Calculus of Variations

PHYS 301: Analytical Mechanics

T. Brian Bunton, 09/21/17

Problem 1

Consider the function $f = \left(\frac{dy}{dx}\right)^2$, where $y(x) = \sin x$. Add to y(x) the function $\eta(x) = x^2 - \pi x$, and plot $y(\alpha, x)$. Find $J(\alpha)$ between the limits of x = 0 and $x = \pi$. (You probably want to use *Mathematica* to solve the integral.) For what value of α does the stationary value of $J(\alpha)$ occur?

Problem 2

Find the ratio of the radius R to the height H of a right-circular cone of fixed volume V that minimizes the surface area A. (Answer: $H = \sqrt{8} R$.)

Problem 1

Simplify[(Cos[x] +
$$\alpha$$
 (2 x - π))²]
(- $\pi \alpha$ + 2 x α + Cos[x])²

$$\alpha=\frac{12}{\pi^3};$$

Plot[Sin[x] + α (x² - π x), {x, 0, π }]

$$\int_{0}^{\pi} (\cos[x])^{2} dx$$

$$\frac{\pi}{2}$$

$$\int_0^{\pi} 4 \alpha \times Cos[x] dx$$

-8 α

$$-\int_0^{\pi} 2 \alpha \pi \cos[x] dx$$

$$\int_0^{\pi} 4 \alpha^2 x^2 dx$$

$$\frac{4 \pi^3 \alpha^2}{2}$$

$$\int_0^{\pi} -4 \alpha^2 \times \pi \, d \times$$

$$-2 \pi^3 \alpha^2$$

$$\int_0^\pi \alpha^2 \ \pi^2 \ d \!\!\! / \ X$$

$$\pi^3 \alpha^2$$

Problem 2

A =
$$\pi r (r + \sqrt{(h^2 + r^2)});$$

V = $\pi r^2 \frac{h}{3};$

D[A, r]
$$\pi r \left(1 + \frac{r}{\sqrt{h^2 + r^2}} \right) + \pi \left(r + \sqrt{h^2 + r^2} \right)$$

$$\frac{2 h \pi r}{3}$$

Solve
$$\left[\pi r \left(1 + \frac{r}{\sqrt{h^2 + r^2}} \right) + \pi \left(r + \sqrt{h^2 + r^2} \right) + \lambda \frac{2 h \pi r}{3} = 0, \lambda \right]$$

$$\left\{ \left\{ \lambda \to -\frac{3 \left(r + \sqrt{h^2 + r^2} \right)^2}{2 h r \sqrt{h^2 + r^2}} \right\} \right\}$$

D[A, h]
$$\frac{h \pi r}{\sqrt{h^2 + r^2}}$$

Solve
$$\left[\frac{h \pi r}{\sqrt{h^2 + r^2}} + -\frac{3(r + \sqrt{h^2 + r^2})^2}{2 h r \sqrt{h^2 + r^2}} (\frac{\pi r^2}{3}) = 0, h\right]$$

 $\left\{\left\{h \rightarrow -2 \sqrt{2} r\right\}, \left\{h \rightarrow 2 \sqrt{2} r\right\}\right\}$