获得的答案

Here, the formal description of Turing machine T_1 and T_2 need to be defined. A finite state transducer (FST) is formally defined by the $(Q, \Sigma, \Gamma, \delta, q_0)$ tuple, where:

- The finite set of states is Q.
- The input alphabet is Σ .
- \bullet The output alphabet is $\Gamma.$
- ullet The transition function $oldsymbol{\delta}$ takes a state and an input symbol and returns a state and an output symbol.

$$\delta: Q \times \Sigma \to Q \times \Gamma$$

• The start state q_0 .

The finite state transducer T_1 is formally defined by the $(\{q_1,q_2\},\{0,1\},\delta_1,q_1)$, where the transition function δ_1 is as follows:

Input	0	1	2
State			
q_1	$\{q_1,0\}$	$\{q_1,0\}$	$\{q_2,1\}$
q_2	$\{q_1,0\}$	$\{q_2,1\}$	$\{q_2,1\}$

 $\begin{array}{c|c} q_1 & \left\{q_1,0\right\} & \left\{q_1,0\right\} & \left\{q_2,1\right\} \\ q_2 & \left\{q_1,0\right\} & \left\{q_2,1\right\} & \left\{q_2,1\right\} \end{array}$ The second FST is defined as $T_2 = \left(\left\{q_1,q_2,q_3\right\},\left\{a,b\right\},\left\{0,1\right\},\delta_2,q_1\right)$. The transition function δ_2 is given by:

Input	a	b
State		
q_1	$\{q_2,1\}$	$\{q_3,1\}$
q_2	$\{q_3,1\}$	$\{q_1,0\}$
q_3	$\{q_1,0\}$	$\{q_2,1\}$