

Luc Dehaspe Erika Souche

Overview

Sequence Alignment & Mapping

look up read in reference sequence

... allowing mismatches

Fragment

AATƏTAƏƏTAƏA

Read1 TTACATGCATCT

Read2 TTACATGCATCT

Read1 TTACATGCATCT

TTAC

VALS

AVAISITED TO THE STREET CHEEN CHEEN

Read2 TTACATGCATCT

Fragment

TTACATGCATCT

Read1 TTACATGCATCT Read2 AAIƏIAƏƏTAƏA Read1 chrN Forward Sam-like minimal description Read2 chrN Reverse 7 8 9 10 **11** 12 13 14 15 16 17 Reference chrN TTAC ATCT

Fragment

ATGCATCTAAG

Read3 ATGCATCTAAG

Reference

thrN CGTTACATGCATCTAAG

ATGC

Fragment

ATGCATCTAAG

Read3 ATGCATCTAAG

Read3 chrN Forward 7
Or?

Read3 chrN Reverse 9

Reference

1 2 3 4 5 6 **7** 8 **9** 10 11 12 13 14 15 16 17

hrN CGTTACATGCATCTAAG

No unique mapping

How can we improve mapping quality?

Fragment

ATGCATCTAAG

Read4 ATGCATCTAAG

GATGCAT

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

chrN C G T T A C A T G C A T C T A A G

How can we improve mapping quality?

Strategy 1: READ ON

Fragment

ATGCATCTAAG

Read4 ATGCATCTAAG

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 chrN C G T T A C A T G C A T C T A A G

How can we improve mapping quality?

No mapping

Strategy 1: READ ON

Fragment

ATGCATCTAAG 1 Y O O I Y O Y I I O

Read4 ATGCATCTAAG

Reference

1 2 3 4 5 6 **7** 8 9 10 11 12 13 14 15 16 17

chrN C G T T A C A T G C A T C T A A G

How can we improve mapping quality?

CATGCAT ALGUMENT

Unique mapping

Strategy 1: READ ON

Read3 chrN

Forward 7 highMQual

Fragment

Read5a ATGCATCTAAG Read5b 1 V 0 9 1 V 9 V 1 1 0

Reference

chrN CGTTACATGCATCTAAG

ity? CTTA GCAT

GCAT

No mapping

How can we improve mapping quality?

Strategy 2: READ BOTH SIDES

Fragment

Read5a ATGCATCTAAG Read5b 1 V 0 9 1 V 9 V 1 1 0

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ChrN CGTTACATGCATCTAAG

How can we improve mapping quality?

Onique mapping ATGC LY39

Strategy 2: READ BOTH SIDES

Fragment

ATGCATCTAAG

Read5a ATGCATCTAAG Read5b 1 Y 2 9 1 Y 9 Y 1 1 3

Reference

1 2 3 4 5 6 **7** 8 9 10 11 12 13 **14** 15 16 17 ChrN C G T T A C A T G C A T C T A A G

How can we improve mapping quality?

Unique mapping

DAAT CLLY GCVL

Insert size = fragment size

Strategy 2: READ BOTH SIDES

Read5a chrN F, Paired, PairMapped, First 7 hiMQ chrN 14 (11)
Read5b chrN R, Paired, PairMapped, Second 14 hiMQ chrN 7 -11


```
Read5a chrN F, Paired, PairMapped, First 7 hiMQ chrN 14 11 Read5b chrN R, Paired, PairMapped, Second 14 hiMQ chrN 7 -11 Read6a chrN R, Paired, PairMapped, Second 13 hiMQ chrN 2 -15 Read6b chrN F, Paired, PairMapped, First 2 hiMQ chrN 13 15 Read7a chrN F, Paired, PairMapped, First 1 hiMQ chrN 10 13 Read7b chrN R, Paired, PairMapped, Second 10 hiMQ chrN 1 -13
```


Read8 TTGCATGCATCT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 chrN CGTTACATGCATCTAAG

4 Matches or Mismatches

Read8 chrN Forward 3 hiMQ (4M) 3A>G

Read9 TTCATGCATCT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 chrN CGTTACATGCATCTAAG

> AA- ƏT LL- CV

- 2 Matches or Mismatches
- 1 Deletion
- 2 Matches or Mismatches

Read9 chrN Forward 3 hiMQ (2M1D2M

Read10 TTGACATGCATCT

chrN C G T T - A C A T G C A T C T A A G

A D T T C V V

2 Matches or Mismatches

1 Insertion

1 Match or Mismatch

Read10 chrN Forward 3 hiMQ 2M111N

Fragment with sequencing artefact (e.g; adapter)

GGGGATGCATCTAAG

Read11

GGGGATGCATCTAAG ЭЭЭЭТҮЭЭТҮЭ<u>Ү</u>ТТЭ

Reference

1 2 3 4 5 6 **7** 8 9 10 11 12 13 14 15 16 17

Orn CGTTACATGCATCTAAG

4 Soft clipped

4 Matches or Mismatches

Readl1 chrN Forward 7 hiMQ 4S4M

Sequence Alignment & Mapping SAM – BAM - CRAM

- BAM and CRAM files are compressed SAM files
 Not human readable, convert to SAM or use viewer (eg,IGV)
- CRAM smaller than BAM (40%-70%) but takes longer to read
- SAM format :

