UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson

Section 6 Incompressible Flow over Airfoils (Chap A4)

Vortex Sheet Concept (A4.4)

Discontinuous change in velocity across singularity sheets:

Source Sheet:

Vortex Sheet:

Vortex sheet over an airfoil surface:

The Kutta Condition (A4.5)

Flow at the Trailing Edge:

Finite angle

Cusp

At point a: $V_1 = V_2 = 0$ At point a: $V_1 = V_2 \neq 0$

	vis EAE-127 Fall 2014 Prof. S.K. Robinson	
Without friction	n would we have lift?:	

Classical Thin Airfoil Theory: Symmetric Airfoil (A4.7)

(a) Vortex sheet on the camber line

(b) Vortex sheet on the chord line

• • • • • • •	UC D	Davis EAE-127 Fall 2014 Pl	rof. S.K. Robinson	••••••
A	pply Thin Airfoil	l Theory to Sym	nmetric, Lifting Air	foil
			•••••	

Comparison with Experiment:

Moments about Leading Edge:

UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson	• • • • • • • • • • • • • • • • • • • •
Transform variables as before:	

UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson	•••••
Solution obtained by calculus:	
•••••••••••••••••••••••••••••••••••••••	

Potential Vortex Panel Method (A4.10)

Thin Airfoil Approach:

Vortex Sheet on Surface Approach:

UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson

- $\gamma(s)$ = vortex strength/unit length (unknown) = constant for each panel
- Set control points at mid-panel
- Apply wall BC (normal velocity = 0) at Control Points
- Follow same steps as for source panels:
 - 1) Integrate over jth panel to get expression for potential at P due to panel j
 - 2) Sum individual panel contributions to get potential at P due to all panels
 - 3) Place P at Control Point of ith panel to get potential there
 - 4) Compute normal velocity (due to FS and induced) at CP and require it to be zero

UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson	
Self-Induced Velocity at Panel	

How to satisfy Kutta Condition? (Extra Equation!)

Several Methods:

Combined Source/Vortex Panels:

- Use source-sheet panels for airfoil shape/thickness, and vortex panels for circulation.
- Give all vortex panels same strength thus only one additional unknown
- So, n source eqns plus Kutta Condition
- N unknown source strengths, plus one unknown vortex strength
- n+1 eqns, n+1 unknowns

Vortex Panels only (text):

- Vortex panels only, so n unknowns (γ_i) for n panels.
- Kutta condition $\gamma(TE) = 0$ imposed by:

Ignore one vortex panel to get n eqns, n unknowns

Second Order Panel Method:

