Computer On Wheels

Computer On Wheels Project Software Requirements Specification Version <7.0>

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

Revision History

Date	Version	Description	
<03/13/24>	<1.0>	SRS 1.0	
<03/20/24>	<2.0>	SRS 2.0	
<04/05/24>	<3.0>	SRS 3.0	
<04/17/24>	<4.0>	SRS 4.0	
<04/22/24>	<5.0>	SRS 5.0	
<04/29/24>	<6.0>	SRS 6.0	
<10/23/24>	<7.0>	SRS 7.0	

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

Table of Contents

1.	Introduction	4
	1.1 Purpose	4
	1.2 Scope	4
	1.3 Elicitation technique(s)	5
	1.4 Definitions, Acronyms, and Abbreviations	5
	1.5 Overview	5
2.	Overall Description	5
3.	Specific Requirements	6
	3.1 Problem Scenarios	6
	3.2 Functionality	7
	3.2.1 Vehicle control	8
	3.2.2 Path Planning	8
	3.2.3 Sensor integration	9
	3.2.4 Trajectory Planning	9
	3.2.5 Obstacle Detection	9
	3.2.6 Obstacle Avoidance	10
	3.2.7 Destination Arrival.	10
	3.2.8 User Input.	10
	3.2.9 System Integration.	10
	3.3 Safety	11
	3.4 Purchased Components	11
	3.5 Hardware Interfaces	11
	3.6 Software Interfaces	11
	3.7 Communications Interfaces	11
	3.8 Licensing Requirements	12
	3.9 Applicable Standards	12
4	Supporting Information	12

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

Software Requirements Specification

1. Introduction

The introduction of the Software Requirements Specification (SRS) provides an overview of the entire SRS with purpose, scope, definitions, acronyms, abbreviations, references and overview of the SRS. The aim of this document is to gather and analyze and give an in-depth insight of the complete **Computer On Wheels software system** by defining the problem statement in detail. Nevertheless, it also concentrates on the capabilities required by domain expert and stakeholders and their needs while defining high-level product features. The detailed requirements of the **Computer On Wheels** are provided in this document.

1.1 Purpose

The purpose of the document is to collect and analyze all assorted ideas that have come up to define the system, its requirements with respect to consumers. Also, we shall predict and sort out how we hope this product will be used in order to gain a better understanding of the project, outline concepts that may be developed later, and document ideas that are being considered, but may be discarded as the product develops.

In short, the purpose of this SRS document is to provide a detailed overview of our software product, its parameters and goals. This document describes the project's target audience and hardware and software requirements. It defines how our client, team and audience see the product and its functionality. Nonetheless, it helps any designer and developer to assist in software delivery lifecycle (SDLC) processes.

1.2 Scope

Primarily, the scope pertains to the key functionalities required for the autonomous vehicle project to operate effectively. It focuses on integrating sensors and algorithms for environmental perception, path planning for optimal route determination, path following for precise vehicle control, and real-time obstacle detection and avoidance to ensure safe navigation.

This SRS aims to specify the software requirements to be developed, which can also assist in selecting suitable in-house and commercial software products. The standard can be used to create software requirements specifications directly or serve as a model for defining project-specific standards, without identifying any specific method, nomenclature, or tool for preparing an SRS.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

1.3 Elicitation technique(s)

Requirements are gathered using a variety of techniques, including **interviewing domain experts and conducting documentation analysis**. Our approach involves reviewing existing documentation, research papers, industry standards, and guidelines related to autonomous vehicle navigation.

1.4 Definitions, Acronyms, and Abbreviations

CARLA	Car Learning to Act
FAQ	Frequently Asked Questions
ROS	Robotic Operating System
IMU	Inertial Measurement Unit
GPS	Global Positioning System

1.5 Overview

The remaining sections of this document provide a general description, including characteristics of the users of this project, the product's hardware, and the functional and data requirements of the product. General description of the project is discussed in section 2 of this document. Section 3 gives the functional requirements and constraints and assumptions made while designing the product. Section 3 also gives the specific requirements of the product. Section 4 is for supporting information.

