AD-A277031

The NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to ensuring U.S. leadership in aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays an important part in helping NASA maintain its leadership role.

The NASA STI Program provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program is also NASA's institutional mechanism for disseminating the results of its research and development activities.

A number of specialized services help round out the Program's diverse offerings, including creating custom thesauri, translating material to or from 34 foreign languages, building customized databases, organizing and publishing research results.

For more information about the NASA STI Program, you can:

- Phone the NASA Access Help Desk at (301) 621-0390
- Fax your question to NASA Access Help Desk at (301) 621-0134
- Send us your question via the Internet to help@sti.nasa.gov
- Write to:

NASA Access Help Desk NASA Center for AeroSpace Information 800 Elkridge Landing Road Linthicum Heights, MD 21090-2934

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NASA CENTER FOR AEROSPACE INFORMATION

800 ELKRIDGE LANDING ROAD LINTHICUM HEIGHTS. MD 21090 (301) 621-0390

ATTN: (PHONE) JOYCE CHARIS DATE OF REQUEST: 12/27/93

USER ID: 02672

ORDER CONTROL NUMBER: 931227121247 USER SECURITY LEVEL: SECRET RESTRICTED

REPORT NUMBER: NASA-CR-2144

ENCLOSED IS YOUR ORDER FOR 0001 HARDCOPY COPY OF NASA ACCESSION **NUMBER** N73-12039 TITLE: Aircraft handling qualities data

DOCUMENT CLASSIFICATION: UNCLASSIFIED DISTRIBUTION LIMITATION STATEMENT: UNLIMITED

QUESTIONS CONCERNING THIS ORDER SHOULD BE DIRECTED TO DOCUMENT REQUEST SERVICES, NASA CASI, (301) 621-0390. PLEASE INCLUDE YOUR ORDER CONTROL NUMBER WITH YOUR INQUIRY

02672-931227121247 DEPT OF DEFENSE DEFENSE TECHNICAL INFORMATION CENTER ATTN: DTIC-OCP/JOYCE CHIRAS CAMERON STATION BLDG 5 ALEXANDRIA VA 22304

DIE QUALITY INSPECTED 8

:		
Legest	ion For	
BTIS	RAAI	
DTIC 1		
Thence		
Justii	lection	
D7		
	person	
Test	Lability	94405
-	Avall a	10/07
2154	Specia	1
141		4.34
171	1	

UNANNOUNCED

Diro sorran I INSPECTED !

PRECEDENG PAGE BLANK NOT FILME.

TABLE OF CONTENTS

																					Page
I.	INTROD	UCT	ION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
п.	NT-33A		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
ııı.	F-104A	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
IV.	F-4C	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	61
v.	X-15	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	108
VI.	HL-10	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	137
VII.	LOCKHE	ED .	JET	STAI	R	•	•	•	•	•	•	•	•	•	•	•	•	•		•	166
VIII.	CONVAI	r 8	80M	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	193
IX.	BOEING	74	7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	210
x.	C-5A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	243
XI.	XB-70A	. •	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	273
APPEND							YMB DEF				UTE •	R M	NEM •	ONI	cs,	•	•	•	•	•	A-1
APPEND							OF BOD				AX •	IS •	•	•	•		•	•		•	B-1
A PPRNII	TX C.	EQU	ATI	ons	OF	MC	TIO	N A	ND	TRA	nsf	ER	FUN	CTI	~ %						C-1

SECTION I

INTRODUCTION

The purpose of this document is to provide handling qualities investigators with readily usable data on several representative contemporary sircraft. Included are those data required to obtain transfer functions relating the aircraft's response to control inputs. An analytical description of the aircraft's stability augmentor is also given.

For those aircraft for which complete information was available, the following summarizes the contents and presentation:

- 1. Flight conditions for which computations are made including:
 - a. Configurations (e.g., fuel load, flaps, gear, etc.)
 - b. Mach/altitude combinations
- 2. General arrangement
- 3. Control system description
- 4. Stability augmentation description
- 5. Tabulations and/or plots of non-dimensional stability derivatives for trimmed flight
- 6. Dimensional, mass, and flight condition parameters
- 7. Dimensional stability derivatives
- 8. Transfer functions for control inputs
- 9. Selected handling qualities parameters
- 10. Data sources

A rage number cross index is presented in Table I-1.

The intention has been to make this report completely self-consistent insofar as symbols, nomenclature, definitions, etc. The system used is described in three appendices. Appendix A covers axis systems, symbols and notation, and definitions of nondimensional and dimensional stability derivatives. Appendix B gives the axis system transformations for the derivatives. Appendix C includes the aircraft equations of motion and transfer functions used herein.

፤	
TINY.	
	1

	RT-33A	F-10'A	346	X-15	F. 10	Jetstar	cv-86cs:	B-747	C-54	X9-TOK
BACKGROUND	9	33	2)	109	13,6	167	:61	- 12	778	. L2
plant comitions	-	*	3	2	ş.	8	5	31.5	£	Ë
GENERAL ARRANGEMENT	60	2	3	=	C†.	<u>&</u>	961	11.5	3.0	27¢
CONTROL SYSTEM	6	×	ક	7.5	-	021	197	36	2:1	27.7
STADILITY AUGUSTATION SYSTEM	,	•	\$	51	142	,	1	- C	,	2.E
TADAGE NOK-DEGRETORAL DERIVATIVES	õ	*	٤	2	31	ŗ	661	216	87.8	823
DDCERSTONL, WAS AND FLICHT CONDITION PARACTERS	83	61	85	ន៍	5.	£81	8	28		8
LONGITUDINAL DECENSIONAL DERIVATIVES	8	8	83	126	3.	ತ್ತ	8	230	898	ŝ
LONGITUDINAL TRANSFER FUNCTION PACTORS										
+ RAS OFF										
Bobwelght logs open	70	7	đ	Ž	و. ک	¥.	Ř	167	563	ŝ
Thrust	0	. %	. E			381	8	2,2	ু	8
- 1			•							
		8	98	,	1	1	1	,	5,2	š
• Thrust	'	š	28	ı	1	,	1	,	250	8
• SAS on										
- Bobweight loop open										
• Pitch avia control	,	,	8.	ř	ĵ.	,	•	,	•	<u> </u>
• Thrust	•	ı	8	1	ı	'		,	:	5
- Bobweight loop closed										
Pitch axis control	1	1	<u>.</u>	1	1	,		,	•	ŝ
• Thrust	,	ı	%	•	٠	•	,	,	1	દ
LONGITUDINAL MANDLING GIMLITIES PACTOMA	2	ç	٤	Ē	37	Ę	į	133	L93	701
LATERAL-DERECTIONAL DENEWSTONAL DERIVATIVES	13	36	\$	30	151	ន៍	Ę	3.6	569	<u>ئر</u>
LATENAL DIRECTIONAL TRANSFER FUNCTION PACTORS						,				
• EAS off										
- Roll exts control	2	72	8	<u>.</u>	12A	ž	8	£	3	ĕ
- Yav axis control	&	8	õ	132	651	8	ğ	236	22	2.
- Roll axis control		,	102	ž.	8	,		237	•	1.5
. Yaw asta control	1	ı	ಕ್ತ	47	ઉ	,	,	663	•	33
LATERAL-DESECTIONAL HANDLING GALITIES PARACTERS	ጵ	65	701	35	<u> </u>	ري	902	ž	53	316
DATA SOUNCES	<u>.</u>	ક	5	1,36	- 1¢.	ري. دي	દ	e; e.	٤٠ :	ξ.

The aircraft considered in this report span a wide range of sizes, speeds, and uses. In each case, transfer functions and hardling qualities parameters were computed for flight conditions which were selected to cover the flight regimes of interest. A nominal configuration (generally cruise) was picked for all up and away flight conditions. For this nominal configuration, plots of trimmed non-dimensional aerodynamic force and moment coefficients are presented. Also, in most cases, a power approach case is presented along with a tabulation of aerodynamic coefficients. The coefficients are based on rigid wind tunnel data, estimated flexible data, or flight test results, depending upon availability. This is indicated by the words "rigid." "flexible," and "flight" on each aero data plot. Also, the axis system is indicated by "stability" for a body-fixed stability axis system or "body" Der Die besteht in der all med eine the F.R.L. 'Author elemification of axis systems used is given in Appendix A. Descriptions of control systems and stability augmentation systems are given along with transfer functions. Where a longitudinal control system has a significant effect on the equations of motion (as with a borweight) the stick-free transfer functions and handling qualities are given.

Transfer functions are always given for tody axis motion quantities. Handling qualities parameters are also given in the body axis. All acceleration transfer functions (ϵ_z^i and ϵ_y^i) are for the pilot's position. Thrust transfer functions do not include any engine response characteristics.

A substantial portion of this report is in the form of computer printout. The mnemonics used in this printcut are defined in Appendix A.

The handling qualities parameters given in this report represent only a small fraction of those developed over the years. The majority presented here are used in past and present versions of MIL-F-8785. Although only SAS-off values are shown, the definitions given in Appendix A are general and could be used in conjunction with the SAS-on transfer functions to yield SAS-on handling qualities parameters.

While complete coverage of each aircraft including only the "latest" and "best" data would be desirable, the major criterion used was that the data be accessible to the author. This is why only isolated flight conditions are given for some mirraft, and also why, as those people more intimately familiar

with each particular aircraft will recognize, the data presented may represent an early estimate in the design process and perhaps the "nominal configuration" is one which never left the drawing board. The data have been reviewed and, although not all those presented indicate unquestionable trends, those data known to be based on only early "guesstimates" or showing unreasonable trends have been deleted. In some cases data were estimated by the author. As to how well the data can be expected to match the flying aircraft, it is assumed that those for whom this document is intended know well the difficulties of obtaining derivatives from flight test data. Every attempt has been made to insure reliable translation, interpretation, and transcription of the data from their source documents.

The manufacturers of the aircraft described herein can not be held accountable for the information presented, nor would they be bound to concur in any conclusions with respect to their aircraft which might be derived from its use.

Outgroupe in the state of the s

SECTION II NT-33A

A STATE OF STATE OF THE STATE O

NT-33A BACKGROUND

"The NT-37A variable stability airplane (Serial No. 51-4120) is an extensively modified T-33 jet trainer. The elevator, aileron and ridder controls in the front cockpit are disconnected from their respective_control surfaces and have been connected to separate servomechanisms that make up an 'artificial feel' system. In addition, the elevator, alleron and rudder control surfaces have been connected to individual servos which can be driven by a number of different inputs. These serves receive their electrical inputs from the artificial feel system (pilot's commands, position or force), attitude and rate gyros, accelerometers, dynamic pressure, α vane and β probe. This arrangement, through a response-feedback system, allows the normal T-53 derivatives to be augmented to the extent that the handling qualities of many existing airplanes, future airplanes or hypothetical research configurations, can be simulated. The original 1-77 to a particu had carn replaced with the larger nose of an r-9- to provide the volume required for the electronic components of the response-feedback system and the recording equipment."

Transfer functions are given for only the primary surfaces and engine thrust although the NT-33A also has other control surfaces and a range of control crossfeed and feedback combinations.

Aerodynamic data, for the most part, was taken from AFFDL-TR-70-71. However, longitudinal data for the high lift configuration was obtained from LAL 127 and Mach number derivatives from NACA-RM-7116.

A

Flight Envelope

Nominal Configuration

60% Internal Fuel 730 gal Tip Tanks

= 13700 1b

c.g. at 0.263 E, W.L. 100.2

= 21100 slug-ft? I_x = 23800 slug-ft²

Body Axis

= 47800 slug-ft2 Ixz = 480 slug-ft² Power Approach Configuration

230 gal Tip Tanks 25% Internal Fuel

Full Flaps

Gear Down

1.4 Vs

c.g. at 0.260 E, W.L. 100 W = 11800 lb

Ix = 12700 slug-ft2

Iy = 20700 slug-ft² $I_z = 32000 \text{ slug-ft}^2$

Body Axis

480 slug-ft

9 40,000

h(ft)

2 20,000

Level Flight Envelope (Hominal Configuration)

Sysed Restrictions

Trunsfer Function Case n

(3)

Figure II-1. III-75A Flight Conditions

というというときないというないできないというできない

Figure II-2. NT-33 A General Arrangement

NT-33A

PITCH AXIS

ROLL AXIS

YAW AXIS

Feel system parameter values shown correspond to the "Front Seat Engage" mode (normal NT-33)

Figure II-3. NT-33A Control System

TABLE II-1

NT--33A

Power Approach Non-Dimensional Stability Derivatives

$$V_{T_0} = 228 \text{ ft/sec} = 135 \text{ kt}$$

$$\alpha_0 = 2.2^0$$

Lateral-Directional (Stability Axis)

$$c_{L} = .813$$
 $c_{y_{\beta}} = -.72/rad$

$$c_D = .135$$
 $c_{n_0} = .049/red$

$$C_{D_{CL}} = .54/\text{rad}$$
 $C_{D_{CL}} = -.57/\text{rad}$

$$c_{m_{\alpha}} = -.401/\text{rad}$$
 $c_{n_{p}} = -.045/\text{rad}$

$$C_{mq} = -10/\text{rad}$$
 $C_{\ell r} = .20/\text{rad}$

$$c_{m_{cr}} = -5/rsd$$
 $c_{m_{rr}} = -.16/rsd$
 $c_{m_{rr}} = -.009/rsd$

$$c_{16_e} = .34/rad$$
 $c_{n6_a} = -.009/ra$
 $c_{n6_a} = -.009/rad$ $c_{n6_a} = -.14/rad$

$$c_{m\delta_e} = -.89/\text{rad}$$
 $c_{l\delta_g} = .14/\text{rad}$ $c_{y\delta_r} = .17/\text{rad}$

$$c_{n_{\delta_{\mathbf{r}}}} = -.073/\text{rad}$$

$$c_{i\delta_r} = -.002/rad$$

A STATE OF THE STA

The second secon

から できる ない できない ないない ないのうしゅう

TABLE II-2

The second of the contract section of the second of the se

NT-33A DIMENSIONAL, MASS AND FLIGHT CONDITION PARAMETERS S=234.8 sq ft, b=37.54 ft, $\overline{c}=6.72$ ft

F/C #		N	n	4	n	٠	1	•
H(FT)	ร	SL	35	ತ	20 K	20 K	20 K	¥ 07
	• 20	.242	. 400	.700	.300	. 550	.750	.650
VTC(F PS)	2 28 .	270.	447.	782.	311.	570.	778.	629.
V10(K TAS)	135.	160.	265.	463.	184.	338.	.195	373.
VTO(KCAS)	135.	160.	265.	463.	135.	252.	348.	193.
16 (183)	11 800.	13700.	13700.	13700.	13700.	13700.	13700.	13700.
C. G. (PGC)	. 260	. 263	. 263	.263	.263	.263	. 263	.263
IX (SLLG-FT SQ)	12700.	23 60 1.	23801.	23801.	23801.	23801.	23801.	23801.
17 (SLUG-FT SG)	20700.	21 10 1.	21101.	21101.	21101.	21101.	21101.	21101.
12 (SLLG-FT SQ)	32001.	43602.	43802.	43802.	43802.	43802.	43802.	43802.
1X21SLLG-F1 SC)	4 80 .	480.	480	480.	480.	480.	480.	.037
EPSTI ON DEG)	-1.42	-1.37	-1.37	-1.37	-1.37	-1.37	-1.37	-1.37
O(PSF)	61.7	86.7	237.	726.	61.3	206.	363.	117.
QC (PSF)	62.3	81.9	247.	819.	62.7	222.	***	120.
ALMA (0E6)	2.20	9.20	006.	206	6.40	. 800	300	2.50
GA MM (DEG)	6	٥.	ċ	ತೆ.	ò	ò	ė	ò
LXP(FT)	6.51	6.53	6.53	6.53	6.53	6.53	6.53	6.53
L2P(F T)	-2.85	-2.84	-2.64	-2.84	-2.84	-2.84	-2.84	-2.84
I TH(06G)	•	វ	ö	.	•	ò	•	ં
XI (DEG)	•	ö	ò	ថ	6	ö	ė	ċ
LTH(FT)	ò	.0200	.0200	.0200	. 02 00	. 02 00	.0200	.0200

NT-33A LONGITUDINAL DIMENSIONAL DERIVATIVES

(Body Axis System)

F/C •		2	m	•	•	٠	•	6 0
I	St	٠ د	SL	SL	20 K	20 K	20 2	40 A
	•204	.242	700	.700	.300	.550	.750	059.
• nx	0 39 1	00484	0104	0415	.00477	00735	~.0511	00355
• 07	248	153	128	162		107	0703	0766
• 1	4 0003 18	.000003	.000263	000760		000183	00151	000183
x	\$180.	181.	.0562	0211		.0391	.00986	1069.
Zh	9 36	166	-1.73	-3.55	451	-1.25	J8.1-	469
1	00 827	69900	0206	0431	000728	0157	0239	00861
240	•	•	•	•	ò	ò	ö	ن
70	•	•	ė	ò	•	•	ò	•
FNO	00152	(0149	00140	ċ	000785	000541	000207	88 7E-4
9	+69*-	806	-1.37	-2.80	500	981	-1.55	535
XOE	.5 16	1.47	.620	-2.65	1.88	.500	432	966*
302	-13.4	-16.2	-44.4	-152.	-11.3	-40.9	-82.4	-23.8
POE	-4.19	-5.83	- 16 · C	- 52.1	-4.13	-14.2	-28.7	-R.28
HLOX	.00273	.00235	.00235	.00235	.00235	. 00235	. 00235	.00235
10 TH	•	•	•	ė	ò	ò	ċ	•
FO TH	•	. 5486-6	9-3856.	.948€- €	9-38 %·	. 94 8E -6	.9486-5	.948E-6

TABLE II-4

The second of th

NT-33A ELEVATOR TRANSFER FUNCTION PACTORS

Bare Airframe

			(Body Ax	(Body Axis System)				
F/C .		~	•	•	w	٠	~	•
rr	.204	242.	۶۶. دوه	32.	300 K	20 X	20 K	40 4 650.
DENCMINATOR 2 (DET) I 4 (DET) I 2 (DET) 2 6 (DET) 2	. 094 172 682 98	. 6199 . 141 . 440 1.62	* • • • • • • • • • • • • • • • • • • •	.351 .0561 .484 6.61	CQ762 .0977 .887	. 0522 . 0678 . 398	(0217) (07171 380	.0315 .0543 .268
NUMERATCRS NU / OE 1 AC 1 1/1(U)1 2(U)1 NC 1	. 516 6.0 6.73 1.87	ma Ch. 4 mat 2 may 2 mat 2 mat 2 may 2 mat 2 mat	. 448 2 484 2 484	-2.63 2.84 (-3.13)	11.48 11.22. 5.31.	.500 227. .560 2.23	2.432 2.15 1.4.161 (280.1	. 64
N(W /DE } A!W }! 1/T!W }! 2!V }!	4.17 4.11.1	-16.2 97.8 .0290	4440 4440 4 • 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-152. 273. 245. CBCS	-11.3 112. -0137	-40.9 199. 0519 0774	-82.4 212. .488 .0522	-23.8 220. .0373 .0623
N(THE/DE) A(THE) 1/T (THE)1 1/T (THE)2	1.00	20 m	-15.9 .0147 1.08	7.26-7 .06.06 3.47	-4.12 .0123	-14.2 .0108 1.20	-28.6 .0515 1.73	.00794 .00794
MHD /DE) ACHD) L/TCHO)! L/TCHO)2 L/TCHO)3		16.2	4444 -115.4 11.4	152. .0354 -29.3 32.1	11.5	.00.9 -14.8 -16.1	82.4 .0501 -20.8 22.5	23.8 000124 -11.8 12.4
N4 A2P/DE) A1 A2P) 1/T (A2P) 1 1/T (A2P) 2 2(A2P) 1 8(A2P) 1	13.7 .0116 .0288 .0507	23.7 -0145 -0193 -0482	54.3 .00967 .0967	192. 	13.4 .0549 .0203	\$1.5 .00134 .00633 .0414	105.24	200. 4000. 40400. 80400.

24

TABLE II-5

WI-33A THRUST TRANSFER FUNCTION FACTORS

Bare Airframe

		<u>%</u>	(Body Axis System)	System)			,	•
		^	•0	•	5 0	•	-	, ;
# 5/4 #	5 C	St. 242	.400	3r.	20 K	.550 K	20 K	089.
M Z COE TO L Z COE TO Z CO	. 09 · 8 . 17 2 . 62 2 1 . 59	.0199 .141 .e80 1.62	4.000 4.000 4.000 4.000 6.000	.351 .0561 .484		.0522 (0678 .398	(0217) (0717) (380 4.63	.0318 .0543 .268 2.40
NUMERATCR5 11(U /OTH) A(L) L/T(U)1 Z(U)1 E(U)1	.00273 00403 - 621 1.54	.00235 0124 .680 1.62	.0002 .0002	.00235 00051C -484 5.61	. 00235 - 0214 . 883	.00235 .00229 .398	.00235 000403 .381 4.63	.00235 00366 266 0
ME /01H) A(k) 1/1(k) 1/1(k) 1/1(k)	124°	1 80 E-4 -0 0 3 2 9 - 5 - 1 7	.000143	.000360	.00116	. 000297	.000570	.000421
N THE/OTH) A THE) 2 THE) I V THE) I	.1508-6	. 1278-5	.954E-6 .921 2-73	. 948E-6 . 26E 3.26	.125E-\$.819 .506	.963E-6 .252 1.89	,945E-6 (.899) (-2.77)	. 9578-6 11. 1 21. 1
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.000105 7.80 374	.000213 1.96 1.57	.369E-4 6.51 .727 3.70	-,369E-4 -10.5 -,798	.00364 .242 .817 1.01	.3286-4 3.23 .816 4.29	-123F-4 -1.26 (7.45) (-16.1)	.000102 .849 .364
M(AZP /U M) A (AZP) L / C (AZP)		8.1 10.10.1 8.10.10.1 8.10.10.1	2 - 2001 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	619E-5 .CCG446 	8186-5 6173 .351 (1.06) [32.2)	2.6296- 2.629740 3.6.8 3.6.8 2.90	6176-9 .000217 .1.04 .768 16.9	2.20

TABLE II-C

NT-33A LONGITUDINAL HANDLING QUALITIES PARAMETERS

Bare Airframe

(Body Axis System)

F/C 1	-4	~	m	•	*	٠	-	•
x	SL	SL	ಸ	ø	20 K	20 K	20 K	¥ ¥
2	. 204	.242	.400	. 700	.300	.550	.70	0 5 9 .
				STICK FIXED	1 XFD			
0(G1/0(U) (DEG/KT)	05 26	1610.	0240	11.	. 1977	0150	151	PEE0003.
N2A (G/RAC)	6.37	80.8	23.0	83.3	4.26	21.2	41.6	13.1
DE /G (0EG /G)	5 .39	3.14	1.75	. 565	1.46	1.92	1.02	3.05
CAP (RAD/SEC/SEC/G)	. 39 2	.219	1447	. 515	.105	. 475	.512	. 441
PHIGGIO(2) (SEC)	ŀ	;	1	ì	.808	:	(32.0)	ł
1/5(1/10)	2.17	2.53	1.79	1.51	5.25	1.19	1.12	. 758

TABLE II-7

L DERIVATIVES	
DIMENSIONAL	AXIS SYSTEM)
LATERAL-DIRECTIONAL	(BODY AXIS
MT-33A	

	-•	7	٩	•	n	0	-	c
£	SL	Sr	SL	31	20 K	20 K	20 K	¥ 0,
I	.264	.242	.400	.700	.300	.550	.750	.650
*	125	1111	181	338	9690	128	185	0674
48	- 28.4	-30.1	-81.0	-264.	-21.6	-72.7	-144.	-45.4
.87	-5.49	-4.12	-8.02	-18.0	-4.05	-7.42	-9.89	-5.08
. 00 X	199.	046.	2.71	10.6	.540	2.60	6.24	1.68
. .	-2.03	-1.32	-2.15	-4.51	820	-1.56	-2.23	877
• 4×	116	112	0512	.0118	103	0383	0141	0428
r.	.641	305.	.320	\$64.	-214	.256	.328	.179
. «	267	173	291	195*-	104	204	318	110
Y* CA	•	ò	•	•	•	•	•	•
r. cv	6. Cl	4.53	12.6	47.0	3.14	11.7	24.0	7.13
N. CA	.0286	.134	.165	.260	.164	.121	.195	118
Y• CR	.0275		.0503	.102	\$810.	.0363	.0571	5610.
r. cs	0125		1.57	5.89	.287	1.39	3.20	. 808
SO.N	-1,24		-3.50	-12.6	883	-3.21	66.9-	-1.92

	4 04 04 04 04 04 04 04 04 04 04 04 04 04	.00483 .979 .0251	\$0° £ 7690° 861°	7.13 .00222 .0087		7.14 .0673 1.33	21.0
•	20 K	00333 2.29 .0868 2.52	-,320 -,330 -3.01	24.0 .000215 .0999 2.53	3.64 3.64 2.53 2.89	24.0 .0999 2.53	2. 236 2. 236 2. 286 2. 66
•	20 K	.00932 1.66 .0647 1.70	.0419	11.7 000781 -102 1.64	1.60. 1.60. 1.597	11.7	34.0 .141 .226 1.77
m	20 K	. 0129	. 351 . 0616 . 56		1.466	3.17	7.49 .0666 587 .460
•	st .76¢	.00465 4.57 3.28	666. 666. 11	47.0 .000636 .136 3.30	.26d 10.4 621 2.77	47. C . 136 3.3 C	
•	9. 0.04.	2.24 2.24 1.103	.0333 .214 37.8	12.¢ 00111 1.141 1.65	1.165	12.6 .141 1.65	37.C .204 .806 .269
~	SL .242	. C185 1.47 .0435 1.26	. 103 3.30	4.5 610.1 1.0 2.1	.134 .786 673 2.35	4.55 136 1.05	1.10 1.10 1.00 1.00 1.00
	\$07	. 0318 2.20 . C609 1.13	. 202 . 116 7 . 46	6.01 00522 200 200	.0286 .885 (-1.06)	6.01 198 848	17.3 - 122 - 437 - 138
7 2/8	II	DENCHINATOR 1/T(DET)1 1/T(DET)2 2(DET)1 N(DET)1	AUPERATCRS N/8 /OA) A/8) 1/7/8)1	1	MIR /DA) AIR) L/TIR) L/TIR) L/TIR) L/TIR) L/TIR) L/TIR)	NI PHI /DA > AI PHI) ZI PHI) I	H(AYP/OA) A(AYP) 1/T(AYP)1 1/T(AYP)2 1/AYP)1 M(AYP)1

WE-53A RUDDER TRANSFER FUNCTION FACTORS

Bare Airframe

(BODY AXIS SYSTEM)

TABLE II-10

NT-53A LATERAL-DIRECTIONAL HANDLING QUALITIES PARAMETERS

Bare Airframe

(BODY AXIS SYSTEM)

F/C #		~	m	4	'n	•	7	€0
r	જ	SL	SL	SL	20 K	20 ₹	20 K	4 A
x	.204	. 242	.400	.700	.300	.550	.750	.650
DR PEXIOD (SEC)	5.57	4.97	3.61	1.93	5.43	3.71	2.50	4.45
1/0(1/2)	.553	. 395	176.	1.16	.0578	. 586	.790	.228
SPIRAL (2) (SEC)	;	;	!	;	;	;	:	;
P(1)	2.34	2.41	5.18	10.4	2.11	67.9	10.5	69.5
P(2)	. 418	1.22	4.79	10.3	.059	40.4	10.3	3.56
P(3)	2.00	2.41	5.16	10.4	2.46	19.9	10.4	6.71
P(21/P(1)	.179	. 505	.924	.983	.313	.961	.981	116.
P (0SC) /P (AV)	110.	. 329	.0384	.00752	. 552	.0326	11900.	.0542
H(PHI)/H(D)	.751	. 829	996.	1.01	.755	.970	1.00	.942
DEL-B-MAX	1.01	101.	.326	.104	1 87.	.322	141.	.459
PHI TO BETA, PHASE	-297.	-313.	-313.	48.7	-322.	-320.	38.2	-328.
PHI TO BETA	2.14	2.07	1.73	1.06	2.44	1.95	1.22	2.16
PHI TO VE	. 539	. 438	.223	.0778	.616	.269	.124	. 395

NT-33A DATA SOURCES

- Hall, G. Warren, and Ronald W. Huber, System Description and Performance Data for the USAF/CAL Variable Stability T-33
 Airplane, Air Force Flight Dynamics Laboratory Rept. No.

 AFFDL TR-70-71, Aug. 1970
- Tests of a 1/5 Scale Wind Tunnel Model of the TP-80C Trainer,
 Lockheed Aerodynamics Laboratory Rept. No. LAL 127, Jan. 23, 1948
- Cleary, Joseph W., and Lyle J. Gray, High Speed Wind-Tunnel Tests of a Model Pursuit Airplane and Correlation with Flight-Test Results, NACA-RM-7116, Jan. 21, 1948
- Statler, Irving C., et al, The Development and Evaluation of the CAL/Air Force Dynamic Wind Tunnel Testing System; Part 1—

 Description and Dynamic Tests of an F-80 Model, AFFDL-TR-66-153, Feb. 1967
- Flight Manual, USAF Series T-33A Aircraft, T. O. 1T-33A-1.

The state of the s

SECTION III

F-104A

F-104A BACKGROUND

The F-104A is a single place, lightweight, supersonic air superiority fighter powered by a single turbojet engine with afterburner. The wing has a full span leading edge flap. Trailing edge flaps have a blowing-type boundary layer control system. Control is provided by conventional ailerons and rudder and an all-movable stabilizer. Pitch, roll, and yaw dampers are incorporated, however their effect is not shown here. Pitch and roll controls are fully irreversible while the yaw control is a cable-actuated rudder without boost. A bobweight is used in the longitudinal feel system. Its position is assumed to be at the pilot's location.

The primary source of data was LR 10794. Drag information was obtained from LR-12873.

The nominal configuration used here is the combat loading for the F-104A based on actual weight and balance data. The PA configuration is a typical loading at flight manual approach speeds.

これをからのないのではないようないのかないできているかっちゃ

Nominal Configuration

Principal Axis Clean, 750 Rounds Ammunition 58611 slug-ft² = 3549 slug-ft² 50% Internal Fuel - 16300 1b c.g. at .070 & ĭ 攴 L 3

Power Approach Configuration

59669 slug-ft²

2.76

Principal Axis 56800 slug-ft² 55800 slug-ft² Full Flaps (45°) , BLC Ix = 3450 slug-ft2 20% Internal Fuel - 14126 1b c.g. at .:64 5 2.86 Gear Down 1.4 VB Clean Ę,

20 9 Θ Mach • • 60,000 20,000 40,000 h(f)

Transfer Function Case n

Level Flight Envelope (Nominal Configuration)

(

Speed Restrictions

Figure III-1. F-104A Flight Conditions

34

F-104A

Figure III-2. F-104A General Arrangement

F-104A

YAW AXIS

Figure III-3. F-104A Control System

TABLE III-1

F-104A

Power Approach Non-Dimensional Stability Derivatives

$$V_{T_O} = 287 \text{ ft/sec} = 170 \text{ kt}$$

$$\alpha_0 = 2.3^{\circ}$$

$$\delta_s = -7.1^\circ$$

Lo	ngi	tudinal	Later	al-	Directional
			(St	abi	lity Axis)
$\mathbf{c}_{\mathbf{L}}$	=	- 735	$c_{y_{\beta}}$	=	-1.17/rad
$\mathbf{c}_{\mathtt{D}}$	=	.263	$c_{n_{\boldsymbol{\beta}}}$	=	.50/rad
$c^{\Gamma^{\alpha}}$	=	3.44/rad	c _{ℓβ}	=	175/rad
$c_{D_{\alpha}}$	=	.45/rad	$^{\mathtt{c}}_{oldsymbol{\ell}_{\mathbf{p}}}$	=	285/rad
$c_{m_{\alpha}}$	=	64/rad	c_{n_p}	=	14/rad
C _{må}	=	-1.6/rad	$\mathbf{c}_{oldsymbol{\ell_r}}$	=	.265/rad
$c_{m_{\mathbf{q}}}$	=	-5.8/rad	$\mathtt{c}_{\mathtt{n_r}}$	=	75/rad
$^{\mathtt{C}_{\mathbf{L}_{\delta_{\mathbf{s}}}}}$	=	.68/rad	$c_{n_{\delta_{\mathbf{a}}}}$	=	.0042/rad
ი _{ლგ} ვ		-1.46/rad	C _{Lba}		.039/rad
-					.208/rad
			_		.045/rad
			Cu,		16/rad
				=	.0325/rad
			_		025/rad
			Ces		0044/red

}

これでは、これを持ちましているというないのでは、大きなないできないできないできないできませんできない。

The second of th

せいとうしょう かいかい こうかん かいかん 大学学者の 東部 ゆうじんかける まげらし このなるまでんしい

子は とうない ないないないないない こうしょうしん

The second of the second second second second

TABLE III-2

F-104A DIMENSIONAL, MASS AND FLIGHT CONDITION PARAMETERS

s = 196.1 sq ft, b = 21.94 ft, c = 9.55 ft

#)/ #		7	m	•	•	٠	•	=	•	ç
H(FT)	አ	S £	ន	15 K	35 K	35 K	35 K	45 K	4. X	3.5 X
(-)¥	. 257	. 800	1.10	906.	.600	006.	1.20	1.50	2.00	1.80
VIO(FPS)	287.	893.	1228.	952.	584.	.976	1167.	1452.	1034.	1742.
VTO(KTAS)	. 07.1	529.	728.	564.	346.	519.	692.	. 049	1147.	1032.
VTU(KCAS)	170.	529.	728.	465.	199.	3.1.	432.	445.	591.	413.
k(188)	14 126.	16300.	16300.	16300.	16300.	16300.	16300.	16300.	163/6.	16300.
C. G. (#GC)	. 164	.0700	.0700	.0700	.0700	. 0700	c070.	0010.	.070.	.0700
IX (SLLG-FT SC)	3 582.	3679.	3679.	3679.	3679.	3679.	3679.	3679.	3679.	3679.
17 (SLLG-FT SQ)	55 80 2.	58413.	58613.	58613.	52613.	58613.	58613.	58613.	58613.	58613.
12 (SLLG-FT SQ)	56 669.	59541.	59541.	59541.	59541.	59541.	59541.	59541.	59541.	59541.
1 x 2 (S L L G - F 1 S C)	2658.	2 699.	2699.	2699.	2699.	2699.	2699.	2699.	2609.	5699.
EPSILCN(DEG)	-2.86	-2.76	-2.76	-2.76	-2.76	-2.76	-2.76	-2.76	-2.76	-2.76
0.0%	9.1.6	946	1792.	.110	126.	263.	503.	. 69 +	. 648	434.
QC (+SF)	\$ 66	1 109.	2397.	826.	138.	345.	703.	749.	1440.	.404
AL PHA (DEG)	2.30	2.00	1.00	4.80	12.4	2.50	3.00	3.80	3.00	4.80
GA MILA (DEG)	ö	•0	ò	ċ	ċ	ċ	ò	ં	ં	•
LXP(FT)	19.0	18.1	18.1	18.1	16.1	18.1	1.8.1	18.1	18.1	13.1
L2P(F7)	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40
LTH(DEG)	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50
x1 ()EG)	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50
LTH(FT)	ó	•	ខំ	ò	ċ	ċ	ċ	ċ	ં	٥.

ALL COM

TABLE III-3

7-104A LONGITUDINAL DIMENSIONAL DERIVATIVES

M.	* 2/	-	2	•	*	'n	•	~	æ	o	02
	r	SL	SL	31	15 K	35 K	35 ×	35 K	4 X	* &*	55 K
		.257	.800	1.10	236.	009.	006.	1.23	1.50	2.0°	1.80
	• nx	0737	0117	0793	0167	00221	-,0129	0131	0125	6150	1110
	• 02	204	0332	.0270	0199	0626	0932	9610.	1120.	1410.	.0175
	•	.000294	.000794	65600.	.00610	.000806	.00224	866000	*2130*	.010457	.006.778
	×	.0431	.0556	.0343	.0858	.0384	. 00555	0010.	9010°	-110.	60400
	H2	5 70	-1.65	-2.32	-1.22	245	635	796	804	277*.	294
50	Í	06 732	9050.	0816	0200	00617	0139	0293	#010*-	-1114	+010°-
	0 47	•	•	•	•	•	•	ဝ်	င်	ċ	°.
	62	9	•	;	•	ò	ò	•	ċ		ċ
	2 X 2	000304	000580	000580	00047e	000297	000287	000129	404E-4	BP 2 E -4	373F-4
	9	317	-1.25	-1.87	956	220	636	493	293	176	183
	S OX	1.19	10.9	7.27	17.6	8.05	4.35	7.55	1.52	٦ . ٥ 4	7.23
	\$ 07	-29.7	-231.	-416.	-209.	-36.6	9.66-	-144.	-113.	-134.	-85.8
	PD S	-4.79	6.75-	-63.0	-33.6	-6.03	-16.3	-23.3	-18.4	-22.2	-13.9
	HI OX	.00228	.00197	15100.	.00157	.00197	. 60197	. 00197	16100.	101101	16100.
	X0 TH	5-3766°	. 6616-4	.861E-4	. 86 15-4	. 36 16 - 4	.861E-4	. 861 8 -4	.A&16-4	* 661°-4	4-31 vs.
	FO TH	•	•	•	•	0.	•	ં	ė.	;	ċ

TABLE III-4

F-104A STABILIZER TRANSFER FUNCTION FACTORS
SAS Off — Bobweight Loop Open

	•	•	•	•	•		•	+	•	٠
F/C #	-	7	m	4	50	÷	٧	80	σ	
II	SL .257	.800	SL 1.10	. 2000.	35 K	35 K	35 K	45 K 1.50	45 K	
DENCHINATOR 2 (DET) 1 W (DET) 1 2 (DET) 2 A (CET) 2	. 238 . 152 . 152 . 124	. 122 . 5504 . 315 5.41	.767 .0523 .263	.121 .111 .288 4.54	.0844 .0709 .163	.143 .0839 .185 3.53	(0299) (0389) 125 5.78	.716 .00834 .0810 5.39	(000333) (0156) (0967	
NUMERATORS NIU /OS) A(U) 1/T(U)1 2(U)1 M(U)1	43.8 43.8 1.24 5.25	8.07 147. 438	7.27 186. 1.832	5.54 5.53 5.64 5.64 5.64	8.05 93.9 .230	4.35 143. 684. 681.	7.55 184. 989.	7	7.04 320. 797.	
N(M /05) A(W) L/T(W)! L/T(W)2 L/T(W)3	-29.7 -46.6 (.256) (.150)	-231. 148. (.158) (.0367)	-416. 000664 .0791 188.	-209. 153. (.178)	-36.6 94.1 (.0315)	-99.6 143. (.123) (.0625)		-113. -C174 .0266 236.	-134. -0103 -0245	
N(THE/DS) A(THE) L/T(THE)1 L/T(THE)2	.104	-37.7 . CL28 1.47	-62.8 .0784 2.29	-33.5 .0178 1.09	-6.02 .0117 .195	-16.3 .0127 .550	-23.3 .0134 .620	-18.4 .0118	-22.2	
NI HG /08) A(H0) 1/T (HC)1 1/T (HC)2 1/T (HC)3	29.7 .0564- 5.15	231. . C106 -13.8	416. .0784 -19.4 21.9	210. .0132 -12.2 13.6	37.5 0198 -3.99 4.41	99.7 -00399 -8.48 9.18	144. .0129 -10.5	.0116. -9.36 9.72	135. -10.7 -11.2	
1 (476) 1 (476) 1 (476) 1 (476) 1 (476) 1 (476)		- 62135 - 6136 - 631 - 631	720. 000458 .0789 .0078	396. 00311 .0162 .0498	72.3 .00551 .0262 .0210	195. 00247 00640 6386	278. 00136 .0142 .0390	220. 00135 . C128 . 0291	267. 000839 .0161 .0209	

TABLE III-5

7-104A THRUBT TRANSFER FUNCTION FACTORS

SAS Off — Bobweight Loop Open (BODY AXIS SYSTEM)

ø	1.50 2.00 1.50 2.00	.0810 (************************************	.00197 .00197 .00197	.861E-4 .861F-4 .461E-4 00C50100C144rrn740 .0R16 .1C1 .0645 6.43 4.57 5.65	.2225-A .1525-A .3135-B .184 .184 .184 .184 .184	-448F-4 .172F-4 .792E-4 .151 .0207 .116 .0356 .0356 .256 .256	-861E-4 .861F-4 .86CE-4 CC150CC76700157 C763 .CC46617
۴	35 K 1.20	.0299) .0389) .125 5.78	.00197 000218 - .124 5.79	.861E-4 000247 (-4.67)	.2236-R .538 -1972.	.172F-4 .2.96 .453 7.39	41F-4 482
ø	35 K	. 183 . 185 . 185 . 53	.00197 .1196-8 3.52	.861E-4 .471E-9 107 6.70	.35%E-14 1.60 .949E+9	.146F-10 .103F+8 .C769	.861E-4 00161 -3.65
**	35 K	.0853 .0708 .165		.861E-4 00993 3529	.103E-6 1.14	. 643 . 643 . 135	. 6426-4 0122 -1.96
•	15 K	. 12.2 . 11.1 . 289 4.54		.8616-4 .00136 .0605	.380E-7 1.49 273.	.792E-4 9.83 124 5.65	.854E-4 00284 -4.05
M	SL 1.16	. 767 . 0523 . 263 10.3	.00197 .000692 .263	.861E-4 .000679 .134	300E-7 13.6 -42.5	517E-4 -3.51 .24E 10.8	000458
~	800		.00197 .000243 .316	.000334 .117 3.91	000 E-8 -4.54 100.	172E-4 -10.0 .149 4.85	.8635-4 00126 -1.63
-	51.	. 152 . 324 . 324	.0 02 26 .0 00 341 . 32 3	.994E-4 .00187 [118]	242E-8 -64.1		4-7460.
#\C •	IX	JE ACMINATOR 2(DE T) 1 6(DE T) 1 2(DE T) 2 6(DE T) 2	1.0 FEA. T CR S N. U	NE	M THE /DTH) A (ME) L/T(THE)1 L/T(THE)2	26 HD 707H) A(HD 1) 1/7 (HC 1) 2(HD 1) M(HD 1)	M(AZP/OTH) A(AZP) 1/T(A2P) 1/T(A2P)2

TABLE III-6

7-104A BIICK FORCE TRANSFER FUNCTION FACTORS

SAS Off - Bobweight Loop Closed

• o/a		~ ~	m	•	r vn	۰		•	•	0.
II	SL .257	. 009.	St. 10	100°.	35 K	35 K	35 K 1.20	45 K 1.50	45 K 2.00	55 K 1.80
DENCHIMATOR 20 DET) 1 W (DET) 1 2 (DET) 2 W (DET) 2	. 244 . 142 . 103 1. 503	. 151 . C387 . 239 6.31	. 990 . 199 . 199		7170. 6860. 681.	.134 .0749 .164	(0266) (.0363) .113 5.91	.0.776 .0.776 .0.776 .0.786 .0.786	(000450) (0157) .0838	.00832 .0002 4.33
NUMERATORS NCU /FST) A(U) 1/T(U)1 E(U)1	00565 43.8 740 1.25	C265 147. .438 1.23	1.0213 1.6532 1.685	0591 153. .412 .665	0317 93.9 .690 .230	0161 143. .989	0268 189. .999	0275 -346 -359	320. 320. 797 344.	0270 282. 957
NEW /FST) 1/16)1 1/16)1 1/16)2	.141 46.6 (.256)	.760 148. (.188)	1.22 000664 .0791	.704 153. (.178) (.0437)	.144 94.1 .0315)	.369 143. [.123!	.512 0190 .0300 189.	. 414 . 0174 . 0266	.480 0103 .0245 320.	.322 0123 .0204 282.
N(The/FST) A(The) L/T(The)1 L/T(The)2	.0227	. 124 . C128 1.47	. 184 . 0789 9	.113 .0178 1.09	.0237 .0117	.0602	.0829	. 0674	.0794 .0155	.0523 .0106
NIND /FST) A(NO , 1/T(NC)1 L/T(ND)2 L/T(NC)3	141 0564 -4.69	761 .0106 -13.8	-1.22 . 0784 -19.4 21.9	707 . 0132 -12.2 . 13.6	1.148 1.0148 13.90	- 369 - 00399 -8 - 48 9 - 18	513 .0129 -10.5	415 .0116 -9.30	-,481 .0153 -10.7 11.2	323 -0101 -7.95 6.22
N(AZP/FST) A(AZP) 1/T(AZP) 1/T(AZP)2 Z(AZP)2 W(AZP)1	290 00778 .0578 .0887	06135	-2.11 000458 .0789 .0678	-1.34 00311 .0162 9.39	265 00551 0262 0210	720 00297 .00690 .0386	988 00136 .0142 .0390	- 0000 - 0000 - 0010 -	056 006839 .0161 .0204	625 00143 .0114

TABLE III-7

F-104A THRUST TRANSFIER FUNCTION FACTORS

BAL Off - Bobweight Loop Closed

	٠,	~~	£ # ·	40	40	4	*
0	1.80	.644 .00832 .060?	100197- 1000- 1000-	.889F-4 1.000809 .845 5.57	.450E- .128 1.56	.0440 .0331 .64.7	-00.157 -100.157 -1074 -0741
ø	2.00 2.00	1-1000±0) 1513. 1 1518. 5.02	5000308 -000308 -000308	.902F-4 000310 1 1.601	.681F-6 -,0204 .2*6	4.1316	.779F-4 .00767 .00466 .0046
•	1.50 1.50	77.00. 87.00. 88.00.	.00197 -000624 -0730 5.45		. 142 142 1.46	. 106 . 0372 6.33	
^	35 K	(0266) (0363) (113	.00197	.9056-4 .5196-4 (-1.53)	.711F-6 .532 -5.44	11.84 13.84 10.0	. 176F-4 . 0014B-2 . 482 . 0775
•	35 K	. 134 . 0749 . 164 3. 76	.00197 000328 .164 3.76	.8936-4 .000740 .336 5.18	.515E-6 (.565) (3.08)	100 4 100 4 100 5 11 100 5 11	. 799E-4 00161 -3.64 3.83
w	35 K	.0725 .0683 .158	. CC197 C0967 . 158	. 8735-4 CC935 - 164 2.78	.301E-6 (.669) (1.92)	. 1000 . 1408 . 142 1 . 48	.919E-4 0122 .1.95 .1.98
*	15 K	.127 .0851 .216 5.35	.00197 00193 214 5.33	. \$216-4 00115 .566 5.43	. 591E-6 2.83	3326-4	.741E-4 cc284 -4.95 5.72
n	St. 1. 10	.040 .0401 .199	.00197 .000263 .196	.966E-4 .00065C (4.20) (17.8)	.156E-5 (.6874) (2.82)	4.888 4.888 4.68.5 5.00.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
~	18. 008.	. 151. . 633. . 834	.0C197 0C0339 .238	.026E-4 .00585 [.244) [10.5)	.105E-5 (429) (1.86)	4.11.4 4.11.4 4.80 8.40	-3356-4 -00126 -1.63 -201 5.23
~	51. 257		.00228 000293 .302 1.59	(61° 4-)	.2216-6 (531) (4.03)	# # 4 5 5 5 # 4 5 5 5 # 5 #	4.00.0 10.04.1 10.04.1
. U	rr	UCACMINATOR 2061) 11DE 1) 2087) 2 1061) 2	10 0141 10 0141 17 0 17 17 0 17 17 0 17	110/ MIL 101/11 101/11 101/11 101/11 101/11	ACTAGASTAS ACTAGS LATTAGS LATTAGS	NERD / UTES ACHO / LYTCHO 1 LYTCHO 1 LYTCHO 1 LYTCHO 1	1 (420) 1 (420) 1 (420) 1 (420) 1 (420) 1 (420) 1 (420)

TABLE 111-8

P-104A LONGITUDINAL HANDLING QUALITIES PARAMITERS

SAS Off

1.90	12.5	28.5
* U	6440 57 57 546 264	.005317
# O	17.4	25.3
3 x x	22.4 3.66 1.49 (23.7)	.0345
\$ 88 \$ 000 \$ 500	2.92	15.7
3 3 4 4 600 4	1xE0 3.62 4.36 4.36 7.65 7.7	43.1
4 21 × 21 × 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32.6 1.07 9.623	
35 75 10 10 10 10 10 10 10 10 10 10 10 10 10	86.3 1.10 1.21	A:50. 1
. د د د د د	\$0.1 \$0.1 \$1.0 \$17.	7.64
1. 12.	261. 26.6 26.6 16.0	22.9
4 ¥ 4	0(61/0(U) {0£6/KT} N2A {6/AAE} 0E/3 {DE6/G} CAP {MAD/SEC/SEC/G} PHUSOLOG2 {SEC} 1/C(1/10)	PST/KT (18/HT) PST/G (18/G)

