#2

OIPE

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/988,117

DATE: 11/28/2001 TIME: 11:06:05

Input Set : A:\00742.066002.SEQLIST.TXT
Output Set: N:\CRF3\11212001\1988117.raw


```
4 <110> APPLICANT: Benjamin, Thomas L.
             Li, Dawei
              Mok, Samuel C.
      6
      7
              Cramer, Daniel W.
              Ma, Yupo
     10 <120> TITLE OF INVENTION: Diagnosing and Treating Cancer Cells
             Using Sal2
     13 <130> FILE REFERENCE: 00742/066002
C--> 15 <140> CURRENT APPLICATION NUMBER: US/09/988,117
C--> 15 <141> CURRENT FILING DATE: 2001-11-16
     15 <150> PRIOR APPLICATION NUMBER: US 09/812,633
     16 <151> PRIOR FILING DATE: 2001-03-19
     18 <150> PRIOR APPLICATION NUMBER: US 60/216,723
     19 <151> PRIOR FILING DATE: 2000-07-07
     21 <160> NUMBER OF SEQ ID NOS: 21
     23 <170> SOFTWARE: FastSEQ for Windows Version 4.0
     25 <210> SEQ ID NO: 1
     26 <211> LENGTH: 1005
     27 <212> TYPE: PRT
     28 <213> ORGANISM: Homo Sapiens
     30 <400> SEQUENCE: 1
     31 Met Ala His Glu Ser Glu Arg Ser Ser Arg Leu Gly Val Pro Ala Gly
                         5
                                            10
     33 Glu Pro Ala Glu Leu Gly Gly Asp Ala Ser Glu Glu Asp His Pro Gln
                                        25
     35 Val Cys Ala Lys Cys Cys Ala Gln Phe Thr Asp Pro Thr Glu Phe Leu
                                    40
     37 Ala His Gln Asn Ala Cys Ser Thr Asp Pro Pro Val Met Val Ile Ile
                                55
     39 Gly Gly Gln Glu Asn Pro Asn Asn Ser Ser Ala Ser Ser Glu Pro Arg
                                                75
                           70
     41 Pro Glu Gly His Asn Asn Pro Gln Val Met Asp Thr Glu His Ser Asn
                        85
     43 Pro Pro Asp Ser Gly Ser Ser Val Pro Thr Asp Pro Thr Trp Gly Pro
                                        105
     45 Glu Arg Arg Gly Glu Glu Ser Ser Gly His Phe Leu Val Ala Ala Thr
                                    120
                115
     47 Gly Thr Ala Ala Gly Gly Gly Gly Leu Ile Leu Ala Ser Pro Lys
                                135
                                                    140
     49 Leu Gly Ala Thr Pro Leu Pro Pro Glu Ser Thr Pro Ala Pro Pro
                            150
                                                155
     51 Pro Pro Pro Pro Pro Pro Pro Gly Val Gly Ser Gly His Leu Asn
                        165
                                            170
     53 Ile Pro Leu Ile Leu Glu Glu Leu Arg Val Leu Gln Gln Arg Gln Ile
                                        185
     55 His Gln Met Gln Met Thr Glu Gln Ile Cys Arg Gln Val Leu Leu
                                    200
                195
```

