[November 4, 2022]

Elements of Mathematics

Sheet 01

Due date: **XXX**

Name:		
Matriculation number:		

Task:	1	2	3	4	Total	Grade
Points:						
Total:	6	10	5	10	31	_

Ex 1 Linear Algebra 6

Matrix Product as Sum of rank-1 Matrices

1. Let $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$. Show that

$$A \cdot B = \sum_{i=1}^{k} a_i b_i^{\top} = \sum_{i=1}^{k} \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix} \cdot \begin{pmatrix} b_{i1} & \dots & b_{in} \end{pmatrix},$$

where $a_i \in \mathbb{R}^{m \times 1}$ denotes the *i*-th *column* of A and $b_i^{\top} \in \mathbb{R}^{1 \times n}$ denotes the *i*-th *row* of B.

2. Construct two examples with actual numbers.

Remark: Also see p. 10-11 in Gilbert Strang's "Linear Algebra and Learning from Data".

Ex 2 Linear Algebra 10

Inverse Matrix

Please prove the following statements.

- 1. An invertible matrix $A \in \mathbb{F}^{n \times n}$ has exactly one inverse matrix.
- 2. The inverse A^{-1} of an invertible matrix $A \in \mathbb{F}^{n \times n}$ is also invertible, with inverse $(A^{-1})^{-1} = A$.
- 3. The product of two invertible matrices, say A and B, is invertible with inverse

$$(AB)^{-1} = B^{-1}A^{-1}.$$

4. A diagonal matrix

$$D = \operatorname{diag}(d_1, \dots, d_n) = \begin{pmatrix} d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_n \end{pmatrix} \in \mathbb{F}^{n \times n}$$

is invertible if and only if $d_i \neq 0$ for all i = 1, ..., n. What is its inverse? Hint: It may be useful to split up the equivalence \Leftrightarrow into \Rightarrow and \Leftarrow and to prove each of them separately.

5. Construct an example matrix and derive its inverse.

Ex 3 Linear Algebra 5

Projections and Least Squares

Let $a, b \in \mathbb{R}^n \setminus \{0\}$ be two nonzero vectors. Consider the 1-dimensional optimization task

$$\min_{c \in \mathbb{R}} \frac{1}{2} \|ca - b\|_2^2 =: f(c),$$

where $\|x\|_2 := \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$ denotes the Euclidean norm of a vector $x \in \mathbb{R}^n$.

- 1. Determine the parameter $c \in \mathbb{R}$ which minimizes f. Hint: As in high-school, compute the derivative f' of f with respect to c and solve the equation f'(c) = 0.
- 2. Compare your results to the projection of b onto a, i.e., $\operatorname{proj}_a(b) := \frac{a^\top b}{\|a\|_2} \frac{a}{\|a\|_2}$.

Ex 4 Linear Systems, Python 10

Implementation Matters

In order to solve the problem Ax = b, there are plenty of algorithms available. In this exercise we invoke several SciPy routines to solve linear systems numerically. Thereby, we will learn that different algorithms, or even different implementations of the same algorithm, can have a huge effect on the efficiency.

Consider the following test example: The matrix $A \in \mathbb{R}^{n \times n}$ with constant diagonals given by

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

and the right-hand side vector

$$b = (1, 0, \cdots, 0, 1)^{\top} \in \mathbb{R}^{n}.$$

In this case we know that the unique¹ solution $x^* = A^{-1}b$ is given by

$$x^* = (1, 1, \cdots, 1)^{\top} \in \mathbb{R}^n$$
.

Implement the following options to solve the problem Ax=b (i.e., given A and b from above, find a numerical solution \tilde{x} such that $A\tilde{x}\approx b$):

- 1. Dense: Work with A as dense numpy.ndarray.
 - a) The forbidden way: Find a SciPy function to compute a numerical inverse and apply it to b to obtain \tilde{x} .
 - b) The default way: Find a general solver for linear systems.
 - c) Structure exploiting solver I: Find a way to inform this general solver about the fact that A is positive definite.²
 - d) Structure exploiting solver II: Find another solver which exploits the fact, that A has constant diagonals.
- 2. Sparse: Exploit the sparsity of the matrix and work with A as scipy.sparse.csr_matrix.
 - a) The forbidden way: Find a SciPy function to compute the inverse of a sparse matrix and apply it to b to obtain \tilde{x} .
 - b) The default way: Find a general solver for sparse linear systems.
 - c) Structure exploiting solver: Find a function that implements the *conjugate gradient (cg)* method to solve the system iteratively. Play with the optional parameter <maxiter> to restrict the number of iterations. What do you observe?

Run your code for different dimensions n (especially large $n \ge 10^5$) and:

- 1. measure the time needed for each of your solving routine,
- 2. and find a SciPy function to compute the error $\frac{1}{n}\|\tilde{x}-x^*\|_2$ for each solving routine.

Remark: For now, it is not important to understand how the algorithms work. We'll learn more about them throughout this course. Here, you learn to find appropriate SciPy functions which solve your problem and to serve the interfaces of these functions.

 $^{^{\}mathbf{1}}$ One can show that the matrix A is invertible.

²We'll learn about this property later.