Ch5 Lecture Notes

Perry Nerem

Contents

1	Units and Light 1.1 Lumens, Luminosity, Lux	2 2
2	Random facts about light	3
3	The Magnitude Scale 3.1 Magnitude and Wavelength Dependence	
4	Color Index	9
5	Flux	9
6	Blackbody Radiation	10

1 Units and Light

(Not textbook notes but stuff I added)

Below is a list of words we associate with light, but can we give these proper *physical* definitions?

Brightness, flux, intensity, luminosity, lux, lumens, magnitude, polarization, ...

1.1 Lumens, Luminosity, Lux

We have many **many** ways to quantify light. Example flashlight with adjustable end that concentrates beam or disperses it.

• Luminosity: absolute measure of electromagnetic power.

$$[L] = \frac{\text{Joules}}{\text{second}} = \text{Watt}$$

$$L$$
sol = 3.828×10^{26} W

• Flux: How bright does a light source appear? Depends on luminosity, distance, and amount of dust between us and the light source.

Figure 1: Flux from a point light source.

$$Flux = \frac{Luminosity}{Surface Area}$$

• Candella: SI unit for luminous intensity (cd) Specifically a measure of luminous power per solid angle, but wavelengths are weighted. Weights given by luminosity function (model of human eyes sensitivity to different wavelengths)

Angle: ratio of subtended arc length on circle to radius $\Omega = \frac{\ell}{r}$ Circle has 2π radians $\Omega = \frac{\ell}{r}$ Solid Angle: ratio of subtended area on sphere to radius $\Omega = \frac{A}{r^2}$ Sphere has 4π steradians

Figure 2: Explanation of what a solid angle is

A wax candle has a luminous intensity of about 1cd.

• Lumen: unit of luminous flux (ℓm) , a measure of **percieved** power of light. Luminous flux weights the power of different wavelengths based on the human eye sensitivity.

$$1\ell m = 1$$
cd × 1sr

• Lux: unit of luminous flux per unit area. Example: flashlight same distance from wall but is the beam concentrated or spread out.

$$1\ell x = 1\ell m/m^2$$

2 Random facts about light

- $c = \lambda \nu = 2.998e8 \text{m/s}$
- Energy of light given by Plank's constant times the frequency

$$E = h\nu$$
 $h = 6.626e-34Js$

- Information we can get from studying light
 - apparent brightness
 - spectral energy distribution (find example)
 - Doppler shift
 - spectral line broadening (find example)
 - Zeeman line splitting (find example)
 - temporal variations
 - polarization

Applying physics principles we can also determine

- light source's distance
- luminosity
- temperature
- chemical composition
- size
- rotation
- magnetic fields
- radial and transverse velocity
- intervening absorption by gas and dust
- Astronomical sources categorized as point and extended
 - **Point**: most stars
 - **Extended**: sol, nebulae, resolved galaxies, diffuse synchotron emission, **CMB**, IR dust emission in the Solar system.

Light measured from the two sources has to be handled differently

3 The Magnitude Scale

A star's apparent brightness is referred to as magnitude.

Higher number equals fainter object

- "Cumbersome" system inherited from antiquity and still widely used.
- Originally based on appearance of stars between sunset and astronomical twilight (see figure 3)

Sunset \rightarrow end of twilight broken into 6 segments. Stars that appear in the first segment were magnitude 1 (the brightest), stars appearing in the second time segment were magnitude 2, ...

- Human eye the only tool to quantify magnitudes for centuries.
- Invention of photometers revealed two facts
 - 1. Magnitude 1 was too broad. Sirius much brighter than Regulus but both are mag1.
 - 2. Ratios of magnitude brightness ≈ 2.5 .

$$\frac{B_3}{B_4} \approx 2.5, \quad \frac{B_3}{B_5} \approx 2.5^2$$

Figure 3: What is twilight

Humans see equal brightness ratios as equal steps in magnitude: human vision is logarithmic

m = magnitude, F = apparent brightness (flux)

$$\Delta m \propto \log \left(\frac{F_2}{F_1}\right)$$

• 1856 Pogson proposes modern definition of magnitude scale.

$$\boxed{\frac{F_1}{F_2} \equiv \left(\sqrt[5]{100}\right)^{m_2 - m_1}} \approx 2.5119^{m_2 - m_1}$$

 ${\it Mag \ difference \ of \ 5 \ exactly \ equals \ ratio \ of \ 100 \ to \ 1.}$

$$\log\left[\frac{F_1}{F_2}\right] = \log\left[\left(\sqrt[5]{100}\right)^{m_2 - m_1}\right]$$

$$\log\left[\frac{F_1}{F_2}\right] = \log(100\frac{m_2 - m_1}{5})$$

$$\log \left[\frac{F_1}{F_2} \right] = \frac{m_2 - m_1}{5} \log(10^2)$$

$$-\log\left[\frac{F_2}{F_1}\right] = \frac{m_2 - m_1}{5} \, 2$$

$$m_2 - m_1 = -2.5 \log \left[\frac{F_2}{F_1} \right]$$

- 1. Cannot identify magnitude of a single star by itself. Must compare stars through difference in magnitudes.
- 2. No zero from log :.

Pogson Equation:
$$m_i = -2.5 \log F_i + C$$

where C is the zero-point offset. Astronomers have to agree a specific star has a specified magnitude (see Bolometric magnitude and IAU 2015 resolution B2 for examples).

$$[F] = \text{photons s}^{-1} \text{ cm}^{-2}$$

• What difference in magnitude results from a *small* difference in apparent brightness?

$$\Delta m = -2.5 \log \left[\frac{F_2}{F_1} \right] \quad \rightarrow \quad f(x) = -2.5 \log(x)$$

Use a Taylor series to expand the log function

$$f(x) = f(a) + \frac{1}{1!}f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \frac{1}{3!}f'''(a)(x-a)^3 + \dots$$

Need to change base to compute derivatives correctly

$$\log_b(a) = \frac{\log_c(a)}{\log_c(b)}$$

$$f(x) = -2.5 \frac{\ln(x)}{\ln(10)} = -1.086 \ln(x)$$

$$f(a) = -1.086\ln(x)$$

$$f'(x) = -1.086 \frac{1}{x}, \quad f'(a) = -1.086 \frac{1}{a}$$

$$f''(x) = +1.086 \frac{1}{x^2}, \quad f''(a) = +1.086 \frac{1}{a^2}$$

Let a = 1 (i.e. $F_2 = F_1$)

$$f(x) = -1.086(x-1) + 1.086\frac{(x-1)^2}{2} + \dots$$

Evaluate this function at $x = F_2/F_1$ under the condition that $F_2 = F_1 + \epsilon$. $\therefore x \approx 1$ and $(x-1)^n \approx 0$ for n > 1.

$$f(x = F_2/F_1) = -1.086 \left(\frac{F_2}{F_1} - 1\right) + O(x^2)$$
$$f(x) \approx 1.086 \left(\frac{F_2}{F_1} - \frac{F_1}{F_1}\right)$$
$$\Delta m \approx -\frac{\Delta F}{F_1}$$

Suppose star 1 has a magnitude of $m_1 = 3.5$ and star 2 $m_2 = 3.6$. Than

$$\Delta m = 0.1$$

and star 2 is about 10% brighter.

$$0.1 \approx \frac{\Delta F}{F_1}$$
$$0.1F_1 \approx (F_2 - F_1)$$
$$F_2 \approx 1.1F_1$$

Figure 4: Modern Magnitude system

3.1 Magnitude and Wavelength Dependence

The human eye's sensitivity to to different wavelengths means sources can appear to have different magnitudes, even if they are the same luminosity. Compare a flashlight to the IR beam from a TV remote.

The Pogson equation is an example of the visual magnitude.

Monochromatic Pogson Equation: $m_{\lambda} = -2.5 \log F_{\lambda} + C$

Bolometric magnitude is the opposite of monochromatic, and includes ALL EM radiation emitted by the source.

Bolometric correction:
$$BC_{\text{band}} = m_{\text{bol}} - m_{\text{band}}$$

 $m_{\rm band}$ is the magnitude in some passband.

Example: The bolometric correction to the visual magnitude, $BC_{\rm V}$, for the sun is $BC_{\rm V}=-0.07$ magnitudes.

3.2 Absolute Magnitude

Absolute Magnitude: The apparent magnitude a star would be *if* it was 10 parsecs away.

Must know the stars apparent magnitude and distance.

Distance Modulus:
$$m - M = 5 \log \left(\frac{d}{10}\right)$$

Distance Modulus	Distance (parsec)
1	15.8
5	100
10	1000
15	10000

If d > 10pc must consider **interstellar absorption**!

Figure 5: Interstellar absorption

Apparent Distance modulus: $(m-M)_{\lambda} = (m-M)_0 + A_{\lambda}$

 A_{λ} is absorption (in magnitude) at that passband (wavelength λ).

Interstellar absorption always makes an object appear further.

4 Color Index

Advances in photography in near end of 19th century allowed **quantitative** measurements of a star's color.

Earliest photographic plates more sensitive to blue light.

- Blue stars appear brighter
- Red stars appear dimmer

Color index is the difference between magnitudes of a star

5 Flux

The energy flux (F) or just flux, describes the apparent brightness in physical units.

F is the amount of light energy per unit area (ΔA) per unit time (Δt) at given bandpass

$$F = \frac{E_{\rm band}}{\Delta A \, \Delta t}$$

$$[F] = {\rm erg~cm^{-2}~s^{-1}~or~Wcm^{-2}}$$

1 erg = 100 nJ (an erg is a cgs unit of energy)

In practice, we report the **monochromatic flux**, flux at a specific λ or ν .

$$F_{\lambda} = \frac{E_{\lambda}}{\Delta A \, \Delta t \, \Delta \lambda} \quad , \quad F_{\nu} = \frac{E_{\lambda}}{\Delta A \, \Delta t \, \Delta \nu}$$

$$\nu F_{\nu} = \lambda F_{\lambda}$$

$$[F_{\lambda}] = \text{erg s}^{-1} \text{ cm}^{-2} \text{ Å}^{-1}, [F_{\nu}] = \text{erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$$

A popular unit for F_{ν} (for radio astronomy) is the jansky

$$1 \text{ jansky} = 10^{-26} \,\mathrm{W m^{-2} Hz^{-1}}$$

Note that most optical astronomical detectors do not detect energy, they detect photons. F from Pogson equation is measured in photons per s per cm².

Converting flux units from photon flux to energy flux is

$$\[F \text{ in } \frac{\text{photons}}{\text{s } \text{cm}^2}\] = \left[F \text{ in } \frac{\text{energy}}{\text{s } \text{cm}^2}\right] h\nu$$

 $h\nu$ is the energy per photon.

There are *many* ways to present the **spectral energy distribution** (SED) of an astronomical source.

Figure 6: Energy Flux vs Photon Flux for Vega. Notice slope is steeper for energy flux

6 Blackbody Radiation

(Start with video about object "blacker" than VANTA black)

https://youtu.be/JoLEIiza9B://youtu.be/JoLEIiza9Bc

An object that absorbs EM-radiation at all wavelengths is a black body.

- idealized object (no real blackbodies but still a useful model)
- opaque
- non-reflective

Black body radiation is the *thermal* EM radiation emitted by a black body that is in **thermal equilibrium** with its environment.