Раздел 4. Проектирование проточной части камеры двигателя.

1. Определение размеров камеры сгорания.

1) Объем КС (на примере ЖРД).

ЛЕКЦИЯ № 34, 35.

Под объемом КС при проектировании понимается условный объем камеры двигателя до критического сечения сопла, т.е. объем собственно КС + объем докритической части сопла:

$$V_{K} = V_{II} + V_{BX}$$
 (см. рисунок), где $V_{K} - \text{условный объём КС,}$ $V_{K} - \text{условный объём КС}$

 $V_{{\it I}{\it I}}$ – объем КС (цилиндра),

 $V_{{\scriptscriptstyle BX}}$ – объем входной части сопла.

Теоретические методы определения $V_{\scriptscriptstyle K}$ отсутствуют, поэтому используют опытные данные. В РДТТ топливо размещается в КС, поэтому ее объем и форма выбираются из конструкторских и других соображений. Для определения $V_{\scriptscriptstyle K}$ ЖРД используются несколько методов:

- 1.По времени пребывания ПС в КС;
- 2. По приведенной длине КС;
- 3. Другие методы.

а) $V_{\scriptscriptstyle K}$ по времени пребывания.

$$au_{\it ПP} = \frac{M_{\it K}}{\dot{m}}$$
, где $M_{\it K}$ – масса продуктов сгорания в КС [кг], $au_{\it ПP}$ - условное время, необходимое для завершения всех процессов в КС (для ЖРД это распыливание, испарение, смешение, горение, в РДТТ – подогрев, горение и т.д.) Диапазон величины $au_{\it ПP} = 0.0015 \div 0.005 [c]$.

В курсовом проекте (для начала) принять $au_{\mathit{\PiP}} = 0,003c$.

$$M_{\scriptscriptstyle K} = V_{\scriptscriptstyle K} \rho_{\scriptscriptstyle K}$$
 , где $\rho_{\scriptscriptstyle K}$ - плотность ПС в КС. $\rho_{\scriptscriptstyle K} = \frac{p_{\scriptscriptstyle K}}{R_{\scriptscriptstyle K} \cdot T_{\scriptscriptstyle K}}$, подставим в $au_{\scriptscriptstyle \PiP}$:

$$au_{\mathit{\PiP}} = rac{M_{\mathit{K}}}{\dot{m}} = rac{V_{\mathit{K}} \cdot
ho_{\mathit{K}}}{\dot{m}} = rac{V_{\mathit{K}} \cdot p_{\mathit{K}}}{R_{\mathit{K}} \cdot T_{\mathit{K}} \cdot \dot{m}} \,. \,\,\,$$
 Отсюда $V_{\mathit{K}} = rac{ au_{\mathit{\PiP}} \cdot R_{\mathit{K}} \cdot T_{\mathit{K}} \cdot \dot{m}}{p_{\mathit{K}}} \,.$

б) $V_{\scriptscriptstyle K}$ по приведенной длине КС – $l_{\scriptscriptstyle HP}$.

 $l_{\it \PiP}$ – условная величина длины КС (см. рисунок).

$$l_{\Pi P} = \frac{V_K}{F_{KP}} \to V_K = l_{\Pi P} \cdot F_{KP}.$$

Для различных видов топлив величина $l_{\mathit{\PiP}}$ колеблется в диапазоне 0,5...2,5м.

 $l_{\mathit{\PiP}} = f\left(p_{\mathit{K}}\right)$ - с ростом p_{K} , а, значит, с повышением интенсивности рабочих процессов в КС объем V_{K} и $l_{\mathit{\PiP}}$ снижаются, но не линейно. Зависимость $au_{\mathit{\PiP}} = f\left(p_{\mathit{K}}\right)$ аналогичная.

в) связь между $au_{{\scriptscriptstyle \Pi}{\scriptscriptstyle P}}$ и $l_{{\scriptscriptstyle \Pi}{\scriptscriptstyle P}}$

 $V_{\scriptscriptstyle K}=f\left(au_{\scriptscriptstyle \Pi P}
ight)$ и $V_{\scriptscriptstyle K}=f\left(l_{\scriptscriptstyle \Pi P}
ight)$. В обоих случаях $V_{\scriptscriptstyle K}$ должен быть один и тот же, значит должна существовать однозначная связь между $l_{\scriptscriptstyle \Pi P}$ и $au_{\scriptscriptstyle \Pi P}$.

