Software Engineering in Embedded Systems

Stephan Heidinger
Senisar: Software Engineering

Seminar: Software Engineering Fachbereich für Informatik und Informationso Universität Konstanz 19. January 2012

Software Engineering in Embedded Systems

Stephan Heidinger

Seminar: Software Engineering Fachbereich für Informatik und Informationssysteme Universtität Konstanz

19. January 2012

Embedded Systems

Embedded Systems - What's that? - I

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

Embedded Systems - What's that? - I

Definition

"An **embedded software** system is part of a hard-ware/software system that reacts to events in its environment. The software is 'embedded' in the hardware. Embedded systems are nominaly real-time systems."

Software Engineering, p.561, Edited by Ian Sommerville, Ninth Edition

Embedded Systems - What's that? - II

mbedded Systems - What's that? - II

Embedded Systems Design

Architectu patterns

Timing analys

Real-time operating system

Embedded Systems - What's that? - II

• Embedded Systems: ...

- ... respond to physical world
- ... respond in real time ("have a deadline")
- ... often have little resources
- ...run on special purpose hardware
- ...run in real-time operating system

Embedded Systems - What's that? - II

nbedded Systems - What's that? - II

• Embedded Systems: ...
• ...respond to physical world

Embedded Systems Design

Architectur patterns

Timing analys

Real-time operating system

Embedded Systems - What's that? - II

• Embedded Systems: ...

- ... respond to physical world
- ... respond in real time ("have a deadline")
- ... often have little resources
- ...run on special purpose hardware
- ...run in real-time operating system

Embedded Systems - What's that? - II

Embedded Systems - What's that? - II

• Embedded Systems: ...

• ... riscond to physical world

Embedded Systems Design

Architectur patterns

Timing analys

Real-time operating syster

- Embedded Systems: ...
 - ... respond to physical world
 - ... respond in real time ("have a deadline")
 - ... often have little resources
 - ...run on special purpose hardware
 - ...run in real-time operating system

Embedded Systems - What's that? - II

Embedded Systems - What's that? - II

• Embedded Systems: ...

• ...respond to physical world

... respond in real time ("have a deadline")

Embedded Systems Design

Architectur patterns

Timing analysi

Real-time operating system

- Embedded Systems: ...
 - ... respond to physical world
 - ... respond in real time ("have a deadline")
 - ... often have little resources
 - ...run on special purpose hardware
 - ...run in real-time operating system

—Embedded Systems - What's that? - II

Embedded Systems - What's that? - II

• Embedded Systems:

- ... respond to physical world
 ... respond in real time ("have a deadline")
 ... often have little resources
 ... run on special purpose hardware

Embedded Systems - What's that? - II

Architectural

patterns

Timing analys

Real-time operating system

- Embedded Systems: ...
 - ... respond to physical world
 - ... respond in real time ("have a deadline")
 - ... often have little resources
 - ...run on special purpose hardware
 - ...run in real-time operating system

Embedded Systems 2012-01-15

-Embedded Systems - What's that? - II

... run in real-time operating system

- Embedded Systems: ... respond to physical world
- respond in real time ("have a deadline")
- ... run on special purpose hardware

Embedded Systems - What's that? - II

• Embedded Systems: . . .

- ... respond to physical world
- ... respond in real time ("have a deadline")
- ... often have little resources
- ...run on special purpose hardware
- ...run in real-time operating system

Embedded Systems - What's that? - III

Embedded Systems Design

Architectur patterns

Timing analys

Real-time operating systems

Embedded Systems - What's that? - III

• Examples for Embedded Systems:

- airbag
- cell phone / 'modern' phone
- burglar alarm
- (fully automatic) coffee machine
- danger detection
-

-Embedded Systems - What's that? - III

Embedded Systems - What's that? - III

Examples for Embedded Systems:

- airbag
- cell phone / 'modern' phone
- burglar alarm
- (fully automatic) coffee machine
- danger detection
-

-Embedded Systems - What's that? - III

» Examples for Embedded Systems: airbag cell phone / 'modern' phone

- Examples for Embedded Systems:
 - airbag
 - cell phone / 'modern' phone
 - burglar alarm
 - (fully automatic) coffee machine
 - danger detection
 -

Embedded Systems 2012-01-15

-Embedded Systems - What's that? - III

» Examples for Embedded Systems: cell phone / 'modern' phone

burglar alarm

- Examples for Embedded Systems:
 - airbag
 - cell phone / 'modern' phone
 - burglar alarm
 - (fully automatic) coffee machine
 - danger detection
 -

Embedded Systems - What's that? - III

Embedded Systems - What's tha

- Examples for Embedded Systems:
- airbag
 cell phone / 'modern' phone
- burglar alarm
 (fully automatic) coffee machine

Embedded Systems Design

Architectur patterns

Timing analysi

Real-time operating system

- Examples for Embedded Systems:
 - airbag
 - cell phone / 'modern' phone
 - burglar alarm
 - (fully automatic) coffee machine
 - danger detection
 -

-Embedded Systems - What's that? - III

- Examples for Embedded Systems:
- cell phone / 'modern' phone
- burglar alarm
 (fully automatic) coffee machine
 danger detection

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating system

- Examples for Embedded Systems:
 - airbag
 - cell phone / 'modern' phone
 - burglar alarm
 - (fully automatic) coffee machine
 - danger detection
 - 0 ...

Embedded Systems - What's that? - III

- Examples for Embedded Systems:
- airbag
 cell phone / 'modern' phone
- burglar alarm
 (fully automatic) coffee machine
 danger detection

Embedded Systems Design

Architectura atterns

Timing analysi

Real-time operating system

- Examples for Embedded Systems:
 - airbag
 - cell phone / 'modern' phone
 - burglar alarm
 - (fully automatic) coffee machine
 - danger detection
 - ...

Embedded Systems

- Motivation

Systems are conjusted probably one Embedded Systems than cost there!

must be important, it is one money in this.

• We see:

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:
 - Man, they must be important
 - There sure is some money in this

Embedded Systems

- Motivation

• We see: ■ Embedded Systems are everywhere!

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:

Embedded Systems

- Motivation

We see:
 Embedded Systems are everywhere!
 There are probably more Embedded Systems than computers out there!

Embedded Systems Design

Architectur patterns

Timing analysi

Real-time operating system

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:
 - Man, they must be important
 - There sure is some money in this

Embedded Systems

- Motivation

• We see: Embedded Systems are everywhere! . There are probably more Embedded Systems than . We realize:

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:
 - Man, they must be important.
 - There sure is some money in this.

Embedded Systems

- Motivation

Motiv

- We see: Embedd
- Embedded Systems are everywhere!
 There are probably more Embedded Systems than computers out there!

 We realize:
- Man, they must be important.

Embedded Systems Design

Architectur patterns

Timing analysi

Real-time operating system

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:
 - Man, they must be important.
 - There sure is some money in this.

Embedded Systems

- Motivation

some money:

C-programing special skills

otivation

- We see: • Embedded
- Embedded Systems are everywhere!
 There are probably more Embedded Systems than computers out there!
 Ve realize:
- Man, they must be important.

 There sure is some money in this.

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time perating systen

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:
 - Man, they must be important.
 - There sure is some money in this.

Embedded Systems

Motivation

- We see:
 - Embedded Systems are everywhere! . There are probably more Embedded Systems than computers out there!
 - Man, they must be important . There sure is some money in this.
 - · We realize: . I did an internship producing an embedded system.

Real-time

Motivation

- Embedded Systems are everywhere!
- There are probably more Embedded Systems than computers out there!
- We realize:
 - Man, they must be important.
 - There sure is some money in this.
 - I did an internship producing an embedded system.

Embedded Systems

-Outline

- Embedded Systems Design
- Architectural patterns
- Timing analysis
- Real-time operating systems

Outline

- Embedded Systems Design
- 2 Architectural patterns
- Timing analysis
- 4 Real-time operating systems

Embedded Systems Design

Outline

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time

- Embedded Systems Design
- 2 Architectural patterns
- 3 Timing analysis
- 4 Real-time operating systems

Embedded Systems

Embedded Systems Design

Problems

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

Problems

• Problems in embedded Systems:

- deadlines
- environment
- continuity
- direct hardware interaction
- safety & reliability

Problems in embedded Systems:

deadlines

deadlines: every process has deadline until result must exist

hard systems: deadline not met, failure soft system: deadline not met, bad results

Problems

Embedded Systems Design

Architectur patterns

Timing analysis

Real-time operating system

• Problems in embedded Systems:

- deadlines
- environment
- continuity
- direct hardware interaction
- safety & reliability

Embedded Systems

Embedded Systems Design

Problems

» Problems in embedded Systems:

deadlines
 environment

Problems

environment:

2012-01-15

is unpredictable embedded Software \Rightarrow must be concurrent

Architectura patterns

Timing analysis

Real-time operating system • Problems in embedded Systems:

- deadlines
- environment
- continuity
- direct hardware interaction
- safety & reliability

» Problems in embedded Systems:

environment

Problems

continuity:

2012-01-15

embedded Software \Rightarrow does not normally terminate software has to be reliable may need update while operating

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating systen

- Problems in embedded Systems:
 - deadlines
 - environment
 - continuity
 - direct hardware interaction
 - safety & reliability

» Problems in embedded Systems: · direct hardware interaction

deadlines environment continuity

direct hardware interaction:

uncommon hardware (i.e. detonator in airbag) speed issues (hardware is faster)

Embedded Systems Design

Problems

- Problems in embedded Systems:
 - deadlines
 - environment
 - continuity
 - direct hardware interaction
 - safety & reliability

safety & reliability:

cost of failure high either economical or in human life

» Problems in embedded Systems:

deadlines
 environment
 continuity
 direct hardware interaction
 safety & reliability

Embedded Systems Design

Architectur patterns

Timing analysis

Real-time operating system

Problems

- Problems in embedded Systems:
 - deadlines
 - environment
 - continuity
 - direct hardware interaction
 - safety & reliability

Embedded Systems Design Embedded Systems Design

next thing:

not all are necessary, but most will be.

Embedded Systems Design

Embedded Systems Design

Architectural patterns

Timing analys

Real-time operating system

design steps

- platform selection
- special purpose hardware
- stimuli:
 - periodic stimul
- Timing analysis
- Process design
- Algorithm design
- Data design
- Process scheduling

Embedded Systems Embedded Systems Design Embedded Systems Design

Platform selection:

what hardware? Real-time operating system (later) What is to be implemented in software, what in hardware need to design special hardware? power consumption (mobile device, backup)

Embedded Systems Design

Embedded Systems Design

design steps

- platform selection
- special purpose hardware
- stimuli:
- Timing analysis
- Process design
- Algorithm design
- Data design
- Process scheduling

Embedded Systems Design Embedded Systems Design

design special hardware?

replace software by hardware?

a design steps

Embedded Systems Design

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating system

- platform selection
- special purpose hardware
- stimuli:

design steps

- periodic stim
- Timing analysis
- Process design
- Algorithm design
- Data design
- Process scheduling

Embedded Systems Design

Embedded Systems Design

stimuli:

describe behavior of system by listing received stimuli and reactions $\mathsf{stimuli} = \mathsf{signals}$

Embedded Systems Design

Embedded Systems Design

> rchitectural atterns

Timing analys

Real-time operating system

- design steps
 - platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - 2 aperiodic stimuli
 - Timing analysis
 - Process design
 - Algorithm design
 - Data design
 - Process scheduling

Embedded Systems Embedded Systems Design Embedded Systems Design

periodic stimuli:

occur at predictable intervals predefined reaction per stimulus i.e. polling

Embedded Systems Design

Embedded Systems Design

Architectural patterns

Timing analysis

Real-time operating syste

- design steps
 - platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - 2 aperiodic stimuli
 - Timing analysis
 - Process design
 - Algorithm design
 - Data design
 - Process scheduling

Embedded Systems Design Embedded Systems Design

aperiodic stimuli:

occurr irregularly and unpredictably often interrupts i.e. alarms, failures, IO operation finished, etc**stimuli list:** best practice: stimuli list with **all** stimuli.

example NEXT SLIDE

Embedded Systems Design

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

- design steps
 - platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - 2 aperiodic stimuli
 - Timing analysis
 - Process design
 - Algorithm design
 - Data design
 - Process scheduling

Embedded Systems Design Embedded Systems Design

a design steps

platform selection
 special purpose hard
 stimuli:
 periodic stimuli
 aperiodic stimuli

Timing analysis

Timing analysis:

For each stimulus and response \Rightarrow find timing constraints timing constraints \Rightarrow deadlines

Embedded Systems Design

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

- design steps
 - platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - 2 aperiodic stimuli
 - Timing analysis
 - Process design
 - Algorithm design
 - Data design
 - Process scheduling

Embedded Systems Design

Embedded Systems Design

Process design:

aggregate the stimuli & responses into concurrent processes See Architectural design

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

Embedded Systems Design

- design steps
 - platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - 2 aperiodic stimuli
 - Timing analysis
 - Process design
 - Algorithm design
 - Data design
 - Process scheduling

Embedded Systems Embedded Systems Design Embedded Systems Design

a design steps

• platform selection periodic stimuli
 aperiodic stimuli

Algorithm design

Algorithm design:

For each stimulus & response ⇒ design algorithm especially important for computationally intensive tasks (signal processing)

Do we need to implement these in hardware?

Embedded Systems Design

Real-time

Embedded Systems Design

- design steps platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - aperiodic stimuli
 - Timing analysis
 - Process design
 - Algorithm design
 - Data design
 - Process scheduling

Embedded Systems Embedded Systems Design Embedded Systems Design

a design steps

• platform selection periodic stimuli
 aperiodic stimuli

 Timing analysis · Process design · Algorithm design Data design

Data design:

How to store data, that will be exchanged semaphore & critical regions & monitors & ...

circular buffer: producer & consumer may run at different speeds

Embedded Systems Design

Embedded Systems Design

design steps

- platform selection
- special purpose hardware
- stimuli:
 - periodic stimuli
 - 2 aperiodic stimuli
- Timing analysis
- Process design
- Algorithm design
- Data design
- Process scheduling

Embedded Systems Design

—Embedded Systems Design

Process scheduling:

ensure, that processes meet their deadline probably among the hardest (own opionion) all shown:

not all need to be done, but most probably will which & order depends on what we design

after this design steps:

make sure system can meet deadlines static analysis simulation

a design steps

platform selection
 special purpose hard
 stimuli:
 periodic stimuli
 aperiodic stimuli

Timing analysis
 Process design
 Algorithm design
 Data design
 Process scheduling

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating system

Embedded Systems Design

design steps

- platform selection
- special purpose hardware
- stimuli:
 - periodic stimuli
 - aperiodic stimuli
- Timing analysis
- Process design
- Algorithm design
- Data design
- Process scheduling

Embedded Systems Design Example: radiation warning system

Example: radiation warning system

Embedded Systems Design

Architectu patterns

Timing analysis

Real-time operating syst

Embedded Systems Design

Example: radiation warning system

Example: radiation warning system

Embedded Systems Design

Architectura patterns

Timing analysis

Real-time operating system

Embedded Systems -Embedded Systems Design

Example: radiation warning system

Example: radiation warning system

Embedded Systems Design

Embedded Systems Design Example: radiation warning system

Example: radiation warning system

Embedded Systems Design

> rchitectural atterns

Timing analysis

Real-time operating system

Embedded Systems

Embedded Systems Design

Example: Stimuli-List of a radiation warning system

cample: Stimuli-List of a radiation arning system Stimulus Response

Example: Stimuli-List of a radiation warning system

Embedded Systems Design

Architectura patterns

Timing analysis

Real-time operating syster Stimulus

Response

Embedded Systems -Embedded Systems Design

Example: Stimuli-List of a radiation warning system

Embedded Systems Design

Example: Stimuli-List of a radiation warning system

Stimulus	Response
single sensor positive	flash yellow light around sensor

Embedded Systems Embedded Systems Design

Example: Stimuli-List of a radiation warning system

Example: Stimuli-List of a radiation warning system

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating system

Stimulus	Response
single sensor positive	flash yellow light around sensor
both sensors in one	flash red light around sensor,
area positive	sound acoustic alarm around
	sensor

Embedded Systems -Embedded Systems Design

Example: Stimuli-List of a radiation warning system

Embedded Systems Design

Example: Stimuli-List of a radiation warning system

Stimulus	Response
single sensor positive	flash yellow light around sensor
both sensors in one	flash red light around sensor,
area positive	sound acoustic alarm around
	sensor
Voltage drop of 10-20%	switch to backup power; run power supply test

Embedded Systems -Embedded Systems Design

Example: Stimuli-List of a radiation warning system

LAST CELL:

Example: Stimuli-List of a radiation warning system

Embedded Systems Design

Stimulus	Response
single sensor positive	flash yellow light around sensor
both sensors in one	flash red light around sensor,
area positive	sound acoustic alarm around
	sensor
Voltage drop of 10-	switch to backup power; run
20%	power supply test
Voltage drop of more	switch to backup; run power
than 20%	supply test; call maintainer

Embedded Systems Design

Embedded Systems Design

Embedded system modeling

Embedded Systems are often built as state
 machiner

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating system

Embedded system modeling

• Embedded Systems are often built as state machines.

 \Rightarrow UML state diagrams

Embedded Systems Design

Embedded Systems Design

Embedded system modeling

Embedded system modeling
 Embedded Systems are often built as state machines.
 → UML state diagrams

Embedded Systems Design

Architectur patterns

Timing analys

Real-time operating syster

Embedded system modeling

• Embedded Systems are often built as state machines.

 \Rightarrow UML state diagrams

Embedded Systems Design

Embedded Systems Design

Embedded system modeling

Embedded Systems Design

Architectura patterns

Timing analysis

Real-time operating system

Embedded system modeling

• Embedded Systems are often built as state machines.

 \Rightarrow UML state diagrams

Embedded Systems Design

-Embedded software programing

• programm has to be...

Embedded Systems Design

Architectural

Timing analys

Real-time operating sy

Embedded software programing

- programm has to be...
 - ... fast (i.e. C, Asssembler)
 - ... concurrent (i.e. C++, real time Java, ...)
- speed looses importance

11 / 21

Embedded Systems Design

-Embedded software programing

C, Assembler:

No concurrency no built-in system for shared resources

Embedded software programing

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating syste • programm has to be...

- ogramm has to be...
- ... fast (i.e. C, Asssembler)
- ... concurrent (i.e. C++, real time Java, ...)
- speed looses importance

Embedded Systems -Embedded Systems Design

Embedded software programing

concurrent:

and manage shared resources

concurrent or speed??:

depends on what is more important simulate concurrency with frequent polling do something yourself about shared resources

programm has to be..

Embedded Systems Design

Embedded software programing

• programm has to be...

speed looses importance

- ... fast (i.e. C, Asssembler)
- ... concurrent (i.e. C++, real time Java, ...)

Embedded Systems

Embedded Systems Design

Embedded software programing

speed:

due to faster hardware ie monitoring device written in C++ ie cell phones in java, objective C, ...

Embedded Systems Design

Architectur patterns

Timing analysi

Real-time operating system

Embedded software programing

- programm has to be...
 - ... fast (i.e. C, Asssembler)
 - ... concurrent (i.e. C++, real time Java, ...)
- speed looses importance

Architectural patterns

Outline

Embedded Systems Design

Architectural patterns

Timing analys

Real-time operating syste

1 Embedded Systems Design

- Architectural patterns
- 3 Timing analysis
- 4 Real-time operating systems

Embedded Systems 2012-01-15 —Architectural patterns -Architectural patterns

note on 3:

The source described three rough design pattern there are finer patterns

in an abstract way and help to understand the

Architectural patterns

Architectural patterns

- Architectural patterns are used to describe a system in an abstract way and help to understand the architecture.
 - Observe and react
 - Environmental Control
 - Process Pipeline

Embedded Systems —Architectural patterns -Architectural patterns

Observe and React:

set of monitored sensors Something happens *Rightarrow* we do something ie incoming phone call

Observe and react

Architectural patterns

Architectural patterns

- Architectural patterns are used to describe a system in an abstract way and help to understand the architecture.
 - Observe and react
 - Environmental Control
 - Process Pipeline

Embedded Systems
Architectural patterns
Architectural patterns

Environmental Control:

set of sensors and actuators can change environment ie flash light, when sensor fires

Observe and react
 Environmental Control

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating system

Architectural patterns

- Architectural patterns are used to describe a system in an abstract way and help to understand the architecture.
 - Observe and react
 - Environmental Control
 - Process Pipeline

Embedded Systems -Architectural patterns -Architectural patterns

Process Pipeline:

data transformation

preferably concurrent

series of processing steps

all of those: can be combined

often more than one pattern in the system

system Rightarrow only for understanding system

ie monitor the actuators **design patterns**: will lead to inefficient

. Architectural patterns are used to describe a system

▶ Environmental Control Process Pipeline

Architectural patterns

Real-time

Architectural patterns

• Architectural patterns are used to describe a system in an abstract way and help to understand the architecture.

- Observe and react
- Environmental Control
- Process Pipeline

Embedded Systems

Architectural patterns

Observe and React

bserve and React

Observe and React

Embedded

Architectural patterns

Timing analys

Real-time operating system

Observe and React

• Observe and React

- monitor the system with a set of sensors
- display something
- primarly used in: Monitoring systems

Embedded Systems
Architectural patterns

Observe and React

monitoring: as stated before

erve and React

Observe and React
 monitor the system with a set of sensors

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating system

Observe and React

• Observe and React

- monitor the system with a set of sensors
- display something
- primarly used in: Monitoring systems

