

万能模拟器可行吗?模拟任意未知网络构造高效的黑盒攻击!

- 1. 对抗攻击和meta-learning简介
- 2. 基于模拟器的黑盒对抗攻击
- 3. 我们可以数据不足情况下检测新型对抗样本吗?
- 4. 未来工作的展望
- 5. BugTorch开源攻击库的介绍

1. 对抗攻击简介

■ 深度神经网络(DNN)的安全性课题

DNN在图像识别领域取得了显著的成绩。

DNN识别对抗样本会分类错误, 表现脆弱。

对抗攻击是在输入干净图像上添加的微小扰动(perturbation),肉眼无法识别。

1. 对抗攻击简介(黑盒攻击与白盒攻击)

- 黑盒攻击:攻击者拿不到模型参数,模型结构以及梯度。
- 白盒攻击,攻击者可以拿到模型的内部信息,包括模型结构,梯度等。

「Score-based setting: 暴露目标模型的输出概率 Query-based attacks

Decision-based setting:暴露目标模型的输出label

Transfer-based attacks: 攻击source model产生对抗样本来欺骗target model

Query-based attacks的目标是: 此何以最少的guery(查询次数)达到最高的攻击成功率。

$$\phi(x_{adv}) = \begin{cases} 1 & \text{if } \hat{y} = y_{adv} \text{ in the targeted attack} \\ \text{or } \hat{y} \neq y_{adv} \text{ in the untargeted attack} \\ 0 & \text{otherwise} (包括查询次数大于10000) \end{cases}$$

1. 背景知识: meta-learning

1. 背景知识: meta-learning

2.模拟器攻击

1. 研究查询高效的黑盒攻击方法

背景: 只可以通过查询黑盒模型获得反馈来攻击。 符合现实场景,实用价值高。

(1) 基于查询的黑盒攻击

Andrew Ilyas et al.ICLR 2019, Cheng et al. NeuralPS 2019, Andrew Ilyas et al. ICML 2018, Bhagoji et al. ECCV 2018, Ilyas et al. arXiv:1804.08598, Moon et al. ICML 2019. Andriushche el al. arXiv:1912.00049.

特点:利用多次查询估计出梯度。

缺点:直接将查询施加在黑盒模型上,未使用代理模型,查询复杂度较高。

(2) 基于模仿的对抗攻击

Papernot et al. arXiv:1605.07277, Papernot ACCV 2017, Ma arXiv 2020. Wei et al. CVPR2020

特点:训练代理模型,数据标签来自于黑盒模型的输出,再攻击代理模型去生成对抗样本。

缺点:训练需要大量查询,且用不同模型生成的样本无法成功迁移。

2.模拟器攻击:动机

论文: Chen Ma, Li Chen, and Jun-Hai Yong. Simulating Unknown Target Models for Query-Efficient Black-box Attacks. In Conference on Computer Vision and Pattern Recognition 2021 CVPR 2021, Virtual, https://arxiv.org/abs/2009.00960 idea 的诞生源于我对Bandits攻击[1]的代码的观察,因为目标是减少查询query。

论文正文中正式写作的motivation是: 现有的模型窃取攻击在训练一个替身模型的时候,需要查询目标模型。这仍然导致大量的查询,且可以被检测和防御。

Bandits攻击的论文:

[1] Andrew Ilyas, Logan Engstrom, and Aleksander Madry.
Prior convictions: Black-box adversarial attacks with bandits
and priors. In International Conference on Learning Representations,
2019

```
for step_index in range(args.max_queries // 2):
  # Create noise for exporation, estimate the gradient, and take a PGD step
  exp_noise = args.exploration * torch.randn_like(prior) / (dim ** 0.5) # parameterizes the exploration to be done
around the prior
  # Query deltas for finite difference estimator
  exp noise = exp noise.cuda()
  q1 = upsampler(prior + exp noise) #这就是Finite Difference算法,prior相当于论文里的v,这个prior也会更新
, 把梯度累积上去
    q2 = upsampler(prior - exp_noise) # prior 相当于累积的更新量,用这个更新量,再去修改image,就会变得
非常准
    # Loss points for finite difference estimator
  q1_images = adv_images + args.fd_eta * q1 / self.norm(q1)
  q2_images = adv_images + args.fd_eta * q2 / self.norm(q2)
  with torch.no_grad():
    q1 logits = target model(q1 images)
    q2_logits = target_model(q2_images)
  11 = criterion(q1_logits, true_labels, target_labels)
  12 = criterion(q2 logits, true labels, target labels)
  # Finite differences estimate of directional derivative
  est_deriv = (I1 - I2) / (args.fd_eta * args.exploration) #方向导数, I1和I2是loss
  #2-query gradient estimate
  est_grad = est_deriv.view(-1, 1, 1, 1) * exp_noise #B, C, H, W,
  # Update the prior with the estimated gradient
  prior = prior_step(prior, est_grad, args.online_lr) #注意, 修正的是prior,这就是bandit算法的精髓
    grad = upsampler(prior) # prior相当于梯度
    ## Update the image:
  # take a pgd step using the prior
  adv_images = image_step(adv_images, grad * correct.view(-1, 1, 1, 1), args.image_lr) # prior放大后相当于累积
的更新量,可以用来更新
    adv_images = proj_step(adv_images)
  adv_images = torch.clamp(adv_images, 0, 1)
```


2.模拟器攻击

■ 模拟器攻击(攻击过程)

创新点:

- 1. 模拟器仅需少量 样本微调即可模 拟**任何**模型。
- 2. 大部分查询被迁 移到元模拟器, 减少查询。
- 3. 充分利用黑盒模型的查询反馈。

2.模拟器攻击

■ 模拟器攻击(模拟器的训练过程)

$$\mathcal{L}(\hat{\mathbf{p}}, \mathbf{p}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbf{p}}_{Q_{i,1}} - \mathbf{p}_{Q_{i,1}})^{2} + \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbf{p}}_{Q_{i,2}} - \mathbf{p}_{Q_{i,2}})^{2}$$
(1)

- 1.结合元学习,收集各种已有网络组成task训练数据。
- 2. 一个task: 一个网络的数据。
- 3. T和M交替更新: T专注学习每个task, M学习跨越task泛化能力。

模拟器

Algorithm 1 Training procedure of the Simulator

Input: Training dataset D, Bandits attack algorithm \mathcal{A} , pre-trained classification networks $\mathbb{N}_1, \dots, \mathbb{N}_n$, the Simulator network \mathbb{M} and its parameters θ , feed-forward function f of \mathbb{M} , loss function $\mathcal{L}(\cdot, \cdot)$ defined in Eq. (1).

Parameters: Training iterations N, query sequence size V, meta-train set size t, batch size K, inner-update learning rate λ_1 , outer-update learning rate λ_2 , inner-update iterations T.

Output: The learned Simulator M.

- 1: for $iter \leftarrow 1$ to N do
- 2: sample K benign images x_1, \ldots, x_K from D
- 3: **for** $k \leftarrow 1$ to K **do** \triangleright iterate over K tasks
- 4: a network $\mathbb{N}_i \leftarrow \text{sample from } \mathbb{N}_1, \dots, \mathbb{N}_n$
- 5: $Q_1, \ldots, Q_V \leftarrow \mathcal{A}(x_k, \mathbb{N}_i) \triangleright \text{query sequence}$
- 6: $\mathcal{D}_{mtr} \leftarrow Q_1, \dots, Q_t$
- 7: $\mathcal{D}_{mte} \leftarrow Q_{t+1}, \dots, Q_V$
- 8: $\mathbf{p}_{\text{train}} \leftarrow \mathbb{N}_i(\mathcal{D}_{mtr})$
- 9: $\mathbf{p_{test}} \leftarrow \mathbb{N}_i(\mathcal{D}_{mte})$ \triangleright pseudo labels
- 10: $\theta' \leftarrow \theta$ preinitialize M's weights
- 11: **for** $j \leftarrow 1$ to T **do**
- 12: $\theta' \leftarrow \theta' \lambda_1 \cdot \nabla_{\theta'} \mathcal{L}\left(f_{\theta'}\left(\mathcal{D}_{mtr}\right), \mathbf{p_{train}}\right)$
- 13: end for
- 14: $L_i \leftarrow \mathcal{L}\left(f_{\theta'}\left(\mathcal{D}_{mte}\right), \mathbf{p}_{\texttt{test}}\right)$
- 15: end for
- 16: $\theta \leftarrow \theta \lambda_2 \cdot \frac{1}{K} \sum_{i=1}^K \nabla_{\theta} L_i$ \triangleright the outer update
- 17: **end for**
- 18: **return** M

模拟器攻击(攻击

Algorithm 2 Simulator Attack under the ℓ_p norm constraint

Input: Input image $x \in \mathbb{R}^D$ where D is the image dimensionality, true label y of x, feed-forward function f of target model, Simulator M, attack objective loss $\mathcal{L}(\cdot, \cdot)$.

Parameters: Warm-up iterations t, simulator-predict interval m, Bandits exploration τ , finite difference probe δ , OCO learning rate η_q , image learning rate η .

```
Output: x_{\text{adv}} that satisfies ||x_{\text{adv}} - x||_p \le \epsilon.
```

- Initialize the adversarial example x_{adv} ← x
- Initialize the gradient to be estimated g ← 0
- 3: Initialize $\mathbb{D} \leftarrow deque(maxlen = t)$ a bounded double-ended queue with maximum length of t, adding a full \mathbb{D} leads it to drop its oldest item automatically.

```
4: for i \leftarrow 1 to N do
```

 $\mathbf{u} \leftarrow \mathcal{N}(\mathbf{0}, \frac{1}{D}\mathbf{I})$ \triangleright the same dimension with x

5:
$$q1 \leftarrow \mathbf{g} + \tau \mathbf{u}, \quad q2 \leftarrow \mathbf{g} - \tau \mathbf{u}$$

- $q1 \leftarrow q1/\|q1\|_2, \quad q2 \leftarrow q2/\|q2\|_2$
- if $i \le t$ or $(i-t) \bmod m = 0$ then 8:
- $\hat{y}_1 \leftarrow f(x_{adv} + \delta \cdot q1)$ 9:
- $\hat{y}_2 \leftarrow f(x_{\text{adv}} + \delta \cdot q2)$ 10:
- $\{x_{\text{adv}} + \delta \cdot q1, \hat{y}_1, x_{\text{adv}} + \delta \cdot q2, \hat{y}_2\}$ append \mathbb{D} 11:
- if $i \geq t$ then 12:
- Fine-tune M using D ▷ fine-tune M every 13: m iterations after the warm-up phase.

end if 14:

- else 15:
- $\hat{y}_1 \leftarrow \mathbb{M}(x_{\text{adv}} + \delta \cdot q1), \quad \hat{y}_2 \leftarrow \mathbb{M}(x_{\text{adv}} + \delta \cdot q2)$ 16:

17: end if

- $\Delta_g \leftarrow \frac{\mathcal{L}(\hat{y}_1, y) \mathcal{L}(\hat{y}_2, y)}{\tau \delta} \mathbf{u}$ 18:
- if p=2 then 19:
- 20:
- $\mathbf{g} \leftarrow \mathbf{g} + \eta_a \cdot \Delta_a$
- 21: $x_{\text{adv}} \leftarrow \prod_{\mathcal{B}_2(x,\epsilon)} (x_{\text{adv}} + \eta \cdot \frac{\mathbf{g}}{\|\mathbf{g}\|_2}) \quad \triangleright \prod_{\mathcal{B}_p(x,\epsilon)}$ denotes the ℓ_p norm projection under ℓ_p norm bound.
- else if $p = \infty$ then b using the exponentiated 22: gradient update [20] in the ℓ_{∞} norm attack as follows.
- 23:
- $\mathbf{g} \leftarrow \frac{\hat{\mathbf{g}} \cdot \exp(\eta_g \cdot \Delta_g) (\mathbf{1} \hat{\mathbf{g}}) \cdot \exp(-\eta_g \cdot \Delta_g)}{\hat{\mathbf{g}} \cdot \exp(\eta_g \cdot \Delta_g) + (\mathbf{1} \hat{\mathbf{g}}) \cdot \exp(-\eta_g \cdot \Delta_g)}$ 24:
- 25: $x_{\text{adv}} \leftarrow \prod_{\mathcal{B}_{\infty}(x,\epsilon)} (x_{\text{adv}} + \eta \cdot \text{sign}(\mathbf{g}))$
- 26: end if
- 27: $x_{\text{adv}} \leftarrow \text{Clip}(x_{\text{adv}}, 0, 1)$
- 28: end for
- 29: return x_{adv}

研究背景

研究课题

创新点

Target Model	Method	Avg. Query	Med. Query	Max Query	Success Rate
PyramidNet-272	Rnd_init Simulator Vanilla Simulator	105 102	52 52	1470 1374	100% 100%
1 yrannurvet-2/2	Simulator Attack	92	52	834	100%

Table 2: Comparison of different simulators by performing ℓ_2 norm attack on the CIFAR-10 dataset. The Rnd_init Simulator uses an untrained ResNet-34 as the simulator; the Vanilla Simulator uses a ResNet-34 that is trained without using meta-learning as the simulator.

Figure 3: We conduct ablation studies of the simulation's precision, simulator-predict interval, warm-up iterations, and deque D's maximum length by attacking a WRN-28 model in the CIFAR-10 dataset. The results indicate the following: (1) the meta training is beneficial for achieving an accurate simulation (Fig. 3a), (2) a difficult attack (e.g.

