PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-339769

(43) Date of publication of application: 22.12.1998

(51)Int.CI.

GO1R 31/319 G01R 31/28

(21)Application number: 09-151261

(71)Applicant: NEC CORP

(22)Date of filing:

09.06.1997

(72)Inventor: YAMAUCHI TAKASHI

(54) DELAY TESTING METHOD AND FLIP FLOP USED FOR IT

(57)Abstract:

PROBLEM TO BE SOLVED: To perform the high-speed delay test of an LSI with a tester having a low operating frequency without changing the normal circuit design method by using an FF that results in single-phase operation on normal operation and bi-phase operation on testing and reducing the difference between the output timing of a clock and the input edge timing. SOLUTION: In a single-phase operation for synchronizing input and output timings to the same clock edge on normal operation, an FF for performing bi-phase operation where input and output timings are synchronized to each different clock edge on testing is used for testing the delay between FFs. The design system of a normal circuit is as conventional, no other overhead is accompanied since only the FF configuration is changed, the difference between the timing of the edge of a block used for synchronizing output and the timing of the edge used for synchronizing input is used, and the difference between the output and input edges

of the clock is reduced to judge the result of the delay test, thus achieving a delay test speedily without increasing the clock frequency of a tester.

LEGAL STATUS

[Date of request for examination]

09.06.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2953435

[Date of registration]

16.07.1999

[Number of appeal against examiner's decision

of rejection]

(19)日本国特許庁 (JP)

G01R 31/319

31/28

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-339769

(43)公開日 平成10年(1998)12月22日

(51) Int.Cl.6

識別記号

FΙ

G01R 31/28

R

G

審査請求 有 請求項の数5 OL (全 13 頁)

(21)出願番号

特願平9-151261

(71)出願人 000004237

日本電気株式会社

(22)出願日

平成9年(1997)6月9日

東京都港区芝五丁目7番1号

(72)発明者 山内 尚

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 若林 忠

(54) 【発明の名称】 遅延テスト方法および該遅延テスト方法に使用するフリップフロップ

(57) 【要約】

【課題】 通常回路の設計法を変更することなく、動作 周波数の低いテスターで、高速なLSIの遅延テストを 行う。

【解決手段】 クロック入力CとC2を有するフリップフロップ105と106を使用し、通常動作時に、クロック入力C2のクロックを停止させ、クロック入力Cのクロックの1つのエッジに同期させて入出力する動作とし、遅延テスト時には、両クロックを動作させ、入力と出力のエッジの別々のクロックに同期させる。

【特許請求の範囲】

間の遅延テストを行う遅延テスト方法。

【請求項1】 複数のクロック入力をもち、該複数クロック入力のうち1つのクロック入力以外に固定値を設定することにより、通常動作時に固定値を設定されでいない1本のクロックの1つのクロックエッジに入力と出力のタイミングが同期する1相動作をし、テスト時に複数のクロック入力を動作させ入力と出力のタイミングが別々のクロックエッジに同期する2相動作となるフリップフロップを使用し、出力の同期に使用するクロックのエッジのタイミングと入力の同期に使用するクロックのエッジのタイミングの差を使用して前記フリップフロップ

1

【請求項2】 請求項1に記載の遅延テスト方法に使用されるフリップフロップであって、内部に複数あるいは1つのマスター側ラッチとスレーブ側ラッチを有し、マスター側ラッチのうち少なくとも1つのラッチは2つのクロック入力をもち、フリップフロップの入力タイミングを示すクロックエッジの変化後のクロック入力のうちいずれか少なくとも1つのクロック入力に与えることによりホールド状態となる構成をとり、スレーブ側ラッチは該2つのクロック入力のうち1つのみを使用し、フリップフロップの入力タイミングを示すクロックエッジの変化後のクロック値にあたる値を与えることによりスルーモードとなる構成をとるフリップフロップ。

【請求項3】 セット入力とリセット入力を有する、請求項2記載のフリップフロップ。

【請求項4】 スキャンフリップフロップである、請求項2記載のフリップフロップ。

【請求項5】 外部クロック入力端子が1本であり、該 30 外部クロック入力端子から入力されたクロックをもとに テスト用クロックを生成するクロック生成手段を有する、請求項2記載のフリップフロップ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はLSIのテスト方法に関し、特に遅延テスト方法に関する。

[0002]

【従来の技術】従来、一般にLSIの遅延テストは、高い周波数のクロックが発生可能なテスターを使用して行 40 われてきた。この場合、一般に非常に高性能なテスターでなければ遅延テストが行えない、あるいは、最先端の高速LSIの場合、テスターの動作周波数を越え、実施不可能となる場合があるという問題があった。

【0003】最近では、動作周波数の低いテスターで遅延テストを行う方法もいくつか提案されている。International Test Conference 1995 の302ページから310ページに掲載のHigh-Performance Circuit Testingwith Slow-Speed Testersにおいて種々の方法が述べられているが、いずれも、回路のオーバヘッドが大きい

2

か、従来の回路設計方式を大幅に変更する必要がある。 【0004】まず、当該論文における1つの手法は、図 14に示すように、フリップフロッ502と506の間 に遅延制御可能な素子504を入れ、フリップフロップ 502,506に供給されるクロック501とは別のタ イミング信号503によってフリップフロップ502の 出力が被テスト回路505に入るタイミングを遅らせ、 被テスト回路505に入力される信号の変化タイミング とフリップフロップ506にクロックが入るタイミング の差をクロック周期より短くすることにより、被テスト 回路505の変化の許容範囲を縮めることにより、高い クロック周波数での試験を見かけ上実現している。その 制御タイミングは、図16に示すような形となる。クロ ック501の周期は t 72と t 74の時間差Tであるが、制 御信号503のタイミングを使用し、 t 71から t 73の時 間差に当たる遅延をかけることにより、被テスト回路5 05に許される変化に要する時間も、t73とt74の時間 差に縮めている。しかしながら、遅延素子503には図 15に示すようなラッチが使用され、これはテストを行 うためのオーバーヘッドとしては大きいものとなるとい う問題がある。

【0005】また、当該論文では、フリップフロップとして、図17に示すようなパルストリガーのフリップフロップを使用する方法も提案されているが、この手法では、図18に示すように、通常動作時のクロック601として、図17のマスター側ラッチからスレーブ側ラッチにデータが送られる期間を非常に短くする必要があり、 t_{81} と t_{82} の差が非常に小さいパルスで制御する必要があり、テスト時ではなく通常動作時に動作する回路設計法自体やクロック生成法を変更する必要が生じるという問題がある。

【0006】また、当該論文では、図19に示すように、マスターラッチMのクロックMCKとスレープラッチSのクロックSCKを完全に独立させる方法も提案されているが、この手法も通常回路の設計法を変更する必要があるという問題がある。また、同様に、図20のように、マスターラッチとスレーブラッチを交互に配置するという手法も示されているが、この手法も通常回路の設計法の変更を必要とするという問題がある。また図20の回路においては、ラッチ間の入出力関係が入り乱れた複雑な場合には、交互に配置することが不可能となるという問題点もある。

【0007】また、特開平6-347520では、図21に示すように、2つのフリップフロップ、例えば804と805を使用して、記憶用のブロック803とし、見かけ上1つのフリップフロップ動作をさせる手法も提案されている。本手法では、マスター側フリップフロップをゲーテドクロック構成とし、遅延テストを行う場合は、前段側ブロック803と後段側ブロックのみのクロッ期値をセットし、その後、後段側ブロックのみのクロッ

3

クをイネーブルにし、後段側クロック827のみを動作させ遅延テストを行う手法が示されている。しかしながら、当該手法では前段側ブロック803のクロック814と後段側ブロック816のクロック827を異なる制御が可能な形にするか、前段側マスター側フリップフロップのゲート信号813と後段側マスターフリップフロップのゲート信号826を異なる制御が可能な形とする必要がある。つまり、テストするフリップフロップ間のクロックあるいはイネーブル信号を、別々の外部端子から制御するか、ANDゲートやORゲートを使用し片方のクロックあるいはイネーブル信号を入れる入力とし、他方を外部端子に接続するか、デコーダーに接続する等、別々の制御をするために、外部端子の増加を伴うか、内部素子数の増加を伴う等の問題があった。

[0008]

【発明が解決しようとする課題】上述した従来の遅延テスト方法は、高速なテスターを必要とするか、あるいは、必要としない場合においては、遅延テストのために、素子あるいは面積の大きなオーバーヘッドを伴うか、通常回路の設計方式まで変更しなければならないか 20 のいずれかの欠点を有していた。

【0009】本発明の目的は、通常回路の設計法を変更することなく、動作周波数の低いテスターでLSIの高速な遅延テストを行う遅延テスト方法および該遅延テスト方法に使用するフリップフロップを提供することにある。

[0010]

【課題を解決するための手段】本発明の遅延テスト方法は、複数のクロック入力をもち、該複数クロック入力のうち1つのクロック入力に固定値を設定することにより、通常動作時に固定値を設定されていない1本のクロックの1つのクロックエッジに入力と出力のタイミングが同期する1相動作をし、テスト時に複数のクロック入力を動作させ入力と出力のタイミングが別々のクロックエッジに同期する2相動作となるフリップフロップを使用し、出力の同期に使用するクロックのエッジのタイミングの差を使用して前記フリップフロップ間の遅延テストを行う。

【0011】本発明の遅延テスト方法は、通常動作時が 40 入力と出力のタイミングを同一のクロックエッジに同期 させる1相動作で、テスト時が入力と出力のタイミング を別々のクロックエッジに同期させる2相動作となるフリップフロップを使用して、フリップフロップ間の遅延のテストを行う方法とし、通常回路の設計方法を従来通りとし、かつフリップフロップの構成の変更のみであるため、他のオーバーヘッドを伴わず、出力の同期に使用するクロックのエッジのタイミングと入力同期に使用するエッジのタイミングの差を使用して、遅延テストの結果を判定するため、クロックの出力と入力のエッジのタ 50

4

イミングの差を小さくすることにより、テスターのクロック周波数を上げることなく、高速な遅延テストが可能 になる。

【0012】本発明の遅延テスト方法に使用されるノリップフロップは、内部に複数あるいは1つのマスター側ラッチとスレーブ側ラッチを有し、マスター側ラッチのうち少なくとも1つのラッチは2つのクロック入力をもち、フリップフロップの入力タイミングを示すクロックエッジの変化後のクロック(しまれる) はいまなる構成をとり、スレーブ側ラッチは該2つのクロック入力のうち1つのみを使用し、フリップフロップの入力タイミングを示すクロックエッジの変化後のクロック値にあたる値を与えることによりスルーモードとなる構成をとる。

[0013]

【発明の実施の形態】次に、本発明の実施の形態について図面を参照して説明する。

【0014】図1は本発明の第1の実施形態の構成図である。101は通常動作時に使用する外部クロック端子、102はテスト動作時に外部クロック端子、101とともに使用するテスト用外部クロック端子、105と106は遅延テストを行うフリップフロップのペアであり、104はフリップフロップ105と106以外の内部回路(通常回路)であり、遅延テストの対象となる部分を含んでいる。103は通常回路104の入力端子の群であり、107は通常回路104の出力端子の群であ

【0015】図2は、図1で使用される遅延テスト用フリップフロップ105,106の構成例を示したものである。左端と右端に書かれた信号名D,C,C2,Qは図1のフリップフロップ105,106に表記された端子名に対応する。Dはデータ入力、Cは通常クロック入力、C2はテスト用クロック入力、Qは出力である。

【0016】フリップフロップ105,106はマスターラッチ108とスレーブラッチ109で構成されている。ここでは、CMOSの構成例で例を示している。マスターラッチ108はトランジスタペア110,112とインバータ111,113,115とNORゲート114で構成され、スレーブラッチ109はトランジスタペア116,118とインバータ117,119,120,121で構成されている。トランジスタペア110,112,116,118の上半分がPチャネルMOSトランジスタ、下半分がNチャネルMOSトランジスタ、下半分がNチャネルMOSトランジスタを示している。そのゲート入力にどの信号が接続されるかは、ゲート部分に対応した部分に信号名で示している。このゲート信号はNORゲート114、インバータ115,120,121の出力のいずれかであり、それぞれMCB,MC,CB,Cとして表記している。トラ

ンジスタペア110を例に接続を説明すれば、Pチャネル側のゲートにはMC、つまりインバータ115の出力が接続され、Nチャネル側のゲートにはMCB、つまりNORゲート114の出力が接続される。

【0017】このフリップフロップ105,106は、入力C2に論理値0を設定すると入力Cのみでフリップフロップ動作を行う構成になっている。この例では、論理値0から1に変化するタイミングでデータの入力が行われ、同時に出力が変化し、値が保持される。入力C2を変化させる場合は、入力C2と入力Cの両方が論理値10の状態からどちらか少なくとも一方に論理値1が入るタイミングで値が入力され、マスタラッチ108に値がホールドされ、入力Cが論理値1に変化するタイミングでスレーブラッチ109を介して値が出力される。

【0018】図3(1)は、通常時の制御波形図である。図の左端の101と102は、それぞれ図1の端子101と端子102の波形を表すことを示している。この表記法は図3(2)においても同様である。時刻 t_{11} と t_{13} は端子101の論理値0から1への変化タイミング、時刻 t_{12} と t_{14} は端子101の論理値1から0への変化タイミングを示している。通常時は端子102を論理値0に保つことにより、1相同期のフリップフロップとして動作させるため、従来から設計法として1相同期を使用している場合には、回路の設計方を変更する必要はない。

【0019】図3(2)は遅延テスト時の制御波形図で ある。 t 21と t 24は端子102の論理値0から1への変 化のタイミング、 t22と t25は端子101の論理値0か ら1への変化のタイミング、 t 23と t 26は端子101と 102が同時に論理値1から0へと変化するタイミング 30 である。ここでは、 t 23と t 26で同時に端子101と1 02が論理値1から0へ変化するとしているが、必ずし も、同時に変化する必要はない。この場合、 t21と t24 のタイミングでフリップフロップ105,106にデー 夕が入力され、t22とt25のタイミングで出力される。 よって、 t 22のタイミングで出力されたデータを t 24の タイミングで入力可能か否かを判定することによって遅 延テストを行うことが可能となる。つまり、従来では、 t21とt24の時間差、つまりテスターの出力クロックの 周波数に応じた遅延テストのみが可能であったが、ここ 40 では t 22と t 24の時間差を使用した遅延テストが可能と なる。つまり、周波数を縮めることなく、 t 22と t 24の タイミングの差を縮めることにより遅延テストが可能と なる。

【0020】つまり、回路全体が、所定のクロック周波数で動作するか否かのテストは、 t22と t24の時間差を LSIの実動作周波数の周期となるように設定してテストパタンを入力し、所定の出力が得られるか否かを検査することで実行可能である。さらに、特定パスの遅延テストを行う場合、例えば、フリップフロップ105と150

