Deep Generative Models

Lecture 5

Roman Isachenko

2024, Spring

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables, t unobserved variables (latent variables/parameters);
- $p(\mathbf{x}|\mathbf{t})$ likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- $ightharpoonup p(\mathbf{t})$ prior distribution, $p(\mathbf{t}|\mathbf{x})$ posterior distribution.

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

ELBO derivation 1 (inequality)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}(q, \boldsymbol{\theta})$$

ELBO derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \\ = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}(q,\boldsymbol{\theta}).$$

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{a},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}) \equiv rg \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta})).$$

EM-algorithm

► E-step

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \arg\min_{q} \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}^*));$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Amortized variational inference

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}_k, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Data dequantization
- 4. Normalizing flows as VAE model
- 5. ELBO surgery

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Data dequantization
- 4. Normalizing flows as VAE mode
- ELBO surgery

ELBO gradients, (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

The variational posterior $q(\mathbf{z}|\mathbf{x},\phi)$ assigns typically more probability mass in a smaller region than the prior $p(\mathbf{z})$. image credit: https://jmtomczak.github.io/blog/4/4_VAE.html

ELBO gradients, (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \theta)$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

$$\neq \int q(\mathbf{z}|\mathbf{x}, \phi) \nabla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

Reparametrization trick (LOTUS trick)

$$r(x) = \mathcal{N}(x|0,1), y = \sigma \cdot x + \mu, p_Y(y|\theta) = \mathcal{N}(y|\mu,\sigma^2), \theta = [\mu,\sigma].$$

$$m{\epsilon}^* \sim r(m{\epsilon}), \quad \mathbf{z} = g_{m{\phi}}(\mathbf{x}, m{\epsilon}), \quad \mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, m{\phi})$$

$$egin{aligned}
abla_{\phi} \int q(\mathbf{z}|\mathbf{x},\phi) f(\mathbf{z}) d\mathbf{z} &=
abla_{\phi} \int r(\epsilon) f(\mathbf{z}) d\epsilon \\ &= \int r(\epsilon)
abla_{\phi} f(g_{\phi}(\mathbf{x},\epsilon)) d\epsilon pprox
abla_{\phi} f(g_{\phi}(\mathbf{x},\epsilon^*)) \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi}\mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon^{*}), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(\mathbf{0}, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g_{\phi}(\mathbf{x}, \epsilon) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot)$, $\sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- p(z) prior distribution on latent variables z. We could specify any distribution that we want. Let say $p(z) = \mathcal{N}(0, \mathbf{I})$.
- $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Data dequantization
- 4. Normalizing flows as VAE mode
- ELBO surgery

Generative models zoo

Variational autoencoder (VAE)

Final EM-algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \quad \mathbf{z}^* = g(\mathbf{x}, oldsymbol{\epsilon}^*, oldsymbol{\phi});$$
 $\mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{\phi}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)).$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon^*), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})); \\
\nabla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- VAE learns stochastic mapping between **x**-space, from complicated distribution $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Data dequantization
- 4. Normalizing flows as VAE mode
- 5. ELBO surgery

Discrete data vs continuous model

Let our data \mathbf{y} comes from discrete distribution $\Pi(\mathbf{y})$ and we have continuous model $p(\mathbf{x}|\theta) = \mathsf{NN}(\mathbf{x},\theta)$.

- ▶ Images (and not only images) are discrete data, pixels lie in the integer domain ({0, 255}).
- By fitting a continuous density model $p(\mathbf{x}|\theta)$ to discrete data $\Pi(\mathbf{y})$, one can produce a degenerate solution with all probability mass on discrete values.

Discrete model

- ▶ Use **discrete** model (e.x. $P(\mathbf{y}|\theta) = \mathsf{Cat}(\pi(\theta))$).
- ▶ Minimize any suitable divergence measure $D(\Pi, P)$.
- ► NF works only with continuous data **x** (there are discrete NF, see papers below).
- ▶ If pixel value is not presented in the train data, it won't be predicted.

Discrete data vs continuous model

Continuous model

- Use **continuous** model (e.x. $p(\mathbf{x}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{x}), \sigma_{\theta}^2(\mathbf{x}))$), but
 - **discretize** model (make the model outputs discrete): transform $p(\mathbf{x}|\theta)$ to $P(\mathbf{y}|\theta)$;
 - **dequantize** data (make the data continuous): transform $\Pi(y)$ to $\pi(x)$.
- Continuous distribution knows numerical relationships.

CIFAR-10 pixel values distribution

Uniform dequantization

Let dequantize discrete distribution $\Pi(\mathbf{y})$ to continuous distribution $\pi(\mathbf{x})$ in the following way: $\mathbf{x} = \mathbf{y} + \mathbf{u}$, where $\mathbf{u} \sim U[0,1]$.

Theorem

Fitting continuous model $p(\mathbf{x}|\boldsymbol{\theta})$ on uniformly dequantized data is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{y}|\boldsymbol{\theta}) = \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

Proof

$$\begin{split} \mathbb{E}_{\pi} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \int \pi(\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x} = \sum \Pi(\mathbf{y}) \int_{U[0,1]} \log p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \leq \\ &\leq \sum \Pi(\mathbf{y}) \log \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} = \\ &= \sum \Pi(\mathbf{y}) \log P(\mathbf{y}|\boldsymbol{\theta}) = \mathbb{E}_{\Pi} \log P(\mathbf{y}|\boldsymbol{\theta}). \end{split}$$

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Data dequantization
- 4. Normalizing flows as VAE model
- ELBO surgery

VAE vs Normalizing flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
	stochastic	deterministic $\mathbf{z} = f_{m{ heta}}(\mathbf{x})$
Encoder	$z \sim q(z x,\phi)$	$q(\mathbf{z} \mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - f_{\boldsymbol{\theta}}(\mathbf{x}))$
		deterministic
	stochastic	$x = g_{m{ heta}}(z)$
Decoder	$\mathbf{x} \sim p(\mathbf{x} \mathbf{z}, oldsymbol{ heta})$	$p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - g_{\boldsymbol{\theta}}(\mathbf{z}))$
Parameters	$oldsymbol{\phi},oldsymbol{ heta}$	$oldsymbol{ heta} \equiv oldsymbol{\phi}$

Theorem

MLE for normalizing flow is equivalent to maximization of ELBO for VAE model with deterministic encoder and decoder:

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - f^{-1}(\mathbf{z}, \boldsymbol{\theta})) = \delta(\mathbf{x} - g_{\boldsymbol{\theta}}(\mathbf{z}));$$

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \rho(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - f_{\boldsymbol{\theta}}(\mathbf{x})).$$

Nielsen D., et al. SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. 2020

Normalizing flow as VAE

Proof

1. Dirac delta function property

$$\mathbb{E}_{\delta(\mathbf{x}-\mathbf{y})}f(\mathbf{x}) = \int \delta(\mathbf{x}-\mathbf{y})f(\mathbf{x})d\mathbf{x} = f(\mathbf{y}).$$

2. CoV theorem and Bayes theorem:

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z})|\det(\mathbf{J}_f)|;$$

$$p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}) = \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})}{p(\mathbf{x}|\boldsymbol{\theta})}; \quad \Rightarrow \quad p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_f)|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))}{\mathcal{L}(\boldsymbol{\theta})} = \mathcal{L}(\boldsymbol{\theta}).$$

Normalizing flow as VAE

Proof

ELBO objective:

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - \log \frac{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{p(\mathbf{z})} \right]$$
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} + \log p(\mathbf{z}) \right].$$

1. Dirac delta function property:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log p(\mathbf{z}) = \int \delta(\mathbf{z} - f_{\boldsymbol{\theta}}(\mathbf{x}))\log p(\mathbf{z})d\mathbf{z} = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})).$$

2. CoV theorem and Bayes theorem:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log\frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log\frac{p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_f)|}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} = \log|\det\mathbf{J}_f|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det \mathbf{J}_f|.$$

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Data dequantization
- 4. Normalizing flows as VAE model
- 5. ELBO surgery

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\boldsymbol{\theta}) = \frac{1}{n}\sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})}\log p(\mathbf{x}_{i}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z}))\right].$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x},\mathbf{z}];$$

- $ightharpoonup q_{agg}(z) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i) aggregated$ posterior distribution.
- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x})$.
- First term pushes $q_{agg}(z)$ towards the prior p(z).
- Second term reduces the amount of information about x stored in z.

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}].$$

Proof

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n} \textit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n}\sum_{i=1}^{n}\int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})}d\mathbf{z} = \\ &= \frac{1}{n}\sum_{i=1}^{n}\int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\text{agg}}(\mathbf{z})q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})q_{\text{agg}}(\mathbf{z})}d\mathbf{z} = \int \frac{1}{n}\sum_{i=1}^{n}q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\text{agg}}(\mathbf{z})}{p(\mathbf{z})}d\mathbf{z} + \\ &+ \frac{1}{n}\sum_{i=1}^{n}\int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q(\mathbf{z}|\mathbf{x}_{i})}{q_{\text{agg}}(\mathbf{z})}d\mathbf{z} = \textit{KL}(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n}\sum_{i=1}^{n}\textit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||q_{\text{agg}}(\mathbf{z})) \end{split}$$

Without proof:

$$\mathbb{I}_q[\mathbf{x},\mathbf{z}] = \frac{1}{n} \sum_{i=1}^n KL(q(\mathbf{z}|\mathbf{x}_i)||q_{\text{agg}}(\mathbf{z})) \in [0,\log n].$$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

ELBO surgery

ELBO revisiting

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) \right] =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Prior distribution p(z) is only in the last term.

Optimal VAE prior

$$KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior $p(\mathbf{z})$ is the aggregated posterior $q_{agg}(\mathbf{z})$!

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

Variational posterior

ELBO decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

- ho $q(\mathbf{z}|\mathbf{x},\phi) = \mathcal{N}(\mathbf{z}|\mu_{\phi}(\mathbf{x}),\sigma_{\phi}^{2}(\mathbf{x}))$ is a unimodal distribution.
- ▶ The optimal prior p(z) is the aggregated posterior $q_{agg}(z)$.

It is widely believed that mismatch between p(z) and $q_{agg}(z)$ is the main reason of blurry images of VAE.

Rezende D. J., Mohamed S. Variational Inference with Normalizing Flows, 2015

Summary

- Amortized variational inference allows to efficiently compute the stochastic gradients for ELBO using Monte-Carlo estimation.
- The reparametrization trick gets unbiased gradients w.r.t to the variational posterior distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- ► The VAE model is an LVM with two neural network: stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- Lots of data are discrete. We able to discretize the model or to dequantize our data to use continuous model.
- Uniform dequantization helps to make discrete data continuous. It gives us lower bound on the log-likelihood.
- ▶ NF models could be treated as VAE model with deterministic encoder and decoder.
- ▶ The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated posterior. It is widely believed that mismatch between $p(\mathbf{z})$ and $q_{\text{agg}}(\mathbf{z})$ is the main reason of blurry images of VAE.