Известно, что:
$$l_{\mathit{\PiP}} = \frac{V_{\mathit{K}}}{F_{\mathit{KP}}}$$
, где $F_{\mathit{KP}} = \frac{m \beta}{p_{\mathit{K}}}$. И тогда

Отсюда
$$l_{\mathit{\PiP}} = \frac{V_{\scriptscriptstyle K} p_{\scriptscriptstyle K}}{\dot{m} oldsymbol{\beta}}$$
, где $oldsymbol{\beta} = \frac{\sqrt{R_{\scriptscriptstyle K} T_{\scriptscriptstyle K}}}{A_{\scriptscriptstyle K}}$, отсюда

$$l_{\it ПP} = rac{V_{\it K} \cdot p_{\it K} \cdot A_{\it K}}{\dot{m} \sqrt{R_{\it K} T_{\it K}}}$$
. Известно, что $V_{\it K} = rac{ au_{\it \PiP} \cdot R_{\it K} \cdot T_{\it K} \cdot \dot{m}}{p_{\it K}}$.

Отсюда
$$l_{\mathit{\PiP}} = \frac{ au_{\mathit{\PiP}} \cdot R_{\mathit{K}} \cdot T_{\mathit{K}} \cdot \dot{m} \cdot p_{\mathit{K}} \cdot A_{\mathit{K}}}{p_{\mathit{K}} \cdot \dot{m} \cdot \sqrt{R_{\mathit{K}} T_{\mathit{K}}}} = au_{\mathit{\PiP}} \sqrt{R_{\mathit{K}} T_{\mathit{K}}} \cdot A_{\mathit{K}} \,.$$

Так как $R_{\!\scriptscriptstyle K}, T_{\!\scriptscriptstyle K}, A_{\!\scriptscriptstyle K} = const\,$ для данных условий, то $l_{{\scriptscriptstyle \PiP}} = au_{{\scriptscriptstyle \PiP}} \cdot const\,$.

Задаваясь $l_{\mathit{\PiP}}$, $au_{\mathit{\PiP}}$ определим величину V_{K} .

2. Определение поперечных размеров КС.

Площадь поперечного сечения $F_{\scriptscriptstyle K}$ определяется с помощью её относительной площади $\overline{F}_{\scriptscriptstyle K}$, где

$$\overline{F}_{\scriptscriptstyle K} = rac{F_{\scriptscriptstyle K}}{F_{\scriptscriptstyle KP}}
ightarrow F_{\scriptscriptstyle K} = \overline{F}_{\scriptscriptstyle K} \cdot F_{\scriptscriptstyle KP}$$
. Величина $\overline{F}_{\scriptscriptstyle K}$ - берется из опыта, при этом $\overline{F}_{\scriptscriptstyle K} = 3...5$.

Если $\overline{F}_{\!\scriptscriptstyle K} < 3$ - КС неизобарическая, при $F_{\!\scriptscriptstyle K} = 1$ - камера называется скоростной.

При проектировании следует находиться во всех рекомендуемых диапазонах $au_{\mathit{\PiP}}, l_{\mathit{\PiP}}$, $\overline{F}_{\mathit{K}}$.

2) Проектирование дозвуковой части сопла.

Форма КС может быть цилиндрической, конической, сферической и комбинированной. Она выбирается из конструкторских и технологических соображений, эффективности рабочих процессов, прочности и др.

Форма дозвуковой части сопла бывает (см. рисунки):

• Конической, радиусной, радиусно-конической, либо задана по аналитическим зависимостям.

В курсовом проекте принимаем радиусную форму.

Профиль Витошинского (аналитическая зависимость):

$$y = \frac{R_{KP}}{\sqrt{1 - \left[1 - \left(\frac{R_{KP}}{R_K}\right)^2 \left[1 - \left(\frac{x}{l_{ex}}\right)^2\right]^2\right]}} \sqrt{1 + \frac{1}{3} \left(\frac{x}{l_{ex}}\right)^2\right]^3}$$

$$x,y$$
 - текущие координаты, R_{K},R_{KP} - из расчета, l_{ex} - выбирается $\left(l_{ex}\geq 2R_{K}\right)$.

Профиль Витошинского часто используется в РДТТ с «утопленным» соплом наряду с эллипсной формой. Кроме того, сопло Витошинского используется на стендах как расходомерное. Недостаток: большая длина.

Рассмотрим только один вариант профилирования докритической части камеры двигателя.

КС – цилиндр, днище – плоское, входная часть – радиусная.

Радиусная форма самая короткая при приемлемых потерях.

