Performance of Precoded Integer-Forcing for Closed-Loop MIMO Multicast

Elad Domanovitz and Uri Erez

Tel Aviv University, Israel

IEEE ITW 2014, November 4th

Introduction

- The Multiple-Input Multiple-Output (MIMO) Gaussian channel has been the focus of extensive research efforts.
- The MIMO Gaussian broadcast channel has also been widely studied for over a decade now.
- Private Message vs. Common Message
 - Capacity is known for both cases √
 - Practical scheme
 - Private Message √ (DPC)
 - Common Message ?
 - \Longrightarrow Topic of this talk

Challenges for Practical MIMO Multicast

- In contrast to the single-user case, the number of data streams, constellation size and other parameters cannot be tailored to a specific user and can depend only on capacity.
- Users can have different number of antennas

- \Longrightarrow Code design for MIMO multicast is challenging.
- Goal: practical coding schemes for MIMO multicast.
- We show: challenges are successfully met via precoded integer-forcing (IF) combined with SIC.

MIMO Multicast Channel Model

- A transmitter equipped with M transmit antennas wishes to send the same message to K users.
- User i is equipped with N_i antennas.
- Channel matrix of user i: $[\mathbf{H}_i]_{N_i \times M}$.
- Set of channels: $\mathcal{H} = \{\mathbf{H}\}_{i=1}^K$.
- Received signal at user i

$$\mathbf{y}_i = \mathbf{H}_i \mathbf{x} + \mathbf{z}.$$

Power constraint

$$\mathbb{E}(\mathbf{x}^H\mathbf{x}) \leq M \cdot \mathsf{SNR}.$$

• Additive noise $\mathbf{z} \sim \mathcal{CSCN}(0, \mathbf{I})$.

Closed-Loop Multicast Capacity

- Closed-Loop: CSI is available at both transmission ends.
- The multicast capacity is attained by a Gaussian vector input, where the mutual information is maximized over all covariance matrices \mathbf{Q} satisfying $\text{Tr}(\mathbf{Q}) \leq M \cdot \text{SNR}$

$$C(\mathsf{SNR},\mathcal{H}) = \max_{\mathbf{Q}:\mathsf{Tr}(\mathbf{Q}) \leq M \cdot \mathsf{SNR}} \ \ \min_{\mathbf{H} \in \mathcal{H}} \mathsf{log} \, \mathsf{det}(\mathbf{I} + \mathbf{H}^H \mathbf{QH}).$$

• Figure of merit for assessing the performance of a scheme achieving rate $R(SNR, \mathcal{H})$:

Efficiency =
$$\eta(\mathsf{SNR}, \mathcal{H}) = \frac{\mathrm{R}(\mathsf{SNR}, \mathcal{H})}{\mathrm{C}(\mathsf{SNR}, \mathcal{H})}$$
.

Known Practical Multicast Capacity Achieving Schemes

 There are several special cases where known linear modulation techniques achieve the multicast capacity when coupled with codes designed for a scalar AWGN channel:

Rx Ant	Tx Ant	User Num	SNR	Mod.
1	Any	2	Any	BeamForming
1	2	Any	Any	BF+Alamouti
Any	Any	Any	Very Low	BF+OSTBC
Any	Any	Any	Very High	NVD+IF
Any	Any	Moderate	Any	?

Precoded IF Equalization For Closed-Loop Multicast

- For SU Open-Loop, Ordentlich '13, et. al., considered:
 - Rx side Integer Forcing Equalization
 - Tx side Linear Precoding
- Showed that linear Non-Vanishing Determinant (NVD)
 precoder achieves the mutual information up to a constant
 gap for any channel.
- Open-loop scenario = limit of many users
 ⇒ results applicable also to closed-loop.
- However, the guaranteed gap to capacity is very large
 not meaningful at moderate rates.
- We show that optimizing the precoder based on CSI, yields very good performance for closed-loop multicast for all SNR values.

Integer-Forcing Equalization: Review

Consider the (SU) channel

$$\mathbf{H} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

 At high SNR linear receiver front-end inverts the channel (ZF) thus resulting in noise amplification

$$\mathbf{H}^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}.$$

- Can we avoid noise amplification?
- IF idea: if all streams are coded with same linear code ⇒ signal at each antenna is a valid codeword.
- However, normal channels do not consist only of integers.
- Integer Forcing (IF) equalization generates an equivalent channel with integer entries.

Integer-Forcing Equalization: Review

- Information bits are fed into *M* encoders, each of which uses the same scalar *AWGN linear code*.
- Linear equalization matrix $\mathbf{B}_{\mathrm{INT}}$ is applied, such that the resulting equivalent channel $\mathbf{A} = \mathbf{B}_{\mathrm{INT}}\mathbf{H}$ is an integer matrix.
- In a practical implementation: computing A is done via LLL (polynomial complexity) once per code block.

