$$S_{I}(t) = \begin{cases} A\cos(\omega t), 0 < t \le T, \\ A\cos(\omega(t-T)), T < t \le 2T. \end{cases}$$

$$S_{2}(t) = \begin{cases} A\cos(\omega t), 0 < t \le T, \\ -A\cos(\omega(t-T)), T < t \le 2T. \end{cases}$$

Сигнал $S_1(t)$ соответствует передаче разности фаз $\Delta \varphi = 0$, сигнал $S_2(t)$ – разности $\Delta \varphi = \pi$.

Исходное сообщение b_k (k=1,2,...), состоящее из 0 и 1, преобразуется в $J_k=2b_k-1$, т.е. в последовательность, состоящую из -1 и 1 ($0\to$ -1; $1\to$ 1). При формировании ДОФМ сигнала символы J_k перекодируются следующим образом:

$$J_{k}' = J_{k} \cdot J_{k-1}', \tag{2.38}$$

где $J_o'=1$.

Тогда для получения ДОФМ сигнала достаточно умножить несущее колебание $A\cos(\omega t$) на $J_{_k}{}'$:

$$S(t) = J_{\nu}' \cdot A\cos(\omega t) = \pm A\cos(\omega t).$$

На рисунке 2.12. показана структурная схема алгоритма когерентного приема сигнала ДОФМ (метод сравнения полярностей (СП)).

Рисунок 2.12. Структурная схема когерентного приема сигнала ДОФМ.

Ошибочный прием двоичного символа при ДОФМ (СП) имеет место, когда происходит одно из 2-ух несовместимых событий:

1) к-ый символ прият верно, к-1-ый неверно или 2) к-ый символ прият неверно, а к-1-ый верно. Тогда потенциальная помехоустойчивость когерентного приема ДОФМ сигнала определяется выражением: