Rapport CYS

04 février, 2020

Contents

Etude des données W1_version1

Les données

```
CYS = read.csv("W1_version1.csv")
head(CYS)
         prénom
                   Semestre Filière snapshot.1 snapshot.2 Snapshot.2...4m CYS.S3
## 1
         YASSIR S3 2018-19
                                 EEA
                                           4.75
                                                       5.00
## 2
         CHEIMA S3 2018-19
                                 EEA
                                           3.00
                                                       3.00
                                                                                non
## 3 RAZA AKRAM S3 2018-19
                                 EEA
                                           3.50
                                                       3.75
                                                                                non
      ANGELIQUE S3 2018-19
                                 EEA
                                           8.50
                                                      10.50
                                                                                non
## 5
          DIANA S3 2018-19
                                 EEA
                                           3.50
                                                       9.50
                                                                                non
## 6
           AXEL S3 2018-19
                                 EEA
                                           6.75
                                                      11.25
                                                                                non
     CYS.S4 TP.S3 TP.S4 CMI Groupe.S3 Groupe.S4 Prof.TP
## 1
               FR
                         non
                                  Alba
## 2
               FR
                                 Siuban
                         non
## 3
               FR
                                  Akane
                         non
## 4
               FR
                         non
                                  Akane
## 5
               FR
                                  Alba
                         non
## 6
                         non
                                  Akane
str(CYS)
## 'data.frame':
                     181 obs. of 14 variables:
```

```
## $ CYS.S3
                    : Factor w/ 2 levels "non", "oui": 1 1 1 1 1 1 1 2 1 1 ...
                    : Factor w/ 3 levels "", "non", "oui": 1 1 1 1 1 1 1 1 1 ...
## $ CYS.S4
## $ TP.S3
                    : Factor w/ 2 levels "FR", "GB": 1 1 1 1 1 1 2 1 1 ...
## $ TP.S4
                    : Factor w/ 3 levels "", "FR", "GB": 1 1 1 1 1 1 1 1 1 1 ...
## $ CMI
                    : Factor w/ 2 levels "non", "oui": 1 1 1 1 1 1 1 1 1 1 ...
## $ Groupe.S3
                    : Factor w/ 8 levels "", "Akane", "Alba", ...: 3 6 2 2 3 2 3 2 3 6 ...
  $ Groupe.S4
                    : Factor w/ 3 levels "","Nadia","Virginia": 1 1 1 1 1 1 1 1 1 1 1 ...
                    : Factor w/ 3 levels "", "Didier", "Pierre": 1 1 1 1 1 1 1 1 1 1 ...
   $ Prof.TP
summary(CYS)
##
         prénom
                         Semestre
                                    Filière
                                                snapshot.1
                                                                 snapshot.2
   ALEXANDRE: 3
                   S3 2017-18: 38
                                    EEA:181
                                              Min. : 1.000
                                                               Min. : 1.75
## ALEXIS
           :
               3
                   S3 2018-19:143
                                              1st Qu.: 4.500
                                                               1st Qu.: 7.00
## HUGO
               3
                                              Median : 6.750
                                                               Median: 8.75
                                                                     : 8.82
## LUCAS
               3
                                              Mean : 6.442
                                                               Mean
## NICOLAS : 3
                                              3rd Qu.: 8.000
                                                               3rd Qu.:10.50
## VINCENT : 3
                                              Max. :13.000
                                                               Max. :15.75
   (Other) :163
                                                TP.S4
   Snapshot.2...4m CYS.S3
                             CYS.S4
                                       TP.S3
                                                          CMI
                                                                     Groupe.S3
                                       FR:132
                                                 :143
                                                                   Siuban:49
          :127
                   non:120
                                :137
                                                         non:150
                                                                   Akane:34
##
           : 15
                   oui: 61
                             non: 21
                                       GB: 49
                                                FR: 15
                                                         oui: 31
##
   11
          : 3
                             oui: 23
                                                GB: 23
                                                                   Alba
                                                                          :29
##
   11.75 : 3
                                                                   Nadia :24
   14.5
                                                                   Steven:23
          : 3
   6.75
          : 3
                                                                   Yolanda:15
##
   (Other): 27
                                                                   (Other): 7
##
##
      Groupe.S4
                    Prof.TP
##
          :154
                        :168
##
   Nadia : 15
                  Didier: 6
##
  Virginia: 12
                  Pierre: 7
##
##
##
##
# Stat. descriptives à completer
boxplot(CYS$snapshot.1,CYS$snapshot.2,names=c("Snapshot1","Snapshot2"), ylab="Résultat",
       main="Résultats au Snapshot1 et au Snapshot2")
```

Résultats au Snapshot1 et au Snapshot2

Au regard de boxplot, on constate que le Snapshot2 prend souvent les valeurs plus grandes que le Snapshot1 d'où la progresson obtenue en résultat.

