Преобразование Шютценберже

Дужин Василий Сергеевич

vduzhin@gmail.com http://bit.ly/38zatKO

05.03.2020

Преобразование Шютценберже

Таблица Юнга размера n

$$S(T_n) = T_{n-1}$$

$$T_{n-1}$$

15				
9				
6	16			
5	12			
4	10	19		
2	8	13	17	18
1	3	7	11	14

Таблица Юнга размера n-1

$$S: T_{\lambda_n} \to T_{\lambda_{n-1}}$$

Преобразование Шютценберже

- Из таблицы удаляется первая клетка;
- На освободившееся место перемещается одна из двух соседних клеток (с меньшим значением), расположенных сверху или справа от удалённой;
- По такому же принципу заполняется осободившееся после перемещения клетки место;
- Перемещения заканчиваются при достижении угловой клетки диаграммы (когда нет клеток сверху и справа);
- Все значения в таблице уменьшаются на 1 (приведение к стандартному виду).

Определение

Нерв таблицы Юнга (путь Шютценберже) – множество клеток, перемещаемых в таблице при применении преобразования Шютценберже.

Преобразование Шютценберже: пример

Schutzenberger.pdf

Обратимость преобразования Шютценберже

Можно ли по таблице T_{n-1} восстановить исходную таблицу T_n ?

Обратимость преобразования Шютценберже

Можно ли по таблице T_{n-1} восстановить исходную таблицу T_n ? **Нет**, т.к. T_{n-1} может иметь различные таблицы-прообразы:

$$T_n^1 \Longrightarrow T_{n-1}, T_n^2 \Longrightarrow T_{n-1}, T_n^3 \Longrightarrow T_{n-1}$$
, HO $T_{n-1} \not\Longrightarrow T_n^1, T_{n-1} \not\Longrightarrow T_n^2, T_{n-1} \not\Longrightarrow T_n^3$.

Пути Шютценберже (нервы)

Ниже приведены нервы всех возможных прообразов $T \in S^{-1}(T_0)$ таблицы T_0 размера 10^6 . Толщина линии пропорциональна количеству нервов.

Инволюции

Определение

Инволюция – преобразование, обратное самому себе.

Функция f(x) называется инволюцией, если

$$f(f(x)) = x$$

для любого x из области определения функции f.

Примеры инволюций

- f(x) = -x;
- $f(x) = \overline{x}$;
- Комплексное сопряжение
- Транспонирование матрицы
- Вычисление обратной матрицы
- Вычисление обратной перестановки

Инволюция Шютценберже

Определение

Инволюция Шютценберже (двойственность Шютценберже) — процедура, в ходе которой к таблице Юнга из n клеток n раз применяется преобразование Шютценберже, при этом на каждом шаге сохраняются координаты удаляемых клеток. По полученной последовательности координат строится новая таблица Юнга.

Данная процедура является инволюцией, поскольку применение ее к полученной таблице преобразует ее в исходную таблицу.

Инволюция Шютценберже: пример

sch_involution.pdf

Связь между преобразованиями RSK и Шютценберже

Пусть дана бесконечная последовательность вещественных чисел σ_1 . Последовательность σ_2 получается из σ_1 сдвигом влево (забыванием первого элемента).

В таком случае таблица Q_2 является результатом преобразования Шютценберже таблицы $Q_1.$

Связь между преобразованиями: пример

Преобразование Шютценберже с сохранением формы

Удалённая клетка снова добавляется к преобразованной таблице.

 $\mathsf{Т}\mathsf{a}\mathsf{б}\mathsf{л}\mathsf{u}\mathsf{ц}\mathsf{a}$ $\mathsf{\Theta}\mathsf{h}\mathsf{r}\mathsf{a}$ $p\mathsf{a}\mathsf{s}\mathsf{m}\mathsf{e}\mathsf{p}\mathsf{a}$ n

 T'_n

			$T\iota$		
14					
13					
10					
8	16				
7	12	17			
2	5	6	11	18	20
1	3	4	9	15	19

 Таблица Юнга

 размера n

$$S_{sp}:T_{\lambda_n}\to T_{\lambda_n}$$

Преобразование Шютценберже с сохранением формы: пример

Schutzenberger.pdf

Обратное преобразование Шютценберже (с сохранением формы)

Для преобразования Шютценберже с сохранением формы определено обратное преобразование. Для восстановления исходной таблицы необходимо выполнить действия преобразования в обратном порядке:

- Удалить клетку с наибольшим числом, на ее место передвинуть соседнюю снизу или слева клетку с наибольшим значением.
- Перемещать клетки по этому принципу, пока не будет перемещена клетка (0,0).
- Увеличить значения в клетках на единицу.
- Записать "1"в (0,0).

Поскольку преобразование Шютценберже с сохранением формы биективно, множество таблиц Юнга разбивается на циклы.

Поскольку преобразование Шютценберже с сохранением формы биективно, множество таблиц Юнга разбивается на циклы.

Поскольку преобразование Шютценберже с сохранением формы биективно, множество таблиц Юнга разбивается на циклы.

