Yifan Zhu

Bernolli Distributior

Distribution

Geometric Distribution

Poisson Distribution

Special Discrete Random Variables (Ch. 5.1)

Yifan 7hu

Iowa State University

Outline

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli Distribution

Binomial Distribution

> eometric Distribution

Poisson Distribution

Bernolli Distribution

Binomial Distribution

Geometric Distribution

 $ightharpoonup X \sim \text{Bernolli}(p) - \text{i.e.}, X \text{ is distributed as a bernolli}$ random variable with parameter p (0 < p < 1) if:

$$f_X(x) = \begin{cases} p^x (1-p)^{1-x} & x = 0, 1 \\ 0 & \text{otherwise} \end{cases}$$

- E(X) = p Var(X) = p(1-p)
 - A bernolli random variable indicate success (encoded as 1) or failure (encoded as 0) in one success-failure trial.
 - **Examples**:
 - A hexamine pellet made from a pelletizing machine conforms the specification (success, 1) or not (failure, 0).
 - A run of the chemical process has a percent yield above 80% (success, 1) or not (failure, 0).

20, (3.

fcx):

x=(. f()=p

Outline

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli Distributio

Binomial Distribution

> Geometric Distribution

Poisson Distribution

Binomial Distribution

Geometric Distribution

Special Discrete Random Variables (Ch. 5.1)

Yifan 7hu

Bernolli Distribution

Binomial Distribution

Distribution

Distribution

 \triangleright X \sim Binomial(n, p) - i.e., X is distributed as a binomial random variable with parameters n and p(0 if:

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

where:

- mere. $\binom{n}{x} = \underbrace{\binom{n!}{x!(n-x)!}}_{read} \text{ "n choose x"}$ $n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1, \text{ the factorial function.}$
- E(X) = np Var(X) = np(1-p)

The Binomial Distribution

Yifan Zhu

Binomial Distribution

Geometric Distribution

X: # of Successes. our of n trials.

[] [] [] ... (] = n Success for line trials.

independent.

for each one:

Success prob: 1.

Support: {0,1,..., n}.

 $f(x) = P(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x}$

$$= \sum_{x=1}^{n} \frac{n!}{(x-1)! (n-x)!} \cdot p^{x} (-p)^{n-x}, \quad x-1 \to x$$

$$= \frac{n-1}{2} \frac{n!}{x! (n-1-x)!} \cdot p^{x+1} (1-p)^{n-x-1}$$

$$= \sum_{x=0}^{n-1} \frac{(n-1)!}{x! (n-1-x)!} \cdot p^{x} \cdot p^{x} (1-p)^{n-1-x}$$

 $= NP \sum_{x=0}^{N-1} {N-1 \choose x} p^{x} (1-p)^{N-1-x} = NP$

 $E(x) = \sum_{k=0}^{n} x \cdot f(x) = \sum_{k=0}^{n} x \cdot {n \choose k} p^{k} (1-p)^{n-k}$

 $= \frac{n}{\sum_{k=0}^{N} x} \cdot \frac{n!}{x! (n-x)!} p^{x} (1-p)^{n-x}$

$$\frac{E(x^2)}{E(x(x-1))} = E((x-1)x) + E(x)$$

$$= \sum_{x=0}^{n} x(x-1) {n \choose x} p^x (1-p)^{n-x}$$

$$= \sum_{x=2}^{n} x(x-1) {n \choose x} p^x (1-p)^{n-x}$$

$$= \sum_{x=2}^{n} x(x-1) {n \choose x} p^x (1-p)^{n-x}$$

$$= \sum_{x=5}^{\infty} \frac{(x-5)!(n-x)!}{x!(n-b)!} b_{x}(1-b)_{x-x}$$

$$= \sum_{y=5}^{\infty} \frac{(x-5)!(n-x)!}{x!(n-b)!} b_{x}(1-b)_{x-x}$$

$$E(x(x-1)) = n(n-1)p^{2}$$

$$E(x^{2}) = n(n-1)p^{2} + np = n^{2}p^{2} - np^{2} + np$$

$$V_{nr}(x) = E(x^{2}) - (E(x))^{2}$$

- np-np= np(1-p)

- np+np-np

- ► A Bin(n, p) random variable counts the number of successes in n success-failure trials that:
 - are independent of one another.
 - each succeed with probability p.
- Examples:
 - Number of conforming hexamine pellets in a batch of n = 50 total pellets made from a pelletizing machine.
 - Number of runs of the same chemical process with percent yield above 80%, given that you run the process a total of n = 1000 times.
 - Number of rivets that fail in a boiler of n=25 rivets within 3 years of operation. (Note; "success" doesn't always have to be good.)

