

Masked Graph Convolutional Network

Liang Yang^{1,2}, Fan Wu^{1,2}, Yingkui Wang³, Junhua Gu^{1,2} and Yuanfang Guo^{4,*}

¹School of Artificial Intelligence, Hebei University of Technology, China

²Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, China

³College of Intelligence and Computing, Tianjin University, China

⁴School of Computer Science and Engineering, Beihang University, China yangliang@nextseason.cc, wufanslient@outlook.com, ykwang@tju.edu.cn, jhgu@hebut.edu.cn, andyguo@buaa.edu.cn

项雅丽

2019.10.10

Motivation

很多方法都基于 相邻的节点相似 这个假设, 这个假设对节点标签成立,但是对节点特征只是部分成立

例如,粉丝和idol可能会有一些兴趣上的相似点,但是他们的性别可能不一样,因为在传播过程中,性别这个特征不应该传递下去。

因此,论文思想就是学习mask,筛选需要传递下去的特征,过滤不重要的特征。

Framework

Related work

Traditional Attribute-graph based Semi-supervised Classification

- Label Propagation
- Label Spreading

Graph Convolutional Neural Networks

- Graph Convolutional Network
- PageRank GCN
- Graph Attention Network

Related work

Traditional Attribute-graph based Semi-supervised Classification

$$w_{ij} = \exp\left(-\sum_{d} \frac{(x_{id} - x_{jd})^2}{\sigma_d^2}\right) \qquad P = \begin{bmatrix} P_{ll} & P_{lu} \\ \hline P_{ul} & P_{uu} \end{bmatrix}$$

Label Propagation

$$h_i^{(k+1)} = \sum_j \frac{w_{ij}}{\sum_j w_{ij}} h_j^{(k)} = \sum_j \frac{w_{ij}}{d_i} h_j^{(k)}$$

$$E(H) = \sum_{i,j} w_{ij} ||h_i - h_j||_2^2 = \text{tr}(H^T L H)$$

analytical solution can be expressed as

$$Y_u = (I - P_{uu})^{-1} P_{ul} Y_l,$$

Label Spreading

$$h_i^{(k+1)} = \sum_j \frac{w_{ij}}{\sum_j w_{ij}} h_j^{(k)} = \sum_j \frac{w_{ij}}{d_i} h_j^{(k)} \qquad h_i^{(k+1)} = (1 - \alpha) \sum_j \frac{w_{ij}}{\sqrt{d_i d_j}} h_j^{(k)} + \alpha y_i$$

$$E(H) = \sum_{i,j} w_{ij} ||h_i - h_j||_2^2 = \operatorname{tr}(H^T L H)$$

$$E(H) = \sum_{i,j} w_{ij} \left\| \frac{h_i}{\sqrt{d_i}} - \frac{h_j}{\sqrt{d_j}} \right\|_2^2 + \mu \sum_i ||h_i - y_i||_2^2$$

$$= \operatorname{tr}(H^T \hat{L} H) + \mu ||H - Y||_F^2,$$

the analytical solution as Eq. (7) shows.
$$H=(1-\alpha)(I-\alpha\hat{L})^{-1}Y \tag{7}$$

Related work-Graph Convolutional Neural Networks

▶ GAT

$$H_{GAT}^{(k+1)} = OH_{GAT}^{(k)}$$

$$o_{nk} = \frac{\exp\left(c(x_n^T W, x_k^T W)\right)}{\sum_{k \in N(n)} \exp\left(c(x_n^T W, x_k^T W)\right)}$$

▶ GCN

$$H_{GCN}^{(k+1)} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{GCN}^{(k)}$$

PageRank GCN

$$H_{PR_GCN}^{(k+1)} = (1-\alpha) \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{PR_GCN}^{(k)} + \alpha X$$

$$Q = HW$$

$$\mathcal{L} = -\sum_{TM} \sum_{n=1}^{F} Y_{nf} \log(Q_{nf})$$

Symmetric Propagation

Label Spreading

$$h_i^{(k+1)} = (1 - \alpha) \sum_j \frac{w_{ij}}{\sqrt{d_i d_j}} h_j^{(k)} + \alpha y_i$$

▶ GCN

$$H_{GCN}^{(k+1)} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{GCN}^{(k)}$$

PageRank GCN

$$H_{PR_GCN}^{(k+1)} = (1-\alpha) \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{PR_GCN}^{(k)} + \alpha X$$

Asymmetric Propagation

Label Propagation

$$h_i^{(k+1)} = \sum_j \frac{w_{ij}}{\sum_j w_{ij}} h_j^{(k)} = \sum_j \frac{w_{ij}}{d_i} h_j^{(k)}$$

▶ GAT

$$H_{GAT}^{(k+1)} = OH_{GAT}^{(k)}$$

SP loss

$$E(H) = \sum_{i,j} w_{ij} \left\| \frac{h_i}{\sqrt{d_i}} - \frac{h_j}{\sqrt{d_j}} \right\|_2^2 + \mu \sum_i ||h_i - y_i||_2^2$$
$$= \operatorname{tr}(H^T \hat{L}H) + \mu ||H - Y||_F^2,$$

