A rendre à la séance d'exercices du 14-15 novembre 2017

version 1

Mini-test 5 : Pendule physique

Un solide de masse m est soumis à l'accélération de pesanteur \vec{g} et est libre de tourner uniquement autour d'un axe horizontal fixe z_O passant par l'un de ses points O se trouvant à une distance d du centre de masse G. L'axe z_O est un axe principal d'inertie au point O et le moment d'inertie autour de cet axe vaut I_{z_O} . On repère la position du solide par l'angle $\phi(t)$ entre l'axe Ox vertical et le vecteur \overrightarrow{OG} . Au temps t=0, on a $\phi(0)=0$, $\dot{\phi}(0)=0$, et le solide, en équilibre instable, commence juste à tomber.

- a) Donner l'équation différentielle pour $\phi(t)$.
- b) Identifier une intégrale première du mouvement et donner son expression. Quelle est la valeur de cette constante?
- c) Soit $\vec{F}(t)$ la force que l'axe de rotation exerce sur le solide. Déterminer, en fonction de $\phi(t)$, les composantes de cette force dans un repère à choisir.
- d) On considère maintenant le cas particulier d'un solide en forme de T construit de la façon suivante : on coupe une fine barre homogène de longueur 3L et de masse m en deux morceaux, l'un de longueur 2L et d'extrémités A et B, et l'autre de longueur L et d'extrémités O et C. On soude ensuite l'extrémité C du petit morceau perpendiculairement au centre du grand morceau (voir figure). Soit z_O un axe perpendiculaire au plan de ce solide passant par le point O.

- Calculer la distance d entre le point O et le centre de masse G du solide. Représenter le point G sur un dessin du solide à l'échelle.
- Quelle est la symétrie du solide qui permet d'affirmer que z_O est un axe principal d'inertie?
- Déterminer le moment d'inertie I_{z_O} .

<u>Indication</u>: le moment d'inertie d'une fine barre homogène de masse μ et de longueur ℓ autour d'un axe passant perpendiculairement par son centre de masse vaut $\frac{1}{12}\mu\ell^2$.