

Кафедра программных систем

Заболотнов Юрий Михайлович

Самара 2022

Основная литература:

- 1. Коварцев А.Н. Вычислительная математика. Самара: ООО «Офорт»., 2011. 230 с.
- 2. Вержбицкий В. М. Основы численных методов. М: Высш. шк., 2009. 839. с.
- 3. Бахвалов Н.С, Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987. 600 с.
- 4. Тихонов А.Н., Костомаров Д.П. Вводные лекции по прикладной математике . М.: Наука, 1984. 190 с.
- 5. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1980.-535 с.
- 6. Волков Е.А. Численные методы. М.: Наука, 1987. 248 с.
- 7. Демидович Б.П., Марон И.А. Основы вычислительной математики. М. :Наука, 1970. 664 с.
- 8. Заболотнов Ю.М. Методические указания к лабораторным работам по вычислительным методам. Кафедра программных систем. Сам. ун-т. 2020. 67 с.

Дисциплина «Вычислительные методы» или «Вычислительная математика» предполагает изучение численных методов, которые составляют основу компьютерного или математического моделирования поведения систем, процессов и других объектов реального мира.

- 1. Объект моделирования (система, явление, процесс...)
- 2. Субъект моделирования (исследователь, специалист...)
- 3. Математическая модель

Модель - объект-заменитель объекта-оригинала, обеспечивающая изучение **некоторых свойств** объекта-оригинала.

Замещение объекта-оригинала моделью с целью изучения некоторых свойств объекта-оригинала путем проведения экспериментов с моделью называется **моделированием**.

Математическая модель (ММ) – приближенное описание объектаоригинала с помощью математической символики (арифметические и логические операции, алгебраические и дифференциальные уравнения, интегралы и т.д.)

Адекватность модели. Если результаты моделирования подтверждаются и могут служить для прогнозирования поведения объекта-оригинала, то говорят, что **модель адекватна.**

Адекватность – понятие субъективное!

Различают: формальную математическую модель и численную математическую модель.

Построение формальной ММ заключается в записи ММ в виде математической символики и не связано с использованием ее при моделировании.

Численная ММ получается применением к ММ численного метода, который реализуется в виде алгоритма и программы на компьютере, и служит для получения численных результатов.

Верификация — процесс установления соответствия между численной и формальной ММ.

Валидация - процесс установления соответствия между численной моделью и поведением объекта-оригинала.

Верификация и валидация имеют субъективный характер

Классификация ММ.

1. В соответствии с полнотой описания.

Различают полные, неполные и аналитические ММ.

Полные ММ описывают поведения объекта на уровне современного научного знания. **Неполные ММ** получаются из полных ММ с помощью некоторых упрощений и допущений, причем неполнота ММ может быть разной. Аналитические ММ — самые простые ММ, которые представляют собой аналитические формулы, связывающие входные и выходные характеристики объекта-оригинала.

2. По способу получения.

Различают теоретические и эмпирические ММ. **Теоретические ММ** получаются на основании известных законов (механики, физики, экономики...). **Эмпирические ММ** — на основании обработки измерений, которые осуществляются на объекте-оригинале.

3. **По характеру изучаемых процессов.** Различают непрерывные и дискретные. Например, дифференциальное уравнение $dx/dt = F\left(x,t\right)$

где $F\left(x,t\right)$ - непрерывная функция , представляет собой непрерывную ММ. С другой стороны разностное уравнение

Классификация ММ.

3. **По характеру изучаемых процессов.** Различают непрерывные и дискретные. Например, дифференциальное уравнение dx / dt = F(x,t)

где F(x,t) - непрерывная функция , представляет собой **непрерывную ММ.**

С другой стороны разностное уравнение $x_{m+1} = x_m + G(x_m, t_m)$ где $G(x_m, t_m)$ - известная функция, t_m - дискретные моменты времени, представляет собой **дискретную ММ.**

Замечание: во многих случаях, численные ММ являются дискретными и получаются из теоретических непрерывных посредством дискретизации по времени или по координатам.

