Sepsis Classification

Jason Kim

Metis

May 14th, 2021

Problem

- CDC:
 - 1.7 million adults in the US develop sepsis
 - ~270,000 Americans die as a result of sepsis
 - 1/3rd of patients who die in hospitals have sepsis

Tools

- Data Obtained from Kaggle dataset
- Pandas, Numpy: Data Manipulation
- Visualizations: matplotlib, seaborn
- Models: sklearn

- Clinical Data of patient logs 6 days before they are diagnosed (or not) with Sepsis
- 16,621 rows of data: 19 features, 1 binary target

EDA

- Highly imbalanced dataset:
- 2% positives vs 98% negatives
- Remedies:
 - Resampling: Random OverSampling on Train set

- F beta with beta=2 (emphasizing recall)
 - Recall: Maximize True Positives not missing too many positive sepsis cases
 - Precision: Minimize False
 Positives minimizing patient
 ICU Length of Stay
- ROC-AUC to compare models

Choosing a Model

- ROC-AUC curve:
- Random Forest: AUC = 0.808
- Logistic Regression: AUC = 0.548
- KNN: AUC = 0.513

Choosing a Model

- Maximizing AUC and F-Beta (b=2)
- F-Beta Scores:
 - Random Forest: 0.253
 - KNN: 0.249
 - Logistic Regression: 0.168

Results

Random Forest F-Beta Score (Baseline):

0.253

Random Forest F-Beta after some hyperparameter tuning with RandomizedSearchCV:

0.287 (increase of 0.034)

Feature Importance

• ICULOS – Longer stays in the ICU has seems to have the most significant impact on Sepsis classification

Future Work

Further hyperparameter tuning

Exploring other models

Better data manipulation (imputing methods)

