

Refine Search

Search Results -

Terms	Documents
713.clas.	31118

Database:

US Pre-Grant Publication Full-Text Database
 US Patents Full-Text Database
 US OCR Full-Text Database
 EPO Abstracts Database
 JPO Abstracts Database
 Derwent World Patents Index
 IBM Technical Disclosure Bulletins

Search:

▲

▼

Refine Search

Recall Text

Clear

Interrupt

Search History

DATE: Monday, May 14, 2007 [Purge Queries](#) [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
side by side				result set
		DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR		
L27	713.clas.		31118	L27
L26	713/162		389	L26
L25	L22 and (decrypting near information or decrypting adj information or decrypting with information)		16	L25
L24	L23 and (decrypting near information or decrypting adj information or decrypting with information)		1	L24
L23	L22 and (sensing with device or sensing near device or sensing adj device)		205	L23
L22	(telecommunication with address or telecommunication near address or telecommunication adj address)		4714	L22
L21	L20 and (telecommunication with address or telecommunication near address or telecommunication adj address)		3	L21
L20	(point and multicast) not @py>1998		797	L20
L19	705/79		270	L19

<u>L18</u>	705/77	235	<u>L18</u>
<u>L17</u>	705/77	235	<u>L17</u>
<u>L16</u>	705/73	88	<u>L16</u>
<u>L15</u>	705/72	220	<u>L15</u>
<u>L14</u>	705/70	122	<u>L14</u>
<u>L13</u>	705/67	731	<u>L13</u>
<u>L12</u>	705/75	684	<u>L12</u>
<u>L11</u>	705/62	242	<u>L11</u>
<u>L10</u>	705/58	430	<u>L10</u>
<u>L9</u>	705/56	324	<u>L9</u>
<u>L8</u>	705/53	497	<u>L8</u>
<u>L7</u>	705/40	1876	<u>L7</u>
<u>L6</u>	705/35	3024	<u>L6</u>
<u>L5</u>	705/34	894	<u>L5</u>
<u>L4</u>	705/33	138	<u>L4</u>
<u>L3</u>	705/23	580	<u>L3</u>
<u>L2</u>	705/21	603	<u>L2</u>
<u>L1</u>	705.clas.	50270	<u>L1</u>

END OF SEARCH HISTORY

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

 [Generate Collection](#)

L25: Entry 11 of 16

File: USPT

Feb 28, 2006

US-PAT-NO: 7007166

DOCUMENT-IDENTIFIER: US 7007166 B1

TITLE: Method and system for digital watermarking

DATE-ISSUED: February 28, 2006

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Moskowitz; Scott A.	Miami	FL		US
Cooperman; Marc	Palo Alto	CA		US

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Wistaria Trading, Inc.	Miami	FL		US	02

APPL-NO: 09/545589 [PALM]

DATE FILED: April 7, 2000

RELATED-US-APPL-DATA:

continuation parent-doc US 08674726 00 19960702 PENDING child-doc US 09545589

INT-CL-ISSUED:

TYPE	IPC	DATE	IPC-OLD
IPCP	H04L9/00	20060101	H04L009/00

INT-CL-CURRENT:

