VÉC-TƠ TRONG MẶT PHẨNG TỌA ĐỘ

A. TÓM TẮT LÝ THUYẾT

1. Tọa độ của véc-tơ

- 7 DINH NGHĨA 0.1.
 - **②** Trục tọa độ (còn gọi là trục, hay trục $s\acute{o}$) là một đường thẳng mà trên đó đã xác định một điểm O và một véc-tơ \overrightarrow{i} có độ dài bằng 1. Điểm O gọi là $g\acute{o}c$ tọa $d\acute{o}$, véc-tơ \overrightarrow{i} gọi là $v\acute{e}c$ -tơ dơn $v\acute{e}$ của trục. Điểm M trên trục biểu diễn số x_0 nếu $\overrightarrow{OM} = x_0$ \overrightarrow{i} .

☑ Trên mặt phẳng, xét hai trực Ox, Oy có chung gốc O và vuông góc với nhau. Véc-tơ đơn vị trên trực Ox là i, véc-tơ đơn vị của trực Oy là j. Hệ gồm hai trực Ox, Oy như vậy được gọi là hệ trực tọa độ Oxy. Điểm O gọi là gốc tọa độ, trực Ox gọi là trực hoành, trực Oy gọi là trực tung. Mặt phẳng chứa hệ trực tọa độ Oxy gọi là mặt phẳng tọa độ Oxy hay mặt phẳng Oxy.

igothermall Với mỗi véc-tơ \vec{u} trên mặt phẳng Oxy, có duy nhất cặp số $(x_0;y_0)$ sao cho $\vec{u}=x_0\vec{i}+y_0\vec{j}$. Ta nói véc-tơ \vec{u} có tọa độ $(x_0;y_0)$ và viết $\vec{u}=(x_0;y_0)$ hay $\vec{u}(x_0;y_0)$. Các số x_0,y_0 tương ứng được gọi là hoành độ, tung độ của \vec{u} .

Nhận xét. Hai véc-tơ bằng nhau khi và chỉ khi chúng có cùng tọa độ.

$$\overrightarrow{u}(x;y) = \overrightarrow{v}(x';y') \Leftrightarrow \begin{cases} x = x' \\ y = y'. \end{cases}$$

2. Biểu thức tọa độ của các phép toán véc-tơ

- **7** Định lí 0.1. Cho hai véc-tơ $\vec{u}=(x;y)$ và $\vec{v}=(x';y')$. Khi đó
- $\overrightarrow{u}+\overrightarrow{v}=(x+x';y+y');$ $\overrightarrow{u}-\overrightarrow{v}=(x-x';y-y');$ $k\overrightarrow{u}=(kx;ky),$ với $k\in\mathbb{R}.$

Nhận xét. Véc-tơ $\overrightarrow{v}(x';y')$ cùng phương với véc-tơ $\overrightarrow{u}(x;y) \neq \overrightarrow{0}$ khi và chỉ khi tồn tại số k sao cho x' = kx, y' = ky (hay là $\frac{x'}{x} = \frac{y'}{y}$ nếu $xy \neq 0$).

 \P Định Lí 0.2. Nếu điểm M có tọa độ (x;y) thì véc-tơ \overrightarrow{OM} có tọa độ (x;y) và độ dài $\left|\overrightarrow{OM}\right|=\sqrt{x^2+y^2}.$

Nhận xét. Với véc-tơ $\vec{u} = (x; y)$, ta lấy điểm M(x; y) thì $\vec{u} = \overrightarrow{OM}$. Do đó, $|\vec{u}| = \left| \overrightarrow{OM} \right| = \sqrt{x^2 + y^2}$.

Chẳng hạn, véc-tơ $\overrightarrow{u}=(2;-1)$ có độ dài là $|\overrightarrow{u}|=\sqrt{2^2+(-1)^2}=\sqrt{5}.$

7 Định Lí 0.3. Với hai điểm M(x;y) và N(x';y') thì $\overrightarrow{MN} = (x'-x;y'-y)$ và khoảng cách giữa hai điểm M, N là $MN = \left| \overrightarrow{MN} \right| = \sqrt{(x'-x)^2 + (y-y')^2}$.

Chú ý

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•			•			•	•	•	•	•	•	•	Ī	Ī	Ī	•		•		•		•	•	•	•	•	•		
	•								•				•	•	•	•			Ī	Ī	Ī			•		•	•						•		
		•	•	•	•	•	•	•	•	•	•						•	•	•	•	•	•	•		•								•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
ı																											•								

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																																		•	

• •	 	 		 • • •	 	
	 • •	 	• •	 	 • • •	

QUICK NOTE

 $m{\Theta}$ Trung điểm M của đoạn thẳng AB có tọa độ là $\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)$.

 $m{\Theta}$ Trọng tâm G của tam giác ABC có tọa độ là $\Big(\frac{x_A+x_B+x_C}{3}; \frac{y_A+y_B+y_C}{3}\Big)$.

3. Biểu thức tọa độ của tích vô hướng

7 Định NGHĨA 0.2. Cho $\vec{a}=(a_1;a_2), \ \vec{b}=(b_1;b_2).$ Khi đó tích vô hướng của hai véc-to \vec{a} và \vec{b} được tính theo công thức sau $\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2.$

A

 $m{\Theta}$ Hai véc-tơ \vec{a} và \vec{b} vuông góc với nhau khi và chỉ khi $a_1b_1 + a_2b_2 = 0$.

 $m{\Theta}$ Bình phương vô hướng của $\vec{a}(a_1; a_2)$ là $\vec{a}^2 = a_1^2 + a_2^2$.

B. CÁC VÍ DỤ

VÍ DỤ 1. Viết tọa độ các véc-tơ sau $\vec{a} = 3\vec{i} + 7\vec{j}$; $\vec{b} = \sqrt{2}\vec{i} - 3\vec{j}$; $\vec{c} = \frac{3}{4}\vec{i}$; $\vec{d} = \pi\vec{j}$.

VÍ DỤ 2. Viết véc-tơ \vec{u} dưới dạng $\vec{u} = x\vec{i} + y\vec{j}$ khi biết tọa độ của \vec{u} là $(5;3), (2;-1), (4;0), (0;-\sqrt{3}), (0;0).$

VÍ DỤ 3. Trong mặt phẳng tọa độ Oxy, cho $\overrightarrow{u}=(1;2), \ \overrightarrow{v}=(-3;4), \ \overrightarrow{a}=(4;8)$

a) Hãy biểu thị mỗi véc-tơ \vec{u} , \vec{v} , \vec{a} theo các véc-tơ \vec{i} , \vec{j} .

b) Tìm tọa độ $\vec{u} + \vec{v}$, $2\vec{u}$.

c) Tìm mối liên hệ giữa véc-tơ \overrightarrow{a} và \overrightarrow{u} .

VÍ DU 4. Cho $\vec{u} = (2; -1)$, $\vec{v} = (4; 5)$. Tính tọa độ các véc-tơ $\vec{u} + \vec{v}$, $\vec{u} - \vec{v}$, $3\vec{u}$, $5\vec{u} - 4\vec{v}$.

VÍ DỤ 5. Cho tam giác ABC có A(-5;6), B(-4;-1), C(4;3).

a) Tìm tọa độ trung điểm I của đoạn thẳng AC.

b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

VÍ DỤ 6. Cho tam giác ABC biết A(1;-1), B(0;3) và $G\left(\frac{1}{3};3\right)$ là trọng tâm. Tìm tọa độ điểm C.

VÍ DỤ7. Cho $\vec{a}=(1;2), \ \vec{b}=(3;-1).$ Hãy phân tích véc-tơ $\vec{c}=(-1;5)$ theo hai véc-tơ \vec{a} và \vec{b} .

VÍ DỤ 8. Cho ba điểm A(1;-1), B(3;5), C(2;2).

a) Chứng minh rằng ba điểm $A,\,B,\,C$ thẳng hàng.

b) Tìm tọa độ điểm D trên Ox sao cho A, B, D thẳng hàng.

VÍ DỤ 9. Cho A(1; 2), B(-2; 1), C(2; -1).

a) Chứng minh tam giác ABC vuông tại A.

b) Tính diện tích tam giác ABC.

VÍ DỤ 10. Cho các véc-tơ $\vec{a} = -\vec{i} + \vec{j}$, $\vec{b} = \vec{i} + 3\vec{j}$. Tìm góc giữa hai véc-tơ \vec{a} và \vec{b} .

VÍ DỤ 11. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1;3) và B(3;-1). Tính góc giữa đường thẳng OA và AB.

VÍ DỤ 12. Cho tam giác ABC có A(2;4), B(2;-2), C(-4;1). Tìm tọa độ trực tâm H của tam giác ABC.

C. BÀI TẬP VẬN DỤNG

BÀI 1. Trong mặt phẳng tọa độ Oxy cho các véc-tơ $\vec{a}=(3;1), \ \vec{b}=(-1;2).$ Tính $\vec{u}=3\vec{a}-2\vec{b}$.

BÀI 2. Trong mặt phẳng Oxy, cho các véc-tơ $\vec{a}=(2;-1)$, $\vec{b}=(0;4)$ và $\vec{c}=(3;3)$. Tìm hai số thực m, n sao cho $\vec{c}=m\vec{a}-n\vec{b}$.

BÀI 3. Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(-2;3), B(1;2), C(-1;-4).

- a) Tìm tọa độ điểm G là trọng tâm tam giác ABC. Tính chu vi tam giác ABC.
- b) Tìm tọa độ điểm K thuộc đoạn thẳng BC sao cho 2KB=3KC.

BÀI 4. Trong mặt phẳng hệ tọa độ Oxy, cho ba điểm A(-1;3), B(-4;-5) và C(1;-2).

- a) Chứng tỏ $A,\,B,\,C$ là ba đỉnh của một tam giác và tìm tọa độ trọng tâm G của tam giác ABC.
- b) Tìm tọa độ trực tâm H của tam giác ABC.
- c) Tìm tọa độ điểm M thuộc trực hoành sao cho $\left|2\overrightarrow{MA}+\overrightarrow{MC}\right|$ đạt giá trị nhỏ nhất.

BÀI 5. Trong mặt phẳng Oxy cho ba điểm A(3;4), B(2;1), C(6;3). Tìm tọa độ điểm N thỏa mãn $2\overrightarrow{NB} + \overrightarrow{NC} - \overrightarrow{NA} = \overrightarrow{0}$.

BÀI 6. Trong mặt phẳng tọa độ Oxy, cho ba điểm M(-1;1), N(1;3), P(-2;5). Tìm tọa đô điểm E biết $\overrightarrow{PE} = 2\overrightarrow{MN}$.

BÀI 7. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A(1;1), B(2;3), C(5;-1). Tìm tọa độ điểm D sao cho tứ giác ABDC là hình bình hành.

BÀI 8. Trong mặt phẳng Oxy, cho M(3;-1), N(1;2) và P(2;-4).

- a) Tìm tọa độ trọng tâm G của tam giác MNP và tọa độ điểm Q sao cho tứ giác MNGQ là hình bình hành.
- b) Tam giác ABC nhận các điểm $M,\,N,\,P$ lần lượt là trung điểm của các cạnh $AB,\,BC,\,CA.$ Tìm tọa độ các điểm $A,\,B,\,C.$

BÀI 9. Trong mặt phẳng tọa độ Oxy, cho điểm A(-3;5), B(-4;-3), C(1;1).

- a) Tìm toa đô điểm D sao cho tứ giác ABCD là hình bình hành.
- b) Tìm tọa độ điểm K thuộc trục hoành sao cho KA + KB nhỏ nhất.

BÀI 10. Trong mặt phẳng tọa độ Oxy, tính góc giữa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} trong mỗi trường hợp sau:

a) $\vec{a} = (4; 3), \vec{b} = (1; 7);$

- c) $\vec{a} = (6; -8), \vec{b} = (12; 9);$
- b) $\vec{a} = (2; 5), \vec{b} = (3; -7);$
- d) $\vec{a} = (2; -6), \vec{b} = (-3; 9).$

BÀI 11. Trong mặt phẳng tọa độ Oxy, cho hai véc-tơ $\vec{u} = \left(\frac{1}{2}; -5\right)$ và $\vec{v} = (k; -4)$. Tìm k để \vec{u} vuông góc với \vec{v} .

BÀI 12. Trong mặt phẳng tọa độ Oxy, cho ba véc-tơ $\vec{u}=(4;1)$, $\vec{v}=(1;4)$ và $\vec{a}=\vec{u}+m\cdot\vec{v}$ với $m\in\mathbb{R}$. Tìm m để \vec{a} vuông góc với trục hoành.

BÀI 13. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C thuộc truc hoành sao cho tam giác ABC vuông tại C.

D. BÀI TẬP TRẮC NGHIỆM

CÂU 1. Trong hệ tọa độ Oxy, biết $\overrightarrow{u} = 2\overrightarrow{i} - \overrightarrow{j}$. Khi đó \overrightarrow{u} có tọa độ là

- (2;-1).
- **B** (2;1).
- \bigcirc (1; 2).
- (1;-2).

CÂU 2. Trong mặt phẳng tọa độ Oxy, tọa độ của \overrightarrow{i} là bao nhiêu?

- $(\mathbf{A}) \vec{i} = (0; 1).$
- **B**) $\vec{i} = (-1; 0).$
- $\vec{c} \ \vec{i} = (0; 0).$
- $\overrightarrow{\mathbf{D}} \ \overrightarrow{i} = (1;0).$

QU		v	N	\frown	T	•
ω U	ı	\sim	N	U		•

								ì	i	•	1	ì	Ì	1	١	`	l	١	ì	Ì	1	ľ	ľ								
•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•

• • • •	 • •
	 • •

.....

QUICK NOTE		hẳng Oxy , cho $A(1;3)$, $\overrightarrow{\textbf{B}} \overrightarrow{AB} = (3;-2)$.		
	CÂU 4. Trong mặt ph độ điểm M thỏa mãn		ba điểm $A(1;3)$, $B(2;$	-3), $C(-2;1)$. Tìm tọa
			\bigcirc $M(-9;-17).$	D $M(9;17)$.
	CÂU 5. Trong mặt p $M(1;2)$ là trung điểm			t $B(9;7)$, $C(11;-1)$ và
	` _ ′		(\mathbf{C}) $N(-2;2)$.	D $N(2; -8)$.
	CÂU 6. Trong mặt ph $\overrightarrow{OD} - 2\overrightarrow{DA} + 2\overrightarrow{DB} =$		A(0;3), B(4;2). Tim to	ọa độ điểm D thỏa mãn
	(-8;2).		\bigcirc (-3;3).	\bigcirc (8; -2).
			B(2;-5). Gọi I là tru	ng điểm của đoạn thẳng
	AB . Véc-to $A\hat{I}$ có tọa $(1; -3)$.	độ là B (0; 5).	\bigcirc $(0;-2).$	\bigcirc $(0;-4).$
	CÂU 8. Cho $A(1;2)$ v	\sim		
	(A) (6; 5). CÂU 9. Trong hệ truc	(B) $(3;2)$.	(c) (2; 3). 4: 1). B(2: 4). G(2: -2).	
	cho G là trọng tâm tan $C(8; -11)$.	m giác ABC .	\mathbf{C} $C(-8;-11)$.	
	•			C(12, 11). C(2; 3) và $C(3; -2)$. Điểm
	I(a;b) thuộc BC sao	cho với mọi điểm M	- '	ag thẳng BC thì \overrightarrow{MI} =
	$\frac{2}{5}\overrightarrow{MB} + \frac{3}{5}\overrightarrow{MC}. \text{ Tính } S$ $(A) 1.$	$S = a^2 + b^2.$ $(\textbf{B}) 0.$	(C) 4.	(D) 5.
	CÂU 11. Trong mặt j			<u> </u>
	Orto 110 Hough might	phang tọa độ Oxy , cho	nar vec-to $a = (5; -1)$	$va \ v = (0, 4)$. This tọa
	độ véc-tơ $\vec{c} = \vec{a} + \vec{b}$.		, , ,	
	độ véc-tơ $\vec{c} = \vec{a} + \vec{b}$. (A) $\vec{c} = (3;3)$. CÂU 12. Trong mặt I	$egin{align*} \begin{align*} \begi$	$ \overrightarrow{\textbf{c}} \ \overrightarrow{c} = (2;1). $ tam giác ABC với $A(1$	$ \mathbf{D} \vec{c} = (6;3). $ $ (5,-2), B(0;-1), C(3;0). $
	độ véc-tơ $\vec{c} = \vec{a} + \vec{b}$. (A) $\vec{c} = (3;3)$. CÂU 12. Trong mặt p Tìm tọa độ điểm G sa			$ \begin{array}{c} \textbf{D} \ \overrightarrow{c} = (6;3). \\ \vdots \\ (3;-2), B(0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \end{array} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p Tìm tọa độ điểm G sac (A) $G\left(\frac{4}{3};-2\right)$.		$\mathbf{\hat{c}} \ \vec{c} = (2;1).$ tam giác ABC với $A(1$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ $\mathbf{\hat{c}} \ G\left(\frac{7}{3}; -2\right).$	$ \begin{array}{c} \textbf{D} \ \overrightarrow{c} = (6;3). \\ \vdots = (2), B(0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ \textbf{D} \ G\left(\frac{4}{3}; -1\right). \end{array} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$.		$\overrightarrow{c} \overrightarrow{c} = (2; 1).$ tam giác \overrightarrow{ABC} với $\overrightarrow{A(1)}$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ $\overrightarrow{c} G\left(\frac{7}{3}; -2\right).$; 3). Tìm tọa độ điểm \overrightarrow{A}	$ \mathbf{D} \vec{c} = (6;3). $ $ \vdots; -2), B(0; -1), C(3;0). $ $ \vec{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. $ $ \mathbf{D} G\left(\frac{4}{3}; -1\right). $ E sao cho $\overrightarrow{AE} = 3\overrightarrow{AB} - 1$
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt p	phẳng tọa độ Oxy , cho o cho với điểm M bất l \mathbf{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;\mathbf{B})$ $E(3;-3)$. Phẳng Oxy , cho tam g	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. (3). Tìm tọa độ điểm \overrightarrow{A} \bigcirc $E(-3; 3)$.	$ \mathbf{D} \ \vec{c} = (6;3). $ $ \mathbf{C} = (6;3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{E} = 3MG. $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \mathbf{D} $ $ \mathbf{D} \ E(-3;-3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{D} \ F\left(\frac{4}{3};-1\right). $ $ \mathbf$
	độ véc-tơ $\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}$. $(\mathbf{\hat{A}})$ $\overrightarrow{c}=(3;3)$. $(\mathbf{\hat{C}})$ Trong mặt $\mathbf{\hat{A}}$ Tìm tọa độ điểm G sau $(\mathbf{\hat{A}})$ $G\left(\frac{4}{3};-2\right)$. $(\mathbf{\hat{C}})$ $(\mathbf{\hat{A}})$ The ba điển $(2\overrightarrow{A})$ $(2\overrightarrow{A})$. $(2\overrightarrow{A})$ $(2\overrightarrow{A}$	phẳng tọa độ Oxy , cho o cho với điểm M bất l \mathbf{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;\mathbf{B})$ $E(3;-3)$. Phẳng Oxy , cho tam g	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. (3). Tìm tọa độ điểm \overrightarrow{A} \bigcirc $E(-3; 3)$.	$ \mathbf{D} \ \vec{c} = (6;3). $ $ \mathbf{C} = (6;3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{E} = 3MG. $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \mathbf{D} $ $ \mathbf{D} \ E(-3;-3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{D} \ F\left(\frac{4}{3};-1\right). $ $ \mathbf$
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p. Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt trực Oy , trọng tâm G . (A) $P(0;2)$. CÂU 15. Trong mặt p.	phẳng tọa độ Oxy , cho o cho với điểm M bất l $oxedsymbol{\mathbb{B}}$ $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;0)$ In B $C(3;-3)$. In $C(3;0)$ In $C(3$	tam giác ABC với $A(1$ kì ta luôn có $\overline{MA} + \overline{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. (3). Tìm tọa độ điểm \overline{A} \bigcirc $E(-3;3)$. Giác MNP có $M(1;-1)$ tim trên trực Ox . Tìm the \bigcirc $P(0;4)$.	$ \mathbf{D} \ \vec{c} = (6;3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{E} = 3\overrightarrow{MG}. $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \mathbf{D} $ $ \mathbf{D} \ E(-3;-3). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{D} \ G\left(\frac{4}{3};-1\right). $ $ \mathbf{E} = (6;3). $ $ \mathbf{E}$
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt I Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt trực Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt I M thẳng hàng với $A(2)$	phẳng tọa độ Oxy , cho o cho với điểm M bất l \mathbb{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3)$ In $A(2;5)$, $A(3;1)$	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. (3). Tìm tọa độ điểm A (5) giác MNP có $M(1; -1)$ tim trên trục Ox . Tìm tọa độ điểm M trên trục Ox tọa độ điểm M trên tr	$ \begin{array}{c} (\textbf{D}) \ \overrightarrow{c} = (6;3). \\ \vdots, -2), B(0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ (\textbf{D}) G\left(\frac{4}{3};-1\right). \\ E \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \\ (\textbf{D}) E(-3;-3). \\ \vdots, N(5;-3) \text{ và } P \text{ thuộc coạ độ của điểm } P. \\ (\textbf{D}) P(2;0). \\ \text{rục hoành sao cho } A, B, \\ \end{array} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p. Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt p. trục Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt p. M thẳng hàng với $A(2)$ (A) $A(2)$ (A) $A(2)$	phẳng tọa độ Oxy , cho o cho với điểm M bất l \mathbb{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;0)$ In $A(2;5)$, $A(2;0)$, $A(2;0)$ In $A(2;5)$, $A(2;0)$, $A(2;0$	tam giác ABC với $A(1)$ kì ta luôn có $\overline{MA} + \overline{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. (3). Tìm tọa độ điểm \overline{M} (c) $E(-3;3)$. Igiác MNP có $M(1; -1)$ tim trên trục Ox . Tìm tọa độ điểm \overline{M} trên trục \overline{C} $P(0;4)$. I tọa độ điểm \overline{M} trên truc \overline{C} (c) $\left(-\frac{5}{3};0\right)$.	
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt trực Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt p M thẳng hàng với $A(2)$. (A) $(1;0)$. CÂU 16. Trong mặt p của $\overrightarrow{a} + \overrightarrow{b}$.	phẳng tọa độ Oxy , cho o cho với điểm M bất l \mathbf{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;0)$ In $A(2;5)$, $C(3;0)$ In $A(2;5)$, $C(3;0)$ In $A(2;5)$, $C(3;0)$ In $A(2;5)$, $C(3;0)$	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc G G $\Big(\frac{7}{3}; -2\Big)$. (3). Tìm tọa độ điểm A giác ABC có A	$ \begin{array}{c} (\textbf{D}) \ \overrightarrow{c} = (6;3). \\ (0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ (\textbf{D}) \ G\left(\frac{4}{3};-1\right). \\ E \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \\ (\textbf{D}) \ E(-3;-3). \\ (1), \ N(5;-3) \ \text{và } P \text{ thuộc roạ độ của điểm } P. \\ (\textbf{D}) \ P(2;0). \\ \text{rục hoành sao cho } A, B, \\ (\textbf{D}) \ (4;0). \\ (0;-2). \ \text{Xác định tọa độ} \\ \end{array} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt trục Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt p M thẳng hàng với $A(2)$. (A) $(1;0)$. CÂU 16. Trong mặt p M của $\overrightarrow{a} + \overrightarrow{b}$. (A) $(-1;0)$.	phẳng tọa độ Oxy , cho to cho với điểm M bất lung G	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc G G $\Big(\frac{7}{3}; -2\Big)$. (3). Tìm tọa độ điểm A \bigcirc $E(-3;3)$. (a) $E(-3;3)$. (b) $E(-3;3)$. (c) $E(-3;3)$. (d) $E(-3;3)$. (e) $E(-3;3)$. (f) $E(-3;3)$. (giác $E(-3;3)$. (giác $E(-3;3)$).	$ \begin{array}{c} (\textbf{D}) \ \overrightarrow{c} = (6;3). \\ (0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ (\textbf{D}) \ G\left(\frac{4}{3};-1\right). \\ E \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \\ (\textbf{D}) \ E(-3;-3). \\ (1), \ N(5;-3) \ \text{và } P \text{ thuộc roạ độ của điểm } P. \\ (\textbf{D}) \ P(2;0). \\ \text{rục hoành sao cho } A, B, \\ (\textbf{D}) \ (4;0). \\ (0;-2). \ \text{Xác định tọa độ} \\ \end{array} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p. Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt p. trục Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt p. M thẳng hàng với $A(2 - \overrightarrow{A})$. (A) $(1;0)$. CÂU 16. Trong mặt p. $(2,0)$. CÂU 17. Trong mặt p. $(2,0)$. CÂU 17. Trong mặt p. $(2,0)$.	phẳng tọa độ Oxy , cho o cho với điểm M bất l \mathbf{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;\mathbf{B})$ $E(3;-3)$. Phẳng Oxy , cho tam giữa tam giác MNP nằ \mathbf{B} $P(0;10)$. Phẳng tọa độ Oxy , tìm $P(0;10)$. Phẳng tọa độ $P(0;10)$.	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc G G $\Big(\frac{7}{3}; -2\Big)$. (3). Tìm tọa độ điểm A \bigcirc $E(-3;3)$. The trên trục A \bigcirc \bigcirc A \bigcirc \bigcirc A \bigcirc \bigcirc \bigcirc A \bigcirc	$ \begin{array}{c} (\textbf{D}) \ \overrightarrow{c} = (6;3). \\ (3;-2), B(0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ (\textbf{D}) G\left(\frac{4}{3};-1\right). \\ E \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \\ (\textbf{D}) E(-3;-3). \\ (3), N(5;-3) \text{ và } P \text{ thuộc coa độ của điểm } P. \\ (\textbf{D}) P(2;0). \\ \text{rục hoành sao cho } A, B, \\ (\textbf{D}) (4;0). \\ (0;-2). \text{ Xác định tọa độ} \\ (0;-4). \\ \text{Tọa độ trung điểm } I \text{ của} \\ \end{aligned} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p. Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt p. trục Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt p. M thẳng hàng với $A(2 - 2)$. (A) $A(1;0)$. CÂU 16. Trong mặt p. $A(2 - 2)$. CÂU 17. Trong mặt p. $A(2 - 2)$.	phẳng tọa độ Oxy , cho o cho với điểm M bất \mathbb{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;\mathbb{B})$ $E(3;-3)$. In $A(2;5)$, $B(1;1)$, $B(3;4)$. In $A(2;5)$, $B(3;4)$. In $A(3$	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. c) $G\left(\frac{7}{3}; -2\right)$. c) $F\left(\frac{7}{3}; -2\right)$.	$ \begin{array}{c} (\textbf{D}) \ \overrightarrow{c} = (6;3). \\ (3;-2), B(0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ (\textbf{D}) G\left(\frac{4}{3};-1\right). \\ E \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \\ (\textbf{D}) E(-3;-3). \\ (3), N(5;-3) \text{ và } P \text{ thuộc coa độ của điểm } P. \\ (\textbf{D}) P(2;0). \\ \text{rục hoành sao cho } A, B, \\ (\textbf{D}) (4;0). \\ (0;-2). \text{ Xác định tọa độ} \\ (0;-4). \\ \text{Tọa độ trung điểm } I \text{ của} \\ \end{aligned} $
	độ véc-tơ $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$. (A) $\overrightarrow{c} = (3;3)$. CÂU 12. Trong mặt p. Tìm tọa độ điểm G sau (A) $G\left(\frac{4}{3};-2\right)$. CÂU 13. Cho ba điển $2\overrightarrow{AC}$. (A) $E(-2;-3)$. CÂU 14. Trong mặt p. trục Oy , trọng tâm G (A) $P(0;2)$. CÂU 15. Trong mặt p. M thẳng hàng với $A(2 - 2)$. (A) $A(1;0)$. CÂU 16. Trong mặt p. $A(2 - 2)$. CÂU 17. Trong mặt p. $A(2 - 2)$.	phẳng tọa độ Oxy , cho o cho với điểm M bất la \mathbf{B} $G\left(\frac{5}{3};-1\right)$. In $A(2;5)$, $B(1;1)$, $C(3;0)$ In $A(2;5)$, $B(3;4)$, $C(3;0)$ In $A(2;5)$, $C(3;0)$ In	tam giác ABC với $A(1)$ kì ta luôn có $\overrightarrow{MA} + \overrightarrow{M}$ \bigcirc $G\left(\frac{7}{3}; -2\right)$. c) $G\left(\frac{7}{3}; -2\right)$. c) $F\left(\frac{7}{3}; -2\right)$.	$ \begin{array}{c} (\textbf{D}) \ \overrightarrow{c} = (6;3). \\ \vdots, -2), B(0;-1), C(3;0). \\ \overrightarrow{B} + \overrightarrow{MC} = 3\overrightarrow{MG}. \\ (\textbf{D}) G\left(\frac{4}{3};-1\right). \\ E \text{ sao cho } \overrightarrow{AE} = 3\overrightarrow{AB} - \\ (\textbf{D}) E(-3;-3). \\ \vdots, N(5;-3) \text{ và } P \text{ thuộc coạ độ của điểm } P. \\ (\textbf{D}) P(2;0). \\ \text{rục hoành sao cho } A, B, \\ (\textbf{D}) (4;0). \\ (0;-2). \text{ Xác định tọa độ} \\ (\textbf{D}) (0;-4). \\ \text{Tọa độ trung điểm } I \text{ của} \\ (\textbf{D}) I(1;1). \\ (1;3), B(4;2), C(-2;0). \\ \end{array} $

XÁC SUẤT				•
CÂU 19. Trong mặt (A) $(2;-1)$.	phẳng tọa độ Oxy , co $lackbox{\textbf{B}}$ $(2;1).$	cho $A(1;2)$ và $B(3;7)$.	Tọa độ của \overrightarrow{AB} là	QUICK NOTE
CÂU 20. Trong mặt véc-tơ $\overrightarrow{AB} - \overrightarrow{AC}$ là	phẳng với Oxy , cho	ba điểm $A(1;3), B(-1)$	1;2),C(-2;1). Toạ độ của	
(-5; -3).	B $(1;1)$.	\bigcirc (-1; 2).	\bigcirc (4;0).	
CÂU 21. Trong mặt $C \in Oy$, trọng tâm G			Biết $A(1;-1), B(5;-3)$ và	
(0;2).	B $(2;0)$.	_	\bigcirc (0;4).	
CÂU 22. Trong mặt $\overrightarrow{MA} = 2\overrightarrow{MB}$. Khi đó		cho các véc-to $\overrightarrow{OA} =$	$(1;2)$ và $\overrightarrow{OB} = (2;1)$, biết	
A 4.	B 1.	© 3.	D 2.	
CÂU 23. Trong mặt $\vec{c} = (0; 2)$. Tính tọa đ			$(-2;1), \vec{b} = (1;-3) \text{ và}$	
, ,		$\vec{\mathbf{C}} \vec{u} = (-1; 0).$	$(\mathbf{D}) \ \vec{u} = (3; 6).$	
•			K(4;-3). Tìm tọa độ điểm	
L để tứ giác $IJKL$ là	hình bình hành.			
(A) $L(2; -4)$.	B) $L(0;2)$.	© $L(6;-2)$.	(D) $L(-8;8)$.	
CÂU 25. Trong mặt $B(2; 5)$. Tìm tọa độ đ		no tam giác ABC có tr	ong tâm $G(0;7)$, $A(-1;4)$,	
$lackbox{(1;12)}.$	B $(-1;12)$.	\bigcirc (3;1).	\bigcirc (2; 12).	
CÂU 26. Trong mặt của m để hai véc-tơ \overline{a}		cho $\vec{a} = (m; 3)$ và \vec{b}	=(2;-1). Tìm các giá trị	
		$\bigcirc m = \frac{3}{4}.$	\bigcirc $m=\frac{1}{4}$.	
_	phẳng tọa độ Oxy , c	cho tam giác ABC với	A(3;4), B(4;1), C(2;-3).	
\bigcirc $(3; \frac{2}{3}).$	B $(7;2)$.	\bigcirc (9; 2).	\bigcirc $(-1;1).$	
_), $F(-1; -3)$. Tìm tọa độ	
điểm G thuộc trực ho		<u> </u>	\bigcirc α $\begin{pmatrix} 11 \end{pmatrix}$	
(A) $G\left(-\frac{1}{5};0\right)$.	B) $G(11;0)$.	$G\left(0;-\frac{1}{4}\right).$		
			CD biết $A(1; -5), B(2; 3),$	
$C(-3;3)$. Tọa độ tâm \bigcirc		\mathbf{C} $(1;-1)$.	(\mathbf{D}) $(-1;-1)$.	
•			I(1;-2). Xác định toạ độ	
điểm B để I là trung		cho har diem $A(2,3)$,	I(1,-2). Aac dịnh toạ đọ	
$igate{A}$ $(0; -7).$	$oxed{B} \left(\frac{3}{2}; \frac{1}{2} \right).$	\bigcirc (1; 2).	\bigcirc (-2;1).	
•	(2 2)		M(1,0) $M(0,0)$ $D(-1,0)$	
lần lượt là trung điểm			M(1;0), N(2;2), P(-1;3) A là	
$igate{A}$ $(4;-1)$.		\bigcirc (0; 5).	_	
CÂU 32. Trong mặt	phẳng tọa độ Oxy ,	cho điểm $A(1; -2), B$	(0;4), C(4;3). Tìm tọa độ	
$\overrightarrow{\text{diểm }} M \text{ thỏa } \overrightarrow{CM} = 2$ $(7;27).$	$2\overrightarrow{AB} - 3\overrightarrow{AC}$.	\bigcirc $(-7;0)$.	D (15; 6).	
CÂU 33. Trong mặt	phẳng tọa độ Oxy , t	ọa độ điểm N trên cại	nh BC của tam giác ABC	
$có\ A(1;-2),\ B(2;3),\ Co$	$C(-1;-2)$ sao cho S_A	$ABN = 3S_{ANC}$ là	$(\mathbf{D}) N\left(-\frac{1}{3}; \frac{1}{3}\right).$	
(1 1)	(1 1/	(0 0)	(0 0/	
CÂU 34. Cho hai vée $\overrightarrow{a} \cdot \overrightarrow{b} = 2$.	e-to $\vec{a} = (3; 2), \ \vec{b} = (-6; \vec{a} \cdot \vec{b}) = (-6; \vec{a} \cdot \vec{b})$	$(-2;4)$. Hãy chọn khẩ 8). $(\vec{c}) \vec{a} \cdot \vec{b} = -14$	ng định đúng. $ \mathbf{D} \vec{a} \cdot \vec{b} = -2. $	

Q Q				
QUICK NOTE	CÂU 35. Trong m	ặt phẳng tọa độ Oxy ,	cho hai véc-to $\vec{a} = 4\vec{i}$	$\vec{b} + 6\vec{j}$ và $\vec{b} = 3\vec{i} - 7\vec{j}$.
	Tính tích vô hướng		$(\vec{\mathbf{c}}) \vec{a} \cdot \vec{b} = 30.$	$(\mathbf{D}) \overrightarrow{a} \cdot \overrightarrow{b} - 43$
				•
	thức $\vec{a} \cdot (\vec{b} + \vec{c})$ th		= (1; 2), b = (4; 3) và c	=(2;3). Giá trị của biểu
	$ \begin{array}{c c} \text{true } a \cdot (b+c) \\ \hline \textbf{(a)} 18. \end{array} $		© 28.	(D) 2.
		B 0.		D) 2.
		(2), B(-1;1) và C(5;		
	(A) 7.	B) 5.	(C) -7 .	(D) -5 .
	CÂU 38. Trong m	ặt phẳng tọa độ Oxy ,	cho hai điểm $A(3;-1)$	và $B(2;10)$. Tính tích vô
	hướng $\overrightarrow{AO} \cdot \overrightarrow{OB}$.			
	$ AO \cdot OB = -$	$-4. \textbf{(B)} \ AO \cdot OB = 0$	$0. \qquad \mathbf{\widehat{C}} \ \overrightarrow{AO} \cdot \overrightarrow{OB} = 4.$	$(\mathbf{D}) AO \cdot OB = 16.$
			cho hai véc-to $\vec{a} = (-2;$	$-1)$ và $\vec{b} = (4; -3)$. Tính
	cosin của góc giữa l			2. / E
	$igatharpoonup \cos\left(\overrightarrow{a},\overrightarrow{b} ight) =$	$=-\frac{\sqrt{5}}{5}$.	$oldsymbol{(B)}\cos\left(\overrightarrow{a},\overrightarrow{b} ight) = 0$	$\frac{2\sqrt{3}}{5}$.
	$\mathbf{c}\cos\left(\vec{a},\vec{b}\right) =$	$-\sqrt{3}$	$igotimes \cos\left(\overrightarrow{a},\overrightarrow{b} ight) = 0$	1
	, ,	2	- ,	2
	CÂU 40. Trong m	ặt phẳng tọa độ Oxy , c	$cho \vec{a} = (2;5) và \vec{b} = (3$	$(3;-7)$. Tính (\vec{a},\vec{b}) .
	A 90°.	B 120°.	© 135°.	D 45°.
	CÂU 41. Trong m	ăt phẳng toa đô Oxy .	, cho hai véc-to $\vec{a} = (-$	$-2;3)$ và $\vec{b} = (4;1)$. Tìm
	véc-tơ \overrightarrow{d} biết $\overrightarrow{a} \cdot \overrightarrow{d}$	$\vec{b} = 4 \text{ và } \vec{b} \cdot \vec{d} = -2.$		
	$\mathbf{A} \vec{d} = \left(\frac{5}{7}; \frac{6}{7}\right).$		$ \overrightarrow{\mathbf{B}} \ \overrightarrow{d} = \left(-\frac{5}{7}; \frac{6}{7}\right) $	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$\overrightarrow{\mathbf{D}} \ \overrightarrow{d} = \left(-\frac{5}{7}; -\frac{6}{7}\right)$	
	$ \vec{\mathbf{c}} \ \vec{d} = \left(\frac{5}{7}; -\frac{6}{7}\right) $	<i>)</i> ·	$\mathbf{D} \ a = \left(-\frac{1}{7}; -\frac{1}{7} \right)$:)·
	CÂU 42. Trong m	ặt phẳng với hệ tọa đợ	$\hat{\rho} Oxy$, cho tam giác AB	BC có A(-1;-1), B(3;1),
	$C(6;0)$. Tính $\cos \widehat{B}$	•		
	$(\widehat{\mathbf{A}})\cos\widehat{B} = -\frac{\sqrt{3}}{3}$	$\frac{\overline{3}}{\overline{3}}$. $(\mathbf{B})\cos\widehat{B} = \frac{\sqrt{3}}{\overline{3}}$.	$\mathbf{C}\cos\widehat{B} = \frac{\sqrt{2}}{2}.$	$(\widehat{\mathbf{D}})\cos\widehat{B} = -\frac{\sqrt{2}}{2}.$
		2	2	L
	1			C với A(1;-1), B(4;2) và
	1	$AB\hat{C}$ có số đo độ bằng		000
	(A) 30°.	B) 45°.	©) 60°.	D 90°.
			Khẳng định nào sau đây	
		$(\mathbf{B}) \vec{u} = \vec{v} .$	$\mathbf{C} \vec{u} = \sqrt{5}.$	$ig(oldsymbol{D} ig) \; ec{u} \perp ec{v}.$
				$\mathbb C$ với $A(2;1),B(2;-3)$ và
	I ` _ ′	n nào sau đây là khẳng		
		BC là tam giác nhọn.	B Tam giác ABC	
		BC là tam giác tù.		C là tam giác vuông.
				0), $B(0;4)$, $C(2;0)$ và
		định nào sau đây là đ	_	. 1
		\widehat{D} và \widehat{BCD} phụ nhau.	B Góc \widehat{BCD} là \widehat{g}	góc nhọn. và \widehat{BCD} bù nhau.
	$ \mathbf{Cos}(AD, AD) $	$(\overrightarrow{CB}, \overrightarrow{CD}) = \cos\left(\overrightarrow{CB}, \overrightarrow{CD}\right).$	Tal goc BAD	va DOD bu illiau.

m giác đều. m giác vuông. (0;4), C(2;0) và \widehat{D} bù nhau. **CÂU 47.** Cho hình chữ nhật ABCD có AB = 4 và AD = 3. Khi đó $\overrightarrow{AB} \cdot \overrightarrow{AD}$ bằng **(B)** 12. (\mathbf{A}) 0. **(D)** -1. **CÂU 48.** Cặp véc-tơ nào sau đây vuông góc với nhau? \vec{c} $\vec{c}_1 = (-4; -6)$ và $\vec{c}_2 = (-3; 2)$.

CÂU 49. Cho tam giác ABC có A(-4;1), B(2;4), C(2;-2). Tìm toạ độ trực tâm H của tam giác ABC.

(B) H(2;4).

 $\bigcirc H\left(\frac{1}{3};3\right).$

(D) H(1;3).

🕑 XÁC SUẤT				•
m sao cho $m\vec{a} + \vec{b}$ vuo	ông góc với $\vec{i} + \vec{j}$.		$ \overrightarrow{b} = (3; -5). $ Tìm số thực	QUICK NOTE
(A) $m = -2$.		(C) $m = 3$.	$(\mathbf{D}) m = \frac{3}{2}.$	
CÂU 51. Trong mặt p tâm $H(5;0)$. Tìm tọa đ		tam giác ABC có A	(-3; -2), B(5; 2) và trực	
	B $C(4; -2)$.	$(\mathbf{C}) C(5; -2).$	$(\mathbf{D}) C(4;-1).$	
			-3;0), B(3;0) và $C(2;6).$	
Gọi $H(a;b)$ là trực tâm	ı của tam giác ABC . T	Γ ính $a+6b$.		
•				
CAU 53. Trong mặt p tiếp tam giác <i>OAB</i> (vớ		A(1;3), B(-6;2). Bá	in kính đường tròn ngoại	
(A) 6.	• ,	\bigcirc $\sqrt{50}$.	$(\mathbf{D}) \frac{\sqrt{50}}{}$.	
_			2	
\overrightarrow{a}			đây không vuông góc với	
	B $\vec{b} = (-2; -1).$	$ \vec{c} \vec{b} = (2; 1). $	$ D \vec{b} = (4; 2). $	
			M(1;2), N(3;4). Tìm tọa	
độ điểm P trên trục O : $(A) P(0:3).$	x sao cho tam giac M $P(-1;0)$.		$(\mathbf{D}) P(0;-1).$	
			(x;3). Tìm giá trị của x	
$d\vec{e} \ \overrightarrow{u} \perp \overrightarrow{v}$.				
(A) 6.	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		(D) -1 .	
CAU 57. Trong mặt p chọn phát biểu đúng.	hẳng Oxy , cho tam giá	$ABC \operatorname{co} A(-1;1),$	B(1;3) và $C(1;-1)$. Hãy	
Tam giác ABC	vuông tại C .	$lackbox{\bf B}$ Tam giác ABC	\mathcal{C} vuông cân tại A .	
C Tam giác ABC	có ba góc đều nhọn.			
		ìm tọa độ điểm C th	nuộc tia Oy sao cho tam	
giác ABC vuông tại C $(0;7)$.		(c) (0: -3)	\bigcirc (0; -3) và (0; 7).	
CÂU 59. Tìm m để h	•	•		
(A) $m = 12$.		$m = -2\sqrt{3}$.		
CÂU 60. Cho tam giá	c ABC , với $A(0;3)$, $B(0;3)$	(x; 1), C(4; 1). Tim x	để tam giác ABC vuông	
tại A .		,		
_		_		
CAU 61. Trong mặt p sai.	ohẳng toạ độ (Oxy) , c	ho $A(-4;1)$, $B(2;4)$,	C(2;-2). Tìm mệnh đề	
lack A, B, C không th	0	$lackbox{\bf B}$ Tam giác ABC	\mathcal{C} vuông cân tại A .	
$(\mathbf{C})\cos\left(\overrightarrow{AB},\overrightarrow{AC}\right) =$	$\frac{3}{5}$.	\bigcirc Độ dài $AB = A$	$4C = 3\sqrt{5}.$	
CÂU 62. Trong mặt p	ohẳng tọa độ Oxy , cho	A(2;3), B(-2;1). Đi	ểm C thuộc trục Ox sao	
$\triangle ABC$ vuông tại \bigcirc	C có thể nhận tọa độ l	à		
(A) $C(3;0)$.		\mathbf{C} $C(-1;0)$.	•	
CAU 63. Trong mặt p hai đỉnh A và B có tọa			rực tâm là gốc tọa độ O , C là	
	$\mathbf{B} \left(\frac{3}{4}; \frac{5}{4} \right).$			
(4 4)	(4 4)	(4 4)	(4 4 /	
CAU 64. Trong mặt p độ trực tâm H của tam		ác ABC có $A(1;2), B$	C(3;4), C(0;-2). Tìm tọa	
A H(−1:3)		$\bigcirc H(0:-7)$	$\bigcap H(3\cdot -1)$	

CÂU 65. Trong mặt phẳng Oxy cho tam giác ABC vuông tại A với A(-1;0) và B(-3;0). Tọa độ điểm C là:

B (-2; -2).

 \bigcirc (-2;0).

D (-1; -3).

(-3;-1).

	Tìm tọa độ C .	B $C(4;2)$.	C(2;4).	\bigcirc $C(2;2).$
				m giác ABM vuông tại A
	(A) $M(-3;0)$.	B $M(-2;0)$.	M(2;0).	$lackbox{D} M(3;0).$

LỜI GIẢI CHI TIẾT

VÉC-TƠ TRONG MẶT PHẨNG TỌA ĐỘ

E. TÓM TẮT LÝ THUYẾT

1. Tọa độ của véc-tơ

7 Định nghĩa 0.3.

 $m{\Theta}$ Trực tọa độ (còn gọi là trục, hay trục số) là một đường thẳng mà trên đó đã xác định một điểm O và một véc-tơ \vec{i} có độ dài bằng 1. Điểm O gọi là gốc tọa độ, véc-tơ \vec{i} gọi là $v\acute{e}c$ -tơ đơn $v\acute{i}$ của trục. Điểm M trên trục biểu diễn số x_0 nếu $\overrightarrow{OM} = x_0$ \vec{i} .

igoplus Trên mặt phẳng, xét hai trực <math>Ox, Oy có chung gốc O và vuông góc với nhau. Véc-tơ đơn vị trên trực Ox là \overrightarrow{i} , véc-tơ đơn vị của trực Oy là \overrightarrow{j} . Hệ gồm hai trực Ox, Oy như vậy được gọi là hệ trực tọa độ Oxy. Điểm O gọi là gốc tọa độ, trực Ox gọi là trực hoành, trực Oy gọi là trực tung. Mặt phẳng chứa hệ trực tọa độ Oxy gọi là mặt phẳng tọa độ Oxy hay mặt phẳng Oxy.

 $oldsymbol{\Theta}$ Với mỗi véc-tơ \overrightarrow{u} trên mặt phẳng Oxy, có duy nhất cặp số $(x_0;y_0)$ sao cho $\overrightarrow{u}=x_0\overrightarrow{i}+y_0\overrightarrow{j}$. Ta nói véc-tơ \overrightarrow{u} có tọa độ $(x_0;y_0)$ và viết $\overrightarrow{u}=(x_0;y_0)$ hay $\overrightarrow{u}(x_0;y_0)$. Các số x_0,y_0 tương ứng được gọi là hoành độ, tung độ của \overrightarrow{u} .

Nhận xét. Hai véc-tơ bằng nhau khi và chỉ khi chúng có cùng tọa độ.

$$\vec{u}(x;y) = \vec{v}(x';y') \Leftrightarrow \begin{cases} x = x' \\ y = y'. \end{cases}$$

2. Biểu thức toa đô của các phép toán véc-tơ

 \P Định Lí 0.4. Cho hai véc-tơ $\overrightarrow{u}=(x;y)$ và $\overrightarrow{v}=(x';y')$. Khi đó

• $\vec{u} + \vec{v} = (x + x'; y + y');$ • $\vec{u} - \vec{v} = (x - x'; y - y');$ • $k\vec{u} = (kx; ky), \text{ v\'oi } k \in \mathbb{R}.$

Nhận xét. Véc-tơ $\overrightarrow{v}(x';y')$ cùng phương với véc-tơ $\overrightarrow{u}(x;y) \neq \overrightarrow{0}$ khi và chỉ khi tồn tại số k sao cho x' = kx, y' = ky (hay là $\frac{x'}{x} = \frac{y'}{y}$ nếu $xy \neq 0$).

 $\raiseta \ \ \text{Dinh li} \ \ 0.5. \ \ \textit{N\'eu} \ \ \textit{d\'e\'m} \ M \ \ \textit{c\'o} \ \ \textit{tọa} \ \ \textit{d\~o} \ (x;y) \ \ \textit{thì} \ \ \textit{v\'ec-to} \ \overrightarrow{OM} \ \ \textit{c\'o} \ \ \textit{tọa} \ \ \textit{d\~o} \ \ (x;y) \ \ \textit{và} \ \ \textit{d\~o} \ \ \textit{dài} \ \ \left| \overrightarrow{OM} \right| = \sqrt{x^2 + y^2}.$

Nhận xét. Với véc-tơ $\vec{u}=(x;y)$, ta lấy điểm M(x;y) thì $\vec{u}=\overrightarrow{OM}$. Do đó, $|\vec{u}|=\left|\overrightarrow{OM}\right|=\sqrt{x^2+y^2}$. Chẳng hạn, véc-tơ $\vec{u}=(2;-1)$ có độ dài là $|\vec{u}|=\sqrt{2^2+(-1)^2}=\sqrt{5}$.

 \P Định Lí 0.6. Với hai điểm M(x;y) và N(x';y') thì $\overrightarrow{MN}=(x'-x;y'-y)$ và khoảng cách giữa hai điểm M,N là $MN=\left|\overrightarrow{MN}\right|=\sqrt{(x'-x)^2+(y-y')^2}.$

Chú ý

- $oldsymbol{\Theta}$ Trung điểm M của đoạn thẳng AB có tọa độ là $\Big(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\Big)$.
- $m{\Theta}$ Trọng tâm G của tam giác ABC có tọa độ là $\left(\frac{x_A+x_B+x_C}{3}; \frac{y_A+y_B+y_C}{3}\right)$.

3. Biểu thức tọa độ của tích vô hướng

7 Định nghĩa 0.4. Cho $\vec{a}=(a_1;a_2), \ \vec{b}=(b_1;b_2).$ Khi đó tích vô hướng của hai véc-tơ \vec{a} và \vec{b} được tính theo công thức sau $\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2.$

A

- $m{\Theta}$ Hai véc-tơ \vec{a} và \vec{b} vuông góc với nhau khi và chỉ khi $a_1b_1 + a_2b_2 = 0$.
- Θ Bình phương vô hướng của $\vec{a}(a_1; a_2)$ là $\vec{a}^2 = a_1^2 + a_2^2$.

F. CÁC VÍ DỤ

VÍ DỤ 1. Viết tọa độ các véc-tơ sau $\vec{a} = 3\vec{i} + 7\vec{j}$; $\vec{b} = \sqrt{2}\vec{i} - 3\vec{j}$; $\vec{c} = \frac{3}{4}\vec{i}$; $\vec{d} = \pi\vec{j}$.

🗭 Lời giải.

Ta có
$$\vec{a} = (3;7), \ \vec{b} = \left(\sqrt{2}; -3\right), \ \vec{c} = \left(\frac{3}{4}; 0\right), \ \vec{d} = (0; \pi).$$

VÍ DỤ 2. Viết véc-tơ \overrightarrow{u} dưới dạng $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$ khi biết tọa độ của \overrightarrow{u} là $(5;3), (2;-1), (4;0), (0;-\sqrt{3}), (0;0).$

🗩 Lời giải.

Ta có
$$\vec{u} = 5\vec{i} + 3\vec{j}$$
, $\vec{u} = 2\vec{i} - \vec{j}$, $\vec{u} = 4\vec{i}$, $\vec{u} = -\sqrt{3}\vec{j}$, $\vec{u} = 0\vec{i} + 0\vec{j} = \vec{0}$.

VÍ DỤ 3. Trong mặt phẳng tọa độ Oxy, cho $\vec{u}=(1;2), \ \vec{v}=(-3;4), \ \vec{a}=(4;8)$

- a) Hãy biểu thị mỗi véc-tơ \vec{u} , \vec{v} , \vec{a} theo các véc-tơ \vec{i} , \vec{j} .
- b) Tìm tọa độ $\vec{u} + \vec{v}$, $2\vec{u}$.
- c) Tìm mối liên hệ giữa véc-to \overrightarrow{a} và \overrightarrow{u} .

🗭 Lời giải.

- a) Ta có $\vec{u} = \vec{i} + 2\vec{j}$, $\vec{v} = -3\vec{i} + 4\vec{j}$, $\vec{a} = 6\vec{i} + 8\vec{j}$.
- b) Ta có $\vec{u} + \vec{v} = (-2; 6), 2\vec{u} = (2; 4).$
- c) Ta có $\vec{a} = 4\vec{u}$.

VÍ DỤ 4. Cho $\vec{u}=(2;-1),\ \vec{v}=(4;5).$ Tính tọa độ các véc-tơ $\vec{u}+\vec{v},\ \vec{u}-\vec{v},\ 3\vec{u},\ 5\vec{u}-4\vec{v}.$ $\textcircled{\textbf{p}}$ Lời giải.

Ta có
$$\vec{u} + \vec{v} = (6; 4), \ \vec{u} - \vec{v} = (-2; -6), \ 3\vec{u} = (6; -3).$$

Ta có $5\vec{u} = (10; -5), \ 4\vec{v} = (16; 20) \ \text{nên } 5\vec{u} - 4\vec{v} = (-6; -25).$

VÍ DỤ 5. Cho tam giác ABC có A(-5;6), B(-4;-1), C(4;3).

- a) Tìm tọa độ trung điểm I của đoạn thẳng AC.
- b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

🗭 Lời giải.

a) Gọi $I(x_I; y_I)$. Vì I là trung điểm của của AC nên

$$\begin{cases} x_I = \frac{x_A + x_C}{2} = \frac{-5 + 4}{2} = -\frac{1}{2} \\ y_I = \frac{y_A + y_C}{2} = \frac{6 + 3}{2} = \frac{9}{2}. \end{cases}$$

Vậy
$$I\left(-\frac{1}{2}; \frac{9}{2}\right)$$
.

b) Gọi
$$D(x;y)$$
, ta có $\overrightarrow{AB} = (1;-7)$, $\overrightarrow{DC} = (4-x;3-y)$.

$$\begin{array}{l} ABCD \text{ là hình bình hành khi } \overrightarrow{AB} = \overrightarrow{CD} \\ \Leftrightarrow \begin{cases} 1 = 4 - x \\ -7 = 3 - y \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = 10 \end{cases}. \text{ Vây } D(3; 10). \end{array}$$

VÍ DỤ 6. Cho tam giác ABC biết A(1;-1), B(0;3) và $G\left(\frac{1}{3};3\right)$ là trọng tâm. Tìm tọa độ điểm C.

🗭 Lời giải.

Gọi C(x;y). Vì G là trọng tâm tam giác ABC nên

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} \end{cases}$$

$$\Rightarrow \begin{cases} \frac{1}{3} = \frac{1 + 0 + x}{3} \\ 3 = \frac{-1 + 3 + y}{3} \end{cases}$$

$$\Rightarrow \begin{cases} x = 0 \\ y = 7. \end{cases}$$

Vậy C(0;7).

VÍ DỤ 7. Cho $\vec{a}=(1;2),\ \vec{b}=(3;-1).$ Hãy phân tích véc-tơ $\vec{c}=(-1;5)$ theo hai véc-tơ \vec{a} và \vec{b} . \blacksquare Lời giải.

Giả sử
$$\vec{c} = k\vec{a} + m\vec{b} = (k + 3m; 2k - m).$$
Ta có
$$\begin{cases} k + 3m = -1 \\ 2k - m = 5 \end{cases} \Rightarrow \begin{cases} k = 2 \\ m = -1. \end{cases}$$

VÍ DỤ 8. Cho ba điểm A(1;-1), B(3;5), C(2;2).

- a) Chúng minh rằng ba điểm $A,\,B,\,C$ thẳng hàng.
- b) Tìm tọa độ điểm D trên Ox sao cho $A,\,B,\,D$ thẳng hàng.

🗭 Lời giải.

- a) Ta có $\overrightarrow{AB}=(2;6), \overrightarrow{AC}=(1;3).$ Vì $\frac{2}{1}=\frac{6}{3}$ nên \overrightarrow{AB} và \overrightarrow{AC} cùng phương do đó ba điểm $A,\,B,\,C$ thẳng hàng.
- b) Vì $D \in Ox$ nên D(x;0). Ta có $\overrightarrow{AB} = (2;6)$, $\overrightarrow{AD} = (x-1;1)$. Ba điểm A, B, D thẳng hàng khi $\frac{x-1}{2} = \frac{1}{6} \Rightarrow x-1 = \frac{1}{3} \Rightarrow x = \frac{4}{3}$. Vậy $D\left(\frac{4}{3};0\right)$.

🗭 Lời giải.

VÍ DỤ 9. Cho A(1; 2), B(-2; 1), C(2; -1).

- a) Chúng minh tam giác ABC vuông tại A.
- b) Tính diện tích tam giác ABC.

- a) Ta có $\overrightarrow{AB} = (-3;1), \ \overrightarrow{AC} = (1;-3), \ \overrightarrow{BC} = (4;-2).$ Suy ra $AB = \sqrt{(-3)^2 + 1} = \sqrt{10}, \ AC = \sqrt{1^2 + (-3)^2} = \sqrt{10}, \ BC = \sqrt{4^2 + (-2)^2} = \sqrt{20}.$ Ta thấy $AB^2 + AC^2 = 10 + 10 = 20 = BC^2$ nên tam giác ABC vuông tại A.
- b) Vì tam giác ABC vuông tại A nên diện tích là $\frac{1}{2}AB\cdot AC=\frac{1}{2}\cdot\sqrt{10}\cdot\sqrt{10}=5.$

VÍ DỤ 10. Cho các véc-tơ $\vec{a} = -\vec{i} + \vec{j}$, $\vec{b} = \vec{i} + 3\vec{j}$. Tìm góc giữa hai véc-tơ \vec{a} và \vec{b} . D Lời giải.

Ta có
$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{-1 \cdot 1 + 1 \cdot 3}{\sqrt{(-1)^2 + 1^2} \cdot \sqrt{1^2 + 3^2}} = \frac{2}{2\sqrt{5}} = \frac{1}{\sqrt{5}}.$$

Do đó góc giữa hai véc-tơ
$$\vec{a}$$
 và \vec{b} là góc $\alpha \in [0^\circ; 180^\circ]$ sao cho $\cos \alpha = \frac{1}{\sqrt{5}}$ hay $\alpha \approx 65^\circ 26'$.

VÍ DỤ 11. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1;3) và B(3;-1). Tính góc giữa đường thẳng OA và AB. Lời giải.

Ta có
$$\overrightarrow{AO} = (-1; -3)$$
 và $\overrightarrow{AB} = (2; -4)$.

Ta có
$$\overrightarrow{AO} = (-1; -3)$$
 và $\overrightarrow{AB} = (2; -4)$.
Suy ra $\cos(\overrightarrow{AO}, \overrightarrow{AB}) = \frac{\overrightarrow{AO} \cdot \overrightarrow{AB}}{\overrightarrow{AO} \cdot AB} = \frac{-1 \cdot 2 + (-3) \cdot (-4)}{\sqrt{10} \cdot \sqrt{20}} = \frac{1}{\sqrt{2}}$.

Góc giữa hai véc-tơ
$$\overrightarrow{AO}$$
 và \overrightarrow{AB} bằng góc $\widehat{BAO} = 45^{\circ}$. Do đó góc giữa đường thẳng OA và đường thẳng AB bằng 45° .

VÍ DU 12. Cho tam giác ABC có A(2;4), B(2;-2), C(-4;1). Tìm tọa độ trực tâm H của tam giác ABC. 🗭 Lời giải.

Ta có
$$\overrightarrow{BC} = (-6; 3), \overrightarrow{AB} = (0; -6).$$

Giả sử tọa độ trực tâm H của $\triangle ABC$ là H(x;y), ta có

$$\begin{cases} AH \perp BC \\ CH \perp AB \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AH} \cdot \overrightarrow{BC} = 0 \\ \overrightarrow{CH} \cdot \overrightarrow{AB} = 0 \end{cases} \Leftrightarrow \begin{cases} -6(x-2) + 3(y-4) = 0 \\ 0(x+4) - 6(y-1) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} \\ y = 1 \end{cases}.$$

Vậy trực tâm của tam giác ABC là $H\left(\frac{1}{2};1\right)$.

G. BÀI TÂP VÂN DUNG

BÀI 1. Trong mặt phẳng tọa độ Oxy cho các véc-tơ $\vec{a}=(3;1), \vec{b}=(-1;2)$. Tính $\vec{u}=3\vec{a}-2\vec{b}$.

Dèi giải.

Ta có
$$3\vec{a} = (9;3)$$
 và $-2\vec{b} = (2;-4)$ nên $\vec{u} = 3\vec{a} - 2\vec{b} = (11;-1)$.

BÀI 2. Trong mặt phẳng Oxy, cho các véc-tơ $\overrightarrow{a}=(2;-1), \overrightarrow{b}=(0;4)$ và $\overrightarrow{c}=(3;3)$. Tìm hai số thực m, n sao cho $\vec{c} = m\vec{a} - n\vec{b}.$

🗭 Lời giải.

Ta có
$$m\vec{a} = (2m; -m), n\vec{b} = (0; 4n) \Rightarrow m\vec{a} - n\vec{b} = (2m; -m - 4n).$$

Mà $\vec{c} = m\vec{a} - n\vec{b} \Leftrightarrow \begin{cases} 3 = 2m \\ 3 = -m - 4n \end{cases} \Leftrightarrow \begin{cases} m = \frac{3}{2} \\ n = -\frac{9}{8}. \end{cases}$

BAI 3. Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(-2;3), B(1;2), C(-1;-4).

- a) Tìm tọa độ điểm G là trọng tâm tam giác ABC. Tính chu vi tam giác ABC.
- b) Tìm tọa độ điểm K thuộc đoạn thẳng BC sao cho 2KB = 3KC.

🗭 Lời giải.

a) Điểm
$$G$$
 là trọng tâm tam giác ABC nên
$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} = -\frac{2}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} = \frac{1}{3} \end{cases} \Rightarrow G\left(-\frac{2}{3}; \frac{1}{3}\right).$$

$$\text{Ta có } \begin{cases} \overrightarrow{AB} = (3; -1) \Rightarrow AB = \sqrt{3^2 + (-1)^2} = \sqrt{10} \\ \overrightarrow{BC} = (-2; -6) \Rightarrow BC = \sqrt{(-2)^2 + (-6)^2} = 2\sqrt{10} \Rightarrow P_{ABC} = 3\sqrt{10} + 5\sqrt{2}. \\ \overrightarrow{CA} = (-1; 7) \Rightarrow CA = \sqrt{(-1)^2 + 7^2} = 5\sqrt{2} \end{cases}$$

Ta có
$$\{ \overrightarrow{BC} = (-2; -6) \Rightarrow BC = \sqrt{(-2)^2 + (-6)^2} = 2\sqrt{10} \Rightarrow P_{ABC} = 3\sqrt{CA} = (-1; 7) \Rightarrow CA = \sqrt{(-1)^2 + 7^2} = 5\sqrt{2} \}$$

b) K thuộc đoan BC nên

$$\begin{split} 2\overrightarrow{KB} + 3\overrightarrow{KC} &= \overrightarrow{0} &\Leftrightarrow 2\left(\overrightarrow{OB} - \overrightarrow{OA}\right) + 3\left(\overrightarrow{OA} - \overrightarrow{OK}\right) = \overrightarrow{0} \\ &\Rightarrow \overrightarrow{OK} = \frac{2\overrightarrow{OB} + 3\overrightarrow{OA}}{5} \\ &\Rightarrow \begin{cases} x_K = \frac{2x_B + 3x_A}{5} = -\frac{4}{5} \\ y_K = \frac{2y_B + 3y_A}{5} = \frac{13}{5}. \end{cases} \end{split}$$

Vậy tọa độ cần tìm là $K\left(-\frac{4}{5}; \frac{13}{5}\right)$.

BÀI 4. Trong mặt phẳng hệ tọa độ Oxy, cho ba điểm A(-1;3), B(-4;-5) và C(1;-2).

- a) Chứng tỏ A, B, C là ba đỉnh của một tam giác và tìm tọa độ trọng tâm G của tam giác ABC.
- b) Tìm tọa độ trực tâm H của tam giác ABC.
- c) Tìm tọa độ điểm M thuộc trực hoành sao cho $\left|2\overrightarrow{MA} + \overrightarrow{MC}\right|$ đạt giá trị nhỏ nhất.

