TUTORIAL SHEET NO. 1

(Diode Equation, Effect of temperature on reverse current, diode resistance)

- Q1. The current flowing in diode is $2x10^{-7}A$ at room temperature when a reverse voltage is applied. Calculate current through diode when a forward bias of 0.1V is applied across diode at room temperature.

 Answer: $1.16\mu A$
- Q2. At room temperature current flowing in a p-n diode is 0.5mA at 340mV and 15mA at 440mV. Calculate value of η for the same.

 Answer: 1.1
- Q3. A germanium diode carries a current of 1mA at room temperature when a forward bias of 0.15V is applied. Calculate reverse current for the same.

 Answer: 3.13μ A
- Q4. Find the increase in temperature necessary to increase reverse current by a factor of 100.

Answer: 66.4°C

- Q5. For what diode terminal voltage the reverse current of a Ge diode reach 99% of it saturation value at 300°K temperature.

 Answer: -0.119V
- Q6. At room temperature current through a germanium diode is 5mA at 0.35V. Predict the diode current if applied voltage is 0.4V.

 Answer: 34.19mA
- Q7. Find increase in forward bias voltage that doubles the forward current through a silicon diode at room temperature.

 Answer: 36.04mV
- Q8. An ideal Ge diode at a temperature of 125° C has a reverse saturation current of 30μ A. Calculate dynamic resistance for a 0.2V bias (i) Forward bias (ii) Reverse bias condition.

Answer: 3.36Ω , $0.389M\Omega$

Q9. Find the static and dynamic resistance of a Ge diode if the temperature is 27° C and reverse saturation current is 1μ A for an applied forward bias of 0.2Volt.

Answer: 91.32Ω , 11.86Ω

Q10. Determine the diode current at 20°C for a silicon diode with *Is* =50 nA and an applied forward bias of 0.6 V.

Answer: 8.13mA

Q11. Determine the current *I* for each of the configurations using the approximate equivalent model for the diode.

Q12. Determine V_o and I_D for the networks

Answer: 0.7V, 0.3V, 18.45mA

Answer: 0.7V, 0.7V, 19.3mA

Q13. Determine the level of V_o

Answer: 9.17V Answer: 10V

Q14. Determine V_o and I_D for the networks.

Answer: 7.512V, 6.26mA Answer: 7.14V, 1.55mA

Answer: -19.3V, 5.77mA

Q15. Determine Vo and I_D for the networks

Answer: 19.3V, 6.95mA

Answer: 11.3V, 2.4mA

Answer: 14.6V, 3.957mA

Answer: 0.7V, 0.7mA