Struktura a architektura počítačů

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické

© Hana Kubátová, 2021

Typické obvody v číslicovém počítači

BI-SAP, březen 2021

Obsah

- Logické obvody kombinační a sekvenční, často použité v číslicovém počítači
- Sčítačka, půlsčítačka, registr, čítač
- (Metoda minimalizace Quinne-McCluskey)

Některé obrázky jsou převzaty z doporučené literatury:

- Gajski, D. D.: Principles of Digital Design. Prentice-Hall International, Inc.
 1997
- a z výukových materiálů doc. Pluháčka

Často používané obvody

Majorita: nabývá hodnotu 1, když většina proměnných je rovna 1

Majorita ze 3 ... M₃ (tzn. alespoň dvě proměnné jsou jedničkové)

$$M_3(a,b,c) = a.b.\bar{c} + a.\bar{b}.c + \bar{a}.b.c + a.b.c$$

Úpravami, algebraicky nebo v mapě dostaneme:

$$M_3(a,b,c) = a.b + a.c + b.c$$

co vám to připomíná?

XOR

$$a \oplus b = a\overline{b} + \overline{a}b$$

$$a\bar{b} + 0 + \bar{a}b + 0 = a\bar{b} + a\bar{a} + \bar{a}b + \bar{b}b =$$

$$a(\overline{a} + \overline{b}) + b(\overline{a} + \overline{b}) = a.\overline{ab} + b.\overline{ab}$$

oblíbené zapojeni XORu: 4x NAND tedy 4x4 transistory = 16, ale v CMOS lze lépe:

XOR - CMOS

Jen 6 transistorů místo 16

Dekodéry

Dekodér: binární kód → 1 z N, zde 1 ze 4

pro $x_1 x_0 =$	00
pro $x_1 x_0 =$	01
pro $x_1 x_0 =$	10
$pro x_1 x_0 =$	11

4 výstupní funkce, pravdivostní tabulky:

X ₁	X ₀	y ₀	y ₁	y ₂	y ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Booleovské výrazy:

$$y_0 = \overline{x}_1 \cdot \overline{x}_0$$

$$y_1 = \overline{x}_1 \cdot x_0$$

$$y_2 = x_1 \cdot \overline{x}_0$$

$$y_3 = x_1 \cdot x_0$$

Dekodéry ... obecně, jak navrhnout

Skupinová minimalizace

Desítkové číslo	Kód BCD DCBA	Kód 2z5 typ 74210 <i>edcba</i>	Kód 2z5 typ 84210 <i>edcba</i>
0	0000	11000	10100
1	0001	00011	00011
2	0010	00101	00101
3	0011	00110	00110
4	0100	01001	01001
5	0101	01010	01010
6	0110	01100	01100
7	0111	10001	11000
8	1000	10010	10001
9	1001	10100	10010

Nástin postupu řešení:

5 vstupních proměnných a 4 výstupní funkce

→ mapa pro 5 proměnných

edcba	DCBA
11000	0000
00011	0001
00101	0010
00110	0011
01001	0100
01010	0101
01100	0110
10001	0111
10010	1000
10100	1001

Definiční obor

označení 1 až 9 je symbolické, není to stavový index

	edcba	DCBA
0	11000	0000
1	00011	0001
2	00101	0010
3	00110	0011
4	01001	0100
5	01010	0101
6	01100	0110
7	10001	0111
8	10010	1000
9	10100	1001

definiční obor je kód 2 z 5, tzn. hledáme místa v mapě, kde jsou právě 2 vstupní proměnné jedničkové (podle tabulky)

Využití neurčených stavů

	edcba	DCBA
0	11000	0000
1	00011	0001
2	00101	0010
3	00110	0011
4	01001	0100
5	01010	0101
6	01100	0110
7	10001	0111
8	10010	1000
9	10100	1001

Z mapy získáme MNDF pro A: $A = \overline{e}b + \overline{b} \, \overline{d} \, e$

a dtto pro všechny další výstupy

Multiplexor - princip

řízení (výběr, selekce ... někdy název selektor) toho, který ze vstupů se propojí na výstup

Multiplexor - funkce

řídící vstupy, též adresa

$$Y = A_1.A_0.D_0 + A_1.A_0.D_1 + A_1.A_0.D_2 + A_1.A_0.D_3$$

Multiplexor - realizace

Multiplexor:

Realizace:

Multiplexor

Multiplexor pro širší výběr (sběrnice ... jeden z osmibitových vstupů se podle aktuální adresy připojuje na osmibitový výstup)

Multiplexor

 v CMOS je 2-vstupový MUX realizován pomocí přenosových hradel, tzn. jen 6 transistorů

Příklady, popis zapojení a simulace:

http://www.indiabix.com/electronics-circuits/

Demultiplexor

Demultiplexor:

Pravdivostní tabulka:

a ₁	$\mathbf{a_0}$	X	y_0	y ₁	y ₂	y ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
	4	0	0	70	0	0
0	1	1	0	1	0	0
4		0	0	0	70	0
1	0	1	0	0	1	0
4	4	0	0	0	0	0
1	1	1	0	0	0	1

Realizace demultiplexoru

Sčítačka - opakování

а	b	р	q	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = abp + abp + abp + abp$$

 $q = abp + abp + abp + abp$
 $(= ap + bp + ab)$

Poloviční sčítačka: half-adder

Úplná binární sčítačka: $s = \overline{abp} + \overline{abp} + \overline{abp} + abp$

$$s = p(\bar{a}\bar{b} + ab) + \bar{p}(\bar{a}b + a\bar{b}) = p(\bar{a} \oplus b) + \bar{p}(a \oplus b) = p \oplus a \oplus b$$
$$q = ap + bp + ab = M_3(a, b, p)$$

Poloviční sčítačka (např. není přenos):

$$s = a \oplus b$$

$$q = a.b$$

a b	q	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Sčítačka pomocí půlsčítaček

$$q = ab + p.(a \oplus b) = ab + p(a\overline{b} + \overline{a}b) = ab + a\overline{b}p + \overline{a}bp$$

= $a(b + \overline{b}p) + \overline{a}bp = ab + ap + \overline{a}bp$
= $b(a + \overline{a}p) + ap = ab + bp + ap$

2x absorpce negace, nebo mapa

Paralelní sčítačka

$$S = A + B$$

 $A = ...a_2a_1a_0$
 $B = ...b_2b_1b_0$

Paralelní sčítačka

$$S = A + B$$

 $A = ...a_2a_1a_0$
 $B = ...b_2b_1b_0$

lze i "najednou", tzn.
navrhnout dvouúrovňový
obvod se 4 vstupy a 3 výstupy,
a pro 4 bitovou sčítačku
LO s 8 vstupy a 5 výstupy

Registry

n klopných obvodů řízených společným hodinovým signálem

zde příklad 4 bitového registru:

Otázka: jak dlouho se udrží informace v tomto registru?

Registr s nastavením a nulováním

Poznámka: nastavení ("preset") na 1 nebo nulování ("clear") je asynchronní a má přednost před vstupy I_3 až I_0

Load CLK

Registr s řízením zápisu

	Load=0	Load=1
Q_0	Q_0	I ₀
Q_1	Q_1	I ₁
Q_2	Q_2	l ₂
Q_3	Q_3	l ₃

Load CLK

Registr s řízením zápisu

	Load=0	Load=1
Q_0	Q_0	I ₀
Q_1	Q_1	l ₁
Q_2	Q_2	l ₂
Q_3	Q_3	l ₃

Load CLK

Registr s řízením zápisu

	Load=0	Load=1
Q_0	Q_0	I ₀
Q_1	Q_1	l ₁
Q_2	Q_2	l ₂
Q_3	Q_3	l ₃

Posuvný registr

Shift	0	1	
Q_0	Q_0	Q_1	
Q_1	Q_1	Q_2	
Q_2	Q_2	Q_3	
Q_3	Q_3	In	

Posuvný registr

Shift	0	1
Q_0	Q_0	Q_1
Q_1	Q_1	Q_2
Q_2	Q_2	Q_3
Q_3	Q_3	In

Vícefunkční registr

Řízení zápisu a směru posuvu:

Posuvný registr zjednodušený

a v procesoru téměř nepoužitelný

Čítače

- Speciální typ registru, který v sobě zahrnuje funkci inkrementu (dekrementu) – může čítat nahoru a/nebo dolů
- Jsou tzv. úplné a neúplné čítače:
 - o úplné čítače M(modulo) 2ⁿ čítají do 4, 8, 16, 32,
 - o neúplné např. do 10, 60, 80, 9, ...
- Obvykle čítají v binárním kódu
- Ale jsou čítače i v jiných kódech
 - \circ v 1 z N
 - v Grayově kódu (aby se měnila jen jedna vnitřní proměnná)
- Jsou čítače synchronní i asynchronní

Příklad: čítač M4

Navrhněte čítač M4 se vstupem E (enable counting = povolení čítání, "počítáme" jedničky), synchronní, v binárním kódu

typ Moore, graf a tabulka přechodů a výstupů:

Q/E	0	1	Y
0	0	1	00
1	1	2	01
2	2	3	10
3	3	0	11

vnitřní stavy, zde 0,1,2,3 zakódujeme podle požadovaného výstupu (00, 01, 10, 11) ušetříme logiku pro generování výstupů, (výstupní funkci δ)

Příklad: řešení

E q₁q₀	0	1
00	00	01
01	01	10
10	10	11
11	11	00

Ī	-				q q q q q q q q q q q q q q q q q q q
	0	1	1	0	•
	1	0	0	1	
E	D	- a	\overline{E} +	$\frac{1}{a}F$	- a 4

 q_0

Výstupy: $Y_0 = \mathbf{q_0}$, $Y_1 = \mathbf{q_1}$

$$D_{q1} = \overline{q_0}q_1 + q_1\overline{E} + q_0\overline{q_1}E =$$

$$q_1(\overline{q_0} + \overline{E}) + \overline{q_1}(q_0.E) =$$

$$q_1 \cdot \overline{q_0E} + \overline{q_1}(q_0.E) =$$

$$E.q_0 \oplus q_1$$

Ε

~1

Realizace

$$D_{q_0} = q_0 \overline{E} + \overline{q_0} E = q_0 \oplus E$$

Výstup je vidět až po přechodu do následného stavu Q_t Tedy z až po aktivní hraně CLK

M4, Mealy

graf a tabulka přechodů a výstupů

Q/E	0	1	0	1
0	0	1	00	01
1	1	2	01	10
2	2	3	10	11
3	3	0	11	00

Realizace

Q/E	0	1	0	1
00	00	01	00	01
01	01	10	01	10
10	10	11	10	11
11	11	00	11	00

Zakódování (vnitřních proměnné *a, b*) zvolím tak, aby odpovídalo požadovanému kódu výstupů

Realizace

Výstup musí být vidět dříve, tzn. současně s následným stavem Q_t a ne s výchozím stavem Q_{t-1} , tedy je odvozen ze vstupů a ne z výstupů

rozdíl Mealy x Moore

Q/E	0	1	0	1
0	0	1	00	01
1	1	2	01	10
2	2	3	10	11
3	3	0	11	00

Realizace

 $E \cdot q_0$ D_b Y_1 Y_0

Mealy

výstup Y ze vstupu D-KO změny E se projeví na výstupu "hned" Moore

výstup Y vyveden z výstupu D-KO výstupy se změní až po aktivní hraně CLK

Čítače neúplné, vratné

- Příklad1: navrhněte čítač M5 v binárním kódu.
- Příklad2: navrhněte vratný čítač M4 v Grayově kódu, pro vstup D=0 čítá nahoru, pro D=1 dolů.
- Otázka: Jak bude vypadat čítač typu Mealy?

Řešení příkladů na prosemináři a v praktických laboratorních úlohách.

Algoritmus Quine-McCluskey

http://crc.stanford.edu/users/ejm/McCluskey Edward.html
https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey algorithm

- nalezení všech přímých implikantů ... algoritmicky, nalezení všech možností
- pomocí tabulky pokrytí nalezení minimální normální formy (nalezení podstatných implikantů a optimalizace pokrytí zbylých mintermů)
- použitelné pro více vstupních proměnných
- příklad

Příklad

Najděte MNDF funkce:

$$f(a,b,c,d) = \sum_{1} (1, 4, 7, 8, 9, 10, 11, 12, 14, 15)$$

Obvyklý postup: nalezneme všechny přímé implikanty a pak vybereme optimální pokrytí.

Mapa je vhodná do max. 5 vstupních proměnných, ale i zde je někdy problém

Následuje systematické řešení, hrubá síla:

1. jedničkové stavy zapíšeme dvojkově do tabulky:

dcba	s pozn.
0001	1
0100	4
0 1 1 1	7
1000	8
1001	9
1010	10
1011	11
$1\ 1\ 0\ 0$	12
1110	14
1111	15

f(a,b,c,d) =	\sum (1.4.7.8.9.	10.11.12.1	4,15)
$J(\alpha, c, c, \alpha)$	/ 11 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	10,11,12,1	1,10)

2. seřadíme do skupin podle počtu jedniček:

dcba	s pozn.		dcba	s pozn.
0 0 0 1	1 *		0001	1
0100	4 *		$ \begin{array}{c cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} $	8
0 1 1 1	7 *	_		L – – –
1000	8 *		1001	9
1001	9 *		1010	10
1010	10 *		1 1 0 0	12
1011	11 *		0.1.1.1	
1 1 0 0	12 *		$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$	11
1 1 1 0	14 *		1111	14
1 1 1 1	15 *	_		
			1111	15

označení, že se položka zapsala do další tabulky

3. nalezneme všechny dvojice sousedních stavů (liší se o jednu 1, hledáme jen v sousedních skupinách):

$\begin{array}{c} dcba \\ 0\ 0\ 0\ 1 \\ 0\ 1\ 0\ 0 \\ 1\ 0\ 0\ 0 \end{array}$	s pozn. 1 * 4 * 8 *		- 0 0 1 - 1 0 0 1 0 0 -	1,9 4,12 8,9	
1 0 0 1 1 0 1 0 1 1 0 0	9 * 10 * 12 *	_	1 0 - 0 1 - 0 0 1 0 - 1 1 0 1 -	8,10 8,12 9,11 10,11	popis konkrétní dvojice
0 1 1 1 1 0 1 1 1 1 1 0	7 * 11 * 14 *	_	1 - 1 0 1 1 - 0 - 1 1 1 1 - 1 1	10,14 $12,14$ $7,15$ $11,15$	(podkrychle) pomocí mintermů
1111	15 *		111-	14,15	

^{* ...} označení, že se položka zapsala do další tabulky

4. nalezneme všechny čtveřice sousedních stavů (opět se liší jen o jednu 1, hledáme jen v sousedních skupinách):

- 0 0 1	1,9		
- 100	4,12		
100-	8,9 *	1.0	0.0.10.11
10-0	8,10 *	10	8,9,10,11
1 - 0 0	8,12 *	10	8,10,9,11
		1 0	8,10,12,14
10-1	9,11 *	1 0	8,12,10,14
101-	10,11 *		40 44 44 45
1 - 1 0	10,14 *	1 - 1 -	10,11,14,15
11-0	12,14 *	1 - 1 -	10,14,11,15
- 1 1 1	7,15		
1 - 1 1	11,15 *		
111-	14,15 *		

