МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ» Тема: Изучение режимов адресации и формирования исполнительного адреса

Студент гр. 9383	Чумак М.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучить работу режимов адресации, используя программу на языке Ассемблера.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая автоматическом режиме выполняться не должна, так как самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, a соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу предыдущей лабораторной работы таблицы 1 И подписать его защите студенты должны уметь объяснить результат преподавателя. Ha выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.

- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Вариант №9:

```
vec1 DB 31,32,33,34,38,37,36,35
vec2 DB 50,60,-50,-60,70,80,-70,-80
matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2
```

Выполнение работы.

Описание ошибок, обнаруженных при первоначальной трансляции:

1 mov mem3,[bx] - LR.ASM(41): error A2052: Improper operand type Перемещение данных из памяти в память недопустим. Перемещать возможно только между двумя регистрами или регистрами и памятью.

2 mov cx,vec2[di] - LR.ASM(48): warning A4031: Operand types must match

Несовпадение размеров операндов. Регистр сх имеет размер в 2 байта, а элемент массива vec2-1 байт.

3 mov cx,matr[bx][di] - LR.ASM(52): warning A4031: Operand types must match

Несовпадение размеров операндов. Регистр сх имеет размер в 2 байта, а элемент массива(матрицы) matr-1 байт.

4 mov ax,matr[bx*4][di] - LR.ASM(53): error A2055: Illegal register value

Недопустимое значение регистра. Нельзя умножать 2х байтные регистры.

5 mov ax,matr[bp+bx] - LR.ASM(72): error A2046: Multiple base registers

Недопустимое использование более одного базового регистра для адресации 6 mov ax,matr[bp+di+si] - LR.ASM(73): error A2047: Multiple index registers

Недопустимое использование более одного индексного регистра.

Вывод.

В результате работы была изучена работа режимов адресации с использованием программы на языке Ассемблера.

протокол

Таблица 1. Результат выполнения программы в пошаговом режиме.

Адрес	Символический код	16-ричный	Содержимое	
коман	команды	код команды	регистров и	
ды			ячеек памяти	
			до выполнения	После
				выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(DS) = 19F5	(DS) = 19F5
			Stack:+0 0000	Stack: +0 19F5
0001	SUB AX, AX	2BC0	(AX) = 0000	(AX) = 0000
0003	PUSH AX	50	(SP) = 0016	(SP) = 0014
			(AX) = 0000	(AX) = 0000
			Stack: +0 19F5	Stack: +0 0000
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
0007	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
000C	MOV CX, AX	8BC8	(CX) = 00B0	(SP) = 01F4
000E	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
0012	MOV [0002], FFCE	C7060200CE		
		FF		
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
001B	MOV [0000], AX	A30000		
001E	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 011F
0020	MOV AL, [BX+03]	8A4703	(AX) = 011F	(AX) = 0122
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 2622
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
0029	MOV AL, [000E+DI]	8A850E00	(AX) = 0122	(AX) = 01CE

002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
0030	MOV AL,	8A811600	(AX) = 01CE	(AX) = 01FF
	[0016+BX+DI]			
0034	MOV AX, 1A07	B8071A	(AX) = 01FF	(AX) = 1A07
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF
003C	MOV AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
003F	MOV ES, AX	8EC0	(ES) = 1A07	(ES) = 0000
0041	PUSH DS	1E	(DS) = 1A07	(DS) = 1A07
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 1A07
0042	POP ES	07	(ES) = 0000	(ES) = 1A07
			(SP) = 0012	(SP) = 0014
			Stack: +0 1A07	Stack: +0 0000
0043	MOV CX, ES:[BX-01]	268B4FFF	(CX) = 2622	(CX) = FFCE
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
004B	MOV ES:[BX+DI],	268901		
	AX			
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
0050	PUSH 01F4	FF360000	(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0054	PUSH FFCE	FF360200	(SP) = 0012	(SP) = 0010
			Stack: +0 01F4	Stack: +0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000

			+6 0000	+6 19F5
0058	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
005A	MOV DX, [BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
005D	RET far 0002	CA0200	(CS) = 1A0A	(CS) = 01F4
			(SP) = 0010	(SP) = 0016
			Stack: +0 FFCE	Stack: +0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММ

Файл LAB2_FIX.ASM

; Программа изучения режимов адресации процессора IntelX86

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 31,32,33,34,38,37,36,35

vec2 DB 50,60,-50,-60,70,80,-70,-80

matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

```
; Головная процедура
Main PROC FAR
     push DS
     sub AX,AX
     push AX
     mov AX,DATA
     mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax,n1
     mov cx,ax
     mov bl,EOL
     mov bh,n2
; Прямая адресация
     mov mem2,n2
     mov bx,OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al,[bx]
     ; mov mem3,[bx]
; Базированная адресация
     mov al, [bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di,ind
     mov al, vec2[di]
     ; mov cx,vec2[di]
; Адресация с базированием и индексированием
     mov bx,3
```

```
mov al,matr[bx][di]
     ; mov cx,matr[bx][di]
     ; mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ----- вариант 2
     mov es, ax
     push ds
     pop es
     mov cx, es:[bx-1]
     xchg cx,ax
; ----- вариант 3
     mov di,ind
     mov es:[bx+di],ax
; ----- вариант 4
     mov bp,sp
     ; mov ax,matr[bp+bx]
     ; mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp,sp
     mov dx,[bp]+2
     ret 2
```

Main ENDP

CODE ENDS

END Main

Файл LAB2_ERR.ASM

; Программа изучения режимов адресации процессора IntelX86

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 31,32,33,34,38,37,36,35

vec2 DB 50,60,-50,-60,70,80,-70,-80

matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

```
Main PROC FAR
     push DS
     sub AX,AX
     push AX
     mov AX,DATA
     mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax,n1
     mov cx,ax
     mov bl,EOL
     mov bh,n2
; Прямая адресация
     mov mem2,n2
     mov bx,OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al,[bx]
     mov mem3,[bx]
; Базированная адресация
     mov al,[bx]+3
     mov cx,3[bx]
; Индексная адресация
     mov di,ind
     mov al, vec2[di]
     mov cx,vec2[di]
; Адресация с базированием и индексированием
     mov bx,3
     mov al,matr[bx][di]
```

```
mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ----- вариант 2
     mov es, ax
     push ds
     pop es
     mov cx, es:[bx-1]
     xchg cx,ax
; ----- вариант 3
     mov di,ind
     mov es:[bx+di],ax
; ----- вариант 4
     mov bp,sp
     mov ax,matr[bp+bx]
     mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp,sp
     mov dx,[bp]+2
     ret 2
Main ENDP
```

mov cx,matr[bx][di]

CODE ENDS END Main

ПРИЛОЖЕНИЕ В ДИАГНОСТИЧЕСКОЕ СООБЩЕНИЕ Файл LAB2_ERR.lst

#Microsoft (R) Macro Assembler Version 5.10

10/21/20 15:22:3

Page 1-1

; Программа	изучения	режи�
-------------	----------	-------

фов адресации процессора I

ntelX86

= 0024 EOL EQU '\$'

= 0002 ind EQU 2

= 01F4 n1 EQU 500

=-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данн�

 $\mathbf{\hat{Q}}_{X}$

0000 0000 mem1 DW 0

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0

0006 1F 20 21 22 26 25vec1 DB 31,32,33,34,38,37,36,35

24 23

000E 32 3C CE C4 46 50 vec2 DB 50,60,-50,-60,70,80,-70,-80

BAB0

0016 FC FD 07 08 FE FF matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

05 06 F8 F9 03 04

FA FB 01 02

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСА •

♦ии на уровне смещений

; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

Page 1-2

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

mov mem3,[bx]

LAB2.ASM(49): error A2052: Improper operand type

; Базированная адресация

0020 8A 47 03 mov al,[bx]+3

0023 8B 4F 03 mov cx,3[bx]

; Индексная адресация

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al,vec2[di]

002D 8B 8D 000E R mov cx,vec2[di]

LAB2.ASM(56): warning A4031: Operand types must match

; Адресация с базирование�

• и индексированием

0031 BB 0003 mov bx,3

0034 8A 81 0016 R mov al,matr[bx][di]

0038 8B 89 0016 R mov cx,matr[bx][di]

LAB2.ASM(60): warning A4031: Operand types must match

003C 8B 85 0022 R mov ax,matr[bx*4][di]

LAB2.ASM(61): error A2055: Illegal register value

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

♦ИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмент a ; ----- вариант 1 0040 B8 ---- R mov ax, SEG vec2 0043 8E C0 mov es, ax 0045 26: 8B 07 mov ax, es:[bx] 0048 B8 0000 mov ax, 0 ; ----- вариант 2 004B 8E C0 mov es, ax 004D 1E push ds 004E 07 pop es 004F 26: 8B 4F FF mov cx, es:[bx-1] 0053 91 xchg cx,ax ; ----- вариант 3 0054 BF 0002 mov di,ind 0057 26: 89 01 mov es:[bx+di],ax ; ----- вариант 4 005A 8B EC mov bp,sp 005C 3E: 8B 86 0016 R mov ax,matr[bp+bx] LAB2.ASM(81): error A2046: Multiple base registers 0061 3E: 8B 83 0016 R mov ax,matr[bp+di+si] LAB2.ASM(82): error A2047: Multiple index registers ; Использование сегмента � **Ф**тека 0066 FF 36 0000 R push mem1 006A FF 36 0002 R push mem2 mov bp,sp 006E 8B EC 0070 8B 56 02 mov dx,[bp]+20073 CA 0002 ret 2

