Parameter Estimation

Given samples $D = \{x^1, \dots, X^N\}$, form of the distribution $p(x) = f(x; \mathbf{w})$ estimate values of the parameters w.

i.i.d assumption: each instance is independently and identically distributed.

Maximum Likelihood Estimation (MLE)

parameters

- Find the value w for which the probability (likelihood) of the data is maximized.
- Likelihood of data L(w; D)

$$L(W;D) = \prod_{i=1}^{N} f(x^{i}; \tilde{W}) : \tilde{W} = \underset{given \ b \ Ws}{\text{Argmax}} L(W;D)$$

- Maximizing log-likelihood of data is equivalent to maximizing likelihood.

Solving the MLE objective

Apply numerical optimization algorithms...e.g. stochastic gradient ascent

For many simple distributions, the objective is concave in w. Maxima of w iff

Eg: logf(x'; w) £S concare for Beronvilli, Gaussian gradients w.r.t **w** is zero.

of
$$\nabla_{W} LL(W,D) = 0$$
 then W^* is global maxima:

(=) $\nabla_{W} \sum_{i=1}^{N} log f(x^i; W) = 0$

Parameter estimation for Bernoulli distribution

MLE for Bureworth:
$$f(x; w) = w^{n}(1-w)^{1-n}$$
 $\chi^{i} \in \{0, 1\}$
 $LL(w; D = \{x', x', -x''\}) = \sum_{i=1}^{N} log w^{i}(1-w)^{1-n}$ $\chi^{i} \in \{0, 1\}$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1}^{N} \chi^{i} log w + (1-\chi^{i}) log (1-w)$
 $= \sum_{i=1$

MLE for Gaussian distribution

$$f(x^{i}; \mathbf{W} = (M, \sigma^{2})) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-M)^{2}}{2\sigma^{2}}} D = \{x^{i}, x^{2}, -x^{N}\}$$

$$L((w^{i}; D)) = \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x^{i}-M)^{2}}{2\sigma^{2}}}$$

$$= \sum_{i=1}^{N} - (x^{i}-M)^{2} - \log \sigma \left(-\log \sqrt{2\pi}\right) + \text{constant}.$$

$$\int_{W} L((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} LL((w^{i}, D)) = 0 = \int_{0}^{\infty} LL((w^{i}, D)) = 0$$

$$\int_{0}^{\infty} L$$

As a result $\hat{\sigma}$ is known to have some "bias". Statistical correction for the bias is obtained unideg $\frac{N}{\sigma^2} = \frac{N}{2} \left(\frac{x^2 - \hat{h}}{h} \right)^2$

MLE for Multinomial distribution

$$\begin{array}{c} \times \ \in \ \{1,2,\ldots K\} \\ \times \$$

$$\hat{P}_{j} = \frac{\gamma_{j}(D)}{N}$$

Example: states from which students { [= Guyenat, 2 = TN; 3 = Mah, 4 = Odisha, ---. { Ve book three samples. $x' = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad x' = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix};$ estimation 0 $P_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}; \quad P_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}; \quad P_3 = 0; \quad P_4 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}; \quad P_5 = \begin{bmatrix} 1 \\ 6 \end{bmatrix}; \quad P_6 = 0$