RAW SEQUENCE LISTING PATENT APPLICATION: US/09/988,117 TIME: 11:06:05

DATE: 11/28/2001

Input Set : A:\00742.066002.SEQLIST.TXT Output Set: N:\CRF3\11212001\I988117.raw

57 Gly Ser Leu Gly Gln Thr Val Gly Ala Pro Ala Ser Pro Ser Glu Leu 215 59 Pro Gly Thr Gly Thr Ala Ser Ser Thr Lys Pro Leu Pro Leu Phe 230 235 61 Ser Pro Ile Lys Pro Val Gln Thr Ser Lys Thr Leu Ala Ser Ser Ser 250 245 63 Ser Ser Ser Ser Ser Ser Ser Gly Ala Glu Thr Pro Lys Gln Ala Phe 265 65 Phe His Leu Tyr His Pro Leu Gly Ser Gln His Pro Phe Ser Ala Gly 280 275 67 Gly Val Gly Arg Ser His Lys Pro Thr Pro Ala Pro Ser Pro Ala Leu 295 69 Pro Gly Ser Thr Asp Gln Leu Ile Ala Ser Pro His Leu Ala Phe Pro 310 315 71 Ser Thr Thr Gly Leu Leu Ala Ala Gln Cys Leu Gly Ala Ala Arg Gly 330 325 73 Leu Glu Ala Thr Ala Ser Pro Gly Leu Leu Lys Pro Lys Asn Gly Ser 345 340 75 Gly Glu Leu Ser Tyr Gly Glu Val Met Gly Pro Leu Glu Lys Pro Gly 360 77 Gly Arg His Lys Cys Arg Phe Cys Ala Lys Val Phe Gly Ser Asp Ser 375 370 79 Ala Leu Gln Ile His Leu Arg Ser His Thr Gly Glu Arg Pro Tyr Lys 390 395 81 Cys Asn Val Cys Gly Asn Arg Phe Thr Thr Arg Gly Asn Leu Lys Val 410 405 83 His Phe His Arg His Arg Glu Lys Tyr Pro His Val Gln Met Asn Pro 420 425 85 His Pro Val Pro Glu His Leu Asp Tyr Val Ile Thr Ser Ser Gly Leu 86 435 440 87 Pro Tyr Gly Met Ser Val Pro Pro Glu Lys Ala Glu Glu Glu Ala Ala 455 460 89 Thr Pro Gly Gly Gly Val Glu Arg Lys Pro Leu Val Ala Ser Thr Thr 470 475 91 Ala Leu Ser Ala Thr Glu Ser Leu Thr Leu Leu Ser Thr Ser Ala Gly 490 485 93 Thr Ala Thr Ala Pro Gly Leu Pro Ala Phe Asn Lys Phe Val Leu Met 505 95 Lys Ala Val Glu Pro Lys Asn Lys Ala Asp Glu Asn Thr Pro Pro Gly 525 520 97 Ser Glu Gly Ser Ala Ile Ser Gly Val Ala Glu Ser Ser Thr Ala Thr 535 99 Leu Met Gln Leu Ser Lys Leu Met Thr Ser Leu Pro Ser Trp Ala Leu 550 555 101 Leu Thr Asn His Phe Lys Ser Thr Gly Ser Phe Pro Leu Pro Leu Cys 570 565 103 Ala Arg Ala Leu Gly Ala Ser Pro Ser Glu Thr Ser Lys Leu Gln Gln 585 105 Leu Val Glu Lys Ile Asp Arg Gln Gly Ala Val Ala Val Thr Ser Ala

