Project for Database Design

Phase III. Implementation

Vinit Patel Madhav Patel vnp130130@utdallas.edu mmp130630@utdallas.edu

(Week 11-16: OCT.29-DEC.02)

0. Pre-Illumination

For clearly describing the implementation of our database, we separate this report into four sections. In Section 1 we normalize the original relational schema into third normal form and changed part of our relational schema because of some requirement from Phase III. We then explained what are changed. In Section 2 we drew a dependency diagram for each relation table one by one. In Section 3 we began our process of building a database in Oracle using SQL statements, which contains three parts. Part one is the creation of database, including tables, all other structures as well as data type and format, Part two is the creation of views corresponding to five distinct requirements from Question d, and Part three is the creation of Queries to satisfy 14 requirements from Question e. Finally, a short summary is given at the end of this report.

1. Modified Relational Schema

Firstly, according to the requirement of phase III and with purpose to simplify the relation model for this database, we changed three things respect to original relational models. We will list them as follows

(See next page for modified Relational Schema)

Project for Database Design—Phase III 02-DEC-2013 8A.Employee:
 Id
 Name
 Salary
 Gender
 Email
 Title
 Age
 Join_in_Dt
 Line1
 <u>SSN</u> | Line2 | City | State | Zip | Dept_Id Doctor <u>SSN</u> Level Nurse <u>SSN</u> Nurse_Lang Nurse_SSN N_Lang Doctor_info D SSN Speciality Lang M_School Pharmacist Degree <u>SSN</u> Treats DSSN | Patient_Id Result Fees Receptionist R SSN $Arrange_Work$ DSSN RSSN Nurse_SSN Support_Staff: S SSN Part_Time PS SSN No_hrs Driver S_SSN Lic# Full_time FS SSN Department ID Name Location Phone_No Mgr_SSN Patient Email DOB Line1 Line2 City State Zip Gender History <u>ID</u> FName LName Reason Driver βD In_Patient ID SSN RM# Sdate **Out-Patient** <u>ID</u> A8 Billed_Patient Patient Id | Acc_no | Acc_holder | BankName | Billing_addr | Exp_date **Events** Name | Held_Time | Description 8C.Event_holders Name E_SSN Name V_Id Volunteer ID Age Availability 8D.Attendees Relative_Name E_Score <u>Invite sr no</u> PID Page 2 of 20

The modified relational schema is shown in Figure 1.

2. Dependency Diagram

We now draw a dependency diagram for each table from Figure 1 as follows:

2.1 Employee

There is only one attribute on left hand side which is SSN and that is the primary key and all other attributes are decendent on SSN.

Figure 3. Dependency Diagram of Hospital Personnel

2.2 Doctor

Here level is dependent on SSN.

2.3 Doctor_info

Here D_SSN and Speciality uniquely identifies Lang and M_School.

2.4 Pharmacist

Here Degree is dependent on pharmacist SSN

2.5 Treats

Here DSSN and Patient_id uniquely identifies which doctor treats which patient and what is the patient charged.

2.6 Part_Time

Here no_hrs is dependent on PS_SSN

2.7 Department

Here ID uniquely identifies all the attributes

2.8 Patient

Here ID of patient is primary key which uniquely identifies all the other attributes which are dependent on ID.

2.9 In_Patient

Here ID determines SSN of in-patient.

2.10 Billed_Patient

Here Patient_id uniquely identifies the all details of billed patient.

2.11 Events

Here name of event is primary key which uniquely determines Held_time and description of event.

2.12 Event_Hold_Emp

Here name of Event determines which employee holds it.

2.13 Event_Hold_Vol

Here name of volunteer determines which volunteer holds the event.

2.14 Volunteer

The ID o volunteer is primary key on which other attributes depend.

2.15 Attendees

Here Invite_sr_no uniquely determines all the information of invitees.

2.16 Appointment

Here Date and time are composite primary keys which identifies P_id to know who has made a appointment.

2.17 Medicines

Here medicines' id determines all info about medicine.

2.18 Insurance

Here Company name and policy# are composute primary key which uniquely identifies all attributes of patient to which policy belongs.

2.19 Ambulance

Here lic# determines the lic# of driver driving the ambulance.

2.20 Call

Here Date and Time uniquely identifies the patient attributes who called to make an appointment.

2.21 Online

Here Date time identifies patient who made online appointment.

2.22 Bill

Here B_no(Bill number) and P_id determines the bill attributes which are inturn dependent on the key.

2.1 Final Results

After drawing the dependency diagrams one after another, Figure 2.1 shows the final results for the whole database including the ones who do not have any functional dependencies.

