

Clean copy of Claims as amended with status identifiers:

Claims 1-122 (withdrawn).

We claim:

1. (withdrawn) An impact tool comprising:

A shaft having a striking end and a working end; and

A shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end to avoid direct metal-to-metal contact, said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

2. (withdrawn) The impact tool according to claim 1, further comprising:

said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said shaped polymeric material so that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

3. (withdrawn) The impact tool according to claim 2, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

4. (withdrawn) The impact tool according to claim 3, further comprising:
said polymeric material being MINLON.
5. (withdrawn) The impact tool according to claim 2, further comprising:
at least one cap for securing said shaped polymeric material, said at least one cap
being comprised of a spall-inhibiting material having an aperture exposing said impact
end area.
6. (withdrawn) The impact tool according to claim 5, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.
7. (withdrawn) The impact tool according to claim 6, further comprising:
said polymeric material being MINLON.
8. (withdrawn) The impact tool according to claim 5, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL,
DELRIN, NYLON, POLYPROPYLENE, or DACRON.
9. (withdrawn) The impact tool according to claim 8, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.
10. (withdrawn) The impact tool according to claim 9, further comprising:
said polymeric material being MINLON.
11. The impact tool according to claim 5, further comprising:
Said at least one cap being at least partially surrounded by a grip, said grip also
partially encasing said shaft.
12. (withdrawn) The impact tool according to claim 11, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

13. (withdrawn) The impact tool according to claim 12, further comprising:

said polymeric material being MINLON.

14. (withdrawn) The impact tool according to claim 11, further comprising:

said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

15. (withdrawn) The impact tool according to claim 14, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

16. (withdrawn) The impact tool according to claim 15, further comprising:

said polymeric material being MINLON.

17. The impact tool according to claim 11, said grip having a flange for hand protection.

18. (withdrawn) The impact tool according to claim 17, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

19. (withdrawn) The impact tool according to claim 18, further comprising:

said polymeric material being MINLON.

20. (withdrawn) The impact tool according to claim 17, further comprising:

said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

21. (withdrawn) The impact tool according to claim 20, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

22. (withdrawn) The impact tool according to claim 21, further comprising:

said polymeric material being MINLON.

23. (withdrawn) An impact tool comprising:

A shaft having a striking end and a working end; and

A shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end to avoid direct metal-to-metal contact, said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus calculated according to the following formula:

said modulus times said cross-sectional area for transmitting impact upon the impact end area divided by said thickness through said cross-sectional area= X

X to be of a value to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

24. (withdrawn) The impact tool according to claim 23, further comprising:

said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said shaped polymeric material so

that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

25. (withdrawn) The impact tool according to claim 24, further comprising:
said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

26. (withdrawn) The impact tool according to claim 25, further comprising:
said polymeric material being MINLON.

27. (withdrawn) The impact tool according to claim 24, further comprising:
at least one cap for securing said shaped polymeric material, said at least one cap being comprised of a spall-inhibiting material having an aperture exposing said impact end area.

28. (withdrawn) The impact tool according to claim 27, further comprising:
said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

29. (withdrawn) The impact tool according to claim 28, further comprising:
said polymeric material being MINLON.

30. (withdrawn) The impact tool according to claim 27, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

31. (withdrawn) The impact tool according to claim 30, further comprising:
said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

32. (withdrawn) The impact tool according to claim 31, further comprising:

said polymeric material being MINLON.

33. (withdrawn) The impact tool according to claim 27, further comprising:

Said at least one cap being at least partially surrounded by a grip, said grip also partially encasing said shaft.

34. (withdrawn) The impact tool according to claim 33, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

35. (withdrawn) The impact tool according to claim 34, further comprising:

said polymeric material being MINLON.

36. (withdrawn) The impact tool according to claim 33, further comprising:

said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

37. (withdrawn) The impact tool according to claim 36, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

38. (withdrawn) The impact tool according to claim 37, further comprising:

said polymeric material being MINLON.

39. (withdrawn) The impact tool according to claim 33, said grip having a flange for hand protection.

40. (withdrawn) The impact tool according to claim 39, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

41. (withdrawn) The impact tool according to claim 40, further comprising:

said polymeric material being MINLON.

42. (withdrawn) The impact tool according to claim 39, further comprising:

said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

43. (withdrawn) The impact tool according to claim 42, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

44. (withdrawn) The impact tool according to claim 43, further comprising:

said polymeric material being MINLON.

45. (withdrawn) An impact tool comprising:

A shaft having a striking end and a working end, said working end being a chisel; and
A shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end, said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area,

said working end being a chisel having a decreased included angle from a standard 65-70 degree included angle;

said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus in combination with said decreased included angle of said chisel to preserve at least 75% cutting effectiveness compared to cutting effectiveness without said shaped polymeric material disposed adjacent to said striking end.

46. (withdrawn) The impact tool according to claim 45, further comprising:

said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said shaped polymeric material so that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

47. (withdrawn) The impact tool according to claim 46, further comprising:

 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

48. (withdrawn) The impact tool according to claim 47, further comprising:

 said polymeric material being MINLON.

49. (withdrawn) The impact tool according to claim 46, further comprising:

 at least one cap for securing said shaped polymeric material, said at least one cap being comprised of a spall-inhibiting material having an aperture exposing said impact end area.

50. (withdrawn) The impact tool according to claim 49, further comprising:

 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

51. (withdrawn) The impact tool according to claim 50, further comprising:

 said polymeric material being MINLON.

52. (withdrawn) The impact tool according to claim 49, further comprising:

 said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

53. (withdrawn) The impact tool according to claim 52, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

54. (withdrawn) The impact tool according to claim 53, further comprising:

said polymeric material being MINLON.

55. (withdrawn) The impact tool according to claim 49, further comprising:

Said at least one cap being at least partially surrounded by a grip, said grip also partially encasing said shaft.

56. (withdrawn) The impact tool according to claim 55, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

57. (withdrawn) The impact tool according to claim 56, further comprising:

said polymeric material being MINLON.

58. (withdrawn) The impact tool according to claim 55, further comprising:

said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

59. (withdrawn) The impact tool according to claim 58, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

60. (withdrawn) The impact tool according to claim 59, further comprising:

said polymeric material being MINLON.

61. (withdrawn) The impact tool according to claim 55, said grip having a flange for hand protection.

62. (withdrawn) The impact tool according to claim 61, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

63. (withdrawn) The impact tool according to claim 62, further comprising:
said polymeric material being MINLON.

64. (withdrawn) The impact tool according to claim 61, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL,
DELRIN, NYLON, POLYPROPYLENE, or DACRON.

65. (withdrawn) The impact tool according to claim 64, further comprising:
said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

66. (withdrawn) The impact tool according to claim 65, further comprising:
said polymeric material being MINLON.

67. (withdrawn) An impact tool comprising:
a shaft having a striking end and a working end; and
a shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end, said shaped polymeric material having a striking end area of said shaped polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said shaped polymeric material disposed adjacent to said striking end; and

having at least one cap for securing said shaped polymeric material to be impacted having a shape, said at least one cap comprised of a spall-inhibiting material having an aperture exposing said impact end area.

68. (withdrawn) The impact tool according to claim 67, further comprising:

 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

69. (withdrawn) The impact tool according to claim 68, further comprising:
 said polymeric material being MINLON.

70. (withdrawn) The impact tool according to claim 67, further comprising:
 said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

71. (withdrawn) The impact tool according to claim 70, further comprising:
 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

72. (withdrawn) The impact tool according to claim 71, further comprising:
 said polymeric material being MINLON.

73. (withdrawn) The impact tool according to claim 67, further comprising:
 Said at least one cap being at least partially surrounded by a grip, said grip also partially encasing said shaft.

74. (withdrawn) The impact tool according to claim 73, further comprising:
 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

75. (withdrawn) The impact tool according to claim 74, further comprising:

said polymeric material being MINLON.

76. (withdrawn) The impact tool according to claim 73, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL,

DELRIN, NYLON, POLYPROPYLENE, or DACRON.

77. (withdrawn) The impact tool according to claim 76, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.

