i.MX8 HSM API

Revision_2.0

Generated by Doxygen 1.8.11

ii CONTENTS

Contents

1	HSM API				
2	Revision History				
3	Gene	cepts related to the API	3		
	3.1	Session	1	3	
	3.2	Service	flow	3	
	3.3	Exampl	e	4	
	3.4	Key sto	re	4	
		3.4.1	Key management	4	
		3.4.2	NVM writing	4	
4	Mod	ule Inde	x	5	
	4.1	Module	s	5	
5	Mod	ule Docı	umentation	5	
	5.1	Error co	odes	5	
		5.1.1	Detailed Description	6	
		5.1.2	Enumeration Type Documentation	6	
	5.2	Session	1	7	
		5.2.1	Detailed Description	7	
		5.2.2	Data Structure Documentation	7	
		5.2.3	Function Documentation	8	
	5.3	Key sto	re	9	
		5.3.1	Detailed Description	9	
		5.3.2	Data Structure Documentation	9	
		5.3.3	Function Documentation	10	
	5.4	Key ma	nagement	12	
		5.4.1	Detailed Description	14	
		5.4.2	Data Structure Documentation	14	
		5.4.3	Function Documentation	16	

5.5	Cipheri	ing	20
	5.5.1	Detailed Description	20
	5.5.2	Data Structure Documentation	20
	5.5.3	Function Documentation	22
5.6	Signatu	ure generation	25
	5.6.1	Detailed Description	26
	5.6.2	Data Structure Documentation	26
	5.6.3	Function Documentation	27
5.7	Signatu	ure verification	29
	5.7.1	Detailed Description	29
	5.7.2	Data Structure Documentation	29
	5.7.3	Function Documentation	30
5.8	Rando	m number generation	33
	5.8.1	Detailed Description	33
	5.8.2	Data Structure Documentation	33
	5.8.3	Function Documentation	33
5.9	Hashin	g	35
	5.9.1	Detailed Description	35
	5.9.2	Data Structure Documentation	35
	5.9.3	Function Documentation	36
5.10	Public I	key reconstruction	38
	5.10.1	Detailed Description	38
	5.10.2	Data Structure Documentation	38
	5.10.3	Function Documentation	38
5.11	Public I	key decompression	40
	5.11.1	Detailed Description	40
	5.11.2	Data Structure Documentation	40
	5.11.3	Function Documentation	40
5.12	ECIES	encryption	42
	5.12.1	Detailed Description	42

1 HSM API

	5.12.2	Data Structure Documentation	 	42
	5.12.3	Function Documentation	 	42
5.13	Public k	key recovery	 	44
	5.13.1	Detailed Description	 	44
	5.13.2	Data Structure Documentation	 	44
	5.13.3	Function Documentation	 	44
5.14	Data sto	torage	 	45
	5.14.1	Detailed Description	 	45
	5.14.2	Data Structure Documentation	 	45
	5.14.3	Function Documentation	 	46
5.15	Root KE	EK export	 	48
	5.15.1	Detailed Description	 	48
	5.15.2	Data Structure Documentation	 	48
	5.15.3	Function Documentation	 	48
5.16	Get info	0	 	50
	5.16.1	Detailed Description	 	50
	5.16.2	Data Structure Documentation	 	50
	5.16.3	Function Documentation	 	50
5.17	Mac .		 	51
	5.17.1	Detailed Description	 	51
	5.17.2	Data Structure Documentation	 	51
	5.17.3	Function Documentation	 	52
Index				55

1 HSM API

This document is a software referece description of the API provided by the i.MX8 HSM solutions.

2 Revision History

Revision	date	description
0.1 - subject to change	Mar 29 2019	Preliminary draf
0.8 - subject to change	May 24 2019	It adds the following API: -signature generation -signature verification -rng -hash -butterfly key expansion -ECIES enc/dec -public key reconstruction -public key decompression
0.9 - subject to change	May 28 2019	Explicit addresses are replaced by pointers.
1.0 - subject to change	May 29 2019	- bug/typos fix Change HSM_SVC_KEY_STORE_FLAGS definition
1.1 - subject to change	July 31 2019	 hsm_butterfly_key_expansion argument definition: dest_key_ identifier is now a pointer. add error code definition. improve argument comments clarity
1.5 - subject to change	Sept 13 2019	 manage key argument: fix padding size butterfly key expansion: change argument definition introduce public key recovery API
1.6 - subject to change	Oct 14 2019	 - add Key store section in chapter 3 - change key_info and flags definition, substitute key_type_ext with group_id - hsm_generate_key, hsm_manage_key, hsm_butterfly_key_← expansion: change argument definition - hsm_manage_key: change argument definition - add hsm_manage_key_group API
1.7 - subject to change	Dec 20 2019	 add generic data storage API add GCM and CMAC support add support for AES 192/256 key size for all cipher algorithms add root KEK export API add key import functionality add get info API
2.0 - subject to change	Feb 21 2020	- fix HSM_KEY_INFO_TRANSIENT definition: delete erroneous "not supported" comment - add Key Encryption Key (HSM_KEY_INFO_KEK) support - key store open service API: adding signed message support for key store reprovisionning - naming consistency: remove "hsm_" prefix from hsm_op_ecies_dec_args_t hsm_op_pub_key_rec_args_t hsm_op_pub_key_dec_args_t hsm_op_ecies_enc_args_t hsm_op_pub_key_recovery_args_t hsm_op_get_info_args_t

3 General concepts related to the API

3.1 Session

The API must be initialized by a potential requestor by opening a session.

The session establishes a route (MU, DomainID...) between the requester and the HSM. When a session is opened, the HSM returns a handle identifying the session to the requester.

3.2 Service flow

For a given category of services, the requestor is expected to open a service flow by invoking the appropriate HSM API.

The session handle, as well as the control data needed for the service flow, are provided as parameters of the call. Upon reception of the open request, the HSM allocates a context in which the session handle, as well as the provided control parameters are stored and return a handle identifying the service flow.

The context is preserved until the service flow, or the session, are closed by the user and it is used by the HSM to proceed with the sub-sequent operations requested by the user on the service flow.

3.3 Example

```
/* Open a session: create a route between the user and the HSM */
hsm_open_session(&open_session_args, &session_hdl);
/* Open a key store - user is authenticated */
hsm open key_store_service(session_hdl, &open_svc_key_store_args, &key_store_hdl);
/st Open hash service - it grants access to hashing operations st/
hsm open hash service (session hdl, &open svc hash args, &hash hdl);
/* Open cipher service - it grants access to ciphering operations */
hsm_open_cipher_service(key_store_hdl, &open_svc_cipher_args, &cipher_hdl);
/* Perform AES ECB, CCB ... */
hsm_cipher_one_go (cipher_hdl, &op_cipher_one_go_args);
/* Perform authenticate and encryption algos: e.g AES GCM */
hsm auth enc (cipher hdl, &op auth enc args);
/* Perform hashing operations: e.g SHA */
hsm_hash_one_go (hash_hdl, &op_hash_one_go_args);
/* Close the session and all the related services */
hsm_close_session(session_hdl);
```

3.4 Key store

A key store can be created by specifying the CREATE flag in the hsm_open_key_store_service API. Please note that the created key store will be not stored in the NVM till a key is generated/imported specyfing the "STRICT OPERATION" flag.

Only symmetric and private keys are stored into the key store. Public keys can be exported during the key pair generation operation or recalculated through the hsm pub key recovery API.

Secret keys cannot be exported under any circumstances, while they can be imported in encrypted form.

3.4.1 Key management

Keys are divided in groups, keys belonging to the same group are written/read from the NVM as a monolitic block. Up to 3 key groups can be handled in the HSM local memory (those immediatly available to perform crypto operation), while up to 1024 key groups can be handled in the external NVM and imported in the local memory as needed. If the local memory is full (3 key groups already reside in the HSM local memory) and a new key group is needed by an incoming user request, the HSM swaps one of the local key group with the one needed by the user request. The user can control which key group must be kept in the local memory (cached) through the manage_key_group API lock/unlock mechanism.

As general concept, frequently used keys should be kept, when possible, in the same key group and locked in the local memory for performance optimization.

3.4.2 NVM writing

All the APIs modyfing the content of the key store (key generation, key_management, key derivation functions) provide a "STRICT OPERATION" flag. If the flag is set, the HSM triggers and export of the encrypted key group into the external NVM and increments (blows one bit) the OTP monotonic counter used as roll back protection. Please note that the "STRICT OPERATION" has effect only on the current key group.

4 Module Index 5

Any update to the key store must be considered as effective only after an operation specifing the flag "STRICT O← PERATION" is aknowledged by the HSM. All the operations not specifying the "STRICT OPERATION" flags impact the HSM local memory only and will be lost in case of system reset

Due to the limited monotonic counter size (QXPB0 up to 1620 update available by default), the user should, when possible, perform multiple udates before setting the "STRICT OPERATION" flag (i.e. keys to be updated should be kept in the same key group).

Once the monotonic counter is completely blown a warning is returned on each update operation to inform the user that the new updates are not roll-back protected.

4 Module Index

4.1 Modules

Here is a list of all modules:

Error codes	5
Session	7
Key store	9
Key management	12
Ciphering	20
Signature generation	25
Signature verification	29
Random number generation	33
Hashing	35
Public key reconstruction	38
Public key decompression	40
ECIES encryption	42
Public key recovery	44
Data storage	45
Root KEK export	48
Get info	50
Mac	51

5 Module Documentation

5.1 Error codes

Enumerations

```
enum hsm err t {
 HSM_NO_ERROR = 0x0,
 HSM INVALID MESSAGE = 0x1,
 HSM INVALID ADDRESS = 0x2,
 HSM UNKNOWN ID = 0x3,
 HSM_INVALID_PARAM = 0x4,
 HSM_NVM_ERROR = 0x5,
 HSM OUT OF MEMORY = 0x6,
 HSM_UNKNOWN_HANDLE = 0x7,
 HSM UNKNOWN KEY STORE = 0x8,
 HSM KEY STORE AUTH = 0x9,
 HSM KEY STORE ERROR = 0xA,
 HSM ID CONFLICT = 0xB,
 HSM_RNG_NOT_STARTED = 0xC,
 HSM\_CMD\_NOT\_SUPPORTED = 0xD,
 HSM INVALID LIFECYCLE = 0xE,
 HSM_KEY_STORE_CONFLICT = 0xF,
 HSM_KEY_STORE_COUNTER = 0x10,
 HSM_FEATURE_NOT_SUPPORTED = 0x11,
 HSM_GENERAL_ERROR = 0xFF }
```

- 5.1.1 Detailed Description
- 5.1.2 Enumeration Type Documentation
- 5.1.2.1 enum hsm err t

Error codes returned by HSM functions.

Enumerator

HSM_NO_ERROR Success.

HSM_INVALID_MESSAGE The received message is invalid or unknown.

HSM_INVALID_ADDRESS The provided address is invalid or doesn't respect the API requirements.

HSM_UNKNOWN_ID The provided identifier is not known.

HSM_INVALID_PARAM One of the parameter provided in the command is invalid.

HSM_NVM_ERROR NVM generic issue.

HSM_OUT_OF_MEMORY There is not enough memory to handle the requested operation.

HSM UNKNOWN HANDLE Unknown session/service handle.

HSM_UNKNOWN_KEY_STORE The key store identified by the provided "key store Id" doesn't exist and the "create" flag is not set.

HSM_KEY_STORE_AUTH Key store authentication fails.

HSM_KEY_STORE_ERROR An error occurred in the key store internal processing.

HSM_ID_CONFLICT An element (key store, key...) with the provided ID already exists.

HSM_RNG_NOT_STARTED The internal RNG is not started.

HSM_CMD_NOT_SUPPORTED The functionality is not supported for the current session/service/key store configuration.

HSM_INVALID_LIFECYCLE Invalid lifecycle for requested operation.

HSM_KEY_STORE_CONFLICT A key store with the same attributes already exists.

HSM_KEY_STORE_COUNTER The current key store reaches the max number of monotonic counter updates, updates are still allowed but monotonic counter will not be blown.

HSM_FEATURE_NOT_SUPPORTED The requested feature is not supported by the firwmare.

HSM_GENERAL_ERROR Error not covered by other codes occured.

5.2 Session 7

5.2 Session

Data Structures

· struct open_session_args_t

Macros

#define HSM_OPEN_SESSION_PRIORITY_LOW (0x00U)

Low priority. Should be the default setting on platforms that doesn't support sessions priorities.

#define HSM OPEN SESSION PRIORITY HIGH (0x01U)

High Priority session.

#define HSM OPEN SESSION FIPS MODE MASK (0x01U)

Only FIPS certified operations authorized in this session.

#define HSM OPEN SESSION EXCLUSIVE MASK (0x02U)

No other HSM session will be authorized on the same security enclave.

• #define HSM_OPEN_SESSION_LOW_LATENCY_MASK (0x08U)

Use a low latency HSM implementation.

#define HSM_OPEN_SESSION_NO_KEY_STORE_MASK (0x10U)

No key store will be attached to this session. May provide better performances on some operation depensing on the implementation. Usage of the session will be restricted to operations that doesn't involve secret keys (e.g. hash, signature verification, random generation).

#define HSM_OPEN_SESSION_RESERVED_MASK (0x74U)

Bits reserved for future use. Should be set to 0.

Typedefs

• typedef uint32 t hsm hdl t

Functions

- hsm err thsm open session (open session args t *args, hsm hdl t *session hdl)
- hsm_err_t hsm_close_session (hsm_hdl_t session_hdl)

5.2.1 Detailed Description

The API must be initialized by a potential requestor by opening a session.

Once a session is closed all the associated service flows are closed by the HSM.

5.2.2 Data Structure Documentation

5.2.2.1 struct open_session_args_t

Data Fields

uint8←	session_priority	Priority of the operations performed in this session. */.
_t		
uint8←	operating_mode	Options for the session to be opened (bitfield). */.
t_		
Genjenate@.by	oxegeerved	
_t		

5.2.3 Function Documentation

 $5.2.3.1 \quad hsm_err_t \ hsm_open_session (\ open_session_args_t * \textit{args}, \ hsm_hdl_t * \textit{session_hdl} \)$

Parameters

args	pointer to the structure containing the function arugments.			
session_hdl	pointer to where the session handle must be written.			

Returns

error_code error code.

5.2.3.2 hsm_err_t hsm_close_session (hsm_hdl_t session_hdl)

Terminate a previously opened session. All the services opened under this session are closed as well

Parameters

session hdl	pointer to the handle identifying the session to be closed.
ooooion_nai	pointer to the handle lacining the ecocion to be closed.

Returns

error_code error code.

5.3 Key store 9

5.3 Key store

Data Structures

· struct open_svc_key_store_args_t

Macros

- #define HSM_SVC_KEY_STORE_FLAGS_CREATE ((hsm_svc_key_store_flags_t)(1u << 0))
 It must be specified to create a new key store. The key store will be stored in the NVM only once a key is generated/imported specyfing the STRICT OPERATION flag.
- $\bullet \ \ \text{\#define HSM_SVC_KEY_STORE_FLAGS_UPDATE} \ ((\text{hsm_svc_key_store_flags_t})(\text{1u} << 2))$

Not supported - It must be specified in order to open a key management service flow.

#define HSM_SVC_KEY_STORE_FLAGS_DELETE ((hsm_svc_key_store_flags_t)(1u << 3))

Not supported - It must be specified to delete an existing key store.

Typedefs

• typedef uint8_t hsm_svc_key_store_flags_t

Functions

- hsm_err_t hsm_open_key_store_service (hsm_hdl_t session_hdl, open_svc_key_store_args_t *args, hsm
 —hdl_t *key_store_hdl)
- hsm_err_t hsm_close_key_store_service (hsm_hdl_t key_store_hdl)

5.3.1 Detailed Description

User must open a key store service flow in order to perform the following operations:

- · create a new key store
- perform operations involving keys stored in the key store (ciphering, signature generation...)
- perform a key store reprovisioning using a signed message. A key store re-provisioning results in erasing all the key stores handled by the HSM.

To grant access to the key store, the caller is authenticated against the domain ID (DID) and Messaging Unit used at the keystore creation, additionally an authentication nonce can be provided.

5.3.2 Data Structure Documentation

5.3.2.1 struct open_svc_key_store_args_t

Data Fields

uint32_t	key_store_identifier	user defined id identifying the key store. Only one key store service can be opened on a given key_store_identifier.
uint32_t	authentication_nonce	user defined nonce used as authentication proof for accesing the key store.
uint16_t	max_updates_number	maximum number of updates authorized for the key store. Valid only for create operation. This parameter has the goal to limit the occupation of the monotonic counter used as anti-rollback protection. If the maximum number of updates is reached, HSM still allows key store updates but without updating the monotonic counter giving the opportunity for rollback attacks.
hsm_svc_key_store_← flags_t	flags	bitmap specifying the services properties.
uint8_t	reserved	
uint8_t *	signed_message	pointer to signed_message to be sent only in case of key store re-provisioning
uint16_t	signed_msg_size	size of the signed_message to be sent only in case of key store re-provisioning
uint8_t	reserved_1[2]	

5.3.3 Function Documentation

5.3.3.1 hsm_err_t hsm_open_key_store_service (hsm_hdl_t $session_hdl$, open_svc_key_store_args_t * args, hsm_hdl_t * key_store_hdl)

Open a service flow on the specified key store. Only one key store service can be opened on a given key store.

Parameters

session_hdl	pointer to the handle indentifing the current session.
args	pointer to the structure containing the function arugments.
key_store_hdl	pointer to where the key store service flow handle must be written.

Returns

error_code error code.

5.3.3.2 hsm_err_t hsm_close_key_store_service (hsm_hdl_t key_store_hdl)

Close a previously opened key store service flow. The key store is deleted from the HSM local memory, any update not written in the NVM is lost

Parameters

handle	indentifing the key store service flow to be closed.
--------	--

5.3 Key store

_			
п	-4-	11410	-

error_code error code.

5.4 Key management

Data Structures

- struct open_svc_key_management_args_t
- struct op_generate_key_args_t
- · struct op_manage_key_args_t
- struct op_manage_key_group_args_t
- · struct op butt key exp args t

Macros

- #define HSM_KEY_TYPE_ECDSA_NIST_P224 ((hsm_key_type_t)0x01u)
 not supported
- #define HSM KEY TYPE ECDSA NIST P256 ((hsm key type t)0x02u)
- #define **HSM_KEY_TYPE_ECDSA_NIST_P384** ((hsm_key_type_t)0x03u)
- #define HSM_KEY_TYPE_ECDSA_BRAINPOOL_R1_224 ((hsm_key_type_t)0x12u)
 not supported
- #define HSM_KEY_TYPE_ECDSA_BRAINPOOL_R1_256 ((hsm_key_type_t)0x13u)
- #define HSM_KEY_TYPE_ECDSA_BRAINPOOL_R1_384 ((hsm_key_type_t)0x15u)
- #define HSM_KEY_TYPE_ECDSA_BRAINPOOL_T1_224 ((hsm_key_type_t)0x22u)
 not supported
- #define HSM_KEY_TYPE_ECDSA_BRAINPOOL_T1_256 ((hsm_key_type_t)0x23u)
 not supported
- #define HSM_KEY_TYPE_ECDSA_BRAINPOOL_T1_384 ((hsm_key_type_t)0x25u)
- #define HSM_KEY_TYPE_AES_128 ((hsm_key_type_t)0x30u)
- #define HSM KEY TYPE AES 192 ((hsm key type t)0x31u)
- #define HSM_KEY_TYPE_AES_256 ((hsm_key_type_t)0x32u)
- #define HSM OP KEY_GENERATION_FLAGS_UPDATE ((hsm_op_key_gen_flags_t)(1u << 0))

User can replace an existing key only by generating a key with the same type of the original one.

- #define HSM_OP_KEY_GENERATION_FLAGS_CREATE ((hsm_op_key_gen_flags_t)(1u << 1))
 Create a new key.
- #define HSM_OP_KEY_GENERATION_FLAGS_STRICT_OPERATION ((hsm_op_key_gen_flags_t)(1u <<<7))

The request is completed only when the new key has been written in the NVM. This applicable for persistent key only.

