

CSU8RP3215/CSU8RP3216 用户手册

带 12-bit ADC 的 8 位 RISC OTP MCU REV 1.6

通讯地址:深圳市南山区蛇口南海大道 1079 号花园城数码大厦 A 座 9 楼

邮政编码: 518067

公司电话: +(86 755)86169257 传 真: +(86 755)86169057 公司网站: www.chipsea.com

微 信 号: 芯海科技

微信二维码:

版本历史

历史版本.	修改内容	版本日期
REV 1.0	初始版本	2015-6-23
REV 1.1	修订 P17、71、75、93 笔误	2015-9-16
REV 1.2	1、时钟系统增加 ERC 频率微调控制寄存器 7 器和输出使能控制寄存器 (P17) 2、增加 PT3. 2 外部参考电压输入控制 (P66) 3、增加 PT3. 0 内部参考电压输出控制 (P66) 4、增加 PT1. 3 可配置为开漏输出 (P33) 5、删除 ADC 内部通道 11,即输入信号接 GND (P65)。 6、代码选项增加超低功耗使能位 (P77)	2015–11–3
	7、增加 32MHz IRC 时钟(P97)	()
REV 1.3	1、在产品概述中增加 32MHz 振荡器精度 描述 (P6)	2015-11-20
REV 1.4	1、修订 P79 有关 SRADCON1 寄存器的描述 2、修订 P81 有关 METCH 寄存器的描述	2016-02-23
REV 1.5	1、删除 PT1.3 口开漏输出	2017-3-14
REV 1.6	1、增加 QFN20 封装	2017-5-31

目 录

版	〔本历史	2
E	录	3
1	产品概述	6
	1.1 功能描述	6
	1.2 主要特性	
	1.3 PIN 配置	7
2	标准功能	10
	2.1 CPU 核	
	2.1.1 存储器	
	2.1.2 状态寄存器	
	2.1.3 SFR	
	2.2 时钟系统	18
	2.2.1 概述	18
	2.2.2 时钟框图	18
	2.2.3 寄存器	
	2.3 复位系统	
	2.3.1 上电复位	24
	2.3.2 看门狗复位	
	2.3.3 掉电复位	
	2.3.4 外部硬件复位	
	2.4 中断	
	2.4.1 中断使能寄存器	
	2.4.2 中断标志寄存器	
	2.4.4 外部中断 1	32
	2.4.5 AD 中断溢出	
	2.4.6 定时器 0 溢出中断	
	2.4.7 定时/计数器 2 溢出中断	
	2.4.8 定时/计数器 3 溢出中断	
	2.4.9 定时/计数器 4 溢出中断	
	2.4.10 比较器中断	
	2.4.11 串口接收中断	
	2.4.12 串口发送中断	
	2.4.13 PUSH 和 POP 处理	
	2.5 定时器 0	37
	2.6 I/O PORT	
	2.6.1 PT1 □	39
	2.6.2 PT3 □	
	2.6.3 PT5 □	
	2.6.4 PT3.0 口输入控制	45
3	增强功能	47
	3.1 HALT 和 SLEEP 模式	47
	3.2 看门狗(WDT)	
	3.3 定时/计数器 2	
	3.3.1 寄存器描述	

REV1.6

	3.3.2	输出配置	57
	3.3.3	蜂鸣器	57
	3.3.4	PWM	58
	3.4	定时/计数器 3	59
	3.4.1	寄存器描述	59
	3.4.2	输出配置	62
	3.4.3	蜂鸣器	63
	3.4.4	PWM	63
	3.4.5	互补式 PWM 输出	64
	3.5	定时/计数器 4	66
	3.5.1	寄存器描述	66
	3.5.2	输出配置	70
	3.5.3		
	3.5.4		
	3.6	串行通信接口	
	3.6.1		
	3.6.2		
	3.6.3		
		模数转换器(ADC)	
	3.7.1		
	3.7.1		
	3.7.2		
	3.7.4		
	3.7.4		
		比较器	03
		以投稿数据查表	
	3.10	下拉电阻配置和输出电流配置	
	3.11	烧录模块	
	3.12	输入逻辑电平电压配置	
	3.13	代码选项	
4	MCU	U 指令集	95
_	中层	U 指令集 特性	112
•	Æ(村性	112
		极限值	
	5.2	直流特性(VDD=5V, T _A =25℃, 如无其他说明则都是此条件)	112
	5.3	ADC 特性(VDD=5V, T _A =25℃, 如无其他说明则都是此条件)	115
	5.4	32MHz IRC 时钟频率特性	116
	5.5	16MHz IRC 时钟频率特性	116
	5.6	8MHz IRC 时钟频率特性	116
	5.7	4MHz IRC 时钟频率特性	117
	5.8	2MHz IRC 时钟频率特性	117
	5.9	32KHz WDT 时钟频率特性	118
		ERC 频率的电压和温度特性(R=68KΩ,C=0.1uF)	
		2.0V 掉电复位温度特性	
		2.4V 低电压复位温度特性	
		3.6V 低电压复位温度特性	
		1.4V 内部参考电压的电压和温度特性	
		2.0V 内部参考电压的电压和温度特性	
		3.0V 内部参考电压的电压和温度特性	
		4.0V 内部参考电压的电压和温度特性	
	J.11	- い v + 1 HP グ	141

6	封装	图	123
	6.1	SOP-16PIN	
	6.2	TSSOP-16PIN.	124
	6.3	DIP-16PIN	125
	6.4	SOP-20PIN	126
	6.5	DIP-20PIN	127
	6.6	SSOP-20PIN	127
	6.7	TSSOP-20PIN	
	6.8	QFN-20 PIN	129
7	单片	· 片机产品命名规则	131
	7.1	产品型号说明	131
	7.2	命名举例说明	132
	7.3	产品印字说明	

1 产品概述

1.1 功能描述

CSU8RP3215/CSU8RP3216 是一个带 12-bit ADC 的 8 位 CMOS 单芯片 RISC MCU,内置 2K×16 位 OTP 程序存储器。

1.2 主要特性

高性能的 RISC CPU

- 8 位单片机 MCU
- 内置 2K×16 位程序存储器 0TP(支持 1K16 两次烧录配置)
- 128 字节数据存储器 (SRAM)
- 只有 42 条单字指令
- 8级 PC 存储堆栈
- 8级 PUSH和 POP 堆栈

振荡器

- 内带 32/16/8/4/2MHz 振荡器, 32MHz 精度± 5‰3V, 其他振荡器的精度为±1‰5V
- 外部 32768Hz 晶振(RTC)或 2MHz~16MHz 晶振或 ERC 6.8M@5V,68KΩ

外设特性

- 17 位双向 I/0 口, 1 位输入口
- 3 路蜂鸣器输出, 3 路 PWM 输出
- 1路互补 PWM
- 1 路 UART(可选择 PT1.1, PT1.2, PT3.3 或 PT3.4 输出)
- 7个内部中断,2个外部中断
- 9个具有唤醒功能的输入口—
- 9 路 12-bitADC
 - 内部 1.4V/2.0V/3.0V/4.0V、VDD、外部 输入6种参考电压选择
 - 一 带数字比较器
- 内部参考电压 1.4V/2V/3V/4V, 精度±1%
- 低电压检测(LVD)引脚,内部提供 2.4V、3.6V电压比较,低电压复位滤波时间可配
- 一个模拟比较器
- 5 个开漏输出口 PT1.1、PT5.1、PT5.0、 PT3.5、PT3.6
- PT1.4, PT3.5 和 PT3.6 输出电流可独立配置 为 IOH/IOL=54/57mA@5V
- PT1.4/PT1.5/PT1.6/PT1.7 输出电流可独立

- 配置为 IOH/IOL=31/35mA@5V
- 输入逻辑电平电压可配置
- PT3.0 逻辑输入电平增加 0.7V 和 VDD-0.7V 两档,且滤波时间可选 0us/5us/10us/15us
- PT1.3 下拉 500K, PT3.1 下拉 1K, PT1.5、 PT1.6 和 PT1.7 限流, SFR 控制, 默认不开 启; PT3.6 下拉 10K, SFR 配置, 默认开 启; PT3.4 下拉 10K, 默认开启

专用微控制器的特性

- 上电复位 (POR)
- 上电复位和硬件复位延迟定时器 (98ms)
- 内带低电压复位(LVR)
- 可编程预分频的8位定时器0
- 可编程预分频的 12 位定时/计数器 2
- 可编程预分频的 12 位定时/计数器 3
- 可编程预分频的 12 位定时/计数器 4
- 扩展型看门狗定时器 (32K WDT)

CMOS 技术

- 电压工作范围
 - 2.2V~5.5V@fcpu=1MHz(指令周期)
 - 3.6V~5.5V@fcpu=4MHz(指令周期)
- 工作温度范围
 - ─ -40~85 °C(工业级)

低功耗特性

- MCU 工作电流
 - 正常模式 0.85mA@4MHz,3V
 - 正常模式 8uA@32KHz, 3V
 - 一 休眠模式下的电流小于 1µ A

封装

- SOP16/DIP16/TSS0P16
- SOP20/DIP20/SSOP20/TSSOP20/QFN20

应用范围

- 小家电
- 玩具

型号	ROM	RAM	堆栈	定时器	12 位 PWM	互补 PWM	10	IAIX	模拟比较器	 封装
CSU8RP3215	2K*16	128	8	4	3	1	14	7*12	1	SOP16/DIP16/ TSSOP16
CSU8RP3216	2K*16	128	8	4	3	1	18	9*12	1	SOP20/DIP20/ SSOP20/TSSOP20/QFN20

1.3 PIN 配置

图1 CSU8RP3216-SOP20/DIP20/SSOP20/TSSOP20 PIN 图

图2 CSU8RP3216-QFN20 PIN 图

图3 CSU8RP3215-SOP16/DIP16/TSSOP16 PIN 图

表1 引脚说明表

管脚名称	输入/输出	3215 管脚 序号	3216 管脚 序号	3216Q FN20 管脚序 号	描述
VSS	P	1	1	19	地
PT1.1 / INT1/XIN/RI/TI	I/O	2	2	20	IO,具有开漏输出功能;外部中断1输入,具有唤醒功能;外置晶振输入;UART接收口;UART发送口
PT1.2/INT1/XO UT/RI/TI	I/O	3	3	1	IO;外部中断 1 输入,具有唤醒功能;外置晶振输出;UART 接收口;UART 发送口
$\frac{\text{PT1.3/INT1/}}{RST}/\text{VPP}$	I	4	4	2	I; 外部中断 1 输入,具有唤醒功能;复位输入;烧录电压
PT1.4/INT1/PW M2/BZ2 /T4 / PDA	I/O	5	5	3	IO;外部中断 1 输入,具有唤醒功能;PWM2 输出;蜂鸣器 2 输出;定时/计数器 4 外部输入;烧录数据线;
PT1.5/INT1/PW M3/BZ3 / PCL	I/O	6	6	4	IO;外部中断 1 输入,具有唤醒功能;PWM3 输出;蜂鸣器 3 输出;烧录时钟线;
PT1.6/INT1/PW M4/BZ4	I/O	7	7	5	IO;外部中断 1 输入,具有唤醒功能;PWM4 输出;蜂鸣器 4 输出;
PT1.7/INT1	I/O	8	8	6	IO; 外部中断 1 输入, 具有唤醒功能
PT5.2	I/O	-	9	7	IO
PT5.1	I/O	-	10	8	IO,具有开漏输出功能
PT5.0/ AIN8/PWM2/	I/O	-	11	9	IO,具有开漏输出功能; AD 输入 8; PMW2 输出
PT3.7/ AIN7	I/O	-	12	10	IO; ADC 输入 7
PT3.6/ AIN6/PWM4/P WM3H	I/O	9	13	11	IO(<mark>默认开下拉</mark>) ,具有开漏输出功能; ADC 输入 6; PWM4 输出; PWM3H 输出
PT3.5/ AIN5/PWM3/P WM3L	I/O	10	14	12	IO, 具有开漏输出功能; ADC 输入 5; PWM3 输出; PWM3L 输出

PT3.4/ AIN4/RI/TI	I/O	11	15	13	IO(<mark>默认开下拉); ADC</mark> 输入 4; UART 接收口; UART 发送口;
PT3.3/ AIN3/CO/RI/TI	I/O	12	16	14	IO; ADC 输入 3; 比较器输出; UART 接收口; UART 发送口;
PT3.2/ AIN2/C0N/VRE F	I/O	13	17	15	IO; ADC 输入 2; 比较器负端输入; ADC 参考电压输入
PT3.1/AIN1/C0 P/ INT1/T3	I/O	14	18	16	IO; ADC 输入 1; 比较器正端输入; INT1 输入, 具有唤醒功能; 定时/计数器 3 外部输入
PT3.0/AIN0/VR EF /C0P/INT0/T2	I/O	15	19	17	IO; ADC 输入 0; ADC 参考电压输入/内部参考电压输出; NTO 输入,具有唤醒功能;定时/计数器 2 外部输入
VDD	P	16	20	18	电源

2 标准功能

2.1 CPU 核

图4 CSU8RP3215/CSU8RP3216 CPU 核的功能模块图

从 CPU 核的功能模块图中,可以看到它主要包含 7 个主要寄存器及 2 个存储器单元。

表 2 MCU 架构说明

模块名称	描述
程序计数器	此寄存器在 CPU 的工作周期间起到很重要的作用,它记录 CPU 每个周期处理程
	序存储器中指令的指针。在一个 CPU 周期中,程序计数器将程序存储器地址
	(11bits),指令指针推送到程序存储器,然后自动加1以进行下一次周期。
栈寄存器	堆栈寄存器是用来记录程序返回的指令指针。当程序调用函数,程序计数器会将
	指令指针推送到堆栈寄存器。在函数执行结束之后,堆栈寄存器会将指令指针送
	回到程序计数器以继续原来的程序处理。
指令寄存器	程序计数器将指令指针(程序存储器地址)推送到程序存储器,程序存储器将程
	序存储器的数据(16bits)及指令推送到指令寄存器。
	CSU8RP3215/CSU8RP3216 的指令是 16bits,包括 3 种信息:直接地址,立即
	数及控制信息。
	CPU 能将立即数推送到工作寄存器,或者进行某些处理后,根据控制信息,
	将立即数存储到直接地址所指向的数据存储器寄存器中。
	直接地址(8bits)
	数据存储器的地址。CPU能利用此地址来对数据存储器进行操作。
	直接数据(8bits)
	CPU 通过 ALU 利用此数据对工作寄存器进行操作。
	控制信息
11. 4 \	它记录着 ALU 的操作信息。
指令译码器	指令寄存器将控制信息推送到指令译码器以进行译码,然后译码器将译码后的信
66 Nm 11 V =	息发送到相关的寄存器。
算术逻辑单元	算术逻辑单元不仅能完成8位二进制的加,减,加1,减1等算术计算,还能对8
<i>U</i>	位变量进行逻辑的与,或,异或,循环移位,求补,清零等逻辑运算。
工作寄存器	工作寄存器是用来缓存数据存储器中某些存储地址的数据。
状态寄存器	当 CPU 利用 ALU 处理寄存器数据时,如下的状态会随着如下顺序变化: PD,
) . M . M . I = -1	TO, DC, C及Z。
文件选择寄存器	在 CSU8RP3215/CSU8RP3216 的指令集中,FSR 是用于间接数据处理(即实现间
	接寻址)。用户可以利用 FSR 来存放数据存储器中的某个寄存器地址,然后通过
プロトラナ Λ₩ ПП	IND 寄存器对这个寄存器进行处理。
程序存储器	CSU8RP3215/CSU8RP3216 内带 2K×16 位的 OTP 作为程序存储器。由于指令的
X	操作码(OPCODE)是 16bits,用户最多只能编程 2K 的指令。程序存储器的地址
₩/	总线是 11bits,数据总线是 16bits。
数据存储器	CSU8RP3215/CSU8RP3216 内带 128 bytes 的 SRAM 作为数据存储器。此数据存储
	器的地址总线是 7bits,数据总线是 8bits。

2.1.1 存储器

(1) 程序存储器

程序存储器主要用于指令的存储,在 CSU8RP3215/CSU8RP3216 中,该程序存储器是 2K*16bit 的程序 OTP,对于程序员来说,该存储器只读,不可以写入。系统的 reset 地址为 000H,中断入口地址为 004H,需要注意的一点就是所有的中断共用同一个中断入口地址。

图5 程序存储器

(2) 数据存储器

数据存储器主要用于程序运行过程中,全局以及中间变量的存储。该存储器分为三个部分。地址的 00H 至 07H 是系统特殊功能寄存器,例如间接地址,间接地址指针,状态寄存器,工作寄存器,中断标志位,中断控制寄存器。地址的 08H 至 7FH 外设特殊功能寄存器,例如 IO 端口,定时器,系统特殊功能寄存器和外设特殊功能寄存器是用寄存器实现,而通用数据存储器是 RAM 实现,可以读出也可以写入。

数据存储器	起始地址	结束地址
系统特殊功能寄存器	00H	07H
外设特殊功能寄存器	08H	7FH
通用数据存储器	80H	FFH

表 3 数据存储器地址分配

通过 IND0 以及 FSR0 这两个寄存器可以对数据存储器以及特殊功能寄存器进行间接访问。当从间接地址寄存器(IND0)读入数据时,MCU 实际上是以 FSR0 中的值作为地址去访问数据存储器得到数据。当向间接寄存器(IND0)写入数据时,MCU 实际上是以 FSR0 中的值作为地址去访问数据存储器将值存入该地址。其访问方式见。

图6 间接地址访问

2.1.2 状态寄存器

状态寄存器包含 ALU 的算术状态及复位状态。状态寄存器类似于其它寄存器,可以作为任何指令的目标寄存器。如果状态寄存器是某条指令的目标寄存器,而且影响到 Z, DC 或 C 位,那么对这三个位的写是无效的。这些位是由器件逻辑进行置位或清零。TO 及 PD 位是不可写的。

状态寄存器(地址为04h)

特性	R-0	R-0	U-0	R-0	R-0	R/W-0	R/W-0	R/W-0
STATUS	LVD36	LVD24		PD	TO	DC	C	Z
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

- Bit 7 LVD36: 3.6V LVD 工作电压标志,只有当代码选项 LVD SEL 为 2'b01 和 2'b10 有效
 - 1: 系统工作电压低于 3.6V, 说明低电压检测器已处于监控状态
 - 0: 系统工作电压超过 3.6V, 低电压检测器没有工作
- Bit 6 LVD24: 2.4V LVD 工作电压标志,只有当代码选项 LVD SEL 为 2' b01 有效
 - 1: 系统工作电压低于 2.4V, 说明低电压检测器已处于监控状态
 - 0: 系统工作电压超过 2.4V, 低电压检测器没有工作
- Bit 4 PD: 掉电标志位。通过对此位写 0 清零, sleep 后置此位
 - 1: 执行 SLEEP 指令后
 - 0: 上电复位后或硬件复位或 CLRWDT 指令之后
- Bit 3 TO: 看门狗定时溢出标志。通过对此位写 0 清零, 看门狗定时溢出设置此位
 - 1: 看门狗定时溢出发生
 - 0: 上电复位后或硬件复位或 CLRWDT 指令后或 SLEEP 指令后
- Bit 2 DC: 半字节进位标志/借位标志

用于借位时,极性相反

- 1: 结果的第4位出现进位溢出
- 0: 结果的第4位不出现进位溢出
- Bit 1 C: 进位标志/借位标志

用于借位时,极性相反

- 1: 结果的最高位 (MSB) 出现进位溢出
- 0: 结果的最高位 (MSB) 不出现进位溢出
- Bit 0 Z: 零标志
 - 1: 算术或逻辑操作是结果为 0
 - 0: 算术或逻辑操作是结果不为0

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n=上电复位后的值 '1' =位已设置 '0' =位已清零 X=不确定位

2.1.3 SFR

特殊功能寄存器(SFR)包含系统专用寄存器和辅助专用寄存器。

系统专用寄存器用于完成 CPU 核的功能,由间接地址,间接地址指针,状态寄存器,工作寄存器,中断标志及中断控制寄存器。

辅助专用寄存器是为辅助功能而设计,比如 I/O 口,定时器,信号的条件控制寄存器。

表 4 寄存器列表

地	1									上电复位	
址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	值	
00h	IND0	以 FSR0 中内容作为地址的数据存储器中的数据									
02h	FSR0					00000000					
04h	STATUS	LVD36	LVD24		PD	TO	DC	C	Z	xxu00000	
05h	WORK				工作	寄存器				00000000	
06h	INTF		TM2IF		TM0IF	SRADIF		E1IF	E0IF	u0u00u00	
07h	INTE	GIE	TM2IE		TM0IE	SRADIE		E1IE	E0IE	00u00u00	
0Ah	EADRH						EADR	2[10:8]	•	uuuuu000	
0Bh	EADRL				EAI	OR[7:0]		,		00000000	
0Ch	EDATH				EDA	TH[7:0]	λ			00000000	
	WDTCON	WDTEN						WTS[2:0]		0uuuu000	
0Eh	WDTIN				WDT	ΓΙΝ[7:0]				11111111	
	TM0CON	T0EN	T0	RATE[2:0		1	T0RSTB	T0SEI	L[1:0]	0000u100	
10h	TM0IN)IN[7:0]				11111111	
11h	TM0CNT				TM00	CNT[7:0]				00000000	
16h	MCK	CST	CST_IN	CST_W DT	EO_SLP				CLKSEL	1010uuu0	
17h	TM2CON	T2EN	T2	RATE[2:0		T2CKS	T2RSTB	T2OUT	PWM2OUT	00000100	
18h	TM2IN		TM2IN[7:0]								
19h	TM2CNT		Ζ.		TM20	CNT[7:0]				00000000	
1ah	TM2R		/ X		TM:	2R[7:0]				00000000	
1bh	TM3CON	T3EN	T3	RATE[2:0		T3CKS	T3RSTB	T3OUT	PWM3OUT	00000100	
1ch	TM3IN		<u></u>		TM3	3IN[7:0]				11111111	
1dh	TM3CNT				TM30	CNT[7:0]				00000000	
1eh	TM3R					3R[7:0]				00000000	
20h	PT1				PT1[7:1]					xxxxxxxu	
21h	PT1EN		Y		PT1EN[7:					0000000u	
22h	PT1PU				PT1PU[7:	1]				0000000u	
23h	PT1CON	PT110D		PT1W			E1M	E0M	[1:0]	00000000	
28h	PT3					3[7:0]				XXXXXXX	
29h	PT3EN					EN[7:0]				00000000	
2ah	PT3PU					PU[7:0]				00000000	
2bh	PT3CON			, ,		ON[7:0]	1	1	1	00000000	
	PT3OD		PT36OD							u00uuuuu	
-	TM3CON2	DT3C		J	DT3CNT[2:	:0]	DT3_EN	P3H_OEN			
2eh	TMCON	P3HINV	P3LINV				PWM4PO	PWM3PO			
2fh	TMCON2			T4SEI	L[1:0]	T3SE	L[1:0]	T2SEI	L[1:0]	uu000000	
30h	PT5							PT5[2:0]		uuuuuxxx	
								PT5EN[2:0]		uuuuu000	
								PT5PU[2:0]	1	uuuuu000	
	PT5CON			,			PT51OD		PT5CON0		
38h	PT1CON1						PT1W	[2[3:0]		uuuu0000	

