

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Information Technology

Continuous Assessment Test – I Regulations – R2021

Degree B.E. / B. Tech.	B.Tech	Branch	IT		
Semester	IV	Date of CAT	25-04-2023		
Subject Code & Name	UIT2404 & Automata Theory and Compiler Design				
Time: 90 Minutes	Answer All Questions Maximum: 50				

(K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating)

CO1:	Construct automata, regular expression for any pattern.
CO2:	Write Context free grammar for any construct.
CO3:	Build the different Phases of compiler and apply the various optimization techniques.
CO4:	Design Turing machine for a given language
CO5:	Explain decidability, semi-decidability, and undecidability

Part – A $(4 \times 2 = 8 \text{ Marks})$

		KL	CO	PI
1,	Design DFA for the language $L = \{w \in \Sigma^* \mid w \neq \epsilon \text{ and the first and last character of } w \text{ are the same} \}$ over $\Sigma = \{a, b\}$.	K3	CO1	1.1.1 1.4.1 2.1.3
2.	Let the alphabet $\Sigma_A = \{a, b\}$ and consider the following DFA A: $A = (Q_A \{0, 1, 2, 3\}, \Sigma_A, \delta_A, q_0 = 0, F_A = \{1, 2\})$ $\delta_A = \{((0, a), 1), ((0, b), 2), ((1, a), 0), ((1, b), 3), ((2, a), 3), ((2, b), 0), ((3, a), 2), ((3, b), 1)\}.$ Calculate $\hat{\delta}_A(0, abba)$	K2	CO1	1.3.1 1.4.1 2.1.3
3.	Is the following ambiguous? Justify.	К3	CO2	1.3.1
	$S \to SAS \mid 0$			1.4.1
	$A \to ASA \mid 1$			2.1.3
4.	Consider the following context-free grammar G. Give two strings in	K2	CO2	1.1.1
	L(G) and give two strings not in L(G).			1.3.1
	$R \to XRX \mid S$			1.4.1
	$S \rightarrow aT b \mid bT a$			2.1.3
	$T \rightarrow XTX \mid X \mid \varepsilon$			
	$X \rightarrow a \mid b$			Į į

$Part - B (3 \times 6 = 18 Marks)$

	Part - B (3×6 - 13	KL	CO	PI
5.	In certain programming languages, comments appear between delimiters such as /# and #/. Let X be the language of all valid delimited comment strings. A member of X must begin with /# and end with #/ but have no intervening #/. Assume that the	К3	CO1	1.1.1 1.4.1 2.1.3 13.1.1
	and end with #/ but have no intervening #/. Assume that alphabet for X is $\Sigma = \{a, b, /, \#\}$. a. Give a DFA that recognizes X. (3+3)	K3	COI	1.1.1 1.4.1
6.	Let A be the language consisting of all strings containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). Design NFA for the language A and			2.1.3 13.1.1
7.	construct the equivalent DFA. Let G be a CFG with the following productions: S→AA	K3	CO2	1.1.1 1.4.1 2.1.3
	A→AAA a bA Ab Which strings of L(G) can be produced by derivations of four or fewer steps? Give at least four distinct derivations for the string babbab. (3+3)			13.1.1

$Part - C (2 \times 12 = 24 Marks)$

					KL	CO	PI	
8.	 Write regular expressions for the following languages over the alphabet Σ = {a, b} and systematically construct an NFA for each of the regular expression a) All strings that do not end with aa. b) All strings that contain an even number of b's. c) All strings which do not contain the substring ba. (4+4+4) 					COI	1.1.1 1.4.1 2.1.3 13.1.1	
				(Or)				
9.	a) Convert the following FA into regular expression					CO1	1.1.1 1.4.1 2.1.3	
		a	b				13.1.1	
	$ ightarrow q_1$	q_1	q_2					
	*q2	q_2	<i>q</i> ₃					
	q_3	q_3	q_1					
			****	and all the				

b) Minimize the following DFA	$ \begin{array}{c} a \\ b \\ a \end{array} $ $ \begin{array}{c} a \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} a \\ b \end{array} $			
	(6+6)			
 Give context-free grammars generational. {w w contains at least three 1s of the body of the length of w is odd and it Σ {0,1}} The set of strings over the alphabolisms A language of properly nested stobrackets ([,]) and braces ({, }). 	over Σ {0,1}} s middle symbol is a 0 over pet {a, b} with more a's than	К3	CO2	1.1.1 1.4.1 2.1.3 13.1.1
	(Or)			5,-1
11. Consider the following gramma false, &&, and : T → true false T && (a) Demonstrate that the gramma at least two parse trees for the str (b) Reconstruct the grammar so && operator is right-associative associative, and && has higher parse tree for true & refactored grammar.	ar T T T T T T T T T	К3	CO2	1.1.1 1.4.1 2.1.3 13.1.1