Numerical Methods for PDEs (Spring 2017)

► Module coordinators:

Gustav Delius and Richard Southwell

▶ Module aims:

- To gain an understanding of basic numerical methods for solving PDEs
- To be aware of the potential pitfalls and develop experience in avoiding them
- To implement numerical algorithms in practice
- ➤ To gain competency in using computing tools like R, C++, Git, ...

► Teaching:

- ▶ 18 hours of lectures
- 9 hours of practicals (computer classes)

- 2 hour exam in week 1 of the Summer term 75%
- ► Coursework 25%

► Teaching:

- 18 hours of lectures
- 9 hours of practicals (computer classes)
- 27 hours of discussion of theory and computer work
 - Lecture notes
 - Lecture slides and summary sheets
 - Problem and solution sheets
 - Computer worksheets with example code and exercises

- ▶ 2 hour exam in week 1 of the Summer term 75%
- Coursework 25%
 - mini-project 1 (10%) Implementing a numerical scheme for solving a given parabolic equation
 - mini-project 2 (15%) Implementing a numerical scheme for a PDE from a published research paper of your choice

▶ Teaching:

- 18 hours of lectures
- 9 hours of practicals (computer classes)
- 27 hours of discussion of theory and computer work
 - Lecture notes
 - Lecture slides and summary sheets
 - Problem and solution sheets
 - Computer worksheets with example code and exercises

- ▶ 2 hour exam in week 1 of the Summer term 75%
- Coursework 25%
 - mini-project 1 (10%) Implementing a numerical scheme for solving a given parabolic equation
 - mini-project 2 (15%) Implementing a numerical scheme for a PDE from a published research paper of your choice

▶ Teaching:

- 18 hours of lectures
- 9 hours of practicals (computer classes)
- 27 hours of discussion of theory and computer work
 - Lecture notes
 - Lecture slides and summary sheets
 - Problem and solution sheets
 - Computer worksheets with example code and exercises

- ▶ 2 hour exam in week 1 of the Summer term 75%
- Coursework 25%
 - mini-project 1 (10%) Implementing a numerical scheme for solving a given parabolic equation
 - mini-project 2 (15%) Implementing a numerical scheme for a PDE from a published research paper of your choice

▶ Teaching:

- 18 hours of lectures
- 9 hours of practicals (computer classes)
- 27 hours of discussion of theory and computer work
 - Lecture notes
 - Lecture slides and summary sheets
 - Problem and solution sheets
 - Computer worksheets with example code and exercises

- ▶ 2 hour exam in week 1 of the Summer term 75%
- Coursework 25%
 - mini-project 1 (10%) Implementing a numerical scheme for solving a given parabolic equation
 - mini-project 2 (15%) Implementing a numerical scheme for a PDE from a published research paper of your choice

▶ Teaching:

- 18 hours of lectures
- 9 hours of practicals (computer classes)
- 27 hours of discussion of theory and computer work
 - Lecture notes
 - Lecture slides and summary sheets
 - Problem and solution sheets
 - Computer worksheets with example code and exercises

- ▶ 2 hour exam in week 1 of the Summer term 75%
- Coursework 25%
 - mini-project 1 (10%) Implementing a numerical scheme for solving a given parabolic equation
 - mini-project 2 (15%) Implementing a numerical scheme for a PDE from a published research paper of your choice

▶ Teaching:

- 18 hours of lectures
- 9 hours of practicals (computer classes)
- 27 hours of discussion of theory and computer work
 - Lecture notes
 - Lecture slides and summary sheets
 - Problem and solution sheets
 - Computer worksheets with example code and exercises

- ▶ 2 hour exam in week 1 of the Summer term 75%
- Coursework 25%
 - mini-project 1 (10%) Implementing a numerical scheme for solving a given parabolic equation
 - mini-project 2 (15%) Implementing a numerical scheme for a PDE from a published research paper of your choice

Course contents

- 1. Introduction (1 week).
- 2. Parabolic differential equations. Finite-difference methods. Consistency, stability and convergence of finite-difference schemes. (5 weeks).
- 3. Finite-difference methods for elliptic differential equations (2 weeks).
- 4. Finite-difference methods for hyperbolic differential equations (1 week).

Reading list:

- RL Burden & JD Faires, Numerical Analysis (6th ed.), Brooks/Cole Publishing Company, 1997;
- WF Ames, Numerical Methods for Partial Differential Equations Academic Press, 1977;
- 3. WH Press, Numerical Recipes: the Art of Scientific Computing, CUP, 2007.

Course contents

- 1. Introduction (1 week).
- 2. Parabolic differential equations. Finite-difference methods. Consistency, stability and convergence of finite-difference schemes. (5 weeks).
- 3. Finite-difference methods for elliptic differential equations (2 weeks).
- 4. Finite-difference methods for hyperbolic differential equations (1 week).

Reading list:

- RL Burden & JD Faires, Numerical Analysis (6th ed.), Brooks/Cole Publishing Company, 1997;
- 2. WF Ames, *Numerical Methods for Partial Differential Equations*, Academic Press, 1977;
- 3. WH Press, *Numerical Recipes: the Art of Scientific Computing*, CUP, 2007.

