(b) En déduire que pour tout
$$n \in \mathbb{N}$$
: $\frac{a_{2n+2}}{n+1} = (2n+1)b_n - (2n+2)b_{n+1}$.

(c) En déduire que pour tout
$$n \in \mathbb{N}$$
: $2\left(\frac{b_n}{a_{2n}} - \frac{b_{n+1}}{a_{2n+2}}\right) = \frac{1}{(n+1)^2}$.

(d) En déduire enfin l'existence et la valeur de
$$\lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{k^2}$$
, que l'on note également : $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

Partie III: Formule de Wallis

Pour tout $n \in \mathbb{N}$, on pose : $\rho_n = \frac{a_{2n}}{a_{2n+1}}$.

4. Montrer que pour tout
$$n \in \mathbb{N}$$
: $\rho_n = \frac{(2n+1)\pi}{2^{4n+1}} \binom{2n}{n}^2$.

- (a) Montrer que la suite (a_n)_{n∈N} est décroissante.
 - (b) En déduire un encadrement de ρ_n pour tout $n \in \mathbb{N}$, puis la limite : $\lim_{n \to +\infty} \rho_n = 1$.
 - (c) En déduire la formule de Wallis.

Partie IV: Formule de Stirling

On note f la fonction $x \mapsto \left(x + \frac{1}{2}\right) \ln\left(1 + \frac{1}{x}\right)$ et g la fonction $x \mapsto f(x) - \frac{1}{12x} + \frac{1}{12(x+1)}$, toutes deux définies sur \mathbb{R}_+^* . On pose également pour tout $n \in \mathbb{N}^*$: $u_n = \frac{n^{n+\frac{1}{2}}}{n!e^n}$ et $v_n = \ln(u_n)$.

- 6. (a) Montrer que pour tout x > 0: $f''(x) = \frac{1}{2x^2(x+1)^2}$, et simplifier de même g'' sur \mathbb{R}_+^* .
 - (b) En déduire que f est minorée par 1, et g majorée par 1 sur \mathbb{R}_+^* .
- 7. (a) Exprimer $v_{n+1} v_n$ à l'aide de la fonction f pour tout $n \in \mathbb{N}^*$.
 - (b) En déduire que la suite $(v_n)_{n \in \mathbb{N}^+}$ est croissante et majorée, puis que la suite $(u_n)_{n \in \mathbb{N}^+}$ converge vers un réel strictement positif ℓ .
 - (c) Montrer, en étudiant pour tout $n \in \mathbb{N}^*$ le rapport $\frac{u_n^2}{u_{2n}}$, que : $\ell = \frac{1}{\sqrt{2\pi}}$. En déduire la formule de Stirling.