Figure 1: DNA and protein sequence of A. calcoaceticus s-GDH (without signalpeptide)

5	1 GATGTTCCTCTAACTCCATCTCAATTTGCTAAAGCGAAATCAGAGAACTT 50
10	51 TGACAAGAAAGTTATTCTATCTAAATCTAAATAAGCCGCACGCGTTGTTAT 100
15	101 GGGGACCAGATAATCAAATTTGGTTAACTGAGCGAGCAACAGGTAAGATT 150
20	
	201 AGAGATTGTCAATGATGCTGATGGGCAGAATGGTTTATTAGGTTTTGCCT 250
25	251 TCCATCCTGATTTTAAAAATAATCCTTATATCTATATTTCAGGTACATTT 300
30	301 AAAAATCCGAAATCTACAGATAAAGAATTACCGAACCAAACGATTATTCG 350
35	351 TCGTTATACCTATAATAAATCAACAGATACGCTCGAGAAGCCAGTCGATT 400
40	401 TATTAGCAGGATTACCTTCATCAAAAGACCATCAGTCAGGTCGTCTTGTC 450
45	451 ATTGGGCCAGATCAAAAGATTTATTATACGATTGGTGACCAAGGGCGTAA 500
43	501 CCAGCTTGCTTATTTGTTCTTGCCAAATCAAGCACAACATACGCCAACTC 550
50	185 lnGlnGluLeuAsnGlyLysAspTyrHisThrTyrMetGlyLysValLeu 200 601 CGCTTAAATCTTGATGGAAGTATTCCAAAGGATAATCCAAGTTTTAACGG 650
55	201 ArgLeuAsnLeuAspGlySerIleProLysAspAsnProSerPheAsnGl 217 651 GGTGGTTAGCCATATTTATACACTTGGACATCGTAATCCGCAGGGCTTAG 700
60	

	rigure i	.: continued (second and last page)	
5		GACGATGAAATTAACCTCATTGTCAAAGGTGGCAATTATGGTTGGCCGAA	
		TGTAGCAGGTTATAAAGATGATAGTGGCTATGCTTATGCAAATTATTCAG	
10			
10		CAGCAGCCAATAAGTCAATTAAGGATTTAGCTCAAAATGGAGTAAAAGTA	
	285		300
15	901	GCCGCAGGGTCCCTGTGACGAAAGAATCTGAATGGACTGGTAAAAACTT	950
	301		317
20	951	TGTCCCACCATTAAAAACTTTATATACCGTTCAAGATACCTACAACTATA	1000
20	318		334
	1001	ACGATCCAACTTGTGGAGAGATGACCTACATTTGCTGGCCAACAGTTGCA	1050
25	335	snAspProThrCysGlyGluMetThrTyrIleCysTrpProThrValAla	350
	1051	CCGTCATCTGCCTATGTCTATAAGGGCCGTAAAAAAGCAATTACTGGTTG	1100
30	351	ProSerSerAlaTyrValTyrLysGlyGlyLysLysAlaIleThrGlyTr	367
	1101	GGAAAATACATTATTGGTTCCATCTTTAAAACGTGGTGTCATTTTCCGTA	1150
	368	pGluAsnThrLeuLeuValProSerLeuLysArgGlyValIlePheArgI	384
35		TTAAGTTAGATCCAACTTATAGCACTACTTATGATGACGCTGTACCGATG	
		leLysLeuAspProThrTyrSerThrThrTyrAspAspAlaValProMet	
40		TTTAAGAGCAACCGTTATCGTGATGTGATTGCAAGTCCAGATGGGAA	
		PheLysSerAsnAsnArgTyrArgAspValIleAlaSerProAspGlyAs	
45		TGTCTTATATGTATTAACTGATACTGCCGGAAATGTCCAAAAAGATGATG	
43		nValLeuTyrValLeuThrAspThrAlaGlyAsnValGlnLysAspAspG	
		GCTCAGTAACAAATACATTAGAAAACCCAGGATCTCTCATTAAGTTCACC	
50		lySerValThrAsnThrLeuGluAsnProGlySerLeuIleLysPheThr TATAAGGCTAAG 1362	450
		TATAGGCTAAG 1362	

Figure 2: Amino acid sequences of A. calcoaceticus (top) and A. baumannii (bottom) 5 1 DVPLTPSQFAKAKSENFDKKVILSNLNKPHALLWGPDNQIWLTERATGKI 50 1 DIPLTPAQFAKAKTENFDKKVILSNLNKPHALLWGPDNQIWLTERATGKI 50 51 LRVNPESGSVKTVFQVPEIVNDADGQNGLLGFAFHPDFKNNPYIYISGTF 100 10 51 LRVNPVSGSAKTVFQVPEIVSDADGQNGLLGFAFHPDFKHNPYIYISGTF 100 101 KNPKSTDKELPNQTIIRRYTYNKSTDTLEKPVDLLAGLPSSKDHQSGRLV 150 15 101 KNPKSTDKELPNQTIIRRYTYNKTTDTFEKPIDLIAGLPSSKDHQSGRLV 150 151 IGPDQKIYYTIGDQGRNQLAYLFLPNQAQHTPTQQELNGKDYHTYMGKVL 200 151 IGPDQKIYYTIGDQGRNQLAYLFLSNQAQHTPTQQELNSKDYHTYMGKVL 200 20 201 RLNLDGSIPKDNPSFNGVVSHIYTLGHRNPQGLAFTPNGKLLQSEQGPNS 250 201 RLNLDGSIPKDNPSFNGVVSHIYTLGHRNPQGLAFAPNGKLLQSEQGPNS 250 25 251 DDEINLIVKGGNYGWPNVAGYKDDSGYAYANYSAAANKS.IKDLAQNGVK 299 251 DDEINLVLKGGNYGWPNVAGYKDDSGYAYANYSAATNKSQIKDLAQNGIK 300 300 VAAGVPVTKESEWTGKNFVPPLKTLYTVQDTYNYNDPTCGEMTYICWPTV 349 30 301 VATGVPVTKESEWTGKNFVPPLKTLYTVQDTYNYNDPTCGEMAYICWPTV 350 350 APSSAYVYKGGKKAITGWENTLLVPSLKRGVIFRIKLDPTYSTTYDDAVP 399 35 351 APSSAYVYTGGKKAIPGWENTLLVPSLKRGVIFRIKLDPTYSTTLDDAIP 400 400 MFKSNNRYRDVIASPDGNVLYVLTDTAGNVQKDDGSVTNTLENPGSLIKF 449 401 MFKSNNRYRDVIASPEGNTLYVLTDTAGNVQKDDGSVTHTLENPGSLIKF 450 40 450 TYKAK 454

