- 2. 设平面简单闭曲线 C 的长度为 L, 相对曲率 $k_r(s)$ 满足: $0 \le k_r(s) \le \frac{1}{R}$, R 为正常数. 试证: $L \ge 2\pi R$.
- 3. 设 \overline{AB} 是直线段, $L > \overline{AB}$ 之长. 证明连接点 A,B 的长为 L 的简单曲线 C 与 \overline{AB} 所围面积最大时, C 是过 A,B 的圆弧.
 - 5. 在平面直角坐标系 Ox^1x^2 下给定曲线 C:

$$x^{1}(t) = \cos t$$
, $x^{2}(t) = \sin 2t$, $0 \leqslant t \leqslant 2\pi$,

计算曲线 C 的旋转指标和相对全曲率.

7*. 设 $x:[0,l]\to \mathbf{E}^2$ 是平面闭曲线 C, 不在 C 上取一点 $x_0\in \mathbf{E}^2$, 公式

$$\varphi(t) = \frac{x(t) - x_0}{|x(t) - x_0|}, \quad \forall t \in [0, l]$$

定义了一个映射 $\varphi:[0,l]\to S^1$. φ 的映射度数称为曲线 C 关于点 x_0 的环绕数 (Winding number). 设 $x(t)=(x^1(t),x^2(t))$, 试证: 这个环绕数 w 可表示为

$$w = \frac{1}{2\pi} \int_0^l (x^1(x^2)' - x^2(x^1)') \,\mathrm{d}t.$$

8*. 设 $C: x = x(s), s \in [0, l]$ 是 \mathbf{E}^2 上简单闭曲线, 其相对法向量为 $N_r(s)$. 定义曲线 \overline{C} 为

$$\overline{x}(s) = x(s) - aN_r(s),$$

a 为正常数. \overline{C} 称为 C 的**平行曲线**. 设 k_r, \overline{k}_r 和 A, \overline{A} 分别为它们的相对曲率和它们所围的面积. 试证明:

- (1) \overline{C} 的长度 =C 的长度 + $2a\pi$;
- (2) $\overline{k}_r(s) = k_r(s)/(1+a);$
- (3) $\overline{A} = A + al + \pi a^2$.