PROVA SCRITTA DI ALGEBRA E GEOMETRIA, 13/07/2021

Esercizio 1 Dato l'insieme $V=\{(b,2a-b,2a+b,a+2b)\in\mathbb{R}^4:a,b\in\mathbb{R}\}$ e l'insieme $W=\{(x,y,z,t)\in\mathbb{R}^4:x+z=0\}$ si chiede di:

- (a) dimostrare che V é un sottospazio vettoriale di \mathbb{R}^4 ;
- (b) determinare una base $B ext{ di } V$;
- (c) se necessario, completare l'insieme B per avere una base B' di \mathbb{R}^4 ;
- (d) determinare il sottospazio $K = V \cap W$ e dim(K).

Esercizio 2 Dati i vettori $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (0, 1, 2)$ e $\mathbf{v}_3 = (2, 1, k)$, con $k \in \mathbb{R}$, e l'insieme $W = \langle (0, 2, h) \rangle$, con $h \in \mathbb{R}$, si chiede di:

- (a) dimostrare per quali valori di k i vettori \mathbf{v}_1 , \mathbf{v}_2 e \mathbf{v}_3 sono generatori di \mathbb{R}^3 ;
- (b) determinare la dimensione di $V = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ al variare di k;
- (c) determinare K = V + W e verificare per quali valori di k e h tale somma è diretta.

Esercizio 3 Sia W il sottospazio di \mathbb{R}^3 di equazione x-y=0 e si consideri l'endomorfismo L di \mathbb{R}^3 di equazione L(x,y,z)=(x-2y+3z,2x-3y+3z,3x-3y+2z).

- (a) Verificare che l'equazione F(x, y, z) = (x 2y + 3z, 2x 3y + 3z, 3x 3y + 2z) definisce un'applicazione lineare $F: W \to W$.
- (b) Determinare una base \mathcal{B} di W e determinare la matrice associata $M_{\mathcal{B}}^{\mathcal{B}}(F)$.
- (c) Stabilire se $F:W\to W$ è diagonalizzabile.
- (d) Stabilire se $L: \mathbb{R}^3 \to \mathbb{R}^3$ è diagonalizzabile.