HW2CSDS343

1

Question

Let L_1 and L_2 be two languages over Σ . Prove that if L_1, L_2 are both Turing-decidable then $L_1 \oplus L_2$ is Turing-decidable.

Assume L_1, L_2 are Turing decidable. $\exists M_1, M_2$ that decide L_1, L_2 Create M_3 M_3 runs on string x:

- Duplicate x after a #
- Run M_1 on x
 - If M₁ accepts:
 - Clear everything after #
 - Duplicate x after #
 - Run $M_2on\$x$
 - If M₂ accepts:
 - Output "No"
 - Else:
 - Output "Yes"
 - Else:
 - Clear everything after #
 - Duplicate x after #
 - Run M_2 on x
 - If M_2 accepts:
 - Output "Yes"
 - Else:
 - Output "No"

Proof

Show M_3 decides $L_1\oplus L_2$ If $x\in (L_1\oplus L_2$ then $(x\in L_1\wedge x\not\in L_2)\vee (x\not\in L_1\wedge x\in L_2)$

- If $x \in L_1 \wedge x
 ot \in L_2$ If $x \in L_1 \wedge x$
 - M_3 will run M_1 which accepts, then it will run M_2 which rejects. So M_3 accepts.
- If $x \notin L_1 \land x \in L_2$
 - M_3 will run M_1 which rejects, then it will run M_2 which accepts. So M_3 accepts.

If $x \notin L$ then $(x \in L_1 \land x \in L_2) \lor (x \notin L_1 \land x \notin L_2)$

- If $x \in L_1 \land x \in L_2$
 - M_3 will run M_1 which accepts, then it will run M_2 which accepts. So M_3 rejects.
- If $x \notin L_1 \land x \notin L_2$
 - M_3 will run M_1 which rejects, then it will run M_2 which rejects. So M_3 rejects.

2

Question

Let L_1, L_2 be 2 languages over Σ . Prove that is L_1, L_2 are both Turing decidable then the concatenation of L_1, L_2 is Turing decidable.

Assume L_1, L_2 are Turing decidable.

 $\exists M_1, M_2$ that decide L_1, L_2

Create M_3

 M_3 runs on string x:

- let n = length(x)
- insert # after x on tape
- insert a # after #
- loop 1:
 - for each 0 between the #'s copy a character at the front of x to after the 2nd #
 - Run M₁ on string after #
 - If M_1 accepts:
 - Clear after the #
 - Copy all unmarked characters of x (copy suffix)

- Run M_2 on string after #
- If M_2 accepts:
 - Output "yes"
- Else:
 - Continue
- Else:
 - Continue
- Clear after the #
- If number of 0's greater than length of x
 - Output "no"
- Else:
 - Add a new 0 between the #'s
 - Go back to loop 1

In general, the tape is structured as follows: x#i#copy, where i is length of prefix

Proof

Show M_3 decides the concatenation of L_1, L_2

If $x\in \text{concatenation of }L_1,L2$, then $\exists i\in \mathbf{Z}$ where $0\leq i\leq length(x)$ such that $x_{1,i}\in L_1\wedge x_{i+1,length(x)}\in L_2$

We know the above statement is true by the definition of the concatenation of L_1, L_2 .

Note that given a substring $x_{j,k}$ if j > k the string is invalid and thus blank. Also bounds are inclusive.

 M_3 iterates through all possible values of i $(0, 1, 2, \dots, length(x))$

On any iteration $x_{1,i} \notin L_1, M_1$ will reject so M_3 continues.

If $x_{1,i} \in L_1$ then M_1 will accept so M_3 runs M_2 on $x_{i+1,length(x)}$.

If M_2 accepts, M_3 accepts, otherwise M_3 continues.

If either M_2 or M_1 reject we go to the next prefix / suffix pair.

As such, we exhaust every prefix / suffix pair.

Therefore, if $x \in$ the concatenation of L_1, L_2, M_3 will find the valid prefix / suffix pair through exhaustion.

If $x \notin$ the concatenation of L_1, L_2 , then $\not\exists$ a prefix / suffix pair s.t. prefix $\in L_1 \land$ suffix $\in L_2$

At each iteration, test a possible suffix / prefix. M_1 will reject the prefix so we continue to the next prefix.

If prefix $\in L_1, M_1$ will accept but we know the suffix is not in L_2 so M_2 will reject. After we have tested the entire length of the string M_3 will reject.

3

Question

Let L_1, L_2 be 2 languages over Σ . Prove that is L_1, L_2 are both Turing recognizable then the concatenation of L_1, L_2 is Turing recognizable.

Assume L_1, L_2 are Turing recognizable.

 $\exists M_1, M_2$ that decide L_1, L_2

Create M_3 (2 way infinite Tape)

- let n = length(x)
- insert # after x on tape
- insert # after the #
- insert # before x on tape
- loop 1:
 - insert one 0 to the left of the leftmost #
 - loop 2:
 - for each 0 between the #'s to the right of x, copy a character at the front of x to after the rightmost #
 - for each 0 to the left of x run a step of M_1 on the copied string
 - If M_1 accepts:
 - Clear after the #
 - Copy all unmarked characters of x (copy suffix)
 - Run M_2 on string after # for i steps
 - If M_2 accepts:
 - Output "Yes"
 - Else:
 - Continue
 - Else:
 - Continue
 - Clear after #
 - If number of 0's greater than length of x
 - Continue

- Else
 - Add a new 0 in between the #'s to the right of x
 - Go back to loop 2
- Go back to loop 1

In general, the tape is structured as follows: i#x#j#copy, where i is the number of steps and j is length of prefix

Proof

If $x\in$ the concatenation of L_1,L_2 , then \exists a prefix / suffix pair s.t. prefix $\in L_1\wedge$ suffix $\in L_2$

If prefix $\in L_1$ then M_1 will halt and accept in a finite number of steps.

A similar assertion can be made for M_2 recognizing the suffix.

 M_3 runs M_1 on the prefix for i finite steps.

In the case $x \in$ the concatenation, then M_1 will recognize some prefix in finite number of steps.

Simlarly, once the prefix is recognized, M_3 runs M_2 on the suffix.

Since L_2 is Turing recognizable, M_2 will recognize the suffix in finite number of steps.

If $x \notin$ the concatenation, then $\not\exists$ a prefix / suffix pair s.t. prefix $\in L_1 \land$ suffix $\in L_2$ As such for any prefix, M_1 will either reject or run forever Similarly, M_2 will either reject or run forever As such, M_3 will run forever.