CM095 – Análise I Prof. Hudson Lima

Lista 03 - Entrega: (quarta-feira) 17/10/2018

- Resolva os seguintes exercícios do Capítulo 4 do livro Curso de Análise vol.I.: 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 20, 21, 22, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45. A nota máxima desta lista é $(1+2+\cdots+N)$, onde N é o número de questões na lista.
- O valor individual das questões coincide com o número que ela corresponde. Desta forma, a questão 1 vale 1 ponto, a questão 2 vale 2 pontos, e assim por diante.
- 1. (q.01) Se $\lim x_n = a$ então $\lim |x_n| = |a|$. Dê um contra-exemplo mostrando que a recíproca é falsa, salvo quando a = 0.
- 2. (q.02) Seja $\lim x_n = 0$. Para cada n, ponha $y_n = \min\{|x_1|, |x_2|, ..., |x_n|\}$. Prove que $y_n \to 0$.
- 3. (q.03) Se $\lim x_{2n} = a$ e $\lim x_{2n-1} = a$, prove que $\lim x_n = a$.
- 4. (q.04) Se $\mathbb{N} = \mathbb{N}_1 \cup \mathbb{N}_2 \cup \cdots \cup \mathbb{N}_k$ e $\lim_{n \in \mathbb{N}_1} x_n = \lim_{n \in \mathbb{N}_2} x_n = \cdots = \lim_{n \in \mathbb{N}_k} x_n = a$, então, $\lim_{n \in \mathbb{N}} x_n = a$.
- 5. (q.05) Dê exemplo de uma sequência (x_n) e uma decomposição $\mathbb{N} = \mathbb{N}_1 \cup \mathbb{N}_2 \cup \cdots \cup \mathbb{N}_k \cup \cdots$ de \mathbb{N} como uma reunião de uma infinidade de conjuntos infinitos tais que, para todo k, a subsequência $(x_n)_{n \in \mathbb{N}_k}$ tenha limite a, mas não se tem $\lim x_n = a$.
- 6. (q.10) Sejam $k \in \mathbb{N}$ e a > 0. Se $a \leq x_n \leq n^k$ para todo n, então $\lim \sqrt[n]{x_n} = 1$.
- 7. (q.11) Use a desigualdade entre as médias aritmética e geométrica dos n+1 números 1-1/n, 1-1/n, ..., 1-1/n, 1 e prove que a seqüência $(1-1/n)^n$ é crescente. Conclua que $(1-1/n)^n \ge 1/4$ para todo n > 1. Sejam $x_n = (1+1/n)^n$ e $y_n = (1-1/(n+1))^{n+1}$. Mostre que $\lim x_n y_n = 1$ e deduza daí que $\lim (1-1/n)^n = e^{-1}$.

8. (q.12) Fazendo $y=x^{\frac{1}{k}}$ e $b=a^{\frac{1}{k}}$ na identidade

$$y^{k} - b^{k} = (y - b) \cdot \sum_{i=0}^{k-1} y^{i} b^{k-i-1}$$

obtenha $(x-a)=(x^{\frac{1}{k}}-a^{\frac{1}{k}})\sum_{i=0}^{k-1}x^{\frac{i}{k}}a^{1-\frac{i+1}{k}}$ e use isto para provar que se $\lim x_n=a$, então $\lim \sqrt[k]{x_n}=\sqrt[k]{a}$. Conclua, daí, que $\lim (x_n)^r=a^r$ para todo r racional.

