Лекция 11.

Математическое ожидание и дисперсия случайного вектора

$$\mathbf{Def.}$$
 $\vec{EX} = \begin{pmatrix} EX_1 \\ \vdots \\ EX_n \end{pmatrix}$ - математическое ожидание случайного вектора

Def. Дисперсией или матрицей ковариаций называется $D\vec{X} = E((\vec{X} - E\vec{X})(\vec{X} - E\vec{X})^T)$, элементами которой $d_{ij} = \text{cov}(X_i, X_j), d_{ii} = D(X_i)$

Свойства:

1.
$$E(A\vec{X}) = AE\vec{X}$$

2.
$$E(\vec{X} + \vec{B}) = E\vec{X} + \vec{B}$$

3.
$$D(A\vec{X}) = AD\vec{X}A^T$$

4.
$$D(\vec{X} + \vec{B}) = D\vec{X}$$

Уравнение общей регрессии

Пусть результат X зависит от k факторов Z_1, \ldots, Z_k . Рассматриваем теоретическую модель линейной регрессии:

$$X = \beta_1 Z_1 + \beta_2 Z_2 + \dots + \beta_k Z_k + \varepsilon, \text{ где } \vec{Z} = \begin{pmatrix} Z_1 \\ \vdots \\ Z_k \end{pmatrix} \text{- вектор факторов, } \vec{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} \text{- вектор коэффициентов}$$
 регрессии
$$\text{Пусть проведено } n \geq k \text{ экспериментов, } \vec{Z}^{(i)} = \begin{pmatrix} Z_1^{(i)} \\ \vdots \\ Z_k^{(i)} \end{pmatrix} \text{- значения факторов при } i\text{-ом эксперименте, }$$

$$\vec{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
 - соответствующие значения результатов

$$\begin{cases} X_1 = \beta_1 Z_1^{(1)} + \beta_2 Z_2^{(2)} + \dots + \beta_k Z_k^{(1)} + \varepsilon_1 \\ X_1 = \beta_1 Z_1^{(1)} + \beta_2 Z_2^{(2)} + \dots + \beta_k Z_k^{(1)} + \varepsilon_1 \\ \dots \\ X_n = \beta_1 Z_1^{(n)} + \beta_2 Z_2^{(n)} + \dots + \beta_k Z_k^{(n)} + \varepsilon_n \end{cases}$$

Или в матричной форме:
$$\vec{X} = Z^T \vec{\beta} + \vec{\epsilon}$$
, где $Z = \begin{pmatrix} Z_1^{(1)} & Z_1^{(2)} & \dots & Z_1^{(n)} \\ Z_2^{(1)} & Z_2^{(2)} & \dots & Z_2^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ Z_k^{(1)} & Z_k^{(2)} & \dots & Z_k^{(n)} \end{pmatrix}$ - матрица плана, $\vec{\epsilon}$ - вектор

теоретических ошибок

Наша цель такова: по данной матрице плана Z и вектора результатов \vec{X} дать оценки неизвестных параметров регрессии β_i и параметров распределения ошибки ε

Nota. Заметим, что у данной модели мы не теряем свободный член b_0 , так как при необходимости можно считать, что первый фактор тождественен единицы. То есть первая строка матрица плана будет состоять из единиц

Метод наименьших квадратов и нормальные уравнения

Будем считать, что выполнено условие Cond.1, что ранг матрицы $\operatorname{rang} Z = k$, то есть все строки матрицы плана независимы

Введем матрицу $A = ZZ^{T}$. Ее свойства:

- 1. А квадратная и симметричная
- 2. А положительно определенная
- 3. $\exists B = \sqrt{A}$, то есть $B^2 = A$

Пусть
$$\vec{B} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$$
 - вектор оценок $\vec{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}$

Тогда эмпирическая модель регрессии $\vec{\hat{X}} = Z^T \vec{B}, \; \vec{\epsilon_i} = X_i - \hat{X_i}$ - экспериментальная ошибка, или $\vec{\hat{\varepsilon}} = \begin{pmatrix} \hat{\varepsilon}_1 \\ \vdots \\ = \vec{X} - Z^T \vec{B}$ - вектор экспериментальных ошибок

По методу наименьших квадратов подбираем \vec{B} таким образом, чтобы $L(\vec{B}) = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} \longrightarrow \min$

