Bài 1. TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ

A. LÝ THUYẾT CẦN NHỚ

1. Tính đơn điệu của hàm số

 \bigcirc **Định nghĩa:** Cho hàm số y = f(x) xác định trên K (K là khoảng, đoạn hoặc nửa khoảng).

Trên K, đồ thị là một "đường đi lên" khi xét từ trái sang phải.

xuống" khi xét từ trái sang phải.

- \bigcirc Liên hệ giữa đạo hàm và tính đơn điệu: Cho hàm số y=f(x) có đạo hàm trên khoảng (a;b).
 - Nếu $y' \ge 0$, $\forall x \in (a;b)$ và dấu bằng chỉ xảy ra tại hữu hạn điểm thì hàm số y = f(x) đồng biến trên (a;b).
 - Nếu $y' \leq 0$, $\forall x \in (a;b)$ và dấu bằng chỉ xảy ra tại hữu hạn điểm thì hàm số y = f(x) nghịch biến trên (a;b).

2. Cực trị của hàm số

- **Dịnh nghĩa:** Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (a có thể là $-\infty, b$ có thể là $+\infty$) và điểm $x_0 \in (a; b)$.
 - Nếu tồn tại số h > 0 sao cho $f(x) < f(x_0)$ với mọi $x \in (x_0 h; x_0 + h) \subset (a; b)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt cực đại tại x_0 .
 - Nếu tồn tại số h > 0 sao cho $f(x) > f(x_0)$ với mọi $x \in (x_0 h; x_0 + h) \subset (a; b)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt cực tiểu tại x_0 .
- **Định lý:** Giả sử hàm số y = f(x) liên tục trên khoảng (a; b) chứa điểm x_0 và có đạo hàm trên các khoảng $(a; x_0)$ và $(x_0; b)$. Khi đó:
 - Nếu f'(x) < 0 với mọi $x \in (a; x_0)$ và f'(x) > 0 với mọi $x \in (x_0; b)$ thì x_0 là một điểm cực tiểu của hàm số f(x).
 - Nếu f'(x) > 0 với mọi $x \in (a; x_0)$ và f'(x) < 0 với mọi $x \in (x_0; b)$ thì x_0 là một điểm cực đại của hàm số f(x).
- Các tên gọi:

ĐIỂM:

"It's not how much time you have, it's how you use it."

\mathbf{O}		CIZ	NT	\bigcirc	7
W	\mathbf{OI}	$\mathbf{C}\mathbf{K}$	17	\cup	עו

	•		•														•

 $(x_1; y_1)$ là điểm cực đại của đồ thị hàm số;

- x_1 là điểm cực đại của hàm số;
- y₁ là giá trị cực đại của hàm số.

 $(x_2; y_2)$ là điểm cực tiểu của đồ thị hàm số;

- x_2 là điểm cực tiểu của hàm số;
 - y_2 là giá trị cực tiểu của hàm số.

B. PHÂN LOAI VÀ PHƯƠNG PHÁP GIẢI TOÁN

ե Dạng 1. Bài toán tìm khoảng đơn điệu và cực trị của hàm số cho trước

- ① Tìm tập xác định \mathcal{D} của hàm số y = f(x).
- ② Tính đạo hàm f'(x). Tìm các điểm x_i (i = 1, 2, ..., n) thuộc \mathcal{D} mà tại đó đạo hàm bằng 0 hoặc không xác định.
- ③ Sắp xếp các điểm x_i theo thứ tự tăng dần, xét dấu y' và lập bảng biến thiên. Từ đây, nêu các khoảng đồng biến, nghịch biến và các điểm cực trị.

Ghi nhớ cách xét dấu:

igotimes Khi xét dấu <math>f'(x) thì f'(x) sẽ không đổi dấu khi qua nghiệm kép (nghiệm bội chẵn) và đổi dấu khi qua nghiệm đơn (nghiệm bội lẻ).

BÀI TẬP TƯ LUÂN

VÍ DỤ 1. Tìm các khoảng đơn điệu và các điểm cực trị của hàm số sau

a)
$$y = -x^3 + 3x^2 - 4$$
; b) $y = x^3 - 3x^2 + 1$;

b)
$$y = x^3 - 3x^2 + 1$$
;

c)
$$y = x^3 + 3x^2 + 3x + 2$$
;

d)
$$y = -2x^4 + 4x^2$$
;

e)
$$y = x^4 + 4x^3 - 1$$
;

f)
$$y = -16x^4 + x - 1$$
.

VÍ DỤ 2. Tìm các khoảng đơn điệu và cực trị của các hàm số sau:

a)
$$y = \frac{2x+1}{x+1}$$
;

b)
$$y = \frac{3x+1}{x-1}$$
;

b)
$$y = \frac{3x+1}{x-1}$$
; c) $y = \frac{x^2+2x+2}{x+1}$;

d)
$$y = x + \frac{4}{x}$$
;

e)
$$y = \sqrt{x^2 - 2x}$$
;

f)
$$y = x - 3\sqrt[3]{x^2}$$
.

VÍ DỤ 3. Thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T (0°C $\leq T \leq 30$ °C) được tính bởi công thức

$$V(T) = 999,87 - 0,06426T + 0,0085043T^2 - 0,0000679T^3$$

Hỏi thể tích V(T), $0^{\circ}C \leq T \leq 30^{\circ}C$, giảm trong khoảng nhiệt độ nào?

BÀI TẬP TRẮC NGHIỆM

PHÂN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

- $(\mathbf{A})(\sqrt{2};+\infty).$
- (B)(-2;2).
- $(\mathbf{c})(-\infty;0).$
- $(0; \sqrt{2}).$

CÂU 2. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là mệnh đề **sai**?

- (\mathbf{A}) Hàm số đạt cực đại tại x = 0.
- (\mathbf{B}) Hàm số có giá trị cực tiểu bằng -2.
- **C**) Hàm số đồng biến trên $(-\infty; 2)$.
- (\mathbf{D}) Hàm số nghich biến trên (0; 2).

CÂU 3. Hàm số y=f(x) có đồ thị là đường cong trong hình vẽ bên. Hàm số y=f(x) đạt cực tiểu tại điểm nào dưới đây?

- $\mathbf{\hat{A}}x = 2.$
- \mathbf{B} x=0.
- $(\mathbf{C})x = -2.$
- $\mathbf{\hat{D}}x = 4.$

CÂU 4. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Mệnh đề nào sau đây là mệnh đề đúng?

- f A Hàm số đồng biến trên khoảng $(-\infty;3)$.
- (B) Hàm số nghịch biến trên khoảng $(-2; +\infty)$.
- \bigcirc Hàm số đạt cực đại tại x=3.
- $lackbox{\textbf{D}}$ Hàm số đạt cực tiểu tại x=2.

x	$-\infty$	-2		2		$+\infty$
f'(x)	+	0	_	0	+	
f(x)	$-\infty$, ³ \		0		$+\infty$

CÂU 5. Cho hàm số y = f(x) có bảng biến thiên bên dưới

x	$-\infty$	-2	0	2	$+\infty$
f'(x)	+	0 -	-	- 0	+
f(x)	$-\infty$	-4	$+\infty$	4	+∞

Khẳng định nào sau đây là khẳng định sai?

- A Hàm số có hai điểm cực trị.
- $lackbox{\textbf{B}}$ Tọa độ điểm cực đại của đồ thị hàm số là (-2;-4).
- \bigcirc Hàm số nghịch biến trên khoảng (-2;2).
- \bigcirc Hàm số đồng biến trên khoảng $(3; +\infty)$.

CÂU 6. Cho hàm số $y = -\frac{1}{3}x^3 - x - 3$. Mệnh đề nào dưới đây đúng?

- lack A Hàm số đồng biến trên $(-\infty;1)$ và trên $(1;+\infty)$.
- (\mathbf{B}) Hàm số nghịch biến trên \mathbb{R} .

QUICK NOTE	Hàm số đồn (C) Hàm số đồn	g biến trên $(-1;1)$. g biến trên \mathbb{R} .			
	CÂU 7. Gọi x_1 l	à điểm cực đại x_2 là đ	tiểm cực tiểu của h	$ \text{àm số } y = -x^3 + 3x +$	2. Tính
	$x_1 + 2x_2$.				
	A 2.	B 1.	\bigcirc -1.	\bigcirc 0.	
	^				
	_	_	trị của đồ thị hàm	$\hat{\text{so}} \ y = x^3 - 3x^2 + 4 \text{ bar}$	ıg
		B $2\sqrt{2}$.	\bigcirc 2.	\bigcirc 4.	
	CÂU Q Hàm số	$y = x^4 - 2x^2 + 1 \text{ dồng}$	hiến trận khoảng n	ào dưới đây?	
			_	_	
	(A)(-1;0).	\bigcirc $(-1;+\infty).$	(-3;8).	\bigcirc $(-\infty;-1).$	
	CÂU 10. Cho hà	$m \text{ số } u = -\frac{1}{r^4} + \frac{1}{r^2} - \frac{1}{r^4} + \frac{1}{r^2} - \frac{1}{r^4} + \frac{1}{r^4} - \frac$	-3. Khẳng định nào	sau đây là khẳng định đú	mg?
					6.
		cực tiểu tại $x = -3$.	\simeq	at cực tiểu tại $x = 0$.	
	(C) Hàm số đạt	cực đại tại $x = 0$.	(D)Hàm số đ	ạt cực tiểu tại $x = -1$.	
		3x-1	1 42 > 1 22 40 3	N #4 0	
	CAU 11. Cho ha	um số $y = \frac{3x - 1}{x - 2}$. Mện	nh de nao dươi day l	a dung!	
	A Hàm số ngh	ịch biến trên \mathbb{R} .			
	B Hàm số đồn	g biến trên các khoảng	$g(-\infty;2)$ và $(2;+\infty)$	o).	
	C Hàm số ngh	ịch biến trên các khoả	$ng(-\infty; 2) và(2; +$	∞).	
	Hàm số đồn	g biến trên $\mathbb{R} \setminus \{2\}$.			
		r = 2			
	CÂU 12. Cho hà	um số $y = \frac{x-2}{x+3}$. Mệnh	n đề nào dưới đây đ	úng?	
		ịch biến trên khoảng (
	1 ~	g biến trên khoảng (–			
		ịch biến trên khoảng (
		g biến trên khoảng (–			
			, , , , , , ,		
	CÂU 13. Gọi $y_{\rm C}$	$g_{ m D},y_{ m CT}$ lần lượt là giá	á trị cực đại và giá	trị cực tiểu của hàm	$s\hat{o} y =$
	$\frac{x^2+3x+3}{x+2}$. Giá	tri của biểu thức y_{CD}^2	$-2y_{\mathrm{CT}}^2$ bằng		
				\bigcirc c	
	(A) 8.	B)7.	© 9.	D 6.	
	CÂU 14. Tìm đi	ểm cực tiểu của hàm s	$\hat{0} f(x) = (x-3)e^x.$		
		_	$\mathbf{C}x = 2.$	$(\mathbf{D})x = 1.$	
	u=0.	$\mathbf{L} = 0$.	$\mathbf{U} = \mathbf{Z}$.	u = 1.	
	CÂU 15. Cho hà	$am s\hat{o} y = x^2 + 4\ln(3 - $	x). Tìm giá trị cực	đai y_{CD} của hàm số đã c	ho.
			$\bigcirc y_{\mathrm{CD}} = 1 +$		
		O 002		O 0 0 2	
			nh trên $\mathbb R$ và có đạ	o hàm $y' = f'(x) = 3x^3$	$-3x^{2}$.
	Mệnh đề nào sau	đây sai ?			
		g $(1;+\infty)$ hàm số đồng			
		g(-1;1) hàm số nghịc			
		số có hai điểm cực trị.			
	(D)Đổ thị hàm	số có một điểm cực tiế	êu.		
	CÂU 17. Cho hà	om số $y = f(x)$ liên tực	c trên ℝ và có đạo	$ham f'(x) = x(x-1)^2(x-1)^2$	$r = 2)^3$
		That ham số $y = f(x)$ han tực ham số $y = f(x)$ là	c cron m va co dáo	$\lim_{n \to \infty} \int_{\mathbb{R}^n} \left(u_n - u_n(u_n - 1) \right) \left(u_n - u_n(u_n - 1) \right) \left(u_n - u_n(u_n - 1) \right) \left(u_n - u_n(u_n - 1) \right)$, <u>2</u>).
	A 1.	B 2.	© 0.	D 3.	
		_	~	_	

CÂU 18. Cho hàm số bậc bốn y = f(x). Biết f'(x) có đồ thị như hình bên. Khẳng định nào sau đây là khẳng định đúng?

- **B** Hàm số f(x) nghịch biến trên khoảng (-1;1).
- **C** Hàm số f(x) có đúng một điểm cực tiểu.
- $lackbox{\textbf{D}}$ Hàm số f(x) có đúng một điểm cực đại.

CÂU 19. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} . Biết rằng hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Khi đó nhận xét nào sau đây đúng?

- (\mathbf{A}) Hàm số f(x) không có cực trị.
- (\mathbf{B}) Đồ thị hàm số f(x) có đúng 2 điểm cực tiểu.
- (\mathbf{C}) Đồ thị hàm số f(x) có đúng một cực đại.
- (\mathbf{D}) Hàm số f(x) có 3 cực trị.

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 20. Cho hàm số y = f(x) liên tục trên $\mathbb R$ và có bảng xét dấu đạo hàm như hình bên.

x	$-\infty$		0		1		2		$+\infty$
y'		+	0	_		+	0	+	

Mệnh đề	Ð	S
a) Hàm số đồng biến trên khoảng $(-\infty;1)$.		
b) Hàm số đồng biến trên khoảng $(1; +\infty)$.		
c) Hàm số đạt cực đại tại $x=2$.		
d) Hàm số có một điểm cực đại và hai điểm cực tiểu.		

CÂU 21. Cho hàm số $y=x^3-3x^2+4$ có đồ thị (C). Gọi $A,\,B$ là hai điểm cực trị của (C).

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		
b) Hàm số đồng biến trên khoảng $(0;2)$.		
c) Phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số là $2x + y - 4 = 0$.		
d) Diện tích của tam giác OAB bằng 4, với O là gốc tọa độ.		

CÂU 22. Cho hàm số $y = \frac{x^2 + 2x + 2}{x + 1}$ có đồ thị (C). Gọi A, B lần lượt là điểm cực tiểu và điểm cực đại của (C).

Mệnh đề	Đ	\mathbf{S}
a) Tập xác định của hàm số là \mathbb{R} .		

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•						•	•	•	•	•		•	•	•	•	•						•		
•	•	•	•											•	•	•	•	•												•		

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•			•	•	

	•	•	•						•	•	•	•	•	•						•
•																				
•																				•

QUICK NOTE	OUIOV NOTE
	QUICK NOTE

b) Hàm số nghịch biến trên khoảng $(-2;0)$.	
c) Tọa độ điểm $A(-2;-2)$, $B(0;2)$.	
d) Khoảng cách giữa hai điểm cực trị là $AB = 2\sqrt{5}$.	

CÂU 23. Xét một chất điểm chuyển động dọc theo trục Ox. Toạ độ của chất điểm tại thời điểm t được xác định bởi hàm số $x(t) = t^3 - 6t^2 + 9t$ với $t \ge 0$. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).