2.1 Employee

2.2 Doctor

2.3 Doctor_info

2.5 Treats

2.6 Part_Time

2.7 Department

2.9 In_Patient

2.10 Billed_Patient

2.11 Events

2.12 Event_Hold_Emp

2.13 Event_Hold_Vol

2.14 Volunteer

2.15 Attendees

2.16 Appointment

2.17 Medicines

2.18 Insurance

2.19 Ambulance

Bed | Prescription | Ambulance | Pharmacy | Total

B_No

P_ID | Status |

2.24Arrange_work

2.25Driver

2.26Works_at

2.27Relatives

P_ID	Rel_Name
	_

2.28Event_City

2.29E_DepName

ESSN	Dept_Name
	

2.30Receptionist

2.31Nurse

2.32Out-Patient

2.33Full_time

2.34Support_staff

2.35 PATIENT_PH_NO

Figure 2.1. Whole Dependency Diagram for Hospital Database

3. Implementation of Database

3.1 Creation of Database with SQL Statements

After normalizing every relational schema into third normal form and modifying some details, it is the time to implement our database using SQL languages into Oracle.

3.1.1 Table Creation

Using SQL statement, we created 35 tables as follows:

• EMPLOYEE

CREATE TABLE EMPLOYEE

(SSN VARCHAR(10) **NOT NULL,** VARCHAR(11) ID **NOT NULL,** VARCHAR(15) **NAME NOT NULL,** VARCHAR(8) **SALARY GENDER VARCHAR(8),** VARCHAR(20), **EMAIL** TITLE VARCHAR(3), **DATE** JOIN_IN_DATE VARCHAR(20), LINE VARCHAR(20), LINE2 VARCHAR(20), **CITY** VARCHAR(20), **STATE** ZIP VARCHAR(10), DEPT_ID VARCHAR (11), PRIMARY KEY (SSN));

• DOCTOR

CREATE TABLE DOCTOR

(SSN VARCHAR(10) NOT NULL,

D_L INT,

PRIMARY KEY(SSN),

FOREIGN KEY(SSN) REFERENCES EMPLOYEE(SSN)

CHECK(D_L>0 AND D_L<5));

• NURSE_LANG

CREATE TABLE NURSE_LANG

(N_SSN VARCHAR(10) NOT NULL,

N_LANG VARCHAR(20),

PRIMARY KEY(N_SSN),

FOREIGN KEY(N_SSN) REFERENCES NURSE(SSN));

NURSE

CREATE TABLE NURSE

PRIMARY KEY(SSN),

(SSN VARCHAR(10) NOT NULL,

FOREIGN KEY(SSN) REFERENCES EMPLOYEE(SSN));

DOCTOR_INFO

CREATE TABLE DOCTOR_INFO

(D_SSN VARCHAR(10) NOT NULL,
SPECIALITY VARCHAR(10) NOT NULL,
LANG VARCHAR(10) NOT NULL,
M_SCHOOL VARCHAR(15) NOT NULL,

PRIMARY KEY(D_SSN),

FOREIGN KEY(D_SSN) REFERENCES DOCTOR(SSN));

PHARMACIST

CREATE TABLE PHARMACIST

(P_SSN VARCHAR(10) NOT NULL,
DEGREE VARCHAR(10) NOT NULL,
PRIMARY KEY(P_SSN).

PRIMARY KEY(P_SSN),

FOREIGN KEY(P_SSN) REFERENCES EMPLOYEE(SSN));

• TREATS

CREATE TABLE TREATS

(D_SSN VARCHAR(10) NOT NULL,
P_ID VARCHAR(11) NOT NULL,
RESULT VARCHAR(10),

FEES VARCHAR(10),

PRIMARY KEY(D_SSN),

FOREIGN KEY(D_SSN) REFERENCES DOCTOR(SSN),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• RECEPTIONIST

CREATE TABLE RECEPTIONIST

(R_SSN VARCHAR(10) NOT NULL,

PRIMARY KEY(R_SSN),

FOREIGN KEY(R_SSN) REFERENCES EMPLOYEE(SSN));

• ARRANGE_WORK

CREATE TABLE ARRANGE_WORK

(D_SSN VARCHAR(10) NOT NULL,

R_SSN VARCHAR(10) NOT NULL,

N_SSN VARCHAR(10) NOT NULL,

PRIMARY KEY (D_SSN,R_SSN,N_SSN),

FOREIGN KEY(D_SSN) REFERENCES DOCTOR(SSN),

FOREIGN KEY(R_SSN) REFERNCES RECEPTIONIST(R_SSN),

02-DEC-2013 Project for Database Design—Phase III

FOREIGN KEY(N_SSN) REFERENCES NURSE(SSN));

SUPPORT_STAFF

CREATE TABLE SUPPORT_STAFF

VARCHAR(10) (S_SSN **NOT NULL,**

PRIMARY KEY(S_SSN),

FOREIGN KEY(S_SSN) REFERENCES EMPLOYEE(SSN));