2. Overall Description

This document contains the problem statement that the current system is facing which is hampering the growth opportunities of the company. It further contains a list of the stakeholders and users of the proposed solution. It also illustrates the needs and wants of the stakeholders that were identified in the brainstorming exercise as part of the requirements workshop. Its further lists and briefly describes the major features and a brief description of each of the proposed system.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3. Specific Requirements

The specific requirements are –

3.1 Problem Scenarios

3.1 Scenarios

Table 3.1: problem statement 1

Problem Statement # 1: Safety Challenges		
The problem of	Inadequate safety measures for autonomous navigation in adverse weather conditions.	
Affects	Passengers, pedestrians and other road users.	
The result of which	Increased risk of accidents due to reduced visibility, leading to injuries or fatalities.	
Benefits of	Improved safety protocols to ensure reliable operation of autonomous vehicles in varying environmental conditions.	

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

Table 3.2: problem statement 2

Problem Statemen	at # 2: Challenges in Simulation for AV Software
Development	
The problem of	Inadequate utilization of simulation environments
	(CARLA) for developing and validating ROS-based
	autonomous vehicle software.
Affects	Developers and researchers in autonomous vehicle
	systems.
The result of which	Slower development cycles, higher costs of physical
	testing, and potential safety risks due to insufficient
	validation.
Benefits of	Enhanced efficiency and safety through thorough
	evaluation of autonomous algorithms under varied
	conditions before deployment.

Table 3.3: problem statement 3

Problem Statement # 3: User Acceptance Challenges for Autonomous	
Vehicles.	
The problem of	Limited user acceptance of autonomous vehicle
	technology due to perceived safety and reliability
	concerns.
Affects	Potential users, stakeholders, and the overall adoption of
	autonomous vehicles.
The result of which	Resistance to adopting autonomous vehicles, leading to
	slower market penetration and reduced investment in
	further development and innovation.
Benefits of	Building user confidence through improved transparency,
	education, and demonstrations of safety features in
	various conditions, which can enhance the acceptance and
	integration of autonomous vehicles in everyday life.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.2 Functionality

Introduction –

This subsection contains the requirements for this product. These requirements are organized by the features discussed with domain expert. Features are then refined into use case diagrams and to activity diagram to best capture the functional requirements of the system. All these functional requirements can be traced.

3.2 Key Concepts and Terminology

To understand the requirements outlined in this chapter, it is important to be familiar with certain key concepts related to the **Robot Operating System (ROS)**, which serves as the framework for our embedded system.

3.2.1 ROS Overview

The Robot Operating System (ROS) is a middleware framework that is essential for managing complex data exchanges in autonomous systems like our "Computer on Wheels." It provides tools for creating modular software components, called nodes, that can communicate over defined channels known as topics.

3.2.2 ROS Nodes

Nodes are software modules that perform specific tasks. For example, a sensor node may detect obstacles, while a control node manages vehicle movement.

3.2.3 ROS Topics

Topics are the communication channels between nodes. Each topic is defined for a specific type of data exchange, such as publishing sensor readings or receiving control commands.

3.2.4 ROS Messages

Messages are the data structures used to communicate information over ROS topics. Each message type has a defined format and is used to transmit specific types of data, such as position coordinates or sensor measurements.

3.2.5 ROS Services

Services provide a way for nodes to request specific actions or information from each other, such as recalculating a path when an obstacle is detected.

This foundational understanding of ROS will facilitate comprehension of the requirements detailed in the subsequent sections.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.3 Functional Requirements

3.3.1 Vehicle Control:

Table 3.4: FR1

No	Functional	Breakdown		
	Requirement			Description
		ID	Sub-	
			Functionality	
1	Vehicle Control	1.1	Autonomous	The system shall be capable of
			Navigation	autonomously navigating from a
				starting point to a destination using
				ROS-based navigation stacks.
1	Vehicle Control	1.2	Acceleration	The system shall control the vehicle's
			Control	acceleration to maintain desired
				speeds along the planned trajectory,
				publishing commands to the topics in
				ROS.
1	Vehicle Control	1.3	Emergency Stop	The system shall include a
				mechanism for the driver to perform
				an immediate emergency stop,
				halting all vehicle operations by
				publishing to the dedicated ROS
				topic (/emergency_stop)
1	Vehicle Control	1.4	Throttle Control	The system shall control the throttle
				to regulate vehicle speed within a
				range of 0 to 120 km/h, adjusting for
				road conditions and traffic
				regulations, using PID controller
				implemented in ROS.
1	Vehicle Control	1.5	Steering Control	The system shall control the vehicle's
				steering to maintain a maximum
				lateral deviation of 0.5 meters from
				the planned trajectory under normal

