Sistemas Embarcados Ponto de controle 3:

Interactive self-esteem mirror Lu² (Isem Lu²)

Luiza Irina Lima dos Santos Universidade de Brasília Faculdade Gama - FGA Brasília, Brasil luizairinalds@gmail.com Luciana Alves Fernandes Universidade de Brasília Faculdade Gama - FGA Brasília, Brasil lucianaaf12@gmail.com

Resumo— A Revolução Digital permitiu a introdução de inovações como a Internet das coisas, a qual pode ser interpretada como a capacidade de objetos transmitirem dados para uma rede e realizarem de modo incisivo a interação objeto-usuário. Nesse sentido, para uma maior eficiência no dia a dia com um toque de estímulos, esse projeto baseia-se na criação de uma tela espelhada interativa que auxiliará tanto na otimização do tempo quanto na auto-estima do usuário.

Palavras- chaves— sistema; interativo; Raspberry; auto-estima;

1. INTRODUÇÃO

A tecnologia está sempre em constante desenvolvimento e aprimoramento e suas aplicações expandiram de forma sgnificativa e espantosa. Com a atual facilidade de acesso a internet mecanismos como a Revolução Digital permitiu que a essa ficasse intrínseca a vida de um indivíduo. Basta olhar ao redor para verificar que o mundo está permeado da necessidade dessa ferramenta, a qual possui aplicações em praticamente todos setores, inclusive no de bemestar social.

1.1. REVISÃO BIBLIOGRÁFICA

A sociedade do século XXI, em questão, tem como problemas pontuais a chamada falta de tempo e baixa autoestima, isso inclui de maneira sensitiva o acúmulo de responsabilidades e consequentemente o fato de agregar fatores do intelecto quanto a sua forma de ser e estar, o que pode gerar tanto a baixa produtividade com relação as tarefas habituais (ou não) quanto o surgimento de esquecimentos devido ao estresse. O conceito da Revolução Digital carrega consigo uma mudança relativa nos modos de vida do ser humano como solução revolucionária, introduzindo de forma abrangente e diferenciada as definições do termo Internet das Coisas. A Agência Brasileria de Internet das Coisas (abinc) diz que essa

tecnologia pode ser cogitada como a Terceira Geração da Internet [2].

O termo 'Internet das coisas', por fazer parte de aplicações expansivas, pode ser interpretada como a capacidade de objetos, no caso desse projeto, realizar a transmissão de dados para uma rede proporcionando interação entre objeto-usuário [3]. Ou seja, antes o que era um televisor, o qual apenas transmitia respectivos canais, com esse engedramento possibilita que o televisor tenha mais funcionalidades, como a conexão na rede Wi-Fi.

Segundo Lemos (Lemos, André- 2012), os objetos dispõem de abundantes funcionalidades e entre elas tem-se o reporte de lembranças, sentimentos e costumes predominantes. Desde os primordios da humanidade, os utensílios vêm mudando de modo recíproco a acompanhar as novas experiências e descobertas dos seus usuários. Com a introdução da inovação da Internet das coisas, tem-se a possibilidade de tornar um objeto comum ao cotidiano- no projeto tratado um suposto espelho- interativo e auxiliador tanto na otimização de tempo funcional como também na elevação da auto-estima para uma maior produção diária, tendo em vistas as atividades pessoais de cada ser.

1.2. JUSTIFICATIVA

O projeto *Interactive self-esteem mirror Lu*² foi motivado por permitir a evolução de objetos, que outrora eram simples utensílios, adaptando-os tecnologias inovadoras, como a aplicação da Internet das coisas. O uso da Raspberry é primordial, pois possibilita a criação de um sistema embarcado para a aplicação específica em questão. Isso não seria possível ao usar um smartphone, por exemplo, vários aplicativos e funções do mesmo ficariam inutilizáveis, o que pode ser visto como um prejuízo perante a tecnologia, a qual é de propósito geral.

Para entender melhor a aplicação proposta foi criado um estudo de caso, em que pode-se perceber a utilidade do espelho e sua praticidade com a adição da tecnologia no cotidiando da Ana.