Integer-Forcing Equalization: Review

- Integer matrix

 the output of the channel (without noise) after applying a modulo operation is a valid codeword.
- We further consider a generalized version of the IF equalizer that incorporates SIC along with linear precoding at the transmitter.

IF-SIC Performance

- Using MMSE equalization the effective SNR at the m'th subchannel is $SNR_{eff.m} = (\mathbf{a}_m^T (\mathbf{I} + SNR\mathbf{H}^H \mathbf{H})^{-1} \mathbf{a}_m)^{-1}$
- The effective SNR associated with the IF scheme is

$$\mathsf{SNR}_{\mathrm{eff}} = \min_{m=1,\dots,M} \mathsf{SNR}_{\mathrm{eff},\mathrm{m}}$$

- Achievable rate without SIC (Zhan '10): $R_{\rm IF} < M \log({\sf SNR}_{\rm eff})$
- Achievable rate with SIC (Ordentlich 13'):

$$R_{ ext{IF-SIC}} < M \max_{\mathbf{A}} \min_{m=1,\dots,M} \log \left(rac{ ext{SNR}}{\ell_{m,m}^2}
ight)$$

where **L** is the following Choleskey decomposition

$$\mathbf{K}_{\mathbf{z}_{\text{off}}\mathbf{z}_{\text{off}}} = \mathbf{A} \left(\mathbf{I} + \mathsf{SNR}\mathbf{H}^T\mathbf{H} \right)^{-1} \mathbf{A}^T = \mathbf{L}\mathbf{L}^T$$

Goal: Maximize Efficiency of Precoded IF-SIC

• With precoding, the resulting effective multicast channel is

$$\mathbf{y}_i = \mathbf{H}_i \mathbf{P} \mathbf{x} + \mathbf{z} = \mathbf{\tilde{H}}_i \mathbf{x} + \mathbf{z}.$$

- For a given precoding matrix **P** achievable efficiency is known.
- Precoding matrix ${\bf P}$ can be written as ${\bf P}={\bf Q}^{1/2}{\bf U}$ where ${\bf Q}^{1/2}$ is covariance shaping matrix and ${\bf U}$ is a unitary matrix.
- Effective channel: $\tilde{\mathbf{H}}_i = (\mathbf{H}_i \mathbf{Q}^{1/2}) \mathbf{U}$.
- We take ${\bf Q}$ to be the capacity achieving covariance matrix. \Longrightarrow Optimization reduces to find optimal ${\bf U}$.
- The achievable efficiency is given by

$$\frac{\mathit{R}_{\mathrm{P-IF-SIC}}(\mathsf{SNR},\mathcal{H})}{\mathit{C}} = \frac{\mathsf{max}_{\mathsf{U}}\,\mathsf{min}_{\mathsf{H}\in\tilde{\mathcal{H}}}\,\mathit{R}_{\mathrm{IF-SIC}}(\mathsf{SNR},\mathsf{H})}{\mathit{C}}.$$

Figure of Merit

- We assess the performance statistically where the set of channels ${\cal H}$ is viewed as drawn from an ensemble of channels.
- For a given scheme, we define the outage efficiency associated with the ensemble as

$$\eta_{x\%}(\mathsf{SNR}, M) = \max_{\Psi} \mathsf{Pr}(\eta(\mathsf{SNR}, M) < \Psi) = x\%$$

- For comparison purposes, we compare with the performance of several open-loop modulation methods:
 - OSTBC (which amounts to Alamouti modulation in case of two transmit antennas).
 - Perfect code (which amounts to golden code in case of two transmit antennas) coupled with the IF-SIC receiver.

Setup

- \bullet Both the transmitter and receiver have two antennas (2 \times 2 MIMO channels).
- Two ensembles were considered:
 - Rayleigh fading all matrix entries are circularly-symmetric complex normal random variables and are drawn independently of each other.
 - Equal WI-MI with uniform distribution on singular values
 - elements in this ensemble can be described as

$$\mathbf{H} = \mathbf{V}_1 egin{bmatrix} ilde{\sigma_1} & 0 \ 0 & ilde{\sigma_2} \end{bmatrix} \mathbf{V}_2.$$

 For each channel drawn from the ensemble we searched numerically for optimal U.

Numerical Results - Rayleigh Fading

Figure : Outage efficiency for 2×2 channels drawn from ensemble I with outage probability of 0.001.

Numerical Results - Equal WI-MI

Figure : Outage efficiency for 2×2 channels drawn from ensemble II with outage probability of 0.001.

Efficiency As a Function of The Number Of Users

Figure : Channels are 2×2 matrices drawn from ensemble II with outage probability of 0.001, WI-MI=4

Results With Scalar Modulo

- Thus far: assumed multi-dimensional (optimal) modulo.
- Using scalar modulo results in a loss of up to 0.254 bits per real dimension.
- Maybe worth the effort to implement high-D modulo!

Figure : Outage efficiency for 2×2 channels drawn from ensemble II with outage probability of 0.001, where a 1-D modulo operation is performed.