Effect of shall issue laws on crime rate.

BUAN 6312.001 Applied Econometrics and Time Series Analysis

Sai Rohit Jammu(sxj175730)

Navin Karthik Murugiah(nxm171030)

Shyam Bodipudi(ssb171030)

Paramahamsa Chandrahaas Batchu(pxb172030)

Sandeep Chandra Nutakki(scn170030)

ABSTRACT

Gun laws are a cause for great discussions in this country. This paper focuses on the laws that enable/restrict an individual to carry guns and its simultaneous effects on the crime rates. Permitting the right to carry concealed handguns has many disparate views, with proponents of the law stating that it would be of critical help to people to enable them to defend themselves against outside threat. The critics of this law, though believe that, legalizing this would lead to increased violence for trivial incidents and the possibility of accidental shootings.

In the following study, we direct our attention towards the effects of the shall issue laws in the 51 states in America over 23 years. Various statistical models are run in an effort to study the trends in crime rates before and after the shall issue laws have been introduced. We also study the effects of factors like income, incarceration, population etc.

DATA DESCRIPTION

This is a balanced panel of data on 50 US states, plus the District of Columbia (for a total of 51 "states"), by year for 1977 – 1999. Each observation is a given state in a given year. The attributes in the data are explained below.

Variable Definitions

Variable	Definition
Vio	violent crime rate (incidents per 100,000 members of the population)
Rob	robbery rate (incidents per 100,000)
Mur	murder rate (incidents per 100,000)
shall	= 1 if the state has a shall-carry law in effect in that year
	= 0 otherwise
incarc_rate	incarceration rate in the state in the previous year (sentenced
	prisoners per 100,000 residents; value for the previous year)
density	population per square mile of land area, divided by 1000
avginc	real per capita personal income in the state, in thousands of dollars
pop	state population, in millions of people
pm1029	percent of state population that is male, ages 10 to 29
pw1064	percent of state population that is white, ages 10 to 64
pb1064	percent of state population that is black, ages 10 to 64
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)
year	Year (1977-1999)

The shall variable indicates whether the shall issue law has been issued in that particular state or not. We could study the trend of crime rates is association with the shall law. The 'incarc_rate' variable gives us the number of sentenced prisoners per 100,000 residents in the previous year. This variable is directly proportionate with the crime rate. We also have the percent of young males, the white and black population, as these variables are linked with crime rate by theory.

Murder Rate and Shall Issue over Years

Figure 1: Introduction of Gun Control vs Violence Rate

ViolenceRate and Shall Issue over Years

Figure 2:Introduction of Gun Control vs Violence Rate

Robbery Rate and Shall Issue Over Years

Figure 3:Introduction of Gun Control vs Robbery Rate

Correlation b/w CrimeRate and Density

Figure 4:Does crime rate increase with Population Density?

Correlation Matrix of all variables

Figure 5: Correlation Matrix

State 12's Crime, Robbery and Murder Rate before and after shall carry law is passed

Figure 6: crime statistics for state 12 before and after shall carry law is passed

State 46's Crime, Robbery and Murder Rate before and after shall carry law is passed

Figure 7: crime statistics for state 46 before and after shall carry law is passed

State 38's Crime, Robbery and Murder Rate before and after shall carry law is passed

Figure 8: crime statistics for state 38 before and after shall carry law is passed

Figure 5 shows us the correlation between all the variables in the data; there is high negative correlation between percent of state population that is white, ages 10 to 64 and violent crime rate, robbery rate and murder rate. There is also high positive correlation between density and robbery rate and murder rate. Figure 4 also validates the point that as density increases, on average, the robbery rate and murder rate tend to increase as well. Figure 1-3 shows us the trend of violent crime rate, robbery rate and murder rate as well as number of states which have shall carry law effect in each year. We can see that, as time goes on, the violent crime, murder and robbery rate increases but decreases at the end and number of states having shall law effect also increases.

In state 12 the shall issue law allowing law abiding citizens to carry handguns was enforced in 1988 and we see a considerable decrease in rate of murder after 1989. In state's 38 and 46 the shall carry law was implemented in 1986, and there has not been a significant change in crime, robbery and murder rate after the law enforcement.

We see similar decrease in crime after shall-issue law in state 22 and state 32. We could say that, having shall law in effect increases all malfeasance activities in states, but coming to that conclusion just by looking at descriptive statistics will lead us to misleading effects because we have to account for state level heterogeneity, heteroskedasticity and lot more.

Regression Models:

Now that we have looked at the descriptive statistics we need to need to validate whether the inferences we made from the plots are consistent with outputs of our regression models. For that, we ran several models to draw a conclusion of which model best describes our dataset.

We have plotted histograms of violent crime rate, robbery rate and murder rate to understand their distribution. We can see that all three rates are right skewed, which means their variance is not constant. So, to control for that, we have taken log on all three variables.

