Álgebra Lineal

Práctica 4 - Diagonalización

1. Hallar los autovalores y bases de los respectivos autoespacios para cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$ (c) $\begin{pmatrix} -2 & -7 \\ 1 & 2 \end{pmatrix}$

(d)
$$\begin{pmatrix} 1 & -2 & -2 \\ -1 & 0 & -5 \\ 1 & 2 & 6 \end{pmatrix}$$
 (e) $\begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 3 & 0 & -1 \end{pmatrix}$ (f) $\begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}$

(g)
$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{pmatrix}$$
 (h) $\begin{pmatrix} 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (i) $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 7 & -4 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$

- 2. Determinar si cada una de las matrices A del ejercicio 1 es o no diagonalizable. En los casos en que sí lo sea, hallar una base de autovectores de A y una matriz inversible C que diagonalice a A (es decir, tal que $C^{-1} \cdot A \cdot C$ sea diagonal).
- 3. Mostrar que la matriz $A = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ no es diagonalizable cualesquiera sean $a, b \in \mathbb{R}$ con tal que $b \neq 0$.
- 4. Sea $A=\begin{pmatrix}r&s&t\\-12&6&16\\0&0&2\end{pmatrix}\in\mathbb{R}^{3\times3}$ una matriz tal que $v=(1,2,0),\ w=(2,6,0)$ y u=(-2,-2,-1) son autovectores de A.
 - a) Probar que A es diagonalizable.
 - b) Calcular los autovalores de A y determinar los valores de r, s y t.
- 5. Sea $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$.
 - a) Probar que A es diagonalizable y hallar una matriz inversible C que diagonalice a A.
 - b) Calcular A^{10} .
- 6. Sea $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & \frac{5}{2} & \frac{5}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$ y sea $v = (1, 2, 0) \in \mathbb{R}^3$.
 - a) Probar que A es diagonalizable y hallar una matriz inversible C que diagonalice a A.
 - b) Calcular A^6v utilizando la diagonalización de A.
 - c) Escribir al vector v como combinación lineal de una base de \mathbb{R}^3 de autovectores de A.

1

d) Calcular nuevamente A^6v sin utilizar la diagonalización de A.

7. Sea
$$A = \begin{pmatrix} -2 & -3 & -2 \\ 3 & 4 & 2 \\ -2 & -2 & -1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
y sea $v = (-2, 2, 3) \in \mathbb{R}^3$.

- a) Hallar los autovalores de A y los autovectores asociados.
- b) Probar que A no es diagonalizable.
- c) Escribir al vector v como combinación lineal de autovectores de A.
- d) Calcular $A^{63}v$.

8. Sea
$$A = \begin{pmatrix} 3 & 1 & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
.

- a) Hallar todos los valores de $b \in \mathbb{R}$ para los cuales $\lambda = 3$ es autovalor de A.
- b) Para cada b hallado, dar todos los valores de $a \in \mathbb{R}$ para los que A no es diagonalizable.
- 9. Hallar todos los $a \in \mathbb{R}$ tales que $A = \begin{pmatrix} a & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ no es diagonalizable.

10. Sea
$$A = \begin{pmatrix} a+1 & 0 & 0 \\ a+2 & 0 & -1 \\ 2 & -1 & 0 \end{pmatrix} \in \mathbb{R}^{3\times 3}$$
.

- a) Hallar todos los valores de $a \in \mathbb{R}$ para los que A no es diagonalizable.
- b) Para cada a hallado, dar todos los $b \in \mathbb{R}$ tales que $(0, b^2 + 1, 2)$ es autovector de A.

11. Sea
$$A = \begin{pmatrix} -1 & 3 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & -2 \end{pmatrix} \in \mathbb{R}^{3\times 3}$$
. Hallar los autovalores y autovectores de A , A^3 y A^9 .

- 12. Sea $A \in \mathbb{R}^{3\times 3}$ una matriz con autovalores $\{0, 1, 5\}$.
 - a) Determinar si A es inversible y/o diagonalizable.
 - b) Calcular los autovalores de $B = (3A 4I)^3$ y $C = 5A^t + 4I$.
 - c) Probar que H = A + I es inversible y calcular los autovalores de H^{-1} , $\det(H^{-1})$ y $\operatorname{tr}(H^{-1})$.
 - d) Hallar todos los $\alpha \in \mathbb{R}$ para los cuales $\alpha A + 3I$ no es inversible.
- 13. Sea $A \in \mathbb{R}^{3\times 3}$ una matriz tal que $\{1,2,3\}$ son las raíces de χ_A . Sea $B = 5A^2 + 3A 2I$. Calcular $\det(B)$ y $\operatorname{tr}(B)$.
- 14. Sea $A \in \mathbb{R}^{3\times 3}$ una matriz tal que $\lambda = 1$ es autovalor de A, $\operatorname{tr}(A) = 2$ y $\det(A) = -2$.
 - a) Hallar **todos** los autovalores de A.
 - b) Decidir si A^t es o no diagonalizable.
- 15. Sea $A \in \mathbb{R}^{3\times 3}$ una matriz tal que dim(N(A)) = 1, $\operatorname{rg}(A+2I) = 2$ y $a_{11} + a_{22} + a_{33} = 0$.
 - a) Calcular los autovalores de A.
 - b) Decidir si A es inversible y/o diagonalizable.
- 16. Sea $A \in \mathbb{R}^{3\times 3}$ una matriz inversible tal que $\operatorname{tr}(A) = -2$, $\operatorname{rg}(A^{-1} \frac{1}{2}I) < 3$ y $\chi_A(1) = -8$. Probar que A es diagonalizable.
- 17. Sea $A \in \mathbb{R}^{4\times 4}$ una matriz tal que $N(A+I) \neq \{0\}$, $\operatorname{rg}(A-2I) \leq 2$ y $\chi_A(1) = -4$. Decidir si A es diagonalizable y calcular $A^3 4A^2 + A + 6I$.

