APPENDICE 2

I DATI SPERIMENTALI

2A DATI TERMODINAMICI A 25 °C

Sostanze inorganiche

Sostanza	Massa molare, $M(g \cdot mol^{-1})$	Entalpia di formazione, $\Delta H^{\circ}_{\ m f}({ m kJ\cdot mol^{-1}})$	Energia libera di formazione, $\Delta G_{\rm f}^{\circ} ({\rm kJ \cdot mol^{-1}})$	Capacità $colonize C_{P,\mathrm{m}} \left(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1} ight)$	Entropia molare, ^a S° _m (J·K ⁻¹ ·mol ⁻¹)
Alluminio					
Al(s)	26,98	0	0	24,35	28,33
$Al^{3+}(aq)$	26,98	-524,7	-481,2	_	-321,7
$Al_2O_3(s)$	101,96	-1675,7	-1582,35	79,04	50,92
$Al(OH)_3(s)$	78,00	-1276	_	_	_
AlCl ₃ (s)	133,33	-704,2	-628,8	91,84	110,67
Antimonio					
Sb(s)	121,76	0	0	25,23	45,69
SbH ₃ (g)	124,78	+145,11	+147,75	41,05	232,78
SbCl ₃ (g)	228,11	-313,8	-301,2	76,69	337,80
SbCl ₅ (g)	299,01	-394,34	-334,29	121,13	401,94
Argento					
Ag(s)	107,87	0	0	25,35	42,55
Ag ⁺ (aq)	107,87	+105,58	+77,11	_	+72,68
$Ag_2O(s)$	231,74	-31,05	-11,20	65,86	121,3
AgBr(s)	187,77	-100,37	-96,90	52,38	107,1
AgBr(aq)	187,77	-15,98	-26,86	_	155,2
AgCl(s)	143,32	-127,07	-109,79	50,79	96,2
AgCl(aq)	143,32	-61,58	-54,12	_	129,3
AgI(s)	234,77	-61,84	-66,19	56,82	115,5
AgI(aq)	234,77	+50,38	+25,52	_	184,1
$AgNO_3(s)$	169,88	-124,39	-33,41	93,05	140,92
Arsenico					
As(s), grigio	74,92	0	0	24,64	35,1
$As_2S_3(s)$	246,05	-169,0	-168,6	116,3	163,6
$AsO_4^{3-}(aq)$	138,92	-888,14	-648,41	_	-162,8
Аzото					
$N_2(g)$	28,02	0	0	29,12	191,61
NO(g)	30,01	+90,25	+86,55	29,84	210,76
$N_2O(g)$	44,02	+82,05	+104,20	38,45	219,85
$NO_2(g)$	46,01	+33,18	+51,31	37,20	240,06

Sostanza	Massa molare, $M (\mathbf{g} \cdot \mathbf{mol}^{-1})$	Entalpia di formazione, ΔH°_{f} (kJ·mol ⁻¹)	Energia libera di formazione, $\Delta G^{\circ}_{f} (k J \cdot mol^{-1})$	Capacità $colonize C_{P_{nm}}(extsf{J}\cdot extbf{K}^{-1}\cdot extbf{mol}^{-1})$	Entropia molare, ^a S° _m (J·K ⁻¹ ·mol ⁻¹)
		•	•		
N ₂ O ₄ (g)	92,02	+9,16	+97,89	77,28	304,29
HNO ₃ (l)	63,02	-174,10	-80,71	109,87	155,60
HNO ₃ (aq)	63,02	-207,36	-111,25	_	146,4
NO ⁻ ₃ (aq)	62,02	-205,0	-108,74	_	+146,4
NH ₃ (g)	17,03	-46,11	-16,45	35,06	192,45
NH ₃ (aq)	17,03	-80,29	-26,50	_	111,3
$NH_4^+(aq)$	18,04	-132,51	-79,31	_	+113,4
$NH_2OH(s)$	33,03	-114,2	_	_	_
$HN_3(g)$	43,04	+294,1	+328,1	98,87	238,97
$N_2H_4(l)$	32,05	+50,63	+149,34	139,3	121,21
$NH_4NO_3(s)$	80,05	-365,56	-183,87	84,1	151,08
$NH_4Cl(s)$	53,49	-314,43	-202,87	_	94,6
$NH_4ClO_4(s)$	117,49	-295,31	-88,75	_	186,2
Bario					
Ba(s)	137,33	0	0	28,07	62,8
$Ba^{2+}(aq)$	137,33	-537,64	-560,77	_	+9,6
BaO(s)	153,33	-553,5	-525,1	47,78	70,42
BaCO ₃ (s)	197,34	-1216,3	-1137,6	85,35	112,1
BaCO ₃ (aq)	197,34	-1214,78	-1088,59	_	-47,3
Boro					
B(s)	10,81	0	0	11,09	5,86
$B_2O_3(s)$	69,62	-1272,8	-1193,7	62,93	53,97
$BF_3(g)$	67,81	-1137,0	-1120,3	50,46	254,12
Згомо					
$Br_2(l)$	159,80	0	0	75,69	152,23
$\operatorname{Br}_2(g)$	159,80	+30,91	+3,11	36,02	245,46
Br(g)	79,90	+111,88	+82,40	20,79	175,02
3r ⁻ (aq)	79,90	-121,55	-103,96	_	+82,4
HBr(g)	80,91	-36,40	-53,45	29,14	198,70
Calcio					
Ca(s)	40,08	0	0	25,31	41,42
Ca(g)	40,08	+178,2	+144,3	20,79	154,88
$Ca^{2+}(aq)$	40,08	-542,83	-553,58	_	-53,1
CaO(s)	56,08	-635,09	-604,03	42,80	39,75
$Ca(OH)_2(s)$	74,10	-986,09	-898,49	87,49	83,39
$Ca(OH)_2(aq)$	74,10	-1002,82	-868,07	_	-74,5
CaCO ₃ (s), calcite	100,09	-1206,9	-1128,8	81,88	92,9
CaCO ₃ (s), aragonite	100,09	-1207,1	-1127,8	81,25	88,7
CaCO ₃ (aq)	100,09	-1219,97	-1081,39	_	-110,0
CaF ₂ (s)	78,08	-1219,6	-1167,3	67,03	68,87
CaF ₂ (aq)	78,08	-1208,09	-1111,15	_	-80,8
CaCl ₂ (s)	110,98	-795,8	-748,1	72,59	104,6
CaCl ₂ (aq)	110,98	-877,1	-816,0	_	59,8
CaBr ₂ (s)	199,88	-682,8	-663,6	72,59	130
$CaC_{2}(s)$	64,10	-59,8	-64,9	62,72	69,96
CaSO ₄ (s)	136,14	-1434,11	-1321,79	99,66	106,7
CaSO ₄ (aq)	136,14	-1452,10	-1298,10	_	-33,1

(continua)

A12 Appendice 2 © 978-88-08-0**6139**-3

Sostanze inorganiche (continua)

Sostanza	Massa molare, M (g·mol ⁻¹)	Entalpia di formazione, $\Delta H^{\circ}_{\ \epsilon} (\mathrm{kJ \cdot mol^{-1}})$	Energia libera di formazione, ΔG°_{f} (kJ·mol ⁻¹)	Capacità $colonize C_{P_{cm}} (extsf{J} \cdot extsf{K}^{-1} \cdot extsf{mol}^{-1})$	Entropia molare, ^a So _m (J·K ⁻¹ ·mol ⁻¹)
Carbonio ^b	111 (R.11101)	TIL (VI.IIIII)	Δυ _f /øJ.mor)	O _{P,m} (J [*] IX *IIIOI)	o m () K ·moi)
C(s), grafite	12,01	0	0	8,53	5,740
C(s), grante C(s), diamante	12,01	+1,895	+2,900	6,11	
					2,377
C(g)	12,01	+716,68	+671,26	20,84	158,10
CO(g)	28,01	-110,53	-137,17	29,14	197,67
CO ₂ (g)	44,01	-393,51	-394,36	37,11	213,74
$CO_3^{2-}(aq)$	60,01	-677,14	-527,81	_	-56,9
CCl ₄ (l)	153,81	-135,44	-65,21	131,75	216,40
CS ₂ (l)	76,15	+89,70	+65,27	75,7	151,34
HCN(g)	27,03	+135,1	+124,7	35,86	201,78
HCN(l)	27,03	+108,87	+124,97	70,63	112,84
HCN(aq)	27,03	+107,1	+119,7	_	124,7
Cerio					
Ce(s)	140,12	0	0	26,94	72,0
$Ce^{3+}(aq)$	140,12	-696,2	-672,0	_	-205
Ce ⁴⁺ (aq)	140,12	-537,2	-503,8	_	-301
Cloro					
$\operatorname{Cl}_2(g)$	70,90	0	0	33,91	223,07
Cl(g)	35,45	121,68	105,68	21,84	165,20
Cl ⁻ (aq)	35,45	-167,16	-131,23	_	+56,5
HCl(g)	36,46	-92,31	-95,30	29,12	186,91
HCl(aq)	36,46	-167,16	-131,23	_	56,5
Deuterio					
$D_2(g)$	4,028	0	0	29,20	144,96
$O_2O(g)$	20,028	-249,20	-234,54	34,27	198,34
$O_2O(1)$	20,028	-294,60	-243,44	34,27	75,94
Ferro					
Fe(s)	55,84	0	0	25,10	27,28
$e^{2+}(aq)$	55,84	-89,1	-78,90	_	-137,7
$e^{3+}(aq)$	55,84	-48,5	-4,7	_	-315,9
Fe ₃ O ₄ (s), magnetite	231,52	-1118,4	-1015,4	143,43	146,4
$Fe_2O_3(s)$, ematite	159,68	-824,2	-742,2	103,85	87,40
$FeS(s, \alpha)$	87,90	-100,0	-100,4	50,54	60,29
FeS(aq)	87,90	_	+6,9	_	_
$FeS_2(s)$	119,96	-178,2	-166,9	62,17	52,93
Fluoro					
$F_2(g)$	38,00	0	0	31,30	202,78
= 2(8) = -(aq)	19,00	-332,63	-278,79	-	-13,8
HF(g)	20,01	-271,1	-273,2	29,13	173,78
HF(aq)	20,01	-2/1,1 $-330,08$	-2/3,2 $-296,82$	29,13 —	88,7
Fosforo					
P(s), bianco	30,97	0	0	23,84	41,09
P ₄ (g)	123,88	+58,91	+24,44	67,15	279,98
	33,99	+5,4	+13,4	37,11	210,23
$PH_3(g)$ $P_4O_{10}(s)$	283,88	+5,4 -2984,0	-2697,0	3/,11 _	228,86

	Massa molare,	Entalpia di formazione,	Energia libera di formazione,	Capacità termica molare	Entropia molare, ^a
Sostanza	$M(g \cdot mol^{-1})$	$\Delta H_{f}^{\circ}(\mathrm{kJ}{\cdot}\mathrm{mol}^{-1})$	$\Delta G^{\circ}_{f}(\mathbf{kJ \cdot mol^{-1}})$	$C_{P,m} (J \cdot K^{-1} \cdot mol^{-1})$	$S_{m}^{\circ} (J \cdot K^{-1} \cdot mol^{-1})$
H ₃ PO ₃ (aq)	81,99	-964,8	_	_	_
$H_3PO_4(l)$	97,99	-1266,9	_	_	_
$H_3PO_4(aq)$	97,99	-1288,34	-1142,54	_	158,2
PCl ₃ (1)	137,32	-319,7	-272,3	_	217,18
PCl ₃ (g)	137,32	-287,0	-267,8	71,84	311,78
PCl ₅ (g)	208,22	-374,9	-305,0	112,8	364,6
PCl ₅ (s)	208,22	-443,5	_	_	_
DROGENO (vedi anche					
Deuterio)					
$H_2(g)$	2,0158	0	0	28,82	130,68
H(g)	1,0079	+217,97	+203,25	20,78	114,71
$H^+(aq)$	1,0079	0	0	0	0
H ₂ O(l)	18,02	-285,83	-237,13	75,29	69,91
H ₂ O(g)	18,02	-241,82	-228,57	33,58	188,83
$H_2O_2(1)$	34,02	-187,78	-120,35	89,01	109,6
$H_2O_2(aq)$	34,02	-191,17	-134,03	_	143,9
$H_3O^+(aq)$	19,02	-285,83	-237,13	75,29	+69,91
ODIO					
₂ (s)	253,80	0	0	54,44	116,14
2(g)	253,80	+62,44	+19,33	36,90	260,69
-(aq)	126,90	-55,19	-51,57	_	+111,3
HI(g)	127,91	+26,48	+1,70	29,16	206,59
Magnesio					
Mg(s)	24,31	0	0	24,89	32,68
Mg(g)	24,31	+147,70	+113,10	20,79	148,65
$Mg^{2+}(aq)$	24,31	-466,85	-454,8	_	-138,1
MgO(s)	40,31	-601,70	-569,43	37,15	26,94
$MgCO_3(s)$	84,32	-1095,8	-1012,1	75,52	65,7
$MgBr_2(s)$	184,11	-524,3	-503,8	_	117,2
Mercurio					
$\operatorname{Hg}(I)$	200,59	0	0	27,98	76,02
Hg(g)	200,59	+61,32	+31,82	20,79	174,96
HgO(s)	216,59	-90,83	-58,54	44,06	70,29
$Hg_2Cl_2(s)$	472,08	-265,22	-210,75	102	192,5
Ossigeno					
$O_2(g)$	32,00	0	0	29,36	205,14
$O_3(g)$	48,00	+142,7	+163,2	39,29	238,93
OH ⁻ (aq)	17,01	-229,99	-157,24	_	-10,75
PIOMBO		_	_		
Pb(s)	207,2	0	0	26,44	64,81
$^{2}b^{2+}(aq)$	207,2	-1,7	-24,43	_	+10,5
$^{\prime}bO_{2}(s)$	239,2	-277,4	-217,33	64,64	68,6
PbSO ₄ (s)	303,3	-919,94	-813,14	103,21	148,57
PbBr ₂ (s)	367,0	-278,7	-261,92	80,12	161,5
PbBr ₂ (aq)	367,0	-244,8	-232,34	_	175,3

(continua)

A14 Appendice 2 © 978-88-08-0**6139**-3

Sostanze inorganiche (continua)

	Massa molare,	Entalpia di formazione,	Energia libera di formazione,	Capacità termica molare	Entropia molare, ^a
Sostanza	$M \left(\mathbf{g \cdot mol^{-1}} \right)$	$\Delta H_{f}^{\circ}(k\mathbf{J}\cdot\mathbf{mol}^{-1})$	$\Delta G^{\circ}_{f}(\mathbf{kJ \cdot mol^{-1}})$	$C_{P,m}$ (J·K ⁻¹ ·mol ⁻¹)	$S_{m}^{\circ}(J\cdot K^{-1}\cdot mol^{-1})$
POTASSIO					
$\zeta(s)$	39,10	0	0	29,58	64,18
ζ(g)	39,10	+89,24	+60,59	20,79	160,34
$X^+(aq)$	39,10	-252,38	-283,27	_	+102,5
KOH(s)	56,11	-424,76	-379,08	64,9	78,9
KOH(aq)	56,11	-482,37	-440,50	_	91,6
CF(s)	58,10	-567,27	-537,75	49,04	66,57
(Cl(s)	74,55	-436,75	-409,14	51,30	82,59
(Br(s)	119,00	-393,80	-380,66	52,30	95,90
(I(s)	166,00	-327,90	-324,89	52,93	106,32
ClO ₃ (s)	122,55	-397,73	-296,25	100,25	143,1
$ClO_4(s)$	138,55	-432,75	-303,09	112,38	151,0
$C_2S(s)$	110,26	-380,7	-364,0	_	105
ζS(aq)	110,26	-471,5	-480,7	_	190,4
-7- / -1 /	110,20	-/ -,>	100,7		170,1
ZAME					
Cu(s)	63,55	0	0	24,44	33,15
Cu ⁺ (aq)	63,55	+71,67	+49,98	_	+40,6
Cu ²⁺ (aq)	63,55	+64,77	+65,49	_	-99,6
$Cu_2O(s)$	143,10	-168,6	-146,0	63,64	93,14
CuO(s)	79,55	-157,3	-129,7	42,30	42,63
CuSO ₄ (s)	159,61	-771,36	-661,8	100,0	109
$CuSO_4(s)$ $CuSO_4 \cdot 5H_2O(s)$	249,69	-2279,7	-1879,7	280	300,4
200 ₄ 311 ₂ O(8)	249,09	-22/9,/	-10/9,/	200	500,4
SILICIO					
i(s)	28,09	0	0	20,00	18,83
$SiO_2(s, \alpha)$	60,09	-910,94	-856,64	44,43	41,84
$O_2(s, \alpha)$	00,07	710,74	0,04	44,43	41,04
SODIO					
Va(s)	22,99	0	0	28,24	51,21
Va(s) Va(g)	22,99	+107,32	+76,76	20,79	153,71
va(g) Va ⁺ (aq)		-240,12	-261,91	20,/9	+59,0
•	22,99				
NaOH(s)	40,00	-425,61	-379,49 $-419,15$	59,54 -	64,46
NaOH(aq)	40,00	-470,11			48,1
VaCl(s)	58,44	-411,15	-384,14	50,50	72,13
NaBr(s)	102,89	-361,06	-348,98	51,38	86,82
VaI(s)	149,89	-287,78	-286,06	52,09	98,53
TACNO					
TAGNO	110 71	^	0	26.00	E1 EE
Sn(s), bianco	118,71	0	0	26,99	51,55
n(s), grigio	118,71	-2,09	+0,13	25,77	44,14
nO(s)	134,71	-285,8	-256,9	44,31	56,5
$\text{inO}_2(s)$	150,71	-580,7	-519,6	52,59	52,3
Tayon.					
ZINCO	(5.41	^	0	25 40	41.62
$\operatorname{Zn}(s)$	65,41	0	0	25,40	41,63
$\operatorname{Ln}^{2+}(\operatorname{aq})$	65,41	-153,89	-147,06	-	-112,1
ZnO(s)	81,41	-348,28	-318,30	40,25	43,64

© 978-88-08-0**6139**-3 I dati sperimentali A15

Sostanza	Massa molare, M (g·mol⁻¹)	Entalpia di formazione, $\Delta H^{ m o}_{ m f}({ m kJ\cdot mol^{-1}})$	Energia libera di formazione, $\Delta G_{\rm f}^{\circ}({\rm kJ \cdot mol^{-1}})$	Capacità $colonizeta C_{P,m} (extsf{J} \cdot extsf{K}^{-1} \cdot extsf{mol}^{-1})$	Entropia molare, ^a $S_{m}^{o} (J \cdot K^{-1} \cdot mol^{-1})$
Zolfo					
S(s), rombico	32,06	0	0	22,64	31,80
S(s), monoclino	32,06	+0,33	+0,1	23,6	32,6
$S^{2-}(aq)$	32,06	+33,1	+85,8	_	-14,6
$SO_2(g)$	64,06	-296,83	-300,19	39,87	248,22
$SO_3(g)$	80,06	-395,72	-371,06	50,67	256,76
$H_2SO_4(l)$	98,08	-813,99	-690,00	138,9	156,90
$SO_4^{2-}(aq)$	96,06	-909,27	-744,53	_	+20,1
$H_2SO_4^-(aq)$	97,07	-887,34	-755,91	_	+131,8
$H_2S(g)$	34,08	-20,63	-33,56	34,23	205,79
$H_2S(aq)$	34,08	-39,7	-27,83	_	121
SF ₆ (g)	146,06	-1209	-1105,3	97,28	291,82

^a L'entropia degli ioni individuali in soluzione si determina ponendo l'entropia di H⁺ in acqua uguale a 0 e poi definendo l'entropia di tutti gli altri ioni in base a questo valore; quindi un'entropia negativa è inferiore all'entropia di H⁺ in acqua. L'entropia assoluta è sempre positiva e non occorre alcun segno; l'entropia degli ioni è relativa ad H⁺ e si riporta con il segno (+ o -).

^b Per i composti organici, vedi la tabella seguente.

A16 Appendice 2 © 978-88-08-0**6139**-3

Sostanze organiche

Sostanza	Massa molare, $M(g \cdot \text{mol}^{-1})$	Entalpia di Combustione, ΔH°_{c} (kJ·mol ⁻¹)	Entalpia di formazione, $\Delta H_{f}^{\circ}(kJ \cdot mol^{-1})$	Energia libera di formazione, $\Delta G^{\circ}_{f}(kJ \cdot mol^{-1})$	Capacità termica molare, $C_{P,m} (J \cdot K^{-1} \cdot mol^{-1})$	Entropia molare, S_{m}° (J·K ⁻¹ ·mol ⁻¹)
Idrocarburi	m (g·mor)	ΔΠ _c (kJ·liloi)	ΔII _f (kJ·llioi)	ΔO _f (kJ·lliol)	C _{P,m} (J·IX ·IIIOI)	3 m () K · · · · · · ·
CH ₄ (g), metano	16,04	-890	-74,81	-50,72	35,31	186,26
$C_2H_2(g)$, etino (acetilene)	26,04	-1300	+226,73	+209,20	43,93	200,94
$C_2H_4(g)$, etene (etilene)	28,05	-1411	+52,26	+68,15	43,56	219,56
$C_2H_4(g)$, etche (ethene) $C_3H_6(g)$, etano	30,07	-1560	-84,68	-32,82	52,63	229,60
$C_2H_6(g)$, propene (propilene)	42,08	-2058	+20,42	+62,78	63,89	266,6
$C_3H_6(g)$, ciclopropano	42,08	-2091	+53,30	+104,45	55,94	237,4
$C_3H_8(g)$, propano	44,09	-2220	-103,85	-23,49	73,5	270,2
C ₄ H ₁₀ (g), butano	58,12	-2878	-126,15	-17,03	97,45	310,1
$C_5H_{12}(g)$, pentano	72,14	-3537	-146,44	-8,20	120,2	349
$C_6H_6(l)$, benzene	78,11	-3268	+49,0	+124,3	136,1	173,3
$C_6H_6(g)$	78,11	-3302	+82,9	+129,72	81,67	269,31
$C_7H_8(l)$, toluene	92,13	-3910	+12,0	+113,8	-	221,0
$C_7H_8(g)$	92,13	-3953	+50	+122,0	103,6	320,7
$C_{7}^{H_{8}(g)}$ $C_{6}^{H_{12}(l)}$, cicloesano	84,15	-3920	-156,4	+26,7	156,5	204,4
$C_6H_{12}(g)$	84,15	-3953	-	-	_	_
$C_8H_{18}(1)$, ottano	114,22	-5471	-249,9	+6,4	_	358
Alcoli e fenoli						
CH ₃ OH(l), metanolo	32,04	-726	-238,86	-166,27	81,6	126,8
$CH_3OH(g)$	32,04	-764	-200,66	-161,96	43,89	239,81
C ₂ H ₅ OH(l), etanolo	46,07	-1368	-277,69	-174,78	111,46	160,7
$C_2H_5OH(g)$	46,07	-1409	-235,10	-168,49	65,44	282,70
C ₆ H ₅ OH(s), fenolo	94,11	-3054	-164,6	-50,42	_	144,0
Acidi carbossilici						
HCOOH(l), acido formico	46,02	-255	-424,72	-361,35	99,04	128,95
CH ₃ COOH(l), acido acetico	60,05	-875	-484,5	-389,9	124,3	159,8
CH ₃ COOH(aq)	60,05	_	-485,76	-396,46	_	86,6
(COOH) ₂ (s), acido ossalico	90,04	-254	-827,2	-697,9	117	120
C ₆ H ₅ COOH(s), acido benzoico	122,12	-3227	-385,1	-245,3	146,8	167,6
Aldeidi e chetoni					27 (2	
HCHO(g), metanale (formaldeide)	30,03	-571	-108,57	-102,53	35,40	218,77
CH ₃ CHO(l), etanale (acetaldeide)	44,05	-1166	-192,30	-128,12	_	160,2
CH ₃ CHO(g)	44,05	-1192	-166,19	-128,86	57,3	250,3
CH ₃ COCH ₃ (l), propanale (acetone)	58,08	-1790	-248,1	-155,4	124,7	200
Zuccheri						
$C_6H_{12}O_6(s)$, glucosio	180,15	-2808	-1268	-910	_	212
$C_6H_{12}O_6(aq)$	180,15	_	_	-917	_	_
$C_6H_{12}O_6(s)$, fruttosio	180,15	-2810	-1266	_	_	_
$C_{12}H_{22}O_{11}(s)$, saccarosio	342,29	-5645	-2222	-1545	_	360

Sostanza	Massa molare, $M(g \cdot \text{mol}^{-1})$	Entalpia di Combustione, ΔH°_{c} (kJ·mol ⁻¹)	Entalpia di formazione, $\Delta H^{\circ}_{_{\rm f}}({ m kJ\cdot mol}^{-1})$	Energia libera di formazione, $\Delta G_{f}^{\circ}(k\mathbf{J}\cdot\mathbf{mol}^{-1})$	Capacità termica molare, $C_{P,m} (J \cdot K^{-1} \cdot mol^{-1})$	Entropia molare, $S^{\circ}_{\ \ m} (J \cdot K^{-1} \cdot mol^{-1})$
Composti azotati						
CO(NH) ₂ (s), urea	60,06	-632	-333,51	-197,33	93,14	104,60
C ₆ H ₅ NH ₂ (l), anilina	93,13	-3393	+31,6	+149,1	_	191,3
NH ₂ CH ₂ COOH(s), glicina	75,07	-969	-532,9	-373,4	99,2	103,51
CH ₃ NH ₂ (g), metilammina	31,06	-1085	-22,97	+32,16	53,1	243,41

A18 Appendice 2 © 978-88-08-0**6139**-3

2B POTENZIALI STANDARD DI RIDUZIONE A 25 °C

Potenziali in ordine elettrochimico

Semireazione di riduzione	E° (V)	Semireazione di riduzione	<i>E</i> ° (V)	
Fortemente ossidante		$NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^-$	+0,01	
$H_4XeO_6 + 2 H^+ + 2e^- \rightarrow XeO_3 + 3 H_2O$	+3,0	$Ti^{4+} + e^- \rightarrow Ti^{3+}$	0,00	
$F_{+} + 2 e^{-} \rightarrow 2F^{-}$	+2,87	$2 H^+ + 2 e^- \rightarrow H_2$	0, per definizione	
$O_3 + 2 H^+ + 2 e^- \rightarrow O_2 + H_2O$	+2,07	$Fe^{3+} + 3e^{-} \rightarrow Fe^{2}$	-0.04	
$S_{2}O_{8}^{2-} + 2 e^{-} \rightarrow 2 SO_{4}^{2-}$	+2,05	$O_2 + H_2O + 2 e^- \rightarrow HO_2^- + OH^-$	-0,08	
$g^{2^+} + e^- \rightarrow Ag^+$	+1,98	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0,13	
$Co^{3+} + e^- \rightarrow Co^{2+}$	+1,81	$In^+ + 2 e^- \rightarrow In$	-0.14	
$H_2O_2 + 2 H^+ + 2 e^- \rightarrow 2 H_2O$	+1,78	$\operatorname{Sn}^{2+} + 2 e^{-} \rightarrow \operatorname{Sn}$	-0,14	
$\operatorname{Au}^{2} + \operatorname{e}^{-} \rightarrow \operatorname{Au}$	+1,69	$AgI + e^{-} \rightarrow Ag + I^{-}$	-0,15	
$Pb^{4+} + 2 e^- \rightarrow Pb^{2+}$	+1,67	$Ni^{2+} + 2e^- \rightarrow Ni$	-0,23	
$HClO + 2 H^+ + 2 e^- \rightarrow Cl_2 + 2 H_2O$	+1,63	$V^{3+} + e^- \rightarrow V^{2+}$	-0,26	
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	+1,61	$Co^{2+} + 2e^{-} \rightarrow Co$	-0,28	
$HBrO + 2 H^{+} + 2 e^{-} \rightarrow Br_{2} + 2 H_{2}O$	+1,60	$In^{3+} + 3 e^- \rightarrow In$	-0.34	
$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$	+1,51	$Tl^+ + e^- \rightarrow Tl$	-0.34	
$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+1,51	$PbSO_4 + 2 e^- \rightarrow Pb + SO_4^{2-}$	-0,36	
$u^{3+} + 3 e^- \rightarrow Au$	+1,40	$Ti^{3+} + e^- \rightarrow Ti^{2++}$	-0.37	
$cl_1 + 2e^- \rightarrow 2Cl^-$	+1,36	$In^{2+} + e^{-} \rightarrow In^{+}$	-0,40	
$\text{Cr}_2\text{O}_7^{2-} + 14\text{ H}^+ + 6\text{ e}^- \rightarrow 2\text{ Cr}^{3+} + 7\text{ H}_2\text{O}$	+1,33	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0,40	
$O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$	+1,24	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0,41	
$0_1 + 4 H^+ + 4 e^- \rightarrow 2 H_1O$	+1,23	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0,44	
$M_{1}O_{2} + 4 H^{+} + 2 e^{-} \rightarrow M_{1}O^{2} + 2 H_{2}O$	+1,23	$In^{3+} + 2e^{-} \rightarrow In^{+}$	-0,44	
$ClO_4^- + 2H^+ + 2e^- \rightarrow ClO_3^- + H_2O$	+1,23	$S + 2e^{-} \rightarrow S^{2-}$	-0,48	
$t^{2+} + 2e^- \rightarrow Pt$	+1,20	$In^{3+} + e^{-} \rightarrow In^{2+}$	-0,49	
$r_1 + 2e^- \rightarrow 2Br^-$	+1,09	$Ga^+ + e^- \rightarrow Ga$	-0.53	
$u^{4+} + e^- \rightarrow Pu^{3+}$	+0,97	$O_2 + e^- \rightarrow O_2^-$	-0.56	
$IO_3^- + 4 H^+ + 3 e^- \rightarrow NO + 2 H_2O$	+0,96	$U^{4+} + e^{-} \rightarrow U^{3+}$	-0,61	
$Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	+0,92	$Se + 2e^{-} \rightarrow Se^{2-}$	-0,67	
$11S_2 + 2 C - 11S_2$ $11O^- + H_2O + 2 C^- + 2 OH^-$	+0,89	$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.74	
$Ig^{2+} + 2e^{-} \rightarrow Hg$	+0,85	$Zn^{2+} + 2e^{-} \rightarrow Zn$	-0,76	
$IO_3^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$	+0,80	$Cd(OH)$, $+ 2e^- \rightarrow Cd + 2OH^-$	-0,81	
$g^+ + e^- \rightarrow Ag$	+0,80	$2 H_1O + 2 e^- \rightarrow H_1 + 2 OH^-$	-0.83	
$\frac{1}{12} \frac{1}{12} + 2 e^{-} \rightarrow 2 Hg$	+0,79	$Te + 2 e^{-} \rightarrow Te^{2-}$	-0.84	
$gF + e^- \rightarrow Ag + F^-$	+0,78	$Cr^{2+} + 2e^{-} \rightarrow Cr$	-0.91	
$e^{3+} + e^{-} \rightarrow Fe^{2+}$	+0,77	$Mn^{2+} + 2e^{-} \rightarrow Mn$	-1,18	
$rO^- + H_2O + 2e^- \rightarrow Br^- + 2OH^-$	+0,76	$V^{2+} + 2 e^- \rightarrow V$	-1,19	
$MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$	+0,60	$Ti^{2+} + 2e^{-} \rightarrow Ti$	-1,63	
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0,56	$Al^{3+} + + 3e^{-} \rightarrow Al$	-1,66	
$\begin{array}{c} \operatorname{All}O_4 & \vdash C & \vdash \operatorname{ViniO}_4 \\ 1 & \vdash 2 & \vdash - \rightarrow 2 & \vdash - \end{array}$	+0,54	$U^{3+} + 3e^{-} \rightarrow U$	-1,79	
$\frac{1}{2} + 2e^{-} \rightarrow 3I^{-}$	+0,53	$Be^{2+} + 2e^{-} \rightarrow Be$	-1,85	
$cu^+ + e^- \rightarrow Cu$	+0,52	$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2,36	
$\text{li}(\text{OH})_3 + \text{e}^- \rightarrow \text{Ni}(\text{OH})_2 + \text{OH}^-$	+0,49	$Ce^{3+} + 3e^{-} \rightarrow Ce$	-2,48	
$0.7 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$	+0,40	$La^{3+} + 3e^{-} \rightarrow La$	-2,52	
	+0,36	$Na^{+} + e^{-} \rightarrow Na$	-2,71	
$lO_4^- + H_2O + 2e^- \rightarrow ClO_3^- + + 2OH^-$ $u^{2+} + 2e^- \rightarrow Cu$	+0,34	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2,71 -2,87	
	+0,34	$Ca^{2+} + 2e^{-} \rightarrow Ca$ $Sr^{2+} + 2e^{-} \rightarrow Sr$	-2,89	
$[g_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-]$		$3r^{-1} + 2e \longrightarrow 3r$ $Ba^{2+} + 2e^{-} \longrightarrow Ba$		
$gCl + e^{-} \rightarrow Ag + Cl^{-}$	+0,22 +0.20		-2,91 -2,92	
$i^{3+} + 3 e^- \rightarrow Bi$	+0,20	$Ra^{2+} + 2e^{-} \rightarrow Ra$	-2,92	
$O_4^{2-} + 4 H^+ + 2 e^- \rightarrow H_2 SO_3 + H_2 O$	+0,17	$Cs^+ + e^- \rightarrow Cs$	-2,92	
$Cu^{2+} + e^- \rightarrow Cu^+$	+0,15	$Rb^{+} + e^{-} \rightarrow Rb$	-2,93	
$\sin^{4+} + 2 e^- \rightarrow \operatorname{Sn}^{2+}$	+0,15	$K^+ + e^- \rightarrow K$	-2,93	
$AgBr + e^- \rightarrow Ag + Br^-$	+0.07	$Li^+ + e^- \rightarrow Li$	-3,05	

