Einführung in die Algebra

 $Vorlesungsmitschriften\ im\ Wintersemester\ 2018/19$

CONTENTS

	Basics - Fields 3.1 Algebraic Field Extensions	1 1
A	Insights from the exercise sheets A.1 Sheet 1	7 7
In	dev	o

VORWORT

Diese Vorlesungsmitschriften werden in der Vorlesung Einführung in die Algebra von Prof. Jan Schröer im Wintersemester 2018/19 an der Universität Bonn angefertigt.

Wir versuchen, diese immer unter https://pankratius.github.io zu aktualisieren.

I will write them in English, as Prof. Schroer already provides a german version of his lecture notes. In addition, the first two lectures are ommitted, as they were only motivational, but my motivation to draw a lot of pictures is fairly limited.

3.1 Algebraic Field Extensions

Let L/K be a field extension.

Recall from lecture 1:

Definition 3.1.1. L/K is called **extension by radicals**, if

i) There are finitely many $x_1, ..., x_n \in L$, such that

$$L = K(x_1, ..., x_n);$$

ii) there are $r_1, ..., r_n \ge 1$, such that

$$x^{r_1} \in K$$
 and $x_i^{r_i} \in K(x_1, ... x_{i-1})$ for $2 \le i \le n$.

Definition 3.1.2. An element $x \in L$ is called **algebraic! element of a field extension** over K, if there is a non-zero polynomial $0 \neq f \in K[X]$, such that f(x) = 0. Otherwise, x is called **transcendental**.

Example 3.1.3. i) Consider \mathbb{C}/\mathbb{Q} . Then the *n*-th roots of unity $\rho_n^k := \exp(2\pi i/n)^k$ are algebraic over \mathbb{Q} , as they are the roots of $X^n - 1$.

ii) $\sqrt[3]{2}$ is an albraic over \mathbb{Q} (for \mathbb{C}/\mathbb{Q}), as it is a root of $X^3 - 2$.

Proposition 3.1.4. Consider \mathbb{C}/\mathbb{Q} . Then there are only countably many $x \in \mathbb{C}$ that are algebraic over \mathbb{Q} .

Proof. The rationals are countable, and hence so is \mathbb{Q}^n . There is a bijection

$$\mathbb{Q}^n \Leftrightarrow \{\text{polynomials of degree } \leq n-1\},$$

so

$$\mathbb{Q}[x] = \bigcup_{n \in \mathbb{N}} \{\text{polynomials of degree } \le n - 1\}$$

is countable. Since any polynomial in $\mathbb{Q}[X]$ has only finitely many roots, the assertion follows.

Proposition 3.1.5. Let $x \in L$ be algebraic over K. Then there is a uniquely determined irreducible and normend polynomial f in K[X], such that f(x) = 0.

Proof. This is supposed to be the same as in LA2.

This polynomial is called the **minimal polynomial of** x **over** K and is denoted by $\mu_{x,K}$. Its degree is denoted by

$$[x:K] := \deg \mu_{x,K}$$

and is called the **degree of** x **over** K . For $x \in L$ transcendental, we set

$$[x : K] := \infty \text{ and } 0 := \mu_{x,K}.$$

Example 3.1.6. i) For $a \in L$, the following are equivalent:

- i) $a \in K$
- ii) [a, K] = 1
- iii) $\mu_{x,K} = X a$
- ii) Since $i \in \mathbb{C} \setminus \mathbb{R}$, we have $[i : \mathbb{R}] \geq 2$. On the other hand, for $f \in \mathbb{R}[X]$, $f := X^2 + 1$, f(i) = 0 holds. So $[i, \mathbb{R}] = 2$ and $\mu_{i,\mathbb{R}} = X^2 + 1$.

Definition 3.1.7. A field extension L/K is called **algebraic**, if all $x \in L$ are algebraic over K. Otherwise, L/K is called **transcendental**.

Example 3.1.8. \mathbb{C}/\mathbb{Q} and \mathbb{R}/\mathbb{Q} are both transcendental field extensions.

For a field extension L/K, L has the structure of a K-vector space, given by the restriction of the multiplication. The dimension of L as a K-vector space is denoted by

$$[L:K] := \dim_K L.$$

We say that L/K is a **finite** field extension, if $[L:K] < \infty$.

Lemma 3.1.9. Let L/K be a finite. Then:

- i) L/K is algebraic.
- *ii)* For all $x \in L$, [x : K] < [L : K].

Proof. Let [L:K] := n and $x \in L$ be arbitrary. Then the vector system

$$(1, x, ..., x^n)$$

is linear dependent, so there are $\lambda_0, ..., \lambda_n \in K$, such that

$$\lambda_0 + \lambda_1 x + \dots + \lambda_n x^n = 0.$$

Therefor, for the polynomial

$$p := \lambda_0 + \dots + \lambda_n X^n \in K[X]$$

the relation

$$p(x) = 0$$

holds. So L/K is algebraic, and $[x:K] \leq [L:K]$, as $\deg \mu_{x,K} \leq \deg p$.

Theorem 3.1.10. Let L = K(x) be a field extension. Then

$$[x:K] = [L:K].$$

Proof. Assume that x is transcendental over K. Then lemma 3.1.9 implies that $[L:K] = \infty$, and by definition $[x:K] = \infty$.

Assume that x is algebraic over K, and set n := [x : K], $f := \mu_{x,K}$. Then the vector system $(1, ..., x^{n-1})$

is linearly independent (otherwise there would be a polynomial of degree n-1 which anihilates x). Set

$$\tilde{K} := K + Kx + \dots + Kx^{n-1},$$

which is a K-subspace of L. As $(1, ..., x^{n-1})$ is linearly independent, it is a basis of \tilde{K} , and hence $\dim_K \tilde{K} = n$. We now show that \tilde{K} is also a subfield of L: As \tilde{K} is a K-subspace of L, it is a additive subgroup of (L, +).

 \tilde{K} is closed under multiplication: It suffices to show that for all $1 \leq i, j \leq n-1$ $x^i \cdot x^j \in \tilde{K}$, as elements in \tilde{K} are linear combinations of scalar multiples of x^i for $0 \leq i \leq j$. Consider now the polynomial $X^{i+j} \in K[X]$. Euclidean division gives polynomials $q, r \in K[X]$, such that

$$X^{i+j} = qf + r, (*)$$

with deg $r \leq \deg f = n - 1$. So there are $b_0, ..., b_{n-1} \in K$, such that

$$r = b_0 + b_1 X + \ldots + b_{n-1} X^{n-1} A \in K[X].$$

Evaluating (*) at x, we get

$$x^{i+j} = r(x) = b_0 + \dots + b_{n-1}x^{n-1},$$

since f(x) = 0. But this implies that $x^{i+j} \in \tilde{K}$.

 \tilde{K} is closed under inversion: Let $0 \neq y \in \tilde{K}$. As $\dim_K \tilde{K} = n, y$ is algebraic over K. Let

$$\mu_{y,K} = X^m + \dots + c_0.$$

Then $c_0 \neq 0$, as $\mu_{y,K}$ is irreducible. Rearanging, we get

$$1 = y \left(\frac{-c_1}{c_0} + \frac{-c_2}{c_0} y + \dots + \frac{-c_n}{c_0} y^{n-1} \right),$$

SO

$$y^{-1} = y \left(\frac{-c_1}{c_0} + \frac{-c_2}{c_0} y + \dots + \frac{-c_n}{c_0} y^{m-1} \right) \in \tilde{K},$$

as \tilde{K} is closed under addition and multiplication.

This shows that K is a subfield of K(x). But as K(x) is the inclusion minimal field extension of K, this implies $\tilde{K} = K(x)$. But

$$\dim_K(\tilde{K}) = [x : K],$$

which concludes the proof.

Corollary 3.1.11. Let $x \in L$, such that [x : K] = n. Then

i) Then K(x)/K is finite and algebraic.

- *ii*) [K(x):K] = n
- iii) $\{1,...,x^{n-1}\}$ is a basis of \tilde{K} .

Proof. Consider the field extension K(x)/K, then apply theorem theorem 3.1.10, and i) follows from lemma 3.1.9.

Example 3.1.12. i) $[\mathbb{R}, \mathbb{Q}] = \infty$.

- ii) $[\mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}] \leq 3$, as $\mu_{\sqrt[3]{2}, \mathbb{Q}} \mid (X^3 2)$
- iii) Let ρ be a *n*-th root of unity, then

$$[\mathbb{Q}(\rho), \mathbb{Q}] \le n - 1,$$

as

$$X^{n} - 1 = (X - 1)(X^{n-1} + \dots + X + 1).$$

iv) Consider \mathbb{C}/\mathbb{R} . Then

$$[\mathbb{R}(x), \mathbb{R}] = \begin{cases} 1, & \text{if } x \in \mathbb{R} \\ 2, & \text{else} \end{cases}.$$

Definition 3.1.13. A subfield $Z \subset L$ is called an **intermediate field** of L/K, if

$$K \subseteq Z \subseteq L$$
.

