Printed Pages – 4

Roll No.:

B022314(022)

B. Tech. (Third Semester) Examination, April-May 2021 2022.

(AICTE Scheme)

(CSE Engg. Branch)

DIGITAL ELECTRONICS & LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Passing Marks - 35

Note: Part (a) is compulsory and attempt any two parts from (b), (c) and (d).

Unit-I

1. (a) Explain laws of Boolean Algebra.

4

(b)	Minimize the following expression using k-map and
	realize using logic gates.
	(i) $F1(w, x, y, z) = $

8

8

(i)
$$F1(w, x, y, z) =$$

$$\sum m(0, 3, 4, 8, 10, 12, 15) + d(1, 13)$$

(ii) F2 (A, B, C, D)
=
$$\pi$$
 m (2, 4, 5, 6, 8, 9, 12, 13, 15)

- (c) The Hamming code 101101101 is received. Correct it if any errors. Odd parity is used.
- (d) Minimize the following digital function using Mc_Cluskey method.

$$F(P, Q, R, S) = \sum (0, 1, 5, 8, 9, 10, 11, 13) + \sum d(4, 12, 14)$$

Unit-II why many many

- 2. (a) Write short notes on:
 - (i) Noise margin
 - (ii) Propagation Delay

(b) Compare the performance TTL, CMOS and ECL logic.

(c) Implement following function using PLA. 8

F1 (A, B, C) =
$$\sum$$
 m (4, 5, 7)
F2 (A, B, C) = \sum m (4, 5, 7)

(d) Implement following function using suitable PAL. $W(A, B, C, D) = \sum m (1, 3, 4, 6, 9, 11, 12, 14)$ $X(A, B, C, D) = \sum m (1, 3, 4, 6, 9, 11, 12, 14, 15)$ $y(A, B, C, D) = \sum m (0, 2, 4, 6, 8, 12)$ $z(A, B, C, D) = \sum m (2, 3, 8, 9, 12, 13)$

Unit-III

3. (a) What is Multiplexer? Explain with example.

(b) Design BCD adder to add to BCD number.

(c) Give a block diagram of 4 × 16 Decoder using 3 × 8 decoders and explain its working.

(d) Design full adder using multiplexer.

Unit-IV

4. (a) What is flip flop?

4

4

8

8

8

8

	(b)	What is Shift Register? Explain application of Shift	
		Register.	8
	(c)	Design mod 5 synchronous counter.	8
	(d)	Design UP/DOWN ripple counter.	8
5.	(a)	Unit-V Write difference between Moore and Mealy Machine.	4
	(b)	Explain lexical element and data object types in VHDL.	8
	(c)	Write syntax for: (i) entity and (ii) architecture in VHDL	3
	(d)	Explain Mealy machine with example.	8
		(c) Give a block diagram of 4 - 16 Decadu, using a discoders and explain as-aguitang.	
		(d) Design full adder using multiplesses.	