Introduction to Machine Learning

Amo G. Tong

Lecture 7 Supervised Learning

- Linear Classifiers
- Perceptron
- · Sigmoid unit
- · Some materials are courtesy of Vibhave Gogate and Tom Mitchell.
- · All pictures belong to their creators.

ntroduction to Machine Learning

Amo G. Tone

Linear Classifiers

- Input: a real vector $\mathbf{x} = (x_1, ..., x_n)$, some features
- A weight vector $\boldsymbol{\omega} = (\omega_1, ..., \omega_n)$
- Bias: ω₀
- A constant feature: $x_0 = 1$ for all instance
- · Linear classifier:
- $f(\mathbf{x}) = positive \ if \ \sum \omega_i \cdot x_i > 0$
- $f(\mathbf{x}) = negative if \sum \omega_i \cdot x_i \leq 0$

troduction to Machine Learning

Amo G. Tor

Linear Classifiers

- Exercise:
- Is logistic regression a linear classifier?

$$\Pr[y_{\underline{i}} = 0 | x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}$$

$$\Pr[y_{\underline{i}} = 1 | x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}$$
Classification Rule:
Classify a new instance x as 1 iff $\Pr[y_{\underline{i}} = 1 | x_i] \ge \Pr[y_{\underline{i}} = 0 | x_i]$

$$\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j}) \ge 1 \quad \Rightarrow \quad \omega_o + \sum_j \omega_j \cdot x_{i,j} \ge 0$$

Introduction to Machine Learning

Amo G. Tong

Linear Classifiers

- Example
- (from Gogate)

Perceptron

$$o(x_1, \dots, x_n) = \begin{cases} 1, & \text{if } \omega_o + \omega_1 x_1 + \dots + \omega_n x_n > 0 \\ -1, & \text{else} \end{cases}$$

$$o(x_1, ..., x_n) = \operatorname{sgn}(\boldsymbol{\omega} \cdot \boldsymbol{x}) \text{ where } \operatorname{sgn}(y) = \begin{cases} 1, & \text{if } y > 0 \\ -1, & \text{else} \end{cases}$$

Introduction to Machine Learning

Amo G. Tong

Decision Surface of Perceptron

A linear classifier!

- $\omega_o + \omega_1 x_1 + \omega_2 x_2 > 0$
- Representation Power of Perceptron:
- All linearly separable data.

Decision Surface of Perceptron

- Representation Power of Perceptron:
- · All linearly separable data.
- Special cases: Boolean function $x_i = 0$ or 1.
- Perceptron can represent some Boolean functions such as AND and OR.
- But not all of them.

Training a Perceptron

- Training a Perceptron.
- Method 1: perceptron training rule
- Method 2: LSM and gradient descent.

$$o(x_1, \dots, x_n) = \begin{cases} 1, & \text{if } \omega_o + \omega_1 x_1 + \dots + \omega_n x_n > 0 \\ -1, & \text{else} \end{cases}$$

1 2 3 3 + 2 6 3 3 -9 2 4 4 + 2 7 5 3 - Initialize ω_i as some small values

Update $\omega_i \leftarrow \omega_i + \Delta \omega_i$

Until some criteria met

ion to Machine Learning

Amo G. Tong

Training a Perceptron

Method 1: perceptron training rule

$$o(x_1, \dots, x_n) = \begin{cases} 1, \\ -1, \end{cases}$$

$$o(x_1,\ldots,x_n) = \begin{cases} 1, & \text{if } \omega_o + \omega_1 x_1 + \cdots + \omega_n x_n > 0 \\ -1, & \text{else} \end{cases}$$

Update $\omega_i \leftarrow \omega_i + \Delta \omega_i$ $\Delta\omega_i = \eta(t-o)x_i$

Do until converge For each x in D For each ω_i $\omega_i \leftarrow \, \omega_i + \Delta \omega_i$

- t: target value
- · o: current prediction
- η: learning rate. small value.

Introduction to Machine Learning

Amo G. Tong

Training a Perceptron

Method 1: perceptron training rule

$$o(x_1, \dots, x_n) = \begin{cases} 1, \\ -1 \end{cases}$$

$$o(x_1, \dots, x_n) = \begin{cases} 1, & \text{if } \omega_o + \omega_1 x_1 + \dots + \omega_n x_n > 0 \\ -1, & \text{else} \end{cases}$$

Update
$$\omega_i \leftarrow \omega_i + \Delta \omega_i$$

$$\Delta \omega_i = \eta(t-o)x_i$$

- t: target value
- · o: current prediction
- η: learning rate. small value.

Training a Perceptron

- · Method 1: perceptron training rule
- · Converges if data is linearly separable.
- If learning rate is small enough

Do until converge For each x in D For each ω_i $\omega_i \leftarrow \omega_i + \Delta \omega_i$

- May not converge if data is not linearly separable
- · Your training data may not be linearly separable, even if the underlying truth is linear. Noise.
- Any approach that always converges? LSM+Gradient Descent.

