Lecture 28

Part 6 Introduction to Bayesian Statistics

ECON2843 1 / 10

Bayesian Statistics

ECON2843 2 / 10

Estimation

- **Question:** How should I estimate θ ?
- Answer to the question is another question: What is your loss function?
- First, what is the decision space?
- $\mathcal{D} = (0,1)$, same as the parameter space.
- \rightarrow $d \in \mathcal{D}$ is a guess about the value of θ .
- The loss function is up to you, but surely the more you are wrong, the more you lose.
- How about squared error loss?
- $L(d,\theta) = k(d-\theta)^2$
- ▶ We can omit the proportionality constant k.

Minimize Expected Loss

$$L(d,\theta) = (d-\theta)^2$$

Denote $E(\theta|X=x)$ by μ . Then

$$E(L(d,\theta)|X = x) = E((d-\theta)^{2}|X = x)$$

$$= E((d-\mu + \mu - \theta)^{2}|X = x)$$

$$= \cdots$$

$$= E((d-\mu)^{2}|X = x) + E((\theta - \mu)^{2}|X = x)$$

$$= (d-\mu)^{2} + Var(\theta|X = x)$$

- Minimal when $d = \mu = E(\theta|X = x)$, the posterior mean.
- This was general.
- ▶ The Bayes estimate under squared error loss is the posterior mean.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Back to the example

Give the Bayes estimate of θ under squared error loss.

Posterior distribution of θ is Beta, with $\alpha' = \alpha + \sum_{i=1}^{n} x_i = 61$ and $\beta' = \beta + n - \sum_{i=1}^{n} x_i = 41$.

> 61/(61+41) [1] 0.5980392

ECON2843 5 / 10

Hypothesis Testing

 $\theta > \frac{1}{2}$ means consumers tend to prefer the new blend of coffee.

Test $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

- ▶ What is the loss function?
- ▶ When you are wrong, you lose.
- ▶ Try zero-one loss.

	Loss $L(d_j, \theta)$	
Decision	When $\theta \leq \theta_0$	When $\theta > \theta_0$
$d_0: \theta \le \theta_0$	0	1
$d_1: \theta > \theta_0$	1	0

ECON2843 6 / 10

Compare expected loss for d_0 and d_1

	Loss $L(d_j, \theta)$	
Decision	When $\theta \leq \theta_0$	When $\theta > \theta_0$
$d_0: \theta \le \theta_0$	0	1
$d_1: \theta > \theta_0$	1	0

Note $L(d_0, \theta) = I(\theta > \theta_0)$ and $L(d_1, \theta) = I(\theta \le \theta_0)$.

$$E(I(\theta > \theta_0)|X = x) = P(\theta > \theta_0|X = x)$$

$$E(I(\theta \le \theta_0)|X = x) = P(\theta \le \theta_0|X = x)$$

- Choose the smaller posterior probability of being wrong.
- ▶ Equivalently, reject H_0 if $P(H_0|X=x) < \frac{1}{2}$.

ECON2843 7 / 10

Back to the example

Decide between $H_0: \theta \leq 1/2$ and $H_1: \theta > 1/2$ under zero-one loss.

Posterior distribution of θ is Beta, with $\alpha'=\alpha+\sum_{i=1}^n x_i=61$ and $\beta'=\beta+n-\sum_{i=1}^n x_i=41.$ Want $P(\theta>\frac{1}{2}|X=x)$

> 1 - pbeta(1/2,61,41) # P(theta > theta0|X=x) [1] 0.976978

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

ECON2843 8 / 10

How much worse is a Type I error?

	Loss $L(d_j, \theta)$	
Decision	When $\theta \leq \theta_0$	When $ heta > heta_0$
$d_0: \theta \le \theta_0$	0	1
$d_1: \theta > \theta_0$	k	0

To conclude H_1 , posterior probability must be at least k times as big as posterior probability of H_0 .

k = 19 is attractive.

A realistic loss function for the taste test would be more complicated.

ECON2843 9 / 10

Computation

- Inference will be based on the posterior.
- ▶ Must be able to calculate $E(g(\theta)|X=x)$
- ▶ For example, $E(L(d, \theta)|X = x)$
- ▶ Or at least

$$\int L(d,\theta)f(x|\theta)\pi(\theta)\,d\theta.$$

- ightharpoonup If θ is of low dimension, numerical integration usually works.
- ► For high dimension, it can be tough.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

ECON2843 10 / 10