- 4. **По отношению к случайных явлениям.** Различают **детерминированные стохастические ММ.**
- В детерминированных ММ случайными величинами и случайными процессами пренебрегают. В стохастических ММ учитывают.
- 5. По отношению к времени. Различают статические и динамические ММ. Статические ММ не зависят от времени (это, как правило, алгебраические системы уравнений). Динамические ММ зависят от времени (это, чаще всего, дифференциальные уравнения)

Математическое моделирование на компьютере. Основные этапы.

Рисунок 1

Основные характеристики и свойства численных ММ

Пусть y = F(x) - некоторый оператор преобразования входного вектора численной ММ x_i (i = 1, 2, ... n) в ее выходной вектор y_j (j = 1, 2, ... m)

1. Погрешность. Абсолютная $\delta_j = \left| \tilde{y}_j - y_j \right|$, относительная $\varepsilon_j = \left| \frac{\tilde{y}_j - y_j}{y_j} \right|$

где \tilde{y}_i - приближенное значение некоторой характеристики численной ММ, y_i - эталонное значение.

Эталонное значение обычно определяется по более полной ММ или если есть результат измерений на объекте-оригинале.

 $y_i \approx 0$ относительная погрешность не используется из-за При особенности в формуле.

2. Область адекватности по входным данным.

Например, $D \subset \{x \mid \varepsilon_i \leq \overline{\varepsilon}, \forall j\}$ где $\overline{\varepsilon}$ - допустимое значение погрешности.

3. Экономичность численной ММ характеризуется: временными затратами на расчет (количество элементарных операций) T_M и затратами памяти при реализации ММ P_M

Основные характеристики и свойства численных ММ

Возможные постановки задачи при построении численной ММ

- 1. $\min T_M$, если $P_M \leq \overline{P}_M$, $\varepsilon_j \leq \overline{\varepsilon}$
- 2. $\min \max_i \left(\varepsilon_i \right)$, если $P_M \leq \overline{P}_M$, $T_M \leq \overline{T}_M$
- 3. $\min P_M$, если $\varepsilon_j \leq \overline{\varepsilon}$, $T_M \leq \overline{T}_M$

4. Сходимость дискретной (численной) ММ.

Например, приближенное вычисление определенного интеграла методом прямоугольников

$$J = \int_{a}^{b} f(x) dx \approx \tilde{J}_{n} = \sum_{i=1}^{n} S_{n}$$

где n - количество элементарных прямоугольников.

Свойство сходимости
$$\lim_{n\to\infty} \tilde{J}_n = J$$

Замечание: сходимость — это теоретическое понятие, так как определяется без учета погрешности представления чисел в компьютере.

Основные характеристики и свойства численных ММ

4. Корректность численной ММ по исходным данным.

Если исходная формальная ММ (например, дифференциальное уравнение) корректно построена, то есть в некоторой области исходных данных ее решение существует, единственно и непрерывно зависит от изменения исходных данных, то численная ММ должна обладать теми же свойствами.

5. Устойчивость численной ММ или алгоритма.

Во многих задачах вычислительной математики количество элементарных операций может быть очень большим. В процессе вычислений неизбежно возникают погрешности, связанные неточностью выбранного метода (методическая погрешность) и неточностью представления чисел в компьютере (вычислительная погрешность). Возможны два случая: 1) в процессе вычислений погрешность остается ограниченной; 2) погрешность неограниченно возрастает. В последнем случае говорят о неустойчивости численной ММ или алгоритма. Данные рассуждения имеют качественный характер, однако в некоторых конкретных задачах более строгие оценки устойчивости существуют.

Преобразования математических моделей

Рисунок 2

Источники погрешностей при численном моделировании

Погрешности при численном моделировании могут возникнуть на всех этапах численного моделирования на компьютере (слайд 7).

