OH 
$$+CN^{-}$$
  $+CN^{-}$   $+$ 

# FIGURE 1

2/28

$$R^4$$
 $R^3$ 
 $R^2$ 

| Probe    | R <sup>1</sup>   | R <sup>2</sup>     | R <sup>3</sup>     | R <sup>4</sup>     |  |
|----------|------------------|--------------------|--------------------|--------------------|--|
| o-BMOQBA | OCH <sub>3</sub> | B(OH) <sub>2</sub> | H                  | Н                  |  |
| m-BMOQBA | $OCH_3$          | H                  | B(OH) <sub>2</sub> | Н                  |  |
| p-BMOQBA | OCH <sub>3</sub> | H H                |                    | B(OH) <sub>2</sub> |  |
| BMOQ     | OCH <sub>3</sub> | Н                  | H                  | Н                  |  |
| o-BMQBA  | CH <sub>3</sub>  | B(OH) <sub>2</sub> | H                  | Н                  |  |
| m-BMQBA  | CH <sub>3</sub>  | H                  | B(OH) <sub>2</sub> | H                  |  |
| p-BMQBA  | CH <sub>3</sub>  | H                  | H                  | B(OH) <sub>2</sub> |  |
| BMQ      | CH <sub>3</sub>  | H                  | H                  | H                  |  |

FIGURE 2





FIGURE 3







# m-BMOQBA



### p-BMOQBA



FIGURE 4



FIGURE 5



FIGURE 6





FIGURE 7



BEST AVAILABLE COPY

FIGURE 8

Table 1 - Dissociation constants,  $K_D$  ( $\mu M^3$ ), for the probes with cyanide in water.

| Probe    | $K_{D} (\mu M^{3})$ |
|----------|---------------------|
| o-BMOQBA | 52.9                |
| m-BMOQBA | 84.0                |
| p-BMOQBA | 20.8                |
| BMOQ     | Maria               |
| o-BMQBA  | 16.7                |
| m-BMQBA  | 16.9                |
| p-BMQBA  | 15.9                |
| BMQ      |                     |

Table 2 - Multiexponential Intensity decay of BMOQ and o-BMOQBA

| [Cyanide] | τ <sub>1</sub> (ns) | α1     | τ <sub>2</sub><br>(ns) | $\alpha_2$ | 7     | <τ> (ns) | χ²   |
|-----------|---------------------|--------|------------------------|------------|-------|----------|------|
| 12.141    | (113)               |        | (113)                  |            | (ns)  | (115)    |      |
| *o-BMOQBA |                     |        |                        |            |       |          |      |
| 0         | 26.71               | 1.0    |                        |            | 26.71 | 26.71    | 1.33 |
| 5         | 26.33               | 1.0    |                        |            | 26,33 | 26.33    | 1.13 |
| 10        | 26.34               | 1.0    |                        |            | 26.34 | 26.34    | 1.21 |
| 15        | 26.19               | 1.0    |                        |            | 26.19 | 26.19    | 1.30 |
| 25        | 24,78               | 1.0    |                        |            | 24.78 | 24.78    | 1.23 |
| 35        | 0.324               | 0.0160 | 25.54                  | 0.9840     | 25.53 | 25.14    | 1.35 |
| 45        | 0.326               | 0.0184 | 25.10                  | 0.9816     | 25.09 | 24.64    | 1.46 |
| . 50      | 0.455               | 0.0176 | 25.20                  | 0.9824     | 25.19 | 24.76    | 1.41 |
|           |                     |        |                        |            |       |          |      |
| *BMOQ     |                     |        |                        |            |       |          |      |
|           |                     |        |                        |            |       |          |      |
| . 0       | 27.30               | 1.0    |                        |            | 27.30 | 27.30    | 1.08 |
| 5         | 27.04               | 1.0    |                        |            | 27.04 | 27.04    | 1.10 |
| 10        | 26.74               | 1.0    |                        |            | 26.74 | 26.74    | 1.12 |
| 15        | 26.53               | 1.0    | •                      |            | 26.53 | 26.53    | 1.06 |
| 20        | 26.25               | 1.0    |                        |            | 26.25 | 26.25    | 1.14 |
| 30        | 25.86               | 1.0    | •                      |            | 25.86 | 25.86    | 1:17 |
| 40        | 25.37               | 1.0    |                        |            | 25.37 | 25.37    | 1.05 |
| 50        | 25.00               | 1.0    |                        | ,          | 25.00 | 25.00    | 1.16 |

<sup>\*</sup>  $\lambda_{ex}$  = 372 nm, emission was collected with a 416 nm cut-off filter. BMOQ K<sub>SV</sub>  $\approx 2$  nM<sup>-1</sup>.

