Курсовой проект по курсу дискретного анализа: Поиск ближайшего соседа

Выполнил студент группы 08-307 МАИ Сысоев Максим.

Условие

Дано множество точек в многомерном пространстве. В каждом запросе задается точка, Вам необходимо вывести номер ближайшей к ней точки из исходного множества в смысле простого евклидова расстояния. Если ближайших точек несколько, то выведите номер любой из них. Читать сразу все запросы и обрабатывать их одновременно запрещено.

Входные данные В первой строке задано два числа n и d (1 <= n <= 10^5 , 1 <= d <= 10) — количество точек в множестве и размерность пространства.

Каждая из следующих n строк содержит d целых чисел $x_{ij}(|x_{ij}| \le 10^8)$ — j-я координата i-й точки.

Далее следует целое число q $(1 \le q \le 10^6)$ — количество запросов.

Каждая из следующих q строк содержит d целых чисел $y_{ij}(|y_{ij}| \le 10^8)$ — j-я координата i-го запроса.

Выходные данные Для каждого запроса выведите в отдельной строке единственное число — индекс ближайшей точки из множества. Если таких несколько, выведите любую. Индексация точек множества начинается с 1.

Метод решения

Для решения задачи существуют два типа методов: точные и приближённые. В угоду задаче, был выбран точный метод, который хоть и работает медленее, но не подводит в результатах, что критично в рамках курсового проекта. Из точных методов выделяют два:

- 1) Полный перебор
- 2) k-d tree

Про полный перебор: Можно просто перебрать все объекты из обучающей выборки, посчитать для каждого из них расстояние до тестового объекта и затем найти минимум. Однако несмотря на то что сложность такого поиска линейная, она также зависит и от размерности пространства признаков. Иначе говоря, сложность будет (ND). Алгоритм поиска ближайших соседей часто используется в рекомендательных и поисковых системах, поэтому размерности N и D могут быть слишком большими, следовательно такая сложность не подходит. Было выбрано решение через k-d tree. Оно делит всё пространство на определённые участки, в которых и происходит поиск.

Для рассчёта расстояния между двумя точками существует множество метрик. Я выбрал две: Евклидово и Манхэтонское расстояния. В общем случае, это метрика Минского: $\rho(x,y) = \left(\sum_i |x_i - y_i|^p\right)^{1/p}$

 Γ де при p=1 получаем Манхэтонское расстояние, а при p=2 - Евклидово.

Манхэтонское выигрывает у Евклидового при больших размерностях в виду меньшей чувствительности к выбросам. Для размерностей d>=200 используется Манхэтонское, для меньших - Евклидово.

Поиск представляет собой обход дерева с некоторыми условиями:

- 1) Если node == nullptr return
- 2) Если расстояние от точки до текущей node меньше текущего минимума запоминаем и минимум, и минимальную точку.
- 3) Идти влево или вправо: если у точки запроса по текущему измерению меньше, чем node идём сначало влево, иначе вправо.
- 4) Когда посетили левое поддерево или правое: смотрим расстояние до bounding box и если оно меньше текущего минимального расстояния существует шанс, что там есть ближайшая точка. Иначе, там точно нет точки, которая ближе чем текущая ближайшая.

Описание программы

Выполнение лабораторной состояло из нескольких этапов:

- 1. Изучить алгоритм
- 2. Написать код
- 3. Написать Makefile
- 4. Протестировать программу

Тест производительности

Приведу несколько тестов. Для начала посмотрим зависимость от N - кол-во входных данных. Затем посмотрим на зависимость от \dim - размерность u, наконец, посмотрим на зависимость от q - кол-во запросов.

Первые три таблицы учитывают построение дерева и поиск в нём. Но, так как в классических задачах, таких как рекомендательные системы и информационный поиск, деревья можно не строить каждый раз (У нас есть заранее известные фильмы, либо вебстраницы. Деревья можно строить раз в некоторый промежуток времени, в оффлайне), то приведу также сравнительные тесты, когда оценивается только поиск в дереве против брутфорса.

Учитывается время построения дерева.

Dim = 2, q = 10

Method	$N = 10^3$	$N = 10^4$	$N = 10^5$	$N = 10^6$	$N = 10^7$
Bruteforce	3 ms	84 ms	603 ms	3493 ms	21985 ms
K-D-Tree	3 ms	69 ms	1645 ms	11073 ms	106226 ms

N = 1000, q = 10

Method	Dim = 2	Dim = 10	Dim = 100	Dim = 200	Dim = 500	Dim = 1000
Bruteforce	1 ms	7 ms	77 ms	148 ms	365 ms	694 ms
K-D-Tree	3 ms	9 ms	83 ms	151 ms	357 ms	723 ms

N = 1000, Dim = 2

Method	$q = 10^3$	$q = 10^4$	$q = 10^5$	$q = 10^6$	$q = 10^7$
Bruteforce	$189 \mathrm{\ ms}$	1921 ms	20118 ms	226458 ms	2261701 ms
K-D-Tree	11 ms	98 ms	917 ms	12896 ms	133130 ms

Из этих данных можно сделать следующие выводы:

- 1) Если запросов мало, а данных много лучше отдать предпочтение простому перебору. Однако, редко когда в реальном мире можно высказать предположение о малом кол-ве запросов.
- 2) Оба метода зависят линейно от размерности и работают одинаково, если два других параметра неизменны.
- 3) Поиск в дереве проходит намного быстрее перебора, даже у учётом постройки дерева.

Не учитывается время построения дерева.

Dim = 2, q = 10

Method	$N = 10^{3}$	$N = 10^4$	$N = 10^{5}$	$N = 10^6$	$N = 10^7$
Bruteforce	4 ms	37 ms	319 ms	2919 ms	25703 ms
K-D-Tree	0 ms	0 ms	0 ms	0 ms	1 ms

N = 1000, q = 10

Method	Dim = 2	Dim = 10	Dim = 100	Dim = 200	Dim = 500	Dim = 1000
Bruteforce	2 ms	9 ms	83 ms	204 ms	435 ms	1004 ms
K-D-Tree	0 ms	$7 \mathrm{ms}$	100 ms	174 ms	473 ms	999 ms

N = 1000, Dim = 2

Method	$q = 10^3$	$q = 10^4$	$q = 10^5$	$q = 10^6$	$q = 10^7$
Bruteforce	274 ms	2516 ms	24947 ms	318182 ms	2674481 ms
K-D-Tree	16 ms	123 ms	$1069 \mathrm{\ ms}$	14831 ms	122635 ms

Отсюда можно сделать вывод, что метод через k-d-tree в среднем работает почти всегда лучше, особенно когда речь идёт о обработке большого кол-ва запросов.

Сложность перебора можно оценить как: O(N * Dim * Q)

Сложность поиска в дереве*: O(Q * Dim * log N)

Сложность построения дерева*: O(N * Dim * log N)

* При условии, что дерево сбалансированное или что на вход не приходят данные, заставляющие дерево работать за O(n).

Дневник отладки

Ошибка WA на 2 тесте: Изменить условие выбора доп.обхода поддерева Ошибка TL на 4 тесте: Простой обход всего дерева - плохая идея. Считаем расстояние до bounding box, чтобы отсечь ненужные поддеревья

Выводы

Выбор в пользу этого алгоритма пал потому, что изучал машинное обучение и хотелось самостоятельно реализовать алгоритм kNN. В ходе выполнения изучил устройство k-d дерева, изучил множество метрик для измерения расстояния между двумя точками и реализовал неплохо масштабируемый код, который при желании можно расширять.