

Trend Spotting!

200

Trends

Some time series do not exhibit any clear trends over time:

Trends: Linear

Examples of linear trends over time:

Trends: Rapid Growth

Examples of rapid growth trends over time:

Trends: Periodic

Examples of periodic or sinusoidal trends over time:

Trends: Variance

Examples of increasing variance trends over time:

Sample Transformations: log()

The log() function can linearize a rapid growth trend:

Sample Transformations: diff()

The diff() function can remove a linear trend:

Sample Transformations: diff(..., s)

The diff(..., s) function, or seasonal difference transformation, can remove periodic trends.

Time

```
> diff(x, s = 4)
                   (a)
                                                         (b)
                                         0.05
   0.0
   -0.5
                                                            30
                20
                     30
                                                       20
                                                                  40
           10
                          40
                               50
                                                  10
```

Time

Let's practice!

The White Noise (WN) Model

White Noise

White Noise (WN) is the simplest example of a stationary process.

A weak white noise process has:

- A fixed, constant mean
- A fixed, constant variance
- No correlation over time

White Noise

Time series plots of White Noise:

White Noise

Time series plots of White Noise?

Simulating White Noise - I

```
> # Simulate n = 50 observations from the WN model
> WN_1 <- arima.sim(model = list(order = c(0, 0, 0)), n = 50)
> head(WN_1)

[1] -0.005052984  0.042669765  3.261154066  2.486431235
[4] 0.283119322  1.543525773
```

> ts.plot(WN_1)

Simulating White Noise - II

> ts.plot(WN_2)

Estimating White Noise

```
> # Fit the WN model with arima()
> arima(WN_2, order = c(0, 0, 0))
Coefficients:
      intercept
         4.0739
         0.2698
s.e.
sigma^2 estimated as 3.639
> # Calculate the sample mean and sample variance of WN
> mean(WN_2)
[1] 4.0739
> var(WN_2)
[1] 3.713
```


Let's practice!

The Random Walk (RW) Model

Random Walk

Random Walk (RW) is a simple example of a non-stationary process.

A random walk has:

- No specified mean or variance
- Strong dependence over time
- Its changes or increments are white noise (WN)

Random Walk

Time series plots of Random Walk:

Random Walk

The random walk recursion:

$$Today = Yesterday + Noise$$

More formally:

$$Y_t = Y_{t-1} + \epsilon_t$$

where ϵ_t is mean zero white noise (WN)

- Simulation requires an initial point Y_0
- Only one parameter, the WN variance σ_{ϵ}^2

Random Walk - I

The random walk process:

$$Y_t = Y_{t-1} + \epsilon_t$$

where ϵ_t is mean zero WN

As
$$Y_t - Y_{t-1} = \epsilon_t \longrightarrow \text{diff(Y) is WN}$$

Random Walk - II

Random Walk with Drift - I

The random walk with a drift:

$$Today = Constant + Yesterday + Noise$$

More formally:
$$Y_t = c + Y_{t-1} + \epsilon_t$$

where ϵ_t is mean zero white noise (WN)

- Two parameters, constant c, and WN variance σ_ϵ^2
- $Y_t Y_{t-1} = ? \longrightarrow WN$ with mean c!

Random Walk with Drift - II

Time series plots of Random Walk with drift:

Let's practice!

Stationary Processes

Stationarity

- Stationary models are parsimonious
- Stationary processes have distributional stability over time

Observed time series:

- Fluctuate randomly
- But behave similarly from one time period to the next

Weak Stationarity - I

Weak stationary: mean, variance, covariance constant over time.

 Y_1, Y_2, \dots is a weakly stationary process if:

- Mean μ of Y_t is same (constant) for all t
- Variance σ^2 of Y_t is same (constant) for all t
- And....

Weak Stationarity - II

• Covariance of Y_t and Y_s is same (constant) for all |t-s|=h, for all h.

For example, if the process is weakly stationary,

$$Cov(Y_2, Y_5) = Cov(Y_7, Y_{10})$$

since each pair is separated by three units of time.

Stationarity: Why?

A stationary process can be modeled with fewer parameters.

For example, we do not need a different expectation for each Y_t ; rather they all have a common expectation, μ .

• Estimate μ accurately by \overline{y}

Stationarity: When?

Many financial time series do not exhibit stationarity, however:

- The changes in the series are often approximately stationary
- A stationary series should show random oscillation around some fixed level; a phenomenon called mean-reversion

Stationarity Example

Inflation rates and changes in inflation rates:

Let's practice!