Cryptographie asymétrique

19 septembre 2023

1 CTL

syntaxe:

- E il existe un chemin..
- A pour tout chemin..
- μ jusqu'à..
- X a la prochaine étape..
- \bullet F chemin ou a un moment..
- \bullet G chemin ou on a toujours..
- ↑, &.

structure de Kripke:

Definition 1.0.1. $\S = (S, s_o, \to, l)$, ou S est un ensemble fini d'état, $\to \subset S \times S$, $l: S \to 2^{Al}$: associe un ens de prop atomiques à tout état de \S .

remarque 1.1. Plusieurs anomalies, sans successeurs $AX\phi \equiv T$. Si \rightarrow est "totale", $AX\phi = \neg tX \neg \phi$ sinon $\neg EX\phi = AX \neg \phi$.

1.2 model-checking

Question, étant donné une structure de Kripke \S et une formule ϕ . Est-ce qu'il existe un algorithme qui renvoie \S , $s_0 \models \phi$. Oui ce qu'on fait c'est qu'on découpe la formule en sous formule puis récursion, et on vérifie les formules atomiques. On marque chaque sous formules puis on monte petit à petit.

Algorithme, Cas $\phi = A\phi_1\mu\phi_2$:

- Marquage(ϕ_1)
- Marquage(ϕ_2)
- Pour tout $s \in S$:
 - $-s.\phi := false$
 - s.nbsucc := deg(s) (on est sur un graphe)
 - $\text{ si } s.\phi_2 = T \text{ alors } L = L \cup \{s\}$
- Tant que $L \neq \emptyset$:
 - Piocher s dans L
 - $-s.\phi := T$
 - Pour tout $s' \to s$:
 - * s'.nbsucc -= 1
 - * si $s'.nbsucc = 0s'.\phi_1 = Ts'.\phi_2 \neq T$: $L := L \cup \{s'\}$

Proposition 1.2.1. Décider si $\phi \in CTL$ est vraie pour \S se fait en temps $\mathcal{O}(|\phi||\S|)$, $(|\S| = |S| + | \to |)$. (polynomial)

Le model checking de LTL est un pb PSPACE-complet $(2^{|\phi|}|\S|)$.

remarque 1.3. $A\phi_1\mu\phi_2 \equiv AF\phi_2\neg E(\neg\phi_2)\mu(\neg\phi_1\neg\phi_2)$ veut simplement dire, on peut pas atteindre ϕ_2 en croisant un état ou on a ni ϕ_1 ni ϕ_2 .

2 PCTL

Definition 2.0.1 (Discrete Time Markov Chain). Une chaine de Markov: $M = (S, P, s_{init}, l)$ consiste en, S un ensemble d'états (dénombrable), s_{init} l'état de départ, $P: S \times S \to [0, 1]$ une matrice de probabilités, $l: S \to 2^{Al}$ l'étiquetage des états des props atomiques.

Si M est finie (i.e. S est fini), $|M| = |S| + \{(s, s')|P(s, s') > 0\}.$

Definition 2.0.2. Une chaine de Markov M induit une structure de Kripke $K_M = (S, s_{init}, \rightarrow, l)$ par $(s, s') \in \rightarrow \Leftrightarrow P(s, s') > 0$.

... defs a rajouter

2.1 Probabilités

Definition 2.1.1 (Tribu, σ -algèbre sur @W). Ensemble de partie stable par complémentaire, union dénombrable et contenant le vide.

Definition 2.1.2 (mesure de Probabilité). Mesure μ tq $\mu(@W) = 1$.

Definition 2.1.3. On définit $Path^F(M)$ les chemins finis.

Soit $M = (S, s_0, P, l)$ une chaine de Markov. Soit π_0 un prefixe de $\pi \in Path(M)$.

Definition 2.1.4. $Cyl(\pi_0) := \{\text{Chemins } tq\pi_0 \text{en est un prefixe}\}.$

Pour nous, @W est l'ens des chemins et \mathring{A} la tribu des cylindres de M.