78. (withdrawn) The impact tool according to claim 77, further comprising:
said polymeric material being MINLON.

79. (withdrawn) The impact tool according to claim 73, said grip having a flange
for hand protection.

80. (withdrawn) The impact tool according to claim 79, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.

81. (withdrawn) The impact tool according to claim 80, further comprising:
said polymeric material being MINLON.

82. (withdrawn) The impact tool according to claim 79, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL,
DELRIN, NYLON, POLYPROPYLENE, or DACRON.

83. (withdrawn) The impact tool according to claim 82, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.

84. (withdrawn) The impact tool according to claim 83, further comprising:

said polymeric material being MINLON.

85. (withdrawn) A removable cap to be placed on an impact tool having a striking end, comprising:

a shaped polymeric material to be impacted having a shape and disposed and secured adjacent to said striking end, said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said removable cap material disposed adjacent to said striking end.

86. (withdrawn) The removable cap according to claim 85, further comprising:
said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said removable cap so that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

87. (withdrawn) The removable cap according to claim 86, further comprising:
said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

88. (withdrawn) The removable cap according to claim 87, further comprising:
said polymeric material being MINLON.

89. (withdrawn) The removable cap according to claim 86, further comprising:

at least one cap for securing said shaped polymeric material, said at least one cap being comprised of a spall-inhibiting material having an aperture exposing said impact end area.

90. (withdrawn) The removable cap according to claim 89, further comprising:

 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

91. (withdrawn) The removable cap according to claim 90, further comprising:
 said polymeric material being MINLON.

92. (withdrawn) The removable cap according to claim 89, further comprising:
 said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

93. (withdrawn) The removable cap according to claim 92, further comprising:
 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

94. (withdrawn) The removable cap according to claim 93, further comprising:
 said polymeric material being MINLON.

95. (withdrawn) The removable cap according to claim 89, further comprising:
 Said at least one cap being at least partially surrounded by a grip, said grip also partially encasing said shaft.

96. (withdrawn) The removable cap according to claim 95, further comprising:
 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

97. (withdrawn) The removable cap according to claim 96, further comprising:

said polymeric material being MINLON.

98. (withdrawn) The removable cap according to claim 95, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL,
DELRIN, NYLON, POLYPROPYLENE, or DACRON.

99. (withdrawn) The removable cap according to claim 98, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.

100. (withdrawn) The removable cap according to claim 99, further comprising:
said polymeric material being MINLON.

101. (withdrawn) The removable cap according to claim 95, said grip having a flange
for hand protection.

102. (withdrawn) The removable cap according to claim 101, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.

103. (withdrawn) The removable cap according to claim 102, further comprising:
said polymeric material being MINLON.

104. (withdrawn) The removable cap according to claim 101, further comprising:
said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL,
DELRIN, NYLON, POLYPROPYLENE, or DACRON.

105. (withdrawn) The removable cap according to claim 104, further comprising:
said shaped polymeric material being selected from the group of polymeric
materials reinforced by fiber or mineral.

106. (withdrawn) The removable cap according to claim 105, further comprising:

said polymeric material being MINLON.

107. (withdrawn) A removable cap to be placed on an impact tool having a striking end, comprising:

a shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end, said shaped polymeric material having a striking end area of said shaped polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said shaped polymeric material disposed adjacent to said striking end; and

having at least one overcap for securing said shaped polymeric material to be impacted having a shape, said at least one overcap comprised of a spall-inhibiting material having an aperture exposing said impact end area.

108. (withdrawn) The removable cap according to claim 107, further comprising:

 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

109. (withdrawn) The removable cap according to claim 108, further comprising:
 said polymeric material being MINLON.

110. (withdrawn) The removable cap according to claim 107, further comprising:

said spall-inhibiting material being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

111. (withdrawn) The removable cap according to claim 110, further comprising:

 said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

112. (withdrawn) The removable cap according to claim 111, further comprising:

 said polymeric material being MINLON.

113. (withdrawn) A method of making a protective cap for an impact tool, said impact tool having a striking end, and a working end, comprising the following steps:

 molding a shaped polymeric material of thickness and cross-sectional area and modulus interior to a cap having an interior cavity to accommodate said shaped polymeric material and being a cap that can be driven onto said striking end, said interiorly shaped polymeric material having a striking end area adjacent to said striking end, and an impact end area to be impacted roughly opposite said striking end area,

 said interiorly shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

114. (withdrawn) The method according to the method of claim 113, said shaped polymeric material being a thermoplastic material.

115. (withdrawn) The method according to the method of claim 113, said shaped polymeric material being a thermosetting material.

116. (withdrawn) The method according to the method of claim 113, said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

117. (withdrawn) The method according to the method of claim 113, said polymeric material being MINLON.

118. (withdrawn) The method according to the method of claim 113, said cap being made of a spall-inhibiting material selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE, or DACRON.

119. (withdrawn) The method according to the method of claim 113, said cap for securing said shaped polymeric material, being comprised of a spall-inhibiting material having an aperture exposing said impact end area.

120. (withdrawn) The method according to the method of claim 119, said polymeric material being MINLON.

121. (withdrawn) A method of manufacturing an impact tool having an impact end, which impact end has an impact end area, comprising the following steps: mounting a shaped polymeric material of sufficient cross-sectional area for transmitting impact upon the impact end area from a striking end area roughly opposite said impact end area on said shaped polymeric material, said shaped polymeric material being of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

122. (withdrawn) A method of manufacturing an impact tool having a head for receiving or conveying force and an impact end, which impact end has an impact end area, comprising the following steps:

mounting a shaped polymeric material of sufficient cross-sectional area for transmitting impact upon the impact end area from a striking end area roughly opposite said impact end area on said shaped polymeric material, said shaped polymeric material being of sufficient thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end;

and thereafter, mounting a grip having an aperture through which said shaped polymeric material protrudes over said shaped polymeric material and at least partially onto said head.

Claims 123-142 (withdrawn)

123. (withdrawn) An impact tool comprising:

a shaft having a striking end and a working end; and

a shaped polymeric material to be impacted disposed adjacent to said striking end to avoid direct metal-to-metal contact,

said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area,

said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said

cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

124. (withdrawn) The impact tool according to claim 1, further comprising:
said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said shaped polymeric material so that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

125. (withdrawn) An impact tool comprising:
a shaft having a striking end and a working end; and
a shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end to avoid direct metal-to-metal contact,
said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus calculated according to the following formula:

said modulus times said cross-sectional area for transmitting impact upon the impact end area divided by said thickness through said cross-sectional area= X

X to be of a value to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

a shaft having a striking end and a working end; and
a shaped polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end to avoid direct metal-to-metal contact, said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus calculated according to the following formula:

said modulus times said cross-sectional area for transmitting impact upon the impact end area divided by said thickness through said cross-sectional area= X

X to be of a value to enable greater than 75% impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

126. (withdrawn) An impact tool comprising:

a shaft having a striking end and a working end, said working end being a chisel having a decreased included angle from the standard 65-70 degree included angle; and,
a shaped polymeric material to be impacted disposed adjacent to said striking end to avoid direct metal-to-metal contact, said shaped polymeric material having a striking end area adjacent to said striking end and an impact end area to be impacted roughly

opposite said striking end area, said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus to enable greater than 75% impact effectiveness compared to a similar impact tool without said shaped polymeric material and having a standard 65-70 degree included angle.

127. (withdrawn) The impact tool according to claims 123, 124, 125, and 126 further comprising:

 said shaped polymeric material being shaped so that no edge or surface is presented having a radius of curvature of less than .02 inches.

128. (withdrawn) An impact tool comprising:

 a shaft having a striking end and a working end; and
 a shaped polymeric material to be impacted disposed adjacent to said striking end to avoid direct metal-to-metal contact,

 said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area,

 said shaped polymeric material being a fiber-reinforced polyamide,
 said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus, and further being shaped so that no edge or surface is presented having a radius of curvature of less than .02 inches in order to maintain impact effectiveness while inhibiting failure of said shaped polymeric material upon impact.

129. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

130. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being at least one material selected from the group of polymers including polyamide, polyester, polyurethane, polypropylene, polycarbonate.

131. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being at least one polymeric material selected from the group of polymers including polyamide, polyester, polyurethane, polypropylene, polycarbonate, and

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

132. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being comprised of at least one polyamide.

133. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being comprised of at least Zytel® (made by DuPont Corp.) polyamide.

134. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being comprised of at least MINLON® (made by DuPont Corp.) polymeric material.

135. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being shaped to extend beyond the cross-sectional area of said impact end area.

136. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being at least partially surrounding by a grip, and said grip also partially encasing said shaft.

137. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said shaped polymeric material being at least partially surrounded by a grip, and said grip having a flange for hand protection.

138. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area.

139. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable.

140. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, including spalling failure.

141. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, and said material inhibiting failure being selected from the group of polymeric materials reinforced by fiber or mineral.

142. (withdrawn) The impact tool according to claims 123, 124, 125, 126, or 128, further comprising:

said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, said material inhibiting failure being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, POLYPROPYLENE or DACRON.

143. (currently amended) An impact tool comprising:

a shaft having a striking end and a working end; and
a shaped polymeric material, reinforced by a material selected from the group of fiber or mineral, to be impacted disposed adjacent to said striking end to avoid direct metal-to-metal contact,

said shaped polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area,

said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus to enable greater than sixty-seven per cent impact effectiveness compared to a similar impact tool without said polymeric material disposed adjacent to said striking end.

144. (previously presented) The impact tool according to claim 143, further comprising:
said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said shaped polymeric material so that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

145. (currently amended) The impact tool according to claim 144 comprising:

said working end being a chisel having an angle less than the standard 65-70 degree chisel angle; and,

said shaped polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus to enable greater than sixty-seven per cent impact effectiveness compared to a similar impact tool without said shaped polymeric material and having a standard 65-70 degree chisel angle.

146. (previously presented) An impact tool comprising:

a shaft having a striking end and a working end; and
a shaped fiber-reinforced polymeric material being a polymeric material to be impacted having a shape and disposed adjacent to said striking end to avoid direct metal-to-metal contact,

said shaped fiber-reinforced polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area, said shaped fiber-reinforced polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of sufficient thickness through said cross-sectional area, and of sufficient modulus calculated according to the following formula:

said modulus times said cross-sectional area for transmitting impact upon the impact end area divided by said thickness through said cross-sectional area= X

X to be of a value to enable greater than sixty-seven per cent impact effectiveness compared to a similar impact tool without said fiber-reinforced polymeric material disposed adjacent to said striking end.

147. (previously presented) The impact tool according to claim 146, further comprising:
said shaped polymeric material being selected to have the further characteristic of redistributing the sound frequency on impact by a driving force on said impact tool to lower frequency ranges than said impact tool without said shaped polymeric material so that resulting sound and vibration is of lower dB, and less harmful frequency ranges to humans.

148. (currently amended) The impact tool according to claims 146-147, further comprising:

said shaped polymeric material being selected from the group of polymeric materials reinforced by fiber or mineral.

149. (currently amended) The impact tool according to claim 144 comprising:

said working end being a chisel having an angle less than the standard 65-70 degree chisel angle; and,

said shaped fiber-reinforced polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus to enable greater than sixty-seven per cent impact effectiveness compared to a similar impact tool without said shaped polymeric material and having a standard 65-70 degree chisel angle.

150. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, or 149, further comprising:

said shaped polymeric material being shaped so that no edge or surface is presented having a radius of curvature of less than .02 inches.

151. (currently amended) An impact tool comprising:

a shaft having a striking end and a working end; and
a shaped polymeric material reinforced by a material selected from the group of fiber or mineral and further, said polymeric material to be impacted disposed adjacent to said striking end to avoid direct metal-to-metal contact,

said shaped fiber-reinforced polymeric material having a striking end area of said polymeric material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area,

said shaped fiber-reinforced polymeric material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus in order to maintain impact effectiveness while inhibiting failure of said shaped polymeric material upon impact, and further being shaped so that no edge or surface is presented having a radius of curvature of less than .02 inches.

152. (previously presented) The impact tool according to claims 151, further comprising:

said shaped polymeric material having support ridges on said shaped polymeric material circumferentially located around said shaft adjacent to said striking end.

153. (previously presented) The impact tool according to claims 152, further comprising:

said shaped polymeric material being at least one material selected from the group of polymers including polyamide, polyester, polyurethane, polypropylene, polycarbonate.

154. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said shaped polymeric material being comprised of at least one polyamide.

155. (currently amended) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said shaped polymeric material being comprised of at least fiber-reinforced nylon.

156. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said shaped polymeric material being shaped to extend beyond the cross-sectional area of said impact end area.

157. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said shaped polymeric material being at least partially surrounding by a grip, and said grip also partially encasing said shaft.

158. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said shaped polymeric material being at least partially surrounded by a grip, and said grip having a flange for hand protection.

159. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area.

160. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable.

161. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable; and

 said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, including spalling failure.

162. (previously presented) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

 said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable; and

 said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, and said material inhibiting failure being selected from the group of polymeric materials reinforced by fiber or mineral.

163. (currently amended) The impact tool according to claims 143, 144, 145, 146, 147, 149, 151, or 152, further comprising:

 said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable; and

 said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure.

Claims 164-175 (withdrawn)

164. (withdrawn) An impact tool comprising:

a shaft having a striking end and a working end; and

a shaped fiber-reinforced polyamide material being a fiber-reinforced polyamide to be impacted disposed adjacent to said striking end to avoid direct metal-to-metal contact,

said shaped fiber-reinforced polyamide material having a striking end area of said polyamide material adjacent to said striking end and an impact end area to be impacted roughly opposite said striking end area,

said shaped fiber-reinforced polyamide material being of sufficient cross-sectional area for transmitting impact upon the impact end area, of appropriate thickness through said cross-sectional area, and of sufficient modulus in order to maintain impact effectiveness while inhibiting failure of said shaped polymeric material upon impact, and further being shaped so that no edge or surface is presented having a radius of curvature of less than .02 inches and further having support ridges on said shaped polymeric material circumferentially located around said shaft adjacent to said striking end.

165. (withdrawn) The impact tool according to claim 164, further comprising:

said shaped polyamide material being shaped to extend beyond the cross-sectional area of said impact end area.

166. (withdrawn) The impact tool according to claim 165, further comprising:

said shaped polyamide material being at least partially surrounding by a grip, and said grip also partially encasing said shaft.

167. (withdrawn) The impact tool according to claim 166, further comprising:

said shaped polyamide material being at least partially surrounded by a grip, and said grip having a flange for hand protection.

168. (withdrawn) The impact tool according to claim 167, further comprising:

said fiber-reinforcedpolyamide material having at least Zytel® (Trademark of Dupont Corp.) fiber-reinforced nylon.

169. (withdrawn) The impact tool according to claim 168, further comprising:

said shaped polymeric material being shaped to extend beyond the cross-sectional area of said impact end area.

170. (withdrawn) The impact tool according to claim 169, further comprising:

said shaped polymeric material being at least partially surrounding by a grip, and said grip also partially encasing said shaft.

171. (withdrawn) The impact tool according to claim 170, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area.

172. (withdrawn) The impact tool according to claim 171, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable.

173. (withdrawn) The impact tool according to claim 172, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture

exposing said impact end area and said second shaped polymeric material being removable; and

said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, including spalling failure.

174. (withdrawn) The impact tool according to claim 173, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable; and

said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, and said material inhibiting failure being selected from the group of polymeric materials reinforced by fiber or mineral.

175. (withdrawn) The impact tool according to claim 174, further comprising:

said impact tool having a second shaped polymeric material being shaped to extend beyond the cross-section area of said impact end area and having an aperture exposing said impact end area and said second shaped polymeric material being removable; and

said second shaped polymeric material functioning as a cap and being composed of material inhibiting failure, said material inhibiting failure being selected from the group of ATAPRENE, HYTRIL, DELRIN, NYLON, or POLYPROPYLENE.