Machine Learning in Public Health

Lecture 5: CV and Boostrap

Dr. Yang Feng

Today's agenda

- Cross-Validation
- Bootstrap

Resampling Methods

- Resampling methods: repeatedly draw samples from a training set and refit a model of interest (or compute certain estimates) on each sample in order to obtain additional information about the fitted model (or those estimates)
- Common resampling methods include: cross-validation and bootstrap

Cross-validation (CV)

- Cross-validation (CV) can be used to estimate the test
 error associated with a given statistical learning method
 - to evaluate its performance (model assessment)
 - or to select the best model (model selection)
- When to use CV to estimate test error?
 - when you don't have a designated test set
- CV can be used for both classification and regression
- CV has a few variants; we only discuss the canonical version
- A precursor of CV is the validation set approach

The validation set approach

Validation set approach: randomly divide the available set of observations into two parts, a training set and a validation set or hold-out set. The model is fit on the training set, and the fitted model is used to predict the responses for the observations in the validation set.

FIGURE 5.1. A schematic display of the validation set approach. A set of n observations are randomly split into a training set (shown in blue, containing observations 7, 22, and 13, among others) and a validation set (shown in beige, and containing observation 91, among others). The statistical learning method is fit on the training set, and its performance is evaluated on the validation set.

Drawbacks of the validation set approach

- the validation estimate of the test error rate can be highly variable
- only about a half of the observations are used to train the model (inefficient use of data).
- Cross-validation: a refinement of the validation set approach that addresses these two issues.

Leave-One-Out Cross-Validation (LOOCV)

- Suppose the training data contains $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- First, use n-1 observations $\{(x_2, y_2), \dots, (x_n, y_n)\}$ to train and use the remaining observation (x_1, y_1) to evaluate the performance: $MSE_1 = (y_1 \hat{y}_1)^2$
- Repeat this procedure by using (x_2, y_2) as the validation data, training on the n-1 observations $(x_1, y_1), (x_3, y_3), \cdots (x_n, y_n)$, and compute $MSE_2 = (y_2 \hat{y}_2)^2$
- Repeat this approach in total n times, which produces n squared errors MSE_1, \dots, MSE_n
- The LOOCV estimate for the test *MSE* is the average of these *n* estimates:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i.$$

There is no need to randomly shuffle the training data before implementing LOOCV. Why?

LOOCY

FIGURE 5.3. A schematic display of LOOCV. A set of n data points is repeatedly split into a training set (shown in blue) containing all but one observation, and a validation set that contains only that observation (shown in beige). The test error is then estimated by averaging the n resulting MSE's. The first training set contains all but observation 1, the second training set contains all but observation 2, and so forth.

Potential problems for LOOCV

- Computationally, LOOCV has the potential to be expensive to implement, since the model has to be fit n times
 - However, with least squares linear or polynomial regression, the following formula holds:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2,$$

- where $h_i = \mathbf{x}_i^T (X^T X)^{-1} \mathbf{x_i}$ is the leverage of the *i*th observation.
- The n fitted models are each trained on an almost identical set of observations, and so averaging does not reduce variance much
 - Think about letting $X_i \sim N(0, 1)$ but insist $X_1 = \cdots = X_n$
 - What is the variance of \bar{X} ?

k-fold CV

- k-fold CV: randomly divide the set of observations into k groups, or folds, of approximately equal size.
- The first fold is treated as a validation set, and the method is fit on the remaining k-1 folds. The mean squared error, MSE_1 , is then computed on the observations in the held-out fold.
- This procedure is repeated k times; each time, a different group of observations is treated as a validation set.
- This process results in k estimates of the test error, $MSE_1, MSE_2, \cdots, MSE_k$.
- The k-fold CV estimate is computed by averaging these values,

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i.$$

• We commonly use $CV_{(k)}$ to estimate the test error (model evaluation).

5-fold CV

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.

■ LOOCV is a special case of k-fold CV in which k = n

Bias-variance trade-off for k-fold CV

- The larger the k, the smaller bias for estimating the test
 error
- However, large k (e.g., k = n 1) means higher variance
- So for prediction accuracy, the better choices are usually not the extreme choices for k.
- The usual choices in practice for k in k-fold CV are .

k-fold CV for model selection

- Suppose in the Default dataset, we are deciding between two models
- model I: use rm to predict medv
- model 2: use rm and ptratio to predict medv
- model 3: use rm, ptratio, and zn to predict medv
- To choose between these two models using 5-fold CV, we calculate $CV_{(5)}$ for models 1, 2, 3 and choose the model with the smaller $CV_{(5)}$.
- The same idea extends to the case where we need to choose among many models.
- After you have chosen the model, which of the 5 linear prediction equations do you actually use?
- Answer: none. We refit the model with all available data.

Use k-fold CV for classification

- The basic idea of CV for classification is the same as that for regression, except the way to calculate $CV_{(k)}$
 - For example, the LOOCV error rate is

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_i,$$

• where $Err_i = I(y_i \neq \hat{y}_i)$

Bootstrap

Bootstrap in Statistics

- Bootstrap: in statistics, bootstrap is any procedure that relies on random sampling with replacement (from the original sample)
- Bootstrap allows assigning measures of accuracy (defined in terms of standard error, variance, confidence intervals, prediction error or some other such measure) to sample estimates.
- This is a rather strange idea when we first look at it

Importance of Bootstrap

- On the other hand, it is one of the most influential ideas in Statistics invented in the second half of the 20th century
- As a verb, bootstrap means "get oneself out of a situation using existing resources (without extra help)" (quote: pull oneself over a fence by one's bootstraps)
- Bootstrap is computationally heavy
- It is a class of widely used procedures. But its theory is beyond this class.
- Bootstrap has different versions (e.g., moving block bootstrap for time series data); we only discuss the simplest kind
- We illustrate the basic bootstrap idea with two toy examples

What is "sample with replacement" (the first example)?

- Suppose there is a box that contains a black ball and a red ball
- Draw one ball from the box, put it back, and then draw another ball from the box; repeat this process multiple times (see different outcomes?)

```
set.seed(1)
sample(c("red","black"), size = 2, replace = TRUE)

## [1] "red" "black"

sample(c("red","black"), size = 2, replace = TRUE)

## [1] "red" "red"

sample(c("red","black"), size = 2, replace = TRUE)

## [1] "black" "red"
```

 When we do sample with replacement, it is possible to get one element twice What if we sample two elements without replacement from the above box?

Estimating the distribution of sample mean using a single sample

Next Class

Linear Model Selection and Regularization

- Subset selection
- Ridge regression
- Lasso