#### Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа <u>3220</u>            | К работе допущен |
|-------------------------------|------------------|
| Студент <u>Гафурова Ф. Ф.</u> | Работа выполнена |
| Преподаватель Пулькин Н. С.   | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №1.03

# «Изучение центрального соударения двух тел. Проверка второго закона Ньютона»

#### 1. Цель работы:

- Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

#### 2. Задачи, решаемые при выполнении работы:

- Измерение скоростей тележек до и после соударения.
- Измерение скорости тележки при ее разгоне под действием постоянной силы.
- Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

#### 3. Объект исследования:

- Упругие и неупругие соударения тележек.
- Движение тележки под действием постоянной силы.

#### 4. Метод экспериментального исследования:

• Замер таких величин как: масса тележек, скорость тележек.

#### 5. Рабочие формулы и исходные данные:

Для задания 1:

 $m_1$  — масса первой тележки,  $m_2$  — масса второй тележки,  $v_{10x}$  — скорость первой тележки до соударения,  $v_{1x}$  — скорость первой тележки после соударения,  $v_{2x}$  — скорость второй тележки после соударения,  $p_{10x}$  — импульс первой тележки до соударения,  $p_{1x}$  — импульс первой тележки после соударения,  $p_{2x}$  — импульс

второй тележки после соударения,  $\delta_p$  – относительное изменения импульса системы при соударении,  $\delta_w$  – относительное изменения кинетической энергии системы при соударении,  $\overline{\delta_p}$  и  $\overline{\delta_w}$  – средние значения данных величин соответственно, погрешности данных величин -  $\Delta \overline{\delta_p}$ ,  $\Delta \overline{\delta_w}$ ;  $\delta_w^{(T)}$  – теоретическое значение относительного изменения механической энергии.

$$p_{10x}=m_1v_{10x}$$
,  $p_{1x}=m_1v_{1x}$ ,  $p_{2x}=m_2v_{2x}$  – импульсы тел;

 $\delta_p = \frac{\Delta p_x}{p_{10x}} = \frac{p_{1x} + p_{2x}}{p_{10x}} - 1$  – формула относительного изменения импульса системы при соударении;

 $\delta_w = \frac{\Delta_{W_k}}{W_{k0}} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$  – формула относительного изменения кинетической системы при соударении;

$$\Deltaar{\delta}_p=\ t_{lpha_{ ext{\tiny ДОВ}},\ N}\sqrt{rac{\sum_{i=1}^N(\delta_{pi}-ar{\delta}_p)^2}{N(N-1)}}$$
 – доверительный интервал для  $\delta_p$ ,  $t_{lpha_{ ext{\tiny ДОВ}},\ N}$  –

коэффициент Стьюдента для доверительной вероятности  $\alpha=0,95$ , количества измерений N и i – номер опыта;

$$\Delta \bar{\delta}_W = t_{lpha_{{
m дов}},\ N} \sqrt{rac{\sum_{i=1}^N \left(\delta_{Wi} - \overline{\delta}_W
ight)^2}{N(N-1)}}$$
 – доверительный интервал для  $\delta_p$ ;

$$\delta_W^{({
m T})} = -rac{W_{
m NOT}}{rac{m_1 v_{10}^2}{2}} = -rac{m_2}{m_1 + m_2}$$
 – теоретическое значение относительного изменения

механической энергии, вычисляемое по формуле;  $v_{10}$  – скорость первой тележки до соударения, v – скорость системы тележек после неупругого соударения;

 $p_{10} = m_1 v_{10}\,$  – импульс системы до соударения;

 $p = (m_1 + m_2)v$  – импульс системы после соударения;

$$\delta_p = rac{p_1}{p_{10}} - 1$$
 – относительное изменение импульса;

 $\delta_W^{(9)} = \frac{(m_1 + m_2)v_2^2}{m_1v_{10}^2} - 1$  – экспериментальное значение относительного изменения механической энергии;

#### Для задания 2:

тележки при прохождении первых ворот,  $v_2$  – скорость тележки при прохождении первых ворот,  $v_2$  – скорость тележки при прохождении вторых ворот,  $v_3$  – ускорение тележки (из-за нерастяжимости нити модули обоих ускорения равны друг другу, т. е.  $v_3$  =  $v_4$  =  $v_4$  =  $v_4$  –  $v_4$  –  $v_5$  –  $v_4$  –  $v_5$  –  $v_5$ 

$$a=rac{(v_2)^2-(v_1)^2}{2(x_2-x_1)}; \quad T=m(g-a)$$
 – ускорение тележки и сила натяжении нити.

$$b = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\Sigma(x_i - \bar{x})^2};$$

#### 6. Измерительные приборы:

Таблица 1.

| Наименование<br>средства измерения | Предел<br>измерений | Цена деления | Класс<br>точности | Погрешность |
|------------------------------------|---------------------|--------------|-------------------|-------------|
|                                    | 1,30 м              | 1 см/дел     | _                 | 0,5 см      |
| Линейка на рельсе                  |                     | -            |                   |             |
|                                    | 9,99 м/с            | 0,01 м/с     | _                 | 0,01 м/с    |
| ПКЦ-3 в режиме                     | ,                   | ,            |                   | ,           |
| измерения скорости                 |                     |              |                   |             |
|                                    | 250 г               | 0,01 г       | _                 | 0,01 г      |
| Лабораторные весы                  |                     | ,            |                   | ,           |

#### 7. Схема установки:

#### Экспериментальная установка



Рис. 3. Общий вид экспериментальной установки

Общий вид экспериментальной установки для первой части работы изображен на Рис. 3. В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

# 8. Результаты прямых измерений и их обработки (таблицы, примеры расчётов): Для задания 1:

Таблица 1.1

| N опыта | $m_1$ , $\Gamma$ | $m_2$ , г | $v_{10x},  {\rm M/c}$ | $v_{1x}$ , m/c | $v_{2x}$ , M/c |
|---------|------------------|-----------|-----------------------|----------------|----------------|
| 1       |                  |           | 0,16                  | 0              | 0,21           |
| 2       |                  |           | 0,15                  | 0              | 0,16           |
| 3       | 49               | 50        | 0,13                  | 0              | 0,11           |
| 4       |                  |           | 0,27                  | 0,07           | 0,35           |
| 5       |                  |           | 0,21                  | 0              | 0,32           |

Таблица 1.2

| N опыта | $m_1$ , $\Gamma$ | $m_2$ , г | $v_{10x}$ , M/c | $v_{1x}$ , м/с | $v_{2x}$ , m/c |
|---------|------------------|-----------|-----------------|----------------|----------------|
| 1       |                  |           | 0,2             | -0,04          | 0,26           |
| 2       |                  |           | 0,24            | -0,05          | 0,12           |
| 3       | 49               | 101       | 0,25            | -0,04          | 0,25           |
| 4       |                  |           | 0,23            | -0,04          | 0,12           |
| 5       |                  |           | 0,25            | -0,05          | 0,26           |

Таблица 2.1

| N опыта | $m_1$ , г | т2, г | v <sub>10</sub> , м/с | ν, м/с |
|---------|-----------|-------|-----------------------|--------|
| 1       |           |       | 0,22                  | 0,11   |
| 2       |           |       | 0,17                  | 0,1    |
| 3       | 53        | 51    | 0,18                  | 0,17   |
| 4       |           |       | 0,18                  | 0,07   |
| 5       |           |       | 0,16                  | 0,13   |

Таблица 2.2

| N опыта | $m_1$ , $\Gamma$ | $m_2$ , г | $v_{10}$ , m/c | ν, м/с |
|---------|------------------|-----------|----------------|--------|
| 1       |                  |           | 0,15           | 0,02   |
| 2       |                  |           | 0,15           | 0,03   |
| 3       | 53               | 105       | 0,19           | 0,06   |
| 4       |                  |           | 0,24           | 0,11   |
| 5       |                  |           | 0,17           | 0,05   |

#### Таблица 4.1

| N опыта | $p_{10x}$ , мН $*$ с | $p_{1x}$ , мН $*$ с | $p_{2x}$ , мН $*$ с | $\delta_p$ | $\delta_W$ |
|---------|----------------------|---------------------|---------------------|------------|------------|
| 1       | 7,84                 | 0                   | 10,5                | 0,34       | 0,76       |
| 2       | 7,35                 | 0                   | 8                   | 0,09       | 0,16       |
| 3       | 6,37                 | 0                   | 5,5                 | -0,14      | -0,27      |
| 4       | 13,23                | 3,43                | 17,5                | 0,58       | 0,78       |
| 5       | 10,29                | 0                   | 16                  | 0,55       | 1,37       |

#### Таблица 4.2

| N опыта | $p_{10x}$ , мН $*$ с | $p_{1x}$ , мН $*$ с | $p_{2x}$ , мН $*$ с | $\delta_p$ | $\delta_W$ |
|---------|----------------------|---------------------|---------------------|------------|------------|
| 1       | 9,8                  | -1,96               | 26,26               | 1,48       | 2,52       |

| 2 | 11,76 | -2,45 | 12,12 | -0,18 | -0,44 |
|---|-------|-------|-------|-------|-------|
| 3 | 12,25 | -1,96 | 25,25 | 0,9   | 1,09  |
| 4 | 11,27 | -1,96 | 12,12 | -0,1  | -0,41 |
| 5 | 12,25 | -2,45 | 26,26 | 0,94  | 1,27  |

#### Таблица 5.1

| N опыта | $p_{10}$ , мН $*$ с | <i>р</i> , мН * с | $\delta_p$ | $\delta_W^{(\mathfrak{I})}$ | $\delta_W^{(T)}$ |
|---------|---------------------|-------------------|------------|-----------------------------|------------------|
| 1       | 11,66               | 11,44             | -0,02      | -0,51                       |                  |
| 2       | 9,01                | 10,4              | 0,15       | -0,32                       |                  |
| 3       | 9,54                | 17,68             | 0,85       | 0,75                        | -0,49038462      |
| 4       | 9,54                | 7,28              | -0,24      | -0,7                        |                  |
| 5       | 8,48                | 13,52             | 0,59       | 0,3                         |                  |

#### Таблица 5.2

| N опыта | $p_{10}$ , мН $*$ с | <i>p</i> , мН * с | $\delta_p$ | $\delta_W^{(\mathfrak{I})}$ | $\delta_W^{(T)}$ |
|---------|---------------------|-------------------|------------|-----------------------------|------------------|
| 1       | 7,95                | 3,16              | -0,6       | -0,95                       |                  |
| 2       | 7,95                | 4,74              | -0,4       | -0,88                       |                  |
| 3       | 10,07               | 9,48              | -0,06      | -0,7                        | -0,66455696      |
| 4       | 12,72               | 17,38             | 0,37       | -0,37                       |                  |
| 5       | 9,01                | 7,9               | -0,12      | -0,74                       |                  |

## Для задания 2:

Таблица 3.1 Разгоняемое тело — тележка.  $M_1 = 48 \text{ г}$ 

| N опыта | Состав гирьки           | т, г | $v_1$ , м/с | v₂,м/с |
|---------|-------------------------|------|-------------|--------|
| 1       | подвеска                | 50   | 0,1         | 0,42   |
| 2       | подвеска + одна шайба   | 50,5 | 0,14        | 0,58   |
| 3       | подвеска + две шайбы    | 51   | 0,2         | 0,74   |
| 4       | подвеска + три шайбы    | 52   | 0,23        | 0,84   |
| 5       | подвеска + четыре шайбы | 53   | 0,26        | 0,93   |
| 6       | подвеска + пять шайб    | 54   | 0,29        | 1,02   |
| 7       | подвеска + шесть шайб   | 55   | 0,31        | 1,12   |

Таблица 3.2 Разгоняемое тело – тележка.  $M_1 = 99 \ \Gamma$ 

| инца 5.2 г азгониемое тело тележка: $M_1 = 99$ г |                         |       |             |             |  |
|--------------------------------------------------|-------------------------|-------|-------------|-------------|--|
| N опыта                                          | Состав гирьки           | т, г  | $v_1$ , M/c | $v_2$ , м/с |  |
| 1                                                | подвеска                | 100   | 0,04        | 0,15        |  |
| 2                                                | подвеска + одна шайба   | 101   | 0,05        | 0,17        |  |
| 3                                                | подвеска + две шайбы    | 101,5 | 0,07        | 0,25        |  |
| 4                                                | подвеска + три шайбы    | 102   | 0,09        | 0,3         |  |
| 5                                                | подвеска + четыре шайбы | 103   | 0,1         | 0,37        |  |
| 6                                                | подвеска + пять шайб    | 104   | 0,17        | 0,62        |  |

| 7 | подвеска + шесть шайб | 105 | 0,18 | 0,66 |
|---|-----------------------|-----|------|------|