6

06の間のパスの遅延テストを行う場合で、フリップフ ロップ105と106間はインバータと等価になる論理 構成となっているとした場合、 t 21のタイミングでフリ ップフロップ106に論程値0を入力するように設定 し、フリップフロップ105に論理値0を入力するよう に設定する。 t 22と t 24のタイミングの差がフリップフ ロップ105と106間の許容パス遅延となるようにt 22の変化タイミングを設定し、フリップフロップ105 から値を出力させ、 t 24のタイミングでフリップフロッ プ106に値を取り込む。そのときにフリップフロップ 106の値が論理値0から1に変化しているか否かを、 その後、その値を出力端子に伝播させることにより判定 可能である。特定のパスの遅延テストを行う場合は、特 定のパスを活性化している以外のタイミングでは、フリ ップフロップの出力と入力のタイミングの差やクロック の周期を短くする必要はない。

【0021】この方法でも、フリップフロップのオーバーヘッドは伴うが、CMOS構成の場合を仮定しても、通常構成に対して増加するのは、図2の例ではNORゲート114とインバータ115のみであり非常に小さい。

【0022】図4はフリップフロップ108,109の第2の構成例で、第1の構成例の入力および出力のタイミングのエッジを反転させた構成例で、図2のフリップフロップ108のNORゲート114の代りにNANDゲート122が用いられた構成例である。

【0023】図5(1)は通常時の制御波形図である。図の左端の101と102は、それぞれ、図1の端子101と端子102の波形を表していることを示している。この表記方法は図5(2)においても同様である。 t_{31} と t_{33} は端子101の論理値1から0への変化タイミング、 t_{32} と t_{34} は端子101の論理値0から1への変化タイミングを示している。通常時は、端子102を論理値1に保つことにより、1相同期のフリップフロップとして動作させる。

【0024】図5(2)は遅延テスト時の制御波形図である。 t_{41} と t_{44} は端子102の論理値1から0への変化のタイミング、 t_{42} と t_{45} は端子101の論理値1から0への変化のタイミング、 t_{43} と t_{46} は端子101と102が同時に論理値0から1へと変化するタイミングである。ここでは、 t_{43} と t_{46} で同時に端子101と102が論理値0から1へ変化するとしているが、必ずしも、同時に変化する必要はない。この場合、 t_{41} と t_{44} のタイミングでフリップフロップ105, 106にデータが入力され、 t_{42} と t_{45} のタイミングで出力される。よって、ここでは t_{42} と t_{44} の時間差を使用した遅延テストが可能となる。

【0025】図6はフリップフロップの第3の構成例を示す図である。第3の構成例のフリップフロップ10 5,106は第1の構成例のフリップフロップ(図2) にセット入力Sとリセット入力Rを追加したもので、それに伴いインバー91111,113,117,119の代わりにNORゲート123,124,125,126が設けられている。

【0026】この例では、セットもリセットも論理値1でイネーブルになる構成となっている。このように、セットやリセット信号の追加は通常のフリップフロップと同様に行うことが可能である。

【0027】図7は本発明の第2の実施形態の回路構成図である。

【0028】本実施形態はスキャンパスを使用した場合の例である。207と208はスキャンパスフリップフロップである。201は通常クロック端子、202はテスト用クロック端子、203はシフトモードと通常モードの切り替え信号用端子、204はスキャン入力端子、209はスキャン出力端子、205は通常の入力端子群、210は通常の出力端子群であり、206は通常回路である。ここでは、通常回路206の中にスキャンパスフリップフロップ207と208以外のスキャンパスフリップフロップも含んでいる。

【0029】図8はスキャンパスフリップフロップ207と208の構成例を示す図であり、図8の右端と左端に示す信号名D、SIN、SMC、C、C2、Q、SOTは、図7中のスキャンパスフリップフロップ207、208に表記された信号に対応しており、それぞれ、データ入力、スキャンデータ入力、シフトモード信号入力、通常クロック入力、テストクロック入力、データ出力、スキャンデータ出力を表している。ここでは、データ出力とスキャンデータ出力を分けているが、共用しても問題はない。また、図7において、スキャンパスフリップフロップ207のスキャンデータ出力とスキャンパスフリップフロップ208のスキャンデータ入力が接続されているが、スキャンパスのシフトモード時の接続順はどのようになっても問題はない。