Mệnh đề	Ð	S
a) Phương trình hàm vận tốc là $v(t) = 3t^2 - 6t + 9$.		
b) Phương trình hàm gia tốc là $a(t) = 6t - 12$.		
c) Vận tốc của chất điểm tăng khi $t \in (0;1)$ hoặc $t \in (3;+\infty)$.		
d) Vận tốc của chất điểm giảm khi $t \in (1;3)$.		

Dạng 2. Bài toán tìm m để hàm số đồng biến (nghịch biến) trên khoảng cho trước

- \clubsuit Xét hàm số bậc ba $y = ax^3 + bx^2 + cx + d$ có $y' = 3ax^2 + 2bx + c$.
 - ① Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

$$y' \ge 0, \, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta_{y'} \le 0 \end{cases}.$$

 $\ \, \ \, \ \, \ \,$ Hàm số nghịch biến trên $\mathbb R$ khi và chỉ khi

$$y' \le 0, \, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta_{y'} \le 0 \end{cases}$$

Trường hợp hệ số a có chứa tham số, ta kiểm tra thêm trường hợp a = 0.

- Xét hàm phân thức $y = \frac{ax+b}{cx+d}$ có $y' = \frac{ad-cb}{(cx+d)^2}$, với $ad-cb \neq 0$ và $c \neq 0$.
 - ① Hàm số đồng biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' > 0, \forall x \neq -\frac{d}{c} \Leftrightarrow ad - cb > 0.$$

2 Hàm số nghịch biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' < 0, \forall x \neq -\frac{d}{c} \Leftrightarrow ad - cb < 0.$$

- Xét hàm phân thức $y=\dfrac{ax^2+bx+c}{dx+e}$ có $y'=\dfrac{adx^2+2aex+be-dc}{(dx+e)^2},$ với $ad\neq 0.$
 - ① Hàm số đồng biến trên tùng khoảng xác định của nó khi và chỉ khi

$$y' \ge 0, \ \forall x \ne -\frac{e}{d} \Leftrightarrow adx^2 + 2aex + be - dc \ge 0, \ \forall x \ne -\frac{e}{d}.$$

2 Hàm số nghịch biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' \leq 0, \, \forall x \neq -\frac{e}{d} \Leftrightarrow adx^2 + 2aex + be - dc \leq 0, \, \forall x \neq -\frac{e}{d}.$$

BÀI TẬP TỰ LUẬN

VÍ DU 1. Tìm tất cả giá trị của tham số m để hàm số

- a) $y = x^3 + mx^2 + 2mx + 2$ đồng biến trên $(-\infty; +\infty)$.
- b) $y = -\frac{1}{3}x^3 mx^2 + (2m 3)x m + 2$ nghịch biến trên \mathbb{R} .
- c) $y = \frac{1}{3}x^3 mx^2 (2m+1)x + 1$ nghịch biến trên khoảng (0; 5).
- d) $y = x^3 3x^2 + (5 m)x$ đồng biến trên khoảng $(2; +\infty)$.

VÍ DU 2. Tìm tất cả giá tri của tham số m để hàm số

- a) $y = \frac{mx+2}{x+1}$ đồng biến trên từng khoảng xác định.
- b) $y = \frac{mx-2}{x+m-3}$ nghịch biến trên các khoảng xác định
- c) $y = \frac{mx 8}{x 2m}$ đồng biến trên $(3; +\infty)$.
- d) $y = \frac{mx+9}{4r+m}$ nghịch biến trên khoảng (0;4).

VÍ DU 3. Tìm tất cả giá trị của tham số m để hàm số

- a) $y = \frac{2x^2 + 3x + m + 1}{x + 1}$ đồng biến trên các khoảng xác định.
- b) $y = \frac{x^2 + (m+1)x 1}{2-x}$ (m là tham số) nghịch biến trên mỗi khoảng xác định.

BÀI TẬP TRẮC NGHIỆM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Học sinh trả lời từ câu 1 đến câu 17. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Tất cả giá trị của m để hàm số $y = \frac{x+m}{x-2}$ nghịch biến trên từng khoảng xác định

- (A)m > -2.
- **B**)m < -2.
- $(\mathbf{C})m \le -2.$ $(\mathbf{D})m \ge -2.$

CÂU 2. Cho hàm số $y=\frac{mx-2}{x+1-m}$. Tìm tất cả giá trị của tham số m để hàm số đồng

CÂU 3. Cho hàm số $y = \frac{x+m}{x+2}$. Tập hợp tất cả các giá trị của m để hàm số đồng biến trên khoảng $(0; +\infty)$ là

- $(\mathbf{A})[2;+\infty).$
- $(\mathbf{B})(2;+\infty).$
- $(\mathbf{C})(-\infty;2].$

CÂU 4. Cho hàm số $f(x) = \frac{mx-4}{x-m}$ (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên khoảng $(0; +\infty)$?

- **(A)** 5.

CÂU 5. Tìm tất cả các giá trị của m để hàm số $y=\frac{mx+4}{x+m}$ nghịch biến trên $(-\infty;1)$.

- (A) -2 < m < 2.
- **B** -2 < m < -1. **C** $-2 \le m < -1$. **D** $-2 < m \le -1$.

CÂU 6. Số giá trị nguyên của tham số m để hàm số $y=\frac{mx+10}{2x+m}$ nghịch biến trên khoảng (0; 2) là

- (A) 6.

CÂU 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^3 - 2mx^2 + (m^2 + 3)x$ đồng biến trên \mathbb{R} ?

- (A)8.
- $(\mathbf{B})6.$
- $(\mathbf{C})_{7.}$
- $(\mathbf{D})_0.$

Ŷ	١	/	Ν	F	r	Υ	10	ב	tl	h		-	C) (20	6	2	9)_	1(C	8	1	ς)	(7			
						(•	1	Į	J	(Ē	}	K	•		١	ļ	•)	Ų	į							Į	
										•	•	•														•				
										•	•	•														•				

CÂU 8. Cho hàm số $y = -x^3 - mx^2 + (4m+9)x + 5$. Có bao nhiều giá trị nguyên của m để hàm số nghich biến trên \mathbb{R} ?

(**A**)7.

 $(\mathbf{C})_{5.}$

 $(\mathbf{D})6.$

CÂU 9. Cho hàm số $y = (m-1)x^3 + (m-1)x^2 - 2x + 5$ với m là tham số. Có bao nhiêu giá tri nguyên của m để hàm số nghich biến trên khoảng $(-\infty; +\infty)$?

(**A**)5.

CÂU 10. Tìm tất cả các giá trị thực của tham số m để hàm số $y=x^3-3mx^2-9m^2x$ nghịch biến trên khoảng (0; 1).

 $-1 < m < \frac{1}{3}$

(B)m < -1.

 $\bigcirc m > \frac{1}{2}.$

 $\bigcirc m \geq \frac{1}{3}$ hoặc $m \leq -1$.

CÂU 11. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-2019; 2020) để hàm $\text{số } y = 2x^3 - 3(2m+1)x^2 + 6m(m+1)x + 2019$ đồng biến trên khoảng $(2; +\infty)$?

 $(\mathbf{C})2021.$

CÂU 12. Tập hợp các giá trị thực của tham số m để hàm số $y = -x^3 - 6x^2 + (4m - 9)x + 4$ nghịch biến trên khoảng $(-\infty; -1)$ là

 $\left(\mathbf{B}\right)\left[-\frac{3}{4};+\infty\right).$

 $\mathbf{C}\left(-\infty; -\frac{3}{4}\right].$ $\mathbf{D}[0; +\infty).$

CÂU 13. Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = x^3 - 6x^2 + mx + 1$ đồng biến trên khoảng $(0; +\infty)$.

 $(A)m \le 12.$

 $(\mathbf{C})m < 0.$

CÂU 14. Tìm tất cả các giá trị m để hàm số $y = \frac{x^2 - 8x}{x + m}$ đồng biến trên mỗi khoảng xác đinh.

(A)(-8;0).

B)(0; 8).

 $(\mathbf{C})[0;8].$

 $(\mathbf{D})[-8;0].$

CÂU 15. Tập hợp các giá trị thực của tham số m để hàm số $y = x + 1 + \frac{m}{x-2}$ đồng biến trên mỗi khoảng xác định của nó là

 $(\mathbf{A})(-\infty;0).$

 $(\mathbf{B})[0;1).$

 $(\mathbf{C})[0;+\infty)\setminus\{1\}.$

CÂU 16. Tìm tất cả các giá trị thực của tham số m để hàm số $f(x) = 2^{x^3 - x^2 + mx + 1}$ đồng biến trên khoảng (1;2).

 $(A)m \le -8.$

(B)m > -8.

(C) $m \ge -1$.

CÂU 17. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số $f(x) = (x+1) \ln x +$ (2-m)x đồng biến trên khoảng $(0;e^2)$?

 $(\mathbf{A})0.$

(B)3.

 $(\mathbf{C})_{5}.$

(**D**)4.

PHÂN II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 18 đến câu 20. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 18. Cho hàm số $y = mx^3 + mx^2 - (m+1)x + 1$, với m là tham số.

Mệnh đề	Ð	S
a) Hàm số là hàm số bậc ba khi $m \neq 0$.		
b) Tập xác định của hàm số là \mathbb{R} .		
c) Hàm số đồng biến trên $\mathbb R$ khi và chỉ khi $m < -\frac{3}{4}$ hoặc $m \ge 0$.		
d) Hàm số nghịch biến trên $\mathbb R$ khi và chỉ khi $-\frac{3}{4} \le m < 0$.		

CÂU 19. Cho hàm số $y = \frac{1}{2}x^3 + (m+1)x^2 + (m^2 + 2m)x - 3$, với m là tham số.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		

- b) Phương trình y'=0 có hai nghiệm phân biệt $x_1=-m$ và $x_2=-m-2$.
- c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R} .
- d) Hàm số nghịch biến trên khoảng (-1,1) khi và chỉ khi $m \ge -1$.

CÂU 20. Cho hàm số $y = \frac{x+5}{x+m}$, với m là tham số.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		
b) Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi $m \geq 5$.		
c) Hàm số nghịch biến trên từng khoảng xác định khi và chỉ khi $m < 5$.		
d) Hàm số đồng biến trên khoảng $(-\infty; -8)$ khi và chỉ khi $(5; 8)$.		

🖶 Dạng 3. Bài toán tìm m để hàm số có cực trị hoặc đạt cực trị tại điểm cho trước

- & Tìm m để hàm số y = f(x) đạt cực trị tại điểm x_0 cho trước (f(x)) có đạo hàm
 - ① Giải điều kiện $y'(x_0) = 0$, tìm m.
 - $\ 2$ Lập bảng biến thiên với m vừa tìm được và chọn giá trị m nào thỏa yêu cầu.
- \clubsuit Biện luận cực trị hàm số $y = ax^3 + bx^2 + cx + d$. Tính $y' = 3ax^2 + 2bx + c$ với $\Delta_{y'} = b^2 - 3ac$
 - ① $\begin{cases} \Delta_{y'} > 0 \\ a \neq 0 \end{cases}$: Hàm số có hai điểm cực trị
 - ② $\Delta_{y'} \leq 0$ hoặc suy biến $\begin{cases} a=0 \\ b=0 \end{cases}$: Hàm số không có cực trị.
 - \bigcirc Gọi x_1, x_2 là hai nghiệm phân biệt của y' = 0 thì $x_1 + x_2 = -\frac{2b}{3a}$ và $x_1 \cdot x_2 = \frac{c}{3a}.$
 - $x_1^2 + x_2^2 = (x_1 + x_2)^2 2x_1x_2$
 - $(x_1 x_2)^2 = (x_1 + x_2)^2 4x_1x_2$
 - $x_1^3 + x_2^3 = (x_1 + x_2)^3 3x_1x_2(x_1 + x_2)$.
 - Các công thức tính toán thường gặp:
 - Độ dài $MN = \sqrt{(x_N x_M)^2 + (y_N y_M)^2}$
 - Khoảng cách từ M đến Δ : $d(M, \Delta) = \frac{|Ax_M + By_M + C|}{\sqrt{A^2 + B^2}}$, với Δ : $Ax + By_M + C$ By + C = 0.
 - Tam giác ABC vuông tại $A \Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow \operatorname{hoành} \cdot \operatorname{hoành} + \operatorname{tung} \cdot$
 - Diện tích tam giác ABC là $S=\frac{1}{2}|a_1b_2-a_2b_1|$, với $\overrightarrow{AB}=(a_1;b_1)$,
 - Phương trình đường thẳng qua hai điểm cực trị là $y = -\frac{2}{9a}(b^2 3ac)x + d \frac{bc}{9a}$.

BÀI TẬP TỰ LUẬN

VÍ DU 1. Tìm m để hàm số

- a) $y = \frac{x^3}{3} mx^2 + (m^2 m + 1)x + 1$ đạt cực tiểu tại x = 3.
- b) $y = x^3 3mx^2 + 3(m^2 1)x$ đạt cực đại tại $x_0 = 1$.

