Test report No.: 11253019S-A Page : 91 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions (cont'd)

Step 8: W58 band (Head)

Plot 8-3: (Head) Antenna Main; Front (Patient)-main & touch, 11n(40HT) (MCS0), 5755 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5755 MHz; $\sigma = 5.018$ S/m; $\varepsilon_r = 35.37$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12; -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

-DASY52 52 8 8(1222): SEMCAD X 14 6 10(7331)

-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-main(chain0)/5g66w58h14,ant0,front(patient)&d0,n40(m0,p12),h5755/

Area Scan:80x120,stp10 (0x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0977 W/kg Area Scan:80x120,stp10 (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.00351 W/kg

Zoom: 28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 4.884 V/m; Power Drift = 0.14 dB; Maximum value of SAR (measured) = 0.0928 W/kg; Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.00364 W/kg

Remarks *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH,
- *. liquid temperature: 23.0(start) 23.0(end) 22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 8-4: (Head) Antenna Sub; Front (Patient)-sub & touch, 11n(40HT) (MCS0), 5755 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5755 MHz; $\sigma = 5.018$ S/m; $\varepsilon_r = 35.37$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-sub(chain1)/5g67w58h15,ant1,front(patient)&d0,n40(m0,p12),h5755/

Area Scan:80x130,stp10 (9x14x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0782 W/kg

Area Scan:80x130,stp10 (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.00801 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 4.275 V/m; Power Drift = -0.10 dB; Maximum value of SAR (measured) = 0.0665 W/kg; Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.0015 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- * liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH, *. liquid temperature: 23.0(start)23.0(end)22.8(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 11253019S-A Page : 92 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions / Step 8: W58 band (Head) (cont'd)

Plot 8-5: (Head) Antenna Main; Back-main & touch, 11n(40HT) (MCS0), 5755 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5755 MHz; $\sigma = 5.018$ S/m; $\epsilon_r = 35.37$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-main(chain0)/5g69w58h17,ant0,back&d0,n40(m0,p12),h5755/

Area Scan:80x120,stp10 (9x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.176 W/kg Area Scan:80x120,stp10 (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.213 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 6.491 V/m; Power Drift = -0.14 dB; Maximum value of SAR (measured) = 0.181 W/kg; Peak SAR (extrapolated) = 0.328 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.012 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH,
- *. liquid temperature: 23.0(start)/23.0(end)/22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 8-6: (Head) Antenna Sub; Back-sub & touch, 11n(40HT) (MCS0), 5755 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5755 MHz; $\sigma = 5.018$ S/m; $\epsilon_r = 35.37$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-sub(chain1)/5g68w58h16,ant1,back&d0,n40(m0,p12),h5755/

Area Scan:80x120,stp10 (9x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.116 W/kg

Area Scan:80x120,stp10 (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.00890 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 5.432 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 0.153 W/kg; Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.00374 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 \pm 10 %RH,
- *. liquid temperature: 23.0(start)/23.0(end)/22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 11253019S-A Page : 93 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions / Step 8: W58 band (Head) (cont'd)

Plot 8-7: (Head) Antenna Main; Long side-main & touch, 11n(40HT) (MCS0), 5755 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5755 MHz; $\sigma = 5.018$ S/m; $\epsilon_r = 35.37$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

 DASY Configuration:
 -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;
 -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
 -Electronics: DAE4 Sn626; Calibrated: 2015/09/15

 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-main(chain0)/5g53w58h1,bw40;ant0,side&d0,n40(m0,p12),h5755/

Area scan:120x60,stp10 (13x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.54 W/kg Area scan:120x60,stp10 (121x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.76 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 24.33 V/m; Power Drift = -0.06 dB; Maximum value of SAR (measured) = 2.06 W/kg; Peak SAR (extrapolated) = 4.39 W/kg

SAR(1 g) = 0.702 W/kg; SAR(10 g) = 0.139 W/kg

Remarks: *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

*. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH,

* liquid temperature: 22.8(start)/22.8(end)/22.8(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 8-8: (Head) Antenna Main; Long side-main & touch, 11n(40HT) (MCS0), 5795 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5795 MHz; $\sigma = 5.038$ S/m; $\epsilon_r = 35.32$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-main(chain0)/5g54&w58h2,bw40/ch;ant0,side&d0,n40(m0,p12),h5795/

Area Scan:100x40,stp10 (11x5x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.33 W/kg

Area Scan:100x40,stp10 (101x41x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.27 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 22.68 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 1.87 W/kg; Peak SAR (extrapolated) = 3.89 W/kg

SAR(1 g) = 0.629 W/kg; SAR(10 g) = 0.124 W/kg

Remarks: *. Date tested: 2016/08/04: Tested by: Hiroshi Naka: Tested place: No. 7 shielded room.

- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH,
- * liquid temperature: 22.8(start)/22.8(end)/22.8(in check) deg.C.; * White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 11253019S-A Page : 94 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions / Step 8: W58 band (Head) (cont'd)

Plot 8-9: (Head) Antenna Sub: Short side-sub & touch, 11n(40HT) (MCS0), 5755 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5755 MHz; $\sigma = 5.018$ S/m; $\epsilon_r = 35.37$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12; -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-sub(chain1)/5g60w58h8,bw40;ant1,side&d0,n40(m0,p12),h5755/

Area Scan:60x140,stp10 (7x15x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.733 W/kg Area Scan:60x140,stp10 (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.735 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 13.32 V/m; Power Drift = -0.03 dB; Maximum value of SAR (measured) = 0.689 W/kg; Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.054 W/kg

Remarks: *.

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH,
- *. liquid temperature: 22.9(start)/22.9(end)/22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 8-10: (Head) Antenna Sub: Short side-sub & touch, 11n(40HT) (MCS0), 5795 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: n40(MCS0,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5795 MHz; $\sigma = 5.038$ S/m; $\epsilon_r = 35.32$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w58,ant-sub(chain1)/5g61w58h9,bw40/ch;ant1,side&d0,n40(m0,p12),h5795/

Area Scan: 40x100, stp10 (5x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.576 W/kg

Area Scan:40x100,stp10 (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.579 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 11.91 V/m; Power Drift = -0.02 dB; Maximum value of SAR (measured) = 0.544 W/kg; Peak SAR (extrapolated) = 0.913 W/kg

SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.042 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH,
- *. liquid temperature: 22.9(start) 22.9(end) 22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A Page : 95 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions / Step 8: W58 band (Head) (cont'd)

Plot 8-11: (Head) Antenna Main; Long side-main & touch, 11a(6Mbps), 5785 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: 11a(6Mbps,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5785 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5785 MHz; $\sigma = 5.02$ S/m; $\varepsilon_r = 35.32$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12; -Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z=1.0, 25.0 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

head,w58,ant-main(chain0)/5g56&w58h4,mode2/ch;ant0,side&d0,a(6m,p12),h5785/

Area Scan:100x40,stp10 (11x5x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.43 W/kg Area Scan:100x40,stp10 (101x41x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.59 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 22.99 V/m; Power Drift = -0.10 dB; Maximum value of SAR (measured) = 2.29 W/kg; Peak SAR (extrapolated) = 4.25 W/kg

SAR(1 g) = 0.692 W/kg; SAR(10 g) = 0.137 W/kg

Remarks: *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room.

*. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. $/50 \pm 10$ %RH,

*. liquid temperature: 22.8(start) 22.9(end) 22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 8-12: (Head) Antenna Main; Long side-main & touch, 11a(6Mbps), 5825 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: 11a(6Mbps,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5825 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5825 MHz; $\sigma = 5.084$ S/m; $\epsilon_r = 35.30$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12; -Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

head,w58,ant-main(chain0)/5g57&w58h5,mode2/ch;ant0,side&d0,a(6m,p12),h5825/

Area Scan: 100x40,stp10 (11x5x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.12 W/kg

Area Scan:100x40,stp10 (101x41x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.26 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 20.37 V/m; Power Drift = -0.09 dB; Maximum value of SAR (measured) = 1.79 W/kg; Peak SAR (extrapolated) = 3.34 W/kg

= 0.542 W/kg; SAR(10 g) = 0.107 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- '. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. $/ 50 \pm 10$ %RH,
- * liquid temperature: 22.9(start)/22.9(end)/22.8(in check) deg C.; * White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A Page : 96 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions / Step 8: W58 band (Head) (cont'd)

Plot 8-13: (Head) Antenna Sub: Short side-sub & touch, 11a(6Mbps), 5785 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: 11a(6Mbps,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5785 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5785 MHz; $\sigma = 5.02$ S/m; $\varepsilon_r = 35.32$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12; -Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z=1.0, 25.0 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

head,w58,ant-sub(chain1)/5g63w58h11,mode2/ch;ant1,side&d0,a(6m,p12),h5785/

Area Scan:40x100,stp10 (5x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.658 W/kg Area Scan:40x100,stp10 (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.721 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 12.80 V/m; Power Drift = -0.07 dB; Maximum value of SAR (measured) = 0.604 W/kg; Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.048 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 ± 10 %RH, *. liquid temperature: 22.9(start) 22.9(end) 22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 8-14: (Head) Antenna Sub: Short side-sub & touch, 11a(6Mbps), 5825 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: 11a(6Mbps,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5825 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5825 MHz; $\sigma = 5.084$ S/m; $\epsilon_r = 35.30$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12; -Electronics: DAE4 Sn626: Calibrated: 2015/09/15 -Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

head.w58.ant-sub(chain1)/5g64w58h12.mode2/ch;ant1.side&d0.a(6m.p12).h5825/

Area Scan:40x100,stp10 (5x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.695 W/kg

Area Scan:40x100,stp10 (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm, Maximum value of SAR (interpolated) = 0.758 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 13.05 V/m; Power Drift = -0.08 dB; Maximum value of SAR (measured) = 0.650 W/kg; Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.053 W/kg

Remarks:

- *. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. $/50 \pm 10$ %RH,
- *. liquid temperature: 22.9(start)/23.0(end)/22.8(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 11253019S-A Page : 97 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 2-2: SAR measurement data / SAR test data plot of other test conditions (cont'd)

Step 9: SAR Measurement Variability

Plot 9-1: (Body) Antenna Main; Long side-main & touch, 11a(6Mbps), 5260 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: 11a(6Mbps,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5260 MHz; Crest Factor: 1.0 Medium: MSL5800(1607); Medium parameters used: f = 5260 MHz; $\sigma = 5.416$ S/m; $\epsilon_r = 47.28$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.37, 4.37, 4.37); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

body-touch,w53,ant-main(chain0)/Repeat.max.measure/5g51w53b13/Re;5g44&w53b6,ant0,side&d0,a(6m,p12),b5260/

Area Scan:100x40,stp10 (11x5x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.36 W/kg

Area Scan:100x40,stp10 (11x5x1): Measurement grid: dx=100mm, dy=10mm; Maximum value of SAR (measured) = 2.36 W/kg

Area Scan:100x40,stp10 (101x41x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 3.18 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 26.76 V/m; Power Drift = -0.13 dB; Maximum value of SAR (measured) = 2.79 W/kg; Peak SAR (extrapolated) = 5.67 W/kg

SAR(1 g) = 0.996 W/kg; SAR(10 g) = 0.213 W/kg

Remarks: *. Date tested: 2016/07/29; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 152 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24-25 deg.C. $/50\pm10$ %RH,
- * liquid temperature: 23.6(start)/23.6(end)/23.7(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 9-2: (Head) Antenna Main; Long side-main & touch, 11a(6Mbps), 5260 MHz

EUT: SKR3000; Type: P-61; Serial: A8CE-S002

Mode: 11a(6Mbps,BPSK/OFDM)(UID 0, Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5260 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5260 MHz; $\sigma = 4.501$ S/m; $\epsilon_r = 36.07$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.94, 4.94, 4.94); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

head,w53,ant-main(chain0)/Repeat.max.measure/5g11w53h11/Re;5g3w53h3,ant0,side&d0,a(6m,p12),h5260/

Area Scan:100x40,stp10 (11x5x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.53 W/kg

Area Scan:100x40,stp10 (101x41x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.89 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 27.48 V/m; Power Drift = -0.11 dB; Maximum value of SAR (measured) = 3.16 W/kg; Peak SAR (extrapolated) = 5.94 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.231 W/kg