RAW SEQUENCE LISTING DATE: 11/28/2001 PATENT APPLICATION: US/09/988,117 TIME: 11:06:05

Input Set : A:\00742.066002.SEQLIST.TXT
Output Set: N:\CRF3\11212001\1988117.raw

													c 0 °			
106			595			_	_	600	_ •	_		_	605	a		.1.
107	Ala	ser	Gly	Ala	Pro	Thr		Ser	Ala	Pro	Ala		Ser	Ser	ser	Ата
108		610					615					620				_
109	Ser	Ser	Gly	Pro	Asn	Gln	Cys	Val	Ile	Cys	Leu	Arg	Val	Leu	Ser	Cys
110	625					630					635					640
111	Pro	Arg	Ala	Leu	Arg	Leu	His	Tyr	Gly	Gln	His	Gly	Gly	Glu	Arg	Pro
112		-			645					650					655	
113	Phe	Lvs	Cys	Lys	Val	Cys	Gly	Arg	Ala	Phe	Ser	Thr	Arg	Gly	Asn	Leu
114		•	•	660		-	_	_	665					670		
	Ara	Ala	His	Phe	Val	Gly	His	Lys	Ala	Ser	Pro	Ala	Ala	Arg	Ala	Gln
116)		675			-		680					685			
117	Asn	Ser		Pro	Ile	Cvs	Gln	Lvs	Lvs	Phe	Thr	Asn	Ala	Val	Thr	Leu
118		690	-1-			- 1	695	•	-			700				
110	Gln	Gln	Нis	Va1	Ara	Met		Leu	Glv	Glv	Gln	Ile	Pro	Asn	Gly	Gly
	705	0.111		,	5	710			1		715				-	720
121	Thr.	λla	Lou	Dro	Glu		Glv	Glv	Ala	λla		Glu	Asn	Gly	Ser	Glu
122	1117	AIu	пец	110	725	011	U 1	U _1		730	0			1	735	
122	Cln	Cor	Thr	Val		C1 v	Δla	Glv	Ser		Pro	Gln	Gln	Gln		Gln
	GIII	Ser	1111	740	DET	GLY	niu	GLY	745	1 110	110	02	0	750		
124	a1	D	C		C1.,	C1	Clu	Tou		Clu	Glu	Glu	Glu	Glu	Glu	Asn
	GTII	PIO		PIO	GIU	GIU	GIU	760	Set	GIU	Giu	Olu	765	014	014	
126	a 1	01.	755	G1.,	61.	7.00	17-1) an	Clu	λαn	Car		Ala	Glv	Δrσ
	GIU		GIU	GIU	GIU	ASP		7 11T	мър	GIU	мэр	780	цец	AIG	OLY	my
128	a 3	770	01	0	01	01	775	7	7 l a	т1.	Cor		λνα	Clv	1 en	Sar
		ser	GIU	ser	GIA		GIU	гая	Ата	TTE	795	Val	Alg	Gly	тэр	800
130	785			_	a 1.	790	a 1	a 1	a 1	170 1		mb∽	175.7	712	λl a	
	GLu	Glu	Ala	Ser		АТа	GLU	GIU	Glu		GTA	THE	Val	Ala		міа
132	_				805			_	a .	810	a1	T	mh	mb	815	cln
	Ala	Thr	Ala		Lys	Glu	Met	Asp		Asn	GLU	гăг	Thr	Thr	GIII	GIII
134				820		_	_	_	825		a	*	7	830	Desc	01 n
	Ser	Ser		Pro	Pro	Pro	Pro		Pro	Asp	ser	Leu		Gln	PLO	GIII
136			835		_			840			-1	a 1	845	01	01	01
137	Pro		Glu	Gln	Gly	Ser		GTY	Val	Leu	GLY		гĀг	Glu	GIU	GTA
138		850					855			_	_	860	_	_,	_	~ 1
		Lys	Pro	Glu	Arg		Ser	Ser	Pro	Ala		Ala	Leu	Thr	Pro	
140	865					870					875			_		880
141	Gly	Glu	Ala	Thr	Ser	Val	Thr	Leu	Val		Glu	Leu	Ser	Leu		Glu
142					885					890					895	_
143	Ala	Met	Arg	Lys	Glu	Pro	Gly	Glu	Ser	Ser	Ser	Arg	Lys	Ala	Cys	Glu
144				900					905					910		
145	Val	Cys	Gly	Gln	Ala	Phe	Pro	Ser	Gln	Ala	Ala	Leu		Glu	His	Gln
146			915					920					925			
147	Lys	Thr	His	Pro	Lys	Glu	Gly	Pro	Leu	Phe	Thr	Cys	Val	Phe	Cys	Arg
148		930					935					940				
149	Gln	Gly	Phe	Leu	Glu	Arg	Ala	Thr	Leu	Lys	Lys	His	Met	Leu	Leu	Ala
150	945	_				950					955					960
151	His	His	Gln	Val	Gln	Pro	Phe	Ala	Pro	${\tt His}$	Gly	Pro	Gln	Asn	Ile	Ala
152					965					970					975	
153	Ala	Leu	Ser	Leu	Val	Pro	Gly	Cys	Ser	Pro	Ser	Ile	Thr	Ser	Thr	Gly
154				980			_	-	985					990		

