	MQC-Measurement-based Puantum Computing (R. Jozsa)
.7	
Terresion as to a second	Introduction
	* So far we have the circuit model of quantum computation, notwarded
141000000000000000000000000000000000000	by the obvious classical model. There are also quantum analyses of
One of the second second	other classical models (Turing machines, cellular automata etc.)
(1)	* meanisment-based (or "one-way") quantum compuling is
	an architecture that has no classical analogue. It is universal
	in the sense that it can simulate the circuit model with only
	a polynomial overhead in physical resources.
	* It emphasises the role of entanglement as a resource that is
	ureversely consumed in this model as the computation progresses
	(hence the name "one way") - computational steps will be
	(1-qubit) meaninements, not unitary gades!
	Preliminary notations
× 500	"mnt" - abbreviation for "measurement"
	(1)4 Wet 2020
We have the state of the	$ \pm \alpha\rangle = \sqrt{2} \left(0\rangle \pm e^{-\alpha x} 0\rangle \right)$
	(±0) = 1 (10) ± (10) also written just as (±).
	$B(x) = \{ +_{\lambda} \rangle, {\lambda} \}$ is an orthonormal leavis.
	$\frac{1-q\mu v t \text{ gales}}{J(\alpha)} = \frac{1}{J_2} \left[\frac{e^{i\alpha}}{1-e^{i\alpha}} \right] = HP(\alpha)$
27-1	$T(\lambda) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
	J(x) J2 [1-e ^x]
	$H = J(0) = \int_{\Sigma} \left(\frac{1}{1-1} \right) P(\alpha) = \left[0 e^{i\alpha} \right]$
	Pauli gales: $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = P(\pi)$
	2-qubit gate
_	
	E = CZ (controlled-Z) = diag (1,1,1,-1) in standard basis. Efor "entangling". E is symmetric $E_{12} = E_{21}$.

	We will use $\exists i \neq j \text{ only on rearest-neighbour (n.n.) qubit lines}$ 12. $j = i \pm j \text{ in circuits}$.
H	re. j= i±1 in circuits.
***************************************	1-qubit measurement
	M; (x): measure neut of qubort i in basis B(x)
	(e.g. votate B(x) to {10,11)} by applying T(x) and measure in std. basis
	M: (x): measure ment of qubot i in basis B(x) (e.g. votate B(x) to {10,11>3 ley applying J(x) and measure in std. basis) Outcomes corresponding to [+x) (resp. [-x)) denoted O (resp. 1).
	Mi(Z): measurement of qubit i in std, bais.
	outcome (0) (resp. 11) denoted 0 (resp.1).
3 (<u> </u>	
***************************************	Recall entended Born rule: To find effect of M, (x) on 1st gulst of z-gubst state
Man and the second	/412) = a 00) + b 01) + c 10) + d 11) first write 1st qubit in B(x) bains using (in 1st slot):
	first write 1st qubit in B(x) bains using (in 1st slot):
	$ 0\rangle = \frac{1}{12} \left(+_{\alpha}\rangle + {\alpha}\rangle \right)$
-	.\.\.
	1) = etc (+2)
-	Then collect all terms with Ita resp. (- 2) giving the form
	1412) = (+a), [14-)2] + (-a), [14-)2]
	Then for mut outcomes S = 0 or 1:
	5=0: prob po= < (+ /4), post-mont state is 1+x), 14-2 / Jpo
	S=1: prob p, = <4-14-), post-mont state is (-x), 4->2/JP1/1
	Graph stale (4g):
tion the second second second	Late C= (15 t) (with Vand Floring washing 1 als)
***************************************	lee and and that he Wille number of vertices
***************************************	Let G= (V, E) (with Vand E being vertices & edges) be any graph that has NI= number of vertices (i) underected edges (ii) no Self-Coop edges (from a vertex to strelf) (iii) at most one edge between any two vertices.
7	(ii) ND Self-(par edges Chames no her to dell!
	(iii) at most one edge lechion and him wee him
	- Color and the color

	Then If I is the state on IV qubits obtained as follows:
	· for each untex i. c.V introduce a qubit 1+).
	Then If G) is the state on V qubits obtained as follows: oforeach untex i eV introduce a qubit I+): oforeach edge is a popy Eij (they all commute)
	eg. $G_1 = \frac{2}{6} \left[\frac{1}{4} + \frac{2}{100} + \frac{1}{100} - \frac{1}{100} \right]$
	(2= = = = = [+], (+), (+), (+), (+), (+), (+), (+), (+)
	= 2/2 [(000) + (001) + (010) - (011) + (100) + (101) - (110) + (111)]
	Cluster state: 'is graph state 140) for Gleing any rectangular 2D grid.
	any rectangular 2D grid.
	20 (-
	e.g. G =
	8-0-6-8
-	* Later we will need only graphs that are subgraphs
**************************************	of a 2D rectangular grid Colstained by removing some
	* Later we will need only graphs that are subgraphs of a 2D rectangular grid (obtained by removing some vertices and all arrounded edges).
***************************************	Eaching on two gulrbs (not necessarily (+)/+), which are represented by the vertices (blobs).
	Eaching on how gulis (not necessarily (+) (+)), which
F	are represented by the vertices (blobs).
_(
4	Measurement-based quantum computing (MQC) -
	Measurement-based quantum computing (MQC) — the main result stated.
W	
	Let C be any quantum computation grown as a quantum circuit
·	Con n qubits 12. as a sequence of unitary gales U, U, Uk
	applied in order on a speaked input n-gubit state 1400
	Con n qubits 1.e. as a sequence of unitary gabes U, Uz,, UK applied in order on a speafed input n-qubit state (fin) (usually a computational leans state) and followed by final Z-mmts M; (Z) on speahed gubits i= i, i is
	Z-mmts M; (Z) on speahed qubits j= i,, ik. to
-	obtain an output k-bit string.
4	* Then we can always simulate the result of this
	* Then we can always simulate the result of this quantum computation as follows:
	V .

The starting resource: start with a graph state (4g). Here G'is chosen depending on the connectivity structure of the cuant Clor G = a 2D guid suffices too - see lader! the computational steps: each step is a 1-qubit mut instruction of the form M; (x). Here the value of x may depend on the (random) outrones S, Sz, .. of previous munts 1. we have an adaptive sequence of munts The computational process: we are given a presented sequence of (adaphve) computational steps $M_{i}(\alpha_{i})$, $M_{i}(\alpha_{2})$, ... $M_{i}(\alpha_{N})$ urth gubit labels i, iz, in all district. In fact we can discard each qubit i after its mmt, retaining only the mut outrome S: for possible use in determining the choice of angles & in fitne monts (and in outputs-ofteld We also retain all unmeanned qubits. the output: we first obtain the results Si, .. , Sie of M(Z) mmts on k speaked gubsts (which have not previously been measured). Then finally we proces these results by futher (simple) classical computations involving them as well as previous Mi(xi)-munt outcomes, to obtain the achial output bits. Monts are usually regarded as destructive but here they have a constructive role as being our computational steps. We start with a fiducial entaryled state 1465 and successively degrade its entanglement by 1-qubit mints - hence the name "one-way model"-as the entary lement is uneversely consumed with process. for each Mi(x) mint, the outcome si is probabilishe and in fact always uniformly random (cf (adv). Intuitively this randomness in the process is compensated by subsequent & choices being chosen dependent on previous outronies, to simulate a deferministic unitary evolution up to the final M(Z)'s