- 9. (q.13) Prove que para todo $r \in \mathbb{Q}$, tem-se $\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n = e^r$.
- 10. (q.14) Seja $a \ge 0, b \ge 0$. Prove que $\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = \max\{a, b\}$.
- 11. (q.20) Seja $x_1=1$ e defina $x_{n+1}=1+\frac{1}{x_n}$. Verifique que $|x_{n+2}-x_{n+1}|\leq \frac{1}{2}|x_{n+1}-x_n|$. Conclua que existe $a=\lim x_n$ e determine a. Vocês veem Fibonacci?
- 12. (q.21) Ponha $x_1 = 1$ e defina $x_{n+1} = 1 + \sqrt{x_n}$. Mostre que a seqüência (x_n) , assim definida, é limitada. Determine $a = \lim x_n$.
- 13. (q.22) A fim de que a sequência (x_n) não possua subsequência convergente é necessário e suficiente que $\lim |x_n| = +\infty$.
- 14. (q.25) Seja $x_n \neq 0$ para todo $n \in \mathbb{N}$. Se existirem $n_0 \in \mathbb{N}$ e $c \in \mathbb{R}$ tais que $0 < \left|\frac{x_{n+1}}{x_n}\right| \leq c < 1$ para todo $n > n_0$, então $\lim |x_n| = 0$. Se, porém, $\left|\frac{x_{n+1}}{x_n}\right| \geq c > 1$, então $\lim |x_n| = +\infty$. Como aplicação, reobtenha os Exemplos 21 e 22 e mostre que $\lim \frac{n!}{n^n} = 0$.
- 15. (q.27) Se $\lim x_n = a$, pondo $y_n = \frac{x_1 + \dots + x_n}{n}$, tem-se ainda $\lim y_n = a$.
- 16. (q.28) Se $\lim x_n = a$ e os x_n são todos positivos, então $\lim \sqrt[n]{x_1 x_2 \cdots x_n} = a$. [Sugestão: Tome logarítmo e reduza ao problema aterior.] Conclua que se $a_n > 0$ e $\lim \frac{a_{n+1}}{a_n} = a$, então $\lim \sqrt[n]{a_n} = a$.
- 17. (q.29) Seja $y_n > 0$ para todo $n \in \mathbb{N}$, com $\sum y_n = +\infty$. Se $\lim \frac{x_n}{y_n} = a$, então $\lim \frac{x_1 + x_2 + \dots + x_n}{y_1 + y_2 + \dots + y_n} = a$.
- 18. (q.30) Se (y_n) é crescente e $\lim y_n = +\infty$, então $\lim \frac{x_{n+1} x_n}{y_{n+1} y_n} = a \Rightarrow \lim \frac{x_n}{y_n} = a$. (Use o exercício anterior.)

- 19. (q.32) Para todo $n \in \mathbb{N}$ tem-se $0 < e (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}) < \frac{1}{n \cdot n!}$. Conclua daí que o número e é irracional.
- 20. (q.33) $\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)...2n} = \frac{4}{e}$. (Use o final do Exercício 28.)
- 21. (q.34) Prove que se definirmos a_n pela igualdade $n! = n^n \cdot e^{-n} \cdot a_n$, teremos $\lim \sqrt[n]{a_n} = 1$.
- 22. (q.35) Sejam $\sum a_n$ e $\sum b_n$ séries de termos positivos. Se $\sum b_n = +\infty$ e existe $n_0 \in \mathbb{N}$ tal que $\frac{a_{n+1}}{a_n} \ge \frac{b_{n+1}}{b_n}$ para todo $n > n_0$, então $\sum a_n = +\infty$.
- 23. (q.36) Sejam $\sum a_n$ e $\sum b_n$ séries de termos positivos. Se $\lim \frac{a_n}{b_n} = 0$ e $\sum b_n$ converge, então $\sum a_n$ converge. Se $\lim \frac{a_n}{b_n} = c \neq 0$, então $\sum a_n$ converge se, e somente se, $\sum b_n$ converge.
- 24. (q.37) Para todo polinômio p(x) de grau superior a 1, a série $\sum \frac{1}{p(n)}$ converge.
- 25. (q.40) Prove que, para todo $a \in \mathbb{R}$, a série $a^2 + \frac{a^2}{1+a^2} + \frac{a^2}{(1+a^2)^2} + \cdots$ é convergente e calcule sua soma.
- 26. (q.41) Para todo $p \in \mathbb{N}$ fixado, a série $\sum \frac{1}{n(n+1)\dots(n+p)}$ converge.
- 27. (q.42) Se $\sum a_n$ converge e $a_n > 0$, então $\sum (a_n)^2$ e $\sum \frac{a_n}{1+a_n}$ convergem.
- 28. (q.43) Se $\sum (a_n)^2$ converge, então $\sum \frac{a_n}{n}$ converge.
- 29. (q.44) Se (a_n) é decrescente e $\sum a_n$ converge, então $\lim n \cdot a_n = 0$.
- 30. (q.46) Seja (a_n) uma sequência não-crescente, com $\lim a_n=0$. A série $\sum a_n$ converge se, e somente se, $\sum 2^n a_{2^n}$ converge.