39h	EX0CFG	PWMF	RL[1:0]	POLSEL				EX0FII	T[1:0]	000uuu00
3ch	INTF2			TM4IF	TM3IF					uu00uuuu
3dh	INTE2			TM4IE	TM3IE					uu00uuuu
3eh	INTF3	CMPIF						URTIF	URRIF	0uuuuu00
3fh	INTE3	CMPIE						URTIE	URRIE	0uuuuu00
40h	TM4CON	T4EN	T4	RATE[2:0)]	T4CKS	T4RSTB	T4OUT	PWM4OUT	00000100
41h	TM4IN				TM ²	IN[7:0]				11111111
42h	TM4CNT				TM40	CNT[7:0]				00000000
43h	TM4R				TM	4R[7:0]				00000000
44h	TM2INH						TM2IN	N[11:8]		uuuu1111
45h	TM2CNTH						TM2CN	T[11:8]		uuuu0000
46h	TM2RH						TM2R	[11:8]		uuuu0000
47h	TM3INH						TM3IN	N[11:8]		uuuu1111
48h	TM3CNTH						TM3CN	T[11:8]	7	uuuu0000
49h	TM3RH						TM3R	2[11:8]		uuuu0000
4ah	TM4INH						TM4IN	N[11:8]		uuuu1111
4bh	TM4CNTH						uuuu0000			
	TM4RH						uuuu0000			
50h	SRADCON0			SRADA				SRADC	uu00uu00	
	SRADCON1	SRADEN	SRADS	OFTEN	CALIF	ENOV	OFFEX	VREF	00000000	
	SRADCON2		CHS[3	3:0]				REF_SI	EL[1:0]	0000uu00
54h					SRA	AD[7:0] SRAD[11:8]				00000000
55h							uuuu0000			
56h					SRO	FT[7:0]	00000000			
57h							SROF	Γ[11:8]		uuuu0000
	TRIM_EX					EX[7:0]	<i>Y</i>			10000000
5fh	METCH				MET	CH[7:0]				00000000
6ah	CMPCON	CMPEN						CMP_OEN	CMPOUT	0uuuuu0x
77h	SCON1	SM0	SM1	SM2	REN	TB8 UARTEN	RB8			000000uu
78h	SCON2	SMOD	SMOD URCLK [1:0]					PINCTL[2:0)]	000u0000
79h	SBUF				SBU	JF[7: 0]				00000000
7ah	CURCON	P36CUR	P35CUR	P14CU	JR[1:0]		CURI	P17[1:0]		0000u00u
7bh	SYSCFG0	VTHSEL	RST20_SEL	VTHP:	30[1:0]	P30REFEN	LFILT_EN	LFILT	S[1:0]	00000000
7ch	SYSCFG1	PDP13	PDP31	PDP34	PDP36	CURP	16[1:0]	CURP	5[1:0]	00110000

注: 进行读操作时, 无效位读出为0

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n=上电复位后的值 '1' =位已设置 '0' =位已清零 X=不确定位

2.2 时钟系统

2.2.1 概述

芯片的时钟系统包括内置 32/16/8/4/2MHz 的 RC 振荡时钟(IHRC)、外置高速晶振、内置低速 32KHz 的 WDT 时钟、外置低速的晶振时钟、外部 RC 时钟、外部时钟源。除去 WDT 时钟外,以上时 钟都可以做为系统时钟源 Fosc。Fcpu 是 CPU 时钟频率。

普通模式(高速时钟): Fcpu=Fosc/N, N=4、8、16、32

2.2.2 时钟框图

图7 CSU8RP3215/CSU8RP3216 振荡器状态框图 A

图8 CSU8RP3215/CSU8RP3216 振荡器状态框图 B

2.2.3 寄存器

表 5 CSU8RP3215/CSU8RP3216 时钟系统寄存器列表

地址	名称	Bit7	Bits6	Bit5	Bits4	Bit3	Bits2	Bit1	Bit0	上电复位值
16h	MCK	CST	CST_IN	CST_WDT	EO_SLP				CLKSEL	1010uuu0
59h	TRIM_EX		TRIM EX[7:0]							10000000
5fh	METCH					METC	CH[3:2]		L	00000000

表 6 MCK 寄存器各位功能表

位地址	标识符	功能
7	CST	外部晶振启动开关 1: 外部晶振关闭 0: 外部晶振打开
6	CST_IN	内部晶振启动开关 1: 内部晶振关闭 0: 内部晶振打开
5	CST_WDT	内部 WDT 晶振启动开关 1: 内部 WDT 晶振关闭 0: 内部 WDT 晶振打开
4	EO_SLP	外部低速晶振控制位 1: 如果选择的是外部低速晶振(32768Hz),在 sleep 模式下不关闭外部晶振 0: sleep 模式下关闭外部晶振
0	CLKSEL	时钟源选择位 0: 内部晶振系统时钟 1: 外部晶振系统时钟

对 MCK 寄存器进行写操作时,建议使用 bcf 或 bsf 指令。

表 7	TRIM	EX寄存器各位功能表	

位地址	标识符	功能
		ERC 频率微调控制寄存器
7:0	TRIM_EX[7:0]	ERC 的频率主要由外接电阻大小决定,外接电容大小影响很小,外接电阻对 ERC 进行频率粗调,而 TRIM_EX[7:0]寄存器对 ERC 频率进行微调。

下图为实际芯片的 TRIM_EX[7:0]寄存器对应的 ERC 频率测试数据,不同芯片会略微有所差异,仅供参考。其中 ERC 电阻 R=68K,电容 C=0.1uF,TRIM_EX 寄存器从 0 步进到 253,每步的频率调整范围为+128.9KHz~-56 KHz。

图9 ERC 频率随 TRIM EX 寄存器的变化

表 8 METCH 寄存器各位功能表

位地址	标识符	功能
		ERC 时钟输出使能位
3	METCH[3]	0: 禁止 ERC 时钟输出
		1: 使能 ERC 时钟通过 PT1.5 口输出
		ERC频率微调控制使能
2	METCH[2]	1: 使能寄存器 TRIM_EX 的值来微调 ERC 频率
		0: 禁止 ERC 频率微调控制

2.3 复位系统

CSU8RP3215/CSU8RP3216 有以下方式复位:

- 1) 上电复位
- 2) *RST* 硬件复位 (正常操作)
- 3) *RST* 硬件复位(从 Sleep 模式)
- 4) WDT 复位(正常操作)
- 5) WDT 复位(从 Sleep 模式)
- 6) 低电压复位 (LVR)

上述任意一种复位发生时,所有系统寄存器恢复默认状态(WDT 复位 TO、PD 标志位除外),程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 000H 重新开始。各种复位情况下的 TO, PD 标志位如下表所示。

表 9 复位信号和状态寄存器关系

条件	ТО	PD
上电复位	0	0
RST 硬件复位(正常操作)	0	0
RST 硬件复位(从 Sleep 模式)	0	0
WDT 复位(正常操作)	1	不变
WDT 复位(从 Sleep 模式)	1	不变
低电压复位	0	0

下图给出了复位电路原理图。

图10 复位电路原理图

任何一种复位情况都需要一定的响应时间,系统提供完善的复位流程以保证复位动作的顺利进行。对于不同类型的振荡器起振的时间不同,所以完成复位的时间也有所不同。RC 振荡器起振时间最短,外置低速晶振起振时间最长。所以在有外部晶振电路应用的情况下,用户应在上电复位后,预留一定的时间再从内部 RC 时钟切换到外部晶振电路。用户在终端使用过程中,应注意考虑主机对上电复位的要求。

图11 上电复位电路示例及上电过程

参数	最小值	典型值	最大值
VPOR	1.8V	2.0V	2.2V
VLVR	1.8V	2.0V	2.2V
$t_{ m WVS}$	78.4ms	98ms	117.6ms
(测试条件: VDD=5V, T=25℃)			

VPOR: 上电复位

VLVR: 低电压复位

twvs: 等待电压稳定时间

2.3.1 上电复位

系统上电呈现逐渐上升的曲线形式,需要一定时间才能达到正常的工作电压(对于不同的指令周期所需工作电压是不同的,指令周期越快相应所需的工作电压就越高,见 <u>5.2 直流特性</u>)。要求用户系统的上电速度要大于 0.07V/mS,尤其是要注意指令周期是 4MHz 时,因为他要求的工作电压最高。

2.3.2 看门狗复位

看门狗复位是一种系统的保护设置。在正常状态下,程序将看门狗定时器清零。如出错,系统处于未知状态,此时利用看门狗复位。看门狗复位后,系统重新进入正常状态。

2.3.3 掉电复位

SYSCFG0 寄存器(地址为7bh)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYSCFG0		RST20_SEL				LFILT_E N	LFILT_	_S[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

位地址	标识符	功能					
		掉电电压选择(仅当 LVD_SEL[1:0]为 2'b00 或 2'b01 时有效)					
6	RST20_SEL	0: 2.0V 掉电	0: 2.0V 掉电				
		1: 1.6V 掉电					
		LVD复位滤波使	能位				
2	LFILT_EN	0: 禁止 LVD 复位					
		1: 使能 LVD 复位滤波					
		LVD 复位滤波时间选择(仅在 LVD 复位滤波使能位打开,且					
		LVD_SEL[1:0]配置为 2'b10 或 2'b11 时有效)					
		LFILT_S[1:0]	LVD复位滤波时间	LVD复位滤波时间			
			(16MHz 内部高速晶振)	(32768Hz 外部低速晶振)			
1:0	LFILT S[1:0]	00	12us	750us			
1.0	EI IE I_S[1.0]	01	25us	1.5ms			
		10	50us	3ms			
		11	100us	6ms			
		以上时间为使用的	内部高速 16MHz 晶振时的位	值,使用其他频率的内部晶			
		振时,以此类推。	Y				

LVDCON 寄存器(地址为 5Eh)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LVDCON	LVD36				LVDTRIM[3:0]			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

位地址	标识符	功能
7	LVD26	3. 6V LVD 工作电压标志,只有当代码选项 LVD_SEL 为 2'b01 和 2'b10 有效
/	LVD36	1: 系统工作电压低于 3.6V, 说明低电压检测器已处于监控状态
		0: 系统工作电压超过 3.6V,低电压检测器没有工作
3:0	LVDTRIM[3:0]	低电压检测 3.6V TRIMMING 值,TRIMMING 值增大,LVD36 电压增
		大,默认值 4'b1000

掉电复位针对外部引起的系统电压跌落情况,例如受到干扰或者负载变化。系统掉电可能会引起系统 工作状态不正常或者程序执行错误。

图12 系统掉电复位示意图

电压跌落可能会进入系统死区。进入系统死区,即电源电压不能满足系统的最小工作电压要求。系统 掉电复位示意图如上图所示。芯片的掉电复位点在 2.0V,芯片的低电压复位点可以通过代码选项设置 成 2.7V 或者 3.6V 或者不设置低电压复位点。

为避免进入系统死区,建议利用低电压复位(LVR)功能,尤其是指令周期是高速应用的情况。不同指令周期的系统出错区域不同,取决于指令周期工作电压范围,见 5.2。如果指令周期是 4MHz时,建议使用 3.6V 低电压复位。如果指令周期是 2Mhz时,建议使用 2.7V 低电压复位。如果指令周期是 1MHz或者 500KHz时,可以不打开低电压复位,此时只有 2.0V 掉电复位。2.4V 和 3.6V 低电压复位可进行滤波,小于配置的滤波时间的低电压脉冲会被过滤掉。

掉电复位性能的改善可以通过如下几点实现:

- 1) 低电压复位(LVR)
- 2) 看门狗复位
- 3) 降低系统指令周期
- 4) 采用外部复位电路(稳压二极管复位电路; 电压偏移复位电路; 外部 IC 复位)

2.3.4 外部硬件复位

外部复位由代码选项 RESET_PIN 控制。通过设置该代码选项,可使能外部硬件复位功能。外部硬件复位引脚为施密特触发结构,低电平有效。硬件复位引脚为高电平时,系统正常工作;硬件复位引脚为低电平时,系统复位。

在芯片代码选项使能外部硬件复位功能后,需要注意的是:在系统上电完成后,外部复位需要输入高电平,否则,系统会一直复位,直到外部硬件复位结束。

外部硬件复位可以在上电过程中使用系统复位。良好的外部复位电路可以保护系统避免进入系统死 区。

2.4 中断

CSU8RP3215/CSU8RP3216 有 10 个中断源,只有 1 个中断入口地址 004H。与中断相关的 SFR:中断使能控制寄存器 INTE 和中断标志位寄存器 INTF。这 10 个中断源都各自有一个中断使能,和一个总使能位 GIE,并且它们的标志位硬件置位,软件清 0。

当响应中断时,会把当前的 PC 值入栈保护,并把 PC 置为 004H,同时把总使能位 GIE 清 0。执行 完中断服务程序,并用 RETFIE 返回到之前的主程序,并把 GIE 置 1。

所有的中断都可以唤醒 sleep 睡眠模式和 halt 停止模式。

图13 中断逻辑

2.4.1 中断使能寄存器

INTE 寄存器(地址为07h)

特性	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INTE	GIE	TM2IE		TM0IE	SRADIE		E1IE	E0IE
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 GIE: 全局中断使能标志

1=使能所有非屏蔽中断

0=不使能所有中断

Bit 6 TM2IE: 12-Bit 定时/计数器 2 中断使能标志

1=使能定时/计数器2中断

0=不使能定时/计数器2中断

Bit 4 TM0IE: 8-Bit 定时器 0 中断使能标志

1=使能定时器0中断

0=不使能定时器0中断

Bit 3 SRADIE: AD 中断使能标志

1 = 使能 AD 中断

0=不使能 AD 中断

Bit 1 E1IE: 外部中断 1 使能标志

1=使能外部中断1

0=不使能外部中断1

Bit 0 E0IE: 外部中断 0 使能标志

1=使能外部中断 0

0=不使能外部中断0

INTE2 寄存器(地址为 3dh)

特性	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
INTE2			TM4IE	TM3IE				
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 5 TM4IE: 12-Bit 定时/计数器 4 中断使能标志

1=使能定时/计数器4中断

0=不使能定时/计数器4中断

Bit 4 TM3IE: 12-Bit 定时/计数器 3 中断使能标志

1=使能定时/计数器3中断

0=不使能定时/计数器3中断

INTE3 寄存器(地址为 3fh)

特性	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
INTE3	CMPIE						URTIE	URRIE
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 CMPIE: 比较器中断使能

1: 使能比较器中断

0: 禁止比较器中断

Bit1 URTIE: UART 的发送中断使能

1: 使能 UART 的发送中断

0: 禁止 UART 的发送中断

Bit0 URRIE: UART 的接收的中断使能

1: 使能 UART 的接收中断

0: 禁止 UART 的接收中断

2.4.2 中断标志寄存器

中断标志位都是硬件置 1, 软件清 0。**某一个中断标志位在其对应的中断使能位没有置 1 的情况** 下,也有可能硬件置 1。

INTF 寄存器 (地址为 06h)

特性	U-0	R/W-0	U-0	R/W -0	R/W -0	U-0	R/W -0	R/W -0
INTF		TM2IF		TM0IF	SRADIF		E1IF	E0IF
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 6 TM2IF: 12-Bit 定时/计数器 2 中断标志,软件清零,硬件置高

1=发生定时中断,必须软件清0

0=没发生定时中断

Bit 4 TM0IF: 8-Bit 定时器 0 中断标志,软件清零,硬件置高

1=发生定时中断,必须软件清0

0=没发生定时中断

Bit 3 SRADIF: AD 中断中断标志,软件清零,硬件置高

1=发生 AD 中断,必须软件清 0

0 = 没发生 AD 中断

Bit 1 E1IF:外部中断 1 中断标志,软件清零,硬件置高

1=外部中断1发生中断,必须软件清0

0=外部中断1没发生中断

Bit 0 EOIF:外部中断 0 中断标志,软件清零,硬件置高

1=外部中断0发生中断,必须软件清0

0=外部中断0没发生中断

INTF2 寄存器(地址为 3ch)

特性	U-0	U-0	R/W -0	R/W -0	U-0	U-0	U-0	U-0
INTF2	7/1	/5 X	TM4IF	TM3IF				
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 5 TM4IF: 12-Bit 定时/计数器 4 中断标志,软件清零,硬件置高

1=发生定时中断,必须软件清0

0=没发生定时中断

Bit 4 TM3IF: 12-Bit 定时/计数器 3 中断标志,软件清零,硬件置高

1=发生定时中断,必须软件清0

0=没发生定时中断

INTF3 寄存器(地址为 3eh)

特性	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
INTF3	CMPIF						URTIF	URRIF
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 CMPIF: 比较器中断标志

1=发生比较器中断,必须软件清0

0=没有发生比较器中断

Bit 1 URTIF: 串口通信发送中断标志

1=发生串口发送中断,必须软件清0

0=没有发生串口发送中断

Bit 0 URRIF: 串口通信接收中断标志

1=发生串口接收中断,必须软件清0

0=没有发生串口接收中断

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n = 上电复位后的值 '1' = 位已设置 '0' = 位已清零 X = 不确定位

2.4.3 外部中断 0

PT3.0 为外部中断 0 的输入端。触发方式由 PT1CON 寄存器中的 E0M[1:0]寄存器决定。INTE 寄存器中的 E0IE 为外部中断 0 的使能位,INTF 寄存器中的 E0IF 为中断标志位,硬件置 1,软件清 0。可唤醒 sleep 或 halt 模式。只要 PT3.0 被触发,中断标志位 E0IF 就会置 1。

PT1CON 寄存器(地址为 23h)

特性	R/W-0							
PT1CON						E1M	E0M	[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 2 E1M: 外部中断 1 触发模式

1=外部中断1为下降沿触发

0=外部中断1在状态改变时触发

Bit 1-0 E0M[1:0]: 外部中断 0 触发模式

11=外部中断0在状态改变时触发

10=外部中断0在状态改变时触发

01=外部中断0为上升沿触发

00=外部中断0为下降沿触发

EX0CFG 寄存器(地址为 39h)

特性	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
EX0CFG	PWMRL[[1:0]	POLSEL				EX0FII	T[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-6 PWMRL[1:0]: 外部中断 0 触发模式

00 = 外部中断 0 不受 PWM2、PWM3、PWM4 影响

01 =外部中断 0 受 PWM2 影响,外部中断 0 只有在 PWM2 输出为特定极性时有效

10=外部中断0受PWM3影响,外部中断0只有在PWM3输出为特定极性时有效

11 =外部中断 0 受 PWM4 影响,外部中断 0 只有在 PWM4 输出为特定极性时有效

Bit 5 POLSEL: 外部中断 0 触发极性选择, 仅在 PWMRL[1:0]不为 00 时有效

0=PWM 输出为高时外部中断 0 才有效, PWM 输出为低时, 外部中断 0 被屏蔽

1=PWM 输出为低时外部中断 0 才有效, PWM 输出为高时, 外部中断 0 被屏蔽

Bit 1-0 EX0FILT[1:0]: 外部中断 0 滤波时间选择 (只有 PWMRL 没有配置为 00 滤波才起作用)

00 = 滤波时间为 0us

01 = 滤波时间为 5us

10 = 滤波时间为 10us

11 = 滤波时间为 15us

2.4.4 外部中断 1

PT1.1、PT1.2、PT1.3、PT1.4、PT1.5、PT1.6、PT1.7和PT3.1都可作为外部中断1的输入端。触发方式由PT1CON寄存器中的E1M寄存器决定。INTE寄存器中的E1IE为外部中断1的使能位,INTF寄存器中的E1IF为中断标志位,硬件置1,软件清0。只要对应PT口作为外部中断输入端,且外部中断1被触发,中断标志位E1IF就会置1。

PT1CON 寄存器(地址为 23h)

华	寺性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P	T1CON			PT1W[3:0]					
		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 6 PT1W[3]:PT1.5 外部中断 1 使能