【0030】スキャンパスフリップフロップ207, 208はセレクタ211とマスタラッチ212とスレーブラッチ213で構成されている。

【0031】セレクタ211は、セレクタ211に表記された記号Sの入力が0のとき記号0の入力が選択され、記号Sの入力が1のとき記号1の入力が選択される。つまりこの例では、SMCの値が0のとき通常回路206のデータが選択入力され、SMCの値が1のとき、スキャンインデータ、つまりシフトデータが選択入力される。マスタラッチ212はトランジスタペア214、216とインバータ215、217、219とNORゲート218で構成され、スレーブラッチ213はトランジスタペア220、222とインバータ221、223、224、225で構成されている。

【0032】スキャンパス構成とした場合、テストすべき経路に値を設定し、テスト結果を観測することが容易 50

8

となるが、遅延テスト方法としては同様であり、端子201が論理値0から1に変化するタイミングと端子202が論理値0から1に変化するタイミングの差を利用してテストを行う。

【0033】図9はスキャンパスを使用した本発明の第3の実施形態の構成図である。307と308はスキャンパスフリップフロップである。ここで使用しているスキャンパス方式はクロックドスキャン方式であり、通常データ入力とスキャンデータ入力の選択にセレクト信号を使用するのでなく、クロックを使用した方式である。301は通常クロック端子、302はテスト用クロック端子、303はスキャンパスをシフトさせるためのクロック端子、304はスキャン入力端子、309はスキャン出力端子、305は通常の入力端子群、310は通常の出力端子群であり、306は通常回路である。ここでは通常回路の306の中にスキャンパスフリップフロップ307、308以外のスキャンパスフリップフロップも含んでいる。

【0034】図10はスキャンパスフリップフロップ307,308の構成例を示す図である。図10の右端と左端に示す信号名D,SIN,C,C2,SC,Q,SOTは、図9中のスキャンパスフリップフロップ307,308に表記された信号に対応しており、それぞれデータ入力、スキャンデータ入力、通常クロック入力、データ出力、スキャンデータ出力を表している。ここでは、データ出力とスキャンデータ出力を分けているが、共用しても問題はない。また、図9において、スキャンパスフリップフロップ307のスキャンデータ出力とスキャンパスフリップフロップ308のスキャンデータ入力が接続されているが、スキャンパスのシットモード時の接続順はどのようになっていも問題はない。

【0035】スキャンパスフリップフロップ307,308はマスタラッチ311とスレーブラッチ312とインパータ331,332で構成されている。マスタラッチ311はトランジスタペア313,315,317,319とインパータ314,316,318,320,322とNORゲート321で構成されている。スレーブラッチ312はトランジスタペア323,324,326,327と、インバータ325,328,329,330で構成されている。トランジスタペ313,315,317,319,323,324,326,327の表記法は、図2と同じである。

【0036】本実施形態では、入力SCを論理値0に固定して、入力Cと入力С2を使用した場合に、通常データ入力である入力Dの値を入力し、図2と同じ動作をし、入力Cと入力С2ともに論理値0に設定し、入力SCを動作させた場合に、スキャンデータ入力SINの値を入力し、スキャンデータ出力SOTに出力する。この例でも、スキャンパス構成とすることにより、テストす

べき経路に値を設定し、テスト結果を観測することが容易となるが、遅延テストの方法としては同様であり、端子 301 が論理値 0 から 1 に変化するタイミングと端子 302 が論理値 0 から 1 に変化するタイミングの差を利用してテストを行う。

