

CLAIMS

b1 1. A radioactive microsphere comprising not less than 99%
5 by weight of an oxide crystal containing 47% by weight or
more of radioactive yttrium, and the balance of inevitable
impurities.

10 2. The radioactive microsphere according to claim 1, wherein
the oxide crystal consists essentially of Y_2O_3 .

15 3. The radioactive microsphere according to claim 1, wherein
the oxide crystal consists essentially of YPO_4 , or a mixture
of Y_2O_3 and YPO_4 .

20 4. The radioactive microsphere according to claim 1, wherein
the microsphere has a diameter of 1 to 100 μm .

5. The radioactive microsphere according to claim 1, wherein
the microsphere has a diameter of 20 to 30 μm .

b2 25 6. The radioactive microsphere according to any one of
claims 1 to 5, wherein the microsphere is coated with a film
comprising at least one of the compounds selected from
silica (SiO_2), titania (TiO_2), alumina (Al_2O_3), iron (III)
oxide (Fe_2O_3), silicon nitride (Si_2N_3 , SiN , Si_3N_4), aluminum
nitride (AlN), titanium nitride (TiN), iron nitride (Fe_2N ,

BK Fe₄N), silicon carbide (SiC) and titanium carbide (TiC).

7. The radioactive microsphere according to claim 6, wherein
the film has a thickness of 0.01 to 5 μ m.

5

8. A method of producing a radioactive microsphere, the
method comprising preparing a microsphere comprising not
less than 99% by weight of an oxide crystal containing 47%
by weight or more of non-radioactive yttrium, and the
balance of inevitable impurities through melting of a
starting material, followed by irradiating with an
effective dosage of slow neutrons to turn non-radioactive
yttrium into a radioactive element.

15

9. A method of producing a radioactive microsphere, the
method comprising preparing a microsphere comprising not
less than 99% by weight of an oxide crystal containing 47%
by weight or more of non-radioactive yttrium and an amount
of phosphorous, and the balance of inevitable impurities
through melting of a starting material, followed by heating
the microsphere in an oxidizing atmosphere and then
irradiating with an effective dosage of slow neutrons to
turn non-radioactive yttrium into a radioactive element.

25

10. The method according to claim 8 or 9, further comprising
coating the microsphere with a film after preparing the

microsphere or heating in the oxidizing atmosphere and before irradiating with an effective dosage of slow neutrons, the film comprising at least one of the compounds selected from silica (SiO_2), titania (TiO_2), alumina (Al_2O_3), iron 5 (III) oxide (Fe_2O_3), silicon nitride (Si_2N_3 , SiN , Si_3N_4), aluminum nitride (AlN), titanium nitride (TiN), iron nitride (Fe_2N , Fe_4N), silicon carbide (SiC) and titanium carbide (TiC).

Add A

Add B