Lagrangian density $ -t_1 \omega_{,\alpha}^{ al} \omega_{\kappa ,\alpha}^{ k-\frac{1}{3}} t_1 \omega_{,\kappa ,\lambda}^{ kA} \omega_{\kappa ,\lambda}^{ l+\frac{1}{3}} t_2 \omega_{,\kappa ,\lambda}^{ kA} \omega_{\kappa ,\lambda}^{ l+\frac{1}{3}} t_1 \omega_{\kappa ,\lambda}^{ kA}, \\ \frac{1}{3} t_2 \omega_{\kappa ,\lambda}^{ l} \omega_{\kappa ,\lambda}^{ k-\frac{1}{3}} t_1 \omega_{\kappa ,\lambda}^{ kA} + f^{\alpha \beta} t_{\alpha \beta } + \omega^{\alpha \beta \chi} \partial_{\alpha \beta \chi} + 2 r_1 \partial_{\mu} \omega_{\kappa}^{ k} \partial_{\mu} \omega_{\alpha}^{ kA} - \frac{1}{3} t_2 \omega_{\kappa ,\lambda}^{ kA} + \frac{1}{3} t_3 \omega_{\kappa ,\lambda}^{ kA} + 2 r_1 \partial_{\mu} \omega_{\kappa}^{ kA} \partial_{\kappa ,\lambda}^{ kA} + 2 r_1 \partial_{\mu} \omega_{\kappa}^{ kA} \partial_{\kappa ,\lambda}^{ kA} + 2 r_1 \partial_{\mu} \omega_{\kappa}^{ kA} \partial_{\kappa ,\lambda}^{ kA} + 2 r_1 \partial_{\mu} \omega_{\kappa}^{ kA} + 2 r_1 \partial_$
$rac{8}{2}r_1\partial^eta\omega_{\lambda}{}^{\lambdalpha}\partial_\lambda\omega_{lpha B}{}^{\prime}$ - $2r_1\partial_lpha\omega_{\lambda}{}^{lpha}\partial^\lambda\omega^{eta\kappa}$ + $2r_1\partial_eta\omega_{\lambda}{}^{lpha}\partial^\lambda\omega^{eta\kappa}$
מ איי מיי שאיי בי שאיי בי איי

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$\omega_{1^{-}}^{#2}{}_{lpha}f_{1^{-}}^{#1}{}_{lpha}f_{1^{-}}^{#2}{}_{lpha}$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\imath}\ k\ t_1$
$f_{1}^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \vec{i} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)\Bigg \frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_{1}^{#1} + \alpha \beta$	$\omega_1^{#2} + \alpha \beta$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}$ †	$-i\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	t_2

$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_2^{\#1}_{+}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2+}^{#1} + \alpha \beta$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\!\#1}$ †	0	0	0	$\frac{1}{t_2}$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	16

assive particle			r ₁ <	Uni
ole residue:	$-\frac{1}{r_1} > 0$		$< 0 && t_1$	Unitarity
larisations:	5			
quare mass:	$-\frac{t_1}{2r_1} > 0$		> 0	conditions
oin:	2			ons
rity:	Odd			

Unitarity conditions	(No massless particles)
	les)