

Artificial Neural Network

SGA07_DATASCI

10th March 2020

Module Overview

- Recap on Data Mining Techniques
- Review of Biological Neural Networks
- Artificial Neural Network Topologies

Book Keeping

- Group task: Reviews by 27th March 2020
- Early Live Sessions: 12 2pm

Outcome

After this Module, you will;

- Take a look back at the data mining techniques covered so far...
- Explore biological neural network connectionist computing approach
- Gain intuition on the architecture and topology of artificial neural networks

DM Techniques

- Statistical
 - Regression (Linear, Multivariate & Logistic)
- Rule-based
 - Concept Learning
 - Decision Tree
- Probabilistic
 - Naive Bayes

Artificial Neural Networks (Def.)

An artificial neural network is defined as a data processing system consisting of a large number of simple highly interconnected processing elements (artificial neurones) in an architecture inspired by the structure of the cerebral cortex of the brain.

(Tsoukalas and Uhring, 1997)

Biological Neural Network

- Brain consists of a densely interconnected set of nerve cells, or basic information-processing units, neurones.
- Human brain incorporates 10 billion neurones and 60 trillion interconnections.
- By using multiple neurones simultaneously, brain can perform its functions much faster than fastest computers.
- Information stored and processed simultaneously throughout whole network, rather than at specific locations
- Learning fundamental characteristic of biological neural networks Connectionist
 Computing

Neural Network Architecture

- Generally, an ANN structure can be represented using a directed graph. A graph G is an ordered 2-tuple
 (V, E) consisting of a set V of vertices and a set E of edge.
- When each edge is assigned an orientation, the graph is directed and is called a directed graph or digraph.
- There are several classes of NN. Classified according to their learning mechanisms. However we identify 3 fundamentally different classes of Networks.
 - Single layer feedforward network
 - Multilayer feedforward network
 - Recurrent network
- All the three classes employ the digraph structure for their representation.

ANN with Hidden Layer

Types of Activation Function

Single Layer ANN

Single Layer Feedforward Network

- This type of network comprises of two layers, namely the input layer and the output layer.
- The input layer neurones receive the input signals and the output layer neurones receive the output signals.
- The synaptic links carrying the weights connect every input neurone to the output neurone but not vise –
 versa.
- Such a network is said to be feedforward in type or acyclic in nature.
- Despite the two layers, the network is termed single layer since it is the output layer, alone which performs computation.
- The input layer merely transmits the signals to the output layer.
- Hence the name single layer feedforward network.

Neuron Training Rule

- Initialise weights to random values.
- Making small adjustments in weights to reduce difference between actual and desired outputs.
- Incrementally update weights to obtain output consistent with training examples.
- For training instance d and target output td, error given by:

$$E_d = t_d - o_d$$

$$d = x_{1d} + x_{2d} + \dots + x_{nd}$$

Neuron Training Rule

- If E_d +ve, need to increase neuron output o_d
- If E_d -ve, need to decrease o_d.

$$w_i \leftarrow w_i + \Delta w_i$$

$$\triangle w_i = \eta(t_d - o_d)x_i$$

- Learning rate, η, +ve constant less than 1.
- Minimise E_d until Convergence

Convergence Theorem

• If there exists set of connection weights w able to perform function i.e. target function linearly separable:

$$o = f(\sum_{i=1}^{2} w_i x_i - \theta)$$

- Then training rule guaranteed to converge to solution in finite number of steps for any initial choice of weights.
- If target function is not linearly separable, then use least Mean Square error and gradient descent to find weight

Gradient Descent Algorithm

- Initialise each w_i to some random value
 - Initialise each Δw_i to 0
 - For each instance \overrightarrow{X} and t in training set D
 - For each wi $\Delta w_i <- \Delta w_i + \eta(t - o)x_i$
 - For each w_i $w_i < -w_i + \Delta w_i$
 - Repeat until convergence

Multilayer Feedforward Network

- This network, as its name indicates is made up of multiple layers.
- Architecture of this class besides possessing an input and output layer also have one or more intermediary layers called hidden layers.
- The computational units of the hidden layer are known as hidden neurons or hidden units.
- The hidden layer aids in performing useful intermediary computation before directing the input to the output layer.
- The input layer neurons are linked to the hidden layer neurons and the weights on these links are referred to as input hidden layer weights.
- Again, the hidden layer neurons are linked to the output layer neurons and the corresponding weights are referred to as hidden-output layer weights.

Back-propagation

- Training procedure which allows multi-layer ANNs to be trained.
- · Can theoretically perform any input-output function.
- With appropriate choice of units, multi-layer ANNs can learn to solve linearly inseparable problems.

Strength of ANN

- High tolerance to noisy data
- Well-suited for continuous-valued inputs and outputs
- Successful on real-world data e.g. hand- written text recognition
- Inherently parallel using network after training fast

Recap/Summary

At the end of this Module, you should understand;

- Take a look back at the data mining techniques covered so far...
- Explore biological neural network connectionist computing approach
- Gain intuition on the architecture and topology of artificial neural networks

Suggested Material

- Machine Learning by Tom Mitchell Chapter 4
- http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
- https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
- https://www.youtube.com/watch?v=GqfzCTpCODE