(3 Punkte) Konstruiere einen DEA über $\Sigma = \{a\}$, der die Sprache der Wörter mit einer geraden Anzahl von a's akzeptiert.			
3 Punkte) Konstruiere einen DEA über $\Sigma = \{a, b\}$, der die Sprache der Wörter mit einer geraden Anzahl von a's und einer ungeraden Anzahl b's akzeptiert.			
3 Punkte) Konstruiere einen DEA über $\Sigma = \{a,b\}$, der die Sprache $L = \{ab^na^m : n \geq 2, m \geq 3\}$ akzeptiert.			
•			

4. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{0,1\}$ mit der folgenden Eigenschaft: Das Wort w enthält mindestens zwei Nullen, zwischen denen der Teilstring 11 vorkommt. Konstruiere einen endlichen Automaten (es darf also ein NEA sein), der genau L akzeptiert.

(3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{a, b\}$ mit der folgenden Eigenschaft: Das Wort w enthält aa oder bb . Konstruiere einen endlichen Automaten, der genau L erkennt.

6. (3 Punkte) Konstruiere zu folgendem NEA über dem Alphabet $\Sigma = \{a, b, c\}$ eine DEA, der dieselbe Sprache akzeptiert. Bestimme dazu nach dem Verfahren aus dem Unterricht die neue Zustandsübergangstabelle und zeichne das entsprechende Diagramm.

7. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{a, b\}$ mit der folgenden Eigenschaft: Das Wort w enthält aa oder bb. Gib einen regulären Ausdruck für die Sprache L an.

8. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{a, b\}$ mit der folgenden Eigenschaft: Das Wort w enthält höchstens einmal aa und nie bb. Gib einen regulären Ausdruck für die Sprache L an.

9. (3 Punkte) Gegeben sei der folgende endliche Automat A. Gib einen regulären Ausdruck an, der die Sprache L(A) erzeugt und dabei höchstens zweimal das Vereinigungssymbol \cup enthält.

10. (3 Punkte) Zeige mit dem Pumping-Lemma: Die Sprache $L = \{ww|w \in \{0,1\}^*\}$ ist nicht regulär.

11. (3 Punkte) Zeige mit dem Pumping-Lemma: Die Sprache $L = \{w \in \{0,1\}^* | \text{ w enthält Teilwort 000 genauso häufig wie Teilwort 111} \}$ ist nicht regulär.

Informatik	Aufgaben zu endlichen Automaten	4/4	