2/19/2 003921687 WPI Acc No: 1984-067231/ 198411 XRAM Acc No: C84-029081 XRPX Acc No: N84-050494 Prepn. of biodegradable polyurethane - by reacting hydroxy-contg. oligoester with hexamethylene diisocyanate and diol, in two stages Patent Assignee: PHYSIOLOGY INST (PHYS-R) Inventor: KARTELISHV T M; KATSARAPA R D; ZAALISHVIL M M Number of Countries: 001 Number of Patents: 001 Patent Family: Patent No Kind Date Applicat No Kind Date Week SU 1016314 Α 19830507 SU 2854648 Α 19791217 198411 B Priority Applications (No Type Date): SU 2854648 A 19791217 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes SU 1016314 Α Abstract (Basic): SU 1016314 A Use of a cpd. of formula (I) where k=0-20, l=0-20 with k=0, l not O or l=O and k not O O, R is H and R' is CH3, or R= R' is H or R= R' is CH3, R" is -(CH2)2-, -(CH2)3-, -CH2-CH(CH3)-, -(CH2)2-CH(CH3)- or -(CH2)2-O-(CH2)2 as the OH-contg. oligoester in the prepn. of polyurethanes, and carrying out the sthesis in two stages, for 0.5-1 hour at 90-120 deg. and 4-5 hours at 160-190 deg., imparts biodegradability to the material. The process is carried out by reacting molten (I) with hexamethylene diisocyanate, in the presence of a diol such as 1,3-propanediol or ethylene glycol serving as chain lengthener. The product finds use in medicine as a self-disintegrating surgical material. The product is soluble in organic solvents and can be cast into films with tensile strength of 300-400 kg/cm2 and limiting elongation of 100-200%. Bul.17/7.5.83. (5pp Dwg.No.0/0) Title Terms: PREPARATION; BIODEGRADABLE; POLYURETHANE; REACT; HYDROXY; CONTAIN; OLIGOESTER; HEXA; METHYLENE; DI; ISOCYANATE; DIOL; TWO; STAGE Derwent Class: A25; A96; E17; P34 International Patent Class (Additional): A61L-015/00; C08G-018/32 File Segment: CPI; EngPI Manual Codes (CPI/A-N): A05-G02; A05-G04; A09-A; A12-V; E10-E04G Plasdoc Codes (KS): 0004 0226 1296 1300 1319 1325 1760 1840 2148 2152 2155 2441 2513 2575 2606 2635 2764 Polymer Fragment Codes (PF): *001* 014 02& 038 150 157 169 170 171 195 200 207 209 239 344 346 357 40-431 435 532 537 541 544 551 567 573 645 687 Chemical Fragment Codes (M3): *01* H4 H402 H482 H581 H582 H583 H584 H589 H8 J0 J011 J012 J013 J014 J2

Derwent WPI (Dialog® File 351): (c) 2004 Thomson Derwent. All rights reserved

Derwent Registry Numbers: 0822-U; 1300-U; 1455-U

J271 J272 J273 M280 M311 M312 M313 M314 M321 M322 M323 M331 M332 M340 M342 M349 M381 M391 M392 M393 M416 M620 M781 M903 Q110

THIS PAGE BLANK (USPTO)

as SU and 1016314 A

350 C 08 G 18/32// A 61 L 15/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 2854648/23-05

(22) 17.12.79

(46) 07.05.83. Бюл. № 17

(72) М.М. Заалишвили, Р.Д. Кацарава и Т.М. Картвелишвили

(71) Институт физиологии им. И.С.Бе-

(53) 678.664 (088.8)

(56) 1. Губанов Э.Ф., Тейтельбаум Б.Я., Апухтина Н.П. и Синайский А.Г. Зависимость некоторых свойств поливрируретановых блоксополимеров от молекулярного веса блоков. Синтез и физико-химия полимеров (полиуретаны). К., 'Наукова Думка', 1968, с. 168.

2. Липатова Т.Э., Лоос С.С. и Момбужай М.М. Взаимодействие полиэфируретанов с физиологически активными средами. Высокомолекулярные соединения А 12. 1970, с. 20-51 (прототип).

(54) (57) СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭФИР-УРЕТАНОВ путем взаимодействия в расплаве сложного гидроксилсодержащего олигоэфира с гексаметилендиизоцианатом в присутствии диола, о т- и ч а ю щ и й с я тем, что, с целью придания конечному продукту биодеградируемых свойств, в качестве сложного гидроксилсодержащего олиго-эфира используют соединение общей формулы

$$\begin{array}{c} R & R' \\ H + \left(0 - \text{CH} - \text{CO}\right)_{R} - 0 R'' 0 + \left(0 - \text{CH} - 0 + \frac{1}{L} H\right), \\ \text{где } k = 0 - 20; \\ \ell = 0 - 20; \\ (\text{причем } k = 0, \ \ell \neq 0, \ \ell = 0, \ k \neq 0); \\ R - H; \\ R' - CH_{3} & \text{или } R = R^{1} - H, \ \text{или } R = R^{1} - CH_{3}; \\ R'' - -\left(CH_{2}\right)_{2}, -\left(CH_{2}\right)_{3}, -CH_{2} - CH_{-}, \\ CH_{3} & CH_{3} - CH_{2} - CH_{2} - CH_{-}, \\ CH_{3} & CH_{3} - CH_{2} - CH_{2} - CH_{-}, \\ CH_{3} & CH_{3} - CH_{2} - CH_{2}$$

и процесс проводят ступенчато: при $90-120^{\circ}$ С в течение 0.5-1 ч, при $160-190^{\circ}$ С в течение 4-5 ч.

