A számításelmélet alapjai I

9. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

A verem tartalma, csak a legfelső elem olvasható közvetlenül

A verem tartalma, csak a legfelső elem olvasható közvetlenül

 A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.

A verem tartalma, csak a legfelső elem olvasható közvetlenül

- A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.
- A verem esetében az új adat mindig a már meglévő veremtartalom tetejéhez adódik, kivétele fordított sorrendben történik.

- A verem tartalma, csak a legfelső elem olvasható közvetlenül
- A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.
- A verem esetében az új adat mindig a már meglévő veremtartalom tetejéhez adódik, kivétele fordított sorrendben történik.
- alapértelmezetten nemdeterminisztikus

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

A **veremautomata** egy $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$, rendezett hetes, ahol

Z a veremszimbólumok véges halmaza (veremábécé),

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- ▶ T az inputszimbólumok véges halmaza (inputábécé),

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),
- ▶ $\delta: Z \times Q \times (T \cup \{\epsilon\}) \rightarrow \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- → T az inputszimbólumok véges halmaza (inputábécé),
- ▶ $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \rightarrow \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- z₀ ∈ Z a kezdeti (kezdő) veremszimbólum,

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- → T az inputszimbólumok véges halmaza (inputábécé),
- ▶ $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \rightarrow \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- z₀ ∈ Z a kezdeti (kezdő) veremszimbólum,
- q₀ ∈ Q a kezdeti állapot (kezdőállapot),

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- → T az inputszimbólumok véges halmaza (inputábécé),
- ▶ $\delta: Z \times Q \times (T \cup \{\epsilon\}) \rightarrow \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- z₀ ∈ Z a kezdeti (kezdő) veremszimbólum,
- q₀ ∈ Q a kezdeti állapot (kezdőállapot),
- F ⊆ Q az elfogadó állapotok vagy végállapotok halmaza.

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- → T az inputszimbólumok véges halmaza (inputábécé),
- ▶ $\delta: Z \times Q \times (T \cup \{\epsilon\}) \rightarrow \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- z₀ ∈ Z a kezdeti (kezdő) veremszimbólum,
- q₀ ∈ Q a kezdeti állapot (kezdőállapot),
- F ⊆ Q az elfogadó állapotok vagy végállapotok halmaza.

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- → T az inputszimbólumok véges halmaza (inputábécé),
- ▶ $\delta: Z \times Q \times (T \cup \{\epsilon\}) \rightarrow \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- z₀ ∈ Z a kezdeti (kezdő) veremszimbólum,
- q₀ ∈ Q a kezdeti állapot (kezdőállapot),
- F ⊆ Q az elfogadó állapotok vagy végállapotok halmaza.

 A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.

 A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. (0, 1, 2, . . . darabot)

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. (0, 1, 2, . . . darabot)

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. (0, 1, 2, . . . darabot)
- Ha δ(z, q, ε) nem üres, akkor ún. ε-átmenet (ε-lépés, ε-mozgás) hajtható végre, ami lehetővé teszi, hogy a veremautomata anélkül változtassa meg az állapotát és/vagy a verem tartalmát, hogy az inputszalagról betűt olvasna be.

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. (0, 1, 2, . . . darabot)
- Ha δ(z, q, ε) nem üres, akkor ún. ε-átmenet (ε-lépés, ε-mozgás) hajtható végre, ami lehetővé teszi, hogy a veremautomata anélkül változtassa meg az állapotát és/vagy a verem tartalmát, hogy az inputszalagról betűt olvasna be.

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. (0, 1, 2, . . . darabot)
- Ha δ(z, q, ε) nem üres, akkor ún. ε-átmenet (ε-lépés, ε-mozgás) hajtható végre, ami lehetővé teszi, hogy a veremautomata anélkül változtassa meg az állapotát és/vagy a verem tartalmát, hogy az inputszalagról betűt olvasna be.
- ε-mozgásra lehetőség van már az első inputszimbólum elolvasása előtt is illetve még az utolsó inputszimbólum elolvasása után is.

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Az input olvasófeje w első betűjén áll.

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Az input olvasófeje w első betűjén áll.

Így a *q* baloldalán lévő szimbólum van a verem tetején, míg a jobboldalán lévő szimbólum az input következő feldolgozandő betűje.

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Az input olvasófeje w első betűjén áll.

Így a *q* baloldalán lévő szimbólum van a verem tetején, míg a jobboldalán lévő szimbólum az input következő feldolgozandő betűje.

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomata $w \in T^*$ bemenethez tartozó **kezdőkonfigurációja** z_0q_0w .

Legyen $t \in T \cup \{\varepsilon\}$, $q, r \in Q$ és $z \in Z$

• $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)

- (ε, r) ∈ δ(z, q, t): a z elemet kivehetjük a veremből (POP művelet)
- ▶ $(z, r) \in \delta(z, q, t)$: a verem tartalma változatlan maradhat

- (ε, r) ∈ δ(z, q, t): a z elemet kivehetjük a veremből (POP művelet)
- ▶ $(z, r) \in \delta(z, q, t)$: a verem tartalma változatlan maradhat
- ► $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$

- (ε, r) ∈ δ(z, q, t): a z elemet kivehetjük a veremből (POP művelet)
- ▶ $(z, r) \in \delta(z, q, t)$: a verem tartalma változatlan maradhat
- $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)

- (ε, r) ∈ δ(z, q, t): a z elemet kivehetjük a veremből (POP művelet)
- $(z, r) \in \delta(z, q, t)$: a verem tartalma változatlan maradhat
- ► $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- ▶ $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)
- Egyéb lehetőségek, például $(zz'z'',r) \in \delta(z,q,t)$: z'z''-t a verem tetejére tehetjük, z'' lesz a tetején $(z',z''\in Z)$.

- (ε, r) ∈ δ(z, q, t): a z elemet kivehetjük a veremből (POP művelet)
- ▶ $(z, r) \in \delta(z, q, t)$: a verem tartalma változatlan maradhat
- ► $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- ▶ $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)
- Egyéb lehetőségek, például $(zz'z'',r) \in \delta(z,q,t)$: z'z''-t a verem tetejére tehetjük, z'' lesz a tetején $(z',z''\in Z)$.
- Általánosan $(w, r) \in \delta(z, q, t)$, ahol $w \in Z^*$ tetszőleges Z feletti szó. A w szó kerül z helyére és w utolsó betűje lesz a verem tetején.

