Dikes Overtopping

Generated by Doxygen 1.8.9.1

Thu Aug 27 2015 10:24:32

Contents

1	Mod	lules In	dex		1
	1.1	Modul	es List		 1
2	Data	a Type I	ndex		3
	2.1	Class	List		 3
3	File	Index			5
	3.1	File Li	st		 5
4	Mod	lule Do	cumentati	ion	7
	4.1	dllover	topping M	Module Reference	 7
		4.1.1	Detailed	Description	 7
		4.1.2	Function	n/Subroutine Documentation	 7
			4.1.2.1	calculateqo	 7
			4.1.2.2	calculateqof	 8
			4.1.2.3	calczvalue	 9
			4.1.2.4	versionnumber	 10
	4.2	factorr	modulertod	overtopping Module Reference	 10
		4.2.1	Function	n/Subroutine Documentation	 10
			4.2.1.1	calculategammab	 10
			4.2.1.2	calculategammabeta	 11
			4.2.1.3	calculategammaf	 11
			4.2.1.4	calculatetanalpha	 12
	4.3	formul	amodulert	toovertopping Module Reference	 13
		4.3.1	Function	n/Subroutine Documentation	 14
			4.3.1.1	adjustinfluencefactors	 14
			4.3.1.2	calculateanglewaveattack	 14
			4.3.1.3	calculatebreakerlimit	 15
			4.3.1.4	calculatebreakerparameter	 15
			4.3.1.5	calculatewavelength	 15
			4.3.1.6	calculatewaveovertoppingdischarge	 16
			4.3.1.7	calculatewayerunup	 16

iv CONTENTS

		4.3.1.8	calculatewavesteepness	17
		4.3.1.9	cubicroots	18
		4.3.1.10	isequalreal	18
		4.3.1.11	isequalzero	19
		4.3.1.12	realrootscubicfunction	19
		4.3.1.13	rootsdepressedcubic	19
		4.3.1.14	rootsgeneralcubic	20
4.4	geome	trymodule	rtoovertopping Module Reference	20
	4.4.1	Function	Subroutine Documentation	21
		4.4.1.1	adjustnonhorizontalberms	21
		4.4.1.2	allocatevectorsgeometry	22
		4.4.1.3	calculatehorzdistance	22
		4.4.1.4	calculatehorzlengths	23
		4.4.1.5	calculatesegmentslopes	23
		4.4.1.6	checkcrosssection	24
		4.4.1.7	copygeometry	25
		4.4.1.8	deallocategeometry	25
		4.4.1.9	determinesegmenttypes	26
		4.4.1.10	initializegeometry	26
		4.4.1.11	isequalgeometry	27
		4.4.1.12	mergesequentialberms	28
		4.4.1.13	removeberms	29
		4.4.1.14	removedikesegments	30
		4.4.1.15	splitcrosssection	30
		4.4.1.16	writecrosssection	31
4.5	mainm	odulertoov	vertopping Module Reference	31
	4.5.1	Function/	Subroutine Documentation	32
		4.5.1.1	calculateovertopping	32
		4.5.1.2	calculateovertoppingnegativefreeboard	33
		4.5.1.3	calculateovertoppingsection	33
		4.5.1.4	calculatewaveovertopping	34
		4.5.1.5	checkinputdata	35
		4.5.1.6	convertmodelfactorsrto	36
		4.5.1.7	fillmodelfactorsrto	37
		4.5.1.8	interpolateresultssections	37
		4.5.1.9	iterationwaverunup	38
4.6	overto	ppinginterfa	ace Module Reference	38
	4.6.1	Variable I	Documentation	39
		4.6.1.1	varmodelfactorcriticalovertopping	39
4.7	typede	finitionsrto	overtopping Module Reference	39

CONTENTS

		4.7.1	Variable I	Documentation	40
			4.7.1.1	berm_max	40
			4.7.1.2	berm_min	40
			4.7.1.3	fb_max	40
			4.7.1.4	fb_min	40
			4.7.1.5	fn_max	40
			4.7.1.6	fn_min	41
			4.7.1.7	frunup1_max	41
			4.7.1.8	frunup1_min	41
			4.7.1.9	frunup2_max	41
			4.7.1.10	frunup2_min	41
			4.7.1.11	frunup3_max	41
			4.7.1.12	frunup3_min	41
			4.7.1.13	fs_max	41
			4.7.1.14	fs_min	41
			4.7.1.15	margindiff	42
			4.7.1.16	margingrad	42
			4.7.1.17	rfactor_max	42
			4.7.1.18	rfactor_min	42
			4.7.1.19	slope_max	42
			4.7.1.20	slope_min	42
			4.7.1.21	xdiff_min	42
			4.7.1.22	z2_iter_max	42
			4.7.1.23	z2_margin	42
	4.8	zfunctio	onswtiover	topping Module Reference	43
		4.8.1	Detailed	Description	43
		4.8.2	Function/	Subroutine Documentation	43
			4.8.2.1	adjustprofile	43
			4.8.2.2	calculateqorto	44
			4.8.2.3	profileinstructure	45
			4.8.2.4	zfunclogratios	46
5	Data	Type D	ocumenta	ation	49
•	5.1	•		ace::overtoppinggeometrytype Type Reference	49
	•	5.1.1		Description	50
		5.1.2		Data Documentation	50
		- ·	5.1.2.1	normal	50
			5.1.2.2	npoints	50
			5.1.2.3	roughness	50
			5.1.2.4	xcoords	50
					-

vi CONTENTS

		5.1.2.5	ycoords	50
5.2	overto	opinginterfa	ace::overtoppinggeometrytypef Type Reference	51
	5.2.1	Detailed	Description	51
	5.2.2	Member	Data Documentation	51
		5.2.2.1	normal	51
		5.2.2.2	npoints	51
		5.2.2.3	roughness	52
		5.2.2.4	xcoords	52
		5.2.2.5	ycoords	52
5.3	typede	finitionsrto	overtopping::overtoppingmodelfactors Type Reference	52
	5.3.1	Detailed	Description	53
	5.3.2	Member	Data Documentation	53
		5.3.2.1	computedovertopping	53
		5.3.2.2	criticalovertopping	53
		5.3.2.3	factordeterminationq_b_f_b	53
		5.3.2.4	factordeterminationq_n_f_n	53
		5.3.2.5	frunup1	54
		5.3.2.6	frunup2	54
		5.3.2.7	frunup3	54
		5.3.2.8	fshallow	54
5.4	typede	finitionsrto	overtopping::tpgeometry Type Reference	54
	5.4.1	Detailed	Description	56
	5.4.2	Member	Data Documentation	56
		5.4.2.1	nbermsegments	56
		5.4.2.2	ncoordinates	56
		5.4.2.3	psi	56
		5.4.2.4	roughnessfactors	56
		5.4.2.5	segmentslopes	56
		5.4.2.6	segmenttypes	56
		5.4.2.7	xcoorddiff	56
		5.4.2.8	xcoordinates	57
		5.4.2.9	ycoorddiff	57
		5.4.2.10	ycoordinates	57
5.5	typede	finitionsrto	overtopping::tpload Type Reference	57
	5.5.1	Detailed	Description	58
	5.5.2	Member	Data Documentation	58
		5.5.2.1	$h \ldots \ldots \ldots \ldots$	58
		5.5.2.2	hm0	58
		5.5.2.3	phi	58
		5.5.2.4	tm_10	58

CONTENTS vii

	5.6	typede	finitionsrtoovertopping::tpmodelfactors Type Reference	58
		5.6.1	Detailed Description	59
		5.6.2	Member Data Documentation	60
			5.6.2.1 fb	60
			5.6.2.2 fn	30
			5.6.2.3 frunup1	60
			5.6.2.4 frunup2	60
			5.6.2.5 frunup3	60
			5.6.2.6 fs	60
	5.7	typede	finitionsrtoovertopping::tpovertopping Type Reference	60
		5.7.1	Detailed Description	31
		5.7.2	Member Data Documentation	31
			5.7.2.1 qo	31
			5.7.2.2 z2	31
	5.8	overtop	ppinginterface::tpprofilecoordinate Type Reference	32
		5.8.1	Detailed Description	62
		5.8.2	Member Data Documentation	32
			5.8.2.1 roughness	32
			5.8.2.2 xcoordinate	33
			5.8.2.3 zcoordinate	33
		_		
6				3 5
	6.1		•	35
		6.1.1	·	35
	6.2		0	35
		6.2.1	Detailed Description	66
	6.3	formula	11 5	66
		6.3.1	•	67
	6.4	geome	tryModuleRTOovertopping.f90 File Reference	67
		6.4.1	Detailed Description	86
	6.5	mainM	oduleRTOovertopping.f90 File Reference	86
		6.5.1	Detailed Description	39
	6.6	overtop	ppingInterface.f90 File Reference	69
		6.6.1	Detailed Description	69
	6.7	typeDe	finitionsRTOovertopping.f90 File Reference	69
		6.7.1	Detailed Description	71
	6.8	zFuncti	ionsWTIOvertopping.f90 File Reference	71
		6.8.1	Detailed Description	71
Ind	dex		,	73
				. •

Chapter 1

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

dllovertopping	
Calculate one type of overtopping	7
factormodulertoovertopping	10
formulamodulertoovertopping	13
geometrymodulertoovertopping	20
mainmodulertoovertopping	3
overtoppinginterface	38
typedefinitionsrtoovertopping	39
zfunctionswtiovertopping	
Module for the Limit State Functions (Z-functions) for wave overtopping	43

2 **Modules Index**

Chapter 2

Data Type Index

2.1 Class List

Here are the data types with brief descriptions:

overtoppinginterface::overtoppinggeometrytype	49
overtoppinginterface::overtoppinggeometrytypef	51
typedefinitionsrtoovertopping::overtoppingmodelfactors	
OvertoppingModelFactors: C-structure with model factors	52
typedefinitionsrtoovertopping::tpgeometry	
TpGeometry: structure with geometry data	54
typedefinitionsrtoovertopping::tpload	
TpLoad: structure with load parameters	57
typedefinitionsrtoovertopping::tpmodelfactors	
TpModelFactors: structure with model factors	58
typedefinitionsrtoovertopping::tpovertopping	
TpOvertopping: structure with overtopping results	60
overtoppinginterface::tpprofilecoordinate	62

Data Type Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

dllOvertopping.f90	
Main entry for the dll DikesOvertopping FUNCTIONS/SUBROUTINES exported from dll←	
Overtopping.dll:	65
factorModuleRTOovertopping.f90	
This file contains a module with functions for the slope angle and influence factors	65
formulaModuleRTOovertopping.f90	
This file contains a module with the core computations for Dikes Overtopping	66
geometryModuleRTOovertopping.f90	
This file contains a module with the core computations for Dikes Overtopping related to the	
geometry	67
mainModuleRTOovertopping.f90	
This file contains a module with the core computations for Dikes Overtopping	68
overtoppingInterface.f90	
This file contains the parameters and types (structs) as part of the interface to and from dll←	
Overtopping	69
typeDefinitionsRTOovertopping.f90	
This file contains a module with the type definitions for Dikes Overtopping	69
zFunctionsWTIOvertopping.f90	
This file contains the limit state functions for wave overtopping within WTI	71

6 File Index

Chapter 4

Module Documentation

4.1 dllovertopping Module Reference

Calculate one type of overtopping.

Functions/Subroutines

subroutine, public calculateqo (load, geometryInput, dikeHeight, modelFactors, overtopping, success, error
 — Text)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping Wrapper for calculateQoF←: covert C-like input structures to Fortran input structures.

- subroutine, public calculateqof (load, geometryF, dikeHeight, modelFactors, overtopping, success, errorText) Subroutine that calculates the discharge needed for the Z-function DikesOvertopping.
- subroutine, public calczvalue (criticalOvertoppingRate, modelFactors, Qo, z, success, errorMessage)

 Subroutine that calculates the Z-function DikesOvertopping based on the discharge calculated with calculateQoF.
- subroutine, public versionnumber (version)

4.1.1 Detailed Description

Calculate one type of overtopping.

