Continuation Passing Style

February 21, 2016

After CPS conversion, we will resolutely use continuations for everything. This can be seen as a way of making control flow explicit. There are results saying that the output of CPS conversion is invariant under interpretation as pass-by-name or pass-by-value, though we will not go into those results in this class. CPS conversion gives us named intermediate results. Thirdly, we reify control-flow as data. The first two of these three properties are commonly called "monadic form."

1 IL-CPS

We first must define the target language for this transformation. Notably, we split terms into two syntatic classes; *expressions* and *values*. One may think of expressions as values that are computed and then thrown away.

We may formalize this intuition as follows:

$$\begin{split} v &::= x \\ &\mid \lambda x : \tau.e \\ &\mid \texttt{pack} \; [c,v] \; \texttt{as} \; \exists \alpha : k.\tau \\ &\mid \langle v_1, \dots v_n \rangle \end{split}$$

$$e &::= vv \\ &\mid \texttt{unpack} \; [\alpha,x] = v \; \texttt{in} \; e \\ &\mid \texttt{let} \; x = \pi_i v \; \texttt{in} \; e \\ &\mid \texttt{let} \; x = v \; \texttt{in} \; e \\ &\mid \texttt{halt} \end{split}$$

IL-CPS has the following typing rules:

$$\frac{\Gamma \vdash \tau : T \qquad \Gamma, x : \tau \vdash e : 0}{\Gamma \vdash \lambda x : \tau . e : \tau \to 0} \qquad \frac{\Gamma \vdash v_1 : \neg \tau \qquad \Gamma \vdash v_2 : \tau}{\Gamma \vdash v_1 v_2 : 0}$$

$$\frac{\Gamma \vdash c : k \qquad \Gamma \vdash v : [c/\alpha]\tau \qquad \Gamma, \alpha : k \vdash \tau : T}{\Gamma \vdash \operatorname{pack}\ [c, v]\ \operatorname{as}\ \exists \alpha : k . \tau : \exists \alpha : k . \tau}$$

$$\frac{\Gamma \vdash v : \exists \alpha : k . \tau \qquad \Gamma, \alpha : k, x : \tau \vdash e : 0}{\Gamma \vdash \operatorname{unpack}\ [\alpha, x] = v \ \operatorname{in}\ e : 0} \qquad \frac{\Gamma \vdash v_i : \tau_i \qquad (\operatorname{for}\ i = 1 \ldots n)}{\Gamma \vdash \langle v_1, \ldots, v_n \rangle : \times [\tau_1, \ldots, \tau_n]}$$

$$\frac{\Gamma \vdash v : \times [\tau_1, \ldots, \tau_n]}{\Gamma \vdash \operatorname{let}\ x = \pi_i v \ \operatorname{in}\ e : 0} \qquad \frac{\Gamma \vdash v : \tau \qquad \Gamma, x : \tau \vdash e : 0}{\Gamma \vdash \operatorname{let}\ x = v \ \operatorname{in}\ e : 0} \qquad \frac{\Gamma \vdash \operatorname{halt}\ : 0}{\Gamma \vdash \operatorname{halt}\ : 0}$$

Note that in constructive logic, the proposition " $\tau \to 0$ " is exactly $\neg \tau$. So we may perhaps cloyingly say that continuations are negation.

A careful reader may notice our usual sleight of hand in the unpack rule: the α 's mentioned are all asserted to be equal.

2 CPS Conversion: Compiler Pass

Kind, constructor, and type translation are all still syntax-directed. Most every transformation is an identity mapping, with one exception:

$$\tau_1 \to \tau_2 = \neg(\tau_1 \times \neg \tau_2).$$

There's a neat connection to constructive logic here; by the Curry-Howard Isomorphism, this is analogous to the transformation $A \supset B$ goes to $\neg (A \land \neg B)$. We're effectively DeMorgan-ing our code here.

Context translation is just the usual map of kind and type translation.

2.1 Transforming Terms

We have

$$\Gamma \vdash e : \tau \to x.e$$

Here, e is a continuation that passes its value to the bound variable x. We maintain the invariant that "If $\Gamma \vdash e : \tau \to x.e$, then $\Gamma x : \neg \tau \vdash e : 0$."

In respect of convention, we'll strive to use the variable k instead of x as the continuation variable here. One hopes that this does not cause the reader any great difficulty, as we also often use the variable k for kinds.

