Big Data Analytics on Container-Orchestrated Systems

Gerard Casas Saez

University of Colorado Boulder

July 20, 2017

Outline

Introduction & Background

Problem statement

Related work

Approach

Demo

Evaluation & Results

Scalability

Maintenance

Performance

Future work

Introduction & Background

Why?

Data growth

IOT & Social networks

- Increase internet traffic: 3x internet traffic by 2021
- Scale up Big Data Analytics System
- Keeping maintenance at low cost
- Container-orchestrated make infrastructure easier

Keep up with data growth

Background: Project EPIC

- EPIC Collect
- EPIC Analyze

Background: Containerization

- Operating-system-level virtualization
- Use host machine system resources
- Docker most used alternative

Development microservices

Background: Container-orchestration systems

- Container interaction abstraction
- Great to deploy microservices architectures
- Apache Mesos vs Kubernetes

Background: Microservices Architecture

- Small & specific
- Better scalability
- Loosely-coupled & highly-cohesive
- Orchestration <> Coreography

Background: Coreography microservice architecture

- Easier to extend

- Asyncronous
- PubSub interaction
- Messaging system: Apache Kafka

Problem statement

Problem statement

- 1. Advantages and/or limitations from existing infrastructure
 - 1.1 More reliable?
 - 1.2 More scalable?
- 2. Lower maintenance costs than the existing infrastructure?
 - 2.1 Easier to deploy?
 - 2.2 Easier to upgrade?
 - 2.3 More resilient to failures?

Related work

- SMACK: Spark, Mesos, Akka, Cassandra and Kafka [Raul Estrada et al. 2016]
- Hadoop ecosystem [Han Hu et al. 2014]
- Lambda architecture [Zirije Hasani et al. 2014]

Approach

Features

- Event management
- Real-time collection of streaming Twitter data
- Real-time classification of incoming tweets
- Data Analysis

Custom components

- Event Manager
- Infrastructure Controller
- Twitter tracker
- Twitter Normalizer

Cassandra table structure

```
CREATE TABLE twitter_analytics.tweet (
    id uuid, t_id text, event_kw text, event_name text, hashtags list <text>,
    media_url text, t_coordinates text, t_created_at timestamp,
    t_favorite_count int, t_favorited boolean, t_geo text,
    t_is_a_retweet boolean, t_lang text, t_retweet_count int,
    t_retweeted boolean, t_text text, u_created_at timestamp,
    u_description text, u_favourites_count int, u_followers_count int,
    u_friends_count int, u_geo_enabled boolean, u_id text, u_lang text,
    u_listed_count int, u_location text, u_name text, u_screen_name text,
    um_id text, um_name text, um_screen_name text, um_id text, um_name text, um_screen_name text,
    PRIMARY KEY (id, t_id))
```

Listing 1: Tweets CQL table script

Demo time!

Let's track an event...

Event Manager UI

...and analyze it!

Zeppelin Notebook

EPIC EventManager

Smiley

DB code smiley Tokens :D. :J, XD, LOL, WTF, XP, :'L -
Hearth

DB code hearth Tokens <3, love

DB code nba-draft

DB code hoardn Tokens nba, draft, Lonzo, Lavar, basketball, nba draft

NAMESPACE	NAME	READY	STATUS	RESTARTS	AGE	
cassandra	cassandra-0	2/2	Running	1	2d	
cassandra	cassandra-1	2/2	Running	2	11d	
cassandra	cassandra-2	2/2	Running	7	22d	
cassandra	spark-master-controller-bkdl7	1/1	Running	0	22d	
default	hearth-event-parser-2160998245-m19st	1/1	Running	9	2d	
default	k8s-controller-3919038388-75tkk	1/1	Running	0	2d	
default	smiley-event-parser-3033807940-c0cwj	1/1	Running	9	2d	
default	twitter-tracker-2482383360-s0kz1	1/1	Running	5	2d	
frontend	eventmanager-ui-3464180876-h605f	1/1	Running	0	23d	
frontend	zeppelin-3633522582-t0kng	1/1	Running	0	2d	
kafka	kafka-0	1/1	Running	3	11d	
kafka	kafka-1	1/1	Running	0	2d	
kafka	zoo-0	1/1	Running	0	2d	
kafka	zoo-1	1/1	Running	0	2d	
kafka	zoo-2	1/1	Running	0	25d	
kube-system	heapster-v1.3.0-4211727876-kv0cl	2/2	Running	0	11d	
kube-system	kube-dns-806549836-431vx	3/3	Running	0	11d	
kube-system	kube-dns-autoscaler-2528518105-2wlsr	1/1	Running	1	27d	
kube-system	kube-proxy-gke-development-development-dcfa2eb3-2jhj	1/1	Running	0	2d	
kube-svstem	kube-proxv-ake-development-development-dcfa2eb3-15xb	1/1	Runnina	1	26d	