Remarks: *. Date tested: 2016/08/01; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 153 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: 24 ± 1 deg.C. / 50 \pm 10 %RH,
- *. liquid temperature: 23.0(start)/23.0(end)/22.8(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 11253019S-A Page : 98 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
KPM-08	Power meter	Anritsu	ML2495A	6K00003356	AT	2015/09/09 * 12
KPSS-04	Power sensor	Anritsu	MA2411B	012088	AT	2015/09/09 * 12
KAT10-S3	Attenuator	Agilent	8490D 010	50924	AT	2015/12/24 * 12
KTM-G1	Terminator	Hirose Electric	HRM-TMP-05(40)) -	AT	-
	DASY52	Schmid&Partner	DASY52(ver.52.8.8(-	SAR	-
2 COTS-SSEP-0	Dielectric assessment	Engineering AG Schmid&Partner	1222)) DAK(ver1.10.317.11	_	SAR(daily)	_
2	kit	Engineering AG)	1324		
SSAR-02	SAR measurement system	Schmid&Partner Engineering AG	DASY5		SAR	Pre Check
SSRBT-02	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F12/5L2QA1/A /01	SAR	2015/09/10 * 12
KDAE-01	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	626	SAR	2015/09/15 * 12
SPB-02	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3907	SAR	2016/05/12 * 12
KSDA-01	Dipole Antenna	Schmid&Partner	D2450V2	822	SAR(daily)	2016/01/14 * 12
KSDA-02	Dipole Antenna	Engineering AG Schmid&Partner	D5GHzV2	1070	SAR(daily)	2016/03/10 * 12
KPFL-01	Flat Phantom	Engineering AG Schmid&Partner	Oval flat phantom	1059	SAR	2015/08/06 * 12
SSNA-01	Notes de Angles	Engineering AG	ELI 4.0	11020171777	CAD(d-:L-)	
SEPP-R03	Network Analyzer	Agilent Schmid&Partner	8753ES DAK3.5	US39171777 1191	SAR(daily) SAR(daily)	2015/12/24 * 12
	Dielectric probe	Engineering AG			SAR(dally)	2016/05/10 * 12
KSG-08	Signal Generator	Rohde & Schwarz	SMT06	100763	SAR(daily)	2015/07/02 * 12
SSG-01	Signal Generator	Agilent	E4438C	MY47271584	SAR(daily)	2016/03/24 * 12
KPA-12	RF Power Amplifier	MILMEGA	AS2560-50	1018582	SAR(daily)	Pre Check
KCPL-07	Directional Coupler	Pulsar Microwave Corp.	CCS30-B26	0621	SAR(daily)	Pre Check
KPM-06	Power Meter	Rohde & Schwarz	NRVD	101599	SAR(daily)	2015/09/08 * 12
KIU-08	Power sensor	Rohde & Schwarz	NRV-Z4	100372	SAR(daily)	2015/09/08 * 12
KIU-09	Power sensor	Rohde & Schwarz	NRV-Z4	100371	SAR(daily)	2015/09/08 * 12
KAT10-P1	Attenuator	Weinschel	24-10-34	BY5927	SAR(daily)	2015/12/24 * 12
KPM-05	Power meter	Agilent	E4417A	GB41290718	SAR(daily)	2016/04/13 * 12
KPSS-01	Power sensor	Agilent	E9327A	US40440544	SAR(daily)	2016/04/13 * 12
SAT20-SAR1	Attenuator	TME	SFA-01AXPJ-20	_	SAR(daily)	2015/12/24 * 12
SCC-SAR2	Coaxial Cable	HUBER+SUHNER	SF104A/11PC3542 /11N451/4M	MY699/4A	SAR(daily)	Pre Check
KRU-01	Ruler(300mm)	Shinwa	13134	-	SAR	2016/02/24 * 12
KRU-02	Ruler(150mm,L)	Shinwa	12103	-	SAR	2016/02/24 * 12
KRU-04	Ruler(300mm)	Shinwa	13134	-	SAR	2016/05/16 * 12
KOS-13	Digtal thermometer	HANNA	Checktemp-2	KOS-13	SAR	2015/12/07 * 12
KOS-14	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THII α / SK-LTHII α -2	015246/08169	SAR	2015/12/07 * 12
SOS-11	Humidity Indicator	A&D	AD-5681	4063424	SAR(daily)	2015/12/07 * 12
SOS-12	Digtal thermometer	HANNA	Checktemp-4	SOS-12	SAR(daily)	2016/02/24 * 12
SOS-SAR1	Digtal thermometer	LKMelectonic	DTM3000	3171	SAR(daily)	2015/10/20 * 12
SSA-04	Spectrum Analyzer	Advantest	R3272	101100994	SAR(moni.)	Pre Check
KSDH-01	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	_	SAR	2015/09/10 * 12
SSDH-02	Laptop holder	Schmid&Partner Engineering AG	SM LH1 001 C	_	SAR	Pre Check
SWTR-03	DI water	MonotaRo	34557433	_	SAR	Pre Check
SALC-01	Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79	_	SAR(daily)	Pre Check
KSLH245-01	Tissue simulation liqud (2450MHz,head)	Schmid&Partner Engineering AG	HSL2450V2	SL AAH 245 BA	SAR	Pre Check
KSLM245-01	Tissue simulation liqud (2450MHz,body)	Schmid&Partner Engineering AG	MSL2450V2	SL AAM 245 BA	SAR	Pre Check
KSLM580-02	Tissue simulation liqud (5800MHz,body)	Schmid&Partner Engineering AG	MBBL3500-5800 V5	SL AAM 501 AB(110520-3)	SAR	Pre Check
KSLH580-04	Tissue simulation liqud (5800MHz,head)	Schmid&Partner Engineering AG	HBBL3500-5800 V5	SL AAH 502	SAR	Pre Check

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

[Test Item] SAR: Specific Absorption Rate, AT: Antenna terminal conducted power

Test report No. : 11253019S-A Page : 99 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-2: Configuration and peripherals

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY5 system for performing compliance tests consist of the following items:

- A standard high precision 6-axis robot (Stäubli TX/RX family) with controller, teach pendant and software.
 - An arm extension for accommodating the data acquisition electronics (DAE).
- 2 An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements,
- 3 mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6 The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- 7 A computer running Win7 professional operating system and the DASY5 software.
- 8 R Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- 9 The phantom.
- 10 The device holder for EUT. (low-loss dielectric palette) (*. when it was used.)
- 11 Tissue simulating liquid mixed according to the given recipes
- 12 Validation dipole kits allowing to validate the proper functioning of the system.

Test report No.: 11253019S-A : 100 of 144 Page **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-3: Test system specification

TX60 Lspeag robot/CS8Cspeag-TX60 robot controller

 Number of Axes 6 Repeatability ±0.02mm

 Manufacture Stäubli Unimation Corp.

DASY5 Measurement server

 Features The DASY5 measurement server is based on a PC/104 CPU board with a

> 400MHz intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected

to the PC/104 bus of the CPU board.

 Calibration No calibration required.

 Manufacture Schmid & Partner Engineering AG

Data Acquisition Electronic (DAE)

 Features Signal amplifier, multiplexer, A/D converter and control logic.

> Serial optical link for communication with DASY5 embedded system (fully remote controlled). 2 step probe touch detector for mechanical surface

detection and emergency robot stop (not in -R version)

 Measurement Range : $1\mu V$ to > 200 mV (16bit resolution and 2 range settings: 4 mV, 400 mV)

< 1µV (with auto zero) Input Offset voltage

 $200M\Omega$ Input Resistance

 Battery Power > 10hr of operation (with two 9V battery) Manufacture Schmid & Partner Engineering AG

Electro-Optical Converter (EOC61)

 Manufacture : Schmid & Partner Engineering AG

Light Beam Switch (LB5/80)

 Manufacture Schmid & Partner Engineering AG

SAR measurement software

Dosimetric Assessment System DASY5

DASY52, V8.2 B969 Software version

 Manufacture Schmid & Partner Engineering AG

E-Field Probe

 Model EX3DV4 (serial number: 3679) Construction

Symmetrical design with triangular core. Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g., DGBE).

10MHz to 6GHz, Linearity: ±0.2 dB (30MHz to 6GHz) Frequency

2.45, 5.2, 5.25, 5.5, 5.6, 5.75, 5.8 GHz (Head) 2.45, 5.25, 5.6, 5.75 GHz (Body) •Conversion Factors

Directivity ± 0.3 dB in HSL (rotation around probe axis)

 ± 0.5 dB in tissue material (rotation normal to probe axis)

 Dynamic Range $10\mu\text{W/g}$ to > 100 mW/g; Linearity: $\pm 0.2 \text{ dB}$ (noise: typically $< 1\mu\text{W/g}$)

Overall length: 330mm (Tip: 20mm) Dimension

Tip diameter: 2.5mm (Body: 12mm)

Typical distance from probe tip to dipole centers: 1mm

 Application High precision dosimetric measurement in any exposure scenario (e.g., very strong gradient

fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision

of better 30%

 Manufacture : Schmid & Partner Engineering AG

Phantom

 Type ELI 4.0 oval flat phantom

 Shell Material Shell Thickness : Bottom plate: 2 ± 0.2 mm Fiberglass Dimensions Bottom elliptical: 600×400mm, Depth: 190mm (Volume: Approx. 30 liters)

 Manufacture Schmid & Partner Engineering AG

Device Holder

□ Urethane foam

☒ KSDH-01: In combination with the ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Transmitter devices can be easily and accurately positioned. The low-loss dielectric urethane foam was used for the mounting section of device holder.

