	9.5 Assuming described	that two pure by the van de						
		$P = \frac{1}{V}$	$\frac{RT}{1-b} - \frac{a}{V^2}$					
	and that for mixing rules		the van de	er Waals or	ne-fluid			
	$a = \sum_{i}$ - a. Show tha	$\sum_{\mathbf{j}} x_{\mathbf{i}} x_{\mathbf{j}} a_{\mathbf{i}\mathbf{j}}$ the fugacity		1	i in the	PV		
	mixture i	S		•		Z= RT		
	$\ln \phi_{\rm i} = \ln \frac{\bar{f}_{\rm i}}{x_{\rm i} H}$	$g = \frac{B_{\rm i}}{Z - B}$	$-\ln(Z-B)$	$(3) - \frac{2\sum_{j}x}{RT!}$	$rac{c_{\mathrm{j}}a_{\mathrm{ij}}}{V}$			
		= Pb/RT.						
	each spec	_	lor the act	Ivity coeffic	Lient of			
lets	Start	w:th	definition	m of	fueracity	Coeff)	
	$\ln \bar{\phi}_{i} = \ln \frac{\bar{f}_{i}(T, x_{i})}{x_{i}}$	$\frac{P,\underline{x})}{P} = \frac{1}{RT} \int_{a}^{b} dt$	$\int_{\underline{V}=\infty}^{\underline{V}=ZRT/P} \left[\right]$	$\frac{RT}{\underline{V}} - N\left(\frac{\partial}{\partial t}\right)$	$\left(\frac{P}{N_{\mathrm{i}}}\right)_{T,V,N_{\mathrm{j}\neq\mathrm{i}}} dQ$	$V - \ln Z$		
now	going to	our to	» S					
		Ρ=	V-p	- <u>4</u> ½				
and c	conurting" r	nolar val	ome to	extensiu	Volume			
		P = N	V-Nb	$-\frac{N^2}{V}$				
Now	ve can	Slap	in the	Wyxind L	ules version	or of	a and b	

$$P = \frac{N R T}{V - N \sum_{i} Y_{i} b} - \frac{N^{2} \sum_{i} \chi_{i} \chi_{i} \chi_{i} \chi_{i}}{V^{2}}$$

$$N_{i} = \frac{N R T}{V - \sum_{i} N_{i} b_{i}} - \frac{N R T}{V^{2}} - \frac{N R T}{V$$

$$= \frac{1}{RT} \int_{Y=0}^{Y=2} \frac{RT}{Y-b} - \frac{RT}{(y-b)^2} + \frac{2ZX_3 a_{xy}}{Y^2} dy - \ln(z)$$

$$= \frac{1}{RT} \left(RT \ln(y) - RT \ln(y-b) + \frac{RT}{Y-b} - \frac{2ZX_3 a_{xy}}{Y} - \ln(z) \right)$$

$$= \left(\ln(\frac{y}{y-b}) + \frac{b}{y-b} - \frac{2ZX_3 a_{xy}}{RT y} \right)_{y=00}^{y-2RT/b}$$

$$= \left(\ln(\frac{y}{y-b}) - 0 + \frac{2RT}{y-b} - 0 - \frac{2ZX_3 a_{xy}}{RT y} \right)_{y=00}^{y-2RT/b} + 0 - \ln(z)$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\frac{\rho_b}{a_T}}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \ln(z)$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\frac{\rho_b}{a_T}}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \ln(z)$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\frac{\rho_b}{a_T}}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \ln(z)$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\frac{\rho_b}{a_T}}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \ln(z)$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\rho_b}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \ln(z)$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\rho_b}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \frac{1}{RT}$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\rho_b}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \frac{1}{RT}$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\rho_b}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \frac{1}{RT}$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\rho_b}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \frac{1}{RT}$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{\rho_b}{2 - \frac{\rho_b}{RT}} - \frac{2ZX_3 a_{xy}}{RT y} - \frac{1}{RT}$$

$$= \ln(z) - \ln(z - \frac{\rho_b}{RT}) + \frac{2}{2 - \frac{\rho_b}{RT}} - \frac{2}{RT} - \frac{2}{$$

(B) We know the activity coefficient is

$$T = \frac{\overline{J}_{i}^{L}}{Z_{i}J_{i}^{L}}$$
and $\overline{J}_{i}^{L} = Z_{i}P \exp\left[\alpha_{i}\omega_{i}\omega_{i} - \omega_{i}\omega_{i}\right]$

$$\sum_{\alpha_{i},\beta_{i}} P \exp\left[(\overline{z}_{i}-1) - \ln(z_{i}-B_{i}) - \frac{\omega_{i}}{z_{i}}\right] \frac{\gamma_{i}}{\gamma_{i}} + \gamma_{i}$$

$$Z_{i}P \exp\left[\left(\overline{z}_{i}-1\right) - \ln(z_{i}-B_{i}) - \frac{2}{z_{i}}\frac{z_{i}}{z_{i}}\right]$$

$$\sum_{\alpha_{i}} P \exp\left[\left(\overline{z}_{i}-1\right) - \ln(z_{i}-B_{i}) - \frac{\alpha_{i}}{z_{i}}\right]$$

$$\exp\left[\left(\overline{z}_{i}-1\right) - \ln(z_{i}-B_{i}) - \frac{\alpha_{i}}{z_{i}}\right]$$

$$\exp\left[\left(\overline{z}_{i}-1\right) - \ln(z_{i}-B_{i}) - \frac{\alpha_{i}}{z_{i}}\right]$$