Statistical Learning: Project Presentation

G. Dunlavey, W. Ren, A. Taqi

Visualization: Couldabeen Classification

Methods: Modeling

Linear Model: After classifying all retired players, get proportion of "couldbaeen" retirees and call this prop.

- As such, we now have 50 data points (for each year), so we run a linear model fitting Year ~ prop.
- Because there will always be "couldabeens", we do not expect a large effect size and hence a very significant result.
- If our research hypothesis is correct (that there is an effect), we expect to see a positive coefficient for β_{Year} .

Linear Model: Year

Proportion of Couldabeen Retirees

Hypothesis Test: Why Split the Data?

Since the release of Moneyball in 2003 seems to be an important **confounding variable**, we perform a hypothesis test on the postMoneyball classifier of a year Y, defined as follows:

$$\mathsf{postMoneyball}(Y) = \begin{cases} \mathit{True}, \, Y > 2003 \\ \mathit{False}, \, Y \leq 2003 \end{cases}$$

• We fit a model Year ~ postMoneyball and perform LSS.

term	estimate	$\operatorname{std}\operatorname{_error}$	statistic	p_value	lower_ci	upper_ci
intercept	0.161	0.011	15.334	0.000	0.140	0.182
postMoneyball	-0.039	0.019	-2.054	0.045	-0.078	-0.001

Linear Model on Year (Post-Moneyball)

Linear Model on Year

Post-Moneyball era

- $\beta_{Year} = 0.002034$.
- $\beta_{Year} > 0$ supports the hypothesis that there is an increasing rate of couldabeens since the luxury tax.
- β_{Year} is not statistically with a high p-value of 0.398.

Pre-Moneyball era

- $\beta_{Year} = 0.003357$.
- β_{Year} is not statistically significant with a high p-value of p = 0.300.

Simpson's Paradox

- Partitioning and fitting linear model with Year ~ prop yields $\beta_{Year} > 0$ in both partitions.
- However, if we do not make the partition, we find that $\beta_{Year} \approx 0$.
- This is in fact Simpson's Paradox.

Proportion of Couldabeen Retirees

What next?

So far, we have fit some linear models seeing the effect sizes of Year on the response prop. But Year is no mighty predictor...

- We know that we must partition the dataset into pre-Moneyball and post-Moneyball due to the confounding variable.
- From the linear model on the pre-Moneyball era, we find that $\beta_{Year} > 0$, suggesting that it is *certainly possible* that the rule had an effect on the game.
- Nonetheless, p = 0.3 is statistically insignificant...
- Resample, or bring in new data.

A New Approach: Labor Share

Since our couldabeen proportions are sorted by year, we needed year-sorted data. So, we used the Total Revenue and Total Payroll.

$$laborShare(Y) = \frac{totalPayroll(Y)}{totalRevenue(Y)}$$

A New Approach: Labor Share

 Revenues are increasing, but fraction of revenue that goes to payroll has been decreasing...

A New Approach: Labor Share

- In fact, study by [Bradbury] shows labor share is decreasing due to the rule...
- The rule means more veterans are playing, and Sabermetrics means choosing rookies is cheaper.
- What is left is to analyze prop ~ laborShare.

Linear Model: Labor Share

Linear Model: Labor Share

- Alas, we find $\beta_{LabShare} = -0.867$ with a *p*-value of p = 0.084.
- Labor share is indeed negatively correlated to proportion of couldabeens.
- Research paper by [Bradbury] conveys that labor share is indeed diminshing due to the *luxury tax*.

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	0.502	$0.204 \\ 0.464$	2.464	0.028	0.062	0.941
labShare	-0.867		-1.868	0.084	-1.870	0.136

Labor Share: Conclusions

- Luxury Tax ⇒ Declining Labor Shares [Bradbury]
- ullet Declining Labor Shares \Longrightarrow Increasing Couldabeens [Linear Model]
- Luxury Tax ⇒ Increasing Couldabeens [Conclusion]

References

- https://stathead.com/baseball/
- Bradbury, John Charles. "What Explains Labor's Declining Share of Revenue in Major League Baseball?" (2019).
- https://blogs.fangraphs.com/mlbs-evolving-luxury-tax/