4.1.2 Function/Subroutine Documentation

4.1.2.1 subroutine, public dllovertopping::calculateqo (type(tpload), intent(in) *load*, type(overtoppinggeometrytype), intent(in) *geometryInput*, real(kind=wp), intent(in) *dikeHeight*, type(overtoppingmodelfactors), intent(in) *modelFactors*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *success*, character(len=*), intent(out) *errorText*)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping Wrapper for calculateQoF: covert C-like input structures to Fortran input structures.

Parameters

in	geometryinput	struct with geometry and roughness as c-pointers
in	load	struct with waterlevel and wave parameters
in	modelfactors	struct with modelfactors

out	overtopping	structure with overtopping results
out	success	flag for success
out	errortext	error message (only set if not successful)

Definition at line 38 of file dllOvertopping.f90.

Here is the call graph for this function:

4.1.2.2 subroutine, public dllovertopping::calculateqof (type(tpload), intent(in) *load*, type(overtoppinggeometrytypef), intent(in) *geometryF*, real(kind=wp), intent(in) *dikeHeight*, type(overtoppingmodelfactors), intent(in) *modelFactors*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *success*, character(len=*), intent(out) *errorText*)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping.

Parameters

in	geometryf	struct with geometry and roughness
in	load	struct with waterlevel and wave parameters
in	modelfactors	struct with modelFactors
out	overtopping	structure with overtopping results
out	success	flag for success
out	errortext	error message (only set if not successful)

Definition at line 70 of file dllOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.1.2.3 subroutine, public dllovertopping::calczvalue (real(kind=wp), intent(in) *criticalOvertoppingRate*, type(overtoppingmodelfactors), intent(in) *modelFactors*, real(kind=wp), intent(in) *Qo*, real(kind=wp), intent(out) *z*, logical, intent(out) *success*, character(len=*), intent(out) *errorMessage*)

 $Subroutine\ that\ calculates\ the\ Z-function\ Dikes Overtopping\ based\ on\ the\ discharge\ calculated\ with\ calculate QoF.$

Parameters

in	criticalovertop-	critical overtoppingrate
	pingrate	
in	modelfactors	struct with modelfactors
in	qo	calculated discharge
out	Z	z value
out	errormessage	error message (only if not successful)
out	success	flag for success

Definition at line 98 of file dllOvertopping.f90.

Here is the call graph for this function:

4.1.2.4 subroutine, public dllovertopping::versionnumber (character(len=*), intent(out) version)

Parameters

out	version	version number
-----	---------	----------------

Definition at line 113 of file dllOvertopping.f90.

4.2 factormodulertoovertopping Module Reference

Functions/Subroutines

- subroutine, public calculatetanalpha (h, Hm0, z2, geometry, tanAlpha, succes, errorMessage)
 calculateTanAlpha representative slope angle
- subroutine, public calculategammabeta (Hm0, Tm_10, beta, gammaBeta_z, gammaBeta_o)
 calculateGammaBeta influence factor angle of wave attack
- subroutine, public calculategammaf (h, ksi0, ksi0Limit, gammaB, z2, geometry, gammaF, succes, error
 — Message)

calculateGammaF influence factor roughness

subroutine, public calculategammab (h, Hm0, z2, geometry, NbermSegments, gammaB, succes, error
 — Message)

calculateGammaB influence factor berms

4.2.1 Function/Subroutine Documentation

4.2.1.1 subroutine, public factormodulertoovertopping::calculategammab (real(wp), intent(in) h, real(wp), intent(in) Hm0, real(wp), intent(in) z2, type(tygeometry), intent(in) geometry, integer, intent(in) NbermSegments, real(wp), intent(out) gammaB, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateGammaB influence factor berms

Parameters

in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	z2	2% wave run-up (m)
in	geometry	structure with geometry data

in	nbermsegments	number of berm segments
out	gammab	influence factor berms
out	succes	flag for succes
out	errormessage	error message

Definition at line 271 of file factorModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.1.2 subroutine, public factormodulertoovertopping::calculategammabeta (real(wp), intent(inout) *Hm0*, real(wp), intent(inout) *Tm_10*, real(wp), intent(in) *beta*, real(wp), intent(out) *gammaBeta_z*, real(wp), intent(out) *gammaBeta_o*)

calculateGammaBeta influence factor angle of wave attack

Parameters

in,out	hm0	significant wave height (m)
in,out	tm_10	spectral wave period (s)
in	beta	angle of wave attack (degree)
out	gammabeta_z	influence factor angle of wave attack 2% wave run-up
out	gammabeta_o	influence factor angle of wave attack overtopping

Definition at line 114 of file factorModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.2.1.3 subroutine, public factormodulertoovertopping::calculategammaf (real(wp), intent(in) h, real(wp), intent(in) ksi0, real(wp), intent(in) ksi0Limit, real(wp), intent(in) gammaB, real(wp), intent(in) z2, type(typeometry), intent(in) geometry, real(wp), intent(out) gammaF, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateGammaF influence factor roughness

Parameters

in	h	local water level (m+NAP)
in	ksi0	breaker parameter
in	ksi0limit	limit value breaker parameter
in	gammab	influence factor berms
in	z2	2% wave run-up (m)
in	geometry	structure with geometry data
out	gammaf	influence factor roughness
out	succes	flag for succes
out	errormessage	error message

Definition at line 154 of file factorModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.1.4 subroutine, public factormodulertoovertopping::calculatetanalpha (real(wp), intent(in) *h,* real(wp), intent(in) *Hm0,* real(wp), intent(in) *z2,* type(typeometry), intent(in) *geometry,* real(wp), intent(out) *tanAlpha,* logical, intent(out) *succes,* character(len=*), intent(out) *errorMessage*)

calculateTanAlpha representative slope angle

Parameters

in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	z2	2% wave run-up (m)
in	geometry	structure with geometry data
out	tanalpha	representative slope angle
out	succes	flag for succes
out	errormessage	error message

Definition at line 35 of file factorModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3 formulamodulertoovertopping Module Reference

Functions/Subroutines

• subroutine, public calculatewaverunup (Hm0, s0, ksi0, ksi0Limit, gammaB, gammaF, gammaBeta, model ← Factors, z2, succes, errorMessage)

calculateWaveRunup: calculate wave runup

• subroutine, public calculatewaveovertoppingdischarge (h, Hm0, tanAlpha, gammaB, gammaF, gammaBeta, ksi0, hCrest, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertoppingDischarge: calculate the wave overtopping discharge

subroutine, public calculatewavelength (Tm 10, L0)

calculateWaveLength: calculate the wave length

• subroutine, public calculatewavesteepness (Hm0, Tm_10, s0, succes, errorMessage)

calculateWaveSteepness: calculate the wave steepness

• subroutine, public calculatebreakerparameter (tanAlpha, s0, ksi0, succes, errorMessage)

calculateBreakerParameter: calculate the breaker parameter

• subroutine, public calculateanglewaveattack (phi, psi, beta)

calculateAngleWaveAttack: calculate the angle of wave attack

• subroutine, public calculatebreakerlimit (modelFactors, gammaB, ksi0Limit, succes, errorMessage)

calculateBreakerLimit: calculate the breaker limit

• subroutine, public adjustinfluencefactors (gammaB, gammaF, gammaBeta, gammaBetaType, ksi0, ksi0Limit, succes, errorMessage)

adjustInfluenceFactors: adjust the influence factors

• subroutine, public realrootscubicfunction (a, b, c, d, N, x, succes, errorMessage)

realRootsCubicFunction: calculate the roots of a cubic function

• subroutine, public rootsgeneralcubic (a, b, c, d, z, succes, errorMessage)

rootsGeneralCubic: calculate the roots of a generic cubic function

• subroutine, public rootsdepressedcubic (p, q, z)

rootsDepressedCubic: calculate the roots of a depressed cubic function

• subroutine, public cubicroots (z, roots)

cubicRoots: calculate the roots of a cubic function

• logical function, public isequalreal (x1, x2)

isEqualReal: are two reals (almost) equal

• logical function, public isequalzero (x)

isEqualZero: is a real (almost) zero

4.3.1 Function/Subroutine Documentation

4.3.1.1 subroutine, public formulamodulertoovertopping::adjustinfluencefactors (real(wp), intent(inout) *gammaB*, real(wp), intent(inout) *gammaBeta*, integer, intent(in) *gammaBetaType*, real(wp), intent(in) *ksi0*, real(wp), intent(in) *ksi0Limit*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

adjustInfluenceFactors: adjust the influence factors

Parameters

in,out	gammab	influence factor berms
in,out	gammaf	influence factor roughness
in,out	gammabeta	influence factor angle of wave attack
in	gammabetatype	type influence factor angle of wave attack: 1 = wave run-up, 2 = overtopping
in	ksi0	breaker parameter
in	ksi0limit	limit value breaker parameter
out	succes	flag for succes
out	errormessage	error message

Definition at line 405 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.2 subroutine, public formulamodulertoovertopping::calculateanglewaveattack (real(wp), intent(in) phi, real(wp), intent(in) psi, real(wp), intent(out) beta)

calculateAngleWaveAttack: calculate the angle of wave attack

Parameters

in	phi	wave direction (degree)
in	psi	dike normal (degree)
out	beta	angle of wave attack (degree)

Definition at line 308 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.3 subroutine, public formulamodulertoovertopping::calculatebreakerlimit (type (typmodelfactors), intent(in) *modelFactors*, real(wp), intent(in) *gammaB*, real(wp), intent(out) *ksi0Limit*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateBreakerLimit: calculate the breaker limit

Definition at line 331 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.4 subroutine, public formulamodulertoovertopping::calculatebreakerparameter (real(wp), intent(in) *tanAlpha*, real(wp), intent(in) *s0*, real(wp), intent(out) *ksi0*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateBreakerParameter: calculate the breaker parameter

Parameters

in	tanalpha	representative slope angle
in	s0	wave steepness
out	ksi0	breaker parameter
out	succes	flag for succes
out	errormessage	error message

Definition at line 267 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.5 subroutine, public formulamodulertoovertopping::calculatewavelength (real(wp), intent(in) *Tm_10*, real(wp), intent(out) *L0*)

calculateWaveLength: calculate the wave length

Parameters

in	tm_10	spectral wave period (s)

out	10	wave length (m)

Definition at line 204 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.6 subroutine, public formulamodulertoovertopping::calculatewaveovertoppingdischarge (real(wp), intent(in) *h*, real(wp), intent(in) *Hm0*, real(wp), intent(in) *tanAlpha*, real(wp), intent(in) *gammaB*, real(wp), intent(in) *gammaBeta*, real(wp), intent(in) *ksi0*, real(wp), intent(in) *hCrest*, type(typmodelfactors), intent(in) *modelFactors*, real(wp), intent(out) *Qo*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveOvertoppingDischarge: calculate the wave overtopping discharge

Parameters

in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tanalpha	representative slope angle
in	gammab	influence factor berms
in	gammaf	influence factor roughness
in	gammabeta	influence factor angle of wave attack
in	ksi0	breaker parameter
in	hcrest	crest level (m+NAP)
in	modelfactors	structure with model factors
out	qo	wave overtopping discharge (I/m per s)
out	succes	flag for succes
out	errormessage	error message

Definition at line 106 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.7 subroutine, public formulamodulertoovertopping::calculatewaverunup (real(wp), intent(in) *Hm0*, real(wp), intent(in) *s0*, real(wp), intent(in) *ksi0*, real(wp), intent(in) *ksi0Limit*, real(wp), intent(inout) *gammaB*, real(wp), intent(inout) *gammaBeta*, type (typmodelfactors), intent(in) *modelFactors*, real(wp), intent(out) *z2*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveRunup: calculate wave runup

Parameters

in	hm0	significant wave height (m)
in	s0	wave steepness

in	ksi0	breaker parameter
in	ksi0limit	limit value breaker parameter
in,out	gammab	influence factor berms
in,out	gammaf	influence factor roughness
in,out	gammabeta	influence factor angle of wave attack
in	modelfactors	structure with model factors
out	z2	2% wave run-up (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 34 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.8 subroutine, public formulamodulertoovertopping::calculatewavesteepness (real(wp), intent(in) *Hm0*, real(wp), intent(in) *Tm_10*, real(wp), intent(out) *s0*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveSteepness: calculate the wave steepness

