

Fundamentals of Thermodynamics

Dr Guohong Tian g.tian@surrey.ac.uk

Contents

- 1. Substances and ideal gas
- 2. First Law of Thermodynamics
- 3. Steady Flow Energy Equation
- 4. Second Law of Thermodynamics
- 5. Entropy

Phases

A **phase** is defined as a quantity of matter that is homogeneous throughout.

Liquid

Vapor

Critical

point

Vapor

Gas

Phase diagram of a substance that contracts on freezing Friday, 20 March 2020

Phase diagram of a substance that expands on freezing $_{30}$

Phase diagram

Temperature T(K)

p-T diagram

Phase change

During phase change, substance exists simultaneously in two phase at the same temperature. In this process the **temperature remains constant at constant pressure** until the process finishes.

Phase diagram and terminology

pressure

specific volume v (m³/kg)

Phase change

The energy transferred at constant temperature during change of phase is (specific) latent heat

$$Q = \underline{m\lambda}$$

where λ (J/kg) is specific latent heat

The energy transferred in single phase resulting in temperature change is sensible heat.

$$Q = mc\Delta T$$

where c (J/kg K) is specific heat capacity

Latent heat λ has two components: changing molecular potential energy and specific work done by/against surroundings at constant pressure p ΔV due to change in volume when phase changes.

Phase change

Nem

Dry fraction (quality) and property table to be introduced in next semester

Thermodynamics

critical point p x = AB / AC0 A saturated saturated vapour line liquid line v_{g} V_f V_{B}

x = Quality or Dryness fraction

Relates to horizontal distances on p-v or T-v diagrams

Dryness fraction (x) = mass of pure vapour in mixture mass of liquid and vapour

How to read a steam table

LIOW	to	rcau	a	Steam	table	
Saturated	l Wat	er and Ste	am			-4

T	p_s	v_{κ}	$h_{\rm f}$	h_{fg}	h_{μ}	$S_{\mathbf{f}}$	S_{fg}	$S_{\mathbf{g}}$
[°C]	[bar]	[m ³ /kg]		[kJ/kg]			[kJ/kg K]	
0.01	0.006112	206.1	0*	2500.8	2500.8	0†	9.155	9.15
1	0.006566	192.6	4.2	2498.3	2502.5	0.015	9.113	9.12
2	0.007054	179.9	8.4	2495.9	2504.3	0.031	9.071	9.10
3	0.007575	168.2	12.6	2493.6	2506.2	0.046	9.030	9.07
4	0.008129	157.3	16.8	2491.3	2508.1	0.061	8.989	9.05
5	0.008719	147.1	21.0	2488.9	2509.9	0.076	8.948	9.02
6	0.009346	137.8	25.2	2486.6	2511.8	0.091	8.908	8.99
