APPLIED PHYSICS 155

EXAM 3. Due: 7 May 2018, 10:00AM (via UVLe)

Instructions:

- 1. Use one ipynb file per problem. Label the files problemX.ipynb, where X is the problem number and submit all five in one compressed file.
- 2. Work alone discussing the problem/solution with anyone is to be avoided until after the deadline of submission. Any code you turn in must be your own.
- 3. Submit your solution via UVLe. Emailed, hardcopy, and other non-UVLe submissions will receive a grade of zero. You may (and are encouraged to) resubmit your solution as often as practicable prior to the deadline. Late/no submissions will receive a grade of zero.
- 4. Solve only 3 problems. Pick one from 3.1 and 3.2, and one from 3.4 and 3.5.

Problem 3.1: The Lotka–Volterra equations (Solve only either 3.1 or 3.2, 30 points)

The Lotka–Volterra equations are a mathematical model of predator–prey interactions between biological species. Let two variables x and y be proportional to the size of the populations of two species, traditionally called "rabbits" (the prey) and "foxes" (the predators). You could think of x and y as being the population in thousands, say, so that x = 2 means there are 2000 rabbits. Strictly the only allowed values of x and y would then be multiples of 0.001, since you can only have whole numbers of rabbits or foxes. But 0.001 is a pretty close spacing of values, so it's a decent approximation to treat x and y as continuous real numbers so long as neither gets very close to zero.

In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their population, but are eaten by the foxes at a rate proportional to both their own population and the population of foxes:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x - \beta x y,$$

where α and β are constants. At the same time the foxes reproduce at a rate proportional the rate at which they eat rabbits—because they need food to grow and reproduce—but also die of old age at a rate proportional to their own population:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \gamma xy - \delta y,$$

where γ and δ are also constants.

a) Write a program to solve these equations using the fourth-order Runge–Kutta method for the case $\alpha = 1$, $\beta = \gamma = 0.5$, and $\delta = 2$, starting from the initial condition x = y = 2. Have the program make a graph showing both x and y as a function of time on the same

axes from t = 0 to t = 30. (Hint: Notice that the differential equations in this case do not depend explicitly on time t—in vector notation, the right-hand side of each equation is a function $f(\mathbf{r})$ with no t dependence. You may nonetheless find it convenient to define a Python function $f(\mathbf{r}, \mathbf{t})$ including the time variable, so that your program takes the same form as programs given earlier in this chapter. You don't have to do it that way, but it can avoid some confusion. Several of the following exercises have a similar lack of explicit time-dependence.)

b) Describe in words what is going on in the system, in terms of rabbits and foxes.

Problem 3.2: The Lorenz equations (Solve only either 3.1 or 3.2, 30 points)

One of the most celebrated sets of differential equations in physics is the Lorenz equations:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sigma(y-x), \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = rx - y - xz, \qquad \frac{\mathrm{d}z}{\mathrm{d}t} = xy - bz,$$

where σ , r, and b are constants. (The names σ , r, and b are odd, but traditional—they are always used in these equations for historical reasons.)

These equations were first studied by Edward Lorenz in 1963, who derived them from a simplified model of weather patterns. The reason for their fame is that they were one of the first incontrovertible examples of *deterministic chaos*, the occurrence of apparently random motion even though there is no randomness built into the equations.

- a) Write a program to solve the Lorenz equations for the case $\sigma=10$, r=28, and $b=\frac{8}{3}$ in the range from t=0 to t=50 with initial conditions (x,y,z)=(0,1,0). Have your program make a plot of y as a function of time. Note the unpredictable nature of the motion. (Hint: If you base your program on previous ones, be careful. This problem has parameters r and b with the same names as variables in previous programs—make sure to give your variables new names, or use different names for the parameters, to avoid introducing errors into your code.)
- b) Modify your program to produce a plot of *z* against *x*. You should see a picture of the famous "strange attractor" of the Lorenz equations, a lop-sided butterfly-shaped plot that never repeats itself.

Problem 3.3: Oscillating chemical reactions (40 points)

The *Belousov–Zhabotinsky reaction* is a chemical oscillator, a cocktail of chemicals which, when heated, undergoes a series of reactions that cause the chemical concentrations in the mixture to oscillate between two extremes. You can add an indicator dye to the reaction which changes color depending on the concentrations and watch the mixture switch back and forth between two different colors for as long as you go on heating the mixture.

