®日本国特許庁(JP)

昭 61 - 52872 報(B2) 公

@Int_Cl.4

識別記号

庁内整理番号

2000公告 昭和61年(1986)11月14日

C 09 D 11/18

PUA

7016 - 4J

発明の数 1 (全5頁)

❷発明の名称 ボールペンインキ

> 願 昭53-128863 ②特

開 昭55-54370 ❸公

四出 願 昭53(1978)10月18日 ❸昭55(1980)4月21日

多 賀 公発 明 者

秀 治 名古屋市昭和区緑町3-17 パイロットインキ株式会社内

本 多 79発明者

彦 和

名古屋市昭和区録町3-17 パイロットインキ株式会社内

パイロツトインキ株式 砂出 麒

名古屋市昭和区級町3-17

会社

正 巳 小林 審査官

1

の特許請求の範囲

1 必須成分として染料、樹脂、溶剤及び下記一 般式(1)、(2)、(3)及び(4)で表される化合物群から選 ばれる化合物の1種または2種以上を含有してな るボールペンイキ。

一般式

RCOO (CH₂CH₂O) nH

(1)

RCOO (CH₂CH₂O) nOCR

(2)

RO (CH₂CH₂O) n'H

(3)

RCOOCH, CH (OH) CH, OH

ここでRは炭素数11乃至23のアルキル基または アルゲニル基またはヒドロキシアルケニル基を表 し、nは1乃至15、n'は1乃至8の数を表す。

発明の詳細な説明

本発明はボールペンインキに関するものであ 15(2) 主溶剤により高沸点でなければならない。

従来のボールペンインキは一般に染料、樹脂、 溶剤及び潤滑剤兼助溶剤としてのオレイン酸から 構成されている。

このオレイン酸の作用効果は

- (1) なめらかな書味を与える。
- (2) 乾燥を防止し、初筆(初期の書出し)をスム ーズにする。
- (3) 染料の助溶剤となる。

有し特に黄銅、洋白のごとき銅ー亜鉛合金を使用 して作られたボールソケット部ではオレイン酸が 銅、亜鉛と反応し不溶性のオレイン酸亜鉛やオレ

イン酸銅を生成し、これらがインキに配合されて いる染料および樹脂と作用して沈澱物を作りつい にはチップのインキ溝を防ぎ、インキの流動を阻

害し筆記不良とならしめる。

このオレイン酸の腐食作用は特に高温多湿時に おいて著しく促進され、早い時は数カ月で筆記不 能となり、遅くても2年以内でその傾向があらわ れる。

本発明は、金属特に銅合金を腐食しない潤滑剤 (4) 10 を用いたボールペンインキを提供することを目的 としている。本発明のボールペンインキに用いら れる潤滑剤は次のような最低条件を具備しなけれ ばならない。

- (1) 金属(特に銅合金)を腐食しない。
- - (3) 金属と吸着しうる原子または官能基を有して いなければならない。
 - (4) 常温では勿論、0℃付近の低温でも液体又は 液体に近い状態であること。
- 20 (5) 非イオン性であること。
 - (6) 主溶剤とよく混合出来るものであること。

上記の条件をなぜ必要とするか、さらに詳しく 記述すれば、

(1)の腐食のない事の必要性は、経時性能を向上 などがあるがその反面、金属を腐食させる作用も 25 させるためには腐食があつてはならない事は当然 である。

> (2)の高沸点であることの必要性は、ボールペン の場合キャップあるいは尾栓によつてボールペン

2

わす。

3

インキ中の溶剤の蒸発を防ぐ事は通常の使用方法 では不可能であり、従つて、インキ中の溶剤の蒸 発を出来るだけ少なくするために溶剤の蒸気圧の 低いものを使用する事が経時性能向上につなが る。さらに、乾燥をも防止する事から、常にボー 5 められるが、経時により溶剤と分離してインクに ル部を濡れた状態におくことが出来るので初期の 書出し性を良くする事が出来る。

(3)の金属との吸着基を必要とする理由として は、ボールおよびボールソケット部にインキが充 分に吸着する事により、ボールおよびボールソケ 10 る化合物群から選ばれる化合物が有効である事を ツト部を濡らしこれがボールソケット部の摩耗を 防止する。

(4)の液体又は液体に近い状態が望ましい理由と しては、ボールペンの使用条件中には冬期の屋外 での使用も考慮する必要があり、その場合低温で 15 エチレンオキサイド縮合物であるポリエチレング 凝固するようなものは、その潤滑効果が著しく弱 まるためである。

(5)のイオン性のないものが良い理由は、特に染 料との反応が問題となり、ボールペン用の染料は 前述の通りであるが、なかでも耐水性、耐光性共 20 劣化させる。 に優れている染料として次の2系列の染料が主と して使用される。

酸性染料直接染料と塩基性染料の造塩染料、酸 性染料直接染料のアミン化染料、これらの染料に 例えばイオン性を有するアルキルアミンを組合せ 25 オキサイドの付加モル数nは1~8モルが妥当 た場合、互換反応が起こり、生成されたアミン塩 染料又は塩基性染料が使用の主溶剤に不溶又は溶 解能力が劣る等の理由から沈澱物となつてしまう 危険が大きい。この様な例を具体的に示すと、タ ートラジン(酸性染料)とオーラミン(塩基性染 30 コール脂肪酸ジエステルで、酸成分は炭素数12~ 料)によつて造塩された造塩染料にオクチルアミ ンを併用した場合に、不溶性のタートラジンの折 出が見られた。この反応を図式で示せば次の通り である。

沈澱

(A)は酸性染料母体を、(B)は塩基性染料母体を表

(6)の主溶剤との相溶を必要とする理由は、互に 全く混合しないものは論外として、分散状態で溶 剤中に混合するものでも、初期にはその効果は認 好ましくない影響を及ぼす傾向にあるからであ

以上6項目の条件を満たすものを種々検討し、 その効果を確認した結果、下記一般式で表わされ 見い出した。

その一つは一般式R-COO (CH₂CH₂O) nH (Rはアルキル基またはアルケニル基またはヒド ロキシアルケニル基を示す)で表される脂肪酸と リコール脂肪酸エステルで、酸成分は炭素数12~ 24の高級脂肪酸類が有効であつた。また、エチレ ンオキサイドの付加モル数nは1~15モルが妥当 で、それ以上では吸水性が強くなりィンキ性能を

他の一つは、一般式R-O-(CH₂CH₂O) nH で表される高級アルコールとエチレンオキサイド の縮合物で、アルコール成分は炭素数12~24の高 級アルコール類が有効であつた。また、エチレン で、それ以上は固形となり低温での潤滑性がやや 劣るという結果を得た。

さらに他の一つは、一般式R-COO (CH₂CH₂O) nOCRで表されるポリエチレングリ 24の高級脂肪酸であり、ポリエチレンオキサイド の付加モル数は1~15モルが有効であつた。

最後の一つは、一般式RCOOCH₂CH (OH) CH₂OHで表されるモノグリセライドであり、酸 35 成分は炭素数12~24の高級脂肪酸類が有効であつ た。なかでも、モノリシノレインは初期書出し性 能を著しく向上させるものであつた。

以上の一般式で示される化合物群は非イオン活 性剤として有用なものであり、その代表的なもの 40 について子備実験を行い、結果を表1に示した。

5

表

1

化 合 物	エチレンオキサ ィド付加モル数	腐食	50℃10日間 での蒸発	相溶性	室温での状態
ポリエチレングリコー ルモノオレエート	5モル	なし	ほとんどなし	良好	液 体
"	15モル	なし	"	n	"
ポリオキシエチレンオ レイルエーテル	5モル	"	0.8%蒸発	"	11
ポリエチレングリコー ルジオレエート	6モル	n	0.4%蒸発	"	"
モノリシノレイン	_	"	ほとんどなし	"	11
オレイン酸	-	あり	n	"	11
フェニールグリコール (代表的溶剤)	-	なし	1.0%蒸発	_	11

前記の実験について説明を加えると、腐食性に ついては黄銅棒を各試料液に浸漬して60℃5日間 放置し液中にあきらかに銅イオンの検出が認めら れたものを腐食ありと評価した。その結果、オレ 20 イン酸以外の活性剤はすべて腐食なしと判定され

