2023.10.26

Задача 293. $\begin{vmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & a & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{vmatrix}$

Решение:

Разложим по первому столбцу

$$\begin{vmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{vmatrix} = a \begin{vmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & a & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{vmatrix} = \begin{vmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & a & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{vmatrix} =$$

Теперь размерность матрицы - 2n-1

Вынесем определитель за скобки и разложим по последнему столбику

(чтобы сохранить симметричность)

$$= (a-b) \begin{vmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & 0 & a \end{vmatrix} = (a-b) \begin{pmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ b & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & a & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{vmatrix} + a \begin{vmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & a & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{vmatrix}$$

Вынесем определитель за скобки

Размерность оставшейся матрицы 2(n-1)

Повторив операцию n раз получим ответ:

$$(a^2 - b^2)^n$$

Задача 296.

Вычислить определитель $\begin{vmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 1 & 1 & 1 & \dots & 1 & 1-n \\ 1 & 1 & 1 & \dots & 1-n & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1-n & 1 & \dots & 1 & 1 \end{vmatrix}$

Решение:

Задача 297.

Вычислить определитель $\begin{vmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 3 & 4 & \dots & 1 \\ 3 & 4 & 5 & \dots & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & 1 & 2 & \dots & n-1 \end{vmatrix}$

Решение:

Вычтем из i строки i-1ю

$$\begin{vmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 3 & 4 & \dots & 1 \\ 3 & 4 & 5 & \dots & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & 1 & 2 & \dots & n-1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 1 & 1 & 1 & \dots & 1 & 1-n \\ 1 & 1 & 1 & \dots & 1-n & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1-n & 1 & \dots & 1 & 1 \end{vmatrix}$$

Задача 374(b).

Вычислить определитель Δ посредством умножения на определитель δ

$$\Delta = \begin{vmatrix} -1 & -9 & -2 & 3 \\ -5 & 5 & 3 & -2 \\ -12 & -6 & 1 & 1 \\ 9 & 0 & -2 & 1 \end{vmatrix}; \delta = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{vmatrix}$$

Решение.

$$\Delta = \begin{vmatrix} -1 & -9 & -2 & 3 \\ -5 & 5 & 3 & -2 \\ -12 & -6 & 1 & 1 \\ 9 & 0 & -2 & 1 \end{vmatrix}; \delta = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{vmatrix}$$

$$\Delta * \delta = \begin{vmatrix} -1 & -9 & -2 & 3 \\ -5 & 5 & 3 & -2 \\ -12 & -6 & 1 & 1 \\ 9 & 0 & -2 & 1 \end{vmatrix} * \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 4 & 3 \\ 0 & 3 & -1 & -2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 2 * 3 * 3 * 1 = 18$$

Задача 391.

Доказать, что $\det\begin{pmatrix}E_m&B\\C&D\end{pmatrix}=\det(D-CB)$. Здесь B и C – произвольные $m\times n$ - и $n\times m$ -матрицы, D – квадратная матрица порядка n.

Решение: