## Conceptual Questions

### 26.6.12

En =  $\frac{Q}{e_0}$   $E_1 = \frac{Q}{4L^2}$ Solution  $E_2 = \frac{Q}{4L^2}$ Solution  $E_3 = \frac{Q}{4L^2}$ Solution  $E_4 = \frac{Q}{4L^2}$   $E_5 = \frac{Q}{4L^2}$ Solution  $E_7 = \frac{Q}{4L^2}$ Solution  $E_8 = \frac{Q}{4L^2}$ Solution  $E_9 = \frac{Q}{4L^2}$ Solution  $E_9 = \frac{Q}{4L^2}$ Solution  $E_9 = \frac{Q}{4L^2}$ 

C.) When d is doubled the electric field will remain the same.  $\hat{E}_f = \hat{E}_i = \hat{E}_i / \hat{E}_i = 1$ 

$$\vec{E} = \frac{m}{\epsilon_0}$$

$$\vec{E} = \frac{m}{\epsilon_0} = \frac{\vec{Q}}{\epsilon_0}$$

No dependence on d

## Problems

# 26.P.16

$$E = \frac{\eta}{2\epsilon_0}$$

$$Q = 8.0 \times 10^{-12} C^{2}$$

$$C_{0} = 8.85 \times 10^{-12} C^{2}$$

Q= 8.0 ×10<sup>-9</sup>C  

$$C_0 = 8.85 \times 10^{-12} \frac{C^2}{n_{mz}}$$
 $C_0 = 8.85 \times 10^{-12} \frac{C^2}{n_{mz}}$ 
 $C_0 = 8.85 \times 10^{-12} \frac{C^2}{n_{mz}}$ 

### 26.P.16



$$M = \frac{Q}{A}$$
  $\sim 0.03 m$ 

$$A = 0.003827 m^2$$

Dx=0.012M

$$\frac{V_1^2 - V_0^2}{2(bk)} = a$$

$$\frac{(4.0 \times 10^7 n/5)^2 - (2.0 \times 10^7 m/5)^2}{2(0.012m)} = a$$

$$a = 5.0 \times 10^{16} m/5^2$$