Existence and Non-Existence of Solution of System of Linear Equations

Naresh Manwani MA3.101 - Linear Algebra

Theorem. Consider a linear system $A\mathbf{x} = \mathbf{b}$, where A is a $m \times n$ matrix, and \mathbf{x} , \mathbf{b} are vectors with orders $n \times 1$, and $m \times 1$, respectively. Suppose rank (A) = r and rank $([A \ \mathbf{b}]) = r_a$. Then exactly one of the following statement holds:

1. If $r_a = r < n$, the set of solutions of the linear system is an infinite set and has the form

$$\{\mathbf{u}_0 + k_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 + \cdots \mathbf{u}_{n-r} : k_i \in \mathbb{R}, 1 \le i \le n - r\}$$

where $\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{n-r}$ are $n \times 1$ vectors satisfying $A\mathbf{u}_0 = \mathbf{b}$ and $A\mathbf{u}_i = \mathbf{0}$ for $1 \le i \le n-r$.

- 2. If $r_a = r = n$, the solution set of the linear system has a unique $n \times 1$ vector \mathbf{x}_0 satisfying $A\mathbf{x}_0 = \mathbf{0}$.
- 3. If $r < r_a$, the linear system has no solution.

Proof. Suppose $[C \ \mathbf{d}]$ is the row reduced echelon form of the augmented matrix $[A \ \mathbf{b}]$. Then by the solution set of the linear system $C\mathbf{x} = \mathbf{d}$ is same as the solution set of the linear system $A\mathbf{x} = \mathbf{b}$. So, the proof consists of understanding the solution set of the linear system $C\mathbf{x} = \mathbf{d}$.

- 1. Let $r = r_a < n$. Then $[C \ \mathbf{d}]$ has its first r rows as the non-zero rows. So, the matrix C has r leading columns. Let the leading columns be $1 \le k_1 < k_2 < \cdots < k_r \le n$. Then we observe the following.
 - (a) The entries c_{ik_i} for $1 \le i \le r$ are leading terms. That is, for $1 \le i \le r$, all entries in the k_i^{th} column of C is zero, except the entry c_{ik_i} . The entry $c_{li_l} = 1$.
 - (b) corresponding is each leading column, we have r BASIC VARIABLES, $x_{k_1}, x_{k_2}, \dots, x_{k_r}$.
 - (c) The remaining n-r columns correspond to the n-r FREE VARIABLES, $x_{p_1}, x_{p_2}, \ldots, x_{p_{n-r}}$. So, the free variables correspond to the columns $1 \leq p_1 < p_2 < \cdots < p_{n-r} \leq n$.

For $1 \le i \le r$, consider the i^{th} row of $[C \ \mathbf{d}]$. The entry $c_{ik_i} = 1$ and is the leading term. Also, the first r rows of the augmented matrix $[C \ \mathbf{d}]$ give rise to following linear equations.

$$x_{k_i} + \sum_{j=1}^{n-r} c_{ip_j} x_{p_j} = d_i, \quad \text{for} \quad 1 \le i \le r$$
$$\Rightarrow x_{k_i} = d_i - \sum_{j=1}^{n-r} c_{ip_j} x_{p_j}, \quad \text{for} \quad 1 \le i \le r$$

Let $\mathbf{y}^t = (x_{k_1}, \dots, x_{k_r}, x_{p_1}, \dots, x_{p_{n-r}})$. Then the set of solutions consists of

$$\mathbf{y} = \begin{bmatrix} x_{k_1} \\ \vdots \\ x_{k_r} \\ x_{p_1} \\ \vdots \\ x_{p_{n-r}} \end{bmatrix} = \begin{bmatrix} d_1 - \sum_{j=1}^{n-r} c_{1p_j} x_{p_j} \\ \vdots \\ d_r - \sum_{j=1}^{n-r} c_{rp_j} x_{p_j} \\ \vdots \\ x_{p_1} \\ \vdots \\ x_{p_{n-r}} \end{bmatrix}$$

