Глава VI **ФИЗИКА АТОМА И АТОМНОГО ЯДРА**

§ 19. Квантовая природа света и волновые свойства частиц

Работа выхода электронов из некоторых металлов дана в таблице 17 приложения.

19.1. Найти массу m фотона: а) красных лучей света ($\lambda = 700$ нм); б) рентгеновских лучей ($\lambda = 25$ пм); в) гамма-лучей ($\lambda = 1,24$ пм).

Решение:

Энергия фотона E = hv — (1), где $h = 6.62 \cdot 10^{-34}$ Дж·с — постоянная Планка, $v = \frac{c}{\lambda}$ — частота колебания. Здесь $c = 3 \cdot 10^8$ м/с — скорость света. Т. е. уравнение (1) можно записать $E = h\frac{c}{\lambda}$ — (2). С другой стороны, согласно формуле Эйнштейна $E = mc^2$ — (3). Приравнивая (2) и (3), получаем $h\frac{c}{\lambda} = mc^2$, откуда $m = \frac{h}{c\lambda}$. Подставляя числовые данные, получим: а) $m = 3.2 \cdot 10^{-36}$ кг; б) $m = 8.8 \cdot 10^{-32}$ кг; в) $m = 1.8 \cdot 10^{-30}$ кг.

19.2. Найти энергию ε , массу m и импульс p фотона, если соответствующая ему длина волны $\lambda = 1,6$ пм.

Имеем $E=h\frac{c}{\lambda}$; $m=\frac{h}{c\lambda}$ (см. задачу 19.1). Импульс фотонс $p=mc=\frac{h}{\lambda}$. Подставляя числовые данные, получим $E=1.15\cdot 10^{-13}$ Дж; $m=1.38\cdot 10^{-30}$ кг; $p=4.1\cdot 10^{-22}$ кг·м/с.

19.3. Ртутпая дуга имеет мощность $N=125\,\mathrm{Bt}$. Какое число фотонов испускается в единицу времени в излучении с длинами волн λ , равными: 612,1; 579,1; 546,1; 404,7; 365,5; 253,7 Hm^3 . Интенсивности этих линий составляют соответственно 2; 4; 4; 2,9; 2,5; 4% интенсивности ртутной дуги. Считать, что 80° в мощности дуги идет на излучение.

Решение:

Энергия излучения ртутной дуги $E=\eta Nt$, по условию t=1 с. Энергия одного кванта света $E_0=h\nu=h\frac{c}{\lambda}$. Пусть I — интенсивность линии (в процентах), тогда количество квантов можно определить по формуле: $n=\frac{IE}{E_0}=\frac{I\eta Nt\lambda}{hc}$.

Подставляя числовые данные, получим:

1)
$$n = \frac{0.02 \cdot 0.8 \cdot 125 \cdot 1 \cdot 6123 \cdot 10^{-10}}{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}} = 6.2 \cdot 10^{18}$$
; 2) $n = 1.2 \cdot 10^{17}$:

3)
$$n = 1.1 \cdot 10^{19}$$
; 4) $n = 5.9 \cdot 10^{18}$; 5) $n = 4.6 \cdot 10^{18}$;

6)
$$n = 5.1 \cdot 10^{18}$$
.

19.4. С какой скоростью v должен двигаться электрон, чтобы его кинетическая энергия была равна энергии фотона с длиной волны $\lambda = 520\,\mathrm{hm}$?

решение:

Кинетическая энергия электрона $E = \frac{mv^2}{2}$ — (1). Энергия фотона $E = hv = h\frac{c}{\lambda}$ — (2). Приравнивая правые части уравнений (1) и (2), получим $\frac{mv^2}{2} = h\frac{c}{\lambda}$, откуда $v = \sqrt{\frac{2hc}{m\lambda}}$. Подставляя числовые данные, получим $v = 9.2 \cdot 10^5$ м/с.

19.5. С какой скоростью v должен двигаться электрон, чтобы его импульс был равен импульсу фотона с длиной волиы $\lambda = 520 \,\text{hm}$?

Решение:

Импульс электрона $p_e = m_e v$ — (1). Импульс фотона $p = \frac{h}{\lambda}$ — (2) (см. задачу 19.2). Приравнивая правые части

уравнений (1) и (2), получим $m_e v = \frac{h}{\lambda}$, откуда $v = \frac{h}{\lambda m_e}$.

Подставляя числовые данные, получим $v = 1.4 \cdot 10^3$ м/с.

19.6. Какую энергию ε должен иметь фотон, чтобы его масса была равна массе покоя электрона?

Решение:

Энергия фотона $E=mc^2$. Подставляя в эту формулу значения массы покоя электрона, получим $E=81\cdot 10^{-15}\,{\rm Дж}$ или $E=510\cdot 10^3\,{\rm pB}$.

