

## **DUAL DECADE COUNTER**

- HIGH SPEED
- $f_{MAX} = 84 \text{ MHz} (TYP.) \text{ AT V}_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION  $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } I_{A} = 25 \text{ °C}$
- HIGH NOISE IMMUNITY V<sub>NIH</sub> = V<sub>NIL</sub> = 28 % V<sub>CC</sub> (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE ||OH| = |OL| = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V<sub>CC</sub> (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS390



#### **DESCRIPTION**

The M54/74HC390 is a high speed CMOS DUAL DECADE COUNTER fabricated in silicon gate C<sup>2</sup>MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

This dual decade counter contains two independent ripple carry counters. Each counter is composed of a divide-by-two and divide-by-five counter. The divide-by-two and divide-by-five counters can be cascaded to form dual decade, dual biquinary, or various combinations up to a single divide-by-100 counter.

Each 4-bit counter is incremented on the high to low transition (negative edge) of the clock input, and each has an independent clear input. When clear is set low all four bits of each counter are set to low. This enables count truncation and allows the implementation of divide-by-N counter configurations.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.



February 1993 1/13

## INPUT AND OUTPUT EQUIVALENT CIRCUIT



### **TRUTH TABLE**

|       | OUTPUTS |             |    |    |    |         |         |    |  |  |
|-------|---------|-------------|----|----|----|---------|---------|----|--|--|
| COUNT |         | BCD COUNT * |    |    |    | BI-QUIN | NARY ** |    |  |  |
|       | QD      | QC          | QB | QA | QA | QD      | QC      | QB |  |  |
| 0     | L       | L           | L  | L  | L  | L       | L       | L  |  |  |
| 1     | L       | L           | L  | Н  | L  | L       | L       | Н  |  |  |
| 2     | L       | L           | Н  | L  | L  | L       | Н       | L  |  |  |
| 3     | L       | L           | Н  | Н  | L  | L       | Н       | Н  |  |  |
| 4     | L       | Н           | L  | L  | L  | Н       | L       | L  |  |  |
| 5     | L       | Н           | L  | Н  | Н  | L       | L       | L  |  |  |
| 6     | L       | Н           | Н  | L  | Н  | L       | L       | Н  |  |  |
| 7     | L       | Н           | Н  | Н  | Н  | L       | Н       | L  |  |  |
| 8     | Н       | L           | L  | L  | Н  | L       | Н       | Н  |  |  |
| 9     | Н       | L           | L  | Н  | Н  | Н       | L       | L  |  |  |

|         | INPUTS  | OUTPUTS |                 |         |          |    |  |
|---------|---------|---------|-----------------|---------|----------|----|--|
| CLOCK A | CLOCK B | CLEAR   | QA              | QB      | QC       | QD |  |
| X       | X       | Н       | L               | L       | L        | L  |  |
|         | Х       | L       | BINARY COUNT UP |         |          |    |  |
| X       | L       | L       |                 | QUINARY | COUNT UP |    |  |

Note: \* Output QA is connected to input CLOCK B for BCD count.

\*\* Output QD is connected to input CLOCK A for bi-quinary count.

#### **BLOCK DIAGRAM**



### **LOGIC DIAGRAM**



#### **TIMING CHART**



#### PIN DESCRIPTION

| PIN No        | SYMBOL                 | NAME AND FUNCTION                                                  |
|---------------|------------------------|--------------------------------------------------------------------|
| 1, 15         | 1 CLOCK A<br>2 CLOCK B | Clock Input Divide by 2<br>Section (HIGH to LOW<br>Edge-triggered) |
| 2, 14         | 1 CLEAR<br>2 CLEAR     | Asynchronous Master<br>Reset Inputs                                |
| 3, 5, 6, 7    | 1QA to 1QD             | Flip Flop Outputs                                                  |
| 4, 12         | 1 CLOCK B<br>2 CLOCK B | Clock Input Divide by 5<br>Section (HIGH to LOW<br>Edge-triggered) |
| 13, 11, 10, 9 | 2QA to 2QD             | Flip Flop Outputs                                                  |
| 8             | GND                    | Ground (0V)                                                        |
| 16            | Vcc                    | Positive Supply Voltage                                            |

