PROBLEMS

- 3.1 Consider the National Football League data in Table B.1.
 - a. Fit a multiple linear regression model relating the number of games won to the team's passing yardage (x_2) , the percentage of rushing plays (x_7) , and the opponents' yards rushing (x_8) .
 - **b.** Construct the analysis-of-variance table and test for significance of regression.
 - c. Calculate t statistics for testing the hypotheses H_0 : $\beta_2 = 0$, H_0 : $\beta_7 = 0$, and H_0 : $\beta_8 = 0$. What conclusions can you draw about the roles the variables x_2 , x_7 , and x_8 play in the model?
 - **d.** Calculate R^2 and R^2_{Adj} for this model.
 - e. Using the partial F test, determine the contribution of x_7 to the model. How is this partial F statistic related to the t test for β_7 calculated in part c above?
- Using the results of Problem 3.1, show numerically that the square of the simple correlation coefficient between the observed values y_i and the fitted values \hat{y}_i equals R^2 .
- 3.3 Refer to Problem 3.1.
 - **a.** Find a 95% CI on β_7 .
 - **b.** Find a 95% CI on the mean number of games won by a team when $x_2 = 2300$, $x_7 = 56.0$, and $x_8 = 2100$.