Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 12 - Support Vector Regression and its Dual

KKT conditions for the Constrained (Convex) Problem

• Here, $\mathbf{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

- KKT **necessary** conditions for all differentiable functions (i.e. f, g_i, h_j) with optimality points $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$ are:
 - $\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_j \nabla h_j(\hat{\mathbf{w}}) = 0$
 - $g_i(\hat{\mathbf{w}}) \leq 0; 1 \leq i \leq m$
 - $\hat{\lambda}_i \geq 0$; $1 \leq i \leq m$
 - $\hat{\lambda}_i g_i(\hat{\mathbf{w}}) = 0; 1 \leq i \leq m$
 - $h_j(\hat{\mathbf{w}}) = 0; 1 \le j \le p$
- When f and $g_i, \forall i \in [1, m]$ are convex and $h_j, \forall j \in [1, p]$ are affine, KKT conditions are also **sufficient** for optimality at $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$

KKT conditions for the Constrained (Convex) Problem Application 2: SVR and its Dual

KKT conditions for SVR

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

• Differentiating the Lagrangian w.r.t. ξ_i , $C - \alpha_i - \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$

- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness:

$$\alpha_i(y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0 \text{ AND } \mu_i \xi_i = 0 \text{ AND } \alpha_i^* (b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0 \text{ AND } \mu_i^* \xi_i^* = 0$$

Support Vector Regression Dual Objective

SVR Dual objective

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- Assume: In case of SVR, we have a strictly convex objective and linear constraints \Rightarrow KKT conditions are necessary and sufficient and strong duality holds (for $\alpha, \alpha^* \geq 0$):

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) = \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $w^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

- This value is precisely obtained at the $\left\{\hat{\mathbf{w}},\hat{b},\hat{\xi},\hat{\xi}^*,\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*\right\}$ that satisfies the necessary (and sufficient) KKT optimality conditions [KKT Constraint Set]
- Given strong duality, we can equivalently solve: $\max_{\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*} L^*(\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*)$

- $L(\hat{\alpha}, \hat{\alpha}^*, \hat{\mu}, \hat{\mu}^*) = \frac{1}{2} \|\hat{\mathbf{w}}\|^2 + C \sum_{i=1}^m (\hat{\xi}_i + \hat{\xi}_i^*) + \sum_{i=1}^m (\hat{\alpha}_i (y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \hat{\xi}_i) + \hat{\alpha}_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \epsilon \hat{\xi}_i^*)) \sum_{i=1}^m (\hat{\mu}_i \hat{\xi}_i + \hat{\mu}_i^* \hat{\xi}_i^*)$
- We obtain $\hat{\mathbf{w}}$, \hat{b} , $\hat{\xi}_i$, $\hat{\xi}_i^*$ in terms of $\hat{\alpha}$, $\hat{\alpha}^*$, $\hat{\mu}$ and $\hat{\mu}^*$ by using the KKT conditions derived earlier as $\hat{\mathbf{w}} = \sum\limits_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) \phi(\mathbf{x}_i)$ and $\sum\limits_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) = 0$ and $\hat{\alpha}_i + \hat{\mu}_i = C$ and $\hat{\alpha}_i^* + \hat{\mu}_i^* = C$
- Thus, we get (after dropping the messy î hat notation):

•
$$L(\hat{\alpha}, \hat{\alpha}^*, \hat{\mu}, \hat{\mu}^*) = \frac{1}{2} \|\hat{\mathbf{w}}\|^2 + C \sum_{i=1}^m (\hat{\xi}_i + \hat{\xi}_i^*) + \sum_{i=1}^m (\hat{\alpha}_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \hat{\xi}_i) + \hat{\alpha}_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \hat{\xi}_i^*)) - \sum_{i=1}^m (\hat{\mu}_i \hat{\xi}_i + \hat{\mu}_i^* \hat{\xi}_i^*)$$