Parameters

in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
out	s0	wave steepness
out	succes	flag for succes
out	errormessage	error message

Definition at line 225 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.9 subroutine, public formulamodulertoovertopping::cubicroots (double complex, intent(in) z, double complex, dimension(3), intent(out) roots)

cubicRoots: calculate the roots of a cubic function

Parameters

in	Z	complex number
out	roots	cubic roots

Definition at line 651 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.10 logical function, public formulamodulertoovertopping::isequalreal (real(wp), intent(in) x1, real(wp), intent(in) x2)

isEqualReal: are two reals (almost) equal

Parameters

in	x1	first real
in	x2	second real

Definition at line 692 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.11 logical function, public formulamodulertoovertopping::isequalzero (real(wp), intent(in) x)

isEqualZero: is a real (almost) zero

Parameters

in	X	real number

Definition at line 716 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.12 subroutine, public formulamodulertoovertopping::realrootscubicfunction (real(wp), intent(in) a, real(wp), intent(in) b, real(wp), intent(in) c, real(wp), intent(in) d, integer, intent(out) N, real(wp), dimension(3), intent(out) x, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

realRootsCubicFunction: calculate the roots of a cubic function

Parameters

in	d	coefficients cubic function
out	n	number of real roots cubic function
out	X	real roots cubic function
out	succes	flag for succes
out	errormessage	error message

Definition at line 503 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.13 subroutine, public formulamodulertoovertopping::rootsdepressedcubic (real(wp), intent(in) p, real(wp), intent(in) q, double complex, dimension(3), intent(out) z)

rootsDepressedCubic: calculate the roots of a depressed cubic function

Parameters

in	q	coefficients depressed cubic
out	Z	roots depressed cubic

Definition at line 611 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.14 subroutine, public formulamodulertoovertopping::rootsgeneralcubic (real(wp), intent(in) *a,* real(wp), intent(in) *b,* real(wp), intent(in) *c,* real(wp), intent(in) *d,* double complex, dimension(3), intent(out) *z,* logical, intent(out) *succes,* character(len=*), intent(out) *errorMessage*)

rootsGeneralCubic: calculate the roots of a generic cubic function

Parameters

in	d	coefficients cubic function
out	Z	roots cubic function
out	succes	flag for succes
out	errormessage	error message

Definition at line 561 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4 geometrymodulertoovertopping Module Reference

Functions/Subroutines

• subroutine, public checkcrosssection (psi, nCoordinates, xCoordinates, yCoordinates, roughnessFactors, succes, errorMessage)

checkCrossSection: check cross section

• subroutine, public initializegeometry (psi, nCoordinates, xCoordinates, yCoordinates, roughnessFactors, geometry, succes, errorMessage)

initializeGeometry: initialize the geometry

subroutine, public allocatevectorsgeometry (nCoordinates, geometry)

allocate Vectors Geometry: allocate the geometry vectors

• subroutine, public deallocategeometry (geometry)

deallocateGeometry: deallocate the geometry vectors

• subroutine, public calculatesegmentslopes (geometry, succes, errorMessage)

calculateSegmentSlopes: calculate the segment slopes

• subroutine, public determinesegmenttypes (geometry)

determineSegmentTypes: determine the segment types

subroutine, public copygeometry (geometry, geometryCopy)

copyGeometry: copy a geometry structure

subroutine, public isequalgeometry (geometry1, geometry2, succes, errorMessage)

isEqualGeometry: are two geometries equal

• subroutine, public mergesequentialberms (geometry, geometryMergedBerms, succes, errorMessage)

mergeSequentialBerms: merge sequential berms

subroutine, public adjustnonhorizontalberms (geometry, geometryFlatBerms, succes, errorMessage)

adjustNonHorizontalBerms: adjust non-horizontal berms

subroutine, public removeberms (geometry, geometryNoBerms, succes, errorMessage)

removeBerms: remove berms

• subroutine, public removedikesegments (geometry, index, geometryAdjusted, succes, errorMessage)

removeDikeSegments: remove dike segments

• subroutine, public splitcrosssection (geometry, L0, NwideBerms, geometrysectionB, geometrysectionF, succes, errorMessage)

splitCrossSection: split a cross section

• subroutine, public calculatehorzlengths (geometry, yLower, yUpper, horzLengths, succes, errorMessage) calculateHorzLengths: calculate horizontal lengths

• subroutine, public calculatehorzdistance (geometry, yLower, yUpper, dx, succes, errorMessage)

calculateHorzDistance: calculate horizontal distance

• subroutine, public writecrosssection (geometry, geometryName)

writeCrossSection: write a cross section

4.4.1 Function/Subroutine Documentation

4.4.1.1 subroutine, public geometrymodulertoovertopping::adjustnonhorizontalberms (type (tygeometry), intent(in) geometry, type (tygeometry), intent(out) geometryFlatBerms, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

adjustNonHorizontalBerms: adjust non-horizontal berms

Parameters

in	geometry	structure with geometry data
out	geometryflat-	geometry data with horizontal berms
	berms	
out	succes	flag for succes
out	errormessage	error message

Definition at line 578 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.2 subroutine, public geometrymodulertoovertopping::allocatevectorsgeometry (integer, intent(in) *nCoordinates*, type (tpgeometry), intent(inout) *geometry*)

allocateVectorsGeometry: allocate the geometry vectors

Parameters

in	ncoordinates	number of coordinates
in,out	geometry	structure with geometry data

Definition at line 199 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.3 subroutine, public geometrymodulertoovertopping::calculatehorzdistance (type (typeometry), intent(in) *geometry*, real(wp), intent(in) *yLower*, real(wp), intent(in) *yUpper*, real(wp), intent(out) *dx*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateHorzDistance: calculate horizontal distance

Parameters

in	geometry	structure with geometry data
in	ylower	y-coordinate lower bound (m+NAP)
in	yupper	y-coordinate upper bound (m+NAP)
out	dx	horizontal distance between bounds (m)

out	succes	flag for succes
out	errormessage	error message

Definition at line 1023 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.4 subroutine, public geometrymodulertoovertopping::calculatehorzlengths (type (typeometry), intent(in) *geometry*, real(wp), intent(in) *yUpper*, real(wp), dimension(geometry%ncoordinates-1), intent(out) *horzLengths*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateHorzLengths: calculate horizontal lengths

Parameters

in	geometry	structure with geometry data
in	ylower	y-coord. lower bound (m+NAP)
in	yupper	y-coord. upper bound (m+NAP)
out	horzlengths	horizontal lengths segments (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 927 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.5 subroutine, public geometrymodulertoovertopping::calculatesegmentslopes (type (type (type ometry), intent(inout) *geometry,* logical, intent(out) *succes,* character(len=*), intent(out) *errorMessage*)

calculateSegmentSlopes: calculate the segment slopes

Parameters

in,out	geometry	structure with geometry data
out	succes	flag for succes
out	errormessage	error message

Definition at line 248 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.6 subroutine, public geometrymodulertoovertopping::checkcrosssection (real(wp), intent(in) *psi*, integer, intent(in) *nCoordinates*, real(wp), dimension (ncoordinates), intent(in) *xCoordinates*, real(wp), dimension (ncoordinates), intent(in) *yCoordinates*, real(wp), dimension(ncoordinates-1), intent(in) *roughnessFactors*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

checkCrossSection: check cross section

Parameters

in	psi	dike normal (degree)
in	ncoordinates	number of coordinates
in	xcoordinates	x-coordinates (m)
in	ycoordinates	y-coordinates (m+NAP)
in	roughnessfac-	roughness factors
	tors	
out	succes	flag for succes
out	errormessage	error message

Definition at line 34 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.7 subroutine, public geometrymodulertoovertopping::copygeometry (type (tpgeometry), intent(in) *geometry*, type (tpgeometry), intent(inout) *geometryCopy*)

copyGeometry: copy a geometry structure

Parameters

in	geometry	structure with geometry data
in,out	geometrycopy	structure with geometry data copy

Definition at line 330 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.8 subroutine, public geometrymodulertoovertopping::deallocategeometry (type (typeometry), intent(inout) geometry)

deallocateGeometry: deallocate the geometry vectors

Parameters

in,out	geometry	structure with geometry data

Definition at line 225 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.9 subroutine, public geometrymodulertoovertopping::determinesegmenttypes (type (typeometry), intent(inout) *geometry*)

determineSegmentTypes: determine the segment types

Parameters

in,out	geometry	structure with geometry data

Definition at line 287 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.10 subroutine, public geometrymodulertoovertopping::initializegeometry (real(wp), intent(in) *psi*, integer, intent(in) *nCoordinates*, real(wp), dimension (ncoordinates), intent(in) *xCoordinates*, real(wp), dimension (ncoordinates), intent(in) *yCoordinates*, real(wp), dimension(ncoordinates-1), intent(in) *roughnessFactors*, type (tygeometry), intent(out) *geometry*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

initializeGeometry: initialize the geometry

Parameters

		,
in	psi	dike normal (degree)
in	ncoordinates	number of coordinates
in	xcoordinates	x-coordinates (m)
in	ycoordinates	y-coordinates (m+NAP)
in	roughnessfac-	roughness factors
	tors	
out	geometry	structure with geometry data
out	succes	flag for succes
out	errormessage	error message

Definition at line 142 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.11 subroutine, public geometrymodulertoovertopping::isequalgeometry (type (typeometry), intent(in) *geometry1*, type (typeometry), intent(in) *geometry2*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

isEqualGeometry: are two geometries equal

Parameters

	in	geometry1	structure with geometry data 1
	in	geometry2	structure with geometry data 2
ĺ	out	succes	flag for succes
ĺ	out	errormessage	error message

Definition at line 377 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

4.4.1.12 subroutine, public geometrymodulertoovertopping::mergesequentialberms (type (tpgeometry), intent(in) *geometry,* type (tpgeometry), intent(inout) *geometryMergedBerms,* logical, intent(out) *succes,* character(len=*), intent(out) *errorMessage*)

mergeSequentialBerms: merge sequential berms

Parameters

in	geometry	structure with geometry data
in,out	geome-	geometry data with merged sequential berms
	trymergedberms	
out	succes	flag for succes
out	errormessage	error message

Definition at line 471 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.13 subroutine, public geometrymodulertoovertopping::removeberms (type (tygeometry), intent(in) *geometry*, type (tygeometry), intent(out) *geometryNoBerms*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

removeBerms: remove berms

Parameters

in	geometry	structure with geometry data
out	geome-	geometry data withouth berms
	trynoberms	
out	succes	flag for succes
out	errormessage	error message

Definition at line 664 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.14 subroutine, public geometrymodulertoovertopping::removedikesegments (type (typeometry), intent(in) *geometry*, integer, intent(in) *index*, type (typeometry), intent(out) *geometryAdjusted*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

removeDikeSegments: remove dike segments

Parameters

in	geometry	structure with geometry data
in	index	index starting point new cross section
out	geometryad-	geometry data with removed dike segments
	justed	
out	succes	flag for succes
out	errormessage	error message

Definition at line 761 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.15 subroutine, public geometrymodulertoovertopping::splitcrosssection (type (tpgeometry), intent(in) *geometry*, real(wp), intent(in) *L0*, integer, intent(out) *NwideBerms*, type (tpgeometry), intent(out) *geometrysectionB*, type (tpgeometry), intent(out) *geometrysectionB*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

splitCrossSection: split a cross section

Parameters

in	geometry	structure with geometry data
in	10	wave length (m)
out	nwideberms	number of wide berms
out	geometrysec-	geometry data with wide berms to ordinary berms
	tionb	
out	geometrysec-	geometry data with wide berms to foreshores
	tionf	
out	succes	flag for succes
out	errormessage	error message

Definition at line 825 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.16 subroutine, public geometrymodulertoovertopping::writecrosssection (type (typeometry), intent(in) *geometry*, character(len=*), intent(in) *geometryName*)

writeCrossSection: write a cross section

Parameters

in	geometry	structure with geometry data
in	geometryname	description of geometry data

