CSE 411: Machine Learning

Introduction

Dr Muhammad Abul Hasan

Department of Computer Science and Engineering Green University of Bangladesh muhammad.hasan@cse.green.edu.bd

Spring 2023

Outline

- 1 Data and Learning
- 2 Machine Learning
- 3 Supervised Learning
- 4 Unsupervised Learning
- 5 Reinforcement Learning

Wisdom is not a product of schooling but of the lifelong attempt to acquire it.

- Albert Einstein

Big Data

- Widespread use of personal computers and wireless communication leads to "big data"
- We are both producers and consumers of data
- Data is not random, it has structure, e.g., customer behavior
- We need "big theory" to extract that structure from data for
 - Understanding the process
 - 2 Making predictions for the future

CSE 411: Machine Learning

Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:
 - People who bought "Blink" also bought "Outliers" (www.amazon.com)
- Build a model that is a good and useful approximation to the data.

CSE 411: Machine Learnin

Data Mining

- Retail: Market basket analysis, Customer relationship management (CRM)
- **Finance**: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Spam filters, intrusion detection
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- •••

Machine Learning

What is Machine Learning?

- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to:
 - Solve the optimization problem
 - Representing and evaluating the model for inference

Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

Learning Associations

- Basket analysis: P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services.
 - Example: P(chips|beer) = 0.7

Supervised Learning

CSE 411: Machine Learning Dr Muhammad Abul Hasan

Supervised Learning: Classification

Example: Credit scoring

 Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF income $> \theta_1$ AND savings $> \theta_2$ THEN low-risk ELSE high-risk

Classification: Applications

- AKA Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Medical diagnosis: From symptoms to illnesses
- **Biometrics**: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc
- Outlier/novelty detection:

Supervised Learning: Regression

Example: Price of a used car

- x: car attributes
- y: price
- y = g(x|q)
 - g() model
 - q parameters

Supervised Learning: Uses

- **Prediction of future cases**: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- **Compression**: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

SE 411: Machine Learning Dr Muhammad Abul Hasan

Unsupervised Learning

CSE 411: Machine Learning Dr Muhammad Abul Hasan

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Reinforcement Learning

CSE 411: Machine Learning Dr Muhammad Abul Hasan

Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

Thank You!