- We obtain $\hat{\mathbf{w}}$, \hat{b} , $\hat{\xi}_i$, $\hat{\xi}_i^*$ in terms of $\hat{\alpha}$, $\hat{\alpha}^*$, $\hat{\mu}$ and $\hat{\mu}^*$ by using the KKT conditions derived earlier as $\hat{\mathbf{w}} = \sum\limits_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) \phi(\mathbf{x}_i)$ and $\sum\limits_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) = 0$ and $\hat{\alpha}_i + \hat{\mu}_i = C$ and $\hat{\alpha}_i^* + \hat{\mu}_i^* = C$
- Thus, we get (after dropping the messy $\hat{\cdot}$ hat notation): $L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$ $= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i \alpha_i^*) (\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) + \sum_{i} (\xi_i (C \alpha_i \mu_i) + \xi_i^* (C \alpha_i^* \mu_i^*)) b \sum_{i} (\alpha_i \alpha_i^*) \epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i \alpha_i^*) \sum_{i} \sum_{i} (\alpha_i \alpha_i^*) (\alpha_j \alpha_i^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j)$

•
$$L(\hat{\alpha}, \hat{\alpha}^*, \hat{\mu}, \hat{\mu}^*) = \frac{1}{2} \|\hat{\mathbf{w}}\|^2 + C \sum_{i=1}^m (\hat{\xi}_i + \hat{\xi}_i^*) + \sum_{i=1}^m (\hat{\alpha}_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \hat{\xi}_i) + \hat{\alpha}_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \hat{\xi}_i^*)) - \sum_{i=1}^m (\hat{\mu}_i \hat{\xi}_i + \hat{\mu}_i^* \hat{\xi}_i^*)$$

- We obtain $\hat{\mathbf{w}}$, \hat{b} , $\hat{\xi}_i$, $\hat{\xi}_i^*$ in terms of $\hat{\alpha}$, $\hat{\alpha}^*$, $\hat{\mu}$ and $\hat{\mu}^*$ by using the KKT conditions derived earlier as $\hat{\mathbf{w}} = \sum_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) \phi(\mathbf{x}_i)$ and $\sum_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) = 0$ and $\hat{\alpha}_i + \hat{\mu}_i = C$ and $\hat{\alpha}_i^* + \hat{\mu}_i^* = C$
- Thus, we get (after dropping the messy $\hat{\cdot}$ hat notation): $L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$ $= \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) + \sum_i (\xi_i (C \alpha_i \mu_i) + \xi_i^* (C \alpha_i^* \mu_i^*)) b \sum_i (\alpha_i \alpha_i^*) \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i \alpha_i^*) \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j)$ $= -\frac{1}{2} \sum_i \sum_i (\alpha_i \alpha_i^*)(\alpha_i \alpha_i^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i \alpha_i^*)$

SVR Dual Formulation using only dot products $\phi^{T}(\mathbf{x}_{i})\phi(\mathbf{x}_{j})$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$ \mathbf{x}_j is any point with $\alpha_j \in (0, C)$. Tutorial 5: Derive kernelized expression for Ridge Regression
- The dual optimization problem to compute the α 's for SVR is:

SVR Dual Formulation using only dot products $\phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$ \mathbf{x}_j is any point with $\alpha_j \in (0, C)$. Tutorial 5: Derive kernelized expression for Ridge Regression
- The dual optimization problem to compute the α 's for SVR is:

$$\begin{aligned} \max_{\alpha_i,\alpha_i^*} &- \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \\ &- \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \end{aligned}$$

s.t.

•
$$\sum_{i}(\alpha_{i}-\alpha_{i}^{*})=0$$

- $\alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i) = K(\mathbf{x}_i,\mathbf{x}_i)$, for some i,j

• For any point (x_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.