• PART_TIME

CREATE TABLE PART_TIME

(PS_SSN VARCHAR(10) **NOT NULL,**

NO_HOURS VARCHAR(5),

PRIMARY KEY(PS_SSN),

FOREIGN KEY(PS_SSN) REFERENCES SUPPORT_STAFF(S_SSN));

• FULL_TIME

CREATE TABLE FULL_TIME

(FS_SSN VARCHAR(10) **NOT NULL,**

PRIMARY KEY(FS_SSN),

FOREIGN KEY(FS_SSN) REFERENCES SUPPORT_STAFF(S_SSN));

• DRIVER

CREATE TABLE DRIVER

VARCHAR(10) **NOT NULL,** (S_SSN LIC# VARCHAR(10) **NOT NULL,**

PRIMARY KEY(S_SSN),

FOREIGN KEY(S_SSN) REFERENCES SUPPORT_STAFF(S_SSN),

FOREIGN KEY(LIC#) REFERENCES WORKS_AT(D_LIC#));

DEPT

NAME

CREATE TABLE DEPT

(ID VARCHAR(10) **NOT NULL,** VARCHAR(15) **NOT NULL,**

LOC VARCHAR(20) **NOT NULL,**

PHONE_NO VARCHAR(10),

MGR_SSN VARCHAR(10) **NOT NULL,**

PRIMARY KEY(ID),

FOREIGN KEY(MGR_SSN) REFERENCES EMPLOYEE(SSN));

• IN_PATIENT

CREATE TABLE IN_PATIENT

(P_ID VARCHAR(10) **NOT NULL, NOT NULL,** SSN VARCHAR(10)

VARCHAR(5),

PRIMARY KEY(P_ID),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

PATIENT

Rm#

CREATE TABLE PATIENT

(P_ID **NOT NULL,** VARCHAR(11) **FNAME** VARCHAR(10) **NOT NULL, LNAME** VARCHAR(10), **REASON** VARCHAR(25), VARCHAR(10), **DRIVER** VARCHAR(20), EMAIL_ID DOB DATE, VARCHAR(20), LINE VARCHAR(20), LINE2

CITY VARCHAR(15),

STATE VARCHAR(15),

GENDER VARCHAR(5),

HISTORY VARCHAR(25),

PRIMARY KEY(P_ID));

• OUT_PATIENT

CREATE TABLE OUT_PATIENT

(P_ID VARCHAR(10) NOT NULL,

PRIMARY KEY(P_ID),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

BILLED_PATIENT

CREATE TABLE BILLED_PATIENT

(P_ID VARCHAR(11) NOT NULL,
ACC_NO VARCHAR(10),

ACC_HOLDER VARCHAR(15),
BANK_NAME VARCHAR(20),
BILLINH_ADDR VARCHAR(25),

EXP_DATE DATE,

PRIMARY KEY(PID),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• EVENTS

CREATE TABLE EVENTS

(NAME VARCHAR(10) NOT NULL,
HELD_TIME DATE NOT NULL,
DESCRIPTION VARCHAR(40) ,

PRIMARY KEY(NAME));

• EVENT_HOLD_EMP

CREATE TABLE EVENT_HOLD_EMP

(NAME VARCHAR(10) NOT NULL, E_SSN VARCHAR(10) NOT NULL,

PRIMARY KEY(NAME),

FOREIGN KEY(NAME) REFERENCES EVENTS(NAME));

• EVENT_HOLD_VOL

CREATE TABLE EVENT_HOLD_VOL

(NAME VARCHAR(10) NOT NULL,
V_ID VARCHAR(11) NOT NULL,

PRIMARY KEY(NAME),

FOREIGN KEY(NAME) REFERENCES EVENTS(NAME),

FOREIGN KEY(V_ID) REFERENCES VOLUNTEER(ID));

• VOLUNTEER

CREATE TABLE VOLUNTEER

(ID VARCHAR(11) NOT NULL,

AGE VARCHAR(3),

AVAILVARCHAR(3),

PRIMARY KEY(ID),

CHECK(AGE>0 AND AGE<75));

• ATTENDEES

CREATE TABLE ATTENDEES

(INVITE_SR_NO VARCHAR(10) NOT NULL,
P_ID VARCHAR(11) NOT NULL,

RELATIVE_NAME VARCHAR(20),

NOT NULL,

PRIMARY KEY(INVITE_SR_NO),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID),

VARCHAR(3)

CHECK(E_SCORE>0 AND E_SCORE<100));

APPOINTMENT

E_SCORE

CREATE TABLE APPOINTMENT

(DT DATE NOT NULL,
TIME DATE NOT NULL,
P_ID VARCHAR(11) NOT NULL,

PRIMARY KEY(DT,TIME),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• WORKS_AT

