ऊंचाई एवं दूरी

प्रकार-1

उन्नयन/अवनमन कोण ज्ञात करना

- 1. यदि किसी उर्भ्वाधर खंभे की छाया खंभे की ऊंचाई से $\sqrt{3}$ गुणा हो, तो सूर्य का उन्नयन कोण कितने डिग्री का होगा?
 - (a) 60^0
- (b) 45^0
- (c) 30^0
- (d) 90^0

S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 30 सितंबर, 2016(III-पाती) उत्तर—(c)

व्याख्या— माना कि खंभा (AB), खंभे की छाया (BC) तथा उन्नयन कोण θहै।

प्रश्नानुसार खंभे की छाया = $\sqrt{3}$ × खंभे की ऊंचाई

$$BC = \sqrt{3} AB \dots (i)$$

समकोण ΔABC में

$$\tan \theta = \frac{AB}{BC}$$

या $\tan \theta = \tan 30^{\circ}$

 $\theta = 30^{\circ}$

- 2. सूर्य का उन्नयन कोण उस समय कितने अंश का होता है जब खंभे की छाया की लंबाई उसकी ऊंचाई के बराबर होती है?

 (a) 60^0 (b) 30^0 (c) 45^0 (d) 90^0
 - S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2015 -(c)

- 3. यदि कोई खंभा 12 मी. ऊंचा है और उसकी पृथ्वी पर $4\sqrt{3}$ मी. लंबी परछाईं पड़ती है, तो उस समय सूर्य के उन्नयन का कोण इताएं।
 - (a) 30°
- (b) 60°
- (c) 45°
- (d) 90°

S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2014 उत्तर-(b)

- किसी मीनार की परछाई की लंबाई मीनार की लंबाई से √3 गुना
 है। सूर्य का उन्नयन कोण ज्ञात कीजिए।
 - (a) 45^0
- (b) 30^0
- (c) 60^{0}
- (d) इनमें से कोई नहीं

S.S.C. C.P.O. परीक्षा, 2015

S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2015 S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 8 सितंबर, 2016 (II-पाती) उत्तर—(b)

- 5. किसी मीनार की ऊंचाई 50 √3 मीटर है। मीनार के आधार से 50 मीटर की दूरी पर उन्नयन कोण क्या होगा?
 - (a) 30^0
- (b) 45^0
- (c) 60^0
- (d) 90^0

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 2 सितंबर, 2016 (I-पाती) उत्तर—(c)

- 6. जिस समय 15 मीटर लंबे खंभे कि छाया $\frac{15}{\sqrt{3}}$ मीटर हो, उस समय सूर्य का कोणीय उन्नयन ज्ञात कीजिए।
 - (a) 45^0
- (b) 60^0
- (c) 30^0
- (d) 90^0

S.S.C. ऑमलाइन स्नातक स्तरीय (T-I) 1 सितंबर, 2016(III-पाती) उत्तर—(b)

- 7. यदि एक उदग्र मीनार के साये की लंबाई उसकी ऊंचाई का
 - $\frac{1}{\sqrt{3}}$ गुणा है, तो सूर्य का उन्नयन कोण है-
 - (a) 30°
- (b) 45°
- $(c)60^{\circ}$
- (d) 90°

S.S.C. संयुक्त स्नातक स्तरीय (Tier-II) परीक्षा, 2011

उत्तर—(c)

व्याख्या— माना मीनार की ऊंचाई x है।

 \therefore परछांई की लम्बाई $=\frac{x}{\sqrt{3}}$

उन्नयन कोण $=\alpha^{\circ}$

$$\therefore \tan \alpha = \frac{AB}{BC}$$

$$\tan\alpha = \frac{x}{x/\sqrt{3}}$$

 $\tan\alpha = \sqrt{3}$

 $\therefore \tan \alpha = \tan 60^{\circ}$

 $\therefore \alpha = 60^{\circ}$

<u>प्रकार-2</u>

पर्वत/टॉवर/वृक्ष की ऊंचाई ज्ञात करना

- 8. एक मीनार, मैदान से ऊपर स्थित बिंदु P से टूट गयी है। मीनार का ऊपरी सिरा बिंदु Q पर मैदान के साथ 60° का कोण बनाता है। बिंदु Q के विपरीत दिशा में स्थित बिंदु R से बिंदु P का उन्नयन कोण 30° है। यदि QR = 180 मीटर है, तो मीनार की कुल ऊंबाई (मीटर में) कितनी है?
 - (a) 90
- (b) $45\sqrt{3}$
- (c) $45(\sqrt{3}+1)$
- (d) $45(\sqrt{3}+2)$
- S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 8 अगस्त, 2017 (III-पाती) S.S.C. संयुक्त स्नातक स्तरीय (Tier-II) परीक्षा, 2014 S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2014

उत्तर—(d)

$$\tan 30^{\circ} = \frac{PS}{x}$$

$$\frac{1}{\sqrt{3}}x = PS \qquad \dots(ii)$$

समी. (i) व (ii) की तुलना करने पर

$$\frac{1}{\sqrt{3}}x = \sqrt{3}(180 - x)$$
$$x = 540 - 3x$$
$$x = \frac{540}{4} \Rightarrow 135 \text{ fb}.$$

∴ QS = 180 – 135 ⇒ 45 मी.

तथा RS = 135 मी.

समी. (i) में x का मान रखने पर

$$PS = \sqrt{3}(180 - 135)$$

$$PS = 45\sqrt{3}$$

PT = PQ

....(iii)

∴ ΔPQS Ť

$$\sin 60^{\circ} = \frac{PS}{PQ}$$

$$\frac{\sqrt{3}}{2} = \frac{45\sqrt{3}}{PQ}$$

$$PQ = 90$$
 मी.

$$\therefore$$
 ST = PT + PS [जहां PT = PQ से]
ST = 90 + 45 $\sqrt{3}$

$$ST = 45(2 + \sqrt{3})$$

अतः मीनार की ऊंचाई $45(\sqrt{3}+2)$ मीटर है।

- किसी मीनार के आधार से 40 मीटर की दूरी पर, एक बिंदु से, मीनार के शीर्ष भाग का उन्नयन कोण 60⁰ है। मीनार की ऊंचाई बताइए।
 - (a) $4\sqrt{3}$
- (b) 20 √3 सेमी.
- (c) 40 √3 मीटर
- (d) $40 \sqrt{2}$ ਸੀਟਵ
- S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 27 अगस्त, 2016 (I-पाती)
 S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2015
 S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2015
 S.S.C. ऑनलाइन C.P.O. 1, 7 जुलाई, 2017 (II-पाती)

उत्तर—(c)

व्याख्या— माना कि AB एक मीनार है। जिसके आधार B से 40 मीटर की दूरी C से मीनार के शीर्ष का उन्नयन कोण 60^{0} है।

$$\tan 60^0 = \frac{AB}{BC}$$

या
$$\sqrt{3} = \frac{AB}{40}$$

$$AB = 40 \sqrt{3}$$
 मीटर

- 10. जमीनी तल पर खड़ी चट्टान के पाद से 129 मीटर पर खड़ी चट्टान के शीर्ष का उन्नयन कोण 30⁰ है, तो उस चट्टान की ऊंचाई कितनी है?
 - (a) $50\sqrt{3}$ मीटर
- (b) $45\sqrt{3}$ मीटर
- (c) 43 √3 मीटर
- (d) $47\sqrt{3}$ मीटर

S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 29 अगस्त, 2016 (I-पाती) उत्तर—(c)

व्याख्या—माना कि AB चट्टान है। जिसके पाद B से 129 मीटर दूर C से शीर्ष का उन्नयन कोण 30^{0} है।

43 KI— •

या
$$\sqrt{3}$$
 AB = 129

या AB =
$$\frac{129}{\sqrt{3}}$$

$$= \frac{129 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} \implies 43 \sqrt{3} \text{ मीटर}$$

 किसी समतल भूमि पर बिंदु P से मीनार के शीर्ष पर उन्नयन का कोण 30⁰ है। यदि मीनार 100 मीटर ऊंची हो, तो मीनार के तल से बिंदु P की दूरी क्या होगी?

