19日本国特許庁(JP)

①実用新案出顧公告

⑫実用新案公報(Y2)

平3-14824

Sint. Cl. 5

識別記号

庁内整理番号

❷❷公告 平成3年(1991)4月2日

H 03 H 9/17

7922 - 5 J

(全6頁)

圧電共振子 60考案の名称

> ②)実 顧 昭59-55076

63公 開 昭60-167425

②出 願 昭59(1984)4月13日 @昭60(1985)11月7日

克己 京都府長岡京市天神2丁目26番10号 株式会社村田製作所 蘇 本 ②付き 案を者

何考 案 者 井 上 郎 京都府長岡京市天神2丁目26番10号 株式会社村田製作所

の出 願 人 株式会社村田製作所 京都府長岡京市天神2丁目26番10号

弁理士 深見 久郎 四代理 人

外2名

審査官

文 雄 竹井

90多考文献

実開 昭57-191121 (JP, U) 実開 昭58-77920(JP,U)

実公 昭51-24182(JP, Y1)

1

考案の詳細な説明

考案の分野

この考案は、面外方向への屈曲振動モードを有 する圧電共振子に関し、特に、共振素子の保持構

2

先行技術の説明

たとえば正方形圧電素子を、分極方向を互いに 逆にして貼り合わせた正方形パイモルフのような 角板型圧電素子は、面外方向への屈曲振動モード 端部が圧電素子の一方主面のノード点近傍に当接 10 を有する。この角板型圧電素子は、振動しやすい ように保持されて、低周波値の発振子や振動子あ るいはマイクロホンその他として従来より使用さ れている。

ところで、圧電素子を保持するにあたつては、 ノード点近傍に当接する第2の端子板とを含み、 15 該圧電素子の振動を有効に利用するため、振動の ノード点またはその近傍を保持しなければならな い。一般に、角板型圧電素子の基本振動における 振動のノード点は、四辺の各中点に内接する歪ん だ正方形周辺上に分布する。よつて、このノード 置しかつほぼ直角に形成され、前記圧電素子が前 20 点のうちの4点または2点を両側主面から圧接挟 持するか、ノード点に細いリード線をはんだ付け やポインデイングで接続する等の保持方法で、圧 電素子は保持される。

匈実用新案登録請求の範囲

ケース内に封入されてその位置関係が固定され る1対の端子板と、該1対の端子板によつてその 両主面が圧接挟持される面外方への屈曲振動モー ドを有する角板型圧電素子とからなる圧電共振子 5 造が改良された圧電共振子に関する。 において、

前記1対の端子板は、

角形形状からなり、対向する2辺において、切 り込みによつて支持片が形成され、該支持片の先 する第1の端子板と、

角形形状からなり、前記対向する2辺を除く別 の対向する2辺の該当する部分に接触突起が形成 され、前記接触突起が前記圧電素子の他方主面の さらに

前記第2の端子板と一体または別体で形成さ れ、前記圧電素子の四方側面側から前記圧電素子 の振動ノード点またはその近傍に接するように位 記端子板に対してずれないように保持する保持片 を備えた、圧電共振子。

このうち圧電素子を圧接挟持する方法は、製造

工程を合理化することが容易で、かつ低コスト化

挟持される。端子板2には、図において左右両側 にL字状の切込みが付けられ、これによつて支持

片21,22が形成されている。支持片21,2 2は端子板2の本体に対して圧電素子1を挟持す 持圧力をどの程度にするかが困難であるという欠 5 る側に折曲げられており、そのために弾性が備わ つている。この弾性によつて、圧電素子1は適度 な圧力で挟持されることになる。なお、支持片2 1,22の先端付近には、圧電素子1の上側主表 面のノード点近傍に当接する支持突起211,2

> 他方の端子板3には、上下辺ほぼ中央部内側 に、2つの支持突起31,32が形成されてい て、これが圧電素子1の下側主表面のノード点近 傍に当接する。

この実施例の特徴は、挟持された圧電素子1 が、1対の端子板2,3に対してずれないよう に、保持片として、十字ホルダ4を設けたことで ある。より詳しく説明する。

十字ホルダ4は、その本体41が四方に水平に 係が固定される1対の端子板と、その端子板で両 20 延びる平面十字形に形成されている。そして、本 体41の各始端部は、本体41に対してほぼ直角 に曲成され、ストツパ部41a, 41b, 41 c, 41dとされている。また、十字ホルダの本 体41が端子板3の裏面(圧電素子1に対向しな は対向する2辺において切り込みによつて支持片 25 い面) に重ね合わされたとき、四方のストツパ部 41a~41dが、それぞれ、端子板3の四辺に 沿つて上側に突出する。このため、十字ホルダ4 は、端子板3と重ね合わされることにより、端子 板3に対してその位置関係が固定される。また、 ド点近傍に当接する。保持片は第2の端子板と一 30 その状態において、十字ホルダのストツパ部41 a~41dは、圧電素子1の四方側面にそれぞれ 当接ないし若干の間隙をおいて対向する。それゆ え圧電素子1は、端子板3に対してその主面が広 がる方向にずれることが防止されるのである。す この考案の上述の構成と特徴をより明確にする 35 なわち、圧電素子1と端子板3との位置関係が固 定されるのである。

さらに、圧電素子1が1対の端子板2,3で圧 接挟持され、十字ホルダ4が取付けられてケース 5に封入されると、該ケース5によつて端子板2 る。図において、角板型圧電素子1は面外方向へ 40 と3との位置関係が固定される。よつてケース5 内では圧電索子1は両方の端子板2および3に対 してその位置関係が固定されることとなり、圧接 挟持点がずれることがなくなる。

第2図はこの考案の他の実施例の分解斜視図で

の目的に適うなどの長所を有するので、最も広く 利用されている。しかしその反面、圧電素子の挟 点も含んでいる。というのは、挟持圧力がつよす ぎると圧電素子の振動が阻害され、そのQ値が劣 化し、逆に、挟持圧力が弱すぎる場合には、その Q値は劣化しないものの、挟持部材と圧電素子と の位置関係が衝撃等によりずれて特性の変動をも 10 21が形成されている。 たらすおそれがあるからである。

考案の目的

そこでこの考案は、角板型圧電素子をそのQ値 が劣化しない微弱な圧力で挟持し、かつこの微弱 な圧力によっても圧電素子が挟持部材からずれな 15 いような構成にした圧電共振子を提供することを 目的としている。

考案の構成

この考案を要約すれば、ケース内でその位置関 側主面を圧接挟持される圧電素子と、圧電素子が 端子板に対してずれないように保持する保持片と で構成される。 1 対の端子板は角形形状からなる 第1および第2の端子板を含み、第1の端子板に が形成され、支持片の先端部が圧電素子の一方主 面のノード点近傍に当接し、第2の端子板には別 の対向する 2 辺に該当する部分に接触突起が形成 され、この接触突起が圧電素子の他方主面のノー 体または別体で形成され、圧電素子の四方側面側 から圧電素子の振動ノード点またはその近傍に接 するように位置しかつほぼ直角に形成され、圧電 素子が端子板に対してずれないように保持する。

ため、以下には図面を参照して実施例について詳 細に説明する。

実施例の説明

第1図はこの考案の一実施例の分解斜視図であ の屈曲振動モードを有するものであり、振動の振 幅は主面外周の4つのコーナ部が最も大きい。

この角板型圧電素子1は、両主面側から、すな わち図では上下から、1対の端子板2,3で圧接 5

あり、ケース5は省略された図である。第2図に 示す実施例の特徴は、圧電素子1のずれを防止す るための保持片が、端子板3と一体的に形成され ていることである。すなわち、平面ほぼ正方形の 対して垂直上方に折り曲げられた短冊形状の4つ の保持片 6 a, 6 b, 6 c, 6 d が 設けられてい る。この保持片6 a~6 dが、上述の実施例で説 明したストツバ部41a~41dと同様な働きを するのである。

なお、この実施例の他の部分は上述の実施例と 同様であり、ここでの説明は省略する。

第3図および第4図は、第1図において説明し た十字ホルダ4の変形例を示す図である。第3図 の変形例では、そのストッパ部41a~41dの 15 子とすることができる。 長手方向中央部が、それぞれ対向する側に突出す るように、平断面V字形に折り曲げられている。

また、第4図に示す変形例では、同様に各スト ツパ部41a~41dの長手方向中央部が、互い に対向する側に突出するように、平断面U字形ま 20 例を示す斜視図である。第5図は、従来の圧電共 たは湾曲がつけられた形状に曲成されている。

よつて、これら第3図および第4図に示す変形 例の十字ホルダ4では、圧電素子1の側面と接す る部分の面積を小さくでき、振動のノード点また はその近傍の必要な最少点だけを保持できるとい 25 う利点がある。

第5図および第6図は、それぞれ、従来の圧電

共振子および第1図に示すこの考案の一実施例に ついての落下衝撃に伴う共振特性の変化を示すグ ラフである。いずれのグラフも、点線は初期状態 (組立て直後の状態) の共振子特性を示し、実線 端子板3の四辺各中央部には、端子板3の本体に 5 はlmの高さから該共振子を落下させた後の共振 特性を示すものである。この2つのグラフの対比 から明らかなように、この考案の一実施例は落下 衝撃特性に優れている。

6

考案の効果

以上のように、この考案によれば、保持片によ つて圧電素子とそれを圧接挟持する端子板との位 置関係を固定できるので、圧電素子のずれによる 共振特性の変動を防止した圧電共振子とすること ができる。特に、落下衝撃特性に優れた圧電共振

図面の簡単な説明

第1図は、この考案の一実施例の分解斜視図で ある。第2図は、他の実施例の分解斜視図であ る。第3図および第4図は、十字ホルダ4の変形 振子の落下衝撃に伴う共振特性を示すグラフであ る。第6図は、第1図に示すこの考案の一実施例 の落下衝撃に伴う共振特性の変化を示すグラフで ある。

図において、1は圧電素子、2,3は端子板、 4は保持片の一例の十字ホルダ、6a~6dは保 持片、41a~41dはストツパ部を示す。

第3図

第4図

第1図

