1.5 Aritmética de Ponto Flutuante

A representação em aritmética de ponto flutuante é muito utilizada na computação digital. Um exemplo é a caso das calculadoras científicas. Exemplo: 2,597 –03.

Este número representa: $2,597 \times 10^{-3}$.

A principal vantagem da representação em ponto flutuante é que ela pode representar uma grande faixa de números se comparada a representação de ponto fixo.

Seja uma representação com 6 (seis) dígitos:

- a) utilizando representação de ponto fixo.
 - O maior número representável = 9,99999 ≈ 10
 - O menor número representável = $0,00001 = 10^{-5}$
- b) utilizando representação com ponto flutuante, aloca-se dois dos seis dígitos para representar a potência de 10.

O maior número representável = $9,999 \times 10^{99}$.

O menor número representável = 0.001×10^{-99} .

A representação em ponto flutuante permite representar uma faixa muito maior de números. O preço a ser pago é que esta representação tem quatro dígitos de precisão, em oposição à representação por ponto fixo que possui 6 dígitos de precisão.

Definição:

Um sistema de ponto flutuante $F \subset \Re$ é um subconjunto dos números reais cujos elementos tem a forma:

$$y = \pm \left(\frac{d_1}{\beta^1} + \frac{d_2}{\beta^2} + \frac{d_3}{\beta^2} + \dots + \frac{d_t}{\beta^t}\right) \beta^e = \pm \left(.d_1d_2d_3\dots d_t\right) \beta^e$$

Onde $0 \le d_i < \beta$, i = 1,...,t

A aritmética de ponto flutuante F é caracterizada por quatro números inteiros:

- base β (binária, decimal, hexadecimal e etc..);
- precisão t (número de algarismos da mantissa);
- limites do expoente e ($e_{\min} \le e \le e_{\max}$);

Portanto a definição de F é dada por $F(\beta,t,e_{\min},e_{\max})$. A mantissa é fracionária nesta representação (<1).

A fim de assegurar representação única para cada $y \in F$, faz-se uma normalização no sistema de forma que $d_1 \neq 0$ para $y \neq 0$.

Exemplo de uma aritmética de ponto flutuante com $\beta = 2$, t = 3, $e_{\min} = -1$ e $e_{\max} = 3$.

Considerando apenas a parte positiva, tem-se os seguintes números: 0; 0,25; 0,3125; 0,4375; 0,5; 0,625; 0,750; 0,875; 1,0; 1,25; 1,5; 1,75; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0, que podem ser representados na reta numerada:

Observe que os números em uma aritmética de ponto flutuante não são igualmente espaçados. Cada número na aritmética representa um intervalo de números reais.

O número total de elementos de uma aritmética de ponto flutuante é dado por:

numero de elementos =
$$2(\beta - 1)\beta^{t-1}(e_{max} - e_{min} + 1) + 1$$

A Tabela 1.1 mostra os parâmetros de aritméticas de ponto flutuante utilizadas em alguns computadores digitais.

Tabela 1.1 – Parametros de Aritmeticas de Ponto Flutuante					
Máquina e Aritmética	β	t	e_{min}	$e_{ m max}$	и
Cray-1 Precisão Simples	2	48	-8192	8191	4×10^{-15}
Cray-1 Precisão Dupla	2	96	-8192	8191	1×10^{-29}
DEC VAX formato G Dupla	2	53	-1023	1023	1×10^{-16}
DEC VAX formato D Dupla	2	56	-127	127	1×10^{-17}
Calculadoras HP 28 e 48G	10	12	-499	499	5×10^{-12}
IBM 3090 Precisão Simples	16	6	-64	63	5×10 ⁻⁰⁷
IBM 3090 Precisão Dupla	16	14	-64	63	1×10^{-16}

Tabela 1.1 – Parâmetros de Aritméticas de Ponto Flutuante

IBM 3090 Precisão Estendida	16	28	-64	63	2×10 ⁻³³
IEEE Precisão Simples	2	24	-126	127	6×10^{-8}
IEEE Precisão Dupla	2	53	-1022	1023	1×10^{-16}
IEEE Precisão Extendida	2	64	-16381	16384	5×10^{-20}
PDP 11	2	24	-128	127	1,19×10 ⁻⁷
Control Data 6600	2	48	-976	1070	$7,11 \times 10^{-15}$

1.5.1 Overflow e Underflow

O conjunto de números de números reais é infinito, entretanto, a sua representação em um sistema de ponto flutuante é limitada, pois é um sistema finito, o que não a representação exata da totalidade dos números reais.

Essa limitação tem duas origens:

- a faixa dos expoentes é limitada ($e_{\min} \le e \le e_{\max}$);
- a mantissa pode representar um número finito de números ($\beta^{-1} \le m \le 1 \beta^{-t}$)

A primeira limitação leva aos fenômenos chamados de "overflow" e "underflow". A Segunda leva aos erros de arredondamentos, que será visto na próxima seção.

Sempre que uma operação aritmética produz um número com expoente superior ao expoente máximo, tem-se o fenômeno de "overflow". De forma similar, operações que resultem em expoente inferior ao expoente mínimo tem-se o fenômeno de "underflow".

No caso do exemplo dado, pode-se observar qual as regiões que ocorrem o overflow e o underflow. Neste caso, considera-se a parte positiva e negativa da aritmética do exemplo.

Observe que, se o expoente for maior que 3 ou menor que -1, não tem-se representação no conjunto formado pela aritmética de ponto flutuante. No primeiro caso, tem-se o overflow, no segundo caso, tem-se o underflow.

Quando da ocorrência de overflow ou underflow, a máquina realiza alguma ação. Cada máquina responde de alguma forma. As principais ações são:

Overflow

a) Pára o cálculo
b) Retorna um número que representa o infinito da máquina (IEEE)

As duas maneiras que a máquina trata o overflow possuem aspectos indesejáveis. No primeiro caso não possui resposta. No segundo caso também não é muito útil, exceto para interpretações físicas ou aplicações específicas, pois não apresenta uma resposta numérica.

No caso do underflow, o primeiro caso é indesejado. Os segundo e terceiro caso resulta em uma resposta útil, mas existe o perigo de numa operação seguinte surgir um overflow.

Deve-se procurar evitar overflow e underflow em implementação computacionais. Uma maneira prática de evitar o overflow é o escalonamento, que pode também evitar o underflow.

Exemplo:

$$c = \sqrt{a^2 + b^2}$$

 $c = \sqrt{a} + b$ Suponha uma máquina com 10 dígitos decimais com expoentes [-99,99]

$$a = b = 10^{60}$$

 a^2 e b^2 ambos estão em overflow e a computação pode ser parada, mesmo que o resultado seja $\sqrt{2} \times 10^{60}$ e seja representável na aritmética de ponto flutuante.

Similarmente:

$$a = b = 10^{-60}$$

Se for arredondado para zero a resposta será c=0, o que é um resultado pobre considerando que a resposta é $\sqrt{2} \times 10^{-60}$.

Pode-se evitar o overflow, utilizando um escalonamento:

$$s = |a| + |b|$$

$$c = s\sqrt{\left(\frac{a}{s}\right)^2 + \left(\frac{b}{s}\right)^2}$$

Esta formulação também evita o underflow.

Números Subnormais

Aritméticas de ponto flutuantes mais modernas, como é o caso do IEEE, adotam os chamados números subnormais para melhorar as aproximações nos casos de underflow. Neste caso fazem parte da aritmética de ponto flutuante os números formados com a mantissa não normalizada e o mínimo expoente. No caso do exemplo dado, tem-se um acréscimo de números na aritmética.