• #define HSM KEY INFO PERSISTENT ((hsm key info t)(0u << 1))

Persistent keys are stored in the external NVM. The entire key group is written in the NVM at the next STRICT operation.

#define HSM_KEY_INFO_PERMANENT ((hsm_key_info_t)(1u << 0))

When set, the key is permanent (write locked). Once created, it will not be possible to update or delete the key anymore. Transient keys will be anyway deleted after a PoR or when the corresponding key store service flow is closed. This bit can never be reset.

#define HSM_KEY_INFO_TRANSIENT ((hsm_key_info_t)(1u << 1))

Transient keys are deleted when the corresponding key store service flow is closed or after a PoR. Transient keys cannot be in the same key group than persistent keys.

#define HSM_KEY_INFO_MASTER ((hsm_key_info_t)(1u << 2))

When set, the key is considered as a master key. Only master keys can be used as input of key derivation functions (i.e butterfly key expansion)

#define HSM_KEY_INFO_KEK ((hsm_key_info_t)(1u << 3))

When set, the key is considered as a key encryption key. KEK keys can only be used to wrap and import other keys into the key store, all other operation are not allowed. Only keys imported in the key store through the hsm_mange—key API can get this attribute.

- #define HSM_OP_MANAGE_KEY_FLAGS_IMPORT_UPDATE ((hsm_op_manage_key_flags_t)(1u << 0))

 User can replace an existing key only by importing a key with the same type of the original one.
- #define HSM_OP_MANAGE_KEY_FLAGS_IMPORT_CREATE ((hsm_op_manage_key_flags_t)(1u << 1))

 Import a key and create a new identifier.
- #define HSM_OP_MANAGE_KEY_FLAGS_DELETE ((hsm_op_manage_key_flags_t)(1u << 2))
 Delete an existing key.
- #define HSM_OP_MANAGE_KEY_FLAGS_PART_UNIQUE_ROOT_KEK ((hsm_op_manage_key_flags_
 — t)(1u << 3))

The key to be imported is encrypted using the part-unique root kek.

• #define HSM_OP_MANAGE_KEY_FLAGS_COMMON_ROOT_KEK ((hsm_op_manage_key_flags_t)(1u << 4))

The key to be imported is encrypted using the common root kek.

#define HSM_OP_MANAGE_KEY_FLAGS_STRICT_OPERATION ((hsm_op_manage_key_flags_t)(1u << 7))

The request is completed only when the new key has been written in the NVM. This applicable for persistent key only.

• #define HSM_OP_MANAGE_KEY_GROUP_FLAGS_CACHE_LOCKDOWN ((hsm_op_manage_key_ \hookleftarrow group_flags_t)(1u << 0))

The entire key group will be cached in the HSM local memory.

#define HSM_OP_MANAGE_KEY_GROUP_FLAGS_CACHE_UNLOCK ((hsm_op_manage_key_group_
 flags_t)(1u << 1))

HSM may export the key group in the external NVM to free up the local memory. HSM will copy the key group in the local memory again in case of key group usage/update.

• #define HSM_OP_MANAGE_KEY_GROUP_FLAGS_DELETE ((hsm_op_manage_key_group_flags_t)(1u << 2))

not supported - delete an existing key group

• #define HSM_OP_MANAGE_KEY_GROUP_FLAGS_STRICT_OPERATION ((hsm_op_manage_key_
 group_flags_t)(1u << 7))

The request is completed only when the update has been written in the NVM. Not applicable for cache lock-down/unlock.

- $\bullet \ \ \text{\#define HSM_OP_BUTTERFLY_KEY_FLAGS_UPDATE} \ ((\text{hsm_op_but_key_exp_flags_t}) (1 u << 0)) \\$
 - User can replace an existing key only by generating a key with the same type of the original one.
- #define HSM_OP_BUTTERFLY_KEY_FLAGS_CREATE ((hsm_op_but_key_exp_flags_t)(1u << 1))
 Create a new key.
- #define HSM_OP_BUTTERFLY_KEY_FLAGS_IMPLICIT_CERTIF ((hsm_op_but_key_exp_flags_t)(0u << 2))

butterfly key expansion using implicit certificate.

#define HSM_OP_BUTTERFLY_KEY_FLAGS_EXPLICIT_CERTIF ((hsm_op_but_key_exp_flags_t)(1u << 2))

butterfly key expansion using explicit certificate.

#define HSM_OP_BUTTERFLY_KEY_FLAGS_STRICT_OPERATION ((hsm_op_but_key_exp_flags_t)(1u << 7))

The request is completed only when the new key has been written in the NVM.

Typedefs

- · typedef uint8 t hsm svc key management flags t
- typedef uint8_t hsm_op_key_gen_flags_t
- typedef uint8 t hsm key type t
- typedef uint16 t hsm key info t
- typedef uint16_t hsm_key_group_t
- typedef uint8 t hsm op manage key flags t
- typedef uint8 t hsm op manage key group flags t
- typedef uint8_t hsm_op_but_key_exp_flags_t

Functions

- hsm_err_t hsm_open_key_management_service (hsm_hdl_t key_store_hdl, open_svc_key_management
 —args_t *args, hsm_hdl_t *key_management_hdl)
- hsm_err_t hsm_generate_key (hsm_hdl_t key_management_hdl, op_generate_key_args_t *args)
- hsm_err_t hsm_manage_key (hsm_hdl_t key_management_hdl, op_manage_key_args_t *args)
- hsm_err_t hsm_manage_key_group (hsm_hdl_t key_management_hdl, op_manage_key_group_args_t *args)
- hsm_err_t hsm_butterfly_key_expansion (hsm_hdl_t key_management_hdl, op_butt_key_exp_args_t *args)
- hsm_err_t hsm_close_key_management_service (hsm_hdl_t key_management_hdl)

5.4.1 Detailed Description

5.4.2 Data Structure Documentation

5.4.2.1 struct open_svc_key_management_args_t

Data Fields

hsm_svc_key_management_←	flags	bitmap specifying the services properties.
flags_t		
uint8_t	reserved[3]	

5.4.2.2 struct op_generate_key_args_t

Data Fields

uint32_t *	key_identifier	pointer to the identifier of the key to be used for the operation. In case of create operation the new key identifier will be stored in this location.
uint16_t	out_size	length in bytes of the generated key. It must be 0 in case of symetric keys.
hsm_op_key_gen_← flags_t	flags	bitmap specifying the operation properties.
hsm_key_type_t	key_type	indicates which type of key must be generated.
hsm_key_group_t	key_group	Key group of the generated key, relevant only in case of create operation. it must be a value in the range 0-1023. Keys belonging to the same group can be cached in the HSM local memory throug the hsm_manage_key_group API.
hsm_key_info_t	key_info	bitmap specifying the properties of the key.
uint8_t *	out_key	pointer to the output area where the generated public key must be written

5.4.2.3 struct op_manage_key_args_t

Data Fields

uint32_t *	key_identifier	pointer to the identifier of the key to be used for the operation.
		In case of create operation the new key identifier will be
		stored in this location.

Data Fields

uint32_t	kek_identifier	identifier of the key to be used to decrypt the key to be imported (Key Encryption Key), only AES-256 key can be uses as KEK. It must be 0 if the HSM_OP_MANAGE_KEY _FLAGS_PART_UNIQUE_ROOT_KEK or HSM_OP_MANAGE_KEY_FLAGS_COMMON_ROOT_KEK flags are set.
uint16_t	input_size	length in bytes of the input key area. It must be eqaul to the length of the IV (12 bytes) + ciphertext + Tag (16 bytes). It must be 0 in case of delete operation.
hsm_op_manage_key_← flags_t	flags	bitmap specifying the operation properties.
hsm_key_type_t	key_type	indicates the type of the key to be managed.
hsm_key_group_t	key_group	key group of the imported key, only relevant in case of create operation (it must be 0 otherwise). It must be a value in the range 0-1023. Keys belonging to the same group can be cached in the HSM local memory throug the ham_manage_key_group API
hsm_key_info_t	key_info	bitmap specifying the properties of the key, in case of update operation it will replace the existing value. It must be 0 in case of delete operation.
uint8_t *	input_data	pointer to the input buffer. The input buffer is the concatenation of the IV, the encrypted key to be imported and the Tag. It must be 0 in case of delete operation.

5.4.2.4 struct op_manage_key_group_args_t

Data Fields

hsm_key_group_t	key_group	it must be a value in the range 0-1023. Keys belonging to the same group can be cached in the HSM local memory throug the ham_manage_key_group API
hsm_op_manage_key_group_←	flags	bitmap specifying the operation properties.
flags_t		
uint8_t	reserved	

5.4.2.5 struct op_butt_key_exp_args_t

Data Fields

uint32_t	key_identifier	identifier of the key to be expanded
uint8_t *	expansion_function_value	pointer to the expansion function value input
uint8_t *	hash_value	pointer to the hash value input. In case of explicit certificate, the hash value address must be set to 0.
uint8_t *	pr_reconstruction_value	pointer to the private reconstruction value input. In case of explicit certificate, the pr_reconstruction_value address must be set to 0.
uint8_t	expansion_function_value_size	length in bytes of the expansion function input

Data Fields

uint8_t	hash_value_size	length in bytes of the hash value input.
		In case of explicit certificate, the
		hash_value_size parameter must be set to
		0.
uint8_t	pr_reconstruction_value_size	length in bytes of the private reconstruction value input.
		In case of explicit certificate, the
		pr reconstruction value size parameter
		must be set to 0.
hsm_op_but_key_exp_← flags_t	flags	bitmap specifying the operation properties
uint32_t *	dest_key_identifier	pointer to identifier of the derived key to be
		used for the operation.
		In case of create operation the new
		destination key identifier will be stored in
		this location.
uint8_t *	output	pointer to the output area where the public
		key must be written.
uint16_t	output_size	length in bytes of the generated key, if the
		size is 0, no key is copied in the output.
hsm_key_type_t	key_type	indicates the type of the key to be derived.
uint8_t	reserved	
hsm_key_group_t	key_group	it must be a value in the range 0-1023.
		Keys belonging to the same group can be
		cached in the HSM local memory throug
		the ham_manage_key_group API
hsm_key_info_t	key_info	bitmap specifying the properties of the
		derived key.
	1	

5.4.3 Function Documentation

5.4.3.1 hsm_err_t hsm_open_key_management_service (hsm_hdl_t key_store_hdl, open_svc_key_management_← args_t * args, hsm_hdl_t * key_management_hdl)

Open a key management service flow

User must open this service flow in order to perform operation on the key store keys (generate, update, delete)

Parameters

key_store_hdl	handle indentifing the key store service flow.
args	pointer to the structure containing the function arugments.
key_management_hdl	pointer to where the key management service flow handle must be written.