	How and Why MQC works!
945	We begin by noting:
	FACT: the 1-qubit gabes J: (x) (forallx) together with n.n.
	CZij = Eij (ie. j = i ±1) Comprise a
	$CZ_{ij} = E_{ij}$ (ie. $j = i \pm i$) Comprise a universal set of quantum gabes.
	In particular any 1-qubit gate U (up to overall phase) can be written as a product of three J's:
	be written as a product of three J's:
	U= eis J(x) J(p) J(z)
	(which can be directly seen using a standard parameter water
	of the unitary group U(2) in 2 dimensions)
	The n.n. condition j= i ± 1 can be imposed since we can
	early construct the SWAP gate of two lines e.g
	$SWAP_{12} = (CX)_{12} (CX)_{21} (CX)_{12} \text{ and } (CX)_{12} = H_2 (CX)_{12} H_2$
	Then distant line as how can be represended using ladden of suites
,	Then distant line actions can be represented using ladders of SWAPS. * Thus we may assume that the gates of our given
	cucul C are all of the form
	Cucut C are all of the form Ji(x) or Ei; with j=i±1
	Next we have the core result:
	I-lemma: (how to apply gates by doing mmts!)
	For any 1-qubit state (4) = a (0) + b (1) counder
	E12[14), 1+2] followed by M, (x).
	Suppose that the outcome is S.
	Then after the mut, the state of qubit 2 is X T(x) (4).
	Also the two outcomes 5,=0, I always occur with
	J-lemma: (how to apply gates by doing mmts!) For any 1-qubit stake (+) = a 0) + b 1) counder E12 [14), 1+2] followed by M, (x). Suppose that the outcome is S,. Then after the mmt, the stake of qubit Z is X J(x) /+). Also the two outcomes S1=0, 1 always occur with equal probabilities /2 (regardless of the values of Q, b, x). I
	Proof: an easy calculation using the Born rule, See Exercise Sheet 2.
	See Exerase sheet 2. //

	ie. XSI J(x) has been applied to guly \$1 of 14), and
	1e. $X^{S_1} J(x)$ has been applied to gubit 1 of $ Y _{1}$ and this qubit has been re-labelled as 2 :
2	then M ₁ (x) with outcomes 2 gwes × ^{S₁} T(x) applied
	to 14)18 (and 1 renamed
-	14)18 as 2).
***************************************	We will use the J-lemma to simulate the achon
	and the most M(x) and we will also want to
	concatenate such J-lemma applications for sequences of
	o (N) takes.
***************************************	Concat Cemma: if we concalenabe the process of the J-lemma
Section Control and the	on a row of gulits 1, 2, 3, to apply a sequence of
***************************************	J(x) gases then all the entangling operations
	on a row of gulit 1, 2, 3, to apply a sequence of $J(x)$ gales then all the entangling operations E12, E23, can be done first before any muits are applied.
-	
	enylocal achous (unitary gades or muto) done on A always commute with any done on B.
_(always commute with any done on B.
	Proof: If I Y) AB is any (generally entangled) state of AB then local unitary operations Up and VB
	AB then local unitary operations Up and VB
*******	done on A and B respectively correspond to operator
***************************************	UADIB and IAD VR on the full system, and these clearly commute.
	(UA @ IB) (IA @ VB) = (IA @ VB) (UA @ IB) = UA @ VB.
	similarly for local most represented by achour
	of linear projection operators PA and QB at
-	of linear projection operators PA and QB at A and B, replacing UA and VB above.

	Concatlemma Proof:
	For 14), 1+)2 1+)3 the sequence of J-processes is
•	the sequence of operations (from left to nght).
***************************************	E12 M, (A1) E23 M2 (A2) E34 M3 (A3)
	Each Eigh acts on queles disjoint how all never measurement
(V TX-82	(and E's all communde)
62-50	So by (FACT), all E's can be moved to the left over all Ms there
·	to grove E12, E23, E34,, M, (d,), M2(x2), M3(x5)
	Remarks:
_(· We denote this process as
	$\frac{\sqrt{1}}{\sqrt{1}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{3}}$ $\frac{\sqrt{3}}{\sqrt{3}}$ $\frac{\sqrt{3}}{\sqrt{3}}$
	which implements the 1-quait circuit
-	(4) - [XS1] - [XS2]
	• the Ei, it is all commude (even on overlapping qubits) so can physically be applied in any order or oven simultaneously. • the Mi(xi) monts are all on disjoint qubits so can be done in any order unless the choice of angle xi depends on the outrome of previous monts (ie, adaptive chorice of monts).
	So can physically be applied in any actions on some Company
	· the M: (d:) muts are all on disjoint auto to co
	can be done in any order unless the chair of and a.
	depends on the outrome of nevious mute (ie adaptive
-	choice of monts)

