触发器的脉冲工作特性

触发器的脉冲工作特性: 在考虑到构成触发器的门电路存在的时间延迟, 为使触发器能正确地变化到预定的状态, 输入信号与时钟脉冲之间应满足的时间关系。

(以D触发器为例,但不局限于D触发器)

t_{set}—建立时间

th—保持时间

 T_{WH} —时钟高电平持续时间

 T_{WI} —时钟低电平持续时间

最高工作频率

$$f_{CPmax} \le \frac{1}{T_{WH} + T_{wL}} = \frac{1}{5t_{pd}}$$

其中: t_{pd} 为Q端相对于CP上升沿(触发沿)的延迟时间

D触发器的应用 (1)

移位寄存器

所有触发器CP端 都连在一起—— 同步时序电路

由于 Q_1 (D_2)相 对于 t_3 有 t_{pd} 延迟, 故到达 t_3 时, D_2 仍为1,则 D_3 =1

右移的移 位寄存器

D触发器的应用 (2)

二进制计数器

二进制计数器=模2计数器=2分频器

十六进制加法计数器(模16计数器、16分频器)

D触发器的应用 (2)

异步计 数器

思考题:分析如下电路。

十六进制减法计数器

JK触发器的内部电路

J—K触发器

JK触发器的真值表

下降沿触发

J	K	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	\overline{Q}^n

J—K触发器

JK触发器的次态方程或特征方 程为

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

常用的J—K触发器

型号	触发器数	结构	J	K	输出
7472	1	主从	$J_1 \cdot J_2 \cdot J_3$	$K_1 \cdot K_2 \cdot K_3$	$Q \sqrt{Q}$
74109	2	边沿	J	K	$Q\sqrt{\overline{Q}}$
74111	2	主从	J	K	$Q \sqrt{Q}$
74276	4	边沿	J	K	Q
74376	4	边沿	J	K	Q
CD4027	2	主从	J	K	$Q \sqrt{Q}$

主从J—K触发器

延迟输出

J—K触发器的应用

二进制计数器

J—K触发器的应用

十六进制减法计数器

思考题:分析如下电路

T触发器

当T=0时,
$$Q^{n+1} = Q^n$$

当T=1时, $Q^{n+1} = \overline{Q}^n$

特征方程 $Q^{n+1} = T \oplus Q^n$

T触发器的应用

构成的异步计数器

 Q_1 Q_2 Q_3

十六进制减法计数器

异步计数器小结

D触发器

十六进制减法计数器

异步计数器小结

J-K触发器

十六进制加法计数器

十六进制减法计数器

异步计数器小结

T触发器

十六进制减法计数器

异步计数器

异步2k进制计数器的结构

触发方式计数规律	上升沿	下降沿
加法	$CP_i = \overline{Q}_{i-1}$	$CP_i = Q_{i-1}$
减法	$CP_i = Q_{i-1}$	$CP_i = \overline{Q}_{i-1}$

例2 试用J-K触发器设计上题的模8加/减计数器。

例3 教材P152 例4-1-1

波形图

电路状态图

设初态 为000 状态110时瞬间 变换到001