



# A Neonatal Piglet Brain Database with High Resolution MRI

Szumo Wang<sup>1</sup>, Yimin Chen<sup>2</sup>, Jin Gao<sup>1</sup>, Kevin Hu<sup>1</sup>, Riken Patel<sup>1</sup>, Kelly Tappenden<sup>3</sup>, Weiguo Li<sup>1</sup>

<sup>1</sup>Bioengineering, University of Illinois at Chicago, United States, <sup>2</sup>College of Agricultural and Life Sciences, University of Idaho, United States, <sup>3</sup>Kinesiology and Nutrition, University of Illinois at Chicago, United States



## Introduction

• Piglet is a good preclinical model for studying human nutritional physiology and neuroscience.

Saikali et al., Journal of Neuroscience Methods. 2010

• Comparing to the primate brain which is though to be close to human brain, the development pattern of piglet brain is much similar to the human brain.

Dobbing et al., Early Human Development. 1979

• Magnetic resonance imaging for in vivo assessment of brain development in young piglets was performed.

Radlowski *et al.*, PLOS ONE. 2014 Conrad *et al.*, Developmental Neuroscience. 2012

• However, the features of piglet brain growth and development have not been well established at the neonatal stage.









## **Purpose**

We aim to generate a neonatal piglet brain database at ages of less than 12 days old using high resolution MR images obtained with ultrahigh field MRI.







### **Materials and Methods**

#### • Sample:

• Nineteen piglet brains were harvested with skull at the age of 12 days.

#### • MRI:

- 9.4 T MRI and a 72 mm ID birdcage RF coil.
- A 3D fast spin echo with T<sub>2</sub> weighted sequence was applied.
- Parameters: TR/TE =1500/46 ms, ETL= 16, image resolution = 250 × 250 × 250 um<sup>3</sup>, Total scanning time was 1 hour 42 minutes.

#### • Image Processing:

- Fifteen major structures in each brain were segmented with the ITK-SNAP software (Version 3.8.0).
- The volume of each structure and the whole brain volume were obtained.



## Fifteen piglet brain structures were segmented with different labels







# 3D brain atlas reconstructed from MRI image





• These 3-dimensional piglet brain atlas were reconstructed through ITK-Snap (3.8.0 Version) software that shows fifteen piglet brain structures.



# Piglet brain structures









### Piglet Brain Structural Mean Volume









## Piglet brain Structural Percentile











### **Conclusion and Future Works**

- The brain structures segmented in this study could provide references and could develop methods for in vivo assessment of brain growth and development in metabolic and pediatric nutrition research.
- Ongoing studies will characterize reliable estimates of changes in the brain volume at early neonatal period.