19.7. Импульс, перспосимый монохроматическим пучком фотонов через площадку $S=2\,\mathrm{cm}^2$ за время $t=0.5\,\mathrm{min}$, равен $p=3\cdot 10^{-9}\,\mathrm{kr}\cdot\mathrm{m}^2\mathrm{c}$. Найти для этого пучка энергию E, падающую на елиницу плошади за единицу времени.

Энергия и импульс фотона связаны соотношением E = pc. За единицу времени на единицу площади будет падать. энергия $E_1 = \frac{pc}{St} = 150 \, \text{Дж/(c·м}^2)$.

19.8. При какой температуре T кинетическая энергия молекулы двухатомного газа будет равна энергии фотона с длиной волны $\lambda = 589 \, \mathrm{mm}$?

Решение:

Кинетическая энергия молекулы двухатомного газа $W=\frac{5}{2}kT$. Кинетическая энергия фотона $\varepsilon=h\nu=h\frac{c}{\lambda}$. По

условню
$$W=\varepsilon$$
 или $\frac{5}{2}kT=h\frac{c}{\lambda}$, откуда $T=\frac{2hc}{5k\lambda}=9800$ К.

19.9. При высоких энергиях трудно осуществить условия для изменения экспозиционной дозы рентгеновского и гамма-излучений в рентгенах, поэтому допускается применение рентгена как единицы дозы для излучений с энергией квантов $\varepsilon = 3 \text{ МэВ}$. До какой предельной длины волны λ рентгеновского излучения можно употреблять рентген?

Решение:

Эпергия квантов определяется соотношением E = hv

$$=hrac{c}{\lambda}$$
. Отсюда предельная длина волны равал

$$\lambda = \frac{hc}{E} = 0.41 \cdot 10^{-12} \text{ m}.$$

19.10. Найти массу m фотона, импульс которого равен изинульсу молекулы водорода при температуре $t = 20^{\circ}$ С. Скорос молекулы считать равной средней квадратичной скорости.

Решение:

Импулье фотона $p_1=m_1c$, где m_1 — масса фотона, с скорость света в вакууме. Импульс молекулы водоро 13 460

$$p_2=m_2\sqrt{v^2}$$
 , где m_2 — масса молекулы водорода, $\sqrt{v^2}=\sqrt{\frac{3kT}{m_2}}$ — ередняя квадратичная скорость мелекулы водорода. По условию $p_1=p_2$ или $m_1c=m_2\sqrt{\frac{3kT}{m_2}}$ — (1). Массу молекулы водорода можно определить из соотношения $m_2=\frac{\mu}{N_\Lambda}$ — (2), где μ — моляриая масса водорода, N_Λ — число Авогадро. Подставляя (2) в (1), найдем $m_1c=\sqrt{\frac{3kT\mu}{N_\Lambda}}$, откуда $m_1=\sqrt{\frac{3kT\mu}{c^2N_\Lambda}}$. Подставляя числовые данные, получим $m_1=2.1\cdot 10^{-32}\,\mathrm{kf}$.

19.11. В работе А. Г. Столетова «Актино-электрические исследования» (1888 г.) впервые были установлены основные законы фотоэффекта. Один из результатов его опытов был сформулирован так: «Разряжающим действием обладают лучи самой высокой преломляемости с длиной волны менее 295 им». Найти работу выхода А электрона из металла, с которым работал А. Г. Столетов.

Решение:

Согласно закону сохранения энергии $hv = A + \frac{mv^2}{2}$. Условие возникновения фотоэффекта: hv = A или $v = \frac{A}{h}$ — (1). Поскольку $v = \frac{c}{\lambda}$, то из (1) получим $A = \frac{hc}{\lambda}$ — (2). По условию $\lambda = 295 \cdot 10^{-9}$ м, тогда из (2) найдем A = 4.2 эВ.

19.12. Найти длину волны $\hat{\lambda}_0$ света, соответствующую красной границе фотоэффекта, для лития, натрия, калия и цезия.

Работа выхода электрона из металла, если его скорост... v=0, равиа $A=hv_0=h\frac{c}{\lambda_0}$, где λ_0 — красная гранизас фотоэффекта. Таким образом, $\lambda_0=\frac{hc}{4}=5.17\cdot 10^{-7}$ м.

19.13. Длина волны света, соответствующая красной грани протоэффекта, для искоторого метапла $\lambda_0 = 275$ нм. Найти мин. -- мальную эпергию фотона, вызывающего фотоэффект.

