BUNDESREPUBLIK DEUTSCHLAND

09/865,880

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

5

Aktenzeichen:

100 37 765.3

Anmeldetag:

3. August 2000

Anmelder/Inhaber:

Agfa-Gevaert AG, Leverkusen/DE

Bezeichnung:

Bleichfixierbadkonzentrat

Priorität:

27.5.2000 DE 100 26 456.5

IPC:

G 03 C 5/38

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 22. Oktober 2002

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Agurks

Bleichfixierbadkonzentrat

5

15

20

25

30

Die Erfindung betrifft ein einteiliges Bleichfixierbadkonzentrat (BX-Konzentrat), mit dem Bleichfixierbäder angesetzt bzw. regeneriert werden können.

BX-Bäder werden im farbfotografischen Verarbeitungsprozess eingesetzt, um das durch die Entwicklung entstandene metallische Silber zu einer löslichen Form zu oxidieren (Bleichung) und in dieser Form zusammen mit nicht entwickeltem Silberhalogenid durch Komplexbildung aus dem Material zu lösen (Fixierung). BX-Bäder enthalten für diese Aufgaben eine Reihe notwendiger Chemikalien, nämlich ein Eisen (III)-komplexsalz als Oxidationsmittel, ein Thiosulfat als Fixiermittel und ein Sulfit, Disulfit oder eine Sulfinsäure als Stabilisator für das Thiosulfat, die sich gegenseitig beeinflussen, so dass sie nicht längere Zeit in der gleichen Lösung gehalten werden können. Zum Beispiel oxidiert das Eisen(III)-komplexsalz das Sulfit, Disulfit oder die Sulfinsäure. Dadurch entfällt die Stabilisierung des Thiosulfates, das sich dann zersetzt.

Aus diesem Grund werden BX-Bäder zwei- oder dreiteilig konfektioniert, wobei die Teile erst unmittelbar vor dem Gebrauch vereinigt werden. Ebenso werden Konzentrate, die zum Regenieren, d.h. zum Nachdosieren verbrauchter Chemikalien benötigt werden, zwei- oder dreiteilig konfektioniert.

Die mehrteilige Konfektionierung der Bestandteile einer BX-Tankfüllung oder eines BX-Regenerators ist nachteilig, weil sie einerseits aufwendig und unökonomisch ist, andererseits aber auch immer wieder zu Dosierungsfehlern führt.

Es besteht daher ein großer Bedarf, die Chemikalien für BX-Bäder einteilig zu konfektionieren und insbesondere ein einteiliges BX-Konzentrat bereitzustellen, das in einfachster Weise durch Verdünnen mit Wasser zum gebrauchsfertigen BX-Bad umgesetzt oder ebenso einfach zum Regenerieren eines BX-Bad eingesetzt wird. Das

5

15

20

25

30

scheiterte bisher an der vorstehend genannten Zersetzung des Thiosulfats, aber auch an der nicht ausreichenden Löslichkeit des Thiosulfates, des Sulfits und des Eisen(III)-komplexsalzes, insbesondere, wenn dieses Eisen(III)-EDTA ist.

Es wurde nun überraschend gefunden, dass diese Nachteile überwunden werden können, wenn man dem BX-Konzentrat mit den zuvor genannten Bestandteilen ein Phosphat, Polyphosphat oder Polyphosphonat, ein Nitrat oder Bromid zusetzt.

Fe(III)-komplexsalze, die sich für fotografische Bleich- und Bleichfixierbäder eignen, sind aus einer Vielzahl von Dokumenten bekannt (z.B. EP 329 088, 584 665, 507 126, 556 782, 532 003, 750 226, 657 777, 599 620, 588 289, 723 194, 851 287, 840 168, 871 065, 567 126, 726 203 und US 5 670 305).

Bevorzugte Komplexbildner für Fe(III) sind: Ethylendiamintetraessigsäure (EDTA), Propylendiamintetraessigsäure (PDTA), β-Alanindiessigsäure (ADA), Diethylentriaminpentaessigsäure (DTPA), Methyliminodiessigsäure (MIDA), Ethylendiaminmonosuccinat (EDMS), Methylglycindiessigsäure (MGDA), Ethylendiamindisuccinat (EDDS), speziell (S,S)-EDDS, Iminobernsteinsäure, Iminobernsteinsäurepropionsäure, 2-Hydroxypropyliminodiessigsäure.

