Ploteando No Detectados (ND)

Presentation by Ing. A.Otiniano

Ing. A.Otiniano

UNI

2024-07-08

- Objetivos
- 2 Boxplots
- X-Y Scatterplots
- 4 Función de Probabilidad de Densidad (pdf)
- 5 Función de Probabilidad de Densidad Acumulada (cdf)
- 6 Plots de Probabilidad (or Q-Q plots)
- 🕡 Ajustando Distribuciones en R

Section 1

• Conocer y usar los **boxplots**.

- Conocer y usar los **boxplots**.
- Conocer y usar los X-Y scatterplots.

- Conocer y usar los boxplots.
- Conocer y usar los X-Y scatterplots.
- Interpretar y usar las Probability Density Functions (pdf).

- Conocer y usar los boxplots.
- Conocer y usar los X-Y scatterplots.
- Interpretar y usar las Probability Density Functions (pdf).
- Interpretar y usar las Cumulative Distribution Functions (cdf).

- Conocer y usar los boxplots.
- Conocer y usar los X-Y scatterplots.
- Interpretar y usar las Probability Density Functions (pdf).
- Interpretar y usar las Cumulative Distribution Functions (cdf).
- Conocer los plots de probabilidad.

Section 2

Boxplots

Centrado

- Centrado
- Variabilidad (IQR)

- Centrado
- Variabilidad (IQR)
- Asimetría

- Centrado
- Variabilidad (IQR)
- Asimetría
- Outliers Faroutliers

cboxplot(mina.Zn,mina.cen.Zn,xgroup=Subcuenca,LOG=TRUE)

 Buena forma de ilustrar diferencias entre grupos.

cboxplot(mina.Zn,mina.cen.Zn,xgroup=Subcuenca,LOG=TRUE)

- Buena forma de ilustrar diferencias entre grupos.
- Sobre el máximo Ld, es identico a un boxplot que podría haber dibujado para la misma data sin límite de detección.

cboxplot(mina.Zn,mina.cen.Zn,xgroup=Subcuenca,LOG=TRUE)

- Buena forma de ilustrar diferencias entre grupos.
- Sobre el máximo Ld, es identico a un boxplot que podría haber dibujado para la misma data sin límite de detección.
- No estimaciones debajo del maxLd son mostradas por defecto.

Porción debajo del max Ld es estimado con ROS y mostrada con shown=TRUE.

- Porción debajo del max Ld es estimado con ROS y mostrada con shown=TRUE.
- Estimados son sombreados con gris para indicar incertidumbre.

- Porción debajo del max Ld es estimado con ROS y mostrada con shown=TRUE.
- Estimados son sombreados con gris para indicar incertidumbre.
- No usar mimax=TRUE da por defecto boxplot con outliers.

Section 3

X-Y Scatterplots

X-Y Scatterplots with ND

cenxyplot(Zn, Zn_cen, Fe, Fe_cen, log="xy")

 Puntos detectados son ploteados individualmente.

Figure 1: X-Y Scatterplot LogscaleXYhalytics A

X-Y Scatterplots with ND

```
cenxyplot(Zn, Zn_cen, Fe, Fe_cen, log="xy")
```

- Puntos detectados son ploteados individualmente.
- No detectados son mostrado como un intervalo (líneas punteadas).

Figure 1: X-Y Scatterplot Logscale X_{Nalytics}

X-Y Scatterplots with ND

cenxyplot(Zn, Zn_cen, Fe, Fe_cen, log="xy")

- Puntos detectados son ploteados individualmente.
- No detectados son mostrado como un intervalo (líneas punteadas).
- El eje x e y están en escala logarítmica.

Figure 1: X-Y Scatterplot LogscaleXY Alalytics A

X-Y Scatterplots with ATS line

1 El formato es: ATS(y,ycen, x, xcen, LOG=FALSE)

X-Y Scatterplots with ATS line

- 1 El formato es: ATS(y,ycen, x, xcen, LOG=FALSE)
- Existen algunos no detectados como lineas punteadas en la base.

Section 4

Función de Probabilidad de Densidad (pdf)

PDF

La familiar "curva de campana o Gausiana" de la distribución normal.

PDF

Una forma más realista para la data con no detectados son distribuciones asimétricas.

Histograma de Fe y Curvas de Densidad Real y Teórica (Estiaje)

PDF

- Una forma más realista para la data con no detectados son distribuciones asimétricas.
 - Dos distribuciones simétricas comunes son Lognormal y Gamma.

Histograma de Fe y Curvas de Densidad Real y Teórica (Estiaje)

PDF para datos censurados

Histograma: una barra no es dibujada para datos censurados. No deectados no son mostrados. No existen valores para el 14% de data inferior, solo conocemos que estos son <2.

El ajuste de la distribución debería tener un % dabajo de 2 similar al % en el set de datos.

