Synthesizing Multi-View Models of Software Systems

Bernard Lambeau bernard.lambeau@uclouvain.be

April 5, 2011

Abstract

${\bf Acknowledgements}$

I would like to thank \dots

Contents

Abstract						
Acknowledgements						
1	Inti	roduction	2			
2	A n	nulti-view modeling framework	3			
	2.1	Event-based behavior models	3			
		2.1.1 Message Sequence Charts for instance behaviors	3			
		2.1.2 Labelled Transition Systems for class behaviors	3			
	2.2	State-based abstractions	3			
		2.2.1 Capturing state information with Fluents	3			
		2.2.2 Guards in behavior models	3			
		2.2.3 Decorations on behavior models	3			
	2.3	Intentional models as goal graphs on fluents	3			
		2.3.1 Goals and Fluent Linear Temporal Logic (FLTL)	3			
		2.3.2 Linking FLTL and LTS: property and tester automata	3			
3	LTS	S trace semantics of guarded hMSC	4			
	3.1	From guarded hMSC to guarded LTS	4			
	3.2	From guarded LTS to pure LTS	4			
	3.3	Model analysis perspectives of deductive synthesis	4			
4	Ind	uctive synthesis of LTS models from MSC and hMSC				
		dels	5			
	4.1	From grammar induction to model synthesis	5			
	4.2	Interactive induction of LTS models from MSC	5			
		4.2.1 Pruning the induction space with state information	5			
		4.2.2 Pruning the induction space with goals	5			
	4.3	Induction of LTS models from hMSC	5			
5	Eva	duation	6			
	5.1	Experimental results on case studies	6			
	5.2	Experimental results on synthetic data	6			

6	Tov	vards an evaluation platform of inductive model synthe-			
	\mathbf{sis}		7		
	6.1	Motivation and overview	7		
	6.2	Scientific setup	7		
		6.2.1 State machines	7		
		6.2.2 Training and test samples	7		
		6.2.3 Submission and scoring	7		
		6.2.4 Baseline: Blue-Fringe performance	7		
	6.3	Competition results	7		
7	Too	ol Support	8		
	7.1		8		
	7.2	9	8		
	7.3		8		
8	Dis	cussion and Related Work	9		
9	Cor	nclusion	10		
B	Bibliography				

List of Figures

List of Tables

Introduction

A multi-view modeling framework

- 2.1 Event-based behavior models
- 2.1.1 Message Sequence Charts for instance behaviors
- 2.1.2 Labelled Transition Systems for class behaviors
- 2.2 State-based abstractions
- 2.2.1 Capturing state information with Fluents
- 2.2.2 Guards in behavior models
- 2.2.3 Decorations on behavior models
- 2.3 Intentional models as goal graphs on fluents
- 2.3.1 Goals and Fluent Linear Temporal Logic (FLTL)
- 2.3.2 Linking FLTL and LTS: property and tester automata

LTS trace semantics of guarded hMSC

- 3.1 From guarded hMSC to guarded LTS
- 3.2 From guarded LTS to pure LTS
- 3.3 Model analysis perspectives of deductive synthesis

Inductive synthesis of LTS models from MSC and hMSC models

- 4.1 From grammar induction to model synthesis
- 4.2 Interactive induction of LTS models from MSC
- 4.2.1 Pruning the induction space with state information
- 4.2.2 Pruning the induction space with goals
- 4.3 Induction of LTS models from hMSC

Evaluation

- 5.1 Experimental results on case studies
- 5.2 Experimental results on synthetic data

Towards an evaluation platform of inductive model synthesis

- 6.1 Motivation and overview
- 6.2 Scientific setup
- 6.2.1 State machines
- 6.2.2 Training and test samples
- 6.2.3 Submission and scoring
- 6.2.4 Baseline: Blue-Fringe performance
- 6.3 Competition results

Tool Support

- 7.1 A FLTL Model-checker for g-hMSC Models
- 7.2 Interactive State-Machine Induction from Scenarios
- 7.3 The Gisele Clinical Pathway Analyzer

Discussion and Related Work

Conclusion