#### **Problem Sheet 4**

```
begin
using Distributions
using PlutoUI
using LinearAlgebra
using DelimitedFiles
using DataFrames
using KernelFunctions
using Plots
using Random
using StatsPlots
default(;linewidth=3.0, legendfontsize=15.0)
```

#### **Table of Contents**

#### **Problem Sheet 4**

- 1. Gaussian process (GP) regression
  - (a) [MATH] Show that the Bayesian evidence is given by where y=(y1,...,yn) and the kernel matrix is defined by Kij=K(xi,xj) . Solution
  - (b) [CODE] Create a Gaussian prior with zero mean and a RBF Kernel and sample from it on a grid
  - (c) [MATH] Given a set of training data (X,y), compute the predictive distribution of some test dat... Solution
  - (d) [CODE] Implement the predictive distribution and plot the predictive mean along with one sta...
- 2. Gibbs sampler for outlier detection

MATH Show that the remaining conditional posteriors are given by

- (b) [CODE] Write a program that implements the Gibbs sampler. Generate 103 samples from the p...
- (c) Which data points in the file outlier.dat are outliers? Use the samples generated in part (b) and...

## 1. Gaussian process (GP) regression

For the GP regression problem, we assume that data are generated as

$$y_i = f(x_i) + 
u_i \qquad i = 1, \dots, n$$

where the  $\nu_i$  are independent, zero mean Gaussian noise variables within  $E[\nu_i^2] = \sigma^2$  and  $f(\cdot)$  has a GP prior with kernel K(x,x').

# (a) [MATH] Show that the Bayesian evidence is given by

$$p(\mathbf{y}) = rac{1}{(2\pi)^{n/2} |\det(\mathbf{K} + \sigma^2 \mathbf{I})|^{rac{1}{2}}} \mathrm{exp} \left[ -rac{1}{2} \mathbf{y}^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y} 
ight]$$

where  $\mathbf{y}=(y_1,\ldots,y_n)$  and the kernel matrix is defined by  $\mathbf{K}_{ij}=K(x_i,x_j)$ .

Tip

Calculate the joint density of y and use the fact that  $f(x_j)$  and  $\nu_i$  are independent Gaussian random variables. Hence you can add the respective covariance matrices.

#### **Solution**

The evidence can be computed via the joint distribution:

$$p(\mathbf{y}) = \int p(\mathbf{y}, \mathbf{f}) d\mathbf{f} = \int p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}) d\mathbf{f}$$

Where

$$p(\mathbf{y}|\mathbf{f}) = rac{1}{(2\pi)^{N/2}|\det(\sigma^2\mathbf{I})|^{rac{1}{2}}} \exp\left[-rac{1}{2}(\mathbf{y} - \mathbf{f})^{ op}\sigma^{-2}\mathbf{I}(\mathbf{y} - \mathbf{f})
ight]$$
 $p(\mathbf{f}) = rac{1}{(2\pi)^{N/2}|\det(\mathbf{K})|^{rac{1}{2}}} \exp\left[-rac{1}{2}\mathbf{f}^{ op}\mathbf{K}^{-1}\mathbf{f}
ight]$ 

In the integration one can do it the hard way and reformulate

$$p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f}) \equiv \mathcal{N}(y \mid 0, \sigma^2 \mathbf{I} + \mathbf{K})\mathcal{N}(f \mid \overline{\mu}, \overline{\Sigma})$$

using the identity

$$\mathcal{N}(x \mid m_1, \Sigma_1) \cdot \mathcal{N}(x \mid m_2, \Sigma_2) = \mathcal{N}(m_1 \mid m_2, (\Sigma_1 + \Sigma_2) \mathcal{N}(x \mid \overline{m}, \overline{\Sigma}) \ \overline{m} = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1} (\Sigma_1^{-1} m_1 + \Sigma_2^{-1} m_2) \ \overline{\Sigma} = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1}$$

Replacing x by  $\mathbf{f}$ , the integral over  $\mathbf{f}$  gives one and we recover the multivariate gaussian for  $\mathbf{y}$ . Or one can intuitively see that we are having a zero mean prior on the mean  $(\mathbf{f})$ , and therefore one can simply add the variances to get the final result.

