

COPY OF PAPERS
ORIGINALLY FILED

(3)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
PATENT APPLICATION

Applicant: Alain Benayoun et al.

Serial No.: 09/683,432

Filed: December 28, 2001

Title: SELF-ROUTE EXPANDABLE MULTI-MEMORY PACKET SWITCH

Art Unit: Unknown

Examiner: Unknown

Atty. Docket: FR920000066US1

Honorable Commissioner of Patents and Trademarks
Washington, D.C. 20231

Sir:

Applicants are hereby submitting a certified copy of the foreign application, French Patent Application 00480135.3, filed on 28/12/2000, as specified in 35 U.S.C. 119(b).

Respectfully submitted,

Date: 3/2/2002

By: Robert A. Walsh

Robert A. Walsh, Reg. No. 26,516
IP Law Department
IBM Corp.
1000 River Street
Essex Junction, VT 05452
Tel.: 802-769-

CERTIFICATE OF MAILING OR FAXING

I, hereby, certify that on the date shown below, this correspondence is being sent by:

MAIL

deposited with the United States Postal Service
with sufficient postage as first class mail in an envelope addressed to: Assistant Commissioner for
Patents, Washington, DC 20231.

03/08/02
Date

FACSIMILE

transmitted by facsimile to the Patent and
Trademark Office

C. Mueller

C.M.
Name
Signature

THIS PAGE BLANK (USPTO)

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

00480135.3

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN
THE HAGUE,
LA HAYE, LE
08/02/01

THIS PAGE BLANK (USPTO)

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

**Blatt 2 der Bescheinigung
Sheet 2 of the certificate
Page 2 de l'attestation**

Anmeldung Nr.:
Application no.: 00480135.3
Demande n°:

Anmeldetag:
Date of filing: 28/12/00
Date de dépôt:

Anmelder:
Applicant(s):
Demandeur(s):
INTERNATIONAL BUSINESS MACHINES CORPORATION
Armonk, NY 10504
UNITED STATES OF AMERICA

Bezeichnung der Erfindung:
Title of the invention:
Titre de l'invention:
Self-route expandable multi-memory packet switch

In Anspruch genommene Priorität(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:	Tag:	Aktenzeichen:
State:	Date:	File no.
Pays:	Date:	Numéro de dépôt:

Internationale Patentklassifikation:
International Patent classification:
Classification internationale des brevets:

/

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/IR
Etats contractants désignés lors du dépôt:

Bemerkungen:
Remarks:
Remarques:

THIS PAGE BLANK (USPTO)

SELF-ROUTE EXPANDABLE MULTI-MEMORY PACKET SWITCH**Technical field**

The present invention relates to the transmission of data packets such as ATM packets between Local Area Networks (LAN) 5 interconnected by a switch engine and relates in particular to a data transmission system including a self-route expandable multi-memory packet switch.

Background

Local Area Networks (LAN) such as Ethernet or token-ring networks, are generally interconnected through hubs. The hub 10 is a system made of LAN adapters that communicate together through a switch card containing a switch engine. Such a switch engine can be either a shared memory switch or a crossbar switch.

The shared memory switch is a device wherein the packets received by the input ports are stored into a memory at locations the addresses of which are determined by queues containing the packet destination addresses, the packets being transmitted on the output ports as the destination addresses are dequeued. Although such a switch enables to incur a very low cell-lost rate, it presents a bottleneck due to the requirement of the memory bandwidth, the segregation of the memory space and the centralized control of the memory which causes the switch performance to degrade as the size of the switch increases. A traditional approach to design a large shared memory switch has been to first design a feasible size shared memory switch and then to interconnect a plurality of such modules in order to build a large switch. This general scheme of switch growth is known to cause degradation in performance of shared memory architecture as the switch grows in size insofar as the memory access controller will have to increase the number of all centralized control functions and memory operations thereby reducing drastically the access to the shared memory. A growable switch approach packet switch architecture is a plurality of shared memory switches organized in a single stage preceded by a buffer-less interconnection network. This approach does not allow global sharing of memory space along all its inputs and outputs. It is known that this approach does not provide the best memory utilization as possible for a memory belonging to a group of output ports to overflow under unbalanced or bursty traffic conditions.

