Fine-Tuning LLMs With Your Data Tutorial at URAI'24

Intro: Lecturer

https://imla.hs-offenburg.de/

https://www.keuper-labs.org/

Prof. Dr.-Ing. Janis Keuper

- Research Professor for "Data Science"
- Head of the Institute for Machine Learning and Analytics

Research Interests

- Machine Learning
 - Generative Models
 - Robustness
- Computer Vision / Pattern Recognition
 - Image Analysis
- ML Systems
- Application of ML+CV to Physical Problems
 - Geo- and Climate Physics

Intro: Lecturer

https://imla.hs-offenburg.de/

https://www.keuper-labs.org/

LLM-Praxis

GEFÖRDERT VOM

Website des LLM-Praxis BMBF Projekts

View the Project on GitHub LLM-Praxis/website

BMBF Projekt LLM-Praxis

Laufzeit: 10/24 - 9/28

KI generiertes Symbolbild: "A small team working with Large Language Models"
[Dall-e 3]

Projektbeschreibung

Im Kontext von LLMs, wie bei der Einführung vieler anderer disruptiven Technologien, ergeben sich vielfältige wissenschaftliche, technologische, juristische und gesellschaftliche Fragestellungen von große Breite und Tiefe, welche unfraglich ausnahmslos von großer Bedeutung sind, aber unmöglich alle in einem Projekt behandelt werden können. Daher wird sich das vorgeschlagenen Projekt sowohl technologisch, als auch bei der Betrachtung der Technologiefolgen und Rahmenbedingungen auf wenige Kernthemen beschränken, welche in der Frühphase der Erprobung und Entwicklung von LLM Lösungen beim KMUs von hoher praktische Bedeutung sind und Risiken bezüglich anderer Aspekte minimieren.

Im Rahmen von LLMpraxis sollen explizit keine neuen GPT Algorithmen erforscht oder Modelle von Grund auf entworfen oder trainiert werden. Stattdessen soll auf das inzwischen breite Angebot an (unter offenen

https://www.llm-praxis.de/

Intro: Lecturer

https://imla.hs-offenburg.de/

https://www.keuper-labs.org/

Can Visual Language Models Replace OCR-Based Visual Question Answering Pipelines in Production? A Case Study in Retail.

Bianca Lamm Markant Services International GmbH Offenburg, Germany

Bianca. Lamm@de.markant.com

Janis Keuper
Institute for Machine Learning and Analytics (IMLA)
Offenburg University, Germany
keuper@imla.ai

Abstract

Most production-level deployments for Visual Question Answering (VQA) tasks are still build as processing pipelines of independent steps including image pre-processing, object- and text detection, Optical Character Recognition (OCR) and intensity supervised) object classification. However, the recent advances in vision Foundation Models [25] and Vision Language Models (VMS) [23] rates the question if these custom trained, multi-step approaches can be replaced with ner-trained, single-step VMS.

This paper analyzes the performance and limits of various VLMs in the context of VQA and OCR [8, 9, 2] tasks in a production-level scenario. Using data from the Retail-786k [10] dataset, we investigate the capabilities of pre-trained VLMs to answer detailed questions about advertised products in images. Our study includes two commercial models, GPT-4V [10] and GPT-40 [17], as well as four open-source models: InternVL [5], LlaVA 1.5 [12], LlaVA-NeXT [13], and CogAgent [9].

Our initial results show, that there is in general no big performance gap between open-source and commercial models. However, we observe a strong task dependent variance in VLM performance: while most models are able to answer questions regarding the product brand and price with high accuracy, they completely fail at the same time to correctly identity the specific product name or discount. This indicates the problem of VLMs to solve fine-grained classification tasks as well to model the more abstract concept of discounts.

Figure 1. Illustration of the single-step process: input, model, output. The input consists of a product advertising image and a prompt querying specific product or advertising feature. A VLM is used as a model.

progress. The importance of handling multi-modal inputs is highlighted by the growing use of image analysis and image creation. Previous research has shown that VLMs can be effective in Visual Question Answering (VQA), Optical Character Recognition (OCR), or Image Captioning [5, 9, 12]. This study examines the transformation of a multi-step approach into a single-step process through the utilization of VLMs. The considered problem includes an OCR-based pipeline. Hence, the research question arises: can we replace OCR-based VQA pipelines with VLMs at a production level? We investigate this question on a use case derived from the retail domain. The basis of the case study is the dataset Retail-786k [10] that consists of images cropped from leaflets. Each image presents an advertisement of a

Are Vision Language Models Texture or Shape Biased and Can We Steer Them?