Material : POM •Manufacture : Schmid & Partner Engineering AG

SSDH-02: Device holder for the laptop computer.

■ Computer of the laptop computer of the laptop computer.

■ Computer of the laptop computer of the laptop computer.

■ Computer of the laptop computer of the laptop computer.

■ Computer of the laptop computer

UL Japan, Inc. Shonan EMC Lab.

Test report No.: 11253019S-A Page: 101 of 144 Issued date: August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-4: Simulated tissue composition and parameter confirmation

Liquid type	Body	Body	Head	Head				
Control No.	KSLM245-01	KSLM580-02	KSLH245-01	KSLH580-04				
Model No.	MSL2450V2	MBBL3500-5800V5	HSL2450V2	HBBL 3500-5800V5				
/ Product No.	/ SL AAM 245 BA	/ SL AAM 501 AB	/SL AAH 245 BA	/SL AAH 502 AD				
Ingredient: Mixture(%)	Water: 52-75%, DGBE: 25-48%, NaCl: <1.0%	Water: 60-80%, Ester/Emulsifiers/Inhibitors: 20-40%, Sodium salt: 0-1.5%	Water: 52-75%, DGBE: 25-48%, NaCl: <1.0%	Water: 50-65%, Mineral oil: 10-30%, Emulsifiers: 8-25%, Sodium salt: 0-1.5%				
Manufacture	Schmid & Partner Engineering AG							

*. The dielectric parameters were checked prior to assessment using the DAK3.5 dielectric probe kit.

			A 11. 4	T · · · · ·	T · · · · ·				Liquid par	ameters (*a)			ACAD
Measured	Freq.	Liquid	Ambient [deg.C.]	Liquid temp.	Liquid Depth		Permittivity (gr) [-] Target Measured Limit		-		Conduc	tivity [S/m	ı	ΔSAR (1g)
date	[MHz]	type	/[%RH]	[deg.C.]	[mm]	Torgot			Target	Meas	sured	Limit	[%] (*b)	
			/[/0141]	[ucg.c.]	[IIIIII]	Target	Meas.	Δεr[%]	Lillit	Ü	Meas.	$\Delta\sigma$ [%]	Lillit	[70](10)
July 25, 2016	2450	Head	24.4/49	23.8	(153)	39.2	38.20	-2.6	±5%	1.80	1.860	+3.3	±5%	+2.17
July 26, 2016	2450	Body	23.6/48	22.5	(153)	52.7	50.87	-3.5	±5%	1.95	1.975	+1.3	±5%	+1.39
July 27, 2016 (*1)	5600	Body	24.0/57	23.7	(152)	48.47	46.98	-3.1	±5%	5.766	5.904	+2.4	±5%	+0.51
July 28, 2016 (*1)	5600	Body	24.0/57	23.7	(152)	48.47	46.98	-3.1	±5%	5.766	5.904	+2.4	±5%	+0.51
July 28, 2016	5750	Body	23.9/59	23.7	(152)	48.27	46.52	-3.6	±5%	5.942	6.081	+2.4	±5%	+0.61
July 29, 2016	5250	Body	23.9/59	23.7	(152)	48.95	47.33	-3.3	±5%	5.358	5.454	+1.8	±5%	+0.60
August 1, 2016	5250	Head	23.4/49	22.8	(153)	35.93	36.03	+0.3	±5%	4.706	4.489	-4.6	±5%	+0.09
August 2, 2016 (*2)	5250	Head	23.4/49	22.8	(153)	35.93	36.03	+0.3	±5%	4.706	4.489	-4.6	±5%	+0.09
August 2, 2016	5600	Head	23.4/49	22.8	(153)	35.53	35.67	+0.4	±5%	5.065	4.832	-4.6	±5%	+0.12
August 3, 2016 (*3)	5600	Head	23.4/49	22.8	(153)	35.53	35.67	+0.4	±5%	5.065	4.832	-4.6	±5%	+0.12
August 4, 2016	5800	Head	23.4/49	22.8	(153)	35.3	35.26	-0.1	±5%	5.27	5.056	-4 .1	±5%	+0.21

^{*1.} It was within 24 hours from measurement on July 27, 2016 and same liquid temperature, so measured parameters on June 27 were used on June 28 continuously.

a. The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r04), the dielectric parameters suggested for head and body tissue simulating liquid are given at 2000, 2450, 3000 and 5800MHz. (.The parameters of the head liquid are the same value as IEC 62209-2.) Parameters for the frequencies between 2000-3000, 3000-5800MHz were obtained using linear interpolation. Above 5800MHz were obtained using linear extrapolation.

	,																		
	Standard					Interpolated & Extrapolated													
f (MHz)	Head	l Tissue	Body	Tissue	f	Head	Tissue	Body	Tissue	f	Head	Tissue	Body	Tissue	f	Head	Tissue	Body	Tissue
I (IVIHZ)	εr	σ[S/m]	εr	σ[S/m]	(MHz)	ET	$\sigma [\text{S/m}]$	εr	σ[S/m]	(MHz)	εr	$\sigma[\text{S/m}]$	εr	$\sigma [\text{S/m}]$	(MHz)	εr	σ [S/m]	Еľ	σ [S/m]
(1800-)2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73	5250	35.93	4.706	48.95	5.358	5750	not use	not use	48.27	5.942
2450	39.2	1.80	52.7	1.95	5800	35.3	5.27	48.2	6.00	5600	35.53	5.065	48.47	5.766					

^{*}b. The coefficients are parameters defined in IEEE Std 1528-2013.

 $\Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = -7.854E - 4 \times f^3 + 9.402E - 3 \times f^2 - 2.742E - 2 \times f - 0.2026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829$

Appendix 3-5: Daily check results

Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SRA system was operating within its target of $\pm 10\%$. The Daily check results are in the table below. (* Refer to Appendix 3-6 of measurement data.)

						Dail	y check	results							
			Ambient	Liquid Temp.	Liquid	Diele	ectric	Power		Daily o	check tar	get & mea	sured		
Date	Freq.	Liquid	[deg.C.]	[deg.C.]	Depth	para	meter	drift	SA	R (1g) [W	/ kg] (*c)		Deviation	Limit	
Date	[MHz]	Туре	/[%RH]	Check/Before/Afte r	[mm]	&r [-]	σ[S/m]	[dB]	Measured	ASAR- corrected	1W scaled	Target	[%]	[%]	Pass?
July 25, 2016	2450	Head	24.8/52	23.8/23.8/23.8	153	38.20	1.86	0.03	12.7 (250mW)	12.43	49.72	52.4 (*e)	-5.1	±10	Pass
July 26, 2016	2450	Body	23.9/48	22.5/22.7/22.7	153	50.87	1.975	-0.02	12.6 (250mW)	12.42	49.68	51.2 (*d)	-3.0	±10	Pass
July 27, 2016	5600	Body	24.4/57	23.7/23.6/23.6	152	46.98	5.904	0.10	7.99 (100mW)	7.95	79.5	77.7 (*d)	+2.3	±10	Pass
July 28, 2016	5600	Body	24.6/59	23.7/23.7/23.6	152	46.98	5.904	-0.01	7.94 (100mW)	7.90	79.0	77.7 (*d)	+1.7	±10	Pass
July 28, 2016	5750	Body	24.6/57	23.7/23.6/23.6	152	46.52	6.081	0.09	7.16 (100mW)	7.12	71.2	74.0 (*d)	-3.8	±10	Pass
June 29, 2016	5250	Body	24.7/44	23.7/23.6/23.6	152	47.33	5.454	-0.04	7.41 (100mW)	7.36	73.6	72.2 (*d)	+1.9	±10	Pass
August 1, 2016	5250	Head	24.4/41	22.8/23.0/23.0	153	36.03	4.489	0.05	7.78 (100mW)	7.77	77.7	75.3 (*d)	+3.2	±10	Pass
August 2, 2016	5250	Head	24.1/50	22.8/22.8/22.8	153	36.03	4.489	0.03	7.57 (100mW)	7.56	75.6	75.3 (*d)	+0.4	±10	Pass
August 2, 2016	5600	Head	24.1/50	22.8/22.8/22.8	153	35.67	4.832	-0.01	7.96 (100mW)	7.95	79.5	78.6 (*d)	+1.1	±10	Pass
August 3, 2016	5600	Head	24.1/52	22.8/22.7/22.7	153	35.67	4.832	0.02	7.91 (100mW)	7.90	79.0	78.6 (*d)	+0.5	±10	Pass
August 4, 2016	5800	Head	23.9/50	22.8/22.8/22.8	153	35.26	5.056	0.03	7.6 (100mW)	7.58	75.8	75.2 (*d)	+0.8	±10	Pass

^{*.} Calculating formula: \triangle SAR corrected SAR (1g) (W/kg) = (Observed SAR(1g) (W/kg)) × (100 - (\triangle SAR(%)) / 100

^{*2.} It was within 24 hours from measurement on August 1, 2016 and same liquid temperature, so measured parameters on August 1 were used on August 2 continuously.

^{*3.} It was within 24 hours from measurement on August 2, 2016 and same liquid temperature, so measured parameters on August 2 were used on August 3 continuously.

^{*}c. The measured SAR value of Daily check was compensated for tissue dielectric deviations (\(\Delta\)SAR) and scaled to 1W of output power in order to compare with the manufacture's calibration target value which was normalized.

^{*}d. The target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822) and D5GHzV2 (sn:1070) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D2450V2-822_Jan16 / D5GHzV2-1070_Mar16, the data sheet was filed in this report). For 2.45GHz, the manufacture's calibration data of dipole for head liquid were within 2.5 % (0.1 dB) of IEEE Std.1528 head liquid target value (=52.4 W/kg, cal.=51.4 W/kg, -1.9% vs. standard). This calibration result is enough, using this dipole as a reference. We decided to use body liquid calibration data of this dipole for the Daily check target.

^{*}e. The target value (normalized to 1W) is defined in IEEE Std.1528.

Test report No. : 11253019S-A Page : 102 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Test setup for the system performance check

Appendix 3-6: Daily check uncertainty

	Uncertainty of Daily check (2.4~6G		1g SAR	10g SAR					
	Combined measurement uncertain	ty of the meas	surement syst	tem (k=1))		$\pm 11.0\%$	± 10.9 %	
	Expanded und	certainty (k=2	2)				± 22.1 %	± 21.8 %	
	Error Description (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A	Measurement System (DASY5)						(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error (2.45,5.2,5.3,5.5,5.6,5.8GHz±100MHz)	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	∞
2	Axial isotropy error	±4.7 %	Rectangular	$\sqrt{3}$	√0.5	√0.5	±1.9 %	±1.9 %	∞
3	Hemispherical isotropy error	±9.6 %	Rectangular	$\sqrt{3}$	0	0	0%	0%	∞
	Probe linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response (CW)	±0.0 %	Rectangular	$\sqrt{3}$	1	1	0%	0%	∞
6	System detection limit	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
7	Boundary effects	±4.8 %	Rectangular	$\sqrt{3}$	1	1	±2.8 %	±2.8 %	∞
8	System readout electronics (DAE)	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	∞
9	Response Time Error (<5ms/100ms wait)	±0.0 %	Rectangular	√3	1	1	0 %	0%	∞
10	Integration Time Error (CW)	±0.0 %	Rectangular	√3	1	1	0%	0%	∞
11	RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	∞
14	Probe positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	∞
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	∞
В									
16	Deviation of the experimental source	±3.5 %	Normal	1	1	1	±3.5 %	±3.5 %	∞
17	Dipole to liquid distance (10mm±0.2mm,<2deg.)	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2 %	∞
18	Drift of output power (measured, <0.2dB)	±2.3 %	Rectangular	√3	1	1	±1.3 %	±1.3 %	∞
C	Phantom and Setup								
19	Phantom uncertainty	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2%	∞
20	Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97 %	∞
21	Liquid conductivity (meas.) (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	∞
22	Liquid permittivity (meas.) (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	∞
23	Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.3 %	Rectangular	√3	0.78	0.71	±2.4 %	±2.2 %	∞
24	Liquid Permittivity-temp.uncertainty (≤2deg.C.)	±0.9 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.1 %	∞
	Combined Standard Uncertainty						±11.0 %	±10.9 %	
	Expanded Uncertainty (k=2)						±22.1 %	±21.8 %	

^{*.} This measurement uncertainty budget is suggested by IEEE Std. 1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget).

Test report No.: 11253019S-A Page : 103 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-7: Daily check measurement data

(July 25, 2016) EUT: Dipole(2.45GHz)(sn822); Type: D2450V2; Serial: 822; Forward conducted power: 250mW

Communication System: CW (*. Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2450 MHz; Crest Factor: 1.0 Medium: HSL2450(1607); Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; $ε_r = 38.20$; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(7.22, 7.22, 7.22); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area Scan:60x60,stp15 (5x5x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 19.6 W/kg Area Scan:60x60,stp15 (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm; Maximum value of SAR (interpolated) = 19.6 W/kg Z Scan;160.stp5(mm) (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 19.8 W/kg

Zoom Scan:30x30x30,stp5,5,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm; Reference Value = 104.6 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 19.7 W/kg

Remarks: *. Date tested: 2016/07/25; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

*. liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.8 deg.C. / 52 %RH, *. liquid temperature: 23.8(start) 23.8(end) 23.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

(July 26, 2016)EUT: Dipole(2.45GHz)(sn822); Type: D2450V2; Serial: 822; Forward conducted power: 250mW

Communication System: CW (*. Frame Length in ms. 0; PAR: 0; PMF: 1); Frequency: 2450 MHz; Crest Factor: 1.0 Medium: M2450(1607); Medium parameters used: f = 2450 MHz; $\sigma = 1.975$ S/m; $\epsilon_r = 50.87$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY Configuration:** -Probe: EX3DV4 - SN3907; ConvF(7.16, 7.16, 7.16); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

-Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area Scan:60x60,stp15 (5x5x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 18.9 W/kg Area Scan:60x60,stp15 (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm; Maximum value of SAR (interpolated) = 19.1 W/kg Z Scan;160,stp5(mm) (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 19.1 W/kg

Zoom Scan:30x30x30,stp5,5,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm; Reference Value = 99.40 V/m; Power Drift = -0.02 dB; Maximum value of SAR (measured) = 19.2 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.88 W/kg

Remarks *. Date tested: 2016/07/26; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

* liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23.9 deg.C. / 48 %RH, * liquid temperature: 22.7(start)/22.7(end)/22.5(in check) deg.C.; * White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A Page : 104 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-7: Daily check measurement data (cont'd)

(July 27, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (*. Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: MSL5800(1607); Medium parameters used: f = 5600 MHz; σ = 5.904 S/m; $ε_r = 46.98$; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(3.65, 3.65, 3.65); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 20.2 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 20.6 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.9 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 68.44 V/m; Power Drift = 0.10 dB; Maximum value of SAR (measured) = 19.0 W/kg Peak SAR (extrapolated) = 32.6 W/kg (+1.6%, vs.speag-cal.=32.1 W/kg)

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.23 W/kg

Remarks: *. Date tested: 2016/07/27; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,

*. liquid depth: 152 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.4 deg.C. / 57 %RH,

*. liquid temperature: 23.6(start)/23.6(end)/23.7(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

(July 28, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (* Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: MSL5800(1607); Medium parameters used: f = 5600 MHz; $\sigma = 5.904$ S/m; $\epsilon_r = 46.98$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(3.65, 3.65, 3.65); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 20.4 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm, Maximum value of SAR (interpolated) = 20.8 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.8 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 68.51 V/m; Power Drift = -0.01 dB; Maximum value of SAR (measured) = 18.7 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.21 W/kg

Remarks *. Date tested: 2016/07/28; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

*. liquid depth: 152 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.6 deg.C. / 59 %RH, *. liquid temperature: 23.7(start) 23.6(end) 23.7(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A : 105 of 144 Page **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-7: Daily check measurement data (cont'd)

(July 28, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (*. Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5750 MHz; Crest Factor: 1.0 Medium: MSL5800(1607); Medium parameters used: f = 5750 MHz; σ = 6.081 S/m; $ε_r = 46.52$; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(3.96, 3.96, 3.96); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 17.7 W/kg

Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 18.1 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 17.9 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 63.55 V/m; Power Drift = 0.09 dB; Maximum value of SAR (measured) = 17.9 W/kg Peak SAR (extrapolated) = 30.8 W/kg (-3.8 % vs.speag-cal.=32 W/kg)

SAR(1 g) = 7.16 W/kg; SAR(10 g) = 1.99 W/kg

Remarks:

- *. Date tested: 2016/07/28; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- *. liquid depth: 152 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.6 deg.C. / 57 %RH,

 *. liquid temperature: 23.6(start)/23.6(end)/23.7(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

(July 29, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (* Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5250 MHz; Crest Factor: 1.0 Medium: MSL5800(1607); Medium parameters used: f = 5250 MHz; $\sigma = 5.454$ S/m; $\epsilon_r = 47.33$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.37, 4.37, 4.37); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 18.6 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm, Maximum value of SAR (interpolated) = 18.8 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 16.9 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 66.11 V/m; Power Drift = -0.04 dB; Maximum value of SAR (measured) = 17.0 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg

Remarks: *. Date tested: 2016/07/29; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,

- *. liquid depth: 152 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.7 deg.C. / 44 %RH, *. liquid temperature: 23.6(start) 23.6(end) 23.7(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A Page : 106 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-7: Daily check measurement data (cont'd)

(August 1, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW

Communication System: CW (*. Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5250 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5250 MHz; $\sigma = 4.489 \text{ S/m}$; $\varepsilon_r = 36.03$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.94, 4.94, 4.94); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 18.8 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 19.0 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.2 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 70.42 V/m; Power Drift = 0.05 dB; Maximum value of SAR (measured) = 18.2 W/kg

7.78 W/kg; SAR(10 g) = 2.22 W/kg

Remarks *. Date tested: 2016/08/01; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.4 deg.C./41 %RH,

*. liquid temperature: 23.0(start) 23.0(end) 22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

(August 2, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (* Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5250 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5250 MHz; $\sigma = 4.489$ S/m; $\epsilon_r = 36.03$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.94, 4.94, 4.94); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 18.4 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 18.7 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 17.8 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 69.90 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 17.8 W/kg Peak SAR (extrapolated) = 30.6 W/kg (+10.9 %, vs.speag-cal.=27.6 W/kg)

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.16 W/kg

*. Date tested: 2016/08/02; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room, Remarks:

*. liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.1 deg.C. / 50 %RH, *. liquid temperature: 22.8(start)/22.8(end)/22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A : 107 of 144 Page **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-7: Daily check measurement data (cont'd)

(August 2, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (*. Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5600 MHz; $\sigma = 4.832$ S/m; $\epsilon_r = 35.67$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.33, 4.33, 4.33); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAÈ4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 19.7 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 20.1 W/kg Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 19.5 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 71.93 V/m; Power Drift = -0.01 dB; Maximum value of SAR (measured) = 19.2 W/kg; Peak SAR (extrapolated) = 32.3 W/kg (+4.2 %

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.26 W/kg

Remarks:

*. Date tested: 2016/08/02; Tested by: Hiroshi Naka; Tested place:No.7 shielded room,
*. liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.1 deg.C. / 50 %RH,

*. liquid temperature: 22.8(start)/22.8(end)/22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

(August 3, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (*. Frame Length in ms. 0; PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5600 MHz; $\sigma = 4.832$ S/m; $\epsilon_r = 35.67$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.33, 4.33, 4.33); Calibrated: 2016/05/12; -DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

> -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0-Electronics: DAE4 Sn626; Calibrated: 2015/09/15 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 19.9 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 20.2 W/kg Z Scan; 155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.7 W/kg

Zoom:28x28x24.xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 71.63 V/m; Power Drift = 0.02 dB; Maximum value of SAR (measured) = 18.9 W/kg; Peak SAR (extrapolated) = 32.6 W/kg (+5.

