1	Nematicidal Compositions and Methods of Using Them
2	
3	The present invention relates to nematicidal
4	compositions comprising a terpene component, and to
5	methods of killing nematodes by administration of a
6	nematicidal composition comprising a terpene
7	component.
8	
9 ·	Nematodes (Kingdom: Animalia, Phylum: Nematoda) are
10	microscopic round worms. They can generally be
11	described as aquatic, triploblastic, unsegmented,
12	bilaterally symmetrical roundworms, that are
13	colourless, transparent, usually bisexual, and worm-
14	shaped (vermiform), although some can become swollen
15	(pyroform). It is suggested that nematodes are the
16	most abundant form of animal life and only about 3%
17	of nematode species have been studied in detail.
18	
19	Many nematodes are obligate parasites and a number
20	of species constitute a significant problem in
21	agriculture. It has been suggested that annual crop

1	loss estimates caused by plant parasitic nematodes
2	are roughly \$80 billion worldwide, with \$8 billion
3	in the USA. Nematodes are a serious pest and
. 4	methods to control their parasitic activities are an
5	important feature in maximising crop production in
6	modern intensive agriculture.
7	
8	There are approximately 197 genera and 4300 species
9	of nematode phytoparasites. Plant parasitic
10	nematodes feed on the roots or shoots of plants.
11	The nematodes can be ectoparasites (i.e. feed on the
12	exterior of a plant) or endoparasites (i.e.
13	live/feed inside the host) and can be migratory or
14	sedentary.
15	
16	Some of the most significant of the plant parastitic
17	nematodes are:
18	
19	Genus; Common name
20	Meloidogyne; Root-knot nematode
21	Pratylenchus; Lesion nematode
22	Heterodera; Cyst nematode
23	Globodera; Cyst nematode
24	Ditylenchus; Stem and bulb nematode
25	Tylenchulus; Citrus nematode
26 ·	Xiphinema; Dagger nematode
27	Radopholus; Burrowing nematode
28	Rotylenchulus; Reniform nematode
29	Helicotylenchus; Spiral nematode
30	Belonolaimus; Sting nematode
31	

BNSDOCID: <WO____2005070213A2_I_>

1	Nematodes are not just parasitite to plants but a					
2	number of species are parasitic to animals, both					
3	vertebrate and invertebrate. Around 50 species					
4	attack humans and these include Hookworm					
5	(Anclyostoma), Strongylids (Strongylus),					
6	Pinworm (Enterolobius), Trichinosis (Trichina),					
7	Elephantitis (Wuchereria), Heartworm (Dirofilaria),					
8	and Ascarids (Ascaris).					
9						
10	It should be noted however that not all nematodes					
11	inhabiting soil are phyto-parasitic. A number of					
12	saprophagous nematodes exist which do not harm					
13	plants, and indeed may actually exist in a symbiotic					
14	relationship with plants.					
15						
16	The current procedure for the elimination of					
17	nematodes in agriculture involves treating the soil					
18	with methyl bromide (MB). MB essentially sterilises					
19	the soil and provides effective control of a wide					
20	range of soil-borne pathogens and pests, including					
21	fungi, bacteria, nematodes, insects, mites, weeds					
22	and parasitic plants. However, MB has a significant					
23	negative impact on the environment.					
24						
25	Problems associated with MB include:					
26						
27	 Eradication of the beneficial soil microflora and 					
28	microfauna, resulting in elimination of natural					
29	biological control and resurgence of secondary					
30	pests and diseases. The "biological vacuum"					
31	created by the use of potent biocides, such as					

WO 2005/070213 PCT/GB2005/000240

1 MB, results in rapid re-infestation of treated 2 soils.

- Toxic side-effects on humans, plants
 (phytotoxicity) and other non-target organisms.
- 5 This has safety implications with regard to
- 6 handling MB as any contact with the user would be
- 7 harmful. There are therefore also major expenses
- 8 involved with specialist equipment, training and
- 9 other precautions involved with ensuring that MB
- is used, handled and transported safely.
- MB is associated with the depletion of the ozone layer.
- Pollution of the environment, including soil,
- water and the atmosphere. MB is, in particular,
- a major pollutant of underground water.
- Pesticide residues in agricultural products,
- 17 creating health risks for consumers and major
- obstacles to the international agricultural
- 19 trade. Soil fumigation with MB is known to leave
- 20 bromine residues in the soil which can be taken
- up by, and accumulate, in plants. Problems with
- bromine residues in leafy vegetables, such as
- lettuce, are quite common. Indeed, in grape
- 24 producing regions the use of MB is not permitted
- due to its health implications.

- For the reasons mentioned above, inter alia, the
- 28 production and use of MB is being phased out on a
- 29 global scale. Under the Montreal Protocol 1991, MB
- 30 use is to be phased out by 2005 in the E.U. and
- other developed countries, and by 2015 in the
- 32 developing countries. There is therefore a need to

identify suitable alternative solutions for managing 1 soil-borne pathogens, in particular nematodes. 2 3 The inventor has surprisingly found that terpenes 4 are effective in killing nematodes. 5 6 Terpenes are widespread in nature, mainly in plants 7 as constituents of essential oils. Their building 8 block is the hydrocarbon isoprene $(C_5H_8)_n$. 9 Terpenes are classified as generally regarded as 10 safe (GRAS) by the Environmental Protection Agency 11 (EPA) in the USA and have been used in the flavour 12 and fragrance industries. 13 14 Terpenes have been found to be effective and 15 nontoxic dietary antitumor agents which act through 16 a variety of mechanisms of action (Crowell and 17 Gould, 1994 - Crit Rev Oncog 5(1): 1-22; and Crowell 18 et al., 1996 - Adv Exp Med Biol 401: 131-136). 19 Terpenes, i.e. geraniol, tocotrienol, perillyl 20 alcohol, b-ionone and d-limonene, suppress hepatic 21 HMG-COA reductase activity, a rate limiting step in 22 cholesterol synthesis, and modestly lower 23 cholesterol levels in animals (Elson and Yu, 1994 -24 J Nutr. 124: 607-614). D-limonene and geraniol 25 reduced mammary tumors (Elegbede et al., 1984 -26 Carcinogenesis 5(5): 661-664; and Elegbede et al., 27 1986 - J Natl Cancer Inst 76(2): 323-325; and 28 Karlson et al., 1996 - Anticancer Drugs 7(4): 422-29 429) and suppressed the growth of transplanted 30 tumors (Yu et al., 1995 - J Agri Food Chem 43: 2144-31 2147). 32

Terpenes have also been found to inhibit the in-1 vitro growth of bacteria and fungi (Chaumont and 2 Leger, 1992 - Ann Pharm Fr 50(3): 156-166; Moleyar 3 and Narasimham, 1992 - Int J Food Microbiol 16(4): 4 337-342; and Pattnaik, et al. 1997 - Microbios 5 89(358): 39-46) and some internal and external 6 parasites (Hooser, et al., 1986 - J Am Vet Med Assoc 7 189(8): 905-908). Geraniol was found to inhibit 8 growth of Candida albicans and Saccharomyces 9 cerevisiae strains by enhancing the rate of 10 potassium leakage and disrupting membrane fluidity 11 (Bard et al., 1988 - Lipids 23(6): 534-538). 12 ionone has antifungal activity which was determined 13 by inhibition of spore germination, and growth 14 inhibition in agar (Mikhlin et al., 1983 - Prikl 15 Biokhim Mikrobiol. 19: 795-803; and Salt et al., 16 1986 - Adam Physiol Molec Plant Path 28: 287-297). 17 Teprenone (geranylgeranylacetone) has an 18 antibacterial effect on H. pylori (Ishii, 1993 - Int 19 J Med Microbiol Virol Parasitol Infect Dis 280(1-2): 20 239-243). Solutions of 11 different terpenes were 21 effective in inhibiting the growth of pathogenic 22 bacteria in in-vitro tests; levels ranging between 23 100 ppm and 1000 ppm were effective. The terpenes 24 were diluted in water with 1% polysorbate 20 (Kim et 25 al., 1995 - J Agric Food Chem 43: 2839-2845). 26 Diterpenes, i.e. trichorabdal A (from R.

27

Trichocarpa) has shown a very strong antibacterial 28

effect against H. pylori (Kadota et al., 1997 -29

Zentralblatt fur Bakteriologie. 286(1):63-7). 30

1	Rosanol, a commercial product with 1% rose oil, has
2	been shown to inhibit the growth of several bacteria
3	(Pseudomona, Staphylococus, E. coli and H pylori).
4	Geraniol is the active component (75%) of rose oil.
5	•
6	In US Patent Nos 5,977,186 and 6,130,253, methods of
7	using terpenes to kill lice are disclosed.
8	
9	In International Patent Application published under
10	WO 03/020024, by the present inventor, methods of
11	using terpenes to prevent and treat infections
12	plants by bacteria, phytoplasmas, mycoplasmas or
13	fungi are disclosed.
14	
15	There may be different modes of action of terpenes
16	against microorganisms; they could (1) interfere
17	with the phospholipid bilayer of the cell membrane,
18	(2) impair a variety of enzyme systems (HMG-
19	reductase), and (3) destroy or inactivate genetic
20	material. It is believed that due to the modes of
21	action of terpenes being so basic, e.g., blocking of
22	cholesterol, that infective agents will not be able
23	to build a resistance to terpenes.
24	
25	There are, however, a number of drawbacks to the use
26	of terpenes. These include:
27	 Terpenes are liquids which can make them
28	difficult to handle and unsuitable for certain
29	purposes.
30	- Terpenes are not very miscible with water, and
31	it generally requires the use of detergents,
32	surfactants or other emulsifiers to prepare

aqueous emulsions. A stable solution can,

however, be obtained by mixing the terpenes under 2 high shear. 3 Dry powder terpene formulations generally only 4 contain a low percentage w/w of terpenes. 5 Terpenes are prone to oxidation in aqueous 6 emulsion systems, which make long term storage a 7 problem. 8 9 There are limitations to the current techniques of . 10 spray coating, extrusion, coacervation, molecular 11 encapsulation, and spray drying/cooling to provide 12 ingredient delivery systems. 13 14 Yeast cell walls are derived from yeast cells and 15 are composed of the insoluble biopolymers $\beta-1,3$ -16 glucan, $\beta-1$, 6-glucan, mannan and chitin. They are 17 typically 2-4 micron in diameter microspheres with a 18 shell wall that is only 0.2-0.3 micron thick 19 surrounding an open cavity. This material has 20 considerable liquid holding capacity, typically 21 absorbing 5-25 times its weight in liquid. 22 shell is sufficiently porous that payloads up to 23 150,000 Daltons in size can pass through the outer 24 25 glucan shell and be absorbed into the hollow cavity of the spherical particle. Yeast cell walls have 26 several unique properties, including heat stability 27 (e.g. to 121° C), shear stability, pH stability (e.g. 28 pH 2-12), and at high concentrations they do not 29 build significant viscosity. In addition to its 30 physical properties this composition contains the 31 natural and healthy dietary fibres that deliver 32

<u>'</u>.

1	cardiovascular and immunopotentiation health
2	benefits.
3	
4	Yeast cell walls are prepared from yeast cells by
5	the extraction and purification of the insoluble
6	particulate fraction from the soluble components of
7	the yeast cell. The fungal cell walls can be
8	produced from the insoluble byproduct of yeast
9	extract manufacture. Further, the yeast cells can
10	be treated with an aqueous hydroxide solution,
11	without disrupting the yeast cell walls, which
12	digests the protein and intracellular portion of the
13	cell, leaving the yeast cell wall component devoid
14	of significant protein contamination, and having
15	substantially the unaltered cell wall structure of
16	$\beta(1-6)$ and $\beta(1-3)$ linked glucans. A more detailed
17	description of whole glucan particles and the
18	process of preparing them is described by Jamas et
19	al. in U.S. Pat. No. 4,810,646 and in co-pending
20	patent applications U.S. Ser. No. 166,929, U.S. Ser.
21	No. 297,752 and U.S. Ser. No. 297,982. US Patent No.
22	6,242,594, assigned to Novogen Research Pty Ltd.,
23	describes a method of preparing yeast glucan
24	particles by alkali extraction, acid extraction and
25	then extraction with an organic solvent and finally
26	drying. US 5,401,727, assigned to AS Biotech-
27	Mackzymal, discloses the methods of obtaining yeast
28	glucan particles and methods of using them to
29	promote resistance in aquatic animals and as an
30	adjuvant for vaccinations. US 5,607,677, assigned
31	to Alpha-Beta Technology Inc., discloses the use of
32	hollow whole glucan particles as a delivery package

and adjuvant for the delivery of a variety of 1 pharmaceutical agents. The teachings of the 2 abovementioned patents and applications are 3 incorporated herein by reference. 4 5 According to the present invention there is provided 6 a method of killing nematodes, said method 7 comprising the step of applying an effective amount 8 of a nematicidal composition comprising a terpene 9 component. Preferred features of the nematicidal 10 composition are described below. 11 12 The terpene component may comprise a single terpene 13 or a mixture of terpenes. 14 15 The list of terpenes which are exempted from US 16 regulations found in EPA regulation 40 C. F. R. Part 17 152 is incorporated herein by reference in its 18 19 entirety. 20 Preferably the terpene component comprises one or 21 more terpenes selected from the group comprising 22 citral, pinene, nerol, b-ionone, geraniol, 23 carvacrol, eugenol, carvone, terpeniol, anethole, 24 camphor, menthol, limonene, nerolidol, farnesol, 25 phytol, carotene (vitamin A,), squalene, thymol, 26 tocotrienol, perillyl alcohol, borneol, myrcene, 27 simene, carene, terpenene and linalool. 28 29 It should also be noted that terpenes are also known 30 by their extract or essential oil names, e.g. 31 lemongrass oil (contains citral). 32

1	A suitable terpene component may comprise, for					
2	example:					
3	• 100% citral;					
4	• 50% citral and 50% b-ionone;					
5	• 50% citral and 50% a-terpineol;					
6	• 50% d-limonene and 50% b-ionone; or					
7	• 50% a-terpineol and 50% b-ionone.					
.8,						
9	It has been found that compositions comprising					
10	citral are particularly effective at killing					
11	nematodes. Therefore it is preferred that the					
12	nematicidal composition of the present invention					
13	comprises citral.					
14						
15	It is highly preferable that all compounds present					
16	in the nematicidal composition are classified as					
17 _.	generally regarded as safe (GRAS).					
18						
19	The term "terpene" as used herein refers not only to					
20	terpenes of formula $(C_5H_8)_n$, but also encompasses					
21	terpene derivatives, such as terpene aldehydes. In					
22	addition, reference to a single name of a compound					
23	will encompass the various isomers of that compound.					
24	For example, the term citral includes the cis-isomer					
25	citral-a (or geranial) and the trans-isomer citral-b					
26	(or neral).					
27						
28	In a preferred embodiment the nematicidal					
29	composition comprises a terpene component and water.					
30	The terpene component may be in solution in the					
31	water. Alternatively the nematicidal composition					
32	may comprise a surfactant which holds the terpene in					

1	suspension in the water. Suitable surfactants
2	include, sodium lauryl sulphate, polysorbate 20,
3	polysorbate 80, polysorbate 40, polysorbate 60,
4	polyglyceryl ester, polyglyceryl monooleate,
5	decaglyceryl monocaprylate, propylene glycol
6	dicaprilate, triglycerol monostearate, TWEEN, Tween
7	80, SPAN 20, SPAN 40, SPAN 60, SPAN 80, Brig 30 or
8	mixtures thereof. Sodium lauryl sulphate is a
9	preferred surfactant due to its recognised safety.
10	
11	In one embodiment of the invention the nematicidal
12	composition has a pH of less than 7, suitably a pH
13	from around 3 to less than 7, and preferably a pH
14	from around 3 to around 5. Where the nematicidal
15	composition has a pH below 7 the nematicidal
16	activity of the composition does not decrease over
17	time compared to a composition having a pH over 7.
18	
19	Suitably the nematicidal composition comprises the
20	terpene component at a concentration from about 125
21	to about 2000 ppm in water, preferably from about
22	250 to about 1000 ppm. A terpene component
23	concentration from about 500 to about 2000 ppm may
24	be preferred if higher kill rates are desired.
25	
26	In one embodiment of the invention the terpene
27	component is provided at a concentration at which
28	parasitic nematodes are killed selectively over non-
29	parasitic nematodes. Suitably the parasitic
30	nematodes are root-knot nematodes and the non-
31	parasitic nematodes are Saprophagous nematodes.

Suitable concentrations include from 250 to 1000 1 ppm, and preferably from 250 to 750 ppm. 2 3 The nematicidal composition may also comprise an 4 The excipient may suitably comprise a excipient. 5 liposome. Certain excipients may augment the action 6 of the terpene component by, for example, increasing 7 its longevity of action or by increasing its 8 capacity to contact and interact with nematodes. 9 10 A particularly preferred excipient is hollow glucan 11 particles. The term "hollow glucan particle" as 12 used herein includes any hollow particle comprising 13 glucan as a structural component. Thus, in 14 particular, the term includes yeast cell walls (in 15 purified or crude forms) or other hollow glucan 16 particles, which may be hollow whole glucan 17 particles. 18 19 It has been found that terpenes can be taken up and 20 stably encapsulated within hollow glucan particles. 21 22 According to a further aspect of the present 23 invention there is provided a method of killing 24 nematodes, said method comprising the step of 25 applying an effective amount of a nematicidal 26 composition comprising a hollow glucan particle 27 encapsulating a terpene component. 28 29 Nematicidal compositions comprising a hollow glucan 30 particle encapsulating a terpene component can 31 provide the following advantages: 32

maximise terpene payload;

minimise unencapsulated payload; 2 control payload stability; 3 control payload release kinetics; 4 creation of a solid form of a liquid terpene to 5 increase the mass and uniformity; 6 7 simplify handling and application of terpenes; and 8 mask the smell and taste of the terpene. 9 10 Preferably the hollow glucan particles are yeast 11 cell walls. Yeast cell walls are preparations of 12 veast cells that retain the three-dimensional 13 structure of the yeast cell from which they are 14 derived. Thus they have a hollow structure which 15 allows the terpene component to be encapsulated 16 within the yeast cell walls. The yeast walls may 17 suitably be derived from Baker's yeast cells 18 (available from Sigma Chemical Corp., St. Louis, 19 20 MO). 21 Alternative particles are those known by the trade 22 names SAF-Mannan (SAF Agri, Minneapolis, MN) and 23 24 Nutrex (Sensient Technologies, Milwaukee, WI). These are hollow glucan particles that are the 25 insoluble waste stream from the yeast extract 26 manufacturing process. During the production of 27 yeast extracts the soluble components of partially 28 autolyzed yeast cells are removed and the insoluble 29 residue is a suitable material for terpene loading. 30 These hollow glucan particles are ~25-35% glucan 31 w/w. A key attribute of these materials are that 32

they are >10% lipid w/w and are very effective at 1 absorbing terpenes. In addition, as a waste stream 2 product they are a relatively cheap cost source of 3 hollow glucan particles. 4 5 Alternative hollow glucan particles which have 6 higher purity are those produced by Nutricepts 7 (Nutricepts Inc., Burnsville, MN) and ASA Biotech. 8 These particles have been alkali extracted, which 9 removes additional intracellular components as well 10 as removes the outer mannoprotein layer of the cell 11 wall yielding a particle of 50-65% glucan w/w. 12 Since alkali extraction saponifies some of the 13 lipids these particles are less effective at 14 absorbing terpenes. They are also significantly 15 more expensive and hence these materials are 16 preferred particles. 17 18 Higher purity hollow glucan particles are the WGP 19 particles from Biopolymer Engineering. 20 particles are acid extracted removing additional 21 yeast components yielding a product 75-85% glucan 22 They are even more expensive than the 23 Nutricepts and ASA Biotech particles and the lower 24 lipid content results in poor loading with terpenes. 25 26 Very high purity hollow glucan particles are WGP 27 from Alpha-beta Technology, Inc. (Worcester, MA) and 28 microparticulate glucan from Novogen (Stamford, CT). 29 These particles are organic solvent extracted 30 removing residual lipids and are >90% glucan w/w. 31

Of all of the materials tested so far, these 1 particles absorbed the least terpenes. 2 3 Situations may, however, be envisaged where a high 4 purity glucan particle is required, for example, 5 where tight control over possible contaminants is .6 In these instances the higher purity 7 particles would be preferred over the more crude 8 products, despite their poorer terpene loading 9 characteristics. 10 11 Preferably the hollow glucan particles have a slight 12 lipid content. A slight lipid content can increase 13 the ability of the hollow glucan particle to 14 encapsulate the terpene component. Preferably the 15 lipid content of the hollow glucan particles is 16 greater than 5% w/w, more preferably greater than 17 10% w/w. 18 19 For encapsulation into a hollow glucan particle the 20 terpene component of the present invention can 21 optionally be associated with a surfactant. 22 surfactant can be non-ionic, cationic, or anionic. 23 Examples of suitable surfactants include sodium 24 lauryl sulphate, polysorbate 20, polysorbate 80, 25 polysorbate 40, polysorbate 60, polyglyceryl ester, 26 polyglyceryl monooleate, decaglyceryl monocaprylate, 27 propylene glycol dicaprilate, triglycerol 28 monostearate, Tween®, Tween 80, Span® 20, Span® 40, 29 Span® 60, Span® 80, Brig 30 or mixtures thereof. 30 The surfactant acts to hold the terpene component in 31

an emulsion and also assists encapsulation of the 1 terpene component into the hollow glucan particle. 2 3 The nematicidal composition of the invention can 4 comprise hollow glucan particles encapsulating a 5 terpene component which comprise 1 to 99% by volume 6 terpene component, 0 to 99% by volume surfactant and 7 1 to 99% hollow glucan particles. More specifically 8 the hollow glucan particles encapsulating a terpene 9 component can comprise from about 10% to about 67% 10 w/w terpene component, about 0.1-10% surfactant and 11 about 40-90% hollow glucan particles. A stable 12 suspension of hollow glucan particles incorporating 13 citral of 25 ppt citral can be made. 14 15 Suitably a nematicidal composition comprises from 16 about 500 to about 10,000 ppm hollow glucan 17 particles, where the particles contain from about 1 18 to about 67 % terpene component. Preferably the 19 nematicidal composition comprises from about 1000 to 20 about 2000 ppm hollow glucan particles, where the 21 particles contain from about 10 to about 50% terpene 22 component. 23 24 The method is particularly suited to killing 25 nematodes in soil, especially in soil used for 26 agricultural or horticultural purposes. 27 method involves administering a nematicidal 28 composition comprising a terpene component to at 29 least a portion of, preferably all of, the soil to 30 be treated. 31 32

1	Optionally the application of the nematicidal,
2	composition may be repeated. This may be necessary
3	in some cases to ensure effective killing of the
4	nematodes present in the portion of soil.
5	The application of the nematicidal composition to
6	soil may be carried out in a number of ways,
7	including spraying, irrigation or the like.
8	
9	In one embodiment the nematicidal composition used
10	in the method of the present invention may be formed
11	by mixing the terpene component and water with
12	sufficient shear to create a solution of the terpene
13	in water. Terpenes are generally poorly soluble in
14	water, however, with mixing at sufficient shear they
15	can be forced to form a stable solution in water.
16	An aqueous terpene solution has the advantage that
17	it can be taken up by plants through their roots,
18	whereas an aqueous terpene suspension cannot.
19	
20	In an alternative embodiment the nematicidal
21	composition may be formed by adding a surfactant to
22	hold the terpene component in aqueous suspension.
23	Such a suspension would be useful where it is not
24	necessary for the composition to be taken up by the
25	plant, e.g. for treating an infection with
26	ectoparasitic nematodes.
27	
28	In an alternative embodiment the present invention
29	further provides a method of preparing a nematicidal
30	composition comprising hollow glucan particles
31	encapsulating a terpene component, said method
32	comprising the steps of;

1	a) providing a terpene component;
2	b) providing hollow glucan particles;
3	c) incubating the terpene component with the
4	glucan particles under suitable conditions
5	for terpene encapsulation; and
6	d) recovering the glucan particles
7	encapsulating the terpene component.
8	
9	Optionally the above method can further comprise the
10	step of drying the glucan particles encapsulating
11	the terpene component. Drying may be achieved in a
12	number of ways and mention may be made of freeze
13	drying, fluidised bed drying, drum drying or spray
14	drying, all of which are well known processes.
15	
16	In step a) of the above method, the terpene
17	component is suitably provided as a suspension in an
18	aqueous solvent, and optionally in the presence of a
19	surfactant. Suitably the solvent is water. A
20	suitable surfactant is Tween-80
21	(polyoxyethylenesorbitan monooleate) or sodium
22	lauryl sulphate, and preferably the surfactant is
23	present at a concentration of about 0.1 to 10 % by
24	volume of the total reaction mixture, more
25	preferably about 1%. Alternatively the terpene
26	component may be provided as a true solution in a
27	solvent, e.g. water. A true solution of terpene in
28	water can be obtained by mixing the terpene in water
29	at high shear until a true solution is obtained.
30	Publication No WO03/020024 provides further details
31	of forming true solutions of terpenes in water.

