

Polska Akademia Nauk Instytut Biocybernetyki i Inżynierii Biomedycznej

Praca doktorska

Proces gojenia ścięgna Achillesa oceniany przez fuzję danych z wykorzystaniem głębokich sieci neuronowych

Autor: mgr inż. Norbert Kapiński

Kierujący pracą: dr hab. inż. Antoni Grzanka

Promotor pomocniczy: dr Jakub Zieliński

Warszawa, wrzesień 2018

Streszczenie The abstract will go here.... W tym miejscu można umieścić abstrakt pracy. W przeciwnym wypadku należy usunąć/zakomentować ninijeszy fragment kodu.

Spis treści

1	$\mathbf{W}\mathbf{s}$ 1	tęp	1
2	Cel	i przebieg pracy	2
3	Mo	nitorowanie procesu gojenia ścięgna Achillesa	3
	3.1	Ścięgno Achillesa	3
		3.1.1 Anatomia	4
		3.1.2 Biomechanika	4
		3.1.3 Urazy i czynniki im sprzyjające	5
		3.1.4 Leczenie, fazy gojenia i rehabilitacja	5
	3.2	Zastosowanie rezonansu magnetycznego	5
	3.3	Zastosowanie ultrasonografii	5
	3.4	Zastosowanie badań biomechanicznych	5
	3.5	Inne metody	5
4	Kor	nwolucyjne sieci neuronowe	6
	4.1	Zarys historyczny	6
	4.2	Problem nadmiernego dopasowania	6
	4.3	Problem redukcji wymiarowości	7
	4.4	Przykłady współczesnych topologii	7
		4.4.1 AlexNet	7

		4.4.2	GoogLeNet	10
		4.4.3	ResNet	12
		4.4.4	Złożenia	15
	4.5	Zastos	owania w medycynie	17
5	Nov	va met	oda oceny procesu gojenia ścięgna Achillesa	20
	5.1	Metod	yka	20
	5.2	Rozróz	żnienie ścięgna zdrowego i po zerwaniu	20
	5.3	Oblicz	anie krzywych gojenia	20
		5.3.1	Topologia sieci	20
		5.3.2	Redukcja wymiarowości	20
		5.3.3	Miara wygojenia	20
6	Wy	niki i v	walidacja	21
	6.1	Ocena	procesu gojenia z użyciem nowej metody	21
	6.2	Porów	nanie z wynikami z rezonansu magnetycznego	21
	6.3	Porów	nanie z wynikami ultrasonografii	21
	6.4	Porów	nanie z wynikami badań biomechanicznych	21
7	Pod	sumov	vanie	22
Bi	bliog	grafia		23
\mathbf{A}	Ach	$_{ m illesD}$	L: System komputerowego wspomagania oceny gojenia ścię	-
	gien	ı i wiez	zadeł	24

Spis rysunków

1.1	Podział przedstawiający różne rodzaje współczesnych głębokich sieci	
	neuronowych	1
3.1	Lokalizacja mięśnia trójgłowego łydki wraz ze ścięgnem Achillesa	3
4.1	Topologia architektury AlexNet	7
4.2	Topologia architektury AlexNet z podziałem na dwa akceleratory GPU.	9
4.3	Topologia architektury AlexNet z podziałem na dwa akceleratory GPU.	10
4.4	Topologia architektury GoogleNet	11
4.5	Schemat funkcjonalny pojedynczego bloku w architekturze ResNet	13
4.6	Topologia architektury ResNet-18	15
4.7	Statystyki dotyczące publikacji medycznych zawierających słowa kluczo-	
	we związane z głębokim uczeniem się	18
4.8	Porównanie automatycznej klasyfikacji retinopatii cukrzycowej i cukrzy-	
	cowego obrzęku plamki z oceną panelu ekspertów	18
4.9	Porównanie automatycznej klasyfikacji 3 chorób skóry z oceną ekspertów	
	dermatologów	19

Spis tabel

4.1	Parametry architektury	GoogleNet 7																					1	1	
-----	------------------------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--

Wstęp

Logistic regression — 1958

 ${\rm Hidden~Markov~Model-1960}$

Stochastic gradient descent — 1960

Support Vector Machine — 1963

k-nearest neighbors — 1967

Artificial Neural Networks — 1975

Expectation Maximization — 1977

Decision tree — 1986

Q-learning — 1989

Random forest — 1995

Rysunek 1.1: Podział przedstawiający różne rodzaje współczesnych głębokich sieci neuronowych.

