

資料處理 Data Precessing

國立東華大學電機工程學系楊哲旻

Outline

- 1 純文字文件 (.txt)
- 2 常見傳遞資料的格式 (.csv .xlsx .xml .json)
- 3 影像 (.jpg .png ...)
- 4 Homework

資料格式

在數據分析與人工智慧模型訓練前的第一步,就是要了解資料與蒐集資料,目前常見的資料格式分為結構化、半結構化與非結構化資料:

	結構化資料 (Sturctured Data)	半結構化資料 (Semi-Structured Data)	非結構化資料 (Unstructured Data)
定義	嚴謹定義為資料可以被呈現在資料庫表格的行與欄,即已被整理過的資料	便於資料交換,其特性同時具備欄位概念與欄位可拓展性,可透過欄位查詢資料,並可根據使用者需求來增減欄位	形式自由且不遵循標準的格式 規範,一團沒有組織的數據, 即未經整理過的資料
優缺點	查詢資料快速,佔用存儲空間少;缺點 是拓展新的欄位比較麻煩,在資料交換 上的規定也比較嚴格	利於資料交換與傳輸·並可以增減欄位;缺 點每筆資料的結構可能會不一致	佔用更多存儲空間,無法直接 用於數據分析、未規則性的資 料很難處理與整理
範例	關聯式資料庫(MySQL, Oracle等)的資料、Excel	CSV、JSON與XML	文字、圖片、音樂、影片、 PDF、網頁等

※ 先有結構·再有資料

1. 純文字文件 (.txt)

步驟: 開啟 — 寫入/讀取 — 關閉

- 1. 開啟 file_obj = open(file, mode="r")
 - r開啟檔案只供讀取,為預設值
 - w開啟檔案供寫入,如果原先檔案有內容,其內容將被覆蓋
 - a 開啟檔案供寫入,如果原先檔案有內容,新寫入的資料將附加在後面
 - x 開啟一個新的檔案供寫入,如果所開啟的檔案已經存在則會產生錯誤
- 2.讀檔file_obj.readlines()一次讀一行,以列表呈現file obj.read()一次讀全部
- 3. 寫檔 file_obj.write(str) print(str, file=file obj)
- 4. 關閉 file_obj.close() 每次開啟檔案,請必要執行關閉

若使用with as 開啟檔案,以下程式執行完會自動關閉 with open(file, mode="r") as file_obj:

2. 常見傳遞資料的格式

Pandas 是一個資料處理與資料分析常用的開源套件 (https://pandas.pydata.org/docs/index.html)

1. 給予資料與欄位字串,建立一DataFrame df = pd.DataFrame(data, columns = [str])

2. 呈現DataFrame資料: 前n筆資料(n預設為5) df.head(n=5)

後n筆資料(n預設為5) df.tail(n=5)

3. 從DataFrame中取得一欄位的資料: data_column = df[str]

4. 儲存DataFrame資料: ■ csv df.to csv(path, index = bool) index為第一欄位編號是否存取

excel df.to_excel(path, index = bool, sheet_name = str)

■ json df.to_json(path) sheet_name 為工作表的名稱

■ xml df.to_xml(path) 備註:pandas 版本為 1.3.0 以上才能使用

2. 常見傳遞資料的格式

7. 新建資料(列) df2 = df2.append(df1)

5. 讀取資料: df = pd.read csv(path) openpyxl 支持較新的試算表格式 CSV exce df = pd.read excel(path, engine='openpyxl') ■ json df = pd.read json(path) ■ xml df = pd.read xml(path) 單欄新增,若str是以存在的欄位,其資料內容則會被取代 6. 新建欄位 df[str] = data單欄新增,index為插入的欄位位置 df.insert(index,str,data) df = df.assign(str1 = data1, str2 = data2, ...)多欄新增

多列新增,df1的欄位名稱要與df2相同,此方法較多限制

3. 影像

處理影像的套件常見的如下五個:

	OpenCV (cv2)	Matplotlib	Scipy
讀取資料	cv2.imread(path)	matplotlib.image.imread(path)	scipy.misc.imread(path)
資料型別	numpy.ndarray	numpy.ndarray	numpy.ndarray
顯示影像	cv2.imshow(Title, img)	matplotlib.pyplot.imshow(img) matplotlib.pyplot.matshow(img) matplotlib.pyplot.show()	scipy.misc.imshow(img)
儲存影像	cv2.imwrite(path, img)	matplotlib.pyplot.imsave(path, img)	scipy.misc.imsave(path, img)

	PIL	Tensorflow (tf), Keras
讀取資料	PIL.Image.open(path)	tf.keras.preprocessing.image.load_img(path)
資料型別	PIL	PIL
顯示影像	img.show()	img.show()
儲存影像	img.save(path)	tf.keras.preprocessing.image.save_img(path, img)

PIL轉為陣列,可用兩種方法:tf.keras.preprocessing.image.img_to_array(img) , numpy.array(img)

Homework

Homework

1. 打印三角形聖誕樹(右圖),使用for迴圈打印,並儲存至純文字文件:

▶ 樹葉為底十個*字號,依序減二,最高為兩個*字號且皆置中

**

▶ 樹幹為高寬兩個 *

**

**

2. 表格 (左圖) 再新增欄位為 BMI · 其數值為身高與體重所計算的 · 型別為浮點數取小數點兩位 (右圖)

02	age	city	height	weight	sex	SBP	DBP
0	23	Japan	175	68	М	120	85
1	18	Taiwan	168	55	F	114	90
2	30	USA	173	75	М	145	75
3	25	Taiwan	158	50	F	110	78

	age	city	height	weight	sex	SBP	DBP	ВМІ
(23	Japan	175	68	М	120	85	22.20
1	18	Taiwan	168	55	F	114	90	19.49
2	30	USA	173	75	М	145	75	25.06
3	25	Taiwan	158	50	F	110	78	20.03

3. 右圖影像轉為陣列裁減至左上角(140, 220)至右下角(450, 520)的矩形,並用Matplotlib顯示其裁減影像並儲存