Paul Gavrikov¹ Jovita Lukasik² Steffen Jung³.6 Robert Geirhos⁴
Bianca Lamm¹ Muhammad Jehanzeb Mirza⁵ Margret Keuper^{6,3} Janis Keuper^{1,6}

¹ IMLA, Offenburg University of Siegen

³ Max Planck Institute for Informatics, Saarland Informatics Campus

⁴ Google DeepMind ⁵ ICG, Graz University of Technology ⁶ University of Mannheim

Abstract

Vision language models (VLMs) have drastically changed the computer vision model landscape in only a few years, opening an exciting array of new applications from zero-shot image classification, over to image captioning, and visual question answering. Unlike pure vision models, they offer an intuitive way to access visual content through language prompting. The wide applicability of such models encourages us to ask whether they also align with human vision - specifically, how far they adopt human-induced visual biases through multimodal fusion, or whether they simply inherit biases from pure vision models. One important visual bias is the texture vs. shape bias, or the dominance of local over global information. In this paper, we study this bias in a wide range of popular VLMs. Interestingly, we find that VLMs are often more shape-biased than their vision encoders, indicating that visual biases are modulated to some extent through text in multimodal models. If text does indeed influence visual biases, this suggests that we may be able to steer visual biases not just through visual input but also through language: a hypothesis that we confirm through extensive experiments. For instance, we are able to steer shape bias from as low as 49% to as high as 72% through prompting alone. For now, the strong human bias towards shape (96%) remains out of reach for all tested

Figure 1: Unlike many unimodal models, vision language models (VLMs) prefer shape over texture for object recognition, but not to the same extent as humans. Further, we find that the (visual) texture/shape bias [1] can be steered through language alone, albeit not to the extent as through vision. Here we visualize the texture/shape bias of some exemplary VLMs, and highlight the steerability of IntervL-Chat 1.1 [2].

Intro: Lecturer

https://imla.hs-offenburg.de/

https://www.keuper-labs.org/

HSO LLM Infrastructure:

https://llm-proxy.imla.hs-offenburg.de/info/index.html

Organization

- Hands on part: use your laptop or the pool computers in front of you
 - Pool Computer: boot any basic image you like (Windows or Ubuntu)
 - HSO users: use your HSO account
 - Login for external users:
 - User: *******
 - PW: ******
- Open Git-hub page in browser: https://github.com/keuperj/LLM_Tutorial_URAI24
- We use Colab for coding
 - HSO users use HSO account
 - External users private Google account

Goal

Get information from own data sources into a existing (trained) LLM so it can use it to answer questions

Overview

Part I

Brief introduction to LLMs

Part II

Fine-Tuning OpenAl Models

Part III

A simple RAG Setup

Some Notes Before We Start

- Building LLM systems is complex task a 3h tutorial can't cover this
 - We focus on basic understanding and first practical examples to get you started
- We have participants with very different backgrounds
 - The tutorial is necessarily a compromise between different needs

- We will use the OpenAl Toolchain for practical reasons
 - Basic principles directly apply to other providers and open source frameworks
 - HSO members can use this directly with the LLM-Proxy

Part I

Brief introduction to LLMs

GPT Models

GPT Models

GPT \rightarrow **Generative Pre-Trained Transformer**

GPT Models

GPT \rightarrow **Generative Pre-Trained Transformer**

Learn complex distributions from data

Generation → **sampling from distribution**

GPT Models

GPT \rightarrow **Generative Pre-Trained Transformer**

Optimal LLM Training Cost								
Model	Size (# Parameters)	Tokens	GPU	Optimal Training Compute Cost				
MosaicML GPT-30B	30 Billion	610 Billion	A100	\$ 325,855				
Google LaMDA	137 Billion	168 Billion	A100	\$ 368,846				
Yandex YaLM	100 Billion	300 Billion	A100	\$ 480,769				
Tsinghua University Zhipu.Al GLM	130 Billion	400 Billion	A100	\$ 833,333				
Open Al GPT-3	175 Billion	300 Billion	A100	\$ 841,346				
Al21 Jurassic	178 Billion	300 Billion	A100	\$ 855,769				
Bloom	176 Billion	366 Billion	A100	\$ 1,033,756				
DeepMind Gopher	280 Billion	300 Billion	A100	\$ 1,346,154				
DeepMind Chinchilla	70 Billion	1,400 Billion	A100	\$ 1,745,014				
MosaicML GPT-70B	70 Billion	1,400 Billion	A100	\$ 1,745,014				
Nvidia Microsoft MT-NLG	530 Billion	270 Billion	A100	\$ 2,293,369				
Google PaLM	540 Billion	780 Billion	A100	\$ 6,750,000				

