## Scientific/Multi-Media Application Plugins for Education and Publishing (SAPIEN+)

This paper will summarize the SAPIEN+ plugin framework and discuss its applications for testing, education, and the development of test and test-preparation materials. The goal of SAPIEN+ is to augment scientific and technical applications with features that enhance their usefulness as teaching materials. SAPIEN+ plugins can integrate desktop applications with course curricula, educational materials, and cloud services hosting student, instructor, and course information. In general, SAPIEN+ refers not to a single plugin but rather a framework for creating plugins tailored to individual publishers, academic institutions, or educational software packages. A given scientific or technical application may host multiple SAPIEN+ plugins, each tracking information structured according to the requirements of the plugin provider.

For sake of discussion, this paper will describe **SAPIEN+** in terms of hypothetical ETS plugins developed expressly for Educational Testing Service. To make the discussion more concrete, the paper will consider hypothetical ETS plugins for IQmol (a molecular visualization application), ParaView (data analysis and visualization software focused on statistical/quantitative data sets), MeshLab (a **3D** graphics engine), Octave (an open-source Matlab emulator), **QT** Creator (a **C++** Integrated Development Environment), and XPDF (a **PDF** viewer).

## The Technological Role of SAPIEN+ Plugins

A suite of inter-related SAPIEN+ plugins — for example, an ETS plugin suite — would contribute two kinds of functionality to their host applications: (1) tracking and presenting information specific to individual students, courses, and instructors; and (2) allowing multiple applications which each have ETS plugins to interoperate. To explain the features of the plugin suite, consider the following scenarios:

Scenario 1: A student reads textbooks, articles, or test-preparation materials which may be enhanced with multi-media content To augment the reading experience, educational texts may be supplemented with files describing visual, interactive materials which require specialized software. For example, texts about chemistry (e.g., study materials for the chemistry GRE exams) may include 3D models of chemical compouns which can be viewed with IQmol; biology texts may be illustrated with 3D tissue models which can be viewed in MeshLab; physics texts may describe equations or empirical data which may be visualized via ParaView, or Matlab simulations that could be executed through Octave. Publications could then embed these supplemental materials directly, or else include links from which the multi-media files may be downloaded. If the documents are viewed with an e-reader which itself hosts an ETS plugin — take XPDF as a case-study — then the viewer would identify the locations in the text where the multi-media files are relevant and, when the student is reading that part of the text, notify him or her of the option to automatically launch the proper application with which to access the content.

A hypothetical XPDF plugin, for example, would identify the correct application to use to view multi-media content based on the file type. This feature could also be refined via a cloud service — information provided by instructors could include notation of the kinds of software used for any particular course. This cloud-hosted data might, for instance, indicate that a specific course is using



IQmol as a pedagogical tool, and indicate that cheminformatic files linked to teaching materials for the course should always be viewed with IQmol. Once the XPDF plugin identifies the proper multi-media software to use, it can lanch the application on the student's computer and — assuming the target application also has an ETS plugin — send that application signals identifying which files to load into the application session. The XPDF plugin may also send information about the current student and class/curriculum, which the target application may use to personalize the User Interface according to students' or instructors' preferances (see the next scenario for more about personalization).

For multi-media content which is not specific to specialized technical softwar — that is, generic multi-media formats such as audio, video, or panoramic-photography — SAPIEN+ plugins for PDF or ePub viewers can present this content directly, in separate windows detached from the principle document viewer, rather than routing the files to external software.

Scenario 2: A student launches a scientific application which is used as a pedagogical tool Teachers often instruct students to download and install software relevant to course curriculum, and this software can potentially be an essential part of the course content. Instructors may (1) use the visualization capabilities of these domain-specific applications to help students understand the concepts covered in class; (2) provide instruction in how to use the software as part of the curriculum; (3) evaluate students' understanding of the software as part of their assessment of students' mastery of the curriculum; or (4) use applications' analytic features as an overview of analytic or quantitative methodologies relevant to the course's subject matter. In the case of IQmol, features such as energy minimization, plotting orbitals, calculating vibrational frequencies, and many other chemphysical computations provide an overview of scientific concepts which might be covered in a Chemistry class.

