Encontro de Pesquisadores de Iniciação Científica do IFSP - 2019

LEVANTAMENTO E ANÁLISE DE FORMAS DE ONDA DE UMA REDE PROFIBUS DP COM CABEAMENTO EM DIFERENTES CONDIÇÕES

EDUARDA N. SILVA¹, GUILHERME G. CORREIA², MARCELO S. COELHO³

- ¹ Aluna do curso Engenharia de Controle e Automação, Bolsista no Projeto, IFSP, Campus Cubatão, eduarda2411@gmail.com
- ² Aluno do curso de Engenharia de Controle e Automação, Voluntário no PIVICT, IFSP, Campus Cubatão, guilherme_gustavo.2808@hotmail.com
- ³ Mestre em Engenharia Mecânica pela Universidade Santa Cecília em Santos- SP Professor do Instituto Federal de Educação, Ciência e Tecnologia de São Paulo e Coordenador Técnico do SENAI-DR/SP

Área de conhecimento (Tabela CNPq): 3.04.05.02-5 Automação Eletrônica de Processos Elétricos e Industriais

Apresentado no

2° Encontro de Pesquisadores de Iniciação Científica do IFSP, Campus Cubatão

RESUMO: Mesmo a rede Profibus DP sendo altamente utilizada no meio industrial e apresentando vantagens em relação a comunicação "ponto a ponto", ela ainda apresenta sensibilidades a diversas falhas. Porém, para muitos usuários o funcionamento da rede é visto como uma caixa-preta, dificultando a análise e diagnóstico de problemas. Posto isto, o objetivo deste trabalho é fazer o levantamento das falhas apresentadas em uma rede Profibus DP submetida a diferentes ambientes com diversas velocidades de transmissão de dados, através da análise dos sinais e níveis de tensão da rede, visando facilitar a detecção de possíveis causas de falhas. Para tal, como principal ferramenta utilizouse o ProfiCore em conjunto com o software ProfiTrace. A rede utilizada é composta por um mestre e dois escravos, totalizando 72 metros de distância. O levantamento de dados obtidos foi satisfatório, permitindo a descrição de falhas em prol do ambiente submetido e da velocidade utilizada, atingindo o objetivo inicial proposto. A presente pesquisa pode ser ampliada para diversos ambientes distintos, possibilitando o aumento do levantamento de dados.

PALAVRAS-CHAVE: Fieldbus; ProfiTrace; Profibus; redes industriais de comunicação;

INTRODUCÃO

O Profibus DP é uma rede pautada na comunicação mestre-escravo, na qual somente a estação de Mestre pode iniciar uma atividade no barramento, enquanto as estações Escravo respondem às solicitações do Mestre, não iniciando a comunicação (MOSSIN; BRANDÃO, 2012). Esta tecnologia é usada principalmente em comunicação de dados em alta velocidade entre sistemas de controle automático e E/S dispersivos, ou dispositivos inteligentes de campo (XU; FANG, 2005).

Apesar de suas vantagens, o protocolo Profibus DP apresenta certa sensibilidade relacionada a falhas, podendo afetar a estabilidade da instalação, alterando características elétricas e, consequentemente, degradando o sinal transmitido até causar erro na comunicação (MOSSIN; BRANDÃO, 2012). Em meio a isto, muitos usuários ainda consideram redes industriais como caixaspretas não tendo a certeza da saúde real da rede (KAGHAZCHI, 2015).

Afim de colaborar na rápida identificação de falhas, surgiram pesquisas voltadas para o levantamento e diagnósticos de redes Profibus DP, como o trabalho de Drahoš e Bélai (2012), Felser (2005) e de Kaghazchi (2015). Para detectar e classificar esses problemas, os procedimentos mais comuns são analisar o formato do sinal de comunicação elétrica que está sendo transmitido na camada física das redes Profibus DP ou analisar o nível de tensão médio do sinal que um dispositivo específico está transmitindo (MOSSIN; BRANDÃO, 2012). Neste viés, o objetivo deste trabalho é fazer o levantamento das falhas que uma rede Profibus DP apresenta quando submetida a diferentes ambientes

com diferentes velocidades de transmissão de dados, através da análise das formas de ondas e dos níveis de tensão.

MATERIAL E MÉTODOS

Para o desenvolvimento desta pesquisa, foi utilizado o Proficore juntamente com o *software* ProfiTrace para coleta da forma de onda e níveis de tensão da rede. A rede foi composta por um Mestre DP da Altus e dois escravos MURR (Figura 1).

FIGURA 1. Rede Profibus DP FONTE (Autores, 2019)

Denominados escravo 1 de endereço 17 e escravo 2 de endereço 24, seguindo a topologia descrita na Figura 2. Os terminadores estavam ativos apenas nos conectores do Mestre e do escravo 2, sinalizando o ponto inicial e o ponto final da rede. O ProfiCore foi conectado no terminador do Mestre DP para se coletar os dados. As velocidades de transmissão de dados utilizadas para levantamento da forma de onda foi 187,5kbps, 1,5Mbps e 12Mbps. No escravo 2 era conectado ao terminador a continuação do cabeamento Profibus DP com sua outra extremidade sem conector, a qual foi denominada Ponta de Teste, conforme a figura 2.

FIGURA 2. Topologia da Rede Profibus DP FONTE (Autores, 2019)

A Ponta de Teste foi submetida a diferentes condições, afim de provocar interferências na rede e analisá-las. Desta forma, o cabeamento foi submetido a três condições diferentes, denominados: ambiente seco, ambiente úmido e ambiente corrosivo, todos a temperatura de 23°C. O ambiente seco tratava-se de um ambiente em condições normais, isto é, sem interferência na rede para que posteriormente fosse usado como parâmetro para comparações com os demais ambientes. Já o

ambiente corrosivo era formado por um recipiente com 350ml de água com 10g de NaCl, enquanto o ambiente úmido era composto por somente 350ml de água. A Ponta de Teste era submersa a estes recipientes, por sua vez o ProfiCore coletava a forma de onda e os níveis de tensão na rede, e por fim, o Profitrace fornecia esta análise para o usuário.

