Inhaltsverzeichnis

	0.1	_	eit in einer Dimension				
	0.2	Zwei So	onderfälle	3			
1	Diff	Differentialrechnung in höheren Dimensionen					
	1.1	-	gie	5			
		1.1.1	Korollar	5			
		1.1.2	Konvention	6			
		1.1.3	Definition der ε -Umgebung	6			
		1.1.4	Topologische Grundbegriffe	6			
		1.1.5	Definition von offen und abgeschlossen	6			
		1.1.6	Beispiele	6			
		1.1.7	Satz	7			
		1.1.8	Satz	7			
		1.1.9	Satz	8			
		1.1.10	Definition von beschränkt und kompakt	8			
	1.2	Folgen		8			
		1.2.1	Definition von Konvergenz und Beschränktheit	8			
		1.2.2	Bemerkung	8			
		1.2.3	Satz von Bolzano Weierstraß	9			
		1.2.4	Abschließende Bemerkungen	9			
	1.3	Funktio	onsgrenzwerte und Stetigkeit	9			
			Definition	9			
		1.3.2	Definition Grenzwert/Limes	9			
		1.3.3	Korollar	10			
				10			
		1.3.5	Lemma Folgenkriterium	10			
		1.3.6	Satz zu Grenzwerte verketteter Funktionen	10			
		1.3.7	Beispiel	10			
		1.3.8	Definition der Stetigkeit	11			
		1.3.9	Bemerkung	11			
	1.4			11			
			Definition der partiellen Ableitung	11			
		1.4.2	Beispiel	12			
			Definition der Richtungsableitung				
	1.5			12			
		1.5.1		12			
				13			
		1.5.3	±	13			
		1.5.4		13			
		1 5 5		1 2			

	1.5.6	Satz zur Kettenregel	16			
1.6	Lokale	Extremstellen und Mittelwertsätze	16			
	1.6.1	Definition lokale/globale Extremstellen	17			
	1.6.2	Satz zur notwendigen Bedingung für eine lokale Extremstelle	17			
	1.6.3	Definition des kritischen Punktes	17			
	1.6.4	Mittelwertsatz	17			
	1.6.5	Definition eines Gebiets	18			
	1.6.6	Bemerkungen zu Gebieten	18			
	1.6.7	Satz	18			
	1.6.8	Definition partieller Ableitungen r 'ter Ordnung	18			
	1.6.9	Definition der Hessematrix	19			
	1.6.10	Beispiele	19			
	1.6.11	Satz von Schwarz	19			
	1.6.12	Satz von Taylor mit quadratischem Restglied	19			
	1.6.13	Definition von Definitheit	20			
	1.6.14	Beispiele	20			
	1.6.15	Satz zum Hauptminorenkriterium	21			
	1.6.16	Satz über die hinreichenden Bedingungen für lokale Extremstellen .	21			
	1.6.17	Definition der Sattelpunkte	22			
	1.6.18	Satz für den Fall $n=2$	22			
	1.6.19	Beispiel	22			
1.7	Extremstellen unter Nebenbedingungen					
	und in	nplizite Funktionen	23			
	1.7.1	Spezialfälle	24			
	1.7.2	Bemerkung	24			
	1.7.3	Satz über die Umkehrfunktion	24			

Einführung

0.1 Stetigkeit in einer Dimension

 $f \text{ ist stetig in } x_0$ $\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$ $\Leftrightarrow \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = f(x_0)$ $\Leftrightarrow \forall \varepsilon > 0 \quad \exists \ \delta \quad \text{mit} \quad |f(x) - f(x_0)| < \varepsilon \quad \forall \ x \in (x_0 - \delta, x_0 + \delta)$

Bemerkung: Der Grenzwert von Funktionen ist über den Grenzwert von Folgen definiert und kann auch nur so überprüft werden.

0.2 Zwei Sonderfälle

Skalarfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}$

Visualisierung durch Höhenlinien: $H_c:=\{x\in\mathbb{R}^n:f(x)=c\}$ Beispiel: $f(x,y)=x^2+y^2$

Vektorfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$

Beispiel: $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Kapitel 1

Differentialrechnung in höheren Dimensionen

1.1 Topologie

Skalarprodukt

Definition:
$$\langle x, y \rangle := x^{\top} y = \sum_{k=1}^{n} x_k y_k$$
 für $x, y \in \mathbb{R}^n$

Euklidische Norm

Definition:
$$||x||_2 := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^n x_k^2}$$

1.1.1 Korollar

Sei
$$x \in \mathbb{R}^n$$
 mit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

1.

$$\max_{1 \le k \le n} |x_k| \le ||x|| \le \sqrt{n} \max_{1 \le k \le n} |x_k|$$

2. Cauchy-Schwarz-Ungleichung:

$$\forall x, y \in \mathbb{R}^n : |\langle x, y \rangle| \leqslant ||x|| \cdot ||y||$$

Begründung (nicht Beweis!) durch alternative Definition: $\langle x,y\rangle = \|x\|\cdot\|y\|\underbrace{\cos\alpha}_{\leqslant 1}$

Dabei ist α der Winkel der zwischen x und y eingeschlossen wird. Daraus folgt:

$$|\langle x,y\rangle|=\|x\|\cdot\|y\|\Leftrightarrow x,y$$
 sind lin. unabhängig : $x=\lambda y$ oder $y=\lambda x$ für $\lambda\in\mathbb{R}$

- 3. $\|\cdot\|$ ist eine Norm. Eine Norm hat folgende Eigenschaften:
 - (i) $||x|| \ge 0$ und $||x|| = 0 \Leftrightarrow x = 0$
 - (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$
 - (iii) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

1.1.2 Konvention

Für $A \subset \mathbb{R}^n$ gilt für das Komplement $A^c = \mathbb{R}^n \setminus A$

1.1.3 Definition der ε -Umgebung

Sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$, dann gilt für die ε -Umgebung $U_{\varepsilon}(x_0)$ von x_0 :

$$U_{\varepsilon}(x_0) := \{ x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon \}$$

Bemerkung: Die punktierte ε -Umgebung ist definiert als: $\dot{U}_{\varepsilon} = U_{\varepsilon}(a) \setminus \{a\}$

1.1.4 Topologische Grundbegriffe

Sei $A \subset \mathbb{R}^n$, dann heißt ein Punkt $x_0 \in \mathbb{R}^n$

- (i) ein **innerer Punkt**, wenn gilt $\exists \ \varepsilon > 0$ mit $U_{\varepsilon}(x_0) \subset A$ Menge aller inneren Punkte: $\mathring{A} = \{x \in \mathbb{R}^n : \exists \ \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset A\}$
- (ii) ein **Berührungspunkt**, wenn $\forall \ \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ abgeschlossene Hülle: $\overline{A} = \{x \in \mathbb{R}^n : \forall \ \varepsilon > 0 \text{ gilt } U_{\varepsilon}(x_0) \neq \emptyset\}$
- (iii) ein **Häufungspunkt**, wenn $\forall \varepsilon > 0$ gilt $(U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$ Die Menge aller Häufungspunkte wird mit A' bezeichnet.
- (iv) ein **Randpunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ und $U_{\varepsilon}(x_0) \cap A^c \neq \emptyset$ Menge aller Randpunkte oder auch **Rand** von A wird mit ∂A bezeichnet.

