(Representation Theory) Notes on Groups & Linear Algebra

George McNinch

2024-01-17

In the first lecture, we discussed some examples of groups and some basics of linear algebra.

Groups

- the elements of the cylic group $\mathbb{Z}/n\mathbb{Z}$ are the equivalence classes of integers under the relation " $\equiv\pmod{n}$ " this group is additive
- we observed that the mapping $\phi: \mathbb{R} \to \mathbf{S}^1$ given by $\phi(t) = e^{2\pi i t}$ is a group homomorphism since $\phi(t+s) = \phi(t)\phi(s)$ for all $t,s \in \mathbb{R}$.

we observed that ker $\phi = \mathbb{Z}$, and that - by the **First Isomorphism Theorem** - ϕ induces an isomorphism

$$\overline{\phi}: \mathbb{R}/\mathbb{Z} \to \mathbf{S}^1.$$

• for a non-zero natural number the symmetric group S_n is the collection of all bijections $I_n \to I_n$ where $I_n = \{1, 2, \cdots, n\}$. We may sometimes use *cycle notation* for elements of S_n .

The subgroup

$$H = \langle (1234), (14)(23) \rangle$$

has order 8 and is sometimes called the dihedral group D_4 or D_8 – it has order 8.

• Let F be a field.

Recall that typically examples are: $F = \mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$ for a prime number p.

The set

$$GL_n(F) = \{ \text{all invertible } n \times n \text{ matrices with entries in } F \}$$

forms a group under matrix multiplication.

The determinant function yields a group homomorphism

$$\det: \operatorname{GL}_n(F) \to F^{\times}$$

(here F^{\times} means F^{\times} {0}, which is a commutative group under multiplication in the field F).

Linear Algebra

Let F be a field. An F-vector space V is an additive abelian group together with an operation of $scalar \ multiplication$ — this amounts to a function

$$F \times V \to V$$

- satisfying certain axioms.

If V, W are F-vector spaces, a linear mapping $T: V \to W$ is a function which satisfies

$$T(\alpha v + w) = \alpha T(v) + T(w).$$

Let's suppose that V is *finite dimensional* and that $\phi: V \to V$.

We write $\phi^2 = \phi \circ \phi$ and more generally $\phi^n = \phi \circ \phi^{n-1}$.

trace, det, char poly

The *trace* of a matrix $M = [M_{ij}]$ is the sum of the diagonal entries:

$$\operatorname{tr}(M) = \sum_{i=1}^n M_{ii}.$$

I'm assuming you recall the definition of the *determinant* $\det M$.

The characteristic polynomial $\operatorname{cp}_M(X) \in F[X]$ of M is defined to be

$$\operatorname{cp}_M(X) = \det(M - X \cdot \mathbf{I}_n).$$

For a linear transformation ϕ we define

- $\operatorname{tr}(\phi) = \operatorname{tr}([\phi]_{\mathcal{B}})$
- $\det(\phi) = \det([\phi]_{\mathcal{B}})$
- $\operatorname{cp}_{\phi}(X) = \operatorname{cp}_{[\phi]_{\sigma}}(X)$

Proposition $\operatorname{tr}(\phi)$, $\operatorname{det}(\phi)$, and $\operatorname{p}_{\phi}(X)$ are independent of the choice $\mathcal B$ of basis for V.

The main point here is that if \mathcal{B} and \mathcal{B}' are two basis for V, there is an invertible matrix ("change of basis matrix") P for which

$$[\phi]_{\mathcal{B}} = P[\phi]_{\mathcal{B}'} P^{-1}.$$

Evaluation of polynomials at linear transformations

Suppose that $f = f(X) \in F[X]$ is a polynomial; thus

$$f = \sum_{i=0}^{N} a_i X^i$$

for some coefficients $a_i \in F$.

We may *evaluate* the polynomial f at the linear endmorphism ϕ :

$$f(\phi) = \sum_{i=0}^{N} a_i \phi^i.$$

Proposition Let $\phi:V\to V$ be a linear transformation, and let

$$I = \{ f \in F[X] \mid f(\phi) = 0 \}.$$

Then I is an *ideal* in the polynomial ring F[X]. In particular, there is a unique monic polynomial $m_{\phi}(X) \in F[x]$ for which $I = m_{\phi}(X)F[X]$.

In particular, if $f \in F[X]$ and $f(\phi) = 0$, then $m_{\phi}|f$.

Theorem (Cayley-Hamilton) Let $\phi:V\to V$ be a linear transformation, and let $\operatorname{cp}(X)=\operatorname{cp}_\phi(X)\in F[X]$ be the characteristic polynomial.

Then $cp(\phi) = 0$.

Recall that the *eigenvalues* of ϕ are precisely the roots of the characteristic polynomial. The Cayley-Hamilton Theorem implies that any root of the minimal polynomial is an eigenvalue. In fact, we have the converse as well:

Proposition: If $\lambda \in F$ is an eigenvalue of ϕ – i.e. a root of the characteristic polynomial – then λ is a root of the minimal polynomial.

Theorem: ϕ is diagonalizable – i.e. V has a basis of eigenvectors for ϕ – if and only the minimal polynomial has no multiple roots.

Remark: This theorem should be proved in Math215-216 here at Tufts using the *Fundamental Theorem for modules over a PID*. We don't need the full force of this result in our class.

Example

```
Suppose that \phi:V\to V satisfies \phi^N=\operatorname{id}_V for some positive natural number N. We suppose that F is algebraically closed and of characteristic zero. Notice that the polynomial f(X)=X^N-1\in F[X] has distinct roots. (If F=\mathbb{C}, these roots are exactly \{\exp(2\pi ki/n)\mid 0\le k< N\}.
```

Since the minimal polynomial of ϕ divides f, we see that the minimal polynomial has distinct roots and hence ϕ is diagonalizable by the **Theorem** quoted above.

Bibliography