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \leadsto k.(kx)}$$

$$\Gamma \vdash e : \times [\tau_0, \dots \tau_{n-1}] \leadsto k'.e$$

 $\frac{\Gamma \vdash e : \times [\tau_0, \dots \tau_{n-1}] \leadsto k'.e}{\Gamma \vdash \pi_i(e) : \tau_i \leadsto k. (\texttt{let } k' = (\lambda x : \times [\tau_0, \dots, \tau_{n-1}]. \texttt{let } y = \pi_i k \texttt{ in } ky) \texttt{ in } e)}$

$$\Gamma \vdash e_i : \tau_i \leadsto k_i \cdot e_i$$
 (for $i = 1, \dots, n$)

$$\frac{\Gamma \vdash e_i : \tau_i \leadsto k_i.e_i \qquad (\text{for } i=1,\ldots,n)}{\Gamma \vdash \langle e_1,\ldots e_n \rangle : \times [\tau_1,\ldots \tau_n] \leadsto k. \left(\begin{array}{c} \text{let } k_1 = (\lambda x_i : \tau_1. \\ \text{let } k_2 = (\lambda x_i : \tau_2.\ldots \\ \text{let } k_n = (k\langle x_1,\ldots x_n\rangle) \text{ in } e_n) \text{ in } e_{n-1}) \\ \text{in } \ldots) \text{ in } e_2) \text{ in } e_1) \end{array} \right)}$$

$$\frac{\Gamma \vdash \tau_1 : T \qquad \Gamma, x : \tau_1 \vdash e : \tau_2 \leadsto k'.e}{\Gamma \vdash \lambda x : \tau_1.e : \tau_1 \to \tau_2 \leadsto k.k \left(\begin{array}{c} \lambda y : \tau_1 \times \neg \tau_2. \\ \text{let } x = \pi_0 y \text{ in} \\ \text{let } k' = \pi_1 y \text{ in } e \end{array} \right)}$$

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \leadsto k_1.e_1 \qquad \Gamma \vdash e_2 : \tau \to \tau' \leadsto k_2.e_2}{\Gamma \vdash e_1 e_2 : \tau' \leadsto k. \left(\begin{array}{c} \text{let } k_1 = (\lambda f : \neg(\tau \times \neg \tau'). \\ \text{let } k_2 = (\lambda x : \tau.f \langle x, k \rangle) \text{ in } e_2 \right)} \\ \text{in } e_1 \end{array} \right)}$$

$$\frac{\Gamma \vdash c : k \qquad \Gamma \vdash e : [c/\alpha]\tau \leadsto k'.e \qquad \Gamma, \alpha : k \vdash \tau : T}{\Gamma \vdash \text{pack } [c, e] \text{ as } \exists \alpha : k.\tau : \exists \alpha : k.\tau \leadsto k.} \left(\begin{array}{c} \text{let } k' = \\ \lambda x : [c/\alpha]e.k \text{ (pack } [c, x] \text{ as } \exists \alpha : k.\tau)} \\ \text{in } e \end{array} \right)}$$

$$\frac{\Gamma \vdash e_1 : \exists \alpha : k.\tau \leadsto k_1.e_1 \qquad \Gamma, \alpha : k, x : \tau \vdash e_1 : e_2 : \tau' \leadsto k_2.e_2}{\Gamma \vdash \mathtt{unpack} \ [\alpha, x] = e_1 \ \mathtt{in} \ e_2 \leadsto k. \left(\begin{array}{c} \mathtt{let} \ k_1 = \lambda x_1 : (\exists \alpha : \textcolor{red}{k.\tau}). \\ (\mathtt{unpack} \ [\alpha, x] = x_1 \ \mathtt{in} \ (\mathtt{let} \ k_2 = \lambda x_2 : \tau'.kx_2 \ \mathtt{in} \ \mathtt{in} \ e_1 \end{array} \right)}$$

$$\frac{\Gamma \vdash k : \mathtt{kind} \qquad \Gamma, \alpha : k \vdash e : \tau \leadsto k'.e}{\Gamma \vdash \Lambda \alpha : k.e : \forall \alpha : k.c \leadsto k.k \left(\begin{array}{c} (\lambda x : (\exists \alpha : k. \neg \tau). \\ \mathtt{unpack} \; [\alpha, k'] = x \; \mathtt{in} \; e) \end{array} \right)}$$

$$\frac{\Gamma \vdash \forall \alpha: k.\tau \leadsto k'.e \qquad \Gamma \vdash c: k}{\Gamma \vdash e[c]: [c/\alpha]\tau \leadsto k. \left(\begin{array}{c} \mathtt{let} \ k' = \lambda f: (\neg (\exists \alpha: k: \neg \tau)). \\ f(\mathtt{pack} \ [c, k] \ \mathtt{as} \ \exists \alpha: k. \neg \tau) \\ \mathtt{in} \ e \end{array} \right)}$$

We also have the following type transformations:

$$\tau_1 \to \tau_2 = \neg(\tau_1 \times \neg \tau_2)$$

 $\forall \alpha : k.\tau = \neg(\exists \alpha : k.\neg \tau)$

We won't talk about sums, references, exns, primitives, or recursive types here. These are left as an exercise for the reader.