7	0.01001	129.1	29.4	2484.3	2513.7	0.106	8.868	8.97
8	0.01072	121.0	33.6	2481.9	2515.5	0.121	8.828	8.94
9	0.01147	113.4	37.8	2479.6	2517.4	0.136	8.788	8.92
10	0.01227	106.4	42.0	2477.2	2519.2	0.151	8.749	8.90
11	0.01312	99.90	46.2	2474.9	2521.1	0.166	8.710	8.87
12	0.01401	93.83	50.4	2472.5	2522.9	0.180	8.671	8.85
13	0.01497	88.17	54.6	2470.2	2524.8	0.195	8.633	8.82
14	0.01597	82.89	58.8	2467.8	2526.6	0.210	8.594	8.80
15	0.01704	77.97	62.9	2465.5	2528.4	0.224	8.556	8.78
16	0.01817	73.38	67.1	2463.1	2530.2	0.239	8.518	8.75
17	0.01936	69.09	71.3	2460.8	2532.1	0.253	8.481	8.73
18	0.02063	65.08	75.5	2458.4	2533.9	0.268	8.444	8.71
19	0.02196	61.34	79.7	2456.0	2535.7	0.282	8.407	8.68
20	0.02337	57.84	83.9	2453.7	2537.6	0.296	8.370	8.66
21	0.02486	54.56	88.0	2451.4	2539.4	0.310	8.334	8.64
22	0.02642	51.49	92.2	2449.0	2541.2	0.325	8.297	8.62
23	0.02808	48.62	96.4	2446.6	2543.0	0.339	8.261	8.60
24	0.02982	45.92	100.6	2444.2	2544.8	0.353	8.226	8.57
25	0.03166	43.40	104.8	2441.8	2546.6	0.367	8.190	8.55
26	0.03360	41.03	108.9	2439.5	2548.4	0.381	8.155	8.53
27	0.03564	38.81	113.1	2437.2	2550.3	0.395	8.120	8.51
28	0.03778	36.73	117.3	2434.8	2552.1	0.409	8.085	8.49
29	0.04004	34.77	121.5	2432.4	2553.9	0.423	8.050	8.47
30	0.04242	32.93	(125.7)	2430.0	2555.7	0.436	8.016	8.45
32	0.04754	29.57	134.0	2425.3	2559 3	0.464	7.948	8.41
34	0.05318	26.60	142.4	2420.5	2562.9	0.491	7.881	8.37
36	0.05940	23.97	150.7	2415.8	2566.5	0.518	7.814	8.33
38	0.06624	21.63	159.1	2411.0	2570.1	0.545	7.749	8.29
40 "	0.07375	19.55	167.5	2406.2	2573.7	0.572	7.684	8.25
42	0.08198	17.69	175.8	2401.4	2577.2	0.599	7.620	8.21
44	0.09100	16.03	184.2	2396.6	2580.8	0.625	7.557	8.18
46	0.1009	14.56	192.5	2391.8	2584.3	0.651	7.494	8.14
48	0.1116	13.23	200.9	2387.0	2587.9	0.678	7.433	8.11
50	0.1233	12.04	209.3	2382.1	2591.4	0.704	7.371	8.07
55	0.1574	9.578	230.2	2370.1	2600.3	0.768	7.223	7.99
60	0.1992	7.678	251.1	2357.9	2609.0	0.831	7.078	7.90
65	0.2501	6.201	272.0	2345.7	2617.7	0.893	6.937	7.83
70	0.3116	5.045	293.0	2333.3	2626.3	0.955	6.800	7.75
75	0.3855	4.133	313.9	2320.8	2634.7	1.015	6.666	7.68
80	0.4736	3.408	334.9	2308.3	2643.2	1.075	6.536	7.61
85	0.5780	2.828	355.9	2295.6	2651.5	1.134	6.410	7.54
90	0.7011	2.361	376.9	2282.8	2659.7	1.192	6.286	7.47
95	0.8453	1.982	398.0	2269.8	2667.8	1.250	6.166	7.41
00	1.01325	1.673	419.1	2256.7	2675.8	1.307	6.048	7.35