蒸発性については実際の蒸発を考慮して、口径 30㎜の秤量壜に各試料液5 9 を入れ50℃10日間放 置後の減量を測定した。その結果、代表例として 25 される。 あげた非イオン活性剤はすべて代表的溶剤として 用いられるフェニールグリコールより蒸発が少な く良好な結果を示した。

又、主溶剤との相溶性テストはフェニールグリ 十分に相溶しているかどうか試験したものですべ て良好であつた。

前記の非イオン活性剤の使用量は1重量%未満 ではほとんど効果がなく、50重量%以上使用した 場合は染料が充分溶解されない。従つて、1~50 35 ド縮合物) 重量%の使用量が限度であるが、3~30重量%の 添加が効果的であつた。

これらを添加して得られたボールペンインキは 充分そのねらいとする所を満足するものであり、 効果は以下のように認められた。

- (1) 初筆性能は未添加インキと比べて著しい向上 が認められた。
- (2) 書味がなめらかになり、ボールおよびボール ソケット部の摩耗がほとんど認められず、イン

キ消費しおわる迄均一なインキ出を示した。

6

(3) ボールペンの保存寿命が著しく向上された。 次に実施例について説明する。

インキはすべて成分中の溶剤及び潤滑剤等の液 体成分を混合した溶媒中に染料を添加し、60~80 ℃の加熱下で攪拌溶解する。染料溶解後、樹脂を 添加し、攪拌溶解して得られるベーストを加熱状 態でろ布を通して加圧ろ過させる方法により製造

以下の部の表示は重量部をさす。

実施例 1

スピロンバイオレツトCRH(保土谷化学工業社 製 ソルベント染料) コールと各試料1:1の比率で混合して、その時 30 サビニールブルーGLS(サンド社製 銅フタロシ アニン系ソルベント染料) 15部 フエニールグリコール 20部 ベンジルアルコール 15部 ケトン樹脂(シクロヘキサノンーホルムアルデヒ ポリエチレングリコールジオレエート(エチレン 10部 オキサイド6モル付加物)

> 上記配合にてボールペン用青インキを得た。 実施例 2

40 スピロンレッドCGH(保土谷化学工業社製 ソ 20部 ルベント染料) スピロンレッドCBH(保土谷化学工業社製 ソ

ルベント染料) 7部

フエニールグリコール

32部

7

8

		Allica I And All I have a second	
ベンジルアルコール	15部	業社製 造塩系ソルベント染料) 20%	
N-メチルー2ーピロリドン	10部	オイルイエロー 105 (オリエント化学工業社会	-
ポリオキシエチレンオレイルエーテル(エラ		ソルベント染料) 5 音	北
オキサイド5モル付加物)	10部	フェニールグリコール 25	北
アルコツクス R-150(明成化学 ポリオ		101	恋
エチレン樹脂)	6部	ポリビニールピロリドン 3音	亚
上記配合にてボールペン赤インキを得た。		スルフオアミド樹脂 20%	
実施例 3		ナイミンL-201(日本油脂社製 ドデシルエク	タ
スピロンバイオレットCRH(保土谷化学コ	二業社	ノールアミン) 2音	ĸ
製 ソルベント染料)		モノリシノレイン 10倍	北
スピロンイエローC2GH(保土谷化学工業社	上製	上記配合にてボールペン赤ィンキを得た。	
ソルベント染料)	10部	実施例 7	
フエニールグリコール	22部	バリフアーストブルー1607 (オリエント化学工業	ŧ
ベンジルアルコール	20部	社製 造塩系ソルベント染料) 20倍	3
ケトン樹脂	20部 15	フェニールグリコール 25音	ß
ポリエチレングリコールモノオレエート(エ	チレ	ベンジルアルコール 12音	ß
ンオキサイド5モル付加物)	1倍8	ケトン樹脂 25音	B
上記の配合にてボールペン黒インキを得た		ポリエチレングリコールモノオレエート (ポリコ	_
実施例 4		チレンオキサイド15モル付加物) 18部	B
スピロンバイオレツトCRH(保土谷化学工	業社 20	上記配合にてボールペン青インキを得た。	
製 ソルベント染料)	15部	実施例 8	
バリフアーストプラツク802(オリエント化	学工	サビニールイエローRLS (サンド社製、ソルベン	,
業社製 含金属系ソルベント染料)	15部	ト染料) 7部	ß
バリフアーストイエローAUM(オリエント	化学	サビニールブルーGLS(サンド社製 銅フタロシ	,
工業社製 造塩系ソルベント染料)	5部 <i>25</i>	アニン系ソルベント染料) 28部	ß
フエニルグリコール	20部	フェニールグリコール 34部	ß
ベンジルアルコール	15部	ベンジルアルコール 15部	ß
ケトン樹脂	20部	ポリビニールピロリドン樹脂 6部	3
ポリエチレングリコールジオレエート(エチ	レン	ポリエチレングリコールモノオレエート (ポリエ	<u>.</u>
オキサイド6モル付加物)	10部 30	チレンオキサイド 5 モル付加物) 10部	3
上配配合にてボールペン黒インキを得た。		上記配合にてボールペン緑インキを得た。	
実施例 5		次に比較例として、各実施例のインキ組成中の)
バリフアーストレッド 1309 (オリエント化	学工	潤滑剤に代えて溶剤(フェニルグリコール)を配	į
業社製 造塩系ソルベント染料)	20部	合したインキを比較例A系列インキとし、前記潤	i
フエニールグリコール	46部 <i>35</i>	滑剤に代えてオレイン酸を配合したインキを比較	F
ベンジルアルコール	11部	例B系列インキとして、後述の試験に供した。	
エスレツク BH-1 (積水化学工業社製	ブチ	試験は、各インキを黄銅製のチップを備えた中	,
ラール樹脂)	7部	しんに充塡した試料について行つた。試験結果は	
ポリエチレングリコールジオレエート (エチ		実施例のインキ、比較例A系列インキ及び比較例	
オキサイド6モル付加物)		B系列のインキによりはつきり差が表われ、各系	
上記配合にてボールペン赤インキを得た。		列内のインキ間には、大きな差は認められなかつ	
実施例 6		たので、各系列インキについての平均的な結果を	
バリフアーストレツド 1306 (オリエント化		表2にまとめた。	

9

10

2

麦

試験項目	試 料	実施例のインキ	比 較 例 A系列のインキ	比 較 例 B系列のインキ
初 筆		即筆記可	書き出せるまで に10㎝以上の空 書要	即筆記可
1000m筆記後の摩耗量(ボール没 入後)		13 × 0	5~10 1000 ^{uun}	a vo
インキ出 (mg/100m)	初期	¥ 530	* 530	終 530
	1000m筆記時	* 930	¥ 520	糸 勺30
加熱促進(60℃) 10日後		即筆記可	筆記不能	筆記不能
	30日後	即筆記可	_	_
高温多湿テスト (50℃、90%RH)	10日後	即筆記可	筆記不能	筆記不能
	30日後	即筆記可	-	

試験条件の説明

1 初筆試験

インキ充塡後1日放置された試料について筆 20 記する。

2 ボールソケット部の摩耗及びインキ出 JISS6039 (1970) 7.4頁の筆記試験方法によ り筆記させた試料について、ボール投入長及び 消費量を測定した。

3 加熱促進試験

各試料を60°Cの恒温槽中に横置し、10日後及 び30日後に取出し、常温にまで放冷後、初筆試 験を行つた。尚、60℃、30日のテストは従来の 30 腐食による筆記不良の発生は避けられない。 経験より、室温約2年経時に相当すると考えら れる。

4 耐高温高湿試験

各試料を50℃、90%RHに調節された恒温恒 湿槽中に横置し、10日後及び30日後に取出し、35

常温にまで戻した後、初筆試験を行つた。 試験結果の説明

比較例A系列のインキを用いた試料では、イン **キ中に潤滑剤が配合されていないため、初筆性能** が悪く、加熱によりその傾向は一層増長されてい る。また筆記によりボールとソケットとの摩擦に よるソケット部の摩耗が生じ、インキ出の減少、 初期のインキ消費量及び1000m筆記時のインキ 25 それらに伴う書味の悪化等の現象が現われて実用 は不可能である。一方、潤滑剤としてオレイン酸 が配合されている比較例B系列インキの試料で は、前記の欠点は解消されているが、加熱促進及 び高温高湿試験の結果にみられるよう、チップの

> 実施例インキの試料では潤滑剤がチップの腐食 を起すことなく、その性能を発揮して、前記の難 点を解消していることが、試験結果から明らかで ある。