

SHARP

No.	LD – 15253				
DATE	APR. 23. 2003				

TECHNICAL LITERATURE

FOR

TFT - LCD module

MODEL No. LQ370T3LZ11

The technical literature is subject to change without notice. So, please contact SHARP or its representative before designing your product based on this literature.

DEVELOPMENT ENGINEERING DEPT. II

AVC LIQUID CRYSTAL DISPLAY DIVISION

AVC LIQUID CRYSTAL DISPLAY GROUP

SHARP CORPORATION

RECORDS OF REVISION

LQ370T3LZ11

SPEC No.	DATE	REVISED	SUMMARY		NOTE
		No.	PAGE		
LD-15253	APR. 23. 2003	_	_	-	1 st Issue
					
				{	

1. Application

Global LCD Panel Exchange Center

This technical literature applies to the color 37.0" Wide XGA TFT-LCD module LQ370T3LZ11.

- * These technical literature sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * The device listed in these technical literature sheets was designed and manufactured for use in AV equipment.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these technical literature sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1366×RGB×768 dots panel with 16,777,216 colors by using LVDS (Low Voltage Differential Signaling) to interface, +5V of DC supply voltages and supply voltage for back light.

This module also includes the DC/AC inverter to drive the CCFT.

And in order to improve the response time of LCD, this module applies the O/S (over shoot) driving technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	94 (Diagonal)	cm
	37.0 (Diagonal)	inch
Active area	819.60 (H) x 460.80 (V)	mm
Pixel Format	1366 (H) x 768 (V)	pixel
	(1pixel = R + G + B dot)	
Pixel pitch	0.600(H) x 0.600 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Unit Outline Dimensions *1	921.0(W) x 554.8(H) x 68.5(D)	mm
Mass	TBD	g
Surface treatment	Anti glare, low reflection coating Hard coating: 2H Haze: 23 +/- 5%	

(*1) Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +5VDC power supply) (Shown in Fig.1)

Using connector : FI-X30S-HF (Japan Aviation Electronics Ind. , Ltd.)

 $\hbox{Mating connector} \quad \vdots \hbox{FI-X30H,FI-X30C or FI-X30M (Japan Aviation Electronics Ind. , Ltd.)}$

Using LVDS receiver : THC63LVDF84B (Thine)

Mating LVDS transmitter: THC63LVDM83A or equivalent device

Pin No.	Symbol	Function	Remark
1	VCC	+5V Power Supply	
2	VCC	+5V Power Supply	
3	VCC	+5V Power Supply	
4	VCC	+5V Power Supply	
5	GND	GND	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	SELLVDS	Select LVDS data order [Note1]	Pull up Default H:3.3V
10	NC		
11	GND	Ground	
12	RIN0-	Negative (-) LVDS differential data input	LVDS
13	RIN0+	Positive (+) LVDS differential data input	LVDS
14	GND	Ground	
15	RIN1-	Negative (-) LVDS differential data input	LVDS
16	RIN1+	Positive (+) LVDS differential data input	LVDS
17	GND	Ground	
18	RIN2-	Negative (-) LVDS differential data input	LVDS
19	RIN2+	Positive (+) LVDS differential data input	LVDS
20	GND	Ground	
21	CLKIN-	Clock Signal(-)	LVDS
22	CLKIN+	Clock Signal(+)	LVDS
23	GND	Ground	
24	RIN3-	Negative (-) LVDS differential data input	LVDS
25	RIN3+	Positive (+) LVDS differential data input	LVDS
26	GND	Ground	
27	R/L	Horizontal shift direction [Note 3]	Pull down Default L:0V
28	U/D	Vertical shift direction [Note 3]	Pull down Default L:0V
29	Reserved		
30	Reserved		

^{*} Shield case on the back surface of module contacts to GND of internal circuit.

[Note1] SELLVDS

SELLVDS enable to select input Data order by tying this pin to GND or 3.3V.

Transmitter		SELLVDS		
Pin No	Data	=L(GND)	=H(3.3V) or Open	
51	TA0	R0(LSB)	R2	
52	TA1	R1	R3	
54	TA2	R2	R4	
55	TA3	R3	R5	
56	TA4	R4	R6	
3	TA5	R5	R7(MSB)	
4	TA6	G0(LSB)	G2	
6	TB0	G1	G3	
7	TB1	G2	G4	
11	TB2	G3	G5	
12	TB3	G4	G6	
14	TB4	G5	G7(MSB)	
15	TB5	B0(LSB)	B2	
19	TB6	B1	B3	
20	TC0	B2	B4	
22	TC1	В3	B5	
23	TC2	B4	B6	
24	TC3	B5	B7(MSB)	
27	TC4	NC	NC	
28	TC5	(RSV1)	(RSV1)	
30	TC6	DE	DE	
50	TD0	R6	R0(LSB)	
2	TD1	R7(MSB)	R1	
8	TD2	G6	G0(LSB)	
10	TD3	G7(MSB)	G1	
16	TD4	В6	B0(LSB)	
18	TD5	B7(MSB)	B1	
25	TD6	(NA)	(NA)	

Interface block diagram

Corresponding Transmitter: THC63LVDM83A(THine)

SELLVDS= Low(GND)

Global LCD Panel Exchange Center

[Note 2] The horizontal display start timing is settled in accordance with a rising timing of DE signal. Don't keep DE "High "during operation.

[Note 3] Image on panel will change like below by setting Pin27(Horizontal shift direction) ,Pin28(Vertical shift direction)

Reversed image with vertical

R/L : L(GND)U/D: H(3.3V)

Connectors on Source PWB

U/D: H(3.3V)Connectors on Source PWB SHARP

Connector on Gate PWB

Connector on Gate PWB

CN2(O/S control) -(Shown Fig 1)

OS Driving Pin No and function Using connector: SM07B-SRSS-TB-A(JST)

Mating connector: SHR-07V-S or SHR-07V-S-B (JST) 0: (GND) ,1: (3.3V)

R/L: H(3.3V)

Pin No.	Function	Default
1	Frame frequency setting 0:50Hz, 1:60Hz	Pull down 0V: (GND)
2	O/S operation setting 0:off, 1:on	Pull down 0V: (GND)
3	Reserved	Pull down 0V: (GND)
4	Data3 of panel surface temperature	Pull down 0V: (GND)
5	Data2 of panel surface temperature	Pull down 0V: (GND)
6	Data1 of panel surface temperature	Pull down 0V: (GND)
7	Gnd	

According to the surface temperature of the panel, enter the optimum 3 bit signal into pin No.4,5,6. Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

Pin no.	O/S OFF	0-5℃	5-10℃	10-15℃	15-20℃	20-25℃	25-30℃	30-35℃	OVER 35℃
4	0	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
5	0	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
6	0	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD

For overlapping temperatures (such as $SC,10^{\circ}C,15^{\circ}C,20^{\circ}C,25^{\circ}C$, $30^{\circ}C,35^{\circ}C$) select the optimum parameter, judging from the actual picture image.

4-2. Backlight driving

CN3 (Inverter control)

Using connector: S3B-PH-SM3-TB(JST) Mating connector: PHR-3 (JST)

Pin No.	Symbol	Function	Remark
1	Von	Inverter ON/OFF	[Note 1]
2	$ m V_{BRT}$	Brightness Control	[Note 2]
3	GND	GND	

[Note 1] Inverter ON/OFF

Input voltage	Function
5V	Inverter: ON
0V	Inverter: OFF

[Note 2] Brightness Control

This analog control voltage (0V to 5V) control Brightness(note : Absolute maximum rating $0 \sim + 6V$)

Input voltage	Function
5V	Brightness Control (15%): (Dark)
0V	Brightness Control (100%): (Bright)

CN4,CN5, CN6,CN7 (Inverter Power input Pin layout)

Using connector: B2PS-VH (JST)

Mating connector: VHR-2N (JST)

Pin No.	Function
1	12V
2	GND

^{*}GND of Inverter doesn't contact GND of LCD module.

4-3. Lamp characteristics

The back light system is direct type with 14 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table. The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	$T_{\rm L}$	TBD	-	-	Hour	[Note 1]

[Note 1] Lamp life time is defined as the time when the situation 1 occurs in the continuous operation under the condition of Ta=25 $\,^{\circ}$ C and brightness control(100%).

 $1. \ Brightness \ becomes \ 50\% \ of \ the \ original \ value \ under \ standard \ condition.$

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	Vı	Ta=25 °C	-0.3 ~ 3.6	V	[Note 1]
(for Control)					
5V supply voltage	VCC	Ta=25 °C	0 ~ + 6	V	
(for Control)					
Input voltage	VBRT	Ta=25 °C	0 ~ + 6	V	
(for Inverter)	Von				
12V supply voltage	V_{INV}	Ta=25 °C	0 ~ +14	V	
(for Inverter)					
Storage temperature	Tstg	-	-25 ∼ +60	$^{\circ}\mathbb{C}$	
Operation temperature	Topa	-	0 ~ +50	$^{\circ}$ C	[Note 2]
(Ambient)					

[Note 1] SELLVDS, R/L, U/D

[Note 2] Humidity 95%RH Max.($Ta \le 40$ °C)

Maximum wet-bulb temperature at 39 $\,^{\circ}$ C or less.(Ta>40 $\,^{\circ}$ C) No condensation.

