

Полупроводници

Изолатори, проводници и полупроводници

Проводимост на полупроводниците

Проводимостта на полупроводниците силно зависи от:

- Температура
- Осветеност
- Магнитно поле
- Примесни атоми (в много-ниски концентрации: 1ug 1mg примеси на 1kg чист полупроводник)

Тази чувствителност на проводимостта прави полупроводниците едни от най-важните материали в електрониката.

Структура на Si атом

Fig. 14 Schematic representation of an isolated silicon atom.

Електроните от най-външната орбита са относително слабо свързани с атома. Те се наричат валентни електрони и определят химическите и електрическите свойства на елементите.

Атомите на силиция (Si) имат по четири валентни електрона.

Зонна структура на твърдите тела

При доближаване на атомите (например в кристална решетка), всяко дискретно енергийно ниво се разделя на няколко нива. При достатъчно много атоми, нивата се преобразуват в енергийни зони.

Най-външните енергийни зони са наречени "зона на проводимост" и "валентна зона". Те са разделени с т.нар. "забранена зона".

Широчина на забранената зона

Eg е енергията необходима за да се разкъса връзка в полупроводника. При това освободеният електрон преминава в зоната на проводимост, а във валентната зона остава дупка.

Широчината на забранената зона (Eg) е определяща за електрическите свойства на елементите.

Properties	Si	4H-SiC	GaAs	GaN
Crystal Structure	Diamond	Hexagonal	Zincblende	Hexagonal
Energy Gap (eV)	1.12	3.26	1.43	3.5

Кристална структура на Si

диамантена кубична кристална структура

Всеки Si атом е свързан с четири други атома.

Видове полупроводници

Собствен полупроводник (intrinsic semiconductor) – в кристалната решетка няма примесни атоми. **Примесен** полупроводник (extrinsic semiconductor) – в кристала са въведени примесни атоми.

Концентрацията на въведените примесни атоми влияе значително върху електрическото поведение на полупроводниците.

Собствен полупроводник - Si

Чист полупроводник без внесени примеси се нарича собствен полупроводник.

Всеки един от четирите валентни електрона на Si атом формира ковалентна връзка с валентен електрон от съседни Si атоми. Така валентният електрон става общ за два съседни атома. Ковалентните връзки задържат атомите заедно в кристала.

Собствен полупроводник - Si

При T=0K (абсолютна нула) в собствен полупроводник всички ковалентни връзки са запълнени и няма свободни носители на заряд.

Това съответства на напълно запълнена валентна зона и празна зона на проводимост.

При тези условия няма подвижни носители на заряд и полупроводникът е изолатор.

Собствен полупроводник - токоносители

За да се формират свободни носители на заряд е необходима енергия.

Тя може да дойде от трептенията на атомите на кристала (фонони), от облъчване с радиация или от механични деформации.

При достатъчна енергия се разкъсват ковалентни връзки. Електронът се откъсва от атома и става свободен, оставяйки празно място – дупка с положителен заряд.

Процесът е еквивалентен на междузонни преходи на валентни електрони. Когато електрон премине от валентната зона в зоната на проводимост (също така се нарича "свободна зона"), във валентната зона остава празно място – дупка.

Собствен полупроводник – генерация и рекомбинация

Процесът на формиране на двойка свободни носители на заряд – електрон и дупка, под действие на допълнителна енергия, се нарича генерация.

Концентрациите на генерираните двойки токоносители са равни.

$$n = p$$
 n – концентрация на електроните p – концентрация на дупките

Процесът, при който електрон от свободната зона губи енергия и се връща обратно във валентната зона, се нарича рекомбинация. При това "изчезват" свободните носители електрон и дупка и се отделя енергия.

Собствен полупроводник – термодинамично равновесие

При T=const, настъпва **термодинамично равновесие** между процесите на генерация и рекомбинация.

$$n.p = n_i^2$$

n – концентрация на електроните

р – концентрация на дупките

 n_i — собствена концентрация

В чистия полупроводник, за дадена температура, се установява постоянна концентрация, наречена собствена концентрация n_i .

Собствената концентрация на токоносителите зависи само от температурата и от широчината на забранената зона.

Движение на токоносителите

Дрейфово движение

$$v_E = \mu E$$
 $\mu_n > \mu_p$

$$J = J_n + J_p$$

J - Плътност на ток

Електроните и дупките са **подвижни частици**. Те могат да се преместват между възлите на кристалната решетка под въздействие на електрическо поле, т.е. да участват в протичането на ток. Затова се наричат **токоносители**.

Движението на токоносителите под действие на електрическо поле се нарича **дрейфово**, а средната скорост, с която се преместват – дрейфова скорост v_E .

Параметърът μ, свързващ дрейфовата скорост с интензитета на електрическото поле, се нарича подвижността на токоносителите.

Собствен полупроводник – температурна зависимост

В собствен полупроводник при стайна температура има незначителен брой свободни токоносители.

Техният брой, и респективно големината на тока, силно зависят от температурата.

Поради тези причини чистите полупроводници не се използват за направа на полупроводникови елементи.

Примесни полупроводници

PERIODIC TABLE OF ELEMENTS

Electron Configuration

Полупроводник, електрическите характеристики на който се определят от наличието на примеси, се нарича примесен.

Примеси от пета валентност - арсен (As), фосфор (P), антимон (Sb) се наричат донори, защото отдават един от валентните си електрони си към полупроводниковия кристал.

Примеси от трета валентност - бор (В), алуминий (АІ), галий (Ga) се наричат акцептори, защото приемат един електрон от съседен атом и така оставят дупка (празно място) в полупроводниковия кристал.

n-тип полупроводник — формиране на токоносители

Четири от валентните електрони на донорния атом (*P*) образуват ковалентни връзки със съседни силициеви атоми.

Петият електрон остава слабо свързан с ядрото и при незначително количество енергия може лесно се отдели от атома и става свободен електрон.

Електроните са доминиращ тип токоносители и се наричат **основни токоносители**, а полупровоникът — **N** тип полупроводник.

Ковалентна връзка

Донорни атоми – V валентност Неутрален фосфорен атом

n-тип полупроводник — формиране на токоносители

Когато неутрален фосфорен атом отдаде електрон, той става **положително зареден йон**. Той е свързани в кристалната решетка и не участва при формиране на тока.

Йонизацията на донорите довежда до образуване само на **един тип подвижни токоносители** – **свободни електрони**.

$$n$$
 — концентрация на електроните p — концентрация на дупките

n-тип полупроводник Електрони - основни носители (majority carriers) Дупки – неосновни носители (minority carriers)

n-тип полупроводник — основни и неосновни токоносители

Основни токоносители се формират при йонизация на примесите. Тяхната концентрация е строго определена, защото количеството на въведените в кристала примеси може точно да се контролира при производството.

$$n-$$
 концентрация на електроните N_D- концентрация на донорните йони

Неосновни токоносители се формират при разкъсване на ковалентни връзки.

n-тип полупроводник — концентрация на токоносители

Закон за действие на масите

Термодинамично равновесие

$$n.p = n_i^2$$

 $n.p = n_i^2$ n – концентрация на електроните p – концентрация на дупките

 n_i — собствена концентрация

$$n = N_D$$
 $n = const(T)$

Концентрацията на основните токоносители не зависи от температурата в нормалния температурен диапазон на експлоатация на ПП елементи.

$$p = \frac{n_i^2}{N_D} \qquad p = f(T)$$

Концентрацията на неосновните токоносители много силно зависи от температурата.

р-тип полупроводник — основни и неосновни токоносители

Акцепторен атом – 3 валентни електрона

р-тип полупроводник — основни и неосновни токоносители

Основните токоносители се формират при йонизация на акцепторните атоми. При това се създава **дупка**, без да се образува електрон.

Несновни токоносители се формират при разкъсване на ковалентни връзки.

Токове в примесни полупроводници – дрейфов ток

Електропроводимостта се обуславя от движението на свободни токоносители под действие на електрическо поле.

Плътността на тока J се определя от заряда, пренесен от токоносителите за единица време през единица сечение.

Плътност на дрейфовият ток в р-полупроводник

$$J_{pE} = qp\mu_p E (A/cm^2)$$

 $J_{nE} = -qn\mu_n E (A/cm^2)$

Плътност на дрейфовият ток в п-полупроводник

Закон на Ом

q — заряд на електрона = $1.6 \times 10^{-19} \ C$ (Кулони) p — концентрация на дупките (т.е. брой на дупките в един кубичен сантиметър) n — концентрация на свободните електрони μ_p - подвижност на дупките (cm²/V.s)

 μ_n - подвижност на електроните (cm²/V.s)

Дифузия е процес на пренос на субстанция или енергия (напр. атом, йон или молекула) от област с по-висока концентрация към област с по-ниска концентрация

Diffusion

Токове в примесни полупроводници – дифузен ток

Дифузен ток – движение на токоносителите поради разлика в концентрацията на токоносителите.

Плътност на дифузния ток в р-полупроводник

Плътност на дифузния ток в n-полупроводник

$$J_{pD} = -qD_p \frac{dp}{dx}$$

$$J_{nD} = qD_n \frac{dn}{dx}$$
 Закон на Фик

 $D_{\it n}$, $D_{\it p}$ – коефициенти на дифузия

	Дрейфов ток	Дифузен ток
Причинява се от	Електрическо поле	Разлика в концентрацията на токоносителите
Посока на тока	Посоката на електрическото поле	Градиента на концентрация на токоносителите
Закони	Закон на Ом	Закон на Фик

Уравнение на Айнщайн

Връзката между коефициент на дифузия и подвижност е изразена чрез уравнението на Айнщайн.

$$D=arphi_T \mu$$
 D коефициент на дифузия

μ подвижност

$$arphi_T = rac{kT}{q} pprox rac{T}{11600}$$
 Температурен потенциал

k – константа на Болцман, T – темпетатура (K), q- заряд на електрона

За "стайна температура" (300 K) $\,\phi_T^{}=~0.0258~\mathrm{V} \approx 26~\mathrm{mV}$

Общ ток в полупроводника

Токоносителите могат да се движат чрез дрейф и дифузия и да формират съответно дрейфова и дифузионни съставки на тока.

$$J_n = J_{nE} + J_{nD} = q\mu_n nE + qD_n \frac{dn}{dx}$$

$$J_{p} = J_{pE} + J_{pD} = q\mu_{p} pE - qD_{p} \frac{dp}{dx}$$

Неравновесни концентрации

При локално действие на друг вид енергия – облъчване, рентгенови и гама-лъчи, силно електрическо поле и др. поради генерацията на нови **добавъчни** токоносители, се създават **неравновесни** концентрации на електрони n_n и на дупки p_n , които превишават равновесните за дадена температура.