(d) deque's maximum length

(c) warm-up study

模拟器攻击: 非目标攻击

]实验结果:攻击普通的分类模型:PyramidNet-272,GDAS,WRN-28,WRN-40

Dataset	Norm	Attack	l At	tack Suce	ess Rate		I	Avg. Qu	ierv		l N	ledian Q	nerv	
Dataset		THUCK				WRN-40	PyramidNet-272			WRN-40				WRN-40
	<u> </u>	NES [19]	99.5%	74.8%	99.9%	99.5%	200	123	159	154	150	100	100	100
		RGF [31]	100%	100%	100%	100%	216	168	153	150	204	152	102	152
	0_	P-RGF [8]	100%	100%	100%	100%	64	40	76	73	62	20	64	64
	ℓ_2	Meta Attack [12]	99.2%	99.4%	98.6%	99.6%	2359	1611	1853	1707	2211	1303	1432	1430
		Bandits [20]	100%	100%	100%	100%	151	66	107	98	110	54	80	78
CIFAR-10		Simulator Attack	100%	100%	100%	100%	92	34	48	51	52	26	34	34
		NES [19]	86.8%	71.4%	74.2%	77.5%	1559	628	1235	1209	600	300	400	400
		RGF [31]	99%	93.8%	98.6%	98.8%	955	646	1178	928	668	460	663	612
	ℓ_{∞}	P-RGF [8]	97.3%	97.9%	97.7%	98%	742	337	703	564	408	128	236	217
	£00	Meta Attack [12]	90.6%	98.8%	92.7%	94.2%	3456	2034	2198	1987	2991	1694	1564	1433
		Bandits [20]	99.6%	100%	99.4%	99.9%	1015	391	611	542	560	166	224	228
		Simulator Attack	96.5%	99.9%	98.1%	98.8%	779	248	466	419	469	83	186	186
		NES [19]	92.4%	90.2%	98.4%	99.6%	118	94	102	105	100	50	100	100
		RGF [31]	100%	100%	100%	100%	114	110	106	106	102	101	102	102
	ℓ_2	P-RGF [8]	100%	100%	100%	100%	54	46	54	73	62	62	62	62
	£2	Meta Attack [12]	99.7%	99.8%	99.4%	98.4%	1022	930	1193	1252	783	781	912	913
		Bandits [20]	100%	100%	100%	100%	58	54	64	65	42	42	52	53
CIFAR-100	<u> </u>	Simulator Attack	100%	100%	100%	100%	29	29	33	34	24	24	26	26
		NES [19]	91.3%	89.7%	92.4%	89.3%	439	271	673	596	204	153	255	255
		RGF [31]	99.7%	98.8%	98.9%	98.9%	385	420	544	619	256	255	357	357
	ℓ_{∞}	P-RGF [8]	99.3%	98.2%	98%	97.8%	308	220	371	480	147	116	136	181
	- 00	Meta Attack [12]	99.7%	99.8%	97.4%	97.3%	1102	1098	1294	1369	912	911	1042	1040
		Bandits [20]	100%	100%	99.8%	99.8%	266	209	262	260	68	57	107	92
		Simulator Attack	100%	100%	99.9%	99.9%	129	124	196	209	34	28	58	54

Table 3: Experimental results of untargeted attack in CIFAR-10 and CIFAR-100 datasets.

模拟器攻击:目标攻击

____实验结果:攻击普通的分类模型:PyramidNet-272,GDAS,WRN-28,WRN-40

Dataset	Norm	Attack	Atta	ck Succ	ess Rate		1	Avg. Qu	ery		M	edian Q	uery	
			PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272			WRN-40
		NES [19]	93.7%	95.4%	98.5%	97.7%	1474	1515	1043	1088	1251	999	881	882
		Meta Attack [12]	92.2%	97.2%	74.1%	74.7%	4215	3137	3996	3797	3842	2817	3586	3329
	ℓ_2	Bandits [20]	99.7%	100%	97.3%	98.4%	852	718	1082	997	458	538	338	399
		Simulator Attack (m=3)	99.1%	100%	98.5%	95.6%	896	718	990	980	373	388	217	249
CIFAR-10		Simulator Attack (m=5)	97.6%	99.9%	96.4%	94%	815	715	836	793	368	400	206	245
		NES [19]	63.8%	80.8%	89.7%	88.8%	4355	3942	3046	3051	3717	3441	2535	2592
	0	Meta Attack [12]	75.6%	95.5%	59%	59.8%	4960	3461	3873	3899	4736	3073	3328	3586
	ℓ_{∞}	Bandits [20]	84.5%	98.3%	76.9%	79.8%	2830	1755	2037	2128	2081	1162	1178	1188
		Simulator Attack (m=3)	80.9%	97.8%	83.1%	82.2%	2655	1561	1855	1806	1943	918	1010	1018
		Simulator Attack (m=5)	78.7%	96.5%	80.8%	80.3%	2474	1470	1676	1660	1910	917	957	956
		NES [19]	87.6%	77%	89.3%	87.6%	1300	1405	1383	1424	1102	1172	1061	1049
		Meta Attack [12]	86.1%	88.7%	63.4%	43.3%	4000	3672	4879	4989	3457	3201	4482	4865
	ℓ_2	Bandits [20]	99.6%	100%	98.9%	91.5%	1442	847	1645	2436	1058	679	1150	1584
		Simulator Attack (m=3)	99.3%	100%	98.6%	92.6%	921	724	1150	1552	666	519	779	1126
CIFAR-100		Simulator Attack (m=5)	97.8%	99.6%	95.7%	83.9%	829	679	1000	1211	644	508	706	906
		NES [19]	72.1%	66.8%	68.4%	69.9%	4673	5174	4763	4770	4376	4832	4357	4508
	0	Meta Attack [12]	80.4%	81.2%	57.6%	40.1%	4136	3951	4893	4967	3714	3585	4609	4737
	ℓ_{∞}	Bandits [20]	81.2%	92.5%	72.4%	56%	3222	2798	3353	3465	2633	2132	2766	2774
		Simulator Attack (m=3)	89.4%	94.2%	79%	64.3%	2732	2281	3078	3238	1854	1589	2185	2548
		Simulator Attack (m=5)	83.7%	91.4%	74.2%	60%	2410	2134	2619	2823	1754	1572	2080	2270

Table 4: Experimental results of targeted attack in CIFAR-10 and CIFAR-100 datasets, where m is simulator-predict interval.

实验结果: 攻击普通的分类模型:DenseNet121,ResNeXT-101(32x4d),ResNeXT-101(64x4d)

Attack	Attacl	Av	Avg. Query			Median Query			
	D ₁₂₁	R_{32}	R ₆₄	D_{121}	R_{32}	R ₆₄	D_{121}	R_{32}	R ₆₄
NES [19]	74.3%	45.3%	45.5%	1306	2104	2078	510	765	816
RGF [31]	96.4%	85.3%	87.4%	1146	2088	2087	667	1280	1305
P-RGF [8]	94.5%	83.9%	85.9%	883	1583	1581	448	657	690
Meta Attack [12]	71.1%	33.8%	36%	3789	4101	4012	3202	3712	3649
Bandits [20]	99.2%	94.1%	95.3%	964	1737	1662	520	954	1014
Simulator Attack	99.4%	96.8%	97.9%	811	1380	1445	431	850	878

Table 6: Experimental results of untargeted attack under ℓ_{∞} norm in TinyImageNet dataset. D₁₂₁: DenseNet-121, R₃₂: ResNeXt-101 (32×4d), R₆₄: ResNeXt-101 (64×4d).

Attack	Attack	Av	Avg. Query			Median Query			
	D ₁₂₁	R_{32}	R ₆₄	D_{121}	R_{32}	R ₆₄	D_{121}	R_{32}	R ₆₄
NES [19]	88.5%	88%	88.2%	4625	4959	4758	4337	4703	4440
Meta Attack [12]									
Bandits [20]									
Simulator Attack	89.8%	84.9%	83.9%	1959	2558	2488	1399	1966	1982

Table 7: Experimental results of targeted attack under ℓ_2 norm in TinyImageNet dataset. D₁₂₁: DenseNet-121, R₃₂: ResNeXt-101 (32×4d), R₆₄: ResNeXt-101 (64×4d).

模拟器攻击: 攻击防御模型

实验结果(攻击防御模型)

Dataset	Attack		Attack	Success I	Rate		Avg	g. Query			Med	ian Quer	у
		CD [21]	PCL [30]	FD [25]	Adv Train [28]	CD [21]	PCL [30]	FD [25]	Adv Train [28]	CD [21]	PCL [30]	FD [25]	Adv Train [28]
	NES [19]	60.4%	65%	54.5%	16.8%	1130	728	1474	858	400	150	450	200
	RGF [31]	48.7%	82.6%	44.4%	22.4%	2035	1107	1717	973	1071	306	768	510
CIFAR-10	P-RGF [8]	62.8%	80.4%	65.8%	22.4%	1977	1006	1979	1158	1038	230	703	602
CIFAR-10	Meta Attack [12]	26.8%	77.7%	38.4%	18.4%	2468	1756	2662	1894	1302	1042	1824	1561
	Bandits [20]	44.7%	84%	55.2%	34.8%	786	776	832	1941	100	126	114	759
	Simulator Attack	54.9%	78.2%	60.8%	32.3%	433	641	391	1529	46	116	50	589
	NES [19]	78.1%	87.9%	77.6%	23.1%	892	429	1071	865	300	150	250	250
	RGF [31]	50.2%	95.5%	62%	29.2%	1753	645	1208	1009	765	204	408	510
CIEAD 100	P-RGF [8]	54.2%	96.1%	73.4%	28.8%	1842	679	1169	1034	815	182	262	540
CIFAR-100	Meta Attack [12]	20.8%	93%	59%	27%	2084	1122	2165	1863	781	651	1043	1562
	Bandits [20]	54.1%	97%	72.5%	44.9%	786	321	584	1609	56	34	32	484
	Simulator Attack	72.9%	93.1%	80.7%	35.6%	330	233	250	1318	30	22	24	442
	NES [19]	69.5%	73.1%	33.3%	23.7%	1775	863	2908	945	850	250	1600	200
	RGF [31]	31.3%	91.8%	9.1%	34.7%	2446	1022	1619	1325	1377	408	765	612
Tinulmasa Nat	P-RGF [8]	37.3%	91.8%	25.9%	34.4%	1946	1065	2231	1287	891	436	985	602
TinyImageNet	Meta Attack [12]	4.5%	75.8%	3.7%	20.1%	1877	2585	4187	3413	912	1792	2602	2945
	Bandits [20]	39.6%	95.8%	12.5%	49%	893	909	1272	1855	85	206	193	810
	Simulator Attack	43%	84.2%	21.3%	42.5%	377	586	746	1631	32	148	157	632

Table 5: Experimental results after performing the ℓ_{∞} norm attacks on defensive models, where CD represents ComDefend [21], FD is Feature Distillation [25], and PCL is prototype conformity loss [30].

(a) PyramidNet-272 in CIFAR-100 (b) R_{32} in TinyImageNet Figure 4: Comparison of the attack success rate at different limited maximum queries in untargeted attack under ℓ_{∞} norm, where R_{32} indicates ResNext-101 (32×4d).

Figure 5: Comparisons of the average query at different success rates under the untargeted ℓ_{∞} norm attack. More results are presented in the supplementary material.

模拟器攻击

遗留的问题(未来的工作):

- 1. fine-tune较慢。
- 2.如何避免预训练(因为训练要先生成query sequences数据)?

MetaAdvDet: ACM MM 2019

2.我们可以数据不足情况下检测新型对抗样本吗?

论文: Chen Ma, Chenxu Zhao, Hailin Shi, Li Chen, Junhai Yong, and Dan Zeng. MetaAdvDet: Towards Robust Detection of Evolving Adversarial Attacks. In Proceedings of the 27th ACM International Conference on Multimedia. Association for Computing Machinery, New York, NY, USA, 692–701. ACM MM 2019, Nice, France.

动机:为了安全,区分出对抗样本和真实样本。但是

- 1. 新型对抗攻击数据标注成本高。
- 2. 收集样本速度慢。
- 3. 已有方法都需要上万样本训练。

创新点:将这种检测问题定义为一个few-shot问题,提出基于元学习的检测方法:MetaAdvDet。

优点: 仅需几个标注新攻击样本, 就可以检测。

MetaAdvDet

1. 收集不同类型的攻击样本。

MetaAdvDet方法训练所需task数据切分方法

2.切分task,每个task一种攻击样本。

3. fixed-way设置, label 0: 真实样本 label 1: 对抗样本。

Algorithm 1 MetaAdvDet training procedure

Input: master network \mathcal{M} and its parameters \mathcal{M}_{θ} , task-dedicated network \mathcal{T} and its parameters \mathcal{T}_{θ} , the feed-forward function $f_{\mathcal{T}_{\theta}}$ of \mathcal{T} , max iterations N, inner-update learning rate λ_1 , outer-update learning rate λ_2 , inner updates iteration T, the multi-task format dataset \mathcal{D} , cross entropy loss function \mathcal{L} .

Output: the learned network M.

```
1: for iter \leftarrow 1 to N do
              sample K tasks \mathbb{T}_{i,i\in\{1,\cdots,K\}} from \mathcal{D}
  2:
             for i \leftarrow 1 to K do
  3.
                     S_i and Q_i \leftarrow support set and query set of \mathbb{T}_i
  4:
                   \mathcal{T}_{\theta} \leftarrow \mathcal{M}_{\theta}
                                                               ▶ copy parameters from
  5:
                   \mathcal{T}_{\theta'} \leftarrow \mathcal{T}_{\theta} \triangleright \mathcal{T}_{\theta} will be used in the outer
                    for t \leftarrow 1 to T do
  7:
                            Calculate \nabla_{\mathcal{T}_{O'}} \mathcal{L}(f_{\mathcal{T}_{O'}}) by using S_i
  8:
                            \mathcal{T}_{\theta'} \leftarrow \mathcal{T}_{\theta'} - \lambda_1 \nabla_{\mathcal{T}_{\theta'}} \mathcal{L}(f_{\mathcal{T}_{\theta'}})
  9:
                                                                                                  ▶ inner
                     end for
10:
                    G_i \leftarrow \nabla_{T_0} \mathcal{L}(f_{T_{0i}}) by using Q_i
11:
              end for
12:
              \mathcal{M}_{\theta} \leftarrow \mathcal{M}_{\theta} - \lambda_2 \sum_{i=1}^{K} G_i
                                                                                                    ▶ oute
13:
14: end for
15: return M
```

$$\begin{aligned} &\operatorname{recall} = \frac{TP}{TP + FN}, \operatorname{precision} = \frac{TP}{TP + FP} \\ &\operatorname{F1} = 2 \times \frac{\operatorname{precision} \times \operatorname{recall}}{\operatorname{precision} + \operatorname{recall}} \end{aligned}$$

▶ iterate over all test tasks

Algorithm 2 MetaAdvDet testing procedure

Input: master network \mathcal{M} and its learned parameters \mathcal{M}_{θ} , task-dedicated network \mathcal{T} and its parameters \mathcal{T}_{θ} , the feed-forward function $f_{\mathcal{T}_{\theta}}$ of \mathcal{T} , fine-tune iterations T, learning rate λ , test tasks $\mathbb{T}_{i,i\in\{i,\cdots,N\}}$ which is obtained by reorganizing the test set, cross entropy loss \mathcal{L} , ground truth $Y_{i,i\in\{i,\cdots,N\}}$ of the query set.