0=禁止 PT1.5 外部中断 1

1 = 使能 PT1.5 外部中断 1

Bit 5 PT1W[2]:PT1.4 外部中断 1 使能

0=禁止 PT1.4 外部中断 1

1 = 使能 PT1.4 外部中断 1

Bit 4 PT1W[1]:PT1.3 外部中断 1 使能

0 = 禁止 PT1.3 外部中断 1

1 = 使能 PT1.3 外部中断 1

Bit 3 PT1W[0]:PT1.1 外部中断 1 使能

0=禁止 PT1.1 外部中断 1

1 = 使能 PT1.1 外部中断 1

PT1CON1寄存器(地址为38h)

特性	R/W-0	R/W-0						
PT1CON1		/ X				PT1W	⁷ 2[3:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3 PT1W2[3]:PT3.1 外部中断 1 使能

0=禁止PT3.1外部中断1

1 = 使能 PT3.1 外部中断 1

Bit 2 PT1W2[2]:PT1.7 外部中断 1 使能

0=禁止PT1.7外部中断1

1 = 使能 PT1.7 外部中断 1

Bit 1 PT1W2[1]:PT1.6 外部中断 1 使能

0=禁止 PT1.6 外部中断 1

1 = 使能 PT1.6 外部中断 1

Bit 0 PT1W2[0]:PT1.2 外部中断 1 使能

0=禁止 PT1.2 外部中断 1

1 = 使能 PT1.2 外部中断 1

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n=上电复位后的值 '1' =位已设置 '0' =位已清零 X=不确定位

2.4.5 AD 中断溢出

INTE 寄存器中的 SRADIE 为 ADC 中断的使能位,INTF 寄存器中的 SRADIF 为中断标志位,软件清 0。当 ADC 转换完成时, SRADIF 就会硬件置 1。

2.4.6 定时器 0 溢出中断

INTE 寄存器中的 TM0IE 为定时器 0 中断的使能位,INTF 寄存器中的 TM0IF 为中断标志位,软件 清 0。当定时器 0 溢出时, TM0IF 就会硬件置 1。

2.4.7 定时/计数器 2 溢出中断

INTE 寄存器中的 TM2IE 为定时/计数器 2 中断的使能位,INTF 寄存器中的 TM2IF 为中断标志位,软件清 0。当定时/计数器 2 溢出时, TM2IF 就会硬件置 1。

2.4.8 定时/计数器 3 溢出中断

INTE2 寄存器中的 TM3IE 为定时/计数器 3 中断的使能位,INTF2 寄存器中的 TM3IF 为中断标志位,软件清 0。当定时/计数器 3 溢出时, TM3IF 就会硬件置 1。

2.4.9 定时/计数器 4 溢出中断

INTE2 寄存器中的 TM4IE 为定时/计数器 4 中断的使能位,INTF2 寄存器中的 TM4IF 为中断标志位,软件清 0。当定时/计数器 4 溢出时, TM4IF 就会硬件置 1。

2.4.10 比较器中断

INTE3 寄存器中的 CMPIE 为比较器中断的使能位,INTF3 寄存器中的 CMPIF 为中断标志位,软件清 0。当比较器结果翻转时, CMPIF 就会硬件置 1。

2.4.11 串口接收中断

INTE3 寄存器中的 URRIE 为串口接收中断的使能位,INTF3 寄存器中的 URRIF 为中断标志位,软件清 0。当串口完成一次接收事件时, URRIF 就会硬件置 1。若关闭串口模块使能位,则不会产生中断标志位。

2.4.12 串口发送中断

INTE3 寄存器中的 URTIE 为串口发送中断的使能位,INTF3 寄存器中的 URTIF 为中断标志位,软件清 0。当串口完成一次发送事件时, URTIF 就会硬件置 1。若关闭串口模块使能位,则不会产生中断标志位。

2.4.13 PUSH 和 POP 处理

CSU8RP3215/CSU8RP3216 有 8 级的 PUSH 和 POP 堆栈。有中断请求被响应后,程序跳转到 004h 执行子程序。响应中断之前必须保存 WORK 和 STATUS 中的的标志位(只保存 C, DC, Z)。芯片提供 PUSH 和 POP 指令进行入栈保存和出栈恢复,从而避免中断结束后程序运行错误。子程序中也可以使用 PUSH 和 POP 指令对 WORK 和 STATUS(C, DC, Z)进行保存和恢复。

```
...
org 004H
goto int_server
...
int_server:

push
btfsc intf, e0if ;判断外部中断 0 标志
goto ex0_int
btfsc intf, e1if ;判断外部中断 1 标志
goto ex1_int
btfsc intf, tm0if ;判断定时器 0 中断标志
goto tm0_int
btfsc intf, tm2if ;判断定时/计数器 2 中断标志
goto tm2_int
btfsc intf2, tm3if ;判断定时/计数器 3 中断标志
goto tm3_int
...
```


2.5 定时器 0

图14 定时器 0 功能框图

定时器 0 模块的输入为 CPUCLK。在定时器 0 模块集成了一个分频器,分频的时钟 TM0CLK 作为 8 bits 计数器的输入时钟。当用户设置了定时器 0 模块的使能标志,8 bits 计数器将启动,将会从 000H 递增到 TM0IN。用户需要设置 TM0IN(定时器 0 模块中断信号选择器)以选择定时超时中断信号。当定时超时发生时,中断标志位会自设置,程序计数器会跳转到 004H 以执行中断服务程序。

地址 名称 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 上电复位 值 INTF TM0IF u0u00u00 06H 07H INTE **GIE** TM0IE 00u00u00 0FH TM0CON T0EN T0RATE[2:0] T0RSTB T0SEL[1:0] 0000u100 10H TM0IN TM0IN[7:0] 11111111 00000000 11H TM0CNT TM0CNT[7:0]

表 10 定时器 0 寄存器列表

表 11 TM0CON 寄存器各位功能表

位地址	标识符	功能								
		定时器0使能位								
7	T0EN	1: 使能定时器 0								
		0:禁止定时器0								
		定时器0时钟分频	选择	_						
		T0RATE [2:0]	TM0CLK							
		000	CKT0							
		001	CKT0/2							
6:4	T0RATE[2:0]	010	CKT0/4							
0.4	Total LE[2.0]	011	CKT0/8							
		100	CKT0/16							
		101	CKT0/32							
		110	CKT0/64							
		111	CKT0/128							

2	T0RSTB	定时器 0 复位 1: 禁止定时器 0 复位 0: 使能定时器 0 复位 当将该位为 0 时,定时器 0 复位后,TORSTB 会自动置 1					
1:0	T0SEL[1:0]	时钟源选择 TOSEL[1:0] 00 01 10	定时器 0 时钟源				

表 12 TM0IN 寄存器各位功能表

位地址	标识符	功能
7: 0	TM0IN[7:0]	定时器 0 溢出值(溢出值: 1~255)

表 13 TM0CNT 寄存器各位功能表

位地址	标识符	功能
7: 0	TM0CNT[7:0]	定时器 0 计数寄存器, 只读

操作:

- 1) 设置 TM0CLK,为定时器 0 模块选择输入。
- 2) 设置 TM0IN, 选择定时器 0 溢出值。(溢出值: 1~255)
- 3) 设置寄存器标志位: TM0IE 与 GIE, 使能定时器 0 中断。
- 4) 清零寄存器标志位: TORSTB, 复位定时器 0 模块的计数器。
- 5) 设置寄存器标志位: TM0EN, 使能定时器 0 模块的 8 bits 计数器。
- 6) 当定时超时发生时,程序计数器会跳转到 004H。

定时器 0 溢出时间计算方法:

定时器 0 溢出时间= (TM0IN+1) /TM0CLK.

2.6 I/O PORT

表 14 I/O 口寄存器表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值	
20h	PT1				PT1[7:1]					xxxxxxxu	
21h	PT1EN			P	T1EN[7:1]				0000000u	
22h	PT1PU			P	T1PU[7:1]				0000000u	
23h	PT1CON	PT11OD		PT1W	7[3:0]		E1M	E0M	[[1:0]	00000000	
28h	PT3		PT3[7:0]								
29h	PT3EN		PT3EN[7:0]								
2ah	PT3PU				PT3PU	U[7:0]				uuu00000	
2bh	PT3CON				PT3CC	N[7:0]				uuu00000	
2ch	PT3OD		PT36OD	PT35OD						u00uuuuu	
30h	PT5							PT5[2:0]		uuuuuxxx	
31h	PT5EN						H	PT5EN[2:0)] /	uuuuu000	
32h	PT5PU		PT5PU[2:0]							uuuuu000	
33h	PT5CON				·	•	PT51OD	PT50OD	PT5CON()uuuuu000	
38h	PT1CON1					4	PT1W	72[3:0]		uuuuu000	

微控制器中的通用 I/O 口(GPIO)用于通用的输入与输出功能。用户可以通过 GPIO 接收数据信号或将数据传送给其它的数字设备。CSU8RP3215/CSU8RP3216 的部分 GPIO 可以被定义为其它的特殊功能。在本节,只说明 GPIO 的通用 I/O 口功能,特殊功能将会在接下来的章节中说明。

2.6.1 PT1 □

PT1 寄存器(地址为 20h)

特性	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	U-0	
PT1		PT1[7:1]							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit 7-1 PT1[7:1]: GPIO1 口数据标志

PT1[7] = GPIO1 bit 7 数据标志位

PT1[6] = GPIO1 bit 6 数据标志位

PT1[5] = GPIO1 bit 5 数据标志位

PT1[4] = GPIO1 bit 4 数据标志位

PT1[3] = GPIO1 bit 3 数据标志位

PT1[2] = GPIO1 bit 2 数据标志位

PT1[1] = GPIO1 bit 1 数据标志位

PT1EN 寄存器(地址为 21h)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	U-0	
PT1EN		PT1EN[7:1]							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit 7-1 PT1EN[7:1]: GPIO1 口输入/输出控制标志

PT1EN[7] = GPIO1 bit 7 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[6] = GPIO1 bit 6 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[5] = GPIO1 bit 5 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[4] = GPIO1 bit 4 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[3] = GPIO1 bit 3 的 I/O 控制标志位; 0 = 定义为输入口,只能为输入口,只读

PT1EN[2] = GPIO1 bit 2 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[1] = GPIO1 bit 1 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

特性 (Property):

R = 可读位

W=可写位

U=无效位

-n = 上电复位后的值 '1' = 位已设置 '0' = 位已清零

X = 不确定位

PT1PU寄存器(地址为22h)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
PT1PU		PT1PU[7:1]								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		

Bit 7-1 PT1PU[7:1]: GPIO1 口上拉电阻使能标志

PT1PU[7] = GPIO1 bit 7 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[6] = GPIO1 bit 6 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[5] = GPIO1 bit 5 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[4] = GPIO1 bit 4 控制标志位; 0 =断开上拉电阻, 1 =使用上拉电阻

PT1PU[3] = GPIO1 bit 3 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[2] = GPIO1 bit 2 控制标志位; 0 =断开上拉电阻, 1 =使用上拉电阻

PT1PU[1] = GPIO1 bit 1 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1CON 寄存器(地址为 23h)

	77							
特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PT1CON	PT110D		PT1W[3:0]				E0M	[[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 PT11OD: PT1.1 漏极开路使能位

0 = 禁止 PT1.1 漏极开路

1 = 使能 PT1.1 漏极开路

Bit 6 PT1W[3]:PT1.5 外部中断 1 使能

0 = 禁止 PT1.5 外部中断 1

1 = 使能 PT1.5 外部中断 1

Bit 5 PT1W[2]:PT1.4 外部中断 1 使能

0=禁止PT1.4外部中断1

1 = 使能 PT1.4 外部中断 1

Bit 4 PT1W[1]:PT1.3 外部中断 1 使能

0=禁止PT1.3外部中断1

1 = 使能 PT1.3 外部中断 1

PT1W[0]:PT1.1 外部中断 1 使能 Bit 3

0=禁止 PT1.1 外部中断 1

1 = 使能 PT1.1 外部中断 1

Bit 2 E1M: 外部中断 1 触发模式

1=外部中断1为下降沿触发

0=外部中断1在状态改变时触发

Bit 1-0 E0M[1:0]: 外部中断 0 触发模式

11=外部中断0在状态改变时触发

10=外部中断0在状态改变时触发

01=外部中断0为上升沿触发

00=外部中断0为下降沿触发

PT1CON1 寄存器(地址为 38h)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
PT1CON1					PT1W2[3:0]				
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit 3 PT1W2[3]:PT3.1 外部中断 1 使能

0=禁止PT3.1外部中断1

1 = 使能 PT3.1 外部中断 1

Bit 2 PT1W2[2]:PT1.7 外部中断 1 使能

0=禁止 PT1.7 外部中断 1

1 = 使能 PT1.7 外部中断 1

Bit 1 PT1W2[1]:PT1.6 外部中断 1 使能

0=禁止 PT1.6 外部中断 1

1 = 使能 PT1.6 外部中断 1

PT1W2[0]:PT1.2 外部中断 1 使能 Bit 0

0=禁止 PT1.2 外部中断 1

1 = 使能 PT1.2 外部中断 1

特性 (Property):

R=可读位

W = 可写位

U = 无效位

-n=上电复位后的值'1'=位已设置'0'=位已清零

X=不确定位

2.6.2 PT3 口

PT3 寄存器(地址为 28h)

特性	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X				
PT3		PT3[7:0]										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				

Bit 7-0 PT3[7:0]: GPIO3 口数据标志位

PT3[7] = GPIO3 bit 7 的数据标志位

PT3[6] = GPIO3 bit 6 的数据标志位

PT3[5] = GPIO3 bit 5 的数据标志位

PT3[4] = GPIO3 bit 4 的数据标志位

PT3[3] = GPIO3 bit 3 的数据标志位

PT3[2] = GPIO3 bit 2 的数据标志位

PT3[1] = GPIO3 bit 1 的数据标志位

PT3[0] = GPIO3 bit 0 的数据标志位

PT3EN 寄存器(地址为 29h)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PT3EN		PT3EN[7:0]										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				

Bit 7-0 PT3EN[7:0]: GPIO 3 口输入/输出控制标志

PT3EN[7] = GPIO3 bit 7 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[6] = GPIO3 bit 6 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[5] = GPIO3 bit 5 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[4] = GPIO3 bit 4 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[3] = GPIO3 bit 3 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[2] = GPIO3 bit 2 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[1] = GPIO3 bit 1 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3EN[0] = GPIO3 bit 0 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT3PU寄存器(地址为2ah)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PT3PU		PT3PU[7:0]								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		

Bit 7-0 PT3PU[7:0]: GPIO3 口上拉电阻使能标志

PT3PU[7] = GPIO3 bit 7 控制标志位; 0 =断开上拉电阻, 1 =使用上拉电阻

PT3PU[6] = GPIO3 bit 6 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT3PU[5] = GPIO3 bit 5 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT3PU[4] = GPIO3 bit 4 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT3PU[3] = GPIO3 bit 3 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT3PU[2] = GPIO3 bit 2 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT3PU[1] = GPIO3 bit 1 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT3PU[0] = GPIO3 bit 0 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

特性 (Property):

R = 可读位 W = 可写位

U=无效位

-n=上电复位后的值'1'=位已设置'0'=位已清零

X = 不确定位

PT3CON 寄存器(地址为 2bh)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PT3CON		PT3CON[7:0]							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit 7-0 PT3CON[7:0]: GPIO3 口模拟/数字端口使能标志

PT3CON[7] = GPIO3bit 7 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[6] = GPIO3bit 6 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[5] = GPIO3bit 5 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[4] = GPIO3bit 4 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[3] = GPIO3bit 3 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[2] = GPIO3bit 2 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[1] = GPIO3bit 1 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3CON[0] = GPIO3bit 0 的 I/O 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

PT3OD 寄存器(地址为 2ch)

特性	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PT3OD		PT36OD	PT35OD					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 6 PT36OD: GPIO3 bit 6 口开漏控制标志位

0=禁止开漏输出,1=使能开漏输出

Bit 5 PT35OD: GPIO3 bit 5 口开漏控制标志位

0=禁止开漏输出,1=使能开漏输出

2.6.3 PT5 口

PT5 寄存器(地址为 30h)

特性	U-0	U-0	U-0	U-0	U-0	R/W-X	R/W-X	R/W-X
PT5							PT5[2:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 2-0 PT5[2:0]: GPIO5 口数据标志位

PT5[2] = GPIO5 bit 2 的数据标志位

PT5[1] = GPIO5 bit 1 的数据标志位

PT5[0] = GPIO5 bit 0 的数据标志位

PT5EN 寄存器(地址为 31h)

特性	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
PT5EN							PT5EN[2:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 2-0 PT5EN[2:0]: GPIO5 口输入/输出控制标志

PT5EN[2] = GPIO5 bit 2 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT5EN[1] = GPIO5 bit 1 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT5EN[0] = GPIO5 bit 0 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT5PU 寄存器 (地址为 32h)

特性	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
PT5PU							PT5PU[2:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 2-0 PT5PU[2:0]: GPIO5 口上拉电阻使能标志

PT5PU[2] = GPIO5 bit 2 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT5PU[1] = GPIO5 bit 1 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT5PU[0] = GPIO5 bit 0 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT5CON 寄存器(地址为 33h)

特性	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
PT5CON						PT51OD	PT50OD	PT5CON0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 1-0 PT5CON[1:0]: GPIO5 口控制标志

PT51OD = GPIO5 bit 1 控制标志位: 0 = 禁止开漏输出, 1 = 使能开漏输出

PT50OD = GPIO5 bit 0 控制标志位; 0 = 禁止开漏输出,1 = 使能开漏输出

PT5CON0 = GPIO5 bit 0 控制标志位; 0 = 定义为数字口, 1 = 定义为模拟口

特性 (Property):

R = 可读位

W=可写位

U = 无效位

-n=上电复位后的值'1'=位已设置'0'=位已清零

X = 不确定位

2.6.4 PT3.0 口输入控制

EX0CFG 寄存器 (地址为 39h)

特性	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
EX0CFG	PWMRL[[1:0]	POLSEL				EX0FII	T[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-6 PWMRL[1:0]: 外部中断 0 触发模式

00 = 外部中断 0 不受 PWM2、PWM3、PWM4 影响

01 =外部中断 0 受 PWM2 影响,外部中断 0 只有在 PWM2 输出为特定极性时有效

10=外部中断0受PWM3影响,外部中断0只有在PWM3输出为特定极性时有效

11 =外部中断 0 受 PWM4 影响,外部中断 0 只有在 PWM4 输出为特定极性时有效

Bit 5 POLSEL: 外部中断 0 触发极性选择, 仅在 PWMRL[1:0]不为 00 时有效

0 = PWM输出为高时外部中断 0 才有效,PWM输出为低时,外部中断 0 被屏蔽

1=PWM 输出为低时外部中断 0 才有效, PWM 输出为高时, 外部中断 0 被屏蔽

Bit 1-0 EX0FILT[1:0]: 外部中断 0 滤波时间选择 (只有 PWMRL 没有配置为 00 滤波才起作用)

00 = 滤波时间为 0us

01 = 滤波时间为 5us

10 = 滤波时间为 10us

11 = 滤波时间为 15us

3 增强功能

3.1 Halt 和 Sleep 模式

CSU8RP3215/CSU8RP3216 支持低功耗工作模式。为了使 CSU8RP3215/CSU8RP3216 处于待机状态,可以让 CPU 停止工作使 CSU8RP3215/CSU8RP3216 进行停止或睡眠模式,减低功耗。这两种模式描述如下:

停止模式

CPU 执行停止指令后,程序计数器停止计数直到出现中断指令。为了避免由中断返回(Interrupt Return)引起的程序错误,建议在停止指令之后加一 NOP 指令以保证程序返回时能正常运行。

停止模式下可以唤醒的方式有:

- 1) 外部中断 0
- 2) 外部中断 1
- 3) 定时器 0 溢出中断
- 4) 定时器 2 溢出中断
- 5) 定时器 3 溢出中断
- 6) 定时器 4 溢出中断
- 7) 比较强中断
- 8) SDAD 中断溢出
- 9) UART 发送中断
- 10)UART 接收中断

睡眠模式

CPU 执行睡眠指令后,外部高速晶振和内部高速振荡器停止工作直到出现一个外部中断指令复位 CPU。为了避免由中断返回(Interrupt Return)引起的程序错误,建议停止指令之后加一 NOP 指令以保证程序的正常运行。在睡眠模式下的功耗大约有 1uA。

为了保证 CPU 在睡眠模式下的功耗最小,在执行睡眠指令之前,需要把 IO 口的上拉电阻断开,并且保证所有的输入口是接到 VDD 或 VSS 电平。

睡眠模式下可以唤醒的方式有:

- 1) 外部中断 0
- 2) 外部中断 1
- 3) 定时器溢出中断

当使用定时器中断唤醒,如果定时器时钟源选择外部 32KHz 时钟,需要打开外部晶振,将 EO SLP 置为 1,并将定时器的使能和中断使能标志打开。

如果定时器时钟源选择 WDT 时钟,需要将 WDT 时钟打开,并将定时器的使能和中断使能标志打开。

注:

芯片如果处于 sleep 状态,这时候降低电压,配置 2.4V 和 3.6V 低电压复位不会起作用,低于 2.0V 掉电复位点才会复位。如果 sleep 唤醒后,此时还处于低电压复位点以下,则会立即复位。

Halt 示范程序:

•••

movlw 01h

movwf pt1up ; 断开 pt1 除 bit0(pt1[0])外的其他接口的上拉电阻

movlw feh

movwf pt1en ;pt1 口除 bit0(pt1[0]) 做输入口外, 其他接口作为输出口(pt1.3 除外)

clrf pt1 ;将 pt1[4:1]输出为低 clrf pt3up ;断开 pt3 上拉电阻

clrf pt3en ;pt3 口用作输入口 clrf pt3con ;pt3 口用作数字口

clrf pt3 ;将 pt3 输出为低 clrf pt5up ;断开 pt5 上拉电阻

clrf pt5en ;pt5 口用作输入口 clrf pt5 ;将 pt5 输出为低 clrf intf ;清除中断标志位

max1 xx Q1h

Sleep 示范程序:

•••

movlw 01h

movwf pt1up ; 断开 pt1 除 bit0(pt1[0])外的其他接口的上拉电阻

movlw feh

movwf pt1en ;pt1 口除 bit0(pt1[0])做输入口外,其他接口作为输出口(pt1.3 除外)

clrf pt1 ;将 pt1[4:1]输出为低 clrf pt3up ;断开 pt3 上拉电阻 clrf pt3en ;pt3 口用作输入口

clrf pt3con ;pt3 口用作数字口 clrf pt3 ;将 pt3 输出为低

clrf pt5up ;断开 pt5 上拉电阻 clrf pt5en ;pt5 口用作输入口 clrf pt5 ;将 pt5 输出为低

clrf intf ;清除中断标志位

movlw 81h

3.2 看门狗(WDT)

图15 看门狗定时器功能框图

看门狗定时器(WDT)用于防止程序由于某些不确定因素而失去控制。当 WDT 启动时,WDT 计时超时后将使 CPU 复位。在运行的程序一般在 WDT 复位 CPU 之前先复位 WDT。当出现某些故障时,程序会被 WDT 复位到正常状态下,但程序不会复位 WDT。

当用户把 CST_WDT 清 0 时,则内部的看门狗定时器振荡器(32KHz)将会启动,产生的时钟被送到"8 bits 计数器 1"。当用户置位 WDTEN 时,"8 bits 计数器 1"开始计数,"8 bits 计数器 1"的输出是内部信号 WDTA[7:0],被发送到一个受寄存器标志位 WDTS[2:0]控制的多路选择器,选择器的输出作为"8 bits 计数器 2"的时钟输入。当"8 bits 计数器 2"计数值与 WDTIN 数值相等时溢出,溢出时它会发送 WDTOUT 信号复位 CPU 及置位 TO 标志位。用户可以使用指令 CLRWDT 复位 WDT。

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位
										值
04H	STATUS					TO				xxu00000
0DH	WDTCON	WDTEN					V	VDTS[2:0	0]	0uuuu000
0Eh	WDTIN				WDT_IN	[7:0]				11111111

表 15 看门狗定时器寄存器表

操作:

- 1. 设置 WDTS[3:0],选择 WDT 时钟频率。
- 2. 设置 WDTIN,选择不同的溢出时间值
- 2. 置位寄存器标志位: WDTEN, 使能 WDT。
- 3. 把 CST_WDT 清 0, 打开 WDT 的晶振。

4. 在程序中执行 CLRWDT 指令复位 WDT。

WDT 溢出时间计算公式:

溢出时间=
$$\frac{2^{(8-WDT\{2:0\})}}{32k}$$
*(WDTIN[7:0]+1)

WDTS[2:0]范围为 0~7, WDTIN[7:0]范围为 0~255。

WDTS[2:0]	计数器时钟	时间(当 WDTIN==FFH)
000	WDTA [0]	2048ms
001	WDTA [1]	1024ms
010	WDTA [2]	512ms
011	WDTA [3]	256ms
100	WDTA [4]	128ms
101	WDTA [5]	64ms
110	WDTA [6]	32ms
111	WDTA [7]	16ms

3.3 定时/计数器 2

图16 定时/计数器 2 模块的功能框图

定时/计数器 2 模块的输入是 TM2CLK。当用户设置了定时/计数器 2 模块的使能标志,12 bits 计数器将启动,从 00h 递增到 TM2IN。用户需要设置 TM2IN(定时器模块中断信号选择器)以选择定时超时中断信号。当定时超时发生时,BZ 输出信号发生跳变。

主要功能:

- 1) 12 位可编程定时器;
- 2) 外部事件计数;
- 3) 蜂鸣器输出;
- 4) PWM2输出;

3.3.1 寄存器描述

表 16 定时器寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
06h	INTF		TM2IF							u0u00u00
07h	INTE	GIE	TM2IE							00u00u00
17h	TM2CON	T2EN	T2	2RATE[2:	:0]	T2CKS	T2RSTB	T2OUT	PWM2OUT	00000100
18h	TM2IN				TN	M2IN[7:0]				11111111
19h	TM2CNT				TM	2CNT[7:0]				00000000
1ah	TM2R				TI	M2R[7:0]				00000000
44h	TM2INH						TM2II	N[11:8]		uuuu1111
45h	TM2CNTH						TM2CN	NT[11:8]		uuuu0000
46h	TM2RH						TM2F	R[11:8]		uuuu0000
2eh	TMCON								PWM2PO	00000000
2fh	TMCON2							T2SEI	[1:0]	uu000000

表 17 TM2CON 寄存器各位功能表

位地址	标识符	功能		
		定时/计数器 2 使能位		
7	T2EN	1: 使能定时器 2		
		0: 禁止定时器 2		
		定时/计数器2时钟分频选	择选择	
		T2RATE [2:0] TM2C	LK	
		000 CKT2		
		001 CKT2/		
		010 CKT2/		
6:4	T2RATE[2:0]	011 CKT2/		
		100 CKT2/		- \(\lambda \) \(\lambda \)
		101 CKT2/		
		110 CKT2/ 111 CKT2/		
		CKT2 时钟源选择见 TMC		F奋的 12SEL 位
2	TACKG	定时/计数器 2 时钟源选择	祖.	
3	T2CKS	1: PT3.0 作为时钟	201.11	
		0: CKT2 的分频时钟(TM2	2CLK)	
		定时/计数器 2 复位		
2	T2RSTB	1: 禁止定时/计数器 2 复位		
_		0: 使能定时/计数器 2 复位		Y
		当将该位为0时,定时器	2 复位后,	T2RSTB 会自动置 1
		PT1.4 口输出控制		
1	T2OUT	PWM2PO PWM2OUT	T2OUT	PT1.4 输出控制,仅当 PT1.4 配
			•	置为输出有效
		0 0	0	IO输出
		0 0	1	蜂鸣器输出
0	PWM2OUT	0 1	0	PWM2 输出
		0 1	1	PWM2 输出
		1 x	X	IO输出

表 18 TM2IN 寄存器各位功能表

_			
	位地址	标识符	功能
	7:0	TM2IN[7:0]	定时/计数器溢出值

表 19 TM2CNT 寄存器各位功能表

位地址	标识符	功能
7: 0	TM2CNT[7:0]	定时/计数器 2 计数寄存器, 只读

表 20 TM2R 寄存器各位功能表

位地址	标识符	功能
7: 0	TM2R[7:0]	定时/计数器 2 的 PWM 高电平占空比控制寄存器

表 21 TM2INH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM2INH[11:8]	定时/计数器溢出值高 4 位

表 22 TM2CNTH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM2CNTH[11:8]	定时/计数器 2 计数寄存器高 4 位, 只读

表 23 TM2RH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM2RH[11:8]	定时/计数器 2 的 PWM 高电平占空比控制寄存器 高 4 位

表 24 TMCON 寄存器各位功能表

位地址	标识符	功能						
		PWM2 输出脚选择 0: PT5.0 作为普通 IO 口, PT1.4 则由 PWM2OUT, T2OUT 决定 1: PT5.0 作为 PWM2 输出口, PT1.4 口作为普通 IO 口 PT5.0 输出控制						
0	PWM2PO	PWM2PO	PWM2OUT	T2OUT	PT5.0 输出控制,仅当 PT5.0 配置为输出有效			
	/	1	0	0	IO 输出			
		1	0	1	IO 输出			
		1	1	0	PWM2 输出			
		1	1	1	PWM2 输出			
	1///	0	X	X	IO输出			

表 25 TMCON2 寄存器各位功能表

位地址	标识符	功能				
		CKT2 时钟源选择				
	T2SEL[1:0]	T2SEL[1:0] CKT2 时钟源				
		00	CPUCLK			
1: 0		01	MCK			
		1x	ECK			
			(可为外部高速晶振时钟,外部低速晶振时钟或			
			ERC 时钟)			

操作:

- 1) 设置 TM2CLK,为定时器模块选择输入。
- 2) 设置 TM2IN, 选择定时器溢出值。
- 3) 设置寄存器标志位: TM2IE 与 GIE, 使能定时器中断。
- 4) 清零寄存器标志位: T2RSTB, 复位定时器模块的计数器。
- 5) 设置寄存器标志位: T2EN, 使能定时器模块的 12 bits 计数器。
- 6) 当定时超时发生时,BZ输出信号发生跳变,可作为蜂鸣器输出;程序计数器会跳转到004H。

定时器 2 溢出时间计算方法:

定时器 2 溢出时间= (TM2IN+1) /TM2CLK. (TM2IN 不为 0)

3.3.2 输出配置

PT1.4 口功能配置描述:

	条	PT1.4 口功能		
PT1EN[4]	PWM2OUT	T2OUT	PWM2PO	111.4 口刃配
0	$X^{(1)}$	X	X	PT1.4 做输入口
1	0	0	X	PT1.4 做普通 IO 输出口
1	X	X	1	PT1.4 做普通 IO 输出口
1	0	1	0	PT1.4 蜂鸣器 2 输出口
1	1	X	0	PT1.4 做 PWM2 输出口

PT5.0 口功能配置描述:

	条	PT5.0 口功能		
PT5EN[0]	PWM2OUT	T2OUT	PWM2PO	113.0 口列他
0	$\mathbf{X}^{(1)}$	X	X	PT5.0 做输入口
1	0	0	X	PT5.0 做普通 IO 输出口
1	X	X	0	PT5.0 做普通 IO 输出口
1	0	1	1	PT5.0 蜂鸣器 2 输出口
1	1	X	1	PT5.0 做 PWM2 输出口

注1: X表示逻辑电平0或1两种情况

3.3.3 蜂鸣器

操作:

- 1) 把 PT1.4 配置为输出口。
- 2) 设置 TM2CLK, 为定时器模块选择输入。
- 3) 设置 TM2IN, 选择定时器溢出值。
- 4) 清零寄存器标志位: T2RSTB, 复位定时器模块的计数器。
- 5) 设置寄存器标志位: T2EN, 使能定时器模块的 12 bits 计数器。
- 6) 当定时超时发生时, BZ输出信号发生跳变,可作为蜂鸣器输出。

蜂鸣器周期计算方法:

蜂鸣器周期=(TM2IN+1) *2/TM2CLK. (TM2IN 不为 0)

3.3.4 PWM

操作:

- 1) 把 PT1.4 配置为输出口。
- 2) 设置 TM2CLK, 为定时/计数器 2 模块选择输入。
- 3) 设置 TM2IN 来配置 PWM2 的周期。
- 4) 设置 TM2R 来配置 PWM2 的高电平的的脉宽。
- 5) 使能 PWM2OUT 输出,配置 PT1.4 为输出端口,之后把 T2EN 置 1 启动定时器。
- 6) PWM从PT1.4输出。

周期为 TM2IN+1, 高电平脉宽为 TM2R。如 TM2IN=0x0F, TM2R=0x03 的 PWM2 波形输出如下:

3.4 定时/计数器 3

图17 定时/计数器 3 模块的功能框图

定时/计数器 3 模块的输入是 TM3CLK。当用户设置了定时/计数器 3 模块的使能标志,12bits 计数器将启动,从 00h 递增到 TM3IN。用户需要设置 TM3IN(定时器模块中断信号选择器)以选择定时超时中断信号。当定时超时发生时,BZ 输出信号发生跳变。

主要功能:

- 1) 12 位可编程定时器;
- 2) 外部事件计数;
- 3) 蜂鸣器输出;
- 4) PWM 输出;

3.4.1 寄存器描述

表 26 定时器寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
3ch	INTF2				TM3IF					uuu0uuuu
3dh	INTE2				TM3IE					uuu0uuuu
1bh	TM3CON	T3EN	Τ	3RATE	[2:0]	T3CKS	T3RSTB	T3OUT	PWM3OUT	00000100
1ch	TM3IN				TM3I	N[7:0]				11111111
1dh	TM3CNT				TM3C	NT[7:0]				00000000
1eh	TM3R				TM3	R[7:0]				00000000
47h	TM3INH						TM3II	N[11:8]		uuuu1111
48h	TM3CNTH						TM3CN	NT[11:8]		uuuu0000
49h	TM3RH						TM3F	R[11:8]		uuuu0000
2eh	TMCON	P3HINV	P3LINV					PWM3PO		00000000
2dh	TM3CON2	DT3CI	K[1:0]		DT3CNT[2:0]		DT3_EN	P3H_OEN	P3L_OEN	00000000
2fh	TMCON2					T3SE	L[1:0]			uu000000

表 27 TM3CON 寄存器各位功能表

位地址	标识符	功能					
		定时/计数器	3 使能位				
7	T3EN	1: 使能定时器 3					
		0:禁止定时					
		定时/计数器	3 时钟分频选	择选择			
		T3RATE [2	2:0] TM3C	LK			
		000	CKT3				
		001	CKT3				
		010	CKT3/				
6:4	T3RATE[2:0]	011	CKT3/				
		100	CKT3/				
		101	CKT3/				
		110	CKT3				
		111	CKT3		E HI 66 PERCENT PA		
		CKT3 时钟源选择见 TMCON2 寄存器的 T3SEL 位 定时/计数器 3 时钟源选择位					
	TO CIVE			恒			
3	T3CKS	1: PT3.1 作为时钟					
			分频时钟(TM:	3CLK)			
		定时/计数器					
2	T3RSTB	1: 禁止定时/计数器 3 复位					
_	ISKSID	0: 使能定时/计数器 3 复位					
		当将该位为 0 时,定时器 3 复位后,T3RSBT 会自动置 1					
		PT1.5 口输出					
1	T3OUT	PWM3PO	PWM3OUT	T3OUT	PT1.5 输出控制,仅当 PT1.5 配		
					置为输出有效,同时未使能互补		
					PWM 输出		
		0	0	0	IO输出		
0	PWM3OUT	0	0	1	蜂鸣器输出		
0	P W MISOUT	0	, 1	0	PWM3 输出		
	7	0	1	1	PWM3 输出		
	4/1/	1	X	X	IO输出		

表 28 TM3IN 寄存器各位功能表

位地址	标识符	功能
7: 0	TM3IN[7:0]	定时/计数器溢出值

表 29 TM3CNT 寄存器各位功能表

位地址	标识符	功能
7: 0	TM3CNT[7:0]	定时/计数器 3 计数寄存器, 只读

表 30 TM3R 寄存器各位功能表

位地址 标识符		功能			
7: 0	TM3R[7:0]	定时/计数器 3 的 PWM 高电平占空比控制寄存器			

表 31 TM3INH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM3INH[11:8]	定时/计数器溢出值高 4 位

表 32 TM3CNTH 寄存器各位功能表

位地址	标识符	功能		
3: 0	TM3CNTH[11:8]	定时/计数器 3 计数寄存器高 4位, 只读)

表 33 TM3RH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM3RH[11:8]	定时/计数器 3 的 PWM 高电平占空比控制寄存器 高 4 位

表 34 TM3CON2 寄存器各位功能表

位地址	标识符	功能			
		定时器 3 死区时间时钟选择			
		DT3CK[1:0] DT3_CLK			
7:6	DT3CK[1:0]	00 MCK			
7.0	Discit[1.0]	01 MCK/2			
		10 MCK/4			
	4/4-	11 MCK/8			
5:3	DT3CNT[2:0]	死区时间选择			
3.3	D13C1(1[2.0]	死区时间=DT3CNT[2:0]*DT3_CLK			
	1//	死区发生器 3 使能位			
2	DT3_EN	0: 不使能死区发生器 3			
		1: 使能死区发生器 3			
		互补 PWM3H 输出使能			
1	P3H_OEN	0: PWM3H 不输出			
1: PWM3H 从 PT3.6 输出					
		互补 PWM3L 输出使能			
0	P3L_OEN	0: PWM3L不输出			
		1: PWM3L从 PT3.5 输出			

表 35 TMCON 寄存器各位功能表

位地址	标识符	功能
7	P3HINV	互补 PWM3H 取反控制位

		0: PWM3H 不取反					
		1: PWM3H 取反输出					
		互补 PWM3L 取反控制位					
6	P3LINV	0: PWM3L不取反					
		1: PWM3L取反输出					
		PWM3 输出脚选择					
		0: PT1.5 做为 PWM3 输出口,PT1.5 则由 PWM3OUT,T3OUT 决定					
		1: PT3.5 做为 PWM3 输出口					
		PT3.5 输出控制					
		PWM3PO PWM3OUT T3OUT PT3.5 输出控制,仅当 PT3.5 配					
1	PWM3PO	置为输出有效					
		1 0 IO 输出					
		1 O I IO 输出					
		1 1 0 PWM3 输出					
		1 1 PWM3 输出					
		0 x x IO输出					

表 36 TMCON2 寄存器各位功能表

位地址	标识符	功能				
	T3SEL[1:0]	CKT3 时钟源选择	Corresponditions			
		T3SEL[1:0]	CKT3 时钟源			
		00	CPUCLK			
3: 2		01	MCK			
		1x	ECK			
		< 1 X	(可为外部高速晶振时钟,外部低速晶振时钟或			
			ERC 时钟)			

操作:

- 1) 设置 TM3CLK,为定时器模块选择输入。
- 2) 设置 TM3IN, 选择定时器溢出值。
- 3) 设置寄存器标志位: TM3IE 与 GIE, 使能定时器中断。
- 4) 清零寄存器标志位: T3RSTB, 复位定时器模块的计数器。
 - 5) 设置寄存器标志位: T3EN, 使能定时器模块的 12 bits 计数器。
 - 6) 当定时超时发生时,BZ输出信号发生跳变,可作为蜂鸣器输出;程序计数器会跳转到004H。

定时器 3 溢出时间计算方法:

定时器 3 溢出时间= (TM3IN+1) /TM3CLK. (TM3IN 不为 0)

3.4.2 输出配置

PT1.5 口功能配置描述:

		PT1.5 口功能			
PT1EN[5]	P3L_OEN	PWM3OUT	T3OUT	PWM3PO	111.3 口切配
0	X	X	X	X	PT1.5 做输入口
1	X	0	0	X	PT1.5 做普通 IO 输出口
1	X	X	X	1	PT1.5 做普通 IO 输出口
1	X	0	1	0	PT1.5 蜂鸣器 3 输出口
1	X	1	X	0	PT1.5 做 PWM3 输出口

PT3.5 口功能配置描述:

		PT3.5 口功能			
PT3EN[5]	P3L_OEN	PWM3OUT	T3OUT	PWM3PO	F13.5 口切配
0	X	X	X	X	PT3.5 做输入口
1	1	0	0	X	PT3.5 做互补 PWM 的 PWM3L
					输出
1	0	0	0	X	PT3.5 做普通 IO 输出口
1	0	X	X	0	PT3.5 做普通 IO 输出口
1	0	0	1	1	PT3.5 蜂鸣器 3 输出口
1	0	1	X	1	PT3.5 做 PWM3 输出口

注1: X表示逻辑电平0或1两种情况

3.4.3 蜂鸣器

操作:

- 1) 把 PT1.5 配置为输出口。
- 2) 设置 TM3CLK,为定时器模块选择输入。
- 3) 设置 TM3IN, 选择定时器溢出值。
- 4) 清零寄存器标志位: T3RSTB, 复位定时器模块的计数器。
- 5) 设置寄存器标志位: T3EN, 使能定时器模块的 12 bits 计数器。
- 6) 当定时超时发生时,BZ输出信号发生跳变,可作为蜂鸣器输出

蜂鸣器周期计算方法:

蜂鸣器周期=(TM3IN+1) *2/TM3CLK. (TM3IN 不为 0)

3.4.4 PWM

操作:

- 1) 把 PT1.5 配置为输出口。
- 2) 设置 TM3CLK, 为定时/计数器 3 模块选择输入。
- 3) 设置 TM3IN 来配置 PWM3 的周期。
- 4) 设置 TM3R 来配置 PWM3 的高电平的的脉宽。
- 5) 使能 PWM3OUT 输出,配置 PT1.5 为输出端口,之后把 T3EN 置 1 启动定时器。

6) PWM3 从 PT1.5 输出。

周期为 TM3IN+1, 高电平脉宽为 TM3R。如 TM3IN=0x0F, TM3R=0x03 的 PWM3 波形输出如下:

3.4.5 互补式 PWM 输出

CSU8RP3215/CSU8RP3216 提供源于定时器 3 的一对互补式输出,可用作 PWM 驱动信号。对于 PMOS 管上侧驱动,PWM 输出为低电平有效,而对于 NMOS 管下侧驱动,PWM 输出为高电平有效。 当这对互补式输出同时用于驱动 PMOS 和 NMOS 时,死区时间发生器插入一死区时间以防止直流电流过大,该死区时间可通过 TM3CON2 寄存器的 DT3CK[1:0]和 DT3CNT[2:0]位来定义。在每个死区时间发生器输入信号的上升沿时插入一个死区时间。通过死区插入电路,输出信号最终发送至外部功率晶体管。

图18 互补式 PWM 输出方框图

互补式 PWM 输出波形

PWM 输出取反后的互补 PWM 输出

3.5 定时/计数器 4

图19 定时/计数器 2 模块的功能框图

定时/计数器 4 模块的输入是 TM4CLK。当用户设置了定时/计数器 4 模块的使能标志,12 bits 计数器将启动,从 00h 递增到 TM4IN。用户需要设置 TM4IN(定时器模块中断信号选择器)以选择定时超时中断信号。当定时超时发生时,BZ 输出信号发生跳变。

主要功能:

- 1) 12位可编程定时器;
- 2) 外部事件计数;
- 3) 蜂鸣器输出;
- 4) PWM4输出;

3.5.1 寄存器描述

表 37 定时器寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
3ch	INTF2			TM4IF						uu00uuuu
3dh	INTE2			TM4IE						uu00uuuu
40h	TM4CON	T4EN	-	Γ4RATE[2:0)]	T4CKS	T4RSTB	T4OUT	PWM4OUT	00000100
41h	TM4IN		TM4IN[7:0]						11111111	
42h	TM4CNT		TM4CNT[7:0] 00						00000000	
43h	TM4R				TN	44R[7:0]				00000000
4ah	TM4INH		TM4IN[11:8] u						uuuu1111	
4bh	TM4CNTH								uuuu0000	
4ch	TM4RH		TM4R[11:8] u						uuuu0000	
2eh	TMCON						PWM4PO	_		00000000
2fh	TMCON2			T4SEL[[1:0]					uu000000

表 38 TM4CON 寄存器各位功能表

位地址	标识符	功能					
		定时/计数器 4 使	能位				
7	T4EN	1: 使能定时器 4	1				
		0:禁止定时器4	1				
		定时/计数器4时	钟分频选	择选择			
		T4RATE [2:0]	TM4C	LK			
		000	CKT4				
		001	CKT4/				
		010	CKT4/				
6:4	T4RATE[2:0]	011	CKT4/				
		100	CKT4/				
		101	CKT4/				
		110	CKT4/				
		111 CKT4/128 CKT4/128 CKT4/14/12 安存場位 TACEL A					
		CKT4 时钟源选择见 TMCON2 寄存器的 T4SEL 位					
2	TACIZO	定时/计数器 4 时钟源选择位					
3	T4CKS	1: PT1.4 作为时钟					
		0: CKT4 的分频		I CLK)			
	T4RSTB	定时/计数器 4 复位					
2		1: 禁止定时/计数器 4 复位					
		0: 使能定时/计数器 4 复位					
		当将该位为 0 时,定时器 4 复位后,T4RSTB 会自动置 1					
		PT1.6 口输出控制					
1	T4OUT	PWM4PO PW	M4OUT	T4OUT			
		, , , , , , ,			置为输出有效,同时未使能互补		
					PWM 输出		
		0 0		0	IO 输出		
0	PWM4OUT	0 0) /	1	蜂鸣器输出		
	1 WWW4001	0 1		0	PWM4 输出		
	_ ′ /	0 1		1	PWM4 输出		
		1 x		X	IO输出		

表 39 TM4IN 寄存器各位功能表

位地址	标识符	功能
7:0	TM4IN[7:0]	定时/计数器溢出值

表 40 TM4CNT 寄存器各位功能表

位地址	标识符	功能
7: 0	TM4CNT[7:0]	定时/计数器 4 计数寄存器, 只读

表 41 TM4R 寄存器各位功能表

位地址	标识符	功能
-----	-----	----

7: 0	TM4R[7:0]	定时/计数器 4 的 PWM 高电平占空比控制寄存器

表 42 TM4INH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM4INH[11:8]	定时/计数器溢出值高 4 位

表 43 TM4CNTH 寄存器各位功能表

位地址	标识符	功能	
3: 0	TM4CNTH[11:8]	定时/计数器4计数寄存器高4位,只读	

表 44 TM4RH 寄存器各位功能表

位地址	标识符	功能
3: 0	TM4RH[11:8]	定时/计数器 4 的 PWM 高电平占空比控制寄存器 高 4 位

表 45 TMCON 寄存器各位功能表

位地址	标识符	功能					
		PWM4 输出脚选择 0: PT1.6 作为 PWM4 输出口, PT1.6 则由 PWM4OUT, T4OUT 决定 1: PT3.6 作为 PWM4 输出口, PT1.6 作为普通 IO 口 PT3.6 输出控制					
2	PWM4PO	PWM4PO	PWM4OUT	T4OUT	PT3.6 输出控制,仅当 PT3.6 配置为输出有效		
	VAX	1	0	0	IO输出		
		1	0	1	IO输出		
		1	1	0	PWM4 输出		
	1//	1	1	1	PWM4 输出		
		0	X	X	IO输出		

表 46 TMCON2 寄存器各位功能表

位地址	标识符	功能				
		CKT4 时钟源选择				
		T4SEL[1:0]	CKT4 时钟源			
	T4SEL[1:0]	00	CPUCLK			
5: 4		01	MCK			
		1x	ECK			
			(可为外部高速晶振时钟,外部低速晶振时钟或			
			ERC 时钟)			

操作:

- 7) 设置 TM4CLK,为定时器模块选择输入。
- 8) 设置 TM4IN, 选择定时器溢出值。
- 9) 设置寄存器标志位: TM4IE 与 GIE, 使能定时器中断。
- 10)清零寄存器标志位: T4RSTB, 复位定时器模块的计数器。
- 11)设置寄存器标志位: T4EN, 使能定时器模块的 12 bits 计数器。
- 12) 当定时超时发生时,BZ输出信号发生跳变,可作为蜂鸣器输出;程序计数器会跳转到004H。

定时器 4 溢出时间计算方法:

定时器 4 溢出时间=(TM4IN+1)/TM4CLK. (TM4IN 不为 0)

3.5.2 输出配置

PT1.6 口功能配置描述:

		PT1.6 口功能			
PT1EN[6]	P3H_OEN	PWM4OUT	T4OUT	PWM4PO	111.0 口初报
0	X	X	X	X	PT1.6 做输入口
1	X	0	0	X	PT1.6 做普通 IO 输出口
1	X	X	X	1	PT1.6 做普通 IO 输出口
1	X	0	1	0	PT1.6 蜂鸣器 4 输出口
1	X	1	X	0	PT1.6 做 PWM4 输出口

PT3.6 口功能配置描述:

		PT3.6 口功能										
PT3EN[6]	P3H_OEN	PWM4OUT	T4OUT	PWM4PO	113.0 口列配							
0	X	X	X	X	PT3.6 做输入口							
1	1	0	0	X	PT3.6 做互补 PWM 的 PWM3H							
					输出							
1	0	0	0	X	PT3.6 做普通 IO 输出口							
1	0	X	X	0	PT3.6 做普通 IO 输出口							
1	0	0	1	1	PT3.6 蜂鸣器 4 输出口							
1	-0	1	X	1	PT3.6 做 PWM4 输出口							

注1: X表示逻辑电平0或1两种情况

3.5.3 蜂鸣器

操作:

- 7) 把PT1.6配置为输出口。
- 8) 设置 TM4CLK, 为定时器模块选择输入。
- 9) 设置 TM4IN, 选择定时器溢出值。
- 10)清零寄存器标志位: T4RSTB, 复位定时器模块的计数器。
- 11)设置寄存器标志位: T4EN, 使能定时器模块的 12 bits 计数器。
- 12) 当定时超时发生时,BZ输出信号发生跳变,可作为蜂鸣器输出。

蜂鸣器周期计算方法:

蜂鸣器周期=(TM4IN+1)*2/TM4CLK. (TM4IN不为0)

3.5.4 PWM

操作:

- 7) 把 PT1.6 配置为输出口。
- 8) 设置 TM4CLK,为定时/计数器 4 模块选择输入。
- 9) 设置 TM4IN 来配置 PWM4 的周期。
- 10)设置 TM4R 来配置 PWM4 的高电平的的脉宽。
- 11) 使能 PWM4OUT 输出,配置 PT1.6 为输出端口,之后把 T4EN 置 1 启动定时器。
- 12)PWM 从 PT1.6 输出。

周期为 TM4IN+1, 高电平脉宽为 TM4R。如 TM4IN=0x0F, TM4R=0x03 的 PWM4 波形输出如下:

3.6 串行通信接口

CSU8RP3215/CSU8RP3216 主要提供一个可编程全双工串行通信接口。该接口能同时进行数据的 发送和接受,也可以作为一个同步移位寄存器使用。工作模式同通用 8051

3.6.1 工作方式

主要提供四种工作模式:

表 47 串口通信工作模式

SM0	SM1	模式	类型	波特率			帧长度	起始位	停止位	第9位	
0	0	0	同步	fcpuclk/6			8bits	无	无	无	
				SMOD 波特率							
0 1		1	异步	0 定时器 0/2/3/4 的溢出率/32		10bits	1	1	无		
				1	定时器	: 0/2/3/4 的溢出率 <mark>/</mark> 1	16				
		2	异步	SMC)D	波特率				/	
1	0			0		fcpuclk/32		11bits	1	1	0,1
				1		fcpuclk/16					
		3	异步	SMOD		波特率					
1	1			0	0 定时器 0/2/3/4 的溢出率/ 32 1 定时器 0/2/3/4 的溢出率/16		11bits	1	1	0,1	
				1							

模式 0:

图20 UART 模式 0 发送数据波形

图21 UART 模式 0 接收数据波形

模式 1:

图23 UART 模式 1 接收数据波形

方式 2:

图25 UART 模式 2 接收数据波形

方式 3:

模式 3 的操作、数据结构同模式 2,它们的不同在于波特率的生成。模式 3 的数据传输时序同模式 2 相同,只是移位时钟的时钟源不同。进入模式 3 状态,需将 SCON1 寄存器的 SM0 标志位置 1,同时将 SM1 标志位置 1。

3.6.2 寄存器说明

地址	名称	Bit7	Bits6	Bit5	Bits4	Bit3	Bits2	Bit1	Bit0	上电复位值
3Eh	INTF3							URTIF	URRIF	00000000
3Fh	INTE3							URTIE	URRIE	
77h	SCON1	SM0	SM1	SM2	REN	TB8	RB8			000000uu
78h	SCON2	SMOD	URCLE	X [1:0]		UARTEN	P	PINCTL[2:	:0]	000u0000
79h	SBUF		SBUF[7:0]							00000000

SCON1 寄存器各位功能表

位地址	标识符	功能
7:6	SM0、SM1	串口通信工作方式选择寄存器
7.0	SIVION SIVII	参见表 40
5	SM2	保留
		接收控制选择
4	REN	1: 允许接收
		0: 禁止接收

3	TB8	发送数据第9位
2	RB8	接收数据第9位

SCON2 寄存器各位功能表

位地址	标识符	功能					
	14. 0 114	波特率选择寄存					
7	SMOD	0: 定时器 0 /2/3/4					
,	SINOB	1: 定时器 0/2/3/4					
		UART 时钟选择位					
		URCLK [1:0]					
		00	选择定时器 0 溢出作为时钟,				
			SMOD=1,波特率为溢出率/16,				
			SMOD=1,波特率为温出率/16, SMOD=0,波特率为溢出率/32				
		01	选择定时器 2 溢出作为时钟,				
		01	SMOD=1,波特率为溢出率/16,				
6:5	URCLK[1:0]		SMOD=1,波特率为温出率/16, SMOD=0,波特率为溢出率/32				
		10	选择定时器 3 溢出作为时钟,				
		10	SMOD=1,波特率为溢出率/16,				
			SMOD=1,波特率为温出率/10, SMOD=0,波特率为溢出率/32				
		11	选择定时器 4 溢出作为时钟,				
			SMOD=1,波特率为溢出率/16,				
			SMOD=1,波特率为溫出率/16, SMOD=0,波特率为溢出率/32				
		UART 模块使能					
		0: 不使能 UAF					
3	UARTEN	1: 使能 UART 模块					
			莫块使能位,则不会产生中断标志位。				
		PINCTL[2:0]					
		3'b000	PT1.1、PT1.2 做普通 IO 口,PT3.3、PT3.4 做普通				
		3 0000	IO				
		3'b001	PT1.1 做 UART 通信口,方向由 PT1EN[1]决定,				
		3 0001	PT1.2 做普通 IO 口,PT3.3、PT3.4 做普通 IO 口				
		3'b010	PT1.2 做 UART 通信口,方向由 PT1EN[2]决定,				
		3 0010	PT1.1 做普通 IO 口,PT3.3、PT3.4 做普通 IO 口				
		3'b011	PT1.1、PT1.2 分别做 UART 通信口 RI、TI,				
			PT3.3、PT3.4 做普通 IO 口				
	Y	3'b100	PT1.1、PT1.2 做普通 IO 口,PT3.3、PT3.4 做普通				
	-7		IO 口				
2:0	PINCTL[2:0]	3'b101	PT3.3 做 UART 通信口,方向由 PT3EN[3]决定,				
			PT3.4 做普通 IO 口,PT1.1、PT1.2 做普通 IO 口				
		3'b110	PT3.4 做 UART 通信口,方向由 PT3EN[4]决定,				
			PT3.3 做普通 IO 口,PT1.1、PT1.2 做普通 IO 口				
		3'b111	PT3.3、PT3.4 分别做 UART 通信口 RI、TI,				
			PT1.1、PT1.2 做普通 IO 口				
		L					
		当选择同步	通信或者同时需要进行发送和接收时,必须有两个口				
		配置为通信口,	即 PINCTL[2:0]必须配置为 3'bx11。当 PINCTL[2:0]配				
		置为 3'bx01 或	3'bx10时,此时只有一个通信口在使用,此时这个通信				
		口可以分时复用	引为 RI 和 TI,方向有 IO 口的方向位控制,例如:当把				
		PINCTL[2:0]配	置为 3'b001 时,此时只有 PT1.1 是 UART 通信口,当				

	PT1EN[1]为 0 时,PT1 做为 RI 口,当 PT1EN[1]为 1 时,PT1 做为 TI
	口。

3.6.3 波特率

模式1和模式3的波特率公式为:

波特率=(2^{SMOD}/32)*F_{timer}/(TMXIN+1)

例如:选择模式 1,选用定时器 2 溢出率作为 UART 时钟,所以波特率为 波特率= $(2^{SMOD}/32)*F_{timer}/(TM2IN+1)$

波特率	Fsys=TM2CLK=16MHz (SMOD=0)							
(K)	实际波特率	偏差(%)	定时/计数器 2	CKT2 时钟源	定时器预分频	定时器配置值		
	(K)		时钟源选择	选择	(T2RATE)	(TM2IN)		
			(T2CKS)	(T2SEL[1:0])				
1.2	1.1999	-0.005	0	01	000	1A0		
2.4	2.4002	0.01	0	01	000	0D0		
4.8	4.7990	-0.02	0	01	000	068		
9.6	9.6038	0.04	0	01	000	034		
19.2	19.1847	-0.08	0	01	000	01A		

注:以上表格数据中的定时器 2/3/4 时钟选择 16MHz 时的情况。

3.7 模数转换器(ADC)

CSU8RP3215/CSU8RP3216 模数转换模块共用 9 条外部通道(AIN0~AIN8)和 2 条特殊通道 (AIN9:内部 1/8VDD; AIN10:内部参考电压,可以将模拟信号转换成 12 位数字信号。进行 AD 转换时,首先要选择输入通道(AIN0~AIN11),然后把 SRADEN 置 1 使能 ADC,之后把 SRADS 置 1,启动 AD 转换。转换结束后,系统自动将 SRADS 清 0,并将转换结果存入寄存器 SRADL 和 SRADH 中。

图26 模数转换器 ADC 功能框图

3.7.1 寄存器描述

表 48 ADC 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
06h	INTF					ADIF				u0u00u00
07h	INTE	GIE				ADIE				00u00u00
50h	SRADCON0			SRADA	CKS[1:0]			SRADCE	KS[1:0]	uu00uu00

51h	SRADCON1	SRADEN	SRADS	OFTEN	CALIF	ENOV	OFFEX	VREFS[1:0]	00000000
52h	SRADCON2		CHS	S[3:0]				REF_SEL	[1:0]	0000uu00
54h	SRADL				SRA	D[7:0]				00000000
55h	SRADH						S	RAD[11:8]		uuuu0000
56h	SROFTL		SROFT[7:0]							00000000
57h	SROFTH						SROFT[11:8]			uuuu0000
5fh	METCH			REFOEN	REFIN					00000000

表 49 SRADCON0 寄存器各位功能表

		农 49 SRADCONU 可行储行证为化	1.			
位地址	标识符	功能				
		ADC 输入信号获取时间				
		SRADACKS[1:0]	ADC 输入信号获取时间			
5 1	CD A D A CVC[1:0]	00	16 个 ADC 时钟			
5: 4	SRADACKS[1:0]	01	8个ADC时钟			
		10	4个ADC时钟			
		11	2个ADC时钟			
		ADC 时钟				
		SRADCKS[1:0]	ADC采样时钟			
1: 0	SRADCKS[1:0]	00	CPUCLK			
1: 0	Sid iDelts[1.0]	01	CPUCLK/2			
		10	CPUCLK/4			
		11	CPUCLK/8			

表 50 SRADCON1 寄存器各位功能表

位地址	标识符	功能
7	SRADEN	ADC 使能位 1: 使能 0: 禁止
6	SRADS	ADC 启动位/状态控制位 1: 开始,转换过程中 0: 停止,转换结束 当置位后,启动 ADC 转换,转换完成会自动清 0
5	OFTEN	转换结果选择控制位 1:转换结果放在 SROFT 寄存器中 0:转换结果放在 SRAD 寄存器中
4	CALIF	校正控制位(OFTEN 为 0 时有效) 1: 使能校正,即 AD 转换的结果是减去了 SROFT 失调电压值 0: 禁止校正,即 AD 转换结果是没有减去 SROFT 失调电压值
3	ENOV	使能比较器溢出模式(CALIF 为 1 时有效) 1: 使能,上溢或下溢直接是减去后的结果 0: 禁止,下溢为 000h,上溢为 fffh
2	OFFEX	OFFSET 交换 1:比较器两端信号交换 0:比较器两端信号不交换(正端为信号,负端为参考电压)
1:0	VREFS[1:0]	ADC 参考电源选择,与 REFIN 寄存器位一起作用选择 ADC 参考电压 注: 不同参考电压切换,建议延迟 10uS 再做 AD 转换

REFIN	VREFS[1:0]	AD参考电压
0	00	VDD
0	01	PT3.0 外部参考电源输入
0	10	内部参考电压
0	11	内部参考电压,PT3.0可外接电容作为内置参考电压滤波使用,
		以提高精度。
1	00	禁止
1	01	禁止
1	10	PT3.2 外部参考电源输入
1	11	禁止
配置为 10,再将 R	考电源输入时,应先将 VREFS[1:0])时,PT3.0 做数字口	

表 51 SRADCON2 寄存器各位功能表

位地址	标识符	功能				
		ADC 输入通道选择位				
		CHS[3:0]	输入通道			
		0000	AIN0 输入			
		0001	AIN1 输入			
		0010	AIN2 输入			
		0011	AIN3 输入			
7: 4	CHS[3:0]	0100	AIN4 输入			
/: 4	Cns[5.0]	0101	AIN5 输入			
		0110	AIN6 输入			
	V _A X	0111	AIN7 输入			
		1000	AIN8 输入			
		1001	AIN9输入,内部 1/8VDD			
		1010	AIN10输入,内部参考电压			
		其它	保留			
		VREFS[1:0]配置为 2'b10 或 2'b11,则可通过 REF_SEL [1:0]选择参考				
		如下电压,若 VREFS[1:0]不是配置	为 2'b10 或 2'b11,则以下位无			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	效。				
		内部参考电压选择				
1: 0	REF_SEL[1:0]	REF_SEL [1:0]	内部参考电压			
		00	1.4V			
		01	2.0V			
		10	3.0V			
		11	4.0V			

表 52 SRADL 寄存器各位功能表

位地址	标识符	功能
-----	-----	----

_				
	7: 0	SRAD[7:0]	ADC 数据的低 8 位,	只可读

表 53 SRADH 寄存器各位功能表

位地址	标识符	功能
3: 0	SRAD[11:8]	ADC 数据的高 4 位,只可读

表 54 SROFTL 寄存器各位功能表

位地址	标识符	功能	
7: 0	SROFT[7:0]	校正值数据的低 8 位	$\Delta \lambda \lambda \lambda$

表 55 SROFTH 寄存器各位功能表

位地址	标识符	功能	
3: 0	SROFT[11:8]	校正值数据的高 4 位	

表 56 METCH 寄存器各位功能表

位地址	标识符	功能
5	REFOEN	内部参考电压从 PT3.0 输出使能位,输出 REF_SEL[1:0]选择的内部参 考电压 0:禁止内部参考电压输出 1:使能内部参考电压输出 VREFS[1:0]为 01 时,禁止将 REFOEN 配置为 1。
4	REFIN	PT3.2 外部参考电压做 SAR_ADC 参考电压, 必须将 PT3CON[2]置 1 做模拟口 与 VREFS[1:0]共同选择外部参考电压,详见 VREFS[1:0]寄存器描述

表 57 输入电压和 SRAD 输出数据的关系

输入电压		SRAD[11:0]										
制/\电压	11	10	9	8	7	6	5	4	3	2	1	0
0/4096*VREF	0	0	0	0	0	0	0	0	0	0	0	0
1/4096*VREF	0	0	0	0	0	0	0	0	0	0	0	1
•••												
•••												
4094/4096*VREF	1	1	1	1	1	1	1	1	1	1	1	0
4095/4096*VREF	1	1	1	1	1	1	1	1	1	1	1	1

3.7.2 转换时间

12 位 AD 转换时间=(1/ADC 时钟频率) × (12+ADC 输入信号获取时间+CALIF)

表 58 转换时间说明表(1)

