

ETC3580: Advanced Statistical Modelling

Week 3: Binary responses

Outline

- 1 Logistic regression
- 2 Diagnostics for logistic regression
- 3 Inference for logistic regression
- 4 Latent variables and link functions

Logistic regression

Suppose response variable Y_i takes values 0 or 1 with probability $P(Y_i = 1) = p_i$. (i.e., a Bernoulli distribution) We relate p_i to the predictors:

$$p_i = e^{\eta_i}/(1 + e^{\eta_i}) = P(Y_i = 1)$$

 $\eta_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_q x_{i,q}$

- $g(p) = \log(p/(1-p))$ is the "logit" function. It maps $(0,1) \to \mathbb{R}$.
- The inverse logit is $g^{-1}(\eta) = e^{\eta}/(1 + e^{\eta})$ which maps $\mathbb{R} \to (0, 1)$.
- g is called the "link" function.

Inverse logit function

■ If $p_i \approx 0.5$, logistic and linear regression similar.

Log-likelihood

Likelihood

$$L = \prod_{i=1}^{n} p_{i}^{y_{i}} (1 - p_{i})^{1 - y_{i}}$$

$$\log L(\beta) = \sum_{i=1}^{n} y_{i} \log(p_{i}) + (1 - y_{i}) \log(1 - p_{i})$$

$$= \sum_{i=1}^{n} y_{i} [\eta_{i} - \log(1 + e^{\eta_{i}})] - (1 - y_{i}) \log(1 + e^{\eta_{i}})$$

$$= \sum_{i=1}^{n} [y_{i} \eta_{i} - \log(1 + e^{\eta_{i}})]$$

Log-likelihood

Likelihood

$$L = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$\log L(\beta) = \sum_{i=1}^{n} y_{i} \log(p_{i}) + (1 - y_{i}) \log(1 - p_{i})$$

$$= \sum_{i=1}^{n} y_{i} [\eta_{i} - \log(1 + e^{\eta_{i}})] - (1 - y_{i}) \log(1 + e^{\eta_{i}})$$

$$= \sum_{i=1}^{n} [y_{i} \eta_{i} - \log(1 + e^{\eta_{i}})]$$

- MLE: maximize $\log L$ to obtain $\hat{\beta}$
- Equivalent to iterative weighted least squares
- No closed form expressions

Logistic regression in R

- Bernoulli is equivalent to Binomial with only two levels.
- First (alphabetical) level is set to 0, other to 1. Use relevel if you want to change it.
- glm uses MLE with a logit link function (when family=binomial).

Interpreting a logistic regression

Odds =
$$p/(1 - p)$$
.

- **Example:** 3-1 odds means p = 3/4.
- **Example:** 5-2 odds means p = 5/7.
- A horse at "15-1 against" means p = 1/16.
- Odds are unbounded.
- $\log(\text{odds}) = \log(p/(1-p)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
- A unit increase in x_1 with x_2 held fixed increases log-odds of success by β_1 .
- A unit increase in x_1 with x_2 held fixed increases odds of success by a factor of e^{β_1} .

Outline

- 1 Logistic regression
- 2 Diagnostics for logistic regression
- 3 Inference for logistic regression
- 4 Latent variables and link functions

Fitted values

Link: on $(-\infty, \infty)$

$$\hat{\eta}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \dots + \hat{\beta}_q x_{i,q}$$

Fitted values

Link: on $(-\infty, \infty)$

$$\hat{\eta}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \dots + \hat{\beta}_q x_{i,q}$$

Response: on (0, 1) = probability of "success"

$$e^{\hat{\eta}_i}/(1+e^{\hat{\eta}_i})$$

Fitted values

Link: on $(-\infty, \infty)$

$$\hat{\eta}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \dots + \hat{\beta}_q x_{i,q}$$

Response: on (0, 1) = probability of "success"

$$e^{\hat{\eta}_i}/(1+e^{\hat{\eta}_i})$$

Response residuals: Observation – estimate

$$e_i = y_i - \hat{y}_i$$

Response residuals: Observation - estimate

$$e_i = y_i - \hat{y}_i$$

Pearson residuals: Standardized

$$r_i = e_i/\hat{\sigma}$$

Response residuals: Observation - estimate

$$e_i = y_i - \hat{y}_i$$

Pearson residuals: Standardized

$$r_i = e_i/\hat{\sigma}$$

■ Mean 0, variance 1.

Response residuals: Observation – estimate

$$e_i = y_i - \hat{y}_i$$

Pearson residuals: Standardized

$$r_i = e_i/\hat{\sigma}$$

Mean 0, variance 1.

Deviance residuals: Signed root contribution to $-2 \log L$.

$$-2 \log L = c + \frac{1}{\hat{\sigma}^2} \sum e_i^2 = c + \sum d_i^2$$

$$d_i = e_i/\hat{\sigma}$$

Response residuals: Observation – estimate

$$e_i = y_i - \hat{p}_i$$

Response residuals: Observation – estimate

$$e_i = y_i - \hat{p}_i$$

Pearson residuals: Standardized

$$r_i = \frac{y_i - \hat{p}_i}{\sqrt{\hat{p}_i(1 - \hat{p}_i)}}$$

Response residuals: Observation – estimate

$$e_i = y_i - \hat{p}_i$$

Pearson residuals: Standardized

$$r_i = \frac{y_i - \hat{p}_i}{\sqrt{\hat{p}_i(1 - \hat{p}_i)}}$$

Mean 0, variance 1.

Response residuals: Observation – estimate

$$e_i = y_i - \hat{p}_i$$

Pearson residuals: Standardized

$$r_i = \frac{y_i - \hat{p}_i}{\sqrt{\hat{p}_i(1 - \hat{p}_i)}}$$

Mean 0, variance 1.

