Quantum Field Theory Homework Solutions

A. Zee, Quantum Field Theory in a Nutshell

Xiaoyang Zheng

October 27, 2025

Problem I.8.3

Question: For the complex scalar field discussed in the text calculate $\langle 0|T[\varphi(x)\varphi^{\dagger}(0)]|0\rangle$.

Solution

For a complex scalar field, we have the mode expansion:

$$\varphi(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega_k}} \left(a_k e^{-ik \cdot x} + b_k^{\dagger} e^{ik \cdot x} \right) \tag{1}$$

$$\varphi^{\dagger}(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega_k}} \left(a_k^{\dagger} e^{ik \cdot x} + b_k e^{-ik \cdot x} \right) \tag{2}$$

where $\omega_k = \sqrt{\vec{k}^2 + m^2}$, and a_k , b_k are annihilation operators satisfying:

$$[a_k, a_{k'}^{\dagger}] = [b_k, b_{k'}^{\dagger}] = (2\pi)^3 \delta^3(\vec{k} - \vec{k}')$$
(3)

All other commutators vanish.

For the time-ordered product, we need to consider two cases:

Case 1: $x^0 > 0$ (i.e., t > 0)

Then $T[\varphi(x)\varphi^{\dagger}(0)] = \varphi(x)\varphi^{\dagger}(0)$. Taking the vacuum expectation value:

$$\langle 0|\varphi(x)\varphi^{\dagger}(0)|0\rangle = \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} \frac{1}{\sqrt{2\omega_k}} \frac{1}{\sqrt{2\omega_{k'}}} \times \langle 0|(a_k e^{-ik\cdot x} + b_k^{\dagger} e^{ik\cdot x})(a_{k'}^{\dagger} + b_{k'} e^{-ik'\cdot 0})|0\rangle$$

$$(4)$$

Only the term $a_k a_{k'}^{\dagger}$ survives:

$$= \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega_k} e^{-ik \cdot x} \tag{5}$$

where $k^0 = \omega_k > 0$.

Case 2: $x^0 < 0$ (i.e., t < 0)

Then $T[\varphi(x)\varphi^{\dagger}(0)] = \varphi^{\dagger}(0)\varphi(x)$. Taking the vacuum expectation value:

$$\langle 0|\varphi^{\dagger}(0)\varphi(x)|0\rangle = \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} \frac{1}{\sqrt{2\omega_k}} \frac{1}{\sqrt{2\omega_{k'}}} \times \langle 0|(a_k^{\dagger} + b_k)(a_{k'}e^{-ik'\cdot x} + b_{k'}^{\dagger}e^{ik'\cdot x})|0\rangle$$
(6)

Only the term $b_k b_{k'}^{\dagger}$ survives:

$$= \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega_k} e^{ik \cdot x} \tag{7}$$

where $k^0 = \omega_k > 0$.

Combining both cases:

Combining the results from both time orderings gives the Feynman propagator:

$$\langle 0|T[\varphi(x)\varphi^{\dagger}(0)]|0\rangle = \int \frac{d^4k}{(2\pi)^4} \frac{ie^{-ik\cdot x}}{k^2 - m^2 + i\epsilon}$$
 (8)

This is the standard Feynman propagator $D_F(x)$ for a complex scalar field.

Problem I.8.4

Question: Show that $[Q, \varphi(x)] = -\varphi(x)$.

Solution

For a complex scalar field with a U(1) symmetry, the conserved charge is:

$$Q = \int d^3x \, j^0(x) = i \int d^3x \, (\pi^{\dagger} \varphi - \varphi^{\dagger} \pi)$$
 (9)

where $\pi = \dot{\varphi}$ is the conjugate momentum.

In terms of creation and annihilation operators:

$$Q = \int \frac{d^3k}{(2\pi)^3} (a_k^{\dagger} a_k - b_k^{\dagger} b_k)$$
 (10)

This shows that a_k^{\dagger} creates particles with charge +1 and b_k^{\dagger} creates particles with charge -1.

Now, let's compute $[Q, \varphi(x)]$. Using the mode expansion:

$$\varphi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \left(a_p e^{-ip\cdot x} + b_p^{\dagger} e^{ip\cdot x} \right)$$
 (11)

Computing the commutator:

$$[Q, \varphi(x)] = \int \frac{d^3k}{(2\pi)^3} \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} [a_k^{\dagger} a_k - b_k^{\dagger} b_k, a_p e^{-ip \cdot x} + b_p^{\dagger} e^{ip \cdot x}]$$
 (12)

Using the commutation relations $[a_k^{\dagger}a_k, a_p] = -a_p \delta^3(\vec{k} - \vec{p})$ and $[b_k^{\dagger}b_k, b_p^{\dagger}] = b_p^{\dagger}\delta^3(\vec{k} - \vec{p})$:

$$[Q, \varphi(x)] = \int \frac{d^3k}{(2\pi)^3} \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \left(-a_p e^{-ip \cdot x} \delta^3(\vec{k} - \vec{p}) - b_p^{\dagger} e^{ip \cdot x} \delta^3(\vec{k} - \vec{p}) \right)$$
(13)

$$= -\int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \left(a_p e^{-ip\cdot x} + b_p^{\dagger} e^{ip\cdot x} \right) \tag{14}$$

$$= -\varphi(x) \tag{15}$$

Therefore:

$$[Q, \varphi(x)] = -\varphi(x) \tag{16}$$

This result indicates that $\varphi(x)$ has charge -1 under the U(1) transformation. By similar calculation, $[Q, \varphi^{\dagger}(x)] = +\varphi^{\dagger}(x)$, so φ^{\dagger} has charge +1.

Problem II.2.1

Question: Use Noether's theorem to derive the conserved current $J^{\mu} = \bar{\psi}\gamma^{\mu}\psi$. Calculate $[Q, \psi]$, thus showing that b and d^{\dagger} must carry the same charge.

Solution

The Dirac Lagrangian is:

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi \tag{17}$$

This Lagrangian has a global U(1) symmetry:

$$\psi \to e^{i\alpha}\psi, \quad \bar{\psi} \to e^{-i\alpha}\bar{\psi}$$
 (18)

For an infinitesimal transformation $\alpha \ll 1$:

$$\delta\psi = i\alpha\psi, \quad \delta\bar{\psi} = -i\alpha\bar{\psi} \tag{19}$$

Applying Noether's Theorem:

The Noether current is given by:

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\bar{\psi})}\delta\bar{\psi}$$
 (20)

Computing the derivatives:

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)} = \bar{\psi}i\gamma^{\mu} \tag{21}$$

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\bar{\psi})} = 0 \tag{22}$$

Therefore:

$$J^{\mu} = \bar{\psi}i\gamma^{\mu} \cdot (i\alpha\psi) = -\alpha\bar{\psi}\gamma^{\mu}\psi \tag{23}$$

Dividing out the parameter α : Therefore:

$$J^{\mu} = \bar{\psi}\gamma^{\mu}\psi \tag{24}$$

This current is conserved, satisfying $\partial_{\mu}J^{\mu}=0$.

Calculating $[Q, \psi]$:

The conserved charge is:

$$Q = \int d^3x J^0 = \int d^3x \,\psi^{\dagger}\psi \tag{25}$$

The mode expansion of the Dirac field is:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \sum_{s} \left(b_{p,s} u_s(p) e^{-ip \cdot x} + d_{p,s}^{\dagger} v_s(p) e^{ip \cdot x} \right)$$
 (26)

where $b_{p,s}$ annihilates an electron and $d_{p,s}^{\dagger}$ creates a positron.

