

ARMD Transformative Aeronautics Concepts Program

CONVERGENT AERONAUTICS SOLUTIONS PROJECT

Spanwise Adaptive Wing

Matthew Moholt NASA AFRC

Dr. Othmane Benafan NASA GRC

Enabling Reconfigurable Aircraft Through The **Spanwise Adaptive Wing** (SAW) Concept

 Increasing aircraft efficiency by reducing the rudder through the incorporation of SAW

Articulating the outboard portions of the wing via Shape Memory actuation

 Lateral-directional stability and control augmentation

- Supersonic Increased compression lift and reduced wave drag
 - Enabler for supersonic flying wing design

SAW Development Path

CAS Objective: to develop all of the sub-systems for full scale infusion

- Technology and tool development and validation
- Scale-up validation
- A plan for the next a larger demonstration in a more relevant environment

Reconfigurable Aircraft

Historical Perspective

Morphing Aircraft

Folding wing aircraft

Ground Folding

A New Way to Actuate

- Shape Memory Alloy (SMA)
 - NiTiHf
- Alloys that have a "memory." These materials have the ability to remember and recover their original shapes with load or temperature.
- SMAs exhibit a solid-to-solid, reversible phase transformation

Current State-of-the-Art Rotary Actuators

HYDRAULIC ACTUATORS

PNEUMATIC ACTUATORS

SMA Actuator

Model # CAS2016

- Size $\sim 450 \text{ in}^3$
- Weight ~<u>58.5 lbs</u>
- Temperatures~ tunable based on alloy used
- Torque ~ 100,000 in-lbs
- Angle $\sim 90 \deg$

Non-traditional – Revolutionary – Transformative

Rotation (°)

Footprint (in)

Output Torqu

Weight (lbs)

Assessment of Current Technology- With ARMD Thrusts in Mind

Current Technologies (hydraulic, pneumatic, or magnetic motors) do not provide a step-change towards "Big Leaps" in efficiency & environmental performance

- Heavy, and bulky other options include gear boxes large systems
- With SMA technology: 20% the weight & 15% the size of comparable hydraulic system

Flight testing out of the box ideas

PTERA

<u>Prototype-Technology Evaluation and</u> Research Aircraft

- Roughly based on an 11%-scale 737
- Baseline configuration has an 11.3ft span, 12ft length, and 4.3ft height
- ~200lb gross takeoff weight (40lb payload)
- Powered by two JetCat P200 turbojet engines (50 lbs thrust each)
- Flown 13 times (SysID, performar evals)

Flight Test Experiment

Aero analysis

Hinge Loads

Actuator Loads

Actuator Design

	Sweep	Wing tip	C.G. shift (aft of root	(% of rudo	tip Yaw Co	deflection)	Structural		
Configuration 1	Angle (1)	12.0 in	1/4- chord) 1.0 in	75.0° 10.4	-75.0° 8.8	0.0° 6.1	Assessment Yes		
2	0.0°	15.0 in	1.0 in	12.4	10.7	9.3	Yes	- Baseline Values	Will The Land
3	0.0°	18.0 in	1.0 in	14.4	12.5	11.5	Maybe	A second	10000
4	10.0°	12.0 in	3.0 in	20.4	11.7	10.8	Yes		
5	10.0°	15.0 in	3.0 in	25.9	16.0	13.2	Yes		
6	10.0°	18.0 in	3.0 in	31.7	20.6	15.9	Maybe		
7	20.0°	12.0 in	5.4 in	29.6	14.8	13.4	Yes	Danier Conne	
8	20.0°	15.0 in	5.4 in	38.5	21.5	16.6	Yes	Design Space Explored	
9	20.0°	18.0 in	5.4 in	48.1	29.1	19.8	No	Explored	
10	30.0°	12.0 in	8.0 in	38.3	17.3	16.2	Yes	NOTE: THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN	
11	30.0°	15.0 in	8.0 in	50.6	27.3	19.9	Maybe		Wing and Joint Desig
12	30.0°	18.0 in	8.0 in	64.2	38.1	23.7	No	wing and some B	Thing and forme Desig

For the PTERA demonstration SAW produces nearly <u>40%</u> of total rudder authority Can this be used to reduce rudder size?

Flight Test

- Two flight campaigns on Edwards Air Force Base dry lakebed
- First flight late October/Early November 2017

WORKING TOWARD FULL SCALE

NiTiHf Alloy Processed in Large Scale

- Melting process scalable from 1 lbs to >100 lbs
- Repeatable properties (for lab verification, actuator back ups, and future flights.
- Extrusion to rod and tubing
 - From 4" to 0.5" in diameter and from 1.2" to 0.5" in diameter reduction
- Tubes drilled and splined

-Final form of actuator before training and instrumentation.

Ground Test: Large tube testing

- 1" tube
- 10" long

- 20,000 in-lbf test rig
- Fully instrumented for SMA large tube testing

3 Mechanisms for Ground Test

- Use 0.5" and 1" tubes
- Target for 90 degrees of rotation
- 5000 in-lbf torque
- Explore locking features

F-18 Demonstration?

Figure 1: View of the analyzed SAW F-18 geometry (-70 deg wing deflection)

Figure 2: Percentage changes in lift coefficient for different wing deflections, from Cart3D

