

# Restaurant Recommendations: Representing the Data

The first step to solving the restaurant recommendations problem is choosing data structures to store the information on restaurant prices, ratings, and cuisines.

# **Examining the Data File**

Here is the restaurant data from a sample file:

```
Georgie Porgie
87%
$$$
Canadian, Pub Food

Queen St. Cafe
82%
$
Malaysian, Thai

Dumplings R Us
71%
$
Chinese

Mexican Grill
85%
$$
Mexican

Deep Fried Everything
52%
$
Pub Food
```

# **Examining the Data**

We'll organize the data by grouping it according to tasks that we would like to perform.

## **Rating Information**

For each restaurant, we want to be able to look up the rating, so we'll keep track of that information:

Georgie Porgie: 87 Queen St. Cafe: 82 Dumplings R Us: 71 Mexican Grill: 85

**Deep Fried Everything:** 52

#### **Price Range Information**

We'll also want to look up restaurants by price, so we'll make a list of that data:

\$: Queen St. Cafe, Dumplings R Us, Deep Fried Everything

**\$\$:** Mexican Grill **\$\$\$:** Georgie Porgie

\$\$\$\$:

#### **Cuisine Information**

Recommendations are made based on types of cuisine as well, so we need to keep track of that information:

**Canadian:** Georgie Porgie

**Pub Food:** Georgie Porgie, Deep Fried Everything

Malaysian: Queen St. Cafe Thai: Queen St. Cafe **Chinese:** Dumplings R Us Mexican: Mexican Grill

## Choose the data structure

What data structures can we use to store this information? We could use strings, lists, tuples or dictionaries. That is a design decision that we need to make.

## **Rating Information**

Our "Rating Information" looks a lot like a Python dictionary, where each key is a restaurant name and each value is a rating.

Let's add some braces and commas to make the structure look more like a Python dictionary. Let's also add quotes around the restaurant names to make them strings. Finally, let's create a variable name name to rating that refers to this dictionary:

```
Georgie Porgie: 87
                               name to rating = {'Georgie Porgie': 87,
Queen St. Cafe: 82
                               'Queen St. Cafe': 82,
Dumplings R Us: 71
                               'Dumplings R Us': 71,
                               'Mexican Grill': 85,
Mexican Grill: 85
                               'Deep Fried Everything': 52}
Deep Fried Everything: 52
```

Now, to find ratings, we can use the restaurant's name.

```
>>>name_to_rating['Queen St. Cafe']
```

This dictionary type can be written as: dict of {str: int}

## **Pricing Information**

Pricing information also looks a lot like a Python dictionary. We would like to be able to look up a price and get all the restaurants in the price range.

The keys (price ranges) look like strings, and the values (restaurant names) look like strings too; however, there can be zero, one or more than one restaurant associated with each price range. Therefore, each value will be a list of str.

Again, adding quotes, commas, brackets, braces and a variable name gives us:

```
$: Queen St. Cafe, Dumplings R Us,
                                       price_to_names = {'$': ['Queen St. Cafe',
Deep Fried Everything
                                       'Dumplings R Us', 'Deep Fried Everything'],
$$: Mexican Grill
                                       '$$': ['Mexican Grill'],
                                       '$$$': ['Georgie Porgie'],
$$$: Georgie Porgie
                                       '$$$$': []}
$$$$:
```

We can use this dictionary to find restaurants in a given price range.

```
>>>price to names['$']
['Queen St. Cafe', 'Dumplings R Us', 'Deep Fried Everything']
This dictionary type can be written as: dict of {str: list of str}
```

#### **Cuisine Information**

A dictionary is also suitable for representing cuisine information.

In this case, the type will be dict of {str: list of str}. Each key will be a cuisine and each value will be a list of str, since there can be more than one restaurant for each type of cuisine.

Once again, adding quotes, commas, brakets, braces and a variable name gives us:

```
Canadian: Georgie Porgie
                                           cuisine to name = {'Canadian': ['Georgie
Pub Food: Georgie Porgie, Deep Fried
                                           Porgie'],
                                           'Pub Food': ['Georgie Porgie', Deep Fried
Everything
                                           Everything'],
Malaysian: Queen St. Cafe
                                           'Malaysian': ['Queen St. Cafe'],
Thai: Queen St. Cafe
                                           'Thai': ['Queen St. Cafe'],
Chinese: Dumplings R Us
                                            'Chinese': ['Dumplings R Us'],
                                           'Mexican': ['Mexican Grill']}
Mexican: Mexican Grill
```

We can use this dictionary to find restaurants that serve a particular type of cuisine.

```
>>>cuisine to name['Chinese']
['Dumplings R Us']
```

Jennifer Campbell • Paul Gries University of Toronto