Résultat Snapshot2 en S3 selon l'utilisation de CYS en S3

Différence de résultat entre Snapshot1 et Snapshot2 en S3 selon l'utilisation de CYS en S3


```
boxplot(ratio_snap~CYS$CYS.S3, ylab="Ratio de résultat entre Snapshot1 et Snapshot2
    en S3",
    main=" Ratio de résultat entre Snapshot1 et Snapshot2
    en S3 selon l'utilisation de CYS en S3")
```

Ratio de résultat entre Snapshot1 et Snapshot2 en S3 selon l'utilisation de CYS en S3

Stat. descriptives à completer boxplot(ratio_snap~CYS\$CMI, ylab="Ratio de résultat entre Snapshot1 et Snapshot2 en S3", main=" Ratio de résultat entre Snapshot1 et Snapshot2 en S3 selon CMI en S3")

Test d'un modèle ANOVA de 3 facteurs (CYS S3, CMI, TP S3)

```
# A completer
mod1=lm(dif_snap~(CYS$CYS.S3+CYS$TP.S3+ CYS$CMI)^2,data=CYS)
summary(mod1)
##
## lm(formula = dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2,
##
       data = CYS)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                   Max
## -4.875 -1.739
                  0.000
                         1.255
##
## Coefficients: (1 not defined because of singularities)
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                1.9954
                                           0.2063
                                                    9.675
                                                            <2e-16 ***
                                           0.4941
## CYS$CYS.S3oui
                                0.7437
                                                    1.505
                                                             0.134
## CYS$TP.S3GB
                              -0.9954
                                           2.1632
                                                   -0.460
                                                             0.646
## CYS$CMIoui
                                           2.2584
                                                    1.384
                                                             0.168
                                3.1250
## CYS$CYS.S3oui:CYS$TP.S3GB
                                2.4328
                                           2.2702
                                                    1.072
                                                             0.285
                                                              0.020 *
## CYS$CYS.S3oui:CYS$CMIoui
                               -5.5515
                                           2.3652
                                                   -2.347
## CYS$TP.S3GB:CYS$CMIoui
                                    NA
                                               NA
                                                                 NA
                                                       NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 2.153 on 175 degrees of freedom
## Multiple R-squared: 0.1238, Adjusted R-squared: 0.09876
## F-statistic: 4.945 on 5 and 175 DF, p-value: 0.0002929
# A completer - fonction lm
step.backward = step(mod1)
## Start: AIC=283.56
## dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
##
##
## Step: AIC=283.56
## dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$TP.S3 +
                CYS$CYS.S3:CYS$CMI
##
##
##
                                                           Df Sum of Sq
                                                                                               RSS
                                                                                                               AIC
## - CYS$CYS.S3:CYS$TP.S3 1 5.3247 816.76 282.74
## <none>
                                                                                        811.43 283.56
## - CYS$CYS.S3:CYS$CMI
                                                            1
                                                                      25.5452 836.98 287.17
##
## Step: AIC=282.74
## dif snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
##
                                                      Df Sum of Sq
                                                                                          RSS
                                                                                    816.76 282.74
## <none>
## - CYS$TP.S3
                                                                    15.852 832.61 284.22
## - CYS$CYS.S3:CYS$CMI 1
                                                                    52.880 869.64 292.09
Selon le test d'AIC, on trouve le meilleur modèle modAIC1:
                 dif\_snap \sim CYS\$CYS.S3 + CYS\$TP.S3 + CYS\$CMI + CYS\$CYS.S3 : CYS\$CMI + CYS$CYS.S3 : CYS$CMI + CYS$CYS.S3 : CYS$CYS$CYS : CYS$CYS$CYS : CYS$CYS$CYS : CYS$CYS$CYS :
# A completer
modAIC1=lm(dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI,data=CYS)
summary(modAIC1)
##
## Call:
## lm(formula = dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI,
##
                data = CYS)
##
## Residuals:
                                                               ЗQ
##
             Min
                               1Q Median
                                                                             Max
## -4.875 -1.725 0.000 1.275 5.025
##
## Coefficients:
                                                               Estimate Std. Error t value Pr(>|t|)
##
                                                                                           0.2055 9.613 < 2e-16 ***
## (Intercept)
                                                                    1.9753
## CYS$CYS.S3oui
                                                                    0.8590
                                                                                            0.4825 1.780 0.076740 .
## CYS$TP.S3GB
                                                                   1.2134
                                                                                           0.6565 1.848 0.066252 .
## CYS$CMIoui
                                                                    0.9362
