (10/G ₁)]	mV
vs Temperature,		11/1/10/2004 (01) ([03/1+]-V-3-V-)	-, v+mnoss		us). (12) Load curren		±[200 + (1000/G ₁)]	μV/°C
	3656JG	I mant enominated 1257 of been	exe ir sombi		DC. (14) Ispiation re	1810	±[50 + (750/G ₁)]	μV/°C
	3656AG						±[25 + (500/G ₁)]	μV/°C
	3656KG						±[10 + (350/G ₁)]	μV/°C
	3656BG						±[5 + (350/G ₁)]	μV/°C
vs Supply Voltag		Supply between P+ and P-	PACK		Total Carlo Control Carlo Control Control Control	-	±[5 + (550/G1)]	μνιο
	le	Supply between F+ and F-	110000		nutteleal augunit	REO IT	of Capturer Search of	hreskil
3656HG	SETS A.D.						±[0.6 + (3.5/G ₁)]	mV/V
3656AG, BG,	JG, KG	B. PACKAGE	gos l		(00)		$\pm[0.3 + (2.1/G_1)]$	mV/V
vs Current(6)		SURVIUM I III	C2 (280)		$\pm[0.1 + (10/G_1)]$	10	±[0.2 + (20/G ₁)]	mV/mA
		2011.end 190 Om	8868		- Annana			
vs Time		ING OOR GROUNDS	0000		±[10 + (100/G ₁)]		- (9	
ob to hop one one		(1) For detailed drawing and d	NOTE		(1 + log khrs.)	-0	MOORE	μV
BUTTO DESIGNATION OF STREET	out factors (intration)	is one flamman names in Fil	1.23 1.12/8/7	120	(1 + 10g KIIIS.)			μν
AMPLIFIER PARA	AMETERS, Apply	to A ₁ and A ₂	12000					
Bias Current(7)						-		The second second
Initial							100	nA
		DLUTE MAJUMUM E	ABS.		0.5			
vs Temperature			and the same of		0.5		SMOITA	11100
vs Supply		Wilhout Damage	ddns		0.2	1 64	T POLICE	nA/V
Offset Current ⁽⁷⁾		Voltage Runge Using Internal I	fuces!		5	1420	20	nA
Impedance		Common-Mode	duoni		100 5	1 66		MΩ pF
Input Noise Voltag	е	f _B = 0.05Hz to 100Hz	La Contraction		5	0.1	Part of the second	μVр-р
	Mary and the same of the same	f _B = 10Hz to 10kHz	11100		E	20	20 20 20	μVrms
Innut Valtage Des	(8)	IB = TOTIZ TO TOKITZ	Stora		gninevnin5 _{M s} A	13	MOD COM	μviins
Input Voltage Ran		Température (adjoining, 10s)	Date J		As Inverting Input	4.0		- V 1 3
Linear Operation		Internal Supply			JugtuO -A	124	±5	V
		External Supply	STOM		indian M	150.0	Supply –5	V
0.4		$V_{OUT} = \pm 5V$	(pig)		- V	. 00	Jugal gas	
Output Current		±15V External Supply	Com	±5	GONES TOURNO	177	verling feaut	mA
Output Current		Internal Supply		±2.5	No. Plu	28		mA
Output Current			1	2.5	11-11-11	1		mA
Output Current					- 49	63		
Output Current		V _{OUT} = ±10V						
Output Current		±15V External Supply	±	±2.5		OS	QOM	mA o
Output Current		±15V External Supply $V_{OUT} = \pm 2V, \ V_{P+, P-} = 8.5V$	#	£2.5	-9	08	OOM	Ed jugamA
Output Gurrent		±15V External Supply	±	±2.5	±1	08	QOM	mA mA

SPECIFICATIONS (CONT)

ELECTRICAL

At +25°C, V± = 15VDC and 15VDC between P+ and P-, unless otherwise specified.

	3856AG, 80, HG, JG, KG		3656AG, BG, HG, JG, KG			
PARAMETER	CONDITIONS	MIN EXTYPONO		MAX	UNITS	
FREQUENCY RESPONSE ±3dB Response Full Power Slew Rate Settling Time	Small Signal Direction Measured at Output to 0.05%	(000r) 0008 (0+0.1,-0.04	30 1.3 √ 500 = ,8	us ⁿ), DC	kHz kHz V/μs μs	
OUTPUT Noise Voltage (RTI) Residual Ripple ⁽⁹⁾	$f_B = 0.05Hz$ to 100Hz $f_B = 10Hz$ to 10kHz	201	$ \sqrt{(5)^2 + (22/G_1)^2} \sqrt{(5)^2 + (11/G_1)^2} 5 $	n VP Com ⁽²⁾ Com ⁽²⁾	μVp-p μVrms mVp-p	
POWER SUPPLY IN, at P+, F Rated Performance Voltage Range(10) Ripple Current(9) Quiescent Current(11) Current vs Load Current(12)	Derated Performance	8.5	15 14 0.7	16 25 18	VDC VDC mAp-p mA/DC mA/mA	
ISOLATED POWER OUT, At Voltage, No Load Voltage, Full Load Voltage vs Power Supply Ripple Voltage ⁽⁹⁾ No Load Full Load	15V Between P+ and P- ±15mA (10mA sum) Load ⁽¹²⁾ vs Supply Between P+ and P-	8.5 7	9 8 8 0.66 40 80	9.5		
TEMPERATURE RANGE Specification 3656AG, BG 3656HG, JG, KG Operation ⁽¹⁰⁾ Storage ⁽¹⁴⁾		-25 0 -55 -65	$\label{eq:problem} P_{RA} + P_{F} = P_{B} \ge 2M\Omega$ Unipolar or Bipolar Output	+85 +70 +100 +125	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	

NOTES: (1) Ratings in parenthesis are between P- (pin 20) and O/P Com (pin 17). Other isolation ratings are between I/P Com and O/P Com or I/P Com and P-(2) See Performance Curves. (3) May be trimmed to zero. (4) If output swing is unipolar, or if the output is not loaded, specification same as if external supply were used. (5) Includes effects of A₁ and A₂ offset voltages and bias currents if recommended resistors used. (6) Versus the sum of all external currents drawn from V+, V-, +V, -V (= ISO). (7) Effects of A₁ and A₂ bias currents and offset currents are included in Offset Voltage specifications. (8) With respect to I/P Com (pin 3) for A₁ and whith respect to O/P Com (pin 17) for A₂. CMR for A₁ and A₂ is 100dB, typical. (9) In configuration of Figure 3. Ripple frequency approximately 750kHz. Measurement bandwidth is 30kHz. (10) Decreases linearly from 16VDC at 85°C to 12VDC at 100°C. (11) Instantaneous peak current required from pins 19 and 20 at turn-on is 100mA for slow rising voltages (50ms) and 300mA for fast rises (50µs). (12) Load current is sum drawn form +V, -V, V+, V-(=|₁₅₀|. (13) Maximum voltage rating at pins 1 and 4 is ±18VDC, maximum voltage rating at pins 12 and 16 is ±18VDC. (14) Isolation ratings may degrade if exposed to 125°C for more than 1000 hours or 90°C for more than 50,000 hours.

PIN DESIGNATIONS

NO.	DESCRIPTION	NO.	DESCRIPTION
139	4V	11	Output DEMOD
2 9	MOD Input	12	V- 8
3	Input DEMOD COM	13	A ₂ Noninverting Input
4	_V	14	A ₂ Inverting Input
5	Balance	15	A ₂ Output
6	A ₁ Inverting Input	16	V+
7	A ₁ Noninverting Input	17	Output DEMOD COM
8	Balance	18	No Pin
9	A ₁ Output	19	P+
10	Input DEMOD	20	P-

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
3656	20-Lead ISO Omni	102A

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Without Damage	16V
Input Voltage Range Using Internal Supply	±8V
Input Voltage Range Using External Supply	Supply
Continuous Isolation Voltage(1)	3500, (1000) VDC
Storage Temperature	65°C to +125°C
Lead Temperature, (soldering, 10s)	+300°C

NOTE: (1) Ratings in parenthesis are between P– (pin 20) and O/P Com (pin 17). Other isolation ratings are between I/P Com and O/P Com or I/P Com and P–

TYPICAL PERFORMANCE CURVES UD BOMAMBORRES JACISYT

All specifications typical at +25°C, unless otherwise specified.

5

SOLATION PRODUCTS

TYPICAL PERFORMANCE CURVES (CONT) MAMAGERIA JACISMI

All specifications typical at +25°C, unless otherwise specified.

THEORY OF OPERATION

Details of the 3656 are shown in Figure 1. The external connections shown, place it in its simplest gain configuration—unity gain, noninverting. Several other amplifier gain configurations and power isolation configurations are possible. See Installation and Operating Instructions and Applications sections for details.

Isolation of both signal and power is accomplished with a single miniature toroid transformer with multiple windings. A pulse generator operating at approximately 750kHz provides a two-part voltage waveform to transformer, T_1 . One part of the waveform is rectified by diodes D_1 through D_4 to provide the isolated power to the input and output stages (+V, -V and V+, V-). The other part of the waveform is modulated with input signal information by the modulator operating into the V_2 winding of the transformer.

The modulated signal is coupled by windings W₆ and W₇ to two matched demodulators—one in the input stage and one in the output stage-which generate identical voltages at their outputs, pins 10 and 11 (Voltages identical with respect to their respective commons, pins 3 and 17). In the input stage the input amplifier, A1, the modulator and the input demodulator are connected in a negative feedback loop. This forces the voltage at pin 6 (connect as shown in Figure 1) to equal the input signal voltage applied at pin 7. Since the input and the output demodulators are matched and produce identical output voltages, the voltage at pin 11 (referenced to pin 17, the output common) is equal to the voltage at pin 10 (referenced to pin 3, the input common). In the output stage, output amplifier A2 is connected as a unity gain buffer, thus the output voltage at pin 15 equals the output demodulator voltage at pin 11. The end result is an isolated output voltage at pin 15 equal to the input voltage at pin 7 with no galvanic connection between them.

Several amplifier and power connection variations are possible:

- The input stage may be connected in various operational amplifier gain configurations.
- 2. The output stage may be operated at gains above unity.
- The internally generated isolated voltages which provide power to A₁ and A₂ may be overridden and external supply voltages used instead.

Versatility and its three independent isolated grounds allow simple solutions to demanding analog signal conditioning problems. See the Installation and Operating Instructions and Applications sections for details.

OPERATING INSTRUCTIONS

The 3656 is a very versatile device capable of being used in a variety of isolation and amplification configurations. There are several fundamental considerations that determine configuration and component value constraints:

1. Consideration must be given to the load placed on the resistance (pin 10 and pin 11) by external circuitry. Their output resistance is $100k\Omega$ and a load resistor of $2M\Omega$ or greater is recommended to prevent a voltage divider loading effect in excess of 5%.

FIGURE 1. Block Diagram.

- 2. Demodulator loadings should be closely matched so their output voltages will be equal. (Unequal demodulator output voltages will produce a gain error.) At the $2M\Omega$ level, a matching error of 5% will cause an additional gain error of 0.25%.
- 3. Voltage swings at demodulator outputs should be limited to 5V. The output may be distorted if this limit is exceeded. This constrains the maximum allowed gains of the input and output stages. Note that the voltage swings at demodulator outputs are tested with $2M\Omega$ load for a minimum of 5V.
- 4. Total current drawn from the internal isolated supplies must be limited to less than ±5mA per supply and limited to a total of 10mA. In other words, the combination of external and internal current drawn from the internal circuitry which feeds the +V, –V, V+ and V– pins should be limited to 5mA per supply (total current to +V, –V, V+ and V– limited to 10mA). The internal filter capacitors for ±V are 0.01μF. If more than 0.1mA is drawn to provide isolated power for external circuitry (see Figure 12), additional capacitors are required to provide adequate filtering. A minimum of 0.1μF/mA is recommended.
- 5. The input voltage at pin 7 (noninverting input to A₁) must not exceed the voltage at pin 4 (negative supply voltage for A₁) in order to prevent a possible lockup condition. A low leakage diode connected between pins 7 and 4, as shown in Figure 2, can be used to limit this input voltage swing.
- 6. Impedances seen by each amplifier's + and input terminals should be matched to minimize offset voltages caused by amplifier input bias currents. Since the demodulators have a $100k\Omega$ output resistance, the amplifier input not connected to the demodulator should also see $100k\Omega$.
- 7. All external filter capacitors should be mounted as close to the respective supply pins as possible in order to prevent excessive ripple voltages on the supplies or at the output. (Optimum spacing is less than 0.5". Ceramic capacitors recommended.)

POWER AND SIGNAL CONFIGURATIONS

NOTE: Figures 2, 3 and 4 are used to illustrate both signal and power connection configurations. In the circuits shown, the power and signal configurations are independent so that any power configuration could be used with any signal configuration.

ISOLATED POWER CONFIGURATIONS

The 3656 is designed with isolation between the input, the output, and the power connections. The internally generated isolated voltages supplied to A_1 and A_2 may be overridden with external voltages greater than the internal supply volt-

ages. These two features of 3656 provide a great deal of versatility in possible isolation and power supply hook-ups. When external supplies are applied, the rectifying diodes $(D_1 \text{ through } D_4)$ are reverse biased and the internal voltage sources are decoupled from the amplifiers (see Figure 1). Note that when external supplies are used, they must never be lower than the internal supply voltage.

Three-Port grooss at 15woq bits larges died to not

The power supply connections in Figure 2 show the full three-port isolation configuration. The system has three separate grounds with no galvanic connections between them. The two external $0.47\mu F$ capacitors at pins 12 and 16 filter the rectified isolated voltage at the output stage. Filtering on the input stage is provided by internal capacitors. In this configuration continuous isolation voltage ratings are: 3500V between pins 3 and 17; 3500V between pins 3 and 19; 1000V between pins 17 and 19.

Two-Port Bipolar Supply

Figure 3 shows two-port isolation which uses an external bipolar supply with its common connected to the output stage ground (pin 17). One of the supplies (either + or – could be used) provides power to the pulse generator (pins 19 and 20). The same sort of configuration is possible with the external supplies connected to the input stage. With the connection shown, filtering at pins 12 and 16 is not required. In this configuration continuous isolation voltage rating is: 3500VDC between pins 3 and 17; not applicable between pins 17 and 19; 3500VDC between pins 3 and 19.

Two-Port Single Supply

Figure 4 demonstrates two-port isolation using a single polarity supply connected to the output common (pin 17). The other polarity of supply for A_2 is internally generated (thus the filtering at pin 12). This isolated power configuration could be used at the input stage as well and either polarity of supply could be employed. In this configuration continuous isolation voltage rating is: 3500V between pins 3 and 17; 3500V between pins 3 and 19; not applicable between pins 17 and 19.

SIGNAL CONFIGURATIONS

Unity Gain Noninverting

The signal path portion of Figure 2 shows the 3656 is its simplest gain configuration: unity gain noninverting. The two $100k\Omega$ resistors provide balanced resistances to the inverting and noninverting inputs of the amplifiers. The diode prevents latch up in case the input voltage goes more negative than the voltage at pin 4.

Noninverting With Gain

The signal path portion of Figure 3 demonstrates two additional gain configurations: gain in the output stage and noninverting gain in the input stage. The following equations apply:

FIGURE 2. Power: Three-Port Isolation; Signal: Unity-Gain Noninverting.

FIGURE 3. Power: Two-Port, Dual Supply; Signal: Noninverting Gain.

Total amplifier gain:

$$G = G_1 \cdot G_2 = V_{OUT} V_{IN} \tag{1}$$

Input Stage:

$$G_1 = 1 + (R_A/F_A)$$
 (2)

(Select G_1 to be less than 5V/full scale V_{IN} to limit demodulator output to 5V).

$$R_A + R_F \ge 2M\Omega \tag{3}$$

(Select to load input demodulator with at least $2M\Omega$).

$$R_{C} = R_{A} \parallel (R_{F} + 100k\Omega) = \frac{R_{A} (R_{F} + 100k\Omega)}{R_{A} + R_{F} + 100k\Omega}$$
(4)

(Balance impedances seen by the + and - inputs of A₁ to reduce input offset caused by bias current).

Output Stage:

SOLATION PRODUC

 $G_2 = 1 + (R_X/R_K)$ (Solvet ratio to obtain V. between 5V and 10V.

(Select ratio to obtain V_{OUT} between 5V and 10V full scale with V_{IN} at its maximum).

$$R_X \parallel R_K = 100k\Omega \tag{6}$$

(Balance impedances seen by the + and - inputs of A_2 to reduce effect of bias current on the output offset).

$$R_{\rm B} = R_{\rm A} + R_{\rm F} \tag{7}$$

(Load output demodulator equal to input demodulator).

Inverting Gain, Voltage or Current Input

The signal portion of Figure 4 shows two possible inverting input stage configurations: current and input, and voltage input.

Input Stage:

For the voltage input case:

$$G_1 = -R_P/R_S \tag{8}$$

(Select G_1 to be less than 5V/full scale V_{IN} to limit the demodulator output voltage to 5V).

$$R_{\rm F} = 2M\Omega \tag{9}$$

(Select to load the demodulator with at least $2M\Omega$).

$$R_{C} = R_{S} \parallel (R_{1} + 100k\Omega) = \frac{R_{S} (R_{F} + 100k\Omega)}{R_{S} + R_{F} + 100k\Omega}$$
(10)

(Balance the impedances seen by the + and - inputs of A_1).

For the current input case:

$$V_{OUT} = -I_{IN} R_F \cdot G_2 \tag{11}$$

$$R_C = R_F \tag{12}$$

 $R_{\rm F}$ may be made larger than $2M\Omega$ if desired. The 10pF capacitors are used to compensate for the input capacitance of A_1 and to insure frequency stability.

Output Stage:

The output stage is the same as shown in equations (5), (6), and (7).

FIGURE 4. Power: Two-Port, Single Supply; Signal: Inverting Gains.

Illustrative Calculations:

The maximum input voltage is 100mV. It is desired to amplify the input signal for maximum accuracy. Noninverting output is desired.

Input Stage:

Step 1

 G_1 max = 5V/max Input Signal = 5V 0.1V = 50V/V

With the above gain of 50V/V, if the input ever exceeds 100mV, it would drive the output to saturation. Therefore, it is good practice to allow reasonable input overrange.

So, to allow for 25% input overrange without saturation at the output, select:

$$G_1 = 40V/V$$

 $G_1 = 1 + (R_F + R_A) = 40$
 $\therefore R_F + R_A = 39$ (13)

Step 2

 $R_A + R_F$ forms a voltage divider with the $100k\Omega$ output resistance of the demodulator. To limit the voltage divider loading effect to no more than 5%, RA + RF should be chosen to be at least $2M\Omega$. For most applications, the $2M\Omega$ should be sufficiently large for RA + RF. Resistances greater than $2M\Omega$ may help decrease the loading effect, but would increase the offset voltage drift.

The voltage divider with $R_A + R_F = 2M\Omega$ is $2M\Omega/(2M\Omega +$ $100k\Omega$) = 2/(2 + 0.1) = 95.2%, i.e., the percent loading is

Choose
$$R_A + R_F = 2M\Omega$$
 (14)
ep 3

the feedback loop of the output stage. The diodes p

Solving equations (13) and (14) and self appliages open

$$R_A=50k\Omega$$
 and $R_F=1.95M\Omega$

Step 4

The resistances seen by the + and - input terminals of the input amplifier A1 should be closely matched in order to minimize offset voltage due to bias currents.

$$\therefore R_{C} = R_{A} \parallel (R_{F} + 100k\Omega)$$

$$= 50k\Omega \parallel (1.95M\Omega + 100k\Omega)$$

$$\approx 49k\Omega$$

Output Stage: Some common and Alucid side of A output

body is sensed by the two averaging resistors, It, 5 qaf8

$$V_{OUT} = V_{IN MAX} \cdot G_1 \cdot G_2$$

As discussed in Step 1, it is good practice to provide 25% input overrange, as and boung of wolf for each a merrup

So we will calculate G2 for 10V output and 125% of the maximum input voltage.

$$G_2 = 1 + (R_X/R_K) = 2.0$$

 $\therefore R_X/R_K = 1.0$
 $\therefore R_X = R_K$ (15)

Step 7

The resistance seen by the + input terminal of the output stage amplifier A_2 (pin 13) is the output resistance $100k\Omega$ of the output demodulator. The resistance seen by the (-) input terminal of A₂ (pin 14) should be matched to the resistance seen by the + input terminal.

The resistance seen by pin 14 is the parallel combination of Rx and Rk.

$$R_X \parallel R_K = 100kΩ$$

 $R_X \cdot R_K/(R_X + R_K) = 100kΩ$
 $R_K/[1 + (R_K/R_X)] = 100kΩ$ (16)

Step 8

Solving equations (15) and (16) $R_K = 20k\Omega$ and $R_X =$ $200k\Omega$.

Step 9

The output demodulator must be loaded equal to the input demodulator.

$$\therefore R_B = R_A + R_F = 2M\Omega$$

(See equation (14) above in Step 2).

Use the resistor values obtained in Steps 3, 4, 8 and 9, and connect the 3656 as shown in Figure 3.

OFFSET TRIMMING (2) = 19 min squar rugtino (2)

Figure 5 shows an optional offset voltage trim circuit. It is important that $R_A + R_F = R_B$.

CASE 1: Input and output stages in low gain, use output potentiometer (R₂) only. Input potentiometer (R₁) may be disconnected. For example, unity gain could be obtained by setting $R_A = R_B = 20M\Omega$, R_C = $100k\Omega$, $R_{\rm F} = 0$, $R_{\rm Y} = 100k\Omega$, and $R_{\rm K} = \infty$.

CASE 2: Input stage in high gain and output stage in low gain, use input potentiometer (R1) only. Output potentiometer (R2) may be disconnected. For example, G_T = 100 could be obtained by setting $R_F = 2M\Omega$, $R_B = 2M\Omega$ returned to pin 17, $R_A =$ 20kΩ, $R_X = 100$ kΩ, and $R_K = \infty$.

CASE 3: When it is necessary to perform a two-stage precision trim (to maintain a very small offset change under conditions of changing temperature and changing gain in A₁ and A₂), use step 1 to adjust the input stage and step 2 for the output stage. Carbon composition resistors are acceptable, but potentiometers should be stable.

Step 1: Input stage trim $(R_A = R_C = 20k\Omega, R_I = R_B = 20M\Omega.$ $R_X = 100k\Omega$, $R_K = \infty$, R_2 disconnected); A_1 high, A_2 low gain. Adjust R₁ for 0V ±5mV or desired setting at V_{OUT}, pin 15.

FIGURE 5. Optional Offset Voltage Trim.

Step 2: Output stage trim ($R_A=R_B=20M\Omega$, $R_C=100k\Omega$, $R_F=0$, $R_X=100k\Omega$, $R_K=\infty$, R_1 and R_2 connected); A_1 low, A_2 low gain. Adjust R_2 for 0V $\pm 1mV$ or desired setting at V_{OUT} , pin 15 ($\pm 110mV$ approximate total range).

NOTE: Other circuit component values can be used with valid results.

CASE 2: Input stage in high SNOITADILA

ECG AMPLIFIER of yarr (R.) restentioneter

Although the features of the circuit shown in Figure 6 are important in patient monitoring applications, they may also be useful in other applications. The input circuitry uses an external, low quiescent current op amp (OPA177 type) powered by the isolated power of the input stage to form a high impedance instrumentation amplifier input (true three-wire input). R_3 and R_4 give the input stage amplifier of the 3656 a noninverting gain of 10 and an inverting gain of -9. R_1 and R_2 give the external amplifier a noninverting gain of 1+1/9. The inputs are applied to the noninverting inputs of the two amplifiers and the composite input stage amplifier has a gain of 10.

The 330k Ω , 1W, carbon resistors and diodes D_1 - D_4 provide protection for the input amplifiers from defibrillation pulses.

The output stage in Figure 6 is configured to provide a bandpass filter with a gain of 22.7 (68M Ω /3M Ω). The high-

pass section (0.05Hz cutoff) is formed by the $1\mu F$ capacitor and $3M\Omega$ resistor which are connected in series between the output demodulator and the inverting input of the output stage amplifier. The low-pass section (100Hz cutoff) is formed by the $68M\Omega$ resistor and 22pF capacitor located in the feedback loop of the output stage. The diodes provide for quick recovery of the high-pass filter to overvoltages at the input. The $100k\Omega$ pot and the $100M\Omega$ resistor allow the output voltage to be trimmed to compensate for increased offset voltage caused by unbalanced impedances seen by the inputs of the output stage amplifier.

In many modern electrocardiographic systems, the patient is not grounded. Instead, the right-leg electrode is connected to the output of an auxiliary operational amplifier as shown in Figure 7. In this circuit, the common-mode voltage on the body is sensed by the two averaging resistors, R₁ and R₂, inverted, amplified, and fed back to the right-leg through resistor R₄. This negative feedback drives the commonmode voltage to a low value. The body's displacement current i_d does not flow to ground, but rather to the output circuit of A₃. This reduces the pickup as far as the ECG amplifier is concerned and effectively grounds the patient.

The value of R_4 should be as large as practical to isolate the patient from ground. The resistors R_3 and R_4 may be selected by these equations:

$$R_3 = (R_1/2) (V_O/V_{CM})$$
 and $R_4 = (V_{CM} - V_O)/i_d$
(-10V $\leq V_O \leq +10V$ and -10V $\leq V_{CM} \leq +10V$)

NOTES: (1) Bandpass 0.05Hz to 100Hz. (2) Adjustable resistor may be used to achieve max common-mode rejection between L_A/R_A and RL.(3) Negative 15V supply may be connected in place of 0.47 μ F capacitor if available. (4) See offset trimming section.

FIGURE 6. ECG Amplifier.

FIGURE 7. Driven Right-Leg Amplifier.

where V_O is the output voltage of A_3 , and V_{CM} is the common-mode voltage between the inputs L_A and R_A and the input common at pin 3 of the 3656.

This circuit has the added benefit of having higher commonmode rejection than the circuit in Figure 6 (approximately 10dB improvement).

BIPOLAR CURRENT OUTPUT

The three-port capability of the 3656 can be used to implement a current output isolation amplifier function—usually difficult to implement when grounded loads are involved. The circuit is shown in Figure 8 and the following equations apply:

$$G = I_{OUT}/V_{IN} = 1 + \frac{R_F}{R_A} \times \frac{R_2}{(R_1 + R_2) \cdot R_S}$$

 $I_{OUT} \le \pm 2.5 \text{mA}$

 $V_1 \le \pm 4V$ (compliance)

 $R_r \leq 1.6k\Omega$

 $R_F + R_A = R_1 + R_2 \le 2M\Omega$

CURRENT OUTPUT— LARGER UNIPOLAR CURRENTS

A more practical version of the current output function is shown in Figure 9. If the circuit is powered from a source greater than 15V as shown, a three-terminal regulator should be used to provide 15V for the pulse generator (pins 19 and 20). The input stage is configured as a unity gain buffer, although other configurations such as current input could be used. The circuit uses the isolation feature between the output stage and the primary power supply to generate the output current configuration that can work into a grounded load. Note that the output transistors can only drive positive current into the load. Bipolar current output would require a second transistor and dual supply.

ISOLATED 4mA TO 20mA OUTPUT

Figure 10 shows the circuit of an expanded version of the isolated current output function. It allows any input voltage range to generate the 4mA to 20mA output excursion and is also capable of zero suppression. The "span" (gain) is adjusted by R_2 and the "zero" (4mA output for minimum input) is set by the $200 k\Omega$ pot in the output stage. A three-terminal 5V reference is used to provide a stable 4mA operating point. The reference is connected to insert an adjustable bias between the demodulator output and the noninverting input of the output stage.

DIFFERENTIAL INPUT

Figure 11 shows the proper connections for differential input configuration. The 3656 is capable of operating in this input configuration only for floating loads (i.e., the source $V_{\rm IN}$ has no connection to the ground reference established at pin 3). For this configuration the usual $2M\Omega$ resistor used in

FIGURE 8. Bipolar Current Output.

FIGURE 9. Isolated 1 to $5V_{\rm IN}/4{\rm mA}$ to $20{\rm mA}~I_{\rm out}$.

FIGURE 10. Isolated 4mA to 20mA $I_{\rm out}$.

FIGURE 11. Differential Input, Floating Source.

the input stage is split into two halves, R_F and R_{F-} . The demodulator load (seen by pin 10 with respect to pin 3) is still $2M\Omega$ for the floating load as shown. Notice pin 19 is common in Figure 11 whereas pin 20 is common in previous figures.

SERIES STRING SOURCE

Figure 12 shows a situation where a small voltage, which is part of a series string of other voltages, must be measured. The basic problem is that the small voltage to be measured is 500V above the system ground (i.e., a system common-mode voltage of 500V exists). The circuit converts this system CMV to an amplifier isolation mode voltage. Thus, the isolation voltage ratings and isolation-mode rejection specifications apply.

IMPROVED INPUT CHARACTERISTICS

In situations where it is desired to have better DC input amplifier characteristics than the 3656 normally provides, it is possible to add a precision operational amplifier as shown in Figure 13. Here the instrumentation grade OPA177 is supplied from the isolated power of the input stage. The 3656 is configured as a unity-gain buffer. The gain of the OPA177 stage must be chosen to limit its full scale output voltage to 5V and avoid overdriving the 3656's demodulators. Since the 3656 draws a significant amount of supply current, extra filtering or the input supply is required as shown $(2 \times 0.47 \mu F)$.

ELECTROMAGNETIC RADIATION

The transformer coupling used in 3656 for isolation makes the 3656 a source of electromagnetic radiation unless it is properly shielded. Physical separation between the 3656 and sensitive components may not give sufficient attenuation by itself. In these applications, the use of an electromagnetic shield is a must. A shield, Burr-Brown 100MS, is specially designed for use with the 3656 package. Note that the offset voltage appearing at pin 15 may change by 4mV to 12mV with use of the shield; however, this can be trimmed (see Offset Trimming section).

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FIGURE 12. Series Source.

FIGURE 13. Isolator for Low-Level Signals.

6 Optical Sensors

Optical Electronic Integrated Sensors (OEICs) combine the building blocks traditionally used in a transimpedance amplifier on a single monolithic die. The photodiode; low noise, low bias current FET-input operational amplifier, and feedback network are matched to optimize performance.

Our monolithic sensor/amplifier combinations free designers from the tedious design rules necessary to optimize responsivity and speed while maintaining stability and minimal gain peaking in discrete solutions. Other errors that are reduced by a monolithic solution are leakage current errors and noise.

Light falling on the photodiode section of the die is converted to a current. The op amp is connected as a transimpedance amplifier, converting the photodiode current into an output voltage which is proportional to the intensity and wavelength of the light.

Several products and package options are available to allow flexibility in configuring light measurement systems. An external resistor can be placed in series with the internal $1 \text{M}\Omega$ to increase responsivity in all packages, or placed in parallel to reduce the overall responsivity (in all packages except the SIP).

OPT101—This device was designed to operate on a single power supply of +2.7V to +36V, with a quiescent current of only 120µA at dark. Response peaks at 850nm with a response of 0.6A/W.

OPT101-R—A new innovation in package design, this product is available in red molded plastic to provide optical filtering. The red package provides selective response to wavelengths greater than 570nm, making them ideal for applications using red or infrared illumination.

OPT202—Another innovation in package design—a 5-pin SIP that allows light to originate from the "side" of system boards rather than from perpendicular sources. Also available in a clear plastic DIP as well as a hermetic ceramic DIP.

OPT209—This device is available in plastic DIP, and will help to improve your signal-to-noise ratio in systems not needing the full 50kHz bandwidth of the OPT202.

OPT210—A new high performance silicon photodiode and precision FET-input transimpedance amplifier integrated on a single monolithic chip achieves low noise and 300kHz bandwidth at $R_p = 1M\Omega$.

OPT301—This OEIC is packaged in a hermetic TO-99 package with a glass window, and is specified over the extended industrial temperature range of -40°C to +85°C. Offering a hermetic package and enhanced UV performance, the OPT301 has a 4kHz signal bandwidth.

designers from the tedious design rules necess with the nothing stability and minimal gain peaking in outsings required which are reduced by crete solutions. Other errors that are reduced by crown and peaking and the photodiode section of the converted to a current. The op amp is connect Light falling on the photodiode section of the proposition of the

* DENOTES TYPICAL BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

101-E

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Burr-Brown IC Data Book-Linear Products

6.3

Optical Electric Integrated Circuits

Product	Signal Bandwidth typ (kHz)	Photodiode Dimensions	Feedback Resistor typ	Dark Error max (mV)	Power Supply Range (mV)	Quiescent Current max (µA)	Description
OPT101 ⁽¹⁾	14	0.09" x 0.09"	1MΩ or external	+5 to +10 (offset for single single supply)	+2.7V to +36V	240	Low cost, general purpose. Single supply operation with nominal 7.5mV output offset pedestal.
OPT202(2)	50	0.09" x 0.09"	1MΩ internal or external	±2	±2.25V to ±18V	500	Wide bandwidth, general purpose photodiode/amplifier.
OPT209	16	0.09" x 0.09"	1MΩ internal	±2	±2.25V to ±18V	500	General purpose photodiode/amplifier.
OPT210	(900 with external bootstrap buffer)	0.09" x 0.09"	1MΩ internal or external	±10	±2.25V to ±18V	4000	Wide bandwidth with infrared response and extended bandwidth using bootstrap buffer.
OPT211	50 (150 with external bootstrap buffer)	0.09" x 0.09"	External 330kΩ to 100GΩ	smaqo i smuo in Lanin-8 Lanin	±2.25V to ±18V	500 40 48 8	Wide bandwidth with very high transimpedance gain allows use of external photodiode buffer circuit for widest bandwidth.
OPT301(3)	4	0.09" x 0.09"	1MΩ or external	±2	±2.25V to ±18V	500	Hermetic, general purpose. Extended ultraviolet response.

temperature range (-55°C to 125°C). CHENARI

* DENOTES TYPICAL **BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT**

10000 10000

POSITION AND PROXIMITY

MONOLITHIC PHOTODIODE AND SINGLE-SUPPLY TRANSIMPEDANCE AMPLIFIER

FEATURES

- SINGLE SUPPLY: +2.7 to +36V
- PHOTODIODE SIZE: 0.090 x 0.090 inch
- INTERNAL 1MΩ FEEDBACK RESISTOR
- HIGH RESPONSIVITY: 0.45A/W (650nm)
- BANDWIDTH: 14kHz at $R_F = 1M\Omega$
- LOW QUIESCENT CURRENT: 120µA
- AVAILABLE IN 8-PIN DIP, 5-PIN SIP, AND 8-LEAD SURFACE MOUNT PACKAGES
- CLEAR OR RED PLASTIC VERSIONS

APPLICATIONS

- MEDICAL INSTRUMENTATION
- LABORATORY INSTRUMENTATION
- POSITION AND PROXIMITY SENSORS
- PHOTOGRAPHIC ANALYZERS
- BARCODE SCANNERS
- SMOKE DETECTORS
- CURRENCY CHANGERS

DESCRIPTION

The OPT101 is a monolithic photodiode with on-chip transimpedance amplifier. Output voltage increases linearly with light intensity. The amplifier is designed for single or dual power supply operation, making it ideal for battery operated equipment.

The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs such as leakage current errors, noise pick-up and gain peaking due to stray capacitance. The 0.09×0.09 inch photodiode is operated in the photoconductive mode for excellent linearity and low dark current.

The OPT101 operates from +2.7V to +36V supplies and quiescent current is only $120\mu A$. It is available in clear plastic 8-pin DIP, 5-pin SIP and J-formed DIP for surface mounting. Red plastic versions are also available with optical filter properties, providing selective response to wavelengths greater than 580nm. Temperature range is 0°C to 70°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

N N N

MIN

OPT101P, W

TYP

0.45

0.45

MAX

+70

+85

100

UNITS

A/W

 $V/\mu W$

PARAMETER

RESPONSIVITY

Voltage Output

Photodiode Current

CONDITIONS

650nm

650nm

vs Temperature Unit to Unit Variation Nonlinearity ⁽¹⁾ Photodiode Area	650nm FS Output = 24V (0.090 x 0.090in) (2.29 x 2.29mm)	tugal (-)	100 ±5 ±0.01 0.008 5.2		ppm/°C % % of FS in ² mm ²
vs Temperature vs Power Supply	V _S = +2.7V to +36V	+5	+7.5 ±2.5 10	+10	mV μV/°C μV/V
Voltage Noise, Dark, f _B = 0.1Hz to 20kHz TRANSIMPEDANCE GAIN Resistor Tolerance, P W vs Temperature	V _S = +15V, V _{PIN3} = -15V		300 1 ±0.5 ±0.5 ±50	S3NO48 Spubn ±2	μVrms MΩ % ppm/°C
FREQUENCY RESPONSE Bandwidth Rise Fall Time, 10% to 90% Settling Time, 0.05% 0.1% 1% Overload Recovery	V _{OUT} = 10Vp-p V _{OUT} = 10V Step V _{OUT} = 10V Step	$V_{g} = +36V$ $Oark, V_{page} = 0V$	14 28 160 80 70 50	gs et Range	kHz µs µs µs µs
OUTPUT Voltage Output, High Capacitive Load, Stable Operation Short-Circuit Current	.WV01 s aning eides 8 (s) χ V _S = 36V	(V _S) - 1.3	(V _S) - 1.15	spacifications prov	nF mA
POWER SUPPLY Operating Voltage Range Quiescent Current	Dark, $V_{PIN3} = 0V$ $R_L = \infty$, $V_{OUT} = 10V$	+2.7 Y T W T T	120 220	+36 240	V μΑ μΑ
TEMPERATURE BANGE			and the same of th		7

NOTES: (1) Deviation in percent of full scale from best-fit straight line. (2) Referred to Output. Includes all error sources.

PHOTODIODE SPECIFICATIONS

 $T_A = +25$ °C, $V_S = +2.7$ V to +36V unless otherwise noted.

	ible with clear me		Photodiode of OPT101P		
PARAMETER PAUL Dear will damage in	CONDITIONS	MIN	TYP	MAX	UNITS
Photodiode Area	(0.090 x 0.090in)		0.008	177	in ²
	(2.29 x 2.29mm)	The state of	5.2		mm ²
Current Responsivity	650nm		0.45		A/W
	650nm		865		μA/W/cm ²
Dark Current	$V_{DIODE} = 7.5 \text{mV}$		2.5		pA
vs Temperature	0.000	1 - 1 - 1 Br 1 - 1 - 1	doubles every 7°C		
Capacitance			1200		pF

ovith ap-

-25

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OPT101

6

OPTICAL SENSORS

°C

°C

°C/W

Operating Storage

Thermal Resistance, θ_{JA}

OP AMP SPECIFICATIONS

 $T_A = +25^{\circ}C$, $V_S = +2.7V$ to +36V, $\lambda = 650$ nm, internal $1M\Omega$ feedback resistor, and $R_L = 10k\Omega$ unless otherwise noted.

	OPTIONP, W		(OPT101 Op Amp ⁽¹)	
PARAMETER	SYY	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature Input Impedance Differential	0.45 0.45 100 ±5.01 ±0.01 5.2	(–) Input (–) Input	650nm 650nar 850nm 8 Output = 24V 1690 × 0.090in) 263 × 2.28mm)	±0.5 ±2.5 10 165 1	R no	mV μV/°C μV/V pA pA/°C MΩ pF
Common-Mode Common-Mode Input Voltage Range Common-Mode Rejection	+7.5	Linear Operation		250 35 0 to [(V _S) – 1] 90	IPOTA iogi	GΩ pF V dB
OPEN-LOOP GAIN Open-loop Voltage Gain	10 300		= +2.7V to +36V +16V. V _{PBU} = -16V	aV 90 stb//	rk, I ₀ = 0.1Hz to 2	ve Power Surrol lotte Bbosse, Di
FREQUENCY RESPONSE Gain-Bandwidth Product ⁽²⁾ Slew Rate Settling Time 1% 0.1% 0.05%	7 2.0.5 2.0.5 2.0.5			2 1 5.8 7.7 8.0	CE GAIN	MHz V/µs µs µs µs
OUTPUT Voltage Output, High Short-Circuit Current	14 28 450	V _S = +36V	(V _S) – 1.3	(V _S) – 1.15	SPONSE 7% to 90%	V mA
POWER SUPPLY Operating Voltage Range Quiescent Current	.00 .70 .50	Dark, $V_{PIN3} = 0V$ $R_L \infty$, $V_{OUT} = 10V$	+2.7 cite so O read of rout	120 220	+36 240	V μΑ μΑ

NOTES: (1) Op amp specifications provided for information and comparison only. (2) Stable gains ≥ 10V/V.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

MOISTURE SENSITIVITY AND SOLDERING

Clear plastic does not contain the structural-enhancing fillers used in black plastic molding compound. As a result, clear plastic is more sensitive to environmental stress than black plastic. This can cause difficulties if devices have been stored in high humidity prior to soldering. The rapid heating during soldering can stress wire bonds and cause failures. Prior to soldering, it is recommended that plastic devices be baked-out at +85°C for 24 hours.

The fire-retardant fillers used in black plastic are not compatible with clear molding compound. The OPT101 plastic packages cannot meet flammability test, UL-94.

FUNCTION

4 x 4

0.1 x 0.1

Backing None

NOTE: Pad numbers correspond to pin numbers on DIP package.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Min. Pad Size

PAD

Supply Voltage (V _S to "Common" or pin 3)	0 to +36V
Output Short-Circuit (to ground)	Continuous
Operating Temperature	25°C to +85°C
Storage Temperature	25°C to +85°C
Junction Temperature	+85°C
Lead Temperature (soldering, 10s)	+300°C
(Vapor-Phase Soldering Not Recommended)	

PACKAGE INFORMATION

MODEL	COLOR	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPT101P	Clear	8-Pin Plastic DIP	006-1
OPT101P-R	Red	8-Pin Plastic DIP	006-1
OPT101P-J	Clear	8-Lead Surface Mount(2)	006-4
OPT101P-R-J	Red	8-Lead Surface Mount(2)	006-4
OPT101W	Clear	5-Pin Plastic SIP	321
OPT101W-R	Red	5-Pin Plastic SIP	321

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) 8-pin DIP with J-formed leads for surface mounting.

6

TYPICAL PERFORMANCE CURVES (CONT) MAMPORISE LADISYT

 $T_{A}=+25^{\circ}C,~V_{S}=+2.7V~to~+36V,~\lambda=650nm,~internal~1M\Omega~feedback~resistor,~and~R_{L}=10k\Omega~unless~otherwise~noted.$

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required to operate the OPT101. Applications with high-impedance power supplies may require decoupling capacitors located close to the device pins as shown. Output is 7.5mV dc with no light and increases with increasing illumination.

Photodiode current, I_D , is proportional to the radiant power, or flux, (in watts) falling on the photodiode. At a wavelength of 650nm (visible red) the photodiode Responsivity, R_I , is approximately 0.45A/W. Responsivity at other wavelengths is shown in the typical performance curve "Responsivity vs Wavelength."

FIGURE 1. Basic Circuit Connections.

The typical performance curve "Output Voltage vs Radiant Power" shows the response throughout a wide range of radiant power. The response curve "Output Voltage vs Irradiance" is based on the photodiode area of 5.2mm².

The OPT101's voltage output is the product of the photodiode current times the feedback resistor, (I_DR_F), plus a pedestal voltage, V_B , of approximately 7.5mV introduced for single supply operation. The internal feedback resistor is laser trimmed to $1M\Omega$. Using this resistor, the output voltage responsivity, R_V , is approximately 0.45V/µW at 650nm wavelength. Figure 1 shows the basic circuit connections for the OPT101 operating with a single power supply and using the internal $1M\Omega$ feedback resistor for a response of 0.45V/µW at 650nm. Pin 3 is connected to common in this configuration.

CAPACITIVE LOADING

The OPT101 is capable of driving load capacitances of 10nF without instability. However, dynamic performance with capacitive loads can be improved by applying a negative bias voltage to Pin 3 (shown in Figure 2). This negative power supply voltage allows the output to go negative in response to the reactive effect of a capacitive load. An internal JFET connected between pin 5 (output) and pin 3 allows the output to sink current. This current sink capability can also be useful when driving the capacitive inputs of some analog-to-digital converters which require the signal

source to sink currents up to approximately $100\mu A$. The benefits of this current sink are shown in the typical performance curves "Small Signal Response ($C_{LOAD} = 10,000 pF$)" which compare operation with pin 3 grounded and connected to -15V.

Due to the architecture of this output stage current sink, there is a slight increase in operating current when there is a voltage between pin 3 and the output. Depending on the magnitude of this voltage, the quiescent current will increase by approximately $100\mu A$ as shown in the typical performance curve "Quiescent Current vs $(V_{OUT}-V_{PIN3})$ ".

FIGURE 2. Bipolar Power Supply Circuit Connections.

NOISE PERFORMANCE

Noise performance of the OPT101 is determined by the op amp characteristics, feedback components and photodiode capacitance. The typical performance curve "Output Noise Voltage vs Measurement Bandwidth" shows how the noise varies with $R_{\rm F}$ and measured bandwidth (0.1Hz to the indicated frequency), when the output voltage minus the voltage on pin 3 is greater than approximately 50mV. Below this level, the output stage is powered down, and the effective bandwidth is decreased. This reduces the noise to approximately 1/3 the nominal noise value of 300 μ Vrms, or 100μ Vrms. This enables a low level signal to be resolved.

Noise can be reduced by filtering the output with a cutoff frequency equal to the signal bandwidth. This will improve signal-to-noise ratio. Also, output noise increases in proportion to the square root of the feedback resistance, while responsivity increases linearly with feedback resistance. Best signal-to-noise ratio is achieved with large feedback resistance. This comes with the trade-off of decreased bandwidth.

The noise performance of the photodetector is sometimes characterized by *Noise Effective Power* (NEP). This is the radiant power that would produce an output signal equal to the noise level. NEP has the units of radiant power (watts), or Watts/ $\sqrt{\text{Hz}}$ to convey spectral information about the noise. The typical performance curve "Noise Effective Power" vs Measurement Bandwidth" illustrates the NEP for the OPT101.

DARK ERRORS

The dark errors in the specification table include all sources. The dominant source of dark output voltage is the "pedestal" voltage applied to the non-inverting input of the op amp. This voltage is introduced to provide linear operation in the absence of light falling on the photodiode. Photodiode dark current is approximately 2.5pA and contributes virtually no offset error at room temperature. The bias current of the op amp's summing junction (- input) is approximately 165pA. The dark current will be subtracted from the amplifier's bias current, and this residual current will flow through the feedback resistor creating an offset. The effects of temperature on this difference current can be seen in the typical performance curve "(IBIAS - IDARK) vs Temperature." The dark output voltage can be trimmed to zero with the optional circuit shown in Figure 3. A low impedance offset driver (op amp) should be used to drive pin 8 (DIP) because this node has signal-dependent currents.

