PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-118780

(43)Date of publication of application: 27.04.2001

(51)Int.CI.

H01L 21/027 G03F 1/16

(21)Application number: 11-297788

(71)Applicant: NIKON CORP

(22)Date of filing:

20.10.1999 (72)Inv

(72)Inventor: SUZUKI YOSHIHIKO

KATAKURA NORIHIRO

(54) TRANSFER MASK BLANKS FOR ELECTRON BEAM, AND TRANSFER MASK FOR ELECTRON BEAM, AND THEIR MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a transfer mask blanks for an electron beam which does not have adverse effect on optical properties, without a region to form a circuit pattern becoming small even in the case that it is provided with a hole for release of stress of a membrane, and a transfer mask for an electron beam, and their manufacturing method.

SOLUTION: This is a transfer mask blank which is equipped with a membrane, a peripheral frame for supporting that membrane, fixing the periphery of the membrane, and a pole for supporting that membrane and diving it into regions including a plurality of small regions, and this is a transfer mask where the said pole has at least two-layer structure, and the width of the pole of the layer which is nearest to the said membrane is narrower than the width of the pole of other layer, and a hole for release of stress is made in the membrane region outside the said small region being made by narrowing the width of the pole in the said nearest layer more than the width of the pole in other layer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-118780 (P2001-118780A)

(43)公開日 平成13年4月27日(2001.4.27)

(51) Int.Cl.7

離別配号

FΙ

テーマコード(参考)

H01L 21/027

G03F 1/16

G03F 1/16

B 2H095

H01L 21/30

541S 5F056

審査請求 未請求 請求項の数8 OL (全 8 頁)

(21)出願番号

特願平11-297788

(22)出願日

平成11年10月20日(1999.10.20)

(71)出願人 000004112

株式会社ニコン

東京都千代田区丸の内3丁目2番3号

(72)発明者 鈴木 美彦

東京都千代田区丸の内3丁目2番3号 株

式会社二コン内

(72)発明者 片倉 則浩

東京都千代田区丸の内3丁目2番3号 株

式会社ニコン内

Fターム(参考) 2HO95 BC27 BC28 BC30

5F056 AA06 AA22 EA04 FA05

(54) 【発明の名称】 電子線用転写マスクプランクス、電子線用転写マスク及びそれらの製造方法

(57)【要約】

【目的】メンブレンの応力開放用の孔を設けた場合であっても、回路パターンを形成する領域が実質的に小さくならず、光学特性に悪影響を与えないような電子線用転写マスクブランクス、電子線用転写マスク及びそれらの製造方法を提供する。

【解決手段】メンブレンと、該メンブレンの外周を固定してこれを支える外周枠と、前記メンブレンを支持し、複数の小領域にを含む領域に分割する支柱とを備えた転写マスクブランクスであって、前記支柱が、少なくとも2層構造を有し、前記メンブレンに最も近い層の支柱幅は、他の層の支柱幅に比べて狭く、前記最も近い層の支柱幅を他の層の支柱幅に比べて狭くすることにより形成された前記小領域の外側のメンブレン領域に応力開放用の孔が設けられていることを特徴とする電子線用転写マスクブランクス。

【特許請求の範囲】

【請求項1】メンブレンと、

該メンプレンの外周を固定してこれを支える外周枠と、 前記メンブレンを支持し、複数の小領域にを含む領域に 分割する支柱とを備えた転写マスクブランクスであっ て

前記支柱が、少なくとも2層構造を有し、前記メンブレンに最も近い層の支柱幅は、他の層の支柱幅に比べて狭く、前記最も近い層の支柱幅を他の層の支柱幅に比べて狭くすることにより形成された前記小領域の外側のメン 10ブレン領域に応力開放用の孔が設けられていることを特徴とする電子線用転写マスクブランクス。

