DESIGN AND ANALYSIS OF ALGO RITHMS

CS 4120/5120 DIVIDE AND CONQUER

AGENDA

- Recursions
- Design techniques
- Divide and conquer
- Merge sort

RECURSIONS

- The solution depends on solutions to smaller instances of the same problem.
- A recursive function calls itself recursively one or more times to deal with closely related

RECURSIONS BINARY SEARCH

• Example: Given the following input sequence in increasing order and search for 78 in the input array.

- Binary search
 - Cuts the input array in half. Search one half and discard the other half
- Each subproblem is closely related to the original problem.
- Solving the bottoms-out case means solving the entire problem.

RECURSIONS MERGE SORT

Example: Using merge sort to sort the input sequence below.

TECHNIQUES THAT USE RECURSIONS

- Prune-and-Search
 - "Decrease-and-conquer"
 - The input size is reduced by a constant factor.
 - -T(n) = T(reduced n) + S(n)
- Divide-and-Conquer
 - Divide the original problem
 - Combine solutions

DIVIDE-AND-CONQUER

Three steps

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively.
 - If the subproblem sizes are small enough, just solve the subproblems in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.
- Algorithms
 - Merge sort, Maximum-subarray problem, Strassen's algorithm

MERGE SORT

• The MERGE-SORT algorithm

```
MERGE-SORT (A, p, r)

1 if p < r

2   q = \lfloor (p+r)/2 \rfloor

3   MERGE-SORT (A, p, q)

4   MERGE-SORT(A, q+1, r)

5   MERGE (A, p, q, r)
```

• The problem is broken down into two subproblems, with each subproblem being half the original size.

- Complete the cost-time columns of the algorithm.
- For now, use function f to denote the running time of the MERGE algorithm.

M	ERGE-SORT(A, p, r)	Cost	Time
I	if $p < r$	C_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	C_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

• The running time function. T(r - p + 1)

MERGE-SORT(A, p, r)		Cost	Time
I	if $p < r$	C_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	C_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

•
$$T(r - p + 1)$$

= $c_1 + c_2 + T(q - p + 1) + T(r - q) + f(n)$

M	ERGE-SORT(A, p, r)	Cost	Time
	if $p < r$	c_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	C_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

- Assume the input array A has $\begin{bmatrix} 5 & MERGE(A, p, q, r) \\ n & \text{elements.} \end{bmatrix}$ for f(r-p+n) and f(r-p+n) elements. To use MERGE-SORT algorithm, we can pass parameters (A, 1, n).
- The relation of n, p, r is $n = \underline{r p + 1}$.
- Try to derive the running time in terms of n.

•
$$T(r - p + 1)$$

= $c_1 + c_2 + T(q - p + 1) + T(r - q) + f(n)$

• Plug
$$q$$
 in $q - p + 1$

$$q - p + 1$$

$$=$$

M	ERGE- $SORT(A, p, r)$	Cost	Time
I	if $p < r$	C_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	C_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	

•
$$T(r - p + 1)$$

= $c_1 + c_2 + T(q - p + 1) + T(r - q) + f(n)$

• Plug
$$q$$
 in $r - q$

$$r - q$$

$$=$$

M	ERGE- $SORT(A, p, r)$	Cost	Time
I	if $p < r$	C_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	C_2	1
3	qMERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

•
$$T(r - p + 1)$$

= $c_1 + c_2 + T(q - p + 1) + T(r - q) + f(n)$

M	ERGE-SORT(A, p, r)	Cost	Time
	if $p < r$	c_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	C_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

• In summary

$$q-p+1=\left\{\begin{array}{c} \text{ (if }p+r\text{ is even)}\\ \\ \text{ (if }p+r\text{ is odd)} \end{array}\right. \qquad \qquad r-q=\left\{\begin{array}{c} \text{ (if }p+r\text{ is even)}\\ \\ \text{ (if }p+r\text{ is odd)} \end{array}\right.$$

• Derive the running time in terms of n.

M	ERGE-SORT(A, p, r)	Cost	Time
	if $p < r$	c_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	c_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

(if p + r is even)

(if
$$p + r$$
 is odd)

• Tolerate the sloppiness neglecting the 1/2 in $n/2 \pm 1/2$.

•
$$T(n) = c_1 + c_2 + 2T\left(\frac{n}{2}\right) + f(n)$$

• The function T(n) is affected by the two recursions and MERGE.

M	ERGE- $SORT(A, p, r)$	Cost	Time
I	if $p < r$	C_1	1
2	$q = \lfloor (p+r)/2 \rfloor$	c_2	1
3	MERGE- $SORT(A, p, q)$	T(q-p+1)	1
4	MERGE- $SORT(A, q + 1, r)$	T(r-q)	1
5	MERGE(A, p, q, r)	f(r-p+1)	1

MERGE ANALYSIS

- Complete the **cost** and **time** columns.
 - Let *P* denote the probability of the condition in line 13 being true.

