

Yelp-Sentiment-Analysis

By Abdulrahman & Turki

Outline:

Project Scope

Data

EDA

NLP

Topic Modeling Clustering

Sentiment Review Classification

Recommendation System

Project Scope & Tools:

• Our goal is to build unsupervised Natural Language Processing (NLP) machine learning models to predict whether a business review text is positive or negative. Also, assigns topics(clustering) based on the raw text data to find out the business domains and implementing a recommendation system

NLTK

Yelp is one of the most famous business review app in the Western Hemisphere countries, with more than 52 million visitors to its mobile sites as of December 2020

Two Datasets imported from Yelp website(review & business)

Containing 500k rows and 14 columns

Data

EDA

Removing duplicates

Removing null values

Removing columns

Striping values

Changing stars column to positive and negative

EDA

Word Cloud

NLP Pre-Processing

Removing punctuation, digits, different languages, stop-words, special characters and spelling errors.

Converting to lower case.

Lemmatization.

Vectorization.

Topic Modeling

LSA

Topics(2-10)

CV & TF-IDF

NMF

Topics(2-10)

CV & TF-IDF

Corex

Topics(2-10)

CV & TF-IDF

Best model was Count Vectorizer NMF with six topics

Count Vectorizer NMF

- Topic: O(Food menu) sauce, menu, cheese, fresh, dish, sweet, pork, flavor, salad, meat, taste, beef, meal, rice, fish, spicy, lunch, soup, cream, hot
- Topic: 1(bars) bar, staff, night, drinks, table, drink, beer, area, coffee, hour, friends, happy, work, location, free, line, bartender, server, parking, friend
- Topic: 2(Automotive) car, customer, work, manager, rental, honda, phone, cars, company, dealership, hours, vehicle, business, days, drive, oil, sales, guy, change, appointment
- Topic: 3(Italian food) pizza, cheese, crust, sauce, topping, slice, sausage, salad, pepperoni, garlic, pie, slices, fresh, italian, delivery, bread, oven, half, dough, pasta
- Topic: 4(restaurant) restaurant, table, menu, meal, server, dinner, waitress, restaurants, waiter, seated, dining, dishes, wine, manager, tables, dish, reservation, dessert, party, family
- Topic: 5(food) chicken, fried, rice, sandwich, salad, spicy, sauce, crisp, lunch, fries, hot, wings, sides, curry, thai, soup, juicy, beans, cheese, dry

K-means clustering Count Vectorizer

Recommendation System:

- Positive Recommendation System
- Negative Recommendation System

Negative Recommendation System:

- simple metric
- Example:

```
User 't5SRIRU6INiAyVkiMJhRPA'

Don't go to these businesses:
[('Prides Osteria'), ('Bonchon Salem'),
("Santarpio's Pizza")]

business 'Finz Seafood & Grill '
Similar businesses:
[('Scratch Kitchen', 2), ('Howling Wolf Taqueria', 2), ('Engine House Pizza', 2)]
```

Positive Recommendation System:

- SVD
- Example:

User ID# 2 is most similar to User ID# #1335

There are 1 businesses that user ID# 2 did not visit

1 businesses for User ID# 2 to check out:

['Yamato Sushi Restaurant']

- Sample of 11 user.
- User 9,8 and 10 are close

Sentiment Review Classification

Model	Count Vectorizer			TF-IDF		
	Train	Validation	F1-SCORE	Train	Validation	F1-SCORE
Logistic Regression	0.944	0.936		0.940	0.937	
MultinomialNB	0.891	0.891		0.898	0.898	
BernoulliNB	0.870	0.871		0.870	0.871	
Logistic Regression Weighted	0.938	0.927		0.934	0.927	
Ada Boost	0.868	0.869		0.868	0.868	
Random Forest	0.8580	0.8616		0.9035	0.9067	
Extra Tree	0.8916	0.8856		0.9266	0.9179	

Conclusion

Testing selected model on testing data

- Combining train and validation data
- Training the model
- Using testing data to get scores

Model name	Training	Testing	F1 scores	Precision	Recall
Logistic Regression	0.938	0.939	0.544	0.520	0.569

Thank you

Any question?