TABLE III-9

F-104A LATERAL-DIRECTIONAL DIMENSIONAL DESIVATIVES

	+	•	•	•	•	•	•	•	•	•
. # 3/4 E/C #	~	~	m	•	'n	•	~	••	•	10
I	ระ	ತ	SL	15 K	35 K	35 K	35 K	45 K	45 7	55 K
z	.257	009.	1.10	006.	009.	006.	1.20	1.50	2.00	1.80
\$	178	4 52	162	328	0868	149	234	160	170	102
4.8	-51.1	-404-	-971.	-312.	-50.7	-130.	-273.	-233.	-330.	-177.
. 5	120.9	- 146.	-363.	-134.	-32.3	-58.1	-115.	67.8	-64.3	- 52.2
. 92	2.68	13.6	42.7	9.91	1.06	4.98	11.9	9.19	6.92	4.62
Š	-1.38	-4.64	-7.12	-3.63	374	-1.77	-2.27	-1.46	-1.59	962
. dx	£660°-	188	341	150	0405	0943	117	0804	1060	0544
	1.16	3.67	7.17	2.66	1.02	1.08	1.88	.822	689.	697.
. A.	157	498	-1.06	350	0809	169	292	152	188	106
Y+CA	•	ċ	ò	•	•	•	ò	•	•	•
F. 64	4.76	49.6	81.5	34.7	6.35	14.8	19.4	12.9	15.8	0.38
N. CA	.266	3.51	6.50	5.64	.407	1.01	1.49	.905	.890	. 517
¥ 0 *	1.150.	.0719	.0621	.0413	.0179	.0188	.0159	. 00847	.00782	.00485
. 63 .1	96.8	41.5	57.6	27.6	99.9	11.2	13.1	7.17	8.68	\$.8
ž O	923	-1.07	-8.72	-4.40	-1.18	-1.91	-2.09	-1.52	-1.70	-1.01

TABLE III-10 F-104A ALLERON TRANSFER FUNCTION FACTORS

SAS OFF (BODY AXIS SYSTEM)

	•	•	•	•	•	•	•	•	•	•
#\C #		~	m	•	•	٠	4	60	•	10
II	st.	. 86. . 600	\$£ 1.10	15 K	3.5 5.000	35 K	35 K	45 K	4.5 x 2.00	55 K 1.80
DENCMINATOR 1/T (DET 31 1/T (DET 32 2 (DET 31 M (DET 31	1.000594 1.86 2.0348	.0C7111 4.82 6.849	.004C4 7.86 .0732 7.53	.00849 3.08 4.136	.0172 .446 .0138 2.84	.00849 2.04 .00593 2.85	.00570 2.41 .0453 4.29	.00368 1.50 .0339 3.97	.00588 1.72 .0331 3.25	.00602 .941 .0373
NUMERATORS NC B / DA 1 AC B 1 L/T (B 11	.170	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 1 2.20 0.00 0.00	 64.0 64.0 64.0 64.0	446. 4486. 4486.		1 1 4 2 2 2 5 4 4 4 5 4 4	0432 295 -4.74	0631	111.
MCP 20 31 27 47 47 47 47 47 47 47 47 47 47 47 47 47	00446 00446 1.003	06124 - 123 - 123	000.s 000450 142 8.54	. 002.62 . 09.83 4.49	-0121 -0699 1.76	14.8 00160 .0656 3.00	19.4 -00144 .0737 4.55	12.9 00147 0466 3.99	15.8 000668 0412	8.38 00155 .0426 2.80
MCR 704 3 L/T (R 31 Z(R 31 MCR 32	1.2566.2.378	24 . W 20 0 W 20 0 W	1.65 3.265 3.855 3.83	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2.001 2.001 2.003 2.443		. 902 . 334 . 0170 3.89	.890 .316 .0252	. 517 . 220 00604 3.27
MEPHINDS 3 ACPHIN ACPHINI MEPHINI	7.101.1 100.1	45.7 .123 4.92	8 . 8 11 . 5 . 4 . 5 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .	34.9 .0987	6.44 .0639 1.78	14.8 .0655 3.00	0.00.00.00.00.00.00.00.00.00.00.00.00.0	13.0 .0464 3.99	15.8 .0610 3.25	8.43 .0423 2.80
MEAYPOA) ALAYP) 1/1 (AYP)1 1/1 (AYP)1 2(AYP)1 M(AYP)1	16.5 - 278 - 343 - 0370	183. -176 -112 -112	313. 169 .961 .128	131. -154 -105 -104	22.6 .111. -290 .0760	53.8 -146 -250 -0574 -2.94	73.6 144 301 .0695	. 114 . 164	53.9 - 116 - 289 - 0758	29.5 .0988 167 .0520 2.76

TABLE III-111
P-104A RUDDER TRANSFER FUNCTION PAOTORS

OMA NUMBER TRANSFER FUNCTION FACTOR

# 5/4		~	m	•	n	3		; ;	•	,
rt	St.	. 800°.	St 1.10	.900 .900	35 K	35 K	35 K	1.50 ×		2.00 K
NCH INATOR 1/7 (DET)1 1/7 (DET)2 2 (CET)1 M (CET)1	00994 86 0345 2.10	.0C711 4.82 4.51	.004C4 7.86 .0732 7.53	.00849 3.08 1346 4.50	.0172 .446 .0138 2.84	.00949 2.04 .00590 2.85	.00570 2.41 .0453 4.29	.00368 1.50 .0339	•	00588 1.72 .0331 3.25
MEATORS B /OR 1 A(B 1 L/T (G 11 L/T (G 12 L/T (G 12	.0317 0139 2.14 35.3	. C719 0C574 4.94 119.	00100 8.64 136.	.0413 00640 3.11 165.	.0179 0439 .391	.0188 00267 2.02 178.	.0159 00171 2.40 175.	.00847 -,00256 1.48 2.35	90017	00782 000969 1.69 285.
1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200.1 200.1 200.1	06129 -#.32 3.40	57.6 000454 -3.33 3.70	27.6 -3.42 -3.42	6.66 0121 2.09 -2.18	00160 -2.19 7.23	13.1 00144 -2.49 2.58	7.17		8.68 .000872 -2.42 2.58
A / OR) L/f (R) Z(R) M(R)) • · · · · · • · · · · · • · · · · · • · · · ·	7.57 1.8 14.8 263	-8-12 9:26 -627 -478	. 496	11.18 .254 .0889 2.36	1.91.1.95	.2.27 2.27 .633 .699	-1.52 .397 .508 1.52	-1.78 .477 .820 1.03	27.00
PHI/OR 3 AIPHID 1/1 (PHI)1 1/1 (PHI)1	5.32 .972	41.2	 	3.4.2	2.16	11.2	13.0	7.07 7.09 3.00	877	8 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
(AVP/DR) A(AVP) 1 1/T (AVP) 1 1/T (AVP) 3 1/T (AVP) 3	10277 16.66 16.66	13.6 - C129 - 16.6 - 787)	56.7 00460 -22.9 (.612)	24.3	5.13 0582 5.75 5.75	8.7.5 0100 1.46 3.03	12.2 00748 2.00 3.74	2.04 .00671 .897 .85	40 - W M	3.83 1.40 8.88

TABLE III-12

F-104A IATERAL-DIRECTIONAL HANDLING QUALITIES FARAMETERS

SAS Off

Si	9/6	-4	~	m	•	ĸ	ø	~	•	•	10
(\$EC) 60 1.10 .900 .600 1.20 1.50 2.00 (\$EC) 1.40 1.40 .900 .600 .900 1.21 1.47 1.59 1.93 .773 .665 1.24 .125 .0235 .411 .308 .300 1.66 1167 2.47 13.2 15.0 11.1 2.60 8.04 8.72 8.51 9.14 1.66 11.2 11.7 10.8 1.37 7.12 8.42 8.51 9.14 2.86 13.2 15.0 11.0 4.89 8.44 9.31 8.51 9.14 3.7 .67 .783 .973 .523 .885 .946 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996 .996	r	ತ	ತ	35	15 K	35 K	35 K	35 K	4 % X	4.8 X	55 K
1.50 1.40 1.40 1.54 1.22 2.21 1.47 1.59 1.93 1.93 1.94 1.55 1.24 1.25 1.25 1.25 1.25 1.25 1.15 1.50 1.93 1.93 1.93 1.94 1.25 1.24 1.25	E	182.	. 600	1.10	006.	009.	900	1.20	1.50	5.00	1.80
(\$EC) 1161. —————————————————————————————————	(360)	3.00	1.40	. 836	1.41	2.22	2.21	1.47	1.59	1.93	2.10
1167.	2,	ł	.773	. 665	1.24	.125	.0535	.411	. 308	.300	.338
1.64 13.2 15.0 11.1 2.60 6.04 6.72 6.51 9.14 1.64 11.2 11.7 10.8 1.37 7.12 6.42 6.48 6.79 2.86 12.8 14.5 11.0 4.89 8.44 9.31 6.61 9.06 13. 23.2 .C751 .114 .0111 .466 .0732 .0340 .004:0 .0170 1 .940 1.09 1.13 .999 .629 1.05 1.06 1.01 1.00 1 .170 .C908 .0873 .0302 .261 .0954 .0456 .0129 .0383 1 .184 3.94 5.31 4.9 390353. 33.6 26.4 18.2 -336. 2.84 3.94 5.31 4.92 5.59 3.98 6.12 5.64 5.28 5.54 2.85 .47 .78 .78 .78 .78 .78 .78 .78		1167.	i	ì	1	I	i	ŧ	ŀ	:	:
1.66 11.2 11.7 10.8 1.37 7.12 8.42 8.48 8.79 2.86 12.8 14.5 11.0 4.89 8.44 9.31 8.61 9.06 3.671 .647 .783 .973 .525 .885 .966 .997 .963 3.940 1.09 1.13 .999 .629 1.09 1.09 1.00 1.01 3.94 5.31 4.92 3.90353. 33.6 26.4 18.2 -336. 3.94 5.31 4.92 5.59 3.98 6.12 5.64 5.28 5.54 3.94 5.31 4.92 4.24 .701 .719 .719 .472 .371		2.47	13.2	15.0	11.1	2.60	40.8	8.72	16.8	9.14	7.28
2.86 12.8 14.5 11.0 4.89 8.44 9.31 8.61 9.06 .671 .647 .783 .973 .525 .885 .966 .997 .963 .940 1.09 1.13 .999 .629 1.05 1.06 1.01 1.00 .940 1.09 1.13 .999 .629 1.05 1.06 1.01 1.00 .170 .C908 .0873 .0302 .261 .0954 .0456 .0129 .0383 .170 44.3 44.9 390353. 33.6 26.4 18.2 -336. 3.94 5.31 4.92 5.59 3.98 6.12 5.64 5.28 5.54 .787 .341 .230 .424 .701 .719 .497 .472 .371		1.66	11.2	11.7	10.8	1.37	7.12	8.42	9.48	6.19	7.10
. 471 . 447 . 783 . 973 . 523 . 985 . 966 . 997 . 963 . 958 . 232 . 232 . 2751 . 114 . 0111 . 466 . 0732 . 0340 . 004:0 . 0170 . 0170 . 940 . 629 . 629 . 629 . 629 . 1.05 . 1.06 . 1.01 . 1.00 . 1.00 . 1.01 . 1.00 . 1.00 . 940 . 983 . 980351 . 955 . 33.6 . 26.4 . 18.2336 384 . 5.31 . 4.92 . 5.59 . 3.98 . 6.12 . 5.64 . 5.28 . 5.54 . 371 . 787 . 341 . 230 . 424 . 701 . 719 . 497 . 472 . 371		2.86	12.8	14.5	11.0	4.89	8.44	9.31	19.8	90.6	7.56
232C751 .114 .0111 .466 .0732 .0340 .004:0 .0170 .0170 .940	(1)	.671	. 847	.783	. 973	. 52 5	. 885	996.	166.	. 963	. 979
. 170 . 1.09 1.13 . 999 . 629 1.05 1.06 1.01 1.00 . 170 . 1904 . 0302 . 261 . 0954 . 0456 . 0129 . 0383 . 170 . 1906 . 0302 . 261 . 0954 . 0456 . 0129 . 0383 . 170 . 190 . 390353 . 33.6 26.4 18.2 -336. . 187 . 341 . 230 . 424 . 701 . 719 . 497 . 472 . 371	1,P (AV)	.232	. C751	*11.	.0111	.466	.0732	.0340	00450	.0170	95 20 .
.170 .0908 .0873 .0302 .261 .0954 .0456 .0129 .0383 , PHASE -318, 44.3 44.9 390353. 33.6 26.4 18.2 -336. 3.94 5.31 4.92 5.59 3.98 6.12 5.64 5.28 5.54 .787 .341 .230 .424 .701 .719 .497 .472 .371	7/4 (0)	946	1.09	1.13	666.	629.	1.05	1.06	1.01	1.00	, 934
PMASE -318, 44.3 44.9 390353. 33.6 26.4 18.2 -336. 3.94 5.31 4.92 5.59 3.98 6.12 5.64 5.28 5.54 3.94 5.31 4.92 6.59 3.98 6.12 5.64 5.28 5.54	**************************************	. 170	. 090	.0873	. 03 02	.261	+\$40.	9570.	. 0129	. 03 83	.0427
3.94 5.31 4.92 5.59 3.98 6.12 5.64 5.28 5.54 .787 .341 .230 .424 .701 .719 .497 .472 .371	D BET A. PHASE	-310.	44.3	44.9	390.	-353.	33.6	56.4	16.2	-336.	
.787 .341 .230 .424 .701 .719 .497 .472 .371	0 667 4	3.04	5.31	4.92	5.59	3.96	6.12	5.64	5.28	5.54	5.56
	u > 0	.787	. 34.	.230	.424	104.	.719	. 497	.472	.371	. 526

7-104A DATA SOURCES

- Stability and Control and Handling Qualities, F-104A, Lockheed Rept. No. LR 10794, 12 Dec. 1955
- Andrews, William H., and Herman A. Rediess, Flight-Determined Stability and Control Derivatives of a Supersonic Airplane with a Low Aspect-Ratio Unswept Wing and a Tee-Tail, NASA Memo 2-2-59H, Apr. 1959
- Performance, F-104D, Lockheed Rept. No. LR-12873, 1 May 1958
- Flight Manual, F-104A and F-104B USAF Series Aircraft, T. O. 1F-104A-1, 15 Dec. 1961
- Technical Manual, Flight Controls, USAF Series F-104A and F-104C Aircraft, T. O. 1F-104A-2-8, 15 Mar. 1960

SECTION IV

F-40

The F-4C is an Air Force tactical fighter whose primary mission is all-weather air-to-air missile combat. Lateral control is achieved by ailerons in combination with spoilers on a swept wing. A swept stabilator provides longitudinal stability and control. Directional stability and control is accomplished through a conventional fin-rudder combination. Landing speed is reduced by full span leading edge flaps and inboard plain trailing edge flaps in conjunction with blowing-type boundary layer control (BLC). Boundary layer control is automatically induced when full flap deflection occurs.

Features distinguishing the USAF F-4C from its Navy counterpart, the F-4B, are:

- Lack of arooped ailerons with flaps down resulting in higher landing speeds.
- Dual flight controls resulting in slightly increased control system inertia.
- Wing bumps to house larger main gear wheels resulting in a slight drag increase.

Data included here was obtained primarily from MAC Report No. 9842. Special emphasis is placed on the longitudinal control system because of its relative complexity when compared to other aircraft. Figure IV-4 has been added to help illustrate this system. Also, care has been taken to retain some of the control system nomenclaure used by the manufacturer, e.g., $q_{\rm B}$ and $P_{\rm BF}$ (see Fig. IV-5).

The Stability Augmentation block diagrams are shown in Fig. IV-7. The roll SAS described is not included in lateral directional SAS on transfer functions since it is faded out with the lateral control stick out of neutral position.

F-40

NOMINAL CONFIGURATION

L AIM-7 missiles

60% internal fuel

W = 38924 lb

c.g. at 0.289 \overline{c}, W.L. 27.65

I_X = 25001 slug-ft²

I_Y = 122186 slug-ft²

I_Z = 139759 slug-ft²

I_X = 2177 slug-ft²

POWER APPROACH CONFIGURATION

2 AIM-7 missiles aft
20% internal fuel
Full flaps, BLC
Gear down
19 units angle of attack
W = 33196 lb
c.g. at 0.291 c, W.L. 25.2
Ix = 25668 slug-ft?
Iy = 117500 slug-ft?
Iy = 13725 slug-ft²
Iz = 33725 slug-ft²

FLIGHT ENVELOPE

--- Speed Nothright Envelope (Nominal Configuration)
--- Speed Nothrictions

--- Speed Nothrictions

--- Speed Nothrictions

--- Speed Nothrictions

Figure IV-1. Flight Conditions

 $I_{XZ} = 15\%$ slug-ft?

· ALLEY

Figure IV-2. F-4C General Arrangement

Pigure IV-3. P-4C Control System

at a particular flight condition. See Fig. $\mathrm{IX} ext{-}5$ for nominal configuration values

Figure IV-4. F-4C Feel System Schematic

ちゅうかいろ 大いかとのかったいか、大変ならる

Figure IV-5. F-4C Feel System Farameters

Figure IV-6. F-4C Rudder Flexure Coefficient

F-4C

PITCH SAS

ROLL SAS

 $P_G = P$ (Roll rate gyro assumed aligned with FRL)

Note: Roll SAS faded out with lateral control out of neutral

YAW SAS

 $r_G = r \cos(-1.5^\circ) + p \sin(-1.5^\circ)$ $a'_y = a_y + 9.9 \dot{r} - .39 \dot{p}$

Yaw rate gyro inclined 1.5° below FRL and lateral accelerometer at F.S. 198.0 and W.L. 23.0

Figure IV-7. F-4C Stability Augmentation

TABLE IV-1

F-4C

Power Approach Non-Dimensional Stability Derivatives

h = sea level T_0 = 230 ft/sec = 136 kt a_D = 11.70

 $\delta_s = -9.1^\circ$

Iongitudinal Lateral-Directional (Stability Axis)

 $c_{L} = .915$ $c_{y_{\beta}} = -.655/\text{rad}$ $c_{D} = .242$ $c_{n_{\beta}} = .199/\text{rad}$ $c_{L_{\alpha}} = 2.8/\text{rad}$ $c_{L_{\alpha}} = -.156/\text{rad}$

 $c_{L_{CL}} = 2.8/\text{rad}$ $c_{\ell_{B}} = -.156/\text{rad}$ $c_{D_{CL}} = .555/\text{rad}$ $c_{\ell_{D}} = -.272/\text{rad}$

 $c_{m_{\alpha}} = -.098/\text{rad}$ $c_{n_p} = -.013/\text{rad}$

 $C_{m_{\alpha}} = -.95/\text{rad}$ $C_{\ell_{r}} = .205/\text{rad}$

 $c_{m_{r}} = -2.0/rad$ $c_{n_{r}} = -.320/rad$

 $C_{L_{6}} = .24/rad$ $C_{y_{6}} = -.0355/rad$

 $C_{m_{S_a}} = -.322/\text{rad}$ $C_{n_{S_a}} = -.0041/\text{rad}$

 $C_{D_{h_{-}}} = -.14/rad$ $C_{b_{a}} = .057/rad$

Cy8, = .124/rad

 $c_{n_s} = -.072/rad$

Spoiler Effects

Included

 $C_{IR} = -.0009/red$

これのことは、これのできないとのでは、これのはないないないできないのできないのできないのでは、これのないないないないないないないないないないないできないないのできないというというできないというできない

いるこうからころうのから、大学を表示の存在をなった

・ こうことがなっていればいのではないなどではないないないないないないないないのではないないないないないのであるということできませんが、

Company of the Control

これでは、「これのできないというできないとのできないのできないのできないのできないというできないというできないというできないというできないというできないというできないというできないというできないという

TABLE IV-2

とは、日本なる情報を記れて、一般に、各種種様は

F-4C DIMENSIONAL, MASS, AND FLIGHT CONDITION PARAMETERS s=550 sq ft, b=38.67 ft, $\overline{c}=16.04$ ft

	•	•	•	•	•	•		•	•	
F/C #	-	~	•	•	•	•	•	•	o	01
H(FT)	x	ระ	ತ	15 K	35 K	35 K	35 K	¥ \$7	4 7 7	55 K
· (-)	902	. 600	1.10	005.	009.	. 900	1.20	1.50	2.15	1.50
VTO(F # S)	2 30 .	893.	1228.	952.	. 986	876.	1167.	1452.	2081.	1742.
V10(K1AS)	136.	529.	728.	564.	346.	519.	.269	. 00	1233.	1032.
VTOFKCASI	136.	529.	728.	465.	199.	311.	432.	445.	6.32.	433.
W(LBS)	33 197.	38925.	38925.	38925.	38925.	38925.	38925.	38925.	32025.	34925.
C.G. (PGC)	.391	. 289	.289	.299	.289	.289	.289	. 289	. 2A9	. 2A.
1x (SLUG-FT SC)	23 66 9.	25002	25002.	25002	25002	25002.	25002.	25062.	25907.	25002
IY (SLUG-FT SC)	117506.	122193.	122193.	1221 93.	122193.	4 1221 93.	122193.	122193.	122191.	122193.
12 (5616-FT 56)	1337.50	139767.	139767.	139767.	139767.	139767.	139767.	139767.	13 4757.	130747.
1X2(51.06-FT 5C)	1575.	2.177.	2177.	2177.	2177.	2177.	2177.	2177.	:177.	4111.
EPSIL CALDEGY	620	-1.09	-1.09	-1.39	-1.09	-1.09	-1.09	٠١٠٢-	-1.60	-1.09
(34.5	9.29	. 04 7	1792.	. 229	126.	283.	503.	. 69.	1034.	434.
QC (PSF)	63.3	1 109.	2397.	625.	136.	345.	703.	740.	1587.	705.
ALP4A (DEG)	11.7	.300	300	.5.3	4.40	2.60	1.60	2.60	1.40	3.39
GAMMA (DE 6)		•	ं	ó	ó	ò	•	ċ	;	ċ
LXP(FT)	16.3	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	14.2
LZP(FT)	-3.02	-2.81	19.2-	-2.31	-2.81	-2.81	-2.61	-2.91	-2.81	-2.51
1 1410661	5.25	5.25	5.25	5.45	5.25	5.25	\$2.2	6.29	5.25	5.25
xt (566)	5.25	\$.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25
LW(F1)	570	370	370	370	370	370	370	370	076	076

TABLE IV-3

F-40 LONGITUDINAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

•	~	~	•	.,	'n	٠	~	•	σ	ů
r	35	SL	SL	15 K	35 K	3.5 X	35 K	¥ 5.	45 K	55 K
	.206	.800	1.10	206.	.600	.900	1.23	1.50	2.15	1.90
* OX	0417	0 159	0677	0.03	.000719	00796	0135	00679	0158	00 528
• 02	177	0645	.0226	134	0639	0876	.0125	0110.	000992	*4*000
• 2	.000743	00141	.00329	00425	. 12000.	00239	2 6 2 0 0 .	.00341	821 CU.	.10175
×	.1 30		0107	175 00.	. 00458	.0158	.00576	97100.	.00387	10500*~
12	452		-2.11	-1.16	236	547	727	907-	707	319
ŧ	00 182		0466	0175	0326	00911	0248	019	£ ∪? ∪• −	0133
240	00 30 5	00271	06328	00210	00104	00316	00136	000358	7-3116.	604F-4
07	-2.48		-8.72	. 6. 56	-1.84	-2.89	60.4-	-2.24	-1.27	-1.14
044	000642	000663	000729	001:480	000244	000267	000247	840E-4	-2985.	150E-4
2	317		-2.20	E66*-	307	487	745	-,483	****	284
XO S	5.98		-1.32	.932	3. 42	2.25	2.52	3.21	2.0%	2.94
\$02	-6.69		-251.	-107-	-20.7	9.64-	+.06-	9· 0i-	-83.6	9.65-
SQ	-1.46		-61.1	-25.0	-4.90	-11.4	-20.7	-16.9	-16.1	-11.2
# 9 T	.000969		.000823	.000823	.000823	. 000823	.000923	.000823	.000823	.000623
# 23	88 7E-4	756E-4	7566-4	75¢E-4	156E-4	1566-4	756F-4	756F-4	756F-4	7566-4
#LO	485E-3		3036-5	3036-5	3036-5	303E-5	303E-5	3035-5	3036-5	3036

TABLE IV-4
F-4C STABILIZER TRANSFER FUNCTION FACTORS
SAS Off — Bobweight Ixxip Open
(BODY AXIS SYSTEM)

	•	•	•	•	•	•	•	•	•	•
• 3/4	1	~	•	•	•	•	~	e.	•	10
22	.206	.800	SL 1.10	15 K	35 K	35 K	35 X 1.20	45 K	45 K 2.15	55.1 1.80
06 ACMINATOR 2 00 10 1 10 00 11 1 2 0 00 11 2 10 00 11 2	. 19: . 67: . 72:	(8780.) (8780.) (84.4		(C612) (-0741) -308 4-24	.092 8 .0774 .259 1.41	(.0446) (0456) .224 2.85	. 191 . 06430 . 167	156 .0402 .020 .30	. 384 . 0220 . 0645	.175 .0274 .0850
MUMERATORS MIC. /05.1 AIC. 1 1/710 11 1/710 12	2.14.0 2.14.0 2.14.0 2.14.0		10.10		3.42 136. 1 .9801 1 .3071	2.25 201. (787)	2.52 266. (.965)	3.20 . 310 . 641	2.02 4004 4004 1044 1044 1044 1044 1044 10	2.86
Mth. 705 J Aff. J L771 J ZCH J1 Mth. J1	44 44 54	-141. 204. .176	-250. -0032c (-0711) (-299.)	-107. 222. .165	-20.6 137. 01121 0627	-49.5 202. .0964	-90.3 267. .852.	-70.6 378. .290 .0911	604 604 604 601 601 601 601	344.
M(THE 70S.) A(THE) 1/T(THE)1 1/T(THE)2	400	-32.2	-60.9 -0678 1.90	-24.5 .02CE 1.08	-4.90 00498	-11:4	-20.6 .0131	0.91-	-16.1 .0147	-11.2
M(MO /DS) A(MO) 1/TMC) 1/TMC) 1/TMC) 1/TMC) 1/TMC)	7.70 -00726 -4.21	141. .0146 17.0	250 20 20 20 20 20 20 20 20 20 20 20 20 20	101.0165	20.4 5.96 5	. 6.9.6 9.99 10.2	90.3 12.7 12.9	200 m	2	10.1
Mf A2P/05) A1A2P) 1 / T (A2P) 1 1 / T (A2P) 2 2 (A2P) 1 1 (42P) 1	17.0 -0514 -0514 -0543 -121	.006207 .0148 .0148	71000. 7400. 7400. 7100.	2488- 0035- 0172 0874		135.	244. .0037. .0131 7.056		177. -000385 -0154 -0298	.00117 .00419 .0283

TABLE IV.

F-4c THRUIS TRANSFER FUNCTION FACTORS
SAS Off --- Bobweight Loop Open
(BODY AXIS SYSTEM)

• 5/4	-	₩ ;	"	•	m (•	; ••			
ZZ	\$07 •504	St.	St. 1.16	15 K	. 600 7 C	. 44. 7 000	35 K 1.20	45 K	2.15	× "
DE ACKTANTCR 2106 T31 NDE T31 2108 T32 NDE 732	2002	(0378) (0116) (0116) (4.4	4 4 6 6 4 4 8 4 8 4 8 4 8 8 8 8 8 8 8 8	(.04:2 (.04:2 (.04:2	.0928	(.0446) (0456) .224 2.85	.191.0450	.156	.36.0.0729	
ACC 11 11 11 11 11 11 11 11 11 11 11 11 1	.000468 . 104 . 654	.0000. .0000. 	.000823	.000.00.00.00.00.00.00.00.00.00.00.00.0	. CC0823 .00376 .371	.000423 .00295 .24 42	.00023 000327 .173 5.43		.000823 000421 000421	m
MC ADTA ACK J 1711 11 11 11 11 11 11 11 11 11 11 11 11	######################################	4.00164. 4.00164.	4-34-5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- 1500. - 000.503 - 1.18	754E-4 24.0 (807)	4.000110	1.755E-4 1.00303 1.756 47.9	756E-6 00281 897 59.2	- 756E-4 - 00193 - 327	*
M THE /DTH) A THE! L/T (THE)! L/T (THE)?	467 E-5 192 480	298. 	298E-5 -1.21 1.28	295E-5 .517 1.36	2986-5 289	300E5	300E-5 -450 -1.13	3026-5 321 -1.24	303E-5 .282 610	10
MCHD /01H) ACHD 1 1/TCHD 11 2CHO 11	.000282 1.09 552	. 797F- . 341 (-4.91)	.7116-4 -1.85 (-4.40)	1.05	. C00209 1.45 347	.000113 .681 (-1.86) (2.62)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.63	.957E- 1.04 0978	→ '
1 (47) M 2 (47) J 1 (47) J 1 (47) J 1 (47) M 1 (47) M 1 (47) M	4175 835 835 835 835 835 835 835 835 835 83	2776-4 000:39 (-8.40)			2725-4 CGB 72 RGS (-1.59) (5.35)		1.10000 1.00000 1.000000 1.000000 1.00000000	4.00.00 4.00.00 4.00.00 4.00.00	4.000.1 4.000.1 4.000.1	4 1

TABLE IV-6

F-4C STICK FORCE TRANSFER FUNCT) ... FACTORS

SAS Off - Bobweight Loop sed

(BODY AXIS SYSTEM)

F/C 4	-	••	•	•		٠	-	ev	c	ນ
II	\$L .206	S.L.	SL 1.10	15 K		3 4.5 3 006.	35 K 1.23	45 K	45 ×	
DEACMINATOR L/T(DET)1	20.8	0271	26.6	6445	~	1335	 	1.49	٥;٠٤	
2(06.1)1	41.	.0412	740	.0565	,	.0343	,	23.2	21.1	27.2
h(DE 7) 1	0891		4.40	(1:65)		(23.5)	402.	.149		?
2 (DE T) 2	.271	.277	292	215.		351	7270·	1620.	٠٥١٥٠	9150.
N 06 13 2	1.15	10.4	7.90	9.	: -	20.7	E 7 - 4		201.	161.
2(061)3	. 427	26135	.000438	. C2 53	-	1679	.0302		174	£
41 DE 11 3	6.01	25.1	38.9	24.6	Ξ	14.5	1.27	32.4	34.5	22.5
MUMERAICES										
1/10	-18-	-23.4	41.7	-29.6	77.37	-2.5	-80.2	-102.	6.14-	6.00-
	(254.)	4 4. 4 4. 5 5.)	52-1		-102 -	266.	.310	11:1	.143
1/10 -3		. ~ ?	300	, m	• •		244		430	\$ B C .
								3.26.	(3,7.)	
M /FST)										
A(h)	2 10 .	4476.	7961.	3386.	•	1573.	2869.	:243.	2656.	1574.
		• • • •			·:	. 0.	.67.	**	1.1.	4
	151.	.176	(566.)	.165	• •	*960.	.852	. 700		3.74
	. 156	. C4 56		.0527	17:33	. 0532	62100.	11600.	.0105	÷110.
NI THE JE ST)										
1/1(756)1	46.2	1024.	1936.	792.	-	363.	656.	. av.:	511.	357.
1 /T (THE) 2	.379	1.45	B	3000	C) #	. 010.	1610.	8. U.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.	7510.	.01.460
1/f (THE)3		•		•	•	. 200	¥10.	104	6 d	. 250
								77. 7	11.1	4.42
N(HO /FST)	-246	7277-	. 70	;		,				
	.007 26	.0146	.0680	20.65	1001	-1275.	-2670.	-2265.	-2657.	-1479.
	17. 7-	17.0	-23.8	15.3		60.6	12.7	4.23	76101	, oc 30,
1/1 (HD)4	4.27	-17.5	23.0	- 15.7		-10.2	-12.9	· · ·	12.4	
								,		•

_	
7	
7	
[
	•
770	
_	
H	

M A 28 / 6 CT 1										
A(A2F)	3.	-12129.	-23430.	-5456.	-186	-4306.	-1765.	-5949-	-4624.	6027-
1/7(420)1	0514	000207	751000.	000354	(001%	00287	000776	00104	0003A5	1100-
1 /T (A 2P)2	. 0543	B+10.	.0679	2610.	02.	. 00618	.0131	06500.	.0154	1700
1/T (A2P)3								4.22	11.1	4.42
2: A2 F) 1	. 121	104	C160.	.087	0,793	. 0625	.0586	0070.	.0294	.028
	•		9	96.0	. 7 .	•	. 0 7	404	44 0	4 1.3

TABLE IV-7

F-4C THRUBT TRANSFER FUNCTION FACTORS

SAS Off .- Bobweight Loop Closed

(BODY AXIS SYSTEM)

01 6 8 4	35 K 45 K 45 K 55 < 1.23 1.50 2.15 1.50	24.5 1.49 3.10 1.37 23.2 21.1 22.2 .205 .159 .431 .169 .0329 .0291 .0192 .0219 .148 .138 .10? .0219 5.12 5.07 6.36 4.63 .0307 .109 .174 .177	.60ce23 .000423 .000423 .000423 .000423 .000438 .000799000410001	755E-4756E-4756E-4756E-40030400305003150030527227727	300E-5302E-5303F-4303E-5420273266199949887516516 22.8 1.28 2.05 1.24
٥	35 K	0335 .0343 (23.5) .155 3.09 .0751	.000023 .000346 .23.5 .172 3.11 .0755	755E-4 000597 .744 20.4 36.8 .121	3006-5 .127 .865 .22.2
s	35 6	22.0 0455 .0540 .166 1.67 .167	.000823 00771 22.0 .247 1.71 .167	18.5 18.5 26.3 26.3 10.9 10.9	2985-5 185 -444 21.2
4	15 K	0445 .0586 (25.0) 4.215 4.60 .0253	. C00 e £ 3 . C02 4 1 . 25 . C . 4 . 6 5 . C2 5 4 . 6 6	755E-4 .CC0255 .1.26 .20.5 .40.5 553	259E-5391 1.43 23.1
m	\$1 3.10	26.6 .76C .0654 .263 7.90 .000438	.000823 .00128 .26.6 .26.2 7.91	755 00172 651 65	
8	.860	0271 .0412 [25.31 .277 .277 .91 .0192 25.1	.000 623 .00334 ?5.3 .277 4.92 .6192 25.1		298E-5 . 250 1.11 23.2
	.206	20.8 -146 -0881 -271 -1.15 -427	.000965 .00561 .00561 .118 .132	2.46 2.246 3.946 1.2.46 2.1.3 3.20 5.20	467 £-5 . 0923 901 20.3
F/C #	II	DEACMINATOR 1/T (DET)1 1/T (DET)1 2 (DET)1 M (DET)1 2 (DET)2 2 (DET)2 2 (DET)3 4 (DET)3	NUMERATCAS NUM / DIH) AU / DIH) AU / DI L/T(U) 1 L/T(U) 2 L/U) 1 L/U) 2 L/U) 2 L/U) 2 L/U) 2 L/U) 3	7	MC TME /0 TM J AC TME J 1/T (TME)1 1/T (TME)2 1/T (TME)3

TABLE IV-7 (Concluded)

The state of the state of the state of

1-12				•	•	+ D+ .					.1206-4272						• 27	26000 -	7000
				•	•						·	_				•	_	. 2010	
\$-30/R* \$-																	_	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
6020000	• 7.7 •	22.0			1 7 70 -	905.	241				272E-4	- C(K)	7		77.7		745.	70.	161
. 00001	-1.33	22 6	•	;	176.	1.30	0000				249F-4	7700			-3.74	79.4	1 25.21	;	. 04 81
. 985E -4	76.	7 76		,	245	7.63	1960	160.	\$ · ! \$		7405-4	1000	Be 2000 -		27.0	ڼه	532	2.81	.00588
£11,0C*	. 527			23.1	O. 7:			•	22.4	-	- 3436	100.00	00133.	. 94.7	4.4	25.1	281	30.8	.0768
4-3166.	437		4.24	21.1	7670-				34.5		7	#11C07.	OUC 317	*6·-	5.12	51.9	258	3.01	157
Ections.			1.67	25.2	9000		2.30	. 141	22.5		;	Sen E-4	90100-	.865	3.53	23.5	23.5	2.60	801.
	4-3789. E1173C. 4-3886. E11000.	.000113 .985E-4 .0C1113 .957F-4 -1.33 1.94			23.4 24.4 23.1 24.7 23.9 23.4 24.4 23.1 21.1		23.4 24.4 2.11 .95.7-4 23.4 24.4 2.11 3.39 23.4 24.4 2.11 3.39 23.1 21.1 .94124505710494	23.4 24.4 2.13 .957F-4 23.4 24.4 2.14 3.39 23.4 24.4 2.14 2.14 21.1 21.1 .94124505700494 1.30 2.53 3.11 3.13		-200209 -000113 -985E-4 -307113 -957F-4 -000113 -734 -1.33 1.94 -327 -764 -36.3 -22.0 -23.4 -24.5 -3.1 -21.1 -22.2 -0241 -94124505710494 -00928 -506 1.30 2.53 3.11 3.13 5.00 -109 -0800 -0351 -114 -177 -141 -11.3 16.3 -21.9 -22.4 34.5 -22.5	-1.33 1.94 .527 .957F-4 -1.33 1.94 .527 .7F5 -23.4 24.4 .51 3.39 -23.1 21.1 -94124505700494 1.30 2.53 3.11 -0800 .0351 .114 .177 16.3 21.9 22.4 34.5	7 .000113 .985E-4 .507113 .957F-4 -1.33 1.94 .527 .764 23.4 24.4 7.15 3.39 -94124505740494 1.30 2.53 3.11 .0800 .0351 .114 .177 16.3 21.4 22.4 34.5	7 .000113 .985E-4 .567113 .957E-4 -1.33 1.94 .527 -23.4 24.4 7.14 3.39 -94124505710494 1.30 2.53 3.11 3.13 1.600 .0351 .114 .177 16.3 21.9 22.4 34.5	7 .000113 .985E-4 .5C7113 .957E-4 23.4 24.4 7.15 3.39 23.1 23.1 21.1 .941245057.10494 1.30 2.53 3.11 3.13 .0800 .0351 .114 .177 16.3 21.4 22.4 34.5 4269E-4268F-4265F-4006377 -	7 .000113 .985E-4 .5C7113 .957E-4 -1.33 1.94 .527 .764 23.4 24.4 7.15 3.39 1.30 2.53 3.11 3.13 .0800 .0351 .114 .177 16.3 21.9 22.4 34.5269E-4268F-4267E-4265F-400164000758CC10000C377 -	7 .000113 .985E-4 .5C7113 .957E-4 23.4 .527 .76.4 23.4 .24.4 .7.14 3.39 3.39 3.31 .7.40 1.30 .0351 .114 .177 16.3 .21.9 .22.4 34.5 16.3 .2001646007586710006377 3.448 3.74 3.74 3.74 3.75 3.75 3.75 3.77	7 .000113 .985E-4 .5C7113 .957E-4 -1.33 1.94 .527 -23.4 24.4 2.15 -9412450571 21.1 -9412450571 21.1 -94124506710494 1.30 2.53 3.11 3.13 -0800 .0351 .114 .177 16.3 21.9 22.4 34.5269E-4268F-4267E-4265F-4 -3.74 4.63 .647 1.94 -3.74 4.63 .647 1.94 -3.74 4.63 .643 5.12	7 .000113 .985E-4 .5C7113 .957E-4 23.4 24.4 .5.7 3.39 23.4 2.45 23.1 21.1 24124506710494 1.30 2.53 3.11 3.13 0800 .0351 .114 .177 16.3 21.9 22.4 34.5 4.64268E-4267E-4265F-4265F-4001640007586C100006377448 4.63 .4F3 5.12 4.62 4.63 .4F3 5.12 4.62 4.63287	7 .000113 .985E-4 .5C7113 .957E-4 23.4 24.4 .5.1 3.39 23.4 24.4 2.45 23.1 21.1 1.30 2.53 3.11 3.13 1.600 .0351 .114 .177 16.3 21.6 22.4 34.5 16.3 2.69E-4265E-4265F-44686007586100006377468 4.63 .467 1.94 25.21 25.21532281258

TABLE IV-C

F-10 STABILIZER TRANSFER . TON FACTORS

SAS On - Dobweight L Open

TROUT ANTE SYST

F/C +		7	~	•		ø	~	æ	o	21
z :	St.	2, 6	s. 1	4 50	* g	X 0000.	35 K 1.20	1.50 1.50	45 K	1.55
R				•						
DE NEMINATER	1 24	. (.)	788.	6060	•	. 0447	1.05	.883	70.1	726.
1/1(061)2	6.5	0530	34-9	.0746		÷5 >0 •-	16.1	40°	2.34	1.04
1/1(061)3	4	152.		17.71	ō,	6 1.1	.184	155	384	5.1.
4 (DE 1) 1	9091	,,,,	. C542		T		3450	. Gen2	·0550	. 92.74
7 1 10 7	67.2	0.540	. 426	. 674	•	. 568	115.	94.6	.250	152.
51 DE 13 Z	640	10.2	15.3	5.10	^	2.17	5.90 0.5	40.0	P1 0	6.4
2.05.13	. 584	. 103	3723.	#1.27 1.27 1.27	~	70 T .	1,1.	617	5.37	
. L(OE 11 3	4.83	27.2	37.1	22.4	•	14.5	20.0	3.1.5	٠. د.	6.17
NUWERATCRS						•				
M(L /05)	•		1 2 1	200	•	2.25	2.52	3.20	70.2	2.94
			00,1	,		00.1	1.00	310	١٠٠٠	٠٠.
	7	2 2	9	1.25		20°0	20.0	.641	2.34	• A.A.
201/1		,	16.9-	30.00	:	201.	266.	. 693	20.0	920
77 57 77	(254.)	20.0	20.0	3°02	6	(187)	(596.)	00.1	٠٥٥.	
1 /1(0)5	. 5611	151	304.	218.	27 :)	(.643)	(.783)	20.0	(4/6.)	20.0
							•	376		346.
, , , ,	, t.	•	10.2	6. 1 -	•	.194	171.	012.	202	?
	,. •			44.5		•	•	•	;	
1 SC/ # JX				1			6	-10.6	A . A .	4.04-
	29.9	-14]-	-250-	- 101 -	2					7.0
1/1(1)	00.1	0.0.1	0C42C	00.1	ກ 	1.00			200	
1/114 12	20.0	6.04		۶ ۰۰	5)	20°0	20.02	9		500
-	44.		00.1	555.	•	:05:	747	5 0 F	400°	304
1/7(6 %			0.0		;				1 2 4	
11 917	. 15 i	.176	1.657	.16.5	21	\$650.	. 626		10.0	7117
16 914	. 156	35.55		. Ct 27	. 51	.0532	27.00	11,000	2012	1000
Z1 137	₹8.	103		571.	~ ·	761		5 - N	3.5	21.4
4)4	4.63	51.4	37.1	,,,	• 1	r.	> 0	•	,	

			TABLE II	TV-A (Core	(Concluded)					
				}						
1 10 11						:	4	-14.0	-10.1	-11.2
M 106/03 1	\$4,1-	-32.2	-60.0	- 54	00.4	***		80.00	7910	.00466
	4.0	.0162	.C67e	. C2 (.E	F			200	80%	200
103411171	270	90	00.1	30.1	.282	.505	٠١٠.			760
71 1111 1/1	P 16 4			20	1.00	.03	1.00	S 22.		
L/T(Thf)5	00.1	•	200		30.00	20.0	20.0	 	7.34	20.1
1/1(10:14	0.0×	0.0	20.02	1.17	•	•	r	20.0	20.02	20.0
2 /T / 1 1 1 1 5				•	,	107	171	. 210	.208	٠ ٠
76 184 1 1	* 107	. 53.	.0740	:71:	197.			21.6	34.5	21.9
LI THE 1	£ 8° 4	27.4	37.1	22.¢	79.6		3.03	•	1	
. 20/ C21							•	•	4 6 3	1.67
1 507 507	7.70	141.	250.	107.	۶°. ۵	40.6	600	0.0		70100
ACMIN				2010	0245	.00335	. 0123	. C. C. B.		
1/150	87 100				1.00	1.00	00.1	F a.	50.1	* > *
1/1(HD 12	00.	2	200			00	12.7	٥٥.	7	00.
1/1(MC 33	17:5		20.0				0	¥ .	-12.4	-10.1
71 1772/	4.27	-17.5	-24.6	-15.1	-6.05	7.01-				- 9
		0.00	23.9	20.0	5C.0	20.0	20.0	-11.0		
	7.17) 				٠. د.	J. 1.7	
	•			106	. 28.7	194	171.	. 210	. 20 F	7
11 04)7	. 544	103	٠ د	, , ,		4 71	20.0	21.4	34.5	51.9
LC 0H74	4.43	27.4	37.1	3 - 7 /	70.5	•) }	ı		
1 SU/478 11:			į	•	,	31.1	266.	146.	177.	132.
ALAZES	17.0	362.	737.	256.		19000	- 006775	+0100°-	000385	00117
1/1 (429)1	65 14	000237	.000137	CCO 3.2	******	200		0000	.0154	6: 100.
1 / T(A / P) 2	.0543	871J.	20.00	.c172	0243	B 1 900 •	7.00		00.	426
1 / F (A 7 6 1 3	00.1	1.00	00.1	1. 0C	2.00	00.1	3		45.4	1.00
1/1 (4.20)4	20.0	20.0	70.0	20.C	2°.	0.02	2007	20.0	20.02	20.0
1/1(4,4)5						36.40	4680	00,0	.0294	.0280
ZIAZEII	. 121	104	.0917	. 06 7	2000		7.81	7.07	A.5.5	6.19
1 (478)4	2.80	10.5	13.0	36.5	- C - C - C - C - C - C - C - C - C - C	70.	171	210	4U2.	672.
2(A2F) 2	. 584	. 103	2970	:153	, 64,		20.0	21.4	34.5	21.9
2147V)9	4 .83	27.4	37.1	27.6	70.6	\ •))) 		

TABLE IV-9

F-4C THRUST TRANSFER FUNCTION FACTORS

SAS On - Bobweight Loop Paper

(HOUY AXIS SYSTEM)

DEACMINATCR 1.246375 .856 1/710E712 19.0 .0520 6.40 1/710E713 19.0 .0520 6.40 1/710E713 .0848 (4.44) .632 1/710E713 .0848 (4.44) .632 1/710E713 .690 10.2 15.3 1/710 13 .584 .103 .674 1/710 13 .112 .0668 .06177 1/710 13 15.8 4.45 6.43 1/710 13 15.8 4.45 6.43 1/710 12 .337 .615 1/710 13 .738 .939 .615 1/710 12 .337 .633 .676 1/710 12 .337 .615 1/710 12 .337 .615	1.10	••	35 K . 000 . 000 . 000 1 1 1 8 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1	1.05 1.05 1.05 1.05 1.05 5.90 5.90 5.90	A C.	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	4.5.1
CMINATCR 1.246375 // (DET)2		1.44 1.94 1.02 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2	.0447 .0454 .1.18 .1.5 .194 .194 .194	1.05 1.05 1.045 1.477 1.161	11.00 11.00	2.36	
77 (DET)1 1.246375 77 (DET)2 19.8 .0520 77 (DET)2 .0868 (4.44) 77 (DET)2 .0868 (4.44) 78 (DET)2 .0868 (4.44) 78 (DET)2 .0868 (4.44) 78 (DET)3 .0864 .103 78 (DET)3 .0864 .103 78 (DET)3 .086823 78 (DET)3 .0868		1.44 1.69 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	. 0447 0454 0454 568 568	1.05 1.05 1.045 5.477 7.77		2.36	
77(0ET12 77(0ET13 70(0ET		10.00 10.00	. 00654 1.18 2.77 2.77 194 14.5	2019 2019 2019 2019 2019 2019 2019	28	2	
		1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0654 1.18 1.79 2.77 2.77 1.94 1.5	16.1 	17.7 17.7 18.4 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	2.36	720.
MOETH		. C0275 . 662 1.62 1.62 . 287 . 5.87 . 600 . 600 . 603.72	2.77 2.77 2.77 194 194 14.5	. 149 . 0455 . 477 . 141 . 7 . 7	17.7 154 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	17.4	
MOETIZ			. 17.91 . 568 2.77 . 194 . 14.5		45040. 4040. 4040. 4040.		
RATCRS	_	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	. 568 2.77 . 194 14.5 14.5	. 0455 5.90 11.1 7.1.1	0402 339 44.4	305	
10.2		1.20 1.20 1.287 1.20 1.207 1.2004 1.2	. 568 2.77 2.77 194 14.5	2.44	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	02.20	
		1.23 .28.7 .6.8.3 .009.3	2.77 194 14.5 14.5	2010	44.4		
MATCRS 4.03 27.4 MATCRS 70.00 4.5 7014)		7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.5	7.40 7.40 7.60	5.64 5.55 5.55 5.55	٥٤/٠	
MATCRS (A)		.25. .25. .60. .003.	14.5		014	E 0. 4	65.7
MATCRS /DIM! /DIM! /OIM! /OIM		. COOM. 3		٥٠ ، ٢		.25.	27.0
AATCRS		. COCH. 3	828000.		71.4	4. 4	F.
7(U) .000965 .000829 7(U) .112 .00608 77(U) .151 .851 77(U) .45 17(U) .736 .45 17(U) .637 10.2 17(U) .637 10.2			. 000623				
11 .0000 12 1.31 .0551 14 1.736 .455 15 .637 .439 12 .637 .039 12 .63 .734		. 503					
12 1.31 4.45 14 17.8 4.45 12 . 633 10.2 12 . 634 . 10.3 12 . 63 27.4		1,700		6 2 4000	K-2000	£ ~ 5000.	£ . 0000.
13 15.8 4.45 14 .738 .439 12 .637 10.2 12 .584 .103			Ch 200 •	- 000035	500JJJ	12+303	00113
11 .738 .939 12 .637 10.2 12 .584 .103		1.55	 8	1.05	. 883	7.0	7/0.
11 . 738 . 939 12 . 637 10.2 12 . 63 . 27.4		15.2	17.9	- TO -	٠٠٠	2.34	4, 1
12				,	17.2	17.3	-
12		.573	. 589	Co.	**		
12 4.63 27.4	2:17	1.20	2.80	5.91			
5.75 Ed. 2		. 26.7	701.	141	210	200	
		5.82	14.5	20.0	21.4	36.	21.0
NCK /OTM3							
79867 79867							
K4100 601	•	7 . 1761 . 1		755E-4	756 E-4	756F-4	75hE-4
	•	. 49 .	0	00300	00281	10117-	07.700
A70.	•	1262)		740	- AB 3	721	444
655.	1.72	(e; :0.)		070		760	
1601.) (021)	~					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
Λ.	¥.	2.631			0 - 6		7.
	!					٠.٠	\$0.5
95.		. 46.	761	. 161	2.5	* o	67.8
4.83 28.7	22.	. 7.	14.5		7.7	9.72	

- 3

TABLE IV-9 (Concluded)

000189 .0C0137CC0256C087200168000758C0100000377 324 .940 .764 .994 .426 .928 .883 .906 548 .883 .906 .906 548 .883 .906 .906 549 .901 .302 .177115 770 .651 .806545 .951 .814 .873 .867 15.0 24.2 17.4 1.03 13.5 15.5 13.6 12.4 103 .208 .141 .210 .208 274 .37.1 .22.4 .387 .14.5 .20.0 .21.4 .34.5			1.36 1.36 20.6 20.6 20.6 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.		.178 .178 .190 .194 .194 .000113 .000113 .014 .907 .1.52 .1.52 .1.54 .194 .194	-3006-5 -450 -1.00 -1.13 -20.0 -3431-4 -3431-4 -148 -148 -148 -148 -148 -148 -148 -	- 302 f - 5 - 321	2011-2011-2011-2011-2011-2011-2011-2011	- 3016-5 -215 -215 -326 100 200 200 210 210 210 210 210 210 210
.324 .940 .364 .994 .426 .928 .883 .906 .948 .883 .906 .938 .345 .988 .883 .906 .938 .345 .988 .883 .906 .938 .345 .988 .883 .998 .998 .998 .998 .998 .998		169 .000137	000256	00872	00168	000758	00100	7 7 2000	- 40106
		0,6	. 76 ¢	766	47.6	928	. 883	406	60.0
(-5.98)880 (-5.22) (17.5) (-3.55)392177115 2.76 2.75 2.47 2.47 17.0 .651 .806545 .951 .814 .873 .677 15.0 24.2 17.4 1.03 13.5 15.5 13.6) 2.4 27.4 37.1 22.6 5.82 14.5 20.0 21.4 34.5			1.26	4		9 7 .		76.6	7.0
2.76 2.76 2.75 2.47 2.76 2.75 2.47 2.76 2.76 2.75 2.47 2.70 .651 .606545 .951 .814 .873 .677 15.0 2.45 15.5 15.5 15.6 12.4 1.03 13.5 15.5 15.5 15.6 12.4 27.5 27.5 27.5 27.5 27.5 34.5 27.5 34.5	(-5-)	•	(- 5 -)	2.5		203	200	***	>>6
.770 .651 .80E545 .951 .814 .873 .677 .150 .208 .15.5 .15.5 .15.6 .208 .27.4 .161 .208 .27.4 .141 .208 .27.4 .14.5 .20.0 .21.4 .34.5	•	•			10000	346.1		611.6	
.770 .651 .806545 .951 .814 .873 .877 .15.0 .24.2 17.4 1.03 13.5 15.5 13.6 12.4 .103 .208 .194 .194 .270 .208 .27.4 37.1 .22.6 5.82 14.5 20.0 21.4 34.5	•					***	2.13	15.7	2.30
15.0 24.2 17.4 1.03 13.5 15.5 13.6)2.4 .103 .03 .03 .210 .200 .200 .27.4 .141 .210 .200 .27.4 .141 .27.4 .34.5	•		30€.	545	.951	. 0 1 ¢	. 873	.857	966.
.103 .C7& .12 .207 .194 .141 .210 .208 .27.4 .37.1 .22.602 14.5 .20.0 .21.4 .34.5	<u> </u>		17.4	1.03		5.5	7.7	17.4	11.2
27.4 37.1 22.6 5.82 14.5 20.0 21.4 34.5	-					``)	* * * *	7:17
27.4 37.1 22.6 5.82 14.5 20.0 21.4 34.5		_	2710	197.	*	141.	. 210	¥07.	502.
		37.1	22. t	~1 5	14.5	\$0.0 20.0	21.4	34.5	21.9

TABLE IV. ..

F-4c STICK FORCE TRANSFER FUNCTION FACTORS

SAS On - Bobweight Loop Closed

(BODY AXIS STOREM)

	, s	יט י	า ส	*	× ×	. w	. ×	y 54	, 4 X	10 55 &
e e	-206	000	1.10	236.	000	006.	1.20	1.50	2.13	1.90
1 /T (DE T) 1	5 O* 1	0270	205.	0443	1.14	0335	1.04	066.	1.0.2	1.5.
1/T (UET)2 1/T (DET)3	20.6	. 6413	17.9)	71.4	1.07	22.7	1.68	3.14	1.50
	. 143	(21.2)	.755	(22.13	694.1.	(22.2)	.204	159	154.	.155
₩ (DE 1) 1	. 08 80		.0454		0,40		.0389	:0:0:	₹010.	H1 CU.
	.313	. 427	. 657	.504	762.	.342	.357	.337	540.	. >6.3
h(Ce T) 2	1.12	5.53	10.1	4.87	1.56	3.03	5.25	80. 7	4.46	4.36
2(0£1)3	. 431	.0141	00157	, C2 5.¢	.170	.0761	-0316	. 1 C	.1.3	136
_	90. 4	29.4	39.2	5.72	11.5	16.7	7. 7. 7.	27.6	W4.5	22.4
MUPERATORS HOU /FST)										
	-1 90 -	-23.4	41.7	-29.4	-109.	-711.5	-80.2	-102.	0.14.	- 90
_	00.	00.1	1.00	1.00	1.03	1.00	, CC	.310	000	. 141
~	11.4	1.94	1.49	1.25	136.	201.	266.	1 74 .	-	\$+3·
•	1 . 452)	5.35	-6.31	3.14	(08)	(707.)	(306.)	٥٥٠.	•	7.0.1
4	3.	197.	304.	Z18.	(107.)	(1,0.)	(1.5.)		(1/ 10)	· .
s.								368.	[965.]	194.
_			·							
	2 10 .	4476.	1961	3386.	6.56.	1573.	S A P O	2242.	2656.	1.76.
=	00.1	00.1	003 20	1.00	00.	00.1	1.00	٥٠.	J.,	.00.
~	.4.3	204.	.0711	222.	111.	2 C:	267.	4.22	-:-	4.4.3
~		ļ	1.00	,	,		•	2 2 2	430	. 40.
	. 151	. 176	1 299.1	\$11.	.0121	1960.	. 352	. 2°C	. 731	***
	. 156	. C4 56		. 0627	. C627	. 0532	.00729	11,000.	4310·	*I I e •

The state of the s

かてはかずかますかないとははないというかいかいかいかいかいない

511. 357. -0147 .00460 -134 .240 1.00 1.442	•	, i .
504. 51.00 11.00 11.	-27452657 -00489 .015 1.00 1.00 4.22 11.1	';
656. .0131 .618	-28702 -0123 -0 1.00 1 12.7 4	-77655 -0007760 1.00 1 -0585
363. .0106 .505 1.00	-1575. -003:5 1.00 -10.2	-4304. 60283 1.00 0625
156. CC04.8 282 1.00	1.6245	-1667. CO3194 C23 1.00 C620
752. .02 CE 1.06	13.00 L L L L L L L L L L L L L L L L L L	-9456. .0172 1.00 .0876
1936. .0678 1.00 1.90	-7961. -0660. 1.00 -23.H	-23430. .000127 .0673 1.00
1024. .0162 1.00 1.46	-4476. .0146. 1.00 17.0	-12129. 000207 014# 1.00
46.2 . 104 . 379	-245 -06776 1.00 -21 +:27	-540. -0514. 0343 1.00
N(THE 787) A(THE) 1/T (THE) 1/T (THE) 1/T (THE) 1/T (THE)	M HD AGE 3 ACHD 3 LYTCHE 31 LYTCHE 32 LYTCHE 33 LYTCHE 35 LYTCHE 35	N(AZP/FST) A(AZF) 1/1(AZP) 1/1(AZP) 1/1(AZP) 1/1(AZP) 2(AZP) 2(AZP) 2(AZP) 1/1(AZP) 2(AZP) 2(AZP) 1/1(AZP)

F-40 THRUST TRANSFER FUNCTION FACTORS SAS On -- Bobweight Loop Glosed (BODY AXIS SYSTEM)

	•	•	•		•					
# 0/a	-4	~	m	•	r	٠	~	æ	•	10
•			,	•	3	,	*	* **	× 57	S 5 ×
IE	\$1°	.800	St. 10	¥ 000°	\$ ce 009.	. 900	1.20	1.50	2.15	1.80
DE NCMI NATCR					:	9		000	20.1	100
1 ATTORY	20° 1	0270	- 40 5	- 0443	1.14	0335	.0	26.	•	
77.1001.77	•	2170	-	0.50	4.17	3344	22.2	8 Ý. T	3.34	1.50
1/T(DE1/2	0.07				:	-	:	21.1	2. K.	20.7
171(067)3		*26.	1		0110		302	0.1	1,43	.158
24 DE T3 1	. 143	(21.2)	.755	(1.22)	1000	19.77				0.00
111111	CB 80		.0454		.0540		0386	1620	7.10.	
		4	647	7 3 3 7	.294	.342	.357	.337	682.	. 203
7 (1 DE 1) 7					44	7	5.77	86.4	6.46	4.56
h(DE T) 2	71.1	2.23	1:3	- 1			110	401	. 173	.135
210673	.431	1810.	00157	• 02.56	2		6160.	2 2 2		22.6
M(DE T) 3	90. 9	29.4	19.2	5.42		• 6 -	*• >>	•		
NUMERATORS										
(H10/ 1)	340000	F 2 B 000	.000823	.000823	.000823	. 000823	.000623	.000823	£28000°	.00082
•	145	04.00	20128	. CC241	502 71	996000.	000438	000999	-,000410	00110
		0.34	400	æ 50	1.15	1.07	0.	056.	2 u • 1	755.
27 01/7			10.	22.1	21.4	22.2	22.2	1.69	3.35	1.51
	0.07	7117			•	•		21.1	14.5	20.1
-		. 637	9 9 7	808	378	986.	.367	.360	305	. 303
1. 0.7			3	7	09.7	4.04	5.22	4.97	47.0	4.4
- C	C 14 1	60.0	00000	4 6	172	.0786	.0310	101.	.173	.135
~	005.	1610.	004000	1				3.5 4	3.95	27.6
MU 12	6.07	7.52	39.2	24.9	11.5		•••	0.43	?)))
MIN /DTH)		!		•	1	1.040	7666.4	75654	756F-4	7566-
- H - H	878E-	- /54E-4	754E-4		* 1240	100000	3000	0000	00215	40100
1/ 1/1/1	.0248	91 100	00173	F - 2000 .	D .	160001				276
1/1(4)2	.381	.493	425	. 692	20.2	617.	276	755	177	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.1	.962	.921	1.32	54.4	00.	. 97¢.	10.	E :	٠ .
4 1 1 1 1 1 1		36.7	27.2	24.3	(+20.)	75.5	23.2	7.7	2.00	D
1/112 19	20.9	35.6	6	37.4	16083.	35.0	41.0	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21.1	70.0
1/T(% 26			1460	26.47	716	124	.0751	151.	. 188	.167
7. ±	7	200			10.0	16.0	21.5	22.2	34.7	22.6
	73.7	>	,							

 (Concluded)
וי-או
TABLE

N(The/OIH) A(146)	67 6.5	2586-5	259E-5	2598-5	298E-5	300E-5	30CE-5	302E-5	303E-5	3036-5
1/TITHE)1	%23	. 250	00.1	7.	691.	948	946	697	516	516
7 (THE)2	₹.	00.1	01.1	3 .			00.	00.	00.1	٠ د
ATTHE 33	000			24.1	0	2			900	1.24
71 371 17	100	2:.2	23.8	23.1	21.2	7:,7	0.77			
1111111								51.9	9.0Z	C:17
// [TEE 35				4880	107	011	C+90.	. 146	.189	٠٠.
2(THE) 1 1 (THE) 1	474. 8 . 0 .	28.4	36.0	2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 3.0 3	10.7	15.7	21.1	21.9	34.4	22.2
	•									
(HIO/ OH)	6.00.30	7576-4	-711F-4	.826E-4	.00200	. 000113	. 985E-4	11000	-957E-4	571.00
ACRU .	38.5	766	0.0	2	.655	-1.13	. 8 34	٥٧٠.	756	166.
/1 (MC) 1	ב ב				1.46	2.60	3.36	826.	1.31	C # .
/TIND)2	1.22	7.		7			20.3	3.77	4.51	2.14
1/1(HC)3	50.6	-3.45	(5.40)	-2.8E	****	7.77	:	21.2	18.7	30.0
4C 3K1		95.6		6.37	;	7.50	41.1	45.00	071	1,00
	Ch 37	(21.4)	.983	1 22.27	. 0387				4	9.4
	* * *		16.4		300.	. 858	7117	00.7		0.5
		02.00	.00284	.0305	.172	. 0822	. 0356	111		
71 CH17) (34.4	11.6	16.5	22.1	22.5		(.))
Z 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	60° 15	7.52		,						
ME AZ PZOTH J						4-96-6	7-3676	4.267 F.4	2686-4	26AF-4
A1 4 7 61	1186	2726-4	2726-4	270E-4	+-37/7*-	1070	4.7000	***	246000	40100-
		000189	CE 1 000°	00256	CC872	03168	000768	00100		C 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		124	640	.764	466.	*~*·	976	. O.		
2147411/					4 4 4	00.7	9.01	۲.	2.13	
1 /T 1A 2P 13	00° 00	005.		7 9 9				7.0	(-,142)	21.
/Y (4 2 0) 4		-5.34	(59.2)	-4.56	21.1	10.61	1.17		2.283	19.5
77 (A 20)4				13.4		9.52	•	19.	9	150
	800	986	. 642	14.51	199.	(1.22)	616			80
	6	0.01	22.8		ま.		2.30	9 . 7		
1 (474)4	700.		6010	004.52	.163	39.68	.0158	.0760	661.	601
2(A2F)2	700			26.1	12.4	17.7	23.9	23.8	24.7	53.3
P(12P)2	7.11	2	, ,	1.07		:				

TABLE IV-12
F-4C LONGITUDINAL HANDLING QUALITIES PARAMETERS
SAS OFF
(BODY AXIS SYSTEM)

	4	-	~	~	4	v	۵	-	€0	Φ	92
	•	٠ ;	' ;	5	1. X	35 K	35 K	35 K	45 K	4.8 K	55 K
	z	*	*	4	:				,		•
		902.	.800	1.10	206.	.600	006.	1.20	1.50	c 1 · 3	•
					Bobwe 1g	Pobweight Loop Open					
		2.0221	0440	- 205	0504	1670.	0101	0370	0147	0453	00023
•			6.04	72.6	32.1	40.6	13.0	22.4	18.3	25.1	14.1
	197930 W 10	9	163.	.827	1.25	4.54	2.99	3.64	5.45	6.08	9.44
	CAP (AAD/SEC/SEC/G)	.176	9 8 7	098	.562	.388	. 595	1:31	1.58	1.70	1.66
٠.	PH (5010121 (5601	:	(18-41	:	(11.3)	i	12.21	;	1	1	1
	1 TUCK(2) 1	2.08	1.17	.935	. 683	. ra.	.626	. 447	.279	.176	.178
-		e e			Bobvelght	t Loop Closed	2				
•	E 47747 (18/87)	0191	.0203	0734	. 0511	1279	. 0199	0613	:	ł	;
	F\$1/0 (18/0)	7.13	12.5	11.9	12.6	16.2	12.2	21.3	•	1	:

TABLE IV-13
F-4C LATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES
(BODY AXIS SYSTEM)

•	•	•	•	•	•	•	•	•	,	•
	٠,	~	m	•	an.	•	^	•	•	10
	18	36	5.	15 X	35 K	35 K	35 K	4 X	45 K	55 K
	.206	.800	1.10	336.	.600	006.	1.20	1.40	2.14	1.80
>	1160	335	. 486	215	0566	0921	151	118	133	0768
	-21.1	- 599.	-597.	-205-	-33.1	-80.6	-176.	-171-	-277.	-134.
	-10.4	-26.3	-47.C	-27.4	-10.7	-18.3	-14.1	-11.7	-P.67	-9.56
•	***	15.6	38.2	11.5	1.66	4.97	12.3	06.6	8.37	5.14
	-1.43	40.5-	-3.11	-2.27	799	-1.24	-1.38	-1.00	-1.08	757
i	0260	0372	.0 1e4	0260		0504	0378	0210-	6210.	00013
•	. 9 29	.917	.802	.636	.300	.395	.318	.326	.217	.194
ě	215	739	-1.20	2€5	134	238	397	309	273	181
U	0130	00144	0102	65100.	00151	00227	00332	00199	00169	P5 6000
٧0.	2.74	22.2	19.0	17.9	4.70	0.00	10.0	6.19	5.35	4.67
*CA	• 16	.923	2.45	747.	.0887	.1 95	.667		.357	.0557
. 80	.0174	.0442	.0307	.0281	.0113	7510.	.0132	99600	14000.	. 10614
0	669*	7.32	9.26	5.07	.768	1.95	2.99	1.95	2.41	1.21
0	0.9	-7.80	-8.80	-5.56	-1.36	-2.61	-3.19	-2.03	-1.84	-1.31

•		~	, ,	•	'n	•	~		•	. 01
	.206	st .600	35 1.10	15 K	35 × 009.	35 K	35 K	45 K	45 K	55 K
	1.15	3.10 3.10 4.01	.00568 3.13 .134	.00848 2.33 3.693	.0173 .650 .7881 1.83	.00969 1.33 .0491 2.43	.00187 1.40 .0727 3.57	CCO 177 946 . 0670 3.23	.000558 1.06 .0731 2.93	.000226 .749 .0535 2.58
	0130 -10.4 (1.297)	00744 425 1.77 111.	1.0102 1.0564 2.08 2.40	407	- CO: 51 - 121 - 450	00227 127 2.70 -115.	00302 487 .704 121.	00199 760 930 1.88	00167	000329 .155 .479 -544.
	2.74 0285 1.74	42.2 000186 .136 4.11	15.0 .000.139 .135 6.82	17.9 660252 .105 3.57	4.70 0908 .0747 1.36	0,00 00166 .C742 2.31	10.9 000766 .0788 3.63	67.4 00100. 1000.	*.31 *.000376 *.0706 3.00	colc6 colc6 0522 2.51
	44	. 923 3.08 - 169 2.16	2.45 4.05 200 1.34	.747 2.35 -146 2.05	. 0887 6960 6960	.195 .733 275 3.69	. 964 0224 48	. 376 . 0457 . 0457 2 . 0 2	.357 .203 1.71	.0%67 .326 0241 5.46
	2.82	22.2	15.0 135 6.83	17. m 109 3. r. y	4.71 .0722 1.38	10.0	10.4 .0768 3.63	6.80 .0691 8.24	5.75 .040.4 .00	4.57 .0518 2.51
	12.0 -234 -373 -149	70.1 - 111. - 114.	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	8 1 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		29.3 1.119 1.390 2.365	38.0 .199 .230 .0710	22. 184. 195. 3.26	17.3 .045. .0230	13.5

y-4c rudder transfer function factors

SAS OFF

(BODY AXIS SYSTEM)

01	¥ €. 1	.000226 .749 .7435 2.58		1.21	-1.91 -592 -204		-7.18 -2030 -241 -0403 -4.18
G	45 K 2 · 15	.0005-8 1.06 .0731 2.93	.00867 .00160 1.05 22.2	2.51 000:24 	-1.26 -172 (.237)	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
•	45 K	000179 096 0679 3.23	-0000 -0000 -000 -000	1.95	. 244 . 277 . 226	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113.1 -00267 -960 -960 -124
~	39 K 1.20	.00187 1.40 3.57	.0132	2.99 000771 -1.58	-3-19 1.40 .258	2.90	1.000537 1.000537 1.037 1.054 1.75
•	35 K	.00969 1.33 .0491 2.43	. 0142 - 00775 1.26 191.	1.95 00167 56	-2.61 1.11 .169		.24.4 .0152 .766 .138
•	× 66.	.0173 .650 .0881 1.83	. 0240 . 750 130.		-1.36 .366 .201 1.21	44.44 44.44 11.44 11.44	1.0320 1.0320 1.368 2.468
•	12 K	.00848 2.33 .0932 3.45	CC2 # 6 2.3 C 2.3 C 2.3 C	5.07 000254 4.27 -4.36		84. 60.4 84.	4.00.4 2.00.4 2.00.4 2.1.4 48.4
_	st 1.10	.00568 3.13 .134 6.21	.0367 .00396 3.13	9.26 .000140 -2.16 2.92	6.80 9.13 6.71 8.43 8.43	2.92	.44.0 .0039C .00392 .42
~	SL .800	.00469 3.10 .125 4.01	.0442 06161 3.09 176.	7.32 CC0188 -3.52 3.54	- W	545. V.	
	51. .206	1.10 1.13 1.15 1.15	.0911		. 670 . 617 . 257 1 . 15	2.5 14.5 10	4.74 - 10.5 - 56.5 - 468 - 2.7
• 5/4	I I	DE ACMINATCR 1/10ET11 1/10ET12 1(UET)1 H(DET)1	NUMERATERS NG /OR) ALB) 1/1 (B) 1 1/1 (B) 2 1/1 (B) 3	MIP JOR 1 AIP 1 L/11P 11 L/71P 12 L/71P 13	. N(A /OR) A(R) 1/7(R) 2(R) 1 E(R)	N(PHI/DR) AIPHII L/T(PHIIL L/T(PHIIZ	MI AYP/OR 3 AAAYE) 1/11AYP)3 1/17AYP)3 21AYP)3 64AYP)3

TABLE IV-16

F-40 ALLERON TRANSFER FUNCTION FACTORS

SAS On (BODY AXIS SYSTEM)

	•	•	•	•	•	•	•	•	•	•
£/C •	-	~	м	•	w.	•	۲	€0	σ	5
II	st.	s. .800	St.	15 K	35 K	# 800 e.	35 K 1.20	4.5 K	45 K 2.15	55 K 1.80
DE NCMINATCR 1.71 (DET) 1 1.71 (DET) 2 1.71 (DET) 3 4 (DET) 1 6 (DET) 1	.00233 .905 .2.03 .393	000122 .852 1.58 (3.20)		. 03114 2.72 8.01 1.05	. CO2 89 . 453 3.62 . 332 1.36	. 50176 1.38 5.31 5.31 1.01	.00129 .645 1.35 3.38		.631 .531 1.1 .572 3.24	000318 .A.24 .B.3 .S.5 2.48
NUMERATCRS NIG /OA) A & D L/T(B) 1 L/T(B) 2 L/T(B) 3 L/T(B) 3	0160 - 0039 - 887 - 6.92		00937 .0828 154 154		. CCI 81 . 01 36 . 398 4.15	00294 .0128 1.62 [0.3	00315 -0293 -1.66 129.24	-00216 -0344 1.10 -4.27 55.1	0018 .0543 300 2.13 143.	000451 .0223 .591 2.79 -393.
ME /OA 1 1/10 11 1/10 12 2(0 11 1/10 12	2.0265 1.0265 1.09	21.8 000187 59.2 (2.16)		17.3 000294 -7.10 (1.45)	2.6008 3.6008 1.6008 1.648	9.90 00166 5.33 . 764	10.9 000747 602 766 3.48	24.00 8.59.00 8.59.00 9.1.00	2.80 .5000.1 .578 .800 .800	. 636 . 636 . 558 . 558
N(A /OA) A(R) L/T(R)1 L/I(R)2 Z(R)2 Z(R)1		184. V 180. V 194. V 186. I	8.44 5.24 5.24 1.226 1.380		. 123 . 719 . 767	. 517 3.08 1.17		1,44 4,44 1,44 1,44 1,44 1,44 1,44 1,44		. 414. 414.

4.68 .635 .598 2.42	13.6 -0371 -476 -615 -641 2.63
5.30 .548 .540 3.34	17.4 -174 -174 -1.14 -476
6.77 . 594. 3.18	22.5 .0580 .0580 .759 .573
10.9 .602 .766 3.48	36.3 0486 346 1.17 .673
9.92 5.33 172	30.4 .02!2 .02!2 5.02 .770
4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	14.1 .0203 .503 .504 .1880
17.4 .71C .1.45}	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0
4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	67.1 - 111 - 174 - 2.56 - 475 - 000
21.9 .592 (2.16)	74.1 .0293 579 9.30 .641
2.76 1.07 .841 1.30	149 149 149 149 149 149
HI 70A 3 Af Fit 3 [/TIPHI31 31PH:33 MIFHI33	AYP/CA 1 A(AYP) 1/1(AYP)2 1/1(AYP)2 2(AYP)2 b(AYF) 1

TABLE IV-16 (Concluded)

F-40 RUDER TRANSFER FUNCTION FACTORS TABLE IV-17

SAB On (BODY AXIS SYSTEM)

	•	•	•	•	•	•	•	•	•	•
#/C •		~	m	•	80	•	~	•	•	
II	\$15 .206	35 800	St. 10	15 K	35 K	35 X	33 K	45 K	45 K 2.15	
DE ACMINATOR 1/7 (DET)1 1/7 (DET)2 1/7 (DET)3 2 (DET)1 1/0 (DET)1		000122 .852 1.56 (3.20)	00. 48. 48. 48. 69. 69. 69.	.00114 2.72 8.01 1.05	. CQ289 . 458 . 382 . 386 . 386	.00176 1.36 5.31 5.30	.00127 .645 1.38 3.38		.00114 .534 1.11 .572 3.24	
NUFERATORS NUB / DR) A 10) 1/10)1 1/10)2 1/10)2	. 0166 . 901 1 . 26 4 . 6 . 4		. 002 29 . 003 56 . 50 0 . 13 13 2 86 6 6 1	.0204 .0236 .500 2.30	- 0102 - 0240 - 500 - 750 130	.0117 .00775 .500 1.26 191.	.0013 .000301 .500 1.40	.00926 .00169 .500 .996 .996	.00190 .00190 .800 222	
1, 70 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2.5.00 2.5.00 2.5.00 2.5.00					1.62 00167 .500 .504 .504 .504	2.37 000771 .500 -1.58		2.53 000374 .500 (.0758)	

TABLE IX-18

T-40 IATERAL-DIRECTIONAL HANDLING QUALITIES PARAMETERS

SAS OFF

(BODY AXIS SYSTEM)

15 K 35 K 35 K 45 K 45 K 45 K 1.00 .600 .900 1.20 1.90 2.15 1.02 1.02 1.95 2.15 2.15 1.02 .802 .446 .661 .609 .667 1.02 .802 .446 .661 .609 .667 1.02 .252 6.80 7.93 6.83 .672 2.12 6.26 7.96 6.83 5.21 .766 1.04 .252 6.80 7.98 6.83 5.21 2.12 6.26 7.96 6.83 5.21 5.21 4 .643 7.98 6.85 5.76 9.76 4 .648 .964 .000 .997 9.97 1 .013 .753 .951 1.01 1.01 1.02 1 .264 .966 .000 .997 .998 .998 2 .276 .278	F/C #	~	~	e	*	•	•	~	•	o	0.7
SEC1 3.45 1.50 <th< th=""><th>z</th><th>SL</th><th>S</th><th>ಕ</th><th>15 K</th><th>35 K</th><th>35 K</th><th>35 K</th><th>45 K</th><th>45 K</th><th>ř.</th></th<>	z	SL	S	ಕ	15 K	35 K	35 K	35 K	45 K	45 K	ř.
SEC) 3.49 1.58 1.02 1.83 3.45 2.59 1.76 1.95 2.15 <th< th=""><th>* 🖍</th><th>. 206</th><th>. 800</th><th>1.10</th><th>.930</th><th>. 600</th><th>006.</th><th>1.20</th><th>1.50</th><th>2.13</th><th>1.90</th></th<>	* 🖍	. 206	. 800	1.10	.930	. 600	006.	1.20	1.50	2.13	1.90
1.43 1.15 1.22 .665 .466 .466 .466 .661 .609 .667 .667 .667 .667 .667 .667 .667 .66	DA PERIOD (SEC)	3.49	1,58	1.02	1.83	3.45	65.2	1.76	1.95	2.15	2.44
1.90 7.39 5.51 7.15 2.52 6.80 7.93 6.83 5.22 1.90 7.33 5.42 7.65 2.12 6.28 7.90 6.83 5.21 7.52 5.81 7.98 4.00 6.63 7.96 6.85 5.21 7.52 5.81 7.98 4.00 6.63 7.96 6.85 5.76 992 984 598 .644 .924 .936 .000 .997 0.0847 .0217 .0122 .211 .0335 .00539 .000699 .00415 0.036 1.00 1.12 .753 .951 1.02 1.01 1.07 0.736 .064 .106 .6757 .336 .145 .0521 .0157 .0559 2.63 1.39 1.16 2.30 2.98 2.79 1.03 1.05 .046	1/011/2)	1.43	1.15	1.22	. 665	. 802	.446	199.	.609	.665	.485
1.90 7.39 5.51 7.15 2.52 6.80 7.93 6.83 5.22 T- 7.52 5.61 7.98 4.00 6.63 7.90 6.83 5.21 T- 7.52 5.61 7.98 4.00 6.63 7.90 6.83 5.28 T- 0.0847 .0217 .0125 .211 .0335 .00354 .000659 .00415 0.0847 .0217 .0125 .211 .0335 .00354 .000659 .00415 0.036 1.03 1.10 1.03 .753 .951 1.02 1.01 1.07 T- 0.054 .104 .105 .0757 .338 .145 .0521 .0157 .0559 2.63 1.39 1.16 2.30 2.98 2.79 1.03 1.05 1.05 2.63 1.39 1.16 2.30 2.98 2.79 1.03 1.05 .0040		:	ŧ	{	;	ŀ	į	ı	3868.	ı	1
7.52 5.42 7.56 5.12 6.28 7.90 6.83 5.21 7.52 5.61 7.38 4.00 6.63 7.98 6.85 5.78992 .984 .538 .844 .924 .995 .000 .99700847 .0217 .0129 .211 .0335 .00359 .000699 .00415 .995 1.03 1.10 1.03 .753 .951 1.02 1.01 1.07 .0738 .0664 .106 .C757 .338 .145 .0521 .0157 .0559 2.63 1.39 1.16 2.30 2.98 2.79 1.03 1.05 .0040 .057 .C891 .0539 .152 .526 .327 .0913 .0040 .0041		1.90	7.39	5.51	7.75	2.52	6.80	7.93	6.83	5.22	5.19
7.52 5.81 7.98 4.00 6.63 7.98 6.85 5.78 7.78 7.99 7.99 7.99 7.99 7.99 7.99 7		L	7.33	5.42	7.65	2.12	65.9	7.90	6.83	5.21	4.7
992 .984 .538 .644 .996 .000 .997 .00847 .0217 .012! .211 .0335 .00359 .00659 .00415 .0415 .0515 .00559 .00415 .0415 .0515		ţ	7.52	5.61	7.98	4.00	6.63	7.98	6.65	8.28	A. 85.
00847 .0217 .0122 .211 .0335 .00359 .004659 .C0415 .955 1.03 1.10 1.03 .753 .951 1.02 1.01 1.07 .0736 .0664 .106 .C757 .336 .145 .0521 .0157 .0157 2.63 1.39 1.16 2.3G 2.79 1.03 1.05 .948 .057 .C891 .0539 .152 .526 .327 .0912 .0940 .0991	P(2)/P(1)	ŧ.	.992	1984	. 538	.844	4 26 .	. 996	000.	199.	.993
.0736 1.03 1.10 1.03 .753 .951 1.02 1.01 1.02 .0736 .0664 .106 .C757 .338 .165 .0321 .0157 .0157 .PHASE 29.1 32.4 16.7 28.4 16.4 -335. 16.2 15.8 16.9 2.63 1.39 1.16 2.3G 2.98 2.79 1.03 1.05 .948 .657 .C891 .0539 .152 .526 .327 .0917 .0040 .0091	P(05C) /P(AV)	:	.00847	.0217	:210.	.211	. 0335	.00355	.69000.	\$1 400.	. rnsa
.0736 .0664 .106 .C757 .338 .145 .0521 .0157 .0157 .0157 .0159 . PMASE 29.1 32.4 16.4 -335. 18.2 15.8 16.9 2.48 2.49 1.03 1.05 1.05 .948057 .0917 .0917 .0917 .0917	4. PHI 1 / N(0)	.955	1.03	1.10	1.33	.753	186.	1.02	1.01	1.02	.972
. PHASE 29.1 32.4 16.7 28.4 16.4 -335. 18.2 15.8 16.9 - 2.63 1.39 1.16 2.3C 2.98 2.79 1.03 1.05 .948 .657 .C891 .0539 .152 .526 .327 .0910 .0940 .0591	0EL-8-PAX	. 07 36	• 06 64	104	.6757	.338	.145	. 0521	.0157	.0550	.0342
2.63 1.39 1.16 2.3G 2.98 2.79 1.03 1.05 .948 .657 .6891 .0839 .152 .526 .327 .0910 .0940 .0991	PHI TO BETA, PHASE	1.62	32.4	1.91	28.4	16.4	-335.	18.2	15.8	16.9	- 146.
1657 , 0401 , 0539 , 152 , 526 , 327 , 0913 , 0491	HIL TO BETA	2.63	1.39	1.16	2.30	86.5	2.79	1.03	1.05	#76°	1.21
	PHI TO VE	. 657	.0891	.0539	.132	. 526	.327	.0913	0400.	1650	.113

F-4C DATA SOURCES

- Bonine, W. J., et al, Mcdel F/RF-4B-C Aerodynamic Derivatives, MAC Report 9842, 10 Feb. 1964
- Crawford, W. N., and G. Nadler, Static and Dynamic Control System Characteristics for the F-4 Aircraft, MAC Rept. F218, 16 Dec. 1966
- Bridges, B. C., Calculated Longitudinal Stability and Performance Characteristics of the F-4B/C/D/J and RF-4B/C Aircraft plus the AN/ASA-32H Automatic Flight Control System, MAC Rept F954, 19 Apr. 1963
- Bridges, B. C., Calculated Lateral-Directional Stability and Performance Characteristics of the F-4B/C/D/J and RF-4B/C Aircraft plus the AN/ASA-32H Automatic Flight Control System, MAC Rept. F935, 3 May 1968
- NATOPS Flight Manual, Navy Model F-4B Aircraft, NAVAIR 01-245 FDE-1, 1 Nov. 1966

SECTION V

X-15

X-15 BACKGROUND

The X-15 is a single-place, rocket-powered airplane designed for flight at hypersonic speeds and extreme altitudes. The airplane is carried aloft under the right wing of a B-52 and is launched at an altitude of about 45,000 ft and a Mach number of about 0.80. After launch, the X-15 performs a powered flight mission, followed by a deceleration glide prior to vectoring for a landing. With this operational technique, the airplane is capable of attaining a Mach number of 6 and can be flown to and recovered from an altitude in excess of 300,000 feet.

Flights to high altitudes have been made with all three of the X-15 airplanes in two configurations: the basic and the ventral off. The basic configuration is considered here.

Aerodynamic control is provided through conventional aerodynamic surfaces, with vertical surfaces used for yaw control and the horizontal tail for both pitch and roll control. All of the aerodynamic control surfaces are actuated by irreversible hydraulic systems. Control force is provided by bungee for pilot feel. A conventional center stick is used for pitch and roll control, and rudder pelals are used for yaw control; however, a side-located stick is provided for control of pitch and roll in high-acceleration environments at the option of the pilot. Most of the X-15 missions have been made with the side stick, although the pilots used the center tick on their first flights. Only the center stick control is shown here.

The augmentation system shown in this report consists of angular rate feedback loop, about all three axes. I addition to the normal $p \rightarrow \delta_a$ roll SAS loop, there is an $r \rightarrow \delta_a$ feedback known as the YAR loop. The gains for each SAS loop are manually set by the pilot. The SAS-on transfer functions given for this airplane assume maximum gain settings for each loop. This may not have been realistic for actual flights.

The flight conditions considered for this airplane are all for straight and level trimmed flight. This is definitely unrealistic for this airplane; however, the intent here is to show general speed and altitude variation effects.

Flight Envelope

Nominal Configuration

Zero Fuel

Lower Ventral On

Speed Brakes Retracted

W = 15560 lb

c.g. at .22 \(\vec{v}\)

I_X = 5650 slug-ft²

I_Y = 80000 slug-ft²

I_Z = \$2000 slug-ft²

I_Z = \$2000 slug-ft²

Figure V-1. X-15 Flight Conditions

Transfer function case

€

Figure V-2. X-15 General Frangement

X-15

Pigure V-3. X-15 Control System

X-15

PITCH SAS

ROLL-YAW-YAR SAS

Note:

Gains variable in 10% increments of the maximum values which are shown above. (e.g. roll gains selectable are .05,.10,.15,.20,.25,.30,.35,.40,.45, and .50)

Figure V-4. X-15 Stability Augmentation

TABLE V-1

X-15 DIMENSIONAL, MASS, AND FLIGHT CONDITION PARAMETERS

8 = 200 aq ft, b = 22.36 ft, c = 10.27 ft

#)/ ₁	-	~	m	*	n	٠	•	•	o	01
1673	જ	St	20 K	4 X	40 X	60 A	9 0	Å A	¥ 0	ه د ۲
II -) I	. 300	009.	.800	.800	1.20	1.20	2.00	3.00	1.60	0u.4
VTO(F P.S)	5 58 .	893.	830.	774.	1161.	1161.	1936.	2904.	1564.	5845.
V10(K1AS)	331.	\$29.	492.	459.	688.	.884	1147.	1720.	927.	3474.
VTU(KCAS)	331.	529.	373.	243.	388.	247.	432.	630.	218.	764.
H(LBS)	15 560.	15 560.	15560.	15560.	15560.	15550.	15860.	15560.	15560.	15560.
C. G. (MGC)	. 220	. 220	.220	.220	.220	.220	.220	.220	.220	.220
IX (SLUG-FT SC)	3650.	3650.	3650.	3656.	3650.	3650.	3653.	3650.	3650.	3650.
17 (SLUG-FT 50)	80 W 3.	. 6 00 0 9	80008	80003.	60009	80008	60009.	90003.	82003	\$0003.
12 (SLUG-FT SQ)	62003.	82003.	82003.	62003.	62003.	62003.	82003.	82003.	62003.	8 290 3.
1X2(SLUG-FT SQ)	5 %	. 066	590	.065	590.	590.	.068	.062	305	.062
EPSILCNIDEG)	431	164	431	431	431	431	431	431	431	167
(454)	370.	948.	436.	177.	397.	153.	454.	954.	106.	1449.
QC(PSF)	394.	1 109.	510.	207.	355.	213.	103.	1675.	166.	2737.
ALPHA (DEG)	00.4	1.30	3.00	7.70	3.20	6.30	4.00	7.20	14.7	3.00
GAMMA (DEG)	ė.	•	•	ċ	ò	ó	ö	ė	ં	٤.
LXP(FT)	18.8	18.8	16.8	18.8	18.6	16.6	10.0	10.8	18.8	
Lett)	-2 .20	-2.20	-2.20	-2.20	-2.20	-2.20	-2.20	-2.20	-2.20	2.
(TH(DEG)	•	•	•	ö	ó	_ o	•	•	ં	ċ
XI (DEG)	ċ	•	•	ં	•	ó	•	ò	ċ	٠,
L 7H(P 1)	ċ	ò	•	ċ	ö	ċ	•	:	ċ	ċ
•	•	•	•		•	•	•		•	

X-15 LONGITUDINAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

	•	•	•	•	•	•	•	•	•	
* 2/	**	~	m	4	w	•	4	æ	٠	0.
r	3	35	20 K	4 ×	¥ 0+	× 09	x C9	40 A	80 ×	¥ 0.9
×	9.500	. 400	.800	0084	1.20	1.20	2.00	3.00	1.60	60.4
* UX	0339	1090-	-,0292	0134	-,0216	00516	00871	0101	11100	71600
\$ n	0471	0253	0335	0323	0281	0348	~.0117	-,0106	0113	15500
* 13	. 000408	. C002 78	.000279	.000166	00149	4-3644·	.000471	.000219	.000%29	·- 30E - ·
	.0249	50100-	1110.	6710	00810	00893	0190	0148	0127	00215
P.2	-1.01	-1.66	845	398	602	261	-,311	323	132	121
· ·	0116	0123	-, 00945	00559	00979	00511	00673	00548	-, 002 02	-,000823
ZMD.	•	ö	ò	•	•	•	•	0.	ċ	ċ
; 02	•	6	•	•	•	•	.0	ċ	٥.	٥.
CPM	.000256	00 5 42	000150	92 36	000124	472E-4		\$ - 3466.	9626-5	•
S. A.	735	-1.53	755	376	559	+61	162	251	0482	107
x0 \$	11.2	6.73	10.4	10.8	4.27	9.21	6.24	4. 85	7.11	5.64
202	-160.	-431.	-196.	-19.6	-100.	-63.1	-89.5	-126.	-27.1	-106.
S OM	-13.8	-37.7	-17.4	7.03	-15.5	-5.96	-9.80	-12.2	-2.85	-8.79
		•	•	•	4	•	•	•	•	

X-15 STABILIZER TRANSFER FUNCTION PACKORS

SAS Off (BODY AXIS SYBTEM)

F/C .	-	8	M	*		٠	•	t	σ	22
rr	SL .\$00€.	.808.	20 K	40 4 300 8.	40 K	60 K	60 K	3,00	80 K	\$ 0 *
06 NCM I NAY CR 21 DE 73 1 N CDE 73 1 21 OE 73 2 N CDE 73 2	. 247 . 0773 . 351	.716 .0424 .467 3.67	. 338 . 2452 . 246 2.96	. 173 . 0419 . 200 . 2.11		• • • • •	.264 .0232 .0675 3.62	. 346 . 0158 . 0683	• • • •	.00788 .00788 .01818 2.20
NU FRATCRS NU /DS) AU) 1/710)) 1/710)2 1/710)2	11.2 47.8 (.84.9)	9.78 1.22 1.98 78.1	10.4 72.6 (.928) (.739)	10.8 67.8 (.926) (.321)	5.27 .247 1096	9.21 .0926 .420 109.	6.24 .07°5 .7£1 212.	4.85 .0840 .013	7.11 .0384 .221	5.64 .0548 .212
M(W /0S) L/4(W) L/4(W) L/4(W)	-1 60. 4 6. . 20.0 . 0555	441. 44.7. 46.7. 60.00.00.00.00.00.00.00.00.00.00.00.00.0	-198. 73.3 .394	-79.6 60.1 .166	-166. 109. -876	-63.1 109. -100 .0309	-69.2 212. 261 .0160	-126. 282. .0117	154.1	-178. 470. . 830
NC 14E/DS) AC 14E) L/T (THE)1 L/T (THE)2	-1 3.7 - 0344 - 68 1	.0600	.17.3 .0293 .738	-7.02 -0138 -334	- 13.9 - 0226 - 498	-5.96 .00218 .210	-9.80 .00688	-12.9 .00919	-2.85 00270	
MHD /05) ARHO J 1/7(HD)1 1/7(HD)2 1/7(HD)3	4 . 6 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	431. .0586 -10.0	198. .0256 -6.87 7.75	80.4 4.40 6.49	166. .0209 -6.98 7.69	63.8 00561 -4.47 4.74	89.4 .00482 -7.13	126. -00833 -8-52	28.0 0121 -3.90	108. -00869 -7.21
N(AZP/OS 1 A(AZP) 1/T(AZP) 1/T(AZP) 1/T(AZP) 1/T(AZP) 1/T(AZP) 1/T(AZP)	46.0 00446 .0312 .0540	276. -000627 -0593 -0411	128. 00217 .0276 .0286	52.4 00711 011C 014 5.83	125. C0157 . 0223 . 0135	46.9 .00116 .00789 .0148	95.0 00134 .00605 .0224 7.04	104. -00073 -00873 -0166	26.6 00155 0100 0210	57.7 -,000.297 .001872 .00597

TABLE V-14

X-15 STABILIZER TRANSFER FUNCTION FACTORS
SAS On

			(E	(Body Axis System)	System)					
#\C #	~	~	^	•	ស	٠		•	ø	10
r¤	.500	\$t .800	20 K	4.6. A O O	40 K	60 K 1.20	60 K	60 K 3.00 K	30 K	80 د 6.ين
1710FT) 1710FT) 1710ET) 10ET) 10ET)	1.53 10.1 .336 .0514	.00333 .0517 (1.89)	1.33 1.3.4 .0309		0350 .0451 (1.53)	(.0295) (.0295) .951 2.62	3.25 4.38 .262 .0218	2.58 7.16 .378 .0147	(.242) (.0245) .622 1.87	6.40.00.00.00.00.00.00.00.00.00.00.00.00.
MUMERATCRS 1(U 70S) 1(U 1) 1/T(U 1) 1/T(U 12 1/T(U 13	11.2 47.8 (.869)	9.79 1.22 1.96	10.4 72.6 (.928)	10.8 67.8 (.926)	5.27 .247 .996 109.	9.21 .0926 .420 105.	6.24 .0795 .746 212.	4.85 .0840 .713 282.	7.11.0308.221	5.64 .0548 .212
1	-160 -250 -259 -259	74.7 74.7 .0310	-198. 73.3 .334	-79.6 68.1 .166 .0367	-166. 109. .876	-63.1 109. .0309	-89.2 212. .261	-126. 282. .:31	150.1.0363.0.0184	-104. 479. 630.
N(THE/DS) A(THE) 1/T(THE)1 L/T(THE)2	-13.7 .0344 1881	-37.6 .0600 1.52	-17.3 .0253	-7.02 .0138 .334	-15.5 -0226 -498	-5.96 .00218 .210	-9.80 .00688 .251	-12.3	-2.85 00270 - 116	67.8- 600900.
MHO /OS) ALMD) L/THD)] L/THD)2 L/THD)2	161. .0270 -6.03	431. .0386 -10.0	198. .0256 -6.87	80.4 44.4 64.4 64.4	166. -6.98 7.69	63.3 00661 -4.47 4.74	89.4 .00482 -7.13	126. 100. 100. 100. 100.	28.0 0121 -3.90 3.99	164. • 000044- -7.21
N(A2P/OS) A(A2P) 1/1 (A2P)1 1/1 (A2P)2 2(B2P)2 5(A2P)3	98.0 -,00446 -,0312 -,0312 6:28	276. 000627 	126. -00217 -0276 -0286		125. . CO157 . G223 . O135	48.9 .00116 00789 0148	95.0 00134 .06665 .0224	104. 000451 00873 0166	26.6	57.7 100.297 500.00.00.00.00.00.00.00.00.00.00.00.00.

List. mir Affinesie.

TABLE V-5

X-15 LONGITUDINAL HANDLING QUALITIES PARAMETERS

SAS Off

(Body Axis System)

U I L		1 s .	2 \$L .800	3 20 ×		40 K 11.20	6 60 K	2.00 ×	9 0 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	# C	٠
D(G)/D(U) (DEG/KT)	DEG/KT)	08 12	176	0769	01 32	0629	.0198	0145	05 20	. 4367	5520
NZA (G/RAD)	_	15.0	41.2	18.9	7.92	17.8	7.37	15.0	24.0	5.35	۶۰۰۶
OE /3 (DEG /G)	:	1.96	.487	1.47	4.54	2.41	1.11	۶۰۱۰	3.11	11.4	1.55
CAP (RAD/SEC/SEC/G)	(0/23S/)	.471	.320	.445	.554	. 552	.801	.872	999.	716 .	9%2.
PHIGOTO(2) (SEC) (TUCK(2))	(\$60)	i	:	1	:	(14.8)	:	:	:	;	1
1/01/1021		1 .02	1.44	.846	.557	.539	.287	.185	.167	.133	.141

TABLE V-6

X-15 LATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

•		•	•				•	•	i
SL	75	20 K	4 4	* 0	¥ 03	¥ 09	¥ 09	80 K	¥ 0.0
. \$00	. 800	. 600	.800	1.20	1.20	2.00	9.00	1.40	6.00
357	175	304	137	-,241	1360	127	103	0414	0907
-199.	-510.	-252.	-106.	-279.	-110.	-246.	-414-	9.57-	-:65.
-12.4	-1.96	-11.7	-16.3	-8.76	-5.33	-2.36	16.6	-12.4	-2.3.1
10.4	31.0	13.7	₩.	15.1	5.21	11.1	15.7	1.76	11.2
-2.54	-3,93	-2.09	-1.16	-1.60	BF L	-1.62	-1.08	F + + F	567
.0129	00884	00862	0139	4610	000503	00735	0188	86630.	3610
184	170	-,0830	0353	245	0120.	.103	131	.164	.261
576	-1.05	513	219	350	651	106	152	1510	106
0274	0491	0217	\$6800°-	0120	00353	P6700*-	00543	000840	00157
35.2	113.	52.2	21.12	46.5	17.8	28.7	42.3	6.05	33.0
1.59	4.85	5.09	877.	1.46	.403	666.	1.08	6250.	1.13
.137	.224	.113	.0509	.0821	.6326	.04.26	.0503	.0143	1520
5.47	15.0	09.9	2.55	11.9	4.21	5.38	6.86	1.20	-6.54
-5.01	-16.9	-7.09	-2.97	-7.50	-2.50	06.9-	-11.7	14.1.	-12.2

1.0A N.0A V.0A

¥4 D4

L. DV

X-15 ALLERON TRANSFER FUNCTION FACTORS

SAS Off (BODY AXIS SYSTEM)

#)/#		~	æ	4	w	•	1	•	•	10
II	.500	st .800	20 K	4.00 %	40 K 1.20	60 K 1.20	60 K	3.00	80 K	# 0# \$ 00.0
DENCHINATCR 1/T(0ET)1 1/T(0ET)2 2(0ET)1 h(0ET)1	. 0149 2 .46 . 148 3 .36	.00132 3.93 .144 5.63	.00734 2.06 .110 3.80	.0176 .991 .0957 2.64	.00608 1.59 .0754	000447 .679 .0623 2.53	00215 1.01 .0503 3.35	0018 K 1.09 .052 k 3.89	.00863 .207 .0792 2.19	000997 .503 .0302 3.50
NUPERATORS NIB /UB 1 AIB 1 L/T(B 11 L/T(B 12 L/T(B 13	-, 0274 -27-3 (-, 560) (-, 1, 25)		0217 -26.3 (306)	00856 -229. (.305)	0120 -93.2 (-551) -634)	00353 -6154 (-734)	00498 -202- (-121)	00543 -98.7 (.984.)	000840	00.157 .0474 .727 - 380 .
1 4 4 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 00396 . 00396 . 0 340	113. 000803 143 5.63	52.2 00201 .109 3.78	21.1 00555 0783 2.34	46.5 00154 .0754 3.93	17.8 00403 .0544 2.30	28.7 00116 .0490 3.34	.000429 0523 0523	80.00.1 \$0.00.4 \$4.40.4 \$4.40.4	33.0 000.487 -0314 3.45
NG 70A 3 AGR 3 1/TG 31 ZGR 31		4.85 1.95 3.67	2.09 .170 .150	.778 .31C .C615 4.45	1.46 .501 .559	. 190 . 190 . 0493 5.83	. 993 . 239 . 0677	1.08 .289 .0152	.0479 .0784 .110	1.13 .105 0111
46 PHI 704) AI PHI) 26 PHI) 1 K (PHI) 1	8 . 8 8 . 8 8 . 8 8 . 8 8 . 8	114. 144. 5.63	52.3 .109 3.78	21.2 .0772 2.36	46.6 .0753 3.93	17.9	28.8 .0493 3.35	42.3 . 0.8.3 9 . 0.2	6.07 .0434 1.38	33.1 .03:2 3.4%
N(AYP/OA) A(AYP) L/Y(AYP) L/Y(AYP)2 Z(AYP)1 H(AYP)1	91.9 - 367 - 606 - 154	. 100 . 100	136 135 1408 114	54. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	116. 219 -325 -0823	42.7 .136 296 .0997	72.2 -157 -192 -0591	97.6 .101 .360 .0680	71 14.1 14.1 1020	66.7 .0383 .040. .070.

TABLE V-8 X-15 VERTICAL STARITIZER TRANSFER FUNCTION FACTORS

SAS OFF (BODY AXIS SYSTEM)

51 51 610 610 610 6128 6128 6128 6128	2 81 81 81 81 81 81 81 81 81 81 81 81 81	3.00		5 40 1.20 1.20 1.20 1.20 1.20 1.20 1.250 1	60 K 1.20 1.20 2.623 2.43 2.43 1.65 1.06.		00184 1.094 1.094 3.693 5.673 1.08 2.773	2017 2017 2017 2017 20110 20110 346 1346	
5.87	15.0	1.00193	2.55 1.575 1.375 1.375 1.375	11.6	17.7	2.64	**************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2550. 2550. 2550. 2550.
2.49	14.9	-7.09 -1112 1 - 1791 1 - 1791	. 36 % . 36 % . 1 . 1 . 1	. 352 [612]	157	1.417	(1.64)	411.	
5.46 (-1-10) (97:1)	14.7	6.23 .271 1.15	2.15	103 103 113	3,79	4.90 .0135 2.98	4.0530	1.5-1	5.63
-19.8 .00785 2 60 0739	6.04 6.05 6.05 7.498	24.9 .0100 2.27 -0917	-16.7 -0278 -626 -0724 -0724	-19.4 -023 H 2.6924 0924	-7.07 - 00545 - 787 - 6224 4.16	-35.5	1.68.0 1.	-0218 -0218 -0218 -0430 -0430	-103. -0018 -0018 -0018 -0018

TABLE V-9 X-15 ALLERON TRANSFER FUNCTION FACTORS

SAS On

(BODY AXIS SYSTEM)

• •	1 8 8	2 3.1 3.1	3 50 K	* 10	v 4,	4 0°	, 60 K	ر د د د		20 K
DE NCMINATCR 1/710E7)1 1/710E712	006. 4440	.800 0329 58.2	27.1	0315	24.0	0312	14.8	;~ .	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
NUMERATORS	. e.	8	1 8 -6	2.33	6.6	2.2	3.32	9 . r.	1.51	7. e
8 704 3 4(8) 1/1(8))	0274	3.02	0217	00856	0120	00353	00498	. 293	.000 P40 .0867	201.
1716 12	(2.31)	51.5	-35.6 -35.6	-230.	2001	-617.	-207.	-108.	-734b.	-395
4(P)	35.2	113.	\$2.2	21.1	\$ 9	17.8	7.82	42.3	# 00 A	33.0
1/1(P)1 2(P)1 1(P)1	-,00368 -,410 -,410	00079C 553 5.67	0019e .397 3.81	2.35	.374	00400 .248 2.31	00115 . 365 3.36	0 000 m	2.48	275
A(R)	1.59	4.	2.09	976	1.46	604	. 993	BO. 1	9 C A C C C	1.13
1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	26.45.	270	120	2.00.4 2.00.4	102.	8.6403 8.6403		4.78	011.0	4.27
NI PHI JOA J	35.3	114.	52.3	21.2	46.6	17.9	28	42.3	6.0	13.1
2. PH 13.1 4. PH 13.1	, 45 . 3.37	. 553	397	2.36	3.96	2.33	3.36	9	1.30	3.6
V(AYP/UA) A(AYP)	91.9	300.	136.	54.1	116.	42.7	72.2	9.7.6	, e	7.40
1/7(479)1	. 693	. 633	80 F 6	-676	.312	. 672	744	1.21	7 7 4 6 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
2(AYP) 1 h(AYP) 1	3.46	5.5d	3.90	2.46	4.10	2.3¢	3.52	. y.	1.30	4.38

COLOR OF THE PROPERTY OF THE P

V-10	
TABLE	
•	

BORK BERNSTEIN STATE OF A STATE OF STAT

こうことが、おから下さいははははないないないないのでは、日本のでは、日

X-15 VERTICAL STABILIZLY TRANSPER FUNCTION PACTORS

SAS On

(BODY AXIS SYSTEM)

SL			₹. 4.	° ° ×	, 09 ×	en 6	6 6 7	0 0 X
008.	009.	008.	1.26	1.20	2.00	3.00	1.40	00.4
C328 - 58.2 - 556 5.75	27.1 27.1 .408 3.81	0315 11.1 .322 2.33	027? 24.0 .390 3.93	0312 9.30 .298 2.21	0173 14.8 .385 3.32	0131 21.6 .518 3.94	00524 3.58 .507 1.51	00250 16.4 .564 3.52
- 6234 - 6305 56.9		.0509 628 67.37	0821 0250 22.1 103.	.0326 0300 7.11	0160	.0503 2.0101 2.1.2 2.1.2	0143 0286 2.99	.0041 005+ 041
5.87 15.0 6.202002376692376692376692	6.60 .00252 .0371	2.55 00536 1.17 -12.5	11.9	+.21 60474 250 -5.26	5.36 00133 427 -16.4	- 000458 - 1. 334 - 10. 5	1.20	000.2 1.95 1.65
-14.9 .7. 03850 (.189) (.0	-7.09 0147 -0987) 29.2)	11.9	7.50 -107 (151)	-2.86 0770 (.0610) (9.98)	-6.90 0670 0983)	-11.7 	1.1- .0863 (.067)	16.0
14.7 6.23 455 .0423 -53.2 -68.7	425	2.15 1.06 16.8	11.5	3.79	4.90 391 91	0 1 1 0 1 1 0 1 2 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.01	-7-11 25-25 25-2
-46.9 -24.9 02890351 149224 2060680	62.481 11.481	-10.7 0465 24.2 .119	-19.4 -0243 -0320 3.26	-7.07 0298 30.0 .0670	-35.5 -0159 -0242 3.51	- 56.0 36.1 5.106	6.07 6.08 6.84 6.84 7.84 8.492	-103. 00547 17.7 .0515

TABLE V-11

X-15 IATERAL-DIRECTIONAL HANDLING GLALITIES PARAMETERS

SAS Off

(BODY AXIS SYSTEM)

		•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	
F/C .		~	•	•	*	•	^	•	•	2
I	ಸ	SE	20 K	4 0	¥ 04	¥ 09	9 ¥	¥ 09	¥ 02	0 0 ×
×	. 500	. 800	008	.800	1.20	1.20	2.00	3.00	1.60	9.00
DR PERIOD (SEC)	1.89	1.13	1.67	2.39	1.59	2.59	1.88	1.62	2.68	1.79
1/011/31	1.36	1.32	10.1	.671	. 685	. 566	. 456	476	.720	.274
SPINAL (2) (SEC)	:	;	;	;	;	1550.	321.	375.	:	102.
	13.6	28.8	54.5	15.8	20.2	23.0	1	39.5	3.99	;
P(2)	ł	1	:	14.7	1	22.5	;	1	2.96	:
P(3)	:	1	:	15.6	ì	23.0	;	:	6.59	;
P(2)/P(1)	:	1	ł	.929	ł	.982	;	1	.742	;
P105C1/P(AV)	;	;	;	.0326	ţ	1010.	:	;	.360	;
M(PH(1/M(D)	.993	1.00	1991	769.	*66.	.954	966.	1.01	.631	. 985
0EL-8-MAX	.0324	.132	.0384	.398	•100	.543	.153	.0631	.685	104
PHI TO BETA, PHASE	22.3	-3.41	17.5	14.2	9.05	13.9	30.0	191.	3.50	7.48
PHI TO BETA	. 688	.0391	•634	2.14	.484	.755	***	1.11	3.46	1.58
PHI TO VE	.0911	. 00251	.0662	916.	0840.	121	•610.	.0709	.472	.080
	•	•	•	•	•	•	•	•	•	

X-15 DATA SOURCES

- Revised Br Aerodynamic Characteristics of \(\lambda-15\) Research Airplane, North American Aviation, Inc. Report No. NA-59-1203, August 1959.
- Osborne, Robert S., Stability and Control Characteristics of a 0.0667-Scele Model of the Final Version of the North American X-15 Research Airplane (Configuration 3) at Transonic Speeds, NASA TM X-758, April 1963.
- Franklin, Arthur E. and Robert M. Lust, <u>Investigation of the Aerodynamic</u>
 Characteristics of a 0.067-Scale Model of the X-15 Airplane (Configuration 3) at Mach Numbers of 2.29, 2.98, and 4.65, NASA TM X-38,
 November 1959.
- Penland, Jim A. and David E. Fetterman, Jr., Static Longitudinal, Directional, and Lateral Stability and Control Data at a Mach Number of 6.83 of the Final Configuration of the X-15 Research Airplane, NASA TM X-236, April 1960.
- Tunnell, Phillips J. and Eldon A. Latham, The Static and Dynamic-Rotary
 Stability Derivatives of a Model of the X-15 Research Airplane at Mach
 Numbers from 1.55 to 3.50, NASA Memo 12-23-58A, January 1959.
- Hopkins, Edward J., David E. Fetterman, Jr. and Edwin J. Saltzman, Comparison of Full-Scale Lift and Drag Characteristics of the X-15 Airplane With Wind-Tunnel Results and Theory, NASA TM X-(13, March 1962.
- Walker, Harold J. and Chester H. Wolowicz, Theoretical Stability Derivatives for the X-15 Research Airplane at Supersonic and Hypersonic Speeds Including a Comparison With Wind-Tunnel Results, NASA TM X-287, August 1960.
- Yancey, Roxanah B., Flight Measurements of Stability and Control Derivatives of the X-15 Research A rplane to a Mach Number of 0.02 and an Angle of Attack of 25°, NASA TN D-2532, November 1964.
- Saltzman, Edwin J. and Darwin J. Garringer, Summary of Full-Scale Lift and Drag Characteristics of the X-15 Airplane, NASA TN D-3343, March 1966.
- Taylor, Lawrence W., Jr. and George B. Merrick, X-15 Airplane Stability Augmentation System, NASA TN D-!157, March 1962.
- Tremant, Robert A., Operational Experiences and Characteristics of the X-15 Flight Control System, NASA TN D-1402, December 1962.

SECTION VI HL-10

AND SECURITY OF A SECURITY OF

HL-10 BACKGROUND

The HL-10 is one of a number of lifting body research vehicles. The airplane is typically launched from a B-52 at 0.8 Mach and 45,000 feet. In numerous glide and powered flights the HL-10 has been flown in excess of 1.8 Mach and 90,000 feet.

Following problems involving the loss of roll-control effectiveness, the leading edge of the tip fins was modified. This became known as the Mod II configuration. The information contained here is for the Mod II HI-10.

Pitch and roll control is obtained by elevons and yaw control by a conventional rudder. A subsonic or a transonic configuration is selected using combinations of speed brakes, elevon flaps, and tip fin flaps. These combinations are specified in Fig. VI-1.

The stability augmentation system consists of angular rate feedback loops about all three axes.

The flight conditions shown correspond to actual flight test points.

임

Mominal Configuration

Zero fuel (burnout) Gear up

Transculo or subsonic configuration depending upon filght condition

W = 6466 lb

c.g. at .517 c, W.L. 94.4 Lx = 1353 slue-ft²

6413 slug-ft² { 17407 slug-ft² } 399 slug-ft²

Filght Envelope

Nominal Envelope Extremes

Transfer Function Case r $(B \approx \text{Bubsonic})$

Note:
Configuration Speed Brakes
Subsection Zero
Transconte 80

2es Eleyon Flans Tip-Fin Flans Zero Zero 30° 30.5°/32.5° Figure VI-1. HL-10 Flight Conditions

THE RESERVE OF THE PARTY OF THE

Figure VI-2. HL-10 General Arrangement

HL-10

PITCH AXIS

ROLL AXIS

YAW AXIS

Figure VI-3. HL-10 Control System

HL-10

Figure VI-4. HL-10 Stability Augmentation

IG-10 DIGHEIONAL, MASS AND PLICHE CONDITION PARAMETERS

s = 160.0 sq ft, b = 13.60 ft, c = 21.17 ft

• 74 •		~	n	•	m	•	۲	c	o	10
H(FT)	0 % K	16 K	22 K	8	¥ 0+	38 X	\$ \$ £	51 X	75.4	72 <
- 12	• \$00	. 160	. 700	.620	.650	. 800	. 950	1.10	1.20	1.50
VTO(FPS)	592.	80	120.	617.	629.	.11.	.026	1064.	1160.	1458.
VTO(KTAS)	327.	237.	427.	365.	373.	499.	545.	631.	693.	864.
VTOCKCASI	313.	187.	311.	.162	1 43.	254.	263.	273.	175.	244.
13 T J	• 466.	6466.	6466.	.9949	6466.	6466.	6466.	. 9949	6446.	6466.
C-0:(HOC)	.917	.917	.917.	. 51.7	. 917	.517	.517	115.	.917	.517
1x (SLUG-FT 50)	1353.	1353.	1353.	1353.	1352.	1353.	1353.	1353.	1353.	1353.
14 (Stud-FT 50)	6413.	6413.	6413.	6413.	6413.	6413.	6413.	6413.	6413.	6413.
12 (51.16-67 30)	7407.	7407.	7407.	7407.	7407.	7407.	1407.	1407.	1401.	7407.
18218100-FT 501	. 23.	38.	399.	199.	399.	289.	349.	399.	300.	300.
EPSICHIDED: ()	2.2	-3.75	-3.79	-3.79	-3.75	-3.79	-3.75	-3.79	64.6-	-3.75
0.08	23.	116.	307.	169.	. 117.	194.	196.	197.	75.3	136.
GC (PSF)	351.	. 130	346.	186.	129.	228.	244.	264.	105.	.802
ALPHA (DEO)	10.2	19.0	10.6	19.8	10.0	14.2	14.1	14.2	9.00	12.0
CAMMA (DEG)	-32.0	-14.0	-26.0	-26.C	-23.0	-25.0	-26.0	-35.0	-19.0	14.0
CKP(FT)	0.30	06.9	. 6.30	6. 5C	6.50	6.50	05.4	06.4	6.50	9.30
Line.	04 7	-1.40	-1.40	-1.40	-1.40	-1.40	-1.40	-1.40	-1.40	-1.40
THIOGOL	•	•		ડ	ò	ċ	ė	•	•	•
XI (DEG)	.	6	ö	6	ó	ò	6	ċ	ં	6
L'Hitt	-1.20	-1.20	-1.20	-1.20	1.20	-1.20	-1.20	-1.20	-1.20	-1.20
٠.	•	•	•	•	•	•	•	•	•	•

TABLE VI-2

HE-10 LONGITUDIES DESCRIPTIONAL DERIVATIVES

(Body Axis System)

10	72 4	1.50	0273	.000762	.00 258	.0293	137	00493	ċ	ċ		0649	3.84	-27.5	-4.93
		1.20													
•	2 X	1.10	0597	21000	.00478	.0763	334	0162	ં	•	;	•1	21.6	-8% -3	-14.2
~	*	. 950	0648	.0182	.00479	.0851	417	6148	•	ö	ċ	165	33.5	-133.	-16.1
•	× • •	.800	0325	.0128	. 00400	.0148	432	0139	•	ö	ċ	139	9.52	-1117.	-14.2
•	¥ 0 ¥	.650	0191	0143	. 00136	.0727	291	00548	•	ò	ċ	205	22.1	-63.0	-7.97
•	30 X	.620	0227	.0179	. 00217	111	459	0102	•	;	•	309	27.7	-98.7	-12.3
m	22 X	.700	0 260	.0417	.00 225	.0637	7 43	0141	•	•	;	472	33.7	-180.	-16.8
~	× on	.380	1040-	0122	.00396	.140	104	~.0166	•	•	•	126	29.6	-74.2	-4.51
	. 20	.500	0509	-0363	. 00463	.164	976*-	0 305	ė	•	o.	662	2.8	-212-	0.8
	· · ·					•									

TABLE VI-3

HIL-10 HINVALOR TRANSFER FUNCTION PACTORS SAG OFF

			3) 3)	(Body Axis Bystem)	Bystem)					
F/C 4	*	~	•	•	•	•	•	•	ø	91
**************************************	28°	16 K	22 X 200	36 K	4 04 4 X 04 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	45 K	\$1 x 1.10	1.2° x	72 K
4041MATOR 2(06111 1,06111 2,06112 2,106112	070.	. 283 . 117 . 145 2 . 68	.050 .058 1.84 3.28	.363 .0632 .145		, 526 , 0676 , 0794		.0610	.0209 .0316 .5316	. 342 .0345 .0418 2.60
######################################	mr			27.7 7.85 5.69 269	22.1 73.0 .601	29.6 .138 1.402)	A	21.6 172. 1567.	4.01 172. 172.	5.84 235. 106
AAN 32 1716 32 1716 32 152 153 153 153 153 153 153 153 153 153 153	-212. -0156 -0500 72.9	-74.2 48.8 (.267)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.88.7 .0088A 7.01.51	-43.0 73.2 (.369)	-117. 104. 1 .629)	-133. 108. 1 .09111	. 6320 . 6320 . 6366	-24.5 .00.00.6 .016.	. 20.531 . 00.115. 20.531
ME/OE) Af THE) // THE) 2	5.03 6.03 6.03	. 9.5 . 0.423 . 488	14.6 .0204 .994	.378	-7.97 .0218 .239	. 0246	-16.1 .0599 .289	-14.2 .0583 .231	.0193	.0282
10 /0F 1 ALMO 1 /THC 11 /THO 12 /THO 13	1.00.50 7.34 4.54	76.2 .020, 	165. .0325 .6.16	92.0	63.2 .0199 -4.01	109. -0292 -5.93 6.06	123. .0632 -5.50 5.67	72.0 .0647 -6.18 4.37	27.8 -3.31 3.38 3.38	.0167 -0167 -4.97
22 / OE 3 / OE 3 / OE 4	-29.6 -0218 -045 (-18.5)	-12.4 -0105 -0301 -9.661	-71.1 -0107 -0229 (-9.84)	-18.5 -00981 -0175 -12.23	-13.3 .00613 .0142 (-5.18)	-11.5 .00918 .0218 (17.8)	-28.7 -03762 -0571 (11.9)	7.01 .0117 .0152 .0152	-3.00 -3.00 -3.00 -17.9 -17.9	1.01.0 0.01.0 0.00.0 0.00.0 0.00.0

ty 39

TABLE VI-4

HI-10 ELEVATOR TRANSPER FUNCTION PACTORS

SAS On

$\overline{}$	
System	
Axta	
Body	

8/C		~	m	*	•	•	•	60	¢	01
I.E.	00%.	16 K	22 K	30 K	40 K		45 K	51 K	75 K	72 K 1.50
MOMINATOR 2106 13 1 MOM 13 1 200 13 2 MOM 13 2	2.01. 4.01. 5.01. 5.01. 8.01.	267	~~		216. 200. 4080. 200.	. 903 . 0625 3 . 63	. 629 . 0600 . 872 4. 01		. 100. . 331 . 89.5	**************************************
UMERATORS 10 /08 3 1/10 3 1/10 31 210 31	8	24 · · · · · · · · · · · · · · · · · · ·		23. 7.50. 699.	22.1 73.0 .601	29.6 .138 (.402)	W . D C.	21.6 172. 1547	6.01 172. 6.02 112	80.00 80 80.00 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8
14 /06) 17(4) 17(4) 17(4)	-212. .0158 .0500	-7'2 48.8 (.267)	1180.	-98.7 .00839 .0141	-65.0 73.2 (•36.9)	-117. 104. (.029)	-133. 108. (.991)	-65.3 .0320 .0366	-29.5 .00596 .0164	6.75- .00571 .0110-
1 THE /DE) AT THE) 1 /T (THE) 2		4.0. 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	6.020. 4020.	-12.3	-7.97 -0218 -0218	16.2 . 0246	-16.1 .0599 .289	-14.2 .0503 .231	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	表 の の で で で で で で で で で で で で で で で で で
140 /04) 1400) 1/100) 1/100)	10.0650	76.2 .0207 -3.83	165. .0323 .6.16	92.0 -5.22 5.51	63.2 -0199 -4.07	1 09. • 02 92 • • 06	123. .0632 -5.50 5.67	72.0 .0647 -6.18 6.37	27.8 .0214 -3.31 3.38	27.2 .0167
AZPADE) ACAZP) 1 (74AZP) 1 (74AZP) 24AZP) 1	-29.6 -0218 -18.9 -18.9	-12.4 -0105 -0301 -0406)	-71.1 -0107 -9.84) (10.1)	-18.5 .00983 .0173 (12.2)	-13.3 .00613 .0142 (-5.18)	-11.5 -0918 -0218 -17.8	-28.7 -00782 -0571 (11.9)	7.01 .0117 .0152 .0142	-1.00 -00350 -0136 (-17.9)	1.78 0108 -0250 -00687

TABLE VI-5

HE-10 LONDINGE HANDLING QUALITIES PARAMETERS

SAB Off

(Body Axis System)

:										
B./C. B	-	~	•	*	•	•	~	Œ	•	9
, 30	. SO	16 K	22 K	%	4 0	80 X	45 X	ž.	75 K	72 <
: *	8.	. 380	.700	.620	.650	000	• • • • •	1.10	1.20	1.50
				STICK F	FIXEO					
0 (6) /D(U) (DEC/KT)	121	00409	0433		.000279	03 86	160	174	0449	0695
W/A (6/840)	11.5	4.11	12.9		4.54	7.72	•.14	7.58	2.39	4.75
DE /4 10E4/0)	.0.	9.36	2.70		1.26	9.9	18.6	6.92	43.5	14.7
C4P ((RAD/46C/56C/G)		1.55	.791	. 692	.731	1.36	1.63	2.21	3.21	1.48
PHIGOTO(2):: (SEC)	, 1	•	ł		i	:	i	ı	ı	:
101/1101		•	.510	.399	.343	.217	.206	.167	.0461	.114

TABLE VI-6

HC-10 IATHRAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

	•					•	•		•	
•	~	~	m	•	•	٠	•	•	•	91
	03 K	16 K	22 K	9 5 7	¥ 0 †	30 K	45 K	\$1 K	75 K	2 ×
	.500	.360	.700	029*	.650	.800	. 950	1.10	1.20	1.30
	354	173	322	203	140	160	204	173	0564	0451
	-218.	-69.3	-232.	-125.	-88.2	-124.	-107.	-184.	-64.0	-124.
•	-102-	-43.1	-75.1	49.5	J. 76-	-11-+	-71.5	- 69.7	-24.9	-14.5
÷	13.9	5.51	13.1	1.19	5.53	12.4	14.0	11.0	3.44	.4
à	-1.49	723	-1.13	686	473	710	627	524	175	102
	0010	.0109	.0240	.0179	.0119	.0119	.00882	.00877	.00344	.00774
•	1.16	.561	.820	.532	.357	114.	.397	.351	.124	.180
	35 4	244	342	235	162	245	-,234	145	* 140·-	0764
8.	00523	010+	006 79	-,00547	-,00428	00899	00000	00540	19 1000 ·	•
۷٥,	36.0	15.5	30.7	17.0	10.7	10.5	18.2	16.7	5.23	7.52
. 04	3.39	1.96	3.73	2.11	1.19	2.43	2.76	1.63	.0603	-,392
5	.0665	.0473	.0553	.0372	.0251	.0280	.0233	.0202	. 00617	.00777
5	13.0	5.12	13.0	19.9	4.87	5.85	6.53	6.50	5.45	3.94
5	-10.6	-3.61	-6.77	-5.12	-3.91	-4.65	-4.60	-4.87	-1.79	-2.18

TABLE VI-) HI-10 AZZERON ZRANBJER FURCTION PACTORS

SAS Off (BODY AXIS SYSTEM)

	•	•	•	•	•	•	1		σ	01
• 0/3		~	~	•	5 0	•	-	•	. ;	
		16 K	22 K	30 K	¥ 0,4	36. 300	¥ 84.	51 K	1.20	05:1
DE NUM UNATOK 1/7 (UE) 12 1/7 (UE) 12 2 (DET) 1 6 (DET) 1	. 0868 . 812 . 132	. C796 . 383 . C777 4.39	.0509 .683 .107	.0546 .375 .0762	.0579	.0434 .417 .0602 5.44	. 0369 . 389 . 0574	. 0375 . 298 . 0518	. 0249 . 171 . 0179 ? . 73	.0201 .124 .0320 3.46
MUNCRATCH S A (-578.	1307.	00679 -291. 415	00547 -457. .337	00428 539. -587	00699 -243. 182	00900 -193. .0638	00590 -394. -318.	,000154 ,00874 ,1523 ,4339-3	1.95 679.
10 / 07 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.46 .0213 .108	15.5 .00737 .0817	30.7 .0120 .0862	17.0 .00983 .0695	10.7 .00395 .0591 2.98	18.5	18.2 .00743 .0535 4.92	16.7	5.23 .00339 .0262 2.05	1.52 00987 .0473 1.75
1(4 /04) 1/4(8) 1/7(8) 1/7(8)	641. 641. 641.	1.96	3.73 .234 (:120) (5.61)	2.11.2.192.	1.19 (0519)	2.43 .167 .05865 . 6.391	2.76 141. 1.05561	1.83	.0603	
AU 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34.6 102 4.74	15. ₹ . c807 3.26	29.7 .0853 4.64	16.6 3.62	0.66 0.80	18.1 .0541 4.54	17.6 .0538 4.87		5.22	
MIAVP/DA 1 AIAVP1 L/T(AVP11 L/T(AVP12 L/T(AVP12 L/T(AVP13 L/T(AVP13	- 200. - 306. - 120. -	30.3 - 271 - 387 - 126)	62.3 234 .504 ! .0933!	34.1	20.0 .200 .498 (167)	34.8 .198 216 (.0679)	35.1 .207 226 (.0667)	29.0 178. - 332. (2963.)	. 609.7 . 609.1 	7.96 .0620 .114 .71

TABLE VI-8 HA-10 RUDDER TRANSIER FUNCTION PACTORS

BAS OFF (RCDY AXIS SYSTEM)

8/C. 8	~	~	•	•	•	٥	-	•	٠	c I
II	. 500	16 K	22 K	30 K	40 K	38. X 00.	45 K	51 K	75 K 1.20	72 K 1.40
AUCH INATOR 1/T (DET)1 1/T (DET)2 2(DET)1 M(DET)1	. 0848 . 812 . 132 5.64	.0796 .883 .0777 4.39	.0509 .683 .107	.0548 .375 .0762 4.55	.0440	.0434 .0602 5.44	.0367	.0375 .298 .0518 5.27	.171	.0201
HERATCPS A / Dm 1 A / L / L / L / L / L / L / L / L / L /	.00. .00.11 1.17		.00583 .00183 .088	.0372 00794 .506	,0251 -,0105 .343	.0280 00222 .544 .544	.0233 .00346 .480 261.	. 0202 . 00498 . 396 . 313.	.00677 00203 177	.0116 0116 340.
7 708) 1719) 1719) 1719)		5.12 4.63 5.22	13.0	6.60 6.00 8.27 8.60	5000 5000 5000 5000 5000 5000	5.82 .00002 6.42	6.53 6.90 6.90 6.00	0.00	2000. 2000. 2000. 2000.	3.94 -3.98 -3.72 3.73
# 70k 1716 1 1776 1	4 4 M 33	1 2 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-8.17 -234 -172 3.20	-5.12 -192 -0932 3.24	-3.51 -159 -0685 2.91	4.65 -167 -0830 -20	4.0.W 4.0.W 8.80.W	11.0.1.5	.196.00.196.1	.2.16 .0955 .0345 .2.31
PHI/OF 1 A/PHI/ 1/1 (PHI/) 1/1 (PHI/)	# 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	64048 4048 4048	4.85 4.42 4.42 4.42	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.1 4.0 4.0 4.0 4.0	5.40 5.40 5.01	7.50 5.60 14.8	***** **** ****	4 M M M	44 620 620 620
AYP/UR 1 A(AYP) 1/1(AYP)1 1/7(AYP)1 1/7(AYP)3 1/7(AYP)4	-3.07 -0.640. -1641. -170.	1.32 - 123 - 300 - 20.6		991 0404 	182 0393 235 (187)	445 0557 -260 (.339)	609 0218 .297 39.9	-1.02 0131 248 (.0789)	0143 0143 132 (-196)	2.69 0207 -129 11.8

TABLE VI~9
HI-10 ALLERON TRANSFER FUNCTION FACTORS
SAS On

を 100mm 10

(BODY AXIS SYSTEM)

	•	•	•	•	•		•	•	•	•
7 .73	•	~	m		•	•	~	æ	o	0.
: Ex	. 500 500	16 K	22 K .700	30 K	4 0 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	38 K	* 940 940	51 K 1-10	75 × 1.20	72 K 1.50
UEN MINATOR 1/T (De TIL 1/T (DE TIL 1/T (DE TIL 2 (DE TIL MI DE TIL	.00751 .323 2.55 2.55 (7.58)	.00201 .275 14.8 1.53	.00626 .269 2.10 (7.01)	.00491 .224 19.9 .709	.00326 .187 .13.6 .533	.00533 .214 17.7 .673	.197 .17.0 .706 .4.40	. 156 . 156 . 156 . 608	. 232 . 232 6.75 . 6.79	000773 8.150 8.54 2.53
NUMERATORS NIB / DA) AIB) 1/716)1 1/716)2 1/716)3	-,00523 ,00374 ,304 69.8	- C104 . 0C600 . 245 . 25.1 . 352.	00679 .00352 .232 76.0	00547 00391 190 37.5	00428 00399 157 53.0	00899 .00442 .164 37.7 -292.		00590 .00295 .113 35.9	.005154 .00277 .196 8.10 4345.	1.93 .00.72 .6951
16 407 17 17 17 17 17 17 17 17 17 17 17 17 17	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200-1-00-1-00-1-1-00-1-1-1-1-1-1-1-1-1-1	30.7	17.0 .00989 23.9 .790	10.7	18.5 .00803 .21.4 .914	18.2 .00744 .561 [.5453	16.7 20111 22.1 691 519	5.23 .00339 .00339 .693	7.42 1.93 1.43 1.45 7.85
1(A /0A) 1/1(A)	64.4	1.94 745. 745. 745. 18.29	3.73 .234 .330 (.120)	2.11. 2.92. 2.0250.) 15.42.)	1.19 186. 180. 1	2.43 .167 .330 (.0986)	2.76 .141 .330 (0596)	1.69 .115 .316 .0404) .6441	.0663 .380 [.0240]	

Continued
σ
Ļ
>
HE
ន

C MOVING)							ı		,		
ALPHI	34.6	15.7	29.7	16.6	9.01	18:1	17.6	0.9	5.22	. 23	
1/1 [5 H]]]	40.0	17.0	43.2	24.5	10.4	22.0	22.8	23.5	6.95	# 0.	
Z (PHI) I	588.	. 757	. 679	.786	,739	106.	.985	. 06.7	169.	.65	
MIPHI) 1	.346	. 443	904.	.420	.419	. 556	***	. 493	. 443	.375	
I AUP /DA 1										;	
At Avb 5		30.3	62.3	34.1	\$0.0	34.8	35.1	٥ ٠ ٠	7.89	90.	
44.64		410	2 2 2 2 2	E + 000	. 9 400	4110.	.00114	. 004	.00343	#1800°	
	400	346	2 8 2	0	1.57	.165	.138	• 11¢	.200	2:60.	
90 11 51 110							76	00	40 1	4.04	
1/1 (AYP) 1/1	• 	10.5-	-7:5-	- 6.5-	06.2-	.,,,,		7	P		
ALGVALTA	. •	3.00	4.68	4.20	4.17	3.90	5.65	5.84	2.56	8 · •	
	1,			4		17.4	17.0	C. W.	46.9	10.6	
CI 440 171		7.07	2.02	7.00	7.7	-				•	

TABLE VI-10

NL-10 XUDDEN TRANSFER FUNCTION FACTORS

SAS On

(BODY AXIB SYSTEM)

•	•	•	•	•			•			
# 5/d	-	~	m	•	•	•	1	•	ð.	
II	03 ×	16 K	22 K .700	30 K	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 K	45 K	51 K	75 K 1.20	
ICH INATOR 1,7 (DET) 1 1,7 (DET) 2 2 (DET) 1 W(DET) 1	.00751 .323 .255 (7.48)	. 00020 14.88 16.88 1.698	.00626 .269 2.10 (7.01)	.00491 .224 14.4 .709	.00328 .187 .533 3.22	.00533 .214 17.7 .673	.00555 .197 .706 .40	. 00620 . 156 . 156 . 608	.00269 .232 6.75 .439	
MBATORS 1	 8-04-4 8-04-6-4		.0053	.00372 .00724 .00724 8.87	.0251 .00150 .00150 2.00 196.	.0280 .00658 .390 3.60	.0233 .00693 .330 3.72 262.	. 0202 . 0103 . 330 . 34 . 34	.00251 .00251 .0086.	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	13.0 . 021.0 . 7.91.0 . 6.6	5.12 00739 330 522	13.0 . 9120 . 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.64 0000 0000 03.24 0.25	4.87 .0039 .0039 .0039 .1.4	5.82 .00802 .330 6.42	6.53 .0074 .3.90 .6.00	6.50 .0111 .330 .356 .39	2.45 .00339 .330 3.73	
A	1		- 4.2. 64.4.4. 64.4.4.7	21.25 20114 20114	13.51 162 182 183 184 184 184 184 184 184 184 184 184 184	24. 24. 24. 24. 24. 34. 34.	. 142 . 330 . 710 . 345	. 4. 1115 1115 1100 1100 1100 1100 1100 110	11.75 .210 .330 .101	

71717 71719111 171791111 171791111	######################################	4 · 4 1 6 · 6 4 2 6 · 6 4 3 6 · 6 4 3 7 · 6 4 3 7 · 6 4 3 8 · 6 4 4 3 8 · 6 4 3		7.61 .330 -4.73 5.11	5.13 .330 4.06	6.71 .330 -5.79 6.18	7.50 .330 .5.11	8.34. 330 3.76	2	5. 4. 4. 00 00 00 00 00 00 00 00 00 00 00 00 00
11 AYP /OR 1			į	,		-				
41 47 4 5	- 3.07	1 . 32	976		- 162	. 44.0	609.	-1.02	0183	2.69
1/TIAYP 11	1010 .	0400	.00743	.00109	00468	£1600~·	.00350	. 00al4	822E-4	011
1/T (A VP)2	.330	. 330	.330	.330	.330	.330	.330	.330	.330	.330
L/T (AYP)3	6.2	1.20	-193	2.08	1.23	19.1	2.41	2.11	.672	. 937
1425	11.1	9.30	. (+56.)	(.935)	24.6	.50.	17.3	(0.630)	40.7	10.9
1/T(AYP.19	61.0	-34.1	(11.1)	(59.6)	103	6.49	-99.3	(35.2)	200.	0

TABLE VI-11

MI-10 IATERAL-DIRECTIONAL BANDLING QUALITIES PARAMETERS

SAS OFF

(BODY AXIS BYSTEM)

1,00	-	~	•	•	•	٠	•	•	o	0.1
=	93 x	¥ 91	72 K	× e	4 *	36 X	48 K	91 K	75 K	72 K
z	. \$00	.380	. 100	.620	.650	. 400	.950	1.10	1.20	1.50
R PER 100 (SEC)	1.12	1.44	1.22	1.38	1.56	1.16	1.13	1.19	2.30	1.82
(2/1)3/	1.20	. 706	.974	669.	.526	.547	125.	. 470	.162	.290
PIRAL (2) (SEC)	ł	1	1	1	1	;	;	ł	;	1
	25.8	11.1	31.2	21.5	6.65	ł	i	;	7.43	2.44
(2)	25.8	11.0	31.1	21.5	4.65	ì	:	;	7.27	.860
::	. 26.3	13.7	i	}	13.0	1	1	:	10.2	4.45
(1)4/(2)	000	985.	. 997	866.	000.	:	ł	1	. 979	.353
(OSC)/P(A')	. 00472	6143.	:	;	.0000	:	:	ł	. 0967	.622
(941)/4(0)	. 842	.743	.898	.795	.733	.836	. 673	. 784	. 744	~ 4.
EL-8-MA K	.120	. 240	. 1119	102.	.257	.123	.0928	• 1 • •	641.	.309
HI TO BETA, JIASE	1.21	1.34	1:83	.70		1.29	164.	.153	-358.	702
HI TO BITA	3.30	12.8	*:	8.48	7.13	***	9.40	3.6	9.18	2.68
HI TO VE	.366	404.	. 332	.373	8.	.353	.339	.374	.753	.455
	•	•		•		•	•		•	

HL-10 DATA SOURCES

- 1. Ladson, Charles L., and Acquilla S. Hill, Aerodynamics of a Model of the HL-10 Flight Test Vehicle at Mach 0.35 to 1.50, NASA
 TN D-6018, Feb. 1971
- 2. Pyle, Jon S., Lift and Drag Characteristics of the HL-10 Lifting Body during Subsonic Gliding Flight, NASA TN D-6263, Mar. 1971
- Ware, George M., Full Scale Wind Turnel Investigation of the Aerodynamic Characteristics of the HL-10 Manned Lifting Entry Vehicle, NASA TMX-1160, Oct. 1965.

LOCKSHIED JETSMAR

The Jetstar is a four engine utility transport. Controls consist of conventional ailerons, elevators, and rudder. Ailerons and elevators are mechanically actuated with hydraulic boost. The rudder is mechanically activated but assisted by a servo tab.

The primary source of aerodynamic data was NASA CR-544. Power approach aerodynamics were estimated using CR-544 and flight test data from FTC-TDR-62-24C-140. The control system description was based solely on flight test data from the latter reference.

Mental Configuration

Enlyper Tenks Installed
Heavy Gross Weight
W = 38204 lb
o.g. at 0.25 c, W.L. 94.2
Lx = 118775 slug-ft²
Ly = 135869 slug-ft²
Ly = 243504 slug-ft²
Ly = 24051 slug-ft²

Poses Approach Configuration

Elipper Tenks Installed
Light Gross Weight
Gear Down
Mof Flaps
1.4 Vs
W = 25904 lb
C.g. at 0.25 G, W.L. 94.2
Lx = 42273 slug-ft²
Ly = 126099 slug-ft²
Ly = 160104 slug-ft²
L

Filcht Envelope

Byeed Restrictions

Transfer Function Case

Figure VII-1. Jetstar Flight Conditions

Figure VII-2. Jetstar General Arrangement

JETSTAR

PITCH AXIS

Note: Angle of attack effects on elevator hinge moment are neglected

ROLL AXIS

YAW AXIS

Figure VII-3. Jetstar Control System

TABLE VII-1

JETSTAR

Power Approach Non-Dimensional Stability Derivatives

h = sea level

 $V_{T_0} = 224 \text{ ft/sec} = 132.5 \text{ kt}$

 $\alpha_0 = 6.5^{\circ}$

Longitudinal Lateral-Directional (Body Axis) Cy_B = -.72/rad $C_L = .737$ $c_{n_S} = .137/rad$ $c_{D} = .095$ $C_{L_{CL}} = 5.0/rad$ $C_{A_B} = -.103/\text{rad}$ $C_{L_D} = -.37/\text{rad}$ $C_{D_{CL}} = .75/rad$ $C_{n_p} = -.14/rad$ $C_{m_{cc}} = -.80/rad$ $C_{m_{\tilde{\alpha}L}} = -3.0/\text{rad}$ $C_{f_r} = .11/rad$ = -8.0/rad $C_{n_r} = -.16/rad$ $C_{D_{\hat{G}_{\mathbf{a}}}} = -.0075/\text{rad}$ = .4/rad $C_{\mathbf{f}_{0_{\mathbf{a}}}} = .954/\mathrm{rad}$ $\mathtt{c}_{\mathtt{m}_{\delta_{\mathbf{e}}}}$ = -.81/rad $C_{\mathbf{y}_{\delta_{\mathbf{r}}}} = ..175/\text{red}$ -.063/rad .029/red

JETSTAR 382041b

JEGSTAR DIPAGRICHAL, MASS, AND FLIGHT CONDITION PARAMETERS

6/C 0	-	14	•	∢.	*	٠	~	£	ø	21
RIF:	×	25	ಸ	d	20 K	20 K	20 K	¥ 04	4 R	ç
A(-)	8	. 230	004.	.528	.350	. 550	.750	005.	.650	308.
VTQCFPSI	X	257.	447.	. 986	363.	570.	178.	. 464 .	4.29.	174.
VTO(KTAS)	235.	192.	265.	347.	215.	336.	.194	287.	373.	. 0 . 4
VTO(KCAS)	132.	152.	265.	347.	150.	252.	348.	146.	103.	243.
44.1657	23 905.	38 20 5.	38205.	38205.	36205.	38205.	38205.	38205.	36205.	34205.
C.G. (MGC)	. 250	.250	250	250	.250	-250	.250	.250	.250	.240
1x (\$LUG-F7 \$C)	42275.	118779.	116779.	110775.	118779.	118779.	118779.	118:79.	118779.	110770.
17 (56,10 -7 56)	120100.	135676.	135076.	135076.	135076.	135676.	135676.	135076.	135076.	135874.
12 (36.66-47 50)	160113.	243518.	243518.	243513.	243518.	243510.	243519.	243518.	243518.	243418.
1x215LG-FT 5Q1	5470.	5061.	5061.	5061.	5061.	\$001.	5061.	÷241.	50¢1.	50141.
epsil onidegi	54.5-	-2.38	-2.32	- 2.32	-2.32	-2.32	-2.32	-2.32	-2.32	-2.32
(#4)0	39.4	18.4	237.	408.	63.5	206.	363.	0.09	117.	177.
QC(PSF)	60.0	19.4	247.	437.	66.3	.222	***	13.4	120.	207.
ALMA (DE6)	4.30	11.2	4.00	2.76	06.4	4.50	2.60	11.4	1.00	4.20
GAMMA (DE G)	•	•	ò	ò	ó	ö	•	ć	٥	•
LXP(FT)	\$2.2	27.2	22.2	22.2	22.2	32.2	22.2	25.2	27.7	22.2
1290873	04.2-	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.40	-2.49
1 TM(0EG)	ò	ះ	ò	Ġ	ò	ċ	•	ċ	ં	•
x1 (0£6)	•		•	3 ,	ò	ö	•	ċ	•	٠,
L1H(# 7)	620	820	820	020	820	- 620	620	820	620	420

JEGETAR LONGITUDINAL DIMENBICMAL DEBITVATIVES

(BADY ACE SYSTEM)

•		~	•	•	*	J	٠	•	•	10
×	3.1	ร	SL	ಸ	20 K	20 K	20 K	¥ 04	¥ 0	> 04
•	.200	.230	• 400	. 528	.350	. 950	.750	.\$30	.650	JON.
* OX	0166	0045	~ .0 102	0136	00324	006 97	0157	00353	00148	2116
• 02	179	103	0593	0335	0804	0436	0212	7190	9070	-, C 34 B
•	16100.	.00175	.000549	.000127	. 00102	. 000615	-,000473	206000.	.900747	00425
z x	.104	.164	.110	.103	.111	9160.	.0680		€ 0 4 0 .	4660.
7.7	-1.01	723	1 24	-1.65	965	001	-1.33	354	2.475	6 58
35	16600*-	00.402	.010.	1020-	00665	0107	0154	00401	1 95 00 -	00740
QN7	•	•	;	•	ċ	•	ċ	ċ	ċ	
67	ċ	:	;	•	ò	ò	ė	•	;	ċ
PWG	000910	ı	000848	000406	000447	000462	0005 74	000207	-,000237	000780
9	4:0-	562	-1.03	-1.39	439	724	-1.09	279	380	504
JQX	1.07	2.78	3 02	3.51	29.2	2.46	3.36	٥٠٠٧	2.64	2.54
20E	-17.2	-14.0	-43.2	-74.5	-15.0	-37.5	-73.5	-12.4	-21.7	14.6
10 E	-2.26	-2.80	-1.31	-14.4	-2.95	-7.47	-14.5	-2.47	.4.27	-4.78
MT OX	.00135	.000042	.000842	.00042	. 000842	. 000842	.000842	.000842	248000.	290000
ED TH	•	•	•	•	စ်	ċ	•	٥	ં	ċ
5 F	~. 650E->	6046-5	40 46-5	604[-5	404E-5	604E-5	604E -5	604 E-5	KN4E-5	- *60 4£ - 5
	•	•	•	•	•	•	•	•	•	•

TABLE VII-i.

JETSTAR ELEVATOR TRANSPER FUNCTION FACTORS

Bare Airfrance

(BODY AND STSTEM)

F/C #		~	n	•	n	•	~	•	•	9
rf	\$ 7 \$ 00 \$ 2 \$ 00	.2 50	.409	3. \$5.	350 K	20 K	7 50°	* 04. * 00.	¥ 6.4 €.650	4 4.
DE NCAINATOR 1/T(0ET)1 1/T(0ET)2 2(0ET)1 6(0ET)1	(.0521) (.198) .528 1.66	(.0.793) (.160) .455	(.0626) (.0797) (.475	(.102) (.0644) -477 3.75	(.0365) (.115) .355	. 0498)	0195 .0339 .362	00.1	٠٠	.102 -134 -134 -249
NUMERATORS NIU /DE 1 ANU 11 1/TIU 11 AIU 11	1.97 28.5 .590 1.11	2.08. 5.08. 5.08. 5.08.	3.02 66.4 .256	3.51 215. 1.352	2.62 70.1 .410	2.96 113. .274	W H	64.49 7.48 874	2 m · · · · · · · · · · · · · · · · · ·	2.5 4.15 4.77 6.00
N(M / DE) A(b) 1/7(W)1 2(W)/	-17.2 29.7 .0612	-14.0 50.9 .00143	67.4 67.4 67.4 6704	116. 116. 146.	-15.0 70.7 -0105	-37.9 114. 0581	-73.5 155. 275.	98.1 98.1 0191	-21.7 124. .00430	152. 152. 10104.
M THE /DE 1 A1 THE 5 1/T (THE 51 1/T (THE 52	-2.25	-2.79 .C297 .653	-6.34 .C160	2.10. 5.10.	-2.94 .0199 .818	-7.45 .0116	-14.5 .0159 1.25	-2.47 .0198	.00589	
NCHD /DE 1 ACHD 3 L/TCHD 31 L/TCHD 32 1/TCHD 32	17.4	14.0.1 6.10.0 6.10.0 0.10.0	43.3 -0.215 -4.35 10.8	74.6	15.3 0104 -5.73	37.7 .006.05 -9.17	73.5 . 0143 -15.1	2.5.6 - 00751 - 5.5.5 - 5.7.5	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7.45 -0.00162 -0.36
N(AZP/OE) A(AZP) 1/T(AZP)1 1/T(AZP)1 L(AZP)1 b(AZP)1	32.7 .0198 .140 3.76	. 0196 - 0372 - 106 3 - 11	.00611 .0112 .0999	248. - 00277 - 0145	50.3 	128. - 00549 - 00951 - 0746 5.23	244. -00195 -0162 -0777	.02.4 .0126 .0507 .0550		116. -01177 -01361 -0564

TABLE VII-5 JNYSZAR TEKUBI TRAKBITH FUNCTION YAOTOBB

Bare Airframe (BODY AXIS SYSTEM)

10 40 K	1 0 0 0 0 0 0 0 0 0	2 .000842 .0200 .347	#4403.1 800.00.1	5 602E- 5 -438 .820	3 .417F-4 .610 -6.06 7.32	13 .00°0134 00307 42 1 .0°21
* C.	1.92)	. 100 P. 2 . 1025 . 3F7 . 198	01500- (1550-)	601E-5 151		.005133 00411 175 .0400
* 44°	1.0600)	.000642 .0274 .0274 .146	0.0000-	600 E-8 176	.00166 454 -1.18	.000133 0126 233 .0163
7 20 K .750	0195 .0339 .362 3.77	.000942	-00469 -00970 	601E-5 .0450 1.37	. 382E-4 . 25.83 -10.7	.000133 00101 .0447 .0307 6.82
* 08.0 * 08.0	(.0498) (.0751) (.362 2.60	.000342 .0261 .417 2.51	00345	600E-5	.661E-4 224 -4.95 7.61	.000133 00437 183 0725
3 20 K	0386) (.115) .355 1.64	.000642 .0346 .474 1.66	00220 (648) (054)	597E-5 276 .646	611 -1.16 3.40	.000133 0147 292 .0370 2.91
5 SL	(.102) (.0644) .477 3.75	.0006.2 .0251 .495 3.75		6006-5 135 1.70	.397E- 4 159 -9.48 13.5	.000133 00251 161 115 6.55
8 81 81 400	(.0626) (.0797) (.75 2.79	.000842 .0327 .508 2.80	00272 (354) (.0676)	599E-5 150 1.32	.5876-4 203 -5.24 8.94	
2 2 2 2 3	(.0293) (.160) .456 1.66	.000842	001 57 (752)	390E-5 357 622	.000164 3.32 (472)	.000 131 0235 483 483 2.70
1 35 .200	(.052) (.108) (.108)	00. 00. 00. 00. 00. 00. 00.	001es (40)	636E-5 502 1.22	.000152 4.70 [615]	.000141 0157 0057 0231 2.01
- 1/2 - 1/2	DENCHINATOR 1/10ET)1 1/10ET)2 2(0ET)1 H(0ET)1	NUMERATCRS NCU 70141 ACC 1 1/1(U 31 28U 31 ECU 21	MIII ZDTHI AIN I 1/714 II 1/716 II	N(T.4E/DTM) A(TME) L/T(TKE) L/T(+ME)2	WHD /DH) A(HD) L/1(HD) L/1(HD) L/1(HD) L/1(HD)	N(AZP/DTH) A(AZP) 1756.291 1764.291 1764.291 164.291 N(AZP)

TABLE VII-6

JEFSTAR LARGITUDINAL HANDLING QUALITING INANASTERS

(BODY AXCH SYSTEM) Bare Airframe

10	¥ 04	004.		**\$00.	19.0	3.49	.413	121.5)	.A25
٠	A A	C . 9 .		.0164	9.64	9.70	¥24·	1	.731
•	¥ 04	005.		. 02 25	4.90	9.43	. 406	:	. 711
•	¥ 02	. 150		0424	30.0	1.85	. 46	(35.4)	1.13
•	20 K	. 550		0122	14.8	3.53	.450	1	1.06
•	¥ 02	.350	f I xED	0160.	3.86	1.64	;	i	1.04
•	øł	. 525	STICK FI	0354	28.0	1.94	.492	ŧ	1.42
•	ぉ	00+-		0215	16.0	3.29	.47	ţ	1.47
~	z	.230		2050-	\$. 24	10.4	. 30	:	1.40
-4	ತ	. 200		. (.2 78	4.32	10.8	. 429	ì	1.70
• 3/4	Σ	•		D(6)/D(U) (DC6/KT)	HZA (0/MAD)	De 75 (0EG /G)	CAP (NAB/SEC/SEC/G)	PAIGOIDEZ) (SEC)	1/01/10)

TABLE VII-7

JETSTAR LATERAL-DIRECTIONAL DIRECTORAL DERIVATIVES

	•	•	٠	•	•	•	•	•	•	•
# 5	-	~	•	•	•	٠	-	•	•	01
£	SL	ಸ	35	ร	20 K	20 K	20 ×	40 K	40 K	40 ×
£	.200	.230	.400	.5 25	.350	.550	.750	.566	.65ù	. 600
^*	140	- 1 00	175	229	0756	119	167	6950	0618	1922.
Q ,	-31.2	52-	-78.0	-134.	-27.5	4.10-	-130.	-22.7	- 36.9	-60.5
.87	4.05	-3.42	-5.27	-7.28	-3.23	-4.43	-4.93	-2.75	-2.93	-2.27
89	1.34	1.10	3.30	5.43	1.21	5.99	5.63	1.02	1.75	7.66
	-1.65	752	-i-30	-1.75	582	935	-1.34	360	492	635
•	245	173	164	1 47	131	119	137	0040	0758	0642
. *.	.517	.234	.181	.170	.169	.124	.0868	-105	9560.	1550.
	- 1 40	172	261	ددد٠٠	125	178	252	0804	+060*-	120
Y• CA	•	ò	•	•	•	;	ö	ö	ò	ó
רינא	12.21	1.0	3.14	5.71	1.13	2.68	5.83	626.	1.71	2.64
N' CA	00557	0864	0767	0524	0770	0759	0524	0716	0831	0240
5.	.0340	.0241	.0424	1950.	.0184	.0 289	0371	.0114	**10*	.0162
8 .1	1.11	.533	1.61	2.17	.568	1.43	2.43	***	.766	1.21
N. CR	1.64	580	-1.81	-3.12	618	-1.55	-2.66	511	9ER	-1.16
										•

TABLE VII-8

JERSTAR ATLERON TRANSPOR FUNCTION FACTORS

Bare Airirume

		. 265 , 0355 1.31	.0030-	-, 0720 -1, 460 -1, 79 4, 52	2.64	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
, see .	0502-6 .576 .0267 1.46	102. 8020. 8420.	1.11	.309	1.70	2.27
8 4. 9 004.	0ccs00 -445 .0c352 1.26			240 -1.04 -1.04 2.20	,914. 1653.	
7 20 4 247.	.00186 1.42 .0690 2.45	. 827 . 0502 3.59	5.03 00167 .0065	062* .700 -1.98	5.83 .0868 2.37	12.6 .0594 .100 .100
20 K	.00242 1.04 .0499 1.36	. 302 . 2440 2.99	2.88 00441 -0876 1.70		2.87	5.23 .0557 .1.87 1.81
5 20 K 30 SE.	.000351 .741 7410.	.0286 .0286 1.07	1.13 0154 103 992	0770 .404 -1.02 3.00	93.1 94.0 10.1	. 933 . 633 . 209 1.20
, , , , , , , , , , , , , , , , , , ,	1.0467 1.64 2.45	. 04.55	5.71 .00255 .120 .2.5	0524 057 -1.72 23.2	5.7 . 116 . 3.4	12.5 .0167 .2.23 .138 .2.51
3 54 5400	.00535	. 245 . 545 . 546 . 546	3.14 06497 122 1.75	0767 717 -1.46 8.92	3.1. 1.1.1. 1.0.0.1.1.1.1.1.1.1.1.1.1.1.1	61.00 61.00 61.00 61.00 61.00
. 24 25.	.0C318 .558 .C229 1.39	. C350 . C350 1.35	1.04	C866 443 623 623	1.02	. 566 . (443 . 9.37 . 221
. 285.	0112 1.91 .C632 1.45	. 256 . 0566 3.51	2.21 01c0 .148		2.21.129	2
F/C =	DENCAMATOR 1/1 (DET)1 1/1 (DET)2 1/1 (DET)2 1/1 (DET)3	NUMERATORS NUMERATORS NUMER 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 416 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N(A / OA) A(R) 1/7 (A)2 1/7 (A)2	111140F 111407 111414 14071H4314	M(AYP/DA) A(AYP) 1/7 (AYP)12 1/7 (AYP)12 2/8 (AYP)13 M(AYP)1

TABLE VII-9

JENNY MINDER TEAMSFER FUNCTION PACTORS

Bare Alifranc

	•	•	•	•	æ	•	^	•	•	07
# 3/4	 ;	, 7	, ,	. 3	20 h	20 K	20 K	A 004.	4 0 4 6 5 0	4.0 A.
IX	.z.c0	.230	004.	.525	950	066	:		•	
ACTION POWER				0.04.4.7	.006351	.00242	.03186	006000	8 +2000	365201
1/T (0ET) 1	0112	.00318	. 600.		.741	•0•	1.42	A 1 C	. 0267	649
1/T (UET)2	56.1	8000	6720	3.	2410	6640	240.	1.26	1 - 40	1.69
21 DE TO 3 M (DE TO 3	7 6 9 7 4	1.39	1.01	2.47	1.37	9.1	•) - -		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								,	4	24.10
MONEY PORT		į	46.20	. 0857	.010.	.0289	1780.	7113	22400	30100
7 9 7	0360	, (27.	-, 50240	0000	1070	502.32	11200-	484	. 5.8	809.
27.0	2.13	. 870	1.43	1.90	944	2.02	14.6	51.7	. 64.2	11.1
1/115 13	\$.5	23.3	45.4	58.3						
							•	***	766	1.21
41P /3R 1			14-1	2.71	. 268	1.40	2.43	0134	12900	00303
- 0)V	111	4522	00502	00255	-,0154	****	250	1.431	(-1.19)	0.90.
1/10	1010-	1.55	(-1.58)	(-1.54)	1 1.47	1-2-2-1	465	(-1.48)	1.201	.695
11 4)7	(-1.051	129.1-1	1.67	1.73	166-1-1					
					,	•	44 61	-, 511	836	-1.16
M(R /OR)	1	580	-1.81	-3.17	213	200	0455	. 363	4	
		. 603	1.42	06.1	3	1611	161.	(.0582)	(021.)	
1/1 K 1-	14.7	1361	(181)	[1853.	1016.	1.47	. 579	1676.	•
1/1 (R 13		-	•							
						•	2.31	. 341	. 663	1.12
NIPHI/DR J		418	1.48	2.63	097	167.6	179	(1.58)	11.26)	.040.
25.5	1.03	159.7	1.683	(-1.64)	1.0.1	(24-(-)	. 502	(-1.01)	(-1.34)	
TCW17	(-1.2c)	1-2.091	(-1.72)	1.76)	68.7.1					
								.4.77	-1.66	
MI AYP/DR 1	40	-5.33	-17.4	-30.0	15.64	414.0	.00234	0317	9:10-	10200.
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1340	(646	75600	70.70		.951	1.50	. 269	7 80 7 80	
1/1 (AYP) 2 2(AYP) 1	\$ 11 C	0 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1111.	2.83	1.59	2.07	2.48	1.50	1.67	
RI AVP 1	-		•	•	٠	•	•	•	•	•

					* ; # * * * * * * * * * * * * * * * * *						
		を できる はない		tainicultani	لخشنا	LESS SEEL	LEACTORIES ENDORUGIA	त्रस्य स्थाप			
					1.00	្ មូ					<u></u>
				** ** * - *	1 202 4	(*************************************					
	•		•	•	•	-	•	•	•	•	With other description
	• 3/1	~	۰.	,47			n	Per	Z	œ	
	ı	.5	ដ	. 7		-:	4	4 07	4 0,	4 3,	;
	x	.206	26.7.	005.	•	D-£.	045.	• .750	. 500	653.	.850
	DR PLKISE COLLS	*;	.6.4	3.43	٠,	•	5.1.5	*: -	16.4	4.24	3.12
	1/611/29	151.	803 -		•	.13	.453	1.23.	6319	.242	:15.
	SP1241 623 15163	62.1	:	;		:	•	;	. 99 .	.5612	3443.
	4(1)	434	£.34.	1.00	•	1736	1-95	3.47	.753	1.53	3.47
	F123	404.	11011	1.51	•	. 15.2		3.73	.365	1.53	3.36
	5133	Ais.	. 20%	1.30	10	1.03	2.40	3.83	1.17	2.31	3-6
	8177.4 (13)		136	6.46.		34.	. 94.9	-962	. 510	916.	.473
	PIGS C 1/P (AV)	1 ; 5 .	. 123	. 0105	•	•	Vc 30.	.0173	. 428	111.	00:00
	3(P.1)/4(0)	7	*37.	716.			.14.	010.	. 724	.874	5:5
	D[1-4-44K	្ន	. 368	. 251		.356	.202	.203	.374	.339	. 201
	PHI IN BEEN, FLASE	¥-16	-327.	33.0		- 5.3-	76.0	25.7	-340.	15.7	50.0
	Pal : 0 CETA		8 * - 7	1.13		1.50	1.11	.708	1.53	1.21	.693
	Pus ris ve	. 22.	330	.1.5		\$75.	. 153	.0714	. 302	.222	.103
ń				•		•	•	•	•	•	

JETSTAR DATA SOURCES

- Myers, Russell H., Jr., and Carl S. Cross, Jetstar Flight Evaluation, Air Force Flight Test Center Rept No. FTC-IDR-62-24C-140, Fet. 1963
- Clark, Daniel C., and John Kroll, General Purpose Airborne Simulator— Conceptual Design Report, NASA CR-544, Aug. 1966
- Flight Manual, USAF Series C-140A, C-140B, and VC-140B Aircraft, T. O. 1C-140A-1
- Jetstar Handbook of Operating and Maintenance Instructions for USAF Models C-140A and VC-14CB Aircraft, T. O. 1C-140A-2

CONVAIR 880M

CONVAIR 88CM BACKGROUND

The Convair 380M is a medium-size four engine jet transport. Longitudinal and directional control consists of servo tab deflected elevators and rudder. Lateral control consists of servo tab deflected allerons plus hydraulic actuated spoilers.

Elevator, aileron, and rudder transfer functions are in terms of respective primary surface deflections with tab losses included. Although the control system diagram shows a lag in the spoiler actuator, none was used in computing transfer functions.

Nominal Configuration

c.g. at .25 5, 4.1. -19.2 Ix = 1510000 slug-122 I_y = 2510000 slug-ft² = 4100000 slug-ft2 # 155000 1b

Power Approach Configuration

c.8. at .195 C, W.L. -19.? Iz = 4070000 slug-ft² Ix = 1150000 slug-ft² Iy = 2450000 slug-ft² W - 126000 1b Flaps 300 Gear Up

Landing Configuration

Same as Power Approach except: Speed Brakes 80 Flaps 500 Gear Down

Flight Envelope

---- Speed Restrictions **©**

Transfer Function Case

S = 2000ft² b = 120 ft E = 18.94ft

CV-880M

Figure VIII-2. Convair 880M General Arrangement

CV-880M

PITCH AXIS

ROLL AXIS

YAW AXIS

Figure VIII-3. CV-880M Control System

TABLE VIII-1

CV-880M

Longitudinal Non-Dimensional Stability Derivatives

Flight Condition Configuration	l L	2 P A	3	<i>L</i> ₊	5	6	7
Speed	134 KTAS	165 KTAS	.6м	.86м	.7M	.8M	.86м
Altitude	SL	SL	23K	23K	35K	35K	35K
a _o (Dej)	5.2	4.3	5.3	2.8	8.3	4.7	4.0
$c_{ m L}$	1.03	Sè.0	0.36	0.175	G.454	0.347	0.301
$c_{\mathtt{D}}$	0.15-	0.080	0.022	0.019	0.025	0.024	0.025
C _{I_{tr}} (1/rad)	4.66	4.52	4.28	4.41	4.62	4.8	9
CD _C (1/rad)	0.43	0.27	0.14	0.07	0.18	0.15	0.13
$C_{m_{\alpha}}$ (1/rad)	-0.381	-0.903	-0.522	-0.572	-0.568	-0.65	-0.74
C _{I:} (1/rad)	2.7	2.7	2.44	2.5	2.75	2.75	2.9
C _{Lq} (1/rad)	7.92	7.72	6.76	6.37	7.51	7.5	7.62
C _{ma} (1/rad)	4.17	-4.13	-4.16	-4.66	-4.4	→.5	∹ .6
C _{mq} (1/rad)	-12.2	-12.1	-11.5	-11.8	-12.	-12.	- 12.
C _{T.a} (1/rad)	0.22	0.213	0.193	0.141	0.203	0.190	0.180
$C_{L_{\delta_e}}$ (1/rad) $C_{m_{\delta_e}}$ (1/rad)	-0.657	-0.637	-0.586	-0.438	-0.618	-0.57	- 0.5₹2
Chôe (1/rad)	-0. 326	-0.323	-0.336	-0.278	-0.342	-0.31	-0. 285
	0.055	0.0532	0.0:82	0.0352	0.0508	0.047	0.0450
μ _{Oi}	-0.164	-0.159	-0.146	-0.11	-0.155	-0.1 ⁵	-0.134
$C_{\text{mbt}_{e}}$ (1/rad) $C_{\text{hbt}_{e}}$ (1/rad)	-0.287	-0.285	-0.297	-0.343	-0.312	-0. 335	-0. 352

TABLE VIII-2

су-88см

Lateral-Directional Non-Dimensional Derivatives (Stability Axis System)

Flight Condition Configuration		2 PA	3	F	5	6	7
Speed	13- KTAS	165 KTAS	.ем	.86x	.711	.24	.86M
Altitude	EL	SL	23K	23K	35K	35K	35K ,
C _{y=} (1/rad)	-1 .015	-0.877	-0.758	-0.815	-0.807	-0.8; 25	-5.8-6
$C_{I_{\pm}}^{z}$ (1/rad)	-0.239	-0.196	-0.163	-0.1-5	-0.181	-0.77	-0.179
C (1/rad)	0.145	0.139	0.128	0.122	0.129	0.129	0.133
C: (1/rad)	-0.395	-0.381	-0.329	-0.243	-0.341	-0.312	−3.2ÿ
C _{2p} (1/red)	-0.367	-0.049	-0.0173	-0.0031	-0.023	-0.011	-0.005-
C _{Ir} (1/rad)	0.309	0.198	0.146	830.0	0.180	0.153	0.146
C _{r_} (1/red)	-0.218	-0.185	-0.163	-0.189 ·	-0.166	-0.165	-0.165
C (1/rad)	0	0	0.0019	0.07-5	0.0044	0.00775	0.00975
C _{jta} (1/rad) C _{jta} (1/rad)			-0.0466				
F.S.A.	0.01862	0.0172	0.00746	0.01061	0.007	0.00803	0.00975
C _{ns} (1/rad) C _{hs} (1/rad)	-0.607	-0.481	-0.236	-0.258	-0.2233	- 0.2005	-0.258
Cys (1/rad)	0	0	0	0	0	0	0
Cys. (1/rad) Cys. (1/rad) Cr. (1/rad)	-0.0072	-0.0056	-0.0068	-0.0068	-0.0071	-0.0075	-0071
C _{Ds_} (1/rad)	0	0	0		0	0	0
Creta (1/rad) Cheta (1/rad)	-0.249	-0.227	-0.215	-0.2125	-0.226	-0.235	-0.213
Cyty (1/rad)	-0.078	-0.0315	-0.0189	-0.0175	-0.0189	-0.0189	-0.0175
C _{fb} (1/rad)	0.0805	0-0405					
Cre (1/rad)	0.0258	0.0129	0.01146	0.0109	0.0097	0.0100	c.00917
Cyty (1/rad)	0.225	0.2155	0.1904	0.1394	0.199	0.184	0.1685
C, (1/red)	0.0207				0.0165		0.0195
Cng. (1/rad)	-0.0995	-0.0958	-0.0845	-0.0554	-0.0848	-0.0756	-0.06U
Chi_ (1/rad)	-0.2140	-0.2125	-0-1626	-0.1844	-0-1345	-0.1491	-0.1924
	0.0495						
Can (1/mad)	0.0021	0.0027	0.0016	0.0018	0.0014	0.0019	0.0020
Cns. (1/rad) Chs. (1/rad)	-0.020	-0.019	-0.თ5	-0.0077	-0.016	-0.0134	-0.011
Char (1/rad)	-0.255	-0.253	-0.267	-0.25	-0.27	-0.267	-0.265
			199	•			

TABLE VIII-3

CV-880M DIMENSIONAL, MASS, AND FLIGHT CONDITION PARAMETERS

•	•	•	•	•	•		•
F/C #		~	m	•	•	•	~
H(FT)	St	S	23 K	23 K	35 K	35 K	35 K
#(-)#	£8.	. 249	203.	.86€	.700	. 800	.860
V10(PPS)	2 26.	270.	615.	. 198	.183	179.	837.
VTO(KTAS)	134.	165.	364.	525.	+0+	.194	.96
VTO(KCAS)	. *	165.	259.	381.	235.	272.	295.
H(FB S)	126007.	126007.	155008.	155006.	1:5008.	155008.	155008.
C. G. (PGC)	. 195	. 195	.250	.250	.250	.250	.250
1x (Stu6-FT SC)	.1 15 E+7	.1156+7	.1516+7	.151E+7	.1516+7	.1516+7	.1516+7
IY (SLUG-FT 59)	.2456+7	.245E+7	.2516+7	.2516+7	.2516+7	.2516+7	.2516+7
12 (SLUG-FT SQ)	.3 59 E+7	.3596+7	.41CE+7	.4106+7	.4106+7	. 410E+7	.4105+7
1X2(Stug-FT 50)	ċ	•	•	ó	ò	ં	•
EPSILCA(DEG)	.	•	•	ċ	ċ	ė	•
9(854)	9.09	92.2	. 216.	***	171.	224.	259.
QC (PSF)	61.4	93.6	236.	532.	193.	262.	310.
ALPHA (DEG)	9.20	4.32	5.30	2.80	6.30	4.65	*0.
GAMMA (DEG)	•		ċ	ċ	•	ó	•
LXP(FT)	40.1	48.1	1.64	45.1	49.1	49.1	49.1
L2P(FT)	4.15	-4.15	-4.15	-4.15	-4.15	-4.15	-4.15
17H(3EG)	3.00	3.00	3.00	3.00	3.00	3.00	3.00
XI (DE 0)	\$.00	3.00	3.00	3.00	3.00	3.00	3.00
LTH(FT)	2 .00	2.00	2.00	2.00	2.00	2.00	5.00

CV-980M LONGITUDINAL DIMENSIONAL DERIVATIVES

	•		•	•	•	•	•
•		~	•	*	31	4 .	~
	S L	3	23 K	23 K	35 K	35 K	35 K
	.203	.449	209.	.866	.700	. 800	. 860
•	0292	0192	00501	00764	00799	00468	00512
• 2:	226	173	0473	1283	000148	0364	0330
•	. 8946-5	.000262	.000231	.000182	.000325	. 000207	.000221
2	.140	.127	6580.	6990.	.0929	. 0699	.0552
	+19	785	629	927	105	577	632
ş	00159	19400-	00276	00434	00245	002 81	0034+
QX	0154	0154	00544	00561	00391	00396	00419
2	-10.2	-12.3	-9.26	-12.6	-7.26	-8.42	-9.21
07.	000723	000717	600338	000380	000235	000237	000242
9	481	585	578	85C	431	493	530
9	.450	.539	1.14	13.1	1.52	1.10	1.09
30 5	-4.95	-7.13	-12.3	-20.6	-10.4	-13.5	-15.4
	643	647	-1.37	-2.34	-1.17	-1.49	-1.65
H G	.000255	.000255	.000200	.000207	.000207	:000501	.000207
ZD TH	1346-4	1346-4	1096-4	1096-4	1096-4	1096-4	-1008-
72 74 75	.8165-6	.8 166-6	. 197€6	. 1976-6	. 797E-6	. 797E-6	. 197E-6
	•	4	•	•	•	•	•

Table VIII-5

CV-6ACM ELEVATOR DIMENSIONAL DERIVATIVES

Bare Airframe

F/C B H H H H A A A A A A A A A A A A A A A	•	•	•	4	•	•	•
	4	y	•	,	•)	_
	\$ ° 503	S.L .249	2 5009.	23 K .8&C	35 K	35 K	35 K
M(061)1 21061)2 M(061)2	. 120 . 131 . 793	. 137	.0361	. 0815 . 0452 . 493 2 . 1 3	.0351	. 0443 . 0538 . 349 16	.0504
NUMERATCRS NL		**************************************	40.04.	1.00 58.00 82.2	1.51 74.9 .23.9	84. 84. 82.2 83.5	1.08 88.2 .209
N(h /DE) 1/7(H)1 2/14)1 1/1)1	19.7 19.7 . 0965	-7.03 24.7 .0783	-12.3 67.7 .0429 .0508	-20.9 49.2 .105 .0325	75.3	. 13. 5 . 65. 9 . 05.13	-186.7 -006.7 -006.1
N(THE /DE) A(THE) 1/1(THE)1 L/7(THE)2	. 597	. 694 . 694	-1-37 -012 -596	. 60977		-1.48 .00932 .545	-1.64 .0087s .595
NI HD 70E 3 A(HD 3) 1/f(HC 31 1/f(HD 3E 1/f(HD 3E	4.89 .0161 .3.54	7.05	12.3 . GC289 6.11	20.5 .066.75 9.02	10.5 .C0101 9.78	13.5 .00304 .6.55	15.4
M(AZPJUE) A(AZP) 1/T(AZP) 1/T(AZP) 2(AZP) 6(AZP)	. 02.50 . 040.50 . 260	23.9 -0154 -0277 -250 -232	54.9 .00636 .00921 3.05	93.6 00200 003.4 1633.4 1633.4	C0 703 C0 778 C0 778 12 5	59.3 -00428 -00730 -124 3.26	.00334 .00710 .125

TABLE VIII-6

CV-88CM THRUBT DIMENBICKAL DERIVATIVES

Bare Airframe

(BODY AXIS SYSTEM)

. :

#/C #		~	•	•	•	٠	^
T.	\$ L .203	St.	23. \$ 000.	23 K .86C	35 K	35 × 800	35 K
DE NCMINAT CR 2 (0E 1) 1 N (DE 1) 1 2 (0E 1) 2 M (0E 1) 2	.120 .131 .793	.0628 .137 .599 1.29	.0361 .0659 .494 1.42	.0815	.0351 .0528 .400 1.37	. 0548 . 0598 1. 56	.0513
NUMERATORS NIC /OTH) ACL 1 LYTC 11 ECU 11	.000 255	.000.58 .0586. .5900.1		.0002C7 0284 461 2.13		. 000207 0348 335	.000207 0293 328
NE / DIH) AI' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	128E-4 -6.54 400 28		- 107E-43.6 -43.6 -590	-107E-4 -62.5 .e11	1CTE-4 C0906 (.C937) (-49.5)	108E-4 -55.8 -750 .0350	1086-4 -60.1 .879
N(THE / DTH) A(THE) L/T(THE)1 L/T(THE)2	.842E-6 (.955) (.398)	.839E-6 (.838) (.580)	.807E-6 .130	.805E-6 .09EE .943	. 6065-6 .0850 .536	.803E-6 .111	.803E-6 .113
MCMO / OTH) ACHO) L/TCHO) 210 011	.359E-4 .137 .658 2.15	2 - 100 E - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	.298E-4 .0973 .249 3.52	.209E-4 .C776 .21C 5.96	.405E-4 .0568 .187 2.92	.275E-4 .0865 .197 3.72	.253F-4 .0906 .18F
N(AZP/OTH) A (AZP) 1 (AZP) 2 (AZP) 2 (AZP) 2 (AZP) 2 (AZP) 3 (AZP) 4 (AZP) 4 (AZP) 5 (AZP) 6 (AZP) 6 (AZP) 7 (AZP)	5336-4 0155 163 549 1.70	5326-4 00919 353 16	503E-4 6C455 .113 .201	5034 001-01 004: 001	503E-4 00686 .0864 .145	502E-4 00344 .0991 .165	502E-4 00276 -102 -162

TABLE VIII-?

CV-880M LONGITUDINAL HANDLING QUALITIES PARAMETERS

Bare Airframe

SYSTEM)
AXIS
BODY
_

^	35 K	.860	
•	35 K	. 800	
'n	35 K	.700	:xeo
•	23 K	.860	STICK FIXED
er.	23 K	. 600	
8	รเ	.249	
~	SL	. 203	
F/C #	I	2	

0 (6) /0 / 0	D(G)/D'U) (CEG/KT)0488	0488	0376	00873		0306	02636030600918	011
NZA (G/RAD)	RADI	4.69	4.47	11.6	54.4	10.1	13.3	15.6
DE/G (DEG/G)	EG / G)	18.8	23.5	7.36	4.60	5.03	7.09	7.11
CAP (RAI	CAP (RAD/SEC/SEC/G) .144	. 144	. 264	.176	.187	.184	.184	.204
PHUGOTO!	PHUGOTO(2) (SEC)	:	;	:	;	:	;	i
176(1710)		3.55	2.04	1.55	1.55	1.19	1.19	1.13

TABLE VIII-8

OV-88OM LATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

	•		•	•	•	•	
F/C .		~	m	•	'n	•	•
I	S L	SL	23 K	23 K	35 K	35 K	35 #
2.	.203	.249	009.	.960	.700	.800	.840
>	139	148	115	170	0842	6960	108
٧8	-31.5	-41.3	01-	-156.	-57.4	-75.5	4.06-
. 07	-3.19	-3.76	-5.98	-10.4	-5.38	+9.4.	-1.72
- 8N	664.	.763	1.42	2.98	1.02	1.50	1.82
i dì	-1.39	-1.62	-1.14	-1.15	863	884	893
e d.V	113	0857	0416	0105	0453	0240	0165
13.	086.	.756	434	.469	.364	.384	.401
«	2 15	232	188	327	130	156	-,159
Y+DA	0371	0161	(10458	+1100	00303	00364	00512
L.DA	3.84	2.81	2.85	9.00	2.30	2.93	7.00
N.DA	.401	202	.230	.321	192	.142	\$61.
¥•08	0.500	9670.	.0245	.0220	1010.	. 01 96	.0187
1.08	.335	.507	₹08.	1.34	.563	.824	.892
A0.4	327	480	976	-1.22	747	0.870	829

TABLE VIII-9

CV-880M ALLERON TRANSFER FUNCTION FACTORS

Bare Airframe (BODY AXIS SYSTEM)

•	33 × 038.	.00837 .875 .0931	-100512 1.7.1 184. 1878.		. 194 . 549 . 0190	1.03	21.4
٠	35 × 800	. 00790 . 871 . 0903	00364 .253 (.868] (-26.6)	2.93 00111 105	.504.	2.44	100 100 100 100 100 100 100 100
w	7.00 E	.00553 .792 .105		2.30 2.000. 1.21	. 192 . 325 . 0193 1.59	2.3	16.4 .180 .214 1.26
•	23 K	. 0184 1.17 1.32	00774 -1.26 (1.68) (4.71)	- cos 36 - 141 1.90	. 121 . 784 . 0865	10.1	33.8 .363 .135 1.90
^	23 x	.00785 1.12 1.62	00.5E -8.17 -952	2.45		2.67 .126 1.39	20.3
~	St.	.0123 1.69 .136 1.11	0161 -318 (-3.87)	2.81 0c835 .223 1.05	. 202 1.05 211 1.26	2.62	1.152 1.152 1.092
-	\$15,	.00912	0371 .316 (-2.74) (5.42)	3.84 0122 256 936	. 951	3.87	66. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
F/C .	ı*	06 NCHINATOR L/T(06T)1 L/T(06T)2 L/OET)1 N(06T)1	NUMERATCRS N48 /OA) N48 /OA) 1/1/8 11 2/8 11 N/8 11	NI 9 / DA 3 AI P 3 L / T(P 3L 2(P 3) 1	NIR /0A) AIR) 1/TIR) 1/TIR) 1/E 11	NI PHI /DA) A (PHI) E (PHI) I	NI AYP/OA 3 A E AYF3 1 / T E AYF3 1 1 / T E AYF3 1 2 E A Y F3 1

CV-880M RUDDER TRANSFER FUNCTION FACTORS

TABLE VIII-10

Bare Airframe

7	35 K 35 K 800 .860	.0740 .00837 .871 .875 .0903 .0931	.0196 .0187 .01360115 .071 .7.9	.824 .892 0033400273 2.21 2.20	.870829 .721 .751 .228 .209 .547 .543	.753 .834 2.26 2.24 2.70 -2.59	-24.1 -21.4 02300226 .634 .134 1.16 1.18
'n	35 K	. C0553 . CC . 792 . B . 105 . C . C . C . C . C . C . C . C . C .	- 018/	. 563		2.454	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	23 K	.0184 1.17 .132 1.88	.0255 00255 1.17	1.36 00177 2.53 -2.60	1.02 1.02 1.02 1.04 1.04	1.3C 2.56 -2.65	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	23 K	3 .06789 1.12 .112 1.41	.0245 0164 1.12 41.0		926	2.22	127.1
~	249 .249	12 .0123 0 1.69 9 .136	50 . C298 53 - C398 5 1.71 4 17.5	5 .507 23 .00846 9 1.50 2 -2.06	7480 3 1.71 13 .114	5 . 471 5 . 1.49 5 . 2.24	300598 3 1.76 3 2.04
	\$ c.	.00912 1.50 1.119	. 02 50 07 53 1 . 5 5 1 . 4 . 4	. 335 - 0123 1.29 -2.12	327 1.53 . C813	. 30 s. 2. 36 s. 3	1.63 1.63 1.63 1.63
# 5/d	II	DENCHINATCR 1/T (DET)1 1/T (DET)1 2(DET)1 6(DET)1	NUFERATORS NO 104) A18) 1/1/6)1 1/1/6)2 1/1/6)2	N(P /OR) A(P) L/T(P)1 L/T(P)2 L/T(P)3	N(R /OR) A(R) 1/T(R) 2(R) 1/(R) 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	N(PHI/DR) AIPHI) 1/T(PHI)1 1/T(PHI)2	N(AVP/DR) A(AVP) L/T(AVP)1 L/T(AVP)2 L/T(AVP)2 L/T(AVP)2

TABLE VIII-11

CV-880M LATERAL-DIRECTIONAL HANDLING QUALITIES PARAMETERS

Bare Airi'reme

F/C #	4	~	m	4	•	9	~
r	૪	SL	23 K	23 K	35 K	35 X	35 K
•	. 203	.249	009.	996.	.700	.800	.860
DR PERTOD (SEC)	6.20	5.69	54.4	3.37	4.75	4.41	4.10
1/6(1/2)	80°1	1.24	1.03	1.21	.956	.822	.848
SPIRAL (2) (SEC)	ł	1	;	;	;	;	;
P(1)	2 . 5 2	1.56	2.36	4.85	2.37	2.95	4.11
P(2)	1.57	1.19	1	4.85	2.12	2.72	3.92
P(3)	2.12	1.38	ł	4.85	2.21	2.79	3.95
P(2)/P(1)	.624	.764	1	1.00	. 893	. 92 4	.953
P (OSC) /P (AV)	. 192	. 105	ł	. 107E-4	. 03 95	. 0263	.0143
W(PMI) /H(D)	-915	.937	. 984	10.1	.914	. 947	.967
DE L-8-PAX	699.	.272	8750.	. 6237	0.11.	.105	.0839
PHI TO BETA, PHASE	-302.	-304.	34.1	23.1	-333.	-333.	54.9
PHI TG BETA	1.96	1.94	2.45	2.66	5.64	2.85	2.90
PHI TC VE	. 497	. 400	.329	.251	.358	.376	.357

CV-880M DATA SOURCES

McNeill, Walter E., Calculated and Flight Measured Handling-Qualities Factors of Three Subsonic Jet Transports, NASA TN D-4832, Nov. 1968.

Brooks, Peter W., The World's Airliners, London, Putnam, 1962.

BOEING 747

SECTION IX

BOEING 747 BACKGROUND

The Boeing 7-7 is a very large four-farjet intercontinental transport designed to operate from existing international airports. To obtain the necessary low speed characteristics the wing has triple-slotted trailing flaps and Krueger type leading edge flaps. The Krueger flaps outboard of the inboard nacelle are variable cambered and slotted while the inboard Krueger flaps are standard unslotted. Longitudinal control is obtained through four elevator segments and a movable stabilizer. The lateral control employs five spoiler panels, an inboard aileron between the inboard and outboard flaps, and an outboard aileron which operates with flaps down only on each wing. The five spoiler panels on each wing also operate symmetrically as speedbrakes in conjunction with the most inboard sixth spoiler panel. Directional control is obtained from two rudder segments.

Information for this aircraft was obtained solely from a 747 simulator description (Boeing D6-30643).

Nominal Configuration

Load to Max Zero Fuel Weight TOGW less 4C% Puel W = 656,600 1b

Ix 18.2 × 106 slug-ft? c.g. at 0.25 6

 $I_z = 49.7 \times 10^6 \text{ slug-ft}^2$ $I_{xz} = 0.97 \times 10^6 \text{ slug-ft}^2$ Iy = 23.1 × 106 slug-ft²

Sody Axis

@ @ @ **⊚** 40,000 20,000 h(**f**)

©

Landing Configuration

Came an Fower Approach except:

300 Mape Gear Down

Body Axis

 $I_{x} = 15.7 \times 10^{6} \text{ slug-ft}^{2}$ $I_{y} = 30.5 \times 10^{6} \text{ slug-ft}^{2}$ $I_{z} = 45.1 \times 10^{6} \text{ slug-ft}^{2}$

41 000,492 = W

c.g. at 0.25 😇

 $I_{xz} = 0.825 \times 10^6 \text{ slug-ft}^2$

Elgure IX-1. 0-767 Elligat Condictors

Power Approach Configuration

Max Landing Weight

20° Flaps Gear Up 1.4 Vs

Figure IX-2, B-747 Ceneral Arrangement

The state of the s

YAW SAS

 $\phi_{\text{INS}} = \int p \, dt$

(Gyro and INS Aligned with FRL)

Figure IX-4. B-747 SAS

Landing Configuration Mon-Dimensional Derivatives

h = sca level

 $V_{T_O} = 131 \text{ KTAS}$

 $\alpha_0 = 8.5^{\circ}$

 $\delta_s = -6.3^\circ$

Longitudinal Lateral-Directional

 $C_{L} = 1.76$ $C_{y_{\beta}} = -1.08/rad$

 $C_D = .263$ $C_{B} = -.281/rad$

 $CL_{\alpha} = 5.67/\text{rad}$ $C_{\text{ng}} = .184/\text{rad}$

 $CD_{\alpha} = 1.13/red$ $C\ell_{p} = -.502/red$

 $c_{m_{\alpha}} = -1.45/\text{rad}$ $c_{n_p} = -.222/\text{rad}$

 $C_{\ell_r} = .195/rad$

 $C_{m_{c}} = -3.3/\text{rad}$ $C_{n_{r}} = -.36/\text{rad}$

C_{Lq} = 5.65/rad C_{lba} = .0530/rad

20g 277

 $C_{m_q} = -21.4/\text{rad}$ $C_{n\delta_8} = .0083/\text{rad}$

 $C_{\underline{M}} = -1.1$ $C_{y\delta_r} = .179/rad$

 $C_{m_{M}} = .36$ $C_{\ell \delta_{r}} = 0$

 $C_{1\delta_e} = .356/\text{rad}$ $C_{n\delta_r} = -.112/\text{rad}$

 $C_{m\delta e} = -1.40/rad$

 $C_{L_{\alpha}} = -6.7/\text{rad}$

ε_a = total deflection of right inboard aileron plus left inboard aileron with the effect of outboard ailerons included

Power Approach Configuration Non-Dimensional Derivatives

h = sea level

 $V_{T_O} = 165 \text{ KTAS}$

 $a_0 = 5.7^0$

 $\delta_s = -2.1^\circ$

Longit	cudinal	Latera	L-D:	irectional
c _{L} =	1.11	$c_{\mathbf{y}_{\boldsymbol{\beta}}}$	=	96/rad
c _D =	.102	C _{ℓβ}	=	221/rad
CL=	5.70/rad	$c_{n_{\beta}}$	=	.150/rad
c _D a =	.66/rad	$c_{\mathbf{\ell_p}}$	=	45/rad
C _{TC} =	-1.26/rad	$c_{\mathbf{n}_{\hat{\mathcal{D}}}}$	=	121/rad
cra =	-6.7/rad	Car	=	.101/rad
Cm& =	-3.2/rad	$c_{n_{\mathbf{r}}}$	=	30/rad
C <u>r.</u> -	5.4/rad	C.Loa	=	.0461/rad
Cmq ≈	-00.8/rad	$c_{n\delta_{\mathbf{a}}}$	=	.0064/rad
C _{Lag} =	81	$c_{y_{\delta_r}}$	=	.175/rad
CmM =	.27	c _{es}	=	.007/rad
CL6e =	.338/rad	$c_{n\delta_{\mathbf{r}}}$	=	109/red
c _{mõe} =	= -1.34/rad			

 $[\]delta_a$ = total deflection of right inboard aileron plus left inboard aileron with the effect of outboard ailerons included

ر ک

B-747 6366001b Stability Axis Flexible

1

____ SL ____ 20,000ft ____ 40,000ft B-747 6366001b Stability Axis Flexible

Note:

- Because spoilers operate around a dead band their effect is neglected here
- 8a is the total differential deflection of right and left inboard ailerons

B-747 6366001b Flexible

TABLE 1X-3

B-747 DIMENSIONAL, MASS AND FLIGHT CONDITION PARAMETERS

8 = 5500 sq ft, b = 195.68 ft, T = 27.51 ft

F/C 4		~	m	•	•	•	~	æ	σ	č
H(F7)	3,	ร์	ᅜ	ತ	20 X	× 02	20 K	A C	, ,	¥
H(-)	. 198	652.	.450	265.	.500	059.	. 800	٠٦٠٠	Sug.	000.
V10(FPS)	221.	278.	505	126.	918.	676.	830.	6.78.	174.	. 11.
VT0(% TAS)	131.	165.	298.	430.	307.	399.	.265	. 202	. 653	. 416
VICIFCASI	131.	165.	298.	430.	228.	2 99.	373.	. 11.	247.	a r.
H(FD S)	96 40 32 .	56 40 32.	636636.	636636.	636636.	616636.	636638.	626636.	. 944463	634476.
C.G.1 MGC)	. 250	.250	.250	.250	.250	.250	.250	.250	٥٠٧٠	.2.0
1x (5LUG-FT 50)	,142 €+8	.1426+8	.1625+8	.182E+3	.1826+9	. 1 62 6 + 8	.1625.8	.132F-A	.182E+8	. 18 1E + B
17 (SL'36-FT 50)	.3236+8	.3256+8	.331648	.3318+6	.3316+8	.3316+0	.3316+8	.331 E+9	8+31EE*	. 44! [• 3
12 (3106-FT 59)	.4 % E+8	.4546+8	.497E+8	.497E+A	8+3/64.	. 497E+A	.497E+#	.497F+B	8+3604.	3.1.65.
1x215LLG-FT SQ)	.00 20.	.06000	970056.	910056.	910056.	270055.	970055.	970056.	. 440060	9.50054.
EPSILCAIDEGI	-1.60	-1.60	-1.76	-1.76	-1.70	-1.16	-1.74	-1.7^	-1.74	-1.72
01755)	58.1	92.2	300.	+26.	170.	. 88.	436.	135.	.77.	224.
OC 195F)	58.7	93.6	315.	695.	181.	320.	510.	153.	207.	277.
AL PHA (DE G)	6.50	5.70	3.10	•	6.80	7.50	ė	7.30	ر . ۲	2.40
GAMMA (DE G)		•		•	ė	o	ć.	ċ	ċ	٥.
LXPIF T)	0.48	0.0	86.0	86. C	66.0	66.0	A6.0	٥٠٠٩	C. 4 a	0.49
LZP(F T)	-10.0	-10.0	-10.0	- 10.c	-10.0	-10.0	0.71-	-10.0	-10.0	0.01-
1 TH(DEG)	2.50	2.50	2.50	2.50	2.50	2.50	ç.	٠٠.٠	2.4.5	0,1,0
x1 (366)	2.50	2.50	2.50	2.50	2.50	0 \$. 5	3.5	C	٠,٠	2.50
LIMIFTI	10.0	10.0	10.0	10. C	10.0	10.0	10.0	10.0	ان.0	0.01
•	•	•	•	•	•	•	•	•	•	•

The second of th

B-747 LONGITUDINAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

.	-	~	m	•	m	٠	^	6 0	٠	10
r	S.L	ช	ร	ร	20 K	20 K	20 x	* O	4 C	> 04
•	1198	.249	054.	.650	.500	.650	. 800	.700	. 800	,00°.
• nx	0209	0108	00499	00777	90247	00280	00643	.00187	00.76	n 200
• 22	202	150	0807	126	0679	0832	0041	1 1605	0450	4270
•	. 1000117	191000.	.000146	000:49	.000247	. 88 SE -4	000222	.05000.	£61000°	4-4625.
##.	.122	104	.0743	6460.	.0782	.0482	.0253	.0243	61:0.	.0159
77	912	613	736		433	939	624	205	317	401
ž	00177	-,00193	-,00262	- ,00239	001 70	06100	00153	0101	50100-	0.000-
QM2	.0334	.0338	.0257	.0243	.0157	.0156	.0144	4CL00.	99900*	• 19 00•
20	-6.22	-7.58	-10.4	12.8	-6.39	-8.09	66.6-	-4.32	-5.16	-6.71
Q M A	000246	000240	000221	000228	000125	000155	000212	905 E-4	911000-	-,10016
2	357	437	669*-	925	421	535	659-	784	330	10: -
XD E	.9 59	.971	1.14	•	20.2	1.15	•	1.93	1.44	181.
106	-6.42	-9.73	-21.8	- 32 . 4	-16.9	-24.4	-32.7	-15.1	-17.0	-18.A
POE	378	574	-1.40	-2.0:	-1.09	-1.69	-2.09	0.00	-1.16	-1.22
HT CX	. 570E-4	.570E-4	. 5C 5E-4	. 505F-4	.5056-4	.5058-4	. 505F -4	.505F-4	4-3505.	\$-35US*
20 TH	249 E-5	2496-5	2206	2201-5	2206-5	220E-5	220F -5	220 E-5	2206-5	72nf-5
15 05	.3106-6	.3106-6	. 30 2E- 6	.3021-4	.302£ -6	. 3026 - 6	. 302F -6	.3026-5	4-35 OF.	37.25-6
•	•	•	•	•	•	•	•	•	•	•

12.g

TABLE IX-5

a terromana

B-747 KLEVATOR TRANSFER FUNCTION FACTORS

Bare Airframe

	_	
	7	
	2	
	2	

F/C B	-	7	m	•	•		•	æ	a	c :
II	5 t.	SL .249	SL .450	۶د 6.5د	20 K	20 K	2C × 200	4C K	* C. * .	A 07.0.
DE NCALNATCA 2 (DE 1) 1 M (DE 7) 1 2 (DE 7) 2 M (DE 1) 2	. 152	.0228 .127 .629 .910	.0319 .0753 .575	.11C .036. .637 1.63	.0241 .0823 .446 1.04		.323 .00984 .567 1.30	46.00 1970. 1970.	.06.73 .06.73	.004 .03:1 .1-1 .2-1
NUMERATCRS NIU /DE 3 A/U 31 1/TIU 31 2(U 31 KIU 31		10.1 10.2 13.2 13.0 1.0 1.0	1.22 21.1 .269 .526	-1.15 3.71 (-14.9)	20.2 32.7 306.	42.0 42.0 47.35	1.873 1.83 (-25.5)	4.44 4.44 4.45 4.45 4.45 4.45 4.45 4.45	# 0 0 4 4 0 0 4 4 0 0 0 11 5 0 0 0 11	
NCW /DE) A(N) 1/TCW 1 2(W)1 N(N)1	12.9 12.9 171	10.1 16.4 10514 133	32.5 32.3 .0401		33.2 33.2 0238	43.0 43.0 .0138	-33.2 52.7 0537 0533	7.67 2.63 2.630 	0.41- 0.78- 1.50. 7.40.	-18.7 -0.4.0 -1.0.0
11 THE /OE) A(THE) 1/T(THE)1 1/T(THE)2	.0801	572 .0396 .574	-1.40	-2.07	-1.09	-1.68 .0107	-2.07	968 . 004 19	-1.16 -0113 -205	1.21
N(HD /OE) A(HD) L/T(HD)1 L/T(HD)2 L/T(HD)3	6.72 0118 -2.17	1.00.4 1.40.4 2.40.4	. 202.5 . 5.21 . 5.31	W	17.3	26.8 .000530 -4.20 5.00	000.0 000.5 00.5 00.0			18.9 - 716.1 - 4.3.5 - 42.4
N(AZP/UE) A(AZP) 1/T(AZP) 1/T(AZP) 2(AZP) k(AZP) h(AZP)	25.7 .0339 .0468 .213	34.1 .0189 .197	97.7 .00517 .00414 .140	144. 0. 0.0645 .127	76.3 .C0927 .C0124 .100	06445 06497 -163	145. 0. 0.0454. 2.0484.	44100.	VERCO	4.001. 4.001. 6.001. 6.100. 7.100. 7.100.

さんさん かいしょうしゅうかんないないないのできるからないないからいないないのできる

TABLE IX-6

B-747 THRUST TRANSFER FUNCTION FACTORS

Dare Airframe

(BODY AXIS SYSTEM)

24	-6 .303E-6 .2033E-6 .2032E-6 .2033E-6 .2032E-6 .2033E-6 .2032E-6
5L 5L 5L 5L 173 249 249 249 249 249 277 E-5 277 E-	.312E-6 .312E-6 .197 .504 .136 .103 .302 .433 .302 .74297E-4296E-40137296E-4297E-7296E-429

TABLE IX-7

the second of th

The second secon

B-747 LONGITUTINAL HANDLING QUALITIES PARAMETERS

Bare Airframe

(Body Axis System)

15.7 6.8C .157 .166 2.21 1.92

}

TABLE IX-8

B-747 LATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

• 0	-	~	~	*	s	٠	1	æ	o	01
	ż	SL	รเ	SL	20 K	20 K	¥ 02	¥ 0	4	4 0 A
E	.158	.249	.450	.650	.500	.650	. 800	. 100	. 400	cos.
^	0490	0997	143	197	0822	-104	120	0488	0558	0606
	-10.7	-27.8	-71.7	-143.	-45.4	-10.4	7.66-	-33.1	-43.2	-52.8
.01	-1.33	-1.63	-3.14	-5.45	-2.05	-2.96	-4.12	-1.45	-3.05	-1.32
=	.168	.247	.810	1.62	.419	.923	1.62	+0+	805.	176.
•	978	-1.10	-1.12	-1.47	652	-,804	974	404	F 97. 1	459
	146	125	0706	0214	1070	0531	0157	0366	0318	.002#4
•	.327	198	.379	.256	.376	.317	.292	.312	.388	.260
·	217	229	246	-,344	140	191	232	0963	115	141
Y+CA	ċ	ö	•	•	ċ	;	ċ	•	ċ	ċ
2	122.	.318	.229	.372	.120	.210	.310	÷960°	.141	.184
V 0	.0264	.0300	.0285	1760.	.0177	.0199	.0127	.00875	\$1100.	00611
Y•CR	.0148	.0192	.0226	.0213	.0131	.0142	.0124	. 50777	.00729	,00464
. 83	.0636	.110	.254 .	.318	148	.211	.183	.115	.153	.100
N. CA	181-	233	*14.	0.010	141	616	422	186	479	442

3

TABLE IX-9

B-747 AILERON TRANSFER FUNCTION FACTORS
SAS OF

(BODY AXIS SYSTEM)

	•	•	•	•	•	•		•	•	•
F/C #	-	~	rì	1	5 1	c	^	æ	•	c 1
Υ×	5L •158	SL .249	St.	اد ده 5ن	4 05 UCS.	20 x 050.	20 K	¥ 0.4 .700	404.	40 % 900°
UENUM PATOR 1/T (UET) 1 1/T (UET) 2 2/UET) 1 M (CET) 1	.0427 1.11 .0878	. C465 1.23 .107	.6194 1.23 1.28 1.06	.0203 1.56 1.53 1.53	.03403 .745 .0643	****	.0103 1.06 .0481 1.31	00234 -462 -0568	.00740 .462 .0349	-,007;7 -,478 -,00;
NUMERATORS NI 6 / 00 3 AI 6 3 LY (H 31 L/Y (H 32	.00740 .154 7.10	. 176	0161 .448 005	0371 166	50243	0107 .230 510	0127 .433	.00358 .0981	.00373	610. 601.
M	.227 -0100- 308 .308	.318 	.224 .00335 .197	.00 .01 .081.			.310	.00001		48100 48100 100
M(R) DA 3 L/T (R)1 L/T (R)1 M(R)1		0000.	.0285 .084. .0874	1.0371	.0177		. 146 1.46 - 147	. 06874 	.00774 .435 715	05611 -1.22 -363 -925
1011403 101140	. 231 . 284 . 584	.321 .264	.230		.130	.211	<u> </u>	2001	# C ~ **	# # C
N(AYP/OA) A(AYP) 1/T (AYP) 1 1/T (AYP) 1 R(AYP) 1 R(AYP) 1	4	5	4 4 4.6.00 6.00	6.91 	0.000	447 600 1000 1000	# 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27.1 -134 -141 -162	2.10	**************************************

TABLE IX-10

The second section of the section of th

では、一般の大学の大学をおります。

B-747 RUDDER TRANSFER FUNCTION FACTORS

SAS Off

(BODY AXIS SYSTEM)

• 0	1 St 159 159		s 18 U<4.	4 51 650 650.	\$ 07 \$ 009.	20 K	20 × .0800	40 % 300.	2 008. 008.	300.
i ⊶ cc m	735 735	107	1.00	1.15	. 453 . 453	.913 .0623 1.07	1.06 .0981 1.31	. 189	.0349	87 40 87 90 97 90 97 90
~ ^ 0 •	.0148 1.05 11.0	C192 1.17 13.6	.0226 0182 1.18 28.0	.0213 00420 1.50 45.8	6450. 6450. 6450. 11.0	.0142 0162 .630 .44.0	.0124 .00957 .945 74.4	0366	00729 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.00.64 .02.08 .471 .66.3
0.74	. 0036 . 0209 1.42	- 113 113 1 - 64 - 1 - 99	2554 2.254 2.28 2.28	.316 3.58 -4.18	85100 85100 1.83	06206 06206 -3.24	100		- 100342 2.45 2.45 -3.43	
200	.151 1.05 .6750	255 1.17 .CH95	10.0 10.0 10.0 10.0	0.00 0.00 0.00 0.00 0.00	. 4391 . 154 . 154	. 1616 . 1615 . 1865 . 1882	1.11 1.11 1.046:	155. 154. 1970.		6.44. 45.4. 40.65. 87.4.
4 5 7	3.31	. Ca67 1.69 -2.48	.221 2.35 -3.47		2.01		183	1.74	.115	24.6 1.44 1.44 1.44
-0445		1.034 1.034 1.004 1.004	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0103 1.32 1.37 1.137	-25.3 0.73 -421 -103	41.3 0120 644. 147	-1126	-22.1 -0530 -012 -136 -146	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.13.0 0.10. 0.10. 0.10. 0.10.

TABLE 1X-11

B-747 AILERON TRANSPER FUNCTION FACTORS SAS On

(Body Axia System)

01 5 024.	2.83 2.83 (.913) (.540) (.612) (.941)	6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	2, 100.2 2, 2, 2, 3, 8, 4, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	11.400. 44.6 44.6 44.6 44.6
0 44° CG	(e c H ·)	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	401. 405. 405. 405. 401. 401.	47700. 4770. 4770. 4770. 4710.
8 4 COV.			40000 40000 40000 40000 40000 10000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 K	.00801 1.28 1.285 1.3481 1.7291 7.101	. 05:55 - 05:55 - 1.17 - 1.58 (.310 0. .621 .907 (.690) (2.69)	
\$ 0%.	. 60843 . 696 . 1 . 696 . 1 . 90 . 1 . 50 . 1 . 60 . 1 . 60 . 1 . 60	0107 - 0613 - 708 (-1.57)	0210 00204 2.01 (7.10) (1.15)	.0149 .368 3.68 .201
80 MI.	. C0688 	-, co243 -0706 -, 665 -, 465 -, 4903 -, 5, 323		
4 & & & & & & & & & & & & & & & & & & &	.016C 1.053 1.795) 1.791) 1.692)	0371 -101 381 (1.78)	.372 0. 0. 1.466 1.26 (.61c)	E & & & & & & & & & & & & & & & & & & &
6 N. 1.	.0148 .004 .004 .006 .000 .000			
2 % 5. 2 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 %		.00171 13.0 39.4 150 444 2.88		6.530 12.56
- 2 3.2 198	. 0770 . 471 1.120 9.12 10.7 . 472	.00740 11.1 11.1 13.7 176 176 176 196 198 198 198	7.22 - 10.198 - 10.19	3.96. 3.96. 16.22 17.1 17.1 1.01
F/C =	DEACMINATOR 1/TOBT)1 1/TOBT)1 1/TOBT)3 1/TOBT)4 1/TOBT)6 1/TOBT) 1/TOBT)1 1/TOBT)1 1/TOBT)1	NUMERATCRS NIB /OA) NIB /OA) L/T(B) L/T(B)2 L/T(B)2 L/T(B)2 L/T(B)3 L/T(B)3 L/T(B)3	MP 704 1 1/419 1 1/419 12 1/419 13 1/419 13 1/419 14 1/419 14	16 A 70 A 1 A 7 A 1 1 A 7 A 1 1 A 7 A 1 2 A 7 A 1 2 A 8 A 1 2 A 8 A 1 2 A 8 A 1 3 A 8 A 1 4 A 8 A 1 5 A 8 A 1 5 A 8 A 1 5 A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8 A

(Concluded)
Д-11
TABLE

	•
1946 526 7.84 1 .474 1 .922	1.34 .0698 .223 .233 .251 .251 .251 .251
. 163 2.68 2.68 1.574)	0.1.0 0.10 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
.0674 .636 3.63 1.636 1.445)	2400. 2400. 2400. 2400. 2400. 2400. 2400. 2400.
. 310 . 521 . 504 (2.09)	
. 211 . 612 . 7364 7364	3.82 217 217 2.94 391
. 130 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.11.0 8.11.0 8.11.4.0 8.11.0.0 8.11.0.0 8.10.0 8.10.0 8.10.0
. 372 . 46¢ . 1.28 . 61C	16.9 146. 1464! 1949 1949
.230 .616 1.83 (1.22)	2
132 134 134 1054 1054 1024	6.17 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18
	4 144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
N(PH (/O.K. 1) A(PH 1) 1 / T(PH 1) 1 1 / T(PH 1) 2 1 / T(PH 1) 4 2 (PH 1) 1 M (PA 1) 1	ME AYPODA DA AND AND AND AND AND AND AND AND AN

TABLE IX-12

B-747 RUDDER TRANSFER FUNCTION FACTORS

	01	706° ∪34°	2051400087 2.67 2.83 2.10 (.413) 2.69 (.412) 2.251 (.412) 2.251 (.412)	42000	50000000000000000000000000000000000000	44
	•		•	7.000. 2.600. 8.4.4.6.4.4.4.6.4.4.4.6.4.4.4.6.4	.00.5 .00.5 .00.6 .0	474. 476. 774. 84.67. 84.67. 10.67.
	a	* 04.	800000 386 386 376 376 376 376 376		#11.00 #10.00	
	•	.803	.00901 1.28 1.685) (.7481 (.720)			
	٠	20 K	. 00843 . 696 1.67 1.67 1.77 1.008)	. 0142 . 10162 . 158 . 158 . 156 . 4. 0		4.5 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
System)	ĸ	, 00°.	. CC683 . 495 1.09 2.91 1 . 26.71 1 . 754.)		.148 -368 1.83 -2.77	1966. 8060. 8060. 806. 804. 1044.
(Body Axis System)	4	5t .65f	0160 1.63 1.7491 1.6791 1.6791 1.6791			
~	~	35	.0148 .604 (.324) (.970) (.970)	. 0226 . 0182 1 . 168 3 . 66 .		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	2	SL .249	844. 844. 84.0 86.0 86.0 84.0	0102 1.353 1.534 1.63 10.0	. 110 . 356 1 . 64 1 . 64 9 . 64	
		2018	. 6770 . 471 1 . 20 1 . 20 9 . 26 1 0 . 7	4.00. 050.3 050.3 05.6 05.1 05.1	0636 1.368 1.42 1.42 1.68	
	F/C #	ΙŹ	DE ACHINATCR L/T(DET)1 L/T(DET)2 L/T(DET)3 L/T(DET)4 L/T(DET)6 L/T(DET)6 L/T(DET)6 L/T(DET)6 L/T(DET)6 L/T(DET)6	NUMERATORS NIG 108 1 A(8 1 1/108 12 1/108 13 1/108 13 1/108 13 1/108 13 1/108 13	M(P /OR) 1/1(P)1 1/1(P)2 1/1(P)3 1/1(P)4 1/1(P)4	A

TABLE IX-12 (C acluded)

- BOX 120 72										
	3	. 400	100	2	5	4	181	1010	511.	.0816
	27.50.	.000	177.	• • •						
1 / I (PHI) 1	366	368	. 268	44.	. 368	. 368	.368	. **	3. F. B	
1 / 1 / 1 / 1 / 2	4	09.1	2.36	3,54	2.01	2.50	3.66	0.7.	٠4. ٥	۳.
			. 7	4		4.5	4.7	(7,5-	3.68	-3.40
57 1741 17	7:5	0.71		000	•					
1 / T (PHI) 4	3.68	3.68	3.68	-4.18	-3.74	3.68	-5.15	a. v. n	15.51	r c.
1 /T (PM 1)5	00.0	1001								
1/T (PH1 16	10.0	(10.0)								
N(AYP/DR)								,		,
AIAYE	?	-13.9	- 38.9	-64.7	-25.3	-41.3	-67.1	->	-33.	
114411	0.00	078A	0268	0103		0210	0125	03.0	3×20	. O.C.
1 / 1 (4 / 5) 2	16.8	8 4	36.4	368	. 36.9	368	366	. 312	77.6	. 30,9
	2 4	2 -	0 7 3	3 2	169	644	848	94.8	٠ ١٠٠٠	434
C/ W / / / / / /		3					37		4 4	4
1/T(AYP)4	99.5	3.68	3.68	20.0	2.00	200	00.0	D	3 1	
Z (AY P) 1	747	803.	161.	-13	. 193	. 147	.11e	9:1.	٠١.	
L(AYF)	893	.740	1:1	1.45	. 9.94	1.10	1.22	. 860	1.05	٤٧٠.
2 (AY P) 2	00.1	1.00								
LI AVP1 2	0.01	0.01								

TABLE DX-13

B-747 LATERAL-DIRECTIONAL HANDLING QUALITIES PARAMETERS

SAS Off (Body Axis System)

σ	X 40 K		74-4									10234	. 212.	3.07	357. 5
œ	¥ 04	. 700	7.99	.516	20¢.	٠15٨	.153	. 187	614.	.050.	. 933	10:01	-331.	5.09	.355
•	20 K	.800	4.83	.894	:	.302	.287	. 299	.949	.0238	1.03	.30425	32.5	2.03	192
٠	20 K	.650	5.87	. 749	;	. 241		.233	. 891		1.03	•	35.4	2.12	.247
'n	20 K	. 500	7.30	.630	;	.162	.134	.155	. 832		.978	. 0219	- 322,	2.26	.343
٠	ಸ	.650	4.53	1.41	į	. 304	.253	.26€	.832		1.11	.0178	37. €	2.07	.153
ю	૪	.450	5.98	1.16	;	.211	.171				1.05	.00830	43.0	2.07	.236
~	35	.249	8.47	.978	;	.235	.0867	. 148	.369	.377	.87!	.136	-306 -	1.69	.349
-4	SL	961.	6.59	. 799	;	8 (1.	.0285	.111	. 160	.67 1	. 70.	. 16 1	-304.	*	. 39.9
F/C #	r	1	DR PERIOD (SEC)	1,6(1,72)	SPIRAL (2) (SEC)	P(1)	P(2)	P(3)	P(2) / P(1)	P(0SC) /P(AV)	MIP413/MID)	DEL-B-MAX	PHI TO BETA: HISSE	PHI TO BETA	PHI TO VE

.0174

950

066.

.900 6.19 .846 93.2 .363 1314

;

1.19

B-747 DATA SOURCES

Hanke, C. Rodney and Donald R. Nordwall, The Simulation of a Large Jet Transport Aircraft, Boeing Rept. No. D6-30643, Vols. I and II, Sept. 1970.

SECTION X

C-5A

040

C-5A BACKGROUND

The C-5A is a very large military logistics transport powered by four turbofan engines. Longitudinal control consists of elevators in four sections with an all-movable stabilizer for trim, roll control employs allerons and spoilers, and yaw control a conventional rudder. All control surfaces are irreversible.

A bobweight is used in the longitudinal feel system. The effective bobweight position is assumed to be at the pilot.

The C-5A employs stability augmentation about all axes. A description of the SAS is not included here.

C-5A

Nominal Configuration

220,000 lb C.rgo

TOGW less 40% Fuel

W = 624,362 lb

C.g. at 0.30 \(\bar{c}\), W.L. 265

I_X = 27.8 × 106 slug-ft²

I_Y = 31.8 × 106 slug-ft²

I_Z = 56.2 × 106 slug-ft²

I_X = 2.46 × 106 slug-ft²

Power Approach Configuration

220,000 lb Cargo
TOGW less 80% Fuel
30° Flaps
Gear Down
1.4 Vs

W = 580,723 lb
a.g. at 0.30 a, W.L. 265

Ix = 19.1 x 106 slug-ft²
Iy = 5:5 x 106 slug-ft²
Ix = 2.5 x 106 slug-ft²

Ix = 2.5 x 106 slug-ft²

Flight Envelope

and the second s

Lovel Flight Envelope (Nominal Configuration)

Speed Resta Cations

Transfer Function Case n

©

Figure X-2. C-5A General Arrangement

 $K\left(\frac{ib}{ib}\right)$

10

.2

SL 20,000 ft 40,000 ft

.8

.6

10

Figure X-3. C-CA Control System

TABLE X-1

C-5A

Power Approach Non-Dimensional Derivatives

h = sea level

= 247 ft/sec = 146 kt

= 2.70

Longitudinal

Lateral-Directional

1.29

.145

= 6.08/rad

 $c_{D_{\boldsymbol{\alpha}}}$.622/rad

 $c^{\mathbf{m}^{\alpha}}$ = -.827/rad

= -8.3/radC™¢r

 $\mathbf{c}_{\mathbf{m_{\mathbf{q}}}}$ -23.2/rad

.385/rad $\mathtt{c}_{\mathtt{L}_{6e}}$

 $c_{m\delta_e} = -1.6/\text{rad}$

(Stability Axis)

 $c_{y_{\beta}} = -.77/rad$

 $C_{n_{\beta}} = .075/rad$

 $c_{i\beta} = -.123/\text{rad}$

 $C_{\ell p} = -.458/rad$

 $c_{n_p} = -.098/rad$

 $C_{\ell_r} = .290/rad$

 $C_{n_r} = -.293/rad$

 $c_{\mathbf{y}_{\delta_{\mathbf{a}}}}$ = -.0044/rad

.0091/rad $C_{n_{\delta_a}} =$

.089/rad C_{Lba} =

 $C_{y_{\delta_r}} = .211/rad$

 $c_{n\delta_r} = -.106/rad$

.0209/rad C_{sor} =

٢

Spoiler Effects Included

ひょうしょれをなないいいとなってことを要すないというないと

こうさん かまる かんかん はない いかれる かんかん かんかん かんしゅう かんしゅう

ì

C-5A 654362 lb

Mach

8.

.2

TABLE X-2

The second of the second secon

State of the state

C-5A DIMENSIONAL, MASS AND FLIGHT CONDITION PARAMETERS

 $s = 6200 \text{ sq ft}, b = 219.20 \text{ ft}, \overline{c} = 30.10 \text{ ft}$

I (FI)	;			1					
, i	7	ᅜ	ಸ	ಳ	× 00	20 X	20 K	ð X	¥ 04
	. 22 1	COE.	.450	369.	004.	. 600	. 800	.770	. 875
VTQ(FPS)	246.	335.	502.	726.	415.	622.	A30.	145.	847.
VTG(K TAS)	146.	198.	298.	430.	246.	369.	.265	462.	502
VTO(KCAS)	1 46.	198.	298.	430.	181.	275.	373.	233.	760.
W(L3 S) ,	580756.	. 666, 59	654399.	654393.	654399.	654399.	654303.	. 665439	. 00(959
(353	. 300	. 300	.300	300	.300	.300	.300	008.	330
1x 15LW-FT SQ)	.191 E+8	.278E+8	.27º E+8	.2786+8	.2786+8	.278€+8	.278E+8	.276 E+R	.27&F+8
IY (SLUG-FT SQ)	.3136.8	.3196+8	.3186.8	.3186+8	.3186.8	, 3186+18	.3186+8	. 3 1 K F . h	.3186.
12 (Stud-FT SQ)	8+3 C7 +.	.5626+8	.562E+8	843295.	. >62E + 8	. 5626 + 8	.562[+8	\$4254B	4+3242
[XZ[SLLG-F [SQ)	.2 50 E+7	.246E+7	.246[+7	.246E+7	.2466+7	.246E+7	.2468+7	. 746 F+7	. 244 6 + 7
EPSILCA(DEG)	₩ C. 2 -	10.4-	16.4-	-4.91	16.4-	16.4-	-4.91	1	15. :-
Q(PSF)	72.2	133.	300.	626.	109.	245.	.96.	164.	211.
QC (PSF)	73.0	136.	315.	. 569	113.	268.	510.	160.	255.
ALPHA (DEG)	2.70	7.30	1.60	500	00.5	2.20	.10،	3.50	٥. ١
GAMMA (DEG)	•	ċ	٥.	ö	°	ö	•	ċ	ċ
LXP(FT)	81.7	81.7	81.7	81.7	81.7	P1.7	41.7	41.7	81.7
128(+7)	-8.10	-8.10	-8.10	-8.10	-6.10	-8.10	-8.13	-6.10	.A.10
17H(3EG)	2.00	2 .00	5.00	2.00	2.00	2.00	3.30	00.5	00.6
XI (DE G)	2 .00	2.00	2.00	2.00	2.00	2.00	2.00	20.6	6 . 3
L1H(F1)	4.50	05.4	4.50	4.50	4.50	4.50	ç.	٠.٠	. A.

TABLE X-3

G-5A LONGITUDIKAL DIMENSIONAL DERIVATIVES

F/C #	-	7	m	*	ĸ	•	^	•	σ
I	3.1	รเ	SL	s	20 K	20 K	20 K	× ¢	7 7
1	.221	.300	.450	959.	.400	. 600	. 800	.770	.875
• ox	0214	00343	00 583	00970	00297	00313	0150	00379	0.50
* nz	231	121	104	5150	0913	0798	0112	0405	941.
• 21	77 6E-5	.000232	6126-4	000185	. 0002 77	.930E-4	000433	000233	.00167
×	12600	.130	.0686	9620.	.106	0440.	.0224	40E0.	241000
2	634	572	834	-1.33	*0 4.	h 10	925	427	38.
T.	00 145	00240	00309	00309	00163	00210	00333	00176	00194
OM2	•	• •	•	ò	•	•	ં	ċ	:
02	ċ	•	•	;	•	·	ċ	•	ċ
OH4	000884	000698	000630	000514	000392	000386	000347	000182	00n15a
9	610	773	-1.08	-1.39	525	766	-1.02	506	551
XDE	.450	1.73	.728	350	1.79	.861	.0545	1.00	1.46
30Z	-9.53	-13.5	-26.1	-40.1	-11.3	-22.4	-31.2	-16.4	-17.0
706	989	277	-1.41	-1.76	672	-1.25	-1.51	150*-	A 1 6
X0 TH	. 5546-4	.4916-4	.4916-4	.491E-4	.491E-4	4-3164.	4-3164·	49167	401F-4
Z0 TH	1936-5	17 26 -5	1726-5	17 2E- S	1726-5	1726-5	1728-5	172F-5	1726-5
F0 TH	. 1446-6	.1426-6	.1426-6	.142E-6	.142E-6	.142E-6	.142E-6	.1428-6	.1425-6

6-54 ILEVATOR TRANSFER FUNCTION FACTORS SAS Off — Bobweight Loop Open (BODY AXIS SYSTEM)

• 3/.		~	m	*	r	•	~	•	ø
z z	\$1 .221	.300	St.	SL .650	* 004.	× 009.	20 × 00 × 00 × 00 × 00 × 00 × 00 × 00 ×	40 K	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CMINATCR 2(DE T) 1 3(DE T) 1 2(DE T) 2 5(DE T) 2	. 100 . 119 . 119	.0351	.0512 .0594 .712	.232 .0213 .752 1.99	.0283 .0969 .577	.0271 .0638 .608 1.34	(0487) (.0642) .570 1.93	.0506 .0110 .435	. 4.53 . 4.43 . 4.43 . 6.43 . 1.43
ERATCRS / OE 1 / 710)1 / 710)1 / 710 / 7	15.6 15.6 1.482)	1.73 19.1 (.20.2) (.639)	.728 26.1 1 .1961		1.79 24.4 (.239)	34.2	.0545 2.29 (.736)	1.00	
/06) /714)! /714)! /714)?	4.54 4.61 (0.570.)	19.8 19.00 1501	-26.1 28.2 (.042%)	1.04	24.8 (.0304)	-22.4 35.5 7 .0323)	-31.2 41.1 (486.)	16.4 (0.403)	-17.0
A 746)	- 680 - 0410 - 582	. 765	-1.39	-1.74	667	-1.24 .00913	-1.50	8:0.1 71800.	2150. 2150.
0 /0E 1 A(HD) 77(HD)1 77(HD)2 77(HD)3		13.6 00248 -2.68 3.70	26.1 .00448 .3.94 5.34	40.1 .00852 -5.26 7.02	00376 -2.66 3.37	22.4 000206 -4.00 5.01	w • 6	8.45 8.45 8.45 8.45	17.1 .0422 -3.73 4.30
129/06 1 A(A29) /T(A29)1 /T(A29)2 A(A29)1 M(A29)1	. 01.79 . 01.79 . 198	49.0 0189 0215 124	00337 00337 .00784 -121 -2.50	102. . C00536 . O5795 . 124	43.2 • 0169 • 0990 1.52	79.2 .00414 .00436 .0980 2.38	91.2 682F-4 0157 104 3.43	. 00430 . 00430 . 00430 . 00483	-,0022A .0022A .0440 .0684

G-5A THRUST TRANSFER FUNCTION FACTORS SAS Off — Bobweight Loop Open (BODY AXIS SYSTEM)

•	4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C	. 643 .0714 . 343 		1725-5 0142 46.7	.1425-6 .141 .868	5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	4 8 C C C C C C C C C C C C C C C C C C
	.170 K	.050A .0110 .415	4.	· •	1426-6 .0164 .358	٣	• •
•	*	2007.		8-34-1. 8-8-3 (144-1)	•		4-
_	. 609.	1 .06487) 1 .06487 1 .939	.491E-4 0241 .583 1.93	1,172F-5	.142E-6 116 945	11100.7 1124 1124 1124 124 124 124 124 124 124	133E-4 074F-4 1114 170 2.93
•	20 K	. 063B . 063B . 608	4.000. 1.000. 1.000.	-1726-5 -48.5 (0186)	.1436-6	.360F-5 .104 .276 4.19	-, 1345-4 -, 602-9 -, 117 -, 214 -, 212
•	20 K	.0283	. 44318-1-4 - 0452 - 508 - 939	172E-5 -31.4 (.414) (.6776)	.1456-6	.4386~5 .159 .355 1.87	-, 135E-4 -, 01 31 -, 20 6 -, 24 9 1, 41
*	SL .650	. 23.2 . 02.13 . 75.2 1.99	. 4918" 4 - 0296 - 758 2 . 00	1726-5 -55.6 (934, (.667)	.142E-6 .0781 1.19	.1296-5 .022' .235 10.3	
m	SL .490	.0612	1.00.1 1.00.1 1.00.1	1726-5 -37.5 (589) (.0862)	.1436-6.728	. 0098. . 0997. . 48. . 48.	-,134E-4 -,00191 -,103 -,269
~	36.	.0351	.40184 -0525 -666 1.13	1726-5 24.0 (0564) (.108)	.147E-6 (.8.7) (.397)	. 458. 2.24. 2.24.	-111 4.0130 -217 -217 -310
~	S L .221	. 100 . 119 . 843	40.1 40.1 40.0 40.0 40.0 40.0	-1936-5 -11.0 (726) (-223)	.148 E-6 (.930) (.998)	.454E-5 .137 .715 2.71	
1 3/1	rz	UENCAINATCR LIDET) 1 N(OET) 1 LOET) 2 N(OET) 2	NUMERATCAS NU	A(W) A(W) 1/7(W)1 1/7(W)2 1/7(W)3	N/ THE/DTH) A/ TME) 1/7 (THE) 1/1 (THE)	MCHD /0TH) ACHO ! 1/7HHO !! 2CHO !!	MC A 2P / D TH I A I A 2 P I I / T (A 2P I I I / T (A 2P I I 2 (A 2 P I I

TABLE X-6 0-5A STICK FORCE TRANSFER FUNCTION FACTORS

SAS Off — Bobweight Loop Closed (BODY AXIS SYSTEM)

#)/ #	 . ;	~	m (.	S		~ ;	- ·	•
z z	St.	300	35. 4.50	36 8. 28 8.	× 007.	20 % 600 %	20 ×	. 10 ×	4 eo 7 t
DE NCMINATCA 2(DE T) 1. h(DE T) 1. L(DE T) 2.	024	. 03 76 . 10 1 . 68 2 1 . 1 6	.0546.1677	.241 .0197 .693 2.17	.0304 .0928 .553	. 07.85 . 07.5 . 57.5 1 . 4.2	(0454) 0413) 2.06	.0164 .0104 1.30	404. 864. 864.
MUMERATCAS NO	19001	00430 19.1 (.202) (.639)	00132 26.1 (.196)	.000617 1.92 -2.58 37.9	-, cos42 24.4 (-239) (-439)	00136 34.2 (.442)	2.29 2.29 (.734)	. 67.21 67.4 (. 69.3)	# 9 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5
MIN 781) ANN 1 1771 11 1771 12	18.4 18.4 10.730. 1	.0335 19.8 (9.03.08)	.0472 28.2 (.0428)	. C73C 33.3 1 .04511	.0342 24.8 (.0304) (.0852)	.0405 35.9 (.0323)	.0567 41.1 (.864)	.0345 43.1 (0493)	.0307
M(THE /F ST) A(THE) 1 / (THE) 1 L / (THE) 2	.00305 .0610	.00190 .0342 .505	.00252	.00317	.00202	.00225 .00913	.00272 .0161 .862	.00197	.00164
MCHD # ST1 ACHD 1 1/TCHD 11 1/TCHD 12 1/TCHD 13	- 0428 -00211 -2.88 3.73	00348 -2.68 3.70			0347 00376 -2.65	0405 000204 -4.00 5.01	. 056 . 0169 . 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	245000-1 245000-1 245000-1	0.000 0.000 0.000 0.000
M(A2P/FST) A(A2P) 1/T(A2P) 1/T(A2P) 2(A2P) 1/A2P) 1/A2P)	- 206 - 0179 - 0197 - 198	122 0189 0215	-,159 -,00337 -,00784	-186 -000998 -124 -124	. 111. . 0159. . 0270.		4-166. 014. 014. 10.	0.176 0.0401 0.0401	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0-5A THRUST TRANSFER FUNCTION FACTORS

SAS Off - Bobweight Loop Closed (BODY AXIS SYSTEM)

0 4 % 0 to	8 0 4 0	.491E-4 0238 .327 1.35	2 - 2 - 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2 -	1478. 1117.	. 284. . 116. 116.	4 E 4 E E E E E E E E E E E E E E E E E
8 4 ¢.	.0104.	. 601F-4 - 60787 - 4787 1 - 28	-173E-5 -5.5.3 -5.5.4.1 -0.5.4.1	.142F-6 .016A .353	. 6736-5 . 00322 . 228 3.39	-1356 -00605 -00828 -163
7 20 K	(.06131 (.06131 (.543	.491E-4 0213 547 2.06	174E-5	.141F-6 117	.1835-5 113 112 7.98	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
, vo	. 0285 . 0603 . 575	. 491E-4 0317 . 563 1.41	173E-5 -47.4 (119)	.1428-6	.362E-5 .109 .275 4.21	1336-4 00209 -117 -212
8 24. 7 00	.0304.0928	. 491E-4 - 60518 - 485	-1736-5 -20.0 (.292)	.1446-6 .826 .316	.5406-5 .15> .353	135F-4 0131 -206 -242 1-42
* 18 086.	.247 .0197 .693 2.17	. 491E-4 699 2 . 1 @	1.175E-5 1.0341 1.117	.141E-6 .0288 1.20	.1326-5 .0228 .235 10.2	.132E-4 .000443 .0225 .249
3 18 36.	.0646 .0566 .677 1.65	.491E-4 0307 669 1.67	- 174E-5 - 186.7 (- 774)	.142E-6 .145	.311E-5 .0962 .349	134E-4 00191 .267 2.28
300	.0376 .101 .682 1.16	.4916-4 0501 .444 1.17	-1736-5 168.6 168)	.146E-6 . 4667)	.796E-5 .169 .443	1376-4 0130 -216 -307
1 \$L .221	.11. .10 .763 .98	. 354 - 1.05 - 1	1.1956 1.811 1.884 1.0.8	.1466.	.456E-5 .135 .713	- 1 34 E-4 - 007 40 - 146 - 1486 - 1.54
, II	36 NCM1 NAT CR 2(06T) 1 M(06T) 1 Z(06T) 2 M(06T) 2	NUMERATORS ALU JOTH) ALU JI 1/71U JI 21U JI MIU JI	#10/ 1/1/ #10/ 1/1/ #10/ 1/1/ #10/ 1/1/	N(THE/DTH) A(THB) L/1 (THB) L/1 (THB)	MHD /DTH) A(HD) 1/THD)1 2(HU)1 M(HO)1	M(A2P/OTH) A(A2P) 1/1(A2P) 1/1(A2P) 2(A2P) h(A2P) 1

table x-8

C-5A LONGITUDINAL HANDLING QUALITIES PARAMETERS

BAS OFF

F/C #		~	6	•	w	٠	•	€.	•
I	SL	ร	ร	ಶ	20 K	20 K	20 K	¥ 07	¥ Ç
Ł	. 22 1	.300	.450	369.	.400	. 600	.800	.770	.875
				STICK F	FIXED				
D(G)/D(U) (DEG/KT)	00658	.00729	0135	0256	• 01 12	.000581	0478	.0100.	127
NZA (G/RAD)	4.54	5.26	11.6	25.C	4.71	11.0	21.5	\$ 0.0	40.0
06/3 (066/6)	13.2	16.7	8.23	4.91	15.6	7.27	6.38	10.1	12.7
CAP (RAD/SEC/SEC/G)	. 156	.224	. 200	.149	.182	.158	.167	.166	.203
PHUGGID(2) (SEC)	:	:	i	ì	;	;	(14.2)	i	;
1/01/10)	4 .28	2.72	2.17	3.11	1.93	5.09	1.94	1.32	1.10
				STICK FI	FREE				
FST/KT (L8/KT)	-: 392	189	232	02 58	195	292	.265	0.22	918
FS7/G (18/G)	60.2	127.	88.7	56.51	59.1	79.3	70.5	93.2	132.
•	•	•		•	•		•	•	•

TABLE X-9 G-5A LATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

	•	•	•	•	•	•	•	•	•
•	~	۲,	e	•	8	•	7	æ	σ
T	3.1	SL	SL	જ	20 K	20 K	20 K	¥ 0,	¥ ¢
	.221	.300	.450	259.	.400	009.	. 800	071.	.875
^	0775	\$ 660	153	231	0673	106	151	0636	+890
48	-19.1	-33.3	-76.8	- 168.	-27.9	-65.6	-125.	4.74-	-58.0
. 91	635	863	-1.60	-3.01	747	-1.33	-2.38	-1.08	.333
. 94	.1 10	.150	.560	1.32	106	.432	.885	.237	.386
. 67	-1.09	166	-1.36	-1.85	707	986	-1.12	706	632
. Q.	156	150	113	107	120	0921	0906	0776	4170
la.	.613	.399	.344	.366	.324	.282	.303	.233	.256
. 8.	231	187	310	455	113	203	251	1660	0860*-
Y*DA	000443	947E-4	000142	036205	62 5E-4	93 7E-4	-, 000125	522E-4	5936-4
1.0A	.461	.321	.516	344.	.284	434	.370	.298	.357
N. 0 A	.0522	0126	.0500	591.	0212	.0343	.0850	91900.	5150°
Y-DR	.0212	.0181	.0271	.0352	. 0119	6210.	.0200	. 00910	.00760
L. DR	.105	.08 .2	.229	,306	. 0625	.187	.292	.112	.107
×0.x	213	282	639	-1.34	231	522	830	324	338
	•	•	•	•	•	1	•	•	•

C-5A AILERON TRANSFER FUNCTION FACTORS

SAS Off

• 2/4		~	m	*	w	•	^	65	o.
II	SL .221	300	\$L •450	359°	20 K	¥ 02.	20 K	40 K	40 K
DENCHINATCR 1/TIDET)1 1/TIDET)2 2(DET)1 M(DET)1	.0283 1.13 .226 .530	.0162 1.04 .184 .608	.0161 1.44 .209 .875	.0139 1.94 .227 1.25	.03800 .766 .103	. 01 03 1. 07 13 8	.00788 1.51 .144 1.03	.00520 .793 .0564	0264 .582 .197
NUMERATCAS N(8 /04) A(9 /04) L/T(8)1 L/T(8)2 L/T(8)3	000443 -2.33 72.7	947 E-4 .0473 1.78 -564.	000142 .292 -1.09	CCC2C5 C455 1.48 844.	625E-4 .0184 1.11 -1046.	937E-4 .145 -1.95 191.	-,000125 -,0595 -,917	522E-4 .0389 2.72 -232.	593E-4 .0532 -1.64 183.
M(P /OA) L/T(P) L/T(516 .00167 .284	29.1 200367 1.256 1.62	. 284 . 349 . 238	001 90 22 2 74 9	.370 655E-4 .194 1.22	.298 00257 165	.357 00318 .163
NIR /OA) AIR 1 L/TIR 11 ZIR 11 MIR 11	 600. 600. 600. 600. 600.	0126 224 (.258) (4.88)	. 196	 4 6.04 6.00 8.00	0212 133 (.164)	. 6343	.0850 1.200352 .448	.00618	.333
N(PH) /0A 1 A1 PH 1) A2 (PH 1) 1 H(PH 1) 1	44. 48. 48.	. 340 . 340 . 364	8. 0. 0. 11. 0. 0. 11. 0. 11. 11. 0. 11.	.444.2544	.281 .276 .235	.435	.194	. 298 . 159	.360 .160 .595
M(AVP/DA 1 A(AVP) 1 L/T(AVP) 1 Z(AVP) 1 E(AVP) 1 E(AVP) 1	7	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		6.26 -178 -396 -206 -806	9.84 - 0507 - 770 - 0941 1.22		

C-5A RUDDER TRANSFER FUNCTION FACTORS

SAS Off (BODY AXIS SYSTEM)

er.	40 K 40 K	.005.200264 .793 .562 .0554 .147		.112 .107 002h30023h (1.44)262 (-2.03) 1.18	324336 733141 (.117) .141 (.242) .676	. C424 . C783 [11-4]404 [-2.39] 1.18	-18.4 -20.3 -10.62 -01.6 -10.603 -01.6 -10.603 -03.6 -03.6
_	20 × .800	.0076u 1.51 .144 1.03	.0200 00571 1.47	.292 665E-4 (2.15) (-2.78)	830 1.49 (.192)	.290 (2.16) (-2.79)	1.68.9 1.68.9 1.64.2 1.98.4
.	20 %	.0103 1.07 1.138	.0179	. 187 00194 (1.55)	522 1.04 (.151) (.242)	. lo7 (1.58) (-2.39)	-30.0
un.	7 007.	.00800 .766 .103	. 0423 - 0423 - 718	.0625 0119 (1.17) (-2.32)	231 .694 (.190) (.282)	.0259	-13.4.0442
.	St.	.0139 1.96 1.27 1.25	.0392 00394 1.93 34.6	.500 .000377 (2.42) (-2.94)	1.34 1.45 (.293)	. 511 (2.4.2) (-2.88)	77.2 00808 1.89
	st.	.0161 1.44 .209 .875	. 0271 0120 1.42 24.1	00173 (1.70) (-2.38)	639 1.43 (.211) (.251)	.212 (1.70) (-2.57)	-36.7 0180 1.39 .0992
►	.300	1.04	. C181 C424 1.03 14.3	. (852 (117 (1.19) (-2.39)	282 1.02 (.201) (.276)	. (493) (1.21) (-4.14)	-16.3 0681 -599
	5t.	. 0283 1.13 . 226 . 530	. 0212 0559 1.25 10.4	00568 (-719)	213 213 (.0541)		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
F/C #	IX	DENCH IN A T CR 1/7 (DET) 1 1/7 (DET) 2 2 (DET) 1 WI DET) 1	NUMFRATORS NIU /OR) A(B) 1/1(B)1 1/1(B)2 1/1(B)2	N(P /OR) A(P) 1/7(P) 2(P) 1/8(P) 1/8(N(R /DR) A(R) 1/7(R)1 1/7(K)2 1/7(K)2	(PHI/OR) N (PHI	N AYP/OR 1 A F A F A F A F A F A F A F A F A F A F

A THE RESERVE OF THE PROPERTY OF THE PROPERTY

一次以外的 人名英格兰人姓氏 人名英格兰人姓氏

C-5A LATERAL-DIRECTIONAL HANDLING QUALITIES PARAMETERS

SAS Off

C-5A DATA SOURCES

2-5 Flight Control Report 'Aerospace Vehicle' Stability and Control, Lockheed-Georgia Rept. No. 16103-2-1-1, 8 Feb. 1956

SECTION XI XB-70A

The XB-70A was originally designed as a weapons systems with long range supersonic cruise capabilities. The two aircraft built became research aircraft to explore SST-related problems.

The two XB-70A's were identical except that the first airplane (XB-70A-1) had zero geometric dihedral while the second had 5 deg geometric dihedral. The first airplane is considered here.

Pitch control employs interconnected elevon and canard surfaces except in takeoff and landing where the canard is locked and a fixed canard flap is used. Roll control is obtained through differential action of the elevons. Yaw control is provided by rotation of the vertical stabilizers about a 45 deg hinge line.

The airplane is equipped with stability augmentation in all axes.

Data shown here is a composite of many sources. The object was to use flight test data where possible.

