想让推荐和搜索引擎更聪明?基于知识图谱的篇章标签生成

夕小瑶的卖萌屋 1月5日

以下文章来源于丁香园大数据,作者丁香园大数据NLP

丁香园大数据

丁香园大数据是以数据为驱动、以产品为导向、致力于数据挖掘和商业探索的部门。她采用先进的大数据平台,以前沿的...

一只小狐狸带你解锁NLP/ML/DL秘籍

正文来源:丁香园大数据NLP

老板~我们的推荐系统笨笨的

啊啊啊我错惹,那那,不用关键词用什么呢?

知识图谱用上了没? 概念词知道不? 9012年了知道么!

前言

篇章的标签生成是NLP领域的一项基础任务,目的是对文本更好地结构化,筛选重要的关键词,概括文本的中心语义。因此,我们探索了一套标签生成流程,其中除了应用了已有的信息抽取技术之外,还将医疗知识图谱结构,实体显著性判断,concept抽取融入模型,实现业务增长。

关于标签生成,优化的方法大致有两种思路,第一种是在拥有一个较为完备的知识图谱后,如何使用知识图谱去指导标签抽取过程保持语义上的一致。举个栗子,比如通过词分布的分析,某篇文章的主题被定为在"妇科"相关疾病上,那么"骨科"的实体词就会被避免作为标签被抽出。这种思路在业界多以LDA的无监督打标签算法为主,利用知识表示向量、知识图谱结构或者其他统计信息对LDA模型进行改进,输出的结果为原文出现过的实体词,以下我们将它称之为主题语义连贯的词分布标签方法;

另一种思路是在知识图谱上做文章,比如专业的医学知识图谱上的实体词够精确,但有时由于词本身的含义不够泛化,并不适用于文章的表示,举个栗子,比如"HP"、"胃镜"、"三联疗法"这几个词的确贴合消化内科的主题,但是它没有"幽门螺杆菌的治疗方法"这样更加泛化的标签词来的直观,后者包含了更多的信息量,且更具可解释性。这方向需要结合更多的NLP技术,包括在业务场景中挖掘优质的concept短语,构建concept短语与实体词的taxonomy,利用文本子图中心度测量、随机游走路径、词频共现等做encoding,以LDA作为抽取器完成标签工作,以下我们将它为Concept挖掘的标签方法。

对这两种思路,我们调研了已有的相关研究,利用医疗知识图谱和医学垂直领域业 务数据做了标签生成的尝试。

主题语义连贯的词分布主题模型

《Incorporating Knowledge Graph Embeddings into Topic Modeling》

概率主题模型可用于从文档集合中提取低维主题。然而,以往的模型往往产生无法解释的主题。近年来,已有许多基于知识的主题模型被提出,但它们不能很好的处理知识图中的三元组,大部分以must-link形式,或直接利用图谱中的上层概念,无法在向量空间中量化。本文将知识表示嵌入到到LDA中,将潜在的Dirichlet分配(一种广泛使用的主题模型)与实体向量编码的知识相结合,来提高了主题语义的一致性和连贯性。本文主要在两个以往研究(CI-LDA和Corr-LDA)上做了改进,上图为linkKGLDA,下图为corrKGLDA:

两个模型的不同之处在于,前者为条件独立,后者为条件相关。具体的改进如下:

- 2. For each topic k in $1 \dots K$:
 - (a) Draw $\phi_k \sim \text{Dir}(\beta)$.
 - (b) Draw $\mu_k \sim \text{vMF}(\mu_0, C_0)$.
 - (c) Draw $\kappa_k \sim \text{logNormal}(m, \sigma^2)$.

entity embedding $e_{dm} \sim \text{vMF}(\mu_{z'_{dm}}, \kappa_{z'_{dm}})$.

由于一些知识表示(TransE)是unit sphere,因此使用von Mises Fisher(VMF)分布对其进行建模。vmf分布被广泛用于模拟此类定向数据。此外,使用vmf分布代替多元高斯分布,可以更有效地进行推断。与传统LDA模型相比,增加一组参数:(μk, κk),主题k的vMF分布;以及edm,即文档中实体的知识表示向量。

实现Concept挖掘的标签方法

目前的大多数concept标签方案,多是基于一定的统计数据,如:词对共现频数,词对覆盖率等。这些方法依赖业务场景下的query log,或者也可利用知识图谱结构进行层次聚类,中心化,路径预测等方式进行。下面将一一介绍相关研究。

《Graph-Sparse LDA: A Topic Model with Structured Sparsity》

本文引入了图稀疏LDA,这是一种分层主题模型,它使用单词之间关系的知识(例如:本体编码)。在模型中,主题被一些潜在的概念词概括,这些潜在概念词来自观察词在本体中的图。

GS-LDA在标准LDA模型中引入了一个额外的层次结构层:主题不是分布在观察到的词上,而是分布在概念词上,然后通过由词汇结构通知的噪声过程生成观察到的词。

例如上图所示,"癫痫"是一个很好的概念词,可以概括出子类癫痫。如果患者患有癫痫也可以解释"中枢神经系统紊乱"甚至"疾病"。

利用词典用的词或者实体总结文本时,通常都非常具体,而使用概念词总结一段文本,不仅可以说明具体的语义,同时能挖掘到更上层或者相似主题的语义。例如: "抗病毒药物"和"抗逆转录病毒",一个词和它的邻居词,可以被认为产生自一个核心概念。Graph-Sparse LDA模型假设一个主题有一组稀疏的概念词组成,或是后代,或是祖先。最后定义如下过程:

$$\pi_{k} \sim \text{IBP-Stick}(\gamma_{B}) \tag{5}$$

$$\rho_{v} \sim \text{Beta}(\gamma_{A}/V, 1) \tag{6}$$

$$\bar{B}_{nk} \mid \pi_{k} \sim \text{Bernoulli}(\pi_{k}) \tag{7}$$

$$\bar{A}_{kv} \mid \rho_{v} \sim \text{Bernoulli}(\rho_{v}) \tag{8}$$

$$B_{n} \mid \bar{B}_{n} \sim \text{Dirichlet}(\bar{B}_{n} \odot \alpha_{B} 1_{K}) \tag{9}$$

$$A_{k} \mid \bar{A}_{k} \sim \text{Dirichlet}(\bar{A}_{k} \odot \alpha_{A} 1_{V}) \tag{10}$$

$$z_{in} \mid B_{n} \sim \text{Discrete}(B_{n}) \tag{11}$$

$$\tilde{w}_{in} \mid z_{in}, \{A_{k}\} \sim \text{Discrete}(A_{z_{in}}) \tag{12}$$

$$P_{v} \sim \text{Dirichlet}(\mathcal{O}_{v} \odot \alpha_{P} 1_{V}) \tag{13}$$

$$w_{in} \mid \tilde{w}_{in}, P \sim \text{Discrete}(P_{\tilde{w}_{in}}) \tag{14}$$

推导了一个B、B、A、A-和P(以及添加和删除主题)的 blocked-Gibbs sampler。然而,单是吉布斯抽样并不能使主题概念词矩阵中的稀疏性足够快。混合速度很慢,因为阻塞的吉布斯取样器设置Akw~=0的唯一时间是没有w~计数分配给任何文档中的主题K时。当有海量文档时,不太可能达到零计数,采样器稀疏主题概念词矩阵A的速度会很慢。因此本文引入了一个MH procedure,通过在A和P上的 joint moves,鼓励主题概念词矩阵A向更大稀疏的方向移动。分布如下:

$$a_{MH} = 1 \wedge \frac{p(X \mid B, A', P') p(A') p(P') Q(A, P \mid A', P')}{p(X \mid B, A, P) p(A) p(P) Q(A', P' \mid A, P)}$$

首先,对A'进行智能分割合并移动。其次,试图通过提出一个P'来保持似然函数尽可能恒定:AP=A'P'。这样,先验p(A)和p(P)将对移动产生很大的影响。

《Grounding Topic Models with Knowledge Bases》

这篇工作认为尽管最近的研究试图利用各种知识源来改进主题建模,但它们要么承担着仅将主题表示为单词或短语分布,要么通过将主题与预先定义的知识库(知识库)实体进行一对一的绑定,建立主题模型,牺牲了主题建模的灵活性。因此提出了一种基于taxnomy层次结构随机游走特征的LDA,目的在于将taxnomy的语义和结构化特征全部考虑进来。