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification Date: <10/23//24>	
<document identifier=""></document>	

				conditions, using ROS control
				messages.
1	Vehicle Control	1.6	Braking Control	The system shall control the vehicle's
				braking to safely decelerate and stop
				as required by the planned trajectory,
				publishing braking commands to
				ROS topic.
				1

3.3.2 Path Planning:

Table 3.5: FR2

No	Functional		Breakdown		
	Requirement	ID Sub-		Description	
			Functionality		
2	Path Planning	2.1	Route Calculation	The system shall calculate the most	
				efficient route i.e. shortest path from	
				the vehicle's current location to the	
				driver-specified destination using	
				ROS-based algorithms.	
2	Path Planning	2.2	Lane Assignment	The system shall assign appropriate	
				lanes for the vehicle to travel in along	
				the calculated route, based on legal	
				navigation rule and map data.	
2	Path Planning	2.3	Waypoint	The system shall generate waypoints	
			Generation	along the calculated route to guide the	
				vehicle towards the destination,	
				publishing waypoints to a ROS topic	
				(/waypoints).	
2	Path Planning	2.4	Dynamic	The system shall adapt the vehicle's	
			Obstacle	path in real-time to safely avoid	
			Avoidance	unexpected obstacles using ROS-	
				based path adjustment algorithms.	
2	Path Planning	2.5	Map Reading	The system shall be able to read and	
				interpret digital map data using ROS	

Computer On W	heels Project		Version:		<7.0>	
Software Requirements Specification		Date: <1	0/23/	/24>		
<document iden<="" td=""><td>tifier></td><td></td><td></td><td></td><td></td><td></td></document>	tifier>					
		to d	etermine	the	vehicle's	precise
		locati	on within	the r	oad networ	ſk

3.3.3 Path Following:

Table 3.6: FR3

No	Functional		Breakdown	
	Requirement	ID	Sub-	Description
			Functionality	
3	Path Following	3.1	Path smoothing	The system shall apply path smoothing
				techniques to limit acceleration changes
				to within 0.3 m/s², ensuring a smooth
				ride for passengers.
3	Path Following	3.2	Lateral Control	The system shall maintain a lateral
				deviation of no more than 0.5 meters
				from the planned path under normal
				driving conditions using ROS control
				loops.
3	Path Following	3.3	Longitudinal	The system shall maintain a longitudinal
			Control	deviation of no more than 1 meter from
				the planned path under normal driving
				conditions.
3	Path Following	3.4	Speed Control	The system shall control the speed to
				reach the destination.
3	Path Following	3.5	Waypoint	The system shall follow waypoints
			Following	along the calculated route, using ROS
				topics to track progress towards each
				waypoint.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.3.4 Sensor Integration:

Table 3.7: FR4

No	Functional		Breakdown		
	Requirement	ID	Sub-Functionality	Description	
4	Sensor	4.1	Inertial	The greatern shall use on IMII to	
4	Sensor	4.1	meruai	The system shall use an IMU to	
	Integration		Measurement Unit	provide orientation and acceleration	
			Utilization	data at a frequency of 100 Hz,	
				publishing data to ROS topics.	
4	Sensor	4.2	Global Positioning	The system shall use GPS to	
	Integration		System Utilization	determine the vehicle's position and	
				publish coordinates to a ROS topic	
				(/gps_data).	
4	Sensor	4.3	Radar/Lidar	The system shall utilize radar/lidar	
	Integration		Utilization	sensors to provide information about	
				surrounding objects' velocity and	
				distance, enhancing situational	
				awareness through ROS topics	

3.3.5 Trajectory Planning:

Table 3.8: FR5

No	Functional		Breakdown	Description
	Requirement	ID	Sub-	
			Functionality	
5	Trajectory	5.1	Trajectory	The system shall plan a smooth and
	Planning		Generation	optimal trajectory, based on
				destination specified by user.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.3.6 Obstacle Detection:

Table 3.9: FR6

No	Functional		Breakdown	Description
	Requirement	ID	Sub-Functionality	
6	Obataala	(1	Detection Using	The evident shall utilize verieus sensors
0	Obstacle	6.1	Detection Using	The system shall utilize various sensors
	Detection		Sensors	to detect obstacles in the vehicle's path,
				integrating data through ROS topics
				(/obstacle_detection).
6	Obstacle	6.2	Environmental	The system shall maintain awareness of
	Detection		Awareness	static and dynamic objects in the
				vehicle's vicinity, using ROS-based
				perception modules.
6	Obstacle	6.3	Dynamic Obstacle	The system shall continuously track
	Detection		Tracking	moving obstacles, updating their
				positions through ROS messages.
6	Obstacle	6.4	Destination	The system shall calculate the distance to
	Detection		Estimation	detected obstacles and publish this data
				to a ROS topic
				(/distance_to_obstacle).