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z$, $q, p \in Q$, $a \in T \cup \{\varepsilon\}$, $r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

ha A-ban $\delta(c,q_1,a)=\{(dd,q_2),(\varepsilon,q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba \Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ is teljesül,

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

- ha A-ban $\delta(c, q_1, a) = \{(dd, q_2), (\varepsilon, q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba \Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ is teljesül,
- ▶ ha A-ban $\delta(c, q_3, \varepsilon) = \{(dd, q_2)\}$ és $z_0cddcq_3ababba$ egy konfiguráció, akkor $z_0cddcq_3ababba$ $\Rightarrow_A z_0cdddq_2ababba$

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

- ha A-ban $\delta(c, q_1, a) = \{(dd, q_2), (\varepsilon, q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba \Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ is teljesül,
- ▶ ha A-ban $\delta(c, q_3, \varepsilon) = \{(dd, q_2)\}$ és $z_0cddcq_3ababba$ egy konfiguráció, akkor $z_0cddcq_3ababba$ $\Rightarrow_A z_0cddddq_2ababba$
- ▶ ha A-ban $\delta(c, q_5, \varepsilon) = \emptyset$ és $\delta(c, q_5, a) = \emptyset$, akkor nem létezik olyan C konfiguráció, melyre $z_0ccq_5aab \Rightarrow_A C$

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, \ 1 \leq i \leq n-1$.

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}$, $1 \le i \le n-1$.

Tehát $\Rightarrow_A^* \subseteq Z^*QT^* \times Z^*QT^*$ a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}$, $1 \le i \le n-1$.

Tehát $\Rightarrow_A^* \subseteq Z^*QT^* \times Z^*QT^*$ a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa:

Ha $\delta(d, q_6, b) = \{(\varepsilon, q_5)\}\$ és $\delta(d, q_5, \varepsilon) = \{(dd, q_2), (\varepsilon, q_4)\}\$ akkor $\#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cddq_2ab$

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}$, $1 \le i \le n-1$.

Tehát $\Rightarrow_A^* \subseteq Z^*QT^* \times Z^*QT^*$ a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa:

```
Ha \delta(d,q_6,b)=\{(\varepsilon,q_5)\} és \delta(d,q_5,\varepsilon)=\{(dd,q_2),(\varepsilon,q_4)\} akkor \#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cdq_2ab és \#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cq_4ab. Tehát \#cddq_6bab\Rightarrow_A^*\#cddq_2ab és \#cddq_6bab\Rightarrow_A^*\#cq_4ab.
```

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}$, $1 \le i \le n-1$.

Tehát $\Rightarrow_A^* \subseteq Z^*QT^* \times Z^*QT^*$ a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa:

Ha $\delta(d,q_6,b)=\{(\varepsilon,q_5)\}$ és $\delta(d,q_5,\varepsilon)=\{(dd,q_2),(\varepsilon,q_4)\}$ akkor $\#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cddq_2ab$ és $\#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cddq_2ab$. Tehát $\#cddq_6bab\Rightarrow_A^*\#cddq_2ab$ és $\#cddq_6bab\Rightarrow_A^*\#cddq_2ab$ és

Definíció

Az A veremautomata által elfogadó állapottal (végállapottal) elfogadott nyelv

$$L(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_{\Delta}^* up, \text{ ahol } u \in Z^*, p \in F \}.$$

Nemdeterminisztikus működés

Legyen $a \in T$, $q \in Q$ és $z \in Z$ tetszőleges és tegyük fel, hogy $\delta(z,q,a) = \{(u_1,r_1),\ldots,(u_k,r_k)\}$, továbbá $\delta(z,q,\varepsilon) = \{(u_{k+1},r_{k+1}),\ldots,(u_n,r_n)\}$, ahol $k \le n$, $u_i \in Z^*$ és $r_i \in Q$. 1 < i < n.

Nemdeterminisztikus működés

Legyen $a \in T$, $q \in Q$ és $z \in Z$ tetszőleges és tegyük fel, hogy $\delta(z,q,a) = \{(u_1,r_1),\ldots,(u_k,r_k)\}$, továbbá $\delta(z,q,\varepsilon) = \{(u_{k+1},r_{k+1}),\ldots,(u_n,r_n)\}$, ahol $k \leq n$, $u_i \in Z^*$ és $r_i \in Q$, $1 \leq i \leq n$.

Ha az A veremautomata olvasófeje az $a \in T$ inputszimbólumon áll, a $q \in Q$ állapotban van, valamint a verem tetején levő szimbólum $z \in Z$, akkor az A veremautomata következő állapota valamelyik r_i lesz, és egyidejűleg a veremautomata z-t az u_i szóval helyettesíti, továbbá $1 \le i \le k$ esetén az olvasófej egy cellával jobbra lép az inputszalagon, míg $k+1 \le i \le n$ esetén az olvasófej nem mozdul.

Nemdeterminisztikus működés

Legyen $a \in T$, $q \in Q$ és $z \in Z$ tetszőleges és tegyük fel, hogy $\delta(z,q,a) = \{(u_1,r_1),\ldots,(u_k,r_k)\}$, továbbá $\delta(z,q,\varepsilon) = \{(u_{k+1},r_{k+1}),\ldots,(u_n,r_n)\}$, ahol $k \leq n$, $u_i \in Z^*$ és $r_i \in Q$, $1 \leq i \leq n$.

Ha az A veremautomata olvasófeje az $a \in T$ inputszimbólumon áll, a $q \in Q$ állapotban van, valamint a verem tetején levő szimbólum $z \in Z$, akkor az A veremautomata következő állapota valamelyik r_i lesz, és egyidejűleg a veremautomata z-t az u_i szóval helyettesíti, továbbá $1 \le i \le k$ esetén az olvasófej egy cellával jobbra lép az inputszalagon, míg $k+1 \le i \le n$ esetén az olvasófej nem mozdul.

Determinisztikus automatáról akkor beszélhetünk, ha n=1 minden $a\in T, q\in Q$ és $z\in Z$ esetén.

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

▶ vagy $\delta(z, q, a)$ pontosan egy elemet tartalmaz minden $a \in T$ inputszimbólumra és $\delta(z, q, \varepsilon) = \emptyset$,

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- ▶ vagy $\delta(z, q, a)$ pontosan egy elemet tartalmaz minden $a \in T$ inputszimbólumra és $\delta(z, q, \varepsilon) = \emptyset$,
- ▶ vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in T$ inputszimbólumra.

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- ▶ vagy $\delta(z, q, a)$ pontosan egy elemet tartalmaz minden $a \in T$ inputszimbólumra és $\delta(z, q, \varepsilon) = \emptyset$,
- ▶ vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in T$ inputszimbólumra.

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- ▶ vagy $\delta(z, q, a)$ pontosan egy elemet tartalmaz minden $a \in T$ inputszimbólumra és $\delta(z, q, \varepsilon) = \emptyset$,
- ▶ vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in T$ inputszimbólumra.

Észrevétel: Ha minden $(z,q,a) \in Z \times Q \times T$ esetén $|\delta(z,q,a)| + |\delta(z,q,\varepsilon)| \le 1$ akkor a veremautomata a felismert nyelv módosulása nélkül kiegészíthető determinisztikus veremautomatává. Így tágabb értelemben az ezt a feltételt teljesítő veremautomatákat is tekinthetjük determinisztikus veremautomatának.

