

Escuela Superior de Cómputo

Guía 2a Examen

Asignatura: Compiladores

Grupo:3CM9

03/05/17

- 1.- En HOC6 hay 3 pilas ¿para qué sirve cada una?
 - 1. Máquina virtual: Genera instrucción para meter símbolo a la pila.
 - 2. Nivel: Para llamadas a función o marcos
 - 3. Análisis sintáctico: Realiza el análisis sintáctico, que ayuda a definir la correcta escritura sintáctica del programa fuente.
- 1.1 A partir de hoc4 se usan dos etapas en hoc, Cuales son y que hacen?
 - 1.- Generación de código, genera el código en postfijo
 - 2.- Ejecución de código, ejecuta el código en prefijo
- 2.- El ámbito de las variables de HOC es:
- R: Global
- 3.- El tipo de las variables en HOC es:
- R: Double
- 4.- Escriba 3 cosas importantes que se almacenan usualmente en un marco (o registro de activación) de función
- R:1.-Número de argumentos
- 2.-Direción de retorno

Falso o Verdadero (F/V)

1 En lenguaje C los parámetros formales no tienen nombre.	(F)
2 En lenguaje C los parámetros formales son como variables locales que ya fueron inicializadas en el momento de la llamada a la función o procedimiento.	(V)
3 En lenguaje C las variables locales (no estáticas) se crean cuando se entra a una función y se destruyen cuando se sale de la función.	(V)
4 En HOC los parámetros formales no tienen nombre.	(V)
5 No es posible definir funciones recursivas en HOC.	(F)
6 Es imposible que la pila de HOC se desborde (Stack Overflow).	(F)
7 En HOC cuando una función termina su ejecución se saca su marco de la pila.	(V)
8 En HOC los parámetros reales son expresiones.	(V)
9 En HOC las llamadas a función no son expresiones.	(F)
10 En HOC las llamadas a procedimiento son enunciados.	(V)
11 En HOC el código que ejecuta la máquina virtual de pila está en prefijo (considere como se ejecuta una suma).	(F)

0 De a	1Ejecutar la ejecutar la ir en l apila. 2 Meter los 3 Poner el el contador o	a función (p nstrucción a parámetros contador de del program	oner el contador d la que apunta el d s en la pila y mete programa igual a a	del progra contador r el marc la direcc	es el orden correct ama igual a la direc del programa) y m so de la funciín en ción de retorno y e a pila de llamadas,	ción de si neter el va la pila de jecutar la	lor de retorno Ilamadas	de la función
	a) 1,2,3,4		b) 1,3,4,2	c)	2,1,4,3	d) 4,3	,2,1 (C)	
1 lln			oo [A va B o] dor	ada A	re on una producci	án v a ag	un torminal a	c
					β es una producci	-		(0)
a)	mango	b)	prefijo viable	c)	elemento LR(1)	d)	elemento LR	1(0)
	una producc mango		n un punto en ciei prefijo viable		ón de lado derech elemento LR(1)		elemento LF	(D)
	n prefijos de mango		de frase derecha d elemento LR(1)		en aparecer en la prefijo viable		elemento LF	(C)
y una la forn a) Probler Para el	posición de y na de frase de prefijo viab nas Análisis LR I	y donde la c erecha prev le b) m as gramátic	adena β podría e ia en una derivaci ango c	ncontrars ón por la c) eleme on sus pr	ento LR(0) d)	r A para p elemento	oroducir)
			nática para genera	ar parént	esis anidados.			
1 S →	· AA	2 $\mathbf{A} \rightarrow \mathbf{a}\mathbf{A}$	\ b					

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(A) = { a,b }	SIGUIENTE(A) = {\$,a}
PRIMERO(S) ={ }	SIGUIENTE(S)={\$}

LR0 10: S' -> .S S-> .AA S-> .aA $S \rightarrow .b$ l1: S'->S. 12: S-> A.A A->.aA a->.b

13: A-> a.A A-> .aA

A-> .b

14:

 $A \rightarrow b$.

15:

 $S \rightarrow AA$.

16:

A-> aA.

