

PLOT #4: TNB vectors with osculating circle on <2*sin(3 t)*cos(t),2* sin(3 t)*sin(t),sin(3 t)>

Section 1-8: Tangent, Normal And Binormal Vectors

In this section we want to look at an application of derivatives for vector functions. Actually, there are a couple of applications, but they all come back to needing the first one.

In the past we've used the fact that the derivative of a function was the slope of the tangent line. With vector functions we get exactly the same result, with one exception.

Given the vector function, $\vec{r}(t)$, we call $\vec{r}'(t)$ the **tangent vector** provided it exists and provided $\vec{r}'(t) \neq \vec{0}$. The tangent line to $\vec{r}(t)$ at P is then the line that passes through the point P and is parallel to the tangent vector, $\vec{r}'(t)$. Note that we really do need to require $\vec{r}'(t) \neq \vec{0}$ in order to have a tangent vector. If we had

$$ec{r}'\left(t
ight)=ec{0}$$

we would have a vector that had no magnitude and so couldn't give us the direction of the tangent.

Also, provided $\vec{r}'\left(t
ight)
eq \vec{0}$, the **unit tangent vector** to the curve is given by,

$$ec{T}\left(t
ight)=rac{ec{r}'\left(t
ight)}{\left\Vert ec{r}'\left(t
ight)
ight\Vert }$$