Ch3: Arithmetic for Computers

Woong Sul Hanyang University

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Dealing with overflow
- Multiplication and division
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

Overflow if result out of range

- Adding +ve and –ve operands, no overflow
- Adding two +ve operands
 - Overflow if result sign is 1
- Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111

-6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001
```

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register

 - Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

7/25 2/20 3/22 3/2/21 06/2 5/20/3/2 223

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

प्राप्त भारतीय रीय हमाह है।

Multiplication Hardware

• Initialize each register

 $\begin{array}{c} 1000 \\ \times 1001 \\ \hline 1000 \\ 00000 \\ 000000 \\ \hline 1000000 \\ \hline 1001000 \\ \end{array}$

1st Iteration

 $\begin{array}{r}
1000 \\
\times 1001 \\
\hline
1000 \\
00000 \\
000000 \\
1000000 \\
\hline
1001000$

• 2nd Iteration

	1000
×	1001
	1000
	00000
000000	
1000000	
1001000	

• 3rd Iteration

 $\begin{array}{c} 1000 \\ \times 1001 \\ \hline 1000 \\ 00000 \\ \hline 000000 \\ 1000000 \\ \hline 1001000 \\ \end{array}$

4th Iteration

 $\begin{array}{c} 1000 \\ \times 1001 \\ \hline 1000 \\ 00000 \\ 000000 \\ \hline 1000000 \\ 1001000 \\ \end{array}$

Done

 $\begin{array}{r}
1000 \\
\times 1001 \\
\hline
1000 \\
00000 \\
000000 \\
1000000 \\
1001000
\end{array}$

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

• Initialize each register

 $\begin{array}{r}
1000 \\
\times 1001 \\
\hline
1000 \\
00000 \\
000000 \\
1000000 \\
1001000
\end{array}$

1st Iteration

• 2nd Iteration

• 3rd Iteration

 $\begin{array}{c} 1000 \\ \times 1001 \\ \hline 1000 \\ 00000 \\ \hline 000000 \\ 1000000 \\ \hline 1001000 \\ \end{array}$

4th Iteration

Done

Faster Multiplier

Uses multiple adders

Cost/performance tradeoff

032 HWZ Mplier31 • Mcand Mplier30 • Mcand Mplier29 • Mcand Mplier28 • Mcand Mplier3 • Mcand Mplier2 • Mcand Mplier1 • Mcand Mplier0 • Mcand 专知的对 见此 红毛 训包 32 bits 32 bits 32 bits 32 bits m 5 Gter 352 mg 5 Gter 1962 32 bits 32 bits 1 bit 十 1 bit -1 bit 十 1 bit +

32 bits

Product47..16

Can be pipelined

Product63 Product62

Several multiplication performed in parallel

नेजन । भेराजी स्टिम ..

Product1 Product0

22 NB011

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits 6年前4 LO: least-significant 32-bits 24.
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit

Restoring division

- Do the subtract, and if remainder goes< 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield *n*-bit quotient and remainder

Division Hardware

• Initialize each register

 $\begin{array}{r}
1001 \\
1000) 1001010 \\
-1000 \\
0010 \\
-0000 \\
0101 \\
-0000 \\
1010 \\
-1000 \\
10
\end{array}$

1st Iteration

 $\begin{array}{r}
1001 \\
1000)1001010 \\
-1000000 \\
0010 \\
-0000 \\
0101 \\
-0000 \\
1010 \\
-1000 \\
10
\end{array}$

2nd Iteration

 $\begin{array}{r}
1001 \\
1000)1001010 \\
-1000000 \\
0010 \\
-000000 \\
0101 \\
-0000 \\
1010 \\
-1000 \\
10
\end{array}$

3rd Iteration

 $\begin{array}{r}
1001 \\
1000) 1001010 \\
-1000 000 \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-1000 \\
10
\end{array}$

4th Iteration

 $\begin{array}{r}
1001 \\
1000 \overline{\smash)1001010} \\
-\underline{1000000} \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-\underline{1000} \\
10
\end{array}$

Done

 $\begin{array}{r}
1001 \\
1000 \overline{\smash)1001010} \\
-\underline{1000000} \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-\underline{1000} \\
10
\end{array}$

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

• Initialize each register

```
\begin{array}{r}
1001 \\
1000 )1001010 \\
-1000 000 \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-1000 \\
10
\end{array}
```


1st Iteration

```
\begin{array}{r}
1001 \\
1000 ) 1001010 \\
-1000000 \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-1000 \\
10
\end{array}
```


2nd Iteration

 $\begin{array}{r}
1001 \\
1000)1001010 \\
-\underline{1000000} \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-\underline{1000} \\
10
\end{array}$

• 3rd Iteration

$$\begin{array}{r}
1001 \\
1000)1001010 \\
-1000000 \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-1000 \\
10
\end{array}$$

Optimized Divider Example

4th Iteration

```
\begin{array}{r}
1001 \\
1000)1001010 \\
-1000000 \\
0010 \\
-000000 \\
0101 \\
-00000 \\
1010 \\
-1000 \\
10
\end{array}
```


Optimized Divider Example

Done

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

other Adder? & Agoir 7 yets by step on 3 money opens with on 3 m step = 2 32h

MIPS Division

• Use HI/LO registers for result

HI: 32-bit remainder

LO: 32-bit quotient

Instructions

- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking
 - Software must perform checks if required
- Use mfhi, mflo to access result

overflow 박생 3건이 약과서 구특하기 위해

· अभूरा यहन शह

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

• In binary

Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

±1. XX · 2^E

ST CHEIND

7/2% 20178811 0022

single: 8 bits

double: 11 bits

single: 23 bits

double: 52 bits

S Exponent

Fraction

学· ONIAM. 12年730151 学是至时

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$ $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$ Exponent νιεξ τη

/ 0-255 ユ ニュン ママン ママン 登れ ユーロッペン¹²⁶

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- **Exponent: excess representation: actual exponent + Bias**
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203 102}

1823

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value

Exponent: 0000001

$$\Rightarrow$$
 actual exponent = $1 - \frac{127}{\text{piab}} = -126$

- Fraction: $000...00 \Rightarrow \text{significand} = 1.0$

$$-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$$

Largest value

- exponent: 11111110

$$\Rightarrow$$
 actual exponent = 254 $-$ 127 = +127

Fraction: 111...11 ⇒ significand ≈ 2.0

$$-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$$

Exponents 0000...00 and 1111...11 reserved

Smallest value

- Exponent: 0000000001
 - \Rightarrow actual exponent = $1 \frac{1023}{2000} = -\frac{1022}{2000}$
- Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
- $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
 - \Rightarrow actual exponent = 2046 1023 = +1023
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

• Represent $\underline{-0.75} \longrightarrow -0.11$

$$- -0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

$$- S = 1$$

$$-$$
 Fraction = 1000...00₂

$$-$$
 Exponent = -1 + Bias

• Single:
$$-1 + 127 = 126 = 011111110_2$$

• Double:
$$-1 + 1023 = 1022 = 0111111111110_2$$

• Single: 1011111101000...00

Double: 10111111111101000...00

0.11 -> 1.1 × 2-1

7-127=-1

7=126

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- -S = 1(94)
- Fraction = $01000...00_2 = 0.01$
- Exponent = $10000001_2 = 129$

•
$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

 $= (-1) \times 1.25 \times 2^{2}$
 $= -5.0$

$$2^{-2} = \frac{1}{4} = 0.25$$

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$

- normalize
 - →exponent 姓名
 - 一致出出出
 - -) overflow
- 3. Normalize result & check for over/underflow
 - -1.0015×10^{2}
- 4. Round and renormalize if necessary
 - -1.002 × 10^{2}

Floating-Point Addition

Now consider a 4-digit binary example

$$-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$$

- 1. Align binary points
 - Shift number with smaller exponent

$$-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

• 2. Add significands

$$-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3. Normalize result & check for over/underflow
 - $-1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary

$$-1.000_2 \times 2^{-4}$$
 (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - Twc1, Tdc1, swc1, sdc1 [.d=1dc]
 e.g., Tdc1 \$f8, 32(\$sp) 5.d=5dc1

FP Instructions in MIPS

- Single-precision arithmetic
 - add s, sub.s, mul.s, div.s
 e.g., add.s \$f0, \$f1, \$f6
- Postfix ⇒ . S , . d coprocessoral 分号配
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - -c(xx). s, c. xx. d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
    lwc1  $f18, const9($gp)
    div.s  $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s  $f18, $f12, $f18
    mul.s  $f0, $f16, $f18
    jr  $ra
```

