AUTONOMOUS CAR USING DEEP LEARNING - FINAL REPORT

Rudra DeyPravin KalaivannanStudent# 1010124866Student# 1010141295

rudra.dey@mail.utoronto.ca pravin.kalaivannan@mail.utoronto.ca

Aadavan VasudevanAbishan BaheerathanStudent# 1010101514Student# 1010218756

aadavan.vasudevan@mail.utoronto.ca abishan.baheerathan@mail.utoronto.ca

ABSTRACT

This template should be used for all your project related reports in APS360 course. – Write an abstract for your project here. Please review the **First Course Tutorial** for a quick start — Total Pages: 5

- 1 Introduction
- 2 ILLUSTRATION
- 3 BACKGROUND & RELATED WORK
- 4 Data Processing
- 5 ARCHITECTURE
- 6 BASELINE MODEL
- 7 QUANTITATIVE RESULTS
- 8 QUALITATIVE RESULTS
- 9 EVALUATE MODEL ON NEW DATA
- 10 DISCUSSION OF RESULTS
- 11 ETHICAL CONSIDERATIONS
- 12 Project Difficulty / Quality
- 12.1 CITATIONS WITHIN THE TEXT

Citations within the text should be based on the natbib package and include the authors' last names and year (with the "et al." construct for more than two authors). When the authors or the publication are included in the sentence, the citation should not be in parenthesis using \citet{} (as in "See

Hinton et al. (2006) for more information."). Otherwise, the citation should be in parenthesis using \citep{} (as in "Deep learning shows promise to make progress towards AI (Bengio & LeCun, 2007).").

The corresponding references are to be listed in alphabetical order of authors, in the REFERENCES section. As to the format of the references themselves, any style is acceptable as long as it is used consistently.

To cite a new paper, first, you need to add that paper's BibTeX information to APS360_ref.bib file and then you can use the \citep{} command to cite that in your main document.

12.2 FOOTNOTES

Indicate footnotes with a number¹ in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote with a horizontal rule of 2 inches (12 picas).²

12.3 FIGURES

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction; art work should not be hand-drawn. The figure number and caption always appear after the figure. Place one line space before the figure caption, and one line space after the figure. The figure caption is lower case (except for first word and proper nouns); figures are numbered consecutively.

Make sure the figure caption does not get separated from the figure. Leave sufficient space to avoid splitting the figure and figure caption.

You may use color figures. However, it is best for the figure captions and the paper body to make sense if the paper is printed either in black/white or in color.

Figure 1: Sample figure caption. Image: ZDNet

12.4 TABLES

All tables must be centered, neat, clean and legible. Do not use hand-drawn tables. The table number and title always appear before the table. See Table 1.

Place one line space before the table title, one line space after the table title, and one line space after the table. The table title must be lower case (except for first word and proper nouns); tables are numbered consecutively.

¹Sample of the first footnote

²Sample of the second footnote

Table 1: Sample table title

PART	DESCRIPTION
Dendrite Axon Soma	Input terminal Output terminal Cell body (contains cell nucleus)

13 DEFAULT NOTATION

In an attempt to encourage standardized notation, we have included the notation file from the textbook, *Deep Learning* Goodfellow et al. (2016) available at https://github.com/goodfeli/dlbook_notation/. Use of this style is not required and can be disabled by commenting out math_commands.tex.

Numbers and Arrays

A scalar (integer or real)

