

1/37

Linguagens Formais e Autómatos / Compiladores

Análise sintática ascendente

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt>

DETI, Universidade de Aveiro

Ano letivo de 2020-2021

Sumário

- 1 Introdução
- 2 Conflitos
- 3 Construção de um reconhecedor
- 4 Conjunto de itens
- 5 Tabela de decisão de um reconhecedor ascendente

Análise sintática ascendente llustração por um exemplo

Considere a gramática

$$\begin{array}{c} D \rightarrow T \ L \ ; \\ T \rightarrow \text{i} \mid \text{r} \\ L \rightarrow \text{v} \mid L \ , \ \text{v} \end{array}$$

que representa uma declaração de variáveis a la C

- Como reconhecer a palavra "u = i v, v;" como pertencente à linguagem definida pela gramática dada?
- Se u pertence à linguagem definida pela gramática, então $D \Rightarrow^+ u$
- Gerando uma derivação à direita, tem-se
 D ⇒ T L; ⇒ T L, v; ⇒ T v, v; ⇒ i v, v;
- Tente-se agora fazer a derivação no sentido contrário, isto é, indo de \boldsymbol{u} para \boldsymbol{D}

Análise sintática ascendente llustração por um exemplo (cont.)

Considere a gramática

```
\begin{array}{c} D \rightarrow T \ L \ ; \\ T \rightarrow \text{i} \mid \text{r} \\ L \rightarrow \text{v} \mid L \ , \ \text{v} \end{array}
```

e *reduza-se* a palavra " $u = i \lor , \lor ;$ " ao símbolo inicial D

•

Colocando ao contrário, tem-se

$$D\Rightarrow T\,L\;;\;\Rightarrow T\,L\;,\;\forall\;;\;\Rightarrow T\,\forall\;,\;\forall\;;\;\Rightarrow \mathrm{i}\,\forall\;,\;\forall\;;$$
 que corresponde à derivação da palavra " $u=\mathrm{i}\,\forall\;,\;\forall\;;$ "

ACP/MOS (UA) LFA+C-2020/2021 junho/2021

Análise sintática ascendente llustração por um exemplo (cont.)

 A tabela seguinte mostra como, na prática, se realiza esta (retro)derivação

pilha	entrada	próxima ação
	iv,v;\$	deslocamento
i	v,v;\$	redução por $T o \mathtt{i}$
T	v,v;\$	deslocamento
T \vee	, v;\$	redução por $L o { t v}$
TL	, v;\$	deslocamento
TL ,	v;\$	deslocamento
TL , $ extsf{v}$; \$	redução por $L o L$, $ v$
TL	; \$	deslocamento
TL ;	\$	redução por $D o TL$;
D	\$	deslocamento
D \$		aceitação

 A palavra à entrada foi reduzida ao símbolo inicial pelo que é aceite como pertencendo à linguagem

Análise sintática ascendente llustração de um erro sintático

 Veja-se a reação deste procedimento a uma entrada errada, por exemplo a palavra i v v ; .

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o \mathtt{i}$
T	vv;\$	deslocamento
$T \mathtt{v}$	v;\$	redução por $L o {\bf v}$
TL	v;\$	deslocamento
$TL\mathbf{v}$; \$	rejeição

- Rejeita porque $L \lor n$ ão corresponde ao prefixo de uma produção da gramática
- Na realidade, o erro poderia ter sido detetado dois passos antes, aquando da segunda redução, porque $\mathbf{v} \not\in \mathbf{follow}(L)$
 - v corresponde ao símbolo à entrada
 - L é o símbolo que iria aparecer no topo da pilha se se fizesse a redução por $L \to {\bf v}$

Análise sintática ascendente

Ilustração de conflito entre deslocamento e redução

Considere a gramática

e aplique-se o procedimento anterior à palavra i cicaea

pilha	entrada	próxima ação
	icicaea\$	deslocamento
i	cicaea\$	deslocamento
iс	icaea\$	deslocamento
ici	caea\$	deslocamento
icic	aea\$	deslocamento
icica	ea\$	redução por $S o ext{a}$
$\mathtt{icic}S$	ea\$	conflito:
		– redução por $S ightarrow \mathtt{i} \circ S$
		– deslocamento para tentar $S ightarrow \mathtt{i} \circ S \circ S$

Esta gramática representa uma estrutura típica em linguagens de programação.
 Qual?

Análise sintática ascendente llustração de conflito entre reduções

Considere a gramática

$$\begin{array}{cccc} S \, \to \, A \\ & \mid \, B \\ A \, \to \, \mathsf{c} \\ & \mid \, A \, \mathsf{a} \\ B \, \to \, \mathsf{c} \\ & \mid \, B \, \mathsf{b} \end{array}$$

e aplique-se o procedimento anterior à palavra ${\tt c}$

pilha	entrada	próxima ação
	с\$	deslocamento
С	\$	conflito:
		– redução usando $A ightarrow { m c}$
		– redução usando $B ightarrow { t c}$

Análise sintática ascendente llustração de falso conflito

· Considere a gramática

e aplique-se o procedimento de reconhecimento à palavra "a < a > a"

pilha	entrada	próxima ação
	a <a>a\$	deslocamento
a	<a>a \$	falso conflito:
		– redução usando $S ightarrow$ a
		– deslocamento para tentar $S ightarrow$ a P

• Deslocamento, porque se se optasse pela redução no topo da pilha ficaria um S e $< \notin \mathbf{follow}(S)$

Análise sintática ascendente llustração de falso conflito (cont.)

• Optando pelo deslocamento e continuando...

pilha	entrada	próxima ação
	a <a>a\$	deslocamento
a	<a>a\$	deslocamento, porque $< \not\in \mathtt{follow}\left(S\right)$
a <	a > a \$	deslocamento
a < a	> a \$	redução por $S o$ a
a < S	> a \$	deslocamento
a < S >	a \$	deslocamento, porque $a \not\in \mathtt{follow}(P)$
a < S > a	\$	redução por $S o$ a
a < S > S	\$	redução por $P o < S > S$
a P	\$	redução por $S o$ a P
S	\$	deslocamento
S\$		aceitação

Análise sintática ascendente Eliminação de conflito

- Pode ser possível alterar uma gramática de modo a eliminar a fonte de conflito
- Considerando que se pretendia optar pelo deslocamento, a gramática da esquerda gera a mesma linguagem que a da direita e está isenta de conflitos.

Análise sintática ascendente

if..then..else sem conflitos

• Considere a gramática seguinte e processe-se a palavra "icicaea"

$$S \rightarrow a \mid i c S \mid i c S' \in S$$

 $S' \rightarrow a \mid i c S' \in S'$

pilha	entrada	próxima ação
	icicaea\$	deslocamento
i	cicaea\$	deslocamento
ic	icaea\$	deslocamento
ici	caea\$	deslocamento
icic	aea\$	deslocamento
icica	ea\$	redução por $S' o$ a $\ \ \ \ \ \ \ \ \ \ \ \ \ $
$\mathtt{icic}S'$	ea\$	deslocamento
$\mathtt{icic}S'$ e	a\$	deslocamento
$\mathtt{icic}S'\mathtt{e}\mathtt{a}$	\$	redução por $S o \mathtt{a} \hspace{0.5cm} /\!\!/ \$ \in \mathtt{follow}\hspace{0.05cm} (S), \$ \not \in \mathtt{follow}\hspace{0.05cm} (S')$
icicS'eS	\$	redução por $S o \mathtt{i} \circ S' \in S$
$\mathtt{i} \mathtt{c} S$	\$	redução por $S o \mathtt{i} \circ S$
S	\$	deslocamento e aceitação

Construção de um reconhecedor ascendente Abordagem

 Como determinar de forma sistemática a ação a realizar (deslocamento, redução, aceitação, rejeição)?

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
T \vee	v;\$	rejeição

- A ação a realizar em cada passo do procedimento de reconhecimento deslocamento, redução, aceitação ou rejeição – depende da configuração em cada momento
- Uma configuração é formada pelo conteúdo da pilha mais a parte da entrada ainda não processada
- A pilha é conhecida na realidade, é preenchida pelo procedimento de reconhecimento
- Da entrada, em cada momento, apenas se conhece o lookahead

Construção de um reconhecedor ascendente Abordagem (cont.)

