Examen del bloc 2 de SIN (tipus B)

ETSINF, Universitat Politècnica de València, 14 de gener de 2020

Nom: Cognoms:

 \square 3C \square 3D \square 3E Grup: \Box 3A \Box 3B □ 3F \square 3G

Test (1,75 punts)

Marca cada requadre amb una única opció. Puntuació: $máx(0, (encerts - errors / 3) \cdot 1, 75 / 9)$.

- $1 \mid D \mid$ Siga \mathbf{x} un objecte a classificar en una classe de C possibles. Indica quin dels següents classificadors no és d'error mínim (o tria l'última opció si els tres són d'error mínim):
 - A) $c(\mathbf{x}) = \arg\max \log p(\mathbf{x}, c)$.
 - B) $c(\mathbf{x}) = \arg\max p(c \mid \mathbf{x})^2$
 - C) $c(\mathbf{x}) = \arg \max \sqrt{p(\mathbf{x}, c)} / p(\mathbf{x})$ c=1,...,C
 - D) Els tres classificadors anteriors són d'error mínim.
- 2 B Siga un classificador en tres classes basat en les funcions discriminants lineals bidimensionals de vectors de pesos: $\mathbf{w}_1 = (0,0,1)^t$, $\mathbf{w}_2 = (0,1,0)^t$ i $\mathbf{w}_3 = (0.5,0,0)^t$. Indica quina de les figures donades a continuació és coherent amb les fronteres i regions de decisió que defineix aquest classificador.

3 C Donat el classificador en dues classes definit per la frontera i regions de decisió de la figura de la dreta, quin dels següents vectors de pesos no defineix un classificador equivalent al donat?

B)
$$\mathbf{w}_1 = (0, -1, 0)^t$$
 i $\mathbf{w}_2 = (0, 0, -1)^t$.

C)
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 i $\mathbf{w}_2 = (0, 0, 1)^t$.

D) Tots els vectors de pesos anteriors defineixen classificadors equivalents.

0.5

 R_2

1.0

1.0

A)
$$\mathbf{x} = (-1, 1)^t$$
 i $c = 2$.

B)
$$\mathbf{x} = (0,0)^t$$
 i $c = 2$.

C)
$$\mathbf{x} = (0,0)^t$$
 i $c = 1$.

D)
$$\mathbf{x} = (-1, 1)^t$$
 i $c = 1$.

5 C Siga un problema de classificació en tres classes per a objectes del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la dreta. Quin és l'error de Bayes, ε^* , en aquest problema?

A)
$$\varepsilon^* < 0.2$$
.

B)
$$0.2 < \varepsilon^* < 0.4$$
.

C)
$$0.4 \le \varepsilon^* < 0.7$$
. $.2 \cdot .4 + .3 \cdot .2 + .2 \cdot .5 + .3 \cdot 2/3 = .44$

D)
$$0.7 < \varepsilon^*$$
.

2	x	$P(c \mid \mathbf{x})$			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.6	0.2	0.2	0.2
0	1	0.1	0.1	0.8	0.3
1	0	0.3	0.5	0.2	0.2
1	1	1/3	1/3	1/3	0.3

- 6 D Es té un problema de classificació per al qual s'ha après un classificador. Així mateix, es té un conjunt de M=100 mostres de test amb el qual s'ha estimat:
 - La probabilitat d'error del classificador après, $\hat{p} = 0.10 = 10 \%$.
 - Un interval de confiança al 95 % per a aquesta probabilitat d'error, $\hat{I} = [0.04, 0.16] = [4\%, 16\%]$.

Es considera que la probabilitat d'error estimada és raonable i que la mateixa no variarà significativament encara que usem moltes més mostres de test. Ara bé, l'interval de confiança (al 95 %) estimat, $\hat{I}=10\,\%\pm6\,\%$, ens sembla una mica ampli i ens preguntem si és possible reduir la seua amplitud mitjançant l'ús de més de M=100 mostres de test. A més, si això fóra possible, ens preguntem si seria possible reduir aquesta amplitud a la meitat o menys; això és, tal que $\hat{I}=10\,\%\pm\hat{R}$ amb $\hat{R}\leq3\,\%$. En relació amb aquestes qüestions, indica quina de les següents afirmacions és correcta.

- A) No és possible reduir l'amplitud de \hat{I} ja que hem considerat que \hat{p} no variarà significativament i, sent així, l'amplitud de \hat{I} tampoc pot variar significativament.
- B) En general, no és possible reduir l'amplitud de \hat{I} perquè \hat{I} no depèn significativament de M.
- C) Sí que és possible reduir l'amplitud de \hat{I} , a la meitat o menys, si doblem M almenys $(M \ge 200)$.
- D) Sí que és possible reduir l'amplitud de \hat{I} , a la meitat o menys, si emprem almenys quatre vegades més mostres de test aproximadament $(M \ge 400)$. $1.96 \cdot \sqrt{(0.1 \cdot 0.9)/M} \le 0.03 \rightarrow M \ge 385$
- 7 A Donat el conjunt de mostres de 2 classes (∘ i •) de la figura de la dreta, quin dels següents arbres de classificació és coherent amb la partició representada?