Alternatív reprezentációk

Átírási szabályokkal:

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_δ -val jelöljük. Tehát ezzel az alternatív jelöléssel:

$$zqa \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,a),$$

 $zq \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,\varepsilon).$
 $(p,q \in Q, a \in T, z \in Z, u \in Z^*)$

Alternatív reprezentációk

Átírási szabályokkal:

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_δ -val jelöljük. Tehát ezzel az alternatív jelöléssel:

$$zqa \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,a),$$

 $zq \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,\varepsilon).$
 $(p,q \in Q, a \in T, z \in Z, u \in Z^*)$

Átmenetdiagrammal:

 $p, q \in Q, a \in T \cup \{\varepsilon\}, z \in Z, u \in Z^*$ esetén:

$$q \longrightarrow a; z \to u \longrightarrow p \qquad \iff (u,p) \in \delta(z,q,a)$$

A végállapotokat duplán karikázzuk. A kezdőállapotot → jelöli.

1. Példa: Legyen $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

1. Példa: Legyen $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\}\rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, c) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

1. Példa: Legyen $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\}\rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, c) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

2. Példa: Legyen $L_2 = \{ww^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_2$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\}\rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, \varepsilon) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

2. Példa: Legyen $L_2 = \{ww^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_2$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\}\rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, \varepsilon) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

Nyilván a determinisztikus veremautomatával felismerhető nyelvek halmaza részhalmaza a veremautomatával felismerhető nyelvek halmazának.

Nyilván a determinisztikus veremautomatával felismerhető nyelvek halmaza részhalmaza a veremautomatával felismerhető nyelvek halmazának.

A következő tétel azt mondja ki, hogy a tartalmazás valódi (ellentétben a véges automatáknál látottakkal). A tételt nem bizonyítjuk.

Nyilván a determinisztikus veremautomatával felismerhető nyelvek halmaza részhalmaza a veremautomatával felismerhető nyelvek halmazának.

A következő tétel azt mondja ki, hogy a tartalmazás valódi (ellentétben a véges automatáknál látottakkal). A tételt nem bizonyítjuk.

Tétel

A determinisztikus veremautomaták számítási ereje kisebb, mint a (nemdeterminisztikus) veremautomatáké, de nagyobb a véges automatáknál, azaz van olyan nyelv, amelyik felismerhető veremautomatával, de nem ismerhető fel determinisztikus veremautomatával.

Nyilván a determinisztikus veremautomatával felismerhető nyelvek halmaza részhalmaza a veremautomatával felismerhető nyelvek halmazának.

A következő tétel azt mondja ki, hogy a tartalmazás valódi (ellentétben a véges automatáknál látottakkal). A tételt nem bizonyítjuk.

Tétel

A determinisztikus veremautomaták számítási ereje kisebb, mint a (nemdeterminisztikus) veremautomatáké, de nagyobb a véges automatáknál, azaz van olyan nyelv, amelyik felismerhető veremautomatával, de nem ismerhető fel determinisztikus veremautomatával.

Megjegyzés: Az előbb látott $L_2 = \{ww^{-1} \mid w \in \{a,b\}^+\}$ nyelv ilyen. Míg $L_1 = \{wcw^{-1} \mid w \in \{a,b\}^+\}$ felismerhető determinisztikus veremautomatával, addig L_2 nem. (Ez nem következik az előzőekből.)

Definíció

Az A veremautomata által üres veremmel elfogadott nyelv

$$N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p, \text{ ahol } p \in Q \}.$$

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q\}$.

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q\}$.

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Így a verem az input teljes feldolgozása után, az utolsó átmenettel kell üressé váljon.

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q\}$.

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Így a verem az input teljes feldolgozása után, az utolsó átmenettel kell üressé váljon.

Szintén a blokkolás elkerülése végett definiáltuk úgy a kezdőkonfigurációt, hogy a veremábécé egy eleme (z_0) már eleve a veremben van.

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q\}$.

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Így a verem az input teljes feldolgozása után, az utolsó átmenettel kell üressé váljon.

Szintén a blokkolás elkerülése végett definiáltuk úgy a kezdőkonfigurációt, hogy a veremábécé egy eleme (z_0) már eleve a veremben van.

Megjegyzés: Vegyük észre, hogy az elfogadó állapotok halmaza irreleváns N(A) szempontjából.

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \ge 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \ge 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

```
M_\delta :
```

```
$q_0a \rightarrow $aq_0

aq_0a \rightarrow aaq_0

aq_0b \rightarrow q_1

aq_1b \rightarrow q_1

$q_1 \rightarrow q_1.
```

Példa: Az alábbi $A=\langle\{\$,a\}\{q_0,q_1\},\{a,b\},\delta,\$,q_0,\{\}\rangle$ veremautomata esetén $N(A)=\{a^nb^n\,|\,n\geq 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

```
M_{\delta}:

$q_0 a \rightarrow $aq_0

aq_0 a \rightarrow aaq_0

aq_0 b \rightarrow q_1

aq_1 b \rightarrow q_1

$q_1 \rightarrow q_1.
```

A determinisztikus, a²b³-re:

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \ge 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

```
M_\delta :
```

```
$q_0 a \rightarrow $aq_0
aq_0 a \rightarrow aaq_0
aq_0 b \rightarrow q_1
aq_1 b \rightarrow q_1
$q_1 \rightarrow q_1.
```

A determinisztikus, a^2b^3 -re:

 $q_0 = q_1 bb \Rightarrow q_1$

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \ge 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

M_δ :

```
\begin{array}{l} \$q_0a \rightarrow \$aq_0 \\ aq_0a \rightarrow aaq_0 \\ aq_0b \rightarrow q_1 \\ aq_1b \rightarrow q_1 \\ \$q_1 \rightarrow q_1. \end{array}
```

A determinisztikus, a^2b^3 -re:

$$q_0 = q_0 = p_0 = p_0$$

A elutasítja aabbb-t, mivel hiába lett üres a verem, még volt hátra az inputból.

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy N(A') = L(A) teljesül.

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy N(A') = L(A) teljesül.

Bizonyításvázlat:

Legyen $A=\langle Z,Q,T,\delta,z_0,q_0,F\rangle$ veremautomata. Legyen $z_0'\notin Z,q_0',q_h'\notin Q$. Az $A'=\langle Z\cup\{z_0'\},Q\cup\{q_0',q_h'\},T,\delta',z_0',q_0',\{\}\rangle$ veremautomatát a következőképpen definiáljuk:

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy N(A') = L(A) teljesül.

