NUS Reading Seminar Summer 2023 Session 5

Clement Yung

9 Jun 2023

Kripke-Platek Set Theory

Kripke-Platek (usually abbreviated as KP) set theory is a weakened version of ZF set theory. It is closely related to descriptive set theory and higher recursion theory.

The Axiomatic system KP is the set of the following axioms:

- 1. Extensionality, Pairing and Union.
- 2. **Regularity**: For every formula $\phi(x)$ is a formula with y not occurring free, then:

$$\exists x \, \phi(x) \to \exists x [\phi(x) \land \forall y \in x \, \neg \phi(y)]$$

3. Δ_0 -**Separation**: For each Δ_0 -formula ϕ :

$$\forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z))]$$

4. Δ_0 -**Collection**: For each Δ_0 -formula ϕ :

$$\forall x [(\forall y \in x \,\exists z \, \phi(y, z)) \to \exists u \, \forall y \in x \, \exists z \in u \, \phi(y, z)]$$

 $\mathsf{KP}\omega$ is used to denote $\mathsf{KP}+\mathsf{Axiom}$ of infinity (in the usual ZF sense).

Admissible set theory thus studies models of KP. These models need not be ω -models - that is, while a model $\mathfrak A$ of KP may contain a set $x\in \mathfrak A$ such that:

$$\mathfrak{A}\models$$
 " $(x,\in)\models$ PA"

we need not have $x=\omega$ (where ω is taken in the universe). In other words, (x, \in) is a non-standard model of arithmetic.

If $\omega \in \mathfrak{A}$, then \mathfrak{A} has a standard model of arithmetic, so we say that \mathfrak{A} is an ω -model. Note that if $\mathfrak{A} \models \mathsf{KP}$ and \mathfrak{A} is well-founded, then \mathfrak{A} is an ω -model - it's transitive collapse has a copy of ω .

A model being an ω -model is helpful as:

Lemma

If $\mathfrak A$ is an ω -model of KP, $x \in \mathfrak A$ and $\phi(x)$ is an arithmetical formula, then:

$$\phi(x) \iff \mathfrak{A} \models \phi(x)$$

Δ_1 Properties of KP

KP models in fact satisfy a stronger variant of separation axiom.

Proposition

 $\mathsf{KP} \vdash \Delta_1$ -separation. That is, if φ is a Δ_1 -formula, then:

$$\mathsf{KP} \vdash \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \varphi(z))]$$

Proof.

Work in a model of KP. We wish to show that for any set x, there exists some set y such that:

$$\forall z[z \in y \leftrightarrow (z \in x \land \varphi(z))]$$

Let ϕ, ψ be Δ_0 -formulas such that for all z, $\varphi(z)$ iff $\exists w \, \phi(z, w)$ iff $\neg \exists w \, \psi(z, w)$. In other words, we have that:

$$\forall z[\exists w \, \phi(z, w) \leftrightarrow \neg \exists w \, \psi(z, w)]$$

Taking \rightarrow in particular, we have that:

$$\forall z \exists w [\phi(z, w) \lor \psi(z, w)]$$

Proof (Cont.)

Then in particular:

$$\forall z \in x \,\exists w [\phi(z,w) \vee \psi(z,w)]$$

Applying Δ_0 -collection, we obtain some u such that:

$$\forall z \in x \,\exists w \in u[\phi(z,w) \vee \psi(z,w)]$$

Now let:

$$y := \{z \in x : \exists w \in u \, \phi(z, w)\}$$

This is a well-defined set as " $\exists w \in u \, \phi(z, w)$ " is Δ_0 , and we have Δ_0 -separation. Then this set y works.

Proposition

 $\mathsf{KP} \vdash \Sigma_1$ -collection. That is, if φ is a Σ_1 -formula, then:

$$\mathsf{KP} \vdash \forall x [(\forall y \in x \,\exists z \, \phi(y, z)) \to \exists u \, \forall y \in x \, \exists z \in u \, \phi(y, z)]$$

Proof.

Suppose $\varphi(y, z)$ iff $\exists w \, \phi(y, z, w)$, where ϕ is Δ_0 . Fix some set x, and suppose:

$$\forall y \in x \,\exists z \,\exists w \,\phi(y,z,w)$$

Define a formula ψ by stipulating that:

$$\psi(y, v) \iff v = \{z, w\} \land \phi(y, z, w)$$

This is Δ_0 , as " $v = \{z, w\}$ " is Δ_0 (and it makes sense as KP has the pairing axiom). Then the first statement implies that:

$$\forall y \in x \exists u \, \psi(y, u)$$

Proof (Cont.)

By Δ_0 -Collection, there exists a set u such that:

$$\forall y \in x \,\exists v \in u \,\psi(y, v)$$

$$\implies \forall y \in x \,\exists v \in u[v = \{z, w\} \land \phi(y, z, w)]$$

$$\implies \forall y \in x \,\exists z \in \bigcup u \,\exists w \,\phi(y, z, w)$$

$$\implies \forall y \in x \,\exists z \in \bigcup u \,\varphi(y, z)$$

so collection holds for φ .

Ordinals in KP models

If $\mathfrak A$ is a transitive model of KP, then $\mathfrak A\cap \mathbf{ORD}$ is an initial segment of \mathbf{ORD} , and is hence an ordinal. However, $\mathfrak A$ need not even be well-founded (the ordinals in $\mathfrak A$ need not even be well-ordered!), so we need to adopt a different notion of " $\mathfrak A\cap \mathbf{ORD}$ ".

Notation

Let $\mathfrak{A} \models \mathsf{KP}$. Then:

 $s(\mathfrak{A}) := \sup\{ \operatorname{otp}(S) : S \text{ is an initial segment of } \mathbf{ORD}^{\mathfrak{A}} \land S \text{ is well-ordered} \}$

Example

If $\mathfrak A$ is not an ω -model, then $s(\mathfrak A)=\omega$. This is because KP is strong enough to prove that $0,1,2,3,\dots\in\mathfrak A$, but $\omega\notin\mathfrak A$.

But what if $\mathfrak A$ is an ω -model?

Notation

Given a tree T and $s \in \omega^{<\omega}$, we define:

$$T/s := \{ t \in \omega^{<\omega} : s^{\smallfrown} t \in T \}$$

Theorem

If $\mathfrak A$ is an ω -model for KP and $T \in \mathfrak A$ is a well-founded tree, then the height function:

$$s \mapsto \|T/s\|$$

is in A.

As a consequence, we have that:

Corollary

If $\mathfrak A$ is an ω -model of $KP\omega$, then all $x \in (\omega^{\omega})^{\mathfrak A}$, $\omega_1^x \leq s(\mathfrak A)$. In particular, $\omega_1^{\mathsf{CK}} \leq s(\mathfrak A)$.

Proof.

Let $x \in (\omega^{\omega})^{\mathfrak{A}}$. For each $\alpha < \omega_{1}^{\mathsf{x}}$, let T be a well-founded tree, recursive in x, such that $\|T\| \geq \alpha$. Since $x \in \mathfrak{A}$ and recursive functions are Δ_{1} functions of arithmetic, it is a Δ_{0} function (of set theory), so by Δ_{0} -separation we have that $T \in \mathfrak{A}$. By the theorem, the height function $s \mapsto \|T/s\|$ is in \mathfrak{A} , and in particular $\|T\| \subseteq \mathfrak{A}$ (as range of a function is Δ_{0}). Therefore $\omega_{1}^{\mathsf{x}} \leq s(\mathfrak{A})$.

We now prove the theorem. Recall that since "T is well-founded" is Π_1^1 , the well-foundedness of T is absolute across all models of sufficiently large fragment of ZF to prove that well-founded trees have a rank function. This would allow us to prove the theorem with an easy induction. Unfortunately, KP is not enough to prove such a statement, so we can't use that here.

We need a cleverer approach to prove this theorem.

Proof.

We induct on ||T||, and assume that a height function exists for all subtrees T/s, where $s \neq \emptyset$. We define a formula ϕ by:

$$\phi(f,T) \iff f$$
 is a height function for T

 ϕ is a Δ_0 formula (Exercise). Applying the induction hypothesis, we have that:

$$\mathfrak{A} \models \forall s \in T \,\exists f[s = \emptyset \lor \phi(f, T/s)]$$

Applying Δ_0 -collection, we obtain a set $x \in \mathfrak{A}$ such that:

$$\mathfrak{A} \models \forall s \in T \,\exists f \in x[s = \emptyset \lor \phi(f, T/s)]$$

Proof (Cont.)

Let $a:=T\times T\times\bigcup\bigcup\bigcup x.\ a\in\mathfrak{A}$ as KP models are closed under finite Cartesian products (Exercise). Note that if $f\in x$, then $\operatorname{ran}(f)\subseteq\bigcup\bigcup\bigcup x.$ By Δ_0 -separation, we may define the function F(s,t) by:

$$F := \{ (s, t, \alpha) \in \mathsf{a} : \mathfrak{A} \models \exists f \in \mathsf{x} [\phi(f, T/s) \land f(t) = \alpha] \}$$

Note that for all s, t such that $s \cap t \in T$, we have that:

$$F(s,t) = f(t) = ||T/(s^{-}t)||$$

where f is the height function for the tree T/s.

Proof.

Let $b := ran(F) \cap \mathbf{ORD}$, which is a well-defined set in $\mathfrak A$ as range and \mathbf{ORD} are Δ_0 . We see that:

$$\sup b = \sup(\operatorname{ran}(F) \cap \mathbf{ORD})$$

$$= \sup_{s \neq \emptyset} ||T/s||$$

$$= ||T||$$

Thus, we let $\alpha_0 := \sup b = \bigcup b$. We may use Δ_0 -separation again to define a function G such that:

$$G(s) := \begin{cases} \alpha_0, & \text{if } s = \emptyset \\ F((k), t), & \text{if } s = (k) \land t \end{cases}$$

Then G is the height function of T, as desired.

KP and constructibility

Suppose G is a function on some transitive class A. Recursion theorem asserts that there exists a function F on A such that for all $x \in A$:

$$F(x) = G(F \upharpoonright x)$$

(See Theorem 6.5 of Jech). Using only Δ_1 -separation and Σ_1 -collection, we can get the following theorem of KP:

Theorem (Krivine, Σ_1 -Recursion theorem)

If G is a Σ_1 -function on some transitive class A, then there exists a Σ_1 -function F on A such that for all $x \in A$:

$$F(x) = G(F \upharpoonright x)$$

It turns out that Σ_1 -recursion is sufficient for us to define the function:

$$\alpha \mapsto L_{\alpha}$$

That is, KP is sufficient to define the constructible hierarchy. This is done with the help of Gödel operations - see more at §12 of Jech.

We get the following result:

Theorem

If $\mathfrak A$ is a model of $\mathsf{KP}\omega$, then:

$$\{x \in \mathfrak{A} : \mathfrak{A} \models x \in L\}$$

is a model of KP + V = L.

KP is also sufficient to prove the well-known condensation lemma:

Theorem

If $\mathfrak A$ is a transitive model for $\mathsf{KP} + V = \mathsf{L}$, then $\mathfrak A = \mathsf{L}_\alpha$ for some ordinal α .

A model of KP

We've seen that if $\mathfrak A$ is an ω -model of KP, then $s(\mathfrak A) \geq \omega_1^{\mathsf{CK}}$.

Theorem

There is an ω -model $\mathfrak A$ of KP with $s(\mathfrak A) = \omega_1^{\mathsf{CK}}$.

We shall borrow a few facts from the theory of hyperarithmetic sets. Define:

WFG :=
$$\{ \lceil T \rceil : T \text{ is a recursive tree} \}$$

Fact

WFG is a Π_1^1 , but not Σ_1^1 , subset of ω .

Fact

If $x \subseteq \omega$ is not Δ_1^1 , then there exists an ω -model $\mathfrak A$ of $\mathsf{KP}\omega$ such that $x \notin \mathfrak A$.

Lemma

Assume $\omega_1^{\mathsf{CK}} \subseteq \mathfrak{A}$. For all $\alpha < \omega_1^{\mathsf{CK}}$, there exists some $n_\alpha < \omega$ such that if $T \in \mathfrak{A}$ is a recursive tree of height α , then its height function is in $L_{\alpha+n_\alpha}^{\mathfrak{A}}$.

The assumption " $\omega_1^{\rm CK} \subseteq \mathfrak{A}$ " is to ensure that the set $L_\alpha^{\mathfrak{A}}$ makes sense for all $\alpha < {\rm CK}$.

Proof.

We first note that since T is recursive, there exists a formula ϕ , Δ_1 in arithmetic (so Δ_0), such that $T = \{s \in \omega^{<\omega} : \phi(s)\}$, so $T \in L_{\omega+1}$.

We induct on α . We recap the proof that ω -models of KP contains the height function of T. We first observe that there exists some $n_{\alpha}' < \omega$: such that $\alpha + n_{\alpha}' = \sup_{\gamma < \alpha} \gamma + n_{\gamma}$. The induction hypothesis precisely asserts that

$$\mathfrak{A} \models \forall s \in T \,\exists f \in L_{\alpha+n'_{\alpha}}[s \neq \emptyset \vee \phi(f, T/s)]$$

where $\phi(f, T/s)$ is the Δ_0 formula asserting that f is the height function of T/s.

Proof (Cont.)

Let $a := T \times T \times \bigcup \bigcup \bigcup L_{\alpha+n'_{\alpha}}$, and by Δ_0 -separation we may define the function:

$$F := \{(s, t, \xi) \in a : \mathfrak{A} \models \exists f \in L_{\alpha + n'_{\alpha}} [\phi(f, T/s) \land f(t) = \xi]\}$$

We have that $T \in L_{\alpha+n'_{\alpha}}$ and $\bigcup \bigcup \bigcup L_{\alpha+n'_{\alpha}} \in L_{\alpha+n'_{\alpha}+4}$, so $F \in L_{\alpha+n'_{\alpha}+5}$. We may then define G, the height function of T, from F and a, so $G \in L_{\alpha+n'_{\alpha}+6}$. Let $n_{\alpha} := n'_{\alpha} + 6$, and the induction is complete.

Proof of Theorem.

Let $\mathfrak A$ be an ω -model of KP such that WFG $\notin \mathfrak A$. We wish to show that $\omega_1^{\mathsf{CK}} \notin \mathfrak A$. Suppose otherwise. Recall that a tree has a height function iff it is well-founded (in the universe). We may define $L^{\mathfrak A}_{\omega,\mathsf{CK}} \in \mathfrak A$, and we see that:

$$x \in \mathsf{WFG}$$

$$\iff$$

$$x \in \omega \land \exists f \in L_{\omega_1^{\mathsf{CK}} + 4} \, \exists \, T \in L_{\omega + 1}[x = \lceil \, T \, \rceil \land \varphi(f, \, T)]$$

The formula on RHS is Δ_0 , so WFG $\in \mathfrak{A}$, a contradiction.

Well-founded models of KP

Here are some heads up of what we will be covering after summer school.

Suppose $\mathfrak{A}=(A,E)$ is a model of KP, not necessarily well-founded. Consider the following way to extract the well-founded part of \mathfrak{A} : Given each $x \in A$, define T_x to be the set:

$$\{s: s(0) = x \land s \text{ is a } E\text{-decreasing sequence of elements of } A\}$$

Then (T_x, \sqsubseteq) is a well-defined tree. Now define:

$$B := \{ x \in A : ||T_x|| < \omega \}$$

Then the set $\mathfrak{B} := (B, E)$ is well-founded (w.r.t. E).

Theorem

 \mathfrak{B} is a well-founded ω -model of KP.

Corollary

 $L_{\omega_1^{\mathsf{CK}}}$ is a well-founded ω -model of KP.

I plan to prove these two results after summer school.

Admissible ordinals

Models of KP of the form L_{α} are of much interest, and are very important in the proof of Σ_1^{1} -AD $\to 0^{\sharp}$ exists.

Definition

A countable ordinal α is admissible if $L_{\alpha} \models KP$.

Another theorem which we will be proving is the following:

Theorem

 α is admissible iff $\alpha = \omega_1^x$ for some real x.