

On Some Irrational Decimal Fractions

Author(s): Norbert Hegyvari

Source: The American Mathematical Monthly, Vol. 100, No. 8 (Oct., 1993), pp. 779-780

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of America

Stable URL: https://www.jstor.org/stable/2324785

Accessed: 18-02-2021 10:07 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Taylor & Francis, Ltd., Mathematical Association of America are collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

On Some Irrational Decimal Fractions

Norbert Hegyvári

It is known that the decimal fraction

$$\alpha = 0.235711131719...$$

is irrational, where the sequence of digits is formed by the primes in ascending order. In [1, Th. 138] there are two different proofs for this statement. The first uses a special case of the Dirichlet's theorem, namely: any arithmetical progression of the form $10^{s+1}k + 1$ ($k = 1, 2, \cdots$) contains primes. In the second proof it is assumed that there is a prime between N and 10N for every N > 0, which is the special case of the Bertrand's Postulate. Similar proofs are found in [2].

In this article we will give a direct proof for this statement. We prove even more.

Theorem. Let $1 \le a_1 < a_2 < \dots$ be a sequence of integers for which $\sum_{i=1}^{\infty} 1/a_i = \infty$. Then the decimal fraction $\alpha = 0 \cdot (a_1)(a_2) \dots (a_n) \dots$ is irrational.

Since $\sum_{i=1}^{\infty} 1/p_i = \infty$, where $p_1 < p_2 < \dots$ is the sequence of primes, we immediately get the original version of the statement.

Definition. Let B be a block of digits $b_1b_2...b_s$ with $s \ge 1$ and $0 \le b_i \le 9$ for $i=1,2,\ldots,s$. Let n be a positive integer $\sum_{i=0}^k c_i 10^{k-i}$ with $c_0 \ne 0$. The integer n is said to contain the block of digits B if for some $j \ge 0$ we have $c_{i+j} = b_i$ for every $i=1,2,\ldots,s$. For example, the integer 1402857 contains the blocks 14 and 0285 (among others), but not the blocks 014 or 582.

Lemma. If $X = X(b_1, b_2, ..., b_s)$ denotes the sequence of positive integers not containing the block of digits $b_1b_2...b_s$, then $\sum_{n=1}^{\infty} 1/n$ is convergent.

We mention that the Lemma is a generalization of a well-known exercise (see [1, Th 144]).

Proof of the Lemma: Let $s_n = 1/x_1 + 1/x_2 + \dots 1/x_n$ and let t be an integer for which $x_{t-1} < 10^s \le x_t$. Then we have

$$s_n < 1/x_1 + 1/x_2 + \dots + 1/x_t + 10^{-s} (1/[x_{t+1}/10^s] + \dots + 1/[x_n/10^s]).$$

We note that if $t < i \le n$, then $[x_i/10^s]$ is a member of X, say x_j . Also, since the block $b_1b_2 \dots b_s$ appears in at least one of 10^s consecutive integers, it follows that for any fixed x_j there are at most $10^s - 1$ values of x_j such that $[x_i/10^s] = x_j$, and we have

$$s_n < \sum_{i=1}^t 1/x_i + (10^s - 1)10^{-s} s_n \text{ or } s_n < 10^s \cdot \sum_{i=1}^t x_i,$$

which proves the lemma.

1993]

Proof of the Theorem: Assume that α is a rational number. Thus α is a periodic decimal, with a block of digits, say $b_1b_2 \dots b_s$, repeating endlessly perhaps after an initial first block. If B is a block of 1's, define $c_1c_2 \dots c_{2s}$ to be a block of 2's of length 2s; otherwise define $c_1c_2 \dots c_{2s}$ to be a block of 1's of length 2s. Now define $Y = Y(c_1, c_2, \dots, c_{2s})$ as the sequence of natural numbers not containing the block of digits $c_1c_2 \dots c_{2s}$. If we write

$$\sum_{i=1}^{\infty} 1/a_i = \sum_{a \in Y} 1/a + \sum_{a \notin Y} 1/a,$$

then by the Lemma the first sum on the right side converges, and hence the second sum diverges. This implies that there are infinitely many a_i that contain the block of digits $c_1c_2 \ldots c_{2s}$. This in turn implies that B cannot be a repeating block of digits in α . This contradiction establishes the Theorem.

ACKNOWLEDGMENT. The author would like to thank the referee for a number of suggestions and for detecting some flaws in our original version.

REFERENCES

- Hardy-Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford, Clarendon Press, 1979.
- 2. G. Pólya-G. Szegő, Problems and Theorems in Analysis II., Springer-Verlag, 1976, (exercise 257.)

Department of Math. L. Eötvös Univ. and Math. Inst. of the Hung. Acad. of Sci. Budapest, Pf 127, H-1364 Hungary

Professor Florian Cajori died suddenly of pneumonia on August 14, 1930, at his home in Berkeley, California. He was a charter member of the Mathematical Association of America and was one of an original group of four (later enlarged to twelve) representatives of mid-western universities and colleges who made possible the re-establishment of the American Mathematical Monthly on a sound financial basis. A detailed account of his historical researches will be published in the *Monthly* in due course.

37(1930), 392

[October