RAW SEQUENCE LISTING DATE: 11/28/2001 PATENT APPLICATION: US/09/988,117 TIME: 11:06:05

Input Set : A:\00742.066002.SEQLIST.TXT
Output Set: N:\CRF3\11212001\1988117.raw

155 Leu Ser Pro Phe Pro Arg Lys Asp Asp Pro Thr Ile Pro 1000 995 156 159 <210> SEQ ID NO: 2 160 <211> LENGTH: 16080 161 <212> TYPE: DNA 162 <213> ORGANISM: Homo sapiens 164 <400> SEQUENCE: 2 165 atatcacacc ccagctggct atgtaatcat gaaataagga gaaacacata aatatttggt 60 166 taaaacacct ttaatgatag agggaaagac actaatatct cccgtctgtt cttgacattt 120 167 tactaggtta ggaagctctg gagcctacag cttgaggaga agccatcgtt caagtcagtc 180 168 aatagcaaaa ccctcactct ctcctcctca gaactcctgt tccaaatgat cctatgttaa 240 169 gagtaaatac tacaactcat tacaagacgg agaggcaggg aggacgccac ctggagctgg 300 170 gactettaag aaccagacaa tgacaaagac acaageeeca geetaeggat aggeaaaatg 360 171 ggtaggggtc ttgaaagagg aagataagga aaatacaagg ggccagggaa taaaggaggg 420 172 agttatctaa aactagaagc atactagtgc taggaaatcc cccatgatcc ctggtacacc 480 173 tctgcacact atgtcactat tagcccaaaa gaatattaac gagaatgtcc acattcacaa 540 174 gaatttgagg ccttttccct tacatcatgt ccctttctta gtcacatagg taccagcaag 600 175 ccctatgttc tagcaacatt ccttaactct ctcatcatta gttcatcaac catgctgacc 660 176 aaaaatgctc cttaaagata cgaacttcac atttcccaaa tatctcctgg gagacctctt 720 177 ggcaagaaat cagcttgttt cccaactttg agaggtcatc atgaatgaga agctggagag 780 178 gtcttggcac actgaccagc caaaaccttt accttaatgt gaccatcagg ggatttactg 840 179 ggaaaatttt cctatgccct tccttcattt ctccctactt cctagggttg ggtcaccaat 900 180 tactggagca tetteagtae eggeacette tggagcaggg ggaggaagaa ggaatgtaea 960 181 gtttgctact tcttgtctat gatgggcttc tcaggcactg ccttgggtgc aggaggctga 1020 182 aataggaggg gggctgtctt ctccttggct tccctggatc ccattgttgg aggcaccttc 1080 183 ccagccacag ttcctaggcc aaacagcact ggtggggcca ggcttggagt ggtagtggag 1140 184 gtggagctgg aattccaggg cttcatgggc aggccatttg acaggaatgc cacatactgg 1200 185 ttctagaaag ataggggacc catacccacc agctgagcag aaaggtcacc ccagaggagt 1260 186 ggcactgggc cctccagaga cagctgccag ccctttttgg ctaggctgca atgccaaatg 1320 187 taggtgctca ggtgcaccta ccaaagggaa agggagagga gagaggaggg ggaagaaggg 1380 188 tcacaccagg gaagetggag agggtteece ttgagaaage tgeagagaat etatgtteet 1440 189 caggtacaaa gaatgaggag ggaagaaaaa ttccttaggg ggccatcccc ttgtaagcac 1500 190 agtaatttcc aagctcaggg actacagaaa agccactagg gacataacat gttaagaact 1560 191 tagagaaaaa gacaaaatca gggctcataa ctctgggagg tccttttgtg aagctgtttc 1620 192 tgctctgtgg gacaaagagc agcaggtaca gaaaaacagg ctcatgggat cgtggggtca 1680 193 tcttttcggg gaaaggggga gagccctgtg gaggtgatgg aaggcgaaca gccagggact 1740 194 agagaaagag cagcaatatt ctgagggcca tggggggcaa agggctgtac ctggtggtgt 1800 195 gccaggagca tatgcttctt gagggtagcc cgctcaagaa agccctgcct gcagaaaaca 1860 196 caagtgaaga gcggcccctc cttggggtgg gtcttctgat gctcctccag agctgcctgg 1920 197 gagggaaagg cctggccaca cacttcgcag gcctttctgc tgctgctctc tcctggctcc 1980 198 tttctcattg cctcctgcag gctcagctcc tctaccaagg tcacgctggt ggcttcccct 2040 199 totggggtga gtgctgatgc oggaettgag etteteteeg gtttgeecee etetteettg 2100 200 cctcctaaaa caccactgct tccctgctcc attggctgag gctgatccag gctgtcaggt 2160 201 ggtggtggtg gtggcaaaga agactgttga gtagttttct cattactgtc catctccttc 2220 202 ccagctgtgg ctgctgccgc cactgtcccc acctcctcct ctgccccaga tgcctcttct 2280 203 gaatcacctc tcactgatat tgccttctca cctccactct ctgagcctct ccctgccagg 2340 204 gaatetteat cagteacate tteetettet teeteateet eetetteete eteeteagae 2400 205 aactectett eeggtgatgg etgetgggae tgetgetggg ggaaacteee tgeeeeggag 2460 206 actgtagatt gctcggagcc attctcctga gcagctcctc caccttcagg gagtgcagta 2520

