Introduction to Operation Research

Hamdy A. Taha,
Operations
Research: An
introduction

What is management sciences/ Operation Research (OR)?

 In general, the organization goal is to optimize the use of available resources.

 Management science/OR is a discipline that adapts the scientific approach to problem solving to decision making.

Mathematical Modeling and the Management Science/Operation Research Process

- Mathematical Modeling
 - A process that translates observed phenomena into mathematical expressions.

Operation Research Process

- The Management Science/OR Process
 - By and large, the Management Science/OR process can be described by the following steps procedure.

Operation Research Process

- Basic Steps of the Management Science/OR Process
 - 1- Defining the Problem.
 - 2- Building a Mathematical Model.
 - 3- Solving a Mathematical Model.

1- Defining the Problem

Management Science/ OR is Applied

When -

- Designing and implementing new operations.
- Evaluating ongoing Operations and Procedures.
- Determining and recommending corrective actions.

Process

How to Start and How to Proceed

- Identify the problem.
- Observe the problem from various points of view.
- Keep things simple.
- Identify constraints.
- Work with management, get feedback.

2- Building a Mathematical Model

- Identify Decision Variables
 - •Which factors are controllable?
- Quantify the Objective and Constraints
 - Formulate the function to be optimized (profit, cost).
 - Formulate the requirements and/or restrictions.
- Construct a Model Shell
 - Help focus on the exact data required.
- Gather Data ---
 - Consider time / cost issues.

Mathematical Formulation

Mathematical modeling formulation: The general OR model can be organized in the following general format:-

Maximize or minimize {Objective Function}

subject to

{Constraints}

9

3- Solving a Mathematical Model

- Choose an Appropriate Solution Technique
 - An optimization algorithm.
 - A heuristic algorithm.
- Generate Model Solutions
- Test / Validate Model Results
 - Is the solution reasonable?
 - Are radical changes needed?
 - Does it fit present and future plans?
 - Unacceptable results? Return to modeling.
- Perform "What--If" Analyses

EXAMPLES

Example 1:

Wilson company produces three products: desk, chairs, and molded steel.

It is trying to decide on the number of desks (D), chair (C), and pound of model steels (M)

Step 1

Assumption:

1- If the nets \$ 50 profit on each desk produced, \$30 on each chair produced, and \$ 6 per pound of modeled steel produced. What the total profit?

The answer:

Total profit for production run can be modeled by the expression

Step 2

2- if 7 pounds of raw steel are needed to manufacture a desk, 3 pounds to manufacture a chair, and 1.15 pounds to produce a pound of model steel. What the amount of raw steel used during the production?

The answer:

The amount of raw steel used during the production run is modeled by the expression:

$$7D + 3C + 1.5 M$$

Step 3

3- Wilson has only 2000 pounds of raw steel available.

And at least 100 desk must be produced to satisfy contract commitment.

The answer:

The function constraint can be modeled as:

$$7 D + 3C + 1.5 M \le 2000 \text{ (raw steel)}$$

D >= 100 (contract)

Problem Formulation

The Mathematical model for this problem is formulated as:

MAXIMIZE
$$50 D + 30 C + 6 M$$

SUBJECT TO

$$7D + 3C + 1.5M \le 2000$$
 (Raw steel)