# Статистически методи за управление на качеството





#### Роля на статистическите методи

Указания за статистическите методи, които могат да се използват за управление на качеството са дадени в

#### ISO/TR 10017.

- Нагледни статистики
- Анализ на възможностите на процеси
- Статистически процесен контол (SPC)
- Извадков контрол (AS)
- Проверка на хипотези
- Анализ на временни редове
- Анализ на измерванията
- Планиране на експеримента (DOE)
- Регресионен анализ
- Анализ на надеждността
- Моделиране





качеството

**Нагледните статистики** се основават на аналитични процедури, свързани с обработката и представянето на количествени данни. Използват се за количествена оценка на характеристиките на получените данни.

Типични оценки на получени чрез наблюдение данни се явяват положението на центъра на групиране на данните и тяхното разсейване.

За оценка на положението на центъра на групиране се използват средната стойност и медианата.

За оценка на разсейванито се използват средноквадратичната стойност и размаха.



Важна характеристика е разпределението на данните (закона на разпределение)



Модул 2: Пълномощник за система за управление на

качеството

Средноаритметична стойност при брой на наблюденията n:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^{m} x_{im} v_{i}$$

#### Медиана

#### Средноквадратично отклонение:

$$s == \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})^2}$$

#### Размах:

$$R = x_{max} - x_{min}$$





Информацията, представена с нагледни статистики може да бъде изобразена с помощта на различни графични методи.

Графичните методи позволяват да се разкрие специфичното поведение на данните, което трудно може да се забележи в данните, представени по друг начин.



- Нагледните статистики се използват за обобщаване и описване на група данни.
- Обикновено се прилагат в началния етап от анализа на количествени данни.
- Нагледните статистики предлагат ефективен и достатъчно прост начин за обобщаване и представяне на количествени данни.
- > Лесни са за разбиране и използване.







Примери за използване могат да бъдат:

- обобщение на основните характеристики на параметри на продукция (такива като средна стойност и разсеиване)
- описване на параметрите на процеси
- обобщаване на данни от рекламации на потребители







#### Проверка на хипотези

Проверката на хипотези е статистическа процедура за проверка с определено ниво на доверие на обосноваността на издигната хипотеза относно една или няколко извадки.

Тази процедура може да бъде използвана за:

- проверка за съответствието на дадени параметри на качеството с нормираните им стойности, например за проверка на средната стойност или стандартното отклонение на разглеждана съвкупност дали съответства на зададената (нормираната) стойност;
- проверка на значимостта на разликите в две или няколко съвкупности (партиди), например за сравняване на средните стойности на съвкупности, или за проверка на това, че извадките са направени от една и съща съвкупност, както и за проверка имат ли две съвкупности близко разпределение;
- проверка действително ли екстремни стойности от наблюдения принадлежат към дадена извадка;
- проверка на вида на закона на разпределение.





Анализът на възможностите на процеса се явява оценка на изменчивостта на процеса

 Възможностите на процеса могат да бъдат представени с индекси, свързващи разсейването на реалния процес с допустимото разсейване







#### Индекс на възможностите на процеса



$$C_p = rac{{
m Допустимо\ pазсейване\ на\ npoцесa}}{{
m Действително\ pазсейване\ на\ npoцесa}} = rac{T}{6s}$$













- ightharpoonup Използването на  $C_{
  ho}$ =1,33 дава известна гаранция, че в крайна сметка ще се осигури  $C_{
  ho}$ =1,0, ако в процеса на производсво възникнат допълнителни източници на разсейване.
- $\triangleright$  Минималната стойност  $C_p$ =1,33 обикновенно се използва при текущо следене на процеса, както и при оценка на качеството на технологично оборудване



# Индекс на работоспособност на процеса - C<sub>pk</sub>

- $\blacktriangleright$  Очевидно, че индекса  $C_p$  изразява потенциалната работоспособност на процеса, тъй като само разсейването на процеса се съпоставя с границите на допуска; положението центъра на групиране не се отчита. Може да се получи несъответстваща продукция и при големи стойности на  $C_p$  при расположение на средната стойност на процеса достатъчно близко до границата на допуска.
- ightharpoonup Индексът  $C_{pk}$  използва и средната стойност на процеса и може да се разглежда като показател на неговата работоспосабност.