Definition at line 1066 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

4.5 mainmodulertoovertopping Module Reference

Functions/Subroutines

• subroutine, public calculateovertopping (geometry, load, modelFactors, probContext, overtopping, succes, errorMessage)

calculateOvertopping: calculate the overtopping

• subroutine, public calculateovertoppingsection (geometry, h, Hm0, Tm_10, L0, gammaBeta_z, gammaBeta
_o, modelFactors, overtopping, succes, errorMessage)

calculateOvertoppingSection: calculate the overtopping for a section

• subroutine, public iterationwaverunup (geometry, h, Hm0, Tm_10, L0, gammaBeta_z, modelFactors, z2, succes, errorMessage)

iterationWaveRunup: iteration for the wave runup

• subroutine, public calculatewaveovertopping (geometry, h, Hm0, Tm_10, z2, gammaBeta_o, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertopping: calculate wave overtopping

• subroutine calculateovertoppingnegativefreeboard (load, geometry, overtopping, succes, errorMessage)

calculateOvertoppingNegativeFreeboard: calculate overtopping in case of negative freeboard

• subroutine, public interpolateresultssections (geometry, L0, NwideBerms, overtoppingB, overtoppingF, overtopping, succes, errorMessage)

interpolateResultsSections: interpolate results for split cross sections

subroutine, public checkinputdata (geometry, load, modelFactors, probContext, succes, errorMessage)

checkInputdata: check the input data

• subroutine, public convertmodelfactorsrto (modelFactorsF, modelFactorsC)

convertModelfactorsRTO: convert the model factors

• subroutine, public fillmodelfactorsrto (modelFactors, fn, fb, frunup1, frunup2, frunup3, fshallow)

fillModelfactorsRTO: fill the model factors

4.5.1 Function/Subroutine Documentation

4.5.1.1 subroutine, public mainmodulertoovertopping::calculateovertopping (type (typeometry), intent(in) *geometry*, type (typoad), intent(in) *load*, type (typoad), intent(in) *modelFactors*, logical, intent(in) *probContext*, type (typovertopping), intent(out) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateOvertopping: calculate the overtopping

Parameters

in	geometry	structure with geometry data
in	load	structure with load parameters
in	modelfactors	structure with model factors
in	probcontext	flag for using the overtopping module in a probabilistic context
out	overtopping	structure with overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 35 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.2 subroutine mainmodulertoovertopping::calculateovertoppingnegativefreeboard (type (tpload), intent(in) *load*, type (tpgeometry), intent(in) *geometry*, type (tpovertopping), intent(inout) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*) [private]

calculateOvertoppingNegativeFreeboard: calculate overtopping in case of negative freeboard

Parameters

in	geometry	structure with geometry data
in	load	structure with load parameters
in,out	overtopping	structure with overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 693 of file mainModuleRTOovertopping.f90.

4.5.1.3 subroutine, public mainmodulertoovertopping::calculateovertoppingsection (type (typeometry), intent(in) geometry, real(wp), intent(in) h, real(wp), intent(in) Hm0, real(wp), intent(in) Tm_10, real(wp), intent(in) L0, real(wp), intent(inout) gammaBeta_z, real(wp), intent(inout) gammaBeta_o, type (typeometry), intent(in) modelFactors, type (typeometry), intent(out) overtopping, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateOvertoppingSection: calculate the overtopping for a section

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
in	10	wave length (m)
in,out	gammabeta_z	influence angle wave attack wave run-up
in,out	gammabeta_o	influence angle wave attack overtopping
in	modelfactors	structure with model factors
out	overtopping	structure with overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 167 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.4 subroutine, public mainmodulertoovertopping::calculatewaveovertopping (type (typeometry), intent(in) *geometry*, real(wp), intent(in) *h*, real(wp), intent(in) *Hm0*, real(wp), intent(in) *Tm_10*, real(wp), intent(in) *z2*, real(wp), intent(inout) *gammaBeta_o*, type (typeodelfactors), intent(in) *modelFactors*, real(wp), intent(out) *Qo*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveOvertopping: calculate wave overtopping

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)

in	z2	2% wave run-up (m)
in,out	gammabeta_o	influence angle wave attack overtopping
in	modelfactors	structure with model factors
out	qo	wave overtopping discharge (m3/m per s)
out	succes	flag for succes
out	errormessage	error message

Definition at line 605 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.5 subroutine, public mainmodulertoovertopping::checkinputdata (type (tpgeometry), intent(in) *geometry*, type (tpload), intent(in) *load*, type (tpmodelfactors), intent(in) *modelFactors*, logical, intent(in) *probContext*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

checkInputdata: check the input data

Parameters

in	geometry	structure with geometry data
in	load	structure with load parameters
in	modelfactors	structure with model factors
in	probcontext	flag for using the overtopping module in a probabilistic context
out	succes	flag for succes
out	errormessage	error message

Definition at line 810 of file mainModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.5.1.6 subroutine, public mainmodulertoovertopping::convertmodelfactorsrto (type (tpmodelfactors), intent(out) modelFactorsF, type (overtoppingmodelfactors), intent(in) modelFactorsC)

convertModelfactorsRTO: convert the model factors

Parameters

in	modelfactorsc	model factors in C-like structure
out	modelfactorsf	model factors in Fortran like structure

Definition at line 927 of file mainModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.5.1.7 subroutine, public mainmodulertoovertopping::fillmodelfactorsrto (type (tpmodelfactors), intent(out) *modelFactors*, real (kind=wp), intent(in) *fn*, real (kind=wp), intent(in) *fb*, real (kind=wp), intent(in) *frunup1*, real (kind=wp), intent(in) *frunup2*, real (kind=wp), intent(in) *fshallow*)

fillModelfactorsRTO: fill the model factors

Parameters

in	fb	Model factor for breaking waves
in	fn	Model factor for non-breaking waves
in	frunup1	Model factor for wave run-up 1
in	frunup2	Model factor for wave run-up 2
in	frunup3	Model factor for wave run-up 3
in	fshallow	Model factor for shallow waves
out	modelfactors	struct with model factors

Definition at line 947 of file mainModuleRTOovertopping.f90.

4.5.1.8 subroutine, public mainmodulertoovertopping::interpolateresultssections (type (tpgeometry), intent(in) *geometry*, real(wp), intent(in) *L0*, integer, intent(in) *NwideBerms*, type (tpovertopping), intent(in) *overtoppingB*, type (tpovertopping), intent(in) *overtoppingF*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

interpolateResultsSections: interpolate results for split cross sections

Parameters

in	geometry	structure with geometry data
in	10	wave length (m)
in	nwideberms	number of wide berms
in	overtoppingb	structure with overtopping results ordinary berms
in	overtoppingf	structure with overtopping results foreshores
out	overtopping	structure with combined overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 729 of file mainModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.5.1.9 subroutine, public mainmodulertoovertopping::iterationwaverunup (type (typeometry), intent(in) geometry, real(wp), intent(in) h, real(wp), int

iterationWaveRunup: iteration for the wave runup

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
in	10	wave length (m)
in,out	gammabeta_z	influence factor angle wave attack 2% run-up
in	modelfactors	structure with model factors
out	z2	2% wave run-up (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 391 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.6 overtoppinginterface Module Reference

Data Types

- type overtoppinggeometrytype
- type overtoppinggeometrytypef
- type tpprofilecoordinate

Variables

• integer, parameter, public varmodelfactorcriticalovertopping = 8

Model factor critical overtopping.

4.6.1 Variable Documentation

4.6.1.1 integer, parameter, public overtoppinginterface::varmodelfactorcriticalovertopping = 8

Model factor critical overtopping.

Definition at line 17 of file overtoppingInterface.f90.

4.7 typedefinitionsrtoovertopping Module Reference

Data Types

· type overtoppingmodelfactors

OvertoppingModelFactors: C-structure with model factors.

type tpgeometry

tpGeometry: structure with geometry data

type tpload

tpLoad: structure with load parameters

type tpmodelfactors

tpModelFactors: structure with model factors

type tpovertopping

tpOvertopping: structure with overtopping results

Variables

- real(wp), parameter xdiff_min = 2.0d-2
 minimal value distance between x-coordinates (m)
- real(wp), parameter margindiff = 1.0d-14
 margin for minimal distance (m)
- real(wp), parameter berm_min = 0.0d0
 minimal value gradient berm segment
- real(wp), parameter berm_max = 1.0d0/15

 maximal value gradient berm segment
- real(wp), parameter slope_min = 1.0d0/8
 minimal value gradient slope segment
- real(wp), parameter slope_max = 1.0d0
 maximal value gradient slope segment
- real(wp), parameter margingrad = 0.0025d0
 margin for minimal and maximal gradients
- real(wp), parameter rfactor_min = 0.5d0
 minimal value roughness factor dike segments
- real(wp), parameter rfactor_max = 1.0d0
 maximal value roughness factor dike segments
- maximal value roughness factor dike segmentreal(wp), parameter frunup1_min = 1.24d0

minimal value model factor 1 for wave run-up

- real(wp), parameter frunup1_max = 2.06d0
 maximal value model factor 1 for wave run-up
- real(wp), parameter frunup2_min = 3.00d0
 minimal value model factor 2 for wave run-up
- real(wp), parameter frunup2_max = 5.00d0
 maximal value model factor 2 for wave run-up

- real(wp), parameter frunup3_min = 1.13d0
 minimal value model factor 3 for wave run-up
- real(wp), parameter frunup3_max = 1.87d0
 maximal value model factor 3 for wave run-up
- real(wp), parameter fb_min = 3.0d0
 minimal value model factor for breaking waves
- real(wp), parameter fb_max = 6.5d0
 maximal value model factor for breaking waves
- real(wp), parameter fn_min = 1.37d0
 minimal value model factor for non-breaking waves
- real(wp), parameter fn_max = 3.83d0
 maximal value model factor for non-breaking waves
- real(wp), parameter fs_min = 0.017d0
 minimal value model factor for shallow waves
- real(wp), parameter fs_max = 0.924d0
 maximal value model factor for shallow waves
- integer, parameter z2_iter_max = 100

 maximal number of iterations for calculation z2
- real(wp), parameter z2_margin = 0.001d0
 margin for convergence criterium calculation z2

4.7.1 Variable Documentation

4.7.1.1 real(wp), parameter typedefinitionsrtoovertopping::berm_max = 1.0d0/15maximal value gradient berm segment

Definition at line 73 of file typeDefinitionsRTOovertopping.f90.

4.7.1.2 real(wp), parameter typedefinitionsrtoovertopping::berm_min = 0.0d0 minimal value gradient berm segment

Definition at line 72 of file typeDefinitionsRTOovertopping.f90.

- 4.7.1.3 real(wp), parameter typedefinitionsrtoovertopping::fb_max = 6.5d0
- maximal value model factor for breaking waves

Definition at line 86 of file typeDefinitionsRTOovertopping.f90.

- 4.7.1.4 real(wp), parameter typedefinitionsrtoovertopping::fb_min = 3.0d0
- minimal value model factor for breaking waves

Definition at line 85 of file typeDefinitionsRTOovertopping.f90.

4.7.1.5 real(wp), parameter typedefinitionsrtoovertopping::fn_max = 3.83d0

maximal value model factor for non-breaking waves

Definition at line 88 of file typeDefinitionsRTOovertopping.f90.

4.7.1.6 real(wp), parameter typedefinitionsrtoovertopping::fn_min = 1.37d0minimal value model factor for non-breaking wavesDefinition at line 87 of file typeDefinitionsRTOovertopping.f90.

4.7.1.7 real(wp), parameter typedefinitionsrtoovertopping::frunup1_max = 2.06d0maximal value model factor 1 for wave run-upDefinition at line 80 of file typeDefinitionsRTOovertopping.f90.

4.7.1.8 real(wp), parameter typedefinitionsrtoovertopping::frunup1_min = 1.24d0minimal value model factor 1 for wave run-upDefinition at line 79 of file typeDefinitionsRTOovertopping.f90.