\boldsymbol{a}	A vector
\boldsymbol{A}	A matrix
A	A tensor
$oldsymbol{I}_n$	Identity matrix with n rows and n columns
I	Identity matrix with dimensionality implied by context
$e^{(i)}$	Standard basis vector $[0,\ldots,0,1,0,\ldots,0]$ with a 1 at position i
$\operatorname{diag}({m a})$	A square, diagonal matrix with diagonal entries given by \boldsymbol{a}
a	A scalar random variable
a	A vector-valued random variable
\mathbf{A}	A matrix-valued random variable
	Sets and Graphs
A	A set
\mathbb{R}	The set of real numbers
$\{0, 1\}$	The set containing 0 and 1
$\{0,1,\ldots,n\}$	The set of all integers between 0 and n
[a,b]	The real interval including a and b
(a,b]	The real interval excluding a but including b
$\mathbb{A}\backslash\mathbb{B}$	Set subtraction, i.e., the set containing the elements of $\mathbb A$ that are not in $\mathbb B$
${\cal G}$	A graph
$Pa_{\mathcal{G}}(\mathbf{x}_i)$	The parents of x_i in \mathcal{G}
	Indovina

Indexing

a_i	Element i of vector a , with indexing starting at 1
a_{-i}	All elements of vector \boldsymbol{a} except for element i
$A_{i,j}$	Element i, j of matrix \boldsymbol{A}
$oldsymbol{A}_{i,:}$	Row i of matrix \boldsymbol{A}
$oldsymbol{A}_{:,i}$	Column i of matrix \boldsymbol{A}
$\mathcal{A}_{i,j,k}$	Element (i, j, k) of a 3-D tensor A
$oldsymbol{A}_{:,:,i}$	2-D slice of a 3-D tensor
a_i	Element i of the random vector \mathbf{a}
	Calculus
$\frac{dy}{dx}$	Derivative of y with respect to x
$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
$\nabla_{\boldsymbol{x}} y$	Gradient of y with respect to x
$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to X
$\nabla_{\mathbf{X}}y$	Tensor containing derivatives of y with respect to \mathbf{X}
$rac{\partial f}{\partial oldsymbol{x}}$	Jacobian matrix $oldsymbol{J} \in \mathbb{R}^{m imes n}$ of $f: \mathbb{R}^n o \mathbb{R}^m$
$ abla^2_{m{x}}f(m{x}) ext{ or } m{H}(f)(m{x})$	The Hessian matrix of f at input point x
$\int_{\mathbf{a}} f(\mathbf{x}) d\mathbf{x}$	Definite integral over the entire domain of x
$\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$	Definite integral with respect to x over the set $\mathbb S$
	Probability and Information Theory
P(a)	A probability distribution over a discrete variable
p(a)	A probability distribution over a continuous variable, or over a variable whose type has not been specified
$a \sim P$	Random variable a has distribution P
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(\mathbf{x})$
Var(f(x))	Variance of $f(x)$ under $P(x)$
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(\mathbf{x})$
$H(\mathbf{x})$	Shannon entropy of the random variable x
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q
$\mathcal{N}(oldsymbol{x};oldsymbol{\mu},oldsymbol{\Sigma})$	Gaussian distribution over x with mean μ and covariance Σ

Functions

$f:\mathbb{A}\to\mathbb{B}$	The function f with domain \mathbb{A} and range \mathbb{B}
$f\circ g$	Composition of the functions f and g
$f(m{x};m{ heta})$	A function of x parametrized by θ . (Sometimes we write $f(x)$ and omit the argument θ to lighten notation)
$\log x$	Natural logarithm of x
$\sigma(x)$	Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$
$\zeta(x)$	Softplus, $\log(1 + \exp(x))$
$ oldsymbol{x} _p$	L^p norm of $oldsymbol{x}$
$ oldsymbol{x} $	L^2 norm of $oldsymbol{x}$
x^+	Positive part of x , i.e., $\max(0, x)$
$1_{ ext{condition}}$	is 1 if the condition is true, 0 otherwise

14 FINAL INSTRUCTIONS

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify the width or length of the rectangle the text should fit into, and do not change font sizes (except perhaps in the REFERENCES section; see below). Please note that pages should be numbered.

AUTHOR CONTRIBUTIONS

If you'd like to, you may include a section for author contributions as is done in many journals. This is optional and at the discretion of the authors.

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including those to funding agencies, go at the end of the paper.

REFERENCES

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel Machines*. MIT Press, 2007.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT Press, 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. *Neural Computation*, 18:1527–1554, 2006.