Matematická analýza 2 Úvod

Martin Bohata

Katedra matematiky FEL ČVUT v Praze martin.bohata@fel.cvut.cz

Základní informace

Stránky předmětu:

https://moodle.fel.cvut.cz/courses/B0B01MA2

Obsah kurzu:

- diferenciální počet;
- integrální počet;
- posloupnosti a řady funkcí.

Euklidovský prostor

Ať $n \in \mathbb{N}$. Označme

$$\mathbb{R}^n = \{(x_1,\ldots,x_n)\,|\, x_i \in \mathbb{R} \text{ pro každ\'e } i=1,\ldots,n\}$$
 .

Pro každé $\pmb x=(x_1,\dots,x_n)\in\mathbb R^n$, $\pmb y=(y_1,\dots,y_n)\in\mathbb R^n$ a $\alpha\in\mathbb R$ definujeme

- (O1) sčítání: $x + y := (x_1 + y_1, \dots, x_n + y_n);$
- (O2) násobení číslem: $\alpha x := (\alpha x_1, \dots, \alpha x_n)$;
- (O3) skalární součin: $\boldsymbol{x} \cdot \boldsymbol{y} := x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$.

Definice (n-dimenzionální euklidovský prostor)

Množina \mathbb{R}^n vybavená operacemi (O1)–(O3) se nazývá (n-dimenzionální) euklidovský prostor.

Euklidovský prostor

Terminologie a značení:

- Místo \mathbb{R}^1 budeme psát \mathbb{R} .
- Prvky euklidovského prostoru nazýváme body nebo také vektory.
- Reálná čísla x_1,\ldots,x_n nazýváme složky (případně souřadnice či komponenty) vektoru $\boldsymbol{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$
- Mezi řádkovým a sloupcovým zápisem vektorů v \mathbb{R}^n nebudeme dělat rozdíl. Sloupcový však budeme využívat jen při zápisech s maticovým násobením.

Definice (euklidovská norma)

Euklidovská norma (případně velikost) vektoru $x \in \mathbb{R}^n$ je číslo

$$\|x\| := \sqrt{x \cdot x} = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}.$$

Vlastnosti euklidovské normy

• $V \mathbb{R}$ je ||x|| = |x|.

Tvrzení (základní vlastnosti)

Pro každé ${m x},{m y}\in\mathbb{R}^n$ a každé ${m lpha}\in\mathbb{R}$ platí

- $\|x\| \ge 0$ a navíc $\|x\| = 0$ právě tehdy, když x = 0;
- $|x \cdot y| \le ||x|| \, ||y||$;

(Cauchyho-Schwarzova nerovnost)

(Trojúhelníková nerovnost)

Vzdálenost dvou bodů

Vzdálenost mezi body $x, y \in \mathbb{R}^n$ je $\|x - y\|$.

Vlastosti vzdálenosti dvou bodů:

$$\| oldsymbol{x} - oldsymbol{y} \| oldsymbol{x} - oldsymbol{y} \| \ge 0$$
 a navíc $\| oldsymbol{x} - oldsymbol{y} \| = 0$ právě tehdy, když $oldsymbol{x} = oldsymbol{y}$;

$$||x-y|| = ||y-x||;$$

$$||x-z|| \leq ||x-y|| + ||y-z||.$$

Úhel mezi vektory

Úhel mezi nenulovými vektory $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^n$ je číslo $arphi\in[0,\pi]$ splňující

$$\cos \varphi = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}.$$

- Díky Cauchyho-Schwarzově nerovnosti je úhel dobře definovaný.
- Pomocí skalárního součinu má smysl definovat kolmost dvou vektorů i v případě, kdy některý z vektorů je nulový.

Definice (kolmost vektorů)

Řekneme, že dva vektory $x,y\in\mathbb{R}^n$ jsou na sebe kolmé (píšeme $x\perp y$), jestliže $x\cdot y=0$.

 $\|x\|^2 + \|y\|^2 = \|x+y\|^2$ právě tehdy, když $x \perp y$.

Příklad

Ať $\boldsymbol{x}=(3,4)$ a $\boldsymbol{y}=(-1,7)$. Potom $\|\boldsymbol{x}-\boldsymbol{y}\|=5$. Úhel mezi vektory \boldsymbol{x} a \boldsymbol{y} je $\varphi=\frac{\pi}{4}$. Dále $\boldsymbol{x}\perp\boldsymbol{v}$ právě tehdy, když $\boldsymbol{v}=t(-4,3)$, kde $t\in\mathbb{R}$.

