HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

_

Fakultät IV Wirtschaft und Informatik

Artificial Feeding Birds

Metaheuristic for TSP and SOP

Pit Hüne; Tim Cares, 24.10.2023

Chapter 1	Motivation	Page 4
Chapter 2	From Birds to TSP	Page 7
Chapter 3	Algorithm	Page 12

Chapter 1	Motivation	Page 4
Chapter 2	From Birds to TSP	Page 7
Chapter 3	Algorithm	Page 12

Motivation

- Swarm intelligence
 - Allows a search of the solution space with simple strategies
 - Can yield complex behavior for multiple agents (e.g. ants)

- Inspiration for Artificial Feeding Birds: Pigeons searching for food
 - Behaviors common in nature are more generally effective than rare ones
- Each pigeon (agent) can have the following behavior:
 - Walk a small distance
 - Fly to an arbitrary position
 - Return to a food source
 - Join another bird

Motivation

Chapter 1	Motivation	Page 4
Chapter 2	From Birds to TSP	Page 7
Chapter 3	Algorithm	Page 12

From Birds to TSP

- Each Birds represents one possible solution (one tour)
- Each operation performed by a bird, alters its respective solutions

From Birds to TSP

- Each action of a bird corresponds to a change of its own solution
- · Each solution is valid

 The number of candidate solutions (or agents respectively) does not change (currently)

From Birds to TSP

(3) Return

(4) Join

Chapter 1	Motivation	Page 4
Chapter 2	From Birds to TSP	Page 7
Chapter 3	Algorithm	Page 12

Preconditions

- The algorithm runs in iterations
- How many it runs must be set beforehand
- In each iteration all birds perform one of the 4 moves
- The number of birds must be set beforehand

- One iteration = The cost of any tour is calculated
 - Return (3) and Join (4) are not counted as an iteration

Preconditions

- There are "big" and "small" birds
 - Ratio set beforehand
- Only a big bird can join a small bird

- Which action an agent (bird) performs depends on the probability of the move
 - The probability for a move is a hyperparameter
- A bird walks, if
 - 1. He currently resides at his best solution
 - 2. If he flew beforehand
 - 3. If the action 'walk' was randomly selected

Algorithm *Initial Results*

Vielen Dank für Ihre Aufmerksamkeit!

Literature

• Jean-Baptiste Lamy. Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior of pigeons. Advances in nature-inspired computing and applications, 2019, 10.1007/978-3-319-96451- 5_3 . hal-02264232

Variable	Meaning
X	Current tour
f	Cost of current tour
X	Best tour
F	Cost of best tour
S	Big bird?
m	Previous move

Algorithm 1 The AFB metaheuristic in pseudo-code.

```
For 1 \le i \le n:
x_i = X_i = fly()
f_i = F_i = cost(x_i)
m_i = 2
s_i = 0 \text{ if } i \le r \times n, 1 \text{ otherwise}
Repeat:
```

```
For 1 \leq i \leq n:

If m_i \in \{2,3,4\} or f_i = F_i:

p = 1

Else, if s_i = 0:

p = \text{random real number between } p4 \text{ and } 1

Else:

p = \text{random real number between } 0 \text{ and } 1
```


Variable	Meaning
X	Current tour
f	Cost of current tour
X	Best tour
F	Cost of best tour
S	Big bird?
m	Previous move

```
If p \ge p_2 + p_3 + p_4:
    m_i = 1
    x_i = walk(i)
    f_i = cost(x_i)
Else, if p \ge p_3 + p_4:
    m_i = 2
    x_i = fly()
    f_i = cost(x_i)
Else, if p \geq p_4:
    m_i = 3
    x_i = X_i
    f_i = F_i
Else:
    m_i = 4
    j = \text{random integer number between 1 and } n,
                                              with j \neq i
    x_i = x_i
    f_i = f_j
If f_i \leq F_i:
    X_i = x_i
    F_i = f_i
```

Check stopping condition

The best solution found is X_k , with $1 \le k \le n$ such as $F_k = min(\{F_i \mid 1 \le i \le n\})$