SLR

Estado Acción				lr_a		
	a	b	\$	S	Α	
0	D3	D4		1	2	
1			Accept			
2	D3	D4			5	
3	D3	D4			6	
4	R3		R3			
5	R1		R1			
6	R2		R2			

Analisis LR0 Cadena: baab

PILA	ENTRADA	ACCIÓN
0	baab\$	D4
0b4	aab\$	R3
0A2	aab\$	D3
0A2a3	ab\$	D3
0A2a3a3	b\$	D4
0A2a3a3b4	\$	R3
0A2a3a3A6	\$	R2
0A2a3aA	\$	R2
0A2aA	\$	R2
0AA	\$	R1
0S1	\$	Accept

Problema 2.- Considere la gramática para generar paréntesis anidados.

1 S → dca dAb Aa	2 A → c	

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(A) = { d,c }	$SIGUIENTE(A) = \{\$,a,b\}$
PRIMERO(S) ={d,c,a }	SIGUIENTE(S)={\$,a,b}

10:

S'-> .S

S-> .dca

S-> .dAb

S-> .Aa

A-> .c

S'-> S.

12:

S-> d.ca

S-> d.Ab

A-> .c

13:

S->A.a

14:

A->c.

15:

S->dc.a

16:

 $S \rightarrow dA.b$

17:

S-> Aa.

18:

S-> dca.

19:

S->dAb.

SLR

Estado			Acción			lr,	_a
	d	С	а	b	\$	S	Α
0	D2	D4				1	3
1					Accept		
2		D5					6
3			D7				
4			R4	R4	R4		
5			D8				
6				D9			
7			R3	R3	R3		
8			R1	R1	R1		
9			R2	R2	R2		

Problema 3.- Considere la gramática para generar paréntesis anidados.

1 S → Aa bAc dc bda	2 A → d

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(A) = { b,a }	$SIGUIENTE(A) = \{\$,a,c\}$
PRIMERO(S) ={b,a}	SIGUIENTE(S)={\$,a,b,c}

10:

S'-> .S

S-> .Aa

S-> .bAc

S->.dc

A-> .bda

A-> .d

11:

S'-> S.

S->A.a

13:

S-> b.Ac

S-> b.da

S-> .dc

S-> .bda

A-> .d

14:

S->d.c

A->d.

15:

S->bA.c

16:

S-> bd.a

17:

S-> dc.

18:

S-> bAc.

19:

S->bda.

I10:

S-> Aa.

SLR

Estado				lr_a			
	а	b	С	d	\$	S	Α
0		D3		D4		1	2
1					Accept		
2	D10						
3				D6			5
4	R5	R5	D7	R5			
5			D8				
6	D9						
7	R3		R3		R3		
8	R2		R2		R2		
9	R4		R4		R4		
10	R1		R1		R1		

Problema 4.- Considere la gramática para generar paréntesis anidados.

1.-
$$A \to (A)$$
 2.- $A \to a$

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(A) = { (, a }	SIGUIENTE(A) = {) , \$ }

Construya la tabla de Análisis Sintáctico Predictivo no Recursivo.

oriotally a la labia do 7 manolo orinadico i rodiotivo no ricodiotivo.				
	()	а	\$
Α	$A \rightarrow (A)$		$A \rightarrow a$	

Construya la colección de conjuntos de elementos LR(0).

$$A' \rightarrow A$$

$$A \rightarrow A$$

$$A \rightarrow \dot{a}$$

A $\rightarrow \dot{a}$

11:

$$A' \rightarrow A'$$

12:

$$A \rightarrow (\dot{A})$$

 $A \rightarrow \dot{A}$
 $A \rightarrow \dot{A}$

13:

$$A \rightarrow (A.)$$

14:

$$A \rightarrow (A)$$
.

15:

$$A \rightarrow a$$

Construya la tabla SLR.

