

First, we verify that negative feedback is present

(a)

According to the summing-point constraint:

According to the voltage - divider principle:

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}

$$Vin = V_1 = V_0 \frac{R_1^2}{R_1^2 + 3R_1R_2 + R_2^2}$$

$$Av = \frac{V_0}{V_{in}} = 1 + \left(\frac{R_2}{R_i}\right)^2 + 3\left(\frac{R_2}{R_i}\right)$$

(b) For
$$R_1 = 1k\Omega$$
 and $R_2 = 10k\Omega$
 $Av = 131$

(c)
$$Rin = \frac{Vin}{i} = \infty$$
 (theoretically)