Violent Rate:

1. Pooled OLS

regress In vio shall incarc rate density pb1064 pw1064 pm1029 avginc pop

- . do "C:\Users\NXM171~1\AppData\Local\Temp\35\STD3480_000000.tmp"
- . regress ln_vio shall incarc_rate density pb1064 pw1064 pm1029 avginc pop

Source	SS	df	MS	Manuelo	er of ob	g =	1 172
Source	నిని	uı	na			_	1,173
				- F(8,	1164)	=	188.41
Model	275.712977	8	34.4641221	l Prob) > F	=	0.0000
Residual	212.918581	1,164	.182919743	3 R-sc	guared	=	0.5643
				- Adj	R-square	d =	0.5613
Total	488.631558	1,172	.41692112	5 Root	MSE	=	.42769
'							
1	06	Chal E		Do Lot	5054	a 6	T
ln_vio	Coef.	Std. Err.	t	P> t	[95%	Conr.	Interval]
shall	3683869	.0325674	-11.31	0.000	4322	844	3044895
incarc rate	.0016126	.0001072	15.05	0.000	.0014		.0018229
_							
density	.0266885	.013168	2.03	0.043	.0008	527	.0525242
pb1064	.0808526	.0166514	4.86	0.000	.0481	825	.1135227
pw1064	.0312005	.0083776	3.72	0.000	.0147	636	.0476374
pm1029	.0088709	.0107737	0.82	0.410	0122	671	.0300089
avginc	.0012051	.0077802	0.15	0.877	0140	597	.01647
pop	.0427098	.0025588	16.69	0.000	.0376	894	.0477303
cons	2.981738	.5433938	5.49	0.000	1.915	598	4.047879

A Pooled OLS with Least Squared Standard Error estimates was run

We choose to not include mur and rob variables as it is reverse causation of violent crime rate and does not add any new significance to explaining the variation in violence crime rate vio.

Results:

- We find that avginc and pm1029 are significant at 10% level of significance (insignificant at 5%)
- Enforcement of shall-issue laws decrease the violent crime rate by 37%, which is not realistic given the enforcement of a single law cannot bring down the violence rate by 37%
- For a 1% increase in population of white the violent crime rate increases by 3.1% and for 1% increase in population of black the violent crime rate increases by 8%

2. White's test to check for heteroskedasticity in the data

estat imtest, white

. estat imtest, white

```
White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(43) = 454.02
Prob > chi2 = 0.0000
```

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	454.02 107.86 4.22	43 8 1	0.0000 0.0000 0.0399
Total	566.10	52	0.0000

The variance of an explanatory variable increases the variance of the error term increases.

Implications

- 1. Least square estimators are no longer best estimators although unbiased and consistent
- 2. The standard errors are incorrect hence incorrect confidence interval and hypothesis testing

Results:

HO: There is not heteroskedasticity in the data

H1: There exists heteroskedasticity in the data

1. Based on the estimates of the White's test, we see that the p-value 0.000 is less than 0.05. Hence, we reject the null hypothesis and conclude there exists heteroskedasticity in the data.

3. Pooled OLS with clustered robust errors

In order the remove the heteroskedasticity in the pooled OLS, White's robust standard errors is used regress In vio shall incarc rate density pb1064 pw1064 pm1029 avginc pop, vce(cluster stateid)

. regress ln_vio shall incarc_rate density pb1064 pw1064 pw1029 avginc pop, vce(cluster stateid)

Linear regression	Number of obs	=	1,173
	F(8, 50)	=	62.13
	Prob > F	=	0.0000
	R-squared	=	0.5643
	Root MSF	=	42769

(Std. Err. adjusted for 51 clusters in stateid)

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
shall	3683869	.113937	-3.23	0.002	5972361	1395378
incarc_rate	.0016126	.0005999	2.69	0.010	.0004076	.0028177
density	.0266885	.0414909	0.64	0.523	0566485	.1100255
pb1064	.0808526	.0713875	1.13	0.263	0625334	.2242386
pw1064	.0312005	.03409	0.92	0.364	0372713	.0996723
pm1029	.0088709	.0340964	0.26	0.796	0596137	.0773554
avginc	.0012051	.0240808	0.05	0.960	0471626	.0495728
pop	.0427098	.011729	3.64	0.001	.0191515	.0662681
_cons	2.981738	2.166513	1.38	0.175	-1.369831	7.333307

Comparison of Standard error estimates between Pooled OLS with standard errors vs Pooled OLS with Clustered robust standard errors:

Pooled OLS with standard errors				Pooled C	LS with Rob	oust standa	rd error	S	
ln_vio	Coef.	Std. Err.	t	P> t	ln_vio	Coef.	Robust Std. Err.	t	P> t
shall	3683869	.0325674	-11.31	0.000					
incarc rate	.0016126	.0001072	15.05	0.000	shall	3683869	.113937	-3.23	0.002
density	.0266885	.013168	2.03	0.043	incarc_rate	.0016126	.0005999	2.69	0.010
pb1064	.0808526	.0166514	4.86	0.000	density	.0266885	.0414909	0.64	0.523
-					pb1064	.0808526	.0713875	1.13	0.263
pw1064	.0312005	.0083776	3.72	0.000	pw1064	.0312005	.03409	0.92	0.364
pm1029	.0088709	.0107737	0.82	0.410	pm1029	.0088709	.0340964	0.26	0.796
avginc	.0012051	.0077802	0.15	0.877	avginc	.0012051	.0240808	0.05	0.960
pop	.0427098	.0025588	16.69	0.000	qoq	.0427098	.011729	3.64	0.001
_cons	2.981738	.5433938	5.49	0.000	_cons	2.981738	2.166513	1.38	0.175

Results:

- 1. There is a significant different between the standard errors and Clustered robust standard errors. The characteristics associated with violence rate are not captured by the independent variables. There ignoring autocorrelation results in results of pooled OLS is overstated
- 2. The variables shall, incarc rate & pop are significant at 5%
- 3. Pooled OLS does not allow us to control unobserved heterogeneity. Hence, we use the Fixed Effects model