- For any point (x_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.
 - Let $\alpha_i > 0$ and $\alpha_i^* > 0$. This leads to a contradiction.
 - By Complimentary slackness, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i = 0$ AND $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* = 0$. Adding up the two equalities gives us: $\xi_i + \xi_i^* = -2\epsilon$.
 - Since only one of ξ_i and ξ_i^* can be non-zero, \Longrightarrow the non-zero component is negative, which is a contradiction since $\xi_i, \xi_i^* \geq 0$
 - Thus, $\alpha_i \alpha_i^* \propto \max\{\alpha_i, \alpha_i^*\}$
- For points within the ϵ -insensitive tube $\alpha_i = 0$ and $\alpha_i^* = 0$:

- For any point (\mathbf{x}_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.
 - Let $\alpha_i > 0$ and $\alpha_i^* > 0$. This leads to a contradiction.
 - By Complimentary slackness, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i = 0$ AND $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* = 0$. Adding up the two equalities gives us: $\xi_i + \xi_i^* = -2\epsilon$.
 - Since only one of ξ_i and ξ_i^* can be non-zero, \Longrightarrow the non-zero component is negative, which is a contradiction since $\xi_i, \xi_i^* \geq 0$
 - Thus, $\alpha_i \alpha_i^* \propto \max\{\alpha_i, \alpha_i^*\}$
- For points within the ϵ -insensitive tube $\alpha_i = 0$ and $\alpha_i^* = 0$:
 - If $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i < 0$, then $\alpha_i = 0$, $\mu_i = C$ and $\xi_i = 0$. Similarly, $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon < 0$ leading to $\alpha_i^* = 0$.
- $\alpha_i = C$ and $\alpha_i^* = C$ correspond to points lying either outside or on the ϵ -tube:

- For any point (x_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.
 - Let $\alpha_i > 0$ and $\alpha_i^* > 0$. This leads to a contradiction.
 - By Complimentary slackness, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i = 0$ AND $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* = 0$. Adding up the two equalities gives us: $\xi_i + \xi_i^* = -2\epsilon$.
 - Since only one of ξ_i and ξ_i^* can be non-zero, \Longrightarrow the non-zero component is negative, which is a contradiction since $\xi_i, \xi_i^* \geq 0$
 - Thus, $\alpha_i \alpha_i^* \propto \max\{\alpha_i, \alpha_i^*\}$
- For points within the ϵ -insensitive tube $\alpha_i = 0$ and $\alpha_i^* = 0$:
 - If $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i < 0$, then $\alpha_i = 0$, $\mu_i = C$ and $\xi_i = 0$. Similarly, $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon < 0$ leading to $\alpha_i^* = 0$.
- $\alpha_i = C$ and $\alpha_i^* = C$ correspond to points lying either outside or on the ϵ -tube:
 - If $\alpha_i = C$, then $\mu_i = 0$ and $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon = \xi_i \geq 0$.
 - Similarly, $\alpha_i^* = C$ corresponds to points lying below (or beyond) the lower ϵ -band.
- For points on boundary of the ϵ -insensitive tube $\alpha_i \in [0, C]$:

- For any point (x_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.
 - Let $\alpha_i > 0$ and $\alpha_i^* > 0$. This leads to a contradiction.
 - By Complimentary slackness, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i = 0$ AND $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* = 0$. Adding up the two equalities gives us: $\xi_i + \xi_i^* = -2\epsilon$.
 - Since only one of ξ_i and ξ_i^* can be non-zero, \Longrightarrow the non-zero component is negative, which is a contradiction since $\xi_i, \xi_i^* \geq 0$
 - Thus, $\alpha_i \alpha_i^* \propto \max\{\alpha_i, \alpha_i^*\}$
- For points within the ϵ -insensitive tube $\alpha_i = 0$ and $\alpha_i^* = 0$:
 - If $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i < 0$, then $\alpha_i = 0$, $\mu_i = C$ and $\xi_i = 0$. Similarly, $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon < 0$ leading to $\alpha_i^* = 0$.
- $\alpha_i = C$ and $\alpha_i^* = C$ correspond to points lying either outside or on the ϵ -tube:
 - If $\alpha_i = C$, then $\mu_i = 0$ and $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon = \xi_i \geq 0$.
 - Similarly, $\alpha_i^* = C$ corresponds to points lying below (or beyond) the lower ϵ -band.
- For points on boundary of the ϵ -insensitive tube $\alpha_i \in [0, C]$:
 - For any point on the upper margin, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon = 0$ and $\xi_i = 0 \Longrightarrow \mu_i \ge 0 \Longrightarrow \alpha_i \in [0, C]$. Similarly, $\alpha_i^* \in [0, C]$ for points lying on the margin of the lower ϵ -band.

