B.Sc (Tech) Thesis

The Next Generation of Intelligent Chatbots

Review of Approaches to an NLP-Based Intelligent Conversational Agent

SOTA Literature Review

1950 — 2016 ● ● ● ● ● ● ● ● ● ● ● 2023 — Beyond.

2016 • • •

Chatbot Approaches

2023

Pattern Matching

```
AIML

1 <category>
2 <pattern>
3     User input comes here
4 </pattern>
5 <template>
6     Bot response to the input
7 </template>
8 </category>
```


ML-Based

Chat Flows

Response Templates

Rigid

Rules Based

Pre-Defined

Not Human Like

Prompt Eng

Pre-trained

Natural Human Like Language

High Level

Process View

9

Models

GPT Series

BERT

T5

RoBERTa

Sentence Transformers

Key Strengths

Highly Coherent, Zero & Few Shots, Hosted API, Multilingual, Embeddings Bi-directional
Training,
Understanding
Input, Open
Source

Unified Text-to-Text Approach, Open Source Training
Improvements
over BERT, Open
Source

Semantic
Understanding,
Open Source,
Embeddings

Preferred Use Cases Conversation
Agents, Semantic
Search, Q/A,
Summarization,
Translation,
Content
Generation

Sentiment
Analysis
(Classification),
Q/A, Info.
Retrieval

Translation,
Summarization,
Q/A, Content
Generation

Sentiment
Analysis
(Classification),
Q/A, Info.
Retrieval

Semantic Search, Clustering, Recommendation Systems, Basic Q/A

2016

Approaches to Chatbot Intelligence

Transfer Learning

Reinforcement Learning

Rules-Based

Modular Overview

Input Preprocessing

Category	Prompt Pattern Examples
Input Semantics	Meta Language Creation
Output Customization	Output Automator
	Persona
	Visualization Generator
	Recipe
	Template
Error Identification	Fact Check List
	Reflection
Prompt Improvement	Question Refinement
	Alternative Approaches
	Cognitive Verifier
	Refusal Breaker
Interaction	Flipped Interaction
	Game Play
	Infinite Generation
Context Control	Context Manager

Behaviour Priming

Act as...

Countering Hallucinations

Zero Shot & Few Shot Prompting

Instruction...

Example Query + Response...

Example Query + Response...

Prompt Engineering & Contextualization

Maintaining Chat History

Back Front Dequeue Enqueue

[6]

<retrieval result...> + Query

<chat history...> + Query

Chain of Thought Prompting

[7

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Crucial Process Blocks of an Intelligent Chatbot

8]

Modular Overview

Thank You!

- Ali Amaan

References

- [1] https://link.springer.com/chapter/10.1007/978-1-4020-6710-5_3
- [2] https://www.semanticscholar.org/paper/KINO%3A-an-approach-for-rule-based-chatbot-monitoring-D%27%C3%81vila/f44ab7517c37965dc0ab9df46805fa2be2c86486
- [3] https://www.sciencedirect.com/science/article/pii/S2666827020300062?via%3Dihub
- [4] https://arxiv.org/abs/2302.11382
- [5] https://betterprogramming.pub/implementing-nearest-neighbour-search-with-elasticsearch-c59a8d33dd9d
- [6] https://commons.wikimedia.org/wiki/File:Data_Queue.svg
- [7] https://arxiv.org/abs/2201.11903
- [8] https://arxiv.org/abs/2203.06566