Data Structures and Algorithms

(ESO207)

Lecture 40

Search data structure for integers: Hashing

Data structures for searching

in **O**(**1**) time

Motivating Example

Input: a given set *S* of 1009 positive integers

Aim: Data structure for **searching**

Data structure: Array storing **S** in sorted order

Searching: Binary search

O(log |S|) time

Can we perform search in O(1) time?

Problem Description

```
U:
S \subseteq U,
n = |S|,
n \ll m
```

A search query:

Aim: A data structure for a given set *S* that can facilitate search in O(1) time

A trivial data structure for O(1) search time

Build a 0-1 array **A** of size **m** such that

$$A[i] = 1 \text{ if } i \in S$$
.

$$A[i] = 0$$
 if $i \notin S$.

Time complexity for searching an element in set S:O(1).

This is a totally Impractical data structure because $n \ll m$!

Example: n = few thousands, m = few trillions.

Question:

Can we have a data structure of O(n) size that can answer a search query in O(1) time?

Answer: Hashing

Hash function

Hash function:

h is a mapping from U to $\{0,1,...,n-1\}$ with the following characteristics.

- Space required for h
- h(i) computable in

Example:

Hash value:

For a given hash function h, and $i \in U$. h(i) is called hash value of i

Hash function, hash value,

Hash function:

h is a mapping from U to $\{0,1,...,n-1\}$ with the following characteristics.

- Space required for h : a few words.
- h(i) computable in O(1) time in word RAM.

Example: $h(i) = i \mod n$

Hash value:

For a given hash function h, and $i \in U$. h(i) is called hash value of i

Hash Table:

An array $T[0 \dots n-1]$

Hash function:

h is a mapping from U to $\{0,1,...,n-1\}$ with the following characteristics.

- Space required for h : a few words.
- h(i) computable in O(1) time in word RAM.

Example: $h(i) = i \mod n$

Hash value:

For a given hash function h, and $i \in U$. h(i) is called hash value of i

Hash Table:

An array $T[0 \dots n-1]$

Hash function:

h is a mapping from U to $\{0,1,...,n-1\}$ with the following characteristics.

- Space required for h : a few words.
- h(i) computable in O(1) time in word RAM.

Example: $h(i) = i \mod n$

Hash value:

For a given hash function h, and $i \in U$. h(i) is called hash value of i

Hash Table:

An array T[0 ... n - 1] of pointers storing S.

Efficiency of Hashing depends upon hash function

A hash function h is good if it can evenly distributes S.

Aim: To search for a good hash function for a given set **S**.

There can not be any hash function h which is good for every S.

For every h, there exists a subset of $\left\lceil \frac{m}{n} \right\rceil$ elements from U which are hashed to same value under h. So we can always construct a subset S for which all elements have same hash value

- \rightarrow All elements of this set S are present in a single list of the hah table T associated with h.
- \rightarrow O(n) worst case search time.

$$h(i) = i \mod n$$

Because the set S is usually a **uniformly random** subset of U.

Let us do a theoretical analysis to prove this fact.

$$h(x) = x \bmod n$$

Let $y_1, y_2, ..., y_n$ denote n elements selected <u>randomly uniformly</u> from U to form S.

Question:

What is expected number of elements of S colliding with y_1 ?

Answer: Let y_1 takes value i.

 $P(y_i \text{ collides with } y_1) = ??$

How many possible values can y_j take ? m-1

How many possible values can collide with i?

$$h(x) = x \bmod n$$

Let $y_1, y_2, ..., y_n$ denote n elements selected <u>randomly uniformly</u> from U to form S.

Question:

What is expected number of elements of S colliding with y_1 ?

Answer: Let y_1 takes value i.

 $P(y_i \text{ collides with } y_1) =$

$$\frac{\left[\frac{m}{n}\right]-1}{m-1}$$

Expected number of elements of S colliding with y_1 =

$$=\frac{\left[\frac{m}{n}\right]-1}{m-1}(n-1)$$
$$=O(1)$$

Conclusion

1. $h(i) = i \mod n$ works so well because for a uniformly random subset of U, the **expected** number of collision at an index of T is O(1).

It is easy to fool this hash function such that it achieves O(s) search time. (do it as a simple exercise).

This makes us think:

"How can we achieve worst case O(1) search time for a given set S."

Hashing: theory

```
U: \{0,1,...,m-1\}

S \subseteq U,

n = |S|,
```


Theorem [FKS, 1984]:

A hash table and hash function can be computed in average O(n) time for a given S s.t.

Space : O(n)

Query time: worst case O(1)

Ingredients:

- elementary knowledge of prime numbers.
- The algorithms use simple randomization.

Order notation

Definition: Let f(n) and g(n) be any two increasing functions of n.

f(n) is said to be

if there exist constants c and n_0 such that

$$f(n) \le c g(n)$$
 for all $n > n_0$

Order notation extended

Definition: Let f(n) and g(n) be any two increasing functions of n.

f(n) is said to be

if there exist constants c and n_0 such that

$$f(n) \ge c g(n)$$
 for all $n > n_0$

$$f(n) = \Omega(g(n))$$

Order notation extended

Observations:

• f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

One more Notation:

If
$$f(n) = O(g(n))$$
 and $g(n) = O(f(n))$, then
$$g(n) = O(f(n))$$

Examples:

•
$$\frac{n^2}{100} = \Theta(10000 n^2)$$

• Time complexity of Quick Sort is $\Omega(n \log n)$

• Time complexity of Merge sort is $\Theta(n \log n)$