- Math 161a, Spring 2019, San Jose State University

Prof. Guangliang Chen

April 9, 2019

Outline

Introduction

Joint pmf

From joint to marginal

Conditional pmfs

Independence

Introduction

So far we have considered the distribution of only a single random variable, discrete or continuous.

When two or more random variables are defined on the same sample space, we can talk about their **joint distribution**.

Ex 0.1 (Toss two fair dice). Let X denote the sum and Y the absolute value of their difference. These are two discrete random variables, and we can find their individual distributions easily:

\overline{x}	2	3	 12
P(X=x)	$\frac{1}{36}$	$\frac{2}{36}$	 $\frac{1}{36}$

\overline{y}	0	1	 5
P(Y=y)	<u>6</u> 36	$\frac{10}{36}$	 $\frac{2}{36}$

Now consider X, Y together as a pair (X, Y), or a vectored-valued function.

Questions:

• Can (X,Y) attain all the $66 = 11 \times 6$ pairs?

$$\{(x,y) \mid 2 \le x \le 12, \ 0 \le y \le 5\}$$

If not all, identify the subset of feasible pairs.

• What are the corresponding probabilities for (X,Y) to take those (feasible) pairs as values?

Answering the above two questions together is equivalent to specifying the **joint probability distribution of** (X,Y) in terms of range and frequency.

Joint pmf

Def 0.1. Let X,Y be two discrete random variables associated to the same sample space. We define the joint pmf $f: \mathbb{R}^2 \to \mathbb{R}$ for X,Y as

$$f(x,y) = \begin{cases} P(X = x, Y = y), & \text{for all feasible } (x,y) \\ 0, & \text{otherwise} \end{cases}$$

Remark. f(x,y) can be conveniently displayed as a table.

Ex 0.2. Find the joint pmf of X,Y in the previous example.

y	2	3	4	5	6	7	8	9	10	11	12
0											
1											
2											
3											
4											
5											

$\begin{bmatrix} x \\ y \end{bmatrix}$	2	3	4	5	6	7	8	9	10	11	12
0	$\frac{1}{36}$		$\frac{1}{36}$								
1		$\frac{2}{36}$									
2			$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$		
3				$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$			
4					$\frac{2}{36}$		$\frac{2}{36}$				
5						$\frac{2}{36}$					

Properties of the joint pmf

Any joint pmf $f(x,y):\mathbb{R}^2\mapsto\mathbb{R}$ must satisfy (and vice versa)

- $\bullet \ \ f(x,y) \geq 0 \ \text{for all} \ x,y \in \mathbb{R}$
- f(x,y) > 0 for finitely or countably many pairs (x,y);
- $\sum_{x} \sum_{y} f(x,y) = 1$.

Theorem 0.1. Let X,Y be two discrete random variables with joint pmf f(x,y). Then for any region $\Omega \subset \mathbb{R}^2$,

$$P((X,Y) \in \Omega) = \sum_{(x,y) \in \Omega} f(x,y)$$

Ex 0.3 (Toss 2 fair dice, cont'd). Find the following probabilities:

- $P(X \le 4, Y \le 2) =$
- $P(X \le 5) =$
- $P(X \ge 11, Y \ge 2) =$
- $P(Y \le 1) =$

From joint to marginal

Def 0.2. In the joint distribution setting, we call the individual pmfs $f_X(x), f_Y(y)$ the marginal pmfs.

Proposition 0.2. Let f(x,y) be the joint pmf for X,Y. Then

$$f_X(x) = \sum_y f(x, y), \quad and \quad f_Y(y) = \sum_x f(x, y).$$

Proof. This is just the Law of Total Probability:

$$\underbrace{P(X=x)}_{f_X(x)} = \sum_{y} \underbrace{P(X=x, Y=y)}_{f(x,y)}.$$

$\begin{bmatrix} x \\ y \end{bmatrix}$	2	3	4	5	6	7	8	9	10	11	12	$f_Y(y)$
0	$\frac{1}{36}$		$\frac{1}{36}$	$\frac{6}{36}$								
1		$\frac{2}{36}$		$\frac{10}{36}$								
2			$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$			$\frac{8}{36}$
3				$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$				$\frac{6}{36}$
4					$\frac{2}{36}$		$\frac{2}{36}$					$ \begin{array}{c c} $
5						$\frac{2}{36}$						$\frac{2}{36}$
$f_X(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	

Conditional pmfs

Consider the following question:

Ex 0.4 (Toss 2 fair dice). Suppose we are told that the sum is X=6. What is the (conditional) distribution of Y?

