ORTHONORMALBASEN VON $L^2[a,b]$ MIT RANDBEDINGUNGEN

1. Vorbereitung

Folgendes ist bekannt:

Satz 1. Ein Orthonormalsystem von $L^2[0,2\pi]$ ist gegeben durch

$$S = \left\{ \frac{1}{\sqrt{2\pi}} \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \cos nx \mid n \in \mathbb{N} \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \sin nx \mid n \in \mathbb{N} \right\}$$

(siehe [1, Abschnitt V.4]).

Durch Anwendung der unitären Isometrie $T: L^2[a,b] \to L^2[0,2\pi]$ bzw. ihrer Inversen,

$$(Tf)(x) := \sqrt{\frac{b-a}{2\pi}} f\left(x \cdot \frac{b-a}{2\pi} + a\right)$$
$$(T^{-1}g)(x) := \sqrt{\frac{2\pi}{b-a}} g\left(\frac{y-a}{b-a} \cdot 2\pi\right)$$

sieht man allgemeiner folgendes:

Lemma 1.1. Ein Orthonormalsystem von $L^2[a,b]$ ist gegeben durch

$$\left\{\frac{1}{\sqrt{b-a}}\right\} \cup \left\{\sqrt{\frac{2}{b-a}}\cos\left(n(x-a)\frac{2\pi}{b-a}\right) \;\middle|\; n \in \mathbb{N}\right\} \cup \left\{\sqrt{\frac{2}{b-a}}\sin\left(n(x-a)\frac{2\pi}{b-a}\right) \;\middle|\; n \in \mathbb{N}\right\}$$

Für [a, b] = [-1, 1] erhält man insbesondere folgendes vollständige ONS von $L^2[-1, 1]$:

$$\left\{\underbrace{\frac{1}{\sqrt{2}}}_{c_0}\right\} \cup \left\{\underbrace{\cos n\pi x}_{c_n} \mid n \in \mathbb{N}\right\} \cup \left\{\underbrace{\sin n\pi x}_{s_n} \mid n \in \mathbb{N}\right\}$$

2. Dirichlet-Randbedingungen

Wir suchen nun ein vollständiges Orthonormalsystem $(\varphi_n)_n$ von $L^2[0,1]$, das aus Eigenfunktionen von $-\Delta \colon u \mapsto -u''$ besteht, welche die Dirichlet-Randbedingungen $\varphi_n(0) = \varphi_n(1) = 0$ erfüllen. Wir lösen die Eigenwertgleichung

$$-u'' = \lambda u$$
.

Fall $\lambda < 0$: mit $\mu \coloneqq \sqrt{-\lambda}$ erhält man die allgemeine Lösung

$$u(x) = ae^{\mu x} + be^{-\mu x}.$$

die Randbedingungen lassen aber nur die triviale Lösung a=b=0 zu.

Fall $\lambda = 0$: die allgemeine Lösung u(x) = ax + b wird wegen den Randbedingungen wieder zur trivialen Lösung.

Fall $\lambda > 0$: mit $\mu := \sqrt{\lambda}$ ist die allgemeine Lösung

$$u(x) = a\cos\mu x + b\sin\mu x.$$

Die linke Randbedingung ergibt u(0) = a = 0, die rechte wird zu $u(1) = b \sin \mu = 0$, was genau dann der Fall ist wenn $\mu = n\pi$ für $n \in \mathbb{N}$. Berücktsichtigt man noch die Normierung, erhält man als Eigenwerte also $\lambda_n = (n\pi)^2$ für $n \in \mathbb{N}$ mit dazugehörigen Eigenfunktionen

$$\varphi_n(x) \coloneqq \sqrt{2}\sin(n\pi x).$$

Die Orthogonalität ist schnell überprüft. Wir zeigen noch die Vollständigkeit: setzt man gegebenes $f \in L^2[0,1]$ ungerade zu einer Funktion $\tilde{f} \in L^2[-1,1]$ fort, d.h. mittels $\tilde{f}(x) = f(x)$ für $x \geq 0$ und $\tilde{f}(-x) = -f(-x)$, hat man die Darstellung

$$\tilde{f} = \langle \tilde{f}, c_0 \rangle c_0 + \sum_n \langle \tilde{f}, c_n \rangle f_n + \sum_n \langle \tilde{f}, s_n \rangle s_n.$$

Wenn man die Skalarprodukte als Integrale über [0,1] ausschreibt, sieht man direkt, dass

$$\langle \tilde{f}, c_0 \rangle = 0$$
$$\langle \tilde{f}, c_n \rangle = 0$$
$$\langle \tilde{f}, s_n \rangle = \sqrt{2} \langle f, \varphi_n \rangle.$$

Durch Einschränkung auf [0, 1] erhält man

$$f = \sum_{n} \langle f, \varphi_n \rangle \varphi_n.$$

in $L^2[0,1]$ und nach [1, Satz V.4.9, S. 236] ist unser Orthonormal system

$$\{\sqrt{2}\sin n\pi x\mid n\in\mathbb{N}\}$$

vollständig.

3. Neumann-Randbedingungen

Wir führen dieselbe Prozedur nun mit den Neumann-Randbedingungen $\varphi'_n(0) = \varphi'_n(1) = 0$ durch. Löst man wie oben die Eigenwertgleichung, erhält man for den Eigenwert $\lambda_0 = 0$ konstante Funktionen als Eigenfunktion, und für den Eigenwert $\lambda_n = (n\pi)^2$ die Eigenfunktion $\cos n\pi x$, also die normierten Eigenfunktionen

$$\varphi_0(x) = 1, \qquad \varphi_n(x) = \sqrt{2}\cos n\pi x.$$

Eine gegebene Funktion $f \in L^2[0,1]$ setzen wir diesmal zu einer geraden Funktion auf [-1,1] fort und erhalten damit

$$\langle \tilde{f}, c_0 \rangle = \sqrt{2} \langle f, \varphi_0 \rangle$$
$$\langle \tilde{f}, c_n \rangle = \sqrt{2} \langle f, \varphi_n \rangle$$
$$\langle \tilde{f}, s_n \rangle = 0.$$

REFERENCES 3

womit wieder

$$f = \sum_{n} \langle f, \varphi_n \rangle \varphi_n$$

gilt und die Vollständigkeit gezeigt ist.

4. Gemischte Randbedingungen

Schließlich betrachten wir die Randbedingungen $\varphi_n(0) = \varphi'_n(1) = 0$ erfüllt. Durch lösen der Eigenwertgleichung wie oben erhält man die Eigenwerte $\lambda_n = ((n-1/2)\pi)^2$ mit Eigenfunktionen $\sin((n-1/2)\pi x)$, oder nach Normierung

$$\varphi_n(x) = \sqrt{2}\sin((n-1/2)\pi x).$$

Dies passt nicht ganz zu unseren Eigenfunktionen c_0, c_n, s_n von oben, deshalb nehmen wir auf $L^2[-2, 2]$ das vollständige Orthonormalsystem

$$\left\{\underbrace{\frac{1}{\sqrt{4}}}_{C_0}\right\} \cup \left\{\frac{1}{\sqrt{2}}\underbrace{\cos\frac{n\pi x}{2}}_{C_n} \mid n \in \mathbb{N}\right\} \cup \left\{\frac{1}{\sqrt{2}}\underbrace{\sin\frac{n\pi x}{2}}_{S_n} \mid n \in \mathbb{N}\right\}$$

Gegebenes $f \in L^2[0,1]$ setzen wir folgendermaßen zu einer Funktion $\tilde{f} \in L^2[-2,2]$ fort:

$$\tilde{f}(x) := \begin{cases} -f(x+2) & x \in [-2,1) \\ -f(-x) & x \in [-1,0) \\ f(x+2) & x \in [0,1) \\ f(2-x) & x \in [1,2]. \end{cases}$$

Es ergibt sich

$$\begin{split} \langle \tilde{f}, C_0 \rangle &= 0 \\ \langle \tilde{f}, C_{2n-1} \rangle &= 0 \\ \langle \tilde{f}, C_{2n} \rangle &= 0 \\ \langle \tilde{f}, S_{2n} \rangle &= 0 \\ \langle \tilde{f}, S_{2n-1} \rangle &= 2 \langle f, \varphi_n \rangle \end{split}$$

und damit

$$f = \sum_{n} \langle f, \varphi_n \rangle \varphi_n$$

References

[1] Werner. Funktionalanalysis.