1. 用分支定界法求解下面整数规划问题。

 $\begin{aligned} \max & z = 3x_1 + 2x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \leq 14 \\ & x_1 + 0.5x_2 \leq 4.5 \\ & x_1, x_2 \geq 0, x_1, x_2 \in \mathbb{Z} \end{aligned}$

max Z=3/1+2/2

1° 先求松驰问题最优解:

0x4+0x==

~ X*=(13,5)T, Z*=59

上。 按灯线:

max Z=371+2X2

3t 2X1+3X2 514 X1+05X2 545

X1 ≤ 3

据版解 X*=(3, 含) T, Z*= 尝

学 (景元)

7 max Z=371+2X2 8t 2X1+3X6 ≤ 14

×1+062 ≤45

X1 + 116 M = 4

X124

最成解 X*=(4,1)T, Z*=14

2° X153时,按X分枝:

max $z=3x_1+2x_2$ st $2x_1+3x_1 \le 14$ $x_1+65x_2 \le 45$ $x_1 \le 3$, $x_2 \le 2$ max $Z = \frac{3}{1} + \frac{3}{4} \times \frac{14}{4}$ st $2X_1 + \frac{3}{4} \times \frac{14}{4}$ $X_1 + \frac{95}{4} \times \frac{45}{4}$ $X_1 \le 3$, $X_2 \ge 3$

最成解 X^{*}=(3, 2)^T, 2^{*}=13 【最成解 X^{*}= 12,3)^T, 2^{*}=12

该问题是状解 X=(4,1)T, 最优值 2*=14

- 2. 某大学运筹学专业硕士生要求课程计划中必须选修两门数学类,两门运筹学 类和两门计算机类课程。该专业所有可选课程及其归类如下表所示:
- 注: 凡归属两类的课程选修后可认为两类中各选修了一门课程。

	课程名称	所属归类
ı	微积分	数学类
5	计算机程序设计	计算机类
3	运筹学	数学类,运筹学类
4	数据结构	数学类,计算机类
ζ	管理统计	数学类,运筹学类
6	计算机模拟	计算机类,运筹学类
7	预测	数学类, 运筹学类

此外,有些课程必须学习了先修课程才能选修,如修计算机模拟必须先学习 计算机程序设计。所有要求先修课程的选修课及其对应的先修课程如下表所示:

课程名称	对应先修课程
计算机模拟	计算机程序设计
数据结构	计算机程序设计
管理统计	微积分
预测	管理统计

现在希望知道一个硕士生最少应选修几门课程(及其对应的课程名称)才能满足上述要求。请列出求解该问题的整数线性规划模型。

X;=1表示选修第i门课程,X;=0表示卷.

目标为: min Z = Z; 7;

约束が:
$$\pi_1 + \chi_3 + \chi_4 + \chi_5 + \chi_7 > 2$$

 $\chi_3 + \chi_5 + \chi_6 + \chi_7 > 2$
 $\chi_2 + \chi_4 + \chi_6 > 2$
 $\chi_6 \leq \chi_2$
 $\chi_4 \leq \chi_2$

综上,该问题的线性规划模型为:

S.t.
$$71+73+74+75+77 \ge 2$$

 $73+75+76+717 \ge 2$
 $72+74+776 \ge 2$
 $72-76 \ge 0$
 $72-74 \ge 0$
 $71-71 \ge 0$
 $71-71 \ge 0$

3. 将 $\max_{x \in \Omega} x_1 + x_2$ 表示成混合整数线性规划,其中集合 Ω 为下图红色所示区 域。

引入0-1 空長り1, り2, り3, 知,则は同助意元ろ:

るこれれん max

8th 2X1+ 22 < 3+ My1

-71+2X2 < 1+M2y2

XI+ TU < 3+ Mby3

71- 7 < 1+ M494

g1+ y2 ≤1

43 + 44 E1

な 30, j=1,2

yr 6 {0,13, i=1,2,3,4.

治和叶紫朝进行 限制,各有一部已不

可行即为几区域, Mk, K=1,2,3,4 是於大野工效

4. 求下图所示的从 A 到 E 的最短路线及其长度。

- (1) 将原问题表示为多阶段决策问题。
- (2) 分别用逆推法和顺推法求解(1) 中多阶段决策问题。

状态集: Sk={A7, YB, B2, B37, {Co. C1, C2, C3}, {D, D2, D3}, {E4, k=1,2,3,4,5

決策集: Uk(Sk)= 181, B2, B33, fCo, C1, C2, C33, ..., 行, ∀Sk ∈ Sk, K=1,2,3,4

状态转移函数: Tk(Sk,Uk)= Uk, VSkeSk, Uk∈Uk(Sk), K=1,2,3,4.

阶段指标函数: dk(sk. Uk), ∀sk∈Sk, Uk∈Uk(sk), K=1,2,3.4

龙策略 P= ₹41,42, U3,443 使下述过程指标函数达到最小。

$$d_{1}(S_{1}, U_{1}) + \sum_{k=1}^{4} d_{k}(T_{k-1}(S_{k-1}, U_{k-1}), U_{k})$$

(2)

迸

长度为了

|版:

