Optimization Algorithms as Quantum Performance Benchmarks

Pratik Sathe

University of California at Los Angeles (UCLA), & Universities Space Research Association (USRA)

March 06, 2023

Pratik Sathe (UCLA) March 06, 2023

Collaboration with Tom Lubinski, Carleton Coeffrin, Joshua Apanavicius, Catherin McGeoch and David Bernal.

Background and Motivation

- Component-level benchmarking is valuable, but less informative for the user.
- End-User perspective: Will I be able to solve my problem using a quantum computer?
- Hence, QED-C's approach 1:
 - Versatile, accessible benchmarking suite.
 - How good an answer does the hardware give?
 - Use out-of-the-box software capabilities.
 - Run algorithms on hardware, and present insightful visualizations.
 - Plug and play

Pratik Sathe (UCLA) QAQA Benshmarking March 06, 2023

¹https://github.com/SRI-International/QC-App-Oriented-Benchmarks

Volumetric Positioning

- Sub-routine and algorithm benchmarking²:
 - Quantum Fourier Transform, Phase Estimation, etc.
 - Grover's Algorithm, Hamiltonian Simulation, etc.

²Lubinski, Thomas, et al. "Application-oriented performance benchmarks for quantum computing. https://arxiv.org/abs/2110.03137

Pratik Sathe (UCLA) QAQA Bandmarking March 06, 2023

Performance for Combinatorial Optimization Problems

ullet Example: Find $s_1, \dots s_N$ (each being 0 or 1) which minimize³

$$\text{Cost function } H := \sum_{i,j} J_{ij} s_i s_j + \sum_i h_i s_i$$

- NP-hard
- Digital/Gate model QPUs: Quantum Approximate Optimization Algorithm⁴: A hybrid quantum-classical approach offering potential speed-up.
- Analog QPUs: Quantum Annealing

Pratik Sathe (UCLA) OAOA Benchmarking March 06, 2023

³aka QUBO problems (Quadratic Unconstrained Binary Optimization).

⁴Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. "A quantum approximate optimization algorithm." arXiv preprint arXiv:1411.4028 (2014).

QAOA: Quantum Approximate Optimization Algorithm

Figure: QAOA Circuit: Each circuit corresponds to a probability distribution over 'solution space'.

- **1** Choose initial parameters $\beta_1, \ldots, \beta_p, \gamma_1, \ldots, \gamma_p$.
- 2 Implement circuit many times; obtain $\langle H \rangle$.
- **3** Classical minimizer routine updates angles that result in smaller $C \equiv \langle H \rangle$.
- If not converged, go back to (2).

Pratik Sathe (UCLA) QAGA Sandmarking March 06, 2023

Choice of Problem: The MaxCut Problem

- **Given**: Graph G with vertices V and edges E.
- A 'cut' is a division of the vertices into two groups.
- The 'size' of a cut is the number of edges that now connect vertices from different groups.
- Objective: Find the cut with highest size, i.e. the 'Max Cut'.

QAOA Formulation: Find ground state of:

$$H=-\frac{1}{2}\sum_{\langle j,k\rangle\in E}(1-Z_jZ_k),$$

6/18

Pratik Sathe (UCLA) QAGA Sendmuking March 06, 2023

Area Plots: Time Evolution of Quality

Area Plots: Time Evolution of Quality

Distribution of Cut Sizes

Empirical Distribution of Cut Sizes - MaxCut-(2)
Device=qasm_simulator Oct 10, 2022 22:50:49 UTC
shots=5000, rounds=2, degree=3, restarts=1,
Objective Function=Approximation Ratio

All Metrics and Distribution all Widths

Cost Function Landscape

Created using state-vector simulator $\beta \in (0, \pi]$ and $\gamma \in (0, 2\pi]$

Pratik Sathe (UCLA) QAOA Bandmanking March 06, 2023

Parameter Trajectories

QAOA with 30 rounds, random initial conditions

Pratik Sathe (UCLA) QAQA Banchmarking March 06, 2023

Initial Conditions Affect Quality Significantly

Empirical Distribution of cut sizes
Device=qasm_simulator Sep 09, 2022 22:49:44 UTC
shots=5000, width=12, degree=3, restarts=100

Histogram of Approximation Ratios with 100 restarts

Histogram of Approximation Ratios
Device=qasm_simulator Sep 09, 2022 22:49:48 UTC
shots=5000, width=12, degree=3, restarts=100

Radar Plots (Rounds=1)

Pratik Sathe (UCLA) QAOA Sandmarking March 06, 2023

Effect of Number of Shots

Empirical Distribution of cut sizes
Device=qasm_simulator Oct 11, 2022 16:32:50 UTC
width=12, degree=3, restarts=1

Effect of Rounds

Empirical Distribution of cut sizes
Device=qasm_simulator Oct 11, 2022 06:03:44 UTC
width=12, degree=3, restarts=1

Same starting angles (all 1's).

Conclusion and future work

- Open-source benchmarking framework
 - Works on different hardware modalities
 - End-users as well as researchers in mind
 - Also useful to understand effects of parameter choices.
- Details presented in manuscript⁵.
- Extend framework:
 - Apply to other iterative hybrid algorithms, such as VQE.
 - Enhancements with 3rd party compiler optimization tools.

Pratik Sathe (UCLA) GAOA Sendmading March 06, 2023

⁵Thomas Lubinski, Carleton Coffrin, Catherine McGeoch, Pratik Sathe, Joshua Apanavicius, and David E. Bernal Neira. "Optimization Applications as Quantum Performance Benchmarks." arXiv preprint arXiv:2302.02278 (2023).

Thank you!

Pratik Sathe (UCLA) SAGA Benchmarking March 06, 2023 18/18