REGRESSION ANALYSIS

[And it's application in Business]

M.Ravishankar

Introduction...

- Father of Regression Analysis Carl F. Gauss (1777-1855).
- contributions to physics, Mathematics & astronomy.
- The term "Regression" was first used in 1877 by Francis Galton.

Regression Analysis...

- It is the study of the relationship between variables.
- It is one of the most commonly used tools for business analysis.
- It is easy to use and applies to many situations.

Regression types...

Simple Regression: single explanatory variable

Multiple Regression: includes any number of explanatory variables.

- <u>Dependant variable</u>: the single variable being explained/ predicted by the regression model
- <u>Independent variable</u>: The explanatory variable(s) used to predict the dependant variable.
- <u>Coefficients (β):</u> values, computed by the regression tool, reflecting explanatory to dependent variable relationships.
- Residuals (ε): the portion of the dependent variable that isn't explained by the model; the model under and over predictions.

Regression Analysis...

- Linear Regression: straight-line relationship
 - Form: y=mx+b
- Non-linear: implies curved relationships
 - logarithmic relationships

Regression Analysis...

- Cross Sectional: data gathered from the same time period
- <u>Time Series</u>: Involves data observed over equally spaced points in time.

Simple Linear Regression Model. . .

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Types of Regression Models. . .

Estimated Regression Model...

The sample regression line provides an estimate of the population regression line

The individual random error terms e, have a mean of zero

Simple Linear Regression Example. . .

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (y) = house price in \$1000s
 - Independent variable (x) = square feet

House Price in Square Feet \$1000s (x) **(y)**

Sample Data

Regression Statistics						
Multiple R	0.76211				Outpu	Jt
R Square	0.58082					
Adjusted R Square	0.52842					
Standard Error	41.33032	The rear	assion a	auatio	nn ie:	
Observations	10	The regression equation is:				
	_	house price = 98.24833 + 0.10977 (square feet)				
ANOVA	df	SS	MS	F	Significance F	
Regression	1	18934.9348	18934.9348	11.0848	0.01039	
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				
	Coefficient s Si	tandard Error	t Stat	<i>P-valu</i> e	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Graphical Presentation . . .

House price model: scatter plot and regression line

house price = 98.24833 + 0.10977 (square feet)

Interpretation of the Intercept, b₀

- b₀ is the estimated average value of Y when the value of X is zero (if x = 0 is in the range of observed x values)
 - Here, no houses had 0 square feet, so b_0 = 98.24833 just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b₁

- b₁ measures the estimated change in the average value of Y as a result of a oneunit change in X
 - Here, b_1 = .10977 tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Example: House Prices

House Price in \$1000s (y)	Square Feet (x)		
245	1400		
312	1600		
279	1700		
308	1875		
199	1100		
219	1550		
405	2350		
324	2450		
319	1425		
255	1700		

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

Predict the price for a house with 2000 square feet

Example: House Prices

Predict the price for a house with 2000 square feet:

house price =
$$98.25 + 0.1098$$
 (sq.ft.)

$$=98.25+0.1098(2000)$$

$$= 317.85$$

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Coefficient of Determination, R²

Coefficient of determination

$$R^2 = \frac{SSR}{SST} = \frac{sum of squares explained by regression}{total sum of squares}$$

Note: In the single independent variable case, the coefficient of determination is

$$R^2 = r^2$$

where:

 R^2 = Coefficient of determination r = Simple correlation coefficient

Examples of Approximate R² Values

 $R^2 = 1$

Perfect linear relationship between x and y:

100% of the variation in y is explained by variation in x

Examples of Approximate R² Values

 $0 < R^2 < 1$

Weaker linear relationship between x and y:

Some but not all of the variation in y is explained by variation in x

Examples of Approximate R² Values

 $R^2 = 0$

No linear relationship between x and y:

The value of Y does not depend on x. (None of the variation in y is explained by variation in x)

Output...

Lower 95%

95%

232.0738

Standard Error

ts

t Stat

value

0.1289

Standard Error of Estimate...

 The standard deviation of the variation of observations around the regression line is estimated by

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-k-1}}$$

Where

SSE = Sum of squares error

n = Sample size

k = number of independent variables in the

model

The Standard Deviation of the Regression Slope

 The standard error of the regression slope coefficient (b₁) is estimated by

$$s_{b_1} = \frac{s_{\epsilon}}{\sqrt{\sum (x - \overline{x})^2}} = \frac{s_{\epsilon}}{\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}}}$$

where:

S_{b₁} = Estimate of the standard error of the least squares slope

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-2}}$$
 = Sample standard error of the estimate

Output...

Significance F

0.01039

Regression S	tatistics	$s_{\epsilon} = 41.33032$				
Multiple R	0.76211					
R Square	0.58082					
Adjusted R Square	0.52842	S,	$_{0_{1}}=0.0$	3297		
Standard Error	41.33032		3 1			
Observations	10					
ANOVA						
	df	SS	MS	F		
			18934.934	11.084		
Regression	1	18934.9348	8	8		

8

9

Residual

Total

Coefficien		P-			Upper
ts	Standard Error	t Stat	value	Lower 95%	95%
		4	0.1289		232.0738

1708.1957

13665.5652

32600.5000

Reference...

Business statistics by S.P.Gupta & M.P.Gupta

Sources retrieved from Internet...

- www.humboldt.edu
- www.cs.usask.ca
- www.cab.latech.edu
- www.quickmba.com
- www.wikipedia.com
- www.youtube.com

M.RAVISHANKAR MBA(AB) 2008-2010 Batch NIFTTEA KNITWEAR FASHION INSTITUTE TIRUPUR

OXYGEN024@GMAIL.COM

QUESTIONS?

FAILURE IS A PATH TO SUCCESS; SO DON'T GIVE UP, JUST MOVE ON WITH FIRM DETERMINATION