Training a Perceptron

. Method 2: LSM and Gradient Descent.

• Linear unit: $o_l(\mathbf{x}) = \omega_o + \omega_1 x_1 + \dots + \omega_n x_n$

• Define Error $E_D(\boldsymbol{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - o_l(d))^2$

· Least squares method.

Introduction to Machine Learning

Amo G. Tong

Training a Perceptron

• Method 2: LSM and Gradient Descent.

• Linear unit: $o_l(x) = \omega_o + \omega_1 x_1 + \dots + \omega_n x_n$

• Define Error $E_D(\boldsymbol{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - o_l(d))^2$

Least squares method.

Gradient descent.

Do until converge For each d in DFor each ω_i $\omega_i \leftarrow \omega_i + \Delta \omega_i$

Introduction to Machine Learning

Training rule:

Amo G. Tong

Training a Perceptron

• Method 2: LSM and Gradient Descent.

• Linear unit: $o_l(x) = \omega_o + \omega_1 x_1 + \dots + \omega_n x_n$

• $E_D(\boldsymbol{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - o_l(d))^2$

Update $\omega_i \leftarrow \omega_i + \Delta \omega_i$

• $\frac{\partial E_D}{\partial \omega_i} = \sum_d (t_d - o_l(d))(-x_{d,i})$

• $\Delta \omega_i = -\eta \frac{\partial E_D}{\partial \omega_i}$ For each ω_i

Do until converge $\omega_i \leftarrow \omega_i + \eta \sum_d (t_d - o_l(d))(x_{d,i})$

Introduction to Machine Learning

Amo G. Tong

Training a Perceptron

. Method 2: LSM and Gradient Descent.

•
$$\frac{\partial E_D}{\partial \omega_i} = \sum_d (t_d - o_l(d))(-x_{d,i})$$

If the learning rate is sufficiently small

• $\Delta\omega_i = -\eta \frac{\partial E_D}{\partial \omega_i}$

Converges to the hypothesis that can

Even if data is not linearly separable. Even if data has noise.

Training a Perceptron

. Method 2: LSM and Gradient Descent.

• Define the error for the whole training data, and consider it as a whole.

•
$$E_D(\boldsymbol{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - o_l(d))^2$$

• Incremental Mode (online mode):

• Define the error for each training instance, and consider it one by one.

• $E_d(\boldsymbol{\omega}) = \frac{1}{2} (t_d - o_l(d))^2$

Training a Perceptron

. Method 2: LSM and Gradient Descent.

· Batch Mode:

• Define the error for the whole training data, and consider it as a whole.

• $E_D(\boldsymbol{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - o_l(d))^2$

Do until converge For each ω_i , update ω_i $\omega_i \leftarrow \omega_i - \eta \frac{\partial E_D}{\partial \omega_i}$

- Incremental (Online) Mode:
- Define the error for each training instance, and consider it one by one.

•
$$E_d(\boldsymbol{\omega}) = \frac{1}{2} (t_d - o_l(d))^2$$

Do until converge For each d in DFor each ω_i , update ω_i

Introduction to Machine Learning Amo G. Tong

Amo G. Tong

Training a Perceptron

- . Method 2: LSM and Gradient Descent.
- · Batch Mode vs Incremental (Online) Mode:
- Incremental mode can approximate batch model with an arbitrary small error.
- Incremental mode can better avoid local minima. Update ω more frequently. It is faster. It deals with dynamic datasets. Learning rate is usually smaller in incremental mode.
- · Batch mode is more stable. Easy to check convergence.

Do until converge For each ω_i , update ω_i Do until converge For each d in D

For each ω_i , update ω_i

Training a Perceptron

Two Methods

- · Perceptron Rule:
- $\Delta \omega_i = \eta(t-o)x_i$
- · Consider the threshold error output by the perceptron.
- · Converges if data is separable by a perceptron.
- · LSM and Gradient Descent:
- $\cdot \frac{1}{2} \sum_{d \in D} (t_d o_l(d))^2$
- Consider the un-threshold error.
- Always converges to the hypothesis that can minimize the error.

Minimizing the error does not necessarily minimize the misclassified samples.

