Image Classification

Nadia Ahmed

Computer Vision Task: Image Classification

"Cat"

"Dog"

Image Classification:

- **Input:** image
- Output: single category for the whole image
- Why is this interesting?
 - Useful for image search and other applications.
 - Simple input/output specification, can resize images to the same dimensions, standard loss functions.
 - Requires reasoning about what is happening in the image-analysis and understanding of the image.
 - Useful high level proxy task to learn good representations which transfer to new tasks and domains.
 - Given a big dataset we can train a representation and take that model and fine tune it on another task and we get a way with fewer data on the target task b/c we have pretrained on a much larger dataset

Feature Learning vs Feature Engineering

- Edge detector: early attempts of hand-engineering object detection algorithms failed as object shapes and appearances are too hard to describe
- Need ML and labeled datasets to learn relationships

*source: introtodeeplearning

The Data Driven Approach

- Popular Classification Single Label Datasets
 - MNIST: 60k training w/ labels 10k test 28x28, 10 categories
 - Caltech101: 101 categories
 - ImageNet: 15,000,000 images w/ 22,000 categories
 - CIFAR-10: 60,000 images 10 categories

- An Aside and Preview of Coming Attractions: Transfer Learning
 - Models pre-trained on large datasets generalize
 - Can get CNNs pre-trained on generic tasks (like ImageNet)
 - Can fine-tune (retrain) only the last layers on little data of a new task which leads to state of the art performance
 - Usual standard approach today-can download model from internet

Simple Models

Nearest Neighbor Classifier (find the image distance)

 $d(I_1, I_2) = \sum |I_1(p) - I_2(p)|_1$

*source: Stanford 231n

Simple Models

L	test image				
	56	32	10	18	
	90	23	128	133	
	24	26	178	200	
	2	0	255	220	

training image				
10	20	24	17	
0	10	90	100	

10	20	2-1	· ' ·
8	10	89	100
12	16	178	170
4	32	233	112

=	46	12	14	1	
	82	13	39	33	→ 456
	12	10	0	30	
	2	32	22	108	

Nearest Neighbor Classifier (find the image distance)

$$d(I_1, I_2) = \sum |I_1(p) - I_2(p)|_1$$

*source: <u>Stanford 231n</u>

Convolutional Neural Networks

Convolutional Neural Networks

- Convolutional layers
- Downsampling layers
- Fully Connected layers

Convolutional Layer

- Compared to fully conn. layers (left), convolutional layers (right) share weights which reduces parameters significantly.
- Convolutional layers are translationally equivariant.

*source: <u>A. Geiger</u> <u>Wikipedia: Convolution</u>

*source: A. Geiger

Convolution is Happening in 3D

Fully Connected MultiLayer Perceptron (MLP) vs Convolutional Layers

Multilayer Perceptron:

- Not translational invariant
- Prone to overfitting
 - Since every pixel connects to every neuron the number of weights becomes HUGE which means training takes longer which means the number of parameters to tune becomes larger!

Fully Connected MultiLayer Perceptron (MLP) vs Convolutional Layers

ConvNet:

- Translational equivariance (invariance for classification)
 - parameter sharing: same weights are used to process different parts of the input image
- Eyes of Network

Convolutional Layers

- filter/kernel moves across the input, and at each filter location, a convolution operation is performed, which produces a single number
- This value is then passed through an activation function, and the output from the activation function populates the corresponding entry in the output, also known as an activation map
- the activation map is a summary of features from the input via the convolution process
- elements in the kernel are weights that are learned by the network during training
- Sliding the filter one pixel at a time corresponds to a stride of one
- The region of the filter performs the operation on is called the receptive field

Convolutional Layers

** Sobel Filter for math demonstration purposes only. Actual elements in the kernel are weights that are learned by the network during training

- filter/kernel moves across the input, and at each filter location, a convolution operation is performed, which produces a single number
- This value is then passed through an activation function, and the output from the activation function populates the corresponding entry in the output, also known as an activation map
- the activation map is a summary of features from the input via the convolution process
- elements in the kernel are weights that are learned by the network during training
- Sliding the filter one pixel at a time corresponds to a stride of one
- The region of the filter performs the operation on is called the receptive field

Convolutional Layer Properties

- The **depth of a filter** (channels) must **match** the depth of the input data (i.e., the number of channels in the input).
- The **spatial size** of the filter is a **design choice** but 3x3 is very common (or sometimes 5x5).
- The number of filters is also a design choice and dictates the number of activation maps produced in the output.
- Multiple activations maps are sometimes collectively referred to as "an activation map containing multiple channels." But we often refer to each channel as an activation map.
- Each channel in a filter is referred to as a kernel, so you can think of a filter as a container for kernels.
- A single-channel filter has just one kernel. Therefore, in this case, the filter and the kernel are one and the same.
- The weights in a filter/kernel are initialized to small random values and are learned by the network during training.
- The number of trainable parameters in a convolutional layer depends on the number of filters, the filter size, and the number of channels in the input.