As x_{p_s} for $1 \le s \le n-r$ are free variables, let us assign arbitrary constants $a_s \in \mathbb{R}$ to x_{p_s} . That is, for $1 \le s \le n-r$, $x_{p_s} = a_s$. Then the set of solutions is given by

$$\mathbf{y} = \begin{bmatrix} x_{k_1} \\ \vdots \\ x_{k_r} \\ x_{p_1} \\ \vdots \\ x_{p_{n-r}} \end{bmatrix} = \begin{bmatrix} d_1 - \sum_{j=1}^{n-r} c_{1p_j} a_j \\ \vdots \\ d_r - \sum_{j=1}^{n-r} c_{rp_j} a_j \\ \vdots \\ x_{p_n-r} \end{bmatrix}$$

$$= \begin{bmatrix} d_1 \\ \vdots \\ d_r \\ 0 \\ \vdots \\ 0 \end{bmatrix} + a_1 \begin{bmatrix} -c_{1p_1} \\ \vdots \\ -c_{rp_1} \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} -c_{1p_2} \\ \vdots \\ -c_{rp_2} \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + a_{n-r} \begin{bmatrix} -c_{1p_{n-r}} \\ \vdots \\ -c_{rp_{n-r}} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$= \mathbf{v}_0 + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_{n-r} \mathbf{v}_{n-r}$$

Let us write $\mathbf{v}_0^t = (d_1, d_2, \dots, d_r, 0, \dots, 0)^T$. Also, for $1 \leq j \leq n - r$, let \mathbf{v}_j be the vector associated with a_j in the above representation of the solution \mathbf{y} . Observe the following:

(a) If we assign $a_s = 0$, for $1 \le s \le n - r$, we get

$$C\mathbf{v}_0 = C\mathbf{y} = \mathbf{d}.$$

(b) If we assign $a_1 = 1$ and $a_s = 0$, for $2 \le s \le n - r$, we get

$$\mathbf{d} = C\mathbf{y} = C(\mathbf{v}_0 + \mathbf{v}_1).$$

So, we get $C\mathbf{v}_1 = \mathbf{0}$.

(c) In general, if we assign $a_t = 1$ and $a_s = 0$, for $1 \le s \le n - r$; $s \ne t$, we get $\mathbf{d} = C\mathbf{y} = C(\mathbf{v}_0 + \mathbf{v}_t)$. So, we get $C\mathbf{v}_t = \mathbf{0}$.

Note that a rearrangement of the entries of \mathbf{y} will give us the solution vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$. Suppose that for $0 \le j \le n - r$, the vectors \mathbf{u}_j 's are obtained by applying the same rearrangement to the entries of \mathbf{v}_j 's which when applied to \mathbf{y} gave \mathbf{x} . Therefore, we have $C\mathbf{u}_0 = \mathbf{d}$ and $C\mathbf{u}_j = \mathbf{0}$, $1 \le j \le n - r$. Now, using equivalence of the linear system $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{d}$ gives $A\mathbf{u}_0 = \mathbf{b}$ and $A\mathbf{u}_j = \mathbf{0}$, $1 \le j \le n - r$. Thus, we have obtained the desired result for the case $r = r_1 < n$.

2. $r = r_a = n, \ m \ge n$.

Here the first n rows of the row reduced echelon matrix $[C \ \mathbf{d}]$ are the non-zero rows. Also, the number of columns in C equals $n = \operatorname{rank}(A) = \operatorname{rank}(C)$. So, all the columns of C are leading columns and all the variables x_1, x_2, \ldots, x_n are basic variables. Thus, the row reduced echelon form $[C \ \mathbf{d}]$ of $[A \ \mathbf{b}]$ is given by

$$[C \ \mathbf{d}] = \begin{bmatrix} I_n & \tilde{\mathbf{d}} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Therefore, the solution set of the linear system $C\mathbf{x} = \mathbf{d}$ is obtained using the equation $I_n\mathbf{x} = \tilde{\mathbf{d}}$. This gives us, a solution as $\mathbf{x}_0 = \tilde{\mathbf{d}}$. That is, the solution set consists of a single vector $\tilde{\mathbf{d}}$.

3. $r < r_a$.

As C has n columns, the row reduced echelon matrix [C d] has n + 1 columns. The condition, $r < r_a$ implies that $r_a = r + 1$. We now observe the following:

as rank(C) = r, the (r+1) th row of C consists of only zeros. Whereas the condition $r_a = r+1$ implies that the $(r+1)^{\text{th}}$ row of the matrix $[C \ \mathbf{d}]$ is non-zero. Thus, the $(r+1)^{\text{th}}$ row of $[C \ \mathbf{d}]$ is of the form $(0,\ldots,0,1)$. Or in other words, $\mathbf{d}_{r+1} = 1$. Thus, for the equivalent linear system $C\mathbf{x} = \mathbf{d}$, the $(r+1)^{\text{th}}$ equation is

 $0 x_1 + 0 x_2 + \cdots + 0 x_n = 1$. This linear equation has no solution. Hence, in this case, the linear system $C\mathbf{x} = \mathbf{d}$ has no solution. Therefore, the linear system $A\mathbf{x} = \mathbf{b}$ has no solution.