

716,7

F	Α	С	1	FCS	F
---	---	---	---	-----	---

Field Name Flag Field (F) Address Field(A)

Control Field (C) Information Field (I)

Frame Check Sequence (FCS) 16 or 32 bits

Size (bits)

8 bits 8 bits

8 or 16 bits

Variable

FIG. 2

	Packet Overhead (assuming max size FOH = 8B)			
	FOH	SOH	PS	% OH
No Stuffing, min sized packet	8	0	40	20%
Max Stuffing, min sized packet	- 8	-8	40	40%
No Stuffing, max sized packet	8	0	9600	0.08%
Max Stuffing, max sized packet	8	1920	9600	20%

Assumptions:

- a) Packet Size (PS): 40 - 9600 bytes
- b) Worst-case HDLC bit stuffing overhead (SOH) 20% of (a) = 8 1920 bytes
- c) HDLC Frame Overhead (FOH) 5 – 8 bytes

FIG. 3

F16. 4

FIG, 5

F16. 6

F16, 7

F16, 8

Demonstra	- Definition		
Parameter Definitions PORT: Nominal data rate of a PLD HDLC channel corresponding to an EQ. FILL: Data input (equeue) rate of PLD EQ. DRAIN: Data output (dequeue) rate of PLD EQ. CL: Flow control latency. PMTU: Delay due to transmission of an MT packet from LLD CoS queue. DLLD: Worst-case classification delay of LD. DPIPE: Output pipeline delay of LLD. DPLD: PLD delay in transmitting IBFC message.			
$\begin{aligned} \text{Buff} &= R_{\text{FILL}} - R_{\text{DRAIN}} * \text{FCL} \\ & R_{\text{FILL}} - R_{\text{DRAIN}} = R_{\text{PORT}} - 0.8R_{\text{PORT}} = \\ &\text{FCL} &= D_{\text{MTU}} + D_{\text{LLD}} + D_{\text{PIPE}} + D_{\text{PLD}}^{\ddagger} \end{aligned}$	0.2 * R _{PORT} †		
Use the following facts and wors $D_{MTU\text{-}L} = MTU \div (0.8 * R_{PORT} \\ D_{LLD} \le 20 \mu sec \\ D_{PID} \le 6 \mu sec \\ D_{PLD} \le 1 \mu se$); D _{MTU-U} = MTU ÷ R _{PORT} c. ^{††} c. ^{‡‡}		
Buff _{UNDER} = (0.2 * R _{PORT}) * ([MTU / (0.8 * F	•		
= $(0.2 * R_{PORT}) * ([MTU / (0.25 * MTU / R)]$			

Buff
$$_{OVER}$$
 = (0.2 * $_{PORT}$) * ([MTU / $_{PORT}$] + 20 $_{\mu}$ s + 6 $_{\mu}$ s + 1 $_{\mu}$ s)
$$= (0.2 * R_{PORT}) * ([MTU / R_{PORT}] + 27 ~_{\mu}$$
s)
$$= R_{PORT} * ([0.2 * MTU / R_{PORT})] + 6.75 ~_{\mu}$$
s)
$$= (0.2 * MTU) + (R_{PORT} * 6.75 ~_{\mu}$$
s)

= $(0.25 * MTU) + (R_{PORT} * 5.4 \mu s)$

[†] HDLC R_{DRAIN} is at most 20% greater or less than scheduler R_{FILL}

Flow_Control_Latency is equal to the sum of the delays (D) shown

th W.C. delay of the flow control message through classification to the traffic shaper

^{‡‡} LLD output pipeline delay

W.C. delay from flow control message generation in PLD to transmission on the SPI-3 ingress interface

HDLC Channel Size	HDLC Channel Rate (in Kbps)	MTU (in bytes)	Buff _{under} (in bytes)	Buff _{over} (in bytes)	Lower bound EQ Size (in bytes)	Worst-case EQ Size (in bytes)
DS0	64	576	145	. 116	261	586
	64	1518	380	304	684	1432
	64	9600	2401	1921	4322	8708
DS1	1544	576	146	117	263	590
	1544	1518	381	305	686	1436
	1544	9600	2402	1922	4324	- 8712
8 x DS1	12352	576	153	126	279	622
	12352	1518	388	315	703	1470
	12352	9600	2409	1931	4340	8744

F16.10