Metode Lagrange

To maximize f(x, y) subject to g(x, y) = k is to find the largest value of c such that the level curve f(x, y) = c intersects g(x, y) = k.

It appears from Figure 1 that this happens when these curves just touch each other, when they have a common tangent line.

This means that the normal lines at the point (x_0, y_0) where they touch are identical. So the gradient vectors are parallel; that is,

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

for some scalar λ .

Metode Lagrange

Method of Lagrange Multipliers To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k]:

(a) Find all values of x, y, z, and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

and

$$g(x, y, z) = k$$

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Contoh: Lagrange

Find the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

SOLUTION We are asked for the extreme values of f subject to the constraint $g(x,y)=x^2+y^2=1$. Using Lagrange multipliers, we solve the equations $\nabla f=\lambda \nabla g$ and g(x,y)=1, which can be written as

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $g(x, y) = 1$

or as

$$2x = 2x\lambda$$

$$4y = 2y\lambda$$

$$x^2 + y^2 = 1$$

From $\boxed{9}$ we have x=0 or $\lambda=1$. If x=0, then $\boxed{11}$ gives $y=\pm 1$. If $\lambda=1$, then y=0 from $\boxed{10}$, so then $\boxed{11}$ gives $x=\pm 1$. Therefore f has possible extreme values at the points (0,1), (0,-1), (1,0), and (-1,0). Evaluating f at these four points, we find that

$$f(0, 1) = 2$$
 $f(0, -1) = 2$ $f(1, 0) = 1$ $f(-1, 0) = 1$