$$C_{pk1} = \frac{\Gamma\Gamma\Pi - \overline{X}}{3s} \qquad C_{pk2} = \frac{\overline{X} - \Pi\Gamma\Pi}{3s} \qquad C_{pk2} = \frac{\overline{X} - \Pi\Gamma\Pi}{3s} \qquad C_{pk} = C_{pk1} \text{ ако } C_{pk2} < C_{pk2}$$















- Анализът на възможностите на процеса е изследване на изменчивостта на процеса с цел оценка на неговата способност за изработване на продукция с разсейване в рамките на допустимото.
- Използва се за определяне на способността на процеса да произвежда продукция, съответстваща на установените изисквания и за оценка на очаквания процент несъответстваща продукция.





#### ■ Извадков контрол

Извадковият контрол е статистически метод за получаване на информация за характеристиките на съвкупности (партиди) чрез наблядение на извадки от тези съвкупности.

Извадковият контрол може да бъде:

- Статистически приемателен контрол
- Извадково изследване







- Приемателният статистически контрол на качеството се прилага за окачествяване на готова продукция с цел проверка за спазването на изискванията за качество, но може да се използва и за оформянето на изводи относно необходимостта от вземане на мерки за подобрявате на качеството.
- Позволява да се правят изводи за качествота на цели партиди при проверяване само на малка част (извадка) от партидите.
- Заменя 100%-товия контрол, който е скъп и несъвършен и с увеличаване на обема на продукцията става трудно приложим.







Приемателният статистически контрол може да се прилага при:

- входящия контрол
- производствения контрол
- изходящия контрол
- Извадката трябва да бъде непреднамерана (репрезентативна),
   т.е. всяко едно от намиращите се в партидата изделия трябва да има еднакъв шанс да попадне в наблюдаваната извадка
- Признаците по които се проверяват изделията могат да бъдат отнесени към две основни категории:
- качествени (алтернативни)
- количествени





> Приемателният статистически контрол защитава предимно интересите на потребителя, но трябва да се вземат предвид интересите на производителя. Производителят заинтересован всички партиди, отговарящи на изискванията по качеството да бъдат приети, а потребителят - всички партиди, не отговарящи на качествените изисквания, да бъдат отхвърлени (да не бъдат приети).

Практически това е невъзможно и се налага предвиждането на съответни рискове както за производителя, така и за потребителя.

качеството







#### Оперативна характеристика





Идеална оперативна характеристика

AQL – приемателно равнище на дефектност LQ – отхвърлящо равнище на дефектност

 $\alpha$ - риск на производителя

β - риск на потребителя





- Статистическият извадков план за контрол представлява правило, с което въз основа на статистическо изследване се прави извод за качеството и се взема решение за приемане или отхвърляне на партидата.
- Планът трябва да предпазва производителя от отхвърляне на качествена партида и да предпазва потребителя от приемане на некачествена партида т.е. рисковете на производителя и на потребителя трябва да бъдат малки.
- Извадковите планове за контрол могат да бъдат:
- едностепенен
- двустепенен
- многостепенен
- последователен

Те се основават на две регламентирани числа - *приемателно* число A и *отхвърлящо число* R, които се сравняват с броя дефектни изделия **z**, открити в извадките с обем **n**.







Едностепенен план







#### Двустепенен план







$$g = \frac{\lg \frac{1 - p_{\alpha}}{1 - p_{\beta}}}{\lg \frac{p_{\beta}(1 - p_{\alpha})}{p_{\alpha}(1 - p_{\beta})}}$$

$$h_A = \frac{\lg \frac{1-\alpha}{\beta}}{\lg \frac{p_{\beta}(1-p_{\alpha})}{p_{\alpha}(1-p_{\beta})}}$$

$$h_R = \frac{\lg \frac{1-\beta}{\alpha}}{\lg \frac{p_{\beta}(1-p_{\alpha})}{p_{\alpha}(1-p_{\beta})}}$$