【請求項2】さらに、前記各小領域に侵入せず、前記応力開放用の孔を被覆する保護部を備えた請求項1記載の電子線用転写マスクブランクス。

【請求項3】支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、

前記支持シリコン基板上に、支柱形成位置に対応する位置に開口パターンが設けられたドライエッチング用マスクを形成する工程と、

前記マスクに設けられた開口パターンに合わせて前記支 持シリコン層をドライエッチングする工程と、

前記酸化シリコン層をオーバーエッチングし、メンブレ ンからなる小領域を含んだ領域を形成する工程と、

前記酸化シリコン層のオーバーエッチングにより形成された前記小領域の外側のメンブレン領域に応力開放用の 孔を形成する工程と、を備えた電子線用転写マスクブラ ンクスの製造方法。

【請求項4】支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、

前記シリコン活性層の所定の位置に応力開放用の孔を形成する工程と、

前記応力開放用孔を埋め込む工程と、

前記応力開放用孔を被覆する保護部を形成する工程と、 前記支持シリコン基板上に、支柱形成位置に対応する位 置に開口パターンが設けられたドライエッチング用マス クを形成する工程と、

前記マスクに設けられた開口パターンに合わせて前記支 持シリコン層をドライエッチングする工程と、

前記酸化シリコン層をオーバーエッチングするとともに、前記応力開放用孔に埋め込まれたものを除去し、メンプレンからなる小領域を含んだ領域を形成する工程と、を備えた電子線用転写マスクブランクスの製造方法。

【請求項5】感光基板に転写すべきパターンが形成されたメンブレンと、

該メンプレンの外周を固定してこれを支える外周枠と、 前記メンプレンを支持し、複数の小領域を含む領域に分 割する支柱とを備えた転写マスクであって、

前記支柱が、少なくとも2層構造を有し、前記メンブレ

2

ンに最も近い層の支柱幅は、他の層の支柱幅に比べて狭く、前記最も近い層の支柱幅を他の層の支柱幅に比べて狭くすることにより形成された前記小領域の外側のメンブレン領域に応力開放用の孔が設けられていることを特徴とする電子線用転写マスク。

【請求項6】さらに、前記各小領域に侵入せず、前記応力開放用の孔を被覆する保護部を備えた請求項3記載の電子線用転写マスク。

【請求項7】支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、

前記支持シリコン基板上に、支柱形成位置に対応する位置に開口パターンが設けられたドライエッチング用マスクを形成する工程と、

前記マスクに設けられた開口パターンに合わせて前記支 持シリコン層をドライエッチングする工程と、

前記酸化シリコン層をオーバーエッチングし、メンブレンからなる小領域を含んだ領域を形成する工程と、

前記酸化シリコン層のオーバーエッチングにより形成された前記小領域の外側のメンブレン領域に応力開放用の 孔を形成する工程と、

前記メンブレンからなる小領域に感光基板に転写すべき パターンを形成する工程と、を備えた電子線用転写マス クの製造方法。

【請求項8】支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、

前記シリコン活性層の所定の位置に応力開放用の孔を形 成する工程と、

前記応力開放用孔を埋め込む工程と、

前記応力開放用孔を被覆する保護部を形成する工程と、 前記支持シリコン基板上に、支柱形成位置に対応する位 置に開口パターンが設けられたドライエッチング用マス クを形成する工程と、

前記マスクに設けられた開口パターンに合わせて前記支 持シリコン層をドライエッチングする工程と、

前記酸化シリコン層をオーバーエッチングするととも に、前記応力開放用孔に埋め込まれたものを除去し、メ ンプレンからなる小領域を含んだ領域を形成する工程 と、

前記小領域に感光基板に転写すべきパターンを形成する 工程と、を備えた電子線用転写マスクの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子線投影露光装 置に用いられる電子線用転写マスクブランクス、電子線 用転写マスク及びそれらの製造方法に関する。

[0002]

【従来技術】近年、半導体集積回路素子の微細化に伴い、光の回折限界によって制限される光学系の解像度を向上させるために、X線、電子線やイオンビーム等の荷電粒子線(以下、単に荷電粒子線という)を使用した露

