Hochschule Emden/Leer Fachbereich Technik Abteilung Elektrotechnik und Informatik

WS 2019/20

|                           | <b>3 3</b>               | 3 ( ,                            |  |
|---------------------------|--------------------------|----------------------------------|--|
| Prüfer:                   | Prof. DrIng. Johann-Mark | Prof. DrIng. Johann-Markus Batke |  |
| Tag der schriftlichen Pri | ifung: <b>20.01.2020</b> |                                  |  |
|                           |                          |                                  |  |
|                           |                          |                                  |  |
| Studierender:             |                          |                                  |  |
| Name, Vorname             |                          | MatrNr.                          |  |

Schriftliche Prüfung im Fach: Digitale Signalverarbeitung (Bachelor)

#### **Allgemeine Hinweise**

**Bearbeitungszeit** 90 Minuten **Anzahl der Aufgaben** 5

• Formelsammlung der Klausur (Abschnitt "Hilfen")

- Eigene Formelsammlung (handgeschrieben, 2 Seiten DIN A4). Die Formelsammlung ist mit abzugeben.
- HS-Taschenrechner

**Gesamtpunktzahl** 100

- Beschriften Sie bitte alle Lösungsblätter mit Namen und Matrikelnummer und nummerieren Sie sie fortlaufend.
- · Alle Blätter bitte nur einseitig beschreiben.
- Geben Sie bei Rechenaufgaben die Zwischenschritte an, so dass der Lösungsweg erkennbar ist
- · Antworten sind, soweit möglich, zu begründen.
- Die Klausur ist mit ca. 50 % der Gesamtpunktzahl bestanden.

Name: ..... Matrikelnummer: ..... Matrikelnummer: .....

#### **Aufgabe 1: Abtastung (12 Punkte)**



Gegeben sei die dargestellte Zeitfunktion x(t) und die zugehörigen Abtastwerte x[n].

- (a) Geben Sie einen Ausdruck für x(t) an!
- **(b)** Welche Abtastrate  $f_s$  wurde gewählt?
- (c) Ist die Abtastfolge x[n] eindeutig in eine kontinuierliche Funktion rekonstruierbar?

#### Aufgabe 2: Elementare Signale (28 Punkte)



- (a) Formulieren Sie für die dargestellten Graphen der Funktionen  $x_1[n] \dots x_4[n]$  einen Ausdruck mithilfe von Elementarfunktionen wie z.B.  $\delta[n]$ ,  $\sigma[n]$ ,  $\cos[n]$ ,  $\sin[n]$ .
- **(b)** Skizzieren Sie die Folge  $\cos(2\pi \frac{n}{10})$  im Wertebereich  $n = -5 \dots 10$ .
- (c) Skizieren Sie im Wertebereich n = -5...5 die Funktionen
  - $x_5[n] = -\delta[n+1] + 5$
  - $x_6[n] = \sigma[4(n+1)]$

Name: ..... Matrikelnummer: ..... Matrikelnummer: ....

# Aufgabe 3: Spektrum Ton (20 Punkte)

Gegeben sei folgendes reellwertiges Spektrum X[k]:



- (a) Geben Sie die Ordnung N der DFT an!
- (b) Bestimmen Sie den Gleichanteil!
- (c) Bestimmen Sie die Grundfrequenz  $f_0$  der Schwingung, wenn die Abtastrate  $f_s = 8000 \, \text{Abtastwerte/s ist!}$
- (d) Geben Sie die Zeitfunktion x[n] an und skizieren Sie den Funktionsgraphen! Hinweis: der Gleichanteil im Zeitbereich ist X[0]/N.
- (e) Für die Zeitfunktion x[n] soll nun jeder 2. Wert weggelassen werden. Zeichnen Sie das Spektrum, das für Ordnung N/2 entsteht!

# Aufgabe 4: Numerische Berechnung (20 Punkte)

In der digitalen Signalverarbeitung werden häufig Methoden der linearen Algebra zur numerischen Berechnung verwendet. Gegeben seien die Werte (2, 1, 2, 4).

- (a) Weisen Sie die gegebenen Werte einem Spaltenvektor  $\vec{a}$  zu und berechnen Sie
  - 1.  $\vec{a} \cdot \vec{a}^T$
  - 2.  $\vec{a}^T \cdot \vec{a}$
- **(b)** Alle Elemente der  $4 \times 4$  -Matrix  $\vec{A}$  haben den Wert 1. Berechnen Sie
  - 1.  $\vec{A} \cdot \vec{a}$
  - 2.  $B = 3 \cdot \vec{A}$
  - 3.  $\vec{C} = \vec{A} \cdot \vec{B}$

# Aufgabe 5: Faltung und Lineare Zeitinvariante Systeme (20 Punkte)

- (a) Wie groß ist die Länge des Faltungsproduktes zweier Folgen mit den Längen  $L_1 = 11$  bzw.  $L_2 = 14$ ?
- **(b)** Gegeben sind die beiden Signale  $x_1[n] = \{1, 3, -2, -1\}$  als Eingangssignal eines Systems und  $x_2[n] = \{1, 1, -1\}$  als Systemfunktion. Berechnen Sie den Systemausgang über die die Faltung  $x_1[n] \star x_2[n]$ !
- **(c)** Formulieren Sie die Faltung aus b) als Matrixoperation.
- (d) Das gleiche System soll nach Einspeisung des Signals  $x_1$  gleich erneut mit  $x_1$  angeregt werden, es entsteht also die Folge 1, 3, -2, -1, 1, 3, -2, -1. Da es sich um ein Lineares Zeitinvariantes System handelt, können die einzelnen Systemantworten überlagern werden. Geben Sie das Gesamtergebnis des Systemausgangs an.