Лабораторная работа 3.02

Характеристики источника тока

Цель работы

- 1. Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.
- 2. Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешность.

Введение

Если к источнику тока (рис. 1), обладающему внутренним сопротивлением r подключить внешнее сопротивление R, то напряжение на зажимах источника U, согласно закону Ома, для замкнутой цепи можно представить в виде:

$$U = \mathscr{E} - Ir, \tag{1}$$

где $\mathscr E$ - электродвижущая сила, а I - сила тока в цепи.

Рис. 1. Принципиальная электрическая схема лабораторной установки

График зависимости напряжения U от силы тока I показан на рис. 2. В идеальном случае график этой зависимости является прямой линией: (a). Пересечение графика с осью напряжений (I=0) происходит в точке $\mathscr{E}=U$, а точка пересечения графика с осью токов (U=0) дает значение силы тока короткого замыкания источника $I_K=\frac{\mathscr{E}}{r}$.

Рис. 2. График зависимости напряжения на нагрузке от силы тока

У реальных источников, при токах близких к I_K , линейный характер зависимости напряжения от силы тока нарушается (случай (b)). Это вызвано у одних источников уменьшением ЭДС при таких максимальных токах, у других увеличением внутреннего сопротивления, а у третьих одновременным влиянием двух этих причин.

Умножив обе части уравнения (1) на силу тока, протекающего по цепи, используя закон Ома для участка цепи U=IR получим следующее соотношение:

$$\mathscr{E}I = I^2R + I^2r,\tag{2}$$

которое можно представить в виде

$$P = P_R + P_S, (3)$$

где $P=\mathscr{E}I$ - полная мощность, развиваемая источником; $P_R=I^2R$ - полезная мощность, т.е. мощность, развиваемая источником во внешней цепи (на сопротивлении R); $P_S=I^2r$ - мощность потерь внутри источника (на сопротивлении r).

Рис. 3. Зависимости полной (P), полезной (P_R) мощности и мощности потерь (P_S) от силы тока.

Исследуем зависимость этих мощностей от силы тока. График (см. рис. 3) зависимости полной мощности от силы тока $P=\mathscr{E}I$ является прямой линией, проходящей через начало координат. Полезная мощность из (2) может быть представлена в виде:

$$P_R = \mathscr{E}I - I^2r. \tag{4}$$

Эта зависимость является степенной функцией второго порядка, а ее график представляет из себя параболу. Легко найти те значения силы тока при которых полезная мощность обращается в ноль (это корни уравнения (4)):

$$I_{1,2} = \begin{cases} I_K = \frac{\mathscr{E}}{r}; \\ 0. \end{cases} \tag{5}$$

Ввиду симметрийных свойств параболы ее вершина располагается на равном расстоянии от корней:

$$I^* = \frac{I_1 + I_2}{2} = \frac{\mathscr{E}}{2r}. (6)$$

Именно при данном значении силы тока достигается максимум полезной мощности в нагрузке:

$$P_{Rmax} = P_R(I^*) = \frac{\mathscr{E}^2}{4r}. (7)$$

Заметим, что из соотношения (6) и закона Ома для полной цепи $I=\frac{\mathscr{E}}{R+r}$ следует, что при $I=I^*$ выполняется равенство R=r, то есть полезная мощность P_R максимальна, когда сопротивление нагрузки равно внутреннему сопротивлению источника питания. Такая нагрузка называется $\mathit{cornacoba}$ с источником.

Потери мощности в источнике зависят от силы тока также по квадратичному закону: $P_S=I^2r$. График этой зависимости (см. рис. 3) — парабола с вершиной в начале координат и ветвями направленными вверх. При физически осмысленных значениях r>0, мы работаем с правой ветвью данной параболы.

Коэффициентом полезного действия (КПД) η источника тока называется величина, равная отношению полезной мощности к полной мощности источника:

$$\eta = \frac{P_R}{P} = \frac{UI}{\mathscr{E}I} = \frac{U}{\mathscr{E}}.\tag{8}$$

Подставив выражение для напряжения U из (1) в (8), найдем зависимость КПД от силы тока:

$$\eta = \frac{\mathscr{E} - Ir}{\mathscr{E}} = 1 - \frac{Ir}{\mathscr{E}}.\tag{9}$$

Из уравнения (9) следует, что зависимость КПД от силы тока изображается прямой линией (рис. 4), убывающей от значения $\eta=1$, при токе I=0, до значения $\eta=1$, при силе тока $I_K=\frac{\mathscr{E}}{r}$.

Рис. 4. Зависимость КПД источника от силы тока

Это значение тока — уже упомянутый выше ток «короткого замыкания». Из (1) следует, что при внешнем сопротивлении R=0 сила тока достигает наибольшего значения, а полезная мощность P_R убывает до нуля. Полная мощность источника $P=\mathscr{E}I_K$ и мощность потерь $P_S=I^2r$ при токе короткого замыкания $I=I_K$ достигают наибольшего значения и равны друг другу:

$$P_{max} = P_{Smax} = \frac{\mathscr{E}^2}{r}. (10)$$

Найдем значение КПД и соотношения между мощностями P, P_R , P_S при максимуме полезной мощности. Как было показано ранее, полезная мощность максимальна при условии R=r, КПД при этом равен:

$$\eta = \frac{U}{\mathscr{E}} = \frac{IR}{IR + Ir} = 50\%. \tag{11}$$

Таким образом, при максимальном токе $I=I^*$, полезная мощность равна $P_R=0.5P$ и с учетом (3) полезная мощность равна мощности потерь: $P_R=P_S$.

Из графиков зависимостей мощностей и КПД от силы тока (рис. 3,4) видим, что условия получения наибольшей полезной мощности и наибольшего КПД несовместимы. Когда полезная

мощность достигает наибольшего значения, сила тока равна I^* и $\eta=0.5=50\%$. Когда же КПД близок к единице, полезная мощность мала по сравнению с максимальной мощностью, которая может быть передана нагрузке данным источником.

Прямолинейный характер зависимости напряжения U от силы тока I, позволяет следующим, так называемым, методом «короткого замыкания и холостого хода», определить параметры источника. Изменяя в некоторых пределах сопротивление R, измеряют соответствующие значения силы тока и напряжения. По измеренным значениям строят прямолинейную зависимость U от I. Продолжив ее до пересечения с осью напряжений, находят напряжение «холостого хода» $U_{\rm X}=\mathscr{E}$, а продолжив до пересечения с осью токов, находят ток короткого замыкания I_K . Внутреннее сопротивление источника ЭДС определяют после этого по формуле:

$$r = \frac{I_K}{\mathscr{E}}. (12)$$

Лабораторная установка и проведение измерений

1. Измерительными приборами в данной лабораторной работе являются амперметр и вольтметр, содержащиеся в блоке **AB1**. Резистор переменного сопротивления $R=0\div 1,5$ кОм расположен на стенде с объектами исследования «C3- \Im M01» в левом верхнем углу (см. рис. 5).

Рис. 5. Стенд «С3-ЭМ01»

Рис. 6. Генератор напряжения ГН1

2. В качестве источника ЭДС в лабораторной работе используется генератор регулируемого постоянного напряжения блока Γ H1 (см. рис. 6) с включенным внутренним сопротивлением (переключатель R_{BH} должен быть **нажат**). В этом случае номинальное значение внутреннего сопротивления генератора равняется $680 \text{ Om} \pm 10\%$.

3. Соберите установку в соответствии со схемой, представленной на рис. 7.

Рис. 7. Схема соединений источника, измерительных приборов и измерительного стенда

- 4. Соедините гнезда (*) на лицевых панелях амперметра и генератора между собой проводником. Среднюю пару контактов (обозначены стрелочкой) переменного резистора R подключите к контакту « $0...+15\ B$ » генератора и к контакту «U» вольтметра.
- 5. Нижнюю пару контактов переменного резистора R подключите κ контакту «I» амперметра, и κ контакту (*) вольтметра.
- 6. Перед включением установки внимательно проверьте правильность и надежность всех соединений.
- 7. На блоке ГН1 регулятор генератора постоянного напряжения «0...+15 B» установите в среднее положение (пятое-шестое деление шкалы). Кнопочными переключателями блока амперметравольтметра **AB1** « \blacktriangleleft » и « \blacktriangleright » установите диапазоны измерений амперметра: «20 MA» и вольтметра: «20 B».
- 8. Изменяя переменное сопротивление R (от 100~Om до 1500~Om с шагом около 100~Om), проведите измерение зависимости напряжения от силы тока U=U(I) и заполните первые две колонки Таблицы 1 (см. Приложение).
- 9. После проведения измерений выключите генератор и блок АВ1.

Обработка результатов измерений

- 1. По результатам измерений постройте график зависимости U(I). Визуально убедитесь в его линейности.
- 2. С помощью любого стандартного метода нахождения параметров линейных зависимостей (МНК, метод парных точек) найдите параметры полученной зависимости: угловой коэффициент модулю его значения соответствует внутреннее сопротивление источника r и смещение относительно начала координат ему соответствует электродвижущая сила $\mathscr E$. Оцените погрешности данных величин. Сравните величину внутреннего сопротивления с ее номинальным значением.
- 3. Используя результаты измерений напряжения U и силы тока I (см. Табл. 1) и найденные ранее величины $\mathscr E$ и r, вычислите и внесите в таблицу значения полезной $P_R=UI$, полной $P=\mathscr EI$ мощности, а также мощности потерь $P_S=I^2r$.
- 4. Постройте графики зависимостей всех мощностей от силы тока, причем построение проделайте в одном и тот же графическом поле. С помощью графика зависимости $P_R = P_R(I)$ найдите значение силы тока I^* при котором полезная мощность достигает максимального значения.
- 5. Подставив в формулу $P_R = I^2 R$ значения P_{Rmax} и I^* , найдите сопротивление R, соответствующее режиму согласования нагрузки и источника. Сравните это сопротивление с внутренним сопротивлением источника r.
- 6. Найдите значения КПД $\eta = \frac{P_R}{P}$, как функции силы тока и постройте соответствующий график, экстраполируя его до пересечения с осями координат.
- 7. По графику $\eta=\eta(I)$ определите значение тока I^* , соответствующее $\eta=0.5$ и сравните его с полученным в п. 4 результатом.

Приложение

Таблица 1: Результаты прямых измерений и их обработка

$N_{\overline{2}}$	U, B	<i>I</i> , мА	P_R , м Bm	P_S , м Bm	Р, мВт	η
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						