(यह मानते हुए कि $\sqrt{3}$ =1.73)

- (a) 149 मीटर
- (b) 156 मीटर
- (c) 173 मीटर
- (d) 188 मीटर

S.S.C. F.C.I. परीक्षा, 2012

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2013,2014,2015 S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 3 सितंबर, 2016 (II-पाली) उत्तर—(c)

व्याख्या— माना कि मीनार की ऊंचाई QR है। प्रश्नानुसार \angle RPQ = 30^0 और QR = 100 मीटर वित्र से $\tan 30^0 = \frac{QR}{PQ}$ ्या $\frac{1}{\sqrt{3}} = \frac{100}{PQ}$ $\frac{Q}{\sqrt{3}}$ $\frac{1}{\sqrt{3}} = 100 \times 1.73 \Rightarrow 173$ मीटर

12. किसी प्रकाश स्तंभ के शीर्ष में दो पोतों के अवनमन कोण पूर्व की ओर 45^0 और 30^0 हैं। यदि पोत परस्पर 200 मीटर की दूरी पर हो, तो प्रकाश स्तंभ की ऊंचाई बताइए। (यह मानते हुए कि

$$\sqrt{3} = 1.73$$
)

- (a) 273 मीटर
- (b) 270 मीटर
- (c) 253 मीटर
- (d) 263 मीटर

S.S.C. ऑमलाइन स्नातक स्तरीय (T-I) 31 अगस्त, 2016(III-पाती) उत्तर—(a)

व्याख्या— प्रश्नानुसार चित्र बनाने पर AB प्रकाश स्तंभ है।

$$\frac{AB}{BC}$$
 = tan 450

या
$$\frac{AB}{BC} = 1$$

$$\tan 30^0 = \frac{AB}{BD}$$

ਧਾ BD =
$$\frac{AB}{\tan 30^0} = \frac{AB}{\frac{1}{\sqrt{3}}} = \sqrt{3}AB.....(ii)$$

या
$$AB = \sqrt{3} AB - CD$$

या
$$\frac{\text{CD}}{(\sqrt{3}-1)} = \text{AB}$$

या
$$\frac{200}{(\sqrt{3}-1)} = AB$$
 (दिया है $CD = 200$ मीटर)

या AB =
$$\frac{200(\sqrt{3}+1)}{(\sqrt{3})^2-1} = \frac{200(1.73+1)}{2}$$

= $100 \times 2.73 = 273$ मीटर

हल इस तरह भी देखें

माना प्रकाश स्तंभ की ऊंचाई = AB मीटर, प्रकाश स्तंभ के अवनमन कोण \angle EAC एवं \angle EAD क्रमशः 45^0 एवं 30^0 हैं तथा CD=200 मीटर

प्रश्नानुसार

समकोण AABC में

$$\tan 45^0 = \frac{AB}{BC} \text{ an } 1 = \frac{AB}{BC}$$

या AB = BC(i)

एवं समकोण ΔABD में

$$\tan 30^0 = \frac{AB}{BD} \text{ at } \frac{1}{\sqrt{3}} = \frac{AB}{BD}$$

या BD = AB $\sqrt{3}$ या DC + BC = AB $\sqrt{3}$

या AB
$$\sqrt{3}$$
 - AB = 200 या AB ($\sqrt{3}$ - 1) = 200

या AB =
$$\frac{200}{(\sqrt{3}-1)}$$
 या AB = $\frac{200(\sqrt{3}+1)}{(3-1)}$

या AB =
$$\frac{200(\sqrt{3}+1)}{2}$$
 या AB = $100(1.732+1)$

या $AB = 100 \times 2.732 = 273$ मीटर

अतः प्रकाश स्तंभ की ऊंचाई (AB) = 273 मीटर होगी

- 13. एक क्षैतिज तल पर खड़ी हुई मीनार अपने मूल आधार (पाद) से 160 मीटर दूर के एक बिंदु से एक निश्चित कोण बनाती है। उस बिंदु को 100 मीटर आधार की ओर ले जाने पर मीनार से बना कोण पहले का दोगुना हो जाता है। तदनुसार, उस मीनार की ऊंचाई कितनी है?
 - (a) 80 मीटर
- (b) 100 ਸੀਟ**ਦ**
- (c) 160 मीटर
- (d) 200 ਸੀਟ**ਵ**

S.S.C. संयुक्त स्नातक स्तरीय (Tier-II) परीक्षा, 2013 S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2015 S.S.C. C.P.O. परीक्षा, 2015

उत्तर—(a)

व्याख्या— माना मीनार AB है तथा मूल आधार से 160 मीटर दूर बिंदु से उन्नयन कोण α है। पुन: आधार की ओर 100 मीटर जाने पर उन्नयन कोण 2α हो जाता है।

$$\therefore$$
 चित्र से $\triangle ABC$ में $\frac{AB}{BC} = \tan \alpha$
$$\frac{AB}{160} = \tan \alpha$$

$$AB = 160 \tan \alpha \qquad(i)$$
 त्रिभुज $\triangle ABD$ से $\frac{AB}{BD} = \tan 2\alpha$
$$\frac{AB}{60} = \tan 2\alpha$$

$$\frac{AB}{C-100-D-60-B}$$

$$AB = 60 \times \frac{2\tan \alpha}{1 - \tan^2 \alpha} \qquad \dots (ii)$$

$$\left(\because \tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}\right)$$

समी. (i) और समी. (ii) से

$$160 \times \tan \alpha = \frac{120 \times \tan \alpha}{1 - \tan^2 \alpha}$$

$$160 = \frac{120}{1 - \tan^2 \alpha}$$

$$1 - \tan^2 \alpha = \frac{120}{160}$$

$$\tan^2 \alpha = 1 - \frac{120}{160}$$

$$\tan^2\alpha = \frac{40}{160} \Rightarrow \frac{1}{4}$$

$$\tan \alpha = \sqrt{\frac{1}{4}} \Rightarrow \frac{1}{2}$$

 $\tan \alpha$ का मान समी. (i) में मान रखने पर

$$AB = 160 \times \frac{1}{2} \implies 80$$
 मीटर

हल इस तरह भी देखें-

माना मीनार की ऊंचाई AB है तथा मूल आधार से 160 मीटर दूर बिन्दु से उन्नयन कोण αहै। पुनः आधार की ओर 100 मीटर जाने पर उन्नयन कोण 2α है।

tan α और tan 2α के आधारों का अनुपात

अत: tan α:tan 2α = 3:8 होगा

अत:

$$\frac{\tan\alpha}{\tan2\alpha} = \frac{3}{8}$$

$$\frac{\tan\alpha}{\frac{2\tan\alpha}{1-\tan^2\alpha}} = \frac{3}{8}$$

$$1 - \tan^2 \alpha = \frac{3}{4}$$

$$\tan^2\alpha = 1 - \frac{3}{4}$$

$$\tan^2\alpha = \frac{1}{4}$$

$$\tan \alpha = \frac{1}{2}$$

अतः मीनार की ऊंचाई $= BC \tan \alpha$

$$=160 imes rac{1}{2} \Rightarrow 80$$
 मीटर

- 14. एक टॉवर की छाया, जब सूर्य का उन्नतांश 45^0 होता है, 10मीटर लंबी होती है। उसी टॉवर की छाया से जब उन्नतांश 600 होता है, टॉवर की ऊंचाई कितनी है?
 - (a) $5(\sqrt{3}-1)$ मीटर
- (b) $5(\sqrt{3} + 1)$ मीटर
- (c) $10(\sqrt{3}-1)$ मीटर
- (d) $10(\sqrt{3} + 3)$ मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 11 सितंबर, 2016(II-पाती) उत्तर—(b)

व्याख्या— माना कि उन्नतांश 60^0 होने पर परछाई की लंबाई xमीटर है। अर्थात BC = x मीटर तथा

प्रश्नानुसार BD = (x + 10) मीटर

∴ समकोण ∆ABC में

$$\tan 60^0 = \frac{AB}{BC} = \frac{AB}{x}$$

या
$$\sqrt{3} = \frac{AB}{x}$$
 या $AB = x\sqrt{3}$ मीटर(i)

समकोण AABD में

$$\tan 45^0 = \frac{AB}{BD} = \frac{AB}{x+10}$$

या 1 =
$$\frac{AB}{x+10}$$

या
$$x + 10 = AB$$

या
$$x + 10 = \sqrt{3} x$$
 [समी. (i) से]

या
$$x(\sqrt{3}-1)=10$$

$$\text{UT } x = \frac{10}{\sqrt{3} - 1} = \frac{10(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$$

$$x = \frac{10(\sqrt{3}+1)}{(\sqrt{3})^2 - 1} = \frac{10(\sqrt{3}+1)}{3-1}$$

$$= \frac{10(\sqrt{3}+1)}{2} = 5(\sqrt{3}+1)$$
 मीटर

एक मीनार के पाद से x तथा y की दूरी पर दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक हैं। मीनर की ऊंचाई है-

(a)
$$\sqrt{\frac{x}{y}}$$

(b)
$$\sqrt{x+y}$$

(c)
$$\sqrt{x \ y}$$

(d)
$$\frac{x}{y}$$

S.S.C. C.P.O. परीक्षा, 2012

उत्तर—(c)

