模拟电路与数字电路习题一

绪论与电路原理概论

题 一 、 如 图 所 示 电 路 。 已 知 $u_s=220\sqrt{2}\sin(\omega t+\varphi)$, R=110 Ω , C=16 μ F, L=1H。求:

- 1. 输入阻抗 $Z = \frac{\dot{U}_s}{i}$;
- 2. 谐振频率 ω_0 ;
- 3. 当 ω =250 rad/s 时,电流表 A1 和 A2 的读数(有效值)。

解: 1、Z = R + R||
$$\left(j\omega L + \frac{1}{j\omega C}\right)$$
 = R + $\frac{R\left(j\omega L + \frac{1}{j\omega C}\right)}{R + j\omega L + \frac{1}{j\omega C}}$ = R + $\frac{jR\left(\omega L - \frac{1}{\omega C}\right)}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$

Z = R + $\frac{jR\left(\omega L - \frac{1}{\omega C}\right)\left(R - j\left(\omega L - \frac{1}{\omega C}\right)\right)}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$

= R + $\frac{R\left(\omega L - \frac{1}{\omega C}\right)^2}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} + j\frac{R^2\left(\omega L - \frac{1}{\omega C}\right)}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$

$$Z = R\left(1 + \frac{\left(\omega L - \frac{1}{\omega C}\right)^{2}}{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}} + j\frac{R\left(\omega L - \frac{1}{\omega C}\right)}{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}\right)$$

2、发生谐振时,虚部为 0: $\omega L = \frac{1}{\omega C} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}; Z = R$ $\omega_0 = \frac{1}{\sqrt{16 \times 10^{-6} \times 1}} = \frac{1}{4} \times 10^3 = 250 \, (\text{rad/s})$

3、当ω=250 rad/s 时,发生串联谐振,LC 支路阻抗为 0,压降为 0 (电感与电容两端压降正好大小相等,方向相反,所以相互抵消),电流表 A2 读数为 0,电流表 A1 读数为 220/110=2 (A)。

题二、图示电路,欲使 \dot{U}_c 滞后于 \dot{U}_s 45°,求RC与 ω 之间的关系。

解:
$$\dot{U}_C = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} \dot{U}_S = \frac{1}{1 + j\omega RC} \dot{U}_S = \frac{1}{\sqrt{1 + (\omega RC)^2}} \dot{U}_S \angle - \arctan(\omega RC)$$
 滞后 45° , 所以: $-\arctan(\omega RC) = -\frac{\pi}{4} \Rightarrow \omega RC = 1$; $\omega = \frac{1}{RC}$ 题三、电路如图所示,求电压 U_{ab} 。

解: 根据 5Ω电阻上压降为 10V, 电流为 0.9 I_1 , 所以有 $0.9I_1 \times 5 = 10$ 。

得: I₁=2/0.9(A)。根据 KCL,在节点 a, I₂b=I₁-0.9I₁=0.1I₁=2/9(A)
U₂b=I₂b•R₂b=4×2/9=8/9(V)

题四:列出图示电路的结点电压方程和网孔电流方程。

解:如图选取节点与网孔。网孔电流顺时针方向。

1、节点电压方程如下。

$$a: \frac{U_a - 2}{5} + \frac{U_a - U_b}{5} + \frac{U_a - U_c}{10} = 0$$

b:
$$\frac{U_b - U_a}{5} + \frac{U_b - U_c}{4} + \frac{U_b}{20} = 0$$

$$c: U_c = 15I = 15 \times \frac{U_b}{20}$$

整理后有:

$$5U_a - 2U_b - U_c = 50 (a)$$

$$4U_a - 10U_b + 5U_c = 0 (b)$$

$$3U_b - 4U_c = 0 (c)$$

2、网孔电流方程

(1)
$$5(I_1-I_3)+20(I_1-I_2)+5I_1=25$$
;

(2)
$$20(I_2-I_1)+4(I_2-I_3)+15(I_1-I_2)=0$$
;

(3)
$$10I_3+4(I_3-I_2)+5(I_3-I_1)=0$$
.

整理后:

- (1) $30I_1-20I_2-5I_3=25$;
- (2) $5I_1-9I_2+4I_3=0$;
- $(3) \quad 5I_1-6I_2-9I_3=0$