said common virulence factor in said same pathogen.

REMARKS

Applicants have made the above clarifying amendments in response to the Examiner's comments in the final Office Action of October 14, 1999. No new matter is added by these amendments.

The total effect of this amendment is to remove issues from appeal or adopt Examiner's suggestions. Applicants therefore request entry of this amendment under MPEP 1207.

If there are any charges or credits, please apply them to Deposit Account Number 03-2095.

Respectfully submitted,

Date: Chiver 16, 2000

Karen L. Elbing, Ph/D.

Reg. No. 35,238

James De Camp, Ph.D. Rag. No. 43,580

Clark & Elbing LLP 176 Federal Street Boston, MA 02110

Telephone: 617-428-0200 Facsimile: 617-428-7045

\\Ntserver\documents\00786\263xxx\00786.263003 Supplemental amendment.wpd

Appendix B: Claims on Appeal (As Amended by Supplemental Amendment)

- 1. A method for identifying a compound which inhibits or reduces pathogenicity of the same pathogen in at least two different eukaryotic organisms, said pathogen utilizing a common virulence factor to infect said eukaryotic organisms, said method comprising the steps of:
- (a) exposing said at least two different eukaryotic organisms, at least one of said organisms being a non-rodent, to said same pathogen in the presence of at least one candidate compound; and
- (b) detecting inhibition or reduction of pathogenicity of said same pathogen as an indication that said candidate compound inhibits or reduces pathogenicity of said same pathogen in each of said eukaryotic organisms as a consequence of affecting the function of said common virulence factor in said pathogen.
 - 2. The method of claim 1, wherein said pathogen is a bacterium.
- 3. The method of claim 2, wherein said bacterium is *Pseudomonas* aeruginosa.
- 4. The method of claim 2, wherein said bacterium is *Pseudomonas aeruginosa* UCBPP-PA14.
- 5. The method of claim 1, wherein said eukaryotic organisms includes a vertebrate and a plant.

- 6. The method of claim 1, wherein said eukaryotic organism includes a vertebrate and an invertebrate.
- 7. The method of claim 1, wherein said eukaryotic organism includes a plant and an invertebrate.
 - 8. The method of claim 5 or claim 6, wherein said vertebrate is a mammal.
 - 9. The method of claim 6 or claim 7, wherein said invertebrate is a nematode.
- 10. The method of claim 9, wherein said nematode is a member of the genus Caenorhabditis.
- 11. The method of claim 5 or claim 7, wherein said plant is a member of the genus *Arabidopsis*.
- 12. The method of claim 1, wherein each of said eukaryotic organisms is a plant.
- 13. The method of claim 1, wherein each of said eukaryotic organisms is a vertebrate.
- 14. The method of claim 1, wherein each of said eukaryotic organisms is an invertebrate.
 - 15. The method of claim 14, wherein said invertebrate is an insect.

- 16. The method of claim 15, wherein said insect is a lepidopteran.
- 17. The method of claim 16, wherein said lepidopteran is Galleria or Plutella.
- 18. The method of claim 15, wherein said insect is a dipteran.
- 19. The method of claim 18, wherein said dipteran is Drosophila.
- 20. The method of claim 1, wherein said method utilizes the nematode fast killing assay.
- 21. The method of claim 20, wherein said nematode fast killing assay involves the use of a *C. elegans* having a P-glycoprotein mutation.
- 22. A method for identifying a compound which inhibits or reduces pathogenicity of the same pathogen in a nematode and a plant, said same pathogen utilizing a common virulence factor to infect said nematode and said plant, comprising the steps of:
- (a) exposing said nematode and said plant to said same pathogen in the presence of at least one candidate compound; and
- (b) identifying a compound that inhibits or reduces pathogenicity of said same pathogen in said nematode and said plant as a consequence of affecting the function of said common virulence factor in said same pathogen.
 - 23. The method of claim 22, wherein said pathogen is a bacterium.

- 24. The method of claim 23, wherein said bacterium is *Pseudomonas* aeruginosa UCBPP-PA14.
 - 26. The method of claim 22, wherein said nematode is Caenorhabditis elegans.
 - 28. The method of claim 22, wherein said plant is Arabidopsis.
- 29. The method of claim 22, wherein said method utilizes the nematode fast killing assay.
- 30. The method of claim 29, wherein said nematode fast killing assay involves the use of a *C. elegans* having a P-glycoprotein mutation.

\\Ntserver\documents\00786\263xxx\00786.263003 Appeal Brief.wpd