Thinkless: LLM Learns When to Think

SFT+DeGRPO两阶段训练,让推理模型具备混合推理能力

开源代码: https://github.com/VainF/Thinkless

Gongfan Fang Xinyin Ma Xinchao Wang*

National University of Singapore

gongfan@u.nus.edu, maxinyin@u.nus.edu, xinchao@nus.edu.sg

简介

本文提出了Thinkless框架,通过两阶段训练让推理(reasoning)模型能够针对数学任务,自动切换是用短回答还是长回答来求解,即具备混合推理能力。简单来说,Thinkless用两个特殊token <short>和 <think>来作为response的第一个token,以此区分是短回答还是长回答,首先第一个阶段是sft训练,训练集包含了等量的(prompt, <short>短回答)和(promt, <think>长回答数据),第二个阶段基于RLVR 训练,为了更好的对两个特殊token进行优化,作者对GRPO做了两点改进:参考Dr. GRPO去掉reward 标准差正则化以及分离控制/回答长度归一化。

背景

推理模型在复杂任务上有更好的表现,但是现实场景中,很多问题还是比较简单的,完全可以通过短回答直接解决,不需要长链推理。那么如何让推理模型能够根据任务(query)自动选择时进行短回答还是深思熟虑的长回答呢?本文提出了Thinkless方案。

实验设置

任务: MATH推理

- 框架: verl, 实验对象: DeepSeek-R1-Distill-Qwen-1.5B, 强化学习算法: DeGRPO
- RLVR reward function:

$$r(a,y^*,c) = \begin{cases} 1.0, & \text{if } c = <\!\!short\!\!> \text{and Extract-Answer}(a) = y^*, \\ 1.0 - \gamma, & \text{if } c = <\!\!think\!\!> \text{and Extract-Answer}(a) = y^*, \\ -1.0, & \text{if Extract-Answer}(a) \neq y^*, \end{cases}$$

\gamma的作用是在保证正确率的前提下,引导模型尽量使用<short>模式回答,以降低推理成本。

训练流程

sft训练:这个阶段是为了让推理模型具备生成长回答和短回答的能力,为后续RL训练打下基础。为了创建sft训练集,找一批任务query,然后让一个更强的推理模型(DeepSeek-R1-671B)生成长回答a_{think},让一个非推理模型(Qwen2.5-Math-1.5B-Instruct)生成短回答a_{short},这样保证了长回答数据和短回答数据的数据量相同,然后构造长回答训练数据格式:(query, <think>, a_{think}),短回答训练数据格式:(query, <short>, a_{short}),然后做sft。

RL训练:经过sft之后,模型具备生成长回答和短回答能力了,但是还不会根据query难度自己选择用长回答还是短回答,为此用RL训练,作者对GRPO做了两点改进:1)参考Dr. GRPO去掉reward标准差正则化;2)为了加强对两个特殊token的优化,将特殊token和正式回答分离,分别作长度归一化。

$$\mathcal{J}_{\text{DeGRPO}}(\theta) = \mathbb{E}_{x,a_i} \left[\frac{1}{G} \sum_{i=1}^{G} \left(\underbrace{\alpha \, \mathcal{L}_{i,0}(\theta)}_{\text{Control Token}} + \underbrace{\frac{1}{T_i} \sum_{t=1}^{T_i} \mathcal{L}_{i,t}(\theta)}_{\text{Control Token}} - \beta \, \mathbb{D}_{\text{KL}} \left[\pi_{\theta}(\cdot \mid x) \parallel \pi_{\text{ref}}(\cdot \mid x) \right] \right) \right],$$

部分实验结果

Models	Туре	AIME 2024		Minerva Algebra		Math-500			
		Pass@1	#Tokens (Think%)	Pass@1	#Tokens (Think%)	Pass@1	#Tokens (Think%)	Pass@1	
DeepSeek-R1-1.5B	Base LLM	0.2800	18063	0.9577	3029	0.8608	5675	0.8347	
Q-1.5B		0.0200	1300	0.7771	933	0.5168	855	0.7022	
QMath-1.5B		0.1133	1128	0.9184	586	0.7604	721	0.8572	
Merging-0.5 [34]	Short CoT	0.1333	8636	0.9292	834	0.7740	1524	0.8332	
Merging-0.6 [34]		0.1733	10615	0.9321	1091	0.7900	3000	0.8381	
Merging-0.7 [34]		0.1667	15854	0.9398	1834	0.8108	4347	0.8458	
CoT-Valve $\alpha = 8$ [26]		0.2000	10692	0.8079	1903	0.7060	3723	0.7726	
CoT-Valve $\alpha = 6$ [26]		0.1933	17245	0.9468	2656	0.8024	5167	0.7970	
CoT-Valve $\alpha = 4$ [26]		0.2267	17722	0.9439	2965	0.8036	5820	0.8108	
Router Random	Hybrid	0.1467	8093 (56.00%)	0.9211	1736 (49.28%)	0.7608	3096 (47.92%)	0.8205	
Router Q-7B		0.1667	9296 (46.67%)	0.9250	795 (5.64%)	0.7948	2748 (25.00%)	0.8587	
Thinkless		0.2733	7099 (100.00%)	0.9459	1144 (25.88%)	0.8184	2555 (51.56%)	0.8418	

Mode Balance in Decoupled GRPO

1000

800

Number of Think Samples
Number of Short Samples
Number of Short Samples
0 100

100 200 300 400 500 600

Training Step

(b) The proposed Decoupled GRPO, with a U-shape learning curve.