#### **IEC LOGIC SYMBOL**



### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                              | Parameter                                    | Value                         | Unit |
|-------------------------------------|----------------------------------------------|-------------------------------|------|
| Vcc                                 | Supply Voltage                               | -0.5 to +7                    | V    |
| VI                                  | DC Input Voltage                             | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| Vo                                  | DC Output Voltage                            | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>                     | DC Input Diode Current                       | ± 20                          | mA   |
| I <sub>OK</sub>                     | DC Output Diode Current                      | ± 20                          | mA   |
| lo                                  | DC Output Source Sink Current Per Output Pin | ± 25                          | mA   |
| I <sub>CC</sub> or I <sub>GND</sub> | DC V <sub>CC</sub> or Ground Current         | ± 50                          | mA   |
| $P_D$                               | Power Dissipation                            | 500 (*)                       | mW   |
| T <sub>stg</sub>                    | Storage Temperature                          | -65 to +150                   | °C   |
| $T_L$                               | Lead Temperature (10 sec)                    | 300                           | °C   |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (\*) 500 mW:  $\cong$  65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

## **RECOMMENDED OPERATING CONDITIONS**

| Symbol                          | Parameter                                                      |                         | Value                     | Unit |
|---------------------------------|----------------------------------------------------------------|-------------------------|---------------------------|------|
| V <sub>CC</sub>                 | Supply Voltage                                                 |                         | 2 to 6                    | V    |
| $V_{I}$                         | Input Voltage                                                  |                         | 0 to V <sub>CC</sub>      | V    |
| Vo                              | Output Voltage                                                 |                         | 0 to V <sub>CC</sub>      | V    |
| $T_op$                          | Operating Temperature: <b>M54HC</b> Series <b>M74HC</b> Series |                         | -55 to +125<br>-40 to +85 | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time                                       | V <sub>CC</sub> = 2 V   | 0 to 1000                 | ns   |
|                                 |                                                                | V <sub>CC</sub> = 4.5 V | 0 to 500                  |      |
|                                 |                                                                | $V_{CC} = 6 V$          | 0 to 400                  |      |



### **DC SPECIFICATIONS**

|                            |                             | Test Conditions  |                                         |                         | Value |                             |      |                      |      |                       |      |      |  |
|----------------------------|-----------------------------|------------------|-----------------------------------------|-------------------------|-------|-----------------------------|------|----------------------|------|-----------------------|------|------|--|
| Symbol                     | Parameter                   | Vcc              |                                         |                         |       | $T_A = 25$ °C 54HC and 74HC |      | -40 to 85 °C<br>74HC |      | -55 to 125 °C<br>54HC |      | Unit |  |
|                            |                             | (V)              |                                         |                         | Min.  | Тур.                        | Max. | Min.                 | Max. | Min.                  | Max. |      |  |
| $V_{IH}$                   | High Level Input            | 2.0              |                                         |                         | 1.5   |                             |      | 1.5                  |      | 1.5                   |      |      |  |
| Voltage                    | 4.5                         |                  |                                         | 3.15                    |       |                             | 3.15 |                      | 3.15 |                       | V    |      |  |
|                            |                             | 6.0              |                                         |                         | 4.2   |                             |      | 4.2                  |      | 4.2                   | 4.2  |      |  |
| $V_{IL}$                   |                             | 2.0              |                                         |                         |       |                             | 0.5  |                      | 0.5  |                       | 0.5  |      |  |
| Voltage                    | 4.5                         |                  |                                         |                         |       | 1.35                        |      | 1.35                 |      | 1.35                  | V    |      |  |
|                            | 6.0                         |                  |                                         |                         |       | 1.8                         |      | 1.8                  |      | 1.8                   |      |      |  |
| V <sub>OH</sub> High Level | 2.0                         | V <sub>I</sub> = |                                         | 1.9                     | 2.0   |                             | 1.9  |                      | 1.9  |                       |      |      |  |
|                            | Output Voltage              | 4.5              | VI –                                    |                         | 4.4   | 4.5                         |      | 4.4                  |      | 4.4                   |      | .,   |  |
|                            |                             | 6.0              | or                                      |                         | 5.9   | 6.0                         |      | 5.9                  |      | 5.9                   |      | V    |  |
|                            |                             | 4.5              | V <sub>IL</sub> I <sub>O</sub> =-4.0 mA | 4.18                    | 4.31  |                             | 4.13 |                      | 4.10 |                       |      |      |  |
|                            |                             | 6.0              |                                         | I <sub>O</sub> =-5.2 mA | 5.68  | 5.8                         |      | 5.63                 |      | 5.60                  |      |      |  |
| $V_{OL}$                   | Low Level Output            | 2.0              | V <sub>I</sub> =                        |                         |       | 0.0                         | 0.1  |                      | 0.1  |                       | 0.1  |      |  |
|                            | Voltage                     | 4.5              | VI –<br>VIH                             | I <sub>O</sub> = 20 μA  |       | 0.0                         | 0.1  |                      | 0.1  |                       | 0.1  | .,   |  |
|                            |                             | 6.0              | or                                      |                         |       | 0.0                         | 0.1  |                      | 0.1  |                       | 0.1  | V    |  |
|                            |                             | 4.5              | VIL                                     | I <sub>O</sub> = 4.0 mA |       | 0.17                        | 0.26 |                      | 0.33 |                       | 0.40 |      |  |
|                            |                             | 6.0              |                                         | I <sub>O</sub> = 5.2 mA |       | 0.18                        | 0.26 |                      | 0.33 |                       | 0.40 |      |  |
| lı                         | Input Leakage<br>Current    | 6.0              | Vı =                                    | Vcc or GND              |       |                             | ±0.1 |                      | ±1   |                       | ±1   | μΑ   |  |
| I <sub>CC</sub>            | Quiescent Supply<br>Current | 6.0              | V <sub>I</sub> =                        | V <sub>CC</sub> or GND  |       |                             | 4    |                      | 40   |                       | 80   | μΑ   |  |

## AC ELECTRICAL CHARACTERISTICS ( $C_L = 50 \text{ pF}$ , Input $t_r = t_f = 6 \text{ ns}$ )

|                              |                                  | Test Conditions |              | Value |                 |      |      |             |      |              |      |
|------------------------------|----------------------------------|-----------------|--------------|-------|-----------------|------|------|-------------|------|--------------|------|
| Symbol                       | Parameter                        | Vcc             |              |       | A = 25 °C and 7 |      |      | 85 °C<br>HC | 1    | 125 °C<br>HC | Unit |
|                              |                                  | (V)             |              | Min.  | Тур.            | Max. | Min. | Max.        | Min. | Max.         |      |
| t <sub>TLH</sub>             | Output Transition                | 2.0             |              |       | 30              | 75   |      | 95          |      | 110          |      |
| t <sub>THL</sub>             | Time                             | 4.5             |              |       | 8               | 15   |      | 19          |      | 22           | ns   |
|                              |                                  | 6.0             |              |       | 7               | 13   |      | 16          |      | 19           |      |
| t <sub>PLH</sub>             | Propagation                      | 2.0             |              |       | 42              | 120  |      | 150         |      | 180          |      |
| t <sub>PHL</sub>             |                                  | 4.5             |              |       | 14              | 24   |      | 30          |      | 36           | ns   |
|                              |                                  | 6.0             |              |       | 12              | 20   |      | 26          |      | 31           |      |
| t <sub>PLH</sub>             | Propagation                      | 2.0             |              |       | 45              | 120  |      | 150         |      | 180          |      |
| t <sub>PHL</sub>             | Delay Time                       | 4.5             |              |       | 15              | 24   |      | 30          |      | 36           | ns   |
|                              | (CLOCK A - QB, QD)               | 6.0             |              |       | 13              | 20   |      | 26          |      | 31           |      |
| t <sub>PLH</sub>             | Propagation                      | 2.0             | QA Connected |       | 108             | 280  |      | 350         |      | 420          |      |
| t <sub>PHL</sub>             | Delay Time                       | 4.5             | to CKB       |       | 36              | 56   |      | 70          |      | 84           | ns   |
|                              | (CLOCK A - QC)                   | 6.0             |              |       | 31              | 48   |      | 60          |      | 71           |      |
| t <sub>PLH</sub>             | Propagation<br>Delay Time        | 2.0             |              |       | 72              | 185  |      | 230         |      | 280          |      |
| t <sub>PHL</sub>             |                                  | 4.5             |              |       | 24              | 37   |      | 46          |      | 56           | ns   |
|                              | (CLOCK B - QC)                   | 6.0             |              |       | 20              | 31   |      | 39          |      | 48           |      |
| t <sub>PHL</sub> Propagation | 2.0                              |                 |              | 45    | 125             |      | 155  |             | 190  |              |      |
|                              | Delay Time                       | 4.5             |              |       | 15              | 25   |      | 31          |      | 38           | ns   |
| (CLEAR - Qn                  | 6.0                              |                 |              | 13    | 21              |      | 26   |             | 32   |              |      |
| f <sub>MAX</sub>             | Maximum Clock                    | 2.0             |              | 8.4   | 17              |      | 6.8  |             | 5.6  |              |      |