^{* ...} označení, že se položka zapsala do další tabulky

5. pokud již nejde dál slučovat (hledat větší krychle), označíme si všechny neohvězdičkované stavy (= přímé implikanty) A až F

dcba	s, s pozn.	dcba	s, s, s, s pozn.
-001	1,9 F	10	8,9,10,11 C
- 100	4,12 E	10	8,10,9,11
100-	8,9 *	1 0	8,10,12,14 B
10-0	8,10 *	1 0	8,12,10,14
1 - 0 0	8,12 *		
		1 - 1 -	10,11,14,15 A
10-1	9,11 *	1 - 1 -	10,14,11,15
101-	10,11 *		
1 - 1 0	10,14 *		
11-0	12,14 *		
-111	7,15 D		
1 - 11	11,15 *		
111-	14,15 *		

6. Tabulka pokrytí:

sloupce: všechny mintermy (stavové indexy pro zadané "1")

řádky: všechny přímé implikanty

obsah: * označuje které mintermy implikant pokrývá

		1	4	7	8	9	10	11	12	14	15
A	bd						*	*		*	*
В	$\bar{a}d$				*		*		*	*	
С	$\bar{c}d$				*	*	*	*			
D	abc			*							*
E	$\bar{a}\bar{b}c$		*						*		
F	$a\bar{b}\bar{c}$	*				*					
poznámky		1	1	1		X			×		×

6. Tabulka pokrytí: postup

		1	4	7	8	9	10	11	12	14	15
A	bd						*	*		*	*
В	$\bar{a}d$				*		*		*	*	
С	$\bar{c}d$				*	*	*	*			
D	abc			*							*
Е	$\bar{a}\bar{b}c$		*						*		
F	$a\bar{b}\bar{c}$	*				*					
poznámky		\uparrow	1	1		X			×		×

a) hledáme sloupce s jednou * = podstatné implikanty (pokrývají 1, 4, 7)

$$f(a, b, c, d) = a\bar{b}\bar{c} + \bar{a}\bar{b}c + abc + \dots$$

b) v řádcích vyškrtneme již pokryté sloupce (mintermy) ... x

7. Výběr z přímých implikantů

		1	4	7	8	9	10	11	12	14	15
A	bd						*	*		*	*
В	$\bar{a}d$				*		*		*	*	
С	$\bar{c}d$				*	*	*	*			
D	abc			*							*
Е	$\bar{a}\bar{b}c$		*						*		
F	$a\bar{b}\bar{c}$	*				*					
poznámky		1	1	1		X			Х		Х

$$f(a, b, c, d) = a\bar{b}\bar{c} + \bar{a}\bar{b}c + abc + ...,$$

jen překreslení

dominantní sloupec => bude pokrytý při všech výběrech implikantů

Výsledky, tabulka pokrytí

		1	4	7	8	9	10	11	12	14	15
A	bd						*	*		*	*
В	$\bar{a}d$				*		*		*	*	
С	$\bar{c}d$				*	*	*	*			
D	abc			*							*
E	$\bar{a}\bar{b}c$		*						*		
F	$a\bar{b}\bar{c}$	*				*					
poznámky		1	1	1		X			×		×

podstatné implikanty

výběr přímých implikantů

$$f(a, b, c, d) = a\bar{b}\bar{c} + \bar{a}\bar{b}c + abc + bd + \bar{a}d$$

$$f(a, b, c, d) = a\bar{b}\bar{c} + \bar{a}\bar{b}c + abc + bd + \bar{c}d$$

$$f(a, b, c, d) = a\bar{b}\bar{c} + \bar{a}\bar{b}c + abc + \bar{a}d + \bar{c}d$$

$$Mucine values$$

		8	11	14
A	bd		*	*
В	$\bar{a}d$	*		*
С	$\bar{c}d$	*	*	

Musíme vybrat libovolné dva ze tří implikantů bd, \overline{ad} , \overline{cd}

Totéž v mapě

Najděte MNDF funkce:

$$f(a,b,c,d) = \sum_{1} (1, 4, 7, 8, 9, 10, 11, 12, 14, 15)$$

Opět nalezneme všechny přímé implikanty:

Ale může být problém s nalezením optimálního pokrytí

→ lze využít Tabulku pokrytí i zde