CC4102 - Diseño y Análisis de Algoritmos Auxiliar 8

Prof. Gonzalo Navarro; Aux. Mauricio Quezada

28 de Diciembre, 2011

1 MAX-3SAT

Una fórmula lógica está en forma normal conjuntiva o CNF si la fórmula consiste en una conjunción de cláusulas, esto es, $\bigwedge_{i=1}^{N}\bigvee_{j=1}^{M}x_{ij}$ donde x_{ij} es un literal, es decir, una proposición lógica o su negación. Decimos que una fórmula está en 3CNF si cada cláusula es de tamaño 3.

Sabemos que el problema de satisfacibilidad de una fórmula lógica es un problema NP-completo. Consideremos el siguiente algoritmo aproximado y aleatorizado, cuyo objetivo es maximizar la cantidad de cláusulas que son satisfechas:

Una instancia consiste en n literales x_1, \ldots, x_n , y m cláusulas. El algoritmo escoge independientemente para cada literal una asignación, tal que a la variable x_i le asigna 1 con probabilidad 1/2 o 0 con probabilidad 1/2.

- 1. Muestre que el radio de aproximación de este algoritmo es 8/7, asumiendo que en cada cláusula no aparece una variable y a la vez su negación.
- 2. (Propuesto) Muestre el mismo radio de aproximación aun sin la suposición anterior.
- 3. (Propuesto) Diseñe un algoritmo para resolver MAX-CNF con radio de aproximación 2.

2 Ecuaciones binarias

Suponga que tiene un conjunto de n variables binarias x_1, \ldots, x_n y un conjunto de k ecuaciones, donde la ecuación r-ésima es de la forma

$$(x_i + x_i) mod 2 = b_r$$

Para dos variables distintas x_i, x_j y algún valor b_r . Considere el problema de encontrar una asignación de valores que maximice el número de ecuaciones que se cumplen.

- 1. Sea c^* el máximo número de ecuaciones que se cumplen dada una asignación de valores a las variables. Diseñe un algoritmo que produzca una asignación que satisfaga al menos a la mitad de las ecuaciones.
- 2. Ahora considere el mismo problema pero para una cantidad arbitraria de variables por ecuación.