Groupe fondamental et

Groupe fondamental

revêtement

Question 1/5

Lien entre $\Pi_1(X, x)$ et $\Pi_1(X, y)$ lorsqu'il existe un chemin c de x à y

Réponse 1/5

$$\varphi_c \colon \Pi_1(X, x) \longrightarrow \Pi_1(X, y)^1$$
 est un
$$[\alpha] \longmapsto [c\alpha \overline{c}]$$
isomorphisme de groupes
En particulier, si X est connexe par arcs, deux groupes fondamentaux sont isomorphes

^{1.} \bar{c} désigne le chemin inverse de c

Question 2/5

Espace pointé

Réponse 2/5

(B,b) où B est un espace topologique et $b \in B$ est appelé point base

Question 3/5

 $c_1 \sim c_2$ Homotopie de chemins

Réponse 3/5

Il existe
$$H:[0,1] \times [0,1] \to B$$
 continue telle
que $H(0,\cdot) = c_1$, $H(1,\cdot) = c_2$, pour tout
 $s \in [0,1]$, $H(s,0) = c_1(0) = c_2(0)$ et
 $H(s,1) = c_1(1) = c_2(1)$

Question 4/5

$$\Pi_1(B,b)$$

Réponse 4/5

({classes d'homotopie de lacets basés en b}, *)

* désigne la loi de concaténation de chemins Π_1 est un foncteur de la catégorie des espaces

topologiques dans la catégorie des groupes

Question 5/5

Propriété de $f*: \Pi_1(X, x) \to \Pi_1(Y, y)$ lorsque $f: X \to Y$ est un homéomorphisme

Réponse 5/5

f* est un isomorphisme de groupes