Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Ciências da Computação

NOME DO AUTOR

MONOGRAFIA DE PROJETO ORIENTADO EM COMPUTAÇÃO I/II ${\bf T\'ITULO~DO~TRABALHO}$

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Ciências da Computação

TÍTULO DO TRABALHO

por

NOME DO ALUNO

Monografia de Projeto Orientado em Computação I/II

Apresentado como requisito da disciplina de Projeto Orientado em Computação II do Curso de Bacharelado em Ciência da Computação da UFMG

Prof. Dr. Nome do orientador Orientador

> Belo Horizonte – MG Ano / [1/2]º semestre

À Deus, aos professores, aos colegas de curso e aos meus familiares, dedico este trabalho.

Agradecimentos

Inicialmente quero agradeço a Deus, pelas graças recebidas.

Agradeço aos meus pais, pelo amor incondicional.

Aos meus professores, pelos conhecimentos adquiridos.

E finalmente aos colegas de curso pela convivência e trocas de experiências.

"A atividade da engenharia, enquanto permanecer atividade, pode levar a criatividade do homem a seu grau máximo; mas, assim que o construtor pára de construir e se entrincheira nas coisas que fez, as energias criativas se congelam, e o palácio se transforma em tumba."

Marshall Berman

Sumário

Lista de Figuras	V
Lista de Tabelas	vi
Lista de Siglas	vii
Resumo	viii
Abstract	ix
1 INTRODUÇÃO	10
1.1 Visão geral	10
1.2 Objetivo, justificativa e motivação	10
2 REFERENCIAL TEÓRICO	11
2.1 Exemplo de figura	11
2.2 Exemplo de tabela	11
3 METODOLOGIA	13
3.1 Tipo de Pesquisa	13
3.2 Procedimentos metodológicos	13
4 RESULTADOS E DISCUSSÃO	14
5 CONCLUSÕES E TRABALHOS FUTUROS	15
Referências	16

Apêndice A - Linguagem	gráfica do	WebAPSEE	17
F	0		

Lista de Figuras

Figura 1 Visão geral de um BPMS 1	Figura 1	Visão geral de um BPMS		11
-----------------------------------	----------	------------------------	--	----

Lista de Tabelas

Tabela 1	Atividades do fluxo de usabilidade	12
Tabela 2	Atividades do sub-fluxo de análise de contexto de uso	12
Tabela 3	Atividades do sub-fluxo de avaliação de usabilidade	12

Lista de Siglas

CMMI Capability Maturity Model Integration

Resumo

 ${\cal O}$ presente trabalho tem como objetivo...

Palavras-chave: Engenharia de software.

Abstract

This paper aims to...

Keywords: Engineering software.

1 INTRODUÇÃO

1.1 Visão geral

Exemplo de uso de siglas:

Os modelos como Capability Maturity Model Integration (CMMI), usado para avaliação da qualidade de software a partir da maturidade dos processos da organização, tem ganhado muita ênfase no contexto da tecnologia de processos de software.

Exemplo de uso de referências:

A incorporação de um processo geralmente não acontece de imediato, logo depois do processo ser formalizado. As pessoas da organização podem apresentar certa resistência quanto a mudança de hábitos, considerando os passos recomendados pelo processo apenas uma burocracia sem nenhuma vantagem para o projeto (FILHO, 2002).

1.2 Objetivo, justificativa e motivação

2 REFERENCIAL TEÓRICO

2.1 Exemplo de figura

A Figura 1 mostra uma visão simplificada do funcionamento dos sistemas BPM.

Figura 1: Visão geral de um BPMS

2.2 Exemplo de tabela

A Tabela 1 mostra as atividades que compõem o fluxo de usabilidade e o papel requerido ao agente para realizá-las. As atividades de Análise de contexto de uso e Avaliação de usabilidade são decompostas em sub-fluxos, suas descrições são mostradas nas Tabelas 2 e 3, respectivamente.

Atividade	Papel requerido
Planejamento	Gerente de Usabilidade
Controle	
Análise de contexto de uso	
Definição das funções do produto	
Prototipação de requisitos de interface	Analista de Usabilidade
Definição de requisitos e metas de usabilidade	
Revisão da análise de usabilidade	
Definição do estilo de interação	
Desenho da interação	Arquiteto de usabilidade
Revisão do desenho da interação	
Avaliação de usabilidade	Avaliador de Usabilidade
Balanço final	Gerente de Usabilidade

Tabela 1: Atividades do fluxo de usabilidade

Atividade	Papel requerido
Planejamento	
Preparação	
Modelagem preliminar de usuários	
Refinamento da modelagem de usuários	
Definição do modelo mental	Analista de Usabilidade
Análise de produtos concorrentes	
Modelagem preliminar de tarefas	
Refinamento da modelagem de tarefas	
Balanço final	

Tabela 2: Atividades do sub-fluxo de análise de contexto de uso

Atividade	Papel requerido
Planejamento	
Desenho	
Implementação	
Execução	Avaliador de Usabilidade
Análise dos dados	
Verificação do término	
Balanço final	

Tabela 3: Atividades do sub-fluxo de avaliação de usabilidade

3 METODOLOGIA

- 3.1 Tipo de Pesquisa
- $3.2 \quad {\bf Procedimentos \ metodol\'ogicos}$

4 RESULTADOS E DISCUSSÃO

5 CONCLUSÕES E TRABALHOS FUTUROS

Referências

FILHO, W. de P. P. Engenharia de Software: Fundamentos, Métodos e Padrões. Segunda edição. [S.l.]: LTC editora, 2002.

APÊNDICE A - Linguagem gráfica do WebAPSEE

WebAPSEE-PML (*Process Modeling Language*) é a linguagem gráfica usada para modelar processos no ambiente Open-WebAPSEE. Nesta linguagem, um modelo de processo pode ser construído a partir de símbolos gráficos conectados e o detalhamento do relacionamento com os outros componentes do modelo é feito através de formulários específicos que apóiam essa tarefa.