1. Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

$$P = 1017 \text{ hPa} \Rightarrow 101,7 \text{ KPa}$$

 $T = 6^{\circ}$
 $\phi = 90\%$

ABSOLUTE HUMIDITY

$$\omega = 0.0052 \frac{Kg_{water}}{Kg_{dry air}}$$

WET-BULB TEMPERATURE

$$T_{wh} = 5.2 \, ^{\circ}\text{C}$$

MASS OF WATER VAPOR

$$V_{room A} = 20 \cdot 6 \cdot 6 = 720 m^{2}$$

$$P_{v} = \frac{P \cdot \omega}{0,622 + \omega} = \frac{101,7 \cdot 0,0052}{0,622 + 0,0052} = 0,84 Kg$$

$$m_{v} = \frac{P_{v} \cdot V}{R_{v} \cdot T} = \frac{0,84 \cdot 720}{0,4615 \cdot (273 + 6)} = 4,7 Kg$$

If I consider that when I am doing the exercise (Sunday), the Politecnico di Milano is closed, I assume as external temperature and humidity values for the calculation of the mass of vapor.

2. Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

	BRINDISI, Italy														WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	N)	Period:	86-10	WBAN:	99999	
Annual Heating and Humidification Design Conditions																	
					Money	differnian D	P/MCDB and	un.	Coldest month WS/MCDB MCWS						-nounn	1	
Coldes		Heating DB			99.6%	dirication D	99%						1% to 99.				
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Cooling, Dehumo-mation, and Enthalpy Design Conditions																
	Hottest	Hottest		Cooling DB/MCWB 1% 2%					Evaporation WB/MCDB 0.4% 1%						MCWS		
	Month	Month DB Range	DB U	4% MCWB	DR I	MCWB	DB 25	MCWB	WB 0.	4% MCDB	WB 1	% MCDB	WB 2	% MCDB	to 0.4 MCWS	% DB PCWD	\forall
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
(2)																	(~)
	Dehumidification DP/MCDB and HR 0.4% 1%							2%					1% 2%			Hours 8 to 4 &	1
	DP	0.476 HR	MCDB	DP	HR I	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme Annual Design Conditions																
	Extr	eme Annual	ws	/S Extreme				Annual DB			n-Year Return Period Values of E						1
	1% 2.5% 5%		601	Max WB	Mean Min Max		Standard deviation Min Max		n=5 years Min Max		n=10 years Min Max		n=20 years Min Max		n=50 years Min Max		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(
(0)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)
(4)	11.3	9.9	0.7	31.4	0.4	31.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.Z	44.9	(4)

$$h_{\text{building}} = 2.5 m$$

 $A_{floor} = 200 m^2$
 $A_{wall} = 144 m^2$
 N° occupants = 2
 N° bedroom = 1

INTERNAL GAINS

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 \cdot A_{cf} + 22 \, N_{oc} = 136 + 2.2 \cdot 200 + 22 \cdot 2 = 620 \, W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 \cdot A_{cf} + 12 \, N_{oc} = 20 + 0.22 \cdot 200 + 12 \cdot 2 = 88 \, W \end{split}$$

INFILTRATION

$$A_{ul} = 1.4 \frac{cm^2}{m^2}$$
 (good quality)

$$A_{es} = A_{wall} + A_{roof}$$

$$A_{es} = 200 + 144 = 344 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \ cm^2$$

$$IDF_{heating} = 0.065 \frac{L}{s. cm^2}$$

$$IDF_{cooling} = 0.032 \frac{L}{s. cm^2}$$

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF_{heating} = 481.6 \cdot 0.065 = 31.30 \frac{L}{s}$$

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF_{cooling} = 481.6 \cdot 0.032 = 15.41 \frac{L}{s}$$

VENTILATION

$$\dot{V}_{ventilation} = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 \cdot 200 + 3.5 \cdot 2 = 17 \frac{L}{s}$$

$$\dot{V}_{infiltration-ventilation_{heating}} = \dot{V}_{infiltration_{heating}} + \dot{V}_{ventilation} = 31.30 + 17$$

$$= 48.30 \frac{L}{s}$$

$$\dot{V}_{infiltration-ventilation_{cooling}} = \dot{V}_{infiltration_{cooling}} + \dot{V}_{ventilation} = 15.41 + 17$$

$$= 32.41 \frac{L}{s}$$

$$C_{sensible} = 1.23$$

$$C_{latent} = 3010$$

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

$$\Delta T_{\text{heating}} = 20 - (4.1) = 15.9 \,^{\circ}C$$

$$\begin{split} \dot{Q}_{inf-vent_{cooling}_{sensible}} &= C_{sensible} \times \dot{V}_{inf-vent_{cooling}} \times \Delta T_{Cooling} \\ &= 1.23 \, \cdot 32.41 \cdot 7.1 = 283.04 \, W \end{split}$$

$$\begin{split} \dot{Q}_{inf-vent_{\text{heating}}_{sensible}} &= C_{sensible} \times \dot{V}_{inf-vent_{\text{heating}}} \times \Delta T_{\text{heating}} \\ &= 1.23 \, \cdot 48.30 \cdot 15.9 = 944.6 \, W \end{split}$$

$$\omega_{out} = 0.0143 \frac{kg_{water}}{kg_{dryAir}}$$

$$\omega_{in} = 0.0093 \; \frac{kg_{water}}{kg_{dryAir}}$$

$$\Delta\omega_{Cooling} = \omega_{out} - \omega_{in} = 0.0143 - 0.0093 = 0.005 \frac{kg_{water}}{kg_{DryAir}}$$

$$\begin{split} \dot{Q}_{inf-vent_{cooling}_{latent}} &= C_{latent} \times \dot{V}_{inf-vent_{cooling}} \times \Delta \omega_{Cooling} \\ &= 3010 \cdot 32.41 \, \cdot \, 0.005 = 487.77 \, W \end{split}$$