Cel i przebieg pracy

Monitorowanie procesu gojenia ścięgna Achillesa

3.1 Ścięgno Achillesa

Ścięgno Achillesa, nazywane również ścięgnem piętowym, jest największym i najsilniejszym ścięgnem występującym w ciele ludzkim. Stanowi wspólne zakończenie mięśnia trójgłowego łydki, w którego skład wchodzą dwie głowy mięśnia brzuchatego i mięsień płaszczkowaty. Całość struktury zlokalizowana jest w tylnym, powierzchownym przedziale łydki, co zostało przedstawione na Rysunku 3.1. Z obu głów (brzuścców)

Rysunek 3.1: Lokalizacja mięśnia trójgłowego łydki wraz ze ścięgnem Achillesa.

mięśnia brzuchatego łydki wyrasta jedno szerokie, płaskie ścięgno, które jest początkiem części brzuchatej ścięgna Achillesa. Następnie ścięgno to łączy się z włóknami pochodzącymi od mięśnia płaszczkowatego, które układają się stycznie do wcześniej powstałej struktury. Wówczas kształt ulega stopniowemu zwężeniu i zaokrągleniu, aż do punktu o minimalnej szerokości (około 4 cm nad przyczepem dolnym [1]). W rejonie samego przyczepu dolnego znajdującego się na tylnej powierzchnia kości piętowej, ścięgno ponownie jest płaskie i szerokie.

W kolejnych podsekcjach szczegółowo omówiona została anatomia ścięgna Achillesa, jego biomechanika, potencjalne urazy wraz z czynnikami im sprzyjającymi oraz proces gojenia i możliwości jego wspomagania. Wszystkie te aspekty są istotne z uwagi na możliwości monitorowania procesów fizjologicznych występujących w ścięgnie.

3.1.1 Anatomia

Srednia długość ścięgna Achillesa to 15 cm (11 - 26 cm). Średnia szerokość w rejonie początku wynosi 6.8 cm (4,5 - 8, 6 cm). Następnie, stopniowo ścięgno ulega zwężeniu do punktu o minimalnej szerokości 1.8 cm (1,2 - 2,6 cm). W rejonie samego przyczepu struktura ponownie się rozszerza i jej szerokość wynosi średnio 3.4 cm (2,0 - 4,8 cm) [2-3]. Zewnętrzną część ścięgna Achillesa stanowi ościęgno utworzone z tkanki łącznej włóknistej. Achil -Histologia -Unaczynienie (krew, nerwy)

3.1.2 Biomechanika

Zadaniem ścięgien jest transfer siły mięśniowej do układu szkieletowego.

- 3.1.3 Urazy i czynniki im sprzyjające
- 3.1.4 Leczenie, fazy gojenia i rehabilitacja
- 3.2 Zastosowanie rezonansu magnetycznego
- 3.3 Zastosowanie ultrasonografii
- 3.4 Zastosowanie badań biomechanicznych
- 3.5 Inne metody

Konwolucyjne sieci neuronowe

Konwolucyjne sieci neuronowe (ang. Convolutional Neural Networks)

funkcja obrazowa; splot; filtr; jądro; warstwy konwolucyjne; wartwy aktywacji neuronów; warstwy FC; Dropout; Normalizacja;

FP, TP, FN, TN

4.1 Zarys historyczny

4.2 Problem nadmiernego dopasowania

-dropout Kolejnym zabiegiem wykorzystywanym tym razem w celu polepszenia generalizacji klasyfikacji zbioru danych było użycie techniki dropout [Dropout].

Combining the predictions of many different models is a very successful way to reduce test errors [1, 3], but it appears to be too expensive for big neural networks that already take several days to train. There is, however, a very efficient version of model combination that only costs about a factor of two during training. The recently-introduced technique, called "dropout" [10], consists of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are "dropped out" in this way do not contribute to the forward pass and do not participate in backpropagation. So every time an input is presented, the neural network samples a different architecture, but all these architectures share weights. This technique reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular

other neurons. It is, therefore, forced to learn more robust features that are useful in conjunction with many different random subsets of the other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a reasonable approximation to taking the geometric mean of the predictive distributions produced by the exponentially-many dropout networks. We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network exhibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

-data augmentation

-5 fold

4.3 Problem redukcji wymiarowości

4.4 Przykłady współczesnych topologii

4.4.1 AlexNet

Sieć AlexNet, której nazwa pochodzi od imienia głównego twórcy tej architektury Alexa Krizhevsky, zawiera blisko 60 milionów parametrów i 650 tysięcy neuronów. Architekturę zaprezentowano na Rys. 4.1

Rysunek 4.1: Topologia architektury AlexNet.

W skład topologii wchodzi pięć warstw konwolucyjnych i trzy typu fully-connected. Po pierwszej, drugiej i piątej warstwie konwolucyjnej występują operacje typu max-pool

z jądrem o wymiarach 2×2^{-1} .

Pierwsza warstwa konwolucyjna przyjmuje na wejściu dane o wymiarze $227 \times 227 \times 3$, na których wykonywana jest operacja spłotu z 96 filtrami z jądrem spłotu o wymiarach $11 \times 11 \times 3$ i krokiem 4. W rezultacie (uwzględniając również operację max-pool) objętość wynikowa przekazywana do kolejnej warstwy ma wymiar $27 \times 27 \times 96$. W drugiej warstwie konwolucyjnej wykonywana jest operacja spłotu z 256 filtrami z jądrem o wymiarach $5 \times 5 \times 96$. Wymiar objętości wynikowej zostaje ponownie zredukowany poprzez operacje max-pool do $13 \times 13 \times 256$. Kolejne 3 warstwy konwolucyjne są połączone bezpośrednio ze sobą. Trzecia warstwa zawieraja 384 filtry o wymiarze $3 \times 3 \times 256$, w skład czwartej wchodzą 384 filtry o wymiarze $3 \times 3 \times 384$, a w piątej znajdują się 256 filtry ponownie o wymiarze $3 \times 3 \times 384$. Końcowe dwie warstwy typu FC zawierają po 4096 neuronów, a ostatnia zawiera tyle neuronów ile klas występuje w ostatecznym podziale - w oryginalnej pracy było to 1000 [AlexNet].

W celu lepszego zrozumienia przetwarzania sygnału wejściowego przez sieć poniżej przedstawiono przykład algorytmu wykorzystywanego dla pierwszej warstwy konwolucyjnej opisywanej topologii:

- 1. Z danych wejściowych o wymiarze [227×227×3] wybierany jest co czwarty blok (zarówno wzdłuż wysokości jak i szerokości) o wymiarach [11×11×3]. Punkty krawędziowe, które stanowią margines potrzebny do wyliczenia splotu są zazwyczaj pomijane. W rezultacie otrzymywanych jest 217 punktów w każdym rzędzie i w kolumnie, w których mieści się [55×55] tj. 3025 bloków.
- 2. Zarówno $11\times11\times3=363$ wagi znajdujące się w 96 filtrach jak i wartości 363 punktów obrazowych znajdujących sie 3025 blokach są przedstawiane w postaci macierzy A o wymiarach $[96\times363]$ i B o wymiarach $[363\times3025]$.
- 3. liczony jest iloczyn skalarny w postaci $A^{\dagger}B = C$, gdzie nowa, wyjściowa macierz C ma wymiar [96×3025].
- 4. Resultat w postaci macierzy C ponownie przewymiarowywany jest na postać $[55 \times 55 \times 96]$.

W architekturze jako funkcję aktywacji neuronów wykorzystano ReLU, co znacząco przyspieszyło trening sieci. Dla przykładu uzyskano 6-krotne przyspieszenie treningu

 $^{^1}$ autorzy pracy podają też przykłady użycia jąder o wymiarze $2\times 3,$ które nakładają się w przestrzeni funkcji obrazowej

dla danych CIFAR-10 [CIFAR] w stosunku do tej samej topologii wykorzystującej funkcję aktywacji tanh.

Ponieważ funkcja ReLU nie posiada górnego ograniczenia neurony teoretycznie mogą posiadać nieograniczone wartości funkcji aktywacji. W celu polepszenia kontrastu pomiędzy neuronami i wydobycia tych, które na tle innych się wyróżniają, zastosowano normalizację:

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=max(0,i-n/2)}^{min(N-1,i+n/2)} (a_{x,y}^{i})^{2} \right)^{\beta}$$
(4.1)

gdzie n to liczba filtrów znajdujących się w tej samej przestrzennej lokalizacji, N to suma wszystkich filtrów w warstwie, $a_{x,y}^i$ to wartość funkcji aktywacji neuronu po spłocie funkcji obrazowej na pozycji (x,y) z filtrem i, a b to wynik normalizacji. Po zastosowaniu tej techniki autorom pracy udało się zredukować błąd klasyfikacji top-5 o wartość 1,2 punkta procentowego.

W kontekście zwiększenia efektywności treningu zastosowano powiększenie rozmiaru danych poprzez rotacje i modyfikacje funkcji obrazowej z wykorzystaniem czynników głównych (zob [AlexNet]), co zmniejszyło błąd top-1 o 1%. Zastosowano również technikę dropout opisaną w 4.2. Ostatecznie wprowadzono także trening z wykorzystaniem wielu GPU (zob. Rys. 4.2).

