Arancette

Circonferenza delle arancette

Alessia Valmori

Università degli Studi di Padova

Contents

1	Quantità di alberi	2
2	Grandezza delle arance prodotte	4
Bi	bliografia	ę

Quantità di alberi 1

Ferraro, Shiv, and Bettman (2005) dicono che gli alberi sono ${\bf 5}.$

Cinque alberi più o meno grandi

- 1. Numero 1
- 2. Numero 2
 - Molto bello ¹
- 3. Numero 3
- 4. Numero 4
 - Molto brutto 2
- 5. Numero 5

Numero degli alberi 1.1

Gli alberi sono $\boldsymbol{5}$.

 $^{^{1}}$ per chi ha gusti simili ai miei, tipo questo. 2 sempre per chi ha gusti simili ai miei

Figure 1: arancette su albero

2 Grandezza delle arance prodotte

Ogni albero produce *QTQTCC* di grandezza differente (Arndt, Schimel, and Goldenberg 2003).

2.1 Albero che produce le arance più grandi

L'albero che produce arance più grandi è il numero $\frac{4}{3}$.

Le arance sono molto buono (vedere anche, Pratto et al. 1994)

Figure 2: arancette raccolte

```
Tree age circumference y x

1 1 118 30 30 1

2 1 484 58 58 1

3 1 664 87 87 1
```

Call:

lm(formula = y ~ x, data = data)

. . . .

Gli alberi hanno età media di 922.14 anni.

:)	Tree	age	circumference	У	X
:)	3:7	Min. : 118.0	Min. : 30.0	Min. : 30.0	3:7
:)	1:7	1st Qu.: 484.0	1st Qu.: 65.5	1st Qu.: 65.5	1:7
:)	5:7	Median :1004.0	Median :115.0	Median :115.0	5:7
:)	2:7	Mean : 922.1	Mean :115.9	Mean :115.9	2:7
:)	4:7	3rd Qu.:1372.0	3rd Qu.:161.5	3rd Qu.:161.5	4:7
:)		Max. :1582.0	Max. :214.0	Max. :214.0	

plot(data\$y ~data\$x)

$$z = \frac{x_i - \bar{X}}{sd}$$

Table 1: Summary arancette

Statistic	N	Mean	St. Dev.	Min	Max
age	35	922.143	491.865	118	1,582
circumference v	$\frac{35}{35}$	$115.857 \\ 115.857$	57.488 57.488	30 30	$\frac{214}{214}$

Table 2: Modello di regressione

Dependent variable:
circonferenza arancette
115.86***
(9.78)
39.94*
(21.88)
2.52
(21.88)
-8.27
(21.88)
-4.70
(21.88)
35
0.11
-0.01
57.89 (df = 30)
0.88 (df = 4; 30)
*p<0.1; **p<0.05; ***p<0

6

Table 3: Model comparison

circonferen (1) 115.86*** (9.72)	za arancette (2) 115.86***
115.86***	
	115.86***
(9.72)	
,	(9.78)
	39.94*
	(21.88)
	2.52
	(21.88)
	-8.27
	(21.88)
	-4.70
	(21.88)
35	35
0.00	0.11
0.00	-0.01
57.49 (df = 34)	57.89 (df = 30)
	0.88 (df = 4; 30)
	35 0.00

Note:

*p<0.1; **p<0.05; ***p<0.01

$$z_1 = \frac{30 - 115.86}{57.49} = -1.49$$

Bibliografia

- Arndt, Jamie, Jeff Schimel, and Jamie L. Goldenberg. 2003. "Death Can Be Good for Your Health: Fitness Intentions as a Proximal and Distal Defense Against Mortality Salience1." Journal of Applied Social Psychology 33 (8): 1726–46. https://doi.org/10.1111/j.1559-1816.2003.tb01972.x.
- Ferraro, Rosellina, Baba Shiv, and James R. Bettman. 2005. "Let Us Eat and Drink, for Tomorrow We Shall Die: Effects of Mortality Salience and Self-Esteem on Self-Regulation in Consumer Choice." *Journal of Consumer Research* 32 (1): 65–75. https://doi.org/10.1086/429601.
- Pratto, Felicia, Jim Sidanius, Lisa M. Stallworth, and Bertram F. Malle. 1994. "Social Dominance Orientation: A Personality Variable Predicting Social and Political Attitudes." *Journal of Personality and Social Psychology* 67 (4): 741–63. https://doi.org/10.1037/0022-3514.67.4.741.