Vysvetlite princíp fungovania ADSL a architektúru zapojenia modemu

- ADSL je adaptivní technologie, používá datovou rychlost odpovídající okamžitým šumovým podmínkám na místní smyčce
- □ na místní smyčce se hlasový a datový přenos sdílí pomocí
 256 FDM kanálů s šířkou pásma po 4 KHz
- prvních 25 kHz šířky pásma je určený hlasový přenos, kanál 0, stačí mu tradiční telefonní šířka pásma 4 kHz a je oddělený od datových přenosů oddělovacími kanály 1 5
- □ poté se vyhradí šířka pásma 200 kHz pro 25 upstream (odchozích) kanálů 6 – 30, modulace v kanálu QAM – až 15 b/bd,
 - tj. až $2^{15} = 32768$ kombinací hodnot fáze a amplitud,
 - tj. de facto se využívá kanál s rychlostí 0 64 kb/s
 - 25 kanálů = 24+1, uživatel + řízení
 - $24 \times 4000 \times 15 = 1440000$,

To ISP

Telephone company end office

- tj. odchozí rychlost přenosu dat až 1,44 Mb/s
- □ zbytek (do 1,1 MHz) se použije
 pro downstream (příchozí) kanály 31 255,
 QAM, až 15 b/bd, 225 kanálů = 224+1, uživatel + řízení)
 224 × 4000 × 15 = 13500000,

tj. příchozí rychlost přenosu dat až 13, 5 Mb/s (prakticky ne více než 8 či 9 Mb/s díky šumu)

Zapojenie ADSL modemov: Digitální Voice hlasová switch Telephone ústředna Codec Splitter Splitter Telephone "štípač", "štípač", filtr, FDM NID Computer Network n-QAM Interface DSLAM Device ADSL Ethernet modem

Customer premises

Vypočítajte frame check sequence CRC kódu ku správe 10011, je zadaný deliteľ: x^2 + x^1 + 1

- \square Nechť zpráva $D = 10011_2$, tedy $D(X) = X^4 + X + 1$
- \square Nechť 3-bitový klíč má reprezentaci $G(X) = X^2 + X + 1$ (tj. binárně 111₂), generující 2-bitový FCS:

$$\begin{array}{c} \checkmark \quad x^2(x^4+x+1)/x^2+x+1=, \text{ tj.} \\ x^6+0 + 0 + x^3 + x^2 + 0 + 0 / x^2 + x + 1 = x^4 + x^3 + 1 \\ \underline{x^6+x^5+x^4} \\ \hline x^5+x^4+x^3 + x^2 + 0 + 0 \\ \underline{x^5+x^4+x^3} \\ \hline x^2+0+0 \\ \underline{x^2+x+1} \\ \hline x+1 \end{array}$$

 $\sqrt{x} + 1$ má reprezentaci 11_2 a kódové slovo je tedy $T = 1001111_2$

Popíšte formát rámcov T1, prečo majú 193 bitov a prečo je rýchlosť prenosu 1,544 Mb/s

- □ multiplexuje se 24 kanálů vzorkuje se 24 telefonních hovorů 8 000 x / s
- □ v pěti rámcích po sobě se vzorky kódují do osmic bitů
- v šestém rámci se vzorky se kódují do sedmic bitů, 8. bity vzorků jsou řídicí, v každém hlasovém kanálu se vytváří řídicí kanál pro síťové řízení a směrování
- každých 125 μs se vysílá TDM rámec 193 bitů (8 x 24 + 1), každému ze 24 telefonů/kanálů v rámci odpovídá jedna 8-bitová pozice
- □ 0.bit v rámci je synchronizační, alternuje hodnoty 1 a 0 v následných rámcích
- □ vysílání se děje rychlostí 8 000x193 b/s = 1,544 Mb/s

Príklad na B8ZS, daná postupnosť bitov 110000000110000010, zapísať ako bude vyzerať signál

Vysvetlite metódu získania prístupu k médiu CSMA, naliehajúci variant s pravdepodobnosťou P

CSMA, strategie naléhání na vysílání

□ CSMA/1-persistent, naléhající, "hladový algoritmus"