~	
-	

Determining the MPC process corresponding to a given circuit Consider now any cucuit C (on n qubits) comprising a sequence of gales U, Uz, ... Uk applied in order, in which each Ui is either a T: (x) gate or a n.n. Eij gate We will always take the input state to be 1+)1+).. 1+). This is without loss of generality as any 1-gulit state (4) may be written (4) = U(+) for a suitable U which may then be represented using at most three I(x)'s (by unwersality). Thus for a general product state input 14,)... 14nd we first prefix C by this extra construction on each line eg, for the computational basis state 1j) (j=0,1) we have 1j)= XjH1+> and $H=J(0), X=J(\pi)J(0).$ We write the input qubits as a verheal row of blobs. Note: (i) all J(x) gales will be implemented by the J-process (and we'll see later how to deal with the extra unwanded XSi gales that arise) (ii) all n.n. Eij's will be applied by exploiting the Egales used to make an unbal graph stake (Whethe El used in the J-lemma & Concatlemma re-ordering) - of below. (iii) the final outpoits will be obtained by Mi (Z) monts. By the concat lemma all the Es in (i) & (ii) can be done first (before any monts) this results in a graph state on a graph G that's a subgraph of an (nxl) rectangular grid D, where l is the depth of the cucuit C (not countrigthe Egalesin C). This graphstale 140) can alway be made by applying Z muts to the graph state D to cull vertices (cf sheet 2 08 (vi) Having made this graph stock, the whole computation is translated into just a sequence of 1-qubit monts on (46) (or equivalently, on 140) by hist prepains 140 via 2-monts)

Ć	Example: Consider the circuit C given by the diagram:
	(+)
	(+) [Ta2] Z-mut, output i2
	(There I represents an Egake as usual)
	Each J(xi) gate will be implemented using the J-lemma.
	Thus for each such gake we'll make the entampted pair
	and as noted above, all these entangling sperchous can
	be done ab initio, including also the Egales of the uncuit itself.
C	Thus for each such gate we'll make the entangled pair and as noted above, all these entangling operations can be done ab initio, including also the Egates of the uncuit itself. Thus we'll use the graph stake
	If we just measure all the gubb for the J-processes Lougub
	ie di dis
	VS, DS. Di.
	d ₂
	Jus Jis
	we would effect the circuit:
·	
	(+) (J(a)) (XS) = J(a) (XS) - Z-mmt, i,
	1+> - [J(d2)]- [x52] - Z-mmt, i2
	Where S, S, S, have been chosen randomly, But -
	where S ₁ , S ₂ , S ₃ have been chosen randomly. But - only S ₁ =S ₂ =S ₃ =0 (occurring with probability 1/2k, k= number of (a), gates) would give the desired simulation!
	Joseph Jales)
	wouth give the desired summer wh!
-	· · · · · · · · · · · · · · · · · · ·

<u></u>	To deal with these unwanted X "errors" we will use
·	Commutation relations between our basic gates and
	X and Z gales e.g. a simple calculation shows (reading
DAIRE DE LE CONTRACTOR DE LA CONTRACTOR DE	gate applications from left to right as is usual in cucuit diagram
	X and Z gates e.g. a simple calculation shows (reading gate applications from left to right as is usual in cucuit diagram protines), that up to an (inelevant) overall phase e-ix:
	$-\sqrt{ \mathcal{J}(\alpha) ^2} = -\sqrt{ \mathcal{J}(\alpha) ^2}$
	The full list of relations that we'll need is: (early verified, and reading gate applications from right to left now, as is usual in algebraic notation):
000 - ne 100 - ne	and reading gate applications from right to left now, as is usual
	in algebraic notation):
C —	
	S STINGS
	• $J_i(x) Z_i^S = X_i^S J_i(x)$ (com2)
	• Eij Xis = Xis Zis Eij (com3)
	S
	$E_{ij} Z_{i}^{S} = Z_{i}^{S} E_{ij} \qquad (com 4)$
	Hence forth we'll omit the (unelevant) ownall phase factor e-ix
	The france Carlotte Constitution) ordinar prince facino C
	When using (COMI).
	Note in particular that (com!) leaves the angle dependent on 5 (as in the above picture) while Ei; propagates an X error on either line i or; into and additional Z error on the other line (recalling also that Ei; is symmetric.)
-	an the wood parisher while and propagates an x error
	on the other his a Crecolline also that De is a grounding
	on the sine whe (received areas the considering of
	To Must sake how these relations help to deal with errors, counder a simpler wicht with just one qubit line (for the previous example with Eij see exercise sheet 2):
	counder a simpler wicut with just one qubit line
	(for the previous example with Ei; see exercise sheet 2):
	(+) - (J(x1) - Zmnt, i
-	We first prepare the 3-qubit graph stake
No. 1	

_	Measuring the first qubit we get
	X1
	o re we have done (+) - [I(x)] - [XF]
	To deal with the unwanted X" "error", before measuring the
	To deal with the unwanted X" "error" before measuring the second qubit to apply $J(\alpha_z)$, we note from (COMI) that (uphophose):
	$-\boxed{\chi_{kl}} - \boxed{\chi_{kl}} - \boxed{\chi_{kl}} - \boxed{\chi_{kl}} - \boxed{\chi_{kl}}$
\	So we adapt the sign of the second mutangle to depend on the previous mut result viz.:
	the previous mut result viz.:
(
	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
7.000	and the alleast adopted seen of
10	guring them, after this adapted second mint.
	(+)-(J(x1))-(x1)-(x1)-(x1)-(x1)-(x1)-(x1)-(x1)
	[-wil] [7 [J(t) x2] [X -]
	= (+)-[J(x1)]-[Z(1)-[X(2)]-[Z(1)-[X(1)]-[Z(1)]-[Z(1)-[X(1)]-[Z(1)]-[
•	If we had a further I(x3) gabe we'd now need to adopt its angle
(for both X and Zerrors. From (com) and (com) we see
	that in propagation across I, X turns into Z, and Zinto X,
	and only X changes the ngn of the angle. Thus the next angle
	would be adapted to (1) 2xz, not depending on 1.
	The order of X and Z on a line is inelevant as
	XZ = -ZX is same up to overall phase (-1).
	Also multiple X's & ZIs on a line can be collapsed using X2= Z2= I.
	using X2= Z2= I.
	Now backto our simple example we have so for:

In the literature the accumulating XaZb (9,6=00-1) errors" Woke that E's in a circuit also propagable these errors across to the second line involved via (com3) Logical depth of a meaninement pattern. Monts can always be done from "left to right" (i.e. corresponding to actual order of I gales in C), But recall that the Mile must on different gubits can be physically performed simultaneously if we know the angles of, since they are quantum operations on disjoint subsystems. This gives a novel (intrinsically quantum) way of parallelising a computation - any must pattern of an MQC proces can be performed in layers (instead of left to right along 146): layer 1: all most that require no adaptation layer 2: all monts adapted using outronies from layer I only layer 3: all mmb adapted using outromes from layers 122 only .. etc. The total number of layer (before the final 2 mmb which are always nonadaphoe!) is called the logical depth of the computation Example: for our simple example above, logical depth=2 (layer 1 ~ two end qubets, layer 2 ~ middle gubit · Somewhat paradoxically (!) the final Z-mits giving the outputs canality be done first before the I gates and the Zimitoutsonies Later just re-independed in the light of the emerging M(x)-mmb done later. Conclusion The above MCC model allows us to reproduce the output result of any quantum circuit exactly, using only a sequence of single-quirt must on a graph state, and we get a new kind of computational parallelism. Any computation with poly (n) gates can be similated using a graph state with poly (n) quits, and a poly (n) amount of classical side-processing (which is only ever sums mod 2 of bit values) to deal with accumulating errors and re-inderpretation of (final) Z-mut outcomes,