1. Introducción a los conjuntos numéricos

1.1. Construcciones

Nota 1. Las definiciones y construcciones de los conjuntos numéricos estándares aquí no se dan de una forma muy rigurosa. Su construcción es más propia de una asignatura de fundamentos matemáticos, y ahora mismo me da mucha pereza escribir todo.

Sea \mathbb{N} un conjunto con un elemento que denominamos 1. Ahora, para todo elemento n de \mathbb{N} añadimos a \mathbb{N} el sucesor, S(n) o n+1. Esto da un conjunto infinito, los **números naturales**. En este conjunto tenemos el principio de inducción:

Axioma 1 (Principio de inducción en \mathbb{N}). Sea $S \subseteq \mathbb{N}$. Si S satisface las siguientes 2 condiciones, entonces $S = \mathbb{N}$:

- 1 ∈ S
- $\forall n \in S \ n+1 \in S$

Este principio es muy útil para probar cosas sobre \mathbb{N} , por ejemplo la forma cerrada de una sucesión. En \mathbb{N} también podemos definir algo denominado **orden total**, que es una relación binaria \leq que sigue los siguientes axiomas:

Axioma 2 (Axiomas de orden total). $\forall a, b, c \in \mathbb{N}$

- 1. $a \le a \ (Reflexividad)$
- 2. $a \leq b$ y $b \leq c$ implica $a \leq c$ (Transitivdad)
- 3. $a \le b$ y $b \le a$ implica a = b (Antisimetría)
- 4. $a \le b$ o $b \le a$ (Totalidad)

Cuando tenemos un orden parcial o total definido sobre un conjunto, podemos hablar de cotas y máximos y mínimos:

Definición 1. Sea $S \subseteq X$ donde X es un conjunto con un orden parcial o total \leq . S es...

- Acotado superiormente si $\exists r \in X \text{ tal que } x \leq r \ \forall x \in S.$
- Acotado inferiormente si $\exists r \in X \text{ tal que } r \leq x \ \forall x \in S.$

Y decimos que un elemento $r \in S$ es...

- Un máximo si $\forall x \in S \ x \leq r$.
- Un mínimo si $\forall x \in S \ r \leq x$.

Con este orden total definido, podemos reformular el principio de inducción como:

Axioma 3 (Principio de buena ordenación en \mathbb{N}). $\forall S \subseteq \mathbb{N} \ S \neq \emptyset, \exists n \in S \mid \forall x \in S, n \leq x. \ Es \ decir, \ todo \ subconjunto \ de \ los \ números \ naturales \ tiene \ mínimo.$

Estas dos formulaciones son equivalentes. Los números naturales además cumplen los siguientes axiomas algebraicos:

Axioma 4 (Axiomas de semianillo unitario ordenado). $\forall a, b, c \in \mathbb{N}$:

- 1. (a+b)+c=a+(b+c) (Asociatividad de la suma)
- 2. a + b = b + a (Conmutatividad de la suma)
- 3. (a*b)*c = a*(b*c) (Asociatividad de la multiplicación)
- 4. a * b = b * a (Conmutatividad de la multiplicación)
- 5. a*(b+c) = a*b + a*c (Distributividad de la multiplicación sobre la suma)
- 6. $\exists 1 \in \mathbb{N} \mid \forall n \in \mathbb{N}, 1 * n = n$ (Elemento neutro del producto)
- 7. $a \le b \implies a + c \le b + c$ (Compatibilidad del orden con la suma)
- 8. Si $c \ge 0$ (que es trivial en \mathbb{N}), entonces $a \le b \Rightarrow ac \le bc$ (Compatibilidad del orden con el producto)

Estos axiomas son particularmente débiles. Por ejemplo, para la ecuación x+2=4 obviamente x=2, pero no existe ninguna forma de probarlo fácilmente, cuando la existencia de inversos para cada número ayudaría inmensamente. Además, ecuaciones como x+4=2 no tienen solución en $\mathbb N$. Por eso definimos un nuevo conjunto denominado $\mathbb Z$, los **números enteros**:

Definición 2 (Números enteros). $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \ \forall n \in \mathbb{N}\}\ donde\ 0\ denota\ la\ identidad\ para\ la\ suma\ y\ -n\ el\ inverso\ para\ la\ suma\ de\ n.$

Estos números, ademas de los Axiomas 4, cumplen los siguientes axiomas:

Axioma 5 (Axiomas adicionales para \mathbb{Z}).