In step b) of the above method, the hollow glucan

particles are suitably provided as a suspension in 2 water or other suitable liquid. Suitably the 3 suspension comprises approximately 1 to 1000 mg 4 glucan particles per ml, preferably 200 to 400 5 Alternatively the hollow glucan particles 6 may be provided as a dry powder and added to the 7 terpene-surfactant suspension. 8 9 Alternatively the glucan particles are provided in 10 sufficient liquid to minimally hydrate the 11 particles, but not in significant excess. The term 12 "hydrodynamic volume" (HV) is used to describe the 13 volume of liquid required to minimally hydrate the 14 particles. Thus suitably the particles are provided 15 in between the HV and HV + 50% of water. This makes 16 the subsequent drying step more efficient. Also, 17 where a low volume of water is used (ie. around HV 18 to HV + 50%), it is also possible to extrude the 19 finished product into pellet or noodle form, which 20 is convenient for fluidised bed drying. 21 22 It has been found that the terpene component can 23 become encapsulated by the hollow glucan particles 24 at room temperature. The rate of encapsulation is, 25 however, increased at 37°C but the temperature 26 27 should be kept below the boiling point or denaturing temperature of any component of the composition. 28 29 Suitable conditions for step c) of the above method are therefore atmospheric pressure at a temperature 30 of 20 to 37°C. Optimisation of the conditions for a 31

particular encapsulation reaction will be a matter 1 of routine experimentation. 2 3 The present invention also provides the use of a 4 nematicidal composition comprising a terpene 5 component as described above for the extermination 6 of nematodes, especially nematodes in soils and/or 7 infecting plants. 8 9 It will be obvious to one skilled in the art that 10 the nematicidal use of a composition made entirely 11 of compounds which are GRAS is highly preferable 12 over the use of prior art toxic compositions. 13 Environmental concerns associated with use of the 14 composition will be greatly reduced and there would 15 be no significant problems with accumulation of the 16 product in food crops. Additionally, regulatory 17 approval of the composition in various jurisdictions 18 would not be as difficult to obtain as for a toxic 19 composition, and indeed may not even be required in 20 some instances. 21 22 Embodiments of the present invention will now be 23 described by way of example only, with reference to 24 the figures in which: 25 26 Fig. 1 represents a light micrograph of empty yeast 27 cell walls; 28 Fig. 2 represents a light micrograph of yeast cell 29 walls encapsulating L-carvone; 30 Fig. 3 represents a light micrograph of yeast cell 31 walls encapsulating citral; 32

- 1 Fig. 4 represents a light micrograph of terpene
- 2 emulsion;
- 3 Fig. 5 represents a light micrograph of yeast cell
- 4 walls in hydrodynamic volume (HV) water;
- 5 Fig. 6 represents a light micrograph of yeast cell
- 6 walls encapsulating terpene in 5 times hydrodynamic
- 7 volume (HV) of water;
- 8 Fig. 7 represents a light micrograph of yeast cell
- 9 walls encapsulating terpene in HV of water;
- Fig. 8 represents a light micrograph of yeast cell
- walls encapsulating terpene in HV plus 5% of water;
- Fig. 9 represents a light micrograph of yeast cell
- walls encapsulating terpene in HV plus 10% of water;
- 14 Fig. 10 represents a light micrograph of yeast cell
- walls encapsulating terpene in HV plus 20% of water;
- 16 Fig. 11 represents a light micrograph of yeast cell
- walls encapsulating terpene in HV plus 30% of water;
- 18 Fig. 12 represents a light micrograph of yeast cell
- walls encapsulating terpene in HV plus 40% of water.
- Fig. 13 represents a light micrograph showing the
- 21 dispersal of dried hollow glucan particles
- 22 encapsulating a terpene component and no xanthan
- 23 gum.
- Fig. 14 represents a light micrograph as in Fig. 13
- where 0.07 g of 1% xanthan gum is included.
- 26 Fig. 15 represents a light micrograph as in Fig. 13
- where 0.14 g of 1% xanthan gum is included.
- 28 Fig. 16 represents a light micrograph as in Fig. 13
- 29 where 0.28 g of 1% xanthan gum is included.
- 30 Fig. 17 represents a light micrograph as in Fig. 13
- 31 where 0.55 g of 1% xanthan gum is included.

1	Fig. 18 represents a light micrograph as in Fig. 13
2	where 1.1 g of 1% xanthan gum is included.
3	Fig. 19 represents a light micrograph as in Fig. 13
4	where 2.2 g of 1% xanthan gum is included.
5	Fig. 20 represents a light micrograph as in Fig. 13
6	where 4.4 g of 1% xanthan gum is included.
7	
8	Example 1 - Preparation of a terpene emulsion or
9	suspension using a surfactant
10	
11	A terpene, terpene mixture, or liposome-terpene
12	combination can be combined with a surfactant to
13	form a suspension. The volumetric ratio of terpenes
14	is generally about 1-99%, and the surfactant
15	volumetric ratio is about 1-50% of the
16	solution/mixture. The terpenes, comprised of
17	natural or synthetic terpenes, are added to water.
18	The surfactant, preferably polysorbate 80 or other
19	suitable GRAS surfactant, is added to the
20	water/terpene mixture and then blended to from a
21	suspension. Citral is a suitable terpene.
22	C
23	Example 2 - Preparation of a terpene solution
24	(without surfactant)
25	thout a surfactant by
26	The solution can be prepared without a surfactant by
27	placing the terpene, e. g. citral, in water and
28 ·	mixing under solution-forming shear conditions until
29	the terpene is in solution.
30	
31	0.5 ml citral was added to 1 litre water. The
32	citral and water were blended in a household blender

for 30 seconds.

2

3 Alternatively, moderate agitation also prepared a

4 solution of citral by shaking by hand for

5 approximately 2-3 minutes.

6

7 Greater than about zero ppm to about 1000 ppm of

8 natural or synthetic terpenes such as citral, b-

9 ionone, geraniol, carvone, terpeniol, carvacrol,

10 anethole, or other terpenes with similar properties

11 are added to water and subjected to a solution-

forming shear blending action that forces the

terpene(s) into a true solution. The maximum level

of terpene(s) that can be solubilized varies with

15 each terpene. Examples of these levels are shown in

16 Table 1.

17

18 Table 1 - Solution levels for various terpenes.

19

<u>Terpene</u>	Solution Level
Citral	1000 ppm
Terpeniol	500 ppm
b-ionone	500 ppm
Geraniol	500 ppm
Carvone	500 ppm

20 21

Example 3 - Potency of solution

22

23 Terpenes will break down in the presence of oxygen.

24 The rate at which they decay varies for each

25 particular terpene.

- 1 Citral is a terpene aldehyde and will decay over a period of days. Two protocols are described below
- 3 which quantify the rate of decay of citral.

The following protocol was used to determine the rate of decay of citral in a sealed container:

7

8 Test Material

- 9 A solution prepared as described in Example 2 10 containing citral at 1000 ppm was prepared in 11 distilled water. This solution was stored in a
- 12 capped glass vial for the duration of the test.

13 14

Procedure

A standard curve was prepared with citral and Bionone as internal standard.

17

At the beginning of the study and weekly for four
weeks the 1000 ppm suspension was analyzed using a
gas chromatography procedure. The concentration of
citral was determined by plotting it on the standard
curve.

2223

24 The results are shown below in Table 2.

25

26 Table 2 - Stability of citral

27

	Percentage of citral remaining			
	Day 1	Week 1	Week 2	Week 4
Citral				
(1000 ppm)	100	32	27	22

	Citral					
		Day 1	Week 1			
			itral remaining			
27						
26	Table 3 - St	tability of citr	al			
25						
24	The results	are shown below	in Table 3.			
23						
22	curve.					
21	citral was determined by plotting it on the standard					
20	chromatography procedure. The concentration of					
19	1000 ppm sus	spension was ana	lyzed using a gas			
18	At the begin	nning of the stu	dy and after a week the			
17						
16		nternal standard				
15		curve was prepar	ed with citral and B-			
14	Procedure					
13						
12	duration of					
11			with porous paper for the			
10			. This solution was			
9			l at 1000 ppm was			
8	Test Materia	a l				
6 7	CITE TOTTOWIL	ra brococor was				
5		ng protocol was				
4	ma datamina	the concentrat	ion of citral in water			
3	lid.					
2		iy of citiat in	a container with a porous			
1	The following protocol was used to determine the rate of decay of citral in a container with a porous					
_			ugod to dotarmine the			

21.5%

28

(1000 ppm)

Exa	ample 4 - Extraction of Nematode Eggs from Soil
	d counting nematode numbers
Ext	traction of Eggs and Quantification of Soil
Po	pulations
	e following is an outline of a suitable technique
	determine the population densities of soybean
су	st nematodes SCN in soil samples, although it
wo	ould be applicable to other soil nematodes. The
pr	ocedure has three stages:
	extracting the cysts from the soil;
	 crushing the cysts to extract the eggs; and,
	 microscopic observation of the suspension of
	eggs for counting.
	*
Ez	ktraction of cysts from soil
	2 5
	ysts of soybean cyst nematode are recovered from
	oil through a combination of wet-sieving and
	ecanting. The technique is a modification of the
	obb (Cobb, N.A. 1918. Estimating the nema
p	opulation of soil. U.S. Dept. Agr. Bur. Plant Ind
	gr. Tech. Cir., $1:1-48$) sifting and gravity
t	echnique.
	5.11
T	he procedure is as follows: .Combine a well mixed 100 cm³ soil sample (approx
1	
	1/2 cup) in a bucket with two (2) quarts (2.27
	litres) of water. . Break any clumps with your fingers and mix the
2	soil suspension well for 15 seconds.
	SOLI SUSPENSION WELL FOR TO DOCUMENT.

1	3. Pour the soil suspension through an 8-inch-
2	diameter #20 (850 mm pore) sieve into another
3	bucket. Briefly rinse the debris caught on the 20
4	mesh sieve.
5	4. Pour the soil suspension in the second bucket
6	through a #60 (250 mm pore) sieve.
7	5. Backwash the debris caught on the 60 mesh screen
8	into a pan.
9	6. Repour the suspension through the 60 mesh screen
10	- hold the screen at an angle to concentrate the
11	cysts and debris.
12	7. Backwash into a pan using a minimal (<250 ml)
13	amount of water.
14	8. Pour the cysts and debris into a 250 ml beaker.
15	NOTE: Discard the heavier material that quickly
16	settles to the bottom of the buckets/pans during
17	the above sieving process.
18	
19	Extraction of eggs from the cysts
20	
21	The above technique will result in a suspension of
22	SCN cysts, along with organic debris and sediments
23	similar in size to the cysts. The cysts in this
24 .	suspension could be counted using a simple
25	dissecting microscope. Some laboratories that
26	analyze soil for soybean cyst nematode report
27	results in the form of cysts per 100 cm^3 of soil.
28	Egg content of cysts is highly variable, and will
29	not yield reliable counts of the SCN population in
30	the sample. Therefore, it is preferable if eggs are
31	extracted from the cysts and results are reported

1	back as eggs and second stage juveniles (J-2) per
2	100 cm ³ of soil.
3	
4	The procedure used to extract eggs from cysts is as
5	follows:
6	 Allow cysts/debris to settle for ca 30 minutes
7	in the 250 ml beakers. Pour off excess water,
8	resuspend sediments and transfer to 50 ml
9	beakers.
10	2. Allow cysts to settle in the 50 ml beakers.
11	3. Pour off excess water (~30 ml) and transfer the
12	cyst/debris suspension to a 55 ml Wheaton
13	Potter-Elvehjen tissue grinder.
14	4. Grind at 7500 RPM for 10 seconds. Rinse pestle
15	into grinding tube.
16	5. After grinding, pour the suspension in the tube
17	through an 8-inch-diameter #200 (75 mm pore)
18	sieve over a stainless steel #500 (25 mm pore)
19	sieve.
20	6. Rinse the tube several times with tap water,
21	each time pouring the contents through the
22	sieves. Discard sediments caught on the #200
23	sieve.
24	7. Carefully wash sediments and eggs caught on the
25	#500 sieve into a clean beaker with as little
26	water as possible.
27	
28	Counting eggs with the nematode counting slide:
29	
30	The volume of the egg suspension should be brought
31	up to exactly 50 ml with tap water. Fill the
32	chamber of the nematode counting slide with a well-

1	mixed suspension using a pipette. The specially
2	made nematode counting slides are constructed so
3	that the volume of egg suspension observed over the
4	grid is exactly 1 ml. Consequently, simply count
5	the number of eggs that appear within the grid of
6	the slide to determine the number of eggs per ml of
7	suspension. The total number of eggs in the sample
8	can then be calculated by multiplying the number of
9	eggs per ml by 50.
10	
11	Sources of materials and equipment
12	
13	Sieves:
14	 Fisher Scientific, 1600 W. Glenlake Avenue,
15	Itasca, IL 60143 - (800) 223-9114
16	 VWR Scientific, P.O. Box 66929, O'Hare AMF,
17	Chicago, IL 60666 - (800) 932-5000
18	
19	Tissue Grinder: • Fisher Scientific, 1600 W. Glenlake Avenue,
20 21	Itasca, IL 60143 - (800) 223-9114
22	Teasea, IL 60143 (600, 115)111
23	Motorized stirrer:
24	The motorized laboratory stirrer is a Talboys Model
25	101 stirrer. This stirrer can be purchased through
26	VWR Scientific or directly through Talboys
27	Engineering Corporation, South Montrose, PA 18843.
28	Bigingering corporación, beach mendere, and mendere
29	Nematode counting slides:
	Nematode codiffing birdes.
30 31	The specially made nematode counting slides can be
32	purchased from Advanced Equine Products, 5004 228th
3.4	Antitioned train travarious adapte travarious, and

Avenue S.E., Issaquah, Washington 98029, (425) 391-1 1169, FAX (425) 391-6669. 2 3 Example 5 - Effect of Terpenes on Nematode Egg 4 Hatching and Juvenile Survival 5 6 The effect of various terpene containing 7 compositions was assessed in relation to nematode 8 eggs and juvenile nematodes. 9 10 The protocol used was as follows: 11 12 The live eggs were treated in the various 13 samples for one hour, rinsed, put back into 14 distilled water and counted 24 hours later. The 15 samples were made up as shown in Table 4a: 16

18 19 Table 4a

17

Components Sample 45% d-limonene 45% b-Ionone 10% Tween 80 NM1 45% b-Ionone 10% Tween 80 45% citral NM3 45% a-terpineol 10% Tween 80 45% citral NM5 45% b-Ionone 45% a-terpineol 10% Brig 30 NM6 45% b-Ionone 45% a-terpineol NM7 10% Tween 80

20

21

22

23

24

The results of the protocol are shown below in Table 4b.

Table 4b - Results

Sample	Conc. (%)	Egg batch	Juveniles
Designation		(%)	alive (%)
Control		19	86
NM1	0.5	3	0
	0.1	10	19
	0.05	17	67
NM3	0.5	2	1
	0.1	5	3
	0.05	10	31
NM5	0.5	4	0
	0.1	9	16
	0.05	16	37
NM6	0.5	11	13
	0.1	17	36
	0.05	16	48
N6	0.5	26	53
	0.1	26	58
	0.05	15	60
NM7	0.5	13	74
	0.1	13	58
	0.05	17	75

Observations: The combinations containing citral (NM3 and NM5) were more effective. The Brig surfactant was not as effective as Tween 80. The aldehyde worked better than the alcohols.

1	Example 6 - Effect o	f Terpenes on Mature Root-Knot,			
2	Ring and Citrus Nema	todes			
3					
4	The effect of variou	s terpene containing			
5	compositions was ass	essed in relation to Root-Knot			
6	nematodes (Meloidogy	me), Ring nematodes			
7	(Criconemella xenopl	ax) and Citrus nematodes			
8	(Tylenchulus semiper	netrans).			
9					
10	The protocol used wa	as as follows:			
11					
12	Nematodes: A sir	ngle 5 ml volume with pre-counted			
13	nematode numbers was	s used as the initial inoculum.			
14	Nematodes were colle	ected, identified and maintained			
15	from commercial agri	icultural crops soils. The			
16	nematodes were counted and evaluated for good health				
17	for the duration of	the study.			
18					
19	Nematicidal composit				
20	-	nematicidal composition was			
21	citral. The relevan	nt details of the citral used are			
22	as follows:				
23					
24	Chemical Name:	CITRAL			
25	Common Name:	Lemongrass Oil			
26	Formulation:	CITRAL FCC			
27	Product Trade Name:	CITRAL FCC			
28	Product code:	03-29200			
29	Source:	Penta Manufacturing			
30	Lot Numbers:	77887			
31	Type:	Liquid			
32	Carrier:	Distilled Water			

Storage Conditions: Ambient indoor room temperature ~65°F (28.3°C).

Stability: Insoluble in water above 1,000 ppm.

5

3 different concentrations of citral were used to 6 assess the efficacy of terpenes in killing the 7 nematodes. These were untreated control (UTC), 8 500ppm and maximum soluble terpene concentration 9 The terpenes were combined with water as 10 a solution by mixing at a solution forming shear. 11 The 900 ppm concentration value was not be measured, 12 but estimated at the maximum soluble concentration 13 that can be obtained with distilled water at 65°F 14 (28.3°C). 3 replicates of the 900ppm concentration 15 were used (R1, R2 and R3) and one replicate of the 16 500 ppm concentration and UTC. 17

18

19

20

Test mixtures of nematodes and the nematicidal compositions were made up according to Table 5.

21 22

Table 5 - Test Mixtures

		Terpene Added		Nematode		
	Nematode	Conc.	Terpene	+ Terpene	Treatment	
Label	Vol. ml	ppm	Vol. Ml	Vol.	Conc. ppm	
UTC	5.0	0.0	5.0	10.0	0.0	
1.0	5.0	500.0	15.0	20.0	375.0	
R1	5.0	900.0	15.0	20.0	675.0	
R2	5.0	900.0	15:0	20.0	675.0	
R3	5.0	900.0	15.0	20.0	675.0	

1	The terpene and nematode containing water was
2	combined to form a final dilution volume and
3	maintained in vials between evaluations. The
4	nematodes were exposed to the terpenes for between
5	48 to 72 hours depending on their survival.
6	
7	Evaluations: Nematodes were be counted and their
8	appearance assessed by microscope. The microscope
9	used for assay provided for only 5 ml to be viewed
10	at one time. Therefore, the 20 ml of total terpene
11	nematode sample water was divided into 4 parts for
12	each assay and recombined afterwards. The rating of
13	degree of efficacy of the test samples was
14	determined by observing nematode mobility,
15	mortality, and internal disruption or vacuolation
16	over time.
17	•
18	The results are shown below in Table 6.
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	

1 Table 6 - Results

2 Samp	ple I.D.		Root-Knot		Ri	Ring		Citrus	
(pretreatment reading)		Meloidogyne		СХ		TS			
Day	Treatment	Time	Alive	Dead	alive	Dead	alive	dead	
1	UTC	11:00am	351	0	357	0	148	0	
1	1.0	11:00am	359	0	325	0	119	0	
1	20ml-R1	11:00am	326	0	264	0	132	0	
1	20m1-R2	11:00am	347	0	260	0	141	0	
1	20ml-R3	11:00am	328	0	442	0	137	0	
(pos	treatment re	eadings)							
1	UTC	6:00pm	348	0	350	0	144	0	
1	1.0	6:00pm	355	0	319	0	114	0	
1	20ml-R1	6:00pm	320	0	258	0	128	0	
1	20ml-R2	6:00pm	341	0	255	0	139	0	
1	20ml-R3	6:00pm	325	0	436	0	134	0	
2	UTC	6:00am	344	0	348	0	140	0	
2	1.0	6:00am	350	0	312	0	112	0	
2	20ml-R1	6:00am	140	176	91	0	160	0	
2	20ml-R2	6:00am	168	169	110	141	46	84	
2	20ml-R3	6:00am	137	184	181	248	70	59	
2	UTC	6:00am	340	0	342	0	135	0	
2	1.0	6:00am	340	6	304	4	101	8	
2	20ml-R1	6:00am	0	302	0	239	0	109	
2	20ml-R2	6:00am	0	322	0	236	0	116	
2	20ml-R3	6:00am	0	305	0	402	0	117	
			·						
3	UTC	6:00am	330	3	336	1	126	5	
3	1.0	6:00am	189	149	190	108	47	51	

There was a small nematode loss from one reading to 1 another due to nematodes hanging up on the sides of 2 dishes and vials. These populations are usually 3 under 5 nematodes per reading. 4 5 Observations: 6 7 Day 1 - pretreatment readings showed no dead 8 nematodes and the nematodes were all moving and had 9 no internal disruption or vacuolation. 10 11 Day 1 - 6pm (20ml - R1+R2+R3) treatments all 12 appeared to have slowed movement but they had no 13 internal disruption or vacuolation. 14 15 Day 1 - 6pm (1.0 and UTC) treatments showed no 16 slowing of movement or internal disruption or 17 vacuolation. 18 19 Day 2 - 6am (UTC and 1.0) treatments all appeared 20 normal with no loss of movement and no internal 21 disruption or vacuolation. 22 23 Day 2 - 6am (20ml - R1+R2+R3) treatments had some 24 dead (dead had no movement and their internal body 25 structures were highly vacuolated). The living 26 nematodes were still moving, although slowly, but no 27 internal disruption or vacuolation. 28 29 Day 2 - 6pm (UTC) treatment all appeared normal with 30 no loss of movement and not internal disruption or 31

32

vacuolation.

1	. Day 2 - 6pm (1.0) treatment had some dead. Dead had
2	no movement with internal disruption and
3	vacuolation. Some of the living had slowed movement
. 4	and some did not, but none had any internal
5	disruption or vacuolation.
6	
7	Day 2 - 6pm (20ml - R1+R2+R3) treatments were all
8	dead with no movement and internal disruption with
9	vacuolation.
10	
11	Day 3 - 6am (UTC) treatments showed a few dead or
12	dyeing nematodes. They had no movement but showed
13	no internal disruption or vacuolation. The rest of
14	the nematodes, listed as alive, still had good
15	movement.
16	
17	Day 3 - 6am (1.0) treatments showed about 50% dead
18	and both internal disruption and vacuolation. The
19	alive nematodes showed some slowing of movement but
20	no internal disruption or vacuolation.
21	
22	As can be clearly seen from the results, on day two
23	by 6pm, compositions R1, R2 and R3 had killed all
24	nematodes. This demonstrates the highly nematicidal
25	properties of compositions R1, R2 and R3 and
26	consequently the nematicidal properties of citral.
27	
28	Example 7 - Effect of Citral Alone and Citral and
29	Thymol on Root-Knot Nematode Juveniles
30	
31	Treatment samples were prepared as follows:
32	

BNSDOCID: <WO____2005070213A2_I_>

1	Cital - 1 ml citral was added to 400ml of sterile
2	distilled water and mixed using a household blender
- 3	for 40 seconds. This was labelled 2500 ppm and was
4	diluted to provide test solutions at 500, 250, 125
5	and 62.5 ppm.
6	
7	Citral and Thymol - 1.0 g of thymol was dissolved in
8	1 ml of citral and blended in 400 ml of water as for
9	citral alone. This was marked 2500 ppm and diluted
LO	to provide test solutions at 500, 250, 125 and 62.5
11	ppm.
12	
1.3	Control - Water was used as the control.
14	
15	Nematode juveniles were collected in water and 0.1
16	to 0.15 ml added to each well of a plastic assay
17	plate. 1.0 ml of the test solutions was added to
18	each well. Observations were made microscopically
19	after 24 and 48 hours as described in Example 4.
20	Dead nematodes adopt a straight position and do not
21	move when probed with a fine needle. Living
22	nematodes move in an undulating, wave-like motion.
23	the second design of the secon
24	The results of two experiments are provided below in
25	Tables 7 and 8. The figures given are for the
26	percentage of nematodes found to be dead upon
27	microscopic examination and are the average of 2.
28	replicates.
29	and the second of root-knot
30	Table 7 - Effect of test solutions of root-knot
31	juveniles after 24 and 48 hours
22	

	Citral and			Ci	tal (p	Control	
		Thymo	1				
Test (ppm)	500	250	125	500	250	125	Water
24h	100	100	100	98	100	100	10
48h	100	91	50	97	91	24	31

	Ci	tral	and	C	Control		
	Thymol			·			
Test(ppm)	250	125	62.5	250	125	62.5	Water
24h	97	96	94	94	94	98	6

The results demonstrate the ability of citral alone and a citral and thymol mixture to kill nematodes at low concentrations. Kill rates in table 7 after 48 hours were over 90% for both mixtures at 250 ppm and 500 ppm concentrations. The 125 ppm concentration showed a lower kill rate. The kill rates in Table 8 show high kill rates after 24 hours for concentration as low as 62.5 ppm.

