Basic Foundations

Predictive Modeling Goals

- Predictive modeling is not just about making predictions
- There 3 main goals in predictive analytics
- Understanding the analytics question(s) you are trying to answer will give you clarity about the analysis goals
- Defining the specific goal(s) of your analysis will help you decide which modeling method is most appropriate.
- Your analysis goal could be one, many or all of these 3:
 - 1. Inference
 - 2. Interpretation
 - 3. Prediction

Modeling Goal 1: Inference

- Once the analytic problem is formulated, and based on business domain knowledge and data mining exploration, one formulates hypothesis or predictions, e.g.:
 - Increased advertising leads to higher sales
 - Increased minimum wage leads to less unemployment
 - More years of college education leads to higher income
 - > Low amounts of aspirin reduces heart disease
 - Use predictive models to test the hypotheses
- Testing hypotheses, e.g.:
 - > H₀: What we are hypothesizing
 - > H₀ can never be accepted, only failed to reject it
 - > H_A: Alternative hypothesis if H₀ is rejected
 - > It is better to set H_A as what we are trying to prove, e.g.,
 - ✓ H₀: β=0
 - ✓ If rejected, then H_A : β≠0 → effect is significant

Modeling Goal 2: Interpretation

- Inference and interpretation are related
- Inference is about testing specific effects, whereas
- Interpretation is about explaining what the model results are telling us
- For example:
 - Holding weight, size and cylinder size constant (i.e., controlling for), adding one more vehicle cylinder reduces gas mileage by 2 mpg
 - Holding body weight, exercise activity and cholesterol level constant (i.e., controlling for), smoking one additional cigarette per day increases the chances of a heart attack by 0.5%
- Some methods are great for interpretation (e.g., OLS regression, logistic regression); others are not (e.g., regression trees, support vector machines)

Modeling Goal 3: Prediction

- Which model is the most accurate at predicting outcomes for new observations? e.g.,
 - What are the chances that a new credit card transaction is fraudulent?
 - What are the chances that a new email is spam?
 - How much income is a college graduate from Kogod is expected to earn 5 years after graduation?
- Machine learning methods are important to evaluate predictive accuracy:
 - > Train the model using part of the data
 - Test it on data not used to train the model
 - Re-sample train and test sets and re-train and re-test
 - Cross-validation: testing the mean squared error (MSE) of the trained model using the test data
 - Select the model with the lowest MSE
 - > As **new data** arrives, re-train and re-evaluate the model

KOGOD SCHOOL of BUSINESS