Distribution

- Bernolli(p) = Binomial(1, p).
 Let X₁, X₂,..., X_n be i.i.d. (independent and identically distributed) Bernolli(p) random variables, then

$$\sum_{i=1}^{n} X_i \sim \mathsf{Binomial}(n, p)$$

Informally, X_1, X_2, \dots, X_n are independent means their outcomes do not affect each other. Formal definition of independence will be given in the lecture of "joint distribution and independence".

$$eg \left(\sum_{i=1}^{n} \chi_{i} \right) = \sum_{i=1}^{n} E(\chi_{i}) \quad (\text{true for non independent to }).$$

$$eg Var \left(\sum_{i=1}^{n} \chi_{i} \right) = \sum_{i=1}^{n} Var \left(\chi_{i} \right) \quad (\text{only true for independent variables})$$

$$E(X) = \sum_{i=1}^{\infty} E(X_i) = NP(i-p).$$

$$Var(X) = \sum_{i=1}^{\infty} Var(X_i) = NP(i-p).$$

Yifan Zhu

Bernolli Distribution

Binomial Distribution

Distribution

- 1 2 3 4 5 6 7 8 9 10
 - Suppose you have a machine with 10 independent components in series. The machine only works if all the components work.
 - ► Each component succeeds with probability p = 0.95 and fails with probability 1 p = 0.05.
 - ▶ Let *Y* be the number of components that succeed in a given run of the machine. Then:

$$Y \sim \mathsf{Binomial}(n = 10, p = 0.95)$$

Geometric Distribution

Poisson Distribution

$$P(\text{machine succeeds}) = P(Y = 10)$$

$$= \binom{10}{10} p^{10} (1-p)^{10-10}$$

$$= p^{10}$$

$$= 0.95^{10}$$

$$= 0.5987$$

This machine isn't very reliable.

Example: machine with 10 components

Yifan Zhu

Bernolli Distribution

Binomial Distribution

Geometric Distribution

- What if I arrange these 10 components in parallel? This machine succeeds if at least 9 of the components succeed.
- What is the probability that the new machine succeeds?

$$P(\text{improved machine succeeds})$$

$$= P(Y \ge 9)$$

$$= P(Y = 9) + P(Y = 10)$$

$$= {10 \choose 9} p^9 (1 - p) + {10 \choose 10} p^{10} (1 - p)^{10 - 10}$$

$$= (10) \cdot 0.95^9 \cdot 0.05 + (1) \cdot 0.95^{10}$$

By allowing just one component to fail, we made this machine far more reliable.

= 0.9139

► If we allow up to 2 components to fail:

P(improved machine succeeds)

$$= P(Y \ge 8)$$

$$= P(Y = 8) + P(Y = 9) + P(Y = 10)$$

$$= {10 \choose 8} p^8 (1 - p)^{10 - 8} + {10 \choose 9} p^9 (1 - p) + {10 \choose 10} p^{10} (1 - p)^{10 - 10}$$

$$= {10! \over (10 - 8)!8!} \cdot 0.95^8 \cdot 0.05^2 + (10) \cdot 0.95^9 \cdot 0.05 + (1) \cdot 0.95^{10}$$

$$= 0.9885$$

Geometric Distribution

- ► $E(Y) = np = 10 \cdot 0.95 = 9.5$. So the number of components to fail per run on average is 9.5.
- $Var(Y) = np(1-p) = 10 \cdot 0.95 \cdot (1-0.95) = 0.475.$
- $ightharpoonup SD(Y) = \sqrt{Var(Y)} = \sqrt{np(1-p)} = 0.689.$

Outline

Random Variables (Ch. 5.1) Yifan Zhu

Special Discrete

Bernolli Distributic

Binomial Distribution

Geometric Distribution

Poisson Distribution

Bernolli Distribution

Binomial Distribution

Geometric Distribution

▶ $X \sim \text{Geometric}(p) - \text{that is, } X \text{ has a geometric}$ distribution with parameter $p \ (0 is:$

$$f_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

and its cdf is:

$$F_X(x) = egin{cases} 1 - (1-p)^x & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \frac{1}{p}$$