 $+ cH_2)_2 - cH - , -(cH_2 - 0 - (cH_2)_2)$

Изобретение относится к синтезу полиэфируретанов, которые могут быть использованы в медицине, например, в качестве саморассасывающихся хирургических материалов.

Известен способ получения полиэфир-5 уретанов путем взаимодействия гидроксилсодержащих олигомеров сложноэфирного типа с диизоцианатом в присутствии диола [1].

Недостатком известного способа получения полиэфируретанов эвляется их непригодность для использования в медицине в качестве биодеградируемых материалов.

Наиболее близкий по технической сущности к предлагаемому является способ получения полиэфируретанов путем взаимодействия в расплаве сложного гидроксилсодержащего олигоэфира с гексаметилендинзоцианатом в присутствии диола.

В качестве сложного гидроксилсоцержащего олигоэфира используют продукт конденсации дикарбоновой кислоты и диола, например адипиновой кислоты 25 и этиленгликоля в расплаве [2].

Недостатком, полученных известным способом, полиэфируретанов является отсутствие в их макромолекулах связей, способных подвергаться ферментативной биодеградации.

Целью изобретения является придание биодеградируемых свойств конечному продукту.

Указанная цель достигается тем, что согласно способу при получении полиэфируретанов путем взаимодействия в расплаве сложного гидроксилсодержащего олигоэфира используют соединения формулы

и процесс проводят ступенчато: при 90-120°С в течение 0,5-1 ч, при 160-190°C в течение 4-5 ч.

Блоксополимерную структуру полученных полимеров подтверждают изучением их растворимости в органических растворителях и сравнением с растворимостью соответствующих гомополимеров, а также изучением их ИК- и ямр-спектров. Синтезированные полиэфируретаны обладают пленко- и волокнообразующими свойствами. Они растворяются во многих органических растворителях, образуя высококонцентрированные растворы, из этих раствором методом полива на стеклянные подложки были получены эластичные пленки, имеющие прочность на разрыв 300-400 кг/см 2 и разрывное удлинение 100-200% -

Строение и характеристики использованных полиэфирных смол приводятся.

таблица 1 40 Гипроксил Средний Олигоэфир на основе шифр олигомера молеку- Π иол ($R^{H} = C_{2}H_{5}$, $C_{3}H_{7}$ лярный Гликолид Лактип вес (R=H), $(R' = -CH_n,$ моль моль Этиленгликоль 0,01 2,34 1450 0,00 0,10 C3-1-0 · 1400 2,43 0,06 0,04 Этиленгликоль 0,01 C9-06-04 1,60 .2125 C3-05-05 0,05 0,05 Этиленгликоль 0,01 2,12 1600 Этиленгликоль 0,01 0,06 C3~04-06 0,04 1,80 1890 Этиленгликоль 0,01 0,00 0,10 C9-0-1 910 0,10 3,72 0,00 1,3-Пропандиол CП-1-0

пример 1. В трехгорлую колбу, снабженную мешалкой, вводом и выводом для аргона помещают 0,005 моль олигомера СЭ-1-0 (табл.1) и колбу нагревают до 120-125°C. К образовав-

шемуся расплаву добавляют половину (0,05 моль) гексаметилендиизоцианата (суммарное количество гексаметилендиизоцианата 0,1 моль). Расплав пере-65 мешивают в течение 30 мин, после че-

го температуру снижают до 90-100°С и вводят 0,095 моль удлинителя (днола): 1,3-пропанциола. Смесь вновь нагревают до 120°С и перемешивают. еще 30 мин и затем осторожно, по пор циям вводят оставшееся количество (0,05 моль динэоцианата). Реакционная масса быстро загустевает и не перемешивается. Температуру медленно повышают до 190°C так, чтобы реакционная

вают при данной температуре в течение

4 ч. Расплав выливают на чашку Петри

и ожлаждают. Приведенная вязкость $\gamma=0.64$ дл/г в м-крезоле, $t^0=25$ С,

C = 0.5 r/дл.

Пример 2. В трехгорлую колбу, снабженную мешалкой, вводом и выводом для аргона помещают 0,085 моль олигомера СЭ-06-04, колбу нагревают до 90°С и к образовавшемуся расплаву добавляют половину 0,05 моль гексаметилендиизоцианата. Реакционную смесь нагревают до 120°С в течение 30 мин затем охлаждают до 90°С и вводят 0,095 моль пропанднола, вновь нагревают до 120°С в течение 30 мин, охландают до 90°C и осторожно вводят оставшееся количество диизоцианата. Смесь медленно нагревают до 160°C, причем температуру повышают так, чтобы в колбе был хоромо перемешиваемый расплав. Реакционную смесь выдерживают при 160°С в течение 5 ч, после чего выливают на чашку Петри и охлаждают. $\eta_{np}=0.58$ дл/г в смеси 35 тетрахлорэтан: фенол (3:1), $t^0=$ $= 25^{\circ}$ C, C = 0,5 r/ $\pi\pi$.