FIGURE 3. Dark Error (Offset) Adjustment Circuit.

CHANGING RESPONSIVITY

An external resistor, $R_{\rm EXT}$, can be connected to set a different voltage responsivity. To increase the responsivity, this resistor can be placed in series with the internal $1M\Omega$ (Figure 4a), or with the DIP package, the external resistor can replace the internal resistor by not connecting pin 4 (Figure 4b). The second configuration also allows the circuit gain to be reduced below 10^6V/A by using external resistors of less than $1M\Omega$.

Figure 4 includes tables showing the responsivity and bandwidth. For values of $R_{\rm F}$ less than $1M\Omega$, an external capacitor, $C_{\rm EXT}$ should be connected in parallel with $R_{\rm F}$.

This capacitor eliminates gain peaking and prevents instability. The value of $C_{\rm EXT}$ can be determined from the table in Figure 4. Values of $R_{\rm F}$, other than shown in the table, can be interpolated.

FIGURE 4. Changing Responsivity with External Resistor.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

LIGHT SOURCE POSITIONING

The OPT101 is tested with a light source that uniformly illuminates the full area of the integrated circuit, including the op amp. Although IC amplifiers are light-sensitive to some degree, the OPT101 op amp circuitry is designed to minimize this effect. Sensitive junctions are shielded with metal, and the photodiode area is very large relative to the op amp input circuitry.

If your light source is focused to a small area, be sure that it is properly aimed to fall on the photodiode. A narrowly focused beam falling on only the photodiode will provide improved settling times compared to a source that uniformly illuminates the full area of the die. If a narrowly focused light source were to miss the photodiode area and fall only on the op amp circuitry, the OPT101 would not perform properly. The large 0.09" x 0.09" (2.29mm x 2.29mm) photodiode area allows easy positioning of narrowly focused light sources. The photodiode area is easily visible, as it appears very dark compared to the surrounding active circuitry.

The incident angle of the light source also effects the apparent sensitivity in uniform irradiance. For small incident angles, the loss in sensitivity is simply due to the smaller effective light gathering area of the photodiode (proportional to the cosine of the angle). At a greater incident angle, light is diffracted and scattered by the package. These effects are shown in the typical performance curve "Responsivity vs Incident Angle."

DYNAMIC RESPONSE

Using the internal $1M\Omega$ resistor, the dynamic response of the photodiode/op amp combination can be modeled as a simple R \bullet C circuit with a -3dB cutoff frequency of

approximately 14kHz. The R and C values are $1M\Omega$ and 11pF respectively. By using external resistors, with less than 3pF parasitic capacitance, the frequency response can be improved. An external $1M\Omega$ resistor used in the configuration shown in Figure 4b will create a 23kHz bandwidth with the same 10^6V/A dc transimpedance gain. This yields a rise time of approximately 15µs (10% to 90%). Dynamic response is not limited by op amp slew rate. This is demonstrated by the dynamic response oscilloscope photographs showing virtually identical large-signal and small-signal response.

Dynamic response will vary with feedback resistor value as shown in the typical performance curve "Responsivity vs Frequency." Rise time (10% to 90%) will vary according to the –3dB bandwidth produced by a given feedback resistor value:

 $t_{r} = \frac{0.35}{f_{C}}$

where:

 t_r is the rise time (10% to 90%) f_C is the -3dB bandwidth

LINEARITY PERFORMANCE

The photodiode is operated in the photoconductive mode so the current output of the photodiode is very linear with radiant power throughout a wide range. Nonlinearity remains below approximately 0.05% up to 100µA photodiode current. The photodiode can produce output currents of 1mA or greater with high radiant power, but nonlinearity increases to several percent in this region.

This very linear performance at high radiant power assumes that the full photodiode area is uniformly illuminated. If the light source is focused to a small area of the photodiode, nonlinearity will occur at lower radiant power.

FIGURE 5. Three-Wire Remote Light Measurement.

FIGURE 6. Differential Light Measurement.

FIGURE 7. LED Output Regulation Circuit.

OPT202

PHOTODIODE WITH ON-CHIP AMPLIFIER

FEATURES

- BANDWIDTH: 50kHz
- PHOTODIODE SIZE: 0.090 x 0.090 inch
 (2.29 x 2.29mm)
- 1MΩ FEEDBACK RESISTOR
- HIGH RESPONSIVITY: 0.45A/W (650nm)
- LOW DARK ERRORS: 2mV
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 400µA
- TRANSPARENT 8-PIN DIP AND 5-PIN SIP
- HERMETIC 8-PIN CERAMIC DIP

APPLICATIONS

- MEDICAL INSTRUMENTATION
- LABORATORY INSTRUMENTATION
- POSITION AND PROXIMITY SENSORS
- PHOTOGRAPHIC ANALYZERS
- SMOKE DETECTORS

DESCRIPTION

The OPT202 is an opto-electronic integrated circuit containing a photodiode and transimpedance amplifier on a single dielectrically isolated chip. The transimpedance amplifier consists of a precision FET-input op amp and an on-chip metal film resistor. The 0.09×0.09 inch photodiode is operated at zero bias for excellent linearity and low dark current.

The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs such as leakage current errors, noise pick-up and gain peaking due to stray capacitance.

The OPT202 operates over a wide supply range (± 2.25 to $\pm 18V$) and supply current is only $400\mu A$. It is packaged in a transparent plastic 8-pin DIP or 5-pin SIP, specified for the 0°C to +70°C temperature range as well as a hermetic ceramic 8-pin DIP with a glass window, specified for the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROWN®

ELECTRICAL

 T_A = +25°C, V_S = ±15V, λ = 650nm, internal 1M Ω feedback resistor, unless otherwise noted.

		13000	OPT202P, W, G		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RESPONSIVITY					
Photodiode Current	650nm		0.45		A/W
Voltage Output	650nm		0.45		V/µW
vs Temperature			100		ppm/°C
Unit-to-Unit Variation	650nm		±5		%
				- NOTE: 1	
Nonlinearity ⁽¹⁾	FS Output = 10V		0.01		% of FS
Photodiode Area	(0.090 x 0.090in)		0.008		in ²
	(2.29 x 2.29mm)	CONCRETE TO SALVON	5.2	MO STAR WILHIPEDIO	mm ²
DARK ERRORS, RTO(2)	611 JEST JEST 1 JEST JEST	CONTRACT BURNS			
Offset Voltage, Output: P, W Packages	= E00/00		±0.5	±2	mV
G Package	100 Jan 40 T 41 July	2 40 2 2 2	±0.5	+3	mV
vs Temperature	CHARLE A PROPERTY AS A PROPERTY	SURE TURNS.	±10		μV/°C
vs Power Supply	$V_{s} = \pm 2.25V \text{ to } \pm 18V$		10	100	μV/V
	Measured BW = 0.1Hz to 100kHz	N 100 N N N N N	2.00	100	
Voltage Noise	Measured BW = 0.1Hz to 100kHz	dependent standards and e	1	SUCCESSION AND ADDRESS.	mVrms
RESISTOR—1MΩ Internal					
Resistance			1		MΩ
Tolerance: P, G Packages	NECCHOIDTIN		±0.5	±2	%
W Package	DESCRIPTIC		±0.5	canu	%
vs Temperature	1 00000000 00		50	Inn I manage	ppm/°C
FREQUENCY RESPONSE	njo na si sos i ilo sai i		211	MAC WILLOWS	PIPELL SI
Bandwidth, Large or Small-Signal, -3dB	containing a photod	190 loch	50.0	GE BOOLGOS	kHz
Rise Time, 10% to 90%	amplifier on a single d		10	Commenter of an	ac e us
			10		μѕ
Settling Time, 1% 0.1%			20	MARGROSS	and the second second
0.1%	FS to Dark		20	NAME OF THE PERSON OF	Pro-
0.01%	FS to Dark	(mn028)1	40		μs
Overload Recovery Time (to 1%)	100% Overdrive, V _S = ±15V	freezents)	44		μs
	100% Overdrive, V _S = ±5V		100	DARK ERRO	μѕ
	100% Overdrive, V _S = ±2.25V	1702-4-44	240	o v mons	μs
OUTPUT	mus manifem ent	1017 M	September 118/6/1/12	01141100	11/21/19 10
Voltage Output	$R_1 = 10k\Omega$	(V+) - 1.25	(V+) - 1		V
	$R_L = 5k\Omega$	(V+) - 2	(V+) - 1.5	and the second second	V
Capacitive Load, Stable Operation	The second secon	Alg. MA-9 C	10	e indrance	nF
Short-Circuit Current	signs such as leakage ca	q	±18	METTO 8-PIN	mA
POWER SUPPLY	ers or sub Bucked use?				
Specified Operating Voltage	The OPT202 operates of		±15		V
Operating Voltage Range	viggue bns (V81± or	±2.25	1211	±18	a c v
Quiescent Current		12.20	±400	±500	μА
mile Cas Ard and work passing the	V _O = 0		±400	1500	μА
TEMPERATURE RANGE	SIP, specified for the 0	0.15	COLUMN TO SERVICE	141 145 700	
Specification; P, W Packages	as well as a hermetic c	0/017	PLANTALIS	+70	°C
G Package	The second secon	-40	CO SCHOOLSES	+85	°C
Operating, P, W Packages	window, specified for	0	O THREAD!	+70	0° 60
G Package	ture range.	-55	AMALYZERS	+125	°C
		-25	THE RESERVE AND ADDRESS OF THE PARTY OF THE	+85	°C
Storage P, W Packages		-20		+00	
Storage P, W Packages G Package		-55	20/	+125	O. 248€

NOTES: (1) Deviation in percent of full scale from best-fit straight line. (2) Referred to Output. Includes all error sources.

SPECIFICATIONS (CONT)

ELECTRICAL

Op Amp Section of OPT202(1)

 $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

Al-		OPT202 Op Amp				
PARAMETER STATES OF THE STATES	CONDITIONS	MIN	TYP	MAX	UNITS	
INPUT Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature		E s	±0.5 ±5 10 1 doubles every 10°C	19.0	mV μV/°C μV/V pA	
NOISE Input Voltage Noise Voltage Noise Density, f = 10Hz f = 100Hz f = 1kHz Current Noise Density, f = 1kHz	convector to connection to MECHAN		30 25 15 0.8		nV/√Hz nV/√Hz nV/√Hz fA/√Hz	
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	Dia Thiolone Min. Pad S Backing	Processes consuming the	±14.4 106		V dB	
INPUT IMPEDANCE Differential Common-Mode		YHRA	10 ¹² 3	OPT202	Ω pF Ω pF	
OPEN-LOOP GAIN Open-Loop Voltage Gain	A FLEC		120	RATIONS	IOIRI dBO M	
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.1% 0.01%		TIGOTO TO TO THE	16 6 4 5	V+ 1 0	MHz V/μs μs μs	
OUTPUT Voltage Output Short-Circuit Current	$R_L = 10k\Omega$ $R_L = 5k\Omega$	(V+) - 1.25 (V+) - 2	(V+) - 1 (V+) - 1.5 ±18	A Roadbe	V V MA	
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current		±2.25	±15	±18 ±500	V V μA	

NOTE: (1) Op amp specifications provided for information and comparison only.

PHOTODIODE SPECIFICATIONS

 $T_A = +25$ °C, unless otherwise noted.

	used in black plastic	Photodiode of OPT202			ABSOLUTE !	
investo covingamental site satamana	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Photodiode Area	(0.090 x 0.090in)	aununima()	0.008	- House of the	in ²	
	(2.29 x 2.29mm)	O'CRA et OVES	5.2		mm ²	
Current Responsivity	650nm	Charles as their	0.45		A/W	
Dark Current	$V_{\rm D} = 0V^{(1)}$	O 681 + 61 O 6	500	100 00 000	fA	
vs Temperature 5 3 2 2 3 1 2 3	soldering, it is recorn	0-751-810/8	doubles every 10°C			
Capacitance	$V_{\rm D} = 0V^{(1)}$	OFFICE DISTRICT	600		pF	

NOTE: (1) Voltage Across Photodiode.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DICE INFORMATION

OPT202	DIE	TOPO	GRAPHY
---------------	-----	------	--------

NC: No Connection. Pads 8A and 8B must both be connected to common. Substrate Bias: The substrate is electrically connected to internal circuitry. Do not make electrical connection to the substrate.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	154 x 120 ±5	3.91 x 3.05 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		None

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	D' 1	±18V
Input Voltage Range (C		±V _S
Output Short-Circuit (to	ground)	Continuous
Operating Temperature	: P, W	25°C to +85°C
	G	55°C to +125°C
Storage Temperature:	P, W	25°C to +85°C
	G	55°C to +125°C
Junction Temperature:	P, W	+85°C
	G	+150°C
Lead Temperature (sole	dering, 10s)	+300°C
(Vapor-Phase Solder	ng Not Recommended	on Plastic Packages)

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPT202P	8-Pin Plastic DIP	006-1
OPT202W	5-Pin Plastic SIP	321
OPT202G	8-Pin Ceramic DIP	161-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

MOISTURE SENSITIVITY AND SOLDERING

Clear plastic does not contain the structural-enhancing fillers used in black plastic molding compound. As a result, clear plastic is more sensitive to environmental stress than black plastic. This can cause difficulties if devices have been stored in high humidity prior to soldering. The rapid heating during soldering can stress wire bonds and cause failures. Prior to soldering, it is recommended that plastic devices be baked-out at 85°C for 24 hours.

The fire-retardant fillers used in black plastic are not compatible with clear molding compound. The OPT202 plastic packages cannot meet flammability test, UL-94.

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required to operate the OPT202. Applications with high-impedance power supplies may require decoupling capacitors located close to the device pins as shown. Output is zero volts with no light and increases with increasing illumination.

FIGURE 1. Basic Circuit Connections.

Photodiode current, I_D , is proportional to the radiant power or flux (in watts) falling on the photodiode. At a wavelength of 650nm (visible red) the photodiode Responsivity, R_I , is approximately 0.45A/W. Responsivity at other wavelengths is shown in the typical performance curve "Responsivity vs Wavelength."

The typical performance curve "Output Voltage vs Radiant Power" shows the response throughout a wide range of radiant power. The response curve "Output Voltage vs Irradiance" is based on the photodiode area of $5.23 \times 10^{-6} \text{m}^2$.

The OPT202's voltage output is the product of the photodiode current times the feedback resistor, (I_DR_F) . The internal feedback resistor is laser trimmed to $1M\Omega\pm2\%$. Using this resistor, the output voltage responsivity, R_V , is approximately $0.45V/\mu W$ at 650nm wavelength.

An external resistor can be connected to set a different voltage responsivity. Best dynamic performance is achieved by connecting $R_{\rm EXT}$ in series (for $R_{\rm F}>1 M\Omega$), or in parallel (for $R_{\rm F}<1 M\Omega$), with the internal resistor as shown in Figure 2. Placing the external resistor in parallel with the internal resistor requires the DIP package. These connections take advantage of on-chip capacitive guarding of the internal resistor, which improves dynamic performance. For values of $R_{\rm F}$ less than $1 M\Omega$, an external capacitor, $C_{\rm EXT}$, should be connected in parallel with $R_{\rm F}$ (see Figure 2). This capacitor eliminates gain peaking and prevents instability. The value of $C_{\rm EXT}$ can be read from the table in Figure 2.

LIGHT SOURCE POSITIONING

The OPT202 is 100% tested with a light source that uniformly illuminates the full area of the integrated circuit, including the op amp. Although all IC amplifiers are light-sensitive to

some degree, the OPT202 op amp circuitry is designed to minimize this effect. Sensitive junctions are shielded with metal, and differential stages are cross-coupled. Furthermore, the photodiode area is very large relative to the op amp input circuitry making these effects negligible.

If your light source is focused to a small area, be sure that it is properly aimed to fall on the photodiode. If a narrowly focused light source were to miss the photodiode area and fall only on the op amp circuitry, the OPT202 would not perform properly. The large (0.090 x 0.090 inch) photodiode area allows easy positioning of narrowly focused light sources. The photodiode area is easily visible—it appears very dark compared to the surrounding active circuitry.

The incident angle of the light source also affects the apparent sensitivity in uniform irradiance. For small incident angles, the loss in sensitivity is simply due to the smaller effective light gathering area of the photodiode (proportional to the cosine of the angle). At a greater incident angle, light is diffused by the side of the package. These effects are shown in the typical performance curve "Response vs Incident Angle."

FIGURE 2. Using External Feedback Resistor.

DARK ERRORS

The dark errors in the specification table include all sources. The dominant error source is the input offset voltage of the op amp. Photodiode dark current and input bias current of the op amp are in the 2pA range and contribute virtually no offset error at room temperature. Dark current and input bias current double for each 10°C above 25°C . At 70°C , the error current can be approximately 100pA. This would produce a 1mV offset with $R_F=10\text{M}\Omega$. The OPT202 is useful with feedback resistors of $100\text{M}\Omega$ or greater at room temperature. The dark output voltage can be trimmed to zero with the optional circuit shown in Figure 3.

When used with very large feedback resistors, tiny leakage currents on the circuit board can degrade the performance of the OPT202. Careful circuit board design and clean assembly procedures will help achieve best performance. A "guard ring" on the circuit board can help minimize leakage to the critical non-inverting input (pin 2). This guard ring should encircle pin 2 and connect to Common, pin 8.

FIGURE 3. Dark Error (Offset) Adjustment Circuit.

LINEARITY PERFORMANCE

Current output of the photodiode is very linear with radiant power throughout a wide range. Nonlinearity remains below approximately 0.01% up to $100\mu A$ photodiode current. The photodiode can produce output currents of 10mA or greater with high radiant power, but nonlinearity increases to several percent in this region.

This very linear performance at high radiant power assumes that the full photodiode area is uniformly illuminated. If the light source is focused to a small area of the photodiode, nonlinearity will occur at lower radiant power.

DYNAMIC RESPONSE

Using the internal $1M\Omega$ resistor, the dynamic response of the photodiode/op amp combination can be modeled as a

simple R/C circuit with a -3dB cutoff frequency of 50kHz. This yields a rise time of approximately 10µs (10% to 90%). Dynamic response is not limited by op amp slew rate. This is demonstrated by the dynamic response oscilloscope photographs showing virtually identical large-signal and small-signal response.

Dynamic response will vary with feedback resistor value as shown in the typical performance curve "Voltage Output Responsivity vs Frequency." Rise time (10% to 90%) will vary according to the –3dB bandwidth produced by a given feedback resistor value—

$$t_R \approx \frac{0.35}{f_C}$$
 (70)

where:

 t_R is the rise time (10% to 90%) f_C is the -3dB bandwidth

NOISE PERFORMANCE

Noise performance of the OPT202 is determined by the op amp characteristics in conjunction with the feedback components and photodiode capacitance. The typical performance curve "Output Noise Voltage vs Measurement Bandwidth" shows how the noise varies with R_F and measured bandwidth (1Hz to the indicated frequency). The signal bandwidth of the OPT202 is indicated on the curves. Noise can be reduced by filtering the output with a cutoff frequency equal to the signal bandwidth.

Output noise increases in proportion to the square-root of the feedback resistance, while responsivity increases linearly with feedback resistance. So best signal-to-noise ratio is achieved with large feedback resistance. This comes with the trade-off of decreased bandwidth.

The noise performance of a photodetector is sometimes characterized by Noise Effective Power (NEP). This is the radiant power which would produce an output signal equal to the noise level. NEP has the units of radiant power (watts). The typical performance curve "Noise Effective Power vs Measurement Bandwidth" shows how NEP varies with $R_{\rm F}$ and measurement bandwidth.

FIGURE 4. Responsivity (Gain) Adjustment Circuit.

FIGURE 5. "T" Feedback Network.

FIGURE 6. Current Output Circuit.

Other application circuits can be seen in the OPT209 data sheet.

FIGURE 7. Single Power Supply Operation.

FIGURE 8. DC Restoration Rejects Unwanted Steady-State Background Light.

OPTICAL SENSORS

Halling Address PD Box 11400 . Tueson, AZ 85734 . Sirest Address 6700 S. Tueson SWG. . Tueson, AZ 85705

Tel: (20) 76-1111 - Two: 910-928-1111 - Cable: EBROORP - Telex: 056-6591 - FAX: (520) 881-1310 - dimediale Product Info: (50) 548-6122

OPT209

ABRIDGED DATA SHEET
For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11232

PHOTODIODE WITH ON-CHIP AMPLIFIER

FEATURES TO STORY STORY OF THE PROPERTY OF THE

- PHOTODIODE SIZE: 0.090 x 0.090 inch (2.29 x 2.29mm)
- 1MΩ FEEDBACK RESISTOR
- HIGH RESPONSIVITY: 0.45A/W (650nm)
- LOW DARK ERRORS: 2mV
- BANDWIDTH: 16kHz
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 400µA
- TRANSPARENT 8-PIN DIP

APPLICATIONS

- MEDICAL INSTRUMENTATION
- LABORATORY INSTRUMENTATION
- POSITION AND PROXIMITY SENSORS
- PHOTOGRAPHIC ANALYZERS
- SMOKE DETECTORS

DESCRIPTION

The OPT209 is an opto-electronic integrated circuit containing a photodiode and transimpedance amplifier on a single dielectrically isolated chip. The transimpedance amplifier consists of a precision FET-input op amp and an on-chip metal film resistor. The 0.09 x 0.09 inch photodiode is operated at zero bias for excellent linearity and low dark current.

The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs such as leakage current errors, noise pick-up and gain peaking due to stray capacitance.

The OPT209 operates over a wide supply range (± 2.25 to $\pm 18V$) and supply current is only 400 μ A. It is packaged in a transparent plastic 8-pin DIP, specified for the 0°C to 70°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

		OPT202 Cp Anp		0		OPT209P			
PARAMETER			PYT	CONDITIONS	S ON MIN	TYP	MAX	UNITS	
RESPONSIVITY Photodiode Current Voltage Output vs Temperature Unit-to-Unit Variatio Nonlinearity(1) Photodiode Area		10°51 (0°5	1.06) 61: 01: 1: (ve asidu	650nm	MitorVSS1×gV	0.45 0.45 100 ±5 0.01 0.008 5.2		A/W V/μW ppm/°C % % of FS in² mm²	
DARK ERRORS, F Offset Voltage, Out vs Temperature vs Power Supply Voltage Noise				V _S = ±2.25V to ±18V ured BW = 0.1 to 100kHz		±0.5 ±10 10 350	±2 100	mV μV/°C	
RESISTOR—1MΩ Resistance Tolerance vs Temperature	Internal	3	104 104 104			1 ±0.5 50	egnsA suc notices ±2	MΩ % ppm/°C	
FREQUENCY RES Bandwidth, Large of Rise Time, 10% to Settling Time, 1% 0.1% 0.01% Overload Recovery	r Small-Signal, 90%	–3dB	100	FS to Dark FS to Dark FS to Dark % Overdrive, $V_S = \pm 15V$ % Overdrive, $V_S = \pm 5V$ % Overdrive, $V_S = \pm 2.25V$		16 22 60 85 100 44 100 240	III e Gain peuce Geuce Se	kHz µs µs µs µs µs µs µs	
OUTPUT Voltage Output Capacitive Load, S Short-Circuit Currer		3.7	-(=V) -(=V) V±	$R_L = 10k\Omega$ $R_L = 5k\Omega$	(V+) - 1.25 (V+) - 2	(V+) - 1 (V+) - 1.5 1 ±18	10)	V V nF mA	
POWER SUPPLY Specified Operating Operating Voltage Quiescent Current			Us. DA:	00.54 V _O = 0	±2.25	±15	±18 ±500	V V μA	
TEMPERATURE R Specification, Open Storage Thermal Resistance	ating				0 -25	100	+70 +85	°C °C °C,W	

NOTES: (1) Deviation in percent of full scale from best-fit straight line. (2) Referred to Output. Includes all error sources.

PHOTODIODE SPECIFICATIONS

 $T_A = +25$ °C, unless otherwise noted.

		Photodiode of OPT209			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Photodiode Area	(0.090 x 0.090in)		0.008	N. T. W. T.	in ²
	(2.29 x 2.29mm)		5.1		mm ²
Current Responsivity	650nm		0.45		A/W
Dark Current	$V_{\rm D} = 0V^{(1)}$		500		fA
vs Temperature			doubles every 10°C		
Capacitance	$V_D = 0V^{(1)}$		600		pF

NOTE: (1) Voltage Across Photodiode.

SPECIFICATIONS (CONT)

ELECTRICAL

Op Amp Section of OPT209(1)

SPECIFICATIONS

 $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

		GPT208P			OPT209 Op Amp		UNITS
PARAMETER		GYT	CONDITIONS	SU MIN 100	TYP	MAX	
INPUT Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature		0,45 0.45 100 ±5	$V_S = \pm 2.25 V \text{ to } \pm 18 V$	650nm 650nm 650nm 850nm	±0.5 ±5 10 1 doubles every 10°C	pri mot	mV μV/°C μV/V pA
NOISE Input Voltage Noise Voltage Noise Densit	f=100Hz f=1kHz	8.0.0 8.3 2.0½ 07±		(mas.s x 6s.3) (mas.s x 6s.3)	30 25 15	MOTA fugli	nV/√Hz nV/√Hz nV/√Hz
Current Noise Densit INPUT VOLTAGE R.		07		V81± of V85.9± =	V 0.8		fA/√Hz
Common-Mode Input Common-Mode Reje					±14.4 106	i internal	dB
INPUT IMPEDANCE Differential Common-Mode	- 4	oe oe			10 ¹² 3 10 ¹² 3	SPONSE	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage (Gain	16 22 60		FS to Dark	120	Jangi Silentic 10 J*08 d	dB
FREQUENCY RESP Gain-Bandwidth Prod Slew Rate Settling Time 0.1% 0.01%	duct	- 88 - 907 - 95 - 901 - 985		RS to Dark PS to Dark Overdrive, $V_8 = \pm 1\mathrm{SV}$ Overdrive, $V_8 = \pm 1\mathrm{SV}$ Everdrive, $V_9 = \pm 2\mathrm{V}$	4 6 4 4 5	(381 ci) 9miT (MHz V/μs μs μs
OUTPUT Voltage Output Short-Circuit Current		f - (4V); e r - (+V)	$R_L = 10k\Omega$ $R_L = 5k\Omega$	(V+) - 1.25 (V+) - 2	(V+) - 1 (V+) - 1.5 ±18	Siable Operation	TUSTIC V slo V mA
POWER SUPPLY Specified Operating Voltage Ra Quiescent Current		alt.	l _O = 0	±2.25	±15 ±400	±18 ±500	OWL V SUPPLIES

NOTE: (1) Op amp specifications provided for information and comparison only

PHOTODIODE SPECIFICATIONS

		61986		XAM	
			0.008		
	BS0nm. V _{V=} over				
			doubles every 10°C		

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PAD	FUNCTION
1	V+
2	-In
3	V-
4	1MΩ Feedback
5	Output
6	NC NC
7	NC NC
8A, 8B	Common

NC: No Connection. Pads 8A and 8B must both be connected to common. Substrate Bias: The substrate is electrically connected to internal circuitry. Do not make electrical connection to the substrate.

MECHANICAL INFORMATION

23 2 60 2	MILS (0.001")	MILLIMETERS
Die Size	154 x 120 ±5	3.91 x 3.05 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing	A	None

OPT209 DIE TOPOGRAPHY

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range (Common Pin)	±V _S
Output Short-Circuit (to ground)	
Operating Temperature	25°C to +85°C
Storage Temperature	25°C to +85°C
Junction Temperature	+85°C
Lead Temperature (soldering, 10s)	+300°C
(Vapor-Phase Soldering Not Recommended)

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPT209P	8-Pin DIP	006-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

(3)

MOISTURE SENSITIVITY AND SOLDERING

Clear plastic does not contain the structural-enhancing fillers used in black plastic molding compound. As a result, clear plastic is more sensitive to environmental stress than black plastic. This can cause difficulties if devices have been stored in high humidity prior to soldering. The rapid heating during soldering can stress wire bonds and cause failures. Prior to soldering, it is recommended that devices be baked-out at 85°C for 24 hours.

The fire-retardant fillers used in black plastic are not compatible with clear molding compound. The OPT209 cannot meet flammability test, UL-94.

OPT210

MONOLITHIC PHOTODIODE AND AMPLIFIER 300kHz Bandwidth at $R_F = 1M\Omega$

FEATURES

- BOOTSTRAP ANODE DRIVE:
 Extends Bandwidth: 900kHz (R_F = 100KΩ)
 Reduces Noise
- LARGE PHOTODIODE: 0.09" x 0.09"
- HIGH RESPONSIVITY: 0.45A/W (650nm)
- EXCELLENT SPECTRAL RESPONSE
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- TRANSPARENT DIP, SIP AND SURFACE-MOUNT PACKAGES

APPLICATIONS

- BARCODE SCANNERS
- MEDICAL INSTRUMENTATION
- LABORATORY INSTRUMENTATION
- POSITION AND PROXIMITY DETECTORS
- PARTICLE DETECTORS

R_F 1 (2) 2 (3) OPT210 5 (5) V_O DIP Pins (SIP Pins)

DESCRIPTION

The OPT210 is a photodetector consisting of a high performance silicon photodiode and precision FET-input transimpedance amplifier integrated on a single monolithic chip. Output is an analog voltage proportional to light intensity.

The large 0.09" x 0.09" photodiode is operated at low bias voltage for low dark current and excellent linearity. A novel photodiode anode bootstrap circuit reduces the effects of photodiode capacitance to extend bandwidth and reduces noise.

The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered with discrete designs such as leakage current errors, noise pick-up and gain peaking due to stray capacitance.

The OPT210 operates from ± 2.25 to $\pm 18V$ supplies and quiescent current is only 2mA. Available in a transparent 8-pin DIP, 8-lead surface-mount and 5-pin SIP, it is specified for 0° to 70°C operation.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85704 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

OP AMP SPECIFICATIONS

SPECIFICATIONS

At $T_A = +25$ °C, $V_S = \pm 15$ V, $\lambda = 650$ nm, External $R_F = 1$ M Ω , $R_L = 10$ k Ω , unless otherwise noted.

MAX WHITE	98 A 40	Mine	swominyoo	OPT210P OPT210W		
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RESPONSIVITY Photodiode Current Unit-to-Unit Variation Voltage Output Nonlinearity Photodiode Area	$\lambda = 6$	λ = 650nm 50nm, External R _F = 1 (0.09 x 0.09in) (2.29 x 2.29mm)	ΜΩ	0.45 ±5 0.45 0.01 0.008 5.2		A/W % V/μW % of FS in ² mm ²
DARK ERROR, RTO Offset Voltage vs Temperature vs Power Supply Voltage Noise		V _S = ±2.25V to ±18V W = 0.01Hz to 100kHz		±2 ±35 100 160	±10	mV μV/°C μV/V μVrms
FREQUENCY RESPONSE Bandwidth Rise Time Settling Time, 1%	8.0 85.0±2.25 85.0±2.25	External $R_F = 1M\Omega$ 10% to 90% FS to Dark step	W = 0.01M2 (p. (0)Leta	300 1.2 3	Plaggard too	kHz μs μs
0.1% 0.01% Overload Recovery	an Epifotxa	100% Overdrive		8 20 7	SE errance Limpedance	μs μs μs
OUTPUT Voltage Output, Positive Positive Negative(1) Capacitive Load, Stable Operation Short-Circuit Current(2)	70 85 22	$R_L = 10 k\Omega$ $R_L = 5 k\Omega$ $R_L = 10 k\Omega$	(V+)-1.25 -0.4	(V+)-0.75 (V+)-1 -0.5 500 +50	N SECONSE	V V pF mA
POWER SUPPLY Operating Range Quiescent Current	398 398 N8		±2.25	+2.0/-1.7	±18 ±4	V mA
TEMPERATURE RANGE Specification Operating Storage θ_{JA}	27.3-(+V) 1-(+V) 3.0- 308	BS.1-(+V) 5.0-	0 0 0 -25	100	70 70 85	°C °C °C °C

NOTES: (1) Output typically swings to 0.5V below the voltage applied to the non-inverting input terminal, which is normally connected to ground. (2) Positive current (sourcing) is limited. Negative current (sinking) is not limited.

PHOTODIODE SPECIFICATIONS

PARAMETER				PHOTODIODE			
		CONDITIONS MI	MIN	TYP	MAX	UNITS	
Photodiode Area Current Responsivity		$(0.09 \times 0.09in)$ $(2.29 \times 2.29mm)$ $\lambda = 650nm$.yi	0.008 5.2 0.45	maa not bebivong	in ² mm ² A/W	
Dark Current vs Temperature	REPRES TVP	V _D = -1.2V	внопкию	865 70 Doubles every 10°C		μΑ/W/cm² pA	
Capacitance Effective Capacitance ⁽¹⁾	9.7-	$V_D = -1.2V$ $V_D = -1.2V$		550		pF 1997	

NOTES: (1) Effect of photodiode capacitance is reduced by internal buffer bootstrap drive. See text

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OP AMP SPECIFICATIONS

Op amp specifications provided for comparative information only.

	DPY210P	OP AMP				
PARAMETER	OPTETOW	CONDITIONS	MIN	TYP	MAX	UNITS
NPUT XAM	TYP	MIN	SNOITIGNO			ARAMETER
Offset Voltage				±2		VIIV mV
vs Temperature	0.46		1 = 650nm	±35		μV/°C
vs Power Supply	de l			100	00	μV/V
Input Bias Current	0.45		n, External R _e = IMQ	X = 650m		fueruO ensilo
Inverting Input	10.0			15		pA
vs Temperature	800.0		(niec.o x eo.t	Doubles every 10°C		senA ebolicated
Non-inverting Input	5.2		29 x 2.29mm)	300		μА
NOISE	2 12 17 17 17				OTI	ARK ERROR.
Voltage Noise	±2				Page 1 and Carlo	epstioV testio
f = 10Hz	#85 E			20		nV/√Hz
f = 100Hz	007		±2.25V to ±18V	9 9	vio	nV/√Hz
f = 1kHz	160		0.01Hz (0.100Hz)			nV/√Hz
Current Noise Density, Inverting In	put	BW = 0.01Hz to 100kH		0.8	2014002	fA/√Hz
INPUT VOLTAGE RANGE	300		OM: = sA lemi	ix3		rfibiwanal
Common-Mode Input Range(1)	1.2		10% to 90%	V _S ±2.25		VT ear
Common-Mode Rejection	3		quie Dark step	65		dB
INPUT IMPEDANCE	8			1000	34	-0
Inverting Input Impedance	20			3x1010 3	9614	Ω pF
Non-Inverting Input Impedance	7		evitorevO 250	250	Y	kΩ
OPEN-LOOP GAIN						104100
Open-Loop Voltage Gain	(V+)-0.75	$V_0 = 0V \text{ to } +13.75V$	$R_{L} = 10 k\Omega$	70	avitiso	dB
FREQUENCY RESPONSE	8.0-	a.0-	Pt = 10kΩ		Devitopel	
Bandwidth, Small Signal	008			35	nething on alder	MHz
Rise Time, Large Signal	08+	10% to 90%		25	Sine	ns no l
Settling Time, 1%		10V step		240		ns
0.1%				390		ns
0.01%	2.0-1.7			800		ns
Overload Recovery	1,1-10,50	100% Overdrive		7		μs
OUTPUT	films file				SEMAR	BRALAND MAIN
Voltage Output, Positive		$R_L = 10k\Omega$	(V+)-1.25	(V+)-0.75	15111	nol V Ded
Positive		$R_L = 5k\Omega$		(V+)-1		Vorac V
Negative ⁽¹⁾	1001	$R_L = 10k\Omega$	-0.4	-0.5		
Capacitive Load, Stable Operation	n	- de de		500		pF
	on is normally done	werling input terminal, while	e englied to the non-in	+50 ad Ve 0	typically swings to	Tugino mA
POWER SUPPLY			florited.	on al (griddia) Inemuo	limited. Negative	ii (gniosues) iner
Operating Voltage			±2.25		±18	V
Quiescent Current				+1.7/-1.4	±4	mA

NOTES: (1) Output typically swings to 0.5V below the voltage applied to the non-inverting input terminal, which is normally connected to ground. (2) Positive current (sourcing) is limited. Negative current (sinking) is not limited.

BUFFER SPECIFICATIONS

Buffer specifications provided for comparative information only.

			BUFFER			
PARAMETER	200	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT Offset Voltage ⁽¹⁾ Input Bias Current	550 10		VS.1-≈ aV V2.1-≈ aV	-1.2 15	(Peonsale	
vs Temperature Input Impedance		strap drive. See text	niemsi buller bor			ρΑ Ω pF
FREQUENCY RESPONSE Bandwidth, Small Signal				500		MHz
OUTPUT Current Voltage Gain				±200 0.99		μA V/V
O!		of yffidianogen on services I/W	±2.25	±0.3	±18	V mA

NOTE: (1) Intentional voltage offset to reverse bias photodiode.

substrate.	
	INFORMATION

MECHANICAL INFORMATION

1/	MILS (0.001")	MILLIMETERS
Die Size	148 x 104 ±5	3.76 x 2.64 ±0.13
Die Thickness	20±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		None

Substrate Bias: The substrate is electrically connected to

internal circuitry. Do not make electrical connection to the

V+ -In V-Output

OPT210 DIE TOPOGRAPHY

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range (Common Pin)	±V _S
Output Short-Circuit (to ground)	Continuous
Operating Temperature: P, W	25°C to +85°C
Storage Temperature: P, W	-25°C to +85°C
Junction Temperature: P, W	+85°C
Lead Temperature (soldering, 10s) (Vapor-Phase Soldering Not Recomm	

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPT210P	8-Pin Plastic DIP	006-5
OPT210P-J	8-Lead Surface Mount(2)	006-6
OPT210W	5-Pin Plastic SIP	321-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) 8-pin DIP with leads formed for surface mounting.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

MOISTURE SENSITIVITY AND SOLDERING

Clear plastic does not contain the structural-enhancing fillers used in black plastic molding compound. As a result, clear plastic is more sensitive to environmental stress than black plastic. This can cause difficulties if devices have been stored in high humidity prior to soldering. The rapid heating during soldering can stress wire bonds and cause failures. Prior to soldering, it is recommended that plastic devices be baked-out at 85°C for 24 hours.

The fire-retardant fillers used in black plastic are not compatible with clear molding compound. The OPT210 plastic packages cannot meet flammability test, UL-94.

OUTPUT NOISE VOLTAGE
VS MEASUREMENT BANDWIDTH

APPLICATIONS INFORMATION

Basic operation of the OPT210 is shown in Figure 1. Power supply bypass capacitors should be connected near the device pins as shown. Noise performance of the OPT210 can be degraded by the high frequency noise on the power supplies. Resistors in series with the power supply pins as shown can be used (optional) to help filter power supply noise.

An external feedback resistor, R_F , is connected from –In to the V_O terminal as shown in Figure 1. Feedback resistors of $1M\Omega$ or less require parallel capacitor, C_F . See the table of values in Figure 1.

FIGURE 1. Basic Operation.

Bandwidth varies with feedback resistor value. To achieve widest bandwidth with resistors greater than $1M\Omega,$ use care to minimize parasitic parallel capacitance. For widest bandwidth with resistors greater than $2M\Omega,$ connect two resistors $(R_F/2)$ in series. Airwiring this interconnection provides lowest capacitance. Although the OPT210 is usable with feedback resistors of $100M\Omega$ and higher, with $R_F \geq 10M\Omega$ the model OPT211 will provide lower dc errors and reduced noise.

The OPT210's output voltage is the product of the photodiode current times the external feedback resistor, R_F . Photodiode current, I_D , is proportional to the radiant power or flux (in watts) falling on the photodiode. At a wavelength of 650nm (visible red) the photodiode *Responsivity*, R_I , is approximately 0.45A/W. Responsivity at other wavelengths is shown in the typical performance curve "Responsivity vs Wavelength."

The typical performance curve "Output Voltage vs Radiant Power" shows the response throughout a wide range of radiant power and feedback resistor values. The response curve "Output Voltage vs Irradiance" is based on the photodiode area of 5.23x10⁻⁶m².

BOOTSTRAP BUFFER

The photodiode's anode is driven by an internal high speed voltage buffer shown in Figure 1. This variation on the classical transimpedance amplifier circuit reduces the effects of photodiode capacitance. The effective photodiode capacitance is reduced from approximately 550pF to 10pF with this bootstrap drive technique. This improves bandwidth and reduces noise.

The output voltage of the buffer is offset approximately 1.2V below the input. This reverse biases the photodiode for reduced capacitance.

OP AMP

A special op amp design is used to achieve wide bandwidth. The op amp output voltage cannot swing lower than 0.5V below the non-inverting input voltage. Since photodiode current always produces a positive output voltage, this does not limit the required output swing.

The inverting input is designed for very low input bias current—approximately 15pA. The non-inverting input has much larger bias current—approximately 300µA flows out of this terminal.

FIGURE 2. Adjustable Output Offset.

An offset voltage can be connected to the non-inverting input as shown in Figure 2. A voltage applied to the non-inverting input is summed at the output. Because the non-inverting input bias current is high (approximately $300\mu A$), it should be driven by a low impedance such as the buffer-connected op amp shown.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

The OPT210 can be connected to operate from a single power supply as shown in Figure 3. The non-inverting input bias current flows through a zener diode to provide a bias voltage. The output voltage is referenced to this bias point. cosine of the incident angle). At a greater incident angle, light is diffused by the side of the package. These effects are shown in the typical performance curve, "Response vs Incident Angle."

FIGURE 3. Single Power Supply Operation.

DARK ERRORS logger in alto-obert whitestev municipal

The dark errors in the specification table include all sources with $R_F=1M\Omega$. The dominant error source is the input offset voltage of the op amp. Photodiode dark current is approximately 70pA and the combined input bias current of the op amp and buffer is approximately 30pA. Photodiode dark current and input bias current total approximately 100pA at 25°C and double for each 10°C above 25°C. At 70°C , the total error current is approximately 2A. With $R_F=1M\Omega$, this would produce a 2mV offset voltage in addition to the initial amplifier offset voltage (10mV max) at 25°C. The dark output voltage can be trimmed to zero with the optional circuit shown in Figure 2.

LIGHT SOURCE POSITIONING OF OWN OF DOOR OF THE

The OPT210 is tested with a light source that uniformly illuminates the full integrated circuit area, including the op amp. Although all IC amplifiers are light sensitive to some degree, the OPT210 op amp circuitry is designed to minimize this effect. Sensitive junctions are shielded with metal where possible. Furthermore, the photodiode area is very large compared to the op amp circuitry making these effects negligible.

If your light source is focused to a small area, be sure that it is properly aimed to fall on the photodiode. If a narrowly focused light source were to miss the photodiode and fall on the op amp circuitry, the OPT210 would not perform properly. The large photodiode area is clearly visible as a very dark area slightly offset from the center of the IC.

The incident angle of the light source also affects the apparent sensitivity in uniform irradiance. For small incident angles, the loss in sensitivity is due to the smaller effective light gathering area of the photodiode (proportional to the

LINEARITY PERFORMANCE

Photodiode current is very linear with radiant power throughout its range. Nonlinearity remains below approximately 0.01% up to $200\mu A$. The anode buffer drive, however, is limited to approximately $200\mu A$. This produces an abrupt limit to photodiode output current when radiant power reaches approximately $450\mu W$.

Best linearity is achieved with the photodiode uniformly illuminated. A light source focused to a very small beam, illuminating only a small percentage of the photodiode area, may produce a higher nonlinearity.

NOISE PERFORMANCE TOWOMAS EGIW &

Noise performance of the OPT210 is determined by the op amp characteristics in conjunction with the feedback components, photodiode capacitance, and buffer performance. The typical performance curve "Output Noise Voltage vs Measurement Bandwidth" shows how the noise varies with $R_{\rm F}$ and measured bandwidth (0.1Hz to the indicated frequency). The signal bandwidth of the OPT210 is indicated on the curves. Noise can be reduced by filtering the output with a cutoff frequency equal to the signal bandwidth.

Output noise increases in proportion to the square-root of the feedback resistance, while responsivity increases linearly with feedback resistance. So best signal-to-noise ratio is achieved with large feedback resistance. This comes with the trade-off of decreased bandwidth.

The noise performance of a photodetector is sometimes characterized by *Noise Effective Power* (NEP). This is the radiant power which would produce an output signal equal to the noise level. NEP has the units of radiant power (watts), or Watts/\(\overline{Hz}\) to convey spectral information about the noise. The typical performance curve "Output Noise Voltage vs Measurement Bandwidth" is also scaled for NEP on the right-hand side.

MONOLITHIC PHOTODIODE AND AMPLIFIER

FEATURES

• WIDE BANDWIDTH, HIGH RESPONSIVITY:

oniR _F oreb zi 0	BAN	BANDWIDTH	
1ΜΩ	50kHz	*150kHz	
100ΜΩ	5kHz	*13kHz	

*with bootstrap buffer

 PHOTODIODE SIZE: 0.090 x 0.090 inch (2.29 x 2.29mm)

- HIGH RESPONSIVITY: 0.45A/W (650nm)
- LOW DARK ERRORS: 2mV max
- EXCELLENT SPECTRAL RESPONSE
- LOW QUIESCENT CURRENT: 400µA
- TRANSPARENT 8-PIN DIP

APPLICATIONS

- MEDICAL INSTRUMENTATION
- LABORATORY INSTRUMENTATION
- POSITION AND PROXIMITY SENSORS
- PHOTOGRAPHIC ANALYZERS
- BARCODE SCANNERS
- SMOKE DETECTORS

DESCRIPTION

The OPT211 is a monolithic photodiode with on-chip FET-input transpedance amplifier, that provides wide bandwidth at very high gains. Uncommitted input and feedback nodes allow a variety of feedback options for maximum versatility. Trade-offs in responsivity (gain), bandwidth and SNR can easily be made.

The monolithic combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs such as leakage current errors, noise pickup and gain peaking due to stray capacitance. The 0.09 x 0.09 inch photodiode is operated at zero bias for excellent linearity and low dark current. Direct access to the detector's anode allows photodiode bootstrapping, which increases speed performance.

The OPT211 operates over a wide supply range (±2.25V to ±18V) and supply current is only 400µA. It is packaged in a transparent plastic 8-pin DIP specified for the 0°C to 70°C temperature range.

SPECTRAL RESPONSIVITY

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

	OPT211 Op Amp(1)		OPT211P		
PARAMETER XAM	CONDITIO	ONS MINO	TYP	MAX	UNITS
RESPONSIVITY Photodiode Current Unit-to-Unit Variation Voltage Output Nonlinearity Photodiode Area	650nm 650nm λ = 650nm, R _f (0.090 × 0.090 (2.29 × 2.25)	= 1MΩ VBI = 01VB2.SE = 2V	0.45 ±5 0.45 0.01 0.008 5.2		A/W % V/μW % of FS in ² mm ²
DARK ERRORS, RTO ⁽¹⁾ Offset Voltage, Output vs Temperature vs Power Supply Voltage Noise, Dark	$V_{\rm S}$ = ±2.25V t Dark, f _B = 0.1Hz		±0.5 ±10 10	±2	mV μV/°C μV/V mVrms
FREQUENCY RESPONSE Bandwidth $ \label{eq:Response} $ Rise Time, 10% to 90%, $R_F=1M\Omega$ Settling Time, FS to Dark	Anode Grour Anode Bootstr Anode Grour Anode Bootstr Anode Grour	apped ⁽³⁾ nded ⁽²⁾ apped ⁽³⁾	50 150 5 2	sily u v Qain	kHz kHz μs μs
1% 0.1% 0.01% 100% Overload Recovery Time	FS to Dark ($V_S = \pm 5$ $V_S = \pm 2.2$	v	10 25 30 44 100 240	9840-9 Wipubo	µs µs µs µs µs µs
OUTPUT Voltage Output Capacitive Load, Stable Operation ⁽⁴⁾ Short-Circuit Current	R _L = 10k		(V+) - 1 (V+) - 1.5 250 ±18	lo	V V pF mA
POWER SUPPLY Operating Voltage Range Quiescent Current	V _{OUT} = 0	±2.25	±15 ±400	±18 ±500	V μA
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance, $\theta_{\rm JA}$		0 0 -25	100	+70 +70 +85	°C °C °C °C/W

NOTES: (1) Referred to Output. Includes all error sources. (2) See Figure 1. (3) See Figure 3. (4) See Figure 2.

PHOTODIODE SPECIFICATIONS

 $T_A = +25$ °C, $\lambda = 650$ nm, unless otherwise noted.

		Photodiode of OPT211			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Photodiode Area	(0.090 x 0.090 inches)		0.008		in ²
	(2.29 x 2.29mm)		5.2		mm ²
Current Responsivity	$\lambda = 650$ nm		0.45		A/W
			865		μA/W/cm ²
Dark Current	$V_D = 0V$		500		fA
vs Temperature			doubles every 10°C		
Capacitance	$V_D = 0V$		600		pF

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

OP AMP SPECIFICATIONS

 T_A = +25°C, V_S = ±15V, R_L = 10k Ω , unless otherwise noted.

	0912110			OPT211 Op Amp ⁽¹⁾		
PARAMETER	SYT	CONDITIONS	SM MIN MOS	TYP	MAX	A UNITS
INPUT Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature Input Impedance	0.45 ±5 0.45 0.01 0.008 5.2	$V_S = \pm 2.25 V \text{ to } \pm 18 V$	550nm 650nm 650nm, R _F = 1MΩ 90 x 0.090 inches) 2.29 x 2.29mm)	±1 doubles every 10°C	je noi	μV/V end V pA discover Photodicde Area
Differential Common-Mode Common-Mode Input Voltage Range Common-Mode Rejection	8.0± 01±	Linear Operation	100 Karat 1/20 Oa	10 ¹² 3 10 ¹² 3 ±14.4 106		Ω pF Ω pF V dB
NOISE Voltage Noise Density Current Noise Density	50 -150	f = 10Hz f = 100Hz f = 1kHz f = 1kHz	sode Groundad® George Sports appears		sponse	nV/√Hz nV/√Hz nV/√Hz fA/√Hz
OPEN-LOOP GAIN Open-Loop Voltage Gain	3		de Bootstrappadel lode Grounded [©]		to Dark	am dB
FREQUENCY RESPONSE Gain-Bandwidth Product ⁽²⁾ Slew Rate Settling Time 0.1% 0.01%	10 25 30 44 44 100 240		8 to Diank (to 195) V ₈ = ±6V V ₆ = ±2.25V	16 6 4 5	% 195 ecovery Time	MHz V/μs μs μs
OUTPUT Voltage Output Short-Circuit Current	(Ve) - 1 Ve) - 1.5 Ve) - 1.5 280	$R_L = 10k\Omega$ $R_L = 5k\Omega$	(V+) - 1.25 (V+) - 2	(V+) - 1 (V+) - 1.5 ±18	Stable Operation ⁽⁴⁾	Industry V
POWER SUPPLY Operating Voltage Range Quiescent Current	81±	I _O = 0mA	±2.25	±15 ±400	±18 ±500	V V V V V V V V V V V V V V V V V V V

NOTES: (1) Op amp specifications provided for information and comparison only. (2) Stable in gains ≥ 20V/V.

PHOTODIODE SPECIFICATIONS

SPECIFICATIONS

PARAMETER	сомрітюмя				STMU
Photodicila Area	(0,090 x 0:090 inches) (2.28 x 2.29mm)				
	A = &dOnts				
	$V_0 = 0V$				
	V0 = eV				

DICE INFORMATION

PAD	FUNCTION		
1	V+		
2	-In		
SAL RESPENSIVITY	NOF_VALIZED SPEC		
4	NC		
5	V _{out}		
88.0) 7 6	NC		
7 megas	PD Anode		
8A, 8B	Common		

NC: No Connection.

MECHANICAL INFORMATION

1	MILS (0.001")	MILLIMETERS
Die Size	154 x 120	3.91 x 3.05
Die Thickness	18	0.46
Min. Pad Size	4 x 4	0.1 x 0.1

OPT211 DIE TOPOGRAPHY

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
	±V _S
Output Short-Circuit (to ground)	Continuous
Operating Temperature	25°C to +85°C
Storage Temperature	25°C to +85°C
Junction Temperature	+85°C
Lead Temperature (soldering, 10s)	+300°C
(Vapor-Phase Soldering Not Recommended	DTMROSSILIO

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPT211P	8-Pin DIP	006-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

MOISTURE SENSITIVITY AND SOLDERING

Clear plastic does not contain the structural-enhancing fillers used in black plastic molding compound. As a result, clear plastic is more sensitive to environmental stress than black plastic. This can cause difficulties if devices have been stored in high humidity prior to soldering. The rapid heating during soldering can stress wire bonds and cause failures. Prior to soldering, it is recommended that plastic devices be baked-out at +85°C for 24 hours.

The fire-retardant fillers used in black plastic are not compatible with clear molding compound. The OPT211 plastic packages cannot meet flammability test, UL-94.

for other feedback resistances can be interpolated. The OPT211 provides excellent performance with very high feedback resistor values. To achieve maximum bandwidth with $R_{\rm F} \geq 10 {\rm M}\Omega_{\rm c}$ good circuit byout is required. With careful circuit board layout and a $10 {\rm M}\Omega_{\rm c}$ feedback resistor, stray capacitance will provide approximately the correct parallel expacitance for stable operation and widest band-

APPLICATIONS INFORMATION SEVAUO BOMAMA OF A PROPERTY IN THE PROPERTY OF THE PR

Figure 1 shows the basic connections required to operate the OPT211. Applications with high impedance power supplies may require decoupling capacitors located close to the device pins as shown in Figure 1.

FIGURE 1. Basic Circuit Connections.

Output is zero volts with no light and increases with increasing illumination. Photodiode current is proportional to the radiant power (watts) falling in the photodiode. At 650nm wavelength (visible red) the photodiode *responsivity* is approximately 0.45A/W. Responsivity at other wavelengths is shown in the typical performance curve "Responsivity vs Wavelength."

The OPT211's output voltage is the product of the photodiode current and feedback resistor, $(I_{\rm D}R_{\rm F})$. The feedback resistor must be greater than $330{\rm k}\Omega$ for proper stability. A feedback capacitor, $C_{\rm F}$, must be connected as shown. Recommended values are shown in Figure 1. Capacitor values for other feedback resistances can be interpolated.

The OPT211 provides excellent performance with very high feedback resistor values. To achieve maximum bandwidth with $R_F \geq 10 M \Omega$, good circuit layout is required. With careful circuit board layout and a $10 M \Omega$ feedback resistor, stray capacitance will provide approximately the correct parallel capacitance for stable operation and widest bandwidth. For larger feedback resistor values, two resistors connected in series and laid-out end-to-end will reduce the

stray capacitance to a few tenths of a picofarad. With experimentation, circuit board traces can be used to produce the necessary stray capacitance for proper compensation and widest possible bandwidth.

The circuit in Figure 1 can drive capacitive loads up to 250 pF. To drive load capacitance up to 1 nF, connect R_1 and the feedback components as shown in Figure 2.

DARK ERRORS

Dark error specifications include all error sources and are tested with the circuit shown in Figure 1 using $R_F\!\!=\!\!1 M\Omega.$ The dominate dark error source is the input offset voltage of the internal op amp. The combination of photodiode dark current and op amp input bias current is approximately 1.5pA at 25°C. Even with very large feedback resistors, this contributes virtually no offset error. Dark current and input bias current increase with temperature, doubling (approximately) for each 10°C increase. At 70°C , dark current is approximately 35pA. This would produce 3.5mV offset with a $100\text{M}\Omega$ feedback resistor.

Circuit board leakage currents can increase dark error. Use clean assembly procedures to avoid contamination, particularly around the sensitive inverting input node (pin 2). Errors due to leakage current from the V+ supply (pin 1) can be eliminated by encircling the trace connecting to pin 2 with a guard trace connected to ground.

IMPROVING BANDWIDTH

Bandwidth of the OPT211 can be increased with the feedback buffer circuits shown in Figure 3. Driving the anode of the photodiode (pin 7) in this manner reduces the effect of the photodiode's capacitance on signal bandwidth. This "bootstrap drive" circuit boosts bandwidth by approximately 3x. Bandwidth achieved with various R_F values is shown in Figure 2. When using a bootstrap buffer, R_F must be greater or equal to $1 M\Omega$ for stable operation.

FIGURE 2. Increasing C-Load Drive.

FIGURE 3. Increasing Bandwidth with Bootstrap Buffer.

Gate or base current of the buffer transistor flows through the feedback resistor, increasing the dark offset voltage. If dark errors are important, use a FET transistor with picoamp gate current. A P-channel FET is used to assure that the anode is at ground potential or slightly negative.

If dark errors are not critical, an NPN Darlington transistor can be used for a buffer as shown in Figure 3b. A FET-input op amp connected as a buffer can be used as shown in Figure 3c, but its noise may degrade circuit performance slightly. Bandwidth of the buffer should be 4MHz, minimum.

AC COUPLING ve bevoides at other extend of length trade

Some applications are concerned only with sensing variation in light intensity. Simple capacitive coupling at the OPT211's output may be adequate. With large feedback resistors or bright ambient light, however, the OPT211's output may saturate. The circuit in Figure 4 can reject very bright ambient light, yet provide high AC gain for best signal-tonoise ratio. The output voltage is integrated and fed back to the inverting input through R₃. This drives the average (dc) voltage at the output to zero. Application Bulletin AB-061 provides more details on this technique.

FIGURE 4. Rejecting Ambient Light.

This circuit also corrects output offset produced by input bias current of a buffer used to extend bandwidth. A Darlington transistor can be used for a bandwidth-enhancing bootstrap buffer in this circuit without creating offset error.

NOISE PERFORMANCE

Noise performance of the OPT211 is shown in typical curves for various feedback resistor values. This curve specifies the total noise measured from 0.1Hz to the indicated bandwidth. High frequency noise is reduced with the bootstrap transistor buffer circuits shown in Figure 1. This effect is shown on the typical curve.

Output noise of the OPT211 extends beyond the signal bandwidth, especially for high feedback resistor values. Signal-to-noise ratio can be improved by filtering the OPT211's output to a bandwidth equal to the signal bandwidth—see Figure 5.

decreased bandwidth.

The noise performance of a photodetector is sometimes characterized by its noise effective power (NEP). This is the radiant power which would produce an output signal equal to the output noise level. NEP has the units of radiant power (W). A NEP curve is provided.

LIGHT SOURCE POSITIONING

The OPT211 is 100% tested with a light source that uniformly illuminates the full area of the integrated circuit, including the op amp. Although all IC amplifiers are light-sensitive to some degree, the OPT211 op amp circuitry is designed to minimize this effect. Sensitive junctions are shielded with metal, and differential stages are cross-coupled. Furthermore, the photodiode area is very large relative to the op amp input circuitry making these effects negligible.

If your light source is focused to a small area, be sure that it is properly aimed to fall on the photodiode. If a narrowly focused light source were to miss the photodiode area and fall only on the op amp circuitry, the OPT211 would not perform properly. The large (0.090 inch x 0.090 inch)

agent sources. The photodiode area is easily visible as it appears very dark compared to the surrounding active circuitry.

The incident angle of the light source also affects the apparent sensitivity in uniform irradiance. For small incident angles, the loss in sensitivity is simply due to the smaller effective light gathering area of the photodiode (proportional to the cosine of the angle). At a greater incident angle, light is diffracted and scattered by the side of the package. These effects are shown in the typical performance curve "Responsivity vs Incident Angle."

LINEARITY PERFORMANCE

The photodiode inside the OPT211 is designed to be operated in the photoconductive mode ($V_{DIODE} = 0V$) for very linear operation with radiant power throughout a wide range. Nonlinearity remains below approximately 0.05% up to 100µA photodiode current.

This very linear performance at high radiant power assumes that the full photodiode area is uniformly illuminated. If the light source is focused to a small area of the photodiode, nonlinearity will occur at lower radiant power.

FIGURE 5. Low Pass Filter for Improved Signal-to-Noise Ratio.

NOISE PERFORMANCE

Noise performance of the OFT211 is shown in typical
curves for various feedback resistor values. This curve
specifies use total noise measured from 0.1Hz to the indicated bandwidth. High frequency noise is reduced with the
bootstrap transister buffer elections shown in Figure 1. This

Output noise of the OPT211 extends toword the signal bandwidth, especially for high feedback resistor values. Signal-to-noise ratio can be improved by filtering the has corrent of the buffer manistor flows through the feedback resistor, increasing the dark offset voltage. If lank errors are important, use a FET manistror with picoump rate current A P-channel FET is used to assure that the mode is at mound notential or slightly negative.

an be used for a buffer as shown in Figure 3b. A FET-input op any connected as a buffer can be used as shown in Figure 3b, but its noise may degrade circuit performance slightly. Standwidth of the buffer should be 4MHz, minimum.

OPT301

ABRIDGED DATA SHEET

For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 11228

AND AMPLIFIER

FEATURES

- PHOTODIODE SIZE: 0.090 x 0.090 inch (2.29 x 2.29mm)
- 1MΩ FEEDBACK RESISTOR
- HIGH RESPONSIVITY: 0.47A/W (650nm)
- IMPROVED UV RESPONSE
- LOW DARK ERRORS: 2mV
- BANDWIDTH: 4kHz
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 400μA
- HERMETIC TO-99

APPLICATIONS

- MEDICAL INSTRUMENTATION
- LABORATORY INSTRUMENTATION
- POSITION AND PROXIMITY SENSORS

1ΜΩ

 75Ω

OPT301

PHOTOGRAPHIC ANALYZERS

40pF

SMOKE DETECTORS

DESCRIPTION

The OPT301 is an opto-electronic integrated circuit containing a photodiode and transimpedance amplifier on a single dielectrically isolated chip. The transimpedance amplifier consists of a precision FET-input op amp and an on-chip metal film resistor. The 0.09 x 0.09 inch photodiode is operated at zero bias for excellent linearity and low dark current.

The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs such as leakage current errors, noise pick-up and gain peaking due to stray capacitance.

The OPT301 operates over a wide supply range (± 2.25 to ± 18 V) and supply current is only 400µA. It is packaged in a hermetic TO-99 metal package with a glass window, and is specified for the -40° C to 85° C temperature range.

SPECTRAL RESPONSIVITY

BURR-BROWN®

PASSI-28A North Products Rock—Linear Products

SPECIFICATIONS

ELECTRICAL

 $T_A = +25^{\circ}\text{C}$, $V_S = \pm 15\text{V}$, $\lambda = 650\text{nm}$, internal $1\text{M}\Omega$ feedback resistor, unless otherwise noted.

			OPT301M	The Control of		
PARAMETER	CONDITIONS	MIN TYP		MAX	UNITS	
RESPONSIVITY Photodiode Current Voltage Output vs Temperature Unit-to-Unit Variation Nonlinearity(1)	650nm 650nm 650nm FS Output = 10V	6	0.47 0.47 200 ±5 0.01		A/W V/μW ppm/°C % % of FS	
Photodiode Area	(0.090 x 0.090in) (2.29 x 2.29mm)	DOMESTIC SCA	0.008	PROPERTY COMP	in ² mm ²	
DARK ERRORS, RTO ⁽²⁾ Offset Voltage, Output vs Temperature vs Power Supply Voltage Noise	V _S = ±2.25V to ±18V Measured BW = 0.1 to 100kHz	RATEL	±0.5 ±10 10	±2 100	mV μV/°C μV/V μVrms	
RESISTOR—1MΩ Internal	Wedsured BVV = 0.1 to 100KHZ	TO B NEEDS AND	100		μνιιιο	
Resistance Tolerance vs Temperature	DITGIGOSSA		1 ±0.5 50	±2	MΩ % ppm/°C	
Rise Time, 10% to 90% Settling Time, 1% 0.1% 0.01% Overload Recovery Time	DUENCY RESPONSE Iwidth, Large or Small-Signal, –3dB Time, 10% to 90% ng Time, 1% 0.1% 0.1% FS to Dark FS to Dark 100% Overdrive, V. – ±15V			ODJODE SIZI (2,28mm) REEDBAOK F RESPONSIV OVED UV RE	kHz µs µs µs µs µs µs µs	
OUTPUT Voltage Output Capacitive Load, Stable Operation Short-Circuit Current	(V+) - 1.25 (V+) - 2	(V+) - 0.65 (V+) - 1 10 ±18	DANK ENRO WIDTH: 4KH SUPPLY RA DURESCENT	V V nF mA		
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current	gain peaking due to str The Olo = 01 operates o	±2.25	±15	29-OT OITH ±18 ±0.5	V V mA	
TEMPERATURE RANGE Specification Operating/Storage Thermal Resistance, θ_{JA}	packaged in a hermetic	-40 -55	200	+85 +125	087.c/M	

NOTES: (1) Deviation in percent of full scale from best-fit straight line. (2) Referred to Output. Includes all error sources.

PHOTODIODE SPECIFICATIONS

 $T_A = +25$ °C, unless otherwise noted.

	3.0	120			
PARAMETER	CONDITIONS	MIN	TYP OM	MAX	UNITS
Photodiode Area	(0.090 x 0.090in) (2.29 x 2.29mm)		0.008 5.1	3g0h	in ² mm ²
Current Responsivity Dark Current	650nm V _D = 0V ⁽¹⁾		0.47 500		A/W fA
vs Temperature Capacitance	$V_{D} = 0V^{(1)}$		doubles every 10°C 4000		pF

westigned Alport Industrial Park • Mailing Address: PO Box 11400 • Tursen, AZ 56794 • Stroot Address: 510 S. Tursen Bird. • Tursen, AZ 55705 Tet 1520 740-1111 • Turs: 919-82-1111 • Caute: BBROORP • Tursen 569-6101 • FAX: (520) 589-1510 • Immediate Product Info: (800) 546-6102

NOTE: (1) Voltage Across Photodiode.

BURR-BROWNS

ELECTRICAL

Op Amp Section of OPT301(1)

 $T_A = +25$ °C, $V_S = \pm 15$ V, unless otherwise noted.

n-		OPT301 Op Amp			
PARAMETER Section 3 CMT	CONDITIONS	MIN TYP		MAX	UNITS
INPUT Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature			±0.5 ±5 10 1 doubles every 10°C	9	mV μV/°C μV/V pA
NOISE Input Voltage Noise Voltage Noise Density, f=10Hz f=100Hz f=1kHz Current Noise Density, f=1kHz			30 25 15 0.8		nV/√Hz nV/√Hz nV/√Hz fA/√Hz
Common-Mode Input Range	Die Yhlo Min, Pad Min, Pad		±14.4 106		V dB
INPUT IMPEDANCE Differential Common-Mode		YHGAS	10 ¹² 3 10 ¹² 3	08790	Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	ELE A		120	PRATION	IOITI dBO M
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.1% 0.01%		Phonediage	380 0.5 4	50°	kHz V/μs μs μs
OUTPUT Voltage Output Short-Circuit Current	$R_L = 10k\Omega$	(V+) - 1.25 (V+) - 2	(V+) - 0.65 (V+) - 1 ±18	4)	V V mA
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current		±2.25	±15	±18 ±0.5	V V mA

NOTE: (1) Op amp specifications provided for information and comparison only.

OPTICAL SENSORS

6

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

	PAD	FUNCTION
	1 Jelon m	2, V _s = ±15¥ _V uriess otherw
	2	-In
	3	V-
00	4	1MΩ Feedback
	5	Output
	6	NC
7		NC
	8A, 8B	Common

NC: No Connection. Pads 8A and 8B must both be connected to common. Substrate Bias: The substrate is electrically connected to internal circuitry. Do not make electrical connection to the substrate.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	154 x 120 ±5	3.91 x 3.05 ±0.13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.1 x 0.1
Backing		None

OPT301 DIE TOPOGRAPHY

PIN CONFIGURATION

NOTE: Metal package is internally connected to common (Pin 8).

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range (Common Pin)	±V _s
Output Short-Circuit (to ground)	Continuous
Operating Temperature	55°C to +125°C
Storage Temperature	55°C to +125°C
Junction Temperature	+125°C
Lead Temperature (soldering, 10s)	+300°C

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
OPT301M	8-Pin TO-99	001-1

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

7 Special Functions

Some analog circuit functions defy classification. In this section you will find a diverse assortment of circuit functions—at least one is bound to be your hidden treasure! Consider some of the possibilities:

IVC102—A new, precision FET-input integrating amplifier with on-chip integration capacitors, and low leakage analog switches that convert low-level input current to an output voltage. A lower noise alternative to op amp/resistor transimpedance amplifiers.

UAF42—Universal Analog Filter. Add only external resistors and make a wide range of low-pass, high-pass, band-pass and notch filters.

ACF2101—Dual Integrating Transimpedance Amplifier. Integrates input signal currents for a user-determined period of time. Measures tiny currents without using high value resistors.

MPY634—Analog Multiplier. Output is equal to the product of two input voltages. Useful in communications (modulation and mixing), power measurement, computation and linearization.

LOG100—Logarithmic Amplifier. Output is proportional to the logarithm of the ratio of two input currents. Useful as computational element—calculating decibels, for instance.

7605

200 N S

Special Functions

SPECIAL FUNCTIONS

MULTIPLIERS

MPY100 (550kHz) MPY534 (3MHz) MPY634 (10MHz) MPY600 (30MHz)

OTHER (Basic Function)

ACF2101 (Switched Integrator)
DIV100 (Divider)
IVC102 (Switched Integrator)
LOG100 (Log Ratio Amplifier)
SHC615 (Video DC Restoration)

UAF42 (Univ. Active Filter) 4127 (Logrithmic Amplifier) 4341 (RMS-to-DC Converter) 4302 (Multi-Function)

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

BURR							er to data sheets for guaranteed a OTHER
Product	Function	Temp Range ⁽¹⁾	Pkg	Description		Comments	C DENOTES PRODUCT IN DEVELOPMENT
ACF2101	Switched Integrator	Ind	DIP, SOIC	This is a dual, integ transimpedance an converts an input c output voltage by in current for a user d of time. Eliminates resistor of traditiona	nplifier that urrent to an ntegrating the letermined period large feedback	Includes Ho RESET swi output mult	itches and
ALD1000	Current/Voltage Transmitter	Ind	SOIC	Programmable voltage-to-current or voltage-to-voltage analog driver circuit. function.		Includes current and voltage sensing cap with error flag for open-circuit. Also has	
DIV100	10 x N/D	Com	DIP	Two-quadrant analog divider. V _O = 10N/D.		(max), rate	e = 250mV to 10V, accuracy = 0.25% d output = ±10V, ±5mA (min), 0.5%, lz, and temp coeff = 0.2%°C.
IVC102	Switched Integrator	Ind	DIP, SOIC	Single, integrating integrating capaci leakage FET switch	itors and low		mplifying low level sensors such as es and ionization chambers.
LOG100	Logarithmic Amplifier	Com	DIP	K Log (I ₁ /I ₂)		Specified o	for log ratio of current inputs. ver six decades of input A), 55mV total error, conformity.
SHC615	DC Restoration	XInd	14-Pin DIP, SOIC	Wide Bandwidth, fa DC-Restoration circ sampling or hum su	cuit for	Comparato Switching 7	- OTA: 750kHz r: 280MHz Fransients: +1/–7mV ph Rejection: 100dB
UAF42	Universal Active Filter	Ind	DIP, SOIC	Universal Active Fil which can be config for a wide range of high-pass, and ban	gured low-pass,	Uses class analog arch	ical state variable intecture.
4127	Logarithmic Amplifier	Com	DIP	K Log (I ₁ /I _{REF})		internal refe	satile part that contains an erence and a current inverter. % accuracy.
4302	Multifunction Converter	Ind	DIP	Y (Z/X) ^m This function may be divide, raise to pow and form sine and company to the company to	vers, take roots	Plastic Pac	kage.
4341 NOTE: (1) Com = 0	$\sqrt{\frac{1}{T}}\int_0^T E_{IN}^2(t)dt$	Ind	DIP	True RMS-to-DC co on a log-antilog pro approach.			rnal trimming required. t in plastic package.
NOTE: (1) Com = 0°	°C to +70°C, Ind = -25°C to +85°C.						
						* DENOTES T	TYPICAL 10-100
							TES NEW PRODUCT
Product	Transfer Function	Error at #25°C max (%)			1% BW (6tHz)	BOLD, ITALI	C DENOTES PRODUCT IN DEVELOPMENT
							ations have been estimated for comparison fer to data sheets for guaranteed specifications.

Product

MPY100

MPY534

MPY600

MULTIPLIERS/DIVIDERS Pkg TO-100

(MHz) Range(1) (mV) 0.07 30 Ind 0.05% 3 Com TO-100 DIP 2 30 Ind 10 TO-100, DIP, SOIC 0.15% Ind

Temp

1%

BW

Feed-

through

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Burr-Brown IC Data Book—Linear Products

MPY634 $[(X_1 - X_2) (Y_1 - Y_2)/10] + Z_2$ +0.5 0.015 NOTE: (1) Com = 0°C to +70°C, Ind = -25°C to +85°C, Mil = -55°C to +125°C.

Error at

max (%)

+25°C

±0.5

±0.25

±0.025

Transfer Function

 $[(X_1 - X_2) (Y_1 - Y_2)/10] + Z_2$

 $[(X_1 - X_2) (Y_1 - Y_2)/10] + Z_2$

 $[(X_1 - X_2) (Y_1 - Y_2)/2] + Z_2$

Temp

Coeff

(%/°C)

0.008

0.008

0.02

ACF2101

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 Request Document Number 11078

Low Noise, Dual SWITCHED INTEGRATOR

FEATURES

- INCLUDES INTEGRATION CAPACITOR, RESET AND HOLD SWITCHES, AND OUTPUT MULTIPLEXER
- LOW NOISE: 10µVrms
- LOW CHARGE TRANSFER: 0.1pC
- WIDE DYNAMIC RANGE: 120dB
- LOW BIAS CURRENT: 100fA

APPLICATIONS

- CURRENT TO VOLTAGE CONVERSION
- PHOTODIODE INTEGRATOR
- CURRENT MEASUREMENT
- CHARGE MEASUREMENT
- CT SCANNER FRONT END
- MEDICAL, SCIENTIFIC, AND INDUSTRIAL INSTRUMENTATION

DESCRIPTION

The ACF2101 is a dual switched integrator for precision applications. Each channel can convert an input current to an output voltage by integration, using either an internal or external capacitor. Included on the chip are precision 100pF integration capacitors, hold and reset switches, and output multiplexers.

As a complete circuit on a single chip, the ACF2101 eliminates many of the problems commonly encountered in discrete designs, such as leakage current errors and noise pickup. The integrating approach can provide lower noise than conventional transimpedance amplifier designs and also eliminates the need for high performance, high value feedback resistors.

The extremely low bias current and low noise of the ACF2101's **Difet®** amplifiers, along with active laser trimming of both offset and drift, assure precision current to voltage conversion.

Although designed for +5V, -15V supplies, the ACF2101 can be operated on supplies up to ±18VDC. It is available in both 24-pin plastic DIP and SOIC packages.

Difot® Burr Brown Corp.

VM-does not authorize on v

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

URR-BROWN®

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

At T_A = +25°C, V+ = +5V, V- = -15V, Internal C_{INTEGRATION} = C_{INTERNAL} = 100pF, unless otherwise noted.

				1	S 85		
PARAMETER		CONDITIO	ONS	MIN	TYP	MAX	UNITS
ANALOG INPUT							
INPUT RANGE HIS ATAG GEOG	HEA						
Input Current Range							
Switched Input (Sw In A, Sw In B)						±100	μА
Direct Input (In A, In B)	Nequest /					±100	μА
INPUT IMPEDANCE							
Switched Input Hold Switch OFF		Professional tradestrates	10 10 10 10 10 10 10 10 10 10 10 10 10 1	A CONTRACTOR OF STREET	1000		GΩ
Hold Switch ON		march and	Land and		1.5		kΩ
Direct Input		ise, Dual	ICHI WI	North	Virtual Ground		14.01
HOLD SWITCH VOLTAGE	Sand Sand rates	LOW THE REAL	771551.8	A PERSON	(3)		
Hold Switch Withstand Voltage	- FIQ 17	Hold Switch	OFF	-10	Total .	+0.5	V
OFFSET VOLTAGE	CONTRACTOR SERVICES	Entertainment and themse		DIVERSE STATE OF	emiliani de como di		Service Control
Input Offset Voltage					±0.5	±2	mV
Average Drift	25142572	P. L. 1953/27 A			±1	±5	μV/°C
DIGITAL INPUTS	CHURIA	APPLICA				SHULL	1217
Logic Family V _{IH} (Logic 1 = Switch OFF)	TO VOLTAG	TTL Compa	atible	ON CAPAC	TEGRATIF	A 85.5	ONI Q
V_{IH} (Logic 0 = Switch ON)	marine se	Augmentura es			WE GLOH	0.8	BA V
IH		V _{IH} = +5		10.0.0	2	TPUT MUST	μА
ENT	MEASUREM	V _{IL} = 0\			0	COLUMN TO THE	μΑ
Switching Speed (All Switches)	SACTORES	G CHARGE			200		0.1 0
							ns
Switch ON Switch OFF				197:0:RB		BRAHD W	C 1 7 ASSE
Switch OFF	ER FRONT I	MADE TO B			200	N CHARG	ns
Switch OFF	ER FRONT I SCIENTIFIC,	e OT SCAME		E: 120dB	200	W CHARG	ns
	ER FRONT I SCIENTIFIC, NTATION	MADE TO B			200	MAMYO S	ns
Switch OFF TRANSFER CHARACTERISTICS	4107 11 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e OT SCAME		E: 120dB	200	o _N ∫1 _{IN} dt	ns
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode	4107 11 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e OT SCAME		V _o	200 UT = - 1 C _{INTEGRATIO}	ON J	ns V
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Siew Rate	NOTATION	e OT SCAME		E: 120dB	200	ON J	ns V
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Siew Rate	4107 11 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e OT SCAME	sione with	V ₀	$u_{\text{UT}} = -\frac{1}{C_{\text{INTEGRATIO}}}$	SCRIP	ns V V/μs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode	NOTATION	© CT SCANN O MEDICAL INSTRUME		All Vo	200 UT = - 1 CINTEGRATIO 3 3	SCRIPT	ns V V/μs V/μs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR ⁽¹⁾ Overload Recovery	HOITATION	© CT SCANN INSTRUME	egative	over the converted to the cap	200 UT = - 1 C _{INTEGRATE} 3 3 5 5	SCRIPTED IS B	V V/μs V/μs μs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches)	HOITATION	10V Ste Positive or Ne	egative	ca convention,	200 ut = - 1 Cintegration 3 3 5 5	SCRIP CE2101 is a optice01ons.	V V/µs V/µs µs µs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Slew Rate Settling Time to 0.01%FSR ⁽¹⁾ Overload Recovery	HOITATION	10V Ste Positive or No C _{LOAD} < 10t	ep egative 00pF	over the converted to the cap	200 ut = - 1 C _{INTEGRATI} 3 3 5 5 6.5	SCRIPT CE2101 is a pplics01ons, to an outpu	V V/µs V/µs µs µs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Sest Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR	NOTATION SOUTHWARE S	10V Ste Positive or No C _{LOAD} < 10t	egative	t 120dB volume 120dB cd integrated at can conw integration, included a capacitor	200 ut = - 1 C _{INTEGRATE} 3 3 5 5 6.5 2	on J	V V/µs V/µs µs µs µs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTER)	NOTATION SOUTHWARE S	10V Ste Positive or No C _{LOAD} < 10t	egative 00pF	t 120dB 1 col integrated all can conversation, included negration, included negration, included tiplexers.	200 ut = -\frac{1}{C_{\text{INTEGRATE}}} 3 3 5 5 6.5 2	SCRIPT CE2101 is a pplics01ons, to an outpu	V V/µs V/µs µs µs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTEILIDENT) Internal Capacitor Value	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 100 C _{LOAD} < 100	ep egative 00pF	t 120dB volume 120dB cd integrated at can conw integration, included a capacitor	200 ut = - 1 C _{INTEGRATE} 3 3 5 5 5 6.5 2	SCRIP SCRIP GEVIOL is a pplice of one output cost on output cost on the witches, and appliere circ	V V/µs V/µs µs µs µs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTERISTIC) Internal Capacitor Value Accuracy	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 10I C _{LOAD} < 10	egative 00pF	t 120dB v OTA t integrated integration, integration, included integration, included integration inte	200 ut = -\frac{1}{C_{NYEGRATI}} 3 3 5 6.5 2	SCRIPT DEPLOY IS A DEPLOY IN A	V V/µs V/µs µs µs µs pF
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTEL Internal Capacitor Value	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 10I C _{LOAD} < 10	egative guid 00pF guid 00pF	t 120dB of Orlands al can convious integration, in Included in capacitor it plexers.	200 ut = - 1 C _{INTEGRATE} 3 3 5 5 5 6.5 2	SCRIP SCRIP GEVIOL is a pplice of one output cost on output cost on the witches, and appliere circ	V/µs V/µs V/µs µs µs µs
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTEL Internal Capacitor Value Accuracy Temperature Coefficient Memory	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 10l C _{LOAD} < 10	egative guisi	t 120dB v OTA t integrated integration, integration, included integration, included integration inte	3 3 5 5 5 6.5 2 100 0.5 -25	CRIP CF2101 is a pice of force of the couple of the coupl	V V/µs V/µs µs µs pF % ppm/°C
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTEI Internal Capacitor Value Accuracy Temperature Coefficient	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 10 C _{LOAD} < 10	egative guisi	t 120dB v OTA t integrated integration, integration, included integration, included integration inte	200 ut = -\frac{1}{C_{\text{INTEGRATE}}} 3 3 5 6.5 2 100 0.5 -25 30	CRIP CF2101 is a pice of force of the couple of the coupl	V V/µs V/µs µs µs pF % ppm/°C
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTEL Internal Capacitor Value Accuracy Temperature Coefficient Memory RESET SWITCH Impedance Reset OFF	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 10l C _{LOAD} < 10	pegative guisi 00pF 00pF	t 120dB VotA VotA to a integrated at a can conw in tegration, included integration, included integration, included integration, included integration at a capacitor as leaver expense a leaver expense expense a leaver expense expense a leaver expense	200 ut = - 1 C _{INTEGRATI} 3 3 5 5 5 6.5 2 100 0.5 -25 30	A CRIP CONTROL OF THE	V V/μs V/μs μs μs μs pF % ppm/°C ppm of FS
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTERISTERISTIC) Internal Capacitor Value Accuracy Temperature Coefficient Memory RESET SWITCH Impedance	HOLTATION SOUTHWARE	10V Ste Positive or Ne C _{LOAD} < 10 C _{LOAD} < 10	pegative guist 00pF 00pF 101STDA	t 120dB of OTA of OTA continue gration, in the gration, in the gration, in capacitor in capac	200 ut = -\frac{1}{C_{\text{NTEGRAT}}} 3 3 5 6.5 2 100 0.5 -25 30	ALSO SE	V V/µs V/µs µs µs µs ppm/°C ppm of FS
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR ⁽¹⁾ Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTELLINEMAL CAPACITOR (CINTELLINE	HOLTATION SOUTHWARE	10V Ste Positive or Ne CLOAD < 10t CLOAD <	pegative guist 00pF stim 0	t 120dB of OriA of integration, in included in capaciton, in included in capaciton, in capaciton, in capaciton, in capaciton in capac	200 ut = -\frac{1}{C_{\text{NTEGRAT}}} 3 3 5 5 6.5 2 100 0.5 -25 30 1000 1.5	CRIP SCRIP SCRIP STRIP TO STRIP STRIP STRIP STRIP SCRIP STRIP STRIP SCRIP STRIP STRIP SCRIP STRIP STRI	V V/μs V/μs μs μs μs μs μs μs κΩ
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTER INTEGRATION CAP	MORTATION SOUTH STORY AGODT	10V Ste Positive or Ne CLOAD < 10 CLOAD < 10 Hold	pegative 00pF 10pF 10pF 10pF 10pF 10pF 10pF 10pF	t 120dB of OTA of OTA continue gration, in included in capacitor in	200 or = -\frac{1}{C_{\text{NYEGRAT}}} 3 3 5 5 6.5 2 100 0.5 -25 30 1000 1.5	CRIP CY2101 is a ppir 01 mal or exte cost on 100 mal or exte mal	V V/μs V/μs μs μs μs ppm°C ppm of FS
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR(1) Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTERISTERISTIC) Internal Capacitor Value Accuracy Temperature Coefficient Memory RESET SWITCH Impedance Reset OFF Reset ON MODES OF OPERATION Switch Integrate Mode	MORTATION SOUTH STORY AGODT	10V Ste Positive or Ne CLOAD < 100 CLOAD < 100 And Wall Hold ON	Pegative guisi 00pF 10pF 101317A 10131	t 1200B 1 1 1 1 1 1 1 1 1 1 1 1 1	200 ut = -\frac{1}{C_{NYTEGRATI}} 3 3 5 6.5 2 1000 0.5 -25 30 1000 1.5	SCRIP SCRIP To an output to an output of an	V V/μs V/μs μs μs μs pF % ppm/°C ppm of FS
Switch OFF TRANSFER CHARACTERISTICS TRANSFER FUNCTION DYNAMIC CHARACTERISTICS Integrate Mode Slew Rate Reset Mode Slew Rate Settling Time to 0.01%FSR ⁽¹⁾ Overload Recovery Output Multiplexer (Select Switches) Settling Time to 0.01%FSR Settling Time to 0.01%FSR INTEGRATION CAPACITOR (CINTERISTREMENT CAPACITOR (CINTERISTREMENT CAPACITOR (CINTERISTREMENT CAPACITOR (CINTERISTREMENT CAPACITOR (CINTERISTREMENT CAPACITOR CINTERISTREMENT CAPACITOR (CINTERISTREMENT CAPACITOR (CINTER	MORTATION SOUTH STORY AGODT	10V Ste Positive or Ne CLOAD < 10 CLOAD < 10 Hold	pegative 00pF 10pF 10pF 10pF 10pF 10pF 10pF 10pF	t 1200B 1 1 1 1 1 1 1 1 1 1 1 1 1	200 ut = -\frac{1}{C_{NYTEGRATI}} 3 3 5 6.5 2 100 0.5 -25 30 1000 1.5	SCRIP SCRIP To an output to an output of an	V V/μs V/μs μs μs μs pF % ppm/°C ppm of FS

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions, BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