Ana acordou animada para seu dia de trabalho, e como de costume, foi até o estrebo para se vestir.

Mas entiso, perguntas começaram a surgir na cabeça de Ana. "Será que a reunido com o chefe era hoje? E o almoço com Cristina, eu remarquei? E será que fará

Nesse momento, Ana, através de un simples comando de voz, ativos o espelho mágico.

Ela viu que seria tam dia quente, e também feu sua lista de atividades. Assim, Ana pode verificar que sua reunito estava marcada para aquele dia e que não teria almoço con sua amiga.

1.3. OBJETIVOS

Com o intuito de maior praticidade no dia a dia e maior interatividade para com o usuário, esse projeto baseia-se na criação de uma tela espelhada interativa Interactive self-esteem mirror Lu² (Isem Lu²), que ao ser estimulada por comando de voz, forneça dados como a data (calendário), hora, temperatura, atividades do dia e mensagens de áudio inspiradoras e alegres. O sistema construído seria um elevador de autoestima, embarcado pela Raspberry-Pi.

1.4. REQUISITOS

Os requisitos do projeto podem ser descritos em duas partes, as quais tratam dos aspectos do *Hardware* e do *Software*.

- Aspectos do Hardware:
 - Raspeberry Pi;
 - Cartão SD, para a memória do sistema;
 - O televisor tem de ser de Led;
 - Aspecto espalhado: acrílico espelhado;
 - Conexão HDMI;
 - Conexão internet;

• Sensor de presença;

-Aspectos de Software:

- Biblioteca para comando de voz;
- Sistema operacional embutido na placa Raspberry;
- Programação dos módulos específicos;
- Programação da módulo do espelho;
- Script para a execução de arquivos em áudio;

1.5. BENEFÍCIOS

O projeto do espelho inteligente aparentemente parece ter um leque restrito de benfeitorias. Porém, esse pensamento é efetivamente errôneo. Basta analisar o cotidiano de um indivíduo, enquanto a pessoa se arruma na frente do espelho para iniciar sua rotina, o dispositivo apresenta diversas possibilidades de uso para um simples espelho. O fator atrativo infere-se na interação sistema-usuário, o que acentua informações úteis ao indivíduo, mostrando-lhe as horas, a data, bem como a agenda de atividades de maneira prática, listando as metas do dia e também, executando mensagens motivacionais para que o indivíduo se sinta determinado a concretizar seus afazeres. Essas atividades não precisam tratar apenas de reuniões de trabalho, plano de estudo da faculdade, pode ser um lembrete aos idosos, por exemplo, para que eles não esqueçam de tomar um remédio de pressão, entre inúmeras aplicações de acordo com a rotina do usuário.

Figura 1.0 Ilustração do espelho mágico. Fonte: https://hackaday.io/project/13466/gallery#da49a892f905e0eb285052 618d1ef784, 2017.

2. DESENVOLVIMENTO

As descrições apresentam as etapas do projeto e seu desenvolvimento atual com seus determinados detalhes.

2.1. DESCRIÇÃO DO HARDWARE

O projeto é composto da raspberry como plataforma para rodar a programação do sistema dedicado à aplicação. Será necessário controlar com a Raspberry um monitor, que servirá como uma interface de usuário, e para isso a saída HDMI da placa será usada com um cabo de conexão ligado à tela.

Na frente do monitor, uma tela de acrílico espelhado deveria ser inserida, essa será a responsável pela aparência de espelho do dispositivo inteligente a ser desenvolvido. No entanto o custo da tela de acrícilico espelhado ficou fora do alcance dos integrantes de modo que outra solução foi encontrada, comprou-se uma chapa de acrílico normal e uma película espelhada será inserida no material de maneira que possa apresentar o mesmo efeito esperado do acrílico espelhado.

Também será utilizado um microfone, que nesse caso precisa ser USB para ativação do comando de voz e como saídas de áudio será utilizado o autofalante da própria TV.

