Introduction to Computation (CS2201) Lecture 5

Kripabandhu Ghosh

CDS, IISER Kolkata

Numerical Integration

Numerical Integration

$$\int_{a}^{b} f(x) dx$$

Problem

Find an indefinite integral or *primitive* $\phi(x)$ such that $\phi'(x) = f(x)$

Multiple applications like area under a curve (f(x)) bounded by two points a, b (in a 2-D space)

Need for numerical integration

- $\phi(x)$ can't be obtained in terms of known functions or has a complex form computing which is expensive
- \bullet f(x) is not known in its analytical form but is represented by a table of values

Integral as area:

$$\int_{a}^{b} f(x)dx = \lim_{N \to \infty} h \sum_{i=0}^{N-1} f(a+ih), \qquad h = \frac{b-a}{N}$$

Integral as area: The Riemann sum

$$\int_a^b f(x)dx = \lim_{N\to\infty} h\left[f(a) + f(a+h) + \ldots + f(a+\overline{N-1}h)\right]$$

Integral as area: Rectangular approximation

$$\int_a^b f(x)dx \approx h\left[f(a) + f(a+h) + \ldots + f(a+\overline{N-1}h)\right]$$

Integral as area: Rectangular approximation

$$\int_a^b f(x)dx \approx h \left[f_0 + f_1 + \ldots + f_{N-1} \right], \qquad f_i \equiv f \left(a + ih \right)$$

Integral as area: The (composite) Trapezoidal rule

$$\int_{a}^{b} f(x)dx \approx h \left[\frac{f_0 + f_1}{2} + \frac{f_1 + f_2}{2} + \ldots + \frac{f_{N-1} + f_N}{2} \right]$$

Integral as area: The (composite) Trapezoidal rule

$$\int_{a}^{b} f(x)dx \approx h \left[\frac{f(a) + f(b)}{2} + (f_1 + f_2 + \ldots + f_{N-1}) \right]$$

Integral as area: The (composite) Trapezoidal rule

SciPy Introduction

- SciPy is a scientific computation library that uses NumPy underneath.
- SciPy stands for Scientific Python.
- It provides utility functions for optimization, integration, interpolation etc.

Trapz function

Format

scipy.integrate.trapz(y, x=None, dx=1.0,...)

Parameters

- y : Input array to integrate
- \bullet x : (optional) If x is None, then spacing between all y elements is dx.
- dx : (optional) If x is None, spacing given by dx is assumed. Default is 1.

Output

Returns the definite integral of y along x-axis using the trapezoidal rule

Numpy alternative

numpy.trapz(y, x=None, dx=1.0,...)

To estimate the are under the curve passing through $(-h,f_-)$, $(0,f_0)$ and $(+h,f_+)$ we replace the curve by a parabola

$$y = a_0 + a_1 x + a_2 x^2$$

$$f_0 = a_0$$

To estimate the are under the curve passing through $(-h,f_-)$, $(0,f_0)$ and $(+h,f_+)$ we replace the curve by a parabola

$$y = a_0 + a_1 x + a_2 x^2$$

$$f_0 = a_0$$

 $f_- = a_0 - a_1 h + a_2 h^2$

To estimate the are under the curve passing through $(-h,f_-)$, $(0,f_0)$ and $(+h,f_+)$ we replace the curve by a parabola

$$y = a_0 + a_1 x + a_2 x^2$$

$$f_0 = a_0$$

 $f_- = a_0 - a_1 h + a_2 h^2$
 $f_+ = a_0 + a_1 h + a_2 h^2$

To estimate the are under the curve passing through $(-h, f_-)$, $(0, f_0)$ and $(+h, f_+)$ we replace the curve by a parabola

$$y = a_0 + a_1 x + a_2 x^2$$

$$f_{0} = a_{0}$$

$$f_{-} = a_{0} - a_{1}h + a_{2}h^{2}$$

$$f_{+} = a_{0} + a_{1}h + a_{2}h^{2}$$

$$a_{0} = f_{0}$$

$$a_{1} = \frac{f_{+} - f_{-}}{2h}$$

$$a_{2} = \frac{f_{+} + f_{-} - 2f_{0}}{2h^{2}}$$

$$a_0 = f_0$$
 $a_1 = \frac{f_+ - f_-}{2h}$
 $a_2 = \frac{f_+ + f_- - 2f_0}{2h^2}$

Divide interval from a to b into even number of pieces:

$$h = \frac{b - a}{2N}$$

$$\frac{h}{3}[(f_0+4f_1+f_2)+\cdots]$$

$$\frac{h}{3}\left[\left(f_0+4f_1+f_2\right)+\left(f_2+4f_3+f_4\right)+\ldots\right]$$

Area

$$\frac{h}{3}\left[\left(f_0+4f_1+f_2\right)+\left(f_2+4f_3+f_4\right)+\ldots+\left(f_{2N}+4f_{2N-1}+f_{2N}\right)\right]$$

$$\int_a^b f(x) dx$$

$$----\approx \frac{h}{3}[(f(a)+f(b))+4(f_1+f_3+...+f_{2N-1})+2(f_2+f_4+...+f_{2N-2})]$$

Simpson's function

Format

scipy.integrate.simpson(y, x=None, dx=1.0, ...even='avg')

Parameters

- y : Input array to integrate
- x : If given, the points at which y is sampled.
- dx : (optional) If x is None, spacing given by dx is assumed. Default is 1.

Output

Returns the definite integral of y along x-axis using the Simpson's rule

Notes

If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson's rule requires an even number of intervals. The parameter 'even' controls how this is handled.

Simpson's function: Parameter 'even'

- avg: Average two results:1) use the first N-2 intervals with a trapezoidal rule on the last interval and 2) use the last N-2 intervals with a trapezoidal rule on the first interval.
- **first**: Use Simpson's rule for the first N-2 intervals with a trapezoidal rule on the last interval.
- last: Use Simpson's rule for the last N-2 intervals with a trapezoidal rule on the first interval.

Acknowledgement

Slides of Prof. Ananda Dasgupta reused

THANK YOU!!!