MARKS

11

1 (a) $h(x) = g \circ f(x) = g\left((x-2)^2\right) = \sqrt{4-(x-2)^2} = \sqrt{4x-x^2}$. The domain of h is determined by the requirement

$$4x - x^2 \ge 0$$
$$x(4 - x) \ge 0 \Rightarrow 0 \le x \le 4$$

So the domain is [0,4]. If we put y = h(x) we see that $(x-2)^2 + y^2 = 4$ so h(x) is the graph of the upper semi-circle of radius 2 centered at (2,0). The range is therefore [0,2].

1 (b) If $y = f(x) = e^{2x} + 2e^x$ we see that y > 0 for every x but $\lim_{x \to -\infty} f(x) = 0$, and $\lim_{x \to \infty} f(x) = \infty$. So the range is $(0, \infty)$. To find the inverse function, first solve for x.: We do this by letting $u = e^x$ as per the hint and we get

$$u^2 + 2u - y = 0$$
$$u = -1 \pm \sqrt{1+y}$$

We take the positive root because $u=e^x>0$ so $e^x=\sqrt{1+y}-1$. Now interchange x and y to get

$$y = \ln\left(\sqrt{1+x} - 1\right)$$

as the inverse function. It is defined for all x > 0 and has range \mathbb{R} .

10

2 (a)

$$\lim_{x \to -2} \frac{x^2 - x - 6}{4 - x^2} = \lim_{x \to -2} \frac{(x+2)(x-3)}{(2+x)(2-x)}$$
$$= \lim_{x \to -2} \frac{(x-3)}{(2-x)} = \frac{-5}{4} = -\frac{5}{4}$$

(h)

$$\lim_{x \to 0} \frac{\sqrt{x + a^2} - a}{ax} = \lim_{x \to 0} \frac{\sqrt{x + a^2} - a}{ax} \cdot \frac{\sqrt{x + a^2} + a}{\sqrt{x + a^2} + a}$$

$$= \lim_{x \to 0} \frac{x}{ax} \frac{1}{\sqrt{x + a^2} + a}$$

$$= \frac{1}{a} \lim_{x \to 0} \frac{1}{\sqrt{x + a^2} + a} = \frac{1}{a} \cdot \frac{1}{2a} = \frac{1}{2a^2}$$

6

3

$$f(x) = \frac{|x|\sqrt{4x^2 + 1} - 2x^2}{x^2 - 4} = \frac{|x|\sqrt{4x^2 + 1} - 2x^2}{(x - 2)(x + 2)}$$

and since $\lim_{x\to\pm 2}\left(|x|\sqrt{4x^2+1}-2x^2\right)=2\sqrt{17}-8\neq 0$, it follows that $x=\pm 2$ are vertical asymptotes. Also

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(\frac{\sqrt{4 + 1/x^2} - 2}{1 - 4/x^2} \right) = 0$$

so y = 0 is the only horizontal asymptote.

15

4 (a)

$$f(x) = \frac{2\sqrt{x^5} - x^{3/2}}{x^2} = 2x^{1/2} - x^{-1/2}$$
$$f'(x) = x^{-1/2} + 1/2x^{-3/2}$$

(b)

$$f(x) = \ln\left(\frac{x^4}{\sqrt{x-3}}\right) = 4\ln x - \frac{1}{2}\ln(x-3)$$
$$f'(x) = \frac{4}{x} - \frac{1}{2(x-3)}$$

(c)

$$f(x) = e^{3} + \arctan(e^{x} - e^{-x})$$
$$f'(x) = 0 + \frac{1}{1 + (e^{x} - e^{-x})^{2}} \cdot (e^{x} + e^{-x})$$