CREATE TABLE WORKS_AT

(D_LIC# VARCHAR(10) NOT NULL,
A_LIC# VARCHAR(10) NOT NULL,

PRIMARY KEY(D_LIC#,A_LIC#),

FOREIGN KEY(D_LIC#) REFERENCES DRIVER(S_SSN),

FOREIGN KEY(A_LIC#) REFERENCES AMBULANCE(LIC_NO));

AMBULANCE

CREATE TABLE AMBULANCE

(LIC_NO VARCHAR(10) NOT NULL,

STORED_DT DATE,

LOC VARCHAR(20),

PRIMARY KEY(LIC_NO));

• MEDICINES

CREATE TABLE MEDICINES

(ID VARCHAR(10) NOT NULL,

NAME VARCHAR(15) NOT NULL,

PRICE VARCHAR(4) NOT NULL,

STORED_IN_DT DATE ,

TYPE VARCHAR(10),
QTY VARCHAR(4)

PRIMARY KEY(ID));

• INSURANCE

CREATE TABLE INSURANCE

(C_NAME VARCHAR(10) NOT NULL,

POLICY_NO VARCHAR(10) NOT NULL,

P_ID VARCHAR(11) NOT NULL,

PHONE VARCHAR(10), EXP_DT DATE,

PRIMARY KEY(C_NAME,POLICY_NO),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• CALL

CREATE TABLE CALL

(DT DATE NOT NULL,

TIME DATE NOT NULL,

P_ID VARCHAR(11) NOT NULL,

TREAT_TYPE VARCHAR(10),

DOC_NAME VARCHAR(20) NOT NULL,

REC_INFO VARCGAR(20) NOT NULL,

PRIMARY KEY(DT,TIME),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

ONL

CREATE TABLE ONL

(DT DATE NOT NULL,

TIME DATE NOT NULL,

P_ID VARCHAR(11) NOT NULL,

TREAT_TYPE VARCHAR(10),

DOC_NAME VARCHAR(20) NOT NULL,

PRIMARY KEY(DT,TIME),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• **RELATIVES**

CREATE TABLE RELATIVES

(P_ID VARCHAR(11) NOT NULL,
REL_NAME VARCHAR(20) NOT NULL,
PRIMARY KEY(P_ID,REL_NAME),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• BILL

CREATE TABLE BILL

(B_NO VARCHAR(10) NOT NULL,
P_ID VARCHAR(11) NOT NULL,
STATUS VARCHAR(10),

BED VARCHAR(10),

PRESCRIPTION VARCHAR(10),

AMBULANCE VARCHAR(10),

PHARMACY VARCHAR(E)

PHARMACY VARCHAR(5),

TOTAL VARCHAR(10), NOT NULL,

PRIMARY KEY(B_NO),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

• EVENT_CITY

CREATE TABLE EVENT_CITY

(EVENT_NAME VARCHAR(20) NOT NULL,
EVENT_CITY VARCHAR(20) NOT NULL,
PRIMARY KEY(EVENT_NAME,EVENT_CITY),

FOREIGN KEY(EVENT_NAME) REFERENCES EVENTS(NAME));

• E_DEPTNAME

CREATE TABLE E_DEPTNAME

(E_SSN VARCHAR(10) NOT NULL,

DEPT_NAME VARCHAR(20) NOT NULL,

PRIMARY KEY(E_SSN,DEPT_NAME),

FOREIGN KEY(E_SSN) REFERENCES EMPLOYEE(SSN),

FOREIGN KEY(DEPT_NAME) REFERENCES DEPT(NAME));

• PATIENT_PH_NO

CREATE TABLE PATIENT_PH_NO

(P_ID VARCHAR(11) NOT NULL,
PH_NO VARCHAR(10) NOT NULL,
PRIMARY KEY(P_ID,PH_NO),

FOREIGN KEY(P_ID) REFERENCES PATIENT(P_ID));

3.1.3 A Database State

We insert some values into the database in order to test our SQL create view and query statement. Here we just give one example of insertions as follows:

> INSERTION OF TABLE EMPLOYEE

1. insert into Employee

values ('123674356','01', 'Rohan', '30,000', 'Male', 'r@gmail.com','Doctor','24','24-May-10','546 XYZ Apt ,'Courts mccallum','Dallas','Texas','75252');

2. insert into Employee

values ('123674389','02', 'Balika', '35,000', 'Female', 'b@gmail.com','Nurse','27','12-Aug-08','532 ABC Appt ','Glenn mccallum','Dallas','Texas','75252');

3. insert into Employee

values ('123674334','03', 'Vinit', '50,000', 'Male', 'v@hotmail.com','Receptionist','20','29-Jan-11','4578 Meadows ','Drive way','Chicago','Illinois','68133');

