Homework3

Guojing Wu | UNI: gw2383 11/11/2019

Part I. K-stage design

- i) What is the goal for Simon's two-stage design? (10%)
 - minimize the number of patients exposed to a possibly ineffective therapy.
 - minimize the sample size under the constraint imposed by the operating characteristics of the design
- ii) What is the null and alternative hypothesis for Simon's two-stage design? (10%)

 H_0 : the true response rate is less than or equal to some pre-specified value

 H_{α} : the true response rate is greater than some pre-specified value

iii) How do you determine the sample size for Simon's two-stage design? (10%)

Two strategy:

- optimal design
- minimax design
- iv) What is the difference between minmax and optimal design for Simon's two-stage procedure? (10%)

Optimal design aim to minimize the expected number of patients treated under H_0 , while minimize aim to minimize the total number of patients enrolled in the study.

v) What are the drawbacks for Simon's two-stage design? (10%)

May not allow early termination even if there is a long run of failures for $p_0 = 0.10$ and above

vi) How can you overcome the drawbacks? (10%)

Using k-stage designs.

Part II. Write the statistical section of a protocol for a non-superiority trial comparing a testing drug to an placebo control using a continuous outcome.

We set the hypothesis as H_0 : $p_T - p_C \ge \Delta$, H_1 : $p_T - p_C < \Delta$. And choose type I error 0.2 and type II error 0.05, and choose superior threshold $\Delta = 0.1$, where we got all them from corresponding superiority trial.

1

And we will be using one-sided t test, where $t_0 = \frac{\hat{p}_T - \hat{p}_C - \Delta_0}{\sigma \sqrt{1/n_T + 1/n_C}}$. And $\Delta_0 = (Z_\alpha + Z_\beta)\sigma \sqrt{\frac{1}{n_T} - \frac{1}{n_C}}$.

Given that we could calculate the sample size as $N=(Z_{\alpha}+Z_{\beta})^2\times[p_T(1-p_T)+p_C(1-p_C)]/\Delta^2$. Therefore the necessary number of patients would be 2N.

- If we reject H_0 , we could state that there is sufficient evidence to support that treatment is not much better than placebo, so we should stop trial.
- If we fail to reject H_0 , we cannot rule out that treatment is much better than placebo, so we can move forward to next stage.