Read8a chrN F, Paired, PairMapped, First 3 hiMQ chrN 11 12
Read8b chrN R, Paired, PairMapped, Second 11 hiMQ chrN 3 -12
Read9a chrN F, Paired, PairMapped, First 3 hiMQ chrN 11 12
Read9b chrN R, Paired, PairMapped, Second 11 hiMQ chrN 3 -12

Base quality score recalibration (BQSR)

- Corrects systematic errors made by the sequencer when it estimates the quality score of each base call
- Performed on BAM, not on FASTQ
 - Requires genomic location of base
 - Ignores genomic locations where variants known to occur frequently
 - Considers each remaining variant an error
- Uses machine learning to characterize regions where more/less errors found than predicted by sequencer
- Example: any base call that comes after AA in a read should have its quality score reduced by 1%

Source: https://gatkforums.broadinstitute.org/gatk/discussion/44/base-quality-score-recalibration-bgsr

Viewing a BAM file

- Without graphical user interface
 - Samtools suite of tools for handling SAM, BAM, CRAM
- With graphical user interface
 - IGV Integrative Genome Viewer

https://github.com/samtools/samtools

http://software.broadinstitute.org/software/igv/

View

Read mapping information

```
samtools view sample.bam 1:11131116-11133317
D00210:1282:CD2J0ANXX:5:1303:1159:51350 163
                                              11131905
60
      126M
                    11132084
                                 305
GACTGCCTTCTCCAACCACCAACGAGACAGCTACAGCACCTCCAGCACTCCCCACCAATCTCTCTGCACAGCACCTGC
TGCCATCTGCCAGGATAGATACTGATTGCCCACCATCCCTCAGCAGAA
@=>BBECDCFEADBCFDDFDD@F@CGCFDEFEAFBHFBFDFFDDGFDGECDADDFADCBFEFEFEHFDGBGCAGEEIG
FHFDDBFETGEDGFBAAGCBAFETBCBTFDDDFDDBGEDFFAGDAC?B
BD:Z:MMNNNNNTIMMMNNMMNNTINNTITIMMNMKNONMNTIONNMNMMNNOONMNMNJJNMNNMMNMMMMMNNMTIOON
                                          MD:Z:126
AS:i:126
           XS:i:19 RG:Z:GC065340.run.181130.HiSeg2500.FCA.lane5-389E55F4-
49A02F07 PG:Z:MarkDuplicates-746E271E
```


Pileup

Bases observed at each position

Pileup

Bases observed at each position

Pileup

Bases observed at each position

Pileup

Bases observed at each position

Position

Pileup

Bases observed at each position

Reference

Position

Pileup

Bases observed at each position

Pileup

Bases observed at each position

IGV

IGV

Example 1

Example 1 – targeted sequencing

Example 1 – targeted sequencing

Example 2

Example 2 – amplicon sequencing

Example 3

Example 3 – WGS

Example 3 – WGS

Example 3 – WGS

BAM file quality control

- Did I select/sequence what I wanted to ?
- What is the mean coverage?
- How much of my region of interest is
 - Oovered at 30X ?
 - Not covered at all ?
- Is the coverage even ?

• . . .

Picard tools

- Set of (command line) tools to
 - Manipulate NGS data
 - SAM/BAM/CRAM
 - VCF/BCF
 - Compute metrics

https://broadinstitute.github.io/picard/

Alignment metrics

Picard CollectAlignmentSummaryMetrics

java -jar ~/bin/picard.jar CollectAlignmentSummaryMetrics
I=sample.bam O=sample_sum_metrics.txt R=ref.fasta

Insert size

Picard CollectInsertSizeMetrics

java -jar ~/bin/picard.jar CollectInsertSizeMetrics I=sample.bam
O=sample_insert_size_metrics.txt H=sample_insert_size_histogram.pdf

CollectWgsMetrics

Mean coverage

java -jar picard.jar CollectWgsMetrics I=sample.bam
O=sample_wgs_metrics.txt R=reference_sequence.fasta

- CollectWgsMetrics
 - Raw vs informative coverage

CollectWgsMetrics

Excluded bases

CollectWgsMetrics

Proportion of WGS covered at 1-50X

CollectHsMetrics

Mean target coverage

java -jar picard.jar CollectHsMetrics I=sample.bam
O=sample_hs_metrics.txt R=reference_sequence.fasta
BAIT_INTERVALS=bait.interval_list
TARGET INTERVALS=target.interval list

CollectHsMetrics

Excluded bases

CollectHsMetrics

Proportion of target covered at 1-50X

CollectHsMetrics

Capture efficiency

Sample	Selected bases	Fold enrichment	Fold_80_base penalty
TS1	0.95	101.21	1.86
TS2	0.94	100.95	1.91
TS3	0.94	100.03	1.84
TS4	0.94	101.63	1.89
TS5	0.94	100.50	1.88
TS6	0.94	101.53	1.87
TS7	0.95	102.72	2.08
TS8	0.95	101.88	2.01
TS9	0.95	102.28	2.03
TS10	0.95	102.85	2.09
TS11	0.95	102.67	2.06
TS12	0.95	101.78	2.07

Amplicon metrics

CollectTargetedPcrMetrics

Mean target coverage

java -jar picard.jar CollectTargetedPcrMetrics I=input.bam
O=sample_pcr_metrics.txt R=reference_sequence.fasta
AMPLICON_INTERVALS=amplicon.interval_list
TARGET INTERVALS=targets.interval list

Amplicon metrics

CollectTargetedPcrMetrics

Excluded bases

Overview

Luc Dehaspe Erika Souche

Example 1

Special cases

Special cases

