Chapitre 18

Dénombrement.

Sommaire.

1	Cardinal d'un ensemble fini.	1
	1.1 Cardinal d'un ensemble, d'une partie.	1
	1.2 Cardinal et réunion	1
	1.3 Cardinal et produit cartésien	
	1.4 Cardinal et applications entre ensembles finis	2
	Listes et combinaisons.	3
	2.1 p-uplets d'un ensemble fini	3
	2.2 Parties d'un ensemble fini	4
3	Exercices.	5

Les propositions marquées de \star sont au programme de colles.

1 Cardinal d'un ensemble fini.

1.1 Cardinal d'un ensemble, d'une partie.

Définition 1: Point de vue naïf.

Soit ${\cal E}$ un ensemble non vide. Il est dit fini s'il a un nombre fini d'éléments.

Ce nombre est appelé cardinal de E, et noté |E|, #E ou Card(E).

On pose que l'ensemble vide est fini et que son cardinal est 0.

Proposition 2: La partie et le tout.

Soit E un ensemble fini et A une partie de E.

- Toute partie A de E est un ensemble fini et $|A| \leq |E|$.
- \bullet Si A et B sont des parties de E, alors

$$A = B \iff \begin{cases} A \subset B \\ |A| = |B| \end{cases}$$

1.2 Cardinal et réunion.

Proposition 3: Réunion de parties disjointes.

Soit E un ensemble fini et A et B deux parties de E disjointes $(A \cap B = \emptyset)$. Alors la partie $A \cup B$ est finie et

$$|A \cup B| = |A| + |B|.$$

Plus généralement, pour $n \in \mathbb{N}^*$, si $A_1, ..., A_n$ sont n parties disjointes deux-à-deux de E, alors leur réunion est finie est

 $\left| \bigcup_{k=1}^{n} A_k \right| = \sum_{k=1}^{n} |A_k|.$

Proposition 4: Cardinal du complémentaire.

Soit E un ensemble fini et A,B deux parties de E. Alors

$$|A \setminus B| = |A| - |A \cap B|.$$

Notamment, le complémentaire de A dans E a pour cardinal $|\overline{A}| = |E \setminus A| = |E| - |A|$.

Preuve:

On a $(A \setminus B) \cup (A \cap B) = A$. On passe au cardinal (union disjointe): $|A \setminus B| + |A \cap B| = |A|$. Alors $|A \setminus B| = |A| - |A \cap B|$.

Proposition 5: Réunion de parties quelconques.

Soit E un ensemble fini et A,B deux parties de E. La partie finie $A\cup B$ a pour cardinal:

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Preuve:

On a $(A \setminus B) \cup B = A \cup B$, c'est une union disjointe à gauche.

Alors, en passant au cardinal: $|A \setminus B| + |B| = |A \cup B|$.

On en conclut que $|A \cup B| = |A| + |B| - |A \cap B|$.

Exemple 6

Soit $n \in \mathbb{N}^*$.

Compter tous les couples d'entiers (i, j) de $[1, n]^2$ tels que $i \geq j$.

Solution:

On pose $E = \{(i, j) \in [1, n]^2 \mid i \ge j\}$. On a

$$E = \bigcup_{i=1}^{n} \{(i,j) \mid j \in [1,i]\} = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \{(i,j)\}.$$

Les parties de cette union sont disjointes deux-à-deux. Alors $|E|=\sum_{i=1}^n\sum_{j=1}^n1=\sum_{i=1}^ni=\frac{n(n+1)}{2}.$

Alors
$$|E| = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
.

Exemple 7: Formule du crible pour trois parties.

Soient A, B, C trois parties d'un ensemble fini. Justifier que

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

Solution:

On a:

$$\begin{split} |A \cup B \cup C| &= |A \cup (B \cup C)| = |A| + |B \cup C| - |A \cap (B \cup C)| \\ &= |A| + |B| + |C| - |B \cap C| - |A \cap (B \cup C)| \\ &= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)| \\ &= |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |(A \cap B) \cap (A \cap C)| \\ &= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|. \end{split}$$

1.3 Cardinal et produit cartésien.

Rappel : si $A_1, ..., A_p$ sont p ensembles, leur produit cartésien, ensemble de p-uplets est défini par

$$A_1 \times ... \times A_p = \{(a_1, ..., a_p) \mid a_1 \in A_1, ..., a_p \in A_p\}.$$

Proposition 8: Cardinal d'un produit cartésien.

