Lecture21: Physics of bipolar transistors (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Collector current

Calculate it using the diffusion current.

Base current

- Hole flux of the base-emitter junction
 - Doping levels, diffusion constants, diffusion lengths

Gummel plot

- IV curves for the BJT
 - Collector and base currents

Simulated Gummel plot of a HBT (Taken from Hong, JCE, vol. 8, p. 225, 2009)

Fig. 19 Gummel plot. $V_{CB} = 0.1 \text{ V}$

Compare g_m

• Transconductance is given by $g_m = \frac{dI_C}{dV_{RE}}$.

$$I_C = I_S \exp \frac{V_{BE}}{V_T}$$
$$g_m = \frac{I_C}{V_T}$$

How about the MOSFET?

$$I_D = ???$$

 $g_m = ???$

• For a given current, which one has higher g_m ?

Small-signal model

- Quite similar with the MOSFET model
 - Finite resistance between the base and emitter

$$r_{\pi} = \frac{\beta}{g_m}$$

Early effect (1/2)

- For higher V_{CE},
 - The depletion region between the base and collector is widened.

Early effect (2/2)

- Its modeling
 - The IV characteristics is now modified:

$$I_C = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$$

Output resistance

It is easy to show that

$$\frac{dI_C}{dV_{CE}} = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \frac{1}{V_A}$$

$$r_O \approx \frac{V_A}{I_C}$$

Saturation?

- What was the saturation in the MOSFET?
 - Saturation of the drain current, as the drain voltage increases.
- What is the saturation in the BJT?
 - Saturation of the collector current, as the base current increases.

Read your textbook.

- We have quickly covered the Ch. 4.
 - Many pages, but basically all covered in the lecture.
- On Wednesday, bipolar amplifiers will be studied.