Output: the average F1 score over all tasks.

1: for $\mathbb{T}_i \leftarrow \mathbb{T}_1$ to \mathbb{T}_N do

Benchmark	Test Protocols	
Datasets	CIFAR-10, MNIST and Fas	shionMNIST
Cross-Adversary	Train Adversary	Test Adversary
Benchmark (simulate the situation of evolving attacks)	FGSM, MI-FGSM, BIM, PGD, C&W, JSMA, SPSA, VAT, MaxConfidence	EAD, semantic, DeepFool, Spatial Transformation, NewtonFool
Cross-Domain	Train Domain	Test Domain
Benchmark	MNIST FashionMNIST	FashionMNIST MNIST
Cross-Architecture	Train Architecture	Test Architecture
Benchmark (evaluate the detection of adversarial examples with new architecture)	ResNet-10 ResNet-18 Conv-4 ResNet-10	ResNet-18 ResNet-10 ResNet-10 Conv-4
White-box benchmark	将分类器和检测器组合成 一个大的分类器,再进行 攻击,每种方法样本独立 产生。	白盒攻击样本是测试阶段的样本。

MetaAdvDet的网络参数配置

name	default value	description
shots	1	number of examples in a way, MetaAdvDet should set the same shots in both training and testing.
ways	2	alias of class number, data of the same way come from using the same adversary to attack the same category's images.
train query set size	70	number of examples of a query set in training.
test query set size	30	number of examples of a query set in testing.
task number K	30	number of tasks in each mini-batch.
inner update times	12	iteration times of inner update during training
fine-tune times	20	iteration times of fine-tune during testing.
total tasks	20,000	total tasks in the constructed tasks.
inner learning rate	0.001	learning rate of inner update.
outer learning rate	0.0001	learning rate of outer update.
dataset	AdvCIFAR	the dataset for ablation study
backbone	conv-3	the backbone of MetaAdvDet & compared methods
benchmark	cross-adversary	the benchmark for ablation study

测试指标

recall =
$$\frac{TP}{TP + FN}$$
, precision = $\frac{TP}{TP + FP}$
F1 = 2 × $\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$ (2)

We use label 1 to represent the real example and 0 to represent the adversarial example, so *TP* is the number of correctly detected real examples, *FN* is the number of real examples that are incorrectly detected as adversarial examples, and *FP* is the number of adversarial images that are detected as real examples. Note that the final F1 score is obtained via averaging F1 scores of all tasks (Algorithm 2).

剥离实验

(a) train query set size study

(b) task number K study

Figure 3: Ablation study results of train query set size and task number of a training mini-batch.

(a) shots study

(b) fine-tune iterations study

Figure 4: Ablation study results of shots and fine-tune iterations. MetaAdvDet outperforms the baseline DNN and DNN (balanced) by a large margin.

对比方法: 基于旋转的TransformDet

shape=N,C,H,W

Cross-Adversary实验结果

Dataset	Method	F1 s	core
		1-shot	5-shot
	DNN	0.495	0.639
	DNN (balanced)	0.536	0.643
AdvCIFAR	NeuralFP [8]	0.698	0.700
	TransformDet [45]	0.662	0.697
	MetaAdvDet (ours)	0.685	0.791
	DNN	0.812	0.852
	DNN (balanced)	0.797	0.808
AdvMNIST	NeuralFP [8]	0.780	0.906
	TransformDet [45]	0.840	0.904
	MetaAdvDet (ours)	0.987	0.993
	DNN	0.782	0.885
	DNN (balanced)	0.744	0.850
AdvFashionMNIST	NeuralFP [8]	0.798	0.817
	TransformDet [45]	0.712	0.879
	MetaAdvDet (ours)	0.848	0.944

Cross-Adversary实验结果:不同的对抗攻击的F1 score

Table 10: F1 score of representative adversaries on the Adv-CIFAR dataset, cross-adversary benchmark.

Dataset	Adversary	Method	F1 s	core
	ĺ		1-shot	5-shot
	Spatial Transformation [49]	DNN DNN (balanced) NeuralFP [8] TransformDet [45]	0.498 0.529 0.708 0.633	0.599 0.589 0.696 0.660
AdvCIFAR	semantic [17]	MetaAdvDet (ours) DNN DNN (balanced) NeuralFP [8] TransformDet [45] MetaAdvDet (ours)	0.811 0.488 0.529 0.698 0.662 0.763	0.920 0.644 0.657 0.700 0.688 0.855
	NewtonFool [19]	DNN DNN (balanced) NeuralFP [8] TransformDet [45] MetaAdvDet (ours)	0.511 0.542 0.696 0.658 0.647	0.664 0.670 0.696 0.716 0.735

Train Domain	Test Domain	Method	F1 score		
			1-shot	5-shot	
AdvMNIST	AdvFashionMNIST	DNN (balanced) NeuralFP [8] TransformDet [45] MetaAdvDet (ours)	0.698 0.748 0.664 0.799	0.813 0.811 0.808 0.870	
AdvFashionMNIST	AdvMNIST	DNN (balanced) NeuralFP [8] TransformDet [45] MetaAdvDet (ours)	0.950 0.775 0.934 0.956	0.977 0.836 0.940 0.981	

Cross-Architecture 实验结果 Table 12: F1 score of cross-architecture benchmark.

