Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм функции main	8
3.2 Алгоритм конструктора класса Triangle	8
3.3 Алгоритм деструктора класса Triangle	9
3.4 Алгоритм метода Per класса Triangle	9
3.5 Алгоритм метода Square класса Triangle	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	14
5.1 Файл main.cpp	14
5.2 Файл Triangle.cpp	14
5.3 Файл Triangle.h	15
6 ТЕСТИРОВАНИЕ	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект tr класса Triangle;
- сіп объект стандартного потока ввода;
- cout объект стандартного потока вывода.

Класс Triangle:

- свойства/поля:
 - о поле сторона а:
 - наименование а;
 - тип int;
 - модификатор доступа private;
 - о поле сторона b:
 - наименование b;
 - тип int;
 - модификатор доступа private;
 - о поле сторона с:
 - наименование c;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Triangle Конструктор;
 - о метод ~Triangle Деструктор;
 - о метод Рег Вычисление периметра;
 - о метод Square Вычисление площади.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: основной алгоритм программы.

Параметры: нет.

Возвращаемое значение: целочисленное - индикатор корректности завершения программы.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия	
1		объявление целочисленных переменных a1, b1, c1.	
2		вод значений переменных a1, b1, c1 с клавиатуры	
3		Создание объекта tr класса Triangle с передачей параметров a1, b1, c1	
4		Вывод с первой строки периметра, со второй строки площади треугольника с помощью методов Per и Square класса Triangle	
		соответстенно	

3.2 Алгоритм конструктора класса Triangle

Функционал: Конструктор.

Параметры: int a1 - сторона a, int b1 - сторона b, int c1 - сторона c.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса Triangle

No	Предикат	Действия	No
			перехода
1		присвоение а значения а1	2
2		присвоение в значения в1	3
3		присвоение с значения с1	Ø

3.3 Алгоритм деструктора класса Triangle

Функционал: Деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 3.

Таблица 3 – Алгоритм деструктора класса Triangle

N₂	Предикат	Действия	No
			перехода
1		Уничтожение объекта	Ø

3.4 Алгоритм метода Per класса Triangle

Функционал: Вычисление периметра.

Параметры: нет.

Возвращаемое значение: Double - периметр.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода Per класса Triangle

N₂	Предикат	Действия	No
			перехода
1		Инициализация периметра P, равного сумме полей	2
2		Возврат значения Р	Ø

3.5 Алгоритм метода Square класса Triangle

Функционал: Вычисление площади.

Параметры: нет.

Возвращаемое значение: Double - площадь.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода Square класса Triangle

No	Предикат	Действия	
			перехода
1		Инициализация переменной Р1 - полупериметр	2
2		Инициализация переменной S - площадь, которая равна sqrt(P1*(P1-	3
		a)*(P1-b)*(P1-c))	
3		Возврат значения S	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Triangle.h"
using namespace std;
int main()
{
    int a1,b1,c1;
    cin >> a1;
    cin >> b1;
    cin >> c1;
    Triangle tr(a1,b1,c1);
    cout<<"P = "<<tr.Per()<<endl<<"S = "<<tr.Square(tr.Per());
    return(0);
}</pre>
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
#include <iostream>
#include <math.h>
Triangle::Triangle(int a1, int b1, int c1){
    a=a1;
    b=b1;
    c=c1;
}
double Triangle::Per(){
    double P = a+b+c;
    return P;
}
double Triangle::Square(double P){
    double P1=P/2;
```

```
double S = sqrt(P1*(P1-a)*(P1-b)*(P1-c));
  return S;
}
Triangle::~Triangle(){}
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

```
#ifndef __TRIANGLE__H
  #define __TRIANGLE__H
  class Triangle
{
    private:
        int a;
        int b;
        int c;
    public:
        Triangle(int a1, int b1, int c1);
        double Per();
        double Square(double P);
        ~Triangle();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
4 5 6	P = 15 S = 9.92157	P = 15 S = 9.92157
5 6 7	P = 18 S = 14.6969	P = 18 S = 14.6969

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).