Binary Search Tree (BST) Sort

What is a binary search tree?

- · A binary tree is organized in a binary tree.
- · It can be represented by a linked data structure in which each node is an object.
- · Each node contains a key field, satellite data, fields left, right, and p which points to its left child, right child and parent respectively.
- · If child or parent is missing, the field contains MIL.
- · Root is the only node whose parent field is NIL

Example:

For any node x, the keys in left subtree of x are at most key[x] and those in right subtree are at least key[x].

The worst case running time for most search - tree operations is proportional to height of tree.

- (a) A BST on 6 nodes with height 2
- (b) A less efficient BST on 6 nodes with height 4.

Binary search tree property:

Let a be a node in a binary search tree.

If y is a node in the left subtree of a, then

key [y] & key [a]

If y is a node in the right subtree of n, then key[n] = key[y]

INORDER - TREE- WALK (root [T])

The binary search tree property allows printing all keys in a BST in sorted order by a simple algorithm, called inorder tree walk:

Let a be the root of BST.

INORDER-TREE- WALK (A)

- 1. if n + NIL
- 2. then INORDER-TREE-WALK (left[a])
- 3. print key [a]
- 4. INDRBER-TREE-WALK (right [21])

Running time: $\theta(n)$ time.

Example:

→ INORDER-TREE-WALK
prints:

235578

INSERTION

19.

The operations of insertion (and deletion) cause the dynamic set represented by a binary search tree to change.

The data structure must be modified to reflect this change, but in such a way that binary search tree property holds.

```
TREE - INSERT (T, Z)
     y - NIL
      n - root [T]
      while of + NIL
             do y + n
                if key [n] < key [n]
 5.
                   then \alpha \leftarrow left[\alpha]
 6.
                    else n = right[n]
 7.
       p[n] -y
  8.
       if y = NIL
  9.
          then root [T] - Z Tree T was empty.
  10.
           else if key [a] < key[z]
  11.
                    then left [y] +Z
  12.
                    else right [y] - z
```

Kunning Time: O(h), where h = height of tree.

Binary Search Tree Sort

T - +

for iel to n

do TREE-INSERT (T, A[i])

Perform an inorder tree walk of T

Example:

* Tree-walk time : D(n)

But, how long does it take to build the BST?

Time to build BST(T)

Time: & depth (X)

Best Case

Good tree (Balanced)

· 12 nlogn

Bad tree

Time. Sdepth (x)

= 1+2+ - . +n

= nln+1)

= 0(n2)

Analysis of BST sort

Best case runtime: 12 (nlogn)
Worst case runtime: 0(n2)

This is same as the quicksort time complexity.

So, what is the relationship between BST sort (build BST) and quicksort?

BST Sort (build BST) and Quick Sort

BST sort performs the same comparisions as quick sort but in a different order.

The time to build the tree is asymptotically the same as the running time of quick sort.