السلسلة 03، الوحدة 1/ فيزياء

التمرين الأول:

ا- نمزج في اللحظة t=0 وفي درجة حرارة $CaI_{2(aq)}$ تركيزه المولي من محلول ماني ليود الكالسيوم وt=0 تركيزه المولي المولي

-1-لنكل

تر کیز المولي $(Na_{(aq)}^+ + CLO_{(aq)}^-)$ مع حجم $V_2 = 20~mL$ من محلول ماني لماء جافیل نرکیز المولی $V_2 = 20~mL$ ترکیز المولی

. النشا من كاشف صمغ النشا من حمض الكبريت المركز وبضع قطرات من كاشف صمغ النشا $\mathcal{C}_2 = 0.02~mol.\,L^{-1}$

 $(V = V_1 + V_2$ انعتبر أن حجم الخليط)

 ClO^-/Cl^- و I_2/I^- المشاركتين في هذا التحول الكيمياني التام هما I_2/I^- و I_2/I^- و I_3/I^- .

أ- أكتب المعادلة المعبرة عن التفاعل أكسدة-إرجاع المنمذج للتحول الكيمياني الحادث.

ب- أعط عنوانا لهذا التحول الكيمياني .

ج- ما هو لون الوسط التفاعلي عند نهاية التفاعل ؟ علل .

2- لتكن $n_i(I^-)$ كمية المادة الابتدانية لشوارد اليود و $n_i(ClO^-)$ كمية المادة الابتدانية لشوارد الهيبوكلورات .

أحسب كل من $n_i(I^-)$ و $n_i(ClO^-)$ ثم حدد المتفاعل المحد .

3- لنعتبر أن $y=\frac{x}{v}$ تقدم التفاعل الحجمي ، أنجز جدول التقدم مستعملا

التقدم الحجمي y ثم أحسب Y_{max} تقدم التفاعل الحجمي الأعظمي .

4- توجد عدة تقنيات لمتابعة تطور التقدم التفاعل الحجمي y بدلالة الزمن ،
تحصلنا على البيان الممثل في الشكل-1-

أ- أذكر على الأقل واحدة من هذه التقنيات .

ب- بالاعتماد على البيان:

*- بين أن فعلا هذا التحول تام .

*- زمن نصف التفاعل 1/2

ج- عرف السرعة الحجمية للتفاعل ثم أحسب قيمتها في اللحظتين $t=t_{1/2}$ و $t_0=0$. كيف تتغير هذه السرعة ؟ علل ذلك .

د- أستنتج سرعة اختفاء شوارد اليود عند اللحظتين السابقتين.

5- إن ماء جافيل المستعمل أخذ من قارورة مكتوب عليها 16°Chl وبعد تمديده 35 مرة . هل ماء جافيل محضر حديثا ؟

ملاحظة: الدرجة الكلورومترية (n Chl°): توافق حجم غاز ثنائي الكلور مقدرا باللتر والمقاس في الشروط النظامية من ضغط ودرجة حرارة واللازم استعماله لصنع L من ماء جافيل..

 $Cl_{2(g)} + 2(Na_{(aq)}^+ + HO_{(aq)}^-) = ClO_{(aq)}^- + Cl_{(aq)}^- + 2Na_{(aq)}^+ + H_2O_{(l)}^-$: يعتبر هذا التفاعل تام

١١- تعتبر التجربة السابقة مرجعية وتعاد مرتين ، أنظر الجدول

y×10-3 (mol.L-1) ((Δ)

نعمل في درجة حرارة 50°C	نضيف عند 20 mL t = 0 من الماء المقطر	المرجعية	رمز التجربة
			$[I^{-}]_{i} \times 10^{-3} \ mol. L^{-1}$
			$[ClO^{-}]_{i} \times 10^{-3} \ mol. L^{-1}$
بالزيادة	بالزيادة	بالزيادة	$[H_3O^+]$
50°C	25°C	25°C	θ °C

الشكل -2- يبين منحنيات تطور تقدم التفاعل الحجمي بدلالة الزمن للتجارب الثلاثة.

1- هل يمكن اعتبار حمض الكبريت المركز في هذه التجارب كوسيط؟ علل .

2- أكمل الجدول السابق ، ثم أرفق كل منحنى بياني برمز تجربته ، مع التعليل .

التمرين الثاني:

نغمر في اللحظة t=0 قطعة من الألمنيوم كتلتها m_0 في محلول حمض كلور الهيدروجين H_3O^+,Cl^- حجمه U=100mL وتركيزه المولى $C=[H_3O^+,Cl^-]$. التفاعل الحاصل تــام وبطيء . نجري جميع التجارب في نفس درجة الحرارة .

$$[Al^{3+}](mmol.L^{-1})$$
 . $t=0$ عند $t=0$ عند $t=0$ هو المماس للبيان عند $t=0$ بدلالة الزمن ، حيث $t=0$ بدلالة الزمن ، حيث $t=0$ بدلالة المادة مقاسة بـ $t=0$. $t=0$ بيعطى جدول التقدم ، حيث كمية المادة مقاسة بـ $t=0$

2 <i>Al</i> +	$6H_3O^+ = 2$	Al^{3+} +	3H ₂ +	$6H_2O$
0,01	0,1C	0	0	//
0,01-2x	0.1C - 6x	2 <i>x</i>	3 <i>x</i>	//
$0.01 - 2x_m$	$0.1C-6x_m$	$2x_m$	$3x_m$	//

- 1 احسب التقدّم الأعظمي للتفاعل ، ثم عين المتفاعل المحدّ . (2 ن)
 - 2 احسب التركيز المولي C . (2 ن)
- t(mn) : يكون $t=t_{1/2}$ يكون نصف التفاعل ، ثمّ بيّن أنه عند $t=t_{1/2}$ يكون

(ن 2) . من البيان ، حيث $\begin{bmatrix} Al^{3+} \end{bmatrix}_m$ هو التركيز المولي الأعظمي لشوار د الألمنيوم . $\begin{bmatrix} Al^{3+} \end{bmatrix}_m$

- ($\dot{0}$ 2). t=0 عند المرعة المجمية المجمية المرعة 4
- . نعيد التجربة باستعمال 0,27g من الألمنيوم المسحوق مع $100\,m$ من (H_3O^+,Cl^-) السابق .
 - هل نحصل على نفس القيمتين للمقدارين التاليين ؟ (1 ن)
 - t=0 عند التفاعل عند . t=0
 - التقدّم الأعظمي .
- 6-4 هل نحصل على نفس زمن نصف التفاعل لو استعملنا نفس القطعة السابقة من الألمنيوم مع M(Al) = 27g/mol من حمض كلور الهيدروجين تركيزه المولية M(Al) = 27g/mol الكتلة الذرية المولية للألمنيوم M(Al) = 27g/mol