Estado	Acción Ir_a				
	()	а	\$	Α
0	d2		d5		1
1				Aceptar	
2	d2		d5		3
3		d4			
4		r1		r1	
5		r2		r2	

Use ambos análisis para analizar las siguientes cadenas:

1.-(a)

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	(a)\$	A → (A)
\$)A((a)\$	
\$)A	a)\$	A → a
\$)a	a)\$	
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	(a)\$	d2
0(2	a)\$	d5
0(2a5)\$	r2
0(2A3)\$	d4
0(2A3)4 0A1	\$	r1
0A1	\$	aceptar

2.-((a))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	((a))\$	$A \rightarrow (A)$
\$)A(((a))\$	
\$)A(\$)A	((a))\$ (a))\$ (a))\$ a))\$	$A \rightarrow (A)$
\$))A((a))\$	
\$))A	a))\$	$A \rightarrow a$
\$))a	a))\$))\$	
\$))))\$	
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	((a))\$	d2
0(2	((a))\$ (a))\$ a))\$	d2
0(2(2	a))\$	d5
0(2(2a5))\$	r2
0(2(2A3))\$	d4
0(2(2A3 0(2(2A3)4 0(2A3)\$	r1
0(2A3)\$	d4
0(2A3)4	\$	r1
0A1	\$	Aceptar

3.- (((a))) Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	(((a)))\$	$A \rightarrow (A)$
\$)A((((a)))\$	
\$)A	((a)))\$	$A \rightarrow (A)$
\$))A(((a)))\$	
\$))A(\$))A	(a)))\$	$A \rightarrow (A)$
\$)))A((a)))\$	
\$)))A	(a)))\$ a)))\$	$A \rightarrow a$
\$)))a \$)))	a)))\$)))\$	
\$))))))\$	
\$))))\$	
\$))\$	
\$	\$	

SLR

_		
Pila	Entrada	Acción
0	(((a)))\$	d2
0(2	((a)))\$	d2
0(2(2	(a)))\$	d2
0(2(2(2	a)))\$	d5
0(2(2(2a5)))\$	r2
0(2(2(2A3)))\$	d4
0(2(2(2A3)4))\$	r1
0(2(2A3))\$	d4
0(2(2A3)4 0(2A3)\$	r1
0(2A3)\$	d4

0(2A3)4	\$ r1
0A1	\$ Aceptar

4.-((((a))))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	((((a))))\$	$A \rightarrow (A)$
\$)A(((((a))))\$	
\$)A	(((a))))\$	$A \rightarrow (A)$
\$))A((((a))))\$	
\$))A	((a))))\$	$A \rightarrow (A)$
\$)))A(((a))))\$	
\$)))A	(a))))\$	$A \rightarrow (A)$
\$))))A((a))))\$	
\$))))A	a))))\$	$A \rightarrow a$
\$))))a	a))))\$	
\$))))))))\$	
\$))) \$)))))\$))\$	
\$))))\$	
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	((((a))))\$	d2
0(2	(((a))))\$	d2
0(2(2	((a))))\$	d2
0(2(2(2	(a))))\$	d2
0(2(2(2	a))))\$	d5
0(2(2(2a5))))\$	r2
0(2(2(2A3))))\$	d4
0(2(2(2A3)4)))\$	r1
0(2(2(2A3)))\$	d4
0(2(2(2A3)4))\$	r1
0(2(2A3))\$	d4
0(2(2A3)4)\$	r1
0(2A3)\$	d4
0(2A3)4	\$	r1
0A1	\$	Aceptar

Muestre el contenido de la pila, la entrada y la acción a realizar.

Problema 5.- Considere la siguiente gramática:

1 $S \to a$ 2 $S \to (S)$	$R 3 R \rightarrow , SR 4 R \rightarrow)$
---------------------------	--

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(S) = { a , (}	SIGUIENTE(S) = { , ,) , \$}
PRIMERO(R) = { , ,) }	SIGUIENTE(R) = { , ,) , \$ }

Construya la tabla de Análisis Sintáctico Predictivo no Recursivo.

	а	(,)	\$
S	S → a	S → (SR			
R			R → , S R	R →)	

Análisis LR.

¿Qué es el cerradura ({R → , S · R })?

$$\textbf{R} \rightarrow \dot{}$$
 , $\textbf{S} \ \textbf{R}$

¿Cuál es ir_a ($\{S \rightarrow (`SR\}, S)$?

$$S \rightarrow (S \cdot R)$$

$$R \rightarrow \dot{}, SR$$

 $R \rightarrow \dot{})$

Construya la colección de conjuntos de elementos LR(0).

$$S' \to \dot{\ } S$$

$$S \rightarrow (S R S \rightarrow a)$$

$$S \rightarrow a$$

11:

$$S' \rightarrow S'$$

12:

$$S \rightarrow (S R)$$

$$S \rightarrow (S R)$$

 $S \rightarrow a$

$$S \rightarrow a$$

13:

$$S \rightarrow (S \cdot R)$$

$$R \rightarrow \dot{}, SR$$

 $R \rightarrow \dot{})$

$$R \rightarrow \cdot$$

14:

$$S \rightarrow (S R)$$

15:

$$R \rightarrow , SR$$

 $S \rightarrow (SR$

$$S \rightarrow (SF)$$

16:

$$R \rightarrow .S'F$$

$$\begin{array}{c} \mathsf{R} \rightarrow \ , \, \mathsf{S} \, \, \, \, \mathsf{R} \\ \mathsf{R} \rightarrow \ \, \, \, , \, \, \mathsf{S} \, \, \mathsf{R} \\ \mathsf{R} \rightarrow \ \, \, \, \,) \end{array}$$

$$R \rightarrow .$$

17:

$$R \rightarrow , SR'$$

18:

$$S \rightarrow a$$

19:

$$R \rightarrow$$
):

Contruya la tabla SLR.

Estados			Acción			lr_	_a
	()	а	,	\$	S	R
0	d2		d8			1	
1					Aceptar		

2	d2		d8			3	
3		d9		d5			4
4		r2		r2	r2		
5	d2		d8			6	
6		d9		d5			7
7		r3		r3	r3		
8		r1		r1	r1		
9		r4		r4	r4		

Use ambos análisis para analizar las siguientes cadenas:

1.- (a) Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$S	(a)\$	S → (SR
\$RS((a)\$	
\$RS	a)\$	S → a
\$Ra	a)\$	
\$R)\$	R →)
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	(a)\$ a)\$	d2
0(2	a)\$	d8
0(2a8 0(2S3)\$	r1
0(2S3)\$	d9
0(2S3)9	\$	r4
0(2S3)9 0(2S3R4	\$	r2
0S1	\$	Aceptar

2.- (a,a) Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$S	(a,a)\$	S → (SR
\$RS((a,a)\$	
\$RS	a,a)\$	$S \rightarrow a$
\$Ra	a,a)\$	
\$R	,a)\$,a)\$ a)\$	$R \rightarrow , SR$
\$RS,	,a)\$	
\$RS	a)\$	$S \rightarrow a$
\$Ra	a)\$	
\$R)\$	R →)
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	(a,a)\$	d2
0(2	a,a)\$	d8
0(2a8	,a)\$	r1
0(2S3	,a)\$	d5

0(2S3,5	a)\$	d8
0(2S3,5a8)\$	r1
0(2S3,5S6)\$	d9
0(2S3,5S6)9	\$	r4
0(2S3,5S6R7	\$	r3
0(2S3R4	\$	r2
0S1	\$	Aceptar

3.-(a,a,a)

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$S	(a,a,a)\$	S → (SR
\$RS((a,a,a)\$	
\$RS	a,a,a)\$	S → a
\$Ra	a,a,a)\$	
\$R	,a,a)\$	$R \rightarrow , SR$
\$RS,	,a,a)\$	
\$RS	a,a)\$	$S \rightarrow a$
\$Ra	a,a)\$	
\$R	,a)\$	$R \rightarrow , SR$
\$RS,	,a)\$ a)\$	
\$RS	a)\$	$S \rightarrow a$
\$Ra	a)\$)\$	
\$R)\$	R →)
\$))\$	
\$	\$	

SLR

		
Pila	Entrada	Acción
0	(a,a,a)\$	d2
0(2	a,a,a)\$	d8
0(2a8	,a,a)\$	r1
0(2S3	,a,a)\$	d5
0(2\$3,5	a,a)\$	d8
0(2S3,5a8	,a)\$	r1
0(2\$3,5\$6	,a)\$	d5
0(2S3,5S6,5	a)\$	d8
0(2S3,5S6,5a8)\$	r1
0(2S3,5S6,5S6)\$	d9
0(2S3,5S6,5S6)9	\$	r4
0(2S3,5S6,5S6R7	\$	r3
0(2S3,5S6R7	\$	r3
0(2S3R4	\$	r2
0S1	\$	Aceptar

