Napredna računalniška orodja (Prva domača naloga)

Alen Planinšec 23211290

October 23, 2023

Univerza *v Ljubljani* Fakulteta *za strojništvo*

Kazalo

1 Približek števila π z metodo Monte Carlo

- 2 Funkcijska in programska datoteka
- 3 Vizualizacija

Z metodo Monte Carlo smo v programu Matlab izračunali približno vrednost števila π .

Postopek domače naloge:

definicija funkcijske datoteke s funkcijo mcc_pi.m z enim vhodnim parametrom (število naključnih točk n),

Z metodo Monte Carlo smo v programu Matlab izračunali približno vrednost števila π .

Postopek domače naloge:

- definicija funkcijske datoteke s funkcijo mcc_pi.m z enim vhodnim parametrom (število naključnih točk n),
- programska datoteka calc_pi.m, ki vključuje prejšnjo funkcijsko datoteko in novo funkcijo, ki primerja število točk znotraj in zunaj kroga in tako oceni vrednosti π in odstopanje od prave vrednosti,

Z metodo Monte Carlo smo v programu Matlab izračunali približno vrednost števila π .

Postopek domače naloge:

- definicija funkcijske datoteke s funkcijo mcc_pi.m z enim vhodnim parametrom (število naključnih točk n),
- programska datoteka calc_pi.m, ki vključuje prejšnjo funkcijsko datoteko in novo funkcijo, ki primerja število točk znotraj in zunaj kroga in tako oceni vrednosti π in odstopanje od prave vrednosti,
- vključitev anonimne funkcije za izris loka krožnice,

Z metodo Monte Carlo smo v programu Matlab izračunali približno vrednost števila π .

Postopek domače naloge:

- definicija funkcijske datoteke s funkcijo mcc_pi.m z enim vhodnim parametrom (število naključnih točk n),
- programska datoteka calc_pi.m, ki vključuje prejšnjo funkcijsko datoteko in novo funkcijo, ki primerja število točk znotraj in zunaj kroga in tako oceni vrednosti π in odstopanje od prave vrednosti,
- vključitev anonimne funkcije za izris loka krožnice,
- vizualizacija točk znotraj in zunaj krožnice

Funkcijska datoteka ima enako ime kot prva funkcija v datoteki.

Funkcijska datoteka ima enako ime kot prva funkcija v datoteki.

Spremenljivke v tovrstni datoteki so lokalne in niso dostopne iz drugih funkcij.

Funkcijska datoteka ima enako ime kot prva funkcija v datoteki.

Spremenljivke v tovrstni datoteki so lokalne in niso dostopne iz drugih funkcij.

Ta del programa za izračun razvijemo v obliki funkcijske datoteke z imenom mcc_pi.m, ki ima en vhodni parameter (število točk n).

Funkcijska datoteka ima enako ime kot prva funkcija v datoteki.

Spremenljivke v tovrstni datoteki so lokalne in niso dostopne iz drugih funkcij.

Ta del programa za izračun razvijemo v obliki funkcijske datoteke z imenom mcc_pi.m, ki ima en vhodni parameter (število točk n).

Funkcija ob klicu vrne posebej koordinate točk znotraj in zunaj kroga.

Programska datoteka

Programska datoteka je običajno krovna datoteka, ki definira začetne vrednosti in kliče funkcije potrebne za rešitev problema.

Programska datoteka

Programska datoteka je običajno krovna datoteka, ki definira začetne vrednosti in kliče funkcije potrebne za rešitev problema.

V našem primeru je to calc_pi.m.

Koordinate naključnih točk

Točke znotraj kroga in kvadrata lahko izrišemo. Na zadnji strani so prikazi izrisa za različne vhodne parametre števila točk.

Vizualizacija rezultatov

Kot rezultat dobimo ocenjeno vrednost števila π in napako pri računanju. S spreminjanjem števila naključnih točk n ugotovimo, da je z večjim številom točk napaka vedno manjša.

Vizualizacija rezultatov

Kot rezultat dobimo ocenjeno vrednost števila π in napako pri računanju. S spreminjanjem števila naključnih točk n ugotovimo, da je z večjim številom točk napaka vedno manjša.

Prikaz za n=10 000 in n=100 000

Vizualizacija rezultatov

Kot rezultat dobimo ocenjeno vrednost števila π in napako pri računanju. S spreminjanjem števila naključnih točk n ugotovimo, da je z večjim številom točk napaka vedno manjša.

Prikaz za n=10 000 in n=100 000