Es sind auch Gemische von Komplexbildnern einsetzbar.

Als Sulfit eignen sich z.B. Ammoniumsulfit, Ammoniumhydrogensulfit, Natriumsulfit, Natriumhydrogensulfit, Kaliumsulfit, Kaliumsulfit, Kaliumsulfit, Kaliumhydrogensulfit. Als Sulfinsäuren eignen sich z.B. Hydroxymethansulfinsäure, Formamidinsulfinsäure, Benzolsulfinsäure, p-Toluolsulfinsäure, Methansulfinsäure, o-Amidosulfinsäure und deren Salze.

Als Phosphate können die Alkalisalze und/oder Ammoniumsalze eingesetzt werden, z.B. Ammoniumdihydrogenphosphat, di-Ammoniumhydrogenphosphat, tri-Ammoniumphosphat, Kaliumdihydrogenphosphat, di-Kaliumhydrogenphosphat, tri-

5 ·

20

25

Kaliumphosphat, Natriumdihydrogenphosphat, di-Natriumhydrogenphosphat, tri-Natriumphosphat.

Als Polyphosphate und -Phosphonate können z.B. Natriumhexametaphosphat, Natriumtetraphosphat, Hydroxyethandiphosphonsäure, N(-2-carboxyethyl)-1-aminoethan-1,1-diphosphonsäure, N,N-Bis-(carboxymethylen)-1-aminoethan-1,1-diphosphonsäure, Morpholinomethandiphosphonsäure, Nitrilotrismethylenphosphonsäure, Ethylendiamintetramethylenphosphonsäure, Hexamethylendiamintetramethylenphosphonsäure, 2-Phosponobutan-1,2,4-tricarbonsäure, 2-Carboxyethanphosphonsäure eingesetzt werden. Geeignet sind auch freie Polyphosphorsäuren.

Als Nitrate und Bromide können Alkali- und/oder Ammoniumnitrate und -bromide eingesetzt werden.

Die Phosphate, Polyphosphate und Polyphosphonate, Nitrate und Bromide werden dem Konzentrat vorzugsweise in einer Menge von 0,01 bis 2,5 mol/l, insbesondere 0,05 bis 1 mol/l zugesetzt.

Als Fixiermittel eignen sich insbesondere Natrium-, Kalium- und Ammonium-thiosulfat.

Weitere Bestandteile können z.B. Aminopolycarbonsäure, Rehalogenierungsmittel, Säuren und Laugen zur pH-Einstellung, Bleichbeschleuniger, Weißkuppler und Puffersubstanzen sein (s. Research Disclosure 37 038, Februar 1995, Seiten 107 bis 109).

Der pH-Wert beträgt insbesondere 4 bis 9.

Zusätzlich können noch andere Komplexbildner einzeln oder im Gemisch zugesetzt werden:

Polycarbonsäuren: z.B. Oxalsäure, Malonsäure, Glutarsäure, Adipinsäure, Korksäure, Fumarsäure, Maleinsäure, Itaconsäure;

(Poly)Hydroxypolycarbonsäuren: z.B. Citronensäure, Glykolsäure, Milchsäure, 5 Äpfelsäure, Weinsäure, Galactarsäure;

Beispiele

Beispiel 1

1 l BX-Konzentrat enthält

Ammoniumthiosulfatlösung, 57 Gew.-% 400 ml

Ammoniumhydrogensulfitlösung, 66 Gew.-% 80 ml

NH₄Fe(III)EDTA-Lösung, 48 Gew.-% 330 ml

Zusätze siehe unten

pH-Wert 5,5

Die pH-Einstellung erfolgt mit NH₃ oder H₂SO₄.

Folgende Zusätze wurden den BX-Konzentraten zugegeben:

BX 1: ohne Zusätze

· BX 2: 40 g/l Natriumacetat (0,49 mol/l)

BX 3: 186 g/l_tri-Natriumphosphat-Dodecyhydrat (0,49 mol/l)

BX 4: 50 g/l Natriumhexametaphosphat (0,082 mol/l)

BX 5: 73 ml/l Aminotrismethylenphosphonsäure, 50 gew.-%ig (0,16 mol/l)

20

5

Lagerung bei 60°C	Natriumsulfitgehalt [g/l]				
Dauer der Lagerung	BX 1	BX 2	BX 3	BX 4	BX 5
Ungelagert	82,7	82,5	82,4	82,6	82,3
2 Tage	55,6	56,0	65,4	64,9	65,1
6 Tage	Schwefelausfällungen		54,0	54,2	53,8

Die Sulfitbeständigkeit wird durch den Zusatz von Phosphat, Polyphosphat und Polyphosphonat deutlich verbessert.

Das BX-Konzentrat gemäß der Erfindung kann ohne Nachteile anstelle eines herkömmlichen, zweiteiligen BX-Konzentrates eingesetzt werden, beispielsweise im Standard-AP 94-Prozess zum Bleichfixieren von belichtetem und entwickeltem Colorpapier auf der Basis chloridreicher Silberhalogenidemulsionen.

Beispiel 2

5

Einem BX-Konzentrat nach Beispiel 1 (ohne Zusätze) werden folgende Zusätze zugegeben:

BX 1: ohne Zusätze

BX 2: 40 g/l Natriumacetat (0,49 mol/l)

BX 3: 48,5 g/l Ammoniumdihydrogenphosphat (0,49 mol/l)

BX 4: 48 g/l Ammoniumbromid (0,49 mol/l)

BX 5: 73 ml/l Ammoniumnitrat (0,49 mol/l)

BX-Konzentrat	Bildung von Kristallen nach 5 Tagen bei -5°C		
BX 1	Kristalle		
BX 2	Kristalle		
BX 3	keine Kristalle		
BX 4	keine Kristalle		
BX 5	keine Kristalle		

15

Der Zusatz von Phosphat, Bromid oder Nitrat verhindert in einem einteiligen Bleichfixierbad-Konzentrat die Bildung von Kristallen, so dass auch mit sonst nicht möglichen Wirkstoffgehalten ein stabiles Konzentrat hergestellt werden kann.

20

Besonders geeignet ist das erfindungsgemäße BX-Konzentrat für kurze Verarbeitungszeiten (CD- und BX-Zeiten von 12 bis 35 s) und einen Farbentwickler (CD), der Disulfoethylhydroxylamin (HADS) als Oxidationsschutzmittel enthält.

Patentansprüche

5

10

15

20

25

30

- 1. Einteiliges fotografisches Bleichfixierbadkonzentrat enthaltend ein Eisen(III)komplexsalz, ein Thiosulfat und ein Sulfit, Disulfit oder eine Sulfinsäure, dadurch gekennzeichnet, dass es zusätzlich ein Phosphat, Polyphosphat oder
 Polyphosphonat, ein Nitrat oder Bromid enthält.
- 2. Einteiliges Bleichfixierbadkonzentrat nach Anspruch 1, dadurch gekennzeichnet, dass sein Gehalt an Thiosulfat 0,5 bis 25 mol/l, sein Gehalt an Sulfit 0,2 bis 2 mol/l und sein Gehalt an Fe(III)-Komplexsalz 0,1 bis 1 mol/l beträgt.
- 3. Einteiliges Bleichfixierbadkonzentrat nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass sein pH-Wert 4 bis 9 beträgt.
- 4. Einteiliges Bleichfixierbadkonzentrat nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass sein pH-Wert 5 bis 6,5 beträgt.
- 5. Einteiliges Bleichfixierbadkonzentrat nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Menge an Phosphat, Nitrat oder Bromid 0,01 bis 2,5 mol/l beträgt.
- 6. Einteiliges Bleichfixierbadkonzentrat nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass zusätzlich ein oder mehrere Komplexbildner enthalten sind.
- 7. Einteiliges fotografisches Bleichfixierbadkonzentrat enthaltend ein Eisen(III)-komplexsalz, ein Thiosulfat und ein Sulfit oder eine Sulfinsäure, dadurch gekennzeichnet, dass es zusätzlich ein Phosphat, Polyphosphat oder Polyphosphonat enthält.

Bleichfixierbadkonzentrat

Zusammenfassung

Ein einteiliges fotografisches Bleichfixierbadkonzentrat enthaltend ein Eisen(III)-komplexsalz, ein Thiosulfat und ein Sulfit, Disulfit oder eine Sulfinsäure, bleibt stabil, wenn ihm ein Phosphat, Polyphosphat oder Polyphosphonat, ein Nitrat oder Bromid zugesetzt wird.