- 1. $\exists 0 \in \mathbb{Z} \mid \forall n \in \mathbb{N}, 0 + n = n$ (Elemento neutro de la suma)
- 2. $\forall n \in \mathbb{Z}, \exists -n \in F \mid n+(-n)=0$ (Existencia del elemento inverso para la suma)

Con estos axiomas, se dice que $(\mathbb{Z}, +)$ es un grupo conmutativo y que $(\mathbb{Z}, +, *)$ es un anillo conmutativo. A cambio de estos axiomas algebraicos, perdemos el principio de inducción en los números enteros y la existencia de un elemento mínimo, pero mantenemos una versión del principio de buena ordenación:

Axioma 6 (Principio de buena ordenación de subconjuntos minorados de \mathbb{Z}). $\forall S \subseteq \mathbb{Z} \ S \neq \emptyset \ si \ \exists n \in \mathbb{Z} \ | \ \forall x \in S, n \leq x \ entonces$ $\exists m \in S \ | \ \forall x \in S, m \leq x.$ Es decir, todo subconjunto no vacío con cota inferior tiene un elemento mínimo.

Este axioma para \mathbb{Z} implica el $Axioma\ 3$ para los naturales. El conjunto de los números enteros aún tiene unos cuantos problemas. Por ejemplo, es imposible resolver la ecuación 2x = 1 para $x \in \mathbb{Z}$. Por eso, podemos definir otro conjunto de números construidos sobre los números enteros, los **números racionales**, denotados por \mathbb{Q} :

Definición 3 (Números racionales). $\mathbb{Q} = \{p/q, p \in \mathbb{Z}, q \in \mathbb{N}\}$

Aparte de cumplir los $Axiomas \ 4 \ y \ 5$, $\mathbb Q$ cumple:

Axioma 7 (Axioma algebraico adicional para Q).

1. $\forall q \in \mathbb{Q} \ q \neq 0, \exists \ 1/q \in \mathbb{Q} \ | \ q * (1/q) = 1$ (Existencia del inverso de elementos no nulos para el producto)

Esto hace de \mathbb{Q} un cuerpo conmutativo. \mathbb{Q} no tiene ni principio de buena ordenación, ni de buena ordenación de subconjuntos minorados (por ejemplo, el conjunto $S = \{1/n \ \forall n \in \mathbb{N}\} \subseteq \mathbb{Q}$ esta acotado inferiormente pero no tiene mínimo). Esto nos quita una vía de demostrar, pero "quitamos" más agujeros que existían en los números enteros:

Teorema 1 (Densidad de \mathbb{Q}). $\forall a, b \in \mathbb{Q}$ $a \neq b$, $\exists r \in \mathbb{Q} \mid a < r < b$. Es decir, entre dos números racionales distintos siempre vamos a poder encontrar otro número racional. De hecho, vamos a poder encontrar infinitos aplicando el teorema cuantas veces como queramos.

Demostración. Dados $a < b \in \mathbb{Q}$: a = (a+a)/2 < (a+b)/2 < (b+b)/2 = b. (a+b)/2 es el número que buscamos.

De este teorema podemos deducir que no existe una función sucesora en \mathbb{Q} , y por tanto no tenemos alternativa a inducción. Pero este teorema no es suficiente para que \mathbb{Q} sea el conjunto numérico perfecto para hacer análisis. Aún existen agujeros, como demuestra el siguiente ejemplo:

Proposición 1. No existe ningún $a \in \mathbb{Q}$ tal que $a^2 = 2$.

Demostración. Supongamos que $\exists a \in \mathbb{Q}$ tal que $a^2 = 2$. Al ser un número racional, lo podemos escribir de la forma $\frac{p}{q}$ con $p \in \mathbb{Z}, q \in \mathbb{N}$ y gcd(p,q)=1 (donde gcd denota el máximo común divisor). Por tanto, tenemos la expresión $\frac{p^2}{q^2}=2$, de donde deducimos que $p^2=2q^2$ y debido a que 2 es un número primo, que 2|p o más concretamente p=2k para algún $k \in \mathbb{Z}$. Substituyendo otra vez obtenemos $4k^2=2q^2$ y deducimos $2k^2=q^2$, que de forma similar nos deja ver que q es también múltiplo de 2. Pero inicialmente hemos asumido que el máximo común divisor de p y q es 1 < 2 y no mayor o igual a 2, por lo cual hemos encontrado una contradicción y la proposición es cierta.