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- We call $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$ a kernel function: $K(\mathbf{x}_i, \mathbf{x}_i) = \phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i)$
- The Kernel Trick: For some important choices of ϕ , compute $K(\mathbf{x}_i, \mathbf{x}_j)$ directly and more efficiently than having to explicitly compute/enumerate $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$
- The expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
- Computation of α_i is specific to the objective function being minimized: Closed form exists for Ridge regression but NOT for SVR

The Kernelized version of SVR

The kernelized dual problem:

$$max_{lpha_i,lpha_i^*} - rac{1}{2} \sum_i \sum_j (lpha_i - lpha_i^*) (lpha_j - lpha_j^*) \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) \ - \epsilon \sum_i (lpha_i + lpha_i^*) + \sum_i y_i (lpha_i - lpha_i^*)$$

s.t.

$$\sum_{i} (\alpha_i - \alpha_i^*) = 0$$

• $\alpha_i, \alpha_i^* \in [0, C]$

• The kernelized decision function: $f(x) = \sum_{n=0}^{\infty} (x_n - x_n^*) V(x_n - x_n^*) + h$

$$f(\mathbf{x}) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Using any point x_j with $\alpha_j \in (0, C)$: $b = y_i - \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_i)$

• Computing $K(\mathbf{x}_1, \mathbf{x}_2)$ often does not even require computing $\phi(\mathbf{x}_1)$ or $\phi(\mathbf{x}_2)$ explicitly

Basis function expansion and the Kernel trick

• We started off with the functional form¹

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

Each ϕ_j is called a *basis function* and this representation is called *basis function* $expansion^2$

• And we landed up with an equivalent

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

for Ridge regression and Support Vector Regression

• Aside: For $p \in [0, \infty)$, with what K, kind of regularizers, loss functions, *etc.*, will these dual representations hold?³

 $^{^1}$ The additional b term can be either absorbed in ϕ or kept separate as discussed on several occasions.

²Section 2.8.3 of Tibshi

Tutorial 5: Kernelizing Ridge Regression

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$ • $\Rightarrow w = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y = \sum_{i=1}^m \alpha_i \phi(x_i)$ where $\alpha_i = ((\Phi \Phi^T + \lambda I)^{-1} y)_i$ • \Rightarrow the final decision function $f(\mathbf{x}) = \phi^T(\mathbf{x}) \mathbf{w} = \sum_{i=1}^m \alpha_i \phi^T(\mathbf{x}) \phi(\mathbf{x}_i)$
- Again, We notice that the only way the decision function $f(\mathbf{x})$ involves ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$, for some i,j

The Representer Theorem & Reproducing Kernel Hilbert Space (RKHS)

① The solution $f^* \in \mathcal{H}$ (Hilbert space) to the following problem

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^m \mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right) + \Omega(\|f\|_K)$$

can be always written as $f^*(\mathbf{x}) = \sum_{i=1}^m \alpha_i K(\mathbf{x}, \mathbf{x}^{(i)})$, provided $\Omega(\|f\|_K)$ is a

More specifically, if $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$ and $K(\mathbf{x}', \mathbf{x}) = \phi^T(\mathbf{x}) \phi(\mathbf{x}')$ then the solution $\mathbf{w}^* \in \Re^n$ to the following problem

$$(\mathbf{w}^*, b^*) = \operatorname*{arg\,min}_{\mathbf{w}, b} \sum_{i=1}^{m} \mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right) + \Omega(\|\mathbf{w}\|_2)$$

can be always written as $\phi^T(\mathbf{x})\mathbf{w}^* + b = \sum_{i=1}^m \alpha_i K(\mathbf{x}, \mathbf{x}^{(i)})$, provided $\Omega(\|\mathbf{w}\|_2)$ is a monotonically increasing function of $\|\mathbf{w}\|_2$. \Re^n is the Hilbert space and $K(.,\mathbf{x}): \mathcal{X} \to \Re$ is the **Reproducing (RKHS) Kernel**

