

Advanced Machine Learning With Python DT8807

Ibrahim A. Hameed, PhD, Professor NTNU in Ålesund 12.01.2022

Learning outcomes

- An understanding of the capabilities and limitations of machine learning (ML), and the knowledge of how to formulate your problem to solve it effectively.
- 2. An understanding of convolution neural nets, recurrent neural nets, and state-of-the-art transfer learning models.
- 3. An effective process for developing your machine learning pipeline to tackle real world problems such as machine vision, text understanding and time series prediction.
- 4. The skills required to deploying, monitoring, and evaluating the ML model, as well as assessing its relevance, and the uses of different ML models.
- 5. The basis required to collect, process, and utilize data efficiently.
- 6. The basic skills required to select the right platform to deploy your model (cloud, edge device, hybrid) and how to configure it to achieve the required performance.
- 7. The ability to document and communicate the results of your ML approach and guide your coding and ML efforts in the right direction.

Course contents: ... will be ...

- Learning modes: supervised learning vs unsupervised learning
- Optimize to minimize error and maximize accuracy a differentiable error/objective function.
- Representing data, engineering features, & dimensionality reduction to overcome risks such as overfitting.
- Model evaluation and improvement: machine learning pipeline – confusion matrix (accuracy - precision – recall) – type I error (false positive) and type II error (false negative)
- Perceptron, PLR, Artificial Neural Networks
- Training deep neural nets
- Convolutional neural networks
- Recurrent neural networks
- Advanced transfer learning models
- GPUs & cloud computing tools

Reading list

- Josh Patterson and Adam Gibson (2017). Deep learning: a practitioner's approach. O'Reilly.
- Andreas C. Muller and Sarah Guido (2017). Introduction to machine learning with python. O'Reilly.
- Mohamed Elgendy (2020). Deep learning for vision systems. O'Reilly.
- P. Harrington. Machine Learning in Action. 2012, Manning.
- Alice Zheng & Amanda Casari.
 Feature Engineering for Machine
 Learning: Principles and
 Techniques for Data Scientists.
 2018, O'Reilly.
- François Chollet. Deep learning with python. 2018. Manning.

DT8807 - Avanserte emner innen dyplæring med python

Om emnet

Timeplan

Eksamensinfo

Høst 2020/ Vår 2021

Course material

https://www.ntnu.no/studier/emner/DT8807 #tab=omEmnet

GitHub page

https://github.com/ibribr/ML

Datasets from Kaggle

https://www.kaggle.com/

UCI ML repository

https://archive.ics.uci.edu/ml/index.php

Nytt fra studieåret 2020/2021

Vurderingsordning

Vurderingsordning: Mappevurdering Karakter: Bestått/lkke bestått

Vurderingsform Vekting Varighet Hjelpemidler Mappevurdering 100/100

Faglig innhold

In this course you will learn about the purpose of machine learning, where and how to apply it in the real world. You will learn fundamentals of machine learning such as supervised learning, unsupervised learning, feature engineering, model selection, training modes, and model evaluation. You will learn how to develop your machine learning pipeline in Python using sklearn, kears and pytorch. In this course, you will add new skills and new competence to your portfolio including regression, classification, clustering, and time series prediction. You will master skills of training deep neural nets such as CNN, RNN for images, videos, text, and time-series. You will learn about advanced deep learning architectures and transfer learning.

Læringsutbytte

Upon Completion of This Course, You'll Have:

- An understanding of the capabilities and limitations of machine learning (ML), and the knowledge of how to formulate your problem to solve it effectively.
- An understanding of convolution neural nets, recurrent neural nets, and state-of-the-art transfer learning models.
- An effective process for developing your machine learning pipeline to tackle real world problems such as machine vision, text understanding and time series prediction.
- The skills required to deploying, monitoring, and evaluating the ML model, as well as assessing its relevance, and the uses of different ML models.
- 5. The basis required to collect, process, and utilize data efficiently.
- 6. The basic skills required to select the right platform to deploy your model (cloud, edge device, hybrid) and how to configure it to achieve the required performance.
- The ability to document and communicate the results of your ML approach and guide your coding and ML efforts in the right direction.

Læringsformer og aktiviteter

Teaching approach: 5 hours each (lectures - practice - project work).

Mer om vurdering

- Evaluation: exam will be in the form of a portfolio assessment where samples of work and mini
 projects will be used to evaluate the intended learning outcomes (ILOs) achievement throughout the
 course.
- Bestått/lkke bestått (Pass/Fail): it is required to achieve 70/100 points or 70% in order to pass.

Anbefalte forkunnskaper

- You are expected to know some basic linear algebra and basic programming skills in Python.
- You are expected to be motivated and like working in teams.

Kursmateriell

An updated reading list will be provided before the course. To name but a few:

- Josh Patterson and Adam Gibson (2017). Deep learning: a practitioner's approach. O'Reilly.
- Andreas C. Muller and Sarah Guido (2017). Introduction to machine learning with python. O'Reilly.
- Mohamed Elgendy (2020). Deep learning for vision systems. O'Reilly.

Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1 Studiepoeng: 7.5 SP Studienivå: Doktorgrads nivå

Undervisning

Termin nr.: 1

Undervises: VAR 2021

Undervisningsspråk: Engelsk

Sted: Alesund

Fagområde(r)

Datateknikk og informasjonsvitenskap

Kontaktinformasjon

Emneansvarlig/koordinator:

Ibrahim Abdelfatta Abdelhameed Ibrahim

Ansvarlig enhet

Institutt for IKT og realfag

Telefon:

Blackboard

Participants

PROFILE PHOTO	FIRST NAME	LAST NAME	USERNAME	STUDENT ID	EMAIL	ENROLLMEN'
•	Emanuel Alexander	Lorenz	emanueal	502098	emanuel.a.lorenz@ntnu.no	Automatic
9	Bernhard August	Aarseth	bernhaa	725285	bernhaa@stud.ntnu.no	Automatic
•	Jørgen	Finsveen	jorgfi	564829	jorgfi@stud.ntnu.no	Automatic
9	Melissa Yuting	Yan	melissay	516537	melissa.yan@ntnu.no	Automatic
9	Tabita Anggraini	Meilita	tobitat	574322	tabita.tobing@ntnu.no	Automatic
•	Tu My	Doan	tumd	534719	tu.m.doan@ntnu.no	Automatic
•	lan Avery	Bick	ianabi	558223	ianabi@stud.ntnu.no	Automatic
•	Yujie	Xing	yujiex	516177	yujie.xing@ntnu.no	Automatic
•	Bismi	Rasheed	bismir	571283	bismi.rasheed@ntnu.no	Automatic
•	Håvard Mo	Fagersand	haavamfa	756392	havard.m.fagersand@ntnu.no	Automatic
•	Benjamin	Vigdel	benjav	521820	benjamin.vigdel@ntnu.no	Automatic
•	Dafna	Gilad	dafnag	554048	dafna.gilad@ntnu.no	Automatic
2	Syed Hammad Hussain	Shah	shshah	535919	syed.h.h.shah@ntnu.no	Automatic
•	Saumitra	Dwivedi	saumitrd	502261	saumitrd@stud.ntnu.no	Automatic
•	Ola	Alstad	olaals	478077	olaals@stud.ntnu.no	Automatic
•	Tanjir	Alam	tanjira	552012	tanjir.alam@ntnu.no	Automatic
•	Masoud	Mohtadifar	masoudm	548919	masoud.mohtadifar@ntnu.no	Automatic
•	Håvard	Næss	haavarna	765370	havard.nass@ntnu.no	Automatic

Google Colab

- Free and open-source environment for python development that requires no setup and runs entirely on the cloud.
- Colab is essentially the Google Suite version of a Jupyter Notebook.
- It contains all the pre-installed packages such as Keras, TensorFlow, and PyTorch required for AI and ML developers.
- You can develop deep learning applications on the GPU for free (TESLA K80 GPU).

Introduction to Colab

 https://colab.research.google.com/notebooks/intro.ipynb#scrollTo=GJBs_fIR ovLc

Colab exercise

- Download iris dataset from UCI repository https://archive.ics.uci.edu/ml/datasets/iris
- Collected by Fisher in 1936.
- It has 4 attributes (sepal length and width in cm and petal length and width in cm) and 3 classes (Iris Setosa, Versicolour, and Virginica).
- Upload the data to Colab and plot it?

Iris Versicolor

Iris Setosa

Iris Virginica

		Α	В	С	D	E			
	1	Sepal Length	Sepal Width	Petal Length	Petal Width	Class			
	2 1	5.1	3.5	1.4	0.2	Iris-setosa			
	3	4.9	3	1.4	0.2	Iris-setosa			
	4	4.7	3.2	1.3	0.2	Iris-setosa			
	5	4.6	3.1	1.5	0.2	Iris-setosa			
	6	5	3.6	1.4	0.2	Iris-setosa			
	7	5.4	3.9	1.7	0.4	Iris-setosa			
	8	4.6	3.4	1.4	0.3	Iris-setosa			
	9	5	3.4	1.5	0.2	Iris-setosa			
	10	4.4	2.9	1.4	0.2	Iris-setosa			
	11	4.9	3.1	1.5	0.1	Iris-setosa			
	12	5.4	3.7	1.5	0.2	Iris-setosa			
	13	4.8	3.4	1.6	0.2	Iris-setosa			
	14	4.8	3	1.4	0.1	Iris-setosa			
	15	4.3	3	1.1	0.1	Iris-setosa			
	16	5.8	4	1.2	0.2	Iris-setosa			
	17	5.7	4.4	1.5	0.4	Iris-setosa			
	18	5.4	3.9	1.3	0.4	Iris-setosa			
	19	5.1	3.5	1.4	0.3	Iris-setosa			
	20	5.7	3.8	1.7	0.3	Iris-setosa			
	21	5.1	3.8	1.5	0.3	Iris-setosa			
	22	5.4	3.4	1.7	0.2	Iris-setosa			
	23	5.1	3.7	1.5	0.4	Iris-setosa			
	24	4.6	3.6	1	0.2	Iris-setosa			
	25	5.1	3.3	1.7	0.5	Iris-setosa			

TIPS: Locally then on the cloud

- Build, train, and deploy machine learning (ML) models quickly requires massive computational resources.
- You will need a fast-enough GPU to do deep learning experiments locally for sample data to verify many things before going into full scale on the cloud.
- Vendors of top machine learning services in the cloud:
 - Amazon web services
 - Google cloud
 - IBM Watson
 - Microsoft Azure
 - Alibaba

Course assessment

- Portfolio assessment where sample of the work will be used to evaluate ILOs.
- Report which might lead to a publication
- Grading: pass (70%+)/fail

Break ...