Lecture Notes 12: Properties of Context-free Languages

Raghunath Tewari IIT Kanpur

1 Closure Properties

Let us study the various closure properties of CFLs.

1. Union

Let L_1 and L_2 be two CFLs accepted by the CFGs $G_1 = (V_1, \Sigma, P_1, S_1)$ and $G_2 = (V_2, \Sigma, P_2, S_2)$ respectively. Then $L_1 \cup L_2$ will be accepted by the CFG $G = (V, \Sigma, P, S)$ where

$$V = V_1 \cup V_2 \cup \{S\}, \text{ and}$$

 $P = P_1 \cup P_2 \cup \{S \longrightarrow S_1 \mid S_2\}.$

2. Concatenation

Let L_1 and L_2 be two CFLs accepted by the CFGs $G_1 = (V_1, \Sigma, P_1, S_1)$ and $G_2 = (V_2, \Sigma, P_2, S_2)$ respectively. Then $L_1 \cdot L_2$ will be accepted by the CFG $G = (V, \Sigma, P, S)$ where

$$V = V_1 \cup V_2 \cup \{S\}, \text{ and}$$

 $P = P_1 \cup P_2 \cup \{S \longrightarrow S_1 S_2\}.$

3. Star

Let L_1 be a CFL accepted by the CFG $G_1 = (V_1, \Sigma, P_1, S_1)$. Then L_1^* will be accepted by the CFG $G = (V, \Sigma, P, S)$ where

$$V = V_1 \cup \{S\}, \text{ and}$$

 $P = P_1 \cup \{S \longrightarrow S_1 S \mid \epsilon\}.$

4. Reversal

Let L_1 be a CFL accepted by the CFG $G_1 = (V, \Sigma, P, S)$. Then $rev(L_1)$ will be accepted by the CFG $G = (V, \Sigma, P_R, S)$ where for every rule $A \longrightarrow X_1 X_2 \dots X_k$ in P, add the rule

$$A \longrightarrow X_k \dots X_2 X_1$$

to P_R .

5. Homomorphism and Inverse Homomorphism

CFLs are also closed under homomorphism and inverse inverse homomorphism. The construction is left as an exercise.

Exercise 1. Show that CFLs are closed under homomorphism and inverse inverse homomorphism.

(*Hint*: For homomorphism start with a CFG and for inverse homomorphism start with a PDA.)

6. Intersection with a Regular language Let L_1 be a CFL and L_2 be a regular language, then $L_1 \cap L_2$ is a CFL.

The idea is to take a PDA N for L_1 and a DFA M for L_2 and construct a PDA (say N') for $L_1 \cap L_2$. N' will be a "product automaton" of M and N, making a moving according to both M and N at each step simultaneously. In addition, N' will use its own stack to simulate the stack of N.

Formally, let $N = (Q_N, \Sigma, \Gamma, \delta_N, q_{0_N}, F_N)$ and $M = (Q_M, \Sigma, \delta_M, q_{0_M}, F_M)$. We construct $N' = (Q, \Sigma, \Gamma, \delta, q_0, F)$ as follows:

- $Q = Q_N \times Q_M$
- $q_0 = (q_{0_N}, q_{0_M})$
- $F = F_N \times F_M$
- $((r, s), Y) \in \delta((p, q), a, X)$ if
 - $(r, Y) \in \delta_N(p, a, X)$, and
 - $s = \delta_M(q, a)$ if $a \in \Sigma$, and s = q if $a = \epsilon$.

1.1 Non-closure under certain operations

What about other set operations such as intersection, complement and set difference? It turns out that CFLs are *not* closed under these operations.

- Consider the two languages

$$L_1 = \{a^n b^n c^m \mid n, m \ge 0\}$$

$$L_2 = \{a^n b^m c^m \mid n, m \ge 0\}$$

Here is a CFG for L_1 :

$$S \longrightarrow S_1 C$$

$$S_1 \longrightarrow aS_1 b \mid \epsilon$$

$$C \longrightarrow cC \mid \epsilon$$

Similarly one can construct a CFG for L_2 as well. But now we can write our favourite non context-free language $L = \{a^n b^n c^n \mid n \geq 0\}$ as,

$$L = L_1 \cap L_2$$
.

Hence CFLs are not closed under intersection.

- If CFLs were closed under complement, then by DeMorgan's law they would be closed under intersection as well. Hence CFLs are not closed under complement.
- For a language $L \subseteq \Sigma^*$, $\overline{L} = \Sigma^* \setminus L$. This shows that CFLs are not closed under set difference as well.

1.2 Some Applications

1. Let

$$L_1 = \{ w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) = \#_c(w) \}.$$

Note that $L_1 \cap L(a^*b^*c^*) = \{a^nb^nc^n \mid n \geq 0\}$. Since $L(a^*b^*c^*)$ is a regular language and the language on the right hand side of the equal sign is not a CFL therefore L_1 is not a CFL.

2. Show that

$$L_2 = \{a^n b^n a^{2m} b^{2m} \mid n, m \ge 0\}$$

is context-free.

We use the fact that $L' = \{a^n b^n \mid n \ge 0\}$ is context-free. Consider the homomorphism h defined as

$$h(a) = aa$$
$$h(b) = bb.$$

Then $h(L') = \{a^{2n}b^{2n} \mid n \geq 0\}$. Now observe that $L_2 = L' \cdot h(L')$. Therefore L_2 is context-free.