目次

無機化学

目次			6.3 6.4	一酸化二窒素(笑気ガス) 一酸化窒素	12 12
			6.5	二酸化窒素	13
			6.6	硝酸	13
第Ⅰ部	非金属元素	3	7	リン	14
1	水素	3	7.1	リン	14
1.1	性質	3	7.2	十酸化四リン	14
1.2	同位体	3	7.3	リン酸	14
1.3	製法	3			
1.4	反応	3	8	炭素	15
			8.1	炭素	15
2	貴ガス	3	8.2	一酸化炭素	15
2.1	性質	3	8.3	二酸化炭素..................	16
2.2	生成	3	9	ケイ素	17
2.3	ヘリウム	3	9.1	ケイ素	17
2.4	ネオン	3	9.2	二酸化ケイ素	17
2.5	アルゴン	3			
3	ハロゲン	4	 第II部	3 典型金属	19
3.1	単体	4	N3 11 Els	7、1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	13
3.2	ハロゲン化水素	5	10	アルカリ金属	19
3.3	ハロゲン化銀	6	10.1	単体	19
3.4	次亜塩素酸塩	6	10.2	水酸化ナトリウム(苛性ソーダ)	19
3.5	塩素酸カリウム	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
4	酸素	7	11	2 族元素	22
4.1	酸素原子	7	11.1	単体	22
4.2	酸素	7	11.2	酸化カルシウム(生石灰)	22
4.3	オゾン	7	11.3	水酸化カルシウム(消石灰)	23
4.4	酸化物	8	11.4	炭酸カルシウム(石灰石)	23
4.5	水	8	11.5	塩化マグネシウム・塩化カルシウム	23
5	硫黄	9	11.6	硫酸カルシウム	24
5.1	硫黄	9	11.7	硫酸バリウム	24
5.2	硫化水素	9	12	12 族元素	24
5.3	二酸化硫黄(亜硫酸ガス)	10	12.1	単体	24
5.4	硫酸	11	12.2	酸化亜鉛(亜鉛華)・水酸化亜鉛	25
5.5	チオ硫酸ナトリウム (ハイポ)	11	12.3	塩化水銀 (Ⅰ)・塩化水銀 (Ⅱ)	25
5.6	重金属の硫化物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12			
			13	アルミニウム	26
6	窒素	12	13.1	アルミニウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
6.1	窒素	12	13.2	酸化アルミニウム・水酸化アルミニウム	26
6.2	アンモニア	12	13.3	ミョウバン・焼きミョウバン	27

14	スズ・鉛	28
14.1	単体	28
14.2	塩化スズ(II)	28
14.3	酸化鉛 (IV)	29
14.4	鉛の難溶性化合物	29
第Ⅲ部	邵 遷移元素	30
15	鉄・コバルト・ニッケル	30
15.1	鉄	30
15.2	, , , , , , , , , , , , , , , , , , ,	31
15.3		32
15.4		
15.5		32
15.6	硫酸ニッケル(Ⅱ)	32
16	銅	33
16.1	銅	33
16.2		34
16.3		
16.4	銅の合金・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
17	銀	34
17.1	銀	34
17.2	銀(I)イオンの反応	35
17.3	難溶性化合物の溶解性	35
18	クロム・マンガン	35
18.1	単体	36
18.2	クロム酸カリウム・二クロム酸カリウム	36
18.3	過マンガン酸カリウム	36
18.4	マンガンの安定な酸化数	37
第 IV 部	那 APPENDIX	38
Α	気体の乾燥剤	38
В	水の硬度	38
С	金属イオンの難容性化合物	39
D	錯イオンの命名法	40
E	金属イオンの系統分離	41

第I部

非金属元素

1 水素

1.1 性質

- ① 色② 臭の③
- 最も 4
- 水に溶け 5

1.2 同位体

 1 H 99% 以上 2 H (⑥)0.015% 3 H (⑦) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 8 に9 を吹き付ける <u>工業的製法</u>
- 10 (11)の電気分解
- [12] が[13] 金属と希薄強酸
 - $\bigcirc \mathbb{F} = +2 \, \mathrm{HCl} \longrightarrow \mathrm{FeCl}_2 + \mathrm{H}_2 \uparrow$
- 水素化ナトリウムと水

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
- ・加熱した酸化銅(Ⅱ)と水素

2 貴ガス

2.1 性質

- 18 色19 臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が[20]
- 電気陰性度が[21]

2.2 牛成

⁴⁰K の電子捕獲

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い (約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量		小 <u> </u>		大
分子間力		弱 ————		
反応性		強 ====================================		
沸点・融点		低 ————		—————
常温での状態	22	23	24	25
色	26 色	27 色	28 色	29 色
特徴	30 臭	31 臭	揮発性	32 性
H ₂ との反応	33 でも	34 でも35 で	36) して	高温で平衡状態
112 2 00/00/10	爆発的に反応	爆発的に反応	37 により反応	38 して39 によ
水との反応	水を酸化して酸素と	(41)	(42)	43
八との/文/心	(40) 反応	41)	42	44
用途	保存が困難	(45) による	C=C や	47 反応で
	Kr や Xe と反応	46 作用	C≡C の検出	48 色