Returns

error_code error code.

 $5.4.3.2 \quad hsm_err_t \ hsm_generate_key \ (\ hsm_hdl_t \ \textit{key_management_hdl}, \ op_generate_key_args_t * \textit{args} \)$

Generate a key or a key pair. Only the confidential keys (symmetric and private keys) are stored in the internal key store, while the non-confidential keys (public key) are exported.

5.4 Key management 17

The generated key can be stored using a new or existing key identifier with the restriction that an existing key can be replaced only by a key of the same type.

User can call this function only after having opened a key management service flow.

Parameters

key_management_hdl	handle identifying the key management service flow.
args	pointer to the structure containing the function arugments.

Returns

error code

5.4.3.3 hsm_err_t hsm_manage_key (hsm_hdl_t key_management_hdl, op_manage_key_args_t * args)

This command is designed to perform the following operations:

- import a key creating a new key identifier (import and create)
- import a key using an existing key identifier (import and update)
- · delete an existing key

The key encryption key (KEK) can be previously pre-shared or stored in the key store.

The key to be imported must be encrypted by using the KEK as following:

· Algorithm: AES GCM

· Key: root KEK

• AAD = 0

• IV = 12 bytes

• Tag = 16 bytes

· Plaintext: key to be imported

User can call this function only after having opened a key management service flow

Parameters

key_management_hdl	handle identifying the key management service flow.
args	pointer to the structure containing the function arugments.

Returns

error code

5.4.3.4 hsm_err_t hsm_manage_key_group (hsm_hdl_t key_management_hdl, op_manage_key_group_args_t * args)

This command is designed to perform the following operations:

 lock/unlock down a key group in the HSM local memory so that the keys are available to the HSM without additional latency

- un-lock a key group. HSM may export the key group into the external NVM to free up local memory as needed
- · delete an existing key group

User can call this function only after having opened a key management service flow

Parameters

key_management_hdl	handle identifying the key management service flow.
args	pointer to the structure containing the function arugments.

Returns

error code

5.4.3.5 hsm_err_t hsm_butterfly_key_expansion (hsm_hdl_t key_management_hdl, op_butt_key_exp_args_t * args)

This command is designed to perform the butterfly key expansion operation on an ECC private key in case of implicit and explicit certificates. Optionally the resulting public key is exported.

The result of the key expansion function f_k is calculated outside the HSM and passed as input. The expansion function is defined as $f_k = f_k$ int mod I, where I is the order of the group of points on the curve. User can call this function only after having opened a key management service flow.

Explicit certificates:

• f_k = expansion function value

$$out_key = Key + f_k$$

Implicit certificates:

- f_k = expansion function value,
- hash = hash value used to in the derivation of the pseudonym ECC key,
- pr_v = private reconstruction value

Parameters

key_management_hdl	handle identifying the key store management service flow.
args	pointer to the structure containing the function arugments.

Returns

error code

5.4.3.6 hsm_err_t hsm_close_key_management_service (hsm_hdl_t key_management_hdl)

Terminate a previously opened key management service flow

Parameters

key_management_hdl	handle identifying the key management service flow.
--------------------	---

Returns

error code

5.5 Ciphering

Data Structures

- · struct open svc cipher args t
- struct op_cipher_one_go_args_t
- · struct op auth enc args t
- struct op_ecies_dec_args_t

Macros

- #define HSM_CIPHER_ONE_GO_ALGO_AES_ECB ((hsm_op_cipher_one_go_algo_t)(0x00u))
- #define HSM_CIPHER_ONE_GO_ALGO_AES_CBC ((hsm_op_cipher_one_go_algo_t)(0x01u))
- #define HSM_CIPHER_ONE_GO_ALGO_AES_CCM ((hsm_op_cipher_one_go_algo_t)(0x04u))

Perform AES CCM with following constraints: AES CCM where Adata = 0, Tlen = 16 bytes, nonce size = 12 bytes.

- #define HSM CIPHER ONE GO FLAGS DECRYPT ((hsm op cipher one go flags t)(0u << 0))
- #define HSM_CIPHER_ONE_GO_FLAGS_ENCRYPT ((hsm_op_cipher_one_go_flags_t)(1u << 0))
- #define HSM_AUTH_ENC_ALGO_AES_GCM ((hsm_op_auth_enc_algo_t)(0x00u))

Perform AES GCM with following constraints: AES GCM where AAD supported, Tag len = 16 bytes, IV len = 12 bytes.

- #define HSM AUTH ENC FLAGS DECRYPT ((hsm op auth enc flags t)(0u << 0))
- #define HSM_AUTH_ENC_FLAGS_ENCRYPT ((hsm_op_auth_enc_flags_t)(1u << 0))

Typedefs

- typedef uint8_t hsm_svc_cipher_flags_t
- typedef uint8_t hsm_op_cipher_one_go_algo_t
- typedef uint8 t hsm op cipher one go flags t
- typedef uint8_t hsm_op_auth_enc_algo_t
- typedef uint8_t hsm_op_auth_enc_flags_t
- typedef uint8 t hsm op ecies dec flags t

Functions

- hsm_err_t hsm_open_cipher_service (hsm_hdl_t key_store_hdl, open_svc_cipher_args_t *args, hsm_hdl
 _t *cipher_hdl)
- hsm_err_t hsm_cipher_one_go (hsm_hdl_t cipher_hdl, op_cipher_one_go_args_t *args)
- hsm_err_t hsm_auth_enc (hsm_hdl_t cipher_hdl, op_auth_enc_args_t *args)
- hsm_err_t hsm_ecies_decryption (hsm_hdl_t cipher_hdl, op_ecies_dec_args_t *args)
- hsm_err_t hsm_close_cipher_service (hsm_hdl_t cipher_hdl)
- 5.5.1 Detailed Description
- 5.5.2 Data Structure Documentation
- 5.5.2.1 struct open_svc_cipher_args_t

5.5 Ciphering 21

Data Fields

hsm_svc_cipher_← flags_t	flags	bitmap specifying the services properties.
uint8_t	reserved[3]	

5.5.2.2 struct op_cipher_one_go_args_t

Data Fields

uint32_t	key_identifier	identifier of the key to be used for the operation	
uint8_t *	iv	pointer to the initialization vector (nonce in case of AES CCM)	
uint16_t	iv_size	length in bytes of the initialization vector it must be 0 for algorithms not using the initialization vector. It must be 12 for AES in CCM mode	
hsm_op_cipher_one_go_algo← _t	cipher_algo	algorithm to be used for the operation	
hsm_op_cipher_one_go_← flags_t	flags	bitmap specifying the operation attributes	
uint8_t *	input	pointer to the input area plaintext for encryption ciphertext for decryption (in case of CCM is the purported ciphertext)	
uint8_t *	output	pointer to the output area ciphertext for encryption (in case of CCM is the output of the generation-encryption process) plaintext for decryption	
uint32_t	input_size	length in bytes of the input	
uint32_t	output_size	length in bytes of the output	

5.5.2.3 struct op_auth_enc_args_t

Data Fields

	1 11 110		
uint32_t	key_identifier	identifier of the key to be used for the operation	
uint8_t *	iv	pointer to the initialization vector or nonce	
uint16_t	iv_size	length in bytes of the initialization vector	
		It must be 12 bytes.	
uint8_t *	aad	pointer to the additional authentication data	
uint16_t	aad_size	length in bytes of the additional authentication data	
hsm_op_auth_enc_algo ←	ae_algo	algorithm to be used for the operation	
_t			
hsm_op_auth_enc_←	flags	bitmap specifying the operation attributes	
flags_t			
uint8_t *	input	pointer to the input area	
		plaintext for encryption	
		Ciphertext + Tag (16 bytes) for decryption	
uint8_t *	output	pointer to the output area	
		Ciphertext + Tag (16 bytes) for encryption	
		plaintext for decryption if the Tag is verified	
uint32_t	input_size	length in bytes of the input	

Data Fields

uint32_t output_size	length in bytes of the output
----------------------	-------------------------------

5.5.2.4 struct op_ecies_dec_args_t

Data Fields

uint32_t	key_identifier	identifier of the private key to be used for the operation	
uint8_t *	input	pointer to the VCT input	
uint8_t *	p1	pointer to the KDF P1 input parameter	
uint8_t *	p2	pointer to the MAC P2 input parameter should be NULL	
uint8_t *	output	pointer to the output area where the plaintext must be written	
uint32_t	input_size	length in bytes of the input VCT should be equal to 96 bytes	
uint32_t	output_size	length in bytes of the output plaintext should be equal to 16 bytes	
uint16_t	p1_size	length in bytes of the KDF P1 parameter should be equal to 32 bytes	
uint16_t	p2_size	length in bytes of the MAC P2 parameter should be zero reserved for generic use cases	
uint16_t	mac_size	length in bytes of the requested message authentication code should be equal to 16 bytes	
hsm_key_type_t	key_type	indicates the type of the used key (only NIST P256 and Br256r1 are supported)	
hsm_op_ecies_dec_← flags_t	flags	bitmap specifying the operation attributes.	

5.5.3 Function Documentation

5.5.3.1 hsm_err_t hsm_open_cipher_service (hsm_hdl_t key_store_hdl , open_svc_cipher_args_t * args, hsm_hdl_t * $cipher_hdl$)

Open a cipher service flow

User can call this function only after having opened a key store service flow.

User must open this service in order to perform cipher operation

Parameters

key_store_hdl	handle indentifing the key store service flow.	
args pointer to the structure containing the function arugments.		
cipher_hdl pointer to where the cipher service flow handle must be w		

Returns

error code

5.5.3.2 hsm_err_t hsm_cipher_one_go (hsm_hdl_t cipher_hdl, op_cipher_one_go_args_t * args)

Perform ciphering operation

User can call this function only after having opened a cipher service flow

5.5 Ciphering 23

Parameters

cipher_hdl	handle identifying the cipher service flow.
args	pointer to the structure containing the function arugments.

