Controlling Network devices with Python and YDK

SDN and Network Programmability Meetup in Barcelona

Camilo Cardona

https://github.com/jccardonar/SDNMeetupYDK

Network automation How to start?

- Start with small tasks and progress from there.
- Learn to control network devices might be a good first step.

Chef GPB Jinja2
Protopython gRPC JSON
Napalm Mark Salt Git
Netmiko Git
Netmiko Franco Telemetry Goyang YAML GPBKV Paramiko Golang Ansible

Some options for configuring devices from scripts

- NAPALM:
 - Provides standard Python APIs for Reading and writing configuration
 - Supports multiple vendors
 - Continuous development
- Yang Development Kit (YDK):
 - Good alternative if device supports Model driven configuration
 - Supports multiple languages
- Ansible
- CLI and SSH:
 - Only if other options are not available

Model-driven configuration

- Historically, every vendor implemented their own methods for configuring devices
- The IETF proposed a structured and standard way of configuring devices
- YANG was selected as the language to define models
 - For the other elements, we have different options

YDK

- A suite of libraries in various languages that facilitates Model-driven configuration.
 - Bind models to language programming objects.
 - Takes care of transport, protocol, and encoding.
 - Validates values locally.
- See https://www.cisco.com/c/dam/m/en_us/serviceprovider/ciscoknowledgenetwork/files/594_06_07-16-saalvare-md-api-ckn-jun-2016-v2.pdf

Workshop outline

- The session consists of different parts, each one aiming at configuring a different aspect of a router:
 - Hostname
 - Interfaces
 - Static Route
 - ISIS
 - OSPF
 - BGP
- The process is repetitive. This is the point of this workshop:
 - Familiarize participants with the model-driven configuration process.
 - Learn that the gist of the process are the models.
 - Encourage participants to configure use new models, if needed.

Connecting to the lab Anyconnect (preferable)

- If not configured, install Anyconnect.
- Username and password to the setup are provided by the presenter.
- If Anyconnect is not available, try the web based Anyconnect (Not tested).
- After connecting:
 - Enter the server using:
 - ssh -p 2015 <u>vagrant@198.18.128.101</u>
 - cd /home/vagrant/local_notebook
 - Add nameserver 198.18.133.1, to /etc/resolv.conf
 - git clone https://github.com/jccardonar/SDNMeetupYDK.git
 - Enter http://198.18.128.101:8888/tree in a browser.

Connecting to the lab Remote desktop

- We'll use remote desktop to get access to environment.
- Wait for assistance from presenter to access setup.

Lab

198.18.128.101

Server Applications: • Server SSH on port 2015 Jupyter: Https, port 8888 Quagga (Optional): see instructions Router SSH on port 2014 eth1 192.168.10.5 GigabitEthernet 0/0/0/0 192.168.10.4 Virtual Router Cisco XRv

How to start using a new model

- Configure it manually on the router. Read it using YDK. Follow the structure
- Use an existing example:
 - https://github.com/CiscoDevNet/ydk-py-samples
- Use the bind object and the model as guide.

Other useful tools

- https://yangcatalog.org/
- Pyang to check modules and summarize them
- https://github.com/ncclient/ncclient (Netconf in python)
- https://github.com/CiscoDevNet/ncc
 - Netconf in python and command line tool.