# Chapter 4 Light and Color Capture

James Hays, Brown University

#### **Contents**

- Review of lighting
  - Color, Reflection, and absorption
- What is a pixel? How is an image represented?
  - Color spaces



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- **Fluorescence**
- Subsurface scattering
- Phosphorescence
- Interreflection



light source

 $\lambda_1$ 



Fluorescence occurs when a substance absorbs radiation of one wavelength, and immediately emits radiation of a different wavelength.

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



Phosphorescence is a related type of photoluminescence in which absorbed radiation is re-emitted more slowly, so phosphorescent objects can still glow for periods up to several hours after the source of incident radiation is removed.

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



(Specular Interreflection)

#### The Eye

- Your eyes work a lot like a camera. The lens of a camera focuses light onto the film inside. The cornea and lens in the front of the eye focus light onto the back, where light-sensitive tissue called the retina is located. When the retina receives an image, it sends a signal through the optic nerve to the brain for the image to be developed.
- http://www.healthline.com/vpvideo/vision

#### The Eye



#### The human eye is a camera!

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
  - photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz

#### The Retina



#### What humans don't have: tapetum lucidum







#### Two types of light-sensitive receptors

#### **Cones**

cone-shaped less sensitive operate in high light color vision

Rods
rod-shaped highly
sensitive operate
at night gray-scale
vision



#### **Rod / Cone sensitivity**



The famous sock-matching problem...

# **Electromagnetic Spectrum**



**Human Luminance Sensitivity Function** 

#### Measuring spectra



Spectroradiometer: separate input light into its different wavelengths, and measure the energy at each.

#### The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.



#### The Physics of Light

Some examples of the reflectance spectra of surfaces



# **Image Formation**



#### Digital camera



#### A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz

#### **Sensor Array**



a b

**FIGURE 2.17** (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.



CMOS sensor



CCD sensor

# Interlace vs. progressive scan



One complete frame using progressive scanning

#### What is an image?

- Ideally, we think of an image as a 2-dimensional light intensity function, f(x,y), where x and y are spatial coordinates, and f at (x,y) is related to the brightness or color of the image at that point.
- In practice, most images are defined over a rectangle.
- Continous in amplitude ("continuous-tone")
- Continous in space: no pixels!





#### **Digital Images and Pixels**

- A digital image is the representation of a continuous image f(x,y) by a 2-d array of discrete samples f[x,y]. The amplitude of each sample is quantized to be represented by a finite number of bits.
- Each element of the 2-d array of samples is called a pixel or pel (from "picture element")
- Think of pixels as point samples, without extent.

#### **Image Resolution**









200**x**200

100x100

*50***x***50* 

25x25

These images were produced by simply picking every n-th sample horizontally and vertically and replicating that value nx n times.

We can do better

- Pre-filtering before subsampling to avoid aliasing
- Smooth interpolation

# The raster image (pixel matrix)



#### The raster image (pixel matrix)



# Different numbers of gray levels



#### **Color Components**



Monochrome image



R[x,y] = G[x,y] = B[x,y]



Red R[x,y]



Green G[x,y]



Blue B[x,y]

#### Gamma characteristic

• Cathode ray tubes (CRTs) are nonlinear





• Cameras contain y-predistortion circuit  $IJ{\sim}I^{1/\gamma}$ 

#### **Examples of additive color systems**





**CRT** phosphors

Multiple projectors

#### **Color Images: Bayer Grid**



Estimate RGB at 'G' cells from neighboring values





http://en.wikipedia.org/wiki/Bayer\_filter

# Some common optical illusions



### **Optical illusions**

Try to count the number of black dots Are the lines below straight or are they on the image below curved?





## **Optical illusions**

It's a spiral, right?



How many legs does this elephant have?



# **Color Image**

R





G



I



### **Images in Matlab**

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
  - im(1,1,1) = top-left pixel value in R-channel
  - im(y, x, b) = y pixels down, x pixels to right in the  $b^{th}$  channel
  - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
  - Convert to double format (values 0 to 1) with im2double

| row  | colu | ımn  |      |      |      |      |      |      |      |      | $\Longrightarrow$ | R         |      |      |      |  |
|------|------|------|------|------|------|------|------|------|------|------|-------------------|-----------|------|------|------|--|
| 7011 | 0.92 | 0.93 | 0.94 | 0.97 | 0.62 | 0.37 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99              | /\        |      |      |      |  |
|      | 0.95 | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91              |           |      |      |      |  |
|      | 0.89 | 0.72 | 0.51 | 0.55 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 | 0.92              | 0.92      | 0.99 | G    |      |  |
|      | 0.96 | 0.95 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95              | 0.95      | 0.91 |      |      |  |
|      | 0.71 | 0.81 | 0.81 | 0.87 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85              | 0.91 0.92 |      |      | B    |  |
|      | 0.49 | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33              | 0.97      | 0.95 | 0.92 | 0.99 |  |
|      | 0.86 | 0.84 | 0.74 | 0.58 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74              | 0.79      | 0.85 | 0.95 | 0.91 |  |
|      | 0.96 | 0.67 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93              | 0.45      | 0.33 | 0.91 | 0.92 |  |
|      | 0.69 | 0.49 | 0.56 | 0.66 | 0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99              | 0.49      | 0.74 | 0.97 | 0.95 |  |
|      | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97              | 0.82      | 0.93 | 0.79 | 0.85 |  |
|      | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93              |           | 0.99 | 0.45 | 0.33 |  |
|      |      |      | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73              | 0.93      | 0.97 | 0.49 | 0.74 |  |
|      |      |      | 0.73 | 0.73 | 0.89 | 0.07 | 0.33 | 0.78 | 0.03 | 0.73 | 0.73              | 0.99      | 0.93 | 0.82 | 0.93 |  |
|      |      |      | 0.51 | 0.54 | 0.85 | 0.43 | 0.41 | 0.78 | 0.78 | 0.77 | 0.85              | 0.55      | 0.55 | 0.90 | 0.99 |  |
|      |      |      |      |      | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69              | 0.79      | 0.73 | 0.93 | 0.97 |  |
|      |      |      |      |      | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78              | 0.77      | 0.89 | 0.99 | 0.93 |  |

### **Color spaces**

How can we represent color?





http://en.wikipedia.org/wiki/File:RGB\_illumination.jpg

### **Color spaces: RGB**









R (G=0,B=0)



(R=0,B=0)



В (R=0,G=0)

#### Some drawbacks

- Strongly correlated channels
- Non-perceptual

### **Color spaces: RGB and CMY Models**

- RGB color model is used in computer graphics
- Magenta (red plus blue), Cyan (green plus blue), and Yellow (red plus green)
- The CMY color model is a subset of the RGB model and is primarily used in color print production



#### **YUV Color Model**

- The YUV color model is the basic color model used in analogue color TV broadcasting.
- It comprises the *luminance* (Y) and two color difference (U, V) components. The luminance can be computed as a weighted sum of red, green and blue components; the color difference, or *chrominance*, components are formed by subtracting luminance from blue and from red.



RGB Colors Cube in the YUV Color Space

### Color spaces: YCbCr

- compute, good for rgbmap = ycbcr2rgb(ycbcrmap) compression. The YCbCr color space is used for component digital video and was developed as part of the ITU-R BT.601
- Recommendation. YCbCr is a scaled and offset version of the YUV color space.

RGB = ycbcr2rgb(YCBCR)



(Cb=0.5, Cr=0.5)





Cb (Y=0.5, Cr=0.5)



Cr (Y=0.5,Cb=05)

RGB Colors Cube in the YCbCr Space

#### PhotoYCC Color Model

 The Kodak\* PhotoYCC\* was developed for encoding Photo CD\* image data.



RGB Colors in the YCC Color Space

### **YCoCg Color Models**

 The YCoCg color model was developed to increase the effectiveness of the image compression



RGB Color Cube in the YCoCg Color Space

### **HSV**, and HLS Color Models

• The HLS (hue, lightness, saturation) and HSV (hue, saturation, value) color models were developed to be more "intuitive" in manipulating with color and were designed to approximate the way humans perceive and interpret color.





Color epacoe: HSV

**Color spaces: HSV** 

Matlab: hsv2rgb, rgb2hsv

#### Intuitive color space





Cha





**S** (H=1,V=1)



**V** (H=1,S=0)

#### Chap

### Color spaces: L\*a\*b\*



#### "Perceptually uniform" color space









- •Color of foods is usually measured in units L\*a\*b\* which is an international standard for color measurements, adopted by the CIE (Commission Internationale d'Eclairage).
- •The lightness ranges between 0 and 100 while chromatic parameters (a, b) range between -120 and 120.







**b** (L=65,a=0)

If you had to choose, would you rather go without luminance or chrominance?

### Most information in intensity



Only color shown – constant intensity

# Most information in intensity



Only intensity shown – constant color

### Most information in intensity



Original image