Учреждение образования Республики Беларусь «Гомельский государственный технический университет им. П. О. Сухого»

Кафедра "Металлургия и технологии обработки материалов"

Лабораторная работа №1 по теме: «Исследование теплопередачи через однослойную огнеупорную плоскую стенку»

Выполнил: студент группы ТТ-31 Галицкий И.П. Принял преподаватель: Прусенко И.Н.

Лабораторная работа №1

Цель работы: ознакомление с теоретическими основами стационарного теплового режима и экспериментальное определение плотности теплового потока, проходящего через однослойную плоскую стенку.

1. Краткая теоретическая часть (основные определения и формулы).

Различают три вида передачи тепла: <u>теплопроводность</u>, <u>конвекцию</u> и тепловое излучение.

Теплопроводностью называется процесс переноса энергии, происходящий вследствие движения и энергетического взаимодействия микрочастиц (молекул, атомов, ионов, электронов).

<u>Передача тепла</u> теплопроводностью наиболее характерно осуществляется <u>в гомогенных твердых непрозрачных телах</u>. <u>В газах и жидкостях</u> - теплопередача конвекцией и излучением. <u>В прозрачных телах</u> наряду с теплопроводностью <u>наблюдается излучение</u>.

Тепловое состояние термодинамической системы (тела) характеризуется **температурным полем** - совокупность значений температур для всех точек тела в данный момент времени. Различают одномерное T=f(x), двухмерное T=f(x,y) и трехмерное T=f(x,y,z).

Процесс, характеризующийся постоянством температуры во времени, называется стационарным (установившимся) тепловым режимом.

Для такого поля можно записать:

T = f (x,y,z) = const;
$$\frac{dT}{d\tau}$$
 = 0

Если по V тела температурное поле неоднородно, то всегда будут существовать микроV, имеющие одинаковые t. Совокупность точек тела с одинаковыми значениями t образует изотермические линии или поверхности. Поток теплоты вдоль изотермической поверхности отсутствует, т.к. вдоль нее нет разности температур.

Количественной характеристикой того, насколько резко изменяется температура на бесконечно малом участке тела (практически в точке) служит температурный градиент (°С/м):

$$grad T = \frac{dT}{dx} + \frac{dT}{dy} + \frac{dT}{dz} = \lim \left(\frac{\Delta T}{\Delta n}\right)_{\Delta n \to 0}$$

Температурный градиент – это <u>вектор</u>, нормальный к изотермической поверхности, направленный <u>в сторону возрастания температуры</u> и <u>численно</u> равный производной от температуры.

 $\underline{\text{Если}}$ температурное поле $\underline{\text{одномерно}}$, т.е. Т изменяется только вдоль одной оси, то

$$gradT = \frac{dT}{dx}$$

Интенсивность процесса переноса теплоты теплопроводностью определяется законом Фурье. Количество переданной теплоты

пропорционально падению температуры, времени и площади сечения, перпендикулярного направлению распространения теплоты:

$$dQ = -\lambda grad T dF d\tau = -\lambda \frac{dT}{dn} dF d\tau$$
 или $Q^* = -\lambda F \tau grad T$ (Дж)

Количество теплоты, проходящее за единицу времени через изотермическую поверхность площадью F, называется **тепловым потоком.** (Вт).

$$Q = -\lambda F grad T$$

Тепловой поток, отнесенный к единице площади изотермической поверхности, называется **плотностью теплового потока** $q(Bt/m^2)$:

$$q = -\lambda grad T$$

Знак «- » показывает, что направления векторов градиента температур и теплового потока противоположны.

Коэффициент теплопроводности $\lambda\left(\frac{Bm}{m\ ^{\circ}C}\right)$, характеризует способность

вещества проводить теплоту и определяется как количество теплоты, которое проходит через единицу площади изотермической поверхности при температурном градиенте равном единице. На величину коэффициента теплопроводности оказывают влияние температура, давление, объемная масса материала, пористость и характер распределения пор, влажность, химический состав и структура материала.

Плотность теплового потока по закону Фурье выражается следующим образом:

$$q = -\lambda grad T = -\lambda \frac{dT}{dx}$$
.

Температуру в любой точке рассматриваемой плоской стенки можно определить из выражения:

$$T = T_1 - \frac{T_1 - T_2}{s} x$$
,

где x — расстояние от поверхности с температурой T_1 до рассматриваемого сечения.

Теплопроводность зависит от температуры и закон распределения температуры по толщине стенки является параболическим. Но обычно зависимость коэффициента теплопроводности от температуры принимают линейной:

$$\lambda = \lambda_0[1 \pm b (T - T_0)],$$

где λ_0 – коэффициент теплопроводности при температуре $T_0 = 0$ °C; b – температурный коэффициент, определяемый опытным путем.

Чаще закон теплопроводности Фурье для рассматриваемого случая записывают:

$$q = \frac{\lambda}{s}(T_1 - T_2)$$

Отношение $\frac{\lambda}{s}$ называется **тепловой проводимостью**, а величина

обратная ей — **термическим сопротивлением**. ($R = \frac{s}{\lambda}$).

2. Схема установки.

1 - Установка из шамотного кирпича с просверленными отверстиями:

 $s_1=0,\, s_2=20,\, s_3=30,\, s_4=40$ (мм); 2 - Нагреваемые спирали;

3 - Градусники; 4 - Понижающий трансформатор.

3. Таблица результатов опыта и графики.

3. Тиолици результитов опыти и грифики.				
τ	t, °C			
МИН	S_1	S_2	S_3	S_4
0	15	15	15	15
2	33	16	15,5	15
4	58	20	16,5	15,5
6	68	28	18,5	17
8	86	37	22	19
10	106	46	26,5	22
12	118	55	31,5	25,5
14	130	64	37	29,5
16	140	74	43,5	34
18	150	82	48,5	38
20	156	87	53,5	41

4. Расчет плотности теплового потока.

 $q_{I}=0$, так как между градусником и спиралью нет шамотного кирпича, то градусник показывает температуру самой спирали.

$$q_2 = \frac{0,835}{20}(87 - 15) = 3,006 \text{ BT/M}^2$$

$$q_3 = \frac{0,835}{30}(53,5 - 15) = 1,072 \text{ BT/M}^2$$

$$q_4 = \frac{0,835}{40}(41 - 15) = 0,543 \text{ BT/M}^2$$

Вывод: в ходе лабораторной работы ознакомились с теоретическими основами стационарного теплового режима и экспериментального определения плотности теплового потока, проходящего через однослойную плоскую стенку.