 $[\]dagger u$ and s are chosen to be zero for saturated liquid at the triple point.

Note: values of v_f can be found on p. 10.

				Satu	urated Water and Steam
p [bar]	$\frac{T_s}{\Gamma^{\circ}C}$	$\frac{v_g}{[m^3/kg]}$	$\frac{u_{\rm f} - u_{\rm g}}{[kJ/kg]}$	$\frac{h_f h_{fg} h_g}{[kJ/kg]}$	$\frac{s_{\rm f}}{[\rm kJ/kgK]} \frac{s_{\rm g}}{}$
0.006112	0.01	206.1	0† 2375	0* 2501 2501	0† 9.155 9.155
0.010	7.0	129.2	29 2385	29 2485 2514	0.106 8.868 8.974
0.015	13.0	87.98	55 2393	55 2470 2525	0.196 8.631 8.827
0.020	17.5	67.01	73 2399	73 2460 2533	0.261 8.462 8.723
0.025	21.1	54.26	88 2403	88 2451 2539	0.312 8.330 8.642
0.030	24.1	45.67	101 2408	101 2444 2545	0.354 8.222 8.576
0.035	26.7	39.48	112 2412	112 2438 2550	0.391 8.130 8.521
0.040	29.0	34.80	121 2415	121 2433 2554	0.422 8.051 8.473
0.045	31.0	31.14	130 2418	130 2428 2558	0.451 7.980 8.431
0.050	32.9	28.20	138 2420	138 2423 2561	0.476 7.918 8.394
0.055	34.6	25.77	145 2422	145 2419 2564	0.500 7.860 8.360 0.521 7.808 8.329 0.541 7.760 8.301 0.559 7.715 8.274 0.576 7.674 8.250
0.060	36.2	23.74	152 2425	152 2415 2567	
0.065	37.7	22.02	158 2427	158 2412 2570	
0.070	39.0	20.53	163 2428	163 2409 2572	
0.075	40.3	19.24	169 2430	169 2405 2574	
0.080	41.5	18.10	174 2432	174 2402 2576	0.593 7.634 8.227
0.085	42.7	17.10	179 2434	179 2400 2579	0.608 7.598 8.206
0.090	43.8	16.20	183 2435	183 2397 2580	0.622 7.564 8.186
0.095	44.8	15.40	188 2436	188 2394 2582	0.636 7.531 8.167
0.100	45.8	14.67	192 2437	192 2392 2584	0.649 7.500 8.149
0.12	49.4	12.36	207 2442	207 2383 2590	0.696 7.389 8.085
0.14	52.6	10.69	220 2446	220 2376 2596	0.737 7.294 8.031
0.16	55.3	9.432	232 2450	232 2369 2601	0.772 7.213 7.985
0.18	57.8	8.444	242 2453	242 2363 2605	0.804 7.140 7.944
0.20	60.1	7.648	251 2456	251 2358 2609	0.832 7.075 7.907
0.22	62.2	6.994	260 2459	260 2353 2613	0.858 7.016 7.874
0.24	64.1	6.445	268 2461	268 2348 2616	0.882 6.962 7.844
0.26	65.9	5.979	276 2464	276 2343 2619	0.904 6.913 7.817
0.28	67.5	5.578	283 2466	283 2339 2622	0.925 6.866 7.791
0.30	69.1	5.228	289 2468	289 2336 2625	0.944 6.823 7.767
0.32	70.6	4.921	295 2470	295 2332 2627	0.962 6.783 7.745
0.34	72.0	4.649	302 2472	302 2328 2630	0.980 6.745 7.725
0.36	73.4	4.407	307 2473	307 2325 2632	0.996 6.709 7.705
0.38	74.7	4.189	312 2475	312 2322 2634	1.011 6.675 7.686
0.40	75.9	3.992	318 2476	318 2318 2636	1.026 6.643 7.669
0.42	77.1	3.814	323 2478	323 2315 2638	1,040 6,612 7,652
0.44	78.2	3.651	327 2479	327 2313 2640	1,054 6,582 7,636
0.46	79.3	3.502	332 2481	332 2310 2642	1,067 6,554 7,621
0.48	80.3	3.366	336 2482	336 2308 2644	1,079 6,528 7,607
0.50	81.3	3.239	340 2483	340 2305 2645	1,091 6,502 7,593
0.55	83.7	2.964	351 2486	351 2298 2649	1.119 6.442 7.561
0.60	86.0	2.731	360 2489	360 2293 2653	1.145 6.386 7.531
0.65	88.0	2.535	369 2492	369 2288 2657	1.169 6.335 7.504
0.70	90.0	2.364	377 2494	377 2283 2660	1.192 6.286 7.478
0.75	91.8	2.217	384 2496	384 2278 2662	1.213 6.243 7.456
0.80	93.5	2.087	392 2498	392 2273 2665	1.233 6.201 7.434
0.85	95.2	1.972	399 2500	399 2269 2668	1.252 6.162 7.414
0.90	96.7	1.869	405 2502	405 2266 2671	1.270 6.124 7.394
0.95	98.2	1.777	411 2504	411 2262 2673	1.287 6.089 7.376
1.00	99.6	1.694	417 2506	417 2258 2675	1.303 6.056 7.359

$$\begin{split} & * \frac{h_{\rm f}}{[{\rm kJ/kg}]} = \frac{p v_{\rm f}}{[{\rm kJ/kg}]} = \frac{p}{[{\rm bar}]} \times \frac{10^5 [{\rm N}]}{[{\rm m}^2]} \times \frac{v_{\rm f}}{[{\rm m}^3/{\rm kg}]} \times \left[\frac{{\rm m}^3}{{\rm kg}}\right] \times \frac{[{\rm kJ}]}{10^3 [{\rm N\,m}]} \times \frac{1}{[{\rm kJ/kg}]} \\ & = \frac{p}{[{\rm bar}]} \times \frac{v_{\rm f}}{[{\rm m}^3/{\rm kg}]} \times 10^2 = 0.006112 \times 0.0010002 \times 10^2 = 0.0006112 \end{split}$$

Friday, 20 March 2020

Linear interpolation

Example:

Determine the specific enthalpy of water at 31°C.

Т	р	Vg	h _f	h _{fg}	hg
°C	bar	m³/kg	kJ/kg	kJ/kg	kJ/kg
0.01	0.006112	206.1	0	2500.8	2500.8
30 32	0.04242 0.04754	32.93 29.57	125.7 134.0	2430.0 2425.3	2555.7 2559.3
100	1.01325	1.673	419.1	2256.7	2675.8

Linear interpolation

Т	р	Vg	hf	h _{fg}	hg
°C	bar	m³/kg	kJ/kg	kJ/kg	kJ/kg
0.01	0.006112	206.1	0	2500.8	2500.8
30 32	0.04242 0.04754	32.93 29.57	125.7 134.0	2430.0 2425.3	2555.7 2559.3
100	1.01325	1.673	419.1	2256.7	2675.8

General rules of using property tables

Step 1. Decide the phase of the substance (single gas, single liquid, or two-phase);

Step 2. Use the appropriate tables (substance and phase);

Step 3. Work out the properties. Interpolate if needed.

Ideal gas equations

Boyle's Law

pV = constant, at constant temperature

Charle's (or Gay-Lussac's) Law

V/T = constant, at constant pressure

$$pV = mRT$$
 where R (J/kg K) is a constant for a specific gas

Avogadro's Law Universal & constart

$$pV = nR_0T$$

where n is the mole number and R_0 is the

universal constant for all gases $R_0 = 8314$ (J/kmol K)

$$M \equiv m/n$$

therefore $R = R_0/M$

Ideal gas approximations

- All molecules are identical
- Sufficiently large numbers of molecules for statistics to be significant
- Molecular motion is continuous and random
- Law of Newtonian physics apply at molecular scale
- *Attractive forces between molecules are negligible
- *Any collisions between molecules and with walls of container are perfectly elastic
- *Molecules occupy negligible volume themselves

last three items imply that the ideal gas approximations are only valid when in the region of modest temperature and pressure of **gas phase**.

Mixture of gases

$$m_{tot} = m_1 + m_2 + \dots + m_N = \sum m_i$$

$$n_{tot} = n_1 + n_2 + \dots + n_N = \sum n_i$$

Mass fraction of component i:

$$x_{mi} = \frac{m_i}{m_{tot}}$$

Mole fraction of component i:

$$x_{ni} = \frac{n_i}{n_{tot}}$$

To calculate mass fraction from mole fraction

$$x_{mi} = \frac{n_i M_i}{m_{tot}} = \frac{n_i M_i}{\sum n_j M_j} = \frac{n_i M_i / n_{tot}}{\sum n_j M_j / n_{tot}} = \frac{x_n M_i}{\sum x_{nj} M_j}$$

To calculate mole fraction from mass fraction

$$x_{ni} = \frac{m_i/M_i}{n_{tot}} = \frac{m_i/M_i}{\sum m_j/M_j} = \frac{m_i/(M_i m_{tot})}{\sum m_j/(M_j m_{tot})} = \frac{x_{mi}/M_i}{\sum x_{mj}/M_j}$$

Mixture of ideal gases

The molar mass of the mixture becomes:

$$M_{mix} = \frac{m_{tot}}{n_{tot}} = \frac{\sum m_i}{n_{tot}} = \frac{\sum n_i M_i}{n_{tot}} = \sum x_{ni} M_i$$

Gibb's Law for extensive properties of any mixture (not just ideal gas)

$$\Phi_{tot} = \sum \Phi_i$$

e.g.
$$U_{tot} = \sum U_i$$
 or $H_{tot} = \sum H_i$

Dalton model

Partial pressure

$$p = p_A + p_B$$

partial volume

$$V = V_A + V_B$$

$$p_i V_{tot} = n_i R_0 T$$

or

$$p_{tot}V_i = n_i R_0 T$$

$$p_i = \frac{n_i R_0 T}{V_{tot}} = \frac{n_i}{n_{tot}} p_{tot}$$

$$V_i = \frac{n_i R_0 T}{P_{tot}} = \frac{n_i}{n_{tot}} V_{tot}$$

The First Law

When a system is taken through a cycle, the cyclic integral of the heat is proportional to the cyclic integral of the work.

$$\sum Q - \sum W = 0$$

In integral form

$$\oint dQ - \oint dW = 0$$

Note: in some references you may find the first law is written in the form of $\oint \delta Q + \oint \delta W = 0$. This sign conversion is totally arbitrary and in this case, the work is defined as dW = -pdV.