🗭 Lời giải.

a) Ta có $\overrightarrow{AB} = (-3; -8)$, $\overrightarrow{AC} = (2; -5)$. Vì $\frac{-3}{2} \neq \frac{-8}{-5}$ nên hai véc-tơ \overrightarrow{AB} và \overrightarrow{AC} không cùng phượng. Từ đó suy ra A, B, C là ba đỉnh của một tam giác. Tọa độ trọng tâm G của tam giác ABC là

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} = \frac{(-1) + (-4) + 1}{3} = -\frac{4}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} = \frac{3 + (-5) + (-2)}{3} = -\frac{4}{3} \end{cases}$$

Vậy
$$G\left(-\frac{4}{3}; -\frac{4}{3}\right)$$
.

b) Giả sử H(x;y) là trực tâm của tam giác ABC. Ta có $\overrightarrow{BH} = (x+4;y+5)$, $\overrightarrow{CH} = (x-1;y+2)$, $\overrightarrow{AB} = (-3;-8)$, $\overrightarrow{AC} = (2;-5)$. Vì H là trực tâm tam giác ABC nên

$$\begin{cases} \overrightarrow{AB} \perp \overrightarrow{CH} & \Leftrightarrow & \begin{cases} \overrightarrow{AB} \cdot \overrightarrow{CH} = 0 \\ \overrightarrow{AC} \cdot \overrightarrow{BH} = 0 \end{cases} \\ \Leftrightarrow & \begin{cases} (-3) \cdot (x-1) + (-8) \cdot (y+2) = 0 \\ 2 \cdot (x+4) + (-5) \cdot (y+5) = 0 \end{cases} \\ \Leftrightarrow & \begin{cases} 3x + 8y = -13 \\ 2x - 5y = 17 \end{cases} \\ \Leftrightarrow & \begin{cases} x = \frac{71}{31} \\ y = -\frac{77}{31} \end{cases}.$$

$$V_{\text{ay}} H\left(\frac{71}{31}; -\frac{77}{31}\right).$$

c) Gọi M(x;0) là điểm thuộc trục hoành, ta có

$$\begin{cases} \overrightarrow{MA} = (-1 - x; 3) \\ \overrightarrow{MC} = (1 - x; -2) \end{cases} \Rightarrow 2\overrightarrow{MA} + \overrightarrow{MC} = (-1 - 3x; 4).$$

Nên

$$\left| 2\overrightarrow{MA} + \overrightarrow{MC} \right| = \sqrt{(-1 - 3x)^2 + 4^2}$$

= $\sqrt{(1 + 3x)^2 + 4^2} \ge 4$.

Dấu "=" xảy ra khi và chỉ khi $1+3x=0 \Leftrightarrow x=-\frac{1}{3}.$ Khi đó $M\left(-\frac{1}{3};0\right).$

BÀI 5. Trong mặt phẳng Oxy cho ba điểm A(3;4), B(2;1), C(6;3). Tìm tọa độ điểm N thỏa mãn $2\overrightarrow{NB} + \overrightarrow{NC} - \overrightarrow{NA} = \overrightarrow{0}$. \bigcirc Lời giải.

Giả sử N(x;y). Ta có $\overrightarrow{NB}=(2-x;1-y), \overrightarrow{NC}=(6-x;3-y), \overrightarrow{NA}=(3-x;4-y)$. Khi đó

$$2\overrightarrow{NB} + \overrightarrow{NC} - \overrightarrow{NA} = \overrightarrow{0} \Leftrightarrow \begin{cases} 2(2-x) + (6-x) - (3-x) = 0\\ 2(1-y) + (3-y) - (4-y) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} 7 - 2x = 0\\ 1 - 2y = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{7}{2}\\ y = \frac{1}{2}. \end{cases}$$

Vậy,
$$N\left(\frac{7}{2}; \frac{1}{2}\right)$$
 là điểm cần tìm.

BÀI 6. Trong mặt phẳng tọa độ Oxy, cho ba điểm M(-1;1), N(1;3), P(-2;5). Tìm tọa độ điểm E biết $\overrightarrow{PE}=2\overrightarrow{MN}$.

🗩 Lời giải.

Ta có
$$\overrightarrow{MN} = (2; 2)$$
.

 $\overrightarrow{PE} = 2\overrightarrow{MN} \Leftrightarrow \begin{cases} x_E + 2 = 4 \\ y_E - 5 = 4 \end{cases} \Leftrightarrow \begin{cases} x_E = 2 \\ y_E = 9. \end{cases}$
Vây $E(2; 9)$.

BÀI 7. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A(1;1), B(2;3), C(5;-1). Tìm tọa độ điểm D sao cho tứ giác ABDC là hình bình hành.

🗭 Lời giải.

Tứ giác
$$ABDC$$
 là hình bình hành $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \begin{cases} x_D - 5 = 1 \\ y_D + 1 = 2 \end{cases} \Leftrightarrow \begin{cases} x_D = 6 \\ y_D = 1 \end{cases}$. Vậy $D(6;1)$ là điểm cần tìm.

BÀI 8. Trong mặt phẳng Oxy, cho M(3;-1), N(1;2) và P(2;-4).

- a) Tìm tọa độ trọng tâm G của tam giác MNP và tọa độ điểm Q sao cho tứ giác MNGQ là hình bình hành.
- b) Tam giác ABC nhận các điểm M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tìm tọa độ các điểm A, B, C.

a) Toa đô trong tâm G của tam giác MNP là

$$G = \left(\frac{3+1+2}{3}; \frac{-1+2-4}{3}\right) = (2;-1).$$

Gọi Q(x;y).

Vì tứ giác MNGQ là hình bình hành nên $\overrightarrow{MQ} = \overrightarrow{NG}$.

Ta có $\overrightarrow{MQ} = (x-3; y+1)$ và $\overrightarrow{NG} = (1; -3)$. Từ (1) suy ra

$$\begin{cases} x - 3 = 1 \\ y + 1 = -3 \end{cases} \Leftrightarrow \begin{cases} x = 4 \\ y = -4. \end{cases}$$

Vậy Q(4; -4).

b) Gọi $C(c_1; c_2)$, theo đề bài thì tứ giác MNCP là hình bình hành nên

$$\begin{cases} c_1 + x_M = x_N + x_P \\ c_2 + y_M = y_N + y_P \end{cases} \Leftrightarrow \begin{cases} c_1 = 1 + 2 - 3 = 0 \\ c_2 = 2 + (-4) - (-1) = -1. \end{cases}$$

Vậy C(0; -1).

Gọi $B(b_1;b_2)$, vì N là trung điểm CB nên

$$\begin{cases} b_1 = 2x_N - c_1 \\ b_2 = 2y_N - c_2 \end{cases} \Leftrightarrow \begin{cases} b_1 = 2 \cdot 1 - 0 = 2 \\ b_2 = 2 \cdot 2 - (-1) = 5. \end{cases}$$

Vậy B(2;5).

Gọi $A(a_1; a_2)$, vì M là trung điểm AB nên

$$\begin{cases} a_1 = 2x_M - b_1 \\ a_2 = 2y_M - b_2 \end{cases} \Leftrightarrow \begin{cases} a_1 = 2 \cdot 3 - 2 = 4 \\ a_2 = 2 \cdot (-1) - 5 = -7. \end{cases}$$

Vậy A(4; -7).

- a) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
- b) Tìm tọa độ điểm K thuộc trực hoành sao cho KA + KB nhỏ nhất.

🗩 Lời giải.

a) Tứ giác ABCD là hình bình hành

$$\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow (-1; -8) = (1 - x_D; 1 - y_D) \Leftrightarrow \begin{cases} 1 - x_D = -1 \\ 1 - y_D = -8 \end{cases} \Leftrightarrow \begin{cases} x_D = 2 \\ y_D = 9. \end{cases}$$

Vậy D(2;9) là điểm cần tìm.

b) Gọi K(a;0) là điểm cần tìm.

Ta có $KA + KB \ge AB$.

Dấu "=" xảy ra khi A, K, B thẳng hàng.

$$\Leftrightarrow \overrightarrow{AK} = k\overrightarrow{AB} \Leftrightarrow (a+3;-5) = k(-1;-8) \Leftrightarrow \begin{cases} a+3 = -k \\ -5 = -8k \end{cases} \Leftrightarrow \begin{cases} a = -\frac{29}{8} \\ k = \frac{5}{8}. \end{cases}$$

Vậy $K\left(-\frac{29}{8};0\right)$ thỏa yêu cầu bài toán.

BÀI 10. Trong mặt phẳng tọa độ Oxy, tính góc giữa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} trong mỗi trường hợp sau:

a)
$$\vec{a} = (4;3), \vec{b} = (1;7);$$

c)
$$\vec{a} = (6; -8), \vec{b} = (12; 9);$$

b)
$$\vec{a} = (2;5), \vec{b} = (3;-7);$$

d)
$$\vec{a} = (2; -6), \vec{b} = (-3; 9).$$

🗭 Lời giải.

(1)

a)
$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{4 \cdot 1 + 3 \cdot 7}{\sqrt{4^2 + 3^2} \cdot \sqrt{1^2 + 7^2}} = \frac{25}{5\sqrt{50}} = \frac{1}{\sqrt{2}}.$$

Suy ra góc giữa hai véc-to \vec{a} và \vec{b}

b)
$$\cos(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{2 \cdot 3 + 5 \cdot (-7)}{\sqrt{2^2 + 5^2} \cdot \sqrt{3^2 + (-7)^2}} = \frac{-29}{\sqrt{29} \cdot \sqrt{58}} = -\frac{1}{\sqrt{2}}.$$

Suy ra góc giữa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} là 135°.

c) $\vec{a} \cdot \vec{b} = 6 \cdot 12 + (-8) \cdot 9 = 0$ Suy ra góc giữa hai véc-tơ \vec{a} và \vec{b} là 90°.

d)
$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{2 \cdot (-3) + (-6) \cdot 9}{\sqrt{2^2 + (-6)^2} \cdot \sqrt{(-3)^2 + 9^2}} = \frac{-60}{\sqrt{40} \cdot \sqrt{90}} = -1.$$

Suy ra góc giữa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} là 18

BÀI 11. Trong mặt phẳng tọa độ Oxy, cho hai véc-tơ $\vec{u} = \left(\frac{1}{2}; -5\right)$ và $\vec{v} = (k; -4)$. Tìm k để \vec{u} vuông góc với \vec{v} .

🗭 Lời giải.

Ta có
$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \Leftrightarrow \frac{1}{2}k + (-5)(-4) = 0 \Leftrightarrow k = -40.$$

BÀI 12. Trong mặt phẳng tọa độ Oxy, cho ba véc-tơ $\vec{u}=(4;1), \ \vec{v}=(1;4)$ và $\vec{a}=\vec{u}+m\cdot\vec{v}$ với $m\in\mathbb{R}$. Tìm m để \vec{a} vuông góc với trục hoành.

🗭 Lời giải.

Ta có $\vec{a} = \vec{u} + m\vec{v} = (4 + m; 1 + 4m).$

Trục hoành có véc-tơ đơn vị là $\vec{i} = (1;0)$.

 \overrightarrow{a} vuông góc với trực hoành $\Leftrightarrow \overrightarrow{a}\cdot \overrightarrow{i}=0 \Leftrightarrow 4+m=0 \Leftrightarrow m=-4$

BÀI 13. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C.

Dòi giải.

Ta có
$$C \in Ox \Rightarrow C(c;0)$$
 và
$$\begin{cases} \overrightarrow{CA} = (-2-c;4) \\ \overrightarrow{CB} = (8-c;4). \end{cases}$$

 $\triangle ABC$ vuông tại C nên $\overrightarrow{CA} \cdot \overrightarrow{CB} = 0 \Rightarrow (-2 - c)(8 - c) + 4 \cdot 4 = 0 \Rightarrow \begin{bmatrix} c = 6 \\ c = 0 \end{bmatrix}$

Vậy C(6;0) hoặc C(0;0).

H. BÀI TẬP TRẮC NGHIỆM

CÂU 1. Trong hệ tọa độ Oxy, biết $\vec{u} = 2\vec{i} - \vec{j}$. Khi đó \vec{u} có tọa độ là

- (A) (2;-1).

 $(\mathbf{D}) (1; -2).$

🗭 Lời giải.

 \overrightarrow{u} có tọa độ là (2;-1).

Chọn đáp án (A)

CÂU 2. Trong mặt phẳng tọa độ Oxy, tọa độ của \vec{i} là bao nhiêu?

- $(\mathbf{A}) \vec{i} = (0; 1).$
- **(B)** $\vec{i} = (-1; 0)$.
- $(\mathbf{D}) \vec{i} = (1;0).$

🗭 Lời giải.

Ta có véc-tơ đơn vị $\overrightarrow{i} = (1;0)$.

Chọn đáp án (D)

CÂU 3. Trong mặt phẳng Oxy, cho A(1;3), B(2;-5). Tìm tọa độ của véc-tơ AB.

- $(A) \vec{AB} = (2; -15).$
- $(\mathbf{B}) \overrightarrow{AB} = (3; -2). \qquad (\mathbf{C}) \overrightarrow{AB} = (-1; 8).$
- $(\mathbf{D}) \vec{AB} = (1; -8).$

🗩 Lời giải.

Tọa độ $\overrightarrow{AB} = (1; -8)$.

Chọn đáp án (D)

CÂU 4. Trong mặt phẳng tọa độ Oxy, cho ba điểm A(1;3), B(2;-3), C(-2;1). Tìm tọa độ điểm M thỏa mãn $5\overline{MA}-2\overline{MB}=$ $4\overrightarrow{MC}$.

- (A) M(3;17).
- **(B)** M(-3;-17).
- $(\mathbf{C}) M(-9; -17).$
- **(D)** M(9;17).

Giả sử M(a;b).

Ta có:
$$\begin{cases}
\overrightarrow{MA} = (1 - a; 3 - b) \\
\overrightarrow{MB} = (2 - a; -3 - b)
\end{cases}
\Rightarrow
\begin{cases}
5\overrightarrow{MA} = (5 - 5a; 15 - 5b) \\
2\overrightarrow{MB} = (4 - 2a; -6 - 2b) \\
4\overrightarrow{MC} = (-8 - 4a; 4 - 4b).
\end{cases}$$
Vây $5\overrightarrow{MA} - 2\overrightarrow{MB} = 4\overrightarrow{MC} \Leftrightarrow
\begin{cases}
5 - 5a - 4 + 2a = -8 - 4a \\
15 - 5b + 6 + 2b = 4 - 4b
\end{cases}
\Leftrightarrow
\begin{cases}
a = -9 \\
b = -17.
\end{cases}$

$$\overrightarrow{\text{Vay 5MA}} - 2\overrightarrow{MB} = 4\overrightarrow{MC} \Leftrightarrow \begin{cases} 5 - 5a - 4 + 2a = -8 - 4a \\ 15 - 5b + 6 + 2b = 4 - 4b \end{cases} \Leftrightarrow \begin{cases} a = -9 \\ b = -17 \end{cases}$$

Vâv M(-9; -17).

Chon đáp án (C)

CÂU 5. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(9;7), C(11;-1) và M(1;2) là trung điểm của AB. Tìm toa độ trung điểm N của AC.

(A) N(2; -2).

(B) N(-2; 8).

 $(\mathbf{C}) N(-2; 2).$

(D) N(2; -8).

🗭 Lời giải.

Vì M(1;2) là trung điểm của AB nên ta có $\begin{cases} x_A = 2x_M - x_B = -7 \\ y_A = 2y_M - y_B = -3 \end{cases} \Rightarrow A(-7;-3).$ Mặt khác N là trung điểm của AC nên $\begin{cases} x_N = \frac{x_A + x_C}{2} = 2 \\ y_N = \frac{y_A + y_C}{2} = -2 \end{cases} \Rightarrow N(2;-2).$

Chọn đáp án (A)

CÂU 6. Trong mặt phẳng tọa độ Oxy, cho A(0;3), B(4;2). Tìm tọa độ điểm D thỏa mãn $\overrightarrow{OD} - 2\overrightarrow{DA} + 2\overrightarrow{DB} = \overrightarrow{0}$.

(A) (-8; 2).

 (\mathbf{B}) $\left(2;\frac{5}{2}\right)$.

 (\mathbf{C}) (-3;3).

 (\mathbf{D}) (8; -2).

🗭 Lời giải.

Ta có $\overrightarrow{BA} = (-4; 1)$.

 $\overrightarrow{OD} - 2\overrightarrow{DA} + 2\overrightarrow{DB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{OD} = 2\overrightarrow{DA} - 2\overrightarrow{DB} = 2\overrightarrow{BA} = (-8; 2).$

Suy ra tọa độ điểm D là (-8; 2).

Chọn đáp án (A)

CÂU 7. Trong mặt phẳng Oxy, cho A(2;3), B(2;-5). Gọi I là trung điểm của đoạn thẳng AB. Véc-tơ \overrightarrow{AI} có tọa độ là

(A) (1; -3).

(B) (0; 5).

(C) (0; -2).

(D) (0; -4).

🗭 Lời giải.

Vì I là trung điểm của đoạn thẳng AB nên điểm I có tọa độ là (2; -1).

Suy ra $\overline{AI} = (0; -4)$.

Chọn đáp án (D)

CĂU 8. Cho A(1;2) và I(3;4) là trung điểm của đoạn thẳng AB. Tọa độ của đính B là

(A) (6; 5).

 (\mathbf{C}) (2; 3).

 $(\mathbf{D}) (5; 6).$

🗭 Lời giải.

Ta có $\begin{cases} x_B = 2x_I - x_A \\ y_B = 2y_I - y_A \end{cases} \Leftrightarrow \begin{cases} x_B = 5 \\ y_B = 6 \end{cases}$. Vây B(5;6).

CAU 9. Trong hệ trục tọa độ Oxy, cho A(-4;1), B(2;4), G(2;-2). Tìm tọa độ điểm C sao cho G là trọng tâm tam giác ABC.

