

Zizhao Wang¹, Xuesu Xiao¹, Bo Liu¹, Garrett Warnell², and Peter Stone^{1, 3}

¹The University of Texas at Austin ²Army Research Laboratory ³Sony Al

Motivation

Deploying a classical autonomous navigation system in new environments requires adaptivity to variety of environments by tuning the parameters (max speed, etc).

Otherwise, it may produce suboptimal behaviors or even fail.

Motivation

Manually re-tuning those parameters requires expert knowledge. However, it's easy for human to provide interventions via teleoperation.

Related Work

Learning for Navigation

- End-to-end learning (Tai, et al., IROS'17; Zhang, et al., IROS'17)
- Learning for subsystems
 - Global planner (Yao, et al., IROS'19)
 - Local planner (Gao, et al., CoRL'17; Faust, et al., ICRA'18)
- Learning for components in subsystems
 - Cost function (Shiarlis, et al., ICRA'17), cost map (Luber, et al., IROS'12), ...
 - Planner parameters

Background

APPL: Adaptive Planner Parameter Learning

Use different human interactions to "tune" any navigation system.

- APPLD: APPL from human demonstrations (Xiao, et al., IROS'20)
- APPLR: APPL from reinforcement (Xu, et al., ICRA'21)

Contributions

- Use a few interventions rather than full demonstrations to focus on challenging scenarios.
- Use a **confidence-based** context classifier to generalize to unseen environments.

Procedures

1. Collect interventions.

Here we also consider different human concentration/expertise levels: Human supervisors that are not focused/experts may not recognize suboptimal behaviors and provide corresponding Type B interventions.

Procedures

1. Collect interventions.

2. Use black-box optimization to find navigation system parameters.

3. Train **Context Classifier with Confidence Measure** based on Evidential Deep Learning^[1].

3. Train **Context Classifier with Confidence Measure** based on Evidential Deep Learning^[1].

Trust classifier's prediction when it is confident.

Switch to the default parameter θ when the classifier is inconfident.

Real Experiment Setup

Robot: Clearpath Jackal (Velodyne Puck lidar)

Training Environment

Human Supervisor: an author (teleoperation via Xbox controller)

Unseen Environment

Real Experiment Results

Traversal Time in Training Environment

Default	Type A	Type A+B	Full Demo
134.0±60.6s	77.4±2.8s	$70.6 \pm 3.2s$	78.0±2.7s

Type A: APPLI learned from type A interventions (failures) only Type A+B: APPLI learned from both type A and type B interventions (suboptimal behaviors)

Traversal Time in Unseen Environment

Default	Type A	Type A+B	Full Demo
109.2±50.8s	$71 \pm 0.7s$	$59 \pm 0.7s$	$62.0 \pm 2.0s$

Real Experiment Results

Training Environment

Unseen Environment

Simulated Experiment Results with Real-World Interventions

generalizable.

Confidence is important when collected

interventions are not sufficiently

A: Type A interventions (failures)

DWA

12.5 -

APPLI

B: Type B interventions (suboptimal behaviors)

D: Demonstrations in non-challenging scenarios

APPLI

APPLI

(A+c) (A+B+D+c)(A+B+D) (A+B+c)

c: Use confidence measure in context predictor

Simulated Experiment Results with Real-World Interventions

A: Type A interventions (failures)

DWA

12.5

APPLI

B: Type B interventions (suboptimal behaviors)

APPLI

APPLI

(A+c) (A+B+D+c)(A+B+D) (A+B+c)

- D: Demonstrations in non-challenging scenarios
- c: Use confidence measure in context predictor

- Confidence is important when collected interventions are not sufficiently generalizable.
- Unnecessary demonstrations may not help as they may be suboptimal (worse than default navigation system).

Future works

- Can we use other human interactions that are easier to collect, e.g., evaluative feedback?
- Can we integrate different approaches in APPL framework?

Zizhao Wang¹, Xuesu Xiao¹, Bo Liu¹, Garrett Warnell², and Peter Stone^{1, 3}

Contact Information:

Zizhao Wang: <u>zizhao.wang@utexas.edu</u>

Xuesu Xiao: xiao@cs.utexas.edu

Link to the Paper: https://www.cs.utexas.edu/~xiao/papers/appli.pdf

Scan to access the paper