Limits of Polynomial Packings for \mathbb{Z}_{p^k} and \mathbb{F}_{p^k}

Jung Hee Cheon

Keewoo Lee

(Seoul National University & Crypto Lab Inc.)

(Seoul National University)

Sketch

Formal & Unified Study of "Polynomial Packing"

- ... which appears in various contexts:
- ➤ HE & SHE-based MPC (HE Packing), IT-MPC (RMFE), Correlation Extractor, ZK...

Upper Bounds & Impossibility Results

Packing Density, Level-Consistency, & Surjectivity

Implications

 \triangleright SHE-based MPC over \mathbb{Z}_{2^k} , HE Packing, RMFE

Definition

Definition

Polynomial Packing

$$R^n$$

$$(R = \mathbb{Z}_{p^k}, \mathbb{F}_{p^k})$$

$$\mathcal{R} = \mathbb{Z}_{p^t}[x]/f(x)$$

* Packing Density = $\log(|R|^n) / \log(|\mathcal{R}|)$

Degree-D Packing

$$R^{n} \xrightarrow{\operatorname{Pack}} \mathcal{R}$$

$$P(\cdot) \downarrow \qquad \qquad \downarrow P(\cdot)$$

$$R^{n} \xrightarrow{\operatorname{Inpack}} \mathcal{R}$$

 $P(\cdot)$: (Multivariate) Polynomial of Degree $\leq D$

Definition

Remark: Unpack may differ for each multiplicative level.

Definition 3.2 (Degree-D **Packing).** Let $\mathcal{P} = (\mathsf{Pack}_i, \mathsf{Unpack}_i)_{i=1}^D$ be a collection of packing methods for R^n into \mathcal{R} . We call \mathcal{P} a degree-D packing method, if it satisfies the following for all $1 \le i \le D$:

- If a(x), b(x) satisfy $\mathsf{Unpack}_i(a(x)) = \boldsymbol{a}$, $\mathsf{Unpack}_i(b(x)) = \boldsymbol{b}$ for $\boldsymbol{a}, \boldsymbol{b} \in R^n$, then $\mathsf{Unpack}_i(a(x) \pm b(x)) = \boldsymbol{a} \pm \boldsymbol{b}$ holds;
- $\ \, If \, a(x), b(x) \, \, satisfy \, \mathsf{Unpack}_s(a(x)) = \boldsymbol{a}, \, \mathsf{Unpack}_t(b(x)) = \boldsymbol{b} \, \, for \, \boldsymbol{a}, \boldsymbol{b} \in R^n \, \, and \\ s,t \in \mathbb{Z}^+ \, \, such \, \, that \, s+t=i, \, \, then \, \, \mathsf{Unpack}_i(a(x) \cdot b(x)) = \boldsymbol{a} \odot \boldsymbol{b} \, \, holds.$

Contexts & Examples

Homomorphic Encryption

 HE supports computation on encrypted data.

Homomorphic Encryption

- HE supports computation on encrypted data.
- Concurrent HE schemes are often based on RLWE for efficiency.
 - ≥ e.g. BGV, FV

Homomorphic Encryption

- HE supports computation on encrypted data.
- Concurrent HE schemes are often based on RLWE for efficiency.
 - ≥ e.g. BGV, FV
 - Practical Usability?

HE Packing [Smart-Vercauteren; PKC10]

HE Packing: Examples

• $\Phi_M(x) = \prod_{i=1}^r F_i(x) \mod p \& \deg F_i = d$

- Traditional Packing Method [Smart-Vercauteren; PKC10]
 - $> (\mathbb{F}_{p^d})^r \stackrel{\cong}{\to} \mathbb{Z}_p[x]/\Phi_M(x) :$

Degree- ∞ , Density = 1

- $\triangleright (\mathbb{Z}_p)^{\varphi(M)} \stackrel{\cong}{\to} \mathbb{Z}_p[x]/\Phi_M(x)$, if $\Phi_M(x)$ fully splits mod p: Degree- ∞ , Density = 1
- HELib Packing for \mathbb{Z}_{p^k} -messages [Gentry-Halevi-Smart; PKC12], [Halevi-Shoup; Eurocrypt15]
 - $\triangleright (\mathbb{Z}_{p^k})^r \to \mathbb{Z}_{p^k}[x]/\Phi_M(x)$:

Degree- ∞ , Density = 1/d

- Recent Developments in SHE-based MPC over \mathbb{Z}_{2^k} (SPDZ-family)
 - Overdrive2k [Orsini-Smart-Vercauteren;CT-RSA20]:

Degree-2, Density ≈ 1/5

➤ MHz2k [Cheon-Kim-Lee;Crypto21]:

Degree-2, Density $\approx 1/2$

RMFE [Cascudo-Cramer-Xing-Yuan; Crypto 18]

Using "Large Field" is often required due to:

1. Mathematical Structures

• Shamir Secret Sharing: We can interpolate at most q points over \mathbb{F}_q

2. Security

■ Linear MAC: $MAC_{\alpha}(x) \coloneqq \alpha \cdot x$ over \mathbb{F}_q has soundness error 1/q

RMFE [Cascudo-Cramer-Xing-Yuan; Crypto 18]

Reverse Multiplication-Friendly Embedding (RMFE)

- \triangleright Embed algebraic structure of copies of small field (e.g. \mathbb{F}_2^n) into a larger field (e.g. \mathbb{F}_{2^d}).
- \triangleright Essentially, RMFEs are **Degree-2** packings from \mathbb{F}_q^n into $\mathbb{F}_{q^d} \cong \mathbb{F}_q[x]/f(x)$.
- ➤ Now a Standard Tool in IT-MPC (e.g. [DLN;Crypto19], [DLSV;Euro20], [PS;Euro21], ...)
- Also used in ZK (e.g. [BMRS;Crypto21], [CG;FC22])

Theorems & Implications

Packing Density

Theorem

- \triangleright Roughly speaking, density of degree-D packing method $\lesssim 1/D$
- \triangleright For d = [deg. of irreducible quotient poly.],

[packing density]
$$\leq \frac{1}{D} + \frac{1}{d} \left(1 - \frac{1}{D} \right)$$

Implications

- 1. MHz2k [CKL;Crypto21] achieves near-optimal density (as a degree-2 packing for \mathbb{Z}_{2^k})
- 2. (\mathbb{F}_{p^k} Version) New and more general proof for upper bound on rate of RMFE
- 3. First upper bound on rate of RMFE over Galois rings [Cramer-Rambaud-Xing; Crypto21] 15 / 21

Level-Consistency

Motivation

> FHE, Homomorphic computation between different mult. levels (e.g. Reshare Protocol)

Theorem

> If level-consistency holds,

 $n \leq [$ # of distinct **irred**. factors of quotient poly. mod p]

Implications

- 1. Optimality of HELib packing with respect to packing density and level-consistency
- 2. Impossibility of Efficient Level-Consistent HE Packing for \mathbb{Z}_{2^k}
- 3. Importance of "Constant Packing Trick" of MHz2k for Level-dependent packings

Surjectivity

Motivation

> Malicious "Packer" might leverage invalid packings in protocols.

Theorem

> If surjectivity holds,

 $n \leq [$ # of distinct **linear** factors of quotient poly. mod p^k]

Implication

- 1. Impossibility of Surjective HE Packing for \mathbb{Z}_{2^k}
- 2. Necessity of ZKPoMK in HE-based MPC over \mathbb{Z}_{2^k} (First conceptualized in MHz2k) $\frac{17}{2}$

Summary

- Formal & Unified Study of Polynomial Packing
 - which appears in various contexts:
 - ➤ HE & SHE-based MPC (HE Packing), IT-MPC (RMFE), Correlation Extractor, ZK...

- Upper Bounds & Impossibility Results
 - Packing Density, Level-consistency, and Surjectivity

Summary

- Implications on SHE-based MPC over \mathbb{Z}_{2^k} (c.f. MHz2k [CKL;Crypto21])
 - 1. MHz2k achieves near-optimal packing density
 - 2. Importance of "Constant Packing Trick" of MHz2k for Level-dependent packings
 - 3. Necessity of ZKPoMK in HE-based MPC over \mathbb{Z}_{2^k} (First conceptualized in MHz2k)
- Implication on HE Packing
 - 1. Optimality of HELib packing with respect to packing density and level-consistency
- Implications on RMFE
 - 1. New and more general proof for upper bound on rate of RMFE
 - 2. First upper bound on rate of RMFE over Galois rings (c.f. [CRX;Crypto21])

Conclusion

- 1. Packing is not a question asked before secure computation.
 - Messages are "static" (e.g. PKE): No need to worry about structure of messages.
- 2. Packing is a question shared by secure computation primitives.
 - Messages are "dynamic" (HE, MPC, ZK): Algebraic structure of messages matters.
- 3. There might be more questions of like this!
 - Especially when we try to apply secure computation to real-life problems.

Thank You!

* ePrint: ia.cr/2021/1033

* E-mail: activecondor@snu.ac.kr

* Webpage: keewoolee.github.io