In the scope of this paper we are strictly working on the static propeller tests. This allows us to fully define and measure how the motor-rotor system will respond to any external stimuli. To start characterizing the propeller output we have to define the three different velocities that we are measuring.

 v_x , v_y , v_z Is the velocity of the drone, the body frame velocity. v_x^s , v_y^s , v_z^s is the velocity of the wind approaching the propellers, the stream velocity. v_x^i , v_y^i , v_z^i is the induced velocity of the propellers. Since we are doing only the static tests,horizontal wind can be considered irrelevant, therefore $v_s=v_z^s$ and $v_i=v_z^i$. What the wind sensor will notice is $v_{tot}=v_i+v_s$. In real life settings we could calculate v_s based on the data from the MAV's IMU. Since this is not the case, we can instead set a particular voltage as the desired voltage, v_d . This desired voltage is ideally the voltage the wind sensor measures when there are no external forces.