1 Introduction

1.1 Input and conventions

TODO: rewrite in nice paragraph Input:

- $m \in \mathbb{N}$: Number of homogeneous servers
- $T \in \mathbb{N}$: Number of time steps
- $\beta \in \mathbb{R}_{>0}$: Power up costs
- $\lambda_0, \ldots, \lambda_T \in [0, m]$: Arrival rates

Notations:

- \bullet Let $\lambda_{i,t}$ be the assigned arrival rate at time t for server i
- Let x_t be the number of active servers at time t
- Let $\mathcal{X} := (x_0, \dots, x_T)$ be the sequence of active servers
- If $A = (a_0, \ldots, a_n)$ is a tuple with n+1 entries, we write A(i) for the i-th component of A with $0 \le i \le n$

Requirements:

- \bullet Convex cost function f
- Power down costs are w.l.o.g. equal to 0

•
$$\forall t \in \{0, \dots, T\} : \sum_{i=1}^{m} \lambda_{i,t} = \lambda_t$$

- $\lambda_0 = \lambda_T = 0$
- $\mathcal{X}(0) = \mathcal{X}(T) = 0$, i.e. all servers are powered down at t = 0 and t = T

1.2 Preliminaries

Lemma 1.1. Given a convex cost function f, x active servers and an arrival rate λ , the best method is to assign each server a load of λ/x .

Proof. $\forall x \in \mathbb{N}, \mu_i \in [0, 1] : \sum_{i=1}^{x} \mu_i = 1 :$

$$f\left(\frac{\lambda}{x}\right) = f\left(\sum_{i=1}^{x} \frac{\mu_i * \lambda}{x}\right) \overset{\text{Jensen's inequality}}{\leq} \sum_{i=1}^{x} \frac{1}{x} f(\mu_i * \lambda)$$
$$\Leftrightarrow x * f\left(\frac{\lambda}{x}\right) \qquad \leq \qquad \sum_{i=1}^{x} f(\mu_i * \lambda)$$

Lemma 1.1 tells us, that having x_t active servers, it is always the best method to equally share λ_t on all x_t active servers. This allows us to uniquely identify an optimal schedule by the sequence of numbers of active servers \mathcal{X} .

The costs of a schedule are then given by:

$$costs(\mathcal{X}) := \sum_{t=0}^{T} \underbrace{\beta * \max\{0, x_t - x_{t-1}\}}_{\text{power up costs}} + x_t * f(\lambda_t/t)$$

We call a schedule \mathcal{X} feasible if $\forall t \in \{0, \dots, T\} : x_t \geq \lambda_t$. In particular, every optimal schedule is feasible.

2 Optimal scheduling for m homogeneous servers

TODO: introduction text

2.1 Graph for an optimal schedule

We construct a directed acyclic graph as follows:

 $\forall t \in [T-1]$ and $i, j \in \{0, \dots, m\}$ we add vertices (t, i) modelling the number of active servers at time t. Furthermore, we add vertices (0,0) and (T,0) for our initial and final state respectively. In order to warrant that there are at least $\lceil \lambda_t \rceil$ active servers $\forall t \in [T-1]$, we define an auxiliary function which calculates the costs for handling an arrival rate λ with x active servers:

$$c(x,\lambda) := \begin{cases} 0 & \text{if } x = 0\\ x * f(\lambda/x), & \text{if } x \neq 0 \land \lambda \leq x\\ \infty, & \text{otherwise} \end{cases}$$
 (1)

Then, $\forall t \in [T-2]$ and $i, j \in \{0, \dots, m\}$ we add edges from (t, i) to (t+1, j) with weight

$$d(i,j,\lambda_{t+1}) := \beta * \max\{0,j-i\} + c(j,\lambda_{t+1})$$
(2)

Finally, for $0 \le i \le m$ we add edges from (0,0) to (1,i) with weight $d(0,i,\lambda_1)$ and from (T-1,i) to (T,0) with weight $d(i,0,\lambda_T)=0$.

Figure 1: Graph for optimal schedule algorithm.

Note: All edges from (t,i) to (t+1,j) have weight $d(i,j,\lambda_{t+1})$

Proposition 2.1. Any given optimal schedule \mathcal{X} corresponds to a shortest path P from (0,0) to (T,0) with $costs(\mathcal{X}) = costs(P)$ and vice versa.

Proof.

" \Rightarrow ": We construct a feasible path in our graph from \mathcal{X} as follows:

 $\forall t \in [T] \text{ set } e_t := ((t-1, \mathcal{X}(t-1)), (t, \mathcal{X}(t))). \text{ Then set } P := (e_1, \dots, e_T).$

As each edge e_t in our graph has weight $d(\mathcal{X}(t-1), \mathcal{X}(t), \lambda_t)$ and hence corresponds to the costs of switching from $\mathcal{X}(t-1)$ to $\mathcal{X}(t)$ servers and processing λ_t with $\mathcal{X}(t)$ active servers, it directly follows that P is a shortest path of the graph with $costs(P) = costs(\mathcal{X})$.

" \Leftarrow ": Let $P = ((0,0) = v_0, \ldots, v_T = (T,0))$ with $v_t \in \{(t,i) \mid 0 \le i \le m\}$ be a shortest path of the graph.

We can construct an optimal schedule from P by setting $\mathcal{X} := (v_0(1), \dots, v_T(1))$

By definition (1) it is guaranteed that P only traverses edges such that there are enough active servers $\forall t \in [T]$. Therefore, the created schedule is feasible. It's optimality directly follows from the definition of the edges' weights and so does the equality $costs(\mathcal{X}) = costs(P)$.

2.2 A minimum cost algorithm

Algorithm 1 Calculate costs for m homogeneous servers

```
Require: Convex cost function f, \lambda_0 = \lambda_T = 0, \forall t \in [T-1] : \lambda_t \in [0, m]
 1: function SCHEDULE(m, T, \beta, \lambda_1, \dots, \lambda_{T-1})
 2:
         if T < 2 then return
         let p[2...T-1,m] and M[1...T-1,m] be new arrays
 3:
         for j \leftarrow 0 to m do
 4:
             M[1,j] \leftarrow d(0,j,\lambda_1)
 5:
         for t \leftarrow 1 to T-2 do
 6:
             for j \leftarrow 0 to m do
 7:
                  opt \leftarrow \infty
 8:
                  for i \leftarrow 0 to m do
 9:
                      M[t+1,j] \leftarrow M[t,i] + d(i,j,\lambda_{t+1})
10:
                      if M[t+1,j] < opt then
11:
                          opt \leftarrow M[t+1,j]
12:
                          p[t+1,j] \leftarrow i
13:
                  M[t+1,j] \leftarrow opt
14:
         return p and M
15:
```

Algorithm 2 Extract schedule for n homogeneous servers

```
1: function Extract(m, p, M, T)
       let x[0...T] be a new array
2:
       x[0] \leftarrow x[T] \leftarrow 0
3:
       if T < 2 then return x
                                          ▶ Trivial solution
4:
       x[T-1] \leftarrow arg \ min\{M[T-1,i]\}
5:
                      0 \le i \le m
       for t \leftarrow T - 2 to 1 do
6:
           x[t] \leftarrow p[t+1, x[t+1]]
7:
       return x
8:
```

2.2.1 Runtime analysis

```
Schedule: Loop 5,8 and 10 run m+1 times, loop 7 runs T-2 times
Extract: Loop 5 runs T-2 times, argmin 4 takes time m+1.
For T, n \to \infty it holds:
\mathcal{O}(m+1+(T-2)*(m+1)^2+T-2+m+1) = \mathcal{O}(2*m+T+(T-2)*(m+1)^2) = \mathcal{O}(T*m^2) (3)
```

As we need $log_2(m)$ bits to encode m, the algorithm is exponential in the number of servers.

2.2.2 A memory optimized algorithm

TODO

3 A 2-approximation algorithm for monotonically increasing convex f

We consider a modification of the problem discussed in chapter 2. Assuming that f is convex and monotonically increasing, we can modify our algorithm to obtain a polynomial time 2-approximation algorithm.

3.1 Graph for a 2-optimal schedule

We modify our graph from chapter 2.1 to the reduce the number of vertices. For this, we stop adding m vertices for each timestep but using vertices that approximate the number of active servers. First, let $b := \lceil \log_2(m) \rceil$. We add vertices (t,0) and $(t,2^i), \forall t \in [T-1], 0 \le i \le b$. All edges and weights are added analogous to chapter 2.1.

Figure 2: Graph for 2-approximation algorithm

Proposition 3.1.

- 1. Any given optimal schedule \mathcal{X} can be transformed to a 2-optimal schedule \mathcal{X}' which corresponds to a path P from (0,0) to (T,0) with $costs(\mathcal{X}') = costs(P)$.
- 2. Any shortest path P from (0,0) to (T,0) corresponds to a 2-optimal schedule \mathcal{X}' with $costs(P) = costs(\mathcal{X}')$.

Proof.

