一. 判断题

1.错误。由§2.2.2 补充结论 1(结论 1:概率为 0 的事件不一定是不可能事件。例:设 X 是连续型随机变量,则 $P(X=x_0)=0$,但 $\{X=x_0\}$ 不是不可能事件 Φ 。因为 Φ 是空集,但 $\{X=x_0\}$ 不是空集)知,若 P(A)=0,则 A 不一定是不可能事件 Φ 。所以若 P(AB)=0,则未必有 $AB=\Phi$,即未必有 A 与 B 互不相容.

例:设X是连续型随机变量, $A = \{1 < X \le 2\}$, $B = \{2 \le X < 3\}$,则 $AB = \{X = 2\}$,所以P(AB) = 0,但 $AB \ne \Phi$,所以A = B相容.

2.错误。 $EXY = EX \cdot EY \Leftrightarrow X, Y$ 不相关。由§ 4.4.2 结论(参考§ 4.4.2 讲义中独立与不相关的关系: X, Y 独立时,一定有 X, Y 不相关。 X, Y 不相关时,不一定有 X, Y 独立。)知, X, Y 不相关时,不一定独立。

3.错误。由§ 3.1.3 例 5 结论知,若 $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则 $X \sim N(\mu_1,\sigma_1^2)$, $Y \sim N(\mu_2,\sigma_2^2)$ 。反之,若 $X \sim N(\mu_1,\sigma_1^2)$, $Y \sim N(\mu_2,\sigma_2^2)$,则未必有(X,Y)服从二维正态分布(反例为习题 3-1 第 10 题)。

4.正确。因为 $X \sim P(\lambda)$,所以 $X_i \sim P(\lambda)$, $i = 1, 2, \cdots, n$,且 X_1, X_2, \cdots, X_n 独立,则由§ 3.3.1 例 3 结论(泊松分布的可加性: 若 $X_1 \sim P(\lambda_1)$, $X_2 \sim P(\lambda_2)$,…, $X_s \sim P(\lambda_s)$, X_1, X_2, \cdots, X_s 独立,则 $X_1 + X_2 + \cdots + X_s \sim P(\lambda_1 + \lambda_2 + \cdots + \lambda_s)$)知, $Y = X_1 + X_2 + \cdots + X_n \sim P(n\lambda)$ 。

5.正确。 $X \sim N(0,4)$,所以 $\mu = 0$,则 $\varphi(x)$ 关于纵轴对称。所以 $\Phi(-x)$ 与 $1-\Phi(x)$ 对应的面积相等,故 $\Phi(-x) = 1-\Phi(x)$ 。图像如下图:

二. 填空题

- 1. 即为两封信全在 3 号和 4 号邮筒中的概率: $\frac{2\times 2}{4\times 4} = \frac{1}{4}$ 。
- 2. X 的概率分布函数为

X	-1	2	4
P	0.3	0.3	0.4

所以 $P{X=4}=0.4$.

3.
$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} EX_i = \sum_{i=1}^{n} \mu = n\mu$$
, $D(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} DX_i = \sum_{i=1}^{n} \sigma^2 = n\sigma^2$, $\mathbb{M} \oplus \S 5.2$

定理 5.5(中心极限定理)结论 2 知, $\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$ 。

4.
$$P\{|X - \mu| \ge 2\sigma\} \le \frac{\sigma^2}{4\sigma^2} = \frac{1}{4}$$
.

5.
$$X \sim N(1,\sigma^2)$$
 ,则 $X_i \sim N(1,\sigma^2)$, $i=1,2$,且 X_1,X_2 独立,又 $E(X_1+X_2)=2$,
$$D(X_1+X_2)=2\sigma^2$$
 ,则由§ 3.3.2 例 2 结论(若 $X \sim N(\mu_1,\sigma_1^2)$, $Y \sim N(\mu_2,\sigma_2^2)$, X,Y 独立,则 $aX+bY+c \sim N(a\mu_1+b\mu_2+c,a^2\sigma_1^2+b^2\sigma_2^2)$)知, $X_1+X_2 \sim N(2,2\sigma^2)$,所以 $P\{X_1+X_2<2\}=\frac{1}{2}$ (恰为总面积的一半)。如下图:

- 6. 相当于从 10 粒中取出 5 粒,这 5 粒中恰有 1 粒黑子的概率: $\frac{C_2^1 C_8^4}{C_{10}^5} = \frac{5}{9}$ 。
- 7. $E(2X_1 X_2 + X_3) = 2EX_1 EX_2 + EX_3 = 0$, $D(2X_1 - X_2 + X_3) = 4DX_1 + DX_2 + DX_3 = 6$,

则由§6.3.1 补充定理 1 (设 $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$, ... , $X_n \sim N(\mu_n, \sigma_n^2)$, X_1, X_2, \dots, X_n 独立,则 $a_1 X_1 + a_2 X_2 + \dots + a_n X_n + b \sim N(a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n + b$, $a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2$) , a_1, a_2, \dots, a_n 不全为 0)知, $2X_1 - X_2 + X_3 \sim N(0, 6)$. 由§6.3.1 定理 6.2 知, $X_1^2 + X_2^2 + X_3^2 \sim \chi^2(3)$ 。

三. 单项选择题

- 1.(A) 三个事件全发生表示为 ABC, 故选项 A 错误。
- (B) 三个事件全不发生表示为 $\bar{A}\bar{B}\bar{C}$, 故选项 B 错误。
- (C) $\bar{A} + \bar{B} + \bar{C}$ 表示至少有一个不发生,即三个事件不全发生,选项 C 正确。
- (D) 至少有一个事件发生表示为A+B+C, 故选项 D 错误。
- 2. 由§2.4.2 例 2 结论知, $X \sim N(2,4)$, 则 $aX + b \sim N(2a + b, 4a^2) = N(0,1)$,

- 3. 由§3.3.2(3.3.5)式知,选项B正确。
- 4. $X \sim N(\mu, \sigma^2)$,所以 $X_i \sim N(\mu, \sigma^2)$, $i = 1, 2, \cdots, 20$,且 X_1, X_2, \cdots, X_{20} 独立,

$$\mathbb{X} EY = E(3\sum_{i=1}^{10} X_i - 4\sum_{i=11}^{20} X_i) = 3\sum_{i=1}^{10} EX_i - 4\sum_{i=11}^{20} EX_i = 3\times10\times\mu - 4\times10\times\mu = -10\mu$$

$$DY = D(3\sum_{i=1}^{10} X_i - 4\sum_{i=11}^{20} X_i) = 9\sum_{i=1}^{10} DX_i + 16\sum_{i=11}^{20} DX_i = 9 \times 10 \times \sigma^2 + 16 \times 10 \times \sigma^2 = 250\sigma^2,$$

则由§6.3.1 补充定理 1(设 $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$, ..., $X_n \sim N(\mu_n, \sigma_n^2)$,

$$X_1, X_2, \dots, X_n$$
 独立,则 $a_1X_1 + a_2X_2 + \dots + a_nX_n + b \sim N(a_1\mu_1 + a_2\mu_2 + \dots + a_n\mu_n + b,$

$$a_1^2\sigma_1^2 + a_2^2\sigma_2^2 + \dots + a_n^2\sigma_n^2$$
), a_1, a_2, \dots, a_n 不全为 0) 知,

$$Y = 3\sum_{i=1}^{10} X_i - 4\sum_{i=1}^{20} X_i \sim N(-10\mu, 250\sigma^2)$$
, 故选项 D 正确。

四、计算题

1.(1)设A表示第i台机床加工的零件,i=1,2,3,B表示合格品,则由全概率公

式,得
$$P(B) = \sum_{i=1}^{3} P(A_i) P(B \mid A_i) = 0.5 \times 0.94 + 0.3 \times 0.9 + 0.2 \times 0.95 = 0.93$$
.

