Lecture Notes for Week 10 (First Draft)

Proof of the Hille-Yosida Theorem (Sufficiency Continued)

We assume that (i) and (ii) of Theorem 9.8 hold.

Last time we showed that

$$\forall x \in X, \ \lambda R(\lambda; A)x \to x \text{ as } \lambda \to \infty.$$
 (1)

This suggests a nice way of approximating A by bounded linear operators. For (real) $\lambda > \omega$ put

$$A_{\lambda}x = \lambda AR(\lambda; A)x$$

$$= \lambda^{2}R(\lambda; A)x - \lambda x \text{ for all } x \in X.$$
(2)

Observe that $A_{\lambda} \in \mathcal{L}(X; X)$ for all $\lambda > \omega$.

The operators A_{λ} are called the *Yosida approximates* of A. Using (1) and (2) the fact that $AR(\lambda; A)x = R(\lambda; A)Ax$ for $x \in \mathcal{D}(A)$ we see that

$$\forall x \in \mathcal{D}(A), \ A_{\lambda}x \to Ax \text{ as } \lambda \to \infty.$$
 (3)

In order to complete the proof, we need some basic results concerning semigroups generated by bounded linear operators. These will be stated in the form of a claim. Proof of the claim will be a homework exercise.

Claim: Let $B \in \mathcal{L}(X; X)$ be given. For each $t \geq 0$, put

$$e^{tB} = \sum_{n=0}^{\infty} \frac{(tB)^n}{n!}.$$

[The above definition is also valid for negative values of t as well.] Then we have

- (i) The mapping $t \to e^{tB}$ is a linear C_0 -semigroup with infinitesimal generator B.
- (ii) If $C \in \mathcal{L}(X;X)$ and CB = BC then $Ce^{tB} = e^{tB}C$ for all $t \ge 0$.
- (iii) $\lim_{t \downarrow 0} ||e^{tB} I|| = 0.$
- (iv) For all $\lambda \in \mathbb{K}$ we have

$$e^{t(B-\lambda I)} = e^{-\lambda t}e^{tB}$$
 for all $t \ge 0$.

Using (iv) of the claim and (2) we see that for all $\lambda > \omega$ we have

$$e^{tA_{\lambda}} = e^{-\lambda t} \sum_{n=0}^{\infty} \frac{\lambda^{2n} t^n R(\lambda; A)^n}{n!} \quad \text{for all } t \ge 0.$$
 (4)

Using (ii) from Theorem 9.8 and (4), we find that for all $\lambda > \omega$

$$\|e^{tA_{\lambda}}\| \leq Me^{-\lambda t} \sum_{n=1}^{\infty} \frac{\lambda^{2n} t^{n}}{(\lambda - \omega)n!} \text{ for all } t \geq 0,$$

$$\leq Me^{-\lambda t} \exp\left(\frac{\lambda^{2} t}{\lambda - \omega}\right) \text{ for all } t \geq 0,$$

$$\leq M \exp\left(\frac{\lambda \omega t}{\lambda - \omega}\right) \text{ for all } t \geq 0.$$
(5)

Let $\omega_1 > \omega$ be given. Then, in view of (5) we may choose $\lambda_1 > \omega$ such that

$$||e^{tA_{\lambda}}|| \le Me^{\omega_1 t} \text{ for all } t \ge 0, \ \lambda > \lambda_1.$$
 (6)

Put

$$T_{\lambda}(t) = e^{tA_{\lambda}}$$
 for all $\lambda > \omega$, $t \ge 0$.

Observe that

$$A_{\mu}A_{\lambda} = A_{\lambda}A_{\mu}, \quad A_{\lambda}T_{\mu}(t) = T(t)A_{\mu} \text{ for all } \lambda, \mu > \omega, \ t \ge 0.$$
 (7)

Let $x \in \mathcal{D}(A)$ and $\lambda, \mu > \omega$ be given. Then we have

$$T_{\lambda}(t)x - T_{\mu}(t)x = \int_{0}^{t} \frac{d}{ds} (T_{\mu}(t-s)T_{\lambda}(s)x) ds$$

$$= \int_{0}^{t} T_{\mu}(t-s)A_{\lambda}T_{\lambda}(s) - T_{\mu}(t-s)A_{\mu}T_{\lambda}(s)x ds \qquad (8)$$

$$= \int_{0}^{t} (T_{\mu}(t-s)T_{\lambda}(s))(A_{\lambda}x - A_{\mu}x) ds.$$

Using (6) and (8) we find that

$$||T_{\lambda}(t)x - T_{\mu}(t)x|| \leq M^{2}e^{\omega_{1}t}t||A_{\lambda}x - A_{\mu}x||$$

$$\leq tM^{2}e^{\omega_{1}t}(||A_{\lambda}x - Ax|| + ||A_{\mu}x - Ax||) \text{ for all } \lambda, \mu > \lambda_{1}.$$
(9)

