Activités Mentales

24 Août 2023

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = 2u_n + 30 \\ u_0 = -17 \end{cases}$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = 6u_n + 15 \\ u_0 = 13 \end{cases}$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = 5u_n + 25 \\ u_0 = -17 \end{cases}$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = 10u_n + 37 \\ u_0 = -3 \end{cases}$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = 6u_n + 39 \\ u_0 = -15 \end{cases}$$

On rappelle que
$$\begin{cases} u_{n+1} = 2u_n + 30 \\ u_0 = -17 \end{cases}$$
.

On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0 = -17$ et $u_1 = 2u_0 + 30 = 2 \times (-17) + 30 = -4$. Comme $-17 \le -4$, on a bien $u_0 \le u_{0+1}$ et H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$.Or

$$u_k \le u_{k+1} \Rightarrow 2u_k \le 2u_{k+1} \quad \text{car } 2 > 0$$
$$\Rightarrow 2u_k + 30 \le 2u_{k+1} + 30$$
$$\Rightarrow u_{k+1} \le u_{k+2}$$

On rappelle que
$$\begin{cases} u_{n+1} = 6u_n + 15 \\ u_0 = 13 \end{cases}$$
.

On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0 = 13$ et $u_1 = 6u_0 + 15 = 6 \times 13 + 15 = 93$. Comme $13 \le 93$, on a bien $u_0 \le u_{0+1}$ et H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$.Or

$$u_k \le u_{k+1} \Rightarrow 6u_k \le 6u_{k+1} \quad \text{car } 6 > 0$$
$$\Rightarrow 6u_k + 15 \le 6u_{k+1} + 15$$
$$\Rightarrow u_{k+1} \le u_{k+2}$$

On rappelle que
$$\begin{cases} u_{n+1} = 5u_n + 25 \\ u_0 = -17 \end{cases}$$
.

On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0 = -17$ et $u_1 = 5u_0 + 25 = 5 \times (-17) + 25 = -60$. Comme $-17 \le -60$, on a bien $u_0 \le u_{0+1}$ et H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$.Or

$$u_k \le u_{k+1} \Rightarrow 5u_k \le 5u_{k+1} \quad \text{car } 5 > 0$$
$$\Rightarrow 5u_k + 25 \le 5u_{k+1} + 25$$
$$\Rightarrow u_{k+1} \le u_{k+2}$$

On rappelle que
$$\begin{cases} u_{n+1} = 10u_n + 37 \\ u_0 = -3 \end{cases}$$
.

On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0 = -3$ et $u_1 = 10u_0 + 37 = 10 \times (-3) + 37 = 7$. Comme $-3 \le 7$, on a bien $u_0 \le u_{0+1}$ et H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$.Or

$$u_k \le u_{k+1} \Rightarrow 10u_k \le 10u_{k+1}$$
 car $10 > 0$
 $\Rightarrow 10u_k + 37 \le 10u_{k+1} + 37$
 $\Rightarrow u_{k+1} \le u_{k+2}$

On rappelle que
$$\begin{cases} u_{n+1} = 6u_n + 39 \\ u_0 = -15 \end{cases}$$

On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0 = -15$ et $u_1 = 6u_0 + 39 = 6 \times (-15) + 39 = -51$. Comme $-15 \le -51$, on a bien $u_0 \le u_{0+1}$ et H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$.Or

$$u_k \le u_{k+1} \Rightarrow 6u_k \le 6u_{k+1} \quad \text{car } 6 > 0$$
$$\Rightarrow 6u_k + 39 \le 6u_{k+1} + 39$$
$$\Rightarrow u_{k+1} \le u_{k+2}$$