RAW SEQUENCE LISTING DATE: 11/28/2001 PATENT APPLICATION: US/09/988,117 TIME: 11:06:05

Input Set : A:\00742.066002.SEQLIST.TXT
Output Set: N:\CRF3\11212001\1988117.raw

							0500
207	ccaccgttgg	ggatctggcc	ccccaggtgc	atccggacat	gctgctgcag	agtgacagca	2580
208	ttggtgaact	tcttctggca	gatggggcag	gaattctgtg	cccgggcagc	tggactggcc	2040
209	ttgtggccca	cgaaatgtgc	acgcagatta	cccctggtgg	agaaggetet	gccacacact	2700
210	ttgcatttga	agggcctctc	acctccatgt	tggccataat	gaaggcgtag	ggcccgagga	2/00
211	cagctaagca	ctcggagaca	gatgacacac	tggttaggtc	cagaagaggc	tgaggatgaa	2820
212	ggtgcagggg	cagaggtggt	gggggctcct	gaggcagctg	aggtcaccgc	cacageteet	2880
213	tgccggtcaa	tcttttctac	cagttgctgc	agctttgatg	tctcagaggg	tgaggccccc	2940
214	aagggctcta	gcacataggg	gaaggggaag	ctgccagtgg	acttgaagtg	gttggtaagc	3000
215	agtgcccagc	ttggtagtga	agtcaccaac	ttacttagtt	gcatgcgagt	tgccgtgcta	3060
216	ctttctgcca	ctccactgat	ggctgagccc	tcactccctg	ggggggtgtt	ttcatcagct	3120
217	ttattcttgg	gttccactgc	tttcatgagc	acaaacttat	tgaaagcagg	gagtcctgga	3180
218	gccgtggctg	tgcctgcact	ggtggagagc	agagtcaggc	tctctgtggc	actgagtgct	3240
219	gttgtggagg	ccaccagagg	cttgcgctca	acccctccac	ctggagtggc	tgcctcctcc	3300
220	tcggccttct	ctggtggcac	ggacatacca	taaggcaagc	cactgctggt	aatgacatag	3360
221	tctaggtgct	ctggtactgg	gtgtgggttc	atctgcacat	gtgggtactt	ctcacgatgc	3420
222	cggtggaaat	gcactttgag	gttgccacgg	gtggtaaaac	ggtttccaca	gacattgcac	3480
223	ttatagggcc	tctcacccgt	gtgggaacga	aggtggatct	gcagggcact	gtcactgcca	3540
224	aatactttgg	cacagaagcg	gcatttgtgc	cttccaccag	gcttctccaa	gggacccatc	3600
225	acttctccqt	agctcagctc	accacttcca	ttctttggct	tcaggagece	tggggaggca	3660
226	gtggcctcaa	ggcctcgggc	tgccccaaga	cactgtgctg	ccagtagtcc	cgtggtgctt	3720
227	gggaatgcca	gatgaggcga	ggcaatcagc	tgatctgtgc	tgcctggcaa	ggctggggaa	3780
228	ggggcagggg	tgggtttgtg	gcttcgccca	acccctccag	cagagaaagg	atgctgtgac	3840
229	cccagtgggt	ggtaaaggtg	gaagaaggcc	tgcttgggcg	tttctgcccc	tgaagaggaa	3900
230	gaggaggagg	aggaggaaga	tgccagtgtc	ttgctggttt	ggacaggctt	gatggggctg	3960
231	aagaggggta	gtaggggctt	ggtggaagag	gcagtccctg	tcccaggtag	ctctgaggga	4020