व्याख्या— माना मीनार AB है। तथा बिन्दु C से मीनार का उन्नयन कोण θ है।

∴ D से मीनार का उन्नयन कोण 90° – θ होगा।

$$\frac{h}{x} = \tan \theta \dots (i)$$

ΔADB में

$$\frac{h}{y} = \tan (90^{\circ} - \theta)$$

$$\frac{h}{v} = \text{Cot } \theta \dots (ii)$$

$$\therefore \tan \theta = \frac{y}{h}$$

 $\therefore \tan \theta = \frac{y}{h}$ उपरोक्त मान समी. (i) में रखने पर

$$\frac{h}{x} = \frac{y}{h}$$

$$h = \sqrt{x \ y}$$

- 16. एक पतंग की मांझा क्षैतिज सतह के साथ 60⁰ का कोण बनाता है। यदि मांझे की लंबाई 80 मीटर है, तो पतंग की ऊर्ध्वाधर ऊंचाई कितनी होगी?
 - (a) $\frac{40}{\sqrt{3}}$ मीटर
- (b) $80\sqrt{3}$ मीटर
- (c) 80
- (d) $40\sqrt{3}$ मीटर

S.S.C. ऑनलाइन स्नातक स्तरिय (T-I) 3 सितंबर, 2016 (I-पाती) उत्तर—(d)

- 17. एक सीधा पेड़ तूफान की वजह से टूट जाता है और टूटा भाग इस प्रकार झुक जाता है कि पेड़ का शीर्ष भाग भूमि पर 30⁰ का कोण बनाते हुए भूमि को स्पर्श करने लगता है। पेड़ के तल से उस बिंदु तक की दूरी जहां शीर्ष भाग भूमि को स्पर्श करता है, 10 मीटर है। पेड़ की कुल ऊंचाई ज्ञात कीजिए।
 - (a) $10\sqrt{3}$ मीटर
- (b) $\frac{10\sqrt{3}}{3}$ मीटर

(c) $10(\sqrt{3}+1)$ मीटर

(d) $10(\sqrt{3}-1)$ मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 30 अगस्त, 2016(II-पाती) S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2012 उत्तर—(a)

व्याख्या— माना AB एक वृक्ष है जो बिंदु C से टूट कर पृथ्वी से जा लगा है। प्रश्नानुसार $\tan 30^\circ = \frac{x}{10}$ $\frac{1}{\sqrt{3}} = \frac{x}{10}$ $\frac{1}{2} = \frac{x}{h-x}$ $\frac{1}{2} = \frac{x}{h-x}$ $\frac{1}{3x} = \frac{x}{10}$ $\frac{1}{3x} = \frac{x}{10$

- 18. एक टॉक्र के तल से 4 मीटर और 9 मीटर की दूरी पर एक सीधी रेखा पर दो बिंदुओं से टॉक्र के शीर्ष के उन्नयन कोण पूरक है। टॉक्र की ऊंचाई कितनी है?
 - (a) 4 मीटर
- (b) 7 मीटर
- (c) 9 मीटर
- (d) 6 मीटर

S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2013 S.S.C. ऑमलाइन स्नातक स्तरीय (T-I) 10 सितंबर, 2016(III-पाती) उत्तर—(d)

व्याख्या— माना कि टॉक्र AB है तथा भूतल पर स्थित दो बिंदु C और Dहैं।

माना $\angle ADB = \theta$ $\therefore \angle ACB = 90^{0} - \theta$ प्रश्नानुसार BC = 4 मीटर, BD = 9 मीटर \therefore समकोण $\triangle ABC$ में $\tan (90^{0} - \theta) = \frac{AB}{BC}$ $Cot\theta = \frac{AB}{4}$ या $AB = 4cot\theta$ (i)

पुनः समकोण $\triangle ADB$ में $\tan \theta = \frac{AB}{BD} = \frac{AB}{9}$ $AB = 9tan\theta$(ii)

समी. (i) और (ii) का गुणा करने पर
$$AB^2 = 4 \cot \theta$$
 .9 $\tan \theta$ $= 36$ $\therefore AB = \sqrt{36} \implies 6$ मीटर

- 19. कुछ ऊंचाई पर टूटे वृक्ष का ऊपरी भाग अपने पाद से 10 मीटर की दूरी पर जमीन के साथ 60^{0} का कोण बनाता है। वृक्ष की मूल लंबाई कितनी थी?
 - (a) 20 √3 मीटर
- (b) 10 √3 मीटर
- (c) $10(2 + \sqrt{3})$ मीटर
- (d) $10(2-\sqrt{3})$ मीटर

S.S.C. संयुक्त रनातक स्तरीय (Tier-I) परीक्षा, 2012 S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 9 सितंबर, 2016 (II-पाती) उत्तर—(c)

- 20. एक टेलीग्राफ खंभा जमीन के ऊपर एक बिंदु पर झुका हुआ है। उसका शीर्ष उसके पाद से $8\sqrt{3}$ मीटर की दूरी पर जमीन को स्पर्श करता है और क्षैतिज पर 30^0 का कोण बनाता है। खंभे की ऊंचाई कितनी (मीटर में) है?
 - (a) 12
- (b) 16
- (c) 18
- (d) 24

S.S.C. संयुक्त स्नातक स्तरीय (Tier-II) परीक्षा, 2015 S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 31 सितंबर, 2016(II-पाती) उत्तर—(d)

- **21.** यदि जमीनी तल से किसी खंभे के शीर्ष का उन्नयन कोण 30^{0} से बढ़ाकर 60° किया जाता है, तो $50\sqrt{3}$ ऊंचे खंभे की छाया की लंबाई कितनी घट जाएगी?
 - (a) 60 मीटर
- (b) 75 मीटर

= 24 मीटर

- (c) 100 मीटर
- (d) 50 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 2 सितंबर, 2016(III-पाती) उत्तर—(c)

- यदि एक सड़क की दो क्रमिक किलोमीटर-शिलाओं से एक गुबारे के उन्नयन कोण क्रमश: 30° तथा 60° हों, तो पृथ्वी-तल से उस गुब्बारे की ऊंचाई कितनी होगी?
 - (a) $\frac{\sqrt{3}}{2}$ किमी. (b) $\frac{1}{2}$ किमी.
 - (c) $\frac{2}{\sqrt{3}}$ किमी. (d) $3\sqrt{3}$ किमी.

S.S.C. F.C.I. परीक्षा, 2012 S.S.C. C.P.O. परीक्षा, 2011

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2011,2012,2013 उत्तर—(a)

व्याख्या— माना गुब्बारे की सड़क से ऊंचाई h है तथा दो क्रमिक शिलाएं C तथा D हैं।

पुन: त्रिभुज ABD में
$$\frac{h}{x+1} = \tan 30^{\circ}$$

$$\frac{h}{x+1} = \frac{1}{\sqrt{3}}$$

$$\sqrt{3}h = x + 1$$

$$\sqrt{3} \times x\sqrt{3} = x + 1 \ (समी. (i) स)$$

$$3x = x + 1$$

$$2x = 1$$

$$\therefore x = \frac{1}{2}$$

समी. (i) में x का मान रखने पर $h = \frac{\sqrt{3}}{2}$ किमी.

हल इस तरह भी देखें-

माना गुब्बारे की सड़क से ऊंचाई h है तथा दो क्रमिक शिलाएं C तथा D हैं।

चित्र से

$$\tan 30^{\circ} : \tan 60^{\circ} = \frac{1}{\sqrt{3}} : \sqrt{3}$$

= 1 : 3

tan 30°: tan 60° = 1:3, अतः tan 30° के आधार तथा tan 60° के आधार में 3:1 का अनुपात होगा।

$$\frac{\text{BD}}{\text{BC}} = \frac{3}{1}$$

$$\frac{x+1}{x} = \frac{3}{1}$$

$$x + 1 = 3x$$

$$2x = 1 \implies x = \frac{1}{2}$$

 $\triangle ABC + \angle B = 90^{\circ}$

 $h = \tan 30^{\circ} \times BD$

$$= \frac{1}{\sqrt{3}} \times \left(1 + \frac{1}{2}\right) = \frac{1}{\sqrt{3}} \times \frac{3}{2} = \frac{\sqrt{3}}{2}$$
 किमी.

- 23. जमीन पर और खंभे के पाद से होकर ऋजु रेखा पर पड़े दो बिंदुओं से खंभे के शीर्ष के उन्नयन कोण एक-दूसरे के पूरक हैं। यदि खंभे के पांव से दोनों बिंदुओं की दूरी 12 मीटर और 27 मीटर है और दोनों बिंदु खंभे की समान भुजा पर पड़ते हैं, तो खंभे की लंबाई (मीटर मे) कितनी होगी?
 - (a) 12
- (c) 15
- (d) 16

S.S.C. C.P.O. परीक्षा, 2015

व्याख्या— माना खंभे की लंबाई AB है।

- कोण एक-दूसरे के पूरक हैं।
- ∴ ∆ABC में

$$\frac{AB}{BC} = tan\theta$$

- $\therefore AB = 27 \tan \theta \dots (i)$
- ∴ पुनः ∆ABD में

$$\frac{AB}{12} = \tan(90^{\circ} - \theta)$$

$$\frac{AB}{12} = \cot \theta$$

$$AB = 12 \cot \theta$$
.....(ii)

समी. (i) और समी. (ii) को गूणा करने पर

AB. AB = 27 $\tan \theta$. 12 $\cot \theta$

$$=27 \times 12 \times \tan \theta \cdot \cot \theta$$

$$AB^2 = 324 \times 1$$

$$AB^2 = 324 \times 1 \qquad (\because \tan \theta \cdot \cot \theta = 1)$$

$$=18^{2}$$

AB = 18 ਸੀਟ**र**

हल इस तरह भी देखें-

माना खंभे की लंबाई AB है।

tan θ : tan (90° – θ) का अनुपात 12 : 27 होगा।

$$\frac{\tan\theta}{\tan(90^\circ - \theta)} = \frac{12}{27}$$

$$\tan^2\theta = \frac{12}{27}$$

$$tan\theta = \sqrt{\frac{12}{27}}$$

$$=\frac{2}{3}\sqrt{\frac{3}{3}}=\frac{2}{3}$$

$$\begin{array}{c}
C \longleftrightarrow B \\
\hline
0 & 27
\end{array}$$

अब ∆ABC से

$$AB = BC \tan \theta$$

$$=27 \times \frac{2}{3} \Rightarrow 18$$
 मीटर

- 24. एक टॉक्र के तल से 25 मीटर और 64 मीटर की दूरी पर (विपरीत दिशाओं में) दो क्षैतिज बिंदुओं से टॉवर के शीर्ष पर उन्नयन कोण क्रमशः x और $90^0 - x$ हैं। टॉवर की ऊंचाई कितनी होगी?
 - (a) 39 मीटर
- (b) 89 मीटर
- (c) 1.6 मीटर
- (d) 40 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 1 सितंबर, 2016 (II-पाती)

उत्तर—(d)

व्याख्या— माना कि टॉवर की ऊंचाई AB है।

प्रश्नानुसार

$$\angle ADB = x^0$$

$$\angle ACB = (90 - x)^0$$

BC = 25 मीटर

BD = 64 मीटर

वित्र से- ΔABC में

$$\tan (90 - x)^0 = \frac{AB}{BC} = \frac{AB}{25}$$

या Cot
$$x^0 = \frac{AB}{25}$$

या AB= 25 Cotx⁰(i)

पुनः AADB में

$$\tan x = \frac{AB}{BD} = \frac{AB}{64} \qquad B = \frac{AB}{AB}$$

$$AB = 64 \tan x$$
.....(ii)

समी. (i) और (ii) का गुणा करने पर-

$$AB^2 = 25 \cot x^0 .64 \tan x^0$$

$$= 25 \times 64$$

$$\therefore AB = \sqrt{25 \times 64} = 5 \times 8$$

हल इस तरह भी देखें-

माना कि टॉवर की ऊंचाई AB है।

प्रश्नानुसार

$$AC = 25$$
 मीटर, $\angle ACB = x^0$

तथा AD =64 मीटर, \angle ADB=(90 0 - x^{0})

∴समकोण ∆BAC में

$$\tan x^0 = \frac{AB}{AC} = \frac{AB}{25}$$
 मीटर(i)

एवं समकोण ΔBAD में

$$\tan (90^{\circ} - x^{\circ}) = \frac{AB}{AD} = \frac{AB}{64}$$

या
$$Cotx^0 = \frac{AB}{64}$$
(ii)

समी. (i) तथा समी. (ii) का गुणा करने पर-

$$(\tan x^0) \cdot (\cot x^0) = \left(\frac{AB}{25}\right) \times \left(\frac{AB}{64}\right)$$

$$1 = \frac{(AB)^2}{25 \times 64} \Rightarrow (AB)^2 = 25 \times 64$$

$$(AB)^2 = (5 \times 8)^2$$

∴ AB = 40 मीटर

25. एक पतंग भूमि से 75 मीटर की ऊंचाई पर उड़ रही है। उसकी डोरी भूमि के स्तर से θ का कोण बना रही है। (इसमें cot θ=

 $\frac{8}{15}$ है) मान लें कि डोरी में कोई ढील नहीं है, तो डोरी की लंबाई कितनी है?

- (a) 75 मी. (b)40 मी.
- (c) 65 申l.
- (d)85 मी.

75 मी.

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2015

उत्तर—(d)

व्याख्या— माना पतंग की डोरी AC है तथा ऊंचाई AB = 75 मीटर प्रश्नानुसार ΔABC में

$$\cot \theta = \frac{BC}{AB}$$

$$\therefore \frac{BC}{75} = \frac{8}{15}$$

$$BC = \frac{8 \times 75}{15} = 40$$
 मीटर

पुनः AABC में

$$AC^2 = AB^2 + BC^2$$

$$=75^2+40^2$$

$$= 5625 + 1600 \Rightarrow 7225$$

$$AC = \sqrt{7225} = 85$$
 मीटर

अतः पतंग की डोरी की लंबाई 85 मीटर है।

हल इस तरह भी देखें-

माना पतंग की डोरी AC है। तथा ऊंचाई AB = 75 मीटर है।

प्रश्नानुसार Δ ABC में

$$\sin \theta = \frac{75}{AC} \dots (i)$$

$$cot \theta = \frac{8}{15} \Rightarrow \cot^2 \theta = \frac{64}{225}$$

$$\cos ec^2\theta = 1 + \cot^2\theta = 1 + \frac{64}{225} = \frac{225 + 64}{225}$$

$$\csc^2\theta = \frac{289}{225}$$

$$\therefore \quad \cos \operatorname{ec} \theta = \frac{17}{15}$$

$$\therefore \sin \theta = \frac{15}{17} \dots (ii)$$

समी. (i) तथा (ii)

$$\frac{15}{17} = \frac{75}{AC} \Rightarrow AC = 17 \times 5 = 85 \text{ मी}.$$

अत: पतंग की डोरी की लंबाई (AC) = 85 मी.

- **26.** 1.6 मीटर लंबा एक प्रेक्षक किसी टॉवर से 45 मीटर दूर है। उसकी आंख से टॉवर के शीर्ष तक उन्नयन कोण 30^0 है। टॉवर की ऊंचाई कितने मीटर होगी? (माना $\sqrt{3} = 1.732$)
 - (a) 25.98
- (b) 26.58
- (c) 27.58
- (d) 27.98

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 7 सितंबर, 2016 (II-पाती) उत्तर—(c)

- 27. जमीन से ऊपर ऊर्ध्वाधर उड़ रहे विमान का उन्नयन कोण आपस में 1 किमी. की दूरी पर स्थित दो क्रमिक पत्थरों से रखे जाने पर 45⁰ और 60⁰ है। जमीन से विमान की ऊंचाई कितनी है?
 - (a) $(\sqrt{3} + 1)$ **कि**मी. (b) $(\sqrt{3} + 3)$ **कि**मी.
- - (c) $\frac{1}{2}(\sqrt{3}+1)$ किमी. (d) $\frac{1}{2}(\sqrt{3}+3)$ किमी.

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 4 सितंबर, 2016 (II-पाती) उत्तर—(d)

AB =
$$\frac{\sqrt{3}}{(\sqrt{3}-1)}$$

या AB = $\frac{\sqrt{3}(\sqrt{3}+1)}{(\sqrt{3})^2 - 1}$
= $\frac{\sqrt{3}(\sqrt{3}+1)}{2} \Rightarrow \frac{3+\sqrt{3}}{2}$ या $\frac{1}{2}(\sqrt{3}+3)$ किमी.