4. insert into Employee

values ('123672389','04', 'Jem', '37,000', 'Male', 'j@gmail.com','Pharmacist','30','06-Jul-05','4135 Downwards Appt','Dentour','San antanio','California','43167');

5. insert into Employee

values ('489957634','05', 'Maddy','25,000', 'Male', 'm@gmail.com','Driver','52','14-Jul-10','7777 McCallum Blvd','Ashwood','Detroit','Michigan','48188');

6 insert into Employee

values ('378959208','06', 'Ashtha', '21,000', 'Female', 'a@yahoo.com','Driver','24','29-Sep-11','4315 Sherwood CIR', 'Akshar', 'Los Angelos','California','43986');

SSN	ID	NAME	SALARY	GENDER	EMAIL	TITLE	AGE JOIN_IN_D LINE	LI NE2		CITY
STATE		ZIP								
L2367435 [X	6 01	Rohan 75252	30000	Male	r@gmail.com	Dr.	24 24-MAY-10 546xyz Apt	Courts of McCallum	Dallas	
12367433 [11ionis		Vinit 68133	50000	Male	v@hotmail.com	Receptionist	20 29-JAN-11 4578 Meadows	Drive Way		Chicago
L2367438 [X	9 02	Balika 75252	35000	Female	b@gmail.com	Nurse	27 12-AUG-08 532abc Apt	Glen McCallum	Dallas	
12367238 Californ		Jem 43167	37000	Male	j@gmail.com	Pharmacist	30 06-JUL-05 4135 Downwards	Apt Dentour		San Anta
48995763 1ichigan		Maddy 48188	25000	Male	m@gmail.com	Driver	52 14-JUL-10 7777 McCallum	Blvd., Ashwood		Detroit
37895920 Californ		Astha 43986	21000	Female	a@yahoo.com	driver	24 29-SEP-11 4315 Sherwood	Cir Akshar		Los Ange
o rows s	elected.									
QL>										

➤ INSERTION OF TABLE Doctor

1. insert into Doctor

Values ('123674356','3');

```
SQL> insert into doctor values('123674356','3');

1 row created.

SQL> select * from doctor;

SSN D_L

123674356 3

SQL>
```

➤ INSERTION OF TABLE Nurse_Lang

1. insert into Nurse_Lang

Values ('123674389','English');

```
SQL> insert into nurse_lang values('123674389','English');

1 row created.

SQL> select * from nurse_lang;

N_SSN N_LANG

123674389 English

SQL>
```

➤ INSERTION OF TABLE Nurse

1. insert into Nurse Values('123674389');

```
SQL> insert into nurse values('123674389');
1 row created.
SQL> select * from nurse;
SSN
_______
123674389
SQL>
```

> INSERTION OF TABLE Doctor_info

1. insert into Doctor_info

Values ('123674356','Cardiologist', English','UT Dallas');

> INSERTION OF TABLE Pharmacist

1. insert into Pharmacist

Values ('123672389','Pharm.D.');

```
SQL> insert into pharmacist values('123672389','Pharm.D.');

1 row created.

SQL> select * from pharmacist;

P_SSN DEGREE

123672389 Pharm.D.

SQL>

SQL>
```

➤ INSERTION OF TABLE Treats

1. insert into Treats

```
Values ('123674356','100','Positive','1200');
```

```
SQL> insert into treats values('123674356','100','Positive','1200');

1 row created.

SQL> select * from treats;

D_SSN P_ID RESULT FEES

123674356 100 Positive 1200

SQL>
```

➤ INSERTION OF TABLE Receptionist

1. insert into Receptionist

Values ('123674334');

➤ INSERTION OF TABLE Arrange_work

1. insert into Arrange_work

Values ('123674356', '123674334','123674389');

➤ INSERTION OF TABLE Support_staff

insert into Support_staff
 Values ('489957634');

2. insert into Support_staff
 Values ('378959208');

```
SQL> insert into support_staff values('489957634');

1 row created.

SQL> insert into support_staff values('378959208');

1 row created.

SQL> select * from support_staff;

S_SSN
________
378959208
489957634

SQL>
```

➤ INSERTION OF TABLE Part_time

```
1. insert into Part_time
```

Values ('378959208','45');

➤ INSERTION OF TABLE Full_time

 insert into Full_time Values ('489957634');

```
SQL> insert into full_time values('489957634');
1 row created.
SQL> select * from full_time;
FS_SSN
______
489957634
SQL>
```

> INSERTION OF TABLE Driver

1. insert into Driver

Values ('489957634','376AP189X8');

2. insert into Driver

Values ('378959208','961MD375W8');

➤ INSERTION OF TABLE Department

1. insert into Dept

Values ('CA123','Cardiology','Hill Street','9728830023', '123674356');

```
SQL> select * from dept;

ID NAME LOC PHONE_NO MGR_SSN
CA123 Cardiology HillStreet 9728830023 123674356

SQL>
```