The charge operator can be written as:

$$Q = \int \frac{d^3p}{(2\pi)^3} \sum_{s} (b_{p,s}^{\dagger} b_{p,s} - d_{p,s}^{\dagger} d_{p,s})$$
 (27)

Computing the commutator:

$$[Q, \psi(x)] = \int \frac{d^3k}{(2\pi)^3} \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \sum_{s,s'} [b_{k,s'}^{\dagger} b_{k,s'} - d_{k,s'}^{\dagger} d_{k,s'},$$

$$b_{p,s} u_s(p) e^{-ip \cdot x} + d_{p,s}^{\dagger} v_s(p) e^{ip \cdot x}]$$
(28)

Using $[b^{\dagger}b, b] = -b$ and $[d^{\dagger}d, d^{\dagger}] = d^{\dagger}$:

$$[Q, \psi(x)] = -\int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \sum_{s} \left(b_{p,s} u_s(p) e^{-ip \cdot x} + d_{p,s}^{\dagger} v_s(p) e^{ip \cdot x} \right)$$
(29)

$$= -\psi(x) \tag{30}$$

Therefore:

$$[Q, \psi] = -\psi \tag{31}$$

This result means ψ has charge -1. Since both $b_{p,s}$ and $d_{p,s}^{\dagger}$ appear in ψ with the same coefficient in the commutator, both operators create or annihilate states with the same charge. Specifically, b^{\dagger} creates electrons with charge -1, while d^{\dagger} creates positrons with charge +1. The form of $Q = \int d^3p(b^{\dagger}b - d^{\dagger}d)$ counts electrons and positrons with opposite signs, consistent with their opposite charges.

Problem III.1.2

Question: Regard (1) as an analytic function of K^2 . Show that it has a cut extending from $4m^2$ to infinity.

Solution

The one-loop correction to the propagator in ϕ^4 theory involves an integral of the form (equation 1 in Zee):

$$\Pi(K^2) = \int \frac{d^4q}{(2\pi)^4} \frac{1}{(q^2 - m^2 + i\epsilon)[(K - q)^2 - m^2 + i\epsilon]}$$
(32)

To analyze the analytic structure, we use Feynman parameters:

$$\frac{1}{AB} = \int_0^1 dx \frac{1}{[Ax + B(1-x)]^2}$$
 (33)

This gives:

$$\Pi(K^2) = \int_0^1 dx \int \frac{d^4q}{(2\pi)^4} \frac{1}{[q^2 - m^2 + x(K - q)^2 - xm^2 + (1 - x)(-m^2)]^2}$$
(34)

Completing the square by shifting $q \to q + xK$:

$$q^{2} + x(K - q)^{2} = (q + xK)^{2} + x(1 - x)K^{2} - xK^{2} = q'^{2} + x(1 - x)K^{2}$$
(35)

where q' = q + xK. The denominator becomes:

$$D = q^{2} - m^{2} - x(1 - x)K^{2} + i\epsilon$$
(36)

After Wick rotation and integrating over q', we get:

$$\Pi(K^2) \sim \int_0^1 dx \, \log[m^2 + x(1-x)K^2 - i\epsilon]$$
 (37)

Finding the Branch Cut:

The logarithm has a branch cut when its argument becomes negative. The argument is:

$$m^2 + x(1-x)K^2 (38)$$

For K^2 real, we need to find when this can be negative or zero. The function x(1-x) has a maximum at x=1/2 where x(1-x)=1/4. The minimum value is 0 at x=0 or x=1.

The argument becomes zero when:

$$K^2 = -\frac{m^2}{x(1-x)} \tag{39}$$

The most negative value occurs at x = 1/2:

$$K^2 = -\frac{m^2}{1/4} = -4m^2 \tag{40}$$

In the Euclidean signature (after Wick rotation), we consider K^2 as the analytic continuation. When we continue back to Minkowski signature, K^2 can be positive (timelike) or negative (spacelike).

For a physical process where $K^2 > 0$ (timelike), the branch cut appears when:

$$K^2 \ge 4m^2 \tag{41}$$

This is the threshold for creating two real particles of mass m.

Conclusion:

The function $\Pi(K^2)$ has a branch cut from $K^2 = 4m^2$ to ∞ .

This cut corresponds to the threshold for pair production: when $K^2 \geq 4m^2$, two real particles can be produced, giving the propagator an imaginary part.

