Heaps and Heapsort

Heap – Definition

- Almost complete binary tree completely filled, except possibly the last level (leaves)
 - Filled from left to right
- Satisfy heap property (max-heap or min-heap)
- Max-heap: Data (parent node P) ≥ Data (child node C)
- Min-heap: Data (parent node P) ≤ Data (child node C)
- Static or dynamic implementation
- Efficient data structure to implement Priority Queues

Heap: Static Representation

Array Representation

- length [A]: Size of the array A
- For an index node i
 - parent (i): return [i/2]
 - **left (i):** return (2*i),
 - right (i): return (2*i + 1)
- Max-heap property: Value (node) >= Value (child)

	[1]	[2]	[3]	[4]	[5]	[6]
Α	27	19	14	8	1	7

Basic Heap Operations

- 1.MAX-HEAPIFY procedure
- 2.BUILD-MAX-HEAP procedure
- **3.HEAPSORT** procedure
- **4.MAX-HEAP-INSERT** procedure
- **5.HEAP-EXTRACT-MAX procedure**

Maintaining Heap Property: Key Idea (1/4)

MAX-HEAPIFY:

- 1. Assume binary trees rooted at *LEFT(i)* and RIGHT(i) are max-heaps.
- 2. But, **A(i)** might be smaller than its children, thus violating the max-heap property.
- **3.** <u>Solution</u>: Find the largest between root, left-child and right-child.
- 4. If root is not the largest, swap root with the largest (left or right child)
- 5. Do 3~4 **recursively** with the index of the largest

Maintaining Heap Property (1/4)

MAX-HEAPIFY(A, i) $\ell \leftarrow left(i)$ $r \leftarrow right(i)$ if $\ell \leq \text{heapsize of } A \text{ and } A[\ell] > A[i]$ $largest \leftarrow \ell$ else largest \leftarrow i **if** r ≤ heapsize of A and A[r] > A[largest] $largest \leftarrow r$ **if** largest ≠ i $swap (A[i] \leftrightarrow A[largest])$ MAX-HEAPJFY(A, largest)

- 1. Find the largest between root, left-child and right-child.
- 2. If root is not the largest, swap root with the largest (left or right child)

Maintaining Heap Property (2/4)

MAX-HEAPIFY(A, i) $\ell \leftarrow left(i)$ $r \leftarrow right(i)$ if $\ell \leq \text{heapsize of } A \text{ and } A[\ell] > A[i]$ $largest \leftarrow \ell$ else largest \leftarrow i if $r \le heapsize$ of A and A[r] > A[largest] $largest \leftarrow r$ **if** largest ≠ i $swap (A[i] \leftrightarrow A[largest])$ MAX-HEAPJFY(A, largest)

- 1. Find the largest between root, left-child and right-child.
- 2. If root is not the largest, swap root with the largest (left or right child)

Maintaining Heap Property (3/4)

```
MAX-HEAPIFY(A, i)
  \ell \leftarrow left(i)
  r \leftarrow right(i)
  if \ell \leq \text{heapsize of } A \text{ and } A[\ell] > A[i]
          largest \leftarrow \ell
  else
          largest \leftarrow i
  if r \le heapsize of A and A[r] > A[largest]
          largest \leftarrow r
 if largest ≠ i
         swap (A[i] \leftrightarrow A[largest])
          MAX-HEAPIFY(A, largest)
```


Maintaining Heap Property (4/4)

```
MAX-HEAPIFY(A, i)
  \ell \leftarrow left(i)
  r \leftarrow right(i)
  if \ell \leq \text{heapsize of A and } A[\ell] > A[i]
     largest \leftarrow \ell
  else largest \leftarrow i
  if r \le heapsize of A and A[r] > A[largest]
    largest \leftarrow r
 if largest ≠ i
    swap (A[i] \leftrightarrow A[largest])
    MAX-HEAPIFY(A, largest)
```


Maintaining Heap: Complexity

Complexity: O(In(n))

Building a Heap

- A Bottom-up Approach,
- From middle of array down to the first element
- With repeated calls to MAX-HEAPIFY (A, i)

```
BUILD\_MAX-HEAP (A){

for i \leftarrow \lfloor length[A]/2 \rfloor downto 1 do

MAX-HEAPIFY(A, i)

}
```

Building Heap: An Example (1/8)

Building a Heap: An Example (2/8)

```
BUILD_MAX-HEAP (A){

for i ← [length[A]/2] downto 1

MAX-HEAPIFY(A, i)

}
```


Building a Heap: An Example (3/8)

```
BUILD_MAX-HEAP (A){

for i ← [length[A]/2] downto 1

MAX-HEAPIFY(A, i)

}
```


Building a Heap: An Example (4/8)

```
BUILD_MAX-HEAP (A){

for i ← [length[A]/2] downto 1

MAX-HEAPIFY(A, i)

}
```


Building a Heap: An Example (5/8)

```
BUILD_MAX-HEAP (A){

for i ← [length[A]/2] downto 1

MAX-HEAPIFY(A, i)

}
```


Building a Heap: An Example (6/8)

Building a Heap: An Example (7/8)

```
BUILD_MAX-HEAP (A){
for i ← [length[A]/2] downto 1
   MAX-HEAPIFY(A, i)
}
```


Building a Heap: An Example (8/8)

```
BUILD_MAX-HEAP (A){

for i ← [length[A]/2] down to 1

MAX-HEAPIFY(A, i)

}
```


				[4]					_	
A	24	19	21	18	17	15	14	16	11	13

Building a Heap: Complexity

```
BUILD_MAX-HEAP (A){

for i \leftarrow [length[A]/2] \text{ downto 1} \longrightarrow = O(n)

MAX-HEAPIFY(A, i)

}
```

Overall Complexity: O(n In (n))

Basic Heap Operations

- 1.MAX-HEAPIFY procedure
- 2.BUILD-MAX-HEAP procedure
- **3.HEAPSORT** procedure
- **4.MAX-HEAP-INSERT** procedure
- **5.HEAP-EXTRACT-MAX procedure**

Thank you!