Inverse Matrix

Danny Philantrope

The Inverse

A matrix's inverse is the same idea as the reciprocal of a number:

The reciprocal of **9** is **1/9**, which is also expressed as **9**⁻¹

Key Difference

The reciprocal of a matrix M ≠ 1/M because we do not divide by matrices.

*instead we use an inverse matrix: M⁻¹ to multiply with other matrices

Finding the inverse of a matrix is necessary to solve matrix quotients

An analogy can be seen in dividing numbers:

$$n/2 \equiv n * 1/2 \equiv n * 2^{-1}$$
 $4/4 \equiv 4 * 1/4 \equiv 4 * 4^{-1} \qquad M * M^{-1} = 1$

Identity Matrix

Given a matrix **M**, the inverse **M**⁻¹ can be multiplied on either side of **M** to get the **identity (I)**

$$M * M^{-1} = I$$
 $M^{-1} * M = I$

The 2×2 and 3×3 identities:

*identity is square (has same number of rows as columns)

*has ones on the diagonals and zeros everywhere else

Solve **A** in the matrix equation:

$$AB = C$$

$$AB B^{-1} = C B^{-1}$$

$$AI = C B^{-1}$$

$$A = C B^{-1}$$

Inversion Methods how to find an inverse

Gaussian Elimination

Write down the entries of your matrix into a double-wide matrix on the left side. And on one side, write the entries of the identity matrix.

Use **matrix row operations** to convert the left side of the double-wide into an identity matrix.

*transform [A | I] into

Matrix Row Operations

- 1. Swap rows
- 2. Multiply or divide each element in a row by a constant
- 3. Add or subtract multiples of one row to another row

*matrix may turn out to be singular

Thanks!

Any questions?

Contact at:

DPhilantrope55@tigermail.qcc.cuny.edu

