J. BASKARAN M.Sc., B.Ed. (C.S) jbaskaran89@gmail.com

Namma Kalvi

www.nammakalvi.org

COMPUTER APPLICATIONS 2. NUMBER SYSTEMS

SECTION - A

J. ILAKKIA M.Sc., M.Phil., B.Ed. (C.S) <u>jilakkia@gmail.com</u>

Choose the correct answer:

1. Which refers to the n	umber of bits processed	by a computer's CPU?			
A) Byte	B) Nibble	C) Word length	D) Bit		
2. How many bytes doe	s 1 Kilobyte contain?				
A) 1000	B) 8	C) 4	D) 1024		
3. Expansion for ASCII					
A) American Sch	nool Code for Information	on Interchange			
B) American St	andard Code for Infor	mation Interchange			
C) All Standard	Code for Information In	terchange			
D) American Soc	ciety Code for Informati	ion Interchange			
4. 2^50 is referred as					
A) Kilo	B) Tera	C) Peta	D) Zetta		
5. How many characters	s can be handled in Bina	ary Coded Decimal System?			
A) 64	B) 255	C) 256	D) 128		
6. For 11012 what is the	e Hexadecimal equivale	nt?			
A) F	B) E	C) D	D) B		
7. What is the 1's comp	lement of 00100110?				
A) 00100110	B) 11011001	C) 11010001	D) 00101001		
8. Which amongst this i	s not an Octal number?				
A) 645	B) 234	C) 876	D) 123		
SECTION-B					
Short Answers					

1. What is data?

The term data comes from the word **datum**, which means a raw fact. The data is a fact about people, places or some objects.

2. Write the 1's complement procedure.

- Step 1: Convert given Decimal number into Binary
- Step 2: Check if the binary number contains 8 bits , if less add 0 at the left most bit, to make it as 8 bits.
- Step 3: Invert all bits (i.e. Change 1 as 0 and 0 as 1)

3. Convert (46)₁₀ into Binary number

$$(46)_{10} = (101110)_2$$

4. We cannot find 1's complement for $(28)_{10}$. State reason.

Reason: We cannot find 1's complement for $(28)_{10}$. Because it is a positive number. 1's complement apply only with negative number.

5. List the encoding systems for characters in memory.

There are several encoding systems used for computer.

BCD – Binary Coded Decimal

EBCDIC – Extended Binary Coded Decimal Interchange Code

ASCII – American Standard Code for Information InterchangeUnicode

ISCII – Indian Standard Code for Information Interchange

SECTION-C

Explain in Brief

1. What is radix of a number system? Give example

- * Each number system is uniquely identified by its base value or radix.
- * Radix or base is the count of number of digits in each number system.
- * Radix or base is the general idea behind positional numbering system.
- * Radix or base is the general idea behind positional numbering system.

Example:

Binary Number System	-	Radix 2	$(1010)_2$
Octal Number System	-	Radix 8	$(457)_8$
Decimal Number System	-	Radix 10	$(312)_{10}$
Hexadecimal Number System	-	Radix 16	$(25F)_{16}$

2. Write note on binary number system.

- * There are only two digits in the Binary system, namely, 0 and 1.
- * The numbers in the binary system are represented to the base 2 and the positional multipliers are the powers of 2.
- * The left most bit in the binary number is called as the Most Significant Bit (MSB)and it has the largest positional weight.
- * The right most bit is the Least Significant Bit (LSB) and has the smallest positional weight.

3. Convert $(150)_{10}$ into Binary, then convert that Binary number to Octal

$$(150)_{10} = (10010110)_2$$

Binary Number to Octal

$$10010110 = ?$$

$$010 010 110$$

$$2 2 6$$

$$(10010110)2 = (226)8$$

4. Write short note on ISCII

- * ISCII means Indian Standard Code for Information Interchange. It is the system of handling the character of Indian local languages.
- * This as a 8-bit coding system. Therefore it can handle 256 (28) characters.
- * The department of Electronics in India in the year 1986- 88 and recognized by Bureau of Indian Standards (BIS).

5. Add a) -22₁₀+15₁₀

The Binary equivalent of $22_{10} = (10110)_2$

The Binary equivalent of $15_{10} = (111)_2$

The binary addition of -22 and 15

$$\begin{array}{rcl}
-22_{10} & = & 11101010 \\
+15_{10} & = & 00001111 \\
\hline
-7_{10} & = & 11111001
\end{array}$$

$$-7_{10} = (111111001)_2$$

b) 20₁₀+25₁₀

The Binary equivalent of $20_{10} = (10100)_2$

The Binary equivalent of $25_{10} = (11001)_2$

8 bit format of
$$20_{10}$$
 = 00010100
8 bit format of 25_{10} = 00011001
 45_{10} = 00101101

$$45_{10} = (00101101)_2$$

SECTION - D

Explain in detail

1. a) Write the procedure to convert fractional Decimal to Binary

The method of repeated multiplication by 2 has to be used to convert such kind of decimal fractions. The steps involved in the method of repeated multiplication by 2:

- **Step 1:** Multiply the decimal fraction by 2 and note the integer part. The integer part is either 0 or 1.
- **Step 2:** Discard the integer part of the previous product. Multiply the fractional part of the previous product by 2. Repeat Step 1 until the same fraction repeats or terminates (0).
- **Step 3:** The resulting integer part forms a sequence of 0s and 1s that become the binary equivalent of decimal fraction.
- **Step 4:** The final answer is to be written from first integer part obtained till the last integer part obtained.

b) Convert $(98.46)_{10}$ to Binary

i) Integer Part

$$98_{10} = (1100010)_2$$

ii) Fraction Part

$$0.46 \times 2 = 0.92 = 0$$

 $0.92 \times 2 = 1.84 = 1$
 $0.84 \times 2 = 1.68 = 1$
 $0.68 \times 2 = 1.36 = 1$
 $0.36 \times 2 = 0.72 = 0$
 $0.72 \times 2 = 1.44 = 1$
 $0.44 \times 2 = 0.88 = 0$

$$46_{10} = (0111010)_2$$

$$(98.46)_{10} = (1100010, \, 0111010, \ldots)_2$$

www.nammakalvi.org

2. Find 1's Complement and 2's Complement for the following Decimal number

a) -98

The Binary equivalent of $98_{10} = (1100010)_2$

Binary equivalent of +98 = 11000108 bit format = 01100010 1's complement = 10011101 Add 1 bit = +12's complement -98 = 10011110 $-98 = (10011110)_2$

b) -135

The Binary equivalent of $135_{10} = (1000111)_2$

Binary equivalent of +135 = 100001118 bit format = 10000111 1's complement = 01111000 Add 1 bit = +12's complement -135 = 01111001

$$-135 = (01111001)_2$$

3. a) Add 1101010₂+101101₂

$$1101010_2 + 101101_2 = 10010111_2$$

$$0 + 1 = 1$$
 $1 + 0 = 1$
 $1 + 1 = 10$
 $1 + 1 + 1 = 11$

b) Subtract 1101011₂ - **111010**₂

$$1 - 0 = 1$$

 $1 - 1 = 0$
 $10 - 1 = 1$

$$1101011_2 - 111010_2 \ = 0110001_2$$