Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

What does a neuron compute?

A neuron computes a linear function (z = Wx + b) followed by an activation function

Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

- A neuron computes a function g that scales the input x linearly (Wx + b)
- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes an activation function followed by a linear function (z = Wx + b)

1/1 points

2.

Which of these is the "Logistic Loss"?

- $igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- $igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = max(0,y^{(i)}-\hat{y}^{(i)})$
- $igcap \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid^2$
- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})$

Correct

Correct, this is the logistic loss you've seen in lecture!

1/1 points

3.

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

\cup	x = img.reshape((32*32,3))

Neural Network Basics*3,1))

10/10 points (100%)

Quiz, 10 questions

Correct

- x = img.reshape((3,32*32))
- x = img.reshape((1,32*32,*3))

1/1 points

4.

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(2, 3) # a.shape = (2, 3)
2 b = np.random.randn(2, 1) # b.shape = (2, 1)
3 c = a + b
```

What will be the shape of "c"?

- c.shape = (3, 2)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (2, 3)

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

c.shape = (2, 1)

1/1 points

5.

Consider the two following random arrays "a" and "b":

```
1  a = np.random.randn(4, 3) # a.shape = (4, 3)
2  b = np.random.randn(3, 2) # b.shape = (3, 2)
3  c = a*b
```

What will be the shape of "c"?

The computation cannot happen because the sizes don't match. It's going to be "Error"!

Correct

 \leftarrow

	work work has is by you would get c.shape = (4, 2).	10/10 points (10
, 10 qu	estions	
	c.shape = (4, 3)	
	c.shape = (3, 3)	
	c.shape = (4,2)	
/	1/1 points	
6.		
Suppo	se you have n_x input features per example. Recall that $X = [x^{(1)}x^{(2)}x^{(m)}].$ What	is the dimension of X?
	(m,1)	
	(m,n_x)	
0	(n_x,m)	
Corr	ect	
	(1,m)	
	1/1	
	points	
7.		
nultip	that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" perfor lication. fer the two following random arrays "a" and "b":	ms an element-wise
nultip Consid	lication. er the two following random arrays "a" and "b": $a = \text{np.random.randn(12288, 150)} \# a.\text{shape} = (12288, 150)$	ms an element-wise
nultip Consid 1 2	lication. er the two following random arrays "a" and "b":	ms an element-wise
nultip Consid 1 2 3	dication. The two following random arrays "a" and "b": $a = \text{np.random.randn}(12288, 150) \# a.\text{shape} = (12288, 150)$ $b = \text{np.random.randn}(150, 45) \# b.\text{shape} = (150, 45)$	ms an element-wise
nultip Consid 1 2 3	dication. er the two following random arrays "a" and "b": $a = \text{np.random.randn(12288, 150)} \# a.\text{shape} = (12288, 150)$ $b = \text{np.random.randn(150, 45)} \# b.\text{shape} = (150, 45)$ $c = \text{np.dot(a,b)}$	
nultip Consid	dication. er the two following random arrays "a" and "b": a = np.random.randn(12288, 150) # a.shape = (12288, 150) b = np.random.randn(150, 45) # b.shape = (150, 45) c = np.dot(a,b) s the shape of c?	
nultip Consid 1 2 3	lication. er the two following random arrays "a" and "b": a = np.random.randn(12288, 150) # a.shape = (12288, 150) b = np.random.randn(150, 45) # b.shape = (150, 45) c = np.dot(a,b) s the shape of c? The computation cannot happen because the sizes don't match. It's going to be "En	
nultip Consid 1 2 3	lication. er the two following random arrays "a" and "b": a = np.random.randn(12288, 150) # a.shape = (12288, 150) b = np.random.randn(150, 45) # b.shape = (150, 45) c = np.dot(a,b) s the shape of c? The computation cannot happen because the sizes don't match. It's going to be "Enc.shape = (150,150)	

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

Quiz, 10 question's / 1 points

8.

Consider the following code snippet:

```
\# a.shape = (3,4)
2
   # b.shape = (4,1)
4
   for i in range(3):
5
     for j in range(4):
       c[i][j] = a[i][j] + b[j]
```

How do you vectorize this?

- c = a.T + b
- c = a + b
- c = a + b.T

Correct

c = a.T + b.T

1/1 points

Consider the following code:

```
a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
3 \quad c = a*b
```

What will be c? (If you're not sure, feel free to run this in python to find out).

This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)

Correct

- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

10/10 points (100%)

What is the output J?

$$J = (c - 1)*(b + a)$$

$$\int J = (a - 1) * (b + c)$$

Correct

Yes.
$$J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c).$$

$$J = a*b + b*c + a*c$$

$$J = (b - 1) * (c + a)$$