Definition 2.1.5. La mesure de probabilité sur \mathring{A} est déf par la proba sur le préfixe.(produit des transitions)

2.2 Propriétés d'accessibilité

M une chaine de Markov et $A, B \subset S$ des ensembles d'états.

- 3 propriétés d'accessibilités:
 - $-FB = \{\text{chemin qui croise eventuellement B}\}\$
 - $-A\mu B = \{\text{chemin dans A jusqu'a croiser B}, + \text{croise B eventuellement}\}$
 - $-GFB = \{ \text{croise B une infinité de fois} \}.$

Etant donné ϕ d'un des types décrits avant.

$$P(s \vDash \phi) = P(\{\pi \in Path(M, s) | \pi \vDash \phi\})$$

Faut vérifier que c'est mesurable:

- Pour FB on prend l'union dénombrable des chemins ayant leur bout dans B.
- Pour $A\mu B$, pareil que FB mais ou le chemin est d'abord dans A.
- Pour GFB on prend l'intersection de FB et $A\mu B$:

$$\cap_n \cup_{m \geq n} \cup_{s_n \in B} Cyl(s_0 \dots s_n)$$

2.3 Propriétés d'accessibilité

Pour $s \in S$, on déf $x_s = P(s \models FB)$:

- $s \in B, x_s = 1.$
- $s \nvDash EFB$, alors $x_s = 0$. (exprimable en CTL)
- Pour les autres $s \in S_? := \{ s \in S | s \notin B \land s \models EFB \}$:

$$x_s = \sum_{t \in B} p(s, t) + \sum_{t \in S_7} p(s, t) x_t$$

Si
$$\overline{x} = (x_s)_{s \in S_?} \to \overline{x} = \overline{b} + M\overline{x}$$
. $(M = (p(s,t))_{s,t})$

On déf aussi $x_s = Pr(s \models A\mu B)$:

- $s \in B$, $x_s = 1$.(noté $S_{=1} \subseteq \{Pr(s \vDash A\mu B) = 1\}$, pas d'égalité)
- $s \nvDash \to E(A\mu B)$ (il existe un etat qui atteint B en restand dans A), alors $x_s = 0$. (noté $S_{=0} := \{s \in S | Pr(s \vDash A\mu B) = 0\}$, egalité ici, permet de pas considérer les probas)
- $S_? = S (S_{=0} \cup S_{=1})$

Soit $\overline{x} = (x_s)_{s \in S_?}$.

Proposition 2.3.1. \overline{x} est la solution du système d'équations $\overline{y} = M\overline{y} + \overline{b}$ avec M carrée. $(\overline{b} = (b_s)_{s \in S_?}$ et $b_s = \sum_{t \in B} p(s,t))$

(On résoud $M\overline{x} = \overline{x}$, clair+unicité.)

On peut aussi caractériser par points fixes. On regarde:

$$\Gamma: [0,1]^{S_?} \to [0,1]^{S_?}$$

$$\Gamma(\overline{y} = M\overline{y} + \overline{b})$$

alors $\overline{x} = (x_s)$ avec $x_s = Pr(s \vDash A\mu B)$ est le plus petit point fixe de Γ . On a

$$\Gamma^n(x_s) = Pr(s \vDash A\mu^{\leq n}B)$$

avec $s \models EA\mu^{\leq n}B \equiv \text{il}$ existe un chemin depuis $s, \pi, \text{ tq } \exists i \leq n, \pi(i) \in B$ et $\forall 0 \leq j < i, \pi(j) \in A$. En gros on arrive dans B avant n étapes. Si on pose

$$x_s^{(n)} = Pr(s \vDash A\mu^{\leq n}S_{=1})$$

et on a

$$\overline{x}^{(0)} \le \ldots \le \overline{x}^{(i)} \le \ldots \le \overline{x}$$

(pour $x \leq y$ si $\forall i, x_i \leq y_i$) On prouve

$$x_s^{(n)} = Pr(s \vDash A\mu^{\leq n}S_{=1})$$

- récurrence: $x_s^{(n+1)} = \sum_{(s,t) \in S_7} p(s,t) x_t^{(n)} + \sum_{t \in S_{=1}} p(s,t)$
- le premier terme est en degré n et l'autre 1.