2.2 Exceptions

We're basically just going to go through everything and redo it. However, the rewrites are pretty straightforward - we're basically just going to pass a failure continuation in through everything.

We have new type transformations:

$$\tau_1 \to \tau_2 = \neg(\times[\tau_1, \neg \tau_2, \neg \mathtt{exn}])$$
$$\forall \alpha : k.\tau = \neg(\exists \alpha : k.(\neg \tau \times \neg \mathtt{exn}))$$

We also change our judgement to have the form

$$\Gamma \vdash e : \tau \leadsto kk_{ex}.e$$

Most rules remain largely unchanged, just pushing the failure continuation through. For instance,

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \leadsto kk_{ex}.kx}$$

$$\frac{\Gamma \vdash e_i : \tau_i \leadsto k_i k_{ex_i}.e_i}{\Gamma \vdash \langle e_1, \dots e_n \rangle : \times [\tau_1, \dots \tau_n] \leadsto kk_{ex}.} \begin{pmatrix} \text{let } k_1 = (\lambda x_i : \tau_1.\\ \text{let } k_2 = (\lambda x_i : \tau_2....\\ \text{let } k_n = (k \langle x_1, \dots x_n \rangle) \text{ in } e_n) \text{ in } e_{n-1})\\ \text{in } \dots) \text{ in } e_2) \text{ in } e_1) \end{pmatrix}$$

However, the rules for exceptional control flow have yet to be defined:

$$\begin{array}{c|c} \Gamma \vdash \tau : T & \Gamma \vdash e : \operatorname{exn} \leadsto k' k'_{ex}.e \\ \hline \Gamma \vdash \operatorname{raise}_{\tau} e : \tau \leadsto k k_{ex}. \left(\begin{array}{c} \operatorname{let} \ k' = (\lambda x : \operatorname{exn}.(k_{ex}x)) \\ \operatorname{in} \ \operatorname{let} \ k'_{ex} = k_{ex} \end{array} \right) \\ \hline \Gamma \vdash \operatorname{raise}_{\tau} e : \tau \leadsto k_1 k_{ex_1}.e_1 & \Gamma, x : \operatorname{exn} \vdash e_2 : \tau \leadsto k_2 k_{ex_2}.e_2 \\ \hline \Gamma \vdash \operatorname{handle}(e_1, x.e_2) : \tau \leadsto k k_{ex}. \left(\begin{array}{c} \operatorname{let} \ k_1 = k \ \operatorname{in} \\ \operatorname{let} \ k_{ex} = (\lambda x : \operatorname{exn}. \\ \operatorname{let} \ k_2 = k \ \operatorname{in} \ \operatorname{let} \ k_{ex_2} = k_{ex} \ \operatorname{in} \ e_2) \\ \operatorname{in} \ e_1 \end{array} \right) \\ \hline \Gamma \vdash \tau_1 : T & \Gamma, x : \tau_1 \vdash e : \tau_2 \leadsto k' k'_{ex}.e \\ \hline \Gamma \vdash \lambda x : \tau_1.e : (\tau_1 \to \tau_2) \leadsto k k_{ex}.k \left(\begin{array}{c} \lambda(y : \times [\tau_1, \neg \tau_2, \neg \operatorname{exn}]). \\ \operatorname{let} \ k' = \pi_1 y \\ \operatorname{let} \ k'_{ex} = \pi_2 y \\ \operatorname{in} \ e \end{array} \right) \\ \hline \Gamma \vdash e_1 : \tau \to \tau' \leadsto k_1 k_{ex}.e_1 & \Gamma \vdash e_2 : \tau \leadsto k_2 k_{ex}.e_2 \\ \hline \Gamma \vdash e_1 e_2 : \tau' \leadsto k k_{ex}. \left(\begin{array}{c} \operatorname{let} \ k_1 (\lambda f : \neg (\times [\tau, \neg \tau', \neg \operatorname{exn}]). \\ \operatorname{let} \ k_2 = (\lambda x : \tau.f \langle x, k, k_{ex} \rangle) \\ \operatorname{in} \ e_2) \ \operatorname{in} \ e_2) \end{array} \right) \\ \end{array}$$