Main ENDP

0076

LAB2.ASM(89): error A2006: Phase error between passes 0076 **CODE ENDS END Main** #Microsoft (R) Macro Assembler Version 5.10 10/21/20 15:22:3 Symbols-1 Segments and Groups: Length AlignCombine Class Name 0018 PARA **STACK** 0076 PARA CODE **NONE** DATA..... 0026 PARA **NONE** Symbols: Name Type Value Attr EOL NUMBER 0024 IND NUMBER 0002 0000 CODE F PROC Length = 0076MATR L BYTE 0016 DATA 0000 DATA MEM1 L WORD MEM2 0002 DATA L WORD MEM3..... L WORD 0004 DATA N1 NUMBER 01F4

NUMBER -0032

N2

VEC1..... L BYTE 0006 DATA

VEC2..... L BYTE 000E DATA

@CPU TEXT 0101h

@FILENAME TEXT LAB2

@VERSION..... TEXT 510

91 Source Lines

91 Total Lines

19 Symbols

47804 + 459456 Bytes symbol space free

2 Warning Errors

5 Severe Errors

Файл LAB2_FIX.lst

#Microsoft (R) Macro Assembler Version 5.10

10/21/20 15:24:2

Page 1-1

; Программа изучения режи�	
�ов адресации процессора I	
ntelX86	

= 0024	EOL EQU '\$'
= 0002	ind EQU 2
= 01F4	n1 EQU 500
=-0032	n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK
0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данн�

 $\mathbf{\hat{Q}}_{X}$

0000 0000 mem1 DW 0 0002 0000 mem2 DW 0 0004 0000 mem3 DW 0 0006 1F 20 21 22 26 25vec1 DB 31,32,33,34,38,37,36,35

24 23

000E 32 3C CE C4 46 50 vec2 DB 50,60,-50,-60,70,80,-70,-80

BAB0

0016 FC FD 07 08 FE FF matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

05 06 F8 F9 03 04

FA FB 01 02

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

♦ии на уровне смещений

; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

Page 1-2

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

; mov mem3,[bx]

; Базированная адресация

0020 8A 47 03 mov al,[bx]+3

0023 8B 4F 03 mov cx,3[bx]

; Индексная адресация

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al,vec2[di]

; mov cx,vec2[di]

; Адресация с базирование�

• и индексированием

002D BB 0003 mov bx,3

0030 8A 81 0016 R mov al,matr[bx][di]

; mov cx,matr[bx][di]

; mov ax,matr[bx*4][di]

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

•ИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмент

a

; ----- вариант 1

0034 B8 ---- R mov ax, SEG vec2

0037 8E C0 mov es, ax 0039 26: 8B 07 mov ax, es:[bx] 003C B8 0000 mov ax, 0 ; ----- вариант 2 003F 8E C0 mov es, ax push ds 0041 1E 0042 07 pop es 0043 26: 8B 4F FF mov cx, es:[bx-1] 0047 91 xchg cx,ax ; ----- вариант 3 0048 BF 0002 mov di,ind mov es:[bx+di],ax 004B 26: 89 01 ; ----- вариант 4 004E 8B EC mov bp,sp ; mov ax,matr[bp+bx] ; mov ax,matr[bp+di+si] ; Использование сегмента � 🏶 тека 0050 FF 36 0000 R push mem1 push mem2 0054 FF 36 0002 R 0058 8B EC mov bp,sp mov dx,[bp]+2 005A 8B 56 02 005D CA 0002 ret 2 Main ENDP 0060 0060 CODE **ENDS END Main** #Microsoft (R) Macro Assembler Version 5.10 10/21/20 15:24:2 Symbols-1

Segments and Groups:

N a m e	Leng	th	Aligi	nComl	bine Class	
ASTACK		0060	PARA	A	NONE	
Symbols:						
N a m e	Type	Value	e Attr			
EOL	NUM	IBER	0024			
IND	NUM	IBER	0002			
MAIN		F PRO	OC	0000	CODE	Length = 0060
MATR		L BY	TE	0016	DATA	
MEM1		L WC	RD	0000	DATA	
MEM2	•	L WC	RD	0002	DATA	
MEM3	•	L WC	RD	0004	DATA	
N1	NUM	IBER	01F4			
N2	NUM	IBER	-0032	2		
VEC1	L BY	TE	0006	DATA	A	
VEC2	LBY	TE	000E	DATA	A	
@CPU	•	TEXT	Γ 010	1h		
@FILENAME		TEXT	Γ LAI	32_FI	X	

@VERSION TEXT 510

- 91 Source Lines
- 91 Total Lines
- 19 Symbols

47784 + 459476 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors