

Esercizi Soluzioni Riepilogo Voti

2022-06-01	Solu
2022-05-31	Siano Z
2022-05-30	Sia U :
2022-05-27	Que
2022-05-26	Ques Qual è l
2022-05-25	Determ
2022-05-24	Fate att
2022-05-23	Ricorda (indiper
2022-05-20	Comino
2022-05-19	Dobbia
2022-05-18	
2022-05-17	
2022-05-16	Alekiana
2022-05-13	Abbiam Chiamia
2022-05-12	In R:
2022-05-11	functio
2022-05-10	Si noti d
2022-05-09	• La
2022-05-06	Ques
2022-05-05	Notazio
2022-05-04	
2022-05-03	
2022-05-02	
2022-04-29	Conside
2022-04-28	
2022-04-27	
2022-04-26	ove abb
2022-04-22	• La
2022-04-21	• La
2022-04-20	Ques
2022-04-19	Quanto
2022-04-15	• Ri
2022-04-14	• Ri
2022-04-13	Ques
2022-04-12	Qual è i
2022-04-11	Le due
2022-04-08	• Ri • Ri
2022-04-07	• ch
2022-04-06	
2022-04-05	
2022-04-04	
2022-04-04	
2022-04-01	
2022-03-31	
2022-03-29	
2022-03-28	

2022-03-24

Soluzione all' esercizio del 2022-05-18 creato per luigi.miazzo

Siano X e Y due variabili aleatorie indipendenti di legge esponenziale di parametri $\lambda_1=0.8$ e $\lambda_2=1.9$ rispettivamente.

Sia $U := \min\{X, Y\}$.

Quesiti e soluzioni

Quesito 1

Qual è la distribuzione di U?

Determinare la funzione di ripartizione F_U e implementarla in R, inserendola come una funzione ad un parametro, del tipo: function(x) $\{\ldots\}$.

Fate attenzione al supporto della variabile U, cioè l'insieme su cui U è definita, diversa da zero.

Ricordate che la funzione deve essere vettorializzata, e quindi usate ifelse() al posto di if...else... Attenzione a non inserire il return negli argomenti yes / no della funzione ifelse, poiché questo causa l'uscita automatica dalla funzione ifelse al primo return (indipendentemente dal fatto che la condizione test sia soddisfatta o meno).

Cominciamo dal suggerimento riguardo al supporto di U: X e Y sono definite su $(0,+\infty)$, per cui anche il loro minimo avrà valori da 0 a $+\infty$, estremi esclusi.

Dobbiamo trovare $F_U(u) = P(U \le u) = 1 - P(U > u)$. In questo caso la seconda caratterizzazione ci è più utile. Osserviamo infatti che, affinché $\min\{X,Y\} > u$, entrambe le variabili devono soddisfare X > u, Y > u, da cui

$$egin{aligned} P(U>u) &= P(\min\{X,Y\}>u) \ &= P(X>u,Y>u) \ &= P(X>u)P(Y>u) \ &= \exp\{-\lambda_1 u\} \exp\{-\lambda_2 u\} \ &= \exp\{-(\lambda_1 + \lambda_2)u\}. \end{aligned}$$

Abbiamo quindi ricavato che $F_U(u)=1-\exp\{-(\lambda_1+\lambda_2)u\}$, per cui $U\sim \operatorname{Exp}(\lambda_1+\lambda_2)$.

Chiamiamo $\lambda=\lambda_1+\lambda_2$.

function(u) {ifelse(u >= 0, 1 - exp(-lambda * u), 0)}

Si noti che la funzione di ripartizione di una variabile aleatoria esponenziale si annulla in 0, per cui le condizioni u >= 0 e u > 0, portano allo stesso risultato.

La risposta inserita è: function(x){ifelse(x >= 0, 1-exp(-2.7*x), 0)}

Quesito 2

Quanto vale P(U > 0.914 | Y > 0.432)?

Notazione: usiamo u e y generici per la spiegazione della soluzione, in questo modo possiamo avere un'unica spiegazione per entrambi i quesiti.

$$egin{array}{ll} P(U>u|Y>y) &=rac{P(U>u,Y>y)}{P(Y>y)} \ &=rac{P(\min\{X,Y\}>u,Y>y)}{P(Y>y)} \ &=rac{P(X>u,Y>u,Y>y)}{P(Y>y)}. \end{array}$$

Consideriamo, ora, l'intersezione $\{Y>u\}\cap\{Y>y\}$, essa corrisponde all'insieme $\{Y>\max\{u,y\}\}$, da cui

$$egin{array}{ll} P(U>u|Y>y) &=rac{P(X>u,Y>u,Y>y)}{P(Y>y)} \ &=rac{P(X>u,Y>\max\{u,y\})}{P(Y>y)} \ &=rac{P(X>u)P(Y>\max\{u,y\})}{P(Y>y)} \end{array}$$

ove abbiamo usato il fatto che X e Y sono indipendenti.

- La risposta corretta è: 0.1926269
- La risposta inserita è: 0.1926269
- che corrisponde a 0.1926269

Quesito 3

Quanto vale P(U>0.432|Y>0.914)?

Possiamo usare l'argomento visto per il quesito 2 e sostituire i valori assegnati in questo quesito per avere la risposta.

- Risposta corretta: 0.7077955
- Risposta inserita: 0.7077955
- che corrisponde a 0.7077955

Quesito 4

Qual è il valore atteso di XY, $\mathbb{E}(XY)$?

Le due variabili sono indipendenti, quindi $\mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(Y)=rac{1}{\lambda_1}rac{1}{\lambda_2}$.

- Risposta corretta: 0.6578947
- Risposta corretta: 0.6578947
- che corrisponde a 0.6578947