

Automated Variable Selection of Gamma-Ray Responses by Utilizing LASSO and Elastic Net

Vincent DiNova NC State University

CNEC Workshop February 6, 2019 Raleigh, NC

Agenda

- Monte Carlo Library Least Squares (MCLLS) fitting
- Basics of supervised machine learning
- Regularization methods (LASSO and Elastic Net)
- Prompt Gamma Neutron Activation Analysis (PGNAA)
- Library generation and data processing
- Results

Monte Carlo Library Least Squares

- Same principle as ordinary least squares with library spectra used as the input
- $y_i = \sum_{j=1}^m x_j a_{ij} + E_i$, i = 1, n
 - y_i is the counts per channel i
 - x_j are linear coefficients for each element j
 - a_{ij} are the library spectra, or counts in channel i of element j
 - E_i is random error in counts in channel i
- How to deal with changing environments and unknown compositions?

Supervised Machine Learning

- Ordinary Least Squares traditionally suffers from overfitting
 - Too many model parameters
- Model selection should have the right parameters to accurately predict/fit correct solution
- Adding complexity to the model increases bias while reducing variance
- Supervised machine learning variable selection techniques aim to minimize unnecessary bias and variance simultaneously by selecting the correct parameters

LASSO and Elastic Net

 The LASSO (Least Absolute Selection and Shrinkage Operator) is defined as:

$$\hat{\beta}^{lasso} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} ||y - X\beta||_2^2 + \lambda \sum_{j=1}^p |\beta_j|$$
 or
$$= \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} ||y - X\beta||_2^2 + \lambda ||\beta||_1$$

- Where the first term is the loss function and $\lambda ||\beta||_1$ serves as a penalty
 - Note: if λ =0, the equation is identical to that of Ordinary Least Squares (OLS)
- Elastic Net is a modification of LASSO that adds a quadratic penalty as defined below:

•
$$\hat{\beta}^{ElasticNet} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} ||y - X\beta||_2^2 + \lambda_2 ||\beta||^2 + \lambda_1 ||\beta||_1$$

• As $\lambda_{1,2}$ increase, the penalty for each new coefficient grows, allowing variable selection to occur in linear models

Cross Validation

- Each method relies on test/train split to tune model parameters
- This step introduces bias from selecting some data over others (random)
- Cross validation performs the test/train split multiple times, reducing random bias from the model training
 - Trade off extra computing time

Full Run Flow Chart

- Simulated and experimental data is generated
- Each set is processed
 - Nonlinearities removed
 - Prompt/delayed responses are extracted
- Test/train split data for model selection
- Variable selection through LASSO or Elastic Net remove unnecessary model parameters and provides initial guesses
- Final ordinary least squares fitting to reduce bias from model selection procedure

Neutron Interactions

INELASTIC SCATTERING

THERMAL CAPTURE

NEUTRON ACTIVATION

Inelastic or capture reaction that leads to a radioactive element and decay.

Library Generation

- Extensive MCNP simulations
 - Center for Engineering Applications of Radioisotopes (CEAR)
 cluster reduced run times from 1.5-3 days to ~1 hour
 - F8 tally for gamma detection
 - No GEB
- Detector Response Function (DRF)
 - Response generated in a detector from incident radiation
 - Non-linearities resolved to treat problem as a linear combination of library inputs
 - Gaussian broadening fit of full width/half max using calibration sources
 - Energy to channel conversion (2nd order polynomial in the following examples)
 - Both of these will be upgraded by the work performed by Aaron Feinberg

Processing of Data

- MCNP simulations are broadened post processing (faster than GEB tally)
- Nonlinear Nal response requires adjustment during channel to energy conversion
- Energy = a + b * $channel + c * channel^2$

LASSO Simulated Example

Note: 5 libraries are used. Fe and Cu do not contribute to the total spectrum, are given a 0 contribution and selected out of the final model.

Elastic Net Simulation and Comparison

Relative Error		
	Elastic Net	LASSO
Water	5.01%	0.07%
Na	2.95%	1.32%
Cl	29.95%	3.65%

Water – First Results

Results With Nal Activation - Water

Water Trial – Background Removed

Sand Trial - Background Removed

Continuing Work/Next Steps

- Incorporate work from Aaron Feinberg and Long Vo
 - Bayesian approach to fit all non-linear components
 - Time dependent digitizer data
- Analyze additional trials run at KSU
 - Limestone
 - Multiple porosities, water content
- Extensive testing of the limitations of LASSO and Elastic
 Net using simulated radioisotope data
 - High, medium, low counting situations
 - Vary number of radioisotopes
 - Vary number of channels
 - Shielding situations

References

- A.M. Yacout, R.P. Gardner, K. Verghese, Nucl. Instr. And Meth. A 243 (1986) 121.
- A.Sood, R.P.Gardner / Nucl. Instr.and Meth.in Phys. Res.B 213 (2004) 100–104
- Bob Burkhart, "Neutron Generator and Well Logging", Sandia National Laboratories, SAND2006-3291C, www.osti.gov/servlets/purl/1264595
- Committee on Radiation Source and Replacement, 2008, Radiation Source Use and Replacement, National Research Council, ISBN 0-309-110115-7, National Academies Press, Washington, DC (NAS-2008)
- E. Bai, K. Chan, W. Eichinger, P. Kump, "Detection of radionuclides from weak and poorly resolved spectra using Lasso and subsampling techniques. Radiation Measurements, 46 (2011), pp. 1138-1146
- Gardner, et al., 2013, ANS Panel on "Recent Developments in Radiation Source Use and Replacement after the NAS Report of 2008", Transactions of the American Nuclear Society, Vol. 109, 47.
- Kump, Paul et al. "Variable selection via RIVAL (removing irrelevant variables amidst Lasso iterations) and its application to nuclear material detection." *Automatica* 48 (2012): 2107-2115.
- Liberman, A.D et. al., "A method to determine the absolute neutron output of small D-T generator", Nuclear Instruments and Methods in Physics Research Section B, Volume 79, Issue 1-4, p. 574-578, June 1993
- M. Geretschlager, Nucl. Instr. and Meth. B 28 (1987) 289.
- MCNP Training Manual
- Preston R.M. et al, "Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout", *Journal of Instrumentation*, December 8, 2013
- R.P. Gardner, A.M. Yacout, J. Zhang, K. Verghese, Nucl. Instr. and Meth. A 242 (1986) 399.
- R.L. Heath, Scintillation Spectrometry, Gamma-Ray Spectrum Catalogue, 2nd Ed., USAEC Report IDO-16880, 1964.
- T. Papp, J.L. Campbell, D. Varga, G. Kalinka, Nucl. Instr. and Meth. A 412 (1998) 109.
- Serra, Oberto. Well Logging Handbook. Ed. Technip, Paris. 2008
- Y. Jin, R.P. Gardner, K. Verghese, Nucl. Instr. and Meth. A 242 (1986) 416.

Discussion

• Questions?

This work was sponsored in part by the NNSA
Office of Defense Nuclear Nonproliferation R&D
through the Consortium for Nonproliferation Enabling Capabilities

