A Formal Approach to Explainability

(by Lior Wolf, Tomer Galanti, and Tamir Hazan)

Phaphontee Yamchote

July 29, 2024

Outline

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Outline: Next Topic

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Setting

Let

- ightharpoonup an input space $\mathcal X$
- ightharpoonup an output space ${\cal Y}$
- ightharpoonup a representation space $\mathcal R$
- ightharpoonup an explanation space G
- ightharpoonup a representation function $f:\mathcal{X} \to \mathcal{R}$
- ightharpoonup a classifier function $c:\mathcal{R} o\mathcal{Y}$

We want to explain a model $h=c\circ f$ by an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$ in terms of g(x,h(x))

Outline: Next Topic

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Consistency

Definition (Consistent Representation)

Given a function $\beta:(0,\infty)\to(0,\infty)$ mapping distance in \mathcal{R} into distance in G.

A representation f is β -consistent w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \epsilon \Rightarrow |f(x_1) - f(x_2)| \leqslant \beta(\epsilon)$$

 ${\sf Explainability}$

Definition (Explainable Representation)

Given a function $\gamma:(0,\infty)\to(0,\infty)$ mapping distance in $\mathcal R$ into distance in G.

A representation f is γ -explainable w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Explainability

Definition (Explainable Representation)

Given a function $\gamma:(0,\infty)\to(0,\infty)$ mapping distance in $\mathcal R$ into distance in G.

A representation f is γ -explainable w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Definition (Second-order Explainable Representation)

Given a function $\gamma:(0,\infty)\times(0,\infty)\to(0,\infty)$.

A representation f is second-order γ -explainable w.r.t. g if

$$\forall \epsilon_0 \epsilon_1 > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon_0 \land |f_x(x_1) - f_x(x_2)| \leqslant \epsilon_1$$

$$\Downarrow$$

$$|g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon_0, \epsilon_1)$$

Consistency Recall

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \epsilon \Rightarrow |f(x_1) - f(x_2)| \leqslant \beta(\epsilon)$$

- What if the representation of our machine learning model is consistent, i.e. h(x) = c(f(x)) where f is consistent?
- Let try: $|h(x_1) h(x_2)| = |c(f(x_1)) c(f(x_2))|$.
- ▶ What can connect between $|c(f(x_1)) c(f(x_2))|$ and $|f(x_1) f(x_2)|$?

Definition (*l*-Lipschitz continuous)

A function L is l-Lipschitz continuous if

$$\forall x_1, x_2, |F(x_1) - F(x_2)| \le l |x_1 - x_2|$$

Consistency representation and Lipschitz classifier

Theorem (Lipschitz o Consistent is Consistent)

Given a model $h=c\circ f:\mathcal{X}\to\mathcal{Y}$ with an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$, if f is β -consistent w.r.t. g and c is l-Lipschitz continuous, then h is $l\beta$ -consistent w.r.t. g.

Let's prove!

Explainable representation and Lipschitz classifier

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Theorem (upstream function in Lipschitz o Consistent is consistent)

Given a model $h=c\circ (f_2\circ f_1):\mathcal{X}\to\mathcal{Y}$ with an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$, if f is γ -explainable w.r.t. g and c is l-Lipschitz continuous, then f_1 is $\hat{\gamma}$ -explainable w.r.t. g where $\hat{\gamma}(\epsilon):=\gamma(l\epsilon)$.

Case Study: Image Classification

I still don't understand this topic right now, it requires background in image processing, which I'm not familiar with

Properties of Explanation Functions

Validity

Definition (Valid Explanation Functions)

Given a fixed constant $\epsilon > 0$ and $x \sim \mathcal{D}$.

An explanation function g is $\underline{\epsilon}$ -valid w.r.t. a model h if there is a function $t: G \to \mathcal{Y}$ s.t.

$$\mathbb{E}_{x \sim \mathcal{D}} \left[\ell \left(t \left(g \left(x, h \left(x \right) \right) \right), h \left(x \right) \right) \right] \leqslant \epsilon,$$

where ℓ is a loss function.

Outline: Next Topic

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Properties of Explanation Functions

Completeness

Definition (Complete Explanation Functions)

Given a fixed constant $\alpha, \epsilon > 0$ and $x \sim \mathcal{D}$.

An explanation function g is $\underline{(\epsilon,\alpha)}\text{-complete}$ w.r.t. a model h

if every $\bar{g}:\mathcal{X}\to\mathbb{R}^d$ s.t. $I(g(\overline{x,h(x));\bar{g}(x)})\leqslant\epsilon$ and every $s:\mathbb{R}^d\to\mathcal{Y}$

$$\mathbb{E}_{x \sim \mathcal{D}} \left[\ell \left(s(\bar{g}(x)), h(x) \right) \right] \geqslant \alpha,$$

where ℓ is a loss function.

Properties of Explanation Functions

if we are able to recover h(x) from $\bar{g}(x)$ and from g(x,h(x)), then, $\bar{g}(x)$ and g(x,h(x)) cannot be independent of each other.

Theorem (Valid \Rightarrow Complete)

Let $h: \mathbb{R}^n \to \mathcal{Y}$ be a model, $g: \mathcal{Z} \to G$ an ϵ_0 -valid EF for some constant $\epsilon_0 \in (0, 0.5)$ and $x \sim D$.

Assume that $Y=\{\pm 1\}$ and denote, $p:=\mathbb{P}[h(x)=1].$

Then, g is (ϵ, α) -complete with respect to h, with $\alpha := \frac{\sqrt{1 + H(p)(H(p) - \epsilon - 2\sqrt{\epsilon_0})} - 1}{H(p)}$ and any $\epsilon > 0$ that satisfies, $H(p) > \epsilon + 2\sqrt{\epsilon_0}$.

In particular, if p=1/2, we have: $\alpha=\sqrt{2-\epsilon-2\sqrt{\epsilon_0}}-1$.

Need a lot of lemmas from other works

Outline: Next Topic

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Intersection and Union of RVs

content...