Espaces vectoriels

#espace vectoriel

Loi de composition interne

$$+:E\longrightarrow E;(u,v)\longmapsto u+v$$

Loi de composition externe

$$\cdot : \mathbb{K} \times E \longrightarrow E; (\lambda, u) \longmapsto \lambda u$$

Définition

On appelle \mathbb{K} . e. v un ensemble E muni de la loi interne et externe.

Sous-ensemble vectoriel

H de E est un s.e.v si $(H,+,\cdot)$ est une $\mathbb{K}.e.v$.

$$H \ s. \ e. \ v \ \mathrm{de} \ E \Leftrightarrow egin{cases} H \subset E \ H
eq arnothing & (\mathrm{on} \ \mathrm{v\'erifie} \ \mathrm{que} \ 0_E \in H) \ H \ \mathrm{stable} \ \mathrm{par} \ \mathrm{combinaison} \ \mathrm{lin\'eaire} \end{cases}$$

Sous-ensemble engendré

Par la famille finis $\{u_i\}_{i\in I}$ l'ensemble de combinaisons linéaires de vecteurs u_i . Ce s.e.v sera noté $vect(u_1,\ldots,u_n)$.

• Vérification : Soit $H = \{ ext{Combinaison linéaire de } u_1, u_2, \dots, u_n \}$ H est un s.e.v de E.

Intersection

Soit A et B s. e. v alors $A \cap B$ s. e. v de E

Familles finies de vecteurs

Famille génératrice

 (u_1,\ldots,u_n) est dit famille génératrice d'un $s.\,e.\,v\,F$ si $F=vect(u_1,\ldots,u_n)$.

 Tout famille contenant une famille génératrice d'un espace F est, elle même, famille génératrice.

Famille libre

La famille
$$(x_1,\ldots,x_2)$$
 est libre si $orall (lpha_1,\ldots,lpha_p)\in \mathbb{K}^p,\quad lpha_1x_1+\ldots+lpha_px_p=0$ $\Leftrightarrow lpha_1=lpha_2=\ldots=lpha_n=0$

Famille lié

$$lpha_1x_1+\ldots+lpha_px_p=0$$
 mais $(lpha_1,\ldots,lpha_p)
eq (0,\ldots,0)$

 Tout famille de polynômes non nuls de degrés distincts 2 à 2 (échelonnes) est libre.

Base, coordonnées

Une base est une famille libre et génératrice.

 $B=(e_i)_{1\leq i\leq n}$ une base d'une $\mathbb{K}.\,e.\,v$ de $E\Leftrightarrow$ pour tout vecteur x de E $\exists !(lpha_1,lpha_2,\ldots,lpha_n)\in\mathbb{K}^n$ tel que $x=lpha_1e_1+\ldots+lpha_ne_n$.

Somme de deux s, e, v

Soit F et G deux s.e.v de E.

$$F+G=\{u\in E\ /\ \exists (u_F,u_G)\in F imes G\ ;\ u=u_F+u_G\}$$

• Si le couple est unique, alors on dit que la somme est directe :

$$F\oplus G\Leftrightarrow F\cap G=\{0_E\}$$

Sous espaces supplémentaires

F et G de E supplémentaires $\Leftrightarrow E = F \oplus G$.