A weakly structured stem for human origins in Africa

Aaron P. Ragsdale¹, Timothy D. Weaver², Elizabeth G. Atkinson³, Eileen Hoal⁴, Marlo Möller⁵, Brenna M. Henn^{2,6,*}, and Simon Gravel^{7,**}

¹FIXME: UW Madison

²Department of Anthropology, University of California, Davis, Davis, CA 95616, USA ³FIXME: DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa

⁴FIXME ⁵FIXME

⁶UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA

⁷FIXME: McGill

*bmhenn@ucdavis.edu

**simon.gravel@mcgill.ca

January 1, 2022

Abstract

A very simple template for an article class document.

Introduction

Results

A Late Middle Stone Age common ancestry for contemporary humans Deep population structure but not archaic admixture within Africa Reconciling multiple lines of genetic evidence

Discussion

The Middle Stone Age in Africa

Contrasting archaic admixture and a weakly structured stem

Methods

Kelleher et al. (2016)

Acknowledgements

Figure 1: The first figure. The geographic and genetic diversity of populations across Africa.

Figure 2: The second main figure. A placeholder - best fit model(s).

References

Jerome Kelleher, Alison M
 Etheridge, and Gilean McVean. Efficient coalescent simulation and genealogical analysis for large sample sizes.
 PLoS Comput. Biol., 12(5):e1004842, May 2016.