4. Panel Regression: Entity Fixed effects

xtset stateid

xtreg In_vio shall incarc_rate density pb1064 pw1064 pm1029 avginc pop, fe vce(cluster stateid)

estimates store fixed

```
. xtset stateid
    panel variable: stateid (balanced)
```

. xtreg ln_vio shall incarc_rate density pb1064 pw1064 pw1029 avginc pop, fe vce(cluster stateid)

Fixed-effects (within) regression	Number of obs	=	1,173
Group variable: stateid	Number of groups	=	51
R-sq:	Obs per group:		
within = 0.2178	mir	. =	23
between = 0.0033	avo	=	23.0
overall = 0.0001	max	=	23
	F(8,50)	=	34.10
corr(u_i, Xb) = -0.3687	Prob > F	=	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
shall	0461415	.0417616	-1.10	0.275	1300223	.0377392
incarc_rate	000071	.0002504	-0.28	0.778	0005739	.0004318
density	1722901	.1376129	-1.25	0.216	4486936	.1041135
pb1064	.1042804	.0326849	3.19	0.002	.0386308	.1699301
pw1064	.0408611	.0134585	3.04	0.004	.0138289	.0678932
pm1029	0502725	.0206949	-2.43	0.019	0918394	0087057
avginc	0092037	.0129649	-0.71	0.481	0352445	.016837
pop	.0115247	.014224	0.81	0.422	0170452	.0400945
_cons	3.866017	.7701057	5.02	0.000	2.319214	5.412819
sigma u	.68024951					
sigma e	.16072287					
rho	.94712779	(fraction	of varia	nce due t	o u_i)	

Results:

- 1. Ignoring heteroskedasticity in the data does lead to overestimating the coefficients of the model.
- 2. From the model, most of the variables are insignificant at 5% SI.
- 3. One of the disadvantages of the fixed effects model is that it does not capture the effects of time invariant variables and slow changing variables. Hence, we should try and run a fixed effects model with both time and entity.

5. Fixed effects – Time and Cross Sections

xtreg ln_vio shall incarc_rate density pb1064 pw1064 pm1029 avginc pop i.year, fe vce(robust)

```
testparm i.year
(1)
     78.year = 0
     79.year = 0
(2)
(3) 80.year = 0
(4) 81.year = 0
(5)
     82.year = 0
(6) 83.year = 0
(7) 84.year = 0
    85.year = 0
86.year = 0
(8)
(9)
(10) 87.year = 0
(11)
     88.year = 0
    89.year = 0
(12)
(13) 90.year = 0
    91.year = 0
(14)
     92.year = 0
(15)
(16)
    93.year = 0
(17)
    94.year = 0
     95.year = 0
(18)
(19) 96.year = 0
(20) 97.year = 0
(21)
     98.year = 0
    99.year = 0
(22)
         ou) = 21.62
Prob > F = 0.00
     F ( 22,
                         0.0000
```

Testing for strength of Time variables

H0: Time effects are insignificant

H1: Time effects are significant

Here the p-value of the model is 0.00, which is less than 005 at 5% SI. Hence, we can conclude that Time effects are significant.

. xtreg ln_vio	shall incard	rate densi	ty pb1064	pw1064	pm1029 avginc	pop i.year,	fe vce(robust)
Discoul a 66 and a	(i+1-i)			271	- 6 - 1	1 172	
Fixed-effects (within) regression Group variable: stateid					of obs =	1,173	
Group variable	e: stateid			Number	of groups =	51	
R-sq:				Ohe ne	r group:		
within =	= 0 4180			obs per	min =	23	
between =					avg =	23.0	
overall =					max =	23	
0,01011	0.0003					20	
				F(30,50	O) =	56.86	
corr(u i, Xb)	= -0.2929			Prob >		0.0000	
		(Std. E	rr. adjus	ted for	51 clusters in	n stateid)	
		Robust					
ln_vio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
shall	0279935	.0407168	-0.69	0.495	1097757	.0537886	
incarc rate	!	.0002079	0.37	0.716	0003416	.0004935	
density	091555	.1238622	-0.74	0.463	3403396	.1572296	
pb1064	.0291862	.0495407	0.59	0.558	0703192	.1286916	
pw1064	.0092501	.0237564	0.39	0.699	0384659	.0569662	
pm1029	.0733254		1.40	0.168	0320704	.1787211	
avginc	.0009587	.0164931	0.06	0.954	0321688	.0340861	
pop	0047544	.0152294	-0.31	0.756	0353436	.0258347	
year							
78	.0585261	.0161556	3.62	0.001	.0260767	.0909755	
79	!	.0244579	6.70	0.000	.1148233	.2130738	
80	.2170759		6.50	0.000	.1499531	.2841987	
81	.2172551		5.54	0.000	.1385284	.2959819	
82	!	.0465743	4.18	0.000	.1010856	.28818	
83		.0593845	2.67	0.010	.0393676	.2779223	
84	.1929883		2.51	0.015	.0383251	.3476515	
85 86	!	.0922217	2.65 2.98	0.011	.0592438	.4297091	
87				0.004	.1053219	.5428589	
88	.3867412	.1249881	2.60 2.77	0.012	.1061305	.5754111	
89		.1535358	2.77	0.006	.1338286	.7505999	
90	.5430478		2.77	0.008	.1491976	.936898	
91		.2040685	2.92	0.005	.1860618	1.005829	
92	1	.2170306	2.89	0.006	.1915982	1.063436	
93	.6497414		2.89	0.006	.1985834	1.100899	
94	.6354187	.2332437	2.72	0.009	.1669349	1.103903	
95	.6276831	.2423607	2.59	0.013	.1408874	1.114479	
96	.5713423		2.25	0.029	.06236	1.080325	
97	.5501153	.2613516	2.10	0.040	.0251751	1.075055	
98		.2746546	1.80	0.079	0583697	1.04495	
99	.4328776	.2862197	1.51	0.137	1420117	1.007767	
_cons	3.765525	1.152108	3.27	0.002	1.451448	6.079603	
sigma u	.6663043						
sigma_d	.1400264						
rho	!	(fraction	of varian	ce due t	to u i)		
l							