Embedded Systems —Architectural patterns

Observe and React

display:

monitoring screen on exceptional behaviour: alarms, shutdown

. Observe and React

monitor the system with a set of sensors

Architectural patterns

Observe and React

- Observe and React
 - monitor the system with a set of sensors
 - display something
 - primarly used in: Monitoring systems

Embedded Systems
Architectural patterns

Observe and React

Observe and React
 monitor the system with a set of sensors
 display something
 monitor and the set of sensors
 display something

monitoring systems:

often consist of more than one O&R patterns, one for each sensor optimisation: combine something, ie display on one monitor

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating systems

Observe and React

- Observe and React
 - monitor the system with a set of sensors
 - display something
 - primarly used in: Monitoring systems

Embedded Systems

Architectural patterns

Environmental Control

Environmental Control

Embedded Systems Design

Architectural patterns

Timing analys

Real-time operating system

Environmental Control

- monitor the system and react to any changes
- Used when there is no requirement for user interaction.
- ...or no time for the user to interact ...
- ... no way a user can interact ...
- ...or there is too much information for users to process.

Embedded Systems Architectural patterns

Environmental Control

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating system

Environmental Control

- monitor the system and react to any changes
- Used when there is no requirement for user interaction. . .
- ... or no time for the user to interact ...
- ... no way a user can interact ...
- ... or there is too much information for users to process.

Embedded Systems Architectural patterns

Environmental Control

examples:

cruise control water level pressure control

. . .

· monitor the system and react to any changes . Used when there is no requirement for user

• Environmental Control

Architectural patterns

Environmental Control

- monitor the system and react to any changes
- Used when there is no requirement for user interaction...
- ... or no time for the user to interact ...
- ... no way a user can interact ...
- ... or there is too much information for users to process.

Embedded Systems —Architectural patterns

Environmental Control

examples:

break assist airbag

- · monitor the system and react to any changes
- ... or no time for the user to interact .

Architectural patterns

Environmental Control

- monitor the system and react to any changes
- Used when there is no requirement for user interaction...
- ... or no time for the user to interact ...
- ... no way a user can interact ...
- ... or there is too much information for users to process.

Embedded Systems —Architectural patterns

Environmental Control

example:

CYPRES (parachute, Möllemann did not activate his in 2003) self desctruct of military/sensitive equipment

. Environmental Control

· monitor the system and react to any changes ... no way a user can interact .

Architectural patterns

Environmental Control

- monitor the system and react to any changes
- Used when there is no requirement for user interaction...
- ... or no time for the user to interact ...
- ... no way a user can interact ...
- ... or there is too much information for users to process.

Embedded Systems Architectural patterns

Environmental Control

example:

Nuclear Power Plant Airplane Car

virtually any big system with many subsystems

. Environmental Control

· monitor the system and react to any changes

Architectural patterns

Environmental Control

- monitor the system and react to any changes
- Used when there is no requirement for user interaction...
- ... or no time for the user to interact ...
- ... no way a user can interact ...
- ... or there is too much information for users to process.

2012-01-15

Embedded Systems
Architectural patterns
Process Pipeline

• Process Pipeline

Process Pipeline

Embedded Systems Design

Architectural patterns

Timing analys

Real-time operating system

Process Pipeline

- transform data
- often huge amounts of data to be converted in real time
- data aquisition system: storing of data may need to be fast

Embedded Systems
Architectural patterns
Process Pipeline

Process Pipeline

examples:

signal processing from sensors in other systems optical sensor convert digital data to audio

Embedded Systems Design

Architectural patterns

• Process Pipeline

iming analys

Real-time operating system

• Process Pipeline

- transform data
- often huge amounts of data to be converted in real time
- data aquisition system: storing of data may need to be fast

Embedded Systems
Architectural patterns
Process Pipeline

huge amount:

concurrency + multicore is the key

Process Pipeline
transform data
often huge amounts of data to be converted in real time.

Process Pipeline

Embedded Systems Design

Architectural patterns

Timing analysi

Real-time operating system • Process Pipeline

- transform data
- often huge amounts of data to be converted in real time
- data aquisition system: storing of data may need to be fast

2012-01-15

Embedded Systems
Architectural patterns

-Process Pipeline

example:

particle accelerator chemical reactions

. . .

if storing not fast, data will be lost

Process Pipeline
 Process Pipeline

- ocess Pipeline

 transform data
 often huge amounts of data to
- transform data
 often huge amounts of data to be converted in real time
 data aquisition system: storing of data may need

Embedded Systems Design

Architectural patterns

Timing analys

Real-time operating syster

Process Pipeline

- Process Pipeline
 - transform data
 - often huge amounts of data to be converted in real time
 - data aquisition system: storing of data may need to be fast

2012-01-15

Timing analysis

Outline

Embedded Systems Design

Architectu patterns

Timing analysis

Real-time operating system

- 1 Embedded Systems Design
- 2 Architectural patterns
- 3 Timing analysis
- 4 Real-time operating systems

Embedded Systems

Timing analysis

Timing Analysis - I

ming Analysis - I

timing analysis

Embedded Systems Design

Architectur patterns

Timing analysis

Real-time operating system

Timing Analysis - I

• timing analysis

- Correctness of systems depends not only on result, but also on the time at which the result is produced.
- How often does each process need to be executed?
- aperiodic stimuly ⇒ make assumptions

Embedded Systems ☐ Timing analysis

Timing Analysis - I

. timing analysis · Correctness of systems depends not only on result. but also on the time at which the result is

Timing analysis

Timing Analysis - I

- timing analysis
 - Correctness of systems depends not only on result, but also on the time at which the result is produced.
 - How often does each process need to be executed?
 - aperiodic stimuly ⇒ make assumptions

how often?:

then we check, if our system can deliver this

stimuli or many aperiodic stimuli are expected

this can be quite hard, when mixture of aperiodic and periodic

. timing analysis . How often does each process need to be executed?

Timing analysis

Timing Analysis - I

- timing analysis
 - Correctness of systems depends not only on result, but also on the time at which the result is produced.
 - How often does each process need to be executed?
 - aperiodic stimuly \Rightarrow make assumptions

Embedded Systems Timing analysis Timing Analysis - I

fast systems:

use only periodic stimuli poll frequently for aperiodic stimuli

. timing analysis

aperiodic stimuly ⇒ make assumptions

Timing analysis

Timing Analysis - I

- timing analysis
 - Correctness of systems depends not only on result, but also on the time at which the result is produced.
 - How often does each process need to be executed?
 - aperiodic stimuly ⇒ make assumptions

Embedded Systems

Timing analysis

Timing Analysis - II

Timing Analysis - II

Embedded Systems Design

Architectu patterns

Timing analysis

Real-time operating system

Consider:

- deadlines
- frequency
- execution time

```
Embedded Systems
 ☐ Timing analysis
                                                                         • Consider:
        Timing Analysis - II
```


Timing Analysis - II

deadlines:

By which time must the process have ended.

Timing analysis

• Consider:

- deadlines
- frequency
- execution time

frequency:

```
Embedded Systems
☐ Timing analysis
       Timing Analysis - II
```

so that the *system* meets all deadlines

The number of times a process must be executed in a given span,

Timing Analysis - II

• Consider:

Timing analysis

Consider:

- deadlines
- frequency
- execution time

```
Embedded Systems
Timing analysis
       Timing Analysis - II
```


Timing Analysis - II

execution time:

hard: conditional execution, delays waiting, ...

hard systems: always worst case

How long does each single process take (average & worst case)

• Consider:

frequency

Timing analysis

- Consider:
 - deadlines
 - frequency
 - execution time

Timing analysis

Stimulus/Response Timing requirements switch to backup: 50ms voltage drop

Timing analysis

Stimulus/Response	Timing requirements
voltage drop	switch to backup: 50ms
each sensor	poll twice a second

Stimulus/Response Timing requirements
voltage drop switch to backup: 50ms
each sensor poll twice a second
turn on light 500ms

Embedded Systems Design

Archit

Timing analysis

Stimulus/Response	Timing requirements
voltage drop	switch to backup: 50ms
each sensor	poll twice a second
turn on light	500ms

LAST CELL:

Embedded Systems Design

Architec

Timing analysis

Real-time operating system

Stimulus/Response Timing requirements

voltage drop switch to backup: 50ms
each sensor poll twice a second
turn on light 500ms
call maintainer 5000ms

Embedded Systems Real-time operating systems -Outline

Outline

Real-time operating systems

Real-time operating systems Embedded Systems Design

4 Real-time operating systems

too large, too bulky, too slow

normal operating systems:

al-time operating systems

normal operating systems not feasible

straining systems of feasible

straining straining
special manager whether & resource manager whether the resource manager w

Embedded Systems Design

Architectur patterns

Timing analysi

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manage
 - dispatcher

real-time operating systems:

they are small and damn fast

Windows/CE Vxworks

RTLinux

emdebian

• normal operating systems not featible • normal operating systems not featible • special "real-time operating systems" exist • real-time observations operating systems" • statement of the systems of

