Cryptography: Birthday Paradox

Yiheng Lin, Zhihao Jiang

1

1

Theorem 1.1. Let $S = \{1, 2, \dots, N\}$. For n times, uniformly randomly draw one element from set S. Let x_t be the element we draw at time t. Then $\forall p > 0$, there exists a constant C_1 such that when $n \geq C_1 \sqrt{N}$, we have

$$Pr[\exists 1 \leq i, j \leq n, i \neq j \text{ such that } x_i = x_j] > p$$

.

Proof. Let X denote the event that $\exists i, j \leq t, i \neq j$ such that $x_i = x_j$, then we have

$$Pr[\bar{X}] = \frac{N(N-1)\cdots(N-n+1)}{N^n}$$

$$= \prod_{i=1}^{n-1} (1 - \frac{i}{N})$$

$$\leq \prod_{i=1}^{n-1} exp(-\frac{i}{N})$$

$$= exp(-\frac{n(n-1)}{2N})$$
(1)

Let $C_1 = \sqrt{-2ln(1-p)} + 1$. Then when $n \ge C_1\sqrt{N}$, we have

$$n(n-1) > (1 + \sqrt{-2ln(1-p) \cdot N})(\sqrt{-2ln(1-p) \cdot N}) > 2ln(2) \cdot N$$
 (2)

Which is equivalent to $-\frac{n(n-1)}{2N} < ln(1-p)$. Thus use (1) we have

$$Pr[\bar{X}] \le exp(-\frac{n(n-1)}{2N}) < 1 - p$$

So we have

2

Lemma 1.1. For positive integer n < N, we have

$$\sum_{i=1}^{n-1} \ln(1 - \frac{i}{N}) > -\frac{n^2}{N}$$

Proof. Notice that $\forall x \in [1 - \frac{i+1}{N}, 1 - \frac{i}{N}] \ (0 \le i \le n)$, we have $ln(x) < ln(1 - \frac{i}{N})$. Thus

$$\frac{1}{N}ln(1-\frac{i}{N}) \ge \int_{1-\frac{i+1}{N}}^{1-\frac{i}{N}}ln(x)dx$$

Thus we have

$$\frac{1}{N} \sum_{i=1}^{n-1} \ln(1 - \frac{i}{N}) \ge \int_{1 - \frac{n}{N}}^{1} \ln(x) dx$$

$$= (x \ln(x) - x)|_{1 - \frac{n}{N}}^{1}$$

$$= -\frac{n}{N} - (1 - \frac{n}{N}) \ln(1 - \frac{n}{N})$$

$$> -\frac{n}{N} - (1 - \frac{n}{N})(-\frac{n}{N})$$

$$= -\frac{n^{2}}{N^{2}}$$
(3)

Thus

$$\sum_{i=1}^{n-1} \ln(1 - \frac{i}{N}) > -\frac{n^2}{N}$$

Theorem 1.2. Let $S = \{1, 2, \dots, N\}$. For n times, uniformly randomly draw one element from set S. Let x_t be the element we draw at time t. Then $\forall p > 0$, there exists a constant C_2 such that when $n \leq C_2 \sqrt{N}$, we have

$$Pr[\exists 1 \leq i, j \leq n, i \neq j \text{ such that } x_i = x_j] < p$$

.

Proof. Let X denote the event that $\exists i, j \leq t, i \neq j$ such that $x_i = x_j$.

Use Lemma 1.1, we have

$$Pr[\bar{X}] = \frac{N(N-1)\cdots(N-n+1)}{N^n}$$

$$= \prod_{i=1}^{n-1} (1 - \frac{i}{N})$$

$$= exp(\sum_{i=1}^{n-1} ln(1 - \frac{i}{N}))$$

$$> exp(-\frac{n^2}{N})$$
(4)

Let $C_2 = \sqrt{-ln(1-p)}$. Then when $n \leq C_2\sqrt{N}$, we have

$$exp(-\frac{n^2}{N}) \ge 1 - p$$

So $Pr[\bar{X}] > 1 - p$, thus

Acknowledgement: