05 Neural Networks

Convolutional Neural Networks (CNNs)

Review: fully-connected (FC) neural network

Vector representation:

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_{p_1} \end{bmatrix}^T \qquad Y = \begin{bmatrix} y_1^m & y_2^m & \cdots & y_{p_m}^m \end{bmatrix}^T$$

Review: input-output mapping

Review: example

$$a_{1}^{(2)} = f(W_{11}^{(1)}x_{1} + W_{12}^{(1)}x_{2} + W_{13}^{(1)}x_{3} + b_{1}^{(1)})$$

$$a_{2}^{(2)} = f(W_{21}^{(1)}x_{1} + W_{22}^{(1)}x_{2} + W_{23}^{(1)}x_{3} + b_{2}^{(1)})$$

$$a_{3}^{(2)} = f(W_{31}^{(1)}x_{1} + W_{32}^{(1)}x_{2} + W_{33}^{(1)}x_{3} + b_{3}^{(1)})$$

$$h_{W,b}(x) = a_{1}^{(3)} = f(W_{11}^{(2)}a_{1}^{(2)} + W_{12}^{(2)}a_{2}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + b_{1}^{(2)})$$

Review: gradient based optimization

Calculate gradient on each training instance:

- 1) Forward propagation: calculate outputs from 1st layer to last layer
- 2) Backward propagation: calculate errors δ from last layer to 1st layer:

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)}), \ \forall l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$$

If Sigmoid activation is used: $f'(z_i^{(l)}) = f(z_i^{(l)})(1 - f(z_i^{(l)}))$

3) Calculate gradients:

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x, y) = a_j^{(l)} \delta_i^{(l+1)}$$
$$\frac{\partial}{\partial b_i^{(l)}} J(W, b; x, y) = \delta_i^{(l+1)}.$$

Review: back propagation algorithm

(1) Initialize W and b randomly

- (2) Set $\Delta W^{(l)}, \Delta b^{(l)}$ to 0 $\forall l = 1, 2, 3, \dots, n_l 1$
- (3) For i = 1 to m (the number of samples),
 - a): Calculate $\nabla_{W^{(l)}}J(W,b;x,y)$, $\nabla_{b^{(l)}}J(W,b;x,y)$
 - **b):** let $\Delta W^{(l)} := \Delta W^{(l)} + \nabla_{W^{(l)}} J(W, b; x, y)$
 - c): let $\Delta b^{(l)} := \Delta b^{(l)} + \nabla_{b^{(l)}} J(W, b; x, y)$

(4) Update W and b:

$$W^{(l)} = W^{(l)} - \alpha \left[\left(\frac{1}{m} \Delta W^{(l)} \right) + \lambda W^{(l)} \right]$$
$$b^{(l)} = b^{(l)} - \alpha \left[\frac{1}{m} \Delta b^{(l)} \right]$$

Roadmap

Fully-connected neural network

Convolutional neural network (CNN)

Popular CNN architectures

Image classification task

Fully-connected neural network solution

The issue of FC neural network

- Issue: too many neurons (weights)
 - Think about the flower classification task
 - Insight: Human eyes perceives from local to global

- Fix: local perceiving, weights sharing
 - Two assumptions
 - Proximate pixels are correlated, while distant pixels are independent
 - Different local regions preserves identical statistical properties in images

Fix issue: local perception

Insight: proximate pixels are correlated, while faraway pixels are independent

Fix: replace full connection by local connection

Fix issue: sharing weights

Insight: different local regions preserves identical statistical properties in images

Fix: different filters/kernels share a group of weights

Convolution

Local perception + Weight sharing = Convolution

Convolution

- Filter size: k x k (3x3)
- Stride: s (1)
- Padding: p (1)
- $w_{in}=5$, $h_{in}=5$
- w_{out}=5, h_{out}=5

$$w_{out} = \lfloor (w_{in} - k + 2 \times p)/s + 1 \rfloor$$
$$h_{out} = \lfloor (h_{in} - k + 2 \times p)/s + 1 \rfloor$$

Convolution with multiple filters

Problem: only one kernel is too weak in feature learning

Fix: convolution with multiple kernels

Feature map and pooling

Max-pooling: max(a,b,c...) Average-pooling: sum(a,b,c...)/N

- Why pooling?
 - Another way to reduce the number of weights
 - Increase receptive field
 - Remove noise

Definition: CNN Receptive Field

The **receptive field** is defined as the region in the input space that a particular **CNN**'s feature is looking at (i.e., be affected by). A **receptive field** of a feature can be described by its center location and its size.

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less

Why CNN for Image

The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

cat dog

Can repeat Many times

Property

Some patterns are much smaller than the whole image

Property 2

➤ The same patterns appear in different regions.

Property

Subsampling the pixels will not change the object

Can repeat many times

cat dog

Can repeat many times

Those are the network parameters to be learned.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1
Matrix

-1	~	1
-1	1	-1
-1	1	-1

Filter 2
Matrix

Property 1

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

We set stride=1 below

Filter 1

stride=1

V	0	0	0	0	1
0	M	0	0	1	0
0	0	X	1	0	0
V	0	0	0	1	0
0	V	0	0	1	0
0	0		0	1	0

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Colorful image

Colorful image

Convolution v.s. Fully Connected

Fullyconnected

cat dog

Can repeat many times

CNN – Max Pooling

1	7	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

CNN – Max Pooling

A new image

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

The whole CNN cat dog

CNN architecture as a whole

$$w_{out} = \lfloor (w_{in} - k + 2 \times p)/s + 1 \rfloor$$

Classic CNN architecture:

Convolution layer 1 Pooling layer 1 Convolution layer n Pooling layer n Pooling layer n Pooling layer n (FC) layers

Question: how many parameters (weights) within the network? Suppose stride = 1, padding = 0, and do not use bias parameters

Train CNN

- The main computation of CNN training is calculating errors (recall back propagation)
- Three conditions:
 - If FC layer: the same as fully-connected network
 - If convolutional layer: see <u>UFLDL</u>
 - If pooling layer: <u>UFLDL</u>
- Open CNN library saves: PyTorch, Caffe, Tensorflow etc.

Train CNN with transfer-learning

Transfer weights from task A to task B

Tips for transfer learning

- Insight: features become more and more specific to the task from 1st layer to last layer
- Transfer learning strategies:

B size vs. A size	B task vs. A task	Transfer learning
small	similar	Just fine-tune FC layers
small	distinct	Train SVM classifier with features from beginning layers
large	similar	Fine-tune all layers
large	distinct	Train from scratch or fine-tune all layers

Using small learning rates for transfer learning

What if A and B images have different sizes?

Solution 1: scale B images to the same size of A

 Solution 2: no scaling, but to modify the sizes of stride and/or pooling (without modifying the sizes of convolutional kernels)

Transfer learning with data augmentation

Data augmentation: random scaling, rotating, horizontal flipping, RGB jittering, style transfer with GAN

Useful when training data is limited

Roadmap

Fully-connected neural network

Convolutional neural network (CNN)

Popular CNN architectures

AlexNet

By Alex Krizhevsky

VGG 16

ResNet

Resnet vs. plain and VGG 19

Summary

CNN can tackle images effectively and efficiently

Train CNN is a breeze with open libraries

 Transfer learning is important to deal with small training sets

Acknowledgement

Reference and thanks to:

Sandford University CS221 Course:

Artificial Intelligence: Principles and Techniques

https://stanford-cs221.github.io/autumn2022/

National Taiwan University ML2020 Course:

Machine Learning

https://speech.ee.ntu.edu.tw/~hylee/ml/2020-spring.php