The mixture of thymol and citral did not show a significant increase in kill rate over citral alone.

The results show that citral is an effective nematicide even at low concentrations.

1	Example 8 - Effects of Citral on Root-Riot Nemacodes
2	vs Sarprophagous Nematodes
3	
4	The purpose of this experiment was to demonstrate
5	that citral selectively kills the harmful root-knot
6	nematodes over saprophagus nematodes, which are not
7	harmful, and indeed may be beneficial to the plant
8	and soil. Such selective killing is a surprising
9	effect that means treatment with terpenes may kill
10	parasitic nematodes, but not eliminate the
11	beneficial micro-fauna in the soil.
12	
13	Aqueous text mixtures comprising 250 ppm citral
14	alone and 250 ppm citral and 10% tween were produced
15	according to the techniques described in Example 7
16	above. These compositions were then incubated with
17	root-knot and saprophagus nematodes and the kill
18	rate assessed microscopically. Living saprophagus
19	nematodes move rapidly in water. The control used
20	was the nematodes in water alone.
21	
22	The results are provided in Tables 9 and 10 below.
23	The figures given are for the percentage of
24	nematodes found to be dead upon microscopic
25	examination and are the average of 2 replicates.
26	
27	
28	·
29	
30	
31	

Table 9- Nematicidal activity of citral on root-knot 1 nematodes (% dead)

3

2

	Citral	Citral	Citral	Citral	Control
	+Tween 80 (250 ppm)	(250 ppm)	+Tween 80 (250 ppm)	(250 ppm)	
24 h	87	87	89	88	17
48h	100	100	100	100	22

4 5

Table 10- Nematicidal activity of citral on Saprophagous nematodes (% dead)

7

6

	Citral	Citral	Citral	Citral	Control
	+Tween 80	(250 ppm)	+Tween 80 (250 ppm)	(250 ppm)	
24h	45	43	51	50	15
48h	50	50	53	52	19

8

The results clearly show that citral kills the 9

pathogenic root-knot nematodes at a much higher kill 10

rate than the beneficial saprophagus nematodes. 11

After 48hrs the kill rate for root-knot nematodes 12

was 100% for all test mixtures, whereas for 13

Saprophagus nematodes it was only 50-53%. 14

results were not significantly effected by the 15

inclusion of Tween 80. 16

17

The results demonstrate that terpenes have the 18

ability to selectively kill pathogenic nematodes 19

whilst allowing beneficial nematodes to survive in 20

the soil. This would result in a more healthy soil 21

environment post treatment than a treatment which 22

kills the entire nematode population in the soil. 1 Firstly this is because beneficial nematodes would 2 be present in the soil post treatment, and secondly 3 there would not be a nematode "vacuum" in the soil 4 which could be filled with pathogenic nematodes or 5 other pathogens. б 7 It could be expected that at a very high 8 concentration of terpene may result in a higher kill 9 rate of saprophagus nematodes, thus reducing the 10 selectivity of the treatment. Therefore in use in 11 the field the minimum concentration that achieves 12 the desired kill rate in root-knot or other 13 parasitic nematodes may be selected, thus maximising 14 the selectivity. 15 16 Example 9 - Effect of pH on the Nematicidal Activity 17 of Citral containing compositions. 18 19 The following protocol was performed to assess the 20 affect of pH on test solutions containing citral. 21 22 Solutions were made up of citral at 250, 125 and 23 62.5 ppm concentrations. Test solutions of these 24 three concentrations were prepared at different pHs 25 by adjusting the pH with HCl or NaOH to pH 4, 7 and 26 10. 27 28 One batch of test solutions was used immediately and 29 another was left for 24 hours before use. 30 method of administration to the nematodes and 31

1 counting the kill rate is the same as for previous 2 protocols.

3

4 The results are shown below in Tables 11 and 12.

5 The figures given are for the percentage of

6 nematodes found to be dead upon microscopic

7 examination and are the average of 2 replicates.

8

Table 11 - Effect of fresh citral at three pH levels
on root-knot nematodes (% nematodes dead)

11

10

		250 ppm			1	125 ppm			2.5 p	Water	
PH		4	7	10	4	7	10	4	7	10	
24	h	75	73	83	31	44	39	48	39	32	21
48	h	73	72	87	50	47	39	50	44	45	30

12

Table 12 - Effect of one-day old citral at three pH
14 levels on root-knot nematodes (% nematodes dead)

15

	250 ppm			125 ppm		62.5 ppm			water	
PH	4	7	10	4	7	10	4	7	10	
24 h	90	40	47	27	25	25	40	30	16	10
48 h	90	33	52	31	33	32	27	27	21	14

16

23

The results demonstrate that, in general, the test solutions lose efficacy if left for one day before use. However, it was observed that the citral solutions at the low pH (i.e. 4) did not lose efficacy to such an extent and, in fact the 250 ppm sample actually increased in efficacy after being

left for a day. At all concentrations tested, the

low pH samples did not demonstrate nearly such a

significant a drop of efficacy after being left when 1 compared to the neutral and high pH counterparts. 2 3 This demonstrates that low pH of citral 4 beneficial in terms of retaining the efficacy of 5 citral as a nematocide over time. The reasons for 6 this are unclear, but may be the result of 7 stabilising the citral and preventing degradation. 8 9 It is therefore clear that adjusting the pH of a 10 citral containing nematicidal composition to be acid 11 (i.e. a pH below 7) would be beneficial in terms of 12 prolonging its action. 13 14 Example 10 - Comparison of nematicidal activity High 15 Purity Citral (98% pure) with Low Purity Citral (80% 16 pure). 17 18 Citral is commercially available in 2 forms -19 regular (98% pure) and technical (80% pure). The 20 following protocol was carried out to determine if 21 technical citral is a viable alternative to pure 22 citral. 23 24 Compositions of regular and technical ciral at 250 25 and 125 ppm were produced in 1% Tween 80 and 26 incubated with root-knot nematodes a in the same way 27 as previously described. Observations of the kill 28 rate (percentage dead) were made at 21 and 42 hours. 29 30 The results are shown below in Table 13 and are the 31 average of four replicates. 32

1 Table 13 - average percentage dead

2

Г	Citral	(98%	Citral	(80%	1% Tween	Water
	pure)		pure)	pure)		
Ppm	250	125	250	125	-	_
21 h	87	23	89	29	14	7
42 h	87	22	96	27	17	18

3

4 The results indicate that both regular and technical

5 citral kill nematodes effectively at concentrations

6 of 250 ppm. Thus technical citral may be used as a

7 cheaper alternative to regular citral.

8

Example 11 - Nematicidal Effects of Citral in Soil

10

The following protocol was carried out to assess the

12 nematicidal properties of nematodes in soil.

13

14 Methodology: Nematodes used for the analysis

originated from commercial agricultural crop soils.

16 Species of nematode included root-knot and citrus.

Prior to commencement of each study the nematodes

were counted and evaluated for viability. In each

19 experiment soil samples were infected with only one

20 species of nematode. Three measured quantities of

21 soil (250g) were placed into large PVC plastic

22 containers.

23

24 Soil moisture was assessed by weighing a soil sample

25 and then drying the sample in a drying oven. Soil

26 moisture content was confirmed using a "Hydroscout"

27 instrument. In all cases the moisture content

measured by both methods was within the resolution 1 of the instruments. By determining the water 2 content of the soil it was possible to calculate the 3 volume of terpene solution which would be diluted 4 when mixed with the soil. 5 6 A series of citral dilutions in water were prepared 7 (500 ppm to 62.5 ppm) such that when they were added 8 to the soil samples, they would yield the required 9 These dilutions were by volume not the more ratios. 10 commonly used mass ratios. The reason for using 11 volume dilutions was simply one of convenience 12 enabling the use of a micropipette or cylinder to 13 measure the terpene. The mass ratio of the 'in 14 soil' and 'in water' solution could be simply 15 calculated by multiplying the ppm of terpene by it's 16 density (0.92 g/ml). 17 18 The terpene solution was added to each test tube 19 containing a weighed sample of nematode infected 20 The terpene solution and soil were mixed by soil. 21 inverting the test tube several times. The test 22 tubes containing the soil and terpene solution were 23 left to stand in racks in the laboratory for 48 24 hours-72 hours depending on the survival of the 25 In each experiment a control untreated nematodes. 26 group was treated with distilled water. 27 mortality (kill) rates in the treatment groups was 28 compared with the control population. 29 30

- 1 The nematodes were extracted by "Sieving & mist
- 2 extraction" (Ayoub, S.M. 1977) prior to being
- 3 counted.

- 5 Criteria for Evaluation: Nematode counts were
- 6 performed to determine the proportion of nematodes
- 7 which survived and were killed in each treatment
- 8 group.

9 10

Table 14 - Pretreatment nematode counts

11

Sample ID	Root-Knot	Citrus
Mean nematode	659.25	12,711.75
counts (N=8)		

12

13

The results are shown below in Tables 15 and 16.

14

15 Table 15 - Treatment of Root Knot nematodes with

16 terpene solution.

17

Terpene	No of Replicates	Mean% killed		
concentration				
500ppm	8	67.10		
250ppm	8	23.66		
125ppm	8	4.34		
62.5ppm	8	18.87		
untreated	8	5.71		

18

19

20

1 Table 16 - Treatment of Citrus nematodes with

2 terpene solution

3

Terpene	No of Replicates	Mean % killed	
concentration			
500ppm	8	95.53	
250ppm	8	91.66	
125ppm	8	46.29	
62.5ppm	8	-2.84	
untreated	8	13.7	

4

5 The protocol was repeated, this time using only

6 citral at 500 ppm concentration. The results are

shown below on Table 17 to 19.

8 9

7

Table 17 - Pretreatment nematode counts

10

Sample ID	Root-Knot	Citrus	
Mean nematode	1225.25	10755.5	
counts (N=8)			

11 12

Table 18 - Treatment of Root-Knot nematodes with
terpene solution

14

13

Terpene	N	Mean % killed
concentration		
500ppm	10	99.6

15

16

17

1 Table 19 - Treatment of Citrus nematodes with

2 terpene solution

3

Terpene	N	Mean	%	killed
concentration	9			
500ppm	10		9	9.9

4

7

8

9

5 The experiment was performed once again, this time 6 with the following changes:

- Dose range of 125ppm-750ppm was used.
- Glass tubes containing 150g of soil were used as opposed to PVC tubes in previous experiments.

10 11

The results are shown below in Table 20.

13

12

14 Table 20 - Treatment of Root Knot nematodes with 15 terpene solution

16

Terpene	N	Mean %
concentration		killed
750ppm	8	99.42
500ppm	8	100
250ppm	8	97.37
125ppm	8	74.51

17

18 19

20

21

22

The results all show that terpenes are effective nematicides in soil. This supports the data already provided showing that terpenes are effective nematicides in vitro. Concentrations of terpene as

low as 125 ppm demonstate strong nematicidal

BNSDOCID: <WO____2005070213A2_I_>

1	activity in soil, though concentrations of 250 ppm
2	and above showed more consistent high kill rates.
3	
4	Example 12 - Demonstration of Terpene Loading into
5	Bakers Yeast Particles and Purified Yeast Glucan
6	Particles
7	
8	The following protocol was performed to demonstrate
9	that terpenes would load into yeast cell walls and
LO	other yeast glucan particles.
L1	
L2	Emulsions of citral and L-carvone were prepared by
13	mixing 150 μ l of the terpene with 100 μ l of 10%
14	Tween 80 in water and 250 µl of water.
15	•
16	Baker's yeast particles (YP) or Levacan $^{ exttt{ iny TM}}$ yeast
17	glucan particles (YGP), available from Savory
18	Systems International, Inc., Branchburg, NJ, were
19	mixed with water to form a 250 mg/ml suspension.
20	
21	500 μ l of the YP or YGP suspension and 250 μ l of the
22	terpene emulsion were mixed together and incubated
23	overnight under constant agitation. 500 µl YP or
24	YGP suspension and 500 μl of water were used as a
25	control. The particles were then washed with water
26	until free from external emulsion. The particle
27	preparations were then frozen and lyophilised until
28	dry.
29	•
30	The particles were then rehydrated and examined
31	under light microscope. The results are shown in
32	Figs. 1 to 4.

- Fig. 1 shows spherical structures with a dark area 1 at their centre, these are empty hollow glucan 2 particles. Figs 2 and 3 shows spherical structures 3 with a swollen appearance with a light coloured 4 interior, these are particles with terpene 5 encapsulated in the central cavity - citral in Fig. 6 2 and L-carvone in Fig. 3. In Figs. 2 and 3 small 7 blobs of free terpene can also be seen, e.g. at the 8 top of Fig. 2, just left of centre. Figure 4 shows 9 the terpene emulsion as small blebs of terpene 10 suspended in water. 11 12 Example 13 - Determination of maximal citral and L-13 carvone loading levels in Baker's Yeast Particles 14 15 (YP) 16 The following protocol was performed to determine 17 the maximal amounts of terpenes that would load into 18 19 YP. 20 - L-carvone and citral emulsions were prepared by 21 sonicating 4.5 g of the terpene with 0.3 ml 22 water. 23 - 10% Tween-80 solution was prepared by sonicating 24 4.5 g Tween-80 in 40.5 mls water. 25 - YP suspension was prepared by mixing YP with 26 water to form 20 mg/ml suspension. 27 Encapsulation reactions were set up as described 28
- 2930
- 31 Citral or L-carvone-water emulsion was mixed with YP
- 32 and Tween 80 surfactant overnight at room

in Table 21.

temperature. Samples were centrifuged at 14,000 x g

for 10 minutes and the appearance of free terpene

3 floating on the aqueous layer was scored. The

4 results are shown in the right hand column labelled

5 free terpene of Table 21.

6

7 The expression "free terpene" refers to the visible

8 presence of terpene in the centrifuged reaction

9 mixture. The absence of free terpene indicates

10 complete absorption of the terpene by the particles.

11 The highest volume of terpene absorbed by the

12 particles, as evidenced by the absence of free

13 terpene, was recorded as the maximal volume of

14 absorbed terpene emulsion.

15

Table 21

20 mg/ml	Terpene	Vol	10% Tween-	<u>Free</u>
<u>YP</u>	Emulsion		80	Terpene
μl		μl	μ1	
500	-	-	500	<u>-</u>
500	L-carvone	0.5	500	-
500	L-carvone	1.65	500	-
500	L-carvone	5	495	.
500	L-carvone	16.5	483.5	-
500	L-carvone	50	450	+
500	L-carvone	165	335	+
500	L-carvone	500	-	+
500	Citral	0.5	500	1
500	Citral	1.65	500	
500	Citral	5	495	-
500	Citral	16.5	483.5	+/-
500	Citral	50	450	+
	ΥP μ1 500 500 500 500 500 500 500 50	ΥΡ Emulsion μ1 500 - 500 L-carvone 500 L-carvone 500 L-carvone 500 L-carvone 500 L-carvone 500 L-carvone 500 L-carvone 500 Citral 500 Citral 500 Citral 500 Citral Citral 500 Citral Citral	YP Emulsion μl μl 500 - 500 L-carvone 500 Citral 500 Citral	YP Emulsion 80 μl μl μl 500 - 500 500 L-carvone 0.5 500 500 L-carvone 1.65 500 500 L-carvone 5 495 500 L-carvone 16.5 483.5 500 L-carvone 50 450 500 L-carvone 500 - 500 Citral 0.5 500 500 Citral 1.65 500 500 Citral 5 495 500 Citral 16.5 483.5

14	500	Citral	165	335	. +
15	500	Citral	500	-	+

3

4

As can be seen from the results, YP is capable of absorbing and encapsulating at least 16.5 µl of L-carvone terpene emulsion or at least 5 µl of citral

5 emulsion per 10 mg of YP.

6

8

7 Example 14 - Demonstration of improved terpene

loading with surfactant and determination of optimal

Tween-80:Terpene ratio

10

11 The following protocol was performed to demonstrate

that the presence of surfactant improves terpene

13 loading and to determine the minimum level of Tween-

14 80 surfactant required for the YP terpene loading

15 reaction.

16

17 - L-carvone and citral emulsions were prepared by

sonicating 4.5 g of the terpene with 0.3 ml

19 water.

20 - 10% Tween-80 solution was prepared by sonicating

21 4.5 g Tween-80 in 40.5 ml water.

- Baker's YP suspension was prepared by mixing YP

with water to form 250 mg/ml suspension.

24

25 Loading reactions were set up as shown in Table 22

26 below.

27

28 Citral or L-carvone-water emulsion was mixed with YP

29 with 0 - 10% v/v Tween 80 surfactant overnight at

30 room temperature. Samples were centrifuged at

- 1 14,000 x g for 10 minutes and the appearance of free
- 2 terpene floating on the aqueous layer was scored.
- 3 The results are shown in the right hand column
- 4 labelled free terpene of Table 22.

6 The expression "free terpene" refers to the visible

- 7 presence of terpene in the centrifuged reaction
- 8 mixture. The absence of free terpene indicates
- 9 complete absorption and encapsulation of the terpene
- 10 by the YP. The highest volume of terpene absorbed
- 11 by the YP, as evidenced by the absence of free
- terpene, was recorded as the maximal volume of
- 13 absorbed terpene emulsion.

Table 22

Table						
Tube	250	Terpene	Vol	10% Tween-	Water	Free
	mg/ml YP	Emulsion		<u>80</u>		Terpene
	ml		μ1	μ1	μl	
1	500	-	_	-	500	-
2	500	L-carvone	150	0	350	s1
3	500	L-carvone	150	5	345	sl
4	500	L-carvone	150	10	340	Sl
5	500	L-carvone	150	33	317	Sl
6	500	L-carvone	150	100	250	-
7	500	L-carvone	150	200	150	-
8	500	L-carvone	150	350	-	_
9	500	L-carvone	400	0	100	++
10	500	L-carvone	400	5	95	++
11	500	L-carvone	400	10	90	++
12	500	L-carvone	400	33	77	++
13	500	L-carvone	400	100	-	+
14	500	L-carvone	400	20 µl 100%	30	+
		 				

15	500	Citral	113	0	387	+
16	500	Citral	113	5	382	+
17	500	Citral	113	10	377	+
18	500	Citral	113	33	354	sl
19	500	Citral	113	100	287	sl
20	500	Citral	113	200	187	-
21	500	Citral	113	350	37	-
22	500	Citral	250	0	250	++
23	500	Citral	250	5	245	++
24	500	Citral	250	10	240	++
25	500	Citral	250	33	217	+
26	500	Citral	250	100	150	+
27	500	Citral	250	20 µl 100%	230	+

Sl = slight

As can be seen from the results a Tween-80 concentration of 1% (i.e. 100 µl of 10 % Tween-80 in 1000 µl of reaction mixture) is sufficient to allow complete uptake of the terpene in the above reaction. A 2% Tween-80 causes no improvement in results, whereas with a 0.33% concentration free terpene was observed. This indicates that:

- a) Terpenes are absorbed into YP particles in the absence of a surfactant, but the presence of surfactant significantly increases terpene absorption.
- b) A Tween-80 concentration of around 1% is optimum for YP loading as it ensures proper loading whilst maximising the terpene payload of the YP particles.

1	Example 15 - Determination of maximal terpene
2	loading and encapsulation at high Baker's Yeast
3	Particles (YP) levels
4	
5	The following protocol was performed to determine
6	the maximal amounts of terpenes that would load into
7	YP at high YP levels.
8	
9	- L-carvone and citral emulsions were prepared by
10	sonicating 4.5 g of the terpene with 3 ml 1%
11	Tween.
12	- 5% Tween-80 solution was prepared by sonicating
13	0.5 g Tween-80 in 9.5 ml water.
14	- YP suspension was prepared by mixing YP with
15	water to form 250 mg/ml suspension.
16	- Encapsulation reactions were set up as shown in
17	Table 23.
18	
19	Citral or L-carvone-water emulsion was mixed with YP
20	and Tween 80 surfactant overnight at room
21	temperature. Samples were centrifuged at $14,000 \times g$
22	for 10 minutes and the appearance of free terpene
23	floating on the aqueous layer was scored. The
24	results are shown in the right hand column labelled
25	free terpene of Table 23.
26	
27	The expression "free terpene" refers to the visible
28	presence of terpene in the centrifuged reaction
29	mixture. The absence of free terpene indicates
30	complete absorption of the terpene by the YP. The
31	highest volume of terpene absorbed by the YP, as
32	evidenced by the absence of free terpene, was

1 recorded as the maximal volume of absorbed terpene

2 emulsion.

Table 23

Tube	250	Terpene	<u>Vol</u>	1% Tween-	Free
	mg/ml YP	Emulsion		80	Terpene
	μ1		μl	μl	
1	500	-	-	500	-
2	500	L-carvone	15	485	-
3	500	L-carvone	37.5	462.5	_
4	500	L-carvone	75	425	_
5	500	L-carvone	112.5	387.5	
6	500	L-carvone	150	350	S1 +
7	500	L-carvone	225	275	+
8	500	L-carvone	450	50	+
9	500	Citral	15 ·	485	-
10	500	Citral	37.5	462.5	_
11	500	Citral	75	425	, -
12	500	Citral	112.5	387.5	Sl +
13	500	Citral	150	350	+
14	500	Citral	225	275	+
15	500	Citral	450	50	+

As can be seen from the results in Table 9, YP is capable of absorbing and encapsulating terpenes at high YP concentration. YP absorbed and encapsulated at least 112.5 μl of L-carvone terpene emulsion or at least 75 μl of citral emulsion per 125 mg of YP. This demonstrates that the terpene encapsulation reaction is independent of YP concentration within the ranges tested.

Example 16 - Screen commercially available particles 1 for terpene absorption 2 3 The following protocol was performed to analyse the 4 loading properties of different types of particles. 5 The particles studied were Baker's Yeast Particles 6 (Sigma Chemical Corp., St. Louis, MO), $Nutrex^{TM}$ 7 Walls (Sensient Technologies, Milwaukee, WI), SAF-8 $Mannan^{TM}$ (SAF Agri, Minneapolis, MN), Nutricept 9 Walls[™] (Nutricepts Inc., Burnsville, MN), Levacan[™] 10 (Savory Systems International, Inc., Branchburg, NJ) 11 and WGP™ (Alpha-beta Technology, Inc. Worcester, 12 MA). 13 14 L-carvone and citral emulsions were prepared by 15 sonicating 7 g terpene + 3 ml 3.3% Tween-80. 16 17 Table 24 below compares the purity with the number 18 of yeast particles per mg and the packed solids

Table 24

weight/volume ratio.

19

20 21

Yeast Particle	Purity	No. particles/mg	Mg particles/ml
	% Beta 1,3-		
	glucan		
Bakers	11.2	4 x10 ⁷	250
Nutrex	24.5	1.7 x10 ⁸	58.8
SAF Mannan	33.4	2.4 x10 ⁸	41.7
		2.7x10 ⁸	
Nutricepts	55.7	5.2 x10 ⁸	37
Levacan	74.6	1x10 ⁸	19.2
WGP	82.1	3.5×10^{8}	10
1	I	<u></u>	

1	From Table 24 it can be concluded that the number of
2	particles per mg is inversely proportional to
3	purity. Thus the number of particles per mg of WGP
4	is almost 10-fold higher than Baker's YP.
5	•
6	The YP suspensions were prepared as follows:
7	
8	- Baker's yeast particle suspension (YP) was
9	prepared by mixing 250 mg YP / ml 1% Tween 80.
10	- Nutrex suspension was prepared by mixing 163 mg
11	Nutrex YGP / ml 1% Tween 80.
12	- SAF Mannan suspension was prepared by mixing 234
13	mg Biospringer YGP / ml 1% Tween 80.
14	- Nutricepts suspension was prepared by mixing 99
15	mg Nutricepts YGP / ml 1% Tween 80.
16	- Levacan suspension was prepared by mixing 217 mg
17	Lev YGP / ml 1% Tween 80.
18	- WGP suspension was prepared by mixing 121 mg WGP
19	YGP / ml 1% Tween 80.
20	
21	The packed volume of the above particles is
22	identical which means that equal numbers of
23	particles were assayed.
24	
25	Loading reactions were set up as shown in Table 25
26	and left to incubate overnight. Samples were
27	centrifuged at $14,000 \times g$ for 10 minutes and the
28	appearance of free terpene floating on the aqueous
29	layer and the color of the encapsulated terpenes in
30	the pellet was scored. The results are shown in the
31	two right hand columns of Table 25. The highest
32	volume of terpene absorbed by particles as evidenced

- 1 by the absence of free terpene was recorded as the
- 2 volume of absorbed terpene emulsion.

rable 25

																-
Colour		W	M	M	M	W	M	¥	Ā	M	Ā	int	int	1	Ā	- 7
Free Terpene		1	•		+	+	+	1	1	ı	+	+	+	+	+	
80 17			<u> </u>		<u> </u>			-					-	-		-
1% Tween 8	딞	375	375	375	375	375	375	375	375	375	375	375	375	875	006	intermodiate
Vol	h1	125	125	125	125	125	125	100	100	100	100	100	100	125	100	int =
Terpene	Emulsion	L-carvone	L-carvone	L-carvone	L-carvone	L-carvone	L-carvone	Citral	Citral	Citral	Citral	Citral	Citral	L-carvone	Citral	s]inht.
대		500	200	200	500	500	500	500	200	200	500	200	500	,	1	[0]
conc	mg/ml	250	163	234	66	217	121	250	163	234	66	217	121	1	1	Vellow
Particle		Baker's	Nutrex	SAF Mannan	Nutricepts	Levacan	WGP	Baker's	Nutrex	SAF Mannan	Nutricepts	Levacan	WGP	ı	l	= white: Y =
Tube		 -	2	က	4	2	9	7	80	6	10	11	12	13	14	M

 \sim

1	From the results the following conclusions were
2	reached:
3	- Purified particles with a low lipid content were
4	less effective at absorbing terpenes.
5	- Less pure particles were more effective at
6	absorbing terpenes.
7	- Yellow degradation product of citral was not
8	formed when encapsulated in SAF-Mannan $^{ exttt{TM}}$.
9	- Based on qualitative loading at the single
10	terpene level tested, SAF Mannan $^{ exttt{TM}}$ appears to be
11	best, $Nutrex^{TM}$ second and Baker's third.
12	
13	Example 17 - Kinetics of terpene loading into
14	various types of particles and different incubation
15	temperatures.
16	
17	The following protocol was adopted to compare the
18	loading kinetics of various types of yeast
19	particles.
20	
21	L-carvone and citral emulsions were prepared by
22	sonicating 7 g terpene with 3 ml 3.3% Tween-80.
23	
24	1% Tween-80 solution was prepared by sonicating 1 ml
25	10% Tween-80 in 10 ml water.
26	
27	- Baker's YP was prepared by mixing 5 g of bakers
28	YP in 20 ml 1% Tween-80.
29	- Nutrex TM YGP suspension was prepared by mixing 2
30	g Nutrex TM YGP in 20 ml 1% Tween-80.
31	- SAF Mannan $^{ exttt{TM}}$ suspension was prepared by mixing 2
32	g SAF Mannan TM in 20 ml 1% Tween-80.

BURDOOLD -18/0 2005070213A2 I

1	Loading reactions were set up as shown in Table 26.
2	
3	The reactions were incubated for 1, 3, 6, 9 and 24
4	hours at room temperature or 37 °C. After
5	incubation samples were centrifuged at 14,000 x g
6	for 10 minutes and the appearance of free terpene
7	floating on the aqueous layer was scored. The
8	results are shown in the two right hand columns of
9	Table 26. The highest volume of terpene absorbed by
LO	the particles as evidenced by the absence of free
11	terpene was recorded as the volume of absorbed
12	terpene emulsion. Colour of the encapsulated pellet
13	was scored at 24 hours.
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

Table 26

									,				·	3
Color		M	M.	M	M	M	M	⋨	Δħ	≯	ΛΛ	M	M	
<u>위</u>	24	1	1	1	1	1	1	1	ı	1	1	1	١	
e (P	6	1	1	ı	1	1	1	ı	1	1	1	1	l 	
rpen	9	ı	1	1	1	١	-	1	1	ı	ı	١	1	
Free Terpene (hr)	3	1	1	ı	1	1	1	1	ı	1	1	1	ı	
Fre	П	+	+	+	+	†	†	+	+	+	+	+	+	
1%	Tween-80	2712	2712	2450	2450	2450	2450	2975	2975	2712	2712	2712	2712	
Vol	Π	788	788	1050	1050	1050	1050	525	525	788	788	788	788	
Terpene	Emulsion	3500 L-carvone	L-carvone	3500 L-carvone	L-carvone	3500 L-carvone	L-carvone	Citral	Citral	Citral	Citral	Citral	Citral	
딞	 	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	
conc	mg/ml	250	250	100	100	100	100	250	250	100	100	100	100	
Particle	•	Bakers	Bakers	Nutrex	Nutrex	SAF	SAF	Bakers	Bakers	Nutrex	Nutrex	SAF	SAF	
E-1)	Rt	37	Rt	37	Rt	37	Rt	37	Rt	37	Rt	37]
Tube		Н	2	m	4	വ	9	7	∞	9	10	11	12	

White, W; Yellow, Y; Very Yellow, VY; Room Temperature, Rt

~

1	From the results shown in Table 26 and other ,
2	observations the following conclusions can be made:
3	 Terpene loading reaction takes between 1 and 3
4	hours.
5	 Terpene loading occurs faster at 37 °C than at
6	room temperature.
7	$ullet$ SAF Mannan $^{ exttt{TM}}$ appears to be preferable particles
8	for two reasons:
9	- Faster and more complete uptake of both
LO	terpenes.
L1	- Citral remains stable when loaded as
L2	evidenced by the absence of yellow colour,
13	characteristic of citral degradation, after
14	24 hours at 37 °C.
15	
16	Example 18 - Screen a range of single terpenes and terpene combinations for particle loading
17 18	terpene combinations for particle roading
19	The following protocol was adopted to compare the
20	loading efficiency of Baker's YP versus SAF Mannan $^{ exttt{TM}}$.
21	
22	Terpene emulsions were prepared as follows:
23	- L-carvone - 4.5 g L-carvone in 1.5 ml 3.3% Tween-
24	80.
25	- Citral - 4.5 g citral in 1.5 ml 3.3% Tween-80.
26	- Thymol/L-carvone mixture (T/L)- 2.25 g thymol and
27	2.25 g L-carvone in 1.5 ml 3.3% Tween-80.
28	- Eugenol - 4.5 g eugenol in 1.5 ml 3.3% Tween-80.
29	- Geraniol - 4.5 g geraniol in 1.5 ml 3.3% Tween-
30	80.

1	- Citral/L-carvone/Eugenol mixture (C/L/E) - 1.5 g
2	citral, 1.5 g L-carvone, 1.5 g eugenol in in 1.5
3	ml 3.3% Tween-80.
4	
5	Emulsions composed of terpene : water : surfactant
6	ratio of 0.75:0.3:0.05 were used for these
7	experiments.
8	
9	Increasing volumes of terpene emulsion were mixed
10	with 250 mg/ml Baker's YP or 250 mg/ml SAF Mannan TM
11	overnight at room temperature as shown in Tables 27
12	and 28. Samples were centrifuged at 14,000 x g for
13	10 minutes and the appearance of free terpene
14	floating on the aqueous layer was scored. The
15	highest volume of terpene emulsion absorbed by
16	Baker's YP or SAF Mannan TM as evidenced by the
17	absence of free terpene was recorded as the volume
18	of absorbed terpene emulsion. Colour of encapsulated
19	terpenes in the pellet was recorded. The results in
20	Tables 27 and 28 show that all single and terpene
21	combinations were efficiently loaded into both
22	Baker's YP or SAF Mannan particles.
23	
24	
25	
26	
27	
28	
29	
30	
31	

- 1 Table 27 Evaluation of Baker's YP Loading of
- 2 Different Terpenes and Terpene Mixtures.

Tube	Baker	Terpene	<u>Vol</u>	1% Tween-	Free	Colour
	<u>(µ1)</u>	Emulsion	<u>(µ1)</u>	80 (µl)	Terpene	
1	500	-	_	500	-	W
2	500	L-carvone	15	485	-	W
3	500	L-carvone	37.5	462.5	_	W
4	500	L-carvone	7	425	+/-	W
5	500	L-carvone	112.5	387.5	+/-	M
6	500	L-carvone	150	350	+	W
7	500	L-carvone	225	275	+	W
8	500	L-carvone	450	50	++	W
9	500	Citral	15	485	_	Y
10	500	Citral	37.5	462.5	-	Y
11	500	Citral	75	425	-	Y
12	500	Citral	112.5	387.5	+/-	Y
13	500	Citral	150	350	+ ·	Y
14	500	Citral	225	275	+	Y
15	500	Citral	450	50	+	Y
16	500	T/L	15	485	<u> </u>	W
17	500	T/L	37.5	462.5	-	W
18	500	T/L	75	425	-	W
19	500	T/L	112.5	387.5	+/-	W
20	500	T/L	150	350	+	W
21	500	T/L	225	275	+	W
22	500	T/L	450	50	+	W
23	500	Eugenol	15	485	-	W
24	500	Eugenol	37.5	462.5	-	W
25	500	Eugenol	75	425	-	W
26	500	Eugenol	112.5	387.5	+/-	W
27	500	Eugenol	150	350	+	W

28 500 Eugenol 225 275 + 29 500 Eugenol 450 50 + 30 500 Geraniol 15 485 -	W
	W
30 F00 Governiol 15 495	
30 500 Geraniol 15 485 -	W
31 500 Geraniol 37.5 462.5 -	W
32 500 Geraniol 75 425 -	W
33 500 Geraniol 112.5 387.5 +	W
34 500 Geraniol 150 350 +	W
35 500 Geraniol 225 275 +	W
36 500 Geraniol 450 50 +	W
37 500 C/L/E 15 485 -	Y
38 500 C/L/E 37.5 462.5 -	Y
39 500 C/L/E 75 425 -	Y
40 500 C/L/E 112.5 387.5 +/-	Y
41 500 C/L/E 150 350 +	Y
42 500 C/L/E 225 275 +	Y
43 500 C/L/E 450 50 +	Y

1 Table 28 - Evaluation of SAF Mannan Loading of

2 Different Terpenes and Terpene Mixtures.

Tube	SAF	Terpene	Vol	1% Tween-	Free	Colour
	<u>(µ1)</u>	Emulsion		<u>80 (µl)</u>	Terpene	
1	500	_	_	500	-	W
2	500	L-carvone	15	485	-	W
3	500	L-carvone	37.5	462.5	_	W
4	500	L-carvone	75	425	-	W
5	500	L-carvone	112.5	387.5	-	. W
6	500	L-carvone	150	350	+/-	W
7	500	L-carvone	225	275	+/-	W
8	500	L-carvone	450	50	+	W
9	500	Citral	15	485	-	W
10	500	Citral	37.5	462.5	-	W
11	500	Citral	75 ul	425		W
12	500	Citral	112.5	387.5	_	W
13	500	Citral	150	350	+/- Inverted	W
14	500	Citral	225	275	+ Inverted	W
15	500	Citral	450	50	+ Inverted	W
16	500	T/L	15	485	-	W
17	500	T/L	37.5	462.5	-	W
18	500	T/L	75	425	-	W
19	500	T/L	112.5	387.5	_	W
20	500	T/L	150	350	+/~	W
21	500	T/L	225	275	+	W
22	500	T/L	450	50	+	W
23	500	Eugenol	15	485	-	W
24	500	Eugenol	37.5	462.5	-	W
25	500	Eugenol	75	425	-	W

26	500	Eugenol	112.5	387.5	+/-	W
27	500	Eugenol	150	350	+	W
28	500	Eugenol	225	275	+	W
29	500	Eugenol	450	50	+	W
30	500	Geraniol	15	485	-	W
31	500	Geraniol	37.5	462.5	-	W
32	500	Geraniol	75	425	-	W
33	500	Geraniol	112.5	387.5	-	W
34	500	Geraniol	150	350	-	W
35	500	Geraniol	225	275	- Inverted	W
36	500	Geraniol	450	50	+ Inverted	W
37	500	C/L/E	15	485	-	W
38	500	C/L/E	37.5	462.5		W
39	500	C/L/E	75	425	-	W
40	500	C/L/E	112.5	387.5	-	W
41	500	C/L/E	150	350	-	W
42	500	C/L/E	225	275	+/-	W
43	500	C/L/E	450	50	+	W

Inverted = Phase Inverted - solids floating on top

- no free oil; W = white; Y = yellow.

