Работа 1.1.4 Измерение интенсивности радиационнного фона

Устюжанина Мария Алексеевна Сентябрь 2021

Аннотация

Тема

Измерение интенсивности радиационнного фона.

Цель работы

Применение методов обработки экспериментальных данных для изучения закономерностей при измерении интенсивности радиоактивного фона.

Оборудование

Счетчик Гейгера-Мюллера(СТС-6), блок питания, компьютер с интерфейсом связи с счетчиком.

Измеряемые параметры

Число зарегестрированных частиц.

Методы обработки полученных измерений

Гистограммы, таблицы

Теоретические сведения

Обнаружить космические лучи, составляющие значительную часть радиационного фона, и измерить их интенсивность можно по ионизации, которую они производят. Для этого используется счетчик Гейгера-Мюллера. Он представляет собой наполненный газом сосуд с двумя электродами. Существует несколько типов таких счетчиков.

В работе используется СТС-6. Данный счетчик представляет собой тонкостенный металлический цилиндр, наполненный газом (который является катодом), с тонкой нитью-анодом, натянутой вдоль оси. Для работы счетчика на электроны подают напряжение 400В.

Частицы космических лучей ионизируют газ и выбивают электроны. В результате взаимодействий между частицами образуется лавина электронов и ток через счетчик резко увеличивается. Во время разряда

Число зарегистрированных частиц зависит от времени измерения, размеров счетчика, материала стенок, состава газа и давления в нем.

Значительную часть зарегистрированных частиц составляет естественный радиоактивный фон.

Погрешности измерений потока частиц с помощью счетчика Гейгера-Мюллера малы по сравнению с изменением самого потока, и определяются в основном временем, в течение которого восстанавливаются нормальные условия после прохождения каждой частицы и срабатывания счетчика (временем разрешения).

Результаты измерений и обработка данных

- 1. Измеряем плотность потока космического излучения за 20 секунд. Обработанный компьютером результат представлен в таблице 1.
- 2. Разбив результат из таблицы 1 в порядке их получения на группы по 2, что будет соответствовать произведению $N_2 = 100$ измерений число частиц за 40 секунд. Результаты приведены в таблице 2.
- 3. Данные для построения гистограмм распределения числа срабатываний счетчика за 10 секунд и за 40 секунд представлены в таблицах 3 и 4 соответственно.
- 4. Гистограммы распределений среднего числа отсчетов за 10 и 40 секунд приведена на рисунке 1.
- 5. Используя формул:

$$\overline{n_1} = \frac{1}{N_1} \cdot \sum_{i=1}^{N_1} n_i$$

$$\overline{n_2} = \frac{1}{N_2} \cdot \sum_{i=1}^{N_2} n_i$$

Найдем среднее число срабатываний счетчика за 10 и 40 секунд соответственно, взяв данные из таблицы 1:

$$\overline{n_1} = \frac{4514}{400} = 11,29$$

$$\overline{n_2} = \frac{4374}{100} = 43,74$$

6. Вычислим среднеквадратичные ошибки отдельных измерений:

$$\sigma_1 = \sqrt{\frac{1}{N_1} \cdot \sum_{i=1}^{N_1} (n_i - \overline{n_1})^2} = \sqrt{\frac{4545, 52}{400}} \approx 3,37$$

$$\sigma_2 = \sqrt{\frac{1}{N_2} \cdot \sum_{i=1}^{N_2} (n_i - \overline{n_2})^2} = \sqrt{\frac{4193,76}{100}} \approx 6,48$$

7. Проверим справедливость формул:

$$\sigma_1 \approx \sqrt{\overline{n_1}} \approx \sqrt{11,29} \approx 3,36$$

$$\sigma_2 \approx \sqrt{\overline{n_2}} \approx \sqrt{43,74} \approx 6,61$$

8. Определим стандартную ошибку величины $\overline{n_1}, \overline{n_2}$ и относительную ошибку нахождения $\overline{n_1}$ и $\overline{n_2}$ по формулам:

$$\sigma_{\overline{n_1}} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3,37}{400} \approx 0,1685$$

$$\sigma_{\overline{n_2}} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{6,48}{100} \approx 0,648$$

$$\varepsilon_{\overline{n_1}} = \frac{\sigma_{\overline{n_1}}}{\overline{n_1}} \cdot 100\% = \frac{0,1685}{11,29} \cdot 100\% \approx 1.49\%$$

$$\varepsilon_{\overline{n_2}} = \frac{\sigma_{\overline{n_2}}}{\overline{n_2}} \cdot 100\% = \frac{0,648}{43,74} \cdot 100\% \approx 1.48\%$$

