

Álgebra Booleana

	Sumário da Aula	
3.1 Eq.	uivalência Lógica	
	gebra Booleana	
3.2	.1 Leis Fundamentais da Álgebra Booleana	
3.3 Exe	ercícios	
3.4 Co	nstrução de novas equivalências lógicas	
3.5 Pro	posições associadas a uma sentença condicional	
3.6 Exc	emplos complementares	
3.7 Exe	ercícios	

3.1 Equivalência Lógica

Definição 3.1 (Equivalência Lógica). Duas fórmulas α e β são ditas **equivalentes**, $\alpha \equiv \beta$, se possuem o **mesmo valor lógico** para uma mesma atribuição de valores para as suas variáveis. Em outras palavras, dizemos que **duas fórmulas** α **e** β **são equivalentes, se a fórmula** $\alpha \leftrightarrow \beta$ **for uma tautologia**.

Exemplo 20. A e $\neg \neg A$ são exemplos de fórmulas equivalentes. Veja: Uma maneira de determinar se duas proposições compostas são equivalentes é através da tabela verdade. No exemplo, as

\overline{A}	$\neg A$	$\neg \neg A$	$\neg \neg A \leftrightarrow A$
F	T	F	T
T	F	T	T

proposições compostas A e $\neg \neg A$ são equivalentes, pois as colunas que fornecem os valores verdades das fórmulas são idênticas.

Veja também que a fórmula $A \leftrightarrow \neg \neg A$ é uma tautologia, pois a coluna que a representa na tabela (última coluna) possui todos os valores lógicos verdadeiros, indicando que as fórmulas A e $\neg \neg A$ são equivalentes.

Observações:

- O símbolo \equiv não é conectivo lógico e $\alpha \equiv \beta$ não é proposição composta.
- O símbolo \equiv é usado apenas para indicar que a fórmula $\alpha \leftrightarrow \beta$ se trata de uma tautologia.
- Podemos determinar se duas proposições compostas são equivalentes usando tabela verdade.
 Duas proposições compostas α e β serão equivalentes se, e somente se, as colunas que fornecem seus valores verdade são idênticas.

Exemplo 21. Verifique se as fórmulas seguintes são equivalentes:

a) $(A \wedge B) \wedge C$ e $A \wedge (B \wedge C)$

A	B	C	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$	$A \wedge (B \wedge C)$	$(A \land B) \land C \leftrightarrow A \land (B \land C)$
T	Т	T	T	T	T	T	T
T	Т	F	T	F	F	F	T
T	F	T	F	F	F	F	T
T	F	F	F	F	F	F	T
F	Т	T	F	F	T	F	T
F	Т	F	F	F	F	F	T
F	F	T	F	F	F	F	T
F	F	F	F	F	F	F	T

 $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$, pois as colunas da tabela verdade que representam essas fórmulas são idênticas. Além disso, a fórmula $(A \wedge B) \wedge C \leftrightarrow A \wedge (B \wedge C)$ é uma tautologia.

b) $\neg (A \lor B) \ e \ \neg A \land \neg B$

A	B	$\neg A$	$\neg B$	$A \lor B$	$\neg (A \lor B)$	$\neg A \land \neg B$	$\neg (A \lor B) \leftrightarrow \neg A \land \neg B$
T	T	F	F	Т	F	F	T
T	F	F	T	T	F	F	T
F	T	T	F	Т	F	F	T
F	F	T	T	F	T	T	T

 $\neg(A \lor B) \equiv \neg A \land \neg B$, pois as colunas da tabela verdade que representam essas fórmulas são idênticas. Além disso, a fórmula $\neg(A \lor B) \leftrightarrow \neg A \land \neg B$ é uma tautologia.

3.2 Álgebra Booleana

A **Álgebra Booleana**, que recebe este nome em homenagem ao matemático inglês George Boole¹, é uma estrutura algébrica que compreende as propriedades essenciais tanto da lógica proposicional quanto da teoria dos conjuntos. É uma forma de raciocínio algébrico sobre fórmulas, que permite de maneira simples mostrar que duas fórmulas são iguais por meio de uma sequência de igualdades e substituições.

