LLAVA-Plus (arXiv 202311)

Motivation: 现有基于Prompt的工具调用模型适应性不强, 且不够强大,无法让多模态Agent始终准确地选择和激活适 当的工具并组合其结果。

整体思路: LLAVA-Plus维护这一个技能存储库,其中包含各种视觉和视觉语言模型(工具),它可以根据用户的多模态输入激活相关的工具,以动态组合其执行结果来实现许多现实世界的任务。

LLAVA-PLUS提出了一种模块化的系统架构,整个过程分为四步

- (1) 人类体统任务指令和对应的图片;
- **(2)** LMM助手分析人任务指令和对应的图片,并输出需要使用的工具(从工具库中选择工具并将适当的提示写入工具参数);
- (3) 执行工具,将执行结果返回给助手;
- (4) 助手整合工具的执行结果,并将最终结果输出给人类。 交互过程可以表示为:

 $\texttt{Human}: \mathbf{I}_{\text{q}} \ < \backslash n > \ \mathbf{X}_{\text{q}} < \texttt{STOP} > \texttt{Assistant}: \mathbf{X}_{\text{skill_use}} < \texttt{STOP} >$

 $\texttt{Human}: \mathbf{X}_{\texttt{skill_result}} \texttt{<STOP> Assistant}: \mathbf{X}_{\texttt{anwser}} \texttt{<STOP>}$

其中, loss只使用绿色的序列来计算。

受ReAct启发,将LMM预测格式统一,这个格式包含三个部分:

- (1) **Thought**: 表示推理过程的文本序列,它根据用户指令决定是否需要工具库以及使用哪些工具;
- (2) **Action**: Thought中需要调用的工具列表, json格式,两个字段: API name和API params;
- (3) **Value**: 模型根据工具的调用结果和对话历史信息 生成的回复。

Assistant (X_{skill,use}) "thoughts" To accurately segment and identify the girl and the cart in the image, we can leverage the grounding dino model for open-set detection and the segmentation model SAM. Integrating these models will enable us to generate a comprehensive summary of the segmented subjects. "actions" ("APL name": "grounding_dino+sam", "APL-params": "little girl and cart ")

"value" I will use grounding_dino+sam to help to answer the question. Please wait for a moment. Tool execution: Grounding_DINO + SAM grounding_dino+sam model outputs: 'boxes': [[0.35, 0.37, 0.66, 0.97], [0.0, 0.57, 0.69, 1.0]],

(X_{skill.result}) 'logits': [0.58, 0.41], 'phrases': ['little girl', 'cart']

Can you segment the girl and the cart in the image and describe their relationship?

"thoughts" Thanks to the output of grounding_dino+sam. I can answer the question better "actions" []

"value" Sure! I segment and identify the little girl and the cart in the image.

- Centered in the image, a little girl is discernible with bounding box coordinates $[0.35,\,0.37,\,0.66,\,0.97]$. She's seen actively maneuvering a cart within the airport's ambiance.

- To the bottom left of the image, a cart can be pinpointed, bounded by the coordinates [0.0, 0.57, 0.69, 1.0]. It's laden with various luggage items, indicating travel preparations or arrivals.

The interaction between the girl and the cart epitomizes a typical airport scenario: a traveler utilizing the cart to facilitate her movement with luggage. This tableau, whether signifying an arrival or departure, encapsulates the vibrancy and expectation inherent to air travel.

多模态工具使用指令数据生成

Skill Repo.

