CS244 Theory of Computation Homework 4 Solution

Problem 1

(a) Show that $A_{\mathsf{LBA}} = \{ \langle B, w \rangle \mid B \text{ is an LBA that accepts input } w \}$ is PSPACE-complete.

Proof. To show that A_{LBA} is in PSPACE, recall the book's algorithm for A_{LBA} . It simulates the input LBA on the input string for qng^n steps where q is the number of states, g is the size of the tape alphabet and n is the length of the input string, by maintaining the current configuration of the LBA and a counter of the number of steps performed. Both can be stored by using polynomial space.

To show that A_{LBA} is PSPACE-hard, we give a reduction from TQBF. Note that TQBF is decidable with an LBA. The book's algorithm for TQBF uses linear space, and so it can run on an LBA B by encoding some constant numbers of tape cells into a single cell with a larger alphabet. Given a formula $\langle \phi \rangle$, the reduction outputs $\langle B, \langle \phi \rangle \rangle$. Therefore, $\langle \phi \rangle \in TQBF \iff B$ accepts $\langle \phi \rangle \iff \langle B, \langle \phi \rangle \rangle \in A_{\mathsf{LBA}}$.

(b) Show that $E_{\mathsf{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$ is NL-complete.

Proof. To prove that E_{DFA} is NL-complete, we can show instead that E_{DFA} is coNL-complete, because NL = coNL. Showing that E_{DFA} is coNL-complete is equivalent to showing that $\overline{E_{\mathsf{DFA}}}$ is NL-complete. First we show that $\overline{E_{\mathsf{DFA}}} \in \mathsf{NL}$. The NL-algorithm guesses a path along transitions from the start state to an accept state and accepts if it finds one.

Second we give a log space reduction from PATH to \overline{E}_{DFA} . The reduction maps $\langle G, s, t \rangle$ to a DFA B which has a state q_i for every node v_i in G and one additional state d. DFA B has input alphabet $\{a_1, \ldots, a_k\}$ where k is the number of nodes of G. If G has an edge from v_i to v_j we put a transition in B from state q_i to q_j on input a_j . If G has no transition from v_i to v_j we put a transition from q_i to d on input a_j . In addition we put transitions from d to itself on all input symbols. The state corresponding to node s is the start state and the state corresponding to node t is the only accept state. The role of d in this construction is to make sure that every state has an exiting transition for every input symbol. We argue that this construction works by showing that G has a path from s to t iff G has a path s, $v_{i_1}, \ldots, v_{i_l}, t$ from s to t, G accepts the input G has a path G has a

Problem 2

Describe a deterministic, polynomial-time SAT-oracle Turing machine M^{SAT} that takes as input a directed graph G and nodes s and t, and outputs a Hamiltonian path from s to t if one exists. If none exist, then M^{SAT} outputs **No Hamiltonian path**.

Solution

Recall that $HAMPATH \in NP$ so $HAMPATH \leq_P SAT$.

 M^{SAT} on input $\langle G, s, t \rangle$:

- 1. Use the reduction from HAMPATH to SAT to produce a formula $\langle \phi \rangle$ and test $\langle \phi \rangle \in SAT$ using the oracle. If $\langle \phi \rangle \notin SAT$ then output **No Hamiltonian path** and halt. [poly time]
- 2. Output s as the first node of the path and let r = s. [O(1)]
- 3. Repeat until r = t: [O(n) iterations]
- 4. Let r_1, \ldots, r_k be the nodes that have edges from r. Permanently remove r from G and test whether a Hamiltonian path exists in the new graph G from each r_i to t using the above reduction and oracle. One of these tests must succeed. [poly time]
- 5. Output r_i and let $r = r_i$. [O(1)]

 M^{SAT} is deterministic, polynomial-time.

Problem 3

Say that a probabilistic algorithm uses randomness r(n) if it uses at most r(n) coin tosses on each computation thread.

- (a) Recall the probabilistic algorithm for EQ_{ROBP} we presented. How much randomness does it use when it is run on two branching programs that have m input variables? Give your answer as a function of m using big-O notation. Explain your reasoning.
- (b) Let $BPP[f(n)] = \{A \mid A \text{ is decided by a probabilistic, polynomial time TM that uses at most } O(f(n))$ randomness on all inputs of length $n\}$. Show that $BPP[\log(n)] \subseteq P$.

Solution

- (a) The probabilistic algorithm we presented for EQ_{ROBP} selects one value for each of the m variables from the field F_q where q has slightly more than 3m elements. Each field element can be selected with $O(\log m)$ coin tosses. So the total number of coin tosses used by the algorithm is $O(m \log m)$.
- (b) Proof. If M is a probabilistic, polynomial time TM that uses at most $O(\log n)$ coin tosses on each computation thread, we can simulate M in deterministic polynomial time by running M on each of its computation branches and computing the probability that it accepts. The total number of computation branches is at most $2^{O(\log n)} = n^k$ for some constant k. Hence the running time of the simulation is polynomial.

Problem 4

For any positive integer x, let $x^{\mathcal{R}}$ be the integer whose binary representation is the reverse of the binary representation of x. (Assume no leading 0s in the binary representation of x.) Define the function \mathcal{R}^+ : $\mathcal{N} \to \mathcal{N}$ where $\mathcal{R}^+(x) = x + x^{\mathcal{R}}$.

(a) Let $A_2 = \{\langle x, y \rangle \mid \mathcal{R}^+(x) = y\}$. Show $A_2 \in \mathcal{L}$.

Proof. Assume x is k-bit long, then y is at most (k+1)-bit long. Write $x = x_{k-1} \dots x_1 x_0$ and $y = y_k \dots y_1 y_0$ where y_k can be 0. Start from the least significant bit of x to the most significant bit. Add x_i and x_{k-i-1} to get r_i the i-th least significant bit of $\mathcal{R}^+(x)$ and the carry. If $r_i \neq y_i$, reject. At the most significant bit, let the carry be r_k . If all $r_i = y_i$, accept.

The algorithm only needs space to store the index i, the result of the current bit, and the carry, which is $O(\log n)$ space. Thus $A_2 \in \mathcal{L}$.

(b) Let $A_3 = \{\langle x, y \rangle \mid \mathcal{R}^+(\mathcal{R}^+(x)) = y\}$. Show $A_3 \in \mathcal{L}$.

Proof. Calculate $\mathcal{R}^+(x)$ as in (a) for k times, and only store the i-th and the (k-i-1)-th bit of $\mathcal{R}^+(x)$ instead of the entire $\mathcal{R}^+(x)$ on the i-th iteration. Add these two bits to get the i-th bit of $\mathcal{R}^+(\mathcal{R}^+(x))$ and the carry. Compare this bit to y_i . If they are not equal, reject. If they are equal on all iterations, accept.

For the calculation of the outer \mathcal{R}^+ , we need to store the index i, the result of the current bit, and the carry. For the calculation of the inner \mathcal{R}^+ , we need to store the index of the current bit, the result of the current bit, the carry, and another bit. Once the i-th and the (k-i-1)-th bit of $\mathcal{R}^+(x)$ are both calculated, the space to store the two bits will contain the i-th and the (k-i-1)-th bit of $\mathcal{R}^+(x)$. This only requires $O(\log n)$ space. Thus $A_3 \in \mathcal{L}$.

Problem 5

For branching program B and $w = w_1 \dots w_m$, where each $w_i \in \{0, 1\}$, let B(w) be the output of B when its input variables x_1, \dots, x_m are set $x_i = w_i$ for each i.

(a) Let $ALL_{\mathsf{ROBP}} = \{\langle B \rangle \mid B \text{ is a read-once branching program and } B(w) = 1 \text{ on all } w\}$. Show that $ALL_{\mathsf{ROBP}} \in \mathcal{P}$.

Proof. In a read-once branching program B, if a path exists from the start node to the output 0 node, then B(w) = 0 for the corresponding input w and so $B \notin ALL_{\mathsf{ROBP}}$. If no such path exists then $B \in ALL_{\mathsf{ROBP}}$. Testing for such a path can be done in P.

(b) Let $ALL_{\mathsf{BP}} = \{\langle B \rangle \mid B \text{ is a branching program and } B(w) = 1 \text{ on all } w\}$. Show that ALL_{BP} is coNP-complete.

Proof. Prove equivalently that $\overline{ALL_{\mathsf{BP}}}$ is NP-complete.

First, to show $\overline{ALL_{\mathsf{BP}}} \in \mathsf{NP}$, observe that a certificate is an input w for which B(w) = 0, which can be checked in polynomial time.

To show that $\overline{ALL_{\mathsf{BP}}}$ is NP-hard, give a reduction from 3SAT to $\overline{ALL_{\mathsf{BP}}}$. For 3cnf boolean formula ϕ , construct a branching program B_{ϕ} that computes the same boolean function. The nodes of B_{ϕ} correspond to each occurrence of a literal in ϕ , grouped by clauses. The computation of B_{ϕ} flows

through these groups. From each group, B_{ϕ} goes to the output 0 node whenever it detects an unsatisfied clause, and B_{ϕ} goes to the first node in the next clause group when it determines that the current clause is satisfied. B_{ϕ} is roughly as large as ϕ and can be computed in polynomial time. The details are illustrated in the following example. Let $\phi = (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee y) \wedge (y \vee z \vee \overline{z})$. Then B_{ϕ} is:

By interchanging the 0 and 1 output nodes, B_{ϕ} becomes a branching program which outputs 1 on all w whenever ϕ is unsatisfiable. That completes the reduction.

Problem 6

Prove that if $A \subseteq \{0,1\}^*$ is a regular language, a family of branching programs $(B_1, B_2, ...)$ exists where each B_n accepts exactly the strings in A of length n and is bounded in size by a constant times n.

Proof. Let $\Sigma = \{0,1\}$ and let DFA $D = (Q, \Sigma, \delta, q_0, F)$ recognize a language A. Construct B_n , the n-th member of a family of branching programs (B_1, B_2, \dots) as follows. The nodes of B_n are (q, i) for $q \in Q$ and $1 \le i \le n$, and those nodes are labeled to read x_i , the i-th symbol of the input x. Additionally, B_n has two output nodes **Accept** and **Reject**. Draw an edge with label $a \in \Sigma$ from (q, i) to (r, i + 1) if $\delta(q, a) = r$ for $1 \le i < n - 1$, and from (q, n - 1) to **Accept** if $\delta(q, a) \in F$ and from q, n - 1 to **Reject** if $\delta(q, a) \notin F$. The start node is $(q_0, 1)$. The number of nodes of B_k is $|Q| \times n = O(n)$, and thus satisfies the size requirement. \square