

09/720410

526 Rec'd PCT/PTO 21 DEC 2000

SEQUENCE LISTING

<110> Joo Young Chung
Sang Kyu Park
Sang Myoung Ju
Hyea Kyung Ahn
Seung Wook Lim
Woo Ik Chang
Seung Kook Park
Yeo Wook Koh
Ji Soo Park

<120> A NOVEL HUMAN THROMBOPOIETIN MUTEIN

<130> G&C 118.7-US-WO

<140> To be assigned
<141> 1999-06-30

<150> KR 1998-25935
<151> 1998-06-30

<150> KR 1999-25143
<151> 1999-06-29

<150> PCT/KR99/00347
<151> 1999-06-30

<160> 34

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> BglII-tagged primer corresponding to the N
terminal sequence of hTPO protein

<400> 1
gaagatctat ggagctgact gaa

23

<210> 2
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> EcoRI-tagged primer corresponding to the C
terminal sequence of hTPO protein

<400> 2
atgaattctc accttccctg agac

24

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligodeoxynucleotide primer 29-N

<400> 3
gctgtggtgt tgccctgtgg 20

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligodeoxynucleotide primer 29-C

<400> 4
acagggcaac accacagtc 20

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligodeoxynucleotide primer 30-N

<400> 5
gggttccgtt taaaactctgc ag 22

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligodeoxynucleotide primer 30-C

<400> 6
ctgcagagtt taaacggaac ccag 24

<210> 7
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 31-N

<400> 7
agagggtgga attccctaca agca

24

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 31-C

<400> 8
tgctttagg gaattccacc ctct

24

<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 32-N

<400> 9
gggccccgtt gacgcaga

18

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 32-C

<400> 10
tctgcgtcaa ccggggccc

18

<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 33-N

<400> 11
ggactagaga cgtgttgctg gggac

25

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 33-C

<400> 12
gtccccagca acacgtctct agtcc

25

<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 34-N

<400> 13
gaagcccaga tccgttagtt ctggc

25

<210> 14
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 34-C

<400> 14
gccagaacta acggatctgg gcttc

25

<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 58-N

<400> 15
agctgtggtg tttggggccc gc

22

<210> 16

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 58-C

<400> 16
gcgggccccca aacaccacag ct

22

<210> 17
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 59-N

<400> 17
ctagagagg t gctgttgaca gctgtg

26

<210> 18
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 59-C

<400> 18
cacagctgtc aacagcagca cctctctag

29

<210> 19
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 60-N

<400> 19
ggtgtgggtggg gtccgggttga cgcaagg

28

<210> 20
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> primer 60-C

<400> 20
cctctgcgtc aaccggaccc caccacc

28

<210> 21
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 61-N

<400> 21
tctgctgggg gaagcgttgg tgggtgg

27

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 61-C

<400> 22
ccacccacca acgcttcccc cagcaga

27

<210> 23
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 62-N

<400> 23
cagtgtgagg gtttagattgg ttctgctg

28

<210> 24
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 62-C

<400> 24

cagcagaacc aatctaaccc tcacactg

28

<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 63-N

<400> 25
cagtgtgagg ttttagagagg tt

22

<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer 63-C

<400> 26
aacctctcta aacctcacac tg

22

<210> 27
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligodeoxynucleotide 1 of BamHI linker

<400> 27
cgcgatccg catg

14

<210> 28
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligodeoxynucleotide 1 of BamHI linker

<400> 28
cgatatccgcg

10

<210> 29
<211> 32
<212> DNA

<213> Artificial Sequence

<220>

<223> KpnI-tagged primer corresponding to the N terminal sequence of hTPO protein

<400> 29

gggttaccgc caccatggag ctgactgaat tg

32

<210> 30

<211> 332

<212> PRT

<213> Homo sapiens

<400> 30

Ser	Pro	Ala	Pro	Pro	Ala	Cys	Asp	Leu	Arg	Val	Leu	Ser	Lys	Leu	Leu
1						5			10				15		
Arg	Asp	Ser	His	Val	Leu	His	Ser	Arg	Leu	Ser	Gln	Cys	Pro	Glu	Val
								20			25			30	
His	Pro	Leu	Pro	Thr	Pro	Val	Leu	Leu	Pro	Ala	Val	Asp	Phe	Ser	Leu
								35			40			45	
Gly	Glu	Trp	Lys	Thr	Gln	Met	Glu	Glu	Thr	Lys	Ala	Gln	Asp	Ile	Leu
						50		55			60				
Gly	Ala	Val	Thr	Leu	Leu	Glu	Gly	Val	Met	Ala	Ala	Arg	Gly	Gln	
						65		70			75			80	
Leu	Gly	Pro	Thr	Cys	Leu	Ser	Ser	Leu	Leu	Gly	Gln	Leu	Ser	Gly	Gln
						85			90			95			
Val	Arg	Leu	Leu	Gly	Ala	Leu	Gln	Ser	Leu	Leu	Gly	Thr	Gln	Leu	
						100			105			110			
Pro	Pro	Gln	Gly	Arg	Thr	Thr	Ala	His	Lys	Asp	Pro	Asn	Ala	Ile	Phe
						115			120			125			
Leu	Ser	Phe	Gln	His	Leu	Leu	Arg	Gly	Lys	Val	Arg	Phe	Leu	Met	Leu
						130			135			140			
Val	Gly	Gly	Ser	Thr	Leu	Cys	Val	Arg	Arg	Ala	Pro	Pro	Thr	Thr	Ala
						145		150			155			160	
Val	Pro	Ser	Arg	Thr	Ser	Leu	Val	Leu	Thr	Leu	Asn	Glu	Leu	Pro	Asn
						165			170			175			
Arg	Thr	Ser	Gly	Leu	Leu	Glu	Thr	Asn	Phe	Thr	Ala	Ser	Ala	Arg	Thr
						180			185			190			
Thr	Gly	Ser	Gly	Leu	Leu	Lys	Trp	Gln	Gln	Gly	Phe	Arg	Ala	Lys	Ile
						195			200			205			
Pro	Gly	Leu	Leu	Asn	Gln	Thr	Ser	Arg	Ser	Leu	Asp	Gln	Ile	Pro	Gly
						210			215			220			
Tyr	Leu	Asn	Arg	Ile	His	Glu	Leu	Leu	Asn	Gly	Thr	Arg	Gly	Leu	Phe
						225		230			235			240	
Pro	Gly	Pro	Ser	Arg	Arg	Thr	Leu	Gly	Ala	Pro	Asp	Ile	Ser	Ser	Gly
						245			250			255			
Thr	Ser	Asp	Thr	Gly	Ser	Leu	Pro	Pro	Asn	Leu	Gln	Pro	Gly	Tyr	Ser
						260			265			270			
Pro	Ser	Pro	Thr	His	Pro	Pro	Thr	Gly	Gln	Tyr	Thr	Leu	Phe	Pro	Leu
						275			280			285			
Pro	Pro	Thr	Leu	Pro	Leu	Pro	Val	Val	Gln	Leu	His	Pro	Leu	Leu	Pro
						290			295			300			
Asp	Pro	Ser	Ala	Pro	Thr	Pro	Thr	Pro	Thr	Ser	Pro	Leu	Leu	Asn	Thr
						305			310			315			320

Ser Tyr Thr His Ser Gln Asn Leu Ser Gln Glu Gly
325 330

<210> 31
<211> 996
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA sequence encoding hTPO mutein 40433

<400> 31
agccggctc ctccgttgc tgacctccga gtcctcagta aactgcttcg tgactccat 60
gtccttcaca gcagactgag ccagtgccta gaggttcacc cttgcctac acctgtcctg 120
ctgcctgctg tggacttag ctggggagaa tggaaaaccc agatggagga gaccaaggca 180
caggacattc tgggagcagt gacccttctg ctggaggag tgatggcagc acggggacaa 240
ctgggaccca ctgcctctc atccctcctg gggcagctt ctggacaggt ccgtctcctc 300
cttggggccc tgcagagcct ctttggaaacc cagtttctc cacagggcag gaccacagct 360
cacaaggatc ccaatgcacat ttccctgagc ttccaaacacc tgctccgagg aaaggtgcgt 420
ttccctgatgc ttgttaggagg gtccaccctc tgcgtcaggc gggccccacc caccacagct 480
gtccccagca acacgtctct agtcttcaca ctgaacgagc tcccaaacag gacttctgga 540
ttgttggaga caaacttcac tgcctcagcc agaactactg gctctggct tctgaagtgg 600
cagcagggat tcagagccaa gattccttgtt ctgctgaacc aaacctccag gtccctggac 660
caaatccccg gatacctgaa cagatacac gaactcttga atgaaactcg tggactcttt 720
cctggaccct cacgcagac cctaggagcc ccggacattt cctcaggaac atcagacaca 780
ggctccctgc cacccttaccc ccagccttggaa tattctccctt ccccaacccca tcctctact 840
ggacagtata cgctttttcc tcttccaccc accttggccca cccctgtggt ccagctccac 900
ccctgttcc ctgacccttc tgcctccaacg cccaccctta ccagccctct tctaaacaca 960
tcctacaccc actccctagaa tctgtctcag gaaggg 996

<210> 32
<211> 996
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA sequence encoding hTPO mutein 40434

<400> 32
agccggctc ctccgttgc tgacctccga gtcctcagta aactgcttcg tgactccat 60
gtccttcaca gcagactgag ccagtgccta gaggttcacc cttgcctac acctgtcctg 120
ctgcctgctg tggacttag ctggggagaa tggaaaaccc agatggagga gaccaaggca 180
caggacattc tgggagcagt gacccttctg ctggaggag tgatggcagc acggggacaa 240
ctgggaccca ctgcctctc atccctcctg gggcagctt ctggacaggt ccgtctcctc 300
cttggggccc tgcagagcct ctttggaaacc cagtttctc cacagggcag gaccacagct 360
cacaaggatc ccaatgcacat ttccctgagc ttccaaacacc tgctccgagg aaaggtgcgt 420
ttccctgatgc ttgttaggagg gtccaccctc tgcgtcaggc gggccccacc caccacagct 480
gtccccagca gaaaccttctt agtcttcaca ctgaacgagc tcccaaacag gacttctgga 540
ttgttggaga caaacttcac tgcctcagcc agaactaacg gatctggct tctgaagtgg 600
cagcagggat tcagagccaa gattccttgtt ctgctgaacc aaacctccag gtccctggac 660
caaatccccg gatacctgaa cagatacac gaactcttga atgaaactcg tggactcttt 720
cctggaccct cacgcagac cctaggagcc ccggacattt cctcaggaac atcagacaca 780
ggctccctgc cacccttaccc ccagccttggaa tattctccctt ccccaacccca tcctctact 840

ggacagtata cgctttccc tcttccaccc accttgcaca cccctgtggg ccagctccac 900
ccccctgttc ctgacccttc tgctccaacg cccaccctta ccagccctct tctaaacaca 960
tcctacaccc actcccagaa tctgtctcag gaaggg 996

<210> 33
<211> 996
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA sequence encoding hTPO mutein 40449

<400> 33
agcccggtc ctctgcttg tgacctccga gtcctcagta aactgcttcg tgactccat 60
gtccttcaca gcagactgtag ccagtgcaca gaggttcacc cttgcctac acctgtcctg 120
ctgcctgctg tggactttag ctggggagaa tggaaaaccc agatggagga gaccaaggca 180
caggacattc tgggagcagt gacccttctg ctggaggagg tgatggcagc acggggacaa 240
ctgggaccca ctgcctctc atccctcctg gggcagctt ctggacaggt ccgttcctc 300
cttggggccc tgcagagttt aaacggaacc cagtttctc cacagggcaa caccacagct 360
cacaaggatc ccaatgcacat ttccctgagc ttccaaacacc tgctccgagg aaaggtgcgt 420
ttcctgatgc ttgttaggagg gtccaccctc tgctcaggc ggccccacc caccacagct 480
gtccccagca acacgtctct agtccctaca ctgaacgagc tcccaaacag gacttctgga 540
ttgttggaga caaacttcac tgccctcagcc agaactactg gctctggcgt tctgaagtgg 600
cagcagggat tcagagccaa gattccttgtt ctgctgaacc aaacctccag gtccctggac 660
caaatccccg gatacctgaa caggatacac gaactcttga atggaactcgt tggactcttt 720
cctggaccct cacgcaggac cctaggagcc ccggacattt cctcaggaac atcagacaca 780
ggctccctgc caccctaacct ccagccttggaa tattctcctt ccccaacccca tcctcctact 840
ggacagtata cgctttccc tcttccaccc accttgcaca cccctgtggg ccagctccac 900
ccccctgttc ctgacccttc tgctccaacg cccaccctta ccagccctct tctaaacaca 960
tcctacaccc actcccagaa tctgtctcag gaaggg 996

<210> 34
<211> 996
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA sequence encoding hTPO mutein 40458

<400> 34
agcccggtc ctctgcttg tgacctccga gtcctcagta aactgcttcg tgactccat 60
gtccttcaca gcagactgtag ccagtgcaca gaggttcacc cttgcctac acctgtcctg 120
ctgcctgctg tggactttag ctggggagaa tggaaaaccc agatggagga gaccaaggca 180
caggacattc tgggagcagt gacccttctg ctggaggagg tgatggcagc acggggacaa 240
ctgggaccca ctgcctctc atccctcctg gggcagctt ctggacaggt ccgttcctc 300
cttggggccc tgcagagctt ctttggaaacc cagtttctc cacagggcag gaccacagct 360
cacaaggatc ccaatgcacat ttccctgagc ttccaaacacc tgctccgagg aaaggtgcgt 420
ttcctgatgc ttgttaggagg gtccaccctc tgctcaggc ggccccaaacc caccacagct 480
gtccccagca acacgtctct agtccctaca ctgaacgagc tcccaaacag gacttctgga 540
ttgttggaga caaacttcac tgccctcagcc agaactactg gctctggcgt tctgaagtgg 600
cagcagggat tcagagccaa gattccttgtt ctgctgaacc aaacctccag gtccctggac 660
caaatccccg gatacctgaa caggatacac gaactcttga atggaactcgt tggactcttt 720
cctggaccct cacgcaggac cctaggagcc ccggacattt cctcaggaac atcagacaca 780

ggctccctgc caccqaacct ccagcctgga tattctcctt ccccaaccca tcctcctact	840
ggacagtata cgctttccc tcttccaccc accttgccc cccctgtggt ccagctccac	900
cccctgcttc ctgacccttc tgctccaacg cccaccctta ccagccctct tctaaacaca	960
tcctacaccc actcccagaa tctgtcttag gaaggg	996