【0037】図11は本発明の第4の実施形態の構成図 である。この例では、外部クロック端子を1本としてお り、テスト用のクロックはクロック生成器403によっ て生成されている。401は外部クロック端子であり、 通常動作時にもテスト時にも使用する。404と405 は遅延テストを行うフリップフロップのペアであり、4 06は内部回路であり、遅延テストの対象となる部分を 含んでいる。402は通常回路406の入力端子群であ り、407は通常回路406の出力端子群である。フリ ップフロップ404と405には、例えば図2の構成の ものが使用される。403はクロック生成器であり、図 中の表記で入力SELに通常モードを示す値が入る場合 はクロック生成器403の出力C2が0となり、出力C に直接入力CLKの値が出力され、入力SELにテスト モードを示す値が入る場合は、出力Cと出力C2にそれ 20 ぞれ別タイミングのクロックが出力される構成となって

【0038】図12は図11中のクロック生成器403の構成例を示す図である。図12において、左端と右端に表記された信号名であるCLK、SEL、C、C2は図11中のクロック生成器403の信号名と対応し、それぞれクロック入力、セレクト入力、通常クロック出力、テストクロック出力である。クロック生成器403はインバータ408とセレクタ409で構成されている。セレクタ409は、Sと表記された入力が論理値030のとき0と表記された入力を選択し、入力Sが論理値1のとき1と表記された入力を選択する。

【0039】図13(1)は図12のクロック生成器403を使用した場合の通常動作時の制御波形図であり、図13(2)は図12のクロック生成器403を使用した場合のテスト時の制御波形図である。

【0040】この例では、図13(1)に示すように、入力SELが論理値0の場合、出力C2は常に論理値0となる。また図13(2)に示すように、入力SELが論理値1の場合、出力C2から入力CLKの反転の値が40出力される。 t_{51} , t_{53} , t_{61} , t_{65} は入力CLKが論理値0から1に変化するタイミングを示し、 t_{52} , t_{54} , t_{63} , t_{67} は入力CLKが論理値1から0に変化するタイミングを示している。出力C2の変化タイミングは入力CLKから遅れているが、これはインバータ408とセレクタ409の遅延により遅らせているものとする。

【0041】図11の出力Cと出力C2がその駆動先のフリップフロップ404,405に到達するタイミングの関係、つまり各フリップフロップ404,405のク50

10

ロック入力の変化のタイミングの関係は、例えば、図1 1であれば、フリップフロップ404と405におい て、入力C2が論理値1から0に変化するタイミング は、入力 C が論型値 0 から 1 に変化するタイキンプより も遅らせるべきである。これは、スレーブ側ラッチから 値が出力される前に、マスター側のラッチがホールド状 態からスルー状態に変化すると、マスター側ラッチにホ ールドされていた値でなく、新たにマスター側ラッチに 入ってくる値がスレーブ側ラッチを通して出力されるた め、遅延テストが困難となるためである。ここでは、フ リップフロップ404、405の入力C2が論理値1か ら0に変化するタイミングを、入力Cが論理値0から1 に変化するタイミングよりも遅らせるために、インバー タ408あるいはセレクタ409の遅延を使用して調整 をはかる。回路構成上必ず、入力 C 2 が論理値 1 から 0 に変化するタイミングが、入力Cが論理値0から1に変 化するタイミングよりも後になる場合はこの遅延調整は 不要である。この例では t 61と t 64のタイミングの差で 遅延テストを行うことが可能である。この時間は、挿入 すべきインバータ408やセレクタ409の遅延を考慮 する必要があるが、基本的には、クロック周波数でな く、1つの外部クロックのパルスの幅をもとに遅延テス トが可能である。

[0042]

【発明の効果】以上説明したように本発明は、通常動作時が入力と出力のタイミングを同一のクロックエッジに同期させる1相動作で、テスト時が入力と出力のタイミングを別々のクロックエッジに同期させる2相動作となるフリップフロップを使用して、フリップフロップ間の遅延のテストを行う方式とし、通常回路の設計方式を従来通りとし、かつフリップフロップの構成の変更のみであるため他にオーバーヘッドを伴わず、出力の同期に使用するクロックのエッジのタイミングと入力の同期に使用するエッジのタイミングの差を使用して、遅延テストの結果を判定するため、クロックの出力と入力のエッジのタイミングの差を小さくすることにより、テスターのクロック周波数を上げることなく、高速の遅延テストが可能になる効果がある。

