

Course Objectives

- ◆The objectives of this course
 - ➤ Understand the basics of digital VLSI chip design
 - ➤ Emphasis is on the details of translating a system specification to a small piece of silicon
- ◆Some materials may not make sense until the later chapter
 - ➤ Encompasses several distinct areas of expertise

2024/9/10

Andy Yu-Guang Chen

What is VLSI?

- ♦ VLSI: very large-scale integration
 - ➤ The process of integrating or embedding hundreds of thousands of transistors on a single silicon semiconductor microchip
 - ➤ Long time ago...
 - ✓ Small scale integration (SSI): 1-100 transistors could be fabricated on a single chip
 - ✓ Medium scale integration (MSI): 100-1000 number of transistors could be integrated on a single chip
 - ✓ Large scale integration (LSI): 1000-10000 transistors....
 - ✓ Very large scale integration (VLSI): 10000-1 Million transistors...
 - ✓ Ultra large scale integration (ULSI): 1 Million-10 Million transistors
- ◆Integrated circuit
 - ➤ The circuit in which all the Passive and Active components are fabricated onto a single chip
- Now, VLSI and IC are used interchangeable

2024/9/10

Andy Yu-Guang Chen

What is An Integrated Circuits (IC)

♦Integrated Circuits

- ➤ A set of electronic circuits on one small flat piece (or "chip") of semiconductor material that is normally silicon
- ➤ The integration of large numbers of tiny MOS transistors into a small chip results in circuits that are orders of magnitude smaller, faster, and less expensive

2024/9/10

Andy Yu-Guang Chen

Semiconductor and IC

- ◆ Doping silicon with other impurities changes it so it is conductive
- ◆The semiconductor is categorized as a p-type or ntype depending on the type of impurities that are doped
- ◆ Junctions based on the p-types and n-types are integrated into one chip in order to use it as an electronic component

2024/9/10

Andy Yu-Guang Chen

What is This Course all About?

- ◆ Scopes of very large-scale integration (VLSI) design
 - Digital circuits
 - > Analog circuits
 - ➤ Mixed-signal circuits
 - > Memory circuits
- ◆ This course will cover the following contents
 - CMOS devices and manufacturing technology; CMOS inverters and gates; propagation delay; noise margins; CMOS power dissipation; reliability, sequential circuits
- ◆ What will you learn?
 - Understanding, designing, and optimizing digital circuits with respect to different quality metrics: area, speed, and power dissipation

2024/9/10

Andy Yu-Guang Chen

Traditional VLSI Design Flow

- **♦**Logic synthesis
 - ➤ The system is designed in terms of logic gates, latches, and flip flops. Delay cannot make extremely accurate delay
 - Characteristics of the silicon circuits become important.
 - ➤ HDL → Logic gates by CAD tool
- Circuit design
 - Transistors are used as switches and Boolean variables are treated as varying voltage signals

2024/9/10

Andy Yu-Guang Chen

43

Traditional VLSI Design Flow

- ◆ Physical Design (Layout)
 - The final design for fabrication or Layout is the lowest level of design abstraction
 - Transistors are defined as 3-dimesional structures
 - ➤ Placed and wired using another set of CAD tools
 - ➤ The configuration of rectangles in layout determines the circuit topology and the characteristics of components
 - ➤ Geometrical patterns on the surface of silicon

2024/9/10

Andy Yu-Guang Chen

Traditional VLSI Design Cycles

Micron tehcnology => 1um, 2um, 3um, etc

Nowadays => 2nm, 3nm, 5nm, etc

Deep sub-micro technology => 0.18um, 0.13um Nanotechnoogy => 90nm, 65nm, 45nm etc

Sub-micron techology => 0.8um, 0.6um, 0.35um 0.25um etc

- 1. System specification
- 2. Functional design
- 3. Logic synthesis
- 4. Circuit design
- 5. Physical design
- 6. Fabrication
- 7. Packaging
- Other tasks involved: verification, testing, etc.
- Design metrics: area, speed, power dissipation, noise, design time, testability, etc.
- Design revolution: interconnect (not gate) delay dominates circuit performance in deep submicron era.
 - Interconnects are determined in physical design.
 - Shall consider interconnections in early design stages.

2024/9/10

Andy Yu-Guang Chen

45

Design Steps

- ◆Specification: function, cost, etc
- ◆Architecture: large blocks
- ◆Logic: gates + registers
- ◆ Circuits: transistor sizes for speed, power
- ◆ Layout: determines parasites

2024/9/10

Andy Yu-Guang Chen

Design Actions

- ◆ Synthesis: increasing information about the design by providing more detail (e.g., logic synthesis, physical synthesis).
- ◆ Analysis: collecting information on the quality of the design (e.g., timing analysis).
- ◆ Verification: checking whether a synthesis step has left the specification intact (e.g., layout verification).
- ◆Testing: checking whether a fabricated chip has left all functions intact

2024/9/10

Andy Yu-Guang Chen

67

- ◆ Optimization: increasing the quality of the design by rearrangements in a given description (e.g., logic optimizer, timing optimizer).
- ◆ Design Management: storage of design data, cooperation between tools, design flow, etc. (e.g., database).

2024/9/10

Andy Yu-Guang Chen

Design Issues and Tools

- System-level design
 - Partitioning into hardware and software, co-design, cosimulation, etc.
 - Cost estimation, design-space exploration

high level

- ◆ Algorithmic-level design
- 所有可能實現的方法,找到一個cost fuction的搜尋
 - Behavioral descriptions (e.g. in Verilog, VHDL)
 - High-level simulation
- From algorithms to hardware modules
 - > High-level (or architectural) synthesis
- Logic design:
 - > Schematic entry
 - Register-transfer level and logic synthesis
 - ➤ Gate-level simulation (functionality, power, etc)
 - > Timing analysis
 - Formal verification

Introduction

69

Design Issues and Tools

- Transistor-level design
 - Switch-level simulation
 - Circuit simulation
- Physical (layout) design:
 - Partitioning

切小塊

- ➤ Floorplanning and Placement
 ➤ Routing 油块炉

- > Compaction 看能不能壓縮
- Layout editing
- ➤ Design-rule checking 檢查規則
- Layout extraction
- Design management
 - Data bases, frameworks, etc.
- Silicon compilation: from algorithm to mask patterns
 - The idea is approached more and more, but still far away from a single pushbutton operation

Introduction

