Systems and Automata

Stefan Ratschan

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Big Question

How can we describe and computationally analyze complex systems?

How do Complex Systems Look Like?

Observation:

Systems usually consist of components that influence each other. (each component is again a system).

Modeling Communication of Systems

Example: printer with input Postscript output in {ok, problem}

Example: quadrocopter with input set { nil, start } and output set { free, scheduled, mission }.

Common characteristics?

- Certain set of symbols
- Discrete steps, continuing without end

How to model this?

Fix an arbitrary set S whose elements we call symbols.

A (discrete time) signal over S is an infinite sequence of symbols (i.e., $\mathbb{N}_0 \to S$).

We write Σ_S for the set of signals over S (e.g., $\Sigma_{\{nil,start\}}$, $\Sigma_{\{free,scheduled,misssion\}}$)

How Can We Describe the Behavior of Systems?

Example:

Quadrocopter (one possibility):

- ▶ Input signal: arbitrary signal from $\Sigma_{\{nil,start\}}$
- Output signal: Signal from $\Sigma_{\{free, scheduled, mission\}}$, s.t. input *start* results in output *mission* within at most 10 steps

Example:

```
Input: (nil, nil, start, nil, nil, nil, nil, ...)
```

```
Output: (free, free, free, free, free, scheduled, mission, . . . )
```

Further output for same input:

```
(free, free, free, free, free, mission, ...)
```

Several outputs corresponding to one input!

Description of behavior from outside (black-box)

Black-box Description of Systems: Graphically

Example:

/dev/null

- ► Input signal: arbitrary string
- Output signal: EOF EOF EOF

Example:

Comparison: Classical Algorithms

For classical algorithm, I/O specifications relate input to output

Example:

- ► Input: array a
- ▶ Output: array b that contains the same elements as a, but is sorted

Difference:

Traditional algorithms have input and output of finite length

Here we have *reactive systems*, and hence input and output of infinite length (i.e., signals)

How to Formalize This?


```
Input: (nil, nil, start, nil, nil, nil, nil, ...)
```

```
Output: (free, free, free, free, free, scheduled, mission, . . . )
```

Further output for same input:

```
(free, free, free, free, free, mission, ...)
```

For each input signal, we have certain possible output signals . . .

Certain input/output pairs are possible/allowed, others not ...

Black-box Description of Systems: Formalization

General principle: relation between input signals and output signals, that is:

A (discrete time) system with input set I and output set O is a relation between signals over I and signals over O, that is a subset of $\Sigma_I \times \Sigma_O$.

If (i, o) is an element of this subset, then we also say that (i, o) is a behavior of the system.

Formalization of Examples

Quadrocopter:

$$\{(i,o) \in \Sigma_{\{nil,start\}} \times \Sigma_{\{free,scheduled,mission\}} \mid \\ \forall t \in \mathbb{N}_0 : i(t) = start \Rightarrow \exists d \in \{0,\dots,10\} : o(t+d) = mission\}$$

/dev/null

$$\{(i,o) \in \Sigma_{\{0,\dots,255\}} \times \Sigma_{\{0,\dots,255\}} \mid \forall t \in \mathbb{N}_0 . o(t) = EOF\}$$

System vs. System

Attention: Such a "system" is really a model!

To avoid confusion, we will also use the term "real-world system".

System Refinement

$$\begin{aligned} \{(i,o) \in \Sigma_{\{\textit{nil},\textit{start}\}} \times \Sigma_{\{\textit{free},\textit{scheduled},\textit{mission}\}} \mid \\ \forall t \in \mathbb{N}_0 \ . \ i(t) = \textit{start} \Rightarrow \exists \textit{d} \in \{0,\ldots, \textcolor{red}{10}\} \ . \ \textit{o}(t+\textit{d}) = \textit{mission}\} \end{aligned}$$

Upper bound! make it stricter?

$$\begin{aligned} \{(i,o) \in \Sigma_{\{\textit{nil},\textit{start}\}} \times \Sigma_{\{\textit{free},\textit{scheduled},\textit{mission}\}} \mid \\ \forall t \in \mathbb{N}_0 \ . \ i(t) = \textit{start} \Rightarrow \exists d \in \{1,2\} \ . \ o(t+d) = \textit{mission}\} \end{aligned}$$