|                              | Frequency                        | 4.5             |              | 42    | 65              |      | 34   |             | 28   |              | ns   |
|                              | (CLOCK A - QA)                   | 6.0             |              | 50    | 79              |      | 40   |             | 33   |              |      |
| f <sub>MAX</sub>             | Maximum Clock                    | 2.0             |              | 8.4   | 17              |      | 6.8  |             | 5.6  |              |      |
|                              | Frequency Programmer 1           | 4.5             |              | 42    | 67              |      | 34   |             | 28   |              | ns   |
|                              | (CLOCK B - QB)                   | 6.0             |              | 50    | 79              |      | 40   |             | 33   |              |      |
| t <sub>W(H)</sub>            | Minimum Pulse                    | 2.0             |              |       | 24              | 75   |      | 95          |      | 110          |      |
| t <sub>W(L)</sub>            | <u>Wisth</u>                     | 4.5             |              |       | 6               | 15   |      | 19          |      | 22           | ns   |
|                              | (CLOCK)                          | 6.0             |              |       | 5               | 13   |      | 16          |      | 19           |      |
| t <sub>(W)H</sub>            | Minimum Pulse                    | 2.0             |              |       | 24              | 75   |      | 95          |      | 110          |      |
| ` ′                          | Wisth                            | 4.5             |              |       | 6               | 15   |      | 19          |      | 22           | ns   |
|                              | (CLEAR)                          | 6.0             |              |       | 5               | 13   |      | 16          |      | 19           |      |
| t <sub>REM</sub>             | Propagation                      | 2.0             |              |       |                 | 25   |      | 30          |      | 35           |      |
|                              | Delay Time                       | 4.5             |              |       |                 | 5    |      | 6           |      | 7            | ns   |
|                              |                                  | 6.0             |              |       |                 | 5    |      | 5           |      | 6            |      |
| C <sub>IN</sub>              | Input Capacitance                |                 |              |       | 5               | 10   |      | 10          |      | 10           | pF   |
| C <sub>PD</sub> (*)          | Power Dissipation<br>Capacitance |                 |              |       | 84              |      |      |             |      |              | pF   |

<sup>(\*)</sup>  $C_{PD}$  is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation.  $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$ 



### TEST CIRCUIT Icc (Opr.)



#### SWITCHING CHARACTERISTICS TEST WAVEFORM



# Plastic DIP16 (0.25) MECHANICAL DATA

| DIM.  |      | mm    |      | inch  |       |       |  |  |
|-------|------|-------|------|-------|-------|-------|--|--|
| Diwi. | MIN. | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |  |  |
| a1    | 0.51 |       |      | 0.020 |       |       |  |  |
| В     | 0.77 |       | 1.65 | 0.030 |       | 0.065 |  |  |
| b     |      | 0.5   |      |       | 0.020 |       |  |  |
| b1    |      | 0.25  |      |       | 0.010 |       |  |  |
| D     |      |       | 20   |       |       | 0.787 |  |  |
| E     |      | 8.5   |      |       | 0.335 |       |  |  |
| е     |      | 2.54  |      |       | 0.100 |       |  |  |
| e3    |      | 17.78 |      |       | 0.700 |       |  |  |
| F     |      |       | 7.1  |       |       | 0.280 |  |  |
| I     |      |       | 5.1  |       |       | 0.201 |  |  |
| L     |      | 3.3   |      |       | 0.130 |       |  |  |
| Z     |      |       | 1.27 |       |       | 0.050 |  |  |



