14 - Final Exam Study Guide

CEG 4350/5350 Operating Systems Internals and Design Max Gilson

Final Exam Details

- 14 questions total 35% of final class grade
- True/False
 - 4 questions
 - o 1.25 points each
 - 5.0 points total (5.0% of final class grade)
- Multiple choice
 - 4 questions
 - 1.25 points each
 - 5.0 points total (5.0% of final class grade)
- Short answer
 - 4 questions
 - o 2.5 points each
 - o 10.0 points total (10.0% of final class grade)
- Coding
 - 2 questions
 - o 7.5 points each
 - o 15.0 points total (15.0% of final class grade)

Introduction

- Definitions
 - What is a system
 - What is an OS
- Popular OSs
 - Linux, Windows, MacOS

Design Principles

- Goals
 - User goals
 - System goals
- Separation of mechanism and policy
- High level language vs low level for OS
- OS requirements
 - What does an OS manage?
 - What protections must an OS implement
- Structure
 - Layered, monolithic, microkernel
- Kernel
 - What is a kernel
 - Kernel mode vs user mode
- I/O Access
 - o Interrupt, memory mapped, port mapped
- Runtime Stack
 - ESP vs EBP

Hardware and The OS

- Hardware
 - o CPU, ISA, RAM, storage, motherboard, etc.
- Boot process
 - PSU, MBR, BIOS, UEFI, booting the kernel
- Shutdown process
- Execution modes
 - Real mode vs protected mode
- Hardware abstraction layer
- Text modes
- Writing to display
 - Character, data, video memory
- Reading from keyboard
 - Status port, data port, scancodes
- Anatomy of storage
 - o Cylinders, heads, sections, CHS addressing, LBA addressing

Processes

- Process abstraction
- Multiple processes
 - Context switching
- Parallelism
- Process's memory
 - Instructions, data, runtime stack
- Inter-process communication
 - Shared files, shared memory, message passing
- Process states
 - New, ready, running, waiting, terminated
- Creating processes in Linux
 - o Fork, waitpid, execve, execvp, execlp, exit, kill
- Process control block

Threads

- What is a thread
 - Execution context
 - CPU core vs thread
- Thread abstraction
- Multithreaded vs multitasking
- POSIX
- Kernel threads vs user threads
- Contention scopes
 - o PCS. SCS
- Thread models
 - Many-to-one, one-to-one, many-to-many
- Thread scheduling

CPU Scheduling

- Scheduling processes
- Long term scheduling vs short term scheduling
- Scheduling metrics
 - CPU utilization, I/O utilization, throughput, turnaround time, waiting time, response time
- Scheduling algorithms/policies
 - FIFO, RR, SPN/SRTF, MLFQ, lottery
- Calculating waiting time and turnaround time

Main Memory

- Definitions
 - Segment, physical address, virtual address, contiguous memory
- Generating addresses
 - o Compile time, load time, run time
- Uniprogramming vs multiprogramming
- Relocation
 - Dynamic vs static
- Allocation
 - Memory holes
 - First fit, best fit, worst fit
- External fragmentation vs internal fragmentation
- Compaction
- Swapping
- Paging
 - OS mapping, paging hardware, pages vs frames
 - Translating virtual address to physical address
- Segmentation
 - Segments, base and limit registers, concepts
 - Translating virtual address to physical address

File Systems

- Directories and files
- File system types (NTFS, FAT, APFS, etc.)
- Goals of a file system
- RAM vs Storage
- Reading/Writing Storage
 - Sectors (unit of atomicity)
 - Read-Modify-Write
- Files as an abstraction
 - Perspectives
 - Metadata
 - File blocks and mappings
- File system performance
- Addressing files
- Storage management
 - Inodes
 - File structure intuitions

FAT12 File System

- Disk organization
 - Boot sector, FAT tables, root directory, data area
- Boot sector format
- FAT table format
 - FAT entry values
- Directory format
 - Directory entries
 - Filename and extensions

File Systems (cont.)

- Allocation methods
 - Extent-based Allocation
 - Linked Allocation
 - Indexed Allocation
 - Multi-Level Indexed Allocation
- Inode Placement
- Hierarchical Unix
 - Naming Conventions
 - Original UNIX format and issues
 - o Block size, seek time, cluster solutions
 - Big picture

Input and Output Systems

- Input device vs output device and peripherals
- System architecture
 - System bus, device port, controller, the device
- PCI Bus
- Kernel I/O
 - I/O subsystem, driver, controller
- Port locations
- OS interface
- Polling vs Interrupts
 - How interrupts work steps and interrupt vector table
- DMA
- Device characteristics
- I/O Buffering

Networks and Distributed Systems

- Distributed vs parallel systems
- Advantages of distributed systems
 - Resource sharing, computation speedup, reliability, communication
- Design considerations
 - Communication systems, transparency, security, reliability, performance, etc.
 - Resource sharing, timing, failure recovery, etc.
- Networks
 - LAN vs WAN
 - Packets and routers
 - Protocols
- Network topologies
- Resource sharing
 - Data, computation, and process migration
- Client/server model
- Remote procedure call

Distributed File Systems

- Distributed file system issues
 - Naming, remote access, caching, states
 - Location transparency and independence
- Naming schemes
 - Absolute, mount point, global namespaces
- Accessing files
 - Remote access vs caching
- Caching
 - Where to store cache, how to update cache, cache consistency
- Stateless vs stateful
- Sun's Network File System (NFS)

Protection

- Objects and access
- Domains and access-rights
 - Domains in UNIX
 - Domains in Multics
- Access Matrix
 - Mechanism and policy
 - Implementations
- Language based protections