	0	1	1	$\times 2^{-1} = 0.1875$
--	---	---	---	--------------------------

Aritmética IEEE - Exceções e Resultados Padrões

Tipo	Exemplo	Resultado		
Operação Inválida	$0/0$, $0\times\infty$, $\sqrt{-1}$	NAN	NAN	
Overflow		±∞		
Divisão por Zero		$\pm \infty$		
Underflow		Arredondamento números subnormais	par	
Inexatidão	$fl(x \circ y) \neq (x \circ y)$	Arredondamento resultado	do	

1.5.2 Erros de Arredondamentos

O comprimento de uma palavra é fixo, o que impõe que a maioria dos números não possui representação exata em um sistema de ponto flutuante.

Como exemplo, seja a raiz quadrada de 7:

$$\sqrt{7} = 2,6457513...$$

Seja um computador com base decimal de 5 dígitos. Dígitos além do quarto decimal devem ser descartados. Tem-se dois modos de aproximação:

- a) arredondamento $\Longrightarrow 2,6458$
- b) chopping (truncamento) \implies 2,6457

Como pode-se observar, em qualquer das duas aproximações, tem-se um erro na representação. É importante que se conheça os limites do erro nestas representações.

Seja o número a=X.XXXXY

Supondo que seja arredondado para o número b=X.XXXZ, com arredondamento para cima se $Y \ge 5$ e para baxo se Y < 5. Fica fácil observar-se que:

$$|b-a| \le 5 \times 10^{-5}$$

Supondo que o dígito guia seja diferente de zero, ou seja, $|a| \ge 1$, resulta:

$$\frac{|b-a|}{|a|} \le 5 \times 10^{-5} = \frac{1}{2} \times 10^{-4}$$

Supondo genericamente t dígitos decimais:

$$\frac{\left|b-a\right|}{\left|a\right|} \le \frac{1}{2} \times 10^{-t+1}$$

Similarmente, quando o número a é truncado ("chopped"), tem-se:

$$\frac{\left|b-a\right|}{\left|a\right|} \le \times 10^{-t+1}$$

Para uma base genérica β , tem-se:

a) Para arredondamento

$$\frac{\left|fl(x) - x\right|}{|x|} \le \frac{1}{2} \times \beta^{-t+1} = u$$

b) Para chopping

$$\frac{\left|fl(x)-x\right|}{|x|} \le \beta^{-t+1} = u$$

Estes limites podem ser apresentados de forma diferente, facilitando a análise de erros de arredondamentos.

$$\frac{\left(fl(x)-x\right)}{x} = \delta$$

Considerando a inegualdade:

$$fl(x) = x(1+\delta)$$
 para $\delta \le u$

1.5.3 Epsílon da Máquina (ε)

O ε da máquina é definido como o menor número de ponto flutuante, tal que $1+\varepsilon>1$. O valor de ε é muito próximo do valor de u. O programa a seguir permite obter uma aproximação para o ε da máquina.

EPS=1
10 EPS+0,5*EPS
EPSP1=EPS+1
IF(EPSP1.GT.1)GO TO 10
PRINT EPS

Linguagens mais recentes já possue comandos para determinar-se o valor de ε

1.6 Instabilidades Numéricas em Algoritmos

Desde o desenvolvimento dos primeiros computadores, era comum achar-se que , como os computadores desenvolvem milhões de operações de ponto flutuante para desenvolver um determinado problema, e essas operações carregam aproximações, os erros de arredondamento podem se acumular de forma desastrosa. Este sentimento parece ser verdadeiro, mas é enganoso. Na grande maioria dos casos, as instabilidades numéricas não são causadas pela acumulção de milhões de operações, mas o crescimento traiçoeiro de poucas operações.

