Fondamenti di Automatica

Introduzione a Simulink

II toolbox Simulink

- Simulink è un ambiente grafico per la simulazione di sistemi dinamici che può dialogare con Matlab
- Perché non basta Matlab?
 - ✓ È spesso necessario simulare sistemi composti da blocchi interconnessi
 - ✓ Spesso vi sono blocchi non lineari o tempo-varianti
 - ✓ In uno stesso schema possono esistere blocchi a tempo continuo e discreto

Principio di funzionamento

- Simulink mette a disposizione una ricca libreria di blocchi elementari che descrivono sistemi statici e dinamici
- L'utente compone sullo schermo lo schema del sistema da simulare collegando i vari blocchi
- Simulink genera automaticamente le equazioni e simula numericamente il sistema

Simulink e Matlab

- Simulink può utilizzare variabili definite nel Workspace di Matlab
- I risultati della simulazione vengono memorizzati nel Workspace di Matlab

L'interfaccia grafica

- Con il comando
 - » simulink si apre la libreria dei modelli
- Da qui è possibile creare un nuovo modello (foglio bianco) componendo lo schema del sistema da simulare

Creazione di un nuovo modello

Il menù Simulink contiene la maggior parte dei blocchi di uso comune

Principali librerie di Simulink (1)

Blocchi dinamici a tempo continuo

(Continuous)

Blocchi dinamici a tempo discreto (Discrete)

Principali librerie di Simulink (2)

Funzioni matematiche (Math)

Principali librerie di Simulink (3)

Output dei dati (Sinks)

Input dei dati (Sources)

 Simulare il sistema a tempo continuo Massa-Molla-Smorzatore

Equazioni di Bilancio

$$\ddot{y}(t) = \frac{1}{M} \left(u(t) - Ky(t) - D\dot{y}(t) \right)$$

Spazio di Stato

$$\underline{\dot{x}}(t) = \begin{bmatrix} 0 & 1 \\ -K/M & -D/M \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1/M \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \underline{x}(t)$$

Funzione di Trasferimento

$$y(t) = \frac{1/M}{s^2 + s D/M + K/M} u(t)$$

- 1. Implementare in Simulink il sistema descritto in precedenza considerando le tre formulazioni proposte
- 2. Studiarne le risposte al gradino unitario e confrontarle

- Una volta conclusa l'implementazione, per simulare il sistema si possono seguire due strade
 - ✓ Utilizzare il pulsante *Run* **()** , presente nell'interfaccia Simulink
 - ✓ Utilizzare il comando sim ('<nomefile>.slx')
 da uno script Matlab