$$Var(X) = \frac{1-p}{p^2}$$

$$X: \# \text{ if frials taken to get a first success.}$$

$$\{(, z_1, ..., 3).$$

$$f(x) = P(X = x).$$

$$y = 1 \quad P(y = 0) = 0$$

$$x=1.$$
 $P(x=1)=p$

$$x=2: FS. \rightarrow P(x=2) = (1-p)P$$

3, EES
$$\rightarrow P(X=3)=(1-6)^{k_1}$$

$$E(x) = \sum_{k=1}^{\infty} x \left((-p)^{k-1} \cdot p \right)$$

$$\sum_{k=0}^{\infty} \left((-p)^{k} \right) = \frac{1}{p} ,$$

$$\sum_{x=0}^{\infty} (1-p)^{x} = \frac{1}{p}-1,$$

$$(1-p)^{n} = \frac{1}{p-1},$$

$$\sum_{p} + x \left(1 - p\right)^{x-1} = r \frac{1}{p^2}$$

$$\sum_{k=1}^{\infty} + x \left(1 - p \right)^{x-1} = + \frac{1}{p^2}$$

$$\langle (1-p)^{\lambda-1} = + \frac{1}{p^2}$$

 $\sum_{i=1}^{\infty} x_i p(1-p)^{x-1} = \frac{1}{p} = \overline{t}(x)$

$$\frac{\sum_{X=1}^{\infty} (1-p)^{X-1} |p| = 1$$

$$\sum_{X=1}^{N} x (1-p)^{X-1} = \frac{1}{p^2}$$

$$\sum_{X=1}^{N} x (1-p)^{X} = \frac{1-p}{p^2} = \frac{1}{p^2} - \frac{1}{p}$$

$$\sum_{X=1}^{N} x x (1-p)^{X-1} (-1) = -\frac{2}{p^3} + \frac{1}{p^2}$$

$$\sum_{X=1}^{N} x^2 (1-p)^{X-1} = \frac{2}{p^3} - \frac{1}{p^2} = E(x^2)$$

$$\sum_{X=1}^{N} x^2 p (1-p)^{X-1} = \frac{2}{p^3} - \frac{1}{p} = E(x^2)$$

$$Var(x) = E(x^2) - (E(x))^2$$

$$= \frac{2}{p^3} - \frac{1}{p} - (\frac{1}{p})^2 = \frac{1}{p^2} - \frac{1}{p} = \frac{1-p}{p^2}$$

A look at the Geom(p) distribution

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli

Binomial Distribution

Geometric Distribution

- ► For an indefinitely-long sequence of independent, success-failure trials, each with P(success) = p, X is the number of trials it takes to get a success.
- Examples:
 - Number of rolls of a fair die until you land a 5
 - Number of shipments of raw material you get until you get a defective one.
 - The number of enemy aircraft that fly close before one flies into friendly airspace.
 - Number hexamine pellets you make before you make one that does not conform.
 - Number of buses that come defore yours.

Example: shorts in NiCad batteries

- An experimental program was successful in reducing the percentage of manufactured NiCad cells with internal shorts to around 1%.
- ▶ Let T be the test number at which the first short is discovered. Then, T ~ Geom(p).

P(1st or 2nd cell tested is has the 1st short) = P(T=1 or T=2) = f(1) + f(2) = p + p(1-p) = 0.01 + 0.01(1-0.01) = 0.02

 $P(\text{at least 50 cells tested w/o finding a short}) = \underbrace{P(T > 50)}_{} = 1 - \underbrace{P(T \le 50)}_{} = 1 - F(50)$ $= 1 - (1 - (1 - \rho)^{x})$ $= (1 - \rho)^{x}$ $= (1 - 0.01)^{50}$ = 0.61

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli Distribution

Binomial Distribution

> Geometric Distribution

Geometric Distribution

Poisson Distribution

$$E(T) = \frac{1}{p} = \frac{1}{0.01}$$

 $=100\ \text{tests}$ for the first short to appear, on avg.

$$SD(T) = \sqrt{Var(T)} = \sqrt{\frac{1-p}{p^2}}$$

$$= \sqrt{\frac{1-0.01}{0.01^2}} = 99.5 \text{ tested batteries}$$

Outline

Random Variables (Ch. 5.1) Yifan Zhu

Special Discrete

Bernolli

Binomial Distribution

> Geometric Distribution

Poisson Distribution

Bernolli Distribution

Binomial Distribution

Geometric Distribution

▶ $X \sim \text{Poisson}(\lambda)$ — that is, X has a geometric distribution with parameter $\lambda > 0$ — if its pmf is:

$$f_X(x) = egin{cases} rac{\mathrm{e}^{-\lambda}\lambda^x}{x!} & x = 0, 1, 2, 3, \dots \\ 0 & ext{otherwise} \end{cases}$$

- $ightharpoonup E(X) = \lambda$
- $Var(X) = \lambda$

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, \dots$$

$$f(x) \gg 0.$$

$$\sum_{x=0}^{\infty} f(x) = 1.$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$e^{\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$

$$e^{\lambda} = \sum_{x=0}^{\infty} \frac{\lambda}{x}$$

A look at the Poisson distribution

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli Distribution

Binomial Distribution

Geometric Distribution

- A Poisson (λ) random variable counts the number of occurrences that happen over a fixed interval of time or space.
- These occurrences must:
 - be independent
 - be sequential in time (no two occurrences at once)
 - ightharpoonup occur at the same constant rate, λ .
- λ , the **rate parameter**, is the expected number of occurrences in the specified interval of time or space.