Korollar

- (i) $\mathring{A} \subset A$
- (ii) $\mathring{A} \subset \overline{A}$
- (iii) $\partial A \subset \overline{A}$
- (iv) $\overline{A} = \mathring{A} \cup \partial A$
- (v) $\overline{A} = A \cup \partial A$ (schwächere Aussage als (iv))

1.1.5 Definition von offen und abgeschlossen

Eine Menge $A \subset \mathbb{R}^n$ heißt

- (i) **offen**, wenn $A = \mathring{A}$ gilt (A besteht nur aus inneren Punkten)
- (ii) **abgeschlossen**, wenn $\partial A \subset A$ gilt (wenn der Rand in der Menge enthalten ist)

1.1.6 Beispiele

- 1. Jede ε -Umgebung $U_{\varepsilon}(x_0 \in \mathbb{R}^n)$ ist offen
- 2. Sei $I \subset \mathbb{R}$, dann gilt
 - (i) I ist offen, wenn I=(a,b) mit $-\infty \leqslant a \leqslant b \leqslant \infty$ für a=b gilt $I=\varnothing$ mit I offen und für $a=-\infty, b=\infty$ ist I auch offen

1.1. TOPOLOGIE 7

(ii)
$$I$$
 ist abgeschlossen, wenn $I = [a, b]$ mit $a, b \in \mathbb{R}$ oder $I = (-\infty, b]$ oder $I = [a, \infty)$ oder $I = (-\infty, \infty) = \mathbb{R}$

(die reellen Zahlen sind offen und abgeschlossen zugleich)

1.1.7 Satz

für $A \subset \mathbb{R}^n$ sind folgenden Aussagen äquivalent:

- (i) A ist abgeschlossen $A = \overline{A}$
- (ii) A enthält alle Häufungspunkte, $A' \subset A$
- (iii) A enthält alle Randpunkte, $\partial A \subset A$
- (iv) A^c ist offen

1.1.8 Satz

- (i) \varnothing und \mathbb{R}^n sind offen.
- (ii) Die Vereinigung beliebig vieler offene Mengen ist offen:

$$\bigcup_{j \in J} (O_j \text{ offen}) = O \text{ offen}$$

(iii) Der Durchschnitt endlich vieler offener Mengen ist offen:

$$\bigcap_{j=1}^{n} (O_j \text{ offen}) = O \text{ offen}$$

Bemerkung: Für unendlich viele offene Mengen gilt dies nicht immer:

$$\bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, \frac{1}{k} \right) = (-1, 1) \cap \left(-\frac{1}{2}, \frac{1}{2} \right) \cap \left(-\frac{1}{3}, \frac{1}{3} \right) \cap \ldots = \{0\} \text{ abgeschlossen }$$

Beispiel

Seien A_1, A_2 zwei abgeschlossene Mengen, dann gilt

(i) $A_1 \cup A_2$ ist abgeschlossen

Beweisidee: A_1 ist abgeschlossen $\Rightarrow A_1^c$ ist offen

$$(A_1 \cup A_2)^c \stackrel{\text{De Morgan}}{=} \underbrace{A_1^c}_{\text{offen}} \cap \underbrace{A_2^c}_{\text{offen}} \text{ ist offen wegen Satz } 1.1.8$$

$$((A_1 \cup A_2)^c)^c = A_1 \cup A_2 \text{ ist abgeschlossen}$$

1.1.9 Satz

- (i) \varnothing und \mathbb{R}^n sind abgeschlossen.
- (ii) Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen:

$$\bigcap_{j \in J} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

(iii) Die Vereinigung endlich vieler abgeschlossenen Mengen ist abgeschlossen:

$$\bigcup_{j=1}^{n} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

Bemerkung: Für unendlich viele abgeschlossene Mengen gilt dies nicht immer:

$$\bigcup_{k=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = \{0\} \cup \left[-\frac{1}{2}, \frac{1}{2} \right] \cup \left[-\frac{2}{3}, \frac{2}{3} \right] \cup \dots = (-1, 1) \text{ offen}$$

1.1.10 Definition von beschränkt und kompakt

Eine Menge $A \subset \mathbb{R}^n$ heißt:

- (i) **beschränkt** wenn $\exists c > 0$ mit $||x|| < c \quad \forall x \in A$
- (ii) kompakt, wenn A abgeschlossen und beschränkt ist.

1.2 Folgen

1.2.1 Definition von Konvergenz und Beschränktheit

Eine Folge $(a_k)_{k=1}^{\infty}$ heißt

(i) konvergent, wenn gilt

$$\exists a \in \mathbb{R}^n \quad \text{mit} \quad \forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a|| \quad \forall k \geqslant N(\varepsilon)$$

Dann ist a der Grenzwert der Folge:

$$a = \lim_{k \to \infty} a_k$$
 oder $a_k \stackrel{k \to \infty}{\to} a$

(ii) **beschränkt**, wenn $\exists c > 0$ mit $||a_k|| < c \quad \forall k$

1.2.2 Bemerkung

Wenn eine Folge
$$(a_k) = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 konvergiert, so gilt

(i) \Leftrightarrow jede Komponente $\left(a_1^{(k)}\right),...,\left(a_n^{(k)}\right)$ konvergiert:

$$\lim_{k \to \infty} a_k = a \quad \Leftrightarrow \quad \lim_{k \to \infty} a_i^{(k)} = a_i \quad \text{für } i = 1, ..., n$$

(ii) \Leftrightarrow (a_k) erfüllt das Cauchy-Kriterium:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a_l|| < \varepsilon \quad \forall k, l \geqslant N(\varepsilon)$$

- (iii) \Leftrightarrow jede Teilfolge von (a_k) konvergiert gegen $a: a_{l_k} \stackrel{k \to \infty}{\to} a$ für $l_1 \geqslant 1, l_2 \geqslant 2, \dots$
- (iv) der Grenzwert a ist eindeutig.

1.2.3 Satz von Bolzano Weierstraß

Jede beschränkte Folge im \mathbb{R}^n besitzt einen konvergente Teilfolge.

Beispiele

- (i) n=1: Sei $A\leqslant (a_k)\leqslant B$ \forall k. Konstruiert man eine neue Schranke mit $\frac{A+B}{2}$ so liegen wiederum ∞ viele Elemente in der oberen und/oder unteren Hälfte.
- (ii) Sei $(a_k) = \begin{pmatrix} (x_k) \\ (y_k) \end{pmatrix}$ eine beschränkte Folge im \mathbb{R}^2 $\Rightarrow (x_k), (y_k)$ sind beschränkte Folgen Satz von Bolzano Wierstraß $\exists (x_k), (y_k)$ sind konvergent

1.2.4 Abschließende Bemerkungen

- (i) Grenzwert Rechenregeln können aus dem \mathbb{R} für \mathbb{R}^n übernommen werden. z.b. $a_k \stackrel{k \to \infty}{\longrightarrow} a, \quad b_k \stackrel{k \to \infty}{\longrightarrow} b \quad \Rightarrow \quad a_k^\top b_k \stackrel{k \to \infty}{\longrightarrow} a^\top b$
- (ii) Es gibt viele Zusammenhänge zwischen den Eigenschaften von Folgen und den topologischen Eigenschaften von Mengen. z.b. Sei $A \subset \mathbb{R}^n$ und $a \in \mathbb{R}^n$ ein Häufungspunkt $\Leftrightarrow \exists (a_k)_{k=1}^\infty \text{ mit } a_k \in A \setminus \{a\} \, \forall \, k \quad \text{und} \quad a_k \overset{k \to \infty}{\to} a$

1.3 Funktionsgrenzwerte und Stetigkeit

1.3.1 Definition

Eine Funktion $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion mit n-Veränderlichen.

$$f(x_1, ..., x_n) = f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix} \quad \text{mit} \quad f_1, ..., f_m : \mathbb{R}^n \to \mathbb{R}$$

1.3.2 Definition Grenzwert/Limes

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\overline{A}$. Ein $b\in\mathbb{R}^m$ heißt Grenzwert von f für $x\to a$, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 : \quad ||f(x) - b|| < \varepsilon \quad \forall \ x \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Die Funktion f muss in a nicht stetig sein, so kann z.b. gelten: $\lim_{x\to a} f(x) = b \neq f(a)$

1.3.3 Korollar

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m, a\in\overline{A}, b\in\mathbb{R}^m$ dann sind folgende Aussagen äquivalent:

- (i) $f(x) \stackrel{x \to a}{\to} b$
- (ii) $||f(x) b|| \stackrel{x \to a}{\to} 0 \in \mathbb{R}^1$ (Eine Norm bildet immer auf ein Skalar ab)
- (iii) $f_1(x) \stackrel{x \to a}{\to} b_1, ..., f_m(x) \stackrel{x \to a}{\to} b_m$

Zusätzlich gilt das Cauchy-Kriterium:

$$\lim_{x \to a} f(x) = b \quad \Leftrightarrow \quad \forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0: \quad \|f(x), f(y)\| < \varepsilon \quad \forall \ x, y \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

1.3.4 Beispiel

Sei
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

$$a_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ \frac{1}{k} \end{pmatrix}, \quad f(a_k) = \frac{\frac{1}{k^2}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2} \quad \forall \ k$$

$$b_k = \begin{pmatrix} x_k \\ 0 \end{pmatrix} \text{ mit } x_k \stackrel{k \to \infty}{\to} 0, \quad f(b_k) = \frac{0}{x_k^2} \quad \forall \ k$$

Da $\lim_{k\to\infty} f(a_k) = \frac{1}{2} \neq 0 = \lim_{k\to\infty} f(b_k)$ kann der Grenzwert nicht existieren.

1.3.5 Lemma Folgenkriterium

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, a \in \overline{A}$

$$\underbrace{\exists b \in \mathbb{R}^m \text{ mit } \lim_{x \to a} f(x) = b}_{\text{der Grenzwert } b \text{ existiert}} \quad \Leftrightarrow \quad \underbrace{\text{jede Folge } (x_k)_{k=1}^{\infty} \subset A \text{ mit } x_k \neq a \ \forall \ k \text{ und } x_k \overset{k \to \infty}{\to} a}_{\text{jede beliebige Folge konvergiert gegen } b}$$

1.3.6 Satz zu Grenzwerte verketteter Funktionen

Sei
$$A \subset \mathbb{R}^n, B \subset \mathbb{R}^m, a \in \overline{A}, f : A \to B, g : \overline{B} \to \mathbb{R}^l$$

$$\exists \ b \in \overline{B} \ \mathrm{mit} \ \lim_{x \to a} f(x) = b, \quad \exists \ c \in \mathbb{R}^l \ \mathrm{mit} \ \lim_{y \to b} g(y) = c \quad \Rightarrow \quad \lim_{x \to a} \underbrace{g\left(f(x)\right)}_{(g \circ f)(x)} = \lim_{y \to b} g(y) = c$$

1.3.7 Beispiel

Sei
$$f(x,y) = e^{-x^2+y^2} = \exp(g(x,y))$$
 mit $g(x,y) = x^2+y^2$, dabei gilt:

$$\lim_{(x,y)^{\top} \to (0,0)^{\top}} g(x,y) = \lim_{(x,y)^{\top} \to (0,0)^{\top}} x^2 + y^2 = 0 \quad \Rightarrow \quad \lim_{z \to 0} f(z) = \lim_{z \to 0} e^z = 1$$

1.3.8 Definition der Stetigkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$

(i) f ist **stetig** in $a \in A$ wenn gilt:

$$\forall \ \varepsilon > 0 \ \exists \delta(\varepsilon): \quad \|f(x) - f(a)\| < \varepsilon \quad \forall \ x \in U_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Es wird $\lim_{x\to a} f(x) = f(a)$ gefordert.

Diese Definition unterscheidet sich in der nicht punktierten ε -Umgebung und es gilt f(a) anstatt b.

(ii) f ist stetig auf A, wenn f in jedem Punkt $a \in A$ stetig ist.

1.3.9 Bemerkung

- (i) Kompositionen stetiger Funktionen sind wieder stetig: f, g stetig $\Rightarrow f + g, f g, ...$ stetig
- (ii) Das Folgenkriterium überträgt sich: Sei $(a_k)_{k=1}^{\infty}$ eine Folge in A mit $\lim_{k\to\infty} a_k = a$ \Leftrightarrow $\lim_{k\to\infty} f(a_k) = f(a)$
- (iii) Ist A kompakt, dann nimmt eine stetige Funktion $f: A \to \mathbb{R}$ immer ein Maximum und Minimum an:

$$\exists x_m, x_M \in A \text{ mit } f(x_m) = \min_{x \in A} f(x), f(x_M) = \max_{x \in A} f(x)$$

1.4 Partielle Ableitungen, Richtungsableitungen

1.4.1 Definition der partiellen Ableitung

Die Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ heißt **partielle differenzierbar** in $a \in A$ nach der k-ten Variable x_k mit $k \in \{1, ..., n\}$ wenn der folgender Grenzwert existiert:

$$\frac{\partial}{\partial x_k} f(a) = f_{x_k}(a) = \lim_{h \to 0} \frac{f(a + h \cdot e_k) - f(a)}{h}$$

Existieren alle partielle Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$, dann ist der **Gradient** von f wie folgt definiert:

$$\nabla f(a) = \begin{pmatrix} f_{x_1}(a) \\ \vdots \\ f_{x_n}(a) \end{pmatrix}$$

und die Funktion f heißt mindestens einmal partielle differenzierbar. Sind die partiellen Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$ zudem stetig, so heißt f einmal stetig differenzierbar: $f \in C^1(A, \mathbb{R}^m)$ oder kurz $f \in C^1(A)$.

1.4.2 Beispiel

Sei
$$f(x, y, z) = x^2 - xy + 3z$$

$$\frac{\partial}{\partial x} f(x, y, z) = \lim_{h \to 0} \frac{f(x + h, y, z) - f(x, y, z)}{h}$$

$$= \lim_{h \to 0} \frac{(x + h)^2 - (x + h)y + 3z - (x^2 - xy + 3z)}{h}$$

$$= \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} - \frac{(x + h)y - xy}{h} + \frac{3z - 3z}{h}$$

$$= \left(\frac{d}{dx}x^2\right) - \left(\frac{d}{dx}x\right)y + \left(\frac{d}{dx}0\right)z$$

$$= 2x - y + 0$$

$$\Rightarrow \nabla f(x, y, z) = \begin{pmatrix} 2x - y \\ -x \\ 3 \end{pmatrix}$$

1.4.3 Definition der Richtungsableitung

Sei $a, r \in \mathbb{R}^n$ mit ||r|| = 1 (normiert), $f : \mathbb{R}^n \to \mathbb{R}^m$, dann heißt der folgende Grenzwert die Richtungsableitung von f bei a in Richtung r:

$$\frac{\partial}{\partial r}f(a) = f_r(a) = \lim_{h \to 0} \frac{f(a+h \cdot r) - f(a)}{h}$$

Bemerkung

- (i) Ist $r = e_k$, dann erhalten wir gerade eine partielle Ableitung.
- (ii) Es gibt Funktionen die in a in jede Richtung differenzierbar sind, aber in a nicht stetig sind!