Et on prouve \overline{x} est un point fixe, et le plus petit.

•
$$x_s = \sum_{t \in S_{-0}} p(s, t) x_t + \sum_{t \in S_{-1}} p(s, t) x_t + \sum_{t \in S_2} p(s, t) x_t$$

Enfin on def $x_s = Pr(s \models GFB)$

Definition 2.3.2. Un élt F est dit presque sur sous l'hyp d'un evt D ssi $Pr(D) = Pr(D \cap F)$

Propriété GF: Pour une chaine de Markov M (possiblement infinie) et $s, t \in S$, alors on :

$$Pr(s \vDash GFt) = Pr(s \vDash \bigwedge_{\pi \in Path^F(t)} GF\pi)$$

(pour tout π préfixe fini partant de t.)

Preuve: $\pi = ts_1 \dots s_n$ et on note $p = \prod_i Pr(s_i, s_{i+1})$. On montre les proba

- $GFt \wedge G \neg \pi$ nulle.
- $GFt \wedge FG \neg \pi$ nulle

On déf $E_n(\pi)$ = "on visite au moins n fois t et pas π avant au moins n étapes. On a

$$Pr(E_n(\pi)) \le (1-p)^n$$

On pose $E(\pi) = \bigcap E_n(\pi)$, on croise jamais π . On a $E_{n+1}(\pi) \subseteq E_n(\pi)$ d'ou

$$Pr(E_{\ell}(\pi)) = \lim_{n \to \infty} Pr(E_n(\pi)) \le \lim_{n \to \infty} (1 - p)^n = 0$$

On déf mtn $F_n(pi) = GFt \wedge X^n \neg F\pi$ puis $F(\pi) = \bigcup F_n(\pi)$, on a $F_n \subset F_{n+1}$ d'ou:

$$Pr(s \models F(\pi)) = \lim_{n \to \infty} Pr(s \models F_n(\pi))$$

Et on a en fait $Pr(s \vDash F_n(\pi)) = \sum_{s' \in S} Pr(s \vDash X^n s') Pr(s' \vDash E(\pi)) = 0$. Enfin

$$F:=\bigcup_{\pi}F(\pi)$$

et

$$Pr(s \models F) \le Pr(\sum_{\pi} F(\pi)) = 0$$

d'ou

$$Pr(s \vDash GFt) = Pr(s \vDash GFt \land \bigwedge_{\pi} GF\pi) + Pr(s \vDash GFt \land \bigwedge_{\pi} \lor_{\pi} FG \neg \pi)$$

et le deuxième terme vaut 0.

Autrement dit on visite infiniment souvent t si et seulement si on visite tout les préfixes finis sortant de t infiniment souvent.

Definition 2.3.3. CFC(M) les composantes fortement connexes (i.e. digraphe ou on peut accéder achaque point de chaque point.).

Definition 2.3.4. Une cfc est terminale si $Post^*(C) \subseteq C$ i.e. pas de chemin sortant. On appelle CFCT l'ens.

On note $inf(\pi)$ les états de π qui apparaissent infiniment.

Proposition 2.3.5. Si M est une chaine finie. Alors

$$Pr(\{\pi/\inf(\pi)\in CFCT(M)\})=1$$

Preuve: $I(C) := \{\pi/\inf(\pi) \in C\},$

$$\sum_{C \in CFC(M)} Pr(I(C)) = 1$$

Soit $C \in CFC(M)$ tq Pr(I(C)) > 0 et $t \in \inf(\pi)$. On a $Pr(s \models GFt) > 0$ d'ou $\forall \pi \in Path^F(t)$, $Pr(passerpar\pi) > 0$ (en fait 1). Si C n'est pas terminale on peut en sortir, contradictoire avec $\inf(t) = C$. Tout les π doivent rester dans $C \to \text{terminale}$.