- Y is the number of shark attacks off the coast of CA <u>next</u> year. $\lambda = 100$ attacks per year.
- \blacktriangleright Z is the number of shark attacks off the coast of CA next month. $\lambda=100/12=8.3333333$ attacks per month
- N is the number of β particles emitted from a small bar of plutonium, registered by a Geiger counter, in a minute. $\lambda = 459.21$ particles/minute.
- ▶ *J* is the number of particles per three minutes. $\lambda = ?$

$$\begin{split} \lambda &= \frac{\text{459.21 (units particle)}}{1 \text{ (unit minute)}} \cdot \frac{\text{3 (units minute)}}{1 \text{ (unit of 3 minutes)}} \\ &= \frac{1377.63 \text{ (units particle)}}{1 \text{ (unit of 3 minutes)}} = 1377.62 \text{ particles per 3 minutes} \end{split}$$

Bernolli

Poisson Distribution

- Rutherford and Geiger measured the number of α particles detected near a small bar of plutonium for 8-minute periods.
- The average number of particles per 8 minutes was $\lambda=3.87$ particles / 8 min
- Let $S \sim \text{Poisson}(\lambda)$, the number of particles detected in the next 8 minutes.

$$f(s) = \begin{cases} \frac{e^{-3.87}(3.87)^s}{s!} & s = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

P(at least 4 particles recorded)

$$= P(S \ge 4) = I - P(S \le 4).$$

$$= f(4) + f(5) + f(6) + \cdots$$

$$= 1 - f(0) - f(1) - f(2) - f(3)$$

$$= 1 - \frac{e^{-3.87}(3.87)^{0}}{0!} - \frac{e^{-3.87}(3.87)^{1}}{1!}$$

$$- \frac{e^{-3.87}(3.87)^{2}}{2!} - \frac{e^{-3.87}(3.87)^{3}}{3!}$$

$$= 0.54$$

Example: arrival at a university library

1 lo min

- Some students' data indicate that between 12:00 and 12:10 P.M. on Monday through Wednesday, an average of around 125 students entered a library at lowa State University library.
- ► Let *M* be the number of students entering the ISU library between 12:00 and 12:01 PM next Tuesday.
- ► Model $M \sim \text{Poisson}(\lambda)$.
- Having observed 125 students enter between 12:00 and 12:10 PM last Tuesday, we might choose:

```
\begin{split} \lambda &= \frac{125 \text{ (units of student)}}{1 \text{ (unit of 10 minutes)}} \cdot \frac{1 \text{ (unit of 10 minutes)}}{10 \text{ (units of minute)}} \\ &= \frac{12.5 \text{ (units of student)}}{1 \text{ (unit minute)}} = 12.5 \text{ students per minute} \end{split}
```

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli Distribution

Binomial Distribution

Geometric Distribution

▶ Under this model, the probability that between 10 and 15 students arrive at the library between 12:00 and 12:01 PM is:

$$P(10 \le M \le 15) = f(10) + f(11) + f(12) + f(13) + f(14) + f(15)$$

$$= \frac{e^{-12.5}(12.5)^{10}}{10!} + \frac{e^{-12.5}(12.5)^{11}}{11!} + \frac{e^{-12.5}(12.5)^{12}}{12!} + \frac{e^{-12.5}(12.5)^{13}}{13!} + \frac{e^{-12.5}(12.5)^{14}}{14!} + \frac{e^{-12.5}(12.5)^{15}}{15!}$$

$$= 0.60$$

(0)r

- ► Let *X* be the number of unprovoked shark attacks that will occur off the coast of Florida next year.
- ▶ Model $X \sim \text{Poisson}(\lambda)$.
- From the shark data at http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark attacks occurred from 2000 to 2009.
- ► Hence, I calculate:

$$\begin{split} \lambda &= \frac{246 \text{ (units attack)}}{1 \text{ (unit of 10 years)}} \cdot \frac{1 \text{ (unit of 10 years)}}{10 \text{ (units year)}} \\ &= \frac{24.6 \text{ (units attack)}}{1 \text{ (unit year)}} = 24.6 \text{ attacks per year} \end{split}$$

