Copy Number Variant calling for CCGD and Profile

Outline

- Background
 - Why is calling CNVs from targeted capture data so hard?
 - Sparse, noisy data
- ReCapSeg & RobustCNV algorithm
- QC for Normalization
 - Metrics and expectations
- Assessment and validation for CCGD and Profile
 - Data sets
 - Methods
 - Results
- Additional Considerations
 - Focal gains/losses, tumor suppressor genes
- Conclusions and Future Directions

Expectation

A change in copy number at a locus

A corresponding change in the probability that reads are sampled from that locus.

A change in relative mapping coverage of sequenced reads at that locus.

Caveats:

- Unbiased sampling
 - Biased sampling may mask CNVs
- Random noise < CNV signal
- Sufficient sampling density to detect CNVs

Sparse Noisy Data

Sparsity

- Capture data
 - 3000 10,000 total loci baited
 - Some chromosomes have < 100 baited loci
 - Some genes have minimal representation (POPv1 32/283 <= 4 intervals)

Noise

- Random noise (sampling)
- Systematic biases
 - GC content (differs across samples)
 - Capture design (differing capture probe depths)
 - Batch effects (sequencing depth, library prep)
 - Other sources (?)

Random noise

GC bias

Batch Effects/Clustering

Batch Effects

Correlation between samples

Background

- Conclusions
 - Mapping coverage in targeted capture data is:
 - Noisy
 - Sparse
 - Strong correlation patterns provide evidence of systematic biases which change from sample to sample and batch to batch.
 - Many CN events are likely to be obscured by noise.

- Normalization and CNV calling strategy
 - Attempts to remove systematic bias through "Tangent normalization".
 - Attempts to average-out random noise through segmentation. Calls are made on the average value of all intervals within a segment.

(slide adapted from Lee Lichtenstein)

(slide adapted from Lee Lichtenstein)

(slide adapted from Lee Lichtenstein)

Tangent Normalization extract "e"

CNV sample (observed) $y = \beta_1 * PON_1 + \beta_2 * PON_2 + \dots + \beta_n * PON_n + e$ minimize "e" with Least Squares $\hat{y} = \beta_1 * PON_1 + \beta_2 * PON_2 + \dots + \beta_n * PON_n$ predicted $e = y - \hat{y}$

- ŷ is a linear combination of ALL normals (like a weighted average)
- e is the Tangent Normalized value.

Note:

- A new set of **B** values are estimated for each tumor sample.
- Tangent normalization assumes that there will be a poor fit at CNV loci (localized large e values).
 - A normal sample with a tumor-like profile will defeat this assumption.

CNV: predicted vs observed

Limitations of ReCapSeg

- Relies heavily on PON.
- Large, complicated code base (11,188 lines of Python in 138 files).
 - Relies of R libraries for DNAcopy.
- Unpublished and under development.
- Difficult to install with dozens of dependencies.
- Each step is run separately.
- Limited configuration options
 - No adjustment for sensitivity/specificity

RobustCNV

- Similar strategy to ReCapSeg
 - Iterated re-weighted least squares → more robust to outliers (CNVs) than ordinary least squares
 - Explicit GC normalization step removes most remaining GC bias when PON is poor
 - Pure R code, < 1000 lines
 - ~2x as fast as ReCapSeg
 - Easier to run

QC for normalization

- Quality of normalization dictates quality of CNV calls.
- Optimal:
 - Was sufficient systematic bias was removed?
- Actual:
 - Was systematic bias removed?

QC for normalization

Metrics

- MaxNormalCor maximum Spearman Rank correlation between a tumor sample and any normal sample
- MaxTumorCor maximum Spearman Rank correlation between a tumor sample and any other tumor sample
- MeanCoverage average mapping coverage
- dQC change in average difference between adjacent intervals (before – after → higher is better)
- Var variance of post-normalized interval values
- GCscore sum of absolute value of loess line fitted to %GC

Assessment of normalization (metrics)

Sample	MaxNormalCor	MaxTumorCor	MeanCoverage	dQC	Var	GCscore
3943-2_L_006659	0.872	0.869	484	0.4	0.354	32
3949-2_L_006660	0.914	0.954	484	0.47	0.115	8
3950-2_L_006661	0.939	0.953	479	0.44	0.299	7.6
3951-2_L_006662	0.929	0.954	419	0.44	0.083	4.8
3959-2_L_006663	0.97	0.963	419	0.45	0.028	9.3
3963_L_006576	0.927	0.936	631	0.49	0.083	6.3
3964_L_006577	0.961	0.97	407	0.45	0.028	13
3966_L_006579	0.854	0.868	290	0.41	0.281	9.3
3968_L_006581	0.931	0.948	342	0.43	0.075	8.3
3969_L_006583	0.95	0.954	375	0.46	0.03	10
3970_L_006584	0.91	0.908	260	0.44	0.187	11
3971_L_006585	0.881	0.872	342	0.44	0.158	11
3972_L_006586	0.829	0.91	352	0.48	0.143	68
3974_L_006588	0.921	0.936	504	0.51	0.095	9
3976_L_006590	0.972	0.974	495	0.49	0.018	9.7
3977_L_006592	0.904	0.911	367	0.51	0.105	19
3980_L_006593	0.97	0.974	495	0.47	0.034	9.7
3981_L_006594	0.941	0.923	488	0.49	0.084	21
3982_L_006595	0.95	0.944	467	0.46	0.053	8.1
3984_L_006596	0.857	0.923	348	0.53	0.183	48
3986_L_006598	0.978	0.971	604	0.5	0.02	6.9

