

International Rectifier

PD -94029

IRF5805

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge

V _{DSS}	R _{DS(on)} max	I _D
-30V	0.098@V _{GS} = -10V	-3.8A
	0.165@V _{GS} = -4.5V	-3.0A

Description

These P-channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The TSOP-6 package with its customized leadframe produces a HEXFET® power MOSFET with R_{DS(on)} 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and R_{DS(on)} reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.8	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-3.0	A
I _{DM}	Pulsed Drain Current①	-15	
P _D @ T _A = 25°C	Maximum Power Dissipation③	2	W
P _D @ T _A = 70°C	Maximum Power Dissipation③	1.28	W
	Linear Derating Factor	0.02	W/C
V _{GS}	Gate-to-Source Voltage	± 20	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
R _{θJA}	Maximum Junction-to-Ambient③	62.5	°C/W

IRF5805

International
Rectifier

Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(\text{BR})\text{DSS}}$	Drain-to-Source Breakdown Voltage	-30	—	—	V	$V_{\text{GS}} = 0\text{V}$, $I_D = -250\mu\text{A}$
$\Delta V_{(\text{BR})\text{DSS}/\Delta T_J}$	Breakdown Voltage Temp. Coefficient	—	0.02	—	V°C	Reference to 25°C , $I_D = -1\text{mA}$
$R_{\text{DS}(\text{on})}$	Static Drain-to-Source On-Resistance	—	—	0.098	Ω	$V_{\text{GS}} = -10\text{V}$, $I_D = -3.8\text{A}$ ②
		—	—	0.165		$V_{\text{GS}} = -4.5\text{V}$, $I_D = -3.0\text{A}$ ②
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	-1.0	—	-2.5	V	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = -250\mu\text{A}$
g_{fs}	Forward Transconductance	3.5	—	—	S	$V_{\text{DS}} = -10\text{V}$, $I_D = -3.8\text{A}$
I_{DSS}	Drain-to-Source Leakage Current	—	—	-15	μA	$V_{\text{DS}} = -24\text{V}$, $V_{\text{GS}} = 0\text{V}$
		—	—	-25		$V_{\text{DS}} = -24\text{V}$, $V_{\text{GS}} = 0\text{V}$, $T_J = 70^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	-100	nA	$V_{\text{GS}} = -20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	100		$V_{\text{GS}} = 20\text{V}$
Q_g	Total Gate Charge	—	11	17	nC	$I_D = -3.8\text{A}$
Q_{gs}	Gate-to-Source Charge	—	2.3	—		$V_{\text{DS}} = -15\text{V}$
Q_{gd}	Gate-to-Drain ("Miller") Charge	—	1.5	—		$V_{\text{GS}} = -10\text{V}$
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	—	11	17	ns	$V_{\text{DD}} = -15\text{V}$, $V_{\text{GS}} = -10\text{V}$
t_r	Rise Time	—	14	21		$I_D = -1.0\text{A}$
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time	—	90	135		$R_G = 6.0\Omega$
t_f	Fall Time	—	49	74		$R_D = 15\Omega$ ②
C_{iss}	Input Capacitance	—	511	—	pF	$V_{\text{GS}} = 0\text{V}$
C_{oss}	Output Capacitance	—	79	—		$V_{\text{DS}} = -25\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	50	—		$f = 1.0\text{MHz}$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
I_S	Continuous Source Current (Body Diode)	—	—	-2.0	A	MOSFET symbol showing the integral reverse p-n junction diode.
I_{SM}	Pulsed Source Current (Body Diode) ①	—	—	-15		
V_{SD}	Diode Forward Voltage	—	—	-1.2	V	$T_J = 25^\circ\text{C}$, $I_S = -2.0\text{A}$, $V_{\text{GS}} = 0\text{V}$ ②
t_{rr}	Reverse Recovery Time	—	19	29	ns	$T_J = 25^\circ\text{C}$, $I_F = -2.0\text{A}$
Q_{rr}	Reverse Recovery Charge	—	16	24	nC	$dI/dt = -100\text{A}/\mu\text{s}$ ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ③ Surface mounted on 1 in square Cu board, $t \leq 10\text{sec}$.
- ② Pulse width $\leq 400\mu\text{s}$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance
Vs. Temperature

IRF5805

International
Rectifier

Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode
Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF5805

International
Rectifier

Fig 12. Typical On-Resistance Vs.
Gate Voltage

Fig 13. Typical On-Resistance Vs.
Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical V_{gs(th)} Vs.
Junction Temperature

Fig 16. Typical Power Vs. Time

TSOP-6 Package Outline

SYM OL	MO-193AA DIMENSIONS					
	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	.0433
A1	0.01	---	0.10	.0004	---	.0039
A2	0.80	0.90	1.00	.0315	.0354	.0393
b	0.25	---	0.50	.0099	---	.0196
c	0.10	---	0.26	.004	---	.010
D	2.90	3.00	3.10	.115	.118	.122
E	2.75 BSC			.108 BSC		
E1	1.30	1.50	1.70	.052	.059	.066
e	1.00 BSC			.039 BSC		
L	0.20	0.40	0.60	.0079	.0157	.0236
L1	0.30 BSC			.0118 BSC		
Ø	0*	---	8*	0*	---	8*
aaa	0.10			.004		
bbb	0.15			.006		
ccc	0.25			.010		

TSOP-6 Part Marking Information

EXAMPLE: THIS IS AN SI3443DV

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR			
YEAR	Y	WEEK	W
2001	1	01	A
2002	2	02	B
2003	3	03	C
2004	4	04	D
2005	5		
1996	6		
1997	7		
1998	8		
1999	9		
2000	0	24	X
		25	Y
		26	Z

WW = (27-52) IF PRECEDED BY A LETTER			
YEAR	Y	WEEK	W
2001	A	27	A
2002	B	28	B
2003	C	29	C
2004	D	30	D
2005	E		
1996	F		
1997	G		
1998	H		
1999	J		
2000	K	50	X
		51	Y
		52	Z

PART NUMBER EXAMPLES:

3A = SI3443DV

DATE CODE EXAMPLES:

YWW = 9603 = 6C

YWW = 9632 = FF

TSOP-6 Tape & Reel Information

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086

IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630

IR TAIWAN: 16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 11/00