

10/549711

JC20 Rec'd PCT/PTO 16 SEP 2005

SEQUENCE LISTING

<110> Milner, Josephine

<120> Regulation of Gene Expression

<130> 4100-0001

<140> PCT/GB2004/001128

<141> 2004-03-17

<150> GB 0306148.8

<151> 2003-03-18

<160> 11

<170> PatentIn version 3.1

<210> 1

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Bcl-2 small interfering RNA sequence (siRNA)

<400> 1

ggggcuacga gugggaugct t

21

<210> 2

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Bcl-2 small interfering RNA sequence (siRNA)

<400> 2

ttcccccgaug cucaccuac g

21

<210> 3

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Bcl-2 small interfering RNA sequence (siRNA)

<400> 3

gcugcaccug acgcccuauc t

21

<210> 4

<211> 21

<212> DNA

<213> Artificial Sequence		
<220>		
<223> Bcl-2 small interfering RNA sequence (siRNA)		
<400> 4		
ttcgacgugg acugcggaa g		21
<210> 5		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Bcl-xL small interfering RNA sequence (siRNA)		
<400> 5		
cagggacagc auaucagagt t		21
<210> 6		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Bcl-xL small interfering RNA sequence (siRNA)		
<400> 6		
ttgucccugu cguauagucu c		21
<210> 7		
<211> 720		
<212> DNA		
<213> Homo sapiens		
<400> 7		
atggcgcacg ctgggagaac agggtacgt aaccgggaga tagtgatgaa gtacatccat	60	
tataagctgt cgcaaggggg ctacgagtgg gatgcgggag atgtggcgc cgcgcggcc	120	
ggggccgccc ccgcgcggg catttctcc tcgcagcccg ggcacacgcc ccatacagcc	180	
gcatcccgcc acccggtcgc caggacctcg ccgctgcaga ccccggtgc cccggcgcc	240	
gccgcggggc ctgcgttcag cccggtgcca cctgtggtcc acctgaccct ccggccaggcc	300	
ggcgacgact tctccggcc ctaccgccc gacttcgccc agatgtccag gcagctgcac	360	
ctgacgcct tcaccgcgc gggacgctt gccacggtgg tggaggagct cttcaggac	420	
gggggtgaact gggggaggat tgtggccttc tttgagttcg gtggggcat gtgtgtggag	480	
agcgtcaacc gggagatgtc gcccctggtg gacaacatcg ccctgtggat gactgagtac	540	

ctgaaccggc acctgcacac ctggatccag gataacggag gctgggatgc ctttgtggaa 600
ctgtacggcc ccagcatgcg gcctctgttt gatttctcct ggctgtctct gaagactctg 660
ctcagtttgg ccctgggtgg agcttgcatac accctgggtg cctatctggg ccacaagtga 720

<210> 8
<211> 239
<212> PRT
<213> Homo sapiens

<400> 8

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met
1 5 10 15

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala
20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile
35 40 45

Phe Ser Ser Gln Pro Gly His Thr Pro His Thr Ala Ala Ser Arg Asp
50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala
65 70 75 80

Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Thr
85 90 95

Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Asp Phe
100 105 110

Ala Glu Met Ser Arg Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly
115 120 125

Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp
130 135 140

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu
145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp
165 170 175

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn
180 185 190

Gly Gly Trp Asp Ala Phe Val Glu Leu Tyr Gly Pro Ser Met Arg Pro
195 200 205

Leu Phe Asp Phe Ser Trp Leu Ser Leu Lys Thr Leu Leu Ser Leu Ala
210 215 220

Leu Val Gly Ala Cys Ile Thr Leu Gly Ala Tyr Leu Gly His Lys
225 230 235

<210> 9
<211> 618
<212> DNA
<213> Homo sapiens

<400> 9
atggcgacg ctgggagaac ggggtacgac aaccgggaga tagtgatgaa gtacatccat 60
tataagctgt cgcaaggggg ctacgagtgg gatgcgggag atgtggcgc cgcgcggcc 120
ggggccgccc ccgcaccggg catttctcc tcccagcccg ggcacacgcc ccatccagcc 180
gcatcccgcg acccggtcgc caggacctcg ccgctgcaga ccccggtgc ccccggtgcc 240
gccgcggggc ctgcgctcag cccgggtcca cctgtggtcc acctggccct ccgccaagcc 300
ggcgacgact tctcccgccg ctaccgcggc gacttcgccc agatgtccag ccagctgcac 360
ctgacgcccct tcaccgcgcg gggacgctt gccacggtgg tggaggagct cttcaggac 420
ggggtgaact gggggaggat tgtggccttc tttgagttcg gtggggcat gtgtgtggag 480
agcgtcaacc gggagatgtc gcccctggtg gacaacatcg ccctgtggat gactgagttac 540
ctgaaccggc acctgcacac ctggatccag gataacggag gctggtagg tgcatttgtt 600
gatgtgagtc tgggctga 618

<210> 10
<211> 205
<212> PRT
<213> Homo sapiens

<400> 10

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met
1 5 10 15

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala
20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile
35 40 45

Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp
50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala
65 70 75 80

Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Ala
85 90 95

Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Gly Asp Phe
100 105 110

Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly
115 120 125

Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp
130 135 140

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu
145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp
165 170 175

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn
180 185 190

Gly Gly Trp Val Gly Ala Ser Gly Asp Val Ser Leu Gly
195 200 205

<210> 11
<211> 702
<212> DNA
<213> Homo sapiens

<400> 11
atgtctcaga gcaaccggga gctgggtggtt gactttctct cctacaagct ttcccgaaaa 60
ggatacagct ggagtcagtt tagtgatgtg gaagagaaca ggactgaggc cccagaaggg 120

actgaatcg	agatggagac	ccccagtgc	atcaatggca	accatcctg	gcacctggca	180
gacagccccg	cggtaatgg	agccactggc	cacagcagca	gttggatgc	ccgggaggtg	240
atccccatgg	cagcagtaaa	gcaagcgctg	agggaggcag	gcgacgagtt	tgaactgcgg	300
tacccggcggg	cattcagtga	cctgacatcc	cagctccaca	tcaccccagg	gacagcatat	360
cagagcttg	aacaggtagt	aatgaactc	ttccggatg	ggtaaactg	ggtcgcatt	420
gtggccttt	tctccttcgg	cggggcactg	tgcgtggaaa	gcgtagacaa	ggagatgcag	480
gtattggtga	gtcggatcgc	agcttggatg	gccacttacc	tgaatgacca	cctagagcct	540
tggatccagg	agaacggcgg	ctggatact	tttgtggaaac	tctatggaa	aatgcagca	600
gccgagagcc	gaaaggcca	ggaacgcttc	aaccgctgg	tcctgacggg	catgactgtg	660
gccggcgtgg	ttctgctggg	ctcaactttc	agtcgaaat	ga		702