Préparation à l'agrégation externe de Sciences Sociales

Analyse 2: correction

2021-2022

Exercice 1

1. Nous allons montrer que l'image par $f: x \to x - 1 + 2e^{-x}$ de l'intervalle I défini par $I = [\ln 2, 2]$ est un intervalle inclus dans I. f est définie et dérivable sur I:

$$f'(x) = 1 - 2e^{-x}.$$

f'(x) est nulle pour $x = \ln 2$ et strictement positive pour $\ln 2 < x \le 2$, donc f est une bijection strictement croissante de I sur : $[f(\ln 2), f(2)] = [\ln 2, 1 + \frac{2}{e^2}] \subset I$.

On a montré que si $u_n \in I$ alors $u_{n+1} = f(u_n) \in I$. Comme $u_0 \in I$, par récurrence $u_n \in I$ pour tout n.

2. L'examen des premières valeurs de la suite nous incite à penser que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante :

$$u_0 = 2,$$
 $u_1 = 1 + \frac{2}{e^2} \approx 1.27,$ $u_2 \approx 0.83.$

Comme f est strictement croissante dans l'intervalle I, si $u_{n+1} \leq u_n$ alors

$$u_{n+2} = f(u_{n+1}) \le f(u_n) = u_{n+1}.$$

Comme $u_1 \leq u_0$, par récurrence $(u_n)_{n \in \mathbb{N}}$ est décroissante pour tout n.

3. La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par $\ln 2$, elle converge donc vers un nombre l qui est solution de l'équation

$$l = f(l)$$

car f est continue sur I.

$$l = f(l) \quad \Leftrightarrow \quad l = l-1+2e^{-l} \quad \Leftrightarrow \quad e^{-l} = \frac{1}{2} \quad \Leftrightarrow \quad e^{l} = 2 \quad \Leftrightarrow \quad l = \ln 2.$$

La suite $(u_n)_{n\in\mathbb{N}}$ converge donc vers le nombre $l=\ln 2$.

Exercice 2

 $(a_n)_{n\geq 0}$ est une suite numérique définie par la relation de récurrence :

$$a_0 = 1, \quad a_n = pa_{n-1}, \forall n \ge 1.$$

On a alors que

$$a_n = a_0 p^n = p^n.$$

On définit la série $(S_k)_{k\geq 0}$ de terme général $(a_n)_{n\geq 0}$:

$$S_k = \sum_{i=0}^k a_i = \sum_{i=0}^k p^i.$$

Rappelons que la somme partielle d'une suite géométrique de raison p vaut :

$$\sum_{i=0}^{k} p^{i} = \frac{1 - p^{k+1}}{1 - p}.$$

On a alors si 0 ,

$$S_k = \sum_{i=0}^k p^i = \frac{1 - p^{k+1}}{1 - p} \xrightarrow[k \to +\infty]{} \frac{1}{1 - p}.$$

Et si $p \geq 1$, (S_k) diverge.

Exercice 3

1. Notons u_n le terme général.

$$u_n = \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$$

donc

$$u_0 + u_1 + \dots + u_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n+1} - \frac{1}{n+2} = 1 - \frac{1}{n+2}$$

et

$$\sum_{n>0} \frac{1}{(n+1)(n+2)} = \lim_{n \to +\infty} 1 - \frac{1}{n+2} = 1.$$

La série converge.

2. La série est la somme de deux séries convergentes.

$$\sum_{n>0} \left(\frac{1}{2^n} + \frac{1}{3^n} \right) = \sum_{n>0} \frac{1}{2^n} + \sum_{n>0} \frac{1}{3^n} = \frac{1}{1 - \frac{1}{2}} + \frac{1}{1 - \frac{1}{3}} = 2 + \frac{3}{2} = \frac{7}{2}$$

La série est donc convergente.

- 3. Le terme général $\frac{n+\ln n}{n^2}$ est équivalent à $\frac{1}{n}$ quand $n \to +\infty$. La série diverge car la série $\sum \frac{1}{n}$ diverge.
- 4. Notons u_n le terme général.

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} \frac{2n^2}{n^2 + n + 1} = 2$$

D'après la règle de Cauchy, la série diverge.

5. La série est alternée et le terme $\frac{1}{\sqrt{n}}$ tend vers 0 et est décroissant. Le critère des séries alternées nous dit que la série est convergente.