Taylor's theorem for functions of one variable

If $f \in C^{n+1}$ in $(x_0 - \epsilon, x_0 + \epsilon)$, then

$$f(x)=T_n+R_n$$

where T_n in the *n*th Taylor polynomial

$$T_n = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \cdots + \frac{(x - x_0)^n}{n!}f^{(n)}(x_0)$$

and R_n is the remainder term

$$R_n = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

for some point ξ between x_0 and x (ξ can be written as $\xi = x_0 + \theta(x - x_0)$ where $0 < \theta < 1$).

Taylor's theorem for functions of two variables

If $F \in C^{n+1}(D)$ where $D \subset \mathbb{R}^2$, then

$$F(x,y) = T_{n}(x,y) + R_{n}(x,y),$$

$$T_{n}(x,y) = F(x_{0},y_{0}) + \left[\Delta x \frac{\partial F}{\partial x} \Big|_{(x_{0},y_{0})} + \Delta y \frac{\partial F}{\partial y} \Big|_{(x_{0},y_{0})} \right]$$

$$+ \left[\frac{(\Delta x)^{2}}{2} \frac{\partial^{2} F}{\partial x^{2}} \Big|_{(x_{0},y_{0})} + \Delta x \Delta y \frac{\partial^{2} F}{\partial x \partial y} \Big|_{(x_{0},y_{0})} + \frac{(\Delta y)^{2}}{2} \frac{\partial^{2} F}{\partial y^{2}} \Big|_{(x_{0},y_{0})} \right]$$

$$+ \dots$$

$$+ \left[\frac{1}{n!} \sum_{i=0}^{n} \binom{n}{j} (\Delta x)^{n-j} (\Delta y)^{j} \frac{\partial^{n} F}{\partial x^{n-j} \partial y^{j}} \Big|_{(x_{0},y_{0})} \right]$$

where $\Delta x = x - x_0$, $\Delta y = y - y_0$ and

$$R_n(x,y) = \frac{1}{(n+1)!} \sum_{j=0}^{n+1} \binom{n+1}{j} (\Delta x)^{n+1-j} (\Delta y)^j \frac{\partial^{n+1} f}{\partial x^{n+1-j} \partial y^j} (\xi,\mu).$$

Big O notation

Definition. Let $\lim_{x\to 0} g(x) = 0$ and $\lim_{x\to 0} f(x) = f_0$. If there exists a constant K > 0 such that

$$|f(x)-f_0|\leq K|g(x)|,$$

at least for x sufficiently close to zero, we write

$$f(x) = f_0 + O(g(x))$$
 as $x \to 0$.

- **Example**. Let us show that $\sin(x)/x = 1 + O(x^2)$ as $x \to 0$.
- **Solution.** The 2nd Taylor polynomial for sin(x):

$$\sin(x) = x - \frac{x^3}{3!}\cos(\xi)$$

where ξ is some number between 0 and x.

We have

$$\left| \frac{\sin x}{x} - 1 \right| = \frac{|x|^2}{3!} |\cos(\xi)| \le \frac{x^2}{3!} = \frac{x^2}{6} \quad \Rightarrow \quad \frac{\sin x}{x} = 1 + O(x^2).$$

- **Example**. Let us show that $\sin(x)/x = 1 + O(x^2)$ as $x \to 0$.
- **Solution.** The 2nd Taylor polynomial for sin(x):

$$\sin(x) = x - \frac{x^3}{3!}\cos(\xi)$$

where ξ is some number between 0 and x.

We have

$$\left| \frac{\sin x}{x} - 1 \right| = \frac{|x|^2}{3!} |\cos(\xi)| \le \frac{x^2}{3!} = \frac{x^2}{6} \quad \Rightarrow \quad \frac{\sin x}{x} = 1 + O(x^2).$$

Properties of $O(x^n)$:

- 1. $O(x^n) + O(x^m) = O(x^k)$ for $n, m \ge 0$ and $k = \min\{n, m\}$.
- 2. $O(x^n)O(x^m) = O(x^{n+m})$ for $n, m \ge 0$.
- 3. $x^m O(x^n) = O(x^{n+m})$ for $n \ge 0$ and $n+m \ge 0$.

Properties of $O(x^n)$:

- 1. $O(x^n) + O(x^m) = O(x^k)$ for $n, m \ge 0$ and $k = \min\{n, m\}$.
- 2. $O(x^n)O(x^m) = O(x^{n+m})$ for $n, m \ge 0$.
- 3. $x^m O(x^n) = O(x^{n+m})$ for $n \ge 0$ and $n + m \ge 0$.

Properties of $O(x^n)$:

- 1. $O(x^n) + O(x^m) = O(x^k)$ for $n, m \ge 0$ and $k = \min\{n, m\}$.
- 2. $O(x^n)O(x^m) = O(x^{n+m})$ for $n, m \ge 0$.
- 3. $x^m O(x^n) = O(x^{n+m})$ for $n \ge 0$ and $n+m \ge 0$.