

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 - 2019/2020

Missing data & multiple imputation modelling

Missing data is everywhere

In almost any research you perform, or any data analysis task, there is the potential for missing or incomplete data.

Continuous data (signal)

	Sample 1	Sample 2	
cg00583535	NA	0.317394283	
cg18788664	1	0.192024985	
cg08123444	0.532659205	0.867010408	
cg17185060	0.774338632	0.70392815	
cg04541368	0.079894678	0.659468157	
cg25923609	0.109138594	0.600225461	
cg06795768	0.04605561	0.870753578	
cg19336198	0.713845623	0.707326444	
cg05851505	NA	0.981375746	
cg20912770	0.039837473	0.0646352	
cg09190051	1	0.336904134	
cg01986767	NA	NA	
cg01561259	0.133410152	0.113869472	
cg12373208	NA	0.04628476	
cg24280645	0.163157983	0.088281769	
cg00388871	0.239179168	0.308942014	
cg09923107	0.091227524	0.121433558	

Missing data is everywhere

In almost any research you perform, or any data analysis task, there is the potential for missing or incomplete data.

Continuous data (signal)

	Sample 1	Sample 2	
cg00583535	NA	0.317394283	
cg18788664	1	0.192024985	
cg08123444	0.532659205	0.867010408	
cg17185060	0.774338632	0.70392815	
cg04541368	0.079894678	0.659468157	
cg25923609	0.109138594	0.600225461	
cg06795768	0.04605561	0.870753578	
cg19336198	0.713845623	0.707326444	
cg05851505	NA	0.981375746	
cg20912770	0.039837473	0.0646352	
cg09190051	1	0.336904134	
cg01986767	NA	NA	
cg01561259	0.133410152	0.113869472	
cg12373208	NA	0.04628476	
cg24280645	0.163157983	0.088281769	
cg00388871	0.239179168	0.308942014	
cg09923107	0.091227524	0.121433558	

How to address missingness?

- Addressing missing data is one the most common challenges in data analysis and machine learning when analysing real-world data.
- Many data analysis and machine learning algorithms (or techniques) rely on a complete dataset.
 - Most visualisation functions in various data analytics programming
 - Most classification and clustering methods, etc.

^	CSC3062_108_2	CSC3062_109_4	CSC3062_110_4	CSC3062_112_2	CSC3062_113_2	CSC3062_125_4	CSC3062_127_3
feature_1	0.290874776	0.89080331	0.81032173	0.094939587	0.150149242	0.894331320	0.275124510
feature_2	0.810257812	0.08627098	0.24416510	0.821881924	0.709218768	0.103017283	0.909203863
feature_3	0.865808069	0.92201287	0.89654937	0.956021386	0.735552896	0.952562500	0.889457035
feature_4	0.862365076	0.06557660	0.08144940	0.985600007	0.858727746	0.053551341	0.050593115
feature_5	0.966055005	0.05415225	0.08579509	0.997462814	0.887684164	0.028919888	0.059173152
feature_6	0.983397001	0.06252419	0.10805568	0.998506562	0.950558010	0.046704008	0.309769218
feature_7	0.859219550	0.32792332	0.10845017	0.914788949	0.868725210	0.236932825	0.081102726
feature_8	0.771524676	0.70493114	0.80318701	0.236309397	0.217483490	0.749603835	0.806856586
feature_9	0.993792219	0.98066608	0.98448790	0.998409165	0.966818311	0.990438742	0.989619716
feature_10	0.442210237	0.05116329	0.06296946	0.701879320	0.040175667	0.053461366	0.117850085
feature_11	0.899340588	0.06391362	0.13571643	0.453133041	0.892199087	0.058884539	0.686559491
feature_12	0.993988972	0.99149929	0.98880779	0.997791094	0.984008240	0.988925295	0.992761839
feature_13	0.085722787	0.05524618	0.04647980	0.105029451	0.061793271	0.036679333	0.934434637
feature_14	0.044409295	0.02614883	0.02810520	0.030050428	0.028856994	0.037977469	0.872106236
feature_15	0.009247367	0.01671519	0.02064240	0.004755696	0.024785343	0.016187983	0.013172200
feature_16	0.728546654	0.08666581	0.05717338	0.871429414	0.740817463	0.062748032	0.082223218
feature_17	0.009349993	0.00775338	NA	0.011523751	0.009470701	0.009221186	0.006522704

A package called **e1071** in R

What if we couldn't address missingness using an imputation technique?

^{*}Schwalbe E.C.*, Hicks D.*, **Rafiee G.***, et al., "Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures", *Nature Scientific Reports*, (* denotes joint first-authorship), October 2017.

Categories of missingness

- Failure in:
 - Responding to a question (in surveys)
 - Equipment (sensors), recording mechanisms
 - Data entry

•

Missing at Random (MAR)

Missing Completely at Random (MCAR)

Missing Not at Random (MNAR)

The probability that a value is missing depends only on observed values.

the missingness cannot be predicted from any other variables or sets of variables

What is imputation?

• This statistical technique (algorithm) takes the incomplete dataset (i.e., including missing values) and returns a final imputed (filled in) dataset with no missing values.

The aim is to impute (fill in) the values of the missing data that resemble the underlying complete data as closely as possible⁺.

Current methods for imputation

Bertsimas, Pawlowski, and Zhuo

Method Name	Category	Software	Reference
Mean impute (mean)	Mean		Little and Rubin (1987)
Expectation-Maximization (EM)	${ m EM}$		Dempster et al. (1977)
EM with Mixture of Gaussians and Multinomials	${ m EM}$		Ghahramani and Jordan (1994)
EM with Bootstrapping	${ m EM}$	Amelia II	Honaker et al. (2011)
K-Nearest Neighbors (knn)	K-NN	impute	Troyanskaya et al. (2001)
Sequential K -Nearest Neighbors	K-NN		Kim et al. (2004)
Iterative K -Nearest Neighbors	K-NN		Caruana (2001); Brás and Menezes (2007)
Support Vector Regression	SVR		Wang et al. (2006)
Predictive-Mean Matching (pmm)	LS	MICE	Buuren and Groothuis-Oudshoorn (2011)
Least Squares	LS		Bø et al. (2004)
Sequential Regression Multivariate Imputation	LS		Raghunathan et al. (2001)
Local-Least Squares	LS		Kim et al. (2005)
Sequential Local-Least Squares	LS		Zhang et al. (2008)
Iterative Local-Least Squares	LS		Cai et al. (2006)
Sequential Regression Trees	Tree	MICE	Burgette and Reiter (2010)
Sequential Random Forest	Tree	missForest	Stekhoven and Bühlmann (2012)
Singular Value Decomposition	SVD		Troyanskaya et al. (2001)
Bayesian Principal Component Analysis	SVD	pcaMethods	Oba et al. (2003); Mohamed et al. (2009)
Factor Analysis Model for Mixed Data	FA		Khan et al. (2010)

Table 1: List of Imputation Methods

Current methods for imputation

Bertsimas, Pawlowski, and Zhuo

Method Name	Category	Software	Reference
Mean impute (mean)	Mean		Little and Rubin (1987)
Expectation-Maximization (EM)	${ m EM}$		Dempster et al. (1977)
EM with Mixture of Gaussians and Multinomials	EM		Ghahramani and Jordan (1994)
EM with Bootstrapping	${ m EM}$	Amelia II	Honaker et al. (2011)
K-Nearest Neighbors (knn)	K-NN	impute	Troyanskaya et al. (2001)
Sequential K -Nearest Neighbors	K-NN		Kim et al. (2004)
Iterative K -Nearest Neighbors	K-NN		Caruana (2001); Brás and Menezes (2007)
Support Vector Regression	SVR		Wang et al. (2006)
Predictive-Mean Matching (pmm)	LS	MICE	Buuren and Groothuis-Oudshoorn (2011)
Least Squares	LS		Bø et al. (2004)
Sequential Regression Multivariate Imputation	LS		Raghunathan et al. (2001)
Local-Least Squares	LS		Kim et al. (2005)
Sequential Local-Least Squares	LS		Zhang et al. (2008)
Iterative Local-Least Squares	LS		Cai et al. (2006)
Sequential Regression Trees	Tree	MICE	Burgette and Reiter (2010)
Sequential Random Forest	Tree	missForest	Stekhoven and Bühlmann (2012)
Singular Value Decomposition	SVD		Troyanskaya et al. (2001)
Bayesian Principal Component Analysis	SVD	pcaMethods	Oba et al. (2003); Mohamed et al. (2009)
Factor Analysis Model for Mixed Data	FA	-	Khan et al. (2010)

Table 1: List of Imputation Methods

What is multiple imputation?

• This statistical technique (algorithm) takes the incomplete dataset (i.e., including missing data) and returns *m* imputed datasets with no missing values.

m is a user-selected parameter

Multiple imputation

• Each missing feature is imputed (filled in) with a set of m>1 plausible values which reflect the uncertainty about the missing feature.

Imputation techniques and packages in R

- Multivariate Imputation by Chained Equations (MICE)
 - https://cran.r-project.org/web/packages/mice/index.html
- Bootstrapped Expectation-Maximisation (BEM)
 - https://cran.r-project.org/web/packages/Amelia/index.html
- Multiple Imputation using an approximate Bayesian framework (MI)
 - https://cran.r-project.org/web/packages/mi/mi.pdf
- Visualisation and Imputation of Missing Values (VIM)
 - https://cran.r-project.org/web/packages/VIM/index.html

Multiple imputation modelling techniques

 Bootstrapped Expectation-Maximisation (BEM)

Multiple imputation modelling techniques

Question

Which technique or imputation method would be appropriate for a specific dataset?

(How to choose an imputation technique from a list of available packages)

Which technique or imputation method?

Discussion: dataset dependency?

Number of missing per sample

	A	В	С	D	Е	F	G	Н	1	ı	K
1			CSC3062_109_4			CSC3062_113_2			CSC3062_130_4	CSC3062_132_4	
2	feature_1	0.290874776	0.89080331	0.81032173	0.094939587	0.150149242	0.89433132	0.27512451	0.827973513	0.83451715	0.825536552
3	feature_2		0.08627098	0.2441651	0.821881924	0.709218768	0.103017283	0.909203863	0.145577715	0.20381042	0.242565516
4	feature_3	0.865808069	0.92201287	0.89654937	0.956021386	0.735552896	0.9525625	0.889457035	0.928676048	0.68739547	0.947010103
5	feature_4		0.0655766			0.858727746					0.049718481
6	feature_5	0.966055005	0.05415225	0.08579509	0.997462814		0.028919888	0.059173152	0.056658601	0.3076646	0.011375909
7	feature_6		0.06252419	0.10805568	0.998506562	0.95055801	0.046704008	0.309769218	0.041905677	0.2857966	0.096072952
8	feature_7		0.32792332	0.10845017	0.914788949	0.86872521	0.236932825	0.081102726	0.420160222	0.24202751	0.234431085
9	feature_8	0.771524676	0.70493114	0.80318701	0.236309397	0.21748349	0.749603835	0.806856586	0.733636133	0.7106085	0.859536891
10	feature_9		0.98066608	0.9844879	0.998409165	0.966818311	0.990438742	0.989619716	0.991279458	0.98848102	0.97757636
11	feature_10	0.442210237	0.05116329	0.06296946	0.70187932	0.040175667	0.053461366	0.117850085	0.051542927	0.04986252	0.045808883
12	feature_11		0.06391362	0.13571643	0.453133041	0.892199087	0.058884539	0.686559491	0.112967744	0.13221349	0.189032123
13	feature_12		0.99149929	0.98880779	0.997791094	0.98400824	0.988925295	0.992761839	0.990677697	0.99289298	0.980565199
14	feature_13	0.085722787	0.05524618	0.0464798	0.105029451	0.061793271	0.036679333	0.934434637	0.069101161	0.21767877	0.057077769
15	feature_14	0.044409295	0.02614883	0.0281052	0.030050428	0.028856994	0.037977469	0.872106236	0.026116449	0.09474476	0.03148797
16	feature_15		0.01671519	0.0206424	0.004755696	0.024785343	0.016187983	0.0131722	0.011121978	0.00782123	0.019781302
17	feature_16	0.728546654	0.08666581	0.05717338	0.871429414	0.740817463	0.062748032	0.082223218	0.102088481	0.1406173	0.064767425
18	feature_17		0.00775338		0.011523751	0.009470701	0.009221186	0.006522704	0.007768349	0.0244767	0.006747257

