TD 3 - POLARISATION DU PHOTON

Les postulats de la mécanique quantique

Premier postulat : Un état quantique à tout temps t est défini par la donnée d'un vecteur $|\varphi\rangle$ qui est combinaison linéaire des états de base (principe de superposition).

Deuxième postulat : Toute grandeur physique \mathcal{A} est décrite par un opérateur appelé observable A agissant sur les vecteurs $|\varphi\rangle$ (principe de correspondance).

Troisième postulat : La mesure d'une grandeur physique \mathcal{A} ne peut donner comme résultat que les valeurs propres de l'observable A qui lui est associée (principe de quantification).

Quatrième postulat : Lorsqu'on mesure la grandeur physique \mathcal{A} sur un système décrit par $|\varphi\rangle$, la probabilité $\mathcal{P}(a_n)$ d'obtenir comme résultat de mesure la valeur propre a_n de l'observable correspondante A vaut

$$\mathcal{P}(a_n) = \sum_i |\langle u_{i,n} | \varphi \rangle|^2$$

avec $|u_{i,n}\rangle$ les vecteurs propres associés à la valeur propre a_n (Principe de décomposition spectrale - cas d'un spectre discret).

Cinquième postulat : Si la mesure de la grandeur \mathcal{A} donne le résultat a_n , l'état du système juste après la mesure est la projection noramlisée. (Principe de réduction du paquet d'onde).

$$|\varphi'\rangle = \frac{\sum_{i} \langle u_{i,n} | \varphi \rangle | u_{i,n} \rangle}{\sqrt{\sum_{i} |\langle u_{i,n} | \varphi \rangle|^2}}$$

Sixième postulat : l'évolution temporelle du vecteur $|\varphi(t)\rangle$ est régie par l'équation de Schrödinger

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\varphi(t)\rangle = H |\varphi(t)\rangle$$

avec H l'hamiltonien (observable associée à la mesure de l'énergie totale du système).

Objectif de ce TD : décrire un système quantique (la polarisation du photon) en passant par l'introduction de sa limite classique (la polarisation de la lumière).

1. Polarisation de la lumiètre

Polarisation de la lumière

La polarisation de la lumière est l'orientation des oscillations du champ électromagnétiques. Ainsi le champ électrique d'une onde monochromatique qui se propage selon la direction $\overrightarrow{e_z}$ s'écrit :

$$\overrightarrow{E}(z,t) = \frac{E_0}{2}e^{i(kz-\omega t)}\overrightarrow{e_p} + \text{c.c} = 2\Re\left(\frac{E_0}{2}e^{i(kz-\omega t)}\overrightarrow{e_p}\right)$$

avec $\overrightarrow{e_p}$ le vecteur polarisation.

Propriété: dans le vide, la polarisation de la lumière est orthogonale à la direction de propagation.

 $D\'{e}mo:$ pour une OPPH de direction de propagation $\overrightarrow{u_z}, i.e.$ $\overrightarrow{k} = k\overrightarrow{u_z},$ la loi de Maxwell-Gauss s'écrit div $\overrightarrow{E} = 0 \Rightarrow i \overrightarrow{k} \overrightarrow{E} = 0$

On peut alors écrire de façon plus générale :

$$\overrightarrow{e_p} = \cos\theta \overrightarrow{e_x} + \sin\theta e^{i\Phi} \overrightarrow{e_y}$$

Polarisation rectiligne: Le champ électrique garde une direction constante au cours du temps.

1.1
$$\overrightarrow{E}(z,t) = 2\Re \begin{pmatrix} \frac{E_0}{2} & \cos\theta e^{i(kz-\omega t)} \\ \sin\theta e^{i\Phi} e^{i(kz-\omega t)} \\ 0 \end{pmatrix} = E_0 \begin{vmatrix} \cos\theta \cos(kz-\omega t) \\ \sin\theta \cos\Phi \cos(kz-\omega t) - \sin\theta \sin\Phi \sin(kz-\omega t) \\ 0 \end{vmatrix}$$

Pour avoir une direction constante au cours du temps, il faut pouvoir factoriser par $\cos(kz - \omega t)$, i.e.:

$$\Phi \equiv [\pi] \Leftrightarrow \overrightarrow{e_p} = \cos\theta \overrightarrow{e_x} + \sin\theta \overrightarrow{e_y}$$

Polarisation circulaire : La norme de \overrightarrow{E} reste constante au cours du temps + son orientation change selon une rotation.