3.3.7 Obstacle Avoidance:

Table 3.10: FR7

No	Functional		Breakdown	Description	
	Requirement	ID	Sub-Functionality		
7	Obstacle	7.1	Maneuver	The system shall execute safe and	
,	Avoidance	7.1	Execution	efficient avoidance maneuvers to	
				navigate around detected obstacles, using	
				ROS-based planning and control.	
7	Obstacle	7.2	Steering Control	The system shall dynamically adjust	
	Avoidance			steering angles to guide the vehicle away	
				from obstacles, keeping it on its intended	

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

				path using ROS.
7	Obstacle	7.3	Re-Plan Path	The system shall re-plan the path once an
	Avoidance			obstacle is detected, updating the path
				through ROS services.
7	Obstacle	7.4	Trajectory	The system shall dynamically adjust the
	Avoidance		Adjustment	vehicle's trajectory to avoid obstacles in
				a clear environment using ROS
				algorithms.
7	Obstacle	7.5	Multi-Obstacle	The system shall manage avoidance of
	Avoidance		Handling	multiple obstacles simultaneously
				through ROS-based coordination.

3.3.8 Destination Arrival:

Table 3.11: FR8

No	Functional		Breakdown	Description
	Requirement	ID	Sub-	
			Functionality	
8	Destination	8.1	Destination	The system shall approach the driver-
	Arrival		Approach	specified destination with a positional
				accuracy of within 1 meter, following the
				calculated trajectory and waypoints using
				ROS.
8	Destination	8.2	Stop at Destination	The system shall bring the vehicle to a
	Arrival			complete stop within 1 meter of the
				designated destination, ensuring
				deceleration rates do not exceed 2 m/s ²
				for passenger safety and comfort.

3.3.9 User Inputs:

Table 3.12: FR9

No	Functional		Breakdown	Description
	Requirement	ID	Sub-Functionality	
9	User Inputs	9.1	Ride Initiation	The system shall allow the user to initiate
				the autonomous driving process through a

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

				terminal command, which will start the
				ROS nodes required for vehicle
				navigation, control, and sensor integration.
				The command shall initiate the entire
				process of path planning, path following,
				and obstacle detection, ensuring all
				necessary components are activated before
				vehicle motion begins.
9	User Inputs	9.2	Destination Setting	The user shall be able to input the desired
				destination, triggering the route planning
				process through ROS services.

3.3.10 System Integration:

Table 3.13: FR10

No	Functional		Breakdown	Description
	Requirement	ID	Sub-	
			Functionality	
10	System	10.1	ROS Integration	The system shall utilize the Robot
	Integration			Operating System (ROS) to facilitate
				communication and data exchange
				between different software components.
10	System	10.2	Simulation	Development and testing of the system
	Integration		Environment	shall be conducted in a simulated
				environment (e.g., CARLA simulator) for
				thorough validation before real-world
				deployment.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.3.11 Traffic Light Module:

Table 3.14: FR11

No	Functional		Breakdown	Description
	Requirement	ID	Sub-Functionality	
11	Traffic Light	11.1	Traffic Light Detection	The system shall detect traffic lights in the
	Module			vehicle's path using camera-based sensors and
				publish the detected traffic light information to a
				ROS topic (/traffic_light_detection).
11	Traffic Light	11.2	Traffic Light State	The system shall recognize the state of detected
	Module		Recognition	traffic lights (red, yellow, green) using image
				processing algorithms within a ROS node,
				publishing the identified state to a topic
				(/traffic_light_state).
11	Traffic Light	11.3	Decision-Making Based	The system shall adjust vehicle behavior (e.g.,
	Module		on Traffic Light State	deceleration, stopping, or proceeding) based on
				the recognized traffic light state, using data from
				the /traffic_light_state topic.
11	Traffic Light	11.4	Red Light Handling	Upon detecting a red-light state, the system shall
	Module			bring the vehicle to a complete stop at a safe
				distance i.e., 1 meter from the traffic light,
				ensuring smooth deceleration.
11	Traffic Light	11.5	Green Light Handling	Upon detecting a green light state, the system
	Module			shall resume vehicle motion and proceed along
				the planned path.
11	Traffic Light	11.6	Yellow Light Handling	Upon detecting a yellow light state, the system
	Module			shall determine whether it is safe to proceed
				based on vehicle speed and distance to the
				traffic light, either decelerating to a stop or
				proceeding through the intersection.
11	Traffic Light	11.7	Traffic Light State	If the system cannot detect a traffic light state
	Module		Uncertainty	for more than 2 seconds, it shall trigger a safe