• Soient A et B deux ensembles finis. Leur produit cartésien $A \times B$ est fini, de cardinal

$$|A \times B| = |A| \cdot |B|.$$

• Plus généralement, si $A_1, ..., A_p$ sont p ensembles finis $(p \in \mathbb{N}^*)$, alors

$$|A_1 \times \dots \times A_p| = \prod_{k=1}^p |A_k|$$

Preuve:

On a

$$A_1 \times ... \times A_p = \bigcup_{a_1 \in A_1} ... \bigcup_{a_p \in A_p} \{(a_1, ..., a_p)\}.$$

Les parties de cette union sont disjointes deux-à-deux donc

$$|A_1 \times ... \times A_p| = \sum_{a_1 \in A_1} ... \sum_{a_p \in A_p} 1 = \prod_{k=1}^p |A_k|.$$

Cardinal et applications entre ensembles finis. 1.4

Proposition 9

Soient E et F deux ensembles finis et $f: E \to F$ une application. Alors

- 1. Si f est injective, alors $|E| \leq |F|$.
- 2. Si f est surjective, alors $|E| \ge |F|$.

Preuve:

Posons $n = |E|, m = |F|, E = \{x_1, ..., x_n\} \text{ et } F = \{y_1, ..., y_n\}.$

1. Supposons f injective. On a $f(E) \subset F$, or $E = \bigcup_{i=1}^{n} x_i$ donc $f(E) = \bigcup_{k=1}^{n} f(\{x_i\}) \subset F$.

Les singletons $f({x_i})$ sont disjoints par injectivité de f, donc

$$\sum_{i=1}^{n} |f(\{x_i\})| = \sum_{i=1}^{n} 1 = n \le m.$$

Donc $n \leq m$.

2. Supposons f surjective. On a $E = f^{-1}(F)$ donc $E = \bigcup_{i=1}^{m} f^{-1}(\{y_i\})$.

La réunion est disjointe: si $i, j \in [1, m]$ et $x \in f^{-1}(\{y_i\}) \cap f^{-1}(\{y_j\})$, alors $f(x) = y_i = y_j$. Ainsi, $n = \sum_{i=1}^m |f^{-1}(\{y_i\})| \ge \sum_{i=1}^m 1 = m$, donc $n \ge m$.

Proposition 10: Caractérisation de la bijectivité avec le cardinal.

Soient E et F deux ensembles finis et $f: E \to F$. Alors

$$f \text{ est bijective} \iff \begin{cases} f \text{ est injective} \\ |E| = |F| \end{cases} \iff \begin{cases} f \text{ est surjective} \\ |E| = |F| \end{cases}$$

Preuve:

- 1. Supposons f bijective: f est injective et surjective donc |E| = |F|.
- 2. Supposons f injective et |E| = |F|.

On a $\text{Im}(f) \subset F$ et $|F| = |E| \leq |\text{Im}(f)|$ donc $F \subset \text{Im}(f)$ donc Im(f) = F donc f est surjective.

3. Supposons f surjective et |E| = |F|. On pose $F = \{y_1, ... y_{|F|}\}$

On a
$$|E| = \sum_{i=1}^{|F|} |f^{-1}(\{y_i\})|$$
 donc $\sum_{i=1}^{|F|} (|f^{-1}(\{y_i\})| - 1) = 0$, or pour tout $i, |f^{-1}(\{y_i\})| \ge 1$ par surjectivité.

On a donc une somme nulle de termes positifs: tous les termes sont nuls, donc tous les y_i ont un unique antécédent par f, donc f est injective donc bijective.

Proposition 11: Compter les applications de E dans F. \star

L'ensemble des applications de E vers F, noté F^E est un ensemble fini et de cardinal

$$|F^E| = |F|^{|E|}$$

Preuve:

On pose
$$\Phi: \begin{cases} F^E \to F^p \\ f \mapsto (f(x_1), ..., f(x_p)) \end{cases}$$
.
On peut prouver que Φ est bijective, on l'admet.

On a $|F^E| = |F^p|$ car il existe une bijection de F^E vers F^p .

On a $|F^E| = |F^p| = |F|^p = |F|^{|E|}$.

$\mathbf{2}$ Listes et combinaisons.

Lorsqu'on voudra dénombrer des objets, on essaiera de modéliser la situation à l'aide d'objets mathématiques connus, appartenant à des ensembles dont on connaît le cardinal. Les objets qui seront utilisés sont essentiellement de deux types: les p-uplets et les parties à p éléments. Avant de passer aux résultats de dénombrement proprement dits, on fait ci-dessous quelques rappels, et on introduit les mots listes et combinaisons, utilisés en combinatoire.

Définition 12

Soit E un ensemble et p un entier naturel non nul.

Un élément de E^p est un p-uplet (p-liste) $(x_1,...,x_p)$ d'éléments de E.

Dans un p-uplet, certaines coordonnées peuvent être égales. De plus, l'ordre d'écriture des coordonnées est primordial. Ainsi,

(1,2,3,3,2) est un 5-uplet de N différent de (1,2,2,3,3).

Définition 13

Soit E un ensemble et p un entier naturel.

Une partie de E à p éléments $\{x_1,...,x_p\}$ pourra être appelée p-combinaison de E.

L'ensemble $\{1,2,4,4\}$ est égal à l'ensemble $\{1,2,4\}$, c'est donc une 3-combinaison de \mathbb{N} .

Lorsqu'on écrira que $\{x_1, ..., x_p\}$ est une p-combinaison de E, p sera alors le cardinal de E: pour une telle écriture, les x_i sont forcément distincts.

Dans l'écriture $\{x_1,...,x_p\}$, l'ordre d'écriture des x_i n'a aucune importance:

 $\{1,2,3\}$ et $\{3,2,1\}$ sont la même 3-combinaison.

2.1p-uplets d'un ensemble fini.

Proposition 14: Compter les p-uplets d'éléments de E.

Soit E un ensemble fini de cardinal n et un entier naturel non nul p.

Le nombre de p-uplets d'éléments de E est n^p .

Preuve:

C'est le cardinal du produit cartésien de E avec lui-même p fois.

Proposition 15: Compter les p-uplets d'éléments distincts (p-arrangements).

Soit E un ensemble fini de cardinal n et un entier naturel non nul p. Le nombre de p-uplets d'éléments de E deux-à-deux distincts est

$$n(n-1)...(n-p+1) = \begin{cases} \frac{n!}{(n-p)!} & \text{si } p \le n \\ 0 & \text{si } p > n \end{cases}.$$

Preuve:

Cas $p \leq n$.

$$\mathcal{A}_{p}(E) = \bigcup_{x_{1} \in E} \bigcup_{x_{2} \in E \setminus \{x_{1}\}} \dots \bigcup_{x_{p} \in E \setminus \{x_{1}, \dots, x_{p-1}\}} \{(x_{1}, \dots, x_{p})\}.$$

Ce sont des unions disjointes donc

$$|\mathcal{A}_p(E)| = \sum_{n=1}^{n} \sum_{n=1}^{n-1} \dots \sum_{n=p+1}^{n-p+1} 1 = n(n-1)\dots(n-p+1) \frac{(n-p)(n-p-1)\dots 1}{(n-p)(n-p-1)\dots 1}$$
$$= \frac{n!}{(n-p)!}$$

Si besoin : une proposition de notation pour l'ensemble des p-arrangements d'un ensemble $E: \mathcal{A}_p(E)$.

Corrolaire 16: Compter les injections, les bijections.

Soient E et F deux ensembles finis de cardinaux respectifs p et n. On suppose $p \leq n$.

Le nombre d'applications injectives de E vers F est $\frac{n!}{(n-p)!}$.

Il existe donc n! bijections entre deux ensemble de même cardinal n.

En particulier, si E est un ensemble fini de cardinal n, son groupe symétrique (le groupe de ses permutations) est de cardinal n!.

