119148 – Prática de Circuitos Eletrônicos 1

Experimento 01: Instrumentos de Bancada e Geração de Sinais AC

1) Objetivos

Nesta experiência prosseguimos com a investigação dos demais instrumentos de bancada do laboratório a fim de compreender seu funcionamento. Então, produziremos sinais AC, a partir dos quais aferiremos parâmetros, com o intuito de aprender a operar adequadamente os equipamentos e desenvolver conceitos de amplitude, frequência, valor médio e valor eficaz de um sinal.

2) Estudo pré-laboratorial

- 2.1) Pesquise a respeito e procure compreender a utilidade e o modo de funcionamento do gerador de ondas (ou gerador de funções) e do osciloscópio. Use os manuais dos equipamentos, as referências bibliográficas recomendadas e demais fontes de informação. Para testar o conhecimento obtido, responda:
- a) Multímetro ET-1110 da Minipa:
 - Como devem ser os sinais AC para que possam ser medidos com o multímetro?
 - Quais as medidas de um sinal AC que podemos obter com o multímetro? O que é peculiar a um multímetro "true rms"?
- b) Geradores de funções: modelo SDG 1020 da SIGLENT e modelo GV-2002 da iCEL:
 - Qual a função de um gerador de funções?
 - Quais as formas de onda possíveis de serem geradas pelo gerador de funções?
 - Qual o intervalo de frequências permitido pelo equipamento?
 - Qual a amplitude máxima e mínima possíveis para as formas de onda?
 - Esse gerador de funções produz valor DC de tensão? Se sim, como? Se não, por quê?
- c) Osciloscópio modelo 2530 da BK Precision:
 - Qual a função de um osciloscópio?
 - Explique como medir a amplitude e a frequência de um sinal periódico no osciloscópio sem o auxílio da função MEASURE.
- 2.2) Pesquise e responda:
- a) Qual a diferença entre um sinal DC e um sinal AC?
- b) O que é o valor pico-a-pico de um sinal AC? E a amplitude?
- c) O que é o valor médio (também chamado de valor DC) de um sinal AC? Como ele pode ser calculado?
- d) O que é o valor eficaz (também chamado de valor RMS) de um sinal AC? Como ele pode ser calculado?
- e) Esboce as formas de onda e calcule a tensão eficaz $V_{\it ef}$ para os seguintes sinais:

Forma de onda	Frequência (kHz)	Valor Médio (V)	Amplitude (V)	Valor Eficaz (V)	Valor Médio (V)
C1 - Quadrada	15	1	2		
C2 - Triangular	4	0	3		
C3 - Senoidal	1	0,5	2,5		

Dica: resolva para um valor f de frequência e depois substitua cada um dos valores correspondentes no resultado. Lembre-se que $\omega = 2\pi f$, com ω medido em $\mathrm{rad/s}$ e f medido em Hz . Observe e comente: qual a relação entre a frequência da senoide e seu valor eficaz?

2.3) Usando o simulador de circuitos QUCS 0.0.18, faça a simulação do procedimento experimental descrito no item 2.2e. Além dos desenhos do circuito, inclua em seu estudo pré-laboratorial as formas de onda de cada canal, sobrepostas à forma de onda da fonte.

3) Experimento

3.1) Geração e medição de ondas

a) Ajuste o gerador de funções para gerar cada uma das formas de onda indicadas no item 2.2e, visualizando-as no osciloscópio. Certifique-se de que o gerador de funções está ajustado no modo "alta impedância" (explique o que essa opção faz) e que o osciloscópio está ajustado para "acomplamento DC" (Sim, DC! Explique o motivo), com o ganho do probe em 1x. Verifique se o trigger do osciloscópio está associado ao CH1.

Para cada curva, meça com o multímetro e com o osciloscópio os valores de tensão AC (eficaz) e DC (médio). Compare os valores medidos com os dois instrumentos e justifique.

- b) Utilizando a última curva ajustada (C3), altere a frequência para os seguintes valores: $1\,\mathrm{Hz}$, $10\,\mathrm{Hz}$, $10\,\mathrm{Hz}$, $1\,\mathrm{kHz}$, $10\,\mathrm{Hz}$
- kHz, 50 kHz, 100 kHz, 250 kHz, 500 kHz, 1 MHz, medindo novamente com o multímetro e o osciloscópio os valores DC
- e AC da tensão para cada frequência. O que mudou? Este resultado faz sentido teoricamente? Os valores medidos correspondem aos calculados no seu estudo pré-laboratorial? Explique em termos de limitação de medida do multímetro para frequências muito altas e/ou muito baixas.
- c) Assim como a fonte de alimentação DC, o gerador de funções também possui resistência interna. Monte o circuito da Fig. 3.1 e meça a tensão de saída em CH1. Se $R_{in}=0$, qual seria o valor esperado de $V_{\rm CH1}$? Ao invés disso, quanto foi observado? Com base nesta informação, e utilizando o conceito de divisão de tensão, estime a resistência interna do gerador de funções. Em seus cálculos, utilize o valor real do resistor R.

