Лабораторная работа 3.1.3 Измерение магнитного поля земли

Хомутов Андрей, группа Б06-903 30 сентября 2020 г.

Цель работы

Определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измеритьгоризонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используются

12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0,5 –0,6)мм, электронные весы, секундомер, измеритель магнитной индукции АТЕ-8702,штангенциркуль, брусок из немагнитного материала (25х30х60 мм3), деревянная линейка, штативиз немагнитного материала;дополнительные неодимовые магнитные шарики (20 шт.) и неодимовые магниты в форме парал-лелепипедов (2 шт.), набор гирь и разновесов.

1 Теоретическая часть

1.1 Точечный магнитный диполь

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент \vec{P}_m тонкого витка площадью S током I равен:

$$\vec{P}_m = (I/c)\vec{S} = (I/c)S\vec{n} \tag{1}$$

где с-скорость света в вакууме, $\vec{S} = S\vec{n}$ - вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} —единичный вектор нормали к площадке S(это же направление \vec{P}_m принимается за направление S -> N от южного (S) к северному (N) полюсу). Если размеры кон-тура с током или магнитной стрелки малыпо сравнению расстоянием до диполя, то соответствую-щий магнитный диполь \vec{P}_m называют элементарным или точечным.

Магнитное поле точечного диполя определяется по формуле, аналогичной формуле для поля элементарногоэлектрического диполя

$$\vec{B} = 3\left(\vec{P}_m \vec{r}\right) \vec{r}/r^5 - \vec{P}_m/r^3 \tag{2}$$

В магнитном поле с индукцией В на точечный магнитный диполь действует механический момент сил:

$$\vec{M} = \vec{P}_m \times \vec{B} \tag{3}$$

Под действием вращающего момента \vec{M} виток с током или постоянный магнит поворачивается так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это —положение устойчивого равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия. В положении, когда \vec{P}_m и \vec{B} параллельны, но направлены противоположно друг другу, также имеет место равновесие (M=0), но такое равновесие неустойчиво: малейшее отклонение от этого положения приведёт к появлению момента сил, стремящихся отклонить диполь ещё дальше от начального положения. Магнитный диполь в магнитном поле обладает энергией:

$$W = -\left(\vec{P}_m, \vec{B}\right) \tag{4}$$

Из этой формулы следует, что энергия диполя в поле минимальнаи равна $W_{\min} = -P_m B$ при сонаправленных векторах $\vec{P}_m \uparrow \uparrow \vec{B}$ (угол θ между \vec{P}_m и \vec{B} равен нулю), т.е., как и следовало

ожидать, в положении устойчивого равновесия. В неоднородномполе на точечный магнитный диполь, кроме момента сил, действует ещё и сила:

$$\vec{F} = (\vec{P}, \vec{\nabla})\vec{B},\tag{5}$$

где $\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ - дифференциальный оператор Гамильтона(векторный оператор «набла»).

Используя формулы для момента силы, силы и энергии, не сложно выяснить, как ведёт себя свободный магнитный диполь в неоднородном магнитном поле: он выстраивается вдоль силовых линий магнитного поля и, кроме того, под действием результирующей силы, возникающей из-за неоднородности поля, втягивается в область более сильного магнитного поля, т.е. в область, где он обладает меньшей энергией. Зная магнитные моменты P_1 и P_2 двух небольших постоянных магнитов, можно рассчитать силу их взаимодействия. Если магнитные моменты $P_1 = P_2 = P_m$ двух одинаковых небольших магнитов направлены вдоль соединяющей их прямой, а расстояние между ними равно г, то магниты взаимо-действуют с силой:

$$F = P_m \partial B / \partial r = P_m \partial \left(2P_m / r^3 \right) / \partial r = -6P_m^2 / r^4 \tag{6}$$

Магниты притягиваются, если их магнитные моменты сонаправлены $\left(\vec{P}_1 \uparrow \uparrow \uparrow \vec{P}_2\right)$ и отталкиваются, если моменты направлены противоположно друг другу $(\vec{P_1} \uparrow \downarrow \vec{P_2})$.

1.2 Неодимовые магнитные шары

В настоящей работе используются неодимовые магниты шарообразной формы. Для нас важно то, что:

- 1. шары намагничены однородно
- 2. вещество, из которого изготовлены магниты, является магнитожёстким материалом

Магнитное поле однородно намагниченного шарарадиуса R на расстояниях r Rot центра шарасовпадает с полем точечного магнитного диполя Рт, равного полному магнитному моменту шараи расположенногов его центре.(Можно показать, что внутри (r < R) такого шара поле однородно и равно $B_0 = 2P_m/R^3$).

Магнитожёсткость материала означает, что магнитные моменты шаров в нашей работе не изме-няются под действием внешних магнитных полей, т.е. шар ведёт как жёсткий диполь. Поэтому, при расчетах можно считать, что шары взаимодействуют как жёсткие точечные магнитные диполи, рас-положенные в центрах шаров.

Полный магнитный момент тРпостоянного магнита определяется намагниченностью трвещества, из которого он изготовлен. По определению, намагниченность -это магнитный момент еди-ницы объёма. Для однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p}_m = \vec{P}_m / V \tag{7}$$

где V—объём шара.

Намагниченность —важная характеристика вещества постоянных магнитов, определяющая, в частности, величину остаточной магнитной индукции $B_r = 4\pi p_m$ (остаточная индукция Вг-одна из величин, которая, как правило, указывается в справочниках по магнитожёстким материалам). Не сложно показать, что индукция магнитного поля Вр на полюсах однородно намагниченного шара связанас величиной намагниченности Pm и остаточной магнитной индукцией Вг формулой:

$$\vec{B}_p = (8\pi/3)\vec{p}_m = (2/3)\vec{B}_r \tag{8}$$

2 Практическая часть

2.1 Снятие и обработка экспериментальных данных

2.1.1 Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

Метод А:

1. Сначала были измерены масса и диаметр шариков:

$$m = 0.8495 \pm 0.0001 \,\mathrm{r}, \ r = 0.285 \pm 0.002 \,\mathrm{cm}$$

2. Подкладывая между шарами немагнитный материал (дерево и бумагу) было измерено макисмальное расстояние $r_{max} = 2,78 \pm 0,01$ см, на котором один шарик способен удержать другой в поле тяжести Земли. Чрезвычайно важен тот факт, что формулы для расчета были выведены в СГС, а потому дальнейшие значения магнитных величин выражаются в соответсвующих единицах измерения (сантиметр-грамм-секунда) и лишь в конце величина магнитного поля будет предоставлена в еденицах СИ.

Рис. 1: Метод А

3. Зная, что $F=6P_m^2/r_{\rm max}^4,$ а $F_T=mg,$ мы можем расчитать расчитать магнитный момент шариков:

$$P_m = r_m^2 \sqrt{\frac{mg}{6}} = (91, 1 \pm 1, 6) \frac{\Gamma^{\frac{1}{2}} \text{cM}^{\frac{5}{2}}}{c}$$

При этом погрешность расчета магнитного моменоа оценивалась как:

$$\delta_{P_m} = \operatorname{Pm}\left(2\varepsilon_r + \frac{1}{2}\varepsilon_m\right)$$

- 4. По формуле (7) можно рассчитать величину намагн
ченности шарика $p_m=940\frac{{\rm Kr}^{\frac{1}{2}_{\rm M}}\frac{-1}{2}}{c}$
- 5. По формуле (2) мы можем рассчитать величину магнитной индукции на полюсах $B_p = 7870~\Gamma c = 787~\text{мТл}$. Имелась возможность эту же величину определить с помощью магнитометра. От измерения к измерению величина магнитного поля на полюсах различалась, она находилась в грамницах от 210 до 335 мТл. Однако точность измерения подтверждает совпадение величины остаточной магнитной индукции с табличными значениями.

6. Величина остаточной намагниченности получилась равной $B_r = (3/2)B_p = 11805\Gamma c$. Табличные значения ¹ варьируются от 11 до 13 кГс.

Метод Б:

- 1. Используя другую схему, мы можем составить цепь из шаров, подвешивая их друг за друга и добавив груз снизу. По величине силы, при которой происходит отрыв цепи от верхнего шара, можно рассчитать его магнитный момент (рис. 2).
- 2. Аналогично методу А можно расчитать дипольный момент шарика по весу оторвавшейся цепочки с грузом. Разница в том что нужно учитывать вза-имодействие нескольких шариков друг с другом, а погргешность измерения оторвавшейся массы можно не учитывать (270,97г » 0,01г):

$$P_m = d^2 \sqrt{\frac{F}{6 \cdot 1,08}} = (65, 8 \pm 0, 3) \frac{\Gamma^{\frac{1}{2}} \text{cm}^{\frac{5}{2}}}{c}$$

Рис. 2: Метод Б

3. Аналогично, поле на полюсах шарика $B_p = 5680~\Gamma c = 568~\text{мТл}$. Непосредственное измерение магнитометром показывает, что измерение, проведенное методом A оказалось точнее.

2.2 Определение вертикальной составляющей магнитного поля Земли

Был собран крутильный маятник из n (=3-12) магнитных шариков, после чего измерялся период его колебаний. Погрешность считалась как $\sigma_T = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{реакц}}^2}$. Для уменьшения вклада случайной погрешности было проведено 3 измерения периода для каждого n, а для уменьшения вклада систематической одним измерением считалось время которое требовалось весам на совершение не одного, но нескольких (>5) колебаний. Соответсвующие измерения приведены в таблице 1.

	11	17-11	U1, C	U2, C	100, 0	1,0	σ_T, c
	12	5	11,79	11,56	11,57	2,33	0,04
	11	5	10,16	10,45	10,38	2,07	0,04
ľ	10	5	9,47	9,58	9,54	1,91	0,03
	9	5	8,74	8,71	8,66	1,74	0,03
ľ	8	6	9,38	9,25	9,1	1,54	0,03
	7	7	9,42	9,44	9,31	1,34	0,02
	6	8	9,27	9,44	9,39	1,17	0,02
	5	10	9,65	9,49	9,39	0,95	0,02
	4	14	10,73	10,89	10,78	0,77	0,01
	3	15	8,9	8,37	8,59	0,57	0,02

¹https://ferrite.ru/products/magnets/ndfeb

Рис. 3: T(n)

По данной зависимости был построен график зависимости T(n) и найден коэффициент наклона k=0,19, см рис. 3. Считая что стержни подчиняются уравнению малых вращательных колебаний, где момент инерции системы шаров совпадает с хорошей точностью с моментом инерции стержня, можно получить:

$$B_h = \pi^2 m d^2 / 3k^2 P_m$$

$$B_h = 270 \pm 9 \text{ M}\Gamma c,$$

$$(9)$$

погрешность рассчитывалась по формуле $\varepsilon_{B_h} = \varepsilon_m + 2\varepsilon_d + 2\varepsilon_k + \varepsilon_{P_m}$ Если свернуть систему из шариков в кольцо (для которого, очевидно, суммарный дипольныц момент равен нулю), то колебания вообще не наблюдаются, что подтверждает отсутсвие необходимости учитывать собственную упругость нити.

2.3 Определение вертикальной составляющей магнитного поля Земли

Была собрана стрелка из четного числа шаров n (=2-10) для которой были измерены величины моментов M, переводивших ее из наклоненного в горизонтальное положение. Этот момент равен величине момента сил, создаваемого вертикальной составляющей магнитного поля Земли. Аналогично зависимости M(n) и график M=A(n) представлены в таблице 2 и на рис. 4. В силу аддитивности момента сил для n шаров, можно рассчитать вертикальную составляющую как:

$$B_v = A/P_m = 304 \pm 07 \text{ мГс}$$

Теперь мы можем найти магнитное наклонение в месте измерения:

$$\beta = arctg(B_v/B_h) = 48,3^{\circ}$$

Из формулы (2) можно показать, что в модели земли как идеального равномерно намагниченного шара (без учета сдвига дипольного момента относительно центра Земли и наклона

Таблица 2: M(n)

шариков, n	Плечо, d	т, мгр	М, дин*см	δ_m , дин*см			
12	5	118	330	6			
10	4	123	275	5			
8	3	129	216	4			
6	2	150	168	3			
4	1	204	114	2			

Рис. 4: М(n)

относительно оси вращения Земли, равного $11,5^o$) магнитное наклонение на широте $\varphi=56^o$ С равнялось бы:

$$\beta = \arctan\left(\frac{2\cos\varphi}{\sin\varphi}\right) = 53, 5^{\circ}$$

В рамках этой модели можно рассчитать магнитный момент Земли:

$$B_v = \frac{2(\bar{P}_m \cdot \bar{R})}{R^4} \Rightarrow P_m = \frac{1}{2} \frac{B_v \cdot R^3}{\cos \varphi}$$

$$P_m = 1, 16 \cdot 10^{18} \text{A} \cdot \text{M}^2$$
(10)

Точные значения магнитных величин, которые удалось найти:

$$B_h^{ecv} = 300 \text{ мГс}, B_v^{pol} = 600 \text{ мГс}$$
 $\beta = 71, 7^o, \ P_m \simeq 8 \cdot 10^{22} \text{A} \cdot \text{м}^2$

3 Выводы

- 1. Определение дипольного момента с помощью двух различных методов дало существенно различающиеся результаты. Однако в пользу метода А играет тот факт, что рассчитанная по дипольному моменту величина остаточной магнитной индукуии совпадает с табличными значениями для сплавов Ne-Fe-B. Существенное значение в величине можно объяснить малой точностью эксперимента. Граничная масса при которой верхний шарик отрывался была слабо различима, так как мы были ограничены в выборе грузов. Для матода А мы были способны подобрать граничное расстояние, подкладывая необходимое количество листов.
- 2. Была исследована зависимость периода крутильных колебаний стрелки, составленной из магнитных шариков, от количества шариков в стрелке. Зависимость с убедительной точностью вышла линейной, что позволило определить значение Вh с низкой относительной погрешностью. Упругость нити действительно не было ноебхожимо учитывать, в чем можно было убедиться, удостоверившись в отсутсвии колебаний кольца, составленного из шариков.
- 3. Аналогично была получена линейная зависимость момента сил уравновешивающего стрелку, от количества шариков в стрелке. Отмечу, что может юыть неучтена погрешность определения горизонтального положения стрелки экспериментатором.
- 4. По полученным значениям имелась возможность определить магнитное наклонение в географической точке эксперимента. Оно получилось равным около 53 градусов, что визуально совпадает с наблюдаемым отклонением. Отличие от реальной его величины объясняется допущением в модели, что магнитные полюса Земли совпадают с географическими (вкупе с фактом что центр диполя эквивалентно представляющего магнитное поле земли сдвинут относительно ее геометрического центра). Однако по порядку величины значения магнитной индукции укладываются в диапазон, накладываемый вертикольной составляющей В на полюсе и горизонатльной на экваторе.
- 5. Также модель абсолютно непригодна для определения магнитного момента Земли, если верить найденным табличным значением, различие с которым составляет несколько порядков.