RC 5: 21st June

Presented by: Minjie Mao

Email: jerry-mmj@sjtu.edu.cn

Table of Content

- Electric Dipoles
- Image Method
- Dielectric
- Boundary Conditions for Electrostatic Fields
- Capacitor

Electric Dipoles

$$V(P) = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{\sqrt{\left(z - \frac{d}{2}\right)^2 + x^2 + y^2}} - \frac{q}{\sqrt{\left(z + \frac{d}{2}\right)^2 + x^2 + y^2}} \right]$$

$$V(P) = \frac{q}{4\pi\varepsilon_0} \frac{zd}{r^3}$$
 $r >> d$

$$\vec{p} = q \vec{d}$$
 $\vec{p} = \alpha_e \vec{E}_{loc}$ $[p] = Cm [\alpha_e] = Fm^2$

 α_e = atomic (electronic) polarizability

$$V(\vec{r}) = \frac{\vec{p}.}{4\pi\varepsilon_0} \frac{\vec{e}_r}{r^2} = \frac{1}{4\pi\varepsilon_0} \vec{p}. \vec{\nabla} \left(-\frac{1}{r} \right)$$

Electric Dipoles

$$U = -pE\cos\theta = -\vec{p}.\vec{E}$$

$$\vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} [3(\vec{p}_1 \cdot \vec{e}_r) \vec{e}_r - \vec{p}_1]$$

Dipole \vec{p}_2 in field \vec{E}_1 due to dipole \vec{p}_1

$$U = -\frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \vec{p}_2. [3(\vec{p}_1. \vec{e}_r) \vec{e}_r - \vec{p}_1]$$

Crude model: electronic polarization

Electronic cloud = charged sphere $E(r) = -\frac{1}{4\pi\epsilon_0} \frac{Q}{R^3} r$

Force exerted on the nucleus (charge Q) inside the cloud at distance δ from the center

$$F_{cloud} = QE(\delta) = -\frac{1}{4\pi\varepsilon_0} \frac{Q^2}{R^3} \delta$$

$$\vec{F}_{cloud} + \vec{F}_{ext} = \vec{0}$$

Equilibrium position is reached when
$$\vec{F}_{cloud} + \vec{F}_{ext} = \vec{0}$$
 $-\frac{1}{4\pi\varepsilon_0} \frac{Q^2}{R^3} \delta + Q E_{ext} = 0$

Equilibrium distance

$$\delta = 4\pi\varepsilon_0 R^3 \frac{E_{ext}}{Q}$$

$$\vec{p} = Q\vec{\delta}$$

Induced dipole
$$\vec{p} = Q\vec{\delta}$$
 $p = Q\delta = 4\pi\varepsilon_0 R^3 E_{ext}$

$$\vec{p} = \alpha_e \vec{E}_{loc}$$

$$\vec{p} = \alpha_e \vec{E}_{loc} \qquad \vec{E}_{loc} = \vec{E}_{ext}$$

Electronic polarizability of atoms

$$\alpha_e = \frac{p}{E_{ext}} = 4\pi\varepsilon_0 R^3$$

Image Method

Infinite Conducting Plane

Conducting Sphere

(b) Image charge and field lines.

$$V(M) = V(Q) = 0$$

$$\begin{cases}
d = \frac{a^2}{b} \\
q' = -\frac{a}{b}q
\end{cases}$$

New Concepts

- Polarization
- Bound charges (linear, surface, volume)
- Permittivity of materials $\varepsilon = \varepsilon_0 \varepsilon_r$ ($\varepsilon_r = 1$ in vacuum)
- Electric susceptibility $\chi \Rightarrow \varepsilon = \varepsilon_0 (1 + \chi) (\chi = 0)$
- Vector displacement \overrightarrow{D}

Dielectric

- A dielectric has the ability to get polarized by an external applied field
 The applied external field induces electric dipoles inside the dielectric
- Polarization occurs in both polar and nonpolar materials
- Although any kind of substance is polarizable to some extent, the effect of polarization is important only in dielectric materials
- The dielectric is an insulator BUT an insulator is not necessarily a dielectric