- 28. एक भवन के शीर्ष के साथ एक पेड़ के शीर्ष एवं अधीभाग से उन्नयन कोण क्रमशः x तथा y हैं। तदनुसार यदि उस पेड़ की ऊंचाई h मीटर हो, तो उस भवन की ऊंचाई कितने मीटर है?
 - $\cot x + \cot y$
- hcot v (b) $\overline{\cot x} + \cot y$
- (c) $\frac{h\cot x}{\cot x \cot y}$
- (d) $\frac{h\cot y}{\cot x \cot y}$

S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2011 उत्तर—(c)

- 29. एक व्यक्ति जिसका कद 6 फीट है $\frac{26}{3}$ फीट ऊंचे वृक्ष से फल तोड़ना चाहता है। यदि व्यक्ति वृक्ष के तने के आधार से $\frac{\circ}{\sqrt{3}}$ फीट दूरी पर खड़ा है, तो उसे किस कोण पर पत्थर फेंकना चाहिए जिससे वह फल पर जाकर लगे?
 - (a) 15^0

- (d) 45^0

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2015

व्याख्या— प्रश्नानुसार चित्र बनाने पर
व्यक्ति CE तथा वृक्ष AB एवं फेंका गया कोण θ है। $\therefore \Delta ADE \ddot{\eta}$ AD = AB - BD $= \frac{26}{3} - 6 \quad (\because BD = CE)$ $\frac{26 - 18}{3} = \frac{8}{3}$ $AD = BC = \frac{8}{\sqrt{3}}$ $AD = BC = \frac{8}{\sqrt{3}}$ AD = AB - BD $= \frac{26 - 18}{3} = \frac{8}{3}$ $AD = BC = \frac{8}{\sqrt{3}}$ $AD = BC = \frac{8}{\sqrt{3}}$ $AD = BC = \frac{8}{\sqrt{3}}$ $\tan \theta = \frac{AD}{DE} = \tan \theta \Rightarrow \frac{8}{\sqrt{3}}$ $\tan \theta = \frac{1}{\sqrt{3}}$ $\tan \theta = \tan 30^{0}$ $\theta = 30^{0}$ $3G: पत्थर 30^{0}$ के कोण पर फेंका जाना चाहिए।

- 30. 60 मीटर ऊंची इमारत के शीर्ष से, एक टॉवर के शीर्ष एवं पाद के अवनित कोण 30⁰ और 60⁰ दिखाई देते हैं। टॉवर की ऊंचाई (मीटर में) कितनी होगी?
 - (a) 40
- (b) 45
- (c) 50
- (d) 55
- S.S.C. ऑनताइन स्नातक स्तरीय (T-1) 7,6 सितंबर, 2016 (III-पली) S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 6 सितंबर, 2016 (I-पाती) S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2014 उत्तर—(a)

व्याख्या— माना कि AB मीनार और CD टॉवर है।

∴ ∆ADEŤ

tan
$$30^0 = \frac{AE}{DE} = \frac{AE}{BC} [\therefore BC = DE]$$

या
$$\frac{1}{\sqrt{3}} = \frac{AE}{BC}$$

या AE =
$$\frac{BC}{\sqrt{3}}$$
.....(i)

पुनः समकोण ΔABC में

$$tan 60^0 = \frac{AB}{BC}$$

या AB = BC $\tan 60^0 = BC\sqrt{3}$

∴ या BC =
$$\frac{AB}{\sqrt{3}}$$

$$\therefore AE = \frac{BC}{\sqrt{3}} = \frac{AB}{\sqrt{3} \times \sqrt{3}}$$
 [समी. (i) से]

$$AE = \frac{AB}{3} = \frac{60}{3} = 20$$
 मीटर

∴ टॉवर CD की ऊंचाई = AB – AE

$$=60-20 \Rightarrow 40$$
 मीटर

- 31. किसी मैदान पर लंबवत स्थित ऊर्ध्वाधर मीनार के शीर्ष की ऊंचाई का कोण उसी मैदान के P बिंदु से 60° दिखाई देता है। P बिंदु से ऊर्ध्वाधर 10 मी. ऊपर Q बिंदु से मीनार के पाद की अवनित का कोण 30° है। मीनार की ऊंचाई कितनी है?
 - (a) 15 मीटर
- (b) 30 मीटर
- (c) 20 मीटर
- (d) 25 मीटर

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2014 S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2011

उत्तर—(b)

व्याख्या— प्रश्नानुसार चित्र बनाने पर

माना मीनार की ऊंचाई AB = h तथा BP = x है।

∴ ∆ ABP में

$$\frac{h}{r} = \tan 60^{\circ}$$

$$\frac{h}{-} = \sqrt{3}$$

$$\therefore \frac{h}{\sqrt{3}} = x \dots (i)$$

पुनः Δ PBQ में

$$\frac{PQ}{PB} = \tan 30^{\circ}$$

$$\frac{10}{x} = \frac{1}{\sqrt{3}}$$

$$\therefore x = 10\sqrt{3}$$
 (ii)

समी. (ii) से x का मान समी. (i) में रखने पर

$$\frac{h}{\sqrt{3}} = 10\sqrt{3}$$

$$h = 10\sqrt{3} \times \sqrt{3} = 30$$
 मीटर

- 32. एक 30 मीटर ऊंची इमारत के तल एवं शीर्ष से किसी मंदिर के शीर्ष भाग पर क्रमशः 60^0 और 30^0 का उन्नयन कोण बनता है। मंदिर की ऊंचाई बताइए।
 - (a) 50 मीटर
- (b) 43 मीटर
- (c) 40 मीटर
- (d) 45 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 1 सितंबर, 2016 (I-पाती)

व्याख्या— माना कि इमारत की ऊंचाई CD = 30 मीटर मंदिर की ऊंचाई = AB मीटर तथा CB = DE = x मीटर प्रश्नानुसार वित्र से स्पष्ट है कि $\angle ACB = 60^{\circ}, \angle ADE = 30^{\circ}$ $\triangle ADE = 30^{\circ}$ तथा $ADE = 30^{\circ$

या
$$\frac{1}{\sqrt{3}} = \frac{AE}{x}$$
 या $x = AE \sqrt{3}$ (i)

पुन: समकोण ΔABC में

$$\tan 60^0 = \frac{AB}{BC}$$
 या $\frac{\sqrt{3}}{1} = \frac{AE + BE}{x}$

या AE + 30 =
$$x \sqrt{3}$$

या AE +30 = (AE
$$\sqrt{3}$$
). ($\sqrt{3}$) [समी. (i) से]

या
$$2AE = 30$$

या $AE = \frac{30}{2}$

अतः मंदिर की ऊचाई (AB) = AE + BE

$$= 15 + 30 \Rightarrow 45$$
 मीटर

- 33. भूमि पर किसी स्थान पर एक मीनार है जिसके शीर्ष पर एक ध्वज का खंभा लगा है। मीनार के तल से 9 मीटर की दूरी पर किसी बिंदू पर ध्वज के खंभे के शीर्ष और तल के उन्नयन कोण क्रमशः 600 और 300 है। ध्वज के खंभे की ऊंचाई बताइए?
 - (a) $5\sqrt{3}$ मीटर
- (b) 6√3 मीटर
- (c) $6\sqrt{2}$ मीटर
- (d) 6 √5 मीटर
- S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 4 सितंबर, 2016 (III-पाती) S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2014

उत्तर—(b)

व्याख्या— माना कि AB मीनार है जिस पर AD ध्वज लगा है। जिसका शिखर D एवं तल A है, जो B से 9 मी. दूरी पर क्रमशः 60^{0} एवं 30^{0} का कोण बनाते हैं।

∴ समकोण ∆ABC में

$$\tan 30^0 = \frac{AB}{BC} = \frac{AB}{9} \qquad \text{If } \frac{1}{\sqrt{3}} = \frac{AB}{9}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{9}$$

या AB =
$$\frac{9}{\sqrt{3}}$$
(i)

तथा समकोण ΔDBC में

$$\tan 60^{\circ} = \frac{BD}{BC}$$

$$\sqrt{3} = \frac{BD}{9}$$

या BD =
$$9\sqrt{3}$$
(ii)

∴ ध्वज की ऊंचाई AD =BD - AB

$$= 9\sqrt{3} - \frac{9}{\sqrt{3}}$$

$$= 9\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right)$$

$$= 9 \left(\frac{3-1}{\sqrt{3}} \right) \Rightarrow \frac{18\sqrt{3}}{3}$$
$$= 6\sqrt{3} \text{ मीटर}$$

- 34. भूमि तल से एक भवन के शीर्ष तथा उसकी विमनी के शीर्ष के उन्नयन कोण क्रमशः x तथा 45° तथा उस भवन की ऊंचाई h मीटर है। तदनुसार चिमनी की ऊंचाई मीटर में कितनी होगी?
 - (a) $h \cot x + h$
- (b) $h \cot x h$
- (c) $h \tan x h$
- (d) $h \tan x + h$

S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2011 उत्तर-(b)

व्याख्या-माना AB भवन है जिसकी ऊंचाई h है तथा BC उस भवन पर विमनी है।

तब $\triangle ABD$ से-

$$\tan x = \frac{h}{AD}$$

$$AD = \frac{h}{\tan x} \dots (i)$$

∆ACD से

 \therefore BC = h cot x – h

अतः चिमनी की उजंचाई ($h \cot x - h$) मीटर है।

- जमीन पर P बिंदू से 10 मी. ऊंची इमारत के शीर्ष की ऊंचाई का कोण 30° है। इमारत के शीर्ष पर झंडा फहराया गया है और P से झंडा स्टाफ के शीर्ष की ऊंचाई का कोण 45° है। झंडा स्टाफ की लंबाई ज्ञात कीजिए। (मान लें $\sqrt{3}$ =1.732)
 - (a) $10(\sqrt{3} + 2)$ मी.
- (b) $10(\sqrt{3} + 1)$ मी.
- (c) $10\sqrt{3}$ 相.
- (d) 7.32 刊.

