An example of a Lax pair

Linden Disney-Hogg

June 2020

1 1 dimension

Consider the $\mathfrak{su}(2)$ algebra generated by $\{H, E, F\}$ with the relations

$$[H, E] = 2E$$

$$[H, F] = -2F$$

$$[E,F]=H$$

Let us re-write this by introducing X = E + F, Y = E - F, which now have the commutation relations

$$[H,X]=2Y$$

$$[H,Y] = 2X$$

$$[X,Y] = -2H$$

Consider the Hamiltonian system with phase space $q, p \in \mathbb{R}$ and Hamiltonian

$$\mathcal{H} = \frac{1}{2}p^2 + V(q)$$

Proposition 1.1. The algebra elements

$$L(\zeta) = pH + W(q)X + \zeta Y, \quad \zeta \in \mathbb{C}$$

$$M = \frac{1}{2}W_q Y$$

for a Lax pair for the system if $V_q=WW_q$ (i.e. $V=\frac{1}{2}W^2+c)$ and $\cdot_q=\partial_q\cdot$

Proof. Hamilton's equations for this system are

$$\dot{q} = p$$

$$\dot{p} = -V_a$$

so

$$\dot{L} = -V_q H + p W_q X$$

whereas

$$[L, M] = pW_qX - WW_qH$$

Now we want to think of generalisations of this Lax pair. A generic Hamiltonian for a 2d phase space can be written in the form

$$\mathcal{H} = \frac{p^2}{2\lambda(q)} + V(q)$$

Proposition 1.2. The algebra elements

$$L(\zeta) = \frac{1}{\sqrt{\lambda}} pH + W(q)X + \zeta Y, \quad \zeta \in \mathbb{C}$$
$$M = \frac{1}{2\sqrt{\lambda}} W_q Y$$

form a Lax pair for the system.

Proof. We repeat a similar calculation:

$$\dot{q} = \frac{p}{\lambda}$$

$$\dot{p} = -V_q + \frac{p^2 \lambda_q}{2\lambda^2}$$

so

$$\begin{split} \dot{L} &= \frac{1}{\sqrt{\lambda}} \left[\left(-V_q + \frac{p^2 \lambda_q}{2\lambda^2} \right) - \frac{p^2 \lambda_q}{2\lambda^2} \right] H + \frac{p W_q}{\lambda} X \\ [L, M] &= \frac{p W_q}{\lambda} X - \frac{W W_q}{\sqrt{\lambda}} H \end{split}$$

Now if, like me, you do not see the spitting obvious thing that scaling $p \to \frac{p}{\sqrt{\lambda}}$ is a sensible thing to do, how might you approach this? Start by supposing a more general form related to our original pair

$$L(\zeta) = f(q, p)H + g(q, p)X + \zeta Y$$
$$M = h(q, p)Y$$

We then get that for L, M to be a Lax pair we have the equations

$$f_q\left(\frac{p}{\lambda}\right) + f_p\left(-V_q + \frac{p^2\lambda_q}{2\lambda^2}\right) = -2gh$$
$$g_q\left(\frac{p}{\lambda}\right) + g_p\left(-V_q + \frac{p^2\lambda_q}{2\lambda^2}\right) = 2fh$$

Let's make the ansatz that g, h are functions of q only. Then we get from the second equation

$$g_q \cdot \frac{p}{\lambda} = 2fh$$

Equation the order of p on each side we must get f(q, p) = pF(q) and then

$$g_q = 2Fh\lambda$$

Substituting our new form of f into the first equation gives

$$\frac{p^2 F_q}{\lambda} + F\left(-V_q + \frac{p^2 \lambda_q}{2\lambda^2}\right) = -2gh$$

Again equating orders of p we have

$$\begin{split} \frac{F_q}{\lambda} + \frac{F\lambda_q}{2\lambda^2} &= 0 \Rightarrow F_q \lambda^{\frac{1}{2}} + \frac{1}{2} F \lambda^{-\frac{1}{2}} \lambda_q = 0 \\ &\Rightarrow \left(F \lambda^{\frac{1}{2}} \right)_q = 0 \\ &\Rightarrow F = \frac{\alpha}{\sqrt{\lambda}}, \quad \alpha \in \mathbb{R} \end{split}$$

Subbing this back into the first equation gives

$$-\alpha\lambda^{-\frac{1}{2}}V_q = -2gh$$

so

$$gg_q = \frac{\alpha \lambda^{-\frac{1}{2}} V_q}{2h} 2\alpha h \lambda^{\frac{1}{2}} = \alpha^2 V_q$$

and

$$h = \frac{\lambda^{-\frac{1}{2}} g_q}{2\alpha}$$

We recognise taking g = W, $\alpha = 1$, this is the solution from above.

2 dimensions

We want to now try to see if we can expand upon this result. Note that our first systems has a natural generalisation of the following form:

Proposition 2.1. The algebra elements

$$L(\zeta) = \sum_{i=1}^{n} p_i H_i + W_i X_i + \zeta_i Y_i$$
$$M = \frac{1}{2} (\partial_i W_i) Y_i$$

form a Lax pair for the evolution of the Hamiltonian

$$\mathcal{H} = \sum_{i=1}^{n} \frac{1}{2} p_i^2 + V_i(q^i)$$

where $\langle H_i, X_i, Y_i \rangle$ are distinct copies of the previous algebra that commute with each other.

This, however, covers only a small class of Hamiltonians, so we might try the next simplest non-trivial case; that of the 2d in Liouville form.

Definition 2.2. An n-dimensional Liouville system is one whose Hamiltonian is of the form

$$\mathcal{H} = \frac{1}{\lambda} \left[\sum_{i=1}^{n} \frac{1}{2} \sigma_i p_i^2 + V_i \right]$$

where $\lambda = \sum_{i=1}^{n} \lambda_i$ and λ_i, σ_i, V_i are functions of q^i only.