1.2 L'équation générale de cercle s'écrit : $f(t) = \begin{vmatrix} \cos(t) \\ \pm \sin(t) \end{vmatrix}$ $\Rightarrow \Phi \equiv \frac{\pi}{2}[\pi]$ et $\theta = \frac{\pi}{4}$ Le champ électrique s'écrit alors :

$$\overrightarrow{E}_{\pm}(z,t) = \frac{E_0}{\sqrt{2}} \begin{vmatrix} \cos(kz - \omega t) \\ \pm \sin(kz - \omega t) \end{vmatrix}$$

avec \overrightarrow{E}_+ correspondant à une polarisation circulaire droite et \overrightarrow{E}_- une polarisation circulaire gauche.

Rotation autour de l'axe $\overrightarrow{e_z}$: On pose $kz - \omega t = \xi_t$

On réécrit le champ dans la nouvelle base $\{\overrightarrow{e_{x'}}, \overrightarrow{e_{y'}}\}$ en rotation d'un angle φ avec la base initiale de telles sortes que :

$$\left\{ \begin{array}{l} \overrightarrow{e_x} = \cos\varphi \overrightarrow{e_{x'}} + \sin\varphi \overrightarrow{e_{y'}} \\ \overrightarrow{e_y} = \cos\varphi \overrightarrow{e_{y'}} - \sin\varphi \overrightarrow{e_{x'}} \end{array} \right.$$

On obtient alors

$$\overrightarrow{E}(\xi_t) = \frac{E_0}{\sqrt{2}} \left[\cos(\xi_t \pm \varphi) \overrightarrow{e_{x'}} \pm \sin(\xi_t \pm \varphi) \overrightarrow{e_{y'}} \right]$$

2

 \Rightarrow Expressions invariantes par rotation autour de l'axe $\overrightarrow{e_z}$.

1.3 On représente l'état de polarisation du photon par un vecteur unité placé dans une sphère appelée sphère de Bloch (ou sphère de Poincaré).

Pôle 1 : $\theta = 0 \Rightarrow \overrightarrow{\epsilon}_p = \overrightarrow{\epsilon}_x \Rightarrow$ Polarisation rectiligne.

Pôle 2: $\theta = \frac{\pi}{2} \Rightarrow \overrightarrow{\epsilon}_p = \overrightarrow{\epsilon}_y \Rightarrow \text{Polarisation rectiligne.}$

Polarisations rectilignes : $\theta = 0$ ou π et pour tout θ , $\phi = 0$.

Polarisations circulaires : $\theta = \frac{\pi}{4}$ et $\Phi = \frac{\pi}{2}$ ou $\frac{2\pi}{3}$

2. Effet d'un polariseur

Filtre polarisant : polymères chauffés, étirés et imprégnés d'iode. Le filtre sélectionne une direction de polarisation préférentielle (un axe propre).

- $\overrightarrow{E} \parallel \overrightarrow{e_x}$: courant induit, énergie transmise dans le polymère \Rightarrow pas de transmission de la polarisation
- $\overrightarrow{E} \perp \overrightarrow{e_x}$: pas de courant induit \Rightarrow transmission de la polarisation

Loi de Malus

Intensité transmise : $I_0 \cos^2(\alpha - \theta)$

Transmission d'un photon $\propto |\overrightarrow{e_p}\overrightarrow{e_\alpha}|^2$ avec $\overrightarrow{e_\alpha} = \cos\theta \overrightarrow{e_x} + \sin\theta \overrightarrow{e_y}$. On trouve alors

$$|\overrightarrow{e_p}\overrightarrow{e_\alpha}|^2 = (\cos\theta\cos\alpha)^2 + (\sin\theta\sin\alpha)^2 + 2\cos\theta\sin\theta\cos\alpha\sin\alpha\cos\Phi$$

 $\rightarrow Polarisation\ rectiligne: |\overrightarrow{e_p}\overrightarrow{e_\alpha}|^2 = \cos^2(\alpha - \theta)$