Section 5

Función de Probabilidad de Densidad Acumulada (cdf)

CDF: Cummulative Distribution Functions

CDF: Cummulative Distribution Functions

No NDs para comenzar, n=10 3.33 2.19 1.81 1.33 1.11 0.91 0.91 0.81 0.77 0.38 Los **saltos** son 1/n

CDF para datos censurados

Concentraciones Background Cu

> enparCensored(Copper.ppb, Censored)

Based on Type I Censored Data

Censoring Level(s): 5 (only 1 DL)

Estimated Parameter(s): mean = 5.675000

sd = 1.1177544

se.mean = 0.1457466 Kaplan-Meier

Estimation Method: Kapl Sample Size: 24

Percent Censored: 62.5%
Median: <5

62.5% de la concentración de Cu son <5.

La primera observación detectada empieza en la flecha, con el valor de 5.4. Su alto = 1/n

Mejor Ajuste cdf para datos censurados

Data es mostrada como una step function. Caja color plomo esta debajo del menor Ld.

Mejor Ajuste cdf para datos censurados

- Data es mostrada como una step function. Caja color plomo esta debajo del menor Ld.
- Gamma parece el mejor ajuste, 2nd lognormal.

Mejor Ajuste cdf para datos censurados

- Data es mostrada como una step function. Caja color plomo esta debajo del menor I d.
- Gamma parece el mejor ajuste, 2nd lognormal.
- Nota: solo la distribución normal estima debajo de 0.

Section 6

Plots de Probabilidad (or Q-Q plots)

Plots de probabilidad <= valores de data para observaciones detectdas en el eje X.

- Plots de probabilidad
 <= valores de data para
 observaciones detectdas
 en el eje X.
- No detectados no son ploteados, pero espacios a la izquierda de las observaciones detectadas en percentiles es correcto.

- Plots de probabilidad
 <= valores de data para
 observaciones detectdas
 en el eje X.
- No detectados no son ploteados, pero espacios a la izquierda de las observaciones detectadas en percentiles es correcto.
- Una línea continua representa la disribución tales como la normal, lognormal o gamma.

- Plots de probabilidad
 <= valores de data para
 observaciones detectdas
 en el eje X.
- No detectados no son ploteados, pero espacios a la izquierda de las observaciones detectadas en percentiles es correcto.
- Una línea continua representa la disribución tales como la normal, lognormal o gamma.

PPCC mide el ajuste. Max PPCC=1. Escoger la distribución con mayor PPCC.

• En vez de las probabilidades no lineales <= valor dato, software usualmente plotea una linea escalar. Una es quantiles normales.

- En vez de las probabilidades no lineales <= valor dato, software usualmente plotea una linea escalar. Una es quantiles normales.
- Quantiles normales son quantiles de la distribución normal con media=0 y sd=1.

- En vez de las probabilidades no lineales <= valor dato, software usualmente plotea una linea escalar. Una es quantiles normales.
- Quantiles normales son quantiles de la distribución normal con media=0 y sd=1.
- No detectados influencian en los cuantiles de los detectados. Aquí los menores valores detectados son justo menor que +1, cual esta a 78% del dataset.

- En vez de las probabilidades no lineales <= valor dato, software usualmente plotea una linea escalar. Una es quantiles normales.
- Quantiles normales son quantiles de la distribución normal con media=0 y sd=1.
- No detectados influencian en los cuantiles de los detectados. Aquí los menores valores detectados son justo menor que +1, cual esta a 78% del dataset.

• Aquíe el 78% del área de datos < menor límite de detección. Múltiplos Ld pueden ser incorporados.

Q-Q plots para ajustar distribución de datos con ND

Esto es ploteado correctamente.30% de no detectados no son mostrado como puntos, pero el espacio es reservado en la parte inferior.

Q-Q plots para ajustar distribución de datos con ND

- Esto es ploteado correctamente.30% de no detectados no son mostrado como puntos, pero el espacio es reservado en la parte inferior.
- Encontraremos la rutina para hacer esto en "Survivial Analysis" o "Censored data" de los software estadísticos.

Q-Q plots para ajustar distribución de datos con ND

- Esto es ploteado correctamente.30% de no detectados no son mostrado como puntos, pero el espacio es reservado en la parte inferior.
- Encontraremos la rutina para hacer esto en "Survivial Analysis" o "Censored data" de los software estadísticos.
- El comando qqPlotCensored() en el paquete EnvStats es uno de estos

Q-Q plots data con NDs es eliminada incorrectamente

 No ploteada correctamente. Usar
 Q-Q plots estándar que no están diseñado para data con no detectados.

Q-Q plots data con NDs es eliminada incorrectamente

- No ploteada correctamente. Usar Q-Q plots estándar que no están diseñado para data con no detectados.
- Eliminar no detectados. así que todos los percentiles son empujados al inferior (desviados hacia la izquierda).

Q-Q plots data con NDs es eliminada incorrectamente

- No ploteada correctamente. Usar
 Q-Q plots estándar que no están diseñado para data con no detectados.
- ② Eliminar no detectados, así que todos los percentiles son empujados al inferior (desviados hacia la izquierda).
- Desajustes de la distribución comparada con la verdadera forma de la data.

Q-Q plots con 1/2 Ld subtituidos por NDs

 Substituir los valores por una linea recta en la parte inferior.

Q-Q plots con 1/2 Ld subtituidos por NDs

- Substituir los valores por una linea recta en la parte inferior.
- ② Distorsionar la distribución en su parte baja comparada con al verdadera forma de la data.

Q-Q plots con 1/2 Ld subtituidos por NDs

- Substituir los valores por una linea recta en la parte inferior.
- Oistorsionar la distribución en su parte baja comparada con al verdadera forma de la data.
- Tendencia a escoger la distribución incorrecta; malos estimados para los percentiles en la parte baja.

Q-Q plots de posible ajuste distribución para data con NDs

Distribución con una data cerrada a una línea recta, o con el más alto BIC (Bayesian Information Criterion) o Shapiro-Francia (coeficiente de correlación), es el mejor ajuste.

Q-Q plots de posible ajuste distribución para data con NDs

- Distribución con una data cerrada a una línea recta, o con el más alto BIC (Bayesian Information Criterion) o Shapiro-Francia (coeficiente de correlación), es el mejor ajuste.
- Aquí la distribución normal es el mejor ajuste comparada con las tres otrs distribuciones.

Section 7

Ajustando Distribuciones en R

Ajuste de Distribución

```
bd1 <- read.csv(file="../ParteIA/Code/Ejemplos/Example1.txt",
attach(bd1)
NADA::censummary(Arsenic, NDisTRUE)
FALSE all:
FALSE
                n.cen pct.cen min
           n
                                           max
FALSE 21.00000 14.00000 66.66667 0.50000 5.27628
FALSE
FALSE limits:
FALSE limit
             n uncen pexceed
FALSE 1 0.5 1 3 0.8163265
FALSE 2 2.0 1 0 0.2653061
FALSE 3 3.0 1
               1 0.2653061
FALSE 4 4.0 11 3 0.1428571
```

Analytics An7

Calcular PPCC o BIC para mejor distribución.

```
gofTestCensored(Arsenic, NDisTRUE, dist="gamma", test="ppcc")
gofTestCensored(Arsenic, NDisTRUE, dist="lnorm", test="ppcc")
gofTestCensored(Arsenic, NDisTRUE, dist="norm", test="ppcc")

# gamma - PPCC = r = 0.969 # Mejor Ajuste
# lnorm - PPCC = r = 0.966
# norm - PPCC = r = 1.968
```

Mejor: Maximizar el PPCC, minimizar el BIC para obtener la mejor distribución.

library(EnvStats)

Calcular PPCC o BIC para mejor distribución.

```
library(EnvStats)
gofTestCensored(Arsenic, NDisTRUE, dist="gamma", test="ppcc")
gofTestCensored(Arsenic, NDisTRUE, dist="lnorm", test="ppcc")
gofTestCensored(Arsenic, NDisTRUE, dist="norm", test="ppcc")

# gamma - PPCC = r = 0.969  # Mejor Ajuste
# lnorm - PPCC = r = 0.966
# norm - PPCC = r = 1.968
```

- Mejor: Maximizar el PPCC, minimizar el BIC para obtener la mejor distribución.
- Mayor PPCC es 0.969 es la distribución gamma. Casi el mismo que la distribución normal, podría ser usada la normal? No! (Recordar como esto esta fuera del plot CDF?).

Si la distribución normal es escogida (No!)

```
qqPlotCensored(Arsenic, NDisTRUE, dist="norm", add.line=TRUE)
abline(h=0, col="red")
abline(v=-0.70, col="red", lty=3)
```


Si la distribución normal es escogida (No!) 2

 Distribución normal produce aproximadamente 15% de números negativos.

Si la distribución normal es escogida (No!) 2

- Distribución normal produce aproximadamente 15% de números negativos.
- ② Inaceptable! Rechazar incluso si tiene mayor PPCC. Las estimaciones de la media y UCL serán incorrectas.

Usar el siguiente mayor PPCC: distribución gamma

• La distribución gamm tiene el mayor PPCC = 0.969

Usar el siguiente mayor PPCC: distribución gamma

- La distribución gamm tiene el *mayor PPCC* = 0.969
- BIC de las 3 distribuciones usar el paquete fitdist() escoger el menor es mejor. gamma = 43.9, lognormal = 44.6 & normal = 50.6.

Los mejores métodos son los que usan probabilidades y cuantiles.

- Los mejores métodos son los que usan probabilidades y cuantiles.
- 2 Esto es debido a que no detectados contienen en probabilidades de ser <Ld.

- Los mejores métodos son los que usan probabilidades y cuantiles.
- Esto es debido a que no detectados contienen en probabilidades de ser <Ld.</p>
- Boxplots, plots de probabilidad, PDFs y CDFs todos proveen información valiosa.

- Los mejores métodos son los que usan probabilidades y cuantiles.
- Esto es debido a que no detectados contienen en probabilidades de ser < Id.
- Boxplots, plots de probabilidad, PDFs y CDFs todos proveen información valiosa.
- Scatterplots puede ser usados para plotear no detectados como lineas punteadas o barras de intervalos en vez de como puntos.

