

Machine Learning

Lecture 17a: Generative Bayes Classifiers

Dr. Beilun Wang

Southeast University
School of Computer Science
and Engineering

Roadmap

Course Content Plan

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory

☐ Graphical models

☐ Reinforcement Learning

Y is a continuous

Y is a discrete

NO Y

About f()

About interactions among X1,... Xp

Learn program to Interact with its environment

- We can divide the large variety of classification approaches into roughly three major types
 - Discriminative
 - directly estimate a decision rule/boundary
 - e.g., support vector machine, decision tree, logistic regression,
 - e.g. neural networks (NN), deep NN

- Generative:
 - build a generative statistical model
 - e.g., Bayesian networks, Naïve Bayes classifier
- Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Today: Generative Bayes Classifiers

- Bayes Classifier (BC)
 - Generative Bayes Classifier
- Naïve Bayes Classifier
- Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC LDA, QDA

Review: Bayes classifiers (BC)

- Treat each feature attribute and the class label as random variables.
- Testing: Given a sample x with attributes $(x_1, x_2, ..., x_p)$:
 - Goal is to predict its class c.
 - Specifically, we want to find the class that maximizes $p(c|x_1,x_2,...,x_p)$
- Training: can we estimate $p(c_i|x) = p(c_i|x_1, x_2, ..., x_p)$ directly from data?

$$C_{MAP} = argmax_{c_i \in C} p(c_i | x_1, x_2, \dots, x_p)$$

MAP Rule

Review: Two kinds of Bayes classifiers via MAP classification rule

- Establishing a probabilistic model for classification
 - Discriminative
 - Generative

Review: Discriminative BC

Review: Generative BC

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

 $P(C_1|x), P(C_2|x), ..., P(C_L|x)$

 $P(C_1), P(C_2), ..., P(C_L)$

$$P(C_{i}|\mathbf{X}) = \frac{P(\mathbf{X}|C_{i})P(C_{i})}{P(\mathbf{X})}$$

Summary of Generative BC

Apply Bayes rule to get posterior probabilities

$$P(C = c_i | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$

$$\propto P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)$$

$$for i = 1, 2, ..., L$$

Then apply the MAP rule

Generative Bayes Classifier

PlayTennis: training examples

		U		1	
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
		X ₂	X ₂	Χ.	

 $X_1 \qquad X_2 \qquad X_3 \qquad X_4 \qquad C$

X_1	X_2	X_3	X_4	<i>C</i>	
S (Sunny)	H (Hot)	H (High)	W (Weak)	$C_1 = Yes$	
0	M	N	S	$C_2 = No$	
R	С				
3	× 3	× 2	× 2	× 2 —	➤ 72 parameters

$$\rightarrow P(X_1, X_2, X_3, X_4 | C), P(C)$$

$$P(X_1, X_2, X_3, X_4 | C), P(C)$$

$$P(C = Yes) = \frac{N(Yes)}{N(train)} = \frac{9}{14}$$

$$P(C = No) = 1 - P(C = Yes) = \frac{5}{14}$$

Learning: maximum likelihood estimates

simply use the frequencies in the data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Generative BC: Learning Phase

$$P(C_1), P(C_2), ..., P(C_L)$$

 $P(Play = Yes) = 9/14$ $P(Play = No) = 5/14$

$$P(X_1, X_2, ..., X_p | C_1), P(X_1, X_2, ..., X_p | C_2)$$

Outlook	Temperature	Humidity	Wind	Dlay-Vac	Dlay-No
(3 values)	(3 values)	(2 values)	(2 values)	Play=Yes	Play=No
sunny	hot	high	weak	0/9	1/5
sunny	hot	high	strong	/9	/5
sunny	hot	normal	weak	/9	/5
sunny	hot	normal	strong	/9	/5
••••	••••		••••	••••	••••
••••	••••	••••	••••	••••	••••
••••	••••	••••	••••	••••	••••
••••	••••	••••	••••	••••	••••

