ECONOMIC_SANCTION_PROJECT DISCRIPTION

Globally Economic Sanctions is generally regarded as an important foreign policy used to punish regimes, persons and groups who actions deviate the globally accepted norms and values. As such powerful states, multilateral cooperation, and institutions in response to such situations imposes sanctions on such individuals, state and organizations. In this project I evaluate the effect of economic sanctions on Russia foreign direct investment. Using data from World Trade Organization (WTO), World Bank, and Global Sanction Database.

To estimate this effect, regression analysis was performed on obtained data. The data was divided into independent/exposure (binary) variables (Financial sanction containing treatment and control group) and the outcome/dependent variables (continuous) (FDI, Import and Export). Using inflation, GDP, and exchange rate as covariates variables. The Propensity Score was estimated which is the probabilities of receiving the treatment (Financial sanction) given the observed covariates (inflation, GDP, and exchange rate). Subsequently coarsened exact matching (CEM). Performed on the propensity scores. The CEM ensures a balance in the distribution of covariates between treated and control groups based on the already calculated the propensity scores by discretizing them into categories. After chi-square tests analysis was run to assess balance between the treated and control groups. Finally regression analysis was conducted to estimate the causal effect of the treatment variable (Financial sanction) on the outcome variables while controlling for the covariates.

∨ TEF	▼ TERMINAL										
	Country			Log_exp	Import					GDP_per_capita	Log_GDP
0	Russia	2000	1.050000e+11		4.486200e+10		1.318037	28.129167	1.449157		
1	Russia	2001	1.020000e+11	11.0	5.376400e+16		1.331974	29.168525	1.464914		
2	Russia	2002	1.070000e+11	11.0	6.096600e+10		1.198347	31.348483	1.496217		
3	Russia	2003	1.360000e+11	11.1	7.607000e+10		1.135555	30.692025	1.487026		
4	Russia	2004	1.830000e+11	11.3	9.738200e+10		1.036973	28.813742	1.459600		
5	Russia	2005	2.440000e+11	11.4	1.250000e+11		1.103301	28.284442	1.451548		
6	Russia	2006	3.040000e+11	11.5	1.640000e+11		0.985366	27.190958	1.434425		
7	Russia	2007	3.540000e+11	11.5	2.230000e+11		0.954595	25.580845	1.407915		
8	Russia	2008	4.720000e+11	11.7	2.920000e+11		1.149551	24.852875	1.395377		
9	Russia	2009	3.030000e+11	11.5	1.920000e+11		1.066226	31.740358	1.501612		
10	Russia	2010	4.010000e+11	11.6	2.490000e+11		0.835652	30.367915	1.482415		
11	Russia	2011	5.220000e+11	11.7	3.240000e+11		0.926366	29.382341	1.468086		
12	Russia		5.290000e+11	11.7	3.350000e+11		0.705414	30.839831	1.489112		
13	Russia	2013	5.220000e+11	11.7	3.410000e+11		0.829542	31.837144	1.502934	2.290000e+12	12.359835
14	Russia	2014	4.970000e+11	11.7	3.080000e+11		0.893396	38.378207	1.584085	2.060000e+12	12.313867
15	Russia	2015	3.410000e+11	11.5	1.930000e+11		1.191295	60.937650	1.784886	1.360000e+12	12.133539
16	Russia	2016	2.820000e+11	11.5	1.910000e+11		0.847724	67.055933	1.826437	1.280000e+12	12.107210
17	Russia	2017	3.530000e+11	11.5	2.380000e+11		0.566241	58.342801	1.765987	1.570000e+12	12.195900
18	Russia	2018	4.440000e+11	11.6	2.490000e+11		0.459136	62.668133	1.797047	1.660000e+12	12.220108
19	Russia	2019	4.200000e+11	11.6	2.540000e+11		0.650343	64.737658	1.811157	1.690000e+12	12.227887
20	Russia	2020	3.330000e+11	11.5	2.400000e+11		0.529130	72.104908	1.857965	1.490000e+12	12.173186
21	Russia	2021	4.940000e+11	11.7	3.040000e+11		0.825715	73.654350	1.867198	1.840000e+12	12.264818
22	Russia	2022	5.320000e+11	11.7	2.400000e+11		1.138934	68.484942	1.835595	2.240000e+12	12.350248
Γ2:	3 rows x	21 col	umns1								
,			Financial sar	ction	Log GDP Log	inflat	ion Log exchan	ge Log FDI	Log imp Lo	g exp	
0	Russia	2000		0 11	.414973	1.318			10.651879	11.0	
1	Russia	2001		0 11	.487138	1.331	974 1.4649	14 9.454433	10.730492	11.0	
2	Russia	2002		0 11	.537819	1.198	347 1.4962	17 9.540809	10.785088	11.0	
3	Russia	2003		0 11	.633468	1.135	555 1.4870	26 9.899198	10.881213	11.1	
4	Russia	2004			.771587	1.036			10.988479	11.3	
5	Russia	2005			.883093	1.103			11.096910	11.4	
6	Russia	2006			.995635	0.985			11.214844	11.5	
7	Russia	2007			.113943	0.954			11.348305	11.5	
8	Russia	2008			.220108	1.149			11.465383	11.7	
9	Russia	2009			.086360	1.066			11.283301	11.5	
10	Russia	2010			.181844	0.835			11.396199	11.6	
10	MUJJIA	1010		0 12		0.055	1.4024	10.055100	111000100	11.0	

Columns to analyse in the dataset

Check for missing values

		Country	Year	Export	Log_exp	Import	Log_inflation	Exchange_rate	Log_exchange	GDP_per_capita	Log_GDP
Γ.	0	False	False	False	False	False	False	False	False	False	False
ted	1	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False
	5	False	False	False	False	False	False	False	False	False	False
	6	False	False	False	False	False	False	False	False	False	False
	7	False	False	False	False	False	False	False	False	False	False
	8	False	False	False	False	False	False	False	False	False	False
	9	False	False	False	False	False	False	False	False	False	False
	10	False	False	False	False	False	False	False	False	False	False
	11	False	False	False	False	False	False	False	False	False	False
	12	False	False	False	False	False	False	False	False	False	False
	13	False	False	False	False	False	False	False	False	False	False
	14	False	False	False	False	False	False	False	False	False	False
	15		False	False	False	False	False	False	False	False	False
	16	False	False	False	False	False	False	False	False	False	False
	17	False	False	False	False	False	False	False	False	False	False
	18	False	False	False	False	False	False	False	False	False	False
	19	False	False	False	False	False	False	False	False	False	False
	20	False	False	False	False	False	False	False	False	False	False
	21	False	False	False	False	False	False	False	False	False	False
	20	False	False	False	False	False	False	False	False	False	False
	21	False	False	False	False	False	False	False	False	False	False
	22	False	False	False	False	False	False	False	False	False	False

Sanction or no sanction

The figure above shows count of Financial sanction in the data using outcome=sns.countplot(x="Financial_sanction", data=df_cleaned) function.

The screenshot below is a result obtained from a propensity test score analysis. The scores shows the probability of each observation in the dataset (FDI) receiving the treatment (Financial sanction) based on the various covariates.

+	++ 0
0	4.06181e-07
1	4.06181e-07
2	4.06181e-07
3	4.06181e-07
4	4.06181e-07
5	4.06181e-07
6	4.06181e-07
7	4.06181e-07
8	4.06181e-07
9	4.06181e-07
10	4.06181e-07
11	4.06181e-07
12	4.06181e-07
13	4.06181e-07
14	1
15	1
16	1
-	•

A screenshot from the matched data of treatment variable/exposure (Financial_sanction and covariates)

	Financial_sanction	Log_GDP	Log_inflation	Log_exchange	Log_FDI
0	0	Low	High	Low	9.427815438
1	0	Low	High	Low	9.454433228
2	0	Low	High	Low	9.540808561
3	0	Low	High	Low	9.899198151
4	0	Medium	Medium	Low	10.18760503
5	0	Medium	High	Low	10.19055719
6	0	Medium	Medium	Low	10.57512743
7	0	High	Medium	Low	10.74720728
8	0	High	High	Low	10.87380236
9	0	High	High	Low	10.5632805
10	0	High	Medium	Low	10.63515971
11	0	High	Medium	Low	10.74102255
12	0	High	Low	Low	10.70404373
13	0	High	Medium	Low	10.84022463
14	1	High	Medium	Medium	10.34304091
15	1	High	High	High	9.835878831
16	1	High	Medium	High	10.51240287
17	1	High	Low	High	10.45571927
18	1	High	Low	High	9.94373435
19	1	High	Low	High	10.50480743
20	1	High	Low	High	9.976753818
21	1	High	Medium	High	10.60691842
22	1	High	High	High	10.6

Perform chi-square test for Log inflation, log gdp, log exchange (Covariates)

Inflation		GDP		Exchang	
				е	
P-value	Chi-	P-value	Chi-square	P-value	Chi-
	square		stat		square
	stat				stat
0.00001013	23.000000	0.000010130	23.00000000	0.0000101	23.00000

After performing the Coarsen Exact Matching a chi-square test was run in other to evaluate the balance between the matched data. From the table above since the P-Values are less than the significance alpha (α) , value of 0.05 hence we can conclude that there is an association between the matched covariates.

=======================================	coef	std err	t	====== P> t	[0.025	
Financial_sanction	-0.4384	0.424	-1.034	0.315	-1.329	0.452
Log_GDP	1.6008	0.202	7.923	0.000	1.176	2.025
Log_inflation	0.1119	0.411	0.272	0.788	-0.751	0.975
Log_exchange	0.1033	1.199	0.086	0.932	-2.415	2.621
const	-9.0892	3.360	-2.705	0.014	-16.149	-2.030
===========	=======					=

The screenshot above shows result from a regression analysis of the effect of financial sanction on export.

=======================================	coef	std err	t	P> t	[0.025	0.975]
Financial_sanction	0.0181	0.052	0.345	0.734	-0.092	0.128
Log_GDP	0.8602	0.046	18.893	0.000	0.765	0.956
Log_inflation	0.0612	0.057	1.071	0.298	-0.059	0.181
Log_exchange	-0.1559	0.176	-0.884	0.388	-0.526	0.214
const	1.2892	0.694	1.857	0.080	-0.169	2.748

The screenshot above shows result from a regression analysis of the effect of financial sanction on export.

	coef	std err	t	P> t	[0.025	0.975]
Financial_sanction	0.0042	0.042	0.100	0.921	-0.085	0.093
Log_GDP	0.8916	0.060	14.913	0.000	0.766	1.017
Log_inflation	-0.1009	0.096	-1.047	0.309	-0.303	0.102
Log_exchange	-0.1654	0.197	-0.840	0.412	-0.579	0.248
const	0.8614	1.030	0.836	0.414	-1.302	3.025

The screenshot above shows result from a regression analysis of the effect of financial sanction on import.