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
T \vee	v;\$	rejeição

- Quantos símbolos da pilha usar?
- Poder-se-á usar apenas um?
- Se se quiser e puder construir um reconhecedor que apenas use o símbolo no topo, uma pilha onde se guardam os símbolos terminais e não terminais tem pouco interesse
- Mas pode definir-se um alfabeto adequado para a pilha
- Os símbolos a colocar na pilha devem representar estados no processo de deslocamento/redução/aceitação
- Por exemplo, um dado símbolo pode significar que, na produção " $D \to T L$;", já se processou algo que corresponde ao "T L", faltando o ";"

Construção de um reconhecedor ascendente Itens de uma gramática

- O alfabeto da pilha representa assim o conjunto de possíveis estados nesse processo de reconhecimento
- Cada estado representa um conjunto de itens
- Cada item representa o quanto de uma produção já foi processado e o quanto ainda falta processar
 - Usa-se um ponto (·) ao longo dos símbolos de uma produção para o representar
- A produção $A \rightarrow B_1 \ B_2 \ B_3$ produz 4 itens:

$$A \rightarrow \cdot B_1 \quad B_2 \quad B_3$$

$$A \rightarrow B_1 \cdot B_2 \quad B_3$$

$$A \rightarrow B_1 \quad B_2 \cdot B_3$$

$$A \rightarrow B_1 \quad B_2 \quad B_3 \cdot$$

• A produção $A \rightarrow \varepsilon$ produz um único item:

$$A \rightarrow \cdot$$

Conjunto dos conjuntos de itens llustração com um exemplo

Considere a gramática

$$S \rightarrow E$$
 $E \rightarrow$ a \mid (E)

• Reconhecer a palavra $u=u_1u_2\cdots u_n$, significa reduzir u\$ a S\$, então, o estado inicial no processo de reconhecimento pode ser definido por

$$Z_0 = \{S \rightarrow \cdot E \$\}$$

- O facto de o ponto (·) se encontrar imediatamente à esquerda de um símbolo significa que para se avançar no processo de reconhecimento é preciso obter esse símbolo
- Mas, E é um símbolo não terminal
- Isso é considerado juntando ao conjunto Z_0 os itens iniciais das produções cuja cabeça é ${\cal E}$

$$Z_0 = \{ S \rightarrow \cdot E \$ \} \cup \{ E \rightarrow \cdot \mathsf{a}, E \rightarrow \cdot (E) \}$$

 Se aparecerem novos símbolos não terminais imediatamente à direita de um ponto (·), repete-se o processo. Faz-se o fecho (closure)

ACP/MOS (UA) LFA+C-2020/2021 junho/2021

Ilustração com um exemplo (cont.)

• Evolução de Z_0 :

$$Z_0 = \{ S \rightarrow \cdot E \$ \} \cup \{ E \rightarrow \cdot \mathsf{a}, E \rightarrow \cdot (E) \}$$

• O estado Z_0 pode evoluir por ocorrência de um E, um a ou um (, que correspondem aos símbolos que aparecem imediatamente à direita do ponto (•)

$$\delta(Z_0,E)=\{\,S o E\cdot\$\,\}=Z_1$$
 um estado novo $\delta(Z_0,\mathtt{a})=\{\,E o\mathtt{a}\cdot\}=Z_2$ um estado novo $\delta(Z_0,\mathtt{d})=\{\,E o\mathtt{d}\cdot\}=Z_3$ um estado novo um estado novo

• Z_3 tem de ser estendido pela função de fecho, uma vez que o ponto (·) ficou imediatamente à esquerda de um símbolo não terminal (E)

$$Z_3 = \delta(Z_0, \cdot) = \{ E \rightarrow (\cdot E) \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

• Z_2 , tendo o ponto (•) à direita, representa uma situação terminal, passível de redução pela produção $E \to {\bf a}$

Ilustração com um exemplo (cont.)

Evolução de Z₁:

$$Z_1 = \{ S \rightarrow E \cdot \$ \}$$

Apenas evolui por ocorrência de um \$

$$\delta(Z_1,\$) = \{ S \to E \$ \cdot \} \implies \mathsf{ACCEPT}$$

que corresponde à situação de aceitação

Evolução de Z₃:

$$Z_3 = \{ E \rightarrow (\cdot E) \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

Pode evoluir por ocorrência de um E, um a ou um (

$$\delta(Z_3,E) \,=\, \{\; E
ightarrow \; (\; E \; \cdot \;) \;\; \} = Z_4 \hspace{1cm}$$
 um estado novo

$$\delta(Z_3,\mathtt{a}) = \{E o \mathtt{a} \cdot \} = Z_2$$
 um estado repetido

$$\delta(Z_3,\,()=\{\,E
ightarrow\,(\,{m \cdot}\,E\,)\,\,\}=Z_3$$
 um estado repetido

• A evolução de Z_3 com a e (dá origem a elementos já obtidos anteriormente

Ilustração com um exemplo (cont.)

