

# Universidad Tecnológica de la Mixteca

Clave DGP: 557524

# Maestría en Ciencias de Materiales

# **PROGRAMA DE ESTUDIOS**

#### NOMBRE DE LA ASIGNATURA

# Fisicoquímica de los materiales

| TOTAL DE HORAS    | SEMESTRE | AVE DE LA ASIGNATURA | TOTAL DE HODAS |
|-------------------|----------|----------------------|----------------|
| Segundo 300202 85 |          |                      | TOTAL DE HORAS |

# OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Introducir los conceptos fundamentales de la fisicoquímica y su importancia en la ciencia de los materiales.

### TEMAS Y SUBTEMAS

#### 1. Principios de la Termodinámica

- 1.1. Sustancias puras. Ecuaciones de estado
- 1.2. Condiciones de equilibrio. Ecuación de Clasius-Clapeyron
- 1.3. Diagramas de fases de una sustancia pura
- 1.4. Potencial químico y energía libre de Gibbs
- 1.5. Potencial químico en sistemas multicomponentes
- 1.6. Mezclas en gases reales y fugacidad
- 1.7. Actividad y el comportamiento de soluciones reales.
- 1.8. Sistemas heterogéneos no reactivos. Diagramas de fases

#### 2. Difusión

- 2.1. Ley de Fick
- 2.2. Coeficientes de difusión
- 2.3. Factores que influencian la difusión
- 2.4. Algunos mecanismos en ejemplos de difusión en materiales
- 2.5. Difusión en metales, en óxidos, en medios porosos en micro-poros, a través de membranas

#### 3. Adsorción

- 3.1. Definiciones y terminología
- 3.2. Tipos de adsorción
- 3.3. Isotermas de adsorción. Medición de la adsorción por el método volumétrico

- 3.4. Termodinámica de la adsorción
- 3.5. Sistemas para la medición de la superficie y porosidad por el método volumétrico
- 3.6. Ejemplos de adsorción en materiales y sus aplicaciones

### 4. Cinética y Catálisis

- 4.1. Definiciones en cinética
- 4.2. Reacciones irreversibles de primer, segundo, tercer y enésimo orden y de orden cero
- 4.3. Reacciones múltiples: Consecutivas, paralelas, irreversibles y en cadena
- 4.4. Catálisis. Definiciones y mecanismo general
- 4.5. Catálisis homogénea
- 4.6. Catálisis heterogénea

### 5. Electroquímica

- 5.1. Termodinámica de los procesos electroquímicos
- 5.2. Electrolitos sólidos
- 5.3. Electródica
- 5.4. Ejemplos de aplicaciones de la electroquímica de estado sólido

#### **ACTIVIDADES DE APRENDIZAJE**

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico a través de computadora y medios digitales. Exposición y discusiones de casos de fenómenos fisicoquímicos en alguna síntesis, caracterización o aplicación de materiales, presentados en publicaciones o textos de recopilación, por parte de los estudiantes y dirigido por el profesor

# CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de problemas asociados a temas del curso; la suma de estos dos porcentajes dará la calificación final. Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

# BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

#### Básica:

- 1. Introduction to Thermodynamics of Materials. Gaskell, David R. Taylor and Francis (2003).
- 2. Thermodynamics in Material Science, DeHoff Robert McGraw-Hill (2006).
- 3. The Physical Chemestry of materials. Energy and environment applications. R. M.A. Roque-Malherbe CRC Press (2010).
- 4. Smart Materials for Advanced Environmental Applications, Peng Wang, Ed. Royal Society of Chemistry (2016).

#### Consulta:

- 1. Fisicoquímica. Atkins Iberoamericana (1991).
- Nanomaterials for Water Remediation: Carbon-Based Materials Vol 1. A. Kumar Mishra, Ed. Smithers Information Ltd (2016).
- 3. Intermolecular and surface forces. Jacob Israel Achvili, Academic press Elsevier (2011).
- 4. Advanced termodynamics engieneering. Kalyan Annamalai, Ishwar K. Puri. CRC Press (2002).

# PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Química, Física, Ciencia de los Materiales, y en áreas a fines con experiencia en Ciencia de Materiales.

DIVISION DE ESTUDIOS DE POSGRADO

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO