# Seq2seq. Attention. Chatbots.

Маша Шеянова, masha.shejanova@gmail.com

## Seq2seq + attention

#### seq2seq (стандартная)



#### <u>seq2seq + attention</u>

#### Виды attention (источник)



### Виды attention (<u>источник</u>)

| Name                          | Alignment score function                                                                                                                                                                                                       | Citation     |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Content-<br>base<br>attention | $score(s_t, h_i) = cosine[s_t, h_i]$                                                                                                                                                                                           | Graves2014   |
| Additive(*)                   | $score(s_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} tanh(\mathbf{W}_a[s_t; \boldsymbol{h}_i])$                                                                                                                                 | Bahdanau2015 |
| Location-<br>Base             | $\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$<br>Note: This simplifies the softmax alignment to only depend on the target position.                                                                       | Luong2015    |
| General                       | $score(s_t, h_i) = s_t^{\top} \mathbf{W}_a h_i$<br>where $\mathbf{W}_a$ is a trainable weight matrix in the attention layer.                                                                                                   | Luong2015    |
| Dot-Product                   | $score(s_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{T} \boldsymbol{h}_i$                                                                                                                                                         | Luong2015    |
| Scaled Dot-<br>Product(^)     | $\mathrm{score}(s_t, \boldsymbol{h}_i) = \frac{s_t^\intercal \boldsymbol{h}_i}{\sqrt{n}}$<br>Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state. | Vaswani2017  |

#### Развитие идеи: <u>Transformers</u>