QUICK NOTE	VÍ DỤ 2. Tìm tất c	a giá trị của tham	số m để hàm số (đồ	thị hàm số)	
	_	-2mx + m + 2024 c			
	b) $y = \frac{1}{-x^3} - mx^2$	$x^2 + (m+2)x + 201$	9 không có cực tri.		
				, x_2 thỏa mãn $x_1 + x_2 + 2x$	·1 r 0 =
	-8.	1)2 121102 2010 ($\frac{1}{2}$ of the first $\frac{1}{2}$ $\frac{1}{2}$	1.02
	d) $y = -x^3 - 3ms$	$x^2 + m - 2$ với m là	à tham số có hai điển	m cực trị A, B sao cho AB	3 = 2
		BÅI T	ẬP TRẮC NGHIỆM		
	PHẦN I. Câu ti	rắc nghiệm nhiều	ı nhương án lưa (chọn. Mỗi câu hỏi học	· sinh
	chỉ chọn một phư		. phaoing an iga v	mem mer caa nor nee	. 3
	CÂU 1 Tìm tất cả	giá trị gủa tham sấ	m đổ hòm số u – 1	$x^3 + (m+1)x^2 + (1-3m)$) m + 9
	có cực đại và cực tiể		m de nam so $y=\frac{1}{3}$	x + (m+1)x + (1-3m))x + 2
			> 0. (c) $-5 < m <$	$0. \qquad \mathbf{D} - 5 \le m \le 0.$	
	CÂU 2. Tìm tất cả	các giá trị của tha	m số m để hàm số y	$y = -x^3 - 3x^2 + mx + 2 \ dx$	có cực
	đại và cực tiểu. $\mathbf{A} m > -3$.	$\bigcirc m > 2$	$\bigcirc m \geq -3.$	\bigcirc $m \times 2$	
		_	_		á
	để hàm số không có	$0 \ y = x^3 - 3(m+1)$ cực trị là	$)x^{2} + 3(1m - 3)x$. So	ố giá trị nguyên của tham	so m
	A 2.	B 1.	© 4.	D 3.	
				oi S là tập hợp tất cả các \S	giá tr
	nguyên của tham số A 2.	m de nam so knon $(\mathbf{B})4$.	\mathbf{C} 0.	T tư của S la (D) Vô số.	
			1	x_1, x_2 thỏa mãn x_1 \dashv	l m - 1
	$2x_1x_2 = 0$. Giá trị củ	0	$\frac{-mx}{3}$ co hai diem cu	ic tri x_1, x_2 thoa man $x_1 \dashv$	$\vdash x_2 +$
	1		$\bigcirc m = 3.$	$\bigcirc m=2.$	
				rị của tham số m để hàm	số có
	hai cực tri x_1, x_2 thỏ	$\sin x_1^2 + x_2^2 = 3.$. 50 00
			$\bigcirc m = 1.$		
				$ \text{am so } y = x^3 - 12x + m - 12x$	+ 2 cć
	hai cực trị và hai điể $(\mathbf{A})m = -2$.	_		anh? $(\mathbf{D})m \neq 1.$	
				<u> </u>	aá hai
	điểm cực trị nằm ở l			$3 + mx^2 - (m^2 - 4)x + 1$	со на
	$ (-\infty; 2). $	$\blacksquare \mathbb{R} \setminus [-2; 2].$	\bigcirc (-2; 2).	\bigcirc $(2;+\infty).$	
		$\hat{b} y = x^3 + 3mx^2 + 3mx^2$	$3(m^2 - 1)x + m^3$. Tì	m m để hàm số đạt cực ti	iểu tạ
	$\begin{array}{c} \text{di\'{e}m } x = 0. \\ $	$\bigcirc m = 1.$	$\mathbf{C}m=0.$	$(\mathbf{D})m=2.$	
	CÂU 10. Hàm số y	_	9	<u> </u>	
	$\bigcirc m = 3.$			$\mathbf{D}m = -1.$	
	CÂU 11. Tìm giá t	rị thực của tham số	$\hat{b} m d\hat{e} h am s \hat{b} y = \frac{1}{2}$	$\frac{1}{3}x^3 - mx^2 + (m^2 - 4)x +$	3 đạt
	$\cot \cot x = 3.$,	,	
		0	$\bigcirc m = -7.$		
	CÂU 12. Đồ thị hà Khi đó $a + b$ bằng	m s	$+2ax+b$ (với $a,b\in$	$\in \mathbb{R}$) có điểm cực tiểu $A(2)$	(2; -2)
		B 4.	© 2.	\bigcirc -2 .	

CÂU 13. Gọi m_1, m_2 là các giá trị của tham số m để đồ thị hàm số $y = 2x^3 - 3x^2 + m - 1$ có hai điểm cực trị B, C sao cho tam giác OBC có diện tích bằng 2, với O là gốc tọa độ. Tích $m_1 \cdot m_2$ bằng

(A) 12.

 $(\mathbf{B})_6$

 (\mathbf{c}) -15.

(D) - 20

CÂU 14. Cho hàm số $y=x^3-3mx^2+3m^3$. Biết rằng có hai giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A,B và tam giác OAB có diện tích bằng 48. Khi đó tổng các giá trị của m là

 \mathbf{A} 0.

B)2.

 \mathbf{C}) $\sqrt{2}$.

 (\mathbf{D}) -2.

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 15. Cho hàm số $y = \frac{m}{3}x^3 + 2x^2 + mx + 1$, với m là tham số.

Mệnh đề	Ð	S
a) Hàm số có hai điểm cực trị khi $-2 < m < 2$.		
b) Hàm số có đúng một điểm cực trị khi $m=0$ hoặc $m=2$.		
c) Hàm số không có cực trị khi $m \le -2$ hoặc $m \ge 2$.		
d) Hàm số có 2 điểm cực trị thỏa mãn $x_{\mathrm{CD}} < x_{CT}$ khi $0 < m < 2$.		

CÂU 16. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x - m^3$ với m là tham số.

Mệnh đề	Ð	S
a) Hàm số luôn có hai điểm cực trị với mọi m .		
b) Hàm số đạt cực tiểu tại $x=3$ khi $m=2$.		
c) Khi đồ thị hàm số có hai điểm cực trị thì khoảng cách giữa hai điểm cực trị bằng $2\sqrt{5}$.		
d) Điểm cực tiểu của đồ thị hàm số luôn thuộc đường thẳng cố định với hệ số góc $k=-3$.		

CÂU 17. Cho hàm số $y = \frac{x^2 - 2mx + m + 2}{x - m}$, với m là tham số.

Mệnh đề	Đ	S
a) Tập xác định của hàm số là $\mathbb{R}\setminus\{m\}$.		
b) Có hai giá trị nguyên của tham số m để hàm số có hai điểm cực trị.		
c) Hàm số đạt cực đại tại $x = -1$ khi $m = \frac{1}{2}$.		
d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng qua hai điểm cực trị của đồ thị có phương trình là $y = 2x - 2m$.		

🖶 Dạng 4. Đơn điệu hàm hợp, hàm chứa dấu giá trị tuyệt đối

 Θ Hàm y = f(u).

- Bước 1: Tính đạo hàm $y' = u' \cdot f'(u)$.
- **Bước 2:** Lập bảng xét dấu của y'.
- **Bước 3:** Kết luận.

 Θ Hàm y = f(u) + g(x).

- Bước 1: Tính đạo hàm y' = u'f'(u) + g'(x).
- **Bước 2:** Lập bảng xét dấu của y' (dựa vào tương giao giữa hai đồ thị).
- **Bước 3:** Kết luận.
- Θ Hàm y = |f(x)|.

GV.	VU	NGO	C PH	ΑT

	•	01/			
ဩ၊		CK	N	\mathbf{O}	н

м	IICV	NOT			
			-		
				- 1	

- **Bước 1:** Lập bảng biến thiên hàm y = f(x)
- Bước 2: Lập bảng biến thiên hàm y = |f(x)| từ hàm y = f(x) bằng cách lấy đối xứng phần dưới trục Ox qua trục Ox.
- Bước 3: Kết luân.

VÍ DỤ 1. Cho hàm số y = f(x) liên tục trên \mathbb{R} có bảng xét dấu như hình vẽ

x	$-\infty$		-1		0		1		$+\infty$
f'		_	0	+	0	_	0	+	

Tìm các khoảng đơn điệu của hàm số sau

a)
$$y = f(4+3x)$$
.

b)
$$y = f(5-2x) + 3$$
.

c)
$$y = f(2x^2 - x)$$
.

VÍ DU 2.

Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ. Tìm các khoảng đơn điệu của hàm số sau

a)
$$y = f(x) + x$$
.

b)
$$y = f(2x+1) + 4x - 3$$
.

c)
$$y = f(x) - x^2$$
.

d)
$$y = f(2x+1)-2x^2+6x+1$$

VÌ DỤ 3. Cho hàm số y = f(x) liên tục trên \mathbb{R} có đồ thị hàm y = f'(x) như hình vẽ.

- a) Tìm các khoảng nghịch biến của hàm số $g(x) = |f(-x^4 + 2x^3 x^2 + 1)|$, biết f(3) < 0.
- b) Tìm các khoảng đồng biến của hàm số $h(x) = |3f(x) x^3|$, biết f(0) = 0.
- c) Tìm m để hàm số $y = |3f(x) x^3 + m|$ nghịch biến trên (0, 2), biết f(2) = 1.
- d) Tìm a để hàm số $y=|4f(\sin x)+\cos 2x-a|$ nghịch biến trên $\left(0;\frac{\pi}{2}\right)$, biết f(1)=1.

