Lecture 1: An Overview of Machine Learning

Beidi Qiang

SIUE

What is Machine learning?

Machine learning (ML) is a category of an algorithm that enables computer to learn and adapt from data, draw inference and become more accurate in predicting outcomes. It refers to a vast set of tools used for understanding data.

Types of Machine Learning

Machine learning can be classified into 2 types of algorithms.

- Supervised Learning: building a statistical model for predicting, or estimating, an output (label) based on one or more inputs (features). Linear regression is a simple example of supervised learning.
- ▶ Unsupervised Learning (Chapter 12 ISLR): there are inputs but no supervising output (label); nevertheless we can learn relationships and structure from such data, such as grouping similar data together (clustering).

Examples of Supervised Learning

- Predict the salary by years of expert. (for example using linear regression)
- Recognize images of handwritten digits (classify an image as 0,1,2,... or 9).
- Financial industry and trading: companies use ML in fraud investigations (classify a transaction as fraud or not)

Example of Unsupervised Learning

Clustering: you want to discover the inherent groupings in the data, such as grouping customers by purchasing behavior, or grouping images by their characters.

A Quick History of Machine Learning

- Linear discriminant analysis was proposed in 1936 and in the 1940s, logistic regression was developed.
- In 1970s, many more non-linear techniques for learning from data were available and the computation become feasible in 1980s by the improvement of computing technology. that non-linear methods were no longer computationally prohibitive
- ▶ In the mid 1980s, classification and regression trees were developed. Neural networks gained popularity in the 1980s, and support vector machines arose in the 1990s.
- Machine learning became very famous in the 1990s. The intersection of computer science and statistics gave birth to probabilistic approaches in AI. This shifted the field further toward data-driven approaches.

Key ML Terminology

- ▶ Labels: The thing we're predicting. Other names: output, response, target. Example: the *y* variable in simple linear regression.
- ▶ Features: The input variables. Other names: input, predictors, independent variables. Example: the x variable in simple linear regression.
- Examples: An example is a particular instance of data, labeled or unlabeled.

Example: Email spam filtering

Labels: spam or not spam.

Features: words in the email text, sender's address, time of day the email was sent, etc...

Key ML Terminology, cont.

- Model: A model defines the relationship between features and label.
- Model Training: Means creating or learning the model. That is, you show the model examples and enable the model to gradually learn the relationships between features and label.
- ▶ Inference means applying the trained model to unlabeled examples.

Regression vs. Classification

We tend to select statistical learning methods on the basis of whether the label is quantitative (numerical) or qualitative (categorical).

- A regression model predicts continuous values. For example, regression models make predictions that answer questions like the following:
 - What is the value of a house in Edwardsville, IL?
 - What is the probability that a user will click on this ad?
- A classification model predicts discrete values or classes. For example, classification models make predictions that answer questions like the following:
 - Is a given email message spam or not spam?
 - Is this an image of a dog, a cat, or a hamster?