Preuve:

Notons Inj(E, F) les injections de E vers F. Notons $E = \{x_1, ..., x_p\}$.

On pose
$$\Psi: \begin{cases} \operatorname{Inj}(E,F) \to \mathcal{A}_p(F) \\ f \mapsto (f(x_1),...,f(x_p)) \end{cases}$$

On a Ψ injective et surjective donc $|\operatorname{Inj}(E,F)| = |A_p(E,F)| = \frac{n!}{(n-p)!}$.

2.2 Parties d'un ensemble fini.

Proposition 17: Compter les parties d'un ensemble fini. *

Soit E un ensemble fini de cardinal n.

Le nombre de parties de E est 2^n .

Preuve:

On pose une bijection entre $\mathcal{P}(E)$ et un ensemble qu'on sait compter (11):

$$\zeta: \begin{cases} \mathcal{P}(E) & \to & \{0,1\}^E \\ A & \mapsto & \mathbb{1}_A \end{cases}$$

 ζ est une bijection car une partie de E est caractérisée par son indicatrice.

Alors $|\mathcal{P}(E)| = |\{0,1\}^E| = 2^{|E|} = 2^n$.

Le résultat peut se réécrire ainsi: si E est un ensemble fini, $|\mathcal{P}(E)| = 2^{|E|}$

Rappel: on avait défini le coefficient binomial $\binom{n}{p}$ comme le quotient $\frac{n!}{p!(n-p)!}$ (cas non dégénérés) et prouvé que c'est un entier. Il est temps de comprendre pourquoi il se lit «p parmi n».

Proposition 18: Compter les parties à p éléments d'un ensemble fini. \bigstar

Soient E un ensemble fini de cardinal n et p un entier naturel.

Le nombre de parties de E ayant p éléments est $\binom{n}{n}$.

Preuve:

Soit $\mathcal{P}_p(E)$ l'ensemble des p-combinaisons de E.

On a
$$\mathcal{A}_p(E) = \bigcup_{A \in P_p(E)} \mathcal{A}_p(A)$$
.

C'est une union disjointe, donc $|\mathcal{A}_p(E)| = \sum_{A \in \mathcal{P}_p(E)} |\mathcal{A}_p(A)| = \sum_{A \in \mathcal{P}_p(E)} p! = p! |\mathcal{P}_p(E)|.$

Alors $|\mathcal{P}_p(E)| = \frac{|\mathcal{A}_p(E)|}{p!} = \frac{n!}{p!(n-p)!}$.

Si besoin: une proposition de notation pour l'ensemble des parties à p éléments d'un ensemble $E: \mathcal{P}_p(E)$.

4

Proposition 19: Formules classiques. *

Soit $n \in \mathbb{N}$.

$$\forall p \in \mathbb{N} \ \binom{n}{p} = \binom{n}{n-p}, \quad \forall p \in \mathbb{N}^* \ p \binom{n}{p} = n \binom{n-1}{p-1}, \quad \forall p \in \mathbb{N} \ \binom{n+1}{p+1} = \binom{n}{p+1} + \binom{n}{p}.$$

Appelées formule de symétrie, formule du pion et formule de Pascal, dans l'ordre.

Preuve:

Symétrie. | Soit E un ensemble tel que |E| = n et $f: A \mapsto \overline{A}$ de $\mathcal{P}_p(E)$ vers $\mathcal{P}_{n-p}(E)$.

Soit $g: A \mapsto \overline{A}$ de $\mathcal{P}_{n-p}(E)$ vers $\mathcal{P}_p(E)$. On a $g \circ f = \mathrm{id}$ et $f \circ g = \mathrm{id}$ donc f bijective.

On a bien $|\mathcal{P}_n(E)| = |\mathcal{P}_{n-n}(E)|$.

Pascal \star | Soit E un ensemble tel que |E| = n + 1.

On distingue $x_0 \in E$. Alors $\mathcal{P}_{p+1}(E) = \mathcal{P}_{p+1}(E \setminus \{x_0\}) \cup \mathcal{P}_{p+1}^{(x_0)}(E)$.

L'union est disjointe car une partie ne contient pas x_0 et l'autre oui. Alors

$$|\mathcal{P}_{p+1}(E)| = |\mathcal{P}_{p+1}(E \setminus \{x_0\})| + |\mathcal{P}_{p+1}^{(x_0)}(E)| = \binom{n}{p+1} + \binom{n}{p}.$$

En effet, $f: \begin{cases} \mathcal{P}_{p+1}(E) & \to & \mathcal{P}_p(E \setminus \{x_0\}) \\ A & \mapsto & A \setminus \{x_0\} \end{cases}$ est une bijection, donc $|\mathcal{P}_{p+1}(E)| = |\mathcal{P}_p(E \setminus \{x_0\})| = \binom{n}{p}$.

3 Exercices.

Exercice 1: $\Diamond \Diamond \Diamond$

À Reuste-sur-Linuxe, charmant village francilien, il y a 52 célibataires : 20 femmes et 32 homems. Combien de nouveaux couples hétérosexuels peuvent être formés dans le village? De couples homosexuels?

Solution:

On note H l'ensemble des hommes et F l'ensembles des femmes (disjoints).

L'ensemble des couples hétérosexuels est $H \times F$ de cardinal $|H \times F| = |H| \cdot |F| = 32 \times 20 = 640$.

L'ensemble des couples homosexuels est $\mathcal{A}_2(H) \cup \mathcal{A}_2(F)$ de cardinal $\binom{32}{2} + \binom{20}{2} = 686$ (disjoints).

Exercice 2: $\Diamond \Diamond \Diamond$

Soit $n \geq 2$. On suppose que n couples se rencontrent et se serrent la main. Chaque personne sert la main de tous les autres, sauf celle de son conjoint. Combien y a-t-il de poignées de main échangées?

Solution:

Entre deux couples, il y a 4 poignées de main. Chaque couple serre la main avec les n-1 autres couples. On a alors 4n(n-1) poignées de main, or on est en train de compter deux fois les même poignées de main. Il y a donc 2n(n-1) poignées de main.

Exercice 3: $\Diamond \Diamond \Diamond$

À l'entrée d'un immeuble, on dispose d'un clavier de 12 touches : trois lettres A, B, C et neuf chiffres de 1 à 9. Le code d'ouverture de la porte est composé d'une lettre suivie d'un nombre de quatre chiffres. Par exemple A1234.

- 1. Combien existe-t-il de codes différents?
- 2. Combien y a-t-il de codes
 - (a) comportant au moins une fois le chiffre 7?
 - (b) pour lesquels tous les chiffres sont pairs?
 - (c) pour lesquels les quatres chiffres sont différents?

Solution :

- 1. On a 3 choix pour la lettre, puis 9 choix pour chaque chiffre : $3 \times 9^4 = 19683$.
- (2.a) On présélectionne le 7, alors on a $3 \times 9^3 = 2187$ codes.
- (2.b) If y a 4 chiffres pairs entre 1 et 9, donc $3 \times 4^4 = 768$ codes.
- On a $3 \times 9 \times 8 \times 7 \times 6 = 9072$ codes.

Exercice 4: $\Diamond \Diamond \Diamond$

Mes voisins font la fête et c'est l'heure de trinquer, j'entends 78 tintements de verres. Combien sont-ils?

Solution:

On modélise chaque tintement par un couple de personnes distinctes.

On cherche donc le nombre de personnes requises pour former 78 couples.

C'est à dire $n \in \mathbb{N}$ tel que $\binom{n}{2} = 78$. Les solutions possibles sont n = 13 et n = -12.

On écarte évidemment n = -12, il y a donc 13 personnes.

Exercice 5: $\Diamond \Diamond \Diamond$

Combiens d'anagrammes ont les mots MATHS, COLLE et ABRACADABRA?

Solution:

Dans MATHS, toutes les lettres sont différentes. Il y a donc 5! = 120 anagrammes.

Dans COLLE, il y a 2 L. Il y a donc $\binom{5}{2} \times 3! = 60$ anagrammes.

Dans ABRACADABRA, il y a 5 A, 2 B et 2 R. Il y a donc $\binom{11}{5} \times \binom{11}{2} \times \binom{11}{2} \times 2! = 2795100$ anagrammes.

