임상시험자료분석 Ⅱ

182STG27 임지연

- 1. R의 nlme package 에 내장되어 있는 BodyWeight 자료를 이용하시오.
- 1) 적절한 그림으로 자료를 살펴보시오.

SAS R CODE data BodyWeight; library(nlme); library(faraway) library(ggplot2); library(gridExtra) "C:₩Users₩jeeyeon₩Desktop₩data₩BodyWeight.csv" library(gmodels); library(car) delimiter=',' firstobs=2; input weight Time Rat Diet; library(reshape); library(dplyr) week = compress('W'|| Time, ''); run; str(BodyWeight) theme_set(theme_bw()) proc sgplot data=BodyWeight; title 'BodyWeight'; ggplot(BodyWeight, aes(x = Time, y = weight, colour = series x=time y=weight / group=Rat groupIc=Diet Diet)) + geom_line(aes(group = Rat)) name='grouping'; keylegend 'grouping' / type=linecolor;

3. RESULT

BodyWeight 자료는 세 그룹의 쥐를 각각 다른식이 요법으로 처리하여 1일 ~ 7 일까지 64 일 동안 측정 된 쥐의 체중 (44 일에는 추가 측정)을 나타낸 자료이다. 이 자료의 변수설명은 다음과같다.

- weight: numeric vector -giving the body weight of the rat
- time: numeric vector -giving time at which the measurement is made
- Rat: ordered factor
- Diet: a factor level 1 to 3

