Automatizační cvičení

A4	307. Modelování regulátorů a systémů		systémů	
Kubanek Tobias			1/15	Známka:
21.3.2024		4.4.2024		Odevzdáno:

Zadání:

Vytvořte modely regulátorů a regulovaných systémů dle zadaných rovnic. Regulátor PID namodelujte složený z jednotlivých jednoduchých regulátorů dle zadaných rovnic. Porovnejte jej s blokovým modelem PID se zadanými koeficienty. Vytvořte modely systémů astatického 2. řádu a statického 3. řádu dle zadaných rovnic:

P:
$$2, 4 \cdot u' + u = 1, 2 \cdot e$$

I: $2, 4 \cdot u' + u = 0, 12 \cdot \int e \ dt$
D: $2, 4 \cdot u' + u = 1, 2 \cdot e'$
S1: $0, 8 \cdot y'' + 2, 1 \cdot y' = 1, 5 \cdot u$
S2: $0, 8 \cdot y''' + 2, 1 \cdot y'' + 0, 97 \cdot y' + 0, 6 \cdot y = u$

U všech modelů odsimulujte jejich charakteristiky (přechodové, FCHVKR, FCHVLS) a odečtěte z nich konstanty.

Postup:

1. Upravil jsem rovnice na vhodný tvar pro řešení (osamocení nejvyšší derivace):

P:
$$u = \int \frac{12}{24} e^{-\frac{1}{24}} u$$

I: $u = \int \frac{12}{240} \int e^{-\frac{10}{24}} u$
D: $u = \frac{12}{24} e^{-\int \frac{10}{24}} u$
S1: $y = \int \int \frac{15}{8} u^{-\frac{21}{8}} y'$
S2: $y = \int \int \int \frac{10}{8} u^{-\frac{21}{8}} y''^{-\frac{6}{8}} y'$

- 2. Navrhl jsem si schéma zapojení.
- 3. Dle postupu jsem nakreslil jednotlivá zapojení v programu Dynast.
- 4. Nastavil jsem zdroje signálu (step a sine).
- 5. Vykreslil jsem charakteristiky.
- 6. Výsledné hodnoty jsem vhodně zpracoval.

Schéma zapojení a charakteristiky:

- a.) P regulátor
 - 1. Schéma pro vykreslení přechodové charakteristiky:

$$k = 1,2$$

 $T_n = 2,56 \text{ s}$

2. Schéma pro vykreslení FCHVKR:

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

b.) I regulátor

1. Schéma pro vykreslení přechodové charakteristiky:

$$k_{-1} = \frac{\Delta y}{\Delta t} = \frac{0.5}{4} = 0.125$$

 $\tau = 2.3$

2. Schéma pro vykreslení FCHVKR:

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

- c.) D regulátor
 - 1. Schéma pro vykreslení přechodové charakteristiky:

 $T_d = 2,5$

2. Schéma pro vykreslení FCHVKR:

d.) PI regulátor

1. Schéma pro vykreslení přechodové charakteristiky:

2. Schéma pro vykreslení FCHVKR:

e.) PD regulátor

1. Schéma pro vykreslení přechodové charakteristiky:

2. Schéma pro vykreslení FCHVKR:

f.) PID regulátor

1.1. Schéma pro vykreslení přechodové charakteristiky:

1.2. Schéma pro vykreslení přechodové charakteristiky s PID BLOCKEM:

2.1. Schéma pro vykreslení FCHVKR:

2.2. Schéma pro vykreslení FCHVKR s PID BLOCKEM:

2.1. Saháma mua sudmaslaní ECINU S

3.2. Schéma pro vykreslení FCHVLS s PID BLOCKEM:

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

- g.) Astatický systém 2. řádu
 - 1.1. Schéma pro vykreslení přechodové charakteristiky:

3.0

3.5

4.5

1.2. Schéma pro vykreslení přechodové charakteristiky s TRF2 BLOCKEM:

2.1. Schéma pro vykreslení FCHVKR:

2.2. Schéma pro vykreslení FCHVKR s TRF2 BLOCKEM:

3.1. Schéma pro vykreslení FCHVLS:

3.2. Schéma pro vykreslení FCHVLS s TRF2 BLOCKEM:

h.) Statický systém 3. řádu

1.1. Schéma pro vykreslení přechodové charakteristiky:

1.2. Schéma pro vykreslení přechodové charakteristiky s PORUCHOU:

2. Schéma pro vykreslení FCHVKR:

3. Schéma pro vykreslení FCHVLS:

Závěr:

Úprava rovnic podle algoritmu z pokynů k úloze 207 byla snadná. Modelování regulátorů a systémů bylo bez problémů. Oba modely PID mají stejné charakteristiky, které by i stejné být měly, totéž se dá říct o modelech astatického systému 2 řádu s blokem TRF2, kde vychází také stejné charakteristiky. Také jsem v hodině stihl namodelovat statický systém 3. řádu s poruchovou veličinou, která má začátek skoku ve 100 s. Charakteristiky P, I a D regulátoru odpovídají charakteristikám, které jsme si uváděli v hodinách automatizace.