(A) C(8; -11).

B C(8; 11).

 $(\mathbf{C}) C(-8; -11).$

(**D**) C(12;11).

🗭 Lời giải.

G là trọng tâm tam giác ABC nên

$$\begin{cases} x_A + x_B + x_C = 3x_G \\ y_A + y_B + y_C = 3y_G \end{cases} \Leftrightarrow \begin{cases} x_C = 3x_G - (x_A + x_B) \\ y_C = 3y_G - (y_A + y_B) \end{cases} \Leftrightarrow \begin{cases} x_C = 6 - (-4 + 2) = 8 \\ y_C = -6 - (1 + 4) = -11 \end{cases} \Rightarrow C(8; -11).$$

Chọn đáp án (A)

CÂU 10. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm B(-2;3) và C(3;-2). Điểm I(a;b) thuộc BC sao cho với mọi điểm M không nằm trên đường thẳng BC thì $\overrightarrow{MI} = \frac{2}{5}\overrightarrow{MB} + \frac{3}{5}\overrightarrow{MC}$. Tính $S = a^2 + b^2$.

 (\mathbf{A}) 1.

 $(\mathbf{B}) 0.$

(D) 5.

Giả sử $\overrightarrow{IB} = k\overrightarrow{IC}$. Khi đó $\overrightarrow{IM} + \overrightarrow{MB} = k\overrightarrow{IM} + k\overrightarrow{MC} \Rightarrow \overrightarrow{MI} = \frac{1}{1-k}\overrightarrow{MB} + \frac{-k}{1-k}\overrightarrow{MC}$.

Do
$$\overrightarrow{MI} = \frac{2}{5}\overrightarrow{MB} + \frac{3}{5}\overrightarrow{MC}$$
 nên ta có
$$\begin{cases} \frac{1}{1-k} = \frac{2}{5} \\ \frac{-k}{1-k} = \frac{3}{5} \end{cases} \Leftrightarrow k = -\frac{3}{2}.$$

$$\overrightarrow{\text{Vây }\overrightarrow{BI}} = \frac{3}{5}\overrightarrow{BC} \Rightarrow \begin{cases} x_I = x_B + \frac{3}{5}x_{BC} \\ y_I = y_B + \frac{3}{5}y_{BC} \end{cases} \Leftrightarrow \begin{cases} x_I = 1 \\ y_I = 0. \end{cases}$$

Vây $a^2 + b^2 = 1$.

Chọn đáp án (A)

CÂU 11. Trong mặt phẳng tọa độ Oxy, cho hai véc-tơ $\vec{a} = (3; -1)$ và $\vec{b} = (3; 4)$. Tính tọa độ véc-tơ $\vec{c} = \vec{a} + \vec{b}$. **(A)** $\vec{c} = (3; 3)$. **(B)** $\vec{c} = (2; 7)$. **(C)** $\vec{c} = (2; 1)$. **(D)** $\vec{c} = (6; 3)$.

(A) $\vec{c} = (3;3)$.

Dèi giải.

Ta có $\vec{c} = \vec{a} + \vec{b} = (6;3)$.

Chon đáp án (D)

CÂU 12. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1;-2), B(0;-1), C(3;0). Tìm tọa độ điểm G sao cho với điểm M bất kì tạ luôn có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

© $G\left(\frac{7}{3};-2\right)$. **©** $G\left(\frac{4}{3};-1\right)$.

🗭 Lời giải.

Ta có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$. Do đó $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$, suy ra G là trọng tâm của tam giác ABC. Vậy $G\left(\frac{4}{2}; -1\right)$.

Chọn đáp án (D)

CĂU 13. Cho ba điểm A(2;5), B(1;1), C(3;3). Tìm tọa độ điểm E sao cho $\overrightarrow{AE} = 3\overrightarrow{AB} - 2\overrightarrow{AC}$.

(A) E(-2; -3).

(B) E(3; -3).

(**C**) E(-3;3).

(D) E(-3; -3).

🗭 Lời giải.

Gọi $E(x_E; y_E)$ là điểm cần tìm.

Ta có

$$\overrightarrow{AE} = (x_E - 2; y_E - 5)$$

$$\overrightarrow{AB} = (-1; -4)$$

$$\overrightarrow{AC} = (1: -2).$$

 $\Rightarrow 3\overrightarrow{AB} - 2\overrightarrow{AC} = (-5; -8)$, do đó

$$\overrightarrow{AE} = 3\overrightarrow{AB} - 2\overrightarrow{AC} \Leftrightarrow \begin{cases} x_E - 2 = -5 \\ y_E - 5 = -8 \end{cases} \Leftrightarrow \begin{cases} x_E = -3 \\ y_E = -3 \end{cases} \Rightarrow E(-3; -3).$$

Chọn đáp án (D)

CÂU 14. Trong mặt phẳng Oxy, cho tam giác MNP có M(1;-1), N(5;-3) và P thuộc trục Oy, trọng tâm G của tam giác MNP nằm trên trực Ox. Tìm toạ độ của điểm P.

(A) P(0;2).

(B) P(0:10).

 $(\mathbf{C}) P(0;4).$

(**D**) P(2;0).

🗭 Lời giải.

Do $P \in Oy$ nên $P(0; y_P)$.

Trọng tâm $G \in Ox$ nên $G(x_G; 0)$.

Do G là trọng tâm của tam giác MNP nên $\begin{cases} x_M + x_N + x_P = 3x_G \\ y_M + y_N + y_P = 3y_G. \end{cases}$ Khi đó $\begin{cases} 1+5+0 = 3x_G \\ -1-3+y_P = 0 \end{cases} \Leftrightarrow \begin{cases} x_G = 6 \\ y_P = 4. \end{cases}$

Vây P(0; 4).

Chon đáp án (C)

CÂU 15. Trong mặt phẳng tọa độ Oxy, tìm tọa độ điểm M trên trục hoành sao cho A, B, M thẳng hàng với A(2; -3) và B(3;4).

(A) (1; 0).

 $lackbox{\textbf{B}}\left(\frac{17}{7};0\right).$

 $\left(\mathbf{c} \right) \left(-\frac{5}{3}; 0 \right).$

 $(\mathbf{D})(4;0).$

Vì điểm M nằm trên trục hoành nên ta giả sử M có tọa độ (x;0). Để $A,\,B,\,M$ thẳng hàng thì \overrightarrow{AM} và \overrightarrow{AB} cùng phương. Do đó tồn tại k sao cho $\overrightarrow{AM} = k\overrightarrow{AB}$. Điều này tương đương với

$$\begin{cases} x - 2 = k(3 - 2) \\ 3 = k(4 + 3) \end{cases} \Leftrightarrow \begin{cases} k = \frac{3}{7} \\ x = \frac{17}{7}. \end{cases}$$

Chọn đáp án (B)

CÂU 16. Trong mặt phẳng tọa độ Oxy, cho $\vec{a}=(-1;2)$ và $\vec{b}=(0;-2)$. Xác định tọa độ của $\vec{a}+\vec{b}$.

$$(-1;0).$$

$$(C)$$
 $(-1;4).$

D
$$(0; -4)$$
.

🗩 Lời giải.

Ta có $\vec{a} + \vec{b} = (-1; 0)$.

Chọn đáp án (A)

CÂU 17. Trong mặt phẳng tọa độ Oxy, cho A(2;-4) và B(-4;2). Tọa độ trung điểm I của đoạn thẳng AB là

$$(A)$$
 $I(-2;-2).$

B)
$$I(-1;-1)$$
.

$$(\mathbf{C}) I(2;2).$$

(D)
$$I(1;1)$$
.

🗩 Lời giải.

Tọa độ trung điểm I của đoạn thẳng AB là $\begin{cases} x_{\rm I} = \frac{x_{\rm A} + x_{\rm B}}{2} = \frac{2 + (-4)}{2} = -1 \\ y_{\rm I} = \frac{y_{\rm A} + y_{\rm B}}{2} = \frac{-4 + 2}{2} = -1 \end{cases} \Rightarrow I(-1; -1).$

Chọn đáp án B

CÂU 18. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1;3), B(4;2), C(-2;0). Tọa độ trọng tâm G của tam giác ABC là

A
$$G(5;5)$$
.

$$\bigcirc G \left(1; \frac{5}{3}\right).$$

🗭 Lời giải.

Ta có $G = \left(\frac{1+4-2}{3}; \frac{3+2+0}{3}\right) = \left(1; \frac{5}{3}\right).$

Chọn đáp án (C)

CÂU 19. Trong mặt phẳng tọa độ Oxy, cho A(1;2) và B(3;7). Tọa độ của \overrightarrow{AB} là

$$lack (2;-1).$$

$$(B)$$
 (2; 1).

$$(4; -3).$$

$$\bigcirc$$
 (2; 5).

₽ Lời giải.

Tọa độ của véc-tơ $\overrightarrow{AB} = (3 - 1; 7 - 2) = (2; 5)$.

Chọn đáp án \bigcirc

CÂU 20. Trong mặt phẳng với Oxy, cho ba điểm $A(1;3),\,B(-1;2),\,C(-2;1)$. Toạ độ của véc-tơ $\overrightarrow{AB}-\overrightarrow{AC}$ là

$$(-5; -3).$$

B
$$(1;1)$$
.

$$(-1;2).$$

$$(\mathbf{D})$$
 (4; 0).

🗭 Lời giải.

Ta có $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB} = (1; 1)$.

Chọn đáp án $\widehat{(B)}$

CÂU 21. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Biết A(1;-1), B(5;-3) và $C \in Oy$, trọng tâm $G \in Ox$. Tọa độ điểm C là

$$lack A$$
 (0; 2).

B
$$(2;0)$$
.

$$\bigcirc$$
 (0; -4).

$$\bigcirc$$
 (0;4).

D Lời giải.

Gọi C(0;m) và G(n;0).

Do G là trọng tâm tam giác ABC nên $\begin{cases} 1+5+0=3n \\ -1-3+m=3\cdot 0 \end{cases} \Leftrightarrow \begin{cases} m=4 \\ n=2. \end{cases}$

Vậy C(0;4).

Chọn đáp án (D)

CÂU 22. Trong mặt phẳng tọa độ Oxy, cho các véc-tơ $\overrightarrow{OA}=(1;2)$ và $\overrightarrow{OB}=(2;1)$, biết $\overrightarrow{MA}=2\overrightarrow{MB}$. Khi đó độ dài véc-tơ \overrightarrow{OM} là

$$\bigcirc$$
 2.

ℱ Lời giải.

Ta có $\overrightarrow{OA} = (1; 2) \Rightarrow A(1; 2); \overrightarrow{OB} = (2; 1) \Rightarrow B(2; 1).$

Từ đẳng thức $\overrightarrow{MA} = 2\overrightarrow{MB}$, suy ra B là trung điểm của đoạn MA.

Gọi M(a;b), ta có $\begin{cases} 2=\frac{a+1}{2} \\ 1=\frac{b+2}{2} \end{cases} \Leftrightarrow \begin{cases} a=3 \\ b=0 \end{cases}$ nên M(3;0).

 $\widehat{\text{Vay}} \left| \overrightarrow{OM} \right| = \sqrt{3^2 + 0^2} = 3.$

Chọn đáp án (C)

CÂU 23. Trong mặt phẳng tọa độ Oxy, cho các véc-tơ $\vec{a}=(-2;1), \ \vec{b}=(1;-3)$ và $\vec{c}=(0;2).$ Tính tọa độ của véc-tơ $\vec{u}=\vec{a}+\vec{b}+\vec{c}$.

$$(A) \vec{u} = (-1; 6).$$

B
$$\vec{u} = (3; 0).$$

$$\vec{c}$$
 $\vec{u} = (-1; 0).$

$$\vec{\mathbf{D}} \ \vec{u} = (3; 6).$$

🗩 Lời giải.

Ta có $\vec{u} = \vec{a} + \vec{b} + \vec{c} = (-2 + 1 + 0; 1 - 3 + 2) \Rightarrow \vec{u} = (-1; 0).$

Chọn đáp án \bigcirc

CÂU 24. Trong mặt phẳng tọa độ Oxy, cho I(-3;2), J(-1;3), K(4;-3). Tìm tọa độ điểm L để tứ giác IJKL là hình bình hành.

A
$$L(2; -4)$$
.

(B)
$$L(0; 2)$$
.

$$(\mathbf{C}) L(6;-2).$$

$$(\mathbf{D}) L(-8; 8).$$

🗭 Lời giải.

Tứ giác IJKL là hình bình hành khi và chỉ khi $\overrightarrow{IJ} = \overrightarrow{LK}$. Gọi L(x;y).

Do $\overrightarrow{IJ} = (2;1)$ và $\overrightarrow{LK} = (4-x;-3-y)$ nên

$$\overrightarrow{IJ} = \overrightarrow{LK} \Leftrightarrow \begin{cases} 2 = 4 - x \\ 1 = -3 - y \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = -4. \end{cases}$$

Vậy điểm cần tìm là L(2; -4).

Chọn đáp án $\widehat{(A)}$

CÂU 25. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trọng tâm G(0;7), A(-1;4), B(2;5). Tìm tọa độ đỉnh C.

B
$$(-1;12)$$
.

$$\bigcirc$$
 (3; 1).

$$\bigcirc$$
 (2; 12).

🗭 Lời giải.

Ta có

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} \end{cases} \Leftrightarrow \begin{cases} x_C = 3x_G - x_A - x_B \\ y_C = 3y_G - y_A - y_B \end{cases} \Leftrightarrow \begin{cases} x_C = -1 \\ y_C = 12. \end{cases}$$

Vậy tọa độ điểm C là (-1; 12).

Chọn đáp án $\stackrel{\textstyle \frown}{(B)}$

CÂU 26. Trong mặt phẳng tọa độ Oxy, cho $\vec{a}=(m;3)$ và $\vec{b}=(2;-1)$. Tìm các giá trị của m để hai véc-tơ \vec{a} và \vec{b} cùng phương.

B
$$m = 12$$
.

$$\bigcirc m = \frac{3}{4}.$$

🗭 Lời giải.

Để \overrightarrow{a} cùng phương \overrightarrow{b} thì $\frac{m}{2} = \frac{3}{-1} \Leftrightarrow m = -6$.

Chọn đáp án $\widehat{\mathbf{A}}$

CÂU 27. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;4), B(4;1), C(2;-3). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.

B
$$(7;2)$$
.

$$\bigcirc$$
 (9; 2).

$$(\mathbf{D})$$
 $(-1;1)$.

Gọi I(x;y) là tâm đường tròn ngoại tiếp tam giác ABC, khi đó ta có

$$\begin{cases} AI = BI \\ AI = CI \end{cases}$$

$$\Leftrightarrow \begin{cases} \sqrt{(x-3)^2 + (y-4)^2} = \sqrt{(x-4)^2 + (y-1)^2} \\ \sqrt{(x-3)^2 + (y-4)^2} = \sqrt{(x-2)^2 + (y+3)^2} \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 6y = -8 \\ 2x + 14y = 12 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -1 \\ y = 1. \end{cases}$$

Vậy ta có I(-1;1).

Chon đáp án (D)

CÂU 28. Trong mặt phẳng tọa độ Oxy, cho các điểm E(3;-2), F(-1;-3). Tìm tọa độ điểm G thuộc trục hoành sao cho G thuộc đường thẳng EF.

B
$$G(11;0)$$
.

🗭 Lời giải.

Ta có $\overrightarrow{EF} = (-4; -1)$.

Lấy $G(x;0) \in Ox$.

Để $G \in EF$ khi và chỉ khi $\overrightarrow{EG} = (x-3;2)$ và \overrightarrow{EF} cùng phương, khi đó ta có

$$\frac{x-3}{-4} = \frac{2}{-1} \Leftrightarrow -x+3 = -8 \Leftrightarrow x = 11.$$

Vậy ta có G(11;0).

Chọn đáp án (B)

CĂU 29. Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD biết A(1;-5), B(2;3), C(-3;3). Tọa độ tâm I của hình bình hành là

B
$$(-1;1)$$
.

$$(1;-1).$$

$$\bigcirc$$
 $(-1;-1).$

🗭 Lời giải.

Do
$$I$$
 là tâm hình bình hành $ABCD$ nên I là trung điểm của AC .
$$\begin{cases} x_I = \frac{x_A + x_C}{2} = \frac{1-3}{2} = -1 \\ y_I = \frac{y_A + y_C}{2} = \frac{-5+3}{2} = -1 \end{cases} \Rightarrow I(-1;-1).$$

Chon đáp án (D)

CÂU 30. Trong mặt phẳng toạ độ Oxy, cho hai điểm A(2;3), I(1;-2). Xác định toạ độ điểm B để I là trung điểm của AB.

$$igate{A}(0;-7).$$

$$\textcircled{\textbf{B}}\left(\frac{3}{2};\frac{1}{2}\right).$$

$$\bigcirc$$
 (1; 2).

