I225E Statistical Signal Processing

7. Spectral Analysis II

MAWALIM and UNOKI

candylim@jaist.ac.jp and unoki@jaist.ac.jp

School of Information Science

White Noise and Linear System

- Consider white noise W(t) as input to linear system, whose impulse response is given by h(t).
- Find the output spectrum.

White Noise:
$$W(t) \longrightarrow h(t)$$
 Output: $Y(t)$

Autocorrelation of white noise W(t) are:

$$R_{WW}(\tau) = q\delta(\tau)$$

- At $\tau = 0$: $R_{WW}(0) = q\delta(0) \rightarrow \infty$ (conceptually, the value is very high). This implies that the signal is perfectly correlated with itself at the same time $(\tau = 0)$.
- At $\tau \neq 0$: $R_{WW}(\tau) = q\delta(\tau) = 0$. This means that the white noise signal at any time t is completely uncorrelated with its value at any other time $t + \tau$ (where $\tau \neq 0$).

White Noise and Linear System

Power-spectrum of white noise W(t) are

$$S_{WW}(\omega) = q$$

■ By the Wiener-Khinchin theorem:

$$S_{WW}(\omega) = F\{R_{WW}(\tau)\} = F\{q\delta(\tau)\}$$
$$= q \int_{-\infty}^{\infty} \delta(\tau)e^{-j\omega\tau}d\tau = qe^{-j\omega(0)} = q$$

- The power spectrum of white noise is a constant (q) across all frequencies ω (white noise has equal power at every frequency).
- Output Spectrum of an LTI System $S_{YY}(\omega)$ is

$$S_{YY}(\omega) = q|H(\omega)|^2$$

This implies that transfer function $H(\omega)$ can be obtained by injecting a white noise into linear system and then by computing the output spectrum. \rightarrow System Identification

System Identification

Analysis and Identification

Identified System Characteristics: $(|H(\omega)|^2)$

- Components:
 - Unknown System
 - Known Input White noise is a particularly useful input for system identification because its power is evenly distributed across all frequencies.
 - Measured Output
 - Inference of System Properties

Example 1: Smoothing Filter

Linear system that takes moving average of input X(t)

$$\mathbf{Y}(t) = \frac{1}{2T} \int_{t-T}^{t+T} \mathbf{X}(\tau) d\tau$$

is called **smoothing filter**. Compute power-spectrum of output Y(t).

Hint:

To compute the power spectrum of the output Y(t), you need to:

- 1. Find the impulse response h(t) of the moving average filter.
- 2. Compute the frequency response $H(\omega)$ by taking the Fourier Transform of h(t).
- 3. Use the relationship $S_{YY}(\omega) = |H(\omega)|^2 S_{XX}(\omega)$, where $S_{XX}(\omega)$ is the power spectrum of the input X(t).

Denoting impulse response of linear system by h(t),

$$Y(t) = \int_{-\infty}^{\infty} h(t - \tau) X(\tau) d\tau = h(t) * X(t)$$

$$H(\omega) = \int_{-T}^{T} \frac{1}{2T} e^{-i\omega t} dt = \frac{\sin T\omega}{T\omega}.$$

Therefore,

$$S_{YY}(\omega) = S_{XX}(\omega)|H(\omega)|^2 = S_{XX}(\omega)\frac{\sin^2 T\omega}{T^2\omega^2}.$$

Smoothing filter functions as low-pas filter.

On the contrary, by subtracting the moving average from input $\boldsymbol{X}(t)$ as

$$\mathbf{Z}(t) = \mathbf{X}(t) - \frac{1}{2T} \int_{t-T}^{t+T} \mathbf{X}(\tau) d\tau$$

transfer function $H(\omega) = 1 - \frac{\sin T\omega}{T\omega}$ provides high-pass filter.

Example 2: Stochastic Resonance

Input stationary process X(t) into a linear system having the following transfer function:

$$H(\omega) = \frac{1}{\omega^2 - 2\omega + 5}.$$

Suppose that input power is $E\{X^2(t)\}=10$. Find input spectrum $S_{XX}(\omega)$ that maximizes power $E\{Y^2(t)\}$ of output Y(t).

$$E\{Y^{2}(t)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{YY}(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) |H(\omega)|^{2} d\omega$$

$$\leq |H(\omega_{n})|^{2} \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega$$

$$= |H(\omega_{n})|^{2} E\{X^{2}(t)\}$$

Here, $|H(\omega_n)|$ stands for maximal value of $|H(\omega)|$.

Because
$$H(\omega) = \frac{1}{(\omega-1)^2+4}$$
, $|H(\omega_m)| = \frac{1}{4}$ when $\omega_m = 1$. Hence,

 $E\{Y^2(t)\} \leq \frac{10}{16}$. Equality holds for $R_{XX}(\tau) = 10 \cos \tau$.

Example 3: Differential Equation

Consider a linear system with the following first-order linear differential equation with a white noise input W(t):

$$Y'(t) + aY(t) = W(t)$$

where a > 0 is a constant.

W(t) has an autocorrelation function $R_{WW}(\tau) = q\delta(\tau)$, where q is the power spectral density level.

Find:

- (a) The transfer function $H(\omega)$ of the system.
- (b) The power spectrum $S_{YY}(\omega)$ of the output Y(t).
- (c) The autocorrelation function $R_{YY}(\tau)$ of the output Y(t).

(a) The transfer function $H(\omega)$ of the system.

Take the Fourier Transform of the differential equation:

$$j\omega Y(\omega) + aY(\omega) = W(\omega)$$
$$Y(\omega)(j\omega + a) = W(\omega)$$

The transfer function
$$H(\omega) = \frac{Y(\omega)}{W(\omega)}$$
 is:

$$H(\omega) = \frac{1}{j\omega + a}$$

(b) The power spectrum $S_{YY}(\omega)$ of the output Y(t).

First, find the power spectrum of the input W(t):

$$S_{WW}(\omega) = q$$

The power spectrum of the output Y(t) is given by:

$$S_{YY}(\omega) = |H(\omega)|^2 S_{WW}(\omega)$$

We need to find $|H(\omega)|^2$:

$$|H(\omega)|^2 = H(\omega)H^*(\omega) = \frac{1}{j\omega + a} \cdot \frac{1}{-j\omega + a} = \frac{1}{a^2 + \omega^2}$$

Now, substitute $S_{WW}(\omega) = q$:

$$S_{YY}(\omega) = \frac{1}{a^2 + \omega^2} \cdot q = \frac{q}{a^2 + \omega^2}$$

(c) The autocorrelation function $R_{YY}(\tau)$ of the output Y(t).

The autocorrelation function $R_{YY}(\tau)$ is the inverse Fourier Transform of the power spectrum $S_{YY}(\omega)$:

$$R_{YY}(\tau) = F^{-1}1\{S_{YY}(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{q}{a^2 + \omega^2} e^{j\omega\tau} d\omega$$

We know that the inverse Fourier Transform of $\frac{1}{a^2+\omega^2}$ is $\frac{\pi}{a}e^{-a|\tau|}$.

Therefore:

$$R_{YY}(\tau) = \frac{q}{2\pi} \cdot \frac{\pi}{a} e^{-a|\tau|} = \frac{q}{2a} e^{-a|\tau|}$$

Exercise

For a system of differential equation with white noise input, find auto-correlation and power-spectrum of the system.

$$Y''(t) + 5Y'(t) + 6Y(t) = X(t),$$

$$R_{XX}(\tau) = 60\delta(\tau).$$

Solution: By substituting $t = t_2$, multiplying by $X(t_1)$ from left hand side, and taking expectation,

$$R_{XY''}(t_1, t_2) + 5R_{XY'}(t_1, t_2) + 6R_{XY}(t_1, t_2) = 60\delta(\tau)$$

By denoting $\tau = t_1 - t_2$ and taking Fourier transform $S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-i\omega\tau} d\tau$,

$$S_{XY'}(\omega) = \int_{-\infty}^{\infty} R_{XY'}(\tau) e^{-i\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} (-1) \frac{dR_{XY}(\tau)}{d\tau} e^{-i\omega\tau} d\tau$$

$$= (-i\omega) \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-i\omega\tau} d\tau$$

$$= (-i\omega) S_{XY}(\omega)$$

$$S_{XY''}(\omega) = (-i\omega) S_{XY'}(\omega) = (-i\omega)^2 S_{XY}(\omega)$$

Therefore,

$$(-i\omega)^2 S_{XY}(\omega) + (-i\omega) 5 S_{XY}(\omega) + 6 S_{XY}(\omega) = 60$$

$$\to S_{XY}(\omega) = \frac{60}{-\omega^2 - 5i\omega + 6}$$

By taking the Fourier transform of

$$R_{Y''Y}(\tau) + 5R_{Y'Y}(\tau) + 6R_{YY}(\tau) = R_{XY}(\tau),$$

$$(i\omega)^2 S_{YY}(\omega)(j\omega) 5S_{YY}(\omega) + 6S_{YY}(\omega) = \frac{60}{-\omega^2 - 5j\omega + 6}.$$

Hence,

$$S_{YY}(\omega) = \frac{60}{(-\omega^2 + 5i\omega + 6)(-\omega^2 - 5i\omega + 6)}$$

$$= 3\frac{2\times 2}{2^2 + \omega^2} - 2\frac{2\times 3}{3^2 + \omega^2}$$

$$R_{YY}(\tau) = 3e^{-2|\tau|} - 2e^{-3|\tau|}$$

Application of Differential Equation

- $\blacksquare X(t)$: Location of particle,
- m: Mass
- f: Coefficient of friction
- cX(t): External force (c is constant and constrained motion if $c \neq 0$)
- \blacksquare F(t): Collision force
- T: Temperature
- k: Boltzmann constant

$$mX''(t) + fX'(t) + cX(t) = F(t)$$

Suppose F(t) has mean $E\{F(t)\}=0$ and power-spectrum $S_F(\omega)=2kTf$.

Solution:

The system function is

$$\frac{1}{|H(\omega)|^2} = (ms^2 + fs + c)(ms^2 - fs + c)|_{s=i\omega}$$
$$= (c - m\omega^2)^2 + f^2\omega^2.$$

Therefore,

$$S_{X}(\omega) = S_{F}(\omega)|H(\omega)|^{2}$$

$$= \frac{2kTf}{(c-m\omega^{2})^{2}+f^{2}\omega^{2}}.$$

If equation $ms^2 + fs + c = 0$ has complex conjugate $s_{1,2} = -\alpha \pm i\beta$,

$$\alpha = \frac{f}{2m}, \ \alpha^2 + \beta^2 = \frac{c}{m},$$

autocorrelation of X(t) is

$$R_{X}(\tau) = \frac{kT}{c} e^{-\alpha|\tau|} (\cos \beta \tau + \frac{\beta}{\alpha} \sin \beta |\tau|).$$

Since X(t) is a normal process with mean 0 and variance $R_X(0) = \frac{kT}{c}$ for fixed t, its density is

$$f_X(x) = \sqrt{\frac{c}{2\pi kT}} e^{-\frac{cx^2}{2kT}}$$

In case of Free Motion (c = 0):

Denoting V(t) = X'(t), mV'(t) + fV(t) = F(t).

The system function is

$$\frac{1}{|H(\omega)|^2} = (ms + f)(ms - f)|_{s=j\omega} = m^2\omega^2 + f^2.$$

Therefore,
$$S_{\mathbf{V}}(\omega) = S_{\mathbf{F}}(\omega)|H(\omega)|^2 = \frac{2kTf}{m^2\omega^2 + f^2}$$
,

$$R_{\mathbf{V}}(\tau) = \frac{kT}{m} e^{-\frac{f|\tau|}{m}}.$$

Since V(t) is a normal process with mean 0 and

variance
$$R_V(0) = \frac{kT}{m}$$
, its density is $f_V(v) = \sqrt{\frac{m}{2\pi kT}}e^{-\frac{mv^2}{2kT}}$

Causality

Definition:

A system is said to be causal if its output at any time t depends only on the input at the present time t and in the past (i.e., for times $\leq t$).

- In simpler terms, a causal system's output cannot "predict" future inputs.
- Real-world physical systems are generally causal because an effect cannot precede its cause.

Causality

The impulse response h(τ) of an LTI system completely characterizes the system.

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

- For causality, y(t) should only depend on $x(\tau)$ where $\tau \leq t$.
- This means that if $\tau > t$ (future input), the contribution to the integral should be zero. This happens if $h(t \tau) = 0$ when $\tau > t$.
- Let $\alpha = t \tau$. If $\tau > t$, then $\alpha < 0$. So, for causality, we need $h(\alpha) = 0$ for all $\alpha < 0$.

Causality

- Non-causal: For τ < 0, $h(\tau) \neq 0$.
- Causal: For $\tau < 0$, $h(\tau) = 0$.

Exercise

Determine whether the following LTI systems, defined by their impulse responses h(t), are causal or non-causal. Justify your answer for each system.

- a) $h_1(t) = e^{-2t}u(t)$, where u(t) is the unit step function $(u(t) = 1 \text{ for } t \ge 0, \text{ and } u(t) = 0 \text{ for } t < 0)$.
- b) $h_2(t) = e^{3t}u(-t)$, where u(-t) = 1 for $t \le 0$, and u(-t) = 0 for t > 0.
- c) $h_3(t) = \sin(t)$ for all t.

Factorization and Innovation

- Stationary process X(t) (Input to Whitening)
- "Whitening" Block ($\gamma \leftrightarrow \Gamma$):
 - $\Gamma(s)$: Whitening filter
 - This block represents a filter or an operation that aims to transform the input X(t) into **an innovations of** X(t), denoted as I(t), e.g., a white noise process.
- "Innovation" Block $(I \leftrightarrow L)$: L(s): Innovation filter
 - This block represents a shaping filter or an operation that takes the innovation process and transforms it back into X(t).

Factorization and Innovation

For stationary process X(t), consider system $\Gamma(s)$ that satisfies

$$I(t) = \int_0^\infty \gamma(\alpha) X(t - \alpha) d\alpha$$
 $R_{II}(\tau) = E\{I(t + \tau)I(t)\} = \delta(\tau)$
Since $L(s) = 1/\Gamma(s)$ is stable and causal, $X(t) = \int_0^\infty l(\alpha)I(t - \alpha)d\alpha$.
 $X(t)$ is called **regular**.

Note Laplace transform:

$$\Gamma(s) = \int_0^\infty \gamma(\tau) e^{-s\tau} d\tau$$
$$L(s) = \int_0^\infty l(\tau) e^{-s\tau} d\tau$$

Necessary and sufficient condition of regular process

■ Denoting power-spectrum of X(t) by $S_{XX}(s)$ ($s = i\omega$),

$$S_{XX}(i\omega) = S_{II}(i\omega)|L(i\omega)|^{2}$$

$$= S_{II}(i\omega)L(i\omega)L^{*}(i\omega)$$

$$= S_{II}(i\omega)L(i\omega)L(-i\omega).$$

Since power-spectrum of I(t) is $S_{II}(i\omega) = 1$, substitution of $s = i\omega$ yields $S_{XX}(s) = L(s)L(-s)$.

On the other hand, if power-spectrum of X(t) can be written as the above product, power spectrum of I(t) is

$$S_{II}(s) = S_{XX}(s)\Gamma(s)\Gamma(-s)$$

= $L(s)L(-s)\Gamma(s)\Gamma(-s) = 1$.

Hence, necessary and sufficient condition for X(t) to be regular is $S_{XX}(s)$ can be decomposed as

$$S_{XX}(s) = L(s)L(-s)$$

Paley-Wiener Condition

Necessary and sufficient condition for X(t) to be regular is

$$\int_{-\infty}^{\infty} \frac{\ln S_{XX}(\omega)}{1+\omega^2} d\omega < \infty$$

Rational Spectra

Any positive rational spectrum $S(\omega) = \frac{A(\omega)}{B(\omega)}$ (where $A(\omega)$ and $B(\omega)$ are polynomials of ω) satisfies the Paley-Wiener condition as

$$\int_{-\infty}^{\infty} \frac{\ln S_{XX}(\omega)}{1+\omega^2} d\omega = \int_{-\infty}^{\infty} \frac{\ln A(\omega) - \ln B(\omega)}{1+\omega^2} d\omega < \infty$$

Corresponding process X(t) is regular.

In case X(t) is real and has rational spectrum

Since
$$S_{XX}(-\omega) = S_{XX}(\omega)$$
, $S_{XX}(\omega) = A(\omega^2)/B(\omega^2)$.
Substitution of $s = j\omega$ yields $S_{XX}(s) = A(-s^2)/B(-s^2)$.

Since $A(-s^2)$ and $B(-s^2)$ have real coefficients, their roots s_i are real or complex conjugate. If s_i is pole or zero, $-s_i$ is also pole or zero.

All roots (pole or zero) can be separated into two groups: negative real part ($\Re s_i < 0$) and positive real part ($\Re s_i > 0$). L(s) can be constructed using roots with negative real part as

$$S_{XX}(s) = \frac{N(s)N(-s)}{D(s)D(-s)}, L(s) = \frac{N(s)}{D(s)}.$$

If L(s) is analytic in space of negative real part ($\Re s_i < 0$), we say "L(s) has **minimum-phase property**."

Matched Filter

- A matched filter is a linear time-invariant (LTI) filter designed to maximize the signal-to-noise ratio (SNR) at its output at a specific time instant when the input to the filter is the signal f(t) corrupted by additive noise n(t).
- Why is it called a "matched" filter?

 The filter's impulse response is "matched" to the shape of the signal you are trying to detect (in a time-reversed and possibly conjugated sense), taking into account the characteristics of the noise.

Matched Filter

Consider deterministic signal f(t) with additive noise v(t):

$$X(t) = f(t) + v(t)$$

We detect whether signal f(t) is included in observation data X(t). The function f(t) is known; v(t) is stationary noise and its power-spectrum $S_{vv}(\Omega)$ is known.

(Example: Detection of reflection wave from radar)

Consider X(t) as input to system $H(\omega)$. Denoting the output by Y(t),

$$Y(t) = Y_f(t) + n(t),$$

$$Y_f(t) = f(t) * h(t),$$

$$n(t) = v(t) * h(t).$$

Signal-to-noise ratio (SNR) r_0 is given by

$$r_{0} = \frac{|Y_{f}(t)|^{2}}{E\{n^{2}(t)\}} = \frac{|Y_{f}(t)|^{2}}{\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{nn}(\omega) d\omega}$$
$$= \frac{|Y_{f}(t)|^{2}}{\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{vv}(\omega) |H(\omega)|^{2} d\omega}$$

Design filter $H(\omega)$ in such a way that SNR is maximized.

Case of white noise

■ White noise v(t)

Because of white noise, $S_{vv}(\omega) = S_0$.

By inverse Fourier transform, $y_f(t)$ can be written as

$$y_f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) H(\omega) e^{i\omega t} d\omega.$$

From Cauchy-Schwarz inequality,

$$r_0 = \frac{\left|\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) H(\omega) e^{i\omega t} d\omega\right|^2}{\frac{S_0}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega} \leq \frac{\int_{-\infty}^{\infty} |F(\omega)|^2 d\omega \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega}{2\pi S_0 \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega}$$

The equality holds in the following case:

$$H(\omega) = F^*(\omega)e^{-i\omega t},$$

$$h(\tau) = f(t - \tau).$$

 $H(\omega)$ that maximizes cross-correlation between x(t) = f(t) + v(t) and kf(t) is called *Matched Filter*.

Remark:

 $h(\tau) = f(t - \tau)$ is not necessarily causal. In that case, optimal causal filter is given by $h(\tau) = f(t - \tau)U(\tau)$ (where $U(\tau) = 1$ ($\tau \ge 0$); 0 ($\tau < 0$)).

Case of colored noise

lacksquare Colored noise: v(t)

Consider a whitening filter $\Gamma_v(j\omega)$ for v(t). If we input X(t) = f(t) + v(t) into $\Gamma_v(j\omega)$, the output is given by $Y(t) = (f(t) + v(t)) * \gamma_v(t)$ $= f(t) * \gamma_v(t) + v(t) * \gamma_v(t) = f_\gamma(t) + I(t)$

The output Y(t) is a transformed deterministic signal $f_{\nu}(t) = f(t) * \gamma_{\nu}(t)$ with additive white noise I(t).

Using the results obtained with white noise, the optimal filter is given by

$$h_0(\tau) = f_{\gamma}(t - \tau),$$

$$H_0(\omega) = F_{\gamma}^*(\omega)e^{-i\omega t} = F^*(\omega)\Gamma_{\nu}^*(j\omega)e^{-i\omega t}.$$

Finally, the total filter is obtained as

$$H(\omega) = H_0(\omega)\Gamma_v \ (i\omega) = F^*(\omega)\Gamma_v^*(i\omega)\Gamma_v \ (i\omega)e^{-i\omega t}$$
$$= F^*(\omega)|\Gamma_v \ (i\omega)|^2 e^{-i\omega t}$$
$$= \frac{F^*(\omega)e^{-i\omega t}}{S_{m}(\omega)}.$$