Physicist Ilya Prigogine formulated a mathematical model of this type of chemical oscillator, which he called the "Brusselator" after his home town of Brussels. The equations for the Brusselator are

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - (b+1)x + ax^2y, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = bx - ax^2y.$$

Here *x* and *y* represent concentrations of chemicals and *a* and *b* are positive constants.

Write a program to solve these equations for the case a = 1, b = 3 with initial conditions x = y = 0, to an accuracy of at least $\delta = 10^{-10}$ per unit time in both x and y, using the adaptive Bulirsch–Stoer method. Calculate a solution from t = 0 to t = 20, initially using a single time interval of size H = 20. Allow a maximum of n = 8 modified midpoint steps in an interval before you divide in half and try again.

Make a plot of your solutions for *x* and *y* as a function of time, both on the same graph, and have your program add dots to the curves to show where the boundaries of the time intervals lie. You should find that the points are significantly closer together in parts of the solution where the variables are changing rapidly.

Hint: The simplest way to perform the calculation is to make use of recursion.

Problem 3.4: The Schrödinger equation and the Crank–Nicolson method (Solve only either 3.4 or 3.5, 30 points)

We will look at the Schrödinger equation in one dimension. The techniques for calculating solutions in two or three dimensions are basically the same as for one dimension, but the calculations take much longer on the computer, so in the interests of speed we'll stick with one dimension. In one dimension the Schrödinger equation for a particle of mass M with no potential energy reads

$$-\frac{\hbar^2}{2M}\frac{\partial^2\psi}{\partial x^2} = i\hbar\frac{\partial\psi}{\partial t}.$$

For simplicity, let's put our particle in a box with impenetrable walls, so that we only have to solve the equation in a finite-sized space. The box forces the wavefunction ψ to be zero at the walls, which we'll put at x = 0 and x = L.

Replacing the second derivative in the Schrödinger equation with a finite difference and applying Euler's method, we get the FTCS equation

$$\psi(x,t+h) = \psi(x,t) + h \frac{\mathrm{i}\hbar}{2ma^2} \big[\psi(x+a,t) + \psi(x-a,t) - 2\psi(x,t) \big],$$

where a is the spacing of the spatial grid points and h is the size of the time-step. (Be careful not to confuse the time-step h with Planck's constant \hbar .) Performing a similar step in reverse, we get the implicit equation

$$\psi(x,t+h) - h \frac{i\hbar}{2ma^2} [\psi(x+a,t+h) + \psi(x-a,t+h) - 2\psi(x,t+h)] = \psi(x,t).$$

And taking the average of these two, we get the Crank–Nicolson equation for the Schrödinger equation:

$$\psi(x,t+h) - h \frac{i\hbar}{4ma^2} \left[\psi(x+a,t+h) + \psi(x-a,t+h) - 2\psi(x,t+h) \right]$$

= $\psi(x,t) + h \frac{i\hbar}{4ma^2} \left[\psi(x+a,t) + \psi(x-a,t) - 2\psi(x,t) \right].$

This gives us a set of simultaneous equations, one for each grid point.

The boundary conditions on our problem tell us that $\psi = 0$ at x = 0 and x = L for all t. In between these points we have grid points at a, 2a, 3a, and so forth. Let us arrange the values of ψ at these interior points into a vector

$$\boldsymbol{\psi}(t) = \begin{pmatrix} \psi(a,t) \\ \psi(2a,t) \\ \psi(3a,t) \\ \vdots \end{pmatrix}.$$

Then the Crank–Nicolson equations can be written in the form

$$\mathbf{A}\boldsymbol{\psi}(t+h) = \mathbf{B}\boldsymbol{\psi}(t),$$

where the matrices **A** and **B** are both symmetric and tridiagonal:

$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & & & & \\ a_2 & a_1 & a_2 & & & \\ & a_2 & a_1 & a_2 & & \\ & & a_2 & a_1 & & \\ & & & & \ddots \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} b_1 & b_2 & & & \\ b_2 & b_1 & b_2 & & \\ & b_2 & b_1 & b_2 & \\ & & b_2 & b_1 & \\ & & & \ddots \end{pmatrix},$$

with

$$a_1 = 1 + h \frac{i\hbar}{2ma^2}, \qquad a_2 = -h \frac{i\hbar}{4ma^2}, \qquad b_1 = 1 - h \frac{i\hbar}{2ma^2}, \qquad b_2 = h \frac{i\hbar}{4ma^2}.$$

(Note the different signs and the factors of 2 and 4 in the denominators.)

The equation $\mathbf{A}\psi(t+h) = \mathbf{B}\psi(t)$ has precisely the form $\mathbf{A}\mathbf{x} = \mathbf{v}$ of the simultaneous equation problems we studied in Chapter 6 and can be solved using the same methods. Specifically, since the matrix \mathbf{A} is tridiagonal in this case, we can use the fast tridiagonal version of Gaussian elimination.

Consider an electron (mass $M = 9.109 \times 10^{-31}$ kg) in a box of length $L = 10^{-8}$ m. Suppose that at time t = 0 the wavefunction of the electron has the form

$$\psi(x,0) = \exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right] e^{i\kappa x},$$

where

$$x_0 = \frac{L}{2}$$
, $\sigma = 1 \times 10^{-10} \,\mathrm{m}$, $\kappa = 5 \times 10^{10} \,\mathrm{m}^{-1}$,

and $\psi = 0$ on the walls at x = 0 and x = L. (This expression for $\psi(x,0)$ is not normalized—there should really be an overall multiplying coefficient to make sure that the probability density for the electron integrates to unity. It's safe to drop the constant, however, because the Schrödinger equation is linear, so the constant cancels out on both sides of the equation and plays no part in the solution.)

a) Write a program to perform a single step of the Crank–Nicolson method for this electron, calculating the vector $\psi(t)$ of values of the wavefunction, given the initial wavefunction above and using N=1000 spatial slices with a=L/N. Your program will have to

perform the following steps. First, given the vector $\psi(0)$ at t=0, you will have to multiply by the matrix **B** to get a vector $\mathbf{v} = \mathbf{B}\psi$. Because of the tridiagonal form of **B**, this is fairly simple. The *i*th component of **v** is given by

$$v_i = b_1 \psi_i + b_2 (\psi_{i+1} + \psi_{i-1}).$$

You will also have to choose a value for the time-step h. A reasonable choice is $h = 10^{-18}$ s.

Second you will have to solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{v}$ for \mathbf{x} , which gives you the new value of $\boldsymbol{\psi}$. You could do this using a standard linear equation solver like the function solve in numpy.linalg, but since the matrix \mathbf{A} is tridiagonal a better approach would be to use the fast solver for banded matrices given in Appendix E, which can be imported from the file banded.py (which you can find in the on-line resources). Note that although the wavefunction of a particle in principle has a complex value, in this case the wavefunction is always real—all the coefficients in the equations above are real numbers so if, as here, the wavefunction starts off real, then it remains real. Thus you do not need to use a complex array to represent the vector $\boldsymbol{\psi}$. A real one will do the job.

Third, once you have the code in place to perform a single step of the calculation, extend your program to perform repeated steps and hence solve for ψ at a sequence of times a separation h apart. Note that the matrix \mathbf{A} is independent of time, so it doesn't change from one step to another. You can set up the matrix just once and then keep on reusing it for every step.

- b) Extend your program to make an animation of the solution by displaying the real part of the wavefunction at each time-step. You can use the function rate from the package visual to ensure a smooth frame-rate for your animation.
 - There are various ways you could do the animation. A simple one would be to just place a small sphere at each grid point with vertical position representing the value of the real part of the wavefunction. A more sophisticated approach would be to use the curve object from the visual package—see the on-line documentation at www.vpython.org for details. Depending on what coordinates you use for measuring x, you may need to scale the values of the wavefunction by an additional constant to make them a reasonable size on the screen. (If you measure your x position in meters then a scale factor of about 10^{-9} works well for the wavefunction.)
- c) Run your animation for a while and describe what you see. Write a few sentences explaining in physics terms what is going on in the system.