Bizonyításvázlat:

Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomata. Legyen $z_0' \notin Z, q_0', q_h' \notin Q$. Az $A' = \langle Z \cup \{z_0'\}, Q \cup \{q_0', q_h'\}, T, \delta', z_0', q_0', \{\} \rangle$ veremautomatát a következőképpen definiáljuk:

$$\begin{split} \delta'(z_0',q_0',\varepsilon) &:= \{(z_0'z_0,q_0)\},\\ \delta'(z,q,a) &:= \delta(z,q,a), \quad z \in Z, q \in Q, a \in T,\\ \delta'(z,q,\varepsilon) &:\supseteq \delta(z,q,\varepsilon), \quad z \in Z, q \in Q,\\ (\varepsilon,q_h') &:\in \delta'(z,q,\varepsilon), \quad z \in Z \cup \{z_0'\}, q \in F \cup \{q_h'\}. \end{split}$$

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy N(A') = L(A) teljesül.

Bizonyításvázlat:

Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomata. Legyen $z_0' \notin Z, q_0', q_h' \notin Q$. Az $A' = \langle Z \cup \{z_0'\}, Q \cup \{q_0', q_h'\}, T, \delta', z_0', q_0', \{\} \rangle$ veremautomatát a következőképpen definiáljuk:

$$\begin{split} \delta'(z_0',q_0',\varepsilon) &:= \{(z_0'z_0,q_0)\},\\ \delta'(z,q,a) &:= \delta(z,q,a), \quad z \in Z, q \in Q, a \in T,\\ \delta'(z,q,\varepsilon) &:\supseteq \delta(z,q,\varepsilon), \quad z \in Z, q \in Q,\\ (\varepsilon,q_h') &:\in \delta'(z,q,\varepsilon), \quad z \in Z \cup \{z_0'\}, q \in F \cup \{q_h'\}. \end{split}$$

A' szimulálja A működését; a $z_0' \neq z_0$ veremszimbólum azért szükséges, hogy A' ne fogadja el az olyan szavakat, amelyek kiürítik az A automata vermét anélkül, hogy teljesen feldolgoznák a bemenetet és F-beli állapotba jutnának.

Legyen $w \in L(A)$, tehát $z_0q_0w \Rightarrow_A^* uq$ valamely $u \in Z^*, q \in F$ -re.

Legyen $w \in L(A)$, tehát $z_0 q_0 w \Rightarrow_A^* uq$ valamely $u \in Z^*, q \in F$ -re. Ekkor

$$z_0'q_0'w\Rightarrow_{A'}z_0'z_0q_0w\Rightarrow_{A'}^*z_0'uq\Rightarrow_{A'}^*z_0'q_h'\Rightarrow_{A'}q_h',$$
 tehát $w\in N(A')$.

Legyen $w \in L(A)$, tehát $z_0q_0w \Rightarrow_A^* uq$ valamely $u \in Z^*, q \in F$ -re. Ekkor

$$z_0'q_0'w\Rightarrow_{A'}z_0'z_0q_0w\Rightarrow_{A'}^*z_0'uq\Rightarrow_{A'}^*z_0'q_h'\Rightarrow_{A'}q_h',$$
 tehát $w\in N(A')$.

Legyen most $w \in N(A')$, tehát $z_0'q_0'w \Rightarrow_{A'}^* p$, valamely $p \in Q \cup \{q_0', q_h'\}$ -ra.

Legyen $w \in L(A)$, tehát $z_0 q_0 w \Rightarrow_A^* uq$ valamely $u \in Z^*, q \in F$ -re. Ekkor

$$z_0'q_0'w\Rightarrow_{A'}z_0'z_0q_0w\Rightarrow_{A'}^*z_0'uq\Rightarrow_{A'}^*z_0'q_h'\Rightarrow_{A'}q_h',$$
 tehát $w\in N(A')$.

Legyen most $w \in N(A')$, tehát $z_0' q_0' w \Rightarrow_{A'}^* p$, valamely $p \in Q \cup \{q_0', q_h'\}$ -ra.

Az első lépés $z_0'q_0'w \Rightarrow_{A'} z_0'z_0q_0w$. Mivel a z_0' szimbólum csak valamely $(\varepsilon,q_h')\in\delta'(z_0',q,\varepsilon)$ átmenetet alkalmazó lépéssel törölhető a veremből, ezért $p=q_h'$ és lennie kell olyan $q\in F,z\in Z,u\in Z^*$ -nak, amelyre

$$\begin{split} z_0'z_0q_0w \Rightarrow_{A'}^* z_0'uzq \Rightarrow_{A'} z_0'uq_h' \Rightarrow_{A'}^* z_0'q_h' \Rightarrow_{A'} q_h', \\ \text{ahol az első} \Rightarrow_{A'}^* \text{csak A-beli átmeneteket használ}, \end{split}$$

Legyen $w \in L(A)$, tehát $z_0 q_0 w \Rightarrow_A^* uq$ valamely $u \in Z^*, q \in F$ -re. Ekkor

$$z_0'q_0'w\Rightarrow_{A'}z_0'z_0q_0w\Rightarrow_{A'}^*z_0'uq\Rightarrow_{A'}^*z_0'q_h'\Rightarrow_{A'}q_h',$$
 tehát $w\in N(A')$.

Legyen most $w \in N(A')$, tehát $z_0'q_0'w \Rightarrow_{A'}^* p$, valamely $p \in Q \cup \{q_0', q_h'\}$ -ra.

Az első lépés $z_0'q_0'w \Rightarrow_{A'} z_0'z_0q_0w$. Mivel a z_0' szimbólum csak valamely $(\varepsilon,q_h')\in\delta'(z_0',q,\varepsilon)$ átmenetet alkalmazó lépéssel törölhető a veremből, ezért $p=q_h'$ és lennie kell olyan $q\in F,z\in Z,u\in Z^*$ -nak, amelyre

$$z_0'z_0q_0w\Rightarrow_{A'}^*z_0'uzq\Rightarrow_{A'}z_0'uq_h'\Rightarrow_{A'}^*z_0'q_h'\Rightarrow_{A'}q_h',$$

ahol az első \Rightarrow_A^* , csak A-beli átmeneteket használ, azaz $z_0 q_0 w \Rightarrow_A^* uzq$, tehát $w \in L(A)$.

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy L(A') = N(A) teljesül.

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy L(A') = N(A) teljesül.

Bizonyításvázlat: Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, \{\} \rangle$ veremautomata, amely üres veremmel az N(A) nyelvet fogadja el. Megkonstruáljuk az A' veremautomatát, amely elfogadó állapottal az L(A') = N(A) nyelvet fogadja el. Legyen $z'_0 \notin Z$, $q'_0, q'_f \notin Q$ és $A' = \langle Z \cup \{z'_0\}, Q \cup \{q'_0, q'_f\}, T, \delta', z'_0, q'_0, \{q'_f\} \rangle$.

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy L(A') = N(A) teljesül.

