1

Assignment 2

AI1110: Probability and Random Variables Indian Institute of Technology Hyderabad

Arjit Jain AI22BTECH11002

Chapter 16, Exercise 16.4

Question 9:

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0,1,3,5 and 7, what is the probability of forming a number divisible by 5 when :

- 1) the digits are repeated?
- 2) the repetition of digits are not allowed?

Solution:

Since 4-digit numbers greater than 5,000 are formed, The thousands place is either 7 or 5.

1) Digits are repeated

Description	Parameter	Value
Let W, X, Y, Z be 4 random variables representing Thou-	W	{5,7}
sandths, Hundredths, Tenths and Units place respectively	X	$ \{0,1,3,5,7\} $
and 'A' be the Event representing all the 4-digits numbers	Y	$ \{0,1,3,5,7\} $
greater than 5,000 divisible by 5 when digits are repeated.	Z	$\{0, 1, 3, 5, 7\}$

TABLE 1

$$\Pr(W = 5, X = 0, Y = 0, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)$$

$$(1)$$

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times 1 \times 1 \times \frac{1}{5} - \Pr(W = 5, X = 0, Y = 0, Z = 0)\right)$$
(2)

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times 1 \times 1 \times \frac{1}{5} - \frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right) \tag{3}$$

$$\Pr(W = 5, Z = 5) = \left(\frac{1}{2} \times 1 \times 1 \times \frac{1}{5}\right)$$
 (4)

$$\Pr(W = 7, Z = 0) = \left(\frac{1}{2} \times \frac{1}{5}\right)$$
 (5)

$$\Pr(W = 7, Z = 5) = \left(\frac{1}{2} \times \frac{1}{5}\right)$$
 (6)

(7)

$$Pr(A) = Pr(W = 5, Z = 0) + Pr(W = 5, Z = 5) + Pr(W = 7, Z = 0) + Pr(W = 7, Z = 5)$$
(8)

$$= \frac{24}{250} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \tag{9}$$

 $=\frac{99}{250}$ (10)

2) Digits are not repeated

 $W \implies 2$ choices

 $Z \implies 4$ choices

 $X \implies 3$ choices

 $Y \implies 2$ choices

'B' = Event representing all the 4-digits numbers greater than 5,000 divisible by 5 when digits are not repeated.

$$\Pr(W = 5, Z = 0) = \left(\frac{1}{2} \times 1 \times 1 \times \frac{1}{4}\right) \tag{11}$$

$$\Pr(W = 7, Z = 0) = \left(\frac{1}{2} \times 1 \times 1 \times \frac{1}{4}\right) \tag{12}$$

$$\Pr(W = 7, Z = 5) = \left(\frac{1}{2} \times 1 \times 1 \times \frac{1}{4}\right) \tag{13}$$

$$Pr(B) = Pr(W = 5, Z = 0) + Pr(W = 7, Z = 0) + Pr(W = 7, Z = 5)$$
 (14)

$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

$$= \frac{3}{8}$$
(15)

$$=\frac{3}{8}\tag{16}$$