Problem 3.5: The Schrödinger equation and the spectral method (Solve only either 3.4 or 3.5, 30 points)

This problem uses the spectral method to solve the time-dependent Schödinger equation

$$-\frac{\hbar^2}{2M}\frac{\partial^2 \psi}{\partial x^2} = i\hbar \frac{\partial \psi}{\partial t}$$

for the same system as in Problem 3.4, a single particle in one dimension in a box of length *L* with impenetrable walls. The wavefunction in such a box necessarily goes to zero on the walls and hence one possible (unnormalized) solution of the equation is

$$\psi_k(x,t) = \sin\left(\frac{\pi kx}{L}\right) e^{iEt/\hbar},$$

where the energy E can be found by substituting into the Schrödinger equation, giving

$$E = \frac{\pi^2 \hbar^2 k^2}{2ML^2}.$$

We can write a full solution as a linear combination of such individual solutions, which on the grid points $x_n = nL/N$ takes the value

$$\psi(x_n,t) = \frac{1}{N} \sum_{k=1}^{N-1} b_k \sin\left(\frac{\pi kn}{N}\right) \exp\left(i\frac{\pi^2 \hbar k^2}{2ML^2}t\right),$$

where the b_k are some set of (possibly complex) coefficients that specify the exact shape of the wavefunction and the leading factor of 1/N is optional but convenient.

Since the Schrödinger equation (unlike the wave equation) is first order in time, we need only a single initial condition on the value of $\psi(x,t)$ to specify the coefficients b_k , although, since the coefficients are in general complex, we will need to calculate both real and imaginary parts of each coefficient.

As in Problem 3.4 we consider an electron (mass $M = 9.109 \times 10^{-31}$ kg) in a box of length $L = 10^{-8}$ m. At time t = 0 the wavefunction of the electron has the form

$$\psi(x,0) = \exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right] e^{i\kappa x},$$

where

$$x_0 = \frac{L}{2}$$
, $\sigma = 1 \times 10^{-10} \,\mathrm{m}$, $\kappa = 5 \times 10^{10} \,\mathrm{m}^{-1}$,

and $\psi = 0$ on the walls at x = 0 and x = L.

a) Write a program to calculate the values of the coefficients b_k , which for convenience can be broken down into their real and imaginary parts as $b_k = \alpha_k + i\eta_k$. Divide the box into N = 1000 slices and create two arrays containing the real and imaginary parts of $\psi(x_n, 0)$ at each grid point. Perform discrete sine transforms on each array separately and hence calculate the values of the α_k and η_k for all $k = 1 \dots N - 1$.

To perform the discrete sine transforms, you can use the fast transform function dst from the package dcst, which you can find in the on-line resources in the file named dcst.py. A copy of the code for the package can also be found in Appendix E. The function takes an array of N real numbers and returns the discrete sine transform as another array of N numbers.

(Note that the first element of the input array should in principle always be zero for a sine transform, but if it is not the dst function will simply pretend that it is. Similarly the first

element of the returned array is always zero, since the k=0 coefficient of a sine transform is always zero. So in effect, the sine transform really only takes N-1 real numbers and transforms them into another N-1 real numbers. In some implementations of the discrete sine transform, therefore, though not the one in the package dsct used here, the first element of each array is simply omitted, since it's always zero anyway, and the arrays are only N-1 elements long.)

b) Putting $b_k = \alpha_k + i\eta_k$ in the solution above and taking the real part we get

$$\operatorname{Re} \psi(x_n, t) = \frac{1}{N} \sum_{k=1}^{N-1} \left[\alpha_k \cos \left(\frac{\pi^2 \hbar k^2}{2ML^2} t \right) - \eta_k \sin \left(\frac{\pi^2 \hbar k^2}{2ML^2} t \right) \right] \sin \left(\frac{\pi k n}{N} \right)$$

for the real part of the wavefunction. This is an inverse sine transform with coefficients equal to the quantities in the square brackets. Extend your program to calculate the real part of the wavefunction $\psi(x,t)$ at an arbitrary time t using this formula and the inverse discrete sine transform function idst, also from the package dcst. Test your program by making a graph of the wavefunction at time $t=10^{-16}\,\mathrm{s}$.

- c) Extend your program further to make an animation of the wavefunction over time, similar to that described in part (b) of Problem 3.4 above. A suitable time interval for each frame of the animation is about 10^{-18} s.
- d) Run your animation for a while and describe what you see. Write a few sentences explaining in physics terms what is going on in the system.