FUNCTIONAL DEPENDENCIES AND NORMALIZATION

Aims:

At the end of this group of four lectures, you should be able to understand functional dependencies and normal forms, as well as to be able to normalize relations.

Reading:

Elmasri & Navathe, Chapters 15 & 16 (6th ed.) or Chapters 14 & 15 (7th ed.)

OVERVIEW

- 1. Informal Design Guidelines
- 2. Decomposition
- 3. Functional Dependencies
- 4. Normal Forms Based on Primary Keys
- 5. General Normal Form Definitions
- 6. Boyce-Codd Normal Form
- Relational Synthesis

INFORMAL DESIGN GUIDELINES

- What is relational database design?
 The grouping of attributes to form "good" relation schemas
- Two levels of relation schemas
 - The logical "user view" level:
 - How the user interprets the schema?
 - Is it clear and easy to understand?
 - The storage "base relation" level
 - How are the tuples from a relation stored?
 Is the storage space needed minimal?
- Design is concerned mainly with base relations
- What are the criteria for "good" base relations?

INFORMAL DESIGN GUIDELINES

- 1. Semantics of the Relation Attributes
- 2. Redundant Information and Update Anomalies
- 3. Null Values in Tuples
- 4. Spurious Tuples

SEMANTICS OF ATTRIBUTES

GUIDELINE 1: Informally, each tuple in a relation should represent one entity or relationship instance.

- Attributes of different entities should not be mixed in the same relation
- Only foreign keys should be used to refer to other entities
- Entity and relationship attributes should be kept apart as much as possible.

EXAMPLES (Fig 14.1, 14.3)

EMPLOYEE (EName, <u>SSN</u>, BDate, Address, DNumber)
DEPARTMENT (DName, <u>DNumber</u>, DMgrSsn)
DEPT_LOCATIONS (<u>DNumber</u>, <u>DLocation</u>)
PROJECT (PName, <u>PNumber</u>, PLocation, DNum)
WORKS_ON (<u>SSN, PNumber</u>, Hours)

REDUNDANT INFORMATION IN TUPLES AND UPDATE ANOMALIES

- Mixing attributes of multiple entities may cause problems
- Information is stored redundantly wasting storage
- o Problems with update anomalies
 - Insertion anomalies
 - · Deletion anomalies
 - · Modification anomalies

Figure 15.3 Two relation schemas suffering from update anomales. (a) EMP_DEPT Ename San Bdate Address Dnumber Dname Dmgr_ssn EMP_PROJ. (b) EMP_PROJ. San Pnumbar Hours Ename Pname Plocation FD1 FD2 FD3 Sin Pnumbar Hours Ename Pname Plocation FD1 FD2 FD3 Sin Pnumbar Hours Ename Pname Plocation FD1 FD2 FD3

GUIDELINE 2

- Design relations so that no update anomalies are present
- o If any anomalies are present:
 - Note them clearly
 - Make sure that the programs that update the database will operate correctly

NULL VALUES IN TUPLES

- **GUIDELINE 3:** Relations should be designed such that their tuples will have as few NULL values as possible
- Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- o Reasons for nulls:
 - · attribute not applicable or invalid
 - attribute value unknown (may exist)
 - · value known to exist, but unavailable

Spurious Tuples

- Bad designs for a relational database may result in erroneous results for certain JOIN operations
- The "lossless join" property is used to guarantee meaningful results for join operations
- **GUIDELINE 4:** The relations should be designed to satisfy the lossless join condition. No spurious tuples should be generated by doing a naturaljoin of any relations.

Example: Figures 14.5-6

	Ssn	Pnumber	Hours	Pname	Plocation	Ename	
Γ	123456789	1	32.5	ProductX	Bellaire	Smith, John B.	
ľ	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.	
Γ	123456789	2	7.5	ProductY	Sugarland	Smith, John B.	
Г	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.	
Г	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.	
Γ	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.	
Γ	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.	
Γ	453453453	1	20.0	ProductX	Bellaire	Smith, John B.	
Γ	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.	
Γ	453453453	2	20.0	ProductY	Sugarland	Smith, John B.	
Г	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.	
Γ	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.	
ľ	333445555	2	10.0	ProductY	Sugarland	Smith, John B.	
ľ	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.	
Г	333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.	
Γ	333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K	
Γ	333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.	
Γ	333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.	
Γ	333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K	
Γ	333445555	20	10.0	Reorganization	Houston	Wong, Franklin T.	
				:			

Figure 15.6

Result of applying NATURAL, JOIN to the tuples above the dashed line in EMP_PROUI and EMP_LOCS of Figure 15.5. Generated spurious tuples are marked by asterisks.

