

Key Takeaways

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

Solution:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A$$

$$R_3 \rightarrow R_3 + 5R_2$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix} A$$

$$R_3 \rightarrow \frac{1}{2}R_3$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & 3 & 1 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} A$$