Amo G. Tong

Training a Perceptron

Multi Class Perceptron

$$o(x_1, ..., x_n) = \begin{cases} 1, & \text{if } \omega_o + \omega_1 x_1 + \dots + \omega_n x_n > 0 \\ -1, & \text{else} \end{cases}$$

$$f(x) = \omega_o + \omega_1 x_1 + \dots + \omega_n x_n$$

- · Class: {red, orange, blue}
- Task 1: red or not red. $f_r(x)$
- Task 2: orange or not orange. $f_o(x)$
- Task 3: blue or not blue. $f_h(x)$
- Class(x)= $\operatorname{argmax}_{r,o,b}\{f_r(x), f_o(x), f_b(x)\}$

Sigmoid Unit

- Input : $(x_1, ..., x_n)$ real vector
- $o(x_1, \dots, x_n) = \frac{1}{1 + e^{-\boldsymbol{\omega} \cdot \mathbf{x}}}$ Output: real value
 - $o(x_1, ..., x_n) = \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x})$ where $\sigma(y) = \frac{1}{1 + a^{-y}}$

ntroduction to Machine Learning

Amo G. Tong

Sigmoid Unit

- Input : $(x_1, ..., x_n)$ real vector
- Output: real value
- Parameters: $(\omega_0, ..., \omega_n)$
- · Train a sigmoid unit.
- Define the error
- Calculate partial derivatives

$$o(x_1, \dots, x_n) = \frac{1}{1 + e^{-\boldsymbol{\omega} \cdot \boldsymbol{x}}} = \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x}) \qquad \sigma(y) = \frac{1}{1 + e^{-y}}$$

- Input : $(x_1, ..., x_n)$ real vector
- Output: real value
- Parameters: $(\omega_0, ..., \omega_n)$

Sigmoid Unit

- Train a sigmoid unit.
- · Define the error
- Calculate partial derivatives

$$\frac{\partial \delta(y)}{\partial y} = \frac{\partial \delta(y)}{\partial y}$$

$$= -(1 + e^{-y})^{-2} \cdot \frac{\partial (1 + e^{-y})}{\partial y}$$

$$= -(1 + e^{-y})^{-2} \cdot e^{-y} \frac{\partial - y}{\partial y}$$

$$= -(1 + e^{-y})^{-2} \cdot e^{-y}(-1)$$

$$= \frac{e^{-y}}{(1 + e^{-y})^{2}} = \frac{e^{-y}}{(1 + e^{-y})(1 + e^{-y})}$$

$$= \sigma(y) (1 - \sigma(y))$$

$$o(x_1, \dots, x_n) = \frac{1}{1 + e^{-\boldsymbol{\omega} \cdot \boldsymbol{x}}} = \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x})$$
 $\sigma(y) = \frac{1}{1 + e^{-y}}$

Sigmoid Unit

- Input : $(x_1, ..., x_n)$ real vector
- Output: real value
- Parameters: $(\omega_0, ..., \omega_n)$
- Train a sigmoid unit.
- · Define the error
- Calculate partial derivatives
- $= x_i \cdot \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x}) \left(1 \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x}) \right)$

$$o(x_1, \dots, x_n) = \frac{1}{1 + e^{-\omega \cdot x}} = \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x}) \qquad \qquad \sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$\frac{\partial \, \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x})}{\partial \, \omega_i} = x_i \cdot \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x}) \, (1 - \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x}))$ $E_D(\omega) = \frac{1}{2} \sum (t_d - o_d)^2$

 Train a sigmoid unit. Define the error

Output: real value

Sigmoid Unit

• Input : $(x_1, ..., x_n)$ real vector

Calculate partial derivatives

• Parameters: $(\omega_0, ..., \omega_n)$

$$\frac{\partial E_D}{\partial \omega_i} = \sum_{d \in D} -(t_d - o_d) \frac{\partial o_d}{\partial \omega_i} = \sum_{d \in D} -(t_d - o_d) \cdot x_{d,i} \cdot o_d (1 - o_d)$$

$$o_d = o(x_1, ..., x_n) = \frac{1}{1 + e^{-\boldsymbol{\omega} \cdot \boldsymbol{x}}} = \sigma(\boldsymbol{\omega} \cdot \boldsymbol{x})$$
 $\sigma(y) = \frac{1}{1 + e^{-y}}$

Perceptron and Sigmoid Unit

•
$$o(x_1, ..., x_n)$$

=
$$\begin{cases} 1, & \text{if } \boldsymbol{\omega} \cdot \boldsymbol{x} > 0 \\ -1, & \text{else} \end{cases}$$

Output a class

- · Not differentiable.
- $=\frac{1}{1+e^{-\omega \cdot x}}$ Output a value

Sigmoid Unit:

• $o(x_1, \dots, x_n)$

- · Differentiable.
- (0,1)
- · Differentiable.
 - unbounded

• Linear:

 $= \boldsymbol{\omega} \cdot \boldsymbol{x}$

• $o(x_1,\ldots,x_n)$

Output a value

Amo G. Tong

Summary

- Perceptron (definition)
- Two methods to train a perceptron
- Batch mode vs Online mode
- Sigmoid (definition)
- Formulas to train a sigmoid.

Introduction to Machine Learning Amo G. Tong