To facilitate the use of scientific applications as teaching tools, SAPIEN+ plugins help instructors personalize the applications which their students use in conjunction with course curricula. This personalization can have several dimenions, including: (1) manipulating the User Interface to prioritize concepts pertinent to each course; (2) enabling the application to present course-specific instructions to the student, such as instructions and assignments; (3) tracking a suite of resources curated for the specific class; and potentially (4) allowing students to send questions to the instructor with screenshots and application-state information. Again using IQmol as a case-study, an ETS plugin could show students a list of molecular examples discussed in class (based on data provided by the instructor) and allow students to view the corresponding 3D molecular graphics accordingly; instructors could also rearrange the IQmol menus and toolbars, to foreground those analytic tasks which are relevant to the course curriculum.

Scenario 3: A student launches an Integrated Development Environment (IDE) which is used as a teaching tool Using IDEs is a prerequite for most courses in computer science and computer programming, and in this context SAPIEN+ plugins may be used as with other specialized software. An ETS plugin for QT Creator, for example, could load source and project files curated for individual classes, and display instructions or assignments for students based on instructor input. The use-cases for IDE plugins, however, extend beyond computer science proper, and include any scenario where students would write computer code as a learning aid or part of an assignment. Physics students might write algorithms to approximate answers to equations which lack closed-form solutions; biology students might write code to examine genetic patterns; chemistry students might



develop simulations of materials' behavior in different force fields. In these situations SAPIEN+ plugins would allow students to get information from instructors, within the IDE itself, about the goals and requirements for a code-writing exercise.

A further use-case for IDE plugins is for building other SAPIEN+-enabled applications. For example, many scientific applications can be built from source on students' computers, with the aid of IDEs such as QT Creator. In these cases instructors can provide students with application code, perhaps modified according to the course curriculum (including with their own SAPIEN+ plugins). For example, QT-based applications such as IQmol, MeshLab, and XPDF can be built directly from QT Creator. An ETS plugin for QT Creator could then be the first tool which students use at the start of a course, with that plugin obtaining information from a Cloud service about which applications are needed for the course. Behind-the-scenes tasks such as defining project files and setting up build environments can then be performed automatically via the plugin, helping ensure that the student's system has the necessary prerequisites to run all the course-related software.

Scenario 4: Authors Develop Educational Materials Targeting Specific Applications In this scenario, authors compose books, articles, or test-preparation materials with the anticipation that readers will use specific software applications to enhance their reading experience. This sort of interrelationship between publications and external software is presupposed at a rudimentary level as soon as authors link documents to specialized multi-media files. For example, files in the ParaView Data (PVD) format are intended to be used by the ParaView software; as a result, documents which reference such files presuppose that readers will have ParaView installed on their computer, for the full reading experience. Similarly, files in cheminformatic formats such as Protein data bank (.pdb) or Chemical markup language (.cml) need to be opened with chemistry-related software such as IQmol.

In some cases, however, authors may desire a more rigorous degree of interop between document viewers and scientific/multi-media software. This situation applies when it is useful for readers not view particular multi-media files in domain-specific applications, but for the applications to be reconfigured so as to emphasize features or capabilities relevant to the publication which readers are studying. Applications may temporarily modify their layout or appearance for reasons similar to those identified for Scenario 2: instructors may wish to foreground certain kinds of analyses which are pertinent to course curricula, or to group together files which are interrelated in the context of the course (e.g., based on study requirements for an upcoming class session). Similar use-cases apply to publications which interoperate with domain-specific software. The difference between the current scenario and the earlier use-cases is that Scenario 2 assumed that domain-specific applications will receive data from a cloud service, curated by instructors, to personalize their appearance and features for each course. By contrast, the current scenario assumes that similar customization data is provided by publications themselves. Therefore, authors can personalize the software which enhances the reading experience, similar to how instructors may customize domain-specific software for each course.