BÀI TẬP TRẮC NGHIỆM

 $\hat{\mathbf{CAU}}$ 1. Cho hàm số có đạo hàm liên tục trên \mathbb{R} , dấu của đạo hàm được cho bởi bảng dưới đây:

x	$-\infty$		0		2		$+\infty$
f'(x)		+	0	_	0	+	

Hàm số g(x) = f(2x - 2) nghịch biến trong khoảng nào dưới đây?

$$(A)(-1;1).$$

$$(\mathbf{B})(2;+\infty).$$

$$(\mathbf{C})(1;2).$$

$$(\mathbf{D})(-\infty;-1).$$

CÂU 2. Cho hàm số f(x) có bảng xét dấu đạo hàm như hình bên dưới

x	$-\infty$		-1		6		$+\infty$
y'		+	0	_	0	+	

Hàm số y = f(2 - x) đồng biến trên khoảng

- (A)(-3;4).
- (B)(-1;6).
- $(\mathbf{C})(-4;3).$
- $(\mathbf{D})(3;+\infty).$

CÂU 3. Cho hàm số f(x) có bảng xét dấu đạo hàm như hình bên dưới

x	$-\infty$		1		5		$+\infty$
y'		_	0	+	0	_	

Hàm số y = f(1-2x) + 3 nghịch biến trên khoảng

- (A)(1;3).
- $(\mathbf{B})(-2;0).$
- $(\mathbf{C})(-\infty;1).$
- $(\mathbf{D})(5;+\infty).$

CÂU 4. Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Hàm số y = f(2-x) đồng biến trên khoảng nào dưới đây?

- (A)(1;3).
- **(B)** $(2; +\infty)$.
- $(\mathbf{C})(-2;1).$
- $(\mathbf{D})(3;+\infty).$

CÂU 5. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết đồ thị hàm số y = f'(x) chỉ cắt trực hoành tại 3 điểm như hình bên. Hàm số y = f(2x + 5) + 1 đồng biến trên khoảng

- (A)(-3;-2).
- (B)(-2;-1).
- $(\mathbf{C})(-1;1).$

CÂU 6. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết đồ thị hàm số y = f'(x) chỉ cắt trực hoành tại 3 điểm như hình bên dưới. Hàm số y = f(1-3x) - 4 nghịch biến trên khoảng

- $lackbox{\textbf{B}}\left(\frac{1}{3};\frac{2}{3}\right).$
- $(\mathbf{C})(0;2).$
- $(\mathbf{D})(-\infty;0).$

CÂU 7.

Cho hàm số f(x). Hàm số f'(x) có đồ thị bên. Hàm số $y = f(1-2x) + x^2 - x$ nghịch biến trên khoảng nào dưới đây?

CÂU 8.

Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(3x + 5) như hình vẽ. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

- $\left(-\frac{7}{3}; +\infty \right)$.
- \bigcirc $\left(\frac{4}{3}; +\infty\right)$.

CÂU 9. Cho đồ thị hàm số $y = f'(2 - x^3)$ như hình vẽ. Hàm số y = f(x) - x - 1 nghịch biến trong

- khoảng nào dưới đây? (A)(1;2).
- **(B)** $(2; +\infty)$.
- $(\mathbf{C})(-\infty;1).$
- $(\mathbf{D})(-4;-1).$

					-					Ī			-	-	-	-		

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

al.	$\boldsymbol{\nu}$	N	\frown	П	1

CÂU 10.

Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) là một parabol được cho như hình vẽ bên dưới. Hàm số $g(x) = f(2x^4 - 1)$ đồng biến trên khoảng nào dưới đây?

B
$$(-\sqrt[4]{2};0).$$

$$(0; \sqrt[4]{2}).$$

$$(\mathbf{D})(-\sqrt[4]{2};\sqrt[4]{2}).$$

CÂU 11. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới.

x	$-\infty$		-1		1		4		$+\infty$
f'(x)		_	0	+	0	_	0	+	

Hàm số $g(x) = f(x^2 + 1)$ nghịch biến trên khoảng nào dưới đây?

$$(\mathbf{A})(-\infty;0).$$

$$(\mathbf{B})(0;+\infty).$$

$$(\mathbf{C})(0;\sqrt{3}).$$

$$\bigcirc (\sqrt{3}; +\infty).$$

CÂU 12. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới. Hàm số $y = 3f(x+2) - x^3 + 3x$ đồng biến trên khoảng nào dưới đây?

x	$-\infty$		1		2		3		4		$+\infty$
f'(x)		_	0	+	0	+	0	_	0	+	

$$(\mathbf{A})(1;+\infty).$$

$$(-\infty;-1)$$
.

$$(\mathbf{C})(-1;0).$$

$$\bigcirc$$
 (0; 2).

CÂU 13. Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như hình bên dưới. Hàm số $y=f\left(x^{2}\right)+\frac{x^{4}}{2}+\frac{2x^{3}}{3}-6x^{2}$ đồng biến trên khoảng nào dưới đây?

x	$-\infty$		1		4		$+\infty$
f'(x)		+	0	_	0	+	

$$(-2;-1).$$

$$(\mathbf{B})(1;2).$$

$$\bigcirc$$
 $(-4; -3).$

$$(-6; -5).$$

CÂU 14.

Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình bên dưới. Khi đó hàm số $y = 2f(x) + x^2$ đồng biến trên khoảng

$$(\mathbf{C})(-3;1).$$

$$(\mathbf{D})(1;+\infty).$$

CÂU 15.

Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x)như hình bên dưới. Khi đó hàm số $y = 3f(x) - x^3$ đồng biến trên khoảng

B(-2;2). **C**(1;2).

CÂU 16. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới. Tìm tất cả các giá trị của tham số m để hàm số $y = f(\sin 2x - m)$ nghịch biến trên khoảng $\left(\frac{3\pi}{4}; \pi\right)$.

x	$-\infty$		0		3		$+\infty$
f'(x)		_	0	+	0	_	

- $(\mathbf{A}) 3 \le m \le -1.$ $(\mathbf{B}) 2 \le m \le -1.$ $(\mathbf{C}) 3 \le m \le 0.$ $(\mathbf{D}) 2 \le m \le 0.$

CÂU 17. Cho hàm số $f(x) = |x^2 - 2mx + m + 2|$. Có bao nhiều giá trị nguyên của tham số m thuộc [-9; 9] để hàm số đồng biến trên (0; 2)?

- **(A)**3.
- **(B)**2.
- $(\mathbf{D})9.$

CÂU 18.

Cho hàm số y = f(x) có f(0) = 0 và đồ thị của hàm y = f'(x) như hình vẽ. Hàm số y = |4f(x)| x^2 đồng biến trên khoảng nào sau đây?

- $(\mathbf{A})(0;4).$
- $(\mathbf{B})(-\infty;-2).$
- $(\mathbf{C})(4;+\infty).$
- $(\mathbf{D})(-2;0).$

CÂU 19.

Cho hàm số f(x) có đạo hàm trên \mathbb{R} và f(1) =1. Đồ thị hàm số y = f'(x) như hình bên. Có bao nhiêu số nguyên dương a để hàm số y = $|4f(\sin x) + \cos 2x - a|$ nghịch biến trên $(0; \frac{\pi}{2})$?

- (\mathbf{C}) Vô số. (\mathbf{D}) 5.

CÂU 20.