For $x \in \mathcal{D}(A)$, it follows from (9) that $\{T_{\lambda}(t)x\}_{\lambda > \lambda_1}$ has the Cauchy property in λ , uniformly for t in bounded sets. Using (6), (9), and the fact that $\mathcal{D}(A)$ is dense in

X, we see that for all $x \in X$, $\{T_{\lambda}(t)x\}_{\lambda > \lambda_1}$ has the Cauchy property in λ , uniformly for t in bounded sets. Now define

$$T(t)x = \lim_{\lambda \to \infty} T_{\lambda}(t)x$$
 for all $x \in X$, $t \ge 0$.

It is immediate that

- T(0) = I,
- T(t+s) = T(t)T(s) for all s, t > 0,
- $||T(t)|| \le Me^{\omega_1 t}$ for all $t \ge 0$.

Since the last inequality holds (with the same M) for every $\omega_1 > \omega$ we conclude that

• $||T(t)|| \le Me^{\omega t}$ for all $t \ge 0$.

Since the convergence of $T_{\lambda}(t)x$ to T(t)x is uniform for t in bounded sets, we conclude that for every $x \in X$ the mapping $t \to T(t)x$ is continuous. It follows that T is a linear C_0 -semigroup.

It remains to show that the infinitesimal generator is A. For this purpose, let us denote the infinitesimal generator of T by \hat{A} . We shall first show that \hat{A} is an extension of A and then use a resolvent argument to show that $\mathcal{D}(\hat{A}) = \mathcal{D}(A)$.

Let $x \in \mathcal{D}(A)$ be given and observe that

$$||T_{\lambda}(t)A_{\lambda}x - T(t)Ax|| \leq ||T_{\lambda}(t)(A_{\lambda}x - Ax)|| + ||(T_{\lambda}(t) - T(t)Ax||$$

$$\leq Me^{\omega_{1}t}||A_{\lambda}x - Ax|| + ||(T_{\lambda}(t) - T(t))Ax|| \qquad (10)$$

$$\to 0 \text{ as } \lambda \to \infty.$$

Since the convergence of $T_{\lambda}(t)A_{\lambda}x$ to T(t)Ax is uniform for t in bounded intervals we have

$$T(t)x - x = \lim_{\lambda \to \infty} T_{\lambda}(t)x - x$$

$$= \lim_{\lambda \to \infty} \int_{0}^{t} T_{\lambda}(s)A_{\lambda}x \, ds = \int_{0}^{t} T(s)Ax \, ds.$$
(11)

For h > 0 we have

$$\frac{T(h)x - x}{h} = \frac{1}{h} \int_0^h T(s)Ax \, ds \to Ax \text{ as } h \downarrow 0.$$

We conclude that $x \in \mathcal{D}(\hat{A})$ and $\hat{A}x = Ax$. In other words, \hat{A} is an extension of A. In order to complete the proof, it suffices to show that $\mathcal{D}(\hat{A}) \subset \mathcal{D}(A)$.

Since \hat{A} is an infinitesimal generator, it is a closed operator. Moreover, A is closed by assumption. Recall that for a closed linear operator $C: \mathcal{D}(C) \to X$ and $\lambda \in \rho(C)$ the operator $\lambda I - C$ is surjective, i.e. $(\lambda I - C)[\mathcal{D}(C)] = X$. By Lemma 9.6, $\rho(\hat{A}) \supset (\omega, \infty)$ and by assumption we have $\rho(A) \supset (\omega, \infty)$. Therefore we may choose $\lambda \in \rho(A) \cap \rho(\hat{A})$.

Since \hat{A} and A are closed and $\lambda \in \rho(A) \cap \rho(\hat{A})$

$$(\lambda I - \hat{A})[\mathcal{D}(\hat{A})] = X,$$

$$(\lambda I - A)\mathcal{D}(A)] = X,$$

and since \hat{A} extends A, we also have

$$(\lambda I - \hat{A})[\mathcal{D}(A)] = X.$$

It follows that

$$\mathcal{D}(A) = R(\lambda; \hat{A})[X] = \mathcal{D}(\hat{A}). \quad \Box$$

Corollary 10.1: Let X be a Banach space and $\mathcal{D}(A) \subset X$. Assume that $\mathcal{D}(A)$ is dense in X and that $A : \mathcal{D}(A) \to X$ is linear and closed. Then A generates a linear C_0 contraction semigroup. if and only if $\rho(A) \supset (0, \infty)$ and

$$||R(\lambda; A)|| \le \frac{1}{\lambda}$$
 for all $\lambda > 0$.