M	ERGE(A, p, q, r)	Cost	Time
I	$n_1 = q - p + 1$	<i>c</i> ₁	1
2	$n_2 = r - q$	<i>C</i> ₂	1
3	Let $L[1n_1 + 1]$ and $R[1n_2 + 1]$	Ca	1
	be new arrays	<i>C</i> ₃	1
4	for $i = 1$ to n_1	<i>C</i> ₄	$n_1 + 1$
5	L[i] = A[p+i-1]	<i>c</i> ₅	n_1
6	for $j = 1$ to n_2	<i>c</i> ₆	$n_2 + 1$
7	R[j] = A[q+j]	<i>C</i> ₇	n_2
	$L[n_1+1] = \infty$	<i>c</i> ₈	1
9	$R[n_2+1] = \infty$	<i>C</i> ₉	1
10	i = 1	<i>c</i> ₁₀	1
	j = 1	<i>c</i> ₁₁	1
12	for $k = p$ to r	<i>c</i> ₁₂	(r-p) + 1 + 1
13	if $L[i] \leq R[j]$	<i>c</i> ₁₃	(r - p) + 1
14	A[k] = L[i]	<i>c</i> ₁₄	P((r-p)+1)
15	i = i + 1		P((r-p)+1)
16	else A[k] = R[j]	c ₁₆	(1-P)((r-p)+1)
17	j = j + 1		(1-P)((r-p)+1)

MERGE ANALYSIS

• Derive f(r-p+1). Let $c = \max c_i$ f(r-p+1)

M	ERGE(A, p, q, r)	Cost	Time
	$n_1 = q - p + 1$	c_1	1
2	$n_2 = r - q$	c_2	1
2	Let $L[1n_1 + 1]$ and $R[1n_2 + 1]$		1
<u> </u>	be new arrays	c_3	1
4	$\mathbf{for}\ i = 1\ \mathbf{to}\ n_1$	<i>C</i> ₄	$n_1 + 1$
5	L[i] = A[p+i-1]	<i>C</i> ₅	$ n_1 $
6	$\mathbf{for}j=1\;\mathbf{to}\;n_2$	<i>c</i> ₆	$n_2 + 1$
7	R[j] = A[q+j]	<i>C</i> ₇	n_2
8	$L[n_1+1] = \infty$	<i>c</i> ₈	1
9	$R[n_2+1] = \infty$	<i>C</i> 9	1
10	i = 1	c ₁₀	1
	j = 1	c ₁₁	1
12	$\mathbf{for}k=p\;\mathbf{to}r$	<i>c</i> ₁₂	(r-p) + 1 + 1
13	if $L[i] \leq R[j]$		(r-p)+1
14	A[k] = L[i]	C ₁₄	P((r-p)+1)
15	i = i + 1		P((r-p)+1)
16	$\mathbf{else}A[k] = R[j]$		(1-P)((r-p)+1)
17	j = j + 1		(1-P)((r-p)+1)

MERGE ANALYSIS

- Assume the input A has n elements, n =_____.
- The asymptotic <u>tight</u> bound of the MERGE in terms of n is f(n) =______.

M	ERGE(A, p, q, r)	Cost	Time
	$n_1 = q - p + 1$	c_1	1
2	$n_2 = r - q$	c_2	1
2	Let $L[1n_1 + 1]$ and $R[1n_2 + 1]$		1
3	be new arrays	<i>C</i> ₃	1
4	$\mathbf{for}\ i = 1\ \mathbf{to}\ n_1$	c_4	$n_1 + 1$
5	L[i] = A[p+i-1]	C ₅	n_1
6	$\mathbf{for}j=1\mathbf{to}n_2$	<i>C</i> ₆	$n_2 + 1$
7	R[j] = A[q+j]	C ₇	n_2
8	$L[n_1+1] = \infty$	<i>C</i> ₈	1
9	$R[n_2+1] = \infty$	<i>C</i> 9	
10	i = 1	<i>c</i> ₁₀	1
	j = 1	c_{11}	
12	$\mathbf{for}k=p\;\mathbf{to}r$	<i>c</i> ₁₂	(r-p)+1+1
13	if $L[i] \leq R[j]$	<i>c</i> ₁₃	(r-p)+1
14	A[k] = L[i]	C ₁₄	P((r-p)+1)
15	i = i + 1	<i>c</i> ₁₅	P((r-p)+1)
16	$\mathbf{else}A[k] = R[j]$	c ₁₆	$(1-P)\big((r-p)+1\big)$
17	j = j + 1	<i>c</i> ₁₇	$(1-P)\big((r-p)+1\big)$

MERGE SORT TIME COMPLEXITY

• In conclusion, the running time of MERGE-SORT is

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n), & n > 1 \end{cases}$$

- The **bottoms-out case** is when the array has only one number, which can be considered as sorted.
- Bound the function: $T(n) = \Theta(n \log n)$ or $T(n) = O(n \log n)$.
 - We will see some bounding techniques in future classes.

NEXT UP THE MAXIMUM-SUBARRAY PROB.

REFERENCE

• https://en.wikipedia.org/wiki/Recursion_(computer_science)