Relatório 2º projecto ASA 2022/2023

Grupo: TP053

Aluno(s): Rui Amaral (103155)

Descrição do Problema e da Solução

Para resolvermos o problema, temos que descobrir o valor máximo de trocas entre o maior número de regiões possível recorrendo ao número mínimo de troços de ferrovia. Se transformarmos o problema num grafo em que cada vértice representa uma região e cada aresta, um troço de ferrovia, o problema simplifica-se.

Em cada grafo, queremos descobrir um aglomerado de arestas que ligue o maior número de pontos do grafo (V), e que contenha o menor número de arestas possível (no máximo terá V - 1 arestas), finalmente, se houver mais que um grupo de arestas que respeite essas condições, escolhemos o que tem o valor de trocas total mais elevado, valor este que é a solução para cada problema.

A solução de cada situação é no fundo a soma dos pesos de uma *Maximum Spanning Tree* do grafo. Em aula, falámos de algoritmos para descobrir *Minimum Spanning Trees* mas, com algumas adaptações conseguimos usar esses mesmos algoritmos para resolver este problema. Neste caso, foi escolhido o algoritmo de Kruskal para tal.

O algoritmo de Kruskal ordena todas as arestas pelo seu peso por ordem crescente e depois itera sobre elas, escolhendo assim as arestas com o menor peso possível para a spanning tree. No entanto, ao alterar a ordenação das arestas para uma ordem decrescente, consegue-se que o algoritmo obtenha uma Maximum Spanning Tree.

Análise Teórica

Seja V o número de vértices e E o número de arestas de um grafo:

Durante a execução do programa temos as seguintes fases:

- Leitura dos dados de entrada: simples leitura do input, com ciclo(s) a depender linearmente de E. Logo, O(E).
- Inicialização dos vetores do *rank* e dos pais de cada vértice a depender linearmente de **V**. Logo, **O(V)**.
- Chamada de função que implementa o algoritmo de Kruskal:
 - Ordenação das arestas por ordem decrescente (recorrendo à função std::sort). Logo, O(E*log(E)).
 - O(E) operações das funções Union e Find-Set.
- Sabemos que, com a implementação de mecanismos de compressão de caminhos e união por rank, o algoritmo de Kruskal tem uma complexidade temporal de O(E*log(E)).
- Apresentação do resultado em tempo constante. Logo, **O(1)**.

Conseguimos assegurar uma complexidade global da solução: O(E*log(E))

Relatório 2º projecto ASA 2022/2023

Grupo: TP053

Aluno(s): Rui Amaral (103155)

Avaliação Experimental dos Resultados

Foi feito o registo do tempo que o programa demora a resolver problemas com grafos densos. Seja **E** o número de arestas de cada grafo denso. Ao fazer este registo para 15 valores de **E** (de 1000000 a 15000000), obtemos o seguinte gráfico:

À primeira vista, pode parecer que o resultado é uma complexidade temporal linear.

No entanto, ao mudar a escala do eixo \mathbf{x} para $\mathbf{E}^* \mathbf{log}(\mathbf{E})$ para confirmar a complexidade calculada obtemos uma segunda linha:

Que, quando comparada com o gráfico anterior, revela que a linha do primeiro gráfico apresenta uma subtil curva, enquanto que a linha com a escala ajustada se aproxima mais a uma reta. Como ao mudar a escala para **E*log(E)** obtemos uma reta, conseguimos provar que a complexidade prática da solução é equivalente à complexidade teórica.