CLKD IV	CALIF	SRADCKS	SRADACKS	AD 转换时间 ^③
		0.1	00	$1/((16MHz / 4) / 2) \times (12 + 0 + 16) = 14us$
		01	01	$1/$ ($(16MHz / 4) / 2) \times (12 + 0 + 8) = 10us$
			00	1/ ((16MHz / 4) / 4) × (12 + 0 + 16) = 28us
		10	01	$1/$ ($(16MHz / 4) / 4) \times (12 + 0 + 8) = 20us$
	0		10	$1/$ ($(16MHz / 4) / 4) \times (12 + 0 + 4) = 16us$
			00	$1/$ ($(16MHz / 4) / 8) \times (12 + 0 + 16) = 56us$
		11	01	$1/$ ($(16MHz / 4) / 8) \times (12 + 0 + 8) = 40us$
		11	10	$1/$ ($(16MHz / 4) / 8) \times (12 + 0 + 4) = 32us$
4M 指			11	$1/$ ($(16MHz / 4) / 8) \times (12 + 0 + 2) = 28us$
令周期		01	00	$1/$ ($(16MHz / 4) / 2) \times (12 + 1 + 16) = 14.5us$
		01	01	$1/$ ($(16MHz / 4) / 2) \times (12 + 1 + 8) = 10.5us$
			00	$1/$ ($(16MHz / 4) / 4) \times (12 + 1 + 16) = 29us$
		10	01	$1/$ ($(16MHz / 4) / 4) \times (12 + 1 + 8) = 21us$
	1		10	$1/$ ($(16MHz / 4) / 4) \times (12 + 1 + 4) = 17us$
			00	$1/$ ($(16MHz / 4) / 8) \times (12 + 1 + 16) = 58us$
		11	01	$1/$ ($(16MHz / 4) / 8) \times (12 + 1 + 8) = 42us$
		11	10	$1/$ ($(16MHz / 4) / 8) \times (12 + 1 + 4) = 34us$
			11	$1/$ ((16MHz / 4) / 8) \times (12 + 1 + 2) = 30us
		01	00	$1/$ ($(16MHz / 8) / 2) \times (12 + 0 + 16) = 28us$
			01	$1/((16MHz / 8) / 2) \times (12 + 0 + 8) = 20us$
			10	$1/$ ($(16MHz / 8) / 2) \times (12 + 0 + 4) = 16us$
		10	00	$1/$ ($(16MHz / 8) / 4) \times (12 + 0 + 16) = 56us$
			01	$1/$ ($(16MHz / 8) / 4) \times (12 + 0 + 8) = 40us$
	0		10	$1/$ ($(16MHz / 8) / 4) \times (12 + 0 + 4) = 32us$
			11	$1/$ ($(16MHz / 8) / 4) \times (12 + 0 + 2) = 24us$
			00	$1/$ ($(16MHz / 8) / 8) \times (12 + 0 + 16) = 112us$
	4	11	01	$1/$ ($(16MHz / 8) / 8) \times (12 + 0 + 8) = 80us$
		11	10	$1/$ ($(16MHz / 8) / 8) \times (12 + 0 + 4) = 64us$
2M 指	V		11	$1/$ ($(16MHz / 8) / 8) \times (12 + 0 + 2) = 48us$
令周期		X	00	$1/$ ($(16MHz / 8) / 2) \times (12 + 1 + 16) = 29us$
		01	01	$1/$ ($(16MHz / 8) / 2) \times (12 + 1 + 8) = 21us$
			10	1/ ($(16MHz / 8) / 2) × (12 + 1 + 4) = 17us$
			00	$1/$ ($(16MHz / 8) / 4) \times (12 + 1 + 16) = 58us$
		10	01	$1/$ ($(16MHz / 8) / 4) \times (12 + 1 + 8) = 42us$
	1	10	10	$1/$ ($(16MHz / 8) / 4) \times (12 + 1 + 4) = 34us$
			11	1/ ($(16MHz / 8) / 4) × (12 + 1 + 2) = 30us$
			00	1/ ($(16MHz / 8) / 8) × (12 + 1 + 16) = 116us$
		11	01	1/ ((16MHz / 8) / 8) × (12 + 1 + 8) = 84us
			10	1/ ((16MHz / 8) / 8) × (12 + 1 + 4) = 68us
			11	1/ ($(16MHz / 8) / 8) × (12 + 1 + 2) = 60us$
1M 指			00	$1/$ ($(16MHz / 16) / 2) \times (12 + 0 + 16) = 56us$
令周期	0	01	01	$1/$ ($(16MHz / 16) / 2) \times (12 + 0 + 8) = 40us$
✓ \1-1331			10	$1/$ ($(16MHz / 16) / 2) \times (12 + 0 + 4) = 32us$

	1		1.1	1///1000 / 10 / 10 / 00
			11	$1/((16MHz / 16) / 2) \times (12 + 0 + 2) = 28us$
			00	1/ ((16MHz / 16) / 4) × (12 + 0 + 16) = 112us
		10	01	$1/((16MHz / 16) / 4) \times (12 + 0 + 8) = 80us$
		-	10	$1/$ ($(16MHz / 16) / 4$) \times ($12 + 0 + 4$) = 64us
			11	$1/$ ((16MHz / 16) / 4) \times (12 + 0 + 2) = 48us
			00	$1/$ ($(16MHz / 16) / 8) \times (12 + 0 + 16) = 224us$
		11	01	$1/$ ($(16MHz / 16) / 8) \times (12 + 0 + 8) = 160us$
		- 11	10	$1/$ ($(16MHz / 16) / 8) \times (12 + 0 + 4) = 128us$
			11	$1/$ ($(16MHz / 16) / 8) \times (12 + 0 + 2) = 96us$
			00	$1/$ ($(16MHz / 16) / 2) \times (12 + 1 + 16) = 58us$
		01	01	$1/$ ($(16MHz / 16) / 2) \times (12 + 1 + 8) = 42us$
		O1	10	$1/$ ($(16MHz / 16) / 2) \times (12 + 1 + 4) = 34us$
			11	$1/$ ($(16MHz / 16) / 2) \times (12 + 1 + 2) = 15us$
			00	$1/$ ($(16MHz / 16) / 4) \times (12 + 1 + 16) = 116us$
	1	10	01	$1/$ ($(16MHz / 16) / 4) \times (12 + 1 + 8) = 84us$
	1	10	10	$1/$ ($(16MHz / 16) / 4) \times (12 + 1 + 4) = 68us$
			11	1/ ($(16MHz / 16) / 4) × (12 + 1 + 2) = 60us$
			00	$1/$ ($(16MHz / 16) / 8) \times (12 + 1 + 16) = 232us$
		11	01	$1/$ ($(16MHz / 16) / 8) \times (12 + 1 + 8) = 168us$
		11	10	$1/$ ($(16MHz / 16) / 8) \times (12 + 1 + 4) = 136us$
			11	1/ ($(16MHz / 16) / 8) × (12 + 1 + 2) = 120us$
		01	00	1/ ($(16MHz / 32) / 2) × (12 + 0 + 16) = 112us$
			01	1/ ($(16MHz / 32) / 2) × (12 + 0 + 8) = 80us$
			10	$1/((16\text{MHz} / 32) / 2) \times (12 + 0 + 4) = 64\text{us}$
			11	$1/((16MHz/32)/2) \times (12+0+2) = 56us$
			00	1/ ((16MHz / 32) / 4) × (12 + 0 + 16) = 224us
	0	10	01	$1/((16MHz/32)/4) \times (12+0+8) = 160us$
			10	$1/((16MHz/32)/4) \times (12+0+4) = 128us$
			11	$1/((16MHz/32)/4) \times (12+0+2) = 96us$
		/	00	1/ ((16MHz / 32) / 8) × (12 + 0 + 16) = 448us
		11	01	$1/((16MHz/32)/8) \times (12+0+8) = 320us$
500K	1		10	$1/$ ($(16MHz / 32) / 8) \times (12 + 0 + 4) = 256us$
指令周		1/5/	11	$1/((16MHz/32)/8) \times (12+0+2) = 192us$
期			00	1/ ((16MHz / 32) / 2) × (12 + 1 + 16) = 116us
		01	01	1/ ($(16MHz / 32) / 2) × (12 + 1 + 8) = 84us$
	X		10	1/ ($(16MHz / 32) / 2) × (12 + 1 + 4) = 68us$
			11	1/ ($(16MHz / 32) / 2) × (12 + 1 + 2) = 60us$
			00	1/ ((16MHz / 32) / 4) × (12 + 1 + 16) = 232us
		10	01	1/ ($(16MHz / 32) / 4) × (12 + 1 + 8) = 168us$
		- 0	10	1/ ($(16MHz / 32) / 4) × (12 + 1 + 4) = 136us$
			11	1/ ($(16MHz / 32) / 4) × (12 + 1 + 2) = 120us$
			00	$1/$ ($(16MHz / 32) / 8) \times (12 + 1 + 16) = 464us$
		11	01	$1/$ ((16MHz / 32) / 8) \times (12 + 1 + 8) = 336us
			10	$1/$ ((16MHz / 32) / 8) \times (12 + 1 + 4) = 272us
			11	$1/$ ($(16MHz / 32) / 8) \times (12 + 1 + 2) = 240us$

- (1) fosc=16MHz
- (2) 代码选项
- (3) AD 转换时间随 fosc 频率的改变而改变。

3.7.3 AD 失调电压校正

不同芯片由于离散性的原因, AD 的失调电压可能有正有负。

校正失调电压的方法:

在 AD 转换过程中通过不断变换 SRADCON1 寄存器中的 OFFEX 的值。如第一次 AD 转换 OFFEX 置 0,第二次 AD 转换 OFFEX 置 1,然后将第一次和第二次测试的 AD 值求平均值。两次转换得到的平均值就是去掉失调电压的正确结果。

...

clrf sradcon1 ;VDD 为参考电压, often=0, calif=0; enov=0, offex=0, vrefs=00

movlw 20h

movwf sradcon2 ; chs[3:0]=0010,选择通道 2

bsf sradcon1,7 ;使能 ADC 模块

call delay_10us

• • •

bsf sradcon1,6 ; srads=1, 开始转换 btfsc sradcon1,6 ; 检测转换是否完成

goto \$-1

movlw sradl

movwf $adtmp1_1$

movlw sradh

movwf adtmph_1

•••

bsf sradcon1, 2 ;offex=1

bsf sradcon1,6 ;srads=1,开始转换 btfsc sradcon1,6 ;检测转换是否完成

goto \$-1

movlw sradl

3.7.4 数字比较器

ADC 模块可作为一个数字比较器。被测信号的输入频率应小于转换频率的 1/2。比较器的速率是和 AD 转换频率相关的。

操作:

1) 通过 ADC 通道选择控制位 chs[3:0]选择比较器负端的信号输入,之后把 OFTEN 置 1, CALIF 清 0, ENOV 置 0, 把 SRADEN 置 1 使能 ADC, SRADS 置 1 启动转换,转换完成可把转换结果写入 SROFT 寄存器。

也可以直接把负端信号的 AD 值直接写到 SROFT 寄存器中,即人为指定负端电压值。

- 2) 通过 ADC 通道选择控制位 chs[3:0]选择比较器正端的信号输入,之后把 OFTEN 置 0,CALIF 清 1,ENOV 置 1,把 SRADEN 置 1 使能 ADC,SRADS 置 1 启动转换。
- 3) AD 数据的最高位 SRAD[11]则是比较器的结果,为 0 时表示正端电压大于负端电压,为 1 时表示正端电压小于负端电压。SRAD[11:0]为差值,带符号位的补码。

比较通道0和通道1的电压值,通道0接比较器正端,通道1接比较器负端。

• • •

clrf sradcon1 ;VDD 为参考电压, often=0, calif=0; enov=0, offex=0, vrefs=00

bsf sradcon1,5 ;often=1,结果保存在 sroft 寄存器中

movlw 00h

movwf sradcon2 ; chs[3:0]=0000, 选择通道 0 作为比较器负端

bsf sradcon1,7 ;使能 ADC 模块

call delay_10us

bsf sradcon1,6 ; srads=1, 开始转换 btfsc sradcon1,6 ; 检测转换是否完成

goto \$-1

...

movlw 10h

movwf sradcon2 ; chs[3:0]=0001,选择通道1作为比较器正端

bcf sradcon1,5 ;often=0
bsf sradcon1,4 ;calif=1
bsf sradcon1,3 ;enov=1

bsf sradcon1,6 ; srads=1, 开始转换

比较 1V 电压和通道 1 的电压,通道 1 接比较器正端,1V 接比较器负端,假设采用 5V 的 VDD 作为参考电压,那么 1V 的 AD 值为 0x333。

...

clrf sradcon1 ;VDD 为参考电压, often=0, calif=0; enov=0, offex=0, vrefs=00

movlw 10h

movwf sradcon2 ; chs[3:0]=0001,选择通道1作为比较器正端

bsf sradcon1, 4 ; calif=1
bsf sradcon1, 3 ;enov=1

movlw 03h movwf srofth movlw 33h

movwf sroftl ; sroft 寄存器存入 333h, 即 1V 作为比较器负端

bsf sradcon1,7 ;使能 ADC 模块

call delay_10us

bsf sradcon1,6 ; srads=1, 开始转换 btfsc sradcon1,6 ; 检测转换是否完成

o∩t∩ \$-1

3.7.5 内部测量 VDD 的电压

用户可以通过使用内部参考电压或者外部参考电压输入(外部参考电压固定且不随 VDD 电压变化)两种方法来测试芯片内部 VDD 的电压。

使用外部参考电压,使用条件较多,需额外提供参考源。

使用内部参考电压不需要额外的硬件条件。但是,使用内部参考电压会由于本身内部参考电压值 的不准而影响精度。可以通过内部参考电压校正来提高测试的精度。

外接 3V 作为参考电压,测 VDD 电压。选择通道 5,测出 1/8VDD 的 AD 值,之后乘以 8 得出 VDD 的 AD 值,再乘以参考电压则为 VDD 电压。

...

clrf sradcon1 ;often=0, calif=0;enov=0, offex=0, vrefs=00

bsf sradcon1,0 ;vrefs=01,选择外部参考电压,接 3V

movlw 50h

movwf sradcon2 ; chs[3:0]=0101,选择通道 5,1/8VDD

bsf sradcon1,7 ;使能 ADC 模块

call delay_10us

bsf sradcon1,6 ;srads=1,开始转换 btfsc sradcon1,6 ;检测转换是否完成

goto \$-1

movlw sradl

movwf adtmp1

movlw sradh

movwf adtmph

bcf status, c

rlf adtmp1

rlf adtmph ;AD 值乘以 2

3.8 比较器

CSU8RP3215/CSU8RP3216 内置一个模拟比较器。由 CMPEN 配置模拟比较器的使能位。

模拟比较器,带两个模拟输入端 C0P (PT3.1) 和 C0N (PT3.2) ,CO (PT3.3) 脚可做为比较器的输出,PT3.1 和 PT3.2 必须配置为模拟口。

地	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位
址										值
3eh	INTF3	CMPIF								Ouuuuuuu
3fh	INTE3	CMPIE								Ouuuuuuu
6ah	CMPCON	CMPEN						CMP_OEN	CMPOUT	0uuuuu00

表 59 CMPCON 寄存器各位功能表

位地址	标识符	功能
7	CMPEN	比较器/运算放大器使能位 1: 使能 0: 禁止 PT3.1 和 PT3.2 必须通过配置 PT3CON 设为模拟口,否则比较器 结果可能不正常
1	CMP_OEN	比较器结果输出使能位 1:使能比较器结果输出,PT3.3口做比较器输出口 0:禁止比较器 0 结果输出,PT3.3 做普通 IO 口
0	CMPOUT	比较器的比较结果

3.9 数据查表

通过 MOVP 指令可以实现对于用户程序存储器内的数据读取,用户程序存储器的地址范围为 000H~7FFH

表 60 数据 E2PROM 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值	
05h	WORK				工作智	寄存器				00000000	
0Ah	EADRH		EADR [10:8]								
0Bh	EADRL	EADR [7:0]									
0Ch	EDATH				EDAT	H[7:0]			7	00000000	

EADRH/EADRL 提供读操作的数据地址;

EDATH/WORK 提供读操作所用的数据。

读操作都是基于一个字(16 bits)的。EDATH 寄存器只可读。

执行读操作时,在地址寄存器输入相应的值,之后执行 MOVP 指令,便可在相应的 OTP 地址的数据读入到 EDATH/WORK 寄存器中。执行一次读操作大概需要 3 个指令周期。

movlw 04H

movwf EADRH :给高字节地址赋值

mov1w 00H

movwf EADRL ;给低字节地址赋值

movp ;执行读操作

nop

3.10 下拉电阻配置和输出电流配置

有 6 个 IO 口 PT1.4、PT1.5、PT1.6、PT1.7、PT3.5 和 PT3.6 输出电流大小可进行配置。

- PT3.5 和 PT3.6 输出电流可以配置 IOH/IOL 为 20mA/20mA@5V 或 54mA/57mA@5V
- PT1.4、PT1.5、PT1.6和 PT1.7输出电流可以配置 IOH/IOL 为 20mA/20mA@5V 或 31mA/35mA@5V
- PT1.6 和 PT1.7 拉电流可配置为 1.3mA@5V, PT1.5 拉电流可配置为 1.3mA@5V 或 2.6mA@5V

PT1.3、PT3.4 和 PT3.6 可配置为下拉功能,下拉电阻分别为 400K Ω ,1K Ω ,10K Ω ,10K Ω 。

表 61 CURCON 寄存器列表

地址	2 名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
7ah	CURCON	P36CUR	P35CUR	P14CU	JR[1:0]		CURP	17[1:0]		000uu00u
7ch	SYSCFG1	PDP13	PDP31	PDP34	PDP36	CUR	P16[1:0]	CURP	15[1:0]	00110000

表 62 CURCON 寄存器各位功能表

位地址	标识符	功能						
7	P36CUR		PT3.6 输出电流选择 0: PT3.6 的输出电流 IOH/IOL 为 20mA/20mA@5V 1: PT3.6 的输出电流 IOH/IOL 为 54mA/57mA@5V					
6	P35CUR	PT3.5 输出电流选择 0: PT3.5 的输出电流 IOH/IOL 为 20mA/20mA@5V 1: PT3.5 的输出电流 IOH/IOL 为 54mA/57mA@5V						
5:4	P14CUR[1:0]	P14CUR [1:0] 00 01 1x 注: 以上配置在 com[0]为	PT1.4 输出电流配置 输出电流 IOH/IOL 为 20mA/20mA@5V 输出电流 IOH/IOL 为 54mA/57mA@5V 输出电流 IOH/IOL 为 31mA/35mA@5V 0 时有效					
2: 1	CURP17[1:0]	CURP17[1:0] 00 01 1x 注:以上配置在 com[3]为	PT1.7 输出电流配置 输出电流 IOH/IOL 为 20mA/20mA@5V 输出电流 IOH/IOL 为 1.5mA/20mA@5V 输出电流 IOH/IOL 为 31mA/35mA@5V 0 时有效					

表 63 SYSCFG1 寄存器各位功能表

位地址	标识符	功能
X		PT1.3 下拉电阻配置
7	PDP13	1: PT1.3 口接 500KΩ 下拉电阻
		0: PT1.3 口不接下拉电阻
		PT3.1 下拉电阻配置
6	PDP31	1: PT3.1 口接 1KΩ 下拉电阻
		0: PT3.1 口不接下拉电阻
		PT3.4 下拉电阻配置(默认打开)
5	PDP34	1: PT3.4 口接 10KΩ 下拉电阻
		0: PT3.4 口不接下拉电阻
		PT3.6 下拉电阻配置(默认打开)
4	PDP36	1: PT3.6 口接 10KΩ 下拉电阻
		0: PT3.6 口不接下拉电阻

		CURP16[1:0]	PT1.6 输出电流配置	
		00	输出电流 IOH/IOL 为 20mA/20mA@5V	
3: 2	CURP16[1:0]	01	输出电流 IOH/IOL 为 1.3mA/20mA@5V	
		1x	输出电流 IOH/IOL 为 31mA/35mA@5V	
		注: 以上配置在	E com[2]为 0 时有效	
		CURP15[1:0]	PT1.5 输出电流配置	
		00	输出电流 IOH/IOL 为 20mA/20mA@5V	
1:0	CURP15[1:0]	01	输出电流 IOH/IOL 为 1.3mA/20mA@5V	
1.0	CORPIS[I.0]	10	输出电流 IOH/IOL 为 2.6mA/20mA@5V	
		11	输出电流 IOH/IOL 为 31mA/35mA@5V	
		注: 以上配置在	E com[1]为 0 时有效	

3.11 烧录模块

烧写器的接口:

图27 烧写器接口图

表 64 烧录接口说明

端口名称	型式	说明
VPP	输入	烧录电源
VDD	输入	电源正端
VSS	输入	电源负端
PDA	输入/输出	PT1[4]端口,数据信号
PCL	输入	PT1[5]端口,时钟信号

3.12 输入逻辑电平电压配置

表 65 SYSCFG0 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
7bh	SYSCFG0	VTHSEL		VTHP.	30[1:0]	P30REFEN				00000000