4

3

From the results the following observations were made:

- 7 All terpenes appeared to load into Baker's YP and SAF Mannan.
- 9 SAF Mannan has a higher terpene loading capacity 10 than bakers YP.
- 11 The two and three way mixtures of terpenes also 12 appear to efficiently load.

1	_	The terpene Eugenol appears to have a higher
2		density than the particles and water as it was
3		found associated with the pellet.

- For the SAF Mannan, the higher load levels and lighter particles resulted in loaded particles floating on the surface of the aqueous layer for citral and geraniol.

Citral was protected from oxidation by the SAF
 Mannan but not by the Baker's YP.

The approximate maximal loading for each particle type was determined and is shown in tables 29 and 30 below. Percentage loaded represents a ratio of the amount of terpene loaded to the amount of particle present (weight for weight).

Table 29 - Maximal terpene loading in Baker's YP.

Terpene	Vol. Loaded µl	% Loaded w/w	
L-carvone	37.5	33.3	
Citral	75	67%	
Thymol/L-carvone 1:1	75,	67%	
Eugenol	75	67%	
Geraniol	75	67%	
Citral/L-carvone/	75	67%	
Eugenol (1:1:1)			

1 Table 30 - Maximal terpene loading in SAF Mannan.

2

Terpene	Vol. loaded µl	% Loaded w/w
L-carvone	112.5	100%
Citral	150	133%
Thymol/L-carvone 1:1	112.5	100%
Eugenol	112.5	100%
Geraniol	150	133%
Citral/L-carvone/	150	133%
Eugenol (1:1:1)		

3

4 Example 19 - Evaluation of Terpene stability in

5 aqueous emulsions and encapsulated terpene

formulations

7

6

8

9

10

11

12

13

14

15

16

Terpene stability was assessed by the observation of citral formulations for the formation of a yellow colored oxidation product. As noted in the right hand column in Tables 25 - 28 citral emulsions and citral encapsulated Bakers YP turned a progressively increasing yellow color over time. However, citral encapsulation in SAF Mannan™ increased citral stability as evidenced by a reduction or absence of yellow color over time.

17 18

Example 20 - Loading of Terpenes in minimal water

19 20

The following protocol was carried out to evaluate

- 21 the possibility that terpene loading and
- 22 encapsulation into YP could be carried out at a very
- 23 high Yeast Particles (YP) solids level to allow for
- 24 direct extrusion of the loaded formulation into a

fluidised bed drier. The minimal amount of water to 1 completely hydrate the SAF Mannan™ particles was 2 determined to be 3.53 g water per g solids. 3 defines the hydrodynamic volume (HV) or water 4 absorptive capacity of the particles. At this level 5 of water the hydrated particles have a consistency 6 of a stiff dough which is thixotropic, i.e. shear 7 thinning like mayonnaise. Addition of water up to 8 40 % above the HV results in a thick flowable paste. 9 The standard reaction that has been used in the 10 above examples was carried out at 3 X HV water. 11 12 A series of terpene (L-carvone) loading reactions 13 were carried out keeping the ratio of 14 particle:terpene:Tween (1: 0.44:0.04) constant and 15 varying the amount of water in the system from the 16 HV (3.53 g) to HV + 40% water (4.92 g). 17 were the standard loading system which uses 3 X HV 18 water, particles only and terpene only reactions. 19 Following overnight incubation samples of the 20 mixtures were evaluated microscopically for free 21 terpene and evidence of terpene uptake into the 22 23 particles and for material flow characteristics by assessing flow in inverted tubes over 15 minutes. 24 25 In addition, the presence of free oil was assessed by hydrating the reaction mixture with 5 X HV, 26 vortexing to obtain a complete dispersion of 27 particles and centrifugation to sediment the 28 particle encapsulated terpene. The results are 29 shown in Table 31 and Figs. 7 to 12. Figs. 7 to 12 30 show the loading results of the following tubes: 31 32

1 - Fig. 7 - Tube 3
2 - Fig. 8 - Tube 5
3 - Fig. 9 - Tube 6
4 - Fig. 10 - Tube 8
5 - Fig. 11 - Tube 10
6 - Fig. 12 - Tube 11
7

8 Table 31

Tube	SAF	Terpene	Weight	Water	Free	Flow
	<u>a</u>	Emulsion	<u>(g)</u>	<u>(g)</u>	<u>Terpene</u>	
1	_	L-carvone	4.64	4.5	+	+
2	1		-	8.0	- .	+
3	1	L-carvone	4.64	4.5	-	+
4	1	L-carvone	4.64	-		-
5	1	L-carvone	4.64	0.17	_	-
6	1	L-carvone	4.64	0.35	-	-
7	1	L-carvone	4.64	0.52	-	sl
8	1	L-carvone	4.64	0.7	-	Mod
9	1	L-carvone	4.64	0.87	-	High
10	1	L-carvone	4.64	1.05	_	High
11	1	L-carvone	4.64	1.39	_	High

The results shown in Table 31 and Figs. 7 to 12 demonstrate that terpene loading and encapsulation into the particles occurred at all water ratios evaluated. Surprisingly, equivalent loading occurred even when the loading reaction was taking place in a reaction with the consistency of a stiff dough using the minimal amount of water to hydrate the particles. The absence of free terpene was observed microscopically (Figs. 7 to 12) and in the

1	low level of terpene in the supernatants, as.
2	evidenced by a marked reduction in the turbidity of
3	the supernatant compared to the terpene only
4	control.
5	
6	These results extend our understanding of the
7	conditions to load terpenes into hollow glucan
8	particles. The flexibility to use a minimal volume
9	of water to hydrate the particles during the loading
10	process will allow loading of the terpenes under
11	conditions where the reaction mixture is a malleable
12	dough-like consistency using standard food-grade
13	swept surface dough mixers. The consistency of the
14	final high solids terpene loaded mixture is suitable
15	for direct extrusion to form noodles and pellets for
16	fluidised bed drying.
17	
18	Suitable facilities to scale up production in this .
19	manner would require:
20	- Gaulin homogeniser, or equivalent to produce
21	stable terpene emulsion.
22 -	 Swept surface dough mixing tank.
23	- Extruder.
24	- Fluidised bed drier.
25	·
26	Example 21 - Evaluation of an interstitial
27	hydrocolloid agent to aid dispersion in dried hollow
28	glucan particles encapsulating a terpene component
29	dispersion when re-hydrated.
30	
31	The following protocol was adopted to evaluate the
32	effect of an interstitial hydrocolloid to increase

1	dried hollow glucan particle encapsulated terpene
2	formulations to disperse when hydrated.
3	
4	- SAF Mannan™ particles
5	- 0.1% Tween 80
6	- L-carvone
7	- Xanthan Gum - 1% w/v in 0.1% Tween 80
8	
9	The effect of increasing xanthan gum levels on dry
10	hollow glucan particle encapsulated L-carvone
11	dispersion in water was assessed by loading L-
12	carvone into SAF Mannan by incubating 1.1 g of an L
13	carvone emulsion (L-carvone : water : surfactant
14	ratio of $0.75:0.3:0.05$) with 1 g SAF Mannan and 4.4
15	g 0.1% Tween 80 containing 0 - 1% xanthan gum as
16	shown in Table 32.
17	•
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
28	
28 29	
30	
31	
32	
J 41	

1 Table 32

Tube	SAF	L-carvone	0.1%	18	<u> Visual</u>
	<u>g</u>	Emulsion	Tween-80	<u>Xanthan</u>	<u>Observations</u>
		<u>(g)</u>	<u>(g)</u>	(g)	
1	1	1.1	4.4	0	Large non-
					uniform clumps
2	1	1.1	4.33	0.07	Uniform
					suspension
3	1	1.1	4.26	0.14	Uniform
					suspension
4	1	1.1	4.12	0.28	Uniform
					suspension
5	1.	1.1	3.85	0.55	Uniform
					suspension
6	1	1.1	3.3	1.1	Finer Uniform
					suspension
7	1	1.1	2.2	2.2	Finer Uniform
					suspension
8	1	1.1	0	4.4	Finer Uniform
					suspension

2

4

5

The results in Table 32 and Figs 13 to 20 demonstrate that the inclusion of a high molecular weight hydrocolloid during the drying of the

weight hydrocolloid during the drying of theparticle encapsulated terpene aids in the hydration

and dispersion of the microparticles into a uniform

9 suspension. Other examples of such hydrocolloid

agents are maltodextrin, alginates, or the like.

11

12 It may also be worthwhile to include a pellet

coating to increase the stability of the loaded

1	terpenes, and to provide a sustained release of			ase or
2	terpene.			
3				
4 .	Example 22	- Nematocidal	Activity of Encar	psulated
5	Terpenes			
6				
7	Preparation	ns of yeast cel	l walls encapsula	ating
8	citral wer	e prepared acco	ording to the prod	cedures
9	described	above. The hol	llow glucan partio	cles
L O	contained	17.5% citral, a	and the particles	were
1	present at	in the test pr	reparations at a	
L2	concentrat	ion of 1000 ppm	n. This means th	at terpenes
L3	were effec	tively present	at a concentration	on of 175
L 4	ppm.			
L5				
16	1.0 ml of	the test prepar	rations was added	to 0.1 to
L7	0.15 ml of	water contain	ing root-knot nem	atodes.
18	1.0 water	was added to th	ne nematodes as t	he control.
19				
20	Observatio	ns were made as	s [revopis;u desc	robed and
21	the kill r	ate assessed (i.e. percentage d	ead) after
22	24 and 48	hrs. The resul	lts shown below i	n Table 13
23	are an ave	rage of 2 sets	of results.	
24				
25	Table 33 -	Nematicidal ad	ctivity of encaps	ulated
26	terpene so	lution (17.5 %	citral @ 1000ppm)
27				
		Kil:	l Rate	
	Time	Test	Control	
	24 h	45	17	
	48 h	56	21	1

1	The results demonstrate that hollow glucan particles
2	encapsulating terpenes are effective at killing
3	root-knot nematodes at a particle concentration of
4	1000 ppm, which corresponds to a citral
5	concentration of only 175 ppm.
6	
7	Thus hollow glucan particles encapsulating terpenes
8	appear to be as effective as terpenes in solution or
9	with surfactant as nematicides. The nematicidal
10	activity is retained despite the terpene being
11	encapsulated within the particle. It can be
12	expected that higher concentrations of terpenes
13	within the hollow glucan particles, or higher
14	concentrations of the particles would result in an
15	even higher kill rate, as is the case for terpenes
16	in solution or with surfactant.