THE CHAIN RULE

Theorem (Chain Rule). Let $f:(a,b) \to \mathbb{R}$ be differentiable at $x_0 \in (a,b)$ and let $g:B \to \mathbb{R}$ be differentiable at $f(x_0) \in B$, where B contains the range f((a,b)) of f. Then $g \circ f:(a,b) \to \mathbb{R}$ is differentiable at x_0 , with derivative

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0).$$

Proof. We must show that

$$\lim_{x \to x_0} \frac{|g(f(x)) - g(f(x_0)) - g'(f(x_0)) f'(x_0)(x - x_0)|}{|x - x_0|} = 0.$$

Equivalently, given any $\varepsilon > 0$, we must show that there exists a $\delta > 0$ such that $|x - x_0| < \delta$ implies

$$\frac{\left|g(f(x))-g(f(x_0))-g'(f(x_0))f'(x_0)(x-x_0)\right|}{|x-x_0|}<\varepsilon.$$

Thus suppose $\varepsilon > 0$ is given. For convenience of notation, write y = f(x) and $y_0 = f(x_0)$. By differentiability of g at $y_0 = f(x_0)$, there exists $\delta_{g'} > 0$ such that

$$|y - y_0| < \delta_{g'} \implies \frac{|g(y) - g(y_0) - g'(y_0)(y - y_0)|}{|y - y_0|} < \frac{\varepsilon}{3|f'(x_0)|}.$$

Then, since differentiability implies continuity, so f is continuous at x_0 , given this $\delta_{g'}$, there exists a $\delta_f > 0$ such that

$$|x - x_0| < \delta_f \implies |y - y_0| = |f(x) - f(x_0)| < \delta_{g'}.$$

Finally, since f is differentiable at x_0 , there exists a $\delta_{f'} > 0$ such that

$$|x - x_0| < \delta_{f'} \implies \frac{|f(x) - f(x_0) - f'(x_0)(x - x_0)|}{|x - x_0|} < \min\left(\frac{\varepsilon}{3|g'(y_0)|}, |f'(x_0)|\right).$$

Putting these all together, we let $\delta = \min(\delta_{g'}, \delta_f, \delta_{f'})$. Then whenever $|x - x_0| < \delta$, we have

$$\frac{|g(f(x)) - g(f(x_0)) - g'(f(x_0)) f'(x_0)(x - x_0)|}{|x - x_0|} \\
= \frac{|g(y) - g(y_0) - g'(y_0) f'(x_0)(x - x_0)|}{|x - x_0|} \\
= \frac{|g(y) - g(y_0) - g'(y_0)(y - y_0) + g'(y_0)(y - y_0) - g'(y_0) f'(x_0)(x - x_0)|}{|x - x_0|} \\
\leq \frac{|g(y) - g(y_0) - g'(y_0)(y - y_0)|}{|x - x_0|} + \frac{|g'(y_0)(y - y_0) - g'(y_0) f'(x_0)(x - x_0)|}{|x - x_0|} \\
< \frac{\varepsilon}{3|f'(x_0)|} \frac{|y - y_0|}{|x - x_0|} + \frac{|g'(y_0)(f(x) - f(x_0) - f'(x_0)(x - x_0))|}{|x - x_0|} \\
< \frac{\varepsilon}{3|f'(x_0)|} \frac{|f(x) - f(x_0)|}{|x - x_0|} + \frac{|g'(y_0)|\varepsilon}{3|g'(y_0)|} \\
= \frac{\varepsilon}{3|f'(x_0)|} \frac{|f(x) - f(x_0) - f'(x_0)(x - x_0) + f'(x_0)(x - x_0)|}{|x - x_0|} + \frac{\varepsilon}{3} \\
\leq \frac{\varepsilon}{3|f'(x_0)|} \frac{|f(x) - f(x_0) - f'(x_0)(x - x_0)|}{|x - x_0|} + \frac{\varepsilon}{3|f'(x_0)|} \frac{|f'(x_0)(x - x_0)|}{|x - x_0|} + \frac{\varepsilon}{3} \\
< \frac{\varepsilon}{3|f'(x_0)|} \frac{|f'(x_0)|}{|x - x_0|} + \frac{\varepsilon}{3|f'(x_0)|} \frac{|f'(x_0)|}{|x - x_0|} + \frac{\varepsilon}{3} \\
= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\
= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\
= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

2