TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74HC245AP, TC74HC245AF, TC74HC245AFW TC74HC640AP, TC74HC640AF

OCTAL BUS TRANSCEIVER
TC74HC245AP/AF/AFW 3—STATE, NON—INVERTING
TC74HC640AP/AF 3—STATE, INVERTING

The TC74AC245A, 640A are high speed CMOS OCTAL BUS TRANSCEIVERs fabricated with silicon gate C²MOS technology.

They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

They are intended for two-way asynchronous communication between data busses. The direction of data transmission is determined by the level of the DIR input.

The enable input (\overline{G}) can be used to disable the device so that the busses are effectively isolated.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES:

- High Speed······ $t_{pd} = 10$ ns(typ.) at $V_{CC} = 5$ V
- Low Power Dissipation ············ $I_{CC} = 4\mu A(Max.)$ at Ta = 25°C
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Output Drive Capability 15 LSTTL Loads
- Symmetrical Output Impedance... | I_{OH} | = I_{OL} = 6mA(Min.)
- Balanced Propagation Delays $\cdots t_{pLH} \simeq t_{pHL}$
- Wide Operating Voltage Range···· V_{CC} (opr.) = 2V~6V
- \bullet Pin and Function Compatible with $74 LS\,245\,/\,640$

(Note) The JEDEC SOP (FW) is not available in Japan.

APPLICATION NOTES

1) Do not apply a signal to any bus terminal when it is in the output mode. Damage may result.
2) All floating (high impedance) bus terminals must have their input levels fixed by means of pull up or pull down resistors.

PIN ASSIGNMENT

980508EBA2

■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

IEC LOGIC SYMBOL

TRUTH TABLE

INPUTS		FUNC	TION	OUTPUTS			
G	DIR	A BUS	B BUS	BUS HC245A			
L	L	OUTPUT	INPUT	A = B	$A = \overline{B}$		
L	Н	INPUT	OUTPUT	B = A	$B = \overline{A}$		
Н	Х	High Im	pedance	Z	Z		

X: "H"or"L"

Z: High Impedance

980508EBA2'

The products described in this document are subject to foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	−0.5~7	٧
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	٧
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	I _{IK}	± 20	mA
Output Diode Current	I _{OK}	± 20	mA
DC Output Current	I _{OUT}	±35	mA
DC V _{CC} / Ground Current	I _{cc}	± 75	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP)	mW
Storage Temperature	T _{stg}	−65~150	°C

^{*500}mW in the range of Ta= $-40^{\circ}\text{C}\sim65^{\circ}\text{C}$. From Ta=65°C to 85°C a derating factor of $-10\text{mW}/^{\circ}\text{C}$ shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{CC}	2~6	V
Input Voltage	V _{IN}	0~V _{cc}	V
Output Voltage	V _{OUT}	0~V _{cc}	V
Operating Temperature	T _{opr}	−40~85	°C
Input Rise and Fall Time	t _r , t _f	$0 \sim 1000 (V_{CC} = 2.0V)$ $0 \sim 500 (V_{CC} = 4.5V)$ $0 \sim 400 (V_{CC} = 6.0V)$	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER	CVMPOL	TEST CONDITION		V _{CC} -		Га = 25°C		Ta = −40~85°C		UNIT
PARAIVIETER	SYMBOL			(V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High - Level Input Voltage	V _{IH}				1.50 3.15 4.20	-	=	1.50 3.15 4.20		٧
Low - Level Input Voltage	VIL			2.0 4.5 6.0			0.50 1.35 1.80	=	0.50 1.35 1.80	٧
High - Level Output Voltage	V _{OH}	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -20\mu A$	2.0 4.5 6.0	1.9 4.4 5.9	2.0 4.5 6.0	=	1.9 4.4 5.9	=	V
			$I_{OH} = -6 \text{ mA}$ $I_{OH} = -7.8 \text{ mA}$	4.5 6.0	4.18 5.68	4.31 5.80	=	4.13 5.63	=	
Low - Level Output Voltage	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 20μA	2.0 4.5 6.0		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V
			$I_{OL} = 6 \text{ mA}$ $I_{OL} = 7.8 \text{mA}$	4.5 6.0		0.17 0.18	0.26 0.26	=	0.33 0.33	
3 - State Output Off - State Current	l _{oz}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		6.0	1	_	±0.5	_	± 5.0	
Input Leakage Current	I _{I N}	$V_{IN} = V_{CC}$ or GND		6.0	1	_	± 0.1	_	± 1.0	μ Α
Quiescent Supply Current	I _{cc}	$V_{IN} = V_{CC}$ or GND		6.0	ı	_	4.0	_	40.0	

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6ns$)

	SYMBOL	TEST CONDITION	CL V _{CC}		Ta = 25°C		2	Ta = − 40~85°0		UNIT
PARAMETER			(pF)	(V)	MIN.	TYP.	MAX.	MIN.	MAX.	CIVII
Output Transition Time	t _{TLH} t _{THL}		50	2.0 4.5 6.0		52 7 6	60 12 10	_ 	75 15 13	
Propagation Delay Time	t _{pLH}		50	2.0 4.5 6.0		33 12 10	90 18 15	_ 	115 23 20	
	t _{pHL}		150	2.0 4.5 6.0	_ _ _	48 16 14	120 24 20	_ _ _	150 30 26	
3 -State Output	t_{pZL}		50	2.0 4.5 6.0	_ _ _	48 16 14	150 30 26	_ _ _	190 38 32	ns
Enable time	t _{pZH}	$R_L = 1k\Omega$	150	2.0 4.5 6.0	_ _ _	63 21 18	180 36 31	_ _ _	225 45 38	
3 -State Output Disable time	t _{pLZ} t _{pHZ}	$R_L = 1k\Omega$	50	2.0 4.5 6.0	_ _ _	37 17 15	150 30 26	_ _ _	190 38 32	
Input Capacitance	C _{IN}	DIR,G			_	5	10	_	10	
Bus Input Capacitance	C _{OUT}	An,Bn			_	13	_	_	_] _ [
Power Dissipation	C _{PD} (1)	TC74HC245A			_	39	_	_	_	pF
Capacitance		TC74HC640A	•	·	_	37	_	Ė	_	

Note(1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8$ (per bit)

DIP 20PIN OUTLINE DRAWING (DIP20-P-300-2.54A)

Unit in mm

SOP 20PIN (200mil BODY) OUTLINE DRAWING (SOP20-P-300-1.27)

Unit in mm

SOP 20PIN (300mil BODY) OUTLINE DRAWING (SOL20-P-300-1.27)

Unit in mm