POPv1 Validation Dataset

POPv2 validation dataset

CCGD project w/poor normals

For good normalization, normal samples should be mixed with tumor samples.

CCGD project w/poor normals

Well normalized samples have ~0 GC bias and a low GCscore.

Poorly normalized samples have remaining GC bias and a high GCscore.

Normals Matter

12380_L_002126 ReCapSeg Calls MaxCor: 0.532 MeanCoverage: 122 dQC: -0.0894 Var: 2.45

Normals Matter

QC conclusions

- We have developed a variety of metrics to assess the quality of the normalization.
- Currently CCGD looks for a MaxNormalCor >= 0.8 as a minimum cutoff.
- Good normals matter.

Assessment and validation for CCGD and Profile

Objectives

- Determine whether new algorithms perform as well, or better than the existing approach (VisCap).
- Measure performance against array-Competitive Genomic Hybridization (aCGH) calls.
- Identify and implement strategies to further improve performance of these algorithms.

Methods

Datasets

- Profile Oncopanel V1 (POPv1)
 - 47 aCGH matched samples
- Profile Oncopanel V2 (POPv2)
 - 30 aCGH matched samples

Analysis

- aCGH calls made with Nexus Copy Number software from BioDiscovery.
- VisCap calls were generated according to settings currently used by Profile group.
- ReCapSeg calls were generated using default settings except that the top 5% most noisy intervals were discarded (as calculated from normals, default 25%).
- RobustCNV calls were generated using default setting with no intervals discarded.
- Calls for X and Y chromosomes were excluded from analysis.

Comparisons

- Using coverage calculated from Targeted intervals definition.
 - Other interval strategies were also considered.
- Per-interval and Per-gene.

Methods Segments → Interval → Gene

- All callers produce segment calls
 - e.g. chr1:5000-20000 +
- To facility interval-level comparisons, intervals are assigned calls based on their intersection with segments

Gene Call: 3:+, 2:0 → Gain

Methods Rules for Gene-level calls

<u>Rule</u>	<u>Gene-level Call</u>		
'-' call > 2 times and and '+' > 50%	'gain+loss'		
'-' call > 2 or is 100%	'loss'		
'+' call > 50%	'gain'		
'+' and '-' calls in the same gene (below threshold)	'mixed'		
'+' calls but below threshold	'Normal+'		
'-' calls but below threshold	'Normal-'		
No + or - calls	'Normal'		

Methods Sensitivity & Specificity Calculation

- 0 → normal copy, + → gain, → loss
- Sensitivity, Specificity framework:
 - positive = all non-0 calls
 - negative = all 0 calls
 - TP = (-, +) call when condition is (-, +) *
 - FP = (-, +) call when condition is (+, -) * or 0
 - FN = 0 call when condition is or +
 - TN = 0 call when condition is 0

Note: condition = ACGH
* respectively

Gene Level: Sensitivity & Specificity Calculation

- Sensitivity, Specificity framework:
 - negative = {NormalCopy, NormalCopy+, NormalCopymixed}
 - positive = {gain, gain+loss, loss}
 - TP when Caller_call == aCGH_call and aCGH_call is not in negative
 - FP when Caller_call in positive and aCGH_call in negative
 - FN when Caller_call in negative and aCGH_calls in positive
 - TN = Call_calls in negative and aCGH_calls in negative

POPv1: ACGH comparison (summarized across 47 samples)


```
VisCap Calls

aCGHCall

VisCapCalls - + 0

- 8101 60 13063

+ 32 11566 8401

0 8309 14219 151321
```


^{*}Statistics represent calls per-sample summarized to the interval level.

Results: POPv1: intervals

^{*}Statistics represent calls per-sample summarized to the interval level.

Results: POPv1: genes

^{*}Statistics represent calls per-sample summarized to the interval level.

Results: POPv1: genes

^{*}Statistics represent calls per-sample summarized to the gene level.