Results:

1. The time significant variables are significant. However, most of the other independent variables are insignificant.

6. Random effects

The data provided is the entire data set between the years 1977-1999. Hence, it is not possible to run a random effects model on this data. But for the sake of the analysis, we are running a random effects model

xtreg ln_vio shall incarc_rate density pb1064 pw1064 pm1029 avginc pop, re vce(cluster stateid)

. xtreg ln_vio shall incarc_rate density pb1064 pw1064 pm1029 avginc pop, re vce(cluster stateid)

Random-effects GLS regression Group variable: stateid	Number of obs Number of groups	=	1,173 51
R-sq:	Obs per group:		
within = 0.2044	min	=	23
between = 0.4908	avg	=	23.0
overall = 0.4591	max	=	23
	Wald chi2(8)	=	167.14
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2	=	0.0000

(Std. Err. adjusted for ${\bf 51}$ clusters in stateid)

ln_vio	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
shall incarc_rate density pb1064 pw1064	069609 .0001888 .0661588 .1067022	.038845 .0001877 .0437925 .0270973 .0127282	-1.79 1.01 1.51 3.94 3.15	0.073 0.314 0.131 0.000 0.002	1457438 0001791 0196729 .0535924 .0151248	.0065258 .0005567 .1519905 .1598119
pm1029 avginc pop _cons	0375292 0105112 .0225755 3.525463	.0180436 .0117802 .0116369 .7786851	-2.08 -0.89 1.94 4.53	0.038 0.372 0.052 0.000	072894 0335999 0002323 1.999268	0021643 .0125775 .0453833 5.051658
sigma_u sigma_e rho	.33790775 .16072287 .81550462	(fraction	of varia	nce due t	:o u_i)	

7. Hausman test:

. hausman fixed random

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fixed	random	Difference	S.E.
shall	0461415	069609	.0234675	
incarc_rate	000071	.0001888	0002598	.0000635
density	1722901	.0661588	2384489	.0763882
pb1064	.1042804	.1067022	0024217	.011767
pw1064	.0408611	.0400716	.0007895	
pm1029	0502725	0375292	0127434	.0021099
avginc	0092037	0105112	.0013075	.0006269
рор	.0115247	.0225755	0110508	.0059821

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

Hypothesis Testing:

H0: There is no endogeneity in the data, hence we can run random effects model.

H1: There is endogeneity in the data, hence, we need to run fixed effects model.

Results:

The results are synonymous with our expectation that we cannot run random effects model on this entire dataset.

Robbery Rate:

POOLED OLS MODEL:

1. Pooled OLS model for robbery rate against "shall" law alone:

We have observed that variable rob is right skewed, so we performed log on variable 'rob'. On taking log for the 'rob' variable our variable is now approximately normally distributed. We run the pooled OLS model.

```
Code: POLS_rob <- plm(Inrob~shall, data=datag, model = "pooling", index = c("stateid", "year"))
> summary(POLS_rob)
Call:
plm(formula = lnrob ~ shall, data = datag, model = "pooling",
    index = c("stateid", "year"))
Balanced Panel: n=51, T=23, N=1173
Residuals :
            1st Qu.
                      Median
                                  3rd Qu.
     Min.
                                               Max.
-3.016753 -0.521484 0.054927
                                0.612161 2.526408
Coefficients:
             Estimate Std. Error t-value Pr(>|t|)
(Intercept) 4.873051 0.030050 162.163 < 2.2e-16 ***
shall
        -0.773321 0.060964 -12.685 < 2.2e-16 ***
Analysis:
```

- Coefficient on "Shall" is highly significant (1% significance level), with an estimate of "-0.77332". It can be interpreted that if "shall" law is introduced, robbery rate reduces by 77.3%.
- > This is huge impact, but we haven't included any other variables in this model.
- 2. Pooled OLS model for robbery rate against all variables:

```
Code: > POLS rob2 <- plm(Inrob~incarc rate+pb1064+pw1064+pm1029+pop+avginc+density+shall, data=data
g, model = "pooling", index = c("stateid", "year"))
> summary(POLS rob2)
Balanced Panel: n=51, T=23, N=1173
Residuals :
                                  3rd Qu.
      Min.
             1st Qu.
                        Median
                                               Max.
-2.350140 -0.359929 0.082074
                                0.445931 1.531312
Coefficients :
               Estimate Std. Error t-value Pr(>|t|)
(Intercept)
              0.9041383 0.7733572
                                      1.1691 0.2425994
                         0.0001525
                                      6.5949 6.444e-11 ***
incarc_rate 0.0010057
                                      4.3121 1.754e-05 ***
              0.1021882 0.0236982
pb1064
              0.0275209 0.0119230 2.3082 0.0211614 *
pw1064
                                     1.7776 0.0757264 .
pm1029
              0.0272565
                         0.0153331
              0.0778177
                         0.0036417
                                     21.3684 < 2.2e-16 ***
pop
              0.0407325  0.0110728  3.6786  0.0002452 ***
avginc
density
              0.0905048 0.0187408
                                     4.8293 1.553e-06 ***
             -0.5288202 0.0463499 -11.4093 < 2.2e-16 ***
shall
```