Rysunek 4.2: Topologia architektury AlexNet z podziałem na dwa akceleratory GPU.

Topologia z podziałem na 2 karty zwiększyła dwukrotnie sumaryczną pamięć i pozwoliła na koalokację parametrów sieci.

Praca Alexa Krizhevsky, Ilya Sutskever i Geoffrey'a Hinton zapoczątkowała wzrost zainteresowania technikami głębokiego uczenia się, co doprowadziło do publikacji kolejnych podobnych architektur. Do najbardziej znanych należą ZFNet z 2013 roku [ZFNet], gdzie m.in. zastosowano zmniejszenie wymiaru jądra stosowanego w filtrach pierwszej warstwy konwolucyjnej do 7×7 oraz VGGNet z 2014 roku, gdzie zastosowano

większą liczbę warstw konwolucyjnych z mniejszym wymiarem jądra splotu. Innowacyjnym pomysłym, który został zaprezentowany również w 2014 było pojawienie się nowych modułów w sieci GoogleNet, która dokładniej została opisana w kolejnej podsekcji.

4.4.2 GoogLeNet

Architekturę o nazwie GoogLeNet zaprezentowano w 2014 r. w pracy [GoogleNet]. Nazwa architektury pochodzi od nazwy zwycięzkiego zespołu startującego w IL-SVRC14, składającego się z pracowników firmy Google. Oryginalnie topologia składała się z 22 warstw i zawierała około 5 mln parametrów (12 razy mniej niż w przypadku sieci AlexNet).

Redukcję liczby parametrów przy jednoczesnym podwyższeniu dokładności klasyfikacji i lokalizacji obiektów (zob. [ILSCV]) udało się uzyskać poprzez poszukiwania konstrukcji optymalnych lokalnych topologii i ich połączeń. Mianowicie, wiadomo że duża część funkcji aktywacji neuronów przyjmuje wartość 0 lub jest redundatna z powodu wysokiej korelacji między sobą (zob. [Arora z GoogleNet]). Matematyka dotycząca przetwarzania macierzy rzadkich, tj. gdzie przeważająca liczba elementów przyjmuje wartość 0, jest dobrze znana np. [3-GoogleNet]. Jednak implementacje bibliotek do obliczeń związanych z algebrą liniową są zooptymalizowane pod kątem macierzy gęstych, gdzie przeważająca liczba elementów przyjmuje wartości różne od 0 (zob. [16, 9 googleNet]).

Ideą modułu incepcji zaproponowanego przez twórców GoogLeNet jest aproksymacja rzadkich macierzy z użyciem komponentów o gęstej strukturze. Takie komponenty nazwano modułami incepcji (ang. inception modules). Przykłądy modułów incepcji pokazano na Rys. 4.3

Rysunek 4.3: Topologia architektury AlexNet z podziałem na dwa akceleratory GPU.

Rys. 4.3 (a) przedstawia najwną formę modułu incepcji, gdzie grupowane są operacje filtrów z jądrem o wymiarach 5×5 , 3×3 , 1×1 oraz operacja max-pool. Rys. 4.3 (b) prezentuje koncepcję zooptymalizowaną obliczeniowo gdzie filtry 1×1 służą do redukcji wymiarowości i używane są bezpośrednio przed splotami z bardziej wymagającymi obliczeniowo splotami z jądrami o wymiarach 5×5 i 3×3 .

Złożenie różnego rodzaju modułów dało topologię zaprezentowaną na Rys.

Rysunek 4.4: Topologia architektury GoogleNet

D 11 1			. 1 .		DD 1 1: 4 1
Dokładne	zestawienie	parametrów	znaidiiie	sie w	z Tabeli 4.1

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28{\times}28{\times}256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14{\times}14{\times}512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Tabela 4.1: Parametry architektury GoogleNet

Ważną cechą sieci GoogleNet jest brak warstw typu FC na zakończeniu, gdzie w przypadku sieci AlexNet znajdowało się około 90% parametrów. Końcowe wnioskowanie jest realizowane na podstawie wartości średniej z dwuwymiarowych map cech.

Dla lepszego zrozumienia idei redukcji wymiarowości realizowanej przez moduły incepcji, podobnie jak w przypadku sieci AlexNet, przeanalizowane zostanie działanie pierwszego modułu w topologii z Rys. 4.4. Moduł zawiera 128 filtrów z jądrami o wymiarach 3×3 i 32 filtry z jądrami o wymiarach 5×5 . Dane na wejściu modułu mają 192 kanały (zob. Tabela 4.1). Dla przykładu, rząd wielkości obliczeń operacji splotów 32 filtrów 5×5 wynosi $25\times32\times192=153$ 600 i dalej wzrastałby z głębokością sieci. W celu zapobiegnięcia nadmiarowi obliczeń stosowana jest redukcja z użyciem 16 filtrów z jądrem o wymiarach 1×1 . W efekcie rząd wielkości obliczeń spada do $16\times192+25\times32\times16=15$ 876, co pozwala na dalsze budowanie wielowarstwowych struktur.

