Reverzibilis Reaction System

2019. október 22.

Előzetes ismeretek

Definíció. Legyen $\mathscr{A} = (S, A)$ egy reaction system. Egy \mathscr{A} -beli interactive process véges sorozatok olyan $\pi = (\gamma, \delta)$ párja, amelyben $\gamma = C_0, C_1, \ldots C_n$, $\delta = D_1, \ldots D_n, \ n \geq 1$, ahol $C_0, \ldots C_n, \ D_1, \ldots D_n \subseteq S, \ D_1 = res_{\mathscr{A}}(C_0)$ és $D_i = res_{\mathscr{A}}(D_{i-1} \cup C_{i-1})$, ha $2 \leq i \leq n$.

Reverzibilis Reaction System

Definíció. Legyen $\mathscr{A}=(S,A)$ egy reaction system és π egy olyan interactive process \mathscr{A} -ban, amelynek állapotait $sts(\pi)=W_0,W_1,\ldots W_n$ módon jelöljük. π reverzibilis, amennyiben minden W_i $(1 \leq i \leq n)$ állapotára teljesül, hogy $\nexists W \in \mathcal{P}(S) : res_{\mathscr{A}}(W) = W_i \wedge W \neq W_{i-1}$.

Definíció. Egy \mathscr{A} reaction system reverzibilis, amennyiben minden \mathscr{A} -beli π interactive process reverzibilis.

Megjegyzés. A továbbiakban, az általánosság elvesztése nélkül, kizárólag olyan $\mathscr{A}=(S,A)$ reaction systemeket fogunk tekinteni, melyek nem tartalmaznak azonos feltételek mellett alkalmazható reakciókat. Ez azt jelenti, hogy nincs két olyan $a=(R_a,I_a,P_a),b=(R_b,I_b,P_b)\in A\ (a\neq b)$ reakció, melyekre teljesülne, hogy $R_a=R_b$ és $I_a=I_b$.

Tétel. $Az \mathscr{A} = (S, A)$ reaction system reverzibilis, amennyiben teljesülnek a következő feltételek:

(1) Egyértelmű, hogy egy állapot mely reakciók alkalmazásával állt elő. Azaz, tetszőleges $a = (R_a, I_a, P_a), b = (R_b, I_b, P_b) \in A \ (a \neq b)$ reakciópár esetén a következők egyike teljesül:

- a és b produktumai nem átfedők, azaz $P_a \cap P_b = \emptyset$.
- a produktuma tartalmazza b produktumát is, azonban a és b nem alkalmazhatók egyszerre, tehát $P_b \subset P_a$ és $R_a \cap I_b \neq \emptyset$ vagy $R_b \cap I_a \neq \emptyset$.
- a és b produktumai megegyezők, azonban van olyan $c = (R_c, I_c, P_c) \in A$ szabály, mely a-val együtt mindig, b-vel együtt azonban sosem alkalmazható. Ekkor $R_c \subseteq R_a$ és $I_c \subseteq I_a$, továbbá $R_c \cap I_b \neq \emptyset$ vagy $R_b \cap I_c \neq \emptyset$.
- (2) A kontextusból kapott szimbólumok nem állhatnak elő egy reakció produktumaként sem: ha $\pi = (\gamma, \delta)$ egy interactive process, ahol $\gamma = C_0, C_1, \ldots, C_n$, $n \geq 1$, akkor bármely C_i kontextus és $a \in A$ reakció esetén $C_i \cap P_a = \emptyset$.
- (3) Az állapotok minden eleme részt vesz valamilyen reakcióban: ha π egy interactive process, ahol $sts(\pi) = W_0, W_1, \ldots, W_n, n \geq 1$, akkor $\bigcup_{a \in en(W_i)} R_a = W_i, i \leq n$.

Példák

Reverzibilis bináris számláló

Reverzibilis reaction system felhasználásával megvalósítható egy olyan bináris számláló, melynek értéke az előrefelé számítás során növekszik, míg a hátrafelé számítás során csökken.

Először is tegyük fel, hogy adott egy n>0 egész. n jelenti a számláló bithosszát. Ekkor a reaction system alaphalmaza a következő lesz:

$$S_n = \{p_0, p_1, \dots, p_{n-1}\} \cup \{inc\}.$$

A fenti halmaz p_i elemei reprezentálják az egyes bitek beállított (azaz 1 értékű) állapotát, míg az inc elemmel a számláló értékének növelését válthatjuk ki.

A számábrázolás tehát a következőképpen alakul. Tegyük fel, hogy a reaction system egy $M \subseteq S$ állapotban van. Ekkor, ha $p_i \in M$, akkor az iedik pozíción levő bit 1 értékkel, amennyiben pedig $p_i \notin M$, akkor 0 értékkel rendelkezik. Például, ha n=4 és $M=\{p_2,p_0\}$, akkor a reaction system állapota a 0101 bináris számot írja le.