- √ stanice zjistí volné médium
 - vysílá rámec okamžitě, tj. s pravděpodobností 1
- √ stanice zjistí obsazené médium
 - znovu testuje médium
- ✓ zvyšuje se pravděpodobnost kolize, používá Ethernet

□ CSMA/nonpersistent, nenaléhající

- √ stanice zjistí volné médium vysílá rámec
- √ stanice zjistí obsazené médium
 - vyčká náhodnou dobu před před příštím testováním média
- √ snižuje se pravděpodobnost zjištění volného média více stanicemi současně, snižuje se efektivnost, když médium je volné a stanice mají připravené rámce k vysílání

□ CSMA/p-persistent, naléhající s pravděpodobností p

- ✓ stanice "hladově" testuje médium, dokud nezjistí volné médium a pak
 - 1. s pravděpodobností p vysílá rámec okamžitě
 - 2. s pravděpodobností 1-p znovu testuje médium za Δt
 - a) je volné jde na krok 1
 - b) je obsazené médium znovu testuje médium za $r\Delta t$ kde r je náhodné číslo z postupně rostoucího intervalu
- ✓ redukuje se pravděpodobnost kolize a zvyšuje se efektivnost

Prečo frekvenčná modulácia nedosahuje takú bitovú rýchlosť ako amplitúdová

"Pre analógové vysielanie digitálnych dát je to ASK a FSK.

ASK je viac náchylný na šum, používa jeden nosný signál, potrebná šírka pásma je B = (1+d)*S (S = Baudova rýchlosť).

FSK používa 2 nosné signály, jeden pre 0 a druhý pre 1, potrebuje dvojnásobnú šírku pásma $B = (1+d)*S + 2\Delta f$ ($S = Baudova rýchlosť, <math>2\Delta f = frekvenčná vzdialenosť nosných signálov).$

Pre rovnakú šírku pásma môže mať ASK dvojnásobnú rýchlosť než FSK."

Popíšte fungovanie bitovo orientovaného protokolu na prenos rámcov bit stuffing

Bit stuffing je spôsob, ako zaistiť transparentnosť textu vložením nevýznamového bitu (jedného alebo viacerých). Dôvodom je zaistenie synchronizácie medzi vysielačom a prijímačom alebo zaistenie toho, aby sa nevyskytla sekvencia bitov so špeciálnym významom.

V komunikačnom protokole HDLC zabraňuje bit stuffing tomu, aby sa v prúde dát objavila sekvencia bitov 01111110, ktorá označuje začiatok nebo koniec rámca, a to konkrétne tak, že pokiaľ sa v dátach objaví päť po sebe idúcich jedničiek, vloží sa za ne jeden nulový bit. Vkladá sa teda vždy nulový bit, jednička nikdy."

Príjmač po prijatí piatich 1 kontroluje ďalší bit: Ak je to 0: vypustí sa,

Ak 1: ak je ďalší bit 0, prijal príznak začiatku/konca rámca, v opačnom prípade sa indikuje katastrofická chyba

Popíšte techniku riadenia prístupu k médiu CDMA

□ CDMA

- √ kódový multiplex ve fyzické vrstvě
- √ všechny stanice současně používají totéž pásmo
- ✓ každá stanice kóduje vysílaná data do nosného signálu unikátně
- √ cílový přijímač toto unikátní kódovaní zná
- √ kódování dat je voleno tak, že vysílání ostatních stanic příjemce chápe jako šum

☐ Chips – unikátní kód stanice

- ✓ bitová posloupnost vysílaná v úpravě respektující zda stanice vysílá datový bit 1 nebo 0
- √ vyšle se za dobu intervalu 1 bitu dat –
 zakódované bity se vysílají se vyšší rychlosti než rychlost přenosu dat
- ✓ CDMA patří do kategorie metod Spread Spectrum rozprostřování spektra (vysílá se vyšší rychlostí)
- ✓ v reálné praxi je "chips"bitová posloupnost délky 128 apod. bitů
- ✓ Nechť stanice C nevysílá a stanice A, B, D vysílají do základny data: A vysílá 0, B vysílá 0, D vysílá 1
- ✓ Do média CDMA multiplexor stanic A, B, C, D vysílá:

- \square Nechť z média přichází signál -1, -1, -3, +1
- □ Demultiplexor základny signál přijímá a dekóduje:

Blokový kód, popísať v akých situáciách vieme, že nenastala chyba, v akých dokáže detekovať a opraviť chybu, v akých len detekovať a v akých chyba nebude detekovaná

- □ každý k-bitový blok dat je kódovaný na n-bitový blok kódové slovo (codeword)
- □ přenese se kódové slovo
- □ přijímač přijaté kódové slovo dekóduje a platí
 - ✓ přenos byl bezchybný, přijalo se validní kódové slovo dešifrováním se dostává původní blok dat,
 - √ většinu chyb lze detekovat a opravit (na původní blok dat), přijaté
 nevalidní kódové slovo má jediné nejbližší validní kódové slovo
 - ✓ některé chyby lze detekovat, ale ne opravit, detekovanou chybu nelze určit jednoznačně, poněvadž nejbližších validních kódových slov je více než 1
 - √ velmi málo chyb nelze detekovat, přijaté kódové slovo odpovídá nesprávnému validnímu kódovému slovu, získávají se chybná data

Ako funguje rezervačné TDMA

- √ N stanic se zaručitelnou minimální rychlostí přenosu
- Každý rámec TDMA sestává z N mini-dílů o šířce k bitů a x datových dílů
- \checkmark i-tá stanice má přidělený i-tý mini-díl a jeho bezkolizním vysláním si v něm může rezervovat až 2^k-1 datových dílů, $x=N imes(2^k-1)$
- ✓ v nevyužitých datových dílech mohou vysílat data stanice např. podle nějakého cyklického plánovacího algoritmu

Popísať algoritmus fungovania CSMA/CA	
	obcházení kolizí
	stanice použije některou ze strategií perzistence
	po získání práva přístupu k médiu počká po pevnou dobu IFG (Interframe gap), resp IFS (Interframe space)
	po té vyčká po náhodnou dobu
	je-li nyní médium volné, vyšle rámec a nastaví čekací dobu
	pokud v čekací době získá potvrzení (rámec od přijímače vyslaného rámce), vyslání rámce bylo úspěšné
	pokud v čekací době nezíská potvrzení, vyslání rámce bylo neúspěšné
	 ✓ došlo ke ztrátě / kolizi rámce ✓ došlo ke ztrátě / kolizi potvrzení
	po zjištění neúspěchu sníží počet možných opakování, vyčká náhodnou dobu a vrací se na pokus o vyslání rámce
	v každém opakování se zvětšuje interval pro volbu doby čekání na opakování pokusu o vysílání
	IFG před vysíláním potvrzení se liší při vysílání rámce s daty rámce s potvrzením, pro potvrzení je IFG kratší, potvrzování má vyšší prioritu
	CSMA/CA – aplikace v bezdrátových LAN
Útlm signálu je -10dB. Aký výkon ma signál na strane príjmača, ak sa vyslal s výkonom 5 W ?	
	Útlum signálu je -10 dB. Jaký výkon má signál na straně přijímače, když se vysílal výkonem 5 W ?
	$\checkmark \ -10 = 10 \log 10 (P_2/5)$, $-1 = \log 10 (P_2/5)$, $0, 1 = P_2/5$, $P_2 = 0, 5$ W

a

Aká je veľkosť sliding window v Go-Back-N ARQ a prečo

- \square rozměr okna musí být $< 2^m$, kde m je bitová šířka čísla rámce
- \square rozměr okna může být nejvýše 2^m-1
- \square Proč ? Ilustrace na příkladu m=2, rozměr okna =3 ($<2^2$)
 - √ nechť vysílač vyslal rámce 0, 1, 2 a přijímač je přijal
 - ✓ přijímač vyšle potvrzení rámců 0, 1, 2 a očekává rámec 3
 - √ nechť se ztratí potvrzení rámců 0, 1, 2
 - ✓ po časovém limitu nechť vysílač znovu vyšle rámce 0, 1, 2
 - ✓ přijímač chtěl rámec 3, rámce 0, 1, 2 potvrdí žádostí o rámec 3, ale jako duplikáty je ignoruje

\square Ilustrace na příkladu m=2, rozměr okna = $4(2^2)$

- ✓ nechť vysílač vyslal rámce 0, 1, 2, 3 a přijímač je přijal
- ✓ přijímač vyšle potvrzení rámců 0, 1, 2, 3 a očekává rámec 0
- ✓ nechť se ztratí potvrzení rámců 0, 1, 2 a 3
- ✓ po časovém limitu nechť vysílač znovu vyšle rámce 0, 1, 2 a 3
- ✓ přijímač chtěl rámec 0, rámce 0 přijme jako nový rámec 0 a ne jako duplikát

TDMA - vysvetliť princíp

- √ časový multiplex ve fyzické vrstvě
- ✓ zpřístupňuje implementaci TDM ve fyzické vrstvě
- √ v podstatě pouze organizační úloha
- ✓ aplikace typicky v buňkových mobilních sítích (GSM), v kombinaci s FDMA se metoda TDMA uplatňuje v každém udržovaném frekvenčním pásmu

Global System for Mobile Communication

124 dvojic simplexních radiový kanálů. Každý takový simplexní radiový kanál má šířku 200 MHz. V každém simplexním radiovém kanálu se pomocí TDM se udržuje 8 fyzických kanálů. Každému fyzickému kanálu se opakovaně (periodicky) přiděluje jeden časový díl, pro duplexní spojení se pro jednotlivé směry používají fyzické kanály realizované v různých časech. V jedné buňce může být aktivních až 992 (124 x 8) fyzických kanálů. TDMA:

Rámec TDM tvořený 8 časovými díly (s časovým prostorem pro 156, 25 b) je sám "časovým dílem" v multirámci GSM. Multirámec tvoří 26 rámců TDM. Multirámec pokrývá časový prostor 120 ms, teoretická přenosová rychlost kanálu GSM = (1/120 ms) x 26 x 8 x 156,25 = **270,8 kb/s**

□ kanál obecně:

√ útvar, logická/fyzická struktura pro realizaci přenosu dat

□ fyzický kanál GSM – ,,syntax"

- √ je vymezený časovým dílem v TDMA rámcích v jedné nosné frekvenci
- ✓ organizace přenosu informací ve fyzickém kanálu se zajišťuje přidělením logických kanálů do fyzických kanálů

□ logický kanál GSM – "sémantika"

- ✓ organizační nástroj pro přenos různých typů informací fyz. kanálem
- √ je realizovaný ve fyzickém kanálu, ne nutně však ve všech jeho časových dílech, v 1 fyz. kanálu lze multiplexovat více log. kanálů
- √ traffic channel logický kanál pro přenos uživatelských dat (user data, payload, . . .)
- ✓ control channel logický kanál pro přenos řídicích (protokolárních) dat (signalling)
- √ řídicí kanály se s datovými kanály prokládají ve fyzických kanálech definovaným způsobem

Príklad na Shannonovu vetu - šírka pásma 4 kHz, zdroj 10 V, šum 5 mV, vypočítať bitovú rýchlosť

- Měřením šumu v telefonním kanálu se zjistila hladina šumu 5 mV. Signál se vysílá výkonem 10 V. Kanál má šířku pásma 4 KHz. Jakou nejvyšší rychlostí lze tímto kanálem přenášet data?
 - $\checkmark 4000 \log_2(1+10/0,005) = 43\,866 \,\mathrm{b/s}$

Vysvetliť princíp prepínania okruhov s časovým delením

- Přepínač na bázi časového multiplexingu rozděluje vstupy do časových dílů pomocí TDM. Vstup vysílá k adresovanému výstupnímu zařízení řídicí jednotka.
- Dva příklady přepínač na bázi časového multiplexingu záměny časových dílů a TDM sběrnice
- Prostorové přepínače a přepínače na bázi časového multiplexingu lze kombinovat
- Příkladem sítě s přepínáním okruhů je (pevná) telefonní sít
- □ Telefonní síť tvoří tři komponenty místní smyčky (local loops), vedení (trunks) a ústředny (switching offices)
- □ Telefonní síť provozuje poskytovatel telefonních služeb / operátor
- □ Poskytované služby hlasové služby, datové služby

Riadenie prístupu k médiu Reservation Aloha (Explicitná rezervácia)

- □ typické pro satelitní přenosy (topologie hvězda)
 - √ postupně se střídají dva režimy činnosti
 - ✓ rezervační režim (slotted) Aloha soupeření o malé rezervační časové díly, může docházet ke kolizím, vítěze ve slotech určí rozpozná satelit a pošle zpět všem soupeřícím stanicím v jednom časovém dílu rezervační seznam
 - √ režim pro přenos dat úspěšné stanice vysílají
 v rámci úspěšně rezervovaných časových dílů (bezkolizní režim)
- všechny stanice musí znát konzistentní rezervační seznam a tudíž všechny stanice se musí synchronizovat

Hammingova vzdialenosť, samooprava 3bit chýb

- □ Hammingovy (n, k) blokové opravné kódy kódují k-tice datových bitů do n-bitových kódových slov, přičemž
 - \checkmark při počtu kontrolních bitů v bloku: $m=n-k\,, m\geq 3$
 - \checkmark mají délku bloku kódového slova: $n=2^m-1$
 - $\checkmark\,\,$ tj. počet datových bitů v bloku: $k=2^m-1-m(=2^m-m-1)$
- platí, že blokové Hammingovy kódy

$$(2^m-1,2^m-m-1)$$
 s $d_{min}=3$ lze nalézt pro všechna m

- \checkmark lze tudíž v kódových slovech délky 2^m-1 opravovat 1-bitové chyby
- ✓ přitom platí, že se vzrůstem m poměr k/n se blíží k jedné a režijní náklady relativně klesají
- \checkmark Má-li datové slovo 11 bitů, Hammingův kód s $d_{min}=3$ musí mít formát C(15, 11) musí platit $k=2^m-1-m\geq 11$, tj. m=4
- □ Lze ukázat, že platí (obecně pro FEC)
 - ✓ pokud existuje t, pro které je v daném kódu $d_{min} \ge 2t + 1$, pak lze tímto kódem opravovat až t-bitové chyby, resp. $t = \lfloor (d_{min} 1)/2 \rfloor$ (pro připomenutí: $\lfloor 6, 3 \rfloor = 6$)
 - ✓ pokud existuje t, pro které je v daném kódu $d_{min} \ge 2t$, pak lze tímto kódem opravovat až (t-1)-bitové chyby a detekovat, ale ne opravovat, t-bitové chyby (viz kód na předchozím obr.)

Zakódujte do HDB3: 10000000100001

Princíp RTS/CTS a akým spôsobom riešia problém skrytých terminálov

- pro rezervaci času pro přenos dat a vyhnutí se kolizi se používají krátké signálové (řídicí) rámce
 - √ RTS (request to send):

vysílač požaduje před vysláním datového rámce krátkým signálovým rámcem RTS získat od přijímače výhradní právo vysílat

✓ CTS (clear to send):

přijímač uděluje vysílači RTS krátkým signálovým (řídicím) rámcem CTS právo vysílat v okamžiku, kdy je připraven datový rámec přijmout

- ✓ případná kolize několika RTS je akceptovatelná cena
- □ Signálový paket obsahuje
 - ✓ adresu odesílatele, adresu příjemce, délku datového paketu (dobu přenosu)

RTS/CTS řeší problém skrývání terminálů

- A a C chtějí vysílat na B
- A vyšle RTS první
- C po přijetí CTS vysílaného z B pro A čeká po dobu udanou v CTS

RTS/CTS řeší problém odstavování terminálů

- B chce vysílat na A
- C chce výsílat na další terminál (jiný než A nebo B)
- C nyní nemusí čekat na B,
 CTS z A dostat nemůže

Prečo sú potrebné dve rôzne kladné potvrdzovacie odpovede v protokole Stop-and-Wait

- □ Zdroj vyšle jeden datový rámec a čeká na přijetí potvrzovacího (rámce) ACK
- □ Čeká konečnou dobu
 - ✓ Zdroj rámce má definovaný vysílací časový limit
 - ✓ Pokud zdroj do uplynutí časového limitu po vyslání rámce nepřijme potvrzovací ACK, datový rámec vyšle znovu
- □ Porušení/ztrátu ACK zdroj není schopný rozpoznat, proto:
 - √ jakmile uplyne vysílací časový limit
 - √ vysílač zopakuje vyslání rámce
 - ✓ přijímač přijme týž rámec 2×
 - √ řešení problému alternativní používání ACK0/ACK1 +
 alternativní číslování rámců 0/1 (číslování v záhlaví rámců)

Prečo má kódové slovo ASCII znaku 11 bitov

- □ Chceme opravovat např. 1-bitové chyby v ASCII znaku
 - √ ASCII znak = 7 bitů dat
- opravný redundantní kód musí musí být generovaný tak, aby přímo určil, který bit se při přenosu změnil
- □ pro 7 bitů dat musíme rozlišovat při příjmu 8 stavů
 žádná chyba, chyba v pozici 1, . . . , 7
- □ 1. nápad = použijme redundanci umožňující rozlišit 8 stavů v přijatých datech, tj. alespoň 3 bity (2³ = 8), tj. kódové slovo bude mít tedy délku 7 + 3 = 10 bitů
- □ ale 1-chyba může nastat i v redundantních bitech, 10-bitové kódové slovo tudíž nestačí
- \square Datových bitů je m, redundantních bitů je r, délka kódového slova, přenášené posloupnosti bitů, =m+r
- \square Možných stavů je 1+m+r, žádná chyba +(m+r) chybových pozic bitů
- $\hfill\Box$ redundance r bitů musí pokrýt alespoň m+r+1 stavů, takže musí platit $2^r \geq m+r+1$
 - \checkmark pro opravu ASCII znaku potřebujeme 4 redundantní bity 7 bitů dat, $r=3,\ 2^3=8,\ 7+3+1=11,\ r=3$ nedostačuje
 - 7 bitů dat, r = 4, $2^4 \ge 7 + 4 + 1$,
 - 11-bitové kódové slovo umožní určit/opravit
 - 1-bitovou chybu v 7 bitech dat

Nakreslite konstalačný diagram pre QAM, aby bola bitová rýchlosť 4x väčšia než Baudova

Nakreslite a vysvetlite prepínanie na báze multiplexingu so zbernicou

- ✓ Součástí TSI jsou vstupy, výstupy, RAM a elementární procesor
- ✓ Délky vyrovnávacích pamětí v RAM jsou shodné
- ✓ Plní se sekvenčně, vypisují se dle plánu přepojování
- ✓ Zkrácení doby přepojování zajistí princip houpačkového vyrovnávání (v době plnění jedné v. p. se vypisuje případně již naplněná v. p.)

Zakódujte danú postupnosť do diferenciálneho Manchesteru

Signál je zadaný s(t) = $10*\sin(5000\pi - \pi/4)$, určte amplitúdu, frekvenciu a fázový posun v stupňoch

$$\Box \ \ s(t) = A \sin(\omega t + \varphi) = A \sin(2\pi f t + \varphi) = A \sin(\frac{2\pi}{T} t + \varphi)$$

$$A - \text{amplituda}, \qquad \omega = 2\pi f - \text{úhlová frekvence}$$

$$f = 1/T - \text{frekvence}, \ T = 1/f - \text{perioda},$$

$$\varphi - \text{fázový posuv}$$

$$s(t) = 10*\sin(5000\pi t - \pi/4) = A*\sin(2\pi f t + \varphi)$$

$$\varphi = \pi/4 = 180/4 = 45^{\circ}$$

$$\phi = \pi/4 = 180/4 = 45^{\circ}$$

 $f = 2500 \text{ Hz}$
 $A = 10 \text{ V}$

Popísať slotted ALOHA - výhody a nevýhody

□ Slotted Aloha – dělená Aloha – doplňuje používání časových dílů, vysílání musí začínat vždy na hranici časového dílu

- □ Využitelnost kanálu ALOHA (jeho kapacity) je poměrně malá
 - ✓ ALOHA 18%,
 - ✓ Slotted Aloha 36%

Výhody: adaptuje sa meniacemu sa množstvu staníc, dvojnásobná efektivita oproti Alohe Nevýhody: je nutná synchronizácia, nutnosť bufferu pre opakovanie vysielania