Seja o exemplo:

$$e = \exp(1) = 2,71828...$$

Aproxima-se o valor de *e* pela expressão:

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

O problema será resolvido utilizando Fortran90 com precisão simples: $u = 6 \times 10^{-8}$, ou seja:

$$\hat{f}_n := fl \left[\left(1 + \frac{1}{n} \right)^n \right]$$

n	\hat{f}_n	$\left e - \hat{f}_n \right $
10¹	2,593743	1,25×10 ⁻¹
10^2	2,704811	1,35×10 ⁻²
10^3	2,717051	1,23×10 ⁻³
10 ⁴	2,718597	3,15×10 ⁻⁴
10 ⁵	2,721962	3,68×10 ⁻³
10 ⁶	2,595227	1,23×10 ⁻¹
10 ⁷	3,293968	5,76×10 ⁻¹

A aproximação é pobre e degrada a medida que n se aprosima do inverso da unidade de arredondamento. Quando $(1+\frac{1}{n})$ é formado para n grande, poucos dígitos significativos de $\frac{1}{n}$ são retidos, e mesmo que a potencialização é realizada de forma exata, o resultado é pobre.

Nesta seção será apresentado alguns casos muito conhecidos de ocorrência de instabilidades numéricas, para erros advindos de arredondamento.

Cancelamento Catastrófico

Acontece quando dois números e que apresentam erros são subtraídos.

Seja a equação:

$$f(x) = \frac{(1 - \cos x)}{x^2}$$

Considerando $x = 1.2 \times 10^{-5}$ e uma máquina com 10 dígitos significativos, tem-

se:

Portanto:

$$\frac{(1-c)}{x^2} = \frac{10^{-10}}{1,44 \times 10^{-10}} = 0,6944$$

Entretanto, para $x \neq 0$, tem-se: $0 \le 0 \le 0.5$.

Os 10 dígitos significativos são insuficientes para aproximar o valor de f(x). A subtração (1-c) possui um dígito significativo. A subtração é exata, mas produz resultado da ordem do erro de c. A subtração supervalorizou a importância do erro anterior.

Na realidade o problema não está na subtração, mas no arredondamento anterior. Uma modificação ma equação pode tornar o cálculo numericamente estável.

$$f(x) = \frac{1}{2} \left(\frac{\sin(\frac{x}{2})}{\frac{x}{2}} \right)^2$$

Considerando $x = 1.2 \times 10^{-5}$ e a nova expressão, chega-se a f(x) = 0.5.

O Problema do cancelamento catastrófico pode genericamente ser mostrado por:

Seja x=(a-b) e $\hat{x}=(\hat{a}-\hat{b})$, sendo $\hat{a}=a(1+\Delta a)$ e $\hat{b}=b(1+\Delta b)$. Os valores Δa e Δb são incertezas ou erros de arredondamentos por armazenamento ou computações anteriores. A partir dos dados, pode-se chegar a seguinte expressão:

$$\left| \frac{x - \hat{x}}{x} \right| = \left| \frac{-a\Delta a - b\Delta b}{a - b} \right| \le \max(\left| \Delta a \right|, \left| \Delta b \right|) \frac{\left| a \right| + \left| b \right|}{\left| a - b \right|}$$

O erro relativo é grande quando:

$$|a-b| \ll |a|+|b|$$

e ocorre quando tem-se o cancelamento catastrófico. Observe por esta análise que só existe um cancelamento catastrófico quando existirem erros nos dados.

Resolvendo Equações do Segundo Grau

Seja a equação do segundo grau:

$$ax^2 + bx + c = 0$$

Utilizando a conhecida fórmula de Báskara:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Se $b^2 >> 4ac$, então $\sqrt{b^2-4ac} \approx |b|$. Para uma escolha de sinal, tem-se cancelamento catastrófico, pois $fl(\sqrt{b^2-4ac})$ não é exato e a subtração leva a uma supervalorização do erro.

Para evitar este problema, pode-se utilizar as seguintes expressões alternativas:

$$x_1 = \frac{-b + sign(b)\sqrt{b^2 - 4ac}}{2a}$$

$$x_1 x_2 = \frac{c}{a}$$

Outra fonte de erro é quando $b^2 \approx 4ac$, neste caso nenhum rearranjo algébrico pode evitar o problema. Uma tentativa para melhorar a resposta é aumentar a precisão da solução.