Topologia GoogLeNet jest wciąż rozwijana. Po pierwszej prezentacji pojawiły się kolejne modernizacje wprowadzjące dodatkowe faktoryzacje modułów jak w Inception-v2 [Inception-v2], lub normalizacje wartości wynikowych poszczególnych warstw jak w Inception-v3 [Inception-v3]. Kolejny innowacyjny pomysł, bazujący na dodatkowych połączeniach między blokami, został wprowadzony w 2015 roku w sieci ResNet, która została opisana w kolejnej podsekcji.

4.4.3 ResNet

Jednym z najbardziej oczywistych pomysłów na polepszenie dokładności działania sieci neuronowych jest zwiększenie liczby warstw. Jednak wraz ze wzrostem liczby warstw, trening takich architektur z użyciem tradycyjnych metod gradientowych (takich jak algorytm wstecznej propagacji błędu) staje się mniej wydajny. Problem wynika z faktu, że zmiana wartości sygnału na wyjściu sieci w odpowiedzi na sygnał wejściowy jest mniejsza wraz ze wzrostem liczby warstw [ResNet]. W takiej sytuacji gradient wyliczany na podstawie sygnału będącego różnicą pomiędzy sygnałem wejściowym a wejściowym może przyjmować wartości bliskie 0 uniemożliwiając progres uczenia się. Problem zanikającego gradientu (ang. vanishing gradient problem) rozwiązywany jest poprzez zastosowanie normalizacji oraz nieliniowych funkcji aktywacji, których przykłady zostały opisane w sekcji 4.4.1 oraz szeroko w literaturze np. w [ResNet 2,3,4]. Dzięki tym mechanizmom algorytm treningu głębokich sieci neuronowych w większej liczbie przypadków zbiega do użytecznego minimum lokalnego.

W momencie znalezienia takiego minimum dodanie kolejnych warstw i parametrów sieci jest redundatne, a nawet prowadzi do pogorszenia wyników treningu sieci, co związane jest z trudnościami optymalizacji przestrzeni wieloparametrycznych [Opt].

Zjawiskio to nosi nazwę degradacji treningu (ang. degradation problem). Twórcy architektury ResNet zaproponowali rozwiązanie tego problemu poprzez implementację bloków rezydualnych (ang. Residuum Units) zawierających dodatkowe, skrótowe połączenia (ang. skip conections) pomiędzy wejściem a wyjściem bloków. Porównanie schematów funkcjonalnych nowych bloków i wcześniej istniejącego rozwiązania stosowanego np. w AlexNet został przedstawiony na Rys. 4.6.

Rysunek 4.5: Schemat funkcjonalny pojedynczego bloku w architekturze ResNet.

Ogólną postać równania bloku rezydualnego można zapisać następująco:

$$y_l = h(x_l) + F(x_l, W_l),$$

 $x_{l+1} = f(y_l),$

$$(4.2)$$

gdzie x_l i x_{l+1} stanowią sygnał wejściowy i wyjściowy l-tego bloku. F stanowi funkcję rezydualną optymalizowaną podczas treningu sieci, $h(x_l)$ stanowi funkcję przekształcenia sygnału x_l przekazywanego skrótowym połączeniem, f jest funkcją ReLU, a W stanowi macierz wag.

Funkcja $h(x_l)$ jest funkcją tożsamościową, a zatem $h(x_l) = x_l$. Żeby uzasadnić ten wybór należy rozważyć propagację gradientu wewnątrz sieci skłądającej się z bloków rezydualnych. Dla każdego L-tego bloku zachodzi równanie:

$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i, W_i)$$
(4.3)

Korzystając z reguły łąńcuchowej [ResNet-wyj-9] można zapisać równanie na gradient funkcji kosztu ε :

$$??\frac{\partial \varepsilon}{\partial x} = \frac{\partial \varepsilon}{\partial x_L} \frac{\partial x_L}{\partial x_l} = \frac{\partial \varepsilon}{\partial x_L} \left(1 + \frac{\partial}{\partial x_l} \sum_{i=l}^{L-1} F(x_i, W_i) \right)$$
(4.4)

z czego wynika, że gradient może być podzielony na dwie addytywne składowe: (1) w =

 $\frac{\partial \varepsilon}{\partial x_L}$ propagowaną bez wpływu na warstwy zawierające wagi i (2) $\lambda = \frac{\partial \varepsilon}{\partial x_L} \frac{\partial}{\partial x_l} \sum_{i=l}^{L-1} F(x_i, W_i)$ propagowaną przez nie.