Computer On Wheels Proj	ect	Version: <7.0>	
Software Requirements Sp	pecification	Date: <10/23//24>	
<document identifier=""></document>			
		stop and log an error message to a ROS	top

	stop and log an error message to a ROS topic
	(/traffic_light_error).

3.4 Non-Functional Requirement

Table 3.15: NFR1

No	Non- Functional Requirement	Subfactor	Verification Metric	Target Value
1	Safety Requirement	Hazard Protection	Detection Accuracy:	Detection
	Ensure reliable	The system must	Measure the percentage	Accuracy: \geq
	object detection in	detect and respond to	of correctly detected	90%
	adverse weather	hazards arising from	objects in various	Response
	conditions to assure	adverse weather	weather conditions.	Time: ≤ 2
	safety	conditions, such as	Response Time: Time	seconds in 95%
		rain, fog, or snow,	taken to respond to	of cases
		which may reduce	detected hazards.	
		visibility.	Test Cases: Conduct	
			tests in simulated	
			environments with	
			varying weather	
			scenarios (e.g., rain, fog,	
			snow)	

Table 3.16: NFR2

No	Non- Functional Requirement		Subfactor	Verification M	letric	Target Value
2	Scalability	Requirement	System	Integration	Time:	Integration
	The	ROS-based	Expandability	Measure the time	e taken	Time: ≤ 10
	architecture	shall support		to integrate a	new	minutes
	adding new	sensors (e.g.,		sensor and	update	
	radar, additi	ional cameras)		existing m	odules.	
	without sign	ificant changes				

Computer On Wheels Project	Version: <7.0>	
Software Requirements Specification	Date: <10/23//24>	
<document identifier=""></document>		

to the core modules.	Compatibility Tests:	
	Perform tests to ensure	
	new sensors can be	
	added without affecting	
	existing functionality.	
	Modularity	
	Assessment: Analyze	
	the architectural design	
	for dependencies that	
	may hinder expansion.	

Table 3.17: NFR3

No	Non- Functional Requirement	Subfactor	Verification Metric
3.1	Modularity Requirement The	Software	Node Independence: Verify that each
	system shall maintain a	Architecture	node can be tested independently
	modular ROS node structure,		without affecting others. Modification
	separating perception,		Time: Measure the time required to
	planning, and control into		modify or update a specific node.
	distinct nodes for ease of		
	testing and modification.		
3.2	Modularity Requirement	Task	Message Latency: Measure the time
	Each ROS node shall handle a	Separation	taken for messages to be published and
	specific task (e.g., path		received between nodes (≤ 100 ms).
	planning, obstacle detection)		Task Success Rate: Evaluate the
	and communicate through		success rate of individual nodes in
	well-defined ROS topics.		completing their specific tasks (≥ 95%).

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.3 Purchased Components

Not Applicable

3.4 Hardware Interfaces

Since the application is simulation based, no hardware will be included due to multiple constraints such as cost.

3.5 Software Interfaces

- **ROS Integration:** The system shall communicate with the Robot Operating System (ROS) to facilitate data exchange and coordination between different software components.
- **CARLA Simulator Integration:** The system shall integrate with the CARLA simulator to develop and test algorithms in a simulated environment before realworld deployment.
- CARLA-ROS Bridge: The system shall utilize the CARLA-ROS bridge for seamless integration between the CARLA simulator and ROS, enabling data exchange and control commands.
- **rospy Integration:** The system shall use rospy for Python-based ROS programming to develop and implement control algorithms, perception modules, and navigation strategies.

Computer On Wheels Project	Version: <7.0>
Software Requirements Specification	Date: <10/23//24>
<document identifier=""></document>	

3.6 Licensing Requirements

Not Applicable

3.7 Applicable Standards

It shall be as per the automotive industry standard.

4. Supporting Information

Please refer the following document:

- 1. Use case analysis.
- 2. Detailed use case analysis.
- 3. Activity analysis.
- 4. WBS
- 5. Research papers