第6章 微分几何(H)2024 秋季期中

注意事项:

- 1. 试题中 \mathbb{R}^3 等同于欧氏空间 \mathbb{E}^3 .
- 2. 曲面 M: r = r(u, v) 若满足 $F \equiv M \equiv 0$, 则其 Gauss 方程和 Codazzi 方程可写为:

$$-\sqrt{EG}\left(\left(\frac{(\sqrt{E})_v}{\sqrt{G}}\right)_v + \left(\frac{(\sqrt{G})_u}{\sqrt{E}}\right)_u\right) = LN \pi L_v = HE_v, N_u = HG_u.$$

▲ 练习 6.1(8 分)

- 1. (4 分) 设 $f: \mathbb{R}^3 \to \mathbb{R}, f(x,y,z) = e^x \cos y$. 设 v_p 为 \mathbb{R}^3 的一个切向量, 其中 v = (2,-1,3), p = (2,0,-1). 计算 d $f(v_p)$.
- 2. (4 分) 设 r, θ, z 为 \mathbb{R}^3 的圆柱坐标函数, 也即: $z = r \cos \theta, y = r \sin \theta, z = z$. 计算体积元 $dx \wedge dy \wedge dz$ 用 r, θ, z 以及 $dr, d\theta, dz$ 的表达式.
- - 1. (4') 证明 s 为弧长参数.
 - 2. (4') 求该曲线的主法向量 n 和副法向量 b.
 - 3. (5') 求该曲线的曲率和挠率, 判断该曲线是何种曲线, 并说明理由.

▲ 练习 6.3(23 分)

- 1. (7') 设 β : $\mathbb{R} \to \mathbb{R}^3$ 为 xy 平面上单位圆周曲线的弧长参数化曲线. 在每点 $\beta(s)$ 处放一条与单位圆径向方向垂直, 其切向与单位圆切向 $\beta'(s)$ 成 45° 夹角的直线 $\ell(s)$ 所形成的直纹面记作 M_1 . 将每点 $\beta(s)$ 处的直线 $\ell(s)$ 替换成与其垂直并且与单位圆径向方向垂直的直线 $\ell(x)$ 所测直线族形成的直纹面记作 M_2 . 试证明 M_1 和 M_2 作为 \mathbb{R}^3 的点集相等.
- 2. (7') 设 M 为曲线 $r: \mathbb{R} \to \mathbb{R}^3, r(t) = (g(t), h(t), 0), h > 0$ 绕着 x 轴旋转所得的旋转面. 设 h' 恒不为零, 证明该曲线 M 总是可以正则参数化为如下形式:

$$r(u, v) = (f(u), u\cos v, u\sin v).$$

- 3. (9') 求 (b) 中正则参数曲面 r(u,v) 的主曲率, Gauss 曲率和平均曲率.
- ▲ 练习 6.4(15 分) 设 r = r(s) 是一条弧长参数空间曲线, 其曲率 $\kappa > 0$, 挠率 $\tau \neq 0$.
 - 1. (7') 设曲线 r 落在以 $c \in \mathbb{R}^3$ 为心,R 为半径的球面上,证明:

$$r-c=-\rho\vec{n}-\rho'\sigma\vec{b}$$
.

其中 \vec{n} 和 \vec{b} 分别为其主法向量和副法向量, $\rho = \frac{1}{n}, \sigma = \frac{1}{x}$.

- 2. (8') 设 $\rho^2 + (\rho'\sigma)^2$ 为常值函数, $\rho' \neq 0$. 证明:r 必落在某一个球面上.
- ▲ 练习 6.5(16 分) 设 $M: r = r(u, v), (u, v) \in D \subseteq \mathbb{R}^2$ 为 \mathbb{R}^3 中的正则曲面片. 设其第一, 第二基本形式为

1. (7') 记 W 为其 Weingarten 变换. 证明下式对任意 $v, w \in T_nM, \forall p \in M$ 成立:

$$\langle \mathcal{W}^2(v), w \rangle - 2HII(v, w) + KI(v, w) = 0.$$

2. (9') 记 $v = v_1 r_u + v_2 r_v$ 为曲面的一个非零切向量. 证明 v 为主方向, 当且仅当

$$\det \left(\begin{array}{ccc} v_2^2 & -v_1v_2 & v_1^2 \\ E & F & G \\ L & M & N \end{array} \right) = 0.$$

- **练习 6.6(25** 分) 设 $M: r = r(u, v), (r, v) \in D \subseteq \mathbb{R}^2$ 为 \mathbb{R}^3 中没有脐点的正则曲面片. 其第一, 第二基本形式如上题所记. 设 其参数化为正交曲率线网, 且 v— 线的主曲率恒为 0.
 - 1. (5') 证明: 光滑向量值函数 $t\mapsto v(t)\in\mathbb{R}^2$ 方向不变, 当且仅当 $v(t)\wedge v'(t)=0$.
 - 2. (5') 计算 Christoffel 符号 Γ^1_{22} 用函数 E, F, G 及其偏导数的表达式.(注意指标定义方式为 $u^1=u, u^2=v$.)
 - 3. (5') 证明: $r_{vv} \wedge r_v = \Gamma_{22}^1 r_u \wedge r_v$.
 - 4. (10') 证明:M 是直纹面.