Deep Generative Model for Joint Alignment and Word Representation Embedalign

Miguel Rios, Wilker Aziz, Khalil Sima'an University of Amsterdam Statistical Language Processing and Learning Lab

June 3, 2018

Outline

- Introduction
- 2 Model
- 3 Evaluation
- 4 Conclusions and Future Work

TL;DR

- Generative model that embeds words in their complete observed context
- Model learns from bilingual sentence-aligned corpora by marginalisation of latent lexical alignments
- Model embeds words as probability densities
- Model shows competitive results on context dependent Natural Language Processing applications

Discriminative embedding models word2vec

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

Place words in \mathbb{R}^d as to answer questions like

"Have I seen this word in this context?"

Discriminative embedding models word2vec

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

Place words in \mathbb{R}^d as to answer questions like

"Have I seen this word in this context?"

Fit a binary classifier

- positive examples
- negative examples

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

Limitations

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

- Limitations
 - Representation learning is an unsupervised problem we only observe positive/complete context

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

- Limitations
 - Representation learning is an unsupervised problem we only observe positive/complete context
 - Distributional hypothesis is strong but fails when context is not discriminative

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

- Limitations
 - Representation learning is an unsupervised problem we only observe positive/complete context
 - Distributional hypothesis is strong but fails when context is not discriminative
 - Word senses are collapsed into one vector

Outline

- Introduction
- 2 Model
- 3 Evaluation
- Conclusions and Future Work

Embedalign

• Generative model to induce word representations

Embedalign

In the event of a chemical spill, most children know they should evacuate as advised by people in charge.

- Generative model to induce word representations
- Learn from positive examples

7/24

Embedalign

In the event of a chemical spill, most children know they should **evacuate** as advised by people in charge.

- Generative model to induce word representations
- Learn from positive examples
- Learn from richer (less ambiguous) context
 Foreign text is proxy to sense supervision (Diab and Resnik, 2002)

En caso de un derrame de productos químicos, la mayoría de los niños saben que deben **abandonar** el lugar según lo aconsejado por las personas a cargo.

quickly evacuate the area / deje el lugar rápidamente

Rios

Embedalign

quickly evacuate the area / deje el lugar rápidamente

8/24

Embedalign

quickly evacuate the area / deje el lugar rápidamente

Embedalign 8 / 24

Read sentence

Embedalign

- Read sentence
- 2 Predict posterior mean μ_i and std σ_i

evacuate₁ the₂ area₃

- Read sentence
- 2 Predict posterior mean μ_i and std σ_i
- **3** Sample $z_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$

evacuate₁ the₂ area₃

Rios Embedalign

- Read sentence
- Predict posterior mean μ_i and std σ_i
- **3** Sample $z_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$

Predict categorical distributions

- Read sentence
- 2 Predict posterior mean μ_i and std σ_i
- **3** Sample $z_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$

- Predict categorical distributions
- Generate observations evacuate₁ the₂ area₃ / deje₁ el₂ lugar₃

evacuate₁ the₂ area₃

- Read sentence
- 2 Predict posterior mean μ_i and std σ_i
- **3** Sample $z_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$

- Predict categorical distributions
- Generate observations evacuate₁ the₂ area₃ / deje₁ el₂ lugar₃
- Maximise a lowerbound on likelihood (Kingma and Welling, 2014)

evacuate₁ the₂ area₃

Outline

- Introduction
- 2 Model
- 4 Conclusions and Future Work

Data

Corpus	Sentence pairs (million)	Tokens (million)
Europarl $\mathrm{E} ext{N-FR}$	1.7	42.5
Europarl $\operatorname{En-De}$	1.7	43.5

Architecture

Word Alignment

Rios Embedalign

Word Alignment

Model selection on Dev set

AER ↓			
Model	En-Fr	En-De	
IBM1	32.45	46.71	
IBM2	22.61	40.11	
EMBALIGN	29.43 ± 1.84	48.09 ± 2.12	

Lexical Substitution

Lexical Substitution

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match , followed by a warm-up hit and perhaps a top-up with extra fluid before the match

game

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match, followed by a warm-up hit and perhaps a top-up with extra fluid before the

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match , followed by a warm-up hit and perhaps a top-up with extra fluid before the

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match , followed by a warm-up hit and perhaps a top-up with extra fluid before the

Lexical Substitution

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match, followed by a warm-up hit and perhaps a top-up with extra fluid before the match

> event game

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match, followed by a warm-up hit and perhaps a top-up with extra fluid before the match

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match, followed by a warm-up hit and perhaps a top-up with extra fluid before the

The ideal preparation would be a light meal about 2-2 1/2 hours pre-match, followed by a warm-up hit and perhaps a top-up with extra fluid before the

Lexical Substitution

Model	GAP ↑	Training size
RANDOM	30.0	
SKIPGRAM		
(Melamud et al., 2015)	44.9	ukWaC-2B
BSG		
(Bražinskas et al., 2017)	46.1	ukWaC-2B
En	21.31 ± 1.05	
En-Fr	42.19 ± 0.57	Euro-42M
En-De	42.07 ± 0.47	

Rios Embedalign 16

Rios

						ACC ↑	ACC/F1 ↑	CORR ↑		CORR ↑
Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	SICK-R	SICK-E	STS14
SKIPGRAMEn	70.96	76.16	87.24	86.87	73.64	65.20	70.7/80.1	0.710	76.2	0.45/0.49
En	57.5	67.1	72.0	70.8	57.0	58.0	70.6/80.3	0.648	74.4	0.59/0.59
En-Fr	64.0	71.8	79.1	81.5	64.7	58.4	72.1/81.2	0.682	74.6	0.60/0.59
En-De	62.6	68.0	77.3	82.0	65.0	66.8	70.4/79.8	0.681	75.5	0.58/0.58
Сомво	66.1	72.4	82.4	84.4	69.8	69.0	71.9/80.6	0.727	76.3	0.62/0.61

						/100	/(00/11/	COITE		COITE
Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	SICK-R	SICK-E	STS14
SKIPGRAMEn	70.96	76.16	87.24	86.87	73.64	65.20	70.7/80.1	0.710	76.2	0.45/0.49
En	57.5	67.1	72.0	70.8	57.0	58.0	70.6/80.3	0.648	74.4	0.59/0.59
En-Fr	64.0	71.8	79.1	81.5	64.7	58.4	72.1/81.2	0.682	74.6	0.60/0.59
En-De	62.6	68.0	77.3	82.0	65.0	66.8	70.4/79.8	0.681	75.5	0.58/0.58
Сомво	66.1	72.4	82.4	84.4	69.8	69.0	71.9/80.6	0.727	76.3	0.62/0.61
SkipGram										
(Conneau et al., 2017)	77.7	79.8	90.9	88.3	79.7	83.6	72.5/81.4	0.803	78.7	0.65/0.64
NMT _{En-Fr} (Conneau et al., 2017)	64.7	70.1	84.8	81.5	-	82.8	-	_	-	0.42/0.43

ACC ↑ ACC/F1 ↑ CORR ↑

CORR ↑

Outline

- Conclusions and Future Work

Embedalign

• Generative training

- Generative training
 - model learns form positive examples

- Generative training
 - model learns form positive examples
 - no need for context window

- Generative training
 - model learns form positive examples
 - no need for context window
- Translation data

- Generative training
 - model learns form positive examples
 - no need for context window
- Translation data
 - less ambiguous embeddings

- Generative training
 - model learns form positive examples
 - no need for context window
- Translation data
 - less ambiguous embeddings
 - model helps with semantic tasks e.g. paraphrasing

• We modify alignment distribution

- We modify alignment distribution
 - From IBM1 to IBM2 En-Fr 29.43 \to 18.20 AER

- We modify alignment distribution
 - From IBM1 to IBM2 En-Fr 29.43 \rightarrow 18.20 AER
- We model word and sentence embeddings

- We modify alignment distribution
 - From IBM1 to IBM2 En-Fr 29.43 \rightarrow 18.20 AER
- We model word and sentence embeddings
 - Movie Reviews $66.10 \rightarrow 70.55$ ACC

- We modify alignment distribution
 - From IBM1 to IBM2 En-Fr 29.43 \rightarrow 18.20 AER
- We model word and sentence embeddings
 - Movie Reviews $66.10 \rightarrow 70.55$ ACC
 - Microsoft Paraphrase $71.90/80.6 \rightarrow 72.93/81.27$ ACC/F1

22 / 24

- We modify alignment distribution
 - From IBM1 to IBM2 En-Fr 29.43 \rightarrow 18.20 AER
- We model word and sentence embeddings
 - Movie Reviews $66.10 \rightarrow 70.55$ ACC
 - Microsoft Paraphrase $71.90/80.6 \rightarrow 72.93/81.27$ ACC/F1
 - **S**ick **R** $0.727 \rightarrow 0.770$ CORR

- We modify alignment distribution
 - From IBM1 to IBM2 En-Fr 29.43 \rightarrow 18.20 AER
- We model word and sentence embeddings
 - Movie Reviews $66.10 \rightarrow 70.55$ ACC
 - Microsoft Paraphrase $71.90/80.6 \rightarrow 72.93/81.27$ ACC/F1
 - Sick R $0.727 \rightarrow 0.770$ CORR
- We will expand the distributional context to multiple foreign languages at once

DGM4NLP research at UvA-SLPL

 Try pre-trained Europarl model on SentEval: https://github.com/uva-slpl/embedalign/blob/master/notebooks/senteval_embedalign.ipynb

DGM4NLP research at UvA-SLPL

- Try pre-trained Europarl model on SentEval: https://github.com/uva-slpl/embedalign/blob/master/notebooks/senteval_embedalign.ipynb
- ACL-18 tutorial Variational Inference and Deep Generative Models:

```
http://acl2018.org/tutorials/
```

Embedalign

Lexical Substitution Complete

Model	cos	KL	Training size
RANDOM	30.0	-	
SKIPGRAM			
(Melamud et al., 2015)	44.9	-	ukWaC-2B
BSG			
(Bražinskas et al., 2017)	-	46.1	ukWaC-2B
En	21.31 ± 1.05	27.64 ± 0.40	
En-Fr	42.19 ± 0.57	41.61 ± 0.55	Euro-2M
En-De	42.07 ± 0.47	40.93 ± 0.59	