➤ INSERTION OF TABLE Patient

1. insert into Patient

Values ('100','Arpit','Patel','Back Pain','Maddy','arp@gmail.com','28-Feb-71','2214 HillCrest Drive','Northern Bound','Dallas','Texas','75254','Male','Admitted on 11-12-2012.');

2. insert into Patient

Values ('101','Hema','Dowson','Lever Pain','Ashtha','hem@yahoo.com','21-Aug-68', '2498 Coit road', 'Bishop Ave', 'Las Vegas','Califonia','37965','Female','Admitted on

1st October 2013.');

SQL> select	* from pat	ient;								
P_I D	FNAME	LNAME	REASON	DRIVER	EMAIL_ID	DOB	LINE	LINE2	CITY	STATE
HISTORY		ZIP								
100 Admitted on	Arpit 12 Nov-201	Pate1 2 75254	BackPain	Maddy	arp@gmail.com	28-FEB-71	2214 HillCrest Drive	Northern Bound	DALLAS	Texas
101 Admitted on SQL>	Hema 1 october1	Dowson 3 37965	LiverPain	AAstha	hem@yahoo.com	21-AUG-68	2498 Coit road	Bisop Ave	Las Vegas	California

➤ INSERTION OF TABLE In_Patient

1. insert into In_Patient

Values ('100','2479063589',);

2. insert into In_patient

Values('101','5632489632','20');

➤ INSERTION OF TABLE Out_Patient

1. insert into Out_Patient

```
Values ('101');
```

```
SQL> insert into out_patient values('101');
1 row created.
SQL> select * from out_patient;
P_I D
```

➤ INSERTION OF TABLE Billed_Patient

insert into Billed_patient

Values ('100','1234567890','Maya','Bank of America',' 2214 HillCrest Dallas TX','04-Mar-14');

```
SQL> select * from billed_patient;
P_I D
           ACC_NO
                       ACC_HOLDER
                                       BANK_NAME
                                                            BILLING_ADDR
           1234567890 Maya
                                       Bank of America
                                                            2214 Hillcrest Dallas TX 04-MAR-14
```

➤ INSERTION OF TABLE Events

1. insert into Events

Values ('Cancer Aid','12-May-13','Awareness against cancer.');

```
SQL> select * from events;
          HELD_TIME DESCRIPTION
Cancer Aid 12-MAY-13 awareness against cancer
```

➤ INSERTION OF TABLE Event_hold_emp

insert into Event_hold_emp Values ('Cancer Aid', '123674334');

```
SQL> insert into event_hold_emp values('Cancer Aid','123674334');
1 row created.
SQL> select * from event_hold_emp;
          E_SSN
Cancer Aid 123674334
```

INSERTION OF TABLE Event_hold_vol

1. insert into Event_hold_vol

Values ('Cancer Aid','200');

```
SQL> insert into event_hold_vol values('Cancer Aid','200');
 row created.
SQL> select * from event_hold_vol;
NAME
          V_ID
Cancer Aid 200
```

1. insert into volunteer

Values ('200','45','30');

2. insert into volunteer

Values ('201','24','40');

```
SQL> insert into volunteer values('200','45','30');
 row created.
SQL> insert into volunteer values('201','24','40');
 row created.
SQL> select * from volunteer;
ΙD
            AGE AVA
```

➤ INSERTION OF TABLE Attendees

1. insert into attendees

Values ('i1','100','Romil','75');

2. insert into attendees

Values ('i2','101','Vasim','98');

```
SQL> insert into attendees values('i1','100','Romil','75');
 row created.
SQL> insert into attendees values('i2','101','Vasim','98');
 row created.
SQL> select * from attendees;
INVITE_SR_ P_ID
                        RELATIVE_NAME
           100
101
                        Romil
Vasim
```

02-DEC-2013

1. insert into appointment

Values ('12-04-2013','13:00','100');

Date	Time	P_ID
04-DEC-2013	13:00	100

➤ INSERTION OF TABLE Works_At

1. insert into works_at

Values ('376AP189X8','AMB020');

```
SQL> insert into works_at values('376AP189X8','AMB020');

1 row created.

SQL> select * from works_at;

D_LIC# A_LIC#

376AP189X8 AMB020

SQL>
```

. insert into ambulance

Values ('AMB020','01-Apr-11','Drive Hill Parking');

> INSERTION OF TABLE Medicines

> INSERTION OF TABLE Medicines

1. insert into medicines

Values ('M01','Stopache','5','12-Feb-13','Pain Killer','150');

2. insert into medicines

Values ('M02','Metacin','10','19-Apr-13','Coriza','200');

```
SQL> insert into medicines values('M01','stopache','5','12-FEB-13','Painkiller','150');

1 row created.

SQL> insert into medicines values('M02','metacin','10','19-APR-13','Coriza','200')

2 ;

1 row created.

SQL> select * from medicines;

ID NAME PRIC STORED_IN TYPE QTY

M01 stopache 5 12-FEB-13 Painkiller 150

M02 metacin 10 19-APR-13 Coriza 200

SQL>
```

➤ INSERTION OF TABLE Insurance

1. insert into insurance

Values ('Bajaj','P9123','100','9722430010','16-Mar-16');

➤ INSERTION OF TABLE Call

1 . insert into call

Values ('23-Sept-13','10:00','100','Surgery','Rohan','Vinit, EmpID: 03');

Date	Time	P_id	Treat_type	Doc_name	Rec_info
23-SEP-13	10:00	100	Surgery	Rohan	Vinit,Empid:03

> INSERTION OF TABLE Online

1. insert into onl

Values ('23-Sept-13','11:00','100','Operation','Rohan');

Date	Time	P_id	Treat_type	Doc_name
23-Sep-13	11:00	100	Operation	Rohan

➤ INSERTION OF TABLE Relatives

1. insert into relatives

Values ('100','Romil');

> INSERTION OF TABLE BILL

1. insert into Bill

Values ('B600','100','Paid','40','food & Amenities','100','75','215');

```
SQL> INSERT INTO BILL VALUES('B600','100','PAID','40','FOOD AND AMENITIES','100','75','215');

1 row created.

SQL> SELECT * FROM BILL;

B_NO P_ID STATUS BED PRESCRIPTION AMBULANCE PHARM TOTAL

B600 100 PAID 40 FOOD AND AMENITIES 100 75 215

SQL>

<
```

➤ INSERTION OF TABLE Event_City

insert into event_city
 Values ('Cancer Aid','Dallas');

➤ INSERTION OF TABLE E_DeptName

1. insert into E_DeptName

Values ('123674356','Cardiology');

➤ INSERTION OF TABLE PATIENT_PH_NO

1. insert into PATIENT_PH_NO

Values ('100','9723101775');

Till now we finished the process of creating tables and database states.

3.2 Creation of Views (Answer for Question d)

1. View1: This view returns all patients related to any treatments in the system.

CREATE VIEW T_PATIENT
AS SELECT P.P_ID, P.FNAME, P.LNAME
FROM PATIENT P, TREATMENT T
WHERE P.P_ID=T.P_ID;

2. View2: This view returns all patients associated with any bills with a total amount more than \$10,000.

CREATE VIEW BILL_OF_PAT
AS SELECT P.P_ID, P.FNAME, P.LNAME
FROM PATIENT P, BILL B
WHERE P.P_ID=B.P_ID
AND B.TOTAL>10000;

3. View3: This view returns all events in Dallas.

CREATE VIEW DAL_EVENT
AS SELECT E.NAME
FROM EVENTS E, EVENT_CITY EC
WHERE E.NAME=EC.EVENT_NAME AND EC.EVENT_CITY='DALLAS';

4. View4: This view returns all senior doctors (Lev.4-5) worked on any surgery since 1/1/2013.

CREATE VIEW SENIOR_DOC

AS SELECT E.NAME, E.ID

FROM EMPLOYEE E, DOCTOR D, DOCTOR_INFO DI

WHERE D.SSN=E.SSN AND (D.D_L=4 OR D.D_L=5) AND DI.D_DDN=D.SSN AND DI.SPECIALITY='SURGEON' AND E.JOIN_IN_DATE>01-JAN-13;

Now we give out the SQL Queries for each of 14 questions listed in Question e as follows:

1. Retrieve the IDs and Names of all nurses who live in Dallas.

```
SQL> select e.id,e.name
2 from employee e,nurse n
3 where n.ssn=e.ssn and e.city='Dallas';

ID NAME

02 Balika

SQL>
```

2. Retrieve the Names and Addresses of all in-patients that lived in ward No.20 between 01/01/2013 and 03/31/2013.

SELECT P.LNAME, P.FNAME, P.LINE, P.LINE2, P.CITY
FROM PATIENT P, IN_PATIENT IP
WHERE P.P_ID=IP.P_ID
AND IP.RM#='20'
AND IP.SDATE BETWEEN 01-JAN-13 AND 31-MAR-13

3. Retrieve the IDs and Names of distinct employees whose salaries are higher than the average salary of all the employees in the same department.

