## NAS $\times$ IF Summer School 2022 Quantum Information Problem set I June, 2 2022 Ninnat Dangniam

1. Mach-Zehnder interferometer. Consider the setup of a single-photon Mach-Zehnder interferometer in the lectures. Each beamsplitter (gray bar) puts an incoming photon in an equal su-



Figure 1: A Mach-Zehnder interferometer with a phase-shifter

perposition of being transmitted and being reflected. In addition, any time a photon is reflected from the blue side of a mirror, it gains an extra  $\pi$  phase-shift. Therefore, the unitary matrices that correspond to a beamsplitter and the mirror in the lower arm (" $|0\rangle$ ") and the upper arm (" $|1\rangle$ ") are

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \qquad M_0 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad M_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{1}$$

respectively. Finally, the phase-shifter (the box with symbol  $\varphi$ ) is simply a Z rotation

$$R_Z(\varphi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix},\tag{2}$$

in the Bloch sphere picture. Show that the probability of detecting a photon in arm (" $|0\rangle$ ") and (" $|1\rangle$ ") of the interferometer are  $\cos^2(\varphi/2)$  and  $\sin^2(\varphi/2)$  respectively.

## 2. Bell states

- (a) Convince yourself that the state  $(|00\rangle + |11\rangle)/\sqrt{2}$  is entangled.
- **(b)** Show that the state  $(|01\rangle |10\rangle)/\sqrt{2}$  can be written as  $(|\hat{\mathbf{n}}\rangle |-\hat{\mathbf{n}}\rangle |-\hat{\mathbf{n}}\rangle |\hat{\mathbf{n}}\rangle)/\sqrt{2}$  for any spin direction  $\hat{\mathbf{n}}$ . That is, the singlet state is *rotationally-invariant* under any unitaries of the form  $U \otimes U$ .

## 3. Entangling unitaries.

(a) Show that if H is an operator that squares to the identity:  $H^2 = 1$ , then

$$e^{iH\theta} = \cos(\theta) \mathbb{1} + i\sin(\theta)H. \tag{3}$$

In particular, H does not have to be a single-qubit operator. Any Pauli string on the Hilbert space of n qubits squares to the identity, for example.

- **(b)** Unitary operators of the form  $U \otimes V$  are local. But when it comes to observables and Hamiltonians, the local ones are of the form  $A \otimes \mathbb{1} + \mathbb{1} \otimes B$ . Show that  $\exp(A \otimes \mathbb{1}) = \exp(A) \otimes \mathbb{1}$ . Therefore, the exponential of local observables factorizes into local unitaries.
- (c) Show that the time evolution  $\exp(-i\theta X \otimes Y)$  is able to produce an entangled state when acting on a product state  $|00\rangle$ . Can you get the Bell state  $(|00\rangle + |11\rangle)/\sqrt{2}$ ? What about  $(|01\rangle + |10\rangle)/\sqrt{2}$
- **4.** The partial trace. Consider the following three-qubit states

$$\frac{|000\rangle + |111\rangle}{\sqrt{2}}, \qquad \frac{|100\rangle + |010\rangle + |001\rangle}{\sqrt{3}}. \tag{4}$$

Are they entangled states? Try to see what happens if you trace out one of the qubits. What if you trace out two of the qubits? Is there a local unitary that transforms these two states into each other? (Think about what properties are invariant under local unitaries.)

**5. Teleportation.** Verify that the teleportation process in the lectures actually work; that is, show that Charlie's final state is the original state  $|\psi\rangle$  that Bob wanted to send.