Data Analytics

Topics

- Data Preprocessing
- Data Analytics Techniques
 - Statistical Analysis
 - Association Rules
 - Classification
 - Clustering

Data Analytics

- Data analytics is the process of examining large data sets containing a variety of data types to uncover hidden patterns (unknown correlations, market trends, customer preferences and other useful business information).
- The analytical findings can lead to more effective marketing, new revenue opportunities, better customer service, improved operational efficiency, competitive advantages over rival organizations and other business benefits.

Sept 26-29, 2016

Types of data

- Relational Data (Tables/Transaction/Legacy Data)
- Text Data (Web)
- Semi-structured Data (XML)
- Graph Data
 - Social Network, Semantic Web (RDF), ...
- Streaming Data
 - You can only scan the data once

Major Techniques used

- Statistical analysis
- Data mining
 - Association discovery
 - Classification
 - Clustering
 - Regression
 - Sequence or path analysis
 - Structure and network analysis
- Text analysis

Data Preprocessing

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Data Cleaning

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - <u>incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation="" (missing data)
 - <u>noisy</u>: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes,
 such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class:
 smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

smooth by fitting the data into regression functions

Clustering

- detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

Data discrepancy detection

- Use metadata (e.g., domain, range, dependency, distribution)
- Check field overloading
- Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)

Data migration and integration

- Data migration tools: allow transformations to be specified
- ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Integration of the two processes
 - Iterative and interactive (e.g., Potter's Wheels)

Data Integration

Data Integration

Data integration:

- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill
 Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - *Object identification*: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (Nominal Data)

• X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

• X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group

Correlation Analysis (Numeric Data)

- Correlation measures the linear relationship between objects
- Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent;
- r_{AB} < 0: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1.

Covariance (Numeric Data)

Covariance is similar to correlation

$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^{n}(a_i-\bar{A})(b_i-\bar{B})}{n}$$
 Correlation coefficient:
$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A\sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective mean or **expected values** of A and B, σ_A and σ_B are the respective standard deviation of A and B.

- Positive covariance: If Cov_{A,B} > 0, then A and B both tend to be larger than their expected values.
- Negative covariance: If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- **Independence**: Cov_{A,B} = 0 but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Co-Variance: An Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - E(B) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6
 - $Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

Data Reduction

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find k ≤ n
 orthogonal vectors (principal components) that can be best
 used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
- Works for numeric data only

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in *m*-D space as the product on appropriate marginal subspaces
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Log-linear model

Approximates discrete multidimensional probability distributions

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a *dependent variable* (also called *response variable* or *measurement*) and of one or more *independent variables* (aka. *explanatory variables* or *predictors*)
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

Used for prediction

 (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Regress Analysis and Log-Linear Models

- <u>Linear regression</u>: Y = w X + b
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of $Y_1, Y_2, ..., X_1, X_2, ...$
- Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed into the above
- Log-linear models:
 - Approximate discrete multidimensional probability distributions
 - Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equaldepth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapter 10

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

Simple random sampling

There is an equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Sampling with replacement

• A selected object is not removed from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: With or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Data Cube Aggregation

- The lowest level of a data cube (base cuboid)
 - The aggregated data for an individual entity of interest
 - E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically short and vary slowly with time
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Data Compression

Data Transformation

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

 Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

• **Z-score normalization** (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

• Ex. Let μ = 54,000, σ = 16,000. Then

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$

Where j is the smallest integer such that Max(|v'|) < 1

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Data Discretization Methods

- Typical methods: All the methods can be applied recursively
 - Binning
 - Top-down split, unsupervised
 - Histogram analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation (e.g., χ^2) analysis (unsupervised, bottom-up merge)

Simple Discretization: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Concept Hierarchy Generation

- Concept hierarchy organizes concepts (i.e., attribute values)
 hierarchically and is usually associated with each dimension in a
 data warehouse
- Concept hierarchies facilitate <u>drilling and rolling</u> in data warehouses to view data in multiple granularity
- Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for age) by higher level concepts (such as youth, adult, or senior)
- Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- Concept hierarchy can be automatically formed for both numeric and nominal data. For numeric data, use discretization methods shown.