Potenziali in ordine alfabetico

nireazione di riduzione	E° (V)	Semireazione di riduzione	<i>E</i> ° (V)
$e^- + e^- \longrightarrow Ag$	+0,80	$In^{2+} + e^- \longrightarrow In^+$	-0,40
$^{+}$ + e^{-} \rightarrow Ag+ $^{+}$	+1,98	$In^{3+} + e^{-} \rightarrow In^{2+}$	-0,49
$Br + e^- \rightarrow Ag + Br^-$	+0,07	$In^{3+} + 2 e^- \rightarrow In^+$	-0,44
$Cl + e^- \rightarrow Ag + Cl^-$	+0,22	$In^{3+} + 3 e^- \rightarrow In$	-0,34
$F + e^- \rightarrow Ag + F^-$	+0,78	$K^+ + e^- \rightarrow K$	-2,93
$+ e^- \rightarrow Ag + I^-$	-0,15	$La^{3+} + 3e^{-} \rightarrow La$	-2,52
$^{+} + 3 e^{-} \rightarrow Al$	-1,66	$Li^+ + e^- \rightarrow Li$	-3,05
$+ + e^- \rightarrow Au$	+1,69	$Mg^{2+} + 2 e^- \rightarrow Mg$	-2,36
$^{+} + 3 e^{-} \rightarrow Au$	+1,40	$Mn^{2+} + 2 e^- \rightarrow Mn$	-1,18
$^{+} + 2 e^{-} \rightarrow Ba$	-2,91	$Mn^{3+} + e^{-} \rightarrow Mn^{2++}$	+1,51
$^{+} + 2 e^{-} \rightarrow Be$	-1,85	$MnO_2 + 4 H^+ + 2 e^- \rightarrow Mn^{2+} + 2 H_2O$	+1,23
$+ + 3 e^- \rightarrow Bi$	+0,20	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0,56
$+ 2 e^- \rightarrow 2 Br^-$	+1,09	$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$	+1,51
$O^- + H_2O + 2 e^- \rightarrow Br^- + 2 OH^-$	+0,76	$MnO_4^{2-} + 2 H_2O + 2 e^- \rightarrow MnO_2 + 4 OH^-$	+0,60
$^{+} + 2 e^{-} \rightarrow Ca$	-2,87	$NO_3^{-} + 2 H^+ + e^- \rightarrow NO_3 + H_3O$	+0,80
$e^+ + 2 e^- \rightarrow Cd$	-0,40	$NO_3^- + 4 H^+ + 3 e^- \rightarrow NO + 2 H_2O$	+0,96
$(OH)_2 + 2 e^- \rightarrow Cd + 2 OH^-$	-0.81	$NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^-$	+0,01
$^{+}$ + 3 e ⁻ \rightarrow Ce	-2,48	$Na^{+} + e^{-} \rightarrow Na$	-2,71
$^{+}$ + $\mathrm{e^{-}} \rightarrow \mathrm{Ce^{3+}}$	+1,61	$Ni^{2+} + 2e^{-} \rightarrow Ni$	-0,23
$+ 2 e^{-} \rightarrow 2 Cl^{-}$	+1,36	$Ni(OH)_3 + e^- \rightarrow Ni(OH)_2 + OH^-$	+0,49
$O^{-} + H_{2}O + 2e^{-} \rightarrow Cl^{-} + 2OH^{-}$	+0,89	$O_2 + e^- \rightarrow O_2^-$	-0,56
$O_{4}^{-} + 2 H^{+} + 2 e^{-} \rightarrow ClO_{3}^{-} + H_{2}O$	+1,23	$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$	+1,23
$O_4^- + H_2O + 2e^- \rightarrow ClO_3^- + 2OH^-$	+0,36	$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^-$	-0,08
$c_4 + c_2 \rightarrow C_0$	-0,28	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	+0,40
$3^{+} + e^{-} \rightarrow Co^{2+}$	+1,81	$O_3 + 2 H^+ + 2 e^- \rightarrow O_2 + H_2O$	+2,07
+ + 2 e ⁻ → Cr	-0,91	$O_3 + H_2O + 2 e^- \rightarrow O_2 + 2 OH^-$	+1,24
$O_7^{2-} + 14 \text{ H}^+ + 6 \text{ e}^- \rightarrow 2 \text{ Cr}^{3+} + 7 \text{ H,O}$	+1,33	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0,13
$^{+}$ + 3 e ⁻ \rightarrow Cr	-0.74	$Pb^{4+} + 2e^{-} \rightarrow Pb^{2+}$	+1,67
$^{+}$ + e ⁻ \rightarrow Cr ²⁺	-0.41	$PbSO_4 + 2 e^- \rightarrow Pb + SO_4^{2-}$	-0,36
$+ e^- \rightarrow Cs$	-2,92	$Pt^{2+} + 2e^{-} \rightarrow Pt$	+1,20
+ + e ⁻ → Cu	+0,52	$Pu^{4+} + e^{-} \rightarrow Pu^{3+}$	+0,97
$c^{2+} + 2e^{-} \rightarrow Cu$	+0,34	$Ra^{2+} + 2e^{-} \rightarrow Ra$	-2,92
$e^{2+} + e^{-} \rightarrow Cu^{+}$	+0,15	$Rb^{+} + e^{-} \rightarrow Rb$	-2,93
$+2e^- \rightarrow 2F^-$	+2,87	$S + 2 e^{-} \rightarrow S^{2-}$	-0,48
$+2e^{-} \rightarrow Fe$	-0,44	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	+0,17
+ + 3 e ⁻ → Fe	-0.04	$\begin{array}{c} 3O_4 + 411 + 2e^{-3} & 11_2 & 3O_3 + 11_2 \\ S_2O_8^{2-} + 2e^{-3} & 2SO_4^{2-} \end{array}$	+2,05
$^{+}$ + e^{-} \rightarrow Fe ²⁺	+0,77	$\begin{array}{c c} S_2O_8 & 12 & 23O_4 \\ Se + 2e^- \rightarrow Se^{2-} \end{array}$	-0,67
$+ + e^- \rightarrow Ga$	-0,53	$Sn^{2+} + 2e^{-} \rightarrow Sn$	-0.14
$I^+ + 2 e^- \rightarrow H$	0, per definizione	$Sn^{4+} + 2e^{-} \rightarrow Sn^{2+}$	+0,15
2	+1,60	$Sr^{2+} + 2e^{-} \rightarrow Sr$	-2,89
$(BrO + 2 H^+ + 2 e^- \rightarrow Br_2 + 2 H_2O)$	+1,63	$\begin{array}{ccc} \text{Te} + 2 e^{-} \rightarrow \text{Te}^{2-} \\ \text{Te} + 2 e^{-} \rightarrow \text{Te}^{2-} \end{array}$	-0.84
$ICIO + 2 H^{+} + 2 e^{-} \rightarrow Cl_{2} + 2 H_{2}O$			
$I_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	$Ti^{2+} + 2 e^{-} \rightarrow Ti$ $Ti^{3+} + e^{-} \rightarrow Ti^{2+}$	-1,63 $-0,37$
$O_2 + 2 H^+ + 2 e^- \rightarrow 2 H_2 O$	+1,78	$11^{3^{+}} + e \longrightarrow 11^{2^{+}}$ $11^{4^{+}} + e^{-} \longrightarrow 11^{3^{+}}$	0,00
$(\text{XeO}_6 + 2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{XeO}_3 + 3 \text{ H}_2\text{O})$	+3,0		
$_{2}^{2+} + 2 e^{-} \rightarrow 2 \text{ Hg}$	+0,79	$Tl^{+} + e^{-} \rightarrow Tl$ $Ul^{+} + 2e^{-} \rightarrow Ul$	-0.34
$2^{+} + 2 e^{-} \rightarrow \text{Hg}$	+0,85	$U^{3+} + 3 e^{-} \rightarrow U$	-1,79
$[g^{2+} + 2 e^{-} \rightarrow Hg_{2}^{2+}]$	+0,92	$U^{4+} + e^{-} \rightarrow U^{3+}$	-0,61
$_{2}\text{Cl}_{2} + 2 \text{ e}^{-} \rightarrow 2 \text{ Hg} + 2 \text{ Cl}^{-}$	+0,27	$V^{2+} + 2 e^{-} \rightarrow V$	-1,19
$-2e^{-} \rightarrow 2I^{-}$	+0,54	$V^{3+} + e^- \rightarrow V^{2+}$	-0,26
		$\angle n^{z^+} + 2 e^- \rightarrow Zn$	-0,76
$+2e^{-} \rightarrow 3I^{-}$ $+e^{-} \rightarrow In$	+0,53 -0,14	$Zn^{2+} + 2 e^{-} \rightarrow Zn$	

A20 Appendice 2 © 978-88-08-0**6139**-3

2C CONFIGURAZIONI ATOMICHE NELLO STATO FONDAMENTALE

Z	Simbolo	Configurazione ^a	Z	Simbolo	Configurazione ^a
1	Н	$1s^1$	29	Cu	$[Ar]3d^{10}4s^{1}$
2	He	$1s^2$	30	Zn	$[Ar]3d^{10}4s^2$
3	Li	$[He]2s^1$	31	Ga	$[Ar]3d^{10}4s^24p^1$
4	Be	$[He]2s^2$	32	Ge	$[Ar]3d^{10}4s^24p^2$
5	В	$[He]2s^22p^1$	33	As	$[Ar]3d^{10}4s^24p^3$
6	С	[He] $2s^22p^2$	34	Se	$[Ar]3d^{10}4s^24p^4$
7	N	$[He]2s^22p^3$	35	Br	$[Ar]3d^{10}4s^24p^5$
8	O	$[He]2s^22p^4$	36	Kr	$[Ar]3d^{10}4s^24p^6$
9	F	$[He]2s^22p^5$	37	Rb	[Kr]5s1
10	Ne	$[He]2s^22p^6$	38	Sr	[Kr]5s ²
11	Na	$[Ne]3s^1$	39	Y	$[Kr]4d^15s^2$
12	Mg	$[Ne]3s^2$	40	Zr	$[Kr]4d^25s^2$
13	Al	[Ne] $3s^23p^1$	41	Nb	$[Kr]4d^45s^1$
14	Si	[Ne] $3s^23p^2$	42	Mo	$[Kr]4d^55s^1$
15	P	[Ne] $3s^23p^3$	43	Tc	$[Kr]4d^55s^2$
16	S	[Ne] $3s^23p^4$	44	Ru	$[Kr]4d^{7}5s^{1}$
17	Cl	[Ne] $3s^23p^5$	45	Rh	$[Kr]4d^85s^1$
18	Ar	[Ne] $3s^23p^6$	46	Pd	$[Kr]4d^{10}$
19	K	$[Ar]4s^1$	47	Ag	$[Kr]4d^{10}5s^{1}$
20	Ca	$[Ar]4s^2$	48	Cd	$[Kr]4d^{10}5s^2$
21	Sc	$[Ar]3d^14s^2$	49	In	$[Kr]4d^{10}5s^25p^1$
22	Ti	$[Ar]3d^24s^2$	50	Sn	$[Kr]4d^{10}5s^25p^2$
23	V	$[Ar]3d^34s^2$	51	Sb	$[Kr]4d^{10}5s^25p^3$
24	Cr	$[Ar]3d^54s^1$	52	Te	$[Kr]4d^{10}5s^25p^4$
25	Mn	$[Ar]3d^54s^2$	53	I	$[Kr]4d^{10}5s^25p^5$
26	Fe	$[Ar]3d^64s^2$	54	Xe	$[Kr]4d^{10}5s^25p^6$
27	Co	$[Ar]3d^{7}4s^{2}$	55	Cs	[Xe]6s1
28	Ni	$[Ar]3d^84s^2$	56	Ba	Ba

\overline{Z}	Simbolo	Configurazione ^a	Z	Simbolo	Configurazione ^a
57	La	[Xe] $5d^{1}6s^{2}$	85	At	[Xe] $4f^{14}5d^{10}6s^26p^5$
58	Се	$[Xe]4f^15d^16s^2$	86	Rn	$[Xe]4f^{14}5d^{10}6s^26p^6$
59	Pr	$[Xe]4f^36s^2$	87	Fr	$[Rn]7s^1$
60	Nd	$[Xe]4f^46s^2$	88	Ra	$[Rn]7s^2$
61	Pm	$[Xe]4f^56s^2$	89	Ac	$[Rn]6d^17s^2$
62	Sm	$[Xe]4f^66s^2$	90	Th	$[Rn]6d^27s^2$
63	Eu	$[Xe]4f^{7}6s^{2}$	91	Pa	$[Rn]5f^26d^17s^2$
64	Gd	$[Xe]4f^75d^16s^2$	92	U	$[Rn]5f^36d^17s^2$
65	Tb	$[Xe]4f^96s^2$	93	Np	$[Rn]5f^46d^17s^2$
66	Dy	$[Xe]4f^{10}6s^2$	94	Pu	$[Rn]5f^67s^2$
67	Но	$[Xe]4f^{11}6s^2$	95	Am	$[Rn]5f^77s^2$
68	Er	$[Xe]4f^{12}6s^2$	96	Cm	$[Rn]5f^76d^17s^2$
69	Tm	$[Xe]4f^{13}6s^2$	97	Bk	$[Rn]5f^97s^2$
70	Yb	$[Xe]4f^{14}6s^2$	98	Cf	$[Rn]5f^{10}7s^2$
71	Lu	$[Xe]4f^{14}5d^{1}6s^{2}$	99	Es	$[Rn]5f^{11}7s^2$
72	Hf	$[Xe]4f^{14}5d^{1}6s^{2}$	100	Fm	$[Rn]5f^{12}7s^2$
73	Ta	[Xe] $4f^{14}5d^36s^2$	101	Md	$[Rn]5f^{13}7s^2$
74	W	$[Xe]4f^{14}5d^46s^2$	102	No	$[Rn]5f^{14}7s^2$
75	Re	$[Xe]4f^{14}5d^56s^2$	103	Lr	$[Rn]5f^{14}6d^{1}7s^{2}(?)$
76	Os	$[Xe]4f^{14}5d^66s^2$	104	Rf	$[Rn]5f^{14}6d^27s^2(?)$
77	Ir	$[Xe]4f^{14}5d^{7}6s^{2}$	105	Db	$[Rn]5f^{14}6d^37s^2(?)$
78	Pt	$[Xe]4f^{14}5d^96s^1$	106	Sg	$[Rn]5f^{14}6d^47s^2(?)$
79	Au	$[Xe]4f^{14}5d^{10}6s^{1}$	107	Bh	$[Rn]5f^{14}6d^57s^2(?)$
80	Hg	[Xe] $4f^{14}5d^{10}6s^2$	108	Hs	$[Rn]5f^{14}6d^67s^2(?)$
81	Tl	$[Xe]4f^{14}5d^{10}6s^26p^1$	109	Mt	$[Rn]5f^{14}6d^77s^2(?)$
82	РЬ	[Xe] $4f^{14}5d^{10}6s^26p^2$	110	Ds	$[Rn]5f^{14}6d^87s^2(?)$
83	Bi	[Xe] $4f^{14}5d^{10}6s^26p^3$	111	Rg	$[Rn]5f^{14}6d^{10}7s^{1}(?)$
84	Po	[Xe] $4f^{14}5d^{10}6s^26p^4$			

^a Le configurazioni elettroniche seguite da un punto interrogativo sono ricavate in maniera ipotetica.

A22 Appendice 2 © 978-88-08-0**6139**-3

2D GLI ELEMENTI

Elemento	Simbolo	Numero atomico	Massa molare ^a (g·mol ⁻¹)	Stato normale ^b	Densità (g·cm⁻³)	Punto di fusione, °C
Afnio (latino <i>Hafnia</i> , Copenhagen)	Hf	72	178,49	s, m	13,28	2230
Alluminio (da <i>alum</i> , sali del tipo KAl(SO ₄) ₂ ·12H ₂ O)	Al	13	26,98	s, m	2,70	660
Americio (le Americhe)	Am	95	(243)	s, m	13,67	990
Antimonio (probabilmente una corruzione di un antico termine arabo; latino <i>stibium</i>)	Sb	51	121,76	s, md	6,69	631
Argento (latino <i>argentum</i>)	Ag	47	107,87	s, m	10,50	962
Argon (greco <i>argos</i> , inattivo)	Ar	18	39,95	g, nm	1,66 ^d	-189
Arsenico (greco <i>arsenikos</i> , maschile)	As	33	74,92	s, md	5,78	613 ^e
Assio (Assia, Land tedesco)	Hs	108	(277)	-	_	_
Astato (greco <i>astatos</i> , instabile)	At	85	(210)	s, nm	_	300
Attinio (greco <i>aktis</i> , raggio)	Ac	89	(227)	s, m	10,07	1230
Azoto (greco <i>a- + zoos</i> , privo di vita)	N	7	14,01	g, nm	$1,04^{d}$	-210
Bario (greco <i>barys</i> , pesante)	Ba	56	137,33	s, m	3,59	710
Berkelio (Berkeley, California)	Bk	97	(247)	s, m	14,79	986
Berillio (dal nome del minerale berillio, Be ₃ Al ₂ SiO ₁₈)	Ве	4	9,01	s, m	1,85	1285
Bismuto (tedesco <i>weisse Masse</i> , massa bianca)	Bi	83	208,98	s, m	8,90	271
Borio (Niels Bhor)	Bh	107	(264)	_	_	_
Boro [arabo <i>buraq</i> , borace, Na ₂ B ₄ O ₇ ·10H ₂ O; <i>bor</i> (ax) + (carb) <i>on</i>]	В	5	10,81	s, md	2,47	2300
Bromo (greco <i>bromos</i> , maleodorante)	Br	35	79,90	l, nm	3,12	-7
Cadmio (greco <i>Cadmus</i> , fondatore di Tebe)	Cd	48	112,41	s, m	8,65	321

Simbolo	Punto di ebollizione, °C	Energia di ionizzazione (KJ·mol⁻¹)	Affinità elettronica (KJ·mol ⁻¹)	Elettro- negatività	Principali stati di ossidazione	Raggio atomico (pm)	Raggio ionico ^c (pm)
Hf	5300	642, 1440, 2250	0	1,3	+4	156	84(3+)
Al	2467	577, 1817, 2744	+43	1,6	+3	143	57(3+)
Am	2600	578	_	1,3	+3	173	107(3+)
Sb	1750	834, 1794, 2443	+103	2,1	-3, +3, +5	182	89(3+)
Ag	2212	731, 2073	+126	1,9	+1	144	113(1+)
Ar	-186	1520	<0	_	0	174	_
As	_	947, 1798	+78	2,2	-3, +3, +5	125	222(3-)
Hs	-	750	-	-	+3	126 ^f	80(4+) ^f
At	350	1037, 1600	+270	2,0	-1	_	227(1-)
Ac	3200	499, 1170, 1900	-	1,1	+3	188	118(3+)
N	-196	1400, 2856	-7	3,0	-3, +3, +5	71	171(3-)
Ba	1640	502, 965	+14	0,89	+2	217	143(2+)
Bk	_	601	-	1,3	+3	_	87(4+)
Ве	2470	900, 1757	<0	1,6	+2	113	34(2+)
Bi	1650	703, 1610, 2466	+91	2,0	+3, +5	155	96(3+)
Bh	_	660	-	-	+5	$128^{\rm f}$	83(5+) ^f
В	3931	799, 2427, 3660	+27	2,0	+3	83	23(3+)
Br	59	1140, 2104	+325	3,0	-1, +1, +3, +4,	114	196(1-)
Cd	765	868, 1631	<0	1,7	+5, +7 +2	149	103(2+)
Cu	, 0,	300, 1031		1,7	. 2	- 1/	105(21)

(continua)

A24 Appendice 2 © 978-88-08-0**6139**-3

Elemento	Simbolo	Numero atomico	Massa molare ^a (g·mol⁻¹)	Stato normale ^b	Densità (g·cm⁻³)	Punto di fusione, °C
Calcio (latino <i>calx</i> , calce)	Ca	20	40,08	s, m	1,53	840
Californio (California)	Cf	98	(251)	s, m	2,27	_
Carbonio (latino <i>carbo</i> , carbone)	С	6	12,01	s, nm	2,27	3700°
Cerio (l'asteroide Ceres, scoperto due giorni prima)	Се	58	140,12	s, m	6,71	800
Cesio (latino <i>caesius</i> , blu cielo)	Cs	55	132,91	s, m	1,87	28
Cloro (greco <i>chloros</i> , giallo-verdastro)	Cl	17	35,45	g, nm	1,66 ^d	-101
Cobalto (tedesco <i>Kobold</i> , spirito maligno; greco <i>kobalos</i> , spiritello)	Со	27	58,93	s, m	8,80	1494
Cromo (greco <i>chroma</i> , colore)	Cr	24	52,00	s, m	7,19	1860
Curio (Marie Curie)	Cm	96	(247)	s, m	13,30	1340
Darmstadzio (Darmastadt, città della Germania)	Ds	110	-	_	_	_
Disprosio (greco <i>dysprositos</i> , difficile da ottenere)	Dy	66	162,50	s, m	8,53	1410
Oubnio (Dubna)	DЬ	105	(262)	s, m	29	_
Einsteinio (Albert Einstein)	Es	99	(252)	s, m	_	_
Elio (greco <i>helios</i> , il sole)	Не	2	4,00	g, nm	0,12 ^d	_
Erbio (Ytterby, città della Svezia)	Er	68	167,26	s, m	9,04	1520
Europio (Europa)	Eu	63	151,96	s, m	5,25	820
ermio (Enrico Fermi, fisico italiano)	Fm	100	(257)	s, m	_	_
Ferro (latino <i>ferrum</i>)	Fe	26	55,84	s, m	7,87	1540
luoro (latino <i>fluere</i> , fluire)	F	9	19,00	g, nm	1,51 ^d	-220
Fosforo (greco <i>phosphoros</i> , che porta luce)	P	15	30,97	s, nm	1,82	44

Simbolo	Punto di ebollizione, °C	Energia di ionizzazione (KJ·mol ⁻¹)	Affinità elettronica (KJ·mol ⁻¹)	Elettro- negatività	Principali stati di ossidazione	Raggio atomico (pm)	Raggio ionico ^c (pm)
Ca	1490	590, 1145, 4910	+2	1,3	+2	197	106(2+)
Cf	_	608	_	1,3	+3	169	117(2+)
С	_	1090, 2352, 4620	+122	2,6	-4, -1, +2, +4	77	260(4-)
Се	3000	527, 1047, 1949	<50	1,1	+3, +4	183	107(3+)
Cs	678	376, 2420	+46	0,79	+1	265	165(1+)
Cl	-34	1255, 2297	+349	3,2	-1, +1, +3, +4, +5, +6, +7	99	181(1-)
Со	2900	760, 1646, 3232	+64	1,9	+3, +6	125	64(3+)
Cr	2600	653, 1592, 2987	+64	1,7	+2, +3	125	84(2+)
Cm	_	581	_	1,3	+3	174	99(3+)
Ds	_	_	_	-	_	_	_
Dy	2600	572, 1126, 2200	_	1,2	+3	177	91(3+)
Db	_	640	_	_	+5	139 ^f	68(5+) ^f
Es	_	619	<50	1,3	+3	203	98(3+)
Не	-269	2370, 5250	<0	_	0	128	_
Er	2600	589, 1151, 2194	<50	1,2	+3	176	89(3+)
Eu	1450	547, 1085, 2404	<50	_	+3	204	98(2+)
Fm	_	627	_	1,3	+3	_	91(3+)
Fe	2760	759, 1561, 2957	+16	1,8	+2, +3	124	82(2+)
F	-188	1680, 3374	+328	4,0	-1	71	133(1-)
P	280	1011, 1903, 2912	+72	2,2	3, +3, +5	115	212(3-)

A26 Appendice 2 © 978-88-08-0**6139**-3

Elemento	Simbolo	Numero atomico	Massa molare ^a (g·mol ⁻¹)	Stato normale ^b	Densità (g·cm⁻³)	Punto di fusione, °C
Francio (Francia)	Fr	87	(223)	s, m	_	27
Gadolinio (Johann Gadolin, chimico finlandese)	Gd	64	157,25	s, m	7,87	1310
Gallio (latino <i>Gallia</i> , Francia; anche un gioco di parole sul cognome dello scopritore Le Coq)	Ga	31	69,72	s, m	5,91	30
Germanio (latino <i>Germania</i> , Germania)	Ge	32	72,64	s, md	5,32	937
Idrogeno (greco, che produce acqua)	Н	1	1,0079	g, nm	$0,070^{d}$	-259
Indio (dalla brillante riga indaco nel suo spettro)	In	49	114,82	s, m	7,29	156
Iodio (greco <i>ioeides</i> , violetto)	Ι	53	126,90	s, nm	4,95	114
Iridio (greco e latino <i>iris</i> , arcobaleno)	Ir	77	192,22	s, m	22,56	2447
Itterbio (Ytterby, città della Svezia)	Yb	70	173,04	s, m	6,97	824
Ittrio (Ytterby, città della Svezia)	Y	39	88,91	s, m	4,48	1510
Kripton (greco <i>kryptos</i> , nascosto)	Kr	36	83,80	g, nm	$3,00^{d}$	-157
Lantanio (greco <i>lanthanein</i> , essere nascosto)	La	57	138,91	s, m	6,17	920
Laurenzio (Ernest Lawrence, fisico statunitense)	Lr	103	(262)	s, m	-	_
Litio (greco <i>lithos</i> , pietra)	Li	3	6,94	s, m	0,53	181
Lutezio (<i>Lutezia</i> , antico nome di Parigi)	Lu	71	174,97	s, m	9,84	1700
Magnesio (<i>Magnesia</i> , distretto della Tessaglia, in Grecia)	Mg	12	24,31	s, m	1,74	650
Manganese (greco e latino <i>magnes</i> , magnete)	Mn	25	54,94	s, m	7,47	1250
Meitnerio (Lise Meitner)	Mt	109	(268)	-	_	_
Mendelevio (Dmitri Mendeleev)	Md	101	(258)	-	-	_

Simbolo	Punto di ebollizione, °C	Energia di ionizzazione (KJ·mol ⁻¹)	Affinità elettronica (KJ·mol ⁻¹)	Elettro- negatività	Principali stati di ossidazione	Raggio atomico (pm)	Raggio ionico ^c (pm)
Fr	677	400	+44	0,7	+1	270	180(1+)
Gd	3000	592, 1167, 1990	<50	1,2	+2, +3	180	97(3+)
Ga	2403	577, 1979, 2963	+29	1,6	+1, +3	122	62(3+)
Ge	2830	784, 1557, 3302	+116	2,0	+2, +4	123	90(2+)
Н	-253	1310	+73	2,2	-1, +1	78	154(1-)
In	2080	556, 1821	+29	1,8	+1, +3	163	92(3+)
·	10/	1000 10//		2.5		122	
I	184	1008, 1846	+295	2,7	-1, +1, +3, +5, +7	133	196(1-)
Ir	4550	880	+151	2,2	+3, +4	136	75(2+)
Yb	1500	603, 1176	<50	_	+3	194	86(3+)
Y	3300	616, 1181	+30	1,2	+3	181	106(3+)
Kr	-153	1350, 2350	<0	-	+2	189	169(1+)
La	3450	538, 1067, 1850	+50	1,1	+3	188	122(3+)
Lr	_	_	_	1,3	+3	_	88(3+)
Li	1347	519, 7298	+60	1,0	+1	152	78(1+)
Lu	3400	524, 1340, 2022	<50	1,3	+3	173	85(3+)
Mg	1100	736, 1451	<0	1,3	+2	160	79(2+)
Mn	2120	717, 1509	<0	1,6	+2, +3, +4, +7	137	91(2+)
Mt	_	840	_	_	+2	_	83(2+)
Md	_	635	_	1,3	+3	_	90(3+)

A28 Appendice 2 © 978-88-08-0**6139**-3

Elemento	Simbolo	Numero atomico	Massa molare ^a (g·mol⁻¹)	Stato normale ^b	Densità (g·cm⁻³)	Punto di fusione, °C
Mercurio (il pianeta Mercurio; latino hydrargyrum, argento liquido)	Hg	80	200,59	l, m	13,55	-39
Molibdeno (greco <i>molybdos</i> , piombo)	Mo	42	95,94	s, m	10,22	2620
Neodimio (greco <i>neos + didymos</i> , nuova coppia)	Nd	60	144,24	s, m	7,00	1024
Neon (greco <i>neos</i> , nuovo)	Ne	10	20,18	g, nm	$1,44^{d}$	-249
Nettunio (il pianeta Nettuno)	Np	93	(237)	s, m	20,45	640
Nichel (tedesco <i>Nickel</i> , Satana)	Ni	28	58,69	s, m	8,91	1455
Niobio (Niobe, figlia di Tantalo; vedi Tantalio)	Nb	41	92,91	s, m	8,57	2425
Nobelio (Alfred Nobel, il fondatore del premio omonimo)	No	102	(259)	s, m	-	_
Olmio (latino <i>Holmia</i> , Stoccolma)	Но	67	164,93	s, m	8,80	1470
Oro (latino <i>aurum</i> , oro)	Au	79	196,97	s, m	19,28	1064
Osmio (greco <i>osme</i> , odore)	Os	76	190,23	s, m	22,58	3030
Ossigeno (greco, che forma acidi)	О	8	16,00	g, nm	1,14	-218
Palladio (l'asteroide Pallas, scoperto nello stesso periodo)	Pd	46	106,42	s, m	12,00	1554
Piombo (latino <i>plumbum</i>)	Pb	82	207,2	s, m	11,34	328
Platino (spagnolo <i>plata</i> , argento)	Pt	78	195,08	s, m	21,45	1772
Plutonio (il pianeta Plutone)	Pu	94	(244)	s, m	19,81	640
Polonio (Polonia)	Ро	84	(209)	s, md	9,40	254
Potassio (da potassa; latino <i>kalium</i> e arabo <i>qali</i> , alcali)	K	19	39,10	s, m	0,86	64
Praseodimio (greco <i>prasios</i> + <i>didymos</i> , coppia verde)	Pr	59	140,91	s, m	6,78	935
Promezio (Prometeo, l'eroe greco)	Pm	61	(145)	s, m	7,22	1168

Simbolo	Punto di ebollizione, °C	Energia di ionizzazione (KJ·mol ⁻¹)	Affinità elettronica (KJ·mol ⁻¹)	Elettro- negatività	Principali stati di ossidazione	Raggio atomico (pm)	Raggio ionico ^c (pm)
Нg	357	1007, 1810	-18	2,0	+1, +2	160	112(2+)
Mo	4830	685, 1558, 2621	+72	2,2	+4, +5, +6	136	92(2+)
Nd	3100	530, 1035	<0	1,1	+3	182	104(3+)
Ne	-246	2080, 3952	0	-	0	_	_
Np	-	597	-	1,4	+5	150	88(5+)
Ni	2150	737, 1753	+156	1,9	+2, +3	125	78(2+)
Nb	5000	664, 1382	+86	1,6	+5	143	69(5+)
No	_	642	_	1,3	+2	_	113(2+)
	2200	501 1100				1.55	22/2 :)
Но	2300	581, 1139	<50	1,2	+3	177	89(3+)
Au	2807	890, 1980	+223	2,5	+1, +3	144	91(3+)
Os	5000	840	+106	2,2	+3, +4	135	81(3+)
О	-183	1310, 3388	+141, -844	3,4	-2	66	132(2-)
Pd	3000	805, 1875	+54	2,2	+2, +4	138	86(2+)
Pb	1760	716 1450	1.25	2.2	12 14	175	122(2)
Pb	1/60	716, 1450	+35	2,3	+2, +4	175	132(2+)
Pt	3720	870, 1791	+205	2,3	+2, +4	138	85(2+)
Pu	3200	585	_	1,3	+3, +4	151	108(3+)
Ро	960	812	+174	2,0	+2, +4	167	65(4+)
K	774	418, 3051	+48	0,82	+1	227	133(1+)
Pr	3000	523, 1018	<50	1,1	+3	183	106(3+)
Pm	3300	536, 1052	<50	_	+3	181	106(3+)

(continua)

A30 Appendice 2 © 978-88-08-0**6139**-3

Elemento	Simbolo	Numero atomico	Massa molare ^a (g·mol ⁻¹)	Stato normale ^b	Densità (g·cm⁻³)	Punto di fusione, °C
Protoattinio (greco <i>protos</i> + <i>aktis</i> , primo raggio)	Pa	91	231,04	s, m	15,37	1200
Radio (latino <i>radius</i> , raggio)	Ra	88	(226)	s, m	5,00	700
Radon (da radio)	Rn	86	(222)	g, nm	$4,40^{d}$	-71
Rame (latino <i>cuprum</i> , da Cipro)	Cu	29	63,55	s, m	8,93	1083
Renio (latino <i>Rhenus</i> , Reno)	Re	75	186,21	s, m	21,02	3180
Roentgenio (W. Roentgen, scopritore dei raggi X)	Rg	111	-	-	_	_
Rodio (greco <i>rhodon</i> , rosa; le sue soluzioni acquose hanno spesso colore rosa)	Rh	45	102,90	s, m	12,42	1963
Rubidio (latino <i>rubidus</i> , rosso scuro, «arrossito»)	Rb	37	85,47	s, m	1,53	39
Rutenio (latino <i>Ruthenia</i> , Russia)	Ru	44	101,07	s, m	12,36	2310
Ruterfordio (Ernest Rutherford)	Rf	104	(261)	_	_	_
samario (da samarskite, un minerale)	Sm	62	150,36	s, m	7,54	1060
Scandio (latino <i>Scandia</i> , Scandinavia)	Sc	21	44,96	s, m	2,99	1540
Seborgio (Glenn Seaborg)	Sg	106	(266)	-	-	_
selenio (greco <i>selene</i> , la Luna)	Se	34	78,96	s, nm	4,79	220
ilicio (latino <i>silex</i> , silice)	Si	14	28,09	s, md	2,33	1410
odio (da soda; latino <i>natrium</i>)	Na	11	22,99	s, m	0,97	98
itagno (latino <i>stannum</i>)	Sn	50	118,71	s, m	7,29	232
tronzio (<i>Strontian</i> , Scozia)	Sr	38	87,62	s, m	2,58	770
Tallio (greco <i>thallos</i> , germoglio verde)	Tl	81	204,38	s, m	11,87	304
antalio (Tantalo, eroe mitologico greco)	Ta	73	180,95	s, m	16,65	3000
Tecnezio (greco <i>technetos</i> , artificiale)	Тс	43	(98)	s, m	11,50	2200

Simbolo	Punto di ebollizione, °C	Energia di ionizzazione (KJ·mol ⁻¹)	Affinità elettronica (KJ·mol ⁻¹)	Elettro- negatività	Principali stati di ossidazione	Raggio atomico (pm)	Raggio ionico ^c (pm)
Pa	4000	568	_	1,5	+5	161	89(5+)
Ra	1500	509, 979	_	0,9	+2	223	152(2+)
Rn	-62	1036, 1930	<0	_	+2	_	_
Cu	2567	785, 1958, 3554	+118	1,9	+1, +2	128	72(2+)
Re	5600	760, 1260	+14	1,9	+4, +7	137	72(4+)
Rg	_	_	_	_	_	_	
Rh	3700	720, 1744	+110	2,3	+3	134	75(3+)
Rb	688	402, 2632	+47	0,82	+1	250	149(1+)
Ru	4100	711, 1617	+101	2,2	+2, +3, +4	134	77(3+)
Rf	_	490	-	_	+4	150 ^f	67(4+) ^f
Sm	1600	543, 1068	<50	1,2	+3	180	100(3+)
Sc	2800	631, 1235	+18	1,4	+3	161	83(3+)
Sg	-	730	_	-	+6	132 ^f	86(5+) ^f
Se	685	941, 2044	+195	2,6	-2, +4, +6	215	191(2-)
Si	2620	786, 1577	+134	1,9	+4	117	26(4+)
Na	883	494, 4562	+53	0,93	+1	154	98(1+)
Sn	2720	707, 1412	+116	2,0	+2, +4	141	93(2+)
Sr	1380	548, 1064	+5	0,95	+2	215	127(2+)
T1	1457	590, 1971	+19	2,0	+1, +3	170	105(3+)
Та	5400	761	+14	1,5	+5	143	72(3+)
Тс	4600	702, 1472	+96	1,9	+4, +7	136	72(4+)

(continua)

A32 Appendice 2 © 978-88-08-06139-3

Elemento	Simbolo	Numero atomico	Massa molare ^a (g·mol⁻¹)	Stato normale ^b	Densità (g·cm ⁻³)	Punto di fusione, °C
Tellurio (latino <i>tellus</i> , la Terra)	Те	52	127,60	s, md	6,25	450
Terbio (Ytterby, città della Svezia)	Tb	65	158,93	s, m	8,27	1360
Titanio (Titani, figure mitologiche greche, figlie della Terra)	Ti	22	47,87	s, m	4,55	1660
Torio (Thor, dio scandinavo del tuono)	Th	90	232,04	s, m	11,73	1700
Tullio (<i>Thule</i> , antico nome della Scandinavia)	Tm	69	168,93	s, m	9,33	1550
Tungsteno (svedese <i>tung</i> + <i>sten</i> , pietra pesante dalla wolframite)	W	74	183,84	s, m	19,30	3387
Uranio (il pianeta Urano)	U	92	238,03	s, m	18,95	1135
Vanadio (Vanadis, figura mitologica scandinava)	V	23	50,94	s, m	6,11	1920
Xenon (greco <i>xenos</i> , straniero)	Xe	54	131,29	g, nm	3,56 ^d	-112
Zinco (anglosassone <i>zinc</i>)	Zn	30	65,41	s, m	7,14	420
Zirconio (arabo <i>zargun</i> , color oro)	Zr	40	91,22	s, m	6,51	1850
Zolfo (sanscrito sulvere)	S	16	32,06	s, nm	2,09	115

© 978-88-08-0**6139**-3 I dati sperimentali A33

Simbolo	Punto di ebollizione, °C	Energia di ionizzazione (KJ·mol ⁻¹)	Affinità elettronica (KJ·mol ⁻¹)	Elettro- negatività	Principali stati di ossidazione	Raggio atomico (pm)	Raggio ionico ^c (pm)
Те	990	870, 1775	+190	2,1	-2, +4	143	221(2-)
Tb	2500	565, 1112	<50	_	+3	178	97(3+)
Ti	3300	658, 1310	+7,6	1,5	+4	145	69(4+)
Th	4500	587, 1110	_	1,3	+4	180	99(4+)
Tm	2000	597, 1163	<50	1,2	+3	175	94(3+)
W	5420	770	+79	2,4	+5, +6	137	62(6+)
U	4000	584, 1420	_	1,4	+6	154	80(6+)
V	3400	650, 1414	+51	1,6	+4, +5	132	61(4+)
Xe	-108	1170, 2046	<0	2,6	+2, +4, +6	218	190(1+)
Zn	907	906, 1733	+9	1,6	+2	133	83(2+)
Zr	4400	660, 1267	+41	1,3	+4	160	87(4+)
S	445	1000, 2251	+200	2,6	-2, +4, +6	104	184(2-)

^a I valori di massa molare tra parentesi tonde indicano l'isotopo più stabile di un elemento radioattivo.

^b Lo stato normale è lo stato dell'elemento a temperatura e pressione normali (20 °C e 1 atm).

^c Legenda: s = solido, 1 = liquido, g = gas, m = metallo, nm = non metallo, md = metalloide.

^c La carica è indicata tra parentesi.

^d La densità indicata è quella del liquido.

^e Il solido sublima.

^f Il raggio atomico e il raggio ionico sono stimati.

A34 Appendice 2 © 978-88-08-0**6139**-3

2E LE COSTANTI FONDAMENTALI

Nome	Simbolo	Valore	
Unità di massa atomica	$m_{_{ m u}}$	$1,660\ 54 imes 10^{-27}\ \mathrm{kg}$	
Costante di Avogadro	$N_{_{\! m A}}$	$6,022\ 14 \times 10^{23}\ \mathrm{mol^{-1}}$	
Costante di Boltzmann	k	$1,380.65 \times 10^{-23} \mathrm{J\cdot K^{-1}}$	
Carica elementare	e	$1,602\ 18 \times 10^{-19}$ C	
Costante di Faraday	$F = N_A e$	9,648 53 × 10⁴ C⋅mol ⁻¹	
Costante dei gas	$R = N_{A}k$	$8,314\ 47\ \mathrm{J\cdot K^{-1}\cdot mol^{-1}}$	
		$8,314\ 47\ \text{L}\cdot\text{kPa}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$	
		$8,205.74 \times 10^{-2} \text{L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$	
		62,36 37 L·Torr·K ⁻¹ ·mol ⁻¹	
		$8,314 \ 47 \times 10^{-2} \ \text{L} \cdot \text{bar} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$	
Massa dell'elettrone	$m_{_{ m e}}$	$9{,}109~38 \times 10^{-31}~\mathrm{kg}$	
Massa del neutrone	$m_{_{ m n}}$	$1,674~93 imes 10^{-27}~{ m kg}$	
Massa del protone	$m_{_{ m p}}$	$1,672~62 imes 10^{-27}~\mathrm{kg}$	
Costante di Planck	h	$6,626\ 08 \times 10^{-34}\ \text{J}\cdot\text{s}$	
	$\hbar = h/2\pi$	$1,054\ 57 \times 10^{-34}\ \mathrm{J\cdot s}$	
Costante di Rydberg	$\mathcal R$	$3,289~84 \times 10^{15}~\text{Hz}$	
Velocità della luce	С	$2,997 \ 92 \times 10^8 \ \mathrm{m \cdot s^{-1}}$	
Accelerazione standard in caduta libera	g	9,806 65 m·s ⁻²	
Permettività nel vuoto	$oldsymbol{arepsilon}_0$	$8,854\ 19 \times 10^{-12}\ J^{-1}\cdot\ C^2\cdot m^{-1}$	

2G LE RELAZIONI TRA LE UNITÀ^a

Proprietà	Unità comune	Unità SI		
Massa	2,205 lb (lb = libbra	1,000 kg		
	1,000 lb	453,6 g		
	1,000 oz (oz = oncia)	28,35 g		
	1,000 ton (= 2000 lb)	907,2 kg		
	1 t (t = tonnellata)	10^3 kg		
Lunghezza	1,094 yd (yd = iarda)	1,000 m		
	0,3937 in (in = pollice)	1,000 cm		
	0,6214 mi (mi = miglio)	1,000 km		
	1 in	2,54 cm		
	1 ft (ft = piede)	30,48 cm		
	1,000 yd	0,9144 m		
	1 Å (Å = angstrom)	10^{-10} m		
Volume	1 L (L = litro)	$10^3 \mathrm{cm}^3$		
	$1,000 \text{ gal (gal} = \text{gallone})^b$	$3,785 \times 10^3 \mathrm{cm}^3 (3,785 \mathrm{L})$		
	$1,00 \text{ ft}^3 \text{ (ft}^3 = \text{piede cubico)}$	$2,83 \times 10^{-2} \mathrm{m}^3 (28,3 \mathrm{L})$		
	1,00 qt (qt = quarto) b	$9,46 \times 10^2 \text{cm}^3 (0,946 \text{L})$		
Tempo	1 min (min = minuto)	60 s		
	1 h (h = ora)	3600 s		
	1 giorno	86 400 s		
Pressione	1 atm (atm = atmosfera)	$1,013\ 25 \times 10^5\ Pa$		
	1,000 Torr o 1,000 mmHg	133,3 Pa		
	1,000 psi (psi = libbre per pollice quadrato)	$6,895 \times 10^{3} \text{Pa}$		
	1 bar	10 ⁵ Pa		
Energia	1 cal	4,184 J		
	1 eV	$1,602\ 18 \times 10^{-19}\ J;\ 96,485\ kJ\cdot mol^{-1}$		
	1 C·V	1 J		
	1 kWh	$3,600 imes 10^3 ext{ kJ}$		
	1 L-atm	101,325 kJ		
Conversioni	(Temperatura Fahrenheit)/°F = $\frac{9}{5}$ × (temperatura Celsius)/°C + 32			
di temperatura	(Temperatura Celsius)/°C = $\frac{5}{9}$ × {(temperatura Fahrenheit)/°F – 32}			
	(Temperatura Kelvin)/K = (temperatura Celsius)/°C + 273,15			

 $^{^{\}it a}$ Le unità stampate in grassetto sono esatte.

^b Il quarto e il gallone europei e quelli canadesi sono 1,201 volte maggiori.

A36 Appendice 2 © 978-88-08-06139-3

2G I 23 PRODOTTI CHIMICI PIÙ IMPORTANTI DELL'INDUSTRIA STATUNITENSE NEL 2008

I dati relativi alla produzione vengono compilati annualmente dalla American Chemical Society e pubblicati in *Chemical and Engineering News*. La tabella si basa sulle informazioni concernenti la produzione del 2008, pubblicate nel luglio 2009. Tradizionalmente non si riportano i dati sull'acqua, il cloruro di sodio e l'acciaio, che sopraffarebbero il resto. L'idrogeno trova impieghi massicci, ma quasi sempre nel sito di produzione, cioè appena preparato.

Ordine	Nome	Produzione annua, 109 kg	Commento sulla fonte
1	acido solforico	32,4	metodo di contatto
2	etene (etilene)	22,6	pirolisi (cracking termico)
3	polietilene	16,0	polimerizzazione dell'etene
4	propene (propilene)	14,8	pirolisi (cracking termico)
5	cloro	9,6	elettrolisi
6	ammoniaca	9,5	processo Haber
7	acido fosforico	9,2	dalla roccia fosfatica
8	dicloroetano(dicloruro di etilene)	9,0	clorurazione dell'etilene
9	idrogenofosfato di diammonio	8,0	trattamento di rocce fosfatiche
10	polipropilene	7,6	polimerizzazione del propilene
11	acido nitrico	7,5	processo Ostwald
12	idrossido di sodio	7,3	elettrolisi della salamoia
13	nitrato di ammonio	7,3	ammoniaca + acido nitrico
14	cloruro di polivinile e copolimeri	5,8	polimerizzazione del cloruro di vinile
15	urea	5,3	ammoniaca + biossido di carbonio
16	diidrogenofosfato di ammonio	5,0	trattamento di rocce fosfatiche
17	etilbenzene	4,1	alchilazione di Friedel-Crafts sul benzene
18	stirene	4,1	disidratazione dell'etilbenzene
19	acido cloridrico	3,8	sottoprodotto della clorurazione degli idrocarburi
20	cumene (isopropilbenzene)	3,4	alchilazione del benzene
21	ossido di etilene	2,9	addizione di O ₂ a etene
22	solfato di ammonio	2,5	ammoniaca + acido solforico
23	polistirene	2,4	polimerizzazione dello stirene