                                                                                            0.9641
                                                                                                             0.971 0.332834
## CYS$CYS.S3oui:CYS$CMIoui -3.2340
                                                                                           0.9580 -3.376 0.000906 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 2.154 on 176 degrees of freedom
## Multiple R-squared: 0.118, Adjusted R-squared: 0.098
## F-statistic: 5.889 on 4 and 176 DF, p-value: 0.0001802
anova(modAIC1,mod1)
## Analysis of Variance Table
##
## Model 1: dif snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
## Model 2: dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
               RSS Df Sum of Sq
    Res.Df
                                     F Pr(>F)
## 1
       176 816.76
## 2
        175 811.43 1
                         5.3247 1.1484 0.2854
La p_valeur de Test Fisher est 0,2854 supérieure que 0,05 donc on accepte le modèle modAIC1.
step.backward = step(mod1,direction="backward",k=log(nrow(CYS)))
## Start: AIC=302.75
## dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
##
## Step: AIC=302.75
## dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$TP.S3 +
##
       CYS$CYS.S3:CYS$CMI
##
##
                          Df Sum of Sq
                                          RSS
## - CYS$CYS.S3:CYS$TP.S3 1 5.3247 816.76 298.73
## <none>
                                       811.43 302.75
## - CYS$CYS.S3:CYS$CMI
                               25.5452 836.98 303.16
                           1
##
## Step: AIC=298.73
## dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
                        Df Sum of Sq
##
                                        RSS
## - CYS$TP.S3
                           15.852 832.61 297.01
                         1
## <none>
                                     816.76 298.73
## - CYS$CYS.S3:CYS$CMI 1
                              52.880 869.64 304.89
##
## Step: AIC=297.01
## dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
##
                        Df Sum of Sq
                                        RSS
                                               AIC
## <none>
                                     832.61 297.01
## - CYS$CYS.S3:CYS$CMI 1
                              76.921 909.53 307.81
Selon le test d'BIC, on trouve le meilleur modèle:
dif snap \sim CYS\$CYS.S3 + CYS\$CMI + CYS\$CYS.S3 : CYS\$CMI
# A completer
modBIC1=lm(dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI,data=CYS)
anova(modBIC1,mod1)
## Analysis of Variance Table
##
## Model 1: dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
```

```
## Model 2: dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
     Res.Df
               RSS Df Sum of Sq
                                      F Pr(>F)
## 1
        177 832.61
## 2
        175 811.43 2
                          21.177 2.2835 0.105
La p_valeur de Test Fisher est 0,105 supérieure que 0,05 donc on accepte le modèle modèle 1.
# A completer
anova(modBIC1,modAIC1)
## Analysis of Variance Table
##
## Model 1: dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
## Model 2: dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
               {\tt RSS} \ {\tt Df} \ {\tt Sum} \ {\tt of} \ {\tt Sq}
     Res.Df
                                      F Pr(>F)
## 1
        177 832.61
        176 816.76 1
                         15.852 3.4158 0.06625 .
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
La p_valeur de Test Fisher est 0,105 supérieure que 0,05 donc on accepte le modèle modèle 1.
# A completer
mod2=lm(ratio_snap~(CYS$CYS.S3+CYS$TP.S3+ CYS$CMI)^2,data=CYS)
summary(mod1)
##
## Call:
## lm(formula = dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2,
       data = CYS)
##
## Residuals:
##
     Min
              1Q Median
                             3Q
                                   Max
## -4.875 -1.739 0.000 1.255
##
## Coefficients: (1 not defined because of singularities)
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                1.9954
                                           0.2063
                                                     9.675
                                                             <2e-16 ***
## CYS$CYS.S3oui
                                0.7437
                                           0.4941
                                                     1.505
                                                              0.134
## CYS$TP.S3GB
                               -0.9954
                                           2.1632 -0.460
                                                              0.646
## CYS$CMIoui
                                3.1250
                                           2.2584
                                                     1.384
                                                              0.168
## CYS$CYS.S3oui:CYS$TP.S3GB
                                2.4328
                                           2.2702
                                                     1.072
                                                              0.285
## CYS$CYS.S3oui:CYS$CMIoui
                               -5.5515
                                           2.3652
                                                    -2.347
                                                              0.020 *
## CYS$TP.S3GB:CYS$CMIoui
                                               NA
                                                        NA
                                                                 NA
                                    NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.153 on 175 degrees of freedom
## Multiple R-squared: 0.1238, Adjusted R-squared: 0.09876
## F-statistic: 4.945 on 5 and 175 DF, p-value: 0.0002929
step.backward = step(mod2,direction="backward",k=log(nrow(CYS)))
## Start: AIC=-101.45
## ratio snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
##
```