9. Найдем относительную ошибку через равенство:

$$\varepsilon_{\overline{n_1}} = \frac{100\%}{\sqrt{\overline{n_1} \cdot N_1}} = \frac{100\%}{\sqrt{11, 29 \cdot 400}} \approx 1,49\%$$

$$\varepsilon_{\overline{n_2}} = \frac{100\%}{\sqrt{\overline{n_2} \cdot N_2}} = \frac{100\%}{\sqrt{43,74 \cdot 100}} \approx 1.51\%$$

10. Окончательный результат:

$$n_{t=10c} = \overline{n_1} \pm \sigma_{\overline{n_1}} = 11,29 \pm 0,17$$

$$n_{t=40c} = \overline{n_2} \pm \sigma_{\overline{n_2}} = 43,74 \pm 0,65$$

- 11. Все результаты занесем в таблицу 5.
- 12. Сравним среднеквадратичные ошибки отдельных измерений для двух распределений $overlinen_1=11,29;\ \sigma_1=3,37$ и $overlinen_2=43,74;\ \sigma_2=6,48$. Легко заметить, что хотя абсолютное значение σ во втором распределении больше, чем в первом, относительная погрешность второго распределения меньше:

$$\frac{\sigma_1}{\overline{n_1}} \cdot 100\% = \frac{3,37}{11,29} \approx 29,8\%$$

$$\frac{\sigma_2}{\overline{n_2}} \cdot 100\% = \frac{6,48}{43,74} \approx 14,8\%$$

Это также следует из рисунка 1 и 2.

Таблица 1. Число срабатываний счетчика за 20 секунд

Таблица 2. Число срабатываний счетчика за 40 секунд

№ опыта	1	2	3	4	5	6	7	8	9	10
0	41	50	48	45	47	46	40	48	42	48
10	24	46	40	53	48	40	49	47	35	45
20	45	52	47	50	43	39	40	45	49	38
30	45	65	35	52	45	52	27	53	49	50
40	45	58	50	41	58	27	49	42	33	38
50	45	47	50	43	40	48	46	51	37	35
60	48	49	54	43	48	54	37	43	37	46
70	48	44	42	34	43	44	40	42	38	42
80	38	38	36	47	56	47	53	38	35	39
90	54	58	50	52	33	46	32	53	51	45

Таблица 3.

Таблица 4. Данные для гистограммы $\mathrm{t}=40$ секунд

Число импульсов	27	32	33	34	35	36	37	38	39	40	41
Число случаев	2	1	2	1	4	1	3	6	2	6	2
Доля случаев	0,02	0,01	0,02	0,01	0,04	0,01	0,03	0,06	0,02	0,06	0,02
Число импульсов	42	43	44	45	46	47	48	49	50	51	52
Число случаев	5	5	2	9	5	6	8	5	6	2	4
Доля случаев	0,05	0,05	0,02	0,09	0,05	0,06	0,08	0,05	0,06	0,02	0,04
Число импульсов	53	54	55	56	57	58	59	60	61	62	63
Число случаев	4	3	0	1	0	3	0	0	0	0	0
Доля случаев	0,04	0,03	0	0,01	0	0,03	0	0	0	0	0

Таблица 5. Ошибки и средние значения

	\overline{n}	σ среднекв.	σ пример.	$\sigma_{\overline{n}}$; σ станд.
1	11,29	3,37	3,36	0,1685
2	43,74	6,48	6,61	0,648

Рисунок 1. Гистограмма за 10с

Рисунок 2. Гистограмма за 40с