

### **Outline**

- 1 Base f Reinforcement Learning (RL) & Tracking Control
- 2 Experimental Setup: 3D Printing Robot System
- 3 RL for Tracking: A Survey
- 4 Research Plan & Conclusion

• Inspired by how living organisms learn



- Inspired by how living organisms learn
- Learning through interaction with environment

- Inspired by how living organisms learn
- Learning through interaction with environment



source: google



source: SC4081 slide

- Inspired by how living organisms learn
- Learning through interaction with environment





Introduce the reward / reinforcement signal



### **Mathematical Formalization of RL**

#### Definition

A Markov Decision Process (MDP) is defined as a tuple  $\langle X, U, \overline{f}, \rho \rangle$  where

- X = state space
- U = action space
- $\bar{f}: X \times U \rightarrow X = \text{system dynamics}$
- $\rho: X \times U \to \mathbb{R}$  = reward (cost) function

### **Mathematical Formalization of RL**

#### Definition

A Markov Decision Process (MDP) is defined as a tuple  $\langle X, U, \overline{f}, \rho \rangle$  where

- X = state space
- U = action space
- $\bar{f}: X \times U \rightarrow X = \text{system dynamics}$
- $\rho: X \times U \rightarrow \mathbb{R} = \text{reward (cost) function}$

#### Definition

System and policy dynamics are defined as:

$$x_{k+1} = \bar{f}(x_k, u_k) = f(x_k) + g(x_k)u_k$$
 (1)

$$u_{k+1} = \pi(x_k, u_k)$$

$$r_{k+1} = \rho(x_k, u_k) \tag{3}$$



## Mathematical Formalization of RL (2)

#### Definition

Formulize goal as return R

$$R_k = r_k + r_{k+1} + r_{k+1} + \dots + r_T \tag{4}$$

Discounted return:

$$R_k = r_{k+1} + \gamma r_{k+2} + \gamma^2 r_{k+3} + \dots = \sum_{i=0}^{\infty} \gamma^j r_{k+j+1}$$
 (5)



## Mathematical Formalization of RL (2)

#### Definition

Formulize goal as return R

$$R_k = r_k + r_{k+1} + r_{k+1} + \dots + r_T$$
 (4)

Discounted return:

$$R_k = r_{k+1} + \gamma r_{k+2} + \gamma^2 r_{k+3} + \dots = \sum_{i=0}^{\infty} \gamma^j r_{k+j+1}$$
 (5)

#### Definition

Value function V measures how a good is it to be at a certain state x

$$V(x_k) = \rho(x_k, u_k) + \gamma \rho(x_{k+1}, u_{k+1}) + \gamma^2 \rho(x_{k+2}, u_{k+2}) + \dots$$
 (6)

$$V(x_k) = \rho(x_k, u_k) + \gamma V(x_{k+1})$$
 (7)



## Mathematical Formalization of RL (3)

How to obtain an optimal policy  $\pi^*$ ? First, an exact value function  $V \forall x \in \mathcal{X}$  must be found

#### Definition

Bellman optimality principle:

$$V^*(x_k) = \min_{u_k} \left[ \rho(x_k, u_k) + \gamma V^*(x_{k+1}) \right]$$
 (8)

$$\pi^*(x_{k-1}) = u_k^* = \arg\min_{u_k} \left[ \rho(x_k, u_k) + \gamma V^*(x_{k+1}) \right]$$
 (9)



## **Solutions to RL problem**

Dynamic Programming (DP):

- needs system model
- examplé: policy iteration (PI)



## Solutions to RL problem

Dynamic Programming (DP):

- needs system model
- example: policy iteration (PI)

## Algorithm 2 Policy Iteration

```
1: Initialization:
         Start from an admissible policy \pi, assign V^{\pi}(x) \leftarrow 0
      repeat
 4:
          Policy Evaluation:
 5:
          repeat
 6:
7:
8:
9:
              \Delta \leftarrow 0
              For each x \in \mathcal{X}:
                   V \leftarrow V^{\pi}(x)
                    V^{\pi}(x) \leftarrow \rho(x, \pi(x)) + \gamma V^{\pi}(x')
10:
                    \Delta = \max(\Delta, |v - V^{\pi}(x)|)
11:
          until \Delta < \varepsilon (a small positive number)
12:
          Policy Improvement:
13:
          For each x \in \mathcal{X}:
14:
                \pi(x) = \arg\min \rho(x, u) + \gamma V^{\pi}(x')
15: until \pi converges
```