- 8 C La figura a la dreta mostra una partició de 4 punts bidimensionals en 2 clústers (representats mitjançant els símbols \bullet i \circ). La transferència del punt $(3,2)^t$ del clúster \bullet al clúster \circ :
 - A) produeix un increment en la Suma d'Errors Quadràtics (SEQ).
 - B) no altera la SEQ.
 - C) produeix un decrement en la SEQ.

$$\Delta J = 0.5 - 0.67335 = -0.17335$$

D) produeix una SEQ negativa.

- 9 C En relació al càlcul de la probabilitat $P(y \mid M)$ amb la qual un model de Markov M genera una cadena de símbols y, indica quina afirmació és certa:
 - A) L'única manera de calcular $P(y \mid M)$ consisteix a generar explícitament totes les seqüències d'estats, calcular la probabilitat que cada seqüència d'estats haja generat y i posteriorment sumar totes les probabilitats obtingudes.
 - B) Una forma eficient computacionalment de calcular $P(y \mid M)$ consisteix a aplicar l'algorisme de Viterbi.
 - C) Una forma eficient computacionalment de calcular $P(y \mid M)$ consisteix a aplicar l'algorisme Forward.
 - D) L'única manera de calcular $P(y \mid M)$ consisteix a generar explícitament totes les seqüències d'estats mitjançant l'algorisme de Viterbi, calcular la probabilitat que cada seqüència haja generat y i sumar totes les probabilitats obtingudes.

Problema (2 punts)

Siga un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$ i conjunt de símbols $\Sigma = \{a, b\}$. Es demana:

a) (1 punt) Siguen el vector de probabilitats inicials (π) , matriu de transició entre estats (A) i matriu de generació de símbols (B):

π	1	2
	0.6	0.4

A	1	2	F
1	0.6	0.3	0.1
2	0.3	0.4	0.3

B	a	b
1	0.3	0.7
2	0.8	0.2

Realitza una traça de l'algorisme de Viterbi per a la cadena y = aab obtenint la millor seqüència d'estats.

b) (1 punt) Siguen les tres cadenes de símbols: $y_1 = bbaa$, $y_2 = abab$ i $y_3 = aabbb$. En aplicar l'algorisme de Viterbi amb un cert model de Markov M, s'obtenen, respectivament, les següents seqüències òptimes d'estats: 1122F, 2121F i 22111F. A partir d'aquestes cadenes i les seues respectives seqüències òptimes d'estats, re-estima les probabilitats inicials (π) , de transició (A) i d'emissió (B) de M (de la mateixa manera que es fa en una iteració de l'algorisme de re-estimació de Viterbi).

a) Traça de l'algorisme de Viterbi per a la cadena y = aab:

V	a		a	
b1	$0.6 \cdot 0.3 = 0.18$	$0.18 \cdot 0.6 \cdot 0.3 = 0.0324$	$0.0324 \cdot 0.6 \cdot 0.7 = 0.0136$	
		$0.32 \cdot 0.3 \cdot 0.3 = 0.0288$	$0.1024 \cdot 0.3 \cdot 0.7 = 0.0215$	
		0.0324 > 0.028 (de 1)	$0.0136 < 0.0215 \; (de \; 2)$	
2	$0.4 \cdot 0.8 = 0.32$	$0.18 \cdot 0.3 \cdot 0.8 = 0.0432$	$0.0324 \cdot 0.3 \cdot 0.2 = 0.0019$	
		$0.32 \cdot 0.4 \cdot 0.8 = 0.1024$	$0.1024 \cdot 0.4 \cdot 0.2 = 0.0082$	
		0.0432 < 0.1024 (de 2)	$0.0019 < 0.0082 \; (de \; 2)$	
F	_	_	_	$0.0215 \cdot 0.1 = 0.0022$
				$0.0082 \cdot 0.3 = 0.0025$
				0.0022 < 0.0025 (de 2)

La seqüència òptima d'estats és: 222F

b) L'estimació de π , A i B per a les cadenes d'entrenament $y_1 = bbaa$, $y_1 = abab$ i $y_3 = aabbb$ és

 π : L'estat 1 s'ha utilitzat una vegada com a estat inicial i l'estat 2 dues vegades.

- A: La transició 1-1 3 vegades, la 1-2 2 vegades, la 1-F dues vegades.
 - La transició 2-1 3 vegades, la 2-2 2 vegada, la 2-F una vegada.
- B: El símbol a s'ha emès 0 vegades en l'estat 1 i 6 vegades en l'estat 2.
 - ullet El símbol b s'ha emès 7 vegades de l'estat 1 i 0 vegades de l'estat 2.

Normalitzant:

$$\begin{array}{c|cccc} & 1 & 2 \\ \hline \pi & \frac{1}{3} & \frac{2}{3} \end{array}$$

A	1	2	F
1	$\frac{3}{7}$	$\frac{2}{7}$	$\frac{2}{7}$
2	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

B	a	b
1	0.0	1.0
2	1.0	0.0