与以往LDA不同的是,模型中加入了四个新的变量,其中rdj代表随机游走路径,edj代表taxonomy中的概念,mdj代表文档中的实体,ydl为单词index。从根节点顶层概念词c0开始,通过随机游走筛选子节点。过程结束直到到达叶子节点。因此这个随机游走给每一个entity(概念)分配了一个从根到叶子的路径。基于主题k,可以计算到达每个实体的随机行走的概率,从而获得主题k下实体的分布。同样,对于每个类别节点c,可以计算一个概率kc,表示c被包含在随机行走路径中的可能性。

除了随机游走得到的结构特征,本文同样利用了维基百科的page数据,得到实体,单词,概念之间的共现频数,作为先验信息。大文本语料库和知识库的推理是复杂的,为了保证实践中的效率,文章提出需要注意以下几个方面:

- (a) 所有实体的路径总数可能非常大,使得随机游走公式的计算非常庞大。因此,本文使用命名实体字典为每个文档选择候选实体,在采样时只考虑这些实体的路径。实验表明,该近似方法对建模性能的影响可以忽略不计,同时大大降低了采样的复杂度,使推理成为现实。
- (b) 通过修剪低级的具体类别节点(其最短的根到节点路径长度超过阈值),进一步减少层次深度。作者发现这样一个"粗糙"的实体本体足以满足需求。
- (c) 为了计算路径的概率,使用动态规划来避免冗余计算。
- (d) 初始化实体和路径分配以确保良好的起点。

《Modeling Documents by Combining Semantic Concepts with Unsupervised Statistical Learning》

以往的研究中,或是只用文档中的词来描述主题,或是在taxnomy中找到合适的 concept描述主题,本文虽然只是在传统LDA模型上做了很小的改动,但是它可以实 现文档词分布和taxnomy concept共存的主题表达形式。将文档中的所有单词(不仅仅是实体)映射到一组本体概念上,学习单词和概念的概率模型,并且使用完全无监督的方法,而无需任何监督标记。

$$p(w_i|d) = \sum_{j=1}^{C} p(w_i|c_j)p(c_j|d).$$

将把这种模型称为概念模型。在概念模型中,属于概念的词由人类先验地(例如,作为本体的一部分)定义,并且仅限于(通常)总体词汇的一小部分。相反,在主题模型中,词汇表中的所有单词都可以与任何特定主题关联,但具有不同的概率。在上面的公式中,概念模型的未知参数是单词概念概率p(wi|cj)和概念文档概率p(cj|d)。作者的目标(在主题模型中)是从适当的语料库中估计这些。例如,注意概率p(cj|d)可以解决前面提到的标记问题,因为每个这样的分布都告诉我们文档d表示的概念cj的混合。

使用吉布斯抽样将概念分配给文档中的单词,使用与在主题模型相同的抽样方程,但是有一个额外的约束,即一个单词只能分配给它在本体中关联的概念。除了约束外,学习算法与主题模型的标准学习完全相同,最终的结果是语料库中的每个词都被赋予了本体中的一个概念。反过来,这些分配可以直接估计上面等式中的某些项。为了估计特定概念cj的p(wi|cj),我们通过抽样算法判断语料库中有多少单词可以分配给概念cj,并将这些计数标准化,以得到概率分布p(wi|cj)。为了估计特定文档d的p(cj|d),计算每个概念分配给文档d中单词的次数,然后再次规范化和平滑计算以获得p(cj|d)。下表显示了一组单词的学习概率(按概率排序)的例

FARMING & FORESTRY		EARTH & OUTER SPACE	
crops	(0.135)	earth	(0.226)
plant	(0.076)	sky	(0.107)
grow	(0.050)	space	(0.082)
land	(0.040)	sun	(0.066)
fertilizers	(0.038)	scientists	(0.046)
soil	(0.037)	planets	(0.033)
earth	(0.034)	universe	(0.033)
farming	(0.034)	stars	(0.032)

