1) Differentials

DEFINITION Differentials

Let f be differentiable on an interval containing x. A small change in x is denoted by the **differential** dx. The corresponding change in f is approximated by the **differential** dy = f'(x) dx; that is,

$$\Delta y = f(x + dx) - f(x) \approx dy = f'(x) dx.$$

2) The Linearization of Function

$$L(x) = f(a) + f'(a)(x - a)$$

V EXAMPLE 1 Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

SOLUTION The derivative of $f(x) = (x + 3)^{1/2}$ is

$$f'(x) = \frac{1}{2}(x+3)^{-1/2} = \frac{1}{2\sqrt{x+3}}$$

and so we have f(1)=2 and $f'(1)=\frac{1}{4}$. Putting these values into Equation 2, we see that the linearization is

$$L(x) = f(1) + f'(1)(x - 1) = 2 + \frac{1}{4}(x - 1) = \frac{7}{4} + \frac{x}{4}$$

The corresponding linear approximation $\boxed{1}$ is

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$
 (when x is near 1)

In particular, we have

$$\sqrt{3.98} \approx \frac{7}{4} + \frac{0.98}{4} = 1.995$$
 and $\sqrt{4.05} \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent line approximation is a good approximation to the given function when x is near l. We also see that our approximations are overestimates because the tangent line lies above the curve.

Of course, a calculator could give us approximations for $\sqrt{3.98}$ and $\sqrt{4.05}$, but the linear approximation gives an approximation *over an entire interval.*

FIGURE 2

EXAMPLE 2 For what values of x is the linear approximation

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

accurate to within 0.5? What about accuracy to within 0.1?

 $\begin{array}{ll} \textbf{SOLUTION} & Accuracy \ to \ within \ 0.5 \ means \ that \ the \ functions \ should \ differ \ by \ less \\ than \ 0.5 : \end{array}$

$$\left| \sqrt{x+3} - \left(\frac{7}{4} + \frac{x}{4} \right) \right| < 0.5$$

Equivalently, we could write

$$\sqrt{x+3} - 0.5 < \frac{7}{4} + \frac{x}{4} < \sqrt{x+3} + 0.5$$

This says that the linear approximation should lie between the curves obtained by shifting the curve $y=\sqrt{x+3}$ upward and downward by an amount 0.5. Figure 3 shows the tangent line y=(7+x)/4 intersecting the upper curve $y=\sqrt{x+3}+0.5$ at P and Q. Zooming in and using the cursor, we estimate that the x-coordinate of P is about -2.66 and the x-coordinate of Q is about 8.66. Thus we see from the graph that the approximation

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

is accurate to within 0.5 when -2.6 < x < 8.6. (We have rounded to be safe.)

Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 when -1.1 < x < 3.9.

 $y = \sqrt{x+3} + 0.1$ $y = \sqrt{x+3} - 0.1$ -2

FIGURE 3

FIGURE 4

$$\Delta y = f(x + \Delta x) - f(x)$$

EXAMPLE 3 Compare the values of Δy and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION

(a) We have

$$f(2) = 2^3 + 2^2 - 2(2) + 1 = 9$$

 $f(2.05) = (2.05)^3 + (2.05)^2 - 2(2.05) + 1 = 9.717625$
 $\Delta y = f(2.05) - f(2) = 0.717625$

In general,

$$dy = f'(x) dx = (3x^2 + 2x - 2) dx$$

When x = 2 and $dx = \Delta x = 0.05$, this becomes

$$dy = [3(2)^2 + 2(2) - 2]0.05 = 0.7$$

(b)
$$f(2.01) = (2.01)^3 + (2.01)^2 - 2(2.01) + 1 = 9.140701$$

$$\Delta y = f(2.01) - f(2) = 0.140701$$

When $dx = \Delta x = 0.01$,

$$dy = [3(2)^2 + 2(2) - 2]0.01 = 0.14$$

Notice that the approximation $\Delta y \approx dy$ becomes better as Δx becomes smaller in Example 3. Notice also that dy was easier to compute than Δy . For more complicated functions it may be impossible to compute Δy exactly. In such cases the approximation by differentials is especially useful.

4) Application:

V EXAMPLE 4 The radius of a sphere was measured and found to be 21 cm with a possible error in measurement of at most 0.05 cm. What is the maximum error in using this value of the radius to compute the volume of the sphere?

SOLUTION If the radius of the sphere is r, then its volume is $V = \frac{4}{3}\pi r^3$. If the error in the measured value of r is denoted by $dr = \Delta r$, then the corresponding error in the calculated value of V is ΔV , which can be approximated by the differential

$$dV = 4\pi r^2 dr$$

When r = 21 and dr = 0.05, this becomes

$$dV = 4\pi(21)^2 \cdot 0.05 \approx 277$$

The maximum error in the calculated volume is about 277 cm³.

Relative Error

$$\frac{\Delta V}{V} \approx \frac{dV}{V} = \frac{4\pi r^2 dr}{\frac{4}{3}\pi r^3} = 3\frac{dr}{r}$$

- 5) Exercises
- 1. Find the linearization of the following functions at the spacified point a.
- (a) $f(x) = x^4 + 3x^2$, a = -1
- **(b)** $f(x) = \cos x, \ a = \frac{\pi}{2}.$

2)

Find the linear approximation of the function $f(x) = \sqrt{1-x}$ at a = 0 and use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$. Illustrate by graphing f and the tangent line.

- 3) Verify the linear approximation $\frac{1}{(1+2x)^4} \approx 1-8x$ at 0. Then determine the value of x for which the linear approximation is accurate to within 0.1.
- 4) Use a linear aproximation (or differentials) to estimate the following numbers.
- (a) $(2.0001)^5$

(b) $(8.06)^{\frac{2}{3}}$

(c) $tan 44^0$

(d) ln(1.05)

(e) $\frac{1}{\sqrt{119}}$

(f) $e^{0.06}$

For Questions number 5 - 6

- a. Write the equation of the line that represents the linear approximation to the following functions at the given point a.
- **b.** Graph the function and the linear approximation at a.
- c. Use the linear approximation to estimate the given function value.
- *d.* Compute the percent error in your approximation, $100 \cdot |\text{approx} \text{exact}|/|\text{exact}|$, where the exact value is given by a calculator.
- 5) $f(x) = (8+x)^{\frac{-1}{3}}$; a = 0; f(-0.1).
- 6) $f(x) = \sqrt[4]{x}$; a = 81; f(85).

7)

- (a) Use differentials to find a formula for the approximate volume of a thin cylindrical shell with height h, inner radius r, and thickness Δr .
- (b) What is the error involved in using the formula from part (a)?

8)

If a current I passes through a resistor with resistance R, Ohm's Law states that the voltage drop is V = RI. If V is constant and R is measured with a certain error, use differentials to show that the relative error in calculating I is approximately the same (in magnitude) as the relative error in R.