Returns

error code

5.5.3.3 hsm_err_t hsm_auth_enc (hsm_hdl_t cipher_hdl, op_auth_enc_args_t * args)

Perform authenticated encryption operation

User can call this function only after having opened a cipher service flow

Parameters

cipher_hdl	handle identifying the cipher service flow.	
args	pointer to the structure containing the function arugmen	

Returns

error code

5.5.3.4 hsm_err_t hsm_ecies_decryption (hsm_hdl_t cipher_hdl, op_ecies_dec_args_t * args)

Decrypt data usign ECIES

User can call this function only after having opened a cipher store service flow. ECIES is supported with the constraints specified in 1609.2-2016.

Parameters

session_hdl	handle identifying the current session.	
args	pointer to the structure containing the function arugments.	

Returns

error code

5.5.3.5 hsm_err_t hsm_close_cipher_service (hsm_hdl_t cipher_hdl)

Terminate a previously opened cipher service flow

Parameters

cipher_hdl	pointer to handle identifying the cipher service flow to be closed.
------------	---

Returns

error code

5.6 Signature generation

Data Structures

- struct open_svc_sign_gen_args_t
- struct op_generate_sign_args_t
- · struct op_prepare_sign_args_t

Macros

not supported

not supported

not supported

not supported

not supported

- #define HSM_OP_GENERATE_SIGN_FLAGS_INPUT_DIGEST ((hsm_op_generate_sign_flags_t)(0u << 0))
- #define HSM_OP_GENERATE_SIGN_FLAGS_INPUT_MESSAGE ((hsm_op_generate_sign_flags_t)(1u << 0))
- #define HSM_OP_GENERATE_SIGN_FLAGS_COMPRESSED_POINT ((hsm_op_generate_sign_flags_
 — t)(1u << 1))
- #define HSM_OP_GENERATE_SIGN_FLAGS_LOW_LATENCY_SIGNATURE ((hsm_op_generate_sign ← __flags_t)(1u << 2))
- $\bullet \ \ \text{\#define HSM_OP_PREPARE_SIGN_INPUT_DIGEST} \ ((\text{hsm_op_prepare_signature_flags_t})(0 u << 0))$
- #define HSM_OP_PREPARE_SIGN_INPUT_MESSAGE ((hsm_op_prepare_signature_flags_t)(1u << 0))
- #define HSM_OP_PREPARE_SIGN_COMPRESSED_POINT ((hsm_op_prepare_signature_flags_t)(1u <<< 1))

Typedefs

- typedef uint8 t hsm svc signature generation flags t
- typedef uint8_t hsm_signature_scheme_id_t
- typedef uint8_t hsm_op_generate_sign_flags_t
- typedef uint8_t hsm_op_prepare_signature_flags_t

Functions

- hsm_err_t hsm_open_signature_generation_service (hsm_hdl_t key_store_hdl, open_svc_sign_gen_args
 _t *args, hsm_hdl_t *signature_gen_hdl)
- hsm_err_t hsm_close_signature_generation_service (hsm_hdl_t signature_gen_hdl)
- hsm_err_t hsm_generate_signature (hsm_hdl_t signature_gen_hdl, op_generate_sign_args_t *args)
- hsm_err_t hsm_prepare_signature (hsm_hdl_t signature_gen_hdl, op_prepare_sign_args_t *args)

5.6.1 Detailed Description

5.6.2 Data Structure Documentation

5.6.2.1 struct open_svc_sign_gen_args_t

Data Fields

hsm_svc_signature_generation_← flags_t	flags	bitmap specifying the services properties.
uint8_t	reserved[3]	

5.6.2.2 struct op_generate_sign_args_t

Data Fields

uint32_t	key_identifier	identifier of the key to be used for the operation
uint8_t *	message	pointer to the input (message or message digest) to be signed
uint8_t *	signature	pointer to the output area where the signature must be stored. The signature S=(r,s) is stored in format r s Ry where Ry is an additional byte containing the lsb of y. Ry has to be considered valid only if the HSM_OP_GENER← ATE_SIGN_FLAGS_COMPRESSED_POINT is set.
uint32_t	message_size	length in bytes of the input
uint16_t	signature_size	length in bytes of the output
hsm_signature_scheme_id_t	scheme_id	identifier of the digital signature scheme to be used for the operation
hsm_op_generate_sign_← flags_t	flags	bitmap specifying the operation attributes

5.6.2.3 struct op_prepare_sign_args_t

Data Fields

hsm_signature_scheme_id_t	scheme <i>⊷</i> _id	identifier of the digital signature scheme to be used for the operation
hsm_op_prepare_signature_←	flags	bitmap specifying the operation attributes
flags_t		
uint16_t	reserved	

5.6.3 Function Documentation

5.6.3.1 hsm_err_t hsm_open_signature_generation_service (hsm_hdl_t key_store_hdl, open_svc_sign_gen_args_t * args, hsm_hdl_t * signature_gen_hdl)

Open a signature generation service flow

User can call this function only after having opened a key store service flow.

User must open this service in order to perform signature generation operations.

Parameters

key_store_hdl	handle indentifing the key store service flow.
args	pointer to the structure containing the function arugments.
signature_gen_hdl	pointer to where the signature generation service flow handle must be written.

Returns

error code

5.6.3.2 hsm err_t hsm_close_signature_generation_service (hsm_hdl_t signature_gen_hdl)

Terminate a previously opened signature generation service flow

Parameters

signature_gen_hdl	handle identifying the signature generation service flow to be closed.
-------------------	--

Returns

error code

5.6.3.3 hsm_err_t hsm_generate_signature (hsm_hdl_t signature_gen_hdl, op_generate_sign_args_t * args)

Generate a digital signature according to the signature scheme

User can call this function only after having opened a signature generation service flow

The signature S=(r,s) is stored in the format r||s||Ry where Ry is an additional byte containing the lsb of y. Ry has to be considered valid only if the HSM_OP_GENERATE_SIGN_FLAGS_COMPRESSED_POINT is set.

Parameters

signature_gen_hdl	handle identifying the signature generation service flow
args	pointer to the structure containing the function arugments.

Returns

error code

5.6.3.4 hsm_err_t hsm_prepare_signature (hsm_hdl_t signature_gen_hdl, op_prepare_sign_args_t * args)

Prepare the creation of a signature by pre-calculating the operations having not dependencies on the input message. The pre-calculated value will be stored internally and used once call hsm_generate_signature
User can call this function only after having opened a signature generation service flow
The signature S=(r,s) is stored in the format r||s||Ry where Ry is an additional byte containing the lsb of y, Ry has to be considered valid only if the HSM_OP_PREPARE_SIGN_COMPRESSED_POINT is set.

Parameters

signature_gen_hdl	handle identifying the signature generation service flow
args	pointer to the structure containing the function arugments.

Returns

error code

5.7 Signature verification

Data Structures

- struct open_svc_sign_ver_args_t
- struct op_verify_sign_args_t
- struct op_import_public_key_args_t

Macros

- #define HSM_OP_VERIFY_SIGN_FLAGS_INPUT_DIGEST ((hsm_op_verify_sign_flags_t)(0u << 0))
- #define HSM OP VERIFY SIGN FLAGS INPUT MESSAGE ((hsm op verify sign flags t)(1u << 0))
- #define HSM_OP_VERIFY_SIGN_FLAGS_COMPRESSED_POINT ((hsm_op_verify_sign_flags_t)(1u <<< 1))
- #define HSM_OP_VERIFY_SIGN_FLAGS_KEY_INTERNAL ((hsm_op_verify_sign_flags_t)(1u << 2)) when set the value passed by the key argument is considered as the internal reference of a key imported throught the hsm_import_pub_key API.
- #define HSM VERIFICATION STATUS SUCCESS ((hsm verification status t)(0x5A3CC3A5u))

Typedefs

- typedef uint8_t hsm_svc_signature_verification_flags_t
- typedef uint8_t hsm_op_verify_sign_flags_t
- typedef uint32_t hsm_verification_status_t
- typedef uint8_t hsm_op_import_public_key_flags_t

Functions

- hsm_err_t hsm_open_signature_verification_service (hsm_hdl_t session_hdl, open_svc_sign_ver_args_
 t *args, hsm_hdl_t *signature_ver_hdl)
- hsm_err_t hsm_verify_signature (hsm_hdl_t signature_ver_hdl, op_verify_sign_args_t *args, hsm_
 verification_status_t *status)
- hsm_err_t hsm_import_public_key (hsm_hdl_t signature_ver_hdl, op_import_public_key_args_t *args, uint32_t *key_ref)
- hsm_err_t hsm_close_signature_verification_service (hsm_hdl_t signature_ver_hdl)

5.7.1 Detailed Description

5.7.2 Data Structure Documentation

5.7.2.1 struct open_svc_sign_ver_args_t

Data Fields

hsm_svc_signature_verification_← flags_t	flags	bitmap indicating the service flow properties
uint8_t	reserved[3]	

5.7.2.2 struct op_verify_sign_args_t

Data Fields

uint8_t *	key	pointer to the public key to be used for the verification. If the HSM_OP_VERIFY_SIGN_FLAGS_KEY_INTERNAL is set, it must point to the key reference returned by the hsm_import_public_key API.
uint8_t *	message	pointer to the input (message or message digest)
uint8_t *	signature	pointer to the input signature. The signature S=(r,s) is expected to be in the format r s Ry where Ry is an additional byte containing the lsb of y. Ry will be considered as valid only if the HSM_OP_VERIFY_SIGN_FLAGS_COMPRESSED_POINT is set.
uint16_t	key_size	length in bytes of the input key
uint16_t	signature_size	length in bytes of the output - it must contains one additional byte where to store the Ry.
uint32_t	message_size	length in bytes of the input message
hsm_signature_scheme_← id_t	scheme_id	identifier of the digital signature scheme to be used for the operation
hsm_op_verify_sign_flags← _t	flags	bitmap specifying the operation attributes
uint16_t	reserved	

5.7.2.3 struct op_import_public_key_args_t

Data Fields

uint8_t *	key	pointer to the public key to be imported
uint16_t	key_size	length in bytes of the input key
hsm_key_type_t	key_type	indicates the type of the key to be imported.
hsm_op_import_public_key_←	flags	bitmap specifying the operation attributes
flags_t		

5.7.3 Function Documentation

5.7.3.1 hsm_err_t hsm_open_signature_verification_service (hsm_hdl_t session_hdl, open_svc_sign_ver_args_t * args, hsm_hdl_t * signature_ver_hdl)

User must open this service in order to perform signature verification operations. User can call this function only after having opened a session.

