Algoritmi in podatkovne strukture – 2

Grafi

vpeta drevesa

Uteženi grafi

Graf je definiran kot:

- Imamo množico vozlišč, ki imajo svoje oznake: $V = \{v_1, v_2, ..., v_n\}$.
- Imamo množico povezav $E=\{(v_i,v_j;w_{ij})\mid i,j=1,2,...,n\}$, kjer povezava $(v_i,v_j;w_{ij})$ povezuje vozlišči v_i in v_j ter ima utež $w_{ij}\in\mathcal{R}$.
- Potem je utežen graf definiran kot G = (V, E).

Utež predstavlja lahko »dolžino«, »težo«, »propustnost«, ...

Dopolnitev definicije:

- utež $w_{ij} \in \{0, ..., M-1\}$.
- utež $w_{ij} \in \mathcal{R}$ in utež $w_{ij} > 0$.
- graf je usmerjen ali ne.

Najcenejša vpeta drevesa

- Predpostavka: G = (V, E) je povezan neusmerjen utežen graf.
- ullet Naloga: poiščimo povezan vpet podgraf T tako, da je vsota

$$w(T) = \sum_{uv \in E(T)} w_{uv}$$

minimalna. Ta graf (drevo) imenujemo najcenejše vpeto drevo.

Ideja algoritma

- Če iz vpetega drevesa odstanimo katerkoli povezavo, nam graf razpade na dva dela
- V drevesu mora biti najcenejša povezava grafa $(v_a, v_b; w_{ab})$, ker če bi ne bila, potem:
 - namesto nje povezuje dva dela grafa neka druga, dražja povezava $(v_i,v_k;w_{ik})$, kjer $w_{ik}>w_{ab}$
 - če sedaj povezavo $(v_i,v_k;w_{ik})$ nadomestimo s povezavo $(v_a,v_b;w_{ab})$, smo s tem ohranili drevo (ki je še vedno vpeto) in hkrati ga tudi pocenili
- IDEJA: drevo gradimo tako, da mu dodajamo vedno naslednjo najcenešo povezavo, če ta ohranja lastnost drevesa.
- Takšni metodi pravimo POŽREŠNA METODA, ker vedno obdela najprej nekaj kar je najmanjšega/največjega a hkrati ohranja minimalnost.

Definicije in teorija

- Naj bo na nekem koraku algoritma A podmnožica povezav nekega minimalnega vpetega drevesa.
- Naj bo $(u,v) \in E(G)$ povezava z lastnostjo: $A \cup (u,v)$ je še vedno podmnožica povezav (minimalnega) vpetega drevesa. Potem taki povezavi rečemo *dopustna povezava*.
- skica algoritma:

```
public Tree MVD(Graph G) {
   A= { };
   while !(A celo vpeto drevo) {
      poišči v G povezavo (u, v), ki je dopustna;
      A+= (u, v)
   };
   return A;
}
```

- Kako poiskati dopustno naslednjo povezavo?
- Glede na idejo požrešnosti želimo, da je ta še najcenejša primer *požrešnega algoritma*.

Definicije in teorija – nadalj.

- Prerez $(S, V \setminus S)$ neusmerjenega grafa G = (V, E) je particija množice vozlišč V.
- ullet Pravimo, da povezava $(u,v)\in E$ veže prerez $(S,V\setminus S)$, če je eno izmed krajišč v S, drugo pa v $V\setminus S$.
- Pravimo, da prerez A ohranja množico $A\subseteq E$, če nobena povezava iz A ne veže prereza.
- Vezni povezavi rečemo minimalna povezava, če ima izmed vseh veznih povezav minimalno težo (minimalnih povezav je lahko več).

Definicije in teorija – nadalj.

Izrek 1. Naj bo G = (V, E) povezan neusmerjen graf. Naj bo A podmnožica E, ki je vsebovana v nekem minimalnem vpetem drevesu, naj bo $(S, V \setminus S)$ nek prerez G, ki ohranja A, in naj bo $(u, v; w_{uv})$ minimalna povezava, ki veže $(S, V \setminus S)$. Potem je $(u, v; w_{uv})$ dopustna povezava za A.

Posledica 1. Naj bo G=(V,E) povezan neusmerjen graf. Naj bo A podmnožica E, ki je vsebovana v nekem minimalnem vpetem drevesu in naj bosta $C_i=(V_i,E_i)$ in $C_j=(V_j,E_j)$ povezani komponenti (drevesi) v gozdu $G_A=(V,A)$. Če je $(u,v;w_{uv})$ minimalna povezava, ki veže C_i in C_j , potem je $(u,v;w_{uv})$ dopustna povezava za A.

Požrešni algoritmi

- spoznali smo deli in vladaj algoritme
- algoritem je požrešen, ko v vsakem koraku želi narediti največji možen korak k rešitvi –
 npr., naslednje izbrano povezavo, ki jo obravnavamo, je tista, ki je dopustna in ima
 najnižjo ceno

Kruskalov algoritem

Ideja: Kruskalov (J. Kruskal, 1956) algoritem gradi vpeto drevo kot gozd (množica A):

- Na vsakem koraku vzamemo za *dopustno povezavo* minimalno povezavo izmed vseh, ki povezujejo dve drevesi v gozdu. Da je ta povezava res dopustna, sledi po posledici 1.
- Vsaka komponenta C_i predstavlja množico in ko dve komponenti združimo, naredimo v resnici unijo dveh množic prim. *Union-Find*.

Kruskalov algoritem

```
• Najprej O(|V|) MakeSet operacij O(n)
• Urejanje O(m \log m) = O(m \log n) O(m \log n)
```

- O(m) FindSet in Union operacij $O(m \log^* n)$
- ullet SKUPAJ:

Primov algoritem

Ideja: Primov algoritem gradi rešitev kot drevo; t.j. množica A je vedno drevo:

- Drevo začnemo graditi iz poljubnega vozlišča.
- Na vsakem koraku dodamo minimalno povezavo, ki veže A z vozliščem, ki ga A ne pokriva. Da je ta povezava res dopustna, zopet sledi po posledici 1.
- Vozlišča ki niso pokrita z A (niso v trenutnem drevesu) hranimo v vrsti s prednostjo (kopici) Q.
- v.key naj bo minimalna teža povezave, ki povezuje v z drevesom A (če take povezave ni, je vrednost $v.key = \infty$).
- v.p označuje očeta vozlišča v v grajenem vpetem drevesu.

Primov algoritem

• gradnja kopice

 $O(n \log n)$

- zanka while *n*-krat
 - vsak ukaz ExtractMin $O(\log n)$
 - vse zanke for skupaj O(m)-krat in vsakem ponavljanju implicitni DecreaseKey, $O(m \log n)$.

 $O(n\log n + m\log n)$

SKUPAJ:

 $O(m \log n)$

Zahtevnost

problem	zahtevnost
najcenejše vpeto drevo – Kruskal	$O(E \log E)$
najcenejše vpeto drevo – Prim	$O(E \log V)$