- 安培环路定理

$$B = \frac{\mu_0 I}{2\pi R}$$

$$\oint_{l} \vec{B} \cdot d\vec{l} = \oint \frac{\mu_{0}I}{2\pi R} dl$$

$$\oint_{I} \vec{B} \cdot d\vec{l} = \mu_0 I$$

设闭合回路 *l* 为圆形回路, *l*与 *I* 成右螺旋

若回路绕向为逆时针

$$\oint_{l} \vec{B} \cdot d\vec{l} = -\frac{\mu_{0}I}{2\pi} \int_{0}^{2\pi} d\phi = -\mu_{0}I$$

对任意形状的回路

$$\vec{B} \cdot d\vec{l} = \frac{\mu_0 I}{2\pi r} r d\phi = \frac{\mu_0 I}{2\pi} d\phi$$

$$\oint_{I} \vec{B} \cdot d\vec{l} = \mu_0 I$$

电流在回路之外

$$B_{1} = \frac{\mu_{0}I}{2\pi r_{1}}, \quad B_{2} = \frac{\mu_{0}I}{2\pi r_{2}}$$

$$\vec{B}_{1} \cdot d\vec{l}_{1} = -\vec{B}_{2} \cdot d\vec{l}_{2} = -\frac{\mu_{0}I}{2\pi} d\phi$$

$$\vec{B}_{1} \cdot d\vec{l}_{1} + \vec{B}_{2} \cdot d\vec{l}_{2} = 0$$

$$\oint_{l} \vec{B} \cdot d\vec{l} = 0$$

多电流情况

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3$$

$$\oint_l \vec{B} \cdot d\vec{l} = \mu_0 (I_2 - I_3)$$
 推广:

> 安培环路定理

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum_{i=1}^n I_i$$

安培环路定理

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum_{i=1}^n I_i$$

在真空的恒定磁场中,磁感强度 B沿任一闭合路径的积分的值,等于 μ 乘以该闭合路径所穿过的各电流的代数和.

电流 I 正负的规定: I 与 L成右螺旋时,I 为正; 反之为负.

$$\int_{L} \vec{B} \cdot d\vec{l}$$

$$= \mu_{0}(-I_{1} - I_{2}) = -\mu_{0}(I_{1} + I_{2})$$

讨论:

(1)B是否与回路L外电流有关?

(2) 若 $\int_{L}^{\bar{B}} \cdot d\bar{l} = 0$,是否回路 L 上各处 $\bar{B} = 0$? 是否回路 L 内无电流穿过?

二安培环路定理的应用举例

例1 求载流螺绕环内的磁场

解 (1) 对称性分析: 环内 \bar{B} 线为同心

圆,环外 \bar{B} 为零.

7-6 安培环路定理

(2) 选回路

$$\oint_{l} \vec{B} \cdot d\vec{l} = 2\pi RB = \mu_{0}NI$$

$$B = \frac{\mu_{0}NI}{2\pi R}$$

$$\Leftrightarrow L = 2\pi R$$

$$B = \mu_0 NI/L$$

当 2R >> d 时,螺绕环内可视为均匀场。

例2 无限长载流圆柱体的 磁场

解(1)对称性分析

$$(2)$$
 $r > R$

$$\oint_{l} \vec{B} \cdot d\vec{l} = \mu_{0}I \qquad B = \frac{\mu_{0}I}{2\pi r}$$

$$0 < r < R \qquad \oint_{l} \vec{B} \cdot d\vec{l} = \mu_{0} \frac{\pi r^{2}}{\pi R^{2}}I$$

$$B = \frac{\mu_0 Ir}{2\pi R^2}$$

B 的方向与I成右螺旋

$$\begin{cases} 0 < r < R, & B = \frac{\mu_0 I r}{2\pi R^2} \\ r > R, & B = \frac{\mu_0 I}{2\pi r} \end{cases}$$

例3 无限长载流圆柱面的磁场

$$\mathbf{P} \quad 0 < r < R, \quad \oint_{l} \vec{B} \cdot d\vec{l} = \mathbf{0} \qquad B = 0$$

$$r > R, \quad \oint_{l} \vec{B} \cdot d\vec{l} = \mu_{0} I \qquad B = \frac{\mu_{0} I}{2\pi r}$$

例4 无限大均匀带电(线密度为i)平面的磁场

解如图,作安培环路 abcda,应用安培环路 定理

$$\int_{l} \vec{B} \cdot d\vec{l} = 2 \int_{a}^{b} B \cdot dl$$
$$= 2B \vec{a} \vec{b} = \mu_{0} i \vec{a} \vec{b}$$
$$B = \frac{\mu_{0} i}{2}$$

7-6 安培环路定理

$$B = \frac{\mu_0 i}{2}$$

选择进入下一节:

- 7-4 毕奥-萨伐尔定律
- 7-5 磁通量 磁场的高斯定理
- 7-6 安培环路定理
- 7-7 带电粒子在电场和磁场中的运动
- 7-8 载流导线在磁场中所受的力
- 7-9 磁场中的磁介质

