Homework 2

Leah Schultz
9/28/2017

Chapter 3: Growth Curves

```
library(dplyr)
library(tidyr)
library(lme4)
library(ggplot2)
library(broom)
library(merTools)
library(sjPlot)
oysup <- read.csv("~/1-descriptives-and-graphs-leahschultz/oysup_teacher_self.csv")
purpose <- read.csv("~/Dropbox/Lab & Research/OYSUP Project/oysup_self.csv")
oysup <- oysup %>%
    dplyr::select(FAMID, neuro_7s:neuro_10s)
dems <- purpose %>%
    dplyr::select(SEX2)
oysup <- cbind(oysup, dems)</pre>
```

First, restructuring data:

```
oysup_long <- tbl_df(oysup) %>%
  gather(c(neuro_7s:neuro_10s), key = "grade", value = "value") %>%
  separate(grade, into = c("variable", "grade"), sep = "_", convert = T) %>%
  separate(grade, into = c("grade", "delete"), sep = "s") %>%
  mutate(grade = as.numeric(grade)) %>%
  dplyr::select(-delete) %>%
  spread(variable, value)
oysup_long
```

```
## # A tibble: 4,296 x 4
##
    FAMID SEX2 grade neuro
## * <int> <int> <dbl> <dbl>
## 1 1001
            2
                7
                     NA
## 2 1001
            2
                     NA
## 3 1001
         2 9 3.5
## 4 1001 2 10 5.0
## 5 1002
           2 7 3.5
                8 3.5
## 6 1002 2
## 7 1002
           2
                9 2.0
## 8 1002
            2 10 2.5
## 9 1003
                7
                    NA
## 10 1003
            1
                    4.0
## # ... with 4,286 more rows
```

1. Run linear models on all of your subjects (a basic regression). What is the average intercept, the average slope?

```
model1 <- lm(neuro ~ grade, data = oysup_long)</pre>
summary(model1)
##
## Call:
## lm(formula = neuro ~ grade, data = oysup_long)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -2.2537 -0.6753 -0.1361 0.8247 1.8639
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.15216
## (Intercept) 3.52791
                                    23.18
                                            <2e-16 ***
## grade
              -0.03918
                           0.01741
                                    -2.25
                                            0.0245 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.05 on 3142 degrees of freedom
     (1152 observations deleted due to missingness)
## Multiple R-squared: 0.001609, Adjusted R-squared: 0.001291
## F-statistic: 5.063 on 1 and 3142 DF, p-value: 0.02451
```

Average intercept = 3.53

Average slope = -.04

2. Now run a mlm/lmer model with only a random intercept.

```
model2 <- lmer(neuro ~ (1 | FAMID), data = oysup_long)</pre>
summary(model2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: neuro ~ (1 | FAMID)
     Data: oysup_long
##
## REML criterion at convergence: 8588.1
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -3.6193 -0.5530 0.0503 0.6092 3.0079
##
## Random effects:
## Groups Name
                         Variance Std.Dev.
## FAMID
            (Intercept) 0.5044
                                  0.7102
                         0.6048
                                  0.7777
## Number of obs: 3144, groups: FAMID, 960
##
## Fixed effects:
```

```
## Estimate Std. Error t value
## (Intercept) 3.19688 0.02704 118.2
```

3. What is the ICC?

ICC = % between- vs. within-person variance

variance by ID / variance by ID + residual variance

$$.50 / (.50 + .60) = .45$$

What does residual variance look like compared to linear model? Create a graph to show this effect.

Average residual variance is lower in the mixed model, since we're accounting for individual-level, random effects.