PEARSON

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DECOMPOSITION

- Update anomalies can be solved by decomposing relations
- Decomposition is the process of breaking up a large relation into a set of smaller ones
- When is it necessary to decompose a relation?
- If several decompositions are possible, which one should we use?

NORMALIZATION

- A technique for producing a set of relations with desirable properties
- A list of tests to apply on a relational schema in order to determine its quality
- o Introduced by Codd (1972)

FUNCTIONAL DEPENDENCIES

- A functional dependency is a constraint between two sets of attributes in the database.
- o Universal relation schema R(A₁, A₂, A₃, ..., A_n)
- A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y
- $\circ X \rightarrow Y$
- FDs are derived from the *meaning* and *interrelationships* of the attributes

FUNCTIONAL DEPENDENCIES

- $\circ X \rightarrow Y$
- X functionally determines Y
- Y is functionally dependent on X
- X: the left-hand side of the FD
- o Y: the right-hand side of the FD
- o can be displayed graphically on a relation schema (denoted by the arrow)
- o Notation: XZ stands for X U Z

FUNCTIONAL DEPENDENCIES (CONT)

- ${\color{red} o} \: X \rightarrow Y$ holds if whenever two tuples have the same value for X, they *must have* the same value for Y
- For any two tuples t1 and t2 in any relation instance r(R): If t₁[X]=t₂[X], then t₁[Y]=t₂[Y]
- X → Y in R specifies a constraint on all relation instances r(R)
- FDs are derived from the real-world constraints on the attributes

FUNCTIONAL DEPENDENCIES (CONT)

- A FD is a property of the attributes in the schema
- The constraint must hold on every relation instance r(R)
- If K is a key of R, then K functionally determines all attributes in R (since we never have two distinct tuples with t₁[K]=t₂[K])

EXAMPLE 1

TEACHER	COURSE	TEXT
Smith	Data Structures	Bartram
Smith	Databases	Elmasri
Hall	Compilers	Hoffman
Brown	Data Structures	Augenthaler

Which of the following FDs are correct?

- TEACHER \rightarrow TEXT
- COURSE \rightarrow TEXT
- TEXT → COURSE

INFERENCE RULES FOR FDs

- Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold
- Closure of a set F of FDs is the set F+ of all FDs that can be inferred from F
- o Notation: $X \rightarrow Y$ is inferred from F F $\not\models X \rightarrow Y$

INFERENCE RULES FOR FDS (CONT)

- o IR1 (**Reflexive**) If $Y \subset X$, then $X \to Y$
- o IR2 (Augmentation)
 If $X \rightarrow Y$, then $XZ \rightarrow YZ$
- o IR3 (**Transitive**) If $X \to Y$ and $Y \to Z$, then $X \to Z$
- IR1, IR2, IR3 (Armstrong's inference rules) form a sound and complete set of inference rules

INFERENCE RULES FOR FDs (CONT)

o IR4 (Decomposition)

If
$$X \to YZ$$
, then $X \to Y$ and $X \to Z$

o IR5 (Union)

If
$$X \rightarrow Y$$
 and $X \rightarrow Z$, then $X \rightarrow YZ$

o IR6 (Pseudotransitivity)

If
$$X \to Y$$
 and $WY \to Z$, then $WX \to Z$

 The last three inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

EXAMPLE 2 (EXAM QUESTION)

Given relation R(A, B, C, D) and a set of functional dependencies F={A \rightarrow B, AC \rightarrow D, BC \rightarrow A, BC \rightarrow D, CD \rightarrow A}, show that AC \rightarrow D is redundant:

- o using Armstrong's theorems
- using the definition of equivalent sets of functional dependencies

INFERENCE RULES (CONT)

- Closure of a set of attributes X with respect to F is the set X + of all attributes that are functionally determined by X
- X + can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F
- Algorithm for determining X+
 X+ := X;
 repeat
 oldX+ := X+
 for each ED X -> Z in E do.

for each FD Y \rightarrow Z in F do
if Y \subseteq X⁺ then X⁺ := X⁺ \cup Z;
il (oldX⁺ - X⁺):

until (old $X^+ = X^+$);

EXAMPLE 3 (EXAM QUESTION)

 A relational schema R (A, B, C, D, E) has the set of functional dependencies F={A →BC, CD →E, AC →E, B →D, E →AB}. Determine all candidate keys in R. Justify your answers.