nage ranging from new	harge can cause dan	Electrostatic disc	is to Graund	Continue	ACF2101BP, BI	Uncurs and dust	DineitStagtu
			Wm008	MIN	TYP	MAX	UNITS
The state of the s	ion recommends that	C COMPANIES CONTRACTOR	C 16 +125°C	751		enuten	sono T enero
			3 1074	50	1	9811 111111	The Logist
Voltage Output Range (All O	utputs)	be handled and	O*808+	-10	-13.5, +1.0	+0.5	V
Current Output, Direct Outpu	t (Out A, Out B)	. shorism		±5			mA
Short Circuit Current					+25		
Direct Output Switched Output (Sw Out A	A CHI CHA BY	undin nizara		±2			mA mA
Select Switch Withstand Volt	A, SW Out b)	GOTTIN DIGHT		IZ	±8	INFORM	PHISTO
Switched Output	age	Basic Layout		-10		+0.5	V
Switched Common (Sw Co	m A Sw Com B)	As with any pres	BRUTAR	-0.5		+0.5	v
Output Impedance			308	19	PACKAGE	10.0	3800
Direct Dutnut			0 38+ 0	0101-	0.1	1415	Ω
Switched Output		surey wiring as	10 +00 U	0°01-	MILL OFFERS IN	0.00	HOLDERY.
Select Switch ON		digital input pin	O 00+ 0	57.00	250 5	1790	Ω∥pF
Select Switch OFF					1000 4		GΩ pF
Leakage Current		Select Switch OF	F		10	100	pA
Load Capacitance Stability		operation. Figu			14057	NEORNA	CHARLE
Direct Output		existral integral			500		pF
Switched Output			DIFFAMING	PACKAGE	Any		pF
OUTPUT ACCURACY				BMUN	300		
Nonlinearity	tomput bias curren	easily exceed to		0.00	±0.005	±0.01	%FSR
Channel Separation		1 based namie		100	-80	24-Pin Plan	dB
Op Amp Bias Current		surrounding citi		table, please s	nananiamia has	runiwasto balisti	For the
Value		ing Summorms		. At	100	1000	fA
Temperature Coefficient		sonsbegmi woi		Do	oubles Each +10	0°C	
Hold Mode Droop		Leakage will lit		130 14 18	1	10	nV/μs
Integrate Mode Droop		Figure 2a and 2			1	10	nV/μs
Voltage Offset							
Value		re brang or been			3		mV
7 0100							
Temperature Coefficient		pins should also			5	All miss	μV/°C
Temperature Coefficient Power Supply Rejection	be guarded.	V _S = +4.5V to +18V, -10	V to -18V	80	5 100		μV/°C dB
Temperature Coefficient Power Supply Rejection OUTPUT NOISE	gent guinsals to go	V _S = +4.5V to +18V, -10	1	80	100		dB
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3)	ng or clearing may bandling parts and	$V_S = +4.5V \text{ to } +18V, -10$ $BW = 0.1Hz \text{ to } 10$)Hz		100		dB μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾	ng or clearing may bandling parts and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250)Hz)kHz	10(100 2 1 + C _{IN} /C _{INTEGRA}		dB μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode	ng or clearing may bandling parts and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz	10(2 1 + C _{IN} /C _{INTEGRA}	ATION)	dB μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode	bandling parts and saming solvents and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz	10(100 2 1 + C _{IN} /C _{INTEGRA}		dB μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERRO	bandling parts and saming solvents and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz	10(2 1 + C _{IN} /C _{INTEGRA}		dB μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾	bandling parts and saming solvents and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	10(100 2 1 + C _{IN} /C _{INTEGRA} 10 10	OlOS bas	dB μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERRC Reset to Integrate Mode(6) Charge Transfer	bandling parts and saming solvents and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz	10(100 2 1 + C _{IN} /C _{INTEGRA} 10 10		dB μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Transfer TC	one area gnilbaed bae abovios gnoses	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz)0t we differen	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10	0.5	dB μVrms μVrms μVrms μVrms ρC fC/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Transfer TC Charge Offset Error	one array ambouse bus attrovious gomes DRS(6)	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	100° ive differen	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 0.1 0.2 1	0.5	dB μVrms μVrms μVrms μVrms ρVrms mVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode(6) Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC	one area gnilbaed bae abovios gnoses	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz)0t we differen	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10	0.5	dB μVrms μVrms μVrms μVrms ρC fC/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode	ons area gnilbush bue atnovious gnores ORS(6) Atro 1	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	1)01 ive different	100 2 1 + C _{II} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2	0.5 5	dB μVrms μVrms μVrms μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERR(Reset to Integrate Mode(6) Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer	one array ambouse bus attrovious gomes DRS(6)	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	100° ive differen	100 2 1 + C _{IN} C _{INTEGRA} 10 10 10 2.2 1 2	0.5	μVrms μVrms μVrms μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode(6) Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Transfer TC	one array amibused bus atnovious anness ORS(9) A to 0 A to 0 A to 0 A to 0	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	100 different van A 24 maa 23 maa 23 maa 22	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4	0.5 g 5 g 6 g 6 g 6 g 6 g 6 g 6 g 6 g 6 g	μVrms μVrms μVrms μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Offset Error	ons area gnilbush bue atnovious gnores ORS(6) Atro 1	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	1)01 ive different	100 2 1 + C _{IIV} C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2	0.5 5	μVrms μVrms μVrms μVrms μVrms μVrms μVrms ρC fC/°C mV μV/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERR(Reset to Integrate Mode ⁽⁶⁾ Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Transfer TC Charge Transfer TC Charge Offset Error Charge Transfer TC Charge Transfer TC Charge Offset Error Charge Transfer TC Charge Offset Error Charge Offset TC	DRS(6) A DUA A A COD A A COD A A COD A	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	100 interest of the control of the c	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4	0.5 5 8 0 1 8 0 1	μVrms μVrms μVrms μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset Error Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Offset Error Charge Offset Error Charge Offset TC Hold to Integrate Mode	one array amibused bus atnovious anness ORS(9) A to 0 A to 0 A to 0 A to 0	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	100 different van A 24 maa 23 maa 23 maa 22	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4	0.5 g 5 g 6 g 6 g 6 g 6 g 6 g 6 g 6 g 6 g	μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Transfer Charge Transfer Charge Transfer Charge Transfer Charge Transfer Charge Offset Error Charge Offset TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC	DRS(9) A to 0 A no 0 A no 0 A no 1 A no 1 A no 1 A no 1	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250	OHz OkHz OkHz OkHz	10t over different version A 24 and A 20 and A 21 and A 20 and A 2	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2	9 0.5 g a 5 g a 6	μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms ρC fC/°C mV μV/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERR(Reset to Integrate Mode(6) Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Transfer Charge Transfer Charge Transfer Charge Transfer Charge Transfer Charge Transfer TC	DRS(6) A DUA A A COD A A COD A A COD A	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	100 interest of the control of the c	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 0.2 0.4	9 0.5 g a 5 g a 6	μVrms μVrms μVrms μVrms μVrms μVrms ρC fC/°C mV μV/°C ρC fC/°C pC fC/°C fC/°C fC/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Offset TC Hold to Integrate Mode Charge Transfer Charge Offset Error	DRS(9) A to 0 A no 0 A no 0 A no 1 A no 1 A no 1 A no 1	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 256 BW = 0.1Hz to 256 BW = 0.1Hz to 256 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10t over different version A 24 and A 20 and A 21 and A 20 and A 2	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4	0.5 5 8 0 1 8 0 1	μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms ρC fC/°C mV μV/°C pC fC/°C mV μV/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Charge Transfer Tec Charge Transfer TC Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Transfer TC Charge Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC Charge Offset TC Charge Transfer TC Charge Transfer TC Charge Transfer TC Charge Transfer TC Charge Offset Error Charge Offset Error Charge Offset TC	DRS(9) A to 0 A no 0 A no 0 A no 1 A no 1 A no 1 A no 1	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10t over different version A 24 on A 21 on A 2	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 0.2 0.4	9 0.5 g a 5 g a 6	μVrms μVrms μVrms μVrms μVrms μVrms ρC fC/°C mV μV/°C ρC fC/°C pC fC/°C fC/°C fC/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset Error Charge Offset Error Charge Transfer TC Charge Offset TC Charge Transfer TC Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset Error Charge Offset Error Charge Offset TC POWER SUPPLY	Das arusq amibusa bus arusq amibusa Das(s) Aruo r Aruo s Ar	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10t over different version A 24 on A 21 on A 2	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4	9 0.5 g a 5 g a 6	μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVroc pC fC/°C mV μV/°C pC fC/°C mV μV/°C
Temperature Coefficient Power Supply Rejection DUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset Error Charge Transfer TC Charge Offset Error Charge Offset Error Charge Transfer TC Charge Offset TC POWER SUPPLY Specified Operating Voltage	DRS(9) A to 0 A no 0 A no 0 A no 1 A no 1 A no 1 A no 1	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10t over different version A 24 on A 21 on A 2	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4	9 0.5 g a 5 g a 6	μVrms μVrms μVrms μVrms μVrms μVrms μVrms μVrms ρC fC/°C mV μV/°C pC fC/°C mV μV/°C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(a) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERR(Reset to Integrate Mode(6) Charge Transfer C Charge Offset Error Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Power Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC Charge Offset TC Power SuppLy Specified Operating Voltage Operating Voltage Range	Das arusq amibusa bus arusq amibusa Das(s) Aruo r Aruo s Ar	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	100 100 100 100 100 100 100 100 100 100	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4	0.5 5 8 8 8 8 8 1 8 8 8 1 8	dB μVrms μVrms μVrms μVrms μVrms ν ν μV/sc pC fC/sc mV μV/sc pC fC/sc mV μV/sc
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset Error Charge Offset Error Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC Charge Offset Error Charge Transfer TC Charge Offset TC Charge Offset Error Charge Transfer TC Charge Offset Error Charge Offset TC POWER SUPPLY Specified Operating Voltage Operating Voltage Range Positive Supply	Das arusq amibusa bus arusq amibusa Das(s) Aruo r Aruo s Ar	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(1 min 24 min 24 min 24 min 24 min 25 min	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4	0.5 s 5 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s	#Vrms #Vrec fc/ec mV #V/ec FC fc/ec mV #V/ec V V
Temperature Coefficient Power Supply Rejection DOUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERROR Reset to Integrate Mode ⁽⁶⁾ Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset Error Charge Transfer TC Charge Transfer TC Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC Charge Transfer TC Charge Offset TC Charge Offset TC POWER SUPPLY Specified Operating Voltage Range Positive Supply Negative Supply Negative Supply	Drie arusq amibusal bus arusq amibusal bus arusquas DRS(6) A buO 1 A neo 2 A neo 3 A nt a A nt was a substantial	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	100 HT0 100 HT	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4	0.5 5 8 8 8 8 8 1 8 8 8 1 8	dB μVrms μVrms μVrms μVrms μVrms ν ν μV/sc pC fC/sc mV μV/sc pC fC/sc mV μV/sc
Temperature Coefficient Power Supply Rejection DUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERR(Reset to Integrate Mode(6) Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset Error Charge Transfer TC Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Transfer TC Charge Offset Error Charge Offset Error Charge Offset Error Charge Offset Error Charge Offset TC POWER SUPPLY Specified Operating Voltage Range Positive Supply Negative Supply Current	canne solvents and services and	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(1 min 24 min 24 min 24 min 24 min 25 min	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 5 8 1 8 10 8 10 8 10 8 10	#Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms PC fC/°C mV #V/°C PC fC/°C mV #V/°C V V V
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Transfer Charge Offset Error Charge Offset Error Charge Offset TC Hold to Integrate Mode Charge Transfer Charge Transfer Charge Transfer Charge Offset Error Charge Offset TC Charge Offset TC Charge Offset TC Charge Offset TC POWER SUPPLY Specified Operating Voltage Positive Supply Negative Supply Current Positive Supply	Drie arusq amibusal bus arusq amibusal bus arusquas DRS(6) A buO 1 A neo 2 A neo 3 A nt a A nt was a substantial	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(1 min 24 min 24 min 24 min 24 min 25 min	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 s 5 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s	# dB #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms PC fC/°C mV #V/°C PC fC/°C mV #V/°C V V V mA
Temperature Coefficient Power Supply Rejection DUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERROR Reset to Integrate Mode ⁽⁶⁾ Charge Transfer Tocharge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Charge Transfer TC Charge Transfer TC Charge Transfer TC Charge Offset TC Charge Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC POWER SUPPLY Specified Operating Voltage Range Positive Supply Negative Supply Negative Supply Negative Supply Negative Supply	canne solvents and services and	W _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(1 min 24 min 24 min 24 min 24 min 25 min	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 5 8 1 8 10 8 10 8 10 8 10	## dB #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #V/°C #U #V/°C #C/°C #V #V/°C #V #V/°C V V
Temperature Coefficient Power Supply Rejection DUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode(6) Charge Transfer Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer Charge Transfer Charge Offset Error Charge Offset Error Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC POWER SUPPLY Specified Operating Voltage Operating Voltage Range Positive Supply Negative Supply Negative Supply Negative Supply Negative Supply Negative Supply Negative Supply	canne solvents and services and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(1 min 24 min 24 min 24 min 24 min 25 min	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 s 5 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s	# dB #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms PC fC/°C mV #V/°C PC fC/°C mV #V/°C V V V mA
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERROR Reset to Integrate Mode(6) Charge Transfer TC Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Transfer TC Charge Transfer TC Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Charge Offset TC Charge Offset TC Charge Offset Error Charge Transfer TC Charge Offset Error Charge Transfer TC Charge Offset Error Charge Offset TC POWER SUPPLY Specified Operating Voltage Range Positive Supply Negative Supply Current Positive Supply TEMPERATURE RANGE Specification	Date of the part o	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(1 min 24 min 24 min 24 min 24 min 25 min	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 s 5 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s	# dB #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #V/°C #V #V/°C PC #C/°C #V #V/°C V V V mA
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise(3) Integrate Mode(4) Hold Mode Reset Mode CHARGE TRANSFER ERK(Reset to Integrate Mode(6) Charge Transfer C Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC Power Transfer TC Charge Offset TC Power Supply Operating Voltage Range Positive Supply Negative Supply Negative Supply Negative Supply TEMPERATURE RANGE Specification Operation	canne solvents and services and	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF C _{IN} > 50pF	OHz OkHz OkHz OkHz	10(************************************	100 2 I + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 5 8 10 8 10 8 10 10 10 15 5.2 +18 15 5.2	# dB #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms PC #C/°C #V #V/°C PC #C/°C #V #V/°C V W W T M M M M M *C *C *C *C *C *C
Temperature Coefficient Power Supply Rejection OUTPUT NOISE Total Output Noise ⁽³⁾ Integrate Mode ⁽⁴⁾ Hold Mode Reset Mode Reset Mode CHARGE TRANSFER ERRO Reset to Integrate Mode ⁽⁶⁾ Charge Transfer TC Charge Offset Error Charge Offset TC Integrate to Hold Mode Charge Transfer TC Charge Offset Error Charge Offset TC Hold to Integrate Mode Charge Transfer TC Charge Offset TC POWER SUPPLY Specified Operating Voltage Operating Voltage Range Positive Supply Negative Supply Current Positive Supply	Drie arusq amithand ban arusquas and a sun arusquas arusqu	V _S = +4.5V to +18V, -10 BW = 0.1Hz to 10 BW = 0.1Hz to 250 BW = 0.1Hz to 250 BW = 0.1Hz to 250 C _{IN} > 50pF C _{IN} > 50pF	OHZ OkHZ OkHZ OkHZ OkHZ	10(representation over the control over	100 2 1 + C _{IN} /C _{INTEGRA} 10 10 10 0.1 0.2 1 2 0.2 0.4 2 4 0.2 0.4 2 4 +5, -15	0.5 5 1 10 10 11 10 15 5.2 +85	## dB #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrms #Vrec ## pC ## fC/°C #

NOTES: (1) FSR is Full Scale Range = 10V (0 to -10V). (2) Includes offset errors from all modes of operation. (3) Total noise is rms total of noise for the modes of operation used. (4) C_{IN} = capacitance of sensor connected to ACF2101 input; C_{INTERGRATION} = integration capacitance = C_{INTERNAL} + C_{EXTERNAL}. (5) Errors created when the internal switches are driven from one mode to another. (6) The charge transfer is 0.1pC; for an integration capacitance of 100pF, the resultant charge offset voltage error is 1mV.

ACF2101

SPECIAL FUNCTIONS

Supply	±18V
Input Current	
Output Short Circuit Duration	Continuous to Ground
Power Dissipation	500mW
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
ACF2101BP	24-Pin Plastic DIP	-40°C to +85°C
ACF2101BU	24-Pin Plastic SOIC	-40°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	
ACF2101BP	24-Pin Plastic DIP	243	
ACF2101BU	24-Pin Plastic SOIC	239	

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

NOTE: DIP and SOIC package have different pin outs.

FIGURE 1a. Basic Circuit Connections, SOIC package.

ASSA DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

BASIC CIRCUIT CONNECTION

Basic Layout

As with any precision circuit, careful layout will ensure best performance. Make short, direct interconnections and avoid stray wiring capacitance—especially at the analog and digital input pins.

Figures 1a and 1b illustrate the basic connections needed for operation. Figures 1c and 1d illustrate the addition of external integration capacitors and input guards.

Leakage currents between printed circuit board traces can easily exceed the input bias current of the ACF2101. A circuit board "guard" pattern reduces leakage effects by surrounding critical high impedance input circuitry with a low impedance circuit connection at the same potential. Leakage will flow harmlessly to the low impedance node. Figure 2a and 2b show printed circuit patterns that can be used to guard critical pins. Note that traces leading to these pins should also be guarded.

Improper handling or cleaning may increase droop. Contamination from handling parts and circuit boards can be removed with cleaning solvents and de-ionized water.

FIGURE 1b. Basic Circuit Connections, DIP.

BURR-BROWN®

- HIGH ACCURACY: 0.25% Maximum Error, 40:1 Denominator Range
- TWO-QUADRANT OPERATION
 Dedicated Log-Antilog Technique
- EASY TO USE
 Laser-trimmed to Specified Accuracy
 No External Resistors Needed
- LOW COST
- DIP PACKAGE

DESCRIPTION

The DIV100 is a precision two-quadrant analog divider offering superior performance over a wide range of denominator input. Its accuracy is nearly two orders of magnitude better than multipliers used for division. It consists of four operational amplifiers and logging transistors integrated into a single monolithic circuit and a laser-trimmed, thin-film resistor network. The electrical characteristics of these devices offer the user guaranteed accuracy without the need for external adjustment — the DIV100 is a complete, single package analog divider.

APPLICATIONS

- DIVISION
- SQUARE ROOT
- RATIOMETRIC MEASUREMENT
- PERCENTAGE COMPUTATION
- TRANSDUCER AND BRIDGE LINEARIZATION
- AUTOMATIC LEVEL AND GAIN CONTROL
- VOLTAGE CONTROLLED AMPLIFIERS
- ANALOG SIMULATION

For those applications requiring higher accuracy than the DIV100 specifies, the capability for optional adjustment is provided. These adjustments allow the user to set scale factor, feedthrough, and output-referred offsets for the lowest total divider error.

The DIV100 also gives the user a precision, temperature-compensated reference voltage for external use.

Designers of industrial process control systems, analytical instruments, or biomedical instrumentation will find the DIV100 easy to use and also a low cost, but highly accurate solution to their analog divider applications.

International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •

Tucson, AZ 85734
 Street Address: 6730 S. Tucson Blvd.
 Tucson, AZ 85706
 FAX: (520) 889-1510
 Immediate Product Info: (800) 548-6132

DIV100

SPECIAL FUNCTIONS

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

At $T_A = +25$ °C and $V_{CC} = \pm 15$ VDC, unless otherwise specified.

0019161		DIV100HP				DIV100JP			DIV100KP		
PARAMETER SHE ATAG GEOG	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TRANSFER FUNCTION	For	1	1117	900	1	$V_0 = 10N/1$	D				1 49 4
ACCURACY Total Error Initial vs Temperature vs Supply Warm-up Time to Rated Performace	$\begin{aligned} R_L &\geq 10 k \Omega \\ 0.25 V &\leq D \leq 10 V, \ N \leq D \\ 1 V &\leq D \leq 10 V, \ N \leq D \\ 0.25 V &\leq D \leq 1 V, \ N \leq D \\ 0.25 V &\leq D \leq 10 V, \ N \leq D \end{aligned}$	IIV	0.7 0.02 0.06 0.15 5	1.0 0.05 ⁽²⁾ 0.2 ⁽²⁾	IAV	0.3	0.5		0.2	0.25	% FSO(1) % FSO(2) % FSO(2) % FSO(3) Minutes
AC PERFORMANCE Small-Signal Bandwidth 0.5% Amplitude Error 0.57° Vector Error Full-Power Bandwidth Slew Rate Settling Time Overload Recovery	$\begin{array}{c} D=+10V\\ -3dB\\ Small-Signal\\ Small-Signal\\ Small-Signal\\ V_0=\pm10V,\ I_0=\pm5mA\\ V_0=\pm10V,\ I_0=\pm5mA\\ \epsilon=1\%,\ \Delta V_0=20V\\ 50\%\ Output\ Overload \end{array}$	enes envia envia	350 15 1000 30 2 15 4	TOT,	awaz B mu	nixeM	0.25% lange	S ACV:	HE COUR	JTA A HOI A HO	kHz kHz Hz kHz V/μs μs μs
INPUT CHARACTERISTICS Input Voltage Range Numerator Denominatior Input Resistance	N ≤ D D ≥ +250mV Either Input	±10 ±10	25		ei. uraevu	VION pinniq of Acc	PERA log Te	ANT C g-Ant	RDAU bulled bull	WO-0 edica ASY 1 aser-1	V V kΩ
OUTPUT CHARACTERISTICS Full-Scale Output Rated Output Voltage Current Current Limit Positive Negative	$I_0 = \pm 5 \text{mA}$ $V_0 = \pm 10 \text{V}$	±10 ±10 ±5	15 19	20 ⁽²⁾ 23 ⁽²⁾	:	bebs	yra Ne	deleti	emai E OST OKAGI	o Esd OW C	V V mA mA
OUTPUT NOISE VOLTAGE f _B = 10Hz to 10kHz D = +10V D = +250mV	applic Vo = N requir. 100 specifies, the nt is provided. Thes	r Urose usinae	370 1	malog	dramt over	wo.qua	sion s	r preci	OO is tering	(VICI) flo tal	μVrms mVrms
REFERENCE VOLTAGE CHARACTI Output Voltage Initial vs Supply Temperature Coefficient Output Resistance	ERISTICS, R _L ≥ 10MΩ At 25°C	6.5(2)	6.8 ±25 ±50 3	7.1(2)	is nea iiers us urpliffi le mos stor ne	corney nultip tional a tional a a sing	it. Its a er chan r opera ited int l, chin-	or inp le berr of for integr rimme	nomine nagnitu consist rsistori a laser-l	e of de is of a ion. It mg tes it and	V μV/V ppm/°C kΩ
POWER SUPPLY REQUIREMENTS Rated Voltage Operating Range Quiescent Current Postive Supply Negative Supply	Derated Performance	±12	±15	±20 7(2) 10(2)	vices of d for e , single	nese des the nee amplete	ics of the without) is a co	icierisi Birgey DIV10	at char teed ac — the divides	cloomi guaran basent andlog	VDC VDC mA mA
TEMPERATURE RANGE Specification Operating Temperature Storage	Derated Performance	0 -25 -40		+70 +85 +85		2	1.1	nie l	- 5 8	TO NOT THE TOTAL	°C °C °C

*Same as DIV100HP.

NOTES: (1) FSO is the abbreviation for Full Scale Output. (2) This parameter is untested and is not guaranteed. This specification is established to a 90% confidence level.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Bottom View			DIP
+V _{cc}	0 14	1 0	Gain Error Adjust
Numerator (N) Input	0 13	2 0	Output
Output Offset Adjust	0 12	3 0	-V _{cc}
N Input Offset Adjust	0 11	4 0	D Input Offset Adjust
Common	0 10	5 0	Internally Connected to Pin 1
Denominator (D) Input	0 9	6 0	Internally Connected to Pin 14
Reference Voltage	0 8	7 0	Internally Connected to Pin 8
		A. V. V	

ORDERING INFORMATION

MODEL	TEMPERATURE RANGE	TOTAL INITIAL ERROR (% FSO)
DIV100HP	0°C to +70°C	1.0
DIV100JP	0°C to +70°C	0.5
DIV100KP	0°C to +70°C	0.25

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
DIV100HP	14-Pin DIP	105
DIV100JP	14-Pin DIP	105
DIV100KP	14-Pin DIP	105

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

@ CURRENT-OUTPUT SENSORS

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_{CC} = \pm 15$ VDC, unless otherwise specified.

rimaitoner Afront husserief Park Malling Address: PO Bux 11400 Tucson, AZ 85734 Street Address: 8730 For (520 745) 111 - Tucson AZ 85734 Street BZQ 630-1510 Inc. (520 745) 111 - Tucson AZ 85734 FAX: (820 630-1510 Inc.)

+20VDC

PRELIMINARY INFORMATION SUBJECT TO CHANGE WITHOUT NOTICE

PRECISION SWITCHED INTEGRATOR TRANSIMPEDANCE AMPLIFIER

APPLICATIONS

- PRECISION LOW CURRENT MEASUREMENT
- PHOTODIODE MEASUREMENTS
- IONIZATION CHAMBER MEASUREMENTS
- CURRENT-OUTPUT SENSORS
- LEAKAGE CURRENT MEASUREMENT

FEATURES

- ON-CHIP INTEGRATING CAPACITORS
- GAIN PROGRAMMED BY TIMING
- LOW INPUT BIAS CURRENT: 500fA max
- LOW NOISE
- FAST PULSE INTEGRATION
- LOW NONLINEARITY: 0.02% max
- 14-PIN DIP, SO-14 SURFACE MOUNT

DESCRIPTION

The IVC102 is a precision integrating amplifier with FET op amp, integrating capacitors, and low leakage FET switches. It integrates low-level input current for a user-determined period, storing the resulting voltage on the integrating capacitor. The output voltage can be held for accurate measurement. The IVC102 provides a precision, low noise alternative to conventional transimpedance op amp circuits that require a very high value feedback resistor.

The IVC102 is ideal for amplifying low-level sensors such as photodiodes and ionization chambers. The input signal current can be positive or negative.

TTL/CMOS-compatible timing inputs control the integration period, hold and reset functions to set the effective transimpedance gain and to reset (discharge) the integrator capacitor.

Package options include 14-Pin plastic DIP and SO-14 surface-mount packages. Both are specified for the -40°C to 85°C industrial temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At $T_A = +25^{\circ}C$, $V_S = \pm 15V$, $R_L = 2k\Omega$, $C_{INT} = C_1 + C_2 + C_3$, 1ms integration period⁽¹⁾, unless otherwise specified.

UUIDUJ				IVC102		285-917-12-11-12-2
PARAMETER	CONDITION	IS	MIN	TYP	MAX	UNITS
TRANSFER FUNCTION	179771	111	Vo	$= -(T_{INT})(I_{IN})/C$	INT	ROSE AND RESERVED
Gain Error	$C_{INT} = C_1 + C_2$	+ Co		1 ±5	+25/-17	%
vs Temperature	-1141 -1 -2	-3		+30/+60		ppm/°C
Nonlinearity	$V_0 = \pm 10$	/		±0.005	±0.02	%
Input Current Range	40 - T10			±100	10.02	μА
	1 00	F0-F			140	
Offset Voltage ⁽²⁾	I _{IN} = 0, C _{SOURCE}	= 50pr	BETTER SETTING	-1/-3	±10	mV
vs Temperature		2000		±10		μV/°C
vs Power Supply	$V_S = +4.75/-10$ to	+18/-18V		150	500	μV/V
Droop Rate, Hold Mode	0.2767.6257.374	P THE SE SE		1		nV/μs
INPUT CHERTER ROYS A COLOR	ACT ON	1 /714	A PAIR	MILITERS	INCOM	
Input Bias Current	S ₁ , S ₂ Ope	n	PA WELL	100	500	fA
Offset Voltage (Op Amp Vos)				±0.5	±5	mV
vs Temperature		AND AND AND ASSESSMENT		±5	State Washington	μV/°C
vs Power Supply	$V_S = +4.75/-10$ to	±18/-18V		10	100	μV/V
Noise Voltage	f = 1kHz			10		nV/√Hz
INTEGRATION CAPACITORS	EAST 2 32 %	THE PERSON			The said of the said	1.0 400
C ₁ + C ₂ + C ₃	U 201 0	1.030	80	100	120	OOA pF
1 . 2 . 3	LINE AND CO.				The second secon	ppm/°C
vs Temperature Voltage Coefficient	COMPU	10.2	10	-25 2	By Cal	ppm/V
	HORRA &			10	5 Decede	
01	CONTRACTOR OF			0.00		pF
C ₂ NOIRERRONOS	DATAGE			30	YTIRA	pF
C ₃				60	no i veni	pF
L DENSITY MEASUREMENTS TUTTUO	S OPTICE	4 7 4			sheeped 2	nevO F
Voltage Range	I ATAG 9		(V _S) ±3	(V _S) ±2.5		V
Short-Circuit Current				±20	38U OT	mA
Capacitive Load Drive	BRAUDE			500	electable	pF
DYNAMIC CHARACTERISTIC		111111111111111111111111111111111111111	anotelee	A bommin	innas I lar	Inter
Op Amp Gain-Bandwidth		SERVINE SE		2		MHz
Op Amp Slew Rate		SEA LAND		9 0 3 AM	G. TUSKI	V/µs
Reset		N 15 P		Ami of	kert auher	of 3
Slew Rate				3	CLEY RECORDS	V/µs
Settling Time, 0.01%	10V Step			6	METIC CEL	μѕ
DIGITAL INPUTS	(TTL/CMOS Com	patible)				E TOLET
V _{IH} (referred to digital ground)		paner,	2		5.5	V
V _{II.} (referred to digital ground)	T anothern		-0.5	110	0.8	V
V _{DIGITAL GROUND} (referred to analog ground)	einem main				±200	mV
dose low bias currents (1pA typical) per H	V 5V	does the		2	s zezu 001f	μА
mose tow ours carrents (1pA typical) per-	V = 0V			0		μΑ
I _{IL} Switching Time Is a slidy And 28 wol 28 2/1970	langle tint - ov	use, low		100	to achieve	ns
POWER SUPPLY	guaranteed	mor top	seiodo Ingig	ol odl or il	osin ilome	eost, and
		-TRUE SEC	4.75	T .2015 R HO	18 001	addinsy.
Voltage Range: Positive	Because so	-zie lini	4.75	-15	-18	m heet Va
Current: Positive	lo anotos)					
Current. 1 Ostave		possible		3.8	4.5	A MA
Negative of an rodio of anomological	ya yiqanis	inteed so		-1.6	-2	mA
Analog Ground	. Tol bound for.			-220		μА
Digital Ground	uro att soons	essary.	ant not ner	-1.9	lyed error e	mA mA
TEMPERATURE RANGE	Passingings	-nini ald		ciaily desig	oa e goga tii	The circi
Operating Range			-40		85	°C
		anns ann-	40	matio bater	125	om n°c
Storage Storage	RESO, MOUNES		-40			
Storage Storage Reference in the control of		anlit-nida	flizh wol l	sistons, and	The second second	pliffens
Storage Storage CHITCHE IS CHITCHE STORAGE STO				100	urd gniggol	

NOTES: (1) Standard test timing: 1ms integration, 200µs hold, 100µs reset. (2) Hold mode output voltage after 1ms integration of zero input current. Includes op amp offset voltage, integration of input error current and switch charge injection effects.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

LOG100

Precision LOGARITHMIC AND LOG RATIO AMPLIFIER

FEATURES

- ACCURACY
 0.37% FSO max Total Error
 Over 5 Decades
- LINEARITY
 0.1% max Log Conformity
 Over 5 Decades
- EASY TO USE
 Pin-selectable Gains
 Internal Laser-trimmed Resistors
- WIDE INPUT DYNAMIC RANGE
 6 Decades, 1nA to 1mA
- HERMETIC CERAMIC DIP

APPLICATIONS

- LOG, LOG RATIO AND ANTILOG COMPUTATIONS
- ABSORBANCE MEASUREMENTS
- DATA COMPRESSION
- **OPTICAL DENSITY MEASUREMENTS**
- DATA LINEARIZATION
- CURRENT AND VOLTAGE INPUTS

DESCRIPTION

The LOG100 uses advanced integrated circuit technologies to achieve high accuracy, ease of use, low cost, and small size. It is the logical choice for your logarithmic-type computations. The amplifier has guaranteed maximum error specifications over the full six-decade input range (1nA to 1mA) and for all possible combinations of I_1 and I_2 . Total error is guaranteed so that involved error computations are not necessary.

The circuit uses a specially designed compatible thinfilm monolithic integrated circuit which contains amplifiers, logging transistors, and low drift thin-film resistors. The resistors are laser-trimmed for maximum precision. FET input transistors are used for the amplifiers whose low bias currents (1pA typical) permit signal currents as low as 1nA while maintaining guaranteed total errors of 0.37% FSO maximum.

Because scaling resistors are self-contained, scale factors of 1V, 3V or 5V per decade are obtained simply by pin selections. No other resistors are required for log ratio applications. The LOG100 will meet its guaranteed accuracy with no user trimming. Provisions are made for simple adjustments of scale factor, offset voltage, and bias current if enhanced performance is desired.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROW

LOG100

SPECIFICATIONS

ELECTRICAL

 $T_a = +25$ °C and $\pm V_{cc} = \pm 15$ V, after 15 minute warm-up, unless otherwise specified.

		1001001				
PARAMETER		CONDITIONS	CONDIMINS	TYP	MAX	UNITS
TRANSFER FUNC	TION			$V_{OUT} = K \text{ Log } (I_1/I_2)$	THEMSHIDDER	Iggue Hawo
Log Conformity Err		Either I ₁ or I ₂		001		
Initial	81±	1nA to 100μA (5 decades)	sted Performance	0.04	0.1	% stee
II II LICAL		1nA to 1mA (6 decades)	Continuous (S.) Session	0.15	0.25	%
AM1					0.23	
Over Temperature		1nA to 100μA (5 decades)		0.002	ENATURE RANGE	%/°C
		1nA to 1mA (6 decades)	7 1 1 1 1 1	0.001		%/°C
K Range ⁽²⁾		100	construction dead in the	1, 3, 5		V/decade
Accuracy		03-	DATE IN STREET IN STREET	0.3		%
Temperature Co	efficient	06-		0.03		%/°C
	o la messea p as back	compa supp. I no I av V adl to anil tri	in us fil-faed act m	of neitelyeholese is	ofernity Error is to	Dro L(h :25
		K = 1,(4) Current Input Operation	ions saction. (3) 1	eluus Sae Applica	perio of becomit	
		out sast (a) II, I2 = 1mA I IstoT san	values of IC is 10 to	Total Error at other	±55	mV b
			tul a ous accompan	Toursment beis FbE	±30	mV
			I'm it hie autodeat	mushus pro-		
		$I_1, I_2 = 10\mu A$			±25	mV.
		$l_1, l_2 = 1 \mu A$			±20	mV
		$l_1, l_2 = 100nA$			±25	mV
		$l_1, l_2 = 10nA$		SDAIL	±30	mV
		$l_1, l_2 = 1nA$			±37	mV
		Rottiger Wass	V812		THE PARTY OF THE P	
vs Temperature		$l_1, l_2 = 1 \text{mA}$	Vm008	±0.20	neitsgizz	mV/°C
FAIR LIBERT		$I_1, I_2 = 100\mu A$	Ara01	±0.37		mV/°C
	igni il 1, inpi	$l_1, l_2 = 10\mu A$	V814	±0.28	-	mV/°C
			20°C to 485°C	±0.033	armana and a diff	mV/°C
	Service Service	$l_1, l_2 = 1\mu A$			tule Range	
		l ₁ , l ₂ = 100nA	O 0051	±0.28	e (soldering, 10s) a	mV/°C
		$l_1, l_2 = 10nA$	huous to ground	±0.51	notiety() like	mV/°C
		$l_1, l_2 = 1nA$	0°877	±1.26	oth	mV/°C
0		11 Did 1 4m4		140		
vs Supply	0-4	$l_1, l_2 = 1 \text{mA}$		±4.3	0.00	mV/V
		$l_1, l_2 = 100\mu A$		±1.5		mV/V
		$l_1, l_2 = 10 \mu A$		±0.37	IDO NIN RD	mV/V
		$l_1, l_2 = 1 \mu A$		±0.11	The second second second	mV/V
		l ₁ , l ₂ = 100nA	THOMS	±0.61	ECADE	mV/V
		8 01, l ₂ = 10nA		±0.91		mV/V
		$l_1, l_2 = 100$ A		±2.6		mV/V
INDUT CHARACT	ERISTICS (of Amplifier	MANAGEMENT OF THE PARTY OF THE	7.018	Ixis A	19	7
Offset Voltage	ENISTICS (of Amplifier	S A ₁ and A ₂)		3.0		
			5 to 7	±0.7	31	0
Initial	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P	The state of the s	7 07 4	20.7	±5	mV
vs Temperature			V of 8 bo	±80	0.5	μV/°C
Bias Current	and the same of the same of	and the same of th	1 01 0 00	E A DITE D		
Initial	CHILATER	FILE FILE A		1	5(5)	pA
vs Temperature	AND A STATE OF THE PARTY.	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	The same of the same	Doubles Every 10°C		
Voltage Noise	A STATE OF THE PARTY AND	10Hz to 10kHz, RTI		3	COMPENSA	μVrms
Current Noise	KGE SEN	10Hz to 10kHz, RTI		0.5		pArms
	05				8	pranie
AC PERFORMAN 3dB Response ⁽⁶⁾ , I		Any magral circuit can b	1 1 1 1 1 1 1 1 1	- TEST		
	e armorio betany	C _c = 4500pF		044		ldde
		G _C = 4500pF	Primary Law and All	0.11	994	kHz
	ailure to observe	$C_c = 150pF$		38	251	kHz
10μΑ		$C_c = 150pF$	THE RESERVE OF	27		kHz
1mA		$C_c = 150pF$ $C_c = 50pF$		45	8 5	kHz
Step Response(6)		ESD demons can range f		0 0	0 0	
Increasing		C _c = 150pF				
1μA to 1mA		tion to con other device the		11		
100mA to 100		may be more susceptible		7	0.	μs
100HA TO THA		The state of the s		k in a second se		μs
TUNA to TUUNA		parametric changes caul		110		μs
Decreasing		$C_c = 150pF$			Acres a series de la constante	
1mA to 1µA		A commended		45	NEORMATIO	μs
1μA to 100nA				20		μѕ
100nA to 10nA		CALIFORNI DO ANDAR	CHRISE	550	8-1719-11-11	μs
OUTPUT CHARAC	CTERISTICS	PARTY THE GRANDWAY	ERATURE	1000	PACKAGE	1800
Full Scale Output			±10		SHEDIK MEDIAN	V
		WARE PARKET		eo leur	sono S albo and sono	AT SUPPLEM
Rated Output			D*07.+ 07	U THE SE	TRIES SUBLINEE CRIES	
Voltage		$I_{OUT} = \pm 5 \text{mA}$	±10		FREE TRANSPORT	V
Current		$V_{OUT} = \pm 10V$	±5			mA
Current Limit		NOTES (1) For detailed thow no	AMPLIED NO.	and the little and on the	everished at a travel	
Positive		when I - multiply of Appendix C of Store - Flow	LOW MAN DO THE	12.5	pinglymperiant will a	mA
Negative		use of nitrola result handed a service	TOTAL MANUAL PROPERTY OF THE PARTY OF THE PA	15	PERSONAL PROPERTY.	mA
. roguiro		the first mentioned over the section of the section	ICH INTORNALION STOR	0.05	eminative entitle estitled	
mpedance		one tonu benishier and teaffonds	e subject to chance		sering data primes	Ω

ELECTRICAL

 $T_A = +25$ °C and $\pm V_{CC} = \pm 15$ V, after 15 minute warm-up, unless otherwise specified.

		LOUIDOJ		LOG100JP			
PARAMETER		CONDITIONS	SI MIN HOO	TYP	MAX	UNITS	
POWER SUPPLY F	REQUIREMENTS	Vous a K Log			MONT	TRANSPER PUR	
Rated Voltage			Short, or L	±15	Cherry	VDC	
Operating Range		Derated Performance	(ar broad ±12,001 o	Ant	±18	VDC	
Quiescent Current		3.0	te truk (6 decades)	Ant ±7	±9	mA	
AMBIENT TEMPER	ATURE RANGE	2 0.0	(al deceptio), Atjudic o	Ani		Over Learly-Status	
Specification		10.0	(appended of Amil of	Ant	+70	°C	
Operating Range		Derated Performance	-25		+85	°C °C	
Storage		1.0	-40		+85	°C	

NOTES: (1) Log Conformity Error is the peak deviation from the best-fit straight line of the V_{OUT} vs Log I_{IN} curve expressed as a percent of peak-to-peak full scale output. (2) May be trimmed to other values. See Applications section. (3) The worst-case Total Error for any ratio of $I_{\text{I}}/I_{\text{2}}$ is the largest of the two errors when I_{1} and I_{2} are considered separately. (4) Total Error at other values of K is K times Total Error for K = 1. (5) Guaranteed by design. Not directly measurable due to amplifier's committed configuration. (6) 3dB and transient response are a function of both the compensation capacitor and the level of input current. See Typical Performance Curves.

ABSOLUTE MAXIMUM RATINGS

Supply	±18V
Internal Power Dissipation	600mV
Input Current	
Input Voltage Range	±18V
Storage Temperature Range	-40°C to +85°C
Lead Temperature (soldering, 10s)	+300°C
Output Short-circuit Duration	
Junction Temperature	.39.14

SCALE FACTOR PIN CONNECTIONS

K, V/DECADE	CONNECTIONS
V/V/m 5	5 to 7
VAVE 3	4 to 7
1.9	4 and 5 to 7
1	3 to 7
0.85	3 and 5 to 7
0.77	3 and 4 to 7
0.68	3 and 4 and 5 to 7

FREQUENCY COMPENSATION

ORDERING INFORMATION

ST.	oa oa	SPECIFIED TEMPERATURE
MODEL	PACKAGE	RANGE
LOG100JP	14-Pin Hermetic Ceramic DIP	0°C to +70°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integral circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
LOG100JP	14-Pin Hermetic Ceramic DIP	148(2)

NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) During 1994, the package was changed from plastic to hermetic ceramic. Pinout, model number, and specifications remained unchanged. The metal lid of the new package is internally connected to common, pin 10.

SPECIAL FUNCTIONS

THEORY OF OPERATION

The base-emitter voltage of a bipolar transistor is

$$V_{BE} = V_T \ell n \frac{I_C}{I_S}$$
 where: $V_T = \frac{KT}{q}$ (1)

 $K = Boltzman's constant = 1.381 \times 10^{-23}$

T = Absolute temperature in degrees Kelvin

q = Electron charge = 1.602 x 10⁻¹⁹ Coulombs

 I_c = Collector current

I_s = Reverse saturation current

From the circuit in Figure 1, we see that

$$V_{OUT}' = V_{BE_1} - V_{BE_2}$$
 (2)

Substituting (1) into (2) yields

$$V_{\text{OUT}}' = V_{T_1} \ln \frac{I_1}{I_{S_1}} - V_{T_2} \ln \frac{I_1}{I_{S_2}}$$
 (3)

If the transistors are matched and isothermal and $V_{T1} = V_{T2}$, then (3) becomes:

$$V_{\text{OUT}}' = V_{\text{T}} \left[\ell n \frac{I_1}{I_{\text{S}}} - \ell n \frac{I_2}{I_{\text{S}}} \right]$$
(4)

$$V_{\text{OUT}} = V_T \ln \frac{I_1}{I_2}$$
 and since which was the (5)

$$ln x = 2.3 \log_{10} x$$
 (6)

$$V_{\text{OUT}} = n \ V_{\text{T}} \log \frac{I_{\text{I}}}{I} \tag{7}$$

where n = 2.3 (8)

$$V_{\text{OUT}} = V_{\text{OUT}} \cdot \frac{R_1 + R_2}{R_2} \tag{9}$$

$$= \frac{R_1 + R_2}{R_1} n V_T \log \frac{I_1}{I_2}$$
 (10)

 $V_{OUT} = K \log \frac{I_1}{I} \text{ MOSSER YOMSUOSSES SEE}$ (11)

FIGURE 1. Simplified Model of Log Amplifier.

It should be noted that the temperature dependance associated with $V_{\rm T}=KT/q$ is compensated by making $R_{\rm 1}$ a temperature sensitive resistor with the required positive temperature coefficient.

DEFINITION OF TERMS

TRANSFER FUNCTION

The ideal transfer function is $V_{OUT} = K \log \frac{I_1}{I_2}$ where:

K = the scale factor with units of volts/decade

 I_1 = numerator input current

 I_2 = denominator input current.

ACCURACY

Accuracy considerations for a log ratio amplifier are somewhat more complicated than for other amplifiers. The reason is that the transfer function is nonlinear and has two inputs, each of which can vary over a wide dynamic range. The accuracy for any combination of inputs is determined from the total error specification.

FIGURE 2. Transfer Function with Varying K and I,.

FIGURE 3. Transfer Function with Varying I, and I,.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

divider may be used to reduc RORRILATOT

The total error is the deviation (expressed in mV) of the actual output from the ideal output of $V_{OUT} = K \log{(I_1/I_2)}$. Thus,

$$V_{OUT (ACTUAL)} = V_{OUT (IDEAL)} \pm Total Error.$$

It represents the sum of all the individual components of error normally associated with the log amp when operated in the current input mode. The worst-case error for any given ratio of I_1/I_2 is the largest of the two errors when I_1 and I_2 are considered separately.

Example:

 I_1 varies over a range of 10nA to 1 μA and I_2 varies from 100nA to 10 μA . What is the maximum error?

Table I shows the maximum errors for each decade combination of I_1 and I_2 .

-	and the same) contracted a	ım error)(1)	7 7 110
(p)(1		10nA (30mV)	100nA (25mV)	1μA (20mV)
1 ₂ (maximum error) ⁽¹⁾	100nA (25mV)	0.1 (30mV)	1 (25mV)	10 (25mV)
aximu	1μA (20mV)	0.01 (30mV)	0.1 (25mV)	(20mV)
L ₂ (m	10μA (25mV)	0.001 (30mV)	0.01 (25mV)	0.1 (25mV)

TABLE I. I,/I, and Maximum Errors.

Since the largest value of I_1/I_2 is 10 and the smallest is 0.001, K is set at 3V per decade so the output will range from +3V to -9V. The maximum total error occurs when I_1 = 10nA and is equal to K x 30mV. This represents a 0.75% of peak-to-peak FSO error 3 x 0.030/12 x 100% = 0.75% where the full scale output is 12V (from +3V to -9V).

ERRORS RTO AND RTI

As with any transfer function, errors generated by the function itself may be Referred-to-Output (RTO) or Referred-to-Input (RTI). In this respect, log amps have a unique property:

Given some error voltage at the log amp's output, that error corresponds to a constant percent of the input regardless of the actual input level.

Refer to: Yu Jen Wong and William E. Ott, "Function Circuits: Design & Applications", McGraw-Hill Book, 1976.

LOG CONFORMITY

Log conformity corresponds to linearity when V_{OUT} is plotted versus I_1/I_2 on a semilog scale. In many applications, log conformity is the most important specification. This is true because bias current errors are negligible (1pA compared to input currents of 1nA and above) and the scale factor and offset errors may be trimmed to zero or removed by system calibration. This leaves log conformity as the major source of error.

Log conformity is defined as the peak deviation from the best-fit straight line of the V_{OUT} versus $\log (I_1/I_2)$ curve. This is expressed as a percent of peak-to-peak full scale output. Thus, the nonlinearity error expressed in volts over m decades is

$$V_{OUT (NONLIN)} = K 2Nm V$$
 (12)

where N is the log conformity error, in percent.

INDIVIDUAL ERROR COMPONENTS

The ideal transfer function with current input is

$$V_{\text{OUT}} = K \text{ Log} \frac{I_1}{I_2}$$
 And the square larger basis (13)

The actual transfer function with the major components of error is

$$V_{\text{OUT}} = K (1 \pm \Delta K) \log \frac{I_1 - I_{B_1}}{I_2 - I_{B_2}} \pm K 2Nm \pm V_{\text{OS OUT}}$$
 (14)

The individual component of error is

 ΔK = scale factor error (0.3%, typ)

 I_{B1} = bias current of A_1 (1pA, typ)

 I_{B2} = bias current of A_2 (1pA, typ)

N = log conformity error (0.05%, 0.1%, typ)

 $V_{\text{os out}}$ = output offset voltage (1mV, typ)

m = number of decades over which N is specified: 0.05% for m = 5, 0.1% for m = 6

Example: what is the error with K = 3 when

 $I_1 = 1 \mu A$ and $I_2 = 100 nA$

$$V_{OUT} = 3(1 \pm 0.003) \log \frac{10^{-6} - 10^{-12}}{10^{-7} - 10^{-12}} \pm 3(2)(0.0005)5 \pm 1 \text{mV}$$
(15)

$$10^{-10^{-10}}$$
 (15)
$$\approx 3.009 \log \frac{10^{-6}}{10^{-7}} + 0.015 + 0.001$$
 (16)

$$= 3.009(1) + 0.015 + 0.001 \tag{17}$$

Since the ideal output is 3.000V, the error as a percent of reading is

% error =
$$\frac{0.025}{3}$$
 x 100% = 0.83% (19)

For the case of voltage inputs, the actual transfer function is

$$V_{\text{OUT}} = K(1 \pm \Delta K) \log \frac{\frac{V_1}{R_1} - I_{B_1} \pm \frac{E_{\text{OS}_1}}{R_1}}{\frac{V_2}{R_2} - I_{B_2} \pm \frac{E_{\text{OS}_2}}{R_2}} \pm K \ 2Nm \ \pm V_{\text{OS OUT}}$$

FREQUENCY RESPONSE

The 3dB frequency response of the LOG100 is a function of the magnitude of the input current levels and of the value of the frequency compensation capacitor. See Typical Performance Curves for details.

and I₂ with a small signal AC current on one of them.

The transient response of the LOG100 is different for increasing and decreasing signals. This is due to the fact that a log amp is a nonlinear gain element and has different gains at different levels of input signals. Frequency response decreases as the gain increases.

GENERAL INFORMATION

INPUT CURRENT RANGE

The stated input range of 1nA to 1mA is the range for specified accuracy. Smaller or larger input currents may be applied with decreased accuracy. Currents larger than 1mA result in increased nonlinearity. The 10mA absolute maximum is a conservative value to limit the power dissipation in the output stage of A_1 and the logging transistor. Currents below 1nA will result in increased errors due to the input bias currents of A_1 and A_2 (1pA typical). These errors may be nulled. See Optional Adjustments section.

FREQUENCY COMPENSATION

Frequency compensation for the LOG100 is obtained by connecting a capacitor between pins 7 and 14. The size of the capacitor is a function of the input currents as shown in the Typical Performance Curves. For any given application, the smallest value of the capacitor which may be used is determined by the maximum value at $\rm I_2$ and the minimum value of $\rm I_1$. Larger values of $\rm C_C$ will make the LOG100 more stable, but will reduce the frequency response.

SETTING THE REFERENCE CURRENT

When the LOG100 is used as a straight log amplifier I_2 is constant and becomes the reference current in the expression

$$V_{OUT} = K \log \frac{I_1}{I_{DEE}}$$
 (21)

 I_{REF} can be derived from an external current source (such as shown in Figure 4), or it may be derived from a voltage source with one or more resistors.

When a single resistor is used, the value may be quite large when I_{REF} is small. If I_{REF} is 10nA and +15V is used

$$R_{REF} = \frac{15V}{10nA} = 1500M\Omega.$$

FIGURE 4. Temperature-Compensated Current Reference.

resistor. When this is done, one must be aware of possible errors caused by the amplifier's input offset voltage. This is shown in Figure 5.

In this case the voltage at pin 14 is not exactly zero, but is equal to the value of the input offset voltage of A_1 , which ranges from zero to $\pm 5 \text{mV}$. V_T must be kept much larger than 5 mV in order to make this effect negligible. This concept also applies to pin 1.

FIGURE 5. "T" Network for Reference Current.

OPTIONAL ADJUSTMENTS

The LOG100 will meet its specified accuracy with no user adjustments. If improved performance is desired, the following optional adjustments may be made.

INPUT BIAS CURRENT

The circuit in Figure 6 may be used to compensate for the input bias currents of A_1 and A_2 . Since the amplifiers have FET inputs with the characteristic bias current doubling every 10° C, this nulling technique is practical only where the temperature is fairly stable.

FIGURE 6. Bias Current Nulling.

OUTPUT OFFSET

The output offset may be nulled with the circuit in Figure 7. I_1 and I_2 are set equal at some convenient value in the range of 100nA to 100 μ A. R_1 is then adjusted for zero output voltage.

FIGURE 7. Output Offset Nulling.

ADJUSTMENTS OF SCALE FACTOR K

The value of K may be changed by increasing or decreasing the voltage divider resistor normally connected to the output, pin 7. To increase K put resistance in series between pin 7 and the appropriate scaling resistor pin (3, 4 or 5). To decrease K place a parallel resistor between pin 2 and either pin 3, 4 or 5.

APPLICATION INFORMATION

WIRING PRECAUTIONS

In order to prevent frequency instability due to lead inductance of the power supply lines, each power supply should be bypassed. This should be done by connecting a $10\mu F$ tantalum capacitor in parallel with a 1000pF ceramic capacitor from the $+V_{\rm CC}$ and $-V_{\rm CC}$ pins to the power supply common. The connection of these capacitors should be as close to the LOG100 as practical.

CAPACITIVE LOADS

Stable operation is maintained with capacitive loads of up to 100 pF, typically. Higher capacitive loads can be driven if a 22Ω carbon resistor is connected in series with the LOG100's output. This resistor will, of course, form a voltage divider with other resistive loads.