Ta=25 °C

LD-15253-9

6. Electrical Characteristics

6-1. Control circuit driving

Para	Parameter			Min.	Тур.	Max.	Uniit	Remark
+5V supply	Supply voltage		Vcc	+4.5	+5.0	+5.5	V	[Note 1]
voltage	_	Current ssipation	Icc	-	(2.8)	(4.0)	A	[Note 2]
	Permissible input ripple voltage			-	ı	100	mV _{P-P}	Vcc = +5.0V
Differential is		High	V_{TH}	-	•	100	mV	$V_{CM} = +1.2V$
threshold vol	tage	Low	V_{TL}	-100	-	- mV		[Note 8]
Input L	ow vo	ltage	V_{IL}	-	-	1.0	V	[Note 3]
Input H	igh vo	ltage	V_{IH}	2.3	3.3	3.6	V	[Note 3]
Input look	aurran	et (Low)	IIL1	-	1	TBD	μΑ	$V_I = 0V$ [Note 4]
Input leak	Input leak current (Low)			-	1	TBD	μΑ	$V_{I} = 0V$ [Note 5]
Innut look	(II:-1)			-	ı	TBD	μΑ	V _I =3.3V [Note 6]
Input leak current (High)			Іін2	-	-	TBD	μΑ	V _I =3.3V [Note 7]
Termin	al resi	stor	Rt	-	TBD	- 1	Ω	Differential input

[Note] Vcm: Common mode voltage of LVDS driver.

[Note 1]

1) Input voltage sequences

$$0 < t1 \le 10 \text{ms}, 0 < t2 \le 10 \text{ms}$$

 $0 < t3 \le 1 \text{s}, t4 \ge 1 \text{s}$

2) Dip conditions for supply voltage

a)
$$2.7V \le Vcc < 4.5V$$

td $\le 10ms$

Condition of Dip conditions for supply voltage is based on input voltage sequence.

[Note 2] Typical current situation: 16 gray-bar pattern (Vcc = +5.0V) The explanation of RGB gray scale is seen in section 8.

[Note 3] R/L, U/D, SELLVDS

[Note 4] R/L, U/D

[Note 5] SELLVDS

[Note 6] R/L, U/D

[Note 7] SELLVDS

[Note 8] CKIN, RIN0,RIN1, RIN2, RIN3

6-2. Inverter driving for back light

The back light system is under-lighting type with 14 CCFTs (Cold Cathode Fluorescent Tube).

Ta=25°C

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Current dissipation	Iinv	TBD	(10.0)	(12.5)	A	$V_{INV} = 12V$
+12V							$V_{BRT} = 0V$
	Supply voltage	Vinv	11	12	13	V	[Note 1]
Pe	ermissible input ripple	V_{RP}	-	-	(200)	mV_{P-P}	$V_{INV} = +12V$
	voltage						
I	nput voltage (Low)	Vonl	0	1	TBD	V	[Note 1,2]
I	nput voltage (High)	Vonh	3.0	1	TBD	V	impedance=TBDk Ω
	Brightness control	VBRT	0	-	TBD	V	[Note 1,3, 4]
	voltage(100%)						impedance=TBDkΩ
Brig	ghtness control voltage	VBRT	TBD		TBD	V	
	-						

[Note 1] 1)Vinv-turn-on condition

2) Vinv-turn-off condition

% T8>1ms

※ T9≥1ms

[Note 2] VON

[Note 3] VBRT

[Note 4] Refrain from using the device under the condition of $V_{BRT}=0.5\pm0.2\,\text{V}$ because of the possibility of flicker on display. In case of $V_{BRT}>5.0\,\text{V}$, the protective circuit may stop driving the inverter.

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.3.

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	TBD	82	TBD	MHz	
	Horizontal period	TH	TBD	1696	TBD	clock	
Data enable	Tiorizontai period		TBD	20.67	-	μs	
signal	Horizontal period (High)	THd	1366	1366	1366	clock	
signai	Vertical period	TV	TBD	806	TBD	line	[Note1] [Note3]
	Vertical period (High)	TVd	768	768	768	line	

- [Note1] When vertical period is very long, the deterioration of display quality e.g. flicker and etc. may occur.
- [Note2] Please do not turn off the module untill it shows the black screen.
- [Note3] Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not function properly.

