Probset #3
4.(a)

$$K(x,z) = \Phi(x)^T \Phi(z)$$

(Mercer's theorem)
any finite set: $\{x^{(i)}, \dots \}$

any finite set: $\{x^{(i)}, ..., x^{(m)}\}$ square matrix: $K \in \mathbb{R}^{m \times m}$ is symmetric and positive semidefinite.

whose entries are given by
$$K_{ij} = K(x^{(i)}, x^{(j)})$$

K, K2: Kernels over R"xR" a E R+: positive teal number

 $f: \mathbb{R}^n \to \mathbb{R}$ a real-valued function

$$f: \mathbb{R}^n \to \mathbb{R}$$
: a real-valued function $\phi: \mathbb{R}^n \to \mathbb{R}^d$

K3: Kernel over $\mathbb{R}^d \times \mathbb{R}^d$

(a)
$$K(x,z) = K_1(x,z) + K_2(x,z)$$

$$\begin{pmatrix} K_1(x_1z) = \phi_1(x)^T\phi_1(z) \\ K_2(x_1z) = \phi_2(x)^T\phi_2(z) \end{pmatrix}$$

$$\rightarrow \phi_1(x)^T\phi_1(z) + \phi_2(x)^T\phi_2(z)$$

(a)
$$K(x,z) = K_1(x,z) + K_2(x,z)$$

$$K_1(x,z) = \phi_1(x)^T\phi_1(z)$$

$$K_2(x,z) = \phi_2(x)^T\phi_1(z)$$

$$\phi_1(x)^T\phi_1(z) + \phi_2(x)^T\phi_2(z)$$
for any vector z ,
$$Z^TKZ = \sum_i \sum_j Z_i K_{ij} Z_j \qquad K_{ij} = K(x^{(i)}, x^{(j)})$$

$$= \phi_1(x^{(i)})^T\phi_1(z^{(j)}) + \phi_2(x^{(i)})^T\phi_2(z^{(j)})$$

$$= \sum_i \sum_j Z_i \left(\phi_1(x^{(i)})^T\phi_1(z^{(j)}) + \phi_2(x^{(i)})^T\phi_2(z^{(j)})\right)_K \left(\phi_1(z^{(j)})\right)_K \right) Z_j$$

$$= \sum_i \sum_j Z_i \left(\sum_k (\phi_1(x^{(i)}))_k (\phi_1(z^{(j)}))_k + \sum_i (\phi_2(x^{(i)}))_k (\phi_2(z^{(j)}))_k \right) Z_j$$

$$= \sum_i \sum_j Z_i \sum_k (\phi_1(x^{(i)}))_k (\phi_1(z^{(j)}))_k Z_j + \sum_i \sum_j Z_i \sum_k (\phi_2(x^{(i)}))_k (\phi_2(z^{(j)}))_k Z_j$$

$$= \sum_i \sum_j Z_i \sum_k (\phi_1(x^{(i)}))_k (\phi_1(z^{(j)}))_k Z_j + \sum_i \sum_j Z_i \sum_k (\phi_2(x^{(i)}))_k (\phi_2(z^{(j)}))_k Z_j$$

$$= \sum_i \sum_j Z_i \sum_k (\phi_1(x^{(i)}))_k (\phi_1(z^{(j)}))_k Z_j + \sum_i \sum_j Z_i \sum_k (\phi_2(x^{(i)}))_k (\phi_2(z^{(j)}))_k Z_j$$

$$= \sum_i \sum_j Z_i \sum_k (\phi_1(x^{(i)}))_k (\phi_1(z^{(j)}))_k Z_j + \sum_i \sum_j Z_i \sum_k (\phi_2(x^{(i)}))_k (\phi_2(z^{(j)}))_k Z_j$$

$$= \sum_i \sum_j Z_i \sum_j (\phi_1(x^{(i)}))_k (\phi_1(z^{(i)}))_k Z_j + \sum_j Z_i \sum_j Z_i \sum_j (\phi_2(x^{(i)}))_k (\phi_2(z^{(i)}))_k Z_j$$

-> Kernel matrix is positive semi-definite.