Šírka pásma je 1MHz, prenos dát 10Mb/s. Koľko je signálových úrovní. Aká bude šírka pásma, pokiaľ chceme rovnakú dátovú rýchlosť pri binárnom signáli

$$C = 10 * 10^6 b/s$$

$$B = 10^6 \text{ Hz}$$

$$C = 2 * B * log_2M$$

$$10 * 10^6 = 2 * 10^6 * \log_2 M$$

$$5 = log_2M$$

$$M = 32$$

Potrebujeme aspoň 32 signálových úrovní

Pre binárny signál:

$$M = 2$$

$$C = 10 * 10^6 b/s$$

$$B = ? Hz$$

$$C = 2 * B * log_2M$$

$$10 * 10^6 = 2 * B * log_2 2$$

$$B = 5 * 10^6 = 5 MHz''$$

Rozdelenie spektra, schéma + stručný popis jednotlivých zariadení

- □ Multiplexing
 - ✓ kombinace signálů s menší šířkou pásma z více zdrojů za účelem zvýšení efektivnosti využíváním dostupné větší šířky pásma spoje
- □ Rozprostření spektra zvětšení šířky pásma přenosového signálu
 - √ kombinací signálů z více zdrojů do větší šířky pásma
 - ✓ dynamickými změnami pozice v signálu v přenosovém pásmu, typická aplikace v bezdrátových přenosech:
 - zábrana odposlechů, zábrana rušení komunikace útočníky, zábrana přeslechů, ...
 - Zvyšováním redundance v přenášených datech změnou kódování, které si vyžaduje zvětšení šířky pásma spoje, aby se zachovala rychlost přenosu originálních dat
 - cílové kódování zvýší odolnost vůči šumu, umožní odlišit signály,

- □ šířka pásma přidělená vysílající stanici musí být značně větší 🗸 vyšší rychlost vyžaduje větší šířku pásma než požaduje rychlost vysílání dat, což umožní použít redundanci, přeskakování mezi frekvencemi, ...
- □ rozšíření šířky pásma musí být děláno nezávisle na originálním signálu

- Kombinují se signály z různých zdrojů s cílem využít širší pásmo.
- □ Techniky jsou navržené pro nevoděná prostředí, ve kterých musí mít komunikující stanice možnost sdílet médium bez hrozby narušení důvěrnosti a rušení
- ☐ Frequency Hopping Spread Spectrum (FHSS)
 - \checkmark Zdrojový signál postupně moduluje M nosných frekvencí, a to v určené pseudonáhodné posloupnosti.
 - Současně může až M zdrojových signálů modulovat *M*různých nosných frekvencí
 - přidělení nosných frekvencí zdrojovým signálům se v jistých intervalech mění
 - ✓ spektrum nosných frekvencí má šířku pásma zajišťující koexistenci přenosu všech původních signálů souběžně
- □ Direct Sequence Spread Spectrum (DSSS)
 - každý bit zdrojových dat je přenášený jako posloupnost *n* přenosových bitů – *chips*
 - posloupnost n přenosových bitů se přenáší za stejnou dobu jako bit originálních dat

Príklad na multiplexing - 4 kanály, každý s rýchlosťou 250 znakov/s (1 znak = 8 bitov), v každom rámci 1 synchronizačný bit, za akú dlhú dobu sa prenesú dáta?

- □ 4 datové kanály s rychlostí 250 znaků/s, prokládání po znaku, znak = 8 bitů, v každém rámci 1 synchronizační bit bit
 - ✓ rychlost přenosu dat každého zdroje = 250 x 8 = 2 kb/s
 - ✓ doba trvání přenášeného znaku = 4 ms
 - ✓ rychlost přenosu rámců = 250 rámců /s
 - √ doba trvání rámce = 4 ms, musí být shodná s dobou trvání znaku
 - √ délka rámce = 4 x 8 + 1 = 33 bitů
 - ✓ rychlost přenosu dat multiplexovaným spojem = 250 x 33 = 8250 b/s

DAMA-TDMA - nakresliť a popísať (nenašiel som v slajdoch, bola 19.12.2007 na skúške)