Microgrid Controller Hardware-in-the-Loop Demonstration Platform

October 1, 2015

Erik Limpaecher

This work is sponsored by the Department of Homeland Security, Science and Technology, Resilient Systems Division and the Department of Energy, Office of Electricity Delivery and Energy Reliability under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

<u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

How Do We Accelerate Microgrid Deployment? Reduce Integration Time, Cost, & Risk

- High NRE for each project
 - One vendor's microgrid controller quote: \$1M starting price
- "Vaporware"
 - No standard list of functions or performance criteria
 - Difficult to validate marketing claims
- Risk of damage to expensive equipment
 - One utility-deployed microgrid: 1 year of controls testing, damaged a 750 kW transformer, required significant engineering staff support
- Interconnection behavior unknowable to utility engineers
 - Controls are implemented in proprietary software
 - Microgrids are a system of systems: Exhibit emergent behavior
- No standards verification
 - IEEE P2030.7 and P2030.8 standards are on the horizon

Microgrid Controller Hardware-in-the-Loop (HIL) Testbed

Types of Controller Testbeds

Legend

G generator

nv battery or solar inverter

C device controller μC microgrid controller

DMS distribution management system controller

high-bandwidth AC-AC converter simulation or emulation boundary

hardware

Image: Florida State Univ. CAPS

Power Simulation: Flight Simulator Analogy

Actual device and microgrid controller with real-time simulation

(Microgrid controller HIL)

Real-time simulation coupled with power electronics testbed

(Florida State CAPS facility)

(DECC Microgrid Lab)

(Princeton U. cogen plant)

Simulation

Controller HIL

Power HIL

Power Testbed

Full System

distribution management system controller

power grid

Legend

high-bandwidth AC-AC converter simulation or emulation boundary

hardware

Slow PC simulation, small screen, keyboard/mouse inputs

Actual plane cockpit, advanced simulation, wide field-of-view

Moving cockpit, field-of-view visualization

Trainer aircraft

Passenger-carrying aircraft

Microgrid Controller Hardware-in-the-Loop (HIL) Testbed

Types of Controller Testbeds

Legend

G generator

Inv battery or solar inverter

C device controller

μC microgrid controller

DMS distribution management system controller

 $\overline{}$ power grid

high-bandwidth AC-AC converter

simulation or emulation boundary

hardware

Microgrid Controller Hardware-in-the-Loop (HIL) Testbed

Types of Controller Testbeds

Legend

G generator

Inv battery or solar inverter

C device controller

μC microgrid controller

DMS distribution management system controller

∪ power grid

high-bandwidth AC-AC converter

simulation or emulation boundary

hardware

High-fidelity Real-time Simulation

- Microgrid controller HIL simulates in real-time at sub-cycle timescales
 - Useful for steady-state, dynamic, and transient analyses

Construction of Detailed Microgrid Test Feeder Model

- **Automated** with
- **Netlist**
- MATLAB data connectivity diagram
- Simulink model

Load the feeder model into the HIL simulator "target"

Create detailed models of the DER devices

Add load profiles and assign load priorities

Replace simulated device controllers with vendors' commercial device controllers

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Integrate microgrid controller

Microgrid Controller HIL Platform

Vision for the Microgrid Controller HIL Platform

- Cost-effective evaluation of commercial microgrid controllers
- Side-by-side comparison of commercial products
- Demonstrations at Massachusetts Microgrid Controls Symposium
- Commission a microgrid before putting any steel in the ground
- Exercise the actual device controllers; test edge conditions
- Technical risk reduction and confidence building for the utility
- Commission Boston microgrid project

- Develop standard test feeders and test profiles
- Test against IEEE P2030.8 standard and utility requirements

Open Source HIL Project

Outline

- Introduction to Controller Hardware-in-the-Loop
- \rightarrow
- Orientation to Today's Demonstration
- Way Ahead

Example Load (B011)

Peak kW: 879

Min kW: 319

Peak kVAR: 832

Min kVAR: 382

Nominal Voltage:

460 V

1 work week compressed into 2 hours

Microgrid Controller Hardware-in-the-Loop Platform

Two integrated Woodward easYgen 3000 genset controllers

Power Supply

HIL Platform Block Diagram

Device Address List

Device	IP Address	Notes
1 MVA Genset Controller	192.168.10.35	-
4 MVA Genset Controller	192.168.10.36	-
Storage Controller	192.168.10.40	-
PV Controller	-	No interface
Relay 1	10.10.45.101	Point of Common Coupling
Relay 2	10.10.45.102	Serves & senses sub-panel B021
Relay 3	10.10.45.103	Serves & senses sub-panel B012
Relay 4	10.10.45.104	Serves & senses load B001 + genset1
Relay 5	10.10.45.105	Serves & senses B022
Relay 6	10.10.45.106	Serves & senses loads B009-B011
Relay 7	10.10.45.107	Serves & senses genset 1
Relay 8	10.10.45.108	Serves & senses genset 2
Relay 9	10.10.45.109	Serves & senses load B009
Relay 10	10.10.45.110	Serves & senses load B010
Relay 11	10.10.45.111	Serves & senses load B004
Relay 12	10.10.45.112	-
Relay 13	10.10.45.113	Serves & senses battery
Relay 14	10.10.45.114	Serves & senses load B015 + battery
Relay 15	10.10.45.115	Serves & senses load B013
Relay 16	10.10.45.116	Serves & senses load B014
Relay 17	10.10.45.117	Serves & sense PV
Motor Relays		

Simulated Battery and PV Systems

- Four quadrant power source with sub-cycle transient accuracy, modeled in real time
 - Boost rectifier average model
 - Three phase PLL
 - D and Q axis current
 PIDs respond to power commands
- PV MPP tracker
- Inverter physical limits monitored by fault controller

	Battery Rating	PV Rating
AC Power Rating (kVA)	4,000	3,500
Storage (kWh)	500	n/a
Cycle Life	∞	n/a
Voltage (V)	2,400	2,400
Frequency (Hz)	60	60
Ramp Rate	8 MW/s	2.5 MW/min

Battery and PV system ratings and characteristics

Parameter	Units	Notes	
Real Power Command	kW	(-) discharge; (+) charge	
Reactive Power Command	kVAR	(+) capacitive; (-) inductive	
Modbus Enable	0/1	1 to indicate active Modbus connection.	
Fault Status		Phase A Over Current	
		Phase B Over Current	
		Phase C Over Current	
		DC Link Overvoltage	
		PLL Loss of Sync	
		Vrms out of spec	
		Battery Empty	
		Battery Full	
Battery SoC	%	Battery start at 50%	
Enable	0/1	Cycle to clear any faults.	

Register list for battery system device controller

Simulated Genset Block

	1 MW Genset	4 MW Genset
Manufacturer / Model	CAT C32	CAT C175-20
Rating (kVA)	1,000	4,000
Power Factor	TBD	TBD
Voltage (V)	480	13,800
Frequency (Hz)	60	60
Speed (RPM)	1800	1800
Minimum Output Power	25kW	100kW
Startup Time	<10 sec	<15 sec

Genset ratings and characteristics

Synchronous Machine, Governor, and AVR Models

Device Controller Integration: Woodward easYgen 3000

Simulated Relay: SEL-787 Transformer Protection Relay

Relay Protection Functions

Image: Schweitzer Engineering

Protection Function		
ANSI 50 Inst. overcurrent		
ANSI 51 Avg. overcurrent		
ANSI 27	Undervoltage	
ANSI 59 Overvoltage		
ANSI 25 Synchronism-check		
1547 Tables 1&2	Abnormal V & f	
Gen. Synch Generator synch		
ANSI 52 AC Circuit Breaker		

Demonstration against ORNL/EPRI Microgrid Functional Use Cases

Functional Use Case	Description	Demonstration
F-1 Frequency Control	Selection of grid-forming, -feeding,	The microgrid controller selects from
	and -supporting energy sources to	among the two gensets and battery
	maintain stability; sub-second	DERs.
	control to maintain stable	
	frequency while islanded	
F-2 Voltage Control	Regulate voltage at the microgrid	No demo
	point of common coupling	
F-3 Intentional Islanding	Planned disconnect from area	Islanding will be initiated by the
	electric power system (AEPS)	microgrid controller
F-4 Unintentional Islanding	Fast disconnect from AEPS upon	No demo due to battery and PV
	large disturbance to provide	inverter controller PLL instability
	continuous supply to loads	
F-5 Transition from Islanded to	Resynchronize and reconnect to	Initiated by microgrid controller once
Grid-tied	AEPS	generators and grid synchronize

Demonstration against ORNL/EPRI Microgrid Functional Use Cases (cont.)

