Springboard Capstone Project 1: Analysis of Online Shopping Dataset

Michael Thabane

Kaggle Dataset Repository

February 13, 2020

Introduction

Business Problem

- Rapid increase in online shopping leads to need of finding ways to know customer's intention
- Use data from web sessions to answer this question
- Supervised classification data science problem which can be solved using ML classification algorithms

Data Acquisition and Wrangling

- Data was taken from the Kaggle Dataset Repository
- Values of some features are derived from the URL information of the pages visited by the user
- Some features represent the metrics measured by "Google Analytics" for each page in the e-commerce site
- No wrangling was needed and the data was then split into two data sets based on Revenue

Descriptive Analysis

 Browsing Customers visit less pages on average than Purchasing Customers illustrated in the boxplot below

 Ratio between browsing and and purchasing customers is lower on the weekend vs. week days shown in the histogram below

Correlation

 Based on the plot below the page value rate is the most strongly correlated variable to the session being a purchase

Hypothesis Testing

- Test four hypotheses described below:
 - A Special Day is independent of a user making a Purchase
 - ② A Returning User is independent of the user making a purchase
 - Weekends are independent of a user making a Purchase
 - The Informational Duration means for the two groups of data (Purchase, Browse) are equal.
- There was significant evidence to reject all four hypotheses

Baseline Modeling

- Baseline models used were:
 - K-nearest Neighbours Classifier
 - 2 Logistic Regression Classifier
- The training and test split was 80-20
- Using a 5-fold cross-validation the accuracy of models are as follows:
 - **1** KNeighbors Accuracy = 0.86 (+/-0.03)
 - 2 Logistic Regression Accuracy = 0.88 (+/-0.01)

Model	User Decision	Precision	Recall	F1 Score	Comments
	Browse	0.86	0.98	0.91	Optimized parameters: n = 6
K-Nearest Neighbors	Purchase	0.62	0.18	0.29	
	Browse	0.88	0.98	0.92	Optimized parameters: Penalty = I1
Logistic Regression	Purchase	0.73	0.3	0.43	C = 0.00021544346900318823

Extended Modeling

- Baseline models used were:
 - XGBoost Classifier
 - 2 Random Forest Classifier
- Using a 5-fold cross-validation the accuracy of models are as follows:
 - **1** XGBoost Accuracy = 0.90 (+/-0.03)
 - ② Forrest Accuracy = 0.89 (+/-0.03).

Model	User Decision	Precision	Recall	F1 Score	Comments
	Browse	0.92	0.96	0.94	Optimized parameters: Learning rate = 0.05, Max Depth = 3, Min Child
XGBoost	Purchase	0.73	0.56	0.63	Weight = 1, gamma = 0.1, Colsample by tree = 0.6, n-estimators = 300
	Browse	0.92	0.96	0.94	Optimized parameters: n-estimators = 100, Max Depth = 20
Random Forest	Purchase	0.75	0.56	0.64	Min Sample Split = 12, Min Sample Leaf = 3

Model Comparisons

Conclusions and Future Work

- Hypothesis tests conclude that weekends and special days impact users decision to make a purchase
- A returning user is not mutually exclusive on the decision to make a purchase
- Model prediction analysis concludes that XGBoost and Random Forest models are the best predictors of classifying a purchase session
- A new or improved product recommendation system can be implemented to encourage more site engagement

Recommendation for the Client

- Recommend using XGBoost Model to predict purchases for sessions
- Look to maximize sales on Special Days and weekend when there is increased site activity
- Recommend implementing a product recommendation system to encourage users to explore more products on the site

Thanks