Complex Numbers - Practice Exam 9

$$Kyle Broder - ANU - MSI - 2017$$

Question 1. Let $p(z) = z^4 - 2z^3 + 7z^2 - 4z + 10$ be a polynomial. Suppose that λi is a root of p(z), where $\lambda \in \mathbb{R}$. Determine the value of λ .

Question 2.

- a. Determine the cube roots of unity. That is, solve the equation $z^3 1 = 0$.
- b. Let ζ_1, ζ_2 and ζ_3 denote the cube roots of unity obtained in part (a). Show that the cube roots of unity satisfy the following relations

i.
$$\zeta_2 = \overline{\zeta_3} = \zeta_3^2$$
.

ii.
$$\zeta_2 + \zeta_3 = -\zeta_1$$
.

iii.
$$\zeta_2\zeta_3=\zeta_1$$
.

Question 3. Let $n \in \mathbb{N}$ be a natural number. Suppose that

$$\frac{(z+i)^n}{z^n} = 1.$$

a. Use DeMoivre's theorem to show that

$$z = \frac{i}{\exp\left(\frac{2k\pi}{n}\right) - 1},$$

where $1 \le k \le n-1$.

b. Hence, show that

$$z = \frac{1}{2} \left(\cot \left(\frac{k\pi}{n} \right) - i \right).$$

Question 4. Let $z = \sqrt{2} + i\sqrt{2}$ and $w = \sqrt{3} + i$.

- a. Express z and w in polar form.
- b. Express z/w in cartesian form.
- c. Express z/w in polar form.
- d. Determine the exact value of

$$\cot\left(\frac{5\pi}{12}\right)$$
.