D
$$(-2;1)$$
.

🗭 Lời giải.

Gọi B(x,y). Khi đó ta có: $\begin{cases} \frac{2+x}{2} = 1 \\ \frac{3+y}{2} = -2 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = -7 \end{cases}$

Vậy B(0; -7).

Chọn đáp án (A)

CÂU 31. Trong mặt phẳng tọa độ Oxy, cho tam giác $\triangle ABC$ có M(1;0), N(2;2), P(-1;3) lần lượt là trung điểm các cạnh BC, CA, AB. Toa độ của đỉnh A là

$$(4;-1).$$

B
$$(0;1)$$
.

$$\bigcirc$$
 (0; 5).

$$(\mathbf{D})$$
 $(-2;1)$.

Gọi $A(x_A; y_A)$.

Ta có $\overrightarrow{MN} = (1; 2)$, $\overrightarrow{MP} = (-2; 3)$. Do đó $\overrightarrow{MN} + \overrightarrow{MP} = (-1; 5)$.

Vì PMNA là hình bình hành nên

$$\overrightarrow{MA} = \overrightarrow{MN} + \overrightarrow{MP} \Rightarrow \overrightarrow{MA} = (-1; 5)$$

$$\Leftrightarrow \begin{cases} x_A - 1 = -1 \\ y_A - 0 = 5 \end{cases} \Leftrightarrow \begin{cases} x_A = 0 \\ y_A = 5. \end{cases}$$

Vây A(0; 5).

Chọn đáp án (C)

CÂU 32. Trong mặt phẳng tọa độ Oxy, cho điểm A(1;-2), B(0;4), C(4;3). Tìm tọa độ điểm M thỏa $\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}$.

(A) (7; 27).

(B) (11; 30).

 $(\mathbf{C})(-7;0)$.

 (\mathbf{D}) (15; 6).

🗭 Lời giải.

Giả sử M(x;y).

Ta có $\overrightarrow{AB} = (-1; 6), \overrightarrow{AC} = (3; 5).$

Suy ra $2\overrightarrow{AB} - 3\overrightarrow{AC} = (-11; -3)$ và $\overrightarrow{CM} = (x - 4; y)$

Do đó
$$\overrightarrow{CM} = 2\overrightarrow{AB} - 3\overrightarrow{AC} \Leftrightarrow \begin{cases} x - 4 = -11 \\ y - 3 = -3 \end{cases} \Leftrightarrow \begin{cases} x = -7 \\ y = 0. \end{cases}$$

Vậy M(-7;0).

Chọn đáp án (C)

CÂU 33. Trong mặt phẳng tọa độ Oxy, tọa độ điểm N trên cạnh BC của tam giác ABC có A(1;-2), B(2;3), C(-1;-2)

B $N\left(-\frac{1}{4}; -\frac{3}{4}\right)$. **C** $N\left(\frac{1}{2}; -\frac{1}{2}\right)$.

 $(\mathbf{D}) N\left(-\frac{1}{2}; \frac{1}{2}\right).$

Lời giải.

Gọi $N(x_N; y_N)$, AH là đường cao của tam giác ABC, ta có

$$S_{ABN} = 3S_{ANC} \Leftrightarrow \frac{1}{2} \cdot AH \cdot BN = 3 \cdot \frac{1}{2} \cdot AH \cdot CN \Leftrightarrow BN = 3CN.$$

Do N nằm trên cạnh BC nên \overline{BN} ngược chiều với \overline{CN} , suy ra

$$\overrightarrow{BN} = -3\overrightarrow{CN} \Leftrightarrow \begin{cases} x_N - x_B = -3\left(x_N - x_C\right) \\ y_N - y_B = -3\left(y_N - y_C\right) \end{cases} \Leftrightarrow \begin{cases} x_N = \frac{x_B + 3x_C}{4} = -\frac{1}{4} \\ y_N = \frac{y_B + 3y_C}{4} = -\frac{3}{4}. \end{cases}$$

Vậy tọa độ điểm N cần tìm là $\left(-\frac{1}{4}; -\frac{3}{4}\right)$.

Chọn đáp án (B)

CÂU 34. Cho hai véc-tơ $\vec{a}=(3;2)$, $\vec{b}=(-2;4)$. Hãy chọn khẳng định đúng.

 $(\mathbf{B}) \vec{a} \cdot \vec{b} = (-6; 8). \qquad (\mathbf{C}) \vec{a} \cdot \vec{b} = -14.$ $(\mathbf{A}) \ \overrightarrow{a} \cdot \overrightarrow{b} = 2.$

 $(\overrightarrow{\mathbf{D}}) \overrightarrow{a} \cdot \overrightarrow{b} = -2.$

🗭 Lời giải.

 $\vec{a} \cdot \vec{b} = 3 \cdot (-2) + 2 \cdot 4 = 2.$

Chọn đáp án (A)

CÂU 35. Trong mặt phẳng tọa độ Oxy, cho hai véc-tơ $\vec{a} = 4\vec{i} + 6\vec{j}$ và $\vec{b} = 3\vec{i} - 7\vec{j}$. Tính tích vô hướng $\vec{a} \cdot \vec{b}$. $(\mathbf{A}) \ \vec{a} \cdot \vec{b} = -30$. $(\mathbf{B}) \ \vec{a} \cdot \vec{b} = 3$. $(\mathbf{C}) \ \vec{a} \cdot \vec{b} = 30$. $(\mathbf{D}) \ \vec{a} \cdot \vec{b} = 43$.

🗭 Lời giải.

Từ giả thiết suy ra $\vec{a} = (4; 6)$ và $\vec{b} = (3; -7)$.

Suy ra $\vec{a} \cdot \vec{b} = 4 \cdot 3 + 6 \cdot (-7) = -30$.

Chọn đáp án (A)

CÂU 36. Trong hệ tọa độ Oxy, cho $\vec{a}=(1;2), \vec{b}=(4;3)$ và $\vec{c}=(2;3)$. Giá trị của biểu thức $\vec{a}\cdot (\vec{b}+\vec{c})$ bằng bao nhiêu?

(**A**) 18.

(B) 0.

 (\mathbf{C}) 28.

 (\mathbf{D}) 2.

🗭 Lời giải.

Ta có $\vec{a} = (1; 2), \vec{b} + \vec{c} = (6; 6).$

Vậy $\vec{a} \cdot (\vec{b} + \vec{c}) = 1 \cdot 6 + 2 \cdot 6 = 18.$

Chon đáp án (A)

CÂU 37. Cho A(1;2), B(-1;1) và C(5;-1). Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

$$(c)$$
 -7.

$$\bigcirc$$
 -5 .

🗭 Lời giải.

 $\overrightarrow{AB} = (-2; -1), \ \overrightarrow{AC} = (4; -3).$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = (-2) \cdot 4 + (-1) \cdot (-3) = -5.$

Chọn đáp án (D)

CÂU 38. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3;-1) và B(2;10). Tính tích vô hướng $\overrightarrow{AO} \cdot \overrightarrow{OB}$.

$$(\mathbf{A}) \ \overrightarrow{AO} \cdot \overrightarrow{OB} = -4.$$

$$(\mathbf{B}) \; \overrightarrow{AO} \cdot \overrightarrow{OB} = 0.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AO} \cdot \overrightarrow{OB} = 4$.

$$\overrightarrow{(\mathbf{D})} \overrightarrow{AO} \cdot \overrightarrow{OB} = 16.$$

🗭 Lời giải.

Ta có $\overrightarrow{AO} = (-3, 1), \overrightarrow{OB} = (2, 10)$. Suy ra $\overrightarrow{AO} \cdot \overrightarrow{OB} = -3 \cdot 2 + 1 \cdot 10 = 4$.

Chon đáp án (C)

CÂU 39. Trong mặt phẳng tọa độ Oxy, cho hai véc-tơ $\vec{a} = (-2; -1)$ và $\vec{b} = (4; -3)$. Tính cosin của góc giữa hai véc-tơ \vec{a} và \vec{b} .

$$\mathbf{B}\cos\left(\vec{a},\vec{b}\right) = \frac{2\sqrt{5}}{5}.$$

$$\mathbf{C}\cos\left(\vec{a},\vec{b}\right) = \frac{\sqrt{3}}{2}.$$

$$(\mathbf{D})\cos\left(\vec{a},\vec{b}\right) = \frac{1}{2}.$$

Ta có $\cos\left(\vec{a}, \vec{b}\right) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{-2 \cdot 4 + (-1) \cdot (-3)}{\sqrt{4+1} \cdot \sqrt{16+9}} = -\frac{\sqrt{5}}{5}.$

Chọn đáp án (A)

CÂU 40. Trong mặt phẳng tọa độ Oxy, cho $\vec{a} = (2; 5)$ và $\vec{b} = (3; -7)$. Tính (\vec{a}, \vec{b}) .

(D)
$$45^{\circ}$$
.

🗭 Lời giải.

$$\cos\left(\overrightarrow{a},\overrightarrow{b}\right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{2 \cdot 3 + 5 \cdot (-7)}{\sqrt{2^2 + 5^2} \cdot \sqrt{3^2 + (-7)^2}} = -\frac{\sqrt{2}}{2}$$

Suy ra: $(\vec{a}, \vec{b}) = 135^{\circ}$

Chọn đáp án (C)

CÂU 41. Trong mặt phẳng tọa độ Oxy, cho hai véc-tơ $\vec{a}=(-2;3)$ và $\vec{b}=(4;1)$. Tìm véc-tơ \vec{d} biết $\vec{a}\cdot\vec{d}=4$ và $\overrightarrow{b} \cdot \overrightarrow{d} = -2.$

$$(\mathbf{A}) \vec{d} = \left(\frac{5}{7}; \frac{6}{7}\right).$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{d} = \left(-\frac{5}{7}; \frac{6}{7} \right).$$

$$\overrightarrow{\mathbf{c}} \ \overrightarrow{d} = \left(\frac{5}{7}; -\frac{6}{7}\right).$$

🗭 Lời giải.

Gọi $\overrightarrow{d} = (x; y)$. Từ giả thiết, ta có hệ $\begin{cases} -2x + 3y = 4 \\ 4x + y = -2 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{5}{7} \\ y = \frac{6}{7} \end{cases}$

Chọn đáp án (B)

CÂU 42. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(-1;-1), B(3;1), C(6;0). Tính $\cos \widehat{B}$.

$$(\mathbf{A})\cos\widehat{B} = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{B}\cos\widehat{B} = \frac{\sqrt{3}}{2}.$$

$$\mathbf{\widehat{C}}\cos\widehat{B} = \frac{\sqrt{2}}{2}.$$

$$(\mathbf{D})\cos\widehat{B} = -\frac{\sqrt{2}}{2}.$$

🗭 Lời giải.

 $\overrightarrow{BA} = (-4, -2), \ \overrightarrow{BC} = (3, 1).$

 $\cos \widehat{B} = \cos(\overrightarrow{BA}, \overrightarrow{BC}) = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}| \cdot |\overrightarrow{BC}|} = \frac{(-4)3 + (-2)1}{\sqrt{(-4)^2 + (-2)^2} \cdot \sqrt{3^2 + 1^2}} = -\frac{\sqrt{2}}{2}.$

Chọn đáp án (D)

CÂU 43. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A(1;-1), B(4;2) và C(4;-2). Hỏi góc $\widehat{A}B\widehat{C}$ có số đo độ bằng bao nhiêu?

Ta có $\overrightarrow{BA} = (-3; -3) \Rightarrow BA = 3\sqrt{2}$.

$$\overrightarrow{BC} = (0; -4) \Rightarrow \overrightarrow{BC} = 4.$$

$$\cos \widehat{ABC} = \cos \left(\overrightarrow{BA}, \overrightarrow{BC} \right) = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{BA \cdot BC} = \frac{12}{3\sqrt{2} \cdot 4} = \frac{1}{\sqrt{2}} \Rightarrow \widehat{ABC} = 45^{\circ}$$

Chọn đáp án (B)

CÂU 44. Cho $\vec{u} = (1; -2), \vec{v} = (-2; 1)$. Khẳng định nào sau đây sai?

$$(\mathbf{A}) \ \vec{u} \cdot \vec{v} = -4.$$

$$\mathbf{B} |\vec{u}| = |\vec{v}|.$$

$$\mathbf{C} |\vec{u}| = \sqrt{5}.$$

$$\bigcirc$$
 $\overrightarrow{u} \perp \overrightarrow{v}$.

₽ Lời giải.

Ta có $\overrightarrow{u} \cdot \overrightarrow{v} = 1 \cdot (-2) + (-2) \cdot 1 \neq 0 \Rightarrow \overrightarrow{u} \not\perp \overrightarrow{v}$.

Chọn đáp án (D)

CÂU 45. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A(2;1), B(2;-3) và C(3;2). Khẳng định nào sau đây là khẳng định **đúng**?

(**A**) Tam giác ABC là tam giác nhọn.

(**B**) Tam giác ABC là tam giác đều.

(**C**) Tam giác ABC là tam giác tù.

(**D**) Tam giác ABC là tam giác vuông.

🗭 Lời giải.

Ta có $\overrightarrow{AB} = (0; -4) \Rightarrow AB = 4;$

$$\overrightarrow{AC} = (1;1) \Rightarrow AC = \sqrt{2};$$

$$\overrightarrow{BC} = (1;5) \Rightarrow BC = \sqrt{26}$$

Ta nhận thấy: $AB \neq AC \neq BC$ nên tam giác ABC không phải là tam giác đều.

Ta có $AB^2 + AC^2 = 4^2 + \left(\sqrt{2}\right)^2 = 18 \neq 26 = BC^2$ suy ra tam giác ABC không phải là tam giác vuông.

Cạnh dài nhất là
$$BC$$
 nên góc lớn nhất là góc A . Ta tính góc A .
$$\cos \widehat{A} = \cos \left(\overrightarrow{AB}, \overrightarrow{AC} \right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = \frac{0 \cdot 1 - 4 \cdot 1}{4\sqrt{2}} = -\frac{1}{\sqrt{2}} < 0 \Rightarrow \widehat{A} \text{ tù.}$$

Chọn đáp án (C)

CÂU 46. Trong mặt phẳng tọa độ Oxy, cho bốn điểm A(-8;0), B(0;4), C(2;0) và D(-3;-5). Khẳng định nào sau đây là đúng?

(**A**) Hai góc BAD và BCD phụ nhau.

(**B**) Góc \widehat{BCD} là góc nhọn.

 $(\mathbf{C})\cos(\overrightarrow{AB},\overrightarrow{AD}) = \cos(\overrightarrow{CB},\overrightarrow{CD}).$

 (\mathbf{D}) Hai góc \widehat{BAD} và \widehat{BCD} bù nhau.

Dòi giải.

Ta có
$$\overrightarrow{AB} = (8; 4)$$
, $\overrightarrow{AD} = (5; -5)$, $\overrightarrow{CB} = (-2; 4)$, $\overrightarrow{CD} = (-5; 5)$.
Suy ra
$$\begin{cases}
\cos(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{8 \cdot 5 + 4 \cdot (-5)}{\sqrt{8^2 + 4^2} \cdot \sqrt{5^2 + 5^2}} = \frac{1}{\sqrt{10}} \\
\cos(\overrightarrow{CB}, \overrightarrow{CD}) = \frac{(-2) \cdot (-5) + 4 \cdot (-5)}{\sqrt{2^2 + 4^2} \cdot \sqrt{5^2 + 5^2}} = -\frac{1}{\sqrt{10}}.
\end{cases}$$

Chọn đáp án (D)

CÂU 47. Cho hình chữ nhật ABCD có AB = 4 và AD = 3. Khi đó $\overrightarrow{AB} \cdot \overrightarrow{AD}$ bằng

 $(\mathbf{A}) 0.$

(B) 12.

 $(\mathbf{C}) \, 5.$

(**D**) -1.

Dèi giải.

Ta có $AB \perp AD \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{AD} = 0$.

Chọn đáp án (A)

CÂU 48. Cặp véc-tơ nào sau đây vuông góc với nhau?

(A) $\vec{a}_1 = (-4; -6)$ và $\vec{a}_2 = (3; 2)$.

B $\vec{b}_1 = (3; -4)$ và $\vec{b}_2 = (-3; 4)$. **D** $\vec{d}_1 = (5; -3)$ và $\vec{d}_2 = (3; -5)$.

(**c**) $\vec{c}_1 = (-4, -6)$ và $\vec{c}_2 = (-3, 2)$.

🗭 Lời giải.

Ta có $\vec{c}_1 \cdot \vec{c}_2 = 0$ nên $\vec{c}_1 \perp \vec{c}_2$.

Chọn đáp án (C)

- **CAU 49.** Cho tam giác ABC có A(-4;1), B(2;4), C(2;-2). Tìm toạ độ trực tâm H của tam giác ABC.
 - $igatharpoonup H\left(\frac{1}{2};1\right).$
- **B**) H(2;4).
- \bullet $H\left(\frac{1}{2};3\right)$.
- **(D)** H(1;3).

🗩 Lời giải.

Giả sử toạ độ trực tâm H của tam giác ABC là H(x;y). Ta có

$$\begin{cases} AH \perp BC \\ BH \perp AC \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AH} \cdot \overrightarrow{BC} = 0 \\ \overrightarrow{BH} \cdot \overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} 0(x+4) - 6(y-1) = 0 \\ 6(x-2) - 3(y-4) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} \\ y = 1. \end{cases}$$

Vậy toạ độ trực tâm của tam giác ABC là $H\left(\frac{1}{2};1\right)$.

Chọn đáp án (A)

CÂU 50. Trong mặt phẳng toạ độ $(O; \vec{i}, \vec{j})$, cho $\vec{a} = (-1; 2)$, $\vec{b} = (3; -5)$. Tìm số thực m sao cho $m\vec{a} + \vec{b}$ vuông góc với $\vec{i} + \vec{j}$.

$$(A) m = -2.$$

B
$$m = 2$$
.

(c)
$$m = 3$$
.

🗭 Lời giải.

Ta có $m\vec{a} + \vec{b} = (-m+3; 2m-5)$ và $\vec{i} + \vec{j} = (1; 1)$. $m\vec{a} + \vec{b}$ vuông góc với $\vec{i} + \vec{j} \Leftrightarrow (m\vec{a} + \vec{b})(\vec{i} + \vec{j}) = 0 \Leftrightarrow m-2 = 0 \Leftrightarrow m = 2$.

Chọn đáp án $\large \textcircled{B}$

CÂU 51. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-3;-2), B(5;2) và trực tâm H(5;0). Tìm tọa độ đỉnh C.

(A)
$$C(6; -2)$$
.

B
$$C(4; -2)$$
.

$$C(5;-2).$$

$$\bigcirc$$
 $C(4;-1).$

D Lời giải.

Gọi tọa độ đỉnh C(x;y). Ta có $\overrightarrow{AC} = (x+3;y+2)$, $\overrightarrow{BC} = (x-5;y-2)$, $\overrightarrow{AH} = (8;2)$, $\overrightarrow{BH} = (0;-2)$. Vì H là trực tâm tam giác ABC nên ta có

$$\begin{cases} AH \perp BC \\ BH \perp AC \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AH} \cdot \overrightarrow{BC} = 0 \\ \overrightarrow{BH} \cdot \overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} 8(x-5) + 2(y-2) = 0 \\ -2(y+2) = 0 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = -2 \end{cases}$$

Chọn đáp án \widehat{A}

CÂU 52. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-3;0), B(3;0) và C(2;6). Gọi H(a;b) là trực tâm của tam giác ABC. Tính a+6b.

$$(A) a + 6b = 5.$$

B)
$$a + 6b = 6$$
.

$$\bigcirc a + 6b = 7.$$

(D)
$$a + 6b = 8$$
.

🗩 Lời giải.

Ta có $\overrightarrow{AH} = (a+3;b)$, $\overrightarrow{BC} = (-1;6)$, $\overrightarrow{BH} = (a-3;b)$ và $\overrightarrow{AC} = (5;6)$. \overrightarrow{H} là trực tâm tam giác \overrightarrow{ABC} khi và chỉ khi

$$\begin{cases} AH \perp BC \\ BH \perp AC \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AH} \cdot \overrightarrow{BC} = 0 \\ \overrightarrow{BH} \cdot \overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} -a - 3 + 6b = 0 \\ 5a - 15 + 6b = 0 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = \frac{5}{6} \end{cases}$$

Suy ra a + 6b = 7. Chọn đáp án \bigcirc

CÂU 53. Trong mặt phẳng tọa độ Oxy, cho A(1;3), B(-6;2). Bán kính đường tròn ngoại tiếp tam giác OAB (với O là gốc tọa độ) là

B) 5.

$$\bigcirc$$
 $\sqrt{50}$.

 $\bigcirc \hspace{-3pt} \begin{array}{c} \color{red} \sqrt{50} \\ \hline 2 \end{array}.$

🗩 Lời giải.

Dễ thấy $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$ nên tam giác OAB vuông tại O. Do đó bán kính đường tròn ngoại tiếp tam giác OAB là $\frac{AB}{2} = \frac{\sqrt{50}}{2}$. Chọn đáp án \bigcirc

CÂU 54. Trong mặt phẳng Oxy cho $\vec{a}=(4;-8)$. Véc-tơ nào sau đây không vuông góc với \vec{a}

$$(A) \vec{b} = (-1, 2).$$

B
$$\vec{b} = (-2; -1).$$

$$\vec{c}$$
 $\vec{b} = (2;1).$

🗭 Lời giải.

Hai véc-tơ vuông góc nhau khi $\vec{a} \cdot \vec{b} = 0$, khi đó véc-tơ $\vec{a} = (4; -8)$ sẽ không vuông góc với véc-tơ $\vec{b} = (-1; 2)$.

Chọn đáp án \bigcirc

CÂU 55. Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai điểm M(1;2), N(3;4). Tìm tọa độ điểm P trên trục Ox sao cho tam giác MNP vuông tại M?

A
$$P(0;3)$$
.

Chọn đáp án (C)

B
$$P(-1;0)$$
.

$$(C)$$
 $P(3;0)$.

P(0;-1).

D Lời giải.

Điểm P trên trục Ox có tọa độ là $P(x_P; 0)$.

Có $\overrightarrow{MP} = (x_P - 1; -2)$ và $\overrightarrow{MN} = (2; 2)$.

Để tam giác \overrightarrow{MNP} vuông tại M thì $\overrightarrow{MP} \cdot \overrightarrow{MN} = 0 \Leftrightarrow 2 (x_P - 1) - 4 = 0 \Leftrightarrow x_P = 3$.

Vậy điểm cần tìm là P(3;0).

CÂU 56. Trong mặt phẳng Oxy cho véc-to $\vec{u}=(2;-4)$ và $\vec{v}=(x;3)$. Tìm giá trị của x để $\vec{u}\perp\vec{v}$.

 \bigcirc 6.

B) -2.

 (\mathbf{C}) 0.

 \bigcirc -1

🗩 Lời giải.

Ta có $\vec{u} \perp \vec{v} \Leftrightarrow 2 \cdot x = (-4) \cdot 3 \Leftrightarrow x = 6$. Vậy x = 6 là giá trị cần tìm.

Chọn đáp án (A)

CÂU 57. Trong mặt phẳng Oxy, cho tam giác ABC có A(-1;1), B(1;3) và C(1;-1). Hãy chọn phát biểu đúng.

 (\mathbf{A}) Tam giác ABC vuông tại C.

ulletB) Tam giác ABC vuông cân tại A.

 \bigcirc Tam giác ABC có ba góc đều nhon.

 (\mathbf{D}) Tam giác ABC vuông tại B.

🗩 Lời giải.

Ta có $\overrightarrow{AB} = (2; 2)$ và $\overrightarrow{AC} = (2; -2)$ suy ra

$$\begin{cases} \overrightarrow{AB} \cdot \overrightarrow{AC} = 4 - 4 = 0 \\ AB = AC = 2\sqrt{2}. \end{cases}$$

Vậy tam giác $\underline{A}BC$ vuông cân tại A.

Chon đáp án (B)

CÂU 58. Cho hai điểm A(-6;3), B(4;1). Tìm tọa độ điểm C thuộc tia Oy sao cho tam giác ABC vuông tại C.

(A) (0;7).

B (7; 0).

 (\mathbf{C}) (0; -3).

 (\mathbf{D}) (0; -3) và (0; 7).

🗩 Lời giải.

Gọi $C(0; c) \in Oy$. Vì C thuộc tia Oy nên c > 0.

Ta có $\overrightarrow{CA} = (-6; 3 - c), \overrightarrow{CB} = (4; 1 - c).$

Tam giác \overrightarrow{ABC} vuông tại \overrightarrow{C} khi và chỉ khi $\overrightarrow{CA} \cdot \overrightarrow{CB} = 0$

$$\Leftrightarrow (-6) \cdot 4 + (3-c)(1-c) = 0 \Leftrightarrow c^2 - 4c - 21 = 0 \Leftrightarrow \begin{bmatrix} c = 7 & (\text{nhận}) \\ c = -3 & (\text{loại}). \end{bmatrix}$$

Vậy C(0;7).

Chọn đáp án (A)

CÂU 59. Tìm m để hai véc-tơ $\vec{a}=(1;-3), \vec{b}=(m^2;4)$ vuông góc với nhau.

 $(\mathbf{A}) m = 12.$

 $(\mathbf{B}) m = 2\sqrt{3}.$

(c) $m = -2\sqrt{3}$.

(D) $m = \pm 2\sqrt{3}$.

₽ Lời giải.

Ta có $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow 1 \cdot m^2 + (-3) \cdot 4 = 0 \Leftrightarrow m^2 - 12 = 0 \Leftrightarrow m = \pm 2\sqrt{3}$.

Chon đáp án (D)

CÂU 60. Cho tam giác ABC, với A(0;3), B(x;1), C(4;1). Tìm x để tam giác ABC vuông tại A.

 $\mathbf{B} x = 1.$

 \mathbf{C}) x=0.

 $\widehat{\mathbf{D}} x = -1 \ .$

₽ Lời giải.

Ta có $\overrightarrow{AB} = (x; -2)$, $\overrightarrow{AC} = (4; -2)$. Tam giác \overrightarrow{ABC} vuông tại \overrightarrow{A} nên

$$\overrightarrow{AC} \perp \overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} \cdot \overrightarrow{AC} = 0 \Leftrightarrow 4x + (-2) \cdot (-2) = 0 \Leftrightarrow x = -1.$$

Chọn đáp án \bigodot

CÂU 61. Trong mặt phẳng toạ độ (Oxy), cho A(-4;1), B(2;4), C(2;-2). Tìm mệnh đề sai.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

 $\ensuremath{\blacksquare}$ Tam giác ABC vuông cân tại A.

 $(\mathbf{C})\cos\left(\overrightarrow{AB},\overrightarrow{AC}\right) = \frac{3}{5}.$

🗭 Lời giải.

Ta có $\overrightarrow{AB} = (6; 3), \overrightarrow{AC} = (6; -3)$ nên $\overrightarrow{AB} \cdot \overrightarrow{AC} = 36 - 9 = 27 \neq 0$.

Suy ra tam giác ABC không vuông tại A.

Chọn đáp án (B)

CÂU 62. Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-2;1). Điểm C thuộc trục Ox sao cho $\triangle ABC$ vuông tại C có thể nhận tọa độ là

(A) C(3;0).

B C(-3;0).

 $(\mathbf{C}) C(-1;0).$

 $(\mathbf{D}) C(2;0).$

₽ Lời giải.

Vì $C \in Ox$ nên $C(x;0) \Rightarrow \begin{cases} \overrightarrow{CA} = (2-x;3) \\ \overrightarrow{CB} = (-2-x;1). \end{cases}$

 $\triangle ABC$ vuông tại C nên $\overrightarrow{CA} \cdot \overrightarrow{CB} = 0 \Leftrightarrow (2-x)(-2-x) + 3 = 0 \Leftrightarrow x^2 - 1 = 0 \Leftrightarrow x = \pm 1$.

Vậy C(-1;0)) hoặc C(1;0).

Chọn đáp án (C)

CÂU 63. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm là gốc tọa độ O, hai đỉnh A và B có tọa độ là A(-2;2), B(3;5). Tọa độ của đỉnh C là

$$\left(-\frac{3}{4}; \frac{5}{4}\right).$$

$$\bigcirc \left(\frac{3}{4}; \frac{11}{4}\right).$$

$$\bigcirc \left(-\frac{3}{4}; \frac{11}{4}\right).$$

🗭 Lời giải.

Giả sử C(x;y). Khi đó $\overrightarrow{OC}=(x;y)$, $\overrightarrow{AB}=(5;3)$, $\overrightarrow{AC}=(x+2;y-2)$ và $\overrightarrow{OB}=(3;5)$. Do O là trực tâm tam giác \overrightarrow{ABC} nên

$$\begin{cases} \overrightarrow{OC} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{AC} \cdot \overrightarrow{OB} = 0 \end{cases} \Rightarrow \begin{cases} 5x + 3y = 0 \\ 3(x+2) + 5(y-2) = 0 \end{cases} \Rightarrow \begin{cases} x = -\frac{3}{4} \\ y = \frac{5}{4}. \end{cases}$$

Vậy $C\left(-\frac{3}{4}; \frac{5}{4}\right)$.

Chọn đáp án (A

CAU 64. Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(3;4), C(0;-2). Tìm tọa độ trực tâm H của tam giác ABC.

$$(A)$$
 $H(-1;3)$.

B
$$H(-9;7)$$
.

©
$$H(9; -7)$$
.

(D)
$$H(3;-1)$$
.

🗭 Lời giải.

Gọi H(x;y) là trực tâm của tam giác ABC. Khi đó ta có

$$\begin{cases} \overrightarrow{AH} \cdot \overrightarrow{CB} = 0 \\ \overrightarrow{BH} \cdot \overrightarrow{CA} = 0 \end{cases} \Leftrightarrow \begin{cases} 3x + 6y = 15 \\ x + 4y = 19 \end{cases} \Leftrightarrow \begin{cases} x = -9 \\ y = 7. \end{cases}$$

Vậy H(-9;7).

Chọn đáp án (B)

CÂU 65. Trong mặt phẳng Oxy cho tam giác ABC vuông tại A với A(-1;0) và B(-3;0). Tọa độ điểm C là:

$$(-3;-1).$$

B
$$(-2; -2)$$
.

$$(\mathbf{C})(-2;0).$$

$$(\mathbf{D})$$
 $(-1; -3).$

🗭 Lời giải.

Ta có $A, B \in Ox$ do đó $\triangle ABC$ vuông tại A khi và chỉ khi $x_C = x_A = -1$.

Chọn đáp án (D)

CÂU 66. Cho hình vuông ABCD, biết đỉnh A(1;-1), B(3;0) và đỉnh C có tọa độ dương. Tìm tọa độ C.

(A)
$$C(4; -2)$$
.

B
$$C(4;2)$$
.

D
$$C(2;2)$$
.

🗭 Lời giải.

Gọi C(x;y) với x>0, y>0. Ta có $\overrightarrow{AB}=(2;1), \overrightarrow{BC}=(x-3;y)$. ABCD là hình vuông nên $\begin{cases} \overrightarrow{AB} \cdot \overrightarrow{BC}=0 \\ AB=BC \end{cases} \Leftrightarrow \begin{cases} 2(x-3)+y=0 \\ AB^2=BC^2 \end{cases} \Leftrightarrow \begin{cases} y=6-2x \\ (x-3)^2+y^2=5 \end{cases}$

$$\Leftrightarrow \begin{cases} y = 6 - 2x \\ (x - 3)^2 + (6 - 2x)^2 = 5 \end{cases} \Leftrightarrow \begin{cases} y = 6 - 2x \\ 5x^2 - 30x + 40 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 6 - 2x \\ \begin{bmatrix} x = 4 \\ x = 2 \end{bmatrix} \end{cases} \begin{cases} x = 4 \\ y = -2 \text{ (loại)} \end{cases}$$

$$\begin{cases} x = 2 \\ y = 2 \text{ (nhân)}. \end{cases}$$

Vậy C(2; 2).

Chọn đáp án (D) **CÂU 67.** Cho A(1;-2), B(-1;-1). Tìm M trục Ox sao cho tam giác ABM vuông tại A.

$$(A) M(-3;0).$$

$$(\mathbf{B}) M(-2;0).$$

$$(\mathbf{C}) M(2;0).$$

(D)
$$M(3;0)$$
.

Lời giải.

M thuộc trục Ox cho nên M(m;0), $\overrightarrow{AB} = (-2;1)$ và $\overrightarrow{AM} = (m-1;2)$. Tam giác \overrightarrow{ABM} vuông tại \overrightarrow{A} suy ra

$$\overrightarrow{AB} \cdot \overrightarrow{AM} = 0 \Leftrightarrow -2m + 4 = 0 \Leftrightarrow m = 2.$$

Chọn đáp án (C)

A	Tóm tắt lý thuyết	1
B	Các ví dụ	
©	Bài tập vận dụng	
Ō	Bài tập trắc nghiệm	3
LỜI GIẢI CHI TIẾT		9
	Tóm tắt lý thuyết	9
(F)	Các ví dụ	
G	Bài tập vận dụng	12
\simeq		

