

Low Power Wide Area Networks for the Internet of Things

Framework, Performance Evaluation, and Challenges of LoRaWAN and NB-IoT

Samer Lahoud Melhem El Helou

ESIB, Saint Joseph University of Beirut, Lebanon

Mar Roukos, June 2018

Tutorial Outcomes

- How do LPWAN complement traditional cellular and short-range wireless technologies?
- What are the fundamental mechanisms that enable to meet the LPWAN requirements?
- What are the major design choices made in the LoRaWAN and NB-IoT specifications?
- How do we evaluate the performance of a LoRaWAN deployment in terms of coverage and capacity?

Outline

1 Technical Specification

What is LoRa?

Definition of LoRa

LoRa is a wireless modulation technique that uses Chirp Spread Spectrum (CSS) in combination with Pulse-Position Modulation (PPM).

- Processing gain given by $g_p = BT$
- Spreading factor SF given by $log_2(g_p)$
- Considering a coding rate *CR*, the bit-rate is given by:

$$R_b = SF \cdot \frac{B}{2^{SF}} \cdot \frac{4}{4 + CR}$$

with
$$1 \le CR \le 4$$

LoRa Symbols

- $log_2(g_p)$ bits are encoded by transmitting a single *chirp* in g_p possible cyclic time shifts
- Example: $g_p = 4 \Rightarrow 2$ bits/symbol

LoRa Spreading Factors

■ LoRa uses spreading factors from 7 to 12

LoRa Radio Optimization

Bit Rate (kb/s)	Sensitivity (dBm)
9.375	-118
5.468	-123
3.125	-126
1.757	-129
0.976	-132
0.537	-134.5
0.293	-137
	9.375 5.468 3.125 1.757 0.976 0.537

(CR = 1 and B = 125 kHz)

- Higher spreading factors lead to lower sensitivity and larger coverage
- Lower spreading factors lead to higher data rates

F S C

LoRa Channels

- Operates in license-free bands all around the world
 - 433, 868 (EU), 915 MHz
- EU 863-870MHz ISM Band
 - Default radiated transmit output power by devices: 14 dBm
 - Minimum set of three channels, maximum of 16 channels

Modulation	Bw [kHz]	Freq [MHz]	Data Rate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30	DR0 to DR5 0.3-5 kbps	3	<1%
		868.50			

I S O

Duty Cycle Limitation

- The LoRaWAN enforces a per sub-band duty-cycle limitation (ETSI)
 - Each time a frame is transmitted in a given sub-band, the time of emission and the on-air duration of the frame are recorded for this sub-band
 - lacktriangle The same sub-band cannot be used again during the next T_{off} seconds where:

$$T_{off} = rac{ ext{TimeOnAir}}{ ext{DutyCyleSubband}} - ext{TimeOnAir}$$

- During the unavailable time of a given sub-band, the device may still be able to transmit on another sub-band
- The device adapts its channel hopping sequence according to the sub-band availability

Example

A device just transmitted a 0.5 s long frame on one default channel. This channel is in a sub-band allowing 1% duty-cycle. Therefore this whole sub-band (868 – 868.6) will be unavailable for 49.5 s

L S C

From LoRa to LoRaWAN

- LoRa
 - Modulation technique for LPWAN
- LoRaWAN
 - Uses LoRa modulation on physical layer
 - Proposes a MAC layer for access control
 - Specified by LoRa Alliance (LoRaWAN specification 1.1)

End-Devices

- End-devices are also called motes or devices
- Communicate to one or more gateways via a wireless interface using single hop LoRa or FSK

- S U

Gateways

- Gateways are also called concentrators or base stations
- Forward Frames between devices and network server
- Connected to the network server via IP interfaces

Network Server

- Network server is a central server located at the backend
- Provides mobility, frame control, and security functions
- Adapts data transmission rates

F S C

LoRaWAN General Characteristics

- LoRaWAN network architecture is typically laid out in a star-of-stars topology
- All end-point communication is generally bi-directional
 - Uplink communications are predominant
- Data rates ranging from 300 bps to 5.5 kbps
 - Two high-speed channels at 11 kbps and 50 kbps (FSK modulation)
 - Eight channels: bandwidth 125 kHz or 250 kHz
 - Support for adaptive data rate (power and spreading factor control)
- Secure bi-directional communication, mobility, and localization
 - Device authentication, message encryption, and frame counter

1 S O

Uplink transmission

- Uncoordinated data transmission
 - Devices transmit without any coordination on a randomly chosen channel
 - Regulated maximum transmit duty cycle
 - Regulated maximum transmit duration (or dwell time)

LoRaWAN Access Method

LoRaWAN is an ALOHA-type protocol: transmission by the device is based on its own communication needs with a small variation based on a random time basis

- S O

Device Classes

- Class A
 - Each uplink transmission is followed by two short downlink receive windows
 - Adapted for applications that only require downlink communication from the server shortly after the end-device has sent an uplink transmission

- Class B
 - In addition to class A, receive windows are opened at scheduled times
 - A time synchronized Beacon is sent by the gateway
- Class C
 - Nearly always open receive windows (unless transmitting)

MAC Commands

- Commands are exchanged between devices and NS, not visible to the application layer
- Examples
 - Indicate the quality of reception of the device
 - Indicate the battery level of a device
 - Request the device to change data rate, transmit power, repetition rate or channel
 - Sets the maximum aggregated transmit duty-cycle of a device
 - Change to the frequency and the data rate set for the second receive window (RX2) following each uplink

Adaptive Data Rate

- Objectives
 - Increase battery life
 - Maximize network capacity
- Data rate validation
 - A device periodically sets the ADR acknowledgment bit and waits for an acknowledgment from the network
 - If an ACK is not received, the device switches to the next lower data rate that provides a longer radio range