Programme n°27

THERMODYNAMIQUE

TH1 Introduction à la thermodynamique

Cours et exercices

TH2 Le premier principe de la thermodynamique (Cours et applications directes)

- Transformation d'un système
- Le travail des forces de pression
- Transfert thermique Définition
 - - Trois modes de transfert de chaleur
 - Transformation adiabatique
 - Notion de thermostat
 - Chois du modèle : adiabatique ou isotherme ?
- Le premier principe de la thermodynamique
- Rappels sur l'énergie interneLe premier principe
- Exemples d'utilisation → Echauffement isochore d'un gaz
 - → Echauffement monobare d'un gaz
 - → Transformation isotherme d'un gaz
 - → Echauffement d'un gaz par compression

- La fonction enthalpie Définition

 - Capacité thermique à pression constante
 - Transformation monobare avec équilibre mécanique dans l'état initial et final
 - Cas d'un gaz parfait
 - Cas d'une phase condensée incompressible et indilatable
 - Enthalpie des systèmes diphasés
- → Expression de l'enthalpie pour un système diphasé
- → Enthalpie de changement d'état
- → Bilan pour un changement d'état isotherme et isobare

- Application à la calorimétrie
- Objet de la calorimétrie
- Méthode des mélanges
- Méthode électrique
- Mesure d'une enthalpie de changement d'état

Énergie échangée par un système au cours d'une transformation	
Transformation thermodynamique subie par un système.	Définir le système.
	Exploiter les conditions imposées par le milieu extérieur pour déterminer l'état d'équilibre final.
	Utiliser le vocabulaire usuel : évolutions isochore, isotherme, isobare, monobare, monotherme.
Travail des forces de pression. Transformations	Calculer le travail par découpage en travaux
isochore, monobare.	élémentaires et sommation sur un chemin donné
	dans le cas d'une seule variable.
	Interpréter géométriquement le travail des forces de pression dans un diagramme de Clapeyron.
Transfert thermique.	Identifier dans une situation expérimentale le ou
Transformation adiabatique.	les systèmes modélisables par un thermostat.
Thermostat, transformations monotherme et	
isotherme.	Proposer de manière argumentée le modèle limite
	le mieux adapté à une situation réelle entre une
	transformation adiabatique et une transformation isotherme.

3. Premier principe. Bilans d'énergie	
Premier principe de la thermodynamique : Δ U + Δ Ec = Q + W.	Définir un système fermé et établir pour ce système un bilan énergétique faisant intervenir travail W et transfert thermique Q.
	Exploiter l'extensivité de l'énergie interne.
	Distinguer le statut de la variation de l'énergie interne du statut des termes d'échange.
	Calculer le transfert thermique Q sur un chemin donné connaissant le travail W et la variation de l'énergie interne Δ U.
	Mettre en œuvre un protocole expérimental de mesure d'une grandeur thermodynamique énergétique (capacité thermique, enthalpie de fusion).
Enthalpie d'un système. Capacité thermique à pression constante dans le cas du gaz parfait et d'une phase condensée incompressible et	_
indilatable.	Comprendre pourquoi l'enthalpie H _m d'une phase condensée peu compressible et peu dilatable peut être considérée comme une fonction de l'unique variable T.
	Exprimer le premier principe sous forme de bilan d'enthalpie dans le cas d'une transformation monobare avec équilibre mécanique dans l'état initial et dans l'état final.
	Connaître l'ordre de grandeur de la capacité thermique massique de l'eau liquide.
Enthalpie associée à une transition de phase : enthalpie de fusion, enthalpie de vaporisation, enthalpie de sublimation.	Exploiter l'extensivité de l'enthalpie et réaliser des bilans énergétiques en prenant en compte des transitions de phases.

SOLUTIONS AQUEUSES AQ3 L'oxydoréduction Cours et exercices

<u>TP</u>

Dosage redox du fer II par le cesium IV. Mise en place d'un protocle pour doser les ions Ag⁺ par les ions Cl⁻ (redox et conductimètrique) Spectromitrie : vérification de le loi de Beer Lambert, déterminationdu pK_A du BBT