Amendment to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Original) A director plate for use in a fuel injector for an internal combustion engine, the plate having fuel inlet and fuel exit surfaces and having at least one passage, said at least one passage having a passage wall formed between said inlet and exit surfaces for conduction of fuel through the plate between a passage inlet and a passage exit of said at least one passage, wherein a numerical surface roughness of said exit surface adjacent said passage exit of said at least one passage is less than about (R_a) 0.2μm.
- 2. (Original) A director plate in accordance with Claim 1 wherein said numerical surface roughness is less than about (R_a) 0.1 μ m.
- 3. (Original) A director plate in accordance with Claim 1 wherein the numerical roughness of said passage wall adjacent said passage exit of said at least one passage is less than about (R_a) 0.2 μ m.
- 4. (Original) A director plate in accordance with Claim 3 wherein said numerical surface roughness is less than about (R_a) 0.1 μ m.

- 5. (Original) A director plate in accordance with Claim 1 wherein a juncture between said passage wall and said fuel exit surface defines an exit corner
- and wherein a numerical surface roughness of said exit corner is less than about
- $(R_a) 0.2 \mu m.$
- 6. (Original) A director plate in accordance with Claim 5 wherein the
- numerical surface roughness of said exit corner is less than about (Ra) $0.1 \mu m$.
- said fuel injector comprising a director plate having fuel inlet and fuel exit surfaces and having at least one passage, said at least one passage having a passage wall formed between said inlet and exit surfaces for conduction of fuel through the plate between a passage inlet and a passage exit of said at least one passage, wherein a numerical surface roughness of said exit surface adjacent said passage exit of said

7. (Original) A fuel injector for use in an internal combustion engine,

8. (Original) A fuel injector in accordance with Claim 7 wherein the numerical roughness of said passage wall adjacent said passage exit of said at least one passage is less than about (R_a) 0.1 μ m.

at least one passage is less than about (R_a) 0.2µm.

9. (Original) A fuel injector in accordance with Claim 7 wherein a juncture between said passage wall and said fuel exit surface defines an exit corner

148490.1 Page 3 of 11

and wherein a numerical surface roughness of said exit corner is less than about $(R_a) 0.2 \mu m.$

- 10. (Original) A fuel injector in accordance with Claim 9 wherein the numerical surface roughness of said exit corner is less than about (R_a) 0.1μm.
- 11. (Original) A director plate for use in a fuel injector for an internal combustion engine, the plate having fuel inlet and fuel exit surfaces and having at least one passage, said at least one passage having a passage wall formed between said inlet and exit surfaces for conduction of fuel through the plate between a passage inlet and a passage exit of said at least one passage, wherein a numerical surface roughness of said passage wall adjacent said passage exit of said at least one passage is less than about (R_a) 0.2µm.
- 12. (Original) A director plate in accordance with Claim 11 wherein said numerical surface roughness is less than about (R_a) 0.1 µm.
- 13. (Original) A director plate for use in a fuel injector for an internal combustion engine, the plate having fuel inlet and fuel exit surfaces and having at least one passage, said at least one passage having a passage wall formed between said inlet and exit surfaces for conduction of fuel through the plate between a passage inlet and a passage exit of said at least one passage, wherein a juncture between said passage wall and said fuel exit surface defines an exit corner and

148490.1 Page 4 of 11 wherein a numerical surface roughness of said exit corner is less than about (R_a) $0.2\mu m$.

- 14. (Original) A director plate in accordance with Claim 13 wherein said numerical surface roughness is less than about (R_a) 0.1 μ m.
- 15. (Original) An internal combustion engine comprising a fuel injector including a director plate having fuel inlet and fuel exit surfaces and having at least one passage, said at least one passage having a passage wall formed between said inlet and exit surfaces for conduction of fuel through the plate between a passage inlet and a passage exit of said at least one passage, wherein a numerical surface roughness of said exit surface adjacent said passage exit of said at least one passage is less than about (R_a) 0.2 μ m.
- 16. (Original) An internal combustion engine in accordance with Claim 15 wherein the numerical roughness of said passage wall adjacent said passage exit of said at least one passage is less than about (R_a) 0.1 μ m.
- 17. (New) A method of forming a director plate for a fuel injector, said method comprising:

providing a director plate having a fuel inlet surface and a fuel exit surface;

148490.1 Page 5 of 11

stamping a passageway through said director plate between said fuel inlet surface and said fuel exit surface, said passageway having an fuel inlet and a fuel exit, wherein a break-edge is formed on said fuel exit surface; and

smoothing said fuel exit surface to a surface roughness of less than about $(R_a) \ 0.2 \mu m.$

- 18. (New) A method in accordance with claim 17, wherein said smoothing is accomplished by one of mechanical polishing, magnetorheological finishing, and laser polishing.
- 19. (New) A method in accordance with claim 17, further comprising: providing a passage exit corner between said passageway and said exit surface; and

smoothing said exit corner to a surface roughness of less than about (R_a) 0.2 μm .

20. (New) A method in accordance with claim 17, wherein said passageway is smoothed to a surface roughness of less than about (R_a) 0.2μm.