 R_{K} , R_{KP} - из расчета,

 R_1 , R_2 - задаются,

$$R_{\mathrm{l}}=f\left(\mu_{C}\right)$$
. Обычно $R_{\mathrm{l}}=2R_{\mathit{KP}}$,

$$R_2=f\left(p_{\scriptscriptstyle K}\right)$$
 При этом величину R_2 можно выразить через $ho_{\scriptscriptstyle K}=rac{R_2}{R_{\scriptscriptstyle K}}$:

если
$$p_K \le 4M\Pi a \rightarrow \rho_K = 1$$
,

если
$$p_{\scriptscriptstyle K}=4\dots 20$$
МПа $ightarrow
ho_{\scriptscriptstyle K}=0,25\cdot p_{\scriptscriptstyle K}$ (где $p_{\scriptscriptstyle K}$ в МПа),

если . $p_4 > 20M\Pi a \rightarrow \rho_{\scriptscriptstyle K} = 5$ (но может быть и меньше).

Рабочие формулы при проектировании:

$$l_{ex} = R_{KP} \sqrt{\left(2 + \rho_K \sqrt{F_K}\right)^2 - \left[\left(\rho_K - 1\right)\sqrt{\overline{F}_K} + 3\right]^2},$$

$$H=l_{_{ex}}-h$$
 ; $h=rac{2l_{_{ex}}}{2+
ho_{_{K}}\sqrt{\overline{F}_{_{K}}}}$, $y=rac{R_{_{KP}}}{l_{_{ex}}}\Big(h\sqrt{\overline{F}_{_{K}}}+H\Big)$ - координаты точки сопряжения

двух окружностей,

$$l_{_{I\!I}}=rac{V_{_{I\!I}}}{F_{_{K}}}=rac{V_{_{K}}-V_{_{B\!X}}}{F_{_{K}}},\,V_{_{B\!X}}=?\,,$$
где $V_{_{B\!X}}$ - объем входной дозвуковой части.

$$V_{BX} = \frac{1}{6} F_{KP} \left[2H \left(2\overline{F}_K + \overline{y}^2 \right) + h \left(\overline{y}^2 + \overline{y} + 4 \right) \right],$$
 где $\overline{y} = \frac{y}{R_{KP}}$

Для радиусного сопла все формулы, кроме $V_{{\scriptscriptstyle BX}}$, являются точными. Поверхность входной части криволинейная, поэтому ее объем можно вычислить точно, но только путем интегрирования. Здесь дана приближенная формула для $V_{{\scriptscriptstyle BX}}$.

3) Проектирование сверхзвуковой части сопла.

Цель проектирования – получение наибольшего значения $I_{v_{\max}}$ при минимальных габаритах. контура Выбор определяется тактико-техническими, технологическими и экономическими требованиями к двигателю и всей ракете.

а) виды контуров

Конический (см. рисунок):

 $oldsymbol{eta}$ – угол полураствора сопла,

M - точка сопряжения контуров, $x_a = x_1 + x_2 -$ длина сверхзвуковой части,

 x_1 — криволинейный участок (чаще - радиусный),

 x_1 – конический участок.

 $(B \ курсовом \ проекте \ точка \ M \ «стоит» в критическом сечении).$

Оптимизацию угла растворов конического сопла изложена выше. Преимущества: простота и дешевизна изготовления. Недостатки: большие продольные габариты, чем у профилированного контура и большие потери I_y . Используется для тактических и оперативных ракет (малых и средних).

Профилированный (см. рисунок):

Сверхзвуковая часть сопла представляет собой криволинейную поверхность, образованную вращением контура вокруг оси сопла. Контур участка x_2 близок к параболе и определяется, как правило, методом характеристик. Преимущества и недостатки соответственно противоположны коническим соплам. Здесь:

 $oldsymbol{eta}_a$ — угол между касательной к контуру на срезе и осью сопла, $oldsymbol{eta}_a$ = 6...9°,

 $oldsymbol{eta}_{\scriptscriptstyle m}$ – максимальный угол наклона профиля к оси сопла,

M – точка сопряжения контуров.

Если перенести точку M в критическое сечение, то получится предельный случай профилированного контура. Такое сопло называется соплом с угловым входом (угловой точкой) в критическом сечении (см. рисунок). Очевидно, что это самое короткое сопло при F_{KP} , F_a , β_a = const (это преимущество).

Недостаток: большие потери за счет вихревого отрывного течения за критическим сечением.

б) приближенное проектирование сверхзвуковой части сопла с угловым входом (точкой) в критическом сечении

Типовые исходные данные:

 $n, R_{\kappa p}, R_a$ – из расчета, $oldsymbol{eta}_a$ – выбирается из рекомендуемого диапазона,

 x_a, β_m — неизвестные, для их определения проводятся предварительные расчеты контуров на ЭВМ, результаты сводятся в таблицах и графиках.

