Introduction à la Programmation Linéaire en Nombres Entiers

Leo Liberti, Ruslan Sadykov

LIX, École Polytechnique
liberti@lix.polytechnique.fr
sadykov@lix.polytechnique.fr

Qu'est-ce qu'on va faire et pourquoi?

Les avantages de la Programmation Linéaire en Nombres Entiers (PLNE)

- On peux modéliser plus de problèmes comme PLNE que comme Programmes Linéaires
- Il y a des méthodes pour résoudre les PLNE, qui sont souvent efficaces en pratique
- Il y a des solveurs qu'on peut utiliser pour appliquer ces méthodes rapidement

Les buts principaux du cours

- Savoir modéliser des problèmes
- Savoir utiliser des solveurs
- Savoir comment les solveurs marchent à l'intérieur

Contenu

- Exemples des Programmes Linéaires en Nombres Entiers
- La méthode de coupes (Cutting planes method)
- La méthode de recherche arborescente par séparation et évaluation (Branch-and-Bound)
- La méthode que combine les deux dernières (Branch-and-Cut)

Problèmes formulables en PLNE

- Problèmes avec entrées/sorties discrètes : production d'objets, etc.
- Problèmes avec conditions logiques : ajout de variables entières avec des constraintes supplémentaires.
- Problèmes combinatoires : séquençage, allocation de ressources, emplois du temps, etc.
- Une partie des problèmes non-linéaires.
- Problèmes de réseaux, problèmes de graphes.

Le problème de flot maximum

On a un graphe dirigé G=(V,A) (un réseau) avec une source s, une destination t, et des capacités entières u_{ij} sur chaque arrête (i,j). On doit déterminer la quantité maximum de flot entier de la matière qui peut circuler sur le réseau de s à t. Les variables sont $x_{ij} \in \mathbb{Z}_+$, définées pour chaque arrête (i,j) du graphe, représentent les nombres des unités du flot passées par (i,j).

$$\max_{x} \sum_{(s,i)\in A} x_{si}$$

$$\forall i \leq V, i \neq s$$

$$i \neq t$$

$$\forall (i,j) \in A$$

$$\forall (i,j) \in A$$

$$\forall (i,j) \in A$$

$$(i,j) \in A$$

$$0 \leq x_{ij} \leq u_{ij}$$

$$\forall (i,j) \in A$$

$$x_{ij} \in \mathbb{Z}_{+}$$

Le problème de recouvrement

On a n villes et m régions où on peut construire une installation. Le coût de construction d'une installation dans la région $i \le m$ est f_i . Soit $a_{ij} = 1$ si est seulement si l'installation dans la région i peut servir la ville j. On doit minimiser le coût de construction des installations sous une contrainte : chaque ville doit être sérvit par au moins une installation construite. Les variables sont $x_i \in \{0,1\}$, définées pour chaque ville i, indiquent si l'installation i doit être construite ou pas.

$$\min_{x} \sum_{\substack{i=1\\m}}^{m} f_{i} x_{i}
\forall j \leq n \sum_{i=1}^{m} a_{ij} x_{i} \geq 1
\forall i \leq m \qquad x_{i} \in \{0, 1\}$$

Définitions

Programme Linéare en Nombres Entiers :

$$\begin{array}{c}
\min_{x} c^{\mathsf{T}}x + d^{\mathsf{T}}y \\
\text{s.t.} \quad Ax + By \le b \\
x \ge 0, y \ge 0, \\
x \in \mathbb{Z}_{+}^{n}
\end{array} \right\} [P] \tag{1}$$

- ▶ La relaxation linéaire (ou continue) R_P de P est obtenue par relâchement (enlèvement) des contraintes d'intégralité ($x \in \mathbb{Z}_+^n \to x \geq 0$).
- Soit F(P) la région des solutions possibles de P : on a $F(P) \subseteq F(R_P)$.
- Soit (x^*, y^*) une solutoin optimale de P et soit (\bar{x}, \bar{y}) une solution optimale de R_P ; alors $c^T \bar{x} + d^T \bar{y} \leq c^T x^* + d^T y^*$: la valeur optimale de R_P est une borne inférieur pour P.