1. Assume we have an optimal schedule identified by $\mathcal{X} = (x_0, \dots, x_T)$. For $0 \le t \le T$ we set:

$$x_t' := \begin{cases} 2^{\lceil \log_2(x_t) \rceil}, & \text{if } x_t > 0\\ 0, & \text{otherwise} \end{cases}$$
 (4)

Now let $\mathcal{X}' \coloneqq (x'_0, \dots, x'_T)$ be the modified sequence of active servers. Notice that $x_t \le x'_t \le 2 * x_t$ holds as x'_t is the smallest power of two larger or equal to x_t and therefore \mathcal{X}' is

feasible. We can construct a feasible path in our graph from \mathcal{X}' as follows:

 $\forall t \in [T] \text{ set } e_t := ((t-1, \mathcal{X}'(t-1)), (t, \mathcal{X}'(t))).$ Then set $P := (e_1, \dots, e_T)$. By the definition of the edges' weights it follows $costs(\mathcal{X}') = costs(P)$.

Next, lets consider the difference of costs between \mathcal{X}' and \mathcal{X} at every time step t to t+1 for $0 \le t \le T-1$:

(a) $x_{t+1} > 0$: The costs incurred by \mathcal{X}' are given by

$$d(\mathcal{X}'(t), \mathcal{X}'(t+1), \lambda_{t+1}) = \beta * \max\{0, x'_{t+1} - x'_{t}\} + c(x'_{t+1}, \lambda_{t+1})$$

$$(\mathcal{X}' \text{ is feasible}) = \beta * \max\{0, x'_{t+1} - x'_{t}\} + x'_{t+1} * f(\lambda_{t+1}/x'_{t+1})$$

$$(4) \leq \beta * \max\{0, x'_{t+1} - x'_{t}\} + 2 * x_{t+1} * f(\lambda_{t+1}/x'_{t+1})$$

$$(f \text{ monotonically increasing}) \leq \beta * \max\{0, x'_{t+1} - x'_{t}\} + 2 * x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$(5)$$

and the costs of \mathcal{X} by

$$d(\mathcal{X}(t), \mathcal{X}(t+1), \lambda_{t+1}) = \beta * \max\{0, x_{t+1} - x_t\} + c(x_{t+1}, \lambda_{t+1})$$

$$(\mathcal{X} \text{ is feasible}) = \beta * \max\{0, x_{t+1} - x_t\} + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$
(6)

Therefore, we can estimate the difference:

$$d(\mathcal{X}'(t), \mathcal{X}'(t+1), \lambda_{t+1}) - d(\mathcal{X}(t), \mathcal{X}(t+1), \lambda_{t+1})$$

$$(5),(6) \leq \beta * \max\{0, x'_{t+1} - x'_t\} - \beta * \max\{0, x_{t+1} - x_t\} + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= \beta * (\max\{0, x'_{t+1} - x'_t\} - \max\{0, x_{t+1} - x_t\}) + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$
(7)

At this point, we need another case distinction.

(i) $x_{t+1} \le x_t$: From (4) it follows that $x'_{t+1} \le x'_t$. We continue to simplify (7):

$$\beta * (\max\{0, x'_{t+1} - x'_t\} - \max\{0, x_{t+1} - x_t\}) + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= \beta * (0 - 0) + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= d(\mathcal{X}(t), \mathcal{X}(t+1), \lambda_{t+1})$$

$$\Rightarrow costs(\mathcal{X}') = 2 * costs(\mathcal{X})$$

(ii) $x_{t+1} > x_t$: We simplify (7) and obtain

$$\beta * \left(\max\{0, x'_{t+1} - x'_{t}\} - \max\{0, x_{t+1} - x_{t}\} \right) + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= \beta * (x'_{t+1} - x'_{t} - x_{t+1} + x_{t}) + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$\leq \beta * (2 * x_{t+1} - x_{t} - x_{t+1} + x_{t}) + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= \beta * x_{t+1} + x_{t+1} * f(\lambda_{t+1}/x_{t+1})$$

$$= d(0, \mathcal{X}(t+1), \lambda_{t+1})$$

$$\neq d(\mathcal{X}(t), \mathcal{X}(t+1), \lambda_{t+1})$$

Here we fail.

(b) $x_{t+1} = 0$: Then by (4) we conclude that $x_{t+1} = x'_{t+1} = 0$ and therefore:

$$d(\mathcal{X}'(t), \mathcal{X}'(t+1), \lambda_{t+1}) - d(\mathcal{X}(t), \mathcal{X}(t+1), \lambda_{t+1})$$

$$= \beta * \max\{0, 0 - x_t'\} + c(0, \lambda_{t+1}) - \beta * \max\{0, 0 - x_t\} - c(0, \lambda_{t+1})$$

$$= 0$$

$$\Rightarrow costs(\mathcal{X}') = costs(\mathcal{X})$$

2. From (1) we obtain that we can construct a 2-optimal path P' from any optimal schedule. Now, let P be a shortest path. We have $costs(P) \leq costs(P')$ and as every feasible path in P corresponds to an feasible schedule $\mathcal X$ with $costs(P) = costs(\mathcal X)$, P must also be at least 2-optimal.