Corollaire 2.3.6. Si M est une CM finie:

$$Pr(s \vDash GFt) = \begin{cases} 0 & t \notin C \subset CFCT(M) \\ Pr(s \vDash FC) & sinon \end{cases}$$

Objectifs: On suppose que M est finie. Calculer $S_{\sim\alpha}(c\mu B)$, états vérifiant $c\mu b$. On a

$$\sim \in \{=,<,>,\leq,\geq\}$$

$$\alpha \in \{0,1\}$$

$$\rightarrow S_{=0}(c\mu B)...$$

 $\rightarrow S_{=1}(c\mu B). \ (c, B \subseteq S, M(S, P, s_0, l))$

On construit de chaine de Markov M' a partir de M ou les états de $B \cup (S \setminus C)$. Sont absorbantes. (i.e. bouclent sur eux meme avec proba 1) $M' = (S, P', s_0, l)$, avec :

$$P'(s,t) = \begin{cases} 1 & \text{si } t = s \text{ et } s \in B \cup S \backslash C \\ 0 & \text{si } t \neq s \text{ et } s \in B \cup S \backslash C \\ P'(s,t) & \text{sinon} \end{cases}$$

Pour les états de $B \cup S \setminus C$ on connait leur proba de vérifier $c\mu B$.

$$B \to 1$$
$$S \backslash (C \cup B) \to 0$$

On a

$$Pr^{M}(s \vDash c\mu B) = Pr^{M'}(s \vDash FB)$$

ET

$$Pr^{M}(s \vDash c\mu B) = Pr^{M'}(s \vDash FB) = 1 \text{ si } s \in B$$
$$Pr^{M}(s \vDash c\mu B) = Pr^{M'}(s \vDash FB) = 0 \text{ si } s \in S \setminus (C \cup B)$$

cas général? Le pb est désormais de calculer

$$S_{=1}(FB)$$

i.e.
$$\{s|Pr(s \models FB) = 1\}.$$

On a l'équivalence suivante:

- 1. $Pr(s \models FB) = 1$
- 2. $Post^*(t) \cap B \neq \emptyset, \forall t \in Post^*(s)$.
- 3. $s \in S \backslash Pre^*(S \backslash Pre^*(B))$.

Preuve: 1. \implies 2. est clair. 2. \implies 1. Une execution depuis s finit avec proba 1 dans une CFCT. Celles ci étant de deux types.

- 1. Singleton dans B.
- 2. Cycle d'états dont aucun est dans B.

(faut se rappeler que $Post^*(C) = C$) Pour tout état d'une CFCT, on a $t \in Post^*(C)$ donc $Post^*(t) \cap B \neq 0$. Donc on peut pas avoir une CFCT comme 2. donc la proba d'avoir $G \neg B$ est nulle. $2 \equiv 3$.

$$Post^*(t) \cap B \neq \emptyset \quad \forall t \in Post^*(s)$$

$$\Leftrightarrow Post^*(s) \subseteq Pre^*(B)$$

$$\Leftrightarrow Post^*(s) \cap S \backslash Pre^*(B) = \emptyset$$

$$\Leftrightarrow s \notin Pre^*(S \backslash Pre^*(B))$$

$$\Leftrightarrow s \in S \backslash Pre^*(S \backslash Pre^*(B))$$

Corollaire 2.3.7. Pour calculer $S_{=1}(c\mu B)$ on construit M' puis on calcule $S \backslash Pre^*(S \backslash Pre^*(B))$. Temps linéaire en |M|.

Maintenant pour l'accessibilité répétée ? GFB? On a:

- 1. $Pr(s \models GFB) = 1$
- 2. $C \cap B \neq \emptyset$ pour toute CFCT C atteignable depuis s.
- 3. $s \models AG \ EF \ B \ (CTL)$.

Pour tous ces ensembles $S_{=1,0}$ on a pas utilisé la valeur de la proba, juste > 0! Y s'avére que c'est vrai uniquement parce qu'on regarde des chaines de Markov finies.

Vérifier les props qualitatives peut nécessiter de regarder la valeur réelle.