CIRCUIT PROTECTION

The LOG100 can be protected against accidental power supply reversal by putting a diode (1N4001 type) in series with each power supply line as shown in Figure 8. This precaution is necessary only in power systems that momentarily reverse polarity during turn-on or turn-off. If this protection circuit is used, the accuracy of the LOG100 will be degraded slightly by the voltage drops across the diodes as determined by the power supply sensitivity specification.

The LOG100 uses small geometry FET transistors to achieve the low input bias currents. Normal FET handling

FIGURE 8. Reverse Polarity Protection.

techniques should be used to avoid damage caused by low energy electrostatic discharge (ESD).

LOG RATIO

One of the more common uses of log ratio amplifiers is to measure absorbance. A typical application is shown in Figure 9.

Absorbance of the sample is
$$A = \log \frac{\lambda_1}{\lambda_2}$$
 (22)

If
$$\lambda_2 = \lambda_1$$
 and D_1 and D_2 are matched $A \propto K \log \frac{I_1}{I_2}$. (23)

FIGURE 9. Absorbance Measurement.

DATA COMPRESSION

In many applications the compressive effects of the logarithmic transfer function is useful. For example, a LOG100 preceding an 8-bit analog-to-digital converter can produce equivalent 20-bit converter operation.

SELECTING OPTIMUM VALUES OF I, AND K

In straight log applications (as opposed to log ratio), both K and I_2 are selected by the designer. In order to minimize errors due to output offset and noise, it is normally best to

For Immediate Assistance, Contact Your Local Salesperson

scale the log amp to use as much of the $\pm 10V$ output range as possible. Thus, with the range of I_1 from $I_{1 \text{ MIN}}$ to $I_{1 \text{ MAX}}$;

For
$$I_{1 \text{ MAX}} + 10V = K \log I_{1 \text{ MAX}} / I_2$$
 (24)

For
$$I_{1 \text{ MIN}}$$
 - 10V = K log $I_{1 \text{ MIN}}/I_{2}$ (25)

Addition of these two equations and solving for I_2 shows that its optimum value, $I_{2\,\rm OPT}$, is the geometric mean of $I_{1\,\rm MAX}$ and $I_{1\,\rm MIN}$.

$$I_{2 \text{ OPT}} = \sqrt{I_{1 \text{ MAX}} \times I_{1 \text{ MIN}}}$$
 (26)

$$K_{\text{OPT}} = \frac{10}{\log \frac{I_{1 \text{MAX}}}{I_{2 \text{OPT}}}}$$
 (27)

Since K is selectable in discrete steps, use the largest value of K available which does not exceed K_{OFT} .

NEGATIVE INPUT CURRENTS

The LOG100 will function only with positive input currents (conventional current flow into pins 1 and 14). Some current sources (such as photomultiplier tubes) provide negative input currents. In such situations, the circuit in Figure 10 may be used.⁽¹⁾

VOLTAGE INPUTS

The LOG100 gives the best performance with current inputs. Voltage inputs may be handled directly with series resistors, but the dynamic input range is limited to approximately three decades of input voltage by voltage noise and offsets. The transfer function of equation (20) applies to this configuration.

NOTE: (1) More detailed information may be found in "Properly Designed Log Amplifiers Process Bipolar Input Signals" by Larry McDonald, EDN, 5 Oct. 80, pp. 99–102.

FIGURE 10. Current Inverter.

ANTILOG CONFIGURATION (an implicit technique)

FIGURE 11. Connections for Antilog Function.

MPY100

ABRIDGED DATA SHEET

For Complete Data Sheet Call FaxLine 1-800-548-6133 Request Document Number 10412

MULTIPLIER-DIVIDER

FEATURES

- LOW COST
- DIFFERENTIAL INPUT
- ACCURACY 100% TESTED AND
 GUARANTEED
- NO EXTERNAL TRIMMING REQUIRED
- LOW NOISE: 90µVrms, 10Hz to 10kHz
- HIGHLY RELIABLE ONE-CHIP DESIGN
- DIP OR TO-100 TYPE PACKAGE
- WIDE TEMPERATURE OPERATION

APPLICATIONS

- MULTIPLICATION
- DIVISION
- SQUARING
- SQUARE ROOT
- LINEARIZATION
- POWER COMPUTATION
- ANALOG SIGNAL PROCESSING
- ALGEBRAIC COMPUTATION
- TRUE RMS-TO-DC CONVERSION

DESCRIPTION

The MPY100 multiplier-divider is a low cost precision device designed for general purpose application. In addition to four-quadrant multiplication, it also performs analog square root and division without the bother of external amplifiers or potentiometers. Laser-trimmed one-chip design offers the most in highly

reliable operation with guaranteed accuracies. Because of the internal reference and pretrimmed accuracies the MPY100 does not have the restrictions of other low cost multipliers. It is available in both TO-100 and DIP ceramic packages.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

At $T_A = +25$ °C and $\pm V_S = 15$ VDC, unless otherwise specified.

	87.73		MPY100	A	_	MPY100B/	C	181.7	MPY100S	3 - 31175	J-63
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
MULTIPLIER PERFORM	IANCE		1111	1200	Ph				Parager (area)	25 htt 2000	- 12
Transfer Function	ALL SERVICES	(X,	- X ₂)(Y ₁ -Y ₂)		*/*			*		
	For Complete		10		TE			100	F 1 10 1		
00-549-8133	H entirePutien 14			1				12.5		- 110	
Total Error	-10V ≤ X, Y ≤ 10V		1000000								
Initial	$T_A = +25^{\circ}C$			±2.0			±1.0/0.5			±0.5	% FSR
vs Temperature	-25°C ≤ T _A ≤ +85°C		±0.017	±0.05		±0.008/0.008	±0.02/0.02				% FSR/°
vs Temperature	-55°C ≤ T _A ≤ +125°C	Section 1	RESOLUTION IN	Printed Control	2000	The Republic of State	Charles of	DEROCAL	±0.025	±0.05	% FSR/°
vs Supply ⁽¹⁾			±0.05	77		*/*		110			% FSR/9
Individual Errors	STATE OF THE STATE OF	- 1						-			
Output Offset	476	managa Japa	0.00 20 40	HINTS LIVER	0.	PRINCE OF	200.00				
Initial _	T _A = +25°C	256	±50	±100	1	±10/7	±50/25	189	±7	±50	mV
vs Temperature	-25°C ≤ T _A ≤ +85°C	States of	±0.7	±2.0	1000	±0.7/0.3	±2.0/±0.7				mV/°C
vs Temperature	$-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			1				100	±0.3	±0.7	mV/°C
vs Supply ⁽¹⁾			±0.25			*/*			*		mV/%
Scale Factor Error	STATE OF THE PROPERTY OF THE P	12/15/80	NEWSTRANSPORT	THE LOSS STATES	221.00	Charipa Association	STATE OF STA	1080.0	TARESTONE STATE	NO DOES NO	10001100
Initial	$T_A = +25^{\circ}C$		±0.12			*/*					% FSR
vs Temperature	-25°C ≤ T _A ≤ +85°C		±0.008			*/*					% FSR/°
vs Temperature	-55°C ≤ T _A ≤ +125°C	TA:	31 199	1.0					±0.008	STAR	% FSR/°
vs Supply ⁽¹⁾	20.00.000	S 10 m	±0.05	100		*/*		1	40.000	N. P. P. W.	% FSR 9
Nonlinearity	50000	5/6/50	40000 0100						77.597	ow co	1.00
X Input	$X = 20Vp-p; Y = \pm 10VDC$	175000	±0.08	19	1	*/*			. 100	CO MAN	% FSR
Y Input	$Y = 20Vp-p: X = \pm 10VDC$		±0.08	0		*/*		(PUS)	II JATTHE	BEFER	% FSR
Feedthrough	f = 50Hz	4									
X Input	X = 20Vp-p; Y = 0	5)1	100	0		30/30	A CHTC	BY 6	30	CCUR	mVp-p
Y Input	Y = 20Vp-p; X = 0	word.	- 6	0		*/*			GESTN	ARAUS	mVp-p
vs Temperature	$-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$	75,78%	0.1			*/*		(d. 3.5.5)			mVp-p/°
vs Temperature	-55°C ≤ T _A ≤ 125°C	STAT	NEARD	0		CHARGO	HNG B	BAIR	0.1	DO EXC	mVp-p/°
vs Supply ⁽¹⁾			0.15			*/*	-1.10 P	- No. 37	una estant	NES MESS	mVp-p/%
DIVIDER PERFORMANC	F MUNIATUS	SALT OF	PER PER PE	CIV.			W. 194 8	-	dear season	101 101 101	1
Transfer Function	X, > X,	25.030	$10(Z_2 - Z_1)$	100		101*/*	HEO-BM	O.B.	RELIABI	HOHLY	10
Transfer Fariotteri	14 2 12	1010		Υ,							
	MOSTATURMOS	OLA	$(X_1 - X_2)$. 6		HE	PACKA	HAY	T 091-03	RO SE	10
Total Error (with	X = 10V					1875177	HERO.	BRU	- A CHICKGRAD	IT BON	1 3
external adjustments)	-10V ≤ Z ≤ +10V	13-63	±1.5	0		±0.75/0.35	ELST NO.	823 W	±0.35	27/213	% FSR
	X = 1V							1			
	-1V ≤ Z ≤ +1V		±4.0			±2.0/1.0		111	±1.0	12 Y 1	% FSR
	+0.2V ≤ X ≤ +10V										
	-10V ≤ Z ≤ +10V		±5.0			±2.5/1.0		7.0	±1.0	BEA. CO.	% FSR
SQUARER PERFORMA	NCE							3/ 51		1475	161
Transfer Function			$(X_1 - X_2)^2$	_		*/*		1			-
	and generation	OUBT	10	- Z2	1098	1500 MUDE	der is it	VID-1	odqirkam 0	MEA TO	DET
	remai reference ar	ri ari	TO SPREE	Bet	goits	ose applic	muo lene	nsp T	Besigned for	device	nois
Total Error	-10V ≤ X ≤ +10V	TOTAL .	±1.2	was a	nistm.	±0.6/0.3	with the state of	wards a	±0.3	and the latest	% FSR
SQUARE ROOTER PER	FORMANCE										
Transfer Function	$Z_1 < Z_2$	+1	10(7 7.) +	X.	orb si	Odb ./* 1100	ivib bas	MOOT	menbs dolt	ME SUITE	rieg
Total Error	1V ≤ Z ≤ 10V	o THE	10(Z ₂ - Z ₁) + ±2	1	1388	±1/0.5	brinton ro	STST	±0.5	er of ext	% FSR
AC PERFORMANCE		-			Hills	fi or tayno	set met	vo no	self mylau	enzi beize	70.00
			550		Curdo	***	1000	100	and days	and some	
Small-Signal Bandwidth	0	1 - 3	550			*/*	Page 1			Ly E	kHz
% Amplitude Error	Small-Signal		70			*/*					kHz
% (0.57°) Vector Error	Small-Signal		5			*/*				19.31	kHz
Full Power Bandwidth	$ V_0 = 10V, R_L = 2k\Omega$		320	1	1	*/*	1		7116		kHz
Slew Rate	$ V_0 = 10V, R_L = 2k\Omega$	1005	20	1		*/*	(1-V				V/µs
Settling Time	$\varepsilon = \pm 1\%$, $\Delta V_0 = 20V$		2	1		*/*		-	-0,8		μs
Overload Recovery	50% Output Overload	- 8	0.2			*/*					μs
INPUT CHARACTERIST	ics			9104	THINLY	1,000					7 11
Input Voltage Range	-		-4-0	1			1				100
Rated Operation		±10			*/*		200				V
Absolute Maximum	3			±V _{CC}			*/*			*	V
Input Resistance	X, Y, Z ⁽²⁾		10			*/*	1		-054		MΩ
Input Bias Current	X, Y, Z		1.4			*/*			*		μА
OUTPUT CHARACTERI	STICS			1777			1				,
Rated Output	Plan Gala				-		1		2,0-		
Voltage	$I_0 = \pm 5mA$	±10		reta	*/*		C M				V
Current	$V_0 = \pm 10V$	±5			-/-		1		-2.0-		mA
- union	40 - T10A	10	1.5		1	*/*	1		197		Ω
Output Resistance	f = DC										

SPECIFICATIONS (CONT)

At T_A = +25°C and ±V_S = 15VDC, unless otherwise specified.

APAVO	I B./I	MPY100A		MPY100B/C			MPY100S			18	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT NOISE VOLTING $\begin{aligned} f_{O} &= 1 \text{Hz} \\ f_{O} &= 1 \text{kHz} \\ \text{If Corner Frequency} \\ f_{B} &= 5 \text{Hz to } 10 \text{kHz} \\ f_{B} &= 5 \text{Hz to } 5 \text{MHz} \end{aligned}$	rad depolition		6.2 0.6 110 60 1.3			*/* */* */*				0.400 %	μV/√Hz μV/√Hz Hz μVrms mVrms
POWER SUPPLY REC	QUIREMENTS			-							a describing t
Rated Voltage Operating Range Quiescent Current	Derated Performance	±8.5	±15 ±5.5	±20	*/*	*/*	*/*				VDC VDC mA
TEMPERATURE RAN Specification Operating Range Storage	GE (Ambient) Derated Performance	-25 -55 -65	917.	+85 +125 +150	*/*	OJA	A.	-55 *		+125	°C °C °C

^{*} Same as MPY100A specification.

/ B/C grades same as MPY100A specification.

NOTES: (1) Includes effects of recommended null pots. (2) Z_2 input resistance is $10M\Omega$, typical, with V_{OS} pin open. If V_{OS} pin is grounded or used for optional offset adjustment, the Z_2 input resistance may be as low as $25k\Omega$

PIN CONFIGURATIONS

NOTES: (1) $V_{\rm OS}$ adjustment optional not normally recommended. $V_{\rm OS}$ pin may be left open or grounded. (2) All unused input pins should be grounded.

ABSOLUTE MAXIMUM RATINGS

Supply	±20VDC
Internal Power Dissipation(1)	500mW
Differential Input Voltage(2)	±40VDC
Input Voltage Range(2)	±20VDC
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Output Short-circuit Duration(3)	Continuous
Junction Temperature	+150°C

NOTES: (1) Package must be derated on $\theta_{JC}=15^{\circ}\text{C/W}$ and $\theta_{JA}=165^{\circ}\text{C/W}$ for the metal package and $\theta_{JC}=35^{\circ}\text{C/W}$ and $\theta_{JA}=220^{\circ}\text{C/W}$ for the ceramic package. (2) For supply voltages less than ±20VDC, the absolute maximum input voltage is equal to the supply voltage. (3) Short-circuit may be to ground only. Rating applies to +85°C ambient for the metal package and +65°C for the ceramic package.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

NOTES: (1) V_{OS} adjustment optional not normally recommended. V_{OS} pin may be left open or grounded. (2) All unused input pins should be grounded.

ORDERING INFORMATION

	CHUENIAGE TO	SUMA LITURE
MODEL	PACKAGE	TEMPERATURE RANGE
MPY100AG	14-Pin Ceramic DIP	-25°C to +85°C
MPY100AM	Metal TO-100	-25°C to +85°C
MPY100BG	14-Pin Ceramic DIP	-25°C to +85°C
MPY100BM	Metal TO-100	-25°C to +85°C
MPY100CG	14-Pin Ceramic DIP	-25°C to +85°C
MPY100CM	Metal TO-100	-25°C to +85°C
MPY100SG	14-Pin Ceramic DIP	-55°C to +125°C
MPY100SM	Metal TO-100	-55°C to +125°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
MPY100AG	14-Pin Ceramic DIP	169
MPY100AM	Metal TO-100	007
MPY100BG	14-Pin Ceramic DIP	169
MPY100BM	Metal TO-100	007
MPY100CG	14-Pin Ceramic DIP	169
MPY100CM	Metal TO-100	007
MPY100SG	14-Pin Ceramic DIP	169
MPY100SM	Metal TO-100	007

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

MPY534

ABRIDGED DATA SHEET

For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10614

Precision ANALOG MULTIPLIER

FEATURES

- ±0.25% max 4-QUADRANT ACCURACY
- WIDE BANDWIDTH: 1MHz min, 3MHz typ
- ADJUSTABLE SCALE FACTOR
- STABLE AND RELIABLE MONOLITHIC CONSTRUCTION
- LOW COST

APPLICATIONS

- PRECISION ANALOG SIGNAL PROCESSING
- VIDEO SIGNAL PROCESSING
- VOLTAGE CONTROLLED FILTERS AND OSCILLATORS
- MODULATION AND DEMODULATION
- RATIO AND PERCENTAGE COMPUTATION

DESCRIPTION

The MPY534 is a high accuracy, general purpose four-quadrant analog multiplier. Its accurately laser trimmed transfer characteristics make it easy to use in a wide variety of applications with a minimum of external parts and trimming circuitry. Its differential X, Y and Z inputs allow configuration as multiplier, squarer, divider, square-rooter and other functions while maintaining high accuracy.

The wide bandwidth of this new design allows accurate signal processing at higher frequencies suitable for video signal processing. It is capable of performing IF and RF frequency mixing, modulation and demodulation with excellent carrier rejection and very simple feedthrough adjustment.

An accurate internal voltage reference provides precise setting of the scale factor. The differential Z input allows user selected scale factors from 0.1 to 10 using external feedback resistors.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

FUNCTIONS

ELECTRICAL

TARRYSIA		MPY534	J	1	MPY534I	K		MPY534I	Lil .	1	MPY534	S	MPY534T			
PARAMETER	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
MULTIPLIER													HOE	PORMA	139 ar	tups
PERFORMANCE	1119			, v				H.X			1			no	r Fund	lenmi
Transfer Function				(X ₁ -)	(₂)(Y ₁ - '	$\frac{Y_2}{Z} + Z_2$	100	*V0							No.	
		8.01			10V	2		E.03			0.6		(V01 :	X > VC	(-) 1011	I Isto
Total Error(1)	-	-									-	-	-	12.757	nne.s	5310
$(-10V \le X, Y \le +10V)$	131		±1.0			±0.5			±0.25			±1.0	100	Inc.	Mail I	%
T _A = min to max		±1.5			±1.0		61	±0.5	MIN		-	±2.0	15	1 200	±1.0	%
Total Error vs Temperature		±0.022			±0.015			±0.008	×.X		0.14	±0.02	avos	T > V	±0.01	%/00
Scale Factor Error	-	9.3-4			-	-	-	-		-		-				
(SF = 10.000V Nominal)(2)		±0.25			±0.1						±0.25			. 1.3	BAUS N	%
Temperature Coefficient of															BOSHOV	6 ddns
Scaling Voltage	201	±0.02			±0.01			±0.005			±0.02		100	±0.005	one's a	%/°0
Supply Rejection (±15V ±1V)	220				±0.01		812		82						Bode	%
Nonlinearity:							9	- 6					FFVS	USBIDS)	manua	origins
X (X = 20Vp-p, Y = 10V)		±0.4			±0.2	±0.3		±0.10	±0.12		±0.4		DE	MAN B	BUT AS	%
Y (Y = 20Vp-p, X = 10V)	+125			100	±0.01	±0.1	0554	±0.005	0	1	1				96	%
Feedthrough ⁽³⁾				100			+150		-6.5	1			1.53		100	Storage
X (Y Nulled, Y = 20Vp-p	-					-							-	1		-
50Hz)		±0.3			±0.15	±0.3		±0.05	±0.12		±0.3	38486	Y9W to	st sa emi	e afroiti	%
Y (X Nulled, Y = 20Vp-p	stor bet	enal res		u VE o	beaube.	May be	(S) (A)	10 000	0.0	VOTE.	less liv	to mean	ed ens	ewip as	UgFT (F	8310
50Hz)			100		±0.01	±0.1		±0.003	140	offeets.	TO TO THE	100	ority; o	million o	f aug in	%
Output Offset Voltage Drift		±5 200	±30		±2 100	±15			±10		±5	±30			300	mV
Output Offset Voltage Drift		200			100							500		2 2 2 2 2 2	300	μV/°
DYNAMICS												100	115/11/1	ALTOUR ST	or and	(1 M)
Small Signal BW,									-							
(V _{OUT} = 0.1Vrms)				1	3/	01	0	DI-OT.				175			198	MHz
1% Amplitude Error	1				50							0	E- 5			kHz
(C _{LOAD} = 1000pF) Slew Rate (V _{OUT} = 20Vp-p)					20				100	SA	()	and the	T) SX			V/µs
Settling Time	Late of				20						1		-			V/µS
(to 1%, ΔV _{OUT} = 20V)	1				2				1 00	UO (B			(3	38.		μs
NOISE NOISE			10.10		-	-		-		7			4	1		μο
Noise Spectral Density:										10	1		13			
SF = 10V	1000				0.8					145			15		100	μV/√F
Wideband Noise:					0.0		1				1	- 1	1			μ ν, τι
f = 10Hz to 5MHz	100			1	1				100	- 5	Cal	3	Dy			mVrm
f = 10Hz to 10kHz					90		1 1		100			9				μVrm
OUTPUT			1010		-											P-1
Output Voltage Swing				±11					-							V
Output Impedance (f ≤ 1kHz)				711	0.1											Ω
Output Short Circuit Current	7	-			0.1						EDM	TAFI	NUMB	KAM	LUTE	DEB
$(R_L = 0, T_A = min to max)$	-		-		30		-								-	mA
Amplifier Open Loop Gain								88848		1'8' '	VESTA VEV				RHTH	AH
(f = 50Hz)	MC	TAME		NG B	70	GO.		125						endilov	vigous	dB
INPUT AMPLIFIERS		-		-			1		-	1 77	1008			no	EQLECT	16WOF
(X, Y and Z)	36	PACKA			JEGG	Mar.				etir	Bebri		Ground	ot Huori	D-meria	NUMBER OF
Input Voltage Range	Mic	picusial			I KERVE	N.A.	1	100			V±		(Z bite	YXIII	pasto	V Juen
Differential V _{IN} (V _{CM} = 0)	500	OT Total			±12	0	13	(ST+ 0)		76°C	at .010		Fange.	Pruis 160	meT gn	V
Common-Mode V _{IN}	910	170.70			±10	12				Orger,	01 10		egna	A CONTEN	Tempt	V
(V _{DIFF} = 0) (see Typical	001	OT lette			DOLERYS					100	SOE+	(801	.prinet	dost enu	manner of the	bee.
Performance Curves)	918	CONTRACTOR			LINESYS	M	-					Nag	YOM a	d as an	ne noite	Miner
Offset Voltage X, Y	001	±5	±20		±2	±10					±5	±20			*	mV
Offset Voltage Drift X, Y	- 910	100			50	188					100			*	il and	μV/°C
Offset Voltage Z	001	±5	±30	1	±2	±15			±10		±5	±30	ANI	ORM	BEA	mV
Offset Voltage Drift Z	5110	200		1	100	14	-	-				500	-	-	300	μV/°(
CMRR	60	80		70	90	M		SM. TA		60	80				1	dB
Bias Current				-	0.8	2.0			138.40			• HE	PACIG			μА
Offset Current					0.1			0.05	0.2			2.0	Cara		2.0	μА
Differential Resistance		*			10			*	1000		*	nor-on	lateta		1 141 6	ΜΩ
DIVIDER PERFORMANCE									169			SHOT old	Cera		CDA	BYTH
Transfer Function (X ₁ > X ₂)		*		10V	$(Z_2 - Z_1)$)		- 10			1 1000	DI-OT			HOSE	SYSV
energy and the second				100	$(X_1 - X_2)$) + 11					1	910 sin				BYGM
Total Error(1)	Dayelle	d as men		लाख् गाव	o mnorni	arit					1-1-1	201-01				WEYE.
(X = 10V, −10V ≤ Z	SHE TOP	Vi lichmon		Sellin	SE MAN	NO.	1	15050		1		Rtd sin			Ges	2750
< +10V)	it is vi	±0.75		n namo roitam	±0.35	nete .		±0.2			±0.75	out-of	Mela		1824	%
	a modi	v oznani		1000	CONTRACTOR	nona	1					PIG oin				MPYS
		±2.0		officeria	±1.0	18 GI		±0.8			±2.0	001-OT	Intel4		HITE	%
$(0.1V \le X \le 10V,$	HETTIEW!	O agrico		cardo CRI	DOM: D	RUE	-	No.		- I	1	and the last		la base	b rost d	1
-10V ≤ Z ≤ 10V)	Chief Control	±2.5			±1.0	make a	Digi	±0.8		100	±2.5	milb bru	DUJAR.	b Delist	M 1011	%

 $T_A = +25$ °C and $V_S = \pm 15$ VDC, unless otherwise specified.

MPYSSAT	MPY534J			l n	MPY534K			MPY534L			/PY534	S	1			
PARAMETER WYT MAN	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SQUARE PERFORMANCE Transfer Function Total Error ($-10V \le X \le 10V$)		* 0.6		_	- X ₂) ² 10V ±0.3	+ Z ₂	,z , <u>b</u>	* ±0.2	X - ,X)		* ±0.6			30	PLIER FRMANI Ir Funck	7.11M2
SQUARE-ROOTER PERFORMANCE Transfer Function $(Z_1 \le Z_2)$ Total Error ⁽¹⁾ $(1V \le Z \le 10V)$	0.5± 0.5± 50.0±	±1.0		√10 X ₂	$V(Z_2 - Z_2)$	Z ₁) +	4.01	±0.25		0.72	±1.0		5708	±0.5	nonvi X ≥ V X = V in lo ni av ion schot E	
POWER SUPPLY Supply Voltage: Rated Performance Operating Supply Current, Quiescent		85.0± 50.0±		±8	±15	±18		10.0± 10.0± 10.0±			80.0±	±20	TO (In a	V Homiz cefficies igs in (±15)	±20	VDC VDC mA
TEMPERATURE RANGE Operating Storage	:	8.0.4	:	0 -65	±0.76	+70 +150	1.0±	\$.0.2 \$0.01	:	-55 *	4.0±	+125	-55 *	= Y .c	+125	°C

^{*}Specifications same as for MPY534K.

NOTES: (1) Figures given are percent of full scale, ±10V (i.e., 0.01% = 1mV). (2) May be reduced to 3V using external resistor between –Vs and SF. (3) Irreducible component due to nonlinearity; excludes effect of offsets.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	MPY534J, K, L	MPY534S, T
Power Supply Voltage	±18	±20
Power Dissipation	500mW	
Output Short-Circuit to Ground	Indefinite	
Input Voltage (all X, Y and Z)	±Vs	
Operating Temperature Range	0°C to +70°C	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C	
Lead Temperature (soldering, 10s)	+300°C	

^{*}Specification same as for MPY534K.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
MPY534JD	Ceramic DIP	169
MPY534JH	Metal TO-100	007
MPY534KD	Ceramic DIP	169
MPY534KH	Metal TO-100	007
MPY534LD	Ceramic DIP	169
MPY534LH	Metal TO-100	007
MPY534SD	Ceramic DIP	169
MPY534SH	Metal TO-100	007
MPY534TD	Ceramic DIP	169
MPY534TH	Metal TO-100	007

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
MPY534JD	Ceramic DIP	0°C to +70°C
MPY534JH	Metal TO-100	0°C to +70°C
MPY534KD	Ceramic DIP	0°C to +70°C
MPY534KH	Metal TO-100	0°C to +70°C
MPY534LD	Ceramic DIP	0°C to +70°C
MPY534LH	Metal TO-100	0°C to +70°C
MPY534SD	Ceramic DIP	-55°C to +125°C
MPY534SH	Metal TO-100	-55°C to +125°C
MPY534TD	Ceramic DIP	-55°C to +125°C
MPY534TH	Metal TO-100	-55°C to +125°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Wide Bandwidth SIGNAL MULTIPLIER

FEATURES

- WIDE BANDWIDTH:
 75MHz Current Output
 30MHz Voltage Output
- LOW NOISE
- LOW FEEDTHROUGH: -60dB (5MHz)
- GROUND-REFERRED OUTPUT
- LOW OFFSET VOLTAGE

DESCRIPTION

The MPY600 is a wide-bandwidth four-quadrant signal multiplier. Its output voltage is equal to the algebraic product of the X and Y input voltages. For signals up to 30MHz, the on-board output op amp provides the complete multiplication function with a low-impedance voltage output. Differential current outputs extend multiplier bandwidth to 75MHz.

The MPY600 offers improved performance compared to common semiconductor modulator or multiplier circuits. It can be used for both two-quadrant (voltage-controlled amplifier) and four-quadrant (double-balanced) applications. While previous devices required cumbersome circuitry for trimming, balance and level-shifting, the MPY600 requires no external components. A single external resistor can be used to program the conversion gain for optimum spurious-free dynamic range. When used as a modulator, carrier feedthrough measures –60dB at 5MHz.

Differential X, Y and Z inputs can be connected in a variety of useful configurations, including squarer, divider, and square-rooter circuits. The MPY600 is available in 16-pin plastic DIP, specified for the industrial temperature range.

APPLICATIONS

- MODULATOR/DEMODULATOR
- VIDEO SIGNAL PROCESSING
- CRT GEOMETRY CORRECTION
- CRT FOCUS CORRECTION
- VOLTAGE-CONTROLLED CIRCUITS

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

0003/03/			MPY600AP	D MONOSTRILL ST	SUS
SPECIFICATION	CONDITIONS	MIN	TYP	MAX	UNITS
NPUTS (X, Y, Z)				THE STREET STREET	- 10 PM
full-Scale Differential Input		A STATE OF THE STA		ETS DOGGET THE BETTE STEELED	NACOTO AND
X1-X2 THEMS ATAG GROOM	SA	±1			V
V V		±2			V
77.	For	±2			V
nput Voltage Range	Call		±2.2		V
Differential Input Range	Reupelf		±2.5		V
nput Impedance			100 1.5		kΩ p
nput Offset Voltage			±0.5	±5	mV
Drift	and the state of t	the constraint the case of the	25		μV/°C
CMRR	$V_{CM} = \pm 2V$	AND THE RESIDENCE OF THE PARTY	70	Service of the Control of the Contro	dB
PSRR		490 A W	70		dB
nput Bias Current (X, Y)	dibiwb	nazi abi	+15		μА
Z Input	4.40.0000.000	AL D AND THE THE THE REST OF	-15		μА
OLTAGE OUTPUT		TERR LAB	E (11/2)		
OLIAGE OUTPUT	naurii	UIN JAN	(V V V V V V		. 14141
f Fti			$(X_1-X_2)(Y_1-Y_2)$	7	.,
ransfer Function	art occumentation of the company of	PER PERSONAL PROPERTY.	/o = <u>2</u> +	Z ₂	V
Total Multiplier Error(1)	11/- 2 - 11/ 21/- 2 - 21/		145	105	
otal Multiplier Error ⁽¹⁾	$-1V \le X \le 1V$, $-2V \le Y \le 2V$		±15	±25	mV
Sain Error	$-2V \le X \le 2V, -2V \le Y \le 2V$		±25 ±1	TURES	mV %
	SYND I PAULITY TO			canul	
Gain Temperature Drift	V 1445 10V		±200		ppm/°
Power Supply Rejection	$V_S = \pm 4 \text{ to } \pm 6V$ f = 1 kHz to 30 MHz		70	E BANDVIID III	dB
loise		100	120	Hz Current I	nV/ H
Output Voltage Swing	$R_L = 100\Omega$	±2.2	±3	annilali eli	V
Output Current	CRT GEOMETRY CO.	±22	±30 q100	Hz — Voltage I	mA
mort-offcult Little	The second secon		50	A MOIRE	mA MU-
andwidth MONT	Small Signal		30		IVITIZ
llew Rate	TO THE WIND AT LOVE	(SH)	Ma) an 150 Ma	A LEEDLINGS	V/µs
settling Time to 0.1%	4V Step		150	CONTRACT STREET	ns
Differential Gain Error	3.58MHz, 0 to 0.7V		70 0.20 03	DUND-REFERR	%
Differential Phase Error	3.58MHz, 0 to 0.7V		0.2 100 DAT	TOV TRABBRO H	Degree
Capacitive Load, Max	Stable Operation		100	THE RESIDENCE AND A	pF
eedthrough, X	X = 0dBm, f = 500kHz; Y Nulled		-65		dB
	X = 0dBm, f = 5MHz; Y Nulled		-60		dB
eedthrough, Y	Y = 0dBm, f = 500kHz; X Nulled		-70	COMPAN	dB
	Y = 0dBm, f = 5MHz; X Nulled		-50	MILLION WAR	dB
Distortion, X	X = 0dBm, f = 500kHz, Y = 2V		-60		dB
	X = 0dBm, f = 5MHz, Y = 2V	r-quadrant		PY600 is a wid	dB
Distortion, Y	Y = 0dBm, f = 500kHz, X = 2V	rual to the	-65	nultiplier. Its out	dB
	Y = 0dBm, f = 5MHz, X = 2V	mal senet	-55	and the tembera of	dB
CURRENT OUTPUT	4	The state of the s	er miller a series a	on to tankoni o	4.000
ransfer Function	/ X	quas go Ala	$= (X_1 - X_2)(Y_1 - Y_2)$	up to 30MF 0001	A
otal Multiplier Error ⁽¹⁾	$-1V \le X \le 1V$, $-2V \le Y \le 2V$	s driw goil	onul no±20 ilgili	In stellar±80 and a	БіуоцА
	$-2V \le X \le 2V$, $-2V \le Y \le 2V$			pedance voltage	μА
ain Error	- T 5		+1		%
Sain Temperature Drift		MHz.	±200	extend rauhiplier	ppm/°(
Power Supply Rejection	$V_S = \pm 4 \text{ to } \pm 6V$		FO	DON'T	dB
loise, Output		compared	100	Y600 offers impr	pA/√H:
/oltage Compliance Range	1 1-1-0 V	multiplier	10 TOT ±2.5	mon semiconduct	moo ov
Peak Output Current		100 100 120 120 120 120 120	is the countries of	It can be used for	Ameura
loise, Input-Referred	f = 1kHz to 75MHz		EO.		nV/√H:
andwidth, Small-Signal		(double-	75	led amplifier) as	MHz
settling Time to 0.1%	4mA Step	s devices	701V910 150 1W	ad) applications	ns
eedthrough, X	X = 0dBm, f = 1MHz; Y Nulled	ig, balance	immin -65 value	Leumbersome ciu	dB
	X = 0dBm, f = 10MHz; Y Nulled		45		dB
eedthrough, Y	Y = 0dBm, f = 1MHz; X Nulled	external	-75	el-shifting, the M	dB
Tooling and a little of the latest and a little	Y = 0dBm, f = 10MHz; X Nulled	be used to	cemal 1675 fame	ents. A single ex	dB
Distortion, X	X = 0dBm, $f = 1$ MHz, $Y = 2$ V	-amaintee		noistevinos silt n	GD
Selic	X = 0dBm, f = 10MHz, Y = 2V	-sparrous-	-55 HISS		dB dB
Distortion, Y	Y = 0dBm, f = 1MHz, X = 2V	ton, carrier	-50 -65	menic runge. When	dB
4 4 4 6	Y = 0dBm, f = 10MHz, X = 2V	Mary Land	-50 and	ough measures -d	dB
	00Dm, 1 - 10Mmz, ∧ = 2V				aB
3		nected in a		X bos Y X leite	
POWER SUPPLY			15		V
Rated Performance	XI A Y	. renearing o	ibuloni ±5 notieni	ertano helezu tho	
Rated Performance	$V_0 + \Lambda \left[\begin{array}{c} \langle X \rangle \\ \langle X \rangle \end{array} \right]$	±4.75		of useful config	V
Rated Performance	(X) A + 0V	±4.75	±30 ±30	±8 ±35	
Rated Performance Operating Current	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	±4.75		±8	V
lated Performance Operating Furrent EMPERATURE RANGE	<u>→</u>] ∧+o×	the indus-		±8 ±35 bns	V mA
ated Performance perating urrent	V ₀ + ∧ (×)	±4.75 -25 -40		±8	V

NOTE: (1) Deviation from ideal transfer function referred to full scale output. Includes gain, nonlinearity and offset errors.

Supply Voltage	±18\
Input Voltage Range	±Vs
Op Amp Output Current	100mA
Operating Temperature	+125°C
Storage Temperature	+150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

MODEL	PACKAGE	SPECIFIED TEMPERATURE RANGE
MPY600AP	16-Pin Plastic DIP	-25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
MPY600AP	16-Pin Plastic DIP	180

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 5$ V, unless otherwise noted.

100k

Frequency (Hz)

1M

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

1k

10k

10M

ABRIDGED DATA SHEET

For Complete Data Sheet
Call FaxLine 1-800-548-6133
Request Document Number 10636

Wide Bandwidth PRECISION ANALOG MULTIPLIER

FEATURES

- WIDE BANDWIDTH: 10MHz typ
- ±0.5% MAX FOUR-QUADRANT ACCURACY
- INTERNAL WIDE-BANDWIDTH OP AMP
- EASY TO USE
- LOW COST

APPLICATIONS

- PRECISION ANALOG SIGNAL PROCESSING
- MODULATION AND DEMODULATION
- VOLTAGE-CONTROLLED AMPLIFIERS
- VIDEO SIGNAL PROCESSING
- VOLTAGE-CONTROLLED FILTERS AND OSCILLATORS

DESCRIPTION

The MPY634 is a wide bandwidth, high accuracy, four-quadrant analog multiplier. Its accurately laser-trimmed multiplier characteristics make it easy to use in a wide variety of applications with a minimum of external parts, often eliminating all external trimming. Its differential X, Y, and Z inputs allow configuration as a multiplier, squarer, divider, square-rooter, and other functions while maintaining high accuracy.

The wide bandwidth of this new design allows signal processing at IF, RF, and video frequencies. The internal output amplifier of the MPY634 reduces design complexity compared to other high frequency multipliers and balanced modulator circuits. It is capable of performing frequency mixing, balanced modulation, and demodulation with excellent carrier rejection.

An accurate internal voltage reference provides precise setting of the scale factor. The differential Z input allows user-selected scale factors from 0.1 to 10 using external feedback resistors.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $T_A = +25$ °C and $V_S = \pm 15$ VDC, unless otherwise noted.

MARKEYSM	M	PY634KP	/KU		MPY634A	M	0.	MPY634B	M		MPY6345	SM	
MODEL XAM SYT KAM	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
MULTIPLIER				1		7	1			1	12	втося.	HAUD
PERFORMANCE				(X, -)	(₂) (Y ₁ - Y ₂)						BONIAM	LOSED!
Transfer Function		*		-	101/	- + Z ₂		*		1	(255 Z)	Fundion	relantin
Total Error ⁽¹⁾		350%		1	I OV BILL			0.3±			A01 5 2	At) the	red late
$(-10V \le X, Y \le +10V)$			±2.0			±1.0			±0.5			riggija	%
T _A = min to max		±2.5			±1.5	-	11-2-5	±1.0			100	±2.0	%
Total Error vs Temperature	1 - 1	±0.03			±0.022	do vi		±0.015		1 11	000	±0.02	%/°C
Scale Factor Error				875	100	85	11 4				2001	DATE OF THE PARTY	manach.
(SF = 10.000V Nominal)(2)		±0.25		l a	±0.1	920			1			800	%
Temperature Coefficient of									1		Haranage.	uneni O	Salde
Scaling Voltage		±0.02			±0.01			±0.01	13	1	BOWAR	SRUTAL	%/°C
Supply Rejection (±15V ±1V)		*	1	- 88 H	±0.01	33-	(3)4	*	(3)	11	*	noil	%
Nonlinearity				1 051-		1. 784	86+		00-				enere
X (X = 20Vp-p, Y = 10V)		*	-	and the same	±0.4	ale mine	and the same of	0.2	±0.3			-	%
Y (Y = 20Vp-p, X = 10V)					±0.01			*	±0.1	MANERY	M 101 88	amma not	%
Feedthrough ⁽³⁾		imalize po	au VE at	and the same of the same of	10.01	Not a	010.0 - a	VOTE &	10.1	Series in a	- amila	Lawrence of	70
X (Y Nulled, X = 20Vp-p, 50Hz)		UX tet 3		only. Of	±0.3		ang 9N di	±0.15	±0.3	Tarada said		beautiful of	%
		ON TOLO	01400	n Altina		Taking to	6.8 July	* ±0.15	±0.3	CULIEDAD,		THE COUNTY	
Y (X Nulled, Y = 20Vp-p, 50Hz)					±0.01				IU.1				%
Both Inputs (500kHz, 1Vrms)	10(4)					100			2.5	200	HTAR	IDPIN	100
Unnulled	40(4)	50		45	55			60		45000	HIT WELLS	PROFESSION AND ADDRESS.	dB
Nulled	55(4)	60		55	65	Negati Lancard	60	70					dB
Output Offset Voltage		±50	±100		±5	±30		*	±15			40	mV
Output Offset Voltage Drift	-41	duigni ,	8		±200	1000000		±100			*	±500	μV/°(
DYNAMICS		1		14.1		3 100	1				35		
Small Signal BW,] togni g		24-1		- 115	1 Jugo	34	to the second	1000	-		
(V _{OUT} = 0.1Vrms)	6(4)	100	1 - 7/	8	10	100	D *1.000			6	- 31	1	MHz
1% Amplitude Error	0.1	J was	11 14 4		10	- 1	in India	Sec		1		1 34	1411 12
		0.000	Sools	BoetuO	100	17.77.500	1 391		1 71118	por		A. C.	kHz
(C _{LOAD} = 1000pF)		A CONTRACTOR OF THE PARTY OF TH	All publications	1		100	diam'r.		TUC	(8)			100000000000000000000000000000000000000
Slew Rate (V _{OUT} = 20Vp-p)		508		Book X	20		A min	Scale F		100		1	V/µs
Settling Time		H. T.	N 1	3 5 6						1		1	
(to 1%, $\Delta V_{OUT} = 20V$)	1.8	model 3		LZ, lept.	2		9 ON			(1)	*	(8)	μs
NOISE				7	17					June		and the	
Noise Spectral Density:		Jugal		NC.	9.1		3 2000	17 Y		_{8}	1	(2)	
SF = 10V					0.8					37.00	(a)	1. 8	μV/√F
Wideband Noise:		DMC.		eV-	0.0	100	T luga	5	1 9 18		- 31		μν/νι
					1	-			1/35				mVrm
f = 10Hz to 5MHz f = 10Hz to 10kHz					90	(SI) (SI)			7 = 5	NACONARIOR E	a Lower	S const. Co	
f = 10Hz to 10kHz					90	11111				THE PROPERTY OF		1000	μVrm
OUTPUT					-								
Output Voltage Swing				±11									V
Output Impedance (f ≤ 1kHz)		FO+NM	MI SM	MINUP	0.1			* 6	DMI	APP NOU	BRIXAL	ESTU.	Ω
Output Short Circuit Current					13	1	To be					-	
(R _L = 0, T _A = min to max)		*		5.00	30	Maks	A MEA	A	PSACE STR	MARKET		Hams	mA
Amplifier Open Loop Gain		190	mul/Liebp	M. Dienti	11	0.5		100		872	spa	NoV viorus	E TOWER
(f = 50Hz)		*(f)(g)	ande Gra	Perlom	85	1 1 2		* "		WINDOW	*	nottegical	dB
F115 4 20 5	4. 355AA	rg U j-u s	BE OF DE	STP 21							10	011211011	
INPUT AMPLIFIERS (X, Y and Z)		08	18- DI 09	S-:A		no de la		10		attracent		bot	to Gro
Input Voltage Range		-09	18+ or 35	8:2		31	1 1		- 4			No. 1 most	U fate
Differential V _{IN} (V _{CM} = 0)		0.88	(I+ # 05)	B-8	±12				-13	124			V
Common-Mode V _{IN} (V _{DIFF} = 0)					±10				1 9	STATE		ne R prote	V
(see Typical Performance Curves)		7	- 50001	957087	11	-(System 2-2)	0188-	51 -30-	100	090 1003	1 7	- 04	A PARTY
Offset Voltage X, Y		±25	±100	DE 192	±5	±20	A MA	±2	±10	08141015			mV
Offset Voltage Drift X, Y		200	m-M site	819.59	100			50	The state of	CONTRACTOR		9	μV/°(
Offset Voltage Z		±25	±100	at tu	±5	±30		±2	±15		*	Will Adu	mV
Offset Voltage Drift Z		one contain	noneFit	STON	200			100		C.0059		500	μV/°(
CMRR	10 mm 19	"antonab	Messione s	60	80		70	90			. 000	000	dB
Bias Current					0.8	2.0		*	*	of A Section			μА
Offset Current					0.1	2.0			Digital Co.	MANAGES I	*	2.0	μА
Differential Resistance					10	Line Pri		*		HOITA	550000	2.0	MΩ
					10					13/6/11 1 /24	BERTHAN I	(9) 328/9	IVISZ
DIVIDER PERFORMANCE					(Z_2-Z_1)	DIAIN	PART BE	PACILI	1				
Transfer Function (X ₁ > X ₂)		*		101	$(X_1 - X_2)$	+ Y ₁	DESIGNE	W .		3000	DAG*		300
Total Error ⁽¹⁾ untrimmed		CORNEL TORSE	arrive mark	remoted a	(1 - 12)		010		E.	9109 //	9-43	177	II We
$(X = 10V, -10V \le Z \le +10V)$		1.5	- 1 TO 15 OF	CONTRACTOR OF	±0.75		112	±0.35	1	DEDE IN	±0.75	1 6	%
$(X = 1V, -1V \le Z \le +1V)$		4.0	u captivis	S MINNO	±2.0	13.57	700	±1.0	3	001-	*	1 400	%
$(0.1 \text{V} \le \text{X} \le 10 \text{V}, -10 \text{V} \le \text{Z} \le 10 \text{V})$		5.0	DU ESTINA	SE MINO	±2.5		509	±1.0	7	2001		100	%
	arlan Da		200 0000	AL HOUSE	-		-		1			1 100	70
SQUARE PERFORMANCE Transfer Function		no el Jas	DUE NIME	postpostor	$(X_1 - X_2)^2$	+ Z ₂	to east on	and the lates	molemen	In line of	mark bu	clob soll	n si
transfer Function		bearined	CHOCKER O	HIU TO YOU	10V	-2	0 0111 00	and south	notaneo	Ot sweet	must be	schenger	10,18
Total Error (–10V ≤ X ≤ 10V)		±1.2	oh resonu	ORSAFIRI	±0.6		F 100 1	±0.3				Non-to-bill	%

SPECIFICATIONS (CONT)

ELECTRICAL

At $T_A = +25$ °C and $V_S = \pm 15$ VDC, unless otherwise noted.

		MPY6348III			MPY634KP/KU			MPY634AM			MPY634BM			MPY634SM		
MODEL			HIM	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
PERFOR							√10	OV (Z ₂ – Z ₁) +X ₂						LIER	MULTIP PERFOR
	Function (Z ₁					1 1 1 1 1	20	176							Fundbon	Telegrater
Total Erro	$or^{(1)}$ (1V $\leq Z$:	≤ 10V)		1	±2.0			±1.0			±0.5				Pho	%
POWER	SUPPLY			一点に出	1666		1 0.7±			1-022				(VOT	5 X . X S	VU(=)
Supply V				1	0,15		1 5 9	G.(±				1			25m 01	
	Performance			1	5:0.03		1	±15	100		ED 65	4 5 5 1		enutarioq	or vs Ten	VDC
Operati							±8		±18						±20	VDC
	urrent, Quies	scent						4	6		75.0±	*		El(lisgimo)	1 V000 0	mA
TEMPER	RATURE RAI	NGE			10.0±			10.04			50.02				sension/	Scalin
Specifica	ition			*(5)	1	*(5)	-25	10.05	+85				-55	VIEVSIE	+125	°C
Storage				-40		+85	-65		+150							°C

^{*} Specification same as for MPY634AM.

NOTES: (1) Figures given are percent of full scale, $\pm 10V$ (i.e., 0.01% = 1mV). (2) May be reduced to 3V using external resistor between $-V_S$ and SF. (3) Irreducible component due to nonlinearity; excludes effect of offsets. (4) KP grade only. (5) KP grade only. 0°C to $+70^{\circ}$ C for KU grade.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	MPY634AM/BM	MPY634KP/KU	MPY634SM
Power Supply Voltage	±18		±20
Power Dissipation	500mW		
Output Short-Circuit to Ground	Indefinite		
Input Voltage (all X, Y and Z)	±V _S		
Temperature Range:		1 18 31	
Operating	-25°C/+85°C		-55°C/+125°C
Storage	-65°C/+150°C	-40°C/+85°C	• USC
Lead Temperature		98	
(soldering, 10s)	+300°C	·21	. 081
SOIC 'KU' Package		+260°C	

^{*} Specification same as for MPY634AM/BM.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
MPY634KP	14-Pin PDIP	010
MPY634KU	16-Pin SOIC	211
MPY634AM	TO-100	007
MPY634BM	TO-100	007
MPY634SM	TO-100	007

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

Basic Model Number —	MPY634	
Performance Grade(1)		(sH03 = 0
K: -25°C to +85°C ('U' pag	ckage 0°C to +7	70°C)
A: -25°C to +85°C		REUT ARPLIFIERS (X, Y &
B: -25°C to +85°C		rout Votage Pange
S: -55°C to +125°C		Differential V _{In} (V _{OM} = 0)
Package Code —		Const on-Mode V _{Ns} (V _{Sur} = (see Typical Performance C
M: TO-100 Metal		
P: Plastic 14-pin DIP		Miser Voltage Drift X, Y
U: 16-pin SOIC		
NOTE: (1) Performance grad package: a blank denotes "k		y not be marked on the SOI

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm 15$ VDC, unless otherwise noted.

Barling Address: PO Box 11400 · Tucaon, AZ 65734 · Street Address

Wide-Bandwidth, DC RESTORATION CIRCUIT

FEATURES

- PROPAGATION DELAY: 2.2ns
- BANDWIDTH: OTA: 750MHz
 Comparator: 280MHz
- LOW INPUT BIAS CURRENT: -0.3µA
- SAMPLE/HOLD SWITCHING TRANSIENTS: +1/-7mV
- SAMPLE/HOLD FEEDTHROUGH REJECTION: 100dB
- CHARGE INJECTION: 40fC
- HOLD COMMAND DELAY TIME: 3.8ns
- TTL/CMOS HOLD CONTROL

DESCRIPTION

The SHC615 is a complete subsystem for very fast and precise DC restoration, offset clamping, and low frequency hum suppression of wideband amplifiers or buffers. Designed to stabilize the performance of video signals, it can also be used as a sample/hold amplifier, high-speed integrator, or peak detector for nanosecond pulses. A wideband Operational Transconductance Amplifier (OTA) with a high-impedance cascode current source output and fast sampling comparator set a new standard for high-speed applications. Both can be used as stand-alone circuits or combined to form a more complex signal processing stage. The self-biased, bipolar OTA can be viewed as an ideal voltage-controlled current source and is

APPLICATIONS

- BROADCAST/HDTV EQUIPMENT
- TELECOMMUNICATIONS EQUIPMENT
- HIGH-SPEED DATA ACQUISITION
- CAD MONITORS/CCD IMAGE PROCESSING
- NANO SECOND PULSE INTEGRATOR/ PEAK DETECTORS
- PULSE CODE MODULATOR/ DEMODULATOR
- COMPLETE VIDEO DC LEVEL RESTORATION
- SAMPLE/HOLD AMPLIFIER

optimized for low input bias current. The sampling comparator has two identical high-impedance inputs and a current source output optimized for low output bias current and offset voltage; it can be controlled by a TTL-compatible switching stage within a few nanoseconds. The transconductance of the OTA and sampling comparator can be adjusted by an external resistor, allowing bandwidth, quiescent current, and gain tradeoffs to be optimized.

The SHC615 is available in SO-14 surface mount and 14-pin plastic DIPs, and is specified over the extended temperature range of -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

DC SPECIFICATIONS

At $V_{CC} = \pm 5V$, $R_{LOAD} = 100\Omega$, $R_Q = 300\Omega$, $R_{IN} = 150\Omega$ and $T_A = +25^{\circ}C$, unless otherwise specified.

	SHORTSAR		SHC615AP, AU		
PARAMETER	CONDITIONS	MIN	оэ түр	MAX	UNITS
OFFSET VOLTAGE, V _E at V _B = 0 Initial vs Temperature vs Supply (tracking)	V _{CC} = ±4.5V to ±5.5V	50	8 40 55	±40	mV μV/°C dB
B-INPUT BIAS CURRENT Initial vs Temperature	社		-0.3 1	±0.9	μA nA/°C
C-OUTPUT BIAS CURRENT, I_C at $V_B = 0$ Initial	5.0	-200	-77	+100	postego fun μΑ
B-INPUT IMPEDANCE	8	SHalte 100MHz	01 4.4	vilene	ΜΩ
INPUT NOISE Voltage Noise Density, B-to-E Voltage Noise Density, B-to-C	f _{OUT} = 100kHz to 100MHz f _{OUT} = 100kHz to 100MHz		2.2 4.5	SE RANGE ege logul Range	nV/√Hz nV/√Hz
INPUT VOLTAGE RANGE			±3.4		VIII
OUTPUT Output Voltage Compliance C-Current Output E-Current Output C-Output Impedance	5 & 25 & 3.5± (5 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 &	±18 ±18	±3.2 ±20 ±20 0.5	Denganda Denganda Penganda V	V mA mA MΩ
E-Output Impedance Open-Loop Gain	15		12 96	30HATO 90	Ω dB
TRANSCONDUCTANCE	Small Signal, <200mV		70		mA/V

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DC SPECIFICATIONS

DC SPECIFICATIONS (CONT)

At V_{CC} = ±5V, R_{LOAD} = 1k Ω , R_{Q} = 300 Ω , and T_{A} = +25°C, unless otherwise specified.

	SHORTSAP		SHC615AP, AU		
PARAMETER XAM	CONDITIONS	MINORGAS	ТҮР	MAX	UNITS
INPUT BIAS CURRENT Initial vs Temperature	6.		1.0 -2.3	±5	μΑ nA/°C
C-OUTPUT BIAS CURRENT Initial vs Temperature	€.0-	Ve.de bi Vu.Fe	±10 ±13	±50	μA nA/°C
INPUT IMPEDANCE Input Impedance			0.2 0 = gV	S CURRENT, I _C at	us τυ MΩ 0-0
INPUT NOISE Voltage Noise Density	f _{OUT} = 100kHz to 100MHz		5	ANCE	nV/√Hz
INPUT VOLTAGE RANGE Input Voltage Range Common-Mode Input Range	1.5 8.6	sHM001 of sHM00 sHM001 of sHM00	±3.0 ±3.2	ensity, B-to-E ensity, B-to-C	Vollay Vollac Vollay Notae D
OUTPUT Output Voltage Compliance C-Current Output C-Output Impedance Open-Loop Gain	A E± 871	±2.5	±3.5 ±3.2 620 2 83	E RANGE Completos	V mA kΩ pF dB
TRANSCONDUCTANCE Transconductance	80 St		22	eons	mA/V
HOLD CONTROL Logic 1 Voltage Logic 0 Voltage Logic 1 Current Logic 0 Current	V Hold Control = 5.0V V Hold Control = 0.8V	Vm +2	1 0.05	+V _{CC} +0.6 0.8	V μΑ μΑ
TRANSFER CHARACTERISTICS Charge Injection Feedthrough Rejection	Track-To-Hold Hold Mode	YTIVIT	40 -100	CHARG	fC dB
			anaged by ESD		y integrated
POWER SUPPLY Rated Voltage Derated Performance Quiescent Current Quiescent Current Range	R _Q = 300Ω Programmable (Useful Range)	-qu disw bolls bac unilbrand ±4.5 ±12		±5.5 ±18	V V mA mA
TEMPERATURE RANGE Operating Storage			cusion integrated secause very sm	+85 +125	

		SHC615AP, AU				6
PARAMETER 1981 ATO	CONDITIONS	MIN	LU	TYP	MAX	UNITS
FREQUENCY DOMAIN		the state of				
OTA lettold Woods V8-	8	TO THE SECTION	HELL			WHE YOU
LARGE-SIGNAL BANDWIDTH	V _{OUT} = 5.0Vp-p	"S-all limes	1950	430	學是是一門	MHz
(-3dB), (B-to-E)	V _{OUT} = 2.8Vp-p			540		MHz
SAH INA	V _{OUT} = 1.4Vp-p	- I Hedmon	121	620	PERSONAL TRACK	MHz
SMALL-SIGNAL BANDWIDTH B-TO	-E V _{OUT} = 0.2Vp-p	10 1015		520		MHz
DIFFERENTIAL GAIN (B-TO-E)	f = 4.43MHz, V _{OUT} = 0.7Vp-p,		12.54		Ben Hill	MIT & I
SV Supply, Digited	R ₁ = 150Ω	and the same	A STATE	1.8		%
	R _L = 500Ω			0.1		%
DIFFERENTIAL PHASE	f = 4.43MHz, V _{OUT} = 0.7Vp-p,	B. Physix	- III	1	1723-100-111	BINE AT
	R _I = 150Ω	二世計畫		0.07		0
(B-TO-E)	$R_L = 500\Omega$	TOTAL IN THE		0.01		•
HARMONIC DISTORTION (B-TO-E)	f = 30MHz, V _{OUT} = 1.4Vp-p	Section 1			2日下十二年1日	11 10-0
Second Harmonic	1 = 35111112, 1001 = 1117 p		8	-50		dBc
Third Harmonic		(C) - HIRE		-46		dBc
LARGE SIGNAL BANDWIDTH	esiS siG	N DEC		SMITT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(-3dB), (B-to-C)	V _{OUT} = 5.0Vp-p	7. 11	THE REAL PROPERTY.	250	C. F SEP Transp. I.	MHz
2 -0.05 -0.0 0.0005. +0.00130.0	1/ 0.01/		Tr. Jei	580		MHz
	V _{OUT} = 1.4Vp-p			750	CARLO CONTROL OF THE	MHz
SMALL SIGNAL BANDWIDTH		V340	GRA	090T BH	SHOSTS	
B-to-C	V _{OUT} = 0.2Vp-p			680		MHz
COMPARATOR	Sample Mode			***		
BANDWIDTH	I _{OUT} = 4mAp-p			240		MHz
(–3dB) 14O	I _{OUT} = 2mAp-p I _{OUT} = 1mAp-p			270	AR MUMEXA	MHz MHz
TIME DOMAIN	1001 - 1111/4 P	V8±	-	200	A Vet one	war Supply Vol
OTA	DANOAR INCOME.	V7.01 00V±	ocerosinie.	CHICAGO INTO COLOR	more rather are	(Pepaloy Iu
RISE TIME	T 01/2 - 04-2 400/ 1- 000/	252 of 250	1		- anda	eration Tampai
HISE TIME MADE AND	2Vp-p Step, 10% to 90% B-to-E	PD to +125 C	24	1.1		ns
				1.2	(e01 priheblos) s	ns
SLEW RATE		VT.0+ 20V+ 0	V8.0	1800	· · · · · · · · · · · · · · · · · · ·	V/us
	B-to-C	-	-	1700	a-abolb vilametri la	V/µs
	5Vp-p,B-to-E		150	3300	DESCORD VIGATION IS	V/µs
Mari	B-to-C			3000		V/μs
COMPARATOR	AWING THE EVENTS OF THE				MOITASI	IDFM001
RISE TIME 137 30 AX	10% to 90%, $R_L = 50\Omega$, $I_{OUT} = \pm 2mA$		-			
(Sample Mode)	C _{LOAD} = 1pF			2.5		ns
SLEW RATE	10% to 90%, $R_L = 50\Omega$, $I_{OUT} = \pm 2mA$					
(Sample Mode)	C _{LOAD} = 1pF		- F	0.95		mA/ns
DYNAMIC CHARACTERISTICS			- OM		* 11	sember of
Propagation Delay Time	t_{PDH} , $V_{OD} = 200 \text{mV}$		No.V+	2.2		a memoria
Propagation Delay Time	t_{PDL} , $V_{OD} = 200 \text{mV}$		1	2.15		ns
Delay Time	Sample-to-Hold		Faury C	3.8	BOHR E	ns
	Hold-to-Sample			3.0	WW/1102	ns

1 2	I _Q Adjust OTA-Emitter	
MOTTS MOD	OTA-Base	BETSHAME
4	C _{HOLD}	MOG YOUR LORE
5	-5V Supply, Analog	
6	-5V Supply, Digital	A Q
-wo a7v	Hold Control	ARGE-SIGNAL
8	Ground	(B-ot-B) (8b6-
9	S/H In+	
10	S/H In-	The state of the s
Vour 16 EVp	I _{OUT} , OTA-Collector	SWALL-SIONAL
12	+5V Supply, Analog	LA L'ELITE DE SERVI
13	+5V Supply, Digital	MARKA PROJECT AND

Substrate Bias: Negative Supply.
Wire Bonding: Gold wire bonding is recommended.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	73 x 81, ±5	1.86 x 2.06, ±0.13
Die Thickness	14, ±1	0.55, ±0.025
Min. Pad Size	4 x 4	0.10 x 0.10
Backing: Titanium	0.02, +0.05, -0.0	0.0005, +0.0013, -0.0
Gold	0.30, ±0.05	0.0076, ±0.0013

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage (±V _{CC})	±6V
Input Voltage(1)	
Operating Temperature	
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Hold Control	0.5V to +V _{CC} +0.7V

NOTE: (1) Inputs are internally diode-clamped to ±V_{CC}.

PIN CONFIGURATION

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
SHC615AP	Plastic 14-Pin DIP	010
SHC615AU	SO 14-Pin Surface Mount	235

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE
SHC615AP	Plastic 14-Pin DIP	-40°C to +85°C
SHC615AU	SO 14-Pin Surface Mount	-40°C to +85°C

BLOCK DIAGRAM

OPERATIONAL TRANSCONDUCTANCE AMPLIFIER

TYPICAL PERFORMANCE CURVES (CONT) TO MAMPORPE LADISYT

 $R_o = 300\Omega$, $T_A = +25$ °C, $V_{CC} = \pm 5V$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT) 30// AMPO 3 9 3 4 3 9 4 1

 $R_o = 300\Omega$, $T_A = +25$ °C, $V_{cc} = \pm 5V$ unless otherwise noted.

SAMPLING COMPARATOR

TYPICAL PERFORMANCE CURVES (CONT) WANTED THE STATE OF THE

 $R_0 = 300\Omega$, $T_A = +25$ °C, $V_{CC} = \pm 5V$ unless otherwise noted.

PERFURINANCE

The SHC615, which contains a wideband Operational Transconductance Amplifier and a fast sampling comparator, represents a complete subsystem for very fast and precise DC restoration, offset clamping and correction to GND or to an adjustable reference voltage, and low frequency hum suppression of wideband operational or buffer amplifiers.

Although the IC was designed to improve or stabilize the performance of complex, wideband video signals, it can also be used as a sample and hold amplifier, high-speed integrator, peak detector for nanosecond pulses, or demodulator or modulator for pulse code transmission systems. A wideband Operational Transconductance Amplifier (OTA) with a high-impedance cascode current source output and a fast and precise sampling comparator set a new standard for high-speed sampling applications.

Both can be used as stand-alone circuits or combined to create more complex signal processing stages like sample and hold amplifiers. The SHC615 simplifies the design of input amplifiers with high hum suppression, clamping or DC-restoration stages in professional broadcast equipment, high-resolution CAD monitors and information terminals, signal processing stages for the energy and peak value of small and fast nanoseconds pulses, and eases the design of high-speed data acquisition systems behind a CCD sensor or in front of an analog-to-digital converter.

An external resistor, R_Q , allows the user to set the quiescent current. R_Q is connected from Pin 1 (I_Q adjust) to $-V_{CC}$. It determines the operating currents of both the OTA and comparator sections and controls the bandwidth and AC behavior as well as the transconductance of both sections. Besides the quiescent current setting feature, the Proportional-to-Absolute-Temperature (PTAT) supply increases the quiescent current vs temperature and keeps it constant over a wide range of input voltages. This variation holds the transconductance g_m of the OTA and comparator relatively constant vs temperature. The circuit parameters listed in the specification table are measured with R_Q set to 300Ω , giving a nominal quiescent current at ± 15 mA. The circuit can be totally switched-off with a current flowing into Pin 1.

OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)

SECTION AND OVERVIEW

The symbol for the OTA section is similar to that of a bipolar transistor, and the self-based OTA can be viewed as a quasi-ideal transistor or as a voltage-controlled current source. Application circuits for the OTA look and operate much like transistor circuits—the bipolar transistor, also, is a voltage-controlled current source. Like a transistor, it has three terminals: a high-impedance input (base) optimized for a low input bias current of 0.3µA, a low-impedance input/

The OTA consists of a complementary buffer amplifier and a subsequent complementary current mirror. The buffer amplifier features a Darlington output stage and the current mirror has a cascoded output. The addition of this cascode circuitry increases the current source output resistance to $1M\Omega$ and the open-loop gain to typically 96dB. Both features improve the OTAs linearity and drive capabilities. Any bipolar input voltage at the high impedance base has the same polarity and signal level at the low impedance buffer or emitter output. For the open-loop diagrams the emitter is connected to GND and then the collector current is determined by the product voltage between base and emitter times the transconductance. In application circuits (Figure 2b.), a resistor R_E between emitter and GND is used to set the OTA transfer characteristics. The following formulas describe the most important relationships. r_E is the output impedance of the buffer amplifier (emitter) or the reciprocal of the OTA transconductance. Above ±5mA, collector current, I_C, will be slightly less than indicated by the formula.

$$I_C = \frac{V_{IN}}{r_E + R_E} \qquad \qquad R_E = \frac{V_{IN}}{I_C} - r_E$$

The $R_{\rm E}$ resistor may be bypassed by a relatively large capacitor to maintain high AC gain. The parallel combination of $R_{\rm E}$ and this large capacitor form a high pass filter enhancing the high frequency gain. Other cases may require a RC compensation network parallel to $R_{\rm E}$ to optimize the high-frequency response. The full power bandwidth measured at the emitter achieves 620MHz. The frequency response of the collector is directly related to the resistor's value between collector and GND; it decreases with increasing resistor values, because it forms a low-pass network with the OTA C-output capacitance.

Figure 1 shows a simplified block and circuit diagram of the SHC615 OTA. Both the emitter and the collector outputs offer a drive capability of ±20mA for driving low impedance lines or inputs. Connecting the collector to the emitter in a direct-feedback buffer configuration increases the drive capability to ±40mA. The emitter output is not current-limited or protected. Momentary shorts to GND should be avoided, but are unlikely to cause permanent damage.

While the OTA's function and labeling looks similar to that of transistors, it offers essential distinctive differences and improvements: 1) The collector current flows out of the C terminal for a positive B-to-E input voltage and into it for negative voltages; 2) A common emitter amplifier operates in non-inverting mode while the common base operates in inverting mode; 3) The OTA is far more linear than a bipolar transistor; 4) The transconductance can be adjusted with an external resistor; 5) Due to the PTAT biasing characteristic the quiescent current increases as shown in the typical performance curve vs temperature and keeps the AC performance constant; 6) The OTA is self-biased and bipolar; and, 7) The output current is zero for zero differential input voltages. AC inputs centered at zero produce an output current centered at zero.

FIGURE 1. a) Simplified Block; and, b) Circuit Diagram of the OTA Section.

FIGURE 2. a) Common Emitter Amplifier Using a Discrete Transistor; b) Common-E Amplifier Using the OTA Portion of the SHC615.

BASIC APPLICATIONS CIRCUITS

Most application circuits for the OTA section consist of a few basic types which are best understood by analogy to discrete transistor circuits. Just as the transistor has three basic operating modes—common emitter, common base, and common collector—the OTA has three equivalent operating modes common-E, common-B, and common-C (See Figures 2, 3 and 4). Figure 2 shows the OTA connected as

a Common-E amplifier which is equivalent to a common emitter transistor amplifier. Input and output can be ground referenced without any biasing. Due to the sense of the output current, the amplifier is non-inverting.

Figure 4 shows the common-B amplifier. This configuration produces an inverting gain, and the input is low-impedance. When a high impedance input is needed, it can be created by inserting a buffer amplifier like BUF600 in series.

FIGURE 3. a) Common Collector Amplifier Using a Discrete Transistor; b) Common-C Amplifier Using the OTA Portion of the SHC615.

SAMPLING COMPARATOR

The SHC615 sampling comparator features a very short 2.2ns propagation delay and utilizes a new switching circuit architecture to achieve excellent speed and precision.

It provides high impedance inverting and non-inverting inputs, a high-impedance current source output and a TTL-CMOS-compatible Hold Control Input.

The sampling comparator consists of an operational transconductance amplifier (OTA), a buffer amplifier, and a subsequent switching circuit. The OTA and buffer amplifier are directly tied together at the buffer outputs to provide the two identical high-impedance inputs and high open-loop transconductance. Even a small differential input voltage multiplied with the high transconductance results in an output current—positive or negative—depending upon the input polarity. This is similar to the low or high status of a conventional comparator. The current source output features high output impedance, output bias compensation, and is optimized for charging a capacitor in DC restoration, nanosecond integrators, peak detectors and S/H circuits. The typical comparator output current is ± 3.2 mA and the output bias current is minimized to typically $\pm 10\mu$ A in the sampling mode.

This innovative circuit achieves the slew rate representatives of an open-loop design. In addition, the acquisition slew current for a hold or storage capacitor is higher than standard diode bridge and switch configurations, removing a main contributor to the limits of maximum sampling rate and input frequency.

The switching circuits in the SHC615 use current steering (versus voltage switching) to provide improved isolation between the switch and analog sections. This results in low aperture time sensitivity to the analog input signal, reduced power supply and analog switching noise. Sample-to-hold peak switching is 40fC.

FIGURE 4. a) Common Base Amplifier Using a Discrete Transistor; b) Common-B Amplifier Using the OTA Portion of the SHC615.

The additional offset voltage or switching transient induced on a capacitor at the current source output by the switching charge can be determined by the following formula:

$$Offset(V) = \frac{Charge(pC)}{C_H Total(pF)}$$

The switching stage input is insensitive to the low slew rate performance of the hold control command and compatible with TTL/CMOS logic levels. With a TTL logic high, the comparator is active, comparing the two input voltages and varying the output current accordingly. With a TTL logic low, the comparator output is switched off.

APPLICATION INFORMATION

The SHC615 operates from ± 5 V power supplies (± 6 V maximum). Do not attempt to operate with larger power supply voltages or permanent damage may occur.

Inputs of the SHC615 are protected with internal diode clamps as shown in Figure 1. These protection diodes can safely conduct 10mA continuously (30mA peak). If input voltages can exceed the power supply voltages by 0.7V, the input signal current must be limited.

BASIC CONNECTIONS

Figure 6 shows the basic connections required for operation. These connections are not shown in subsequent circuit diagrams. Power supply bypass capacitors should be located as close as possible to the device pins. Solid tantalum capacitors are generally best. See "Circuit Layout" at the end of the applications discussion for further suggestions on layout.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

If the high speed TTL-hold command signal goes negative due to reflections for AC-coupling, the hold control input must be protected by an external reverse bias diode to ground as shown in Figure 6.

CIRCUIT LAYOUT

The high-frequency performance of the SHC615 can be greatly affected by the physical layout of the printed circuit board. The following tips are offered as suggestions, not as absolute requirements. Oscillations, ringing, poor bandwidth, poor settling, and peaking are all typical problems that

plague high-speed components when they are used incorrectly.

- Bypass power supplies very close to the device pins. Use tantalum chip capacitors (approximately 2.2μF); parallel 470pF and/or 10nF ceramic chip capacitors may be added if desired. Surface mount types are recommended because of their low lead inductance. Supply bypassing is extremely critical at high frequencies and when driving high current loads.
- PC board traces for power lines should be wide to reduce impedance.

FIGURE 5. a) Simplified Block Diagram; and, b) Circuit Diagram of the Sampling Comparator which Includes the Sampling Operational Transconductance Amplifier (SOTA) and the Switching Stage.

- Use a low-impedance ground plane on the component side to ensure that a low-impedance ground is available throughout the layout.
- Do not extend the ground plane under high-impedance nodes sensitive to stray capacitances such as the amplifier's input terminals.
- Sockets are not recommended since they add significant inductance and parasitic capacitance. If sockets are required, use zero-profile sockets.
- Use low-inductance, surface-mount components. Surface-mount components offer the best AC performance.

- Plug-in prototype boards and wire-wrap boards will not function well. A clean layout using RF techniques is essential—there are no shortcuts.
- Terminate transmission line loads. Unterminated lines, such as box cables, can appear to the amplifier to be a capacitive or inductive load. By terminating a transmission line with its characteristic impedance, the amplifier's load then appears purely resistive.
- Protect the hold control input with an external diode if necessary.

FIGURE 6. Basic Connections

TYPICAL APPLICATIONS

FIGURE 7. Complete DC Restoration System.

FIGURE 9. Clamped Video/RF Amplifier.

FIGURE 8. DC Restoration of a Buffer Amplifier.

FIGURE 10. Sample/Hold Amplifier.

FIGURE 11. Integrator for ns-Pulses.

FIGURE 13. CCD Analog Front-End.

FIGURE 12. Fast Pulse Peak Detector.

FIGURE 14. Phase Detector For Fast PLL-Systems.

UNIVERSAL ACTIVE FILTER

FEATURES

- VERSATILE—
 LOW-PASS, HIGH-PASS
 BAND-PASS, BAND-REJECT
- SIMPLE DESIGN PROCEDURE
- ACCURATE FREQUENCY AND Q —
 INCLUDES ON CHIP 1000pF ±0.5%
 CAPACITORS

APPLICATIONS

- TEST EQUIPMENT
- COMMUNICATIONS EQUIPMENT
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION SYSTEMS
- MONOLITHIC REPLACEMENT FOR UAF41

DESCRIPTION

The UAF42 is a universal active filter which can be configured for a wide range of low-pass, high-pass, and band-pass filters. It uses a classical state-variable analog architecture with an inverting amplifier and two integrators. The integrators include on-chip 1000pF capacitors trimmed to 0.5%. This solves one of the most difficult problems of active filter design—obtaining tight tolerance, low-loss capacitors.

A DOS-compatible filter design program allows easy implementation of many filter types such as Butterworth, Bessel, and Chebyshev. A fourth, uncommitted FET-input op amp (identical to the other

three) can be used to form additional stages, or for special filters such as band-reject and Inverse Chebyshev.

The classical topology of the UAF42 forms a timecontinuous filter, free from the anomalies and switching noise associated with switched-capacitor filter types.

The UAF42 is available in 14-pin plastic DIP and ceramic packages, and SOL-16 surface-mount packages, specified for the -25°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

UAF4

SPECIAL FUNCTIONS

		U	AF42AP, A	U	82	UAF42AG	Marine &	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
FILTER PERFORMANCE Frequency Range, fn Frequency Accuracy vs Temperature Maximum Q Maximum (Q • Frequency) Product Q vs Temperature Q Repeatability	f = 1kHz $(f_0 \cdot Q) < 10^4$ $(f_0 \cdot Q) < 10^5$ $(f_0 \cdot Q) < 10^5$	DA.	0 to 100 0.01 400 500 0.01 0.025 2	1 RBV	INU		2	kHz % %/°C — kHz %/°C %/°C %
Offset Voltage, Low-Pass Output Resistor Accuracy			0.5	±5 1%	MATERIAL TO A ST			mV %
OFFSET VOLTAGE ⁽¹⁾ Input Offset Voltage vs Temperature vs Power Supply	V_S = ± 6 to $\pm 18V$	80	±0.5 ±3 96	±5		ean	UTA:	mV μV/°C dB
INPUT BIAS CURRENT ⁽¹⁾ Input Bias Current Input Offset Current	V _{CM} = 0V V _{CM} = 0V		10 5	50	GH-PAS	ILE- IASS, H	LOW-F	pA pA
NOISE Input Voltage Noise Noise Density: f = 10Hz f = 10kHz Voltage Noise: BW = 0.1 to 10Hz Input Bias Current Noise Noise Density: f = 10kHz	R MEDICAL INSTRUME R DATA ACQUISITION I D MONOLETHIC REPLA		25 10 2	BRUG BRUG GUA Y ROPE ±0.1	PROCE OVENCE HIP 100	DESIGN VTE FRE ES UN C TORS	BAND SIMPLE NCLUBI NCLUBI SAPACI	nV/√H; nV/√H; μVp-p
INPUT VOLTAGE RANGE ⁽¹⁾ Common-Mode Input Range Common-Mode Rejection	V _{CM} = ±10V	80	±11.5		140	итак	1023	V dB
INPUT IMPEDANCE(1) Differential Common-Mode	tiree) can be used to form	ad	10 ¹³ 2 10 ¹³ 6	re filter v	idos lacti	is a inity	UAF42	Ω pF
OPEN-LOOP GAIN ⁽¹⁾ Open-Loop Voltage Gain	$V_O = \pm 10V$, $R_L = 2k\Omega$	90	126	lassical r	i eseu i	s filters.	usq-basd	dB
FREQUENCY RESPONSE(1) Slew Rate Gain-Bandwidth Product Total Harmonic Distortion	G = +1 G = +1, f = 1kHz	App Street	10 4 0.0004	oclude on his solve crive (NI	i anothings F. 1992, O	es. The instrument to it phobia		V/μs MHz %
OUTPUT ⁽¹⁾ Voltage Output Short Circuit Current	$R_L = 2k\Omega$	±11 yes	±11.5 ±25	ова сарасі і реоделін	ce, low-l ter design	ht tolerar patible fil	sialag tig 103-com	V mA
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Current	ages, specified for the -25° range.	±6 ₁₀₁₁	±15	±18 ±7	many f and Coel op amp	non of Bessel, ET-input	llementa terworth, unitied F	V V mA
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance, θ _{IA}	easi9-woJ o	-25 -25 -40	100	+85 +85 +125	-55 -65		* +125 +150	°C °C °C °C

^{*} Same as specification for UAF42AP

NOTES: (1) Specifications apply to uncommitted op amp, A4. The three op amps forming the filter are identical to A4 but are tested as a complete filter.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

UAF42 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNC TION
1	Low Pass Vo	7	Bandpass Vo
2	V _{IN3}	8	Frequency Adj
3	V _{IN2}	9	V-
4	Aux. Op Amp,	10	V+
MAM!	+ln	11	Ground
5	Aux. Op Amp,	12	OF TO VINT
mether	rithau seln has	13	High-Pass Vo
6	Aux. Op Amp,	14	Frequency Adj

NC: No Connection.

Substrate Bias: Electrically connected to V- supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	205 x 130 ±5	5.21 x 3.30 ±13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing	d avisar to shab	Gold

PIN CONFIGURATION

		V9d2Vd9ALL:0000Wd9DD04.129-19	LISHOLSHOOLING DERKU KRONNING
	E DIP, P	U Pac U Pac	kage Pin SOIC goldstood Leboogs
Low-Pass V _O 1	14 Frequency Adj ₂	Low-Pass V _O 1	16 Frequency Adj ₂
V _{IN3} 2	13 High-Pass V _O	NC 2	15 NC
movemental) on V _{IN2} 3	12 V _{IN1}	Torex 8 RNV mean emokely	14 High-Pass V _O
riaxinary op runp, till +	11 Ground	V _{IN2} 4	13 V _{IN1}
Auxiliary Op AmpIn 5	10 V+	Auxiliany On Amp . In E	12 Ground
Auxiliary Op Amp, V _O 6	9 V-	Auxiliary Op Amp, -In 6	11 V+
Bandpass V _O 7	8 Frequency Adj ₁	Auxiliary Op Amp, V _O 7	10 V-
cities.co. The design program	configurations are shown for	Bandpass V _O 8	9 Frequency Adj ₁
		NOTE: NC: No Cor performance conne ground to minimize	

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±18V
Input Voltage	
Output Short Circuit	Continuous
Operating Temperature:	
Plastic DIP, P; SOIC, U	
Ceramic DIP, G	55°C to +125°C
Storage Temperature:	
Plastic DIP, P; SOIC, U	
Ceramic DIP, G	65°C to +150°C
Junction Temperature:	
Plastic DIP, P; SOIC, U	+125°C
Ceramic DIP, G	+150°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
UAF42AP	Plastic 14-pin DIP	-25°C to +85°C
UAF42AG	Ceramic 14-pin DIP	-25°C to +85°C
UAF42AU	SOL-16	-25°C to +85°C

PACKAGING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER (1)
UAF42AP	Plastic 14-pin DIP	010
UAF42AG	Ceramic 14-pin DIP	163
UAF42AU	SOL-16	211

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

APPLICATIONS INFORMATION

The UAF42 is a monolithic implementation of the proven state-variable analog filter topology. Pin-compatible with the popular UAF41 Analog Filter, it provides several improvements.

Slew Rate of the UAF42 has been increased to 10V/µs versus 1.6V/µs for the UAF41. Frequency • Q product of the UAF42 has been improved, and the useful natural frequency extended by a factor of four to 100kHz. FETinput op amps on the UAF42 provide very low input bias current. The monolithic construction of the UAF42 provides lower cost and improved reliability.

DESIGN PROGRAM

Application Bulletin AB-035 and a computer-aided design program, available from Burr-Brown, make it easy to design and implement many kinds of active filters. The DOS-compatible program guides you through the design process and automatically calculates component values.

Low-pass, high-pass, band-pass and band-reject (notch) filters can be designed. The program supports the three most commonly used all-pole filter types: Butterworth, Chebyshev and Bessel. The less-familiar Inverse Chebyshev is also supported, providing a smooth passband response with ripple in the stop-band.

With each data entry, the program automatically calculates and displays filter performance. This allows a spreadsheet-like "what if" design approach. For example, you can quickly determine, by trial and error, how many poles are required for a desired attenuation in the stopband. Gain/phase plots may be viewed for any response type.

The basic building element of the most commonly used filter types is the second-order section. This section provides a complex-conjugate pair of poles. The natural frequency, ω_n , and Q of the pole pair determines the characteristic response of the section. The low-pass transfer function is

$$\frac{V_{O}(s)}{V_{I}(s)} = \frac{A_{LP}\omega_{n}^{2}}{s^{2} + s \omega_{n}/Q + \omega_{n}^{2}}$$
(1)

The high-pass transfer function is

$$\frac{V_{HP}(s)}{V_{I}(s)} = \frac{A_{HP}s^{2}}{s^{2} + s \omega_{n}/Q + \omega_{n}^{2}}$$
(2)

The band-pass transfer function is

$$\frac{V_{BP}(s)}{V_{I}(s)} = \frac{A_{BP}(\omega_{n}/Q) \ s}{s^{2} + s \ \omega_{n}/Q + \omega_{n}^{2}}$$
(3)

A band-reject response is obtained by summing the low-pass and high-pass outputs, yielding the transfer function

$$\frac{V_{BR}(s)}{V_{I}(s)} = \frac{A_{BR}(s^2 + \omega_n^2)}{s^2 + s \omega_n/Q + \omega_n^2}$$
(4)

The most commonly used filter types are formed with one or more cascaded second-order sections. Each section is designed for ω_n and Q according to the filter type (Butterworth, Bessel, Chebyshev, etc.) and cutoff frequency. While tabulated data can be found in virtually any filter design text, the design program eliminates this tedious procedure.

Second-order sections may be non-inverting (Figure 1) or inverting (Figure 2). Design equations for these two basic configurations are shown for reference. The design program solves these equations, providing complete results, including component values.

	INFORMATION	RDERING
TEMPERATURE RANGE		JECON
	G INFORMATION	
PACKAGE DRAWING NUMBER (1)	G INFORMATION PACKAGE	ACKĀGINI Nodel

FIGURE 1. Non-Inverting Pole-Pair.

FIGURE 2. Inverting Pole-Pair.

Call Fax Line 1-800-548-6133
Request Document Number 10346

LOGARITHMIC AMPLIFIER

FEATURES

- ACCEPTS INPUT VOLTAGES OR CURRENTS OF EITHER POLARITY
- WIDE INPUT DYNAMIC RANGE
 6 Decades of Current
 4 Decades of Voltage
- VERSATILE Log, Antilog, and Log Ratio Capability

DESCRIPTION

Packaged in a ceramic double wide DIP, the 4127 is the first hybrid logarithmic amplifier that accepts signals of either polarity from current or voltage sources. A special purpose monolithic chip, developed specifically for logarithmic conversions, functions accurately for up to six decades of input current and four decades of input voltage. In addition, a current inverter and a precise internal reference allow pin programming of the 4127 as a logarithmic, log ratio, or antilog amplifier.

To further increase its versatility and reduce your system cost, the 4127 has an uncommitted operational amplifier in its package that can be used as a buffer, inverter, filter, or gain element.

The 4127 is available with initial accuracies (log conformity) of 0.5% and 1.0%, and operates over an ambient temperature range of -10° C to $+70^{\circ}$ C.

With its versatility and high performance, the 4127 has many applications in signal compression, transducer linearization, and phototube buffering. Manufacturers of medical equipment, analytical instruments, and process control instrumentation will find the 4127 a low cost solution to many signal processing problems.

SPECIAL FUNCTIONS

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

MODEL	4127KG	4127JG
ACCURACY(1), % of FSR Current Source Input: 1nA to 1mA Voltage Input: 1mV to 10V	0.5% max 0.5% max	1% max 1% max
INPUT Current Source Input, Pin 4 Current Source Input, Pin 7 Reference Current Input, Pin 2 Absolute Maximum Inputs	+1nA to +1mA -1nA to -1mA +1µA to +1mA +1µA to +1mA ±10mA or ±Supply Volts	
OUTPUT Voltage Current Impedance	±10V ±5mA -10Ω	
FREQUENCY RESPONSE -3dB Small Signal at Current Input of 10μA of 1μA of 1μA of 100nA of 10nA Step Response to within ±1% of Final Value (I _R = 1μA, A = 5)	50i 5k 25i 80	kHz Hz DHz
STABILITY Scale Factor Drift (ΔΑ/°C) Reference Current Drift (ΔΙ _R /°C) Input Offset Current Drift (ΔΙ _S /°C) Input Offset Voltage Drift Accuracy vs Supply Variation Reference Current Input Offset Voltage Input Noise - Current Input Input Noise - Voltage Input	±0.001 I _R /°C for 10pA at +25°C, D ±10,004 ±0.004	for $I_R \ge 1\mu A$ $400nA < I_R < 1\mu A$ $400nBess Every 10^{o}$ $4V/^{o}C$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$ $101I_R/V$
UNCOMMITTED OP AMP CHARAGE Input Offset Voltage Input Bias Current Input Impedance Large Signal Voltage Gain Output Current	1 No. 1800 WO 85	nV in Silving in A i
TEMPERATURE RANGE Specification Operating Storage	0°C to +60°C -10°C to +70°C -55°C to +125°C	
POWER SUPPLY REQUIREMENTS Rated Supply Voltages Supply Voltage Range Supply Current Prain	±15	VDC to ±16VDC

±20mA

±26mA

PIN CONFIGURATION

I _{REF} Output	1	24	No Pin Present
I _{REF} Input	2	23	I _{REF} Bias
No Pin Present	3	22	Postive Supply
+l Input ⁽¹⁾	4	21	Common
Current Inverter Output ⁽¹⁾	5	20	No Pin Present
No Pin Present	6	19	Gain Adjust
Current Inverter Input	7	18	Log Output
No Pin Present	8	17	No Pin Present
Op Amp + Input	9	16	No Pin Present
Op Amp –Input	10	93015	No Pin Present
Op Amp Output	11	14	Negative Supply
No Pin Present	12	13	NC

Log, Antilog, and Log Ratio Capabilin **PACKAGE INFORMATION**

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
4127KG	24-Pin	075
4127JG	24-Pin	075

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

NOTE: (1) Log conformity at 25°C.

Supply Current Drain at Quiescent, max

at Full Load, max

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

DISCUSSION OF SPECIFICATIONS

ACCURACY

The deviation from the ideal output voltage defined as a percent of the full scale output voltage.

INPUT/OUTPUT RANGE

The log relationships of $-A \log \frac{I_S}{I_P}$ and $-A \log \frac{E_S}{I_P}$ are

subject to the constraints specified. The 4127 can be operated with inputs lower than those given, but the accuracy will be degraded.

FREQUENCY RESPONSE

The small-signal frequency response varies considerably with signal level and scaling, so the frequency response is specified under several different operating conditions.

STABILITY

The use of a monolithic transistor quad and low-drift amps minimizes drift, but some drift remains in the scale-factor, reference current, and input offset. Input offset consists of a bias current plus the op amp input voltage offset divided by the signal source resistance. Also, there is some slight drift in conformity to the log function and in output amplifier offset, but this is generally negligible.

THEORY OF OPERATION

The 4127 is a complete logarithmic amplifier that can be pin-programmed to accept input currents or voltages of either polarity. By making use of the internal current inverter, reference current generator, log ratio element, and uncommitted op amp, you can generate a variety of logarith-

SPECIAL FUNCTIONS

The unique FET-input current-inverting element removes the polarity limitations present in most conventional log amplifiers.

Utilizing the inherent exponential characteristics of transistor functions, the 4127 calculates accurate log functions for input currents from 1nA to 1mA, or input voltages from 1mV to 10V. Carefully matched monolithic quad transistors and temperature sensitive gain elements are used to produce a log amplifier with excellent temperature characteristics.

A functional diagram of the 4127 circuit is shown in Figure 1. In addition to the basic log amplifier, the 4127 contains a separate internal current source, a current inverter, and an uncommitted operational amplifier. The current inverter accurately converts negative input current to a positive current of equal magnitude.

The 4127 is capable of accurately logging input current over a 120dB range, but to use this full range, good shielding practice must be followed. A current source input is, by definition, a high impedance source and is therefore subject to electrostatic pickup.

The input op amps, A_1 and A_3 , have FET input stages for low noise and very-low input bias current. The op amp, A_1 , will make the collector current of Q_1 equal to the signal input current I_S , and the collector current of Q_2 will be the reference input current I_B .

$$V_{\text{BE}} \approx \frac{mKT}{q} \ \ell n \ \frac{I_{c}}{I_{L}}, \label{eq:VBE}$$

where: $I_C = Collector current$

I_L = Reverse saturation current

q, m, K = Constants

T = Absolute temperature

So
$$E_1 = -\frac{mKT_1}{q} \ell n \frac{I_S}{I_{L1}}$$
 and $E_2 - E_1 = \frac{mKT_2}{q} \ell n \frac{I_R}{I_{L2}}$

If the transistors Q_1 and Q_2 are at the same temperature and have matched characteristics, then:

$$E_2 = \frac{mKT}{q} \left[\ell n \ \frac{I_R}{I_L} - \ell n \ \frac{I_S}{I_L} \right]$$

$$E_2 = \frac{-mKT}{q} \ell n \frac{I_s}{I_R}$$

The output op amp, A_2 , provides a voltage gain of approximately $(R_T + R_2)/R_T$, and the value of (mKT)/q is about 26mV at room temperature. Since resistor R_T varies with temperature to compensate for gain drift, the output voltage, E_0 , expressed as a log will be:

FIGURE 1. Functional Diagram.

8 References and Regulators

Voltage and current references are used for bridge circuits, calibration standards, D/A and A/D converter reference, sensor excitation and other applications requiring a stable voltage or current reference.

Regulators are used for battery management, distributed power, SCSI-2 termination and any other applications requiring regulated power.

Choose from our complete line of references and regulators which include:

REF1004-1.2—1.235V ± 4 mV bandgap reference that will operate from as little as $10\mu A$ in an 8-lead SOIC package.

REF1004-2.5—2.500V \pm 20mV bandgap reference that will operate from as little as 20 μ A in an 8-lead SOIC package.

REF02—5.0V ±5mV buried zener reference that will operate over an input range of 8VDC to 40VDC in an 8-lead SOIC, PDIP and TO-99 packages.

REF102—10.0V ±2.5mV buried zener precision reference that will operate over an input range of 11.4VDC to 36VDC in an 8-lead SOIC, PDIP and TO-99 packages.

REF200—100μA ±0.5μA dual current reference with a compliance voltage range of 2.5VDC to 40VDC in an 8-lead SOIC, PDIP AND TO-99 packages.

REG1117—Positive 2.85V, 3.0V, 3.3V, and 5.0V regulators that will operate down to 1V input to output and up to 800mA output in an SOT-223 package.

REG5601—Electrically equivalent to industrystandard "5601" terminators, this 18-line SCSI bus terminator comes in a 28-lead fine pitch SSOP package that requires only half the circuit board area.

REG5608—A low capacitance (2pF) 18-line active terminator for SCSI parallel bus systems. Meets requirements for high data rate systems (20MHz, Fast-20).

Ω

References and Regulators

REFERENCES AND REGULATORS

CURRENT

REFERENCE

(Drift Accuracy, typ)

REF200 (25ppm/°C)

VOLTAGE REFERENCE (Drift Accuracy, max)

OUTPUT VOLTAGE = 10V

REF101 (1ppm/°C) REF10 (1ppm/°C) REF102 (2.5ppm/°C)

REF01 (8.5ppm/°C)

OUTPUT VOLTAGE = 5V

REF02 (8.5ppm/°C) REF05 (8.5ppm/°C)

OUTPUT VOLTAGE = 2.5V REF1004 (20ppm/°C)

OUTPUT VOLTAGE = 1.25V REF1004 (20ppm/°C) LOW DROPOUT
VOLTAGE REGULATORS
(Output Voltage, typ

Output Current, max)

REG1117 (Adj., 800mA) REG1117-2.85 (2.85V, 800mA) REG1117-3 (3V, 800mA) REG1117-3.3 (3.3V, 800mA) REG1117-5 (5V, 800mA) INTEGRATED
SCSI TERMINATORS
18-Line Terminator
(Output Capacitance, typ)

REG5608 (2.5pF) REG5601 (10pF)

* DENOTES TYPICAL

BOLD DENOTES NEW PRODUCT

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

Burr-Brown IC Data Book—Linear Products

BOLD DENOTES NEW PRODUCT

BOLD, ITALIC DENOTES PRODUCT IN DEVELOPMENT

Some specifications have been estimated for comparison purposes. Refer to data sheets for guaranteed specifications.