 $\rightarrow Polarisation\ circulaire\ : |\overrightarrow{e_p}\overrightarrow{e_{lpha}}|^2 = \frac{1}{2}\ \forall \alpha$

Pourquoi $\frac{1}{2}$? Une polarisation circulaire la superposition de deux polarisations rectilignes. On peut toujours choisir de se placer selon les axes propres du polariseur $(\overrightarrow{e_1} = \overrightarrow{e_{\alpha}} \text{ et } \overrightarrow{e_2} \perp \overrightarrow{e_{\alpha}})$ et écrire

$$\overrightarrow{E}_{\text{Circulaire}} = \frac{E_0}{\sqrt{2}} \left[\cos(\xi_t) \overrightarrow{e_\alpha} + \sin(\xi_t) \overrightarrow{e_2} \right]$$

Polarisation de la lumière VS polarisation d'un photon

On peut associer à un photon (une particule de lumière) une polarisation. Si une source émet des photons avec un même état de polarisation, la lumière (en terme d'ondes) sera polarisée dans ce même état.

3

3. Mesures de polarisation et lame à retard

3.1.a On envoie un seul photon :

Avant mesure:

- Si transmission : le photon n'était pas polarisé dans l'état $\overrightarrow{e_p} \wedge \overrightarrow{e_z}$
- Si pas de transmission : le photon n'était pas polarisé dans l'état $\overrightarrow{e_p}$.

Après mesure : si le photon est transmis, il est selon $\overrightarrow{e_p}$.

Remarque : ces résultats sont en lien avec le troisième postulat (le résultat de la mesure ne peut être que un des axes propres du polariseur) ainsi qu'avec le cinquième postulat.

3.1.b Si le photon est dans une polarisation rectiligne, on peut retrouver l'axe de cette polarisation :

$$\mathbb{P}_T = \frac{N_T}{N} = \cos^2(\alpha - \theta)$$

avec N le nombre de photons envoyés et N_T le nombre de photons transmis.

- **3.1.c** On peut retrouver la polarisation de l'état :
- **3.1.d** Non.
- **3.2.a** Pas de projection sur quelconque états propres \Rightarrow pas de mesure avec une lame à retard.
- **3.2.b** Une lame quart d'onde trasnforme une polarisation circulaire en polarisation rectiligne.

Polarisation circulaire gauche:

$$\overrightarrow{E}_{\pm}(z,t) = \frac{E_0}{\sqrt{2}} \begin{vmatrix} \cos(kz - \omega t) \\ -\sin(kz - \omega t) \end{vmatrix} \xrightarrow{\lambda/4} \frac{E_0}{\sqrt{2}} \begin{vmatrix} \cos(kz - \omega t) \\ -\cos(kz - \omega t) \\ 0 \end{vmatrix}$$

Polarisation circulaire droite:

$$\overrightarrow{E}_{\pm}(z,t) = \frac{E_0}{\sqrt{2}} \begin{vmatrix} \cos(kz - \omega t) \\ \sin(kz - \omega t) \\ 0 \end{vmatrix} \xrightarrow{\lambda/4} \frac{E_0}{\sqrt{2}} \begin{vmatrix} \cos(kz - \omega t) \\ \cos(kz - \omega t) \\ 0 \end{vmatrix}$$

⇒ Avec une lame quart d'onde suivi d'un polariseur (analyseur), on peut déterminer la chiralité de la polarisation circulaire de l'onde.

4. Succesion de filtres polariseurs

4.1 Polarisation initiale rectiligne selon l'axe x, i.e. $\theta = 0$.

$$\mathbb{P}_N = \cos^2(\alpha_1 - 0)\cos^2(\alpha_2 - \alpha_2)...\cos^2(\alpha_{N-1} - \alpha_N) = \cos(\frac{\pi}{2N})^{2N}$$

4

Remarque : $\mathbb{P}_0 = 0$, $\mathbb{P}_2 = \frac{1}{4}$ et $\mathbb{P}_{N \to \infty} \to 1$ (suivi adiabatique de la polarisation).

4.2
$$\mathbb{P}_N = \frac{1}{2}\cos\left(\frac{\pi}{2N}\right)^{2(N-1)} \underset{N\to\infty}{\longrightarrow} \frac{1}{2}.$$

5. Représentation et notation de Dirac

5.1. Calcul formel en notation de Dirac

Soit \mathcal{E} un espace vectoriel. Si A est un opérateur, pour tout état $|\varphi\rangle \in \mathcal{E}$, $A|\varphi\rangle \in \mathcal{E}$.

5.1.1 $A|y\rangle = \langle v|y\rangle|u\rangle \in \mathcal{E}$; $B|y\rangle = \langle u|y\rangle|w\rangle \in \mathcal{E} \Rightarrow A$ et B sont des opérateurs. $AB = \langle v|u\rangle|u\rangle\langle u|$ et $BA = \langle u|u\rangle|w\rangle\langle v|$.

5.1.2

- $--C|u\rangle \in \mathcal{E}$
- $\langle v|\lambda C|w\rangle = \lambda \langle |y\rangle$ est un scalaire.
- $A\langle u|v\rangle\langle w|u\rangle$ est un opérateur.
- $AC\lambda B = \lambda ACB$ est un opérateur.

Remarque: attention, les opérateurs ne commutent pas forcément, i.e. $AB \neq BA$.

5.1.3 $|u\rangle\langle v|C\lambda|w\rangle\langle u|$ est bien un opérateur.

5.1.4

- $-- (A|u\rangle)^{\dagger} = \langle u|A^{\dagger}$
- $(A|u\rangle\langle v|\lambda i)^{\dagger} = -i\overline{\lambda}|v\rangle\langle u|A^{\dagger}$
- $(|u\rangle\langle v|A|w\rangle\langle x|\lambda i|y\rangle\langle z|) = -i\overline{\lambda}\langle w|A^{\dagger}|v\rangle\langle y|x\rangle|z\rangle\langle u|$

5.2. Changement de représentation

5.2.1. Polarisation de la lumière

5.2.1.1
$$|\alpha\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
 et $|\beta\rangle = \begin{pmatrix} \frac{i}{2}\\-\frac{\sqrt{3}}{2} \end{pmatrix} \Rightarrow \langle\beta| = \begin{pmatrix} -\frac{i}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$

5.2.1.2
$$|\varphi\rangle = \frac{1}{3}|\alpha\rangle - i\frac{\sqrt{8}}{3}|\beta\rangle = \frac{1}{6}\begin{pmatrix} \sqrt{8} + \sqrt{2} \\ \sqrt{2} + i\sqrt{24} \end{pmatrix}$$

5.2.1.3
$$|\alpha\rangle\langle\beta| = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} -\frac{i}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} -\frac{i}{2\sqrt{2}} & -\sqrt{\frac{3}{2}}\frac{1}{2}\\ -\frac{i}{2\sqrt{2}} & -\sqrt{\frac{3}{2}}\frac{1}{2} \end{pmatrix}$$

5.2.2. Systèmes à trois niveaux

5.2.2.1
$$|v\rangle = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$
 et $|u\rangle = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \\ 0 \end{pmatrix} \Rightarrow \langle u| = \begin{pmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \end{pmatrix}$

5

$$\mathbf{5.2.2.2} \quad |\varphi\rangle = \begin{pmatrix} \frac{1}{2\sqrt{2}} + i\frac{\sqrt{3}}{4} \\ \frac{1}{2\sqrt{2}} - i\frac{\sqrt{3}}{4} \\ -\frac{1}{2}\sqrt{\frac{3}{2}} \end{pmatrix}$$

5.2.2.3
$$|u\rangle\langle v| = \begin{pmatrix} \frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -i\frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -i\frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 \end{pmatrix}$$

6. Formalisme de Dirac et polarisation de la lumière

6.1 Soit $|\varphi\rangle=a|H\rangle+b|V\rangle, (a,b)\in\mathbb{C}^2$. On peut réécrire $a=re^{i\Phi}$ et $b=r'e^{i\Phi'}$: il y a 4 paramètres à fixer. Or