3

光方式(リソグラフィー技術)が開発されている。その中でも、電子線を利用してパターンを形成する電子線露光は、電子線自体を数A(オングストローム)にまで絞ることが出来るため、 1μ m又はそれ以下の微細パターンを形成できる点に大きな特徴がある。

【0003】しかし、従来の電子線露光方式は、一筆書きの方式であったため、微細パターンになればなるほど、絞った電子線で描画せねばならず、描画時間が長く、デバイス生産コストの観点から量産用ウエハの露光には用いられなかった。そこで、所定のパターンを有する転写マスクに電子線を照射し、その照射範囲にあるパターンを投影レンズによりウエハに縮小転写する荷電粒子線縮小転写装置が提案されている。

【0004】回路パターンを投影するためにはその回路パターンが描かれた転写マスクが必要である。転写マスクとして、図6(a)に示すように、貫通孔が存在せず、メンブレン42上に散乱体パターン44が形成された散乱透過転写マスク41と、図6(b)に示すように、電子線を散乱する程度の厚さを有するメンブレン52に貫通孔パターン54が形成された散乱ステンシル転20写マスク51が知られている。

【0005】これらは、感応基板に転写すべきパターンをメンプレン42、52上にそれぞれ備えた多数の小領域42a、52aがパターンが存在しない境界領域により区分され、境界領域に対応する部分に支柱43、53が設けられている。散乱ステンシル転写マスクでは、メンプレンは厚さ約2μm程度のシリコンメンプレンからなり、メンプレンには電子線が透過する開口部(感応基板に転写すべきパターンに相当)が設けられている。

【0006】即ち、一回の電子線によって露光される領域は1mm角程度であるため、この1mm角の小領域に、感応基板の1チップ(1チップの半導体)分の領域に転写すべきパターンを分割した部分パターンをそれぞれ形成し、この小領域を多数敷き詰める構成をとっている。この電子線用の転写マスクは、シリコン基板、SOI基板等を出発原料として、半導体技術を利用した種々の製造方法により製作される。

【0007】しかし、シリコン基板、SOI基板等の転写マスクのメンブレンに相当する部分にボイドが存在すると内部応力が生じ、そのメンブレンにパターンを形成すると、パターンに歪、位置ズレを引き起こし、感光基板に精度良くパターンを転写することができない。従って、メンブレンの内部応力を適切に制御することは、非常に重要であり、その方法として、メンブレン自体の内部応力を極端に低減する、メンブレンの内部応力をメンブレンの外周付近に応力開放用の孔を設ける等の方法が挙げられる。

【0008】図7は、従来の応力開放用の孔が形成された電子線用転写マスクの概略断面図である。従来の電子線用転写マスクは、感光基板に転写すべきパターンが形

成されたメンブレン61と、該メンプレンの外周を固定してこれを支える外周枠と、前記メンブレンを支持し、複数の小領域に分割する支柱63とを備えた転写マスクブランクスであって、メンブレンからなる各小領域62の外周付近に応力開放用の孔64が形成されている。

[0009]

【発明が解決しようとする課題】しかし、支柱の幅を従来の幅に維持して小領域の外周付近に応力開放用の孔を設けた場合、回路パターンを形成する領域が実質的に小さくなってしまう。換言すると、各メンブレンに回路パターンを形成するための所定の面積の領域と、応力開放用孔を形成するための領域とを確保しようとすると、所定のシリコン基板、SOI基板等に形成することができるメンブレン領域の数が少なくなり、半導体チップを製造するにあたって必要となる電子線用転写マスクの数が多くなってしまう。

【0010】この問題に対して、支柱の幅を従来の支柱の幅より細くして、小領域の面積を維持しつつ、応力開放用の孔を形成するための領域を確保することも考えられるが、電子線が小領域からずれる等して応力開放用の孔に照射された場合や複数の小領域を一括して露光する場合に、応力開放用の孔を通過した電子線により、光学特性に悪影響を与えるという問題は解消しない。

