Overview

- The pinhole projection model
 - Qualitative properties
 - Perspective projection matrix
- Cameras with lenses
 - Depth of focus
 - Field of view
 - Lens aberrations
- Digital cameras
 - Sensors
 - Color
 - Artifacts

Let's design a camera

Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Slide source: Seitz

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Slide source: Seitz

Pinhole camera

f = focal length
c = center of the camera

Camera obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Dimensionality reduction: from 3D to 2D

3D world

Point of observation

2D image

Single-view Geometry

Projection can be tricky...

Projection can be tricky...

Projective Geometry

What is lost?

Length

Length is not preserved

Projective Geometry

What is lost?

Length

Angles

Projective Geometry

What is preserved?

Straight lines are still straight

Vanishing points

- All parallel lines converge to a vanishing point
 - Each direction in space is associated with its own vanishing point
 - Exception: directions parallel to the image plane

Vanishing points and lines

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- Not all lines that intersect are parallel

Vanishing points and lines

Vanishing objects

Perspective distortion

- Are the widths of the projected columns equal?
 - The exterior columns are wider
 - This is not an optical illusion, and is not due to lens flaws

Phenomenon pointed out by Da Vir

Perspective distortion

What is the shape of the projection of a

sphere?

Image source: F. Durand

Perspective distortion

• What is the shape of the projection of a sphere?

Perspective distortion: People

Modeling projection

- To compute the projection P' of a scene point P, form the visual ray connecting P to the camera center O and find where it intersects the image plane
 - All scene points that lie on this visual ray have the same projection in the image
 - Are there scene points for which this projection is undefined?

Modeling projection

The coordinate system

- The optical center (**O**) is at the origin
- The image plane is parallel to xy-plane or perpendicular to the z-axis, which is the optical axis

Projection equations

• Derived using similar triangles $(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$

Fronto-parallel planes

- What happens to the projection of a pattern on a plane parallel to the image plane?
 - All points on that plane are at a fixed depth z
 - The pattern gets scaled by a factor of f / z, but angles and ratios of lengths/areas are preserved

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Fronto-parallel planes

- What happens to the projection of a pattern on a plane parallel to the image plane?
 - All points on that plane are at a fixed depth z
 - The pattern gets scaled by a factor of f / z, but angles and ratios of lengths/areas are preserved

Piero della Francesca, Flagellation of Christ, 1455-1460

Jan Vermeer, The Music Lesson, 1662-1665

Perspective Projection (pinhole projection)

FIGURE 1.4: The perspective projection equations are derived in this section from the collinearity of the point P, its image p, and the pinhole O.

$$\begin{cases} x = \lambda X \\ y = \lambda Y \\ d = \lambda Z \end{cases} \iff \lambda = \frac{x}{X} = \frac{y}{Y} = \frac{d}{Z},$$

$$\begin{cases} x = d\frac{X}{Z}, \\ y = d\frac{Y}{Z}. \end{cases}$$

Intrinsic Parameters

- The coordinates (x, y) of the image point p are expressed in pixel units (not meters).
- Pixels may be rectangular instead of square(skewed).

$$\begin{cases} x = kf\frac{X}{Z} = kf\hat{x}, \\ y = lf\frac{Y}{Z} = lf\hat{y}. \end{cases} \qquad \alpha = kf \text{ and } \beta = lf$$

 The center of the CCD matrix usually does not coincide with the image center c₀

$$\begin{cases} x = \alpha \hat{x} + x_0, \\ y = \beta \hat{y} + y_0. \end{cases}$$

 Due to manufacturing error, the angle between two image axes is not 90 degrees.

$$\begin{cases} x = \alpha \hat{x} - \alpha \cot \theta \hat{y} + x_0, \\ y = \frac{\beta}{\sin \theta} \hat{y} + y_0. \end{cases}$$

Intrinsic Parameters

Putting all equations together, we get

$$\mathbf{p} = \mathcal{K}\hat{\mathbf{p}}$$
, where $\mathbf{p} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ and $\mathcal{K} \stackrel{\text{def}}{=} \begin{pmatrix} \alpha & -\alpha \cot \theta & x_0 \\ 0 & \frac{\beta}{\sin \theta} & y_0 \\ 0 & 0 & 1 \end{pmatrix}$.

Here κ is called (Internal) calibration matrix of the camera.

$$p = \frac{1}{Z} \mathcal{K}(\text{Id} \ \mathbf{0}) P = \frac{1}{Z} \mathcal{M} P$$
, where $\mathcal{M} \stackrel{\text{def}}{=} (\mathcal{K} \ \mathbf{0})$,

Intrinsic parameters: α , β , θ , x_0 , and y_0

Building a Real Camera

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

Adding a lens

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)

Adding a lens

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)
 - All parallel rays converge to one point on a plane located at the focal length f

Slide by Steve Seitz

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image

• What is the relation between the focal length (f), the distance of the object from the optical center (D), and the distance at which the object will be in focus (D')?

Similar triangles everywhere!

Similar triangles everywhere!

$$y'/y = D'/D$$

Similar triangles everywhere!

$$y'/y = D'/D$$

$$y'/y = (D'-f)/f$$

$$\frac{1}{D'} + \frac{1}{D} = \frac{1}{f}$$

Any point satisfying the thin lens equation is in focus.

Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Depth of Field

Controlling depth of field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light need to increase exposure

Varying the aperture

Large aperture = small DOF DOF : depth of focus

Small aperture = large DOF

Field of View

FOV depends on focal length and size of the camera retina

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Larger focal length = smaller FOV

正常人視野

青光眼 (逐漸縮小的視野)

Field of View

Field of View

Field of View / Focal Length

Large FOV, small *f* Camera close to car

Small FOV, large *f*Camera far from the car

The dolly zoom(滑动变焦)

 Continuously adjusting the focal length while the camera moves away from (or towards) the subject

The dolly zoom

- Continuously adjusting the focal length while the camera moves away from (or towards) the subject
- "The Vertigo shot"

Example of dolly zoom from *Goodfellas* (YouTube)

Example of dolly zoom from *La Haine* (YouTube)

Lens flaws: Vignetting (光晕)

A photograph whose edges shade off gradually

Radial Distortion

- Caused by imperfect lenses.
- Deviations are most noticeable near the edge of the lens

Lens Flaws: Chromatic Aberration

Lens has different refractive indices for different wavelengths: causes color fringing

