統計学II

早稲田大学政治経済学術院 西郷 浩

本日の目標

- ・重回帰モデル
 - 需要分析
 - ダミー変数の利用

需要分析(1)

- ・需要量(購入数量)の決定要因
 - 価格
 - ・ 当該財の価格
 - ・他の財の価格
 - 両者の比が重要
 - 所得
 - ・ 消費者の購買力
 - 名目所得よりも実質所得が重要

需要分析(2)

• 需要方程式

- -Y = f(x, z)
 - Y = 需要量(購入数量)
 - *x* = 相対価格
 - *z* = 実質所得
- ・ 需要方程式の特定化
 - $-Y = \beta_0 + \beta_1 x + \beta_2 z + u$
 - ・図形的には、3次元空間における2次平面の当てはめ。

利用データ

- ・ビールの購入数量と可処分所得
 - 総務省「家計統計」(家計調査)
 - 二人以上勤労者世帯(農林漁家を除く結果)
 - 1964年から2018年までの年平均
- ビールと一般の財・サービスの価格指数
 - 総務省「消費者物価指数」(2015年基準)
 - 持ち家の帰属家賃を除く総合
 - ・ビール
 - 1964年から2018年までの年平均

データの様子(3)

図1:ビールの1世帯あたり年間購入数量の推移(勤労者世帯、農林漁家を除く)

資料:総務省「家計統計」

暦年

データの様子(4)

図2: 相対価格(ビール価格指数/CPI)の推移

資料:総務省「消費者物価指数」

データの様子(5)

図3:実質可処分所得の推移(勤労者世帯、農林漁家を除く、1世帯あたり1ヶ月平均*12)

資料:総務省「家計統計」、「消費者物価指数」

データの様子(6)

図4:ビール購入数量と相対価格

資料:総務省「家計統計」、「消費者物価指数」

データの様子(7)

図5:ビール購入数量と実質可処分所得

資料:総務省「家計統計」、「消費者物価指数」

重回帰モデル(1)

重回帰モデル

$$-Y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + u_i \qquad i = 1, 2, ..., n.$$

- ・説明変数が複数 multiple なので「重」と呼ぶ。
 - 説明変数が単一 simple の場合を単回帰モデルとよぶ。
- ・誤差項に課せられる条件
 - 単回帰分析のときと同じ。
- ・ 定数項と2つの説明変数が線形独立である。
 - 最小2乗法で回帰係数の推定量が求められるための条件。

重回帰モデル(2)

- 回帰係数の推定方法
 - 最小2乗法
 - $-\min \sum_{i=1}^{n} \{Y_i (\beta_0 + \beta_1 x_i + \beta_2 z_i)\}^2$
 - 以下の正規方程式の解になる。

$$\begin{cases}
n\hat{\beta}_{0} + (\sum x_{i})\hat{\beta}_{1} + (\sum z_{i})\hat{\beta}_{2} &= (\sum Y_{i}) \\
(\sum x_{i})\hat{\beta}_{0} + (\sum x_{i}^{2})\hat{\beta}_{1} + (\sum x_{i}z_{i})\hat{\beta}_{2} &= (\sum x_{i}Y_{i}) \\
(\sum z_{i})\hat{\beta}_{0} + (\sum z_{i}x_{i})\hat{\beta}_{1} + (\sum z_{i}^{2})\hat{\beta}_{2} &= (\sum z_{i}Y_{i})
\end{cases}$$

- 回帰係数に関する推測(区間推定、仮説検定)
 - 単回帰の時と同様に推測できる。
 - 詳細は「計量政治学」や「計量経済学」に譲る。

最小二乗法の適用

• 計算結果

概要								
回帰統計								
重相関 R	0.62237							
重決定 R2	0.387344							
補正 R2	0.36378							
標準誤差	11.28733							
観測数	55							
分散分析表								
	自由度	変動	分散	引された分散	有意 F			
回帰	2	4188.565	2094.283	16.43816	2.94E-06			
残差	52	6624.993	127.4037					
合計	54	10813.56						
	係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 95.0%	上限 95.0%
切片	-82.2255	31.70036	-2.59384	0.0123	-145.837	-18.6141	-145.837	-18.6141
Pb/CPI*10	0.37689	0.159022	2.370046	0.02153	0.057788	0.695991	0.057788	0.695991
実質可処分	0.154519	0.030376	5.086826	5.08E-06	0.093564	0.215473	0.093564	0.215473