Assistant $(\mathbf{X}_{\text{anwser}})$

Human

	S	kills	Tools	Source	Size
Individual Skills	Understanding	Detection/Grounding Semantic Segmentation Instance Segmentation Caption + Grounding Tagging + Grounding Caption Tagging OCR	G-DINO (Liu et al. [2023]) OpenSecD (Zhang et al. [2023]) G-DINO+SAM BLIP2+G-DINO BLIP2-G-DINO BLIP2 [Li et al. [2023]) RAM (Zhang et al. [2023]) RAM (Zhang et al. [2023])	COCO COCO COCO COCO COCO COCO Hiertext	13783 5989 5228 4037 4439 4064 6045 6528
	External Knowledge	Retrieval	CLIP Retrieval (Radford et al., 2021)	InfoSeek	4087
	Generation	Image Generation Image Editing	Stable Diffusion (Rombach et al., 2021) Instruct P2P (Brooks et al., 2023)	JourneyDB Instruct P2P	4694 6981
	Visual Prompt	Interactive Segmentation Multi-granularity Example Based Segmentation	SAM (Kirillov et al., [2023) Semantic SAM (Li et al., [2023d) SEEM (Zou et al., [2023t])	COCO COCO	5601 5601 5601
Composed Skills	Mix of Detection, Segmentation, Tagging, Caption Interactive Segmentation + Inpainting Semantic Segmentation + Generation Image Generation + Social Media Post Image Editing + Social Media Post		G-DINO, SAM, BLIP2, RAM SAM + Stable Diffusion OpenSeeD + ControlNet (Zhang et al., 2023h) Stable Diffusion Instruct P2P Brooks et al. (2023)	COCO COCO COCO JourneyDB Instruct P2P	37,431 3063 5989 4694 5924

核心技能:视觉理解

的指令; (ii) Thoutht和value从预设定的Response中选择并重写; (iii) Xskill_result由工具结果和原始问题拼接而成; (iv) Xanswer中的Thought与之前方法相似, Action被置为空, value由GPT4生成。带有附加参数的工具: (i) 与上面方法相似, 初始Xq包含占位符, 随机选择一个类别替换该占位符, 并通过重写得到最终的Xq; (ii) 使用GPT4生成问题, 手动创建两个种子样本, 将他们与图像上下文一起输入GPT4, 并要求GPT4基于新的图像上下文生成完整对

仅图像的工具: (i) 使用GPT4生成需要工具才能回答

扩展工具

(1) 外部知识:使用CLIP搜索API检索LIAON

(2) 生成图像: Stable Diffusion&Instruct-Pix2Pix

(3) 视觉提示: SAM&SEEM

(4) 工具组合: (i) 交互式切割与修复; (ii) 语义分割+

生成; (iii) 图像生成/编辑 + 社交媒体帖子

	LLaVA-Bench (COCO)				LLaVA-Bench (In-the-Wild)			
	Conv.	Detail	Reasoning	All	Conv.	Detail	Reasoning	All
LLaVA	82.0	69.1	92.6	81.2	42.6	51.9	68.9	57.1
LLaVA (Tools in Test)	56.2	67.9	53.3	59.1	40.7	48.1	51.2	47.5
LLaVA-Plus (All Tools)	81.6	74.5	95.7	83.9	65.5	56.8	79.1	69.5
LLaVA-Plus (Fly)	76.2	72.2	92.3	80.4	45.2	50.4	72.6	59.1
LLaVA-Plus (Fly) (no thoughts)	76.6	70.4	90.7	79.4	38.8	39.8	59.8	48.7
GPT4Tools	75.3	53.8	86.9	72.1	31.1	27.1	54.1	40.7
Scene Identity Attribute Location Counting Spatial Interact. Reason. Text Average								Average

Scene	Identity	Attribute Locat	tion Counting Spatial	Interact.	Reason.	Text	Average
LLaVA 59.50	54.29	56.06 42.5	4 39.35 33.03	43.30	41.39	30.59	44.45
LLaVA (Tools in Test) 67.13	56.85	45.24 47.24	4 45.69 40.18	60.82	70.09	30.59	51.54
LLaVA-Plus (All Tools) 68.94	56.80	58.89 47.3	4 48.14 45.21	60.82	71.30	37.65	55.01
LLaVA-Plus (Fly) 68.43	56.47	59.69 45.40	0 41.68 44.14	59.79	69.49	34.12	53.25

	Grounding	Tagging	Caption	OCR	All
LLaVA	47.1	87.1	77.0	23.6	58.7
LLaVA (Tools in Test)	41.7	48.5	72.0	31.9	48.5
LLaVA-Plus (All Tools)	89.3	94.4	96.7	48.8	82.3
LLaVA-Plus (Fly)	88.6	88.9	90.2	38.4	76.5
Bard (0730)	36.5	105.3	103.3	60.0	76.3
Bing Chat (0730)	56.0	84.0	96.0	44.8	70.2
MM-REACT	30.2	94.7	103.8	77.3	76.5
All Tools + GPT4	77.5	95.6	95.2	39.3	76.9

通过实验对 比证明在同 量级模型中 取得了较优 性能。