4.- (a,a,a,a) Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$S	(a,a,a,a)\$	S → (SR
\$RS((a,a,a,a)\$	
\$RS	a,a,a,a)\$	S → a

\$Ra	a,a,a,a)\$	
\$R	,a,a,a)\$	$R \rightarrow$, SR
\$RS,	,a,a,a)\$	
\$RS	a,a,a)\$	$S \rightarrow a$
\$Ra	a,a,a)\$	
\$R	,a,a)\$	$R \rightarrow , SR$
\$RS,	,a,a)\$	
\$RS	a,a)\$	S → a
\$Ra	a,a)\$	
\$R	,a)\$	$R \rightarrow , SR$
\$RS,	,a)\$	
\$RS	a)\$	$S \rightarrow a$
\$Ra	a)\$	
\$R	a)\$)\$	R →)
\$) \$)\$ \$	
\$	\$	

SLR

OL. (
Pila	Entrada	Acción
0	(a,a,a,a)\$	d2
0(2	a,a,a,a)\$	d8
0(2a8	,a,a,a)\$	r1
0(2S3	,a,a,a)\$	d5
0(2S3,5	a,a,a)\$	d8
0(2S3,5a8	,a,a)\$	r1
0(2S3,5S6	,a,a)\$	d5
0(2S3,5S6,5	a,a)\$	d8
0(2\$3,5\$6,5a8	,a)\$	r1
0(2\$3,5\$6,5\$6	,a)\$	d5
0(2S3,5S6,5S6,5	a)\$	d8
0(2\$3,5\$6,5\$6,5a8)\$	r1
0(2\$3,5\$6,5\$6,5\$6)\$	d9
0(2\$3,5\$6,5\$6,5\$6)9	\$	r4
0(2S3,5S6,5S6,5S6R7	\$	r3
0(2S3,5S6,5S6R7	\$	r3
0(2S3,5S6R7	\$	r3
0(2S3R4	\$	r2
0S1	\$	Aceptar

Muestre el contenido de la pila, la entrada y la acción a realizar.

Problema 6.- Considere la siguiente gramática:

1 S → X	2 X → a X c	3 X → X X	4 X → b
-----------------------	---------------------------	-------------------------	-----------------------

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(S) = { a , b }	SIGUIENTE(S) = { \$ }
$PRIMERO(X) = \{ a, b \}$	SIGUIENTE(X) = { \$, c , a , b }

Análisis LR.

¿Qué es el cerradura ($\{\mathbf{X} \to \mathbf{X} \cdot \mathbf{X} \}$)? I:

$$\begin{array}{c} \textbf{X} \to \textbf{X} \cdot \textbf{X} \\ \textbf{X} \to \ \ \ \, \textbf{a} \ \textbf{X} \ \textbf{c} \\ \textbf{X} \to \ \ \ \, \textbf{X} \ \textbf{X} \\ \textbf{X} \to \ \ \, \textbf{b} \\ \\ \vdots \\ \textbf{X} \to \textbf{X} \cdot \textbf{X} \\ \vdots \\ \textbf{ZQué es ir} = \textbf{a} \left(\{ \textbf{X} \to \textbf{a} \cdot \textbf{X} \ \textbf{c} \} \ , \textbf{X} \right) ? \end{array}$$

ir_a (
$$\{X \rightarrow a \cdot X c \}, X$$
)

$$X \rightarrow a X \cdot c$$

Problema 7.- Considere la siguiente gramática:

I	1 S → AaAb	2 S → BbBa	3 A → ε	4 B → ε

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE	
PRIMERO(S) = $\{ \epsilon \}$	SIGUIENTE(S) = { \$ }	
PRIMERO(A) = $\{ \epsilon \}$	$SIGUIENTE(A) = \{ a, b, \$ \}$	
PRIMERO(B) = $\{ \epsilon \}$	SIGUIENTE(B) = { b , a , \$ }	

Contruya la colección de conjuntos de elementos LR(0).

10:

S'→ · S

 $S \rightarrow AaAb$ $S \rightarrow BbBa$

11:

 $S'\!\to S\ .$

12:

 $S \rightarrow A^aAb$

13:

 $S \to Aa^{\cdot}Ab$

14:

 $S \rightarrow AaA^b$

15:

 $S \rightarrow AaAb$

16:

 $S \rightarrow B'bBa$

17:

 $S \rightarrow Bb^{\cdot}Ba$

18:

 $S \rightarrow BbB^{\cdot}a$

19:

S → BbBa^{*}

Construya la tabla SLR.

Estados Acción			lr_A			
	а	b	\$	S	Α	В
0				1	2	6
1			Aceptar			

2	d3				
3				4	
4		d5			
5			r1		
6		d7			
7					8
8	d9				
9			r2		

Problema 8.- Considere la siguiente gramática de expresiones:

1 E → n	2 E → (E , E)	Donde n es un entero

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE	
$PRIMERO(E) = \{ n, (\} \}$	SIGUIENTE(E) = { \$, , ,) }	

Construya la tabla de Análisis Sintáctico Predictivo no Recursivo.

	n	(,)	\$
П	E → n	$E \rightarrow (E, E)$			

Construya la colección de conjuntos de elementos LR(0).

10:

$$\mathsf{E}^{,}\to \mathsf{E}$$

$$\mathsf{E} \to \mathsf{\dot{n}}$$

$$E \rightarrow (E, E)$$

11:

$$\mathsf{E}, \to \mathsf{E}.$$

12:

$$\mathsf{E} \to \mathsf{n}$$

13:

$$\begin{array}{l} \mathsf{E} \to (\dot{\ } \mathsf{E} \ , \ \mathsf{E} \) \\ \mathsf{E} \to \dot{\ } \mathsf{n} \end{array}$$

$$E \rightarrow (E, E)$$

14:

$$E \rightarrow (E^{\cdot}, E)$$

15:

$$\mathsf{E} \to (\mathsf{E}, \,\dot{}\,\,\mathsf{E}\,)$$

$$E \rightarrow (E, E)$$

16:

$$E \rightarrow (E, E')$$

17:

$$E \rightarrow (E, E)$$
.

Construya la tabla SLR.

Estado	Acción					lr_A		
	n () ,			\$	E			
0	d2	d3				1		
1					Aceptar			
2			r1	r1	r1			
3	d2	d3				4		

4				d5		
5	d2	d3				6
6			d7			
7			r2	r2	r2	

Análice la siguiente cadena:

((21,18),17)

SLR

Pila	Entrada	Acción
0	((21,18),17)\$	d3
0(3	(21,18),17)\$	d3
0(3(3	21,18),17)\$	d2
0(3(3n2	,18),17)\$	r1
0(3(3E4	,18),17)\$	d5
0(3(3E4,5	18),17)\$	d2
0(3(3E4,5n2),17)\$	r1
0(3(3E4,5E6),17)\$	d7
0(3(3E4,5E6)7	,17)\$	r2
0(3E4	,17)\$	d5
0(3E4,5	17)\$	d2
0(3E4,5n2)\$	r1
0(3E4,5E6)\$)\$	d7
0(3E4,5E6)7	\$	r2
0E1	\$	Aceptar

Muestre el contenido de la pila, la entrada y la acción a realizar.

Problema 9.- Considere la siguiente gramática:

1 S → [L]	2 S → a	$3L \rightarrow L, S$	4 L → S

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE
PRIMERO(S) = { [, a }	SIGUIENTE(S) = { \$, , ,] }
PRIMERO(L) = { [, a }	SIGUIENTE(L) = { \$, , ,] }

Contruya la colección de conjuntos de elementos LR(0).

 $S \to [L^{\cdot}]$

```
| 14: S \rightarrow [L] . | 15: S \rightarrow a . | 16: L \rightarrow L , , , S \rightarrow [L] , S \rightarrow [L] , S \rightarrow a | 18: L \rightarrow L , , S \rightarrow a | 18: L \rightarrow L , , S \rightarrow a | 19: L \rightarrow S . | 19: L \rightarrow S
```

Problema 10.- Considere la siguiente gramática:

To the term of the							
1 R → R R	2 R → RR	3 R → R*	4 R → (R)	5 R -> a	6 R-> b		
·			, ,				

Conjuntos PRIMERO y SIGUIENTE

PRIMERO	SIGUIENTE	
$PRIMERO(R) = \{ (,a,b) \}$	SIGUIENTE(R) = { \$,* , ,) }	

Contruya la colección de conjuntos de elementos LR(0).

I0:

R'-> .R

R-> .R|R

R-> .RR

R-> .(R)

R-> .a

R-> .b

R'->R. R->R.∣R

R->R.R R->R.*

R->.R|R

R->.RR

R->.R*

12:

R->(.R)

 $R \rightarrow R \mid R$

R->R.R

R->R.*

 $R \rightarrow R \mid R$

R->.RR

R->.R*

R->.a R->.b

R->.(R)

R->a.

14:

R->b.

15:

R->R|.R R->.R|R R->.RR

R->.R* R->.(R) R->.a

R->.b

16:

R->RR.

17:

R->R*.

18:

R->(R.)

19:

R->(R).

I10:

R->R|R.

Construya la tabla SLR.

oonoa ayana	oononaya la labla ozi i.							
Estados		Acción						lr_a
	*	()	а	b		\$	R
0		D2		D3	D4			1
1	D7	D2		D3	D4	D5	accept	6
2		D2		D3	D4			8
3	R5							
4	R6							
5		D2		D3	D4			10
6	R2		R2			R2	R2	
7	R3		R3			R3	R3	
8			D9					
9	R4		R4			R4	R4	
10	R1		R1			R1	R1	

Cadena: aa*ba|b

PILA	ENTRADA	ACCION				
0	aa*ba b\$	D3				
0a3	a*ba b\$	R5				
0R1	a*ba b\$	D3				
0R1a3	a*ba b\$	R5				
0R1R6	*ba b\$	R2				
0R1	*ba b\$	D7				
0R1*7	ba b\$	R3				
0R1b4	a b\$	R6				
0R1R6	a b\$	R2				
0R1a	a b\$	D3				
0R1a3	b\$	R5				
0R1R6	b\$	R2				
0R1	b\$	D5				

0R1 5b4	\$ R6
0R1 5R10	\$ R1
0R1	\$ Accept

Problema 11.- Considere la siguiente gramática:

1 S->A	2 A → ἑ	3 A->bbA

Construya la tabla de análisis sintactico predictivo no recursivo y analice la siguiente cadena:

Cadena: bbbb

	Ė	b	\$
S		S->A	
Α	A-> ἑ	A->bbA	

PILA	ENTRADA	ACCIÓN		
\$S	bbbb\$	S->A		
\$ A	bbbb\$	A->bbA		
\$bbA	bbbb\$			
\$bA	bbb\$	A->bbA		
\$bbA	bb\$	A->bbA		
\$bbbA	b\$	A->bbA		
\$bbbbA	\$			
\$bbb	\$			
\$bbb	\$			
\$bb	\$			
\$bb	\$			
\$b	\$			
\$b	\$			
\$	\$			
\$	\$			

Problema 5.- Considere la gramática para generar paréntesis anidados.

1 S→ A	2 A → ἑ	3 A->Abb

Construya la colección de conjuntos de elementos LR(0).

10:

 $\begin{array}{c} S{\rightarrow}.A \\ A \rightarrow \dot{\ \epsilon} \end{array}$

A->.Abb

11:

 $S'\!\to S^\cdot$

12:

 $S \rightarrow A$.

 $\mathsf{A} \to \mathsf{A.bb}$

13:

A → ἑ.

 $A \rightarrow Ab.b$

15:

 $A \rightarrow Abb$.

Construya la tabla SLR.

Estado	Acción			lr_a	
	έ	b	\$	S	Α
0	D3			1	2
1			Aceptar		
2	D3	R1	R1		
3		R2	R2		
4		D2			
5		R3	R3		