7-2. Input data signal and display position on the screen

I by

Global LCD Panel Exchange Center

LD- 15253-13

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

	nput Sig									<i>J</i>				sign												
	Colors & Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	В3	B4	В5	В6	В7
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
or	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Col	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f Re	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le o	仓	\downarrow				`	V							`	V							`	V			
Gray Scale of Red	Û	\downarrow				`	V								ı							•	↓			
Gray	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	仓	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gre	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le of	仓	\downarrow				`	V							`	V							`	\downarrow			
Sca	Û	\downarrow				`	V							`	l _							`	↓			
Gray Scale of Green	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
ľ	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>e</u>	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
fBlu	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
le oi	Û	V				`	V							`	V							`	\downarrow			
Gray Scale of Blue	Û	\	_			`	l .							`	l _							•	ν			
Gray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

^{0:} Low level voltage,

^{1 :} High level voltage.

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

9. Optical characteristics

Global LCD Panel Exchange Center

 $Ta=25^{\circ}C$, Vcc = +5V, $V_{INV} = +12V$

Parai	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing angle	Horizontal	θ 21 θ 22	CR≧10	70	85	-	Deg.	[Note1,4]
range	Vertical	θ 11 θ 12		70	85	-	Deg.	VBRT=0V
Contra	st ratio	CRn	$\theta = 0$ deg.	-	(800)	-		[Note2,4] VBRT=0V
Respon	se time	τr τd		-	(15)	TBD	ms	[Note3,4,5] VBRT=0V
Luminono	e of white	X		TBD	(0.308)	TBD		VBRT=0V
Lummanc	e of white	Y		TBD	(0.329)	TBD		[Note 4]
Luminance of white		Y _{L1}		1	(500)	-	cd/m ²	VBRT=0V [Note 4]
Luminance	uniformity	δ w		-	-	(1.25)		[Note 6]

^{*}The measurement shall be executed 30 minutes after lighting at rating.

[Note 1] Definitions of viewing angle range:

[Note 2] Definition of contrast ratio:

any level of gray (bright)

The contrast ratio is defined as the following.

Luminance(brightness) with all pixels white Contrast Ratio (CR) = Luminance(brightness) with all pixels black

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray (bright)" and "any level of gray (dark)".

[Note 4] This shall be measured at center of the screen.

[Note 5] (15ms) is the value when over shoot driving is used.

[Note 6] Definition of white uniformity;

Global LCD Panel Exchange Center

White uniformity is defined as the following with five measurements.(A~E)

$$\delta$$
 w = $\frac{\text{maximum Luminance of five points(brightness)}}{\text{minimum Luminance of five points(brightness)}}$

10. Display Quality

The display quality of the color TFT-LCD module shall be compliance with the incoming inspection standard.

11. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Brightness control voltage is switched for "ON" and "OFF", as shown in Fig.4. Voltage difference generated by this switching, Δ VINV, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Fig.4 Brightness control voltage.

Since inverter board's GND is not connected to the frame of the LCD module, please connect it with the Customer's GND of inverter power supply.

- c) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or
- d) Since the front polarizer is easily damaged, pay attention not to scratch it.
- e) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- f) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- g) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- h) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into

- consideration when handling.
- i) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- j) Observe all other precautionary requirements in handling components.
- k) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- l) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- m) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.

12. Packing form

- a) Piling number of cartons: TBD maximum
- b) Packing quantity in one carton: TBD
- c) Carton size: TBD mm(W) x TBD mm(H) x TBD mm(D)
- d) Total mass of one carton filled with full modules: TBD \mbox{kg}

13. Reliability test item

No.	Test item	Condition					
1	High temperature storage test	Ta=60°C 240h					
2	Low temperature storage test	Ta=-10°C 240h					
3	High temperature and high humidity	Ta=40°C; 95%RH 240h					
	operation test	(No condensation)					
4	High temperature operation test	Ta=50°C 240h					
5	Low temperature operation test	Ta=0°C 240h					
6	Vibration test	Frequency: 10~57Hz/Vibration width(one side): 0.075mm					
	(non-operation)	: 58~500Hz/Acceleration : 9.8 m/s2					
		Sweep time: 11 minutes					
		Test period : 3 hours(1h for each direction of X,Y,Z)					
7	Shock test	Maximum acceleration: 490m/s2					
	(non-operation)	Pulse width: 11ms,sinusoidal half wave					
		Direction : +/-X,+/-Y,+/-Z,once for each direction.					

[Note] Ta= Ambient temperature

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change which may Affect practical display function.

14. Others

1)Lot No. Label;

Global LCD Panel Exchange Center

- 2) Adjusting volume have been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 3)Disassembling the module can cause permanent damage and should be strictly avoided.
- 4)Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 5)Be sure to turn off the power supply of the inverter circuit before turning off the one of the control circuit.
- 6)Rust on the module is not taken up a problem.
- 7) When any question or issue occurs, it shall be solved by mutual discussion.

Fig. 1 OUTLINE DIMENSIONS (LQ370T3LZ11)