Embedded Systems Design

Architectura patterns

Timing analysis

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

normal operating systems not feasible
 special "real-time operating systems" exist
 RTOS must include:

Embedded Systems Design

Architectur patterns

Timing analysis

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

real-time clock:

provides information required to schedule processes

normal operating systems not feasible
 special "real-time operating systems" exist
 RTOS must include:
 real-time clock

Real-time operating systems

Embedded Systems Design

Architectura patterns

Timing analysi

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

may be inside process manager

manages aperiodic requests for service

interrupt for processes with fast response time & clock level fore

often also background processes with low priority (self checks etc)

interrupt handler:

at least 2 levels:

regular processes

· normal operating systems not feasible

· interrupt handler

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

process manager: scheduler & resource manager

normal operating systems not feasible

Real-time operating systems

scheduler

examines processes and chooses one for execution processes need enough processor time to finish before their deadline commonly used:

non-pre-emptive & pre-emtive (execution of processes may be stopped) round robin rate monolithic scheduling (SJF) shortes deadline first (HPF) resource manager: allocates memory and processor resources scheduled for execution

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

dispatcher:

starts execution of processes

· normal operating systems not feasible

dispatcher

. special "real-time operating systems" exist real-time clock · interrupt handler

· process manager: scheduler & resource manager

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

2012-01-15

Embedded Systems

Real-time operating systems

30 minutes in short

• What you should (at least) remember:

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating systems

30 minutes in short

• What you should (at least) remember:

- Embedded Systems react to events in real time.
- Embedded Systems are a set of processes reating to stimuli
- State models help understanding the System.
- Architectural patterns can be used to help in designing the system.
- Always to timing analysis in (hard) Embedded Systems.

Embedded Systems

Real-time operating systems

30 minutes in short

What you should (at least) remember:
Embedded Systems react to events in real time.

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating systems

30 minutes in short

- What you should (at least) remember:
 - Embedded Systems react to events in real time.
 - Embedded Systems are a set of processes reating to stimuli
 - State models help understanding the System.
 - Architectural patterns can be used to help in designing the system.
 - Always to timing analysis in (hard) Embedded Systems.

Embedded Systems Real-time operating systems -30 minutes in short

» What you should (at least) remember

. Embedded Systems react to events in real time.

Real-time operating systems

- What you should (at least) remember:
 - Embedded Systems react to events in real time.
 - Embedded Systems are a set of processes reating to stimuli
 - State models help understanding the System.
 - Architectural patterns can be used to help in designing the system.
 - Always to timing analysis in (hard) Embedded

Embedded Systems

Real-time operating systems

30 minutes in short

ninutes in short

- What you should (at least) remember:
 Embedded Systems react to events in real time.
 - Embedded Systems react to events in real time.

 Embedded Systems are a set of processes reating to stimuli
- to stimuli

 State models help understanding the System.

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating systems

- What you should (at least) remember:
 - Embedded Systems react to events in real time.
 - Embedded Systems are a set of processes reating to stimuli
 - State models help understanding the System.
 - Architectural patterns can be used to help in designing the system.
 - Always to timing analysis in (hard) Embedded Systems.

2012-01-15

Embedded Systems

Real-time operating systems

30 minutes in short

30 minutes in sh

- What you should (at least) remember:
- Embedded Systems react to events in real time.
- State models help understanding the System.
 Architectural patterns can be used to help in designing the system.

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating systems

- What you should (at least) remember:
 - Embedded Systems react to events in real time.
 - Embedded Systems are a set of processes reating to stimuli
 - State models help understanding the System.
 - Architectural patterns can be used to help in designing the system.
 - Always to timing analysis in (hard) Embedded Systems.

Embedded Systems

Real-time operating systems

30 minutes in short

30 minutes in s

- What you should (at least) remember:
- Embedded Systems react to events in real time.
 Embedded Systems are a set of processes reating.
- State models help understanding the System.
 Architectural patterns can be used to help in
- Architectural patterns can be used to help in designing the system.
 Always to timing analysis in (hard) Embedded

Embedded Systems Design

Architectura patterns

Timing analysi

Real-time operating systems

- What you should (at least) remember:
 - Embedded Systems react to events in real time.
 - Embedded Systems are a set of processes reating to stimuli
 - State models help understanding the System.
 - Architectural patterns can be used to help in designing the system.
 - Always to timing analysis in (hard) Embedded Systems.