Проблема: S_{sp} не генерирует все возможные таблицы Юнга, а значит не может быть использовано в качестве генератора произвольной таблицы Юнга заданной формы.

Ниже приведены распределения длин циклов для таблиц Юнга

различных форм.

dim=4873050, 6362 cycles

Ниже приведены распределения длин циклов для таблиц Юнга

различных форм.

25000 20000 Length 15000 10000 5000 200 300 400 500 Cycle No.

dim=1361360, 688 cycles

$oldsymbol{eta}$ лины циклов для S_{sp}

Ниже приведены распределения длин циклов для таблиц Юнга

различных форм.

dim=272272, 924 cycles

Рандомизированное преобразование Шютценберже

Проблема: как с помощью преобразования Шютценберже создать генератор случайных таблиц Юнга заданной формы?

Возможное решение: рандомизация начального пути перед

применением преобразования с сохранением формы.

$\overline{S_{rand}}$: пример применения

Копереходные вероятности

Копереходные вероятности

Копереходные вероятности

Копереходная вероятность – вероятность того, что переход в диаграмму λ_n был осуществлен из диаграммы λ_{n-1} .

Вычисление размерностей диаграмм

Размерность диаграммы λ_n вычисляется следующим образом:

- Генерируются случайные равномерно распределенные пути, приходящие в диаграмму λ_n (таблицы формы λ_n).
- ② Доля путей, приходящих из определенного предшественника λ_{n-1} , стремится к копереходной вероятности соответствующего ребра.
- ullet Размерность λ_n вычисляется рекуррентно из размерности предыдущей диаграммы: $\dim(\lambda_n) = \dim(\lambda_{n-1}) \cdot p^{-1}(\lambda_{n-1} \nearrow \lambda_n)_{0 < \infty}$

Трехмерные диаграммы Юнга

3D Young diagram

z = 0

z = 1

$$z = 2$$

z = 3

z = 4

z = 5

Трехмерные диаграммы Юнга

3D Young diagram

z = 0

z = 1

$$z = 2$$

z = 3

$$z = 4$$

Трехмерный граф Юнга (первые 5 уровней)

Трехмерные таблицы Юнга: пример

3Dtableaux.pdf

Размерности трехмерных диаграмм Юнга

Следующая трехмерная диаграмма Юнга имеет размерность 12:

Выпишем все 12 трехмерных таблиц Юнга, соответствующих данной диаграмме:

5 1 3 4	2	5 1 2 4	3	5 1 2 3	4	1 2 3	5
1 3 5	2	1 2 5	3	3 1 2 5	4	3 1 2 4	5
3 1 4 5	2	2 1 4 5	3	2 1 3 5	4	2 1 3 4	5
z=0	z=1	z=0	z=1	z=0	z=1	z=0	z=1

Преобразования на трехмерных таблицах

- Преобразование Шютценберже выполняется так же, как и в двумерном случае, но при построении нерва на каждом шаге выбирается одна из **трех** соседних клеток с наименьшим числом: $(x+1,y,z),\ (x,y+1,z),\ (x,y,z+1).$
- Описанные выше **модификации** S_{sp} и S_{rand} также реализуемы на трехмерных таблицах.
- Инволюция Шютценберже обобщается на трехмерный случай.
- Не известен аналог преобразования RSK для трехмерных таблиц.
- Не известен способ быстро вычислять размерности трехмерных диаграмм Юнга (нет аналога формулы крюков).

Трехмерные пути Шютценберже (нервы)

Ниже приведены примеры нервов различных трехмерных таблиц из 50000 клеток:

Трехмерные нервы также можно изображать следующим образом:

3D Young tableau

$$z = 0$$

$$z = 1$$

$$z = 2$$

$$z = 3$$

$$z = 4$$

$$z = 5$$

Множество трехмерных таблиц также разбивается на циклы при применении преобразования Шютценберже с сохранением формы.

Рандомизированное преобразование Шютценберже (2D)

В двумерном случае S_{rand} является суперпозицией S_{sp} и случайного выбора пути на третий уровень в графе Юнга:

Рандомизированное преобразование Шютценберже (3D)

Аналогичная суперпозиция в трехмерном случае также задает рандомизированное преобразование Шютценберже. Случайным образом выбираются пути в одну из трех диаграмм размерности 2 из трех клеток.

Литература

- Stanley, Richard P. (1999), Enumerative Combinatorics
- D. Romik, P. Śniady. Jeu de taquin dynamics on infinite Young tableaux and second class particles // Annals of Probability: An Official Journal of the Institute of Mathematical Statistics. 2015.
 Vol. 43, no. 2. P. 682—737.
- В. С. Дужин, Н. Н. Васильев Рандомизированное преобразование Шютценберже и вычисление копереходных вероятностей центрального процесса на трехмерном графе Юнга // Теория представлений, динамические системы, комбинаторные методы. XXXI, Зап. научн. сем. ПОМИ. 2019. Т. 485. С. 90—106.