Remark 10.2: Historical Comments TO BE FILLED IN

Contraction Semigroups

Assume that $T:[0,\infty)\to \mathcal{L}(X;X)$ is a linear C_0 contraction semigroup with infinitesimal generator A. Then for all $t,h\geq 0$ and all $x\in X$ we have

$$||T(t+h)x|| \le ||T(h)|| \cdot ||T(t)x|| \le ||T(t)x||$$

and

$$||T(t+h)|| \le ||T(h)|| \cdot ||T(t)|| \le ||T(t)||.$$

In other words, the mappings $t \to ||T(t)x||$ and $t \to ||T(t)||$ both are nonincreasing on $[0, \infty)$.

Suppose that X is a Hilbert space. Let $x \in \mathcal{D}(A)$ be given and put

$$u(t) = ||T(t)x||^2 = (T(t)x, T(t)x)$$
 for all $t \ge 0$.

Then u is nonincreasing and differentiable, so we have

$$\dot{u}(t) = (T(t)x, T(t)Ax) + (T(t)Ax, T(t)x) = 2\operatorname{Re}(T(t)Ax, x) \le 0 \text{ for all } t \ge 0.$$

Putting t = 0 we find that

$$\operatorname{Re}(Ax, x) \leq 0 \text{ for all } x \in \mathcal{D}(A).$$

We will prove the following remarkable result: If X is a Hilbert space, $\mathcal{D}(A) \subset X$, and $A : \mathcal{D}(A) \to X$ is linear then A generates a linear C_0 contraction C_0 -semigroup if and only if (i) and (ii) below hold:

- (i) $\operatorname{Re}(Ax, x) \leq 0$ for all $x \in \mathcal{D}(A)$,
- (ii) There exists $\lambda_0 > 0$ such that $\lambda_0 I A$ is surjective.

[Density of $\mathcal{D}(A)$, closedness of A, and the required resolvent properties of A all follow from (i) and (ii) above!]

We shall actually prove some extensions of this type of result for semigroups on Banach spaces. For this purpose we shall introduce the notion of semi-inner product on a Banach space. We shall present only those concepts that we need to prove a few basic results concerning contraction semigroups.

Semi-Inner Products on Banach Spaces

Definition 10.3: Let X be a linear space over \mathbb{K} . By a *semi-inner product* on X, we mean a mapping $[\cdot,\cdot]: X\times X\to \mathbb{K}$ such that

- (i) [x + y, z] = [x, z] + [y, z] for all $x, y, z \in X$,
- (ii) $[\alpha x, y] = \alpha [x, y]$ for all $x, y \in X$, $\alpha \in \mathbb{K}$,
- (iii) [x, x] > 0 for all $x \in X \setminus \{0\}$,
- (iv) $|[x,y]|^2 < [x,x] \cdot [y,y]$ for all $x,y \in X$.

Observe that every inner product is a semi-inner product. It follows easily from Definition 10.3 that if $[\cdot, \cdot]$ is a semi-inner product on X then the function $x \to \sqrt{[x, x]}$ is a norm on X. It turns out that every norm on X is induced by a semi-inner product. This, of course, means that there are semi-inner products that are not inner products. The notion of semi-inner product was introduced by Lumer in 1961 and developed further by Giles in 1967. Giles showed that one can include the homogeneity property $[x, \alpha y] = \overline{\alpha}[x, y]$ for all $x, y \in X$, $\alpha \in \mathbb{K}$ to the definition of semi-inner product without introducing any significant complications.

Definition 10.4: Let $(X, \|\cdot\|)$ be a normed linear space and $[\cdot, \cdot]$ be a semi-inner product on X. We say that $[\cdot, \cdot]$ is *compatible* with $\|\cdot\|$ provided that $[x, x] = \|x\|^2$ for all $x \in X$.

Proposition 10.5: Let $(X, \|\cdot\|)$ be a normed linear space. Then there is at least one semi-inner product $[\cdot, \cdot]$ on X compatible with $\|\cdot\|$.

Proof: For every $x \in X$, put

$$\mathcal{F}(x) = \{x^* \in X^* : x^*(x) = ||x||^2 = ||x^*||^2\}. \tag{12}$$

By the Hahn-Banach Theorem, $\mathcal{F}(x) \neq \emptyset$ for every $x \in X$, so we may choose $F(x) \in \mathcal{F}(x)$. Define $[\cdot, \cdot] : X \times X \to \mathbb{K}$ by

$$[x,y] = (F(y))(x) \text{ for all } x,y \in X.$$
(13)

It is straightforward to check that $[\cdot, \cdot]$ is a semi-inner product compatible with $\|\cdot\|$.

Remark 10.6: There is exactly one semi-inner product on X compatible with $\|\cdot\|$ if and only if for every $x \in X$ the set $\mathcal{F}(x)$ in (12) is a singleton. A convenient sufficient condition for this property to hold is that X^* be strictly convex.

Remark 10.7: If $[\cdot, \cdot]$ is a semi-inner product compatible with the norm on a normed linear space $(X, \|\cdot\|)$ then for each $y \in X$, the mapping $x \to [x, y]$ is a continuous linear functional. As an aside, it is interesting to note that if X is reflexive and $x^* \in X^*$, then there exists a semi-inner product on X and $y \in Y$ such that $x^*(x) = [x, y]$ for all $x \in X$.

Example 10.8: Let $p \in (1, \infty)$ be given and let $X = L^p[0, 1]$ with the usual norm

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}.$$

It is straightforward to check that the mapping $[\cdot,\cdot]:X\times X\to\mathbb{R}$ defined by [f,0]=0 and

$$[f,g] = \frac{1}{\|g\|_p^{p-2}} \int_0^1 f(x)\overline{g(x)}|g(x)|^{p-2} \operatorname{sgn}(g(x)) dx \text{ for } \|g\|_p \neq 0$$

is a semi-inner product compatible with $\|\cdot\|_p$.

Definition 10.9: Let X be a Banach space and $\mathcal{D}(A) \subset X$. Assume that A: $\mathcal{D}(A) \to X$ is linear. We say that A is *dissipative* provided that there exists a semi-inner product $[\cdot, \cdot]$ compatible with the norm on X such that

$$\operatorname{Re}[Ax, x] \leq 0 \text{ for all } x \in \mathcal{D}(A).$$

Lemma 10.10: Let X be a Banach space and $\mathcal{D}(A) \subset X$. Assume that $A : \mathcal{D}(A) \to X$ is linear. Then A is dissipative if and only if

$$\|(\lambda I - A)x\| \ge \lambda \|x\|$$
 for all $x \in \mathcal{D}(A), \ \lambda > 0$.

Proof: Assume that A is dissipative and choose a semi-inner product $[\cdot, \cdot]$ compatible with the norm on X such that $\text{Re}[x, x] \leq 0$ for all $x \in \mathcal{D}(A)$. Let $x \in \mathcal{D}(A)$ and $\lambda > 0$ be given. Then we have

$$Re[(\lambda I - A)x, x] = \lambda ||x||^2 - Re[Ax, x] \ge \lambda ||x||^2.$$
(14)

On the other hand we have

$$\text{Re}[(\lambda I - A)x, x] \le |[(\lambda I - A)x, x]| \le ||(\lambda I - A)x|| \cdot ||x||.$$
 (15)

Combining (14) with (15) we get

$$\lambda ||x||^2 \le ||(\lambda I - A)x|| \cdot ||x||,$$

which yields the desired conclusion.

Assume now that

$$\|(\lambda I - A)x\| > \lambda \|x\| \text{ for all } x \in calD(A), \ \lambda > 0.$$
 (16)

In order to avoid some technical complications we assume here that X is either separable or reflexive. (To handle the general case, one can proceed as below using nets instead of sequences.) As before, for all $z \in X$, put

$$\mathcal{F}(z) = \{x^* \in X^* : x^*(z) = ||z||^2 = ||x^*||^2\}.$$

Let $x \in \mathcal{D}(A) \setminus \{0\}$ be given and observe that

$$||(nI - A)x|| \ge n||x|| > 0$$
 for all $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$ we choose $y_n^* \in \mathcal{F}(nx - Ax)$ and notice that

$$y_n^*(nx - Ax) = ||nx - Ax||^2 = ||y_n^*||^2 > 0.$$

Now put

$$z_n^* = \frac{1}{\|y_n^*\|} y_n^* \text{ for all } n \in \mathbb{N}.$$

Then we have

$$||nx - Ax|| = \frac{||y_n^*||^*}{y}(nx - Ax)$$
$$= z_n^*(nx - Ax)$$
$$= n\operatorname{Re} z_n^*(x) - \operatorname{Re} z_n^*(Ax).$$

Since $||z_n^*|| = 1$ for all $n \in \mathbb{N}$ we find that

$$|n||x|| \le ||nx - Ax|| = n\operatorname{Re}z_n^*(x) - \operatorname{Re}z_n^*(Ax) \le n||x|| - \operatorname{Re}z_n^*(Ax)$$
 (17)

We choose a subsequence $\{z_{n_k}^*\}_{k=1}^{\infty}$ and $x^* \in X^*$ such that

$$z_{n_k}^* \stackrel{*}{\rightharpoonup} z^*$$
 (weakly*) as $k \to \infty$.