Další normy na \mathbb{R}^n

- Součtová norma: $\|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i|$.
- Maximová norma: $\|x\|_{\infty} = \max_{i=1,\dots,n} |x_i|$.
- ullet Není těžké ukázat, že se jedná o normy na lineárním prostoru \mathbb{R}^n .

Tvrzení (nerovnosti mezi normami)

Pro každé ${m x}=(x_1,\ldots,x_n)\in \mathbb{R}^n$ platí

- $lacksquare{1}{2} |x_i| \leq \|x\|_{\infty} \leq \|x\| \leq \sqrt{n} \, \|x\|_{\infty} \, ext{ pro každ\'e } i=1,\ldots,n;$

Posloupnost v \mathbb{R}^n a její limita

- Posloupnost (bodů) v $M \subseteq \mathbb{R}^n$... $(x_k)_{k=1}^{+\infty}$, kde $x_k \in M$ pro každé $k \in \mathbb{N}$.
- Pro všechny posloupnosti $(\boldsymbol{x}_k)_{k-1}^{+\infty}, (\boldsymbol{y}_k)_{k-1}^{+\infty}$ v \mathbb{R}^n a pro každé $\alpha \in \mathbb{R}$ definujeme

$$(\boldsymbol{x}_k)_{k=1}^{+\infty} + (\boldsymbol{y}_k)_{k=1}^{+\infty} := (\boldsymbol{x}_k + \boldsymbol{y}_k)_{k=1}^{+\infty},$$

$$\alpha (\boldsymbol{x}_k)_{k=1}^{+\infty} := (\alpha \boldsymbol{x}_k)_{k=1}^{+\infty}.$$

Definice (limita posloupnosti)

Nechť $(x_k)_{k=1}^{+\infty}$ je posloupnost bodů v \mathbb{R}^n a $x \in \mathbb{R}^n$. Řekneme, že x je limita posloupnosti $(x_k)_{k=1}^{+\infty}$ (případně $(x_k)_{k=1}^{+\infty}$ konverguje k x) a píšeme $\lim x_k = x$ (nebo $x_k \to x$ pro $k \to +\infty$), jestliže

$$\lim_{k\to+\infty}\|\boldsymbol{x}_k-\boldsymbol{x}\|=0.$$

Limita posloupnosti

Terminologie:

- $(x_k)_{k=1}^{+\infty}$ je konvergentní posloupnost ... $(x_k)_{k=1}^{+\infty}$ konverguje k nějakému $x \in \mathbb{R}^n$.
- $(x_k)_{k=1}^{+\infty}$ je divergentní posloupnost ... $(x_k)_{k=1}^{+\infty}$ není konvergentní.

Tvrzení (jednoznačnost limity posloupnosti)

Každá posloupnost bodů v \mathbb{R}^n má nejvýše jednu limitu.

Důkaz: Viz přednáška.

Tvrzení (konvergence posloupnosti po složkách)

Nechť
$$(\boldsymbol{x}_k)_{k=1}^{+\infty}$$
 je posloupnost bodů v \mathbb{R}^n , $\boldsymbol{x}_k = (x_{k1}, \dots, x_{kn})$ a $\boldsymbol{L} = (L_1, \dots, L_n) \in \mathbb{R}^n$. Pak $\lim_{k \to +\infty} \boldsymbol{x}_k = \boldsymbol{L}$ právě tehdy, když $\lim_{k \to +\infty} x_{kj} = L_j$ pro každé $j = 1, \dots, n$.

Limita posloupnosti

Příklad

- **①** Posloupnost $(x_k)_{k=1}^{+\infty}$, kde $x_k = (1, (-1)^k)$, je divergentní.
- Posloupnost $(x_k)_{k=1}^{+\infty}$, kde $x_k=\left(\frac{2k+1}{1-k},\sqrt[k]{k}\right)$, je konvergentní a $\lim_{k\to+\infty}x_k=(-2,1)$.

Tvrzení (základní pravidla o limitách posloupností)

Je-li
$$\lim_{k o +\infty}m{x}_k=m{x}$$
, $\lim_{k o +\infty}m{y}_k=m{y}$ a $lpha\in\mathbb{R}$, potom

- $\lim_{k\to+\infty} \alpha \boldsymbol{x}_k = \alpha \boldsymbol{x};$
- $\lim_{k\to+\infty} \boldsymbol{x}_k + \boldsymbol{y}_k = \boldsymbol{x} + \boldsymbol{y};$
- $\lim_{k \to +\infty} x_k \cdot y_k = x \cdot y.$

Omezené posloupnosti

Definice (omezená posloupnost)

Posloupnost $(x_k)_{k=1}^{+\infty}$ v \mathbb{R}^n se nazve omezená, jestliže existuje R>0 tak, že $\|x_k\|\leq R$ pro každé $k\in\mathbb{N}.$

