

CONTENT

 \leftarrow

PROJECT

01

02

03

TSP

VRP

ASR

ROUTINE PROBLEM

VEHICLE ROUTINE PROBLEM

차량 경로 문제

N 개 의 차 량 이 여러 개의 지점을 나눠 방문하고 여러가지 제약 조건에 맞춰 가야 할 <mark>경로</mark>를 탐색할 수 있습니다.

VRP 경로의 좋은 예

VRP 경로의 <mark>나쁜</mark> 예

차량 1 ---- 차량 2 ---- 차량 3 ---- 차량 4

어떤 지점에 어떤 차량이 가고 얼만큼 이용할지와

가는 순서에 따라서

이동의 효율이 다름

차량과 지점의 상태와 제약 조건을 계산하여 어떤 차량이 해당 지점에 방문하는 것이 효율적인지를 판단

VRP

가야 할 지점의 개수 <

이 증가하여 제한 시간 안에 최적의 경로를 찾아낼 수 없거나

무한의 시간이 걸릴 가능성이 높아진다.

WHAT IS "NP-HARD"?

이러한 문제를

- A R D 문제 라고 부릅니다.

NP-HARD

NP-HARD PROBLEM

다항시간(Polynomail Time) 안에 해를 구하기 어려운 문제 경우의 수가 10의 171제곱인 바둑이 NP-HARD 문제에 해당

P-PROBLEM

다항시간(Polynomail Time) 안에 해를 구하기 쉬운 문제

시간과 거리를 비롯한 여러 가지 제약 조건을 검사

제약 조건 매우 다양한 조건이 존재

- 1. 차량 및 배달기사의 개수 제한
- 2. 허브가 마지막 목적지인지의 여부
- 3.권역 설정
- 4. 교차 여부
- 5.최대 무게
- 6.지정배송지, 지정배송차량의 여부

여러 제약 조건을 사용자가 임의로

조절할 수 있도록 설계

조건 값을 변경할 때마다 새로운 루트가 생성

TSP와의 차이

무엇이 다른가요?

TSP

VRP

루트의 개수

1 개

여러개

제약 조건의 개수

상대적으로 적음

상대적으로 많음

복잡도(연산량)

상대적으로 낮음

상대적으로 높음

제한된 시간안에 결과가

도출되어야 한다면?

→ 완벽한 루트에 <mark>근 접 한 최 선</mark>의 루트를 탐색

 \leftarrow

USE

META

HEURISTIC

WHAT IS META HEURISTIC ?

META HEURISTIC

META HEURISTIC ALGORITHM

완벽한 해답에 가까운 <u>최적의 해답</u>을 얻는 알고리즘 HOW?

기억 → 연산량 감소 → 최적 근사해

WHAT IS "HEURISTIC"?

Heuristicus + Heuriskein

찾아내다(find out) + 발견하다(discover)

META HEURISTIC

 \leftarrow

다양한 알고리즘이 존재 - SA, GA, ACO, TS 등

해당 프로젝트에서 사용된 META HEURISTIC 알고리즘

TSP

ACO (개미 군체 최적화 알고리즘)

VRP

G A (유전자 알고리즘)

LOCAL SEARCH (지역 탐색)

ACO

개미 군체 최적화 알고리즘 ANT COLONY OPTIMIZATION ALGORITHM

개미는 시각 신경이 발달되어 있지 않지만 호르몬을 분비함으로써 어두운 지하에서도 경로를 탐색할 수 있다.

길에 분비된 호르몬의 농도가 짙을수록 많은 개미가 다녀간 길이며,

그 왕래가 잦은 길은 좋은 길이다.

개미가 길을 찾는 원리를 이용하여 최적의 루트를 탐색합니다.

유전자 알고리즘

 \leftarrow

GENETIC ALGORITHM

염색체가 생성되고 다시 조합이 되는 과정을 본떠 만든 알고리즘

교차율과돌연변이율을통해서다양한 염색체를만들고

적 합 도 를 측정하여 좋은 염색체를 골라 자손에게 물려주는 방식으로 마지막에는 좋은 염색체의 조합으로 이루어진다.

유전자가 생성되고 좋은 유전자가 선택되는 과정을 반복하여 최적의 경로를 탐색합니다.

지역 탐색 LOCAL SEARCH

지역 탐색은 임의의 초기 루트에서 시작합니다.

이 초기 루트에 근접해 있는 이웃을 탐색

현재의 루트에서 개선이 될 수 있는

루트를 찾았다면 갱신하고, 이러한 반복은 이웃에게서

루트를 갱신할 수 없을 때까지 진행합니다.

근접한 이웃을 탐색하여 갱신이 가능한지를 목적함수를 통해 측정하며 이 과정을 반복하여 최적의 경로를 탐색합니다.

WHAT DID YOU DO?

VRP

1.지역탐색 알고리즘을 "비용" 개념을 적용하여 구조를 **설계**하고 구현 what is it Means?

 \leftarrow

비용(COST)

거리가 더 길은 B지점에 <mark>비용을 부과</mark>하여 비용이 적은 A지점이 경로로 <mark>선택</mark>될 수 있도록 한다

제약 조건을 어기면 그에 비례하는 비용을 추가하여

조건을 어기지 않도록 하게끔 선택을 유도하는 과정을 반복

2. 순차로 진행되는 버전과 동시에 진행되는 버전, 총 두가지의 버전을 만듦

주어진 차량들을 순차적으로 사용하여 한 차량 마다 가장 작은 비용을 가진 지점을 할당하는 것을 반복하여 루트를 생성하는 방법

+

주어진 차량들을 동시에 사용하여 한 지점에 대해 모든 차량들과의 비용을 계산하고 가장 적은 비용이 되는 차량에 할당하는 것을 반복하여 루트를 생성하는 방법

VRP

3.경로 결과를 구글맵을 이용해 지도 상에 표현하여 시각화

좌표 데이터를 Polygon으로 만들어 배송 허브를 중심으로 구역을 나눴습니다.

VRP

3.경로 결과를 구글맵을 이용해 지도 상에 표현하여 시각화

창 원

4. 직 관 적 으 로 제약 조건을 조절하기 위한 GUI 생성

TMS		
지역 1160파주 🗸		필수 선택
□ 과적 금지 □ 초과 근무 금지	최대 중량 비용 100 ♥ 시간 초과 비용 1000 ♥	 순차 진행 동시 진행
물량 비용 1 반경 비용 2 교차 비용 1000 章	차량 속도(km/h) 30 호 상하차 시간(m) 2 호	
최대 적재 0.80 章 제한 용량 2 章	〈동시 진행만 해당〉 - 차량 제외 조건 사용된 근무 시간의 ○0.10 ﴿ % 를 충족하면 차량을 제외	
최대시간 2 후	0.10	면 차량을 제외
차와 지점간의 거리 비용 2	실행	

5. L 사의 MRO 실존 배송 데이터 사용

허브 배송물품 차량정보 배송주소 수량 용차

이 외에도 여러가지 데이터를 사용

+

6.H사의 수소전기트럭 수송 예정 사업

미국 창고간의 수송을 POC 수준으로 알고리즘 구현