

Exercise 10A

Question 1:

(i) $x^2-x+3=0$ is a quadratic polynomial.

 $x^2-x+3=0$ is a quadratic equation.

(ii)
$$2x^2 + \frac{5}{2}x - \sqrt{3} = 0$$

$$\Rightarrow 4x^2 + 5x - 2\sqrt{3} = 0$$

Clearly is $4x^2+5x-2\sqrt{3}=0$ a quadratic polynomial.

∴ $2x^2 + \frac{5}{2}x - \sqrt{3} = 0$ is a quadratic equation.

(iii) $\sqrt{2x^2+7x+5}\sqrt{2}=0$ is a quadratic polynomial.

∴ $\sqrt{2x^2+7x+5}\sqrt{2}=0$ is a quadratic equation.

$$(iv)^{\frac{1}{3}}x^2 + \frac{1}{5}x - 2 = 0$$

$$\Rightarrow 5x^2 + 3x - 2 = 0$$

Clearly, $5x^2+3x-2=0$ is a quadratic equation.

 $\frac{1}{3}x^2 + \frac{1}{5}$ is a quadratic equation.

(v) $x^2-3x-\sqrt{x}+4=0$ is not a quadratic polynomial since it contains \sqrt{x} , in which power 1/2 of x is not an integer.

∴ x^2 -3x- \sqrt{x} +4=0 is not a quadratic equation.

(vi)
$$x - \frac{6}{x} = 3$$

$$\Rightarrow x^2-3x-6=0$$

And (x^2-3x-6) Being a polynomial of degree 2, it is a quadratic polynomial.

Hence, $x - \frac{6}{x} = 3$ is a quadratic equation.

(vii)
$$x + \frac{2}{x} = x^2$$

$$\Rightarrow$$
 $x^3-x^2-2=0$

And $(x^3-x^2-2=0)$ being a polynomial of degree 3, it is not a quadratic

polynomial

Hence, $x + \frac{2}{x} = x^2$ is not a quadratic equation.

(viii)
$$x^2 - \frac{1}{x^2} = 5 \Rightarrow x^4 - 1 = 5x^2$$

$$\Rightarrow x^4 - 5x^2 - 1 = 0$$

And $(x^4-5x^2-1=0)$ being a polynomial of degree 4.

Hence $x^2 - \frac{1}{x^2} = 5$ is not a quadratic equation.

Question 2:

The given equation is $3x^2+2x-1=0$

(i) On substituting x = -1 in the equation, we get

LHS =
$$3 \times (-1)^2 + 2 \times (-1) - 1 = 3 - 2 - 1 = 0 = RHS$$

$$\therefore x = -1$$
 is a solution of $3x^2 + 2x - 1 = 0$

(ii) On substituting x=1/3 in the equation, we get

LHS =
$$3x \left(\frac{1}{3}\right)^2 + 2x \left(\frac{1}{3}\right) - 1 = 0 = \left(\frac{1}{3} + \frac{2}{3} - 1\right) = 0 = RHS$$

$$\therefore x = \frac{1}{3}$$
 is a solution of $3x^2 + 2x - 1 = 0$

(iii) On substituting x=-1/2 in the equation, we get

LHS =
$$3 \times \left(\frac{-1}{2}\right)^2 + 2 \times \left(\frac{-1}{2}\right) - 1 = 0$$

= $\frac{3}{4} - 1 + 1 \neq 0$

:: RHS ≠ LHS

$$\therefore x = \frac{-1}{2} \text{ is not a solution of } 3x^2 + 2x - 1 = 0$$

Ouestion 3:

Since x = 1 is a solution of $x^2+kx+3=0$ it must satisfy the equation.

$$(1)^2 + k(1) + 3 = 0 \Rightarrow k = -4$$

Hence the required value of k = -4

********* END *******