451 TYNGK 455

Figure 3: Schematic diagram of the plasmide with gene for $s\mbox{-}GDH$

Figure 4: Nucleotide (DNA) sequence of the pACSGDH vector 1 CACTAACTGA TTACGCACCG CATGTAACCG TTTTCAATCT GTGAGTAAAT 5 51 TCACAGTTTA TTAACATTGT GATAGCTATG ATGACAACGT TTGTCGCACT 101 GTAACTAACG TGTAACAGTT AGTTGTCAGT TTTGCTGGGG TATTTCGCTT 151 ATAAAAACCG TTATCACAAT ATCCCGCGAC TACCGGACAA AAATAAAGAG 10 TTGAATAAGA GCTTATCCCA TTAGGGCTAT TTTACTTGCC ATTTTGGACC 201 TGGGCAGTGC TCGCCAAAAC GCGTTAGCGT TTTGAACGCG CTAGCGGCGG 15 301 CCCGAAGGGC GAGCGTAGCG AGTCAAACCT CACGTACTAC GTGTACGCTC 351 CGGTTTTTGC GCGCTGTCCG TGTCCAAACT GCTGCGCCAA TAACGCCTGG TGGGATAGGC TCTAAATACG CTTCGGCGTT CAGTAACACG CGTTAACGTG 401 20 CTGAACAGCC GGGCATTTTT TTACGCTATA CCCTACATAA TAAAACCGGA 501 GCTACCATGA ATAAGAAGGT ACTGACCCTT TCTGCCGTGA TGGCAAGTCT 25 GTTATTCGGC GCGCACGCGC ATGCCGCCGA TGTTCCTCTA ACTCCATCTC 551 AATTTGCTAA AGCGAAATCA GAGAACTTTG ACAAGAAAGT TATTCTATCT AATCTAAATA AGCCGCACGC GTTGTTATGG GGACCAGATA ATCAAATTTG 30 701 GTTAACTGAG CGAGCAACAG GTAAGATTCT AAGAGTTAAT CCAGAGTCGG 751 GTAGTGTAAA AACAGTTTTT CAGGTACCAG AGATTGTCAA TGATGCTGAT 35 GGGCAGAATG GTTTATTAGG TTTTGCCTTC CATCCTGATT TTAAAAATAA TCCTTATATC TATATTTCAG GTACATTTAA AAATCCGAAA TCTACAGATA 851 901 AAGAATTACC GAACCAAACG ATTATTCGTC GTTATACCTA TAATAAATCA 40 ACAGATACGC TCGAGAAGCC AGTCGATTTA TTAGCAGGAT TACCTTCATC 1001 AAAAGACCAT CAGTCAGGTC GTCTTGTCAT TGGGCCAGAT CAAAAGATTT 45 1051 ATTATACGAT TGGTGACCAA GGGCGTAACC AGCTTGCTTA TTTGTTCTTG 1101 CCAAATCAAG CACAACATAC GCCAACTCAA CAAGAACTGA ATGGTAAAGA 1151 CTATCACACC TATATGGGTA AAGTACTACG CTTAAATCTT GATGGAAGTA 50 1201 TTCCAAAGGA TAATCCAAGT TTTAACGGGG TGGTTAGCCA TATTTATACA CTTGGACATC GTAATCCGCA GGGCTTAGCA TTCACTCCAA ATGGTAAATT 1251 55 ATTGCAGTCT GAACAAGGCC CAAACTCTGA CGATGAAATT AACCTCATTG 1301 1351 TCAAAGGTGG CAATTATGGT TGGCCGAATG TAGCAGGTTA TAAAGATGAT 1401 AGTGGCTATG CTTATGCAAA TTATTCAGCA GCAGCCAATA AGTCAATTAA 60 1451 GGATTTAGCT CAAAATGGAG TAAAAGTAGC CGCAGGGGTC CCTGTGACGA 1501 AAGAATCTGA ATGGACTGGT AAAAACTTTG TCCCACCATT AAAAACTTTA

	Figure 4:	Continued	(second out	of three pa	ages)	
	1551	TATACCGTTC	AAGATACCTA	CAACTATAAC	GATCCAACTT	GTGGAGAGAT
5	1601	GACCTACATT	TGCTGGCCAA	CAGTTGCACC	GTCATCTGCC	TATGTCTATA
	1651	AGGGCGGTAA	AAAAGCAATT	ACTGGTTGGG	AAAATACATT	ATTGGTTCCA
10	1701	TCTTTAAAAC	GTGGTGTCAT	TTTCCGTATT	AAGTTAGATC	CAACTTATAG
	1751	CACTACTTAT	GATGACGCTG	TACCGATGTT	TAAGAGCAAC	AACCGTTATC
	1801	GTGATGTGAT	TGCAAGTCCA	GATGGGAATG	TCTTATATGT	ATTAACTGAT
15	1851	ACTGCCGGAA	ATGTCCAAAA	AGATGATGGC	TCAGTAACAA	ATACATTAGA
	1901	AAACCCAGGA	TCTCTCATTA	AGTTCACCTA	TAAGGCTAAG	TAATACAGTC
20	1951	GCATTAAAAA	ACCGATCTAT	AAAGATCGGT	TTTTTTAGTT	TTAGAAAAGA
	2001	ATTCACTGGC	CGTCGTTTTA	CAACGTCGTG	ACTGGGAAAA	CCCTGGCGTT
	2051	ACCCAACTTA	ATCGCCTTGC	AGCACATCCC	CCTTTCGCCA	GCTGGCGTAA
25	2101	TAGCGAAGAG	GCCCGCACCG	ATCGCCCTTC	CCAACAGTTG	CGCAGCCTGA
	2151	ATGGCGAATG	GCGCCTGATG	CGGTATTTTC	TCCTTACGCA	TCTGTGCGGT
30	2201	ATTTCACACC	GCATATGGTG	CACTCTCAGT	ACAATCTGCT	CTGATGCCGC
50	2251	ATAGTTAAGC	CAGCCCCGAC	ACCCGCCAAC	ACCCGCTGAC	GCGCCCTGAC
	2301	GGGCTTGTCT	GCTCCCGGCA	TCCGCTTACA	GACAAGCTGT	GACCGTCTCC
35	2351	GGGAGCTGCA	TGTGTCAGAG	GTTTTCACCG	TCATCACCGA	AACGCGCGAG
	2401	ACGAAAGGGC	CTCGTGATAC	GCCTATTTT	ATAGGTTAAT	GTCATGATAA
40	2451	TAATGGTTTC	TTAGACGTCA	GGTGGCACTT	TTCGGGGAAA	TGTGCGCGGA
10	2501	ACCCCTATTT	GTTTATTTTT	CTAAATACAT	TCAAATATGT	ATCCGCTCAT
	2551	GAGACAATAA	CCCTGATAAA	TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA
45	2601	TGAGTATTCA	ACATTTCCGT	GTCGCCCTTA	TTCCCTTTTT	TGCGGCATTT
	2651	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	CTGGTGAAAG	TAAAAGATGC
50	2701	TGAAGATCAG	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	GATCTCAACA
30	2751	GCGGTAAGAT	CCTTGAGAGT	TTTCGCCCCG	AAGAACGTTT	TCCAATGATG
	2801	AGCACTTTTA	AAGTTCTGCT	ATGTGGCGCG	GTATTATCCC	GTATTGACGC
55	2851	CGGGCAAGAG	CAACTCGGTC	GCCGCATACA	CTATTCTCAG	AATGACTTGG
	2901	TTGAGTACTC	ACCAGTCACA	GAAAAGCATC	TTACGGATGG	CATGACAGTA
60	2951	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	AGTGATAACA	CTGCGGCCAA
	3001	CTTACTTCTG	ACAACGATCG	GAGGACCGAA	GGAGCTAACC	GCTTTTTTGC
	3051	ACAACATGGG	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG

	Figure 4:	Continued	(third and)	last p	age)	
	3101	AATGAAGCCA	TACCAAACGA	CGAGCGTGAC	ACCACGATGC	CTGTAGCAAT
5	3151	GGCAACAACG	TTGCGCAAAC	TATTAACTGG	CGAACTACTT	ACTCTAGCTT
	3201	CCCGGCAACA	ATTAATAGAC	TGGATGGAGG	CGGATAAAGT	TGCAGGACCA
10	3251	CTTCTGCGCT	CGGCCCTTCC	GGCTGGCTGG	TTTATTGCTG	ATAAATCTGG
10	3301	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT	TGCAGCACTG	GGGCCAGATG
	3351	GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAG	TCAGGCAACT
15	3401	ATGGATGAAC	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA
	3451	GCATTGGTAA	CTGTCAGACC	AAGTTTACTC	ATATATACTT	TAGATTGATT
20	3501	TAAAACTTCA	TTTTTAATTT	AAAAGGATCT	AGGTGAAGAT	CCTTTTTGAT
	3551	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	TTTTCGTTCC	ACTGAGCGTC
	3601	AGACCCCGTA	GAAAAGATCA	AAGGATCTTC	TTGAGATCCT	TTTTTTCTGC
25	3651	GCGTAATCTG	CTGCTTGCAA	ACAAAAAAAC	CACCGCTACC	AGCGGTGGTT
	3701	TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT
30	3751	CAGCAGAGCG	CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG
	3801	GCCACCACTT	CAAGAACTCT	GTAGCACCGC	CTACATACCT	CGCTCTGCTA
	3851	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	GATAAGTCGT	GTCTTACCGG
35	3901	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	TCGGGCTGAA
	3951	CGGGGGGTTC	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA
40	4001	CTGAGATACC	TACAGCGTGA	GCTATGAGAA	AGCGCCACGC	TTCCCGAAGG
	4051	GAGAAAGGCG	GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC
	4101	GCACGAGGGA	GCTTCCAGGG	GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC
45	4151	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	TTTTTGTGAT	GCTCGTCAGG
	4201	GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCGGCCTTT	TTACGGTTCC
50	4251	TGGCCTTTTG	CTGGCCTTTT	GCTCACATGT	TCTTTCCTGC	GTTATCCCCT
-	4301	GATTCTGTGG	ATAACCGTAT	TACCGCCTTT	GAGTGAGCTG	ATACCGCTCG
	4351	CCGCAGCCGA	ACGACGGGGC	CCG		