【図面の簡単な説明】

【図1】本発明の第1の実施形態を示す回路構成図である。

【図2】図1中のフリップフロップ105,106の第1の構成例を示す回路図である。

【図3】第1の実施形態の通常動作時(図3(1))、 遅延テスト時(図3(2))の制御波形図である。

【図4】図1中のフリップフロップ105,106の第2の構成例を示す回路図である。

【図5】図4のフリップフロップを使用したときの第1の実施形態の通常動作時(図5(1))、遅延テスト時(図5(2))の制御波形図である。

11

【図6】フリップフロップの第3の構成例を示す回路図 である。

【図7】本発明の第2の実施形態を示す回路構成図である。 --

【図8】図7中のフリップフロップ207,208の構成例を示す回路図である。

【図9】本発明の第3の実施形態を示す回路構成図である。

【図10】図9中のフリップフロップ307,308の構成例を示す回路図である。

【図11】本発明の第4の実施形態を示す回路構成図である。

【図12】図11中のクロック生成器403の構成図である。

【図13】第4の実施形態の通常動作時(図13

(1))、遅延テスト時(図13(2))の波形図である。

【図14】第1の従来例の回路構成図である。

【図15】図14の回路に使用される遅延制御回路の回路図である。

【図16】図14の制御波形図である。

【図17】第2の従来例の回路構成図である。

【図18】図17の制御波形図である。

【図19】第3の従来の回路構成図である。

【図20】第4の従来の回路構成図である。

【図21】第5の従来の回路構成図である。

【符号の説明】

101 通常クロック入力端子

102 テストクロック入力端子

103 通常入力端子群

104 通常回路

105,106 遅延テスト用フリップフロップ

107 通常出力端子群

108 マスターラッチ

109 スレーブマッチ

110, 112, 116, 118 トランジスタペア

111, 113, 115, 117, 119, 120, 1

21 インバータ

114 NORゲート

122 NANDゲート

123, 124, 125, 126 NORゲート

201 通常クロック入力端子

*202 テストクロック入力端子・

203 シフトモードと通常モードの切り替え制御信 号入力端子

12

204 スキャン入力端子・

205 通常入力端子

206 通常回路

207,208 遅延テスト用スキャンフリップフロップ

209 スキャン出力端子

10 210 通常出力端子群

211 セレクタ

212 マスターラッチ

213 スレーブラッチ

214, 216, 220, 222 トランジスタペア

215, 217, 219, 221, 223, 224, 2

25 インバータ

218 NORゲート

301 通常クロック入力端子

302 テストクロック入力端子

20 303 スキャンクロック入力端子

304 スキャン入力端子

305 通常入力端子群

306 通常回路

307,308 遅延テスト用スキャンフリップフロ

ップ

309 スキャン出力端子

310 通常出力端子

311 マスターラッチ

312 スレーブラッチ

30 313, 315, 317, 319, 323, 324, 3

26,327 トランジスタペア

314, 316, 318, 320, 322, 325, 3

28, 329, 330, 331, 332 インバータ

321 NORゲート

401 通常クロック入力端子

402 通常入力端子群

403 クロック生成器

404,405 遅延テスト用フリップフロップ

406 通常回路

40 407 通常出力端子群

408 インバータ

409 セレクタ

【図19】

被テスト回路 ■ MS ●

【図20】

【図1】

CLK — C C CLK — C CLK — C C CLK — C CLK

【図6】

【図7】

[図8]

[図9]

【図17】

【図18】

【図10】

【図11】

【図13】

【図21】

, "