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.24 W/kg

*. Date tested: 2016/08/03; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room, Remarks:

* liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.1 deg.C. / 52 %RH, * liquid temperature: 22.7(start)/22.7(end)/22.8(in check) deg.C.; * White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 11253019S-A Page : 108 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-7: Daily check measurement data (cont'd)

(August 4, 2016) EUT: Dipole(5GHz)(1070); Type: D5GHzV2; Serial: 1070; Forward conducted power: 100mW Communication System: CW (*. Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5800 MHz; Crest Factor: 1.0 Medium: HSL5GHz(1608); Medium parameters used: f = 5800 MHz; $\sigma = 5.056$ S/m; $\epsilon_r = 35.26$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Probe: EX3DV4 - SN3907; ConvF(4.3, 4.3, 4.3); Calibrated: 2016/05/12;

-DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

-Electronics: DAE4 Sn626; Calibrated: 2015/09/15

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,stp10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 19.5 W/kg Area:60x60,stp10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm, Maximum value of SAR (interpolated) = 19.6 W/kg

Z Scan;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.2 W/kg Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Reference Value = 70.19 V/m; Power Drift = 0.03 dB; Maximum value of SAR (measured) = 18.1 W/kg

Peak SAR (extrapolated) = 32.4 W/kg (+3.8 %

SAR(1 g) = 7.6 W/kg; SAR(10 g) = 2.15 W/kg

*. Date tested: 2016/08/04; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room, Remarks:

*. liquid depth: 153 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23.9 deg.C./50 %RH,

*. liquid temperature: 22.8(start)/22.8(end)/22.8(in check) deg.C.; *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 11253019S-A Page : 109 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Ċ

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	EX3DV4 - SN:390	Ashibida a malifica ali ambalidi kali a kadhibida ka	
Jujeti	TO COST COST COST COST COST COST COST CO	CONTROLLED A LIPSCHICK PROGRAMMAN, MINARS ELLERGOMANNIA PROLING SALAN AND AND AND AND AND AND AND AND AND A	- VI-LAND BARRY - AND STREET SHARE SHARE SHARE
Calibration procedure(s)		CAL-14.v4, QA CAL-23.v5, QA ure for dosimetric E-field probes	CAL-25.v6
Calibration date:	May 12, 2016		
The measurements and the unc	vertainties with confidence prol ucted in the closed laboratory	al standards, which realize the physical units bability are given on the following pages and a facility: environment temperature $(22\pm3)^{\circ}$ C a	are part of the certificate.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91			
	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference 20 dB Attenuator		05-Apr-16 (No. 217-02293) 31-Dec-15 (No. ES3-3013_Dec15)	Apr-17 Dec-16
Reference 20 dB Attenuator Reference Probe ES3DV2	SN: S5277 (20x)		
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	SN: S5277 (20x) SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: S5277 (20x) SN: 3013 SN: 660	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15)	Dec-16 Dec-16
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	SN: S5277 (20x) SN: 3013 SN: 660	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house)	Dec-16 Dec-16 Scheduled Check
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (No. 217-02285/02284)	Dec-16 Dec-16 Scheduled Check In house check: Jun-16
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285)	Dec-16 Dec-16 Scheduled Check In house check: Jun-16 In house check: Jun-16
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Pewer sensor E4412A RF generator HP 8848C	SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284)	Dec-16 Dec-16 Scheduled Check In house check: Jun-16 In house check: Jun-16 In house check: Jun-16
Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284) 04-Aug-99 (in house check Apr-13)	Dec-16 Dec-16 Scheduled Check In house check: Jun-16 In house check: Jun-16 In house check: Jun-16 In house check: Jun-16
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	SN: S5277 (20x) SN: 3013 SN: 660 ID SN: G841293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02284) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	Dec-16 Dec-16 Scheduled Check In house check: Jun-16 In house check: Jun-16 In house check: Jun-16 In house check: Jun-16 In house check: Oct-16

Test report No.: 11253019S-A : 110 of 144 Page **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvE DCP diode compression point

crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters

Polarization @ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization \$ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3907_May16 Page 2 of 11

 $1\hbox{-}22\hbox{-}3 \ Megumigaoka, Hiratsuka-shi, Kanagawa-ken, } 259\hbox{-}1220 \ JAPAN$ Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Test report No. : 11253019S-A Page : 111 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4 - SN:3907 May 12, 2016

Probe EX3DV4

SN:3907

Manufactured:

September 4, 2012

Calibrated:

May 12, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3907_May16

Page 3 of 11

Test report No.: 11253019S-A : 112 of 144 Page Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3907 May 12, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.44	0.45	0.46	± 10.1 %
DCP (mV) ^B	101.0	99.2	101.3	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	150.6	±3.0 %
		Y	0.0	0.0	1.0		152.4	
		Z	0.0	0.0	1.0		157.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

Test report No. : 11253019S-A Page : 113 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3907 May 12, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Unc (k=2)
2450	39.2	1.80	7.22	7.22	7.22	0.27	0.90	± 12.0 %
5200	36.0	4.66	5.21	5.21	5.21	0.30	1.80	± 13.1 %
5250	35.9	4.71	4.94	4.94	4.94	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.60	4.60	4.60	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.33	4.33	4.33	0.45	1.80	± 13.1 %
5750	35.4	5.22	4.47	4.47	4.47	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.30	4.30	4.30	0.45	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX3-3907_May16 Page 5 of 11

validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (a and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Test report No.: 11253019S-A : 114 of 144 Page **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3907 May 12, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth [©] (mm)	Unc (k≃2)
2450	52.7	1.95	7.16	7.16	7.16	0.37	0.90	± 12.0 %
5250	48.9	5.36	4.37	4.37	4.37	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.65	3.65	3.65	0.55	1.90	± 13.1 %
5750	48.3	5.94	3.96	3.96	3.96	0.55	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequency is a player is 6-Hz in the properties below 3.3 GHz in the properties below 3.3 GHz.

Certificate No: EX3-3907_May16 Page 6 of 11

At frequencies below 3 GHz, the validity of tissue parameters (a and o) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Test report No. : 11253019S-A Page : 115 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4_ SN:3907 May 12, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3907_May16

Page 7 of 11

Test report No. : 11253019S-A Page : 116 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4_ SN:3907 May 12, 2016

Receiving Pattern (\$\phi\$), \$\partial = 0°

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3907_May16

Page 8 of 11

Test report No. : 11253019S-A Page : 117 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3907 May 12, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3907_May16

Test report No. : 11253019S-A Page : 118 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3907 May 12, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (6, 9), f = 900 MHz

Certificate No: EX3-3907_May16

Page 10 of 11

Test report No. : 11253019S-A Page : 119 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3907 May 12, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3907

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	112.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	. 1.4 mm

Certificate No: EX3-3907_May16 Page 11 of 11

Test report No. : 11253019S-A Page : 120 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2)

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL Japan Shonan (Vitec)

Accreditation No.: SCS 0108

Certificate No: D2450V2-822_Jan16

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:822

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 14, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
l			

Name

Function

Michael Weber

Laboratory Technician

Approved by:

Calibrated by:

Katja Pokovic

Technical Manager

Issued: January 15, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-822_Jan16

Page 1 of 8

Test report No.: 11253019S-A Page : 121 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-822_Jan16

Page 2 of 8

Test report No. : 11253019S-A Page : 122 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-822_Jan16

Page 3 of 8

Test report No. : 11253019S-A Page : 123 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω + 4.1 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.6 \Omega + 6.3 j\Omega$
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 11, 2008