##

```
## Step: AIC=-101.45
## ratio_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$TP.S3 +
      CYS$CYS.S3:CYS$CMI
##
                          Df Sum of Sq
                                          RSS
## - CYS$CYS.S3:CYS$TP.S3 1 0.05397 87.032 -106.54
## - CYS$CYS.S3:CYS$CMI
                        1 0.52871 87.507 -105.56
                                       86.978 -101.45
## <none>
##
## Step: AIC=-106.54
## ratio_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
                        Df Sum of Sq
##
                                        RSS
                                                AIC
                             0.18258 87.214 -111.36
## - CYS$TP.S3
## - CYS$CYS.S3:CYS$CMI 1
                             1.61594 88.648 -108.41
## <none>
                                     87.032 -106.54
##
## Step: AIC=-111.36
## ratio_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
                        Df Sum of Sq
                                        RSS
                                                AIC
## - CYS$CYS.S3:CYS$CMI 1 1.438 88.652 -113.60
## <none>
                                     87.214 -111.36
##
## Step: AIC=-113.6
## ratio_snap ~ CYS$CYS.S3 + CYS$CMI
##
               Df Sum of Sq
                                RSS
                                        AIC
## - CYS$CYS.S3 1 0.72326 89.376 -117.33
## - CYS$CMI
             1 1.57982 90.232 -115.60
## <none>
                             88.652 -113.60
##
## Step: AIC=-117.33
## ratio_snap ~ CYS$CMI
##
                             RSS
##
            Df Sum of Sq
                                     AIC
## - CYS$CMI 1 1.0724 90.448 -120.36
## <none>
                          89.376 -117.33
##
## Step: AIC=-120.37
## ratio_snap ~ 1
Selon le test d'BIC, on trouve le meilleur modèle modBIC2:
ratio\_snap \sim CYS\$CMI
De même façon, on trouve le meilleur modèle pour modéliser le ratio_snap:
# A completer
modBIC2=lm(ratio_snap ~ CYS$CMI,data=CYS)
anova(modBIC2,mod2)
## Analysis of Variance Table
## Model 1: ratio_snap ~ CYS$CMI
## Model 2: ratio_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
```

```
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 89.376
## 2 175 86.978 4 2.3978 1.2061 0.31
```

La p_valeur de Test Fisher est 0,31 supérieure que 0,05 donc on accepte le modèle modBIC1.

Conclusion: Grâce au test ANOVA on trouve que:

• Si on considère la différence entre les deux snapshots on obtient le modèle

$$dif_snap \sim CYS\$CYS.S3 + CYS\$CMI + CYS\$CYS.S3 : CYS\$CMI$$

Cela montre l'impact de CMI et CYS S3 sur l'évolution de résultat.

• SI on considère la ratio entre les deux snapshots on obtient le modèle

$$ratio_snap \sim CYS\$CMI$$

Cela montre l'impact de CMI S3 sur l'évolution de résultat.

Dans ces deux cas on ne trouve pas l'effet de la variable TP S3.