【0011】そこで、本発明は、このような従来の問題に鑑みてなされたものであり、メンブレンの応力開放用の孔を設けた場合であっても、回路パターンを形成する領域が実質的に小さくならず、光学特性に悪影響を与えないような電子線用転写マスクブランクス、電子線用転写マスク及びそれらの製造方法を提供することを目的とする。

[0012]

【課題を解決するために手段】前記課題を解決するための第一の手段は、メンプレンと、該メンプレンの外周を固定してこれを支える外周枠と、前記メンプレンを支持し、複数の小領域にを含む領域に分割する支柱とを備えた転写マスクブランクスであって、前記支柱が、少なくとも2層構造を有し、前記メンプレンに最も近い層の支柱幅は、他の層の支柱幅に比べて狭く、前記最も近い層の支柱幅を他の層の支柱幅に比べて狭くすることにより形成された前記小領域の外側のメンプレン領域に応力開放用の孔が設けられていることを特徴とする電子線用転写マスクブランクス(請求項1)である。

【0013】前記課題を解決するための第二の手段は、さらに、前記各小領域に侵入せず、前記応力開放用の孔を被覆する保護部を備えた請求項1記載の電子線用転写マスクブランクス(請求項2)である。前記課題を解決するための第三の手段は、支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、前記支持シリコン基板上に、支柱形成位置に対応する位置に開口パターンが設けられたドライエッチン

5

グ用マスクを形成する工程と、前記マスクに設けられた 開口パターンに合わせて前記支持シリコン層をドライエ ッチングする工程と、前記酸化シリコン層をオーバーエ ッチングし、メンブレンからなる小領域を含んだ領域を 形成する工程と、前記酸化シリコン層のオーバーエッチ ングにより形成された前記小領域の外側のメンブレン領 域に応力開放用の孔を形成する工程と、を備えた電子線 用転写マスクブランクスの製造方法(請求項3)であ る。

【0014】前記課題を解決するための第四の手段は、支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、前記シリコン活性層の所定の位置に応力開放用の孔を形成する工程と、前記応力開放用孔を埋め込む工程と、前記応力開放用孔を被覆する保護部を形成する工程と、前記支持シリコン基板上に、支柱形成位置に対応する位置に開口パターンが設けられたドライエッチング用マスクを形成する工程と、前記マスクに設けられた開口パターンに合わせて前記支持シリコン層をドライエッチングする工程と、前記を持シリコン層をドライエッチングするとともに、前記応力開放用孔に埋め込まれたものを除去し、メンブレンからなる小領域を含んだ領域を形成する工程と、を備えた電子線用転写マスクブランクスの製造方法(請求項4)である。

【0015】前記課題を解決するための第五の手段は、感光基板に転写すべきパターンが形成されたメンブレンと、該メンブレンの外周を固定してこれを支える外周枠と、前記メンブレンを支持し、複数の小領域を含む領域に分割する支柱とを備えた転写マスクであって、前記支柱が、少なくとも2層構造を有し、前記メンブレンに最も近い層の支柱幅は、他の層の支柱幅に比べて狭く、前記最も近い層の支柱幅を他の層の支柱幅に比べて狭くすることにより形成された前記小領域の外側のメンブレン領域に応力開放用の孔が設けられていることを特徴とする電子線用転写マスク(請求項5)である。

【0016】前記課題を解決するための第六の手段は、さらに、前記各小領域に侵入せず、前記応力開放用の孔を被覆する保護部を備えた請求項3記載の電子線用転写マスク(請求項6)である。前記課題を解決するための第七の手段は、支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI基板を用意する工程と、前記支持シリコン基板上に、支柱形成位置に対応する工程と、前記支持シリコンを形成位置に対応する工程と、前記でスクに設けられた関ロパターンに合わせて前記支持シリコン層をオーバーエッチングする工程と、前記酸化シリコン層をオーバーエッチングし、メンブレンからなる小領域を含んだ領域を形成する工程と、前記酸化シリコン層のオーバーエッチングに入り形成された前記小領域の外側のメンプレン領域に応力開放用の孔を形成する工程と、前記メンブレンからなる