## **Ceramic DIP16/1 MECHANICAL DATA**

| DIM.  |      | mm    |           | inch  |           |       |  |  |
|-------|------|-------|-----------|-------|-----------|-------|--|--|
| Diwi. | MIN. | TYP.  | TYP. MAX. |       | MIN. TYP. |       |  |  |
| А     |      |       | 20        |       |           | 0.787 |  |  |
| В     |      |       | 7         |       |           | 0.276 |  |  |
| D     |      | 3.3   |           |       | 0.130     |       |  |  |
| Е     | 0.38 |       |           | 0.015 |           |       |  |  |
| e3    |      | 17.78 |           |       | 0.700     |       |  |  |
| F     | 2.29 |       | 2.79      | 0.090 |           | 0.110 |  |  |
| G     | 0.4  |       | 0.55      | 0.016 |           | 0.022 |  |  |
| Н     | 1.17 |       | 1.52      | 0.046 |           | 0.060 |  |  |
| L     | 0.22 |       | 0.31      | 0.009 |           | 0.012 |  |  |
| М     | 0.51 |       | 1.27      | 0.020 |           | 0.050 |  |  |
| N     |      |       | 10.3      |       |           | 0.406 |  |  |
| Р     | 7.8  |       | 8.05      | 0.307 |           | 0.317 |  |  |
| Q     |      |       | 5.08      |       |           | 0.200 |  |  |



# SO16 (Narrow) MECHANICAL DATA

| DIM.   |      | mm   |       | inch   |       |       |  |  |
|--------|------|------|-------|--------|-------|-------|--|--|
| DIIVI. | MIN. | TYP. | MAX.  | MIN.   | TYP.  | MAX.  |  |  |
| А      |      |      | 1.75  |        |       | 0.068 |  |  |
| a1     | 0.1  |      | 0.2   | 0.004  |       | 0.007 |  |  |
| a2     |      |      | 1.65  |        |       | 0.064 |  |  |
| b      | 0.35 |      | 0.46  | 0.013  |       | 0.018 |  |  |
| b1     | 0.19 |      | 0.25  | 0.007  |       | 0.010 |  |  |
| С      |      | 0.5  |       |        | 0.019 |       |  |  |
| c1     |      |      | 45°   | (typ.) |       |       |  |  |
| D      | 9.8  |      | 10    | 0.385  |       | 0.393 |  |  |
| E      | 5.8  |      | 6.2   | 0.228  |       | 0.244 |  |  |
| е      |      | 1.27 |       |        | 0.050 |       |  |  |
| e3     |      | 8.89 |       |        | 0.350 |       |  |  |
| F      | 3.8  |      | 4.0   | 0.149  |       | 0.157 |  |  |
| G      | 4.6  |      | 5.3   | 0.181  |       | 0.208 |  |  |
| L      | 0.5  |      | 1.27  | 0.019  |       | 0.050 |  |  |
| М      |      |      | 0.62  |        |       | 0.024 |  |  |
| S      |      |      | 8° (ı | max.)  |       |       |  |  |



## **PLCC20 MECHANICAL DATA**

| DIM.   |      | mm   |       | inch  |       |       |  |  |
|--------|------|------|-------|-------|-------|-------|--|--|
| Diiii. | MIN. | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |  |  |
| А      | 9.78 |      | 10.03 | 0.385 |       | 0.395 |  |  |
| В      | 8.89 |      | 9.04  | 0.350 |       | 0.356 |  |  |
| D      | 4.2  |      | 4.57  | 0.165 |       | 0.180 |  |  |
| d1     |      | 2.54 |       |       | 0.100 |       |  |  |
| d2     |      | 0.56 |       |       | 0.022 |       |  |  |
| E      | 7.37 |      | 8.38  | 0.290 |       | 0.330 |  |  |
| е      |      | 1.27 |       |       | 0.050 |       |  |  |
| e3     |      | 5.08 |       |       | 0.200 |       |  |  |
| F      |      | 0.38 |       |       | 0.015 |       |  |  |
| G      |      |      | 0.101 |       |       | 0.004 |  |  |
| М      |      | 1.27 |       |       | 0.050 |       |  |  |
| M1     |      | 1.14 |       |       | 0.045 |       |  |  |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

