Week 7

Thaqib Mo.

March 19, 2021

1 Invertibility and Isomorphisms

Definition 1.1: Invertible Matrix

A square matrix $A \in M_{n \times n}(\mathbb{F})$ is invertible if and only if there exists $B \in M_{n \times n}(\mathbb{F})$ such that $AB = I_n$.

Definition 1.2: Invertible Linear Transformation

Let $T:V\to W$, if there exists a mapping $U:W\to V$ such that $UT=I_V$ and $TU=I_W$ then T is invertible and U is the inverse of T.

Lemma 1.1: Inverse is Unique

Let T be invertible then T^{-1} the inverse of T is unique.

Theorem 1.2

 $T: V \to U$ is invertible $\iff T$ is an isomorphism.

Lemma 1.3

If T is linear and invertible then T^{-1} is also linear.

Theorem 1.4: Linear transformations and invertible matrices

Let $T:V\to W$ be a linear transformation and let α be an ordered basis for V and let β be an ordered basis for W. Then

- (1) T is an isomorphism \iff $[T]^{\beta}_{\alpha}$ is invertible.
- (2) $A \in M_{n \times n}(\mathbb{F})$ is invertible if and only if L_A is an isomorphism.

Proof Sketch. If T is an isomorphism then $T^{-1}:W\to V$ exists and

$$\begin{split} [T]_{\alpha}^{\beta}[T^{-1}]_{\beta}^{\alpha} &= [TT^{-1}]_{\beta}^{\beta} \\ &= [I_{W}]_{\beta}^{\beta} \\ &= \begin{bmatrix} [I_{W}(w_{1})]_{\beta} & [I_{W}(w_{2})]_{\beta} \cdots \end{bmatrix} \\ &= \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ \vdots \end{pmatrix} & \ddots \end{pmatrix} \\ &= I_{n} \end{split}$$

The (\Leftarrow) direction define $A = [T]^{\beta}_{\alpha}$ and then use A^{-1} to prove T is an isomorphism.

For (2) Let the standard basis for \mathbb{F}^n be σ_n , Then $[L_A]_{\sigma_n}^{\sigma_n} = A$. The result follows from (1).

Lemma 1.5: Properties of Inverse Matrices

Let A be invertible then

I.
$$(A^{-1})^{-1} = A$$

II.
$$(cA)^{-1} = \frac{1}{c}A^{-1}$$
 for $c \neq 0$.

III.
$$(A^T)^{-1} = (A^{-1})^T$$

IV. If A, B are invertible then AB is invertible with

$$(AB)^{-1} = B^{-1}A^{-1}$$

V. If AB is invertible then $A, B \in M_{n \times n}$ are invertible.

Theorem 1.6

If A is a square invertible matrix then the following are equivalent

- (1) A is invertible
- (2) $\exists C \in M_{n \times n} \text{ such that } AC = I_n$
- (3) $\exists B \in M_{n \times n} \text{ such that } BA = I_n$

2 The Change of Coordinate Matrix

Theorem 2.1: Change of Coordinate

Let α and β be ordered basis for V then we define

$$Q = [I_V]_{\alpha}^{\beta}$$

Then

#1 Q is invertible.

#2 For $x \in V$ we have $[x]_{\beta} = Q[x]_{\alpha}$.

Proof Sketch. Q is invertible since I_V is an isomorphism and $[x]_\beta = [I(x)]_\beta = [I]_\alpha^\beta [x]_\alpha$

Remark 2.1. We can compute the change of coordinate matrix for $\alpha = \{v_1, \dots, v_n\}$

$$[I_V]^{\beta}_{\alpha} = \begin{bmatrix} [v_1]_{\beta} & [v_2]_{\beta} & \cdots & [v_n]_{\beta} \end{bmatrix}$$

Theorem 2.2

Let $T: V \to V$ be linear and let α and β be ordered bases for T. Let $Q = [I_V]^{\beta}_{\alpha}$ then

$$[T]^{\alpha}_{\alpha} = Q^{-1}[T]^{\beta}_{\beta}Q$$

3 Elementary Matrix Operations and Elementary Matrices

Definition 3.1: Elementary Matrix Operations

- (1) Interchanging rows or columns $R_i \leftrightarrow R_j$.
- (2) Multiplying any row (column) by a non-zero scalar $R_i \leftarrow cR_i$.
- (3) Adding any scalar multiple of rows (columns) $R_i \leftarrow R_i + cR_j$.

Definition 3.2: Elementary Matrix

An $n \times n$ elementary matrix is a matrix produced by performing elementary operations on I_n .

Theorem 3.1

Let $A \in M_{m \times n}(\mathbb{F})$ suppose B is obtained by performing elementary **row operations** on A then there exists $E \in M_{m \times m}(\mathbb{F})$ such that

$$B = EA$$

Where E is the matrix obtained by performing the same operations on I_m .

Theorem 3.2

Let $A \in M_{m \times n}(\mathbb{F})$ suppose B is obtained by performing elementary **column operations** on A then there exists $E \in M_{n \times n}(\mathbb{F})$ such that

$$B = AE$$

Where E is the matrix obtained by performing the same operations on I_n

Theorem 3.3

Elementary matrices are invertible and the inverse of an elementary matrix is an elementary matrix of the same type.

Proof Sketch. We have E such that $I_m = EA$ sine I_m is invertible A is invertible by Lemma 1.6.