K Nearest Neighbour

June 18, 2021

```
[14]: %%capture
      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      from ipynb.fs.full.CleaningData import getDataset
      from IPython.display import FileLink, FileLinks
      from IPython.display import display, Markdown
      from ipynb.fs.full.CleaningData import getCovarianceVector
      import warnings
      warnings.filterwarnings('ignore')
      pd.set_option("display.max_rows", 100)
      pd.set_option("display.max_columns", None)
[15]: %%time
      %%capture
      df = getDataset(500)
     Wall time: 8.72 s
 [1]: # df.head(10)
```

0.1 Getting Data

Using pandas and numpy to get train, validation and testing data

Also taking out the URL feature.

```
validX = valid.drop(['status'],1)
validY = valid['status']

testX = test.drop(['status'],1)
testY = test['status']
```

Wall time: 29 ms

0.2 Fitting the Model

```
[19]: from random import random
```

```
[20]: #K-Nearest Neighbours
      def KNN(trainXOrig, trainY, validX, k, isEuci):
          predictTp = []
          for tp in validX.values:
              #Copying the trainX so we don't use altered data sets
              trainX = trainXOrig.copy(deep=True)
              #Data Point - tp
              trainX = trainX.subtract(tp,axis=1)
              if (isEuci):
                  #Euci
                  trainX *= trainX
                  #Get meanVec w/ Euci
                  trainX['meanVec'] = np.sqrt(trainX.sum(axis=1).values)
              else:
                   #Get meanVec w/ Manhatan
                  trainX['meanVec'] = np.abs(trainX.sum(axis=1).values)
              #Sort meanVec
              trainX.sort_values('meanVec',inplace=True)
              #Counting the ones that are phising and the ones that are not
              countPhish = 0
              countLegi = 0
              #Getting unique values (0, 1) and the amount of times they showed up_{\sqcup}
       \hookrightarrow for k
              countArr = np.unique(np.array([trainY[idx] for idx in trainX.index[:
       →k]]), return_counts=True)
              #Adding to Counter
              if (len(countArr[0]) == 1):
```

```
if (countArr[0][0] == 1):
            countPhish += countArr[1][0]
        else:
            countLegi += countArr[1][0]
    elif (countArr[0][0] == 0):
        countLegi += countArr[1][0]
        countPhish += countArr[1][1]
    else:
        countPhish += countArr[1][0]
        countLegi += countArr[1][1]
    #Checking the highest
    if (countPhish > countLegi):
        predictTp.append(1)
    elif(countLegi > countPhish):
        predictTp.append(0)
    else:
        if (random() > 0.5):
            predictTp.append(1)
        else:
            predictTp.append(0)
return predictTp
```

```
[21]: def getConfusionMatrix(yActual, yObtained):
          if (len(yActual) != len(yObtained)):
              print("yActual and yObtained different lengths")
              return None
          phishMatch = 0
          phishNoMatch = 0
          legitMatch = 0
          legitNoMatch = 0
          for i in range(len(yActual)):
              yAct = yActual[i]
              y0bt = y0btained[i]
              if (yAct == 1 and yObt == 1):
                  phishMatch += 1
              if (yAct == 1 and yObt == 0):
                  phishNoMatch += 1
              if (yAct == 0 and yObt == 0):
                  legitMatch += 1
              if (yAct == 0 and yObt == 1):
```

```
legitNoMatch += 1

arr = np.array([[legitMatch,legitNoMatch],[phishNoMatch,phishMatch]])
accu = (legitMatch + phishMatch)/sum([y for x in arr for y in x])

df = pd.DataFrame(data=arr)

df.columns = ["Legitimate", "Phishing"]
df.index = ["Legitimate", "Phishing"]
return df,accu
```

```
[23]: def KNNwithOutput(trainXOrig, trainY, validX, validY, k, isEuci):
    yObtained = KNN(trainXOrig, trainY, validX, k, isEuci)

confusionMat, accu = getConfusionMatrix(validY.values, yObtained)

showResults(confusionMat, accu, k)

return accu
```

0.3 Getting Optimal K - Eucilidean

```
[24]: %%time
optiK = None
accu = 0.0
```

```
kLst = [3,5,7,9,15,27,51,67,99,217,515,999]
for k in kLst:
  newAccu = KNNwithOutput(trainX, trainY, validX, validY, k, True)
  if (newAccu > accu):
     accu = newAccu
     optiK = k
_____
k is: 3
_____
Confusion Matrix
       Legitimate Phishing
Legitimate
          1087
                  62
Phishing
            74
                 1073
_____
_____
Accuracy of: 94.07666 %
_____
_____
k is: 5
_____
_____
Confusion Matrix
       Legitimate Phishing
Legitimate
          1101
                  48
Phishing
            85
                 1062
_____
_____
Accuracy of: 94.20732 %
```

k is: 7		
========		====
	========	====
Confusion Ma		
Toudedmake	Legitimate	_
Legitimate Phishing	1107 79	42 1068
111111111111111111111111111111111111111	7.5	1000
========		==
	========	====
	======== : 94.72997 %	
=========		====
		====
k is: 9		
========	========	====
========		====
Confusion Ma	atrix	
	Tamibimaba	Dhiahia
Legitimate	Legitimate 1104	Phisning 45
Phishing	81	
========	========	==
	========	====
Accuracy of	: 94.51220 %	
	=======	====
	=======	====
k is: 15		====
	=	

Confusion Matrix

Legitimate Phishing	Legitimate 1103 95	Phishing 46 1052
========		==
Accuracy of	 : 93.85889 % 	====
======================================		====
========		====
Confusion Ma	atrix	
Legitimate Phishing	Legitimate 1103 116	Phishing 46 1031
Accuracy of	 : 92.94425 %	====
======================================		====
Confusion M	======= atrix	====
Legitimate Phishing	Legitimate 1107 137	Phishing 42 1010

Accuracy of: 92.2		====	
k is: 67		====	
Confusion Matrix	=====	====	
Legitimate Phishing	1104 153	Phis	ning 45 994
		==	
Accuracy of: 91.3	37631 % 	====	
k is: 99		====	
Confusion Matrix		====	
Legitimate Phishing	imate 1103 160	Phis	ning 46 987
		==	
Accuracy of: 91.0		====	

k is: 217	
Legitimate Phishing Legitimate 1092 57 Phishing 204 943	•
=======================================	
======================================	
k is: 515	
Confusion Matrix	
Legitimate Phishing Legitimate 1099 50 Phishing 284 863)
k is: 999	
Confusion Matrix Legitimate Phishing Legitimate 1119 30	

706 Phishing 441 _____ Accuracy of: 79.48606 % _____ Wall time: 9min 10s 0.3.1 Optimal K - With Eucilidean [25]: print("======="") print("Optimal k value is: " + str(optiK)) print("======="") _____ Optimal k value is: 7 [26]: %%time KNNwithOutput(trainX, trainY, testX, testY, optiK, True) k is: 7 _____ _____ Confusion Matrix Legitimate Phishing Legitimate 1104 40 79 Phishing 1074 _____ Accuracy of: 94.81933 % Wall time: 45.7 s

[26]: 0.9481932956029604