

## Gun Violence Prediction

By: Sarthak Sethi

#### WHY I CHOOSE THIS TOPIC

- Gun violence is a huge problem within the US
  - Over 385 mass shootings in the US alone in 2024 (up to sep 20)
  - More than a single mass shooting everyday



385 mass shootings
262 days (jan 1 to sep 20) = 1.4-ish mass shootings a day!

#### Mass shootings on the rise

There have been more than 385 mass shootings across the US so far this year, according to the Gun Violence Archive, which defines a mass shooting as an incident in which four or more people are injured or killed. Their figures include shootings that

### THE DATA SET



- Got this data set from Kaggle
- Covers 2024 U.S. mass shootings (up to Oct 20).
- Includes incident IDs, dates, locations, victims, and suspects.
- Geographical data supports spatial trend analysis.

#### **HOW I ANALYZED IT**

- Imported data and verified structure
- Cleaned data, addressed missing value
- Selected relevant columns
- Divided data into training and test sets.

[7] #splitting the data
 X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.3, random\_state=42)







#### MODELS USED AND WHY?

```
knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X train, y train)
    knn_pred = knn.predict(X_test)
    knn_metrics = {
         "Model": "KNN",
        "Accuracy": accuracy_score(y_test, knn_pred),
        "Precision": precision_score(y_test, knn_pred),
         "Recall": recall_score(y_test, knn_pred),
         "F1 Score": f1_score(y_test, knn_pred)
▶ #Logistic Regression
     log_reg = LogisticRegression()
     log_reg.fit(X_train, y_train)
     log_reg_pred = log_reg.predict(X_test)
     log_reg_metrics = {
         "Model": "Logistic Regression",
         "Accuracy": accuracy_score(y_test, log_reg_pred),
        "Precision": precision_score(y_test, log_reg_pred),
         "Recall": recall_score(y_test, log_reg_pred),
         "F1 Score": f1_score(y_test, log_reg_pred)
[10] #Decision Tree Classifier
    decision tree = DecisionTreeClassifier(random state=42)
    decision_tree.fit(X_train, y_train)
    tree pred = decision tree.predict(X test)
    tree_metrics = {
         "Model": "Decision Tree",
        "Accuracy": accuracy_score(y_test, tree_pred),
        "Precision": precision score(y test, tree pred),
        "Recall": recall score(v test, tree pred).
         "F1 Score": f1_score(y_test, tree_pred)
[11] # SVC
     svm = SVC()
     svm.fit(X_train, y_train)
    svm_pred = svm.predict(X_test)
    svm metrics = {
         "Accuracy": accuracy_score(y_test, svm_pred),
         "Precision": precision_score(y_test, svm_pred),
         "Recall": recall_score(y_test, svm_pred),
         "F1 Score": f1_score(y_test, svm_pred)
```

- K-NearestNeighbors (KNN)
- Logistic Regression
- Decision Tree
- Support VectorMachine (SVM)

#### **CHALLENGES FACED**



\*\*\*
KeyError Traceback (most recent call last)
//usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in get\_loc(self, key)
3884 try:
3885 try:
3885 try:
3886 try:
3886 try:
3886 try:
3887 try:
3887 try:
3888 try:

- Data quality issues required preprocessing
- Precision limitations in models due to imbalanced data



#### THE RESULTS



|    | 963                                                                                                  | 55     |                                             | SER          | SHEE                 |                   |  |
|----|------------------------------------------------------------------------------------------------------|--------|---------------------------------------------|--------------|----------------------|-------------------|--|
|    |                                                                                                      |        | Model Accurac<br>Classificatio<br>precision | n Report     |                      | 32<br>support     |  |
| 9  |                                                                                                      |        | precision                                   | Tecatt       | 11-20016             | Support           |  |
| 3  |                                                                                                      | 0<br>1 | 0.47<br>0.70                                | 0.67<br>0.51 | 0.55<br>0.59         | 51<br>78          |  |
| g  | accur<br>macro<br>weighted                                                                           | avg    | 0.59<br>0.61                                | 0.59<br>0.57 | 0.57<br>0.57<br>0.58 | 129<br>129<br>129 |  |
|    | SVM Model Accuracy: 0.6046511627906976 SVM Classification Report:                                    |        |                                             |              |                      |                   |  |
|    |                                                                                                      |        | precision                                   | recall       | f1-score             | support           |  |
| 8  |                                                                                                      | 0<br>1 | 0.00<br>0.60                                | 0.00<br>1.00 | 0.00<br>0.75         | 51<br>78          |  |
|    | accur                                                                                                |        |                                             |              | 0.60                 | 129               |  |
| S  | macro<br>weighted                                                                                    |        | 0.30<br>0.37                                | 0.50<br>0.60 | 0.38<br>0.46         | 129<br>129        |  |
| 3  | Logistic Regression Model Accuracy: 0.5891472868217055<br>Logistic Regression Classification Report: |        |                                             |              |                      |                   |  |
|    |                                                                                                      |        | precision                                   | recall       | f1-score             | support           |  |
|    |                                                                                                      | 0<br>1 | 0.44<br>0.61                                | 0.14<br>0.88 | 0.21<br>0.72         | 51<br>78          |  |
| 33 | accur                                                                                                | асу    |                                             |              | 0.59                 | 129               |  |
|    | macro<br>weighted                                                                                    |        | 0.52<br>0.54                                | 0.51<br>0.59 | 0.47<br>0.52         | 129<br>129        |  |
| ş  | KNN Model Accuracy: 0.4806201550387597                                                               |        |                                             |              |                      |                   |  |
| æ  | KNN Classification Report:                                                                           |        |                                             |              |                      |                   |  |
| 9  |                                                                                                      |        | precision                                   | recall       | f1-score             | support           |  |
|    |                                                                                                      | 0<br>1 | 0.39<br>0.60                                | 0.55<br>0.44 | 0.46<br>0.50         | 51<br>78          |  |
|    |                                                                                                      |        | 0.00                                        | 0.44         |                      |                   |  |
| 1  | accur<br>macro                                                                                       |        | 0.49                                        | 0.49         | 0.48<br>0.48         | 129<br>129        |  |
|    | weighted                                                                                             | avg    | 0.51                                        | 0.48         | 0.48                 | 129               |  |

#### **NEXT STEPS**





Explore
additional
machine
learning models



Enhance data preprocessing techniques



Experiment with ensemble methods for improved accuracy



Expand features
and test model
stability on
larger/more
datasets

# THANK YOU FOR LISTENING

