Solución ej 5)

- 1.
- $|S_0| = 0$
- $|S_1| = 3 + 3 |S_0| + |S_0|^3 = 3$
- $|S_2| = 3 + 3|S_1| + |S_1|^3 = 3 + 3 \cdot 3 + 3^3 = 3 + 9 + 27 = 39$
- $|S_3| = 3 + 3 |S_2| + |S_2|^3 = 3 + 3 \cdot 39 + 39^3 = 59439$
- 2. Lo demostraremos por inducción en i.
 - Caso base i = 0: $S_0 = \emptyset$ y $\emptyset \subseteq S_1$.
 - Caso inductivo i = k: Supongamos que $S_k \subseteq S_{k+1}$. Queremos ver si $S_{k+1} \subseteq S_{k+2}$. Probamos que si $s \in S_{k+1}$ entonces $s \in S_{k+2}$. Haremos análisis por casos en la forma de s.
 - Supongamos s =true. Por definición de S_{k+2} resulta true $\in S_{k+2}$. Análogamente para false y 0.
 - Supongamos $s = \mathtt{succ}\ t_1$ para algún $t_1 \in S_k$. Por hipótesis inductiva $t_1 \in S_{k+1}$ y por definición de S_{k+2} , $\mathtt{succ}\ t_1 \in S_{k+2}$. Análogamente para $s = \mathtt{pred}\ t_1$ y $s = \mathtt{iszero}\ t_1$.
 - Supongamos $s = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \text{ para algunos } t_1, t_2, t_3 \in S_k$. Por hipótesis inductiva $t_1, t_2, t_3 \in S_{k+1}$ y análogamente al caso anterior resulta $s \in S_{k+2}$.
 - Como hemos considerado todas las formas posibles de los elementos de S_{k+1} podemos concluir que $S_{k+1} \subseteq S_{k+2}$.
- 3. Mostraremos a continuación que en efecto \mathcal{S} satisface las condiciones de la definición de \mathcal{T} y que si existe otro conjunto \mathcal{S}' que también las satisface, entonces debe ser $\mathcal{S} \subseteq \mathcal{S}'$ (es decir que \mathcal{S} es el «menor» de ellos).

- $\mathcal S$ satisface las condiciones $A,\,B$ y C de la definición de $\mathcal T$:
 - Puesto que $S_1 \subseteq \mathcal{S}$ resulta que true, false y 0 pertenecen a \mathcal{S} por lo que \mathcal{S} satisface la condición A.
 - Supongamos que $s \in \mathcal{S}$, entonces por definición de \mathcal{S} existirá $i \in \mathbb{N}$ tal que $s \in S_i$. Ahora, por definición de S_{i+1} resulta que succ t_1 , pred t_1 y iszero t_1 pertenecen a S_{i+1} ; y como $S_{i+1} \subseteq \mathcal{S}$ entonces también pertenecen a \mathcal{S} , satisfaciendo la condición B.
 - De forma análoga al caso anterior, probamos que si $s_1, s_2, s_3 \in \mathcal{S}$ entonces if s_1 then s_2 else $s_3 \in \mathcal{S}$, por lo que se cumple la condición C.
- $S \subseteq S'$: Veamos que para todo $i \in \mathbb{N}$ resulta $S_i \subseteq S'$ por inducción en los naturales.
 - Caso base i = 0: $S_0 = \emptyset \subseteq \mathcal{S}'$.
 - Caso inductivo i=k: Supongamos que para i=k resulta que $S_i\subseteq \mathcal{S}'$ y veamos si $\mathcal{S}_{k+1}\subseteq \mathcal{S}'$. Haremos análisis por casos en la forma de $s\in \mathcal{S}_{k+1}$.
 - * Supongamos s =true. Como S' satisface la condición A resulta true $\in S'$. Análogamente para false y 0.
 - * Supongamos $s = \mathsf{succ}\ t_1$ para algún $t_1 \in S_i$. Por hipótesis inductiva $t_1 \in \mathcal{S}'$ y como \mathcal{S}' satisface la condición B entonces $s \in \mathcal{S}'$. Análogamente para $s = \mathsf{pred}\ t_1$ y $s = \mathsf{iszero}\ t_1$.
 - * De forma análoga al caso anterior, probamos que si $t_1, t_2, t_3 \in \mathcal{S}_i$ entonces if t_1 then t_2 else $t_3 \in \mathcal{S}'$, puesto que \mathcal{S}' satisface la condición C.
 - * Como hemos mostrado que $S_i \subseteq \mathcal{S}'$ y por definición $\mathcal{S} = \bigcup_{i \in \mathbb{N}} S_i$, resulta $\mathcal{S} \subseteq \mathcal{S}'$.