Exercice 6: $\Diamond \Diamond \Diamond$

Soit E un ensemble de cardinal $n \in \mathbb{N}^*$.

- 1. Rappeler le nombre de parties de E.
- 2. Pour $k \in [0, n]$, rappeler combien il existe de parties de E ayant k éléments.
- 3. Sait-on retrouver le résultat de la question 1 en connaissant celui de la question 2 ?

Solution:

- $\boxed{1.} |\mathcal{P}(E)| = 2^n.$
- $\overline{2.} \text{ Soit } k \in [0, n], |\mathcal{P}_p(E)| = \binom{n}{p}.$
- 3. On utilise le binôme de Newton:

$$|\mathcal{P}(E)| = \sum_{k=0}^{n} |\mathcal{P}_k(E)| = \sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n.$$

Exercice 7: ♦♦◊

Soit E un ensemble de cardinal $n \in \mathbb{N}^*$.

- 1. Combien existe-t-il de couples (A, x) avec A une partie de E et x un élément de E?
- 2. Combien existe-t-il de couples (A, x) avec A une partie de E et x un élément de A?

Solution:

- 1. C'est un produit cartésien entre $\mathcal{P}(E)$ et E, son cardinal est $2^n n$.
- 2. C'est un produit cartésien entre chaque partie et ses éléments, on en a

$$\sum_{k=1}^{n} k |\mathcal{P}_k(E)| = \sum_{k=1}^{n} k \binom{n}{k} = \sum_{k=1}^{n} n \binom{n-1}{k-1} = n \sum_{k=0}^{n-1} \binom{n-1}{k} = n 2^{n-1}$$

Exercice 8: ♦♦♦

Soit $n \ge 1$. En développant $(1-1)^n$, démontrer qu'un ensemble de cardinal n a autant de parties de cardinal pair que de parties de cardinal impair.

Solution:

On a

$$(1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} - \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k-1} = 0.$$

D'où l'égalité.

Exercice 9: ♦♦♦ CCINP n°112

Soit $n \in \mathbb{N}^*$ et E un ensemble possédant n éléments.

- 1. Déterminer le nombre a de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \subset B$.
- 2. Déterminer le nombre b de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \cap B = \emptyset$.
- 3. Déterminer le nombre c de triplets $(A, B, C) \in (\mathcal{P}(E))^3$ tels que A, B et C soient deux-à-deux disjoints et vérifient $A \cup B \cup C = E$.

Solution:

1. Remarquons que

$$\{(A,B)\in (\mathcal{P}(E))^2\mid A\subset B\}=\bigcup_{k=0}^n\bigcup_{B\in \mathcal{P}_k(E)}\bigcup_{A\subset B}\{(A,B)\}$$

C'est une union disjointe. On a donc:

$$a = \sum_{k=0}^{n} \sum_{B \in \mathcal{P}_k(E)} \sum_{A \subset B} 1 = \sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n.$$

- 2. On a $\{(A,B) \in (\mathcal{P}(E))^2 \mid A \cap B = \emptyset\} = \{(A,B) \in (\mathcal{P}(E))^2 \mid A \subset \overline{B}\}$, même résultat que la question 1.
- 3. Il suffit de chosir A et B tels que $A \cap B = \emptyset$, alors il n'y a plus qu'une possibilité pour $C: E \setminus A \setminus B$.

On se ramène à la question 2. On a donc $c = 3^n$.

Exercice 10: $\Diamond \Diamond \Diamond$

« Lorsqu'on range des chaussettes dans des tiroirs,

s'il y a (strictement) plus de chaussettes que de tiroirs,

alors au moins un tiroir contiendra plus de deux chaussettes. »

Démontrer cette assertion en utilisant le cours. On pourra utiliser une application bien choisie...

Solution:

On note T l'ensemble des tiroirs et C l'ensemble des chaussettes tels que |C| > |T|.

On pose $f: C \to T$ une application qui à chaque chaussette associe le tiroir dans lequel elle est rangée.

Supposons que tous les tiroirs contiennent au plus une chaussette.

Alors f est injective, donc $|C| \leq |T|$ d'après 9, contradiction.