1.5 Total Differenzierbarkeit

Idee: Differenzierbare Funktionen sind lokal im Punkt x_0 linear approximierbar:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \underbrace{r(x)||x - x_0||}_{\hat{r}(x)}$$

Dabei muss der Fehler $\tilde{r}(x) = r(x)||x - x_0||$ schneller gegen Null gehen als x gegen x_0 also muss $\tilde{r}(x) = o(x - x_0)$ gelten (Landau-Notation: klein-oh).

1.5.1 Definition der totalen Differenzierbarkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, A$ offen, $x_0 \in A$

(i) Die Funktion f nennt man **total differenzierbar** bei x_0 , wenn eine Matrix $A \in \mathbb{R}^{m \times n}$ existiert, mit der sich die Funktion f in einer ε -Umgebung um x_0 mittels einer Hyperebene approximieren lässt:

$$f(x) = f(x_0) + A(x - x_0) + r(x)||x - x_0||$$

Dann nennt man die Matrix $A = f'(x_0) = \frac{\partial}{\partial x} f(x_0)$ die total Ableitung von f in x_0 .

(ii) Ist $f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$ partiell diff'bar, so nennt man die Ableitung **Jacobi-Matrix**:

$$f'(x_0) = \frac{\partial}{\partial x} f(x_0) = J_f(x_0) = \begin{pmatrix} \frac{\partial}{\partial x_1} f_1(x_0) & \dots & \frac{\partial}{\partial x_n} f_1(x_0) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} f_m(x_0) & \dots & \frac{\partial}{\partial x_n} f_m(x_0) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Bemerkung: Es gilt: $\exists f'(x_0) \Rightarrow f'(x_0) = J_f(x_0)$, <u>nicht</u> aber die Gegenrichtung! Es kann also sein, dass die Jacobi-Matrix J_f existiert die Funktion aber <u>nicht total diff'bar</u> ist.

1.5.2 Beispiele

(i)

$$f(r,\varphi) = r \cdot \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \quad \Rightarrow \quad J_f = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$

(ii)
$$f(x) = a + b^{\top}(x - x_0), \quad f : \mathbb{R}^n \to \mathbb{R}, \quad a \in \mathbb{R}, \quad b, x_0 \in \mathbb{R}^n$$

 $\Rightarrow \quad f(x_0) = a, \quad f'(x_0) = b^{\top}$

(iii)
$$f(x) = a + A(x - x_0), \quad f: \mathbb{R}^n \to \mathbb{R}^m, \quad a \in \mathbb{R}^m, \quad A \in \mathbb{R}^{m \times n}, \quad x_0 \in \mathbb{R}^n$$

 $\Rightarrow f(x_0) = a, \quad f'(x_0) = A$

Bemerkung: Beispiel (ii) und (iii) sind lineare Funktionen.

1.5.3 Satz

Ist $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ in jedem Punkt $x_0\in A$ total differenzierbar, so ist f stetig in A.

Beweis:

$$f(x) = \underbrace{f(x_0)}_{\stackrel{x \to x_0}{\to} f(x_0)} + \underbrace{A\underbrace{(x - x_0)}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^n}}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^n} + \underbrace{r(x)}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^m} \underbrace{\|x - x_0\|}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}} \quad \text{mit } r(x) \stackrel{x \to x_0}{\to} 0$$

$$\lim_{x \to a} f(x) = f(x_0) \quad \Box$$

1.5.4 Satz

Sei
$$f: A \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in A$$

- a. Ist f total differenzierbar in x_0 , so gilt
 - (i) $f'(x_0) = J_f(x_0)$
 - (ii) f ist in jede Richtung r differenzierbar mit: $\frac{\partial}{\partial r} f(x_0) = J_f(x_0) \cdot r$

Beweis: Es ist zu zeigen, dass wenn f differenzierbar in x_0 die Ableitung gerade die Form $\frac{\partial}{\partial r} f(x_0) = J_f(x_0) \cdot r$ besitzt. Für diese Ableitung muss folgendes gelten:

$$f(x) = f(x_0) + A(x - x_0) + \tilde{r}(x) \text{ mit } A = f'(x_0) \text{ und } \tilde{r} \in o(\|x - x_0\|) \Rightarrow \frac{\tilde{r}(x)}{\|x - x_0\|} \xrightarrow{x \to x_0} 0$$

$$f(x) = f(x_0 + r \cdot h) - f(x_0) = A \cdot r \cdot h + \tilde{r}(x) = f'(x_0)rh + \tilde{r}(x)$$

also muss folgendes gezeigt werden:

$$\left\| \underbrace{\frac{f(x_0 + r \cdot h) - f(x_0)}{h}}_{\text{Diff'Quotient für } \frac{\partial f}{\partial r}} - \underbrace{f'(x_0) \cdot r}_{\text{Grenzwert-kandidat}} \right\|_{h \to 0} 0$$

$$\left\| \frac{f(x_0 + r \cdot h) - f(x_0)}{h} - f'(x_0) \cdot r \right\| = \left\| \frac{f'(x_0)rh + \tilde{r}(x)}{h} - f'(x_0)r \right\| = \left\| \frac{f'(x_0)rh + \tilde{r}(x)}{h} - f'(x_0)r \right\| = \left\| \frac{\tilde{r}(x)}{h} \right\| = \left\| \frac{\tilde{r}(x)}{x - x_0} \right\|_{h \to 0}^{x \to x_0} 0$$

Ist $r = e_k$ so erhält man gerade eine Spalte der Jacobi-Matrix.

b. Existieren in x_0 alle partiellen Ableitungen (also alle Komponenten der Jacobi-Matrix) und diese stetig sind \Rightarrow f ist in x_0 total differenzierbar.

Beweis: Für den Fall n = 2, m = 1 muss folgendes gezeigt werden:

$$\exists \nabla f(x_0) \text{ und } \tilde{r}(x) \text{ mit } f(x) = f(x_0) + \nabla f(x_0)^{\top} (x - x_0) + \tilde{r}(x)$$

$$\text{oder } \left\| \frac{f(x) - f(x_0)}{x - x_0} - \nabla f(x_0) \right\| = \frac{\|f(x) - f(x_0) - \nabla f(x_0)(x - x_0)\|}{\|x - x_0\|} \xrightarrow{x \to x_0} 0$$

Sei
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 und sei $x_0 = a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

Nebenrechnung: Definition zweier Hilfsfunktionen a_1, a_2

Sei
$$g_1(t) = f(t, x_2)$$
 $g_2 : \mathbb{R} \to \mathbb{R}$
 $\stackrel{\text{MWS}}{\Rightarrow}$ $\exists \ \xi_1 \in (a_1, x_1) \text{ mit } g_1'(\xi_1) = \frac{g_1(x_1) - g_1(a_1)}{x_1 - a_1}$
 $= \frac{\partial}{\partial x_1} f(\xi_1, x_2) = \frac{f(x_1, x_2) - f(a_1, x_2)}{x_1 - a_1}$
 $\Leftrightarrow \ f(x_1, x_2) - f(a_1, x_2) = \frac{\partial}{\partial x_1} f(\xi_1, x_2)(x_1 - a_1)$

analog gilt für $g_2(t) = f(a_1, t)$ $g_2 : \mathbb{R} \to \mathbb{R}$
 $f(a_1, a_2) - f(a_1, x_2) = \frac{\partial}{\partial x_2} f(a_1, \xi_2)(x_2 - a_2)$