232	ctggcagggg	cacccaccgt	ctggcctaag	gagccaagca	acagcacctg	cctgcagatt	4080
233	tgctcagtca	tctgcatctg	atggatctgc	cgctgctgca	gcacccgtag	ctcttccaag	4140
234	atcaggggga	tattcaagtg	gccactgcct	acccctgggg	gcggaggggg	tggtggagga	4200
235	ggagggggtg	caggggtcga	ttctggaggt	aatggggttg	ctcccagctt	gggactggcc	4260
236	aagatcaggc	ccccgcctcc	cccagccgct	gtacctgtgg	cagcgaccag	gaaatgccct	4320
237	ggagactcct	ctcctctcct	ctctgggccc	caggtgggat	ccgtgggcac	ggaggaccca	4380
238	gaatctgggg	ggttgctatg	ctctgtgtcc	atgacctgag	gattattgtg	acceteagge	4440
239	cggggttcag	aggaggccga	agagttgttg	gggttctcct	ggcccccaat	tatcaccatt	4500
240	acaggagggt	cagtagaaca	tgcgttctgg	tgggcgagga	attcagttgg	gtcagtgaat	4560
241	tgtgcgcagc	acttggcaca	gacttggggg	tgatcctcct	cgctagcatc	acctggggag	4620
242	aaqacaaqqa	gagagagcgt	gggtggcgca	gttgggttgg	gtataccgag	gctctaatta	4680
243	acaaggaggc	cagtaaccgc	tagttggggg	tggggagatg	agctcaccat	cagggccatg	4740
244	cagaagtcta	gagctcaggc	ctgatccgtg	tggacaggag	acaacccggc	atggggcagg	4800
245	ggggtgggga	gggaggaggg	gaggggggca	agagcatgct	actcccctcc	tcagccaccc	4860
246	tcccttcccc	aggccacaag	cgagttcacg	gaataggtgt	ggggacaggg	gcctacgcag	4920
247	agaatcatgc	attttctccc	acccaccgaa	agtcttcgcc	gcccctgcgc	atccccctcc	4980
248	qccccaccc	ctgcccagcc	cgaccgaccc	taccgcacct	ccgagctctg	ccggctcccc	5040
249	gcagggcacc	ccgagacgag	agctcctctc	ggattcgtgc	gccatggttg	tgggggaagt	5100
250	ggagggccag	gtggggtggg	agacaatgga	tattgggatt	gagggaggcg	atggccgctg	5160
251	ggtctgcggc	agcctctgca	cccagcggcc	cagactgcgg	agatggagat	cggcagcggc	5220
252	gggggcaggg	agcagcggcg	gagggggagg	ggagcgagga	ggcggggaga	agctggagtg	5280
253	agaaagcggg	gagaggggag	atctgggagg	agctgatgag	gaggggagtt	tatggggagg	5340
254	agctgctggg	gagggaggcg	ggagctagag	gaggcgggag	aagggagcgc	tagcgggggc	5400
255	gtggggggg	gagctcagag	ctcgggagag	tttccggagg	cgcagtgaca	ggtgctgtga	5460

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/988,117

DATE: 11/28/2001 TIME: 11:06:06

Input Set : A:\00742.066002.SEQLIST.TXT Output Set: N:\CRF3\11212001\1988117.raw

L:15 M:270 C: Current Application Number differs, Replaced Current Application No L:15 M:271 C: Current Filing Date differs, Replaced Current Filing Date