3. Introduce a fixed slope term. What is the difference in terms of the fixed effects estimates between this estimate and the previous? Of the residual standard error? Create a graph to show both fixed effects estimates and the CIs around them.

```
model3 <- lmer(neuro ~ grade + (1 | FAMID), data = oysup_long)</pre>
summary(model3)
## Linear mixed model fit by REML ['lmerMod']
## Formula: neuro ~ grade + (1 | FAMID)
##
      Data: oysup_long
##
## REML criterion at convergence: 8584.6
##
## Scaled residuals:
##
      Min 1Q Median
                                       Max
## -3.6037 -0.5404 0.0331 0.6029 2.9295
##
## Random effects:
## Groups Name
                         Variance Std.Dev.
            (Intercept) 0.5056
## FAMID
                                 0.711
## Residual
                         0.6022
                                 0.776
## Number of obs: 3144, groups: FAMID, 960
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 3.57268
                           0.12039 29.675
## grade
               -0.04307
                           0.01345 -3.203
##
## Correlation of Fixed Effects:
         (Intr)
## grade -0.974
fixef(model2) - fixef(model3)[1]
## (Intercept)
## -0.3757999
fe_2 <- tidy(model2, effects = "fixed", conf.int = T, conf.level = 0.95)</pre>
fe_3 <- tidy(model3, effects = "fixed", conf.int = T, conf.level = 0.95)</pre>
fe_df <- data.frame("Parameter" = c("Model 1: Intercept", "Model 2: Intercept", "Model 2: Slope"),</pre>
                    "Fixed_Effects" = c(fe_2$estimate, fe_3[1,2], fe_3[2,2]),
                    "Lower_CI" = c(fe_2\$conf.low, fe_3[1,5], fe_3[2,5]),
                    "Upper_CI" = c(fe_2$conf.high, fe_3[1,6], fe_3[2,6]),
                    "Model" = c("1", "2", "2"))
fe_plot <- ggplot(fe_df, aes(x = Parameter, y = Fixed_Effects)) +</pre>
  geom_col(aes(fill = Model)) +
  geom_errorbar(aes(ymin = Lower_CI, ymax = Upper_CI))
```

fe_plot

[1] 0.001725202

Fixed effect estimate for intercept increased by .37 points from 3.20 to 3.57.

Residual standard error decreased by .002. Seems like adding a fixed slope term did not do much to improve the model.

4. Run an additional model with a random slope. How does this change compare to the previous model? Should you keep the random slope or not?

```
model4 <- lmer(neuro ~ grade + (1 + grade | FAMID), data = oysup_long)</pre>
summary(model4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: neuro ~ grade + (1 + grade | FAMID)
##
      Data: oysup_long
##
## REML criterion at convergence: 8574.7
##
## Scaled residuals:
##
       Min
                1Q Median
                                 ЗQ
                                        Max
## -3.6964 -0.5298 0.0288 0.5854 2.6730
##
## Random effects:
```

```
## Groups
            Name
                        Variance Std.Dev. Corr
            (Intercept) 2.44479 1.5636
  FAMID
##
            grade
                        0.02725 0.1651
##
                                          -0.89
## Residual
                        0.56256 0.7500
## Number of obs: 3144, groups: FAMID, 960
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 3.56322
                          0.12723 28.007
## grade
              -0.04210
                          0.01429 - 2.946
##
## Correlation of Fixed Effects:
        (Intr)
## grade -0.977
sigma(model3)[1] - sigma(model4)[1]
## [1] 0.02594421
anova(model3, model4)
## refitting model(s) with ML (instead of REML)
## Data: oysup_long
## Models:
## model3: neuro ~ grade + (1 | FAMID)
## model4: neuro ~ grade + (1 + grade | FAMID)
         Df
               AIC
                      BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## model3 4 8580.4 8604.7 -4286.2
                                    8572.4
## model4 6 8574.7 8611.0 -4281.3
                                    8562.7 9.7527
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The residual error decreases .03 with the addition of a random slope. A likelihood ratio test indicates that the model fit is better with this new parameter, as well. I'll keep the random slope.

5. Interpret the correlation between the slope and the intercept.

Correlation between slope and intercept = -.97. Adolescents who are initially higher on neuroticism will tend to decrease over time compared to children who are initially lower on neuroticism.

6. Create a density plot of the random effects from your final model.

```
random_params <- tidy(model4, effect = "ran_modes")
raneff_plot <- ggplot(random_params, aes(x = estimate, color = term)) +
    geom_density()
raneff_plot</pre>
```


7. Create a caterpillar plot of the random effects. Is there any person that seems odd in terms of large standard errors around intercept and slope estimates?

```
re.sim <- REsim(model4)
plotREsim(re.sim)</pre>
```

Effect Ranges

It looks as if there are about many individuals who deviate from the fixed slope, and are thus driving the model to be better represented by a random slope. There is only one student who seems to deviate notably from the fixed intercept.

8. Create a plot of the trajectory, along with a spaghetti plot of each person's individual slope. Set the alpha level (transparency) on the individual slopes to make them easier to see.