Number of missing per feature

7 Missing

			,(_		l .	l .	
	А	P	С	D	E	F	G	Н	I	J	K
1		CSC30108_2	CSC3062_109_4	CSC3062_110_4	CSC3062_112_2	CSC3062_113_2	CSC3062_125_4	CSC3062_127_3	CSC3062_130_4	CSC3062_132_4	CSC3062_134_4
2	feature_1	9 0874776	0.89080331	0.81032173	0.094939587	0.150149242	0.89433132	0.27512451	0.827973513	0.83451715	0.825536552
3	feature_2		0.08627098	0.2441651	0.821881924	0.709218768	0.103017283	0.909203863	0.145577715	0.20381042	0.242565516
4	feature_3	0.865808069	0.92201287	0.89654937	0.956021386	0.735552896	0.9525625	0.889457035	0.928676048	0.68739547	0.947010103
5	feature_4		0.0655766			0.858727746					0.049718481
6	feature_5	0.966055005	0.05415225	0.08579509	0.997462814		0.028919888	0.059173152	0.056658601	0.3076646	0.011375909
7	feature_6		0.06252419	0.10805568	0.998506562	0.95055801	0.046704008	0.309769218	0.041905677	0.2857966	0.096072952
8	feature_7		0.32792332	0.10845017	0.914788949	0.86872521	0.236932825	0.081102726	0.420160222	0.24202751	0.234431085
9	feature_8	0.771524676	0.70493114	0.80318701	0.236309397	0.21748349	0.749603835	0.806856586	0.733636133	0.7106085	0.859536891
10	feature_9		0.98066608	0.9844879	0.998409165	0.966818311	0.990438742	0.989619716	0.991279458	0.98848102	0.97757636
11	feature_10	0.442210237	0.05116329	0.06296946	0.70187932	0.040175667	0.053461366	0.117850085	0.051542927	0.04986252	0.045808883
12	feature_11		0.06391362	0.13571643	0.453133041	0.892199087	0.058884539	0.686559491	0.112967744	0.13221349	0.189032123
13	feature_12		0.99149929	0.98880779	0.997791094	0.98400824	0.988925295	0.992761839	0.990677697	0.99289298	0.980565199
14	feature_13	0.085722787	0.05524618	0.0464798	0.105029451	0.061793271	0.036679333	0.934434637	0.069101161	0.21767877	0.057077769
15	feature_14	0.044409295	0.02614883	0.0281052	0.030050428	0.028856994	0.037977469	0.872106236	0.026116449	0.09474476	0.03148797
16	feature_15		0.01671519	0.0206424	0.004755696	0.024785343	0.016187983	0.0131722	0.011121978	0.00782123	0.019781302
17	feature_16	0.728546654	0.08666581	0.05717338	0.871429414	0.740817463	0.062748032	0.082223218	0.102088481	0.1406173	0.064767425
18	feature_17		0.00775338		0.011523751	0.009470701	0.009221186	0.006522704	0.007768349	0.0244767	0.006747257

Fraction of missing in total

Dependent on your dataset statistics

- Fraction of missing in total
 - The number of missing per sample
 - The number of missing per feature

Incomplete dataset

Evaluation of missing

After applying a multiple imputation method

The figures show that the distribution of the imputed and the observed values are similar (observed data in blue, imputed in red).

Visualising BEM vs. MICE using scatter plot

Multiple Imputation Modelling: BEM vs. MICE

Impact of a method (BEM or MICE)

Different multiple imputation methods may affect the final results (e.g., classification results)

	BEM	Reference subgroup					
		Grp1	Grp2	Grp 3	Grp 4		
	Grp1	22	0	0	0		
ted oup	Grp2	0	23	0	0		
Predicted Subgroup	Grp3	0	0	23	0		
Pre Suk	Grp4	0	0	0	28		
	NC+	2	4	1	0		
	Total	24	27	24	28		

	MICE	Reference subgroup				
		Grp1	Grp2	Grp3	Grp4	
	Grp1	22	0	0	0	
Predicted Subgroup	Grp2	0	22	0	0	
dic	Grp3	0	1	23	0	
Pre Suk	Grp4	0	0	0	28	
	NC	2	5	0	0	
	Total	24	28	23	28	

Summarising the performance of a classification algorithm using a "confusion matrix". A matrix (table) shows the discrepancy between predicted and reference subgroup.

*NC: Non-classifiable

Efficiency of Multiple Imputation

Efficiency of an estimate based on m imputation is approximately:

$$(1+\frac{\gamma}{m})^{-1}$$

Where γ is the fraction of missing information for the quality being estimated.

¹⁾ Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys . J. Wiley & Sons, New York.

²⁾ Schafer, Joseph L. and Maren K. Olsen. 1998. Wultiple imputation for multivariate missing-data problems: A data analyst's perspective." Multivariate Behavioral Research 33(4):545-571.

Efficiency of m imputations for 17 features

Feature #	missing fraction	Efficiency of m imputation per feature	Average of efficiency (12 features)
1	0.165048544	0.991815118	0.995782732
2	0.048543689	0.997578693	m=20
3	0.038834951	0.998062016	
4	0	-	
5	0.077669903	0.996131528	
6	0.009708738	0.999514799	
7	0.155339806	0.992292871	
8	0.009708738	0.999514799	
9	0.077669903	0.996131528	
10	0.038834951	0.998062016	
11	0	-	
12	0.242718447	0.988009592	
13	0	-	
14	0.019417476	0.999030068	
15	0	-	
16	0	-	
17	0.13592233	0.993249759	

Installation and Updates from R

To install the Amelia package on any platform, simply type the following at the R command prompt,

- > install.packages("Amelia")
- > update.packages()

Let's look at an R script and doing multiple imputation

Any Questions?