Bizonyításvázlat: Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, \{\} \rangle$ veremautomata, amely üres veremmel az N(A) nyelvet fogadja el. Megkonstruáljuk az A' veremautomatát, amely elfogadó állapottal az L(A') = N(A) nyelvet fogadja el. Legyen $z'_0 \notin Z$, $q'_0, q'_f \notin Q$ és $A' = \langle Z \cup \{z'_0\}, Q \cup \{q'_0, q'_f\}, T, \delta', z'_0, q'_0, \{q'_f\} \rangle$.

$$\begin{split} \delta'(z_0',q_0',\varepsilon) &:= \{(z_0'z_0,q_0)\},\\ \delta'(z,q,a) &:= \delta(z,q,a), \quad z \in Z, q \in Q, a \in (T \cup \{\varepsilon\}),\\ \delta'(z_0',q,\varepsilon) &:= \{(z_0',q_1')\}, \quad q \in Q. \end{split}$$

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy L(A') = N(A) teljesül.

Bizonyításvázlat: Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, \{\} \rangle$ veremautomata, amely üres veremmel az N(A) nyelvet fogadja el. Megkonstruáljuk az A' veremautomatát, amely elfogadó állapottal az L(A') = N(A) nyelvet fogadja el. Legyen $z'_0 \notin Z$, $q'_0, q'_f \notin Q$ és $A' = \langle Z \cup \{z'_0\}, Q \cup \{q'_0, q'_f\}, T, \delta', z'_0, q'_0, \{q'_f\} \rangle$.

$$\begin{split} \delta'(z_0',q_0',\varepsilon) &:= \{(z_0'z_0,q_0)\},\\ \delta'(z,q,a) &:= \delta(z,q,a), \quad z \in Z, q \in Q, a \in (T \cup \{\varepsilon\}),\\ \delta'(z_0',q,\varepsilon) &:= \{(z_0',q_f')\}, \quad q \in Q. \end{split}$$

Könnyen látható, hogy valahányszor A kiüríti a vermét, akkor A' elfogadó állapotba kerül, továbbá A' csak ebben az esetben kerül elfogadó állapotba. Mivel q'_f -ből nincs átmenet L(A') = N(A) teljesül.

Tétel

Bármely G környezetfüggetlen grammatikához megkonstruálható egy olyan A veremautomata, amelyre L(A) = L(G) teljesül.

Tétel

Bármely G környezetfüggetlen grammatikához megkonstruálható egy olyan A veremautomata, amelyre L(A) = L(G) teljesül.

Bizonyításvázlat:

Legyen $G=\langle N,T,P,S\rangle$ Chomsky normálformájú grammatika. Ha $\varepsilon\in L(G)$, akkor P tartalmazza az $S\to \varepsilon$ szabályt, de ebben az esetben S ne forduljon elő egyetlen szabály jobboldalán sem.

Tétel

Bármely G környezetfüggetlen grammatikához megkonstruálható egy olyan A veremautomata, amelyre L(A) = L(G) teljesül.

Bizonyításvázlat:

Legyen $G = \langle N, T, P, S \rangle$ Chomsky normálformájú grammatika. Ha $\varepsilon \in L(G)$, akkor P tartalmazza az $S \to \varepsilon$ szabályt, de ebben az esetben S ne forduljon elő egyetlen szabály jobboldalán sem.

Megkonstruálunk egy A veremautomatát, amelyre L(A) = L(G) teljesül.

Legyen $A = \langle N \cup \{z_0\}, Q, T, \delta, z_0, q_0, \{q_h\} \rangle$, ahol

$$Q = \bigcup_{X \in N} \{q_X\} \cup \{q_0, q_h\}$$

Legyen $A = \langle N \cup \{z_0\}, Q, T, \delta, z_0, q_0, \{q_h\} \rangle$, ahol

$$Q = \bigcup_{X \in N} \{q_X\} \cup \{q_0, q_h\}$$

és a δ függvényt a következőképpen definiáljuk:

(1) $z_0q_0 \to z_0q_S :\in M_\delta$ akkor és csak akkor, ha $S \to \varepsilon \in P$,

Legyen $A = \langle N \cup \{z_0\}, Q, T, \delta, z_0, q_0, \{q_h\} \rangle$, ahol

$$Q = \bigcup_{X \in N} \{q_X\} \cup \{q_0, q_h\}$$

- (1) $z_0q_0 \rightarrow z_0q_S :\in M_\delta$ akkor és csak akkor, ha $S \rightarrow \varepsilon \in P$,
- (2) $z_0 q_0 a \rightarrow z_0 q_X := M_\delta$ akkor és csak akkor, ha $X \rightarrow a \in P$,

Legyen $A = \langle N \cup \{z_0\}, Q, T, \delta, z_0, q_0, \{q_h\} \rangle$, ahol

$$Q = \bigcup_{X \in N} \{q_X\} \cup \{q_0, q_h\}$$

- (1) $z_0q_0 \rightarrow z_0q_S :\in M_\delta$ akkor és csak akkor, ha $S \rightarrow \varepsilon \in P$,
- (2) $z_0 q_0 a \to z_0 q_X :\in M_\delta$ akkor és csak akkor, ha $X \to a \in P$,
- (3) $Zq_{Y}a \to ZYq_{X}:\in M_{\delta}$ minden $Z \in N \cup \{z_{0}\},$ $Y \in N, X \to a \in P$ esetén,

Legyen $A = \langle N \cup \{z_0\}, Q, T, \delta, z_0, q_0, \{q_h\} \rangle$, ahol

$$Q = \bigcup_{X \in N} \{q_X\} \cup \{q_0, q_h\}$$

- (1) $z_0 q_0 \rightarrow z_0 q_S :\in M_\delta$ akkor és csak akkor, ha $S \rightarrow \varepsilon \in P$,
- (2) $z_0 q_0 a \to z_0 q_X :\in M_\delta$ akkor és csak akkor, ha $X \to a \in P$,
- (3) $Zq_Y a \to ZYq_X :\in M_\delta$ minden $Z \in N \cup \{z_0\}$, $Y \in N, X \to a \in P$ esetén,
- (4) $Zq_Y \rightarrow q_X :\in M_\delta$ akkor és csak akkor, ha $X \rightarrow ZY \in P$,

Legyen $A = \langle N \cup \{z_0\}, Q, T, \delta, z_0, q_0, \{q_h\} \rangle$, ahol

$$Q = \bigcup_{X \in N} \{q_X\} \cup \{q_0, q_h\}$$

- (1) $z_0 q_0 \rightarrow z_0 q_S :\in M_\delta$ akkor és csak akkor, ha $S \rightarrow \varepsilon \in P$,
- (2) $z_0 q_0 a \to z_0 q_X :\in M_\delta$ akkor és csak akkor, ha $X \to a \in P$,
- (3) $Zq_Y a \to ZYq_X :\in M_\delta$ minden $Z \in N \cup \{z_0\}$, $Y \in N, X \to a \in P$ esetén,
- (4) $Zq_Y \rightarrow q_X :\in M_\delta$ akkor és csak akkor, ha $X \rightarrow ZY \in P$,
- (5) $z_0 q_S \rightarrow q_h :\in M_\delta$.

