

Multi-Exit Semantic Segmentation Networks

Samsung Research

Alexandros Kouris¹, Stylianos I. Venieris^{*,1}, Stefanos Laskaridis^{*,1}, Nicholas D. Lane^{1,2}

¹ Samsung Al Center - Cambridge, UK ² University of Cambridge *Indicates Equal Contribution

Overview

MESS is a framework that converts segmentation CNNs to multi-exit models:

- Specially trained models that employ parametrised exits along their depth.
- This allows to dynamically save computation during inference on easier samples.
- MESS jointly optimises the number, placement and architecture of early-exits.
- Saves training and maintenance cost by allowing post-training adaptation.

To enable this we also introduce:

- A novel two-stage training scheme for MESS networks, combining exit-aware backbone pre-training, with a selective self-distillation loss for the exits.
- An input-dependent inference pipeline for MESS networks, introducing a novel exit-policy, tailored to dense-output models, such as semantic segmentation.

Key findings

Compared to their respective backbones MESS networks are able to achieve:

- Up to 2.8x faster inference, with the same accuracy
- Up to 5.3 pp higher accuracy, for the same computation budget

MESS networks also offer:

- Better (but comparable) speed-accuracy trade-off than SOTA NAS-crafted models, while being 10x faster to train.
- Up to 3x faster inference than uniform-exit MESS instances (status-quo).
- Gains that translate to realistic latency speed-ups out-of-the-box.
- Remain adaptable post-training via search (<1GPUh).

Candidate Exit-Points

Given a (user-provided) semantic segmentation model, MESS framework measures the workload/latency of each layer to identify N candidate exit-points with approximately equidistant workload distribution.

Exit Architecture

Different exit-point (depths) benefit from different architectural configuration of exits. Shallow exits suffer from *limited receptive field* and *weak semantics*, whereas deeper ones can introduce significant computational overhead due to large incoming feature volume. Early-exits can incorporate:

- *Channel Reduction module:* reducing the number of channels and this computational overhead.
- 2. Extra Trainable Blocks: To remedy weak semantics.
- 3. Rapid Distillation Increase: To increase receptive field.
- 4. Segmentation head: FCN and DeepLab-based segmentation output layers supported.

$$S_{exit}^{l} = \mathcal{O}_{crm} \times \mathcal{O}_{\#blocks} \times \mathcal{O}_{dil} \times \mathcal{O}_{head}$$

MESS Training

MESS networks are trained by a novel 2-stage scheme: **Stage1 - Exit-aware pre-training:** trains the backbone in an exit-aware manner, pushing the extraction of semantically strong features to shallow layers, without committing to any exit configuration, or affecting the accuracy of deeper exits:

$$\mathcal{L}_{ ext{pretrain}}^{ ext{batch}^{(j)}} = \sum_{i=1}^{N-1} \mathbb{1}(j mod i = 0) \cdot \mathcal{L}_{ ext{CE}}(m{y}_i, \hat{m{y}}) + \mathcal{L}_{ ext{CE}}(m{y}_N, \hat{m{y}})$$

Stage2 – Frozen backbone KD: Trains all candidate exit configurations, without any interference with the backbone (or between them). Allows massive parallelism during training, and easy interchange of exits upon deployment. Backed by a novel self-distillation scheme that filters the information propagating from the final exit to the earlier ones (allowing only "easy" pixels through).

$$\mathcal{L}_{ ext{PFD}} = \sum_{i=1}^{N} \alpha \cdot \mathbb{1}(\hat{m{y}}_N = \hat{m{y}}) \mathcal{L}_{ ext{CE}}(m{y}_i, \hat{m{y}}) + (1 - lpha) \cdot \mathcal{L}_{ ext{KL}}(m{y}_i, m{y}_N)$$

Search and Deployment

Upon deployment, MESS support different settings:

(a) Budgeted Inference: static workload-lighter submodels (up to an exit) are extracted and deployed.

(b) Anytime Inference: every sample goes through several exits sequentially, providing an early actionable result while progressively refining its prediction.

(c) Input-Dependent Inference: similar to anytime, but each sample dynamically finalises its output at a different depth, based on a difficulty-aware exit policy.

MESS instances can be optimised to:

- Minimise cost, given an accuracy constraint: $s^{\star} = \arg\min_{s \in S} \left\{ \cos(s) \mid \mathrm{acc}(s) \geq t h_{\mathrm{acc}} \right\}$
- Maximise accuracy, given a cost constraint: $s^{\star} = \arg\max_{s \in \mathcal{S}} \left\{ \mathrm{acc}(s) \mid \mathrm{cost}(s) \leq t h_{\mathrm{cost}} \right\}$

Exit-Policy

We establish a mechanism to capture segmentation confidence on a *per-image* granularity, reducing the *per-pixel* confidence values provided with the model prediction. Our metric considers the percentage of pixels with high prediction confidence (above a tunable threshold) in the dense output (instead of naïve avg.).

$$c_i^{\text{img}} = \frac{1}{RC} \sum_{r=1}^{R} \sum_{c=1}^{C} \mathbb{1}(\boldsymbol{c}_{r,c}^{\text{map}}(\boldsymbol{y}_i) \ge th_i^{\text{pix}})$$

Predictions in pixel along the semantic boundaries of each object are naturally under confident. Thus we introduce a mechanism to down-weight the contribution of these pixels to the final result.

$$\mathcal{M} = \operatorname{erode}(\operatorname{cannyEdge}(\hat{m{y}}_i), s_i)$$
 $\widehat{m{c}_{r,c}^{\operatorname{map}}}(y_i) = egin{cases} \operatorname{median}(m{c}_{w_r,w_c}^{\operatorname{map}}(m{y}_i)) & ext{if } \mathcal{M}_{r,c} = \mathbf{I}_{c_{r,c}^{\operatorname{map}}}(m{y}_i) & ext{otherwise} \end{cases}$

At runtime, a *per-exit tunable threshold* is used to evaluate whether each sample should exit-early or continuer to the next (deeper) exit: $c_i^{img} \ge th_i^{img}$

Results

Reach out:

<u>a.kouris@samsung.com</u>

<u>s.venieris@samsung.com</u>

<u>nic.lane@samsung.com</u>

mail@stefanos.cc

Learn more:

MESS End-to-End Evaluation

Method		Backbone*	Head	Search Targets		Results: MS COCO			Results: PASCAL VOC		
Method		Dackbone		Error	GFLOPs	mIoU	GFLOPs	Latency [†]	mIoU	GFLOPs	Latency
DRN [68]	(i)	ResNet50	FCN	-Bas	seline-	59.02%	138.63	39.96ms	72.23%	138.63	39.93ms
Ours	(ii)	ResNet50	FCN	min	$\leq 1 \times$	64.35%	113.65	37.53ms	79.09%	113.65	37.59ms
Ours	(iii)	ResNet50	FCN	$\leq 0.1\%$	min	58.91%	41.17	17.92ms	72.16%	44.81	18.63ms
Ours	(iv)	ResNet50	FCN	$\leq 1\%$	min	58.12%	34.53	15.11ms	71.29%	38.51	16.80ms
DLBV3 [6]	(v)	ResNet50	DLB	-Bas	seline–	64.94%	163.86	59.05ms	80.32%	163.86	59.06ms
Ours	(vi)	ResNet50	DLB	min	$\leq 1 \times$	65.52%	124.10	43.29ms	82.32%	124.11	43.30ms
Ours	(vii)	ResNet50	DLB	$\leq 0.1\%$	min	64.86%	69.84	24.81ms	80.21%	65.29	24.14ms
Ours	(viii)	ResNet50	DLB	$\leq 1\%$	min	64.03%	57.01	20.83ms	79.30%	50.29	20.11ms
segMBNetV2 [50]	(ix)	MobileNetV2	FCN	-Baseline-		54.24%	8.78	67.04ms	69.68%	8.78	67.06ms
Ours	(\mathbf{x})	MobileNetV2	FCN	min	$\leq 1 \times$	57.49%	8.10	56.05ms	74.22%	8.10	56.09ms
Ours	(xi)	MobileNetV2	FCN	$\leq 0.1\%$	min	54.18%	4.05	40.97ms	69.61%	3.92	32.79ms
Ours	(xii)	MobileNetV2	FCN	$\leq 1\%$	min	53.24%	3.48	38.83ms	68.80%	3.60	31.40ms
*Dilated network [68] based on backbone CNN. †Measured on: GTX for ResNet50 and AGX for MobileNetV2 backbone.											

MESS Training Evaluation

Comparison of distillation schemes used during MESS 2nd-stage training (frozen backbone).

