

Real life problems are multi scale

"Scales of atmospheric motion" Florida State University - Neil O'Brien'

Real life problems are multi scale

Chemical Engineering Research and Design 184 (2022) 39–58

Solving microkinetics is slow

Chemical Engineering Science, 250, 117408

- 70-90%^[1]
- $\sim 90\%^{[2]}$
- > 99%^[3]

^[1] Bracconi, M., et al. (2017), AIChE Journal, 63(1), 95-104.

^[2] Nikitin, V. F., et al. (2021), Acta Astronautica, 194, 376-382.

^[3] Brown, T. S., et al. (2021), In Lecture Notes in Computer Science: Vol. 12761 LNCS (pp. 23–39)

Speed-up strategies

Felix Döppel

Replace

Types of surrogates

Splines^[1-5]

Random Forests^[7,8]

Neural Networks

up to 7 parameters^[6]

- [1] Chemical Engineering Science 2009, 64, 1384–1389
- [2] Catalysis Today 2010, 151, 271-277
- [3] Applied Catalysis B: Environmental 2012, 111-112, 445-455
- 4] Computers & Chemical Engineering 2016, 88, 126-134.
- [5] AIChE Journal 2017, 63, 87-94
- [6] Computers & Chemical Engineering 2017, 98, 21–30

- 7] Computers & Chemical Engineering 2018, 115, 286–294
- Chemical Engineering Journal 2020, 400, 125469...

19.07.2024 Felix Döppel

Arrhenius & mass action law

$$r = k_0 \cdot \exp\left(-\frac{E_A}{R T}\right) \cdot \prod_{i \in \text{reac.}} a_i^{-\nu_{i,j}}$$

$$\ln r = \ln k_0 - \frac{E_A}{R} \cdot \frac{1}{T} - \sum_{i \in \text{reac.}} \ln a_i$$

$$\dot{s} = r_{\text{ads}} - r_{\text{des}}$$

$$= r_{RDS}^+ - r_{RDS}^-$$

Felix Döppel

Preferential oxidation of CO on Pt^[1,2] 50% 10 Standard

Döppel and Votsmeier, Chem. Eng. Sci. 2022, 262, 117964

Atom balance

Döppel and Votsmeier, Proceedings of the Combustion institute, 2024, in production

Via key species:

5 species

- 3 elements

= 2 unknowns

Atom balance

Döppel and Votsmeier, Proceedings of the Combustion institute, 2024, in production

Via global reactions:

$$R_{\text{CO-ox}} = \dots$$

 $R_{\text{H}_2-\text{ox}} = \dots$
 $R_{\text{WGS}} = \dots$

$$\dot{s} = \sum_{j} \nu_{i,j} R_{j}$$

10

Thermodynamics

De Donder relation^[1]

$$r_{\rm eff} = r^+ - r^-$$

$$= r^+ \cdot \left(1 - \frac{\prod_i a_i^{\nu_{i,j}}}{K_{eq}}\right)$$

- Fewer rates to model
- Progress towards correct equilibrium

Physics checklist

- ✓ Arrhenius law
- ✓ Law of mass action
- √ Atom balance
- √ Thermodynamics

- OButler-Volmer expression?
- o Charge balance?
- o Symmetry?

19.07.2024 Felix Döppel 11

Global Reaction Neural Network

Kircher, Döppel, and Votsmeier, Chem. Eng. J., 2024, 485, 149863

Applications

- Preferential oxidation of CO on Pt[1]
- Methane steam reforming on Rh^[1]
- Methanol synthesis on Cu/Zn^[2]
- Ammonia synthesis on Ru^[3]
- Methane non-oxidative coupling over single atom Fe/SiO2^[3]

^[2] Reaction Chemistry & Engineering, (2024), 9, 1047-1060

Reactor Simulation Packed Bed Steam Reforming

Biermann, Uglietti, Döppel, Kircher, Votsmeier, Bracconi, Maestri, Manuscript in preparation

Catalytic Foam^[1] Interface Catalytic FOAM

■ 2D validation: 120x speed-up

3D simulation:

Summary

- Machine learning surrogates enable detailed reactor simulations
- Embedding physics leads to reliable results

Scan for slides!

Automated surrogates

automated training set design

goal-oriented kernel model

fast & accurate reactor simulations

Döppel et al., Chem. Ing. Tech. 2024, 96, 6, 759-768

Model discovery from integral data

- Methane steam reforming on Rh^[1]
- Preferential oxidation of CO on Pt^[2]
- CO₂ Fischer Tropsch^[3]

- [1] Chemical Engineering Journal, (2024), 485, 149863
- [2] Computer Aided Chemical Engineering, (2024), 53, 817-822

Acknowledgements

Prof. M. Votsmeier

T. Kircher

F. Biermann

Prof. M. Maestri

Prof. M. Bracconi

Summary

- Machine learning surrogates enable detailed reactor simulations
- Embedding physics leads to reliable results

Scan for slides!

POLITECNICO DI MILANO