Exercice 11: ♦♦◊

Soit E un ensemble non vide et n son cardinal.

Exprimer en fonction de n les sommes

$$\sum_{X\in\mathcal{P}(E)}1,\quad \sum_{X\in\mathcal{P}(E)}|X|,\quad \sum_{(X,Y)\in(\mathcal{P}(E)^2)}|X\cap Y|,\quad \sum_{(X,Y)\in(\mathcal{P}(E))^2}|X\cup Y|.$$

Solution:

On a:

$$\begin{split} \boxed{1.} & \sum_{X \in \mathcal{P}(E)} 1 = |\mathcal{P}(E)| = 2^n, \\ \boxed{2.} & \sum_{X \in \mathcal{P}(E)} |X| = \sum_{x \in E} \sum_{X \in \mathcal{P}(E)} \mathbbm{1}_X(x) = \sum_{x \in E} 2^{n-1} = n2^{n-1}, \\ \boxed{3.} & \sum_{X,Y \in \mathcal{P}(E)} |X \cap Y| = \sum_{X,Y \in \mathcal{P}(E)} \sum_{x \in E} \mathbbm{1}_X(x) \mathbbm{1}_Y(x) = \sum_{x \in E} \sum_{X \in \mathcal{P}(E)} \mathbbm{1}_X(x) \sum_{Y \in \mathcal{P}(E)} \mathbbm{1}_Y(x) \\ & = \sum_{x \in E} \sum_{X \in \mathcal{P}(E)} \mathbbm{1}_X(x) 2^{n-1} = \sum_{x \in E} 2^{2(n-1)} = n4^{n-1}, \\ \boxed{4.} & \sum_{X,Y \in \mathcal{P}(E)} |X \cup Y| = \sum_{x \in E} \sum_{X,Y \in \mathcal{P}(E)} (\mathbbm{1}_X(x) + \mathbbm{1}_Y(x) - \mathbbm{1}_X(x) \mathbbm{1}_Y(x)) \\ & = \sum_{X,Y \in \mathcal{P}(E)} |X| + \sum_{X,Y \in \mathcal{P}(E)} |Y| - \sum_{X,Y \in \mathcal{P}(E)} |X \cap Y| \\ & = 2n2^{2n-1} - n2^{2n-2} = n2^{2n-2}(4-1) = 3n2^{2n-2} \end{split}$$

Exercice 12: ♦♦◊

On dispose de 8 professeurs, à répartir dans 4 écoles.

Combien de répartitions sont possibles?

Et combien si on impose deux professeurs par école ?

Solution:

Soit P l'ensemble des professeurs et E l'ensemble des écoles.

On suppose qu'un professeur ne peut être affecté qu'à une école.

Chaque professeur a le choix entre les 4 écoles: $|E|^{|P|} = 4^8 = 65536$.

Si on impose deux professeurs par école, la première école choisit 2 professeurs parmi 8, la deuxième 2 parmi 6, la troisième 2 parmi 4 et la dernière 2 parmi 2.

Le nombre de répartitions est donc $\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2} = 2520$.

Exercice 13: ♦♦◊

Soit G un groupe fini de cardinal pair. On travaille en notation multiplicative et on note e le neutre du groupe. On souhaite prouver l'existence d'un élément x de G tel que $x^2 = e$ et $x \neq e$. On définit l'ensemble

$$E = \{ x \in G \mid x^2 \neq e \}.$$

1. On définit sur E la relation \sim par

$$\forall (x,y) \in E^2, \ x \sim y \iff (x = y \text{ ou } x = y^{-1}).$$

Démontrer que \sim est une relation d'équivalence sur E.

2. Conclure.

Solution:

1. Soient $x, y, z \in E$.

Réfléxivité: On a bien $x \sim y$ car x = x.

Symétrie: Supposons $x \sim y$, si x = y alors $y \sim x$, sinon $x = y^{-1}$ alors $y = x^{-1}$ et $y \sim x$.

Transitive: Supposons $x \sim y$ et $y \sim z$. Si x = y alors $y \sim z$ car $x = y \sim z$.

Si $x = y^{-1}$, alors si y = z, $x = z^{-1}$ donc $x \sim z$, sinon $x = y^{-1} = z$ donc $x \sim z$.

