

MÉTHODE 1

En utilisant la formule du cours

SITUATION

On peut déterminer une équation cartésienne d'un plan *P* à partir d'un point du plan et d'un vecteur normal au plan.

ÉNONCÉ

Déterminer une équation cartésienne du plan P passant par le point $A\left(2;1;1\right)$ et admettant pour vecteur

normal le vecteur
$$\overrightarrow{n} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$$
 .

ETAPE 1

Déterminer un point et un vecteur normal du plan

On détermine les coordonnées d'un point A du plan et d'un vecteur normal au plan noté \overrightarrow{n} :

- Soit l'énoncé donne directement le point A et un vecteur normal \overrightarrow{n} .
- Soit l'énoncé donne le point A et précise que le plan doit être perpendiculaire à une droite (d) dont la représentation paramétrique est donnée. Dans ce cas, on choisit un vecteur directeur de (d) comme vecteur normal \overrightarrow{n} .

APPLICATION

L'énoncé fournit directement :

- Un point A de P: A(2;1;1)
- Un vecteur normal à $P \colon \overrightarrow{n} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$

ETAPE 2

Déterminer a, b et c

Si
$$\overrightarrow{n}egin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 est normal à *P*, *P* admet une équation cartésienne de la forme $ax+by+cz+d=0$ où d est

un réel à déterminer.

APPLICATION

Le vecteur \overrightarrow{n} $\begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$ est normal à P, donc P admet une équation cartésienne de la forme

ETAPE 3

Déterminer den utilisant les coordonnées du point

On utilise les coordonnées du point *A* pour déterminer *d*. Comme *A* est un point du plan, *d* est obtenu en résolvant l'équation suivante d'inconnue *d* :

$$ax_A + by_A + cz_A + d = 0$$

x + 3y - z + d = 0.

APPLICATION

Le point $A\left(2;1;1\right)$ est un élément du plan, donc ses coordonnées vérifient l'équation de P. On a donc :

$$2 + 3 \times 1 - 1 + d = 0$$

Soit finalement:

$$d = -4$$

ETAPE 4

Conclure

On peut donc conclure que ax+by+cz+d=0 est une équation cartésienne du plan P.

APPLICATION

Une équation cartésienne de P est donc x+3y-z-4=0 .

MÉTHODE 2

En redémontrant la formule

SITUATION

On peut déterminer une équation cartésienne d'un plan *P* à partir d'un point du plan et d'un vecteur normal au plan en réutilisant la démarche de la démonstration vue en cours.

ÉNONCÉ

Déterminer une équation cartésienne du plan P passant par le point $A\left(2;1;1\right)$ et admettant pour vecteur

normal le vecteur $\overrightarrow{n} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$.

ETAPE 1

Déterminer un point et un vecteur normal du plan

On détermine les coordonnées d'un point A du plan et d'un vecteur normal au plan noté \overrightarrow{n} :

- Soit l'énoncé donne directement le point A et un vecteur normal \overrightarrow{n} .
- Soit l'énoncé donne le point A et précise que le plan doit être perpendiculaire à une droite (d) dont la représentation paramétrique est donnée. Dans ce cas, on choisit un vecteur directeur de (d) comme vecteur normal \overrightarrow{n} .

APPLICATION

L'énoncé nous fournit directement :

- Un point A de P: $A\left(2;1;1\right)$
- Un vecteur normal à $P \colon \overrightarrow{n} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$

ETAPE 2

Écrire la condition d'appartenance d'un point M au plan P

Un point $M\left(x;y;z\right)$ est un élément de P si et seulement si les vecteurs \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux, donc si et seulement si $\overrightarrow{AM}\cdot\overrightarrow{n}=0$.

APPLICATION

Un point $M\left(x;y;z\right)$ est un élément de P si et seulement si les vecteurs \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux, donc si et seulement si $\overrightarrow{AM}\cdot\overrightarrow{n}=0$.

ETAPE 3

Déterminer les coordonnées des vecteurs \overrightarrow{n} et \overrightarrow{AM}

Les coordonnées du vecteur \overrightarrow{n} sont notées $egin{pmatrix} a \\ b \\ c \end{pmatrix}$. Elles sont données par l'énoncé.

En notant respectivement $A\begin{pmatrix} x_A & y_A & z_A \end{pmatrix}$ et $M\begin{pmatrix} x & y & z \end{pmatrix}$, on obtient :

$$\overrightarrow{AM}egin{pmatrix} x-x_A \ y-y_A \ z-z_A \end{pmatrix}$$

APPLICATION

D'après l'énoncé, on a
$$\overrightarrow{n}$$
 $\begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$ et A $\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$.

En notant $M \begin{pmatrix} x & y & z \end{pmatrix}$, on obtient :

$$\overrightarrow{AM}egin{pmatrix} x-2\ y-1\ z-1 \end{pmatrix}$$

ETAPE 4

Expliciter et simplifier la condition d'appartenance du point *M* au plan *P*

On peut donc maintenant expliciter et simplifier la condition d'appartenance trouvée en étape 2. Cette dernière devient :

$$a\left(x-x_A
ight)+b\left(y-y_A
ight)+c\left(z-z_A
ight)=0$$

Soit finalement:

$$ax + by + cz - ax_A - by_A - cz_A = 0$$

APPLICATION

On a donc:

$$\overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow (x-2) + 3(y-1) - (z-1) = 0$$

$$\Leftrightarrow x + 3y - z - 2 - 3 + 1 = 0$$

$$\Leftrightarrow x + 3y - z - 4 = 0$$

ETAPE 5

Conclure

On peut donc finalement conclure qu'une équation cartésienne du plan P est l'équation suivante :

$$ax + by + cz - ax_A - by_A - cz_A = 0$$

APPLICATION

Une équation cartésienne du plan P est donc l'équation suivante :

$$x + 3y - z - 4 = 0$$