CODE LINE FOR THE ANALYSIS

```
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import statsmodels.api as sm
from causalinference import CausalModel
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from scipy.stats import ttest ind
from statsmodels.stats.diagnostic import het white
from reportlab.lib.pagesizes import letter, landscape
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle
from reportlab.lib import colors
from fpdf import FPDF
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
from tabulate import tabulate
df=pd.read csv(r"C:\Users\isrea\OneDrive\Desktop\python
regression\CSV's\RUSSIA DATA CSV.csv")
print(df)
print(df.isnull())
### Data Wrangling
print(df.isnull().sum())
plt.show()
null_values= sns.heatmap(df.isnull(), yticklabels=False)
print(null values)
plt.show()
null_values_1= sns.heatmap(df.isnull(), yticklabels=False, cmap='viridis')
print(null values 1)
plt.show()
# Create a copy of the DataFrame for cleaning
df cleaned = df.copy()
# Check and print the count of NaN values in each colum
```

```
print(df_cleaned.isnull().sum())
print(df_cleaned)
#column in concern
# Define the columns to use
columns to analyse df = [
'Country', 'Year', 'Financial_sanction', 'Log_GDP', 'Log_inflation',
   'Log exchange', 'Log FDI', 'Log imp',
                                                  'Log exp']
# Create the new DataFrame with selected columns
column to use = df cleaned[columns to analyse df].copy()
# Display the new DataFrame
print(column to use)
column to analyse =pd.DataFrame(column to use)
df cleaned df = pd.DataFrame(df cleaned)
column_to_analyse.to_csv('column_to_analyse_df.txt', sep='\t', index=False)
print(column to analyse)
# Save the DataFrame to a text file
df cleaned df.to csv('df cleaned df.txt', sep='\t', index=False)
# Drop rows with NaN values (this will modify df cleaned in place)
df cleaned.dropna(inplace=True)
print(df cleaned.isnull())
# Create a heatmap to visualize NaN values
sns.heatmap(df_cleaned.isnull(), yticklabels=False, cbar=False)
plt.show()
# Create a countplot for the "Financial sanction" column
outcome= sns.countplot(x="Financial sanction", data=df cleaned)
# Set labels and title
plt.xlabel("sanction or no sanction ")
plt.ylabel("Count")
plt.title("Count of Financial Sanction on Russia")
# Show the plot
plt.show()
# distribution of financial sanction
```

```
effect = sns.boxplot(x='Financial_sanction', y= 'Log_GDP',
data=column to analyse)
plt.xlabel(" values Sanction sanction")
plt.ylabel("values_log GDP")
plt.title("Distribution of financial sanction against independent variables")
print(effect)
plt.show()
# Define the variables
# Define the variables
treatment variable = 'Financial sanction'
covariates = ['Log_GDP', 'Log_inflation', 'Log_exchange']
# Plot KDE for each covariate
for covariate in covariates:
    plt.figure(figsize=(8, 6))
    sns.kdeplot(data=df_cleaned, x=covariate, hue=treatment_variable, fill=True,
common norm=False)
    plt.title(f'Kernel Density Estimation (KDE){treatment variable} across
{covariate}')
    plt.xlabel(covariate)
    plt.ylabel('Density')
    # Customize legend
    plt.legend(title=f'{treatment variable} and Covariates',
               labels=[f'No {treatment_variable}, {covariate}',
f'{treatment_variable}', f'{covariate}'])
    plt.show()
#treatment variable and covariates in df
# combined_data = df_cleaned[['Financial_sanction', 'Trade_sanction',
'Military_sanction', 'Multilateral_sender_sanction', 'Log_GDP', 'Log_inflation',
'Log exchange', 'Log FDI', 'Log imp', 'Log exp']]
# Defined treatment and outcome variables
combined_data = df_cleaned[['Financial_sanction', 'Trade_sanction',
'Military_sanction', 'Multilateral_sender_sanction', 'Log_GDP', 'Log_inflation',
'Log_exchange', 'Log_FDI', 'Log_imp', 'Log_exp']]
# Defined treatment and outcome variables
exposure column = 'Financial sanction'
outcome_column = 'Log_FDI'
```

```
# initializing CausalModel with combined DataFrame
causal = CausalModel(
    Y=combined_data[outcome_column].values,
