GeolocationSheafEx OF

Olivia Freides

5/23/2022

Modeling PNNL+Robinson Geolocation Sheaf:

```
For specifics and citations, reference https://arxiv.org/abs/1912.05487
@misc{https://doi.org/10.48550/arxiv.1912.05487}, doi = {10.48550/ARXIV.1912.05487},
url = \{https://arxiv.org/abs/1912.05487\},\
author = {Joslyn, Cliff and Charles, Lauren and DePerno, Chris and Gould, Nicholas and Nowak, Kathleen
and Praggastis, Brenda and Purvine, Emilie and Robinson, Michael and Strules, Jennifer and Whitney,
Paul},
keywords = {Data Analysis, Statistics and Probability (physics.data-an), FOS: Physical sciences, FOS:
Physical sciences,
title = {A Sheaf Theoretical Approach to Uncertainty Quantification of Heterogeneous Geolocation Infor-
mation},
publisher = {arXiv},
year = \{2019\},\
copyright = {arXiv.org perpetual, non-exclusive license} }
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.6
                       v purrr
                                  0.3.4
                                  1.0.8
## v tibble 3.1.6
                       v dplyr
## v tidyr
             1.2.0
                       v stringr 1.4.0
             2.1.2
                        v forcats 0.5.1
## v readr
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
Sensors: [• The GPS reading on the Bear Collar, denoted G;
[[• The Radio VHF Device receiver, denoted R;] Location Bear
• The Text report, denoted T; and
```

• The Vehicle GPS, denoted V.]] Location Researcher

	H = Human position	B = Bear position
V = Vehicle GPS (lat,long,ft)		
T = Text		
$R = \text{Receiver } \langle \text{UTM N,UTM E,m,deg,m} \rangle$		
G =GPS on Bear \langle UTM N, UTM E,m \rangle		

Table 1: Sensor matrix for the bear tracking.

Figure 1: Table 1

Vertex	Data Format	Description	Stalk
$G = Bear\ Collar$	(E, N, m)	Position and elevation of bear from collar	\mathbb{R}^3
$V = Vehicle\ GPS$	(lat, long, ft)	Position and elevation of human from vehicle	\mathbb{R}^3
T = Text	string	Text description of human's location	set of strings
$R = Radio\ VHF\ Device$	(E, N, m, m, deg)	Position and elevation of human and position of bear relative to human	\mathbb{R}^5

Table 2: Data feeds for tracking sheaf model

Figure 2: Table 2

 $U = \{V, R, T, G\}$ base sensor set ASC Δ , representing the tracking sensor network, contains the face denoted $H = \{V, R, T\}$

To convert the text descriptions we use Google Maps API [63] and to convert the (lat, long, ft) readings, coming from the vehicle, we use the Python open source package utm 0.4.1 [64].

$$\phi: \mathbb{R}^5 \to \mathbb{R}^5, \phi((x, y, z, r, \theta)^T) = (x, y, z, r\cos(\theta), r\sin(\theta))^T$$

Figure 3: (Left) ASC adorned with stalks on the sensor vertices. (Right) Sheaf model.

Figure 3: Figure 3

Step 1:

Assignment Table?:

Restriction Functions:\

Since the pairwise relations all share UTM coordinates, only id mappings are needed amongst them up to the three-way H face.

utm 0.4.1

Google Maps

id

id

 $pr_x - y$: Labels of the form prx-y are projections of the corresponding coordinates (also representable as binary matrices of the appropriate form).

 pr_{1-3}

 pr_{1-2}

"Finally, the restriction from R up to B is the composition of the polar conversion of the final two components with the projection on the first two to predict the bear position from the radiocollar GPS, bearing, and range."

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \circ \phi : (x,y,z,rcos(\theta),rsin(\theta))^T$$

##Global Sections Definition 3:

Definition 3. Let \mathscr{S} be a sheaf on an abstract simplicial complex Δ . An assignment $\alpha \colon \Delta \to \prod_{\delta \in \Delta} \mathscr{S}(\delta)$ provides a value $\alpha(\delta) \in \mathscr{S}(\delta)$ to each face $\delta \in \Delta$. A partial assignment, β , provides a value for a subset $\Delta' \subset \Delta$ of faces, $\beta \colon \Delta' \to \prod_{\delta \in \Delta'} \mathscr{S}(\delta)$. An assignment s is called a global section if for each inclusion $\delta \leadsto \lambda$ of faces, $\mathscr{S}(\delta \leadsto \lambda)(s(\delta)) = s(\lambda)$.

s(Text) ='Intersection of Victoria Rd and Meadow Rd'

$$s(\textit{Vehicle GPS}) = \left(egin{array}{c} 35.6^{\circ} & \mathrm{lat} \\ -82.6^{\circ} & \mathrm{long} \\ 2019 & \mathrm{ft} \end{array}
ight),$$

$$s(\textit{Bear Collar}) = \left(\begin{array}{c} 358391 \text{ E} \\ 3936750 \text{ N} \\ 581 \text{ m} \end{array} \right),$$

$$s(Radio\ VHF\ Device) = \left(egin{array}{c} 358943\ E \\ 3936899\ N \\ 615.4\ m \\ 572\ m \\ 195^{\circ} \end{array}
ight),$$

$$s(\{Radio\ VHF\ Device, Bear\ Collar\}) = \left(egin{array}{c} 358391\ E \\ 3936750\ N \end{array}
ight)$$

and $s(\{Text, Vehicle GPS\}) = s(\{Text, Radio VHF Device\})$

 $= s(\{Vehicle\ GPS, Radio\ VHF\ Device\})$

\

$$= s(\{\textit{Text}, \textit{Vehicle GPS}, \textit{Radio VHF Device}\}) = \left(egin{array}{c} 358943 & \mathrm{E} \\ 3936899 & \mathrm{N} \\ 615.4 & \mathrm{m} \end{array} \right).$$