## **Solutions to RL problem (2)**

Temporal Difference (TD)

- does not need system model
- examples: Q-learning, actor-critic



Actor-critic structure (source: SC4081 slide)



## Solutions to RL problem (3)

Actor critic method

- suitable for continous state and action space e.g. robotics
- parameterize actor and critic using function approximators

#### **Algorithm 3** Actor-critic algorithm

- 1: For every trial:
- Initialize  $x_0$  and  $u_0 = \tilde{u}_0$
- 3: repeat
- 4: apply  $u_k$ , measure  $x_{k+1}$ , receive  $r_{k+1}$
- 5: choose next action  $u_{k+1} = \hat{\pi}(x_{k+1}, \psi_k) + \tilde{u}_{k+1}$
- 6:  $\delta_k = r_{k+1} + \hat{V}(x_{k+1}, \theta_k)\hat{V}(x_k, \theta_k)$
- $heta_{k+1} = heta_k + lpha_c \delta_k rac{\partial \hat{V}(x, heta)}{\partial heta} igg|$ 7:
- $\psi_{k+1} = \psi_k + \alpha_c \delta_k \frac{\partial \hat{V}(x, \psi)}{\partial \psi}$ 8:
- 9: until terminal state



## **Tracking Control**

#### Typical tracking controllers:

- Open-loop control
- State/Output Feedback control (e.g. PID controller)
- Feedback + feedforward control (e.g. LQT optimal controller)

**Drawback:** even the best of the 3 only performs as good as the model!



## **Research Question**

The following research question is raised:

"Is it possible to improve the tracking performance of a nominal controller using Reinforcement Learning?"



## 3D Printing Robot

- The UR5 robot with unknown internal controller
- 4 types of command:
  - Tool Position (x, y, z) in meter
  - Tool Velocity  $(\dot{x}, \dot{y}, \dot{z})$  in meter/s
  - Joint Position  $(q_1, q_2, q_3, q_4, q_5, q_6)$  in rad
  - Joint velocity  $(\dot{q}_1, \dot{q}_2, \dot{q}_3, \dot{q}_4, \dot{q}_5, \dot{q}_6)$  in rad/s
- The laser scanner
- The 3D Print head



## 3D Printing Robot

- The UR5 robot with unknown internal controller
- 4 types of command:
  - Tool Position (x, y, z) in meter
  - Tool Velocity  $(\dot{x}, \dot{y}, \dot{z})$  in meter/s
  - Joint Position  $(q_1, q_2, q_3, q_4, q_5, q_6)$  in rad
  - Joint velocity  $(\dot{q}_1, \dot{q}_2, \dot{q}_3, \dot{q}_4, \dot{q}_5, \dot{q}_6)$  in rad/s
- The laser scanner
- The 3D Print head





## 3D Printing Robot: system identification

Subspace identification



**Table 1.** VAF scores of the simulated outputs for all joints

| Joint | Position | Velocity |
|-------|----------|----------|
| 1     | 98.64    | 87.33    |
| 2     | 98.05    | 88.33    |
| 3     | 98.55    | 88.47    |
| 4     | 98.97    | 89.50    |
| 5     | 99.46    | 90.32    |
| 6     | 98.87    | 85.13    |



## 3D Printing Robot: MPC controller

- test a simple straight trajectory along X-axis
- compares MPC with previously mentioned controllers





Y trajectories of the robot with different controllers



Z trajectories of the robot with different controllers



## **Hypotheses**

- "Current controller (MPC) relies heavily on the identified model which is not perfect. Therefore, the model-mismatch induced by the unknown dynamics is responsible for the non-optimal performance of the MPC controller"
- "The best nominal controller yet is not PID, LQR, or else. It is the internal controller of the robot itself"



## RL for Optimal Tracking Control

Assume a SISO LQT problem:

$$\begin{aligned}
x_{k+1} &= Ax_k + Bu_k \\
y_k &= Cx_k
\end{aligned} \tag{10}$$

with reference signal  $r_k$ .