#### Последователен извадков план



Ред за определяне на приемателно и отхвърлящо число А и R









Едностеп ен ен план - нормален контрол

|              | Обем      | приематепно равнище на дефектност AQL |   |       |   |   |    |     |    |     |   |   |   |     |   |
|--------------|-----------|---------------------------------------|---|-------|---|---|----|-----|----|-----|---|---|---|-----|---|
| Ключова      | на        | 0,04                                  |   | 0,065 |   | 1 |    | 1,5 |    | 2,5 |   | 4 |   | 6,5 |   |
| <b>Буква</b> | извадката | A                                     | R | A     | R | Α | F. | Α   | R  | Α   | R | A | R | A   | R |
| G            | (32)      | 0                                     | 1 | 0     | 1 | 1 | 2  | (1  | 2) | 2   | 3 | 3 | 4 | 5   | б |
| H            | 50        | 0                                     | 1 | 1     | 2 | 1 | 2  | 2   | 3  | 3   | 4 | 5 | 6 | 6   | 7 |
| J            | 80        | 1                                     | 2 | 1     | 2 | 2 | 3  | 3   | 4  | 5   | 6 | 6 | 7 | 7   | 8 |

Определяне на приемателно и отхвърлящо число A и R от стандарти БДС 4315-81, ISO 2859, ISO 8422











### Вид на контрола











Контролът по количествен признак се основава на ститстическите характеристики на извадката – мат.очакване М или средната стойност и ср.кв.отклонение (σ, s) или размаха R





Извадковите планове за приемателен статистически контрол по количествен признак са регламентирани в БДС 11052-82, ISO 3951, ISO 8423.

Последователността на действията при провеждане на приемателен статистически контрол по количествен признак е следната :

- проверява се признака за нормално разпределение;
- задава (договорира) се приемателно равнище на дефектност AQL;
- избира се равнище (ниво) на контрола (І, ІІ, ІІІ, s<sub>3</sub>, s<sub>4</sub>);
- от таблица в зависимост от обема на партидата и избраното равнище на контрол се определя ключова буква (табл. на приложението);
- избира се метод (о, в или R-метод)
- чрез ключова буква от таблици за съответния метод ( $\sigma$ ,s,R) се определя обема на извадката и максималното допустимо равнище на дефектност  $M_s$ ,  $M_R$ ,  $M_\sigma$ ;
- прави се извадка и се проверява;



TÜV Academie

Rheinland

- пресмятат се X и s (или R);
- пресмятат се качествените индекси Q<sub>г</sub> и Q<sub>д</sub>:

$$Q_z = \frac{T_z - \overline{X}}{\sigma}$$
,  $Q_{\partial} = \frac{\overline{X} - T_{\partial}}{\sigma}$  - при  $\sigma$ -метод.  $Q_z = \frac{T_z - \overline{X}}{s}$ ,  $Q_{\partial} = \frac{\overline{X} - T_{\partial}}{s}$  - при  $s$ -метод.  $Q_{\partial} = \frac{\overline{X} - T_{\partial}}{s}$  - при  $s$ -метод.  $Q_{\partial} = \frac{\overline{X} - T_{\partial}}{R}$  - при  $s$ -метод.

- определят се по таблици оценките p<sub>г</sub> и p<sub>д</sub> на максималното възможно равнище на дефектност на партидата в зависимост от стойността на получените качествени индекси и обема на извадката;
- партидата се приема ако е изпълнено условието p<sub>r</sub>+p<sub>д</sub> ≤ M<sub>s</sub>. Ако това условие не е изпълнено или поне един от двата качествени индекса Q<sub>r</sub> и Q<sub>д</sub> е отрицателен, партидата се отхвърля (не се приема).





### Графичен метод





**TÜV Academie** 

Rheinland

#### Извадково изследване

- Извадковото изследване се използва за събиране на информация или за оценка на една или повече характеристики на съвкупности чрез наблюдение на извадки от тези съвкупности
- Информацията за извадково изследване може да се набира и чрез анкети по определен въпрос – например за изследване на пазара, за оценка на потенциалните потребители на определен продукт или услуга, провеждане на одит за оценка на съответствието на документацията с установени процедури и др.







#### ■ SPC контрол

Статистически процесен контрол (SPC - Statistical Process Control)

- Прилага по време на протичане на технологичния процес с цел :
- проследяване
- анализиране
- регулиране
- Използването на SPC позволява :
- своевременно да се сигнализира при необходимост от коригиране на параметрите на процеса
- намаляване на брака
- подържане на качеството на зададено равнище, както и за неговото повишаване чрез усъвършенстване на технологичния процес



#### SPC контрол

▶ При SPC контрола през определени интервали от време се правят извадки, които се подлагат на контрол, данните се обработват и анализират. При необходимост се предприемат коригиращи действия.



#### ■ SPC контрол

Основно средство за непрекъсната оценка на състоянието на процеса с цел неговото регулиране са контролните карти. Те представляват графичен метод, чрез който се следи ходът на технологичния процес и позволяват своевременно да се откриват отклоненията от нормалните характеристики на процеса и тенденциите към такива състояния









#### ■ SPC контрол по количествен признак

Получаването на стойности на използваната числена характеристика извън контролните граници Кг и Кд е сигнал за смущения в процеса, което налага разкриване и отстраняване на причините за тези смущения. След това се правят нови извадки, контролните граници се преизчисляват и цикълът се повтаря







#### ■ SPC контрол по количествен признак

#### Контролни карти за количествени признаци

Картите за статистическо регулиране на качеството по количествен признак се използват когато контролираните параметри са измерими величини с нормално разпределение и технологичните процеси са стабилни. Те представляват комбинация от две контролни карти, като комбинирането се извършва така, че едната от картите да характеризира положението (настройката), а другата разсейването на процеса. В зависимост от използваните числени характеристики на разпределението тези карти могат да бъдат (БДС 11319-90 Статистическо регулиране на качеството. Контролни карти):

- X/s карта (карта за средноаритметичната стойност и средноквадратичното отклонение;
  - X/R карта (карта за средноаритметичната стойност и размаха);
  - X /R карта (карта за медианата и размаха);
  - карта на практическите граници;
- х./іх. х., і карта (карта за индивидуалните стойности и абсолютните стойности на последователните разлики).

Контролните карти се явяват основен инструмент за управление на процесите. Те нагледно отразяват развитието на процеса и показват дали той се намира под статистически контрол, т.е. е овладян, или е извън контрол.





### ■ SPC контрол по качествен (алтернативен) признак

#### Контролни карти за качествени признаци

Когато стойността на контролирания параметър не може да бъде измерена, а само качествено оценена чрез алтернативите "годен" или "брак" (наличие или отсъствие на дефекти) за статистически контрол и управление на процесите се използват контролни карти за качествен (алтернативен) признак. Целта на прилагането на такъв контрол не е за установяване на наличието на "брак" и неговото количество, а за своевременно сигнализиране за влошаване на качеството. Резултатите от контрола непрекъснато се анализират и се използват за осъществяване на обратна връзка - предприемане на съответни коригиращи въздействия върху процеса при възникнала необходимост от това.

Контролните карти за качествени признаци биват четири вида (БДС11319-90):

- контролна карта за относителния брой на дефектните изделия (р -карта);
- контролна карта за броя на дефектните изделия (пр карта);
- контролна карта за броя на дефектите (с- карта);
- контролна карта за относителния брой на дефектите (и карта).





### ■ SPC контрол по качествен (алтернативен) признак



Модул 2: Пълномощник за система за управление на

качеството





### Анализ на измерванията

- Анализът на измерванията се използва за проверка с определено ниво на доверие на пригодността на измервателни системи да удовлетворят изискванията. Той включва количествено определяне на изменчивостта, породена от различни източници – такива като оператор, средство за измерване, условия и др.
- Анализът на измерванията осигурява ефективен начин за избор на измервателни средства или за вземане на решения за възможността за използване на дадено измервателно средства за оценка на контролирания параметър



качеството

### Анализ на измерванията

#### Примери за използване:

- > Изразяване на неопределеността от измерване
- > Избор на нови измервателни средства
- Определяне на характеристиките на методите и средствата за измерване и контрол







#### Анализ на временни редове

- Анализът на временни редове представлява набор от методи за изучаване на последователни във времето групи наблюдения
- Тези методи включват:
- графично изобразяване на временния ред
- разкриване на тенденции
- разкриване на цикличност и откриване на факторите, които могат да повторят своето влияние в бъдеще
- използване на статистически инструменти за прогнозиране на бъдещи наблюдения





### Анализ на временни редове

- Анализът на времени редове се използва за изучаване на поведението на процеса във времето, например:
- изменение на изискванията на потребителите
- изменения на несъответствията във времето
- изменения в производителността
- Прилагането на анализ на временни редове позволява да се правят прогнози за: възможните откази, необходимото количество резервни части, потребителските поръчки, необходимите материали и т.н.



#### Анализ на временни редове