Huge Data Sets

GPT Models

GPT \rightarrow **Generative Pre-Trained Transformer**

Neural Network Architecture

Text Generation: Sequence to Sequence Mapping

How do LLMs learn to generate Text?

Basic idea: use context

Text example: which words can we fill in the blank?

"The _____ is climbing on the tree..."

How do LLMs learn to generate Text?

Basic idea: use context

Text example: which words can we fill in the blank?

"The _____ is climbing on the tree..."

More Context: "...His sister is 10 years old"

How do LLMs learn to generate Text?

Basic idea: use context

Text example: which words can we fill in the blank?

youngster
lad
Guy

"The ____ is climbing on the tree..."

Predict probability of words

More Context: "...His sister is 10 years old"

How to model Context?

What is the meaning of A word?

How is it related to other Words in its context?

→ better performance by modeling context relations

Attention

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation [29, 2, 5]. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures [31, 21, 13].

Attention

Sequence-to-sequence mapping

$$x_1, x_2, \dots, x_t \longrightarrow y_1, y_2, \dots, y_t$$

$k \times k$ Linear transform matrices

$$\begin{aligned} \textbf{q}_{i} &= \textbf{W}_{\textbf{q}} \textbf{x}_{i} & \textbf{k}_{i} &= \textbf{W}_{\textbf{k}} \textbf{x}_{i} & \textbf{v}_{i} &= \textbf{W}_{\textbf{v}} \textbf{x}_{i} \\ w_{ij}^{\prime} &= \textbf{q}_{i}^{\ T} \textbf{k}_{j} \\ w_{ij} &= \text{softmax}(w_{ij}^{\prime}) \\ \textbf{y}_{i} &= \sum_{j} w_{ij} \textbf{v}_{j} \,. \end{aligned}$$

Scaling
$$w'_{ij} = \frac{{q_i}^T k_j}{\sqrt{k}}$$

self-attention with key, query and value

Attention

self-attention with key, query and value

Transformer Networks

"Any architecture designed to process a connected set of units—such as the tokens in a sequence or the pixels in an image—where the only interaction between units is through self-attention."

Transformer Networks

Tokenization

- Map text to sequence of vectors
- Token <= word
- Tokenizer is a own (statistical) model trained on data
- Unknown words are split into small tokens
- Tokenizer must fit model!

Example: GPT-3 Architecture

Model Name	$n_{ m params}$	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

LLM Training in a Nutshell

Goal

Get information from own data sources into a existing (trained) LLM so it can use it to answer questions

How to get your data into the LLM?

Train from Scratch

- + best performance
- -- very expensive
- -- very complicated

Fine-Tuning

Continue to train a Pre-trained model

+ good performance+- cost depends ondata size- can harm model

Add Context

Add your data to the model input

+ model does
not change
+ simple
- increase query cost
-- small context
window

How to get your data into the LLM?

Train from Scratch

- + best performance
- -- very expensive
- -- very complicated

Fine-Tuning

Continue to train a Pre-trained model

+ good performance+- cost depends on data size- can harm model

Add Context

Add your data to the model input

+ model does not change + simple - increase query cost

-- small context window

Part II

Fine-Tuning

What do we need?

Criteria	GPT-4o mini	GPT-4o	GEMINI 1.5	CLAUDE 3.5 SONNET	LLAMA 3 (8B)	GPT-4 TURBO
Release Date	July 2024	May 2024	Feb. 2024	June 2024	Apr. 2024	Nov. 2023
Key Feature	Cost- effective, efficient AI	Multimodal (text, image, etc.)	Factual language updates	Best for creative works	Advanced NLP, complex queries	Larger, faster, more accurate
Output Cost	\$0.15 / 1M Tokens	\$15.00 / 1M Tokens	\$1.05 / 1M Tokens	\$75.00 / 1M Tokens	\$0.1 / 1M Tokens	\$30.00 / 1M Tokens
Prompt Inputs	Text, Images	Text, Image, Audio, and Video	Text, Images	Text, Images	Text, Images	Text, Images and Text-to- Speech
Quality Index	85	100	76	98	65	94
Speed	166 t/s	75 t/s	156 t/s	79 t/s	240 t/s	23 t/s

DATA

Extract + per-process

Excursion: getting Web Data

```
Scheduler
                                                                                                                                       Internet
from pathlib import Path
import scrapy
                                                                                                                        Requests
                                                     Scrapy
class QuotesSpider(scrapy.Spider):
   name = "quotes"
                                                                         Item
                                                                                                    Scrapy
                                                                                                                                    Downloader
   def start_requests(self):
                                                                       Pipeline
                                                                                                    Engine
       urls = [
                                                                                                                     Downloader
           "https://quotes.toscrape.com/page/1/",
                                                                                                                     Middlewares
                                                                                       Requests
           "https://quotes.toscrape.com/page/2/",
       for url in urls:
                                                                                                            Spider
           yield scrapy.Request(url=url, callback=self.parse)
                                                                                  Items
                                                                                                            Middlewares
                                                                                                                           Responses
   def parse(self, response):
       page = response.url.split("/")[-2]
       filename = f"quotes-{page}.html"
       Path(filename).write bytes(response.body)
                                                                                                     Spiders
       self.log(f"Saved file {filename}")
```

https://scrapy.org/

Excursion: processing PDFs


```
import pymupdf # imports the pymupdf library
doc = pymupdf.open("example.pdf") # open a document
for page in doc: # iterate the document pages
  text = page.get_text() # get plain text encoded as UTF-8
```

https://github.com/pymupdf/PyMuPDF

Hands on...

Fine-Tuning GPT-4o-mini to learn recipes ...

How to get your data into the LLM?

Train from Scratch

- + best performance
- -- very expensive
- -- very complicated

Fine-Tuning

Continue to train a Pre-trained model

+ good performance+- cost depends ondata size- can harm model

Add Context

Add your data to the model input

+ model does
not change
+ simple
- increase query cost
-- small context
window

How to add Context to your Query?

ChatGPT: File upload (pro version)

- + Simple
- -- API does not support PDFs just text
 - → need to pre-process PDFs on your own
- -- very expensive for large number of documents
- -- limited by window size of LLM

Das Paper "Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to Reproduce Spectral Distributions" von Ricard Durall et al. befasst sich mit der Problematik von generativen neuronalen Netzwerken (z.B. GANs), die auf konvolutionalen Techniken beruhen. Die Autoren zeigen, dass gängige Upsampling-Methoden wie die Transponierte Faltung ("transposed convolution") dazu führen, dass die spektralen Eigenschaften der generierten Bilder verfälscht werden. Diese Verfälschungen erschweren es generativen Modellen, die tatsächliche Verteilung der Trainingsdaten korrekt nachzubilden und können auch als Indikator zur Erkennung von Deepfake-Bildern dienen.

Die Hauptbeiträge des Papers umfassen:

- Experimentelle Nachweise für die Unfähigkeit generativer Modelle, die spektralen Verteilungen der Trainingsdaten korrekt zu approximieren.
- Entwicklung eines Ansatzes zur einfachen Erkennung von generierten Bildern (z. B. Deepfakes) auf Basis der spektralen Verzerrungen.
- Vorschlag eines neuen spektralen Regularisierungsterms, der während des Trainings verwendet werden kann, um spektrale Verzerrungen zu minimieren.
- Hinweise, dass die spektrale Regularisierung die Stabilität des Trainingsprozesses und die Qualität der generierten Bilder verbessert.

Die Autoren führen eine spektrale Analyse mithilfe der Fourier-Transformation durch und schlagen vor, diese Analyse als zusätzlichen Verlustterm im Training zu verwenden. Die experimentellen Ergebnisse zeigen, dass GANs mit spektraler Regularisierung stabiler und qualitativ bessere Bilder generieren können.

ChatGPT can make mistakes. Check important info.

Retrieval Augmented Generation:

Basics

Embeddings

How to store context information?

Text embedding vector space

→ Vector Databases

Embeddings

How to find the right context?

Basic Idea:

Find n nearest neighbors in vector space

Source references via meta data

Works well with small LLMs

Basics

43

Hands on...

Augment GPT-3.5 with science facts

Discussion

[xkcd]

