

FUERZA MAGNÉTICA Y CAMPO MAGNÉTICO

- 1. Determine la fuerza que un campo Magnético de $\vec{B}=2\times 10^{-4}~\hat{j}[T]$, ejerce sobre una carga eléctrica de $1[\mu C]$ que se mueve perpendicularmente al campo con una velocidad $\vec{v}=10^4~\hat{k}[m/s]$.
- 2. Un protón tiene una velocidad $\vec{v} = (3\hat{i} + 5\hat{j} 9\hat{k}) \, m/s$ dentro de un campo magnético uniforme dado por $\vec{B} = (3\hat{i} 20\,\hat{j} + 5\hat{k}) \, \mu T$. ¿Cuál es la fuerza que experimenta la partícula? (masa del protón $1.67 \times 10^{-27} \, kg$).
- 3. Un protón cuya energía es de 750 eV (1 $eV=1.6\times10^{-19}$ J) está circulando en un plano formando un ángulo recto con un campo magnético uniforme. El radio de la trayectoria circular es $0.8 \, m$. Calcule la magnitud del campo magnético.
- 4. Una partícula cargada de 3.2×10^{-19} *C* se mueve en una trayectoria circular en un campo magnético de magnitud 1.9 *T*. La rapidez de la partícula es igual a 4.0×10^6 *m/s* y el radio de la trayectoria es 43.7 *mm*. Si el plano de la trayectoria es perpendicular al campo magnético, encuentre la masa de esta partícula.
- 5. Un electrón penetra en un campo magnético de 10^{-3} T con una velocidad de 3.0×10^{7} m/s perpendicular al campo. Determine la fuerza que actúa sobre el electrón y el radio de la órbita circular que describe. $(q_e=1.6 \times 10^{-19} C, m_e=9.1 \times 10^{-31} kg)$
- 6. Un protón se mueve con una velocidad de 4.6×10^6 m/s a través de un campo magnético de 1.7 T, la fuerza que el campo magnético ejerce sobre el protón es de 8.3×10^{-13} N ¿Cuál es el ángulo entre la velocidad y el campo magnético?
- 7. Un ion con carga +2e tiene una masa de 3.2×10^{-26} kg. Se acelera desde el reposo por una diferencia de potencial de 900 V, luego entra perpendicularmente en un campo magnético uniforme de 0.98 T. Calcule la velocidad del ion y el radio de su órbita dentro del campo.
- 8. Una partícula tiene una carga de 4×10^{-9} *C*. Cuando se mueve con una velocidad v_1 de 3×10^4 m/s a 45° por encima del eje *Y* en el plano *YZ*, un campo magnético uniforme ejerce una fuerza F_1 según el eje *X*. Cuando la partícula se mueve con una velocidad v_2 de 2×10^4 m/s según el eje *X*, se ejerce sobre ella una fuerza F_2 de 4×10^{-5} *N* según el eje *Y*. Determinar el módulo y la dirección del campo magnético.

Fuerza Magnética Sobre un Conductor que Transporta Corriente

- 9. Un alambre recto de 15 *cm* de longitud que lleva una corriente 6.0 *A* se encuentra en un campo uniforme de 4.0 *T* ¿Cuál es la fuerza sobre este alambre cuando está formando a) un ángulo recto con el campo y b) un ángulo de 30° con el campo?
- 10. Determine la fuerza sobre cada segmento del alambre que se muestra en la figura si B=0.2 T. Considere que la corriente en el conductor es de 5.0 A.

- 11. Una bobina rectangular de 25 vueltas está suspendida en un campo magnético de 0.20 Wb/m^2 . El plano de ésta es paralelo a la dirección del campo cuyo lado perpendicular al campo es de 15 cm y el lado paralelo al campo de 12 cm ¿Cuál es la corriente que circula por la bobina si el torque producido sobre ella es de 5.4 Nm?
- 12. Un alambre de 50 cm de longitud se encuentra a lo largo del eje X y transporta una corriente de 0.5 A en la dirección positiva de dicho eje. Si en la región que ocupa este alambre existe un campo magnético $\vec{B} = (3 \times 10^{-3} \, \hat{j} + 10^{-2} \, \hat{k}) \, T$ encontrar las componentes de la fuerza que actúan sobre el alambre.
- 13. Una corriente de 10 A circula por una espira rectangular de lados 6.0 cm y 10.0 cm puesta en un campo magnético de 0.2 T. Determine el torque máximo que se produce sobre esta espira.
- 14. La espira rectangular de la figura puede girar alrededor del eje Z y porta una corriente de 10~A en el sentido indicado. Si la espira está en un campo magnético uniforme de 0.2~T paralelo al eje Y, obtener la fuerza magnética sobre cada lado de la espira y el torque requerido para mantener a la espira en la posición que se muestra (θ =45°).

15. Se tienen cuatro alambres rectos, dispuestos en serie como muestra la figura. Si por ellos circula una corriente I=3 A y en todo el espacio existe un campo magnético de magnitud $B_0=4$ T, en el sentido y dirección que se indica, determine la fuerza magnética sobre el sistema.

16. Una varilla metálica de densidad lineal de masa λ =0.6 kg/m transporta una corriente de 2 A. La varilla cuelga de dos alambres en una región donde existe un campo magnético uniforme, como se muestra en la figura de tal manera que los alambres forman un ángulo θ =30° con respecto a la vertical cuando el sistema está en equilibrio. En estas condiciones determine la magnitud del campo magnético.

17. Una espira circular de 3 m de circunferencia y que porta una corriente de 12 mA está en una región donde existe un campo magnético uniforme de magnitud 0.85 T y cuya dirección es paralela al plano de la espira. Calcule el torque que el campo produce sobre la espira.

RESPUESTAS

1.
$$\vec{F} = -2 \,\mu N \hat{i}$$
.

2.
$$\vec{F} = (-4.96\hat{i} - 1.34\hat{j} - 2.4\hat{k}) \times 10^{-23} N$$

3.
$$B = 4.95 \ mT$$
.

4.
$$m = 6.64 \times 10^{-27} kg$$
.

5.
$$F = 4.8 \times 10^{-15} N$$
, $r = 0.17 m$.

6.
$$\theta = 41.56^{\circ}$$

7.
$$v = 1.34 \times 10^5 \text{ m/s}, \qquad r = 13.69 \text{ mm}.$$

8.
$$\vec{B} = 0.33\hat{k} T$$
.

10.
$$\vec{F}_{AB} = \vec{0} N$$
, $\vec{F}_{BC} = -0.16\hat{k} N$, $\vec{F}_{CD} = 0.16\hat{k} N$, $\vec{F}_{DE} = \vec{0} N$.

11.
$$I = 60 A$$
.

12.
$$\vec{F} = (-0.25\hat{i} + 0.075\hat{j}) \times 10^{-2} N$$

13.
$$\tau = 0.012 \ Nm$$
.

14.
$$\vec{F} = -\hat{i} N$$
, $\vec{F} = 0.212 \hat{k} N$, $\vec{F} = \hat{i} N$, $\vec{F} = -0.212 \hat{k} N$, $\tau = 0.106 Nm$.

15.
$$\vec{F} = 48\hat{k} N$$

16.
$$B = 5.9 T$$
.

17.
$$\tau = 48.4 \times 10^{-3} Nm$$
.