Although it is not a prerequisite for SAPIEN+ plugins, one tool which can help authors customize their audience's reading experience is the Hypergraph Text Encoding Protocol (HTXN), formulated in conjunction with SAPIEN+. HTXN explicitly supports information sharing between document viewers and external software, such as scientific/multi-media applications. While the "signals" routed via HTXN between applications may simply be instructions to load and display a single file, they may



also be more complex data structures which describe how the target application should adopt to the pedagogical role of presenting multi-media or technical content specifically linked to a publication which the current user is reading. **HTXN** is discussed in greater detail below.

Note also that "external software" referenced by a publication may actually be a unique application developed specifically for that document. Examples of this scenario include publications which are paired with open-access data sets, when the data sets themselves include code for accessing and analyzing the published data. Contemporary standards, such as the "Research Object" format, encourage authors not only to share raw data but to develop code libraries which help readers verify research findings. These project-specific code libraries, particularly if they include **GUI** components, can therefore play the role of multi-media applications which augment the reading experience, enhancing the publications which present research findings in a more conventional, less interactive fashion.

## The Proposed ETS Plugin Framework

As proposed, the ETS Plugin Framework would create a common code base that can be used to implement ETS-specific plugins to applications spanning a range of academic disciplines and subject areas. The primary goal of these plugins would be to connect e-reader software — applications for viewing test-preparation and course materials — with domain-specific software which instructors may use as teaching aids. With respect to GRE exams in fields such as biology, chemistry, or physics, domain-specific applications might include bioinformatics, molecular visualization, or physical simulation tools, respectively. ETS plugins would help scientific applications become more valuable as classroom tools. In particular, with ETS plugins these applications can (1) receive signals from document viewers (such as PDF viewers) to automatically display multi-media content and (2) display course and instructional materials. As a concrete example, consider molecularal visualization software such as IQmol. Via an ETS plugin, IQmol could (1) render a 3D image given data, in a chemical file format, received from an e-reader with a similar plugin; and (2) display instructions, questions, assignments, or course-related content (such as graphics for chemical compounds discussed in class) provided by instructors.

ETS
Plugin
Cloud
Services

Supplementing the functionality described in the preceding paragraph, Cloud Services can be used to connect individual applications to content and curricula specific to individual courses. Because most scientific applications are implemented as desktop software, the hosting of the cloud back-ends to support these features would be a natural fit for LTS's "Native Cloud/Native" (NCN) protocol, which is specifically designed to integrate desktop front-ends with Cloud/Native services. According to this architecture, NCN services would host information specific to individual courses, students, and instructors. When a student launches an application with an ETS plugin, the plugin would retrieve data pertaining to that student and to his or her classes. As appropriate, the plugin could then instruct the host application to load specific content, and/or present questions or instructions supplied by the instructor. For example, IQmol could load a list of molecular files corresponding to chemicals studied in the students' class. The ETS Plugin Cloud back-end would also be used by document (e.g., PDF) viewers to obtain information needed to properly route signals to other applications using ETS Plugins.

Student Dashboard

In addition, one feature which should be common to all ETS Plugins is a "dashboard", or a separate



window aggregating the student's information. The dashboard's design would be roughly as follows: student information would be divided into four or perhaps five tabs, with labels such as "My Courses", "My Library", perhaps "My Tests", "My Applications", and "My Account". Under the Courses tab, students select one course to focus on, which would cause the Library and Tests tabs to prioritize tests, test preparation, and readings assigned for that course. Under the Applications tab, students could see a list of all applications on their computer which have the ETS Plugin installed, or which are used as pedagogical tools for their courses, or which they are instructed to install (the plugin could identify required software which students have not yet installed based on information provided by the ETS Cloud Service).

## The HTXN Protocol

HTXN is a new format and protocol for representing publications. The central goal of HTXN is to support a new generation of publishing technologies, where conventional document formats are increasingly being supplanted by digital, multi-media reader experiences. In the contemporary publishing paradigm, individual publications are often linked with other forms of digital content: multi-media resources, research data sets, machine-readable representations of document text, and domain-specific sofware applications (used to study or visualize the case-studies or research findings discussed in publications). The conventional manuscript (the "primary" resource which is cited and downloaded) is then networked with a package of supplemental (or "secondary") resources. The HTXN protocol is designed to rigorously document these multi-media networks, enabling e-readers and domain-specific applications to be integrated so that readers may easily access and experience multi-media content.

