Reaction time distributions

KTry the interactive applets and read more at http://lindeloev.github.io/shiny/rt/.

Difficulty: Disperses distribution towards longer RTs. This is very RT-like.

Shift: Moves the whole distribution towards longer RTs.

Scale: Disperses the distribution.

Messy: None or more than one of the above.

Parameters

Code

Variant of	Name	RT fit	Shift	Scale	Difficulty	Messy	Example brms::brm code
NORMAL Descriptive	Normal (Gaussian)		μ	σ			brm(rt ~ x + (1 id), data, family=gaussian())
	Ex-gaussian	/ /	μ	σ		λ	<pre>brm(rt ~ x + (1 id), data, family=exgaussian())</pre>
	Skew normal		μ	σ		α	brm(rt ~ x + (1 id), data, family=skew_normal())
	Log-normal	✓		σ	μ		<pre>brm(rt ~ x + (1 id), data, family=lognormal())</pre>
	Shifted log-normal	/ /	shift	σ	μ		<pre>brm(rt ~ x + (1 id), data, family=shifted_lognormal())</pre>
DRIFT towards response thresholds.	Wald / Inverse Gaussian	✓		λ	μ		<pre>brm(rt ~ x + (1 id), data, family=inverse.gaussian())</pre>
	Shifted Wald / Inverse Gaussian	/ /	shift	λ	μ		Custom brms family and see this post.
	Wiener / Decision Diffusion	/ /	Mechanism: 4 parameters			ers	See brms tutorial.
	Linear Ballistic Accumulator	√ √	M	Mechanism: 7 parameters			See glba::lba
SURVIVAL Time to event.	Weibull				λ	k	brm(rt ~ x + (1 id), data, family=weibull)
	Shifted Weibull	✓	shift		λ	k	Custom brms family.
	Gamma	√			A	α, β	<pre>brm(rt ~ x + (1 id), data, family=gamma())</pre>

This is an overview of distributions that are commonly used to model reaction times. Read the arguments for this way of organizing and evaluating the distributions at http://lindeloev.github.io/shiny/rt/. This link also contain interactive applets as well as a more extensive code example on distributional regression.

Red parameter: It is hard to interpret any given value in isolation.

Bold parameter: Default predictor in regression. Control this using e.g., formula = $bf(rt \sim 1, ndt \sim x + (1|id), sigma \sim x)$.