

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO				
Disciplina:				Código da Disciplina:
Teoria das Estruturas				ETC314
Course:				
Theory of Structures				
Materia:				
Teoria de Estructuras				
Periodicidade: Anual	Carga horária total:	160	Carga horária sem	nanal: 02 - 00 - 02
Curso/Habilitação/Ênfase:			Série:	Período:
Engenharia Civil			4	Noturno
Engenharia Civil			3	Diurno
Engenharia Civil			3	Noturno
Professor Responsável:		Titulação - Gradua	ção	Pós-Graduação
Januário Pellegrino Neto		Engenheiro Civ	ril	Mestre
Professores:		Titulação - Gradua	ção	Pós-Graduação
Fabio Selleio Prado		Engenheiro Civ	⁄il	Mestre
Januário Pellegrino Neto		Engenheiro Civ	⁄il	Mestre
Pedro Henrique Cerento de Ly	/ra	Engenheiro Civ	⁄il	Mestre

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

CONHECIMENTOS:

- C1 Métodos Básicos de Análise de Estruturas: conceitos e modelos.
- C2 Estruturas Isostáticas: vigas, treliças, pórticos, cabos e arcos.
- C3 Linhas de Influência e Envoltória de Esforços.
- C4 Vigas Simples Hiperestáticas: compatibilidades de deformações.
- C5 Vigas Contínuas: compatibilidade de deformações.
- C6 Trabalhos Virtuais e Energia de Deformação: teoremas gerais e método dos esforços.
- C7 Análise Matricial de Estruturas método dos deslocamentos.
- C8 Método dos Elementos Finitos: introdução e aplicações.

HABILIDADES:

- H1 Resolver estruturas hiperestáticas constituídas por barras.
- H2 Analisar o comportamento elástico de uma estrutura.
- H3 Associar os modelos estruturais às estruturas reais.
- H4 Compreender a análise de estruturas utilizando programas de computador. ATITUDES:
- Al Conhecer o comportamento de estruturas em função dos materiais e formas.
- A2 Consciência do rigor científico no cálculo e dimensionamento de estruturas.
- A3 Responsabilidade pela segurança de estruturas projetadas ou construídas.

2020-ETC314 página 1 de 10

EMENTA

Métodos básicos de análise estrutural: introdução. Estruturas isostáticas: vigas simples, pórticos, treliças, vigas Gerber, arcos e cabos. Linhas de influência e envoltória de esforços solicitantes. Vigas simples hiperestáticas. Vigas contínuas - compatibilidade de deformações. Teoremas de energia. Teorema dos Trabalhos Virtuais. Método dos Deslocamentos. Análise Matricial de Estruturas. Introdução ao Método dos Elementos Finitos.

SYLLABUS

Basic methods of structural analysis: introduction. Statically determinate structures: simple beams, frames, trusses, Gerbers beams, arches and cables. Influence lines and envelopment internal forces. Simple beams statically indeterminate. Continuous beams - deformations compatibility. Energy Theorems. Theorem of Virtual Work. Displacements Method. Matrix analysis of structures. Introduction to the Finite Element Method.

TEMARIO

Los métodos básicos de análisis estructural: Introducción. Estructuras isostáticas: vigas simples, marcos, armaduras, vigas Gerber, arcos y cables. Líneas de influencia y los solicitantes esfuerzos máximos. Vigas simples hiperestáticas. Vigas continuas - la compatibilidad de las deformaciones. Teoremas de la energía. Teorema del trabajo virtual. Método de Desplazamiento Matriz de análisis de las estructuras. Introducción al Método de los Elementos

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Problem Based Learning
- Gamificação

METODOLOGIA DIDÁTICA

A disciplina utilizará a técnica expositiva e estratégias ativas para aprendizagem, com apoio de recurso áudio-visuais, para as aulas de caráter teórico e de resolução de exercícios compatíveis com o cálculo manual e orientação na utilização de ferramentas computacionais, exploradas nas aulas práticas.

Para as aulas práticas relacionadas ao desenvolvimento ou compreensão de programas didáticos de computador para análise estrutural, bem como para o uso dos mesmos na resolução de problemas específicos, deverão ser utilizadas salas de aula especiais com recursos computacionais adequados.