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2014

उत्तर—(d)

व्याख्या— माना झंडा स्टाफ की लंबाई BD = a मी.

त्रिभुज CPB में

$$\frac{PB}{CP} = \tan 30^{\circ}$$

$$\frac{10}{\text{CP}} = \frac{1}{\sqrt{3}}$$

$$CP = 10\sqrt{3}$$

ਤਾਰ
$$\Delta CPD$$
 ਸੇਂ
$$\frac{PB+BD}{CP} = \tan 45^{\circ}$$
$$\frac{10+BD}{10\sqrt{3}} = 1$$
$$10+BD=10\sqrt{3}$$
$$BD=10\sqrt{3}-10$$
$$=10(\sqrt{3}-1)$$
$$=10 \times (1.732-1)$$
$$=7.32 ਸੀਟਿਵ$$

प्रकार-3

दो वस्तुओं/व्यक्तियों के बीच दूरी

- **36.** एक नाव एक निश्चित चाल से $20\sqrt{3}$ मीटर की ऊंचाई वाले एक लाइट हाउस की तरफ जा रही है। लाइट हाउस के ऊपरी हिस्से से बना अवनमन कोण 10 सेकंड में 30° से 60° में परिवर्तित हो जाता है। अपने प्रारंभिक स्थान से लाइट हाउस तक पहुंचने में नाव के द्वारा लिया गया समय (सेकंड में) कितना 考?
 - (a) 10
- (b) 15
- (c) 20

समकोण AABD में,

(d) 60

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 16 अगस्त, 2017 (I-पाती) उत्तर—(b)

व्याख्या— माना नाव की चाल x मी./से. है। \therefore CD = 10x मी. (\because दूरी = चाल \times समय)

$$\tan 60^\circ = \frac{20\sqrt{3}}{BC}$$

$$60^\circ$$

$$20\sqrt{3}$$
 मी.

$$\frac{\sqrt{3}}{1} = \frac{20\sqrt{3}}{BD} \implies BD = 20 \text{ मी}.$$

समकोण AABC में,

$$\tan 30^{\circ} = \frac{20\sqrt{3}}{BC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{20\sqrt{3}}{10x + 20}$$

 $10x + 20 = 60 \implies x = 4$ मी./से.

∴ नाव द्वारा 60 मी. (10 ×4+20) दूरी तय करने में लगा समय

$$=\frac{60}{4} \Rightarrow 15$$
 सेकंड

- **37.** जब सूर्य का उन्नयन 30^{0} से बढ़ कर 60^{0} हो जाता है तब किसी 15 मीटर ऊंचे खंबे की परछाइयों की लंबाइयों में क्या अंतर होगा?
 - (a) 7.5 मीटर
- (b) 15 मीटर
- (c) 10 √3 मीटर
- (d) 5 √3 मीटर

S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 6 सितंबर, 2016 (II-पाती) S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2013

उत्तर—(c)

इसी प्रकार समकोण AABD में

$$\tan 30^0 = \frac{AB}{BD}$$

$$\frac{1}{\sqrt{3}} = \frac{15}{BD}$$

∴ परछाइयों की लंबाई में अंतर = BD - BC

$$= 15 \sqrt{3} - \frac{15}{\sqrt{3}}$$

$$= \frac{45 - 15}{\sqrt{3}} \Rightarrow \frac{30}{\sqrt{3}}$$

$$= 10 \sqrt{3} \text{ flick}$$

- 38. एक 75 मीटर ऊंचे खंभे के एक ओर खड़े दो व्यक्ति खंभे के शीर्ष का उन्नयन कोण क्रमशः 30^0 और 60^0 देखते हैं। दोनों व्यक्तियों के बीच दूरी कितनी है?
 - (a) 100 √3 मीटर
- (b) 100 मीटर
- (c) $\frac{75}{\sqrt{3}}$ मीटर (d) $25\sqrt{3}$ मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 3 सितंबर, 2016(III-पाती) S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2012 उत्तर-(*)

व्याख्या— माना कि खंभा AB है तथा C और D व्यक्ति हैं। प्रश्नानुसार

 $\angle ADB = 30^{\circ}$

 $\angle ACB = 60^{\circ}$ तथा AB = 75 मीटर

∴ ∆ABC में

$$\tan 60^0 = \frac{AB}{BC} = \frac{75}{BC}$$

$$\therefore \sqrt{3} = \frac{75}{BC}$$

BC =
$$\frac{75}{\sqrt{3}}$$
(i)

पुनः AABD में

$$\tan 30^0 = \frac{AB}{BD} \Rightarrow \frac{AB}{BC + CD}$$

$$\therefore \frac{1}{\sqrt{3}} = \frac{AB}{(BC + CD)} \Rightarrow \frac{75}{BC + CD}$$

या BC + CD = 75
$$\sqrt{3}$$

∴ CD = 75
$$\sqrt{3} - \frac{75}{\sqrt{3}}$$
 [समी. (i) से BC का मान रखने पर]

$$=\frac{225-75}{\sqrt{3}} \Rightarrow \frac{150}{\sqrt{3}}$$

$$CD = 50 \sqrt{3}$$
 मीटर

हल इस तरह भी देखें-

दिया है— खंभे की ऊंचाई (AB) = 75 मीटर

माना C और D व्यक्ति हैं।

प्रश्नानुसार

चित्र से

$$\angle ADB = \angle DAC = 30^0$$
 $\therefore AC = DC \dots (i)$
 $\angle ACB = 60^0$ तथा $AB = 75$ मीटर
समकोण $\triangle ABC$ में
$$\sin 60^0 = \frac{AB}{AC} \Rightarrow \frac{75}{AC}$$

$$\therefore \frac{\sqrt{3}}{2} = \frac{75}{AC} \text{ at } AC = \frac{75 \times 2}{\sqrt{3}}$$

या AC = 50 √3 मीटर

या $AC = CD = 50 \sqrt{3}$ मीटर [समी. (i) से]

- 39. एक टॉवर 50 मीटर ऊंचा है। जिस समय सूर्य का शीर्ष लंब 45^0 होता है। उस समय उसकी छाया उस समय की तुलना में जिस समय सूर्य का शीर्ष लंब 30^0 होता है, से x मीटर कम होती है। x का मान मीटर में कितना होगा?
 - (a) $50 \sqrt{3}$
 - (b) $50(\sqrt{3}-1)$
 - (c) $50(\sqrt{3}+1)$
 - (d) 50

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2014 S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2013,2014 S.S.C. ऑमलाइन स्नातक स्तरीय (T-I) 8 सितंबर, 2016 (I-पाती) S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2012

ਧਾ
$$1 = \frac{AB}{BC} \Rightarrow AB = BC \dots(i)$$

तथा समकोण ΔABD में

$$\tan 30^0 = \frac{AB}{BD}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{BD}$$

$$BD = \sqrt{3} AB \dots (ii)$$

$$\therefore BC = BD - CD$$

$$= BD - x$$

$$=\sqrt{3} AB - x$$
 [समी. (ii) से]

या AB =
$$\sqrt{3}$$
 AB – x [समी. (i) से]

$$x = (\sqrt{3} - 1)AB$$

=
$$50 (\sqrt{3} - 1) (∴ AB = 50 ਸੀਟਾ)$$

- **40.** समुद्र में दो पोत प्रकाश स्तंभ के दोनों ओर चले हैं। दोनो पोतों से देखने पर फ्रकाश स्तंभ के शिर्ष के उन्नयन कोण क्रमश्चः 30^0 और 45^0 हैं। यदि प्रकाश स्तंभ 100 मीटर ऊंचा हो, तो दोनों पोतों के बीब की दूरी बताइए। (यह मानते हुए कि $\sqrt{3}=1.73$)
 - (a) 173 मीटर
- (b) 200 मीटर
- (c) 273 मीटर
- (d) 300 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 29 अगस्त, 2016(III-पाती) उत्तर—(c)

- 41. एक प्रेक्षक समुद्र तल से 500 मीटर ऊपर एक पहाड़ी चोटी के शीर्ष से अपने समान दृष्टि क्षेत्र में दो नौकाओं का अवनित कोण क्रमश: 45⁰ और 30⁰ देखता है। यदि दोनों नौकाएं पहाड़ी की एक ही साइड में हैं, तो उनके बीच की दूरी कितनी होगी?
 - (a) 456 मीटर
 - (b) 584 मीटर
 - (c) 366 मीटर
 - (d) 699 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 30 सितंबर, 2016(III-पाती) उत्तर—(c)

tan
$$30^0 = \frac{AB}{BD}$$

या $\frac{1}{\sqrt{3}} = \frac{AB}{BD}$
या $BD = \sqrt{3}AB$
∴ $CD = BD - BC$
 $= \sqrt{3}AB - AB = (\sqrt{3} - 1)AB$ [समी. (i) से]
 $= (1.732 - 1) \times 500$
 $= .732 \times 500 \Rightarrow 366$ मीटर

- 42. 1500 मीटर ऊंचाई पर एक हेलीकॉप्टर देखता है कि दो पोत उसकी ओर उसी दिशा में चले आ रहे हैं। हेलीकॉप्टर से देखें जाने पर पोतों के अवनमन कोण क्रमश: 60⁰ और 30⁰ दिखाई देते हैं। दोनों पोतों के बीच की दूरी मीटर में बताइए।
 - (a) $1000\sqrt{3}$
- (b) $\frac{1000}{\sqrt{3}}$
- (c) $500\sqrt{3}$
- (d) $\frac{500}{\sqrt{3}} 500\sqrt{3}$

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 30 सितंबर, 2016(III-पाती) S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2012 उत्तर—(a)

व्याख्या— माना कि CD पोतों के बीच की दूरी है। समकोण $\triangle ABC$ में $\tan 60^0 = \frac{AB}{BC} \quad \text{या} \quad \sqrt{3} = \frac{AB}{BC}$ या $AB = BC\sqrt{3}$ $BC = \frac{AB}{\sqrt{3}} \dots \dots (i)$ $BC = \frac{AB}{\sqrt{3}} \dots (i)$ $BC = \frac{AB}{BD} = \tan 30^0$ $B = \frac{AB}{BD} = \frac{1}{\sqrt{3}}$ $BC = \frac{1}{\sqrt{3}} \dots (i)$

या BD = √3 AB(ii)

 \therefore CD = BD – BC = $\sqrt{3}$ AB – $\frac{AB}{\sqrt{3}}$ [समी. (i) एवं (ii) से]

$$=\frac{3AB-AB}{\sqrt{3}}=\frac{2AB}{\sqrt{3}}$$

$$=\frac{2\times1500}{\sqrt{3}}$$
 (\because AB = 1500 मीटर)

$$= \frac{3000\sqrt{3}}{\sqrt{3} \times \sqrt{3}} = 1000 \sqrt{3} \text{ मीटर}$$

- 43. नदी के पुल पर किसी बिंदु से नदी के आमने-सामने वाले किनारों के अवनमन कोण क्रमशः 30^{0} और 45^{0} हैं। यदि पुल नदी के किनारों से 2.5 मीटर की ऊंचाई पर हो, तो नदी की चौड़ाई बताइए। (यह मानते हुए कि $\sqrt{3} = 1.73$)
 - (a) 5.83 मीटर
- (b) 6.83 मीटर
- (c) 5.7 मीटर
- (d) 6.87 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 8 अगस्त, 2016 (III-पाती) S.S.C. C.P.O. परीक्षा, 2015

उत्तर—(b)

व्याख्या— प्रश्नानुसार चित्र बनाने पर BC नदी की चौड़ाई है।

ΔABD Ħ̈́

$$\tan 45^{\,0} = \frac{AD}{BD}$$

या BD = AD = 2.5 मीटर(i)

तथा ΔACD में

$$\tan 30^0 = \frac{AD}{CD}$$

$$\frac{1}{\sqrt{3}} = \frac{AD}{CD}$$

या $CD = \sqrt{3} AD$

 $CD = \sqrt{3} \times 2.5$ [समी. (i) से]

$$CD = 4.33 \dots (ii)$$

∴ नदी की चौड़ाई BC है।

= 6.83 मीटर

हल इस तरह भी देखें-

माना कि पुल की ऊंचाई (AB) = 2.5 मीटर तथा अवनमन कोण $\angle EBC$ एवं $\angle FBD$ क्रमशः 45^0 एवं 30^0 हैं।

प्रश्नानुसार

समकोण ABAC में

$$\tan 45^{\,0} = \frac{AB}{AC} = \frac{2.5}{AC}$$

$$1 = \frac{2.5}{AC} \Rightarrow AC = 2.5$$
 मीटर(i)

एवं समकोण ΔBAD में

$$\tan 30^0 = \frac{AB}{AD} = \frac{2.5}{AD}$$

$$\frac{1}{\sqrt{3}} = \frac{2.5}{\text{AD}} \Rightarrow \text{AD} = 2.5 \times \sqrt{3} \text{ मीटर(ii)}$$

∴ नदी की चौड़ाई CD = CA + AD

=
$$2.5 + 2.5 \sqrt{3}$$
 [समी. (i) एवं (ii) समी. से]
= $2.5 (1 + 1.732) (\because \sqrt{3} = 1.732)$
= 2.5×2.732

CD = 6.83 मीटर

- 44. दो व्यक्ति एक टॉवर की विपरित दिशाओं में खड़े हैं। वे टॉवर के शीर्ष का उन्नत कोण क्रमशः 30^{0} और 45^{0} मापते हैं। यदि टॉवर की ऊंचाई 50 मीटर है, तो दोनों व्यक्तियों के बीच की दूरी कितनी है? (माना $\sqrt{3} = 1.73$)
 - (a) 136.5 मीटर
 - (b) $50 \sqrt{3}$ मीटर
 - (c) $100\sqrt{3}$ मीटर
 - (d) 135.5 मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 11 सितंबर, 2016(III-पाती)

उत्तर—(a)

व्याख्या— माना कि टॉवर की लंबाई AD है तथा B और Cव्यक्ति हैं, जो टॉवर के शीर्ष से 30⁰ एवं 45⁰ का कोण बनाते हैं। प्रश्नानुसार

AD = 50 मीटर

$$\tan 30^0 = \frac{AD}{CD} = \frac{50}{CD}$$

$$\frac{1}{\sqrt{3}} = \frac{50}{\text{CD}}$$

या CD = $50 \sqrt{3}$ (i)

समकोण ΔABD में

$$\tan 45^0 = \frac{AD}{BD}$$

या
$$1 = \frac{50}{BD}$$

45. 200 मीटर की ऊंचाई पर उड़ने वाले किसी विमान का पायलट किसी नदी के दोनों किनारों पर दो बिंदू देखता है। यदि दोनों बिंदुओं के अवनमन कोण 45^0 और 60^0 हों, तो नदी की चौड़ाई ज्ञात कीजिए।

(a)
$$\left(200 + \frac{200}{\sqrt{3}}\right)$$
मीटर

(a)
$$\left(200 + \frac{200}{\sqrt{3}}\right)$$
मीटर (b) $\left(200 - \frac{200}{\sqrt{3}}\right)$ मीटर

(c)
$$400\sqrt{3}$$
 मीटर (d) $\left(\frac{400}{\sqrt{3}}\right)$ मीटर

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 10 सितंबर, 2016 (I-पाती) S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 28 अगस्त, 2016(III-पाती) उत्तर—(b)

व्याख्या— प्रश्नानुसार चित्र बनाने पर CD नदी की चौड़ाई है। ∴ ∆ABC में

$$\tan 60^{0} = \frac{AB}{BC}$$

$$BC = \frac{AB}{\tan 60^{0}} = \frac{AB}{\sqrt{3}} \dots (i)$$

∴ ∆ABD में

या
$$1 = \frac{AB}{BD} \Rightarrow AB = BD$$
(ii)

∴ CD = BD – BC
= AB –
$$\frac{AB}{\sqrt{3}}$$
 [समी. (i) और (ii) से]

$$\left(200 - \frac{200}{\sqrt{3}}\right)$$
मीटर

हल इस तरह भी देखें-

माना कि विमान की ऊंचाई (AB) = 200 मीटर एवं नदी के किनारें के बिंदु C एवं D हैं। पायलट द्वारा नदी के किनारे बिंदु C एवं D पर अवनमन कोण क्रमशः $\angle EAD = 45^0$ एवं $\angle EAC =$