Theorem 3.1.14 (degree formular). Let Z be an indermediate field of L/K. Then

$$[L:K] = [L:Z][Z:K].$$

Proof. Assume [L:Z]=r and [Z:K]=s, with $r,s\in\mathbb{N}$. Let $(w_1,...,w_r)$ be a basis of L/Z and $(v_1,...,v_r)$ a basis of Z/K. Now, let

$$y = \lambda_1 w_1 + ... + \lambda_r w_r \in L$$
 with $\lambda_i nZ$ and $w_1, ..., w_r \in L$.

But since $\lambda_i \in \mathbb{Z}$, there are $\mu_{i,1}, ..., \mu_{i,s} \in K$ such that

$$\lambda_i = \mu_{i,1} v_1 + \dots + \mu_{i,s} v_s.$$

So

$$y = \sum_{\substack{1 \le i \le r \\ 1 \le j \le s}} \mu_{ij} v_j w_i,$$

and hence

$$\{w_i v_i \mid 1 \le i \le r, 1 \le j \le s\}$$

is a system of generators of L/K. Assume that

$$0 = \sum_{\substack{1 \le i \le r \\ 1 \le j \le s}} \mu_{ij} v_j w_i \implies \sum_{j=1}^r \alpha_{i,j} v_j = 0 \implies \alpha_{i,j} = 0,$$

as both the w_i and the v_j are linearly independent. This shows that the $w_i v_j$ are a basis of L/K.

Assume that $[L:Z]=\infty$ or $[Z:K]=\infty$. This already implies $[L:K]=\infty$.

Corollary 3.1.15. Let L/K be finite. Then [x : K] divides [L : K] for all $x \in K$.

Proof. Use [x : K] = [K(x) : K] and [L : K] = [L : K(x)][K(x) : L].

Theorem 3.1.16. Let L/K be a field extension. The following are equivalent:

- i) L/K is finite.
- ii) L/K is algebraic, and there are $x_1,...,x_n \in L$, such that

$$L = K(x_1, ..., x_n)$$

iii) There are $x_1, ..., x_n \in L$ such that

$$L = K(x_1, ..., x_n)$$

and x_1 is algebraic over K, x_i is algebraic over $K(x_1,...,x_{i-1})$ for $2 \le i \le n$.

Proof. i) \implies ii): As $[L:K] < \infty$, theorem 3.1.14 implies $[x:K] < \infty$, for all $x \in L$, so L/K is algebraic. Assume now there is a $x_1 \in L \setminus K$. Then

$$n_1 := [K(x_1) : K] \ge 2$$

. If there is another $x_2 \in L/K(x_1)$, then

$$n_2 := [K(x_1, x_2) : K(x_2)] \implies n_1 n_2 > n_1.$$

Continuing inductively, this has to stop after finitely many x_i , as [L:K] is finite.

- $ii) \implies iii)$: clear.
- iii) \implies i): Let $L = K(x_1, ..., x_n)$. Set

$$K_0 := K, ..., K_i := K(x_1, ..., x_i).$$

As x_i is algebraic over K_{i-1} , this implies

$$[K_i:K_{i-1}]<\infty.$$

Continuing inductively, theorem 3.1.14 implies

$$[L:K] = \prod_{i=1}^{n} n_i < \infty.$$

End of Lecture 3

6 2018-10-15,22:13:10

A.1 Sheet 1

Proposition A.1.1. Let $\alpha: R \to S$ be a homomorphism of commutative rings, and $s \in S$ arbitrary. Then there is a unique ring homomorphism $\overline{\alpha}: R[x] \to S$ extending α and sending $x \to s$:

Corollary A.1.2. Let $n \in \mathbb{N}$. Then there is a ring homomorphism $\mathbb{Z}[x] \to \mathbb{Z}/n\mathbb{Z}[x,y]$:

INDEX

```
algebraic
     element of a field extension, 1
     field extension, 2
degree
     of an algebraic element, 2
degree formular, 4
extension
    by radicals, 1
field
     indermediate, 4
field extension
    algebraic, 2
     finite, 2
     {\rm transcendental},\, {\color{red} 2}
polynomial
     minimal, 2
{\rm transcendental},\, {\color{red} 1}
     field extension, 2
```