当てはまりの確認

図6:ビール購入数量の観察値と当てはめ値

資料:総務省「家計統計」

誤差項に課せられた条件の確認(1)

誤差項に課せられた条件の確認(2)

- ・ 重回帰モデルの当ては まり具合の評価
 - 重回帰モデルがビール の需要量を的確に捉え ているとは言い難い。
- 原因
 - 観察期間中の状況の変 化
 - 例:1995年の発泡酒販売。

ダミー変数の利用(1)

- 1995年を画期として回帰式が変化した可能性がある。
 - ダミー変数を利用して、回帰式の変化を取り入れる。
 - ダミー変数

•
$$D_i = \begin{cases} 0 & 1994 \text{ 年以前} \\ 1 & 1995 \text{ 年以降} \end{cases}$$

ダミー変数の利用(2)

• ダミー変数を取り入れた重回帰モデル。

$$-Y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i$$

$$+\delta_0 D_i + \delta_1 D_i x_i + \delta_2 D_i z_i + u_i$$

• ダミー変数と説明変数の積の項

$$-D_i x_i = \begin{cases} 0 & 1994$$
年以前 $x_i & 1995$ 年以降

- 重回帰モデル

•
$$Y_i =$$

$$\begin{cases} \beta_0 + \beta_1 x_i + \beta_2 z_i + u_i & 1994 \text{年以前} \\ (\beta_0 + \delta_0) + (\beta_1 + \delta_1) x_i + (\beta_2 + \delta_2) z_i + u_i & 1995 \text{年以降} \end{cases}$$

ダミー変数の利用(3)

- ・ 回帰モデルの変化の有無
 - 回帰係数に関する仮説検定

$$\bullet \begin{cases}
H_0: \ \delta_1 = 0 \\
H_1: \ \delta_1 \neq 0
\end{cases}$$

 $-H_0$ が棄却されたら、相対価格の傾きに変化があったと結論できる。

拡大した回帰式の推定結果

• 計算結果

概要								
重相関 R	0.973668							
重決定 R2	0.948029							
補正 R2	0.942726							
標準誤差	3.38661							
観測数	55							
分散分析表								
	自由度	変動	分散	引された分散	有意 F			
回帰	5	10251.57	2050.314	178.7681	3.13E-30			
残差	49	561.9871	11.46913					
合計	54	10813.56						
	係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 95.0%	上限 95.0%
切片	0.418848	11.75909	0.035619	0.971731	-23.2119	24.04963	-23.2119	24.04963
Pb/CPI*10	-0.10782	0.057384	-1.87886	0.066219	-0.22313	0.007501	-0.22313	0.007501
実質可処分	0.116482	0.011561	10.07517	1.57E-13	0.093249	0.139715	0.093249	0.139715
D	-233.8	23.60465	-9.90485	2.76E-13	-281.236	-186.365	-281.236	-186.365
DPR	-0.01914	0.367194	-0.05211	0.958651	-0.75704	0.718768	-0.75704	0.718768
DYd	0.394989	0.049785	7.933945	2.41E-10	0.294943	0.495034	0.294943	0.495034

当てはまりの確認

図10:ビール購入数量の観察値と当てはめ値(1995年で回帰式がシフトした場合)

誤差項に課せられた条件の確認(1)

誤差項に課せられた条件の確認(2)

拡大した回帰モデルの評価

- ・ダミー変数の導入
 - 1995年以降に回帰式が変化したと想定できそう。
 - ・導入の効果はある。
- ・回帰モデル改良の余地
 - 1995年以降の当てはめ値の上下動
 - 他に重要な説明要因が存在する可能性あり。
 - 発泡酒や第3のビールなどの価格
 - 世帯規模