POPv2: ACGH comparison (summarized across 30 samples)


```
VisCap Calls

aCGHCall

VisCapCalls - + 0

- 5429 13 562

+ 12 7953 2656

0 6251 7563 136391
```

```
RobustCNV calls

aCGHCall

RobustCalls

- + 0

- 9727 36 4082

+ 8 11378 4507

0 1957 4115 131020
```

^{*}Statistics represent calls per-sample summarized to the interval level.

Results: POPv2: intervals

^{*}Statistics represent calls per-sample summarized to the interval level.

Results: POPv2: genes

^{*}Statistics represent calls per-sample summarized to the interval level.

Results: POPv2: genes

^{*}Statistics represent calls per-sample summarized to the gene level.

Additional Considerations

- Focal gains/losses
 - 1-2 aCGH called intervals flanked by normal calls
- Tumor suppressor genes
 - SMAD2, SMAD4, ATM, RB1, TP53, PTEN,
 CDKN2A, CDKN2B

POPv1: Focal event ACGH comparison (summarized across 47 samples)

ReCap calls aCGHCall ReCapCalls - + - 18 0 + 0 16 0 22 126 18.7% called

```
VisCap Calls
aCGHCall
VisCapCalls - +
- 2 6
+ 1 13
0 37 123
```

```
RobustCNV calls

aCGHCall

RobustCalls - +
- 21 3
+ 0 14
0 19 125

19.2% called
```

^{*}Statistics represent calls per-sample summarized to the interval level.

POPv2: Focal event ACGH comparison (summarized across 30 samples)

ReCap calls aCGHCall ReCapCalls - + - 60 6 + 6 77 0 134 313

```
VisCap Calls

aCGHCall

VisCapCalls - +
    - 5 4
    + 5 21
    0 190 371

4.4 % called
```

```
RobustCNV calls

aCGHCall

RobustCalls - +
- 61 2
+ 4 81
0 135 313
23.8% called
```

```
RobustCNV calls
(customized intervals)

aCGHCall

RobustCalls - +
- 70 3
+ 4 86
0 126 307

26.2% called
```

^{*}Statistics represent calls per-sample summarized to the interval level.

Focal events are hard to call

Losses

POPv1: Tumor suppressor genes** (summarized across 47 samples)

aCGH ReCap calls							
ReCapSeg	gain	loss	NormalCopy	NormalCopy-	NormalCopy+		
gain	18	0	8	0	0		
loss	0	87	19	1	0		
NormalCopy	15	6	210	0	10		
NormalCopy+	0	1	1	0	0		

RobustCNV calls							
RobustCNV	gain	loss	NormalCopy	NormalCopy-	NormalCopy+		
gain	18	0	11	0	0		
gain+loss	0	0	1	0	0		
loss	0	85	18	1	0		
NormalCopy	15	7	205	0	10		
NormalCopy-	- 0	2	0	0	0		
NormalCopy-	+ 0	0	3	0	0		

	VisCap Calls								
	aCGH								
VisCap	gain	loss	${\tt NormalCopy}$	NormalCopy-	NormalCopy+				
gain	15	0	11	0	0				
loss	0	58	19	0	0				
NormalCopy	18	34	207	1	10				
NormalCopy-	0	2	0	0	0				
NormalCopy+	0	0	1	0	0				

^{*}Statistics represent calls per-sample summarized to the gene level.

^{**} SMAD2, SMAD4, ATM, RB1, TP53, PTEN, CDKN2A, CDKN2B

POPv2: Tumor suppressor genes** (summarized across 30 samples)

ReCap calls							
aCGH							
ReCapSeg	gain	loss	NormalCopy				
gain	5	0	4				
loss	0	48	5				
NormalCopy	5	9	163				
NormalCopy-	. 0	0	1				

VisCap Calls					
	aCGH				
VisCap	gain	loss	NormalCopy		
gain	3	0	2		
loss	0	34	3		
${\tt NormalCopy}$	7	23	166		
NormalCopy+	0	0	2		

ì								
	RobustCNV calls							
	aCGH							
	RobustCNV gain loss NormalCopy							
	gain	6	0	6				
	loss	0	46	7				
	NormalCopy	4	11	160				

^{*}Statistics represent calls per-sample summarized to the gene level.

^{**} SMAD2, SMAD4, ATM, RB1, TP53, PTEN, CDKN2A, CDKN2B

Assessment and validation for CCGD and Profile

Conclusions

- Determine whether ReCapSeg performs as well, or better than the existing approach (VisCap).
 - ReCapSeg is much more sensitive than VisCap, but has a slightly higher FDR.
- Measure performance against array-Competitive Genomic Hybridization (aCGH) calls.
 - ReCapSeg has a median sensitivity of ~80% on both test datasets (VisCap ~50%)
- Identify and implement strategies to further improve performance of these algorithms.
 - Modifications to intervals show marginal improvements.

Questions