System energy

Corollary of the First Law:

If we consider two cycles AC and BC

AC:
$$\int_{1}^{2} dQ_{A} + \int_{2}^{1} dQ_{C} - \int_{1}^{2} dW_{A} - \int_{2}^{1} dW_{C} = 0$$

BC:
$$\int_{1}^{2} dQ_{B} + \int_{2}^{1} dQ_{C} - \int_{1}^{2} dW_{B} - \int_{2}^{1} dW_{C} = 0$$

Subtracting the second from the first

$$\int_{1}^{2} dQ_{A} - \int_{1}^{2} dQ_{B} - \int_{1}^{2} dW_{A} + \int_{1}^{2} dW_{B} = 0$$

Rearrange:

$$\int_{1}^{2} (dQ - dW)_{A} = \int_{1}^{2} (dQ - dW)_{B}$$

Implies: quantity (Q-W) depends only on the initial and final states

We define Energy: E=Q-W

Or
$$dE = \delta Q - \delta W$$

Х

Energy forms conservation of energy

Potential Energy: $PE = mg(z - z_0)$

Kinetic Energy: $KE = mc^2$

or rotating body: $KE = I \omega^2$

$$E = U + \left(\frac{1}{2}mc^{2}\right) + (mgZ) + etc. (electrica)$$

Or dE = dU + d(KE) + d(PE) = dU + dU

First Law:

$$Q - W = E_2 - E_1 = (U_2 + mc^2) + m_2$$

Or in specific form:

$$q - w = \Delta(u + \frac{1}{2}c^2 + gz)$$

SENSIBLE AND LATENT ENERGY

CHEMICAL

NUCLEAR ENERGY

Conservation of energy and first type perpetual machine

Conservation of energy: the net change of the energy of the control mass is always equal to the net transfer of energy across the boundary as heat and work.

Energy is neither created nor destroyed, it only changes form.

Non-flow energy equation

General energy form

$$q - w = \Delta(u + \frac{1}{2}c^2 + gz)$$

For NON-FLOW process this is approximated by

$$q - w = \mathbf{u}_2 - u_1$$

P.E. and K.E are neglected as they are small in comparison with the change in internal energy.

Specific heat capacities

Specific heat (capacity) is the energy supplied to raise the unit mass of the substance one unit of temperature

$$\overbrace{c_V} = \frac{1}{m} \left[\frac{\Delta Q}{\Delta T} \right]_V = \left[\frac{\Delta q}{\Delta T} \right]_V$$

Specific heat capacity at constant volume

Specific heat capacity at constant pressure

Constant volume specific heat

From the First Law

$$du = dq - dw = dq - pdv$$

As constant volume: dv = 0

Therefore:
$$c_V = \left[\frac{\Delta q}{\Delta T}\right]_V = \left[\frac{\partial u}{\partial T}\right]_V$$

u = f(T, v)Because

For general change:

$$du = \left[\frac{\partial u}{\partial T}\right]_{V} dT + \left[\frac{\partial u}{\partial V}\right]_{T} dV = C_{V} dT + \left[\frac{\partial u}{\partial V}\right]_{T} dV$$

By Gay-Lussac's experiment

$$\left[\frac{\partial u}{\partial V}\right]_T = 0$$

Therefore

Or for constant c_{v}

$$du = \left[\frac{\partial u}{\partial T}\right]_{V} dT = c_{V} dT$$

$$u_{2} - u_{1} = c_{V} (T_{2} - T_{1})$$

$$du = \left[\frac{\partial u}{\partial T}\right]_{V} dT = c_{V} dT$$

$$c_V = \frac{1}{m} \left[\frac{\Delta Q}{\Delta T} \right]_V = \left[\frac{\Delta q}{\Delta T} \right]_V$$

$$C_V = \frac{du}{dT}$$
(ideal gas)

Only for ideal

Gay-Lussac's (Joule's) experiment

$$\left[\frac{\partial u}{\partial V}\right]_T = 0$$

Enthalpy and Constant pressure specific heat

We define **Enthalpy**, h or H by

$$h = u + p.v$$

or

$$H = U + p.V$$

Hence

$$dh = du + p.dv + v.dp$$

Substitute to the First Law:

$$dq = dh - v \cdot dp$$

Constant pressure specific heat:

$$c_p = \frac{1}{m} \left[\frac{\Delta Q}{\Delta T} \right]_p = \left[\frac{\Delta q}{\Delta T} \right]_p$$

Due to constant pressure

$$dp = 0$$

$$dp = 0$$
 hence $dq = dh$

Hence:

$$c_p = \left[\frac{dh}{dT}\right]_p$$

In a general change

$$dh = \left[\frac{\partial h}{\partial T}\right]_{p} dT + \left[\frac{\partial h}{\partial p}\right]_{T} dp$$

