DSC 257R - UNSUPERVISED LEARNING

BEYOND *K*-**MEANS**

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

K-Means: the Good and the Bad

The good:

- Fast and easy.
- Effective in quantization.

The bad:

 Geared towards data in which the clusters are spherical, and of roughly the same radius.

Is there is a similarly-simple algorithm in which clusters of more general shape are accommodated?

Preview: Mixtures of Gaussians

Preview: Mixtures of Gaussians

Preview: Mixtures of Gaussians

Each of the *k* clusters is specified by:

- a Gaussian distribution $P_j = N(\mu_j, \Sigma_j)$
- lacksquare a mixing weight π_i

Overall distribution over \mathbb{R}^d : a **mixture of Gaussians**

$$Pr(x) = \pi_1 P_1(x) + \dots + \pi_k P_k(x)$$