17 17 10 10 10 10 10 10	Product	Output (V)	Output Current min (mA)	Output Voltage Drift max (±ppm/°C)	Power Supply min, max (V)	Power Supply max (mA)	Temp Range ⁽¹⁾	Cerdip Pkg	Description	1	VOLTAGE REFERENC
22P, U	REF01M, G	+10.00 ±0.025	10	8.5	+11.4/40	1.4	Mil, Ind, Cerami	TO-99, CDIP	Guaranteed	Long-Term Stability	eche
22P, U	REF01P, U	+10.00 ±0.020	10	15	+11.4/40	1.4	Ind, Com	PDIP, SO	Guaranteed	Long-Term Stability	111
14	REF02M, G	+5.00 ±0.01	10	8.5	+7/40	1.4	Mil, Ind, Cerami	TO-99, CDIP	Guaranteed	Long-Term Stability-±25p	pm/1k hrs
10M	REF02P, U	+5.00 ±0.015	10	10	+7/40	1.4	Com, Ind	PDIP, SO	Guaranteed	Long-Term Stability-±25p	pm/1k hrs
101	REF05M	+5.00 ±0.01	10	8.5	+7/40	1.4	Mil	TO-99, CDIP	Guaranteed	Long-Term Stability-±25p	pm/1k hrs
101	REF10M	+10.00 ±0.005	10	1	+13.5/35	4.5	Com	TO-99	Guaranteed	Long-Term Stability	
DIP, SOIC	REF101	+10.00 ±0.005	10	1	+13.5/35	4.5	Com	TO-99	Guaranteed	Long-Term Stability	
1004 +1.235 ± 0.01 NS 20 NS 10 μA(2) XInd SOIC Precision Micropower Voltage Reference Precision M	REF102	+10.00 ±0.0025	10	2.5	+11.4/36	1.4	Ind, Mil		Guaranteed	Long-Term Stability	
1004C	REF1004C	+1.235 ±0.006	NS	20	NS	10µA(2)	Com	SOIC	Precision M	licropower Voltage Reference	ce
1004 +2.50 ±0.02 NS 20 NS NI NI NI NI NI NI NI	REF1004I	+1.235 ±0.01	NS	20	NS	10µA(2)	XInd	SOIC	Precision M	licropower Voltage Reference	oe .
CURRENT REFERENCE Compute Current (μA)	REF1004C	+2.50 ±0.013	NS	20	NS	20µA(2)	Com	SOIC	Precision M	licropower Voltage Reference	oe e
CURRENT REFERENCE Composition Current (μA) Current (μA) Composition Current (μA) Composition Current (μA) Current (REF1004I	+2.50 ±0.02	NS	20	NS	20µA(2)	XInd	SOIC	Precision M	licropower Voltage Reference	ce
Output Current (μA) Compliance Output Current (μA) Compliance Output Current (μA) Output (ν) tage at 800mA (mV) max	NOTE: (1) Com = 0°	$^{\circ}$ C to +70 $^{\circ}$ C. Ind = -2	25°C to +85°	°C, Mil = -55°C	to +125°C. XI	nd = -40°C	to +85°C. (2) Minimu	m Operating Current.		120	CURRENT REFERENCE
Composition	Product		rent					Pkg			1/20/13
Dropout Voltage at 800mA Regulation (mV) max (mV) max (mV) max (mV) max (mV) max (mA) Range Pkg Description	REF200	Dual 100 ±0.	.5	2.5 V	to 40V	西日	25	DIP, SO-8	Ind	Includes 0.5	% accurate current mirror
Output Voltage uct Voltage (V) typ Line Regulation (mV) max (mV) Quiescent Current (mA) Temp Range Pkg Description 1117 ADJ. 1.2 0.4% 0.4% 10 Com SOT-223 +2.85V Voltage Regulator For SCSI-2 Active Termination (mA) 1117-23,33 +3, +3.3 1.2 7 7 10 Com SOT-223 +2.85V Voltage Regulator For SCSI-2 Active Termination (mA) 1117-3, 3.3 +3, +3.3 1.2 7 7 10 Com SOT-223 +3V/+3.3V Voltage Regulator 1117-5 +5 1.2 10 10 10 Com SOT-223 +5.0V Voltage Regulator INTEGRATED SCSI TERMINATOR uct Output Line Capacitance, typ Termination Impedance (typ) Output Current mA (typ) Operating Temperature Pkg Description 5601 10pF 110Ω 21.7 T _A = 0°C to 70°C SOIC 18 Line Terminator	NOTE: (1) Ind = -25	°C to +85°C.								151	LOW DROPOL
117-2.85	Product	Voltage	Voltag	ge Li DmA R	egulation	Regulat	ion Current	Temp	Pkg	1 111 < 1	
117-3, 3.3	REG1117	ADJ.	1.2	0.	4%	0.4%	10	Com	SOT-223	1 Yes 1	
117-5	REG1117-2.85	+2.85	1.2	50 7		7	10	Com	SOT-223	+2.85V Voltage Regulator	For SCSI-2 Active Termination
Output Line Capacitance, typ Impedance (typ) Current mA (typ) Temperature Pkg Description 10pF 110Ω 21.7 T _A = 0°C to 70°C SOIC 18 Line Terminator	REG1117-3, 3.3	+3, +3.3	1.2	7		7	10	Com	SOT-223	+3V/+3.3V Voltage Regula	ator
Output Line Capacitance, typ Impedance (typ) Current mA (typ) Temperature Pkg Description 10pF 110Ω 21.7 T _A = 0°C to 70°C SOIC 18 Line Terminator	REG1117-5	+5	1.2	10	0	10	10	Com	SOT-223		
Output Line Capacitance, typ Termination Impedance (typ) Output Current mA (typ) Operating Temperature Pkg Description 5601 10 F 110Ω 21.7 $T_A = 0^{\circ}$ C to 70° C SOIC 18 Line Terminator							- 5 7 8			101	
Output Line Capacitance, typ Termination Impedance (typ) Output Current mA (typ) Operating Temperature Pkg Description 5601 10 F 110Ω 21.7 $T_A = 0^{\circ}$ C to 70° C SOIC 18 Line Terminator							ブロせん			INTECDA	TED COCI TEDMINATOR
ct Capacitance, typ Impedance (typ) Current mA (typ) Temperature Pkg Description 5601 10pF 110 Ω 21.7 T _A = 0°C to 70°C SOIC 18 Line Terminator								및 등 전	957	INTEGRA	TED 3031 TERMINATOR
성하는 보고 보고 마른데 그는 사람들에게 되는 사람들은 전략을 받는 사람들이 그리고 있는 것이다면 하는 것이다. 그는 사람들이 다른데 그리고 있는 것이다면 하는데 그리고 있는데 다른데 그리고 있는데 사람들이 되는데 그리고 있는데 그리 그리고 있는데 그리고 있는데 그리	Product			100000000000000000000000000000000000000					Pkg	Description	1000
2pF 110Ω 22.4 T _A = 0°C to 70°C SOIC, SSOP 18 Line Terminator	REG5601	10pF	E 5 8	110Ω	2	21.7		^			minator
	REG5608	2pF		110Ω	000	22.4		$T_A = 0$ °C to 70°C	SOIC,	SSOP 18 Line Ter	minator
				2 4 5	100	A W		- X 3 X X	3 3 3 3		

+10V Precision VOLTAGE REFERENCE

FEATURES

- OUTPUT VOLTAGE: +10V ±0.2% max
- EXCELLENT TEMPERATURE STABILITY: 8.5ppm/°C max (-40°C to +85°C)
- LOW NOISE: 5μVp-p typ (0.1Hz to 10Hz)
- EXCELLENT LINE REGULATION: 0.001%/V max
- EXCELLENT LOAD REGULATION: 0.002%/mA max
- SOURCES 10mA, SINKS 5mA min
- LOW SUPPLY CURRENT: 1.4mA max
- SHORT-CIRCUIT PROTECTED
- WIDE SUPPLY RANGE: 11.4VDC to 40VDC
- PACKAGE OPTIONS: Plastic DIP, SOIC
- EXTENDED INDUSTRIAL TEMPERATURE RANGE: -40°C to +85°C

APPLICATIONS

- PRECISION REGULATORS
- CONSTANT CURRENT SOURCE/SINK
- DIGITAL VOLTMETERS
- A/D AND D/A CONVERTERS
- PRECISION CALIBRATION STANDARD
- TEST EQUIPMENT

DESCRIPTION

The REF01 is a high performance, low price, precision pin compatible second source voltage reference. Output accuracy of ±0.2% is a 30% improvement over industry standard REF01s. Output noise is 5µVp-p, which is a 75% decrease in noise over all other REF01s. Line regulation is 0.001%/V max and load regulation is 0.002%/mA max, which far exceeds the performance of our competitors. Quiescent current is a low 1.4mA. REF01 provides extended supply range when compared to industry standard devices. Burr-Brown's REF01 is the best choice for applications which requires improved accuracy, low noise, low power consumption, low drift, and the lowest price. Popular package options are available: Plastic DIP, and SOIC. For guaranteed long-term drift see Burr-Brown's model REF10.

+10V Reference with Trimmed Output

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

8

	NOT JUST 0	REF01A		REF01B			REF01C				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE (ΔV_{OT}) Change with Temperature ^(1, 2) -40°C to +85°C	I _L = 0mA	9.970	10.0	10.030	9.975	10.0	10.025	9.980	10.0	10.020	V %
OUTPUT VOLTAGE DRIFT(3) -40°C to +85°C (TCV _O)	ate Biss. Common, p. Bath common pads m	Subab STOM	10	25		8	15		3	8.5	±ppm/°C
OUTPUT ADJUSTMENT RANGE	$R_{POT} = 10k\Omega^{(6)}$	±3			±3			±3			%
OUTPUT ADJUSTMENT	n) sums	Dia S	0.5			0.5			0.5		
(-55°C to +125°C)	$R_{POT} = 10k\Omega$	mitä				200			0.5		ppm/%
OUTPUT VOLTAGE NOISE	0.1Hz to 10Hz ⁽⁵⁾	Back	5	588		5		8.45	5		μVр-р
LINE REGULATION ⁽⁴⁾ -40°C to +85°C	V _{IN} = 11.4V to 36V		0.001 0.002	0.003 0.006		0.0007 0.001	0.002 0.004		0.0003 0.001	0.001 0.002	%/V
LOAD REGULATION ⁽⁴⁾ -40°C to +85°C	$I_L = 0mA \text{ to } +10mA$ $I_L = 0mA \text{ to } -5mA$ $I_L = 0mA \text{ to } +10mA$		0.001 0.003 0.005	0.004 0.008 0.016	Y	0.001 0.002 0.004	0.003 0.006 0.012	310 11	0.001 0.001 0.003	0.002 0.004 0.008	%/mA
TURN-ON SETTLING TIME	To ±0.1% of Final Value		5			5			5		μs
QUIESCENT CURRENT	No Load		1.2	1.4		1.2	1.4		1.2	1.4	mA
LOAD CURRENT		10	21		10	21		10	21		mA
SINK CURRENT		-5	-10		*	*		*	*		mA
SHORT-CIRCUIT CURRENT	V _O = 0		30			30			30		mA
POWER DISSIPATION			18			18			18		mW
TEMPERATURE RANGE Specification REF01A, B, C		-40		+85							°C

NOTES: (1) ΔV_{OT} is defined as the absolute difference between the maximum output and the minimum output voltage over the specified temperature range expressed as a percentage of 10V: $\Delta V_{O} = \frac{|V_{MAX} - V_{MIN}|}{10V} \times 100\%$ (2) ΔV_{OT} specification applies trimmed to +10.000V or untrimmed. (3) TCV_O is defined as ΔV_{OT} divided

by the temperature range. (4) Line and load regulation specifications include the effect of self heating. (5) Sample tested. (6) $10k\Omega$ potentiometer connected between V_O and ground with wiper connected to trim pin. See Figure 3.

ORDERING INFORMATION

MODEL	V _{OUT} AT 25°C	MAX DRIFT (ppm/°C)	TEMPERATURE	PACKAGE
REF01AU	10V±30mV	±25	-40°C to +85°C	8-Pin SOIC
REF01BU	10V±25mV	±15	-40°C to +85°C	8-Pin SOIC
REF01AP	10V±30mV	±25	-40°C to +85°C	8-Pin Plastic DIP
REF01BG	10V±25mV	±15	-40°C to+85°C	8-Pin Ceramic DIF
REF01BP	10V±25mV	±15	-40°C to +85°C	8-Pin Plastic DIP

For Immediate Assistance, Contact Your Local Salesperson

DICE INFORMATION

PAD	FUNCTION	PAD	FUNCTION
2	V _{IN}	4B	GND
ЗА	NC	5	Trim
3B	NC	6A	I Vout
3C	NC	6B	Vour (Sense)
4A	GND		DYRR+ of C

Substrate Bias: Common, pad 4B.

NOTE: Both common pads must be connected and both V_{OUT} pads must be tied together.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS		
Die Size	55 x 75	1.40 x 1.91 ±13		
Die Thickness	20±3	0.51 ±0.08		
Min. Pad Size	5 x 5	0.10 x 0.10		
Backing	MIZHTU SON	Gold		

REF01 DIE TOPOGRAPHY

0°28+ of 0°04- -40°0 of 488°0 -40°0 of 688°0	Vm08±V01 Vm88±V01 Vm08±V01 Vm88±V01	

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABSOLUTE MAXIMUM RATINGS

Input Voltage	+40V
Operating Temperature	
P, U	40°C to +85°C
Storage Temperature Range	
P. U	65°C to +125°
Output Short Circuit Duration (to Ground or VIN)	Indefinite
Junction Temperature	65°C to +150°
θ _{.IA} P	120°C/W
U	80°C/W
Lead Temperature (soldering, 60s)	+300°C

PIN CONFIGURATIONS

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REF01AU	8-Pin SOIC	182
REF01BU	8-Pin SOIC	182
REF01AP	8-Pin Plastic DIP	006
REF01BP	8-Pin Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

0.004 0.004 0.004 0.004 0.0004 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

REF

g

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C and $V_S = +15$ V power supply unless otherwise noted.

REFERENCES AND REGULATORS

BURR-BROWN®

 $T_A = +25$ °C and $V_S = +15$ V power supply unless otherwise noted.

The REF01 trim terminal can be used to adjust the voltage over a $10V \pm 300 \text{mV}$ range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 10V, including 10.240V for binary applications (see circuit on the first page).

Adjustment of the output does not significantly affect the temperature performance of the device. The temperature coefficient change is approximately 0.5ppm/°C for 100mV of output adjustment.

FIGURE 1. Burn-In Circuit.

FIGURE 2. High Resolution Output Adjustment.

OUTPUT VOLTAGE: +5V ±0.1% max
EXCELLENT TEMPERATURE STABILITY:
8.5ppin°C max (-40°C to +85°C)
LOW NOISE: 16µVp-p max (0.1Hz to 10Hz)
0.005%V max
EXCELLENT LINE REQUILATION:
0.005%NIA max
0.005%NIA max
1.005 SUPPLY CURRENT: 1.4mA max
1.00 SUPPLY RANGE: 8V to 40V

APPLICATIONS

DIGITAL VOLTMETERS
V/F CONVERTERS
AND AND DIA CONVERTERS

TEST EQUIPMENT

REF02

+5V Precision VOLTAGE REFERENCE

FEATURES

- OUTPUT VOLTAGE: +5V ±0.1% max
- EXCELLENT TEMPERATURE STABILITY: 8.5ppm/°C max (-40°C to +85°C)
- LOW NOISE: 10μVp-p max (0.1Hz to 10Hz)
- EXCELLENT LINE REGULATION: 0.008%/V max
- EXCELLENT LOAD REGULATION: 0.005%/mA max
- LOW SUPPLY CURRENT: 1.4mA max
- SHORT-CIRCUIT PROTECTED
- WIDE SUPPLY RANGE: 8V to 40V
- EXTENDED INDUSTRIAL TEMPERATURE RANGE: -40°C to +85°C
- PACKAGE OPTIONS: Plastic DIP, SOIC

DESCRIPTION

The REF02 is a precision 5V voltage reference. The drift is laser trimmed to 8.5ppm/°C max over the extended industrial and military temperature range. The REF02 provides a stable 5V output that can be externally adjusted over a ±6% range with minimal effect on temperature stability. REF02 operates from a single supply with an input range of 8V to 40V with a very low current drain of 1mA, and excellent temperature stability due to an improved design. Excellent line and load regulation, low noise, low power, and low cost make the REF02 the best choice whenever a 5V voltage reference is required. All popular package options are available: plastic DIP, and SOIC. The REF02 is an ideal choice for portable instrumentation, temperature transducers, A/D and D/A converters, and digital voltmeter.

APPLICATIONS

- PRECISION REGULATORS
- CONSTANT CURRENT SOURCE/SINK
- DIGITAL VOLTMETERS
- V/F CONVERTERS
- A/D AND D/A CONVERTERS
- PRECISION CALIBRATION STANDARD
- TEST EQUIPMENT

+5V Reference with Trimmed Output

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

ELECTRICAL

 $T_A = +25$ °C and $V_{IN} = +15$ V power supply unless otherwise noted.

			REF02A, F	R		REF02B, S			REF02C		
PARAMETER OM 8	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE Change with Temperature ^(1, 2) (ΔV	I _{LOAD} = 0mA	4.985	5.0	5.015	4.990	128-	5.010	4.995) ac*sou(5.005	CulVII sh
-40°C to +85°C	8 gm	and the same	0.05	0.19	120°CA	0.05	0.13		0.05	0.11	%
OUTPUT VOLTAGE DRIFT(3) -40°C to +85°C (TCV _O)	ND 4		4	15	3°008+	4	10	(80	gninobio 4	8.5	±ppm/°C
OUTPUT ADJUSTMENT RANGE	$R_{POT} = 10k\Omega^{(6)}$	±3	±6					йої	FAMAG	HALL BA	%
CHANGE IN V _O TEMP COEFFICIENT WITH OUTPUT ADJUSTMENT						KAGE DR	DAR	36	PACKA		.1800м
(-55°C to +125°C)	$R_{POT} = 10k\Omega$		0.7			587			3010		ppm/%
OUTPUT VOLTAGE NOISE	0.1Hz to 10Hz ⁽⁵⁾		4	10		300		31	DIDI.		μVp-p
LINE REGULATION ⁽⁴⁾ -40°C to +85°C	V _{IN} = 8V to 33V V _{IN} = 8.5V to 33V		0.006 0.008	0.010 0.012	bis to boo	300*	e aldet en	qti namin he	0.004 0.005	0.008 0.010	%/V
LOAD REGULATION ⁽⁴⁾ -40°C to +85°C	I _L = 0mA to +10mA I _L = 0mA to +10mA		0.005 0.007	0.010 0.012		:	0.008	un IC Date	0.003 0.004	0.005 0.005	%/mA
TURN-ON SETTLING TIME	To ±0.1% of Final Value		5					иоп	AMRO	HII ON	μs
QUIESCENT CURRENT	No Load		1.0	1.4			THÍNG)	ASA .	*		mA
LOAD CURRENT (SOURCE)		10	21	149	anujan.	1	107 200	417	DOSTA	IUDY	mA
LOAD CURRENT (SINK)		-0.3	-0.5		O*88+ 01	P05-	012		Vmors	va I	mA
SHORT-CIRCUIT CURRENT	V _{OUT} = 0		30	10	0°38+ of	POL-	013		Vincia Vm014	G I	mA
POWER DISSIPATION	No Load	Territory	15	21		*			*		mW
TEMPERATURE VOLTAGE OUTPUT ⁽⁷⁾			630								mV
TEMPERATURE COEFFICIENT of Temperature Pin Voltage -55°C to +125°C			2.1								mV/°C
TEMPERATURE RANGE Specification REF02A, B, C		-40		+85			*				°C

NOTES: (1) ΔV_{OT} is defined as the absolute difference between the maximum output and the minimum output voltage over the specified temperature range expressed as a percentage of 5V: $\Delta V_{OT} = \begin{vmatrix} V_{MAX} - V_{MIN} \\ 5V \end{vmatrix} \times 100$ (2) ΔV_{OT} specification applies trimmed to +5.000V or untrimmed. (3) TCV_O is defined as ΔV_{OT} divided

by the temperature range. (4) Line and load regulation specifications include the effect of self heating. (5) Sample tested. (6) $10k\Omega$ potentiometer connected between V_{OUT} and ground with wiper connected to Trim pin. See Figure on page 1. (7) Pin 3 is insensitive to capacitive loading. The temperature voltage will be modified by 7mV for each μ A of loading.

REFERENCES AND REGULATORS

8

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Operating Temperature -40° G, P, U -40° Storage Temperature Range -65° G, P, U -65° M -65° Output Short Circuit Duration (to Ground or V _{IN})	+40V
Storage Temperature Range -65° G, P, U -65° M -65°	
G, P, U	C to +85°C
M—65°	
	C to +125°
Output Short Circuit Duration (to Ground or VIN)	C to +150°
	Indefinite
Junction Temperature65°	C to +150°
$ heta_{JA}$ P	120°C/W
U	80°C/W
Lead Temperature (soldering, 60s)	+300°C

Top Vie						DIP/SOIC
	NC	1	8		NC	PARAMETER
	ase V _{IN}	2	gagai 7	1	NC	
	Temp	3	(mVA) 6	,	V _{OUT}	Change with Ton
	GND	4	5	22	Γrim	

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REF02AU	SOIC	182
REF02BU	SOIC	182
REF02AP	Plastic DIP	006
REF02BP	Plastic DIP	006

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	V _{OUT} AT 25°C	MAX DRIFT (ppm/°C)	TEMPERATURE	PACKAGE
REF02AU	5V±15mV	±15	-40°C to +85°C	SOIC
REF02BU	5V±10mV	±10	-40°C to +85°C	SOIC
REF02AP	5V±15mV	±15	-40°C to +85°C	Plastic DIP
REF02BP	5V±10mV	±10	-40°C to +85°C	Plastic DIP

BURR-BROWN®

Substrate Bias: -V

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	73 x 62	1.85 x 1.57
Die Thickness	14 ±3	0.36 ± 0.08
Min. Pad Size	5 x 5	0.10 x 0.10

REF02 DIE TOPOGRAPHY

| Short Circuit Protection | Short Circuit Protection | Short Circuit Protection | Short Circuit Protection | Source | S

8

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT)

8

The REF02 trim terminal can be used to adjust the voltage over a $5V \pm 150 \text{mV}$ range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 5V, including $5.12V^{(1)}$ for binary applications (see circuit on page one).

Adjustment of the output does not significantly affect the temperature performance of the device. The temperature coefficient change is approximately 0.7ppm/°C for 100mV of output adjustment.

NOTE: (1) 20mV LSB for 8-bit applications.

FIGURE 1. Burn-In Circuit.

REFERENCE STACKING PROVIDES OUTSTANDING LINE REGULATION

By stacking two REF01s and one REF02, a systems designer can achieve 5V, 15V and 25V outputs. One very important advantage of this circuit is the near perfect line regulation at 5V and 15V outputs. This circuit can accept a 27V to 55V change to the input with less than the noise voltage as a change to the output voltage. (R_B), a load bypass resistor, supplies current (I_{SY}) for the 15V regulator.

Any number of REF01s and REF02s can be stacked in this configuration. If ten devices can be stacked in this configuration, for example, ten 5V or five 10V outputs are achieved. The line voltage may range from 100V to 130V. Care should be exercised to insure that the total load currents do not exceed the maximum usable current which is typically 21mA.

FIGURE 2. ±5V Precision Reference.

BURR-BROWN®

REF102

Precision VOLTAGE REFERENCE

FEATURES

- +10V ±0.0025V OUTPUT
- VERY LOW DRIFT: 2.5ppm/°C max
- EXCELLENT STABILITY: 5ppm/1000hr typ
- EXCELLENT LINE REGULATION: 1ppm/V max
- EXCELLENT LOAD REGULATION: 10ppm/mA max
- LOW NOISE: 5µVp-p typ, 0.1Hz to 10Hz
- WIDE SUPPLY RANGE: 11.4VDC to 36VDC
- LOW QUIESCENT CURRENT: 1.4mA max
- PACKAGE OPTIONS: HERMETIC TO-99, PLASTIC DIP, SOIC

DESCRIPTION

The REF102 is a precision 10V voltage reference. The drift is laser-trimmed to 2.5ppm/°C max (CM grade) over the industrial temperature range and 5ppm/°C max (SM grade) over the military temperature range. The REF102 achieves its precision without a heater. This results in low power, fast warm-up, excellent stability, and low noise. The output voltage is extremely insensitive to both line and load variations and can be externally adjusted with minimal effect on drift and stability. Single supply operation from 11.4V to 36V and excellent overall specifications make the REF102 an ideal choice for demanding instrumentation and system reference applications.

APPLICATIONS

- PRECISION-CALIBRATED VOLTAGE STANDARD
- D/A AND A/D CONVERTER REFERENCE
- PRECISION CURRENT REFERENCE
- ACCURATE COMPARATOR THRESHOLD REFERENCE
- DIGITAL VOLTMETERS
- TEST EQUIPMENT
- PC-BASED INSTRUMENTATION

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-11111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

REF102

8

SPECIFICATIONS

ELECTRICAL

At T_A = +25°C and V_S = +15V power supply unless otherwise noted.

		1	REF102A, I	R	F	REF102B,	S	1	REF102C, I	A	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE Initial vs Temperature (1) vs Supply	T _A = 25°C	9.99		10.01	9.995		10.005	9.9975		10.0025 2.5	V ppm/°C
(Line Regulation)	V _S = 11.4V to 36V		LE SERVICES	2	STREET, STREET	THE REPORT OF THE PERSON OF TH	diam'r.	DISTRIBUTION .	mark the unit	EXPENSE TO	ppm/V
vs Output Current (Load Regulation)	$I_L = 0mA \text{ to } +10mA$ $I_L = 0mA \text{ to } -5mA$ $T_A = 25^\circ$		no	20 40	1919		10 20			10 20	ppm/mA ppm/mA
M Package P, U Packages (2) Trim Range (3) Capacitive Load, max	35	±3	5 20 1000	136	36	TAC	107				ppm/1000h ppm/1000h % pF
NOISE	(0.1Hz to 10Hz)		5			*					μVp-p
OUTPUT CURRENT	0.110	+10, -5	2 5/00/6	9.0					(N) series	TES APPRI	mA
INPUT VOLTAGE RANGE	GMU	+11.4	11.27	+36					631	1011	V
QUIESCENT CURRENT	(I _{OUT} = 0)	WO-MO	CIOSH	+1.4				392310	O. Fusi	U.U. V	mA
WARM-UP TIME (4)	(To 0.1%)	A. Pris	15			Xan	om/°C i	C. 2.5p	PIRO V	fou Yr	μs
TEMPERATURE RANGE Specification	ONVERTER R	O A/D C	NA ANI RECIS	3 9				YTUIS		SELLED MIN TOO	⊕ EX
REF102A, B, C REF102R, S	MPARATOR T	-25 -55	CCUR	+85 +125	:		LATIO	nėgų	INLI TI	BILLEO	°C

*Specifications same as REF102A/R.

NOTES: (1) The "box" method is used to specify output voltage drift vs temperature. See the Discussion of Performance section. (2) Typically 5ppm/1000hrs after 168hr powered stabilization. (3) Trimming the offset voltage affects drift slightly. See Installation and Operating Instructions for details. (4) With noise reduction pin floating. See Typical Performance Curves for details.

DESCRIPTION

The REF102 is a precision 10V voltage reference. The drift is laser-trimmed to 2.5ppm/°C max (CM grado) over the industrial temperature range and 5ppm/°C max (SM grade) over the military temperature range. This REF102 achieves its precision without a heater. This results in low power, fast warm-up, excellent actuality, and few noise. The output voltage is exceedingly insensitive to both fine and load variations and can be extremelly adjusted with minimal effect on drift and stability. Single supply operation from 11.4V to 35V and excellent overall specifications make the

tion and system reference applications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

MODEL	иоп	PACKAGE	PA	TEMPERATURE RANGE	MAX INITIAL ERROR (mV)	MAX DRIFT (ppm/°C)
REF102AU		8-Pin SOIC	S AR	-25°C to +85°C	±10	±10
REF102AP		8-Pin Plastic DIP	90	-25°C to +85°C	±10	±10
REF102BP		8-Pin Plastic DIP	Sec	-25°C to +85°C	±5	±5
REF102AM	Sans?	Metal TO-99	44	-25°C to +85°C	±10	±10
REF102BM	(Forta P)	Metal TO-99	Sh.	-25°C to +85°C	±5	±5
REF102CM		Metal TO-99	8	-25°C to +85°C	±2.5	±2.5
REF102RM		Metal TO-99	AB	-55°C to +125°C	±10	±10
REF102SM	Obsedo	Metal TO-99	93-	-55°C to +125°C	±5	±5

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Input Voltage	+40V
Operating Temperature	
P,U	25°C to +85°C
M	55°C to +125°C
Storage Temperature Range	
P,U	40°C to +85°C
M	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
(SOIC, 3s)	+260°C
Short-Circuit Protection to Common or V+	Continuous

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REF102AU	8-Pin SOIC	182
REF102AP	8-Pin Plastic DIP	006
REF102BP	8-Pin Plastic DIP	006
REF102AM	Metal-TO-99	001
REF102BM	Metal-TO-99	001
REF102CM	Metal-TO-99	001
REF102RM	Metal-TO-99	001
REF102SM	Metal-TO-99	001

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

8

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = +15$ V unless otherwise noted.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

TYPICAL PERFORMANCE CURVES (CONT)

T_A = +25°C, V_S = +15V unless otherwise noted.

Low Frequency Noise (1s /div)
(See Noise Test Circuit)

Noise Test Circuit.

8

REF102

Refer to the diagram on the first page of this data sheet. The 10V output is derived from a compensated buried zener diode DZ₁, op amp A₁, and resistor network R₁-R₆.

Approximately 8.2V is applied to the non-inverting input of A₁ by DZ₁. R₁, R₂, and R₃ are laser-trimmed to produce an exact 10V output. The zener bias current is established from the regulated output voltage through R4. R5 allows usertrimming of the output voltage by providing for small external adjustment of the amplifier gain. Because the TCR of R₅ closely matches the TCR of R₁, R₂ and R₃, the voltage trim has minimal effect on the reference drift. The output voltage noise of the REF102 is dominated by the noise of the zener diode. A capacitor can be connected between the Noise Reduction pin and ground to form a low-pass filter with R₆ and roll off the high-frequency noise of the zener.

DISCUSSION OF PERFORMANCE

The REF102 is designed for applications requiring a precision voltage reference where both the initial value at room temperature and the drift over temperature are of importance to the user. Two basic methods of specifying voltage reference drift versus temperature are in common usage in the industry—the "butterfly method" and the "box method." The REF102 is specified with the more commonly used "box method." The "box" is formed by the high and low specification temperatures and a diagonal, the slope of which is equal to the maximum specified drift.

Since the shape of the actual drift curve is not known, the vertical position of the box is not exactly known either. It is, however, bounded by V_{UPPER BOUND} and V_{LOWER BOUND} (see Figure 1). Figure 1 uses the REF102CM as an example. It has a drift specification of 2.5ppm/°C maximum and a specification temperature range of -25°C to +85°C. The "box" height, V_1 to V_2 , is 2.75mV.

FIGURE 1. REF102CM Output Voltage Drift.

OPERATING INSTRUCTIONS

BASIC CIRCUIT CONNECTION

Figure 2 shows the proper connection of the REF102. To achieve the specified performance, pay careful attention to layout. A low resistance star configuration will reduce voltage errors, noise pickup, and noise coupled from the power supply. Commons should be connected as indicated being sure to minimize interconnection resistances.

NOTES: (1) Lead resistances here of up to a few ohms have negligible effect on performance. (2) A resistance of 0.1Ω in series with these leads will cause a 1mV error when the load current is at its maximum of 10mA. This results in a 0.01% error of 10V.

FIGURE 2. REF102 Installation.

OPTIONAL OUTPUT VOLTAGE ADJUSTMENT

Optional output voltage adjustment circuits are shown in Figures 3 and 4. Trimming the output voltage will change the voltage drift by approximately 0.008ppm/°C per mV of trimmed voltage. In the circuit in Figure 3, any mismatch in TCR between the two sections of the potentiometer will also affect drift, but the effect of the ΔTCR is reduced by a factor of five by the internal resistor divider. A high quality potentiometer, with good mechanical stability, such as a cermet, should be used. The circuit in Figure 3 has a minimum trim range of ±300mV. The circuit in Figure 4 has less range but provides higher resolution. The mismatch in TCR between Rs and the internal resistors can introduce some slight drift. This effect is minimized if Rs is kept significantly larger than the $50k\Omega$ internal resistor. A TCR of 100ppm/°C is normally sufficient.

FIGURE 3. REF102 Optional Output Voltage Adjust.

FIGURE 4. REF102 Optional Output Voltage Fine Adjust.

OPTIONAL NOISE REDUCTION

The high-frequency noise of the REF102 is dominated by the zener diode noise. This noise can be greatly reduced by connecting a capacitor between the Noise Reduction pin and ground. The capacitor forms a low pass filter with R_6 (refer to the figure on the first page of the data sheet) and attenuates the high-frequency noise generated by the zener. Figure 5 shows the effect of a 1µF noise reduction capacitor on the high frequency noise of the REF102. R_6 is typically $7k\Omega$ so the filter has a -3dB frequency of about 22Hz. The result is a reduction in noise from about $800\mu Vp$ -p to under 200μ Vp-p. If further noise reduction is required, use the circuit in Figure 14.

FIGURE 5. Effect of $1\mu F$ Noise Reduction Capacitor on Broadband Noise ($f_{-3dB} = 1MHz$).

APPLICATIONS INFORMATION

High accuracy, extremely low drift, outstanding stability, and low cost make the REF102 an ideal choice for all instrumentation and system reference applications. Figures 6 through 14 show a variety of useful application circuits.

FIGURE 6. -10V Reference Using a) Resistor or b) OPA27.

8

FIGURE 7. +10V Reference With Output Current Boosted to: a) ±20mA, b) +100mA, and c) I_{L (TYP)} +10mA, -5A.

FIGURE 8. Strain Gauge Conditioner for 350Ω Bridge.

FIGURE 9. ±10V Reference.

FIGURE 10. Positive Precision Current Source.

NOTES: (1) REF102s can be stacked to obtain voltages in multiples of 10V. (2) The supply voltage should be between 10n + 1.4 and 10n + 26 where n is the number of REF102s. (3) Output current of each REF102 must not exceed its rated output current of +10, -5mA. This includes the current delivered to the lower REF102.

FIGURE 11. Stacked References.

FIGURE 12. ±5V Reference.

FIGURE 13. +5V and +10V Reference.

FIGURE 14. Precision Voltage Reference with Extremely Low Noise.

REF200

ABRIDGED DATA SHEET For Complete Data Sheet Call Fax Line 1-800-548-6133 **Request Document Number 10851**

DUAL CURRENT SOURCE/CURRENT SINK

FEATURES

- COMPLETELY FLOATING: No Power Supply or Ground Connections
- HIGH ACCURACY: 100µA ±0.5%
- LOW TEMPERATURE COEFFICIENT: ±25ppm/°C
- WIDE VOLTAGE COMPLIANCE: 2.5V to 40V
- ALSO INCLUDES CURRENT MIRROR

DESCRIPTION

The REF200 combines three circuit building-blocks on a single monolithic chip-two 100µA current sources and acurrent mirror. The sections are dielectrically isolated, making them completely independent. Also, since the current sources are twoterminal devices, they can be used equally well as current sinks. The performance of each section is individually measured and laser-trimmed to achieve high accuracy at low cost.

The sections can be pin-strapped for currents of 50µA, 100μA, 200μA, 300μA or 400μA. External circuitry can be used to obtain virtually any current. These and many other circuit techniques are shown in the Applications section of this Data Sheet.

The REF200 is available in plastic 8-pin mini-DIP and SOIC packages.

APPLICATIONS

- SENSOR EXCITATION
- BIASING CIRCUITRY
- OFFSETTING CURRENT LOOPS
- LOW VOLTAGE REFERENCES
- CHARGE-PUMP CIRCUITRY
- HYBRID MICROCIRCUITS

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

ELECTRICAL

T_A = +25°C, V_S = 15V unless otherwise noted.

			2				REF200AP, AU		
PARAMETER	78	per Common	3 1/10	CONDITION		MIN	TYP	MAX	UNITS
CURRENT SOURCES			6 M	BI THE			17215		
Current Accuracy Current Match Temperature Drift Output Impedance Noise Voltage Compliance (1%) Capacitance	AMAC (0.001") 72.25		Whetrate Black WECHANI Die Size	Specified Temp Range 2.5V to 40V 3.5V to 30V		20 200	±0.25 ±0.25 25 100 500 1 20 See Curves	±1 ±1	% % ppm/°C MΩ MΩ nAp-p pA/√Hz
CURRENT MIRROR	2 4 x		Die rootness Min. Pad Star Backing	I = 100μA Unless Otherwise Noted	100 F. 100 101 F. 100 F. 100				
Gain Temperature Drift Impedance (output) Nonlinearity Input Voltage Output Compliance Voltage Frequency Response (–3d8			7	2V to 40V I = 0μA to 250μA Transfer	PAPHY	0.995	1 25 100 0.05 1.4 See Curves 5	1.005	ppm/°C MΩ % V
TEMPERATURE RANGE Specification Operating Storage				23/10/	10.30	-25 -40 -40	0030	+85 +85 +125	°° °°

PIN CONFIGURATION

ORDERING INFORMATION

MODEL ⁽¹⁾	TEMPERATURE PACKAGE	RANGE
REF200AP	8-Pin Plastic DIP	-25°C to +85°C
REF200AU	8-Pin Plastic SOIC	-25°C to +85°C

NOTE: (1) Grade designation "A" may not be marked. Absence of grade designation indicates A grade.

ABSOLUTE MAXIMUM RATINGS

Applied Voltage	6V to +40V
Reverse Current	–350μA
Voltage Between Any Two Sections	±80V
Operating Temperature	40°C to +85°C
Storage Temperature	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
(SOIC 3s)	+260°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REF200AP	8-Pin Plastic DIP	006
REF200AU	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

FERENCES AND REGULATORS

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

For Immediate Assistance, Contact Your Local Salesperson

DICE INFORMATION

REF200 DIE TOPOGRAPHY

PAD	FUNCTION	PAD	FUNCTION
1	I ₁ Low	6	Substrate
2	l ₂ Low	7A	l ₂ High
3	Mirror Common	7B	l ₂ High
4	Mirror Output	8A	I ₁ High
5	Mirror Input	8B	I ₁ High

Substrate Bias: -V_{CC}.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	48 x 72 ±5	1.22 x 1.83 ±13
Die Thickness	20 ±3	0.51 ±0.08
Min. Pad Size	4 x 4	0.10 x 0.10
Backing		None

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = +15$ V unless otherwise noted.

APPLICATIONS INFORMATION

The three circuit sections of the REF200 are electrically isolated from one another using a dielectrically isolated fabrication process. A substrate connection is provided (pin 6), which is isolated from all circuitry. This pin should be connected to a defined circuit potential to assure rated DC performance. The preferred connection is to the most negative constant potential in your system. In most analog systems this would be $-V_s$. For best AC performance, leave pin 6 open and leave unused sections unconnected.

Drift performance is specified by the "box method," as illustrated in the Current vs Temperature plot of the typical performance curves. The upper and lower current extremes measured over temperature define the top and bottom of the box. The sides are determined by the specified temperature range of the device. The drift of the unit is the slope of the diagonal—typically 25ppm/°C from -25°C to +85°C.

If the current sources are subjected to reverse voltage, a protection diode may be required. A reverse voltage circuit model of the REF200 is shown in the Reverse Current vs Reverse Voltage curve. If reverse voltage is limited to less than 6V or reverse current is limited to less than 350µA, no protection circuitry is required. A parallel diode (Figure 2a) will protect the device by limiting the reverse voltage across the current source to approximately 0.7V. In some applications, a series diode may be preferable (Figure 2b) because it allows no reverse current. This will, however, reduce the compliance voltage range by one diode drop.

Applications for the REF200 are limitless. Application Bulletin AB-165 shows additional REF200 circuits as well as other related current source techniques. A collection of circuits is shown to illustrate some techniques. Also, see AB-165A.

FIGURE 1. Simplified Circuit Diagram.

FIGURE 2. Reverse Voltage Protection.

FIGURE 3. 50µA Current Source.

FIGURE 4. 200μA, 300μA, and 400μA Floating Current Sources.

FIGURE 5. 50µA Current Sinks.

8

FIGURE 6. Improved Low-Voltage Compliance.

FIGURE 7. 100µA Current Source—80V Compliance.

FIGURE 8. FET Cascode Circuits.

FIGURE 9. Op Amp Offset Adjustment Circuits.

REP1004 Micropower Voltage References, accuracy and stability specifications could only be attained by expensive streening of standard devices. The REP1004 is a cost effective solution when reference voltage accuracy, low power, and long term temperature stability are required.

REP1004 is a drop-in replacement for the LT1004 as well as an upgraded replacement of the LM185/885 series references. The REF1004C is characterized for operation from 0°C to 70°C and the REP10041 is

APPLICATIONS

BATTERY POWERED TEST EQUIPMENT

PORTABLE MEDICAL INSTRUMENTATION

PORTABLE COMMUNICATIONS DEVICES

AND AND DIA CONVERTERS

MINIMUM OPERATING CURRENT:

@ PACKAGE: 8-Lead SOIC

Homestens Argert Endeshiel Pea. Maing Address PD Sos 1920 (Totron, AZ 8578) Steet Address 570 S. Tierno Utd. (Totron, AZ 8578) Inc. (570 189-1910) Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (590) 188-1910 (Text. (570 189-1910) Encedage Product Intel (570 189-19

REF1004

1.2V and 2.5V Micropower **VOLTAGE REFERENCE**

FEATURES

- INITIAL ACCURACY: REF1004-1.2 ±4mV REF1004-2.5 ±20mV
- MINIMUM OPERATING CURRENT: REF1004-1.2 10µA REF1004-2.5 20µA
- EXCELLENT LONG TERM **TEMPERATURE STABILITY**
- **VERY LOW DYNAMIC IMPEDANCE**
- OPERATES UP TO 20mA
- PACKAGE: 8-Lead SOIC

APPLICATIONS

- BATTERY POWERED TEST EQUIPMENT
- PORTABLE MEDICAL INSTRUMENTATION
- PORTABLE COMMUNICATIONS DEVICES
- A/D AND D/A CONVERTERS
- NOTEBOOK AND PALMTOP COMPUTERS

DESCRIPTION

The REF1004-1.2 and REF1004-2.5 are two terminal bandgap reference diodes designed for high accuracy with outstanding temperature characteristics at low operating currents. Prior to the introduction of the REF1004 Micropower Voltage References, accuracy and stability specifications could only be attained by expensive screening of standard devices. The REF1004 is a cost effective solution when reference voltage accuracy, low power, and long term temperature stability are required.

REF1004 is a drop-in replacement for the LT1004 as well as an upgraded replacement of the LM185/385 series references. The REF1004C is characterized for operation from 0°C to 70°C and the REF1004I is characterized for operation from -40°C to +85°C.

The REF1004 is offered in an 8-lead Plastic SOIC package and shipped in anti-static rails or tape and reel.

NC 8 Cathode 7 2 NC 3 6 Cathode

5

NC

Typical Operating Circuit

NC NC

Anode

(Top View)

International Airport Industrial Park • Mailing Address: PO Box 11400 Tucson A7 85734
 Street Address: 6730 S. Tucson Blvd
 Tucson A7 85706 Tel: (520) 746-1111 · Twx: 910-952-1111 · Cable: BBRCORP Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

			REF1004-1.	2		REF1004-2.	5	
PARAMETER CONTRIBUTIONS AND	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
REF1004C(1) REF1004I(2)	I _R = 100μA	1.231 1.229 1.225	1.235 1.235 1.235	1.239 1.239 1.239	2.490 2.487 2.480	2.500 2.500 2.500	2.511 2.511 2.511	V
AVERAGE TEMPERATURE COEFFICIENT	I _{MIN} ≤ I _R ≤ 20mA		20			20		ppm/°C
MINIMUM OPERATION CURRENT(3)	Boy In		8	10	-	12	20	μΑ
REVERSE BREAKDOWN VOLTAGE CHANGE WITH CURRENT	$I_{MIN} \le I_R \le 1 \text{mA}$ $1 \text{mA} \le I_R \le 20 \text{mA}$			1 1.5 ⁽³⁾ 10 20 ⁽³⁾			1 1.5 ⁽³⁾ 10 20 ⁽³⁾	mV
REVERSE DYNAMIC IMPEDANCE(3)	I _R = 100μA		0.2	0.6		0.2	0.6	0.1 0.0 Ω
WIDE BAND NOISE (RMS) 10Hz ≤ I _R ≤ 10kHz	I _R = 100μA		60) eganov	120		μV
LONG TERM STABILITY T _A = 25°C ± 0.1°C	I _R = 100μA		20			20		ppm/KH

NOTES: (1) This specification applies over the full operating temperature range of $0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$. (2) This specification applies over the full operating temperature range of $40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$. (3) Denotes the specifications which apply over the full operating temperature range.

ORDERING INFORMATION

MODEL	TA	V _z ⁸	PACKAGE
REF1004C-1.2	0°C to +70°C	1.2V	8-Lead SOIC
REF1004C-2.5	0°C to +70°C	2.5V	8-Lead SOIC
REF1004I-1.2	-40°C to +85°C	1.2V	8-Lead SOIC
REF1004I-2.5	-40°C to +85°C	2.5V	8-Lead SOIC

NOTE: Available in Tape and Reel, Add -TR to Model Number.

ABSOLUTE MAXIMUM RATINGS

Reverse Breakdown Current	30mA
Forward Current	10mA
Operating Temperature Range	
REF1004C	0°C to +70°C
REF1004I	40°C to +85°C
Storage Temperature	
REF1004C	65°C to +150°C
REF1004I	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REF1004C-1.2	8-Pin SOIC	182
REF1004C-2.5	8-Pin SOIC	182
REF1004I-1.2	8-Pin SOIC	182
REF1004I-2.5	8-Pin SOIC	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PART MARKING
REF1004C-1.2	BBREF0412
REF1004C-2.5	BBREF0425
REF1004I-1.2	BBREF0412
REF1004I-2.5	BBREF0425

REFERENCES AND REGULATORS

REF1004

8

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

BURR-BROWN

TYPICAL PERFORMANCE CURVES 2.5V 3MAMRO3R39 JA3997

T_A = +25°C unless otherwise noted.