Uma Álgebra Booleana pode ser definida com um conjunto de operadores e um conjunto de axiomas, que são assumidos verdadeiros sem necessidade de prova, e que permitem determinar se duas fórmulas são equivalentes. A tabela verdade também pode ser usada para este propósito. Porém, o seu uso pode se tornar restrito devido a quantidade de linhas que ela assume $(2^n$, onde n é o número de variáveis da fórmula bem formada).

3.2.1 Leis Fundamentais da Álgebra Booleana

Existem um conjunto de equações, normalmente chamadas de **leis da Álgebra Booleana**, que descreve propriedades algébricas de proposições. Diz-se que uma proposição é uma lei se a equação que ela representa é uma tautologia, ou seja, se o seu valor lógico é sempre verdadeiro, independente dos valores lógicos de suas variáveis.

As leis da Álgebra Booleana dizem respeito aos valores lógicos e as operações elementares sobre uma fórmula bem formada, e podem ser usadas na simplificação de expressões lógicas. Vamos apresentar algumas equivalências lógicas básicas e como elas são identificadas.

Leis envolvendo constantes

As primeiras leis apresentadas envolvem constantes. Essas leis, especificam como as constantes lógicas ($true \ e \ false$) interagem com os conectivos lógicos conjunção (\wedge) e disjunção (\vee).

Equivalências	Nomes		
$P \wedge false \equiv false$	$\{\land - Dominação\}$		
$P \lor true \equiv true$	$\{ \lor - Dominação \}$		
$P \wedge true \equiv P$	$\{ \land - Identidade \}$		
$P \vee false \equiv P$	$\{ \lor - Identidade \}$		

A seguir são apresentadas as demonstrações das equivalências $\{\land -Dominação\}\ e\ \{\land -Identidade\}\$.

• $\{\land - Dominação\}: P \land false \equiv false$

Prova:

P	false	$P \wedge false$	$P \wedge false \leftrightarrow false$
T	F	F	T
F	F	F	T

¹George Boole (1815-1864) nasceu em Lincoln, Inglaterra, no dia 2 de novembro de 1815. Foi Matemático e criador da "Álgebra Booleana", trabalho fundamental para a posterior evolução dos computadores.

• $\{ \land - \text{Identidade} \} : P \land true \equiv P$

Prova:

\overline{P}	true	$P \wedge true$	$P \wedge true \leftrightarrow P$
T	T	T	T
\overline{F}	T	F	T

Exemplo 22. Mostre que as fórmulas $(A \lor false) \land (B \lor true)$ e A são equivalentes. **Solução:**

$$\begin{array}{lll} (A \vee false) \wedge (B \vee true) & \equiv & A \wedge (B \vee true) & \{ \vee - \mathsf{Identidade} \} \\ & \equiv & A \wedge true & \{ \vee - \mathsf{Domina} \zeta \tilde{\mathsf{ao}} \} \\ & \equiv & A & \{ \wedge - \mathsf{Identidade} \} \end{array}$$

Portanto, temos que $(A \lor false) \land (B \lor true) \equiv A$.

Leis elementares dos conectivos \land e \lor :

Equivalências	Nomes
$P \wedge P \equiv P$	$\{\land - Idempotência\}$
$P \lor P \equiv P$	$\{\lor - Idempotência\}$
$P \wedge Q \equiv Q \wedge P$	$\{\land - Comutatividade\}$
$P \vee Q \equiv Q \vee P$	$\{ \lor - Comutatividade \}$
$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$\{\land - Associatividade\}$
$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	$\{\lor - Associatividade\}$
$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$\{ \land - \text{Distributividade} - \lor \}$
$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	$\{ \lor - \text{Distributividade} - \land \}$
$(P \land Q) \lor Q \equiv Q$	$\{\lor - Absorção\}$
$(P \lor Q) \land Q \equiv Q$	$\{\land - Absorção\}$

Demonstração das leis $\land - \{Idempotência\} e \{\lor - Comutatividade\}.$

• $\land - \{ Idempotência \} : P \land P \equiv P$

Prova:

P	$P \wedge P$	$P \wedge P \leftrightarrow P$
T	T	T
F	F	T

• $\{ \lor - \text{Comutatividade} \}$: $P \lor Q \equiv Q \lor P$

Prova:

P	Q	$P \lor Q$	$Q \lor P$	$P \vee Q \leftrightarrow Q \vee P$
T	T	T	T	T
T	F	T	T	T
\overline{F}	T	T	T	T
\overline{F}	F	F	F	T

Exemplo 23. Mostre que as fórmulas $(false \land A) \lor B$ e B são equivalentes.

