EE23BTECH11047 - Deepakreddy P

A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.

Solution:

Fig. 1. Circuit-1

Fig. 3. Plot of I vs time

$$V = I\left(j\omega L\right) \tag{1}$$

$$I = \frac{V}{i\omega L}A\tag{2}$$

$$I = \frac{V}{j\omega L}A$$
 (2)

$$I = \frac{220\sqrt{2}}{j(314)(44x10^{-3})}A$$
 (3)

$$I = \frac{22.52}{j}A$$
 (4)

$$I = \frac{22.52}{j}A\tag{4}$$

Fig. 2. Circuit-2

I - I	(5)
$I_{rms} - \overline{\sqrt{2}}A$	(5)

$$I_{rms} = \frac{15.92}{j} A \tag{6}$$

$$|I_{rms}| = 15.92A$$
 (7)

TABLE I INPUT PARAMETERS

Symbol	Description value	
L	Inductor	44mH
V_{rms}	RMS Voltage	220V
f	Frequency	$50 \mathrm{Hz}$

TABLE II FORMULAE AND OUTPUT

Symbol	Description	Formulae	Value
X_L	Inductive Reactance	$2 \pi f L$	$13.816~\Omega$
ω	Angular Frequency	$2\pi f$	314 rad/sec
I_{rms}	Rms cur- rent	$\frac{V}{X_L}$	15.92A