Homework 4

萃英学院 2022 级 王一鑫 2025 年 3 月 26 日

Problem 1.

- (a) Every subspace of a Hausdorff space is Hausdorff.
- (b) Every subspace of a second countable space is second countable.

SOLUTION.

- (a) Let X be a Hausdorff space, and let Y be a subspace of X. Let x_1 and x_2 be elements of Y such that $x_1 \neq x_2$. Since X is Hausdorff, there exist disjoint neighborhoods U_1 and U_2 in X of x_1 and x_2 , respectively. Hence a set containing x_1 in Y is $V_1 = U_1 \cap Y$, which is open in Y by definition of the subspace topology on Y. Thus V_1 is a neighborhood of x_1 in Y. Similarly, a set containing x_2 in Y is $V_2 = U_2 \cap Y$, which is open in Y by the definition of the subspace topology on Y. Thus V_2 is a neighborhood of x_2 in Y. Now since $V_1 \subset U_1$ and $V_2 \subset U_2$, and U_1 and U_2 are disjoint, it follows that V_1 and V_2 are disjoint. Thus, Y is Hausdorff.
- (b) Let (X, \mathcal{T}) be second countable, and let (A, \mathcal{T}_A) be a subspace. Since (X, \mathcal{T}) is second countable, let \mathcal{B} be a countable basis for \mathcal{T} .

Now consider $\mathcal{B}' = \{B \cap A \mid B \in \mathcal{B}\}$. Then \mathcal{B}' is a countable basis for \mathcal{T}_A . The subspace (A, \mathcal{T}_A) is second countable.

Problem 2.

Let X be a topological space, and let $A \subset X$. Prove that if X is metrizable, then for any $x \in \overline{A}$, there is a sequence of points of A converging to x.

SOLUTION.

Step 1: We show X is first countable first. Let (X, \mathcal{T}) be a metrizable topological space and let $x \in X$. Since the space is metrizable, there is a metric d that induces \mathcal{T} .

We aim to show that

$$B_x = \left\{ B_{1/n}(x) \mid n \in \mathbb{N} \right\}$$

is a countable neighborhood basis of x.

Note first that B_x is countable because the natural numbers are countable. Moreover, x is clearly a member of each set in B_x . And since d induces \mathcal{T} , the sets in B_x are open.

Since d induces \mathcal{T} , any open set U with $x \in U$ is a union of open balls with the metric d. One of these open balls contains x, so we have $B_r(x) \subset U$ for some radius r. Pick some number m such that mr > 1. Then

$$B_{1/m}(x) \subset B_r(x) \subset U$$
.

Step 2: For each n we pick $x_n \in \left(\bigcap_{i=1}^n B_{1/i}\right) \cap A$. Now if U is any open neighbourhood of x, some $B_{1/N} \subset U$ and then all x_n for $n \geq N$ are in U. So $x_n \to x$, and we have the required sequence.

Problem 3.

Prove that a surjective topological embedding is a homeomorphism.

SOLUTION.

Suppose $f: X \to Y$ is a surjective topological embedding, so $f: X \to f(X)$ is a homeomorphism, but f(X) = Y since f is surjective, so $f: X \to Y$ is a homeomorphism.

Problem 4.

Let X be a topological space. The **diagonal** of $X \times X$ is the subset $\Delta = \{(x, x) : x \in X\} \subseteq X \times X$. Show that X is Hausdorff if and only if Δ is closed in $X \times X$.

SOLUTION.

 \Leftarrow Suppose first that Δ is closed in $X \times X$. To show that X is Hausdorff, we must show that if x and y are any two points of X, then there are open sets U and V in X such that $x \in U, y \in V$, and $U \cap V = \emptyset$.

For $p=(x,y)\in X\times X$. Since $x\neq y,\,p\notin\Delta$. This means that p is in the open set $(X\times X)\setminus\Delta$. Thus, there must be an open set W in the product topology such that $p\in W\subset (X\times X)\setminus\Delta$. Consider the basis in the product topology are sets of the form $U\times V$, where U and V are open in X, so let $p\in U\times V\subseteq W$ for such $U,V\subset X$. Since $x\neq y,\,x\in U$ and $y\in V$, we have two disjoint neighborhoods U and V. Thus X is Hausdorff.

 \Rightarrow Now suppose that X is Hausdorff. To show that Δ is closed in $X \times X$, we need only show that $(X \times X) \setminus \Delta$ is open.

Take any point $p \in (X \times X) \setminus \Delta$. Since X is Hausdorff, for $x \neq y \in X$, there are disjoint open neighborhoods U and V containing x and y respectively. Let $W = U \times V$, then W is an open neighborhood of p, and $W \subseteq (X \times X) \setminus \Delta$. Thus $(X \times X) \setminus \Delta$ is open.

Problem 5.

Show that real projective space \mathbb{P}^n is an *n*-manifold. [Hint: consider the subsets $U_i \subseteq \mathbb{R}^{n+1}$ where $x_i = 1$.]

SOLUTION.

