НЕЙРОННЫЕ СЕТИ В МАШИННОМ ОБУЧЕНИИ

Лекция №3 Сверточные сети (CNN)

Содержание

- 1. Проблемы полносвязных нейронных сетей
- 2. Сверточные нейронные сети
- 3. Интерпретация обученных моделей
- 4. Transfer learning
- 5. Применения сверточных нейронных сети
- 6. Домашнее задание

Проблем полносвязных нейронных сетей

Перцептрон

- ▶ Модели: линейная/логистическая регрессия
- ▶ Может моделировать: NOT, AND, OR
- ▶ Не может моделировать: XOR

Сети с одним скрытым слоем

Теорема (универсальный аппроксиматор)

Любую непрерывную на компакте функцию можно равномерно приблизить нейронной сетью с одним скрытым слоем.

Отличная визуализация: http://neuralnetworksanddeeplearning.com/chap4.html

Проблемы нейронных сетей

Проблемы полносвязных нейронных сетей:

- ▶ Требуется огромное количество нейронов
- ▶ Серьезное переобучение

Проблемы нейронных сетей

Проблемы полносвязных нейронных сетей:

- ▶ Требуется огромное количество нейронов
- ▶ Серьезное переобучение

Возможное решение — введение новых типов слоев:

- ▶ Сверточные слои (сегодня)
- Пулинг (сегодня)
- Dropout (лекция 5)
- ▶ Нормализация (лекция 5)
- **...**

Сверточные нейронные сети

ImageNet

IM AGENET

- 1000 классов
- ▶ около 1000 изображений в каждом классе
- около 1 000 000 изображений всего
- несколько номинаций, в том числе распознавание и детектирование/локализация

ImageNet

Figure: Примеры прогнозов

ImageNet

Objection classification error rate

Внутренние инварианты

(a) Кот

Внутренние инварианты

(a) Кот

Внутренние инварианты

(a) Кот (b) Кот

Одномерная свертка (convolution)

Определение

Результатом операции свертки массива m с ядром a называется сигнал n: $n[k] = \sum_{i=-w}^w m[k+i]a[-i]$. Обозначение: n=m*a

Одномерная свертка (convolution)

Padding

Нулевой отступ

Продолжение границы

Зеркальный отступ

Циклический отступ

Двумерная свертка (чб картинки)

Figure: 2D convolution

https://developer.apple.com/library/ios/documentation/Performance/ Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

Примеры ядер

Тождественное

0	0	0
0	1	0
0	0	0

▶ Детектор границ

0	1	0
1	-4	1
0	1	0

▶ Увеличение резкости

0	1	0
1	5	1
0	1	0

Свертка в нейронных сетях

Pooling

- ▶ Голосование: побеждают наиболее активные нейроны
- ▶ Вырабатывается инвариантность к небольшим сдвигам
- Увеличение рецептивной области
- Уменьшение вычислительных затрат
- ▶ Кроме max-пулинга: mean, weighted, root-mean-square, ...

Пример: LeNet

Пример: AlexNet

Пример: VGG-16

Интерпретация обученных моделей

Извлечение признаков

Figure: Классический подход к извлечению признаков

Извлечение признаков, история

Figure: Глубинное обучение

Learning visual representations (Andrea Vedaldi)

Модель Хьюбеля-Визеля

Показано, что мозг обрабатывает визуальную информацию иерархически: сначала находятся границы, углы, а на более глубоких слоях — сложные объекты.

Deconvolution сети

Figure: Схема deconvolution сети

Deconvolution сети

Figure: Convolution transposed

Deconvolution сети

Figure: Convolution transposed

Выучиваемые признаки

Figure: Visualizing and Understanding Convolutional Networks

Выучиваемые признаки

Figure: Visualizing and Understanding Convolutional Networks

Выучиваемые признаки

Figure: Visualizing and Understanding Convolutional Networks

Figure: Модель решения задачи в рамках парадигмы трансфера знаний

Figure: Трансфер между двумя глубинными сетями

Learning visual representations (Andrea Vedaldi)

Figure: Цели трансфера знаний

- ▶ higher start хорошее начальное приближение из-за априорной информации о распределении весов
- ▶ higher slope ускорение сходимости алгоритма обучения
- ▶ higher asymptote улучшение верхней достижимой границы качества

Inductive Learning

All Hypotheses

Inductive Transfer

All Hypotheses

Figure: Трансфер знаний можно также рассматривать как некоторую регуляризацию, которая ограничивает пространство поиска до определенного набора допустимых и хороших гипотез

Примеры применения сверточных нейронных сетей

CNN для сегментации

Figure: Применение CNN в сегментации изображения

CNN для распознавания речи

Figure: Выученные фильтры для спектрограмм голосового сигнала

CNN для текстов

Figure: Обработка изображения представляющего текст

Домашнее задание

Домашнее задание

• Обучить сверточную нейронную сеть с семинара

Спасибо!