2. G est la réunion disjointe de tous les $\{x, x^{-1}\}$ différents pour $x \in G$.

Ce sont des ensembles de cardinal 2, sauf $\{e, e^{-1}\}$, qui est de cardinal 1.

S'il n'existait pas d'élément $x \neq e$ tel que $x^2 = e$, alors G serait de cardinal impair, ce qui est absurde.

Il existe donc un tel élément.

Exercice 14: $\Diamond \Diamond \Diamond \Diamond$ Vandermonde.

Soient $(p,q,n) \in \mathbb{N}^3$. Proposer une démonstration combinatoire de l'identité:

$$\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k} = \binom{p+q}{n}.$$

Solution:

Soit E un ensemble à p+q éléments. On souhaite compter le nombre de parties de E à n éléments.

Soient A et B deux sous-ensembles disjoints de E à p et q éléments respectivement.

On va créer des parties de E à n éléments en choisissant k éléments dans A et n-k éléments dans B.

On commence par choisir k éléments dans A, on a $\binom{p}{k}$ façons de le faire.

Il reste alors n-k éléments à choisir dans B, on a $\binom{q}{n-k}$ façons de le faire. On fait alors varier k de 0 à n, on a donc $\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k}$ façons de choisir n éléments dans E.

On a bien l'identité.

Exercice 15: ♦♦♦

Soient $(n,p) \in (\mathbb{N}^*)^2$.

Combien y a-t-il d'applications strictement croissantes de [1, p] dans [1, n]?

Solution:

Soit $E = \{f : [1, p] \to [1, n] \mid f \text{ strictement croissante}\}.$

Soit $f \in E$. On a immédiatement que $n \ge p$ car f est strictement croissante.

On pose $\Psi: \begin{cases} E \to \mathcal{A}_p(\llbracket 1, n \rrbracket) \\ f \mapsto (f(1), ..., f(p)) \end{cases}$.
On a que f est bijective, ainsi Ψ est bijective, donc $|E| = |\mathcal{A}_p(\llbracket 1, n \rrbracket)| = \binom{n}{p}$.

Exercice 16: ♦♦♦

Soient $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$. Déterminer le nombre de solutions dans $\{0,1\}^n$ à l'équation

$$x_1 + x_2 + \dots + x_n = p.$$

Solution:

Combien de façons de choisir p uns parmi n éléments ? $\binom{n}{n}$.

Exercice 17: ♦♦♦

Soient $n \in \mathbb{N}^*$. Combien y a-t-il de surjections de [1, n+1] dans [1, n]?

Solution:

Soit φ une surjection de [1, n+1] dans [1, n]

On sait qu'exactement un élément $y \in [1, n]$ a deux antécédents x_1 et x_2 par φ .

Pour choisir y, on a n choix, et pour choisir x_1 et x_2 , on a $\binom{n+1}{2}$ choix.

Il ne reste alors plus qu'à créer une bijection entre $\llbracket 1, n+1 \rrbracket \setminus \{x_1, x_2\}$ et $\llbracket 1, n \rrbracket \setminus \{y\}$, il en existe (n-1)!. Il y a alors $n(n-1)!\binom{n+1}{2} = \frac{n(n+1)!}{2}$ surjections de $\llbracket 1, n+1 \rrbracket$ dans $\llbracket 1, n \rrbracket$.

Exercice 18: ♦♦♦

Soit E un ensemble à n éléments, où n est un entier supérieur à 2.

Combien existe-t-il de fonctions $f: E \to E$ telles que |Im(f)| = n-1?

Solution:

 $\rightarrow E$ telle que $|\mathrm{Im}(f)| = n$

Il existe un unique $y \in E$ tel que $y \notin \text{Im}(f)$. Notons $\widetilde{E} = E \setminus \{y\}$.

Alors f est une surjection de E dans \widetilde{E} .

D'après l'exercice précédent, il y a $\frac{(n-1)n!}{2}$ surjections de E dans \widetilde{E} .

On a n choix pour y, donc il y a $\frac{n(n-1)n!}{2}$ functions $f: E \to E$ telles que |Im(f)| = n-1.