# (b) [CODE] Create a Gaussian prior with zero mean and a RBF Kernel and sample from it on a grid

```
begin
    x_test = range(0, 10, length = 200)
    k = SqExponentialKernel() # This computes k(x, x') = exp(-0.5||x - x'||^2)
    K = kernelmatrix(k, x_test) + 1e-5I
    prior_f = MvNormal(K)
    S = 10 # Number of GP samples
end;
```



(c) [MATH] Given a set of training data (X, y), compute the predictive distribution of some test data  $X_{\mathrm{test}}$ 

#### Solution

Given f=f(X) and  $f^*=f(X_{\mathrm{test}})$ , we know that the joint distribution  $p(f,f^*)=\mathcal{N}(0,K)$ , where K is equal to :

$$K = egin{pmatrix} K_X & K_{X,X_{test}} \ K_{X_{test},X} & K_{X_{test}} \end{pmatrix}$$

Using the properties of Gaussian distributions we get the exact conditional  $p(f^*|f) = \mathcal{N}(\mu(f), \Sigma)$  where  $\mu(f) = K_{X_{test}, X} K_X^{-1} f$  and  $\Sigma = K_{X_{test}} - K_{X_{test}, X} K_X^{-1} K_{X, X_{test}}$ .

Now if we have some data y we can compute the predictive distribution as :

$$p(f^*|y) = \int p(f^*|f)p(f|y)df = \mathcal{N}(f^*|\mu^*,\Sigma^*)$$

where  $\mu^*=K_{X_{test},X}(K_X+\sigma^2I)^{-1}y$  and  $\Sigma^*=K_{X_{test}}-K_{X_{test},X}(K_X+\sigma^2I)^{-1}K_{X,X_{test}}$ 

# (d) [CODE] Implement the predictive distribution and plot the predictive mean along with one standard error



```
begin

rng = Random.MersenneTwister(42)

X = rand(rng, Uniform(0, 10), N)

σ = exp(logσ)

y = sin.(X) + randn(rng, N) * σ

end;
```

```
function pred_mean_and_cov(k, x_test, x, y)

Kx = kernelmatrix(k, x)

Σ = Kx + σ^2 * I

Kxtest_x = kernelmatrix(k, x_test, x)

Kxtest = kernelmatrix(k, x_test) + 1e-5I

return Kxtest_x * inv(Σ) * y, Kxtest - Kxtest_x * inv(Σ) * Kxtest_x'

end;
```

```
m, C = pred_mean_and_cov(k, x_test, X, y);
```



2

```
begin
plot(x_test, rand(MvNormal(m, Symmetric(C)), S * 10), color=:black, label="",
alpha=0.1, ylims=(-2, 2))
plot!(x_test, m, ribbon = sqrt.(diag(C)), color=:blue, fillalpha=0.2, label =
"Prediction")
plot!(x_test, sin.(x_test), color=:red, label="f")
scatter!(X, y, color=:green, label = "Data")
end
```

## 2. Gibbs sampler for outlier detection

The file *outlier.dat* on the web page of the course contains a data set  $D=(y_1,\ldots,y_N)$ . Most of the observations have been drawn from a Gaussian probability distribution  $\mathcal{N}(y_i;\mu,\sigma^2)$  with mean  $\mu$  and variance  $\sigma^2$ . However, D contains some **outliers**, which occur with probability  $\epsilon$  and are displaced by a random offset  $A_i$ . For the purpose of **outlier detection** the model is augmented with an indicator variable

$$\delta_i = egin{cases} 1 & ext{if } y_i ext{ is an outlier,} \ 0 & ext{if } y_i ext{ is a normal data point,} \end{cases}$$

for each observation. Assuming conjugate priors for the parameters yields the full stochastic model

$$egin{array}{lll} \mu & \sim & \mathcal{N}( heta,v^2), & \sigma^{-2} & \sim & \mathrm{Gamma}(\kappa,\lambda), & \epsilon & \sim & \mathrm{Beta}(lpha,eta), \ y_i & \sim & \mathcal{N}(\mu+\delta_i\,A_i,\sigma^2), & \delta_i & \sim & \mathrm{Bernoulli}(\epsilon), & A_i & \sim & \mathcal{N}(0, au^2). \end{array}$$

We want to use a Gibbs sampler in order to draw samples from the posterior  $p(\mu, \sigma^2, \epsilon, \delta, \mathbf{A}|D)$  with  $\boldsymbol{\delta} = (\delta_1, \dots, \delta_N)$  and  $\mathbf{A} = (A_1, \dots, A_N)$ . Some conditional posteriors are given by

$$\mu \sim \mathcal{N} \Bigg( rac{\sigma^2 heta + v^2 \sum_{i=1}^N (y_i - \delta_i \, A_i)}{\sigma^2 + N v^2}, rac{\sigma^2 v^2}{\sigma^2 + N v^2} \Bigg), \ \sigma^{-2} \sim \operatorname{Gamma} \Bigg( \kappa + rac{N}{2}, rac{2\lambda}{2 + \lambda \sum_{i=1}^N (y_i - \delta_i \, A_i - \mu)^2} \Bigg).$$

