CS1231-Midterm 1, 2018

Name:	Matric Number:
Tutorial Group:	Seat Number:

1.	1	marks	Which	of these	sentences	are	propositions
	-	III	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OI CIICOC	DOMESTICON	COL	proposition

1 200.	
A HS:	

- (a) Can you answer this question? (b) x+2=11 (c) Boston is the capital of Massachusetts.
- (d) Do not pass go.
- **2.** [4 marks] Show that $\neg p \to (q \to r) \equiv q \to (p \lor r)$ by two different methods.

Using truth table:

p q r	$\neg p$	$q \rightarrow r$	$\neg p \to (q \to r)$	$p \lor r$	$q \to (p \lor r)$
T T T					
T T F					
T F T					
T F F					
F T T					
F T F					
F F T					
F F F					

Using theorem:

- **3.** [4 marks] Let D be the set of all animals. Let P(x) be "x can fly" and B(x) be "x is a bird". For each of the following, translate into a logical expression with domain D.
- (i) Every bird can fly.
- (ii) Being a bird is not a necessary condition for an animal being able to fly. (Hint: Use quantifier(s). Simplify your answer as much as possible.)
- 4. [2 marks] Determine, with justification, the truth values of the following expression.

$$\exists x \in \mathbb{Z} \forall y \in \mathbb{Z}, xy = x.$$

Truth Value:

Justification:

- **5.** [4 marks] Let D consist of all people in the world. Let L(x,y) be the statement "x loves y" and Q(x,y) be the statement "x and y are the same person", where the domain for both x and y is D. Translate the following into logical expressions using quantifiers \forall , \exists , and logical connectives.
- (i) Everybody loves Jerry.

Answer:

(ii) There is somebody whom no one loves.

Answer:

(iii) There are exactly two people whom Lynn loves.

Answer:

- **6.** [2 marks] Translate the following into a logical expression using quantifiers \forall , \exists , and logical connectives. Use U, D and M, where U is a set which consists of all students in the university, D is a set which consists of all departments in the university, and M is a set which consists of all courses in the university. Let C(x) be the statement "x is a student in this class", T(x,y) be "the student x has taken the course y" and O(y,z) be "the course y is offered by the department z."
- "There is a student in this class who has taken every course offered by one of the departments in the university."

Answer:

7. [3 marks] Using valid arguments forms, derive the conclusion r from the following given hypotheses:

(i)
$$(p \wedge t) \rightarrow (r \vee s)$$
, (ii) $q \rightarrow (u \wedge t)$, (iii) $u \rightarrow p$, (iv) $\neg s$, (v) q .

Answer: