

Assignment No: 2

THADOMAL SHAHANI TE (32
TSEC 2103163
ENGINEERING COLLEGE

Q.1 Design DFA to determine Whether ternary number (base 3) is divisible by 5. => Sol?:-

A -lexnary system has three alphabets $\Sigma = \{0,1,2\}$

Base of dernoy number is 3.

The nounning remainder could be:

(0)3 = 0 \rightarrow associated state, 90 (2)3 = 1 \rightarrow associated state, 9, (2)3 = 2 \rightarrow associated state, 9, (10)3 = 3 \rightarrow associated state, 9, (11)3 = 4 \rightarrow associated state, 9,

$$M = \{ 8, 2, \delta, 20, F \}$$

$$8 = \{ 20, 21, 22, 23, 24 \}$$

$$20 = \{ 0, 11, 23 \}$$

$$10 = \{ 20, 21, 23, 24 \}$$

· & (Transition table):

9 2	0	1	2
90	20	21	22
21	23	24	20
22	2,	9 2	23
23	99	20	2
24	22	92	24
			1 -

· Simulation

Input String : 12021

:. 9, is not a final starte. : 12021 is not accepted by DFA. Q.2 Construct NFA that accepts set of all string over of a 16 ending with labb!.

(oncert this NFA to equivalent DFA.

Solling NFA con be defined as-M= {0, 2, 8, 90, 1=3 0 = 120,2, 92,425 20 220,93 21 22 NFA to DFA

Step I: Take 2904 as the initial example $\delta(9010) = 190.94$ $\delta(9010) = 190.94$

Step 2: New subset generated 190,1913
5 (20,9,5 Ua) = 290,9,5 - 1 new stat
- new stat
5tep 3: New subset generated 220,929
δ(90,9, 1 Ua) = 2 90,9,1 δ (90,9,1 Ub) = 2 90,93
Step 9: 20,193)
5 (9 90, 92 y V 0) = 2 90, 9, 4 5 (20, 92 y V b) = 2 ho y
No new state generated

7-

New Asansition dable 20,9,4 d 90,9,4 l 90,9,4 1 90,9,4 d 90,9,4 l 90,9,4 1 90,9,4 d 90,9,4 Transition diagrami can be represented on $M' = \{ g', Z', \delta', g', F'\}$ $g' = \{ g', Z', \{ 20, 2, \}, \{ 20, 2, \} \}$ $Z' = \{ q, b \}$

· Simulation	
e) alapapp	
S (20, aababb)	
_	
S (290,2,4, ababb)	
	3
f ({ 20, 2, 3, babb)	
+ S (920,924, abb)	
£ 5 (£ 20, 2, 3, bb)	
((lo) 4))	
F S ({ 20, 925, b)	
1-8 (£90,93 y, €)	3
	_
+ Fral state.	
Hence, input string acrepted.	

g.3 Construct Moore Machine to Find out the sesidue modulo-3 binon numbers. Soln: State 2 is the running remainder as 0.

State 2 is for the running remainder as 1. Output 2 indicates divisibility by 3 Output O indicates that the number is not divisible by 3. : Required regular expression -(0+ (1+0) * 00) *

Step 2:

B C D

Mork all Final state & non Final.

18, El, (C, El, ID, E).

Step 3: Process, all the states

- i) (A, E) $S(A, 0) = B \qquad S(E, 0) = B$ $S(A, 1) = C \qquad , S(B, 1) = C$
- 2) (B,E) $\Rightarrow \delta(B,0) = C \delta(E,0) = E$ $\delta(B,0) = E \delta(E,0) = E$ Not equivalent

3) (C,E) = B (C,O) = ES(C,O) = B S(E,O) = E

$$(B_1D) = (C_1E_1, S_1D_1) = E$$

$$S(B_1D) = C_1 S(D_1D_1) = E$$

$$=) \quad \mathcal{S}(C,0) = \mathcal{B} \quad \mathcal{J}(D,0) = \mathcal{E}$$

$$\mathcal{S}(C,1) = \mathcal{C} \quad \mathcal{J}(D,1) = \mathcal{E}$$

2)
$$C(C,A)$$

 $E(C,O) = B$, $E(C,O) = E$
 $E(C,O) = B$, $E(C,O) = E$

$$\mathcal{S}(C_1) = \mathcal{B}, \quad \mathcal{S}(C_1) \in \mathcal{E}$$

9)
$$(B,c)$$
 = B , $\lambda(C,o) = C$ $\lambda(B,i) = B$, $\lambda(C,o) = C$

=)

$$S(A,O) = B$$
, $S(B,O) = E$
 $S(A,I) = C$, $S(B,I) = D$

· Minimised DFA

