Efficient Model Evidence Computation in Tree-structured Factor Graphs

Supplementary Material

Hoang M.H. Nguyen Bart van Erp İsmail Şenöz Bert de Vries Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

This supplementary document provides the message computation rules of sum-product messages in the paper "Efficient Model Evidence Computation in Tree-structured Factor Graphs".

I. BERNOULLI NODE

The factor node function of the Bernoulli node is defined as

$$f(x,y) = Ber(y \mid x) = x^{y} (1-x)^{1-y}$$
(1)

where $y \in \{0, 1\}$ is a binary variable, and $x \in [0, 1]$.

A. Forward message

The node function f(x,y) represents a conditional distribution $p(y \mid x)$. Based on the general scale factor update rules of a conditional probability density function in [1, Ch.6], we obtain the scale factor update rule

$$\vec{\beta}_y = \vec{\beta}_x \tag{2}$$

where $\vec{\beta}_y$ and $\vec{\beta}_x$ are the scale factors of the messages $\vec{\mu}_y(y)$ and $\vec{\mu}_x(x)$, respectively.

B. Backward message

Now we compute the scale factor β_x of the backward message $\mu_x(x)$. By definition, we have

$$\bar{\beta}_x = \int \bar{\mu}_x(x) dx = \int \sum_y \bar{\mu}_y(y) f(y, x) dx.$$
 (3)

Assume that we have observed $y=\hat{y}$, then $\overleftarrow{\mu}_y(y)=\overleftarrow{\beta}_y\delta(y-\hat{y})$ and (3) is now equivalent to

$$\ddot{\beta}_x = \ddot{\beta}_y \int \operatorname{Ber}(\hat{y} \mid x) \mathrm{d}x \tag{4}$$

$$= \overline{\beta}_y \int x^{\hat{y}} (1-x)^{1-\hat{y}} dx \tag{5}$$

$$= \overleftarrow{\beta}_y B(a,b) \underbrace{\int \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} dx}_{=1, \text{ Beta distribution}}$$
(6)

$$= \overleftarrow{\beta}_y B(a,b) \tag{7}$$

where $a = \hat{y} + 1$, $b = 2 - \hat{y}$ and B(a, b) is the Beta function defined as

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},\tag{8}$$

where $\Gamma(\cdot,\cdot)$ is the gamma function. From the definition of a,b and B(a,b), we have

$$\begin{split} \overline{\beta}_x &= \overline{\beta}_y \, B(\hat{y}+1,2-\hat{y}) \\ &= \overline{\beta}_y \, \frac{\Gamma(\hat{y}+1)\Gamma(2-\hat{y})}{\Gamma(3)}. \end{split}$$

Note that $\hat{y} \in \{0, 1\}$, and regardless of what value \hat{y} takes, the following equality holds

$$\frac{\Gamma(\hat{y}+1)\Gamma(2-\hat{y})}{\Gamma(3)} = \frac{\Gamma(1)\Gamma(2)}{\Gamma(3)} = \frac{1}{2}.$$
(9)

Therefore, we achieve the following final equation of $\overline{\beta}_x$

$$\ddot{\beta}_x = \frac{1}{2} \, \ddot{\beta}_y \tag{10}$$

II. CATEGORICAL NODE

The factor node function of the Categorical node is

$$f(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{Cat}(\boldsymbol{y} \mid \boldsymbol{x}) = \prod_{i=1}^{K} x_i^{y_i}$$
(11)

where $\mathbf{y} = [y_1, \dots, y_K]$ is a one-hot-coded vector, i.e. $y_i \in \{0, 1\}$ and $\sum_{i=1}^K y_i = 1$, and \mathbf{x} is a vector such that $x_i \in [0, 1]$ and $\sum_{i=1}^K x_i = 1$. K is the number of categories.

A. Forward message

Similar to the Bernoulli node, we also regard the node function as a conditional distribution $p(y \mid x)$, thus we have the following update rule

$$\vec{\beta}_{\boldsymbol{y}} = \vec{\beta}_{\boldsymbol{x}} \tag{12}$$

where $\vec{\beta}_y$ and $\vec{\beta}_x$ are the scale factors of the messages $\vec{\mu}_y$ and $\vec{\mu}_x$, respectively.

B. Backward message

Now we compute the scale factor $\bar{\beta}_x$ of the backward message $\bar{\mu}_x(x)$. By definition, we have:

$$\bar{\beta}_{x} = \int \bar{\mu}_{x} dx = \int \sum_{y} \bar{\mu}(y) f(y, x) dx$$
 (13)

Assume that we have observed $\pmb{y}=\hat{\pmb{y}}$, then $\overleftarrow{\mu}_{\pmb{y}}(\pmb{y})=\overleftarrow{\beta}_{\pmb{y}}\delta(\pmb{y}-\hat{\pmb{y}})$ and (13) equals:

$$\bar{\beta}_{x} = \bar{\beta}_{y} \int \operatorname{Cat}(\hat{y}|x) dx$$
 (14)

$$= \tilde{\beta}_{\boldsymbol{y}} \int \prod_{i=1}^{K} \boldsymbol{x}_{i}^{\hat{y}_{i}} d\boldsymbol{x}$$
 (15)

$$= \overline{\beta}_{y} B(\boldsymbol{\alpha}) \underbrace{\int \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^{K} \boldsymbol{x}_{i}^{\alpha_{i}-1} d\boldsymbol{x}}_{i}$$
 (16)

$$= \overleftarrow{\beta}_{\boldsymbol{y}} \ B(\boldsymbol{\alpha}) \tag{17}$$

where $\alpha = \hat{y} + 1$, and

$$B(\boldsymbol{\alpha}) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}.$$
 (18)

From the definition of α and $B(\alpha)$, we have:

$$\ddot{\beta}_{x} = \ddot{\beta}_{y} B(\hat{y} + 1) \tag{19}$$

$$= \tilde{\beta}_{y} \frac{\prod_{i=1}^{K} \Gamma(\hat{y}_{i} + 1)}{\Gamma(\sum_{i=1}^{K} (\hat{y}_{i} + 1))}$$
 (20)

$$= \overline{\beta}_{\boldsymbol{y}} \frac{1}{\Gamma(K+1)} \tag{21}$$

$$=\frac{\overline{\beta}_{\boldsymbol{y}}}{K!}\tag{22}$$

The factor node function of the transition node is

$$f(\boldsymbol{y}, \boldsymbol{x}) = \operatorname{Cat}(\boldsymbol{y} \mid \mathbf{A}\boldsymbol{x}) = \prod_{j=1}^{J} \prod_{k=1}^{K} A_{jk}^{y_j x_k}$$
(23)

where y and x are one-hot-coded vectors. A is the transition matrix whose elements are constrained to $A_{jk} \in [0,1]$ and whose columns are also constrained by $\sum_j A_{jk} = 1$. Since both x and y are one-hot coded, the node function (23) can be written in vector notation as follows

$$Cat(y \mid Ax) = y^{\top}Ax \tag{24}$$

In the following derivation, we assume the matrix A is known.

A. Forward message

Again, we can recognize that the node function is a conditional distribution $p(y \mid x)$, thus

$$\vec{\beta}_{y} = \vec{\beta}_{x} \tag{25}$$

where $\vec{\beta}_y$ and $\vec{\beta}_x$ are the scale factors of the messages $\vec{\mu}_y(y)$ and $\vec{\mu}_x(x)$, respectively.

B. Backward message

Assuming a categorical incoming message $\bar{\mu}_y(y) = \bar{\beta}_y \text{Cat}(y \mid \pi_y)$, now we compute the scale factor $\bar{\beta}_x$ of the backward message $\bar{\mu}_x$. By definition, we have

$$\begin{split} \ddot{\beta}_{x} &= \sum_{x} \ddot{\mu}_{x}(x) = \sum_{x} \sum_{y} \ddot{\mu}_{y}(y) \operatorname{Cat}(y \mid \mathbf{A}x) \\ &= \ddot{\beta}_{y} \sum_{x} \sum_{y} \operatorname{Cat}(y \mid \pi_{y}) \ x^{\top} \mathbf{A}^{\top} y \\ &= \ddot{\beta}_{y} \sum_{x} x^{\top} \mathbf{A}^{\top} \underbrace{\mathbb{E}_{\operatorname{Cat}(y \mid \pi_{y})}[y]}_{\pi_{y}} \\ &= \ddot{\beta}_{y} \sum_{x} x^{\top} \mathbf{A}^{\top} \pi_{y} \\ &= \ddot{\beta}_{y} ||\mathbf{A}^{\top} \pi_{y}||_{1} \sum_{x} x^{\top} \frac{\mathbf{A}^{\top} \pi_{y}}{||\mathbf{A}^{\top} \pi_{y}||_{1}}. \end{split}$$