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies
- Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. *IEEE Spectrum*, Oct 1996
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003.
- J. Devore and R. Peck. Statistics: The Exploration and Analysis of Data. Duxbury Press, 1997.
- H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning: Language, model, and algorithms. VLDB'01
- M. Hua and J. Pei. Cleaning disguised missing data: A heuristic approach. KDD'07
- H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- H. Liu and H. Motoda (eds.). *Feature Extraction, Construction, and Selection: A Data Mining Perspective*. Kluwer Academic, 1998
- J. E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann, 2003
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: The Field Guide. Digital Press (Elsevier), 2001
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.
 Knowledge and Data Engineering, 7:623-640, 1995

Data Analytics

Statistical Analysis

- Descriptive statistics: describe the property of a sample data
 - Measures of central tendency: mean, median, mode
 - Measures of variability: range, standard deviation, frequency distribution, range, percentile.
 - Other: skewness, kurtosis
- Exploratory data analysis: summarize the main characteristics of data
 - Box plot, histogram, scatter plot, multi-vari chart, PCA, etc
- Confirmatory data analysis: Infer the properties about a population
 - statistical hypothesis testing
 - Deriving estimates

Data Mining

- Also called knowledge discovery from data.
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data

Knowledge Discovery (KDD) Process

Data Mining in Business Intelligence

Association Discovery—Frequent Patterns

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

Applications

 Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

An Example--Market Basket Analysis

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Association Rules

Ti	Items bought						
1 0	Beer, Nuts, Diaper						
20	Beer, Coffee, Diaper						
30	Beer, Diaper, Eggs						
40	Nuts, Eggs, Milk						
50	Nuts, Coffee, Diaper, Eggs, Milk						

- Find frequent itemsets.
- For each itemset A, find all the rules $X \rightarrow Y$, (where Y=A-X, and $X \cup Y=A$) with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Association rules: (many more!)

- Beer → Diaper (60%, 100%)
- Diaper \rightarrow Beer (60%, 75%)

••••

Basic Concepts: Association Rules (cont.)

Given an association rule $X \rightarrow Y$

• support, s, probability that a transaction contains $X \cup Y$

$$s = \frac{\text{\#Transactio ns having X and Y}}{\text{\#Transactio ns}}$$

 confidence, c, conditional probability that a transaction having X also contains Y

$$c = \frac{\text{\#Transactio ns having } X \text{ and } Y}{\text{\#Transactio ns having } X}$$

• Confidence of $X \rightarrow Y$ are usually different than that of $Y \rightarrow X$.

Strong Rules Are Not Necessarily Interesting

Assume min. sup=30% and min. Conf. =60% Sup(games \rightarrow videos)=4000/10000=40% Conf(games \rightarrow videos)= 4000/6000=66% So games \rightarrow videos is a strong rule.

	Games	No games	sum	
Videos	4000	3500	7500	
No Videos	2000	500	2500	
sum	6000	4000	10000	

The rule is misleading because

So games and videos are negatively associated.

Comparison of Interestingness Measures

- A null-transaction is a transaction that dos not contain any of the itemsets being examined.
- A measure is null-invariant if its value is free from the influence of null transactions.
- Null-(transaction) invariance is crucial for correlation analysis
- Lift and χ^2 are not null-invariant
- 5 null-invariant measures

Measure	Definition	Range	Null-Invariant
$\chi^2(a,b)$	$\sum_{i,j=0,1} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0,\infty]$	No
Lift(a, b)	$\frac{P(ab)}{P(a)P(b)}$	$[0,\infty]$	No
AllConf(a, b)	$\frac{sup(ab)}{max\{sup(a), sup(b)\}}$	[0, 1]	Yes
Coherence(a,b)	$\frac{sup(ab)}{sup(a)+sup(b)-sup(ab)}$	[0, 1]	Yes
Cosine(a,b)	$\frac{sup(ab)}{\sqrt{sup(a)sup(b)}}$	[0, 1]	Yes
Kulc(a,b)	$\frac{sup(ab)}{2}(\frac{1}{sup(a)} + \frac{1}{sup(b)})$	[0, 1]	Yes
MaxConf(a,b)	$max\{\frac{sup(ab)}{sup(a)}, \frac{sup(ab)}{sup(b)}\}$	[0, 1]	Yes

Concept Hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - street < city < state < country
- Specification of a hierarchy for a set of values by explicit data grouping
 - {Urbana, Champaign, Chicago} < Illinois
- Specification of only a partial set of attributes
 - E.g., only *street* < *city*, not others
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - E.g., for a set of attributes: {street, city, state, country}

Comparison of Interestingness Measures

	Milk	No Milk	Sum (row)
Coffee	m, c	~m, c	С
No Coffee	m, ~c	~m, ~c	~c
Sum(col.)	m	~m	Σ

NI. II +... .. - - - +: - ... -

Dataset	mc mc		mc	mc		
D1	10,000	1,000	1,000	100,000		
D2	10,000	1,000	1,000	100		
D3	100	1,000	1,000	100,000		
D4	1,000	1,000	1,000	100,000		
D5	1,000	100	10,000	100,000		
D6	1,000	10	100,000	100,000		

Null-	-transac	ctions	S I								
w.r.t. m and c									Null-ir	nvaria	ant
Data set	$mc = \overline{n}$	ic	$m\overline{\varepsilon}$	\overline{mc}	χ^2	Lift	AllConf	Coherence	Cesine	Kulc	MaxConf
D_1 10	0,000 1,0	000	1,000	00,000	90557	9.26	0.91	0.83	0.91	0.91	0.91
D_2 10	0,000 1,0	000	1,000	100	0	1	0.91	0.83	0.91	0.91	0.91
D_3	100 - 1,0	000	1,000	100,000	670	8.44	0.09	0.05	0.09	0.09	0.09
D_4 1	1,000 1,0	000	1,000	100,000	24740	25.75	0.5	0.33	0.5	0.5	0.5
D_5 1	1,000 10	00 1	10,000	100,000	8173	9.18	0.09	0.09	0.29	0.5	0.91
D_6 1	1,000	.0 10	00,000	100,000	965	1.97	0.01	0.01	0.10	0.5	0.99
Table 2. Example data sets. Subtle: They disagree											

Sept 26-29, 2016 67

Classification

- Classification, also called supervised learning, is the task of inferring a function from labeled training dataset.
 - A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples
- In classification, each example is a pair consisting of an input object and a desired output value (also called a class label).
- Typical applications
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification Methods

- Decision Tree
- Bayes Classification Methods
- Support vector machine
- Others: Bayesian belief networks, neural networks, rule-based classification, pattern-based classification, logistic regression
- Ensemble Methods: techniques to Improve classification accuracy

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - The set of tuples used for model construction is training set
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

Process (2): Using the Model in Prediction

Decision Tree Induction: An Example

- □ Training data set: Buys_computer
- ☐ The data set follows an example of Quinlan's ID3
- □ Resulting tree:

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Bayesian Classification

- A statistical classifier: performs *probabilistic prediction*, *i.e.*, predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
 - Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Predicts **X** belongs to C_2 iff the probability $P(C_2|\mathbf{X})$ is the highest among all the $P(C_k|\mathbf{X})$ for all the k classes
- Practical difficulty: require initial knowledge of many probabilities,
 significant computational cost

Naïve Bayes Classifier

• A simplified assumption: attributes are conditionally independent

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Loss of accuracy due to the assumption of class conditional independence
- Performance:
 - comparable with decision tree and selected neural network classifiers

SVM—Support Vector Machines

- A classification method for both linear and nonlinear data
- It uses a nonlinear mapping to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- Features: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used for: classification and numeric prediction

SVM—General Philosophy

Any training tuples that fall on hyperplanes H_1 or H_2 (i.e., the sides defining the margin) are **support vectors**

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM Is Effective on High Dimensional Data

- The complexity of trained classifier is characterized by the #
 of support vectors rather than the dimensionality of the data
 - The support vectors are the essential or critical training examples —they lie closest to the decision boundary (MMH)
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M₁, M₂, ..., M_k, with the aim of creating an improved model M*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Stacking: combine predictions from multiple models using a metalearner.

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Random Forest

- Each classifier in the ensemble is a decision tree classifier and is generated using a random selection of attributes at each node to determine the split
- During classification, each tree votes and the most popular class is returned

Random Forest (cont.)

- Two Methods to construct Random Forest:
 - Forest-RI (random input selection): Randomly select, at each node, F
 attributes as candidates for the split at the node. The CART
 methodology is used to grow the trees to maximum size
 - Forest-RC (random linear combinations): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)

Advantages

- more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - Oversampling: re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
 - Threshold-moving: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Cluster Analysis

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Unsupervised learning: no predefined classes (i.e., *learning by observations* vs. learning by examples: supervised)
 - Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: cohesive within clusters
 - low <u>inter-class</u> similarity: <u>distinctive</u> between clusters

Major Clustering Approaches

• Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

• <u>Hierarchical approach</u>:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

• <u>Density-based approach</u>:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

The K-Means Clustering Method

- Given *k*, the *k-means* algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of *K-Means* Clustering

centroid

Until no change

Regression

- Numeric prediction: predicting continuous or ordered values for a given input
- Model the relationship between one or more predictor variables and response variables.
- Common methods:
 - **Linear regression**: involves a response variable y and a single predictor variable x

 $y = w_0 + w_1 x$, where w_0 and w_1 are regression coefficients

- Non-linear regression: can be modeled by a polynomial function, e.g. $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$
- Log-linear models: for categorical data
 - Approximate discrete multidimensional prob. distributions
 - Also useful for data compression and smoothing
- Regression trees and model trees: use trees to predict continuous values rather than class labels

Sequence Analysis

- Discover patterns among sequences of ordered events or element
- Applications of sequential pattern mining
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatments, natural disasters (e.g., earthquakes),
 science & engineering processes, stocks and markets, etc.
 - Telephone calling patterns, Weblog click streams
 - DNA sequences and gene structures

Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be in multiple information networks: friends, family, classmates, ...
 - Links carry a lot of semantic information: Link mining
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

Text Analytics

- The process of extracting useful information from textual data using techniques including statistical analysis, computational linguistics, natural language processing, and machine learning.
 - the most significant part of Text Mining/Analytics is how to convert texts into structured data
- Reasons for text analytics:
 - 80 % of business-relevant information originates in unstructured form, primarily text.
 - Based on the industry's current estimations, unstructured data will occupy 90% of the data by volume in the entire digital space over the next decade.

Challenges

- Very high number of possible dimensions
 - All possible word and phrase types in the language!!
- Unlike data mining: Information is in unstructured textual form
 - records (= docs) are not structurally identical
 - records are not statistically independent
- Complex and subtle relationships between concepts in text
 - AOL merges with Time-Warner vs Time-Warner is bought by AOL
- Ambiguity and context sensitivity
 - Java is coffee or programming language?
 - Bank: river bank vs. food bank vs. financial institution

Converting Text into Structured Data

Requires a huge amount of *preprocessing* to convert text.

- Cleaning up dirty texts
- Tokenization: Remove punctuations, normalizing upper/lower cases, etc.
- Sentence splitting
- Identifying multi-word expressions and Named Entities (ER)
- Adding other linguistic information: Parts-of-speech (e.g. noun, verb, adjective, adverb, preposition)
- Filtering non-significant/irrelevant words to reduce dimensions
 - Filtering non-content words, so-called stop words, using a *stop-list* (e.g. "the", "a", "an", "and")
 - Combining tokens by stemming/lemmatizing or using synonyms
- Other NLP features/techniques, e.g. n-grams, syntax trees

Text Mining Process Flow

Major Techniques

- Information Extraction(IE): extract structured data from unstructured text.
 - Entity Recognition
 - Relation Extraction
- Text Summarization: produce a succinct summary of a single or multiple documents
- Question Answering: provide answers to questions posed in natural language
- **Sentiment Analysis:** analyze opinionated text, which contains people's opinions toward entities such as products, services, organizations, individuals, and events.
- Large Language Models: advanced DL models, can understand, generate, and manipulate human language, making them adept at tasks like translation, summarization, and question answering.

Data Mining Software

Open Source:

 Rapidminer, WEKA, R-programing, Orange, KNIME, NLTK, python packages

Others:

• IBM SPSS modeler, SAS Enterprise Miner, Angoss Knowledge Studio, Microsoft Analysis Service, Oracle Data Mining, etc.

References

- Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques.
 Elsevier.
- Feldman, R., and Sanger, J. (2006). The Text Mining Handbook. New York: Cambridge University Press.
- Chakraborty, G., Pagolu, M., and Garla, S (2013). *Text Mining and Analysis:* Practical Methods, Examples, and Case Studies Using SAS. SAS Publishing.