 (\mathbf{d})

$$f(x) = \frac{3^{x}}{1 + \cos(x^{2})}$$
$$f'(x) = \frac{(1 + \cos(x^{2})) \cdot 3^{x} \cdot \ln 3 - 3^{x} \cdot (-\sin(x^{2})) \cdot 2x}{(1 + \cos(x^{2}))^{2}}$$

$$f(x) = (1+x^2)^{2x}$$

$$\ln(f(x)) = 2x \ln(1+x^2)$$

$$\frac{f'(x)}{f(x)} = 2\ln(1+x^2) + \frac{2x}{1+x^2} \cdot 2x$$

$$= 2\ln(1+x^2) + \frac{4x^2}{1+x^2}$$

$$f'(x) = (1+x^2)^{2x} \left(2\ln(1+x^2) + \frac{4x^2}{1+x^2}\right)$$

15

5 (a) Substituting (2,0) into $y + x\sqrt{1 + y^2} + 2 = x^2$ gives $2 + 2 = 2^2$ which is correct. Differentiate implicitly:

$$y' + \sqrt{1 + y^2} + \frac{xy}{\sqrt{1 + y^2}}y' = 2x$$

now substitute before solving for y' y' + 1 = 4 y' = 3

$$y' + 1 = 4$$

and an equation of the tangent line is y = 3(x - 2).

(b) We have $x^2 + y^2 = 25$. Differentiate with respect to time t to get

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

$$\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt}$$

$$= -\left(\frac{-4}{3}\right) \cdot 15$$

$$= 20 \text{ m/s}$$

(c) Since the expression $\frac{e^x - x - 1}{x^2 + x^3}$ is an indeterminate form of the type

$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2 + x^3} = (L'H) \lim_{x \to 0} \frac{e^x - 1}{2x + 3x^2}$$
$$= (L'H) \lim_{x \to 0} \frac{e^x}{2 + 6x}$$
$$= \frac{1}{2}$$

where we use L'Hôpital's rule a second time since the second expression is also an indeterminate form of the type $\frac{0}{0}$ at 0.

6 (a)
$$f(x) = \frac{x}{3x - 1}$$
 so
$$m = \frac{f(3) - f(1)}{3 - 1} = \frac{3/8 - 1/2}{2}$$

$$= -\frac{1}{16}$$
(b) $f'(x) = -\frac{1}{(3x - 1)^2}$ so if $1 \le c \le 3$ and $f'(c) = m = -\frac{1}{16}$ we have
$$-\frac{1}{(3c - 1)^2} = -\frac{1}{16}$$

$$(3c - 1)^2 = 16$$

$$3c - 1 = 4 \text{ (since } c > 0)$$

$$c = \frac{5}{3}$$

9

7 (a)

$$\begin{split} V\left(r\right) &= \frac{4}{3}\pi r^3 \\ \frac{dV}{dr} &= \lim_{h \to 0} \frac{V\left(r+h\right) - V\left(r\right)}{h} = \frac{4}{3}\pi \lim_{h \to 0} \frac{\left(r+h\right)^3 - r^3}{h} \\ &= \frac{4}{3}\pi \lim_{h \to 0} \frac{r^3 + 3r^2h + 3rh^2 + h^3 - r^3}{h} \\ &= \frac{4}{3}\pi \lim_{h \to 0} \frac{h\left(3r^2 + 3rh + h^2\right)}{h} = \frac{4}{3}\pi \lim_{h \to 0} \left(3r^2 + 3rh + h^2\right) \\ &= \frac{4}{3}\pi \cdot 3r^2 = 4\pi r^2 \end{split}$$

3. So that
$$L(r) = f(a) + f'(a)(r - a)$$

$$= \frac{4}{3}\pi a^3 + 4\pi a^2(r - a)$$

(c) We use the estimate $dV \approx \Delta V = L\left(r\right) - \frac{4}{3}\pi a^3$ and $\Delta r = r - a$ to get

$$L(r) - \frac{4}{3}\pi a^3 = 4\pi a^2 (r - a)$$
$$dV = 4\pi a^2 \Delta r$$
$$\Delta r = \frac{dV}{4\pi a^2} = \frac{340}{4\pi \cdot (52)^2}$$
$$= .01 \text{cm}$$

8 (a)
$$f(x) = xe^{-x^2}$$
 on $\left[-\frac{1}{2}, 1 \right]$.

$$f'(x) = e^{-x^2} + xe^{-x^2} (-2x)$$

$$= e^{-x^2} (1 - 2x^2)$$

$$f'(x) = 0 \Leftrightarrow 1 - 2x^2 = 0$$

$$\Leftrightarrow 2x^2 = 1$$

and so the critical numbers are $x=1/\sqrt{2}$ and $x=-1/\sqrt{2}$ (but this one is not in the given interval). So we check: ; $f(-1/2)=-\frac{1}{2}e^{-\frac{1}{4}}\simeq -0.3894$; $f\left(1/\sqrt{2}\right)=\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}\simeq 0.428\,88$; and $f\left(1\right)=e^{-1}\simeq 0.367\,88$. So the absolute minimum is $-\frac{1}{2}e^{-\frac{1}{4}}\simeq -0.389\,4$ at -1/2 and the absolute maximum is $\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}\simeq 0.428\,88$ at $1/\sqrt{2}$.