Un exemple simple

Consider example:

$$\min f = -3x_1 - 5x_2$$

$$x_1 + 2x_2 \le 3$$

$$6x_1 + 8x_2 \le 15$$

$$x_1 \in \mathbb{R}_+, \ x_2 \in \mathbb{Z}_+$$

Bonnes formulations

Plus $F(R_P)$ est petit, plus la borne inférieur produite par R_P est proche de la valeur optimale de P. Comme $F(R_{P_3}) \subset F(R_{P_2})$ et $F(R_{P_3}) \subset F(R_{P_2})$, la formulation P_3 est meilleur que P_1 et P_2 .

lci P_3 est la meilleur formulation (formulation idéale). On dit que R_{P_3} est *l'enveloppe convexe* de P_1 et P_2

Formellement, si $P = \{x^1, \dots, x^t\}$, alors

$$conv(P) = \{x : x = \sum_{i=1}^{t} \lambda_i x^i, \sum_{i=1}^{t} \lambda_i = 1, \lambda_i \ge 0, \forall i = 1, \dots, t\}.$$

Problème de localisation des installations

Similaire au problème de recouvrement. Ici on ajoute les coûts de transportation c_{ij} de la demande de la ville j à partir de l'installation i. Les variables additionelles $y_{ij} \in \mathbb{R}_+$ représentent la fraction de la demande de la ville j servie par l'installation i.

$$\min_{x,y} \sum_{i=1}^{m} f_i x_i + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} y_{ij}
\forall j \leq n, \quad \sum_{i=1}^{m} y_{ij} = 1
\forall i \leq m, \quad \sum_{j=1}^{m} y_{ij} \leq n x_i
\forall i \leq m, \forall j \leq n, \quad y_{ij} \geq 0,
\forall i \leq m, \quad x_i \in \{0, 1\}.$$

Problème LI (II)

On peut changer les contraintes

$$\forall i \le m, \quad \sum_{j=1}^{n} y_{ij} \le nx_i \quad [P_1]$$

par

$$\forall i \leq m, \forall j \leq n, \quad y_{ij} \leq x_i. \quad [P_2]$$

Formulation P_2 is meilleur que P_1 as $F(R_{P_2}) \subset F(R_{P_1})$. Preuve. On a $(x,y) \in F(R_{P_2}) \Rightarrow (x,y) \in F(R_{P_2})$. Puis soit $m=1, n=2, x_1'=0.5, y_1'=(1,0)$. Alors $(x',y') \in F(R_{P_1})$ et $(x',y') \not\in F(R_{P_2})$.

Heuristique d'arrondissement

Il y a une forte rélation entre une PLNE et sa relaxation continue.

Est-ce que c'est bon juste arrondir la solution optimale de la relaxation continue? Pas toujours. On envisage le PLNE suivant:

$$\max 1.00x_1 + 0.64x_2$$

$$50x_1 + 31x_2 \le 250$$

$$3x_1 - 2x_2 \ge -4$$

$$x_1, x_2 \in \mathbb{Z}_+$$

Les idées algorithmiques principales

- Si on peut dire à priori que $\bar{x} \in \mathbb{Z}^n$, alors on peut juste résoudre R_P au lieu de P (*la propriété d'unimodularité totale*).
- On peut ajouter des contraintes à P pour obtenir P' tel que $\bar{x}' \in \mathbb{Z}^n$ (*L'algorithme de coupes*).
- On peut énumérer les solutions de façon intelligente (Branch-and-Bound).
- On peut combiner l'ajout des contraintes et l'énumération (Branch-and-Cut).
- Les solveurs modernes (comme Cplex) utilisent Branch-and-Cut à l'intérieur.

Les plans coupants : définitions I

Une contrainte $C \equiv \pi^{\mathsf{T}} x \leq \pi_0$ est valide pour P si $\forall x' \in F(P) \ (\pi^{\mathsf{T}} x' \leq \pi_0)$

Les plans coupants : définitions II

Soit P' le problème P avec une contrainte valide C ajoutée. C est le *plan coupant* pour P si $F(R_{P'}) \subset F(R_P)$

Les plans coupants : définitions III

Un plan coupant $C: \pi^T x \leq \pi_0$ est une *coupe valide* pour $\bar{x} \in R_P$ si $\pi^T \bar{x} > \pi_0$.

L'enveloppe convexe

Pour obtenir la description de l'enveloppe convexe de F(P), on a besoin un nombre finit de contraintes valides pour P.

Le problème de calculation de l'enveloppe convexe pour F(P) est un problème plus difficile en général que P.

L'algorithme de coupes

Stratégie :

- 1. On résout R_P et on obtient la solution \bar{x}
- 2. Si $\bar{x} \in \mathbb{Z}^n$ le problème est résolu, sortie.
- 3. On construit une coupe valide C pour \bar{x} et P
- 4. On ajoute la contrainte C à la formulation P
- 5. Revenir à l'étape 1
- L'étape la plus importante est 3 (le problème de séparation).
- Les algorithmes de coupes peuvent dépendre de la structure du problème ou peuvent être généraux (l'algorithme de coupe de Gomory).

Branch-and-Bound I

On utilise l'approche "diviser-pour-reigner". Si on peut pas résoudre un problème, on le divise en sous-problèmes plus simples.

Branch-and-Bound II

- 1. On initialise la liste des problèmes $L = \{P\}$, la meilleur valeur trouvée de la fonction objective $f^* = \infty$, $x^* =$ "infeasible"
- 2. Si $L = \emptyset$, on termine, x^* est une solution optimale
- 3. On choisit un sous-problème Q de L, $L=L\setminus\{Q\}$
- 4. On résout R_Q , \bar{x} est la solution avec la valeur \bar{f}
- 5. Si $F(R_Q) = \emptyset$, retour à 2 (coupure par la non-réalisabilité)
- 6. Si $\bar{f} \geq f^*$, Q ne contient pas une solution meilleur que f^* , retour à 2 (coupure par la borne)
- 7. Si $\bar{x} \in \mathbb{Z}_+$ et $\bar{f} < f^*$: on met à jour $x^* = \bar{x}$, $f^* = \bar{f}$, retour à 2 (coupure par l'optimalité)
- 8. On choisi une variable \bar{x}_j , $\bar{x}_j \notin \mathbb{Z}$, et génère deux sous-problèmes de Q en ajoutant les constraintes $x_j \leq \lfloor \bar{x}_j \rfloor$ et $x_j \geq \lceil \bar{x}_j \rceil$ respectivement, on les ajoute à L, retour à 2.

Branch-and-Bound III

L'algorithme admet plusieurs variations.

- Comment choisit-on un sous-problème Q dans la liste L (l'étape 3)?
- Comment choisit-on une variable fractionnaire x_j (l'étape 8)?
- Il n'y a pas de "meilleur réponse", ça dépend de la structure du problème.
- Les solveurs permettent à l'utilisateur de préciser quelle variation de l'algorithme doit être utilisée. Il y a toujours la variation par défaut qui convient dans la majorité des cas.

BB exemple I

On envisage un exemple simple :

La solution de R_P est $\bar{x}=(1.5,0.75)$ avec $\bar{f}=-8.25$

BB exemple II

 $ar{x}^i = ext{la solution de } R_{P_i}, \, ar{f_i} = ext{la valeur optimale de } R_{P_i}, \, orall i$

1		(2)
P_2	P_1	P_3
$\bar{x}^2 = (1,1)$	$\bar{x}^1 = (1.5, 0.75)$	$\bar{x}^3 = (2, 0.375)$
$\bar{f}_2 = -8$	$\bar{f}_1 = -8.25$	$\bar{f}_3 = -7.875$

 $x \in \mathbb{Z}^2$ $\bar{f}_3 > f^*$

Branch-and-Cut

- Dans l'algorithme Branch-and-Bound, avant la division en sous-problèmes, on génère des coupes valides pour la solution fractionnaire courante x̄.
- Généralement, les coupes sont générées jusqu'à ce que la valeur \bar{f} de la fonction objective n'augmente pas beaucoup.
- Par défaut, les solveurs utilisent les coupes générales.
- Les classes des coupes générales les plus utilisées : Gomory cuts, Mixed-Integer Rounding (MIR) cuts, [flow] cover cuts.

Les inégalités de Gomory

- Soit $P = \{x \in \mathbb{Z}_+^n : Ax \leq b\}$, A est une matrice $m \times n$ avec les colonnes (a_1, \dots, a_n) , et $u \in \mathbb{R}_+^m$.
- $\sum_{j=1}^{n} ua_{j}x_{j} \leq ub$ est valide pour P, comme $u \geq 0$;
- $\sum_{j=1}^{n} \lfloor ua_j \rfloor x_j \le ub$ est valide pour P, comme $x \ge 0$;
- $\sum_{j=1}^n \lfloor ua_j \rfloor x_j \leq \lfloor ub \rfloor \text{ est valide pour } P \text{, comme } x \text{ est entier.}$
- En utilisant cette procédure, on peut générer toutes les inégalités (contraintes) valides pour un PLNE.

Les inégalités de couverture

- Soit $P = \left\{ x \in \{0, 1\}^n : \sum_{j=1}^n a_j x_j \le b \right\}$, $a_j \ge 0$, $\forall j \le n$, $b \ge 0$, $N = \{1, 2, \dots, n\}$.
- Un ensemble $C \subseteq N$ est une couverture si $\sum_{j \in C} a_j > b$.
- Si $C \subseteq N$ est une couverture, alors l'inégalité de couverture

$$\sum_{j \in C} x_j \le |C| - 1$$

est valide pour P.

Quelques solveurs PLNE existants

Payants

- ILOG Cplex (www.ilog.com)
- Xpress-Optimizer (www.dashoptimization.com)
- LINDO (www.lindo.com)

Gratuits

- COIN-OR (www.coin-or.org)
- GLPK (www.gnu.org/software/glpk)

Les ouvrages pour le cours

- C. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover, New York, 1998
- L. Wolsey, Integer Programming, John Wiley & Sons, Inc, New York, 1998.