Przykład propagacji gradientu w sieci składającej się z trzech bloków wyglądałby następująco:

 $\frac{\partial \varepsilon}{\partial x_0} = \frac{\partial \varepsilon}{\partial x_3} * (w_2 + \lambda_2) * (w_1 + \lambda_1) * (w_0 + \lambda_0)$ (4.5)

Przyjmując, że wartości w są zazwyczaj znormalizowane do przedziału (-1;1) można rozważyć 4 istotne przypadki:

- 1. $\lambda = 0$ nie ma skrótowych połączeń, co odpowiada płaskiej strukturze sieci. Ponieważ wartości w są z przedziału (-1;1) dodawanie kolejnych warstw wzmacnia wcześniej omówiony efekt zanikającego gradietu.
- 2. $\lambda > 1$ z każdą warstwą, sumaryczna wartość gradientu zwiększa się inkrementalnie, co nazywane jest problemem eksplozji gradientu (ang. exploding gradient problem).
- 3. $\lambda < 1$ przy założeniu, że $w + \lambda < 1$, dla sieci skłądających się z wielu warstw występuje problem zaniku gradientu, jak w przypadku 1. Natomiast, gdy $w + \lambda > 1$ podobnie jak w przypadku 2 może występować problem eksplozji gradienu.
- 4. $\lambda = 1$ wartości w są inkrementowane dokładnie o 1, co eliminuje problemy podane w przypadkach 1, 2 i 3 i stanowiło motywacje dla twórców architektury ResNet dla wyboru funkcji tożsamościowej $h(x_l)$.

Dokładny opis matematyczny funkcjonowania bloków rezydualnych wraz z dowodami znajduje się w [ResNet-wyj]. Przykład topologii sieci składającej się z 8 bloków i łącznie 18 warstw tzw. ResNet-18, przedstawiono na Rys.

Pierwsza warstwa konwolucyjna zawiera filtry z jądrem splotu o wymiarach 7×7 . W kolejnych zastosowano wymiar 3×3 . Zastosowanie mniejszych wymiarów jąder splotu niż w AlexNet oraz podobnie jak w przypadku sieci GoogLeNet wyliczenie na końcu wartości średniej z dwuwymiarowych map cech zredukowało liczbę parametrów.

Architektura ResNet-18 jest najmniejszą z pojawiających się w literaturze przykładów. W praktyce, z powodzeniem wykorzystywano topologie składające się nawet z 1202 warstw [ResNet]. W 2016 roku zaprezentowano hybrydę sieci Google-Net i ResNet [InceptionResNet]. Pracowano również nad bardziej złożonymi blokami, co w konsekwencji doporwadziło w 2017 roku do zaprezentowania architektury

Rysunek 4.6: Topologia architektury ResNet-18.

ResNetX, która w wielu testach klasyfikacji różnych zbiorów okazała się być lepsza niż poprzednicy [ResNetX]. Ciekawy przegląd dotyczący historii tych prac można znaleźć w [https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035].

Sieć ResNet i jej warianty dla wielu testowych zbiorów danych takich jak ImageNet, CIFAR czy COCO osiągneły dokładność klasyfikacji porównywalną z możliwościami ludzkiego obserwatora. Dalszy progres był możliwy m.in. dzięki zastosowaniu synergii wielu modeli, co zostało opisane w kolejnej podsekcji.

4.4.4 Złożenia

Uczenie złożeń sieci (ang. esemble learning) polega na wykorzystywaniu kilku modeli bazowych i wybranej metody ich synergii. Koncepcja nie jest nowa i stosowana była już przed etapem kiedy to metody głębokiego uczenia się zyskały na popularności. Dobry przegląd wcześniejszych prac bazujących na tradycyjnym podejściu do uczenia maszynowego można znaleźć w [Ensemble 1-3].

W kontekście głębokiego uczenia się stosowane są różnea metody kombinacji modeli bazowych [Ensemble]. Jako często stosowane przykłady można podać: uśrednianie, głosowanie, klasyfikacja Bayesa, generalizację stosów. Zostaną one omówione w kolejnych paragrafach:

Uśrednianie

Uśrednianie jest prostą metodą kombinacji wyników predykcji. Najczęściej stosowane jest uśrednianie bez wag, gdzie suma wyników predykcji modeli bazowych podzielona

jest przez liczbę tych modeli. Uśredniać można bezpośrednio wyniki finalnej predykcji jak również prawdopodobieństwa przynależności do odpowiednich klas, które są np. wynikiem funkcji softmax.

