微机原理与接口技术

第五章半导体存储器及接口

第五章半导体存储器及接口

- 教学重点
- 芯片SRAM 2114和DRAM 4116
- 芯片EPROM 2764和EEPROM 2817A
- SRAM、EPROM与CPU的连接

(1) 存储系统结构

(2) 半导体存储器的分类

- 按制造工艺
 - 双极型: 速度快、集成度低、功耗大
 - MOS型:速度慢、集成度高、功耗低
- 按使用属性
 - 随机存取存储器RAM: 可读可写、断电丢失
 - 只读存储器ROM: 正常只读、断电不丢失

(2) 半导体存储器的分类

随机存取存储器 (RAM) 静态RAM(SRAM) 动态RAM(DRAM) 非易失RAM(NVRAM)

半导体 存储器

> 只读存储器 (ROM)

掩膜式ROM

一次性可编程ROM (PROM) 紫外线擦除可编程ROM (EPROM) 电擦除可编程ROM (EEPROM)

1) 读写存储器RAM

	组成单元	速度	集成度	应用
SRAM	触发器	快	低	小容量系统
DRAM	极间电容	慢	高	大容量系统
NVRAM	带微型电池	慢	低	小容量非易失

2) 只读存储器ROM

- 掩膜ROM: 信息制作在芯片中,不可更改
- PROM:允许一次编程,此后不可更改
- EPROM: 用紫外光擦除,擦除后可编程; 并允许用户多次擦除和编程
- **EEPROM**(E²PROM):采用加电方法在线进行擦除和编程,也可多次擦写
- Flash Memory (闪存):能够快速擦写的 EEPROM,但只能按块(Block)擦除

(3) 半导体存储器芯片的内部结构

① 存储体

- 存储器芯片的主要部分,用来存储信息

② 地址译码电路

- 根据输入的地址编码来选中芯片内某个特定的 存储单元

③片选和读写控制逻辑

- 选中存储芯片,控制读写操作

(3) 半导体存储器芯片的内部结构

1) 存储体内部结构概述

- **每个存储单元具有一个唯一的地址**,可存储1位(位) 位片结构)或多位(字片结构)二进制数据
- 存储容量(bits)与地址、数据线个数有关: 芯片的存储容量=2^M×N =存储单元数×存储单元的位数

M: 芯片的地址线根数

N: 芯片的数据线根数

2) 地址译码电路结构

• 单译码结构

- 双译码结构
 - 双译码可简化芯片设计
 - 主要采用的译码结构

2) 地址译码电路结构

3) 片选和读写控制逻辑

· 片选端CS*或CE*

- 有效时,可以对该芯片进行读写操作

• 输出OE*

- 控制读操作。有效时,芯片内数据输出
- 该控制端对应系统的读控制线

· 写WE*

- 控制写操作。有效时,数据进入芯片中
- 该控制端对应系统的写控制线

(4) 随机存取存储器

静态RAM

SRAM 2114

SRAM 6264

动态RAM DRAM 4116 DRAM 2164

1)静态RAM(SRAM)

- SRAM的基本存储单元是触发器电路
- 每个基本存储单元存储二进制数一位
- 许多个基本存储单元形成行列存储矩阵

- SRAM一般采用"字结构"存储矩阵:
 - 每个存储单元存放多位(4、8、16等)
 - 每个存储单元具有一个地址

SRAM芯片2114外部特性

• 存储容量为1024×4

- 18个引脚:
 - -10根地址线A₉~A₀
 - -4根数据线I/O₄~I/O₁
 - 片选CS*
 - -读写WE*

SRAM 2114的外部特性

工作方式	CS*	WE*	I/04~I/01
未选中	1	×	高阻
读操作	0	1	输出
写操作	0	0	输入

SRAM芯片2114读周期

SRAM 2114的写周期

SRAM芯片6264外部特性

• 存储容量为8K×8

- 28个引脚:
 - -13根地址线A₁₂~A₀
 - -8根数据线 $D_7 \sim D_0$
 - 片选CS1*、CS2
 - 读写WE*、OE*

SRAM 6264的外部特性

工作方式	CS1*	CS2	WE*	OE*	D7~D0
未选中	1	×	X	×	高阻
未选中	×	0	X	×	高阻
读操作	0	1	1	0	输出
写操作	0	1	0	1	输入

2) 动态RAM

- DRAM的基本存储单元是单个场效应管及其极间电容
- 必须配备"读出再生放大电路"进行刷新
- 每次同时对一行的存储单元进行刷新
- 每个基本存储单元存储二进制数一位
- 许多个基本存储单元形成行列存储矩阵

2) 动态RAM

- DRAM一般采用"位结构"存储体:
 - 每个存储单元存放一位,**芯片内每个位单元具 有独立地址**
 - 需要8个存储芯片构成一个字节单元,每个字节存储单元具有一个地址

DRAM芯片4116外部特性

- 存储容量为16K×1
- 16个引脚:
 - -7根地址线 $A_6 \sim A_0$
 - -1根数据输入线 D_{IN}
 - -1根数据输出线D_{OUT}
 - 行地址选通RAS*
 - 列地址选通CAS*
 - -读写控制WE*

DRAM 4116的刷新

DRAM 4116的刷新

采用"仅行地址有效"方法刷新

- 行地址选通RAS*有效,传送行地址
- 列地址选通CAS*无效,没有列地址
- 芯片内部实现一行存储单元的刷新
- 没有数据输入输出
- 存储系统中所有芯片同时进行刷新
- DRAM必须每隔固定时间就刷新

DRAM芯片2164外部特性

- 存储容量为64K×1
- 16个引脚:
 - -8根地址线 $A_7 \sim A_0$
 - -1根数据输入线 D_{IN}
 - -1根数据输出线D_{OUT}
 - 行地址选通RAS*
 - 列地址选通CAS*
 - -读写控制WE*

(5) 只读存储器

EPROM 2716 EPROM 2764

EEPROM 2717A EEPROM 2864A

1) EPROM

- 顶部开有一个圆形的石英窗口,用于紫外线透过擦除原有信息
- 一般使用专门的编程器(烧写器)进行编程
- 编程后,应该贴上不透光封条
- 出厂未编程前,每个基本存储单元都是信息1
- 编程就是将某些单元写入信息0

- 存储容量为2K×8
- 24个引脚:
 - 11根地址线A₁₀~A₀
 - 8根数据线DO₇~DO₀
 - 片选/编程CE*/PGM
 - 读写OE*
 - 编程电压V_{PP}

工作方式	CE*/PGM	OE*	V _{cc}	V _{PP}	$DO_7 \sim DO_0$
待用	1	×	+ 5V	+ 5V	高阻
读出	0	0	+ 5V	+ 5V	输出
读出禁止	0	1	+ 5V	+ 5V	高阻
编程写入	正脉冲	1	+ 5V	+25V	输入
编程校验	0	0	+ 5V	+25V	输出
编程禁止	0	1	+ 5V	+25V	高阻

- 存储容量为8K×8
- 28个引脚:
 - 13根地址线A₁₂~A₀
 - -8根数据线 D_7 \sim D_0
 - 片选CE*
 - 编程PGM*
 - 读写OE*
 - 编程电压V_{PP}

工作方式	CE*	OE*	PGM*	A ₉	V _{PP}	$DO_7{\sim}DO_0$
读出	0	0	1	×	+ 5V	输出
读出禁止	0	1	1	×	+ 5V	高阻
待用	1	×	×	×	+ 5V	高阻
Intel标识	0	0	+12V	1	+ 5V	输出编码
标准编程	0	1	负脉冲	×	+25V	输入
Intel编程	0	1	负脉冲	×	+25V	输入
编程校验	0	0	1	×	+25V	输出
编程禁止	1	×	×	×	+25V	高阻

2) EEPROM

• 用加电方法,进行在线(无需拔下,直接在电路中)擦写(擦除和编程一次完成)

- 有字节擦写、块擦写和整片擦写方法
- 并行EEPROM: 多位同时进行
- 串行EEPROM: 只有一位数据线

EEPROM芯片2817A

- 存储容量为2K×8
- 28个引脚:
 - 11根地址线A₁₀~A₀
 - -8根数据线 $I/O_7 \sim I/O_0$
 - 片选CE*
 - 读写OE*、WE*
 - 状态输出RDY/BUSY*

EEPROM芯片2817A

工作方式	CE*	OE*	WE*	RDY/BUSY*	I/O ₇ ~I/O ₀
读出	0	0	1	高阻	输出
维持	1	×	X	高阻	高阻
字节写入	0	1	0	0	输入

EEPROM芯片2864A

- 存储容量为8K×8
- 28个引脚:
 - **13**根地址线**A**₁₂~**A**₀
 - -8根数据线 $I/O_7 \sim I/O_0$
 - 片选CE*
 - 读写OE*、WE*

EEPROM芯片2864A

工作方式	CE*	OE*	WE*	I/O ₇ ~I/O ₀
读出	0	0	1	输出
维持	1	×	×	高阻
写入	0	1	负脉冲	输入
数据查询	0	0	1	输出

(6) 半导体存储器与CPU的连接

- SRAM、EPROM与CPU的连接是本章的重点 内容
- 译码方法同样适合I/O端口

(6) 半导体存储器与CPU的连接

• 与连接相关的内容:

- 存储芯片的数据线
- 存储芯片的地址线
- 存储芯片的片选端
- 存储芯片的读写控制线

1) 存储芯片数据线的处理

- 若芯片的数据线正好8根:
 - -一次可从芯片中访问到8位数据
 - -全部数据线与系统的8位数据总线相连

- 若芯片的数据线不足8根:
 - -一次不能从一个芯片中访问到8位数据
 - 利用多个芯片扩充数据位
 - 这个扩充方式简称"位扩充"

位扩充

位扩充

• 多个位扩充的存储芯片的数据线连接于系统数据总线的不同位数

• 其它连接都一样

• 这些芯片应被看作是一个整体,常被称为"芯片组"

2) 存储芯片地址线的连接

• 芯片的地址线通常应全部与系统的低位地址总线相连

• 寻址时,这部分地址的译码是在存储芯片 内完成的,我们称为"**片内译码**"

片内译码

$A_9 \sim A_0$		范围(16进制)
0000	全0	000H
0001	/	001H
0010		002H
•••		•••
1101		3FDH
1110		3FEH
1111	全1	3FFH

3)存储芯片片选端的译码

- 存储系统常需利用多个存储芯片扩充容量,也就是扩充了存储器地址范围
- 进行"地址扩充",需要利用存储芯片的片选端对多个存储芯片(组)进行寻址
- 这个寻址方法,主要通过将存储芯片的片选端与系统的高位地址线相关联来实现
- 这种扩充简称为"地址扩充"或"字扩充"

片选端译码: 地址扩充 (字扩充)

片选端常有效

片选端常有效

■ 令芯片(组)的片选端常有效

■ 不与系统的高位地址线发生联系

■ 芯片(组)总处在被选中的状态

■ 虽简单易行、但无法再进行地址扩充,会 出现"地址重复"

地址重复

- 一个存储单元具有多个存储地址的现象
- 原因:有些高位地址线没有用、可任意

- 使用地址:出现地址重复时,常选取其中 既好用、又不冲突的一个"可用地址"
- 例如: 00000H~07FFFH

• 选取的原则: 高位地址全为0的地址

存储芯片片选端的功能

• 存储芯片的片选控制端可以被看作是一根最高位地址线

在系统中,主要与地址发生联系:包括地址空间的选择(接系统的IO/M*信号)和高位地址的译码选择(与系统的高位地址线相关联)

• 对一些存储芯片通过片选无效可关闭内部的输出驱动机制,起到降低功耗的作用

1.译码和译码器

• 地址译码:将某个特定的"编码输入"翻译为唯一"有效输出"的过程

- 译码电路可以使用门电路组合逻辑
- 译码电路更多的是采用集成译码器
 - 常用的2:4译码器: 74LS139
 - 常用的3:8译码器: 74LS138
 - 常用的4:16译码器: 74LS154

门电路译码示例

译码器74LS138

译码器74LS138真值表

片选输入	编码输入	输出		
E3 E2* E1*	СВА	Y7* ~ Y0*		
	0 0 0	1111110(仅Y0*有效)		
	0 0 1	1111101(仅Y1*有效)		
1 0 0	0 1 0	11111011(仅Y2*有效)		
	0 1 1	11110111(仅Y3*有效)		
1 0 0	1 0 0	11101111 (仅Y4*有效)		
	1 0 1	11011111 (仅Y5*有效)		
	1 1 0	1011111 (仅Y6*有效)		
	1 1 1	0111111 (仅Y7*有效)		
非上述情况	×××	1111111 (全无效)		

3~8译码器应用实例

例如,以 8088 为 CPU 的微型计算机系统的 RAM 系统,由 8 片容量为 8KB 的 6264 芯片构成。此 RAM 系统的地址区域为 40000H~4FFFFH。利用 74LS138 作地址译码器,采用全译码方式。则地址译码器的连接线如图

2.全译码

- 所有的系统地址线均参与对存储单元的译码寻址
- 包括低位地址线对芯片内各存储单元的译码寻址(片内译码),高位地址线对存储芯片的译码寻址(片选译码)
- 采用全译码,每个存储单元的地址都是唯一的,不存在地址重复
- 译码电路可能比较复杂、连线也较多

全译码示例

全译码示例

$A_{19}A_{18}A_{17}A_{16}A_{15}A_{14}A_{13}$	$A_{12}\sim A_0$	地址范围
0 0 0 1 1 1 0	全 0 5 全1	1C000H

3.部分译码

• 只有部分(高位)地址线参与对存储芯片的译码

- **每个存储单元将对应多个地址**(地址重复),需要选取一个可用地址
- 可简化译码电路的设计
- 但系统的部分地址空间将被浪费

	$A_{19}\sim A_{15}$	$A_{14}\sim A_{12}$	$A_{11} \sim A_0$	一个可用地址
1	××10 ×	000	全0~全1	20000H~20FFFH
2	××10 ×	001	全0~全1	21000H \sim 21FFFH
3	××10 ×	010	全0~全1	22000H~22FFFH
4	××10 ×	011	全0~全1	23000H~23FFFH

例如,某一	- 16 位微机系统中	,存储	器的	映象	图如	图				
		A_{19}	A18	A17	A 16	A_{15}	A14	A_{13}	A12~A0	
EPROM2	OE000H~OFFFFH	\otimes	0	0	0	1	1	· 1	$X \sim X$	•
EPROM1	oCoooH~oDFFFH	8	. 0	0	0	1	1	0	$X \sim X$	
, ,									$X \sim X$	
RAM2	02000H~03FFFH	8	0	0	. 0	0	0	1	$X \sim X$	
RAM1	00000H~01FFFH	· ⊗	0	0	. 0	0	. 0	0	$X \sim X$	
					rier Air	باران بليد			低位抽折	

存储器系统配置 16KB RAM 和 16KB ROM,RAM 由 2 片 8KB 容量的 6264 芯片组成,RAM1 占地址区域为 00000H~01FFFH,RAM2 占地址区域为 02000H~03FFFH;ROM 由 2 片 8KB 容量的 2764 芯片组成,EPROM1 占地址区域为 0C000H~0DFFFH,EPROM2 占地址区域为 0E000H~0FFFH。

设计地址译码器时,高位地址 A_{18} 未参加译码,只有 $A_{18}\sim A_{13}$ 6 根高地址线参加译码。存储器地址选择连接图如图

局部译码同线选方式一样,存在存储器单元地址有重叠现象。

最后,图5-28示例了一个综合性存储芯片的连接电路。存储器芯片由SRAM和EPROM组成,与最大组态的8088连接,采用部分译码。请读者分析每个芯片的地址范围。

图5-28 综合性示例(8088最大组态)

4.线选译码

• 只用少数几根高位地址线进行芯片的译码,且每根负责选中一个芯片(组)

虽构成简单,但地址空间严重浪费,必然 会出现地址重复

- 一个存储地址会对应多个存储单元
- 多个存储单元共用的存储地址不应使用

线选译码示例

线选译码示例

	$A_{19}\sim A_{15}$	A ₁₄ A ₁₃	$A_{12}\sim A_0$	一个可用地址
1	×××××	1 0	全0~全1	04000H~05FFFH
2	$\times \times \times \times \times$	0 1	全0~全1	02000H~03FFFH

A₁₄ A₁₃=00 的情况不能出现 00000H~01FFFH 的地址不可使用

4)存储芯片的读写控制

- · 芯片OE*与系统的读命令线相连
 - 当芯片被选中、且读命令有效时,存储芯片将 开放并驱动数据到总线

- · 芯片WE*与系统的写命令线相连
 - 当芯片被选中、且写命令有效时,允许总线数据写入存储芯片

(7) 存储芯片与CPU的配合

• 存储芯片与CPU总线的连接,还有两个很重要的问题:

· CPU的总线负载能力

- CPU能否带动总线上包括存储器在内的连接器件
- · 存储芯片与CPU总线时序的配合
 - CPU能否与存储器的存取速度相配合

1) 总线驱动

· CPU的总线驱动能力有限

单向传送的地址和控制总线,可采用三态锁存器和三态单向驱动器等来加以锁存和驱动

• 双向传送的数据总线,可以采用三态双向驱动器来加以驱动

2) 时序配合

• 时序配合是连接中的难点

· 分析存储器的存取速度是否满足CPU总线时序的要求

- 如果不能满足:
 - 考虑更换芯片
 - 总线周期中插入等待状态Tw

(8) 8086存储器组织

- 1) 寻址空间(20位地址线)

 2²⁰=1M bytes的存储器寻址空间
 分段的概念
- 2) 分段组织
- 段寄存器的16位值左移4位,得到的20位值加上16 位的偏移量。
- 3) 字与字节访问
- AD₀信号和BHE信号组合,选择奇偶字节或字。

8086存储器组织

奇偶寻址 字节访问

偶地址字传送

奇地址字 传送

(8) 8086 存储器组织

BHE *	AD0	对应的操作	所用的管脚
0	0	从偶地址开始读/写一个字	AD_{15} \sim AD_0
0	1	从奇地址单元读/写一个字节	AD_{15} $\sim AD_8$
1	0	从偶地址单元读/写一个字节	$AD_7 \sim AD_0$
0	1	从奇地址开始读/写一个字(在第一个总线周期,传送低8位数据到	$AD_{15} \sim AD_8$
1	0	AD_{15} \sim AD_{8} ; 第二个总线周期传送 高8位数据到 AD_{7} \sim AD_{0} $)$	$AD_7 \sim AD_0$

第5章教学要求

- 1. 了解各类半导体存储器的应用特点;
- 2. 熟悉半导体存储器芯片的结构;
- 3. 掌握SRAM 2114、DRAM 4116、EPROM 2764、EEPROM 2817A的引脚功能;
- 4. 理解SRAM读写原理、DRAM读写和刷新原理、EPROM和EEPROM工作方式

第5章教学要求

- 5. 掌握存储芯片与CPU连接的方法,特别是片选端的处理;
- 6. 了解存储芯片与CPU连接的总线驱动和时序配合问题。