In the last equality, we can view $x^{\top} \frac{\mathbf{A}^{\top} \pi_y}{||\mathbf{A}^{\top} \pi_y||_1}$ as a Categorical distribution over x, and hence, the summation term is equal to unity. Therefore, the update rule for $\bar{\beta}_x$ is:

$$\dot{\boldsymbol{\beta}}_{\boldsymbol{x}} = \dot{\boldsymbol{\beta}}_{\boldsymbol{y}} || \mathbf{A}^{\top} \boldsymbol{\pi}_{\boldsymbol{y}} ||_1,$$

where $||\cdot||_1$ denotes the ℓ^1 -norm of a vector.

IV. GAUSSIAN NODE

The node function is

$$f(\boldsymbol{x}, \boldsymbol{y}, \mathbf{V}) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{x}, \mathbf{V}) = \frac{1}{|2\pi\mathbf{V}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{x})^{\top} \mathbf{V}^{-1} (\boldsymbol{y} - \boldsymbol{x})\right)$$

where x and y are real-valued vectors, and V is the covariance matrix. In this derivation, we assume that V is known.

A. Forward message

Since the matrix V is known, we regard the Gaussian node as a conditional probability distribution function $p(y \mid x)$. Thus

$$\vec{\beta}_{\boldsymbol{y}} = \vec{\beta}_{\boldsymbol{x}},\tag{26}$$

where $\vec{\beta}_y$ and $\vec{\beta}_x$ are the scale factors of the messages $\vec{\mu}_y$ and $\vec{\mu}_x$, respectively.

B. Backward message

Due to the symmetry property of the quadratic term in the exponent of Gaussian distribution, we can also regard the node function as a conditional probability distribution function p(x|y), and thus we have

$$\overleftarrow{\beta}_{\boldsymbol{x}} = \overleftarrow{\beta}_{\boldsymbol{y}}.$$

V. EQUALITY NODE

We first recall the sum-product rule for the equality node: if the incoming messages are $\vec{\mu}_x(x)$ and $\vec{\mu}_z(z)$, then the outgoing message on the edge y is $\vec{\mu}_y(y) = \vec{\mu}_x(y) \, \vec{\mu}_z(y)$.

A. Beta message

Recall the definition of Beta distribution:

$$\operatorname{Beta}(x \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1},$$

where the random variable $x \in (0,1)$. Both $\alpha, \beta \in \mathbb{R}_{>0}$ are shape parameters. The normalizing constant is the inverse of the Beta function of α and β :

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

With the incoming messages

$$\vec{\mu}_x(x) = \vec{\beta}_x \operatorname{Beta}(x \mid a_x, b_x),$$

$$\vec{\mu}_z(z) = \vec{\beta}_z \operatorname{Beta}(z \mid a_z, b_z),$$

the scale factor $\vec{\beta}_y$ of the message $\vec{\mu}_y$ is

$$\vec{\beta}_{y} = \int_{y} \vec{\mu}_{y}(y) dy = \int_{y} \vec{\mu}_{x}(y) \, \vec{\mu}_{z}(y) dy = \vec{\beta}_{x} \vec{\beta}_{z} \int_{y} \vec{p}_{x}(y) \, \vec{p}_{z}(y) dy$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{1}{B(a_{x}, b_{x}) B(a_{z}, b_{z})} \int_{y} y^{a_{x}-1} (1-y)^{b_{x}-1} y^{a_{z}-1} (1-y)^{b_{z}-1} dy$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{1}{B(a_{x}, b_{x}) B(a_{z}, b_{z})} \int_{y} y^{a_{x}+a_{z}-2} (1-y)^{b_{x}+b_{z}-2} dy$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{B(a_{y}, b_{y})}{B(a_{x}, b_{x}) B(a_{z}, b_{z})} \underbrace{\int_{y} \frac{1}{B(a_{y}, b_{y})} y^{a_{y}-1} (1-y)^{b_{y}-1} dy}_{=1, \text{Beta distribution}}$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{B(a_{y}, b_{y})}{B(a_{x}, b_{x}) B(a_{z}, b_{z})},$$

where
$$\begin{cases} a_y = a_x + a_z - 1 \\ b_y = b_x + b_z - 1 \end{cases}$$

B. Bernoulli message

Recall the definition of Bernoulli distribution:

$$Ber(x \mid \pi) = \pi^x (1 - \pi)^{1 - x} \tag{27}$$

where the random variable $x \in \{0, 1\}$, and $\pi \in (0, 1)$.

With the incoming messages

$$\vec{\mu}_x(x) = \vec{\beta}_x \operatorname{Ber}(x \mid \pi_x),$$

$$\vec{\mu}_z(z) = \vec{\beta}_z \operatorname{Ber}(z \mid \pi_z),$$

the scale factor $\vec{\beta}_y$ of the message $\vec{\mu}_y$ is

$$\vec{\beta}_y = \sum_{y=0}^1 \vec{\mu}_y(y) = \sum_{y=0}^1 \vec{\mu}_x(y) \vec{\mu}_z(y) = \vec{\beta}_x \vec{\beta}_z \sum_{y=0}^1 \vec{p}_x(y) \vec{p}_z(y)$$

$$= \vec{\beta}_x \vec{\beta}_z \sum_{y=0}^1 \pi_x^y (1 - \pi_x)^{1-y} \pi_z^y (1 - \pi_z)^{1-y}$$

$$= \vec{\beta}_x \vec{\beta}_z ((1 - \pi_x)(1 - \pi_z) + \pi_x \pi_z)$$

C. Dirichlet message

Recall the definition of Dirichlet distribution:

$$\operatorname{Dir}(\boldsymbol{x} \mid \boldsymbol{\pi}) = \frac{1}{B(\boldsymbol{\pi})} \prod_{i=1}^{K} x_i^{\pi_i - 1}$$

where $K \in \mathbf{N}$ is the number of classes, $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]^{\top} \in \mathbb{R}_{>0}^K$. The random variable $\boldsymbol{x} = [x_1, \dots, x_K]^{\top}$ satisfies: $x_i \in (0,1)$ and $\sum_{i=1}^K x_i = 1$. The normalizing constant $B(\boldsymbol{\pi})$ is the multivariate beta function:

$$B(\boldsymbol{\pi}) = \frac{\prod_{i=1}^{K} \Gamma(\pi_i)}{\Gamma(\sum_{i=1}^{K} \pi_i)}$$

With the incoming messages

$$\vec{\mu}_x(\boldsymbol{x}) = \vec{\beta}_x \operatorname{Dir}(\boldsymbol{x} \mid \boldsymbol{\pi}_x),$$

$$\vec{\mu}_z(\boldsymbol{z}) = \vec{\beta}_z \operatorname{Dir}(\boldsymbol{z} \mid \boldsymbol{\pi}_z),$$

the scale factor $\vec{\beta}_y$ of the message $\vec{\mu}_y$ is

$$\vec{\beta}_{y} = \int \vec{\mu}_{y}(\boldsymbol{y}) d\boldsymbol{y} = \int \vec{\mu}_{x}(\boldsymbol{y}) \, \vec{\mu}_{z}(\boldsymbol{y}) d\boldsymbol{y} = \vec{\beta}_{x} \vec{\beta}_{z} \int \vec{p}_{x}(\boldsymbol{y}) \vec{p}_{z}(\boldsymbol{y}) d\boldsymbol{y}$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{1}{B(\boldsymbol{\pi}_{x}) B(\boldsymbol{\pi}_{z})} \int \prod_{i=1}^{K} \underbrace{y_{i}^{\pi_{x_{i}}-1} y_{i}^{\pi_{z_{i}}-1}}_{y_{i}^{\pi_{x_{i}}+\pi_{z_{i}}-2}} d\boldsymbol{y}$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{B(\boldsymbol{\pi}_{y})}{B(\boldsymbol{\pi}_{x}) B(\boldsymbol{\pi}_{z})} \underbrace{\int \frac{1}{B(\boldsymbol{\pi}_{y})} \prod_{i=1}^{K} y_{i}^{\pi_{y_{i}}-1} d\boldsymbol{y}}_{=1, \text{Dirichlet distribution}}$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \frac{B(\boldsymbol{\pi}_{y})}{B(\boldsymbol{\pi}_{x}) B(\boldsymbol{\pi}_{z})},$$

where $\pi_y = \pi_x + \pi_z - 1$.

D. Categorical message

Recall the definition of Categorical distribution:

$$\operatorname{Cat}(oldsymbol{x}|oldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{x_k}$$

where $\boldsymbol{x} = [x_1, \dots, x_K]^{\top}$ is a one-hot coded vector, i.e. only one entry of \boldsymbol{x} is 1 and the others are zero, and $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]^{\top}$ satisfies $\pi_k \in [0, 1]$ and $\sum_{k=1}^K \pi_k = 1$. Since \boldsymbol{x} is one-hot coded, we rewrite the categorical distribution as follows:

$$Cat(\boldsymbol{x}|\boldsymbol{\pi}) = \boldsymbol{\pi}^T \boldsymbol{x}.$$

With the incoming messages

$$\vec{\mu}_x(\boldsymbol{x}) = \vec{\beta}_x \operatorname{Cat}(\boldsymbol{x} \mid \boldsymbol{\pi}_x),$$

$$\vec{\mu}_z(\boldsymbol{z}) = \vec{\beta}_z \operatorname{Cat}(\boldsymbol{z} \mid \boldsymbol{\pi}_z),$$

the scale factor $\vec{\beta}_y$ of the message $\vec{\mu}_y$ is

$$\vec{\beta}_{y} = \sum_{\boldsymbol{y}} \vec{\mu}_{y}(\boldsymbol{y}) = \sum_{\boldsymbol{y}} \vec{\mu}_{x}(\boldsymbol{y}) \vec{\mu}_{z}(\boldsymbol{y}) = \vec{\beta}_{x} \vec{\beta}_{z} \sum_{\boldsymbol{y}} \vec{p}_{x}(\boldsymbol{y}) \vec{p}_{z}(\boldsymbol{y})$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \sum_{\boldsymbol{y}} \operatorname{Cat}(\boldsymbol{y} \mid \boldsymbol{\pi}_{x}) \boldsymbol{\pi}_{z}^{\top} \boldsymbol{y} = \vec{\beta}_{x} \vec{\beta}_{z} \boldsymbol{\pi}_{z}^{\top} \mathbb{E}_{\operatorname{Cat}(\boldsymbol{y} \mid \boldsymbol{\pi}_{x})}[\boldsymbol{y}]$$

$$= \vec{\beta}_{x} \vec{\beta}_{z} \boldsymbol{\pi}_{x}^{\top} \boldsymbol{\pi}_{z}$$

E. Gamma message

Recall the definition of Gamma distribution:

$$Gam(x \mid a, b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx), \tag{28}$$

where $a \in \mathbb{R}_{>0}$ and $b \in \mathbb{R}_{>0}$ are the shape and the rate parameters, respectively, and both are positive real numbers. With the incoming messages

$$\vec{\mu}_x(x) = \vec{\beta}_x \operatorname{Gam}(x \mid a_x, b_x),$$

$$\vec{\mu}_z(z) = \vec{\beta}_z \operatorname{Gam}(z \mid a_z, b_z),$$

the scale factor $\vec{\beta}_y$ of the message $\vec{\mu}_y$ is

$$\begin{split} \vec{\beta}_y &= \int \vec{\mu}_y(y) \mathrm{d}y = \int \vec{\mu}_x(y) \, \vec{\mu}_z(y) \mathrm{d}y = \vec{\beta}_x \vec{\beta}_z \int \vec{p}_x(y) \vec{p}_z(y) \mathrm{d}y \\ &= \vec{\beta}_x \vec{\beta}_z \frac{b_x^{a_x} b_z^{a_z}}{\Gamma(a_x) \Gamma(a_z)} \int y^{a_x - 1} \exp{(-b_x y)} y^{a_z - 1} \exp{(-b_z y)} \mathrm{d}y \\ &= \vec{\beta}_x \vec{\beta}_z \frac{b_x^{a_x} b_z^{a_z}}{\Gamma(a_x) \Gamma(a_z)} \int y^{a_x + a_z - 2} \exp{(-(b_x + b_z)y)} \mathrm{d}y \\ &= \vec{\beta}_x \vec{\beta}_z \frac{b_x^{a_x} b_z^{a_z}}{\Gamma(a_x) \Gamma(a_z)} \frac{\Gamma(a_y)}{b_y^{a_y}} \underbrace{\int \frac{b_y^{a_y}}{\Gamma(a_y)} y^{a_y - 1} \exp{(-b_y y)} \mathrm{d}y}_{=1, \text{ Gamma distribution}} \\ &= \vec{\beta}_x \vec{\beta}_z \frac{\Gamma(a_y)}{\Gamma(a_x) \Gamma(a_z)} \frac{b_x^{a_x} b_z^{a_z}}{b_x^{a_y}}, \end{split}$$

where
$$\begin{cases} a_y = a_x + a_z - 1 \\ b_y = b_x + b_z \end{cases}$$

F. Wishart message

Recall the definition of Wishart distribution:

$$W(\mathbf{X}|\mathbf{V},n) = \frac{|\mathbf{X}|^{\frac{n-p-1}{2}} \exp\{-\frac{1}{2} \text{tr}(\mathbf{V}^{-1}\mathbf{X})\}}{2^{\frac{np}{2}} |\mathbf{V}|^{\frac{n}{2}} \Gamma_p\left(\frac{n}{2}\right)},$$

where $\mathbf{V} \in \mathbb{R}^{p \times p}$ is the scale matrix, and n > p-1 is the degree of freedom. With the incoming messages

$$\vec{\mu}_x(\mathbf{X}) = \vec{\beta}_x \ \mathbf{W}(\mathbf{X} \mid \mathbf{V}_x, n_x),$$
$$\vec{\mu}_z(\mathbf{Z}) = \vec{\beta}_z \ \mathbf{W}(\mathbf{Z} \mid \mathbf{V}_z, n_z),$$

the scale factor of the message $\vec{\mu}_y(\mathbf{y})$ is

$$\begin{split} \vec{\beta}_y &= \int \vec{\mu}_y(\mathbf{y}) \mathrm{d}\mathbf{y} = \int \vec{\mu}_x(\mathbf{y}) \vec{\mu}_z(\mathbf{y}) \mathrm{d}\mathbf{y} \\ &= \vec{\beta}_x \vec{\beta}_z \int \mathrm{W}(\mathbf{y} \mid \mathbf{V}_x, n_x) \mathrm{W}(\mathbf{y} \mid \mathbf{V}_z, n_z) \mathrm{d}\mathbf{y} \\ &= \frac{\vec{\beta}_x \vec{\beta}_z}{A} \int |\mathbf{y}|^{\frac{n_X + n_z - 2p - 2}{2}} \exp\left(-\frac{1}{2} \mathrm{tr}((\mathbf{V}_x^{-1} + \mathbf{V}_z^{-1})\mathbf{y})) \mathrm{d}\mathbf{y} \\ &= \frac{\vec{\beta}_x \vec{\beta}_z}{A} B \underbrace{\int \frac{1}{B} |\mathbf{y}|^{\frac{n_y - p - 1}{2}} \exp\left(-\frac{1}{2} \mathrm{tr}(\mathbf{V}_y^{-1}\mathbf{y})\right) \mathrm{d}\mathbf{y}}_{=1, \text{ Wishart distribution}} \\ &= \frac{\vec{\beta}_x \vec{\beta}_z}{A} B, \end{split}$$

where

$$\begin{split} A &= 2^{\frac{p(n_x + n_z)}{2}} \left| \mathbf{V}_x \right|^{\frac{n_x}{2}} \left| \mathbf{V}_z \right|^{\frac{n_z}{2}} \Gamma_p \left(\frac{n_x}{2} \right) \Gamma_p \left(\frac{n_z}{2} \right) \\ B &= 2^{\frac{p \cdot n_y}{2}} \left| \mathbf{V}_y \right|^{\frac{n_y}{2}} \Gamma_p \left(\frac{n_y}{2} \right) \\ n_y &= n_x + n_z - p - 1 \\ \mathbf{V}_y &= (\mathbf{V}_x^{-1} + \mathbf{V}_z^{-1})^{-1} \end{split}$$

REFERENCES

[1] C. Reller, "State-Space Methods in Statistical Signal Processing: New Ideas and Applications," Ph.D. dissertation, ETH Zurich, 2012.