Билет 6. Решето Эратосфена

Определение

Решето Эратосфена — алгоритм для нахождения всех простых чисел до заданного целого N.

Алгоритм

Шаги алгоритма:

- 1. Выписываем числа $1, 2, \dots, N$
- 2. Первое, большее 1 число 2. Оно простое
- 3. Вычёркиваем все кратные 2 до N
- 4. Следующее невычеркнутое число 3. Оно простое, вычёркиваем все кратные 3
- 5. Продолжаем пока не обработаем все числа до \sqrt{N}

Доказательство корректности

Корректность:

Когда вычеркнуты все числа, кратные простым, меньшим p, то все невычеркнутые числа, меньшие p^2 , будут простыми.

Доказательство: Всякое составное $a < p^2$ уже вычеркнуто как кратное его наименьшего простого делителя, который $\leq \sqrt{a} < p$.

Важные замечания:

- 1. При вычёркивании кратных простого p начинаем с p^2
- 2. Алгоритм завершается, когда обработаны все простые $\leq \sqrt{N}$
- 3. Для каждого простого pвычёркиваем, начиная с p^2

Асимптотическая сложность

Асимптотическая сложность: $O(n \ln \ln n)$

 $\mathbf{B}/\mathbf{Д}$ — означает "без доказательства" (доказательство сложности опущено)

Линейное решето Эратосфена

Определение

Проблема классического решета: Число может быть помечено как составное несколько раз (по каждому простому делителю). **Цель линейного решета:** Каждое составное число помечается ровно один раз.

Алгоритм

Идея алгоритма:

- p[x] минимальный простой делитель числа x
- Любое число x можно представить как $x=p[x]\cdot i$
- i не имеет делителей меньших p[x] (т.е. $p[x] \leq p[i]$)
- Перебираем iи для каждого перебираем простые $p \leq p[i]$

Доказательство корректности

Корректность:

Каждое составное число x помечается ровно один раз при $i=\frac{x}{p[x]}$ и p=p[x].

Условие $p \leq p[i]$ гарантирует, что p — минимальный простой делитель x.

Процесс пометки в линейном решете

Каждое число обрабатывается ровно один раз!

Асимптотическая сложность

Асимптотическая сложность: O(n) Обоснование:

- Внешний цикл: n итераций
- Внутренний цикл: для каждого i перебираем простые $\leq p[i]$
- Каждое составное число помечается ровно один раз
- ullet Суммарное количество операций: O(n)

Объяснение ключевых моментов кода

- Внешний цикл: Перебираем все числа от 2 до n
- Добавление простых: Если i простое добавляем в список primes
- Внутренний цикл: Для каждого простого p в списке:
 - Помечаем $i \cdot p$ как составное
 - Прерываем цикл если $i \cdot p > n$
 - Ключевое условие: Если p делит i прерываем цикл

Почему прерываем при i%p == 0?

$$i=4,\ p=2$$
 Если продолжим: $4\%2==0$ $4\cdot 3=12$ Ho $p[12]=2\neq 3!$

Нарушится условие минимальности

Преимущества линейного решета:

- Линейная сложность -O(n)
- Однократная пометка каждое число обрабатывается один раз
- **Побочный продукт** получаем массив минимальных простых делителей

Недостатки:

- Большая константа в асимптотике
- ullet На практике классическое решето часто быстрее для больших n

```
public class LinearSieve {
public static List<Integer> linearSieve(int n) { 1usage
  if (n < 2) {
   return new ArrayList<>();
  boolean[] isPrime = new boolean[n + 1];
   Arrays.fill(isPrime, val: true);
   isPrime[0] = isPrime[1] = false;
   List<Integer> primes = new ArrayList<>();
   for (int \underline{i} = 2; \underline{i} <= n; \underline{i} ++) {
     if (isPrime[\underline{i}]) {
       primes.add(<u>i</u>);
     for (int p : primes) {
       if (\underline{i} * p > n) break;
       isPrime[i * p] = false;
       if (\underline{i} \% p == 0) break;
  return primes;
```

Рис. 1: Eratosphen Linear Sieve