FP Example: Array Multiplication

- $\bullet \quad X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and
 i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                   # $t1 = 32 (row size/loop end)
   li $s0, 0
                     # i = 0; initialize 1st for loop
L1: li $s1, 0
                     # i = 0; restart 2nd for loop
L2: li \$s2, 0 # k = 0; restart 3rd for loop
   sll t2, s0, t2 # t2 = i * 32 (size of row of x)
   addu t2, t2, s1 # t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + i
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   l.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

FP Example: Array Multiplication

```
\$11 \$t0, \$s0, 5  # \$t0 = i*32 (size of row of y)
addu $t0, $t0, $s2
                     # $t0 = i*size(row) + k
sll $t0, $t0, 3
                     # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0
                     # $t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16
                    # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1
                   # $k k + 1
bne $s2, $t1, L3
                     # if (k != 32) go to L3
s.d f4, O(t2) # x[i][j] = f4
addiu \$\$1, \$\$1, 1 # \$j = j + 1
bne \$\$1, \$\$1, L2 # if (j != 32) go to L2
addiu $50, $50, 1 # $i = i + 1
bne $s0, $t1, L1
                    # if (i != 32) go to L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

(Older) x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

SSE Instructions

Data transfer	Arithmetic	Compare
MOV{A/U}{SS/PS/SD/	ADD{SS/PS/SD/PD} xmm,mem/xmm	CMP{SS/PS/SD/PD}
PD} xmm, mem/xmm	SUB{SS/PS/SD/PD} xmm,mem/xmm	
MOV {H/L} {PS/PD}	MUL{SS/PS/SD/PD} xmm,mem/xmm	
xmm, mem/xmm	DIV{SS/PS/SD/PD} xmm,mem/xmm	
	SQRT{SS/PS/SD/PD} mem/xmm	
	MAX {SS/PS/SD/PD} mem/xmm	
	MIN{SS/PS/SD/PD} mem/xmm	

Optional variations (in a 128-bit register)

- U/A: 128-bit operand Unaligned/Aligned in memory
- H/L: High/Low half of 128-bit operand
- SS: Scalar Single Precision, PS: Packed Single Precision
- SD: Scalar Double Precision, PD: Packed Double Precision

AVX Instructions

- Similar instructions but using prefix "v"
 - Backward compatibility addpd %xmm0, %xmm4 vaddpd %xmm0, %xmm4

Different addressing modes

Backward compatibility

XMM: 128-bit registers

YMM: 256-bit registers

ZMM: 512-bit registers

Matrix Multiply

• Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for (int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```

Matrix Multiply

C = 1 X B

x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi,%rcx
                        # register %rcx = %rsi
3. xor %eax, %eax
                   # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9,%rcx
                        # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
  element of A
7. add $0x1,%rax
                          register %rax = %rax + 1
8. cmp %eax, %edi
                        # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add $0x1,%r11d  # register %r11 = %r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5/4
 - $11111011_2 >> 2 = 111111110_2 = -2$
 - Rounds toward –∞

- c.f.
$$11111011_2 >>> 2 = 001111110_2 = +62$$

bit shift $| \langle \langle | \rangle |^{-7}$ to $| \langle \langle | \rangle |^{-7}$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
- Finite range and precision
 Need to account for this in programs

72 bit 525602, MELL HW

Concluding Remarks

- ISAs support arithmetic

 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent