Universidad Panamericana Maestría en Ciencia de Datos Econometría

Tarea RLM

Enrique Ulises Báez Gómez Tagle 9 de septiembre de 2025

Índice

1	Pregunta 1	2
2	Pregunta 2	3
3	Pregunta 3	4
4	Pregunta 4	4
5	Pregunta 5	4
6	Link al repositorio con código fuente	4

1. Pregunta 1

a) Considere los datos de la tabla 1.

Cuadro 1: Datos de la pregunta 1

b) Con base en estos datos, estime las siguientes regresiones:

$$Y_i = \alpha_1 + \alpha_2 X_{2i} + u_{1i},$$

$$Y_i = \lambda_1 + \lambda_3 X_{3i} + u_{2i},$$

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i,$$

- a) ¿Es $\alpha_2 = \beta_2$? ¿Por qué?
- b) ¿Es $\lambda_3 = \beta_3$? ¿Por qué?
- c) ¿Qué conclusión importante obtiene de este ejercicio?

Con los datos (Y, X_2, X_3) :

$$Y = \{1, 3, 8\}, \quad X_2 = \{1, 2, 3\}, \quad X_3 = \{2, 1, -3\}.$$

Estimaciones:

(1)
$$Y_i = \alpha_1 + \alpha_2 X_{2i} + u_{1i}$$
,

$$\hat{\alpha}_1 = -3, \ \hat{\alpha}_2 = 3.5.$$

(2)
$$Y_i = \lambda_1 + \lambda_3 X_{3i} + u_{2i}$$
,

$$\hat{\lambda}_1 = 4, \ \hat{\lambda}_3 = -1.3571.$$

(3)
$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$
,

$$\hat{\beta}_1 = 2, \ \hat{\beta}_2 = 1, \ \hat{\beta}_3 = -1.$$

- a) No, $\alpha_2 \neq \beta_2$. El estimador α_2 en la regresión simple está sesgado porque omite X_3 , correlacionado con X_2 . Se cumple la fórmula del sesgo por variable omitida.
- b) Tampoco, $\lambda_3 \neq \beta_3$. Análogamente, al omitir X_2 , el coeficiente de X_3 se ve afectado por su correlación con X_2 .
- c) Este ejercicio nos permite entender el sesgo por variable omitida. Los coeficientes en regresiones simples (α_2, λ_3) difieren de los verdaderos efectos parciales (β_2, β_3) que sólo se identifican en la regresión múltiple.

2. Pregunta 2

a) La demanda de rosas. En la Tabla 2 se presentan datos trimestrales (1971-III a 1975-II) sobre estas variables:

Y =cantidad de rosas vendidas (docenas);

 X_2 = precio promedio al mayoreo de rosas (\$/docena);

 X_3 = precio promedio al mayoreo de claveles (\$/docena);

 X_4 = ingreso familiar disponible promedio semanal (\$/semana);

 X_5 = variable de tendencia que toma valores de (1,2,...), durante el periodo 1971-III a 1975-II en el área metropolitana de Detroit.

Año-trim	Y	X_2	X_3	X_4	X_5
1971-III	11484	2.26	3.49	158.11	1
1971-IV	9348	2.54	2.85	173.36	2
1972-I	8429	3.07	4.06	165.26	3
1972-II	10079	2.91	3.64	172.92	4
1972-III	9240	2.73	3.21	178.46	5
1972-IV	8862	2.77	3.66	198.62	6
1973-I	6216	3.59	3.76	186.28	7
1973-II	8253	3.23	3.49	188.98	8
1973-III	8038	2.60	3.13	180.49	9
1973-IV	7476	2.89	3.20	183.33	10
1974-I	5911	3.77	3.65	181.87	11
1974-II	7950	3.64	3.60	185.00	12
1974-III	6134	2.82	2.94	184.00	13
1974-IV	5868	2.96	3.12	188.20	14
1975-I	3160	4.24	3.58	175.67	15
1975-II	5872	3.69	3.53	188.00	16

Cuadro 2: Demanda trimestral de rosas en Detroit (1971-III a 1975-II).

Se le pide considderar las siguientes funciones de demanda:

$$Y_t = \alpha_1 + \alpha_2 X_{2t} + \alpha_3 X_{3t} + \alpha_4 X_{4t} + \alpha_5 X_{5t} + u_t,$$

$$\ln Y_t = \beta_1 + \beta_2 \ln X_{2t} + \beta_3 \ln X_{3t} + \beta_4 \ln X_{4t} + \beta_5 X_{5t} + u_t.$$

(a) Estime los parámetros del modelo lineal e interprete los resultados. Modelo lineal estimado por MCO (con intercepto):

$$\widehat{Y}_t = \widehat{\alpha}_1 + \widehat{\alpha}_2 X_{2t} + \widehat{\alpha}_3 X_{3t} + \widehat{\alpha}_4 X_{4t} + \widehat{\alpha}_5 X_{5t},$$

$$\operatorname{con} \widehat{\alpha}_1 = 10820.0, \quad \widehat{\alpha}_2 = -2227.70 \ (t = -2.42, \ p = 0.034), \quad \widehat{\alpha}_3 = 1251.14 \ (t = 1.08, \ p = 0.303),$$

$$\hat{\alpha}_4 = 6.283 \ (t = 0.21, \ p = 0.841), \quad \hat{\alpha}_5 = -197.40 \ (t = -1.94, \ p = 0.078).$$

Ajuste e inferencia: $R^2=0.835,\,R_{adj}^2=0.775,\,F=13.89$ (p=0.000281). Durbin–Watson = 2.33. El precio propio de las rosas (X_2) tiene signo negativo y es significativo al 5%; el precio de los claveles (X_3) es positivo pero no significativo; el ingreso (X_4) es positivo pero no significativo; la tendencia (X_5) es negativa y significativa (10%). El número de condición elevado (4.48×10^3) podría indicar multicolinealidad potencial.

(b) Estime los parámetros del modelo log-lineal e interprete los resultados. Modelo log-lineal estimado por MCO:

$$\widehat{\ln Y}_t = \hat{\beta}_1 + \hat{\beta}_2 \ln X_{2t} + \hat{\beta}_3 \ln X_{3t} + \hat{\beta}_4 \ln X_{4t} + \hat{\beta}_5 X_{5t},$$

con
$$\hat{\beta}_1 = 3.572$$
, $\hat{\beta}_2 = -1.1707$ $(t = -2.40, p = 0.035)$, $\hat{\beta}_3 = 0.7379$ $(t = 1.13, p = 0.282)$, $\hat{\beta}_4 = 1.1532$ $(t = 1.28, p = 0.227)$, $\hat{\beta}_5 = -0.0301$ $(t = -1.83, p = 0.094)$.

Ajuste e inferencia: $R^2 = 0.799$, $R^2_{adj} = 0.726$, F = 10.92 (p = 0.000798). Durbin–Watson = 2.05. Aquí, los coeficientes β_2 , β_3 , β_4 son elasticidades: la demanda es elástica al precio propio (-1.17, significativo al 5%), presenta elasticidad cruzada positiva frente al precio de claveles (0.74, no significativa) y es normal (elasticidad ingreso 1.15, no significativa). La tendencia es levemente decreciente (10%).

(c) β_2 , β_3 y β_4 dan, respectivamente, las elasticidades de la demanda respecto al precio propio, precio cruzado e ingreso. ¿Cuáles son, a priori, los signos esperados de estas elasticidades? ¿Concuerdan estos resultados con las expectativas a priori?

Expectativas a priori: $\beta_2 < 0$ (ley de la demanda), $\beta_3 > 0$ si claveles son sustitutos, y $\beta_4 > 0$ si las rosas son normal.

Resultados: $\hat{\beta}_2 = -1.1707 < 0$, $\hat{\beta}_3 = 0.7379 > 0$, $\hat{\beta}_4 = 1.1532 > 0$. Los signos concuerdan con la teoría; sólo el efecto de precio propio es estadísticamente significativo al 5 %.

(d) ¿Cómo calcularía las elasticidades precio propio, precio cruzado e ingreso en el modelo lineal? Calculamos las elasticidades en un punto de evaluacióncomo

$$\varepsilon_{Y\!,X_j} = \frac{\partial Y}{\partial X_j} \, \frac{\bar{X}_j}{\bar{Y}} = \hat{\alpha}_j \, \frac{\bar{X}_j}{\bar{Y}}, \quad j \in \{2,3,4\}.$$

Evaluadas en las medias, se obtienen:

$$\varepsilon_{\text{precio propio}} = -0.9053$$
, $\varepsilon_{\text{precio cruzado}} = 0.5616$, $\varepsilon_{\text{ingreso}} = 0.1484$.

Para el modelo log-lineal, las elasticidades son constantes e iguales a los coeficientes: $\varepsilon_p = -1.1707$, $\varepsilon_{pc} = 0.7379$, $\varepsilon_y = 1.1532$.

(e) Con base en su análisis, ¿cuál modelo, si existe, escogería y por qué?

Comparación: el modelo lineal exhibe mayor $R_{adj}^2 = 0.775$ que el log-lineal (0.726), pero el log-lineal se ve favorecido por los criterios de información (AIC = -9.08, BIC = -5.22 frente a 269.48 y 273.34). Además, el log-lineal entrega elasticidades directamente interpretables y suele capturar mejor relaciones proporcionales.

Con base en AIC/BIC y en la interpretación económica (elasticidades), elegimos el modelo loglineal. No obstante, la muestra es pequeña (n = 16) y hay indicios de multicolinealidad; es recomendable revisar los resultados con precaución.

- 3. Pregunta 3
- 4. Pregunta 4
- 5. Pregunta 5
- 6. Link al repositorio con código fuente

https://github.com/enriquegomeztagle/MCD-Econometria/tree/main/HWs/MLR-Homework