2020-ETC314 página 2 de 10

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Matemática: Conceitos de Derivada e Integral;
- Física: Conceitos de estática, composição e projeção de forças;
- Materiais de Construção: Características físicas dos materiais de construção;
- Algebra Linear: operações com matrizes, solução de sistemas de equações.
- Resistência dos Materiais: características geométricas de seções transversais, ações externas, diagramas de esforços solicitantes e tensões.

CONTRIBUIÇÃO DA DISCIPLINA

A Teoria das Estruturas contribui na formação do engenheiro por ser um elo na seqüência iniciada com as disciplinas lecionadas no curso fundamental e os conceitos básicos da Resistência dos Materiais, através do enfoque sobre o comportamento das estruturas em função das características físicas dos materiais e da sua forma geométrica. Aprende-se a analisar de que maneira uma estrutura responde à uma dada solicitação de carregamento, seja permanente ou acidental, fixo ou móvel, estático ou dinâmico. Conhecer o funcionamento dos mais variados tipos de Estruturas é essencial para definição de um projeto estrutural da Engenharia Civil.

Destaque, cada vez mais essencial para a formação do moderno engenheiro civil, no qual se apresenta a Análise Matricial de Estruturas e, de forma introdutória, conceito e aplicações simples, o Método dos Elementos Finitos.

BIBLIOGRAFIA

Bibliografia Básica:

MARTHA, Luiz Fernando Campos Ramos. Análise de estruturas: conceitos e métodos básicos. Rio de Janeiro , RJ: Elsevier Editora Ltda., 2017. 600 p.

SORIANO, Humberto Lima. Estática das estruturas. Rio de Janeiro, RJ: Ciência Moderna, 2013, 3a ed., 440 p.

SORIANO, Humberto Lima; LIMA, Silvio de Souza. Análise de estruturas: método das forças e método dos deslocamentos. 2. ed atual. Rio de Janeiro, RJ: Ciência Moderna, 2006. 308 p.

Bibliografia Complementar:

ALMEIDA, M. C. F. - Estruturas isostáticas. São Paulo, Oficina de Textos, 2009. 168 p.

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE. 5. ed. São Paulo, SP: Érica, 2007. 292 p.

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE/Análise dinâmica. 2. ed. São Paulo, SP: Érica, 2009. 301 p.

2020-ETC314 página 3 de 10

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE/Análise não Linear. São Paulo, SP: Érica, 2012. 320 p.

ANDRÉ, João Cyro et al. Lições em mecânica das estruturas: trabalhos virtuais e energia. São Paulo, SP: Oficina de Textos, 2011. 293 p.

CAMPANARI, Flávio Antonio. Teoria das estruturas. Rio de Janeiro, RJ: Guanabara Dois, 1985. Teoria (vol. 1 e 2) Exercícios (vol. 3 e 4).

LEET, K.M.; UANG, C.M.; GILBERT, A.M. - Fundamentos da Análise Estrutural, McGraw-Hill, São Paulo, SP, 3a ed, 2009.

MAZZILLI, Carlos Eduardo Nigro et al. Lições em mecânica das estruturas: dinâmica. São Paulo, SP: Editora Edgard Blücher, 2016. 334 p.

SORIANO, H. L. - Análise de Estruturas: Formulações Clássicas. São Paulo, Editora Livraria da Física, 2016.

SORIANO, Humberto Lima. Análise de estruturas: formulação matricial e implementação computacional. Rio de Janeiro, RJ: Ciência Moderna, 2005. 346 p.

SORIANO, Humberto Lima. Método de elementos finitos em análise de estruturas. LIMA, Silvio de Souza (Colab.). São Paulo, SP: EDUSP, 2002. 580 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 ${\bf k}_1 \colon \ {\bf 1} \, , {\bf 0} \quad \ {\bf k}_2 \colon \ {\bf 2} \, , {\bf 0} \quad \ {\bf k}_3 \colon \ {\bf 1} \, , {\bf 0} \quad \ {\bf k}_4 \colon \ {\bf 2} \, , {\bf 0}$

Peso de MP(k_{p}): 3,0 Peso de MT(k_{p}): 1,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

É importante a presença às aulas, pois a nota dos trabalhos (T) conta com listas de exercícios, trabalhos propostos e projetos, uma parte da avaliação da nota T, consta dos exercícios e trabalhos desenvolvidos, totalmente ou parcialmente, em aula, portanto à frequência às aulas é fundamental para a avaliação T.

Os alunos devem acompanhar as listas de exercícios disponibilizadas na página da disciplina e também em sala de aula.

As avaliações T é composta de avaliações bimestrais (T1, T2, T4 e T5) relativas aos 4 bimestres.

2020-ETC314 página 4 de 10

OUTRAS INFORMAÇÕES				
As aulas serão distribuídas em 2 blocos denominados neste planejamento de				
teoria (T) e laboratório (L). A teoria conta com 2 horas-aula e as aulas de				
laboratório com 2 horas-aula.				

2020-ETC314 página 5 de 10

1. SAP2000 - Software para Análise Estrutural pelo Método dos Elementos Finitos 2. STRAP - SAE - Sistemas de Análise Estrutural 3. Ftool - Interactive-Graphics Program for Structural Analysis (Version 4.00) 4. REVIT - Software BIM - Autodesk		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA		
3. Ftool - Interactive-Graphics Program for Structural Analysis (Version 4.00)	1.	SAP2000	- Software para Análise Estrutural pelo Método dos Elementos Finitos	
	2.	STRAP -	SAE - Sistemas de Análise Estrutural	
4. REVIT - Software BIM - Autodesk	3.	Ftool -	Interactive-Graphics Program for Structural Analysis (Version 4.00)	
	4.	REVIT -	Software BIM - Autodesk	

2020-ETC314 página 6 de 10

APROVAÇÕES

Prof.(a) Januário Pellegrino Neto Responsável pela Disciplina

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Data de Aprovação:

2020-ETC314 página 7 de 10

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana	Conceudo	EFF
1 T	Planejamento. Organização de listas de exercícios e trabalhos.	0
1 L	Planejamento. Organização de listas de exercícios e trabalhos.	0
2 T	Apresentação do curso. Introdução à Teoria das	0
	Estruturas.Diagrama de Esforços Solicitantes x Linhas de	
	Influência.	
2 L	Revisão: Equilíbrio, esforços solicitantes.Estruturas Isostáticas	11% a 40%
	- vigas simples isostáticas.	
3 L	Vigas Simples Isostáticas - Exercícios.	11% a 40%
3 T	Linhas de Influência. Introdução: conceitos e definições.Obtenção	11% a 40%
	das linhas de influência para Vigas Simples Isostáticas.	
4 T	Linhas de Influência. Obtenção dos efeitos das cargas acidentais	0
	móveis.	
4 L	Treliças simples isostáticas - Método dos Nós e Ritter.	11% a 40%
5 L	Vigas simples isostáticas - LI: Envoltória de Esforços	0
	Solicitantes.	
5 T	Linhas de Influência. Determinação dos esforços máximos e	11% a 40%
	mínimos. Envoltória.	
6 L	Vigas simples isostáticas - LI: Envoltória de Esforços	0
	Solicitantes.	
6 Т	Linhas de Influência. Determinação dos esforços máximos e	11% a 40%
	mínimos. Envoltória.	
7 Т	Pórticos Planos Isostáticos.	0
7 L	Vigas simples isostáticas - LI: Envoltória de Esforços	11% a 40%
	Solicitantes.	
8 T	Pórticos Planos Isostáticos. Tri-articulados. Barras inclinadas.	11% a 40%
8 L	Pórticos Planos Isostáticos. Exercícios.	11% a 40%
9 L	Prova P1.	0
9 T	Prova P1.	0
10 T	Vigas Gerber.	0
10 L	Arcos.	11% a 40%
11 L	Cabos.	11% a 40%
11 T	Vigas Gerber. Estruturas Associadas.	11% a 40%
12 L	Estruturas Tridimensionais.	0
12 T	Vigas simples hiperestáticas (VSH). Introdução, métodos de	0
	resolução.VSH - Método dos esforços.	
13 L	Estruturas Tridimensionais.	11% a 40%
13 T	Vigas simples hiperestáticas. Método dos esforços.	11% a 40%
14 L	Vigas simples hiperestáticas. Exercícios.	0
14 T	Vigas contínuas. Método dos esforços.	0
15 T	Semana Smile de Inovação.	0
15 L	Semana Smile de Inovação.	0
16 L	Vigas Contínuas. Exercícios.	11% a 40%
16 T	Análise Matricial de Estruturas (AME). Introdução.	11% a 40%
17 T	AME. Elemento de Mola. Particionamento do Sistema Completo.	0

2020-ETC314 página 8 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

17 L	Modelagem Computacional - ftool.	11% a 40%
18 T	AME. Modelagem de Estruturas com Elementos de Mola.	0
18 L	Modelagem Computacional - ftool.	11% a 40%
19 T	Prova P2.	0
19 L	Prova P2.	0
20 T	Prova P2.	0
20 L	Prova P2.	0
21 L	Atendimento.	0
21 T	Atendimento.	0
22 L	Atendimento.	0
22 T	Atendimento.	0
23 T	Prova PS1.	0
23 L	Prova PS1.	0
24 L	Modelagem Computacional - ftool.	0
24 T	AME - Treliças Planas. Sistemas Local e Global.	0
25 T	AME. Treliças Planas. Aplicações.	0
25 L	Modelagem Computacional - ftool.	11% a 40%
26 L	AME - Treliças. Aplicações Matlab e Excel.	0
26 T	AME - Pórticos Planos. Cargas Nodais.	0
20 T	AME - Pórticos Planos . Cargas nodais. AME - Pórticos Planos . Cargas nas barras.	 11% a 40%
27 L	AME - Treliças. Aplicações Matlab e Excel.	11% a 40% 11% a 40%
28 L	AME - Treliças. Aplicações Matlab e Excel. AME - Treliças. Aplicações Matlab e Excel.	0
28 T	AME - Vigas contínuas.	0
20 I	AME - Treliças. Aplicações Matlab e Excel.	0
29 T		0
30 T	AME - apoios elásticos e recalques. Vigas contínuas. Prova P3	0
30 L	Prova P3.	0
30 H	Energia de Deformação. Conceitos e definições. Teoremas	0
31 1	auxiliares.	O
31 L	Modelagem Computacional - Método dos Elementos Finitos	11% a 40%
31 11	(MEF)Grelhas Planas e Estruturas Reticuladas Tridimensionais.	110 a 400
	Aplicações com softwares profissionais.	
32 T	Energia de Deformação. Teorema de Castigliano.Cálculo de	11% a 40%
52 1	deslocamentos em estruturas isostáticas.	110 4 100
32 L	MEF - Modelagem de Lajes de Edifícios.	11% a 40%
33 T	Teorema de Castigliano. Variação de temperatura. Teorema de	0
	Menabrea. Estruturas hiperestáticas.	· ·
33 L	Teorema de Castigliano. Exercícios.	41% a 60%
34 L	Teorema de Castigliano. Exercícios.	0
34 T	Método dos Esforços. Equação de Fontviolant.	0
35 T	Método dos Esforços. Apoios elásticos e recalques.	11% a 40%
35 L	Teorema de Menabrea. Estruturas hiperestáticas. Exercícios.	41% a 60%
36 T	Método dos Esforços. Estruturas Simétricas. Teorema de Castigliano	0
	aplicado às Estruturas Hiperestáticas.	-
36 L	Método dos Esforços. Exercícios.	41% a 60%
37 L	Método dos Esforços. Exercícios.	0
37 T	Método dos Esforços. Aplicações.	0
38 T	Prova P4.	0

2020-ETC314 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

38 L	Prova P4.	0
39 L	Prova P4.	0
39 T	Prova P4.	0
40 T	Atendimento. Revisão para PS2.	0
40 L	Atendimento. Revisão para PS2.	0
41 L	Prova PS2.	0
41 T	Prova PS2.	0
Legenda: T = Teoria, E = Exercício, L = Laboratório		

2020-ETC314 página 10 de 10