REF1004

8

REFERENCES AND REGULATORS

FIGURE 1. Low-Noise Reference.

FIGURE 3. 1.2V Reference from 1.5V Battery.

FIGURE 2. Micropower Reference from 9V Battery.

FIGURE 4. 2.5V Reference.

FIGURE 5. Lead-Acid Low-Battery-Voltage Detector.

800mA Low Dropout Positive Regulator 2.85V, 3V, 3.3V, 5V, and Adjustable

FEATURES

BURR-BROWN®

- 2.85V, 3V, 3.3V, 5V, and ADJUSTABLE **VERSIONS**
- 2.85V MODEL FOR SCSI-2 ACTIVE **TERMINATION**
- OUTPUT CURRENT: 800mA max
- OUTPUT TOLERANCE: ±1% max
- TOTAL OUTPUT VARIATION: ±2%
- 1.2V max DROPOUT VOLTAGE AT Io = 800mA
- INTERNAL CURRENT LIMIT
- THERMAL OVERLOAD PROTECTION
- SOT-223 SURFACE MOUNT PACKAGE

DESCRIPTION

The REG1117 is a family of three-terminal voltage regulators capable of up to 800mA output. Fixed output models include 2.85V, 3V, 3.3V and 5V versions. Output voltage of the adjustable version is set with two external resistors. The REG1117's low dropout voltage allows its use with as little as 1V input-output voltage differential.

Laser trimming assures excellent output voltage accuracy without adjustment. An NPN output stage allows output stage drive to contribute to the load current for maximum efficiency.

REG1117 is packaged in an SOT-223 surfacemount package, suitable for reflow soldering techniques.

APPLICATIONS

- SCSI-2 ACTIVE TERMINATION
- HAND-HELD DATA COLLECTION DEVICES
- HIGH EFFICIENCY LINEAR REGULATORS
- 5V LINEAR REGULATORS
- BATTERY POWERED INSTRUMENTATION
- BATTERY MANAGEMENT CIRCUITS FOR NOTEBOOK AND PALMTOP PCs

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

T_J = +25°C unless otherwise noted

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE				12.0	King and All Spaces	10 A
REG1117-2.85		$I_0 = 10 \text{mA}, V_{IN} = 4.85 \text{V}$	2.82	2.85	2.88	٧
	Note 1	I _O = 0 to 800mA, V _{IN} = 4.05 to 10V	2.79	2.85	2.91	V
REG1117-3		I _O = 10mA, V _{IN} = 5V	2.97	3.00	3.03	V
REGITT7-3	Note 1		2.94	3.00	3.06	V
	Note 1	I _O = 0 to 800mA, V _{IN} = 4.5 to 10V	2.94	3.00		V
REG1117-3.3		$I_0 = 10 \text{mA}, V_{IN} = 5.3 \text{V}$	3.27	3.30	3.33	٧
	Note 1	$I_0 = 0$ to 800mA, $V_{IN} = 4.8$ to 10V	3.24	3.30	3.36	V
REG1117-5		$I_0 = 10 \text{mA}, V_{IN} = 7 \text{V}$	4.95	5.00	5.05	V
CORRECT TO STORY OF STREET, WINGED TRANS	Note 1	I _O = 0 to 800mA, V _{IN} = 6.5 to 10V	4.90	5.00	5.10	V
REFERENCE VOLTAGE	14010 1	10 = 0 to occitivit, 4 N = 0.0 to 104	4.00	0.00	0.10	
	s area em E	1 10mA W 2.0EW	1.238	1.250	1.262	V
REG1117 (Adjustable)		l _o = 10mA, V _{IN} = 3.25V				the second second
	Note 1	$I_O = 10 \text{ to } 800\text{mA}, V_{IN} - V_O = 1.4 \text{ to } 10V$	1.225	1.250	1.280	V
LINE REGULATION		in A has Va Ve	2 V/S	WIR		
REG1117-2.85	Note 1	$I_0 = 0$, $V_{IN} = 4.25$ to 10V	1 6 M 270	A Change	7	mV
REG1117-3	Note 1	$I_0 = 0$, $V_{IN} = 4.5$ to 10V		2	7	mV
REG1117-3.3	Note 1	$I_{O} = 0$, $V_{IN} = 4.8$ to 10V	ALUEN STATES	2	7	mV
REG1117-5	Note 1	$I_0 = 0$, $V_{IN} = 6.5$ to 15V	Section 5	3	10	mV
REG1117 (Adjustable)	Note 1	$I_{O} = 10 \text{mA}, V_{IN} - V_{O} = 1.5 \text{ to } 13.75 \text{V}$		0.1	0.4	%
	W 1 2 4 2 4	No terms of the rest of the re		-	CHI SPIES D. Marriero A.	100 000
LOAD REGULATION	CVIL	MIAGUSSA	The state of the s		SHULL	and well .
REG1117-2.85	Note 1	I _O = 0 to 800mA, V _{IN} = 4.25V		2	10	mV
REG1117-3	Note 1	I _O = 0 to 800mA, V _{IN} = 4.5V	TRULGA!	ne 2 3 .V	12	mV
REG1117-3.3	Note 1	1 ₀ = 0 to 800mA, V _{IN} = 4.8V	A MARKETER OF S		12	mV
REG1117-5	Note 1	$I_0 = 0$ to 800mA, $V_{IN} = 6.5V$		3	15	mV
REG1117 ⁽²⁾ (Adjustable)	Note 1	$I_0 = 10 \text{ to } 800\text{mA}, V_{IN} - V_0 = 3V$	STOA 6 15	0.1	0.4	%
DROPOUT VOLTAGE(3)	SMLLY,	MERCHET HOME			-	
All Models	Note 1	I _O = 100mA		1.00	1.10	V
7 III IVIOGOIO	Note 1	I _O = 500mA		1.05	1.15	I CON
ISTRUMENTATION	Note 1	I _O = 300mA	xem Amb	1.10	1.20	V
	Note 1	10 = 800IIIA	CHARLES AND EST	1.10	1.20	V
CURRENT LIMIT		MAM YSETTASI O				
All Models	NE FACE OF	$V_{IN} - V_{O} = 5V$	800	950	1200	mA
MINIMUM LOAD CURRENT		IN AUGUATUR	100 May 100 May 100 May 100	and the second second	Page 1	
REG1117 (Adjustable)	Note 1	$V_{IN} - V_{O} = 13.75V$	DITAGE	1.7	5	mA
QUIESCENT CURRENT		" "			ARRODS:	i of
	Note 1	$V_{IN} - V_{O} = 5V$	rises or man		10	
Fixed-Voltage Models	Note 1	v _{IN} - v _O = 5v	THE	4 4 4 4 4	10	mA
REG1117 Adjust Pin Current(2)	Note 1	14/00*	Martin per	50	120	μА
vs Load Current	Note 1	$I_O = 10$ mA to 800mA, $V_{IN} - V_O = 1.4$ to 10V	New York Street	0.5	- 5	μА
THERMAL REGULATION(4)		CACE DROPOU	DAT PAC	FACE MO	7-223 SUF	020
All Models		30ms Pulse		0.01	0.1	%/W
RIPPLE REJECTION						
All Models		f = 120Hz, V _{IN} - V _{OUT} = 3V+1V _{PP} Ripple		62	and the same of	dB
		1 - 120112, VIN - VOUT - OVT 1 VPP HIPPIE		UZ	01000	UD
TEMPERATURE DRIFT		3 3 1 3 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1				
Fixed-Voltage Models		T _J = 0°C to +125°C	nimpol-sem	0.5	EGHLIV is s	%
REG1117 (Adjustable)		T _J = 0°C to +125°C	A	2		%
LONG-TERM STABILITY	HE TE		Punero 0	An in order	no erennig	A1 A80
All Models		T _A = +125°C, 1000Hr	2.85V, 3V	0.3	omput mod	Dey %
			503 Tel 400	0.0	CHOISING	100
OUTPUT NOISE		anthes - lanthe	out to ogni	or andulas	- Mildigició	
RMS noise All Models		f = 10Hz to 10kHz	sis lentraliza	0.003	ergion is ac	%
THERMAL RESISTANCE		ows its 0.2	volinge all	moreous ven	SCITITS!	The R

NOTES: (1) Specification applies over the full operating Junction temperature range, 0°C to 125°C. (2) REG1117 adjustable version requires a minimum load current for $\pm 2\%$ load regulation. (3) Dropout voltage is the Input voltage minus output voltage that produces a 1% decrease in output voltage. (4) Percentage change in unloaded output voltage before vs after a 30ms power pulse of $I_0 = 800$ mA, $V_{IN} - V_O = 1.4$ V.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

Power Dissipation Internally Limited Input Voltage . . 15V Operating Junction Temperature Range 0°C to +125°C Storage Temperature Range -40°C to +150°C Lead Temperature (soldering, 10s)(1)...+300°C

NOTE: (1) See "Soldering Methods."

ORDERING INFORMATION

MODEL(1)	PART MARKING	PACKAGE
REG1117-2.85	BB11172	Plastic SOT-223
REG1117-3	BB11173	Plastic SOT-223
REG1117-3.3	BB11174	Plastic SOT-223
REG1117-5	BB11175	Plastic SOT-223
REG1117	BB1117	Plastic SOT-223

NOTE: (1) Available in Tape and Reel, add -TR to Model Number.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REG1117-2.85	Plastic SOT-223	311
REG1117-3	Plastic SOT-223	311
REG1117-3.3	Plastic SOT-223	311
REG1117-5	Plastic SOT-223	311
REG1117	Plastic SOT-223	311

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

CONNECTION DIAGRAM

8 REFERENCES AND REGULATORS

REG1117

SIMPLIFIED SCHEMATIC

T₁ = +25°C, unless otherwise specified.

APPLICATIONS INFORMATION

Figure 1 shows the basic hookup diagram for fixed-voltage models. All models require an output capacitor for proper operation and to improve high frequency load regulation. A $10\mu F$ tantalum capacitor is recommended. Aluminum electrolytic types of $50\mu F$ or greater can also be used. A high quality capacitor should be used to assure that the ESR (effective series resistance) is less than 0.5Ω .

Figure 2 shows a the hookup diagram for the adjustable voltage model. Resistor values are shown for some commonly used output voltages. Values for other voltages can be calculated from the equation shown in Figure 2. For best load regulation, connect R_1 close to the output pin and R_2 close to the ground side of the load as shown.

FIGURE 1. Fixed-Voltage Model—Basic Connections.

THERMAL CONSIDERATIONS

The REG1117 has current limit and thermal shutdown circuits that protect it from overload. The thermal shutdown activates at approximately $T_J = 165^{\circ}\text{C}$. For continuous operation, however, the junction temperature should not be allowed to exceed 125°C. Any tendency to activate the thermal shutdown in normal use is an indication of an inadequate heat sink or excessive power dissipation. The power dissipation is equal to:

$$P_{\rm D} = (V_{\rm IN} - V_{\rm OUT}) I_{\rm OUT}$$

The junction temperature can be calculated by:

$$T_I = T_A + P_D (\theta_{IA})$$

where T_A is the ambient temperature, and

 θ_{IA} is the junction-to-ambient thermal resistance

The REG1117 derives heat sinking from conduction through its copper leads, especially the large mounting tab. These must be soldered to a circuit board with a substantial amount of copper remaining (see Figure 3). Circuit board traces connecting to the tab and the leads should be made as large as practical. Other nearby circuit traces, including those on the back side of the circuit board, help conduct heat away

FIGURE 2. Adjustable-Voltage Model—Basic Connections.

FIGURE 3. Circuit Board Layout Example.

from the device, even though they are not electrically connected. Make all nearby copper traces as wide as possible and leave only narrow gaps between traces.

Table I shows approximate values of θ_{JA} for various circuit board and copper areas. Nearby heat dissipating components, circuit board mounting conditions and ventilation can dramatically affect the actual θ_{JA} .

A simple experiment will determine whether the maximum recommended junction temperature is exceeded in an actual circuit board and mounting configuration: Increase the ambient temperature above that expected in normal operation until the device's thermal shutdown is activated. If this occurs at more than 40°C above the maximum expected ambient temperature, then the T_J will be less than 125°C during normal operation.

SOLDERING METHODS

The REG1117 package is suitable for infrared reflow and vapor-phase reflow soldering techniques. The high rate of temperature change that occurs with wave soldering, or hand soldering can damage the REG1117.

TOTAL PC BOARD AREA	TOPSIDE(1) COPPER AREA	BACKSIDE COPPER AREA	THERMAL RESISTANCE JUNCTION-TO-AMBIENT
2500mm ²	2500mm ²	2500mm ²	46°C/W
2500mm ²	1250mm ²	2500mm ²	47°C/W
2500mm ²	950mm ²	2500mm ²	49°C/W
2500mm ²	2500mm ²	0	51°C/W
2500mm ²	1800mm ²	0	53°C/W
1600mm²	600mm ²	1600mm ²	55°C/W
2500mm ²	1250mm ²	0	58°C/W
2500mm ²	915mm ²	0	59°C/W
1600mm ²	600mm ²	0	67°C/W
900mm ²	340mm ²	900mm ²	72°C/W
900mm ²	340mm ²	0	85°C/W

NOTE: (1) Tab is attached to the topside copper.

TABLE I.

INSPEC Abstract Number: B91007604, C91012627

Kelly, E.G. "Thermal Characteristics of Surface 5WK9Ω Packages." The Proceedings of SMTCON. Surface Mount Technology Conference and Exposition: Competitive Surface Mount Technology, April 3-6, 1990, Atlantic City, NJ, USA. Abstract Publisher: IC Manage, 1990, Chicago, IL, USA.

FIGURE 4. SCSI Active Termination Configuration.

FIGURE 5. Adjusting Output of Fixed Voltage Models.

FIGURE 6. Regulator with Reference.

FIGURE 7. Battery Backed-Up Regulated Supply.

@ COMPLIES WITH SCSI-2 SPECIFICATIONS

FIGURE 8. Low Dropout Negative Supply.

REG5601

18-LINE SCSI ACTIVE TERMINATOR

FEATURES

- COMPLIES WITH SCSI-2 SPECIFICATIONS
- INTERNAL 2.9V REGULATOR
- **ON-CHIP TERMINATION RESISTORS**
- DISCONNECT ALL TERMINATION RESISTORS WITH A SINGLE LOGIC COMMAND
- POWER-DOWN MODE: 150µA max
- LINE CAPACITANCE: 10pF typ
- CURRENT LIMIT AND THERMAL SHUT-DOWN PROTECTION
- 28-Lead SOIC and SSOP PACKAGES

DESCRIPTION

The REG5601 is an 18-line active terminator for SCSI-2 (Small Computer Systems Interface) circuitry. On-chip resistors and 2.9V regulator provide the prescribed 110Ω termination for low power dissipation and high speed data transmission.

All line connections can be disconnected from the bus with a single logic control line to reduce standby power consumption. Output lines remain high impedance without power applied. Each line is individually clamped at ground to dissipate negative-going glitches.

The 2.9V regulator is current-limited and thermally protected. Regulated output is available for external circuitry.

The REG5601 is available in 28-lead SOIC and finepitch SSOP packages and is specified for operation over the 0°C to 70°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

BURR-BROWN

			REG5601	U	14	REG56011	E	
PARAMETERS	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
POWER SUPPLY Termpwr Supply Voltage Termpwr Supply Current Power-Down Mode	All Termination Lines = Open All V _{TERM} = 0.5V Disconnect = Open (High)	4.0	14 385 100	5.25 25 430 150	4.0	14 385 100	5.25 25 430 150	V mA mA μA
TERMINATION LINES Termination Impedance Output High Voltage Maximum Output Current Output Clamp Level Output Leakage Output Capacitance	ΔI _{TERM} = 5mA to 15mA Termpwr = 4V ⁽¹⁾ V _{TERM} = 0.5V Termpwr = 4V, V _{TERM} = 0.5V ⁽¹⁾ I _{TERM} = -30mA Disconnect = Open (High) Disconnect = Open (High)	107 2.65 20.5 19.4 -0.2	110 2.8 21.7 21 -0.05 20 10	115 22.4 22.4 0.1 400	107 2.65 19.8 19 -0.2	110 2.8 21.7 21 -0.05 20 10	115.5 22.4 22.4 0.1 400	Ω V mA mA V nA pF
REGULATOR Regulator Output Voltage Line Regulation Load Regulation	Termpwr = 4V to 6V	2.8 .noi1	2.9 6 20	3.0 20 50	2.8	2.9 6 20	3.0 20 50	V mV mV
Drop-Out Voltage Short-Circuit Current Current Sink Thermal Shutdown	All $V_{TERM} = 0.5V$, $\Delta V_{REG} = 100 mV$ $V_{REG} = 0V$ $V_{REG} = 3.5V$	450 8	1.0 1350 11 170	1.2 1650	450 8	1.0 1350 11 170	1.2 1650	V mA mA °C
DISCONNECT LOGIC INPUT Disconnect Threshold Threshold Hysterisis Input Current (Internal Pull-Up)	SS. 18.08 8 Disconnect = 0V mast	0.8	1.6 200 6	2.0	0.8	1.6 200 6	2.0 15	V mV μA
TEMPERATURE RANGE Operating Storage θ _{JL} (junction to lead)	Discrete standard from the model of the mode	0 -40	20	70 150	0 -40	20	70 150	°C/W

NOTE: (1) Measurement of each termination line while the other 17 lines are held low (0.5V).

CONNECTION DIAGRAM

Top View		83	7	SOIC
Disconnect	1	0	28	GND SSOF
Termination Line 1	2	86	27	Termination Line 18
Termination Line 2	3	43	26	Termination Line 17
Termination Line 3	4	S2 Inch FR4, 1	25	Termination Line 16
Termination Line 4	5	(aCrisso	24	Termination Line 15
Termination Line 5	6		23	Termination Line 14
(Thermal) GND	7	REG5601	22	GND (Thermal)
(Thermal) GND	8	HEG5601	21	GND (Thermal)
(Thermal) GND	9	f.e., θ_{BA} is lo	20	GND (Thermal)
Termination Line 6	10	ent emperora	19	Termination Line 13
Termination Line 7	11	te) 1085034	18	Termination Line 12
Termination Line 8	12	smizorqqs si	17	Termination Line 11
Termination Line 9	13	quital noisolari	16	Termination Line 10
Termpwr	14.	uning the course	15	Reg Out

sinking. Connect to ground or leave open-circuit.

ABSOLUTE MAXIMUM RATINGS

Termpwr Voltage	+7V
Signal Line Voltage	
Regulator Output Current	1.65A
Power Dissipation	
Operating Junction Temperature	40°C to +150°C
Storage Temperature	40°C to +150°C

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
REG5601U REG5601E	Plastic 28-Lead SOIC	217

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FIGURE 1. Standard SCSI Termination Application.

PACKAGE	CIRCUIT BOARD MATERIAL	θ _{JL} JUNCTION TO LEAD (°C/W)	+ BOAI	θ _{BA} RD TO AMBII (°C/W)	ENT =	JUNCTION TO (°C/W	
SO-28	1-Layer ⁽¹⁾ 3-Layer ⁽²⁾ Aluminum ⁽³⁾	10V and 120 8 quo tota 20 tagasta 20 3	4058	30 21 12	0 89	50 41 32	1 108/
SSOP-28	1-Layer ⁽¹⁾ 3-Layer ⁽²⁾ Aluminum ⁽³⁾	20 20 20	+ Sirec	36 23 13	7 057	56 43 33	16 2 2

NOTES: (1) Single-side layout on 0.062 inch FR4, 1 oz copper. (2) Three-layer layout on 0.062 inch FR4, 1 oz copper. (3) Aluminum 0.062 inch substrate, 0.003 insulation, one layer, 1 oz copper (Thermal Clad, Bergqueist Co.)

FIGURE 2. Circuit Board Layout.

The REG5601 has current limit and thermal shutdown that protect it from damage during output short-circuit or overload. The current limit is approximately 1350mA and thermal shutdown activates at a junction temperature of approximately 175°C. For good reliability, the junction temperature should not exceed 125°C. Any tendency to activate the thermal shutdown during normal operation is an indication of inadequate heat sinking and/or excessive power dissipation.

Heat is dissipated primarily by conduction through the leads to circuit board traces. It is important to connect the six thermal ground leads (7, 8, 9, 20, 21, 22) to a large circuit trace—see Figure 2. Measured values of thermal resistance for various circuit board materials are shown. These are approximate values. Variations in circuit board pattern, mounting techniques, air flow, proximity to other circuit boards and heat sources will affect thermal performance.

A simple experiment will determine whether the actual circuit board layout is adequate (i.e., θ_{BA} is low enough) so that the maximum recommended junction temperature of the REG5601 will not be exceeded. The procedure uses the internal thermal shutdown feature of the REG5601 (at $T_J \approx 175^{\circ}\text{C}$) to determine when the junction is approximately 50°C above the maximum recommended junction temperature ($T_J = 125^{\circ}\text{C}$). Operate the circuit with normal or other desired test electrical conditions. Increase the ambient temperature and determine the value at which thermal limit occurs (by sensing a sudden drop in V_{REG} output). At this point T_J is approximately 175°C. If this occurs at an ambient temperature of more than 50°C above the system ambient temperature design goal, the T_J will not exceed 125°C under the same electrical conditions when the ambient temperature is at the system design goal value.

LOW CAPACITANCE 18-Line SCSI ACTIVE TERMINATOR

FEATURES

BURR-BROWN®

- **ACTIVE 18-Line TERMINATOR**
- 2pf CAPACITANCE PER LINE IMPORTANT FOR SCSI FAST-20
- ON-CHIP TERMINATION RESISTORS
- ALL TERMINATIONS DISCONNECT WITH SINGLE LOGIC SIGNAL
- 325mA CURRENT SINKING FOR ACTIVE NEGATION
- 22.4mA PER LINE DURING ASSERTION
- **CURRENT LIMIT AND THERMAL LIMIT**
- HOT-SOCKET CAPABLE
- 28-Lead SOIC and SSOP PACKAGES

DESCRIPTION

The REG5608 is a low capacitance 18-line active terminator for SCSI (Small Computer Systems Interface) parallel bus systems. On-chip resistors and voltage regulator provide the prescribed SCSI bus termination. Low line capacitance (2pF) meets requirements for high data rate systems.

All terminations can be disconnected from the bus with a single logic control line. In the disconnect mode, output lines remain high impedance with or without power applied. This allows "hot socket" equipment plugging as required for "plug and play" applications.

The internal voltage regulator is temperature-compensated to assure proper termination characteristics over a wide operating range. Output current and thermal limit circuitry protect against damage.

The REG5608 is available in 28-lead SOIC and fine-pitch SSOP packages and is specified for 0° C to 70° C operation.

International Airport industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

REG5608

8

REFERENCES AND REGULATORS

At T_A = 0°C to +70°C, TERMPWR = 4.75V, and Disconnect = Low and I_{BEG CUT} = 0, unless otherwise specified.

REG5608			REG5608U REG5608E	98-99	118	
PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY						
TERMPWR Supply Voltage		4		5.25	V	
TERMPWR Supply Current	All Termination Lines Open Circuit		18	25	mA	
	All V _{LINE} = 0.5V		390	430	mA	
a popular med in departs decreased the by-	Disconnect = High	PER CONTRACTOR	5		mA	
TERMINATION LINES	O LITOR DOMANDO	CO A CO				
Termination Impedance	ΔI _{LINE} = 5 to 15mA	104.5	110	115.5	Ω	
Output Termination High Voltage(1)	TERMPWR = 4.0V	2.65	2.9	3.0	V	
Maximum Line Current	$V_{LINF} = 0.5V$	THA				
	T _A = 0°C to 70°C	19.8	21.5	22.4	mA	
THE RESERVE OF THE PERSON OF THE PERSON OF	T _A = 25°C	20.3	21.5	22.4	mA	
	TERMPWR = 4.0V, T _A =0°C to 70°C(1)	19.0	21.5	22.4	mA	
	TERMPWR = 4.0V, $T_A = 25^{\circ}C^{(1)}$	19.5	21.5	22.4	mA	
Line Leakage Current	Disconnect = High		15.2	MULA	17	
	TERMPWR = 5.25V, V, mr = 0V		10	400	nA	
	TERMPWR = 5.25V, V _{LINE} = 5.25V	ROTAMI	10	400	nA	
	TERMPWR = 0V, V _{LINE} = 5.25V	2010/15 2020	10	400	nA	
Line Capacitance	Disconnect = High	ama ma		AND THE THE	26 40	
REG5608U SO-28 Package	total sum tamend forestories	STEAT B	2.5	PORTAN	pF	
REG5608E SSOP-28	ORIS voltage regulator provide ti	DN RESIG	1.8	O' SIND-M	pF	
REGULATOR	CT WITH CONTINUE CON LINE CO	Intropolo	MACON AL	salestory a s	0. 7%	
Output Voltage	requirements for high data r	2.8	2.9	3.0	V	
ine Regulation	TERMPWR = 4.0 to 6.0V	2.0	2	20	mV	
Drop-Out Voltage	All V _{LINE} = 0.5V, ΔReg Out = 100mV	LOS OUDIN	0.9	1.2	V	
Source Current Limit	Reg Out = 0V	400	550	950	mA	
Sink Current Limit	Reg Out = 3.5V	100	325	500	mA	
Thermal Shutdown, T.	Thedaes sower section WOTTER	PEA CHIC	145	ESICI Area C	°C	
DISCONNECT LOGIC INPUT		PARTY PARTY	MARKA TRANSPORT	FAR Y PSEEDS A	200	
Input High Voltage	That I depend the purpose of the land	AMMENT		TEDMONAD	V	
Input Low Voltage	(Logic High = Switches Open) (Logic Low = Switches Closed)	0 31	20000 75	TERMPWR 0.8	V	
nput Low Voltage		0	am and 15			
	AGES (The internal voltage regulater	OP PACID	10	20	μА	
Threshold Hysteresis	niams) redest present proper (create		50		mV	
	a wide operating range. Ou	P-31-0				
Specification	limit circuitry protect against	0	25	70	°C	
Storage		-40		150	°C	
9 _{JL} (Junction to Lead)	The REGISO08 is available		20		°C/W	

NOTE: (1) Measurement of each termination line while the other 17 lines are held low ($V_{LINE} = 0.5V$).

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

ABSOLUTE MAXIMUM RATINGS

TERMPWR Voltage	+7V
Signal Line Voltage	0V to +7V
Junction Temperature	+150°C
Storage Temperature	-40°C to +150°C

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
REG5608U	Plastic 28-Lead SOIC	217
REG5608E	Plastic 28-Lead SSOP	324

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

TYPICAL PERFORMANCE CURVES

T_A = 25°C, TERMPWR = 4.75V unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows a typical SCSI parallel bus termination circuit. Bypass capacitors should be connected to TERMPWR and Reg Out pins as shown.

Line capacitance of the REG5608 has been reduced to less than one-fourth that of the first-generation integrated terminator ICs. Capacitance difference between package types and variation by pin number is shown in the typical performance curve, "Line Capacitance vs Pin Number." It shows that the SSOP package provides the lowest capacitance with typical values under 2pF. This variation is produced primarily by the differences in the interconnection length to the IC. Of course, actual line capacitance on a circuit board is generally determined by circuit board layout. To achieve lowest line capacitance, minimize the total circuit board interconnection length from the interface cable to the SCSI transceiver IC and to the REG5608 terminator.

THERMAL CONSIDERATIONS

The REG5608 has internal current limit and thermal shutdown that protect it from damage in case of output short-circuit or overload. The current limit is approximately 550mA and thermal shutdown activates at a junction temperature of approximately 145°C. For good long-term reliability, the junction temperature should not exceed 125°C. Any tendency to activate the thermal

shutdown during normal operation is an indication of inadequate heat sinking and/or excessive power dissipation.

The terminator's internal power is dissipated primarily by conduction through the package leads to circuit board traces. It is important to connect the six thermal ground leads (7, 8, 9, 20, 21, 22) to a large circuit trace—see Figure 2. Typical measured values of thermal resistance for various circuit board materials are shown. These are approximate values. Variations in circuit board pattern, mounting techniques, air flow, proximity to other circuit boards and heat sources will affect thermal performance.

A simple experiment will determine whether the actual circuit board layout is adequate (i.e., θ_{BA} is low enough) so that the maximum recommended junction temperature of the REG5608 will not be exceeded. The procedure uses the internal thermal shutdown feature of the REG5608 (at $T_{J}\approx 145\,^{\circ}\text{C}$) to determine when the junction is approximately 20°C above the maximum recommended junction temperature ($T_{J}=125\,^{\circ}\text{C}$). Operate the circuit with normal or other desired test electrical conditions. Increase the ambient temperature and determine the value at which thermal limit occurs (by sensing a sudden drop in V_{REG} output). At this point T_{J} is approximately 145°C. If this occurs at an ambient temperature of more than 20°C above the system ambient temperature design goal, the T_{J} will not exceed 125°C under the same electrical conditions when the ambient temperature is at the system design goal value.

FIGURE 1. SCSI Parallel Bus Termination.

PACKAGE	CIRCUIT BOARD MATERIAL	JUNCTION TO LEAD (°C/W)	+	$\begin{array}{c} \theta_{\rm BA} \\ {\rm BOARD\ TO\ AMBIENT} \\ (^{\circ}{\rm C/W}) \end{array}$	=	JUNCTION TO AMBIENT (°C/W)
SO-28	1-Layer(1)	20	+	30	=	50
	3-Layer(2)	20	+	21	=	41
	Aluminum ⁽³⁾	20	+	12	=	32
SSOP-28	1-Layer ⁽¹⁾	20	+	36	=	56
	3-Layer(2)	20	+	23	=	43
	Aluminum ⁽³⁾	20	+	13	=	33

NOTES: (1) Single-side layout on 0.062 inch FR4, 1 oz copper. (2) Three-layer layout on 0.062 inch FR4, 1 oz copper. (3) Aluminum 0.062 inch substrate, 0.003 insulation, one layer, 1 oz copper (Thermal Clad, Bergqueist Co.)

FIGURE 2. Circuit Board Layout.

FIGURE 1, SCSI Parellel Bus Termination.

Triannel ground reads 7, 6, 9, 20, 21, 22).
Connect to deput ground or feare open circuit

$$\overline{C}_0 = T_A + \overline{E}_D \cdot \overline{C}_M$$

THEREIS OT HONTONUL (SAD)	THEIRMA OF CHAOS	BASJ OT MOTOMUL ("ONO)	CHICUTT BOARD MATERIAL	
- 41 - 41 - 52			1-Layer(1) 0-Layer(2) Aluminum(3)	

OFES: (1) Single-side layout on 0.082 traft FFel, 1 oz ongos. (2) Titres-leyer layout en 0.002 inch FFRA, 1 oz oopper. 9 Aluminum 0.002 inch substrate, 0.003 insulation, one layor, 1 oz oopper (Thermal Cast, Beroquetal Co.)

FIGURE 2. Circuit Board Layout.

Demonstration Boards

Burr-Brown offers a wide variety of demonstration boards for both its Linear and Mixed Signal Products. New boards for new products are continually being added to the selection—contact the factory your local salesperson for availability.

NOTE: All evaluation fixtures whose model number ends with a 'C' include the product or products mentioned. All others do not include the product, except where specifically noted.

MODEL	PRODUCT	DESCRIPTION
DEM-ACF2101BP-C	ACF2101BP	Evaluation Fixture with Programmable Timing Generator
DEM-ADS1210P-C	ADS1210P	Evaluation Fixture—24-bit single channel A/D converter; includes FFT Software and IBM PC Interface.
DEM-ADS1211P-C	ADS1211P	Evaluation Fixture—24-bit four channel A/D converter; includes FFT Software and IBM PC Interface.
DEM-ADS7804/05C	ADS7804/05	Evaluation Fixture—Analog Input and Digital Output
DEM-ADS7806/07C	ADS7806/07	Evaluation Fixture—Analog Input and Digital Output
DEM-ADS7808/09C	ADS7808/09	Evaluation Fixture—Analog Input and Digital Output
DEM-ADS7810/19C	ADS7810/19	Evaluation Fixture—Analog Input and Digital Output
DEM-ADS7833	ADS7833	Evaluation Fixture—12-bit data acquisition system; board includes LCD display, microcontroller and reconstruction DAC.
DEM-ADS800U	ADS800U	Evaluation Fixture—12-bit, 40MHz ADC, AC-and DC-coupled inputs, on-board clock, bus driver, SMA connectors.
DEM-ADS801U	ADS801U	Evaluation Fixture—12-bit, 25MHz ADC, AC- and DC-coupled inputs, on-board clock, bus driver, SMA connectors.
DEM-ADS802U	ADS802U	Evaluation Fixture—12-bit, 10MHz ADC, AC- and DC-coupled inputs, on-board clock, bus driver, SMA connectors.
DEM-ADS820U	ADS820U	Evaluation Fixture—10-bit, 20MHz ADC, AC- and DC-coupled inputs, on-board clock, bus driver, SMA connectors.
DEM-ADS821U	ADS821U	Evaluation Fixture—10-bit, 40MHz ADC, AC- and DC-coupled inputs, on-board clock, bus driver, SMA connectors.
DEM-BUF600-1GC	BUF600AP	Evaluation Fixture—900MHz Buffer Amplifier
DEM-BUF601-1GC	BUF601AP	Evaluation Fixture—650MHz Buffer Amplifier
DEM-DAC650J-E	DAC650JL	Evaluation Fixture—Digital Input and Analog Output (all SMA connectors). The part is included and soldered to the board.
DEM-DDC101P-C	DDC101P	Evaluation Fixture,— includes the DDC101 board, interface board to connect to parallel PC-port and software. Supports all DDC101 options plus FFT.
DEM-MPC100-1GC	MPC100AU	Evaluation Fixture—4 to 1 High Speed Multiplexer and Output Buffer BUF601AU.

MODEL	PRODUCT	DESCRIPTION
DEM-MPC102-1GC	MPC102AU	Evaluation Fixture—Dual 2 to 1 High Speed Multiplexer and optional output buffer, BUF601AU.
DEM-OPA465xP	OPA465xP	Evaluation Fixture—Unpopulated board for quad High Speed op amp OPA465x in DIP package.
DEM-OPA465xU	OPA465xU	Evaluation Fixture—Unpopulated board for quad High Speed op amp OPA465x in SOIC package.
DEM-OPA622-1GC	OPA622AP	Evaluation Fixture—For voltage and current feedback configuration.
DEM-OPA623-1GC	OPA623AP	Evaluation Fixture—High Speed current feedback Op Amp.
DEM-OPA628AP-C	OPA628AP	Evaluation Fixture—User selectable configuration for the DIP package.
DEM-OPA628AU-C	OPA628AU	Evaluation Fixture-User selectable configuration for the SOIC package.
	OPA64XP 9101	Evaluation Fixture—Three boards are offered for the DIP package of the OPA64X series of operational amplifiers. DEM-OPA64XP-F: follower configuration; DEM-OPA64XP-N: noninverting configuration; DEM-OPA64XP-
and Digital Output		
violence system, coand published and reconstruction as ADC, AC-and DC-linver, SMA connectors: ADC, AC- and DC- ADC, AC- and DC- ADC, AC- and DC-	fisplay, microcontrol ture—12-bit, 40MH	OPA64XU-N: noninverting configuration; DEM-OPA64XU-N: noninverting configuration; DEM-OPA64XU-I: invert-
DEM-OPA65XP	OPA65XP	Evaluation Fixture—One board for OPA65X single op amps for the DIP package.
DEM-OPA65XU	OPA65XU	Evaluation Fixture—One board for OPA65X single op amps for the SOIC package.
DEM-OPA265XP	OPA265XP	Evaluation Fixture—One board for OPA265X dual op amps for the DIP package.
DEM-OPA265XU	OPA265XU	Evaluation Fixture—One board for OPA265X dual op amps for the SOIC package.
DEM-OPA660-XXX and Analog Output (all uded and soldered to DOC101 board, inter-		Evaluation Fixture—Five boards are offered for five different configurations. DEM-OPA660-1GC: Diamond transistor and buffer; DEM-OPA660-2GC: Current-feedback operational amplifier; DEM-OPA660-3GC: Direct-feedback amplifier; DEM-OPA660-4G: Layouts for all applications using SOIC (unassembled); DEM-OPA660-5G: Layouts for all applications using DIP packages (unassembled)
DEM-OPA2662-1GC	OPA2662	Evaluation Fixture—High speed voltage controlled current source.

MODEL	PRODUCT	DESCRIPTION
DEM-PCM1700P-C	PCM1700	Evaluation Fixture—Serial/SPDIF Inputs (formerly DEM-1143). Includes product.
DEM-PCM1702	PCM1702	Evaluation Fixture—Serial digital input, 8X digital interpolator (NPC5842), and analog output. A PCM1702P is included. The board will interface directly to the DEM-1760. The fixture does not accept SPDIF input.
DEM-PCM1710	PCM1710U	Evaluation Fixture—Serial Digital Audio In. Left and Right channel analog out.
DEM-DAI1710	PCM1710U	Evaluation Fixture—Includes Digital Audio Interface (DAI) receiver chip and dual 2nd-order lowpass output filters.
DEM-PCM1712	PCM1712U	Evaluation Fixture—Low cost version of PCM1710.
DEM-PCM1715	PCM1715U	Evaluation Fixture—Serial digital audio in. Left and right channel analog out,
DEM-PCM1717	PCM1717	Evaluation Fixture—For the 16-/18-bit PCM1717
DEM-PCM1717-1	PCM1717	Evaluation Fixture—For the 16-/18-bit PMC1717; includes PC interface and control software.
DEM-DAI1717	PCM1717	Evaluation Fixture—For the 16-/18-bit PCM1717; includes Digital Audio Interface, PC interface and control software.
DEM-PCM1750P-C	PCM1750	Evaluation Fixture—Serial/Parallel Output, SPDF Out (Formerly DEM 1133). Includes product.
DEM-PCM1760	PCM1760/DF1760	Evaluation Fixture—Analog input and serial digital output. A PCM1760P and DF1760P are included. The board will interface directly to the DEM-1702. The fixture does not provide SPDIF output.
DEM-PCM63P-C	PCM63P	Evaluation Fixture—Includes Dual PCM63s, SPDIF Input
DEM-PCM67P-C	PCM67P	Evaluation Fixture—Includes Dual PCM67s (single/dual supply operation), SPDIF Input.
DEMPCM78P-C	PCM78P	Evaluation Fixture—Analog Input, Parallel Data Output. Includes SHC5320 sample hold and PCM56 as a reconstruction ADC (formerly DEM-1122).
DEM-SHC605AU	SHC605AU	Evaluation Fixture—Analog input, digital control input, and sample/hold output (all SMA connectors). A SHC605AU is included and is soldered to the board.
DEM-VCA610AP-C	VCA610AP	Evaluation Fixture—Voltage Controlled Amplifier.

	PRODUCT	
		Evaluation Fixture—Serial digital input, 8X digital interpo- lator (NPC5842), and enalog output. A PCM1702P is included. The board will interface directly to the DEM- 1760. The tixture does not accept SPDIF input.
		Evaluation Fixture—Serial Digital Audio In: Left and Right channel analog out.
EM-PCM1712		
		Evaluation Fixture—Serial digital audio in. Left and right channel analog out,
	PCM1717	Evaluation Fixture—For the 16-18-bit PCM1717
		Evaluation Flature—For the 16-/18-bit PCM1717; includes Digital Audio Interface, PC interface and control software.
EM-PCM1750P-C		
		Evaluation Fixture—Anatog input and serial digital output. A PCM1780P and DF1780P are included. The board will interface directly to the DEM-1702. The fixture does not provide SPDIF output.
		Evaluation Fixture—Includes Dual PCM67s (single/dual supply operation), SPDIF Input.
		Evaluation Fixture—Analog Input, Parallel Data Output Includes SHC5320 sample hold and PCM56 as a reconstruction ADC (formerly DEM-1122).
		Evaluation Fixture—Voltage Controlled Ampiffiet.

Tape and Reel Information

The listed surface mount packages are available spooled on embossed carrier tape and reel, meeting EIA481-A requirements. Package numbers can be found in individual product data sheet. Package drawings can be found in Appendix C.

PACKAGE NUMBER(1)			PITCH, P (mm)	DEVICES PER REEL	REEL DIAMETER (mm)
178		24	16	1000	360
182	SO-8	12	8	2500	360
211	SOL-16	16	12	1000	360
217	SO-28	24	12	1000	360
219	SOL-18	24	16	1000	360
221		24	12	1000	360
235	SO-14	16	8	2500	360
239	SO-24	24	12	1000	360
248		24	12	1000	360
311	SOT-23	12	8	2500	360
322	SSOP-16	12	8	2500	360
				250	178
324		24	12	1000	360
325		24	16	1000	360
328		24	16	1000	360
331	SOT23-5	8	4/2	10,000 3000 250	360 178 178
332	SOT23-6	8	4	3000 250	178 178
333		mul 2 an	32	16	1000 360
334		othity pint	32	16	1000 360
337	MSOP-8	12 ged nim	460.0) m 801	2500 250	360 178

NOTE: (1) Package numbers can be found in individual product data sheet in the "Package Information" table. Package drawings are in Appendix C.

TABLE I.

FIGURE 1.

FIGURE 3.

BOAT

TAPE SIZE	A MAX	B MAX	С	D MIN	N MIN	G	T MAX
12mm	330mm	1.5mm	13.0 ±0.20mm	20.2mm	50mm solvat	12.4 + 1.0 (-0.0mm)	18.4mm
16mm	360mm	1.5mm	13.0 ±0.20mm	20.2mm	50mm	16.4 + 1.0 (-0.08mm)	22.4mm
24mm	360mm	1.5mm	13.0 ±0.20mm	20.2mm	50mm	24.4 + 1.0 (-0.00mm)	30.4mm

TABLE II.

PACKAGE DRAWINGS (Mechanicals)

Package Drawings (Mechanicals)

	INCH	ES	MILLIM	LLIMETERS N INCHES MILLIMET		ETERS	NO				
DIM	MIN.	MAX.	MIN.	MAX.	E	DIM	MIN.	MAX.	MIN.	MAX.	E
Α		.255		6.48	UN	N	8		8		4
A1	.040	.060	1.02	1.52	do.	S	.100	.120	2.54	3.05	
A2	.120	.135	3.05	3.43	10.	Т	5.5*	8.5	5.5	8.5	
b	.014	.022	0.36	0.56	30	SATO	001	. 8	000 B	UND I	0.
b2	.040	.050	1.02	1.27	5	BNE	(AII		1034 0	C Stud	1
b3	.030	.045	0.76	1.14	5	1244	177,00		11.71C-1271	1,157-6 3	1
D	.360	.390	9.14	9.91	3	TITA:		(01]	September 2000	Charge and	
D1	.005		0.13		3	1	STA ST	d	143.53	HT ALTE	10
Ε	.300	.325	7.62	8.26	00	A AC	1.00		SALLO	OVER ST	9
E1	.238	.275	6.05	6.99	3	LLIE	100				
е	.100 BASIC		2.54 BASIC		17/2	WG.	THE DE		301	9. 1138	155
eA	.350	.370	8.89	9.40	00	101	HW.			100000	
eB		.415	117.75	10,54	li i	13	0.34%		JA	WR31	10
G	.011	.021	0.28	0.53	SELE	104	Carl D				

ANSI Y14.3M—1982.
3. D. D1, AND E1 DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 (0.25mm).
4. N. IS THE MAXIMUM OF TERMINAL POSITIONS.

5. b2 AND b3 MAXIMUM DIMENSIONS DO NOT INCLUDE DAMBAR PROTRUSIONS.

DAMBAR PROTRUSIONS SHALL NOT EXCEED .010 (0.25mm) 6. DISTANCE BETWEEN LEADS INCLUDING DAMBAR PROTRUSIONS TO BE .005 (0.13mm) MINIMUM. 8. FOR AUTOMATIC INSERTION, ANY RAISED IRREGULARITY ON THE TOP SURFACE (STEP, MESA, ETC.) SHALL BE SYMMETRICAL ABOUT THE LATERAL AND LONGITUDINAL PACKAGE CENTERLINES.

O CENTER OF PHOTODIODE MUST BE WITHIN .010 (0.25mm) OF CENTER OF PHOTODIODE AREA.

PACKAGE NUMBER: ZZ006-6 REV.: JEDEC NUMBER

PACKAGE NUMBER: ZZ007

M 36 BASIC 36 BASIC N .110 .120 2.79 3.05

C

DIM	INCHES		MILLIMETERS		NO	Citt	INCHES		MILLIMETERS		102
	MIN.	MAX.	MIN.	MAX.	E	DIM	MIN.	MAX.	MIN.	MAX.	E
A	.085	.190	2.16	4.83	0	0	0.	15'	0.	15	3
A1	.020	.070	0.51	1.78	323	130		- 2	ELEDER	CTÓDS.	
В	.015	.023	0.38	0.58	5	5 7			20 8	40:21:	1
B1	.038	.060	0.97	1.52	5	1.81		12.50		AJE	, it
C	.008	.012	0.20	0.30		THE STATE OF			27071	3174	1
D	1.180	1.220	29.97	30.99		1000			.18	900	1
E	.595	.625	15.11	15.88		100	100				14
E1	.580	.610	14.73	15.49	6	ALL		A A	MOTOR	HORL	
e1	.100 TYP.		2.54 TYP.		2	71.1	N. C.	3	Service .	771	
eA	.600 TYP.		15.24 TYP.		2	GK.	I IBs		2000	The same	1
L	.125	.175	3.18	4.45	34		18			200	10
N	16		16		4	09	(2)	E. 32			1
01	.010		0.25		FUR.	33.	PACE		SL SM	99 999	1
S	.030	.065	0.76	1.65	SIL	III.	3030	TI	3235	109	10

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5-1973.

2. LEADS WITHIN .005 IN. (0.1.3mm)
RADIUS OF TRUE POSITION (TP)
AT GAUGE PLANE WITH MAXIMUM
MATERIAL CONDITION AND UNIT
INSTALLED.

- APPLIES TO SPREAD LEADS PRIOR TO INSTALLATION.
- 4. N IS THE NUMBER OF TERMINAL POSITIONS.

OUTLINES ON WHICH THE SEATING PLANE IS COINCIDENT WITH THE PLANE (A1 = 0), TERMINALS LEAD STANDOFFS ARE NOT REQUIRED, AND B1 MAY EQUAL B ALONG ANY PART OF THE LEAD ABOVE THE SEATING/BASE PLANE.

- 6. E1 DOES NOT INCLUDE PARTICLES OF PACKING MATERIALS.
- 7. CONTROLLING DIMENSION: INCH.
- 8. A VISUAL INDEX FEATURE MUST BE LOCATED WITHIN THE CROSS— HATCHED AREA.

PACKAGE NUMBER: ZZ208 REV.: C
JEDEC NUMBER: MO-038-AA
WITH THE EXCEPTION OF "N"

Package Number 235 - 14-Lead SOIC

<u>_</u>