Solução:

$$\begin{array}{cccc} (false \wedge A) \vee B & \equiv & (A \wedge false) \vee B & \{ \wedge - \text{comutatividade} \} \\ & \equiv & false \vee B & \{ \wedge - \text{Dominação} \} \\ & \equiv & B \vee false & \{ \vee - \text{Comutatividade} \} \\ & \equiv & B & \{ \vee - \text{Identidade} \} \end{array}$$

Portanto, temos que $(false \wedge A) \vee B \equiv B$.

Leis de De Morgan:

Duas equivalências lógicas muito úteis são as **Leis de De Morgan**, assim nomeadas em honra ao matemático inglês do século XIX Augustus De Morgan², que foi o primeiro a enunciá-las. As Leis de De Morgan envolvem os conectivos \land e \lor e a negação \neg .

Equivalências	Nomes		
$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\{\land - DeMorgan\}$		
$\neg (P \lor Q) \equiv \neg P \land \neg Q$	$\{ \lor - DeMorgan \}$		

• Lei: $\{ \land - \text{DeMorgan} \}$. Vamos provar por tabela verdade que $\neg (P \land Q) \equiv \neg P \lor \neg Q$. Vamos provar por tabela verdade que $\neg (P \land Q) \equiv \neg P \lor \neg Q$.

Prova:

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$	$\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$
T	T	T	F	F	F	F	T
T	F	F	T	F	T	T	T
\overline{F}	T	F	T	T	F	T	T
\overline{F}	F	F	T	T	T	T	T

Observações:

• Da regra $\neg (P \land Q) \equiv \neg P \lor \neg Q$:

A proposição $\neg(P \land Q)$ especifica que "não é verdade que P e Q são simultaneamente verdadeiros". Essa proposição é equivalente a dizer que "ou P é falso ou Q é falso".

²Augustus De Morgan foi umMatemático inglês 1806-1871. Autor de inúmeros trabalhos em várias áreas da matemática: definiu e introduziu o conceito de indução matemática numa base rigorosa; forneceu uma interpretação geométrica dos números complexos; contribuiu com o reconhecimento da natureza puramente simbólica da álgebra; introduziu as leis chamadas de De Morgan em lógica matemática, a sua maior contribuição para o pensamento matemático.

• Regra $\neg (P \lor Q) \equiv \neg P \land \neg Q$:

A proposição $\neg(P \lor Q)$ especifica que "não é verdade que P ou Q sejam verdadeiros", em outras palavras, "não é verdade que uma das proposições seja verdadeira". Essa proposição é equivalente a dizer que "P e Q são falsos".

Exemplo 24. Use as Leis de De Morgan para negar as seguintes afirmações:

- a) Miguel tem um celular e um notebook.
 - *P* : Miguel tem um celular.
 - Q: Miguel tem um notebook.
 - $P \wedge Q$: Miguel tem um celular e um notebook.
 - Negação: $\neg P \lor \neg Q$: Miguel não tem um celular ou não tem um notebook.
- b) Rodrigo vai ao concerto ou Carlos vai ao concerto.
 - *P* : Rodrigo vai ao concerto.
 - Q: Carlos vai ao concerto.
 - $P \lor Q$: Rodrigo vai ao concerto ou Carlos vai ao concerto.
 - Negação: $\neg P \land \neg Q$: Rodrigo não vai ao concerto e Carlos não vai ao concerto.

Leis envolvendo a negação (¬):

Equivalências	Nomes
$\neg true \equiv false$	$\{T - Negação\}$
$\neg false \equiv true$	$\{F - Negação\}$
$\neg(\neg P) \equiv P$	{Dupla Negação}
$P \wedge \neg P \equiv false$	{Contradição}
$P \vee \neg P \equiv true$	{Terceiro Excluído}

Demonstração por tabela verdade a Lei da {Contradição}, ou seja, que $P \land \neg P \equiv false$.

Prova:

P	$\neg P$	$P \wedge \neg P$	false	$P \land \neg P \leftrightarrow false$
T	F	F	F	T
F	T	F	F	T

Exemplo 25. Mostre que as fórmulas $A \wedge \neg (B \vee A)$ e false são equivalentes utilizando as leis fundamentais da Álgebra Booleana estudadas até o momento.

Solução:

$$\begin{array}{lll} A \wedge \neg (B \vee A) & \equiv & A \wedge \neg B \wedge \neg A & \{ \vee - \mathsf{DeMorgan} \} \\ & \equiv & \neg B \wedge A \wedge \neg A & \{ \wedge - \mathsf{Comutatividade} \} \\ & \equiv & \neg B \wedge F & \{ \wedge - \mathsf{Contradição} \} \\ & \equiv & false & \{ \wedge - \mathsf{Dominação} \} \end{array}$$

Portanto, temos que $A \land \neg (B \lor A) \equiv false$.

Resumo das Regras de Equivalências

A Tabela 3.1 apresenta um resumo com algumas equivalências lógicas básicas da álgebra booleana.

Equivalências	Nomes
$P \wedge false \equiv false$	$\{\land - Dominação\}$
$P \lor true \equiv true$	$\{\lor - Dominação\}$
$P \wedge true \equiv P$	$\{\land - Identidade\}$
$P \vee false \equiv P$	$\{\lor - Identidade\}$
$P \wedge P \equiv P$	$\{\land - Idempotência\}$
$P \lor P \equiv P$	$\{ \lor - Idempotência \}$
$P \wedge Q \equiv Q \wedge P$	$\{\land - Comutatividade\}$
$P \vee Q \equiv Q \vee P$	$\{ \lor - Comutatividade \}$
$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$\{\land - Associatividade\}$
$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	$\{\lor - Associatividade\}$
$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	$\{\land - Distributividade - \lor\}$
$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	$\{ \lor - \text{Distributividade} - \land \}$
$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\{\land - DeMorgan\}$
$\neg (P \lor Q) \equiv \neg P \land \neg Q$	$\{\lor - DeMorgan\}$
$\neg true \equiv false$	$\{T-Negaç\~ao\}$
$\neg false \equiv true$	$\{F-Negaç\~ao\}$
$\neg(\neg P) \equiv P$	{Dupla Negação}
$P \wedge \neg P \equiv false$	{Contradição}
$P \vee \neg P \equiv true$	{Terceiro Excluído}
$(P \land Q) \lor Q \equiv Q$	$\{\lor - Absorção\}$
$(P \lor Q) \land Q \equiv Q$	$\{\land - Absorção\}$

Tabela 3.1: Regras básicas de equivalências lógicas

3.3 Exercícios

E. 1. Prove as seguintes leis fundamentais da álgebra booleana usando a tabela verdade.

- a) $\neg(\neg P) \equiv P$
- b) $P \lor T \equiv T$
- c) $P \wedge F \equiv F$
- d) $P \lor P \equiv P$
- e) $P \wedge Q \equiv Q \wedge P$
- f) $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
- g) $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$

h)
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

i)
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

$$j) \neg (P \lor Q) \equiv \neg P \land \neg Q$$

k)
$$P \land \neg P \equiv F$$

1)
$$P \vee \neg P \equiv T$$

E. 2. Use a tabela verdade para mostrar que as proposições são equivalentes.

a)
$$P \leftrightarrow Q \in (P \to Q) \land (Q \to P)$$

b)
$$P \leftrightarrow Q \in \neg P \leftrightarrow \neg Q$$

c)
$$\neg (P \leftrightarrow Q)$$
 e $P \leftrightarrow \neg Q$

d)
$$P \leftrightarrow Q \in (P \land Q) \lor (\neg P \land \neg Q)$$

E. 3. Verifique se as fórmulas seguintes são ou não equivalentes.

a)
$$P \leftrightarrow Q \in (P \to Q) \land (\neg P \to \neg Q)$$

b)
$$P \wedge \neg Q) \vee (\neg P \wedge Q) \in (P \vee Q) \wedge \neg (P \wedge Q)$$

c)
$$\neg (P \lor (\neg P \land Q)) e \neg P \land \neg Q$$

E. 4. Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:

- a) João trabalhará na indústria ou irá para a faculdade.
- b) Camila conhece Java e C++.
- c) Paulo é Atleticano e Cruzeirense.
- d) Júlia mudará para Belo Horizonte ou Rio de Janeiro.

E. 5. A seguir está uma prova de equivalência entre fórmulas proposicionais, usando Álgebra Booleana. A justificativa de cada passo da prova está omitida. Complete a derivação indicando em cada passo da derivação qual lei algébrica foi utilizada:

$$A \lor \neg (A \land \neg B) = A \lor (\neg A \lor \neg \neg B)$$

$$= (A \lor \neg A) \lor \neg \neg B$$

$$= \text{true} \lor \neg \neg B$$

$$= \text{true} \lor B$$

$$= B \lor \text{true}$$

$$= \text{true}$$

E. 6. Prove as seguintes equivalências lógicas, usando a tabela 3.1.

a)
$$A \vee (A \wedge A) = A$$

b)
$$A \lor (B \land \neg A) = A \lor B$$

c)
$$(A \lor B) \land (A \lor \neg B) = A$$

E. 7. Deduza a tabela verdade do \land , usando o axiomas da Álgebra Booleana e a tabela verdade da negação (derivada anteriormente a partir dos axiomas). O caso true \land true é apresentado abaixo, como exemplo. Você deve deduzir os demais casos, ou seja, true \land false, false \land true, false \land false.

$$\begin{array}{ll} true \wedge true &= \neg false \wedge \neg false & \{tabela\neg\} \\ &= \neg (false \vee false) & \{ \vee - \ DeMorgan \} \\ &= \neg false & \{ \vee - \ Idempotência \} \\ &= true & \{tabela\neg\} \end{array}$$

- E. 8. Deduza a regra $\{\land \text{ DeMorgan}\}$ usando os axiomas da Álgebra Booleana.
- E. 9. Deduza a regra $\{\land \text{Distributividade}\}$ usando os axiomas da Álgebra Booleana e a regra $\{\land \text{DeMorgan}\}\$ (deduzida no exercício anterior).

Leis envolvendo implicação e bi-implicação

A tabela seguinte apresenta algumas equivalências lógicas envolvendo sentenças condicionais $(P \to Q)$ e bicondicionais $(P \leftrightarrow Q)$.

Equivalências	Nomes
$P \rightarrow P \equiv true$	{auto-implicação}
$P \to Q \equiv \neg P \lor Q$	{Implicação}
$P \to Q \equiv \neg Q \to \neg P$	{Contrapositiva}
$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$	{Bi-implicação}

Segue a demonstração, por tabela verdade, das equivalências {Implicação} e {Contrapositiva}.

• {Implicação} $P \rightarrow Q \equiv \neg P \lor Q$

Prova:

P	Q	$P \to Q$
T	T	T
T	F	F
F	T	T
F	F	T

P	Q	$\neg P$	$\neg P \vee Q$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

• {Contrapositiva} $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$

Prova:

P	Q	P o Q	$\neg Q$	$\neg P$	$\neg Q \rightarrow \neg P$	$P \to Q \leftrightarrow \neg Q \to \neg P$
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

As demonstrações também podem ser realizadas as leis de equivalências. Por exemplo, veja a demonstração da regra {Contrapositivo} pelas equivalências lógicas conhecidas:

Prova:

$$\begin{array}{ll} P \rightarrow Q & \equiv & \neg P \vee Q & \{ \text{Implicação} \} \\ & \equiv & \neg P \vee \neg (\neg Q) & \{ \text{Dupla Negação} \} \\ & \equiv & \neg (\neg Q) \vee \neg P & \{ \vee - \text{Comutatividade} \} \\ & \equiv & \neg Q \rightarrow \neg P & \{ \text{Implicação} \} \end{array}$$

Algumas **derivações** das equivalências lógicas envolvendo sentenças condicionais e bicondicionais são:

	Equivalências
$\{1\rightarrow\}$	$P \vee Q \equiv \neg P \to Q$
$\{2\rightarrow\}$	$P \land Q \equiv \neg (P \to \neg Q)$
$\{3\rightarrow\}$	$\neg (P \to Q) \equiv (P \land \neg Q)$

	Equivalências
$\{1\leftrightarrow\}$	$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$
$\{2\leftrightarrow\}$	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$
$\{3\leftrightarrow\}$	$\neg(P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q$

3.4 Construção de novas equivalências lógicas

As equivalências lógicas podem ser usadas para construir equivalências lógicas adicionais. Isto porque uma proposição composta pode ser substituída por outra proposição composta que é logicamente equivalente a ela, sem alterar o valor verdade da proposição original.

