MATH 217 W24 - LINEAR ALGEBRA, Section 001 (Dr. Paul Kessenich) Homework Set Part B due ??? at 11:59pm Zhengyu James Pan (jzpan@umich.edu)

- 1. Question
 - (a) Prove that F is alternating if and only if $F(\vec{u}, \vec{v}) = -F(\vec{v}, \vec{u})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^2$.

Solution: By bilinearity, we know

$$F(u + v, v + u) = 0$$

$$F(u, v + u) + F(v, v + u) = 0$$

$$F(u, v) + F(u, u) + F(v, v) + F(v, u) = 0$$

$$F(u, v) + 0 + 0 + F(v, u) = 0$$

$$F(u, v) + F(v, u) = 0$$

$$F(u, v) = -F(v, u)$$

(b) Prove that if F is alternating and $F(\vec{e}_1, \vec{e}_2) = 1$, then $F(\vec{u}, \vec{v}) = \det[\vec{u} \ \vec{v}]$ for all $\vec{u}, \vec{v} \in \mathbb{R}^2$.

Solution: Express \vec{u} and \vec{v} as linear combinations of e_1, e_2 :

$$\vec{u} = u_1 \vec{e}_1 + u_2 \vec{e}_2$$
 and $\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2$

Then

$$F(\vec{u}, \vec{v}) = F(u_1 \vec{e}_1 + u_2 \vec{e}_2, \vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2)$$