Dataset	Train Arch	Test Arch	Method	F1 s	core
				1-shot	5-shot
	ResNet-10	ResNet-18	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.713 0.758 0.702 0.832	0.709 0.880 0.768 0.902
	ResNet-18	ResNet-10	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.712 0.788 0.711 0.840	0.703 0.874 0.752 0.889
AdvCIFAR	conv-4	ResNet-10	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.712 0.763 0.723 0.835	0.703 0.868 0.779 0.885
	ResNet-10	conv-4	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.709 0.766 0.739 0.854	0.702 0.885 0.790 0.918
	ResNet-10	ResNet-18	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.906 0.973 0.943 0.984	0.882 0.988 0.972 0.993
ALMIGT	ResNet-18	ResNet-10	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.894 0.967 0.912 0.981	0.738 0.990 0.953 0.991
AdvMNIST	conv-4	ResNet-10	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.894 0.972 0.897 0.963	0.738 0.985 0.959 0.983
	ResNet-10	conv-4	NeuralFP [8] TransformDet [45] DNN (balanced) MetaAdvDet (ours)	0.917 0.984 0.958 0.990	0.961 0.992 0.978 0.996

AdvFashionMNIST	ResNet-10	ResNet-18	NeuralFP [8] TransformDet [45]	0.813 0.936	0.856 0.974
			DNN (balanced)	0.848	0.932
			MetaAdvDet (ours)	0.960	0.979
	ResNet-18	ResNet-10	NeuralFP [8]	0.820	0.838
			TransformDet [45]	0.935	0.972
			DNN (balanced)	0.829	0.918
			MetaAdvDet (ours)	0.957	0.976
	conv-4	ResNet-10	NeuralFP [8]	0.820	0.838
			TransformDet [45]	0.946	0.970
			DNN (balanced)	0.920	0.968
			MetaAdvDet (ours)	0.946	0.975
	ResNet-10	conv-4	NeuralFP [8]	0.817	0.911
			TransformDet [45]	0.945	0.979
			DNN (balanced)	0.886	0.945
			MetaAdvDet (ours)	0.967	0.982

White-box attack Benchmark实验结果

-		I-FGSM Attack		C&W Attack	
Dataset	Method	1-shot	5-shot	1-shot	5-shot
CIFAR-10	DNN (balanced)	0.466	0.537	0.459	0.527
	TransformDet [45]	0.593	0.728	0.443	0.502
	MetaAdvDet (ours)	0.553	0.633	0.548	0.607
MNIST	DNN (balanced)	0.857	0.956	0.814	0.913
	TransformDet [45]	0.864	0.952	0.775	0.893
	MetaAdvDet (ours)	0.968	0.994	0.920	0.990
FashionMNIST	DNN (balanced)	0.745	0.890	0.726	0.853
	TransformDet [45]	0.837	0.920	0.747	0.853
	MetaAdvDet (ours)	0.849	0.963	0.882	0.967

Method	DNN	NeuralFP [8]	TransformDet [45]	MetaAdvDet (ours)
Inference time (ms)	1.53 ± 0.01	2185.12 ± 18.10	69.17 ± 2.97	$\textbf{4.07} \pm \textbf{4.40}$

研究背景 论文介绍 开源软件

BugTorch开源软件,目前收集了大量的黑盒攻击算法: bugtorch.org(还未上线) 或https://github.com/machanic/bugtorch 包括score-based和decision-based setting

- > adversarial defense
- > autozoom attack
- bandits
- 🖿 benign image classifier
- bundle attack
- cifar models
- cifar_models_myself
- configures
- corr attack
- dataset
- im frank wolfe attack(fail)
- imagenet models
- LaMCTS
- LeBA
- meta attack
- meta simulator bandits
- meta_simulator_benign_images
- meta simulator square attack
- MGA attack
- NES attack

hard label attacks D:\work\hard label attacks

- adversarial defense
- bayes attack
- biased boundary attack
- > lamboundary attack
- cifar models
- cifar models myself
- > configures
- dataset
- evolutionary
- GeoDA
- hop skip jump attack
- LogBarrier
- models
- D OPT
- policy driven attack
- QEBA
- RayS
- sign flip attack

configures

- 🚯 Bayes.json
- 🚯 BBA.json
- nboundary_attack.json
- GeoDA.json
- 🚯 HSJA.json
- 🚯 QEBA.json
- 🚯 RayS.json
- SFA.json
- 🚯 SignOPT.json

Thank you!