O mesmo ensaio foi repetido com as pontas de prova de um osciloscópio conectadas no Mestre, para que posteriormente fosse comparado os dados coletados aos dados obtidos via Profitrace.

RESULTADOS E DISCUSSÃO

Para a análise dos resultados obtidos, foi tomado como forma de onda padrão a apresentada em ambiente seco. Inicialmente, foram comparadas as ondas obtidas via Profitrace com as ondas obtidas pelo osciloscópio, certificando-se a veracidade dos dados coletados. A figura 3 apresenta uma das formas de ondas coletadas via Profitrace e osciloscópio.

osciloscópio
FIGURA 3. Formas de Ondas registradas em ambiente seco - 187,5kbps
FONTE (Autores, 2019)

As demais formas de onda coletadas nos ambientes úmido e corrosivo foram comparadas ao ambiente seco com as velocidades respectivas. Nos ensaios realizados, notou-se que o ambiente úmido apresentou leve distorção nas formas de onda a partir de 187,5kbps, contudo tal distorção não foi suficiente para comprometer a transmissão de dados e comunicação entre as estações, tornando-se quase imperceptível (Figura 4).

FIGURA 4. Forma de Onda registrada no endereço 17 – 187,5kbps FONTE (Autores, 2019)

O mesmo comportamento não ocorre em ambiente corrosivo, visto que desde a velocidade mais baixa - a qual em ambiente seco se aproxima mais do formato de onda ideal- há distorções significativas no sinal da rede, como demonstrado nas figuras 5 e 6.

FIGURA 5. Forma de Onda registrada no endereço 17 – 187,5kbps FONTE (Autores, 2019)

FIGURA 6. Forma de Onda registrada no endereço 24 – 12Mbps FONTE (Autores, 2019)

Vale salientar que apenas em ambiente corrosivo houve falha na comunicação entre os nós da rede. Posto isto, foram dispostos na Tabela 1 as estações que entraram em falha e suas principais características nestas condições.

TABELA 1. Levantamento das falhas e distorções de sinais encontrados na Rede Profibus DP

Ambiente Corrosivo						
Velocidade	187,5kbps	1,5Mbps	12Mbps			
Estação	End. 17	End. 17	End. 17			
Tensão	3.90V	3.85V	0V			
Status	Distorção na onda	Falha de comunicação	Falha de comunicação			

Nota-se quedas gradativas de tensão no último escravo da rede conforme o aumento da velocidade, apresentando níveis de tensão abaixo do mínimo tolerado de 4V para operações sem comprometimento da comunicação. Como esperado, em velocidades de 187,5kbps e 1,5Mbps o escravo 2 (endereço 17) apresenta intermitência de sinal na rede, causando falhas na comunicação. Enquanto que na velocidade máxima trabalhada de 12Mbps, o último escravo não é mais detectado pela rede, apresentando queda total e nenhuma possibilidade de comunicação com o mestre.

CONCLUSÕES

O ambiente industrial conta com cenários de diversas variáveis, as quais podem acabar expondo as redes industriais a possíveis situações de falha e comprometimento de transmissão de dados. O projeto conseguiu alcançar a proposta inicial sobre levantamento de dados do comportamento de uma rede Profibus DP quando submetida a diferentes condições, afim de tabelar erros e correlaciona-los ao ambiente da instalação.

O projeto continua em andamento, a projeção futura é aumentar o número de dispositivos na rede e ampliar os ensaios com maior número de interferências externas que uma rede industrial pode ser submetida, como o caso de ambientes com cargas altamente indutivas, para ajudar na orientação de usuários quanto ao diagnóstico e a identificação da causa de possíveis problemas.

AGRADECIMENTOS

Agradecimentos ao IFSP e aos fabricantes Altus e WESTCON pela disponibilização dos materiais.

REFERÊNCIAS

DRAHOŠ, P., BÉLAI, I.. The PROFIBUS Protocol Observation. 9th IFAC Symposium Advances in Control Education, Nizhny Novgorod, Rússia, jun. 2012. Disponível em:https://www.researchgate.net/publication/229018407_THE_INDUSTRIAL_COMMUNICATION_SYSTEMS_PROFIBUS_AND_PROFInet Accesso em: 10 de jul. 2019.

FELSER, M.. Quality of profibus installations. 2006 IEEE international workshop on factory communication systems, Torino, Itália, 25 set. 2006. Disponível em:https://ieeexplore.ieee.org/document/1704137 Acesso em: 29 de jul. 2019.

KAGHAZCHI, H.. A Diagnostics Model for Industrial Communications Networks. Doctoral thesis, University of Sunderland, 2015. Disponível em: < http://sure.sunderland.ac.uk/id/eprint/5651/ > Acesso em: 28 de jul. 2019.

MOSSIN, E. A.; BRANDÃO, D.. Intelligent diagnostic for PROFIBUS DP networks. 2012 IEEE International Conference on Industrial Technology, Atenas, Grécia, 4 jun. 2012. Disponível em: https://ieeexplore.ieee.org/document/6210032. Acesso em: 29 jul. 2019.

XU, J.; FANG, Y.J. Profibus Automation Technology and Its Application in DP Slave Development. 2004 IEEE International Conference on Information Acquisition, Hefei, China, 3 jan. 2005. Disponível em: https://ieeexplore.ieee.org/abstract/document/1373430/citations?tabFilter=papers#citations. Acesso em: 3 jul. 2019.