Exercícios de acompanhamento da aula:

1. Obtenha a expressão booleana a partir do circuito lógico:

2. Obtenha a expressão booleana a partir do circuito lógico:

3. Obtenha a expressão booleana a partir do circuito lógico:

- 4. Obter os circuitos que executam as seguintes expressões booleanas:
 - a) S = A.B.C + (A+B).C
 - b) $S = [\overline{(\overline{A.B}) + (\overline{C.\overline{D}})}].E + \overline{A}.(A.\overline{D}.\overline{E} + C.D.E)$
- 5. Obter as tabelas verdades para as seguintes expressões booleanas:
 - a) $S=(A+B).(\overline{B.C})$
 - b) $S = [\overline{(A+B).C}] + [\overline{D.(B+C)}]$

6. Obter a expressão a partir da Tabela Verdade e fazer o diagrama do circuito correspondente:

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Exercícios para fixação extraclasse:

1. Dada a expressão booleana: $S = [\overline{(A + \overline{B} + C)}.(A + \overline{D} + B)].\overline{A}.B.\overline{C}$ Faça o diagrama do circuito lógico que executa a expressão utilizando o Logisim.

2. Dada a expressão booleana: $S = \overline{(\overline{A} + B \odot C + \overline{D})} + \overline{D} + \overline{(\overline{B} \cdot D + \overline{D})}$ Faça o diagrama do circuito lógico que executa a expressão utilizando o Logisim.

3. Faça a tabela verdade representativa da expressão: $S = \overline{A} \cdot [\overline{B} \cdot \overline{(A+C)} + \overline{A} \cdot \overline{B} \cdot C]$

4. Faça a tabela verdade representativa da expressão:

$$S=B.D.\{\overline{B+C\odot D+\overline{A}}.\overline{[B.\overline{C}+\overline{B}.C+A+B.\overline{(\overline{C}+\overline{D})}]}\}$$

5. Desenhe o circuito utilizando o Logisim que executa a expressão abaixo:

$$S = (\overline{A} + \overline{B}) \cdot \{ \overline{B} + (B \oplus C) \cdot [\overline{A} \cdot B \cdot \overline{C} + B \cdot \overline{(A + \overline{D})} + B \cdot \overline{C} + \overline{B} \cdot D] + A \cdot B \cdot D \}$$

6. Determine a expressão que o circuito da 1 executa. Utilize o editor de fórmula.

Figura 1: Circuito

7. Determine a expressão que o circuito da 2 executa. Utilize o editor de fórmula.

8. Determine a expressão que o circuito da Figura 3 executa. Utilize o editor de fórmula.

9. Determine a expressão que executa a Tabela Verdade abaixo e desenhe o circuito correspondente à expressão A, B, C e D são variáveis de entrada e S é a saída. Para a expressão utilize o editor de fórmula, para o circuito utilize o Logisim.

Α	В	С	D	s
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

10. Determine a expressão que executa a Tabela Verdade abaixo e desenhe o circuito correspondente à expressão. Para a expressão utilize o editor de fórmula, para o circuito utilize o Logisim.

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- 11. Encontre a mínima soma dos produtos que implemente as funções a seguir:
 - a) $f(x_1, x_2, x_3) = \sum m(3,4,6,7)$
 - b) $f(x_1, x_2, x_3) = \sum m(1,3,4,6,7)$
- 12. Encontre o mínimo produto das somas que implemente as funções a seguir:
 - a) $f(x_1, x_2, x_3) = \prod M(0,2,5)$
 - b) $f(x_1, x_2, x_3) = \prod M(0,1,5,7)$
- 13. Desenhe o circuito mínimo que possua três entradas, o qual produza a saída 1 quando duas ou mais entradas tiverem o valor 1, caso contrário a saída deve ser 0. Utilize o Logisim.
- 14. Utilizando diagramas de Venn:
 - a) Mostre a localização de cada mintermo em um diagrama de três variáveis.
 - b) Mostre, em um diagrama separado, cada produto da função $f = x_1 \bar{x}_2 x_3 + x_1 x_2 + \bar{x}_1 x_3$.

Encontre a mínima soma dos produtos de f

15. A figura a seguir representa um diagrama de Venn de quatro variáveis, destacando os mintermos m_0 , m_1 e m_2 . Identifique os demais mintermos.

Figura 4: Diagrama de Venn