The other technique, the crossbar switch, does not use a shared memory to store the data packets. In such a switch, the data are stored in the adapters and the switching data connection is established by sending requests to a control module which determines whether it is possible to satisfy the requests taking into account an algorithm defining the best data connection to establish at each time. The main drawback

of this approach is the use of a centralized control module which has to know the complete switching topology of the system and can become impossible to control when the switch grows in size. The size growth and therefore the increase 5 number of input and output ports requires to redesign the centralized control module. Furthermore, it is impossible with this approach to achieve a speed expansion without redesigning the control module.

Summary of the invention

10 Accordingly, the main object of the invention is to provide a packet switch module which enables a port expansion without requiring to redesign the module.

Another object of the invention is to provide a packet switch module enabling port expansion without performance degradation 15 insofar as it includes no centralized shared memory or no centralized control module but a memory associated with each crosspoint of the module.

The invention relates therefore to a data transmission system 20 comprising a plurality of Local Area Networks (LANs) interconnected by a hub including the same plurality of LAN adapters respectively connected to the LANs and a packet switch comprising at least a packet switch module interconnecting all LAN adapters wherein a packet transmitted 25 by any adapter to the packet switch includes a header containing at least the address of the adapter to which the packet is forwarded, a switch module comprising a plurality of input ports and a plurality of output ports both being respectively connected to the LAN adapters, and each couple of 30 an input port and an output port defining a crosspoint within the switch module. The system comprises a memory block located at each crosspoint of the switch module, such a memory block including a data memory unit for storing at least a data

packet and memory control means for determining from the header of the received data packet whether the packet is to be forwarded to the output port associated with the crosspoint and for storing the data packet into the data memory unit in such a case, and data control means for causing at each clock time a data packet stored in a data memory unit of a memory block among all memory blocks corresponding to the same output port to be forwarded to this output port.

According to an important feature of the invention, a scheduler is associated with each output port for selecting at each clock time a memory block among all memory blocks corresponding to the same output port and causing the memory block to forward a data packet stored therein to the output port when predetermined criteria are met.

15 **Brief description of the drawings**

The above and other objects, features and advantages of the invention will be better understood by reading the following more particular description of the invention in conjunction with the accompanying drawings wherein :

- 20 • Fig. 1 is a schematic block diagram of a data transmission system including four LANs interconnected by a hub according to the principles of the invention.
- Fig. 2 represents schematically a data packet with the header of two bytes added by the adapter which is transmitted through a packet switch according to the invention.
- 25 • Fig. 3 is a block diagram representing the features of the packet switch being used in the packet data flow.
- Fig. 4 is a block diagram representing an input control block of the packet switch.
- 30 • Fig. 5 is a block diagram representing a memory block located at each crosspoint of the packet switch.

- Fig. 6 is a block diagram representing an input expansion data block of the packet switch.
 - Fig. 7 is a block diagram representing an output data block of the packet switch.
- 5 • Fig. 8 is a block diagram representing the complete architecture of the packet switch.
- Fig. 9 is a flow chart representing the steps controlled by the scheduler when a single or multiple overflow occurs.

10 **Detailed description of the invention**

The invention is implemented in an environment illustrated in Fig. 1 wherein a plurality of Local Area Networks (LAN) 10-1, 10-2, 10-3, 10-4 are interconnected together by a hub 12 including a Packet switch 14. The Local Area Networks may be 15 of the type ATM, Ethernet, or token-ring. Each LAN is connected to the packet switch 14 in the hub 12 by means of LAN adapter 16-1 for LAN 10-1, 16-2 for LAN 10-2, 16-3 for LAN 10-3 and 16-4 for LAN 10-4. Each adapter is connected to the packet switch 14 by means of a data bus in 13 (bus 13-1 to 20 13-4 and a data bus out 15 (bus 15-1 to 15-4). Connected to the packet switch 14 are the input expansion bus 17 and the output expansion bus 18 which are respectively used for increasing the number of input ports and the number of output ports as explained hereafter.

25 Data bus in 13 carries the data packets coming from the input adapter and data bus out 15 carries the outgoing data packets to the output adapter. As explained hereafter, each incoming packet includes a self-routing header inserted by the adapter, this header being used to independently process the data 30 packet through the different stages of the switch module.

Fig. 2 represents the format of the data packets exchanged between the LAN adapters through the packet switch. It is

assumed that the data are packets of 53 bytes. A header of 2 bytes is added to each packet by the adapter. The first byte of the header is composed of an identification field of three bits (bits 0-2) and a module address field of 5 bits (bits 5 3-7). The second byte of the header is used in the unicast configuration and gives in bit map the destination output port selection.

General data flow structure

In reference to Fig. 3, the general data flow structure of the 10 switch module 14 according to the invention, is composed of a plurality of input bus like data bus in 13 respectively connected to the input ports of switch and a plurality of output bus like data bus out 15 respectively connected to the output ports of the switch.

- 15 For each crosspoint such as the crosspoint defined by data bus in 13 and data bus out 15, there are an input control block 100, a memory block 200, an input expansion data block 300 and an output control block 400. The input control block is common for all memory blocks which correspond to data bus in 13 and 20 the output control block 400 is common for all memory blocks which correspond to data bus out 15. The input expansion data block 300 is connected in input to the input expansion bus 17 and is common to all memory blocks which correspond to data bus out 15. All the memory blocks corresponding to the data 25 bus in 13 are connected to a distributed data bus 50 itself connected to the output expansion bus 18 by means of a gate 36. All the memory blocks corresponding to data bus out 15 are connected to an output data bus 60 and to an overflow data bus 70 the function of which will be explained later.
- 30 The data packets which are received by each memory block 200 from input control block 100 are analyzed and stored into memory, and are then released to output control block 400

through output data bus 60. Then, the data packets are sent by output control block 400 over data bus out 15. All these operations are synchronized and controlled by a scheduler 500 within output control block 400 by means of control lines such as lines 206, 236 and 242.

As illustrated in Fig. 4, an input control block 100 comprises principally a data bus in 13 for receiving data packets and means for storing the incoming data packets according to their destination and releasing these packets into distributed data bus 50. Such means include a buffer 120 for buffering and validating the data packet received from input bus 104 and an input memory unit 122 for storing the data packets under the control of a memory control block 114. The input memory unit is preferably a memory adapted to store a plurality of data 10 packets, the write signal being sent by memory control block 114 after validation of the data in buffer 120. When a data packet is forwarded over distributed bus 50, a read signal is sent to the memory control block 114 enabling it to know the filling level of the input memory unit 122. Assuming that 15 input memory unit 122 is full, the data packet within buffer 120 is not allowed to be transferred into the input memory unit 122 and an overflow signal is forwarded to a scheduler on line 236 as described hereafter.

As described later, several modules can be grouped together to 20 constitute the packet switch. For this, it is necessary to have a multiplexer 116 between the data bus in 13 and the distributed data bus 50. An input control signal 118 coming from a rank selector 800 determines the selection of the input to the multiplexer. In case of several switch modules, only 25 the data packets received by the first module must be buffered to avoid the risk of overflow. In such a case, the multiplexer input selected by control signal 118 is the output of input memory unit 122 for the module 0 wherein data bus in 13 and the following bus 106 is directly connected to distributed

data bus 50 by the multiplexer 116 for the subsequent modules. Note that the output of input memory unit 122 is also selected if there is only one switch module in packet switch 14.

On Fig.5 is represented the memory block (200) composed of :

- 5 • a memory select block 244.
 • a header detection block 210,
 • a header configuration setting and validation control
 block 212,
 • a memory controller 234,
10 • a data memory unit 226,
 • a data selector block 238,
 • a Header validation control block 216

The header configuration setting and validation control block 212 has the functions of :

- 15 • Storing the module rank from rank selector 800
 • Storing the configuration data memory address from
 Configuration interface mechanism 600.
 • Analyzing the data packet type (Multicast, Unicast ...etc)
 • Authorizing (or not) the reception of the incoming data
20 packet according to the destination data packet address.

25 a) At initialisation time, the header configuration
 setting block 212 receives the switch module rank from the
 rank selector 800 through the bus 118. The module rank is
 needed for determining the global physical address of each
 output port of the switching system. Each header
 configuration-setting block attached to the same column
 output port has the same decoding address. Assuming that
 each switch module is an 8x8 port module, the 1st column
 corresponding to the output port 1 has the decoding
30 address '0'; the 2nd column has the decoding address '1' ...
 and so on until the column 8. Note that the switch module
 could be a m x m port module with m different from 8.

