Project Design Phase-II Technology Stack (Architecture & Stack)

Date	03 October 2022
Team ID	PNT2022TMID46873
Project Name	Predicting the energy output of wind turbine based on
	weather condition
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1	User Interface	Through Mobile app or Web Application	HTML, CSS,
		the information processed will be sent to	JavaScript / Angular Js
		the user through message or mail.	/ React Js etc
2	Application Logic-1	Predicting system is developed with a method of combining statistical models and physical models. The inlet condition of the wind farm is forecasted by the auto regressive model.	Machine learning
3	Application Logic-2	Here we can develop the software process like creating a web application/mobile application to interface with users.	IBM Watson STT service

4	Application Logic-3	pplication Logic-3 Here the predicted data is checked with actual output to increase the power output	
		and efficiency	
5	Database	We can save all the data in SQL or any other database so that the user can retrieve data whenever required.	MySQL, NoSQL, etc.
6	Cloud Database	The database we created and the predefined data's like power output from external API can be combined here and can be stored safely with security for future purpose.	IBM DB2, IBM Cloudant etc.
7	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
8	External API-1	With the help of external API only we can know the weather condition and compare with our actualoutput.	IBM Weather API, etc.
9	External API-2	Purpose of External API used in the application	Aadhar API, etc
10	Machine Learning Model	Purpose of Machine Learning Model	Prediction of wind output power, etc.
11	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Through our ideas Cloud Server Configuration: Through IBM	Local, Cloud Foundry, Kubernetes, etc

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology	
1	Open-Source	MIT App Inventor, Python, Weather App	Technology of	
	Frameworks	API.	Opensource framework	
2	Security	Here we are using IBM Cloud and it is the	IBM Cloud, MIT App	
	Implementations	very secured place where we can store the	Invertor, IBM Watson	
		data and retrieve the information	Assistant	
		whenever needed		
3	Scalable Architecture	Machine learning is becoming an	IBM Cloud	
		increasingly popular and desirable		
		solution. This work presents a specially		
		designed architecture based on IBM Cloud		
		services for predicting the output power of		
		wind turbine. Used services in IBM a		
		stress test to prove the ability of the		
		developed architecture for data processing		
		was completed		
4	4 Availability Many important features are available		Python for data	
		this application instead of using the	analysis, IBM Watson,	
		repaired windmill, we can easily find the	IBM Cloud, Weather	
		fault in windmill by comparing actual	API'S, Analytics	
		output with predicted output through		
		machine learning in python, with this we		
		can improve efficiency by adding		
		components and optimize the condition of		
		windmills and batteries.		