COMPUTER SCIENCE CHEAT SHEET

Greek Alphabet

A	α	Alpha	I	ι	Iota	P	ρ	Rho
B	β	Beta	K	κ	Kappa	\sum	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	T	τ	Tau
Δ	δ	Delta	M	μ	mu	Y	v	Upsilon
$oxed{E}$	ϵ	Epsilon	N	ν	nu	Ф	ϕ	Phi
Z	ζ	Zeta		ξ	xi	X	χ	Chi
H	η	Eta	O	0	Omicron	Ψ	ψ	Psi
Θ	θ	Theta	П	π	Pi	Ω	ω	Omega

Abstract Algebra

Probability

 ϵ

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$\frac{1}{e} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$$