	Lecture 2
	Recall
l)	Suppose n'is approximation to exact value n
	exact value n
	Then
	x-x absolute error
	•
	$\frac{ \chi-\chi^* }{ \chi }$ relative error $(\chi + 0)$
	$\frac{1}{(x)} \left(x \neq 0 \right)$
	•
2)	n'is said to approximate n to the significant digit if n-x* \leq 5 \times 10
~	or to the cant digit if
	$ \chi - \chi^{\dagger} \leq 5 \times 10$
	121

3)	Things which create loss in significant digits
	1) Subtracting nearly equal quantities
	2) dividing by a very small number.
L) (
,	Ince an error is committed, it contaminates subsequent results
	error propogation
	condition instability

-> Sensitivity of f(x) to changes in x $\frac{f(x)-f(x^*)}{f(x)} \cdot (x-x)$ $\frac{f(x)-\mu^*}{|x-\mu^*|}$ well conditions

 $f(x) = \frac{10}{1-x^2}$ is ill-condition?

$$\int \frac{du_1}{dt} = 9u_1 + 24u_2 + 5 \omega st - 1 \sin t$$

$$\int \frac{du_2}{dt} = -24u_1 - 51u_2 - 9 \cos t + 1 \sin t$$

$$\int \frac{du_2}{dt} = 4 \qquad u_1(0) = 26$$

$$\{u_1(0) = \frac{4}{3} \quad u_2(0) = \frac{2}{3}\}$$

u(t) = 2e - e + j cost

42(+) = - e + 2e - 39t - 1 cost

RK method of order 4

Ti, approx to U,

Ti, " " 42

t'	u(+)	ũ, H)
0.1	1.793061	-2-645165
0.2		-18.45158
•	^	•
		•
	•	•
6.9	0.3416143	1-695332-0
1-0	0.3416143	_695332-0 _3099671
	l -	•

大	U2(4)	$\widetilde{q}_{z}(+)$
0.1	-1.032001	7.844527
0.2	-0.8746809	38-87631
•	1	r
•	1	
•		,
	·	
० . १	-0.2744088	1390664
1.0	-0.2298877	6199352
	•	J

Mathematical Preliminaries
1) Intereme diate-value theorem
for continuous function.
f: [a, b] -> IR continuous function
n, n, c [a, b) and
son $f(x_i) < \alpha < f(x_i)$
Then ∃ c € [a,b] such that
$f(c) = \alpha$.
Corollary 1
Let f: [a, b] -> IR de continuous.
Let 25, , m e [a, b] and let
gy, on be real numbers all
of one sign. Then
Cy ord styr. There
$\sum f(x_i) g_i - f(z_i) \sum g_i$ for some
$\sum_{i=1}^{\infty} f(n_i) g_i = f(\xi) \sum_{i=1}^{\infty} g_i \text{for Some}$

Proof (Sketch)

Without loss of generality

$$f(x_1) = \min \left\{ f(x_i) : i=1, -n \right\}$$

$$f(x_n) = \max \left\{ f(x_i) : i=1, -n \right\}$$

$$f(x_n) = \max \left\{ f(x_i) : i=1, -n \right\}$$

$$f(x_n) = \int_{i=1}^{\infty} f(x_i) f($$

	Similary one has the following
_	Jensony
	Lord Let g: [a, 6] -> IR be a
	non-négative (or non-positive)
	integrable function. Let f: [a, b] -> IR be continuou.
	1 1 5 5 12 12 12 13 14 15 74
	Le f: La, b) - 1K De Consinus.
	Then
	(3/2) $dx - f(z)$ $(g(x) dx)$
	$\int_{-\infty}^{\infty} f(x)g(x)dx = f(\xi) \int_{-\infty}^{\infty} g(x)dx$
	α ρ
	for some $z \in [a, 5]$.
	α in $\alpha(x)$ is α
	Remark The assumption g(x) is of
	one sign is exential
	26541
	Example $f(x) = g(x) = x$ $x \in [-1,1]$ $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} x^2 dx = 2/3$. Dur $\int_{-1}^{1} g(x) dx = 0$
	5t.9dx = 5x2dx = 2/3. but 59501dx =0

•

Theolem

Let $f: [a, b] \rightarrow IR$ be it.

Then $\exists \alpha, \beta \in [a, b]$ such that $f(\alpha) \leq f(\alpha) \leq f(\beta)$ $\forall \alpha \in [a, b]$

Let us recall

Theorem (Rolle's theorem).

Let f: [a, b] -> IR be cts and assume f: (a, b) -> IR is differentially

If $f(\alpha) = f(b) = g$ then $f'(\xi) = 0$ for some $\xi \in (a, b)$.

Rolle's Theorem implies the famous mean-value theses Theorem (mean value theorem) Let f: [a,6] -> IR be cts & f: (a,6) -> IR be differentiable $f(b)-f(a)=f'(\xi)$ for some 6-a ze(a,b). Et apply Rollis theorem to $F(x) = f(x) - f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$

Theorem (Tayloró formula voits integral) f(x) has n+1 continuous derivatives an [a, b] and c is some pt in [a, b] x e [a,6] f(n) = f(c) + f'(c)(x-c) + f'(c)(x-c)+--+ f(1) (x-1) + Rn+1 (x) $1 = \frac{1}{x} \int (x-s)^n \int_{-\infty}^{\infty} (s) ds$

Let p(x) = ay + ayx+-- + ayx $(n \neq 0, n \geqslant 1)$. $a_{0,-}, a_{n} \in \mathbb{C}$. It is easy to see that p(n) has at most n roots. However the following is non-third Theorem (fundamental theorem of algebra 1. p(x) has a rusty i.e., there enists ZEC such that p(x)=0

Measuring how fast sequences convey
Note 1/2 -> 0 for any p>0
Intuitively to more slowly
than 12-10 and so-on
Def':- Let {dn/m, and {Bn?nz, be Sequence. We say on is big-oh of
Sequence. We say on is big-oh of
Pn and write
if $ a_n \leq K P_n $ for some constant
K and for all sufficiently large n.

Examples $\frac{1600}{n} = 0(4n)$ $\frac{10}{n} - \frac{40}{n^2} + e^{-n}$ $\frac{10}{n} = \frac{40}{n^2} + e^{-n}$

Def' Let $\{\alpha_n\}$, $\{\beta_n\}$ be sequen

We say d_n is little-oh of β_n and

White $d_n = o(\beta_n)$ if $\lim_{n \to \infty} \frac{d_n}{\beta_n} = 0$

Enample
$$\frac{1}{2} = o(\frac{1}{n})$$

$$\frac{1}{2} = o(\frac{1}{n})$$

$$\frac{1}{2} = o(\frac{1}{n})$$

Remark: A convergence order of rate of the is much too slow to be useful in calculations.

Example
$$\frac{\pi}{4} = \sum_{i=0}^{\infty} \frac{(-1)^{i}}{2^{i+1}} = 1 - \sum_{j=1}^{\infty} \frac{2}{(6j^{2}-1)^{2}}$$

Set
$$\alpha_n = 1 - \sum_{j=1}^{n} \frac{2}{16j^2 - 1}$$

The sequence for 3 is monttone decreasing

Moreone

$$0 \le 4 - \frac{\pi}{4} \le \frac{1}{4n+3}$$
 $n = 1,2,--$

To calculate II correctly to within

10° we would need 10°≤4n+3

or roughly n=250,000.

However round of error in calculating

250,000 pois is usually greater

than 10^{-6} .

Here Ln = 7/4 + 0(4n)

如 + 74 + 0(4)

Polynomials $\beta(n) = a_0 + a_1 \times + a_2 \times + \cdots + a_n \times^n$ This is called power form This may bead to logs of Sig-digith $\frac{2 \times a_1}{4}$ $\frac{2 \times a_1}{4}$ Suppose p is st-like

(4 sig digiti) suppose p is st-lk.
P(6000) = 1/3, p(6001) = -2/3

p(x) = 6000 - x in 4 sig definition p(6001) = -1

Renedy

$$p(x) = 3.333 E-1 - (\chi - 6000)$$