Signaux et Systèmes – Examen Blanc 2016 - MT

QCM (20 min)

1.	Système	LIT
----	---------	-----

Vrai	Faux	
		rect(t-1) * rect(t-1) = tri(t-1)
		La sortie d'un système LIT BIBO-stable à une entrée constante est constante.
		La composition de deux systèmes causaux définit toujours un système causal.
		$f(t)\delta(t-t_0)=f(t_0)$ pour tout $t_0\in\mathbb{R}$ et tout signal $f(t)$.
		L'opérateur $(D + 3I)^{-1}$ n'est pas BIBO-stable.
		Pour tout signal $x(t)$ on a $x(t)*\delta'(t)=x'(t)$.
2. Pr	oduit sc	alaire et série de Fourier
		La famille $\left(\frac{1}{2}rect\left(\frac{t}{2}-n\right)\right)_{n\in Z}$ est orthonormale pour le produit scalaire sur $L_2(\mathbb{R})$
		Si $y(t) = x(t - 0.5)$ alors les autocorrélations de $x(t)$ et $y(t)$ sont égales.
		Les coefficients de Fourier complexes du signal $x(t)=e^{j2\pi t}$ pour la période $T=1$ sont tous nuls sauf un.
		La fonction $x(t) = j \sum_{n=-7}^{7} ne^{j2\pi nt}$ est 1-périodique et réelle.
		Le coefficient de Fourier complexe c_0 d'un signal pair $x(t)$ \in $L_2([0,1])$ est toujours nul.
3. Tr	ansform	ée de Fourier
		La transformée d'un signal constant $x(t)=1/2$ est $X(\omega)=\pi\delta(\omega)$.
		Le spectre d'un signal peut-être translaté en fréquence en convoluant la TF avec une sinusoïde complexe.
		La TF d'un signal réel est réelle.
		Le système de réponse fréquentielle $H(\omega)=1/j\omega$ est BIBO-stable.
		Le filtre $h(t) = \operatorname{sinc}(t/2\pi)\cos(t)$ est passe-bande.
		Si $f(t)$ est un signal de TF $F(\omega)$, alors la TF de $F(t)$ est $f(-\omega)$.
4. Ec	hantillo	nnage et Modulation
		La TF d'un signal périodisé est une somme pondérée d'impulsions de Dirac.
		L'opération d'échantillonnage de pas $T=1$ qui, à un signal $x(t)$, associe $x_{\acute{e}ch}(t)=\sum_{n\in Z}x(n)\delta(t-n)$ est linéaire mais pas invariante dans le temps.
П		$cos(\pi t/2) * sinc(t) = cos(\pi t/2)$

Signaux et Systèmes - Examen Blanc 2016 - MT

Problème I

On considère le système défini par le schéma bloc ci-dessous. Pour simplifier son analyse, on traitera d'abord le système S_1 , puis le système S_4 composé de S_2 et S_3 mis en parallèle, puis le système S_4 . Puis on étudiera le système complet S.

Prenez soin de bien observer le schéma afin d'identifier les entrées et sorties des sous-systèmes !

Analyse de S₁

Le système de S_1 est caractérisé par l'équation suivante.

$$S_1$$
: $4x_1'(t) + 3x_1(t) = x(t)$

- 1) Donner l'expression de $h_1(t)$, la réponse impulsionnelle de S_1 .
- 2) Le système S_1 est-il causal ? BIBO-stable ? Justifier.
- 3) Donner l'expression de $H_1(\omega)$, la réponse fréquentielle de S_1 .

Analyse de S_A

Les systèmes de S_2 et S_3 sont caractérisé par les équations suivantes.

$$S_2: 2x_2(t) = x_1(t-3)$$

$$S_3$$
: $x_3(t+3) = \left(D + \frac{1}{2}I\right)\{x_1\}(t)$

- 4) Donner l'expression de $H_2(\omega)$, la réponse fréquentielle de S_2 .
- 5) Donner l'expression de $h_3(t)$, la réponse impulsionnelle de S_3 .
- 6) Donner l'expression de $H_3(\omega)$, la réponse fréquentielle de S_3 .
- 7) Donner l'expression de $H_A(\omega)$, la réponse fréquentielle de S_A .