SELECT DISTINCT E.ID, E.NAME
FROM EMPLOYEE E,E_DEPT D
WHERE E.SALARY>E.AVG (SALARY) AND E.DEPT_ID=D.ID
GROUPBY D.DEPT_NAME;

4. Retrieve the Names of patients who have surgery appointments with Dr. Gregory House on 01/01/2013.

SELECT P.NAME

FROM PATIENT P,CALL C

WHERE C.TREAT_TYPE='SURGERY' AND C.DOC_NAME='DR. GREGORY HOUSE' AND DT='01-JAN-13' AND C.P_ID=P.P_ID;

UNION

SELECT P.NAME

FROM PATIENT P, ONL O

WHERE 0.TREAT_TYPE='SURGERY' AND O.DOC_NAME='DR. GREGORY HOUSE' AND DT='01-JAN-13' AND O.P_ID=P.P_ID;

5. Retrieve the Names and DL# of all drivers whose ages are older than 50.

SELECT E.NAME, D.LIC#
FROM EMPLOYEE E, DRIVER D
WHERE D.S_SSN=E.SSN AND E.AGE>50;

6. Retrieve the total number of ambulances dispatched during 2012.

SELECT COUNT (*)
FROM AMBULANCE
WHERE STORED_DT BETWEEN 01-JAN-12 AND 31-DEC-12;

7. Add a bank financial record to the patient ID "mxl123456".

```
SQL> insert into billed_patient values('mx1123456','0932558964','Robert','Chase Bank','7740 McCallum,Dallas','2-JAN-14');
1 row created.
SQL>
```

8. Retrieve the SSNs, and Addresses of all in-patients whose insurances have expired today.

SELECT I.SSN,P.LINE,P.LINE2,P.CITY,P.STATE,P.ZIP
FROM IN_PATIENT I, PATIENT P, INSURANCE IN
WHERE I.P_ID=IN.P_ID AND I.P_ID=P.P_ID AND IN.EXP_DT=SYSDATE;

9. Retrieve the Name of the most popular Rx-medicine prescribed by senior doctors in "Cardiology" department and dispensed in 2013.

SELECT M.NAME, COUNT (M.ID)

FROM MEDICINE M, TREATS T, EMPLOYEE E, DEPT D

WHERE T.M_ID=M.ID

AND E.DEPT_ID=D.ID AND D.Name='CARDIOLOGY' AND M.DISPENSE_DT>12/31/2012 AND M.DISPENSE_DT<1/1/2014

GROUP BY M.ID

10. Retrieve the Names, SSNs and Emails of distinct patients who have any bill with a total amount bigger than \$10,000.

SELECT DISTINCT P.FNAME, P.LNAME, P.EMAIL_ID,IN.SSN FROM IN_PATIENT IN, PATIENT P, BILL B
WHERE B.P_ID=IN.P_ID
AND B.TOTAL>10000;

11. Retrieve the Names, and Phone Numbers of all distinct patients that have appointments tested by all nurses in the department of Diagnostic Medicine.

SELECT DISTINCT P.FNAME, P.LNAME, PP.PH_NO

FROM PATIENT P, PATIENT_PH_NO PP, TREATS T, NURSE N, EMPLOYEE E, DEPT D

WHERE T.P_ID=P.P_ID

AND T.D_SSN=N.SSN

AND N.SSN=E.SSN

AND T.P_ID=PP.P_ID

AND E.DEPT_ID=D.ID

AND D.NAME='DIAGNOSTIC MEDICINE';

12. Retrieve the Gross Profit of the hospital between 01/01/2012 and 12/31/2012. (To put it simply, Gross Profit = total amount of all bills issued in 2012 – sum of all employees' salaries)

SELECT A.EXP-B.PRO FROM (SELECT SUM (TOTAL)EXP FROM BILL WHERE B_NO IN (SELECT B_NO FROM BILL WHERE P_ID IN (SELECT P_ID FROM PATIENT WHERE ADMIT_DT LIKE'__/__/2012')))A,(SELECT SUM (SALARY) PRO FROM EMPLOYEE)B.

13. For each year, retrieve the Date and the largest number of visits to the hospital during that day.

SELECT COUNT(*) FROM APPOINTMENT GROUP BY DT;

14. Retrieve the average age of all patients who only choose online scheduling services.

SELECT AVG (SYSDATE-P.DOB) AS AVG_AGE FROM PATIENT P, ONL O
WHERE O.P_ID=P.P_ID

15. Retrieve the attendees' first names and last names who participate any event of all themes in Dallas and with the evaluation score bigger and equal to 80.

SELECT P.P_ID, R.REL_NAME, P.FNAME, P.LNAME
FROM ATTENDEES A, EVENT_CITY E, PATIENT P, RELATIVES R
WHERE A.P_ID=P.P_ID,
AND A.P_ID=R.P_ID,
AND A.EVENT_NAME=E.EVENT_NAME,
AND A.E_SCORE>=80;

4. Conclusion

In this report we modified the EER diagram and relational schemas for **HOSPITAL MANAGEMENT SYSTEM** Database according to the requirement of Phase III. We also give dependency diagram for each relational schema in database. Then we created tables for each relational schema and write the SQL statements for the views and queries listed in Question d and Question e.