Główną zaletą uśredniania jest redukcja wariancji. Jest ona tym większa im bardziej nieskorelowane są wyniki predykcji modeli bazowych. Pomimo prostoty tego rodzaju koncepcja odnosiła już sukcesy m.in. w lasach losowych (Breiman, 2001).

Zastosowanie uśredniania przy silnie odstających od średniej najgorszych predykcjach znacząco obniża dokładność całego złożenia. Dlatego przy silnie nieheterogenicznych modelach bazowych dających bardzo różne wyniki często poszukiwane są inne metody.

Głosowanie

W głosowaniu stosuje się mechanizm zliczania przewidzianych przez modele bazowe etykiet. Etykieta, która została wybrana przez największą liczbę modeli bazowych jest obierana jako wynik ostatecznej predykcji. Jest to tzw. *głosowanie większościowe*.

W porównaniu do uśredniania, głosowanie jest mniej czułe na predykcje pojedynczych modeli. Wykorzystuje jednak jedynie informacje o przewidzianych etykietach, co utrudnia konstrukcje bardziej wyszukanych rozwiązań.

Klasyfikacja Bayesa

W przypadku tej metody, każdy model bazowy j postrzegany jest jako hipoteza h_j . Każda z hipotez posiada wagę proporcjonalną do prawdopodobieństwa zdarzenia, w którym dany zbiór danych trenujących zostałby wybrany z ogółu danych gdyby dana hipoteza była prawdziwa. Jest to tzw. optymalna klasyfikacja Bayesa, którą można zapisać następującycm równaniem:

$$y = armax_{c_j \in C} \sum_{h_i \in H} P(c_j \mid h_i) P(T \mid h_i) P(h_i)$$
(4.6)

gdzie y to przewidziana etykieta, C jest zbiorem wszystkich możliwych klas, H to przestrzeń hipotez, a T to zbiór danych trenujących.

W praktyce z uwagi na dużą złożoność obliczeniową optymalną klasyfikację Bayesa wykorzystuje się rzadko. Cześćiej stosowane są techniki BPA (od ang. *Bayesian para-*

meter averaging), BMA (od ang. Bayesian model averaging), czy teć BMC (od ang. Bayesian model combination) (zob. [BPA, BMA, BMC]), które aproksymują optymalną metodę.

Generalizacja stosów

Idea generalizacji stosów oryginalnie została zaproponowana w [Wolpert, 1992]. Wykorzystana została koncepcja meta-uczenia, a zatem konstrukcja nadrzędnego klasyfikatora, którego zadniem jest wybór optymalnego wektora wag a dla stosu s predykcji dla danych x:

$$s(x) = \sum_{i=1}^{m} a_i s_i(x)$$
 (4.7)

W praktyce predykcje z modeli bazowych składowane są na stosie, a następnie klasyfikator nadrzędny wykorzystuje je jako dane do swojego treningu poprawnych wartości a wykorzystując jako odniesienie znane, poprawne etykiety.

4.5 Zastosowania w medycynie

W 1994 roku ukazała się pierwsza praca, która w praktyce wykorzystywała mechanizmy związane z głębokim uczeniem do przetwarzania obrazów medycznych [Zhang, 1994]. Użyte wówczas sieci nazywano sieciami typu shift-invariant. Zastosowanie ich pozwoliło na eliminacje 55% FP otrzymywanych przy wcześniejszych metodach stosowanych do detekcji skupisk mikrozwapnień w mommografach. Shift-invariant oznaczało, że przesunięcie obrazu wejściowego nie powodowało zmian w klasyfikacji, co jest istotną cechą z uwagi na implementację toru akwizycji danych w praktyce radiologicznej.

Po roku 2012 nastąpił znaczący wzrost zainteresowania metodami głębokiego uczenia się w medycynie. Obrazuje to praca z 2017, w której przytoczono statystyki medycznych publikacje zawierających słowa kluczowe związane z głębokim uczeniem się [arXiv:1702.05747v2]. Najważniejsze dane przedstawiono a Rys. 4.7.

Widoczny wzrost liczby publikacji nastąpił począwszy od 2015, co związane było z kilkuletnią adaptacją nowych metod w dziedzinie przetwarzania obrazów medycznych i gromadzeniem odpowiednich danych. Rok 2016 i 2017 były pod pewnym względem przełomowe gdyż pojawiało się coraz więcej prac naukowych, w których przedstawiano rezultaty dokładności klasyfikacji medycznych zbiorów danych na poziomie dorównu-

Rysunek 4.7: Statystyki dotyczące publikacji medycznych zawierających słowa kluczowe związane z głębokim uczeniem się.

jącym ekspertom dziedzinowym.