Para que o espelho seja ligado será usado para monitorar a presença do usuário um sensor ultrasônico, o qual apresenta saída no modo digital, não exigindo a necessidade de um conversor A/D. Dessa maneira, pode-se economizar energia e fazer uma interação direta com o usuário que se aproxima.

A) Lista de Materiais:

Para a realização deste projeto foram necessários os componentes descritos no Quadro 1.0.

Quantidade	Material
1	TV-LED
1	Sensor PIR
1	LED vermelho
1	Placa de acrílico
1	Película espelhada
1	Raspberry Pi 3
-	Jumper
1	Microfone USB
1	Protoboard pequena

B) Monitor TV-LED + Acrílico espelhado:

Para que o aspecto de espelho ficasse conforme esperado foi necessário comprar uma placa de acrílico transparente e aplicar nesta a película espelhada para ter o efeito translúcido gerando a ideia do espelho.

C) Microfone:

Para a aplicação necessitou-se de um microfone USB, devido a atuação da Raspberry. Para o mesmo funcionar teve de confiigurá-lo para que a Raspberry reconhecesse. Primeiramente, a Raspberry foi conectada via ssh e cabo serial e logo depois foi digitado o seguinte comando no terminal:

\$ Isusb

Esse comando permitiu verificar que o microfone foi reconhecido pelo terminal USB da Raspberry. O próximo passo foi configurar a escolha e o ganho do microfone, para isso utilizou-se o comando:

\$alsamixer

O comando abordado acima abre a janela de configuração, apertando-se F6 escolhe-se a entrada respectiva do microfone. O ganho foi definido ao apertar em F4, e foi ajustado no máximo permitido. Feitas as configurações citadas o microfone foi testado com os seguintes comandos no terminal em que como o microfone estava setado como 1, o plughw apresenta o 1 como saída escolhida. Nesse caso, um trecho que uma música foi cantado e utilizando a interrupção CRTL+C encerrou-se a gravação.

\$arecord –D plughw:1,0 teste.way

Para ouvir o áudio gravado no arquivo chamado teste.wav digitou-se no terminal o comando abaixo, o que permitiu escutar o trecho da música que foi gravada.

\$aplay -D plughw:0,0 teste.way

Figura 2.0 Microfone USB utilizado.

D) Sensor de presença:

O sensor de presença utilizado foi o PIR(Passive infrared sensor) HC-SR501. Este sensor verifica se há movimento a partir da variação da radiação da luz infravermelha em um determinado ambiente. O sensor descrito atua com saídas digitais, em que quando acionado seunível lógico ficará alto e caso contrário ele permanecerá em nível lógico baixo. O chip que compõe o sensor atua como amplificador e comparador de modo que ao comparar e detectar variação da luz infravermelha o sensor apresentará saída em nível lógico alto, por um tempo determinado pela regulação do trimpote descrito na Figura 3.0 como "Delay Time Adjust". Já o outro trimpote permite regular com relação

a distância de acionamento de movimento, o qual pode ser observado na Figura 3.0 como "*Distance Adjust*", quanto mais no sentido horário, maior será a sensibilidade adquirida.

Figura 3.0 Visão inferior do sensor PIR.

A ligação do circuito do sensor pode ser vista na Figura 4.0, em que foi realizada da seguinte forma: o pino 4 da Raspberry, que possui como saída a tensão de 5V, de cor vermelha, foi ligado ao pino de VCC do sensor. O pino 11(GPIO 17), entrada/saída digital, foi concetado ao pino central do sensor o qual é o pino de saída. O pino 34 da Raspberry (GND) foi interligado ao pino de GND do sensor.

Figura 4.0 Esquemático do hardware-Sensor PIR.

2.2. DESCRIÇÃO DO SOFTWARE

O sistema operacional embutido na placa raspberry terá como funcionalidade gerenciar a ordem de execução das partes do software. Ele será responsável pela comunicação entre a inteligência do projeto e os dispositivos de saída e entrada de dados, como os dados apresentados na tela, o microfone e o autofalante da televisão.

A Figura 5.0 apresenta o diagrama de blocos do sistema como um todo. Observa-se que se tem o fluxo de estados e ao chegar no estado final observa-se as funcionalidades do espelho. O acionamento ocorrerá por meio da atuação do sensor PIR mais comando de voz, com a biblioteca Pocketsphinx no momento em que o usuário mencionar alguma palavra-chave.

Entre os módulos específicos do sistema, compreende-se o acionamento das mensagens motivacionais, em que necesita-se de uma biblioteca de comando de voz, a espeak O espelho inteligente conectará a internet para mostrar na tela a agenda de atividades atualizada do usuário, assim como outras informações que se queira aderir.

Figura 5.0 Diagrama de blocos do sistema Isem Lu².

A) Sistema Operacional da Raspberry:

O primeiro passo de todo o projeto foi a escolha do sistema Operacional a ser utilizado. Fez-se uma pesquisa e escolheceu-se o Sistema Operacional Raspbian, o qual mostrou-se completo e requisitado por iniciantes justamente por permite um fácil manuseio e ter em sua disposição ferramentas de configuração do computador. O sistema Raspbian e o instalador Noobs foram inseridos no cartão SD para realizar o processo de instalação. Feito isso, a forma de acesso remoto teve de ser escolhida, para esse caso escolheuse a SSH(Secure Shell), a qual possibilita uma atuação com uma maior segurança. O próprio sistema Raspbian permitiu selecionar SSH e escolher a opção de enable.

B) Código para o sensor PIR:

O código em Anexos que generaliza o projeto tem como objetivo ligar o sistema a partir do sinal do sensor de presença PIR. Quando o sensor detecta um objeto em sua proximidade, sua saída digital vai de nível logico baixo para alto. Para comunicação entre o sensor PIR e a Raspberry foi usada a biblioteca Wiring PI, que interfaceia os pinos GPIO da Raspberry. A função usada foi a "wiringPiISR", que permite uma interrupção por um pino GPIO. A borda de subida do sinal digital do sensor ativa a função "mov_now". Nessa função um aviso de movimento e enviado e o sistema do espelho magico e inicializado pelo script chamado pela função "system". Ainda na função da interrupção do sensor, uma variável recebe o tempo em que o sistema foi ativado.

No loop infinito uma verificação de tempo e feita para desligar o espelho magico em cinco minutos caso não tenha havido nenhuma detecção de presença pelo sensor PIR. Como o sensor detecta constantemente alguém em sua frente, a variável "a" faz o controle para o script de inicialização não ser chamado repetidamente pelo "system".

C) Módulo do espelho:

O projeto do espelho inteligente possui um código principal que fica executando continuamente. Essa é a parte que controla a interface gráfica mostrada na tela do espelho. O código principal é dividido em módulos que são os aplicativos que compõem a tela de espelho em si. Existem os módulos que são padrões no projeto inicial e os módulos acrescentados de acordo com a necessidade de cada pessoa que reproduz o projeto. No caso do espelho inteligente da auto-estima os módulos a serem acrescentados seriam as aplicações de comando de voz, sensoriamento e o *script* de reprodução de áudio. Um dos módulos padrões que serão mantidos para o projeto será o módulo de relógio e de calendário, por exemplo.

Figura 1.1. Interface gráfica do projeto base MagicMirror implementado na Raspberry.

O programa principal do Isem Lu² tem as configurações de variáveis inicias e as chamadas dos módulos com os parâmetros de entrada. Os módulos funcionam como funções que estão descritas em arquivos dentro de um

diretório próprio para módulos na pasta do projeto. Em cada arquivo de módulo tem-se toda a lógica do aplicativo, bem como sua conexão com a internet se for o caso, e seus modos de operação de acordo com os parâmetros de entrada. Novas funções devem ser colocadas nesse formato de módulo para se tornarem uma aplicação do espelho inteligente.

O programa principal, "config.js", é chamado com um script pelo terminal por meio do comando 'pm2', que inicia um processo deamon e faz a execução do programa chamado com um fork. O 'pm2' pode ser chamado para monitorar a execução do programa do espelho inteligente e também pará-lo.

D) Biblioteca Espeak:

A biblioteca speak permite realizar a conversão textto-speech(TTS), em que um texto é sintetizado para voz. Essa biblioteca foi escolhida for ser de fácil manipulação, além de corresponder com as expectativas destinadas a mesma e por conter em sua base a plataforma em portugûes. A biblioteca apresenta limitações principalmente se tratando de uma voz que não parece ser natural. Entretanto a biblioteca permite o uso tanto de uma voz masculina como feminina e estas podem ser reguladas por intensidade, além de poder reproduzir arquivos em .wav. A biblioteca foi testada por enquanto apenas no terminal para teste. Para isso, basta instalar a mesma e digitar o comando para obter a saída que pode ser ouvida em um fone de ouvido inserido na Raspberry. O "-vpt + f2" trata-se da chamada em português com voz feminina com uma intensidade dois. Essa intensidade quanto maior percebeu-se que a voz aparentava mais grossa. Comando:

\$espeak -vpt + f2 "Seja feliz sempre"

E) Biblioteca de reconhecimento de voz:

Inicialmente para trabalhar com o reconhecimento de voz foi estudada algumas bibliotecas e a escolhida foi a *CMUSphinx*, a qual é livre para ser baixada e permite que a atuação da mesma funcione sem a necessidade da internet. A biblioteca *CMUSphinx* é uma biblioteca que abrange, no caso desse projeto, outras duas, as quais são a *Pocketsphinx* e *SphinxBase*. Estas oferem funcionalidades comuns perante ao interesse de Reconhecimento de voz.

As duas bibliotecas citadas foram encontradas disponíveis em *python*, desse modo, foi necessário baixar alguns arquivos em *python*, os quais foram o "Speechrecognition", para o reconhecimento da voz e o "pythonaudio", para acessar o sistema de áudio em python. Depois, as bibliotecas já citadas foram instaladas no modo supersuário, para ter acesso as pastas necessárias. A bibioteca Pocketsphinx é a mais importante em vista nesse projeto, pois trata-se da conversão speak-to-text, fornece recursos em que ao executar o *script* de teste, a biblioteca pergunta o que você

tem a dizer e escreve na tela o que o usuário disse, esse seria o teste inicial. Entretanto, a ausência de um microfone USB impossibilitou o teste efetivo dessa etapa ficando a mesma ainda em andamento.

Ademais, uma outra biblioteca chamou de forma significativa a atenção, por ser mais completa e apresentar um comportamento funcional diferenciado. A *Jasper* também é uma biblioteca de comando de voz que trabalha juntamente com a *Pocketsphinx*, ela de fato só não foi baixada por necessitar de configurar o microfone USB durante o período da instalação. É válido ressaltar que se cogita a mudança da biblioteca de comando de voz para uma maior eficiência do funcionamento do espelho mágico.

3. RESULTADOS

A partir de todo o desenvolvimento pode-se realizar alguns testes iniciais com todo o sistema em funcionamento. Vale ressaltar que o sistema ainda está em andamento de melhorias, o que não permitiu apresentar um resultado teste do sistema Isem Lu² como um todo.

A Figura 6.0 e 7.0 apresentam o resultado teste para a atuação do sensor PIR, que é responsável por detectar movimento a partir da variação da luz infravermelha, no terminal e no circuito montado, respectivamente.

```
The projection - (and the project of the project of
```

Figura 6.0 Teste realizado para a detecção do movimento.

Figura 7.0 Circuito do sensor PIR montado.

A Figura 8.0 apresenta a parte do hardware que traz embutido a tela inicial do Isem Lu², nota-se que realmente tem-se a impressão de estar em frente de um espelho, o que foi possibilitado devido o efeito translúcido do acrílico. Essa tela também está passando por melhorias.

Figura 8.0 Imagem da Tela Isem Lu².

4. CONCLUSÕES

O sistema Isem Lu², o qual traz embutido o conceito de internet das coisas pode propor a praticidade tão almejada no dia-adia. O projeto em si obteve melhorias significativas, como a interligação do sensor PIR, sendo este o ponto fundamental para a chamada da tela inicial do Isem Lu². O uso do sensor PIR possibilita economia de energia de parte do sistema.

Ademais, é importante salientar que certas dificuldades e limitações, principalmente no que se refere a biblioteca de reconhecimento de voz e de speech-to-text, em que está apresentando um erro em relação as bibliotecas complementares em python. Este aspecto está tentando ser depurado para uma melhor continuidade do projeto.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Teeuw, Michael, Magic Mirror: Part I The Idea & The Mirror:
- < http://michaelteeuw.nl/post/80391333672/magic-mirror-part-i-the-idea-the-mirror > Acessado em 01 de Abril de 2017.
- [2] Associação Brasileira de Internet das Coisas, O que é internet das coisas?- 16 de Janeiro, 2017:

- http://abinc.org.br/www/2017/01/16/o-que-e-a-internet-das-coisas/ Acessado em 03 de Abril de 2017.
- [3] Yoshida, Hubert, Encontro na Poli discute futuro da internet das coisas, Publicado em Tecnologia, USP Online Destaque por Redação em 25 de abril de 2014:
- http://www5.usp.br/42858/encontro-na-poli-discute-futuro-da-internet-das-coisas/ Acessado em 03 de Abril de 2017.
- [4] Lemos, André, A comunicação das coisas. Internet das Coisas e Teoria Ator-Rede: Etiquetas de radiofrequência em uniformes escolares na Bahia, Salvador- Brasil, 2012.
- Acessado em 03 de Abril de 2017.
- [5] Singer, Talyta, TUDO CONECTADO: CONCEITOS E REPRESENTAÇÕES DA INTERNET DAS COISAS, Salvador-Brasil, 2012:
- http://www.simsocial2012.ufba.br/modulos/submissao/Upload/44965.pdf Acessado em 03 de Abril de 2017.
- [6] Raspberry Pi Smart Mirror:
- https://hackaday.io/project/13466-raspberry-pi-smart-mirror Acessado em 03 de Abril de 2017.
- [7] Cardoso, Bruno Lima, SISTEMA DE RECONHECIMENTO DE FALA BASEADO EM POCKETSPHINX PARA ACESSIBILIDADE EM ANDROID, Universidade Federal do Rio de Janeiro- Rio de Janeiro, 2015.

Anexos

Código para a detecção de presença e ativação da tela Isem Lu² :

```
#include <wiringPi.h>
[2]
[3]
     #include <stdio.h>
     #include <sys/types.h>
[4]
     #include <signal.h>
[5]
     #include <pthread.h>
[6]
[7]
     #include <stdlib.h>
[8]
     #include <time.h>
[9]
[10] char a=0;
[11] clock_t tInicio, tFim, tDecorrido;
[12]
[13] void move_now(void){
          fprintf(stderr, "Movimento\n");
[14]
[15]
          if(a==0){
[16]
              system("pm2 start mm.sh");
[17]
              a=1;
[18]
          }
[19]
          tInicio = clock();
[20] }
[21]
[22] int main(){
[23]
     int pin_PIR = 11;
[24]
[25]
     wiringPiSetup();
[26]
[27]
     pinMode(pin_PIR,INPUT);
[28]
[29]
[30]
     wiringPiISR(0,INT_EDGE_RISING, move_now);
[31]
[32]
      while(1) {
[33]
          tFim = clock();
          tDecorrido = ((tFim - tInicio) \, / \, (CLOCKS\_PER\_SEC \, / \, 1000));
[34]
[35]
          //300000 \text{ ms} = 5 \text{ min}
[36]
[37]
          if (tDecorrido>300000){
[38]
               system("pm2 stop mm");
[39]
               a==0;
[40]
          }
[41]
[42]
[43] pthread_exit(NULL);
[44] return 0;
[45] }
```