    D=combined data[exposure column].values,
    X=combined_data.drop([outcome_column, exposure_column], axis=1).values)
# Estimate propensity scores
causal.est_propensity_s()
propensity scores = causal.propensity['fitted']
print(propensity_scores)
#create dataframe for propensity score
propensity scores df=pd.DataFrame(propensity scores)
#tabulation for propensity score
propensity scores df str= tabulate(propensity scores df, headers='keys',
tablefmt='grid')
print(propensity_scores_df_str)
# save the tabulated result to a text file
with open('save propensity_score_str.txt', 'w') as f:
    f.write(propensity scores df str)
# Define coarsening schemas for each continuous covariate
coarsening schemas = {
    'Log_GDP': {'num_bins': 3, 'labels': ['Low', 'Medium', 'High']},
    'Log_inflation': {'num_bins': 3, 'labels': ['Low', 'Medium', 'High']},
    'Log exchange': {'num bins': 3, 'labels': ['Low', 'Medium', 'High']},
# Initialize variables for matching
matched_data = combined_data.copy()
# Perform matching based on propensity scores and coarsening schemas
for covariate, schema in coarsening schemas.items():
    bins = pd.cut(combined_data[covariate], bins=schema['num_bins'],
labels=schema['labels'])
    matched data[covariate] = bins
# Check the results
print(matched data)
print(matched data.columns)
# Creating a dataframe to saved the data
matched_data_save= pd.DataFrame(matched_data)
#save the dataframe
save matched data str = tabulate(matched data save, headers='keys',
tablefmt='grid')
print(save matched data str)
# save the tabulated result to a text file
with open('save matched data str.txt', 'w') as f:
```

```
f.write(save matched data str)
from scipy.stats import chi2 contingency
# Create contingency table for Log inflation, log gdp, log exchange
contingency_table = pd.crosstab(column_to_analyse['Financial_sanction'],
matched data['Log inflation'])
alpha=0.5
contingency table = pd.crosstab(matched data['Financial sanction'],
matched data['Log GDP'])
contingency table = pd.crosstab(matched data['Financial sanction'],
matched data['Log exchange'])
# Perform chi-square test for Log inflation, log gdp, log exchange
chi2, p value, dof, expected = chi2 contingency(contingency table)
print(f"Chi-square statistic for Log_inflation: {chi2}")
print(f"P-value for Log_inflation: {p_value}")
# Organize chi-square statistic and p-value into a dictionary
chi2_results = {'Chi-square statistic': chi2, 'P-value': p_value}
# Create a DataFrame from the dictionary
chi2 dataframe = pd.DataFrame(chi2 results, index=[0])
# Save the DataFrame to a text file
with open('chi2 results.txt', 'w') as f:
    f.write(chi2 dataframe.to string(index=False))
if p value <= alpha:</pre>
    print("Reject the null hypothesis")
    print("There is evidence to suggest an association.")
else:
    print("Fail to reject the null hypothesis")
    print("There isn't enough evidence to suggest an association.")
#other categorical variables (Log GDP and Log exchange)
chi2 2, p value 2, dof, expected = chi2 contingency(contingency table)
print(f"Chi-square statistic for Log_GDP: {chi2_2}")
print(f"P-value for Log GDP: {p value 2}")
# Organize chi-square statistic and p-value into a dictionary
chi2_2_results = {'Chi-square statistic': chi2_2, 'P-value': p_value_2}
# Create a DataFrame from the dictionary
chi2 2 dataframe = pd.DataFrame(chi2 2 results, index=[0])
# Save the DataFrame to a text file
with open('chi2 results.txt', 'w') as f:
```

```
f.write(chi2_2_dataframe.to_string(index=False))
if p_value_2 <= alpha:</pre>
    print("Reject the null hypothesis")
    print("There is evidence to suggest an association.")
else:
    print("Fail to reject the null hypothesis")
    print("There isn't enough evidence to suggest an association.")
chi2_3, p_value_3, dof, expected = chi2_contingency(contingency_table)
print(f"Chi-square statistic for Log exchange: {chi2 3}")
print(f"P-value for Log exchange: {p value 3}")
# Organize chi-square statistic and p-value into a dictionary
chi2_3_results = {'Chi-square statistic': chi2_3, 'P-value': p_value_3}
# Create a DataFrame from the dictionary
chi2 3 dataframe = pd.DataFrame(chi2 3 results, index=[0])
# Save the DataFrame to a text file
with open('chi2 results.txt', 'w') as f:
    f.write(chi2_3_dataframe.to_string(index=False))
if p value <= alpha:</pre>
    print("Reject the null hypothesis")
    print("There is evidence to suggest an association.")
else:
    print("Fail to reject the null hypothesis")
    print("There isn't enough evidence to suggest an association.")
# Convert 'Financial sanction' to a binary variable (0 or 1)
matched data['Financial sanction'] =
matched data['Financial sanction'].astype('category').cat.codes
# Define the covariates used in CEM (the coarsened covariates)
coarsened covariates = ['Log GDP', 'Log inflation', 'Log exchange']
# Create a DataFrame with the matched data
matched_data = df_cleaned[['Financial_sanction'] + coarsened_covariates +
['Log_FDI']]
matched data log imp = df cleaned[['Financial sanction'] + coarsened covariates +
['Log_imp']]
matched data log exp = df cleaned[['Financial sanction'] + coarsened covariates +
['Log_exp']]
```

```
# Add a constant term to the regression model (intercept)
matched data = sm.add constant(matched data)
matched_data_log_imp = sm.add_constant(matched_data_log_imp)
matched data log exp = sm.add constant(matched data log exp)
# Perform linear regression
X = matched_data[['Financial_sanction'] + coarsened_covariates + ['const']]
y = matched_data[outcome column]
model = sm.OLS(y, X).fit(alpha=0.05)
outcome column import = 'Log imp'
X = matched data log imp[['Financial sanction'] + coarsened covariates +
['const']]
y = matched data log imp[outcome column import]
model_log_imp = sm.OLS(y, X).fit(alpha=0.05)
outcome_column_export = 'Log_exp'
X = matched_data_log_exp[['Financial_sanction'] + coarsened_covariates +
['const']]
y = matched data log exp[outcome column export]
model_log_exp = sm.OLS(y, X).fit(alpha=0.05)
results = het white(model.resid, X)
print("White test p-value for the main model:", results[1])
p value = results[1]
# Save the p-value to a text file
with open('white test p value.txt', 'w') as f:
    f.write(f"White test p-value for the main model: {p value}")
results log imp = het white(model log imp.resid, X)
print("White test p-value for the model with Log_imp:", results_log_imp[1])
results_log_exp = het_white(model_log_exp.resid, X)
print("White test p-value for the model with Log_exp:", results_log_exp[1])
# Get robust standard errors
# Get the summary of the regression results
regression result 4 FDI = model.get robustcov results(cov type='HC3')
regression_result_4_FDI_summary = regression_result_4_FDI.summary()
# Convert the summary to a DataFrame
```

```
regression result 4 FDI df =
pd.DataFrame(regression result 4 FDI summary.tables[1].data)
# Save the DataFrame to a text file
regression_result_4_FDI_df.to_csv('regression_result_4_FDI.txt', sep='\t',
index=False)
regression_result_4_export = model_log_exp.get_robustcov_results(cov_type='HC3')
# Get the summary of the regression results
regression result 4 export summary = regression result 4 export.summary()
# Convert the summary to a DataFrame
regression result 4 export df =
pd.DataFrame(regression_result_4_export_summary.tables[1].data)
# Save the DataFrame to a text file
regression_result_4_export_df.to_csv('regression_result_4_export.txt', sep='\t',
index=False)
regression result 4 import = model log imp.get robustcov results(cov type='HC3')
regression_result_4_import_summary = regression_result_4_import.summary()
# Convert the summary to a DataFrame
regression result 4 import df =
pd.DataFrame(regression_result_4_import_summary.tables[1].data)
# Save the DataFrame to a text file
regression result 4 import df.to csv('regression result 4 import.txt', sep='\t',
index=False)
print(regression result 4 FDI.summary())
print(regression_result_4_export.summary())
print(regression result 4 import.summary())
```

THANK YOU!