TC2008B MODELACIÓN DE SISTEMAS MULTIAGENTES CON GRÁFICAS COMPUTACIONALES

TEXTURAS

LÍMITES DEL MODELADO

- Aún cuando las tarjetas gráficas modernas pueden renderizar millones de polígonos por segundo, ese número es insuficiente cuando se trata de objetos con superficies complejas:
 - Pasto
 - Terreno
 - Piel
 - Naranja

EJEMPLO: NARANJA

- Considera el problema de modelar una naranja:
 - 1. Una esfera naranja sería demasiado sencilla.
 - 2. Remplazar la esfera por una malla de miles de polígonos sería costoso computacionalmente.

¿Cómo modelar las características de la superficie a detalle?

MAPEO DE TEXTURAS

- La solución podría ser tomar una imagen de la superficie de la naranja y "pegarla" sobre un modelo geométrico simple.
- La imagen es utilizada para alterar el color en cada punto de la superficie.
- Esto es mucho más eficiente porque no aumenta la complejidad de la geometría del modelo.

MAPEO DE TEXTURAS

DETALLE VISUAL

 Usar imágenes y no más polígonos para representar variaciones de pequeña escala del color, añade detalle.

TIPOS DE MAPEO

- 1. Mapeo de texturas:
 - Uso de imágenes.
- 2. Mapeo ambiental:
 - Reflexiones.
- 3. Mapeo de normales:
 - Bump mapping.

- Una textura es una imagen en un sistema de coordenadas 2D (s, t).
- Cada parte de la superficie corresponde o mapea (coordenadas u, v) a alguna parte de la textura (s, t).
- Cada objeto 3D debe estar parametrizado mediante una función que va de 2D a 3D.

SISTEMAS COORDENADOS

- Coordenadas de las texturas (s,t):
 - Usadas para identificar puntos en la imagen de la textura (usualmente en el rango 0, 1).
- Coordenadas paramétricas (u,v):
 - Usadas para mapear la superficie 3D con parámetros 2D (usualmente en el rango 0, 1).

¿CÓMO ASIGNAR VALORES U, V?

- 1. Asignar valores manualmente:
 - Dar coordenadas de la textura para cada vértice manualmente.
- 2. Calcular las coordenadas automáticamente:
 - Utilizar un algoritmo que calcule dichas coordenadas.

ASIGNACIÓN MANUAL DE COORDENADAS U, V

- Arriba: se usa la mitad izquierda de la textura (desde 0 hasta 0.5 en la dimensión U) para cubrir todo el polígono.
- En medio: se usa la mitad inferior de la textura (desde 0 hasta
 0.5 en la dimensión V) para cubrir todo el polígono.
- Abajo: se usa toda la textura para cubrir todo el polígono.
- Nota que en todos los casos hay una deformación de la apariencia original de la textura.

MAPEO U, V MEDIANTE ALGORITMOS

- Es fácil asignar coordenadas de texturas para objetos sencillos en 2D, pero puede ser muy difícil asignar valores cuando se trata de objetos complicados en 3D.
- Mapeo en dos etapas o pasos
 - La solución consiste en primero mapear la textura a una superficie intermedia, luego mapear de la intermedia a la superficie final.
- Existen mapeos estándar: plano, cilíndrico, esférico y cúbico.

MAPEO U, V CÚBICO

Se utiliza para hacer un "skybox" es decir, rodear el punto de vista del usuario en una escena virtual, para simular que está dentro de un ambiente extenso.

MAPEO CILÍNDRICO

Cilindro paramétrico:

$$x = r \cos (2 \prod u)$$
$$y = v/h$$
$$z = r \sin (2 \prod u)$$

Mapear un rectángulo en el espacio u, v a un cilindro de radio r y altura h en las coordenadas del mundo:

$$s = u$$

 $t = v$

MAPEO ESFÉRICO

 Podemos mapear mediante una esfera paramétrica (los polos se verán distorsionados a menos que la textura se corrija):

$$x = r \sin(2\pi v) \sin(2\pi u)$$
$$y = r \cos(2\pi v)$$
$$z = r \sin(2\pi v) \cos(2\pi u)$$

$$u = 0.5 + \frac{\arcsin(\hat{n}_x)}{\pi}$$

This Photo by Unknown Author is licensed under CC BY-SA

$$v = 0.5 + \frac{\arcsin(\hat{n}_y)}{\pi}$$

$$\hat{n} = \|PoI - SC\|$$

COSTURAS (SEAMS)

• Al repetir las texturas sobre los objetos (porque son muy pequeñas para cubrirlos totalmente) se pueden generar costuras (seams) que son visibles y rompen el efecto de la simulación de superficie. Para corregir el problema existen tres técnicas.

SOLUCIÓN 1: DESDOBLAR LA SUPERFICIE

SOLUCIÓN 2: ATLAS DE TEXTURA

SOLUCIÓN 3: PROCESO ARTÍSTICO

LO REALIZA UN EXPERTO EN MODELADO 3D Y TEXTURIZADO

MIP MAPS

- Técnica que almacena la textura pre filtrada en múltiples resoluciones.
- En tiempo de ejecución, un algoritmo seleccionará la textura apropiada para ahorrar recursos computacionales, de acuerdo al número de pixeles en pantalla que correspondan a la geometría, considerando la posición y orientación de la cámara.
- Mip Map significa:
 - MIP: Multum In Parvo (Mucho En Poco)

EJEMPLO DE USO DE MIP MAPS

- Derecha: sin filtrado
- Izquierda: al usar MipMaps, desaparecen artefactos de distorsión no deseados (esto se descubrió por accidente al implementar el uso de MipMaps. De aquí procede la técnica de Anisotropic Filtering y anti aliasing).

OTROS USOS DE TEXTURAS EN GRÁFICAS COMPUTACIONALES

- Al mapear una textura se puede alterar el color difuso, ambiental y especular.
- También es posible simular vectores normales, donde cada vector se almacena en un texel (se almacena x, y, z en lugar de r, g, b).

BUMP MAPPING (MAPA DE NORMALES)

Esfera con textura difusa

Swirly bump map

Esfera con textura difusa y swirly bump map

BUMP MAPPING

Superficie

OTROS USOS DE TEXTURAS EN GRÁFICAS COMPUTACIONALES

 También se pueden determinar niveles de transparencia o mapear transparencias usando el canal Alpha.

DISPLACEMENT MAPPING (MAPA DE DESPLAZAMIENTO)

- La textura representa un offset (desplazamiento) en la dirección normal.
- "Difícil" de implementar.
- Alto realismo.
- Más caro computacionalmente que un mapa de normales.

Superficie

Mapa

Efecto

LIGHT MAPPING

Quake® introduce lo que se conoce como illumination maps o light maps para capturar efectos de

iluminación.

Light map

Textura + light map

ENVIRONMENTAL MAPPING

- Renderiza un objeto como si fuera perfectamente reflejante.
- Lo que vemos depende de la posición del ojo y de las normales a la superficie.
- James F. Blinn 1976.

ENVIRONMENTAL MAPPING

HEIGHT MAPPING (MAPEO DE ALTURAS)

- Usado para terrenos.
- Los colores representan alturas.
- Soportan multi resolución.
- Pueden combinarse con texturas procedurales.

TEXTURAS SÓLIDAS

- Valores de Textura indizados por localización en 3D (x,y,z):
 - Tamaño de archivo grande.
 - Se pueden calcular en tiempo de ejecución: texturas procedurales como Perlin noise.

TEXTURAS PROCEDURALES