表 66 SYSCFG0 寄存器各位功能表

位地址	标识符	功能								
	11/1 67.11			訓信号(PT3.0 除	か、E	PT3 ∩ ⊟	⊨ И Т	ΉΡ30Γ1-0)]控制)	
		VTHSEL	输入逻辑		/ , 1	13.0 д	Ц V 1	111 30[1.0)]1T-161)	
		0	1111/124	4-6-1					最大	単
		Ŭ	符号	参数		最小	店	典型值	值	位
			VIH1	数字输入高电	平	0.75V		八王և	111.	V
				复位输入高电		0.8VI	_			V
			VIL1	数字输入低电					0.3VDD	V
7	VTHSEL			复位输入低电					0.2VDD	V
		1							最大	单
			符号	参数		最小	值	典型值	值	位
			VIH2	数字输入高电	平	0.5VI	DD			V
				复位输入高电	平	0.5VI	DD			V
			VIL2	数字输入低电	平				0.2VDD	V
				复位输入低电	平				0.1VDD	V
		PT3.0 口输入	.逻辑电平	电压控制信号						
		VTHP30[输入逻辑	 						
		1:0]						ı	ı	<u>, , , , , , , , , , , , , , , , , , , </u>
		00	ρη Π	5 ×4	= .	i. / : .	.11.	#J /#:	目上供	单
			符号 VIH1	参数		ト值 WDD	典	型值	最大值	位 V
			VIHI VIL1	输入高电平	0.75	VDD			0.3VDD	V
	4/	01	VILI	输入低电平					0.3 V D D	
	/-		符号	参数	是,	卜值	曲	型值	最大值	单 位
			VIH	新入高电平 1	取7、	11阻		全国 ≥0.7	取八旦	V
5:4	VTHP30[1:		VIL	输入低电平				<0.7		V
3.4	0]	10		1007 × 160						单
X			符号	参数	最,	卜值	#	型值	最大值	位
/			VIH	输入高电平	-7.	, 1114		DD-0.7	- 10.7 11.11	V
			VIL	输入低电平				DD-0.7		V
		11		7.75						单
			符号	参数	最久	卜值	典	型值	最大值	位
			VIH2	输入高电平		/DD	<u> </u>		-	V
			VIL2	输入低电平					0.2VDD	V
		当 VTHP30[1	1:0]选择:	2'b01 或 2'b10	时,帮	壽将 P3	0RE	FEN 位置	1 , 否则	输入逻
		辑电平不为().7V <u>或</u> (VDD-0.7) V					<u> </u>	
		内部基准使能								
3	P30REFEN	0: 关闭内部								
		1: 打开内部	基准							

3.13 代码选项

标识符	功能					
	程序空间配置					
	2K 程序空间分 2 次烧录,每次只能烧录 1K 程序空间					
	2K 程序空间一次烧录					
	注 1: 当选择分两次烧录时,不管是第一次还是第二次烧录,IDE 编译生成的					
CODE OP	HEX 文档只烧录前面 1K16 程序,所以编译时需确认所用程序指令数小于					
_	1024;					
	注 2: 当选择分两次烧录时,第一次程序烧写在 OTP 0x000~0x3FF 地址;第二次					
	程序烧录在 OTP 0x400~0x7FF 地址,程序运行时,地址映射到 0x000~0x3FF。					
	所以编写程序时,不管是第一次还是第二次烧录,PC 范围都是 0x000~0x3FF,					
	不用程序特意去指定到 0x400~0x7FF, 只需保证所用程序指令数小于 1024。					
	超低功耗模式使能位					
	禁止超低功耗模式					
LP_EN	使能超低功耗模式					
	注: 使能超低功耗模式时,需要求芯片工作电压大于等于 3.6V,同时把					
	LVD_SEL 选择 3.6V 低电压复位。 内部晶振选择					
	内部晶振频率 2MHz					
ICK SEL	2MHZ 4MHz					
TOTI_SEE	8MHz					
	16MHz					
	32MHz(工作电压要求 3.6V 以上)					
	指令周期选择					
	指令周期					
CLKDIV	指令周期=4个时钟周期					
CLKDIV	指令周期=8个时钟周期					
	指令周期=16个时钟周期					
	指令周期=32个时钟周期					
V	LVD 配置					
	功能					
	VDD 低于 2.0V(RST20_SEL=0)或					
	1.6V(RST20_SEL=1),LVD 复位系统					
	VDD 低于 2.0V(RST20_SEL=0)或					
LVD_SEL	1.6V(RST20_SEL=1), LVD 复位系统;					
7-	STATUS 的 LVD24 作为 2.4V 的低电压检测器;					
	STATUS 的 LVD36 作为 3.6V 的低电压检测器。					
	2.4V 上电/掉电复位;					
	STATUS 的 LVD36 作为 3.6V 的低电压检测器。 3.6V 上电/掉电复位。					
	[3.6V 工电/掉电复位。 注: RST20 SEL 是 SYSCFG0 特殊功能寄存器的 bit6。					
	性: KS120_SEL 是 SYSCFGO 特殊切能奇存益的 bito。 复位引脚选择					
RESET PIN	夏位分					
KESET_TIN	PT1.3 作为要位分為 PT1.3 作为普通输入口					
	品振引脚选择					
XTAL_PIN	晶振引脚					
	HH 400 4 10.1.					

	PT1.1 和 PT1.2 作为普通 IO 口	
	PT1.1 作为外部 RC 时钟输入;或者	
	PT1.1 通过外部时钟源直接灌入时钟;	
	PT1.2 还是普通 IO 口;	
	PT1.1 和 PT1.2 接外部晶振为 32768Hz	
	PT1.1 和 PT1.2 接外部晶振	
	4M~16MHz;还可通过 PT1.1 灌时钟,	
	PT1.2 悬空	
	代码保密位	
SECURITY	使能代码加密	
	禁止代码加密	

4 MCU 指令集

表 67 表 MCU 指令集

指令	操作	指令周期	标志位
ADDLW k	[W]←[W]+k	1	C,DC,Z
ADDPCW	[PC] ←[PC]+1+[W]	2	~
ADDWF f,d	[Destination] \leftarrow [f]+[W]	1	C,DC,Z
ADDWFC f,d	[Destination] \leftarrow [f]+[W]+C	1	C,DC,Z
ANDLW k	[W]←[W] AND k	1	Z
ANDWF f,d	$[Destination] \leftarrow [W] AND [f]$	1	Z
BCF f,b	[f]←0	1	~
BSF f,b	[f]←1	1	~
BTFSC f,b	Jump if[f]=0	1/2	~
BTFSS f,b	Jump if[f]=1	1/2	~
CALL k	Push PC+1 and Goto K	2	~
CLRF f	[f]←0	1	Z
CLRWDT	Clear watch dog timer	1	~
COMF f,d	$[f] \leftarrow NOT([f])$	1	Z
DAW	Decimal Adjust W	1	C,DC
DECF f,d	[Destination] \leftarrow [f] -1	1	Z
DECFSZ f,d	[Destination] \leftarrow [f] -1, jump if the result is zero	1/2	~
GOTO k	PC←k	2	~
HALT	CPU Stop	1	~
INCF f,d	[Destination] \leftarrow [f]+1	1	Z
INCFSZ f,d	[Destination] \leftarrow [f]+1, jump if the result is zero	1/2	~
IORLW k	[W]←[W] OR k	1	Z
IORWF f,d	$[Destination] \leftarrow [W] OR [f]$	1	Z
MOVFW f	$[W]\leftarrow [f]$	1	~
MOVLW k	$[W] \leftarrow k$	1	~
MOVP	Read table list	3	~
MOVWF f	[f]←[W]	1	~
NOP	No operation	1	~
POP	Pop W and Status	2	~
PUSH	Push W and Status	2	~
RETFIE	Pop PC and GIE =1	2	~
RETLW k	RETURN and W=k	2	~
RETURN	POP PC	2	~
RLF f,d	[Destination $\langle n+1 \rangle$] \leftarrow [f $\langle n \rangle$]	1	C,Z
RRF f,d	[Destination $<$ n-1 $>$] \leftarrow [f $<$ n $>$]	1	C,Z
SLEEP	STOP OSC	1	PD
SUBLW k	$[W] \leftarrow k - [W]$	1	C,DC,Z
SUBWF f,d	$[Destinnation] \leftarrow [f] - [W]$	1	C,DC,Z
SUBWFC f,d	[Destination] \leftarrow [f]– [W]-1+C	1	C,DC,Z
SWAPF f,d	swap f	1	~
XORLW k	[W]←[W] XOR k	1	Z
XORWF f,d	[Destination] \leftarrow [W] XOR [f]	1	Z
4 WL VX HT	[2 400,11,1011 [1]	<u> </u>	

参数说明:

f: 数据存储器地址(00H~7FH)

W: 工作寄存器

k: 立即数

d: 目标地址选择: d=0 结果保存在工作寄存器, d=1: 结果保存在数据存储器 f单

元

b: 位选择(0~7)

[f]: f地址的内容

PC: 程序计数器

C: 进位标志

DC: 半加进位标志

Z: 结果为零标志

PD: 睡眠标志位

TO: 看门狗溢出标志

WDT: 看门狗计数器

表 68 MCU 指令集描述

1

ADDLW	加立即数到工作寄存器
指令格式	ADDLW K (0<=K<=FFh)
	6 8
操作	(W)<(W)+K
标志位	C, DC, Z
描述	工作寄存器的内容加上立即数 K 结果保存到工作寄存器中
周期	1
例子	在指令执行之前:
ADDLW 08h	W=08h
	在指令执行之后:
	W=10h

	/ 2
ADDPCW	将W的内容加到PC中
指令格式	ADDPCW
	14
操作	$(PC) < -(PC) + 1 + (W)$ $\stackrel{\text{\psi}}{=} (W) < 7Fh$
	(PC)<(PC)+1+(W)-100h 其余
标志位	没有
描述	将地址 PC+1+W 加载到 PC 中
周期	2
例子1	在指令执行之前:
ADDPCW	W=7Eh, PC=0212h
	指令执行之后:
	PC=0291h
例子 2	在指令执行之前:
ADDPCW	W=80h, PC=0212h
	指令执行之后:

	PC=0193h
例子 3	在指令执行之前:
ADDPCW	W=FEh , PC=0212h
	指令执行之后:
	PC=0211h

ADDWF	加工作寄存器到 f
指令格式	ADDWF f,d 0<=f<=FFh d=0,1
	7 7
操作	[目标地址]<(f)+(W)
标志位	C, CD, Z
描述	将f的内容和工作寄存器的内容加到一起。
	如果 d 是 0, 结果保存到工作寄存器中。
	如果 d 是 1, 结果保存到 f 中。
周期	
例子 1	指令执行之前:
ADDWF f 0	f=C2h W=17h
	在指令执行之后
	f=C2h W=D9h
例子 2	指令执行之前
ADDWF f 1	f=C2h W=17h
	指令执行之后
	f=D9h W=17h

4

ADDWFC	将Wf和进位位相加
指令格式	ADDWFC f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目标地址)<一(f)+(W)+C
标志位	C, DC, Z
描述	将工作寄存器的内容和f的内容以及进位位相加
	当 d 为 0 时结果保存到工作寄存器
	当 d 为 1 时结果保存到 f 中
周期	1
例子	指令执行之前
ADDWFC f, 1	C=1 f=02h W=4Dh
/	指令执行之后
Y	C=0 f=50h W=4Dh

ANDLW	工作寄存器与立即数相与
指令格式	ANDLW K 0<=K<=FFh
	6 8
操作	(W)<(W) AND K
标志位	Z
描述	将工作寄存器的内容与8bit的立即数相与,结果保存到工作寄存器中。
周期	1
例子	在指令执行之前
ANDLW 5Fh	W=A3h

在指令执行之后
W=03h

ANDWF	将工作寄存器和 f 的内容相与
指令格式	ANDWF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目标地址)<一(W) AND (f)
标志位	Z
描述	将工作寄存器的内容和 f 的内容相与
	如果 d 为 0 结果保存到工作寄存器中
	如果 d 为 1 结果保存到 f 中
周期	1
例子 1	在指令执行之前
ANDWF f, 0	W=0Fh f=88h
	在指令执行之后
	W=08h f=88h
例子 2	在指令执行之前
ANDWF f, 1	W=0Fh f=88h
	在指令执行之后
	W=0Fh f=08h

7

BCF	清除f的某一位
指令格式	BCF f, b 0<=f<=7Fh 0<=b<=7
	BCF b f
	4 3 7
操作	(f[b]) < -0
标志位	无
描述	F的第b位置为0
周期	Y.
例子	指令执行之前:
BCF FLAG 2	FLAG=8Dh
	指令执行之后:
	FLAG=89h

BSF	F的b位置1
指令格式	BSF f, b 0<=f<=7Fh 0<=b<=7 BSF b f
操作	4 3 7
标志位	(f[b])<1 无

描述	将 f 的 b 位置 1
周期	1
例子	在指令执行之前
BSF FLAG 2	FLAG=89h
	在指令执行之后
	FLAG=8Dh

9	
BTFSC	如果 bit 测试为 0 则跳转
指令格式	BTFSC f, b 0<=f<=7Fh 0<=b<=7
	BTFSC b f
	4 37
操作	Skip if $(f[b])=0$
标志位	无
描述	如果 f 的 bit 位是 0,下一条取到的指令将被丢到,然后执行一条空指令组成
	一个两周期的指令。
周期	无跳转则为1个指令周期,否则2个指令周期
例子	在程序执行以前
NODE BTFSC FLAG 2	PC=address(NODE)
OP1:	指令执行之后
OP2:	If(FLAG[2])=0
	PC=address(OP2)
	If(FLAG[2])=1
	PC=address(OP1)

BTFSS	如果 bit 测试为 1,则跳转
指令格式	BTFSS f, b 0<=f<=7Fh 0<=b<=7
	BTFSS bf
	4 37
操作	Skip if $(f[b])=1$
标志位	无
描述	如果f的bit位是1,下一条取到的指令将被丢到,然后执行一条空指令组成
X	一个两周期的指令。
周期	无跳转则为1个指令周期,否则2个指令周期
例子	在程序执行以前
NODE BTFSS FLAG 2	PC=address(NODE)
OP1:	指令执行之后
OP2:	If(FLAG[2])=0
	PC=address(OP1)
	If(FLAG[2])=1
	PC=address(OP2)

CALL	子程序调用
指令格式	CALL K 0<=K<=7FFh
	3 11
操作	(top stack)<—PC+1
	PC<—K
标志位	无
描述	子程序调用, 先将 PC+1 压入堆栈, 然后把立即数地址下载到 PC 中。
周期	2

CLRF	清除 f	
指令格式	CLRF f 0<=f<=7Fh	
	7 7	
操作	(f)<0	
标志位	Z	
描述	将f的内容清零	
周期	1	
例子	在指令执行之前	
CLRF WORK	WORK=5Ah	
	在指令执行之后	
	WORK=00h	

^{*}注。当 clrf status 寄存器时,标志位 Z 不会置高

13

CLRWDT	清除看门狗定时器
指令格式	CLRWDT
	14
操作	看门狗计数器清零
标志位	无
描述	清除看门狗定时器
周期	1
例子	指令执行之后
CLRWDT	WDT=0

COMF	f取反
指令格式	COMF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目的地址)<一NOT(f)
标志位	Z
描述	将 f 的内容取反,

	当 d 为 0 时,结果保存到工作寄存器中,
	当 d 为 1 时,结果保存到 f 中。
周期	1
例子	在指令执行之前
COMF f, 0	W=88h, f=23h
	在指令执行之后
	W=DCh, f=23h
例子 2	在指令执行之前
COMF f, 1	W=88h, f=23h
	在指令执行之后
	W=88h, f=DCh

DAW	十进制调整 W 寄存器
指令格式	DAW
	14
操作	十进制调整 W 寄存器
标志位	C,DC
描述	一般与加法一起使用。
	如果低半字节的值大于9或 DC 为1时,低半字节加6;
	如果高半字节的值大于9或C为1时,高半字节加6
周期	1
例子	在 DAW 指令执行之前
若 W=25h;	W=25+39 =64=5EH
ADDLW 39h	在指令执行之后
DAW	W=64H

16

DECF	f减 1
指令格式	DECF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目的地址)<一(f)-1
标志位	Z
描述	F的内容减1
	当 d 为 0 时,结果保存到工作寄存器中
	当 d 为 1 时,结果保存到 f 中。
周期	1
例子	在指令执行之前
DECF f, 0	W=88h f=23h
	在指令执行之后
	W=22h f=23h
例子 2	在指令执行之前
DECF f, 1	W=88h f=23h
	在指令执行之后
	W=88h f=22h

DECFSZ	f减1如果为0则跳转
指令格式	DECFSZ f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目的地址)<一(f)-1,如果结果为 0 跳转
标志位	无
描述	f的内容减 1。
	如果 d 为 0, 结果保存到工作寄存器中。
	如果 d 为 1, 结果保存到 f 中
	如果结果为 0,下一条已经取到的指令将被丢掉,然后插入一条 NOP 指令组
	成一个两个周期的指令。

周期	无跳转则为1个指令周期,否则2个指令周期
例子	在指令执行之前
Node DECFSZ FLAG, 1	PC=address(Node)
OP1:	在指令执行之后
OP2:	(FLAFG)=(FLAG)-1
	If(FLAG)=0
	PC=address(OP2)
	If(FLAG)!=0
	PC=address(OP1)

GOTO	无条件跳转	
指令格式	GOTO K 0<=K<=7FFh	
	3 13	
操作	PC<—K	
标志位	无	
描述	立即地址载入 PC	
周期	2	

19

HALT	停止 CPU 时钟
指令格式	HALT
	14
操作	CPU 停止
标志位	无
描述	CPU 时钟停止,晶振仍然工作,CPU 能够通过内部或者外部中断重启。
周期	

INCF	f加 1
指令格式	INCF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目的地址)<(f)+1
标志位	Z
描述	f加1
	如果 d 为 0, 结果保存到工作寄存器中
	如果 d 为 1, 结果保存到 f 中。
周期	1
例子	在指令执行之前
INCF f, 0	W=88h f=23h
	在指令执行之后
	W=24h f=23h

例子 2	在指令执行之前
INCF f, 1	W=88h f=23h
	在指令执行之后
	W=88h f=24h

INCFSZ	f加1,如果结果为0跳转
指令格式	INCFSZ f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目的地址)<一(f)+1 如果结果为 0 就跳转
标志位	无
描述	f的内容加1。
	如果 d 为 0, 结果保存到工作寄存器中。
	如果 d 为 1, 结果保存到 f 中
	如果结果为 0, 下一条已经取到的指令将被丢掉, 然后插入一条 NOP 指令
	组成一个两个周期的指令。
周期	无跳转则为1个指令周期,否则2个指令周期
例子	在指令执行之前
Node INCFSZ FLAG, 1	PC=address(Node)
OP1:	在指令执行之后
OP2:	(FLAFG)=(FLAG)+1
	If(FLAG)=0
	PC=address(OP2)
	If(FLAG)!=0
	PC=address(OP1)

22

IORLW	工作寄存器与立即数或
指令格式	IORLW K 0<=K<=FFh
	7 7
操作	(W)<(W) K
标志位	Z
描述	立即数与工作寄存器的内容或。结果保存到工作寄存器中。
周期	1
例子	在指令执行之前
IORLW 85H	W=69h
	在指令执行之后
	W=EDh

IORWF	f与工作寄存器或
指令格式	IORWF f, d 0<=f<=7Fh d=0,1
	7 7

操作	(目的地址)<(W) (f)
标志位	Z
描述	f和工作寄存器或
	当d为0时,结果保存到工作寄存器中
	当 d 为 1 时,结果保存到 f 中
周期	1
例子	在指令执行前
IORWF f,1	W=88h f=23h
	在指令执行后
	W=88h f=ABh

MOVFW	传送到工作寄存器
指令格式	MOVFW f 0<=f<=7Fh
	7 7
操作	(W)<(f)
标志位	无
描述	将数据从 f 传送到工作寄存器
周期	1
例子	在指令执行之前
MOVFW f	W=88h f=23h
	在指令执行之后
	W=23h f=23h

25

MOVLW	将立即数传送到工作寄存器中
指令格式	MOVLW K 0<=K<=FFh
	6 8
操作	(W) <k< th=""></k<>
标志位	无
描述	将 8bit 的立即数传送到工作寄存器中
周期	1
例子	在指令执行之前
MOVLW 23H	W=88h
	在指令执行之后
	W=23h

MOVP	读查表区数据
指令格式	MOVP
	14
操作	把 OTP 数据读到 EDATH/WORK 中
标志位	无

描述	把地址为 EADRH/EADRL 的查表区数据读到 EDATH/WORK 中
周期	2
例子	在指令执行之前
MOVP	EADRH=04h, EADRL=00h
	地址为 0400h 的查表区数据位 1234h
	在指令执行之后
	EDATH=12h,W=34h

		7
MOVWF	将工作寄存器的值传送到f中	
指令格式	MOVWF f 0<=f<=7Fh	
	7 7	
操作	(f)<(W)	
标志位	无	
描述	将工作寄存器的值传送到f中	
周期	1	
例子	在指令执行之前	
MOVWF f	W=88h f=23h	
	在指令执行之后	
	W=88h f=88h	

28

NOP	无操作
指令格式	NOP
	14
操作	无操作
标志位	无
描述	无操作
周期	1/

29

PUSH	把 work 和 status 寄存器入栈保护
指令格式	PUSH
	14
操作	(top stack)<—work/status
标志位	无
描述	把 work 和 status 寄存器的值做入栈处理,支持 8 级堆栈,不同于 PC 堆栈;
	其中状态寄存器不包括 LVD36,LVD24,PD 和 TO。
周期	2

POP	把 work 和 status 寄存器出栈处理

指令格式	POP
	14
操作	(Top Stack)=>work/status
	Pop Stack
标志位	无
描述	把当前栈顶的值做出栈处理,分别更新 work 和 status 寄存器,支持 8 级堆
	栈,不同于 PC 堆栈;其中状态寄存器不包括 LVD36,LVD24,PD 和
	ТО。
周期	2

RETFIE	从中断返回	
指令格式	RETFIE	
	14	
操作	(Top Stack)=>PC	
	Pop Stack	
	1=>GIE	
标志位	无	
描述	PC 从堆栈顶部得到,然后出栈	,设置全局中断使能位为1
周期	2	

32

RETLW	返回,并将立即数送到工作寄存器中
指令格式	RETLW K 0<=K<=FFh
	6 8
操作	(W) <k< th=""></k<>
	(Top Stack)=>PC
	Pop Stack
标志位	无
描述	将 8bit 的立即数送到工作寄存器中,PC 值从栈顶得到,然后出栈
周期	2

