CONTINUATION OF DIRECT PRODUCTS OF DISTRIBUTIONS

A. Peterman

Theoretical Physics Division, CERN CH – 1211 Geneva 23

Preamble

If, in some problems, one has to deal with the "product" of distributions f_i (also called generalized functions) $\overline{T} = \prod_{i=1}^m f_i$, this product has a priori no definite meaning as a functional (\overline{T}, φ) for $\varphi \in S$. But if $x^{\kappa+1} \prod_{i=1}^m f_i$ exists, whatever the associativity is between some powers r_i of x ($r_i \in \mathbb{N}, \sum_i r_i \leq \kappa + 1, r_i \geq 0$) and the various f_i , then a continuation of the linear functional \overline{T} from M onto $S^{(N)}$ for some N is shown to exist¹ in such a way that $x^{\kappa+1}\overline{T}$ is defined unambiguously, and $(\overline{T}, \varphi), \varphi \in S$, significant, though not unique.

CERN-TH/2000-015 January 2000

 $^{1 \}text{M}$ is a closed subspace of S^{N} for some N. It is a Banach space with norm $\|\cdot\|_{N}$.

1 Existence

In the sense of convergence in the space S* (distributions),

$$f_{\kappa} = \lim_{y \to 0, \ y \in C^+} F_{\kappa}^{y}(x) \ ; \quad \kappa = 1, 2, \cdots, m \ ,$$

with $F_{\kappa}^{y}(x) = f_{\kappa}^{+}(x+iy) - f_{\kappa}^{-}(x-iy)$, $\left(f_{\kappa}^{\pm}(x) \text{ are holomorphic in tabular domains } T^{C_{R}^{\pm}} \right)$ and satisfy

$$|f(x+iy)| \le C(R', C')|y|^{-\alpha}(1+|x|)^{\beta} \tag{1}$$

and

$$z \in R^n + i(C' \cap U(0, R'))$$

 $\alpha, \beta \geq 0$, independent of R' and C'. From this, it follows that there exists in S* a unique boundary value

$$f(x) = \lim_{y \to 0, y \to c} f(x + iy) \in S^{(m)*}; m = \alpha + \beta + n + 3.$$

Let us suppose that for arbitrary $\varphi \in S$ there exists a finite limit

$$\lim_{y \to 0, y \in C^+} \int F_1^y(x) \cdots F_m^y(x) \cdot \varphi(x) dx \tag{2}$$

independent of the sequence $y \to 0$, $y \in C^+$. Then, since the space S^* is dense, this limit defines a distribution in S^* which we call the product f_1, f_2, \cdots, f_m of the distributions f_1, f_2, \cdots, f_m . Thus

$$f_1.f_2.\cdots.f_m = \lim_{y \to 0, \ y \in C^+} F_1^y \cdots F_m^y \text{ (in } S^*)$$
 (3)

if the limit of the RHS exists and is independent of the sequence $y \to 0, y \in C^+$. This product is obviously commutative and associative. So the set of boundary values that are holomorphic in $T^{C_R^+}$ and satisfy (1) constitute a commutative ring with unity, without zero divisors with respect to the multiplication defined above.

We note that the existence of the lim in (2) for $\varphi \in S$ implies the existence of the limit in (3) with respect to the norm of the functional in $S^{(N)*}$ for some N, which depends on $f_1 \dots f_m$ (notice that weak convergence in S^* implies strong convergence).

2 General case

Suppose now that (2) does not exist for all $\varphi \in S$, but that it exists for all φ in a closed subspace M of $S^{(N)}$ for some N. (Since M is closed in $S^{(N)}$ it is a Banach space with norm $\| \ \|_N$). From the Banach-Steinhaus theorem, (2) defines a continuous linear functional \overline{T} on M. We use now the term 'product' f_1, \dots, f_m of the distributions f_1, f_2, \dots, f_m for \underline{any} continuous linear functional in

the space $S^{(N)*} \subset S^*$ that is a <u>continuation</u> of \overline{T} from M to $S^{(N)}$. According to the Hahn-Banach theorem, such an extension always exists but is not unique in general.

We shall concentrate now on the case of those φ in $S^{(N)}$ that vanish together with all derivatives of order $p \leq N$ inclusively, at x = 0. In this case, <u>all</u> continuations $f_1.f_2.\cdots.f_m$ of \overline{T} from M onto $S^{(N)}$ are given by

$$(f_1.f_2.\cdots.f_m,\varphi) = (\overline{T},\overline{\varphi}) + \sum_{\kappa \leq p} c_{\kappa}(\delta^{(\kappa)},\varphi)$$
(4)

where

$$\overline{\varphi}(\mathbf{x}) = \varphi(\mathbf{x}) - \sum_{\kappa \le \mathbf{p}} \varphi^{(\kappa)}(\mathbf{o}) \omega(\mathbf{x}) \frac{\mathbf{x}^{\kappa}}{\kappa!}$$

and $\omega(x)$ is an arbitrary function, $\omega \in S$, identically equal to 1 in a neighbourhood of the point x = 0; the c_{κ} are arbitrary constants. (Notice that the extension (4) is actually independent of $\omega(x)$).

In conclusion, the formula (4) represents the desired result, given at the end of the preamble with $\sum_{\kappa \leq p} c_{\kappa} \delta^{(\kappa)}$ the general solution of $(f_1, \dots, f_m, \varphi) = 0$ and $(T, \overline{\varphi}) = (\overline{T}, x^{\kappa+1}\psi) = (x^{\kappa+1}\overline{T}, \psi), \psi \in S$, a particular solution of $(f_1, \dots, f_m, \varphi)$.

It is therefore shown that the solution (4) is not unique, the c_{κ} being arbitrary constants.