Math Module 1A Tutorial

${\bf Hankertrix}$

August 21, 2023

Contents

1	Que	estio	n	1																							3
	1.1	(a)																									3
	1.2	(b)																									3
	1.3	(c)																									3
		(d)																									
2	Que	estio	n	2																							4
3	Que	estio	n	3																							4
	3.1	(a)																									4
		(b)																									
4	Que	estio	n	4																							4
	4.1	(a)																									4
	4.2	(b)																									4
		(c)																									4
5	Question 5 5.1 (a)																5										
																											5
		(b)																									
6	6 Question 6 6.1 (a)																5										
																											5
		(b)																									
7	7 Question 7																7										
	•	(a)																									7
	7.2	·- (

8	Que	stio	n	8																9
	8.1	(a)																		9
	8.2	(b)																		10
9	Que	stio	n	9																10
	9.1	(a)																		10
	9.2	(b)																		11
	9.3	(c)																		12
	Que																			13
	10.1	(a)																		13
	10.2	(b)																		13
	10.3	Ror	1116	2																1/

1.1 (a)

$$|A| = 5$$
$$|B| = 4$$
$$|A \cup B| = 7$$
$$|A \cap B| = 2$$

1.2 (b)

$$|A \cup B| = |A| + |B| - |A \cap B|$$

1.3 (c)

Let the set of 1^{st} year students registered at CNYSP be A, and the set of students registered at SPMS be B.

$$|A| = 50$$
$$|B| = 1102$$
$$|A \cup B| = 1138$$

The number of 1^{st} year students registered at SPMS and CNYSP together will be $|A \cap B|$. From (b):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

 $|A \cap B| = |A| + |B| - |A \cup B|$
 $|A \cap B| = 50 + 1102 - 1138$
 $|A \cap B| = 14$

Hence, there are 14 1^{st} year CNYSP students who also registered at SPMS.

1.4 (d)

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$|A \times B| = |A| \times |B|$$

- 3 Question 3
- 3.1 (a)

$$A = \{0\}$$

$$\mathcal{P}(A) = \{\emptyset, \{0\}\}$$

$$\mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{0\}\}, \{\emptyset, \{0\}\}\}$$

3.2 (b)

$$2^n = 2^{|A|}$$

- 4 Question 4
- 4.1 (a)

$$not\ (P\ or\ Q)\Leftrightarrow (not\ P)\ and\ (not\ Q)$$

 $not\ (P\ and\ Q)\Leftrightarrow (not\ P)\ or\ (not\ Q)$

4.2 (b)

$$\begin{split} P \Rightarrow Q \Leftrightarrow not \ (P \ \text{and} \ (not \ Q)) \\ \Leftrightarrow (not \ P) \ \text{or} \ (not \ (not \ Q)) \\ \Leftrightarrow (not \ P) \ \text{or} \ Q \end{split}$$

4.3 (c)

P and Q or $((not\ P)$ and $(not\ Q))$

- 5 Question 5
- 5.1 (a)

$$(A \cup B)^c = (A^c \cap B^c)$$

$$(A \cap B)^c = (A^c \cup B^c)$$

- 6 Question 6
- 6.1 (a)

For $f(x) \in \mathbb{R}$, $\sqrt(3x - x^3)$ must be real. Hence:

$$3x - x^3 \ge 0$$

$$x(3 - x^2) \ge 0$$

$$x(3 - x^2) \ge 0$$

$$x(x^2 - 3) \le 0$$

$$x(x + \sqrt{3})(x - \sqrt{3}) \le 0$$

Thus, the domain of f(x) is $(-\infty, -\sqrt{3}] \cup [0, \sqrt{3}]$.

For $f(x) \in \mathbb{R}$, $\sqrt{\frac{1+x}{1-x}}$ must be real. Hence:

$$\frac{1+x}{1-x} \ge 0$$
$$(1+x)(1-x) \ge 0, \ (1-x) \ne 0$$

Thus, the domain of f(x) is [-1, 1).

7.1 (a)

For $f(x) \in \mathbb{R}$, $\sqrt{2+x-x^2}$ must be real. Hence:

$$2 + x - x^2 \ge 0$$

$$x^2 - x - 2 \le 0$$

$$(x-2)(x+1) \le 0$$

Hence, the domain of f(x) is [-1, 2].

Plotting the graph for f(x) for $x \in [-2, 1]$:

The range of f(x) is $\left[0, \frac{3}{2}\right]$.

For $f(x) \in \mathbb{R}$, since $x^2 > 0$, (1+x) must be not be 0 for f(x) to be real. Hence, the domain of f(x) is $\mathbb{R} \setminus \{-1\}$.

Plotting the graph for $f(x), x \in \mathbb{R} \setminus \{-1\}$:

Hence, the range of f(x) is $(-\infty, -4] \cup [0, \infty]$.

8 Question 8

8.1 (a)

For $f: \mathbb{R} \to \mathbb{R}$ to be both increasing and decreasing at the same time, it must satisfy the two conditions below:

1.
$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

2.
$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

For f to satisfy the conditions $f(x_1) \leq f(x_2)$ and $f(x_1) \geq f(x_2)$, $f(x_1)$ must be equal to $f(x_2)$. Thus, f is constant.

For $f: \mathbb{R} \to \mathbb{R}$ to be even and odd at the same time, it must satisfy the two conditions below:

1.
$$x \in A \Rightarrow -x \in A$$
 and $f(-x) = -f(x)$.
2. $x \in A \Rightarrow -x \in A$ and $f(-x) = f(x)$.
Hence, $f(-x) = -f(x) = f(x)$

The only number that satisfies this condition is 0, thus f(x) = 0 for all $x \in \mathbb{R}$.

9 Question 9

9.1 (a)

For a function to be even, f(-x) = f(x):

$$E(-x) = \frac{1}{2}(f(-x) + f(x))$$
$$= \frac{1}{2}(f(x) + f(-x))$$
$$= E(x)$$

Hence, E(x) is even.

For a function to be odd, f(-x) = -f(x):

$$O(-x) = \frac{1}{2}(f(-x) - f(x))$$
$$= -\frac{1}{2}(f(x) - f(-x))$$
$$= -O(x)$$

Hence, O(x) is odd.

$$\begin{split} E(x) + O(x) &= \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) - f(-x)) \\ E(x) + O(x) &= \frac{1}{2}(f(x) + f(-x) + f(x) - f(-x)) \\ E(x) + O(x) &= \frac{1}{2}(2f(x)) \\ E(x) + O(x) &= f(x) \to \text{ Proven} \end{split}$$

9.3 (c)

Suppose f(x) = e(x) + o(x) where e(x) is even and o(x) is odd.

$$f(-x) = e(-x) + o(-x)$$

Since e(-x) = e(x) as e(x) is even and o(-x) = -o(x) as o(x) is odd:

$$f(-x) = e(x) - o(x) \tag{1}$$

$$f(x) = e(x) + o(x) \tag{2}$$

Solving for (2) - (1):

$$f(-x) - f(x) = e(x) - o(x) - (e(x) + o(x))$$

$$f(-x) - f(x) = -2o(x)$$

$$2o(x) = -f(-x) + f(x)$$

$$o(x) = \frac{1}{2}(f(x) - f(-x))$$

$$= O(x)$$
(3)

Substituting (3) into (2):

$$f(x) = e(x) + \frac{1}{2}(f(x) - f(-x))$$
$$e(x) = f(x) - \frac{1}{2}(f(x) - f(-x))$$

$$e(x) = \frac{1}{2}(f(x) + f(-x))$$
$$= E(x)$$

Since e(x) = E(x) and o(x) = O(x), there is no other way to write f(x) as a sum of odd and even functions.

10.1 (a)

Recurrent formula:

$$v(n) = a_0 = 1, a_1 = 2, a_n = 2a_{n-1}$$

Explicit formula:

$$v(n) = 2^n$$

10.2 (b)

Let b(n) be the number of humans that were bitten on night n.

$$b(1) = v(0) = 1$$

$$v(1) = 1 + b(1)$$

= 1 + v(0)
= 1 + 1
= 2

For $n \geq 2$:

$$b(n) = v(n-2)$$

$$v(n) = v(n-1) + b(n)$$

$$v(n) = v(n-1) + v(n-2)$$

Recurrent formula:

$$v(n) = a_0 = 1, a_1 = 2, a_n = a_{n-1} + a_{n-2}$$

10.3 Bonus

Proving the base cases:

$$v(0) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{0+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{0+2}}{\sqrt{5}}$$

= 1

$$v(1) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{1+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{1+2}}{\sqrt{5}}$$

= 2

Let $n \in \mathbb{Z}^+$:

$$v(n) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+2}}{\sqrt{5}}$$
$$v(n-1) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}}{\sqrt{5}}$$

$$v(n) + v(n-1) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+2}}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}}{\sqrt{5}}$$

$$= \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+2} + \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}}{\sqrt{5}}$$

$$= \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \left(\frac{1+\sqrt{5}}{2} + 1\right) + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \left(-\frac{1-\sqrt{5}}{2} - 1\right)}{\sqrt{5}}$$

$$= \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \left(\frac{1+\sqrt{5}}{2} + 1\right) - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \left(\frac{1+\sqrt{5}}{2} + 1\right)}{\sqrt{5}}$$

Let $a = \frac{1+\sqrt{5}}{2}$ and $b = \frac{1-\sqrt{5}}{2}$:

$$v(n) + v(n-1) = \frac{a^{n+1}(a+1) - b^{n+1}(b+1)}{\sqrt{5}}$$
 (1)

Getting the value of a + 1 and a^2 :

$$a+1 = \frac{1+\sqrt{5}}{2} + 1$$
$$= \frac{3+\sqrt{5}}{2}$$

$$a^{2} = \left(\frac{1+\sqrt{5}}{2}\right)^{2}$$
$$= \frac{1+2\sqrt{5}+5}{4}$$
$$= \frac{6+2\sqrt{5}}{4}$$
$$= \frac{3+\sqrt{5}}{2}$$
$$= a+1$$

Hence,

$$a+1=a^2\tag{2}$$

Getting the value of b + 1 and b^2 :

$$b+1 = \frac{1-\sqrt{5}}{2} + 1$$
$$= \frac{3-\sqrt{5}}{2}$$

$$b^{2} = \left(\frac{1-\sqrt{5}}{2}\right)^{2}$$
$$= \frac{1-2\sqrt{5}+5}{4}$$
$$= \frac{6-2\sqrt{5}}{4}$$
$$= \frac{3-\sqrt{5}}{2}$$
$$= b+1$$

Hence,

$$b+1=b^2\tag{3}$$

Substituting (2) and (3) into (1):

$$\begin{split} v(n) + v(n-1) &= \frac{a^{n+1}(a^2) - b^{b+1}(b^2)}{\sqrt{5}} \\ &= \frac{a^{n+3} - b^{n+3}}{\sqrt{5}} \\ &= \frac{(\frac{1+\sqrt{5}}{2})^{n+3} - (\frac{1-\sqrt{5}}{2})^{n+3}}{\sqrt{5}} \\ &= v(n+1) \to \text{ Proven by induction} \end{split}$$

Thus,

$$v(n) = \frac{(\frac{1+\sqrt{5}}{2})^{n+2} - (\frac{1-\sqrt{5}}{2})^{n+2}}{\sqrt{5}}$$