PHY293: Tutorial Problems

Tutorial 2 Solutions

QiLin Xue

Fall 2021

1. We want critical damping, so $\omega=2\gamma$ where $\omega=\sqrt{k/m}$ and $\gamma=b/m$. This gives

$$\frac{k}{m} = 4\frac{b^2}{m^2} \implies b = \frac{1}{2}\sqrt{mk} \tag{1}$$

We can determine the spring constant k by looking at the equilibrium location, which occurs at $mg = k\Delta l \implies k = \frac{mg}{\Delta l}$. This gives

$$b = \frac{1}{2}m\sqrt{\frac{g}{\Delta l}} = \boxed{18 \text{ kg/s}} \tag{2}$$

2. Since the spring is damped lightly, we will assume that $\omega \approx \omega_0$. We will check this at the end. Therefore, the period is $T=\frac{28}{20}=1.4$ s. The amplitude (envelope function) is given by $A(t)=A_0e^{-\gamma t/2}$. We want this to be 0.9 of the initial value at t=T:

$$0.9 = e^{-\gamma T/2} \implies \gamma = -\frac{2}{T} \ln(0.9) = 0.151 \text{ s}^{-1}.$$
 (3)

We have $b=m\gamma=0.075$ kg/s, $k=m\omega^2=m\left(\frac{4\pi^2}{T^2}\right)=10.1$ N/m, and $Q=\frac{\omega_0}{\gamma}=29.7$, which is sufficiently large.

3. In the first period, the amplitude is 4.6/5 = 92% of the initial, so the energy decreases to 84.64%. Therefore, we have

$$Q = \frac{E_0}{E_0(1 - 0.8464)/2\pi} \approx 41. \tag{4}$$

4. (a) Every 20 cycles, it reduces by a factor of 3. So if we have five 20 cycles (i.e. 100 cycles,) then it reduces by a factor of 3^5 .

1

- (b) Every 20 cycles, it reduces the amplitude by a factor of $\frac{1}{\sqrt{3}}$. Therefore, after 40 cycles, it would reduce the amplitude by $\frac{1}{3}$.
- 5. (a) We have

$$\frac{1}{Q} = 2\sqrt{1 - \left(\frac{\omega}{\omega_0}\right)^2} \tag{5}$$

Substituting in the numbers, we get Q = 500.

(b) We have $\omega_0^2=\frac{k}{m}.$ Solving for k gives k=100 N/m. We have

$$\gamma = \frac{\omega_0}{Q} = 2000 \text{ s}^{-1},$$
 (6)

but this is also equal to $\gamma=\frac{b}{m}.$ solving for b gives $b=2\times 10^{-7}$ kg/s.

- (c) The initial energy is $\frac{1}{2} m A_0^2 = 5 \times 10^{-15}$ J.
- (d) The lifetime is defined by $\tau=\frac{1}{\gamma}=0.5$ ms.

6. (a) We have

$$V_C = \frac{q}{C} = \frac{q_0(\omega)}{C}\cos(\omega t - \delta) \tag{7}$$

$$V_R = R \frac{dq}{dt} = -R\omega q_0(\omega)\sin(\omega t - \delta)$$
(8)

$$V_L = L\frac{d^2q}{dt^2} = -L\omega^2 q_0(\omega)\cos(\omega t - \delta)$$
(9)

(b) When $\omega=\omega_0$, we have $\delta=\frac{\pi}{2}$. Therefore, $\frac{dq}{dt}=-\omega q_0(\omega)\sin(\omega t-\delta)$. Since $\sin(x-\pi/2)=-\cos(x)$, we can substitute this in to get

$$\frac{dq}{dt} = \omega q_0(\omega) \cos(\omega t) \tag{10}$$

which has no phase shift. $\varepsilon(t)$ also doesn't have a phase shift, so the source voltage and the current are in phase when $\omega=\omega_0$.