6.Computational Geometry

Computational Geometry

- 1. Useful for imaging, games etc.
- 2. Fundamental algorithms
- 3. Often solution ideas are simple
- 4. Not easy to implement
 - a. arithmetic errors
 - b. many awkward edge cases

Given a set of points representing the vertices of a polygon, find its area.

1. Area = $(h \times I) / 2$

- 1. Area = $(h \times I) / 2$
- 2. Area = $a \times b \times sin(a, b)$

- 1. Area = $(h \times I) / 2$
- 2. Area = $a \times b \times sin(a, b)$
- 3. Area = .5 * det(x1 y1 1 x2 y2 1 x3 y3

1)

- 1. Area = $(h \times I) / 2$
- 2. Area = $a \times b \times sin(a, b)$
- 3. Area = .5 * det(x1 y1 1)

Easiest to use When given coordinates

x2 y2 1

x3 y3 1)

P (Pick an arbitrary reference point)

- 1. Pick reference Point (P = 0, 0)
- 2. Traverse points trigonometrically
- 3. Sum up signed areas
 - a. A += x1*y2 x2*y1;
- 4. Done!

- 1. Keep it Simple!
 - a. Use determinant formula

- 2. Double precision may not be enough a. Use long double or BigDecimal

Given a set of points find the smallest area polygon that contains all points.

1, 4

-1, 3

1, 3

3, 3

1, 2

2, 2

1, 0

1, 1

Graham Scan

- 1. Start with lowest point
- 2. Sort all points according to the angle they make with this point
- 3. Traverse points in angle order
 - a. keep a list of current points in the hull
 - b. add point to list if "left turn"
 - c. remove points until a "left turn" is possible

Graham Scan: Find Direction

Graham Scan: Find Direction

Use cross product:

- 1. $z(A \times B) > 0 \Rightarrow going left$
- 2. $z(A \times B) < 0 \Rightarrow$ going right

Graham Scan: Find Direction

Questions?