TLDR: Convolutional Layer

- Input: volume of size W₁ x H₁ x D₁
 Requires 4 hyperparameters

 Number of filters K
 The kernel size/spatial extent F
 The stride S
 The amount of zero padding P

 Output: volume of size W₂ x H₂ x D₂ where:

 W₂ = (W₁ F + 2P)/S + 1
 H₂ = (H₁ F + 2P)/S + 1
- With parameter sharing, it introduces F*F*D₁ weights per filter, for a total of (F*F*D₁)-K weights and K biases.
- In the output volume, the dth depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the dth filter over the input volume with a stride of S, and then offset by dth bias

*source: Stanford 231n

Downsampling Layer

Downsampling Layer

reduces the
spatial
resolution
increases
the
receptive
field

Downsampling: Pooling Layer

- Stride s=2 and kernel size 2x2 reduces spatial dimension by 2
- Pooling has no parameters
 - o max pooling
 - o min pooling
 - mean pooling
- Pooling is applied to each channel separately preserving the number of channels

Downsampling: Pooling Layer

- Stride s=2 and kernel size 2x2 reduces spatial dimension by 2
- Pooling has no parameters
 - o max pooling
 - o min pooling
 - mean pooling
- Pooling is applied to each channel separately preserving the number of channels

Pooling Layer Example: Max Pooling

TLDR: Pooling Layer

- **Input:** volume of size $W_1 \times H_1 \times D_1$
- Requires two hyperparameters:
 - The spatial extent/kernel size **F**
 - The stride S
- Produces a volume of size W₂ x H₂ x D₂

```
\circ W<sub>2</sub> = (W<sub>1</sub> - F)/S + 1
\circ H_2 = (H_1 - F)/S + 1
```

- Introduces zero parameters since it computes a fixed function of the input
- For Pooling layers, it is not common to pad the input using zero-padding

*source: Stanford 231n

- ullet Reshape $\widehat{H_{i-1}}[B,X,Y,C]$ into $\widehat{H_{i}}[B,C]$
- \bullet Now X and Y are reshaped into the feature channel dimension C

- The number of neurons in the output layer of the network is equal to the number of classes
- Each output neuron is associated with a specific class
- Each neuron's value (after the softmax layer) represents the probability that the associated class for that neuron corresponds to the class associated with the input image.

The Output

Notice that the output of our fully connected layer becomes the input of our **softmax** function which outputs a one dimensional array that maps probabilities over labels or categories.

Since image classification results in a label or category, we need to convert that label which is a string to a numeric value that the model can understand.

Categorical data can be

- nominal: one-hot encoded (preferred)
- ordinal: label encoded (arbitrary numeric)

*source: Wikipedia

Loss Function

The Output and Loss

- The **output layer** is the last layer which calculates the output
- The **loss function** compares the result of the output layer to the target
- In image classification we use a softmax output layer and a cross entropy loss to get probability values over labels.

*source: A. Geiger

Model Output: Categorical Distribution

- Obtain a probability distribution over the possible classes that the model can predict
- A vector of scores for each possible class
- The representation is important because it allows us to quantify the model's uncertainty about the predictions and compare it with the ground truth labels.

Categorical Distribution: Index label

$$p(y_{\mu_c} = c) = \mu_c$$

• : probability for class c

One Hot Encoding Notation:

$$p(y) = \prod_{c=1}^{C} \mu_c^{y_c} \quad _{y_c \in [0,1]}$$

- y: "one-hot" vector with
- $y = (0, ...0, 1, ..., 0)^{T}$ with all zeros except for one (the true class)

sunspots

*source: <u>A. Geiger</u> S. Chatterjee

One-Hot Vector Representation

<u>Class</u>	<u>Label</u>	y(indexed)	<u>y(one-hot)</u>
	"Cat"	1	[1,0] [™]
	"Dog"	2	[0,1] [™]

- One hot vector y w/ binary elements
- Index c where $y_c = 1$ determines the correct class

*source: A. Geiger

Categorical Distribution & Cross-Entropy Loss

Let $p_{model}(y|x,w) = \prod_{c=1}^C f_w^{(c)}(x)^{y_c}$ be a Categorical distribution

Maximizing the log-likelihood leads to the cross-entropy loss:

$$\begin{split} \hat{\mathbf{w}}_{ML} &= \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p_{model}(\mathbf{y}_{i}|\mathbf{x}_{i}, \mathbf{w}) \\ &= \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log \prod_{c=1}^{C} f_{\mathbf{w}}^{(c)}(\mathbf{x}_{i})^{y_{i,c}} \\ &= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{c=1}^{C} -y_{i,c} \log f_{\mathbf{w}}^{(c)}(\mathbf{x}_{i}) \end{split}$$
Math explanation: A. Webb

The target $y = (0, ..., 0, 1, 0..., 0)^T$ is a "one-hot" vector with y_c as it's Cth element.

Softmax

How can we ensure that $f_w^{(c)}(x)^{y_c}$ predicts a valid categorical distribution?

We must guarantee 2 things:

$$f_w^{(c)}(x) \in [0,1]$$

$$\sum_{c=1}^C f_w^{(c)}(x) = 1$$

Use **softmax** to do this:

$$\operatorname{softmax}(\mathbf{x}) = \left(\frac{\exp(x_1)}{\sum_{k=1}^{C} \exp(x_k)}, \dots, \frac{\exp(x_C)}{\sum_{k=1}^{C} \exp(x_k)}\right)$$

Let the score vector **s** denote the network output after the last affine layer, then:

$$f_{\mathbf{w}}^{(c)}(\mathbf{x}) = \frac{\exp(s_c)}{\sum_{k=1}^{C} \exp(s_k)} \quad \Rightarrow \quad \log f_{\mathbf{w}}^{(c)}(\mathbf{x}) = s_c - \log \sum_{k=1}^{C} \exp(s_k)$$
*source: A. Geiger

Log Softmax

Let the score vector **s** denote the network output after the last affine layer.

$$f_{\mathbf{w}}^{(c)}(\mathbf{x}) = \frac{\exp(s_c)}{\sum_{k=1}^{C} \exp(s_k)} \quad \Rightarrow \quad \log f_{\mathbf{w}}^{(c)}(\mathbf{x}) = s_c - \log \sum_{k=1}^{C} \exp(s_k)$$

- If c is the correct class label we would like to maximize the log softmax
 - we would like s for the correct class to increase
 - \circ we would like s_k to decrease (negative)
 - \circ The second term can be approximated to $\log \sum_{k=1}^C \exp(s_k) pprox \max_k s_k$ since $\exp(s_k)$ insignificant for all $s_k < \max_k s_k$
 - The loss is always strongly penalized for incorrect predictions
 - If the correct class has the largest score, both terms cancel and it will contribute very little to the overall training cost.

Softmax

- Softmax responds to differences between inputs
- It is invariant to adding the same scalar to all its inputs:

$$softmax(x) = softmax(x+c)$$

 Another variant of this is (taking into account floating point approximations required by computation):

$$softmax(x) = softmax(x - \max_{k=1,...,L} x_k)$$

It allows for accurate computation even when x is large

Cross Entropy Loss

The cross entropy loss for a single training sample $(x,y) \in \chi$:

$$\sum_{c=1}^{C} -y_c \log f_w^{(c)}(x)$$

Example: Suppose 4 classes and 4 training samples:

Input x	Label y	Predicted s	softmax(s)	CE Loss
"Cat"	[1,0,0,0] ^T	[+3,+1,-1,-1] ^T	[0.85,0.12,0.02,0.01] ^T	0.16
"Dog"	[0,1,0,0] [⊤]	[+3,+3,+1,+0] ^T	[0.46,0.46,0.06,0.02] [™]	0.78
"Bunny"	[0,0,1,0] [⊤]	[+1,+1,+1,+1] [™]	[0.25,0.25,0.25,0.25] [™]	1.38
"Horse"	[0,0,0,1] [⊤]	[+3,+2,+3,-1] ^T	[0.42,0.15,0.42, <mark>0.01</mark>] [⊤]	4.87 ← contributes most to loss!

*source: A. Geiger

Popular Image Classification Architectures

- <u>LeNet-5</u>: 2Conv, 2Pool, 2Fully Connected (MNIST)
- <u>AlexNet</u>: 8 layers, ReLus, dropout, augmentation
- VGG (slowest b/c of number of parameters): 16, 19 layer versions (uses 3x3 receptive field instead of 7x7)
- <u>Inception/GoogLeNet</u>: 22 layers, inception modules
- ResNet: 152 layers use residuals w/ skip connections

Accuracy vs Complexity