TYPE	IPC	DATE
CIPP	H04 L 9/00	20060101

US-CL-ISSUED: 713/176; 713/168, 380/46

US-CL-CURRENT: 713/176; 380/46, 713/168

FIELD-OF-CLASSIFICATION-SEARCH: 713/176, 713/168, 380/46

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO

ISSUE-DATE

PATENTEE-NAME

US-CL

<input type="checkbox"/>	<u>4038596</u>	July 1977	Lee	
<input type="checkbox"/>	<u>4200770</u>	April 1980	Hellman et al.	
<input type="checkbox"/>	<u>4218582</u>	August 1980	Hellman et al.	
<input type="checkbox"/>	<u>4405829</u>	September 1983	Rivest et al.	
<input type="checkbox"/>	<u>4424414</u>	January 1984	Hellman et al.	
<input type="checkbox"/>	<u>4748668</u>	May 1988	Shamir et al.	
<input type="checkbox"/>	<u>4789928</u>	December 1988	Fujisaki	
<input type="checkbox"/>	<u>4908873</u>	March 1990	Philibert et al.	
<input type="checkbox"/>	<u>4979210</u>	December 1990	Nagata et al.	
<input type="checkbox"/>	<u>4980782</u>	December 1990	Ginkel	
<input type="checkbox"/>	<u>5073925</u>	December 1991	Nagata et al.	
<input type="checkbox"/>	<u>5243515</u>	September 1993	Lee	
<input type="checkbox"/>	<u>5287407</u>	February 1994	Holmes	
<input type="checkbox"/>	<u>5319735</u>	June 1994	Preuss et al.	
<input type="checkbox"/>	<u>5363448</u>	November 1994	Koopman et al.	713/170
<input type="checkbox"/>	<u>5365586</u>	November 1994	Indeck et al.	
<input type="checkbox"/>	<u>5379345</u>	January 1995	Greenberg	
<input type="checkbox"/>	<u>5394324</u>	February 1995	Clearwater	
<input type="checkbox"/>	<u>5408505</u>	April 1995	Indeck et al.	
<input type="checkbox"/>	<u>5412718</u>	May 1995	Narasimhalu et al.	
<input type="checkbox"/>	<u>5428606</u>	June 1995	Moskowitz	
<input type="checkbox"/>	<u>5487168</u>	January 1996	Geiner et al.	
<input type="checkbox"/>	<u>5493677</u>	February 1996	Balogh et al.	
<input type="checkbox"/>	<u>5530759</u>	June 1996	Braudaway et al.	
<input type="checkbox"/>	<u>5568570</u>	October 1996	Rabbani	
<input type="checkbox"/>	<u>5606609</u>	February 1997	Houser et al.	
<input type="checkbox"/>	<u>5613004</u>	March 1997	Cooperman et al.	
<input type="checkbox"/>	<u>5617119</u>	April 1997	Briggs et al.	
<input type="checkbox"/>	<u>5636292</u>	June 1997	Rhoads	
<input type="checkbox"/>	<u>5640569</u>	June 1997	Miller et al.	
<input type="checkbox"/>	<u>5659726</u>	August 1997	Sandford, II et al.	
<input type="checkbox"/>	<u>5664018</u>	September 1997	Leighton	
<input type="checkbox"/>	<u>5687236</u>	November 1997	Moskowitz et al.	
<input type="checkbox"/>	<u>5734752</u>	March 1998	Knox	
<input type="checkbox"/>	<u>5745569</u>	April 1998	Moskowitz et al.	
<input type="checkbox"/>	<u>5748783</u>	May 1998	Rhoads	382/232
<input type="checkbox"/>	<u>6330672</u>	December 2001	Shur	713/176

OTHER PUBLICATIONS

Alfred J. Menezes, *Handbook of Applied Cryptography*, 1997, CRC Press LLC, p. 175.
cited by examiner

Smith, et al., "Modulation and Information Hiding in Images," Springer Verlag, First International Workshop, Cambridge, U.K., May 30 to Jun. 1, 1996, pp. 207-227.
cited by other

Kutter, et al., "Digital Signature of Color Images Using Amplitude Modulation," SPIE-EI97, vol. 3022, pp. 518-527. cited by other

Puate, et al., "Using Fractal Compression Scheme to Embed a Digital Signature into an Image," SPIE-96 Proceedings, vol. 2915, Mar. 1997, pp. 108-118. cited by other

Boney, et al., "Digital Watermarks for Audio Signals," 1996 IEEE Int. Conf. on Multimedia Computing and Systems, Jun. 17-23, Hiroshima, Japan, pp. 473-480. cited by other

Boney, et al., "Digital Watermarks for Audio Signals," Proceedings of EUSIPCO-96, 8th European Signal Processing Conference, Trieste, Italy, Sep. 10-13, 1996, 5 pages. cited by other

Swanson, et al., "Transparent Robust Image Watermarking," Proc. of the 1996 IEEE Int. Conf. on Image Processing, vol. III, 1996, pp. 211-214. cited by other

Swanson, et al., "Robust Data Hiding for Images," 7th IEEE Digital Signal Processing Workshop, Sep. 1-4, 1996, Loen, Norway, pp. 37-40. cited by other

Cox, et al., "Secure Spread Spectrum Watermarkings for Multimedia," NEC Research Institute, Technical Report 95-10, 1995, 33 pages. cited by other

Zhao, et al., "Embedding Robust Labels into Images for Copyright Protection," Proceedings of the KnowRight'95 Conference, pp. 242-251. cited by other

Kock, et al., "Towards Robust and Hidden Image Copyright Labeling," 1995 IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Jun. 1995, 4 pages. cited by other

Langelaar, et al., "Copy Protection for Multimedia Data based on Labeling Techniques," Dept. of Electrical Engineering, Information Theory Group, Delft Univ. of Tech., Delft, The Netherlands, Jul. 1996, 9 pages. cited by other

Van Schyndel, et al., "A Digital Watermark," IEEE International Computer Processing Conference, Austin, TX, Nov. 13-16, 1994, pp. 86-90. cited by other

Van Schyndel, et al., "Towards A Robust Digital Watermark," Second Asian Image Processing Conference, Singapore, Dec. 6-8, 1995, vol. 2, pp. 504-508. cited by other

Tirkel, et al., "A Two-Dimensional Digital Watermark," DICTA'95, University of Queensland, Brisbane, Dec. 5-8, 1995, 7 pages. cited by other

Tirkel, A.Z., "Image Watermarking--A Spread Spectrum Application," ISSSSTA'96, Sep. 1996, Mainz, Germany, 6 pages. cited by other

Ruanaidh, et al., "Watermarking Digital Images for Copyright Protection," IEF Proceedings, vol. 143, No. 4, Aug. 1996, pp. 250-256. cited by other

Hartung, et al., "Digital Watermarking of Raw and Compressed Video," SPIE vol. 2952, EOS Series, Symposium on Advanced Imaging and Network Technologies, Berlin, Germany, Oct. 1996, pp. 205-213. cited by other

Press, et al., "Numerical Recipes in C," Cambridge University Press, 1988, 12. Fourier Transform Spectral Methods, pp. 398-470. cited by other

Pohlmann, Ken C., "Principles of Digital Audio," Third Edition, 1995, pp. 32-37, 40-48, 138, 147-149, 332, 333, 364, 499-501, 508-509, 564-571. cited by other

Pohlmann, Ken C., "Principles of Digital Audio," Second Edition, 1991, pp. 1-9, 19-25, 30-33, 41-48, 54-57, 86-107, 375-387. cited by other

Schneier, B., "Applied Cryptography," John Wiley & Sons, Inc., New York, 1994, particularly the following sections: 4.1 Subliminal Channel, pp. 66-68, 16.6 Subliminal Channel, pp 387-392, Ch. I pp 1-16, Ch. 2 pp 17-41, Ch. 3 pp 42-57, Ch. 12.1 pp 273-275, Ch 14.1 pp 321-324. cited by other

Kahn, D., "The Code Breakers," The Macmillan Company, 1969, particularly the following sections on steganography pp. xiii, 81-83, 513, 515, 522-526, 873. cited by other

Brealey, et al., "Principles of Corporate Finance, Appendix A--Using Option-Valuation Models," 1984, pp. 448-449. cited by other

Copeland, et al., "Real Options: A Practitioner's Guide," 2001, pp. 106-107, 201-202, 204-208. cited by other

Sarkar, M. "An Assessment of Pricing Mechanisms for the Internet--A Regulatory Imperative," presented at MIT Workshop on Internet Economics, Mar. 1995. <http://www.press.umich.edu/jep/works/SarkAssess.html> on Mar. 12, 2001. cited by other

Crawford, D.W., "Pricing Network Usage: A Market for Bandwidth or Market Communication?" presented at MIT Workshop on Internet Economics, Mar. 1995. <http://www.press.umich.edu/jep/works/CrawMarket.html> on Mar. 12, 2001. cited by other

Low, S.H., Equilibrium Allocation and Pricing of Variable Resources Among User-Suppliers (1988). <http://citeseer.nj.nec.com/366503.html>. cited by other

ART-UNIT: 2132

PRIMARY-EXAMINER: Barron, Jr.; Gilberto

ASSISTANT-EXAMINER: Lanier; Benjamin E.

ABSTRACT:

A method for applying a digital watermark to a content signal is disclosed. In accordance with such a method, a watermarking key is identified. The watermarking key includes a binary sequence and information describing application of that binary sequence to the content signal. The digital watermark is then encoded within the content signal at one or more locations determined by the watermarking key.

65 Claims, 0 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

First Hit Fwd Refs

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

Generate Collection | Print

L25: Entry 11 of 16

File: USPT

Feb 28, 2006

DOCUMENT-IDENTIFIER: US 7007166 B1

TITLE: Method and system for digital watermarking

Description Paragraph (76):

Bandwidth rights instruments are likely to be highly localized to specific subnets. Especially since certain types of connections may be available only from certain exchanges, and since failure probabilities are likely to vary with specific hardware, operating systems, and service providers. Additionally, the basic valuation equations above do not address telecommunications costs across various types of lines. This problem at least, might be solved by active maintenance of cost tables, designation codes for types of lines, and the designation of a low cost standard. The problem of moving rights between exchanges is made more difficult since supply/demand planning for one exchange will not translate to another, unless some means for interconnecting exchanges is developed, and exchange bandwidth planning is global. The race by many parties to link users to the INTERNET via varying access links (modem) including ISDN, POTS, cable, may further the need for common bandwidth pricing. What is clear is that the basic structure of the present invention would facilitate such planning to the benefit of all market participants: telecoms providers, INTERNET access companies, users and publishers as well as more general aggregators of content and bandwidth such as, phone companies, cable companies and satellite companies intending on providing services across multifarious line types.

CLAIMS:

22. The method of claim 19, wherein said one or more references is selected from the group consisting of: a encode/decode algorithm which is capable of encoding and decoding bits of information directly to and from the content signal, a function which relates the sequence of binary numbers to the content signal; a function which assesses the frequency content of the content signal before embedding the at least one watermark; a function which is capable of encrypting and decrypting information contained in the at least one watermark, and a function which embeds into the content signal an informational signal which comprises information about the at least one watermark such that the informational signal may be used to correct any errors that may have been introduced into the at least one watermark.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

 [Generate Collection](#) [Print](#)

L25: Entry 14 of 16

File: USPT

Feb 26, 2002

US-PAT-NO: 6351640

DOCUMENT-IDENTIFIER: US 6351640 B1

TITLE: Initiating a Telecommunications call to a party based on an identifying signal wirelessly transmitted by the party or its proxy

DATE-ISSUED: February 26, 2002

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
DeMont; Jason Paul	Basking Ridge	NJ		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Lucent Technologies, Inc.	Murray Hill	NJ			02

APPL-NO: 08/944387 [PALM]

DATE FILED: October 6, 1997

PARENT-CASE:

REFERENCE TO RELATED APPLICATION This is a division of application Ser. No. 08/574,059, filed Dec. 15, 1995, now pending.

INT-CL-ISSUED: [07] H04B 1/38, H04Q 7/32

INT-CL-CURRENT:

TYPE	IPC	DATE
CIPS	H04 Q 7/22	20060101
CIPS	H04 Q 7/38	20060101
CIPN	H04 Q 7/32	20060101

US-CL-ISSUED: 455/426; 455/415, 455/460, 455/536, 455/564, 455/566, 455/575, 455/90, 455/351

US-CL-CURRENT: 455/426.1; 455/351, 455/415, 455/460, 455/556.1, 455/564, 455/566, 455/575.9, 455/90.3

FIELD-OF-CLASSIFICATION-SEARCH: 455/403, 455/414, 455/5, 455/426, 455/460, 455/466, 455/500, 455/517, 455/550, 455/556, 455/564, 455/566, 455/568, 455/569, 455/575, 455/91, 455/95, 455/99, 455/100, 455/227, 343/702

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<u>4164025</u>	August 1979	Dubnowski et al.	364/900
<u>4922518</u>	May 1990	Gordon et al.	379/57
<u>4939768</u>	July 1990	Inaba et al.	379/58
<u>4980910</u>	December 1990	Oba et al.	379/355
<u>5020150</u>	May 1991	Shannon	455/343
<u>5097502</u>	March 1992	Suzuki et al.	379/356
<u>5117449</u>	May 1992	Metroka et al.	455/552
<u>5214793</u>	May 1993	Conway et al.	455/517 X
<u>5218629</u>	June 1993	Dumond et al.	379/59
<u>5230073</u>	July 1993	Gausmann et al.	395/600
<u>5276729</u>	January 1994	Higuchi et al.	379/58
<u>5280516</u>	January 1994	Jang	379/57
<u>5307349</u>	April 1994	Shloss et al.	370/85.2
<u>5329578</u>	July 1994	Brennan et al.	379/67
<u>5365516</u>	November 1994	Jandrell	370/18
<u>5412654</u>	May 1995	Perkins et al.	370/94.1
<u>5418845</u>	May 1995	Reeder	379/213
<u>5428678</u>	June 1995	Fitzpatrick et al.	379/201
<u>5566358</u>	October 1996	Obayashi et al.	455/435 X
<u>5668559</u>	September 1997	Baro	343/702
<u>5835861</u>	November 1998	Whiteside	455/466

ART-UNIT: 2683

PRIMARY-EXAMINER: Trost; William

ASSISTANT-EXAMINER: Sobutka; Philip J.

ATTY-AGENT-FIRM: DeMont & Breyer, LLC

ABSTRACT:

A method and apparatus for initiating a telecommunications call. A plurality of beacons (102) are geographically disposed in a telecommunications system (100). Each beacon (102n) radiates an electromagnetic carrier that is modulated with an identifying address (e.g., a telephone number, an Internet address) for an associated terminal. An identifying signal is stored in a memory (206). A controller (208) modulates a carrier with the identifying signal and a transmission element (210) transmits the carrier to allow a communications terminal (104) to

initiate a call to the associated communications terminal (114, 116). A wireless terminal (104a) includes a directional receiver (204). To initiate a call, a user points directional receiver (204) at a beacon. The directional receiver (204) receives the electromagnetic carrier and the wireless terminal recovers the identifying address. Wireless terminal (104) then uses the identifying address to initiates a call, in well-known fashion, to the communications terminal associated with the identifying address.

33 Claims, 15 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L25: Entry 14 of 16

File: USPT

Feb 26, 2002

DOCUMENT-IDENTIFIER: US 6351640 B1

TITLE: Initiating a Telecommunications call to a party based on an identifying signal wirelessly transmitted by the party or its proxy

Brief Summary Text (11):

Alternative embodiments of the invention provide a method and apparatus for initiating a telecommunications call (whether voice, video, data or multimedia) while avoiding many of the costs and restrictions associated with conventional techniques. Specifically, alternative embodiments of the present invention enable the initiation of a telecommunications call to a communication terminal (e.g., a wireless terminal, a wireline terminal, an automatic call distribution system, etc.) based on the reception of an identifying address (e.g., the telephone number, the Internet address) of the communications terminal via a directional receiver.

Detailed Description Text (3):

The illustrative embodiment comprises one or more "beacons" (e.g., beacons 102.sub.1, 102.sub.2, . . . , 102.sub.n). Each beacon 102.sub.i advantageously radiates an electromagnetic carrier that is modulated with data including, among other things, an identifying signal (e.g., a telephone number, an Internet address) of an associated communication terminal that is accessible via telecommunications system 100 and addressable by the identifying signal. Paging transmitter 118 can provide a signal to a beacon to remotely modify, for example, the identifying signal for the beacon as described more fully below. The details of where beacon 102.sub.i is located and what information it radiates will be discussed below.

Detailed Description Text (15):

The operation of wireless terminal 104a is as follows. A user points directional receiver 204 at a beacon to receive the electromagnetic carrier radiated by the beacon. Directional receiver 204 recovers the identifying signal from the electromagnetic carrier and provides the identifying signal to processor 202, in well-known fashion. Processor 202 then provides the identifying signal to radio 208, which uses the identifying signal, in well-known fashion, to initiate a call, via telecommunications system 100, to the communication terminal associated with the identifying address.

Detailed Description Text (40):

To facilitate privacy and restrict the number of users who can receive information radiated by a beacon, the user data, transmissive data and/or identifying signal radiated by a beacon may be encrypted, in well-known fashion. In such cases, processor 202 must be capable of decrypting the encrypted information. Processor 202 may be given the cryptographic key via a keypad or penpad, or via telecommunications system 100.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L25: Entry 15 of 16

File: USPT

Jan 19, 1999

US-PAT-NO: 5862220

DOCUMENT-IDENTIFIER: US 5862220 A

TITLE: Method and apparatus for using network address information to improve the performance of network transactions

DATE-ISSUED: January 19, 1999

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Perlman; Stephen G.	Mountain View	CA		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
WebTV Networks, Inc.	Mountain View	CA			02

APPL-NO: 08/656923 [PALM]

DATE FILED: June 3, 1996

INT-CL-ISSUED: [06] H04L 9/08, H04L 9/00

INT-CL-CURRENT:

TYPE IPC	DATE
CIPS H04 M 7/00	20060101
CIPS H04 N 5/00	20060101
CIPN H04 L 29/08	20060101
CIPS H04 L 29/12	20060101
CIPN H04 M 7/12	20060101
CIPN H04 N 7/16	20060101
CIPS H04 L 29/06	20060101
CIPN H04 Q 3/72	20060101
CIPS H04 M 3/487	20060101
CIPS H04 M 3/493	20060101
CIPS H04 N 7/167	20060101

US-CL-ISSUED: 380/21; 380/9, 380/10, 380/49, 380/59

US-CL-CURRENT: 713/162; 348/E5.004, 348/E7.056, 380/251, 380/279, 380/59, 713/155

FIELD-OF-CLASSIFICATION-SEARCH: 380/4, 380/9, 380/21, 380/23, 380/25, 380/49, 380/50, 380/59, 380/10

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<u>4182933</u>	January 1980	Roseblum	380/21
<u>4852151</u>	July 1989	Dittakavi et al.	379/97
<u>4876717</u>	October 1989	Barron et al.	380/25
<u>4922523</u>	May 1990	Hashimoto	379/96
<u>4975944</u>	December 1990	Cho	379/209
<u>4995074</u>	February 1991	Goldman et al.	379/97
<u>5005011</u>	April 1991	Perlman et al.	340/728
<u>5056140</u>	October 1991	Kimbell	380/23
<u>5095494</u>	March 1992	Takahashi et al.	375/10
<u>5241587</u>	August 1993	Horton et al.	379/92
<u>5263084</u>	November 1993	Chaput et al.	379/215
<u>5287401</u>	February 1994	Lin	379/98
<u>5299307</u>	March 1994	Young	395/161
<u>5325423</u>	June 1994	Lewis	
<u>5341293</u>	August 1994	Vertelney et al.	364/419.17
<u>5369688</u>	November 1994	Tsukamoto et al.	379/100
<u>5410541</u>	April 1995	Hotto	370/76
<u>5425092</u>	June 1995	Quirk	379/215
<u>5469540</u>	November 1995	Powers, III et al.	395/158
<u>5488411</u>	January 1996	Lewis	348/8
<u>5490208</u>	February 1996	Remillard	379/96
<u>5538255</u>	July 1996	Barker	
<u>5561709</u>	October 1996	Remillard	379/96
<u>5564001</u>	October 1996	Lewis	
<u>5612730</u>	March 1997	Lewis	348/8

OTHER PUBLICATIONS

Matt Rosoff, Review: "Gateway Destination PC," c/net inc., 2 pages, Feb. 19, 1996.
 Robert Seidman, Article: What Larry and Lou Know (That You Don't), c/net inc., 2 pages, Jan. 29, 1996.
 Susan Stellin, Article: "The \$500 Web Box: Less is More?" c/net inc., 2 pages, 1996.

ART-UNIT: 276

PRIMARY-EXAMINER: Gregory; Bermarr E.

