

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI
A right Choice for the Real Aspirant
ICON CENTRAL OFFICE, MADHAPUR-HYD

Sec: Sr. IPLCO

Time: 9:00 AM to 12:00 Noon

RPTM-3

Date: 14-08-15

Max.Marks: 360

KEY SHEET

PHYSICS		CHEMISTRY		MATHS	
Q.NO	ANSWER	Q.NO	ANSWER	Q.NO	ANSWER
1	1	31	2	61	3
2	1	32	3	62	1
3	4	33	1	63	2
4	3	34	1	64	1
5	1	35	2	65	2
6	2	36	4	66	3
7	1	37	3	67	2
8	3	38	1	68	4
9	2	39	2	69	4
10	2	40	4	70	2
11	4	41	1	71	2
12	1	42	3	72	4
13	1	43	2	73	3
14	3	44	2	74	3
15	3	45	3	75	2
16	1	46	4	76	3
17	3	47	1	77	3
18	4	48	2	78	1
19	3	49	4	79	3
20	4	50	3	80	3
21	4	51	4	81	2
22	4	52	2	82	2
23	1	53	3	83	2
24	1	54	4	84	2
25	3	55	4	85	1
26	4	56	3	86	1
27	2	57	2	87	3
28	2	58	1	88	3
29	3	59	4	89	1
30	3	60	3	90	2

MATHS

- 61. They form a square of with side $=\frac{32}{\sqrt{7}}$
- 62. Let F_2 ' be reflection of F_2 w.r to a tangent at P. Then F_2 ' lies on circle with F_1 as centre and F_1F_2 ' = $F_1P + PF_2 = 2a$, as radius. \therefore locus is a circle with radius = 2a.

63. The asymptotes of hyperbola are x + 2y = 0, x - 2y = 0. The tangent at any point $A(2\sec\theta, \tan\theta)$ is given by

$$x \frac{\sec \theta}{2} - y \frac{\tan \theta}{1} = 1$$
. Then the points Q, R are

$$(2(\sec\theta + \tan\theta), \sec\theta + \tan\theta), (2(\sec\theta - \tan\theta), \tan\theta - \sec\theta)$$

$$\therefore CQ.CR = 5$$

64. Note that maximum value of $\frac{6}{\sqrt{9\cos^2\theta + 3\sin^2\theta}} = 3$

: least length of intercept of tangent
$$x \frac{\cos \theta}{2} + y \frac{\sin \theta}{3} = 1$$

Made by circle
$$x^2 + y^2 = 25$$
 is $2\sqrt{25-9} = 8$

65. Since origin (0,0) is centre of the conic, it bisects all chords passing through it.

$$\therefore m = 0, n = 0$$

66. The normal at a point 't' on $xy = c^2$ meet the curve again at $\frac{-1}{t^3}$

67. :
$$|SP - S^1P| = 2a$$
 we have $2a = 3, 2ae = SS^1 = 5$

$$\therefore e = \frac{5}{3}$$
 Now e_1 = eccentricity of conjugate hyperbola

Sri Chaitanya IIT Academy

14-08-15_Sr.IPLCO_JEE-MAIN_RPTM-3_Key&Sol's

is calculated by $\frac{1}{e^2} + \frac{1}{e_1^2} = 1 \implies e_1^2 = \frac{5}{4} \implies 16 e_1 = 20$

68. Smallest chord is minor axis. Centre is (0,0)

put $x = r\cos\theta$, $y = r\sin\theta$ in the equation of curve

which gives $r^2 = \frac{2}{2 + \sin 2\theta}$:: $\min imum \ of \ 2r = \sqrt{\frac{8}{3}}$

69. $3(x+1)^2 + 2(y-1)^2 = 6$ ie $\frac{(x+1)^2}{2} + \frac{(y-1)^2}{3} = 1$

The triangle with maximum area on major anis

$$= \frac{1}{2}(2\sqrt{3})\sqrt{2} = \sqrt{6}$$

70. Slope of normal at $P = \frac{a}{b}$, Slope of normal at $Q = \frac{-a}{b}$

Angle between them is $\frac{\pi}{4}$ implies $1 = \frac{4a^2b^2}{\left(a^2 - b^2\right)^2}$

$$\Rightarrow (a^2 - b^2)^2 = 4a^2b^2$$

$$\Rightarrow e^4 + 4e^2 - 4 = 0$$
 $\therefore e^2 = 2\sqrt{2} - 2$

71. Equation of chord with mid point $\left(\frac{1}{3}, \frac{1}{6}\right)$ is 2x + 2y = 1

For the point $(\lambda, \lambda + 1)$ in smaller region,

$$\lambda^2 + 2(\lambda + 1)^2 - 2 < 0$$
 and $2\lambda + 2(\lambda + 1) - 1 > 0$ $\Rightarrow \lambda \in \left(\frac{-1}{4}, 0\right)$

72. $a^2m^2 + b^2 = \frac{a^2}{m^2}, m \neq 0 \implies \frac{b^2}{a^2} = \frac{1}{m^2} - m^2 > 0 \implies m \in (-1,1)$

and $\frac{1}{m^2} - m^2 \neq 1 \implies \therefore m \ cannot \ be \left\{ 0, \pm \sqrt{\frac{\sqrt{5} - 1}{2}} \right\}$

73. The length of RS = 2b for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

If T is foot of \bot from origin on RS

Whose equation
$$y - 0 = m(x - ae)$$
, where $m = \sqrt{\frac{r^2 - b^2}{a^2 - r^2}}$,

Then
$$RT^2 = r^2 - \frac{a^2m^2e^2}{1+m^2} = b^2$$
 and $RS = 2RT$

- 74. Use $\frac{1}{SP} + \frac{1}{SQ} = \frac{2}{l}$ where l = semilatus rectum
- 75. Equation of any tangent to hyperbola $\frac{x}{a}\sec\theta \frac{y}{b}\tan\theta = 1$ The equation of pair of lines joining the points of intersection of this line with director circle $x^2 + y^2 = a^2 b^2$ to origin is $x^2 + y^2 (a^2 b^2)(\frac{x}{a}\sec\theta \frac{y}{b}\tan\theta)^2 = 0$. For this pair of lines

Product of slopes
$$= \frac{\operatorname{coeff} x^2}{\operatorname{coeff} y^2} = \frac{1 - \left(\frac{a^2 - b^2}{a^2}\right) \sec^2 \theta}{1 - \left(\frac{a^2 - b^2}{b^2}\right) \tan^2 \theta} = \frac{b^2}{a^2}$$

- 76. If any tangent of an ellipse, meet the tangents at the ends of major axis, meet at T,T¹ then circle on TT¹ as diameter passes through foci.
 ∴ The distance between the foci is the intercept made by given circle on the line y = x, which is 8 units.
- 77. $\frac{x^2}{4} + y^2 = 1 \text{ let P (h, h-5)} \text{ be any point on the}$ given line. Then chord of contact of P to the ellipse is $\frac{xh}{4} + y(h-5) 1 = 0 \text{ ie } h(x-4y) 20y 4 = 0$

Which always pass through $\left(\frac{4}{5}, \frac{-1}{5}\right)$ for all h

78. The product of Perpendiculars form foci to any tangent of the ellipse is b^2

For ellipse given $a^2 = 16$, $e^2 = \frac{16 - b^2}{16}$

$$\therefore$$
 foci are $\left(\pm\sqrt{16-b^2},0\right)$

foci of hyperbola given as $(\pm 3,0)$

$$\therefore 16 - b^2 = 9 \implies b^2 = 7$$

- 79. Since P, Q,R,S are conormal points then sum of eccentric angles, of these points is odd multiple of π . Since P,Q,R,T are concyclic then sum of eccentric angles of those points is even multiple of π .: If θ_4,θ_5 denote eccentric angles of S,T then $|\theta_4-\theta_5|=(2K+1)\pi$ for some integer K. $\Rightarrow (0,0)$ is mid point of ST.
- 80. The equation of normal at (x_1, y_1) on hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$

is
$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$$
 i.e $a^2y_1x + b^2x_1y - (a^2 + b^2)x_1y_1 = 0$

: the lines,
$$a^2y_ix + b^2x_ix - (a^2 + b^2)x_iy_i = 0$$
, $i = 1, 2, 3$

will be concurrent if
$$\begin{vmatrix} x_1 & y_1 & x_1y_1 \\ x_2 & y_2 & x_2y_2 \\ x_3 & y_3 & x_3y_3 \end{vmatrix} = 0$$

81.
$$SP = e \ PM \implies x^2 + y^2 = 2\left(\frac{x + y + 1}{\sqrt{2}}\right)^2$$

 \Rightarrow equation of hyperbola is 2xy + 2x + 2y + 1 = 0

i e
$$xy + x + y + 1 = \frac{1}{2}$$
, : Equation of asymptotes are $xy + x + y + 1 = 0$

82. Let $p(x_1y_1)$ be mid point of chord which make an angle 45° with x-axis.

Its equation is
$$2xx_1 - 3yy_1 = 2x_1^2 - 3y_1^2$$

Since it has slope 1, $2x_1 = 3y_1$

∴ locus of P is line with slope 2/3

Sri Chaitanya IIT Academy

14-08-15_Sr.IPLCO_JEE-MAIN_RPTM-3_Key&Sol's

83. Here
$$e^4 + e^2 = 1 \Rightarrow e^2 = \frac{\sqrt{5} - 1}{2} = 2\sin 18^\circ \Rightarrow \lambda = 2$$
, $\therefore \lambda^2 - \lambda - 2 = 0$

- 84. $y = mx + \sqrt{a^2m^2 + b^2}$ must pass through (-2,0) when m = 2 $\Rightarrow 4a^2 + b^2 = 16$, now $AM \ge GM$, gives $|ab| \le 4$
- 85. using $\tan \frac{B}{2} = \frac{\Delta}{s(s-b)}$, $\tan \frac{C}{2} = \frac{\Delta}{s(s-c)}$ for a ΔABC $\cot \frac{B}{2} \cot \frac{c}{2} = 4 \text{ gives } AB + AC = 10... \text{ locus of A is an ellipse with B,C as foci, major}$ axis = 10
- 86. Any point on the ellipse $(5\cos\theta, 3\sin\theta)$ will be at $\sqrt{9+16\cos^2\theta}$ distance from axis, $\therefore 9+16\cos^2\theta = 13 \Rightarrow \cos^2\theta = \frac{1}{4}\tan^2\theta = 3$

Now tangent at $(5\cos\theta, 3\sin\theta)$ form an area

$$\frac{1}{2}(5\sec\theta)(3\cos ec\theta)$$
 with coordinate axes.

∴ required area =
$$4 \times \frac{1}{2} \times 5 \sec \theta \ 3 \cos ec\theta = \frac{60}{\sin 2\theta} = 40\sqrt{3}$$

87. Tangent to $y^2 = 4ax$, $y = mx + \frac{a}{m}$ it is a tangent to

$$4xy = -a^2 \Rightarrow for \ 4x \left(mx + \frac{a}{m}\right) = -a^2$$

$$\Delta = 0 \Longrightarrow m = 1$$

88.
$$m_1 m_2 = \frac{y^2 + b^2}{x_1^2 - a^2}$$

$$\frac{y^2 + 4}{x^2 - 9} = 4 \Rightarrow y^2 + 4 = 4x^2 - 36 \Rightarrow 4x^2 - y^2 = 40$$

∴ locus is hyperbola
$$\frac{x^2}{10} - \frac{y^2}{40} = 1$$
 whose

Eccentricity
$$\sqrt{\frac{10+40}{10}} = \sqrt{5}$$

89. Tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{\lambda^2 a^2} = 1$ at $p(a\cos\theta, \lambda a\sin\theta)$

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{\lambda a} = 1 \text{ must pass through (g,f)}$$

$$\Rightarrow \lambda (a - g\cos\theta) - f\sin\theta = 0 \Rightarrow \sin\theta = \frac{(a - g\cos\theta)\lambda}{f}$$

If
$$a = g$$
 then $\sin \theta = (1 - \cos \theta) \frac{g\lambda}{f} \Rightarrow \cot \frac{\theta}{2} = \frac{g\lambda}{f}$

90. orthocenter=in center =circumcenter

The orthocenter of the triangle lies again on the same curve

$$\therefore$$
 circumcentre = $(\alpha, 6)$ lies on $xy = 36$ $\therefore \alpha = 6$