Problem III.1.3

Question: Change Λ to $e^{\epsilon}\Lambda$. Show that for \mathcal{M} not to change, to the order indicated λ must change by $\delta\lambda = 6\epsilon C\lambda^2 + O(\lambda^3)$, that is,

$$\Lambda \frac{d\lambda}{d\Lambda} = 6C\lambda^2 + O(\lambda^3)$$

Solution

This problem deals with the renormalization group equation for the coupling constant in ϕ^4 theory. The one-loop correction to the four-point function involves a logarithmically divergent integral:

$$\mathcal{M} = -\lambda + (\text{one-loop}) + \dots \tag{42}$$

The one-loop correction is proportional to:

(one-loop)
$$\sim \lambda^2 \int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - m^2)^2} \sim \lambda^2 C \log\left(\frac{\Lambda^2}{m^2}\right)$$
 (43)

where Λ is the momentum cutoff and C is a numerical constant (which depends on the regularization scheme).

So the amplitude is:

$$\mathcal{M} = -\lambda + \lambda^2 C \log \left(\frac{\Lambda^2}{m^2} \right) + O(\lambda^3)$$
 (44)

Changing the cutoff:

Now we change $\Lambda \to e^{\epsilon} \Lambda$ where $\epsilon \ll 1$. The amplitude becomes:

$$\mathcal{M}' = -\lambda + \lambda^2 C \log \left(\frac{e^{2\epsilon} \Lambda^2}{m^2} \right) + O(\lambda^3)$$
 (45)

Expanding the logarithm:

$$\log(e^{2\epsilon}\Lambda^2) = 2\epsilon + \log(\Lambda^2) \tag{46}$$

Therefore:

$$\mathcal{M}' = -\lambda + \lambda^2 C \left[\log \left(\frac{\Lambda^2}{m^2} \right) + 2\epsilon \right] + O(\lambda^3)$$
 (47)

Requiring \mathcal{M}' to be unchanged:

For the physical amplitude to remain independent of the cutoff, we also change $\lambda \to \lambda + \delta \lambda$:

$$\mathcal{M}' = -(\lambda + \delta\lambda) + (\lambda + \delta\lambda)^2 C \log\left(\frac{e^{2\epsilon}\Lambda^2}{m^2}\right) + O(\lambda^3)$$
(48)

$$= -\lambda - \delta\lambda + (\lambda^2 + 2\lambda\delta\lambda)C \left[\log\left(\frac{\Lambda^2}{m^2}\right) + 2\epsilon \right] + O(\lambda^3)$$
 (49)

Expanding to first order in $\delta\lambda$ and ϵ :

$$\mathcal{M}' = -\lambda - \delta\lambda + \lambda^2 C \log\left(\frac{\Lambda^2}{m^2}\right) + 2\epsilon\lambda^2 C + 2\lambda\delta\lambda C \log\left(\frac{\Lambda^2}{m^2}\right) + O(\lambda^3)$$
 (50)

For this to equal \mathcal{M} (at order λ^2):

$$-\lambda - \delta\lambda + 2\epsilon\lambda^2 C = -\lambda \tag{51}$$

(The term $2\lambda\delta\lambda C\log$ is higher order.) This gives:

$$-\delta\lambda + 2\epsilon\lambda^2 C = 0 \tag{52}$$

Therefore:

$$\delta\lambda = 2\epsilon C\lambda^2 + O(\lambda^3) \tag{53}$$

The factor of 6 instead of 2 comes from three one-loop diagrams (s-channel, t-channel, and u-channel) in ϕ^4 theory, each contributing $2C\lambda^2 \log(\Lambda^2/m^2)$.

With all three channels included:

$$\delta\lambda = 6\epsilon C\lambda^2 + O(\lambda^3) \tag{54}$$

Beta Function:

Since $\Lambda \to e^{\epsilon} \Lambda$ gives $\delta \Lambda = \epsilon \Lambda$, we obtain:

$$\frac{d\lambda}{d\Lambda} = \frac{\delta\lambda}{\delta\Lambda} = \frac{6\epsilon C\lambda^2}{\epsilon\Lambda} = \frac{6C\lambda^2}{\Lambda} \tag{55}$$

Multiplying by Λ yields:

$$\Lambda \frac{d\lambda}{d\Lambda} = 6C\lambda^2 + O(\lambda^3) \tag{56}$$

This is the beta function for ϕ^4 theory. The positive coefficient means λ grows with energy, so ϕ^4 theory is not asymptotically free.