Lab 4 - Conditional VAE for Video Prediction

2024 Spring Cheng-yuan Ho

Apr 11, 2024

Outline

- Introduction
- Lab details
- Requirements
- Others

Important Date

- Kaggle competition deadline: 2024/5/6 11:55
- E3 upload deadline: 2024/5/7 18:00
- Demo: 2023/5/7
- Format
 - Zip whole source code directory and named it in
 LAB4_{studentID}_{YOUR_NAME}.zip
 - and upload to Lab 4 Conditional VAE (code)
 - Save your report as pdf file and named it in

LAB4_{studentID}_{YOUR_NAME}.pdf

and upload to Lab 4 - Conditional VAE (report)

Kaggle Competition

- Kaggle competition deadline: 2024/5/6 11:55
- Team name: {your student id}_{your name}
 - -5 points for wrong team name
- 1 person 1 team
- 5 submission per day
- Tester.py will generate submission.csv for submission
- Scoring criteria
 - 1. Pass baseline: 20 points
 - 2. Top 30: 25 points
 - 3. Top 10: 30 points

General Forums

- If you got any questions, please post it in general forums
 - Other students might have the same questions
 - TAs will try their best to answer you in time

Introduction - Theme (Prior work)

Everybody Dance Now

Caroline Chan* Shiry Ginosar Tinghui Zhou† Alexei A. Efros

UC Berkeley

refer to https://github.com/carolineec/EverybodyDanceNow

Introduction - Theme (Prior work)

- Use pre-trained pose estimation network to generate pose images
- Predict the following video frame with GAN-based structure
- Generate the prediction by taking pose as inputs in inference time

refer to https://github.com/carolineec/EverybodyDanceNow

Introduction - Theme (Prior work)

- Inference the output in frame by frames
- Generate the video output by concatenate a sequence of output images

refer to https://github.com/carolineec/EverybodyDanceNow

Lab Objective

- In this Lab, you need to implement video prediction by VAE method
 - Pose Video sequence
 - One Initial image
 - To generate predicted video sequence

VAE recap

VAE recap - Reparameterization tricks

$$\mathcal{L}(X, q, \theta) = E_{Z \sim q(Z|X; \phi)} \log p(X|Z; \theta) - KL(q(Z|X; \phi)||p(Z))$$
where $q(Z|X; \phi)$ is considered as encoder and $p(X|Z; \theta)$ as decoder.

Output should be seem as log variance rather than simply variance

$$\underbrace{E_{\boldsymbol{Z} \sim q(\boldsymbol{Z}|\boldsymbol{X};\boldsymbol{\theta}')} \log p(\boldsymbol{X}|\boldsymbol{Z};\boldsymbol{\theta})}_{} - \mathsf{KL}(q(\boldsymbol{Z}|\boldsymbol{X};\boldsymbol{\theta}')||p(\boldsymbol{Z}))$$

Re-parameterization for end-to-end training

LAB Description - Training

- Generate posterior by posterior predictor
- Take the following info as input to Decoder Fusion
 - Pose image
 - Previous frame
 - Sample Z from posterior predictor
- Generate the final output by Generator
- Loss = MSE-term + KL-term

LAB Description - Teacher forcing

- Take ground truth frame as input rather than last generated frame
- Teacher forcing ratio is set to 0 ~ 1 and
 - When to use teacher forcing depends on your design

LAB Description - KL annealing

- To stable training
 - Loss = MSE-term + KL-term * a

H. Fu, et al., "Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing," NAACL 2019

LAB Description -Inference

- Generate frame by taking
- Pose image
- last generated frame
- Z sample from prior distribution
 - Prior distribution can be set by yourself
 - N(0, I) is recommended

Requirements

- Training details implementation
 - Training protocol
 - Teacher forcing strategy. Teacher forcing ratio range 0 ~ 1
 - KL annealing strategy
 - Other training strategy (training trick)
- Plot diagram
 - Plot the loss curve in different kind of setting while training
 - Plot PSNR per frame while validation your output result
 - Plot teacher forcing ratio while training

Requirements

- Analysis
 - Compare the loss curve difference in different setting and make your assumption
- Make your validation result into gif files (This should be shown in Demo)
- Derivation of conditional VAE (see the detail in spec)

Testing time

- **5 videos** should be generated
 - Each video sequence contains
 - One initial frame
 - 630 pose images
 - You need to take given datas to generate the following 629 future frames

Provided files

- Trainer.py
- Tester.py
- dataloader.py
- requirements.txt (python3.9 is recommended)
- modules/

RUN Test

Testing file has been done, simply type the following command

```
python Tester.py --DR {YOUR_DATASET_PATH}
--save_root {PATH_TO_SAVE_YOUR_CHECKPOINT}
--ckpt path {PATH TO YOUR CHECKPOINT}
```

- If success, it will output 5 gif files and submission.csv
- submission.csv is used for submission to kaggle

Dataset

- a. Training dataset
 - i. train_img: 23410 png files
 - ii. train_label: 23410 png files
- b. Valadition dataset
 - i. val_img: 630 png files
 - ii. val_label: 630 png files
- c. Testing dataset
 - i. 5 video sequences are given. Each video sequence contains one first frame and 630 label frames.

Recommend commands

- c. Recommended command
- Training command

Reference

[1] C. Chan, et al., "Everybody Dance Now," ICCV, 2019

[2] E. Denton, et al., "Stochastic Video Generation with a Learned Prior," ICML, 2018

[3] H. Fu, et al., "Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing," NAACL 2019