Damit gilt:

$$f(x) - f(a) = f(x_1, x_2) - f(a_1, a_2) = f(x_1, x_2) \underbrace{-f(a_1, x_2) + f(a_1, x_2)}_{=0} - f(a_1, a_2)$$

$$\stackrel{\text{mit Resultat aus Neben-rechnung}}{=} \frac{\partial}{\partial x_1} f(\xi_1, x_2)(x_1 - a_1) + \frac{\partial}{\partial x_2} f(a_1, \xi_2)(x_2 - a_2)$$

$$= \begin{pmatrix} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{pmatrix}^{\top} \begin{pmatrix} x_1 - a_1 \\ x_2 - a_2 \end{pmatrix} = \begin{pmatrix} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{pmatrix}^{\top} (x - a)$$

Für $x \to a$ gilt:

$$x_1 \to a_1$$
 $x_2 \to a_2$
 $\xi_1 \to a_1$ $\xi_2 \to a_2$

da f_{x_1}, f_{x_2} stetig, folgt:

$$f_{x_1}(\xi_1, x_2) \to f_{x_1}(a_1, a_2)$$

$$f_{x_2}(a_1, \xi_2) \to f_{x_2}(a_1, a_2)$$

$$\Rightarrow \begin{pmatrix} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{pmatrix}^{\top} \to \nabla f(a_1, a_2) = \nabla f(x_0)$$

und es gilt:

$$\frac{\left\| f(x) - f(x_0) - \overbrace{\left(\begin{array}{c} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{array} \right)^{\top}}(x - x_0) \right\|}{\|x - x_0\|} \xrightarrow{x \to x_0} 0$$

1.5.5 Bemerkung

Sei r eine Richtung mit ||r|| = 1 und $x = x_0 + r$, dann gilt:

$$f(x) \approx f(x_0) + \nabla f(x_0)^{\top} \cdot r$$

$$\Rightarrow 1. \text{ Fall}: \quad r, \nabla f(x_0) \text{ zeigen in dieselbe Richtung}:$$

$$f(x) - f(x_0) \approx \|\nabla f(x_0)\| \|r\| = \|\nabla f(x_0)\| > 0$$

$$\Rightarrow 2. \text{ Fall}: \quad r, \nabla f(x_0) \text{ zeigen in entgegengesetzte Richtungen}:$$

$$f(x) - f(x_0) \approx -\|\nabla f(x_0)\| < 0$$

In allen Fällen gilt Näherungsweise:

$$-\|\nabla f(x_0)\| < \nabla f(x_0)^{\top} r \le \|\nabla f(x_0)\|$$

Fazit: Beim Reinzoomen sind die Höhenlinien parallel. Der Gradient zeigt in Richtung des steilsten Anstieges.

1.5.6 Satz zur Kettenregel

Ist $f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^m$ differenzierbar in $a\in A$ und $g:B\subset\mathbb{R}^m\to\mathbb{R}^l$ differenzierbar in $b\in B$, so gilt:

$$(g \circ f)'(a) = g'\left(\underbrace{f(a)}_{=b}\right) f'(a) = \underbrace{J_g(b)}_{\in \mathbb{R}^{l \times m}} \underbrace{J_f(a)}_{\in \mathbb{R}^{m \times n}}$$

Beispiel aus der Strömungsmechanik: Die Funktion $f: \mathbb{R}^4 \to \mathbb{R}, f = f(x, y, z, t)$ beschreibe die Eigenschaften eines Teilchens in einer Strömung. Dabei kann die Bewegung der Position im Raum x, y, z als Abhängigkeit von der Zeit beschrieben werden. Dazu definieren wir den Weg $\gamma(t)$:

$$\gamma: \mathbb{R} \to \mathbb{R}^4, \quad \gamma(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \\ t \end{pmatrix} \quad \text{mit} \quad \frac{d\gamma}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \\ 1 \end{pmatrix}$$

Nun leiten wir die verkettete Funktion $\hat{f}(t) = (f \circ \gamma)(t) = f(\gamma(t))$ nach der Zeit t ab:

$$\frac{d\hat{f}}{dt} = \left(\hat{f}(\gamma(t))\right)' = f'(h(t))\gamma'(t) = \nabla f \cdot \frac{d\gamma}{dt}$$

$$= \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}^{\top} \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \\ 1 \end{pmatrix}$$

$$= \frac{\partial f}{\partial x} \underbrace{\frac{dx}{dt}}_{y} + \frac{\partial f}{\partial y} \underbrace{\frac{dy}{dt}}_{y} + \frac{\partial f}{\partial z} \underbrace{\frac{dz}{dt}}_{y} + \frac{\partial f}{\partial t}$$

Dabei beschreibt der Vektor $\begin{pmatrix} u \\ v \\ w \end{pmatrix}$ die Geschwindigkeit im Raum.

1.6 Lokale Extremstellen und Mittelwertsätze

In einer Dimension gilt:

1. Mittelwertsatz

Ist f differenzierbar auf (a, b) und stetig auf [a, b], so gilt:

$$\exists \ \xi \in (a,b) \text{ mit } f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Satz von Rolle

Ist f differenzierbar auf (a, b) und stetig auf [a, b] und gilt f(a) = f(b), so gilt:

$$\exists \ \xi \in (a,b) \ \mathrm{mit} \ f'(\xi) = 0$$

1.6.1 Definition lokale/globale Extremstellen

(i) Eine Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}$ (Skalarfeld) hat bei $x_0 \in A$ ein lokales Minimum (Maximum) wenn in einer Umgebung $U = U_{\varepsilon}(x_0) \cap A$ für $\varepsilon > 0$ (offen bezüglich A) von x_0 gilt:

$$f(x_0) \stackrel{(\geqslant)}{\leqslant} f(x) \quad \forall x \in U$$

Ist bei x_0 ein lokales Minimum (Maximum) dann nennt man x_0 eine lokale Extremstelle.

(ii) f besitzt in x_0 ein globales Minimum (Maximum), wenn gilt:

$$f(x_0) \stackrel{(\geqslant)}{\leqslant} f(x) \quad \forall x \in A$$

1.6.2 Satz zur notwendigen Bedingung für eine lokale Extremstelle

Besitzt $f: \mathring{A} \subset \mathbb{R}^n \to \mathbb{R}$ bei $x_0 \in A$ eine lokale Extremstelle und f ist partiell differenzierbar, dann ist

$$\nabla f(x_0) = 0$$

 $Bemerkung\colon \text{Der Rand}$ ist ausgeschlossen da \mathring{A} (alle inneren Punkte) in der Definition verwendet wurde.

Auch gilt:

$$x_0$$
 ist eine lokale Extremstelle $\stackrel{\not=}{\Rightarrow}$ $f'(x_0) = 0$

Aus $f'(x_0)$ folgt nicht direkt die Extremstelle, denn Sattelpunkte sind keine Extremstellen.

Beweis: ...

1.6.3 Definition des kritischen Punktes

Ein $x_0 \in \mathbb{R}^n$ mit $\nabla f(x_0) = 0$ heißt **kritischer** oder stationärer Punkt.

1.6.4 Mittelwertsatz

Sei $f: G \subset \mathbb{R}^n \to \mathbb{R}$ differenzierbar und sei G offen und enthalte die Menge $\overline{a,b} = \{a,b \in G \text{ mit } a+t(b-a): t \in [0,1]\}$ (a,b) können durch eine Gerade verbunden werden). Dann:

$$\exists \ \xi \in (0,1) \quad \text{mit} \quad f(b) = f(a) + \nabla f(a + \xi(b-a))^{\top} (b-a)$$

Bemerkung:

$$h(t) = a + t(b - a)$$
 $g(t) = f(h(t))$ (differenzierbar)
 $\Rightarrow \exists \xi \in (0, 1)$ mit $g'(\xi) = \frac{g(1) - g(0)}{1 - 0}$

Beweis: Definiere h(t) = a + t(b-a) und $g: [0,1] \to \mathbb{R}, g(t) = f(h(t))$ differenzierbar, damit gilt:

$$\exists \ \xi \in (0,1) \quad \text{mit} \quad g'(\xi) = \frac{g(1) - g(0)}{1 - 0} = g(1) - g(0) = f(a) - f(b)$$

$$g'(\xi) = \frac{d}{dt}g(t)|_{t=\xi} = \frac{d}{dt}f(h(t))|_{t=\xi}$$

$$\stackrel{\text{Ketten-regel}}{=} f'(h(t))h'(t)|_{t=\xi}$$

$$= \nabla f(a + \xi(b - a))^{\top}(b - a) = f(a) - f(b)$$

$$\Leftrightarrow f(b) = f(a) + \nabla f(a + \xi(b - a))^{\top}(b - a)$$

1.6.5 Definition eines Gebiets

(i) Ein Menge, die wie folgt konstruiert werden kann, heißt **Polygonzug**:

$$\overline{a_0, ..., a_k} = \bigcup_{j=1}^k \overline{a_{j-1}, a_j} \quad \text{mit} \quad a_0, ..., a_k \in \mathbb{R}^n$$

- (ii) Eine Menge $M \subset \mathbb{R}^n$ heißt **kurvenweise zusammenhängend** wenn zu beliebigen $a, b \in M$ eine stetige Funktion $\gamma : [0, 1] \to M$ mit $\gamma(0) = a, \gamma(1) = b$ existiert.
- (iii) Eine Menge $G \subset \mathbb{R}^n$ heißt **Gebiet**, wenn G offen und kurvenweise zusammenhängend ist.

1.6.6 Bemerkungen zu Gebieten

- (i) Ein Gebiet G entspricht einem offenen Intervall $(a,b) \subset \mathbb{R}$ im Eindimensionalen: Der Rand ist nicht dabei, es hat keine Inseln.
- (ii) Man kann zeigen, dass es reicht, wenn $a, b \in G$ mit einem Polygonzug verbunden werden kann.

1.6.7 Satz

Sei $G \subset \mathbb{R}^n$ ein Gebiet, $G \neq \emptyset$, und $f: G \to \mathbb{R}$ differenzierbar, dann gilt:

$$f(x) = \text{konst.} \quad \Leftrightarrow \quad \nabla f(x) = 0 \quad \forall \ x \in G$$

Beweis: ...

1.6.8 Definition partieller Ableitungen r'ter Ordnung

Für $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ definiert man (wenn diese auch existieren) induktiv für $x_0\in A$ und $k_1,...,k_r\in\{1,...,n\}$ die partiellen Ableitungen r'ter Ordnung als:

$$\frac{\partial^n}{\partial x_{k_1} \dots \partial x_{k_r}} f(x_0) = f_{x_{k_1} \dots x_{k_r}} = \begin{cases} f(x_0) & r = 0\\ \frac{\partial}{\partial x_{k_1}} f(x_0) & r = 1\\ \frac{\partial}{\partial x_{k_1}} \left(\frac{\partial^{r-1}}{\partial x_{k_2} \dots \partial x_{k_r}} f(x_0)\right) & r > 1 \end{cases}$$

Existieren alle Ableitungen r'ter Ordnung und sind diese zudem stetig, so nennt man die Funktion f r-mal stetig differenzierbar: $f \in C^r(A; \mathbb{R}^m)$.

1.6.9 Definition der Hessematrix

Ist $f: A \subset \mathbb{R}^n \to \mathbb{R}$ 2-mal stetig differenzierbar bei $x_0 \in A$, dann ist die **Hessematrix** wie folgt definiert:

$$H_f(x_0) = \begin{pmatrix} f_{x_1,x_1}(x_0) & \dots & f_{x_1,x_n}(x_0) \\ \vdots & & \vdots \\ f_{x_m,x_1}(x_0) & \dots & f_{x_m,x_n}(x_0) \end{pmatrix}$$

1.6.10 Beispiele

(i)

$$f(x,y) = 2xy^3 + y\log x$$

(ii)

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 \Rightarrow Hessematrix ist nicht symmetrisch.

(iii)
$$A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, c \in \mathbb{R}, Q : \mathbb{R}^n \to \mathbb{R}$$

$$Q(x) = x^\top A x + b^\top x + c$$

$$\nabla Q(x) = \left(A + A^\top\right) x + b \underbrace{(= 2Ax + b)}_{\text{wenn } A \text{ sym.}}$$

$$H_Q(x) = A + A^\top \underbrace{(= 2A)}_{\text{wenn } A \text{ sym.}}$$

Q wird eine quadratische Funktion genannt.

1.6.11 Satz von Schwarz

Ist $f: A \subset \mathbb{R}^n \to \mathbb{R}^n$ in x_0 2-mal stetig partielle differenzierbar $(f \in C^2(A))$, dann ist $H_f(x_0) \quad \forall x_0 \in A$ symmetrisch und es gilt:

$$f_{x_l,x_k}(x_0) = \frac{\partial}{\partial x_l \partial x_k} f(x_0) = \frac{\partial}{\partial x_k \partial x_l} f(x_0) = f_{x_k,x_l}(x_0) \quad \forall \ l, k \in \{1,...,k\}$$

1.6.12 Satz von Taylor mit quadratischem Restglied

Seien $a, b \in G \subset \mathbb{R}^n, f \in C^2(G), G$ ein Gebiet, dann:

$$\exists \ \xi \in \overline{a,b} \quad \text{mit} \quad f(b) = f(a) + \nabla f(a)^{\top} (b-a) + \frac{1}{2} (b-a)^{\top} H_f(\xi) (b-a)$$

Beweis: Definiere g(t) = f(h(t)) mit $h(t) = a + t(b - a) \Rightarrow g(0) = f(a), g(1) = f(b)$. Bei Funktionen mit einem Skalar, gilt der eindimensionale Taylor mit einer Zwi-

schenstelle $z \in [0,1]$: $\Rightarrow \underbrace{g(1)}_{f(b)} = \underbrace{g(0)}_{f(a)} + \underbrace{g'(0)(1-0)}_{g'(t) = \frac{d}{dt}f(h(t))} + \underbrace{\frac{1}{2}g''(z)(1-0)^2}_{g''(t) = \dots = (b-a)^\top H_f(a+t(b-a))(b-a)}$ $= \nabla f(a+t(b-a))^\top (b-a)$ $= (b-a)^\top \nabla f(a+t(b-a))$ $= f(a) + \nabla f(a)^\top (b-a) + \frac{1}{2}(b-a)^\top H_f(\underbrace{\xi}_{\xi=a+t(b-a)})(b-a)$

1.6.13 Definition von Definitheit

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch $(A = A^{\top})$:

- a. Die durch $Q_A(x) = x^{\top} A x$ definierte Funktion $Q : \mathbb{R}^n \to \mathbb{R}$ heißt quadratische Form von A.
- b. Die Matrix A und ihre quadratische Form Q_A heißen:
 - (i) **positiv definit**, wenn

$$Q_A(x) = x^{\top} Ax > 0 \quad \forall \ x \in \mathbb{R}^n \text{ mit } x \neq 0$$

negativ definit, wenn

$$Q_A(x) = x^{\top} A x < 0 \quad \forall \ x \in \mathbb{R}^n \text{ mit } x \neq 0$$

oder kurz **definit** falls die Matrix A positiv oder negativ definit ist.

