```
double prob, path_prob = 1, choice_prob = 1;
int sum = 0;

klee_make_symbolic(&prob, f"prob_sym_{i}");
for i in range(10):
    int d;
    klee_make_symbolic(&d, f"d_sym_{i}");

    d = bernoulli(prob);
    (d == 1) ? choice_prob = prob : choice_prob = (1 - prob);
    path_prob = path_prob * choice_prob;

    sum = sum + d;

klee_dump(path_prob)
klee_dump(sum) // E[heads in "n" runs]
```

Fig. 1. Program listing for n bernoulli trails experiment.

We consider a independent *bernoulli* trials here of flipping a fair coin "n" times.

$$choice_prob = \begin{cases} p & \text{if } d \text{ value is 1 corresponding to getting a "heads"} \\ 1 - p & \text{if } d \text{ value is 0 corresponding to getting a "tails"} \end{cases}$$

concretely, on the i^{th} run \vec{d} can have a value as below, one-hot encoded w.r.t the outcome of heads or tails.

$$\vec{d}_i = encode(<0,0,0,1,1,0,1,1,1,0>)$$

Based on the value of the \vec{d}_i , we get w_i value using *choice_prob*.

$$w_i = (p)^{x_i} * (1-p)^{n-x_i} \tag{1}$$

where x_i denotes the number of *heads* in the i^{th} randomized run and for n runs. n = 10 for the case in the above example.

$$w_i = (p)^{x_i} * (1 - p)^{10 - x_i}$$
 (2)

We consider top "k" randomized runs now for the optimization query. The expression for optimization thus becomes

$$maximize(\sum_{i=1}^{k} w_i)$$

On substituting the value of w_i from (1).

$$maximize(\sum_{i=1}^{k} (p)^{x_i} * (1-p)^{n-x_i})$$
 (3)

After performing the optimization above, we get different values of \vec{d}_i . For i^{th} randomized run. we get a single one hot encoded \vec{d} vector. We show below the encoding for a few i values.

$$\vec{d}_1 = encode(< 0, 0, 0, 1, 1, 0, 1, 1, 1, 0 >)$$

Objective = maximize
$$\left(\sum_{i=1}^{k} (p)^{x_i} * (1-p)^{n-x_i}\right) \quad | \forall (i,j)[x_i \neq x_j]$$
 (4)

Fig. 2. Optimization Expression for k randomized paths

$$\vec{d}_3 = encode(<0, 1, 0, 1, 1, 0, 0, 0, 1, 0>)$$

$$\vec{d}_4 = encode(<1, 0, 1, 0, 1, 0, 1, 1, 0, 1>)$$

We run the optimization by renaming the k pse variables set appropriately and then impose the *distinct* clause so that we don't run the optimization on the same randomized runs again.

For best approximation of the expected value of heads in *n* trials,

$$w_i = \prod_{j=1}^n choice_prob_i(j), \quad sum_i = \sum_{j=1}^n components(\vec{d}_i), \tag{5}$$

$$EV(heads) = (\sum_{i=1}^{k} w_i * sum_i), \quad Error = n * prob - EV(heads)$$
 (6)

where both w_i and sum_i can both be computed from the corresponding \vec{d}_i expression we get from the *model* of the *optimization* query Eq 2

1 EXPRESSION FOR k-PATHS

For k = 5 & n = 10 the two constraint sets and optimization expressions are as follows:

$$w_1 = \prod_{j=1}^{10} choice_prob_1(j), \quad sum_1 = \sum_{j=1}^{10} components(\vec{d}_1), \tag{7}$$

$$w_2 = \prod_{j=1}^{10} choice_prob_2(j), \quad sum_2 = \sum_{j=1}^{10} components(\vec{d}_2), \tag{8}$$

$$w_3 = \prod_{j=1}^{10} choice_prob_3(j), \quad sum_3 = \sum_{j=1}^{10} components(\vec{d}_3), \tag{9}$$

$$w_4 = \prod_{j=1}^{10} choice_prob_4(j), \quad sum_4 = \sum_{j=1}^{10} components(\vec{d}_4),$$
 (10)

$$w_5 = \prod_{j=1}^{10} choice_prob_5(j), \quad sum_5 = \sum_{j=1}^{10} components(\vec{d}_5), \tag{11}$$

$$EV(heads) = (\sum_{i=1}^{k} w_i * sum_i), \tag{12}$$

$$EV(heads) = (w_1 * sum_1 + w_2 * sum_2 + w_3 * sum_3 + w_4 * sum_4 + w_5 * sum_5)$$
 (13)

Objective =
$$maximize(w_1 * sum_1 + w_2 * sum_2 + w_3 * sum_3 + w_4 * sum_4 + w_5 * sum_5)$$
 (14)