

Extract Free Dense Misaligment from CLIP

JeongYeon Nam¹, Jinbae Im¹, Wonjae Kim², Taeho Kil¹ ¹NAVER Cloud AI, ²NAVER AI LAB (Email: jy.nam@navercorp.com)

CLIP for Dense Misalignment (CLIP4DM)

- Text-to-image, image-to-text generative models still generate output misaligned with their inputs.

Motivation

- While **CLIPScore** is widely used for measuring alignment between image and text, single scalar score lacks interpretability.
- Recent studies focus on detecting dense misalignments to enhance explainability and provide model feedback.
- However, most approaches heavily rely on large generative models, leading to high computational costs.

Preliminaries

 $score_{v,t} = I_v T_t$

Gradient-based relevance map method

- Existing gradient-based relevance map extraction methods (e.g., GradCAM) primarily focus on generating heatmaps from images. They mostly disregard negative gradients, assuming these represent unrelated information.
- In transformer literature, GAE (Chefer et al., '21) derives output logits with respect to attention maps.

$$\nabla A_l^h = \frac{\partial \text{score}_{v,t}}{\partial A_l^h},$$

 $(A_I^h \in \mathbb{R}^{n \times n})$ denote attention map at I-th layer h-th head)

- Then eliminates negative gradients and applies an element-wise product with the attention map itself.

$$R_l^h = \text{ReLU}(\nabla A_l^h \odot A_l^h).$$
 $R_l = \frac{1}{H} \sum_{h=1}^H R_l^h$

- Across layers, relevance map is updated with $R_1 \leftarrow R_1 +$ $R_{l} \odot R_{l-1}$. Final attribution is calculated by pooling [CLS] index row of relevance map.

CLIP4DM

- 1. We **remove ReLU** so that negative gradients can represent misalignments.
- 2. We aggregate relevance map per layer with averaging instead of a product.
- 3. Then, we merge tokens into a word by averaging their attributions and predict a word whose attribution is lower than epsilon as misaligned.

$$\min(w_j) = \begin{cases} 1, & \text{if } w_j < \epsilon \\ 0, & \text{otherwise.} \end{cases}$$

Caption: A man riding snowboard down a snow covered slope.

CLIPScore: 61.3

Ours: A man riding snowboard down a snow covered slope.

Misaligned word: snowboard

F-CLIPScore

To classify global misalignments, we propose F-CLIPScore which aggregate sum of negative attributions and CLIPScore.

$$\text{F-CLIPScore}(v,t) = (1 - \text{score}_{v,t}) \cdot \sum_{j} \min(w_j) \cdot w_j.$$

Experiments

We experiment five dense misalignment detection benchmarks.

- **① FOIL**: natural image & natural caption.
- **② nocaps-FOIL** : natural image & natural caption.

Results

- 3 HAT: natural image & generated caption
 - 4 SeeTrue-Feedback : both natural / generated image and caption
 - 6 Rich-HF: natural caption & generated image
- 1) Our results demonstrate **state-of-the-art performance** in detecting dense misalignments among zero-shot models.
- 2) F-CLIPScore outperforms CLIPScore in classifying misaligned pairs.
- 3) Our method achieves significantly higher efficiency, with 27–75 × better FPS, as it relies solely on CLIP, unlike

baselines that depend on large generative models

	FOIL 2			nocaps-FOIL	
Method	FPS	LA	AP	LA	AP
CLIPScore (ViT-B/32)	13.4	-	0.71	-	0.69
CLIPScore (ViT-H/14)	8.7	-	0.76	-	0.72
RefCLIPScore (ViT-B/32)	8.7	-	0.75	-	0.74
ALOHa	0.2	0.40	0.61	0.45	0.70
Ours (ViT-B/32)	12.0	0.73	0.71	0.60	0.69
Ours (ViT-H/14)	7.1	0.84	0.81	0.72	0.80

method	ref. captions	FPS	LA	AP	Model	£+	FPS	NLI score
CLIPScore		18.8	-	0.39	PaLI 5B	11.	17.00	0.226
RefCLIPScore	✓	9.0	-	0.43	MiniGPT-v2 (LLaMa2-7B)		0.28	0.560
ALOHa	1	0.2	0.20	0.49				
					Ours (ViT-B/32)		7.90	0.605
Ours (ViT-B/32)		9.6	0.19	0.36	Ours (ViT-H/14)		5.81	0.660
Ours (ViT-H/14)		6.6	0.35	0.36	PaLI 5B	V	-	$\frac{0.765}{0.765}$
					PaLI 17B	✓	-	0.785
A								

of a building in a city

Ours: McDonald

THE STATE OF

GITHUB Analysis

Ablation on full-gradients

$eLU(-\nabla A_l^h)$	$ReLU(-\nabla A_l)$	LA	AP
√		0.698	0.779
	\checkmark	0.700	0.776
		0.716	0.794

Using both negative and positive attributions is helpful.

Number of layers

Part-of-speech

Metric	NOUN	PROPN	VERB	ADV	ADJ	NUM	ADP
F1	0.393	0.312	0.301	0.258	0.258	0.132	0.177
Precision	0.470	0.602	0.567	0.444	0.417	0.500	0.278
Recall	0.337	0.211	0.205	0.182	0.187	0.076	0.130

While ours can extract all sorts of POS, it shows that it follows CLIP's strength and weakness.

Comparison with baselines

with an oven and

Components of F-CLIPScore

Dataset	Method	AP	Pearson	Spearman
	$score_{v,t}$	0.722	-	-
nocaps-FOIL	$\sum_{j} \operatorname{mis}(w_j) \cdot w_j$	0.776	-	-
	F-ČLIPScore	0.794	-	-
	$score_{v,t}$	-	0.171	0.085
Rich-HF	$\sum_{j} \operatorname{mis}(w_{j}) \cdot w_{j}$	-	0.352	0.419
	F-CLIPScore	-	0.368	0.433

Simply summing negative attributions is more effective than CLIPScore for classifying misaligned pairs.

Backbones

NA.					
backbone	source	pretrained	IN acc.	LA	AP
ViT-B/32	openai	WIT-400M	0.632	0.602	0.723
ViT-B/32	openclip	LAION-2B	0.656	0.667	0.760
ViT-B/16	openai	WIT-400M	0.687	0.679	0.747
ViT-L/14	openai	WIT-400M	0.753	0.653	0.781
ViT-L/14	openclip	LAION-2B	0.753	0.728	0.796
ViT-H/14	openclip	LAION-2B	0.780	0.716	0.806
ViT-g/14	openclip	LAION-2B	0.766	0.706	0.806

Performance is correlated with the model's ImageNet accuracy, and a trained wider corpus shows better performance.

bird walking on a beach at either sunset or night with waves ...

ALOHa: wave

man is sitting on a pench outside, while he birds . ALOHa: bench

Our method captures a wider range of misalignments (e.g., attributes, entity-level objects, intangible objects) compared to a combination

of foundation models. (3)

not align with the image. The image shows a ... but

A collection of stuffed animals and a doll that is holding a cell phone.

MiniGPT-v2: The doll holding a cell phone is

Also our method output concise enhanced FPS compared to generative models. (4)