## MATH Show that the remaining conditional posteriors are given by

$$egin{aligned} \delta_i \sim & ext{Bernoulli}igg(rac{\epsilon}{\epsilon + (1-\epsilon)\exp(-A_i(y_i - A_i - \mu)/(2\sigma^2))}igg), \ A_i \sim & \mathcal{N}igg(rac{ au^2\delta_i(y_i - \mu)}{\sigma^2 + au^2}, rac{\sigma^2 au^2}{\sigma^2 + au^2\delta_i}igg), \ \epsilon \sim & ext{Beta}igg(lpha + \sum_{i=1}^N \delta_i, eta + \sum_{i=1}^N (1-\delta_i)igg). \end{aligned}$$

#### **Solution**

• Joint probability distribution

$$\begin{split} p(\mu,\sigma^2,\epsilon,\boldsymbol{\delta},\mathbf{A},D) = & \frac{\Gamma(\alpha+\beta)\epsilon^{\alpha-1}(1-\epsilon)^{\beta-1}}{\sqrt{2\pi v^2}\Gamma(\kappa)\lambda^{\kappa}\Gamma(\alpha)\Gamma(\beta)} \sigma^{-2(\kappa-1)}e^{-\frac{\sigma^{-2}}{\lambda}-\frac{(\mu-\theta)^2}{2v^2}} \\ \times & \prod_{i=1}^N \frac{\epsilon^{\delta_i}(1-\epsilon)^{1-\delta_i}}{2\pi\sigma\tau}e^{-\frac{(y_i-\delta_i}{2\sigma^2}A_i-\mu)^2}-\frac{A_i^2}{2\tau^2} \end{split}$$

Conditional distributions

$$\begin{split} p(\mu|\ldots) &\propto e^{-\frac{(\mu-\theta)^2}{2v^2} - \sum_{i=1}^N \frac{(y_i - \delta_i A_i - \mu)^2}{2\sigma^2}} \\ &\Rightarrow p(\mu|\ldots) = \mathcal{N} \left( \mu | \left( \frac{1}{\nu^2} + \frac{N}{\sigma^2} \right)^{-1} \left( \frac{\theta^2}{\nu^2} + \frac{1}{\sigma^2} \sum_{i}^N y_i - \delta_i A_i \right) \right), \left( \frac{1}{\nu^2} + \frac{N}{\sigma^2} \right)^{-1} \right) \\ p(\sigma^{-2}|\ldots) &\propto \sigma^{-2(\kappa + N/2 - 1)} e^{-\sigma^{-2} \left( \frac{1}{\lambda} + \sum_{i=1}^N \frac{(y_i - \delta_i A_i - \mu)^2}{2} \right)} \\ &\Rightarrow p(\sigma^{-2}|\ldots) = \operatorname{Gamma} \left( \sigma^{-2} \mid \kappa + \frac{N}{2}, \frac{2\lambda}{2 + \lambda \sum_{i=1}^N (y_i - \delta_i A_i - \mu)^2} \right). \\ p(\delta_i|\ldots) &\propto \epsilon^{\delta_i} (1 - \epsilon)^{1 - \delta_i} e^{-\delta_i \frac{A_i (A_i + \mu - y_i)}{2\sigma^2}} \\ &\Rightarrow p(\delta_i \mid \ldots) = \operatorname{Bernoulli} \left( \frac{\epsilon}{\epsilon + (1 - \epsilon) \exp(-A_i (y_i - A_i - \mu)/(2\sigma^2))} \right) \end{split}$$

To get the new parameter of the Bernoulli distribution, compute the normalization constant by summing over  $\delta_i=\{0,1\}$ :

$$egin{aligned} p(\delta_i = 0) &\propto (1 - \epsilon), \quad p(\delta_i = 1) \propto \epsilon e^{-rac{A_i(A_i + \mu - y_i)}{2\sigma^2}} \ \Rightarrow p(\delta_i = 1) = rac{\epsilon e^{-rac{A_i(A_i + \mu - y_i)}{2\sigma^2}}}{(1 - \epsilon) + \epsilon e^{-rac{A_i(A_i + \mu - y_i)}{2\sigma^2}}} = rac{\epsilon}{(1 - \epsilon)e^{rac{A_i(A_i + \mu - y_i)}{2\sigma^2}} + \epsilon} \ p(A_i | \ldots) &\propto e^{-rac{(y_i - \delta_i}{2\sigma^2} A_i - \mu)^2}{2\sigma^2} - rac{A_i^2}{2\tau^2}} \ \Rightarrow p(A_i | \ldots) = \mathcal{N}\left(A_i \mid rac{ au^2 \delta_i(y_i - \mu)}{\sigma^2 + au^2}, rac{\sigma^2 au^2}{\sigma^2 + au^2 \delta_i}
ight) \ p(\epsilon | \ldots) &\propto \epsilon^{lpha - 1 + \sum_{i=1}^N \delta_i} (1 - \epsilon)^{eta - 1 + \sum_{i=1}^N (1 - \delta_i)} \ \Rightarrow p(\epsilon | \ldots) = \operatorname{Beta}\left(\epsilon \mid lpha + \sum_{i=1}^N \delta_i, eta + \sum_{i=1}^N (1 - \delta_i)
ight). \end{aligned}$$

• (b) [CODE] Write a program that implements the Gibbs sampler. Generate  $10^3$  samples from the posterior using the hyperparameters  $\theta=0$ ,  $v^2=100$ ,  $\kappa=2$ ,  $\lambda=2$ ,  $\alpha=2$ ,  $\beta=20$ ,  $\tau^2=100$ . Plot histograms showing the marginal posteriors  $p(\mu|D)$  and  $p(\epsilon|D)$ .

#### **Solution**

```
• function sample_\mu(\sigma^2, \theta, \nu^2, y, \delta, A, N)
• m = (\sigma^2 * \theta + \nu^2 * sum(y - \delta .* A)) / (\sigma^2 + N * \nu^2)
• c = \sigma^2 * \nu^2 / (\sigma^2 + N * \nu^2)
• return rand(Normal(m, sqrt(c)))
• end;
```

```
function sample_σ²(κ, N, λ, y, δ, A, μ)
a = κ + N / 2
b = 2λ / (2 + λ * sum(abs2, y - δ .* A .- μ))
return inv(rand(Gamma(a, b)))
end;
```

```
    function sample_δ(ε, A, y, μ, σ²)
    θ = ε ./ (ε .+ (1 - ε) * exp.(-A .* (y .- A .- μ) ./ (2σ²)))
    return rand.(Bernoulli.(θ))
    end;
```

```
• function sample_A(\tau^2, \delta, y, \mu, \sigma^2)
• m = \tau^2 * \delta .* (y .- \mu) / (\sigma^2 + \tau^2)
• c = \sigma^2 * \tau^2 ./ (\sigma^2 .+ \tau^2 .* \delta)
• rand.(Normal.(m, sqrt.(c)))
• end;
```

```
• function sample_\epsilon(\alpha, \delta, \beta)
• rand(Beta(\alpha + sum(\delta), \beta + sum(1 .- \delta)))
• end;
```

#### 100

```
begin # We load the data

y_outlier = vec(readdlm("outlier.dat"))

Ny = length(y_outlier)
end
```



```
• begin # We select multiple hyperparameters

• T = 10000

• \theta = 0.0

• v^2 = 100

• \kappa = 2

• \alpha = 2

• \beta = 20

• \tau^2 = 100

• end;
```

```
begin

# We initialize the random variables and preallocate storage

A = randn(Ny); As = zeros(Ny, T)

δ = rand(0:1, Ny); δs = zeros(Ny, T)

ε = rand(); εs = zeros(T)

σ² = rand(); σ²s = zeros(T)

μ = randn(); μs = zeros(T)

for i in 1:T

μ = sample_μ(σ², θ, ν², y_outlier, δ, A, Ny); μs[i] = μ

σ² = sample_σ²(κ, Ny, λ, y_outlier, δ, A, μ); σ²s[i] = σ²

δ = sample_δ(ε, A, y_outlier, μ, σ²); δs[:, i] = δ

A = sample_A(τ², δ, y_outlier, μ, σ²); As[:, i] = A

ε = sample_ε(α, δ, β); εs[i] = ε

end

end
```



```
begin

p1 = scatter(1:Ny, y_outlier, label = "y")

p2 = histogram(μs, label = "μ", normalize = true, lw = 0.0)

p3 = scatter(1:Ny, vec(mean(δs, dims = 2)), label = "δ")

p4 = histogram(εs, label = "ε", normalize = true, lw = 0.0)

plot(p1, p2, p3, p4, legendfontsize=6.0)

end
```

(c) Which data points in the file *outlier.dat* are outliers? Use the samples generated in part (b) and the condition  $p(\delta_i|D) \geq 0.02$  in order to identify them.

```
y pδ

1 -4.07584 0.0414
2 -11.1217 0.2325
3 18.3938 0.1528
```

```
    begin
    df = DataFrame([y_outlier[:], vec(mean(δs, dims = 2))], [:y, :pδ])
    df[df.pδ .>= 0.02, :]
    end
```