Certificate No: D2450V2-822_Jan16

Test report No. : 11253019S-A Page : 124 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

DASY5 Validation Report for Head TSL

Date: 14.01.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 822

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.0 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

Certificate No: D2450V2-822_Jan16

Page 5 of 8

Test report No. : 11253019S-A Page : 125 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-822_Jan16

Test report No. : 11253019S-A Page : 126 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

DASY5 Validation Report for Body TSL

Date: 14.01.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 822

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.0 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

Certificate No: D2450V2-822 Jan16

Page 7 of 8

Test report No. : 11253019S-A Page : 127 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-9: Calibration certificate: Dipole (D2450V2) (cont'd)

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-822_Jan16

Test report No. : 11253019S-A Page : 128 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2)

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL Japan Shonan (Vitec)

Certificate No: D5GHzV2-1070_Mar16

CALIBRATION C	ERTIFICATE			
Object	D5GHzV2 - SN:10	070		
Calibration procedure(s)	QA CAL-22.v2 Calibration proced	dure for dipole validation kits betwe	een 3-6 GHz	
Calibration date:	March 10, 2016			
		onal standards, which realize the physical units obability are given on the following pages and a		
All calibrations have been conducted	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C a	nd humidity < 70%.	
Calibration Equipment used (M&TE	Ecritical for calibration)			
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16	
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16	
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16	
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16	
Type-N mismatch combination	SN: 5047.2 / 06327 SN: 3503	01-Apr-15 (No. 217-02134)	Mar-16 Dec-16	
Reference Probe EX3DV4 DAE4	SN: 601	31-Dec-15 (No. EX3-3503_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	Dec-16	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-08	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16	
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature	
Approved by:	Katja Pokovic	Technical Manager	ll lls-	
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory.	Issued: March 11, 2016	

Certificate No: D5GHzV2-1070_Mar16

Page 1 of 17

Test report No. : 11253019S-A Page : 129 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1070_Mar16

Page 2 of 17

Test report No. : 11253019S-A Page : 130 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	73.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Mar16

Page 3 of 17

Test report No. : 11253019S-A Page : 131 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.3 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2,21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Mar16

Test report No. : 11253019S-A Page : 132 of 144 Issued date : August 22, 2016

FCC ID

: YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Mar16

Page 5 of 17

Test report No. : 11253019S-A Page : 133 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Mar16 Page 6 of 17

Test report No. : 11253019S-A Page : 134 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.43 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.27 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.90 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Mar16

Test report No. : 11253019S-A Page : 135 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.12 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1070_Mar16

Page 8 of 17

Test report No. : 11253019S-A Page : 136 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.1 Ω - 13.1 jΩ
Return Loss	- 17.8 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.0 Ω - 8.8 jΩ
Return Loss	- 21.1 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.0 Ω - 8.7 jΩ
Return Loss	- 20.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.5 Ω - 8.5 jΩ
Return Loss	- 20.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	55.3 Ω - 2.7 jΩ
Return Loss	~ 25.0 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.4 Ω - 3.2 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	52.5 Ω - 6.6 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.8 Ω - 7.0 jΩ
Return Loss	- 20.8 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	57.6 Ω - 1.0 jΩ
Return Loss	- 23.0 dB

Certificate No: D5GHzV2-1070_Mar16

Page 9 of 17

Test report No.: 11253019S-A : 137 of 144 Page **Issued date** : August 22, 2016

FCC ID

: YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2008

Certificate No: D5GHzV2-1070_Mar16

Page 10 of 17

Test report No. : 11253019S-A Page : 138 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

DASY5 Validation Report for Head TSL

Date: 07.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1070

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.49$ S/m; $\epsilon_r=34.8$; $\rho=1000$ kg/m³ , Medium parameters used: f=5250 MHz; $\sigma=4.53$ S/m; $\epsilon_r=34.7$; $\rho=1000$ kg/m³ , Medium parameters used: f=5500 MHz; $\sigma=4.77$ S/m; $\epsilon_r=34.4$; $\rho=1000$ kg/m³ , Medium parameters used: f=5600 MHz; $\sigma=4.87$ S/m; $\epsilon_r=34.2$; $\rho=1000$ kg/m³ , Medium parameters used: f=5750 MHz; $\sigma=5.03$ S/m; $\epsilon_r=34$; $\rho=1000$ kg/m³ , Medium parameters used: f=5800 MHz; $\sigma=5.08$ S/m; $\epsilon_r=34$; $\rho=1000$ kg/m³ Medium parameters used: f=5800 MHz; $\sigma=5.08$ S/m; $\epsilon_r=34$; $\rho=1000$ kg/m³ Medium parameters used: f=5800 MHz; $\sigma=5.08$ S/m; $\epsilon_r=34$; $\rho=1000$ kg/m³ Medium parameters used: f=5800 MHz; $\sigma=5.08$ S/m; $\epsilon_r=34$; $\rho=1000$ kg/m³ Medium parameters used: f=5800 MHz; $\sigma=5.08$ S/m; $\epsilon_r=34$; $\rho=1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 31.12.2015, ConvF(5.53, 5.53, 5.53); Calibrated: 31.12.2015, ConvF(5.18, 5.18, 5.18); Calibrated: 31.12.2015, ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.95, 4.95, 4.95); Calibrated: 31.12.2015, ConvF(4.95, 4.95, 4.95); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom Type: QD000P50AA
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.46 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.40 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Certificate No: D5GHzV2-1070_Mar16

Page 11 of 17

Test report No. : 11253019S-A Page : 139 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist-14mm (8-8-7)/Cyle 0.14

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.66 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.61 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.0 W/kg

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.14 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.0 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.07 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Certificate No: D5GHzV2-1070_Mar16

Page 12 of 17

Test report No. : 11253019S-A Page : 140 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Impedance Measurement Plot for Head TSL (5200, 5500, 5750)

Certificate No: D5GHzV2-1070_Mar16

Page 13 of 17

Test report No. : 11253019S-A Page : 141 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Impedance Measurement Plot for Head TSL (5250, 5600, 5800)

Certificate No: D5GHzV2-1070_Mar16

Page 14 of 17

Test report No. : 11253019S-A Page : 142 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

DASY5 Validation Report for Body TSL

Date: 10.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1070

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.43$ S/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.9$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.12$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 31.12.2015, ConvF(4.35, 4.35, 4.35); Calibrated: 31.12.2015, ConvF(4.3, 4.3, 4.3); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom Type: QD000P50AA
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.77 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 7.27 W/kg; SAR(10 g) = 2.06 W/kgMaximum value of SAR (measured) = 16.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.43 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.35 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Certificate No: D5GHzV2-1070_Mar16

Page 15 of 17

Test report No. : 11253019S-A Page : 143 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

0 dB = 17.9 W/kg = 12.53 dBW/kg

Test report No.: 11253019S-A

Page (End of Report)

: 144 of 144 (E : August 22, 2016 **Issued date**

FCC ID : YR7SKR3000P6

Appendix 3-10: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1070_Mar16

Page 17 of 17