E0-214 Applied Linear Algebra and Optimization Assignment 1

1. Find the eigenvalues and eigenvectors of

$$\begin{pmatrix} 2 & 1 & 5 \\ 4 & 2 & 10 \\ 2 & 1 & 5 \end{pmatrix}$$

2. Find the rank and all the eigenvalues of the following matrix:

$$\boldsymbol{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Which eigenvectors correspond to non-zero eigenvalues? Find the eigenvalues and determinant of $\mathbf{A} - 7I$.

3. Find the determinants of \mathbf{A} and \mathbf{A}^{-1} if

$$oldsymbol{A} = oldsymbol{S} egin{pmatrix} \lambda_1 & 2 \ 0 & \lambda_2 \end{pmatrix} oldsymbol{S}^{-1}$$

- 4. If \mathbf{A} has eigenvalues 0 and 1 corresponding to the eigenvectors $(1,2)^T$ and $(2,-1)^T$, is \mathbf{A} symmetric? What are its trace and determinant? What is \mathbf{A} ? What will be the eigenvalues and eigenvectors of \mathbf{A}^2 ?
- 5. If $Ax = \lambda_1 x$ and $A^T y = \lambda_2 y$ (all real), find the value of $x^T y$.
- 6. Consider the projection matrix, $P = \frac{xx^T}{x^Tx}$, which projects onto a line. What is the trace of this matrix? Is P invertible? Why or why not?
- 7. Let $A \in \mathbb{R}^{3\times 3}$ be a matrix whose columns are u, v and w and are linearly independent. Let $Q = (q_1|q_2|q_3)$ be the matrix whose columns are obtained by using Gram-Schmidt orthogonalization process on the set $\{u, v, w\}$. Find the matrix R such that A = QR.
- 8. If A and B are invertible matrices, do the matrices AB and BA have same eigenvalues? Prove this claim if is true. Otherwise, give a counterexample.

- 9. For any \boldsymbol{A} and \boldsymbol{b} , prove that one and only one of the following systems has a solution:
 - (a) Ax = b
 - (b) $\boldsymbol{A}^T \boldsymbol{y} = \boldsymbol{0}, \boldsymbol{y}^T \boldsymbol{b} \neq 0$
- 10. Give an example of a 3 by 3 matrix to show that the eigenvalues of the matrix can be changed when a multiple of one row is subtracted from another.
- 11. Show that the quadratic $f(x_1, x_2) = x_1^2 + 4x_1x_2 + 2x_2^2$ has a saddle point at the origin.
- 12. Find the minimum of the function $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 2x_1x_2 2x_2x_3$.