Dla przykładu, w Listopadzie 2016 ukazał się praca grupy Google Research, Mountain View, Kalifornia [https://www.ncbi.nlm.nih.gov/pubmed/27898976], gdzie zastosowano sieć GoogLeNet w wersi inception-v3 do zautomatyzowanej detekcji retinopatii cukrzycowej i cukrzycowego obrzęku plamki w obrazach dna oka. Wyniki porównano z panelem skjładającym się z 7 ekspertów, okulistów. Porównanie przedstawiono na Rys. 4.8.

Rysunek 4.8: Porównanie automatycznej klasyfikacji retinopatii cukrzycowej i cukrzycowego obrzęku plamki z oceną panelu ekspertów

Na wykresach dla dwóch zadań klasyfikacyjnych umieszczono krzywe reprezentujące zależność swoistości od czułości dla algorytmu automatycznego oraz 7 punktów oznaczające wynik oceny każdego z ekspertów-okulistów. Ogółem mniej niż połowa ekspertów uzyskałą lepszy wynik niż algorytm sztucznej inteligencji.

Kolejna ciekawa praca pojawiła się w czasopiśmie nature w styczniu 2017 i traktowała o automatycznej detekcji raka skóry na zdjęciach [Esteva, 2017]. Autorzy wykorzystali dane składające się z 129,450 obrazów klinicznych, na których zobrazowano 2,032 różne schorzenia skóry. Ponownie do klasyfikacji wykorzystano sieć GoogleNet w wersji inception-v3. Wyniki klasyfikacji automatycznej porównano z oceną przeprowadzoną przez 21 certyfikowanych dermatologów. Przykład porównania zaprezentowano na Rys. 4.9.

Rysunek 4.9: Porównanie automatycznej klasyfikacji 3 chorób skóry z oceną ekspertów dermatologów

Tym razem umieszczono odwrotną zależność (tj. czułość od swoistości), czerwonymi punktami oznaczono wynik oceny ekspertów, a zielonym krzyżykiem wynik uśrednienia oceny eksperckiej. W każdym przypadku średnia ocena była gorsza od automatycznje klasyfikacji.

Ostatni przykład zaprezentowany w tej pracy został opublikowany przez grupę ze Stanford University w 2017 roku w Lipcu i dotyczył klasyfikacji arytmii [Rajpurkar, 2017].

Jak już wspomniano problemy w wykorzystaniu metod głębokiego uczenia się w medycynie wywodzą się z konieczności zgromadzenia dużych zbiorów, dobrze oznaczonych danych. Wymaga to bliskiej współpracy ekspertów medycznych (najczęściej radiologów) z ekspertami od uczenia maszynowego oraz modyfikacja bądź tworzenie dedykowanych programów do akwizycji danych medycznych. Jako przykłady takich

synergii można wymienić programy Stanford Medicine [MedicalImageNet], Harward School of Medicine [10 mln images] czy Masachuset Hospital [NVIDIA 2018]. W roku 2018 na konferencji NVIDIA GTC w San Jose (Kalifornia) Amerykańskie Stowarzyszenie Radiologii i stowarzyszenie MICCAI (od ang. Medical Image Computing and Computer Assisted Intervention) ogłosiły porozumienie, co do wspólnej współpracy mającej na celu eliminacje barier legislacyjnych związanych ze współpracą przy pozyskiwaniu odpowiednich danych dla wykorzystania algorytmów uczenia maszynowego.

Nowa metoda oceny procesu gojenia ścięgna Achillesa

- 5.1 Metodyka
- 5.2 Rozróżnienie ścięgna zdrowego i po zerwaniu
- 5.3 Obliczanie krzywych gojenia
- 5.3.1 Topologia sieci
- 5.3.2 Redukcja wymiarowości
- 5.3.3 Miara wygojenia

Wyniki i walidacja

- 6.1 Ocena procesu gojenia z użyciem nowej metody
- 6.2 Porównanie z wynikami z rezonansu magnetycznego
- 6.3 Porównanie z wynikami ultrasonografii
- 6.4 Porównanie z wynikami badań biomechanicznych

Podsumowanie

Bibliografia

[1] Witold Pokorski and Graham G. Ross. Flat directions, string compactification and three generation models. 1998.

Dodatek A

AchillesDL: System komputerowego wspomagania oceny gojenia ścięgien i więzadeł