Esto es problemático, ya que intuitivamente deberíamos de poder encontrar un valor que cumpla $a^2 = 2$. Para poder arreglar este problema necesitamos una definición primero:

Definición 4 (Supremo e ínfimo). Sea A un subconjunto numérico acotado superiormente. Si existe la mínima cota superior (es decir, un número ω que sea cota superior del conjunto y tal que cualquier otra cota superior α sea $\omega \leq \alpha$) esta será única y la llamaremos **supremo**. Dualmente, a la máxima cota inferior en un subconjunto acotado inferiormente la llamaremos **ínfimo**. Se denotan sup A y ínf A.

La definición parece ajena al ejemplo de "agujero" que hemos dado en la $Proposición\ 1$, pero es la más general que engloba todos los casos que necesitamos. El subconjunto $A\subseteq\mathbb{Q}$ definido como $A=\{a\in\mathbb{Q}\mid a^2\leq 2\}$ esta acotado superiormente por 2 y es posible demostrar que si existiera un supremo, este número sería tal que su cuadrado fuera igual a 2, pero en \mathbb{Q} no existe. Por tanto, podemos pensar que "añadiendo todos los supremos" completaríamos \mathbb{Q} . Este es el procedimiento que seguimos:

Axioma 8 (Axioma del supremo). Todo subconjunto acotado superiormente tiene supremo.

Definición 5 (Números reales). Al conjunto \mathbb{R} con $\mathbb{Q} \subseteq \mathbb{R}$ y que cumpla el Axioma 8 lo llamamos los **números reales**.

Este conjunto no es único, pero si es único bajo isomorfismos, que viene a decir que cualesquiera dos conjuntos con estas propiedades tienen la misma estructura y por tanto no hace falta distinguirlos.

1.2. Los números reales

Empezamos el estudio de los números reales introduciendo algunos conceptos.

Definición 6. El conjunto de los irracionales es $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$. Es decir, los números reales que no se pueden expresar como cociente de dos números enteros.

Definición 7 (Valor absoluto). Dado $x \in \mathbb{R}$ definimos el valor absoluto como:

$$|x| = \begin{cases} x \sin x \ge 0 \\ -x \sin x < 0 \end{cases} \tag{1}$$

El valor absoluto es de los conceptos mas fundamentales del análisis real. Geométricamente, si dibujamos el valor $x \in \mathbb{R}$ en la recta real, el valor absoluto da la longitud del segmento que va desde x hasta 0. Geométricamente, la distancia entre dos números reales en la recta real viene dada por d(x, y) = |x - y|.

Proposición 2 (Propiedades del valor absoluto). $\forall a, b \in \mathbb{R}$ tenemos:

- 1. |-a| = |a|
- 2. |ab| = |a||b|
- 3. La designaldad triangular: $|a+b| \le |a| + |b|$
- 4. La designaldad triangular inversa: $||a| |b|| \le |a b|$
- 5. Si $a \neq 0$ entonces $\left|\frac{1}{a}\right| = \frac{1}{|a|}$

Usaremos mucho la desigualdad triangular. Cuando estudiemos sucesiones, nos será muy útil tener herramientas para relacionar los números naturales con los números reales.

Teorema 2 (Propiedad arquimediana). $\forall x, y \in \mathbb{R}$ tales que $x > 0 \exists n \in \mathbb{N}$ con nx > y.

Podemos entender el teorema así: si tenemos una longitud muy pequeña siempre vamos a juntar muchas de ellas para poder formar una longitud grande.

Corolario 1. El conjunto de los números naturales no está acotado superiormente.

Corolario 2. Todo subconjunto no vacío de los números naturales que esté acotado superiormente tiene máximo y mínimo.

Teorema 3 (Existencia de la parte entera). $\forall x \in \mathbb{R}$ existe un único $k \in \mathbb{Z}$ tal que k < x < k + 1.

Definición 8 (Parte entera). Dado $x \in \mathbb{R}$ definimos la parte entera como:

$$[x] = \sup\{k \in \mathbb{Z} \mid k \le x\} \tag{2}$$

Por el teorema anterior, este supremo siempre existe.

Teorema 4 (Existencia de raíces). Sea $a \in \mathbb{R}$ cualquiera.

- 1. Para todo $n \in \mathbb{Z}$ impar existe un único $x \in \mathbb{R}$ tal que $x^n = a$.
- 2. Si $a \ge 0$ entonces para todo $n \in \mathbb{Z}$ par distinto de 0 existe un único $x \in \mathbb{R}$ con $x \ge 0$ tal que $x^n = a$.

2. Sucesiones de números reales

Definición 9. Una sucesión es una aplicación $a_n : \mathbb{N} \to \mathbb{R}$. El conjunto $\{a_n\}_n \subseteq \mathbb{R}$ es el conjunto imagen. Decimos que la sucesión $\{a_n\}_n \subseteq \mathbb{R}$ es:

- **Eventual creciente** $si \exists N \in \mathbb{N} \ tal \ que \ a_m \geq a_n, \ \forall m > n \geq N \ con \ n \ y \ m \ naturales.$
- Eventual estrictamente creciente si $\exists N \in \mathbb{N}$ tal que $a_m > a_n$, $\forall m > n \geq N$ con n y m naturales.
- Eventual decreciente si $\exists N \in \mathbb{N}$ tal que $a_m \leq a_n$, $\forall m > n \geq N$ con $n \mid m$ naturales.
- Eventual estrictamente decreciente si $\exists N \in \mathbb{N}$ tal que $a_m < a_n$, $\forall m > n \geq N$ con n y m naturales.

 $Si \ N = 1 \ en \ cualquiera \ de \ estos \ casos, entonces quitamos "eventual".$

Nos interesa estudiar el comportamiento de la sucesión cuando n se hace grande, es decir *eventualmente*. Veremos que el comportamiento de a_n cercano a n=1 no importa en lo que a límite se refiere, solo el comportamiento eventual.

Definición 10. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Decimos que a_n converge a L y lo denotamos como $a_n \to_n L$ si y solo si $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ tal que $|a_n - L| < \varepsilon$ para todo n tal que $n \ge N$.

Proposición 3 (Unicidad del límite). Sean $\{a_n\}_n \subseteq \mathbb{R}$ convergente a L_1 y L_2 . Entonces $L_1 = L_2$.

Demostración. Supongamos que L_1 y L_2 son dos límites de la sucesión $\{a_n\}_n \subseteq \mathbb{R}$. Por tanto, dado un $\varepsilon > 0$, existe un $N \in \mathbb{N}$ tal que $|a_n - L_1| < \varepsilon/2$ y $|a_n - L_2| < \varepsilon/2$ $\forall n > N$ con $N = max\{n_1, n_2\}$, donde n_1 y n_2 son N dado de la definición del límite para L_1 y L_2 . Sumando ambas desigualdades y usando la desigualdad triangular, tenemos:

$$\varepsilon = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} > |a_n - L_1| + |a_n - L_2| = |a_n - L_1| + |-a_n + L_2|$$
$$\ge |a_n - L_1 - a_n + L_2| = |L_2 - L_1|$$

Como ε es un número arbitrario mayor que 0, si asumimos que $|L_2 - L_1| \neq 0$, siempre vamos a poder encontrar un valor de ε (por ejemplo, $\varepsilon = \frac{|L_2 - L_1|}{2} > 0$) mayor a 0 que contradiga $\varepsilon > |L_2 - L_1|$. Por tanto, $|L_2 - L_1| = 0$ y $L_2 = L_1$.

Definición 11. Sabiendo que una sucesión $\{a_n\}_n \subseteq \mathbb{R}$ converge a un único valor L, llamamos a este valor **límite de la sucesión** a_n , y lo denotamos como $\lim_{n\to+\infty} a_n = L$ o de manera resumida $\lim_n a_n = L$.

Definición 12. Si $\{a_n\}_n \subseteq \mathbb{R}$ no converge a ningún valor $L \in \mathbb{R}$, podemos decir que a_n es:

- **Divergente** $a + \infty$ si $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ tal que $a_n > M$ $\forall n > N$.
- Divergente $a \infty$ si $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ tal que $a_n < M \ \forall n > N$.
- Oscilante si no converge ni diverge.

Definición 13. Sea $\{n_k\}_k \subseteq \mathbb{N}$ una sucesión estrictamente creciente de números naturales $y \{a_n\}_n \subseteq \mathbb{R}$ una sucesión cualquiera de números reales. Una **subsucesión de** a_n es una sucesión de la forma $\{a_{n_k}\}_k \subseteq \mathbb{R}$.

Teorema 5 (Aritmética de límites). Sean $\{a_n\}_n \subseteq \mathbb{R}$ y $\{b_n\}_n \subseteq \mathbb{R}$ dos sucesiones cualesquiera convergentes a L_a y L_b respectivamente. Entonces:

- $Si \ r \in \mathbb{R}$, entonces $\lim_{n \to +\infty} ra_n = rL_a$
- $\bullet \lim_{n \to +\infty} a_n + b_n = L_a + L_b$
- $\lim_{n\to+\infty} a_n b_n = L_a L_b$
- $Si\ b_n \neq 0\ \forall n \in \mathbb{N},\ entonces\ \lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{L_a}{L_b}$

3. Funciones, límites y continuidad

4. Derivabilidad de funciones reales