Parameters

session_hdl	handle indentifing the current session.
args	pointer to the structure containing the function arugments.
signature_ver_hdl	pointer to where the signature verification service flow handle must be written.

Returns

error code

5.7.3.2 hsm_err_t hsm_verify_signature (hsm_hdl_t signature_ver_hdl, op_verify_sign_args_t * args, hsm_verification_status_t * status_t)

Verify a digital signature according to the signature scheme

User can call this function only after having opened a signature verification service flow

The signature S=(r,s) is expected to be in format r||s||Ry where Ry is an additional byte containing the Isb of y. Ry will be considered as valid only if the HSM_OP_VERIFY_SIGN_FLAGS_COMPRESSED_POINT is set.

Only not-compressed keys (x,y) can be used by this command. Compressed keys can be decompressed by using the dedicated API.

Parameters

signature_ver_hdl	handle identifying the signature verification service flow.
args	pointer to the structure containing the function arugments.
status	pointer to where the verification status must be stored if the verification succeed the value HSM_VERIFICATION_STATUS_SUCCESS is returned.

Returns

error code

5.7.3.3 hsm_err_t hsm_import_public_key (hsm_hdl_t signature_ver_hdl, op_import_public_key_args_t * args, uint32_t * key_ref)

Import a public key to be used for several verification operations, a reference to the imported key is returned. User can use the returned reference in the hsm_verify_signature API by setting the HSM_OP_VERIFY_SIGN_F← LAGS_KEY_INTERNAL flag

Only not-compressed keys (x,y) can be impried by this command. Compressed keys can be decompressed by using the dedicated API. User can call this function only after having opened a signature verification service flow.

Parameters

signature_ver_hdl	handle identifying the signature verification service flow.
args	pointer to the structure containing the function arugments.
key_ref	pointer to where the 4 bytes key reference to be used as key in the hsm_verify_signature will be stored

Returns

error code

5.7.3.4 hsm_err_t hsm_close_signature_verification_service (hsm_hdl_t signature_ver_hdl)

Terminate a previously opened signature verification service flow

Parameters

signature_ver_hdl handle identifying the signature verification service flow to be closed.

Returns

error code

5.8 Random number generation

Data Structures

- struct open_svc_rng_args_t
- struct op_get_random_args_t

Typedefs

• typedef uint8_t hsm_svc_rng_flags_t

Functions

- hsm_err_t hsm_open_rng_service (hsm_hdl_t session_hdl, open_svc_rng_args_t *args, hsm_hdl_t *rng←hdl)
- hsm_err_t hsm_close_rng_service (hsm_hdl_t rng_hdl)
- hsm_err_t hsm_get_random (hsm_hdl_t rng_hdl, op_get_random_args_t *args)

5.8.1 Detailed Description

5.8.2 Data Structure Documentation

5.8.2.1 struct open_svc_rng_args_t

Data Fields

hsm_svc_rng_← flags_t	flags	bitmap indicating the service flow properties
uint8_t	reserved[3]	

5.8.2.2 struct op_get_random_args_t

Data Fields

uint8_t *	output	pointer to the output area where the random number must be written	
uint32←	random_size	e length in bytes of the random number to be provided.	
_t			

5.8.3 Function Documentation

5.8.3.1 hsm_err_t hsm_open_rng_service (hsm_hdl_t session_hdl, open_svc_rng_args_t * args, hsm_hdl_t * rng_hdl)

Open a random number generation service flow

User can call this function only after having opened a session.

User must open this service in order to perform rng operations.

Parameters

session_hdl	handle indentifing the current session.		
args	pointer to the structure containing the function arugments.		
rng_hdl	pointer to where the rng service flow handle must be written.		

Returns

error code

5.8.3.2 hsm_err_t hsm_close_rng_service (hsm_hdl_t rng_hdl)

Terminate a previously opened rng service flow

Parameters

rng_hdl	handle identifying the rng service flow to be closed.
---------	---

Returns

error code

5.8.3.3 hsm_err_t hsm_get_random (hsm_hdl_t rng_hdl , op_get_random_args_t * args)

Get a freshly generated random number

User can call this function only after having opened a rng service flow

Parameters

rng_hdl	handle identifying the rng service flow.	
args	pointer to the structure containing the function arugments.	

Returns

5.9 Hashing 35

5.9 Hashing

Data Structures

- struct open_svc_hash_args_t
- struct op_hash_one_go_args_t

Macros

- #define HSM_HASH_ALGO_SHA_224 ((hsm_hash_algo_t)(0x0u))
- #define HSM_HASH_ALGO_SHA_256 ((hsm_hash_algo_t)(0x1u))
- #define HSM_HASH_ALGO_SHA_384 ((hsm_hash_algo_t)(0x2u))
- #define HSM_HASH_ALGO_SHA_512 ((hsm_hash_algo_t)(0x3u))

Typedefs

- typedef uint8_t hsm_svc_hash_flags_t
- typedef uint8_t hsm_hash_algo_t
- typedef uint8_t hsm_op_hash_one_go_flags_t

Functions

- hsm_err_t hsm_open_hash_service (hsm_hdl_t session_hdl, open_svc_hash_args_t *args, hsm_hdl_

 t *hash_hdl)
- hsm_err_t hsm_close_hash_service (hsm_hdl_t hash_hdl)
- hsm_err_t hsm_hash_one_go (hsm_hdl_t hash_hdl, op_hash_one_go_args_t *args)

5.9.1 Detailed Description

5.9.2 Data Structure Documentation

5.9.2.1 struct open_svc_hash_args_t

Data Fields

hsm_svc_hash_←	flags	bitmap indicating the service flow properties
flags_t		
uint8_t	reserved[3]	

5.9.2.2 struct op_hash_one_go_args_t

Data Fields

uint8_t *	input	pointer to the input data to be hashed
uint8_t *	output	pointer to the output area where the resulting digest must be written
uint32_t	input_size	length in bytes of the input
uint32_t	output_size	length in bytes of the output

Data Fields

hsm_hash_algo_t	algo	hash algorithm to be used for the operation
hsm_op_hash_one_go_←	flags	flags bitmap specifying the operation attributes.
flags_t		
uint16_t	reserved	

5.9.3 Function Documentation

5.9.3.1 hsm_err_t hsm_open_hash_service (hsm_hdl_t session_hdl, open_svc_hash_args_t * args, hsm_hdl_t * hash_hdl)

Open an hash service flow

User can call this function only after having opened a session.

User must open this service in order to perform an hash operations.

Parameters

session_hdl	handle indentifing the current session.		
args	pointer to the structure containing the function arugments.		
hash_hdl	pointer to where the hash service flow handle must be written.		

Returns

error code

5.9.3.2 hsm_err_t hsm_close_hash_service (hsm_hdl_t hash_hdl)

Terminate a previously opened hash service flow

Parameters

hash_hdl	handle identifying the hash service flow to be closed.
----------	--

Returns

error code

5.9.3.3 hsm_err_t hsm_hash_one_go (hsm_hdl_t hash_hdl, op_hash_one_go_args_t * args)

Perform the hash operation on a given input

User can call this function only after having opened a hash service flow

Parameters

hash_hdl	handle identifying the hash service flow.	
args	pointer to the structure containing the function arugments.	

5.9 Hashing 37

Returns

5.10 Public key reconstruction

Data Structures

• struct op_pub_key_rec_args_t

Typedefs

typedef uint8_t hsm_op_pub_key_rec_flags_t

Functions

• hsm_err_t hsm_pub_key_reconstruction (hsm_hdl_t session_hdl, op_pub_key_rec_args_t *args)

5.10.1 Detailed Description

5.10.2 Data Structure Documentation

5.10.2.1 struct op_pub_key_rec_args_t

Data Fields

uint8_t *	pub_rec	pointer to the public reconstruction value extracted from the implicit certificate.
uint8_t *	hash	pointer to the input hash value. In the butterfly scheme it corresponds to the hash value calculated over PCA certificate and, concatenated, the implicit certificat.
uint8_t *	ca_key	pointer to the CA public key
uint8_t *	out_key	pointer to the output area where the reconstructed public key must be written.
uint16_t	pub_rec_size	length in bytes of the public reconstruction value
uint16_t	hash_size	length in bytes of the input hash
uint16_t	ca_key_size	length in bytes of the input CA public key
uint16_t	out_key_size	length in bytes of the output key
hsm_key_type_t	key_type	indicates the type of the manged keys.
hsm_op_pub_key_rec_← flags_t	flags	flags bitmap specifying the operation attributes.
uint16_t	reserved	

5.10.3 Function Documentation

5.10.3.1 hsm_err_t hsm_pub_key_reconstruction (hsm_hdl_t session_hdl, op_pub_key_rec_args_t * args)

Reconstruct an ECC public key provided by an implicit certificate User can call this function only after having opened a session This API implements the followign formula: out_key = (pub_rec * hash) + ca_key

Parameters

session_hdl	handle identifying the current session.		
args	pointer to the structure containing the function arugments.		

Returns

5.11 Public key decompression

Data Structures

• struct op_pub_key_dec_args_t

Typedefs

typedef uint8_t hsm_op_pub_key_dec_flags_t

Functions

• hsm_err_t hsm_pub_key_decompression (hsm_hdl_t session_hdl, op_pub_key_dec_args_t *args)

5.11.1 Detailed Description

5.11.2 Data Structure Documentation

5.11.2.1 struct op_pub_key_dec_args_t

Data Fields

uint8_t *	key	pointer to the compressed ECC public key. The expected key format is x Isb_y where Isb_y is 1 byte having value 1 if the least-significant bit of the original (uncompressed) y coordinate is set, and 0 otherwise.
uint8_t *	out_key	pointer to the output area where the decompressed public key must be written.
uint16_t	key_size	length in bytes of the input compressed public key
uint16_t	out_key_size	length in bytes of the resulting public key
hsm_key_type_t	key_type	indicates the type of the manged keys.
hsm_op_pub_key_dec_← flags_t	flags	bitmap specifying the operation attributes.
uint16_t	reserved	

5.11.3 Function Documentation

 $5.11.3.1 \quad hsm_err_t \ hsm_pub_key_decompression (\ hsm_hdl_t \ \textit{session_hdl}, \ op_pub_key_dec_args_t * \textit{args} \)$

Decompress an ECC public key

The expected key format is $x||sb_y|$ where $|sb_y|$ is 1 byte having value 1 if the least-significant bit of the original (uncompressed) y coordinate is set, and 0 otherwise.

User can call this function only after having opened a session

Parameters

session_hdl	handle identifying the current session.
args	pointer to the structure containing the function arugments.

Returns

5.12 ECIES encryption

Data Structures

• struct op_ecies_enc_args_t

Typedefs

typedef uint8_t hsm_op_ecies_enc_flags_t

Functions

• hsm_err_t hsm_ecies_encryption (hsm_hdl_t session_hdl, op_ecies_enc_args_t *args)

5.12.1 Detailed Description

5.12.2 Data Structure Documentation

5.12.2.1 struct op_ecies_enc_args_t

Data Fields

uint8_t *	input	pointer to the input plaintext
uint8_t *	pub_key	pointer to the input recipient public key
uint8_t *	p1	pointer to the KDF P1 input parameter
uint8_t *	p2	pointer to the MAC P2 input parameter should be NULL
uint8_t *	output	pointer to the output area where the VCT must be written
uint32_t	input_size	length in bytes of the input plaintext should be equal to 16 bytes
uint16_t	p1_size	length in bytes of the KDF P1 parameter should be equal to 32 bytes
uint16_t	p2_size	length in bytes of the MAC P2 parameter should be zero reserved for generic use cases
uint16_t	pub_key_size	length in bytes of the recipient public key should be equal to 64 bytes
uint16_t	mac_size	length in bytes of the requested message authentication code should be equal to 16 bytes
uint32_t	out_size	length in bytes of the output VCT should be equal to 96 bytes
hsm_key_type_t	key_type	indicates the type of the recipient public key (only NIST P256 and Br256r1 are supported)
hsm_op_ecies_enc_← flags_t	flags	bitmap specifying the operation attributes.
uint16_t	reserved	

5.12.3 Function Documentation

5.12.3.1 hsm_err_t hsm_ecies_encryption (hsm_hdl_t session_hdl, op_ecies_enc_args_t * args)

Encrypt data usign ECIES

User can call this function only after having opened a session.

ECIES is supported with the constraints specified in 1609.2-2016.

Parameters

session_hdl	handle identifying the current session.
args	pointer to the structure containing the function arugments.

Returns

5.13 Public key recovery

Data Structures

• struct op_pub_key_recovery_args_t

Typedefs

typedef uint8_t hsm_op_pub_key_recovery_flags_t

Functions

• hsm_err_t hsm_pub_key_recovery (hsm_hdl_t key_store_hdl, op_pub_key_recovery_args_t *args)

5.13.1 Detailed Description

5.13.2 Data Structure Documentation

5.13.2.1 struct op_pub_key_recovery_args_t

Data Fields

uint32_t	key_identifier	pointer to the identifier of the key to be used for the operation
uint8_t *	out_key	pointer to the output area where the generated public key must be written
uint16_t	out_key_size	length in bytes of the output key
hsm_key_type_t	key_type	indicates the type of the key to be recovered
hsm_op_pub_key_recovery_← flags_t	flags	bitmap specifying the operation attributes.

5.13.3 Function Documentation

5.13.3.1 hsm_err_t hsm_pub_key_recovery (hsm_hdl_t key_store_hdl, op_pub_key_recovery_args_t * args)

Recover Public key from private key present in key store User can call this function only after having opened a key store.

Parameters

key_store_hdl	handle identifying the current key store.
args	pointer to the structure containing the function arguments.

Returns

5.14 Data storage 45

5.14 Data storage

Data Structures

- · struct open_svc_data_storage_args_t
- struct op_data_storage_args_t

Macros

- #define HSM_OP_DATA_STORAGE_FLAGS_STORE ((hsm_op_data_storage_flags_t)(1u << 0))
 Store data.
- #define HSM_OP_DATA_STORAGE_FLAGS_RETRIEVE ((hsm_op_data_storage_flags_t)(0u << 0))
 Retrieve data.

Typedefs

- typedef uint8_t hsm_svc_data_storage_flags_t
- typedef uint8_t hsm_op_data_storage_flags_t

Functions

- hsm_err_t hsm_open_data_storage_service (hsm_hdl_t key_store_hdl, open_svc_data_storage_args_
 t *args, hsm_hdl_t *data_storage_hdl)
- hsm_err_t hsm_data_storage (hsm_hdl_t data_storage_hdl, op_data_storage_args_t *args)
- hsm_err_t hsm_close_data_storage_service (hsm_hdl_t data_storage_hdl)

5.14.1 Detailed Description

5.14.2 Data Structure Documentation

5.14.2.1 struct open_svc_data_storage_args_t

Data Fields

hsm_svc_data_storage_← flags_t	flags	bitmap specifying the services properties.
uint8_t	reserved[3]	

5.14.2.2 struct op_data_storage_args_t

Data Fields

uint8_t *	data	pointer to the data. In case of store request, it will be the input data to store. In case of retrieve, it will be the pointer where to load data.	
uint32_t	data_size	length in bytes of the data	
uint16_t	data_id	id of the data	

Data Fields

hsm_op_data_storage_← flags_t	flags	flags bitmap specifying the operation attributes.
uint8_t	reserved	

5.14.3 Function Documentation

5.14.3.1 hsm_err_t hsm_open_data_storage_service (hsm_hdl_t key_store_hdl, open_svc_data_storage_args_t * args, hsm_hdl_t * data_storage_hdl)

Open a data storage service flow

User must open this service flow in order to store/retreive generic data in/from the HSM.

Parameters

key_store_hdl	handle indentifing the key store service flow.
args	pointer to the structure containing the function arugments.
data_storage_hdl	pointer to where the data storage service flow handle must be written.

Returns

error_code error code.

5.14.3.2 hsm_err_t hsm_data_storage (hsm_hdl_t data_storage_hdl, op_data_storage_args_t * args)

Store or retrieve generic data identified by a data_id.

Parameters

data_storage_hdl	handle identifying the data storage service flow.
args	pointer to the structure containing the function arugments.

Returns

error code

5.14.3.3 hsm_err_t hsm_close_data_storage_service (hsm_hdl_t data_storage_hdl)

Terminate a previously opened data storage service flow

Parameters

data_storage_hdl	handle identifying the data storage service flow.
------------------	---

5.14 Data storage 47

Returns

5.15 Root KEK export

Data Structures

struct op_export_root_kek_args_t

Macros

- #define HSM_OP_EXPORT_ROOT_KEK_FLAGS_COMMON_KEK ((hsm_op_export_root_kek_flags_t)(1u << 0))
- #define HSM_OP_EXPORT_ROOT_KEK_FLAGS_UNIQUE_KEK ((hsm_op_export_root_kek_flags_t)(0u << 0))

Typedefs

typedef uint8_t hsm_op_export_root_kek_flags_t

Functions

- hsm_err_t hsm_export_root_key_encryption_key (hsm_hdl_t session_hdl, op_export_root_kek_args_
 t *args)
- 5.15.1 Detailed Description
- 5.15.2 Data Structure Documentation
- 5.15.2.1 struct op_export_root_kek_args_t

Data Fields

uint8_t *	signed_message	pointer to signed_message authorizing the operation
uint8_t *	out_root_kek	pointer to the output area where the derived root kek (key encryption key) must be written
uint16_t	signed_msg_size	size of the signed_message authorizing the operation
uint8_t	root_kek_size	length in bytes of the root kek. Must be 32 bytes.
hsm_op_export_root_kek_← flags_t	flags	flags bitmap specifying the operation attributes.
uint8_t	reserved[2]	

5.15.3 Function Documentation

 $5.15.3.1 \quad hsm_err_t \ hsm_export_root_key_encryption_key (\ hsm_hdl_t \ session_hdl, \ op_export_root_kek_args_t * args)$

Export the root key encryption key. This key is derived on chip. It can be common or chip unique. This key will be used to import key in the key store through the manage key API.

Parameters

session_hdl	handle identifying the current session.
args	pointer to the structure containing the function arugments.

Returns

5.16 Get info

Data Structures

• struct op_get_info_args_t

Functions

• hsm_err_t hsm_get_info (hsm_hdl_t session_hdl, op_get_info_args_t *args)

5.16.1 Detailed Description

5.16.2 Data Structure Documentation

5.16.2.1 struct op_get_info_args_t

Data Fields

uint32_t *	user_sab_id	pointer to the output area where the user identifier (32bits) must be written
uint8_t *	chip_unique_id	pointer to the output area where the chip unique identifier (64bits) must be written
uint16_t *	chip_monotonic_counter	pointer to the output are where the chip monotonic counter value (16bits) must be written
uint16_t *	chip_life_cycle	pointer to the output area where the chip current life cycle (16bits) must be written
uint32_t *	version	pointer to the output area where the module version (32bits) must be written
uint32_t *	version_ext	pointer to the output area where module extended version (32bits) must be written
uint8_t *	fips_mode	pointer to the output area where the FIPS mode of operation (8bits) must be written

5.16.3 Function Documentation

5.16.3.1 hsm_err_t hsm_get_info (hsm_hdl_t session_hdl, op_get_info_args_t * args)

Parameters

session_hdl	handle identifying the current session.	
args	pointer to the structure containing the function arugments.	