RETURN	从子程序返回
指令格式	RETURN
	14
操作	(Top Stack)=>PC
	Pop Stack
标志位	无
描述	PC 值从栈顶得到,然后出栈
周期	2

RLF	带进位左移	
指令格式	RLF f, d 0<=f<=7Fh d=0,1	
	7 7	
操作	(目标地址[n+1])<(f[n])	
	(目标地址[0])<一C	
	C<(f[7])	
标志位	C, Z	
描述	F带进位位左移一位	
	如果 d 为 0,结果保存到工作寄存器	
	如果 d 为 1,结果保存到 f 中	
周期	1	1 X . V
例子	在指令执行之前	
RLF f, 1	C=0 W=88h f=E6h	
	在指令执行之后	
	C=1 W=88h f=CCh	()

35

RRF	带进位右移
指令格式	RRF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目标地址[n-1])<一(f[n])
	(目标地址[7])<一C
	C<(f[0])
标志位	С
描述	F带进位位右移一位
	如果 d 为 0, 结果保存到工作寄存器
	如果 d 为 1, 结果保存到 f 中
周期	1
例子	在指令执行之前
RRF f, 0	C=0 W=88h f=95h
	在指令执行之后
	C=1 W=4Ah f=95h

36

SLEEP	晶振停止
指令格式	SLEEP
	14
操作	CPU 晶振停止
标志位	PD
描述	CPU 晶振停止。CPU 通过外部中断源重启
周期	1

SUBLW	立即数减工作寄存器的值
指令格式	SUBLW K 0<=K<=FFh
	6 8
操作	(W) <k-(w)< td=""></k-(w)<>
标志位	C, DC, Z
描述	8bit 的立即数减去工作寄存器的值,结果保存到工作寄存器中
周期	1
例子	在指令执行之前
SUBLW 02H	W=01h
	在指令执行之后
	W=01h C=1(代表没有借位) Z=0(代表结果非零)
例子 2	在指令执行之前
SUBLW 02H	W=02h
	在指令执行之后
	W=00h C=1(代表没有借位) Z=1(代表结果为零)
例子 2	在指令执行之前
SUBLW 02H	W=03h
	在指令执行之后
	W=FFh C=0(代表有借位) Z=0(代表结果非零)

表 69 38

SUBWF	f的值减工作寄存器的值
指令格式	SUBWF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目标地址)<一(f)-(W)
标志位	C, DC, Z
描述	f的值减去工作寄存器的值。
	如果 d 为 0, 结果保存到工作寄存器
	如果 d 为 1, 结果保存到 f 中
周期	1
例子	在指令执行之前
SUBWF f, 1	f=33h W=01h
	在指令执行之后
7 3 1	f=32h C=1 Z=0
例子 2	在指令执行之前
SUBWF f, 1	f=01h W=01h
	在指令执行之后
	f=00h C=1 Z=1
例子 3	在指令执行之前
SUBWF f, 1	f=04h W=05h
	在指令执行之后
	f=FFh C=0 Z=0

39

SUBWFC	带借位的减法
指令格式	SUBWFC f, d 0<=f<=7Fh d=0,1

	7 7
操作	(目标地址)<(f)-(W)-1+C
标志位	C, DC, Z
描述	f的值减去工作寄存器的值
	如果 d 为 0, 结果保存到工作寄存器
	如果 d 为 1, 结果保存到 f 中
周期	1
例子	在指令执行之前
SUBWFC f, 1	W=01h f=33h C=1
	在指令执行之后
	f=32h C=1 Z=0
例子 2	在指令执行之前
SUBWFC f, 1	W=01h f=02h C=0
	在指令执行之后
	f=00h C=1 Z=1
例子 3	在指令执行之前
SUBWFC f, 1	W=05h f=04h C=0
	在指令执行之后
	f=FEh C=0 Z=0

SWAPF	交换寄存器的值
指令格式	SWAPF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(des[3:0]) < -f[7:4]
	(des[7:4]) < -f[3:0]
标志位	无
描述	把 f 寄存器的高 4 位数据给目标寄存器的低 4 位;
	把 f 寄存器的低位数据给目标寄存器的高 4 位
	d 为 1 时, f 寄存器为目标寄存器; 否则, w 寄存器为目标寄存器
周期	1
例子	在指令执行之前
SWAPF f,1	f=ACh
7 7/1	在指令执行之后
	f=CAh

41

XORLW	工作寄存器的值与立即数异或
指令格式	XORLW K 0<=K<=FFh
	6 8
操作	(W)<(W)^K
标志位	Z
描述	8bit 的立即数与工作寄存器的值异或,结果保存在工作寄存器中
周期	1
例子	在指令执行之前
XORLW 5Fh	W=Ach

在指令执行之后
W=F3h

XORWF	f的值与工作寄存器的值异或
指令格式	XORWF f, d 0<=f<=7Fh d=0,1
	7 7
操作	(目标地址)<一(W)^(f)
标志位	Z
描述	F的值与工作寄存器的值异或,
	当d为0时,结果保存到工作寄存器中
	当d为1时,结果保存到f中
周期	1
例子	在指令执行之前
XORWF f, 1	W=ACh f=5Fh
	在指令执行之后
	f=F3h

5 电气特性

5.1 极限值

参数	范围	单位
电源 VDD	-0.3~6.0	V
引脚输入电压	-0.3~VDD+0.3	V
工作温度	-40~+85	°C
存贮温度	-55~+150	°C
焊接温度,时间	220°C,10秒	

5.2 直流特性 (VDD = 5V, $T_A = 25^{\circ}$ C, 如无其他说明则都是此条件)

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	工作电压	25 °C	2.2	5	5.5	V
VDD	工作电压	-40 °C ~+85 °C	2.3	5	5.5	V
Vpor	系统电源电 压上升速率		0.05			V/ms
Tonu	指令周期	VDD: 2.3V~5.5V	1000			ng
Tcpu 指令周	1日マ川州	VDD: 3.6V~5.5V	250			ns
VIH1	数字输入高 电平	PT1, PT3, PT5 (除 PT3.0 外)	0.75VDD			V
(VTH_SEL=0)	复位输入高 电平	PT1.3	0.8VDD			V
VIL1 (VTH_SEL=0)	数字输入低 电平	PT1, PT3, PT5 (除 PT3.0 外)			0.3VDD	V

	复位输入低				<u> </u>	
	电平	PT1.3			0.2VDD	
VIH2	数字输入高 电平	PT1, PT3, PT5 (除 PT3.0 外)	0.5VDD			V
(VTH_SEL=1)	复位输入高 电平	PT1.3	0.5VDD			•
VIL2	数字输入低 电平	PT1, PT3, PT5 (除 PT3.0 外)			0.2VDD	V
(VTH_SEL=1)	复位输入低 电平	PT1.3			0.1VDD	V
VIH1 (VTHP30=00)	数字输入高 电平	PT3.0	0.75VDD			V
VIL1 (VTHP30=00)	数字输入高 电平	PT3.0		~~	0.3VDD	V
VIH2 (VTHP30=11)	数字输入高 电平	PT3.0	0.5VDD		Y	V
VIL2 (VTHP30=11)	数字输入高 电平	PT3.0			0.2VDD	V
VIH3 (VTHP30=01)	数字输入高 电平	PT3.0		≥0.7		V
VIL3 (VTHP30=01)	数字输入高 电平	PT3.0	, /	< 0.7		V
VIH4 (VTHP30=10)	数字输入高 电平	PT3.0		≥VDD- 0.7		V
VIL4 (VTHP30=10)	数字输入高 电平	PT3.0		<vdd- 0.7</vdd- 		V
IPU	上拉电流	PT1,PT3,PT5; Vin = 0;		50		uA
RPU	上拉电阻	PT1,PT3,PT5; VDD=5V		100		ΚΩ
		PT1.3; PDP12=1; VDD=5V		500		ΚΩ
DDD	工技由7 四	PT3.1; PDP12=1; VDD=5V		1		ΚΩ
RPD	下拉电阻	PT3.4; PDP12=1; VDD=5V		10		ΚΩ
		PT3.6; PDP12=1; VDD=5V		10		ΚΩ
	高电平输出	VOH=0.9VDD; VDD=5V		19		mA
4	电 (PT1 、					
IOH1	PT3,PT5) 大驱动能力 未使能	VOH=0.9VDD; VDD=3V		8		mA
	低电平输出	VOL=0.1VDD; VDD=5V		21		mA
IOL1	电 (PT1 、 PT3,PT5) 大驱动能力 未使能	VOL=0.1VDD; VDD=3V		9		mA
ІОН2	高电平输出 电 流	VOH=0.9VDD; VDD=5V (P14CUR=01,PT35CUR=1,P36CUR =1)		54		mA

	(DT1 4 DT2	VOIL-0.0VDD VDD 3V				
	(PT1.4,PT3 .5 和	VOH=0.9VDD; VDD=3V				
	PT3.6)	(P14CUR=01,PT35CUR=1,P36CUR =1)		24		mA
IOL2	低电平输出电 流	VOL=0.1VDD; VDD=5V (P14CUR=01,PT35CUR=1,P36CUR =1)		57		mA
IOL2	(PT1.4,PT3 .5 和 PT3.6)	VOL=0.1VDD; VDD=3V (P14CUR=01,PT35CUR=1,P36CUR =1)		27		mA
ІОН3	高电平输出 电 流 (PT1.4,PT1	VOL=0.1VDD; VDD=5V (P14CUR=11,CURP17[1]=1, CURP16[1]=1, CURP15=11)		31		mA
TOTIS	.5,PT1.6 和 PT1.7)	VOL=0.1VDD; VDD=3V (P14CUR=11,CURP17[1]=1, CURP16[1]=1, CURP15=11)		14		mA
IOL3	低电平输出 电 流 (PT1.5,PT1	VOL=0.1VDD; VDD=5V (P14CUR=11,CURP17[1]=1, CURP16[1]=1, CURP15=11)		35		mA
IOLS	.6 和 PT1.7)	VOL=0.1VDD; VDD=3V (P14CUR=11,CURP17[1]=1, CURP16[1]=1, CURP15=11)		17		mA
IOH4	高电平输出 电 流 (PT1.5,PT1	VOH=0.9VDD; VDD=5V (CURP17=01, CURP16=01, CURP15=01)	>	1.3		mA
10114	.6 和 PT1.7)	VOH=0.9VDD; VDD=3V (CURP17=01, CURP16=01, CURP15=01)		0.5		mA
IOH5	高电平输出	VOH=0.9VDD; VDD=5V (CURP15=10)		2.6		mA
Юнз	电 (PT1.5)	VOH=0.9VDD; VDD=3V (CURP15=10)		1		mA
Tr	输出电平上 升时间	PT3.5、PT3.6 (做大驱动输出口, 负载为 2nf)		30		ns
Tf	输出电平下 降时间	PT3.5、PT3.6(做大驱动输出口, 负载为 2nf)		30		ns
		1.6V 上电/掉电复位点; -40~85 度	1.2	1.6	1.9	
LVD	复位电压/	2.0V 上电/掉电复位点; -40~85 度	1.8	2.0	2.3	37
LVD	低电压检测 电压	2.4V 上电/掉电复位点; -40~85 度	2.0	2.4	3.0	V
		3.6V 上电/掉电复位点; -40~85 度	3.0	3.6	4.5	
	内 置	25℃, 5V	-1%	32	+1%	
	32MHz RC 时钟	-40°C~85°C, 3.6V~5.5V	-5%	32	+5%	MHz
	内 置	25℃, 5V	-1%	16	+1%	
ID C	16MHz RC 时钟	-40°C~85°C, 2.5V~5.5V	-5%	16	+5%	MHz
IRC	内置 8MHz	25℃, 5V	-1%	8	+1%	MHz
	RC 时钟	-40°C~85°C, 2.5V~5.5V	-5%	8	+7%	141117
	内置 4MHz	25℃, 5V	-1%	4	+1%	MHz
	RC 时钟	-40°C~85°C, 2.5V~5.5V	-5%	4	+7%	171112
	内置 2MHz	25°C, 5V	-1%	2	+1%	MHz
	RC 时钟	-40°C~85°C, 2.5V~5.5V	-5%	2	+8%	

	内置看门狗	25℃, 5V	-10%	32	+10%	KHz
WDT	时钟	-40°C~85°C, 2.5V~5.5V	-20%	32	+20%	KHz
F _{ERC}	ERC 时钟	R=68KΩ ,C=0.1uF,25°C , 5V		6.8		MHz
Tint0,1	中断触发脉 宽	25℃, 5V	Тсри			ns
		VDD=3V, 关掉 WDT		0.6		uA
IDD1	sleep 模式	VDD=3V, 打开 WDT		2.8		uA
	电流	VDD=5V, 关掉 WDT		0.9		uA
		VDD=5V, 打开 WDT		3.9		uA
IDD2	工作电流	内部振荡器关闭 (fcpu=fosc/4) fosc = 32768Hz,3V 内部振荡器关闭 (fcpu=fosc/4)		8		uA
		fosc = 32768Hz,5V				
		内部晶振模式,F=16MHz, VDD=3V,fcpu=fosc/4		0.84		
		内部晶振模式,F=16MHz, VDD=3V,fcpu=fosc/8		0.60		
		内 部 晶 振 模 式 , F=16MHz , VDD=3V,fcpu=fosc/16		0.40		
IDD3	工作电流	内部晶振模式,F=16MHz, VDD=3V,fcpu=fosc/32		0. 34		mA
נטטז	(空闲状态)	内部晶振模式,F=16MHz, VDD=5V,fcpu=fosc/4		1.50		ША
		内部晶振模式,F=16MHz, VDD=5V,fcpu=fosc/8		1.00		
		内部晶振模式,F=16MHz, VDD=5V,fcpu=fosc/16		0.72		
		内部晶振模式,F=16MHz, VDD=5V,fcpu=fosc/32		0.60		

5.3 ADC 特性(VDD = 5V, $T_A = 25$ °C,如无其他说明则都是此条件)

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	ADC 工作电	25 ℃	2.2	5	5.5	V
VDD	压范围	-40 °C ~+85 °C	2.3	5	5.5	V
AIN0~ AIN5 input voltage	模拟输入范 围	VREF 受寄存器 VREFS[1:0]控制	0		VREF	V
Vref input range	外部参考电 压输入范围	VREFS[1:0]=01	0		VDD	V
ADC current	ADC 功耗	VDD=5V(VDD作为参考电压)		0.55		mA
consumption	ADC切化	VDD=3V(VDD作为参考电压)		0.51		mA
ADC Conversion Cycle Time	ADC 转换周期		3.5	10		uS
INL	积分非线性	SRADACKS[1:0]=01; SRADCKS[1:0]=01;		±3	±5	LSB
No missing		VREFS[1:0]=01,外部参考电压	8	9	10	Bits
No missing code	无失码	VREFS[1:0]=00, VDD 做为参考电 压	8	9	10	Bits

		VREFS[1:0]=10,内部参考电压	7	8	9	Bits
		REF_SEL [1:0]= 00	-1%	1.4	+1%	V
IVREF	内部参考电	REF_SEL [1:0]=01	-1%	2.0	+1%	V
IVKEF	压	REF_SEL [1:0]=10	-1%	3.0	+1%	V
		REF_SEL [1:0]=11	-1%	4.0	+1%	V
IVREF temp	内部参考电			50		*****
drift	压温漂			50		ppm
Offset	ADC 失调电			4		mV
	压			-4		IIIV

5.4 32MHz IRC 时钟频率特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图28 32MHz RC 时钟频率的电压和温度特性

5.5 16MHz IRC 时钟频率特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图29 16MHz RC 时钟频率的电压和温度特性

5.6 8MHz IRC 时钟频率特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图30 8MHz RC 时钟频率的电压和温度特性

5.7 4MHz IRC 时钟频率特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图31 4MHz RC 时钟频率的电压和温度特性

5.8 2MHz IRC 时钟频率特性

图32 2MHz RC 时钟频率的电压和温度特性

5.9 32KHz WDT 时钟频率特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图33 WDT 频率的电压和温度特性

5.10 ERC 频率的电压和温度特性(R=68KΩ,C=0.1uF)

图34 ERC 频率的电压和温度特性

5.11 2.0V 掉电复位温度特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图35 2.0V 掉电复位温度特性

5.12 2.4V 低电压复位温度特性

图36 2.4 低电压复位温度特性

5.13 3.6V 低电压复位温度特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图37 3.6V 低电压复位温度特性

5.14 1.4V 内部参考电压的电压和温度特性

图38 内置参考电压 1.4V 电压和温度特性

5.15 2.0V 内部参考电压的电压和温度特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图39 内置参考电压 2.0V 电压和温度特性

5.16 3.0V 内部参考电压的电压和温度特性

下图为实际芯片的测试数据,不同芯片会略微有所差异,仅供参考。

图40 内置参考电压 3.0V 电压和温度特性

5.17 4.0V 内部参考电压的电压和温度特性

图41 内置参考电压 4.0V 电压和温度特性

6 封装图

6.1 SOP-16pin

SYMBOLS	MIN	NOR	MAX
STIMBOLS		(mm)	
A	1.3	1.40	1.5
A1	0.05	-	0.225
b	0.39	-	0.48
С	0.21	-	0.26
D	9.70	9.90	10.10
E	3.70	3.90	4.10
е		1.27BSC	
α	0°	-	8°
Н	5.8	6.0	6.2
L	0.5	-	0.8

6.2 TSSOP-16pin

SYMBOLS	MIN	NOR	MAX	
STMBOLS	(mm)			
A	-	-	1.2	
A1	0.05	-	0.15	
b	0.20	-	0.30	
C	0.13	-	0.19	
D	4.86	4.96	5.06	
E	4.30	4.40	4.50	
е		0.65BSC		
α	0°	-	8°	
Н	6.20	6.40	6.60	
L	-	-	0.8	

6.3 DIP-16pin

CVMPOLC	MIN	NOR	MAX	
SYMBOLS	17	(mm)		
Α	3.6	3.8	4.0	
A1	0.51	-	-	
b	0.44	-	0.53	
B1	1.52BSC			
С	0.25	-	0.31	
D	18.90	19.10	19.30	
E1/	6.15	6.35	6.55	
e		2.54BSC		
eA	7.62BSC			
eB	7.62	-	9.50	
eC	0	-	0.94	
	3.0	-	-	

6.4 **SOP-20pin**

CVMDOLC	MIN	NOR	MAX		
SYMBOLS	(mm)				
Α/	2.25 2.30 2.35				
A1	0.1	-	0.3		
b	0.35	-	0.44		
C	0.26	-	0.31		
D	12.6	12.8	13.0		
E	7.3	7.5	7.7		
e	1.27BSC				
α	0°	-	8°		
Н	10.1	10.3	10.5		
L	0.7	-	1.0		

6.5 DIP-20pin

SYMBOLS	MIN	NOR	MAX	
SYMBOLS	(mm)			
A	3.6	3.8	4.0	
A1	0.51	-	-	
b'	0.44	-	0.53	
B1	1.52BSC			
C	0.25	-	0.31	
D	26.03	26.23	26.43	
E1	6.35	6.55	6.75	
е		2.54BSC		
eA		7.62BSC		
eB	7.62	-	9.30	
eC	0	-	0.84	
L	3.0	-	-	

6.6 SSOP-20pin

CVMPOLC	MIN	NOR	MAX		
SYMBOLS	(mm)				
A	1.30	1.40	1.50		
A1	0.10	-	0.25		
b	0.23	-	0.33		
С	0.21	-	0.26		
D / _ /	8.45	8.65	8.85		
E'	3.70	3.90	4.10		
е		0.635BSC			
a	0°	-	8°		
√-H	5.80	6.00	6.20		
L	0.50	-	0.80		

6.7 TSSOP-20pin

	MIN	NOR	MAX	
SYMBOLS	(mm)			
A	0.80	1.00	1.05	
A1	0.05	-	0.15	
b	0.19	-	0.30	
С	0.09	-	0.20	
D	6.40	6.50	6.60	
E	4.30 4.40 4.50			
e	0.65BSC			
α	0°	-	8°	
Н	6.20 6.40 6.			
L	0.45	0.60	0.75	

6.8 QFN-20 pin

CVMPOLC	MIN	NOR	MAX		
SYMBOLS	(mm)				
A	0.70	0.75	0.80		
A1	X -/	0.02	0.05		
b	0.15	0.20	0.25		
С	0.18	0.20	0.25		
D	2.90	3.00	3.10		
D2	1.55	1.65	1.75		
е	0.40BSC				
Ne	1.60BSC				
Nd	1.60BSC				
E	2.90	3.00	3.10		
E2	1.55	1.65	1.75		
L	0.35	0.40	0.45		
h	0.20	0.25	0.30		

7 单片机产品命名规则

7.1 产品型号说明

标示符	封装类型
BD	Bonding
DI	DIP
SD	SDIP
SO	SOP
SS	SSOP
TS	TSSOP
QF	QFP
LQ	LQFP
TQ	TQFP
QN	QFN

7.2 命名举例说明

名称	内核	RO M 类 型	功能 分类	产品定位型号	芯片 版本	封装 形式	工作温度 范 围	封装材料
CSU8RP3216-SO-CE	8位 Risc MCU	OTP	ADC	216	第1版	SOP	-40~85 °C	无铅封装(PB-Free 封装)

7.3 产品印字说明

芯片正面印字一般有3行:

第一行为公司名称,为 CHIPSEA。

第二行为产品型号。对于一些小尺寸封装,会对产品型号进行缩减。

第三行为日期码。从左端起算,前两位为公历年号后两位;第三第四位为本年度日历周数,不足两位时左端补 0;最后一位为产品随机号。

例如, CSU8RP3216 的印字如下:

注: "-SO"会缩减为"S", "-DI"会缩减为"D", 如 CSU8RP3216-SO-CE 的产品型号印字为 RP3216S。