ATTY-AGENT-FIRM: Workman, Nydegger & Seeley

ABSTRACT:

An apparatus and method for using network address information to improve the performance and increase the functionality of network transactions. is disclosed. In a client network interface device having a processor and a memory coupled to the processor, the memory having stored therein sequences of instructions which when executed by the processor cause the processor to perform the steps of: 1) accessing a first server over a secure data communication line to obtain a client encryption key, 2) accessing a second server over an unsecure data communication line to establish a connection with the second server, 3) encrypting information sent to the second server over the connection using the client encryption key obtained from the first server, and 4) decrypting information received from the second server over the connection using the client encryption key obtained from the first server. The present invention further includes sequences of instructions which when executed by the processor cause the processor to perform the steps of, 1) connecting to an unsecure server over an unsecure data communication line to perform unsecure portions of a data transaction, 2) disconnecting from the unsecure server; and 3) connecting to a secure server over a secure data communication line to perform secure portions of the data transaction.

52 Claims, 16 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L25: Entry 15 of 16

File: USPT

Jan 19, 1999

DOCUMENT-IDENTIFIER: US 5862220 A

TITLE: Method and apparatus for using network address information to improve the performance of network transactions

Abstract Text (1):

An apparatus and method for using network address information to improve the performance and increase the functionality of network transactions. is disclosed. In a client network interface device having a processor and a memory coupled to the processor, the memory having stored therein sequences of instructions which when executed by the processor cause the processor to perform the steps of: 1) accessing a first server over a secure data communication line to obtain a client encryption key, 2) accessing a second server over an unsecure data communication line to establish a connection with the second server, 3) encrypting information sent to the second server over the connection using the client encryption key obtained from the first server, and 4) decrypting information received from the second server over the connection using the client encryption key obtained from the first server. The present invention further includes sequences of instructions which when executed by the processor cause the processor to perform the steps of, 1) connecting to an unsecure server over an unsecure data communication line to perform unsecure portions of a data transaction, 2) disconnecting from the unsecure server; and 3) connecting to a secure server over a secure data communication line to perform secure portions of the data transaction.

Brief Summary Text (3):

This invention is in the field of telecommunications, as it relates to the use of network address information for network transactions.

Brief Summary Text (16):

The present invention is an apparatus and method for using network address information to improve the performance and increase the functionality of network transactions. A client network interface device is disclosed as having a processor and a memory coupled to the processor, the memory having stored therein sequences of instructions which when executed by the processor cause the processor to perform the steps of: 1) accessing a first server over a secure data communication line to obtain a client encryption key, 2) accessing a second server over an unsecure data communication line to establish a connection with the second server, 3) encrypting information sent to the second server over the connection using the client encryption key obtained from the first server, and 4) decrypting information received from the second server over the connection using the client encryption key obtained from the first server. The present invention further includes a client network interface device having a processor and a memory coupled to the processor, the memory having stored therein sequences of instructions which when executed by the processor cause the processor to perform the steps of, 1) connecting to an unsecure server over an unsecure data communication line to perform unsecure portions of a data transaction, 2) disconnecting from the unsecure server; and 3) connecting to a secure server over a secure data communication line to perform secure portions of the data transaction.

CLAIMS:

1. A client network interface device having a processor and a memory coupled to said processor, the memory having stored therein sequences of instructions to be executed by said processor, said instructions comprising:

a first instruction for accessing a first server over a secure data communication line to obtain a client encryption key;

a second instruction for accessing a second server over an unsecure data communication line to establish a connection with said second server;

a third instruction for encrypting information sent to said second server over said connection using said client encryption key obtained from said first server; and

a fourth instruction for decrypting information received from said second server over said connection using said client encryption key obtained from said first server.

2. A first server having a processor and a memory coupled to said processor, the memory having stored therein sequences of instructions to be executed by said processor said instructions comprising:

a first instruction for receiving a request from a client over an unsecure data communication line to establish a connection with said client;

a second instruction for accessing a second server over a secure data communication line to obtain a client encryption key corresponding to said client;

a third instruction for decrypting information received from said client over said connection using said client encryption key obtained from said second server; and

a fourth instruction for encrypting information sent to said client over said connection using said client encryption key obtained from said second server.

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)