(2)
$$P(A_2 \mid B) = \frac{P(A_2B)}{P(B)} = \frac{P(A_2)P(B \mid A_2)}{P(B)} = \frac{0.3 \times 0.9}{0.93} \approx 0.29$$

2.设X表示每个人的等车时间,则 $X \sim U[0.5]$, 其密度函数为

$$f(x) = \begin{cases} \frac{1}{5}, & 0 \le x \le 5\\ 0, & 其他 \end{cases}$$

等车时间不超过2分钟的概率为

$$P(X \le 2) = \int_{-\infty}^{2} f(x)dx = \int_{0}^{2} \frac{1}{5} dx = \frac{2}{5}$$

设Y表示三人中等车时间不超过2分钟的人数,则 $Y \sim B(3,\frac{2}{5})$,所以

$$P(Y \ge 2) = P(Y = 2) + P(Y = 3) = C_3^2 (\frac{2}{5})^2 (\frac{3}{5})^1 + C_3^3 (\frac{2}{5})^3 (\frac{3}{5})^0 = \frac{44}{125} = 0.352$$

3.(1)由题意可得 X与Y的联合概率分布为:

XY	0	1
0	$\frac{12}{30}$	8
	30	30
1	8	2
	30	30

(2) X和Y的边缘分布为:

X	0	1
P	$\frac{20}{20}$	$\frac{10}{20}$
	30	30

Y	0	1
Р	$\frac{20}{30}$	$\frac{10}{30}$

计算得
$$EX = EY = \frac{1}{3}$$
, $DX = DY = \frac{2}{9}$, $EXY = \frac{1}{15}$,

所以
$$cov(X,Y) = EXY - EXEY = -\frac{2}{45}$$
 , $\rho_{X,Y} = \frac{cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = -\frac{1}{5}$

(3) Z 的概率分布为:

Z	0	1	2
P	$\frac{12}{30}$	$\frac{16}{30}$	$\frac{2}{30}$

4. (1)
$$EX = \int_0^\theta \frac{2x^2}{\theta^2} dx = \frac{2}{3}\theta$$
, $\diamondsuit \frac{2}{3}\theta = \overline{X}$,可得 θ 的矩估计量为 $\hat{\theta} = \frac{3}{2}\overline{X}$ 。

(2)
$$DX = EX^2 - (EX)^2 = \int_0^\theta \frac{2x^3}{\theta^2} dx - \left(\frac{2}{3}\theta\right)^2 = \frac{1}{18}\theta^2$$
,

$$D(\hat{\theta}) = D(\frac{3}{2}\overline{X}) = \frac{9}{4}D(\overline{X}) = \frac{9}{4n}DX = \frac{\theta^2}{8n}.$$
 (由定理 6.1 知 $D(\overline{X}) = \frac{1}{n}DX$)

五、综合分析题

$$(1) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{3} dx \int_{0}^{3} kxy dy = \frac{81}{4}k = 1, \quad 解得 k = \frac{4}{81}.$$

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy,$$

当x < 0或x > 3时, $f_x(x) = 0$ 。

$$\stackrel{\text{def}}{=} 0 \le x \le 3 \text{ ft}, \quad f_X(x) = \int_0^3 \frac{4}{81} xy dy = \frac{2}{9} x.$$

所以 X的边缘密度函数为 $f_X(x) = \begin{cases} \frac{2}{9}x, 0 \le x \le 3\\ 0, 其他 \end{cases}$

同理可得Y的边缘密度函数为 $f_Y(y) = \begin{cases} \frac{2}{9} y, 0 \le y \le 3 \\ 0, 其他 \end{cases}$ 。

 $(2) f(x,y) = f_X(x) f_Y(y)$,所以X与Y相互独立。

(3)
$$P{Y > X^2} = \int_0^3 dy \int_0^{\sqrt{y}} \frac{4}{81} xy dx = \frac{2}{9}$$

(\vec{x} $P{Y > X^2} = \int_0^{\sqrt{3}} dx \int_{x^2}^3 \frac{4}{81} xy dy = \frac{2}{9}$)

附加题: 你不会认为是讲台吧!

开学第一天就说了啊~~~