The generic term "multi-media content" actually encompasses multiple phenomena:

Multimedia Files Individual files representing audio, video, or 3D graphics content. These files may be linked from specific locations in the primary manuscript, or even embedded within manuscripts when they are published in PDF format.

Data Sets and Data Visualization Publishers increasingly emphasize sharing research data along-side texts, so readers can verify or even attempt to replicate claimed results. Data sets are also a form of multimedia content because, apart from being aggregates of raw data, data sets are almost always accompanied by interactive, visual content: charts, diagrams, or plots to visualize the information holistically, or interactive tools to examine or navigate through the data set at finer scales.

Application Networks Another genre of multi-media content involves resources which may only be experienced through specialized software. This classification encompasses content from particular scientific or technical domains, which is encoded in domain-specific formats: representations of molecular structures, archaeological sites, image-processing data, wave-forms for signal processing, sentence-parses for linguistic analysis, and so forth. To conveniently access this kind of multi-media, readers need to use software which can send signals to the specialized applications having the capability to recognize the domain-specific formats and translate them to interactive, visual presentations. In short, publication viewers (e.g., e-readers) need to participate in multi-application networks, where data can be sent and received between each component. Publishers can provide this functionality to readers by implementing special e-readers and, in addition, writing plugins (or collaborating with external appli-



cation developers) to ensure that applications networked with e-readers are properly aligned with the e-readers themselves.

Publications-as-Applications In some cases, publications themselves are a form of multi-layered multi-media content. This applies to publications which are not simply read from start to end, but instead naturally lend themselves to a reading process which navigates back and forth between different sections of the text, or juxtaposes different sections to be visible at the same time. A canonical example of such layered reading is testing materials and test preparation, where exam questions, instructions, supplemental materials (such as passages for reading-comprehension assessment), and comments or analyses about answers (in the case of prep materials), each form different layers which students may wish to view side-by-side. In these cases, e-readers cannot simply treat the publication as one single ePub or PDF file. Instead, the manuscript needs to identify text segments which can be factored into different layers, and the e-reader needs to implement text-viewers which allow each layer to be viewed in separate windows, with readers able to juxtapose and position the windows as desired.

**HTXN** represents publication manuscripts using structures which rigorously document publications' multi-media content and multi-application networking requirements. This detailed multi-media support has several dimensions:

- 1. Defining points in the manuscript where multi-media files are linked or embedded: this involves annotating locations in the manuscript with hyper-references to multi-media files (audio, video, etc.) which readers should be able to access when they reach the corresponding point in the text.
- 2. Establishing granular cross-references between publications and multi-media content: this is a more complex case where manuscript locations have to link *to* or *from* limited *portions* of the corresponding multi-media resources. For example, a passage in the manuscript may discuss a single sample within a data set; or may explicate a particular facet of the data set, such as an individual column in a tabular information space, or a specific set of statistical parameters against which quantitative operations are performed. These scenarios call for bi-directional cross-references between the data set and the publication, wherein the granular data-set facet topically relevant to the corresponding manuscript location (the sample, table-column, parameters, etc.) is formally isolated and declared as a reference-target.
- 3. Cross-referances may also be defined between publications' non-textual or non-paragraph content and corresponding multi-media resources. For example, tables or diagrams visually presented in a manuscript may be liked to statistical data from which the figures are derived. A similar situation applies when visuals inluded in a publication are linked to multi-media resources which represent the same information in a different experiential register: a PDF document may include a two-dimensional graphic which is created by taking a camera shot of a 3D model, which readers may also experience with a 3D graphics engine; or a publication may reproduce a graph or scatter-plot derived from a data set, where data visualization software can represent the same information in a more interactive medium, with parameters plotted as curves or surfaces in a 3D ambient space, or where systems are visualized as systems evolving over time.