Exemplo 26. Verifique se as proposições $\neg(P \to Q)$ e $P \land \neg Q$ são logicamente equivalentes. **Solução:** Seja,

$$\begin{array}{lll} \neg(P \to Q) & \equiv & \neg(\neg P \lor Q) & \{ \text{Implicação} \} \\ & \equiv & \neg(\neg P) \land \neg Q & \{ \lor - \text{ DeMorgan} \} \\ & \equiv & P \land \neg Q & \{ \text{Dupla negação} \} \end{array}$$

Logo, temos que $\neg(P \to Q) \equiv P \land \neg Q$.

Exemplo 27. Mostre que a sentença $(P \land Q) \rightarrow (P \lor Q)$ é uma tautologia. **Prova:** Seja:

 $\begin{array}{rcl} (P \wedge Q) \rightarrow (P \vee Q) & \equiv & \neg (P \wedge Q) \vee (P \vee Q) & \{\text{Implicação}\} \\ & \equiv & (\neg P \vee \neg Q) \vee (P \vee Q) & \{\wedge - \text{ DeMorgan}\} \end{array}$

$$\equiv (\neg P \lor \neg Q) \lor (P \lor Q) \quad \{\land - \text{ DeMorgan}\}$$

$$\equiv (\neg P \lor P) \lor (\neg Q \lor Q) \quad \{\lor - \text{ associatividade e comutatividade}\}$$

$$\equiv (P \lor \neg P) \lor (Q \lor \neg Q) \quad \{\lor - \text{ comutatividade}\}$$

$$\equiv true \lor true \quad \{\text{Terceiro excluído}\}$$

$$\equiv true \quad \{\lor - \text{ Dominação}\}$$

Portanto, temos que $(P \land Q) \rightarrow (P \lor Q)$ é uma tautologia.

3.5 Proposições associadas a uma sentença condicional

As proposições seguintes são chamadas de **proposições associadas a proposição condicional** $(P \to Q)$:

1. Proposição Contrapositiva: $\neg Q \rightarrow \neg P$

2. Proposição Recíproca: $Q \rightarrow P$

3. Proposição Inversa: $\neg P \rightarrow \neg Q$

Considere o teorema: Teorema 1: Se um quadrilátero tem um par de lados paralelos, então ele tem um par de ângulos suplementares., cujas proposições simples são:

P: O quadrilátero tem um par de lados paralelos.

Q: O quadrilátero tem um par de ângulos suplementares.

O Teorema 1 pode ser escrito na forma simbólica pela condicional $P \to Q$. Considere agora uma segunda versão deste teorema, representada simbolicamente por $\neg Q \to \neg P$: Teorema 2: Se um quadrilátero não tem um par de ângulos suplementares, então ele não tem um par de lados paralelos.

O **Teorema 2** é logicamente equivalente ao **Teorema 1**, como pode ser observado na tabela verdade seguinte.

		Teorema 1			Teorema 2
P	Q	$P \to Q$	$\neg Q$	$\neg P$	$\neg Q \rightarrow \neg P$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Logo, pode-se escrever que $P \to Q \equiv \neg Q \to \neg P$. Os teoremas serem equivalentes siginifica que se o Teorema 1 é verdadeiro, então o Teorema 2 também é.

Considere agora uma terceira versão do teorema representada simbolicamente por $Q \to P$: Teorema 3: Se um quadrilátero tem um par de ângulos suplementares, então ele tem um par de lados paralelos. Como mostra a próxima tabela verdade, o Teorema 3 não é logicamente equivalente ao Teorema 1.

		Teorema 1	Teorema 3
P	Q	P o Q	$Q \to P$
T	T	T	T
T	F	F	T
F	T	T	F
\overline{F}	F	T	T

Definição 3.2. Define-se então as seguintes propriedades em relação as proposições condicionais associadas:

- A condicional $P \to Q$ é equivalente a contrapositiva $\neg Q \to \neg P$.
- A recíproca $Q \to P$ é equivalente a inversa $\neg P \to \neg Q$.

Exemplo 28. Seja a sentença S: Se está chovendo, então o chão está molhado. Apresente:

- a) A recíproca de S: Se o chão está molhado, então está chovendo.
- b) A contrapositiva de S: Se o chão não está molhado, então não está chovendo.
- c) A inversa de S: Se não está chovendo, então o chão não está molhado.

³Estudaremos esta regra com mais detalhes em aulas futuras. A contrapositiva (ou contraposição) é uma técnica importantíssima na Matemática usada na demontração de Teoremas.

3.6 Exemplos complementares

Exemplo 29. Considere a seguinte proposição:

Se Alcides está atrasado, então Belmiro está atrasado e, se Alcides e Belmiro estão ambos atrasados, então a aula de BCC101 é chata. Suponha que a aula de BCC101 não seja chata. O que você pode concluir a respeito de Alcides?

A tradução da frase "Se Alcides está atrasado, então Belmiro está atrasado, e, se Alcides e Belmiro estão ambos atrasados, então a aula de BCC101 é chata" para a linguagem simbólica é dada considerando as seguintes proposições simples:

- P: Alcides está atrasado.
- Q: Belmiro está atrasado.
- R: A aula de BCC101 é chata.

Simbolicamente é escrita pela fórmula $(P \to Q) \land [(P \land Q) \to R]$ e a tabela verdade dada por:

P	Q	R	$P \to Q$	$P \wedge Q$	$(P \wedge Q) \to R$	$(P \to Q) \land [(P \land Q) \to R]$
T	T	T	T	T	T	Т
T	Т	F	T	T	F	F
T	F	Т	F	F	Т	F
T	F	F	F	F	Т	F
F	Т	Т	V	F	Т	Т
F	Т	F	V	F	Т	Т
F	F	Т	V	F	Т	Т
F	F	F	V	F	Т	T

Como a pergunta em questão é "O que você pode concluir a respeito de Alcides?", estamos interessados no valor lógico da proposição *P*. Temos que:

- É necessário analisar as sentenças válidas. Então vamos, excluir as linhas 2, 3 e 4 que possuem valores lógicos *F*.
- Assumindo que a aula não é chata (R = F), é possível eliminar todas as linhas em que R é verdadeiro, ou seja, as linhas 1, 3, 5 e 7.

P	Q	R	$P \rightarrow Q$	$P \wedge Q$	$(P \wedge Q) \to R$	$(P \to Q) \land [(P \land Q) \to R]$
T	T	T	T	T	T	T
T	T	F	Т	T	F	F
T	F	T	F	F	T	F
T	F	F	F	F	T	F
F	T	Т	V	F	T	T
F	T	F	V	F	Т	Т
F	F	T	V	F	T	T
F	F	F	V	F	Т	Т

As linhas restantes são 6 e 8. Como o interesse é no valor lógico de P e em ambas as linhas restantes esse valor é falso, pode-se concluir que **Alcides não está atrasado.**

O próximo exemplo fica para o leitor.

Exemplo 30. Considere as sentenças simples:

- P: Amauri está com fome.
- Q: A geladeira está vazia.
- R: Amauri está zangado.
- a) Escreva na forma simbólica a sentença "Se Amauri está com fome e a geladeira está vazia, então Amauri esta zangado".

Forma simbólica:

b) Construa a tabela verdade para a sentença anterior.

P	Q	R	
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

c) Suponha que a sentença dada em (a) seja verdadeira. Suponha também que Amauri não esteja zangado e a geladeira esteja vazia. Diante destas suposições, é possível dizer que Amauri está com fome?

3.7 Exercícios

E. 1. Prove as seguintes leis fundamentais da álgebra booleana usando a tabela verdade.

a)
$$P \rightarrow P \equiv T$$

b)
$$P \to Q \equiv \neg P \lor Q$$

c)
$$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$$

d)
$$P \lor Q \equiv \neg P \to Q$$

e)
$$P \wedge Q \equiv \neg (P \rightarrow \neg Q)$$

f)
$$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$$

g)
$$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

h)
$$\neg (P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q$$

i)
$$(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$$

j)
$$(P \to R) \land (Q \to R) \equiv (P \lor Q) \to R$$

k)
$$(P \to Q) \lor (P \to R) \equiv P \to (Q \lor R)$$

1)
$$(P \to R) \lor (Q \to R) \equiv (P \land Q) \to R$$

E. 2. Abaixo está uma prova de equivalência entre fórmulas proposicionais, usando Álgebra Booleana. A lei algébrica usada em cada passo foi dada. Aplique a regra indicada em cada passo e escreva a fórmula resultante obtida:

E. 3. Prove as seguintes equivalências lógicas usando as propriedades da Álgebra Booleana.

a)
$$\neg (A \rightarrow \neg B) \equiv A \wedge B$$

b)
$$\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q$$

c)
$$(P \to Q) \lor (P \to R) \equiv P \to (Q \lor R)$$

E. 4. Verifique se as sentenças "quem tem dinheiro, não compra fiado" e "quem não tem dinheiro, compra fiado"são equivalentes.

E. 5. Considere a seguinte sentença: $S = (P \land Q) \lor (P \land \neg Q)$.

a) Construa a tabela verdade para S.

- b) Encontre uma expressão simplificada que seja logicamente equivalente a S.
- E. 6. Mostre que a sentença é $[P \land (P \land Q)] \land \neg (P \lor Q)$ é uma contradição.
- E. 7. Prove, usando as equivalências lógicas já estudadas, que $\,Q \to P \equiv \neg P \to \neg Q\,$
- E. 8. Considere a sentença S: Se o cachorro é um mamífero, então ele não voa. Escreva:
 - a) a contrapositiva de S:
 - b) a recíproca de S:
 - c) a inversa de S:
- E. 9. Se Hugo é culpado, então Maria é inocente. Se Hugo é culpado, Ricardo é inocente. Se Hugo é inocente, então Ricardo é culpado. Se Maria é inocente, então Ricardo é culpado. Se Maria é culpada, então Ricardo é inocente. Logo, Hugo, Maria e Ricardo são, respectivamente:
 - a) Culpado, culpado, culpado.
 - b) Inocente, culpado, culpado.
 - c) Inocente, culpado, inocente.
 - d) Inocente, inocente, culpado.
 - e) Culpado, culpado, inocente.
- E. 10. Um técnico suspeita que um ou mais dos processadores de um sistema distribuído não está funcionando corretamente. Os processadores A, B e C são capazes de relatar informações sobre o estado (funcionando ou não funcionando) de processadores do sistema. O técnico não tem certeza se um processador de fato não funciona, ou se o problema está nas rotinas de transmissão de estado de um ou mais processadores. Depois de sondar cada processador, o técnico recebeu o seguinte relatório de estados.
 - O processador A relata que o processador B não está funcionando e que o processador C está funcionando.
 - O processador B relata que A está funcionando se e somente se B está funcionando.
 - O processador C relata que pelo menos um dos outros dois processadores não está funcionando.

Ajude o técnico a resolver as seguintes questões:

a) Sejam a : "A está funcionando", b : "B está funcionando", e c : "C está funcionando". Escreva os três relatórios de estado nos termos a, b e c, usando símbolos da lógica formal.

b) Complete a tabela verdade:

a	b	c	Relatório A		Relatório B	Relatório C	
			$\neg b$	$\neg b \wedge c$	$a \leftrightarrow b$	$\neg a$	$\neg a \lor \neg b$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
\overline{F}	T	\overline{F}					

- c) Assumindo que todos esses relatórios sejam verdadeiros, que(ais) processador(es) não está(estão) funcionando?
- d) Assumindo que todos os processadores estejam funcionando, que relatório(s) de estado é(são) falso(s)?

E. 11. Dizer que "Guilherme não é músico ou Marcelo é professor"é, do ponto de vista lógico, dizer o mesmo que:

- a) Se Marcelo é professor, então Guilherme é músico.
- b) Se Guilherme é músico, então Marcelo é professor.
- c) Se Guilherme não é músico, então Marcelo é professor.
- d) Se Guilherme é músico, então Marcelo não é professor.
- e) Se Guilherme não é músico, então Marcelo não é professor.