Отчёт:

Анализ времени выполнения параллельного алгоритма эратосфена(MPI)

Работу выполнил: Лю Цинлун 323

Тест проводился на polus

Диапозон: [1,10000000]

Количество простых чисел: 5761455

Число процессов	1	2	4	6	8	10	12	14	16
Total time(s)	2.531471	2.886220	2.890772	2.935698	2.962860	2.992045	3.002769	3.062205	3.132068
Max time(s)	2.531471	1.443190	0.722782	0.489326	0.370385	0.299210	0.250256	0.218755	0.195798

График 1: Зависимость времени выполнения от

количества процессов

Заключение:

При повышении количества процессов не появилось ускорение, а наоборот.

Но максимальное время выполнения сильно снизилось до 8 процесса.

Анализ для pthread

Число нити	1	2	4	6	8	10	12	14	16
Total time(s)	2.41	2.46	2.57	2.77	2.9	2.96	3.03	3.08	3.21
Max time(s)	2.41	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01

Заключение: pthread работает быстрее , чем MPI, но зависимость оот чисел нити тоже больше.