Analyse de S_4

Le système de S_1 est caractérisé par l'équation suivante.

$$S_4$$
: $h_4(t) = \frac{1}{3}u(t+3)e^{-\frac{3}{2}(t+3)}$

- 8) Le système S_4 est-il RIF? Justifier.
- 9) Donner l'expression de $H_4(\omega)$, la réponse fréquentielle de S_4 .
- 10) Exprimer S_4 sous la forme d'une équation différentielle.

Analyse du système complet S

- 11) Donner l'expression de $H(\omega)$, la réponse fréquentielle du système complet.
- 12) Donner l'expression de h(t), la réponse impulsionnelle du système complet.

Signaux et Systèmes – Examen Blanc 2016 - MT

Problème II

On considère le système suivant avec comme entrée x(t) et comme sortie $\tilde{x}(t)$

- 1) Soit $x(t) = \sum_{n \in \mathbb{Z}} \operatorname{tri}(t-2n)$. Esquisser sur le même graph x(t) et $x_{\acute{e}ch}(t)$.
- 2) Déduire du graphique l'expression de $x_{\acute{e}ch}(t)$.
- 3) Esquisser $X_{\acute{e}ch}(\omega)$, la transformée de Fourier de $x_{\acute{e}ch}(t)$.
- 4) On choisit h(t) de telle façon que sa transformée de Fourier soit $H(\omega) = \mathrm{rect}\left(\frac{\omega}{2\omega_0}\right)$. Donner l'expression de $\tilde{X}(\omega)$ pour $\omega_0 = \pi/2$, puis pour $\omega_0 = 3\pi/2$.
- 5) Esquisser $\tilde{x}(t)$ pour $\omega_0 = \pi/2$, puis pour $\omega_0 = 3\pi/2$.
- 6) Est-il possible de reconstruire parfaitement le signal x(t) avec le système proposé ? Justifier la réponse et, le cas échéant, donner la valeur limite de ω_0 pour que ce soit possible.

Signaux et Systèmes - Examen Blanc 2016 - MT

Problème III

Dans tout cet exercice, on considère les fonctions sur [-1,1]. Soit la fonction

$$\phi(t) = \sum_{k \in \mathbb{Z}} (-1)^k \operatorname{rect}\left(t - \frac{1}{2} - k\right)$$

Pour $t \in [-1,1]$ et la famille de fonctions, pour n $\in N$

$$\phi_n(t) = a_n \phi(2^n t)$$

où les a_n sont des coefficients positifs que l'on déterminera. L'espace des fonctions de carré intégrable est muni du produit scalaire $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)dt$.

- 1) Tracer les fonctions $\phi(2^n t)$ sur [-1,1] pour n=0, 1, 2.
- 2) Trouver les coefficients a_n positifs tels que les fonctions $\phi_n(t)$ soient normalisées
- 3) Par un raisonnement simple (on pourra s'inspirer des graphes de la question 1), montrer que la famille $\{\phi_n(t)\}_{n\in\mathbb{N}}$ est orthonormale.

On considère maintenant le signal suivant :

$$f(t) = 4\left[\operatorname{rect}\left(2t - \frac{1}{2}\right) - \operatorname{rect}\left(2t + \frac{1}{2}\right)\right]$$

On souhaite calculer la meilleure approximation $\tilde{f}(t)$ de f(t) par la famille de fonctions $\{\phi_n(t)\}_{n\in\mathbb{N}}$.

- 4) Donner l'expression générique de $\tilde{f}(t)$.
- 5) Tracer la fonction f(t).
- 6) Calculer l'énergie $||f||^2$ du signal.
- 7) Calculer le premier coefficient $\langle f, \phi_0 \rangle$. Que vaut l'erreur d'approximation de f(t) par la fonction $\phi_0(t)$?
- 8) Calculer le second coefficient $\langle f, \phi_1 \rangle$. Que vaut l'erreur d'approximation de f(t) par la famille de deux fonctions $\phi_0(t)$ et $\phi_1(t)$?
- 9) En déduire la meilleure approximation $\tilde{f}(t)$ de f(t) par la famille de fonctions $\{\phi_n(t)\}_{n\in\mathbb{N}}$, ainsi que l'erreur d'approximation $\|f-\tilde{f}\|^2$.