4.7.1.9 real(wp), parameter typedefinitionsrtoovertopping::frunup2_max = 5.00d0maximal value model factor 2 for wave run-upDefinition at line 82 of file typeDefinitionsRTOovertopping.f90.

4.7.1.10 real(wp), parameter typedefinitionsrtoovertopping::frunup2_min = 3.00d0
minimal value model factor 2 for wave run-up
Definition at line 81 of file typeDefinitionsRTOovertopping.f90.

4.7.1.11 real(wp), parameter typedefinitionsrtoovertopping::frunup3_max = 1.87d0
maximal value model factor 3 for wave run-up
Definition at line 84 of file typeDefinitionsRTOovertopping.f90.

4.7.1.12 real(wp), parameter typedefinitionsrtoovertopping::frunup3_min = 1.13d0
minimal value model factor 3 for wave run-up
Definition at line 83 of file typeDefinitionsRTOovertopping.f90.

4.7.1.13 real(wp), parameter typedefinitionsrtoovertopping::fs_max = 0.924d0maximal value model factor for shallow wavesDefinition at line 90 of file typeDefinitionsRTOovertopping.f90.

4.7.1.14 real(wp), parameter typedefinitionsrtoovertopping::fs_min = 0.017d0
minimal value model factor for shallow waves
Definition at line 89 of file typeDefinitionsRTOovertopping.f90.

4.7.1.15 real(wp), parameter typedefinitionsrtoovertopping::margindiff = 1.0d-14

margin for minimal distance (m)

Definition at line 71 of file typeDefinitionsRTOovertopping.f90.

4.7.1.16 real(wp), parameter typedefinitionsrtoovertopping::margingrad = 0.0025d0

margin for minimal and maximal gradients

Definition at line 76 of file typeDefinitionsRTOovertopping.f90.

4.7.1.17 real(wp), parameter typedefinitionsrtoovertopping::rfactor_max = 1.0d0

maximal value roughness factor dike segments

Definition at line 78 of file typeDefinitionsRTOovertopping.f90.

4.7.1.18 real(wp), parameter typedefinitionsrtoovertopping::rfactor_min = 0.5d0

minimal value roughness factor dike segments

Definition at line 77 of file typeDefinitionsRTOovertopping.f90.

4.7.1.19 real(wp), parameter typedefinitionsrtoovertopping::slope_max = 1.0d0

maximal value gradient slope segment

Definition at line 75 of file typeDefinitionsRTOovertopping.f90.

4.7.1.20 real(wp), parameter typedefinitionsrtoovertopping::slope_min = 1.0d0/8

minimal value gradient slope segment

Definition at line 74 of file typeDefinitionsRTOovertopping.f90.

4.7.1.21 real(wp), parameter typedefinitionsrtoovertopping::xdiff_min = 2.0d-2

minimal value distance between x-coordinates (m)

Definition at line 70 of file typeDefinitionsRTOovertopping.f90.

4.7.1.22 integer, parameter typedefinitionsrtoovertopping::z2_iter_max = 100

maximal number of iterations for calculation z2

Definition at line 91 of file typeDefinitionsRTOovertopping.f90.

4.7.1.23 real(wp), parameter typedefinitionsrtoovertopping::z2_margin = 0.001d0

margin for convergence criterium calculation z2

Definition at line 92 of file typeDefinitionsRTOovertopping.f90.

4.8 zfunctionswtiovertopping Module Reference

Module for the Limit State Functions (Z-functions) for wave overtopping.

Functions/Subroutines

subroutine, public calculateqorto (dikeHeight, modelFactorsC, overtopping, load, geometry, succes, error
 — Message)

Subroutine to calculate the overtopping discharge with the RTO-overtopping dll.

subroutine, public profileinstructure (nrCoordinates, xcoordinates, ycoordinates, dikeHeight, nrCoords
 — Adjusted, xCoordsAdjusted, zCoordsAdjusted, succes, errorMessage)

Subroutine to fill the profile in a structure and call the adjustment function of the profile due to a desired dike height.

subroutine adjustprofile (nrCoordinates, coordinates, dikeHeight, nrCoordsAdjusted, xCoordsAdjusted, z
 — CoordsAdjusted, succes, errorMessage)

Subroutine adjust the profile due to a desired dike height.

• real(kind=wp) function, public zfunclogratios (qo, qc, mqo, mqc, success, errorMessage)

Routine to compute the limit state value by using the logs of the overtopping discharges (computed and desired)

4.8.1 Detailed Description

Module for the Limit State Functions (Z-functions) for wave overtopping.

4.8.2 Function/Subroutine Documentation

4.8.2.1 subroutine zfunctionswtiovertopping::adjustprofile (integer, intent(in) nrCoordinates, type(typrofilecoordinate), dimension(nrcoordinates), intent(in) coordinates, real(kind=wp), intent(in) dikeHeight, integer, intent(out) nrCoordsAdjusted, real(kind=wp), dimension(:), pointer xCoordsAdjusted, real(kind=wp), dimension(:), pointer zCoordsAdjusted, logical, intent(out) succes, character(len=*), intent(out) errorMessage) [private]

Subroutine adjust the profile due to a desired dike height.

Parameters

in	nrcoordinates	number of coordinates of the profile
in	coordinates	structure for the profile
in	dikeheight	dike height
out	nrcoordsad-	number of coordinates in the adjusted profile
	justed	
	xcoordsadjusted	vector with x-coordinates of the adjusted profile
	zcoordsadjusted	vector with y-coordinates of the adjusted profile
out	succes	flag for succes
out	errormessage	error message

Definition at line 108 of file zFunctionsWTIOvertopping.f90.

Here is the caller graph for this function:

4.8.2.2 subroutine, public zfunctionswtiovertopping::calculateqorto (real(kind=wp), intent(in) *dikeHeight*, type(overtoppingmodelfactors), intent(in) *modelFactorsC*, type (tpovertopping), intent(out) *overtopping*, type (tpload), intent(in) *load*, type (tpgeometry), intent(in) *geometry*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

Subroutine to calculate the overtopping discharge with the RTO-overtopping dll.

Parameters

in	dikeheight	dike height
in	modelfactorsc	struct with model factors
out	overtopping	structure with overtopping results
in	geometry	structure with geometry data
in	load	structure with load parameters
out	succes	flag for succes
out	errormessage	error message

Definition at line 32 of file zFunctionsWTIOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.8.2.3 subroutine, public zfunctionswtiovertopping::profileinstructure (integer, intent(in) nrCoordinates, real(kind=wp), dimension(nrcoordinates), intent(in) xcoordinates, real(kind=wp), dimension(nrcoordinates), intent(in) ycoordinates, real(kind=wp), intent(in) dikeHeight, integer, intent(out) nrCoordsAdjusted, real(kind=wp), dimension(:), pointer xCoordsAdjusted, real(kind=wp), dimension(:), pointer zCoordsAdjusted, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

Subroutine to fill the profile in a structure and call the adjustment function of the profile due to a desired dike height.

Parameters

in	nrcoordinates	number of coordinates of the profile
in	xcoordinates	vector with x-coordinates of the profile
in	ycoordinates	vector with y-coordinates of the profile

in	dikeheight	dike height
out	nrcoordsad-	number of coordinates in the adjusted profile
	justed	
	xcoordsadjusted	vector with x-coordinates of the adjusted profile
	zcoordsadjusted	vector with y-coordinates of the adjusted profile
out	succes	flag for succes
out	errormessage	error message

Definition at line 83 of file zFunctionsWTIOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.8.2.4 real (kind=wp) function, public zfunctionswtiovertopping::zfunclogratios (real (kind=wp), intent(in) *qo*, real (kind=wp), intent(in) *mqo*, real (kind=wp), intent(in) *mqc*, logical, intent(out) *success*, character(len=*), intent(out) *errorMessage*)

Routine to compute the limit state value by using the logs of the overtopping discharges (computed and desired)

Parameters

in	qo	computed overtopping discharge
in	qc	Critical overtopping discharge
in	mqo	Model factor computed overtopping discharge
in	mqc	Model factor Critical overtopping discharge
out	success	Flag for succes
out	errormessage	error message, only set if not successful

Returns

Value z-function

Definition at line 193 of file zFunctionsWTIOvertopping.f90.

Here is the caller graph for this function:

Chapter 5

Data Type Documentation

5.1 overtoppinginterface::overtoppinggeometrytype Type Reference

Collaboration diagram for overtoppinginterface::overtoppinggeometrytype:

Public Attributes

- real(kind=wp) normal
- integer npoints
- type(c_ptr) xcoords
- type(c_ptr) ycoords
- type(c_ptr) roughness

5.1.1 Detailed Description
Definition at line 25 of file overtoppingInterface.f90.
5.1.2 Member Data Documentation
5.1.2.1 real(kind=wp) overtoppinginterface::overtoppinggeometrytype::normal
Definition at line 26 of file overtoppingInterface.f90.
5.1.2.2 integer overtoppinginterface::overtoppinggeometrytype::npoints
Definition at line 07 of file aventonainal standard f00
Definition at line 27 of file overtoppingInterface.f90.
5.1.2.3 type(c_ptr) overtoppinginterface::overtoppinggeometrytype::roughness
Definition at line 30 of file overtoppingInterface.f90.
5.1.2.4 type(c_ptr) overtoppinginterface::overtoppinggeometrytype::xcoords
typo(o_pti) ovortoppingintoriaconovortoppinggeometrytyponixecorae
Definition at line 28 of file overtoppingInterface.f90.

 $5.1.2.5 \quad type (c_ptr) \ overtopping interface:: overtopping geometry type:: ycoords$

Definition at line 29 of file overtoppingInterface.f90.

5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference

Collaboration diagram for overtoppinginterface::overtoppinggeometrytypef:

Public Attributes

- real(kind=wp) normal
- integer npoints
- real(kind=wp), dimension(:), pointer xcoords
- real(kind=wp), dimension(:), pointer ycoords
- real(kind=wp), dimension(:), pointer roughness

5.2.1 Detailed Description

Definition at line 33 of file overtoppingInterface.f90.

5.2.2 Member Data Documentation

5.2.2.1 real(kind=wp) overtoppinginterface::overtoppinggeometrytypef::normal

Definition at line 34 of file overtoppingInterface.f90.

5.2.2.2 integer overtoppinginterface::overtoppinggeometrytypef::npoints

Definition at line 35 of file overtoppingInterface.f90.

5.2.2.3 real(kind=wp), dimension(:), pointer overtoppinginterface::overtoppinggeometrytypef::roughness

Definition at line 38 of file overtoppingInterface.f90.

5.2.2.4 real(kind=wp), dimension(:), pointer overtoppinginterface::overtoppinggeometrytypef::xcoords

Definition at line 36 of file overtoppingInterface.f90.

5.2.2.5 real(kind=wp), dimension(:), pointer overtoppinginterface::overtoppinggeometrytypef::ycoords

Definition at line 37 of file overtoppingInterface.f90.

5.3 typedefinitionsrtoovertopping::overtoppingmodelfactors Type Reference

OvertoppingModelFactors: C-structure with model factors.

Collaboration diagram for typedefinitionsrtoovertopping::overtoppingmodelfactors:

Public Attributes

- real(kind=wp) factordeterminationq_n_f_n
 model factor for non-breaking waves
- real(kind=wp) factordeterminationq_b_f_b

model factor for breaking waves

• real(kind=wp) frunup1

model factor 1 for wave run-up

real(kind=wp) frunup2

model factor 2 for wave run-up

• real(kind=wp) frunup3

model factor 3 for wave run-up

• real(kind=wp) fshallow

model factor for shallow waves

 real(kind=wp) computedovertopping computed overtopping

 real(kind=wp) criticalovertopping critical overtopping

5.3.1 Detailed Description

OvertoppingModelFactors: C-structure with model factors.

Definition at line 50 of file typeDefinitionsRTOovertopping.f90.

5.3.2 Member Data Documentation

5.3.2.1 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::computedovertopping

computed overtopping

Definition at line 57 of file typeDefinitionsRTOovertopping.f90.

5.3.2.2 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::criticalovertopping

critical overtopping

Definition at line 58 of file typeDefinitionsRTOovertopping.f90.

5.3.2.3 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::factordeterminationq_b_f_b

model factor for breaking waves

Definition at line 52 of file typeDefinitionsRTOovertopping.f90.

5.3.2.4 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::factordeterminationq_n_f_n

model factor for non-breaking waves

Definition at line 51 of file typeDefinitionsRTOovertopping.f90.

5.3.2.5 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::frunup1	
model factor 1 for wave run-up	
Definition at line 53 of file typeDefinitionsRTOovertopping.f90. 5.3.2.6 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::frunup2 model factor 2 for wave run-up Definition at line 54 of file typeDefinitionsRTOovertopping.f90.	
5.3.2.7 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::frunup3	
o.o.z./ real(Alla-up) typedelilillorist toovertoppingovertoppingillodelilationsirailapo	
model factor 3 for wave run-up	
Definition at line 55 of file typeDefinitionsRTOovertopping.f90.	
5.3.2.8 real(kind=wp) typedefinitionsrtoovertopping::overtoppingmodelfactors::fshallow	
model factor for shallow waves	
Definition at line 56 of file typeDefinitionsRTOovertopping.f90.	
5.4 typedefinitionsrtoovertopping::tpgeometry Type Reference	
tpGeometry: structure with geometry data	

Collaboration diagram for typedefinitionsrtoovertopping::tpgeometry:

Public Attributes

- real(wp) psi
 - dike normal (degree)
- integer ncoordinates
 - number of coordinates cross section
- real(wp), dimension(:), pointer xcoordinates
 - vector with x-coordinates cross section (m)
- real(wp), dimension(:), pointer ycoordinates
 vector with y-coordinates cross section (m+NAP)
- real(wp), dimension(:), pointer roughnessfactors vector with roughness factors cross section
- real(wp), dimension(:), pointer xcoorddiff
 - vector with differences in x-coordinates (m)
- real(wp), dimension(:), pointer ycoorddiff
- vector with differences in y-coordinates (m)real(wp), dimension(:), pointer segmentslopes
 - vector with slopes dike segments
- integer, dimension(:), pointer segmenttypes

vector with segment types (1=slope,2=berm,3=other)

• integer nbermsegments

number of berm segments

5.4.1 Detailed Description

tpGeometry: structure with geometry data

Definition at line 18 of file typeDefinitionsRTOovertopping.f90.

5.4.2 Member Data Documentation

5.4.2.1 integer typedefinitionsrtoovertopping::tpgeometry::nbermsegments

number of berm segments

Definition at line 28 of file typeDefinitionsRTOovertopping.f90.

5.4.2.2 integer typedefinitionsrtoovertopping::tpgeometry::ncoordinates

number of coordinates cross section

Definition at line 20 of file typeDefinitionsRTOovertopping.f90.

5.4.2.3 real(wp) typedefinitionsrtoovertopping::tpgeometry::psi

dike normal (degree)

Definition at line 19 of file typeDefinitionsRTOovertopping.f90.

5.4.2.4 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::roughnessfactors

vector with roughness factors cross section

Definition at line 23 of file typeDefinitionsRTOovertopping.f90.

5.4.2.5 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::segmentslopes

vector with slopes dike segments

Definition at line 26 of file typeDefinitionsRTOovertopping.f90.

 $5.4.2.6 \quad integer, dimension (:), pointer type definitions r to overtopping :: type demonstrates a constant of the context o$

vector with segment types (1=slope,2=berm,3=other)

Definition at line 27 of file typeDefinitionsRTOovertopping.f90.

5.4.2.7 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::xcoorddiff

vector with differences in x-coordinates (m)

Definition at line 24 of file typeDefinitionsRTOovertopping.f90.

5.4.2.8 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::xcoordinates

vector with x-coordinates cross section (m)

Definition at line 21 of file typeDefinitionsRTOovertopping.f90.

5.4.2.9 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::ycoorddiff

vector with differences in y-coordinates (m)

Definition at line 25 of file typeDefinitionsRTOovertopping.f90.

5.4.2.10 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::ycoordinates

vector with y-coordinates cross section (m+NAP)

Definition at line 22 of file typeDefinitionsRTOovertopping.f90.

5.5 typedefinitionsrtoovertopping::tpload Type Reference

tpLoad: structure with load parameters

Collaboration diagram for typedefinitionsrtoovertopping::tpload:

Public Attributes

real(wp) h

local water level (m+NAP)

real(wp) hm0

significant wave height (m)

• real(wp) tm_10

spectral wave period (s)

real(wp) phi

wave direction (degree)

5.5.1 Detailed Description

tpLoad: structure with load parameters

Definition at line 32 of file typeDefinitionsRTOovertopping.f90.

5.5.2 Member Data Documentation

5.5.2.1 real(wp) typedefinitionsrtoovertopping::tpload::h

local water level (m+NAP)

Definition at line 33 of file typeDefinitionsRTOovertopping.f90.

5.5.2.2 real(wp) typedefinitionsrtoovertopping::tpload::hm0

significant wave height (m)

Definition at line 34 of file typeDefinitionsRTOovertopping.f90.

5.5.2.3 real(wp) typedefinitionsrtoovertopping::tpload::phi

wave direction (degree)

Definition at line 36 of file typeDefinitionsRTOovertopping.f90.

5.5.2.4 real(wp) typedefinitionsrtoovertopping::tpload::tm_10

spectral wave period (s)

Definition at line 35 of file typeDefinitionsRTOovertopping.f90.

5.6 typedefinitionsrtoovertopping::tpmodelfactors Type Reference

tpModelFactors: structure with model factors

Collaboration diagram for typedefinitionsrtoovertopping::tpmodelfactors:

Public Attributes

real(wp) frunup1

model factor 1 for wave run-up

real(wp) frunup2

model factor 2 for wave run-up

real(wp) frunup3

model factor 3 for wave run-up

real(wp) fb

model factor for breaking waves

• real(wp) fn

model factor for non-breaking waves

• real(wp) fs

model factor for shallow waves

5.6.1 Detailed Description

tpModelFactors: structure with model factors

Definition at line 40 of file typeDefinitionsRTOovertopping.f90.

5.6.2 Member Data Documentation

5.6.2.1 real(wp) typedefinitionsrtoovertopping::tpmodelfactors::fb

model factor for breaking waves

Definition at line 44 of file typeDefinitionsRTOovertopping.f90.

5.6.2.2 real(wp) typedefinitionsrtoovertopping::tpmodelfactors::fn

model factor for non-breaking waves

Definition at line 45 of file typeDefinitionsRTOovertopping.f90.

5.6.2.3 real(wp) typedefinitionsrtoovertopping::tpmodelfactors::frunup1

model factor 1 for wave run-up

Definition at line 41 of file typeDefinitionsRTOovertopping.f90.

5.6.2.4 real(wp) typedefinitionsrtoovertopping::tpmodelfactors::frunup2

model factor 2 for wave run-up

Definition at line 42 of file typeDefinitionsRTOovertopping.f90.

 $5.6.2.5 \quad real (wp) \ type definitions rto overtopping:: tpmodel factors:: frunup 3$

model factor 3 for wave run-up

Definition at line 43 of file typeDefinitionsRTOovertopping.f90.

5.6.2.6 real(wp) typedefinitionsrtoovertopping::tpmodelfactors::fs

model factor for shallow waves

Definition at line 46 of file typeDefinitionsRTOovertopping.f90.

5.7 typedefinitionsrtoovertopping::tpovertopping Type Reference

tpOvertopping: structure with overtopping results

Collaboration diagram for typedefinitionsrtoovertopping::tpovertopping:

Public Attributes

real(wp) z2

2% wave run-up (m)

• real(wp) qo

wave overtopping discharge (m3/m per s)

5.7.1 Detailed Description

tpOvertopping: structure with overtopping results

Definition at line 62 of file typeDefinitionsRTOovertopping.f90.

5.7.2 Member Data Documentation

5.7.2.1 real(wp) typedefinitionsrtoovertopping::tpovertopping::qo

wave overtopping discharge (m3/m per s)

Definition at line 64 of file typeDefinitionsRTOovertopping.f90.

5.7.2.2 real(wp) typedefinitionsrtoovertopping::tpovertopping::z2

2% wave run-up (m)

Definition at line 63 of file typeDefinitionsRTOovertopping.f90.

5.8 overtoppinginterface::tpprofilecoordinate Type Reference

Collaboration diagram for overtoppinginterface::tpprofilecoordinate:

Public Attributes

- real(kind=wp) xcoordinate
 - X-coordinate foreland profile.
- real(kind=wp) zcoordinate
 - Z-coordinate foreland profile.
- real(kind=wp) roughness

Roughness of the area between two points.

5.8.1 Detailed Description

Definition at line 19 of file overtoppingInterface.f90.

5.8.2 Member Data Documentation

5.8.2.1 real(kind=wp) overtoppinginterface::tpprofilecoordinate::roughness

Roughness of the area between two points.

Definition at line 22 of file overtoppingInterface.f90.

5.8.2.2 real(kind=wp) overtoppinginterface::tpprofilecoordinate::xcoordinate

X-coordinate foreland profile.

Definition at line 20 of file overtoppingInterface.f90.

5.8.2.3 real(kind=wp) overtoppinginterface::tpprofilecoordinate::zcoordinate

Z-coordinate foreland profile.

Definition at line 21 of file overtoppingInterface.f90.

Chapter 6

File Documentation

6.1 dllOvertopping.f90 File Reference

Main entry for the dll DikesOvertopping FUNCTIONS/SUBROUTINES exported from dllOvertopping.dll:

Modules

module dllovertopping
 Calculate one type of overtopping.

Functions/Subroutines

• subroutine, public dllovertopping::calculateqo (load, geometryInput, dikeHeight, modelFactors, overtopping, success, errorText)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping Wrapper for calculateQoF \leftarrow : covert C-like input structures to Fortran input structures.

subroutine, public dllovertopping::calculateqof (load, geometryF, dikeHeight, modelFactors, overtopping, success, errorText)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping.

Subroutine that calculates the Z-function DikesOvertopping based on the discharge calculated with calculateQoF.

• subroutine, public dllovertopping::versionnumber (version)

6.1.1 Detailed Description

Main entry for the dll DikesOvertopping FUNCTIONS/SUBROUTINES exported from dllOvertopping.dll:

- zFuncOvertopping
- calculateQo
- · calculateQoF
- versionNumber

6.2 factorModuleRTOovertopping.f90 File Reference

This file contains a module with functions for the slope angle and influence factors.

Modules

· module factormodulertoovertopping

Functions/Subroutines

• subroutine, public factormodulertoovertopping::calculatetanalpha (h, Hm0, z2, geometry, tanAlpha, succes, errorMessage)

calculateTanAlpha representative slope angle

subroutine, public factormodulertoovertopping::calculategammabeta (Hm0, Tm_10, beta, gammaBeta_

 z, gammaBeta_o)

calculateGammaBeta influence factor angle of wave attack

• subroutine, public factormodulertoovertopping::calculategammaf (h, ksi0, ksi0Limit, gammaB, z2, geometry, gammaF, succes, errorMessage)

calculateGammaF influence factor roughness

subroutine, public factormodulertoovertopping::calculategammab (h, Hm0, z2, geometry, NbermSegments, gammaB, succes, errorMessage)

calculateGammaB influence factor berms

6.2.1 Detailed Description

This file contains a module with functions for the slope angle and influence factors.

6.3 formulaModuleRTOovertopping.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping.

Modules

· module formulamodulertoovertopping

Functions/Subroutines

• subroutine, public formulamodulertoovertopping::calculatewaverunup (Hm0, s0, ksi0, ksi0Limit, gammaB, gammaF, gammaBeta, modelFactors, z2, succes, errorMessage)

calculateWaveRunup: calculate wave runup

• subroutine, public formulamodulertoovertopping::calculatewaveovertoppingdischarge (h, Hm0, tanAlpha, gammaB, gammaF, gammaBeta, ksi0, hCrest, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertoppingDischarge: calculate the wave overtopping discharge

• subroutine, public formulamodulertoovertopping::calculatewavelength (Tm_10, L0)

calculateWaveLength: calculate the wave length

subroutine, public formulamodulertoovertopping::calculatewavesteepness (Hm0, Tm_10, s0, succes, error
 — Message)

calculateWaveSteepness: calculate the wave steepness

• subroutine, public formulamodulertoovertopping::calculatebreakerparameter (tanAlpha, s0, ksi0, succes, errorMessage)

calculateBreakerParameter: calculate the breaker parameter

subroutine, public formulamodulertoovertopping::calculateanglewaveattack (phi, psi, beta)

calculateAngleWaveAttack: calculate the angle of wave attack

subroutine, public formulamodulertoovertopping::calculatebreakerlimit (modelFactors, gammaB, ksi0Limit, succes, errorMessage)

calculateBreakerLimit: calculate the breaker limit

• subroutine, public formulamodulertoovertopping::adjustinfluencefactors (gammaB, gammaF, gammaBeta, gammaBetaType, ksi0, ksi0Limit, succes, errorMessage)

adjustInfluenceFactors: adjust the influence factors

subroutine, public formulamodulertoovertopping::realrootscubicfunction (a, b, c, d, N, x, succes, error
 — Message)

realRootsCubicFunction: calculate the roots of a cubic function

• subroutine, public formulamodulertoovertopping::rootsgeneralcubic (a, b, c, d, z, succes, errorMessage)

rootsGeneralCubic: calculate the roots of a generic cubic function

• subroutine, public formulamodulertoovertopping::rootsdepressedcubic (p, q, z)

rootsDepressedCubic: calculate the roots of a depressed cubic function

subroutine, public formulamodulertoovertopping::cubicroots (z, roots)

cubicRoots: calculate the roots of a cubic function

logical function, public formulamodulertoovertopping::isequalreal (x1, x2)

isEqualReal: are two reals (almost) equal

logical function, public formulamodulertoovertopping::isequalzero (x)

isEqualZero: is a real (almost) zero

6.3.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping.

6.4 geometryModuleRTOovertopping.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping related to the geometry.

Modules

· module geometrymodulertoovertopping

Functions/Subroutines

subroutine, public geometrymodulertoovertopping::checkcrosssection (psi, nCoordinates, xCoordinates, y←
 Coordinates, roughnessFactors, succes, errorMessage)

checkCrossSection: check cross section

subroutine, public geometrymodulertoovertopping::initializegeometry (psi, nCoordinates, xCoordinates, y
 —
 Coordinates, roughnessFactors, geometry, succes, errorMessage)

initializeGeometry: initialize the geometry

• subroutine, public geometrymodulertoovertopping::allocatevectorsgeometry (nCoordinates, geometry)

allocateVectorsGeometry: allocate the geometry vectors

• subroutine, public geometrymodulertoovertopping::deallocategeometry (geometry)

deallocateGeometry: deallocate the geometry vectors

subroutine, public geometrymodulertoovertopping::calculatesegmentslopes (geometry, succes, error
 — Message)

calculateSegmentSlopes: calculate the segment slopes

subroutine, public geometrymodulertoovertopping::determinesegmenttypes (geometry)

determineSegmentTypes: determine the segment types

• subroutine, public geometrymodulertoovertopping::copygeometry (geometry, geometryCopy)

copyGeometry: copy a geometry structure

subroutine, public geometrymodulertoovertopping::isequalgeometry (geometry1, geometry2, succes, error
 — Message)

isEqualGeometry: are two geometries equal

mergeSequentialBerms: merge sequential berms

subroutine, public geometrymodulertoovertopping::adjustnonhorizontalberms (geometry, geometryFlat
 — Berms, succes, errorMessage)

adjustNonHorizontalBerms: adjust non-horizontal berms

• subroutine, public geometrymodulertoovertopping::removeberms (geometry, geometryNoBerms, succes, errorMessage)

removeBerms: remove berms

subroutine, public geometrymodulertoovertopping::removedikesegments (geometry, index, geometry ← Adjusted, succes, errorMessage)

removeDikeSegments: remove dike segments

• subroutine, public geometrymodulertoovertopping::splitcrosssection (geometry, L0, NwideBerms, geometrysectionB, geometrysectionF, succes, errorMessage)

splitCrossSection: split a cross section

subroutine, public geometrymodulertoovertopping::calculatehorzlengths (geometry, yLower, yUpper, horz
 — Lengths, succes, errorMessage)

calculateHorzLengths: calculate horizontal lengths

• subroutine, public geometrymodulertoovertopping::calculatehorzdistance (geometry, yLower, yUpper, dx, succes, errorMessage)

calculateHorzDistance: calculate horizontal distance

subroutine, public geometrymodulertoovertopping::writecrosssection (geometry, geometryName)

writeCrossSection: write a cross section

6.4.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping related to the geometry.

6.5 mainModuleRTOovertopping.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping.

Modules

· module mainmodulertoovertopping

Functions/Subroutines

• subroutine, public mainmodulertoovertopping::calculateovertopping (geometry, load, modelFactors, prob

Context, overtopping, succes, errorMessage)

calculateOvertopping: calculate the overtopping

• subroutine, public mainmodulertoovertopping::calculateovertoppingsection (geometry, h, Hm0, Tm_10, L0, gammaBeta_z, gammaBeta_o, modelFactors, overtopping, succes, errorMessage)

calculateOvertoppingSection: calculate the overtopping for a section

subroutine, public mainmodulertoovertopping::iterationwaverunup (geometry, h, Hm0, Tm_10, L0, gamma
 — Beta_z, modelFactors, z2, succes, errorMessage)

iterationWaveRunup: iteration for the wave runup

• subroutine, public mainmodulertoovertopping::calculatewaveovertopping (geometry, h, Hm0, Tm_10, z2, gammaBeta_o, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertopping: calculate wave overtopping

 subroutine mainmodulertoovertopping::calculateovertoppingnegativefreeboard (load, geometry, overtopping, succes, errorMessage)

calculateOvertoppingNegativeFreeboard: calculate overtopping in case of negative freeboard

• subroutine, public mainmodulertoovertopping::interpolateresultssections (geometry, L0, NwideBerms, overtoppingB, overtoppingF, overtopping, succes, errorMessage)

interpolateResultsSections: interpolate results for split cross sections

 subroutine, public mainmodulertoovertopping::checkinputdata (geometry, load, modelFactors, probContext, succes, errorMessage)

checkInputdata: check the input data

- subroutine, public mainmodulertoovertopping::convertmodelfactorsrto (modelFactorsF, modelFactorsC) convertModelfactorsRTO: convert the model factors
- subroutine, public mainmodulertoovertopping::fillmodelfactorsrto (modelFactors, fn, fb, frunup1, frunup2, frunup3, fshallow)

fillModelfactorsRTO: fill the model factors

6.5.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping.

6.6 overtoppingInterface.f90 File Reference

This file contains the parameters and types (structs) as part of the interface to and from dllOvertopping.

Data Types

- · type overtoppinginterface::tpprofilecoordinate
- · type overtoppinginterface::overtoppinggeometrytype
- type overtoppinginterface::overtoppinggeometrytypef

Modules

· module overtoppinginterface

Variables

• integer, parameter, public overtoppinginterface::varmodelfactorcriticalovertopping = 8

Model factor critical overtopping.

6.6.1 Detailed Description

This file contains the parameters and types (structs) as part of the interface to and from dllOvertopping.

6.7 typeDefinitionsRTOovertopping.f90 File Reference

This file contains a module with the type definitions for Dikes Overtopping.

Data Types

- type typedefinitionsrtoovertopping::tpgeometry
 - tpGeometry: structure with geometry data
- type typedefinitionsrtoovertopping::tpload
 - tpLoad: structure with load parameters
- type typedefinitionsrtoovertopping::tpmodelfactors
 - tpModelFactors: structure with model factors
- type typedefinitionsrtoovertopping::overtoppingmodelfactors
 - OvertoppingModelFactors: C-structure with model factors.
- type typedefinitionsrtoovertopping::tpovertopping
 - tpOvertopping: structure with overtopping results

Modules

· module typedefinitionsrtoovertopping

Variables

- real(wp), parameter typedefinitionsrtoovertopping::xdiff_min = 2.0d-2
 minimal value distance between x-coordinates (m)
- real(wp), parameter typedefinitionsrtoovertopping::margindiff = 1.0d-14
 margin for minimal distance (m)
- real(wp), parameter typedefinitionsrtoovertopping::berm_min = 0.0d0 minimal value gradient berm segment
- real(wp), parameter typedefinitionsrtoovertopping::berm_max = 1.0d0/15
 maximal value gradient berm segment
- real(wp), parameter typedefinitionsrtoovertopping::slope_min = 1.0d0/8
 minimal value gradient slope segment
- real(wp), parameter typedefinitionsrtoovertopping::slope_max = 1.0d0
 maximal value gradient slope segment
- real(wp), parameter typedefinitionsrtoovertopping::margingrad = 0.0025d0
 margin for minimal and maximal gradients
- real(wp), parameter typedefinitionsrtoovertopping::rfactor_min = 0.5d0
 minimal value roughness factor dike segments
- real(wp), parameter typedefinitionsrtoovertopping::rfactor_max = 1.0d0
 maximal value roughness factor dike segments
- real(wp), parameter typedefinitionsrtoovertopping::frunup1_min = 1.24d0

 minimal value model factor 1 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup1_max = 2.06d0
 maximal value model factor 1 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup2_min = 3.00d0 minimal value model factor 2 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup2_max = 5.00d0
 maximal value model factor 2 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup3_min = 1.13d0

 minimal value model factor 3 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup3_max = 1.87d0
 maximal value model factor 3 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::fb_min = 3.0d0

minimal value model factor for breaking waves

- real(wp), parameter typedefinitionsrtoovertopping::fb_max = 6.5d0

 maximal value model factor for breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fn_min = 1.37d0 minimal value model factor for non-breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fn_max = 3.83d0
 maximal value model factor for non-breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fs_min = 0.017d0
 minimal value model factor for shallow waves
- real(wp), parameter typedefinitionsrtoovertopping::fs_max = 0.924d0 maximal value model factor for shallow waves
- integer, parameter typedefinitionsrtoovertopping::z2_iter_max = 100 maximal number of iterations for calculation z2
- real(wp), parameter typedefinitionsrtoovertopping::z2_margin = 0.001d0 margin for convergence criterium calculation z2

6.7.1 Detailed Description

This file contains a module with the type definitions for Dikes Overtopping.

6.8 zFunctionsWTIOvertopping.f90 File Reference

This file contains the limit state functions for wave overtopping within WTI.

Modules

· module zfunctionswtiovertopping

Module for the Limit State Functions (Z-functions) for wave overtopping.

Functions/Subroutines

- subroutine, public zfunctionswtiovertopping::calculateqorto (dikeHeight, modelFactorsC, overtopping, load, geometry, succes, errorMessage)
 - Subroutine to calculate the overtopping discharge with the RTO-overtopping dll.
- subroutine, public zfunctionswtiovertopping::profileinstructure (nrCoordinates, xcoordinates, ycoordinates, dikeHeight, nrCoordsAdjusted, xCoordsAdjusted, zCoordsAdjusted, succes, errorMessage)
 - Subroutine to fill the profile in a structure and call the adjustment function of the profile due to a desired dike height.
- subroutine zfunctionswtiovertopping::adjustprofile (nrCoordinates, coordinates, dikeHeight, nrCoords
 — Adjusted, xCoordsAdjusted, zCoordsAdjusted, succes, errorMessage)
 - Subroutine adjust the profile due to a desired dike height.
- real(kind=wp) function, public zfunctionswtiovertopping::zfunclogratios (qo, qc, mqo, mqc, success, error
 — Message)

Routine to compute the limit state value by using the logs of the overtopping discharges (computed and desired)

6.8.1 Detailed Description

This file contains the limit state functions for wave overtopping within WTI.