(ii) **semi definit** falls die Matrix A positiv semi definit oder (negativ semi definit) ist:

$$Q_A(x) = x^{\top} A x \stackrel{(\leqslant)}{\geqslant} 0 \quad \forall \ x \in \mathbb{R}^n \text{ mit } x \neq 0$$

(iii) **indefinit**, wenn ein $x_1, x_2 \in \mathbb{R}^n$ existieren mit:

$$\underbrace{x_1^{\top} A x_1}_{Q_A(x_1)} < 0 \quad \text{und} \quad \underbrace{x_2^{\top} A x_2}_{Q_A(x_2)} > 0$$

1.6.14 Beispiele

(i)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

(iii)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(iv)
$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

(v)
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$(vi) A = \begin{pmatrix} a & b & 0 \\ b & c & 0 \\ 0 & 0 & d \end{pmatrix}$$

(vii)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

1.6.15 Satz zum Hauptminorenkriterium

Sei
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n}$$
 symmetrisch,

Für die Hauptminoren $D_1,...,D_n$ gilt:

- a. A ist positiv definit \Leftrightarrow $D_1 > 0, D_2 > 0, ..., D_n > 0$ alle Hauptminoren sind positiv
- b. A ist negativ definit \Leftrightarrow $D_1 < 0, D_2 > 0, D_3 < 0, \dots$ oder $D_k = \begin{cases} < 0 & k \text{ ungerade} \\ > 0 & k \text{ gerade} \end{cases}$
- c. (i) $D_k < 0$ mit k gerade \Rightarrow A ist indefinit
 - (ii) $D_k < 0 < D_l$ mit k, l ungerade \Rightarrow A ist indefinit

Beispiele

(i)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

(iii)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

1.6.16 Satz über die hinreichenden Bedingungen für lokale Extremstellen

Sei $f \in C^2(U)$ in einer Umgebung U um x_0 und gilt $\nabla f(x_0) = 0$ sowie:

- (i) $H_f(x_0)$ ist positiv definit \Rightarrow x_0 ist eine lokale Minimalstelle.
- (ii) $H_f(x_0)$ ist negativ definit \Rightarrow x_0 ist eine lokale Maximalstelle.

Beweis: o.B.d.A nur für (i), denn (ii) folgt analog mit gedrehtem Ungleichungszeichen.

Sei $U = U_{\varepsilon}(x_0)$ eine ε -Umgebung um den Punkt $x_0 \in \mathbb{R}^n$:

Sei
$$f \in C^2(U) \Rightarrow H_f \in C^2(U, \mathbb{R}^{n \times n})$$
 mit allen Komponenten stetig

$$\Rightarrow \tilde{g} : \mathbb{R}^n \to \mathbb{R}, \tilde{g}(x) = (x - x_0)^\top H_f(x)(x - x_0) \text{ ist stetig}$$

$$\Rightarrow g(x) = (x - x_0)^\top H_f(h(x))(x - x_0) \text{ ist stetig}$$

ist
$$H_f(x_0)$$
 pos. def. $\Rightarrow (x - x_0)^\top H_f(x_0)(x - x_0) > 0$ für $x \neq x_0$
 $\Rightarrow (x - x_0)^\top H_f(h(x_0))(x - x_0) > 0$ falls $z(x_0)$ nahe genug bei x_0

Sei $h(x_0) = x_0 + \xi(x - x_0)$ dann gilt:

$$f(x) = f(x_0) + \underbrace{\nabla f(x_0)^{\top}(x - x_0)}_{=0} + \underbrace{\frac{1}{2}(x - x_0)^{\top} \underbrace{H_f(x_0 + \xi(x - x_0))}_{\text{pos. def. in } U_{\varepsilon}(x_0)} (x - x_0)}_{>0 \ \forall x \in U_{\varepsilon}(x_0)} \geqslant f(x_0)$$

1.6.17 Definition der Sattelpunkte

Sei $U = U_{\varepsilon}(x_0), f \in C^2(U), \nabla f(x_0) = 0, H_f(x_0)$ indefinit, dann besitzt die Funktion f bei x_0 einen Sattelpunkt.

Bemerkung: $\forall \varepsilon > 0$ gilt:

$$\exists x_1, x_2 \in U_{\varepsilon}(x_0) \text{ mit } f(x_1) > f(x_0) \text{ und } f(x_2) < f(x_0)$$

1.6.18 Satz für den Fall n=2

Ist $f \in C^2(U)$ für eine Umgebung U von $x_0 = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ gilt weiter $f_x(a,b) = f_y(a,b) = 0$, dann ist x_0 :

- (i) eine lokale **Minimal**stelle, wenn $f_{xx}(a,b) > 0$ (erster Hauptminor D_1) <u>und</u> $f_{xx}(a,b)f_{yy}(a,b) 2(f_{xy}(a,b))^2 > 0$ (zweiter Hauptminor D_2)
- (ii) eine lokale **Maximal**stelle, wenn $f_{xx}(a,b) < 0$ (erster Hauptminor D_1) <u>und</u> $f_{xx}(a,b)f_{yy}(a,b) 2(f_{xy}(a,b))^2 > 0$ (zweiter Hauptminor D_2)
- (iii) ein **Sattelpunkt**, wenn $f_{xx}(a,b) < 0$ (erster Hauptminor D_1) <u>oder</u> $f_{xx}(a,b)f_{yy}(a,b) 2(f_{xy}(a,b))^2 < 0$ (zweiter Hauptminor D_2)

1.6.19 Beispiel

Sei $f(x, y, z) = x^2 + xy + y^2 - \cos z \in C^2(\mathbb{R}^2)$:

$$\nabla f(x, y, z) = \begin{pmatrix} 2x + y \\ x + 2y \\ \sin z \end{pmatrix} \stackrel{!}{=} 0$$

1.7 Extremstellen unter Nebenbedingungen und implizite Funktionen

 $Bisher: \mbox{ Optimierungsproblem ohne Nebenbedingungen: } \left\{ \begin{array}{l} f(x,y) \to \min \\ \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \end{array} \right.$

Lösbar in drei Schritten:

- 1. lokale Minimalstellen bestimmen
- 2. untersuche f(x,y) für $\left\| \left(\begin{array}{c} x \\ y \end{array} \right) \right\| \to \infty$
- 3. vergleiche die Resultate aus 1. und 2.

Bemerkung: aus $f(x,y) \to \min$ wird $-f(x,y) \to \max$ darum reicht es o.B.d.A. denn Fall $\to \min$ zu betrachten.

Jetzt: Optimierungsproblem mit Nebenbedingungen: $\left\{\begin{array}{l} f(x,y)\to \min\\ \left(\begin{array}{c} x\\y \end{array}\right)\in A\subset \mathbb{R}^2 \right.$

Es ist bekannt, dass wenn $f \in C(A)$ und $A \neq \emptyset$ kompakt (abgeschlossen und beschränkt) dann existiert sicher eine Lösung (Satz von Weierstraß: f stetig und A kompakt \Rightarrow es wird ein Minimum (Maximum) angenommen).

Es sind zwei Fälle möglich:

- (i) globale Minimalstelle liegt in \mathring{A} (im Inneren)
- (ii) globale Minimalstelle liegt in ∂A (auf dem Rand)

Wenn zusätzlich $f \in C^2(A)$ gilt, kann die Minimalstelle wie folgt gefunden werden:

- 1. bestimme lokale Minimalstellen mit $\nabla f(x_0) = 0$ und $H_f(x_0)$ positiv definit in Å
- 2. bestimme lokale Minimalstelle in ∂A Bemerkung: Eckpunkte müssen gesondert betrachtet werden, denn die Funktion kann an diesen Stellen nicht differenzierbar sein.
- 3. wähle das Minimum aus 1. und 2.

Wiederholung im Eindimensionalen

Eine Funktion f: X (Definitionsbereich) $\to Y$ (Bildbereich) ist:

(i) **injektiv**, wenn

$$x_1, x_2 \in X \text{ mit } x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2)$$

Bemerkung: Von zwei verschiedenen Punkten aus dem Definitionsbereich darf nicht auf den gleichen Punkt im Bildbereich abgebildet werden.

(ii) surjektiv, wenn

$$\forall y \in Y \quad \exists x \in X \quad \text{mit} \quad f(x) = y$$

Bemerkung: Für alle Bildpunkte existiert ein Punkt im Definitionsbereich.

(iii) **bijektiv**, wenn die Funktion f injektiv und surfjektiv ist.

Beispiel

Sei $d: C^1(\mathbb{R}) \to C(\mathbb{R})$ eine Funktion mit $f \mapsto f'$ (Ableitungsoperator für alle einmal stetig differenzierbaren Funktionen). Für diese Funktion d gilt:

- (i) d ist <u>nicht</u> injektiv da: Seien $f_1(x) = x, f_2(x) = x + 1$ zwei Funktionen aus $C^1(\mathbb{R})$. Für diese gilt: $f_1 \neq f_2$ aber $d(f_1) = f'_1 = 1 = f'_2 = d(f_2)$.
- (ii) d ist surjektiv, denn nach dem Hauptsatz der Differential und Integralrechnung gilt: Alle stetigen Funktionen besitzen eine Stammfunktion.

1.7.1 Spezialfälle

- (i) f ist linear und $f: \mathbb{R}^n \to \mathbb{R}^m: f(x) = Ax$ mit $A \in \mathbb{R}^{m \times n}$ Im Fall m = n gilt: f ist bijektiv $\Leftrightarrow A$ ist invertierbar.
- (ii) Allgemeinerer Fall z.b. $f:[0,\infty)\times[-\pi,\pi)\to\mathbb{R}^2: \quad f(r,\varphi)=r\left(\begin{array}{c}\cos\varphi\\\sin\varphi\end{array}\right)$ f ist surjektiv aber <u>nicht</u> injektiv, denn $f(0,\varphi)=\left(\begin{array}{c}0\\0\end{array}\right)\quad\forall\;\varphi\in[-\pi,\pi)$

1.7.2 Bemerkung

- a. Folgende Aussagen sind äquivalent:
 - (i) A ist invertierbar (oder regulär oder nicht singulär)
 - (ii) Ax = b besitzt $\forall b \in \mathbb{R}^n$ eine eindeutige Lösung $x \in \mathbb{R}^n$
 - (iii) $\det A \neq 0$
- b. Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ mit $x_0 \in \mathbb{R}^n$: $f(x) = f(x_0) + A(x x_0)$ mit det $A \neq 0$ Die Umkehrfunktion f^{-1} kann durch Äquivalenzumformungen gebildet werden:

$$f(x_0) + A(x - x_0) \stackrel{!}{=} y$$

$$\Leftrightarrow A(x - x_0) = y - f(x_0)$$

$$\Leftrightarrow x - x_0 = A^{-1}(y - f(x_0))$$

$$\Leftrightarrow x = x_0 + A^{-1}(y - f(x_0)) = f^{-1}(y)$$

Für die Ableitung der Umkehrfunktion gilt: $\frac{\partial}{\partial y}f^{-1}(y)=A^{-1}$

Kommentar: Differenzierbare Funktionen sind in einer hinreichend kleinen ε -Umgebung im Prinzip linear (nicht ganz korrekt, aber sehr anschaulich).

1.7.3 Satz über die Umkehrfunktion

Sei $f \in C^1(G; \mathbb{R}^n)$ mit $G \subset \mathbb{R}^n$ ein Gebiet, $x_0 \in G$ mit $\det f'(x_0) = \det J_f(x_0) \neq 0$. Dann gilt in einer geeigneten offenen Umgebung U um x_0 , dass

- (i) V = f(U) ist offen (das Bild V von U ist offen) und det $f'(x) \neq 0 \quad \forall x \in U$
- (ii) $f:U\to V$ ist bijektiv, das heißt: $\exists~f^{-1}:V\to U$ (die Funktion ist lokal invertierbar)

Beweisidee: Da f stetig differenzierbar ist, gilt:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x) ||x - x_0|| \text{ mit } r(x) \xrightarrow{x \to x_0} 0$$

$$\approx f(x_0) + f'(x_0)(x - x_0)$$

$$= f(x_0) + A(x - x_0) \text{ mit } \det A \neq 0$$

Wenn \approx ein = wäre so könnte die Umkehrfunktion $f^{-1}(y)$ einfach durch Äquivalenzumformungen bestimmt werden

 \Rightarrow In einer hinreichend kleinen ε -Umgebung kann \approx als = angenommen werden.

(iii)
$$(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1} \Leftrightarrow J_{f^{-1}}(y) = J_{f'}(f^{-1}(y))$$

Beweisidee: Wenn $f^{-1}: V \to U$ existiert, dann ist f^{-1} auch stetig diff'bar. Beispielskizze aus dem Eindimensionalen:

$$f(x) = e^{x}, \quad f'(x) = e^{x}, \quad \exists \ f^{-1}(y) = \log y$$

$$\Rightarrow \quad y = f\left(f^{-1}(y)\right)$$
Ableiten mit Kettenregel
$$\Rightarrow \quad 1 = f'\left(f^{-1}(y)\right) \cdot (f^{-1})'(y)$$

$$\Rightarrow \quad (f^{-1})'(y) = \log' y = \frac{1}{f'\left(f^{-1}(y)\right)} = \frac{1}{e^{\log y}} = \frac{1}{y}$$

Beispiel übertragen auf den allgemeinen mehrdimensionalen Fall:

$$y = f\left(f^{-1}(y)\right)$$
Ableiten mit Kettenregel
$$1 = \underbrace{f'\left(f^{-1}(y)\right)}_{J_{f'}(f^{-1}(y))} \cdot \frac{d}{dy} f^{-1}(y)$$

$$\Rightarrow \frac{d}{dy} f^{-1}(y) = \left(f'\left(f^{-1}(y)\right)\right)^{-1}$$