Constant pressure specific heat

For **ideal gases**, u is a function of T only, and also pv = RT is a function of T only

$$h = u + pv$$
 is a function of T only, hence $\left[\frac{\partial h}{\partial p}\right]_T = 0$

Thus

$$dh = c_p dT$$

For gases with constant c_p

$$\Delta h = h_2 - h_1 = c_p (T_2 - T_1)$$

For an ideal gas,

$$h = u + p \cdot v = u + RT$$

$$\frac{dh}{dT} = \frac{du}{dT} + R \qquad \Rightarrow \qquad c_p = c_V + R \qquad \text{or} \qquad c_p - c_V = R$$

$$C_p = \frac{dh}{dT}$$

Heat capacities

For gases

	c_V	c_p	Note
By definition	$c_V = \begin{bmatrix} \frac{\mathrm{d}q}{\mathrm{d}T} \end{bmatrix}_{\widehat{V}}$	$c_p = \left[\frac{\mathrm{d}q}{\mathrm{d}T}\right]_p$	For specific processes (constant V or constant p), but any substance
By derivation	$c_V = \frac{du}{dt}$	$c_p = \frac{dh}{dt}$	For any processes (not just constant V or constant p), but ideal gases only

For liquids and solid

$$c_V \approx c_p \approx c$$

$$dh \approx du \approx cdT$$

Isochoric (constant volume) process

Work done during the process:

$$W_{12} = \int_{1}^{2} pdV = 0$$

Heat transfer during the process

$$dQ = dU = mc_V dT$$

For gases with constant c_v

$$Q_{12} = \Delta U_{12} = mc_V (T_2 - T_1)$$

Isobaric (constant pressure) process

Work done in process:

$$W_{12} = \int_{1}^{2} p \, dV = p(V_2 - V_1)$$

Heat transfer in process:

$$dQ = mc_p dT$$

For gases with constant c_p

$$Q_{12} = mc_p(T_2 - T_1)$$

For any gases, from the First Law

$$Q_{12} = U_2 - U_1 + p(V_2 - V_1) = (U_2 + pV_2) - (U_1 + pV_1) = H_2 - H_1 = m(h_2 - h_1)$$

Isothermal (constant temperature) process

Work done during the process:

$$W_{12} = \int_{1}^{2} p dV$$

For an ideal gas:

$$p_1V_1 = p_2V_2 = mRT$$

as:
$$p_{1}V_{1} = p_{2}V_{2} = mRT$$

$$W_{12} = \int_{1}^{2} \frac{mRT}{V} dV = mRT \int_{1}^{2} \frac{1}{V} dV = p_{1}V_{1}\ln(V_{2}/V_{1}) = p_{2}V_{2} \ln \frac{V_{1}}{V_{1}}$$

Heat transfer during the process

$$\Delta U = mc_V \Delta T = 0$$

Heat transfer

$$Q_{12} = W_{12} + \Delta U = W_{12} + 0 = p_1 V_1 \ln(V_2/V_1)$$

Typical gas processes for closed systems

Polytropic process

Many real processes follow relationships of the form $pV^n = constant$ or $p\widehat{\psi} = constant$ for $1 \le n \le \gamma$ (γ is the ratio of sp heats $\gamma = \frac{c_p}{c_v}$)

For an **ideal gas**, alternative ways of expressing the Polytropic relationship from $pV^n = C$:

$$TV^{(n-1)} = C$$
 or $pT^{-n/(n-1)} = C$

n = 0 n = 1 $n = \gamma$

Work done in process

$$(W_{12}) = \int_{1}^{2} p dV = C \int_{1}^{2} \frac{1}{V^{n}} dV = \frac{C}{1-n} \left[\frac{1}{V^{n-1}} \right]_{1}^{2} = \frac{1}{1-n} \left[\frac{p_{2}V_{2}^{n}}{V_{2}^{n-1}} - \frac{p_{1}V_{1}^{n}}{V_{1}^{n-1}} \right] = \frac{p_{2}V_{2} - p_{1}V_{1}}{1-n}$$
Internal energy change:
$$\Delta U = mc_{V}(T_{2} - T_{1})$$

Heat transfer:

$$Q_{12} = \Delta U + W_{12}$$

$$W = p_1 V_1 lm \frac{V_2}{V_1}$$

Typical gas processes for closed systems

Reversible adiabatic (Isentropic) process

An **adiabatic** process is one in which no heat crosses the system boundary.

For a reversible adiabatic process, according to definition,

 $Q_{12} = 0$

Hence work done in process

 $W_{12} = -(U_2 - U_1)$

| Sentropic | Adiabatic ≠ Isothermal

From the First Law, for gases with constant specific heat

 $dq - pdv = du = c_V dT$

For adiabatic processes

Hence

For an ideal gas

Substituting

Define heat capacity radio

Substituting

da = 0 $-pdv = c_V dT$ pv = RT

 $-rac{dv}{v}=rac{c_V dT}{RT}$ where $R=c_p-c_V$ $\gamma=rac{c_p}{c_V}$, then $R=c_p-c_V=(\gamma-1)c_V$

 $-\ln v = \frac{1}{\nu - 1} \ln T + const.$

 $(\gamma - 1)lnv + lnT = const.$

 $Tv^{\gamma-1} = const.$

Or from the equation of states

 $pv^{\gamma} = const.$

For dry air, we can usually use $\gamma=1.4$

General continuity equation for a constant volume system

General continuity equation for a constant volume system

Work ...
$$W = W_S + m_2 p_2 v_2 - m_1 p_1 v_1$$

Energy ...
$$E_2 - E_1 = (E_{CV2} + m_2 e_2) - (E_{CV1} + m_1 e_1)$$

Applied the First Law

$$Q - (W_{ext} + m_2 p_2 v_2 - m_1 p_1 v_1)$$

$$= \left[E_{CV2} + m_2 (u_2 + \frac{1}{2} c_2^2 + g z_2) \right] - \left[E_{CV1} + m_1 (u_1 + \frac{1}{2} c_1^2 + g z_1) \right]$$

BUT $m_1 = m_2 = m$ and on average $E_{CV2} = E_{CV1}$

$$Q - W_{ext} = m[(p_2v_2 + u_2) + \frac{1}{2}c_2^2 + gz_2) - (p_1v_1 + u_1) + \frac{1}{2}c_1^2 + gz_1)]$$

$$\mathbf{h_2}$$

$$\mathbf{h_1}$$

SFEE
$$\hat{Q} - \hat{W}_{ext} = \hat{m}[(h_2) + \frac{1}{2}c_2^2 + gz_2) - (h_1 + \frac{1}{2}c_1^2 + gz_1)]$$

 $\hat{Q} - \hat{W}_{ext} = \hat{m}(h_2 - h_1)$

External work

External work (or useful work) is separated from the work done at the

boundaries. i.e. flow work $p_2v_2 - p_1v_1$

For the flow process $w_{ext} = total \ work - flow \ work$ p

 $= w + (pv)_{1} - (pv)_{2}$ $= \int_{1}^{2} p dv + p_{1}v_{1} - p_{2}v_{2}$ $= -\int_{1}^{2} v dp$

Process	Non-flow work done	Steady flow work done	"flow work"
v=const	0	$-v(p_2-p_1)$	$v(p_2-p_1)$
p=const	$p(v_2-v_1)$	0	$p(v_2-v_1)$
pv ⁿ =const	$\frac{p_2v_2-p_1v_1}{1-n}$	$\frac{n(p_2v_2-p_1v_1)}{1-n}$	$(p_2v_2-p_1v_1)$

Clausius Statement

The Clausius statement of the second law states that no device can transfer heat from a cooler body to a warmer one without leaving an effect on the surroundings.

The Second Law of Thermodynamics

Kelvin-Planck Statement

The Kelvin -Planck statement of the second law of thermodynamics states that no heat engine can produce a net amount of work while exchanging heat with a **single reservoir only**.

Any device that violates the first or the second law of thermodynamics is called a **second type perpetual-motion machine**.

The Second Law of Thermodynamics

Summary of possible and impossible heat engines Q_2 W W **PMM 1** PMM 2 Impossible Impossible (1st Law) (2nd Law KP statement) Impossible (2nd Law Clausius statement) Q_1 Q_2 W W Ε Possible Possible (Heat engine) (reversed heat engine)

Reversible and Irreversible processes

Quasiequilibrium
expansion
and
compression
of a gas

Reversible Process:

A process which can be reversed without leaving any trace on the surroundings

Reversible and irreversible processes

Causes of Irreversibility

- Friction
- Heat transfer
- Non-quasi-equilibrium processes i.e. rapid compression/expansion
- Mixing

Reversible heat engine

The most efficient (imaginary) engine between the same high and low temperature reservoirs