즉, 이 데이터에서 Diet - Trt, Rat - Patient , Time - time, Weight - Score 에 해당한다. 우리의 목적은 각각 다른 식이요법간에 (Trt-Diet) 쥐의 Weight 차이가 있는지를 살펴보는 것이다. 따라서, 각 그룹을 Diet 1,2,3으로 나누어 그래프를 그려본 결과 1 그룹의 Weight는 300 미만으로 현저하게 낮게 나타난 반면, 2,3 그룹의 Weight는 400~ 600 사이이며, 2 그룹의 분산이 더 커보인다. 그래프로 봐서는 Diet 1 약의 효과가 있을 것이라고 예상할 수 있다.

```
R
                                                                                                                                                          SAS
                CODE
         1
                                                                                                             /* ANOVA -
# Anova -----
                                                                                                             PROC GLM data=BodyWeight;
Im1 <- Im(weight ~ factor(Diet) + factor(Rat) + factor(Time)</pre>
                                                                                                                               CLASS Diet Rat Time;
+factor(Diet) * factor(Time), data = BodyWeight )
                                                                                                                               MODEL Weight = Diet Rat(Diet) Time
                                                                                                             Diet*Time / ss3;
temp <- anova(lm1); temp
                                                                                                                               RANDOM RAT(Diet);
F.group <- temp[1,3] / temp[2,3] # F.value
                                                                                                                               TEST H = Diet E = Rat(Diet);
P.group <- 1-pf(F.group,temp[1,1], temp[2,1])
                                                                                                                               QUIT;
                                                                                                            RUN;
c(F.group, P.group)
lme1 <- lme(weight ~ factor(Diet) + factor(Time)</pre>
+factor(Diet) * factor(Time), random = ~1|factor(Rat),data =
                                                                                                             /* MANOVA -----*/
                                                                                                             proc sort data=BodyWeight; by Diet Rat; run;
BodyWeight )
                                                                                                             proc transpose data=BodyWeight out=Bodyweight_M;
anova(lme1)
                                                                                                                               by Diet Rat;
# Manova ------
                                                                                                                               id Week;
                                                                                                                               var weight;
head(BodyWeight)
                                                                                                             run;
BodyWeight <- BodyWeight %>% mutate(Week =
paste("W",BodyWeight$Time, sep=""))
                                                                                                             ods exclude
BodyWeight_M <- cast(BodyWeight , Diet + Rat ~ Week,
                                                                                                                               partialCorr
                                                                                                                               ErrorSSCP;
value="weight")
lm2 <- lm( cbind(W1, W8, W15, W22, W29, W36, W43, W44,
                                                                                                             proc glm data = Bodyweight_M;
W50, W57, W64) ~ Diet ,data = BodyWeight M)
                                                                                                                               class Diet;
                                                                                                                               model W1 W8 W15 W22 W29 W36 W43 W44
measure_time <- factor( c("W1", "W8", "W15", "W22", "W29",
                                                                                                             W50 W57 W64 = Diet / ss3;
"W36", "W43", "W44", "W50", "W57", "W64") )
                                                                                                                               repeated time profile /printe summary;
measure_time_data <- data.frame(measure_time
                                                                                                                               quit:
                                                                                                            run;
mv1 <- Anova(lm2, idata = measure_time_data,idesign = ~
measure_time)
summary(mv1)
         2. TABLE
# ANOVA TABLE
                                                                                                            # ANOVA TABLE
                                                                                                                                                   The GLM Procedure
                                                                                                                                               Dependent Variable: weight
> temp <- anova(lm1); temp
Analysis of Variance Table</pre>

        Source
        DF
        Sum of Squares
        Mean Square
        F Value
        Pr > F

        Model
        45
        2824541.744
        62767.594
        1578.23
        <0001</td>

        Error
        130
        6170.205
        39.771

        Corrected Total
        175
        2829711.949

 Response: weight
                                      Df Sum Sq Mean Sq F value Pr(>F)
2 2604050 1302025 32738.2082 < 2.2e-16 ***
13 192186 14784 371.7177 < 2.2e-16 ***
10 23400 2340 58.8378 < 2.2e-16 ***
20 4906 245 6.1679 2.883e-11 ***
130 5170 40
factor(Diet) Df
factor(Rat) 13
factor(Time) 10
factor(Diet):factor(Time) 20
Residuals 130
                                                                                                                                     R-Square Coeff Var Root MSE weight Mean 0.998173 1.640231 6.306410 384.4830

        Source
        DF
        Type III SS
        Mean Square
        F Value
        Pr > F

        Diet
        2
        2604049.733
        1302024.866
        32738.2
        <0001</td>

        Rat(Diet)
        13
        1292185.670
        14783.513
        371.72
        <0001</td>

        Time
        10
        27000.205
        2700.020
        67.89
        <0001</td>

        Diet*Time
        20
        4906.080
        245.304
        6.17
        <0001</td>

 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
> c(F.group, P.group)
[1] 88.07276434383193 0.00000002763486
                                                                                                                                                    The GLM Procedure

        Source
        Type III Expected Mean Square

        Diet
        Var(Error) + 11 Var(Rat(Diet)) + Q(Diet, Diet*Time)

        Rat(Diet)
        Var(Error) + 11 Var(Rat(Diet))

        Time
        Var(Error) + Q(Time, Diet*Time)

        Diet*Time
        Var(Error) + Q(Diet*Time)

 > anova(lme1)
                                            numDF denDF
                                                                  F-value p-value
                                                        130 1759.9049
                                                                  759.9049 <.0001
88.0728 <.0001
 (Intercent)
                                                                                                                                                   The GLM Procedure
 factor(Time)
                                                10
                                                        130
                                                                  58.8378
 factor(Diet):factor(Time)
                                                                    6.1679
                                                                                 <.0001
                                                                                                                                               Dependent Variable: weight

        Tests of Hypotheses Using the Type III MS for Rat(Diet) as an Error Term

        Source
        DF
        Type III SS
        Mean Square
        F Value
        Pr > F

        Diet
        2
        2604049.733
        1302024.866
        88.07
        < 0001</td>
```

Diet, Time 변수의 p-value < 0.0001로 두 변수가 모두 유의하다고 볼 수 있다.

MANOVA TABLE

MANOVA TABLE

		Sphericit	y Tests				
Variables	D	F Mauchi	Mauchly's Criterion Chi-Square P		re Pr > Ch	Pr > ChiSq	
Transformed Variates		4	0.0004138 73.747132		32 0.0	0.0383	
Orthogonal Components		4	6.8081E-	156.224	26 <.0	001	
MANOVA Test Criteria a	H = Typ	e III SSCP	Matrix for SCP Matrix		of no time	Effect	
Statistic		Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.	01448680	27.21	10	4	0.0030	
Pillai's Trace	0.	98551320	27.21	10	4	0.0030	
Hetelling Leveley Trees	68	02837375	27.21	10	4	0.0030	
Hotelling-Lawley Trace							
Roy's Greatest Root	68.	02837375	27.21	10	4	0.0030	
Roy's Greatest Root MANOVA Test Criteria and	F Appr Type	02837375 oximation III SSCP M	27.21 s for the Hy latrix for tin SCP Matrix	10 pothesis of	4	0.0030	
Roy's Greatest Root MANOVA Test Criteria and H =	F Appr Type	02837375 oximation III SSCP M = Error SS	27.21 s for the Hy latrix for tin SCP Matrix	10 pothesis of	4	0.0030 Diet Effect	
Roy's Greatest Root MANOVA Test Criteria and H: Statistic	F Appr Type E	02837375 oximation III SSCP M = Error SS S=2 M=3	27.21 s for the Hy latrix for tin SCP Matrix 3.5 N=1	10 pothesis of ne*Diet	4 no time*D	0.0030 Diet Effect	
Roy's Greatest Root MANOVA Test Criteria and	F Appr Type E	02837375 oximation III SSCP M = Error SS S=2 M=3 Value	27.21 s for the Hylatrix for tin SCP Matrix 3.5 N=1 F Value	10 pothesis of ne*Diet	4 no time*D	0.0030 Diet Effect	
Roy's Greatest Root MANOVA Test Criteria and H = Statistic Wilks' Lambda	F Appr Type E 0.0	02837375 oximation III SSCP M = Error SS S=2 M=3 Value 0327436	27.21 s for the Hylatrix for tin SCP Matrix 3.5 N=1 F Value 6.59	pothesis of ne*Diet Num DF	4 f no time*D Den DF 8 10	0.0030 Diet Effect	
Roy's Greatest Root MANOVA Test Criteria and H: Statistic Wilks' Lambda Pillai's Trace	68.0 F Appr Type E 0.0 1.8 50.2 44.5	02837375 oximation III SSCP M = Error SS S=2 M=3 Value 0327436 2896904 3337469 2488954	27.21 s for the Hy latrix for tin SCP Matrix 3.5 N=1 F Value 6.59 5.35 10.05 22.26	nothesis of ne*Diet Num DF 20 20 20 10	Den DF 8 10 4 5	0.0030 Diet Effect	

P-value = 0.0047로, Diet, Time 의 교호효과가 있다고 할 수 있다. 또한 Diet, Time 각각의 변수도 유의하다고 보여진다. 또한 구형성 검정을 해보았을 때, p-value 값은 매우 작아 구형성가정을 만족하지 않는다고 할 수 있다. 따라서 Anova 분석보다 Manova 분석이 더 적합하다.

3. RESULT

BodyWeight 자료분석 결과, p-value < 0.05 이므로 구형성가정을 만족하지 않아, Manova 분석이 더 적합하다고 판단하였다. Manova 분석 결과 Time * Diet 의 p-value < 0.05로, 효과가 유의하다고 할 수 있다. 따라서 Time, Diet 에 따라 Weight 에 효과가 있으며, Diet 그룹 1,2,3 에 대하여 사후분석을 통해 어떠한 그룹간에 차이가 있는지 살펴볼 수 있다.

- 2. R의 faraway package에 내장되어 있는 vision 자료를 이용하시오.
- 1) 적절한 그림으로 자료를 살펴보시오.

PLOT

Power 6/6

Power 6/18

Power 수준을 나눈 right / left eye의 acuity graph

3. RESULT

Vision 자료는 7명의 피실험자를 4가지 종류의 렌즈(power)를 왼쪽눈, 오른쪽눈으로 나누어 시력검사를 한 자료이다. 이 자료의 변수설명은 다음과같다.

- acuity: a numeric vector (예민함)
- power: a factor with levels 6/6 6/18 6/36 6/60: power of lens의미/ 물체의거리 Diet: a factor level 1 to 3
- eye: a factor with levels: left right
- subject: a factor with levels 1 2 3 4 5 6 7

즉, 이 데이터에서 power-Trt, subject - Subject, eye- Time, acuity - Score 에 해당한다. 우리의 목적은 각각 다른 렌즈간에 (Trt- power) 피실험자의 acuity 차이가 있는지를 살펴보는 것이다. 따라서, 각 subject를 power(6/6, 6/18, 6/36, 6/60), eye(left, right)로 나누어 그래프를 그려본 결과 power에 따라 개인별 차이를 알 수 있었다. 또한 개인별로 left, right 차이를 알 아보기 위하여 그래프를 그려본 결과 거의 비슷하다는 것을 직관적으로 알 수 있었다.

2) 적절한 방법으로 분석하여 결과를 해석하시오.

R	SAS
1. CODE	
# Anova	/* ANOVA */
lm1 <- lm(acuity ~ factor(power) + factor(subject) + factor(eye)	PROC GLM data=vision; CLASS power subject eye;
+factor(power) * factor(eye), data = vision)	MODEL acuity = power subject eye power*eye /
temp <- anova(lm1); temp	ss3;
F.group <- temp[1,3] / temp[2,3] # F.value	RANDOM subject; TEST H = power E = subject;
P.group <- 1-pf(F.group,temp[1,1], temp[2,1])	QUIT;
c(F.group, P.group)	RUN;
Ime2 <- Ime(acuity ~ factor(power) + factor(eye) + factor(power) *	
factor(eye), random = ~1 factor(subject),data = vision)	/* MANOVA */
anova(lme2)	proc sort data=vision; by power subject; run;
	proc transpose data=vision out=vision_M;
# Manova	by power subject; id eye;
vision_M <- cast(vision , power + subject ~ eye, value="acuity")	var acuity;
lm2 <- lm(cbind(left, right) ~ power ,data = vision_M)	run;
measure_time <- factor(c("left","right"))	ods exclude
measure_time_data <- data.frame(measure_time = measure_time)	partialCorr
mv2 <- Anova(lm2, idata = measure_time_data,idesign = ~	ErrorSSCP;
measure_time)	proc glm data = vision_M;
summary(mv2)	class power;
	model right left = power / ss3;
	repeated eye profile /printe summary; quit;
	run;

2. TABLE

ANOVA TABLE

ANOVA TABLE

Power, Eye 변수의 p-value > 0.05로 두 변수가 모두 유의하지 않으므로 두 변수 모두 효과가 없다고 할 수 있다.

MANOVA TABLE

Multivariate Tests:	power								
Df	test stat	approx F n	num Df der	Df	Pr(>F)				
Pillai 3	0.0742426 (0.6415724	3		0.59574				
Wilks 3	0.9257574 (0.6415724			0.59574				
Hotelling-Lawley 3	0.0801965 (0.6415724	3	24	0.59574				
Roy	0.0801965 (0.6415724	3	24	0.59574				
Multivariate Tests: measure_time									
Df	test stat	approx F n	um Df den	Df	Pr(>F)				
Pillai :	0.0731584	1.894392	1	24	0.18141				
Wilks	0.9268416	1.894392	1	24	0.18141				
Hotelling-Lawley	0.0789330	1.894392	1	24	0.18141				
Roy	0.0789330	1.894392	1	24	0.18141				
Multivariate Tests: power:measure_time									
Df	test stat	approx F n	um Df den	Df	Pr(>F)				
Pillai 3	0.0645811 (3		0.65151				
Wilks 3	0.9354189 0	0.5523185	3		0.65151				
Hotelling-Lawley 3	0.0690398	0.5523185	3	24	0.65151				
Roy 3	0.0690398 0	0.5523185	3	24	0.65151				

MANOVA TABLE

P-value >0.05 로, Power, Eye 의 교호효과가 없다고 할 수 있다. 또한 Diet, Time 각각의 변수도 유의하지 않다고 보여진다. 따라서 두 변수 모두 효과가 없다.

3. RESULT

Vision 자료의 Anova, Manova 분석 결과 Eye * Power 의 p-value > 0.05로, 효과가 유의하지 않다고 할 수 있다. 따라서 Eye, Power 에 따라 Acuity에 미치는 효과가 없으며, Power levels: 6/6 6/18 6/36 6/60 와 Eye levels: left, right 가 시력에 미치는 효과가 없다.