$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \|\vec{\hat{\varepsilon}}\|^{2} = \|\vec{X} - Z^{T}\vec{B}\|^{2} - \text{квадрат расстояния от точки } \vec{X} \text{ до } Z^{T}\vec{B} \text{ в } \mathbb{R}^{n}$$

$$Z^{T}\vec{B} \text{ - точка линейного подпространства, порожденного векторами } Z^{T}\vec{t}, \text{ где } \vec{t} \in \mathbb{R}^{k}$$

Nota. Согласно Cond.1 размерность линейной оболочки, порожденной вектором $Z^T \vec{t}$, $\dim \langle Z^T \vec{t} \rangle =$ k

Наименьшее расстояние получаем, когда квадрат расстояния от точки \vec{X} до данного подпространства, а вектор \vec{B} - проекция вектора \vec{X} на него

Таким образом, вектор $\vec{X} - Z^T \vec{B}$ должен быть ортогонален данному подпространству, то есть скалярное произведение вектора \vec{X} и всех векторов подпространства равно 0

 $(Z^T\vec{t},\vec{X}-Z^T\vec{B})=(Z^T\vec{t})^T(\vec{X}-Z^T\vec{B})=\vec{t}^T(Z^T)^T(\vec{X}-Z^T\vec{B})=\vec{t}^TZ(\vec{X}-Z^T\vec{B})=\vec{t}^T(Z\vec{X}-ZZ^T\vec{B})=0\ \forall \vec{t}\in\mathbb{R}^k$ Так как всем векторами подпространства ортогонален только нулевой вектор, то получаем, что $Z\vec{X}-ZZ^T\vec{B}=0$ или $A\vec{B}=Z\vec{X}$ - нормальное уравнение (или система нормальных уравнений) Так как по свойству 2 матрица A невырожденная, то существует обратная, получаем решение системы: $\vec{B}=A^{-1}Z\vec{X}$

Свойства оценок метода наименьших квадратов

Добавим еще одно важное условие Cond.2: теоретические ошибки ε_i - независимы и имеют одинаковое нормальное распределение $N(0, \sigma^2)$. То есть $E\vec{\varepsilon} = \vec{0}$, $D\vec{\varepsilon} = \sigma^2 E_n$ (ковариации равны нулю в силу независимости)

Свойства:

1.
$$\vec{B} - \vec{\beta} = A^{-1}Z\vec{\varepsilon}$$

$$\vec{B} - \vec{\beta} = A^{-1}Z\vec{X} - \vec{\beta} = A^{-1}Z(Z^T\vec{\beta} + \vec{\varepsilon}) - \vec{\beta} = A^{-1}Z\vec{\varepsilon}$$

2. \vec{B} - несмещенная оценка для вектора $\vec{\beta}$

$$E(\vec{B} - \vec{\beta}) = E(A^{-1}Z\vec{\epsilon}) = A^{-1}ZE\vec{\epsilon} = 0 \Longrightarrow E\vec{B} = \vec{\beta}$$

3. Матрица ковариаций $D\vec{B} = \sigma^2 A^{-1}$

$$D\vec{B} = D(\vec{B} - \vec{\beta}) = D(A^{-1}Z\vec{\epsilon}) = A^{-1}ZD\vec{\epsilon}A^{-1T}Z^{T} = A^{-1}Z\sigma^{2}E_{n}A^{-1T}Z^{T} = \sigma^{2}A^{-1}(ZZ^{T})A^{-1} = \sigma^{2}A^{-1}$$

Следствие: дисперсии оценок b_i можно выразить через σ^2 и коэффициенты матрицы A^{-1} : $Db_i = \sigma^2(A^{-1})_{ii}$

Оценка дисперсии случайного члена

Обозначим $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i^2$. Ясно, что $\hat{\sigma}^2$ - точечная оценка неизвестной дисперсии σ^2 , однако она является смещенной оценкой

Пусть выполнены Cond.1 и Cond.2, тогда $\frac{n\hat{\sigma}^2}{\sigma^2} \in H_{n-k}$ и не зависит от \vec{B}

Так как
$$\frac{n\hat{\sigma}^2}{\sigma^2} \in H_{n-k}$$
, то $E\hat{\sigma}^2 = \frac{\sigma^2}{n} E \frac{n\hat{\sigma}^2}{\sigma^2} = \frac{\sigma^2}{n} (n-k) = \frac{n-k}{n} \sigma^2 < \sigma^2$ - смещенная вниз оценка

Тогда несмещенной оценкой будет $S^2 = \frac{n}{n-k} \hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^n \hat{\varepsilon}_i^2$