5

10

15

25

30

If the switch module is single, then the decoding address on each column is unchanged. But, in port expansion with several modules interconnected together, the 1st column of modules has to decode the address range (0-7), the 2nd column of modules has to decode the address range (8-15), the 3rd column of modules has to decode the range address (16-23), and so on until the last column of modules. If there are n columns of modules, the block 212 assigns an offset of $8 \times k$ to the output port address in the module, with k being 0 to n-1.

- b) The second function of the header configuration and setting block 212 allows the modifications of the pre-setted internal output port memory address through the configuration interface. This function is used in internal speed expansion mode, where 2 or more output ports or columns have to be combined in order to grow the data throughput of the port. The configuration interface mechanism 600 configures the memory block through the configuration bus 204.
- c) The third function of the header configuration and setting block 212 is to detect whether the packet is a multicast address packet. If so, the header of the packet has a specific configuration determining that all the following packets, which have all a specific header, are the packets of a multicast frame. In such a case, the header configuration and setting block 212 analyzes also the 54 bytes of the packet following the header to determine whether the output port associated with the memory block corresponds to one of the output ports to which the multicast frame is addressed

- d) Header detection block 210 defines the start of each incoming data packet. This block receives clocking signal through the signal 208 at each clock time.
- 5 e) Header validation control block 216 uses control signals from block 212, block 210, and validation signal 206 from scheduler 500, to authorize the memory controller 234 to store the incoming data packet into the data memory unit 226.
- 10 f) The data validation block 244 selects either the distributed data bus 50 or the overflow data bus 70 depending on the control signal 248 driven by scheduler 500. By default, the distributed data bus 50 is connected to the data memory unit 226 until an overflow is detected.
- 15 g) Data memory unit 226 stores and releases the data packets under the control of the memory controller 234.
- h) Data Memory controller 234 performs the functions of controlling the address release, enqueue and dequeue mechanisms, generating read and write signals, generating a memory overflow signal 236 to scheduler 500.
- 20 i) An overflow data bus 70 (one per output), is connected to all memory blocks, along the internal output data bus 60 in order to reassign the overflow data packet to another memory block. For this, the scheduler 500 activates the signal 242 controlling the overflow connection block 238 which can be an AND circuit connecting the distributed data bus 50 to the overflow data bus 70 through the bus 240. The scheduler takes the decision after receiving flow controls signals 236 from memories connected on the same output port. The decision is to determine the usable memory wherein the overflow data packet can be stored.

This is particular useful, due to the fact that the data packet is re-routed to another memory block of the same output port.

On Fig. 6 is described the input expansion data block 300
5 which is composed of :

- a header processing block 302,
- a header validation block 308,
- an expansion memory unit 312,
- a memory controller 314.

10 The input expansion bus in 17 connected to the header processing block 302 carries the data packet coming from another switching module in expansion mode. The header processing block 302 is also connected in input to the overflow data bus 70 for receiving an overflow data packet.

15 The header processing module 302 is connected in output to the header validation block 308 by the data bus 306. The function of the header processing block is to select the appropriate data bus, according to the configuration mode line 320 from rank selector 800. This line carries the necessary module rank
20 information.

The header validation block 308 receives control signal validation 206 coming from the scheduler 500. The header validation block 308 signals an incoming data packet to the memory controller 314 through the control signal 324 and sends
25 the data packet to the memory block 312 through the data bus 310.

The main function of the expansion memory unit 312 is to store the incoming data packet coming from the expansion data bus or from the overflow data bus, under the control of memory
30 controller 314 which controls the write/Read operations to the memory, and generates a memory flow control signal 236 to the scheduler 500.

On Fig. 7 is described the output data block 400 which is composed of:

- A data selection block 402,
- An output memory unit 406,
- 5 • A memory controller 408,

The function of the output data block 400 is to receive data packets from internal output bus 60, to validate data packets from the internal output bus 60, to store into the output memory unit 406 the incoming data, and to release data packet
10 on the data bus out 15.

The function of the data selection block 402 is to receive the internal output data bus 60, to validate the incoming data packet when receiving validation signal 206 coming from the scheduler, and to activate a validation data signal 410 to the
15 memory controller 408.

The output memory unit 406 connected to the data selection block 402 by the data bus 404, stores incoming data packets under the control of the memory controller 408. The function of the latter is to store the incoming data packets into the
20 memory block, to release data packets from the output memory unit, to control the storing memory address, and to generate a flow control signal 236 to the scheduler 500.

The data packets after being released from the output memory unit 406 by the memory controller, are sent over the output
25 data bus 15.

Scheduler (500)

An essential feature of the invention is to use a scheduler illustrated in Fig. 3 and Fig. 8, for each output port of the

packet switch rather than a centralized scheduling mechanism as in a crossbar switch.

The main functions of the scheduler 500 are:

- To receive the necessary information coming from all attached column memory blocks 200
- To activate the validation of the incoming data packet for the selected memory block,
- To determine the outgoing data packet by choosing the memory block according to a round-robin mechanism. This mechanism can be based on priority selection and/or any other selections.
- To Control the memory overflow,
- To Flow control the output ports,
- To Report flow control signals 710 to an overflow control mechanism 700, and therefore alert a backpressure mechanism 900.

Rank selector (800)

The rank selector 800 located in the bottom right corner of Fig.8 is a mechanism using a number of input pins hardwired on the board, that define the module rank in a packet switch including a plurality of switch modules.

In the case of single module, this address is '0'. In the case of port expansion, many switch modules may interconnect together. For the ease of comprehension, it is assumed a 16x16 switch system configuration using four 8x8 switch modules. The 2 modules of the 1st column of modules have to be hardwired to '0'. The 2 other modules of the 2nd column of modules have to be hardwired to '1'. The same algorithm applies for NxN switch system configuration.

The physical destination address known by the adapters is the final destination address and is contained in the header of each data packets.

Overflow control

5 Based upon the overflow signals coming from all memory blocks on lines 236 as illustrated in Fig. 3 and Fig.8, the scheduler determines the memory blocks which overflow during each data packet time (internal clock time for storing one data packet).

As illustrated by the flow chart of Fig. 9, it is first
10 checked by the scheduler whether there is a memory block which overflows (step 30). If so, it is then checked whether it is a multiple overflow (step 32). In case of multiple overflows, the scheduler uses a selection algorithm (generally a round robin selection) to select the appropriate memory block which
15 can receive the next data packet (step 34). Of course, if it is a single overflow, the step of memory selection is not necessary. In such a case or after the selection, the memory block which overflows is disabled by the scheduler on line 206 (step 36) and a usable memory block is enabled by the
20 scheduler on line 248 (step 38). Then, overflow bus 70 is enabled by line 242 from the scheduler to carry the data packet into the data memory unit of the memory block which is validated by line 248 (step 40). When there is no memory overflow (step 30) or after the transfer of the data packet
25 over the overflow bus 70, the process is ended (step 42).

It must be noted that such an overflow processing by a scheduler associated with each output port, presents the advantages of :

- flow controlling the internal data,
- 30 • avoiding the loss of the data packet,
- having a better distribution of the data packets, and

- delaying the generation of a backpressure signal as described hereafter only when it is not possible to process normally the memory overflow.

Configuration interface mechanism (600)

5 The configuration interface mechanism 600 located on bottom left of Fig. 8 is the mechanism controlling the configuration of each column output port.

Assuming that the switch is an 8x8 output ports, at the end of the Initialisation, the 1st column corresponding to the output 10 port 1 has the decoding address '0'. The 2nd column has the decoding address '1' ... and so on until the column 8. The configuration interface mechanism allows the traffic management to modify the address of each column. As an example the packet switch may have the following 15 configuration:

- Port_1: Decoding address '0'
- Port_2: Decoding address '1'
- Port_3: Decoding address '2'
- Port_4: Decoding address '2'
- 20 • Port_5: Decoding address '4'
- Port_6: Decoding address '5'
- Port_7: Decoding address '6'
- Port_8: Decoding address '6'

This function is used to increase the Internal Speed. The 25 port_3 & Port_4 decode the same incoming data packet, which improves the performances of the adapter. The same applies as Port_7 & Port_8.

The configuration interface mechanism 600 sends information through the bus 204 to the configuration setting and detection 30 block 212 of each memory block of each output port (see Fig.

5). It receives information through bus 610 from traffic management. In case of port expansion (several modules interconnected together), each module is connected to the bus 610.

5 The traffic management gives through the bus 610, the information about the module physical address, the row/column physical address, and the modified address of the row/column data memory block. The traffic management accesses only one configuration interface 600 at a time.

10 **Back-pressure Mechanism (900)**

The back-pressure mechanism 900 located in top left corner of the Fig.8, has the functions of :

- receiving flow control bus 910 from overflow control block 700,

15 • generating flow control bus 915 to overflow control block 700,

- receiving flow control information on bus 924 from the right adjacent switch module

20 • receiving flow control information on bus 925 from bottom adjacent switch module

- generating flow control information on bus 922 to the left adjacent switch module

• Generating flow control information on bus 923 to the top adjacent switch module.

25 Of course, in a single module configuration there is no information exchanged with other modules. The bus 922, from back-pressure mechanism 900 connected to the inputs ports, is made of n independents signals, one signal per input port.

30 The generation of a back-pressure signal to the adapters is to stop (or reduce) the flow of the data packets transmitted to the packet switch when there is too much overflow detected by

one or several schedulers. The back-pressure signals are generated after receiving flow control information from the overflow mechanism 700 through the bus 910.

When a memory block is not able to store any more data packet,
5 an overflow control signal is sent to the corresponding scheduler through the bus 236. Each scheduler alerts the overflow mechanism 700 through control bus 710. The overflow mechanism receives overflow control signals from all schedulers and informs the back-pressure mechanism 900 through bus 910 to back-pressure the corresponding adapters.
10

In port expansion configuration, the back-pressure mechanism 900 receives overflow information from the right adjacent switch module, and from the bottom adjacent switch module, and it generates overflow information to the top adjacent switch
15 module.

When back-pressure mechanism 900 receives overflow information from the bottom adjacent switch module, it informs overflow mechanism 700 of its switch module through bus 915, which in turn alerts the corresponding schedulers through bus 710 and requests them to decrease the transmission of the data
20 packets.

When back-pressure mechanism 900 receives overflow information from the right adjacent switch module, it alerts the corresponding input adapters of its switch module through bus 922 and requests them to decrease the transmission of the data
25 packets.

THIS PAGE BLANK (USPTO)

CLAIMS

1. Data transmission system comprising a plurality of Local Area Networks (LANs) (10-1 to 10-4) interconnected by a hub (12) including the same plurality of LAN adapters (16-1 to 16-4) respectively connected to said LANs and a packet switch (14) comprising at least a packet switch module interconnecting all LAN adapters wherein a packet transmitted by any adapter to said packet switch includes a header containing at least the address of the adapter to which the packet is forwarded, said switch module comprising a plurality of input ports and a plurality of output ports both being respectively connected to said LAN adapters, each couple of an input port and an output port defining a crosspoint within said switch module ;
15 said system being characterized in that it comprises a memory block (200) located at each crosspoint of said switch module, said memory block including a data memory unit (226) for storing at least a data packet and memory control means (210, 212, 234) for determining from the header of the received data packet whether said packet is to be forwarded to the output port associated with said crosspoint and for storing said data packet into said data memory unit in such a case, and data control means (500) for causing at each clock time a data packet stored in a
20 data memory unit of a memory block among all memory blocks corresponding to said output port to be forwarded to said output port.
25
2. Data transmission system according to claim 1, wherein said data control means includes a scheduler (500) associated with each output port, said scheduler selecting at each clock time a memory block (200) among all memory blocks corresponding to said output port and causing said memory block to forward said data packet stored in said data
30

memory unit (226) to said output port when predetermined criteria are met.

3. Data transmission system according to claim 2, wherein said memory block (200) includes a header validation control

5 block (216) for determining whether the header of a data packet received from said input port contains the address of the output port associated with said crosspoint and a memory controller (234) for storing said data packet into said data memory unit (226) if said header contains the 10 address of said output port and for reading said data packet to forward it to said output port.

4. Data transmission system according to claim 2 or 3, further comprising an output data block (400) connected to each output port for storing a data packet received from any 15 memory block (200) and transmitting said data packet to said output port under the control of said scheduler (500).

5. Data transmission according to claim 4, wherein said output data block (400) includes a data selection block (402) for validating said data packet after receiving a validating

20 signal (206) from said scheduler (500), an output memory unit (406) for storing said data packet and a memory controller (408) for controlling the operation of storing said data packet into said output memory unit and the operation of reading said output memory unit for 25 transmitting said data packet to said output port.