Все погрешности можно условно разделить на две класса:

1) неустранимые; 2) устранимые.

К неустранимым погрешностям с точки зрения вычислительной математики относятся: неточность формальной ММ и погрешность знания исходных данных (вектора x). Под устранимыми погрешностями понимаются такие погрешности, которые человек может уменьшать посредством изменения параметров численной ММ. Понятно, что уменьшение погрешностей имеет свой предел. Это связано с возможностями численного метода и неточностью представления чисел в компьютере.

Тогда к устранимым погрешностям можно отнести:

- 1. Методическую погрешность, связанную со свойствами выбранного численного метода
- 2. Вычислительную погрешность, связанную с неточностью представления чисел в компьютере.

Источники погрешностей при численном моделировании

1.Методическая погрешность — это чаще всего в вычислительных методах погрешность дискретизации. В общем случае, изменяя параметры дискретизации, эту погрешность можно уменьшить.

Пример. Приближенное вычисление интеграла методом прямоугольников

$$J = \int_{a}^{b} f(x) dx \approx \tilde{J}_{n} = \sum_{i=1}^{n} S_{n}$$

Тогда $\left|\tilde{J}_n - J\right| = \delta(n)$ и методическая погрешность зависит от параметра дискретизации n , увеличивая значения которого можно уменьшить погрешность.

2. Вычислительная погрешность.

Уменьшение методической погрешности с помощью изменения параметров дискретизации неизбежно ограничивается **вычислительной погрешностью**, которая всегда присутствует при компьютерном моделировании. Поэтому с точки зрения вычислительной математики выполнение условия сходимости $\lim_{n\to\infty} \tilde{J}_n = J$ невозможно.

Источники погрешностей при численном моделировании

Пример.

Рисунок 3

Замечание. Вычислительную погрешность можно уменьшить, вводя вычисления с двойной, тройной и т. д. точностью представления чисел, что позволяют сделать некоторые языки программирования. Однако это качественно не изменяет результаты расчетов.

Особенности машинной арифметики

Вычислительная погрешность связанна с параметрами машинной арифметики, которые используются в компьютере.

Параметры машинной арифметики.

1. Форма представления числа.

Различают: а) с фиксированной запятой; б) с плавающей запятой.

2. Способ округления чисел.

Различают: а) отбрасывание высших разрядов; б) правильное округление В современных компьютерах используется представление с плавающей запятой и правильное округление.

Представление числа с плавающей запятой: $a = \pm M \cdot p^{\pm k}$

где M - мантисса числа, p > 1 - основание системы исчисления,

k - порядок числа.

От количества двоичных разрядов, отводимых на представления мантиссы и порядка, зависит диапазон чисел и относительная погрешность представления числа в компьютере.

Диапазон чисел с точностью до знака: $M_0 \le a \le M_\infty$,

где ${M}_0$ - машинный ноль, ${M}_{\scriptscriptstyle \infty}$ - машинная бесконечность.

Относительная погрешность представления числа $\varepsilon \approx 2^{-t}$,

где t - количество двоичных разрядов для представления.

Для пакета Mathcad: $M_0 \approx 10^{-15}$, $M_\infty \approx 10^{307}$.

(S)

Особенности машинной арифметики

Пример влияния вычислительной погрешности. Рассмотрим итерационную формулу:

$$y_0 = 1, \quad y_k = \left(\frac{y_{k-1}}{k}\right)k, \quad k = 1,...N$$

В общем случае это тождество, то есть $y_k \equiv 1$, однако влияние вычислительной погрешности приводит к $y_k \neq 1$. Причем, чем больше N, тем погрешность больше

Рисунок 4

Спасибо за внимание

e-mail: yumz@yandex.ru

ул. Московское шоссе, д. 34, г. Самара, 443086 Тел.: +7 (846) 335-18-26 , факс: +7 (846) 335-18-36 Сайт: www.ssau.ru, e-mail: ssau@ssau.ru