EQUIVALENCE OF SETS OF FDS

- o Two sets of FDs F and G are equivalent if:
- every FD in F can be inferred from G, and
- every FD in G can be inferred from F
- o Hence, F and G are equivalent if F + = G +
- ${\color{red} \circ}$ F ${\color{red} covers}$ G if every FD in G can be inferred from F (i.e., if G $^+$ \subset F $^+)$
- F and G are equivalent if F covers G and G covers F
- There is an algorithm for checking equivalence of sets of FDs

ALGORITHM FOR CHECKING WHETHER F COVERS E

- Calculate X^+ with respect to F for each FD $X \rightarrow Y$ in E;
- o Check whether this X+ includes the attributes in Y.
- o Example 4

Check whether F and G are equivalent F={A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H} G={A \rightarrow CD, E \rightarrow AH}

MINIMAL SETS OF FDS

A set of FDs is minimal:

- Every dependency in F has a single attribute for its RHS;
- We cannot remove any dependency from F and have a set of dependencies that is equivalent to F;
- (3) We cannot replace any dependency X → A in F with a dependency Y → A, where Y ⊂ X and still have a set of dependencies that is equivalent to F.

MINIMAL SETS OF FDS (CONT)

- Every set of FDs has an equivalent minimal set
- There can be several equivalent minimal sets
- There is no simple algorithm for computing a minimal set of FDs that is equivalent to a set F of FDs

EXAMPLE 5

Determine whether the set of functional dependencies G is minimal or not. If it is not, find the minimal set of FDs equivalent to G.

G={SSN→{EName, BDate, Address, DNumber}, DNumber → {DName, DMgrSsn}}

NORMALIZATION OF RELATIONS

- Normalization: the process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations
- Normal form: Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form

PRACTICAL USE OF NORMAL FORMS

- Normalization is carried out in practice so that the resulting designs are of high quality and meet the desirable properties
- The practical utility of these normal forms becomes questionable when the constraints on which they are based are hard to understand or to detect
- The database designers need not normalize to the highest possible normal form (usually up to 3NF or BCNF)
- Denormalization: the process of storing the join of higher normal form relations as a base relation which is in a lower normal form

DEFINITIONS OF KEYS

- A **superkey** of a relation schema $R = \{A_1, A_2, ..., A_n\}$ is a set of attributes $S \subset R$ with the property that no two tuples t_1 and t_2 in any legal relation state r of R will have $t_1[S] = t_2[S]$
- A key K is a superkey with the additional property that removal of any attribute from K will cause K not to be a superkey any more.

DEFINITIONS OF KEYS (CONT)

- If a relation schema has more than one key, each is called a candidate key. One of the candidate keys is arbitrarily designated to be the primary key, and the others are called secondary keys.
- A prime attribute must be a member of some candidate key
- A nonprime attribute is not a prime attribute—that is, it is not a member of any candidate key.

FIRST NORMAL FORM

- Disallows composite attributes, multivalued attributes, and nested relations; attributes whose values for an individual tuple are nonatomic
- The only attribute values permitted by 1NF are single atomic (indivisible) values.
- Considered to be part of the definition of relation

SECOND NORMAL FORM

- Full functional dependency: a FD Y → Z where removal of any attribute from Y means the FD does not hold any more Examples:
- {SSN, PNUMBER} → HOURS is a full FD since neither SSN → HOURS nor PNUMBER → HOURS hold
- {SSN, PNUMBER} → ENAME is *not* a full FD (it is called a *partial dependency*) since SSN → ENAME also holds

SECOND NORMAL FORM

- A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on the entire primary key
- R can be decomposed into 2NF relations via the process of 2NF normalization

TRANSITIVE FUNCTIONAL DEPENDENCY

- o a FD $X \rightarrow Z$ that can be derived from two FDs $X \rightarrow Y$ and $Y \rightarrow Z$
- SSN → DMGRSSN is a transitive FD since SSN → DNUMBER and DNUMBER → DMGRSSN hold
- SSN → ENAME is non-transitive since there is no set of attributes X where SSN → X and X → ENAME

THIRD NORMAL FORM

- A relation schema R is in third normal form (3NF) if it is in 2NF and no non-prime attribute A in R is transitively dependent on the primary key
- R can be decomposed into 3NF relations via the process of 3NF normalization

EName SSN BDate Address DNumber DName DMgrSsn fd1 ED1 ED2 EName SSN BDate Address DNumber DName DMgrSsn fd2 ED2 EName SSN BDate Address DNumber DName DMgrSsn fd2 Side 7-45

GENERAL NORMAL FORM DEFINITIONS

- The following more general definitions take into account candidate keys, not just primary keys
- A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on every key of R
- A relation schema R is in third normal form (3NF) if whenever a FD X → A holds in R, then either:
 - (a) X is a superkey of R, or
 - (b) A is a prime attribute of R

(Fig 14.12)

EXAMPLE 9

- o Consider R(A, B, C, D, E, F, G, H, I, J) and the set of functional dependencies F = {AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ}.
- What is the key of R?
- o Decompose R into 2NF, then 3NF relations.

BCNF (BOYCE-CODD NORMAL FORM)

- A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X
 - \rightarrow A holds in R, then X is a superkey of R
- Each normal form is strictly stronger than the previous one
 - · Every 2NF relation is in 1NF
 - Every 3NF relation is in 2NF
 - Every BCNF relation is in 3NF
- There exist relations that are in 3NF but not in BCNF
- o The goal is to have each relation in BCNF (or 3NF)

ACHIEVING BCNF BY DECOMPOSITION

- It is not always desirable to transform a relation into BCNF
- o Some FDs may be lost

EXAMPLE 10

o Determine the normal form of the relation R1($\underline{A},\underline{B}$, C, D) and, if necessary, decompose it into BCNF. F = {AB \rightarrow CD, C \rightarrow ABD, D \rightarrow C}

EXAMPLE 11

- Relation T lists dentist/patient data. A patient is given an appointment at a specific time and date with a dentist located at a particular room. On each day a dentist is allocated to a specific room for that day.
- Provide examples of insertion, deletion and update anomalies.
- Describe the process of normalizing the table to BCNF.

EXAMPLE 11 (CONT)

<u>DNo</u>	DName	PNo	PName	<u>ADate</u>	ATime	Room
101	Tony Smith	100	Gill White	12-sep	10:00	15
101	Tony Smith	105	Jill Bell	12-sep	12:00	15
124	Helen Adams	108	Ian McKay	12-sep	10:00	10
124	Helen Adams	108	Ian McKay	15-sep	14:00	10
132	Robin Pearson	110	John Walker	15-sep	16:30	15
132	Robin Pearson	105	Jill Bell	15-sep	18:00	15

DATABASE DESIGN REVISITED

- Top-down design
- o Relational synthesis

Slide 7-55

RELATIONAL DECOMPOSITION

- o R universal relation schema
- o Decomposition D={R₁, R₂, ..., R_n}
- o Properties of decompositions:
 - Attribute preservation ∪_i R_i = R
 - · Dependency preservation
 - · Lossless join

DEPENDENCY PRESERVATION

- o D={R₁, R₂, ..., R_n}
- The projection of F on Ri, $\pi_F(R_i)$, is the set of FDs in F⁺ such that attributes in X \(\Omega\) Y are all contained in R_i.
- ${\color{red} \circ} \; ((\pi_F(R_1)) \; \cup \; ... \; \cup (\pi_F(R_n)))^+ = F^+ \\$
- It is always possible to find a dependencypreserving decomposition such that each relation is in 3NF

LOSSLESS JOIN

- o Non-additive join
- $(\pi_{R1}(r), ... \pi_{Rm}(r)) = r$
- Decomposition D = {R1, R2} is lossless iff either:
- o ((R1 \cap R2) \rightarrow (R1 R2)) \in F⁺ or
- \circ ((R1 ∩ R2) \rightarrow (R2 R1)) ∈ F⁺

RELATIONAL SYNTHESIS

Dependency-preserving decomposition into 3NF relations

All FDs must be known!

- Find a minimal cover G for F.
- For each LHS X of a FD that appears in G create a relation schema (X ∪ A₁ ∪ A₂ ... ∪ A_m), where X→A₁, X→A₂, ..., X→A_m are the only FDs in G with X as LHS.
- Place any remaining (unplaced) attributes in a single relation schema to ensure the attribute preservation property.

FINDING A MINIMAL COVER G FOR F

- Initialize G to F.
- Replace each FD X → A₁, A₂, ..., A_n in G by n FDs: X → A. X → A_n X → A
- $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n$. 3. For each FD $X \rightarrow A$ in G:

For each attribute B in X:

Let Y = X - B, and J = ((G - (X \rightarrow A)) \cup {Y \rightarrow A}. Compute Y* with respect to J, and Y* with respect to G. If Y* under G = Y* under J, replace X \rightarrow A with Y \rightarrow A in G, and set X = Y.

For each remaining FD X→A in G
 Compute X* with respect to (G - (X →A));
 If X* contains A, remove X → A from G.

LOSSLESS JOIN AND FD-PRESERVING **DECOMPOSITION INTO 3NF**

- Find a minimal cover G for F.
- For each LHS X of a FD that appears in G create a relation schema $(X \cup A_1 \cup A_2 ... \cup A_m)$, where $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_m$ are the only FDs in G with X as LHS. Place any remaining (unplaced) attributes in a single relation schema to ensure the attribute preservation property.
- If none of the relation schemas contain a key of R, create one more relation that contains the key.

EXAMPLES

- o Example 12: Find a minimal cover for $F = \{ABC \rightarrow D, AB \rightarrow C, C \rightarrow B\}.$
- o Example 13: Find the minimal set of 3NF relations given $F=\{A \rightarrow BC, BC \rightarrow D\}$.