#### Definition

The cost function:

$$J = V(x_k, r_k) := \frac{1}{2} \sum_{i=k}^{\infty} \left( Cx_i - r_i \right)^T Q \left( Cx_i - r_i \right) + u_i^T Ru_i$$
 (11)



## RL for Optimal Tracking Control (2)

The solution to LQT is a combination of feedback and feedforward term:

$$u_k = -Kx_k + K_V v_{k+1} (12)$$

where

$$v_k = (A - BK)^T v_{k+1} + C^T Q r_k$$
 (13)

The control gains are:

$$K = (B^T S B + R)^{-1} B^T S A$$

$$K_V = (B^T S B + R)^{-1} B^T$$
(14)

with S is the solution of ARF.

$$S = A^{T}SA - A^{T}SB(B^{T}SB + R)^{-1}B^{T}SA + C^{T}QC$$
(15)

**Drawback:** Have to solve a non-causal difference equation



## **RL for Optimal Tracking Control (3)**

Important assumption:

$$r_{k+1} = Fr_k \tag{16}$$

Construct an augmented state:

$$\begin{bmatrix} X_{k+1} \\ r_{k+1} \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & F \end{bmatrix} \begin{bmatrix} X_k \\ r_k \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k$$

$$X_{k+1} = TX_k + B_1 u_k$$
(17)

#### Definition

Define a lyapunov function:

$$V(x_k, r_k) = V(X_k) = \frac{1}{2} X_k^T P X_k$$
 (18)

Combining the infinite cost with lyapunov function yields a Bellman equation for augmented LQT:

$$X_k^T P X_k = X_k^T Q_1 X_k + u_k^T R u_k + X_{k+1}^T P X_{k+1}$$
 (19)



## **RL for Optimal Tracking Control (4)**

Taking the time derivative of LQT Bellman, we obtain the LQT ARE

$$Q_1 - P + T^T P T - T^T P B_1 (R + B_1^T P B_1)^{-1} B_1^T P T = 0$$
 (20)

The optimal policy is given by:

$$u_k = -K_1 X_k \tag{21}$$

with

$$K_1 = (R + B_1^T P B_1)^{-1} B_1^T P T$$

and

$$Q_1 = \begin{bmatrix} C^T Q C & -C^T Q \\ -Q C & Q \end{bmatrix}$$
 (23)



(22)

## **RL for Optimal Tracking Control (5)**

From the LQT, obtain lyapunov equation

$$P = Q_1 + K_1^T R K_1 + (T - B_1 K_1)^T P (T - B_1 K_1)$$
 (24)

Solve for P which satisfies (24)

#### **Algorithm 4** Offline Policy Iteration

- 1: **Initialization:** Select an admissible (stable) gain  $K_1^0$
- 2: repeat
- 3: Policy evaluation:
- 4:  $P^{j+1} = Q_1 + (K_1^j)^T R K_1^j + (T B_1 K_1^j)^T P^{j+1} (T B_1 K_1^j)$
- 5: 6:
- 6: Policy improvement:
- 7:  $K_1^{j+1} = (R + B_1^T P^{j+1} B_1)^{-1} B_1^T P^{j+1} T$
- 8: **until** *P* converges



# RL for OTC with unknown system dynamics

Use a temporal difference (TD) RL technique

#### Definition

Q-function:

$$Q(X(k), u(k)) = \frac{1}{2}X(k)^{T}PX(k)$$
(25)

Combining (25) with Bellman yields:

$$Q(X(k), u(k)) = \frac{1}{2}X(k)^{T}Q_{1}X(k) + \frac{1}{2}u(k)^{T}Ru(k) + \frac{1}{2}\gamma X^{T}(k+1)PX(k+1)$$

$$= \frac{1}{2}X(k)^{T}Q_{1}X(k) + \frac{1}{2}u(k)^{T}Ru(k) + \frac{1}{2}\gamma(TX(k) + B_{1}u(k))^{T}P(TX(k) + B_{1}u(k))$$

$$= \frac{1}{2}\begin{bmatrix} X(k) \\ u(k) \end{bmatrix}^{T}\begin{bmatrix} Q_{1} + \gamma T^{T}PT & \gamma T^{T}PB_{1} \\ \gamma B_{1}^{T}PT & R + \gamma B_{1}^{T}PB_{1} \end{bmatrix}\begin{bmatrix} X(k) \\ u(k) \end{bmatrix}$$
(26)



# RL for OTC with unknown system dynamics (2)

By defining:

$$H = \begin{bmatrix} Q_1 + \gamma T^T P T & \gamma T^T P B_1 \\ \gamma B_1^T P T & R + \gamma B_1^T P B_1 \end{bmatrix} = \begin{bmatrix} H_{XX} & H_{Xu} \\ H_{uX} & H_{uu} \end{bmatrix}$$
 (27)

The optimal input is reached when  $\frac{\partial Q(X(k),u(k))}{\partial u(k)}=0$  which yields:

$$u(k) = -H_{uu}^{-1}H_{uX}X(k)$$
 (28)

Fortunately, one can apply PI to solve for *H*:

#### **Algorithm 5** Model-free Policy Iteration

- 1: **Initialization:** Select an initial admissible (stable) control input  $u = -K_1^0 X_0$
- 2: repeat
- 3: **Policy evaluation:**
- 4:  $Z(k)^T H^{j+1} Z(k) = X(k)^T Q_1 X(k) + (u(k)^j)^T R u(k)^j + Z(k+1)^T H Z(k+1)$
- 5: Policy improvement:
- 6:  $u^{j+1}(k) = -(H_{uu}^{-1})^{j+1}H_{ux}^{j+1}X(k)$
- 7: **until** *H* converges



## **RL for OTC: Summary**

#### **Advantages:**

- Mathematically rigorous
- Proven to converge

#### **Disadvantages:**

- non-linear RL-based OTC does not exist.
- Needs a persistently exciting input, could be dangerous for the robot

## **Dynamic Tuning via RL**

- A feedback control e.g. PID performs well at a certain region
- For different regions, the controller needs to be retuned
- Solution: gain scheduling
- The general diagram:



## **Dynamic Tuning via RL**

- A feedback control e.g. PID performs well at a certain region
- For different regions, the controller needs to be retuned
- Solution: gain scheduling
- The general diagram:



Various types of RL algorithm can be used: actor-critic, SARSA, etc.



## **Dynamic Tuning via RL (2): SARSA**

- Stands for state-action-reward-state-action
- Policy  $\pi$  as gain modifier, not controller



#### Algorithm 6 SARSA algorithm

```
1: Initialization: Initialize O(x, u) arbitrarily
 2:
3:
4:
     repeat
         Initialize x
         update \pi based on O
 5:
         Choose K at x using \pi
 6:
7:
8:
9:
         repeat
             Modify feedback controller using gain K
             Take action u from the controller, observe r, x'
            update \pi based on Q
10:
             Choose K' from x' using \pi
11:
             Q(x,K) \leftarrow Q(x,K) + \alpha[r + \gamma Q(x',K') - Q(x,K)]
             x \leftarrow x'
         until x is terminal
     until episodes run out
```

February 17, 2015

## **Dynamic Tuning via RL (3): Actor-critic**

- An alternative to SARSA
- Actor and critic can be parameterized with a basis function e.g. RBF neural network





## Dynamic Tuning via RL (4): Summary

#### **Advantages:**

Intuitive and easier to implement

#### **Disadvantages:**

- so far only applies to feedback controller
- feedback controller "waits" until error occurs, hence it is always late
- will not perform better due to this reason

## Nonlinear Compensator using RL

- A relatively new approach
- Acts as an additive input
- An actor critic RL is proposed





## Nonlinear Compensator using RL (2)

cost function is defined to be similar to LOT

$$r_{k+1} = \rho(y_k, y_k^d, u_k) = (y_k^d - y_k)^T Q(y_k^d - y_k) + u_k^T R u_k$$
 (29)

Critic  $V(x_k, \theta_k)$  and actor  $\pi(x_k, \theta_{k-1})$  are parameterized by function approximators e.g. LLR, neural network, etc and respectively.

#### Advantages:

- a relatively new approach, hence interesting for research
- the compensator does not depend directly on the nominal control, hence adding a degree of freedom in control design

#### Disadvantage:

Not mathematically as rigorous as RL-based optimal control



#### Research Plan





#### Conclusion

- The RL-based additive compensator is chosen as the most promising solution
- Simulation on 1-DoF arm will be performed before starting implementation on UR5 robot
- Possible comparison with ILC



## **End of presentation**



Thank you for the attention

# **Question?**



