Corrigé de l'examen

mercredi 7 juin

Durée: 2 heures

1 Ensembles et applications

Solution de l'exercice 1.

Les réponses sont dans le cours.

Solution de l'exercice 2.

- **1.(a)** On suppose que $A \subseteq B$. Montrons que $E \setminus B \subseteq E \setminus A$. Soit $x \in E \setminus B$, i.e. $x \notin B$. Si par l'absurde $x \in A$, alors $x \in B$ car $A \subseteq B$. Ainsi, on a $x \notin A$, i.e $x \in E \setminus A$.
- **1.(b)** On procède par double inclusion. Montrons tout d'abord que $E \setminus (E \setminus A) \subseteq A$. Soit $x \in E \setminus (E \setminus A)$, i.e. $x \notin E \setminus A$. Si par l'absurde $x \notin A$, alors $x \in E \setminus A$, absurde, c'est donc que $x \in A$.

Montrons désormais que $A \subseteq E \setminus (E \setminus A)$. Si $x \in A$, alors $x \notin E \setminus A$ (par l'absurde, $x \in E \setminus A$ serait équivalent à $x \notin A$). Or, ceci équivaut à $x \in E \setminus (E \setminus A)$.

1.(c) On peut utiliser la question 1.(a): comme $A \subseteq A \cup B$, alors $E \setminus (A \cup B) \subseteq E \setminus A$ et également $B \subseteq A \cup B$ donc $E \setminus (A \cup B) \subseteq E \setminus B$. Ainsi, on a bien $E \setminus (A \cup B) \subseteq E \setminus A \cap E \setminus B$.

Sinon, on pouvait procéder par double inclusion. Soit $x \in E \setminus (A \cup B)$, i.e. $x \notin A \cup B$. Montrons tout d'abord que $x \in E \setminus A$, i.e. $x \notin A$. Si par l'absurde $x \in A$, alors $x \in A \cup B$, absurde. De même, on montre que $x \in E \setminus B$. Ainsi, $x \in E \setminus A$ et $x \in E \setminus B$, i.e. $x \in (E \setminus A) \cap (E \setminus B)$.

Soit $x \in (E \setminus A) \cap (E \setminus B)$. On a alors $x \notin A$ et $x \notin B$. Si par l'absurde $x \in A \cup B$, alors $x \in A$ ou $x \in B$, absurde. Donc $x \notin A \cup B$, i.e. $x \in E \setminus (A \cup B)$.

- **2.(a).i.** Par définition, f est injective si pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $A \neq A'$, on a $f(A) \neq f(A')$, i.e. $E \setminus A \neq E \setminus A'$.
- **2.(a).ii.** En prenant la contraposée, f est injective si pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $E \setminus A = E \setminus A'$, on a A = A'.

^{1.} En fait, il suffit de prendre la contraposée de la phrase $si\ x\in A\ alors\ x\in B$ pour obtenir que $si\ x\not\in B$, $alors\ x\not\in A$, on obtient alors une démonstration plus élégante. Cependant, nous n'avons pas travaillé le passage d'une proposition à sa contraposée, ce n'était donc pas exigible ici, et j'écris la correction en conséquence.

- **2.(a).iii.** Montrons que f est injective. Soient $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $E \setminus A = E \setminus A'$. Montrons qu'alors A = A' par double inclusion. Montrons donc que $A \subseteq A'$. On a que $E \setminus A \subseteq E \setminus A'$ puisque ces deux ensembles sont égaux par hypothèse, donc $E \setminus (E \setminus A) \subseteq E \setminus (E \setminus A')$ par la question 1.(a), i.e. $A \subseteq A'$ par 1.(b). Le cas $A' \subseteq A$ est symétrique.
- **2.(b).i.** Par définition, f est surjective si pour tout $B \in \mathcal{P}(E)$, il existe $A \in \mathcal{P}(E)$ telle que f(A) = B, i.e. $E \setminus A = B$.
- **2.(b).ii.** Montrons que f est surjective. Soit $B \in \mathcal{P}(E)$. On pose $A = E \setminus B$. On a alors par 1.(b) que $f(A) = E \setminus A = E \setminus (E \setminus B)$ et donc f(A) = B par 1.(c).

Solution de l'exercice 3.

- **1.** On $a g(\{1,2,3\}) = \{5,6\}$ et $g^{-1}(\{5,6\}) = \{1,2,3\}$.
- **2.** Soit $y \in f(A \cap B)$. Il existe $x \in A \cap B$ tel que y = f(x). On a que $x \in A$ et $x \in B$. Comme alors $x \in A$ et y = f(x), c'est que $y \in f(A)$. Comme aussi $x \in B$ et y = f(x), c'est que $y \in f(B)$. On a donc que $y \in f(A)$ et $y \in f(B)$, i.e. $x \in f(A) \cap f(B)$.
- **3.(a)** Soit $a \in A$. Alors, il existe bien $x = a \in A$ tel que f(a) = f(x), donc par définition de f(A), on a $f(a) \in f(A)$. Par définition de l'image réciproque, on a donc bien $a \in f^{-1}(f(A))$.
- **3.(b)** Soit $x \in f^{-1}(f(A))$. On a donc que $f(x) \in f(A)$. Donc il existe $a \in A$ tel que f(x) = f(a). Comme f est injective, on a = a donc $a \in A$.
- **4.(a)** Soit $y \in f(f^{-1}(B))$. Par définition de l'image directe, il existe $x \in f^{-1}(B)$ tel que y = f(x). Par définition de l'image réciproque, on a $f(x) \in B$. Ainsi, on a $y \in B$.
- **4.(b)** Soit $b \in B$. Comme f est surjective, il existe $x \in X$ tel que f(x) = b. Par définition de l'image réciproque, on a $x \in f^{-1}(B)$. Ainsi, l'élément b = f(x) appartient à $f(f^{-1}(B))$.

2 Suites et limites

Solution de l'exercice 4.

Les réponses sont dans le cours.

Solution de l'exercice 5.

1.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & \frac{1}{n+1} \end{array}$$

2.

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & n \end{array}$$

3.

$$w: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 1 - \frac{1}{n+1} \end{array}$$

4.

$$y: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 0 \end{array}$$

On pose M=0. On a alors que pour tout $n \in \mathbb{N}$, $y_n=0 \geq 0=M$, i.e. y est minorée par 0.

5.

$$y: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 0 \end{array}$$

On pose M=0. On a alors que pour tout $n \in \mathbb{N}$, $y_n=0 \geq 0=M$, i.e. y est minorée par 0.

6.

$$z: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & n \end{array}$$

Soit M < 0. Comme \mathbb{R} est archimédien et -M > 0 et 1 > 0, il existe $n \in \mathbb{N}$ tel que -M < n, i.e. $M > -n = z_n$. On a donc bien montré que z n'était pas minorée.

7.

$$a: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & \frac{1}{n+1} \end{array}$$

La suite a n'est pas constante car $a_0 = 1 \neq 1/2 = a_1$. De plus, elle tend vers 0, la preuve figure dans le corrigé de la feuille 2 de TD.

Solution de l'exercice 6.

Soit u une suite croissante et qui n'est pas majorée. Supposons que u converge vers un nombre réel ℓ . Comme u converge vers ℓ , il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n < \ell + 1$. Or, comme u n'est pas majorée, il existe un entier N' tel que $u_{N'} > \ell + 1$. On considère $N'' = \max(N, N')$. Comme $N'' \geq N$, on a bien $u_n < \ell + 1$. Comme $N'' \geq N'$ et que u est croissante, on a que $u_{N''} \geq u_{N'} > \ell + 1$. Absurde.

Solution de l'exercice 7.

cf. feuille de TD 2.

Solution de l'exercice 8.

1. Vrai, c'est le théorème d'opération sur les limites.

2. Faux. Les suites

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n \end{array}$$

et

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & -n \end{array}$$

divergent. On sait que u diverge par le cours et si par l'absurde la suite v convergeait alors -v=u aussi. De plus, la suite u+v est la suite constance égale à 0, qui converge donc vers 0.

- **3.** Vrai. Si par l'absurde u + v convergeait alors v = (u + v) u aussi par le théorème d'opérations sur les limites. Absurde, puisque v diverge.
- **4.** Faux. On prend u la suite constante égale à 0 et v la suite identité. Alors $u \times v$ est aussi la suite constante égale à 0, qui converge.

Solution de l'exercice 9.

- **1.(a)** Soit A > 0. Comme \mathbb{R} est archimédien, il existe $N \in \mathbb{N}$ tel que A < N. Soit $n \ge N$. On $a : n \ge N > A$ donc $u_n = n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n > A$, i.e. u tend vers $+\infty$.
- **1.(b)** Supposons par l'absurde que v tend $vers +\infty$. On pose A=2. Alors, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n > A$. En particulier c'est vrai pour l'indice N, on a $u_N > A$, i.e. 1 > 2, absurde.
- **2.(a)** Soit A > 0. Comme u tend $vers + \infty$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n > A$. Soit $n \ge N$. Comme $v_n \ge u_n > A$, on a $v_n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $v_n > A$, i.e. v tend $vers + \infty$.
- **2.(b)** Soit A > 0. Comme A/2 > 0, et u tend vers $+\infty$, il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, on a $u_n > A/2$. Comme également v tend vers $+\infty$, il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, on a $v_n > A/2$. On pose $N = \max(N', N'')$. Soit $n \geq N$. Comme $n \geq N'$ par définition du maximum, on a $u_n > A/2$. Comme $n \geq N''$ par définition du maximum, on a $v_n > A/2$. En additionnant ces deux inégalités, on obtient que $u_n + v_n > A/2 + A/2 = A$.
- **3.** Soit $u: \mathbb{N} \to \mathbb{R}$ croissante et non-majorée. Soit A > 0. Comme u n'est pas majorée, il existe $N \in \mathbb{N}$ tel que $u_N > A$. Soit $n \geq N$. Comme u est croissante, et que $N \leq n$, on a $u_N \leq u_n$. Ainsi, $u_n \geq u_N > A$, donc $u_n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n > A$, i.e. u tend vers $+\infty$.