The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #04

Definite Integral as Riemann Sum

A function f is called **Riemann integrable** on [a, b] if $\exists L \in \mathbb{R}$ such that, for any partition $P: a = x_0 < x_1 < \cdots < x_n < b$ and any $\xi_i \in [x_{i-1}, x_i]$ in which $\|P\| := \max |x_i - x_{i-1}| \to 0$, the **Riemann sum**

$$\sum_{i=1}^n f(\xi_i) (x_i - x_{i-1}) \to \mathbf{L}.$$

If such *L* exists in \mathbb{R} , we denote it as $\int_a^b f(x) dx$. In short, we mean

$$\lim_{\|P\| \to 0} \sum_{i=1}^{n} f(\xi_i) (x_i - x_{i-1}) = \int_{a}^{b} f(x) dx$$

Question 1. (Intermediate Level)

Use integration to evaluate the following limits:

(a)
$$\lim_{n \to \infty} \frac{1^s + 2^s + \dots + n^s}{n^{s+1}}$$
, where $s > -1$

(b)
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$

(c)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{a+n}} + \frac{1}{\sqrt{2a+n}} + \dots + \frac{1}{\sqrt{na+n}} \right)$$
, where $a \ne 0$

Question 2. (Beginner's Level)

Evaluate the following definite integrals:

(a)
$$\int_{0}^{4} (3x - \frac{x^3}{4} + 2) dx$$

(b)
$$\int_{0}^{1} (14x^{\frac{4}{3}} - 7x^{\frac{3}{4}}) dx$$

(c)
$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$

(d)
$$\int_{-1/2}^{1/2} \frac{1}{\sqrt{1-x^2}} \, dx$$

(e)
$$\int_{0}^{\pi/3} \frac{2}{\cos^2 x} dx$$

(f)
$$\int_{\pi/4}^{\pi/2} \csc x \cot x \, dx$$

(g)
$$\int_{0}^{1} (e^{x} - x^{e}) dx$$

(h)
$$\int_{-1}^{2} |x| dx$$

Question 3. (Intermediate Level)

Find the derivative F'(x) wherever the function F(x) is differentiable.

(a)
$$F(x) = \int_{-1}^{x} |t| dt$$

(b)
$$F(x) = \int_{1}^{\cos x} \frac{1}{t} dt$$

(c)
$$F(x) = \int_{\cos x}^{1} \frac{1}{1+t^2} dt$$

(d)
$$F(x) = \int_{x^2}^{x^3} \sin t \, dt$$

(e)
$$F(x) = \int_{-x}^{1} e^{t^3} dt$$

(f)
$$F(x) = \int_{1}^{x^2} \frac{t}{t^6 + 1} dt$$

(g)
$$F(x) = \int_{\sqrt{x}}^{\sin x} \sqrt{t^2 + 3} \ dt$$

(h)
$$F(x) = \int_{x^2}^{x^3} \frac{e^t}{t^2 + 4} dt$$

Question 4. (Intermediate Level)

Evaluate the following definite integrals:

(a)
$$\int_{0}^{\pi} \cos x \cos 2x \cos 3x \, dx$$

(b)
$$\int_{0}^{1} \frac{dx}{\sqrt{8-4x-x^2}}$$

(c)
$$\int_{0}^{1} \frac{dx}{\sqrt{x^2 + 4x + 8}}$$

(d)
$$\int_{0}^{1} x^5 \sqrt{1+x^2} dx$$

(e)
$$\int_{1}^{2} \frac{4x+6}{x^2+3x+1} dx$$

(f)
$$\int_{0}^{\pi/2} \frac{1 - \cos x}{1 + \cos x} dx$$

(g)
$$\int_{1}^{\sqrt{3}} \frac{dx}{(1+x^2) \tan^{-1} x}$$

(h)
$$\int_{0}^{1} \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$

(i)
$$\int_{-1}^{1} (6x^5 + |5x - 1|) dx$$

Question 5. (Concept)

(a)
$$f(x) = \begin{cases} x^2, & \text{if } 0 \le x \le 3a, \\ 9a^2, & \text{if } 3a \le x \le 4a, \\ 25a^2 - x^2, & \text{if } 4a \le x \le 5a. \end{cases}$$

Evaluate $\int_{0}^{5a} f(x) dx$.

(b) Find the average value of $f(x) = x^2 + \sqrt{x}$ on [1, 4].

Question 6. (Exam Level)

Given a constant a > 0, show that $\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(-x) + f(x)] dx$ and hence, evaluate $\int_{-1}^{1} \ln(x + \sqrt{1 + x^2}) dx$.

Question 7. (Exam Level)

- (a) Consider the integral $I_n = \int_0^1 (1 \sqrt{x})^n dx$, where n is a positive integer. Show that $I_n = \frac{n}{n+2} I_{n-1}$ and hence, evaluate $I_4 = \int_0^1 (1 \sqrt{x})^4 dx$.
- (b) For any nonnegative integers m, n, prove that

$$\int_0^1 x^m (1-x)^n dx = \frac{m! \ n!}{(m+n+1)!}$$

Improper Integral

Let f be a real valued function on $[a, \infty)$ such that f is Riemann integrable on every finite subintervals $[b, c] \subseteq [a, \infty)$. Then we define the improper integral

$$\int_{a}^{\infty} f(x) dx = \lim_{A \to \infty} \int_{a}^{A} f(x) dx$$

If the limit exists and is finite, we say the integral is **convergent**; otherwise we say the integral is **divergent**.