3 PCTL, 2

Syntaxe:

- $\phi_1, \phi_2 := T|a|\phi_1 \wedge \phi_2|\neg \phi_1 P_J(\phi_l)$, avec $a \in AP$ et $J \subseteq [0,1]$, aux bornes rationelles.
- $\phi_l := X\phi_1|\phi_1\mu\phi_2|\phi_1\mu^{\leq n}\phi_2$

Ou aussi : $X, F = T\mu\phi$. On utilisera l'opérateur G. En pratique on se limite à J = [0, 1], [0, p], [p; 1], [p; 1]. (P est pas une probabilité.)

- Pour G: $P_{<\alpha}(G\phi) = P_{>1-\alpha}(F\neg\phi)$
- $G^{\leq n}\phi = \phi$ est vraie pour les n+1 premier états.

$$P_{<\alpha}(G^{\leq n}\phi) = P_{>1-\alpha}(F^{\leq n}\neg\phi)$$

Sémantique:

- $M = (S, s_0, P, l)$ une chaine de Markov.
- $s \models T$ toujours
- $s \models e \text{ ssi } e \in l(s)$
- $s \vDash \phi_1 \land \phi_2 \text{ ssi } (s \vDash \phi_1 \text{ et } s \vDash \phi_2)$
- $s \vDash \neg \phi_1 \text{ ssi } s \nvDash \phi_1$
- $s \vDash P_J(\phi_l)$ ssi $Pr(s \vDash \phi_l) \in J$ i.e. $Pr\{\phi \in Path(s) | \pi \vDash \phi_l\}$.
- $\pi \vDash X\phi_1 \text{ ssi } \pi(1) \vDash \phi_1$
- $\pi \vDash \phi_1 \mu \phi_2 \text{ ssi } \exists i \geq 0 \ (\pi(i) \vDash \phi_2 \land \forall 0 \leq j < i, \pi(j) \vDash \phi_1)$
- $\pi \vDash \phi_2 \mu^{\leq n} \phi_2$ ssi $\exists 0 \leq i \leq n, \ \pi(i) \vDash \phi_2 \land (\forall 0 \leq j < i, \ \pi(j) \vDash \phi_1)$

Equivalence de formules: $\forall M, \forall s, M, s \vDash \phi_1 \Leftrightarrow M, s \vDash \phi_2$.

Proposition 3.0.1. $\alpha \in [0,1], P_{<\alpha}(\phi) \equiv \neg P_{\geq \alpha}(\phi)$

Model Checking: Pour M finie, $M \models \phi$. On fait comme pour CTL, on vérifie fait un récursion sur les sous formules.

- Changements:
 - $-P_{\sim\alpha}(X\phi)$
 - $-P_{\sim\alpha}(\phi_1\mu\phi_2)$
 - $-P_{\sim\alpha(\phi_1\mu^{\leq n}\phi_2)}$

On déf $Sat(\phi)$ les états de M qui vérifient ϕ .

- Calcul de: $Sat(P_{\sim\alpha}(X\phi))$
- $Pr(s \models X\phi) = \sum_{s' \in Sat(\phi)} P(s, s')$
- Reste à comparer avec $\sim \alpha$
- Calcul de $Sat(P_{\sim\alpha}(\phi_1\mu\phi_2))$
- Calculer $Sat(\phi_1, 2)$
- Construire M' avc les états de $\neg \phi_1 \wedge \neg \phi_2$ et ϕ_2
- Reste à calculer les probas d'atteindre $Sat(\phi_2)$ depuis tout état de M'. " $FSat(\phi_2)$ "
- Calcul de $Sat(P_{\sim \alpha}(\phi_1 \mu^{\leq n} \phi_2))$
- Calculer $Sat(\phi_1, 2)$
- Calculer M' avec les états $\neg \phi_1 \land \neg \phi_2$ ou ϕ_2 sont absorants(ou comme union, $Sat(\neg \phi_1 \land \neg \phi_2) \cup Sat(\phi_2)$).
- $M' = (S, s_0, P', l)$.
- Calculer $P' * P' \dots * P'$ avec n termes.

Conclusion: Le modèle checking est en temps $\mathcal{O}(poly(|M|).|\phi|.n_{max})$, avec n_{max} le plus grand n de μ^n apparaissant.