Functional Use Case	Description	Demonstration
F-6(a) Energy Management: grid-	Coordinate generation, load, &	The microgrid controllers target a
tied	storage dispatch, to participate in	power export value for a defined
	utility operation and energy market	period, and should also shave peak
	activities	demand.
F-6(b) Energy Management:	Coordinate generation, load, &	Fuel consumption and service of
islanded	storage dispatch, to optimize	critical and priority loads are
	islanded operation (fuel	measured during islanded operation.
	consumption, islanding duration)	
F-7 Microgrid Protection	Configure protection devices for	DER and relay protection are
	different operating conditions	implemented, but are not
		configurable.
F-8 Ancillary Services:	Provide frequency regulation,	Demand response to hit a target
regulation	generation reserves, reactive	power export value;
	power support, and demand	Reactive power support to maintain
	response to AEPS	unity power factor at PCC
F-9 Microgrid Blackstart	Restore islanded operation after a	Likely limited by present genset
	complete shutdown	control capabilities
F-10 User Interface, Data	Organize, archive, and visualize	Data collection and visualization
Collection	real-time and non-real-time data	performed by MIT-LL, not μC

15-minute Demonstration Sequence

Heads-up Display (screen 1)

Heads-up Display (screen 2)

Anonymized Results of Demonstration Runs

Energy Consumption

	Grid-tied			Islanded
	Fuel Used (gal.)	Energy Imported (kWh)	Energy Experted k /h,	Fuel Used (gal.)
Sequence 1	5.9	311	13	4.9
Sequence 2		23/7		
Sequence 3	102		<u>c</u> S	

Load-not-Ser ex (kWh) while Isla (d) a Voltage Profile (sec exceeding ±5%)

	Critical	Priori	Inter.
Sequence 1	79	466	143
Sequence 2			
Sequence 3			

	Grid-tied	Islanded
Sequence 1	0	3.6
Sequence 2		
Sequence 3		

Outline

- Introduction to Controller Hardware-in-the-Loop
- Orientation to Today's Demonstration

Way Ahead

USMC ExFOB Example

ExFOB 2013 - Twentynine Palms

Elements of the Open Source HIL Repository

Controller-inthe-Loop Repository

HIL Platform Repository

Validated Device Models

Vision for Microgrid HIL Open-source Repository

Goals:

- Accelerate and reduce risk of microgrid deployment
 - Enable software development and integration work to be 95% done at the start of commissioning, not 50%
- Enable rapid proof-of-concepts to reduce utility engineers' perceived risk
- Agnostic to real-time simulation platform
 - NI, OPAL-RT, RTDS, Typhoon, or any other target
- Validated DER device models provided by vendors
- Standard test benches
 - Reference microgrid feeders
 - Test scripts / test stimuli
 - Post-processing software for compliance verification

Interested in participating? Contact MIT-LL.

Vision for Eventual HIL Capabilities

Acknowledgements

Sponsors

Sarah Mahmood, DHS S&T Jalal Mapar, DHS S&T Dan Ton, DOE OE Ernest Wong, DHS S&T

MIT Lincoln Laboratory

Division 7 - Engineering

Division 4 – Homeland Protection

Division 5 – Cyber Security

Division 6 – Communications

Security Services Department

Collaborators

Vijay Bhavaraju, Eaton
Mark Buckner, ORNL
Fran Cummings, Peregrine Group
Babak Enayati, National Grid
Mark Evlyn, Schneider
Galen Nelson, MassCEC
Luis Ortiz, Anbaric
Jim Reilly, Reilly Associates
Travis Sheehan, BRA
Michael Starke, ORNL
Tom Steber, Schneider
Brad Swing, City of Boston

Contact Information

Erik Limpaecher
Assistant Group Leader
Energy Systems, Group 73

October 1 Massachusetts Microgrid Controls Symposium