Table 3. Two example concepts from the CIDE thesaurus

《Unsupervised Graph-based Topic Labelling using DBpedia》

这是一个完全将LDA作为抽取功能组件的模型,topic labeling过程完全基于聚类和图的中心化操作。

可以看到,每个实体的语义图只能表示一种非常宽泛的概念,并不能体现各个实体概念之间的关系,直接作为标签会使每个概念都孤立起来,文本的语义不仅不一致,还会非常离散。相反本文方法是建立一个由多个实体子图构成的主题图,从中可以分析大图中每个节点对主题图的语义中心度贡献(因此模型的假设前提是:在图中起重要作用的节点也与种子概念有重要的语义关系)。最终从这些语义中心度贡献高的节点中选择标签。本文应用了几种语义中心性措施:Focused Closeness Centrality,Focused Information Centrality,Focused Betweenness Centrality,来计算候选标签的语义中心度。

《On Conceptual Labeling of a Bag of Words》

本文利用了probase来进行concept tagging,与上述的研究不同,他没有用到任何主题模型,主要的方法是用信息论的方法来权衡对词袋的语义覆盖度,输出覆盖最广但标签最少的单词。

$$L^*(x|C) = \min(L(x), -\log P_{NML}(x|C))$$

$$\hat{P}(x|C)$$

$$= \min(L(x), -\log \frac{1 - \frac{1}{C}}{\sum_{x'} \hat{P}(x'|C)})$$

$$\hat{P}(x|C) = \max_{c \in C} P(x|c)$$

使用MDL(最小长度描述原则)作为选择最好concept的标准,通过最大限度减少描述长度来实现当前概念集C的更新。迭代终止时,描述长度不能再减少了。由于编码长度在每次迭代时单调递减,因此保证了该算法收敛。虽然没有用到任何主题模型,但算法仍然可以通过三种操作(增删改)和MDL收敛的方式,自动的决定主题个数。前提是需要有海量的上下级概念对频数。

实际工作中的尝试

在实际工作的尝试中,我们的整体算法流程分为两部分:核心主题关键词抽取以及获取更为抽象的concept短语。

符合一定主题的关键词抽取:在原有的linkKGLDA模型基础上,除了采用知识表示,还对图谱之外的词赋予deepwalk向量,是模型更好的应对图谱之外的词。

更为抽象的concept短语:首先构建基于帖子的知识图谱,除了利用业务词典,丁香园论坛结构,搭建图谱上层,中下层图谱通过层次主题模型,concept,关键词抽取进行搭建。

通过的concept抽取模型(可参考:医疗健康领域的短文本解析探索),我们从query和帖子标题中抽取到了300万的concept词语,那么如何才能找到一个帖子真正说的主题,并将文本中的最关键主题词连接到相应的concept上呢,这里我们要借助以下论文中提到的方法:

«Towards Better Text Understanding and Retrieval through Kernel Entity Salience Modeling»

由于一篇文章涉及到的实体多种多样,但一般会存在几个最关键的实体,例如:

医生你好,昨天像你提问的宝宝腹泻问题,昨天一共拉了6次,后期都是绿便,晚9点吃最后一顿奶,到今早上5点吃一次,8点 多吃一次,然后又拉了2次,但已经不绿了,是黄色稀便,乳糖酶还没有给她吃,昨天加了益生菌,儿歌的两款乳糖酶,我买的 葡萄糖这款,你看下对吗?现在是不是已经好转了?我还是应该买纯乳糖酶乳粉?

文中出现了腹泻,绿便,奶等一系列表述疾病过程和食物相关的实体(可通过 linkKGLDA识别出来),但中心实体"腹泻"和"乳糖酶乳粉"在识别结果中的排序可能并不是top1,这会使得后续的concept对应工作产生一定的噪音。

本文主要研究实体对文章的显著程度,通过结合文章上下文和实体知识表示 (KEE),和Kernel Interaction Model (KIM) 模型,对实体-文章对进行排序,从而 得到实体在文章中的显著程度。

实验数据利用的是远监督标注,利用文章和文章标题,以及已有算法(ner,名词短语抽取,实体链接,linkKGLDA概率等)得到训练数据。

《A User-Centered Concept Mining System for Query and Document

Understanding at Tencent》

本篇文章在tagging docment上的方法有两种,实现的前提条件是需要有足够数量和 高质量的query log,以及知识图谱。

整个过程分为两种方法:基于概率和基于匹配:

基于条件概率:

文章3.1节描述了如何利用抽取到的主题关键词去对应到一组合适的concept,主要利用的还是主题关键词上下文与concept的条件概率推理。与《Grounding Topic Models with Knowledge Bases》不同,这种方法可以得到图谱中不存在,但是搜索中经常出现的concept,并且也不需要大量上下位词的共现频数。

Figure 3: The overall procedures of concept tagging for documents. We combine both a matching-based approach with a scoring-based approach to handle different situations

$$p(\mathbf{c}|d) = \sum_{i=1}^{|E^d|} p(\mathbf{c}|\mathbf{e}_i^d) p(\mathbf{e}_i^d|d),$$

$$p(\mathbf{c}|\mathbf{e}_i^d) = \sum_{j=1}^{|X_{E^d}|} p(\mathbf{c}|\mathbf{x}_j)p(\mathbf{x}_j|\mathbf{e}_i^d)$$

$$p(\mathbf{c}|\mathbf{x}_j) = \begin{cases} \frac{1}{|\mathbf{C}^{\mathbf{x}_j}|}. & \text{if } \mathbf{x}_j \text{is a substring of } \mathbf{c}, \\ 0 & \text{otherwise.} \end{cases}$$

整个p(c|d)的计算过程重点在于第三步,即想要计算p(c|x),必须存在以上下文xj作为子串的概念词(这样的概念词来自于query log),如: 文中提到的概念词"省油的汽车"和文档中"丰田RAV4"的上下文"省油,耐用"。虽然这样的概念词在医疗专业词汇和搜索中很少见,但这实际上是实体属性和概念属性的一种交集,在没有足够数量和高质量的query log的情况下,我们可以采用属性抽取相关工作的研究结果。这样做更有利于做医疗领域的相关问题,当然也可参照之前的历史文章(taxnomy构建)和上面介绍的《On Conceptual Labeling of a Bag of Words》计算概率值。

基于匹配:

- 1.首先利用GBRank,textRank,word2vec算法,得到一定数量的关键词 (instance)
- 2.利用检索或者web table找到与instance相关的概念候选。每一个concept,用topN 搜索结果标题文本信息来丰富concept表示(tf-idf向量)。
- 4.将concept表示与文档title tf-idf向量做相似度计算,超过一定阈值,打相应标签。

在丁香园论坛帖子的文本数据上,我们应用了前文调研的主题抽取、实体显著性判断、短语挖掘、concept召回等方法,所获得的标签在主题贴近度和可解释性上都有显著提高:

总结

标签生成任务虽然在NLP领域非常常见,但是想要获得高质量的标签词,在推荐、搜索、问答等工业场景下应用,背后其实集成了众多NLP基础工作。标签生成的上游包含了分词、命名实体识别、医学概念归一化、消岐、concept质量优化等工作。只有稳固的基础才能把楼盖得更高。

其次,知识图谱就是模型。合理的图谱结构、丰富的数据量将决定最终结果的好坏。在产业界尤其需要关注实际业务下的知识体系构建,一套知识图谱并不一定能满足所有的业务线,比如在医学科普文章下表现良好的图谱,若应用在考研、招聘类的文本下,反而会因为抽出过多的医学专业词汇而偏离主题。可以与业务部门协同补全知识图谱,或者用一些统计学方法加以补充。

最后,标签词并不需要一定作为文本的一种"显式"的展示方式,作为长文本的一种 更优的结构化数据,它有各种各样的"隐式"用法,比如作为特征输入到下游的文本 分类、标题生成甚至融入到推荐系统策略中,我们会在今后陆续分享各种有趣的玩 儿法。

- 跨平台NLP/ML文章索引
- NLP数据集构建
- 大话关系抽取
- 如何斩下NLP算法岗offer?
- python开发套件推荐

- Incorporating Knowledge Graph Embeddings into Topic Modeling
- Graph-Sparse LDA: A Topic Model with Structured Sparsity
- Grounding Topic Models with Knowledge Bases
- Modeling Documents by Combining Semantic Concepts with Unsupervised Statistical Learning
- Unsupervised Graph-based Topic Labelling using DBpedia
- On Conceptual Labeling of a Bag of Words
- A User-Centered Concept Mining System for Query and Document Understanding at Tencent
- Towards Better Text Understanding and Retrieval through Kernel Entity Salience Modeling
- End-to-End Neural Ad-hoc Ranking with Kernel Pooling
- Automatic Event Salience Identification

声明:pdf仅供学习使用,一切版权归原创公众号所有;建议持续关注原创公众号获取最新文章,学习愉快!