Math 525, Spring 2018. Homework 2 Due: Thursday, February 1, 2018

- (1) Show that there are no retractions $r: X \longrightarrow A$ in the following cases:
 - a) $X = \mathbb{R}^3$ with A any subspace homeomorphic to \mathbb{S}^1 .
 - b) $X = \mathbb{S}^1 \times \mathbb{D}^2$ with A its boundary torus $\mathbb{S}^1 \times \mathbb{S}^1$.
 - c) (Given two space Z and Y, let $Z \vee Y$ be the space obtained by identifying two points $z_0 \in Z$ and $y_0 \in Y$ in the spaces $Z \sqcup Y$. Thus for example $\mathbb{S}^1 \vee \mathbb{S}^1$ is the figure eight.) $X = \mathbb{D}^2 \vee \mathbb{D}^2$ with $A = \mathbb{S}^1 \vee \mathbb{S}^1$.
 - d) X a closed disk with two points on its boundary identified and A its boundary, $\mathbb{S}^1 \vee \mathbb{S}^1$.
 - e) X the Möbius band and A its boundary circle.
- (2) Let X be a topological space and $\gamma: \mathbb{S}^1 \longrightarrow X$. Show that $[\gamma] \in \pi_1(X)$ is the identity iff γ extends to a map $\mathbb{D}^2 \longrightarrow X$. (That is, iff there exists a map $\widetilde{\gamma}: \mathbb{D}^2 \longrightarrow X$ such that $\widetilde{\gamma}|_{\mathbb{S}^1} = \gamma$.)
- (3) What if we defined π_1 without taking a base point into account? Given a topological space X, let $[\mathbb{S}^1, X]$ be the homotopy classes of maps $\mathbb{S}^1 \longrightarrow X$ with no conditions on basepoints. Given $x_0 \in X$, there is a natural map

$$\Phi: \pi_1(X, x_0) \longrightarrow [\mathbb{S}^1, X].$$

Show that Φ is onto if X is path-connected, and that $\Phi([f]) = \Phi([g])$ if and only if [f] and [g] are conjugate in $\pi_1(X)$. Hence Φ can be used to identify $[\mathbb{S}^1, X]$ with the set of conjugacy classes in $\pi_1(X)$, when X is path connected.

- (4) Let A_1 , A_2 , A_3 be compact subsets of \mathbb{R}^3 . Use the Borsuk-Ulam theorem to show that there is one plane $P \subseteq \mathbb{R}^3$ that simultaneously divides each A_i into two pieces of equal measure.

 This is often referred to as the *ham sandwich theorem*, as we can facetiously rephrase it as: 'given a ham sandwich, it is always pos
 - facetiously rephrase it as: 'given a ham sandwich, it is always possible to slice it so that in both resulting sandwiches the top bread, the ham, and the bottom bread each have the same size'.
- (5) From the isomorphism

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

it follows that loops in $X \times \{y_0\}$ and $\{x_0\} \times Y$ represent commuting elements of $\pi_1(X \times Y, (x_0, y_0))$. Construct an explicit homotopy demonstrating this.