Mini MiMo

Preprost trdo-ožičen model CPE

Osnovne značilnosti

- 4 16 bitni registri (RO-R3)
- 16 bitna ALE (+,-,AND,OR)
- 16 ukazov
- 2 izhodni napravi (16x16 zaslon LED in znakovni terminal TTY)
- Preprost zbirnik v Excelu

Nabor ukazov

16 bitni ukazi - format:

op1	op2	Rd	Rs	immediate
2b	2b	2b	2b	8b

Seznam ukazov:

op1	op2	ARM9 zapis	Opis
00	00	AND Rd, Rd, Rs	Rd = Rd AND Rs
00	01	ORR Rd, Rd, Rs	Rd = Rd OR Rs
00	10	ADD Rd, Rd, Rs	Rd = Rd + Rs
00	11	SUB Rd, Rd, Rs	Rd = Rd - Rs
01	00	LDRH Rd, [Rs]	Rd = Mem[Rs]
01	01	STRH Rd, [Rs]	Mem[Rs] = Rd
01	10	MOV Rd, Rs	Rd = Rs
01	11	NOP	Do nothing
10	00	BEQ Rd, immed	PC = immed if Rd == 0
10	01	BNE Rd, immed	PC = immed if Rd != 0
10	10	BGTZ Rd, immed	PC = immed if Rd > 0
10	11	BLTZ Rd, immed	PC = immed if Rd < 0
11	00	LDRH Rd, [#immed]	Rd = Mem[immed]
11	01	STRH Rd, [#immed]	Mem[immed] = Rd
11	10	MOV Rd, #immed	Rd = immed
11	11	B immed	PC = immed

Ukazi op1=1X so ukazi s takojšnjim operandom.

Ukazi op1=00 so aritmetično logični ukazi (izvedba v ALE)

Izvedba ukazov

FETCH

op1	op2	ARM9 zapis	pc sel	pc load	ir load	rw	d write	addr sel	reg sel	dreg	sreg	aluop
xx	xx	Vsi ukazi	1 (pc+1)	1	1	0	0	0 (pc)				

EXECUTE

op1	op2	ARM9 zapis	pc sel	pc load	ir load	rw	d write	addr sel	reg sel	dreg	sreg	aluop
00	00	AND Rd, Rd, Rs		0	0	0	1		3	Rd	Rs	op2
00	01	ORR Rd, Rd, Rs		0	0	0	1		3	Rd	Rs	op2
00	10	ADD Rd, Rd, Rs		0	0	0	1		3	Rd	Rs	op2
00	11	SUB Rd, Rd, Rs		0	0	0	1		3	Rd	Rs	op2
01	00	LDRH Rd, [Rs]		0	0	0	1	2	2	Rd	Rs	
01	01	STRH Rd, [Rs]		0	0	1	0	3		Rd	Rs	
01	10	MOV Rd, Rs		0	0	0	1		1	Rd	Rs	
01	11	NOP		0	0	0	0					
10	00	BEQ Rd, immed	0	j	0	0	0			Rd		op2
10	01	BNE Rd, immed	0	j	0	0	0			Rd		op2
10	10	BGTZ Rd, immed	0	j	0	0	0			Rd		op2
10	11	BLTZ Rd, immed	0	j	0	0	0			Rd		op2
11	00	LDRH Rd, [#immed]		0	0	0	1	1	2	Rd		
11	01	STRH Rd, [#immed]		0	0	1	0	1		Rd		
11	10	MOV Rd, #immed		0	0	0	1		1	Rd		
11	11	B immed	0	1	0	0	0					
op1	op2	ARM9 zapis	pc sel	pc load	ir load	rw	d write	addr sel	reg sel	dreg	sreg	aluop

V zgornjih tabelah so razvidna stanja vseh krmilnih signalov, ki določajo delovanje sistema v korakih Fetch in Execute za vsak ukaz. V tabelah so navedene le aktivne vrednosti signalov. Če vrednost signala ni pomembna, potem ni navedena.

Kontrolni signali

Branje (FETCH) in izvedba ukazov (EXECUTE) poteka s pomočjo kontrolnih signalov. Z njimi kontrolna enota krmili delovanje vseh ostalih enot. Z vklopom vhoda »ManualControl« v stanje 1, pa lahko stanje kontrolnih signalov določamo samo s pomočjo vhodov v spodnji vrstici.

Kratek opis kontrolnih signalov:

- dwrite
 - 1 .. vpis v register Rd, 0 .. Rd pomni
- regsrc
 - izbira vhoda v registrsko enoto
 - 00 .. Rs, 01 ..immed, 10 .. DataBus, 11 .. aluout
- aluop
 - o izbira AL operacije:
 - 00 .. AND, 01 .. OR, 10 .. ADD, 11 .. SUB
- datawrite
 - o vpis v ali branje iz pomnilnika
 - 0 .. branje, 1 .. pisanje
- irload
 - Vpis v ukazni register (IR)
 - 1 .. vpis v IR, 0 .. IR pomni
- addrsel
 - o Izbira vira za naslovno vodilo
 - 00 .. PC, 01 .. immed, 10 .. Rs, 11 .. Rd
- pcload
 - o vpis v PC register
 - 1 .. vpis v PC, 0 .. PC pomni
- pcsel
 - izbira vhoda za vpis v PC register
 - 0 .. immed, 1 .. PC+1

Naslovni prostor in V/I napravi

Naslov sestavlja 16 bitov in določa naslednji prostor vseh možnih naslovov :

Naslo	ov	Namana	Onic		
Dec.	Hex.	Naprava	Opis		
00000-16383	0000-3fff	RAM pomnilnik	14 bitni naslov pomeni 2^14 pomn. besed		
16384-32767	4000-7fff	LED zaslon 16x16	16 16 bitnih registrov – vsak bit predstavlja eno točko na zaslonu		
32768-49151	8000-bfff	Znakovni zaslon TTY	7 bitni register za vpis ASCII kode znaka za prikaz na zaslonu		
49152-65535	c000-ffff				

Sistem uporablja t.i. pomnilniško preslikane V/I naprave. To pomeni, da so registri naprav vidni kot običajno pomnilniške besede, vendar na posebnih naslovih. Tako vedno dostopamo do natanko ene V/I naprave oziroma RAM pomnilnika kot tretje naprave v sistemu.

Preizkusni programi

Za pomoč pri razumevanju delovanja sistema in njegovem programiranju je v nadaljevanju nekaj primerov programov v zbirniku. Za prevedbo v strojne ukaze oziroma vsebino pomnilnika se lahko uporabi preprost zbirnik, realiziran v Excelu (MiniMiMo_Assembler.xlsx). Nekateri programi so zapisani tudi v datotekah s končnico .ram, ki se lahko prenesejo direktno v RAM pomnilnik modela in potem izvajajo (pritisk na F9 pomeni izvedbo ene urine periode). Za vzpostavitev začetnega stanja je na voljo tipka Reset. Prenos vsebine datoteke v RAM popmnilnik prikazuje spodnja slika :

Preizkusni program: Seštej tabelo

- V pomnilniku od naslova 0x20 naprej se nahajajo 16-bitna števila. Zadnje število ima vrednost
- Program naj sešteje vsa števila in vsoto zapiše na naslov 0x40 in potem počaka v mrtvi zanki
- Uporabimo 4 registre:
 - R0 kaže na seznam števil (0x20)
 - R1 vsebuje tekočo vsoto
 - o R2 vsebuje prebrano število
 - R3 vsebuje 1 za povečevanje R0

Naslov	Oznaka	Ukaz v zbirniku	Strojni ukaz
0x0000		MOV R1, #0x00	e400
0x0001		MOV R0, #0x20	e020
0x0002		MOV R3, #0x01	ec01
0x0003	loop:	LDRH R2, [R0]	4800
0x0004		BEQ R2, end	8808
0x0005		ADD R1, R1, R2	2600
0x0006		ADD R0, R0, R3	2300
0x0007		В Іоор	ff03
0x0008	end:	STRH R1, [#0x40]	d440
0x0009	Inf:	B inf	ff09

Program se nahaja v datoteki z vsebino RAM pomnilnika - minimimo_sestej.ram.

Preizkusni program: V/I naprave

- V pomnilniku se od naslova 0x4000 naprej nahaja znakovni terminal TTY, od naslova 0x8000 naprej pa 16x16 LED matrika
- Program naj vpisuje v obe V/I napravi vrednosti, ki se ves čas povečujejo
- sešteje vsa števila in vsoto zapiše na naslov 0x40 in potem počaka v mrtvi zanki
- Uporabimo 4 registre:
 - o R0 vsebuje 1 za povečevanje
 - R1 vsebuje začetno ASCII kodo (64 = '@')
 - o R2 vsebuje začetni naslov 16. vrstice matrike LED (16399)
 - o R3 vsebuje začetni naslov znakovnega terminala TTY (32768)

Naslov	Oznaka	Ukaz v zbirniku	Strojni ukaz
0x0000	main:	MOV R0, #1	e001
0x0001		MOV R1, #64	e440
0x0002		MOV R2, #0x20	e820
0x0003		LDRH R2, [R2]	4a00
0x0004		MOV R3, #0x21	ec21
0x0005		LDRH R3, [R3]	4f00
0x0006	loop:	STRH R1, [R2]	5600
0x0007		STRH R1, [R3]	5700
0x0008		ADD R1, R1, R0	2400
0x0009		В Іоор	ff06
0x0020		0x8000 = 32768	TTY
0x0021		0x400f = 16399	LED

Program se nahaja v datoteki z vsebino RAM pomnilnika - minimimo_testIO.ram.

Preizkusni program: vsota dveh števil

- V pomnilniku se na naslovih 32 (0x20) in 33 (0x21) nahajata dve 16-bitni števili
- Program naj sešteje števili in vsoto zapiše na naslov 34 (0x22)
- Po koncu naj potem program počaka v mrtvi zanki
- Uporabimo 3 registre:
 - o R0 je bazni register
 - o R1 vsebuje prvo število
 - o R2 vsebuje drugo število

Naslov	Oznaka	Ukaz v zbirniku	Strojni ukaz
0x0000	main:	MOV R0, #0x20	e020
0x0001		LDRH R1, [R0]	4400
0x0002		MOV R0, #0x21	e021
0x0003		LDRH R2, [R0]	4800
0x0004		ADD R2, R2, R1	2900
0x0005		MOV R0, #0x22	e022
0x0006		STRH R2, [R0]	5800
0x0007	inf:	B inf	f007
0x0020		0x10 = 16	0010
0x0021		0x40 = 64	0040
0x0022		? = 0x50 = 80	0050

Program se nahaja v datoteki z vsebino RAM pomnilnika - minimimo_vsota.ram.