Fatoração LU sem Pivoteamento

$$A = \begin{bmatrix} \varepsilon & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$
Supõe-se que $0 < \varepsilon <<1$, o que resulta: $u_{11} = \varepsilon$, $u_{12} = -1$, $l_{21} = \varepsilon^{-1}$, $u_{22} = 1 - l_{21}u_{12} = 1 + \varepsilon^{-1}$

Como ε é muito pequena, $fl(u_{22}) = \varepsilon^{-1}$, portanto:

$$A - \hat{L}\hat{U} = \begin{bmatrix} \varepsilon & -1 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ \varepsilon^{-1} & 1 \end{bmatrix} \begin{bmatrix} \varepsilon & -1 \\ 0 & \varepsilon^{-1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Pode-se observar que a matriz fatorada $\hat{L}\hat{U}$ não é igual a original. Neste caso não tem-se o cancelamento catastrófico, mas operações com números com ordem de grandeza muito diferentes. A fonte de erro é apenas a utilização de um pivô muito pequeno, sendo, portanto, um problema do algoritmo e não da matriz. A matriz A é bem comportada. Para gerar um algoritmo de fatoração LU numericamente estável, deve-se evitar a utilização de pivôs com pequeno valor absoluto.

1.7 Condicionamento Numérico

Como viu-se, erros nas respostas computadas podem ser originados por problemas de instabilidades numéricas nos algoritmos utilizados, entretanto muitas vezes utiliza-se algoritmos numericamente estáveis e mesmo assim, pode-se chegar a respostas bem diferentes da esperada. A fonte desses erros está no próprio problema.

Supõe-se que \hat{y} satisfaça $\hat{y} = f(x + \Delta x)$ e f seja duas vezes continuamente diferenciável. A partir da Série de Taylor, chega-se a expressão:

$$\hat{y} - y = f(x + \Delta x) - f(x) = f'(x)\Delta x + \frac{f''(x + \theta \Delta x)}{2} \Delta x^2$$
 onde $\theta \in (0,1)$

Rearranjando a expressão:

$$\frac{\hat{y} - y}{y} = \left(\frac{xf'(x)}{f(x)}\right) \frac{\Delta x}{x} + O(\Delta x^2)$$

Definindo:

$$C(x) = \left(\frac{xf'(x)}{f(x)}\right)$$

Para um Δx pequeno, C(x) mede a perturbação relativa na saída, para uma perturbação relativa na entrada. Este valor é chamado de número de condição ou número de condicionamento. Para um problema mal condicionado, mesmo uma pequena perturbação na entrada, produz uma grande perturbação na saída.

Exemplo: $f(x) = \ln(x)$

Para a função dada:

$$C(x) = \frac{1}{\ln(x)}$$

Para um problema em que $x \approx 1$, verifica-se que C(x) é muito grande. Para pequenas perturbações em x. produz grandes alterações em f(x). Significa que o problema é muito mal-condicionado para x próximo a 1. Esta conclusão também pode ser verificada no gráfico da função f(x) acima. A questão de condicionamento de matrizes será vista quando da solução de sistemas lineares.

1.8 Desenvolvendo Algoritmos Estáveis

Não existe receita simples para desenvolver algoritmos estáveis. Um procedimento importante é saber da necessidade da estabilidade numérica, quando do desenvolvimento de um algorítmo e não se concentrar somente em outros itens, tais como custo computacional e rapidez de solução.

Alguns itens podem ser seguidos para o desenvolvimento de algoritmos estáveis:

- Tentar evitar subtrações com quantidades contaminadas por erros.
- Minimizar o tamanho de quantidades intermediárias, relativo à solução final.
- Procurar diferentes formulações para a computação que são matematicamente, mas não numericamente equivalentes.
- É vantajoso expre4ssar atualizações do tipo: valor novo= valor velho + pequena correção, se pequenas correções podem ser computadas com muitos dígitos significativos.
- Tome precauções para evitar underflow e overflow.