Question 8. (Standard Level)

(a)
$$\int_{2}^{\infty} \frac{1}{x (\ln x)^{3}} dx$$
 (b)
$$\int_{1}^{\infty} \frac{(\ln x)^{3}}{x} dx$$

Question 9. (Intermediate Level)

- (a) Find out whether the improper integral $\int_{1}^{\infty} \frac{2 \cos x + 2^{x} e^{-x}}{x^{5} + 1} dx$ is convergent or not. Explain your answer.
- (b) Suppose $f(x) = \int_{x^x}^{10} \sin \sqrt{t} \, dt$. Determine the value of x in [1, 2] such that f(x) attains its minimum.

Question 10. (Exam Level)

(a) Let f and g be continuous functions on [a, b]. Moreover g(x) > 0 for all $x \in [a, b]$. Show that there is a number $c \in [a, b]$ such that

$$\int_{a}^{b} f(x) g(x) dx = f(c) \int_{a}^{b} g(x) dx.$$

(b) Use (a) to evaluate $\lim_{\delta \to 0^+} \frac{1}{\delta^4} \int_0^{\delta} \cos(x^2) x^3 dx$.

Question 11.* (Gamma Function – for fun only!)

- (a) Define $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$ for x > 0. It is known that $\Gamma(x)$ is differentiable in \mathbb{R} . Using integration by parts, show that $\Gamma(x+1) = x \Gamma(x)$ for all x > 0.
- (b) By (a), show that $\Gamma(n+1) = n!$ for all integers $n \ge 0$.
- (c) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. (*Hint*: You may use the fact that $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz = 1$.)

Question 12. (Exam Level)

Define $I_n = \int_0^1 x^n \sqrt{1 - x^2} dx$ for integer $n \ge 0$.

- (a) Compute $I_0 = \int_0^1 \sqrt{1 x^2} dx$ and $I_1 = \int_0^1 x \sqrt{1 x^2} dx$.
- (b) Using integration by parts, express I_{n+2} in terms of I_n .
- (c) Compute I_5 and I_6 .

[†] Remark It is also known that $\Gamma(1-z)\Gamma(z) = \frac{\pi}{\sin \pi z}$ for $z \notin \mathbb{Z}$.

Question 13. (Standard Level)

Discuss the convergence of the following improper integrals and evaluate the integrals if they are convergent.

$$(a) \quad \int_{1}^{\infty} \frac{1}{(3x+1)^2} \, dx$$

(b)
$$\int_0^\infty \frac{x}{1+x^2} dx$$

(c)
$$\int_{-1}^{\infty} \frac{1}{x^p} dx, \ p > 0$$

(d)
$$\int_{1}^{\infty} \frac{\ln x}{x^{p}} dx, \ p > 0$$

(e)
$$\int_{e}^{\infty} \frac{1}{x (\ln x)^{p}} dx$$

Question 14. (Intermediate Level)

Discuss the convergence of the following improper.

(a)
$$\int_0^\infty e^{-x^3} dx$$

(b)
$$\int_{1}^{\infty} \frac{2 \sin x + xe^{-x}}{x^4 + x} dx$$

(c)
$$\int_{2}^{\infty} \frac{1}{(\ln x)^2} dx$$

Taylor Theorem, Linear and Quadratic Approximations, Remainder Term

Suppose f is continuous on [a, x] and $f', f'', ..., f^{(n)}, f^{(n+1)}$ are continuous in (a, x), then $\exists \xi \in (a, x)$ such that

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \dots + \frac{1}{n!}f^{(n)}(a)(x-a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

If
$$n = 1$$
, $f(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(\xi)(x - a)^2 = L(x) + R_1(x)$, where

$$L(x) = f(a) + f'(a)(b - a)$$

is the **linear approximation** of f around x = a, and $R_1(x) := \frac{f''(\xi)}{2}(x - a)^2$ is called the **remainder term** which can help us to estimate the error |f(x) - L(x)|. Similarly, if n = 2,

$$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(x)(x - a)^{2} + \frac{f^{(3)}(\xi)}{3!}(x - a)^{3} = Q(x) + R_{2}(x),$$

where

$$Q(x) = f(a) + f'(a)(b-a) + \frac{1}{2}f''(a)(x-a)^2$$

is the **quadratic approximation** of f around x = a, and $R_2(x) := \frac{f^{(3)}(\xi)}{3!}(x-a)^3$ is called the **remainder term** which can help us to estimate the error |f(x) - Q(x)|.

Question 15. (*Theory*)

Derive the Taylor's Theorem.

 $\textbf{Question 16.} \quad (\textit{Intermediate Level}\)$

Let $f(x) = x^{3/4}$ and $x_0 = 16$.

- (a) Use the linear approximation of f(x) at x_0 to estimate $\sqrt[4]{17^3}$ and also estimate the error.
- (b) Find the Taylor's polynomial of degree 2 of f(x) at x_0 , use it to estimate $\sqrt[4]{17^3}$ and also estimate the error.