Modultitel:	Statistische Modellierung biologischer Netzwerke
SWS:	3+1
Ziele:	Diese Vorlesung bietet eine Einführung in Methoden zur Modellierung, Simulation und Inferenz komplexer vernetzter Systeme in der Biologie, und in die damit verbundenen Herausforderungen für die Statistik.
	Im Modul werden sowohl theoretischen Grundlagen also auch die Anwendungen in der Biologie behandelt, wobei der Schwerpunkt auf der Analyse vernetzter intra- und interzellulärere Prozesse liegt.
	Die Kenntnis allgemeiner statistischer Modelle für komplexe vernetze Systeme und die Anwendungen auf konkrete biologische Probleme sind wesentliche Lernziele.
Inhalt:	Theoretische Grundlagen: - Einführung in dynamische Systeme - Graphentheorie
	- Theorie der zufälliger Netzwerke - graphische Modelle
	- Zeitreihenmodelle
	- (stochastische) Differentialgleichungen
	Anwendungen in der Systembiologie, z.B.: Modellierung und Analyse von Protein-Protein-Interaktionsnetzwerke, regulatorische Netzwerke, metabolische Netzwerke, Signaltransduktionsmodelle, Flussanalysen, Netzwerkevolution, etc.
Voraussetzung:	Grundkenntnisse in: Zeitreihenanalyse , Multivariate Statistik
Literaturangabe:	 Jensen, F.V. 2001. Bayesian networks and decision graphs. Springer. Klipp, E., et al. 2005. Systems biology in practice. Wiley. Newman, M, et al. 2006. The structure and dynamics of networks. Princeton. Strogatz, S. 2001. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Perseus. Wilkinson, D.J. 2006. Stochastic modelling for systems biology. CRC.