2 Доп4 (7). Возведение вполне упорядоченных множеств в степень: определение и свойства. Счётный ординал в счётной степени счётен.

Возведение в целую положительную степень: (α^n есть произведение п сомножите- лей, равных α). Другими словами, если A упорядочено по типу α , то множество A^n последовательностей длины п с элементами из A с обратным лексикографическим порядком (сравнение справа налево) упорядочено по типу α^n .

Следующий шаг — определить α^{ω} . Первая идея, приходящая в голову — взять множество $A^{\mathbb{N}}$ бесконечных последовательностей и определить на нём полный порядок. Но как его ввести — неясно. Поэтому можно попробовать определить возведение в степень индуктивно с помощью следующих соотношений: $\alpha^0 = 1$; $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$; $\alpha^{\gamma} = \sup\{\alpha^{\beta} | \beta < \gamma\}$ для предельного $\gamma \neq 0$.

Теорема о трансфинитной рекурсии гарантирует, что эти соотношения однозначно определяют некоторую операцию над ординалами, которая и называется возведением в степень.

Как вообще работает возведение в степень?

Как выглядят элементы ω^{ω} ? Как многочлены от ω , в которых слагаемые отсортированные по убыванию степени, коэффициенты стоят справа.

Как сравнивать, какой элемент больше?

- 1) Если максимальная степень больше, то и элемент больше
- 2) Если максимальная степень такая же, а коэффициент больше, то и элемент больше
 - 3) Если и коэффициент такой же, то сравниваем следующий коэффициент
 - 4) И т.д., пока не найдём различие

Можно представить иначе:

Вместо многочлена рассмотрим последовательность коэффициентов по степеням ω В ней конечное число ненулевых элементов.

Если максимальный индекс ненулевого элемента больше, то вся последовательность больше

Если такой же, то сравниваем сами элементы

Если и элементы равны, то сравниваем следующие

И так лалее

Получается обратный лексикографический порядок

 ω^2 — на самом деле аналогично, только последовательность не счётная, а из 2 элементов Для произвольных α и β тоже можно определить $\hat{\alpha}$

Определение α^{β} для произвольных α и β

Элементы α^{β} — это функции из β в α с конечным носителем, т.е. такие функции, у которых только в конечном числе точек значение отлично от нуля.

Элементы сравниваются по обратному лексикографическому порядку, т.е.

- Сравниваем максимальные элементы, на которых значение не равно нулю. Если у одной из функций такой элемент больше,
 то и вся функция больше.
 - 2) Если эти элементы равны, то сравниваем значения на этих элементах.
 - 3) Если и значения равны, то сравниваем следующие по величине элементы, на которых функция не равна нулю.
 - 4) Если и они равны, то сравниваем значения.
 - 5) И так далее, пока не найдём различия

Например, элементы ω^{ω} можно рассматривать не только как многочлены, но и как функции из ω в ω с конечным носителем, а именно: значение функции на числе n равняется коэффициенту при \mathcal{B} .

Свойства:

1.
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma};$$

2.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$$

- 3. Если $\alpha > 1$, $\beta > 1$ то $\alpha^{\beta} > \alpha$.
- ▲ 1, 2: из индуктивного определения степени. Например, для 2: $(\alpha^{\beta})^{\gamma} = \sup\{(\alpha^{\beta})^{\xi} | \xi < \gamma\} = \sup\{\alpha^{(\beta\xi)} | (\beta\xi) < \beta\gamma\} = \alpha^{\beta\gamma}$ 3:

Почему если $\alpha > 1$, $\beta > 1$, то $\alpha^{\beta} > \alpha$? Если $\beta > 1$, то $\beta = 1 + \gamma$, $\gamma > 0$. Тогда $\alpha^{\beta} = \alpha^{1+\gamma} = \alpha \cdot \alpha^{\gamma}$. Если $\gamma > 0$, то $\gamma = 1 + \delta$, $\alpha^{\beta} = \alpha \cdot \alpha \cdot \alpha^{\delta}$, поскольку $\alpha^{\delta} \ge 1$, то $\alpha^{\beta} \ge \alpha \cdot \alpha \ge \alpha \cdot 2$ (т.к. $\alpha > 1$). Осталось доказать, что $\alpha \cdot 2 > \alpha$. Это верно, т.к. $\alpha \cdot 2 = \alpha + \alpha > \alpha + 1 > \alpha$

Теорема. Если α и β — счётные ординалы, то α^{β} счётный.

 \blacktriangle Если мы пронумеровали все элементы вполне упорядоченных множеств A и B, то любой элемент множества $[B \to A]$ может быть задан конечным списком натуральных чисел (носитель и значения на элементах носителя), а таких списков счётное число. \blacksquare