Evolução de Z₄

$$Z_4 = \{ E \rightarrow (E \cdot) \}$$

• Apenas evolui por ocorrência de)

$$\delta(Z_4,)) = \{ E \to (E) \cdot \} = Z_5$$

um estado novo

23/37

• Z_5 representa uma situação terminal, passível de redução pela regra $E \to (E)$

Ilustração com um exemplo (cont.)

Pondo tudo junto

$$\begin{split} Z_0 &= \{\, S \to \cdot E \, \} \, \cup \, \{\, E \to \cdot \, \text{a} \, , \, E \to \cdot \, (E \,) \, \} \\ Z_1 &= \delta(Z_0, E) = \{\, S \to E \cdot \, \} \, \} \\ Z_2 &= \delta(Z_0, \text{a}) = \{\, E \to \, \text{a} \cdot \, \} \\ Z_3 &= \delta(Z_0, \, () = \{\, E \to \, (\cdot E \,) \, \} \, \cup \, \{\, E \to \cdot \, \text{a} \, , \, E \to \cdot \, (E \,) \, \} \\ Z_4 &= \delta(Z_3, E) = \{\, E \to \, (E \cdot) \, \} \\ Z_5 &= \delta(Z_4, \,) \,) = \{\, E \to \, (E \,) \, \} \end{split}$$

Representando na forma de um autómato, tem-se

Ilustração com um exemplo (cont.)

- Neste autómato, os estados representam o alfabeto da pilha
- As transições representam operações de push
- As transições etiquetadas com símbolos terminais representam adicionalmente ações de deslocamento (shift)
- As ações de redução provocam operações de pop, em número igual ao número de elementos do corpo da produção
- As transições etiquetadas com símbolos não terminais ocorrem após as ações de redução
- Tudo isto representa o funcionamento de um autómato de pilha que permite fazer o reconhecimento da linguagem

Tabela de decisão de um reconhecedor ascendente Introdução

- O autómato de pilha pode ser implementado usando uma tabela de decisão
- Esta tabela contém duas matrizes, ACTION e GOTO
 - as linhas de ambas s\u00e3o indexadas pelo alfabeto da pilha (conjunto de conjuntos de itens)
- A matriz ACTION representa ações
 - as colunas são indexadas pelos símbolos terminais da gramática, incluindo o marcador de fim de entrada (\$)
 - As células contêm as ações shift, reduce, accept ou error
 - No caso de shift, também inclui o próximo símbolo a colocar na pilha
- A matriz GOTO representa a operação após uma redução
 - as colunas são indexadas pelos símbolos não terminais da gramática
 - As células indicam que valor colocar na stack após uma ação de redução

Ao conjunto de conjunto de itens obtidos anteriormente

$$\begin{split} Z_0 &= \{ \, S \rightarrow \cdot E \, \} \, \} \, \cup \, \{ \, E \rightarrow \cdot \mathbf{a} \, , \, E \rightarrow \cdot (\, E \,) \, \} \\ Z_1 &= \delta(Z_0, E) = \{ \, S \rightarrow E \cdot \$ \, \} \\ Z_2 &= \delta(Z_0, \mathbf{a}) = \{ \, E \rightarrow \mathbf{a} \cdot \} \\ Z_3 &= \delta(Z_0, () = \{ \, E \rightarrow (\, \cdot E \,) \, \} \, \cup \, \{ \, E \rightarrow \cdot \mathbf{a} \, , \, E \rightarrow \cdot (\, E \,) \, \} \\ Z_4 &= \delta(Z_3, E) = \{ \, E \rightarrow (\, E \cdot) \, \} \\ Z_5 &= \delta(Z_4,) \,) = \{ \, E \rightarrow (\, E \,) \cdot \} \end{split}$$

Corresponde a tabela de decisão

	ACTION			GOTO	
	a	()	\$	E
Z_0	shift, Z_2	shift, Z_3			Z_1
$\overline{Z_1}$				ACCEPT	
$\overline{Z_2}$			reduce, $E o$ a	reduce, $E o a$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E ightarrow$ (E)	reduce, $E ightarrow$ (E)	

