

SQL (Deuxième partie)

Walter RUDAMETKIN

Bureau F011 Walter.Rudametkin@polytech-lille.fr

Les requêtes de consultation

Représente la majorité des requêtes

Encapsule complètement l'algèbre relationnel

Une seule commande!

Syntaxe partielle commande Select

```
SELECT [ ALL | DISTINCT [ ON ( expression
\lceil, \dots \rceil
* | expression [ AS output_name ] [, ...
[FROM from item [, ...]]
[ WHERE condition ]
[ GROUP BY expression [, ...] ]
[ HAVING condition [, ...] ]
[ { UNION | INTERSECT | EXCEPT [ ALL ] } select ]
[ ORDER BY expression [ ASC | DESC | USING
operator ] [, ...] ]
[FOR UPDATE [OF tablename [, ...]]]
[LIMIT { count | ALL } [ { OFFSET | , } start ]]
```

Ex. bibliothèque – état de la base

auteur

num_a	nom
1	Albert Uderzo
2	Victor Hugo
3	J.K. Rowling

livre

num_l	titre	auteur
1	Le fils d'Asterix	1
2	Les misérables	2
3	Notre dame de Paris	2
4	Harry Potter à l'école des sorciers	3
5	Harry Potter et la chambre des secrets	3

editeur

num_e	nom	ville
1	Albert-René	Bruxelles
2	Gallimard	Paris
3	Folio	Paris

Ex. bibliothèque – état de la base

edite_par

num_1	num_e	date_edition
1	1	1998-03-24
2	3	1940-02-02
3	2	1967-06-12
4	2	1999-03-01
5	2	2000-02-01

emprunt

t	num_l	num_u
	1	1
	2	4
	4	1

reserve

num_l	num_u
1	2
4	2

utilisateur

num_u	nom	prenom
1	Caron	Olivier
2	Janot	Stéphane
3	Seynhaeve	Franck
4	Duthilleul	Jean-Michel

Consultation simple d'une table

Syntaxe:

- select col1, col2, ..., coln from nomTable
- Variante usuelle: select * from nomTable

Exemple:

```
select * from utilisateur ;
```

Consultation simple d'une table

Syntaxe:

- select col1, col2, ..., coln from nomTable
- Variante usuelle: select * from nomTable

Exemple:

select * from utilisateur ;

num_u	nom	prenom
1	Caron	Olivier
2	Janot	Stephane
3	Seynhaeve	Franck
4	Duthilleul	Jean-michel

Expression d'une projection

Définition: la projection d'une relation R de schéma R(A1,A2,...,An) sur les attributs Ai1,Ai2,...,Aip) (p < n) est une relation R0(Ai1,Ai2,...,Aip) dont les tuples sont obtenus par élimination des valeurs des attributs de R n'appartenant pas à R0.

```
Syntaxe:

select coli1, coli2, ..., colip from table_name

Exemple:

select nom, prenom from utilisateur;
```

On peut inverser l'ordre de présentation (aucun impact sur le calcul)

La clause distinct (permet de supprimer les doublons)

Expression d'une projection

Définition: la projection d'une relation R de schéma R(A1,A2,...,An) sur les attributs Ai1,Ai2,...,Aip) (p < n) est une relation R0(Ai1,Ai2,...,Aip) dont les tuples sont obtenus par élimination des valeurs des attributs de R n'appartenant pas à R0.

```
Syntaxe:

select coli1, coli2, ..., colip from table_name

Exemple:

select nom, prenom from utilisateur;
```

nom	prenom
Caron	Olivier
Janot	Stephane
Seynhaeve	Franck
Duthilleul	Jean-michel

On peut inverser l'ordre de présentation (aucun impact sur le calcul)

La clause distinct (permet de supprimer les doublons)

Restriction

Définition: la restriction (ou sélection) de la relation R par une qualification Q est une relation R0 de même schéma dont les tuples sont ceux de R satisfaisant la qualification Q.

La qualification peut être exprimée à l'aide de constantes, comparateurs arithmétiques, opérateurs logiques

Prédicat:

- La qualification est de la forme <attribut>
 <opérateur> <valeur> avec opérateur ∈ { =,≠, <, ≤, >, ≥ }
- Il est possible de composer plusieurs conditions de base à l'aide des opérateurs booléens de disjonction (OR), conjonction (AND), négation (NOT).

10

Expression d'une restriction

Introduction clause WHERE

Utilisation des opérateurs booléens : and, or, not

Comparaison de chaînes, dates, d'entiers, ...

Exemple:

select * from livre where auteur=2 ;

num_l	titre	auteur
2	Les misérables	2
3	Notre dame de Paris	2

Traitement de chaînes (1/3)

Opérateur LIKE

- Caractère spéciaux : '%' (remplace de 0 à plusieurs caractères) et '?' (remplace exactement un caractère).

Exemple:

select distinct titre from livre where titre like 'H%';

titre
Harry Potter à l'école des sorciers
Harry Potter et la chambre des secrets

Traitement de chaînes (2/3)

```
Opérateur de comparaison =, \langle \rangle, \rangle, \langle \rangle =, \langle =,... (ordre lexicographique) (aussi applicable à tout type INTEGER, DATE...)
```

Opérateur de concaténation ||, fonctions prédéfinies (ex : upper, lower)

Exemple:

```
select upper(nom || ' ' || prenom) as nom_prenom from
utilisateur;
```

Traitement de chaînes (2/3)

```
Opérateur de comparaison =, \langle \rangle, \rangle, \langle \rangle =, \langle =,... (ordre lexicographique) (aussi applicable à tout type INTEGER, DATE...)
```

Opérateur de concaténation ||, fonctions prédéfinies (ex : upper, lower)

Exemple:

```
select upper(nom || ' ' || prenom) as nom_prenom from
utilisateur;

Renommage d'attribut
```

Traitement de chaînes (2/3)

Opérateur de comparaison =, $\langle \rangle$, \rangle , $\langle \rangle$ =, $\langle =$,... (ordre lexicographique) (aussi applicable à tout type INTEGER, DATE...)

Opérateur de concaténation ||, fonctions prédéfinies (ex : upper, lower)

Exemple:

select upper(nom || ' ' || prenom) as nom_prenom from
utilisateur;

nom_prenom
CARON OLIVIER
JANOT STEPHANE
SEYNHAEVE FRANCK
DUTHILLEUL JEAN-MICHEL

Renommage d'attribut

Traitement de chaînes (3/3)

Comparaison de chaînes : clause **BETWEEN**

permet de vérifier si la valeur d'un attribut est comprise <u>entre</u> deux constantes

Exemple:

select nom from utilisateur where nom between 'A%' and 'F%';

nom Caron Duthilleul

```
Note: l'exemple suivant est identique:

select nom from utilisateur where nom >= 'A%' and nom <= 'F%';
```

Applicable à tout type (integer, chaîne, date, . . .)

Présentation des données (1/2)

- Ordre d'affichage des colonnes
- Clause distinct, évite les doublons
- Ordre d'affichage des lignes, clause Order By
- Ordre des lignes multi-critères

 Aucun impact sur le traitement algébrique des requêtes

Présentation des données (2/2)

Syntaxe:

```
ORDER BY expression [ ASC | DESC | USING [operator] [, ...]
```

Exemple:

select * from livre order by auteur DESC, titre ASC;

num_l	titre	auteur
4	Harry Potter à l'école des sorciers	3
5	Harry Potter et la chambre des secrets	3
2	Les misérables	2
3	Notre dame de Paris	2
1	Le fils d'Asterix	1 1

Opérations de calcul

Opérateurs **arithmétiques** : +,-, . . .

Exemple:

select now()-date_edition as duree, num_l from edite_par ;

duree	num_l
1423 days 17:30:01	1
22658 days 16:30:01	2
12666 days 17:30:01	3
1081 days 17:30:01	4
744 days 17:30:01	5

Expressions arithmétiques applicables dans la clause where

Fonctions de calcul

Une fonction de calcul est une fonction qui s'applique sur un ensemble de tuples et qui renvoie une valeur unique

Syntaxe:

nomFonction(nomColonne) ou nomFonction(*)

Résultat est stocké dans une colonne correspondant au nom de la fonction.

Toujours une ligne résultat.

Fonctions standards:

count, min, max, avg, sum

Fonctions de calcul - exemples

Exemple sans renommage:

5

```
select min(num_1), max(num_1),
avg(num_1),sum(num_1) from livre;
```

min	max	avg	sum
1	5	3.000	15

Calcul sur des groupes de lignes (1/3)

- Sélectionner des lignes pour appliquer un calcul
- Introduction clause Group By
- permet de partitionner la relation en sous-relations ayant les mêmes valeurs sur les attributs précisés : on peut alors appliquer des fonctions à chaque sousrelation.

select	-		
from]	Livr	re	
group	by	auteur	;

Note: On trouve dans le résultat une ligne par sous-relation.

sous-relation =

sous-relation	\Rightarrow

sous-relation	<u>:</u> _
	,

auteur	titre	num_l
a	X	2
a	y	1
b	X	2
b	t	5
b	u	3
c	y	4

Calcul sur des groupes de lignes (2/3)

Exemple:

```
select auteur, count(*) as nbre_par_auteur from
livre group by auteur;
```

auteur	nbre_par_auteur
1	1
2	2
3	2

Note: Toutes les colonnes figurant dans un **group by** doivent apparaître dans la clause select.

Calcul sur des groupes de lignes (3/3)

- Imposer une condition aux groupes formés par la clause Group By
- Introduction clause HAVING
- Poser une condition portant sur chacune des sous-relations générées par le GROUP BY. Les sous-relations ne vérifiant pas la condition sont écartées du résultat.

Exemple:

select auteur, count(*) as nbre_par_auteur from livre group by
auteur having count(*)>1;

auteur	nbre_par_auteur
2	2
3	2

Note: Ne pas confondre avec la clause where

Produit cartésien

Définition: Le produit cartésien de deux relations R et S est une relation T ayant pour schéma la concaténation de celui de R avec celui de S et pour tuples toutes les combinaisons des tuples de R et S.

Opérateur commutatif

$$R \times S = S \times R$$

Opérateur intermédiaire (pas de sens en soi)

Expression d'un produit cartésien

Utilisation clause FROM

Déclaration de variables (ou utiliser le nom de la table)

```
Exemples:
```

```
select * from utilisateur, livre ; ...(20 lignes)
```

select distinct e.nom as nomEditeur , a.nom as NomAuteur from editeur e, auteur a;

26

Jointure

Définition : La jointure de deux relations R et S selon une qualification multi-attributs Q est l'ensemble des tuples du produit cartésien R×S satisfaisant la qualification Q

Opérateur commutatif

$$R > <_{prédicat} S = S > <_{prédicat} R$$

Prédicat:

<attribut1> <opérateur> <attribut2> $\circ \circ$ attribut1 $\in R$ et attribut2 $\in S$ avec opérateur $\in \{=,\neq,\langle,\leq,\rangle,\geq\}$

Il est possible de composer plusieurs conditions de base à l'aide des opérateurs booléens de disjonction (OR), conjonction (AND), négation (NOT).

Relier avec cohérence plusieurs tables.

Relier les clés étrangères avec les clés primaires correspondantes

Exemple:

```
select titre, nom from auteur, livre where
auteur.num_a=livre.auteur;
```

Relier avec cohérence plusieurs tables.

Relier les clés étrangères avec les clés primaires correspondantes

Expression du produit cartésien

select titre, nom from auteur, livre where auteur.num_a=livre.auteur;

Prédicat de jointure

Relier avec cohérence plusieurs tables.

Relier les clés étrangères avec les clés primaires correspondantes

Expression du

produit_icartésien

jointure

Exemple:

select titre, nom from auteur, livre where auteur.num_a=livre.auteur;

Prédicat de

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling

Relier avec cohérence plusieurs tables.

Relier les clés étrangères avec les clés primaires correspondantes

Exemple:

```
select titre, nom from auteur, livre where
auteur.num_a=livre.auteur;
```

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling

Exemple : liste de couples de livres ayant le même auteur

```
select l1.titre, l2.titre from livre l1, livre l2
where l1.auteur=l2.auteur and l1.titre > l2.titre;
```

Exemple: liste de couples de livres ayant le même auteur

```
Renommage
                                         de table
select 11.titre, 12.titre from livre 11, livre 12
where 11.auteur=12.auteur and 11.titre > 12.titre
```

Prédicat de jointure

Exemple : liste de couples de livres ayant le même auteur

```
select l1.titre, l2.titre from livre l1, livre l2 where l1.auteur=l2.auteur and l1.titre > l2.titre;
```

Prédicat de jointure

titre	titre
Notre dame de Paris	Les misérables
Harry Potter et la chambre	Harry Potter à l'école 34

Exemple : liste de couples de livres ayant le même auteur

```
select l1.titre, l2.titre from livre l1, livre l2
where l1.auteur=l2.auteur and l1.titre > l2.titre;
```

titre	titre
Notre dame de Paris	Les misérables
Harry Potter et la chambre	Harry Potter à l'école 35

Les jointures à la SQL/2

- Nouvelles possibilités d'expression de jointures
- Non encore implémenté par tous les SGBD (ex. Oracle)
- Les expressions de jointures sont exprimés dans la clause from
- Distinction de jointures : inner join (défaut), left outer join, right outer join, full outer join

- Pour les exemples suivants :

```
insert into livre values (6, 'Le livre inconnu',
null);
```

insert into auteur values (4, 'Paltoquet');

Jointure SQL/2 classique

select titre, nom
from livre
inner join auteur
on livre.auteur=auteur.num_a;

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling

Jointure externe gauche

select titre, nom
from livre
left outer join auteur
on livre.auteur=auteur.num_a;

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling
le livre inconnu	38

Jointure externe droite

select titre, nom
from livre
right outer join auteur
on livre.auteur=auteur.num_a;

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling
	Paltoquet 39

Jointure externe complète

```
select titre, nom
from livre
full outer join auteur
on livre.auteur=auteur.num_a;
```

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling
le livre inconnu	4.0
	Paltoquet 40

Remarques : syntaxe des jointures

INNER et OUTER sont toujours facultatifs LEFT, RIGHT et FULL impliquent une jointure externe Les syntaxes: - T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } join T2 on boolean_expression - T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } join T2 using liste nom colonne USING a équivalent à on t1.a = t2.a LUSING (a,b) équivalent à on t1.a=t2.a and t1.b=t2.b - T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } join T2

NATURAL effectue une comparaison de toutes les colonnes de même nom dans les deux tables.

Expression d'une union

Définition : l'union de 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des tuples appartenant à R ou S

Syntaxe:

```
< requête > UNION < requête >
< requête > UNION ALL < requête >
```

Tequete / OHLOH /ILL Tequete /

Le résultats des deux requêtes doivent avoir **la même structure**

- même nombre de colonnes, mêmes types de données, même ordre.

Exemple:

select nom from auteur union select nom from editeur;

Expression d'une union

Définition : l'union de 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des tuples appartenant à R ou S

Syntaxe:

```
< requête > UNION < requête >
```

< requête > UNION ALL < requête >

Le résultats des deux requêtes doivent avoir **la même structure**

- même nombre de colonnes, mêmes types de données, même ordre.

nom
Albert-René
Albert Uderzo
Folio
Gallimard
J.K. Rowling
Victor Hugo

Exemple:

select nom from auteur union select nom from editeur;

Expression d'une intersection

Définition : L'intersection de deux relations R et S de même schéma est une relation T de même schéma contenant les tuples appartenant à la fois à R et S

- Le résultats des deux requêtes doivent avoir la même structure
- Note: Attention à la structure du IN et du EXISTS

Expression d'une intersection

Définition : L'intersection de deux relations R et S de même schéma est une relation T de même schéma contenant les tuples appartenant à la fois à R et S

- Le résultats des deux requêtes doivent avoir la même structure
- Note: Attention à la structure du IN et du EXISTS

Expression d'une différence

Syntaxe:

Définition : la différence de 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des tuples appartenant à R et n'appartenant pas à S

Note: Attention à la structure du **NOT IN** et du **NOT EXISTS**

Expression d'une différence

Définition : la différence de 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des tuples appartenant à R et n'appartenant pas à S

Syntaxe:

```
< requête > EXCEPT < requête >
```

Exemple:

select nom from auteur
except select nom from editeur ;

nom

Albert Uderzo

J.K. Rowling

Victor Hugo

- est équivalent à :

select nom from auteur a where a.nom NOT IN select nom from editeur
select nom from auteur a where NOT EXISTS select nom from editeur e where a.nom =
e.nom

Note: Attention à la structure du **NOT IN** et du **NOT EXISTS**

Exercices: Relations "Les pharmacies"

- a) Propriétaire (<u>NumProprio</u>, nom, prénom, adresseProprio)
- b) Pharmacie (<u>NumPharma</u>, nomPharma, NumProprio#, adresse, téléphone)
- c) Médicament (<u>IdMedicament</u>, NomMedic, marque, Type, Vignette, PrixConseillé)
- d) Stock (<u>NumPharma#</u>, <u>IdMedicament#</u>, QuantitéPossédée, PrixPratiqué)
- e) Prescription (<u>IdMedicament#, NumPatient#, DateOrdonnance,</u>
 <u>NumPharma#</u>, QuantitéFournie)
- f) Ordonnance (<u>NumPatient#, DateOrdonnance</u>, Médecin)
 g) Patient (<u>NumPatient</u>, NomPatient, AdressePatient, TelPatient)

Requêtes SQL

- 1. Liste des noms des pharmacies
- 2. Liste des médicaments (tous les attributs) en vente libre (type)
- 3. Liste des noms des médicaments de vignettes bleues
- 4. Liste des noms des médicaments de vignettes bleues ou en vente libre
- 5. Liste des noms des médicaments en vente libre et de marque Bayer
- 6. Noms des pharmacies de Monsieur Durand
- 7. Noms des patients à qui on a prescrit du paracétamol (nomMedic)
- 8. Noms des patients ayant obtenus une ordonnance du Dr Maboul le 11 octobre 2010 49

Requêtes SQL

- 9. Noms des patients à qui le Dr Maboul a prescrit du Prozac le 11 octobre 2010
- 10. Liste des noms des médicaments de vignettes bleues et de vignettes blanches
- 11. Liste des noms des médicaments qui ne sont plus en stock dans (aucune des pharmacies du) le réseau
- 12. Noms et prénoms des propriétaires qui ne possèdent plus de pharmacie
- 13. Noms et prénoms des propriétaires qui possèdent plusieurs pharmacies
- 14. Liste des médicaments et des pharmacies où le prix pratiqué du médicament est inférieur au prix conseillé
- 15. Liste des propriétaires (nom et prénom) et de leur pharmacies par ordre alphabétique des propriétaires et inverse pour les pharmacies

Requêtes SQL

- 16. Liste des noms et prénoms (concaténé) des propriétaires ayant plus de 3 pharmacies
- 17. Prix moyen (forcément prix pratiqué) du paracétamol
- 18. Date de la dernière ordonnance de Monsieur Dupont
- 19. Nom des médicaments dont la moyenne des prix pratiqués est supérieure au prix conseillé
- 20. Coût de l'ordonnance du 08/11/2010 de Monsieur Dupont
- 21. Nombre de pharmacies possédées par propriétaire