"Teorema da Sobreposição"

"Numa rede activa com vários geradores de tensão, a corrente eléctrica em qualquer ramo é igual à soma algébrica das correntes que seriam produzidas por cada gerador se cada um deles funcionasse isoladamente e os restantes fossem substituídos pelas suas resistências internas".

Supondo, por exemplo, uma rede com três geradores (E_1 , E_2 , e E_3), que alimenta uma resistência R_1 .

Se eliminarmos E_2 e E_3 (deixando ficar as suas resistências internas) então o receptor R_1 (por exemplo) será percorrido por uma corrente I_1 que é facilmente calculada através de uma equação que obteremos.

Se, de seguida, "eliminarmos" E_1 e E_3 , então o receptor R_1 será percorrido por uma corrente I_2 que será igualmente obtida facilmente.

Se, finalmente, eliminarmos E_1 e E_2 , o receptor R_1 será percorrido por uma corrente I_3 que será obtida facilmente também.

Qual será então a corrente que percorre o receptor R₁?

Segundo o Teorema da Sobreposição, essa corrente (I_{R1}) será dada por:

$$I_{R1} = I_1 \pm I_2 \pm I_3$$

Note-se que, para qualquer das correntes parciais, pode-se obter valores <u>positivos ou negativos</u>, dependendo das polaridades dos geradores. Por essa razão, deve-se considerar na expressão o sinal + ou o sinal -, consoante o caso.

Analisando então uma rede pequena como a da figura seguinte, <u>a rede da figura 1 é igual a soma das duas representadas na figura 2</u> (página seguinte):

A corrente em R_1 (I_{R1}) é a <u>soma algébrica das correntes l' e l''</u> produzidas isoladamente por cada um dos geradores. O sentido de I_{R1} vai depender dos sentidos correctos de l' e l''.

Conforme se pode verificar facilmente, qualquer dos circuitos das figuras a) e b) é facilmente resolúvel, pois ficam reduzidos a <u>associações de resistências em série com um único gerador</u>.