FIGURE 10

Table 3 - Multiexponential Intensity decay of BMQ and o-BMQBA

| [Cyanide]<br>µM | (ns)    | $\alpha_1$ | τ <sub>2</sub> (ns) | α2     | τ<br>(na) | <r> (ns)</r>                                     | χ²   |
|-----------------|---------|------------|---------------------|--------|-----------|--------------------------------------------------|------|
|                 |         |            | (100)               |        | (ns)      | (1,0)                                            |      |
| *o-BMQBA        | <b></b> |            |                     |        |           |                                                  | -    |
|                 |         |            |                     |        |           | <del>                                     </del> |      |
| 0               | 2.18    | 0.4646     | 4.74                | 0.5354 | 4.01      | 3.55                                             | 1.00 |
| 5               | 2.14    | 0.4615     | 4.45                | 0.5385 | 3.78      | 3.38                                             | 1.12 |
| 10              | 2.28    | 0.5704     | 4.75                | 0.4296 | 3.78      | 3.34                                             | 1.04 |
| 15              | 1.86    | 0.3265     | 3.64                | 0.6735 | 3.29      | 3.06                                             | 0.97 |
| 20              | 1.88    | 0.3476     | 3.69                | 0.6524 | 3.30      | 3.06                                             | 1.04 |
| 30              | 1.44    | 0.1762     | 3.27                | 0.8238 | 3.11      | 2.95                                             | 1.21 |
| 40              | 1.92    | 0.3511     | 3.59                | 0.6489 | 3.21      | 3.00                                             | 0.90 |
| 50              | 1.87    | 0.3320     | 3.58                | 0.6680 | 3.22      | 3.01                                             | 1.07 |
|                 |         |            |                     |        |           |                                                  |      |
| *BMQ            |         |            |                     |        |           |                                                  |      |
|                 |         |            |                     |        |           |                                                  |      |
| 0               | 2.59    | 1.0        |                     |        | 2.59      | 2.59                                             | 1.07 |
| 5               | 2.58    | 1.0        |                     |        | 2.58      | 2.58                                             | 1.09 |
| 10              | 2.59    | 1.0        |                     |        | 2.59      | 2.59                                             | 1.07 |
| 15              | 2.57    | 1.0        |                     |        | 2.57      | 2.57                                             | 1.02 |
| 20              | 2.57    | 1.0        |                     |        | 2.57      | 2.57                                             | 1.12 |
| 30              | 2.55    | 1.0        | ,                   |        | 2.55      | 2.55                                             | 1.08 |
| 40              | 2.55    | 1.0        |                     |        | 2.55      | 2.55                                             | 1.14 |
| . 50            | 2.55    | 1.0        |                     |        | . 2,55    | 2.55                                             | 1.17 |

<sup>\*</sup>  $\lambda_{ex}$  = 372 nm, emission was collected with a 416 nm cut-off-filter. BMQ  $K_{ev}\approx 0.4$  nM<sup>-1</sup>.

FIGURE 11

WO 2005/029033

$$R^3$$
 $R^2$ 
 $R^2$ 
 $R^2$ 
 $R^3$ 

| Probe   | R <sup>1</sup>     | R <sup>2</sup>     | R <sup>3</sup>     |
|---------|--------------------|--------------------|--------------------|
| o-BAQBA | B(OH) <sub>2</sub> | H                  | H                  |
| m-BAQBA | . <b>H</b>         | B(OH) <sub>2</sub> | H                  |
| p-BAQBA | H                  | H                  | B(OH) <sub>2</sub> |
|         |                    |                    |                    |
| BAQ     | H                  | H                  | Н                  |

FIGURE 12



FIGURE 13

WO 2005/029033



FIGURE 14



FIGURE 15





FIGURE 16

17/28

Table 4: Multiexponential intensity decay of BAQ and o-BAQBA

| [Cyanide]              | τ1   | $\alpha_1$ | $\tau_2$ | $\alpha_2$ | τ <sub>3</sub> | α3       | $\overline{\tau}$ | <\tau> | χ <sup>2</sup> |
|------------------------|------|------------|----------|------------|----------------|----------|-------------------|--------|----------------|
| μΜ                     | (ns) |            | (ns)_    |            | (ns)           |          |                   |        |                |
| BAQ                    |      |            |          |            |                |          |                   |        |                |
| 0                      | 2.48 | 1          | ~        | _          | -              | -        | 2.48              | 2.48   | 1.10           |
| 2                      | 2.48 | 1          | ~        | -          | -              | -        | 2.48              | 2.48   | 1.02           |
| 4                      | 2.49 | 1          | -        | -          | -              | -        | 2.49              | 2.49   | 1.19           |
| 6                      | 2.49 | 1          | -        | -          | _              | -        | 2.49              | 2.49   | 1.32           |
| 10                     | 2.49 | 1          | -        | _          | -              | _        | 2.49              | 2.49   | 1.18           |
| 16                     | 2.49 | 1          | -        | -          | -              | •        | 2.49              | 2.49   | 1.28           |
| 20                     | 2.47 | 1          | -        | -          |                | -        | 2.47              | 2.47   | 0.89           |
| o-BAQBA                |      |            |          |            |                |          |                   |        |                |
| (380 nm) <sup>a</sup>  |      |            |          |            |                |          |                   |        |                |
| 0                      | 2.04 | 0.71       | 3.41     | 0.29       | -              | -        | 2.59              | 2.44   | 1.06           |
| 2                      | 2.02 | 0.68       | 3.367    | 0.32       | -              | -        | 2.61              | 2.45   | 0.99           |
| 4                      | 1.98 | 0.67       | 3.37     | 0.33       | _              |          | 2.61              | 2.44   | 0.94           |
| 6                      | 1.92 | 0.62       | 3.23_    | 0.38       | _              | _        | 2.59              | 2.42   | 1.06           |
| 8°                     | 1.55 | 0.41       | 2.98     | 0.59       | -              | -        | 2.60              | 2.39   | 1.53           |
| 10°                    | 0.67 | 0.19       | 2.64     | 0.81       | _              | _        | 2.53              | 2.27   | 2.15           |
| 12.5                   | 0.44 | 0.22       | 2.60     | 0.78       | -              | _        | 2.50              | 2.12   | 2.37           |
|                        | 0.21 | 0.17       | 2.07     | 0.63       | 3.99           | 0.20     | 2.76              | 2.14   | 1.08           |
| 15                     | 0.38 | 0.28       | 2.61     | 0.72       |                | -        | 2.49              | 1.98   | 2.18           |
|                        | 0.21 | 0.23       | 1.85     | 0.44       | 3.46           | 0.32     | 2.71              | 1.97   | 1.01           |
| 20                     | 0.38 | 0.30       | 2.65     | 0.70       | -              | -        | 2.52              | 1.97   | 2.47           |
|                        | 0.19 | 0.24       | 1.69     | 0.39       | 3.36           | 0.37     | 2.72              | 1.95   | 1.12           |
|                        |      |            |          | <u></u>    |                |          |                   |        |                |
| (550 nm ) <sup>b</sup> |      |            |          |            |                | •        |                   |        |                |
| 0                      | 1.99 | 0.63       | 3.19     | 0.37       | -              | <b>-</b> | 2.57              | 2.43   | 0.99           |
| 2                      | 1.93 | 0.59       | 3.15     | 0.41       | _              | ••       | 2.58              | 2.43   | 0.98           |
| 4                      | 2.04 | 0.70       | 3.39     | 0.30       | -              |          | 2.60              | 2.45   | 1.07           |
| 6                      | 1.87 | 0.51       | 2.97     | 0.49       |                | ••       | 2.53              | 2.41   | 1.10           |
| 8                      | 1.86 | 0.55       | 3.14     | 0.45       | -              | •        | 2.60              | 2.44   | 1.01           |
| 10                     | 1.75 | 0.48       | 3.10     | 0.52       | _              | -        | 2.63              | 2.45   | 1.17           |
| 12.5                   | 1.85 | 0.61       | 3.48     | 0.39       | -              | -        | 2.74              | 2.49   | 1.03           |
| 15                     | 1.32 | 0.31       | 2.93     | 0.69       | -              | _        | 2.66              | 2.43   | 1.25           |
| 20                     | 1.19 | 0.30       | 2.97     | 0.70       | -              | -        | 2.71              | 2,44   | 0.92           |

<sup>&</sup>lt;sup>a</sup>380 nm long-pass filter.

<sup>&</sup>lt;sup>b</sup>550±10 nm interference filter.

<sup>&</sup>lt;sup>c</sup>No notable improvement in fit could be obtained using a 3-exponent function. Similar values were also found for the *meta*- and *para*-BAQBA probes.

18/28





FIGURE 18







FIGURE 19







FIGURE 20

21/28





FIGURE 21

FIGURE 22





FIGURE 23



FIGURE 24



FIGURE 25



FIGURE 26



FIGURE 27

# BEST AVAILABLE COPY



FIGURE 28