Def 0.3. Let X,Y be two discrete random variables with joint pmf f(x,y). The conditional pmf of Y given X=x (with $f_X(x)\neq 0$)) is defined as

$$f(\underbrace{y}_{\text{variable}} | \underbrace{x}_{\text{fixed}}) = \frac{f(x,y)}{f_X(x)}$$
, for all feasible y

Remarks:

(1) This definition is just based on the conditional probability of events:

$$P(Y = y \mid X = x) = \frac{P(X = x, Y = y)}{P(X = x)}.$$

(2) For each fixed value x of X, there is a separate distribution for Y (thus x may be regarded as a location parameter).

Table 1: Conditional pmfs of Y given $X=\boldsymbol{x}$

$\begin{bmatrix} x \\ y \end{bmatrix}$	2	3	4	5	6	7	8	9	10	11	12
0	1		$\frac{1}{3}$		$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{3}$		1
1		1		$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{2}$		1	
2			$\frac{2}{3}$		$\frac{2}{5}$		$\frac{2}{5}$		$\frac{2}{3}$		
3				$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{2}$			
4					$\frac{2}{5}$		$\frac{2}{5}$				
5						$\frac{1}{3}$					

Table 2: Conditional pmfs of X given Y=y

$\begin{bmatrix} x \\ y \end{bmatrix}$	2	3	4	5	6	7	8	9	10	11	12
0	$\frac{1}{6}$		$\frac{1}{6}$								
1		$\frac{1}{5}$									
2			$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		
3				$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$			
4					$\frac{1}{2}$		$\frac{1}{2}$				
5						1					

 ${\sf Ex}$ 0.5 (Toss two fair dice). Find the following conditional distributions:

$$ullet$$
 Y given $X=4$:

y	0	2
$f(y \mid x = 4)$	$\frac{1}{3}$	$\frac{2}{3}$

$$ullet$$
 X given $Y=3$:

x	5	7	9
$f(x \mid y = 3)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

•
$$X$$
 given $Y = 0$:

x	2	4	6	8	10	12
$f(x \mid y = 0)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Independence

Def 0.4. Two discrete random variables X,Y are independent if

$$f(x,y) = f_X(x)f_Y(y)$$
, for all x, y

Remark. For discrete random variables X,Y, this is just

$$P(X = x, Y = y) = P(X = x)P(Y = Y).$$

Ex 0.6 (Toss 2 fair dice). Determine if X (sum) and Y (absolute difference) are independent.

Proposition 0.3. Two discrete random variables X,Y are independent if

$$f(y \mid x) = f_Y(y)$$
, for all x, y

(That is, all conditional distributions of Y are identical to its marginal distribution)

Ex 0.7. Are the random variables X, Y independent?

$\begin{bmatrix} x \\ y \end{bmatrix}$	0	1	2
-1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$
1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$

y	0	1	2	$f_Y(y)$
-1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{3}$
1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$
$f_X(x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	

$\begin{array}{ c c } x \\ y \end{array}$	0	1	2
-1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

Two continuous random variables

It is also possible to define joint distributions between continuous random variables.

Ex 0.8. Consider the game of throwing a dart toward a unit disk and let X,Y be the coordinates of the landing point (assuming it is always within the disk). Individually, X,Y both range from -1 to 1, but the pair (X,Y) does not attain every point in the square.

The joint pdf of X,Y is a two dimensional function f(x,y). However, probability calculations will involve multiple integration (Math 32). This is left to Math 163.