System S_1 is a refinement of system S_2 iff $S_1 \subseteq S_2$ ONE SISTAIS a WE WE NUT OF CANOTHER IF IT Allows Fewer Balfali and S_2

Further Examples from Computer Science

Stream I/O of lazy functional programming languages: $\{0,\ldots,255\}$

Exact real arithmetic: $\{0, \dots, 9\}$

Communication of computational elements over network

Halting problem as a system: $\{(i,o) \in \Sigma_{\{0,...,255\}} \times \Sigma_{\{0,1\}} \mid$

- i is a computer program of length I padded with blanks,
- ightharpoonup o(l+1)=1, if program from input always terminates, 0, otherwise. $\}$

Cannot be algorithmically implemented

$$\{(i, o) \mid o(0) = 1 \text{ iff } \mathbf{P} = \mathbf{NP}\}???$$

Can be implemented, but implementation unknown

System Properties

Let us assume a discrete time system S with input set I and output set O.

Example:
$$S = \emptyset$$
?

S is receptive iff for all $i \in \Sigma_I$ there is $o \in \Sigma_O$ s.t. $(i, o) \in S$.

Example:
$$S = \{(i, o) \mid \forall t \in \mathbb{N}_0 : o(t) = i(t+1)\}$$
?

$${\cal S}$$
 is *causal* iff

for all
$$i_1, i_2 \in \Sigma_I$$
, $x \in O$, $t \in \mathbb{N}_0$ such that for all $t' \in \{0, \dots, t\}$. $i_1(t') = i_2(t')$, there is $o \in \Sigma_O$ s.t. $(i_1, o) \in \mathcal{S}$, $o(t) = x$ iff there is $o \in \Sigma_O$ s.t. $(i_2, o) \in \mathcal{S}$, $o(t) = x$

Intuition: output at given time is determined by input up to that time.

Usage of non-causal systems: audio signal processing

System Properties

S is deterministic iff

for all $i \in \Sigma_I$ there is precisely one $o \in \Sigma_O$ s.t. $(i, o) \in S$.

In such a case the system can be viewed as a function (instead of a relation)

Non-determinism: under-specification (leaving open details), uncertainty

Example: $\{(i,o) \mid \forall t \in \mathbb{N}_0 : o(t) \text{ is a prime divisor of } i(t)\}$

 ${\cal S}$ is *memory-less* iff

there is
$$R \subseteq I \times O$$
 s.t. for all $(i, o) \in \Sigma_I \times \Sigma_O$, $(i, o) \in S$ iff for all t , $(i(t), o(t)) \in R$.

Intuition: output at given time is determined only by input at this time.

Every memory-less system is causal!

Philosophical Questions

Do non-causal real-world systems exist?

In other words: Can the present depend on the future?

Examples: oracle (non-causal), weather-forecast (causal)

Do non-deterministic real-world systems exist?

In other words: Does randomness exists?

In the mathematical world:

Yes. Non-deterministic and non-causal models are very useful!

In the real world: answer unknown (experiments are not repeatable) Classical physics is a deterministic model, quantum physics a non-deterministic one

For Us

- Non-determinism very useful
- ► We will use certain memory-less systems
- Models of the real world are always receptive and causal, if not, this is a bug.

Let Us Recapitulate

How can we describe and computationally analyze complex systems?

Partial answer based on the observation that complex system usual consist of sub-systems:

We can model systems as black-boxes that produce output from input

Model Based Design (cf. Lecture 1)

Hierarchy of System Models

General requirements:

"Train should follow signalling standard for Czech tracks"

More detailed requirements:

"Every stop signal should be acknowledged within 2 seconds"

- High level operational models,
 e.g., finite state automaton, Scilab demo
- VHDL, C program
- Circuit design, machine code
- **.**..

Up to now: formalization of top levels (requirements)

For next level: How to implement/simulate such (discrete time) systems on computers?

Goal of model based design: find bugs early and automatically.

Implementation in Full-Fledged Programming Languages

Example: C program that reads from stdin and writes to stdout

There are special programming languages for this (synchronous reactive programming): Esterel, Lustre etc.

Part of SCADE system:

http://www.esterel-technologies.com/

Problems?

- ► We have to decide on data structures, memory management, fight with complex syntax
- While we can test such implementations, more reliable automatic analysis in full generality impossible

White Box Description of Reactive Systems

Goal: as simple as possible programming language for reactive systems

Example: Joh irs, de

Internal state: waiting, preparing, charging, flying.

Rule how state evolves and relates input to output

Which system described?

What is this?

Automaton

Discrete Time Automata

A (discrete time) automaton is a quintuple (S, S_0, I, O, R) , where

- S is a set (state space) whose elements we call states
- ▶ $S_0 \subseteq S$ (set of *initial states*), s.t. $S_0 \neq \emptyset$
- ▶ *I* is a set whose elements we call *inputs*
- O is a set whose element we call outputs
- ▶ $R \subseteq I \times S \times S \times O$ (transition relation) s.t. for all $i \in I$, $s \in S$, there is $s' \in S$, $o \in O$ s.t. $(i, s, s', o) \in R$

The sets do not have to be finite, but often they are ...

Discrete Time Automata

A (discrete time) automaton is a quintuple (S, S_0, I, O, R) , where

- ▶ *S* is a set (*state space*) whose elements we call *states*
- ▶ $S_0 \subseteq S$ (set of *initial states*)
- ▶ *I* is a set whose elements we call *inputs*
- ▶ O is a set whose element we call *outputs*
- ▶ $R \subseteq I \times S \times S \times O$ (transition relation) s.t. for all $i \in I$, $s \in S$, there is $s' \in S$, $o \in O$ s.t. $(i, s, s', o) \in R$

Difference to classical automata? no terminal state

Various equivalent variants (e.g., transitions based on sets, separate output function/relation), extensions, and names (transducers, I/O automata)

Corresponding System

Stefan Ratschan (FIT ČVUT)

Corresponding System

Given an automaton (S, S_0, I, O, R) the pair of signals $(i, o) \in \Sigma_I \times \Sigma_O$ is a *behavior* of the automaton iff there is an $s \in \Sigma_S$ s.t.

- $ightharpoonup s(0) \in S_0$,
- ▶ for all $t \in \{0, 1, ...\}$, $(i(t), s(t), s(t+1), o(t)) \in R$.

In this case we also write $s(0) \xrightarrow{i(0)/o(0)} s(1) \xrightarrow{i(1)/o(1)} s(2) \dots$

An automaton T represents the system

$$\llbracket T \rrbracket := \{ (i, o) \in \Sigma_I \times \Sigma_O \mid (i, o) \text{ is a behavior of } T \}$$

Representation vs. Refinement

$$\{ (i,o) \in \Sigma_{\{nil,start\}} \times \Sigma_{\{free,scheduled,mission\}} \mid \\ \text{input } \textit{start} \text{ results in output } \textit{mission} \text{ within at most } 10 \text{ steps} \}$$

$$\begin{aligned} \{(\textit{i},\textit{o}) \in \Sigma_{\{\textit{nil},\textit{start}\}} \times \Sigma_{\{\textit{free},\textit{scheduled},\textit{mission}\}} \mid \\ \forall \textit{t} \in \mathbb{N}_0 \; . \; \textit{i}(\textit{t}) = \textit{start} \Rightarrow \exists \textit{d} \in \{0,\ldots,10\} \; . \; \textit{o}(\textit{t}+\textit{d}) = \textit{mission}\} \end{aligned}$$

Represents above system?

Never needs 10 steps

Does not represent the system!

But represents refinement!

Representing Systems Using Automata

For a given system, is there an automaton representing it?

Example:
$$\{(i,o) \in \Sigma_{\{a,b,c\}} \times \Sigma_{\mathbb{N}_0} \mid \forall t \ . \ o(t) = |\{t' \mid t' \leq t, i(t') = a\}| \ \}$$

no finite automaton can implement this

May there be more than one automaton representing a given system?

Example:
$$\{(i, o) \in \Sigma_{\{nil\}} \times \Sigma_{\{\heartsuit\}} \mid \forall t . o(t) = \heartsuit\}$$

Two automata are *equivalent* iff they represent the same system.

Minimal automaton? (see any textbook on automata theory, BI-AAG, with outputs [Mohri, 2000])

Properties of Automata

The system represented by an automaton is always receptive and causal!