cassandraspark-samples/analytics

Real time twitter Analytics

Press run above to update stats

Columns: (d, t,d, event,kw, event,name, hashtags, media, url, tocordinates, t_created,at, t_avorites, t_t_avorited, t_goo, t,is_a_retweet, Llang, t_retweet.count, t_retweeted, t,ext, u_created,at, u_description, u_favourites, count, u collowers count, u triends count, u close and to under under count, u close and to under under count, u close and to under under count, u close and the under count, under

SOL Context configured

Stats on tweets

Different stats on all the current dataset available on the database

Total tweet count

import org.apache.spark._

import com.datastax.spark.connector._

table: Com.datostax.spark.comector-red.cissandraTableScanDOTcom.datostax.spark.connector.cissandraTableScanDOTQT or RDD at CassandraRDD.scalozi5
respi: IndexedSectString] = MropadeArrov(d, t.i., event.www.event.come, hashbase, media_url_t.exent.ordinates, t.frootles.com, t.froortles.d., t.exe, t.s.o., t.s.o., retweet_t.long, t_retweet_count, t_retweeted, t.text, u.cr

ected st. u.description, u.fevourites_count, u_followers_count, u_friends_count, u_geo_enabled, u_id, u_lang, u_listed_count, u_location, u_name, u_screen_name, u_statuses_count, u_time_zone, u_url, u_utc_offset, um_id, um_nam \$7337398

Tweets by event

Languages used in all tweets

Evaluation & Results

Reliability

Current vs Prototype

- Threads to monitoring

- Kubernetes abstraction

Every minute script check

Auto recovery

- Check log file size

- Rolling update

Analyze manual

 Node assignation depending on resources usage

Scalability

Current vs Prototype

Monolyth

 Kubernetes replica specification

Manual process

- Stateless microservices

- Shared session state

Independently scalable

Load balancing

- Auto scale

Maintenance

Current infrastructure

- Large & complex
- Strong use of frameworks
- Manual deployment
- Dedicated machines

Prototype

- Easier to mantain: less code, faster development
- Technology flexibility
- Easier to deploy: YAML description files
- Flexibility on cloud provider
- Available built-in tools

Code lines

EPIC Analyze 5086 lines

Twitter tracker 108 lines

Kubernetes controller 145 lines

Event manager 2090 lines

Tweet normalizer 209 lines

Performance

WordCount

Listing 2: WordCount Spark script

```
(1) ShuffledRDD[112] at sortByKey at <console>:31 []
+-(176) MapPartitionsRDD[111] at map at <console>:31 []
| ShuffledRDD[110] at reduceByKey at <console>:31 []
+-(176) MapPartitionsRDD[109] at map at <console>:31 []
| MapPartitionsRDD[108] at flatMap at <console>:31 []
| CassandraTableScanRDD[107] at RDD at CassandraRDD.scala:15 []
```

Listing 3: Debug string rdd

WordCount

Number of tweets	Time (s)	Tweets/sec
490199	238	2060
1400884	469	2987
21680851	1107	19585
27199614	1500	18133
54395957	4228	12866

Future work

- Improve resource specification (CPU, memory)
- Better Cassandra structure
- Unified authentification

- Extend the system with new features

Questions?

Thank you!

Twitter @casassaez

Website gerard.space

Repo github.com/casassg/thesis