ELF52 - Sistemas Microcontrolados

Pinos de Entrada/Saída - Parte 1

Professor:

Prof. Marcos Eduardo

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Pinos de I/O do TM4C Programação dos GPIO Leitura e Escrita dos GPIO

GPIO

GPIO

GPIO

General Purpose Input/Output;

• Para que servem?

GPIO

• Utilizados para para trocar informação digital com o mundo externo;

Exemplo:

- Controlar LEDs;
- Controlar chaves.

- Podemos utilizar os pinos para operações de I/O em paralelo;
- Entretanto, a maioria dos pinos têm uma ou mais funções alternativas:
 - UART;
 - SSI (SPI);
 - \bullet I^2C ;
 - Timer,
 - PWM;
 - ADC;
 - Comparador Analógico;
 - USB;
 - Ethernet;
 - CAN.

- Nota sobre o JTAG/SWD, JLINK e ICDI:
 - JTAG: norma projetada originalmente para realizar testes elétricos em componentes e placas saindo das fábricas, assumindo o controle de seus pinos de entrada / saída. Presente no microcontrolador que utilizamos;
 - SWD: protocolo alternativo específico para chips ARM, que é compatível com os pinos JTAG, mas usa menos fios. Presente no microcontrolador que utilizamos;
 - J-LINK: programador da Segger externo ao microcontrolador capaz de programar CIs compatíveis com JTAG/SWD através de uma interface USB conectada ao computador;
 - In-Circuit Debug Interface (ICDI): programador presente no nosso kit de desenvolvimento capaz de realizar a mesma operação feita pelo J-LINK, mas sem a necessidade de comprar um equipamento a mais.

- Os pinos de I/O podem ser associados a até sete funções alternativas;
- Exemplo: PA0
 - I/O Digital;
 - Entrada Serial;
 - Clock I2C;
 - Timer I/O;
 - Receptor CAN.

Pinos PC3 - PC0 devem ser reservados para o depurador JTAG;

Pinos PA1 - PA0 já são usados para comunicação serial;

- Há funções que podem ser mapeadas em mais de um pino, por exemplo:
 - T0CCP0 pode ser mapeado em PA0, PD0 ou PL4.

• Há funções que só existem em um pino, por exemplo:

U0Rx só existe em PA0.

- A tabela 10-2 (páginas 743-746) do Datasheet do microcontrolador demonstra todas as funções dos pinos;
- Exemplo (PARTE da tabela extraída do Datasheet):
 - Coluna indica a posição os bits no registrador PCTL (4 bits);
 - Exemplo: Coluna 3 \rightarrow PCTL = 0011.

Ю		Analog or Special Function ^a	Digital Function (GPIOPCTL PMCx Bit Field Encoding) ^b											
			1	2	3	4	5	6	7	8	11	13	14	15
PAO	33		UORx	12C9SCL	TOCCPO	•	•		CANORX	•	•			
PA1	34		UOTx	12C9SDA	TOCCP1				CANOTX	•				
PA2	35		U4Rx	12C8SCL	71CCP0									SSIOCIK
PA3	36	•	U4Tx	12C8SDA	TICCPI					•	X			SSIOFss
PA4	37		U3Rx	12C7SCL	T200P0									SSIOXDATO

(Adaptado de datasheet do microcontrolador)

- A placa EK-TM4C1294XL tem duas chaves e quatro LEDs:
 - Chaves de usuário → Lógica negativa e necessitam habilitar um resistor de pull-up (PUR);
 - LEDs de usuário → Lógica positiva;
 - Chave de reset;
 - LED de energia.

Pinos de I/O

- A porta de I/O mais simples em um μ Controlador é a porta paralela:
 - Múltiplos sinais podem ser acessados ao mesmo tempo;
 - Mecanismo simples que permite ao SW interagir com dispositivos externos;

(Adaptado de VALVANO, J.)

Pinos de I/O - Entrada

- Porta de entrada permite o SW ler sinais digitais externos;
- Um ciclo de leitura ao endereço da porta retorna o valor de todas as entradas naquele momento;
- O driver tristate direciona o sinal de entrada para o barramento de dados:

(Adaptado de VALVANO, J.)

Pinos de I/O - Entrada

- Para fazer um pino de entrada escrever 0 no registrador de direção;
- Desta forma um acesso de escrita não tem efeito nenhum;
- A maioria dos pinos são tolerantes a 5V de entrada:
 - Valores entre 2V e 5V serão considerados ALTOS;
 - Valores entre 0V e 1,3V serão considerados BAIXOS.

Pinos de I/O - Saída

- Porta de saída permite o SW escrever sinais digitais externos, mas também permite ler o que foi escrito;
- Um ciclo de escrita no endereço porta escreve os valores nos pinos de saída;
- Para fazer um pino de saída escrever 1 no registrador de direção:

(Adaptado de VALVANO, J.)

Programação de I/O

- Mas, como acessar os GPIOs na Tiva?
 - Capítulo 10 do Datasheet;

Programação de I/O

- Mas, como acessar os GPIOs na Tiva?
 - Capítulo 10 do Datasheet;

Programação de I/O

Como acessar os GPIOs na Tiva?

- Na Tiva e em vários outros microcontroladores as portas de I/O são mapeadas em memória;
- Cada porta deve seguir uma série de configurações na memória (em registradores) antes de ser utilizada;
- Para escrever e ler nos pinos de cada porta também deve-se escrever ou ler em endereços específicos da memória.
 - Realizar operações de LDR e STR;

Programação dos GPIO

- As operações com I/O mapeado em memória se parecem com operações com memória, mas não agem igual memória:
 - Alguns bits são read-only;
 - Alguns bits são write-only;
 - Alguns bits só podem ser setados (1);
 - Alguns bits só podem ser limpos (0).

- Cada registrador segue o endereço base de uma porta + o endereço de configuração;
- Endereços base de cada porta (Datasheet Seção 10.5 pag 759):

GPIO Port	Endereço Base
GPIO Port A	0x4005.8000
GPIO Port B	0x4005.9000
GPIO Port C	0x4005.A000
GPIO Port D	0x4005.B000
GPIO Port E	0x4005.C000
GPIO Port F	0x4005.D000
GPIO Port G	0x4005.E000
GPIO Port H	0x4005.F000

GPIO Port	Endereço Base
GPIO Port J	0x4006.0000
GPIO Port K	0x4006.1000
GPIO Port L	0x4006.2000
GPIO Port M	0x4006.3000
GPIO Port N	0x4006.4000
GPIO Port P	0x4006.5000
GPIO Port Q	0x4006.6000

- Direction Register (GPIODIR)
 - Especifica se os pinos são de entrada ou saída. 1 bit por pino.
- Digital Enable Register (GPIODEN)
 - Se o pino deve ser utilizado como digital (entrada ou saída). 1 bit por pino.
- Analog Mode Select Register (GPIOAMSEL)
 - Especifica se o pino será usado como entrada analógica.
 1 bit por porta.
- Alternate Function Register (GPIOAFSEL)
 - Especifica se alguma função alternativa será utilizada. 1 bit por pino.
- Port Control Register (GPIOPCTL)
 - Especifica qual a função alternativa (tabela 10-2 do datasheet) utilizada. 4 bits por pino.

- Data Register (GPIODATA)
 - Realiza entrada e saída na porta. 1 bit por pino.
- Run Mode Clock Gating (RCGCGPIO) pag 382
 - Habilita o clock de cada porta. Obrigatório para habilitar uma porta. 1 bit por porta.
- Peripheral Ready (PRGPIO) pag 499
 - Indica se a porta de GPIO já está pronta para o uso. 1 bit por porta.

Programação dos GPIO

- Passo-a-passo para ativar uma porta como entrada e saída (Resumo da seção 10.4 do Datasheet):
 - Ative o clock para a porta setando o bit correspondente no registrador RCGCGPIO e, após isso, verifique no PRGPIO se a porta está pronta para uso;
 - Desabilite a funcionalidade analógica, limpando os bits no registrador GPIOAMSEL;
 - Selecione a funcionalidade de GPIO limpando os bits no registrador GPIOPCTL;
 - Especifique se o pino é de entrada ou saída limpando ou setando, respectivamente, os bits no registrador GPIODIR.

Programação dos GPIO

- Passo-a-passo para ativar uma porta como entrada e saída (continuação):
 - Como o objetivo é utilizar os pinos como GPIO, e não a função alternativa, limpe os bits correspondentes no registrador GPIOAFSEL;
 - Habilite a funcionalidade de entrada e saída digital no registrador GPIODEN.
- (Opcional) Habilite um resistor de pull-up para entrada: importante para operação com chaves no registrador GPIOPUR.

Iniciamos uma GPIO;

• E agora, como ler/escrever na GPIO?

- Data Register (GPIODATA):
 - Através do Data Register realiza-se a leitura e escrita do valor desejado dos pinos de dada porta;
 - Um STR para o endereço do Data Register fará com que os pinos sejam modificados, ou seja, é realizada uma ESCRITA nos pinos;
 - Um LDR do endereço do DATA Register fará com que os pinos sejam lidos, ou seja, é realizada uma operação de LEITURA.

Data Register (GPIODATA):

GPIO Port	Endereço
GPIO Port A	0x4005.8 <mark>3FC</mark>
GPIO Port B	0x4005.9 <mark>3FC</mark>
GPIO Port C	0x4005.A <mark>3FC</mark>
GPIO Port D	0x4005.B <mark>3FC</mark>
GPIO Port E	0x4005.C3FC
GPIO Port F	0x4005.D3FC
GPIO Port G	0x4005.E <mark>3FC</mark>
GPIO Port H	0x4005.F3FC

GPIO Port	Endereço
GPIO Port J	0x4006.0 <mark>3FC</mark>
GPIO Port K	0x4006.13FC
GPIO Port L	0x4006.2 <mark>3FC</mark>
GPIO Port M	0x4006.3 <mark>3FC</mark>
GPIO Port N	0x4006.4 <mark>3FC</mark>
GPIO Port P	0x4006.5 <mark>3FC</mark>
GPIO Port Q	0x4006.6 <mark>3FC</mark>

- Entretanto, se uma escrita é feita modificando todos os bits de uma porta, corre-se o risco de sobrescrever outros pinos indesejadamente;
- Para evitar alterações em pinos indesejados há duas formas (escrita "amigável"):
 - Usar o trio: read-modify-write;
 - Usar endereçamento de bit específico (disponível em alguns microcontroladores):
 - O Data Register apresenta uma estrutura complexa, permitindo o acesso individualmente de cada um dos bits ou de todos os bits da porta apenas modificando os endereços de acesso.

Escrita Amigável nos GPIO

- Read-modify-write:
 - Se desejar setar o pino PK7 para 1:

```
LDR R1, =GPIO_PORTK_DATA_R ; Carrega—se o endereço

LDR R0, [R1] ; Lê para carregar o valor
; anterior da porta inteira

ORR R0, R0, #0x80 ; Faz o OR bit a bit para manter os valores
; anteriores e setar somente o bit

STR R0, [R1] ; Escreve o novo valor da porta
```


Escrita Amigável nos GPIO

- Read-modify-write:
 - Se desejar limpar o pino PK7.

```
LDR R1, =GPIO_PORTK_DATA_R ;Carrega—se o endereço

LDR R0, [R1] ; Lê para carregar o valor
; anterior da porta inteira

BIC R0, R0, #0x80 ; Faz o AND negado bit a bit para manter os
; valores anteriores e limpar somente o bit

STR R0, [R1] ; Escreve o novo valor da porta
```


Dúvidas?