Příklad

- $\qquad \qquad \textbf{Posloupnost} \ ((1,k))_{k=1}^{+\infty} \ \text{není omezená}.$
- **2** Posloupnost $\left(\left(\frac{1}{k},(-1)^k\right)\right)_{k=1}^{+\infty}$ je omezená.
 - Každá konvergentní posloupnost je nutně omezená.
 - Ne každá omezená posloupnost je konvergentní (viz příklad výše).
- Všimněme si, že z posloupnosti $\left(\left(\frac{1}{k},(-1)^k\right)\right)_{k=1}^{+\infty}$ můžeme vynecháním vhodných členů vytvořit konvergentní posloupnost. Je to náhoda?

12 / 22

Podposloupnosti

Definice (podposloupnost)

Podposloupnost posloupnosti $(x_k)_{k=1}^{+\infty}$ v \mathbb{R}^n je posloupnost $(x_{k_l})_{l=1}^{+\infty}$, kde $(k_l)_{l=1}^{+\infty}$ je rostoucí posloupnost přirozených čísel. Místo $(x_{k_l})_{l=1}^{+\infty}$ budeme také psát $(x_{k(l)})_{l=1}^{+\infty}$.

Příklad

Podposloupnosti posloupnosti $\left(\left(\frac{1}{k},(-1)^k\right)\right)_{k=1}^{+\infty}$ jsou například

- $((\frac{1}{2l},1))_{l=1}^{+\infty};$

Podposloupnosti

Tvrzení (konvergence podposloupností)

Konverguje-li posloupnost $(x_k)_{k=1}^{+\infty}$ bodů v \mathbb{R}^n k x, pak k bodu x konverguje také každá její podposloupnost.

Důkaz: Viz přednáška.

Věta (Bolzanova-Weierstrassova věta)

Každá omezená posloupnost $(x_k)_{k=1}^{+\infty}$ bodů v \mathbb{R}^n má konvergentní podposloupnost.

Důkaz: Viz přednáška.

• Předpoklad omezenosti v Bolzanově-Weierstrassově věta je podstatný. Například číselná posloupnost $(k)_{k=1}^{+\infty}$ nemá konvergentní podposloupnost.

Okolí bodu

Definice (okolí a prstencové okolí bodu)

Nechť $\boldsymbol{x} \in \mathbb{R}^n$ a $\varepsilon > 0$. Množinu

$$U(\boldsymbol{x}; \varepsilon) := \{ \boldsymbol{y} \in \mathbb{R}^n \, | \, \|\boldsymbol{x} - \boldsymbol{y}\| < \varepsilon \}$$

nazýváme okolí bodu $oldsymbol{x}$ o poloměru arepsilon. Množinu

$$P(\boldsymbol{x};\varepsilon) := U(\boldsymbol{x};\varepsilon) \setminus \{\boldsymbol{x}\} = \{\boldsymbol{y} \in \mathbb{R}^n \,|\, 0 < \|\boldsymbol{x} - \boldsymbol{y}\| < \varepsilon\}$$

nazýváme prstencové okolí bodu x o poloměru $\varepsilon.$

• Nebude-li nutné specifikovat poloměr ε okolí a prstencového okolí, budeme stručněji psát U(x) a P(x).

Martin Bohata Matematická analýza 2 Úvod 15 / 22

Vnitřek, hranice a uzávěr množiny

Definice (vnitřek, hranice a uzávěr množiny)

Nechť $M\subseteq\mathbb{R}^n$. Řekneme, že ${\boldsymbol x}\in\mathbb{R}^n$ je

- vnitřní bod množiny M, jestliže existuje U(x) tak, že $U(x) \subseteq M$;
- ② hraniční bod množiny M, jestliže pro každé $U(\boldsymbol{x})$ platí $U(\boldsymbol{x}) \cap M \neq \emptyset$ a současně $U(\boldsymbol{x}) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

Vnitřek $\operatorname{int}(M)$ množiny M je množina všech vnitřních bodů množiny M. Hranice ∂M množiny M je množina všech hraničních bodů množiny M. Uzávěr \overline{M} množiny M je množina $M \cup \partial M$.

Vnitřek, hranice a uzávěr množiny

Příklad

At
$$M = [0, 1) \subseteq \mathbb{R}$$
. Potom

$$int (M) = (0, 1),$$
$$\partial M = \{0, 1\},$$
$$\overline{M} = [0, 1].$$

Příklad

Ať
$$M = [0,1) \times \{0\} \subseteq \mathbb{R}^2$$
. Potom

$$\operatorname{int}(M) = \emptyset,$$
$$\partial M = \overline{M} = [0, 1] \times \{0\}.$$

Otevřené a uzavřené množiny

Definice (otevřená a uzavřená množina)

Nechť $M\subseteq\mathbb{R}^n$. Řekneme, že množina M je otevřená, jestliže $M=\operatorname{int}\left(M\right)$. Množina M se nazve uzavřená, jestliže $M=\overline{M}$.

