每个进程拥有一个指定了SID和其他属性的访问令牌。该令牌通常由winlogon创建,就像后面说的那样。图11-47展示了令牌的格式。进程可以调用GetTokenInformation来获取令牌信息。令牌的头部包含了一些管理性的信息。过期时间字段表示令牌何时不再有效,但当前并没有使用该字段。组字段指定了进程所隶属的组。POSIX子系统需要该字段。默认的DACL(Discretionary Access Control List,自主访问控制列表)会赋给被进程创建的对象,如果没有指定其他ACL的话。用户的SID表示进程的拥有者。受限SID使得不可信的进程以较少的权限参与到可信进程的工作中,以免造成破坏。

最后,权限字段,如果有的话,赋予进程除普通用户外特殊的权利,比如关机和访问本来无权访问的文件的权利。实际上,权限域将超级用户的权限分成几种可独立赋予进程的权限。这样,用户可被赋予一些超级用户的权限,但不是全部的权限。总之,访问令牌表示了谁拥有这个进程和与其关联的权限及默认值。

头部	过期时间	组	默认DACL	用户SID	组SID	受限SID	权限	身份模拟级别	完整度级别
	-		<u> </u>	254.00				 :	L

图11-47 访问令牌结构

当用户登录时,winlogon赋予初始的进程一个访问令牌。后续的进程一般会将这个令牌继承下去。初始时,进程的访问令牌会被赋予其所有的线程。然而,线程在运行过程中可以获得一个不同的令牌,在这种情况下,线程的访问令牌覆盖了进程的访问令牌。特别地,一个客户端线程可以将访问权限传递给服务器线程,从而使得服务器可以访问客户端的受保护的文件和其他对象。这种机制叫做身份模拟(impersonation)。它是由传输层(比如ALPC、命名管道和TCP/IP)实现的、被RPC用来实现从客户端到服务器的通信。传输层使用内核中安全引用监控器组件的内部接口提取出当前线程访问令牌的安全上下文,并把它传送到服务器端来构建用于服务器模拟客户身份的令牌。

另一个基本的概念是安全描述符(security descriptor)。每个对象都关联着一个安全描述符,该描述符描述了谁可以对对象执行何种操作。安全描述符在对象被创建的时候指定。NTFS文件系统和注册表维护着安全描述符的特久化形式,用以为文件和键对象(对象管理器中表示已打开的文件和键的实例)创建安全描述符。

安全描述由一个头部和其后带有一个或多个访问控制入口(Access Control Entry, ACE)的DACL组成。ACE主要有两类:允许项和拒绝项。允许项含有一个SID和一个表示带有此SID的进程可以执行哪些操作的位图。拒绝项与允许项相同,不过其位图表示的是谁不可以执行那些操作。比如,Ida拥有一个文件,其安全描述符指定任何人都可读,Elvis不可访问,Cathy可读可与,并且Ida自己拥有完全的访问权限。图11-48描述了这个简单的例子。Everyone这个SID表示所有的用户,但该表项会被任何显式的ACE覆盖。

图11-48 文件的安全描述符示例