$$P(\text{no attacks next year}) = f(0) = e^{-24.6} \cdot \frac{24.6^{0}}{0!}$$

$$\approx 2.07 \times 10^{-11} \text{ P(x > 5)} = 1 - \text{P(x < 5)}$$

$$P(\text{at least 5 attacks}) = 1 - P(\text{at most 4 attacks})$$

$$= 1 - F(4)$$

$$= 1 - f(0) - f(1) - f(2) - f(3) - f(4)$$

$$= 1 - e^{-24.6} \frac{24.6^{0}}{0!} - e^{-24.6} \frac{24.6^{1}}{1!} - e^{-24.6} \frac{24.6^{2}}{2!}$$

$$- e^{-24.6} \frac{24.6^{3}}{3!} - e^{-24.6} \frac{24.6^{4}}{4!}$$

$$\approx 0.99999996$$

P(more than 30 attacks) = 1 - P(at least 30 attacks)

$$=1-e^{-24.6}\sum_{i=0}^{30}\frac{24.6^{x}}{x!}=1-e^{-24.6}\cdot 4.251\times 10^{10}$$

 ≈ 0.1193

Special Discrete Random Variables (Ch. 5.1)

Yifan Zhu

Bernolli Distribution

Binomial Distribution

Geometric Distribution

Geometric Distribution

- Now, let Y be the total number of shark attacks in Florida during the next 4 months.
- ▶ Let $Y \sim \mathsf{Poisson}(\theta)$, where θ is the true shark attack rate per 4 months:

$$\begin{split} \theta &= \frac{24.6 \text{ (units attack)}}{1 \text{ (unit year)}} \cdot \frac{1/3 \text{ (unit year)}}{1 \text{ (unit of 4 months)}} \\ &= \frac{8.2 \text{ (units attack)}}{1 \text{ (unit of 4 months)}} = 8.2 \text{ attacks per 4 months} \end{split}$$

$$P(\text{no attacks next year}) = f(0) = e^{-8.2} \cdot \frac{8.2^0}{0!}$$

$$\approx 0.000275$$

 ≈ 0.9113

$$P(\text{at least 5 attacks}) = 1 - P(\text{at most 4 attacks})$$

$$= 1 - F(4)$$

$$= 1 - f(0) - f(1) - f(2) - f(3) - f(4)$$

$$= 1 - e^{-8.2} \frac{8.2^{0}}{0!} - e^{-8.2} \frac{8.2^{1}}{1!} - e^{-8.2} \frac{8.2^{2}}{2!}$$

$$- e^{-8.2} \frac{8.2^{3}}{3!} - e^{-8.2} \frac{8.2^{4}}{4!}$$

P(more than 30 attacks) = 1 - P(at least 30 attacks)

$$= 1 - e^{-8.2} \sum_{i=0}^{30} \frac{8.2^{x}}{x!} = 1 - e^{-8.2} \cdot 4.251 \times 10^{10}$$

$$\approx 9.53 \times 10^{-10}$$

$$f(x) = e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

$$E(x) = \sum_{x=0}^{\infty} \frac{x}{x!} \cdot \frac{\lambda^{x}}{x!} \cdot e^{-\lambda}$$

$$= \sum_{x=1}^{\infty} \frac{\lambda^{x}}{(x-i)!} e^{-\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^{x+i}}{x!} e^{-\lambda}$$

$$= \lambda \left| \frac{\sum_{x=0}^{\infty} \lambda^{x}}{\sum_{x=0}^{\infty} x!} e^{-\lambda} \right| = 1$$

$$\mathcal{E}(\chi(\chi-I)) = \bar{\mathcal{E}}(\chi^2) - \mathcal{E}(\chi).$$

$$\sum_{x=2}^{\infty} \frac{x(x-1)}{x!} e^{-\lambda}$$

$$= \sum_{x=2}^{\infty} \frac{\lambda^{x}}{(x-2)!} e^{-\lambda}$$

$$= \sum_{x=0}^{\infty} \frac{\lambda^{x+2}}{x!} e^{-\lambda} = \lambda^{2} \underbrace{\sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!} e^{\lambda}}_{= \lambda}$$

$$E(x^{2}) = \lambda^{2} + \lambda$$

$$\widehat{E}(x^2) = \lambda^2 + \lambda.$$

$$V_{or}(x) = E(x^2) - (\widehat{E}(x))^2 = \lambda^2 + \lambda - \lambda^2 - \lambda$$