Is it always deterministic?

Na

This means: For a given input, unique output?

Deterministic Automata

An automaton is deterministic iff

- $|S_0| = 1$
- ▶ for all $i \in I$, $s \in S$, there is precisely one $s' \in S$, $o \in O$ s.t. $(i, s, s', o) \in R$

For every deterministic automaton,

the system it represents is also deterministic

The other way round:

Can a non-deterministic automaton represent a deterministic system?

Example:

memory-less?

Variables: Extended State Machines

Example: Traffic lights:

after button is pressed, wait for 30 seconds, then switch to green.

- ▶ State space: $\{(s,x) \mid s \in \{default, count\}, x \in \{0,\ldots,30\}\}$
- ► Initial states: {(default, 0)}
- ► Input: { nil, button}
- ► Output: { green, red }
- Transitions:

```
 \left\{ \begin{array}{l} (\textit{nil}, (\textit{default}, 0), (\textit{default}, 0), \textit{red}), \\ (\textit{button}, (\textit{default}, 0), (\textit{count}, 30), \textit{red}), \\ (\textit{nil}, (\textit{count}, 30), (\textit{count}, 29), \textit{red}), \\ (\textit{nil}, (\textit{count}, 29), (\textit{count}, 28), \textit{red}) \\ \dots \end{array} \right\}
```

Can we write the transitions in a more compact way?

Writing Transitions

```
 \left\{ \begin{array}{l} (\textit{nil}, (\textit{default}, 0), (\textit{default}, 0), \textit{red}), \\ (\textit{button}, (\textit{default}, 0), (\textit{count}, 30), \textit{red}), \\ (\textit{nil}, (\textit{count}, 30), (\textit{count}, 29), \textit{red}), \\ (\textit{nil}, (\textit{count}, 29), (\textit{count}, 28), \textit{red}) \\ \dots \end{array} \right\}
```

```
 \left\{ \left( pressed, ((I,x),(I',x')), light \right) \mid \\ [I = default \land I' = default \land pressed = nil \land light = red] \lor \\ [I = default \land I' = count \land pressed = button \land light = red \land x' = 30] \lor \\ [I = count \land I' = count \land x > 0 \land light = red \land x' = x - 1] \lor \\ [I = count \land I' = default \land x = 0 \land light = green] \right\}
```

Extended State Machines: Graphical Notation

- Input variables: pressed ∈ {nil, button}
- ▶ Output variables: $light \in \{green, red\}$
- ▶ State variables: $x \in \{0, ..., 30\}$

Here: only one input/output/state variable

In general: several ones, where n variables represent n-tuples

Common Notation

Terminology:

- ► Locations: graph vertices (only part of state space)
- Guards: conditions on input variables and state variables
- Updates: changes of state variables
 (variables without updates stay unchanged)

Hierarchical Automata

Superstate vs. sub-state

Recursive hiding versus modeling of details (cf. abstraction)

Basis for formalism Statecharts [Harel, 1987].

Various variants and extensions

Especially UML State Machines

see Wikipedia "UML state machine"

Conclusion

Systems consist of communicating sub-systems

We can describe them

- from the outside (black box):
 Which inputs result in which outputs?
- from the inside (white box):
 How are outputs produced from inputs?

Corresponding main definitions:

- discrete-time system (a model)
- automaton

Comparison: classical algorithms

- ► I/O specification (relation between inputs and outputs):
- Implementation in a programming language

Theory of automata with inputs of infinite length: ω -automata

Stefan Ratschan (FIT ČVUT) MIE-TES 2020-3

Next Lecture

Forms of interconnection and interaction between systems

Literature

- Rajeev Alur. Principles of Cyber-Physical Systems. The MIT Press, 2015.
- David Harel. Statecharts: a visual formalism for complex systems. Science of Computer Programming, 8(3):231 – 274, 1987.
- Edward A. Lee and Pravin Varaiya. Structure and Interpretation of Signals and Systems. http://LeeVaraiya.org, 2011.
- Mehryar Mohri. Minimization algorithms for sequential transducers. Theoretical Computer Science, 234(1–2):177 – 201, 2000. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(98)00115-7. URL http://www.sciencedirect.com/science/article/pii/ S0304397598001157.