

Prof. Emdad Khan

September 2019 Lab#5

Group 1

Group members: Asad Ali Kanwal Aser Ahmad Ibrahim Ahmad Jean Wilbert Volcy Zayed Hassan

Steps of Quick sort for the array [1, 6, 2, 4, 3, 5] with leftmost value as pivot.

a.
$$n = 9 \rightarrow \frac{3n}{4} = \frac{27}{4} = 6.75$$

a. $n = 9 \rightarrow \frac{3n}{4} = \frac{27}{4} = 6.75$ This table contains the investigation of good and bad elements:

Pivot, <i>x</i>	No. of elements $\geq x$	No. of elements $\leq x$	Comment
5	2	6	Good pivot
1	8	0	Bad pivot
4	3	5	Good pivot
3	4	4	Good pivot
6	1	7	Bad pivot
2	6	2	Good pivot
7	0	8	Bad pivot
1	8	0	Bad pivot
3	4	4	Good pivot

Elements that are good pivots are: [5, 4, 3, 2, 3].

b. No. of good pivots = 5 > n/2

:. According to the example above, it is true that at least half of the elements are good pivots.

Algorithm findElementEqualToItsIndex (A, start, end) Count of operations *Input:* sorted array A, starting position start, ending position end *Output:* true if element A[m] = m is found, false otherwise mid = (start + end) / 23 3 **if** (A[mid] = mid) **then** 1 return true 3 **if** (A[mid] < mid and start != end) **then** 3 + T(n/2)return findElementEqualToItsIndex (A, mid + 1, end) **if** (A[mid] > mid and start != end) **then** 2 + T(n/2)return findElementEqualToItsIndex (A, start, mid) return false Tetan raise $T(n) = \begin{cases} 7 & if \ n = 1 \\ T(\frac{n}{2}) + 10 \text{ otherwise} \end{cases}$ $a = 1, \ b = 2, \ c = 10, \ d = 7, \qquad k = 0$ $a = 1 = b^k = 2^0 = 1 \rightarrow from the master formula: T(n) is <math>\Theta(n^k \log n)$ T(n) is $O(\log n)$, since all $\log n$ functions are O(n).

One pivot selection strategy that can be used to guarantee a Quick Sort with running time of $O(n \log n)$ is to use the Quick Select algorithm to select the $(n/2)^{th}$ smallest element, which is the median. The quick select algorithm has an expected running time of O(n), and it guarantees a good pivot is found for the Quick Sort.

Array: [1, 12, 8, 7, -2, -3, 6]

n = 7, Median index $= \frac{n}{2} = \left[\frac{7}{2}\right] = 4 \rightarrow k = 4$

1.
$$Pivot = 1, L = \{-2, -3\}, E = \{1\}, G = \{12, 8, 7, 6\}.$$

Check: $k \le |L|$? $\rightarrow k = 4 \le |L| = 2 \rightarrow Not found ... continue$

Check: $|L| < k \le |L| + |E|$? $\rightarrow 2 < 4 \le 2 + 1 \rightarrow Not found ... continue$

Check: $k > |L| + |E|? \rightarrow 4 > 2 + 1 \rightarrow Complete with the G - array$

2.
$$k' = k - |L| - |E| = 4 - 2 - 1 = 1$$

$$Pivot = 12, L = \{8, 7, 6\}, E = \{12\}, G = \{\}$$

Check: $k \le |L|$? $\rightarrow k = 1 \le |L| = 3 \rightarrow Complete$ with the L - array

Check: $|L| < k \le |L| + |E|$? $\rightarrow 3 < 1 \le 3 + 1 \rightarrow Not found ... continue$

3.
$$k = 1$$

$$Pivot = 8, L = \{7, 6\}, E = \{8\}, G = \{\}$$

Check: $k \le |L|$? $\rightarrow k = 1 \le |L| = 2 \rightarrow Complete$ with the L-array

Check: $|L| < k \le |L| + |E|$? $\rightarrow 2 < 1 \le 2 + 1 \rightarrow Not found ... continue$

4.
$$k = 1$$

$$Pivot = 7, L = \{6\}, E = \{7\}, G = \{\}$$

Check: $k \le |L|$? $\rightarrow k = 1 \le |L| = 1 \rightarrow Complete$ with the L-array

Check: $|L| < k \le |L| + |E|$? $\rightarrow 1 < 1 \le 1 + 1 \rightarrow Not \ found \dots continue$

5.
$$k = 1$$

$$Pivot = 6, L = \{\}, E = \{6\}, G = \{\}$$

Check: $k \le |L|$? $\rightarrow k = 1 \le |L| = 0 \rightarrow Not found ... continue$

Check: $|L| < k \le |L| + |E| ? \to 0 < 1 \le 0 + 1 \to Found!$

 \therefore Required element is $E = \{6\}$