MATH 341 Study Guide Midterm 1

Isaac Boaz

January 26, 2023

Definitions and Laws

- 1. A and B are mutually exclusive or disjoint if $A \cap B = \emptyset$.
- 2. A_1, A_2, \ldots, A_k are exhaustive events if $A_1 \cup A_2 \cup \cdots \cup A_k = S$.
- 3. Commutative laws
 - $\bullet \ A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- 4. Associative laws
 - $A \cup (B \cup C) = (A \cup B) \cup C$
 - $A \cap (B \cap C) = (A \cap B) \cap C$
- 5. Distributive laws
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 6. De Morgan's laws
 - $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$
 - $\bullet \ \overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Axioms

- 1. For any event A in S, $0 \le P(A) \le 1$.
- 2. P(S) = 1.
- 3. For any sequence of mutually exclusive (disjoint) events A_1, A_2, A_3, \ldots in S (i.e., $A_i \cap A_j = \emptyset$ whenever $i \neq j$), then

$$P(A_1 \cup A_2 \cup A_3 \dots) = \sum_{i=1}^{n} P(A_i).$$

These axioms imply that

- $P(\varnothing) = 0$.
- $P(A \cup B) = P(A) + P(B)$ when A and B are mutually exclusive.

Permutations and Combinations

Select r from n	Order matters	Order does not matter
Without replacement	$_{n}P_{r} = \frac{n!}{(n-r)!}$	$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$
With replacement	n^r	$\binom{n+r-1}{r}$

Conditional Probability

The **conditional probability** of A given B has occured is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A \mid B)P(B).$$

Bayes' Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}.$$