Project #2

Shao Hua, Huang ICN5534 - Robotics

January 9, 2019

1 Language and Platform Description

- 1. I use C++ and Python3 to write my program.

 If possible, please use linux machine to run my code.
 - (a) C++11 feature is required.
 - (b) Eigen: C++ template library for linear algebra
 - (c) python packages: numpy and matplotlib
- 2. Intall Dependencies

 Figen 3: gudo ant install liber.

Eigen3: sudo apt install libeigen3-dev numpy and matplotlib: pip3 install numpy matplotlib

3. Run

python3 project2.py

2 Program Architecture

- 1. project1.hpp and project1.cc: codes from project1
 - IsValidRange: check if the angle is not NaN and is in valid range
 - MakeVector6: make a 6 x 1 vector in Eigen
 - MakeA: given $(d_n, a_n, \alpha_n, \theta_n)$, make matrix \mathbf{A}_n
 - DoTask1: given (n, o, a, p), compute joint variables
 - DoTask2: given joint variables, compute (n, o, a, p) and $(x, y, z, \phi, \theta, \phi)$
 - PrintAnswer: print task1 answer for command line interface
- 2. project2.py
 - path_planning: path planning algorithm from textbook
 - plot_param: plot position/angle, velocity, accerlation parameters
 - plot_3dpath: plot final 3d path

Equations Derivation 3

$$\int a_4 t_{acc}^4 + a_3 t_{acc}^3 + a_2 t_{acc}^2 + a_1 t_{acc} + a_0 = \mathbf{B} + \Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}}$$
 (1)

$$a_4 t_{acc}^4 - a_3 t_{acc}^3 + a_2 t_{acc}^2 - a_1 t_{acc} + a_0 = \mathbf{B} + \Delta \mathbf{B}$$
 (2)

$$\begin{cases} a_4 t_{acc}^4 + a_3 t_{acc}^3 + a_2 t_{acc}^2 + a_1 t_{acc} + a_0 = \mathbf{B} + \Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} \\ a_4 t_{acc}^4 - a_3 t_{acc}^3 + a_2 t_{acc}^2 - a_1 t_{acc} + a_0 = \mathbf{B} + \Delta \mathbf{B} \\ 4a_4 t_{acc}^3 + 3a_3 t_{acc}^2 + 2a_2 t_{acc} + a_1 = \frac{\Delta \mathbf{C}}{\mathbf{T}} \\ -4a_4 t_{acc}^3 + 3a_3 t_{acc}^2 - 2a_2 t_{acc} + a_1 = -\frac{\Delta \mathbf{B}}{t_{acc}} \\ 12a_4 t_{acc}^2 + 3a_3 t_{acc} + 2a_2 = 0 \\ 12a_4 t_{acc}^2 - 3a_3 t_{acc} + 2a_2 = 0 \end{cases}$$
 (5)

$$-4a_4t_{acc}^3 + 3a_3t_{acc}^2 - 2a_2t_{acc} + a_1 = -\frac{\Delta \mathbf{B}}{t_{acc}}$$
(4)

$$12a_4t_{acc}^2 + 3a_3t_{acc} + 2a_2 = 0 (5)$$

$$12a_4t_{acc}^2 - 3a_3t_{acc} + 2a_2 = 0 (6)$$

from (5) and (6)
$$\Rightarrow a_3 = 0$$
 (7)

$$(1) - (2) \Rightarrow a_1 = \frac{1}{2t_{acc}} (\Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} - \Delta \mathbf{B}) = \frac{1}{2t_{acc}} (\Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} + \Delta \mathbf{B}) - \frac{1}{t_{acc}} \Delta \mathbf{B}$$
(8)

$$(3) * 3 \Rightarrow 12a_4t_{acc}^2 + 6a_2 = \frac{3}{2t_{acc}^2} (\Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} + \Delta \mathbf{B})$$

$$(9)$$

$$(9) - (5) \Rightarrow a_2 = \frac{3}{8t_{acc}^2} \left(\Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} + \Delta \mathbf{B}\right)$$

$$(10)$$

sub (10) to (5)
$$\Rightarrow a_4 = -\frac{1}{16t_{acc}^4} \left(\Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} + \Delta \mathbf{B}\right)$$
 (11)

sub to (1)
$$\Rightarrow a_0 = \frac{3}{16} (\Delta \mathbf{C} \frac{t_{acc}}{\mathbf{T}} + \Delta \mathbf{B}) + \mathbf{B}$$
 (12)

Let

$$h = \frac{t + t_{acc}}{2t_{acc}}$$

Then,

$$\begin{split} q(t) &= (\Delta \, \mathbf{C} \, \frac{t_{acc}}{\mathbf{T}} + \Delta \, \mathbf{B}) (-\frac{t^4}{16t_{acc}^4} + \frac{3t^2}{8t_{acc}^2} + \frac{t}{2t_{acc}} + \frac{3}{16}) + \mathbf{B} - \frac{t}{t_{acc}} \, \Delta \, \mathbf{B} \\ &= (\Delta \, \mathbf{C} \, \frac{t_{acc}}{\mathbf{T}} + \Delta \, \mathbf{B}) (2 - h) h^3 + \mathbf{B} + (1 - 2h) \, \Delta \, \mathbf{B} \\ \dot{q}(t) &= (\Delta \, \mathbf{C} \, \frac{t_{acc}}{\mathbf{T}} + \Delta \, \mathbf{B}) (-\frac{t^3}{4t_{acc}^4} + \frac{3t}{4t_{acc}^2} + \frac{1}{2t_{acc}}) - \frac{1}{t_{acc}} \, \Delta \, \mathbf{B} \\ &= \left[(\Delta \, \mathbf{C} \, \frac{t_{acc}}{\mathbf{T}} + \Delta \, \mathbf{B}) (3 - 2h) h^2 - \Delta \, \mathbf{B} \right] \frac{1}{t_{acc}} \\ \ddot{q}(t) &= (\Delta \, \mathbf{C} \, \frac{t_{acc}}{\mathbf{T}} + \Delta \, \mathbf{B}) (-\frac{3t^2}{4t_{acc}^4} + \frac{3}{4t_{acc}^2}) \\ &= (\Delta \, \mathbf{C} \, \frac{t_{acc}}{\mathbf{T}} + \Delta \, \mathbf{B}) (1 - h) \frac{3h}{t^2} \end{split}$$

4 Result

4.1 Joint Motion

☆←→ +Q = B

4.2 Cartesian Motion

☆←→ +Q = □

5 Difference Between Joint and Cartesian Motion

5.1 Joint Motion

- 1. Pros
 - Efficient in computation
 - No singularity problem
 - No configuration problem
 - Minimum time planning
- 2. Cons: The corresponding Cartesian locations may be complicated.

5.2 Cartesian Motion

- 1. Pros
 - Motion between path segments and points is well defined.
 - Different constraints, such as smoothness and shortest path, etc., can be imposed upon.
- 2. Cons
 - Computational load is high.
 - The motion breaks down when singularity occurs.