Exercise sheet 4

Set theory and Logic, MTH303

- 1. Prove that if X is a set, then so is its successor X^+ .
- 2. Consider a subset A of ω . Note that A is a family of sets. Prove that if $\cup A = A$, then $A = \omega$
- 3. Recall the (recursive) definition of m+n, for $m,n\in\omega$. Prove that l+(m+n)=(l+m)+n for any $l,m,n\in\omega$
- 4. Recall the (recursive) definition of m.n, for $m,n\in\omega$. Prove that l.(m.n)=(l.m).n for any $l,m,n\in\omega$. Also prove m.n=n.m
- 5. Prove that if m + a = n + a for some $m, n, a \in \omega$, then m = n.
- 6. Prove that if m.a = n.a for some $m, n, a \in \omega$, where $a \neq 0$, then m = n.