Решение:

Минимальная энергия фотона должна быть равна рабу с выхода электрона, т. е. $E_{mm}=A=\frac{hc}{\lambda_0}$. Подставляя чис. - вые данные, получим $E_{mn}=7.2\cdot 10^{-19}$ Дж или $E_{mm}=4.5$ (с.

19.14. Длина волны света, соответствующая красной гравите фотоэффекта, для некоторого металла $\lambda_0 = 275$ нм. Найти рабим выхода \mathcal{A} электрона из металла, максимальную скорость электронов, вырываемых из металла светом с длиной волья $\lambda = 180$ нм, и максимальную кинетическую энергию F. электронов.

Решение:

Работа выхода электрона $A = \frac{hc}{\lambda_0} = 7.2 \cdot 10^{-19} \, \text{Дж. Уравнение}$

Эйнштейна для фотоэффекта: $h\nu = A + \frac{mv_{max}^2}{2}$ — (1). . ::

 $\frac{mv_{a,m}^2}{2}$ — максимальная кинстическая энергня выста

тающего электрона. Из (1) имеем $\frac{hc}{\lambda} - A = \frac{mv_{mos}^2}{2}$, отку з

максимальная скорость электронов $v_{mex} = \sqrt{\frac{2(hc/\lambda - A)}{m}}$.

Подставляя числовые данные, получим $v_{max} = 9 \cdot 10^5$ м/с. Максимальная кинстическая эпергия электронов равна $W_{max} = \frac{mv^2}{2} = 3.7 \cdot 10^{-19}$ Дж.

19.15. Найти частоту ν света, вырывающего из металла электроны, которые полностью задерживаются разностью потенциалов U=3 В. Фотоэффект сжимается при частоте света $\nu_0=6\cdot 10^{14}$ Ги. Найти работу выхода A электрона из металла.

Решение:

Работа выхода электрона $A = h v_0 = h \frac{c}{\lambda_0} = 2.48$ эВ. Согласно уравнению Эйнштейна для внешнего фотоэффекта $h v = A + \frac{m v^2}{2}$. Если электроны полностью задерживаются разностью потенциалов U, то по закону сохранения энергии $eU = \frac{m v^2}{2}$. Тогда h v = A + eU, откуда $v = \frac{A + eU}{h} = 13.2 \cdot 10^{14} \, \Gamma$ ц.

19.16. Найти задерживающую разность потенциалов U для электронов, вырываемых при освещении калия светом с длиной волны $\lambda = 330$ нм.

Решение:

Имеем $h_V = A + eU$ (см. задачу 19.15) или $h\frac{c}{\lambda} = A + eU$ — (1). Работа выхода электрона из калия A = 2 эB = 463

$$=3.2\cdot 10^{-19}\,\mathrm{Дж}$$
 (см. таблицу 17). Из (1) найдем $U=\frac{hc\,/\,\lambda-A}{a}=1.75\,\mathrm{B}.$

19.17. При фотоэффекте с платиновой поверхности электроны полностью задерживаются разностью потенциалов $U=0.8~\mathrm{B}$. Найги длицу волны λ применяемого облучения и предельную длину волны λ_0 , при которой еще возможен фотоэффект.

Решение:

Имеем $h\frac{c}{\lambda}=A+eU$, откуда $\lambda=\frac{hc}{A+eU}=204$ нм. Предельную длину волны λ_0 , при которой еще возможен фото-эффект, найдем из соотношения $A=hv_0=h\frac{c}{\lambda_0}$, откула $\lambda_0=\frac{hc}{\lambda_0}=234$ нм.

19.18. Фотоны с энергией $\varepsilon = 4,9$ эВ вырывают электроны из металла с работой выхода A = 4,5 эВ. Найти максимальный импульс p_{max} , передаваемый поверхности металла при вылете каждого электрона.

Решение:

Согласно закону сохранения энергии $\varepsilon = A + \frac{mv^2}{2} = A + \frac{p^2}{2m}$, откуда $p = \sqrt{2m(\varepsilon - A)} = 3.4 \cdot 10^{-25} \, \mathrm{kr} \cdot \mathrm{m/c}$.

19.19. Найти постоянную Планка h, если известно, 940 электроны, вырываемые из металла светом с частотой $v_1 = 2.2 \cdot 10^{-5} \, \Gamma$ и, полностью задерживаются разностью полен-464

циалов $U_1 = 6.6 \,\mathrm{B}$, а вырываемые светом с частотой $V_2 = 4.6 \cdot 10^{15} \,\Gamma\mathrm{u}$ — разностью потенциалов $U_2 = 16.5 \,\mathrm{B}$.

Решение:

Имеем
$$hv_1 = A + eU_1$$
 — (1); $hv_2 = A + eU_2$ — (2). Вычитая (1) из (2), получим $h(v_2 - v_1) = e(U_2 - U_1)$, откуда $h = \frac{U_2 - U_1}{v_2 - v_1} = 6.6 \cdot 10^{-34}$ Дж·с.

19.20. Вакуумный фотоэлемент состоит из центрального катода (вольфрамового шарика) и анода (внутренней поверхности посеребренной изнутри колбы). Контактная разность потенциалов между электродами $U_0 = 0.6$ В ускоряет вылетающие электроны. Фотоэлемент освещается светом с длиной волны $\lambda = 230$ нм. Какую задерживающую разность потенциалов U надо приложить между электродами, чтобы фототок упал до нуля? Какую скорость v получат электроны, когда они долетят до анода, если не прикладывать между катодом и анодом разности потенциалов?

Решение:

Согласно закону сохранения энергии $eU=h\frac{c}{\lambda}-A+eU_0$ (см. задачу 19.15), откуда $U=\frac{hc/\lambda-A}{e}+U_0$. Подставляя числовые данные, получим U=1.5 В. Чтобы фототок упал до нуля, задерживающая разность потенциалов должна удовлетворять условию $eU=\frac{mv^2}{2}$, откуда $v=\sqrt{\frac{2eU}{m}}=\frac{\pi}{2}$

19.21. Между электродами фотоэлемента предыдущей задачи приложена задерживающая разность потенциалов $U=1\,\mathrm{B}$. При какой предельной длине волны λ_0 падающего на катод света начинается фотоэффект?

Имеем $U_e = h \frac{c}{\lambda_0} - A$, откуда $\lambda_0 = \frac{hc}{e\,U + A}$. Подставляя числовые данные, получим $\lambda_0 = 226$ нм.

19.22. На рисунке показана часть прибора, с которым П. Н. Лебедсв производил свои опыты по измерению светового давления. Стекляниая крестовина, подвещениая на тонкой пити. заключена в откачанный сосуд и имеет на концах два легких кружка пз платиновой фольги. Один кружок зачернен, другой оставлен блестящим. Направляя свет на один из кружков и измеряя угол поворота нити (для зеркального отсчета служит зеркальце S), можно определить световое давление. Найти световое давление P и световую эпергию E, падающую от дуговой лампы в единицу времени на единицу площади кружков. Пра освещении блестящего кружка отклонение зайчика $a = 76 \, \mathrm{MM}$ по шкале, удаленной от зеркальца на расстояние b = 1200 мм. Диаметр кружков d = 5 мм. Расстояние от центра кружка до осн вращения $l = 9.2 \, \text{мм}$. Коэффициент отражения света от биестищего кружка $\rho = 0.5$. Постоянная момента кручения низи $(M = k\alpha) k = 2.2 \cdot 10^{-11} \text{ H} \cdot \text{м/рад}.$

Решение:

Имеем $P = \frac{F}{S}$ — (1), где F — сила светового давления на кружок площадью S . Но $F = \frac{M}{l} = \frac{k\alpha}{l}$ — (2), где M — момент кручения нити, l — расстояние от центра кружка до оси вращения. α — угол поворота кружка. Зная, что привовороте зеркальца на угол α отраженный луч повернется на угол 2α .

найдем: $tg2\alpha = \frac{a}{b}$. Для малых углов $tg2\alpha \approx 2\alpha = \frac{a}{b}$. Отсюда $\alpha = \frac{a}{2b}$ — (3). Решая совместно уравнения (1) — (3), получим $P = \frac{ka}{2lbS} = 3,85 \cdot 10^{-6}$ Па. Световая энергия $E = \frac{Pc}{1+a} = -770$ Дж/(с·м²).

19.23. В одном из опытов П. Н. Лебедева при падении света на зачерненный кружок ($\rho=0$) угол поворота нити был равен $\alpha=10'$. Найти световое давление P и мощность N падающего света. Данные прибора взять из условия задачи 19.22.

Решенис:

Имеем $p=\frac{k\alpha}{lS}=\frac{4k\alpha}{l\pi d^2}$ (см. задачу 19.22). Подставляя числовые данные, получим $p=3,6\cdot 10^{-7}$ Н/м². С другой стороны, световое давление $p=\frac{E}{c}(1+\rho)$. По условию коэффициент отражения света $\rho=0$, тогда $p=\frac{E}{c}$ — (1), где E — количество энергии, падающей на единицу поверхности в единицу времени. Тогда мощность N света, надающего на площадь S кружка, найдем из соотношения $N=E\cdot S$. Из (1) имеем E=pc, кроме того, $S=\frac{\pi d^2}{4}$, отсюда $N=\frac{pc\cdot\pi d^2}{4}=2,1\cdot 10^{-3}$ Вт.

19.24. В одном из опытов П. Н. Лебелева мощность падающего на кружки монохроматического света ($\lambda=560$ нм) была равна N=8,33 мВт. Найти число фотонов I, падающих в единицу времени на единицу площади кружков, и импульс силы $F\Delta\tau$, сообщенный единице площади кружков за единицу времени, для

значений ρ , равных: 0; 0,5; 1. Данные прибора взять из условия задачи 19.22.

Решение:

Найдем концентрацию фотонов в пучке света, падающем на кружок, из соотношения $n = \frac{\omega}{c}$ — (1), где ω — объемная плотность энергии, ε — энергия одного фотона. Поскольку $\omega = \frac{E}{c} = \frac{N}{Sc}$, а $\varepsilon = h\frac{c}{2}$, то выражение (1) примет вид $n = \frac{N\lambda}{Sc^2h}$ — (2). Площадь кружка $S = \frac{\pi d^2}{A}$ $=19.6\cdot 10^6\,{
m m}^2$. Число I фотонов, падающих за единицу времени на единицу площади, найдем из соотношения $I = \frac{N}{G}$, где N — число фотонов, падающих за время t на поверхность площадью S. Ho N = ncSt, следовательно, $I = \frac{ncSt}{St} =$ = nc. С учетом (2) получим $I = \frac{N\lambda}{S_0L} = 1.2 \cdot 10^{21} \, \text{c}^{-1} \cdot \text{м}^{-2}$. Импульс силы $F\Delta \tau$, сообщенный единице площади кружков за единицу времени, будет численно равен световому давлению p, т. е. $F\Delta \tau = p = \frac{N}{S_c} (1 + \rho)$. Подставляя числовые данные, получим: a) $F_1 \Delta \tau = 1.4 \cdot 10^{-6} \text{ H} \cdot \text{c/m}^2$; б) $F_2 \Delta \tau = 2.13 \times 10^{-6} \text{ H} \cdot \text{c/m}^2$ $\times 10^{-6} \,\mathrm{H\cdot c/m^2}$; B) $F_3 \Delta \tau = 2.84 \cdot 10^{-6} \,\mathrm{H\cdot c/m^2}$.

19.25. Русский астроном Ф. А. Бредихин объяснил форму кометных хвостов световым давлением солнечных лучей. Найти световое давление P солнечных лучей на абсолютно черное тело, помещенное на таком же расстоянии от Солнца, как и Земля. Какую массу m должна иметь частица в кометном хвосте, помещенная на этом расстоянии, чтобы сила светового давления на нее уравновешивалась силой притяжения частицы Солицем?

Площадь частицы, отражающую все падающие на нее лучи, считать равной $S = 0.5 \cdot 10^{-12} \,\mathrm{m}^2$. Солнечная постоянная $K = 1.37 \,\mathrm{kBt/m}^2$.

Решение:

Световое давление $P = \frac{E}{c}(1+\rho)$. В условиях данной задачи

$$E = K$$
; $\rho = 0$. Тогда $P = \frac{K}{c} = 4.6 \cdot 10^{-6} \, \Pi$ а. Сила светового давления $F_1 = PS$, сила притяжения частицы Солицем

$$F_2 = G \frac{mM}{R^2}$$
, где M — масса Солнца. По условию $F_1 = F_2$,

т. е.
$$PS = G \frac{mM}{R^2}$$
, откуда масса частицы $m = \frac{PSR^2}{GM}$. Под-

ставляя числовые данные, получим $m = 3.9 \cdot 10^{-16}$ кг.

19.26. Найти световое давление P на стенки электрической **100-ватт**ной лампы. Колба лампы представляет собой сферический сосуд радиусом r=5 см. Стенки лампы отражают 4% и пропускают 6% падающего на них света. Считать, что вся потребляемая мощность идет на излучение.

Решение:

По определению светового давления
$$P = \frac{E}{c}(1+\rho)$$
 — (1),

где $E = \frac{N}{S}$ — (2) — энергия, падающая на единицу поверхности за единицу времени, N — мощность лампы, $S = 4\pi^{-2}$ — (3) — площадь поверхности колбы, ρ — коэффициент отражения света. Подставляя (3) в (2), полу-

чаем
$$E = \frac{N}{4\pi r^2}$$
 — (4), затем, подставляя (4) в (1). оконча-

тельно находим
$$P = \frac{N(1+\rho)}{4\pi r^2 c} = 11,03 \text{ мкПа.}$$

19.27. На поверхность площадыо $S=0.01\,\mathrm{M}^2$ в единицу времени падает световая энергия $E=1.05\,\mathrm{Дж/c}$, найти световое давление P в случаях, когда поверхность полностью отражает и полностью поглощает падающие на нее лучи.