Figura 3.1: Circuito para estimação de R_{in} do gerador de funções

d) As pontas de prova de um osciloscópio deveriam ter resistência de entrada infinita, mas na prática possuem R_{in} grande e finita. Monte o o circuito da Fig. 3.2 e meça a tensão de saída em CH1. Se $R_{in} \to \infty$, qual seria o valor esperado de $V_{\rm CH1}$? Ao invés disso, quanto foi observado? Combase nesta informação, e utilizando o conceito de divisão de tensão, estime a resistência interna da ponta de prova. Em seus cálculos, utilize os valores reais de R_1 e R_2 .

Figura 3.2: Circuito para estimação de R_{in} da ponta de prova do osciloscópio

3.2) Funções matemáticas do osciloscópio

Gere uma onda senoidal com uma frequência de $1\,\mathrm{kHz}$, $2\,\mathrm{V}_{pp}$ (tensão pico-a-pico) e $0\,\mathrm{V}_m$ (tensão média) e alimente o CH1 do osciloscópio com essa forma de onda. Utilize a fonte de alimentação para gerar uma tensão DC de $2\,\mathrm{V}$ e alimente o CH2 do osciloscópio. Verifique o resultado das operações soma "+", subtração "-", multiplicação "*" e divisão "/" usando o botão MATH do osciloscópio.

3.3) Espectro de frequência de uma forma de onda

Gere uma onda senoidal com uma frequência de $100\,\mathrm{kHz}$ e alimente o CH1 do osciloscópio com essa forma de onda. Anote os valores de frequência e amplitude da onda. Utilizando a função FFT do botão MATH do osciloscópio gere o espectro da função senoidal criada e esboce-o. Varie a frequência para $50\,\mathrm{kHz}$ e $10\,\mathrm{kHz}$, descrevendo e justificando o que acontece.

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma: Aluno:				Data: <u>/</u> Matrícula:		
	Experiment	o 01: Instrume	entos de Banca	da e Geração	de Sinais AC	
rocedimento 3.1	a): Valores de ter	são para cada tipo	de onda			
		14 11/		0	laasénia	1
ſ	Forma de onda	Multímetro Valor Eficaz (V) Valor Médio (V)		Osciloscópio Valor Eficaz (V) Valor Médio (V		
	C1 - Quadrada	valor Liteaz (v)	valor Medio (v)	valor Lilicaz (v)	valor iviedio (v)	
	C2 - Triangular					
	C3 - Senoidal					
L	oo oonolaal]
ocedimento 3.1	b): Valores de ten	são para onda ser	oidal a diferentes t	frequências		
	_					
		Multím			scópio	
	-	Valor Eficaz (V)	Valor Médio (V)	Valor Eficaz (V)	Valor Médio (V)	
	1 Hz					
	$10\mathrm{Hz}$					
	$100\mathrm{Hz}$					
	1 kHz					
	10 kHz					
	50 kHz					
	100 kHz					
	250 kHz					
	500 kHz					
	1 MHz					
		. ~ .				
ocedimento 3.1	c): Parametros pa	ira estimação da re	esistência interna d	de saída do gerado	r de funções	
_	[0]	V. –	ΓV.	$[V_{pp}]$ $V_{CH1} =$		$[V_{\mu}]$
	[25]	V † —	L v pp.] VCF	11	L v p
ocedimento3.1	d): Parâmetros pa	ra estimação da re	sistência de entrad	da da ponta de pro	va do osciloscópio	
=		[$[\Omega]$ $V_f =$		/ _{CH1} =	[V

Procedimento 3.2: Valores de saída das operações matemáticas do osciloscópio

	Resultad	Resultado esperado		Sinal observado		
Operação	V_{pp} (V)	V_m (V)	V_{pp} (V)	$V_{m}\left(V\right)$		
CH1 + CH2						
CH1 - CH2						
CH1 * CH2						
CH1 / CH2						

Procedimento 3.3: Espectro da função senoidal com amplitude de $[V_{\rho\rho}]$ Frequência de $100\,\mathrm{kHz}$:

Frequência de $50\,\mathrm{kHz}$

Frequência de $10\,\mathrm{kHz}$

