2014-02-07.sagews

February 10, 2014

Contents

L	\mathbf{Feb}	ary 7, 2014: Elliptic Curves	1
	1.1	tecall Diffie-Hellman	1
		.1.1 The protocol	1
		.1.2 Attack	1
	1.2	0	2
	1.3	Diffie-Hellman on an elliptic curve	2
		.3.1 Big problem	2
		.3.2 Schoofs idea	4
		.3.3 Lets try it out Diffie-Hellman on this elliptic curve	4

1 February 7, 2014: Elliptic Curves

• on feb 7 mainly use 2014-02-03; but also, something about Diffie-Hellman below.

1.1 Recall Diffie-Hellman

1.1.1 The protocol

- Choose a prime p.
- Choose a base g in \mathbf{F}_p .
- Person 1 sends $g^n \pmod{p}$ and person 2 sends $g^m \pmod{p}$, where n, m are chosen at random.
- The shared secret is $s = g^{nm} \pmod{p}$, which both parties can compute.

```
p = next_prime(2^127)
g = Mod(2,p); g
2
g.multiplicative_order()
170141183460469231731687303715884105756
```

170141183460469231731687303715884105756

1.1.2 Attack

- To attack Diffie-Hellman, you solve the discrete log probem in the group generated by g.
- ullet The complexity is the same as attacking this problem in the largest prime divisor of the order of g
- A trivial-to-implement algorithm called baby-step giant-step solves discrete log in any group of order r in time (and space) \sqrt{r} .

So in our example, the number of operations needed to solve DL is basically $\sqrt{10948250129457457283}$:

```
# with a really fast computer and good implementation, that's about this \
    many seconds:
N(sqrt(10948250129457457283)) / 1e9
3.30881400647686
```

1.2 So

Moral: When creating a Diffie-Hellman key exchange, make sure that the group generated by g is of order: (big prime) times (little stuff).

For example, choose g = 2 so that it has order p - 1 and such that (p - 1)/2 is prime. Primality testing is fast, so this is do-able.

1.3 Diffie-Hellman on an elliptic curve

Introduced to the world by our very own Neal Koblitz (and also by Victor Miller at the same time)

- Choose a specific elliptic curve E over a finite field \mathbf{F}_p (same thing as $\mathbf{Z}/p\mathbf{Z}$.
- Choose a specific point $G \in E(\mathbf{F}_p)$.
- Person 1 sends nG and person 2 sends mG, for random n and m.
- The shared secret is the point nmG.

1.3.1 Big problem

- How on earth are you going to know that G has order that is not just a product of small primes?
- This is nothing like testing (p-1)/2 for primality.
- Seems really hard.

```
# Rene Schoof didn't think so...
salvus.file('9aa5a04f7649.jpg')
```


1.3.2 Schoofs idea

- No obvious way to compute $\#E(\mathbf{F}_p)$ directly.
- So sneak up on it, by cleverly computing $\#E(\mathbf{F}_p) \pmod{\ell}$ for many primes ℓ .
- Then, use the Chinese Remainder theorem to obtain the integer $\#E(\mathbf{F}_p)$.

Schoof figured out how to compute $\#E(\mathbf{F}_p) \pmod{\ell}$ efficiently by explicitly computing information about the Frobenius map:

$$(x,y)\mapsto (x^p,y^p)$$

on the subgroup of elements of $\#E(\mathbf{F}_{p^r})$ of order dividing ℓ (Here \mathbf{F}_{p^r} is a sufficiently large finite field.) Full details are well beyond the scope of this course. But you can try it out!

Homework: Get a sense of the complexity. Does it get twice as hard to compute cardinality as we had a digit, or polynomial harder? (The claim that the algorithm is fast is the claim that it gets only a bit harder as we add digits.) Also figure out the polynomial in Sage.

1.3.3 Lets try it out Diffie-Hellman on this elliptic curve

Coming up how elliptic curves are used in Bitcoin, Playstation, Microsoft DRM, etc