Uncertainty in Artificial Intelligence

Ph.D. Comprehensive Exam

Mohammad Shayganfar - mshayganfar@wpi.edu May, 26 2015

1 Introduction to Uncertainty in AI

2 Sources and Types of Uncertainties

- -Sources:
 - + Noise (imprecise observation)
 - + Uncertain Change (unprediatable or stochastis behavior of the world)
 - + Incompleteness or igonorance (missing information)

3 Theories of Uncertainties

- 3.1 Bayesian Networks
- 3.1.1 Types of Reasoning
- 3.1.2 Probability Theory

3.2 Dempster-Shafer Theory

In [3], Dempster proposed a probabilistic framework based on lower and upper bounds on probabilities. In [6], Shafer developed a formalism for reasoning under uncertaintythat used some of Dempster's mathematical expressions, but gave them a different interpretation: each piece of evidence (finding) may support a subset containing several hypotheses. This is a generalization of the pure probabilistic framework in which every finding corresponds to a value of a variable (a single hypothesis) [4]. Dempster-Shafer theory is the generalization of the Bayesian theory of subjective probability (mainly by virtue of its explicit definition of the concept of ignorance) to combine accumulative evidence or to change prior oopinions in the light of new evidence [2]. Dempster-Shafer theory is designed to deal with the distinction between uncertainty and ignorance. Rather than computing the probability of a proposition, it computes the probability that the evidence supports the proposition [5] and it does not require the assumption that Be-

 $lief(A) + Belief(\neg A) = 1$. Dempster-Shafer theory deals with the possible values of an unknown variable, just as does the theory of probability [8].

There are three basic functions in the Dempster-Shafer theory that we need to understand for modeling purposes. Let $\Theta = \{h_1, h_2, \dots, h_n\}$ be a finite set of hypotheses. This set of hypotheses is also called *frame of discerntment*. A Basic Probability Assignment (BPA) or mass function is a function $m: 2^{\Theta} \to [0, 1]$ such that:

$$m(\emptyset) = 0$$
, and $\sum_{x \in 2^{\Theta}} m(x) = 1$.

The value 0 indicates no belief and the value 1 indicates total belief, and any value between these two indicate partial belief. As you see the mass function uses the notion of 2^{Θ} to be able to use all possible subsets of the frame of discernment Θ . All of the assigned probabilities sum to unity. There is no belief in empty set. Any subset x of the frame of discernment Θ for which m(x) is non-zero is called a *focal element* and represents the exact belief in the proposition depicted by x. Thus, any subset is proposition and vice versa. Other elements in Dempster-Shafer theory are defined by BPA. Now, we can define another important notion in Dempster-Shafer theory, the belief function (sometimes called a support function). A belief function is a function $Belief: 2^{\Theta} \to [0,1]$. It is the measure of total belief committed to $A \subseteq \Theta$ that can be obtained by simply adding up the mass of all the subsets of A. In other words, given the frame of discernment Θ and $A \subseteq \Theta$, the belief in A, denoted Belief(A), is a number in the interval [0, 1]. A belief function Belief defined on a space Θ must satisfy the following three properties:

$$m{p1.}\ Belief(\emptyset)=0$$

$$m{p2.}\ Belief(\Theta)=1$$

$$m{p3.}\ Belief(A)=\sum_{B\subseteq A}m(B) \qquad \text{for all } A\subseteq\Theta$$

A plausibility measure is a function $Plausible: 2^\Theta \to [0,1],$ and is defined by:

$$Plausible(A) = \sum_{B \cap A \neq \emptyset} m(B)$$
 for all $A \subseteq \Theta$

Plausible(A) in a subset A is defined to be the sum of all mass functions for the subsets B that have non-zero intersections with A, and it represents the

extent to which we fail to disbelieve A. The plausibility and belief functions are related to one another and we can represent this relation as:

$$Belief(A) = 1 - Plausibility(\neg A)$$
 and $Plausibility(A) = 1 - Belief(\neg A)$,

where $\neg A$ is A's complement, and also $Belief(\neg A)$ is often called the doubt in A. It is noteworthy to mention that Dempster-Shafer theory allows the representation of ignorance since Belief(A) = 0 does not imply $Belief(\neg A) > 0$ even though $Belief(\neg A) = 1$ implies Belief(A) = 0. Other notable relations are:

$$Belief(A) + Belief(\neg A) \leq 1$$
, and

$$Plausiblity(A) + Plausiblity(\neg A) \ge 1.$$

Here, we also note that in the case of each of the focal elements being singletons then we return back to traditional Bayesian analysis incorporating normal probability theory, since in this case Belief(A) = Plausibility(A) [1].

[It is shown in [22] that all the above three measures of condence and the BPA are equivalent, in the sense that each of them can be expressed as a function of any one of the rest.]

Collectively the above measures provide Dempster-Shafer theory with an explicit measure of ignorance about A and its complement. Although, the above three measures of confidence and the BPA are equivalent, in the sense that each of them can be expressed as a function of any one of the rest. The measure is defined as the length of the interval [Belief(A), Plausiblity(A)] where $Belief(A) \leq Plausiblity(A)$ [9], and it is called as belief interval. Furthermore, the mass assigned to Θ can be interpreted as the global ignorance since this weight of evidence is not discernible among the hypothesis.

Suppose that we have two pieces of uncertain evidence relevant to the same Θ . Dempster-Shafer theory also provides a method to combine the measures of evidence from different sources, using Dempster's rule of combination which combines two pieces of evidence into a single new piece. The rule assumes that the sources are independent. If m_1 and m_2 are the BPA's associated with Bel_1 and Bel_2 respectively and Bel_1 and Bel_2 are independent, then Dempster's rule of combination is as follows:

$$[m_1 \oplus m_2](y) = \begin{cases} 0, & y = \emptyset \\ \frac{\sum_{A \cap B = y} m_1(A)m_2(B)}{1 - \sum_{A \cap B \neq \emptyset} m_1(A)m_2(B)}, & y \neq \emptyset \end{cases}$$

and is a BPA. The denominator in the Dempster's rule of combination, i.e., $1 - \sum_{A \cap B \neq \emptyset} m_1(A) m_2(B)$, is an important normalization factor denoted by \mathcal{K} . It can be interpreted as a measure of conflict between the sources [7].

3.3 Fuzzy Logic

3.4 Other approaches

4 Strengths and Weaknesses

In general, there is an increasing trend of computational complexity Fuzzy Logic to probabilistic approaches and Dempster-Shafer theory. However, the representational power and precision increases in the same order and direction.

- Locality in rule-based systems vs. using all evidences in probabilistic systems [R&N AI book p.524]
- -Detachment in rule-based systems vs. requiring the source of evidence for subsequent probabilistic reasoning [R&N AI book p.524]
- Dempster-Shafer theory allows no definite decision in many cases, whereas probabilistic inference does yield a specific choice [5].
- In contrast to Dempster-Shafer theory, a complete Bayesian model would include probability estimates for factors that allow us to express the ignorance in terms of how our beliefs would change in the face of future information gathering [5].

4.1 Advantages and Disadvantages of Belief Networks

Like any other computational formalism, belief network technology offers certain advantages and disadvantages. Advantages of belief networks include [2]:

• Sound theoretical foundation: The computation of beliefs using probability estimates is guaranteed to be consistent with probability the-

ory. This advantage stems from the Bayesian update procedures strict derivation from the axioms of probability.

- Graphical models: Belief networks graphically depict the interdependencies that exist between related pieces of domain knowledge, enhancing understanding of the domain. The structure of a belief network captures the cause-effect relationships that exist amongst the variables of the domain. The ease of causal interpretation in belief network models typically makes them easier to construct than other models, minimizing the knowledge engineering costs and making them easier to modify.
- Predictive and diagnostic reasoning: Belief networks combine both deductive/predictive and abductive/diagnostic reasoning. Interdependencies among variables in a network are accurately captured and speculative if-then type computation can be performed.
- Computational tractability: Belief networks are computationally tractable
 for most practical applications. This efficiency stems principally from
 the exploitation of conditional independence relationships over the domain. We have presented an efficient single-pass evidence propagation
 algorithm for networks without loops.
- Evidence handling: Evidence can be posted to any node in a belief network. This means that subjective evidence can be posted at an intermediate node representing an abstract concept.

A major disadvantage of belief network technology is the high level of effort required to build network models. Although it is relatively easy to build a belief network structure with the help of subject matter experts, the model will require a significant amount of probability data as the number of nodes and links in the structure increase. The size of a CPT corresponding to a node with multiple parents can potentially be huge. For example, the number of independent entries in the CPT of a binary node (a node with two states) with 8 binary parent variables is 128.

Belief networks are also poor at handling continuous variables. Current software handles continuous variables in a very restrictive manner (for example, they must be Gaussian and can only be children). Lener et al. (2001) developed an inference algorithm for static hybrid belief networks, which are Conditional Linear Gaussian models, where the conditional distribution of the continuous variables assigned to the discrete variables is a multivariate Gaussian. Cob and Shenoy (2004) developed an inference algorithm in

hybrid belief networks using Mixtures of Truncated Potentials. But these techniques are yet to be incorporated in commercial software.

4.2 Advantages and Disadvantages of Dempster-Shafer Theory

- Its ability to represent ignorance in a direct and straightforward fashion.
 - Its consistency with classical probability theory.
 - Its manageable computational complexity.
 - Represents the actual state of belief more precisely
 - Distinguishes randomness from missing information

Dis:

- The main problem of the Dempster-Shafer theory in its original formulation is that its computational complexity grows exponentially with the number of hypotheses.
 - mathematically complex
 - Has to be calculated over all possible sets of states
- A small modification of the evidence assignments may lead to a completely different conclusion.

4.3 Advantages and Disadvantages of Fuzzy Logic

- Easy to design
 - Relatively intuitive rules
 - Relatively robust controllers

Dis:

- Longer inference chains can be problematic
- The order of inference steps matters
- After inference it can be difficult to exactly interpret the membership value

5 Applications of Bayesian Networks

6 Conclusion

References

[1] Malcolm Beynon, Bruce Curry, and Peter Morgan. The dempstershafer theory of evidence: an alternative approach to multicriteria decision

- modelling. Omega, The International Journal of Management Science, 28(1):37–50, 2000.
- [2] Subrata Das. Foundations Of Decision-Making Agents: Logic, Probability and Modality. World Scientific Publishing Co., 2008.
- [3] Arthur P. Dempster. A generalization of bayesian inference. *Journal of the Royal Statistical Society*, 30(B):205–247, 1968.
- [4] Francisco J. Diez and Marek J. Druzdzel. Reasoning under uncertainty. In L. Nadel, editor, *Encyclopedia of Cognitive Science*, pages 880–886. London: Nature Publishing Group, 2003.
- [5] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 2003.
- [6] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
- [7] Rajendra P. Srivastava. An introduction to evidential reasoning for decision making under uncertainty: Bayesian and belief functions perspectives. *International Journal of Accounting Information Systems*, 12(2):126–135, 2011.
- [8] Steven Tanimoto. The elements of artificial intelligence: an introduction using LISP. Computer Science Press, 1987.
- [9] Ronald R. Yager. On the dempstershafer framework and new combination rules. *Information Science*, 41(2):93–137, 1987.