Problem Set 10 Real Analysis I

Bennett Rennier barennier@gmail.com

January 15, 2018

Ex 7.3 Suppose f is integrable. Prove that if either $A_n \uparrow A$ or $A_n \downarrow A$, then $\int_{A_n} f d\mu \rightarrow \int_A f d\mu$.

Proof. Let $A_n \uparrow A$ or $A_n \downarrow A$. Either way, we see that $f\chi_{A_n} \to f\chi_A$ as $n \to \infty$ and that $|f\chi_{A_n}| \le |f|$. Since |f| is integrable, it dominates the $f\chi_{A_n}$'s. By the Dominated Convergence Theorem, this proves that

$$\lim_{n \to \infty} \int f \chi_{A_n} \, d\mu = \int \lim_{n \to \infty} f \chi_{A_n} \, d\mu = \int f \chi_A \, d\mu$$

which proves the statement for both cases.

Ex 7.4 Show that if $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely almost everywhere, is integrable, and its integral is equal to $\sum_{n=1}^{\infty} \int f_n d\mu$. (NOTE: There were some typos in the original that I've corrected.)

Proof. Let $\varphi(x) = \sum_{n=1}^{\infty} |f_n(x)|$. Since each $|f_n|$ is positive and $|\varphi| = \varphi$, this means that by Proposition 7.6:

$$\int |\varphi| \, d\mu = \int \varphi \, d\mu = \int \sum_{n=1}^{\infty} |f_n| \, d\mu = \sum_{n=1}^{\infty} \int |f_n| \, d\mu < \infty$$

Since $\sum_{n=1}^{\infty} f_n(x) \leq \sum_{n=1}^{\infty} |f_n(x)| = \varphi$, this proves that $\sum_{n=1}^{\infty} f_n(x)$ is integrable. Since $\sum_{n=1}^{\infty} f_n(x)$ is integrable, it's finite almost everywhere, and thus it converges absolutely almost everywhere. Now let $g_k = \sum_{n=1}^k f_n$. We see that

$$|g_k| = \left| \sum_{n=1}^k f_n \right| \le \sum_{n=1}^k |f_n| \le \sum_{n=1}^\infty |f_n| = \varphi$$

Since $g_k \to \sum_{n=1}^{\infty} f_n(x)$ and g_k is dominated by φ , which is an integrable function, then by the Dominated Convergence Theorem, we see that

$$\int \sum_{n=1}^{\infty} f_n \, d\mu = \lim_{k \to \infty} \int g_k \, d\mu = \lim_{k \to \infty} \int \sum_{n=1}^{k} f_n \, d\mu = \lim_{k \to \infty} \sum_{n=1}^{k} \int f_n \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu$$

Ex 7.7 Suppose (X, \mathcal{A}, μ) is a measure space, f and each f_n is integrable and non-negative, $f_n \to f$ almost everywhere, and $\int f_n d\mu \to \int f d\mu$. Prove that for each $A \in \mathcal{A}$

$$\int_A f_n \, d\mu \to \int_A f \, d\mu$$

Proof. Since $f_n - f_n \chi_A$ is clearly positive and integrable, then by Fatou's Lemma, we see that

$$\int f - \limsup \int_A f_n = \liminf \int (f_n - f_n \chi_A) \ge \int \liminf (f_n - f_n \chi_A) = \int f - \int_A f$$

Since f is integrable, $\int f$ is finite. This means we can cancel them and get

$$\limsup \int_A f_n \, d\mu \le \int_A f \, d\mu$$

Similarly, using $f_n + f_n \chi_A$, which is also clearly positive and integrable, we get that

$$\int_A f \, d\mu \le \liminf \int_A f_n \, d\mu$$

Thus

$$\limsup \int_{A} f_n \, d\mu \le \int_{A} f \, d\mu \le \liminf \int_{A} f_n \, d\mu$$

Since $\limsup x_n \ge \liminf x_n$ for any sequence, this means that these inequalities are really equalities. Since \liminf and \limsup agree, that means

$$\int_A f_n \, d\mu \to \int_A f \, d\mu$$

Ex 7.17 Prove that for p > 0

$$\sum_{k=1}^{\infty} \frac{1}{(p+k)^2} = -\int_0^1 \frac{x^p}{1-x} \log x \, dx$$

For this problem, you may use the Fundamental Theorem of Calculus.

Proof. For 0 < x < 1, we see that

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$

which means that

$$-\int_0^1 \frac{x^p}{1-x} \log x \, dx = -\int_0^1 \sum_{n=0}^\infty x^{n+p} \log x \, dx = \int_0^1 \sum_{n=0}^\infty x^{n+p} \left(-\log x\right) dx$$

Since this is non-negative over 0 < x < 1, by Proposition 7.6, we see that

$$\int_0^1 \sum_{n=0}^\infty x^{n+p} (-\log x) \, dx = -\sum_{n=0}^\infty \int_0^1 x^{n+p} \log x \, dx$$

Using integration by parts, letting $u = \log x$ and $dv = x^{n+p}dx$, we get that

$$\int_0^1 x^{n+p} \log x \, dx = \left[uv \right]_0^1 - \int_0^1 v \, du = \left[\log x \frac{x^{n+p+1}}{n+p+1} \right]_0^1 - \int_0^1 \frac{x^{n+p+1}}{n+p+1} \cdot \frac{1}{x} \, dx$$

This means that

$$\int_0^1 x^{n+p} \log x \, dx = \log 1 \frac{1^{n+p+1}}{n+p+1} - \lim_{x \to 0} \log x \frac{x^{n+p+1}}{n+p+1} - \frac{1}{n+p+1} \int_0^1 x^{n+p+1} \, dx$$

Since p > 0, then n + p + 1 > 0, which means that $x^{n+p+1} \log x \to 0$ as $x \to 0$. This shows that

$$\int_0^1 x^{n+p} \log x \, dx = 0 - 0 - \frac{1}{(n+p+1)^2}$$

Thus, we finally get that

$$-\int_0^1 \frac{x^p}{1-x} \log x \, dx = -\sum_{n=0}^\infty \int_0^1 x^{n+p} \log x \, dx = -\sum_{n=0}^\infty -\frac{1}{(n+p+1)^2} = \sum_{k=1}^\infty \frac{1}{(k+p)^2}$$