пример 3. Синтез полимера осуществляют в соответствии с мето-

дикой, приведенной в примере 2, с той лишь разницей, что вместо олигомера СЭ-06-04 (табл.1) используют олигомер СЭ-05-05 (табл.1), а в качестве удлинителя цепя вместо 1,3- / пропанднола используют этиленгликоль $\eta_{np}=0,52$ дл/г в смесн тетраклор-этан: фенол (3:1), $t^0=25^{\circ}$ C, C = $= 0.5 r/\pi n.$

пример 4. Синтез полимера смесь легко перемешивалась и выдержи- 10 осуществляют в соответствии с методикой приведенной в примере 2, с той разницей, что вместо олигомера СЭ-06-04 берут олнгомер СЭ-05-05, $\eta_{\rm rp} = 0,50$ дл/г в смеси тетрахлорэтана с фенолом 3:1, $t^{\rm o} = 25^{\rm o}$ С, С = 0,5 г/дл.

пример 5. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 2 с той разницей, что вместо олигомера СЭ-06-04 берут олигомер СЭ-04-05. $t_{np}=0.47$ дл/г в смеси тетрахлорэтана с фенолом 3:1, $t^0=25^{\circ}$ С, C=0.5 г/дл. Пример 6. Синтез полимера

осуществляют в соответствик с методикой, приведенной в примере 2, с той разницей, что вместо олигомера СЭ-06-04 берут олигомер СЭ-0-1, дпр = 0,48 дл/г в смеси тетрахлорэтана с фенолом (3:1), $t^0 = 25^{\circ}$ С, С = 0,5 г/дл.

Пример 7. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо олигомера C3-1-0 берут олнгомер CH-1-0 (табл.1) $t_{\rm ref}=0.60$ дл/г в м-крезоле, $t^{\rm o}=25^{\rm o}{\rm C}$, C=0.5 г/дл.

Условия синтеза и основные характеристики полученных полиэфирурета нов приведены в табл. 2.

							111111	*			
Олигоэфирная	Диизс	диизопианат,		Гликоль,		BPEMA, Lup B	Lup B	Теплостоя-	Растворимость	Свойства пленок	тенок
CMOJA HA OC- HOBE & -OKCH- KHCJOI, MOJB	•	A CO		A IRON	Typa, Typa, Deak-	•	смеси тетра- хлор- этан: фенол (3:1),	xocrb, c.m.	10 r nonmepa B 100 r pacr- Bopurena	6, KT/GM 2	<u>க</u>
C3-1-0 (0,005)	LIMITA	MIM (0,1)	Ħ	(260'0) HI	190	6,0	0,64	160-170	A,B,B,T	390	110
39-06-04 (0,005)	rwin.	rmun (0,1)	Ħ	(0,095)	160	5,0	0,58	120-130	A, B, B, L	350	150
C9-05-05 (0,005)	гмпи	гмди (0,1)	JE.	er (0,095)	160	0,4	0,52	130-140	A, B, B, L	340	170
C3-05-05 (0,005)	гмли	гмли (0,1)	Ħ	(0,095)	160	5,0	05,0	130-135	A, B, B, T	290	200
C3-04-06 (0,005)	ГМДИ	гмди (0,1)	吾	щ (0,095)	¥ 60	5,0,	0,47	120-125	A,B,B,F	290	190
C9-01-1 (0,005)	LWITH	гмди (0,1)	目	(0,095)	160	0,10	0,48	100-120	A, B, B, F	. 280	200
Cn-1-0 (0,005)	нишн	ниди (0,1)	Ħ	пд (0,095)	190	0,4	0,60	165-170	A, B, B, L		

Таким образом, применение предлагаемого способа получения полиэфируретанов, содержащих в цепях макро-молекул олигоэфирные блоки на основе **р-оксикислот обеспечивает следующие** преимущества: использование в качест- 5 ве исходных смол олигоэфиров на основе **d**-оксикислот поэволяет получать полиэфируретаны, содержащие в цепях макромолекул о эфирные связи способны подвергаться ферментативной биодеградации;10

полученные полиэфируретаны полезны для использования в медицине в качестве саморассасывающихся материалов, поскольку содержат в цепях макромолекул биодеградируемые с-эфирные связи;

растворимость полученных полиэфируретанов в органических растворителях, что облегчает их переработку в изделия-пленки, пористые материалы и т.д.

Составитель С. Пурина Редактор Г. Волкова Техред И.Коштура

КорректорВ. Бутяга

Заказ 3315/24

Тираж 494 ...

Подписное

ВНИИПИ Государственного комитета СССР . по делам изобретений и открытий 113035, Москва, ж-35, Раушская наб., д. 4/5

Филиал ППП ''Патент'', г. Ужгород, ул. Проектная, 4

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

U OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)