Для курсового проекта взять таблицу 10.3 в книге Кудрявцева В.М. Для пользования таблицей нужно знать: $n, \beta_a \ u \ \overline{\mathrm{D}}_a = \frac{D_a}{D_{\kappa p}}$. Отсюда по таблице $\to \overline{x}_a \ u \ \beta_m, \ \beta_m$ – в

радианах (перевести в градусы), где
$$\overline{x}_a = \frac{x_a}{R_{\kappa p}}, \longrightarrow x_a = \overline{x}_a \ R_{\kappa p}$$
 .

Построение контура

- 1. Проводится ось сопла,
- 2. Откладывается длина x_a ,
- 3. На концах длины откладываются радиусы $R_{\kappa p}$, R_a
- 4. Строятся лучи под углами β_m, β_a ,
- 5. Лучи разбиваются на участки равное число и их нумерация,
- 6. Соединить одноименные точки,

7. Проводится огибающая кривая.

Для принятия граничных условий данная кривая близка к параболе.

При выборе величины $oldsymbol{eta}_a$ следует учитывать, что чем меньше p_a или чем больше

$$rac{F_a}{F_{_{\!\scriptscriptstyle K\!P}}}$$
, тем больше выбирается $\,oldsymbol{eta}_a^{}$.

в) исходное, укороченное и оптимальное сопло

1. Исходное сопло

Исходное (базовое) сопло с заданной площадью среза — это сопло с одномерным потоком на выходе ($\beta_a = 0$). В ракетных двигателях оно не используется из-за габаритов и массы, и применяется для создания одномерного сверхзвукового потока в аэродинамических трубах.

2. Укороченное стендовое сопло

Это сопло, получаемое простым уменьшением длины исходного сопла $\beta_1 > \beta_2 > \beta_3$. Такие сопла используются на ранней стадии стендовой отработки двигателя (или камеры), исходя из экономических соображений, без использования эжектора (газодинамической трубы). Например: если измерение P требуется, то для высотного двигателя на Земле это невозможно без дорогостоящего эжектора. Он предназначен для создания на срезе сопла пониженного давления, при котором в сопло не входит скачок уплотнения. Здесь к измеренной на стенде тяге камеры с укороченным соплом добавляется расчетное значение доли тяги, которую могла бы дать отрезанная часть сопла.

3. Искомое укороченное сопло

Все искомые сопла получены из исходных путем укорочения единственно возможного исходного сопла так, чтобы $F_a = F_{a_{sadau}}, \beta_a = \beta_{a_{sadau}}$.

Для выполнения обоих условий нужно из всех расчетных исходных контуров с заведомо большей F_a выбрать единственный, который удовлетворяет не только F_a , но и $\pmb{\beta}_a$.

4. Оптимальное сопло

- 1- тяга без учета трения,
- 2- тяга с учетом трения,
- 3 контур сопла,
- 4- тяга исходного сопла,
- 5- тяга оптимального сопла.

г) схема течения в сопле с исходным контуром ($\beta_a = 0$)

Исходные контуры определяются в расчетах методом характеристик. Результаты расчетов сведены в таблицы в относительных координатах контура. Однако, это справедливо лишь для газового потока в ЖРД. Для РДТТ при наличии в потоке К-фазы используются специальные программы профилирования сопл, предотвращающие высадку К-фазы на стенку.

Характеристика — это бесконечно слабая волна разряжения, при переходе через которую изменяется и величина, и направление скорости. Эти характеристики возможны только в сверхзвуковом потоке. Использование характеристик в расчетах — это условный прием, позволяющий получить достаточно точный контур сопла.

Рассмотрим упрощенные схемы течения в обычном сопле и сопле с угловой точкой в критическом сечении (см. рисунки).

Схема течения с исходным контуром ($\beta_a = 0$)

а) Обычное сопло

б) Сопло с угловой точкой

МВ - характеристики разрежения,

M,M, - входная характеристика ($W=W_{\kappa p}$),

 $M_{a}B_{a}^{'},M_{a}^{'}B_{a}^{}$ - выходная, последняя характеристика ($W=W_{a}$),

ň. M_a , $M_a^{'}$ - точка перегиба профиля ($\beta=oldsymbol{eta}_m$),

ň. $\acute{\mathbf{R}}$ - скорость потока равна W_a ,

1) - область дозвукового течения ($W < W_{_{\! \kappa p}}$),

2) - $M_{\cdot}M_{a}AM_{\cdot a}M_{\cdot a}$ - область предварительного расширения,

3) - $M_{a}B_{a}AB_{a}M_{a}$ - область выравнивания потока,

4) – $B_a A B_a^{\ '}$ - область одномерного потока ($W=W_a$).