 M_{δ} szabályai lényegében a G invertált szabályai.

 M_{δ} szabályai lényegében a G invertált szabályai.

Például, ha $G=\langle \{S,X,Y,Z,A,B\},\{a,b\},\{S\to XY,X\to AB,Y\to ZB,Z\to BA,A\to a,B\to b\},S\rangle$, akkor az abbab **jobboldali**

$$S \Rightarrow XY \Rightarrow XZB \Rightarrow XZb \Rightarrow XBAb \Rightarrow$$

 $XBab \Rightarrow Xbab \Rightarrow ABbab \Rightarrow Abbab \Rightarrow abbab$

levezetésének

 M_{δ} szabályai lényegében a G invertált szabályai.

Például, ha $G=\langle\{S,X,Y,Z,A,B\},\{a,b\},\{S\to XY,X\to AB,Y\to ZB,Z\to BA,A\to a,B\to b\},S\rangle$, akkor az abbab **jobboldali**

$$S \Rightarrow XY \Rightarrow XZB \Rightarrow XZb \Rightarrow XBAb \Rightarrow$$

 $XBab \Rightarrow Xbab \Rightarrow ABbab \Rightarrow Abbab \Rightarrow abbab$

levezetésének megfelel egy

$$z_0q_0abbab\Rightarrow z_0q_Abbab\Rightarrow z_0Aq_Bbab\Rightarrow z_0q_Xbab\Rightarrow z_0Xq_Bab\Rightarrow$$

$$z_0 X B q_A b \Rightarrow z_0 X q_Z b \Rightarrow z_0 X Z q_B \Rightarrow z_0 X q_Y \Rightarrow z_0 q_S$$

redukció a veremautomatában és viszont.

 M_{δ} szabályai lényegében a G invertált szabályai.

Például, ha $G=\langle \{S,X,Y,Z,A,B\},\{a,b\},\{S\to XY,X\to AB,Y\to ZB,Z\to BA,A\to a,B\to b\},S\rangle$, akkor az abbab **jobboldali**

$$S \Rightarrow XY \Rightarrow XZB \Rightarrow XZb \Rightarrow XBAb \Rightarrow$$

$$XBab \Rightarrow Xbab \Rightarrow ABbab \Rightarrow Abbab \Rightarrow abbab$$

levezetésének megfelel egy

$$z_0q_0abbab\Rightarrow z_0q_Abbab\Rightarrow z_0Aq_Bbab\Rightarrow z_0q_Xbab\Rightarrow z_0Xq_Bab\Rightarrow$$

$$z_0 XBq_A b \Rightarrow z_0 Xq_Z b \Rightarrow z_0 XZq_B \Rightarrow z_0 Xq_Y \Rightarrow z_0 q_S$$

redukció a veremautomatában és viszont.

Általában is teljesül, hogy $z_0q_0w \Rightarrow_A^* z_0q_S \iff S \Rightarrow_G^* w$. Ez $w \neq \varepsilon$ esetén a (2),(3),(4) szabályok, $w = \varepsilon$ esetén (1) biztosítja.

Legyen $w \in L(A)$. Akkor $z_0 q_0 w \Rightarrow_A^* u q_h$ valamely u veremszimbólumokból álló szóra.

Legyen $w \in L(A)$. Akkor $z_0 q_0 w \Rightarrow_A^* u q_h$ valamely u veremszimbólumokból álló szóra.

Az M_δ konstrukciója alapján $u=\varepsilon$ kell, hogy teljesüljön, illetve, pontosabban

$$z_0 q_0 w \Rightarrow_A^* z_0 q_S \Rightarrow_A q_h$$

kell, hogy fennálljon. Tehát $S \Rightarrow_G^* w$ és így $L(A) \subseteq L(G)$.

Legyen $w \in L(A)$. Akkor $z_0 q_0 w \Rightarrow_A^* u q_h$ valamely u veremszimbólumokból álló szóra.

Az M_δ konstrukciója alapján $u=\varepsilon$ kell, hogy teljesüljön, illetve, pontosabban

$$z_0 q_0 w \Rightarrow_A^* z_0 q_S \Rightarrow_A q_h$$

kell, hogy fennálljon. Tehát $S \Rightarrow_G^* w$ és így $L(A) \subseteq L(G)$.

Ha $S \Rightarrow_G^* w$, akkor $z_0 q_0 w \Rightarrow_A^* z_0 q_S$. Ekkor az (5) szabály alkalmazásával $z_0 q_0 w \Rightarrow_A^* q_h$, tehát $L(G) \subseteq L(A)$.

Tétel

Minden A veremautomatához megadható egy környezetfüggetlen G grammatika úgy, hogy L(G)=N(A) teljesül.

Tétel

Minden A veremautomatához megadható egy környezetfüggetlen G grammatika úgy, hogy L(G) = N(A) teljesül.

Bizonyításvázlat:

Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, \{\} \rangle$ veremautomata.

Tétel

Minden A veremautomatához megadható egy környezetfüggetlen G grammatika úgy, hogy L(G) = N(A) teljesül.

Bizonyításvázlat:

Legyen $A = \langle Z, Q, T, \delta, z_0, q_0, \{\} \rangle$ veremautomata.

Definiáljuk a $G = \langle N, T, P, S \rangle$ grammatikát úgy, hogy N elemei [q, x, p] alakú rendezett hármasok, ahol $q, p \in Q$ és $x \in Z$. Ezen kívül bevezetjük az S új szimbólumot és legyen $N = Q \times Z \times Q \cup \{S\}$.

Definiáljuk a P szabályhalmazt a következőképpen:

▶ Legyen $S \rightarrow [q_0, z_0, p] \in P$ minden $p \in Q$ állapotra.

Definiáljuk a P szabályhalmazt a következőképpen:

- ▶ Legyen $S \rightarrow [q_0, z_0, p] \in P$ minden $p \in Q$ állapotra.
- ▶ Ha $xqa \rightarrow y_1 \cdots y_m p_m \in M_\delta$, ahol $a \in (T \cup \{\varepsilon\})$, akkor minden $p_0, p_1, \dots, p_{m-1} \in Q$ állapotsorozatra legyen

$$[q, x, p_0] \rightarrow a[p_m, y_m, p_{m-1}] \cdots [p_1, y_1, p_0]$$

szabály P -ben.

Tehát, ha m=0, azaz, az $xqa \rightarrow p_0 \in M_\delta$, akkor legyen $[q,x,p_0] \rightarrow a \in P$.

Definiáljuk a P szabályhalmazt a következőképpen:

- ▶ Legyen $S \rightarrow [q_0, z_0, p] \in P$ minden $p \in Q$ állapotra.
- ▶ Ha $xqa \rightarrow y_1 \cdots y_m p_m \in M_\delta$, ahol $a \in (T \cup \{\varepsilon\})$, akkor minden $p_0, p_1, \dots, p_{m-1} \in Q$ állapotsorozatra legyen

$$[q, x, p_0] \rightarrow a[p_m, y_m, p_{m-1}] \cdots [p_1, y_1, p_0]$$

szabály P -ben.

Tehát, ha m=0, azaz, az $xqa \rightarrow p_0 \in M_\delta$, akkor legyen $[q,x,p_0] \rightarrow a \in P$.

A P szabályhalmaz ne tartalmazzon további szabályt.

Először az $L(G) \subseteq N(A)$ tartalmazást igazoljuk. Először megmutatjuk, hogy minden x veremszimbólumra, q, p állapotpárra, valamint u inputszóra fennáll, hogyha $[q, x, p] \Rightarrow_G^* u$ akkor, $xqu \Rightarrow_A^* p$.

Először az $L(G)\subseteq N(A)$ tartalmazást igazoljuk. Először megmutatjuk, hogy minden x veremszimbólumra, q,p állapotpárra, valamint u inputszóra fennáll, hogyha $[q,x,p]\Rightarrow_G^* u$ akkor, $xqu\Rightarrow_A^* p$.

A bizonyítást a $[q,x,p]\Rightarrow_G^* u$ levezetés lépéseinek száma szerinti indukcióval végezzük.

Először az $L(G) \subseteq N(A)$ tartalmazást igazoljuk. Először megmutatjuk, hogy minden x veremszimbólumra, q, p állapotpárra, valamint u inputszóra fennáll, hogyha $[q, x, p] \Rightarrow_G^* u$ akkor, $xqu \Rightarrow_A^* p$.

A bizonyítást a $[q, x, p] \Rightarrow_G^* u$ levezetés lépéseinek száma szerinti indukcióval végezzük.

Egyetlen lépés esetében nyilvánvalóan $u = a \in T \cup \{\varepsilon\}$ és $xqa \rightarrow p \in M_{\delta}$.

Először az $L(G)\subseteq N(A)$ tartalmazást igazoljuk. Először megmutatjuk, hogy minden x veremszimbólumra, q,p állapotpárra, valamint u inputszóra fennáll, hogyha $[q,x,p]\Rightarrow_G^* u$ akkor, $xqu\Rightarrow_A^* p$.

A bizonyítást a $[q,x,p]\Rightarrow_G^* u$ levezetés lépéseinek száma szerinti indukcióval végezzük.

Egyetlen lépés esetében nyilvánvalóan $u = a \in T \cup \{\varepsilon\}$ és $xqa \rightarrow p \in M_{\delta}$.

Tegyük fel, hogy az állítás igaz minden legfeljebb n lépésből álló levezetésre és álljon a $[q, x, p_0] \Rightarrow_G^* u$ levezetés n+1 lépésből.

Először az $L(G)\subseteq N(A)$ tartalmazást igazoljuk. Először megmutatjuk, hogy minden x veremszimbólumra, q,p állapotpárra, valamint u inputszóra fennáll, hogyha $[q,x,p]\Rightarrow_G^* u$ akkor, $xqu\Rightarrow_A^* p$.

A bizonyítást a $[q, x, p] \Rightarrow_G^* u$ levezetés lépéseinek száma szerinti indukcióval végezzük.

Egyetlen lépés esetében nyilvánvalóan $u = a \in T \cup \{\varepsilon\}$ és $xqa \rightarrow p \in M_{\delta}$.

Tegyük fel, hogy az állítás igaz minden legfeljebb n lépésből álló levezetésre és álljon a $[q, x, p_0] \Rightarrow_G^* u$ levezetés n+1 lépésből.

Akkor a levezetés alakja

$$[q,x,p_0]\Rightarrow_G a[p_m,y_m,p_{m-1}]\cdots [p_1,y_1,p_0]\Rightarrow_G^* u,$$

Először az $L(G)\subseteq N(A)$ tartalmazást igazoljuk. Először megmutatjuk, hogy minden x veremszimbólumra, q,p állapotpárra, valamint u inputszóra fennáll, hogyha $[q,x,p]\Rightarrow_G^* u$ akkor, $xqu\Rightarrow_A^* p$.

A bizonyítást a $[q, x, p] \Rightarrow_G^* u$ levezetés lépéseinek száma szerinti indukcióval végezzük.

Egyetlen lépés esetében nyilvánvalóan $u = a \in T \cup \{\varepsilon\}$ és $xqa \rightarrow p \in M_{\delta}$.

Tegyük fel, hogy az állítás igaz minden legfeljebb n lépésből álló levezetésre és álljon a $[q, x, p_0] \Rightarrow_G^* u$ levezetés n+1 lépésből.

Akkor a levezetés alakja

$$[q,x,p_0] \Rightarrow_G a[p_m,y_m,p_{m-1}]\cdots [p_1,y_1,p_0] \Rightarrow_G^* u,$$

ahonnan az adódik, hogy léteznek olyan $u_m, u_{m-1}, \ldots, u_1 \in T^*$ szavak, amelyekre $u = au_m u_{m-1} \cdots u_1$ és $[p_i, y_i, p_{i-1}] \Rightarrow_G^* u_i$, $1 \le i \le m$.

Az indukciós hipotézis alapján fennáll az

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$

redukció és G definíciója alapján

$$xqa \Rightarrow_A y_1 \cdots y_m p_m$$
.

Az indukciós hipotézis alapján fennáll az

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$

redukció és G definíciója alapján

$$xqa \Rightarrow_A y_1 \cdots y_m p_m$$
.

ĺgy

$$xqu = xqau_m \cdots u_1 \Rightarrow_A y_1 \cdots y_m p_m u_m \cdots u_1 \Rightarrow_A^* y_1 \cdots y_{m-1} p_{m-1} u_{m-1} \cdots u_1 \Rightarrow_A^* p_0.$$

Az indukciós hipotézis alapján fennáll az

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$

redukció és G definíciója alapján

$$xqa \Rightarrow_A y_1 \cdots y_m p_m$$
.

ĺgy

$$xqu = xqau_m \cdots u_1 \Rightarrow_A y_1 \cdots y_m p_m u_m \cdots u_1 \Rightarrow_A^* y_1 \cdots y_{m-1} p_{m-1} u_{m-1} \cdots u_1 \Rightarrow_A^* p_0.$$

Ha $u \in L(G)$, akkor van olyan $p \in Q$, amelyre

$$S \Rightarrow_G [q_0, z_0, p] \Rightarrow_G^* u,$$

ahonnan az előbb bizonyított állítás miatt $z_0q_0u\Rightarrow_A^*p$, azaz $u\in N(A)$ adódik.

A fordított irányú tartalmazás bizonyításához először megmutatjuk, hogy a $xqu\Rightarrow_A^* p$ redukcióból a $[q,x,p]\Rightarrow_G^* u$ levezetés adódik.

A fordított irányú tartalmazás bizonyításához először megmutatjuk, hogy a $xqu\Rightarrow_A^* p$ redukcióból a $[q,x,p]\Rightarrow_G^* u$ levezetés adódik.

A bizonyítást az automata lépéseinek (átmenetek) száma szerinti indukcióval végezzük.

A fordított irányú tartalmazás bizonyításához először megmutatjuk, hogy a $xqu \Rightarrow_A^* p$ redukcióból a $[q,x,p] \Rightarrow_G^* u$ levezetés adódik.

A bizonyítást az automata lépéseinek (átmenetek) száma szerinti indukcióval végezzük.

Egyetlen lépés esetén $xqa \rightarrow p \in M_{\delta}$, ahonnan $[q, x, p] \rightarrow a \in P$.

A fordított irányú tartalmazás bizonyításához először megmutatjuk, hogy a $xqu \Rightarrow_A^* p$ redukcióból a $[q,x,p] \Rightarrow_G^* u$ levezetés adódik.

A bizonyítást az automata lépéseinek (átmenetek) száma szerinti indukcióval végezzük.

Egyetlen lépés esetén $xqa \rightarrow p \in M_{\delta}$, ahonnan $[q, x, p] \rightarrow a \in P$.

Egynél több lépés esetén az $xqu \Rightarrow_A^* p$ redukció

$$xqu = xqav \Rightarrow_A y_1 \cdots y_m p_m v \Rightarrow_A^* p$$

alakú kell, hogy legyen.

A fordított irányú tartalmazás bizonyításához először megmutatjuk, hogy a $xqu\Rightarrow_A^* p$ redukcióból a $[q,x,p]\Rightarrow_G^* u$ levezetés adódik.

A bizonyítást az automata lépéseinek (átmenetek) száma szerinti indukcióval végezzük.

Egyetlen lépés esetén $xqa \rightarrow p \in M_{\delta}$, ahonnan $[q, x, p] \rightarrow a \in P$.

Egynél több lépés esetén az $xqu \Rightarrow_A^* p$ redukció

$$xqu = xqav \Rightarrow_A y_1 \cdots y_m p_m v \Rightarrow_A^* p$$

alakú kell, hogy legyen.

A veremautomaták redukciójának definíciója miatt a redukció során mindenképp elő kell forduljon egy $y_1\cdots y_{m-1}p_{m-1}v_1$ konfiguráció, ahol $v=u_mv_1$ valamely $u_m,v_1\in T^*$ -ra és $p_{m-1}\in Q$,

A fordított irányú tartalmazás bizonyításához először megmutatjuk, hogy a $xqu \Rightarrow_A^* p$ redukcióból a $[q,x,p] \Rightarrow_G^* u$ levezetés adódik.

A bizonyítást az automata lépéseinek (átmenetek) száma szerinti indukcióval végezzük.

Egyetlen lépés esetén $xqa \rightarrow p \in M_{\delta}$, ahonnan $[q, x, p] \rightarrow a \in P$.

Egynél több lépés esetén az $xqu \Rightarrow_A^* p$ redukció

$$xqu = xqav \Rightarrow_A y_1 \cdots y_m p_m v \Rightarrow_A^* p$$

alakú kell, hogy legyen.

A veremautomaták redukciójának definíciója miatt a redukció során mindenképp elő kell forduljon egy $y_1\cdots y_{m-1}p_{m-1}v_1$ konfiguráció, ahol $v=u_mv_1$ valamely $u_m,v_1\in T^*$ -ra és $p_{m-1}\in Q$, azaz

$$xqu = xqav \Rightarrow_A y_1 \cdots y_m p_m u_m v_1 \Rightarrow_A^* y_1 \cdots y_{m-1} p_{m-1} v_1 \Rightarrow_A^* p.$$

Folytatva a gondolatmenetet, azt kapjuk, hogy vannak olyan u_{m-1}, \ldots, u_1 szavak, hogy $u = au_m u_{m-1} \cdots u_1$ és

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$
, ha $i = 1, \dots m$.

Folytatva a gondolatmenetet, azt kapjuk, hogy vannak olyan u_{m-1}, \ldots, u_1 szavak, hogy $u = au_m u_{m-1} \cdots u_1$ és

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$
, ha $i = 1, \dots m$.

és $p_0 = p$. Az indukciós hipotézis alapján ekkor

$$[p_i, y_i, p_{i-1}] \Rightarrow_G^* u_i$$
, ha $i = 1, ... m$

Folytatva a gondolatmenetet, azt kapjuk, hogy vannak olyan u_{m-1}, \ldots, u_1 szavak, hogy $u = au_m u_{m-1} \cdots u_1$ és

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$
, ha $i = 1, \dots m$.

és $p_0 = p$. Az indukciós hipotézis alapján ekkor

$$[p_i, y_i, p_{i-1}] \Rightarrow_G^* u_i$$
, ha $i = 1, ... m$

és a G grammatika definíciója alapján

$$[q, x, p] = [q, x, p_0] \Rightarrow_G a[p_m, y_m, p_{m-1}] \cdots [p_1, y_1, p_0]$$

teljesül

Folytatva a gondolatmenetet, azt kapjuk, hogy vannak olyan u_{m-1}, \ldots, u_1 szavak, hogy $u = au_m u_{m-1} \cdots u_1$ és

$$y_i p_i u_i \Rightarrow_A^* p_{i-1}$$
, ha $i = 1, \dots m$.

és $p_0 = p$. Az indukciós hipotézis alapján ekkor

$$[p_i, y_i, p_{i-1}] \Rightarrow_G^* u_i, \text{ ha } i = 1, \dots m$$

és a G grammatika definíciója alapján

$$[q, x, p] = [q, x, p_0] \Rightarrow_G a[p_m, y_m, p_{m-1}] \cdots [p_1, y_1, p_0]$$

teljesül, ahonnan $[q, x, p] \Rightarrow_G^* u$ következik.

Így, ha $u \in N(A)$, akkor $z_0 q_0 u \Rightarrow_A^* p$ valamely p állapotra, és így az imént bizonyított állítás alapján $S \Rightarrow_G [q_0, z_0, p] \Rightarrow_G^* u$, azaz, $N(A) \subseteq L(G)$.

4 D > 4 B > 4 B > 4 B > 9 Q P

Tehát beláttuk a következőt: Bármely L nyelvre ekvivalensek a következő állítások

L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható

Tehát beláttuk a következőt: Bármely L nyelvre ekvivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető

Tehát beláttuk a következőt: Bármely L nyelvre ekvivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető
- L (nemdeterminisztikus) veremautomatával üres veremmel felismerhető

Tehát beláttuk a következőt: Bármely *L* nyelvre ekvivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető
- L (nemdeterminisztikus) veremautomatával üres veremmel felismerhető

Másrészt létezik olyan környezetfüggetlen nyelv, ami nem ismerhető fel determinisztikus veremautomatával.