6. Data transmission system according to any one of claims 2 to 5, further comprising an input control block (100) connected to each input port for buffering a data packet received from said input port before transmitting said data

30 packet over a distributed data bus (50) connected to all memory blocks corresponding to said input port.

7. Data transmission system according to claim 6, wherein said input control block (100) includes an input memory unit (122) for buffering said data packet received from said input port and a memory controller (114) for storing said data packet into said input memory unit and reading said data packet to forward it over said distributed data bus (50).
5
8. Data transmission system according to claim 7, wherein said input control block (100) further includes a multiplexer (116) for selecting either the output of said input memory unit (122) or directly the bus connected to said input port (13, 106) if said input control block (100) is not the first switch module in case said packet switch (14) comprises a plurality of switch modules.
10
9. Data transmission system according to claim 8, wherein said packet switch (14) includes a plurality of switch modules and wherein each down switch module includes for each output port an input expansion data block (300) for buffering a data packet received from an expansion bus in (17) connected to an up switch module and corresponding to the same output port as said output port of said down switch module.
15
20
10. Data transmission system according to claim 9, wherein said input expansion data block (300) includes an expansion memory unit (312) for buffering said data packet received from said expansion bus in (17) and a memory controller (314) for storing said data packet into said expansion memory unit and reading said expansion memory unit to forward it to said output port of said down switch module.
25
11. Data transmission system according to any one of claims 1 to 10, wherein said memory control means (210, 212, 234) sends
30

an overflow signal (236) to said scheduler (500) when it has detected that said data memory unit overflows.

12. Data transmission system according to claim 11, further comprising an overflow bus (70) to transport said data packet to the data memory unit (226) of another memory block (200) corresponding to said output port after that said scheduler (500) has prevented said data packet from being stored into said data memory unit which overflows and has selected and validated said data memory unit of another memory block which does not overflow.
10
13. Data transmission system according to claim 11 or 12, further comprising a back-pressure mechanism (900) adapted to send back-pressure signals (922) to the input adapters for requesting them to reduce the flow of the data packets transmitted to said packet switch (14) when there is too much overflow detected by one or several schedulers of said packet switch.
15
14. Data transmission system according to claim 13, further comprising an overflow mechanism adapted to receive overflow control signals (710) from the schedulers of said packet switch (14) when there is too much overflow and to transmit an overflow signal to said back-pressure mechanism (900).
20
15. Data transmission system according to any one of claims 1 to 14, wherein said header of the data packet includes two bytes in which the first byte contains an identification field (unicast, multicast) and the second byte contains a module address field when said packet switch (14) comprises several packet switch modules.
25

SELF-ROUTE EXPANDABLE MULTI-MEMORY PACKET SWITCH**Abstract**

Data transmission system comprising a plurality of Local Area Networks (LANs) (10-1 to 10-4) interconnected by a hub (12) 5 including the same plurality of LAN adapters (16-1 to 16-4) respectively connected to the LANs and a packet switch (14) comprising at least a packet switch module interconnecting all LAN adapters wherein a packet transmitted by any adapter to the packet switch includes a header containing at least the address 10 of the adapter to which the packet is forwarded. The system comprises a memory block located at each crosspoint of the switch module including a data memory unit for storing at least a data packet and memory control means for determining from the header of the received data packet whether the packet is to be 15 forwarded to the output port associated with the crosspoint and for storing the packet into the data memory unit and a scheduler for causing at each clock time a data packet stored in a data memory unit of a memory block among all memory blocks corresponding to the output port to be forwarded to this output 20 port.

FIG. 1

THIS PAGE BLANK (USPTO)

FR 920000066
Benayoun et al
1/9

FIG. 1

FR 920000066
Benayoun et al
2/9

FIG. 2

FR 920000066
Benayoun et al
3/9

FIG. 3

FR 920000066
Benayoun et al
4/9

FIG. 4

FR 920000066
Benayoun et al
5/9

FIG. 5

FR 920000066
Benayoun et al
6/9

FIG. 6

FR 920000066
Benayoun et al
7/9

FIG. 7

FR 920000066
Benayoun et al
9/9

FIG. 9

THIS PAGE BLANK (USPTO)