Index

adjustinfluencefactors	calculatewaveovertoppingdischarge
formulamodulertoovertopping, 14	formulamodulertoovertopping, 16
adjustnonhorizontalberms	calculatewaverunup
geometrymodulertoovertopping, 21	formulamodulertoovertopping, 16
adjustprofile	calculatewavesteepness
zfunctionswtiovertopping, 43	formulamodulertoovertopping, 17
allocatevectorsgeometry	calczvalue
geometrymodulertoovertopping, 22	dllovertopping, 9
	checkcrosssection
berm_max	geometrymodulertoovertopping, 24
typedefinitionsrtoovertopping, 40	checkinputdata
berm_min	mainmodulertoovertopping, 35
typedefinitionsrtoovertopping, 40	computedovertopping
	typedefinitionsrtoovertopping::overtoppingmodelfactors
calculateanglewaveattack	53
formulamodulertoovertopping, 14	convertmodelfactorsrto
calculatebreakerlimit	mainmodulertoovertopping, 35
formulamodulertoovertopping, 14	copygeometry
calculatebreakerparameter	geometrymodulertoovertopping, 25
formulamodulertoovertopping, 15	criticalovertopping
calculategammab	typedefinitionsrtoovertopping::overtoppingmodelfactors
factormodulertoovertopping, 10	53
calculategammabeta	cubicroots
factormodulertoovertopping, 11	formulamodulertoovertopping, 18
calculategammaf	
factormodulertoovertopping, 11	deallocategeometry
calculatehorzdistance	geometrymodulertoovertopping, 25
geometrymodulertoovertopping, 22	determinesegmenttypes
calculatehorzlengths	geometrymodulertoovertopping, 26
geometrymodulertoovertopping, 23	dllOvertopping.f90, 65
calculateovertopping	dllovertopping, 7
mainmodulertoovertopping, 32	calculatego, 7
calculateovertoppingnegativefreeboard	calculategof, 8
mainmodulertoovertopping, 33	calczvalue, 9
calculateovertoppingsection	versionnumber, 10
mainmodulertoovertopping, 33	,
calculateqo	factorModuleRTOovertopping.f90, 65
dllovertopping, 7	factordeterminationq_b_f_b
calculateqof	typedefinitionsrtoovertopping::overtoppingmodelfactors
dllovertopping, 8	53
calculategorto	factordeterminationq_n_f_n
zfunctionswtiovertopping, 43	typedefinitionsrtoovertopping::overtoppingmodelfactors
calculatesegmentslopes	53
geometrymodulertoovertopping, 23	factormodulertoovertopping, 10
calculatetanalpha	calculategammab, 10
factormodulertoovertopping, 12	calculategammabeta, 11
calculatewavelength	calculategammaf, 11
formulamodulertoovertopping, 15	calculatetanalpha, 12
calculatewaveovertopping	fb
mainmodulertoovertopping, 34	typedefinitionsrtoovertopping::tpmodelfactors, 60
11 0/	71

74 INDEX

fb_max	fshallow
typedefinitionsrtoovertopping, 40	typedefinitionsrtoovertopping::overtoppingmodelfactors,
fb_min	54
typedefinitionsrtoovertopping, 40	manufactus Manda la DTO es contambinar 100 C7
fillmodelfactorsrto	geometryModuleRTOovertopping.f90, 67
mainmodulertoovertopping, 37	geometrymodulertoovertopping, 20 adjustnonhorizontalberms, 21
fn	allocatevectorsgeometry, 22
typedefinitionsrtoovertopping::tpmodelfactors, 60	calculatehorzdistance, 22
fn_max	calculatehorzlengths, 23
typedefinitionsrtoovertopping, 40	calculatesegmentslopes, 23
fn_min	checkcrosssection, 24
typedefinitionsrtoovertopping, 40	copygeometry, 25
formulaModuleRTOovertopping.f90, 66	deallocategeometry, 25
formulamodulertoovertopping, 13	determinesegmenttypes, 26
adjustinfluencefactors, 14 calculateanglewaveattack, 14	initializegeometry, 26
calculated right waveattack, 14 calculate breaker limit, 14	isequalgeometry, 27
calculatebreakerparameter, 15	mergesequentialberms, 27
calculatewavelength, 15	removeberms, 29
calculatewaveleright, 15	removedikesegments, 30
calculatewaverunup, 16	splitcrosssection, 30
calculatewavesteepness, 17	writecrosssection, 31
cubicroots, 18	h
isequalreal, 18	typedefinitionsrtoovertopping::tpload, 58
isequalzero, 19	hm0
realrootscubicfunction, 19	typedefinitionsrtoovertopping::tpload, 58
rootsdepressedcubic, 19	typodominionol too to topping.npicad, oo
rootsgeneralcubic, 20	initializegeometry
frunup1	geometrymodulertoovertopping, 26
typedefinitionsrtoovertopping::overtoppingmodelfactor	orieterpolateresultssections
53	mainmodulertoovertopping, 37
typedefinitionsrtoovertopping::tpmodelfactors, 60	isequalgeometry
frunup1_max	geometrymodulertoovertopping, 27
typedefinitionsrtoovertopping, 41	isequalreal
frunup1_min	formulamodulertoovertopping, 18
typedefinitionsrtoovertopping, 41	isequalzero formulamodulertoovertopping, 19
frunup2	· · · =
typedefinitionsrtoovertopping::overtoppingmodelfactor	mainmodulertoovertopping, 37
54	maininoduler toover topping, 57
typedefinitionsrtoovertopping::tpmodelfactors, 60	mainModuleRTOovertopping.f90, 68
frunup2_max	mainmodulertoovertopping, 31
typedefinitionsrtoovertopping, 41	calculateovertopping, 32
frunup2_min	calculateovertoppingnegativefreeboard, 33
typedefinitionsrtoovertopping, 41 frunup3	calculateovertoppingsection, 33
typedefinitionsrtoovertopping::overtoppingmodelfacto	calculatewaveovertopping, 34
54	checkinputuata, 55
typedefinitionsrtoovertopping::tpmodelfactors, 60	convertmodelfactorsrto, 35
frunup3_max	fillmodelfactorsrto, 37
typedefinitionsrtoovertopping, 41	interpolateresultssections, 37
frunup3_min	iterationwaverunup, 37
typedefinitionsrtoovertopping, 41	margindiff
fs	typedefinitionsrtoovertopping, 41
typedefinitionsrtoovertopping::tpmodelfactors, 60	margingrad typedefinitionsrtoovertopping, 42
fs_max	mergesequentialberms
typedefinitionsrtoovertopping, 41	geometrymodulertoovertopping, 27
fs_min	goomon y modulor to over topping, 27
typedefinitionsrtoovertopping, 41	nbermsegments

INDEX 75

typedefinitionsrtoovertopping::tpgeometry, 56 ncoordinates	overtoppinginterface::overtoppinggeometrytype, 50
typedefinitionsrtoovertopping::tpgeometry, 56	overtoppinginterface::overtoppinggeometrytypef,
normal	51
overtoppinginterface::overtoppinggeometrytype,	overtoppinginterface::tpprofilecoordinate, 62
50	roughnessfactors
overtoppinginterface::overtoppinggeometrytypef, 51	typedefinitionsrtoovertopping::tpgeometry, 56
npoints	segmentslopes
overtoppinginterface::overtoppinggeometrytype,	typedefinitionsrtoovertopping::tpgeometry, 56
50	segmenttypes
overtoppinginterface::overtoppinggeometrytypef,	typedefinitionsrtoovertopping::tpgeometry, 56
51	slope_max
	typedefinitionsrtoovertopping, 42
overtoppingInterface.f90, 69	slope_min
overtoppinginterface, 38	typedefinitionsrtoovertopping, 42
varmodelfactorcriticalovertopping, 39	splitcrosssection
overtoppinginterface::overtoppinggeometrytype, 49	geometrymodulertoovertopping, 30
normal, 50	
npoints, 50	tm_10
roughness, 50	typedefinitionsrtoovertopping::tpload, 58
xcoords, 50	typeDefinitionsRTOovertopping.f90, 69
ycoords, 50	typedefinitionsrtoovertopping, 39
overtoppinginterface::overtoppinggeometrytypef, 51	berm_max, 40
normal, 51	berm_min, 40
npoints, 51	fb_max, 40
roughness, 51	fb_min, 40
xcoords, 52	fn_max, 40
ycoords, 52	fn_min, 40
overtoppinginterface::tpprofilecoordinate, 62	frunup1_max, 41
roughness, 62	frunup1_min, 41
xcoordinate, 62	frunup2_max, 41
zcoordinate, 63	frunup2_min, 41
200014111410, 00	frunup3_max, 41
phi	frunup3_min, 41
typedefinitionsrtoovertopping::tpload, 58	fs_max, 41
profileinstructure	fs_min, 41
zfunctionswtiovertopping, 45	margindiff, 41
psi	margingrad, 42
typedefinitionsrtoovertopping::tpgeometry, 56	rfactor_max, 42
71 0 10 3	rfactor_min, 42
qo	slope_max, 42
typedefinitionsrtoovertopping::tpovertopping, 61	slope_min, 42
	xdiff_min, 42
realrootscubicfunction	z2_iter_max, 42
formulamodulertoovertopping, 19	z2_margin, 42
removeberms	type definitions r to over topping :: over topping model factors,
geometrymodulertoovertopping, 29	52
removedikesegments	computedovertopping, 53
geometrymodulertoovertopping, 30	criticalovertopping, 53
rfactor_max	factordeterminationq_b_f_b, 53
typedefinitionsrtoovertopping, 42	factordeterminationq_n_f_n, 53
rfactor_min	frunup1, 53
typedefinitionsrtoovertopping, 42	frunup2, 54
rootsdepressedcubic	frunup3, 54
formulamodulertoovertopping, 19	fshallow, 54
rootsgeneralcubic	typedefinitionsrtoovertopping::tpgeometry, 54
formulamodulertoovertopping, 20	nbermsegments, 56
roughness	ncoordinates, 56

76 INDEX

psi, 56	typedefinitionsrtoovertopping, 42
roughnessfactors, 56	z2_margin
segmentslopes, 56	typedefinitionsrtoovertopping, 42
segmenttypes, 56	zFunctionsWTIOvertopping.f90, 71
xcoorddiff, 56	zcoordinate
xcoordinates, 56	overtoppinginterface::tpprofilecoordinate, 63
ycoorddiff, 57	zfunclogratios
ycoordinates, 57	zfunctionswtiovertopping, 46
typedefinitionsrtoovertopping::tpload, 57	zfunctionswtiovertopping, 43
h, 58	adjustprofile, 43
hm0, 58	calculateqorto, 43
phi, 58	profileinstructure, 45
tm_10, 58	zfunclogratios, 46
typedefinitionsrtoovertopping::tpmodelfactors, 58	
fb, 60	
fn, 60	
frunup1, 60	
frunup2, 60	
frunup3, 60	
fs, 60	
typedefinitionsrtoovertopping::tpovertopping, 60	
qo, 61	
z2, 61	
varmodelfactorcriticalovertopping	
overtoppinginterface, 39	
versionnumber	
dllovertopping, 10	
writecrosssection	
geometrymodulertoovertopping, 31	
geometry moduler to ever topping, en	
xcoorddiff	
typedefinitionsrtoovertopping::tpgeometry, 56	
xcoordinate	
overtoppinginterface::tpprofilecoordinate, 62	
xcoordinates	
typedefinitionsrtoovertopping::tpgeometry, 56	
xcoords	
overtoppinginterface::overtoppinggeometrytype,	
50	
overtoppinginterface::overtoppinggeometrytypef,	
52	
xdiff_min	
typedefinitionsrtoovertopping, 42	
3,F	
ycoorddiff	
typedefinitionsrtoovertopping::tpgeometry, 57	
ycoordinates	
typedefinitionsrtoovertopping::tpgeometry, 57	
ycoords	
overtoppinginterface::overtoppinggeometrytype,	
50	
overtoppinginterface::overtoppinggeometrytypef,	
52	
z2	
typedefinitionsrtoovertopping::tpovertopping, 61	
z2_iter_max	