Then we have $||z^*|| \le 1$, $\operatorname{Re}z^*(Ax) \le 0$, and $\operatorname{Re}z^*(x) \ge ||x||$. It follows that $z^*(x) = ||x||$.

Define $F: X \to X^*$ by

$$F(x) = \begin{cases} 0 & x = 0 \\ z^* ||x|| & x \in \mathcal{D}(A) \setminus \{0\} \\ \text{any element of } \mathcal{F}(x) & x \in X \setminus \mathcal{D}(A). \end{cases}$$

If we define the semi-inner product $[\cdot, \cdot]$ by

$$[x, y] = (F(y))(x)$$
 for all $x, y \in X$,

then $\operatorname{Re}[Ax, x] \leq 0$ for all $x \in \mathcal{D}(A)$.

Lemma 10.11: Let X be a Banach space and $\mathcal{D}(A) \subset X$. Assume that $A : \mathcal{D}(A) \to X$ is linear and dissipative. Let $\lambda_0 > 0$ be given and assume that $\lambda_0 I - A$ is surjective. Then A is closed, $\rho(A) \supset (0, \infty)$ and

$$||R(\lambda; A)|| \le \frac{1}{\lambda}$$
 for all $\lambda > 0$.

Proof: The key points to prove are that A is closed and that $\lambda I - A$ is surjective for every $\lambda > 0$. (Injectivity of $\lambda I - A$ and the inequality for $||R(\lambda; A)||$ follow easily from Lemma 10.9.)

Since $\|(\lambda_0 - A)x\| \ge \lambda_0 \|x\|$ for all $x \in \mathcal{D}(A)$ by Lemma 10.9, we conclude that $\lambda_0 I - A$ is injective and

$$\|(\lambda_0 I - A)^{-1}y\| \frac{1}{\lambda_0} \|y\| \text{ for all } y \in X.$$

It follows that $(\lambda_0 I - A)^{-1} \in \mathcal{L}(X;X)$ and consequently this operator is closed. We conclude that $\lambda_0 I - A$ is closed and this implies that A is closed.

To show that $\rho(A) \supset (0, \infty)$, put

$$\Lambda = \{ \lambda \in (0, \infty) : \lambda \in \rho(A) \}.$$

We know that $\Lambda \neq \emptyset$ (because it contains λ_0). Observe that Λ is open in $(0, \infty)$. We shall show that Λ is also closed in $(0, \infty)$ (with the relative topology). Since $(0, \infty)$ is connected, this will ensure that $\Lambda = (0, \infty)$.

Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence in Λ converging to $\lambda_* \in (0, \infty)$. To show that $\lambda_* \in \Lambda$ it suffices to show that $\lambda_* I - A$ is surjective. Let $y \in X$ be given and for every $n \in \mathbb{N}$, put

$$x_n = R(\lambda_n; A)y.$$

We shall show that that the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent to some $x \in X$ and that $(\lambda_*I - A)x = y$. Before developing the relevant inequalities, we observe that the sequence $\{1/\lambda_n\}_{n=1}^{\infty}$ is bounded because it converges to $1/\lambda_*$.

Let $m, n \in \mathbb{N}$ be given. Then we have

$$||x_{n} - x_{m}|| = ||R(\lambda_{n}; A)y - R(\lambda_{m}; A)y||$$

$$= ||(\lambda_{n} - \lambda_{m})R(\lambda_{n}; A)R(\lambda_{m}; A)||$$

$$= ||\lambda_{n} - \lambda_{m}|| \cdot ||R(\lambda_{n}; A)|| \cdot ||R(\lambda_{m}; A)||$$

$$\leq ||\lambda_{n} - \lambda_{m}|| \frac{y}{\lambda_{n} \lambda_{m}}.$$

It follows that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Put

$$x = \lim_{n \to \infty} x_n.$$

Since $x_n \in \mathcal{D}(A)$ for all $n \in \mathbb{N}$ and $Ax_n \to \lambda_* x - y$ and the operator A is closed we infer that $x \in \mathcal{D}(A)$ and $Ax = \lambda_* x - x$. This completes the proof. \square