No heat engine can have a higher efficiency than a **Reversible heat engine** operating between the same high- and low- temperature reservoirs

Carnot cycle

(c) Process 3-4

(b) Process 2-3

Entropy

Reversible heat engine

S=entropy (kJ/K)

Or s=S/m=specific entropy (kJ/kg K)

Entropy change and T-s diagram

Chosen T-s diagram as dq = Tds

Isentropic process Entropy change =0

$$\int \frac{dQ_{R}}{T} = 0$$

Isentropic = Adiabatic + Reversible

Revisit Carnot Cycle

Friday, 20 March 2020

Principle of increase of entropy

Consider two heat engines between same heat reservoirs: a reversible and an irreversible

$$\eta_R \geq \eta_I$$

For the reversible engine, we have

$$\eta_R = 1 - \frac{T_L}{T_H}$$

For the irreversible engine, we have

$$\eta_I = \frac{W}{Q_H}$$

Therefore

$$\frac{W}{Q_H} = \frac{Q_H - Q_L}{Q_H} \le \frac{T_H - T_L}{T_H}$$

Rearrange

$$\frac{Q_H}{T_H} - \frac{Q_L}{T_L} \le 0$$

or in general

$$\oint \frac{dQ_R}{T} = 0$$

Clausius Inequality

The definition of entropy is based on the Clausius inequality, given by

$$\oint \frac{dQ}{T} \le 0 \qquad (kJ/K)$$

where the equality holds for internally or totally reversible processes and the inequality for irreversible processes.

Entropy generation

Consider a system that undergoes a cycle comprising an irreversible adiabatic process (1a2) and a reversible process (2b1)

For the **adiabatic** process (1a2)

$$\int_{1}^{2} \left(\frac{dq}{T} \right)_{a} = 0$$

But irreversible

$$\int_{1}^{2} \left(\frac{dq}{T} \right)_{q} \neq \int_{1}^{2} ds$$

For the **reversible** process (2b1)

$$\left(\int_{2}^{1} \left(\frac{dq}{T} \right)_{b} = s_{1} - s_{2} \right)$$

Clausius inequality $\oint \frac{dQ}{T} \leq 0$

Therefore
$$\int_{1}^{2} \left(\frac{dq}{T}\right)_{a} + \int_{2}^{1} \left(\frac{dq}{T}\right)_{b} = 0 + (s_{1} - s_{2}) \le 0 = >$$

 $s_2 \geq s_1$

Entropy generation

Entropy always increases!!!

The inequality part of the Clausius inequality combined with the definition of entropy yields an inequality known as the *increase of entropy principle*, expressed as

$$S_{gen} \geq 0$$
 (kJ/K)

Where S_{gen} is the entropy generated during a process.

$$dS = \frac{dQ_R}{T} \quad \text{or} \quad dS = \boxed{\frac{dQ}{T} + S_{gen}}$$

Reversible process

Irreversible process

What is entropy?

Entropy: a measure of **DISORDER**

The level of molecular disorder (entropy) of a substance increases as it melts and evaporates

T-ds relations

The entropy-change for a process involving an ideal gas can be summarized as follows:

$$s_2 - s_1 = c_V \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{v_2}{v_1}\right)$$

$$s_2 - s_1 = c_p \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{p_2}{p_1}\right)$$

And

For liquid of solid, as $v_2 \approx v_1$

$$\left(s_2 - s_1 = c_V \ln\left(\frac{T_2}{T_1}\right)\right)$$

Derivation of T-ds relations

(with pv = RT)

$$h = u + pv$$

$$dh = du + pdv + vdp$$

$$ds = \frac{dq_r}{T}$$

First Law:

First Law:
$$dq_r = du + pdv$$
 Hence:
$$Tds = du + pdv = dh - vdp$$

For an ideal gas:

$$c_V = \frac{du}{dT}$$
 $c_p = \frac{dh}{dT}$

Therefore:

$$Tds = du + pdv = c_V dT + pdv$$

And

$$ds = c_V \frac{dT}{T} + p \frac{dv}{T} = c_V \frac{dT}{T} + \frac{R}{v} dv$$

Hence:

$$\int_{1}^{2} ds = c_{V} \int_{1}^{2} \frac{dT}{T} + R \int_{1}^{2} \frac{dv}{v}$$

Hence:

$$s_2 - s_1 = c_V \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{v_2}{v_1}\right)$$

Derive:

$$s_2 - s_1 = c_p \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{p_2}{p_1}\right)$$