CheatSheet Metodi

Juack &			Chea		eet		A	A: 22/2
lwertenze:								
acesto laworo No	N intende soo	stituire	le lezion	ni o le	e esercito	wzioni del	cover, bei	nsi fornire
un ajuto pratico, s							To The	
So quest, appoint					yr 8			
Ringrazio @Blue 3	343 per la	revisio	one sul	file	e peril	costante	aviuto in	olcuni
esercizi!								
.10								
ndice								
Congruenze Lineo								3
Tearemas Cinese del	Resto							5
Gruppi								6
Lulero								7
Permutazioni								9
RSA								11
Normoli, Ideoli								13
Polinomi								46
Cadici Lineari								20
Codici Ciolici								23

ack 🖭	Metodi (Cheatsheet	Probabilità ell'	appell
	Congruenz	e Lineouri	Completo: 35	%
23x = 3 mod 107				
	fame é sorivere l'equa	ozione diokantea associ	ata nella koma:	
23x + to7y = 3 2) Ora devo colcola	ue 1100 trav i vol (di x e g. Uso Evolio	de: scrivo il + grande	
			resto.di.primov · y + res	
407 = 23.4 + 15	ad owere vests O. K	primo resto # o e no). Se mcO=1, sono copri	Mi,
23=15-1 + 8				
E+ E-F = 8				
7-4.7+0	1 0	1' 0'	- 00	
		vest'ultimo édivisibil venzo, lineave ho so		
		divide quolojaei numen		
710in poe		1 2/14, 3/27 ecc 1 2/103, 7/100		
4) Se quindi MCO17, Isoliamo i resti		poniamo il coeff mag	Biore: a e l'oltra com	eb
13000011	a=107, b=23			
	. 45 - 407 · 23.4 = 0	u-4b (a-4b)=b-a+4b=5	h.a.	
15 ₂ 8 ₂ 4 7	and the second second	de - de - ω - ω - de - οί		
8 = 7 - 4 + 3		· (za - 9b) = 5b - a - za	19b=14b-30	

Quack 🖭	Metodi Cheatshe	et Probabilità ell'appell
	Congruenze Lineauxi	Completo 35%
Continuo es: 23 x =	2 1 107	
	o mod 207 o mod - con Bezout, moltiplichiamo pr	The short is the short
	me noto: n.c.o. == t	er quec nonero e noce che
	o, con 11.c D=1 e t=3, albiamo c==	
	1. C + 1. 11.c.0 2, 1=34, C=7	3.
	-30 diventor 3= 426-90.	
	il coefficiente che moltiplica b	Titte on a committee and it infrage.
	Licienti) che moltiplico K, KEZ: coeff E	
	olla congruenza lineare é c. 42. Totte	
1000	care la volidita dei volori sostitue	
	1 diventor 466 = 3 mad 304, moving	Ricando ±07.9=963, ed effettivamente
966 = 3 mod 963 V		
12	quindi moltiplichiamo a 23 (42 + 407) = 3	
mokti pkiro wada	a a tentativi) 207 32.3424, ed effettiv	winte 3424 v
) Ao1 1	0'	00 - 0 - 0 - 0
	l'esercizio é solo su equalizione	dickantea, altoro le solution
dipendono dol p		2 2 () (-90) -500)
CHSO 3) Se in Bezort a=coeff. g, ollows	
		dae xx= x0 + aco x, e yx= x0 - hco x
S OPPO	Se in Bezout au coeffe. x. ollora	
6 0		dose $\times_{\kappa} = \times_0 + \frac{b}{1000} K$, e $9\kappa = \times_0 - \frac{a}{1000} K$
	caso 1. 3=42b-9a. Una soluzione	
	ol sono nellas farmas (Xx. yx)=(47	2+107K,-9-23K), K € Z.
7) Anche in questo c	aso possiamo veribicare	

avack 49	Metodi	Cheatsh	eet	Probabilità	oll appells
	Teorema (linese del R	esto	completo:	65%
$\begin{cases} X \equiv 3 \mod 44 \\ X \equiv 4 \mod 42 \end{cases}$					
S: (x = 2 mod 13					
1) Prima cosa da Ra	re é controllare	se i divisori so	ono coprimi: se	si posso applica	re T.C.R.
(34, 42)=4, (42, 43)=	4. (44, 43) = 4 √				
z) Adesso calcoliamo: N	1=d3.d2.d3, N3.d2	d3, N2-d3.d3,	N3=d1 d2		
N= 44.42 +3 = 1716	Ns. 156 Nz. 143	104	y=4 mod d4		
3) Eseguiarmo oras la ca	chemical con i seg	penti volori: (Na	y = 4 mod dz		
1356 y = 3 mod 34 143 y = 3 mod 32 132 y = 4 mod 33 . Acles	seo risolvicumo le co	ongwente:			
1) 156y = 1 mod 11 5	31 po semplificoure*	in 2y = 4 mod 44	e quindi y=6"	* 13 34. 454, 456-454.z.	2.6=42=4 mod 4:
	, pvó semplikicare*				
	puó semplificare in	10.00		30	
(1) Una soluzione é in a	9		. 0		
	icolare del sistema		()		
5) lutte le solveioni ex	and thereal features (+ NK. Lou minimo	s soc. positivos	to 51 office of	Journaire
di Kin Z					
lutte le soluzion	i sono 4084 + 47346K,	KEZ. La minimo	aduzione la	sikow con K=2	
Overo 4084-3432	= 652				
6) Anche qui possioum	o verificare bo	collidatoi dei no	stri risultati.		
(4084 = 3 mod ±±	4084 11 78 ₁₄ 371	48 340	4084 13 18 314		
4084 = 4 mod 32	3	4	2		
(5800 = 3 mod ±1	5800 44 30 520	5900 42	58 00 43 60 446		
5800 = 4 mod 12 5800 = 2 mod 13 K=	8 3	100 4 480	80 2		
202	65Z 44	652 42	652 43		
652 = 3 mod ±4 652 = 4 mod ±2 662 = 2 mod ±3	3 59	52 54	2 50		

	Eule	ero	completo	70%
Es Determinare tutti a	li interi a to was) _{- 46}		
s) Troup divisori				
Diviecri di 16: 1.2.	4,8,36.			
z) Tengo solo quelli che	incrementati di 1	sono primi		
le possibilitai so	no per p sono 2	,3,5,37. Dunque n= 2°	· 3b . 5c . 42d	
3) Scriviamo ollona	nella formula	q(n)= ×9-4. ×-1= 46		
φ(n)= 2 ^{ω-4} · 4 · 3 ^{b-4}	. 5°-4.4.13 ^{d-4} ·16 = 16			
4) Parto dol grado con bo	use maggiore etrous	per quali volazi passo	ancaras otterere	- 36 =
In questo caso de	4, perché con d=4	auró 16:16 e va	bene, con d=o non	no nulla
in 47 e 46 e va be	ne, mou con diz au	vei 4746 imρο	ssibile. Dividiamo	idue casi
d = 4 n= 2° ·	3b.5c.47			
$\varphi(n) = 2^{\infty-3}$	· 4 · 3 · 2 · 5 · 4 · 16 =	46		
4.s) Adesex	ricaus che c=0, m	na anche b=o, av po	essere anche 4, in a	wanto quando
Ov. 3.	moltiplica per de	quindi risultato rimo	une la stesso	
.c.o p=c	n= 2-47	6(2)= 500; 70= 70		
	· 0=0 n=47, q(n):	=46=46, troubil prin	FE=n or	
	2	eln)= 1.46, trap il seo		
		36.4.2.5.4.4.36. Ricax		
		3 ^{b-1} 2 4= 16 Ricas che		
D- 3		-4.2.4= 46. Ricaso che		2 4 2 4 ± 46
		n)=z 1.24=46 Travo il		
0=0		4.4=46 da wi ricaw		nerou 2º 4=46
		1=4-34=36 tropoile	warto n=40	

Quack &	Metodi Cheatshee	et Robabilità all'appella
	Eulero	completo: 70%
October		
·d=0	tutti gli interi n to q(n)= 16	
C=0		
D=4 n=2°	2.3 (q(n)= 20-4 · Z = 46, da wi ω= 4	
ω= 4 n= '	24.3 q(n)= 8 2= 36 tras quarto no	= 48
	φ(n)= 2 ^{ω-3} = 46, do ωι ω=5	
	n=25 q(n)=26=16 trac quinto n=	32
le solvaioni sono 17,3	34, 60, 40, 48, 32	
Formule davricandaire:	Eulero: $\alpha^{q(n)} = 1 \mod n$ Fermat:	a P = a mad p a P - 1 = 1 mad p
	$E=(\alpha, \omega)$	con p primo e pto
Es Colcobare 9898989	20	
1) Colcolo sentos espo	onente	
PS bom FF ≡ 8P	(4)	
	per y(d) avero il primo ed-1, in	n questo caeo 29 quindi 4/1291=28
149 98 149	98989 = 3535 78 + 9	
	(11) = 1 mod 29, quindi colcolioumo	la conquenza sul resto
	ou (1128) 3535 = 1 mod 29, 119 = 7 mod 29	
4) Risolvo a paesi la	congruenza sul resto	
412 = 424 = -5 mod 20	3	
134 = -52 = 25 = -4 mod 2	29	
41°, -42° a mod 29		
74° = 44° 44 = 46·14 = 45	76 = 2 mcd 29	
5) Conclusioni Si conclude che 98	98989	
Si conclude the 98	3 2 mod 29	

wack &	Metodi Cheatsheet	Probabilità all'appell
	Remutavzioni	completo 70%
5: Sia SeSta la pen		
5 = (4 2 3 4 5 6 7 11 2	3 4 40 4 S 8	
OScrivere 5 come prodo	to di cicli disgiunti e determinare l'ordine.	
	icemente di grandare i cicli	
8 = (3 to 3 t	3 4 40 4 5 8	
5= (1,9,4,6,4)(2,4	(8,52,6)(5,2 ,5,5	
z) L'ordine è il	m.c.m della caudinalitai dei cioli.	
151 - 5: 4:3 - 60		
(1, Et. P)= 5 otas) (1.	12.8.8,3) (24,4,40) (2,6) in S43 si calcal, il p	modethe 5 r
1) Bisagrav consultena	ve le due permutazioni	
υ=	583 34 50 26	
13 7 9 12 5	8 3 4 4 50 44 6 2	
5= 13 7 9 12 S	3 13 9 6 10 11 11 12	
82459	3 13 9 6 10 11 12	
/ 9		
	2583444026	
N.B: 8-r + r.5		
3 Soricere st.	lue lue	
	50 s owers per sordine	
54 (1, 9, 4, 6.41)(2,		
2) Sorius come 59		
quirdi per (1,9.4.6.		
	, 9, 4, 6.43) (2, 42, 5, 7) (3, 43, 8).	
	$\frac{1}{2}$ ioni : es $(3456)^3 \rightarrow (3456) \rightarrow (654)$	3)
5 ⁵⁹ = (11,6,4,9,1)(7,	5 12 2) (8.13.3)	

Spregositione algoritmo RSA. Alice 3 Scentre due nomen primi p e a grand, interi, dapari e distint. Colcolar N. p. q. e. quis [p. 1] (q. s) 2 Scentre un numero intero r. caprimo con quis 3 Colcolar con l. olgoritmo di Ecolide due interi s et in modo che 13 upinto di tione ben segrete p.q. quis es. 5. Viele mandane ad Alice il meseaggio b. dane b é un numero intero an o bin. 6. lagge lar cappia (N.) de Alice lar pubblicata e colcolar a si mod N e insia il numero ad Alice. 7 Prece il meseaggio ar dar Bob e deve ricostruire il meseaggio originale, ciale b. Colcolar as mod N e intravar b.	luack &	Metodi Che RSA	atsheet	Robabilitai	
4. Scentre due nomen primi p e q grandi, interi, dispuri e distinti. Colado N-p q e epw= (p.2)(q.1) 2. Scentre un numero intero r caprimo con epw 3. Colado con l'olgantimo di Evolide due interi a et in mado che 13. ephnt=1 4. Pubblica la cappia (N,1) mentre tiene ben segrete p.q. epw es 5. Viole mandare ad Alice il meseaggio b. dave b é un numero intero con 0 to N. 6. legge la cappia (N,1) che Alice ka pubblicato e colado a = b mad N e maio il numero ad Alice. 3. Riceve il meseaggio a da Polo e deve ricostruire il meseaggio originale, cicé b. Colado a mod N	s. Spiegoziore olgoritm	s RSA.			
grandi, interi, dispari e distinti. Colaclos Nop q e 4(N)= (p.1)(q.1) 2 Sceglie an numero intero r caprimo con 4(N) 3 Colaclos con l'olgoritmo di Exclide due interi e et in mado che con 4(N) mentre tiene ben segrete p.q. 4(N) e s 5. Viole mandare ad Alice il meseaggio b. dave b è un numero intero con 0 bin 6. legge las cappias (N,) che Alice kas pubblicato e colacolas au mod N e miso il numero ad Alice. 7 Ricere il meseaggio a das Bob e deve ricostraire il meseaggio criginale, cicé b. Colacolas ai mod N	Alice			Bols	
Colcolor N=p.q. e. ep(N)=(p-1)(q-1) 2 Sceptie un numero intero r. coprimo con ep(N). 3 Colcolor con l'olgoritmo di Exclide due interi s et in modo che 13+ ep(n)t=1 4 Pubblicar las coppias (N, 1) mentre tiene ben segrete p.q. ep(N) e.s. 5. Wale mandare ad Alice il meccaggio b. dare b é un numero intero con 0 46 N 6. Legge las coppias (N, 1) che Alice las pubblicato e colcolor a = b' mod N e inviso il numero ad Alice. 7 Ricere il mescaggio ar dar Bob e dere ricostruire il mescaggio originale, cicé b. Colcolor as mod N	1. Sceplie due numer	primi peq			
Colcolor N=p.q. e. ep(N)=(p-1)(q-1) 2 Sceptie un numero intero r. coprimo con ep(N). 3 Colcolor con l'olgoritmo di Exclide due interi s et in modo che 13+ ep(n)t=1 4 Pubblicar las coppias (N, 1) mentre tiene ben segrete p.q. ep(N) e.s. 5. Wale mandare ad Alice il meccaggio b. dare b é un numero intero con 0 46 N 6. Legge las coppias (N, 1) che Alice las pubblicato e colcolor a = b' mod N e inviso il numero ad Alice. 7 Ricere il mescaggio ar dar Bob e dere ricostruire il mescaggio originale, cicé b. Colcolor as mod N	grandi, interi, dispari	e distimi.			
2. Scentie an numero intero r coprimo con glui. 3. Colcolas con l'olgoritmo di Evolide due inter set in modo che 13. glint=1 a Pubblica las coppias (N, 1) mentre tiene ben segrete p.q. glui e s. 5. Volle mandare ad Alice il mescargojo b. dave b é un numero intero con 0 e b N 6. Legge las coppias (N, 1) che Alice las pubblicato e colcolas a med N e insias il numero ad Alice. 7. Riceve il mescargojo as das Bols e deve ricostruire il mescargojo originale, cicé b. Colcolas a mod N					
Colcolar con l'olgant mo di Evolide due interi set in modo che stiglialt : 1 a Pubblicar la coppia (N, 1) mentre tiene ben segrete p.q. q(N) es 5. Viole mandare ad Alice il messaggio b. dare b é un numero intero con 0 < b < N. 6. legge lar coppiar (N, 1) che Alice lar pubblicato e colcolar a : b mod N e inviar il numero ad Alice. 7. Ricere il messaggio ar dar Bob e dere ricostruire il messaggio originale, cice b Colcolar a : mod N	z. Sceglie un numero in	there r coprimo			
Evolide due interioret in modo che 1. Pubblica la cappia (N. 1) mentre tiene ben sogrete p.q. q(N) es. 5. Wole mandare ad Alice il mescaggio b. dave b é un numero intero can 0 do N. 6. Legge la cappia (N. 1) che Alice ha pubblicato e colcolar a b mod N e invia il numero ad Alice. 7. Riceve il mescaggio a dar Bob e deve ricostruire il mescaggio originale, cicé b. Colcolar as mod N	con gla).				
Evolide due interioret in modo che 1. Pubblica la cappia (N. 1) mentre tiene ben sogrete p.q. q(N) es. 5. Wole mandare ad Alice il mescaggio b. dave b é un numero intero can 0 do N. 6. Legge la cappia (N. 1) che Alice ha pubblicato e colcolar a b mod N e invia il numero ad Alice. 7. Riceve il mescaggio a dar Bob e deve ricostruire il mescaggio originale, cicé b. Colcolar as mod N	3. Colcolas can l'olg	oritmo di			
tiene ben segrete p.q. q(N) es. 5. Wole mandare ad Alice il meccaggio b. dave b è un numero intero con 0 c b N. 6. Legge las cappias (N, 1) che Alice has pubblicato e colcolas a b mod N e muios il numero ad Alice. 7. Riceve il meccaggio as das Bob e dese ricostraire il meccaggio criginole, cicé b. Colcolas a mod N	Evolide due interio	et in modo che			
4. Pubblica la cappia (N, 1) mentre tiene ben segrete p.q. q(N) es. 5. Wale mandare ad Alice il meccaggio b. dave b è un numero intero con 0 aban. 6. Legge la cappia (N, 1) che Alice la pubblicato e calcalar a pib med N e inviso il numero ad Alice. 7. Riceve il meccaggio a da Bob e deve ricostruire il meccaggio criginale, cicé b. Calcalar as mod N	15+ cp(n)+= 1				
tiene ben segrete p.q. a(N) es. 3. Vole mandare ad Alice il meccaggio b. dave b é un numero intero con 0 < b < N. 6. legge la cappia (N, 1) che Alice ha pubblicato e colcolar a = b' mod N e inviar il numero ad Alice. 7 Riceve il meccaggio a dar Bol e deve ricostruire il meccaggio originale, cicé b. Colcolar a mod N		N,) mentre			
b. dave b é un numero intero con 0 « b « N 6. legge las cappios (N, .) che Alice las pubblicato e colcolas a = b' mod N e insias il numero ad Alice. 7. Riceve il messaggio as das Bob e dese ricostruire il messaggio armod N originale, cioé b. Colcolas as mod N	tiene ben sogrete p.q	. p(n) es			
6. Legge Low coppion (N, 1) the Alice how publicate e colcolow as a bit mod N e invitor il numero ad Alice. 7. Riceve il messaggio av dov Bob e deve ricostruire il messaggio originale, cicé b. Colcolow as mod N		6	.Vvole mandare	ad Alice il mea	o iggo x
pubblicato e colcola a = b' mod N e imaio il numero ad Alice. 7. Riceve il messaggio a da Bol e deve ricostraire il messaggio originale, cioé b. Colcola a mod N					
e invior il numero ad Alice. 7. Riceve il messaggio a das Bol e deve ricostruire il messaggio originale, cioé b. Colcolar as mod N		6	Legge la cappi	∞ (N,d) che Alice	, ka
7. Riceve il messaggio au dau Bols e deve ricostruire il messaggio originale, cioé b. Colcolau a ^s mod N			pubblicato e o	colcolos os = b' mo	d N
deve ricostruire il meseaggio originale, cioé b. Colcola as mod N			e invios il nome	ero ad Alice.	
deve ricostruire il messaggio originale, cioé b. Colcolas as mod N	7. Riceve il messaggio o	do Bol e			
originale, cicé b. Colcolas as mod N					
	Y				

wack &	Metodi Cheatsheet	Robabilità oll'appell
	R5A	completo 99 %
Suppore the low d	nioue pubblicou siou (N,r)=(443,67)), dunque p=11 e q=13. Riceviaumo
il mescagojo 13. Dec		
1) Colcolo (N)=(p	-1/(4-4)/(4-	
y(N)= 42 = 420		
2) Applico Euclide	e Bezart a plus e r. (Evolide deve	raltare = 1!)
(420,67)=4 4=6	3b-24a	
3) Traco 5, avero col	oi ohe moltiplica b.	
13 ⁴³ mod 143.		
4) Calcolo mex ⁵ mod	d V riscrivo s in binavio e creo	la seguente tabella
43 - 40 40 44		
Co = 3		
1 C ₃ = 1 ² · 1	3 = 13 mod 143	
O (2= 13° 13	3° = 26 mad 143	
J C3= 262	13° = 65 mod 143	
O C4=652. 43	= .65 mod 443	
1 Co= (-60) ² 43	34 = 43 mod 343	
d (0= 132 13	= 52 mod 343	
5) L'oltimo resto è	il meseaggio decilirato	
10 messaggio di	ecilizato é 52.	

Quack &	Metodi C				itá ell'appello
Controllo il grupo, se lateroli de lateroli de lateroli de lateroli de lateroli de lateroli di H sono H Ke K+[1]6=\$[1]6,[3]6,[3]6,[3]6,[3]6,[3]6,[3]6,[3]6,[3	abeliano auremo s×. Traviamo i latero s> saraí H= {[0]6,[3 1, H+[4]6= {[4]6 .5]6}	che He K Bi.]6}e K=<[. }e H+[2]6=	2]6> 50,0 2]6> 50,1	où K={[0]6,	[2]6, [4]6}
+	H+[4]6 H+[2]6	+	к	K+[4] ₆	
н	9[2]+H	К	К	K+[4]6	
H+[4]6 H+[4]6	H+[2]6 H	K+[4]6	K+[-1]6	K	
H+[2] ₆ H+[2] ₆	9[r]+H				
φ((c d) · (x c)	$\varphi((a \circ d)) = (a \circ d) \notin om$ $e \varphi(a + b) = \varphi(a) + e$ $bbiamo prace che$ $= \varphi(a \circ d) + \varphi(y \circ z) = \varphi(a \circ d) + \varphi(y \circ z) = \varphi(a \circ d) + \varphi(y \circ z) = \varphi(a \circ d) = (a \circ d) $	omorfismo di qlb) e ql (a d) + (x d) qla d) (x d) qla d) (x d) ker q e i	i anelli (a.b) = (i)) = (a.t.) = (a.t.) = (a.t.) = (a.t. (c.t. deole di	Determinate p(a) q(b) × 0 (a++) d+2 (a× 0) dz) = (a× 0) A.	Ker $\varphi \in \operatorname{Im} \varphi$. $(\circ) = (\circ \circ) + (\times \circ) \vee (\circ z $

wack 🖭	Metodi Cheats	heet Robal	bilità all'appella
	Polinom e Campi	Сстр	leto 80 %
∋ Si consideri g(x)=	$x^3 + 3x^2 + x + 3$ in Z_7		
a) g(x) irriducibile			
	ha grado <3 basta verifi	icare the non abbi	ou radici
i i	r nessun valare g(x)=0. Se gn	200	
	cibile, avero che non posso		
	, g(z)=z, g(3)=z, g(4)=5, g(5)=3		
	(x)'(g(x)) é un compo e se si de		menti di F.
	e g(x) irriducibile. no elementi		
	ento non la radici, siamo in Z		1
	esiste l'inverso in F di $[x^2+6]$	_ " "	
	ere compo e $g(x)$ to	X 7 6 3 7 6 7	
	[x2+ex+e]g(x) + [0]g(x)		
	oclide con divisione tra pol	(x)	
	$x + 6$ $Q(x) = x^3 + 3x^2 + x + 4$	Misin So G	
	9		
×3 + 5×2 + - ×3 - 6×2 - 6 - 3×2 - 5			
+3x²+1	8× +18)		
		E O.	0.0
	placi in Za e riscrivo g(x). Ap		K(x)
	.7 \notin 6×+5. ×-3 in Z7 divent	∞ × + 4.	
9(x)= f(x)(x+d	No.		
ײ + 6× + 6 × + 5×	6× + 5 -× - II		
11×+6 /+55			
£9			
-x-11 dicento	6×+5 e 61 in Z7 é 5.		

Quack 😉	Metodi Cheatsh	reet Robabilet	à ollappella
	Polinomi e Campi	Completo	80 %
Continuo es Si conside	ri $g(x) = x^3 + 3x^2 + x + 4$ in \mathbb{Z}_7 .		
@ Applico Beza	•		
g(x)= f(x)(x+4)+	6x+5, b(x)= (6x+5)(6x+3)+5		
6x+5 = g(x) - f(x)(x+4)		
5= R(x) - (6x+5)(6	(SX+3) (Risoriu	o 6×+5 come restadig	(~)
= f(x) - g(x)(ex+	3)- b(x)(x+4)(ex+3) @ Roccol	go i due fl(x) e risoluo	
= - O(x)(ex+3)-	R(x)(6x2+6x+6) (3) Riscrico	6x+3 in x+4 (Z), cam	ibio segno
= +g(x)(x+4)+	8(x)(ex2 + ex +e) @ Divido	per se ottengo 1 =	
1 = g(x)(3x +5) + f	2(x)(6x2+6x+6)		
© Conclusione: que	llo che moltiplica R(x) é l'i	nerso	
[x2+6x+6] (x) = [(4x2 + 4x + 4]g(x)		
	$4 \in K(x) = x^3 + 3$, siscrive in form	now standard [h(x)K(x)]	g(×).
No.	icemente il prodotto		
R(x) K(x)= 2x5+6	2 + 2×4 + 6× + ×3 + 3 = 2×5 + 2×4 + ×3 + ×2 -	×+3	
Esego Euclide	tros Rlx)K(x) e g(x)		
	(+3 x ³ +3x ² +x+4		
/ -6x4-3x3-2x2	7×2-4×+30		
$-4x^{4} - 2x^{3} - x^{2} - x$ $/ +12x^{3} + 4x^{2} + 4x$			
$10x^3 + 3x^2 + 3$ $/ -30x^2 - 10$	2000 CO 2000		
-27x² -7	7× -7		
Bisulton &	(x) K(x)= g(x)(2x²+x) -x²		
	8(x) K(x)]=6x2]=(x)		
	3		