Решение:

Полностью поглощает лучи черная поверхность, а полностью отражает — зеркальная. При падении на черныю поверхность фотон с энергией E_0 поглощается, передавая поверхности импульс $\frac{E_0}{c}$. За время Δt поверхность $\epsilon_{0.10}$ щадью S поглотит излучение с энергией $E = IS\Delta t$ — (1), содержащее $\frac{E}{F}$ фотонов. Переданный поверхности импульс $\frac{E}{E_0} \frac{E_0}{c} = \frac{IS\Delta t}{c}$; с другой стороны, он равен $F\Delta t = P_1 S\Delta t$. Отсюда $P_1 = \frac{I}{C}$. Из (1) найдем, учитывая, что по условию $\Delta t = 1$ с, $I = \frac{E}{S}$, тогда $P_1 = \frac{E}{S_C} = 0.35 \cdot 10^{-9}$ Па. При отражении от зеркальной поверхности фотоны изменяют свой импульс на противоположный. При этом каждый фотон передает поверхности импульс $\frac{2E_0}{c}$; таким образом, давление света на зеркальную поверхность вдаое больше, чем на черную. Т. е. $P_2 = 2\frac{E}{S_2} = 0.7 \cdot 10^{-6} \, \Pi$ а.

19.28. Монохроматический пучок света ($\lambda=490\,\mathrm{hm}$), из дая по пормали к поверхности, производит световое давление $P=4.9\,\mathrm{mk}\Pi a$. Какое число фотонов I падает в единицу вред сий на единицу площади этой поверхности? Коэффициент ображения света $\rho=0.25$.

Воспользуемся формулой из задачи 19.24, выражающей число фотонов, падающих в единицу времени на площадь $S: I = \frac{N\lambda}{Sch}$. Здесь $\frac{N}{S}$ — мощность света, падающего на единицу площади, причем $\frac{N}{S} = E = \frac{Pc}{1+\rho}$ (см. задачу 19.23). Отсюда $I = \frac{P\lambda}{h(1+\rho)} = 2.9 \cdot 10^{21} \, \mathrm{c}^{-1} \cdot \mathrm{m}^{-2}$.

19.29. Рентгеновские лучи с длиной волны $\lambda_0 = 70.8$ пм испытывают комптоновское рассеяние на парафине. Найти длину волны λ рентгеновских лучей, рассеянных в направлениях: a) $\varphi = \frac{\pi}{2}$; б) $\varphi = \pi$.

Решение:

Изменение длины волны рентгеновских лучей при комптоновском рассеянии определяется формулой $\Delta \lambda = \frac{h}{mc}(1-\cos\varphi)$, где φ — угол рассеяния, m — масса электрона. Отсюда $\lambda = \lambda_0 + \Delta \lambda = \lambda_0 + \frac{h}{mc}(1-\cos\varphi)$. Подставляя числовые данные, получим: а) $\lambda = 73,22 \cdot 10^{-12}$ м; $\delta > \lambda = 75,6 \cdot 10^{-12}$ м.

19.30. Какова была длина волны λ_0 рентгеновского излучения, если при комптоновском рассеянии этого излучения графитом под углом $\varphi = 60^\circ$ длина волны рассеянного излучения оказалась равной $\lambda = 25,4$ пм?

Имеем $\lambda = \lambda_0 + \frac{h}{mc} (1 - \cos \varphi)$ (см. задачу 19.29), отсюда $\lambda_0 = \lambda - \frac{h}{mc} (1 - \cos \varphi)$. Подставляя числовые данные, получим $\lambda_0 = 24, 2 \cdot 10^{-12}$ м.

19.31. Рентгеновские лучи с длиной волны $\lambda_0 = 20$ пм непытывают комптоновское рассеяние под углом $\varphi = 90^\circ$. Найти изменение $\Delta\lambda$ длины волны рентгеновских лучей при рассеянии, а также энергию W_e и импульс электрона отдачи.

Решение:

Кинетическая энергия электрона равна энергии, потерянной фотоном: $W_e = \frac{hc}{\lambda_0} - \frac{hc}{\lambda_0 + \Delta\lambda} = \frac{hc\Delta\lambda}{\lambda_0(\lambda_0 + \Delta\lambda)}$. Подставляя числовые данные, получим $W_e = 10.56 \cdot 10^{-16}$ Дж = $6.6 \cdot 10^3$ эВ. Импульс и кинетическая энергия электрона связаны соотношением $W = \frac{p^2}{2m}$, откуда $p = \sqrt{2mW} = 4.4 \cdot 10^{-23}$ кг·м/с.

19.32. При комптоновском рассеянии энергия падающего фотона распределяется поровну между рассеянным фотоном и электроном отдачи. Угол рассеяния $\varphi = \frac{\pi}{2}$. Найти энергию W и импульс P рассеянного фотона.

Решение:

Энергия падающего фотона $W_0=\frac{hc}{\lambda_0}$. Энергия рассеянного фотона $W=\frac{hc}{\lambda_0+\Delta\lambda}$. Кинетическая энергия электрона ог-

дачи
$$W_e = \frac{hc}{\lambda_0} - \frac{hc}{\lambda_0 + \Delta\lambda} = \frac{hc\Delta\lambda}{\lambda_0(\lambda_0 + \Delta\lambda)}$$
. По условию $W_e = \frac{W_0}{2}$, т. е. $\frac{hc\Delta\lambda}{\lambda_0(\lambda_0 + \Delta\lambda)} = \frac{hc}{2\lambda_0}$. Отсюда $\frac{hc}{\lambda_0 + \Delta\lambda} = W = \frac{hc}{2\Delta\lambda}$, где $\Delta\lambda = \frac{h}{mc}(1-\cos\varphi) = \frac{h}{mc}$. Окончательно имеем $W = \frac{mc^2}{2}$, т. е. энергия рассеянного фотона равна половине энергии покоя электрона. Подставляя числовые данные, получим $W = 41 \cdot 10^{-15}$ Дж = $0.26 \cdot 10^6$ эВ. Импульс фотона $p = \frac{W}{c} = \frac{W}{c}$

19.33. Энергия рентгеновских лучей $\varepsilon = 0,6$ МэВ. Найти энергию W_e электрона отдачи, если длина волны рентгеновских лучей после комптоновского рассеяния изменилась на 20%.

Решение:
Кинетическая энергия электрона отдачи
$$W_e = \frac{hc\Delta\lambda}{\lambda_0(\lambda_0 + \Delta\lambda)}$$
 (см. задачу 19.31). Энергия рентгеновских лучей $\varepsilon = \frac{hc}{\lambda_0}$,
т. е. можно записать, что $W_c = \varepsilon \frac{\Delta\lambda}{\lambda_0 + \Delta\lambda}$ — (1). По условию $\Delta\lambda = 0.2\lambda_0$; $\lambda_0 + \Delta\lambda = 1.2\lambda_0$, тогда из (1) получим $W = 0.17\varepsilon = 0.1$ МэВ.

19.34. Найти длину волны де Бройля λ для электронов, прошедших разность потенциалов $U_1=1\,\mathrm{B}$ и $U_2=100\,\mathrm{B}$.

Решение:

 $= 13.7 \cdot 10^{-23} \text{ Kr·m/c}.$

Пучок элементарных частиц обладает свойством плоской волны, распространяющейся в направлении перемещения этих частиц. Длина волны λ , соответствующая этому пуч-

ку, определяется соотношением де Бройля $\lambda = \frac{h}{h} \pm \frac{h}{h}$

 $v_1 = 6 \cdot 10^5$ м/с, при $U_2 = 100$ В получим $v_2 = 6 \cdot 10^6$ м с В первом случае для нахождения длины волны де Бретия можно применить уравнение (1), во втором случае дучие использовать уравнение (2). Подставляя числовые данные, получим $\lambda_1 = 1.22 \cdot 10^{-9}$ м; $\lambda_2 = 0.122 \cdot 10^{-9}$ м.

19.35. Решить предыдущую задачу для пучка протонов.

Решение:

Найдем скорость протонов, прошедших разность позыциалов U_1 и U_2 . По формуле (3) из предыдущей задати получим $v_1=1.38\cdot 10^4$ м/с; $v_2=1.38\cdot 10^5$ м/с. Следовательно, в обоих случаях можно использовать формулу $\lambda=\frac{7}{27V}$. Подставляя числовые данные, получим $\lambda_1=29\cdot 10^{-12}$ м. $\lambda_2=2.9\cdot 10^{-12}$ м.

19.36. Найти длину волны де Бройля λ для; а) элек голь, движущегося со скоростью $v=10^6\,\mathrm{M}^2\mathrm{c}$; б) атома водоро d_{c} очежущегося со средней квадратичной скоростью при темпер 19.73

T = 300 K; в) шарика массой m = 1 г, движущегося со скоростью y = 1 см/c.