(यदि पायलट विमान को नदी के चौड़ाई के एक तरफ से है।)

प्रश्नानुसार

समकोण AABC में

$$tan 60^0 = \frac{AB}{BC} \quad या \quad \sqrt{3} \ = \frac{200}{BC}$$

BC =
$$\frac{200}{\sqrt{3}}$$
मीटर.....(i)

तथा समकोण ∆ABD में

$$\tan 45^0 = \frac{AB}{BD}$$
 या $1 = \frac{AB}{BD}$ या $AB = BD$

या BD = 200 मीटर.....(ii)

अतः नदी की चाड़ाई (CD) = BD - BC

$$=\left(200-\frac{200}{\sqrt{3}}\right)$$
 मीटर

- $10 \ \sqrt{3}$ मीटर ऊंचे एक भवन के शिखर से देखे गए दो बिंदु P तथा Q हैं। यदि उन बिंदुओं के अवनमन कोण, परस्पर पूरक हों और PQ = 20 मीटर हों, तो बिंदु P की उस भवन से दूरी कितनी होगी?
 - (a) 30 मीटर
 - (b) 40 ਸੀਟ ਵ
 - (c) 25 मीटर
 - (d) 45 मीटर

S.S.C. संयुक्त स्नातक स्तरीय (Tier-I) परीक्षा, 2012

उत्तर—(a)

$$\tan{(90^{\circ} - \theta)} = \frac{AB}{OB}$$

$$\frac{10\sqrt{3}}{x} = Cot\theta \quad(ii)$$

समी. (i) और समी. (ii) को गुणा करने पर

$$\frac{10\sqrt{3}\times10\sqrt{3}}{x(20+x)} = \tan\theta\times\cot\theta$$

$$\frac{300}{x^2 + 20x} = 1$$

$$x^2 + 20x - 300 = 0$$

$$x^2 + 30x - 10x - 300 = 0$$

$$x(x+30)-10(x+30)=0$$

$$(x+30)(x-10)=0$$

$$x = -30, 10$$

x = 10 लेने पर

बिन्दु P से भवन की दूरी = $20 + 10 \Rightarrow 30$ मीटर

हल इस तरह भी देखें-

माना
$$QB = x$$
 मी.

माना
$$\angle APB = \theta$$

तो
$$\angle AQB = 90^{\circ} - \theta$$

 $\tan \theta : \tan (90 - \theta)$

 $\tan \theta : \cot \theta$

 $tan^2\theta$: 1

 $\tan \theta$ और $\tan (90 - \theta)$ का अनुपात $\tan^2 \theta$: 1 है।

अतः $\tan \theta$ और $\tan (90 - \theta)$ के आधारों का अनुपात

1 : tan² θ होगा।

अत:
$$\frac{PB}{QB} = \frac{1}{\tan^2 \theta}$$

$$\frac{20+x}{x} = \cot^2 \theta$$

$$\frac{20+x}{x} = \frac{(10\sqrt{3})^2}{x^2} \left[\cot \theta = \frac{10\sqrt{3}}{x} \right]$$

$$20 + x = \frac{100 \times 3}{x}$$

$$20 + x = \frac{300}{x}$$

$$20x + x^2 = 300$$

$$x^2 + 20x - 300 = 0$$

$$x^2 + 30x - 10x - 300 = 0$$

$$x(x+30)-10(x+30)=0$$

$$(x+30)(x-10)$$

$$x = -30, 10$$

$$x = 10$$
 लेने पर

बिन्दु P से भवन की दूरी = $20 + 10 \Rightarrow 30$ मीटर

- 47. एक ही क्षैतिज रेखा पर दो बिंदुओं से, किसी स्तंभ के शीर्ष को उन्नयन कोण θ और φ(θ < φ) है। यदि स्तंभ की ऊंचाई 'h' मीटर है और दोनों बिंदु स्तंभ के एक ओर हों, तो दोनों बिंदुओं के बीच की दूरी बताएं।</p>
 - (a) $h(\tan\theta \tan\phi)m$
 - (b) $h(\cot \phi \cot \theta)m$
 - (c) $h(\cot\theta \cot\phi)m$
 - (d) $h \frac{\tan\theta \tan\phi}{\tan\phi \tan\theta} m$

S.S.C. ऑनलाइन रनातक स्तरीय (T-I) 31 अगस्त, 2016(II-पाती)

उत्तर—(c)

 $10\sqrt{3}$

व्याख्या— $\phi > \theta$

∴ समकोण ∆ABC में

$$\tan \phi = \frac{AB}{BC}$$

या tan
$$\phi = \frac{h}{BC}$$

या
$$BC = \frac{h}{tan\phi}$$
(i)

पुन: समकोण ∆ABD में

$$tan \theta = \frac{AB}{BD}$$

या
$$\tan \theta = \frac{h}{BD}$$

या
$$BD = \frac{h}{\tan \theta}$$
(ii)

$$\therefore$$
 CD = BD – BC

$$= \frac{h}{\tan \theta} - \frac{h}{\tan \phi} \quad [समी. (i) और (ii) से]$$

$$= h \left[\frac{1}{\tan \theta} - \frac{1}{\tan \phi} \right]$$

= $h (\cot \theta - \cot \phi)$ मीटर

विविध

- TF एक मीनार है जिसका F भूमि पर है। A से T का उन्नयन कोण इस प्रकार x^0 है कि $\tan x^0 = \frac{2}{5}$ और AF=200 मीटर है। समीपस्थ बिंदू B से T का उन्नयन कोण y^0 है जिसमें BF = 80मीटर है। y^0 का मान है—
 - (a) 30^0
 - (b) 75^0
- (c) 45^0 (d) 60^0
- S.S.C. संयुक्त हायर सेकण्डरी (10+2) स्तरीय परीक्षा, 2015

उत्तर—(c)

- **49.** जमीन पर किसी बिंदु से एक विमान का उन्नतांश 45^0 है। 15सेकंड उड़ने के बाद उन्नतांश घटकर 30° हो जाता है। यदि विमान 2500 मीटर की ऊंचाई पर उड़ रहा है, तो विमान की गति कितने किमी./घंटा है?
 - (a) 600
- (b) $600(\sqrt{3} + 1)$
- (c) $600\sqrt{3}$
- (d) $600(\sqrt{3}-1)$

S.S.C. ऑनलाइन रनातक रत्तरीय (T-I) 1सितंबर, 2016 (I-पाती) उत्तर—(d)

या
$$1 = \frac{AB}{BC}$$
 $BC = AB$ (i)
पुन: समकोण ΔABD में
 $\tan 30^0 = \frac{AB}{BD} \Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{BD}$
या $BD = \sqrt{3}$ AB
या $BD = \sqrt{3} \times 2500$
 $BD = BC + CD$
या $2500\sqrt{3} = 2500 + CD$ [समी. (i) से]
या $2500\sqrt{3} - 2500 = CD$
या $CD = 2500(\sqrt{3} - 1)$
 \therefore विमान की गित = $\frac{2500(\sqrt{3} - 1)}{15}$ मीटर/सेंकड

50. एक नाव किसी प्रेक्षण टॉवर से दूर जा रही है। जब वह टॉवर से 50 मीटर की दूरी पर है, तो वह प्रेक्षक की दृष्टि में 60^0 का अवनमन कोण बनाती है। 8 सेकंड के बाद अवनमन कोण 30^{0} का हो जाता है, तो यह मानते हुए कि नाव उहरे हुए पानी में चल रही है। नाव की लगभग चाल (स्पीड) बताइए।

 $=\frac{500(\sqrt{3}-1)}{3} \times \frac{18}{5} = 600 (\sqrt{3}-1)$ किमी./घंटा

- (a) 33 किमी /घंटा
- (b) 42 किमी /घटा
- (c) 45 किमी./घंटा
- (d) 50 किमी./घटा

S.S.C. ऑनलाइन स्नातक स्तरीय (T-I) 9 सितंबर, 2016(III-पाती)

व्याख्या— दिए गए प्रश्न के अनुसार चित्र बनाने पर

उत्तर—(c)

 $\frac{1}{\sqrt{3}} = \frac{AB}{BD}$

$$\angle ACB = 60^{\circ}, \angle ADB = 30^{\circ}$$
 BC = 50 मीटर A \therefore समकोण $\triangle ABC$ में $\cot 60^{\circ} = \frac{AB}{BC}$ या $\sqrt{3} = \frac{AB}{50}$ या $50\sqrt{3} = AB \dots (i)$ पुनः समकोण $\triangle ABD$ में B $\cot 30^{\circ} = \frac{AB}{BD}$ $\cot 30^{\circ} = \frac{AB}$