18. Sea $A \in \mathbb{R}^{3\times 3}$ con autovalores $\frac{1}{2}, \frac{1}{3}$ y $\frac{4}{5}$. Para un vector inicial $x^{(0)} \in \mathbb{R}^3$, se define recursivamente $x^{(n)} = Ax^{(n-1)}, n \geq 1$. Probar que para todo $x^{(0)}$ se cumple $x^{(n)} \to 0$ (es decir, $x_i^{(n)} \to 0$, 1 < i < 3).

Procesos de Markov

19. Determinar cuáles de las siguientes matrices son de Markov.

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right), \ \left(\begin{array}{cc} 1/2 & 2/3 \\ 1/2 & 1/3 \end{array}\right), \ \left(\begin{array}{cc} 1 & 0 & 1/3 \\ 1/2 & 1/2 & 1/2 \\ -1/2 & 1/2 & 1/6 \end{array}\right), \ \left(\begin{array}{cc} 0.5 & 0 & 0.\hat{3} \\ 1 & 0 & 0.1\hat{6} \\ 0 & 1 & 0.5 \end{array}\right).$$

20. Se tiene un proceso de Markov cuya matriz de transición es

$$P = \begin{pmatrix} 3/5 & 3/10 \\ 2/5 & 7/10 \end{pmatrix},$$

verificar que el vector $\boldsymbol{\pi} = (3/7 \ 4/7)^T$ es un estado de equilibrio del proceso.

- 21. Sea P = $\begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix}$ la matriz de transición de un proceso de Markov y sea $\boldsymbol{\pi}^2 = (7/18, 11/18)^T$ el segundo estado, verificar que P es inversible y calcular $\boldsymbol{\pi}^1$ y $\boldsymbol{\pi}^0$.
- 22. Probar que si P y Q son matrices de Markov, entonces
 - a) $(1-\theta)P + \theta Q$ es una matriz de Markov para cualquier $\theta \in [0,1]$.
 - b) P.Q es una matriz de Markov.
 - c) $\mathbf{P}^n.\mathbf{Q}^m$ es de Markov, cualquiera sean $n,m\in\mathbb{N}$.
- 23. La población en estudio está distribuida en un territorio dividido en dos sectores. Esta población es constante y se desplaza. En el momento inicial, exactamente la mitad de la población está en cada sector. Al día siguiente se observa que el 75 % de la población del Sector 1 se ha desplazado al Sector 2, mientras que 1 de cada 10 individuos que estaban en el Sector 2 pasó al Sector 1. Esta pauta de desplazamiento se mantiene.

- a) Determinar la matriz de transición y el estado inicial.
- b) Calcular los 5 primeros estados del proceso de Markov.
- c) Verificar que el vector $\boldsymbol{\pi} = (2/17\ 15/17)^T$ es estado de equilibrio.
- d) Para el estado inicial dado, determinar (si existe) el estado límite del proceso.
- e) Simular el comportamiento del sistema durante 100 días con una población total de 100 individuos.
- 24. En el instante inicial 20 ratones se encuentran en el compartimiento I (ver Figura 1). Las puertas que separan los compartimientos permanecen cerradas salvo durante un breve lapso, donde los ratones pueden pasar a un comportamiento adyacente o permancer en el mismo. Se supone que nada distingue un compartimento de otro, es decir que es igualmente probable que un ratón pase a cualquiera de los adyacentes o se quede en el compartimiento en el que está. Se realizan observaciones cada hora y se registra el número de ratones en cada compartimiento.

Figura 1: El laberinto se abre unos pocos segundos cada hora.

- a) Determinar la matriz de transición del proceso.
- b) Determinar el vector de estado después de 4 horas. ¿Cuántos ratones hay en cada compartimiento?
- c) Decidir si existe o no un estado de equilibrio.
- d) Para el vector inicial dado, determinar (si existe) el límite del proceso.
- 25. Supongamos que en cierta especie hay una epidemia en la que al cabo de cada mes se enfermó la mitad de los que están sanos a principios de mes y murió la cuarta parte de los que estaban enfermos. Llamemos x_k al número de muertos al cabo del k- ésimo mes, y_k al número de enfermos al cabo del k-ésimo mes y z_k al número de sanos al cabo del k-ésimo mes.
 - a) Determinar $A \in \mathbb{R}^{3\times 3}$ que describa el proceso, o sea tal que

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \\ z_{k+1} \end{pmatrix} = A \begin{pmatrix} x_k \\ y_k \\ z_k \end{pmatrix}.$$

- b) Si la distribución original (x_0, y_0, z_0) al principio del primer mes (o término del mes 0) es (0, 0, 10000), o sea de ningún enfermo y 10000 sanos, calcular el número de enfermos al cabo del k-ésimo mes.
- c) Probar que cualquiera sea la distribución original (x_0, y_0, z_0) , (x_k, y_k, z_k) tiende a un múltiplo de (1, 0, 0) (determinarlo en función de (x_0, y_0, z_0)), es decir mueren todos (lo cual es obvio ya que se enferman o se mueren pero ni se curan ni nacen nuevos individuos en el modelo).