Решение:

Длина волны де Бройля опредсляется соотношением $\lambda = \frac{h}{mv}$ — (1) для v << c или соотношением $\lambda = \frac{h}{m_0 v} \sqrt{1-\beta^2}$ — (2) для скоростей v, соизмеримых со скоростью света c. а) Воспользовавшись уравнением (2), найдем $\lambda = 730 \cdot 10^{-12}$ м. б) Скорость атома водорода $\sqrt{v^2} = \sqrt{\frac{3RT}{\mu}} = 2735$ м/с, т. е. v << c. По формуле (1) найдем $\lambda = \frac{h}{mv} = \frac{hV_A}{\mu V} = 145 \cdot 10^{-12}$ м. в) Поскольку скорость шарика v << c, то по формуле (1) найдем $\lambda = 6.6 \cdot 10^{-29}$ м,

19.37. Найти длину волны де Бройля λ для электрона, имеющего кинетическую энергию: а) $W_1 = 10 \text{ кэB}$; б) $W_2 = 1 \text{ МэВ}$.

т. е. волновые свойства шарика обнаружить исвозможно.

Решепне:

Имеем
$$\lambda = \frac{h}{\sqrt{2Wm_0 + W^2/c^2}}$$
 (см. задачу 19.34). Под-

ставляя числовые данные, получим: a) $\lambda = 12.3 \cdot 10^{-12} \,\mathrm{m};$ 6) $\lambda = 0.87 \cdot 10^{-12} \,\mathrm{m}.$

19.38. Заряженная частица, ускоренная разностью потенциалов $U = 200\,\mathrm{B}$, имеет длину волны де Бройли $\lambda = 2.02\,\mathrm{nm}$. Найти массу m частицы, если ее заряд численно равен заряду электрона.

Pemenne:

Длина волны де Бройля определяется соотношением $\lambda = \frac{h}{\sqrt{2Wm_0 + W^2/c^2}}$ — (1), где W = eU — (2) — энергия частицы, m_0 — масса покоя частицы. Из (2) най кум $W = 3.2 \cdot 10^{-17}$ Дж. Поскольку W << c, величиной $\frac{W^2}{c^2}$ в уравнении (1) можно пренебречь и оно примет вид $\lambda = \frac{h}{\sqrt{2Wm}}$, откуда $m = \frac{h^2}{2W\lambda^2} = 1.67 \cdot 10^{-27}$ кг.

19.39. Составить таблицу значений длин воли де Бройда λ для электрона, движущегося со скоростью ν , равной: $2 \cdot 10^8$; $2.2 \cdot 10^8$; $2.4 \cdot 10^8$; $2.6 \cdot 10^8$; $2.8 \cdot 10^8$ м/с.

Решение:

Воспользовавшись формулой для нахождения длины волны де Бройля $\lambda = \frac{h}{m_0 v} \sqrt{1 - \frac{v^2}{c^2}}$, составим таблицу.

v. 10 ⁸ m'c	2,0	2.2	2,4	2,6	2,8
2. HM	2.7	2,25	1.82	1.39	0,925

19.40. α -частица движется по окружности раднуем $r=8.3\,\mathrm{MM}$ в однородном магнитном поле, напряженность в оброго $H=18.9\,\mathrm{kA/M}$. Найти длину волны де Бройля $\lambda=38$ α -частицы.

Решение:

На α -частицу, движущуюся в однородном магии поле. действует сила Лоренца $F_{\alpha} = qvB$ — (1), кото сила является центростремительной силой и сообщает часть в

нормальное ускорение $a_n = \frac{v^2}{r}$ — (2). По второму закону Ньютона $F_n = \frac{mv^2}{r}$ — (4). Приравнивая правые части уравнений (1) и (4), получаем $qvB = \frac{mv^2}{r}$, откуда скорость α -частицы $v = \frac{qBr}{m}$ — (5). Магнитная индукция связана с напряженностью магнитного поля соотношением $B = \mu\mu_0H$ — (6), причем для воздуха магнитная проницаемость $\mu = 1$. Подставляя (6) в (5), получаем $v = \frac{q\mu_0Hr}{m}$ — (7). Длина волны де Бройля $\lambda = \frac{h}{mv}$ — (8). Подставляя (7) в (8), окончательно находим $\lambda = \frac{h}{q\mu_0Hr} = 13.11\,\mathrm{nm}$.

19.41. Найти длину волны де Бройля λ для атома водорода, движущегося при температуре $T=293\,\mathrm{K}$ с наиболее вероятной скоростью.

Решение:

Наиболее вероятная скорость движения атома водорода $v_{\rm s} = \sqrt{\frac{2kT}{...}}$ — (1), где $k = 1.38 \cdot 10^{-23} \, \text{Дж/K}$ — постоянная

Больцмана. Длина волны де Бройля $\lambda = \frac{h}{mv_{_{\rm B}}}$ — (2). Под-

ставляя (1) в (2), получаем $\lambda = \frac{h}{\sqrt{2kT/m}} = 180 \text{ пм}.$