Dielectric

Polarized charge density on the surface

$$\rho_{ps} = \mathbf{P} \cdot \mathbf{a}_n$$

Polarized charge density inside the dielectric

$$\rho_p = -\nabla \cdot \mathbf{P}.$$

Electric displacement

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \qquad (\mathbf{C}/\mathbf{m}^2).$$

$$\nabla \cdot \mathbf{D} = \rho$$
 (C/m³),

$$\mathbf{D} = \epsilon_0 (1 + \chi_e) \mathbf{E}$$

= $\epsilon_0 \epsilon_r \mathbf{E} = \epsilon \mathbf{E}$ (C/m²),

Boundary Conditions for Electrostatic Fields

Tangential components, $E_{1t} = E_{2t}$; Normal components, $\mathbf{a}_{n2} \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_s$.

Capacitor

$$Q = CV$$

• Capacitance:
$$Q = CV$$

$$C = \frac{\varepsilon_r \varepsilon_o A}{d}$$

A layer of porcelain is 80 mm long, 20 mm wide and 0.7 μ m thick. Calculate its capacitance with ε_r = 6

Solution:

Given data:

Permitivity of free space
$$\varepsilon_0 = 8.854 \times 10^{-12} \, \text{F m}^{-1}$$

Thickness $d = 0.7 \, \mu \text{m (or)} \, 0.7 \times 10^{-6} \, \text{m}$

Area = $l \times b \times h$

$$C = \frac{\varepsilon_r \varepsilon_o A}{d}$$

$$= \frac{8.854 \times 10^{-12} \times 6 \times 80 \times 20 \times 10^{-6}}{0.7 \times 10^{-6}}$$

$$C = 1.21 \times 10^{-7} \, \text{F}$$

The dielectric constant of a helium gas at NTP is 1.0000684. Calculate the electron polarizability of helium atoms if the gas contains 2.7×10^{26} atoms/m³ and hence calculate the radius of helium atom ($\varepsilon_0 = 8.854 \times 10 - 12 \, Fm^{-1}$)

Exercise2 Sol

Solution:

Given data:

No. of atoms in the gas $N = 2.7 \times 10^{26}$ atoms/m³

Permittivity of free space $\varepsilon_0 = 8.854 \times 10^{-12} \text{ Fm}^{-1}$

i) We know polarization

$$P = \varepsilon_0 (\varepsilon_r - 1) E$$

and P=
$$N\alpha_e E$$

From the above two equations, we can write

$$N\alpha_e = \epsilon_0 (\epsilon_r - 1)$$

$$\alpha_{\rm e} = \frac{\varepsilon_0 \left(\varepsilon_{\rm r} - 1\right)}{N}$$

$$= \frac{8.854 \times 10^{-12} (1.0000684 - 1)}{2.7 \times 10^{26}}$$

$$\alpha_e^{}=~2.242\times 10^{-42}~Fm^2$$

ii) Electronic polarizability

$$\alpha_e = 4\pi\epsilon_0 R^3$$

$$R = \frac{\alpha_e}{4\pi\epsilon_0}$$

$$= \frac{2.242 \times 10^{-42}}{4 \times 3.14 \times 8.854 \times 10^{-12}}$$

Radius of helium atom

$$R = 0.0201 \times 10^{-30} \text{ m}$$

A dielectric rectangular slab has length s, width w, thickness d, and dielectric constant κ . The slab is inserted on the right hand side of a parallel-plate capacitor consisting of two conducting plates of width w, length L, and thickness d. The left hand side of the capacitor of length L-s is empty. The capacitor is charged up such that the left hand side has surface charge densities $\pm \sigma_L$ on the facing surfaces of the top and bottom plates respectively and the right hand side has surface charge densities $\pm \sigma_R$ on the facing surfaces of the top and bottom plates respectively. The total charge on the entire top and bottom plates is +Q and -Q respectively. The charging battery is then removed from the circuit. Neglect all edge effects.

- a) Find an expression for the magnitude of the electric field E_L on the left hand side in terms of σ_L , σ_R , κ , s, w, L, ε_0 , and d as needed.
- b) Find an expression for the magnitude of the electric field E_R on the right hand side in terms of σ_L , σ_R , κ , s, w, L, ε_0 , and d as needed.
- c) Find an expression that relates the surface charge densities σ_L and σ_R in terms of κ , s, w, L, ε_0 , and d as needed.
- d) What is the total charge +Q on the entire top plate? Express your answer in terms of σ_L , σ_R , κ , s, w, L, ε_0 , and d as needed.
- e) What is the capacitance of this system? Express your answer in terms of κ , s, w, L, ε_0 , and d as needed.
- f) Suppose the dielectric is removed. What is the change in the stored potential energy of the capacitor? Express your answer in terms of Q, κ , s, w, L, ε_0 , and d as needed.

Exercise3 Sol

a) Find an expression for the magnitude of the electric field E_L on the left hand side in terms of σ_L , σ_R , κ , s, w, L, ε_0 , and d as needed.

Using Gauss's Law
$$E_L = \frac{\sigma_L}{\varepsilon_o}$$

b) Find an expression for the magnitude of the electric field E_R on the right hand side in terms of σ_L , σ_R , κ , s, w, L, ε_0 , and d as needed.

Using Gauss's Law for dielectrics
$$E_R = \frac{\sigma_R}{\kappa \varepsilon_o}$$

c) Find an expression that relates the surface charge densities σ_L and σ_R in terms of κ , s, w, L, ε_0 , and d as needed.

The potential difference on the left side is $E_L d = \frac{\sigma_L d}{\varepsilon_o}$. On the right hand side it is

$$E_R d = \frac{\sigma_R d}{\kappa \mathcal{E}_o}$$
. Since these must be equal we must have $\frac{\sigma_R}{\kappa} = \sigma_L$

d) What is the total charge +Q on the entire top plate? Express your answer in terms of σ_L , σ_R , κ , s, w, L, ε_0 , and d as needed.

$$Q = \sigma_L (L - s) w + \sigma_R s w$$

Exercise3 Sol

e) What is the capacitance of this system? Express your answer in terms of κ , s, w, L, ε_0 , and d as needed.

The potential difference is $E_L d = \frac{\sigma_L d}{\varepsilon_o}$, so the capacitance is

$$C = \frac{Q}{|\nabla V|} = \frac{\sigma_L (L - s)w + \sigma_R sw}{\frac{\sigma_L d}{\varepsilon_o}} = \frac{\varepsilon_o w}{d} \left[(L - s) + \frac{\sigma_R}{\sigma_L} s \right] = \frac{\varepsilon_o w}{d} \left[(L - s) + \kappa s \right] = C$$

f) Suppose the dielectric is removed. What is the change in the stored potential energy of the capacitor? Express your answer in terms of Q, κ , s, w, L, ε_0 , and d as needed.

Since the battery has been removed, the charge on the capacitor does not change when we do this. So the change in the energy stored is

Exercise3 Sol

change in energy =
$$\frac{1}{2} \frac{Q^2}{C_o} - \frac{1}{2} \frac{Q^2}{C} = \frac{Q^2}{2} \left(\frac{1}{C_o} - \frac{1}{C} \right)$$

$$= \frac{Q^2}{2} \left(\frac{d}{\varepsilon_o L w} - \frac{d}{\varepsilon_o w \left[(L - s) + \kappa s \right]} \right) = \frac{Q^2 d}{2\varepsilon_o w} \left[\frac{1}{L} - \frac{1}{(L - s) + \kappa s} \right]$$
change in energy =
$$\frac{Q^2 d}{2\varepsilon_o w} \left[\frac{(L - s) + \kappa s - L}{\left[L \left[(L - s) + \kappa s \right] \right]} \right] = \frac{Q^2 d}{2\varepsilon_o w} \left[\frac{(\kappa - 1)s}{\left[L \left[(L - s) + \kappa s \right] \right]} \right].$$

Thank You

Presented by Minjie