SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics Extension 1

Preliminary Course Assessment 1

Term 2, 2016

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- · Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A BOSTES Formulae booklet is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice

Questions 1-6

6 Marks

Section II Questions 7-12

66 Marks

Section1

Multiple choice: Answer on the sheet provided in your answer booklet

1.
$$L + 2m - (L - 2n) - [2m + L - (2n - L)]$$
 simplifies to,

(A)
$$4n + 2L$$

(B)
$$4n - 2L$$

(C)
$$4m + 4n - 2L$$

(D)
$$4m - 4n - 2L$$

2. The value of x is:

- (A) 22
- (B) 11
- (C) 5.5
- (D) 44
- 3. The shaded region in the diagram below is satisfied by:

- (A) $x + 2 \ge 2y$ and x + 2y > 2.
- (B) $x + 2 \ge 2y$ and x + 2y < 2
- (C) $x + 2 \le 2y$ and x + 2y > 2
- (D) $x + 2 \le 2y$ and x + 2y < 2

4. Which of the following is an asymptote of the curve $y = \frac{x^2 - 4}{x}$?

(A)
$$y = x$$

(B)
$$x = 2$$

(C)
$$x = 1$$

(D)
$$y = 0$$

5. How many solutions does the equation $sin2\theta(tan\theta-3)=0$ have in the domain $0^{\circ} \leq \theta \leq 180^{\circ}$?

6. Consider the graphs of y = f(x) and y = g(x),

Which of the following is true?

(A)
$$g(x) = f(x) + 2$$

(B)
$$g(x) = f(x) - 2$$

(C)
$$g(x) = f(x+2)$$

(D)
$$g(x) = f(x-2)$$

End of Section 1

Section 2

Show full working out for each question in the answer booklet provided:

Remember to start EACH question on a NEW page

Question 7 (11 MARKS)

a. Fully factorise,

i.
$$64x^4 - xy^3$$
 2. ii. $x^2 + 6xy + 9y^2 - 16$ 2.

ii.
$$x^2 + 6xy + 9y^2 - 16$$
 2.

b. Fully simplify,

i.
$$\frac{x^2+4x}{x^3-9x} \div \frac{x^2+2x-8}{x^2+x-6}$$
 2.

ii.
$$\frac{3^n \times 9^{n+1}}{27^{2n}}$$
 2.

c. Write down the exact value of,

ii.
$$12sin^230^\circ(1+sec^230^\circ)$$
 2.

START A NEW PAGE

Question 8 (11 marks)

a. Solve
$$|2x-1| > 8$$

b. Solve simultaneously
$$y - 4 + x = 0$$
 and $xy = 4$

c. Solve;

i.
$$|2x+1| = 3x-2$$
 3.

ii.
$$\frac{x^2 + x - 6}{x} \ge 0$$

d. Show that
$$f(x) = \frac{x^3}{2x^2 - 1}$$
 is an odd function.

START A NEW PAGE

Question 9 (11 marks)

- a. Write down the natural domain for each of these relations.
 - $i. y = \frac{x-1}{x^2+4}$
 - ii. $y = \frac{1}{1 x^2}$
 - iii. $y = \sqrt{x+2} + \sqrt{4-x}$
- b. Write down the domain and range for the function represented by the equation

$$y = x^2 - 4x - 28$$

- c. For the function $f(x) = x^2 1$, evaluate $\frac{f(m) f(n)}{n m}$ given $n \neq m$ 2.
- d. Consider the function $f(x) = \frac{2x+1}{x-2}$
 - i. Write down the equation of the horizontal asymptote.
 - ii. Write down the coordinates of the y intercept.
 - iii. Sketch the curve y=f(x), neatly on a Cartesian plane, showing all intercepts and asymptotes.

START A NEW PAGE

Question 10 (11 marks)

- a. Find the exact value of $sec\theta$, given $sin\theta=\frac{12}{13}$ and $tan\theta<0$.
- b. Solve each of the following for the domain $0^{\circ} \le \theta \le 360^{\circ}$,

i.
$$tan^2\theta = \frac{1}{3}$$
 2.

ii.
$$sin^2\theta = sin\theta cos\theta$$
 3.

iii.
$$cos2\theta = 1$$

c. Show that

$$\frac{\sin\theta}{1-\cos\theta} + \frac{1-\cos\theta}{\sin\theta} = 2\cos \theta$$
 2.

START A NEW PAGE

Question 11 (11 marks)

a. On separate diagrams show the regions defined by;

i.
$$y + 3 > |x|$$

ii.
$$y + 3 \ge |x|$$
 and $y \le \sqrt{9 - x^2}$

In the triangle ABC, the sides AB and AC are produced and the exterior angles are
 bisected by BO and CO respectively.

Given angle ABC = x° , write down, with clear reasoning, an expression for angle BOC, in terms of x.

c. Consider triangle PQR.

i. Show that $x^2 - 20x - 84 = 0$

4.

2.

ii. Hence, calculate the area of triangle PQR, correct to 3 significant figures.

START A NEW PAGE

Question 12 (11 marks)

a. Simplify the expression
$$\frac{\sqrt{x^2}}{x}$$
 for all values of $x, x \neq 0$.

b. Triangle ABC, of perimeter 4 metres, is isosceles with AB = BC = x metres, and angle BAC = θ . M is the midpoint of the base AC, with BM being the altitude of the triangle.

Find simplified expressions, in terms of x, for

i.
$$\cos\frac{\theta}{2}$$
 2.

Question 12 continues on the NEXT page

c. A man stands at a point A due south of a tower OT of height h metres. From this point the angle of elevation to the top of the tower, T, is 45°. A woman stands 200 metres due west of the man, at the point B. The angle of depression form the top of the tower to the woman is 30°.

i. Find the distance OB, in terms of h.

ii.

Show that $h = 100\sqrt{2}$

1.

iii. Calculate the bearing of B from the base of the tower O, answer to the nearest degree. 2.

END OF TASK

SECTION I		
		<u> </u>
1. r + 5" - r+5	0-2m-h+20-	L
= -21 440.	(B)	1
z. (B) 3.	(A) 4 X	(A)
z, (B) 3.	T	1/2
5 8 0		11/
6. D. 4.		
2E(2)0~ 1 <u>[</u>		
ONE72104 1:		
1 2 () () (*
(a) (i) n (4x-y)	br + 4rg + y)	\/ \
(<u>ii)</u> (x + 3g))2-16 = (x+3y1	-4)(x+3y-4)
(b) (i) 25(x+4)	(2+3)(x-2)	1
	/\ _ 	2-3
w(b+3)\1-3		
(ji) 3 ⁿ × 3	2-30	
360	0	
(c) (i) to (· · · · · · · · · · · · · · · · · · ·	\ ~
(9.(1) (3 (的 12(年)(1+号) = 7
QUESTI-2 8:	<u> </u>	
	78 og 22-1	4-8
• •	79/2 04, 2	<-7/2
		¥
(b) x(x+4) = 4	-> 2 -4x+42	0
•	.'.(K = 2 \\ y = 2	(€)(i) C. V x≠C
	<u> </u>	(\$\)\(\)\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\
(c) 2x+1=3x-2 no		
(c) 2x+1=3x-2 00 3 = 2x	3, 2x+1=-3x+2	_3 \ n < 0 <
	5x = 1 n=1/5	-3 < 2 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
TESTIAL	× ×	
		= (

Quesnon 9:
(a) (i) all $x \in \mathbb{R}$ (ii) all $x, x \neq \pm 1$
(iii) 27-2 and 2 54 ic -2 52 54
(b) $y = (x-2)^2 - 32$
R: y 7-32
$\frac{n-m}{(0)} = \frac{n-m}{m^2-n^2}$
= - (m+n)
(d) (i) $y = 2$ (ii) $(0, -\frac{12}{2})$ (iii) $\frac{1}{2}$
Quesnon 10:
(c) 13/12 (x) see 0 = cuso 13/5
(b)(1) 30°, 150°, 210°, 330° (ii) sino (sino - curo) = 0 : sino = 0 en teno = 1
(iii) 20 = 0°, 180°, 360°, 540°, 720°
$(c) \frac{\sin \theta}{\sin \theta} + \frac{1-\cos \theta}{\sin \theta} = \frac{2}{\sin \theta}$
5120 Sino 2 2000 0
,