Returns

5.17 Mac 51

5.17 Mac

Data Structures

- struct open_svc_mac_args_t
- struct op_mac_one_go_args_t

Macros

- #define HSM_OP_MAC_ONE_GO_FLAGS_MAC_VERIFICATION ((hsm_op_mac_one_go_flags_t)(0u << 0))
- #define HSM_OP_MAC_ONE_GO_FLAGS_MAC_GENERATION ((hsm_op_mac_one_go_flags_t)(1u <<< 0))
- #define HSM_OP_MAC_ONE_GO_ALGO_AES_CMAC ((hsm_op_mac_one_go_algo_t)(0x01u))
- #define HSM_MAC_VERIFICATION_STATUS_SUCCESS ((hsm_mac_verification_status_t)(0x6C1AA1 ← C6u))

Typedefs

- typedef uint8_t hsm_svc_mac_flags_t
- typedef uint8_t hsm_op_mac_one_go_algo_t
- typedef uint8_t hsm_op_mac_one_go_flags_t
- typedef uint32_t hsm_mac_verification_status_t

Functions

- hsm_err_t hsm_open_mac_service (hsm_hdl_t key_store_hdl, open_svc_mac_args_t *args, hsm_hdl_←
 t *mac_hdl)
- hsm_err_t hsm_mac_one_go (hsm_hdl_t mac_hdl, op_mac_one_go_args_t *args, hsm_mac_verification
 —status_t *status)
- hsm_err_t hsm_close_mac_service (hsm_hdl_t mac_hdl)

5.17.1 Detailed Description

5.17.2 Data Structure Documentation

5.17.2.1 struct open_svc_mac_args_t

Data Fields

hsm_svc_mac_← flags_t	flags	bitmap specifying the services properties.
uint8_t	reserved[3]	

5.17.2.2 struct op_mac_one_go_args_t

Data Fields

uint32_t	key_identifier	identifier of the key to be used for the operation
hsm_op_mac_one_go_algo↔	algorithm	algorithm to be used for the operation
_t		
hsm_op_mac_one_go_←	flags	bitmap specifying the operation attributes
flags_t		
uint8_t *	payload	pointer to the payload area
uint8_t *	mac	pointer to the tag area
uint16_t	payload_size	length in bytes of the payload
uint16_t	mac_size	length in bytes of the tag
		the value is in range from 4 to 16 bytes.

5.17.3 Function Documentation

5.17.3.1 hsm_err_t hsm_open_mac_service (hsm_hdl_t key_store_hdl , open_svc_mac_args_t * args, hsm_hdl_t * mac_hdl)

Open a mac service flow

User can call this function only after having opened a key store service flow. User must open this service in order to perform mac operation

Parameters

key_store_hdl	handle indentifing the key store service flow.	
args	pointer to the structure containing the function arugments.	
mac_hdl	pointer to where the mac service flow handle must be written.	

Returns

error code

5.17.3.2 hsm_err_t hsm_mac_one_go (hsm_hdl_t mac_hdl, op_mac_one_go_args_t * args, hsm_mac_verification_status_t * status)

Perform mac operation

User can call this function only after having opened a mac service flow

Parameters

mac_hdl	handle identifying the mac service flow.
args	pointer to the structure containing the function arugments.

Returns

5.17 Mac 53

5.17.3.3 hsm_err_t hsm_close_mac_service (hsm_hdl_t mac_hdl)

Terminate a previously opened mac service flow

Parameters

mac_hdl pointer to handle identifying the mac service flow to be closed.

Returns

Index

Ciphering, 20	Error codes, 6
hsm_auth_enc, 23	HSM_KEY_STORE_CONFLICT
hsm_cipher_one_go, 22	Error codes, 6
hsm_close_cipher_service, 23	HSM_KEY_STORE_COUNTER
hsm_ecies_decryption, 23	Error codes, 6
hsm_open_cipher_service, 22	HSM_KEY_STORE_ERROR
	Error codes, 6
Data storage, 45	HSM_NO_ERROR
hsm_close_data_storage_service, 46	Error codes, 6
hsm_data_storage, 46	HSM NVM ERROR
hsm_open_data_storage_service, 46	Error codes, 6
	HSM_OUT_OF_MEMORY
ECIES encryption, 42	Error codes, 6
hsm_ecies_encryption, 42	HSM RNG NOT STARTED
Error codes, 5	Error codes, 6
HSM_CMD_NOT_SUPPORTED, 6	HSM UNKNOWN HANDLE
HSM_FEATURE_NOT_SUPPORTED, 6	Error codes, 6
HSM_GENERAL_ERROR, 6	•
HSM ID CONFLICT, 6	HSM_UNKNOWN_ID
HSM_INVALID_ADDRESS, 6	Error codes, 6
HSM_INVALID_LIFECYCLE, 6	HSM_UNKNOWN_KEY_STORE
HSM_INVALID_MESSAGE, 6	Error codes, 6
HSM_INVALID_PARAM, 6	Hashing, 35
HSM_KEY_STORE_AUTH, 6	hsm_close_hash_service, 36
HSM_KEY_STORE_CONFLICT, 6	hsm_hash_one_go, 36
HSM_KEY_STORE_COUNTER, 6	hsm_open_hash_service, 36
HSM_KEY_STORE_ERROR, 6	hsm_auth_enc
HSM_NO_ERROR, 6	Ciphering, 23
HSM_NVM_ERROR, 6	hsm_butterfly_key_expansion
HSM_OUT_OF_MEMORY, 6	Key management, 18
HSM_RNG_NOT_STARTED, 6	hsm_cipher_one_go
HSM UNKNOWN HANDLE, 6	Ciphering, 22
HSM UNKNOWN ID, 6	hsm_close_cipher_service
HSM_UNKNOWN_KEY_STORE, 6	Ciphering, 23
hsm_err_t, 6	hsm_close_data_storage_service
113111_e11_t, 0	Data storage, 46
Get info, 50	hsm_close_hash_service
hsm_get_info, 50	Hashing, 36
nam_get_inio, 30	hsm_close_key_management_service
HSM CMD NOT SUPPORTED	Key management, 18
Error codes, 6	hsm_close_key_store_service
HSM_FEATURE_NOT_SUPPORTED	Key store, 10
Error codes, 6	hsm_close_mac_service
HSM_GENERAL_ERROR	Mac, 52
Error codes, 6	hsm_close_rng_service
HSM_ID_CONFLICT	Random number generation, 34
Error codes, 6	hsm close session
HSM INVALID ADDRESS	Session, 8
Error codes, 6	hsm_close_signature_generation_service
	Signature generation, 27
HSM_INVALID_LIFECYCLE Error codes, 6	hsm_close_signature_verification_service
HSM_INVALID_MESSAGE	Signature verification, 31
	hsm_data_storage
Error codes, 6	-
HSM_INVALID_PARAM	Data storage, 46
Error codes, 6 HSM KEY STORE AUTH	hsm_ecies_decryption
HOW RET SIUNE AUTH	Ciphering, 23

56 INDEX

hsm_ecies_encryption	hsm_manage_key, 17
ECIES encryption, 42	hsm_manage_key_group, 17
hsm_err_t	hsm_open_key_management_service, 16
Error codes, 6	Key store, 9
hsm_export_root_key_encryption_key	hsm_close_key_store_service, 10
Root KEK export, 48	hsm_open_key_store_service, 10
hsm_generate_key	
Key management, 16	Mac, 51
hsm_generate_signature	hsm_close_mac_service, 52
Signature generation, 27	hsm_mac_one_go, 52
hsm get info	hsm_open_mac_service, 52
Get info, 50	
hsm_get_random	op_auth_enc_args_t, 21
Random number generation, 34	op_butt_key_exp_args_t, 15
hsm_hash_one_go	op_cipher_one_go_args_t, 21
Hashing, 36	op_data_storage_args_t, 45
hsm_import_public_key	op_ecies_dec_args_t, 22
Signature verification, 31	op_ecies_enc_args_t, 42
hsm mac one go	op_export_root_kek_args_t, 48
Mac, 52	op_generate_key_args_t, 14
hsm manage key	op_generate_sign_args_t, 26
Key management, 17	op_get_info_args_t, 50
hsm_manage_key_group	op_get_random_args_t, 33
Key management, 17	op_hash_one_go_args_t, 35
hsm_open_cipher_service	op_import_public_key_args_t, 30
Ciphering, 22	op_mac_one_go_args_t, 51
hsm_open_data_storage_service	op_manage_key_args_t, 14
Data storage, 46	op_manage_key_group_args_t, 15
	op_prepare_sign_args_t, 26
hsm_open_hash_service	op_pub_key_dec_args_t, 40
Hashing, 36	op_pub_key_rec_args_t, 38
hsm_open_key_management_service	op_pub_key_recovery_args_t, 44
Key management, 16	op_verify_sign_args_t, 29
hsm_open_key_store_service	
Key store, 10	open_session_args_t, 7
hsm_open_mac_service	open_svc_cipher_args_t, 20
Mac, 52	open_svc_data_storage_args_t, 45
hsm_open_rng_service	open_svc_hash_args_t, 35
Random number generation, 33	open_svc_key_management_args_t, 14
hsm_open_session	open_svc_key_store_args_t, 9
Session, 8	open_svc_mac_args_t, 51
hsm_open_signature_generation_service	open_svc_rng_args_t, 33
Signature generation, 27	open_svc_sign_gen_args_t, 26
hsm_open_signature_verification_service	open_svc_sign_ver_args_t, 29
Signature verification, 30	
hsm_prepare_signature	Public key decompression, 40
Signature generation, 27	hsm_pub_key_decompression, 40
hsm_pub_key_decompression	Public key reconstruction, 38
Public key decompression, 40	hsm_pub_key_reconstruction, 38
hsm_pub_key_reconstruction	Public key recovery, 44
Public key reconstruction, 38	hsm_pub_key_recovery, 44
hsm_pub_key_recovery	
Public key recovery, 44	Random number generation, 33
hsm_verify_signature	hsm_close_rng_service, 34
Signature verification, 31	hsm_get_random, 34
-	hsm_open_rng_service, 33
Key management, 12	Root KEK export, 48
hsm_butterfly_key_expansion, 18	hsm_export_root_key_encryption_key, 48
hsm_close_key_management_service, 18	
hsm_generate_key, 16	Session, 7

INDEX 57

```
hsm_close_session, 8
hsm_open_session, 8
Signature generation, 25
hsm_close_signature_generation_service, 27
hsm_generate_signature, 27
hsm_open_signature_generation_service, 27
hsm_prepare_signature, 27
Signature verification, 29
hsm_close_signature_verification_service, 31
hsm_import_public_key, 31
hsm_open_signature_verification_service, 30
hsm_verify_signature, 31
```