6

小領域に感光基板に転写すべきパターンを形成する工程 と、を備えた電子線用転写マスクの製造方法(請求項 7)である。

【0017】前記課題を解決するための第八の手段は、 支持シリコン基板、酸化シリコン層、シリコン活性層か らなるSOI基板を用意する工程と、前記シリコン活性 層の所定の位置に応力開放用の孔を形成する工程と、前 記応力開放用孔を埋め込む工程と、前記応力開放用孔を 被覆する保護部を形成する工程と、前記支持シリコン基 板上に、支柱形成位置に対応する位置に開口パターンが 設けられたドライエッチング用マスクを形成する工程 と、前記マスクに設けられた開口パターンに合わせて前 記支持シリコン層をドライエッチングする工程と、前記 酸化シリコン層をオーバーエッチングするとどもに、前 記応力開放用孔に埋め込まれたものを除去し、メンブレ ンからなる小領域を含んだ領域を形成する工程と、前記 小領域に感光基板に転写すべきパターンを形成する工程 と、を備えた電子線用転写マスクの製造方法(請求項 8) である。

[0018]

【発明の実施形態】以下、本発明にかかる実施形態の電子線用転写マスクブランクス、電子線用転写マスク及びそれらの製造方法を図面を参照しながら説明する。図1(a)は、第一の実施形態の電子線用転写マスクブランクスの概略上面図の一部であり、(b)は、そのAーA、矢視拡大断面図である。

【0019】第一の実施形態の電子線用転写マスクブランクスは、メンブレン1と、該メンブレン1の外周を固定してこれを支える外周枠と、前記メンブレン1を支持し、複数の小領域2を含む領域に分割する支柱3とを備え、前記支柱3が、酸化シリコン部4と支持シリコン部5とからなり、酸化シリコン部4の幅は、支持シリコン部5の幅に比べて狭い。

【0020】メンプレンの膜厚は $1\sim2\mu$ m程度であり、支持シリコン部の幅は約 100μ m $\sim200\mu$ mで、酸化シリコン部の幅は約 40μ m $\sim140\mu$ mであるので、酸化シリコン部の側面は、支持シリコン部の側面より数 $\mu\sim30\mu$ m程度内側に入り込んでいるので、電子線が支柱側からメンブレンに向けて照射された場合、支柱の陰になる小領域の外側にメンブレン領域が形

合、支柱の陰になる小領域の外側にメンプレン領域が形成され、その領域に縦 $50\mu m \sim 200\mu m$ 、横 $1\mu m \sim 10\mu m$ の長方形の応力開放用の孔が16ケ設けられている。

【0021】なお、応力開放用の孔の大きさ、形状、数はこの例に限定されない。また、図2は、第一実施形態の電子線用転写マスクの概略断面図である。第一実施形態の電子線用転写マスクは、前述した第一実施形態の電子線用転写マスクブランクスのメンプレン1からなる小領域2に、感光基板に転写すべきパターン7が形成されたものである。

れている。

7

【0022】図3は、第一の実施形態の電子線用転写マスクプランクスの製作工程の一例を示す図である。まず、一般的な製造方法により製作した支持シリコン基板、酸化シリコン層、シリコン活性層からなるSOI(Silicon on Insulater)基板を用意する(図3a)。【0023】基板裏面に酸化シリコン層14を成膜し、その酸化シリコン層の一部(支柱形成位置に対応する位置)を窓(開口)パターン形状15にエッチングすることによりドライエッチング用マスク16を形成する(図3b)。次に、支持シリコン基板11をドライエッチング用マスク16に形成された開口パターン15に合わせてエッチングする(図3c)。

【0024】シリコンと酸化シリコンとのエッチング選択比の違いにより、支持シリコン基板11のエッチングは酸化シリコン層12まで行われ、酸化シリコン層12及びシリコン活性層13がシリコン製の外周枠11bとシリコン製の支柱11aにより支持され、外周枠11bと支柱11a間及び支柱11a間に開口を有する構造体が形成される。