3*3*2*2 [conjunctions of attributes] * 2 [two classes]=72 parameters

Generative BC: Testing Phase

- Given an unknown instance $x_{ts}' = (a_1', ..., a_p')$
 - Look up tables to assign the label c^* to x'_{ts} if

$$\hat{P}(a'_1, \dots a'_p | c^*) \hat{P}(c^*) > \hat{P}(a'_1, \dots a'_p | c) \hat{P}(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

• Given a new instance:

$$x' = (Outlook = Sunny, Temperature = Cool, Humidity = High, Wind = Strong)$$

$$\begin{cases} P(x'|Yes) \ P(C = Yes) \\ P(x'|No) \ P(C = No) \end{cases} \Rightarrow \underset{C}{argmax} \Rightarrow predicted \ C^*$$

Today: Generative Bayes Classifiers

- Bayes Classifier (BC)
 - Generative Bayes Classifier

- Naïve Bayes Classifier
- Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC

 LDA, QDA

Naïve Bayes Classifier

Naïve Bayes Classifier

Bayes classification

$$argmax_{c_i \in C} P(x_1, x_2, ..., x_p | c_j) P(c_j)$$

- Difficulty: learning the joint probability
- Naïve Bayes classification
 - Assume that all input attributes are conditionally independent

東部大学

Naïve Bayes Classifier

- Naïve Bayes classification
 - Assume that all input attributes are conditionally independent

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

• MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_p)$

$$[P(x_1 | c^*) \cdots P(x_p | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_p | c)]P(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

Naïve Bayes Classifier (for discrete input attributes) – Training / Learning

Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};
For every attribute value x_{jk} of each attribute X_j (j = 1, \dots, p; k = 1, \dots, K_j)
\hat{P}(X_j = x_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};
```

Output: conditional probability tables; for $X_j: K_j \times L$ elements

Naïve Bayes Classifier (for discrete input attributes) – Testing

Test Phase: Given an unknown instance

Look up tables to assign the label c^* to X' if $X' = (a'_1, \dots, a'_p)$

$$[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_p | c^*)] \hat{P}(c^*) > [\hat{P}(a'_1 | c) \cdots \hat{P}(a'_p | c)] \hat{P}(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

Learning (training) the NBC Model

Learning (training) the NBC Model

- maximum likelihood estimates:
 - simply use the frequencies in the data

$$\widehat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\widehat{P}(x_i|c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

Example: Play tennis

PlayTennis: training examples

1 my territis. transmig examples					
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes 📥
D4	Rain	Mild	High	Weak	Yes <table-cell-columns></table-cell-columns>
D5	Rain	Cool	Normal	Weak	Yes 📥
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes 🕶
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes 🚤
D10	Rain	Mild	Normal	Weak	Yes ←
D11	Sunny	Mild	Normal	Strong	Yes 🕶
D12	Overcast	Mild	High	Strong	Yes ←
D13	Overcast	Hot	Normal	Weak	Yes 🕕
D14	Rain	Mild	High	Strong	No

$$P(X_1 = Rain | C = Yes) = \frac{3}{9}$$

$$P(X_1 = Rain|C = No) = \frac{2}{5}$$

Estimate $P(X_i = x_{jk} | C = c_i)$ with examples in training;

Learning Phase

 $P(X_2|C_1), P(X_2|C_2)$

Outlook	Play= <i>Yes</i>	Play= <i>No</i>
Sunny		
Overcast		
Rain		

Temperature	Play= <i>Yes</i>	Play= <i>No</i>
Hot		
Mild		
Cool		

Humidity	Play= <i>Yes</i>	Play=N <i>o</i>
High		
Normal		

 $P(X_4|C_1), P(X_4|C_2)$

	(11 1)	(.1 =/
Wind	Play= <i>Yes</i>	Play= <i>No</i>
Strong		
Weak		

$$P(Play=No) = ??$$

$$P(C_1), P(C_2), ..., P(C_L)$$

Estimate $P(X_i = x_{jk} | C = c_i)$ with examples in training;

Learning Phase

 $P(X_2|C_1), P(X_2|C_2)$

Outlook	Play= <i>Yes</i>	Play= <i>No</i>
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play= <i>Yes</i>	Play= <i>No</i>
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play= <i>Yes</i>	Play=N <i>o</i>
High	3/9	4/5
Normal	6/9	1/5

 $P(X_4|C_1), P(X_4|C_2)$

_	(11 1)	(:1 =)
Wind	Play= <i>Yes</i>	Play= <i>No</i>
Strong	3/9	3/5
Weak	6/9	2/5

3+3+2+2 [naïve assumption] * 2 [two classes]= 20 parameters

$$P(Play=Yes) = 9/14$$

$$P(Play=No) = 5/14$$

$$P(C_1), P(C_2), ..., P(C_L)$$

Example: Play tennis

Test Phase
 Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Example: Play tennis

Test Phase
 Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up in conditional-prob tables

```
P(Outlook=Sunny|Play=Yes) = 2/9
P(Temperature=Cool|Play=Yes) = 3/9
P(Huminity=High|Play=Yes) = 3/9
P(Wind=Strong|Play=Yes) = 3/9
P(Play=Yes) = 9/14
```

P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool|Play==No) = 1/5
P(Huminity=High|Play=No) = 4/5
P(Wind=Strong|Play=No) = 3/5
P(Play=No) = 5/14

Testing the NBC Model

```
P(Outlook=Sunny|Play=Yes) = 2/9
P(Temperature=Cool|Play=Yes) = 3/9
P(Huminity=High|Play=Yes) = 3/9
P(Wind=Strong|Play=Yes) = 3/9
P(Play=Yes) = 9/14
```

```
P(Outlook=Sunny|Play=No) = 3/5

P(Temperature=Cool|Play==No) = 1/5

P(Huminity=High|Play=No) = 4/5

P(Wind=Strong|Play=No) = 3/5

P(Play=No) = 5/14
```

MAP rule

P(Yes | X'):[P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = 0.0053
P(No | X'):[P(Sunny | No)P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206

Given the fact $P(Yes | \mathbf{X}') < P(No | \mathbf{X}')$, we label \mathbf{X}' to be "No".

Why Naïve Bayes Assumption

- $P(c_j)$
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, \dots, x_p | c_j)$
 - $O(|X_1| \cdot |X_2| \cdot |X_3| \dots |X_p| \cdot |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

Naïve

Not

Naïve

- $P(x_k | c_j)$
 - $O([|X_1| + |X_2| + |X_3| ... + |X_p|] \cdot |C|)$ parameters
 - Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i | c_i)$

Challenges during learning the NBC Model

For instance:

Challenges during learning the NBC Model

- For instance:
 - What if we have seen no training cases where patient had no flu and muscle aches?

$$\hat{P}(X_6 = T | C = not_f lu) = \frac{N(X_6 = T, C = nf)}{N(C = nf)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

??=
$$\operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} | c)$$

Smoothing to Avoid Overfitting

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k_i}$$

number of values of feature X_i

To make $sum_i(P(x_i|c_j)) = 1$

Smoothing to Avoid Overfitting

$$\hat{P}(x_{i} | c_{j}) = \frac{N(X_{i} = x_{i}, C = c_{j}) + 1}{N(C = c_{j}) + k_{i}}$$

number of values of X_i

Somewhat more subtle version

overall fraction in data where $X_i = x_{i,k}$

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$
extent of "smoothing"

Summary: Generative Bayes Classifier

• Task: Classify a new instance X based on a tuple of attribute values $X = \langle X_1, X_2, \dots, X_p \rangle$ into one of the classes

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j} \mid x_{1}, x_{2}, ..., x_{p})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, ..., x_{p} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, ..., x_{p})}$$

=
$$\underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_p \mid c_j) P(c_j)$$

MAP = Maximum A Posteriori

Next: Generative Bayes Classifiers

- Bayes Classifier (BC)
 - Generative Bayes Classifier
- Naïve Bayes Classifier

- Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC

 LDA, QDA

- https://qiyanjun.github.io/2019f-UVA-CS6316-MachineLearning/
- Prof. Andrew Moore's review tutorial
- Prof. Ke Chen NB slides
- Prof. Carlos Guestrin recitation slides

Thanks for listening