Teoria de Informação – IE660 Prof. Cândido 1° semestre de 2013

PROVA#4

- 1. (3,0) Canal de acesso múltiplo. Considere um canal de acesso múltiplo cuja saída é dada por Y = X₁ × X₂, em que X₁ ∈ {0,1} e X₂ ∈ {1,2,3}. Note que há interferência no canal, mas nenhum ruído. Encontre a região de capacidade, explicitando os pontos de "quina". Esboce-a num gráfico. Dica: analise o canal do ponto de vista de cada usuário, considerando o outro usuário como ruído.
- 2. Canal de broadcast. Considere o canal de broadcast degradado da figura abaixo.
 - a. (1,0) Qual é a capacidade do canal entre X e Y₁?
 - b. (1,0) Qual é a capacidade do canal entre X e Y₂?
 - c. (2,0) Encontre a região de capacidade. Esboce-a num gráfico, explicitando os pontos de cruzamento com os eixos em termos de α_1 e α_2 .

3. (3,0) Codificação Slepian-Wolf. Duas fontes, $X_1 = Z_1$ e $X_2 = Z_1 + Z_2$, devem ser codificadas separadamente, com taxas R_1 e R_2 , respectivamente, e enviadas a um único receptor. Os sinais Z_1 e Z_2 são processos independentes do tipo Bernoulli(p). Encontre a região de taxas atingíveis. Esboce-a num gráfico, explicitando os pontos de "quina" em termos do parâmetro p.

E

PAHAL DO PONTO DE VISTA DE XI

DIMINUI A CAPACIDATE PARK XI

DE Cill The o FORESATO

DA FUNGAS BIMÁNIA OF SVOLSPIA.

grade DO PONTO DE VISTA DE XZ

A TOUNSMISSION WE XI
PIMINUI A PAPARODADE PAPA X2

Prlx1=0) 1 > CV

$$C = 1 - \alpha, \quad BITS / U = 0$$

$$| C = 1 - \alpha, \quad BITS / U = 0$$

$$| C = 1 - \alpha, \quad BITS / U = 0$$

$$| C = 1 - \alpha, \quad BITS / U = 0$$

$$| C = 1 - \alpha, \quad BITS / U = 0$$

$$| C = 1 - \alpha, \quad BITS / U = 0$$

UNIROTHER
$$1-\beta$$
 \times $1-\alpha_1$ Y_1 $1-\alpha_2$ Y_2

$$= H(Y_2) - H(Y_2|U)$$

$$= H(\frac{\alpha_1 \alpha_2}{2}, \alpha_1 + \overline{\alpha_1 \alpha_2}, \frac{\alpha_1 \overline{\alpha_2}}{2}) - H(\overline{\beta} \overline{\alpha_1 \alpha_2}, \alpha_1 + \overline{\alpha_1 \alpha_2}, \overline{\beta} \overline{\alpha_1 \alpha_2})$$

$$= H(Y_1|V) - H(Y_1|U_1 \times)$$

$$= H(Y_1|V) - H(Y_1|U_1 \times)$$

$$= H(\overline{\beta} \overline{\alpha_1}, \underline{\beta} \underline{\alpha_1} + \overline{\beta} \underline{\alpha_1}, \underline{\beta} \underline{\alpha_1}) - H(\alpha_1)$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_2}$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_1} \overline{\alpha_2}$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_1} \overline{\alpha_2}$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_2}$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_1} \overline{\alpha_2}$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_1}$$

$$= \frac{\beta}{\alpha_1} \overline{\alpha_2}$$

$$= \frac{\beta}{\alpha_1} \overline{$$

$$x_1 = \frac{1}{2}$$

$$x_2 = \frac{1}{2} + \frac{1}{2}$$

(inlequendents)

8, 32	P(31,32)	×,	xL	
0 0	11-012	0	0	015
0 1	P(1-P)	0	1	
1 0	P(1-P)	ι	t	
11	P2	١	2	
-				

$$H(X_1|X_2) H(X_1)$$
 $H(X_1) = H(P)$ ~ Bernoulli(p) $\{H(P) \stackrel{d}{=} -P \log_2 P - (1-P) \log_2 (1-P)\}$

$$H(X_{1}|X_{2}) = H(Z_{1}|Z_{2}) = H(Z_{1}) + H(Z_{2}) = 2H(P) - H((1-P)^{2}, 2P(1-P), P^{2})$$

$$H(X_{1}|X_{2}) = H(X_{1}, X_{2}) - H(X_{2}) = 2H(P) - H((1-P)^{2}, 2P(1-P), P^{2})$$

$$\theta(X_{2}(X_{1})) = H(X_{1}, X_{2}) - H(X_{1}) = 2H(P) - H(P) = H(P)$$