Symmetric Propagation

Label Spreading

$$h_i^{(k+1)} = (1 - \alpha) \sum_j \frac{w_{ij}}{\sqrt{d_i d_j}} h_j^{(k)} + \alpha y_i$$

$$\frac{1}{\sqrt{d_i d_j}}$$

PageRank GCN

$$H_{PR_GCN}^{(k+1)} = (1 - \alpha)\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H_{PR_GCN}^{(k)} + \alpha X$$

$$\frac{1}{\sqrt{(d_i+1)(d_j+1)}}$$
传递特征

▶ GCN

$$H_{GCN}^{(k+1)} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{GCN}^{(k)}$$

$$\mathcal{L} = \sum_{i,j} w_{ij} || \frac{h_i}{\sqrt{d_i}} - \frac{h_j}{\sqrt{d_j}} ||_2^2$$

Symmetric Propagation

Label Spreading

$$h_i^{(k+1)} = (1 - \alpha) \sum_j \frac{w_{ij}}{\sqrt{d_i d_j}} h_j^{(k)} + \alpha y_i$$

▶ GCN

$$H_{GCN}^{(k+1)} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{GCN}^{(k)}$$

PageRank GCN

$$H_{PR_GCN}^{(k+1)} = (1-\alpha) \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H_{PR_GCN}^{(k)} + \alpha X$$

Asymmetric Propagation

Label Propagation

$$h_i^{(k+1)} = \sum_j \frac{w_{ij}}{\sum_j w_{ij}} h_j^{(k)} = \sum_j \frac{w_{ij}}{d_i} h_j^{(k)}$$

▶ GAT

$$H_{GAT}^{(k+1)} = OH_{GAT}^{(k)}$$

Asymmetric Propagation

$$w_{ij} = \exp\left(-\sum_{d} \frac{(x_{id} - x_{jd})^2}{\sigma_d^2}\right) \qquad h_i^{(k+1)} = \sum_{j} \frac{w_{ij}}{\sum_{j} w_{ij}} h_j^{(k)} = \sum_{j} \frac{w_{ij}}{d_i} h_j^{(k)}$$

$$h_i^{(k+1)} = \sum_j \frac{w_{ij}}{\sum_j w_{ij}} h_j^{(k)} = \sum_j \frac{w_{ij}}{d_i} h_j^{(k)}$$

$$w_{ij} = \exp(b^T[h_i||h_j])$$

= $\exp(b_1^T h_i + b_2^T h_j)$

$$H_{GAT}^{(k+1)} = OH_{GAT}^{(k)}$$

Methods

$$egin{aligned} w_{ij} &= \exp\left(b^T[h_i||h_j]
ight) \ &= \exp\left(b_1^T h_i + b_2^T h_j
ight) \end{aligned}$$

$$\mathcal{L}_{Masked_GCN_Asym} = \sum
olimits_{i,j} w_{ij} ||h_i - M^{(j)}h_j||_2^2$$

$$h_i^{(k+1)} = \sum_j \frac{w_{ij}}{\sum_j w_{ij}} M^{(j)} h_j^{(k)}$$

Parameters to learn
$$W$$
, $\sigma_1 \dots \sigma_T$, b in w_{ij}

$$M^{(j)} = \text{diag}(m_1^{(j)}, m_2^{(j)}, ..., m_T^{(j)})$$

$$T_{Masked_GCN} = \operatorname{softmax}(H_{Masked_GCN}^{(2)}W)$$

Methods

- only propagates part of the attributes
- transductive & inductive semi-supervised node classification
- can be expressed to symmetric methods

$$\mathcal{L}_{Masked_GCN_Sym} = \sum_{i,j} w_{ij} \left\| \frac{h_i}{\sqrt{d_i}} - M^{(j)} \frac{h_j}{\sqrt{d_j}} \right\|_2^2$$

Experiments

Methods	Cora	Citeseer	Pubmed	NELL
MLP	55.1%	46.5%	71.4%	22.9%
ManiReg [Belkin et al., 2006]	59.5%	60.1%	70.7%	21.8%
SemiEmb [Weston et al., 2012]	59.0%	59.6%	71.7%	26.7%
LP [Zhu et al., 2003]	68.0%	45.3%	63.0%	26.5%
DeepWalk [Perozzi et al., 2014]	67.2%	43.2%	65.3%	58.1%
ICA [Lu and Getoor, 2003]	75.1%	69.1%	73.9%	23.2%
Planetoid [Yang et al., 2016]	75.7%	64.7%	77.2%	61.9%
Chebyshev [Defferrard et al., 2016]	81.2%	69.8%	74.4%	-
MoNet [Monti et al., 2017]	81.7%	69.9%	78.8%	64.2%
Random-scheme Mask GCN	14.8%	17.2%	35.1%	4.8%
GCN [Kipf and Welling, 2017]	81.5%	70.3%	79.0%	66.0%
Masked GCN (Sym)	82.7%	72.0%	79.3%	68.2%
GAT [Veličković et al., 2018]	83.0%	72.5%	79.0%	-
Masked GCN (Asym)	84.4%	73.8%	80.2%	68.9%

Methods	PPI
Random	0.396
Logistic Regression	0.422
GraphSAGE-mean	0.598
GraphSAGE-LSTM	0.612
GraphSAGE-pool	0.600
Inductive GCN	0.500
Masked GCN (Sym)	0.892
GAT	0.934
Masked GCN (Asym)	0.952

Table 4: Inductive learning results.

Table 3: Transductive learning results.

谢谢:)