Matrix Nearness Problem

Definition: Distance

Let $|||\cdot|||$ be a matrix norm on M_n , $S\subseteq M_n$, and $A\notin S$. The distance from A to S is given by:

$$d(A) = \inf_{X \in S} \{ |||A - X||| \}$$

Questions:

- 1). Compute d(A)
- 2). Does $X_A \in S$ exist such that $d(A) = |||X X_A|||$?
- 3). If X_A exists, is it unique?

Lemma

Let $|||\cdot|||$ be a matrix norm on M_n and $A \in M_n$:

$$||I - A||| < 1 \implies A$$
 is invertible

Proof

 $\mathsf{Assume}\;|||I-A|||<1$

Let
$$A = I - (I - A)$$

$$A^{-1} = [I - (I - A)]^{-1} = \sum_{k=0}^{\infty} (I - A)^k$$

Check for absolute convergence under the norm:

$$\left| \left| \left| \sum_{k=0}^{\infty} (I - A)^k \right| \right| \right| \le \sum_{k=0}^{\infty} \left| \left| \left| I - A \right| \right| \right|^k$$

which converges for ||I - A||| < 1.

Theorem: Best Singular Approximation

Let $|||\cdot|||$ be the operator norm and let S be the collection of all singular matrices. Fix $A \notin S$:

$$d(A) = s_n$$

the smallest singular value.

Proof

Consider the SVD for *A*:

$$A = V \begin{bmatrix} s_1 & 0 \\ & \ddots & \\ 0 & s_n \end{bmatrix} W^*$$

$$A^{-1} = (W^*)^{-1} \begin{bmatrix} \frac{1}{s_1} & 0 \\ & \ddots & \\ 0 & \frac{1}{s_n} \end{bmatrix} V^{-1} = W \begin{bmatrix} \frac{1}{s_1} & 0 \\ & \ddots & \\ 0 & \frac{1}{s_n} \end{bmatrix} V^*$$

Note that this is the SVD for A^{-1} , so $|||A^{-1}||| = \frac{1}{s_n}$.

Assume $B \in S$

$$A^{-1}B \in S$$

By the CP of the above lemma:

$$\begin{aligned} |||I - A^{-1}B||| &\geq 1\\ ||||A^{-1}(A - B)|| &\geq 1\\ ||||A^{-1}||| |||A - B||| &\geq 1\\ \frac{1}{s_n} |||A - B||| &\geq 1\\ |||A - B||| &\geq s_n \end{aligned}$$

Now, let
$$X_A=V\begin{bmatrix}s_1&&&0\\&\ddots&&\\&s_n&0\end{bmatrix}W^*\in S$$

$$|||A-X_A|||=\left|\left|\left|V\begin{bmatrix}0&&&0\\&\ddots&&\\0&&s_n\end{array}\right]W^*\right|\right|=s_n$$

$$\therefore d(A) = s_n$$