Deviance residuals: Signed root contribution to

$$-2 \log L = -2 \sum [y_i \eta_i - \log(1 + e^{\eta_i})] = \sum d_i^2$$

$$d_i = \text{sign}(y_i - \hat{p}_i)\sqrt{2[-y_i\log(\hat{p}_i) - (1-y_i)\log(1-\hat{p}_i)]}$$

- Residual plots can be hard to interpret
- Don't expect residuals to be normally distributed

Partial residuals

Let $e_i = y_i - \hat{p}_i$ be a response residual. Then

$$e_i^* = \frac{e_i}{\hat{p}_i(1-\hat{p}_i)}$$

is the "logit residual" (compare Pearson residuals).

■ The "logit partial residual" for the jth variable is

$$e_i^* + \hat{\beta}_j x_{i,j}$$

- We can plot these against $x_{i,j}$ to identify potential nonlinearity.
- visreg plots $d_i + \hat{\beta}_j x_{i,j}$ instead.

Outline

- 1 Logistic regression
- 2 Diagnostics for logistic regression
- 3 Inference for logistic regression
- 4 Latent variables and link functions

Deviance

Generalization of sum of squared residuals based on likelihood ratio:

$$D = \sum d_i^2 = -2 \log L + c$$

where *L* is the likelihood of the model and *c* is constant that depends on data but not model.

- Difference between deviances equivalent to a likelihood ratio test.
- $D_1 D_2 \sim \chi^2_{q_2 q_1}$ where q_i is df for model i assuming
 - smaller model is correct
 - 2 models are nested
 - distributional assumptions true
- Null deviance is for model with only an intercept.

Deviance test

In R:

- NOT equivalent to t-tests on coefficients
- Deviance tests preferred

Confidence intervals for coefficients

- Standard intervals based on normal distribution are poor approximations.
- Better to use "profile likelihood" confidence intervals
- Let $L_p(\theta)$ be the profile likelihood (the likelihood without the nuisance parameters). LR test for $H_0: \theta = \theta_0$ is

$$LR = 2 \left[\log L_p(\hat{\theta}) - \log L_p(\theta_0) \right]$$

Confidence interval consists of those values θ_0 for which test is not significant. (A contour region of the likelihood.)

Implemented in R using confint

Model selection

Akaike's Information Criterion

$$AIC = -2 \log L + 2q = c + D + 2q$$

- Select model with smallest AIC
- Beware of hypothesis tests after variable selection
- step() works for glm objects in the same way as for lm objects, and minimizes the AIC.

Outline

- 1 Logistic regression
- 2 Diagnostics for logistic regression
- 3 Inference for logistic regression
- 4 Latent variables and link functions

Suppose z is a latent (unobserved) random variable:

$$y = \begin{cases} 1 & z = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

where ε has cdf F.

- If F is "standard logistic", then $F(w) = 1/[1 + e^{-w}]$.
- So logit(p) = $\beta_0 + \beta_1 x_1 + \cdots + \beta_q x_q$.

That is, we can think of logistic regression as an ordinary regression with logistic noise, and we observe only if it is above or below 0.

Suppose z is a latent (unobserved) random variable:

$$y = \begin{cases} 1 & z = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

where ε has cdf F.

- If F is "standard normal", then $F(w) = \Phi(w)$.
- So Φ⁻¹(p) = β_0 + $\beta_1 x_1$ + · · · + $\beta_q x_q$.

Suppose z is a latent (unobserved) random variable:

$$y = \begin{cases} 1 & z = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

where ε has cdf F.

- If F is "standard normal", then $F(w) = \Phi(w)$.
- So Φ⁻¹(p) = β_0 + $\beta_1 x_1$ + · · · + $\beta_q x_q$.
- Here Φ^{-1} is the link function.

Suppose z is a latent (unobserved) random variable:

$$y = \begin{cases} 1 & z = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

where ε has cdf F.

- If F is "standard normal", then $F(w) = \Phi(w)$.
- So Φ⁻¹(p) = β_0 + $\beta_1 x_1$ + · · · + $\beta_q x_q$.
- Here Φ^{-1} is the link function.

That is, probit regression is an ordinary regression with normal noise, and we observe only if it is above or below 0.

General binary model

$$p_i = g(\eta_i) = P(Y_i = 1)$$

 $\eta_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_q x_{i,q}$

where g maps $\mathbb{R} \to (0, 1)$.

- $g(\eta) = e^{\eta}/(1 + e^{\eta})$: logit link, logistic regression
- $= g(\eta) = \Phi(\eta)$: normal cdf link, probit regression
- $g(\eta) = 1 \exp(-\exp(\eta))$: log-log link

General binary model

$$p_i = g(\eta_i) = P(Y_i = 1)$$

 $\eta_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_q x_{i,q}$

where g maps $\mathbb{R} \to (0, 1)$.

- $g(\eta) = e^{\eta}/(1 + e^{\eta})$: logit link, logistic regression
- $\mathbf{g}(\eta) = \Phi(\eta)$: normal cdf link, probit regression
- $g(\eta) = 1 \exp(-\exp(\eta))$: log-log link

```
fit <- glm(y ~ x1 + x2,
  family=binomial(link=probit), data=df)</pre>
```

Why prefer logit over probit?

- odds ratio interpretation of coefficients
- non-biased with disproportionate stratified sampling. Only link function with this property.
- non-biased with clustered observations. Only link function with this property.
- logit link is "canonical": ensures ∑ x_{ij}y_i
 (j = 1,...,q) are sufficient for estimation. So p-values are exact.