【0025】次に、開口において露出した酸化シリコン層12をフッ化水素酸により等方的エッチングにより除去するとともに、シリコン活性層と支柱の間に形成された酸化シリコン層12をオーバーエッチングすると、シリコン活性層13がシリコンメンブレン13aとなる(図3d)。メンブレン13a上にレジストを塗布し、パターンを形成する小領域の外側であって、オーバーエッチングされた酸化シリコン層12aの外側に相当する位置に応力開放用孔のパターンを電子線描画装置などを用いて焼き付け、転写する(図3e)。

【0026】かかる所定のパターン17が転写されたレ 30 ジストをマスク16としてメンプレン13aをエッチングし、応力開放用の孔18を形成し、電子線用転写マスクブランクスが完成する(図3f)。電子線用転写マスクブランクスのメンプレン13a上にレジストを塗布し、所定の微細パターンを電子線描画装置などを用いて焼き付け、転写し、所定のパターンが転写されたレジストをマスクとしてメンプレン13aをエッチングして所定のパターンを形成して、電子線用転写マスクを完成させる(参照図2)。

【0027】図4は、第二の実施形態の電子線用転写マスクブランクスの概略上面図の一部であり、(b)は、そのB-B、矢視拡大断面図である。第二の実施形態の電子線用転写マスクブランクスは、メンブレン21と、該メンブレンの外周を固定してこれを支える外周枠と、前記メンブレン21を支持し、複数の小領域22を含む領域に分割する支柱23とを備え、前記支柱23が酸化シリコン部24と支持シリコン部25とからなり、酸化シリコン部24の幅は、支持シリコン部25の幅に比べて狭い。

【0028】メンブレンの膜厚は1~2 μ m程度であ

り、支持シリコン部の幅は約 100μ m~ 200μ m で、酸化シリコン部の幅は約 40μ m~ 140μ mであるので、酸化シリコン部の側面は、支持シリコン部の側面より数 μ m~ 30μ m程度内側に入り込んでいるので、電子線が支柱側からメンブレンに向けて照射された場合、支柱の陰になる小領域の外側にメンブレン領域が形成され、その領域に縦 50μ m~ 200μ m、横 1μ

m~10μmの長方形の応力開放用の孔が16ヶ設けら

【0029】また、小領域22に侵入せず、応力開放用の孔26を被覆する保護部27が形成されている。メンブレン領域に保護部が形成されているので、後述する工程において、小領域に回路パターンを形成する際にレジストを塗布しても、応力開放用の孔からレジストが入り込むことがない。

【0030】また、保護部の膜厚は、約 0.05μ m~ 0.1μ mであるので、応力開放用孔が形成されているメンブレンの膜厚 $1\sim2\mu$ mに比べて極めて小さく、保護部により応力開放孔が被覆されていても、応力開放用孔をメンブレンに設けた効果は、ほとんど低減されない。図5は、第二の実施形態の電子線用転写マスクブランクスの製作工程の一例を示す図である。

【0031】まず、一般的な製造方法により製作した支持シリコン基板31、酸化シリコン層32、シリコン活性層33からなるSOI(Silicon on Insulater)基板を用意する(図5a)。シリコン活性層33に応力開放用の孔34を形成する(図5b)。かかる孔の形成位置は、後述する工程により形成されるメンブレンからなる小領域の外側であって、オーバーエッチングされた酸化シリコン層の外側に相当する位置である。

【0032】前記応力開放用孔34を埋め込むようにシリコン活性層33上に酸化シリコン膜35を形成する(図5c)。この酸化シリコン膜35をCMP等の研磨法により、酸化シリコン膜を除去し、応力開放用の孔に埋め込まれた酸化シリコン35aのみを残す(図5d)。さらに、シリコン活性層上のLPCVD法等により、窒化シリコン膜36を形成する(図5e)。