Flight Envelope

Mominal Configuration

Tips Folded According to Flight Condition 80,000 —

506 Internal Fuel

W = 384524 lb

c.g. at 0.218 c, W.L. -7.2

Ix = 1.8 × 106 slug-ft²

Iy = 19.9 × 106 slug-ft²

Iy = 22.1 × 106 slug-ft²

Ix = 22.1 × 106 slug-ft²

Ix = -0.88 × 10⁶ slug-ft²

Sy=0

@

⊚

8_T = 65°

⊚

87=25°

•

20,000

Power Approach Configuration

Tips Extended

19% Internal Fuel

Canard Flups Down

Gear Down

W = 300000 lb

c.g. at 6.235 c

I_x = 1.45 × 106 slug-ft²

Ix = 1.45×106 alug-ft² Iy = 16×106 alug-ft² Iz = 17.2×106 alug-ft² Ixz = -0.6×106 alug-ft²

Body Axis

Mach
Level Flight Envelope

20

① Transfer Function Case

Speed Restrictions

Figure XI-1. XB-70A Filght Conditions

S = 6297.8 (1² b = 105 ft z = 78.53 ft

XB-70A

Figure XI-2. XB-70A General Avrangement

XB-70A

XB-70A

PITCH SAS

ROLL SAS

YAW SAS

Figure XI-4. XB-70A SAS

XB-70A

Power Approach Mondimensional Stability Derivatives

h = sea level

 $V_{T_O} = 347 \text{ ft/sec} = 205 \text{ kt}$

 $a_0 = 7.5 \deg$

Longitudinal

Lateral-Directional

 $C_L = .333$

05 = +345

 $C_{L_{\alpha}} = 2.6/\text{rad}$

 $C_{D_{\alpha}} = .56/\text{rad}$

 $C_{m_{CL}} = -.23/rad$

 $C_{m_{C}} = +.05/rad$

 $C_{m_q} = -1.5/rad$

 $C_{\text{L6}_{e}} = .46/\text{rad}$

 $C_{ms} = -.19/rad$

(Body Axis)

 $C_{y_{\tilde{x}}} = -.163/rad$

 $C_{n_2} = .132/rad$

 $C_{\ell_{\Xi}} = -.072/\text{rad}$

 $C_{\ell_0} = -.18/\text{rad}$

 $C_{np} = -.26/rad$

 $C_{ir} = -.03/rad$

 $C_{n_r} = -.25/rad$

 $Cyb_a = -.063/rad$

 $C_{\delta_a} = .042/rad$

 $C_{n_{\delta_a}} = -.0052/rad$

 $C_{y_{\delta_{\underline{r}}}} = .12/rad$

 $C_{lbr} = -.0018/rad$

 $c_{n_{\delta_r}} = -.103/rad$

The second secon

· .:•

• ;

からのです。 大田田田のよう 後年 がある 大田本

TABLE XI-2

XB-70A DIMENSIONAL, MASS, AND FLIGHT CONDITION PARAMETERS 8 = 6297.8 sq ft, b = 105.0 ft, $\overline{\alpha} = 78.53$ ft

•	•	•	•	•		•	•	•	•	•
₽/C #		~	•	•	•	•	~	•	•	01
HIM	ತ	ತ	ತ	¥ 02	40 ¥	40 K	4 4	60 K	¥ 09	Å A
#(-)	.310	. 600	.950	009.	.900	1.60	2.20	2.00	2.50	3.00
VT O(F PS)	346.	893.	1000	. 279	. 11.0	1548.	2129.	1936.	2420.	2404.
VTO(KTAS)	205.	\$29.	628.	369.	516.	. 916	1261.	1147.	1433.	1720.
VTOIKCAS	205.	529.	628.	275.	276.	\$211.	710.	432.	535.	630.
n(res)	300017.	384546.	384546.	384546.	384546.	384540.	384546.	384546.	364546.	384546.
C. G. (MGC)	.235	.218	.218	.218	.218	.218	.218	.218	.218	.218
IX (SLUG-FT SQ)	.1456+7	.: 80E+7	.1806+7	.1806+7	.180 6+7	. 160 E+7	.1806.7	.1806.7	.1606+7	.1806.7
IY (SLUG-FT SQ)	.160E+8	.1 000 + 8	.100E+8	.100E+8	.100 E+8	.100 E+8	.100E+8	.1006+8	.1006+8	.1 00E + 8
12 (SEUG-FT SQ1	.1725+8	.2216+8	.2216+8	. 221 6+8	.2216+8	.221 E+8	.2216+8	.2216+8	.2216+8	.2216+8
1X 2(5 LUG-FT 89)	-400035.	-88 00 50.	-880050.	-680050-	-650040.	-680050-	-680030.	-880050.	-880050.	-880050.
EPSILCN(OEG)	2.18	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.46
0(75F)	142.	948.	1336.	205.	224.	707.	1335.	424.	663.	954.
9C (PS F)	146.	1109.	1666.	. 692	273.	1105.	2253.	703.	1139.	1675.
ALPHA (DEG)	7.50	3.20	2.40	1.10	7.50	3.70	2.30	6.20	4.40	3.40
GAIMIA (DEG)	•	ថ	;	ò	ó	:	;	ė	ò	;
LXP(FT)	99.0	7.16	7.16	1.16	47.7	1.19	1.14	7.16	7.16	1.16
LZP(FT)	-6.70	-6.70	-6.70	-6.70	-6.70	-4.70	-6.70	-6.70	-6.70	-6.70
ITHIOMG	•	វ	ó	ò	ė	•	•	•	•	ó
x1 (Dec)	ò	ó	ó	ò	ò	ò	ċ	ė	ė	ċ
LTH(FT)	2.20	2.20	2.20	2.20	3.20	2.20	2.20	2.20	2.20	2.20
•	•	•	•	•		•	•	•	•	•

TABLE XI-3

XB-70A LONGITUDINAL DIMENSIONAL DERIVATIVES

		13	e.	•	s 0	•	-	•	•	
	SL	ર	36	20 K	40 X	4 9	4	¥ 09	¥ 09	
	.310	.000	.950	009.	.900	1.60	2.20	2.00	3.50	
•	0105	00514	0352	.000472	.00212	12200	00780	00166	00267	
•	0863	0138	00588	0271	0399	00543	00141	+6400*-	00149	
•	.000343	00113	000452	661000.	000644	4-396€-	.000143	. 000152	4-84F-4	
	.0327	.0629	. 06 98	.00819	.00700	.0282	.0349	AT 700.	.00969	
	757	-1.19	-1.50	540	300	424	515	192	204	
	00290	00285	00376	00302	00316	00429	00403	00189	00163	
	ċ	ċ	;	;	•	•	•	ċ	ċ	
	;	ċ	;	;	•	:	;	•	ċ	
92	.7156-4	.000161	.000277	+-9019-	.547E-4	. 2856-4	.1146-4	. 6558-5	ċ	
	749	-1.75	-1.10	-1.13	-1.30	930	161	383	213	
•	11.1	7.67	7.61	6.55	10.4	1.67	1.50	1.90	1.34	
30	-43.8	-137.	-168.	4.04	-37.0	-29.0	-36.0	-13.8	-16.4	
30	136	-7.46	-11.9	-2.61	-2.24	-3.11	-4.62	-1.61	-2.06	
DES	5.77	1.37	9.44	7.01	5.30	2.40	1.98	1.93	1.61	
0.6.5	-43.8	-150.	-186.	-51.9	-40.3	-37.2	-49.2	-17.8	-20.9	
910		-4.10	-9.92	-2.24	-1.40	-2.27	-3.50	-1.30	-1.87	
ОТН	. 000107	.637E-4	.837E-4	.837E-4	.8375-4	.837E-4	.937£-4	.637E-4	.837E-4	
OTH	•	•	•	•	;	•	ċ	•	•	
ОТН	.1306-6	. 220E-4	.2206-6	.2206-4	.220E-6	.2206-6	.220E-6	. 2206-6	.2206-6	

TABLE XI-4
XB-70A KLEVATOR TRANSFER FUNCTION FACTORS
SAS Off — Bobweight Loop Open
(BODY AXIS SYSTEM)

F/C 0		~	m	•	.	•	٠	•	6	=
II	31. 310	St.	35. 9.9.6.	% 00 4.	* 000 * 000	1.60	4, K	رى <u>بر</u> 2.6	× 4.	<u>``</u> ;
DE NCMINATION 1/1/0ET) 1/1/0LT) 2/0CT) 1/1/0ET) 1/1/0ET] 1/1/0ET]	(5652) (101) (103) (103)			(.0136) (.0299) (.52.6 1.59	.0274 0410 460	(.0141) (.0141) .247 2.65	(1.217) (1.615.7) 275. 275.	(1975.) (1916.) (1981.)	(1
.UMERATCRS -1(U /DE) 	24	7.67 49.64 414.		 	4.87 (282) (482)	* • * * * * * * * * * * * * * * * * * *	#: • # # # # # # # # # # # # # # # # # #			244. 444.
164 /06) A(H) 1/7(H)1 1/7(H)3	4.800.	.117.	-1001-1 -001-1 -01-1 -01-1 -4-1	4.4. 14.4 (-0.60)	-37.0 53.7 (^251)	167.0	0.85. 0.82. (.67.)	476.	1.44.00. 1 1.44.00. 1	4
V(THE/OE) A(ME) 1/T(THE)1 1/T(THE)2	837 -0104 	-7.48 .006.12	0.00. 4.44.	-2.61 000336 523	-2.25	-3.11 .00258	55.4-	2.1. 47100.	101.	\$4.4. 84.40.
V(HO /02) A(HO) 1/1(HO)1 1/T(HO)2 1/T(HO)3	44.2 0184 -1.59		168. .0341 -10.0	 -3.59 -4.71	37.3 -3.50 4.76	79.0 .00000. .7.65	EC. 1	9 4 6 4. 9 4 6 4. 9 6 6 4.	4.7.5. 4.7.5.5. 4.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	6.00. 6.00. 4.00. 4.00. 4.00. 4.00.
1 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	2.00. 2.00.			207. ncn611 c194 2.01	162. 1704.67 608.47 04.01	2.50 2.50 2.50 2.50	. 100. . 00784 . 0687 3.39	4.00.		14.00°

TABLE XI-5

XB-70A THRUST TRANSFER FUNCTION FACTORS

SAS Off - Bobweight Loop Open

3 of the second	(.0.652)0942 (.103) .0763 (.901 .654 1 .501 .654	.000107 .8375- 32630231 .546 .623 1.24 2.14	.372f-4 .000194 .064900352	.136E-6 .210E-6 (.79R)41L (.647) 1.1R	.140E-4 .447E-5 .744364 .45433 1.98 7.59	135E216F
28. 20.			.00019		444. 444. 444. 444.	
_	80	•				
st.	0470 .0864 .487	.837E-4 0236 .445.	.000231 00267 138	. 219E-1		2146-4 06138 131 4.04
30 K	(.0136) (.6496) .526 1.59	. 2375-4 0262 - 482 1.54	.°°°502) (.°°502)	.219E.	. 112E-4 . 29:0	216F-4 06711 -12# 156
400. 7	.0278 0.0470 1.78	. 8376-4 -0149 -384	. 500186 01 03	.2196-6 158 .290		
1.60	(.0694) (.0141) .247 2.55	.837F .00546 .200	.000339 .00248 .0279	. 2775. . 3571	.540E-5 .7411 .116	-215F- -00135 -0534 -0521
4.2 K	(.217) (.0157) .266 2.90	4.25.5 4.25.5 4.25.5 6.00.5	. 000458	. 2207 510		- 219F-4 - 006538 - 02538 - 0272
۸ مم ۲.۵	1.00 C.	4-T-4-0	4000 4000 4400 4440	. 223 F. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	20. 20. 24. 24. 20. 20. 20.	714E-6 0718? 0779
7 . 5 . 5	(.118) (.00.96.) 1.00		- 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	.,266 .,364 .,96	4.C. 4 4.C. 4 7.C. 4 1.C. 4.4 1.C. 4.4	4-7215 4-72105 7-760 7-7
) U *	1 P P P P P P P P P P P P P P P P P P P	4.7 F. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	, care ser	2376- 1.0146 221	\$-35°.	4-3016-1
	.950 .6CC .900 1.60 2.20 7.70 2.55	0470 (.0136)	2.95	0470 (.0136) .0278 (.0694) (.217) (.2723) (.118)	0470 (.0136)	-0470 (.0136) .0278 (.0494) (.217) (.2723) (.118)0700470 (.0136) .0278 (.0494) (.217) (.2723) (.118)0700470 (.0496) .0278 (.0494) (.217) (.2723) (.118)0700450 (.6496)0440 (.0141) (.0157) (.1191) (.01086)0540 (.6496)0440 (.0141) (.0157) (.1191) (.01086)0550025001440654607950070440704402500254 (.2022)0144070540070540070440704400251 (.6294)0102 (.004400102) (.004400102) (.02440

TABLE XI-6

XB-70A STICK FORCE TRANSFER FUNCTION FACTORS

SAS Off - Bobweight Loop Closed)

ç	· .	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	,		. 27.0.	600 mg	**************************************
6		1311. 1311.	4	400. 200. 100. 100.	4.C.C.		******
٠.	¥ 000.	1997	276. 276. 27. 27.	22.0 22.0 20.0 20.0 20.0 20.0 20.0 20.0	4 r.	89.9 60.41 60.91	44.04. 44.04. 44.04.
1	40 K	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	245. 245. 245.	1563.	200°.	-1645. -1072: -11.5	0000. 0000. 0000. 0000. 0000.
•	1. ho	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	141. 144. 5.84. 5.8	1756.	115.	-1256. -000404. -1.56	
w	. 600.		-211. .780 (.322) (53.4)	1602. 53.7 (7241) (5325)	57.2 COn 7n9 . 328	-1616. 09902 -3.40	-1887. : : : : : : : : : : : : : : : : : : :
.4	× 20 4.	11.2 (-0.275) (-0.409) (-343 21.2 21.2 21.2 21.2	1283. 34.03 34.03	2098. 34.4 10460	113.	-2114-	
m	3r .950		1329 1329 1418 1418	7250. 06178 76.4	517. .0354 1.44	. 5257. 10:01	44. 200. 44.00. 44.00. 44.00.
~	3 P	6.00.00 6.00 6.00.00 6.00.00 6.00.00 6.00.00 6.00.00 6.00.00 6	4004 4004 4004	5937. 	124. .CCA 13	-4566. -0:424 -6:77 8:28	-24684. -06733. -06733. -2473. -144.
-4	310	14.5 (0.0910) 1.34 2.25 8.25	-2 40 -50 -50 -50 -50 -50 -50 -50 -50 -50 -5	1,407.	10. 10.	-1913. -0136 -2.37	-1487 -66537 -7242 -11.
#/C •	II	36 A CAI WATCR 1/10F73	NUMERATCRS 116 FS11 A10 1 1/7(9 11 2(0 11	7	"(THE /F ST) A(THE) 1 / T (THE)1 1 / T (THE)2	4(40 783) A(45) 17 (40)! 17 (40)?	1(426) 1/1(426) 1/1(426) 1/1(426) 1/1(426) 1/4(42)

TABLE XI-7

XB-70A THRUBI TRANSFER FUNCTION FACTORS

SAS Off - Bobweight Loop Closed

F/C *		~	М	•	v	•	-	•	o	ç.
z. z	.310	SL .800	25 950	20 K	40. A COO.	40 K	40 K	40 K	A P K	٠,٠ د د د د
DE NCMINATCR 1/1 (0FT) 1 1/1 (DET) 2 1/1 (DET) 3 6 (DET) 1	14.5	.0594	1020 1020 10.54 61.57	11.2 (-0274) (0404)	. 0243 - 0383 11.6		941.9 (5.272.) (4110.)	12.4	4.7.00	
Z (DET) 2 M (OET) 2 Z (TE) 0		32.2	35.6	.31¢ .31¢ 26.2	2.13 .296 26.6	282 282 28.0	31.18 31.18	2.20 281 26.5	2.24 27.4 4.4	2.10
MUFRATCRS MU /DTH) A(U)1 1/T(U)1 2(U)1 MU)1 MU)2 MU)2	.000 107 -02 51 -02 51 -25 51 -25 52		.4376-6 10.5 00227 5.0227 2.04	2.10.2 2.11.2 2.01.2 2.01.2 2.4.2	. 8375-4 -0125 11.7 301 2.13 2.6	. 837F-6 11.9 11.9 3.23 2.83	4.00 11.00 11.00 10.00 1		12.6 12.6 12.6 12.6 12.5 12.5 12.5	. 44-F-4 - 17.22 - 17.22 - 17.52 - 2.34 - 27.6 - 27.6
A(h /DTH) A(h) 1/7(h) 1/7(h) 2(h) 2(h) 1/7(h) 1/7(h)	.3728-4 19:9 (-1220) (-101) .221	00343 500 500 500 250	000231 154 154 226 36.0	.000133 12.C (.118) (.0362) .29G 26.6	. CCOLBA CC961 318 12.4 .279 26.8	.00339 .00517 .0165 12.7 .260		64400. 64400. 6440. 6440. 6440.		

	0 C C C C C C C C C C C C C C C C C C C	
4.45.5 4.75.6 4.65.6 4.55.6 4.55.6	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1.00.0.1.1.0.0.1.1.1.1.1.1.1.1.1.1.1.1.
6 6		10.71 10.71 10.71 10.71 10.71 10.75 10.75
4-7200 4-	.336f-5 .0559 .1056 .0019 .276 .1.2	
2. 102. . 05. . 400 12.8 . 260 27.9	. 545F-5 . 0383 . 0314 . 0514 . 231 . 28.1	
7.7.7.2	3.6 - 6 - 6	
2197-6 12.3 12.3 12.3 28.1	.112F-4. .C7 JC. .0.8 .22 2 3.52 2 3.63 2	
	.3806 -100 10.4 10.6 11.6 11.6 5.2 5.2	100. 100. 100. 100. 100. 100. 100. 100.
1.34 1.34 1.34 1.34 1.34 1.34 1.34	4.74-5 4.04-6 4 4.04-6 4 4.04-6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.55. 10.55. 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.27 2.27 2.27 2.27 2.28 2.28 2.28 2.28
100 (00 (00 (00 (00 (00 (00 (00 (00 (00	20 70161 24 0717 17 600 31 17 600 31 18 600 31 18 600 31 18 600 31	2(174)R 2(176)R 1 (476)R 1 (47

TABLE XI-8

XB-70A ELEVATOR TRANSFER FUNCTION FACTORS SAS On -- Bobweight Loop Open

	•	•	•	•	•	•	•	•		
• 3/ 4	-	~	m	•	∽	•		æ	o	ç
z z	.310	SL -800	\$1.	× 0.8.	¥ 000.	1.50 K	40 K	رن د 2•دن ا	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	3.5.
SENCHINATOR 1 /T (DET) 1	13.3	13.3	13.3	13.3	1.48	13.3	13.3	1.66	١ . دع	ָרָי, אָרָי
17106772		(.575)	(.656)	(.396)	3.10 13.3	(.296) (.0496)	(.317)	4 P	0 e.	k
M DF 71 1	\$ \$	3.09	3.78	.929 2.10	.050	. e1 8 2.79	3.23	70 £ .	7.7.7. CAC.	146.
7 (DE T) 2 M (DE T) 2	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	31.2	34.5	25.5	.267	27.3	30.3	26.1	27.0	V
NUMERATORS	,		:							
1/100	4. 4. 6. 4.	13.29	1.99	4.00 4.00 4.00	2.51	13.3	.136 13.1	13.3	. 4	13.3
	** ***********************************			17.4	2.50 4.50 4.50 4.50		1320.		44.	* F
20 20 20 20 20 20 20 20 20 20 20 20 20 2	24.3	31.9	35.1	26.1	26.5	27.7	10.	. 26 A 26.5	25.7	27. A
N(M /DE)	6°	8.85-	43.8	- 26.4	1.61-	17.43	39.51	17.3	9,	;
1/10 31	13.30	.0245	0110	37.9	13.3	0150	0167	2 A C C	172	n 124
1/T(W 13	(1000)	13.3	13.3	(111)	(104)	13.7	1303	13.3		
10 4 55 10 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.1	. 226 31.9	2.20	. 273 26.1	19.00	.256	30.4	.266	.757	. 24.4 27.8

TABLE XI-8 (Concluded)

THE (DE) A(THE) 1/T(THE) 1/T(THE) 2(THE) 2(THE) W(THE)		.600. .000. 1.17 13.3 .220	. 5. . 0.3. . 1.50 . 1.50 . 2.00 . 3.00	-1.75 .726E-4 .538 13.3	.1.40 .00559 .336 .765 .265		-2.100. -500. -500. -500. -500. -500.	1.005. 180. 180. 190. 190. 200.		11.36 10.06 10.06 11.30 10.06
(HD /Dc) 1/4 (HD)) 1/4 (HD)) 1/4 (HD)) 1/4 (HD)) 1/4 (HD))	60.3 - 0186 - 1.51 - 1.51 - 1.53 - 1.	4. 1. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	4	28.7 -4.32 -4.54 1.54 1.26.7 26.2	19.2 4.39 13.39 13.39 26.7	2.53 -0.03 -0.65 -0.55 -	2007.7 19.3 14.3 16.3 10.3 10.3 10.3	**************************************	(A C C C C C C C C C C C C C C C C C C C
MAIPONE) AN 12 P) 1 / T (AZP) 1 1 / T (AZP) 1 1 / T (AZP) 1 N (AZP) 1 2 (AZP) 1 2 (AZP) 2		389. -00189 -00681 13.3 13.3 5.20	- 00136 - 00136 - 00336 - 00336 - 229 - 229 - 229	142. - 50923 - 100923 - 131 - 131 - 227 - 23.4	116. C0047 C0040 133 -121 1.87 -264 264	1.68. .000114. .000.95 1.90.95 1.53 2.23	- 000551 - 000551 - 000551 - 15.78 - 15.78 - 15.78 - 15.78 - 15.78 - 15.78	6.00. 6.00. 7.00. 6.61 7.41 8.4. 8.4. 8.4.		174. 17.97. 17.97. 17.97. 17.98. 17.98. 17.98.

6
H
9
7

XB-70A THRUST TRANSFER FUNCTION FACTORS

•	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	27. 5 27. 3 27. 3	4-7-7-6. 4-7-7-6. 4-7-7-6. 4-7-7-6. 4-7-7-6. 4-7-7-6.	256.
•	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	24.5	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	4-17-1-4-17-1-4-17-17-17-17-17-17-17-17-17-17-17-17-17-
•	# C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1.056 1.056 1.056 1.056 1.056 2.77	4-100 CC C
•	7 04.2 00.2 00.2 15.81 15.80	3.23	2000 2000 2000 2000 2000 2000 2000 200	
•	. 40 K 1.60 K 1.3.3 13.3 (4.96)	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		.1918-4 .00211 .0928 13.3 112. 252.
uedo do	* X 040. Ed. 1.	. 0501 28.47 28.42		.2108-4 .05569 13.3 .255 .255
Bubweight Loop Open	2 2 C K 2 2 C K 13.3	22.22	.810f- 12.3 13.3 1756 1.92 1.82 1.83	
ا ق	# 28.6. El	. 7222 . 735 . 201 . 201 . 34.	. 8256-4 13.3 13.3 13.3 13.3 12.9 14.8	
BAB	•	. 1811 1811 1810 1810 1811 1811 1811 1811	.8226-4 60785 13.3 .07 .222	.000 .000 .000 .000 .000 .000 .000 .00
	- Party 1	27.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	.0222 0222 13.3 .664 1.584 25.5	
	F/C # H H M A DENCHINATOR	1 / ((0E 1) 3 2 (0E 1) 1 2 (0E 1) 1 2 (0E 1) 1 2 (0E 1) 2 3 (0E 1) 2	MUMERATCRS A(L / OTH) A(U) L/T(U) L/	MC 474 MC 474 MC 477 MC 477

6	
•	

Concluded)
こ
YI-9
CABLE

7 4 0 6 7 6	100 F - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
14.76. 17.00. 17.00.		
.1315-4 .187 .187 .27.5	2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	11.000. 11.
101. 101. 102. 13.3 263. 263. 263.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1, 100.00 1, 100
.1705-5 .0977 .465 .13.3 .236 .31.0	-1746-4 0.49 10.3 13.3 13.2 31.2	4100001 100001 100001 100001 100001 100001 100001 100001
.1396-4 .0956 .367 13.3 .251	1,136F-4 0405 1,02 6,30 13,3 26,2	000116 00134 0948 1.0948 7.59 2.51
.1256-5 .0761 .305 .305 .264	112E-4 .0631 4.52 7.53 7.53 7.53 7.53 2.25 2.25 2.25	
.1076-5 .108 .504 13.3 .269	. 863E-5 . 0922 . 5.01 . 8.60 . 13.3 . 253	2011 2011 2011 2010 2010 2010 2010 2010
.158E-5 .0846 13.44 13.3 .199	2166-4 .0829 .0829 .10.9 .19.3 .198	
.1205-5 .0463 1.14 1.3.3 .220	2.215E-4 .0475 -7.649 8.07 12.5 218 32.1	0.0% 0.0% 0.201 13.93 3.63 8.63 8.63
.443F-6 13.3 (.947) (.403) 278 25.2	2. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.0123 1.0123 1.021 2.03 2.03 2.03 2.03 2.03
14 THE /DTH) A(THE) 1/T (THE) 1/T (THE) 1/T (THE) 2/T (THE) 2/T (THE) 2/T HE) 1/T (THE)	1(40) 707H) A(40) 1 1/7(H0) 12 1/7(H0) 12 1/7(H0) 13 1/7(H0) 13 1/7(H0) 14 1/7(H0) 14 1/7(H0) 14	1 (AZP/DTH) 4 (AZP/DTH) 4 (AZP) 1 (AZP) 2

TABLE XI-10

XB-70A ELEVATOR TRANSFER FUNCTION PACTORS

SAS On - Bobweight Loop Closed

n		1.6	1.5. 6.5. 6.6. 6.6. 6.6. 6.6. 6.6. 6.6.	4.14.	10.5 82.5 1.5 0.7. 20500, 871.5 0.7. 10500, 871.5
7	4.5 K	12.4 (.302) (.0686) 3 .77 3 .77 3 .61	1 K/ m	2010 2010 1100 1100 1100 1100 1100 1100	
٠	1.60 K	12.7 (.2773 0454) 3.70 3.20 2.70	-2. -4.5. -3.4.5. -3.6.6.	62.69	. 360
•>	40 % 900	3.22 3.22 11.32 4.00 4.28 7.88		1.15 (0.06.) (0.06.)	7.41
•	20 ×	######################################	6.00.00.00.00.00.00.00.00.00.00.00.00.00	46.3 (.03.42) (.03.42) (.04.43)	
m	St.	11.6 6.05 6.55 6.54 6.59 7.59 7.59 7.59	-3.13 (1.314) (1.901) 64.7	69.1 0130 0423 (.7531	0.70 0.34 1.484
	009.) (, 644) (,	-3.97 [.405] (.466) 9.29	71.12	2.90 .06623 1.16
-	18.	14.4 (.087) (.0880) (.0880) (.0880) 42.5 43.5 43.5	45.00 % % % % % % % % % % % % % % % % % %	1 .06.7 .06.7 .06.3	010.
#/C 4	# #	JE NCHINATCR 1/7(DET)] 1/7 (DET)] 1/7 (DET)] 2(1)ET)] N(DET)] N(DET)]	10 /06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 / 06 1 1 / 75 1 1	ACTAE ACTAE 1 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/

(Concluded)
XI-10
TABLE

	•
0.44.0. 14.7 14.6 8.55	-247. -00133 34.0 3614 2.61
4.000 4.000 4.000 4.000 4.000 4.000 4.000	-214. -000027 -00028 -101 -102 -201 -201 -201 -201 -201 -201
-31.7 -500478 4.17 -6.62 -33.1	, 00170. -00170. -00222 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
-48.3 -00725 -12.6 -9705 (15.3)	-287. -000578 -00785 -10785 -123 -123
74.6 7.98 7.98 -8.59	-271. 00123 00276 45.9 -123 2.58
1.153.5 1.000404 1.3.82 4.35 30.2	-184. . CON143 OO725 40. 7 . OB64 1.87
	-159. 000188 00959 51.8 .134 2.02
-69.1 .0343 12.3 -12.4 41.7	-293. 60137 60356 83.4 222 4.24
	-212. -00190 -00659 86.1 -185
1.522 1.532 1.534 6.34	-29.0 -00537 -00537 -00537 -00537 -00537
1(40 /0E) A(NO) 1/7(40)1 1/7(40)2 1/7(40)3	M(AZP/DE 1 A(AZF) 1/716ZP)1 1/716ZP)2 1/716ZP)2 1/716ZP)3 1/6ZP)1 h[AZP)1

Ξ
XI
1
Z

XB-70A THRUST TRANSFER FUNCTION FACTORS

SAS On .-- Bobweight Loop Closed (BODY AXIS EXBERM)

۲.	3.2.	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12.5. 12.5. 12.5. 12.5. 12.5. 12.5. 12.5. 13.5.
ť	* (% %	20.00 20.00	
·	, or K	7.01. 7.01. 7.01. 7.01. 7.01. 7.01.	2.2.2. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
7	2.20 K	12.6 0486) 0486) 7.74 30.2	
٠	1.60 1.60	12.2 (-277) (-277) (-654) (-760) 3.20 3.20 27.2	. 624F-4 . 60375 . 675 . 775 . 775 . 271
r	* 04°	1.94 3.22 11.8 11.8 .374 .0470	. 60869 . 12.1 . 10.1 . 2.20 . 290 . 290
•	70 ¥	11.5 (348) (6660) (863 2 55 2 55 2 55 2 55	4-70128 4-70128 4-70-70-70-70-70-70-70-70-70-70-70-70-70-
m	د. 950.	11.6 (.637) (.5840 4.99 .229 34.4	
~	800	6.49.4 6.22.4 6.22.2 31.2	#00. #00. #00. #00. #00. #00. #00. #00.
	.310	14.4 (.0937) (.016 (.016 (.016 2.55 0.55 0.55	.000 1/5 -0206 -0206 -1444 -392 -392 -255 -255
• 00	, ₇ =	DENCHINATOR 1/TIOET)1 1/TIOET)2 1/TIOET)3 2/OET)1 2/OET)1 2/OET)2 4/OET)2	MUMERATORS MICH - 1014) MICH - 11 MICH - 12 MICH - 12 MI

14.00. 14.00. 14.00. 14.00. 14.00.

.2076-4 .00112 .0074 13.7 174.

Andrew Commence of the same

ncluded)
<u>8</u>
XI-11
TABLE

4 C C C C C C C C C C C C C C C C C C C	100E-4 .047 7.40 .17.2 .240 .240	13.4 2.657 2.657 2.65 2.65 7.97
8. 0000 0. 00000 0. 0000 0. 00	2. C.	10000 10010 10010 13.4 2.28 2.28 2.28
# 500 x 144	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 970F- - 50180 - 50180 - 13.5 - 13.5 - 26.0 - 26.0
	10.45 10.45 10.45 11.75 11.55	2000 7.000 7.000 13.8 13.8 10.0 10.0 10.0 10.0
.1396 .395 .352 1352 2756	138E-6 .0896 7.27 7.23 12.38 12.39 28.2	
.1256-5 .0772 .298 .13-4 .26-5	-112E-4 .0620 4.47 -1.44 1244 27.1	- COOLOI - CO685 - CO6
.107E-5 .110 .499 13.4 .268		848E-4 00647 103 13.5 13.5 2.04 2.67
1588-5 10845 13.80 19.80	216E-4 .082C -11.0 (.996) (11.8) .203	000129 00138 0847 14.07 197 22 189
. 1296-5 . 0457 . 13.7 . 214 31.9	215E-4 .0.649 -1.649 -1.649 -1.649 -1.649 -1.649	698E .0201 .0471 .3.9 .88
14.9 E-6 13.0 13.0 1.723) 1.0403 2.23	2.212-5.173 2.173 2.22.1 1.5.273 2.45	278 F 0.23 3.23 3.40 2.50 2.77
11 THE /OTH) A THE) 1 / T (THE) 1 1 / T (THE) 2 1 / T (THE) 2 1 / T (THE) 3 1 / T (THE) 3 1 / T (THE) 3	1	1 (428/1) 1 (428/1) 1 (1428/1) 1 (1428/1) 1 (1428/1) 2 (428/1) 2 (428/1) 2 (428/1)

	PARAKETERS	
TABLE XI-12	HANDLING QUALITIES	SAS off
	XB-70A LONGITUDITIAL	

•	-	٠	•	•		•	•	•		•
9	-	N	^	•	•	•		•	•	c -
ı ; 3	' <i>5</i>	15	เร	20 K	å	4 0 A	* 0 *	¥	A CA	, ,
: •	. 310	.800	.950	. 60 €	006.	1.50	2.20	2.00	2.40	3.0
				Pranqog	Bobretant Loop Open	•				
0.6170.601 (DE6/KT)	4460	0129	103	.0133	. 02 70	002 73	021#	00100.	30481	00. 72
N2A (G/RAD)	9.78	30.4	46.9	9.70	8.59	16.3	9.16	10.5	16.3	1 A. A
DE /G (DEG /G)	16.6	1.13	.570	5.52	4.34	7.02	3.48	12.9	7.68	£1.4
CAP (RAD/SEC/SEC/G)	. 43.	.147	.119	.252	346	.381	.281	.253	.277	641.
PHU301012) (SEC)	:	(7.36)	11.71	;	(19,1)	ł	1	i	1	17.01
1 TiKK(2)) 1/C(1/10)	2.00	2.36	1.52	1.65	1.42	404.	6 9 v	٠, ١	.267	.240
				Bobset &	Bobacient Long Closed	Ş				
FST/KT (LB/KT) FST/G (LB/G)	7 1.2	.0807	.0256	0513	. 0589	1910-	0173		*.6113 *1.4	4.45
•	٠.	•	•	•	•	•	•		•	•

TABLE XI-13

XB-70A LATERAL DIRECTIONAL DIMENSIONAL DERIVATIVES

	•	•	•		•	•		•		
•		~	æ	•	*	•	-	•	o	01
	35	35	3.1	20 K	* 0	4	4 ×	¥ 09	¥ 09	¥ 09
	.310	.800	.950	009.	006.	1.60	2.20	2.00	2.50	3.00
	0508	213	266	0499	0352	113	129	0473	0546	0623
	-17.6	-190.	-282.	-31.0	-30.6	-175.	-275.	-91.6	-133.	-181.
•	-5.04	9.67	-9.19	-6.11	-6.18	2.90	18.4	1.94	1.49	569
	868.	1.60	3.73	.869	188.	5.04	12.2	118.	.912	1.16
	-1.11	-4.02	-7.36	-1.05	-1.26	-1.16	-1.03	393	413	438
	156	.0533	.145	.0417	.0572	0219	0507	0170	0193	0115
_	213	636	-1.01	.254	.0927	202	0625	0399	.0212	.0849
	200	375	415	-1140	0883	307	367	134	151	174
¥0.	0175	0129	0133	-1600'-	00176	.000481	ė	.23165.	ċ	ö
¥0	2.78	5.24	3.54	10.4	3.54	1.51	1.67	96.	.993	1.07
¥Q	125	0386	201	0936	188	166	107	0638	0395	0427
K	.0333	.0515	.0531	.0249	6710.	.0183	.0162	.00750	.00721	.00693
ž	.118	0861	-4.71	.260	455	5.10	1.75	. 800	167.	.285
ğ	568	-1.24	-1.41	421	330	845	-1.07	425	485	582

XI-14	
TABLE	

XB-70A ALLERON TRANSFER FUNCTION FACTORS

SAS Off (RODY AXIS SYSTEM)

	•	•	•	•	•	•	•	•	•	٠
F/C #		~	æ	*	w	•	1	•	•	01
**	SL .310	900	SL •950	20 K	4006.	40 K	40 K	40 K	60 K	300 K
06 NOM IN A TOR 1/1 (DET) 1 1/1 (DET) 2 2 (DET) 1 W (DET) 1	.0287	C158 -115 -126	.00706	.0270 .678 .217 1.23	.0133 .745 .266 1.16	00576 1.19 .145 1.38	0131 .966 .200 1.43	0178 .396 .126	0152 -395 -137 -875	000645 -436 -108 -1.10
NUMERATORS NUMB /DA 1 A(B 1) 1/7(B 1) 1/7(B 12 1/7(B 12		0129 -21.9 (.559)	0133 3.0451 3.56 5.86	00914 -66.1 (.786) (.213)	00176 .0685 .241 -368.	.000481.089	. 0390 1.37	.231E-4 .0320 .394 7269.	.0348	
A(P / DA) A(P) 1 / T(P) 1 / T(P) 1 / T(P)	2.78 0119 -184	5.24 00193 216 1.32	3.54 00131 211	00.4 006.91 11.8	3.54 00483 .0851 .743	1.51 00132 .144 1.55	1.67 000596 156 1.60	. 966 . 0960 . 970	.993 00102 .103	1.07 000653 -109 1.07
N(R /DA) A(R) 1/1 (R)1 1/1 (R)2 1/1 (K)3		1.0386 1.0386 1.0991	1 1 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		1.12	283 795 98	107 319 776	0636 -148 -1.01 1.56	03 % -1.07 1.86	0427 -180 -1.06
1 (1 Hd) N 2 (Hd) 1 N 3 (Hd) 1 N	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		8.00° × × × × × × × × × × × × × × × × × ×	6.00 11.8 474	3.52 .0 04 .752	1.50	1.67	. 959 . 979	.000	1.07
M AY BY AY BY AY BY BY AY BY		1157	10.01	12.0 -150 -234 -0817	**************************************	-5.44 .0423 3.90 -192	. 791 . 0419 - 19.1 . 124	. 279 . 0381 - 11.3 - 0259	2.79 -0.390 -1.84 -430	3.01 .0441 -1.96 .586

		XB-70A		TABLE XI-15 DER TRANSTER TUNCT. SAS Off (BODY AXIS SYSTEM)	TABLE XI-15 NUDDER TRANAPER FUNCTION FACTORS SAS Off (BODY AXIS SYSTEM)	TACTORE		•	•	
+	•	* ~	* m	•	*	, , ,	, , , , , , , , , , , , , , , , , , ,	*	\$ 09 K	10 60 K 3.00
H H H M M M M M M M M M M M M M M M M M	56. .310 .0287 1.77	54. 600 600 600 600 600 600 600 600 600 60	.950 .00706 7.27	20 K .600 .0270 .678	.0133 .0133 .745 .266	1.60 1.19 1.19 1.38	2.20 0131 .968 .200 1.43	2.00 0178 396 126 77		000645 108
SIDET) I BIOGTI I MUMERATORS NIG /OR I LTIG 12	1.27 (683) (00130	0515	1.94		0144 0124 1.56 17.8	6410. 6410. 641. 641.	.0162 .00807 1.08	.000.00.000.0000.0000000000000000000000	. 00721 . 00241 . 419 . 57	.00693 000649 436 436
«~	. 118 . 118 . 4.72	00147 6.67 -20.1		2.600	455 004#5 (.0860) (2.31)	2.10 00132 (.146) (1.80)	1.75		00102 00102 1.71	. 285 . 0465 . 23852
N(R /DR) N(R	9m~ 6	1.24	14.4	1.42.	1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1444. 1044. 104.	-1.07 -266 [-367]	142 142 (144-) (1818-)	204. 2047. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1087-
25 245 25 25 25 25 25 25 25 25 25 25 25 25 25	. 6.93 8.94 8.94	20 . S. C.	1,174	2.203	101	2.05	1.71 (:123) (2.31)	484. 		240.
MCAYPOR 1 ACAYPO LITTAYPO LITTAYPO EL	1.07	-76.2 -0133 4.23 1.38	\$110 \$.70 \$.70 \$.00 \$.10	9.65.1 9.66.1 6.60.1	-22.3 -0352 .332 .406 1.10	5.04- 5.02- 5.02- 1.02-	-54.0 2.014 2.054 1.034	-21.7 .01.0 .755 .198	-26.7 -2613 -3613 -2610	

PODUCION.

TABLE XI-16

XB-70A ALLERON TRANSTER FUNCTION PACTORS

SAS On

	•	•	٠.	•	•	•					
F/C #	-	~	m	*	ď	•	7	60	σ	01	
πĸ	18 .310	SL .800	950 950	20° ×	* 006.	40 K	40 K	60 K	60 K	60 K	
MINATOR 71 (DET) 1 71 (DET) 2 71 (DET) 3 21 (DET) 1	. 0153 . 466 3.00 . 317	C115 - 397 6-73 - 781	.00513 .388 8.88 .633	.00647 .351 2.75 .304	.00415 .350 2.85 .335	00392 -345 2.00 -215 1.38	00683 .345 1.90 .278 1.42	.00774 .382 .983 .147	-00068 -371 -943 -193	000649 .343 .955 .217 1.06	
ER ATOP S A(B) //T(B)1 //T(B)2	2110 0110. 544. 85.5	C129 -2127 -2131 (1.933)	0133 .0288 .498 05	00914 -147 -68.0 (.961)	00176 .0511 .266 .405	.000481 .0337 .393 1.13	.173 .0354 .340 1.48	.231E-4 .0290 .257 .563	. 115 . 0310 . 271	.106 .0351 .268 .667	
AA	2.78 0116 .504 .537	9.24 00193 444 1.773	3.54 00191 -357 1771	.00691 .00691 .348	3.54 00683 354 721	1.51 00132 .341 1.59	1.67 000596 344 1.551		. 993 . 952 . 190 . 971	1.07	
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						1 . 1	101				

1.07 .353 .208 :.04	3.01 .0392 .304 -1.89 .660
. 990 . 352 . 188	2.79 .035 .309 .1-79 .513
6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	0.000 0.000 0.000 0.000 0.000 0.000
1.67 .344 .249 1.58	.791 .0393 .341 .16.8
1.50	.8. 0.0. 0.40. 0.0. 0.0. 1.44. 1.44.
3.52 .354 .145	3.11.1 1.11.3 1.02.6 1.03.4 1.04.9 1.04.9
4.00 .348 .172	12.0 160 211 360 137
3.83 8.05 8.05 8.05 7.7	-10.0 .0206 .426 16.6
5.24 .445 .772	19.9 177. 12.05 13.05 13.05
2.76 . 501 . 501	. 146 . 0504 . 454 . 454 . 1574 . 534
1 (1Hd)# 1 (1Hd)7 1 (1Hd)7 1 (1Hd)7 1 (1Hd)#	1 (4/4) 1 (4/4

	**
The grant	Tree Control
نجور مناور مناو	-

TABLE 71-17

XS-70A RUDDER TRANSFER FUNCTION FACTORS

SAS On

	•	•	•			•	•	•	•
F/C .		~	m	4	Λ	0	•		
II	310	St.	St.	20 K	¥ 04.	40 K 1.60	40 K	3.00 ×	60 K
DENOM INATOR 1/7 (DET) 1 1/7 (DET) 2 1/7 (DET) 3 2 (UET) 1 M (DET) 1	. 02. 6.466 3.00 3.00 1.08	0115 -297 6.73 781	. 005 . 366 . 366 . 466 . 466 . 466 . 466	.00647 .351 2.75 .304 .957	.00415 .350 .355 .335	00392 .345 2.00 .215	1.00683 1.345 1.45 1.42	.00774 .982 .983 .157	
MUNERATORS NIB /DP 1 A(B 1) L/T(B 1) L/T(B 1) L/T(B 1) L/T(B 1)		. 0515 . 05126 . 333 . 44					. 00464 . 998 . 1. 79	.00750 .00366 .03866 .45.	.00721 .000840 .333 .864 72.4
A(P / DR) 1/1 (P) 1 1/1 (P) 1 2 (P) 1 2 (P) 1 4 (P) 1			00.13 00.35 333 533		655 00485 .133 .0860 2.31	2.10 00132 .333 .146 1.80	1.75		
A(R) A(R) A(R) A(T) A(T) A(T) A(T) A(T) A(T)	**************************************	-1.24 -198 -258 -258	1.1. 333 9.82 1494;	2,74	-, 330 , 333 2, 5, 92 (, 5, 92 (, 5, 92 (, 5, 93 (,	8.12 8.14 8.14 8.14 8.14 8.14 8.14	1.07 1.22. 2.30 2.00 2.00	24	1.1.1

TABLE XI-17 Continued

	-34.9 . 900658 . 983 . 967 . 968
. 443 . 333 (.0428)	-26.7 -00314 -333 -0620 -0620
.754 .333 (1.643)	. 00885 . 0388 . 338 1. 22 1. 44
1.71 .333 (.119)	
2.05 .333 (.134) (1.83)	.0200 .0200 .333 2.63
-,498 .333 (.144) (2.23)	22. 20. 20. 20. 20. 20. 20. 20. 20. 20.
. 333 2 . 61 2 . 61	1.03.1 1.03.1 2.3.2 5.48 5.48 5.48
.4.78 .333 (.119) (2.56)	-113. -008.7 -049.
	-76.2 .00777 .3.3 6 73
.0433 .343 5.67 -11.9	640. 640. 640. 640. 640. 640.
PHI/OF) A(PHI) 1/1(PHI)1 1/1(PHI)2	1 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4

TABLE XI-18

XB-70A LATERAL DIRECTIONAL HANDLING QUALITIES PARAGETERS

BAB off

	•		•	•	•	•	•	•	•	•	•	
	3/4	•	-4	~	m	•	n	•		•	•	01
	I	ě	ತ	3	St	% %	¥ 04	¥ 0	4 ×	×	9	9 9
	z		.310	. 800	.950	009.	006.	1.60	2.20	2.00	2.50	3.00
•	DA PERIOD (SEC)	(\$60)	4:34	4.9	3.30	5.25	5.60	04.4	4.50	9.13	7.25	5.75
116	1/011/5)		.559	1.70	1.62	2.02	12.5	1.32	1.85	1.15	1.25	686.
	SPINAL (2) (SEC)	(386)	;	*3.4	ł	:	i	140.	97.0		45.6	1075.
	3		1.11	1.45	.461	2.20	1.67	1.70	2.28	4.06	3.32	2.34
	(2)		0279	1.38	.394	1.59	.869	1.55	2.23	3.89	;	2.33
	63		1.04	1.50	.435	2.82	5.04	1.70	2.40	4.72	:	2.35
	P(2)/P(1)		1620	. 954	.863	.724	. 521	.909	.973	. 958	:	. 995
	P (05C) /P (AV)	()	1.05	. 0329	.0593	.160	.315	.0473	.0135	.0405	;	.00265
	H (PH) /H (O)	2	.639	1.03		.713	949.	1.13	1.12	1.26	1.15	. 474
	DEL-8-MAX		. 607	. 0689	.0658	.452	.447	.219	.175	.510	.303	.165
	PHI TO BETA, PHASE	A, PHASE	4	244.	55.5	22.4	386.	211.	197.	761	140.	22.3
	PHI TO BETA		1.86	1.90	.652	3.45	3.56	1.31	2.17	3.15	2.57	.405
	PHI TO VE		.304	. 122	.0352	.433	.471	.0973	111.	. 302	.198	.0259
	•											

XB-70A DATA SOURCES

- Estimated Aerodynamic Derivatives, XB-70, North American Rept.
 No. NA-51-707, 29 June 1962
- Aerodynamic Coefficients Obtained from Flight Test Data, XB-70, North American Rept. No. TFD-67-277, 14 Apr. 1967
- Wolowicz, Chester H., et al, Preliminary Flight Evaluation of the Stability and Control Derivatives and Dynamic Characteristics of the Unaugmented XB-70-1 Airplane Including Comparisons with Predictions, NASA TND-4578, May 1968
- Estimated Performance Report for the XB-70A Air Vehicle No. 1, North American Rept. No. NA-64-660, 26 Oct. 1964
- XB-70 Flight Control System Summary Test Report, North American Rept. No. NA-66-360, 30 Sept. 1966

AFPENDIX A

AXIS SYSTEMS, SYMBOLS, COMPUTER MNEMONICS, AND DERIVATIVE DEFINITIONS

1. AXIS SYSTEMS

- XB, YB, ZB The Body-Axis System consists of right-handed, orthogonal axes whose origin is fixed at the nominal aircraft center of gravity. It's orientation remains fixed with respect to the aircraft, the XB and ZB axes being in the plane of symmetry. The exact alignment of XB axis is arbitrary, herein it is taken along the body centerline reference.
- X₃, Y₅, Z₅ The Stability wis System is that particular body-axis system for which the is-axis is coincident with the projection of the total steady-state velocity vector (V_T) on the aircraft's plane of symmetry. It's orientation remains fixed with respect to the aircraft.

2. SYMBOLS		
٤	Speed of sound in air	ft/sec
ay	Lateral acceleration along the y-body axis at the center of gravity (positive out right wing)	ft/sec ²
a ',	Lateral acceleration parallel to the y-body axis at a distance ℓ_X and ℓ_Z from the c.g., $a_Y' = a_Y + \ell_X \dot{r} - \ell_Z \dot{p}$	ft/sec ²
a.'	Normal acceleration parallel to the z-body axis at a distance l_x from the c.g., $a_z' = e_z - l_x \dot{q}$	ft/sec ²
E a.;	Normal acceleration parallel to the z-body axis at a distance &B from the c.g.	
۴	Reference wing span	ft
•	Patrintaht mata	J δ/g
B.L.	Buttock line	
c	Reference chord	ft
C	Longitudinal feel system damping	lb/in./sec
c.g.	Center of gravity	
D	Aerodynamic force (drag) along the total velocity vector (positive aft)	1b
FRL	Fuselage reference line (parallel to x-body axis)	
F.S.	Fuselage station	
	Longitudinal control column force (+ aft)	16
F _{ST}	Longitudinal stick force (+ aft)	16
fat FST	Lateral stick force (+ right)	16
$F_{ ext{ped}}$	Rudder pedal force (+ right)	1 b
g	Acceleration due to gravity	ft/sec ²
G	Pilot control to surface gearing	deg/in. or deg/deg

h	Altitude	rt
I	Longitudinal feel system inertia	11./in./sec?
I _x , I _y , I _z	Moments of inertia referred to body axis (unless otherwise specified)	slug-ft ²
I _{xz}	Product of inertia referred to body axis (unless otherwise specified)	alug-ft ²
j w	The imaginary portion of the complex variable s = 0 ± jw	rad/sec
ℓ _B	Effective distance of bobweight from c.g. (positive forward)	ft
ℓ_{X}	Distance along the x-body axis from the c.g. (positive forward)	ft
l+h	Perpendicular distance from c.g. to thrust	
$\boldsymbol{\ell}_{\mathbf{Z}}$	Distance along the z-body axis from the c.g. (positive down)	ft
K	Longitudinal feel system spring constant	lb/in.
KTAS	Knots true airspeed	
KCAS	Knots calibrated airspeed	
K'	Feel system spring constant per unit dynamic pressure	(lb/in.)/psf
L .	Rolling moment about the x-axis due to aero- dynamic torques (positive right wing down)	ft-lb
L	Aerodynamic force (lift) perpendicular to the total velocity vector in the aircraft's plane of symmetry (positive up)	lb
m	Mass	slugs
M	Mach mumber	
м	Pitching moment about the y-axis due to aerodynamic torques (positive nose up)	ft-lb
MAC	Mean aerodynamic chord	ft
MGC	Mean geometric chord	ft

S

N	Aerodynamic normal force along the z-body axis, but positive up	1b
N	Yawing moment about z-axis due to aerodynamic torques 'positive nose right')	ft-1b
p	Roll rate, angular velocity about x-axis (positive right wing down)	rad/sec
P	Pitch rate, angular velocity about y-axis (positive nose up)	rad/sec
$\overline{\overline{q}}$	Dynamic pressure, $1/2_0 V_{T_0}^2$	1p/tt ²
r	Yaw rate, angular velocity about z-axis (positive nose right)	rad/sec
\mathbf{r}_{RG}	Yaw rate gyro signal	rad/sec
8	Laplace operator, σ + jω	rad/sec
-	ನಾರ್ಣಾಗುಂದ ಇನೆಗಳ ನಾ ರದ	It2
TET	Trailing edge down	
TEU	Trailing edge up	
TL	Thrust line	
u	Linear perturbed velocity along the x-axis (positive forward)	ft/sec
U _O	Linear steady-state velocity along the x-axis (positive forward)	ft/sec
A	Linear perturbed velocity along the y-axis (positive out right wing)	ft/sec
v _s	Stall speed	
v _{Eo}	Total linear steady-state velocity (positive forward)	kt
W	Linear perturbed velocity along the x-axis (positive down)	
W.L.	Water line	in.
W	Weight	16
Wo	Linear steady-state velocity along the z-axis (positive down)	rt/sec

Х	Aerodynamic folse along the x-axis (positive forward)	
Y	Aerodynamic force along y-axis (positive out right wing)	1b
Z	Aerodynamic force along z-axis (positive down)	1b
α	Perturbed angle of attack	rad
α ₀	Steady-state (trim) angle of attack relative to the FRL	deg
£	Sideslip angle	rad
7 0	Steady-state flight path angle	deg
δ _a	Aileron control surface deflection (includes spoiler effects, etc.) (positive for positive rolling moment)	rad
· 9	Elevator curible deflection from trim (positive for mose-down pitching moment for aft surface)	rad
$\delta_{\mathbf{e_o}}$	Trim elevator deflection	deg
δ _{cc}	Longitudinal control column deflection from trim (positive aft)	deg
⁸ ST	Longitudinal stick deflection from trim (positive aft)	in.
δST	Lateral stick deflection from trim (positive right)	in.
⁸ ped	Rudder pedal deflection from trim (positive right pedal forward)	in.
δ _w	Lateral wheel deflection from trim (positive about x-axis)	deg
δ _s	Stabilizer surface deflection from trim (positive for TED)	rad
δ _{sp}	Spoiler surface deflection (positive up)	rad
$\delta_{f v}$	Vertical tail deflection from trim (posi- tive for nose-left yawing moment)	rad
δŗ	Rudder deflection [positive for nose-left yewing moment (negative N)] A-5	rad

Δ	Denominator of airframe transfer function	
€	Angle between principle inertia axis and FRL (positive about y-axis)	deg
ζį	Damping ratio of linear second-order mode particularized by the subscript	
8	Pitch angle, $\int q dt$ for straight and level flight, positive nose up	rad
iTH	Inclination of thrust line with FRL [positive gives negative (-) z force]	deg
ρ	Mass density of air	alugs/ft ³
σ	The real portion of the complex variable $s = \sigma \pm j\omega$	rad/sec
φ	Roll angle, (cos θ_0/p dt— $\sin \theta_0/r$ dt) in straight and level flight (nositive right wing down)	rad
ω ₁	Undamped natural frequency of a second-order mode, particularized by subscript	red/sec

Special Subscript

a	Aileron
cc	Control column
d	Dutch roll
e	Elevator
G	Gyro
IRS	Inertial navigation system
p	Phospoid
r	Rudder
R	Roll subsidence
8	Spiral
SAS	Stability augmentation system
ಕ್ಕಾ	Short period
ST	Stick

Special Superscript

DIR Directional control system (e.g., rudder pedal)

LAT Lateral control system

Symbols Unique to Specific Aircraft

ARI	Aileron-rudder interconnect (F-4)	
BLC	Boundary layer control (F-16h, F-4)	
KFLEX	Rudder flexure coefficient (F-4)	
P_{BF}	Bellows force parameter (F-4)	ft ²
$q_{\mathbf{B}}$	Bellows pressure (F-4)	lb/ft ²
δ _đ	Yaw damper surface deflection (F-104) (positive for nose-left yawing moment)	rad
⁸ ta	Aileron tab deflection (CV-88OM)	rad
$\delta t_{\mathbf{a_c}}$	Commanded alleron tab deflection (CV-880M)	rad
δte	Elevator tab deflection (CV-880M)	rad
$(\delta_{te} - \delta_{e})_{c}$	Commanded elevator-elevator servo tab combination (input linkage) (CV-880M)	rad
δtr	Rudder tab deflection (CV-88CM)	rad
$(\delta_{\mathbf{t_r}} - \delta_{\mathbf{r}})_{\mathbf{c}}$	Commanded rudder-rudder servo tab combination (input linkage)(CV-880M)	rad

3. COMPUTER PRINTOUT MNEMONICS

a. DIMENSIONAL, MASS, AND FLIGHT CONDITION PARAMETERS

COMPUTER PRINT OUT	STANDARD NOTATION, DEFINITION
s	S, wing reference area
В	b, wing span
c	C, mean geometric chord
F/C#	Flight Condition number
H(FT)	h, altitude, reet
SL	Sea Level
M(-)	M, Mach number
VTO(FPS)	V _{To} , true airspeed, knots
VTO(KTAS)	Vro, true airspeed knots
VTO(KTCS)	V _{To} , calibrated airspeed, knots
W(LBS)	W, weight, pounds
C.G.(MGC)	c.g., center of gravity relative to mean geometric chord
IX IY IZ IXZ	Ix Iy Body axis (FRL) moments of Iz inertia, slugs-ft ² Ix:
epsilon(deg)	ϵ , inclination of principle axis with respect to FRL, degrees
Q(PSF)	q, dynamic pressure, psf
QC(PSF)	q _c , impact pressure, psf
ALPHA(DEG)	α_0 , FRL angle of attack, degrees
GAMMA (DEG)	70, flight path angle, degrees
LXP(FT)	ℓ_{x} , x distance to pilot, ft
LZP(FT)	£z, z distance to pilot, ft
ITH(DEG)	ith, thrust incidence with respect to FRL, degrees
XI(DEG)	ξ _o , i _{th} + α _o , degrees
LTH(FT)	fth, perpendicular distance to thrust line from c.g., ft

b. LONGITUDINAL PARAMETERS

COMPUTER PRINT OUT	STANDA	RD NOTATION, DEFINITION
XU*	$\mathbf{x_u^*}$	1/sec
ZU•	$z_{\mathbf{u}}^{\bullet}$	1/sec
MU*	M_{U}^{\bullet}	1/sec-ft
WX	Xw	1/sec
ZW	Z_{W}	1/sec
MW	Mw	1/sec-ft
ZWD	$\mathbf{z}_{\mathbf{w}}$	1/sec ²
ZQ	$\mathbf{z}_{\mathbf{q}}$	1/sec
MMD	Mŵ	1/sec-ft
MQ	Mq	1/sec
†XDDD	Xδ	ft/sec2-rad
ZDDD	z_{δ}	ft/sec ² -rad
ממסא	Mo	1/sec ²
DTH	$\mathfrak{d}_{ ext{th}}$	Thrust
FST	Fst	Stick force
ប	u	fps
W	W	fps
THE	θ	rad
HD .	ĥ	fps
AZP	$\mathbf{a_{z}^{\prime}}$	rt/sec^2 at $X = L_X$

†DDD signifies a control surface, e.g., for elevator DDD = DE; for aileron DDD = DA

c. LATERAL-DIRECTIONAL PARAMETERS

COMPUTER FRINT OUT	STANDARD MOTATION, DEFINITION
YV	Y _v 1/sec
ΥВ	Υ _β ft/sec ²
LB'	Ig 1/sec ²
NB'	Ip 1/sec ² Nβ 1/sec ²
LP'	L' i/sec N' 1/sec L' 1/sec
NP'	Np 1/sec
LR'	L' 1/sec
NR '	N' 1/sec
†Y*DDD	Υ _ξ , 1/sec
L'DDD	I _d 1/sec ²
DDD COOL I	N_{δ}^{1} $1/\sec^{2}$
В	β red
P	p rad/sec
R	r rad/sec
PHI	φ rad
AYP	a_y' ft/sec ² at l_x , l_z

†DDD signifies a control surface, e.g., for elevator DDD = DE; for alleron DDD = DA.

d. TRANSFER FUNCTION PARAMETERS

The following shorthand notation is used to print the factored polynomials for all transfer functions*:

$$(\varepsilon + 1/T_X)_i = 1/T_{X_i}$$
, $i = 1 \text{ to } k$

$$(s^2 + 2\zeta \omega_n s + \omega_n^2)_j = \zeta_j; \omega_{n_j}$$
, $j = 1 \text{ to } s$

where k + 2l = n, the order of the polynomial

COMPUTER PRINT OUT

STANDARD NOTATION, DEFINITION

DET Roots of the denominator N(X/Y) Numerator N_y^X A(X) Gain of the transfer function x/y 1/T(X)I $1/T_{X_1}$, rad/sec ζ_j w_{N_1} , rad/sec

For example: DENCM:NATOR

1/T (OET)1 .0318 1/T (DET)2 2.20 2(CET)1 .06C9 W(DET)1 1.13

NUMERATORS N(B /OR)

8 /OR }
A(B) .0255
1/T(B)1 -.0454
1/T(B)2 2.05
1/T(B)3 42.3

Translates to: $\frac{\beta}{\delta_{\mathbf{r}}} = \frac{.0295(s - .0494)(s + 2.05)(s + 42.3)}{(s + .0318)(s + 2.20)(s^2 + 2 \times .0609 \times 1.13s + 1.13^2s^2)}$

$$x/y = \frac{n_y^x}{\Delta} = \frac{A_x(s^m + s^{m-1} + \dots s^0)}{(s^n + s^{n-1} + \dots s^0)}$$

The transfer function x/y is written as:

[†]Any roots enclosed in parentheses imply the opposite order of what is specified, e.g., $Z(DET)1 = (0.00132) \Rightarrow 1/T(DET)1 = 0.00132$

. LONGITUDINAL HANDLING QUALITY MANAGETERS

COMPUTER	PRINT	ar,	•

STANDARD MOTATION, DEPTRITION

$$\frac{\text{EQUATION}}{\left(1.689\right)(57.3)} \frac{\left[H_0^0(a) + \frac{M_0}{V_{10}^2} H_0^u(a) - \frac{U_0}{V_{10}^2} H_0^u(a)\right]}{\frac{U_0}{V_{T_0}} H_0^u(a) + \frac{M_0}{V_{T_0}} H_0^u(a)}, \text{ for } a = 0$$

$$D(G)/D(U)$$
 (DEG/NCT)

$$H_{S_{c_0}}$$
, g/rad
$$\frac{\circ_{-U_0} \hat{H}_0^{a_{c_0}}(s)}{g \hat{H}_0^{b_{c_0}}}$$
, for $s = 0$

MZA (G/RAD)

$$57.3 \left(\frac{1}{8} \frac{\hat{R}_0^{12}(a)}{\hat{\Delta}(a)}\right)^{-1}$$
, for $a = 0$

$$-\left(\frac{s^2\widehat{\eta}_{\hat{0}}^0(s)}{\widehat{\Delta}(s)}\bigg|_{s=s}\sqrt{\frac{1}{6}}\frac{\widehat{\eta}_{\hat{0}}^{-1}}{\widehat{\Delta}}\bigg|_{s=0}\right)$$

The phugoid time to double amplitude, seconds

$$\frac{\ln 2}{|\zeta_{P_h} \omega_{P_h}|}, \text{ for } \zeta_{P_h} < 0$$

Short period inverse cycles to 1/10 emplitude

$$\frac{2\pi}{\ln 10} \sqrt{\frac{\zeta_{ap}^2}{1 - \zeta_{ap}}} \quad \text{for } 0 \le \zeta_{ap} < 1$$

Stick force per knot, pounds/knot

1.689
$$\left[\frac{u}{F_{\rm st}}(s)\right]^{-1}$$
 for $s=0$

Stick force per g, pounds

 $\left[\frac{1}{6}\frac{\hat{N}_{\text{fst}}^{2}}{\hat{\Delta}}\right]^{-1} \quad \text{for } s = 0$

---,- 、 , ,

The parameter has no meaning or is not defined at this flight

condition

The hat $(\hat{\mathbf{x}})$ notation implies constant speed $(\mathbf{x} = \mathbf{0}_0 = 0)$.

1. LATERAL-DIRECTIONAL PANDLING GRALITY PARAMETERS

COMPUTER PRINT OUT	STANDARD NOTATION, DEFINITION	EQUATION
DR PERIOD (SEC)	Dutch rcll period, seconds	$2\pi/\omega_{n_d}\sqrt{1-\zeta_d^2}$
1/C(1/2)	Dutch roll inverse cycles to 1/2 amplitude	$\frac{2\pi}{\ln 2} \sqrt{\frac{\zeta_d^2}{1-\zeta_d^2}}, \text{ for } \zeta_d \ge 0$
SPIRAL (2) (SEC)	Spiral time to double amplitude, seconds	$T_{\rm ff}$ ln 2, for $1/T_{\rm ff} \le 0$
P(1)	Roll rate at peak I for a unit step input of $\delta_{\bf a}$	
P(OSC)/P(AV)	A measure of the oscillatory to the average roll rate	$\frac{p_1 + p_3 - 2p_2}{p_1 + p_3 + 2p_2}$, for $\zeta_d \le 0.2$
		$\frac{p_1 - p_2}{p_1 + p_2}$, for $\zeta_d > 0.2$
W(PHI)/W(D)	Ratio of the roll frequency to the dutch roll frequency	$\omega_{\mathbf{n}_{\mathbf{q}}}/\omega_{\mathbf{n}_{\mathbf{d}}}$
DEL-B-MAX	Δt _m : Maximum sideslip excursion at the c.g., occurring within two seconds or one half-period of the dutch roll, whichever is greater for a step aileron-control command	was tarak si tar
PHI to BETA, PHASE	$\not\downarrow \phi/\beta$ at $s = (\zeta; \alpha_0)_d$, degrees	
PHI TO RETA	$ \varphi/\beta $ at $s = (\xi; \omega_0)_d$, rad/rad	
PHI TO VE	$ p/v_e $ at $s = (\zeta; \omega_n)_d$, deg/fps	•
*v _e = (β)(V _{EAS}), V _{EAS}	- √ <u>≅</u>	

4. HONDIMENSIONAL DERIVATIVE DEFINITIONS

a) Longitudinal Body Axis

$$C_{N} = \frac{N}{\tilde{a}S}$$
, positive up

$$c_{X} = -\frac{X}{\bar{q} S}$$
, positive aft

$$c_{N\alpha} = \frac{c}{2V_{T_0}} \, \delta c_N / \delta \alpha$$

$$C^{MM} = 9C^{M}/9M$$

$$c^{MQ} = 9c^{M}/9e$$

$$c^{X^{\alpha}} = gc^{X}/g\alpha$$

$$CX^M = 9C^X/9M$$

$$c^{X^Q} = 9c^{X}/99$$

$C^{M} = \frac{d}{d} \frac{2c}{2c}$

$$C^{M_{\rm c}} = \frac{c}{5 \Lambda^{1/2}} 9 C^{M/3}$$

$$C_{MM} = \partial C_M/M$$

$$c_{\mu_{\frac{1}{4}}} = \frac{c}{2V_{\frac{1}{4}}} \partial c_{\mu}/\partial q$$

b) Longitudinal Stability Aris

$$C_{L} = \frac{L}{\bar{q} S}$$
, laitive up

$$c_D = \frac{D}{\bar{q} S}$$
, positive aft

$$c^{\Gamma^{\alpha}} = gc^{\Gamma}/g\alpha$$

$$c^{I^{Q}} = \frac{c}{5\Lambda^{L^{Q}}} 9c^{I^{Q}}$$

$$CI^{W} = 9CI\sqrt{9W}$$

$$c^{D^{CL}} = 9c^{D}/9cc$$

$$c_{DM} = \partial c_D/\partial M$$

Pitching moment

identical to

those for body axis

c) Lateral Body and Stability Axis

Though physically and numerically different,* see Appendix B, the same symbols are used for body axis and stability axis lateral rolling and yawing moment derivatives. The sideforce derivatives (Cy, etc.) arphysically and numerically the same in both axis systems. When the rolling or yawing moment derivatives are given in this report the axis system is specified. When using the following all quantities should be for the same axis system.

^{*}The exception is the zero trim angle of attack condition.

5. DIMENSIONAL STABILITY DERIVATIVE DEFINITIC 3

The same symbols are used for body- and stability-axis dimensional derivatives. Care should be exercised so that a consistent set of quantities are used.

a) Longitudinal Body Axis

$X_0^* = X_0 + T_0 \cos \xi_0$	1/sec
$X_{U} = \frac{\rho SU_{O}}{m} \left(-\frac{M}{2} C_{XM} - C_{X} + \frac{W_{O}}{2U_{O}} C_{X_{O}} \right)$	1/sec
$X^{M} = \frac{S\Omega^{O}}{S} \left[-CX^{O} - S \frac{\tilde{M}^{O}}{M} \left(CX + \frac{S}{M} CX^{M} \right) \right]$	1/sec
$X_{\delta_{\mathbf{e}}} = -\frac{\rho S V_{T_{\mathcal{O}}}^{2}}{2m} C_{X_{\delta_{\mathbf{e}}}}$	<u>ft</u> sec ² rai

$$Z_{u}^{*} = Z_{u} - T_{u} \sin \xi_{0}$$

$$Z_{u} = \frac{\rho S U_{0}}{m} \left(-\frac{M}{2} C_{N_{M}} - C_{N} + \frac{W_{0}}{2U_{0}} C_{N_{C}} \right)$$

$$Z_{w} = \frac{\rho S U_{0}}{2m} \left[-C_{N_{C}} - 2 \frac{W_{0}}{U_{0}} \left(C_{N} + \frac{M}{2} C_{N_{M}} \right) \right]$$

$$Z_{w}^{*} = -\frac{\rho S C}{k_{m}} \frac{U_{0}}{V_{T_{0}}} C_{N_{0}^{*}}$$

$$Z_{0} = -\frac{\rho S V_{T_{0}}^{T_{0}}}{2m} C_{N_{0}} C_{N_{0}^{*}}$$

$$Z_{0} = -\frac{\rho S V_{T_{0}}^{T_{0}}}{2m} C_{N_{0}^{*}} C_{N_{0}^{*}}$$

$$M_{u}^{*} = M_{u} + \frac{A_{th}}{L_{y}} T_{u}$$
 $\frac{1}{\sec - ft}$

Mu	8	$\frac{\rho S_{c}U_{o}}{I_{y}}\left[\frac{M}{2}C_{mM}+C_{m}-\frac{W_{o}}{2U_{o}}C_{m_{Q}}\right]$	sec-ft
M _{ef}	=	$\frac{\rho SeU_{O}}{2I_{y}}\left[C_{m_{C}}+\frac{2W_{O}}{U_{O}}\left(C_{m}+\frac{M}{2}C_{m_{M}}\right)\right]$	sec-ft
Mi		OSC2 UO VTO CMA	sec-ft
Nar	=	U _O M _{er}	1/sec ²
M:	=	U _O M _v	1/sec
Мq	=	$\frac{\rho_{Sc^2V_{T_O}}}{\rho_{Sc^2V_{T_O}}} c_{m_Q}$	1/sec
Иде	=	OSCVTO Cmbe	1/sec ²
T _u	=	1 am ot/am	1/sec

b) Lateral Body Axis

Y	=	(pSV _{To} /2m)C _{yβ}	1/sec
Yβ	=	Y _{To} Y _v	ft/sec ²
Yoa	#	(psv ² _{To} /2m)C _{yb}	ft/sec ²
		(psv ² _{To} /2m)Cy _{5r}	ft/sec ²
		(pSV _{To} /2m)C _{yor}	1/sec
		(psv20/21x)C1p	1/sec ²
		(psytob2/4Ix)Clp	1/sec
		(psv _{To} b ² /4I _x)c _{lr}	1/sec

$L_{\delta_{\mathbf{a}}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{x}})^{C} l_{\delta_{\mathbf{a}}}$ $L_{\delta_{\mathbf{r}}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{x}})^{C} l_{\delta_{\mathbf{r}}}$ $Y_{\delta_{\mathbf{a}}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{z}})^{C} l_{\delta_{\mathbf{a}}}$ $N_{\beta} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{z}})^{C} l_{\beta_{\mathbf{a}}}$ $N_{\mathbf{p}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{z}})^{C} l_{\beta_{\mathbf{p}}}$ $N_{\mathbf{p}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{z}})^{C} l_{\mathbf{p}}$ $N_{\mathbf{r}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{z}})^{C} l_{\delta_{\mathbf{p}}}$ $N_{\delta_{\mathbf{a}}} = (\rho S V_{T_0}^2 b/2 I_{\mathbf{z}})^{C} l_{\delta_{\mathbf{p}}}$	1/sec ² 1/sec 1/sec 1/sec 1/sec 1/sec 1/sec
$N_{\mathbf{p}} = (\mathfrak{c}SV_{\mathbf{T_0}}b^2/4I_{\mathbf{z}})C_{n_{\mathbf{p}}}$	1/sec
a - 1	

APPENDIX B

THANSTORMATION OF STADILITY AKIS DESTATIVES TO BOOK AXIS

A. NOM-DIMENSIONAL STABILITY AXIS TO BODY AXIS

υ_ο - ν_{το}eoe α_ο V_o - ν_{το}eta α_ο

3

Body Axte

(Clp)B = Clp cos ao - Cnp sin ao

 $(c_{1p})_B = c_{1p} \cos^2 \alpha_0 - (c_{1p} + c_{1p})$ at a $\alpha_0 \cos \alpha_0 + c_{1p}$ at $a^2\alpha_0$ $(c_{1p})_B = c_{1p} \cos^2 \alpha_0 - (c_{1p} - c_{1p})$ at a $\alpha_0 \cos \alpha_0 - c_{1p}$ at $a^2\alpha_0$

(Clo) = Clo coe do - Cno ala do

Offig . Classe co-Clein co+Chasin co+Ch cos co

CH = CL 008 ao + CL sin ao CH = CL sin ao

(Cng) B = Cng cos Co+ Clg sis Co

 $(C_{n_p})_B = C_{n_p} \cos^2 \alpha_o - (C_{n_p} - C_{1p}) \sin \alpha_o \cos \alpha_o - C_{1p} \sin^2 \alpha_o$

 $(c_{D_F})_B = c_{B_F} \cos^2 \alpha_0 + (c_{1_F} \cdot c_{B_F})$ sin $\alpha_0 \cos \alpha_0 + c_{1_F} \sin^2 \alpha_0$ $(c_{D_0})_B = c_{B_0} \cos \alpha_0 + c_{1_F} \sin \alpha_0$

Ox . Ox cos as - Or sin as - Or sin as - CL cos as

% 41. 45. - 30.

Che . Cle cos co+CDs sin co

OH . CIM cos co + CDM sin co

Car, Care, Care, Care, Care, Care - Uncontrosto

Cyp, Cybr, Cybr - UNCHANDED

LOSDITYDIDAL Body Axis

b. TRANSFORMATION OF DIMENSIONAL DERIVATIVES FROM STABILITY AXIS TO BODY AXIS

Longitudinal

$$(X_u)_b = X_u \cos^2 \alpha_0 - (X_w + Z_u) \sin \alpha_0 \cos \alpha_0 + Z_w \sin^2 \alpha$$

$$(X_{\dot{u}})_{\dot{v}} = Z_{\dot{v}} \sin^2 \alpha_0$$

$$(X_w)_b = X_w \cos^2 \alpha_0 + (X_u - Z_w) \sin \alpha_0 \cos \alpha_0 - Z_u \sin^2 \alpha_0$$

$$(X_{\hat{\mathbf{w}}})_{\hat{\mathbf{b}}} = X_{\hat{\mathbf{w}}} \cos^2 \alpha_{\mathbf{0}} - Z_{\hat{\mathbf{w}}} \sin \alpha_{\mathbf{0}} \cos \alpha_{\mathbf{0}}$$

$$(X_{q;\delta})_b = X_{q;\delta} \cos \alpha_0 - Z_{q;\delta} \sin \alpha_0$$

$$(Z_u)_b = Z_u \cos^2 \alpha_0 - (Z_w - X_u) \sin \alpha_0 \cos \alpha_0 - X_w \sin^2 \alpha_0$$

$$(Z_{\dot{u}})_{\dot{b}} = -Z_{\dot{w}} \sin \alpha_0 \cos \alpha_0$$

$$(Z_w)_b = Z_w \cos^2 \alpha_0 + (Z_u + X_w) \sin \alpha_0 \cos \alpha_0 + X_u \sin^2 \alpha_0$$

$$(Z_{\mathbf{W}}^{\star})_{\mathbf{b}} = Z_{\mathbf{W}}^{\star} \cos^{2} \alpha_{\mathbf{0}} + X_{\mathbf{W}}^{\star} \sin \alpha_{\mathbf{0}} \cos \alpha_{\mathbf{0}}$$

$$(Z_{q;\delta})_b = Z_{q;\delta} \cos \alpha_0 + X_{q;\delta} \sin \alpha_0$$

$$(M_u)_b = M_W \cos \alpha_0 - M_U \sin \alpha_0$$

$$(M_u)_b = -M_w \sin \alpha_0$$

$$(M_w)_b = M_w \cos \alpha_0 + M_u \sin \alpha_0$$

$$(M_W^*)_b = M_W^* \cos \alpha_0$$

$$(M_{q;\delta})_b = M_{q;\delta}$$

$$(I_y)_b = I_y$$

Lateral-Directional

$$(Y_{v;\delta})_b = Y_{v;\delta}$$

$$(Y_{\dot{\mathbf{V}}})_{\dot{\mathbf{b}}} = Y_{\dot{\mathbf{V}}}$$

$$(Y_p)_b = Y_p \cos \alpha_0 - Y_r \sin \alpha_0$$

$$(Y_r)_b = Y_r \cos \alpha_0 + Y_p \sin \alpha_0$$

$$(L_{v;\delta}^{i})_{b} = L_{v;\delta}^{i} \cos \alpha_{0} - N_{v;\delta}^{i} \sin \alpha_{0}$$

$$(L_{\mathbf{V}}^{!})_{\mathbf{D}} = L_{\mathbf{V}}^{!} \cos \alpha_{\mathbf{O}} - N_{\mathbf{V}}^{!} \sin \alpha_{\mathbf{O}}$$

$$(L_p')_b = L_p' \cos^2 \alpha_0 - (L_r' + N_p') \sin \alpha_0 \cos \alpha_0 + N_r' \sin^2 \alpha_0$$

$$(L_{\mathbf{r}}')_{b} = L_{\mathbf{r}}' \cos^{2} \alpha_{0} - (N_{\mathbf{r}}' - L_{\mathbf{p}}') \sin \alpha_{0} \cos \alpha_{0} - N_{\mathbf{p}}' \sin^{2} \alpha_{0}$$

$$(\Sigma_{V;\delta}')_{b} = N_{V;\delta}' \cos \alpha_{0} + L_{V;\delta}' \sin \alpha_{0}$$

$$\left(N_{\tilde{V}}^{\dagger}\right)_{\tilde{V}} = N_{\tilde{V}}^{\dagger} \cos \alpha_{\tilde{V}} + L_{\tilde{V}}^{\dagger} \sin \alpha_{\tilde{V}}$$

$$(N_p^i)_b = N_p^i \cos^2 \alpha_0 - (N_r^i - L_p^i) \sin \alpha_0 \cos \alpha_0 - L_r^i \sin^2 \alpha_0$$

$$(N_r')_b = N_r' \cos^2 \alpha_0 + (L_r' + N_p') \sin \alpha_0 \cos \alpha_0 + L_p' \sin^2 \alpha_0$$

$$(I_x)_b = I_x \cos^2 \alpha_0 + 2I_{xz} \sin \alpha_0 \cos \alpha_0 + I_z \sin^2 \alpha_0$$

$$(I_z)_b = I_z \cos^2 \alpha_0 - 2I_{xz} \sin \alpha_0 \cos \alpha_0 + I_x \sin^2 \alpha_0$$

$$(I_{XZ})_b = (I_Z - I_X) \sin \alpha_0 \cos \alpha_0 + I_{XZ}(\cos^2 \alpha_0 - \sin^2 \alpha_0)$$

EQUATIONS OF MOTION, TRANSFER FUNCTIONS, AND COUPLING NUMERATORS

- 1. Longitudinal
 - a. Equations

$$\begin{bmatrix} (1-X_{\dot{\mathbf{u}}})_{\mathbf{S}}-X_{\mathbf{u}}^{*} & -X_{\dot{\mathbf{w}}}^{*}\mathbf{S}-X_{\mathbf{w}} & (-X_{\mathbf{q}}+W_{\mathbf{0}})_{\mathbf{S}}+\mathbf{g} \cos \theta_{\mathbf{0}} \\ -Z_{\dot{\mathbf{u}}}\mathbf{S}-Z_{\mathbf{u}}^{*} & (1-Z_{\dot{\mathbf{w}}}^{*})_{\mathbf{S}}-Z_{\mathbf{w}} & (-Z_{\mathbf{q}}-U_{\mathbf{0}})_{\mathbf{S}}+\mathbf{g} \sin \theta_{\mathbf{0}} \\ -M_{\dot{\mathbf{u}}}\mathbf{S}-M_{\mathbf{u}}^{*} & -(M_{\dot{\mathbf{w}}}^{*}\mathbf{S}+M_{\mathbf{w}}) & \mathbf{s}^{2}-M_{\mathbf{q}}\mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{w} \\ \mathbf{\theta} \end{bmatrix} = \begin{bmatrix} X_{\delta_{\mathbf{e}}} \\ Z_{\delta_{\mathbf{e}}} \\ M_{\delta_{\mathbf{e}}} \end{bmatrix} \begin{bmatrix} \delta_{\mathbf{e}} \end{bmatrix}$$

$$\dot{h} = -w \cos \theta_0 + u \sin \theta_0 + (U_0 \cos \theta_0 + W_0 \sin \theta_0)\theta$$

$$a_z = sw - U_0q + (\epsilon sin \theta_0)\theta$$

$$\mathbf{a_z^r} = \mathbf{a_z} - \mathbf{1_x} \mathbf{s}^2 \mathbf{\theta}$$

$$\dot{h}' = \dot{h} + L_X \cos \theta_0 \dot{\theta}$$

b. Transfer Functions

$$\frac{\theta}{\delta_e} = \frac{\aleph_{\delta_e}^{\theta}}{\Delta}$$

1) Denominator,
$$\Delta = As^{1} + Bs^{3} + Cs^{2} + Ds + E$$

$$A = (1 - 2)$$

$$B = -(M_q + X_u^*)(1 - Z_w^*) - Z_w - M_u^*$$

$$\begin{split} C &= M_{q} Z_{w} - M_{x} + X_{u}^{e} [(M_{q})(1 - Z_{w}^{e}) + Z_{w} + M_{u}^{e}] \\ &- X_{w} Z_{u}^{e} + W_{o} [M_{w}^{e} Z_{u}^{e} + M_{u}^{e}(1 - Z_{w}^{e})] + gM_{w}^{e} \sin \theta_{o} \end{split}$$

NOTE: Terms including $X_{\hat{u}}$, $Z_{\hat{u}}$, $M_{\hat{u}}$, $X_{\hat{w}}$ are neglected in polynomial expressions.

$$\begin{split} D &= -X_{u}^{*}(M_{q}Z_{w} - M_{C}) - M_{u}^{*}X_{C} + M_{q}X_{w}Z_{1}^{*} + g[M_{w}Z_{u}^{*} + M_{u}^{*}(1 - Z_{w})]\cos\theta_{o} + W_{o}(M_{w}Z_{u}^{*} - M_{u}^{*}Z_{w}) \\ &+ g(M_{w} - M_{w}X_{u}^{*})\sin\theta_{o} \end{split}$$

$$\mathbf{E} = \mathbf{g} (\mathbf{M}_{\mathbf{W}} \mathbf{Z}_{\mathbf{u}}^* - \mathbf{M}_{\mathbf{u}}^* \mathbf{Z}_{\mathbf{w}}) \cos \, \theta_{\mathbf{O}} + \, \mathbf{g} (\mathbf{M}_{\mathbf{u}}^* \mathbf{X}_{\mathbf{w}} - \mathbf{M}_{\mathbf{w}} \mathbf{X}_{\mathbf{u}}^*) \sin \, \theta_{\mathbf{O}}$$

2) Numerators

$$N_{\delta}^{\theta} = A_{\theta}s^{2} + B_{\theta}s + C_{\theta}$$

$$A_{\theta} = Z_{\delta}M_{u} + M_{\delta}(1 - Z_{u})$$

$$B_{\theta} = X_{\delta}[M_{u}Z_{u}^{*} + M_{u}^{*}(1 - Z_{u}^{*})] + Z_{\delta}(M_{u} - M_{u}X_{u}^{*}) - M_{\delta}[Z_{u} + X_{u}^{*}(1 - Z_{u}^{*})]$$

$$C_{\theta} = X_{\delta}(M_{u}Z_{u}^{*} - M_{u}^{*}Z_{u}) + Z_{\delta}(M_{u}X_{u} - M_{u}X_{u}^{*}) + M_{\delta}(Z_{u}X_{u}^{*} - X_{u}Z_{u}^{*})$$

$$N_{\delta}^{u} = A_{u}s^{3} + B_{z}s^{2} + C_{u}s + D_{u}$$

$$A_{u} = X_{\delta}(1 - Z_{u})$$

$$B_{u} = -X_{\delta}[M_{q}(1 - Z_{u}) + Z_{u} + M_{d}] + Z_{\delta}X_{u} - W_{o}[Z_{\delta}M_{u} + M_{\delta}(1 - Z_{u})]$$

$$C_{u} = X_{\delta}(M_{q}Z_{w} - M_{Q}) - Z_{\delta}(gM_{u} \cos \theta_{o} + M_{q}X_{w}) + M_{\delta}[X_{Q} - (g \cos \theta_{o})(1 - Z_{w})]$$

$$+ W_{o}(Z_{w}M_{\delta} - M_{w}Z_{\delta}) + gX_{\delta}M_{w} \sin \theta_{o}$$

$$D_{u} = g(Z_{w}M_{\delta} - M_{w}Z_{\delta})\cos \theta_{o} + g(X_{\delta}M_{w} - M_{\delta}X_{w})\sin \theta_{o}$$

$$N_{\delta}^{W} = A_{w}s^{3} + B_{x}s^{2} + C_{w}s + D_{w}$$

$$A_{w} = Z_{\delta}$$

$$B_{w} = -Z_{\delta}(M_{q} + X_{u}^{*}) + U_{0}M_{\delta} + X_{\delta}Z_{u}^{*}$$

$$C_{w} = X_{u}^{*}(Z_{\delta}M_{q} - U_{0}M_{\delta}) + W_{0}(Z_{\delta}M_{u}^{*} - M_{\delta}Z_{u}^{*}) - gM_{\delta} \sin \theta_{0} + X_{\delta}(M_{u}^{*}U_{0} - Z_{u}^{*}M_{q})$$

$$D_{w} = g(Z_{\delta}M_{u}^{*} - M_{\delta}Z_{u}^{*})\cos \theta_{0} + gM_{\delta}X_{u}^{*} \sin \theta_{0} - X_{\delta}M_{u}^{*}g \sin \theta_{0}$$

$$N_{\delta}^{\dot{h}} = A_{\dot{h}} s^{3} + B_{\dot{h}} s^{2} + C_{\dot{h}} s + D_{\dot{h}}$$

$$A_{h} = -\cos \theta_{0}A_{.} + \sin \theta_{0}A_{u}$$

$$B_h^* = -\cos \theta_0 A_v + \sin \theta_0 B_u + (U_0 \cos \theta_0 + W_0 \sin \theta_0) A_\theta$$

$$C_{h}^{\star} = -\cos \theta_{0}C_{W} + \sin \theta_{c}C_{\underline{u}} + (U_{0} \cos \theta_{0} + W_{0} \sin \theta_{c})B_{\theta}$$

$$D_{h}^{*} = -\cos\theta_{0}D_{w} + \sin\theta_{0}D_{u} + (U_{0}\cos\theta_{0} + W_{0}\sin\theta_{0})C_{\theta}$$

$$N_{\delta}^{a_{z}^{i}} = A_{a_{z}^{i}}s^{4} + B_{a_{z}^{i}}s^{5} + C_{a_{z}^{i}}s^{2} + D_{a_{z}^{i}}s + E_{a_{z}^{i}}$$

$$\mathbf{B}_{\mathbf{a}_{\mathbf{z}}^{\, t}} = \mathbf{B}_{\mathbf{w}} - \mathbf{1}_{\mathbf{x}} \mathbf{B}_{\boldsymbol{\theta}} - \mathbf{U}_{\mathbf{c}} \mathbf{A}_{\boldsymbol{\theta}}$$

$$\mathbf{C_{a_z^{\,i}}} = \mathbf{C_w} - \mathbf{1_x} \mathbf{C_\theta} - \mathbf{U_0} \mathbf{R_\theta} + \mathbf{g} \, \sin \, \theta_0 \mathbf{A_\theta}$$

$$\mathbf{D_{a_2^i}} = \mathbf{D_v} - \mathbf{U_o}\mathbf{C_\theta} + \mathbf{g} \sin \theta_o \mathbf{B_\theta}$$

$$E_{3\frac{1}{2}} = + g \sin \theta_0 C_\theta$$

To obtain a_z , let $l_x = 0$.

2. Lateral

a. Equations

$$\begin{bmatrix} s - i_{v} & -\frac{w_{o}s + g \cos \theta_{o}}{V_{T_{o}}} & \frac{U_{o}s - g \sin \theta_{o}}{V_{T_{o}}s} \\ -i_{\beta} & s(s - i_{c}^{t}) & -i_{r}^{t} \\ -N_{\beta}^{t} & -N_{p}^{t}s & s - N_{r}^{t} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma_{\delta_{a}} & \gamma_{\delta_{r}} \\ \gamma_{\delta_{r}} \\ \gamma_{\delta_{r}} & \gamma_{\delta_{r}} \\ \gamma_{\delta_{r}} & \gamma_{\delta_{r}} \\ \gamma_{\delta_{r}$$

$$v = V_{T_0}\beta$$

$$a_y = sv + U_0r - W_0p - g(\cos\theta_0)q$$

$$\phi = \frac{p}{s} + \frac{r}{s}\tan\theta_0$$

$$a_y^t = a_y + l_{x_{lat}} sr - l_z sp$$

b. Transfer Functions

$$\frac{\Phi}{\delta_{\mathbf{a}}} = \frac{N_{\delta_{\mathbf{a}}}^{\Phi}}{\Delta_{\mathbf{lat}}}$$
 ; $\frac{\mathbf{r}}{\delta_{\mathbf{r}}} = \frac{N_{\delta_{\mathbf{r}}}^{\mathbf{r}}}{\Delta_{\mathbf{lat}}}$; etc.

1) Denominator, $\Delta_{\text{lat}} = \text{as}^{\frac{1}{4}} + \text{bs}^{\frac{3}{4}} + \text{cs}^{\frac{2}{4}} + \text{ds} + \text{e}$

$$b = -(Y_V + L_D^1 + N_T^1)$$

$$\mathbf{c} = \frac{\mathbf{U}_{O}}{\mathbf{V}_{T_{O}}} \mathbf{N}_{B}^{A} + \mathbf{L}_{P}^{i} (\mathbf{Y}_{V} + \mathbf{N}_{P}^{i}) - \mathbf{N}_{P}^{i} \mathbf{L}_{P}^{i} + \mathbf{Y}_{V} \mathbf{N}_{P}^{i} - \frac{\mathbf{W}_{O} \mathbf{L}_{B}^{A}}{\mathbf{V}_{T_{O}}}$$

$$\begin{split} d &= \frac{U_O}{V_{T_O}} \left(N_P^t L_\beta^t - L_P^t N_\beta^t\right) + Y_V (N_P^t L_T^t - L_P^t N_T^t) - \frac{g}{V_{T_O}} \left(L_\beta^t \cos \theta_O + N_\beta^t \sin \theta_O\right) \\ &+ \frac{W_O}{V_{T_O}} \left(L_\beta^t N_T^t - N_\beta^t L_T^t\right) \end{split}$$

$$e = \frac{g}{V_{T_O}} [(I_{\beta}^{\dagger} N_{T}^{\dagger} - N_{\beta}^{\dagger} I_{T}^{\dagger}) \cos \theta_{O} - (N_{p}^{\dagger} I_{\beta}^{\dagger} - I_{p}^{\dagger} N_{\beta}^{\dagger}) \sin \theta_{O}]$$

2) δ ($\delta_{\mathbf{g}}$ or $\delta_{\mathbf{r}}$) Numerators

$$N_{\delta}^{\beta} = A_{\beta}s^{3} + B_{\beta}s^{2} + C_{\beta}s + D_{\beta}$$

$$A_B = Y_\delta^{\bullet}$$

$$\mathbf{B}_{\beta} = -\mathbf{Y}_{\delta}^{\bullet} \left[\mathbf{L}_{\mathbf{p}}^{\bullet} + \mathbf{N}_{\mathbf{r}}^{\bullet} \right] - \mathbf{N}_{\delta}^{\bullet} \frac{\mathbf{U}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{T}_{\mathbf{o}}}} + \frac{\mathbf{W}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{T}_{\mathbf{o}}}} \mathbf{L}_{\delta}^{\bullet}$$

$$C_{\beta} = Y_{\delta}^{\bullet} \left(L_{D}^{\dagger} N_{T}^{\dagger} - N_{D}^{\dagger} L_{T}^{\dagger} \right) + L_{\delta}^{\dagger} \frac{g}{V_{T_{O}}} \cos \theta_{O} + \left(N_{\delta}^{\dagger} L_{D}^{\dagger} - L_{\delta}^{\dagger} N_{D}^{\dagger} \right) \frac{U_{O}}{V_{T_{O}}} + \frac{W_{O}}{V_{T_{O}}} \left(N_{\delta}^{\dagger} L_{T}^{\dagger} - L_{\delta}^{\dagger} N_{T}^{\dagger} \right) + N_{\delta}^{\dagger} \frac{g}{V_{T_{O}}} \sin \theta_{O}$$

$$D_{\beta} = \frac{g}{VT_{O}} \left(N_{O}^{\dagger}L_{T}^{\dagger} - L_{O}^{\dagger}N_{T}^{\dagger}\right) \cos \theta_{O} + \frac{g}{VT_{O}} \left(N_{P}^{\dagger}L_{O}^{\dagger} - N_{O}^{\dagger}L_{P}^{\dagger}\right) \sin \theta_{O}$$

$$N_{\delta}^{p} = A_{p}s^{3} + B_{p}s^{2} + C_{p}s + D_{p}$$

$$A_p = L_\delta'$$

$$B_{p} = Y_{\delta}^{\bullet}L_{\beta}^{\bullet} - L_{\delta}^{\bullet}(N_{r}^{\bullet} + Y_{v}) + N_{\delta}^{\bullet}L_{r}^{\bullet}$$

$$c_{p} = Y_{\delta}^{*}(L_{r}^{i}N_{\beta}^{i} - L_{\beta}^{i}N_{r}^{i}) + L_{\delta}^{i}Y_{v}N_{r}^{i} - N_{\delta}^{i}Y_{v}L_{r}^{i} + (L_{\delta}^{i}N_{\beta}^{i} - N_{\delta}^{i}L_{\beta}^{i}) \frac{U_{o}}{VT_{o}}$$

$$D_{\mathbf{p}} = -\frac{g}{v_{\mathbf{T}_{o}}} \left(\mathbf{L}_{o}^{i} \mathbf{N}_{o}^{i} - \mathbf{N}_{o}^{i} \mathbf{L}_{o}^{i} \right) \sin \theta_{o}$$

$$N_{\delta}^{r} = A_{r}s^{3} + B_{r}s^{2} + C_{r}s + D_{r}$$

$$A_{r} = N_{\delta}^{t}$$

$$B_{\mathbf{r}} = Y_{\delta}^* N_{\beta}^* + L_{\delta}^* N_{\mathbf{p}}^* - N_{\delta}^* (Y_{\mathbf{v}} + L_{\mathbf{p}}^*)$$

$$c_{\mathbf{r}} = Y_{\delta}^{\bullet}(L_{\mathbf{p}}^{\bullet} \mathbb{I}_{\mathbf{p}}^{\bullet} - N_{\mathbf{p}}^{\bullet} L_{\mathbf{p}}^{\bullet}) - L_{\delta}^{\bullet} Y_{\mathbf{v}} \mathbb{I}_{\mathbf{p}}^{\bullet} + N_{\delta}^{\bullet} Y_{\mathbf{v}} L_{\mathbf{p}}^{\bullet} + \frac{W_{\mathbf{o}}}{V_{\mathbf{T}_{\mathbf{o}}}} (L_{\delta}^{\bullet} \mathbb{N}_{\mathbf{p}}^{\bullet} - N_{\delta}^{\bullet} L_{\mathbf{p}}^{\bullet})$$

$$D_{\mathbf{r}} = \frac{g}{V_{\mathbf{T}_{O}}} \left(L_{\delta}^{i} N_{\beta}^{i} - N_{\delta}^{i} L_{\beta}^{i} \right) \cos \theta_{O}$$

$$N_{\delta}^{\phi} = A_{\phi}s^2 + B_{\phi}s + C$$

$$A_{\Phi} = A_p + A_T \tan \theta_0$$

$$B_{\Phi} = B_{p} + B_{r} \tan \theta_{0}$$

$$C_{\Phi} = C_{\mathbf{p}} + C_{\mathbf{r}} \tan \theta_{\mathbf{0}}$$

$$A'_{2y} = V_{T_0}A_{\beta} + l_{x_{lat}}A_{r} - l_{z}A_{p}$$

$$B_{\mathbf{z}_{\mathbf{y}}}' = V_{\mathbf{T}_{\mathbf{0}}}B_{\beta} + U_{\mathbf{0}}A_{\mathbf{r}} - W_{\mathbf{0}}A_{\mathbf{p}} + 1_{\mathbf{x}_{\mathbf{lat}}}B_{\mathbf{r}} - 1_{\mathbf{z}}B_{\mathbf{p}}$$

$$C_{a_y}' = V_{T_o}C_{\beta} + U_{o}B_r - W_{o}B_p - g \cos \theta_o A_{o} + l_{x_{lat}}C_r - l_zC_p$$

$$D_{ay} = V_{T_0}D_{\beta} + U_0C_r - W_0C_p - g \cos \theta_0B_{\beta} + 1_{x_{lat}}D_r - 1_zD_p$$

$$E_{a_y^*} = U_o D_r - W_o D_p - g \cos \theta_o C_{\Phi}$$

To obtain ay, let $l_{x_{lat}} = l_z = 0$.