Előrefelé számítás során az *inc* elemet használhatjuk a számláló értékének eggyel történő növelésére. Egyszerű példát tekintve, ez azt jelenti, hogy amennyiben a *reaction system* egy $\{p_1, p_0, inc\}$ állapotban van, akkor valamely reakciók végrehajtása után a $\{p_2\}$ állapotba kell kerülnie.

Folytassuk tehát az említett működéshez szükséges reakciók megadásával! Legyen n > 0 adott, ekkor a reakciók A_n halmaza a következő elemekből áll:

$$a_i = (\{ inc \} \cup O_i, Z_i, O_{i+1}), \qquad 0 \le i < 2^n - 2,$$

ahol

$$O_i = \{ p_j : \text{a } j\text{-edik bit \'ert\'eke 1 } i \text{ bin\'aris felbont\'as\'aban } \},$$
 $Z_i = S \setminus \{ inc \} \setminus O_i.$

Az egyes reakciók megfelelnek a számláló értékének i-ről i+1-re történő növelésének.

Az n-bites számlálónak megfelelő reaction system ekkor $\mathcal{B}_n = (S_n, A_n)$.

Tekintsünk most egy példát! Tegyük fel, hogy egy kétbites számlálót szeretnénk készíteni, azaz n=2. Az S_2 alaphalmaz ekkor a $\{p_1, p_0, inc\}$ elemekből áll, a reakciók A_2 halmazát pedig az

$$a_0 = (\{inc\}, \{p_1, p_0\}, \{p_0\}),$$

$$a_1 = (\{inc, p_0\}, \{p_1\}, \{p_1\}),$$

$$a_2 = (\{inc, p_1\}, \{p_0\}, \{p_1, p_0\}),$$

elemek alkotják.

Ha az egymást követő kontextushalmazok sorra a inc növelő elemből állnak, akkor a $\mathcal{B}_2 = (S_2, A_2)$ reaction system a következő állapotokat fogja kiszámolni:

$$\varnothing \to \{p_0\} \to \{p_1\} \to \{p_1, p_0\}.$$

A reverzibilitás szimulálása

A következőkben egy olyan reaction systemet írunk le, mely interaktív előrefelé számításokkal képes szimulálni egy, a fenti tétel szerinti reverzibilis reaction system előre- és hátrafelé irányba tett lépéseit.

Ez egy olyan számítási szemantikát jelenít meg, ahol tetszés szerint lehetőségünk van a megelőző lépéseink visszavonására, majd új számítási utak kiválasztására.

Tétel. Legyen $\mathscr{A} = (S, A)$ egy olyan reaction system, mely a megelőző tétel szerint reverzibilis. Ekkor létezik olyan $\mathscr{R} = (T, B)$ reaction system, mely \mathscr{A} reverzibilitását szimulálja, mégpedig a következőképpen.

A T alaphalmaz az $\mathscr A$ reaction system alaphalmaza, kiegészülve egy speciális ρ szimbólummal, mely egy szimulált visszafelé lépés kiváltására szolgál:

$$T = S \cup \{\rho\}.$$

A B reakcióhalmaz a következő módon adott:

$$\begin{split} B &= \overrightarrow{B} \cup \overleftarrow{B}, \\ \overrightarrow{B} &= \{(R_a, I_a \cup \{\rho\}, P_a) : a \in A\}, \\ \overleftarrow{B} &= \{rev(a) : a \in A\}, \end{split}$$

ahol a rev függvény az alábbiak szerint állít elő egy új reakciót:

(1) Ha $a \in A$ olyan, hogy nincs olyan $b \in A$ $(a \neq b)$, hogy $P_a \cap P_b \neq \emptyset$, akkor

$$rev(a) = (P_a \cup \{\rho\}, \varnothing, R_a).$$

(2) Ha $a \in A$ olyan, hogy vannak olyan $b_i \in A$ $(a \neq b_i)$ reakciók, melyek mindegyikére teljesül, hogy $P_a \cap P_{b_i} \neq \emptyset$, akkor

$$rev(a) = (P_a \cup \{\rho\}, \bigcup_i P_{b_i} \setminus P_a, R_a).$$

(3) Ha $a, b \in A$ $(a \neq b)$ olyanok, hogy $P_a = P_b$, de van olyan $c \in A$ $(a \neq c$ és $b \neq c)$ reakció, melyre teljesül, hogy $R_c \subseteq R_a$ és $I_c \subseteq I_a$, továbbá $R_c \cap I_b \neq \emptyset$ vagy $R_b \cap I_c \neq \emptyset$, akkor

$$rev(a) = (P_a \cup P_c \cup \{\rho\}, \varnothing, R_a),$$

$$rev(b) = (P_b \cup \{\rho\}, P_c, R_b).$$