【0033】後述する工程により形成されるメンブレンからなる小領域に侵入せず、かつ応力開放用の孔をカバーするように窒化珪素膜36をドライエッチング法により除去し保護部37を形成する(図5f)。基板裏面に酸化シリコン層を成膜し、その酸化シリコン層の一部(支柱形成位置に対応する位置)を窓(開口)パターン形状にエッチングすることによりドライエッチング用マスクを形成する。

【0034】次に、支持シリコン基板31をドライエッチング用マスクに形成された開口パターンに合わせてエッチングする(図5g)。シリコンと酸化シリコンとのエッチング選択比の違いにより、支持シリコン基板31のエッチングは酸化シリコン層32まで行われ、酸化シ

9

リコン層32及びシリコン活性層33がシリコン製の外 周枠31bとシリコン製の支柱31aにより支持され、 外周枠31bと支柱31a間及び支柱31a間に開口を 有する構造体が形成される。

【0035】次に、開口において露出した酸化シリコン層32をフッ化水素酸により等方的エッチングにより除去するとともに、シリコン活性層と支柱の間に形成された酸化シリコン層32をオーバーエッチングすると、シリコン活性層33がシリコンメンブレン33aとなり、さらに応力開放用孔に埋め込まれた酸化シリコン35aもエッチングされ、電子線用転写マスクブランクスが完成する(図5h)。

【0036】電子線用転写マスクブランクスのメンブレン33a上にレジストを塗布し、所定の微細パターンを電子線描画装置などを用いて焼き付け、転写し、所定のパターンが転写されたレジストをマスクとしてメンブレン33aをエッチングして所定のパターンを形成し、電子線用転写マスクを完成させる。さらに、第一、第二実施形態の電子線用転写マスクは、電子線用転写マスクの強度を補強する、転写マスクステージなどの搬送系における取扱いを容易にする等の観点から、転写マスクの外周枠の下面に、より強度の高い補強枠を接合した補強枠付き電子線用転写マスクであっても良い。

【0037】補強枠と転写マスクの外周枠との接合方法は、接着剤による接合、共晶接合、陽極接合等である。 【0038】

【発明の効果】以上説明した通り、本発明にかかる電子線用転写マスクブランクスによれば、回路パターンを形成する領域(小領域)を実質的に小さくせずに、応力を適切に調整することができる。また、応力開放用の孔は、電子線が支柱側からメンブレンに向けて照射された場合、支柱の陰になる小領域の外側のメンブレン部分に形成されているので、応力開放孔を電子線が通過せず、光学特性に悪影響を与えることがない。

【図·2】

10

【図面の簡単な説明】

【図1】第一の実施形態の電子線用転写マスクブランクスの概略上面図の一部及び拡大断面図である。

【図2】第一の実施形態の電子線用転写マスクの概略断 面図である。

【図3】第一の実施形態の電子線用転写マスクブランクスの製作工程の一例を示す図である。

【図4】第二の実施形態の電子線用転写マスクブランクスの概略上面図の一部及び拡大断面図である。

【図5】第二の実施形態の電子線用転写マスクブランクスの製作工程の一例を示す図である。

【図6】電子線縮小転写装置で用いられる転写マスクの うち(a)は散乱透過マスク、(b)は散乱ステンシル マスクの概略図である。

【図7】従来の電子線用転写マスクブランクスの概略上 面図の一部及び拡大図である。

【符号の説明】

1、11、42、52、61・・・メンプレン

2、22、62・・・小領域

○ 3、23、43、53、63・・・支柱

4、24・・・酸化シリコン部

5、25・・・支持シリコン部

6、18、26、34、64・・・応力開放用孔

11、31・・・支持シリコン基板

12、32・・・酸化シリコン層

13、33・・・シリコン活性層

14、37・・・開口パターン

15、16・・・ドライエッチング用マスク

35・・・酸化シリコン膜

36・・・窒化シリコン膜

27、37・・・保護部

41・・・散乱透過転写マスク

44・・・散乱体パターン

54、65・・・貫通孔パターン

【図6】

-63

【図5】

(a)

(P)

(c)

(d)

(e)

(f)

(h)