- Un état $|\varphi\rangle$ est défini à une phase près. On peut alors choisir $\Phi=0$.
- Les vecteurs qui décrivent un état quantique sont normés : $\langle \varphi | \varphi \rangle = 1 = r^2 + r'^2$
- \Rightarrow Il nous faut finalement 2 variables pou décrire l'ensemble des états possibles :

$$|\varphi(\theta, \Phi)\rangle = \cos(\theta)|H\rangle + \sin(\theta)e^{i\Phi}|V\rangle$$

- **6.2.a** Résultats possibles :
 - Le photon est transmis : $P_{\alpha}|H\rangle = |\varphi(\alpha,0)\rangle \left(\cos\alpha\langle H| + \sin\langle V|\right)|H\rangle \Rightarrow \mathbb{P}_{T} = \langle P_{\alpha}\rangle_{|H\rangle} = \langle H|P_{\alpha}|H\rangle = |\langle \varphi(\alpha,0)|H\rangle|^{2} = \cos^{2}\alpha$. Après mesure la polarisation est selon $\cos\alpha\overrightarrow{u}_{x} + \sin\alpha\overrightarrow{u}_{y}$
 - Le photon est absorbé : $\mathbb{P}_A = 1 \mathbb{P}_T = \sin^2 \alpha$. Après mesure la polarisation est selon $\cos \alpha \overrightarrow{u}_x \sin \alpha \overrightarrow{u}_y$

6.2.b
$$P_{\alpha} = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix}$$

6.2.c $P_{\frac{\pi}{2}} = |V\rangle\langle V| \Rightarrow \text{le photon n'est pas transmis.}$

7. Espérance mathématique

7.1 L'espérance mathématique d'une variable aléatoire discrète X est donnée par l'expression : $\mathbb{E}[X] = \sum_{\lambda} \lambda p_{\lambda}$. Pour la détection d'un photon, nous avons alors :

$$\mathbb{E}[X_{\alpha,\theta}] = 1 \times p + 0 \times (1-p) = \cos^2(\alpha - \theta)$$

Cette espérance correspond physiquement à la probabilité qu'un photon avec une polarisation rectiligne d'angle θ envoyé sur un polariseur d'angle α soit transmis.

7.2 La variance d'une variable alétoire est donnée par la formule : $\Delta[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$. Dans notre cas nous avons

$$\mathbb{E}[X_{\alpha,\theta}^2] = 1^2 \times p + 0^2 \times (1-p) = \cos^2(\alpha - \theta)$$

et

$$\mathbb{E}[X_{\alpha,\theta}]^2 = \cos^4(\alpha - \theta)$$

Finalement,
$$\Delta[X] = \cos^2(\alpha - \theta) - \cos^4(\alpha - \theta) = \cos^2(\alpha - \theta)\sin^2(\alpha - \theta)$$

On peut alors définir l'écart-type $\sqrt{\Delta[X]} = |\cos(\alpha - \theta)\sin(\alpha - \theta)|$ qui correspond physiquement à l'écart autour de la probabilité moyenne de transmission du photon. Notamment, si $\alpha = \theta$ ou $\alpha = \theta + \frac{\pi}{2}$, alors $\Delta[X] = 0$, ce qui signifie que le résultat après la mesure est certain (pour $\alpha = \theta$ le photon ne peut que passer, pour $\alpha = \theta + \frac{\pi}{2}$ le photon n'est pas transmis).

7.3 Comme l'espérance correspond à la probabilité de transmission du photon au travers du polariseur, on retrouve le résultat de la question 1.6.2, i.e.:

$$\mathbb{E}[X_{\alpha,\theta}] = \mathbb{P}_T = |\hat{P}_{\alpha}|\varphi(\theta,0)\rangle|^2 = |\langle \varphi(\alpha,0)|\varphi(\theta,0)\rangle|^2 = \langle \hat{P}_{\alpha}\rangle_{|\varphi(\theta,0)\rangle}$$

De la même manière on retrouve la variance avec l'écriture de Dirac :

$$\Delta[X_{\alpha,\theta}] = \langle \hat{P}_{\alpha}^2 \rangle_{|\varphi(\theta,0)\rangle} - \langle \hat{P}_{\alpha} \rangle_{|\varphi(\theta,0)\rangle}^2$$