F20T1A3≠≠

- a) Bestimmen Sie alle Lösungen der folgenden Differentialgleichung zweiter Ordnung: $x'' x = e^t$ (1)
- b) Die Funktionen $\phi_1, \phi_2, \phi_3 : \mathbb{R} \to \mathbb{R}$ sind gegeben durch $\phi_1(t) = 1$, $\phi_2(t) = t$ und $\phi_3(t) = t^2$ für alle $t \in \mathbb{R}$.

Über eine lineare inhomogene Differentialgleichung zweiter Ordnung ist bekannt, dass φ_1 , φ_2 , φ_3 Lösungen sind. Geben Sie die Menge aller Lösungen dieser Differentialgleichung an. Die Differentialgleichung selbst brauchen Sie dabei nicht zu bestimmen.

Zu a)

 $x'' - x = e^t$ ist inhomogene lineare DGL zweiter Ordnung, hat also als Lösungsraum einen zweidimensionalen affinen Unterraum von $C^2(\mathbb{R},\mathbb{R})$. Die homogene lineare DGL x'' - x = 0 hat das charakteristische Polynom $z^2-1 = (z+1)(z-1)$, also bilden $\lambda_1 : \mathbb{R} \to \mathbb{R}$; $t \to e^t$ und $\lambda_2 : \mathbb{R} \to \mathbb{R}$; $t \to e^{-t}$ ein Fundamentalsystem, d.h. eine Basis des homogenen Lösungsraums.

Mit (te^t)' = e^t(t+1) und (te^t)" = e^t(t+2) gilt (te^t)"+te^t = 2e^t, also ist
$$\mu: \mathbb{R} \to \mathbb{R}$$
; $t \to \frac{1}{2} t e^t$ eine Lösung von (1). $\mathcal{L} := \{ f: \mathbb{R} \to \mathbb{R}; t \to \frac{1}{2} t e^t + c_1 e^t + c_2 e^{-t} : c_1, c_2 \in \mathbb{R} \}$ ist also der Lösungsraum von (1).

Alternative Lösung über die Fundamentalmatrix des äquivalenten Systems.

Zub)

Sind ϕ_1 , ϕ_2 , ϕ_3 Lösungen einer inhomogenen DGL, so sind die Differenzen ϕ_2 - ϕ_1 , ϕ_3 - ϕ_1 , ϕ_3 - ϕ_2 Lösungen der zugehörigen homogenen DGL, die einen zweidimensionalen Untervektorraum von $C^2(\mathbb{R},\mathbb{R})$ als Lösungsraum besitzt. $\lambda_1(\phi_3-\phi_2)+\lambda_2(\phi_3-\phi_1)=\lambda_1(t^2-t)+\lambda_2(t^2-1)=0$ hat für $(\lambda_1,\lambda_2)\neq(0,0)$ als Polynom vom Grad ≤ 2 höchstens zwei Nullstellen, daher sind ϕ_3 - ϕ_2 und ϕ_3 - ϕ_1 linear unabhängig, daher ist $\lim\{\phi_3-\phi_2,\,\phi_3-\phi_1\}$ der Lösungsraum der homogenen linearen DGL und da z.B. ϕ_1 eine Lösung der inhomogenen linearen DGL ist, gibt $\phi_1+\lim\{\phi_3-\phi_2,\,\phi_3-\phi_1\}=\{\phi_1+c_1(\phi_3-\phi_2)+c_2(\phi_3-\phi_1):c_1,c_2\in\mathbb{R}\}=\{(c_1+c_2)t^2+c_1t+c_2+1:c_1,c_2\in\mathbb{R}\}$ den Lösungsraum der inhomogenen DGL.