Problems on sequences

- 1. Give formal recursive definitions for the following operations on sequences. It is assumed that the push operation adds an element to the beginning of the sequence. The ith element in the sequence is the element that has exactly i elements occurring before it. Thus head(S) is the 0th element in the sequence.
 - (a) insert(S, x, i): inserts the element x in the sequence S after exactly i elements, if $0 \le i \le length(S)$, otherwise undefined.
 - (b) find(S, i): returns the *i*th element in the sequence if $0 \le i < length(S)$ and is undefined otherwise.
 - (c) erase(S, i): removes the *i*th element in the sequence if $0 \le i < length(S)$, otherwise does nothing.
 - (d) swap(S, i, j): swaps the *i*th and *j*th element in the sequence if $0 \le i < j < length(S)$, otherwise does nothing.
- 2. Consider an abstract data type T defined as follows. There is a value called λ in T. If t_1 and t_2 are two values in T then $t_1 \cdot t_2$ is also a value in T, where \cdot is an operation defined on values of type T. If a set of values S contains λ , and if for all $t_1, t_2 \in S \cap T$, $t_1 \cdot t_2 \in S$ then $T \subseteq S$. Further $t_1 \cdot t_2 \neq \lambda$ for all $t_1, t_2 \in T$ and $t_1 \cdot t_2 = t'_1 \cdot t'_2$ iff $t_1 = t'_1$ and $t_2 = t'_2$. Give at least 3 different examples of types that satisfy these axioms. What does the \cdot operation mean in each case? This is similar to numbers except that instead of next, we have a binary operation \cdot . There are at least 200 different kinds of objects that satisfy these axioms.

Consider the function f defined on this type.

$$f(\lambda) = 0$$

 $f(t_1 \cdot t_2) = 1 + \max(f(t_1), f(t_2))$

In your example types, what does this function mean?

3. The set of bit strings is defined as follows. λ is a bit string, and if S is a bit string then $S \cdot 0$ and $S \cdot 1$ are also bit strings. The induction axiom also holds. Consider the following functions defined on bit strings.

$$even(\lambda) = true$$

$$even(S \cdot 0) = even(S)$$

$$even(S \cdot 1) = !even(S)$$

$$f(\lambda) = \lambda$$

$$f(\lambda \cdot 0) = \lambda \cdot 1$$

$$f(\lambda \cdot 1) = \lambda \cdot 0$$

```
For all S \neq \lambda

f(S \cdot 0) = S \cdot 1 \text{ if } even(S)
= f(S) \cdot 0 \text{ otherwise.}
f(S \cdot 1) = f(S) \cdot 1 \text{ if } even(S)
= S \cdot 0 \text{ otherwise.}
```

Prove the following properties of the function f.

- (a) f is one-to-one, that is $f(S_1) = f(S_2)$ if and only if $S_1 = S_2$.
- (b) f is onto, that is for every string S_1 , there is a string S_2 such that $f(S_2) = S_1$.
- (c) Give a recursive definition of the inverse function of f, that is a function g such that g(f(S)) = S for all bit strings S.
- (d) Let $f^0(S) = S$ and $f^{k+1}(S) = f(f^k(S))$. Prove that for any string S and any symbol 0 or 1, $f^{2k}(S \cdot x) = f^k(S) \cdot f^k(x)$, where f(0) = 1 and f(1) = 0.
- (e) For any string S, $f^k(S) = S$ if and only if k is a multiple of $2^{length(S)}$.

This function f defines what is called the 'Gray code' for bit strings.

4. A sequence S is said to be obtained by interleaving sequences S_1 and S_2 if S can be partitioned into two subsequences that are equal to S_1 and S_2 . In other words, each element of S must be placed in exactly one of the two subsequences, keeping the order the same as in S, and the resulting subsequences are S_1 and S_2 . Define a function $interleave(S_1, S_2, S)$ that returns true iff S can be obtained by interleaving S_1 and S_2 . Given a sequence S, can you find the number of pairs of sequences S_1 , S_2 such that S can be obtained by interleaving S_1 and S_2 ? Given S_1 , S_2 , can you find the number of different sequences S, that can be obtained by interleaving S_1 , S_2 ?