Таблица 6.1

| N опыта | т, г | а, м/c <sup>2</sup> | Т, мН  |
|---------|------|---------------------|--------|
|         |      |                     |        |
| 1       | 50   | 0,13                | 484,5  |
| 2       | 50,5 | 0,24                | 483,79 |
| 3       | 51   | 0,39                | 480,93 |
| 4       | 52   | 0,5                 | 484,64 |
| 5       | 53   | 0,61                | 488,13 |
| 6       | 54   | 0,74                | 490,32 |
| 7       | 55   | 0,89                | 491,15 |

Таблица 6.2

| N опыта | т, г  | а, м/c <sup>2</sup> | Т, мН   |
|---------|-------|---------------------|---------|
|         |       |                     |         |
| 1       | 100   | 0,02                | 980     |
| 2       | 101   | 0,03                | 989,8   |
| 3       | 101,5 | 0,04                | 992,67  |
| 4       | 102   | 0,06                | 995,52  |
| 5       | 103   | 0,09                | 1002,19 |
| 6       | 104   | 0,27                | 993,2   |
| 7       | 105   | 0,31                | 998,55  |

## 9. Графики:

Графики зависимостей Т от, а для случаев с разгоном неутяжеленной и утяжеленной тележки.





#### 10. Окончательные результаты:

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной  $\overline{\delta_n}, \overline{\delta_w}$ 

1. 
$$\frac{\overline{\delta}_p}{\overline{\delta}_w} = 0.284 \pm 0.38265 \text{ MH} * \text{C}$$
  
 $\overline{\delta}_w = 0.56 \pm 0.78468$ 

2. 
$$\overline{\delta_p} = 0.608 \pm 0.8961 \text{ MH} * \text{c}$$
  
 $\overline{\delta_w} = -0.806 \pm 1.5559$ 

Теоретическое значение относительного изменения механической энергии

$$\delta_W^{(T)} = -0.49038462$$

Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной  $\delta_p$ ,  $\delta_W^{(9)}$ 

утяжеленной 
$$\delta_p$$
,  $\delta_W^{(\mathfrak{g})}$ 
1.  $\delta_p = 0.266 \pm 0.90385064$  мН \* с  $\delta_W^{(\mathfrak{g})} = -0.096 \pm 0.0751$ 

2. 
$$\delta_p = -0.162 \pm 0.835 \text{ MH} * \text{C}$$
  
 $\delta_W^{(3)} = -0.728 \pm 0.2790267$ 

 ${
m Macca}\ {
m M}_1$  неутяжеленной тележки и доверительный интервал этой величины.

$${
m M_1}=56,\!345~{
m r}\pm7,\!127~{
m r}$$
 больше Сила трения  $F_{
m Tp1}=480,\!546~{
m mH}$ 

Масса  ${
m M}_1$  утяжеленной тележки и доверительный интервал этой величины.

$$M_1=74,1624$$
 г  $\pm$  39,006 г  
Сила трения  $F_{\mathrm{Tp2}}=1004,176\,$  мН

#### 11. Выводы и анализ результатов работы:

В ходе исследования упругого и неупругого центрального соударения тележек были получены данные об относительных изменениях импульса и энергия. Обнаружено, что при упругом соударении  $\overline{\delta_p}$  и  $\overline{\delta_W}$  и равны -0.284 и -0.56 соответственно, при неупругом соударении  $\overline{\delta_p}$  и  $\overline{\delta_W}$  составляют 0,266 и -0.096 соответственно.

Теоретическое значение относительного изменения механической энергии  $\delta_W^{(T)}$  составляет -0.49038462. Проведенные исследования подтверждают соответствие теоретическое значения диапазонам изменений, полученным в эксперименте. Важно отметить, что оценка массы тележек может быть осложнена значительной силой трения, действующей в системе.

Также были оценены значения силы трения  $F_{\rm Tp1}$  и  $F_{\rm Tp2}$ , которые равны 480,5451962 и 1004,176237 соответственно, и которые могут оказывать влияние на итоговые результаты.

На основе полученных данных исследования можно сделать вывод о соответствии полученных результатов с теоретическими ожиданиями и о подтверждении закономерностей, описанных в классической механике, для упругих и неупругих соударений тележек. Тем не менее, необходимо учитывать влияние силы трения при оценке массы тележек, что может привести к небольшим погрешностям в результатах исследования.

Нелинейность двух первых точек первого графика заставит от того что трение при данных экспериментах была не постоянной.