Cho hàm số bậc năm y = f(x) có đồ thị của đạo hàm như hình vẽ. Biết f(-3) < 0, hàm số $y = |f(-x^4 + 2x^3 - x^2 + 1)|$ đồng biến trên khoảng nào dưới đây

- (A)(1;2).
- $(\mathbf{B})(-1;0).$
- $(\mathbf{C})(0;0,5).$

Dạng 5. Cực trị hàm hợp, hàm chứa trị tuyệt đối

- ❷ Các phép biến đổi đồ thị
 - Đồ thị hàm y = f(x + a) vẽ bằng cách dời đồ thị y = f(x) sang trái a đơn
 - Đồ thị hàm y = f(x) + b vẽ bằng cách dời đồ thị y = f(x) lên trên b đơn vị.
 - Đồ thị hàm y = f(|x|) vẽ bằng cách "lật qua trái".
 - Đồ thị hàm y = |f(x)| vẽ bằng cách "lật lên".
 - Đồ thị hàm y = |f(|x|)| vẽ bằng cách "lật lên rồi lật qua trái".

lack A Hàm y = f(x) có m điểm cực trị, n nghiệm bội lẻ, p điểm cực trị dương.

- Hàm y = f(ax + b) + c cũng có m điểm cực trị.
- Hàm y = |f(x)| có m + n điểm cực trị.
- Hàm y = f(|x|) có 2p + 1 điểm cực trị.
- Θ Hàm y = f(u).

ΩΙ			
ы	ΚГ	МО	

 Bước	1:	Tính	đao	hàm	y'	= u'f'	(u)).
- 400		T 11111	açio	IICUIII	.9	~ J \	(00)	, •

- Bước 2: Lập bảng xét dấu của y' hoặc đếm số nghiệm bội lẻ của y' = 0.
- Bước 3: Kết luận.
- Θ Hàm y = f(u) + g(x).
 - **Bước 1:** Tính đạo hàm y' = u'f'(u) + g'.
 - **Bước 2:** Lập bảng xét dấu của y' hoặc đếm số nghiệm bội lẻ của y'=0(dựa vào tương giao giữa hai đồ thị).
 - Bước 3: Kết luận.

VÍ DU 1.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tìm các điểm cực trị, các cực trị của hàm số sau

a)
$$y = f(x+2)$$

b)
$$y = f(x) - 3$$

c)
$$y = f(2x - 3) + 1$$

d)
$$y = f(1 - 2x) + 2025$$

VÍ DU 2.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tìm các điểm cực tri của hàm số sau

a)
$$y = f(x^2)$$

b)
$$y = f(3x^2 - 2x)$$

c)
$$y = f(\sqrt{x^2 + 2x + 2})$$

x	$-\infty$		0		2		$+\infty$
y'		_	0	+	0	_	
y	$+\infty$		^ 1		, ⁵ \		$-\infty$

VÍ DU 3.

Cho hàm số y = f(x) có đồ thị y = f'(x) như hình vẽ. Tìm số điểm cực tri của các hàm số sau

a)
$$y = f(x)$$

b)
$$y = 2f(x) - x$$

$$c) y = f(3x) + 2x$$

d)
$$y = f(x) + \frac{x^2}{2} - x$$

e)
$$y = 3f(x) - 2x^3$$

f)
$$y = f(2x+1) - 4x$$

VÍ DU 4.

Cho hàm số y = f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số

b)
$$y = |f(x)|$$

c)
$$y = |f(|x|)|$$

$$d) y = f(|x| - a)$$

e)
$$y = f(|x + b|)$$

f)
$$y = |f(x+2025)|$$

VÍ DU 5. Tìm m để

- a) Hàm số y=|f(x)| có 5 điểm cực trị, với $f(x)=3x^3+3x^2+mx+m$
- b) Hàm số y = f(|x|) có 5 điểm cực trị, với $f(x) = x^3 (2m-1)x^2 + (2-m)x + 2$.

BÀI TẬP TRẮC NGHIỆM

CÂU 1.

Cho hàm số f(x) có đồ thị f'(x) có đồ thị như hình vẽ bên

Hàm số y = f(1 - 2x) có bao nhiều cực trị ?

$$(\mathbf{D})9.$$

CÂU 2.

Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x)như hình vẽ bên. Khi đó hàm số $y = f(x^2)$ có bao nhiều điểm cực

$$(\mathbf{B})4$$

$$(\mathbf{C})_3.$$

$$\bigcirc$$
5.

CÂU 3.

Cho hàm số y = f(x) xác định trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số $y = f(1-x^2)$ đạt cực đại tại điểm nào sau đây?

$$\mathbf{B})x = \pm \sqrt{2}.$$

$$\mathbf{C}x = 3.$$

$$(\mathbf{D})x = 0.$$

CÂU 4.

Cho hàm số y = f(x) có đồ thị hàm $f'(x) = ax^2 + bx + c$ như hình bên dưới. Hỏi hàm số $y = f(x - x^2)$ có bao nhiều cực trị?

$$\mathbf{C}$$
2.

CÂU 5.

Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực trị của hàm số $y = f(\sqrt{x^2 + 2x + 2})$

 $(\mathbf{D})3.$

CÂU 6.

Cho hàm số y = f(x) liên tục trên (a, b) và có đồ thị như hình bên. Số điểm cực trị của hàm số $y = [f(x)]^2$ trên (a; b) là

 $(\mathbf{A})4.$

(B)6.

 $(\mathbf{C})2.$

(**D**)5.

CÂU 7.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có bảng xét dấu f'(x) như hình bên. Hàm số $y = f(x^2 - 2x)$ có bao nhiều điểm cực tiểu?

CÂU 8.

(**A**)1.

Cho hàm số f(x) có bảng biến thiên bên dưới. Trên khoảng $(-\sqrt{5}; \sqrt{5})$ thì hàm số $y = f(x^2)$ đạt cực đại tại điểm nào sau đây?

$$(\mathbf{C})x = 0.$$

$$(\mathbf{D})x = 2.$$

-2 $-\infty$ 1 3 $+\infty$ 0 +0

x	$-\infty$		0		2		$+\infty$
f		+	0	_	0	+	

 $+\infty$

\frown	Ш		N	\frown	ī

^		
CΔ	u	9

Cho hàm số f(x) có bảng biến thiên bên dưới. Hàm số $y=f(x^2-2)$ đạt cực đại tại điểm nào sau đây?

\bigwedge_{x}	_	_ 2
$(\mathbf{A})x$	=	-2.

$$\mathbf{B}$$
 $x = -1$.

$$\mathbf{C}x = 0.$$

$$(\mathbf{D})x = 2.$$

CÂU 10. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2(x-1)(x-4)^2$. Khi đó hàm số $y = f(x^2)$ có bao nhiêu điểm cực trị?

$$\bigcirc$$
4.

$$(\mathbf{C})_5.$$

 $-\infty$

$$\bigcirc$$
2.

0

CÂU 11. Cho hàm f(x) có đạo hàm $f'(x)=x^2-2x, \forall x\in\mathbb{R}$. Hàm số $y=f\left(1-\frac{1}{2}x\right)+4x$

có bao nhiêu điểm cực trị?

$$\bigcirc 0.$$

$$(\mathbf{C})_{2.}$$

$$\bigcirc$$
3.

CÂU 12. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)^2(x^2-2x)$, với mọi $x \in \mathbb{R}$. Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = f(x^2 - 8x + m)$ có 5 điểm cực trị?

$$(\mathbf{C})$$
17.

CÂU 13.

Cho hàm số y=f(x) có đạo hàm liên tục trên $\mathbb R$. Đồ thị hàm số y=f'(x) như hình vẽ bên. Số điểm cực trị của hàm số y=f(x)-5x là

 \mathbf{A} 2.

$$\bigcirc$$
4.

CÂU 14.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Biết hàm số y = f'(x) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng về cực trị của hàm số g(x) = f(x) + x?

- (A) Hàm số có một điểm cực đại và một điểm cực tiểu.
- **B** Hàm số không có điểm cực đại và một điểm cực tiểu.
- C Hàm số có một điểm cực đại và hai điểm cực tiểu.
- (D) Hàm số có hai điểm cực đại và một điểm cực tiểu.

CÂU 15.

Cho hàm số y=f(x) có đạo hàm trên $\mathbb R$ và có đồ thị hàm số f'(x) như hình vẽ. Hàm số $y=2f(x)+x^2$ đạt cực đại tại điểm nào sau đây ?

$$(A)x = -1.$$

$$(\mathbf{B})x = 0.$$

$$\mathbf{C}x = 1.$$

$$(\mathbf{D})x = 2.$$

CÂU 16.

Hàm số y=f(x) liên tục trên $\mathbb R$ và có đồ thị hàm số f'(x) như hình vẽ bên dưới. Hàm số $y=f(x)-\frac{1}{3}x^3+x^2-x+2$ đạt cực đại tại điểm nào sau đây ?

$$\mathbf{A}x = 1.$$

(B)
$$x = -1$$
.

$$(\mathbf{C})x = 0.$$

$$(\mathbf{D})x = 2.$$

CÂU 17.

Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị y = f'(x)như hình vẽ dưới đây. Xét trên khoảng $(-\pi; 2\pi)$, số điểm cực trị của hàm số $g(x) = f(2\cos x) + 2\cos 2x$ là

(**D**)9.

CÂU 18.

Cho hàm số y = f(x) có đồ thị của y = f'(x) có đồ thị như hình vẽ bên dưới. Hàm số $g(x) = f(x^3 - 3x) - x^3 + 3x$ có bao nhiều điểm cực tiểu?

 $(\mathbf{D})_5$.

CÂU 19.

Cho hàm số y = f(x) có đạo hàm và liên tục trên \mathbb{R} và có đồ thị y=f'(x) như hình vẽ. Hàm $y=f(x^2-2)-\frac{1}{2}x^4+\frac{3}{2}x^2$ có bao nhiêu điểm cực tiểu?

$$\mathbf{A}$$
4.

 $(\mathbf{B})1.$

$$(\mathbf{c})_2$$
.

 $(\mathbf{D})3.$

CÂU 20.

Cho hàm số y = f(x) có bảng biến thiên bên dưới. Số điểm cực đại và số điểm cực tiểu của hàm số $y = f^2(2x) - 2f(2x) + 1$ lần lượt là

- **(A)**2 và 3.
- (**B**)3 và 2.
- **(C**)1 và 1.
- **(D)**2 và 2.

x	$-\infty$		-1		2		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	+∞		` 0 /		× ³ \		$-\infty$

CẦU 21. Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = |f^2(x) + 2f(x) + m|$ có 9 điểm cực trị?

- **(A)** 24.
- (B) Vô số.
- $(\mathbf{C})25.$
- (**D**)23.

CÂU 22. Có bao giá trị nguyên của tham số m thoả mãn |m| < 10 sao cho hàm số y = $|x^3-(m-2)x^2-mx-m^2|$ có 3 điểm cực tiểu?

- **(A)**9.
- **(B)**10.
- $(\mathbf{D})16.$

CÂU 23.

Cho hàm số $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, (ae < 0). Đồ thì hàm số y = f'(x) như hình bên dưới. Hàm số $y = |4f(x) - x^2|$ có bao nhiêu điểm cực tiểu?

(A)4.

 $(\mathbf{C})_{3}$.

 $(\mathbf{D})2.$

CÂU 24.

Cho hàm số bậc bốn f(x) có f(0) = -1. Hàm số y = f'(x)có đồ thị là hình bên. Số điểm cực trị của hàm số y = $|4f(x+1) + x^2 + 2x|$ là

(A)3.

 $(\mathbf{C})4.$

 $(\mathbf{D})6$.

CÂU 25.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hàm số y = f(|x|) đạt cực đại tại.

$$(\mathbf{A})x = -1. \quad (\mathbf{B})x = 0.$$

$$(\mathbf{C})x = 2. \qquad (\mathbf{D})x = -2.$$

CÂU 26.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tổng các giá trị cực đại của hàm số y = |f(x)| là

$$\bigcirc$$
 9.

B
$$-3$$
.

$$(\mathbf{C})_3.$$

$$\bigcirc$$
7.

CÂU 27. Cho hàm số y = f(x) có đạo hàm $y = f'(x) = (x - 1)(x - 2)^4(x^2 - 4)$. Số điểm cực trị của hàm số y = f(|x|) là

CÂU 28. Cho hàm số y = f(x) có đạo hàm $y = f'(x) = (x^3 - 2x^2)(x^3 - 2x)$ trên \mathbb{R} . Hàm số y = |f(4 - 2021x)| có nhiều nhất bao nhiêu điểm cực trị?

$$(\mathbf{C})2021$$

CÂU 29. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = |3x^4 - 4x^3 - 12x^2 + m|$ có 7 điểm cực tri?

$$\bigcirc$$
6.

$$\bigcirc$$
4.

CÂU 30. Tìm các giá trị của m để hàm số $f(x) = |x^3 + 3x^2 + m - 3|$ có ba điểm cực trị.

$$(A) m = 3; m = -1.$$
 $(B) m \ge 1; m \le -3.$ $(C) 1 \le m \le 3.$

(C)
$$1 \le m \le 3$$

CÂU 31. Cho hàm số $y = f(x) = x^3 - 3mx^2 + 3(m^2 - 4)x + 1$, có bao nhiêu số nguyên $m \in (-10; 10)$ để hàm số y = f(|x|) có đúng 5 điểm cực trị.

CÂU 32. Cho hàm số $f(x) = \frac{1}{3}x^3 - (2m-1)x^2 + (8-m)x + 2020$ với m là tham số. Tập hợp tất cả các giá trị của tham số m để hàm số $y=f\left(|x|\right)$ có điểm 5 cực trị là khoảng (a;b). Tích $a \cdot b$ bằng

CÂU 33.

Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị hàm số f'(x) như hình vẽ. Hàm số $y = f(x^2 - 2|x|)$ có bao nhiều điểm cực tiểu?

$$\bigcirc$$
 B

CÂU 34.

Cho hàm bậc bốn y = f(x) có đồ thị như hình vẽ dưới đây. Số điểm cực trị của hàm số $g(x) = f(|x|^3 - 3|x|)$ là

$$\mathbf{B}$$
3

$$(\mathbf{C})$$
7.

CÂU 35.

Hình vẽ dưới đây là đồ thị của hàm số y=f(x). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=|f(x+1)+m| có 5 cực trị?

 $\bigcirc 0.$

B3.

 $\bigcirc 2$.

 $\bigcirc 1.$

			_	
ЭШ	ICK	INI	ОΙ	ı
∞ U		18.1	ΟI	ľ

		•	•	•	•	•	•	•		•		-			-				•			•										Ŧ
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠.	•
	•	•	•	•	•														•	•							•		•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠.	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠.	•
																•	•	•			•											•
	•																															•
•																									•	•	•	•	•	•		•
•	•																								•	•	•	•	•	•		•
	•																															•
•	•																									•		•				•
	•															•	•	•			•		•	•			•		•	•		•
																											•		•			
																																_
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		,				-	•	-			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		

3ài 1.	TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ	1
A	LÝ THUYẾT CẦN NHỚ	1
\mathbf{B}	PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN	2
•	Dạng 1.Bài toán tìm khoảng đơn điệu và cực trị của hàm số cho trước	2
	Dạng 2.Bài toán tìm m để hàm số đồng biến (nghịch biến) trên khoảng cho trước	6
	Dạng 3.Bài toán tìm m để hàm số có cực trị hoặc đạt cực trị tại điểm cho trước	9
	Dạng 4.Đơn điệu hàm hợp, hàm chứa dấu giá trị tuyệt đối	11
	Dang 5 Cực trị hàm hơn, hàm chứa trị tuyệt đối	1.5