3.1.3 反応

3.1.2 製法 \bullet フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液 の電気分解工業的製法 $KHF_2 \longrightarrow KF + HF$ • 49 の電気分解塩素工業的製法 に[51] • 50 を加えて加熱 塩素 • 52 と [53] 塩素 • 54 と [55] 塩素 ● 臭化マグネシウムと塩素 臭素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$

• ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

フッ素と水素
塩素と水素
臭素と水素
ヨウ素と水素
● フッ素と水
● 塩素と水
● 臭素と水
• ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物
イオンを形成して溶解する反応

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$

 Cl_2,HCl,H_2O

↓ (56) に通す (HCl の除去)

 Cl_2,H_2O

↓ (57) に通す (H₂O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 … 58

+ VII	59	60	
+ V	61	62	
+ III	63	64	
+ I	65	66	

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI
色・臭い		67 色 68	臭	
沸点	20°C	−85°C	−67°C	−35°C
水との反応		69		
水溶液	70	71	72	73
(強弱)	74 «	(75) < (75)	76 <	77
用途	78 と反応	79 の検出	半導体加工	インジウムスズ
用处	⇒ ポリエチレン瓶	各種工業	十字件加工	酸化物の加工

3.2.2 製法

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応
- フッ化水素酸(水溶液)がガラスを侵食する反応

3.3 ハロゲン化銀 3 ハロゲン

•	89	による 90	の検出

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF		AgCl		AgBr		A	gI
固体の色	91	色	92	色	93	色	94	色
水との反応	95)				96			
光との反応	97			感光	往性(→	98))	

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮

ハロゲン化水素イオンを含む水溶液と 99

3.4 次亜塩素酸塩

3.4.1 性質

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素
- 水酸化カルシウムと塩素

3.5 塩素酸カリウム

化学式: 103

3.5.1 性質

4 酸素

4.1 酸素原子

同(106) 体:酸素 $(O_2),(107)$ (O_3)

地球の地殻に 108 存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- [121] 色 [122] 臭の [123]
- 沸点 -183°C

4.2.2 製法

124 工業的製法
 125 (126)の127
 128 (129)の分解
 130 の熱分解

4.2.3 反応

4.3 オゾン

化学式: [132]

4.3.1 性質

- [133] 臭([134] 臭)を持つ[135] 色の [136] (常温)
- 水に[137]
- 138 · 139 作用

4.3.2 製法

4.3.3 反応

148 剤としての反応湿らせた 149 を 150 色に変色

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酢	後化物	両性酸	化物	酸性	上酸化物			
元素	151	元素	152	元素	153	元素			
水との反応	[154]		[155]		156	([157])		
中和	158	と反応	[159]	と反応	[160]	と反応			
両性酸化物 …	. [161]	([162]) ,[163]) ([164)	,[165]	([16	6) ,[16

 $\bigcirc O_2 + H_2O \longrightarrow H_2CO_3$

 $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$

 $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

• 酸化アルミニウムと硫酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

4.5 水

4.5.1 性質

- [169] 分子
- 周りの4つの分子と 170 結合
- 異常に 171 沸点
- 172 結晶構造 (密度: 固体 173 液体)
- 特異な[174]

4.5.2 反応

- 酸化カルシウムと水
- 二酸化窒素と水

)*1

([168]

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175	硫黄	176	硫黄	[177]	硫黄
化学式	178		179		180	
色	181	色	182	色	[183]	色
構造	184	結晶	185	結晶	186	固体
融点	113°C		119°C		不定	
構造		S S	S S S		S S	S S S S S S S S S S
$ ext{CS}_2$ との反応	[187]		188		189	

$CS_2 \cdots$	無色·	芳香性·	・揮発性 ⇒	(190)
---------------	-----	------	--------	-------

触媒

5.1.2 反応

● 高温で多くの金属(Au, Pt を除く)と反応

• 空気中で 191 色の炎を上げて燃焼

5.2 硫化水素

化学式: 192

5.2.1 性質

• [193] 色 [194] 臭

$$\begin{cases} \boxed{196} & K_1 = 9.5 \times 10^{-8} \text{ mol/L} \\ \boxed{197} & K_2 = 1.3 \times 10^{-14} \text{ mol/L} \end{cases}$$

● <u>198</u> 剤としての反応

5.2.2 製法

● 硫化鉄(Ⅱ)と希塩酸

5.2.3 反応

• 硫化水素とヨウ素

•	酢酸鉛	(II)	水溶液と硫化水素	(200)	の検出)

5.3 二酸化硫黄 (亜硫酸ガス)

化学式:[201] 電子式:

5.3.1 性質

- [202] 色、[203] 臭の[204]
- 水に 205
- 206 性

(207) $K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

- 208 剤(209 作用)
- ②10 剤(②11) などの強い還元剤に対して)

5.3.2 製法

- 硫黄や硫化物の 212 工業的製法
- 213 と希硫酸
- 214 <u>215</u>

5.3.3 反応

- 二酸化硫黄の水への溶解
- □ 二酸化硫黄と硫化水素
- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- [216] 色[217] 臭の[218]
- 水に 219
- 溶解熱が [220]
- [221] を加えて希釈
- 222 性で密度が 223 く、224 が

大きい濃硫酸

- [225] 性・[226] 作用 <u>濃硫酸</u>
- 227 希硫酸

(228) $K_1 > 10^8 \text{mol/L}$)

- (229) 濃硫酸 ([230] 、[231] の濃度 が小さい)
- [232] 剤として働く 熱濃硫酸 [233]
- 234 (235) ,236), 237 難容性の塩を生成希硫酸

5.4.2 製法

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱
- スクロースと濃硫酸
- 水酸化ナトリウムと希硫酸
- 銅と熱濃硫酸
- 銀と熱濃硫酸
- 塩化バリウム水溶液と希硫酸

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: [242]

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- [245] 剤として反応 例水道水の脱塩素剤(カルキ抜き) [246]

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

5.6 重金属の硫化物

257

イオン化傾向 258

259

塩の溶解度積 (K_{sp}) [260]

● 高温・高圧で二酸化炭素と反応して、 283 生成

6.1 窒素

化学式:N2

6.1.1 性質

- [261] 色[262] 臭の[263]
- 空気の 78% を占める
- 水に溶け (264) (265) 分子)
- 常温で(266) (食品などの(267))
- 高エネルギー状態(268)・(269))では 反応

6.1.2 製法

- [270] 工業的製法
- [271] の [272]

6.1.3 反応

• 窒素と酸素

• 窒素とマグネシウム

6.2 アンモニア

化学式: [273]

6.2.1 性質

- (274) 色(275) 臭の(276)
- (277) 結合
- 水に[278] ([279] 置換)
- [280] 性 (281) $K_1 = 1.7 \times 10^{-5} \text{ mol/L}$
- の検出 • [282]

6.2.2 製法

• [284] 工業的製法 285 温 286 圧で、 287 () 触媒 288 • [289] と [290] を混ぜて加熱

6.2.3 反応

- 硫酸とアンモニア
- 塩素の検出
- アンモニアと二酸化炭素

6.3 一酸化二窒素 (笑気ガス)

化学式: 291

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- [292] 効果

6.3.2 製法

293 の熱分解

6.4 一酸化窒素

化学式: [294]

6.4.1 性質

● [295] 色 [296] 臭の [297]

6.5 二酸化窒素 6 窒素

- 中性で水に溶けにくい
- 空気中では 298 とすぐに反応
- 血管拡張作用·神経伝達物質

6.4.2 製法

299 と (300)

6.4.3 反応

酸素と反応

6.5 二酸化窒素

化学式: [301]

6.5.1 性質

- 302 色 303 臭の 304
- 水と反応して (305) 性(306) の原因)
- 常温では 307
- (308) 色)と309
- 140°C 以上で熱分解

6.5.2 製法

(310) と (311)

6.6 硝酸

化学式: [312]

6.6.1 性質

- 色 [314] 臭で [315] 性の • (313) (316)
- 水に 317
- (318)

 $K_1 = 6.3 \times 10^1 \text{mol/L}$ (319)

- に保存([321] • (320)
- 剤としての反応 希硝酸 • [322]

• (323) 剤としての反応 濃硝酸

- ・ イオン化傾向が小さい Cu、Hg、Ag も溶解
- 324 , 325 , 326 , 327 [328] は[329] が生じて不溶 濃硝酸

=(330)

- (331) ((332) :1(333) =3:1) lt, Pt, Au も溶解
- NO₃ は(334) \Rightarrow (335) で検出

6.6.2 製法

6.6.3 反応

- アンモニアと硝酸
- 硝酸の光分解
- 亜鉛と希硝酸
- 銀と濃硝酸

7 リン

7.1 リン

7.1.1 性質

三種類の同[344] 体がある

<u> </u>				
名称	345 リン	346 リン	黒リン	
化学式	(347)	(348)	P_4	
融点	44°C	590°C*2	610°C	
発火点	35°C	260°C		
光久点	349 に保存	(350)	-	
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$	
毒性	351	(352)	353	
構造	P P	P = P	略	
CS ₂ への溶解	(354)	355	356	

7.1.2 製法

• リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法

)

- 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: [357]

7.2.1 性質

- 白色で昇華性のある固体
- [358] (水との親和性が[359]
- 乾燥剤
- ・ 水を加えて加熱すると反応([360])

7.2.2 製法

361

 $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$

7.2.3 反応

水を加えて加熱

 $P_4O_{10}+6\,H_2O \longrightarrow 4\,H_3PO_4$

7.3 リン酸

化学式: 362

7.3.1 性質

363

(364

 $K_1 = 7.5 \times 10^{-3} \text{ mol/L}$

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和
- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成
- リン酸カルシウムと硫酸が反応して過リン酸石灰が 生成

無機化学

8 炭素

8.1 炭素

8.1.1 性質

炭素の同(365) 体

- (366)
- (367) ((368)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• 369

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

• カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	370	371			
特徴	[372] 色[373] で屈折率が大きい固体	374 色で 375 がある固体			
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$			
構造	376 方向の 377 結晶	(378) 構造((379))			
硬さ	380	381			
沸点	382	383			
電気伝導性	384	385			
用途	宝石・カッターの刃・研磨剤	鉛筆・電極			

8.2 一酸化炭素

化学式: [386]

 C, O 電子の持つ (392)
 による効果

 C=O 間の (393)
 の差による効果

8.2.1 性質

- [395] 色[396] 臭で[397] な気体
- 赤血球のヘモグロビンの 398 に対して強い 399
- [400] 性で水に溶け[401] 。([402] 置換)
- 403 性、高温で 404 性 (405 との親和性が非常に高い)

8.3 二酸化炭素 8 炭素

8.2.2 製法

 • [411]
 に[412]
 を加えて加熱

8.2.3 反応

• 燃焼

$$CO + O_2 \longrightarrow 2 CO_2$$

• 鉄の精錬

8.3 二酸化炭素

8.3.1 性質

- [413] 色 [414] 臭で [415] 性(固体は [416])
- 大気の 0.04% を占める
- 水に[417]

8.3.2 製法

- <u>420</u> を強熱 <u>工業的製法</u>
- 421と 422
- (423) の熱分解

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 427 色で (428) がある [429] 結晶
- 430
- <u>431</u> に使用 (高純度のケイ素)*3

高温にしたり微小の他電子を添加すると電気伝導性が 432 (金属は高温で電気伝導性が 433)

9.1.2 製法

9.2 二酸化ケイ素

化学式: [438]

9.2.1 性質

- [439] 色 [440] の [441] 結晶
- [442]
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- [443] 酸化物
- (444) ((445) ・吸着剤)の生成に用いられる 多孔質、適度な数の 446

9.2.2 反応

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

シリカゲル生成過程での構造変化

1.	二酸化ケイ素(シリカ) SiO_2	
0		
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	└ ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	
2.	ケイ酸ナトリウム Na ₂ SiO ₃	

3.	ケイ酸 $SiO_2 \cdot n H_2O \ (0 \le n \le 1)$
4.	シリカゲル $\mathrm{SiO}_2 \cdot n \mathrm{H}_2\mathrm{O} \; (n \ll 1)$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で 456 金属
- 全体的に反応性が高く、 457 中に保存

● 原子一個あたりの自由電子が 458 個(459 い 460) 結合)

● 還元剤として反応

_			
1			
1			
1			
			- 1

化学式	Li	Na K		Rb	Cs			
融点	181°C	98°C	64°C	39°C	28°C			
密度	0.53	0.97	0.86 1.53		1.87			
構造		(461) 格子((462))						
イオン化エネルギー	大 二	大						
反応力	小 —	小 大						
炎色反応	463 色	(464) 色	(465) 色	(466) 色	(467) 色			
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)			

10.1.2 製法

水酸化物や塩化物の 468

法)工業的製法

470 添加([471]

10.1.3 反応

• ナトリウムと酸素

• ナトリウムと塩素

• ナトリウムと水

10.2 水酸化ナトリウム(苛性ソーダ)

化学式: 472

10.2.1 性質

- (473) 色の固体
- [474] 性
- 水によくとける(水との親和性が [475])
- 476 剤

• 強塩基性

 $\left(\begin{array}{cc} 477 & K_1 = 1.0 \times 10^{-1} \mathrm{mol/L} \end{array}\right)$ • 空気中の478 と反応して、純度が不明
酸の標準溶液 (479) を用いた中和滴定で濃度決定

10.2.2 製法

 (480)
 の (481)
 (イオン交換膜法)
 工業的製法

10.2.3 反応

● 塩酸と水酸化ナトリウム

● 塩素と水酸化ナトリウム

• 二酸化硫黄と水酸化ナトリウム

• 酸化亜鉛と水酸化ナトリウム水溶液

• 二酸化炭素と水酸化ナトリウム

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナ	トリウム	炭酸水素ナトリウム		
化学式	482)	483		
色	484	色	485	色	
融点	85	50°C	486		
液性	487	性	488	性	
用途	489	や石鹸の原料	胃腸薬・ふ・	くらし粉	

10.3.2 製法

10.3.3 反応

•
$$Na_2CO_3$$
 (514) $K_1 = 1.8 \times 10^{-4}$

• NaHCO₃
$$\begin{cases} \hline \hline 515 \\ \hline \hline 516 \end{cases}$$
 $K_1 = 5.6 \times 10^{-11}$ $K_2 = 2.3 \times 10^{-8}$

11 2 族元素

517 ,518 ,519

11.1 単体

11.1.1 性質

化学式	520 521		522	523	524	
融点	1282°C	649°C	839°C	769°C	729°C	
密度 (g/cm ³)	1.85	1.74	1.55 2.54		3.59	
525 力		小 大				
水との反応	526	527 と反応	528 と反応	529 と反応	530 と反応	
M(OH) ₂ の水溶性	531	性 (532) 性)	533 性(534)		性)	
難溶性の塩	5	35)	536			
炎色反応	537	538	539	540	541	
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター	

11.1.2 製法

塩化物の 542	工業的製法
----------	-------

11.1.3 反応

•	マグネシウムの燃焼	
•	マグネシウムと二酸化炭素	
•	カルシウムと水	

11.2 酸化カルシウム(生石灰)

化学式: 543

11.2.1 性質

• [544] 色

• [545] との親和性が[546] ([547])

• [548] 酸化物

• 水との反応熱が [549] ([550])

11.2.2 製法

(551) Ø (552)

11.2.3 反応

■ コークスを混ぜて強熱すると、 (553) (554))が生成(555) と反応して (556) が生成

11.3 水酸化カルシウム (消石灰)

化学式: [557]

11.3.1 性質

- [558] 色
- 水に 559 固体
- (560) (561) $K_1 = 5.0 \times 10^{-2}$
- 水溶液は 562

11.3.2 製法

[563] と [564] <u>工業的製法</u>

11.3.3 反応

- ・ 塩素と反応して、 565 が生成
- 580°C 以上で 566
- □酸化炭素との反応
- 塩化アンモニウムとの反応

■ 塩にノンセニッムとの反応

11.4 炭酸カルシウム(石灰石)

化学式: 567

11.4.1 性質

- 568色で、水に 569
- [570] の形成

11.4.2 反応

- 800°C 以上で 571
- 572 を多く含む水に 573

11.5 塩化マグネシウム・塩化カルシウム

化学式: [574] ・ [575]

11.5.1 性質

[576] 性があり、水に[577] (水との親和性が[578])

579 剤 塩化カルシウム、 580 剤

11.6 硫酸カルシウム 12 12族元素

11.5.2 製法

● 海水から得た [581]を濃縮 塩化マグネシウム 工業的製法

582 (583) 塩化カルシウム 工業的製法

11.6 硫酸カルシウム

化学式: [584]

11.6.1 性質

[585] を約 150°C で加熱すると、[586] が生成

[587] を加えると、[588] · [589] ・ [590] して[591] に戻る

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: 592

11.7.1 性質

• [593] 色で、水に [594] 固体

● 反応性が 595 く、X 線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	596	5)	597		598			
融点	4:	420°C 321°C		−39°C				
密度	7.1		7.1 8.6		13.6			
$M^{2+}aq + H_2S$	599 色の600 ↓		601	色の 602	\downarrow	603	色の 604	
(沈澱条件)	(605)) (606)			(607)		
特性	高温の水	×蒸気と反応	Cd^{2}	⁺ は Ca ²⁺ と類(以	608	を作りやす	てく
刊工	609	元素	\Rightarrow	イタイイタイ病			(610)	
用途	(鉄にメッキ)		ニカ	ァド電池 (Ni-Cd))	体温計・蛍光灯		

● 12 族の硫化物は 612 や 613 に利用

HgS は 450°C で消火させると 614
 色に変化

12.1.2 製法

閃亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法

12.1.3 反応

• 高温の水蒸気と反応

•	塩酸と反応
•	水酸化ナトリウム水溶液と反応

12.2 酸化亜鉛 (亜鉛華)・水酸化亜鉛

化学式: [615] ・ [616]

12.2.1 性質

- 617 色で、水に 618 固体
- 酸化亜鉛は 619
- 620 酸化物/水酸化物

621 ・(強) 622 と反応 Zn^{2+} は、623 とも 624 とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 <u>工業的製法</u>酸化亜鉛
- 亜鉛イオンを含む水溶液に、少量の (625) を加える 水酸化亜鉛

12.2.3 反応

酸化亜鉛と塩酸

• 酸化亜鉛と水酸化ナトリウム水溶液

• 水酸化亜鉛と塩酸

• 水酸化亜鉛と水酸化ナトリウム水溶液

水酸化亜鉛の過剰な 626 との反応

12.3 塩化水銀(Ⅱ)・塩化水銀(Ⅱ)

化学式: 627 ・ 628

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒
- 白色で、水に少し溶ける固体で、猛毒

12.3.2 製法

水酸化銀(Ⅱ)と水銀の混合物を加熱

13 アルミニウム

13.1 アルミニウム

13	3.1.	1	性質
	, I .	_	11 💬

- 、630 金属 • 密度が 629
- 展性・延性が[631] 、電気・熱伝導率が[632]

- 電気・熱伝導性が高い金属 ―

633 > (634) > (635) > (636)

• [637] 元素([638] には[639] となり反応しない) *4) 表面の緻密な [640] が内部を保護 ([641] ,[642] ,[643] ,[644] ,[645] 電気分解([646] 極)で人工的に厚い酸化被膜をつける製品加工([647])

- イオン化傾向が[648] 、[649] 力が[650]
- [651] 反応 (多量の[652] ・ [653] が発生)

13.1.2 製法

- [654] から得た[655] ([656])の溶融塩電解 工業的製法
- バイヤー法
 - 1. [657] を濃い[658] 水溶液に溶解
 - 2. 溶解しない不純物を濾過して、濾液を水で希釈して Al(OH)3 の種結晶を入れる

3. 成長した を強熱

- ホールエール法
 - Na₃AlF₆を融解し、酸化アルミニウムを溶解 1. [659]
 - 2. 660 陰極

13.1.3 反応

1. アルミニウムの燃焼

2. アルミニウムと高温の水蒸気

3. テルミット反応

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: [661] ・ [662] 酸化アルミニウムの別称: [663]

無機化学

 $^{^{*4}}$ てつこに

13.2.1 性質

- 664色で、水に 665
- [666] 酸化物/水酸化物

(667) ・(強) (668) と反応

Al³⁺ は[669] と錯イオンを形成し、[670] とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の[671] を加える 水酸化アルミニウム

13.2.3 反応

• 酸化アルミニウムと塩酸

• 水酸化アルミニウムと塩酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

• 水酸化アルミニウムと水酸化ナトリウム水溶液

13.3 ミョウバン・焼きミョウバン

化学式: [672] ・ [673]

13.3.1 性質

- [674] 色で、水に[675] 固体
- 676

(677) $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

Al³⁺ は価数が 678 陽イオン

の[680] コロイド)で濁った水の浄水処理([681]) 粘土 (679)

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

• 水への溶解

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	682	683			
特徴	灰白色で柔らかい金属	青白色で柔らかい金属			
融点	232°C	328°C			
密度	7.28	11.4			
特性	684	元素			
用途	(鉄にメッキ)	686 電池の 687 極			
用坯	(688)	の遮蔽			

 $Cu + Sn \cdots$ 689

 $\operatorname{Sn} + \operatorname{Pb} \cdots \boxed{690}$

14.1.2 製法

•	錫石 SnO_2 にコークスを混ぜて加熱 $\boxed{\mathtt{T業的製法}}$
•	方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 工業的製法

14.1.3 反応

● 鉛と 691 酸		
● 鉛と 692 酸		
• スズと 693		
● 鉛蓄電池における反応		
	∫ 正極	
	負極	

【合金】

14.2 塩化スズ(Ⅱ)

14.2.1 性質

14.2.2 製法

スズと 694

14.2.3 反応

塩化鉄(Ⅲ)水溶液と塩化スズ(Ⅱ)水溶液

[備考] 塩化スズ(IV)水溶液と硫化水素

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

695 剤として働く

696

14.3.2 製法

酢酸鉛(Ⅱ)水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV) に濃塩酸を加えて加熱

14.4 鉛の難溶性化合物

• 加熱すると溶けやすい

• 697 紙を用いた 698 の検出 (699 色)

第Ⅲ部

遷移元素

d 軌道・f 軌道(内殻)の秋に電子が入っていき、最外殻電子の数は[700]

(「701」 ・「702」 :f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が[703] く、融点が[704] 金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは[705]色のものが多い
- 安定な [706] を形成しやすい(「707]
- 単体や化合物は[708]
 になるものが多い*5
- ・酸化数が
 小さい 大きい 大きい
 酸化物は
 709
 710
) 育

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で 711 性
- イオン化傾向が水素より [712]い
 - [713] と反応([714] には[715] となり反応しない)
- [716] と反応して[717] な[718] が生成(酸化被膜)
- 湿った空気中では[719] い[720] を生成

酸化鉄(III)	Fe_2O_3	721	色	722	性
四酸化三鉄	Fe_3O_4	723	色	724	性
酸化鉄(Ⅱ)	FeO	725	色	(726)	性

軟鋼	727	728	729	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	730	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} 例 $VsO_5, MnO_2, Fe_3O_4, Pt$

15.1.2 製法

鉄の製錬工業的製法

15.1.3 反応

塩酸との反応

• 高温の水蒸気との反応

• [760] の脱水

 $Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$ (酸化水酸化鉄(III)濃橙色) $2Fe(OH)_3 \longrightarrow Fe_2O_3 \cdot n H_2O + (3-n)H_2O$ (761) 色) (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 762

15.2.1 性質

- [763] 色の固体
- Fe²⁺ 半反応式

764

• 空気中で表面が 765 (766) 色)

15.2.2 製法

鉄に [767]

を加えて、蒸発濃縮

15.3 塩化鉄(Ⅲ)6水和物

化学式: [768]

15.3.1 性質

• (769)

色で[770] 性のある固体

• [771]

 $K_1 = 6.0 \times 10^{-3} \text{ mol/L}$

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

15.4 鉄イオンの反応

	NaOH		$K_4[Fe(CN)_6]$		$K_3[Fe(CN)_6]$						
Fe^{2+}		773		Fe ₂ [Fe(C	$(N)_6]\downarrow$	KFe[Fe(C	CN) ₆]↓	774		775	
776	色	777	色	778	色	779	色	780	色	781	色
Fe ³⁺		782		KFe[Fe(C	CN) ₆]↓	Fe[Fe(Cl	$N)_6$ aq	783		[Fe(NC	$[S]^{2+}$
784	色	785	色	786	色	(787)	色	788	色	789	色

• $\mathrm{Fe}^{2+},\mathrm{Fe}^{3+}$ は、 $\overline{(790)}$ とも $\overline{(791)}$ とも錯イオンを形成しない

• ベルリンブルーとターンブルブルーは[792]

15.5 塩化コバルト(Ⅱ)

化学式: [793]

15.5.1 性質

- [794] 色で[795] 性のある固体
- 6 水和物は 796 色
- 塩化コバルト紙を用いた [797] の検出
- CO³⁺ は[798] と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式: [799]

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は[800] と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

- 801 色の金属光沢
- 他の金属とさまざまな色の[802]
- 展性・延性が 803 く、電気・熱伝導性が 804 い
- イオン化傾向が水素より 805 く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆([806] に溶解)が生成 [807] 色の酸化銅(I)乾・[808] の錆([809])湿

16.1.2 製法

$$Cu2S + 3 Cu2O \longrightarrow 2 Cu2O + 2 SO2$$

$$Cu2S + 2 Cu2O \longrightarrow 6 Cu + SO2$$

16.1.3 反応

- 銅と希硝酸
- 銅と濃硝酸
- 銅と熱濃硫酸
- 空気中で 1000°C 未満で加熱して、[821] 色の[822] 生成
- 生成
- 銅イオンから水酸化銅(Ⅱ)の生成
- 水酸化銅(Ⅱ)とアンモニアの反応
- 水酸化銅(Ⅱ)の加熱

16.2 硫酸銅(Ⅱ)5 水和物 17 銀

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

• [825] 色の固体(結晶中の[826] の色)

• 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ 827 $\xrightarrow{113^{\circ}\text{C}}$ 828 $\xrightarrow{150^{\circ}\text{C}}$ 829 $\xrightarrow{650^{\circ}\text{C}}$ 830 $\xrightarrow{\text{H}_2\text{O}}$ (検出)

- Cu²⁺ による (833) 作用 (農薬)
- 還元性を持つ有機化合物の検出*6

[834] 色の酸化銅(I)が生成

16.2.2 製法

銅に[835] をかけてから[836] 。

16.2.3 反応

16.3 銅(Ⅱ) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H_2S (837)
Cu ²⁺	838	839	840	841
图42 色	图43 色	图44 色	845 色	图46 色

● 炎色反応: [847] 色

● 加熱すると 848

• Cu²⁺ は[849] と錯イオンを形成し、[850] とは形成しない

16.4 銅の合金

(真鍮) (852)		852	(洋白)	853	854	855)
856		857		858	859	860	(主成分)
適度な強度と加工性		柔軟で錆	∮びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽く	て丈夫
楽器・水道用具		食器・	装飾品	五十円玉・五百円玉	像	航空標	幾・車両

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が 861 、電気・熱伝導性が 862
- イオン化傾向が水素より 863

864 力のある酸(865 ・866)と反応

● 空気中で酸化しにくいが、[867] とは容易に反応

17.1.2 製法

銅の電解精錬の 868 工業的製法

^{*6} フェーリング液・ベネディクト液

• 銀の化合物の熱分解・光分解

酸化銀の熱分解 ハロゲン化銀 AgX の感光

17.1.3 反応

• 銀と希硝酸

• 銀と濃硝酸

• 銀と熱濃硫酸

銀と硫化水素

- 3KC WILLOW

17.2 銀(I)イオンの反応

869 水溶液

		少量の地	塩基	過剰の〕	NH_3	НС	1	H_2S (870)	性)	$\mathrm{K}_{2}\mathrm{Cr}($	O_4
Ag^{2+}		871		872		873		874		875	
876	色	877	色	878	色	879	色	880	色	881	色

• 銀と少量の塩基

銀と過剰の NH₃

● 銀と HCl

● 銀と H₂S

• 銀と K₂CrO₄

17.3 難溶性化合物の溶解性

			HNO_3	NH_3	NaS_2O_3	KCN
$\mathrm{Ag_2S}\!\downarrow$	882	色	883	884	885	886
$Ag_2O\downarrow$	887	色	888	889	890	891
AgCl↓	892	色	893	894	895	896
AgBr↓	897	色	898	899	900	901
$\mathrm{AgI}\!\downarrow$	902	色	903	904	905	906
溶解している物質	907	色	908	909	910	911

18 クロム・マンガン

化学式: 912 ・ 913

18.1 単体 18 クロム・マンガン

18.1 単体

18.1.1 性質

● 914 と反応 (915) は 916 には 917 となり反応しない)
 ● 空気中で錆び 918 (919) ⇒ 920 (Fe, Cr, Ni) クロム

空気中で錆び (921) マンガン

• <u>922</u> 合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

• クロムと希塩酸

(Cr²⁺: 青色)

• マンガンと希塩酸
(Mn²⁺: <u>923</u> 色)

18.2 クロム酸カリウム・二クロム酸カリウム

化学式: [924] ・ [925]

18.2.1 性質

• 二つは平衡状態にある

926 ➡ 927

928 性・929 色 930 性・931 色

● 932 剤として反応 二クロム酸カリウム

933 (934) 下)

18.2.2 製法

クロム(Ⅲ) イオンに少量の水酸化ナトリウム水溶液を加える
 さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える)

3. 過酸化水素水を加えて加熱

18.2.3 反応

クロム酸イオンと銀イオン
 (935) 色)
 クロム酸イオンと銀イオン
 クロム酸イオンと銀イオン
 (936) 色)
 クロム酸イオンと銀イオン
 (937) 色)

18.3 過マンガン酸カリウム

化学式: 938

18	3.3	1	性質
$\pm c$, J	. т	11 🖶

- 939 色の固体
- 940 剤として反応

941 酸性 942

中・塩基性 943

18.3.2 製法

1.	酸化	[マンガン((IV)	ヒ水酸化ナ	-トリウム	を混ぜて空	気中で加	11熱				
							(MnC	O_2 : 944	色/K	$_2\mathrm{MnO}_4$: 945	色)	
2.	(a)	酸性にする										
								(MnO_4^{2-})	: 946	色/MnO ₄ -:	947	色)
	(b)	電気分解す	る					•				
		(948)	極)									

18.4 マンガンの安定な酸化数

残留酸素の定量(ウィンクラー法)

1.	マンガン(III)イオンを含む水溶液に塩基を加える	
2.	水酸化マンガン(Ⅱ)が水溶液中の溶存酸素と速やかに反応	
3.	希硫酸を加える	
	(949)	割)

第IV部

APPENDIX

A 気体の乾燥剤

四字の紀/余月(は[1] (こ)の C、 (以字の紀/余月(は[2] (こ)(4)に (史)	固体の乾燥剤は①	につめて、	液体の乾燥剤は2	に入れて使用。
---	----------	-------	----------	---------

	710 1411		12 411	<u> </u>
性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	3	4	酸性・中性	塩基性の気体(5)
段圧	6	7	1 段任。中任	+8 (9)
中性	10	11	ほとんど全て	12
十压	13	14	はとんと主て	特になし
塩基性	15	16	中性・塩基性	酸性の気体
恤 至 注	17	18	中は、塩茎は	19 ,20 ,21 ,22 ,23 ,24

水の硬度 В

C 金属イオンの難容性化合物

	Cl ⁻		$\mathrm{SO_4}^{2-}$		$\mathrm{H_2S}$		$\mathrm{H_2S}$		OH-		OH ⁻		NH_3	
					酸性	生	中・塩	基性	NH	3	過剰		過乗	ij
K ⁺	26		27		28		29)		(30)		31		(32)	
	33	色	34	色	35	色	36	色	37	色	38	色	39	色
Ba ²⁺	40		(41)		42		43		44		45		46	
	47	色	48	色	49	色	50	色	51	色	52	色	53	色
Sr^{2+}	54		[55]		56		57		58		59		60	
	61	色	62	色	63	色	64	色	65	色	66	66 色		色
Ca ²⁺	68		69		70		71		72		73		74	
	75	色	76	色	77	色	78	色	79	色	80	色	81	色
Na ⁺	82		83		84		85		86		87		88	
	89	色	90	色	91	色	92	色	93	色	94	色	95	色
Mg^{2+}	96		97		98		99		100		101		102	
	103	色	104	色	[105]	色	106	色	107	色	108	色	109	色
Al ³⁺	[110]		111		[112]		[113]		[114]		[115]		[116]	
	117	色	118	色	[119]	色	[120]	色	121	色	122	色	123	色
Mn ²⁺	124		125		[126]		[127]		[128]		[129]		[130]	
	131	色	132	色	133	色	134	色	135	色	136	色	137	色
Zn^{2+}	138		[139]		140		141		142		143		144	
	145	色	146	色	147	色	148	色	149	色	150	色	151	色
Cr^{3+}	152		153		154		155		156		[157]		158	
	159	色	160	色	161	色	162	色	163	色	164	色	165	色
Fe^{2+}	166		167		168		169		170		171		172	
	173	色	174	色	[175]	色	[176]	色	177	色	178	色	179	色
Fe^{3+}	180		181		182		183		184		[185]		186	
	187	色	188	色	189	色	[190]	色	191	色	192	色	193	色
Cd^{2+}	194		195		196		197		198		199		200	
	201	色	202	色	203	色	204	色	205	色	206	色	207	色
Co ²⁺	208		209		210		211		212		213		214	
	215	色	216	色	217	色	218	色	219	色	220	色	221	色
Ni ²⁺	222		223		224		225		226		227		228	
	229	色	230	色	231	色	232	色	233	色	234	色	235	色
Sn ²⁺	236		237		238		239		240		241		242	
	243	色	244	色	245	色	246	色	247	色	248	色	249	色
Pb^{2+}	250		251		252		253		254		255		256	
	257	色	258	色	259	色	260	色	261	色	262	色	263	色
Cu ²⁺	264		265		266		267		268		269		270	
	271	色	272	色	273	色	274	色	275	色	276	色	277	色
Hg^{2+}	278		279		280		281		282		283		284	
	285	色	286	色	287	色	288	色	289	色	290	色	291	色
$\mathrm{Hg_2}^{2+}$	292		293		294		295		296		297		298	

		Cl^-		$\mathrm{SO_4}^{2-}$		$\mathrm{H_2S}$		H_2S		OH-		OH ⁻		NH_3	
						酸性		中・塩基性		NH3		過剰		過剰	
		299	色	300	色	301	色	302	色	303	色	304	色	305	色
Ag	s ⁺	306		307		308		309		310		311		312	
		313	色	314	色	315	色	316	色	317	色	318	色	319	色

D 錯イオンの命名法

(主に遷移) 金属イオンに対して、(320) を持つ(321) や(322) が(323) 結合

「配位子の数(数詞)配位子 金属 (価数) 酸 (陰イオンの場合) イオン」

金属イ	゚オン	Ag^+	Cu ⁺	С	Cu^{2+}	Zn^{2+}	Fe ²⁺	Fe^{3+}	Co^{3+}	Ni ²⁺	Cr^{3+}	Al^{3+}	
配位	数	324			325				326				
		327	系	328	形 ③	829 形			330	形	•		
数	1	L	2		3	4		5	6		7		8
数詞	(331) (332)			333	(334)	335)	(336)		(337)	(33	8	
			339		340								
配位子	-	NH_3	C	N-	H ₂ O	OH^-		Cl^-	H_2N	$-\mathrm{CH}_2$	$\overline{\mathrm{CH}_2 - \mathrm{NH}}$	[₂	チレンジアミ
名称	34:	1	342		343	344	[3-	45)		346			レレンン):

ン … 1 分子あたり 2 か所で 347 結合する (2 座配位子) (348

錯体)

- $[\operatorname{Zn}(\operatorname{OH})_4]^{2-}$
 - 349
- $[Zn(NH_3)_4]^{2+}$

350

• $[Ag(S_2O_3)_2]^{3-}$

(351)

 $\bullet \ \left[\mathrm{Cu}(\mathrm{H}_2\mathrm{NCH}_2\mathrm{CH}_2\mathrm{NH}_2) \right]^{2+} \\$

352

E 金属イオンの系統分離

