1

Control Systems

G V V Sharma*

	CONTENTS	11 Root Locus 2
1	1.1 Mason's Gain Formula	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.
	1.200.000	Download python codes using
2	2.1 Introduction	1 svn co https://github.com/gadepall/school/trunk/control/codes
3	Second order System	1 SIGNAL FLOW GRAPH
	·	1 1.1 Mason's Gain Formula
		1
	3.3 Settling Time	1.2 Matrix Formula
4	Routh Hurwitz Criterion	2 Bode Plot 1 2 1 Introduction
7		1
	3	2.2 Phase
	4.3 Stability	1 3 Second order System
_	State Space Medal	3.1 Damping
5	State-Space Model 5.1 Controllability and Observ-	1 3.2 Peak Overshoot
	•	3.3 Settling Time
	•	1 4 Routh Hurwitz Criterion
_	N	4.1 Routh Array
6	3 1	1 1 4.2 Marginal Stability
	0.1 Introduction	4.3 Stability
7	Compensators	1 5 STATE-SPACE MODEL
		1
	7.2 Lag Lead	1 5.1 Controllability and Observability 5.2 Second Order System
8	Gain Margin	1 6 Nyouist Plot
	_	1
	8.2 Example	6.1 Introduction
0	Dhaga Mausin	7 Compensators
9	<u>e</u>	2 7.1 Phase Lead
	intoduction	7.2 Lag Lead
10		2 8 Gain Margin
	10.1 Introduction	2 8.1 Introduction
	e author is with the Department of Electrical Engineering	
gadepa	Institute of Technology, Hyderabad 502285 India e-mai ll@iith.ac.in. All content in this manual is released under GNFree and open source.	X I Netch the Bode Magnifilds and Phase high for

margin and the phase margin.

$$G(s) = \frac{10}{s(1+0.5s)(1+.01s)}$$
 (8.1.1)

Solution: The system is defined as follows:

$$G(s) = \frac{10}{s(1+0.5s)(1+.01s)}$$
 (8.1.2)

Zeros	Poles
-	0
	-2
	-100

TABLE 8.1: Zeros and Poles

The magnitude and phase plot are as follows: Fig8.1

Fig. 8.1: Graphs

The python code to obtain the graphs:

codes/ee18btech11048.py

8.2. Finding the Phase Margin (PM).

$$G(j\omega) = \frac{10}{j\omega(1 + 0.5j\omega)(1 + .01j\omega)}$$
 (8.2.1)

$$PM = \angle G(\jmath \omega_{gc}) + 180^{\circ} \tag{8.2.2}$$

where ω_{gc} is frequency when gain = 1.

Solution:

$$\frac{100}{\omega\sqrt{(0.5\omega)^2 + 1}\sqrt{(0.01\omega)^2 + 1}} = 1 \quad (8.2.3)$$

Solving Eq. (8.2.3) or from Fig 8.1:

$$\implies \omega_{gc} = 4.25$$
 (8.2.4)

$$\angle G\left(j\omega_{gc}\right) = -157.2\tag{8.2.5}$$

$$\implies PM = 22.8 \tag{8.2.6}$$

8.3. Finding the Gain Margin (GM)

$$GM = 0 - G(\omega_{pc})db \tag{8.3.1}$$

where ω_{pc} is frequency when phase = -180° **Solution:**

$$\tan^{-1}(0) - \tan^{-1}\left(\frac{\omega}{0}\right) - \tan^{-1}\left(\frac{\omega}{2}\right) - \tan^{-1}\left(\frac{\omega}{100}\right) = -180^{\circ} \quad (8.3.2)$$

Solving Eq. (8.3.2) *or* from Fig 8.1 :

$$\implies \omega_{pc} = 14.1$$
 (8.3.3)

$$G(1\omega)db = -20.2$$
 (8.3.4)

$$\implies GM = 20.2db$$
 (8.3.5)

9 Phase Margin

9.1 Intoduction

10 OSCILLATOR

10.1 Introduction

11 Root Locus