By definition,

$$\mathbb{RP}^n = \left(\mathbb{R}^{n+1} \setminus \{0\}\right) / \sim,$$

where $x \sim y \Leftrightarrow \exists \lambda \in \mathbb{R} \setminus \{0\}$ such that $x = \lambda y$.

The topology on \mathbb{RP}^n is, by definition, the quotient topology induced by the canonical projection

$$\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n \quad \text{where} \quad (x_0, \dots, x_n) \mapsto [x_0, \dots, x_n]$$

where $[x_0, \ldots, x_n] \in \mathbb{RP}^n$ denotes the equivalence class of $(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$. This makes π a quotient map.

Second Countability: Second countability simply follows from second countability of $\mathbb{R}^{n+1} \setminus \{0\}$.

Locally Euclidean: To show that \mathbb{RP}^n is locally Euclidean, we need to exhibit a cover for \mathbb{RP}^n by coordinate charts. For each $0 \le i \le n$, define

$$U_i \subset \mathbb{R}^{n+1} \setminus \{0\}$$
 by $U_i = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\} : x_i = 1\}$.

 U_i is an open subset of $\mathbb{R}^{n+1} \setminus \{0\}$. Define $V_i \subset \mathbb{RP}^n$ to be $\pi(U_i)$. Then, V_i is an open subset of \mathbb{RP}^n and $\pi_i = \pi|_{U_i}$ is also a quotient map. The sets $V_i, 0 \leq i \leq n$, form an open cover of \mathbb{RP}^n .

For each $0 \le i \le n$, define the map

$$f_i: V_i \to \mathbb{R}^n$$
 by $f_i[x_0, \dots, x_n] = (x_0, x_{i-1}, x_{i+1}, \dots, x_n)$.

The map $g_i = f_i \circ \pi_i : U_i \to \mathbb{R}^n$ is given by

$$g_i(x_0,\ldots,x_n) = (x_0,x_{i-1},\ldots,x_n).$$

Since g_i is continuous, by the characteristic property of quotient maps, f_i is also continuous.

By our definition of f_i , it is bijective. Moreover, for each $0 \le i \le n$, consider the map

$$h_i: \mathbb{R}^n \to \mathbb{R}^{n+1} \setminus \{0\}$$
 given by $h_i(u_1, \dots, u_n) = (u_1, \dots, u_i, 1, u_{i+1}, \dots, u_n)$.

Then, h_i is continuous and its image is contained in V_i . Since $\pi_i \circ h_i = \varphi_i^{-1}$. So, φ_i^{-1} is continuous.

Hence, φ_i is a homeomorphism for each $0 \le i \le n$. Now we have shown that \mathbb{RP}^n is locally Euclidean.

Hausdorff:

To show that \mathbb{RP}^n is Hausdorff, choose \bar{x} and \bar{y} , two distinct points in \mathbb{RP}^n .

If there exists $0 \le i \le n$ such that both points lie in V_i , then $f_i(\bar{x})$ and $f_i(\bar{y})$ are two distinct points in \mathbb{R}^n . Since \mathbb{R}^n is Hausdorff, there exists a pair of disjoint open sets A and B with $f_i(\bar{x}) \in A$ and $f_i(\bar{y}) \in B$. Hence, $f_i^{-1}(A)$ and $f_i^{-1}(B)$ are disjoint open subsets of V_i (and hence of \mathbb{RP}^n) such that $\bar{x} \in f_i^{-1}(A)$ and $\bar{y} \in f_i^{-1}(B)$.

On the other hand, suppose there is no $i, 0 \le i < n$, such that \bar{x} and \bar{y} both lie in V_i . Let (x_0, \ldots, x_n) and (y_0, \ldots, y_n) be representatives of \bar{x} and \bar{y} , respectively. There exists $i \ne j, 0 \le i, j \le n$, such that

$$x_i \neq 0, y_j \neq 0$$
, and $x_j = 0, y_i = 0$.

Fix the representatives so that $x_i = 1 = y_j$. WLOG, let i < j. Choose $0 < \varepsilon < 1$. The sets

$$A = \{ [a_0, \dots, a_{i-1}, 1, a_{i+1}, \dots, a_n] : |a_k - x_k| < \varepsilon, k \neq i \} \subset V_i$$
$$B = \{ [b_0, \dots, b_{j-1}, 1, b_{j+1}, \dots, b_n] : |b_k - y_k| < \varepsilon, k \neq j \} \subset V_j$$

are open sets containing \bar{x} and \bar{y} , respectively. This is because $f_i(A)$ is an open rectangle in \mathbb{R}^n centered on $f_i(\bar{x})$ having side length 2ε , and similarly $f_j(B)$ is an open rectangle in \mathbb{R}^n centered on $f_j(\bar{y})$ having side length 2ε . They are disjoint because if

$$[a_0, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_n] = [b_0, \ldots, b_{i-1}, 1, b_{i+1}, \ldots, b_n],$$

then we must have $a_j \neq 0, b_i \neq 0$, and $a_j b_i = 1$. But, $|a_j| < 1$ and $|b_i| < 1$, so this is not possible.

Hence, \mathbb{RP}^n is Hausdorff, and so \mathbb{RP}^n is an *n*-manifold.