MobileNets Notes

1. Depthwise Separable Convolutions (深度可分离卷积)

设输入输出的特征图 channel 维度都是 C, 卷积核的大小是 f, 输出特征图的长宽都是 F, 则经过一个标准的卷积操作这个卷积层的参数量是: f*f*C*C, 卷积操作的计算量是: F*F(一个卷积核在输入的特征图上扫过的次数)*f*f*C(一次卷积操作的计算量)*C(输出特征图的维度)

对于深度可分离卷积, 计算方法是先对输入的每个维度的特征图进行卷积, 这样操作之后, 输出特征图的 channel 等于输入特征图的 channel, 然后对得到的特征图进行 1*1 卷积操作, 融合所有 channel 上的信息, 上述操作的参数量: f*f*C + 1*1*C*C, 卷积操作的计算量是: F*F*f*f*1 + 1*1*C*C

下图是标准卷积核深度可分离卷积的对比

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

2. Architecture Baseline

基本的 MobileNets 结构包含 28 层,网络结构如下:

Table 1. MobileNet Body Architecture

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
Conv / s1	$1\times1\times64\times128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC / s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

3. Width Multiplier: Thinner Models

为了降低模型复杂度,可以考虑将每个卷积层 channel 的数量减少,这个参数α就是将 baseline 中的 channel 数量降到原来的α倍

Table 6. MobileNet Width Multiplier

There of the order of the transfer of				
Width Multiplier	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
1.0 MobileNet-224	70.6%	569	4.2	
0.75 MobileNet-224	68.4%	325	2.6	
0.5 MobileNet-224	63.7%	149	1.3	
0.25 MobileNet-224	50.6%	41	0.5	

4. Resolution Multiplier: Reduced Representation

另外一种降低模型复杂度的方法是将每层特征图缩小,一个较为直接的方 法就是直接降低输入图片的分辨率

Table 7. MobileNet Resolution

Resolution	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224		569	4.2
1.0 MobileNet-192	69.1%	418	4.2
1.0 MobileNet-160	67.2%	290	4.2
1.0 MobileNet-128		186	4.2