Making better conservation decisions

Jeffrey Hanson

Acknowledgements

Amanda Martin Angela Brennan Brandon Edwards Caitlyn Proctor Emma Hudgins

Matthew Strimas-Mackey Jenny McCune ladine Chadès Hugh Possingham Jaimie Vincent

Joseph Bennett Josie Hughes Lenore Fahrig

Nina Morell Peter Arcese Richard Schuster Richard Pither

How can we get a better conservation decision?

- (1) Better algorithms
 - (2) Better data
- (3) Better surrogates

Features

Planning units

Heuristic algorithm

Meta-heuristic algorithms

Exact algorithms

Different solutions

Different solutions

Different solutions

prioritizr: Systematic conservation prioritization in R

- It's an R package (yes, this is good)
- First released on CRAN in 2016
- Highly flexible interface
- Supports tabular and GIS data formats
- Supports multiple zones/actions
- Powered by open source and commercial exact algorithm solvers
- Want to see a worked example? Ask me afterwards during question time

prioritizr.net

Who uses it?

- 85 scientific publications used it for generating prioritizations
- Conservation organizations: Nature conservancy Canada, UN Biodiversity Lab, Waitt Institute
- Helped inform planning for Government of Monsterrat, Scottish Government, US Geological Survey, Governments of the Maldives and the Federated States of Micronesia

Web site visitors

Solve problems pretty quickly!

Better solutions

Faster too

How can we get a better conservation decision?

- (1) Better algorithms
 - (2) Better data
- (3) Better surrogates

Study system: Middlesex county, Canada

199 places that could potentially be acquired for protected area establishment

8 imperiled plant species

143 places that could potentially be surveyed to improve existing data

Hanson et al. 2023 J. Appl. Ecol

- Existing data leads to positive outcomes
- More budget means better outcomes

- Allocating funds for gathering more data can mean worse outcomes
- Allocating funds for gathering more data can mean better outcomes too

- Conventional

 approaches for
 gathering additional
 evidence have different
 performance
- Performance of these approaches depends on available funds
- All of them could lead to lead to worse outcomes

- Directly maximizing return on investment is best method for additional data
- This considers objectives and constraints that underpin conservation plans and their success
- You can do this with: surveyvoi R package

How can we get a better conservation decision?

- (1) Better algorithms
 - (2) Better data
- (3) Better surrogates

Connectivity in reserve design

movement of individuals and genes between populations

*all else being equal

Data ---- Information ----- Plan ----- Outcome

But getting connectivity data is hard

Animal telemetry

Molecular ecology

Data → Information → Plan → Outcome

High connectivity

Low connectivity

Many surrogates are often available, how do our choices affect the results?

Rules of thumb for connectivity

More habitat = More connectivity

- Total area protected
- Species representation

Rules of thumb for connectivity

More spatial clustering = More connectivity

Boundary length

Rules of thumb for connectivity

Protect clusters of low resistance = More connectivity

- Human pressure
- Naturalness based landscape resistance
- Focal species landscape resistance

- Habitat heterogeneity
- Environmental similarity

A comparison of approaches for including connectivity in systematic conservation planning

Washington State, USA

- 261 bird species
- Land acquisition costs
- Existing protected areas
- Multiple land-uses
- Multiple eco-systems

Hanson et al. 2022 J. Appl. Ecol

- Different connectivity approaches produce different prioritizations
- Different connectivity approaches can yield similar prioritizations

Hanson et al. 2022 J. Appl. Ecol

How do the prioritizations compare?

Approach

- Habitat-based
- Spatial clustering
- Resistancebased

No obvious winner

Make better conservation decisions by using...

- 1. Better algorithms
- 2. Cost-effective data
- 3. Reliable surrogates

values 0.00 0.25 0.50

Worked example

```
# load packages
library(prioritizr) # package for conservation planning
library(terra) # package for raster data
# input data
```

raster with continuous values indicating costs
planning_unit_data <- rast("pu.tif")</pre>

multi-layer raster with relative abundance data
feature_data[[1]] is the first feature,
feature_data[[2]] is the second feature,
and so on, with 396 features in total
feature_data <- rast("features.tif")</pre>

raster with binary values indicating if each planning
unit is covered by (1) protected areas or (0) not
protected_area_data <- rast("protected-areas.tif")</pre>

raster with binary values indicating if each planning
unit covered by (1) urban areas or (0) not
urban_area_data <- rast("urban-areas.tif")</pre>

Hanson et al. under review

```
# build problem
## specify the data, formulation, and solver
conservation planning problem <-</pre>
  ### initialize with planning unit and feature data
  problem(planning_unit_data, feature_data) %>%
  ### add minimum shortfall function with budget
  add min shortfall objective(3917.631) %>%
  ### add representation targets for 20% coverage of each feature
  add relative targets(targets = 0.2) %>%
  ### add penalties to reduce spatial fragmentation
  add boundary penalties(penalty = 0.00001) %>%
  ### add constraints to ensure existing protected areas are selected
  add locked in constraints(protected area data) %>%
  ### add constraints to ensure urban areas are not selected
  add locked out constraints(urban area data) %>%
  ### specify that decision variables are binary (0 or 1 values)
  add binary decisions() %>%
  ### specify software to perform optimization,
  ### and set gap parameter for near-optimal solution
  add gurobi solver(gap = 0.1)
                                                   Hanson et al. under review
```

```
# solve problem
## output raster has binary values indicating if
## each planning unit is (1) selected or (0) not
prioritization <- solve(conservation planning problem)</pre>
# evaluate prioritization
## calculate overall cost of prioritization
eval cost summary(
  conservation_planning_problem, prioritization)
#> # A tibble: 1 × 2
#> summary cost
#> <chr> <dbl>
#> 1 overall 3911.832
## calculate relative importance of selected planning units
### output raster has continuous importance values
```

conservation planning problem, prioritization)

relative_importance <-</pre>

eval ferrier importance(

Hanson et al. under review