As células vazias representam situações de erro sintático

Reconhecedor ascendente

Algoritmo de reconhecimento

 Com base na tabela de decisão, o procedimento de reconhecimento pode ser implementado pelo seguinte algoritmo

```
push (Z_0)
forever
    if top() == Z_1 and lookahead == $
         ACCEPT
    action = ACTION[top,lookahead]
    if action is (shift, Z_i)
         adv(); push(Z_i);
    else if action is (reduce A \rightarrow \alpha)
         pop |\alpha| símbolos; push (GOTO[top, A]);
    else
         REJECT
```

Note que após os pops o top pode ter mudado

	ACTION				GOTO
	a	()		\$	E
Z_0	shift, Z_2	shift, Z_3			Z_1
Z_1				ACCEPT	
Z_2			reduce, $E \rightarrow a$	reduce, $E \rightarrow a$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E \rightarrow (E)$	reduce, $E \rightarrow (E)$	

• Aplicando este algoritmo à palavra ((a))

pilha	entrada	próxima ação
$\overline{Z_0}$	((a))\$	$ACTION(Z_0, \epsilon) = (shift, Z_3)$
$Z_0 Z_3$	(a))\$	$ACTION(Z_3, () = (shift, Z_3)$
$Z_0 Z_3 Z_3$	a))\$	$ACTION(Z_3, a) = (shift, Z_2)$
$Z_0 Z_3 Z_3 Z_2$))\$	$ACTION(Z_2,)) = (reduce\ E \to a) (1\ pop)$
$Z_0 Z_3 Z_3$		$GOTO(Z_3,E) = Z_4$ (push Z_4)
$Z_0 Z_3 Z_3 Z_4$))\$	$ACTION(Z_4,)) = (shift, Z_5)$
$Z_0 Z_3 Z_3 Z_4 Z_5$) \$	$ACTION(Z_5,)) = (reduce\ E \to (E)) (3\ pops)$
$Z_0 Z_3$		$GOTO(Z_3,E) = Z_4$ (push Z_4)
$Z_0 Z_3 Z_4$) \$	$ACTION(Z_4,)) = (shift, Z_5)$
$Z_0 Z_3 Z_4 Z_5$	\$	$ACTION(Z_5,\$) = (reduce\; E \to (E)) (3\; pops)$
Z_0		$GOTO(Z_0,E) = Z_1$ (push Z_1)
$\overline{Z_0 Z_1}$	\$	$ACTION(Z_1, \$) = ACCEPT$

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S \rightarrow \mathbf{a} \mid (S) \mid \mathbf{a}P \mid (S) S$$

$$P \rightarrow (S) \mid (S) S$$

 O primeiro passo corresponde a alterar a gramática de modo ao símbolo inicial não aparecer do lado direito

$$S_0 \rightarrow S$$

 $S \rightarrow a \mid (S) \mid aP \mid (S) S$
 $P \rightarrow (S) \mid (S) S$

O passo seguinte corresponde a calcular o conjunto de conjunto de itens

$$Z_0 = \{S_0 \rightarrow \cdot S \}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot aP, S \rightarrow \cdot (S) S \}$$

$$\delta(Z_0, a) = \{S \rightarrow a \cdot , S \rightarrow a \cdot P\}$$

$$\cup \{P \rightarrow \cdot (S), P \rightarrow \cdot (S) S \} = Z_1$$

$$\delta(Z_0, ()) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot aP, S \rightarrow \cdot (S) S \} = Z_2$$

$$\delta(Z_0, S) = \{S_0 \rightarrow S \cdot \$ \} = Z_3$$

$$\delta(Z_1, ()) = \{P \rightarrow (\cdot S), P \rightarrow (\cdot S) S \}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot aP, S \rightarrow \cdot (S) S \} = Z_4$$

$$\delta(Z_1, P) = \{S \rightarrow aP \cdot \} = Z_5$$

$$\delta(Z_2, a) = \{S \rightarrow a \cdot , S \rightarrow a \cdot P \} = Z_1$$

$$\delta(Z_2, a) = \{S \rightarrow a \cdot , S \rightarrow a \cdot P \} = Z_1$$

$$\delta(Z_2, b) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} = Z_2$$

$$\delta(Z_2, S) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S \} =$$

$$\begin{array}{c} S_0 \rightarrow S \\ S \rightarrow \text{a} \mid (S) \mid \text{a}P \mid (S)S \\ P \rightarrow (S) \mid (S)S \end{array}$$

ACP/MOS (UA)

continuando, apenas mostrando os elementos envolvidos no processamento

$$Z_1 = \{S \rightarrow a \cdot , S \rightarrow a \cdot P\} \cup \cdots$$

$$Z_2 = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} \cup \cdots$$

$$Z_4 = \{P \rightarrow (\cdot S), P \rightarrow (\cdot S) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$Z_6 = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\}$$

$$\delta(Z_4, a) = \{S \rightarrow a \cdot , S \rightarrow a \cdot P\} = Z_1 \qquad \text{um estado repetido}$$

$$\delta(Z_4, (\cdot) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_4, S) = \{P \rightarrow (S \cdot), P \rightarrow (S \cdot) S\} = Z_7 \qquad \text{um estado novo}$$

$$\delta(Z_6, \cdot) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\} \qquad \text{um estado novo}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\} = Z_8$$

$$\delta(Z_7, \cdot) = \{P \rightarrow (S \cdot), P \rightarrow (S \cdot) S\} \qquad \text{um estado novo}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\} = Z_9$$

$$S_0
ightarrow S$$
 $S
ightarrow$ a \mid (S) \mid aP \mid (S) S $P
ightarrow$ (S) \mid (S) S

ACP/MOS (UA) LFA+C-2020/2021 junho/2021

continuando...

$$Z_1 = \{S \rightarrow a \cdot , S \rightarrow a \cdot P\} \cup \cdots$$

$$Z_2 = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} \cup \cdots$$

$$Z_8 = \{S \rightarrow (S) \cdot , S \rightarrow (S) \cdot S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$Z_9 = \{P \rightarrow (S) \cdot , P \rightarrow (S) \cdot S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$\delta(Z_8, a) = \{S \rightarrow a \cdot , S \rightarrow a \cdot P\} = Z_1 \qquad \text{um estado repetido}$$

$$\delta(Z_8, b) = \{S \rightarrow (S), S \rightarrow (S) S\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_8, S) = S \rightarrow (S) S \cdot \} = Z_{10} \qquad \text{um estado novo}$$

$$\delta(Z_9, a) = \{S \rightarrow a \cdot , S \rightarrow a \cdot P\} = Z_1 \qquad \text{um estado repetido}$$

$$\delta(Z_9, c) = \{S \rightarrow (S), S \rightarrow (S) S\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_9, c) = \{S \rightarrow (S), S \rightarrow (S) S\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_9, S) = \{P \rightarrow (S), S \rightarrow (S) S\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_9, S) = \{P \rightarrow (S), S \rightarrow$$

 $S_0 \rightarrow S$ $S \rightarrow a \mid (S) \mid aP \mid (S)S$ $P \rightarrow (S) \mid (S)S$

O que resulta em

$$S_0 \to S$$

$$S \to \mathbf{a} \mid (S) \mid \mathbf{a}P \mid (S)S$$

$$P \to (S) \mid (S)S$$

E finalmente a tabela de decisão

	a	()	\$	S	P
Z_0	shift, Z_1	shift, Z_2			Z_3	
$\overline{Z_1}$		shift, Z_4	$\mathit{reduce}S o \mathtt{a}$	$\mathit{reduce}S o \mathtt{a}$		Z_5
Z_2	shift, Z_1	shift, Z_2			Z_6	
$\overline{Z_3}$				ACCEPT		
Z_4	shift, Z_1	shift, Z_2			Z_7	
Z_5			$\mathit{reduce} S o \mathtt{a} P$	$\mathit{reduce} S o \mathtt{a} P$		
Z_6			shift, Z_8			
Z_7			shift, Z_{9}			
Z_8	shift, Z_1	shift, Z_2	$\mathit{reduce}S o (S)$	$\mathit{reduce}S o (S)$	Z_{10}	
Z_9	shift, Z_1	shift, Z_2	$\mathit{reduce}P o (S)$	reduce $P ightarrow$ (S)	Z_{11}	
Z_{10}			$\mathit{reduce}S o (S)S$	$\mathit{reduce}S o (S)S$		
Z_{11}			$\mathit{reduce}P o (S)S$	reduce $P ightarrow$ (S) S		

Tabela de decisão de um reconhecedor ascendente Exercício

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S \to \varepsilon \ | \ S \ B \ {\rm a} \ | \ S \ A \ {\rm b}$$

$$A \to {\rm a} \ | \ A \ A \ {\rm b}$$

 $B \rightarrow B B a \mid b$