ACT-11302: Cálculo Actuarial III

Sesión 04 - Introduccion a los enfoques de modelación de riesgo agregado

Juan Carlos Martínez-Ovando

ITAM

Agenda

Modelos de riesgo Notación Racionalidad

Frecuencia de severidades Descripción

Enfoques de modelación de riesgo

Definición

Definición

Son modelos estacásticos que miden la incertidumbre asociada con un portafolio de seguros.

Para ésto, se distinguen las siguientes características:

- lacksquare J es la suscripción de un portafolio de seguros en un periodo de tiempo dado
- Y $_j$ es la variable aleatoria que mide el monto de siniestro de una póliza $(j=1,\ldots,J)$
- lacksquare X_j es el monto de reclamo del siniestro en la póliza j
- $lackbox{ }D_j$ es el monto del siniestro a cargo del asegurado
- $lacktriangledown Z_j$ es el monto del siniestro a cargo de la reaseguradora

Agregación

Así, para cada póliza $j=1,\ldots,J$,

$$Y_j = D_j + X_j + Z_j. (1)$$

Mientras que

- $\sum_{i=1}^{J} Y_i$ es la severidad acumulada de siniestros
- $lacksquare \sum_{j=1}^J X_j$ es la severidad acumulada de siniestros a cargo de la asegurador

Definición

Definición

Son modelos estacásticos que miden la incertidumbre asociada con un portafolio de seguros.

Para ésto, se distinguen las siguientes características:

- lacksquare J es la suscripción de un portafolio de seguros en un periodo de tiempo dado
- Y $_j$ es la variable aleatoria que mide el monto de siniestro de una póliza $(j=1,\ldots,J)$
- lacksquare X_j es el monto de reclamo del siniestro en la póliza j
- $ightharpoonup D_j$ es el monto del siniestro a cargo del asegurado
- lacksquare Z_j es el monto del siniestro a cargo de la reaseguradora

Agregación

Así, para cada póliza $j=1,\ldots,J$,

$$Y_j = D_j + X_j + Z_j. (1)$$

Mientras que,

- $\sum_{i=1}^{J} Y_i$ es la severidad acumulada de siniestros
- $ightharpoonup \sum_{i=1}^J X_i$ es la severidad acumulada de siniestros a cargo de la aseguradora

No todas las pólizas experimentaron un siniestro (principio del seguro). Así,

Siniestralidad

- ▶ En caso de siniestro, $Y_j > 0$
- ▶ En caso de no siniestro, $Y_j = 0$.

Agregación

Así

$$\sum_{j=1}^{J} Y_{j} = \sum_{j|Y_{j}=0} Y_{j} + \sum_{j|Y_{j}>0} Y_{j}$$

$$= \sum_{j} Y_{j} \mathbb{I}(Y_{j}=0) + \sum_{j} Y_{j} \mathbb{I}(Y_{j}>0)$$

$$= \sum_{j}^{N} Y_{j} \mathbb{I}(Y_{j}>0), \qquad (2)$$

donde

N es el número de siniestros en el periodo dado (a.k.a. frecuencia de siniestros)

No todas las pólizas experimentaron un siniestro (principio del seguro). Así,

Siniestralidad

- ▶ En caso de siniestro, $Y_i > 0$
- ▶ En caso de no siniestro, $Y_j = 0$.

Agregación

Así,

$$\sum_{j=1}^{J} Y_{j} = \sum_{j|Y_{j}=0} Y_{j} + \sum_{j|Y_{j}>0} Y_{j}$$

$$= \sum_{j} Y_{j} \mathbb{I}(Y_{j}=0) + \sum_{j} Y_{j} \mathbb{I}(Y_{j}>0)$$

$$= \sum_{j}^{N} Y_{j} \mathbb{I}(Y_{j}>0), \qquad (2)$$

donde,

ightharpoonup N es el número de siniestros en el periodo dado (a.k.a. frecuencia de siniestros).

Consideraciones

- lacktriangle Intrínsecamente, N (antes de observarse) es incierto y aleatorio
- La magnitud individual del siniestro, $Y_j \mathbb{I}(Y_j > 0)$ (antes de observarse) es incierta y aleatoria, así como la ocurrencia de siniestro, $\mathbb{I}(Y_j > 0)$.

Agregación

Para

$$S = \sum_{j}^{N} Y_{j} \mathbb{I}(Y_{j} > 0), \tag{3}$$

las fuentes de aleatoriedad son

- ightharpoonup N frecuencia de siniestros
- \triangleright S_i severidad individual de siniestros

Consideraciones

- ightharpoonup Intrínsecamente, N (antes de observarse) es incierto y aleatorio
- La magnitud individual del siniestro, $Y_j \mathbb{I}(Y_j > 0)$ (antes de observarse) es incierta y aleatoria, así como la ocurrencia de siniestro, $\mathbb{I}(Y_j > 0)$.

Agregación

Para,

$$S = \sum_{j}^{N} Y_j \mathbb{I}(Y_j > 0), \tag{3}$$

las fuentes de aleatoriedad son:

- N frecuencia de siniestros
- \triangleright S_i severidad individual de siniestros

Enfoques de modelación

Modelo de riesgo individual

El monto agregado de siniestro, S, se define por

- El numero de sumandos (suscripcion total), J, considerado como fijo en riesgo operacional (mas no en riesgo de mercado),
- Severidad individual, $Y_j \in \{0\} \cup (0,\infty)$, desconocida y aleatorio, para todo $j=1,\dots,J$.

Modelo de riesgo colectivo

El monto agregado de siniestro, S, se define por

- Número de sumandos (frecuencia aleatoria), N, desconocido
- Severidad individual, $Y_j\in(0,\infty)$, considerada como desconocida y aleatoria, para todo $j=1,\dots,J.$

Enfoques de modelación

Modelo de riesgo individual

El monto agregado de siniestro, ${\cal S}$, se define por

- El numero de sumandos (suscripcion total), J, considerado como fijo en riesgo operacional (mas no en riesgo de mercado),
- Severidad individual, $Y_j \in \{0\} \cup (0,\infty)$, desconocida y aleatorio, para todo $j=1,\dots,J$.

Modelo de riesgo colectivo

El monto agregado de siniestro, S, se define por

- Número de sumandos (frecuencia aleatoria), N, desconocido
- Severidad individual, $Y_j \in (0,\infty)$, considerada como desconocida y aleatoria, para todo $j=1,\dots,J$.

Frecuencia de severidades

Distribuciones

Binomial

Quizás, el modelo más intuitivo para N consiste en:

- ▶ Suponer que $\mathbb{I}(Y_j > 0) \sim \mathsf{Be}(\theta)$, donde $\theta \in (0,1)$ es la probabilidad de siniestro
- La ocurrencia de siniestros entre integrantes del portafolio es mutuamente independiente
- Así, tiene una distribución

$$(N=n) \sim (n|J,\theta)$$

$$\propto \theta^n (1-\theta)^{J-n} \mathbb{I}_{\{0,1,\dots,J\}}(n),$$
(4)

donde J es la suscripción del portafolio de seguros.

Se sigue,

$$\mathbb{E}(N|J,\theta) = J\theta$$

Distribuciones

Poisson

Un modelo bastante útil consiste en

- Suponer que N tiene soporte numerable
- ▶ Suponer que $\mathbb{I}(Y_i > 0) \sim \mathsf{Bernoulli}$
- La ocurrencia de siniestros entre integrantes del portafolio es mutuamente independiente
- Así,

$$(N = n) \sim \operatorname{Po}(n|\theta)$$

$$\propto \exp\{-\theta\}\theta^n \, \mathbb{I}_{\{0,1,2,\dots\}}(n), \tag{5}$$

donde $\theta>0$ es la intensidad de siniestros correspondiente al perido dado.

Se sigue que,

- $\mathbb{E}(N|\theta) = \theta$
- $ightharpoonup Var(N|\theta) = \theta$

Distribuciones

Binomial negativa

Quizás, el modelo más intuitivo para N consiste en:

- ▶ Suponer que $\mathbb{I}(Y_j > 0) \sim \mathsf{Be}(\theta)$, donde $\theta \in (0,1)$ es la probabilidad de siniestro
- La ocurrencia de siniestros entre integrantes del portafolio es mutuamente independiente
- Así, tiene una distribución

$$(N = n) \sim \mathsf{BN}(n|r,\theta)$$

$$\propto (1 - \theta)^r \theta^n \mathbb{I}_{\{0,1,\dots\}}(n),$$
(6)

donde J es la suscripción del portafolio de seguros.

Se sigue,

$$\mathbb{E}(N|J,\theta) = \frac{\theta r}{1-\theta}$$

Gracias por su atención...

juan.martinez.ovando@itam.mx