White Test:

```
> coeftest(POLS_rob2, vcov. = vcovHC(POLS_rob2, type="HC0", cluster="group"))
t test of coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9041383 3.0209728 0.2993 0.7647744
incarc_rate 0.0010057 0.0006316 1.5924 0.1115744
        pb1064
pw1064
        0.0275209 0.0444130 0.6197 0.5356043
pm1029
        0.0272565 0.0411731 0.6620 0.5081039
        gog
       0.0407325 0.0277840 1.4660 0.1429077
avginc
density
        shall
```

3. Pooled OLS model for robbery rate against all variables with logarithmic terms:

```
> POLS_rob2 <- plm(lnrob~lnincarc_rate+lnpb1064+pw1064+pw1029+lnpop+lnavginc+lndensity+shall, data=datag, model = "pooling", index = c("stateid", "year"))
> summary(POLS_rob2)
Pooling Model
plm(formula = lnrob ~ lnincarc_rate + lnpb1064 + pw1064 + pm1029 +
   lnpop + lnavginc + lndensity + shall, data = datag, model = "pooling",
   index = c("stateid", "year"))
Balanced Panel: n=51, T=23, N=1173
Residuals:
                  Median 3rd Ou.
   Min. 1st Qu.
-1.478572 -0.277269 -0.011166 0.296851 1.614357
Coefficients:
             Estimate Std. Error t-value Pr(>|t|)
(Intercept) -3.6283894 0.4756608 -7.6281 4.934e-14 ***
Inincarc_rate  0.4010048  0.0365320 10.9768 < 2.2e-16 ***</pre>
1npb1064
          0.3288989 0.0414020 7.9440 4.587e-15 ***
pw1064
            0.0083744 0.0032740 2.5578 0.01066 *
           pm1029
          lnpop
Inavginc 1.1245734 0.0983859 11.4302 < 2.2e-16 ***
Indensity 0.1847102 0.0124336 14.8558 < 2.2e-16 ***
shall
```

White Test:

```
> coeftest(POLS_rob2, vcov. = vcovHC(POLS_rob2,type="HC0",cluster="group"))
t test of coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -3.6283894
                       1.7831290 -2.0348 0.0420928 *
                                 2.5408 0.0111876 *
lnincarc_rate 0.4010048
                       0.1578236
1npb1064
             0.3288989
                       0.1424906 2.3082 0.0211618 *
             0.0083744
                       0.0112906 0.7417 0.4584092
pw1064
                       0.0387436 4.1449 3.647e-05 ***
pm1029
             0.1605866
                       0.0673878 4.0793 4.824e-05 ***
Inpop
             0.2748983
             1.1245734
                       0.2800491 4.0156 6.308e-05 ***
lnavginc
                       0.0375761
                                 4.9156 1.012e-06 ***
Indensity
             0.1847102
            shall
```

Residual Sum of Squares: 257.67

R-Squared: 0.75874 Adj. R-Squared: 0.75708

F-statistic: 457.589 on 8 and 1164 DF, p-value: < 2.22e-16

- ➤ We observed that, Adj. R-Squared value has increased from POLS_rob3 (0.59343) to POLS_rob2 (0.75708) and more number of variables are significant in POLS rob2.
- So, the model POLS_rob2 better explains the variability in dependent variable in terms of independent variables.
- "shall" law is highly significant with a coefficient estimate "-0.2814399". It can be inferred that, introducing the "shall" law reduces the robbery rate by 28.15. This is big number, but this estimate magnitude dropped significantly from the model POLS_rob1. This is because, shall law variable in model POLS rob1 is overestimating the effects of other omitted variables.
- All the other variables, except "pw1064" are significant. And all these variables are positively correlated with the robbery rate.
- ➤ But Pooled OLS model will not avoid the problem of observed and unobserved heterogeneity. Which means POLS model will not take state specific variables (Observed and unobserved) into the consideration. Like, cultural attitude of people towards robbery, effectiveness of crime prevention departments etc. This cause endogeneity in the model, which is why shall law might got high estimate value.
- ➤ We can avoid heterogeneity by using "Fixed Effects" model.

ENTITY FIXED EFFECT:

```
> EFE_rob1 <- plm(lnrob~lnincarc_rate+lnpb1064+pw1064+pw1064+pm1029+lnpop+lnavginc+lndensity+shall, data=datag, model = "within", index = c("stateid", "year"))
> coeftest(EFE_rob1, vcov. = vcovHC(EFE_rob1, type="HC0", cluster="group"))
t test of coefficients:
               Estimate Std. Error t value Pr(>|t|)
Inincarc_rate -0.1309037  0.0896032 -1.4609  0.14432
1npb1064
             -0.4517934 0.2514141 -1.7970 0.07261 .
pw1064
              0.0107922 0.0145132 0.7436 0.45727
pm1029
             Inpop
             -4.5355223 4.7318070 -0.9585 0.33801
              0.4018976  0.3077423  1.3060  0.19184
lnavginc
Indensity
              4.8757127 4.7346585 1.0298 0.30333
              0.0083804 0.0531299 0.1577 0.87469
shall
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

In the above model, only "Inpb1064" came out to be significant and it's only at 10% significance level. Shall law is not statistically significant even at 10% significance level but it has +ve sign. Let's try this modelling on non-transformed variables.

Log-Linear Model:

```
> EFE_rob2 <- plm(lnrob~incarc_rate+pb1064+pw1064+pm1029+pop+avginc+density+shall, data=datag, model = "within", index = c("stateid", "year"))
> coeftest(EFE_rob2, vcov. = vcovHC(EFE_rob2, type="HC0", cluster="group"))
t test of coefficients:
              Estimate Std. Error t value Pr(>|t|)
incarc_rate -7.6342e-05 3.1677e-04 -0.2410 0.80960
pb1064
            1.1154e-01 5.0477e-02 2.2097 0.02733 *
pw1064
            2.7181e-02 1.6217e-02 1.6761 0.09400 .
pm1029
            1.1182e-02 2.8712e-02 0.3894 0.69703
            1.6333e-02 2.7222e-02 0.6000 0.54863
pop
           -1.7519e-02 2.1743e-02 -0.8057 0.42057
avginc
           -1.8609e-01 1.6414e-01 -1.1337 0.25715
density
shall
           -7.8190e-03 5.4435e-02 -0.1436 0.88581
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

- In this model, pb1064 is significant at 5% significance level and pw1064 is significant at 10% significance level. Both estimates are positive. They infer that increase in black population or white population who are aged between 10 to 64 years, the robbery rate increases.
- > Shall law has negative sign and the magnitude of estimate is very low, but the estimate is not significant even at 10% significance level.
- We can infer that shall law has no effect on the robbery rate.
- > But Entity Fixed Effects model couldn't control any omitted variable which is constant across the states but changes over time. To avoid this problem, we should run the model using Entity and Time Fixed Effects model.

ENTITY AND TIME FIXED MODEL:

Code: ETFE_rob1 <- plm(Inrob~incarc_rate+pb1064+pw1064+pm1029+pop+avginc+density+shall+factor(year), data=datag, model = "within", index = c("stateid", "year"))

summary(ETFE_rob1)

Summary:

```
# t test of coefficients:
#
                 Estimate Std. Error t value Pr(>|t|)
# incarc_rate
                 3.1370e-05 3.3981e-04
                                        0.0923 0.9264657
                 1.4108e-02 8.2161e-02
# pb1064
                                        0.1717 0.8636976
# pw1064
                -1.2832e-02
                             3.2022e-02 -0.4007 0.6886949
                            7.1347e-02
# pm1029
                1.0461e-01
                                        1.4661 0.1428955
                            2.5351e-02
                 1.6376e-05
# pop
                                        0.0006 0.9994847
                            2.4208e-02
# avginc
                 1.4357e-02
                                        0.5931 0.5532574
                -4.4745e-02
                            1.9373e-01 -0.2310 0.8173851
# density
# shall
                 2.6830e-02
                            5.0996e-02
                                        0.5261 0.5989144
# factor(year)78 3.2850e-02 2.1199e-02
                                        1.5496 0.1215368
# factor(year)79 1.3759e-01
                            3.1391e-02 4.3832 1.282e-05 ***
# factor(year)80 2.4341e-01 4.4436e-02 5.4777 5.347e-08 ***
# factor(year)81 2.7371e-01 4.9729e-02 5.5040 4.626e-08 ***
                2.1599e-01 6.2955e-02
                                        3.4309 0.0006242 ***
# factor(year)82
# factor(year)83
                1.2082e-01 8.4747e-02 1.4256 0.1542648
                7.8831e-02 1.0402e-01 0.7578 0.4487271
# factor(year)84
                1.1315e-01 1.2439e-01
                                        0.9097 0.3631988
# factor(year)85
# factor(year)86
                1.8957e-01 1.4871e-01 1.2748 0.2026549
# factor(year)87
                1.5722e-01 1.6507e-01 0.9524 0.3410941
                1.9276e-01 1.8364e-01 1.0497 0.2940990
# factor(year)88
# factor(year)89
                2.4873e-01 2.0922e-01 1.1889 0.2347520
# factor(year)90
                3.5098e-01 2.6083e-01 1.3456 0.1786988
# factor(year)91
                4.6685e-01 2.7287e-01 1.7109 0.0873777
                4.6332e-01 2.8845e-01 1.6062 0.1085136
# factor(year)92
# factor(year)93
                4.7970e-01 3.0127e-01 1.5923 0.1116121
                4.9438e-01 3.1610e-01 1.5640 0.1181119
# factor(year)94
                4.9402e-01 3.2630e-01 1.5140 0.1303145
# factor(year)95
# factor(year)96
                4.3416e-01 3.4251e-01 1.2676 0.2052176
# factor(year)97
                 3.6524e-01 3.5008e-01 1.0433 0.2970343
# factor(year)98
                2.6772e-01 3.6070e-01 0.7422 0.4581139
# factor(year)99 1.8947e-01 3.7585e-01 0.5041 0.6142850
```

3.3 Murder Rate:

POOLED OLS MODEL:

```
1. Y -> Murder rate, X- > "shall" law:
plm(formula = lnmur ~ shall, data = datag, model = "pooling",
index = c("stateid", "year"))
Balanced Panel: n=51, T=23, N=1173
Residuals:
                 Median 3rd Qu.
Min. 1st Qu.
-3.03362 -0.48657 0.10187 0.46289 2.49194
Coefficients : Estimate Std. Error t-value Pr(>|t|)
(Intercept) 1.897556 0.022609 83.928 < 2.2e-16 ***
shall
                          0.045869 -10.320 < 2.2e-16 ***
             -0.473372
Y -> Murder rate, X- > shall, Inincarc rate, Inpb1064,pm1029,pw1064, Indensity, Inavginc, Inpop, shall
plm(formula = lnmur ~ lnincarc_rate + lnpb1064 + pw1064 + pm1029 +
    lnavginc + lnpop + lndensity + shall, data = datag, model = "pooling",
index = c("stateid", "year"))
Balanced Panel: n=51, T=23, N=1173
Residuals:
             1st Qu.
                                   3rd Qu.
     Min.
                         Median
                                                 Max.
-2.178655 -0.252239 0.032139
                                  0.258513
                                            1.307631
Coefficients:
                             Std. Error t-value Pr(>|t|)
                   Estimate
                             0.40981428 -7.8004 1.364e-14 ***
               -3.19673561
(Intercept)
                             0.03147482 20.1524 < 2.2e-16 ***
Inincarc_rate 0.63429404
                             0.03567066 5.6749 1.751e-08 ***
1npb1064
               0.20242577
               -0.00082902
                             0.00282081 -0.2939
pw1064
                                                     0.7689
               0.16539198
pm1029
                             0.01059147 15.6156 < 2.2e-16 ***
               -0.42629663
                             0.08476619 -5.0291 5.703e-07 ***
lnavginc
                             0.01617891 6.3453 3.173e-10 ***
0.01071236 5.9686 3.172e-09 ***
lnpop
                0.10265977
                0.06393792
Indensity
                             0.03085031 -4.4493 9.441e-06 ***
shall
               -0.13726169
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
> coeftest(pooling_var, vcov. = vcovHC(pooling_var, type = 'HCO', cluster = 'group'))
t test of coefficients:
                             Std. Error t value 1.77934414 -1.7966
                   Estimate
                                                   Pr(>|t|)
(Intercept)
               -3.19673561
                                                    0.07266
Inincarc_rate 0.63429404
                             0.15037829
                                          4.2180 2.656e-05 ***
                                                    0.17999
                0.20242577
                                          1.3416
                             0.15088578
1npb1064
               -0.00082902
                             0.01347187 -0.0615
                                                    0.95094
pw1064
pm1029
               0.16539198
                             0.04035862 4.0981 4.455e-05 ***
               -0.42629663
                             0.31805404 -1.3403
                                                    0.18040
lnavginc
                                         1.5147
                                                    0.13011
                0.10265977
                             0.06777371
Inpop
Indensity
                0.06393792
                             0.04421248
                                          1.4462
                                                    0.14840
               -0.13726169
                             0.07524825 - 1.8241
                                                    0.06839 .
shall
```

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Analysis:

- Density, Population, is insignificant and pw 1064, pm1029 are significant at 10%, rest all variables are significant at 5% or less.
- Model 1 (pooling model with no other variables) suggests that shall-issue laws reduce the murder rate by 47% compared to model 2(pooling model with other variables) suggests that shall-issue laws reduce the murder rate by 13.7%. Shall law in model 2 is significant at 10%.
- The reason for the huge coefficient shift of shall from model 1 to model 2 because of omitted variable bias. In model 1 "shall" variable took the effects of omitted variables which are highly correlated with it. So, the coefficient of shall in model 1 is biased and inconsistent. We cannot be sure that coefficient in model 2 gives us the correct estimate because in pooled OLS we can cannot account or control for unobserved heterogeneity, which makes the estimate biased and inconsistent.

ENTITY FIXED EFFECT:

The coefficients for Model 3 are:

```
> coeftest(within_model, vcov. = vcovHC(within_model, type = 'HCO', cluster = 'group'))
t test of coefficients:
               Estimate Std. Error t value Pr(>|t|)
lnincarc_rate -0.172066
                          0.060793 -2.8304 0.004733
                                    0.7072 0.479610
pb1064
               0.046569
                          0.065853
pw1064
               0.016808
                          0.013178
                                    1.2754 0.202425
                                    0.8381 0.402127
pm1029
               0.016707
                          0.019933
avginc
               0.027525
                          0.016669
                                   1.6513 0.098966
                          0.152529 -3.2315 0.001268 **
              -0.492895
density
shall
              -0.068834
                          0.038547 -1.7857 0.074422
              -0.029254
                          0.023743 -1.2321 0.218170
pop
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- After adding entity fixed effects which controls for unobserved heterogeneity, we see a huge drop in the effect of shall on murder rate. Now, Shall-laws in states reduce the murder rate by 6.8% compared to 31.31% in model 2, and Shall in model3 is significant at 10%.
- This huge drop in shall-issue on murder rate confirms an important reason mentioned above i.e. Omitted variable bias in the model2 which did not control for unobserved heterogeneity. Also, effect of shall issue laws on the murder rate is no longer statistically significant.

The regression model with fixed effects is more reasonable because this controls for unobserved characteristics that vary between states but are constant over time.

ENTITY AND TIME FIXED EFFECT:

```
coeftest(FE_withtime, vcov. = vcovHC(FE_withtime, type = 'HCO', cluster = 'group'))
t test of coefficients:
                  Estimate
                            Std. Error t value
                                                 Pr(>|t|)
                            0.05888997 -1.6008 0.1097096
Inincarc_rate -0.09427130
pb1064
                0.01991858
                            0.07831166
                                        0.2544 0.7992730
pw1064
               -0.00073305
                            0.02193523 -0.0334 0.9733466
                                         1.6234 0.1047878
pm1029
                0.07005678
                            0.04315377
                            0.01559650
                                         3.6283 0.0002985
                0.05658911
avginc
density
               -0.49010721
                            0.13991140 -3.5030 0.0004787
               -0.03423410
                            0.02269031 -1.5088 0.1316509
pop
               -0.02211793
shall
                            0.03945705 -0.5606 0.5752145
factor(year)78
               0.00281992
                            0.03182859
                                         0.0886 0.9294183
factor(year)79
                0.06928101
                            0.02939144
                                         2.3572 0.0185899
factor(year)80
                0.10282729
                                         2.4834 0.0131636
                            0.04140624
factor(year)81
                0.11831445
                            0.04915389
                                         2.4070 0.0162484
factor(year)82
                0.04819185
                            0.05822813
                                         0.8276 0.4080560
factor(year)83
                            0.06509093
                                        0.0479 0.9617864
                0.00311935
factor(year)84 -0.09691006
                            0.07257494 -1.3353 0.1820531
                            0.08698817 -0.5033 0.6148475
factor(year)85 -0.04378206
factor(year)86
                0.03592244
                            0.09281725
                                         0.3870 0.6988143
factor(year)87
                0.02387782
                            0.10106112
                                         0.2363 0.8132666
factor(year)88
                0.03979493
                            0.12152242
                                         0.3275 0.7433753
factor(year)89
                            0.13874587
                0.04702005
                                         0.3389 0.7347552
factor(year)90
                0.12993939
                            0.17593594
                                         0.7386 0.4603324
factor(year)91
                0.18016115
                            0.18580563
                                         0.9696 0.3324499
factor(year)92
                0.14718859
                            0.19456008
                                         0.7565 0.4495007
                            0.20034685
                                         1.1815 0.2376469
factor(year)93
                0.23671715
                0.12929227
                            0.21348205
factor(year)94
                                         0.6056 0.5448828
factor(year)95
                0.14544388
                            0.21352082
                                         0.6812 0.4959086
factor(year)96
                0.07910954
                            0.22435847
                                         0.3526 0.7244539
factor(year)97
                            0.23087309 -0.1017 0.9190379
               -0.02347269
factor(year)98 -0.08387386
                            0.24265682 -0.3456 0.7296738
factor(year)99 -0.15036895
                            0.24876482 -0.6045 0.5456619
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- ➤ But Entity Fixed Effects model couldn't control any omitted variable which is constant across the entities but changes over time. To avoid this problem, we should run the model using Entity and Time Fixed Effects model.
- After adding time fixed effects, Shall-issue laws further reduce the murder rate by 2.2% compared to 6.8% in Entity Effects model. But, the effect of shall issue laws in states on the murder rate in Fixed effects with entity and time effects is not statistically significant.
- All variables are coming out to be insignificant in case of time fixed effects except average income and density.

RANDOM EFFECTS MODEL:

random_model <- plm (lnmur ~ lnincarc_rate + pb1064 + pw1064 + pm1029 + avginc + density +shall+ pop, model="random",index=c("stateid","year"),data=datag)

> phtest(within_model, random_model)

```
Hausman Test
```

```
data: lnmur \sim lnincarc\_rate + pb1064 + pw1064 + pm1029 + avginc + density + ... chisq = 2254.6, df = 8, p-value < 2.2e-16 alternative hypothesis: one model is inconsistent
```

- As the sample is not randomly selected so it does not make sense to perform random effects on this dataset. Therefore, we opt out of the random effects model.
- Looking at the output of Hausman test (p-value < 0.05), we can say that there is endogeneity present in random effects model. So, we use Fixed effects for this dataset.

In Pooled OLS model, it does not account for fixed effects of states and time effects. To control the unobserved heterogeneity such as cultural attitude, alcoholism and crime prevention programs we move to Entity and Time Fixed Effect models. The estimated parameters of shall-issue laws in pooling method shows a large effect on crime rates be it Violent crime rate, Murder rate or robbery rate. However, this effect is due to omitted variable bias. Because the effect disappears when state and time effects are added.

Limitations of entity and Time fixed effect models:

There might be unobserved heterogeneity in the regression model that vary between states and over time. For example, other strategies that are related to the of shall issue laws implementation and that affect violent crime rates, murder rate and robbery rate. There is a serious risk of simultaneous causality bias. On one hand, increased incarceration reduces violent rate. On the other hand, if violent rate goes up and the police do their job, there will be more prisoners. If there are many violent crimes this may force government to change shall-issue laws.

Conclusion:

The most sensible results include both state fixed effects and time fixed effects that accounts for omitted variable bias, unobserved heterogeneity and time effects. We conclude based on the above results and interpretations that there is no significant effect of shall-issue laws on the violent crime rate, the robbery rate nor on the murder rate. Right to carry laws may be implemented in states that had a percentage growth in states that have had a recent growth in crime and where other attempts to reduce crime have simultaneously been instituted (for example, increased police hiring or higher arrest rates). Also, Incarceration Rate acts as a proxy for the level of expected punishment so we can remove these endogeneity by introducing Instrumental variables in the model like state wise laws related to concealed weapon laws.