1

витухина наталья александровна

Кол-во символов в строке: 30.

Мощность алфавита: 17.

Таблица частот

Алфавит	a	В	Д	e	И	К	Л	Н	О
Кол. вх.	6	2	1	1	2	1	2	4	1
Вероятн.	0.2	0.067	0.033	0.033	0.067	7 0.03	3 0.067	7 0.133	0.033
Алфавит	p	c	Т		y	X	Ь	Я	<>
Кол. вх.	1	1	2		1	1	1	1	2
Вероятн.	0.033	0.03	3 0.00	67 0.0)33	0.033	0.033	0.033	0.067

(скобки < > обозначают пробел в исходной строке)

2

Таблица отсортированных частот

Алфавит	a	Н	В	И	Л	Т	<>	. д	e
Кол. вх.	6	4	2	2	2	2	2	1	1
Вероятн.	0.2	0.133	0.067	0.067	0.06	0.06	67 0.06	7 0.033	0.033
Алфавит	К	О	р		С	у	X	Ь	Я
Кол. вх.	1	1	1		1	1	1	1	1
Вероятн.	0.033	0.03	3 0.03	33 0.0)33	0.033	0.033	0.033	0.033

3, 4 0110 00 010 0111 1010 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 1000 1001 н/4 л/2 0.067 < >/2 0.067 д/1 0.033 0.067 0.067 0 0 1 $\frac{2}{0.067}$ 0.067 0.067 0 4 0.133 0.133 0.133 4 0.133 8 0.267 8 0.267 14 0.467 0

5

 $0110_{\mathtt{B}}\ 0111_{\mathtt{H}}\ 1001_{\mathtt{T}}\ 11100_{\mathtt{y}}\ 11101_{\mathtt{x}}\ 0111_{\mathtt{H}}\ 010_{\mathtt{H}}\ 00_{\mathtt{a}}\ 1010_{\mathtt{<>}}\ 010_{\mathtt{H}}\ 00_{\mathtt{a}}\ 1001_{\mathtt{T}}\ 00_{\mathtt{a}}\ 1000_{\mathtt{n}}$ $11110_{\mathtt{b}}\ 11111_{\mathtt{g}}\ 1010_{\mathtt{<>}}\ 00_{\mathtt{a}}\ 1000_{\mathtt{n}}\ 10111_{\mathtt{e}}\ 11000_{\mathtt{K}}\ 11011_{\mathtt{c}}\ 00_{\mathtt{a}}\ 010_{\mathtt{H}}\ 10110_{\mathtt{g}}\ 11010_{\mathtt{p}}$ $11001_{\mathtt{0}}\ 0110_{\mathtt{B}}\ 010_{\mathtt{H}}\ 00_{\mathtt{a}}$

Длина в ASCII: $8 \cdot 30 = 240$ симв.

Длина после сжатия: $2 \cdot 6 + 4 \cdot 3 + 10 \cdot 4 + 10 \cdot 5 = 114$ симв.

Коэфф. сжатия: $\frac{240}{114} = 2.105$.

6

Средняя длина: $0.2 \cdot 2 + 0.133 \cdot 3 + 5 \cdot 0.067 \cdot 4 + 10 \cdot 0.033 \cdot 5 = 3.789$ бит/симв.

Дисперсия:
$$0.2 \cdot (2 - 3.789)^2 + 0.133 \cdot (3 - 3.789)^2 + 5 \cdot 0.067 \cdot (4 - 3.789)^2 + 10 \cdot 0.033 \cdot (5 - 3.789)^2 = 1.221765958$$

Вывод:

В ходе выполнения данной практической работы я изучила работу алгоритма оптимального префиксного кодирования Хаффмана и убедилась в его действенности для сжатия данных.