

DTU LATEX Support Group - latex.dtu.dk DTU

Beamertemplate

Project 1: Analysis and Forecasting of NYC Taxi Rides

Understanding the Data

Insight in the relation between distance and fare amount The Scatter Plot shows a linear relationship between the trip distance and the fare amount

Exploratory Data Analysis

Patterns and relationships in the data

The plot shows a linear relationship between the trip distance and the fare amount

Several trips have a trip distance of zero:

those were filtered out Outliers could be due to special fees

Spatial Analysis (Kepler)

Temporal Analysis

weekday ‡	hour ÷
5	0
5	0
5	0
5	0
5	0
0	23
0	23
0	23
^	07

- Temporal patterns
- Added culumn (timeframe)

Number of taxi rides for each weekday

- Saturday and Sunday similar demand
- increase of demand during the week and tops Friday.

Number of passengers riding the taxis for each hour

- Increase during day (5-18)
- Fewest during night

When is the tip amount the highest?

- Weekends

The plot shows the average tip amount on each hour

- Worst during day, best during night
- Tops at 5

Average distance on each hour.

- significant larger at 5
- warrants further investigation

average distance on each hour, without the outliers

< 100

- largest in the morning. (correlated to the large tips?)

Time-Series Forecasting

Yellow taxis
Predictions are made with data from
15Th of February
Model find an increase in passenger
amount

Green taxis

The algorithm finds the temporal patterns in an good way however there is room for improvement.

Project 2: NASA Data Acquisation, Visualization, and Analysis

Understanding the Data

We flatten the JSON-data and create a pandas dataframe We pick the following features: size, is hazardous, date, closest approach distance. Later on we include the velocity of the NEO

Data Analysis

Neo's observed with size

- exponential distribution

Data Visualization

NEO's observed weekly

- Season

Average size observed weekly

Distance and size Hazardous or not

- below 150

 June 21, 2023
 DTU Compute
 Beamer template
 19

Connection between size and closest approach distance? Not clear at all

This plotly chart showing the hazardousness against size and velocity
Conclusion: Size is the predominant factor

Summary

 June 21, 2023
 DTU Compute
 Beamer template
 22