6. Trees, Heaps, and Binary Search Trees (BSTs)

- Trees: tree terminology, tree ADT, operations and efficiency
- Binary trees
- Heaps: heap applications, heap operations and efficiency, heap as priority queue, heap sort
- BSTs: operations and efficiency

Trees, Heap, and BST

Operator	Output	Priority Queue
insertItem(5, A)		(5,A)
insertItem(9, C)		(5,A),(9,C)
insertItem(3, B)		(3,B),(5,A),(9,C)
insertItem(7, D)		(3,B),(5,A),(7,D),(9,C)
minElement()	В	(3,B),(5,A),(7,D),(9,C)
minKey()	3	(3,B),(5,A),(7,D),(9,C)
removeMin()	В	(5,A),(7,D),(9,C)
size()	3	(5,A),(7,D),(9,C)
removeMin()	Α	(7,D),(9,C)
removeMin()	D	(9,C)
removeMin()	C	
removeMin()	error	
isEmpty()	true	} } {

Total Order Relation Keys in a priority Mathematical concept queue can be of total order relation ≤ arbitrary objects Reflexive property: on which an order $x \le x$ is defined Antisymmetric property: $x \le y \land y \le x \Longrightarrow x = y$ ◆ Two distinct items Transitive property: in a priority queue $x \le y \land y \le z \Longrightarrow x \le z$ can have the same key Trees, Heap, and BST


```
ItemType remove(Heap *H) {
NodeType L;
                                  /* let L be the last node of H in level order */
NodeType R;
                                  /* R is used refer to the root node of H */
ItemType ItemToRemove:
                                  /* temporarily stores item to remove */
      if (H is not empty) {
         /* Remove the highest priority item which is stored in H's root node, R */
         ItemToRemove = (the value stored in the root node, R, of H);
         /* Move L's value into the root of H, and delete L */
         (R's value) = (the value in last node L):
         (delete node L);
         /* Reheapify the values in the remaining nodes of H starting at the root, R */
         if (H is not empty) {
           (Reheapify the heap H starting at node R);
        return (ItemToRemove);
                                 Trees, Heap, and BST
```


Trees - Addition Add 21 to the tree We need at most h+1 comparisons Create a new node (constant time) So addition to a tree takes time proportional to log n Trees, Heap, and BST 49

```
Trees - Addition - implementation

void insert( node **t, node *new ) {
    node base = *t;
    if ( base == NULL ) {
    *t = new; return; }
    else {
        if ( keyLess(new->item, base->item) )
            insert( &(base->left), new );
        else
            insert( &(base->right), new );
    }
}

void addToTree( tree t, void *item ) {
        node* new;
        new = (node*) malloc(sizeof(struct t_node));
        new->item = item;
        new->item = item;
        new->left = new->right = NULL;
        insert( &(t.root), new );
}
```