Příklad

- **①** Prázdná množina a \mathbb{R}^n jsou množiny otevřené a současně uzavřené v \mathbb{R}^n .
- $oldsymbol{0}$ Interval [0,1) není otevřená ani uzavřená množina.
- lacktriangle Každé okolí bodu v \mathbb{R}^n je otevřená množina.
- Množina

$$B(\boldsymbol{x};r) := \{ \boldsymbol{y} \in \mathbb{R}^n \, | \, \|\boldsymbol{x} - \boldsymbol{y}\| \le r \},\,$$

která se nazývá $n\text{-}\mathrm{dimenzion\'aln\'i}$ koule se středem x a poloměrem r, je uzavřená.

Otevřené a uzavřené množiny

Tvrzení (charakterizace uzavřené množiny)

Nechť $M \subseteq \mathbb{R}^n$. Následující tvrzení jsou ekvivalentní:

- **1** M je uzavřená množina v \mathbb{R}^n .
- lacksquare Každá konvergentní posloupnost bodů v M má limitu ležící v M.

Důkaz: Viz přednáška.

Lze ukázat, že:

- Libovolné sjednocení a konečný průnik otevřených množin jsou otevřené množiny.
- Konečné sjednocení a libovolný průnik uzavřených množin jsou uzavřené množiny.
- ullet je průnik všech uzavřených množin obsahujících M.
- ullet int (M) je sjednocení všech otevřených podmnožin množiny M.

Martin Bohata Matematická analýza 2 Úvod 19 / 22

Hromadné a izolované body

Definice (hromadný a izolovaný bod)

Nechť $M\subseteq\mathbb{R}^n$. Řekneme, že ${\boldsymbol x}\in\mathbb{R}^n$ je

- hromadný bod množiny M, jestliže existuje posloupnost $(x_k)_{k=1}^{+\infty}$ bodů v $M \setminus \{x\}$ konvergující k x.
- $\textbf{@} \ \ \text{izolovan\'y bod mno\'ziny } M \text{, jestli\'ze } \boldsymbol{x} \in M \text{ a } \boldsymbol{x} \text{ nen\'i hromadn\'y bod } M.$

Příklad

- Monečná množina nemá hromadné body, má jen izolované.
- Každý vnitřní bod množiny je jejím hromadným bodem.
- Množina $\left\{\frac{1}{k} \mid k \in \mathbb{N}\right\}$ má jediný hromadný bod, a to 0.
- Ať $M = \{(x,y) \in \mathbb{R}^2 \mid (x^2+y^2) (x^2+y^2-1) = 0\}$. Hromadné body množiny M jsou body na jednotkové kružnici se středem v počátku. Množina M má jediný izolovaný bod, a to počátek.

Martin Bohata Matematická analýza 2 Úvod 20 / 22

Hromadné a izolované body

Příklad (pokračování)

 $\textbf{ 3} \ \, \text{Jedin\'e hromadn\'e body mno\'ziny} \ \, M = \left\{ \left(\sqrt[k]{k}, \cos\left(k\frac{\pi}{2}\right)\right) \, \middle| \, k \in \mathbb{N} \right\} \text{ jsou} \\ (1,-1)\text{, } (1,0) \text{ a } (1,1).$

Tvrzení (charakterizace hromadných a izolovaných bodů)

 $At' M \subseteq \mathbb{R}^n \ a \ x \in \mathbb{R}^n.$

- Bod x je hromadný bod množiny M právě tehdy, když pro každé P(x) je $P(x) \cap M \neq \emptyset$;
- ② Bod x je izolovaný bod množiny M právě tehdy, když existuje U(x) tak, že $U(x) \cap M = \{x\}$.

Důkaz: Vynecháváme.

21/22

Hromadné a izolované body

- Hromadný bod může existovat, jen když je množina nekonečná.
- Ne každá nekonečná množina však má hromadný bod.

Definice (omezená množina)

Množina $M\subseteq\mathbb{R}^n$ se nazve omezená, jestliže existuje reálné číslo R>0 tak, že $\|x\|\le R$ pro každé $x\in M$.

Tvrzení (existence hromadného bodů)

Každá nekonečná omezená množina $M \subseteq \mathbb{R}^n$ má hromadný bod.