The Representer Theorem and SVR

The SVR Objective

$$(\mathbf{w}^*, b^*, \xi_i^*) = \underset{\mathbf{w}, b, \xi_i}{\operatorname{arg \, min}} \ C \sum_{i=1}^{m} (\xi_i + \xi_i^*) + \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

Can be rewritten as

The Representer Theorem and SVR

The SVR Objective

$$(\mathbf{w}^*, b^*, \xi_i^*) = \underset{\mathbf{w}, b, \xi_i}{\operatorname{arg \, min}} \ C \sum_{i=1}^{m} (\xi_i + \xi_i^*) + \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

Can be rewritten as

$$(\mathbf{w}^*, b^*, \xi_i^*) = \underset{\mathbf{w}, b, \xi_i}{\text{arg min }} C \sum_{i=1}^m \max \left\{ \epsilon \pm \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \right), 0 \right\} + \frac{1}{2} \|\mathbf{w}\|_2^2$$

The Representer Theorem and SVR (contd.)

• If $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$ and $K(\mathbf{x}', \mathbf{x}) = \phi^T(\mathbf{x})\phi(\mathbf{x}')$ and given the SVR objective

$$(\mathbf{w}^*, b^*, \xi_i^*) = \underset{\mathbf{w}, b, \xi_i}{\text{arg min }} C \sum_{i=1}^m \max \left\{ \epsilon \pm \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \right), 0 \right\} + \frac{1}{2} \|\mathbf{w}\|_2^2$$

Setting $\mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right),y^{(i)}\right)=C\max\left\{\epsilon\pm\left(y_{i}-\mathbf{w}^{\top}\phi(\mathbf{x}_{i})-b\right),0\right\}$ and $\Omega(\|\mathbf{w}\|_{2})=\frac{1}{2}\,\|\mathbf{w}\|_{2}^{2}$, we can apply the Representer theorem to SVR, so that $\phi^{T}(\mathbf{x})\mathbf{w}^{*}+b=\sum_{i=1}^{m}\alpha_{i}K(\mathbf{x},\mathbf{x}^{(i)})$

An Example Kernel

- Let $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^{\top} \mathbf{x}_2)^2$
- Which value of $\phi(\mathbf{x})$ will yield $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2) = K(\mathbf{x}_1,\mathbf{x}_2) = (1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$
- ullet Is such a ϕ guaranteed to exist?
- Is there a unique ϕ for given K?

An Example Kernel

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional \mathbf{x}_i :

$$\phi(\mathbf{x}_i) = \begin{bmatrix} 1\\ x_{i1}\sqrt{2}\\ x_{i2}\sqrt{2}\\ x_{i1}x_{i2}\sqrt{2}\\ x_{i1}^2\\ x_{i2}^2 \end{bmatrix}$$

- $\phi(\mathbf{x}_i)$ exists in a 6-dimensional space
- But, to compute $K(\mathbf{x}_1, \mathbf{x}_2)$, all we need is $x_1^\top x_2$ without having to enumerate $\phi(\mathbf{x}_i)$

More on the Kernel Trick

- **Kernels** operate in a *high-dimensional*, *implicit* feature space without necessarily computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will subsequently talk about valid kernels
- This operation is often computationally cheaper than the explicit computation of the coordinates
- Claim: If $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an $n \times n$ **Gram Matrix** K then
 - ullet $\mathcal K$ must be positive semi-definite

• Proof:
$$\mathbf{b}^T \mathcal{K} \mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

 $= \langle \sum_i b_i \phi(\mathbf{x}_i), \sum_j b_j \phi(\mathbf{x}_j) \rangle = ||\sum_i b_i \phi(\mathbf{x}_i)||_2^2 \ge 0$

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K}=U\Sigma U^T=(U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T=RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

⁴Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem ⁵That is, if every Cauchy sequence is convergent.

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K}=U\Sigma U^T=(U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T=RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

• *Mercer kernel:* Extending to eigenfunction decomposition⁴:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2)$$
 where $\alpha_j \geq 0$ and $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$

 Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space {x} is compact⁵

⁴Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem ⁵That is, if every Cauchy sequence is convergent.