(b) Let A be the area of the can. Given the radius is r and the height is h we see that the total area is the sum of the area of the base (πr^2) plus the area of the cylindrical side $(2\pi rh)$

$$A = \pi r^2 + 2\pi r h; r > 0$$

Also the volume

where
$$V = \pi r^2 h = 1000$$
 so $h = \frac{1000}{\pi r^2}$ and $A = \pi r^2 + 2\pi r \cdot \frac{1000}{\pi r^2} = \pi r^2 + \frac{2000}{r}$ $A' = 2\pi r - \frac{2000}{r^2} = 0 \Leftrightarrow r^3 = \frac{1000}{\pi}$ so $r = \frac{10}{\sqrt[3]{\pi}} = h$

Since

$$A'' = 2\pi + 4000r^{-3} > 0$$

we have a local minimum (and hence an absolute minimum).

16

9 (a) $f(x) = 2x^2 - x^4$ is defined for all x because it is a polynomial, so the domain is $\mathbb{R} = (-\infty, \infty)$. It is an even function since f(-x) = f(x).

There are no vertical asymptotes because the domain is \mathbb{R} (so there are no points a where the function can have limit ∞ or $-\infty$). There are no horizontal asymptotes because $\lim_{x\to\pm\infty}f(x)=-\infty$. So there are no asymptotes.

(b)

$$f'(x) = 4x - 4x^{3} = 4x (1 - x^{2})$$
$$= 4x (1 - x) (1 + x)$$

The critical numbers are 0, -1 and 1. Constructing the table to see where it is increasing/decreasing we have

	x < -1	x = -1	-1 < x < 0	x = 0	0 < x < 1	x = 1	x > 1
4x	_	_	_	0	+	+	+
1-x	+	+	+	#	/+	0	_
1+x	_	0	+	+	+	+	+
f'(x)	+	0	_	0	+	0	_
	7	Max.	7	min.	7	Max.	7

We can read off the intervals and the local extrema: local maxima at (-1,1) and (1,1) and a local minimum at (0,0).

(c)

$$f''(x) = 4 - 12x^2 = 4(1 - 3x^2)$$

= $0 \iff x = \pm 1/\sqrt{3}$

Here we will use the even symmetry and note that on $(0,1/\sqrt{3})$ f''(x) > 0 so the curve is concave up. By symmetry the curve is concave up on $(-1/\sqrt{3},1/\sqrt{3})$. For $x > 1/\sqrt{3}$ (and $x < -1/\sqrt{3}$) it is concave down, so these points: $(\pm 1/\sqrt{3},1/3) = (\pm 0.577,0.333)$ are inflection points.

(d) The graph:

5

Bonus

$$f\left(x\right)=\frac{\sin\left(ax\right)}{x-a}$$

$$\lim_{x\to a}f\left(x\right)=\frac{a\cos\left(ax\right)}{1}=a\cos\left(a^2\right)\ \text{by L'Hôpital'srule}$$

If a = 1

$$\lim_{x\to 1}\frac{\sin{(x)}}{x-1}=\frac{\cos{(x)}}{1}=\cos{(1)} \ \text{by L'Hôpital'srule}$$

What is wrong? L'Hôpital's rule doesn't apply if $\sin\left(a^2\right) \neq 0$ since the original expression $f\left(x\right) = \frac{\sin\left(ax\right)}{x-a}$ is not of the form $\frac{0}{0}$ near x=a: the numerator is near $\sin\left(a^2\right)$ while the denominator is near 0. If a=0 we get $\frac{0}{x}=0$ which has limit 0 anyway, without L'Hôpital's rule. If not, we can only use L'Hôpital's rule when $\sin\left(a^2\right)=0$, i.e. when $a^2=\pi n$ or $a=\sqrt{n\pi}$; $n=1,2,3,\cdots$.