FIGURE 1A

FIGURE 1 B

PART ONE: TRIGGER REACTION

PART TWO: DETECTION REACTION

Denature, anneal

B-hairpin

B-hairpin

ogatoga lagget

FIGURE 2

70 67 70	140 137 140	207 204 210	277 274 280	344 350
ATGXXGGCGATGCTTÖGCGTCTTTGAGCCCGGGTGCTCGTGGTGGTGGGCGCCGCGTGGTGGCTGCT		CCCCAAGACCTCCTCAAGGCCCTGAAGGAGGACGCGGACXXGGCGGTGXTCGTGGTGTTTGACGCCAAG		000000000000000000000000000000000000
MADTAD (SEQ ID NO:7) NAPTAD (SEQ ID NO:1) NAPTA (SEQ ID NO:2) NAPTA (SEQ ID NO:3)				
NAPTAD NAPTA NAPTE NAPTE NAPTE	NAPTAO MPTAO MPTH MPTH	AJORITY NAPTAO VAPTR FAPTR	AJORITY HAPTAO HAPTR.	AJORITY NAPTAO NAPTEL MAPTTH

.- <u>-</u>\$

	417 414 420		487 484 490		\$\$7 \$\$4 \$60		627 624 630		694 691 700
CCA C C C C C C C C C C C C C C C C C C		A C C C C C C C C C C C C C C C C C C C	T AAAA T G. G	T CACCCCGCCT GCCTTT GGGAGAGAGTACGGCCT GAGGCGGGGCAGTGGGTGGGTGGGTACCGGGGCCCT GGC	G. G	G G G G G G C C C C C C C C A A C C C C	C GAG T.' T.' G. GAG T. GG G. GAG T. GG	GAGT GGGGGGGCCT GGAAAGGT CGT CAAGAA CCT GGACCGGGT GAAGCCGGG··· CXT CCGGGAGAGA	
MJORITY (SEQ ID NO:7)	(SEQ ID NO:1) (SEQ ID NO:2) (SEQ ID NO:3)								
LAJORITY	NAPTAD NAPTR NAPTTH	AJORITY	NAPTAD NAPTR NAPTR	MORITY	NAPTAO NAPTR. NAPTTH	MORITY	NAPTAD XAPTFL XYAPTTH	ADORITY	SNAPTAO CNAPTE CNAPTE

- -5

	764 761 770		834 831 840		904 901 910		974 971 980	٠	1044 1041 1050	
T C C A G G C C C A C C A T G G A X G G T G C T C C C C G G G C T X T C C C A G G T G C G G A C C T G C C C C C C C C C A C	† ; 6 ; 6 ; ; 6 ; 6 ;	GGT G G A CTT C G C C C A A G C G G G G G C C C G C C G C G	AATTGG.G.G.G.G.G.G.G.G.G.G.G.G.	G G C A G C C T C C C A C C A G T T C G G C C C T G G A G G C C C C A A G G C C C A G G A G G C C C C		COGAAGGGGCCTTCGTGGCCTTTGTCCTTTCCCGCCCCGAGCCCATGTGGGCCGGAGCTTCTGGGCCCTTGT	TTG.TTG.TTTG.TAAGTG.TAAA	COCCOCCAGOGAGOGCCGGGGT CCACCGGGGGGGGGGGCGTTTAXGGGGGCGTXAGGGAGGTXAAGGAGGTG	T. G G'. GT	_
(SEQ ID NO:7)	(SEQ ID NO:1) (SEQ ID NO:2) (SEQ ID NO:3)									
108TY	WATTAD WATTA.		MPTAD MPTATA MPTTH	NOBIL	WATTAD WATTA.	LIORITY	WATA WATTA	A CORTIC	LAPTAD LAPTEL NAPTTH	

-5

redMili

	1114 1111 1120		1184 1181 1190		1254 1251 1260		1324 1321 1330		1394 1391 1400	
CO G G G G S X C T C C C C C C C C C C C C C C C C C	A A.G C C A T. G C A. B. C.	ACCCCAT GOT COT CGCCTACCT COT GGA CCCCT CCAA CA CCA CCCCCCGGGGGGT GGCCCGGGGGTTACGG		GGGGGAGT GGACGGAGGAXGCGGGGGGGGGGCGT CCTXT CCGAGAGGCCT CTT CCXGAACCT XXXGGAG	6		A. G A A A G	CCCACATGGAGGCCACGGGGGTXCGGCTGGACGTGGCCTACCTCCAGGCCCTXTCCCTGGAGGTGGGGA		
(SEQ ID NO:7)	(SEQ ID NO:1) (SEQ ID NO:2)									
Y TOOL VI	DNAPTAO DNAPTA DNAPTR.	MA IMBITY	DNAPTAD CNAPTR.	אלומטועא	DNAPTAD CNAPTR.	אלייטטועא	DNAPTAD	מונאלא	DNAPTAD CNAPTA CNAPTA	HILDER

-**.**.

DESTRUCTIONS CONTROL

FIGURE 2 (cont'd)

	1464 1461 1470		1534 1531 1540		1604 1601 1610		1674 1671 1680		1744 1741 1750	,
A PARA GAT COGCOCOTOGA GGA GGA GGT GTT COGCOT GGC CGG CCA CCCCTT CAA CCT CAA GT CCCGGGA C	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	CAGOT GGAAAGGGT GCT CTTT GAGGGGT XGGGGTT CCCCCCAT CGGCAAGAGAGGAGAAGACXGGCAAGC		G C T C C A C C A C C C C C C C C C C C C	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	COGGGGGGT CACCAAGCT CAAGAAGACGT ACAT X GACCCCCT GCCXGX GCCT CGT CCACCCCAGGG CGGGC		CGCCT CCACACCCGCTT CAACCAGACGCCACGGCCAGGGCAGGCTTAGTAGCT CCGACCCCAACCT GC	6	
(£:012	DNAPTAD (SEQ ID NO:1) CNAPTA (SEQ ID NO:2) CNAPTA (SEQ ID NO:2) CNAPTA (SEQ ID NO:3)									
2	DNAPTAD DNAPTR DNAPTR		DNAPTAO DNAPTR. DNAPTR.	אין ושטו עא	DNAPTAO DNAPTA DNAPTA	MA IMBITY	DNAPTAO CNAPTEL	MAJORITY	DNAPTAD CNAPTH.	

COS+LOSS COSCOL

FIGURE 2 (cont'd)

	1814 1811 1820		1884 1881 1890		1954 1951 1960		2024 2021 2030		2094 2091 2100
A GAA CAT C C C C C C C C C C C C C C C C C	6T6	GTT GGT GGC CCT GGA CTAT A GC CAGATA GA G CT C C G G C C T G C C C C C C C C T C C C C	A †. †. †. †. †. †. †. †. †. †. †. †	AT COGGGT CTT CCAGGAGGGGAGGGACAT CCAGAGCGCAGCAGCT GGATGTT CGGCGT CCCCCCGG		A G G C C C C C C C C C C C C C C C C C	. A. GG. A	COACCGCCT CT CCCAGGAGCTT GCCAT CCCCTACGAGGGGGGGGT GGCCTT CATT GAGGGGTT CCAG	TA. 6 TA. 6 T GCA GCA T T T T T A T A T A T A
MA ITRITY (SEQ ID NO:7)	(SEQ ID NO:1) (SEQ ID NO:2) (SEQ ID NO:3)								
איזומטן זאמ	DNAPTAD DNAPTR DNAPTR	MAJORITY	DNAPTAD DNAPTR. DNAPTR.	אַטוּאַנוּאַנוּ	DNAPTAD DNAPTR. DNAPTR.	אַטוטשנולא	DNAPTAD CKLOPTEL CKLOPTEL	אַטונשנו	DNAPTAD CNAPTR. CNAPTTH

ngg 41 ags . agsa1

FIGURE 2 (cont'd)

736	2161 2170	2234 2231 2240	2304	2301 2310		2374 2371 2380		24441 2441 2450
MAJORITY (SEQ ID NO:7) AGCTT CCCCAAGGT GCGCGCGT GGATT GAGAGCCCT GGAGGGGGGGGGG	A	G	GOGGAT GGGGTT CAACAT GCGGGT CCAGGGGACGGCGGCGGGGGGT CATGAAGCT GGCGAT GGT GAAGCT C		TT C C C C C C C C C C C C C C C C C C	6	CCAAAGAGCGGGGGGGGGGGGGGGGGGTTTGGGCGAAGGAGGTCATGGAGGGGGGTGTATGCGGGTTTTGGGTGTGTGG	. А А
TY (SEQ ID NO:7)	M (SEQ ID NO:1) (SEQ ID NO:2) H (SEQ ID NO:3)	È·g	. È	8 4 E	<u> </u>	. 8 . E	ЯП	多 年長
MAJORI	DNAPTAD DNAPTH. DNAPTH	MAJOSITY DNAPTAD DNAPTR DNAPTR	MAJORITY	DNAPTAD CNAPTR CNAPTR	MA IDBITY	DNAPTAD DNAPTR. DNAPTR	MAJORITY	DNAPTAD DNAPTR DNAPTR

) NO:7) GCCCCTGGAGGTGGAGGTGGGGATGGGGGGAGGACTGGCTGTGGGGGAGGAGGAGTAG	
(SEQ IC	SEQ ID NO:1) SEQ ID NO:2) SEQ ID NO:3)
MAJORITY	DNAPTAD (CNAPTA (CNAPTH (

2499 2496 2505

COSTACOS CARCOC

	MAJORITY (SEQ ID NO:8)	MX A ML PLFEPKGRVLLV DGHHLAYRTFFALKGLTT SRGEPV QAVY GFAKSLLKALKEDG· DAVXV VFDAK
	TH PRO (SEQ ID NO:4) TH PRO (SEQ ID NO:5) TH PRO (SEQ ID NO:6)	. R G
	MAJORITY	A P S F R H E A Y E A Y K A G R A P T P E D F P R Q L A L I K E L V D L L G L X R L E V P G Y E A D D V L A T L A K K A E K E G Y E V R I L
. •	140 P80 IT, P80 ITH P80	139 139 140
_	MAJORITY	T A D R D L Y Q L L S D R I A V L H P E G Y L I T P A W L W E K Y G L R P E Q W V D Y R A L X G D P S D N L P G V K G I G E K T A X K L L X
	1340 P380 TR. P390 TH. P390	K
	MAJORITY	E WGSLENLLKNLDRVKP·XXREKI XAHME DLXLSXXLSXVRTDLPLEVDFAXRREPDREGLRAFLERLEF
	140 P80 대 P80 대 P80	278 FOH. 0 SL LO. K. WD. AK GR. T. NL 277 FNV FNV ST FOH. O ENV K. L. R. LE. R L. O L. O L. O 280
	MAJORITY	G S L L H E F G L L E X P K A L E E A P W P P P E G A F V G F V L S R P E P MW A E L L A L A A A A R X G R V HRA X D P L X G L R D L K E V
	140 PR0 TR PR0 TH PR0	S, B, B, G. WE. L. O. B, G. WE. L. O. B, G. 348 R. A.
-		^F

COSTACE CECT

FIGURE 3 (cont'd)

418 417 420		488 487 490		558 557 560		628 627 630		698 697 700
RGLLAKDLAVLALREGLDLXPGDDPMLLAYLLDPSNTTPEGVARRYGGEWTEDAGERALLSERLFXNLXX S G. P	RLEGEERLLWLYXEVEKPLSRVLAHMEATGVRLDVAYLOALSLEVAEEI RRLEEEVFRLAGHPFNLNSRD	K	OLERVLFDELGLPAIGKTEKTÖKRSTSAAVLEALREAHPIVEKILOYRELTKLKNTYIDPLPXLVHPRTG	S D. I A K B. I. I. O. I.	RL HT RF NOT A T A T GRL SSSDPNL QNI PVRT P L G QRI RRA F V A E E G WX L V A L DY S Q I E L R V L A H L S G D E N L		I AV FOEGRDI HT OT A SWMF GV P PE AV D P L MR RAAKT I N F GV L Y G MS A H R L S O E L A I P Y E E AV A F I E R Y F O	S. 6
MAJORITY (SEQ ID NO:8) TAD PRO (SEQ ID NO:4) TR PRO (SEQ ID NO:5) TR PRO (SEQ ID NO:5) TR PRO (SEQ ID NO:5)	мдловпт	740 PR0 FR PR0 TH PR0	маловпт	140 P30 TR. P30 TR. P30	MAJORITY	740 PRO TR. PP.O TTH PP.O	МАЈОВПТ	740 PR0 TR PP0 TH PP0
著 英联县	AM	2年5	至	AEE	×	ARE	₹	545

OSOFICS CONTROL

FIGURE 3 (cont'd)

	768 767 770	ς α	833 835 835
SF P K V R A W I E K T L E E G R R R G Y V E T L F G R R R Y V P D L N A R V K S V R E A A E R M A F N M P V O G T A A D L M K L A M V K L	m	FPRLXEMGARMLLQVHDELVLEAPKXRAEXVAALAKEVMEGVYPLAVPLEVEVGXGEDWLSAKEX	E
MAJORITY (SEQ ID NO:8) SFPKVRAWIEKTLE	TAD PRO (SEQ ID NO:4) TR PRO (SEQ ID NO:5) TH PRO (SEQ ID NO:6)	MAJORITY	18.0 26.0 보다 18.0 26.0 보다 18.0 26.0 보다

FIGURE 4

FIGURE 5

Genes for Wild-Type and Pol(-) DNAPT#

FIGURE 8

FIGURE 11

FIGURE 12

FIGURE 14

RBS: Ribosome binding site

ptac: Synthetic tac promoter

lac IQ: Lac repressor gene

lacZ: Beta-galactosidase alpha fragment

rrnBt; E. coli rrnB transcription lerminator

 $P_{\varphi 10}$: Bacteriophage T7 $\varphi 10$ promoter

RBS: Ribosome binding site

T¢: T7 ¢ Terminator

1 2 3 4 5 6 7

FIGURE 18

A

B

1 2 3 4 5 6 7 8

Later of the small points Tag

Atity activity

Taylor.

Later of the start of t

desired ->
product
u nuc.

84 m

Multiple bods

Caused by polymeization

I some abarroant cleavage with "Ab" because of residual polymerase activity.

•				
A			Predicted cleanage	C
			1 sites	
CGGACGANCAAGCGAGACAGCGA	CACAGI À GTACC C	منومنو	/	
· Tau"	C) (C - C)	A-Hairpin	/	
CAAAGACGaCACAGCAGAGAAAACCC	Sagaa^ T	/		
•				
S'GTTTCTCetgTCTcCTcTcTcTCTTC	CTCTTI A			
"Alpha"	CTACC T CATGG G	T-Hairpin		
CIGCTIGTTCCCTCTCCCT	CTGTC^ T			
B sequence of alp	tha primer:			
S. GVC GYY CYY		3.		
·				
C			ל בכדכיזיו	λ
5'	ACACAGI A GTACC C	"Alpha"	CATO	
· Tau"	CATGG A	CICCITGITC	CTCTGTCGCTGTGTC	T
3' CAANGACGACACAGCAGAGAAAAC Cleaved A	HOICDID	_	d T-Hairpin	
Cleaved h	- Han Pri	Clex		
Q				
2	Asa I			
		nl i Nia III		
Top = T- Hairpin		HgiC I NIa IV		
2 . Horris	IAmai	Rsa l Kpn l	BsmA1	
ם. : מוזוכוסנוסוסוכוכוכוכו			į	72
0.110.0010.0.00.00.0				• -

, 12°

Ban 18 SSI 1	
8 2.5 4.7.7.7	
EcoR1 Sma Bam HI XI	57
CELLAGUG III CCCAGTCACGACGTGTGAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATICGAGCTCGGTACCCGGGGAICCTC	
47 Forward 47 Forward 6 Figure 100 Figure 10	
Sall Back	
ino II	
TAGAGICGACCIGCAGGCAIGCAAGCTIGAGIAITETATAGIGICACCIAAATAGCITGGCGIAATCAIGGICATAGCIGITICCIGIGIAATICAA	
AICICAGCIGGACGICCGIACGIICGAACICATAAGAIAICACAGIGGAITIAICGAACCGCATIAGIACCAGIAICGACAAAGGACACACIIIAACAA	
527 FZ48 Reverse	4

TCCGCTCACAATTCCACACATACGA
AGGCGAGTGTTAAGGTGTGTTGTATGCT
-48 kev

FIGURE 22A

FIGURE 22B

FIGURE 23

<u>.</u>

S - FL GARGONAGA

CDR Secret
Pilot
Clerivoise
MMITHTHITH

MIII

2011 Markery

Œ

Ş

Aztor Marker

į

7:

$$\star = ^{32}P$$

FIGURE 28A

= 32P 5' terminal phosphate

FIGURE 28B

	Wild-type Substrate			Mutant Substrate			
	1 alex			A (DG)			
1			1	C			
enature	•		V				
	5'	A3'		5'	G	3'	
2 Renature		^	1				
Renature	θ		\downarrow	A	G O o O		
A Company of the Comp	5'H_A_	3'		5'H_		3'	
3			\downarrow				
dd cleavage agent							
The second secon	5'A_A_	A_3,		5'_	-A.I.A	_3'	
	► = cleavage site						
4			>				
Resolve reaction products		, c	ontro.	e } *			
cesoive reaction products		1 step	Zajigi.	E CHIEFT			
			-				
_							
5							
Detect unique cleavage "finge	erprint"						
		4		ı			

100 5º GGCTGACARAGGARAGCTGGGGARAGGGGGACTTTCCACARGGGG A THITTAGGGGARGGTAGGGGBAGGAGGAGGGGGGGGGGAAGGCCCCACTCTCT 3'ccgactgitcticctitgagcgactcigicgicccigaaaggigiiccc iacaaigcccciccaigacccciccicggccagccitigcgggigagaga 100.8-1 (D NO: 76)

それつフィィ

- 3'CCGACTGITTCITTCCITTGAGCGACTCIATCGICCCTGAAAGGIGTTICCCC TACAAIACCCCTCC-------TCGGCCAGCCATGTGGGTGAAAGA -- AGCCGGTCGGGAACACCCCACTTTCT .46.16-10 5'GGCTGACAAGAAGGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG ATGTTATGGGGAGG---(TT:0N 01 0
- 3'ccgactgittcttccittigagcgactctatcgiccctgaaaggigitcccc tacaatacccctc-------rcggccagccctigigggigaaaga 5'GGCTGACAAGAAAGTCGGTGAGAAAGTAGGAGTTTTCCACAAGGGG ATGTTATGGGGAGG------AGCCGGTCGGGAACACCCCACTTTCT .46.16-12 26 ID NO: 78)
- 5'GGTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG ATGTTACGGGGAGGTACTGGGGAGGAAGCGCCGGTCGGGAACGCCCCCCTCTCT 3 cogaeterretrectricasecaeteresecengaassistrece racaarseceetecatseceetectectes as especial de construction de c .19.16-3
- S'GOCTGACAAGAAGGAAACTGGCTGAAACAGCAGGGACTTTCCACAAGGGG ATGTTACGGGGAGGTACTGGGAAGGAAGGAGGGTCGGGAACGCCCACTTTCT .CEM/251 (6L. ON Q1 &
- 3, ccaactgiichtcchttgagcgactrigtcgiccctgaaaggigticccc tacaatgcccctccatgacccttcggccagcctttgcggctaaaga 5 ' GGCTGACAAGAAGCTCGCTGAGACAGCAGGGACTTTCCACAAGGGG ATGTTACGGAGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCACTCTCT (08.0NOI }
- 3, ccgactgttcttcctttgagcgactctgtcgtccctgaaaggtgttcccc tacaatgcctcttccatgacccctcctcggccagcctttccttg 150 1,36.8-3 Q (D NO:81)
- ..46.16-10 5'IGATGTATAAATATCACIGCATITCGCICTGIAITCAGICGCICTGCGGA GAGGCIGGCAGAITGAGCCCIGGGAGGITCTCICCAGCACTAGCAGGTAG 5'IGAIGIAIAAAIAICACIGCATIICGCICIGIAIICAGICGCICIGCGGA GAGGCIGGCAGAIIGAGCCCIGGGAGGITCICICCAGCACAAAAGC 3'ACTACATATITATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC 1.100.8-1
 - 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACGGTCTAAATIOGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC ..46.16-12 5'TGGTGTATAAATATCACTGCATTTCGCTCTGTTCGCTCTGCGGA GAGGCTGGCAGATTGAGGCCTGGGAAGTTCTCTCCAGCACTAGCAGGTAG
- 3'ACCACATATTTATAGTGACGAAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC 5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTGGCTCTGCGGA GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG 3'ACTACATATITIATAGIGACGIAAAGCGAGACAIAAGICAGCGAGACGCCI CICCGACCGICIAACICGGGACCCICCAAGAGAGGGICGIGAICGICCATC 1,19,16-3
- 5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG 3'ACTACATATITIATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
- 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACCGTCTAACTCGGGATCCTCCAAGAGAGGTCGTGATCGTCCATC 5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA GAGGCTGGCAGATTGAGGCCCTAGGAGGTTCTCCCAGCACTAGCAGGTAG L. 36.8-3

L.46.16-10 5'AGCCTGGTGTTCCCTGCTAGACTCTCACCAGCACTTAGCCAGTGCTGGG CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC (560 IDND: 77) 3' TCGGACCACAAGGGACGATCTGAGAGTGGTCGTCAAACGACCC GTCTCACCGAGGTGCGAACGAACGAATTTCTGGAGAAGTTATTTCGACGG

s'agectiggigitectigetadacteteaceageactiggeeagigetiggs eagagiggetecaegetigetitgetitaaagaectetaaraaagetigee 3º TOGGACECALAGGGACGATOTGAGAGTGGTCGTGAACCGGTCACGACCC GTCTCACCGAGGTGCGAACGAACGAATTTCTGGAGAAGTTATTTCGACGG 1.46.16-12

(SC : ONO: 78)

(580 ID NO: 79) 3' TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCACCGAGGTGCGAACGAACGAATTTCTAGAGATATTTCGACGG s'agecressistre cets de la contracca de la constanción de la casa de la contrace de contra de la contra del la contra de la contra del la contra de la contra de la contra de la contra de la contra del la contra

s'agecrogorginectrociadactetaacaacaacarocogorociogo caagroacoacocingetigotiaaagecetetearaaageteec

(£0 ID ND: 60) 3' TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCACTGAGGTGCGAACGAACGAATTTCGGGAGAAGTTATTTCGACGG

3 º ACGGACTCACAAGGGACGATTTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCGCCGAGGTGCGAACGAACGAACTTTCTGAGAATTTTCGACGA Hairpin (18:0N Q1 875) L.36.8-3

S'ATITIAGAAGTAGGCCAGTGTGTTCCCATCTCTTCCTAGCCGCCGCCTG G L.100.8-1

3'IAAAAICITCATCCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGAC C 5'

.. ເດ L.46.16-10 5'ATTITAGAAGTAAGCCAGTGTGTGTTCCCATCTCCTAGCCGCCGCCTG G 3' 3'IAAAAICTTCATTCGGTCACACACAAGGGTAGAGAAGGATCGGCGGCGGAC C

L.46.16-12 5'ATTTTAGAAGTAAGCCAGTGTGTTCCCATCTCCTAGCCGCCGCCGCTG G 3'

3'TAAAATCTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGAC 5 ATTITAGAAGTAGGGTAGTGTGTTCCCATCTTCCTAGCCGCCGCCTG G

3. TAAAATCTTCATCCGATCACACAAGGGTAGAGAGGATCGGCGGCGGAC C L:19.16-3

ر 5 5'ATTITAGAAGIAAGCIAGIGTGTTCCCCATCTCTCCTAGCCGCCGCCTG G 3. TAAAATCTTCATTCGATCACACAAGGGTAGAGAAGGATCGGCGGCGGAG C L. CEM/251

5 ATTTTAGAAGTAGGCTAGTGTGTTCCCATCTCTCCTAGCCGCCGCCTG G 3' 5 3.TAAAATCTTCATCCGATCACACAAGGGTAGAGAAGGATCGGCGGCGGAC C

A

 \mathbf{B}

A

B

FIGURE 76

12345678

12345678

rod EIGURE 20 radeo

1 CTGTCTTCAC GCAGAAAGCG TCTGGCCATG GCGTTAGTAT GAGTGTCGTG 50 CTGTCTTCAC GCAGAAAGCG TCTAGCCATG GCGTTAGTAT GAGTGTCGTG CTGTCTTCAC GCAGAAAGCG TCTAGCCATG GCGTTAGTAT GAGTGTCGTG CTGTCTTCAC GCAGAAAGCG TCTAGCCATG GCGTTAGTAT GAGTGTCGTG CTGTCTTCAC GCAGAAAGCG TCTAGCCATG GCGTTAGTAT GAGTGTCGTA CTGTCTTCAC GCAGAAAGCG TCTAGCCATG GCGTTAGTAT GAGTGTCGTA	S1 CAGCCTCCAG GACCCCCCT CCCGGGAGAG CCATAGTGGT CTGCGGAACC 100 CAGCCTCCAG GACCCCCCT CCCGGGAGAG CCATAGTGGT CTGCGGAACC CAGCCTCCAG GICCCCCCT CCCGGGAGAG CCATAGTGGT CTGCGGAACC CAGCCTCCAG GACCCCCCT CCCGGGAGAG CCATAGTGGT CTGCGGAACC CAGCCTCCAG GCCCCCCCT CCCGGGAGAG CCATAGTGGT CTGCGGAACC CAGCCTCCAG GCCCCCCCT CCCGGGAGAG CCATAGTGGT CTGCGGAACC	GGTGAGTACA CCGGAATTGC CAGGACGACC GGGTCCTTTC TTGGAT-AAA 150 GGTGAGTACA CCGGAATTGC CAGGACGACC GGGTCCTTTC TTGGAT-CAA GGTGAGTACA CCGGAATTGC CAGGACGACC GGGTCCTTTC TTGGAT-CAA GGTGAGTACA CCGGAATTGC CAGGACGACC GGGTCCTTTC GTGGATGTAA GGTGAGTACA CCGGAATTGC CGGGAAGACT GGGTCCTTTC TTGGATAA GGTGAGTACA CCGGAATTGC CGGGAAGACT GGGTCCTTTC TTGGAAAA	CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG 200 CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCGAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG CCCACTCAAT GCCCGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG CCCACTCAAT ACCCAGAAAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG	201 AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCCT 250 AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGGGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT	251 GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC 282 GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC
HCV1.1 (SEQ ID NO:121) HCV2.1 (SEQ ID NO:122) HCV4.2 (SEQ ID NO:123) HCV6.1 (SEQ ID NO:124) HCV6.1 (SEQ ID NO:125)	HCV1.1	HCV1.1	HCV1.1	HCV1.1	HCV1.1
	HCV2.1	HCV2.1	HCV2.1	HCV2.1	HCV2.1
	HCV3.1	HCV3.1	HCV3.1	HCV3.1	HCV3.1
	HCV4.2	HCV4.2	HCV4.2	HCV4.2	HCV4.2
	HCV6.1	HCV6.1	HCV6.1	HCV6.1	HCV6.1

しエ

Antisense Strand

1234

					50	60	
	10	20	30	40	50	60	1620
	AGA	GTTTGATCCT	GGCTCAG				1638
	AAATTGAAGA	GTTTGATCAT	GGCTCAGATT	GAACGCTGGC	GGCAGGCCTA	ACACATGCAA	
	TTTAACTTCT	CAAACTAGTA	CCGAGTCTAA	CTTGCGACCG	CCGTCCGGAT	TGTGTACGTT	
	70	80	90	100	110	120	
		-			GGCGGAC	GGGTGAGTAA	ER10
	CMCC X X CCCM	AACAGGAAGA	∆ ርርጥጥርርጥጥር	TTTGCTGACG	AGTGGCGGAC	GGGTGAGTAA	
	CACCUMCCCA	TTGTCCTTCT	TCGAACGAAG	AAACGACTGC	TCACCGCCTG	CCCACTCATT	
	CAGCTTGCCA	HIGICCITCI	ICOMICOINIO				
	120	140	150	160	170	180	
	130	ACTGCCTGAT	TATO COCO ACO			AATACCGCAT	
	TGTCTGGGAA	TGACGGACTA	COMOCOCOMA	MUCAUCACOU!	TTCCCATCGA	ттатсссста	
		TGACGGACTA	CCTCCCCTA	TIGATGACCI	TIGCCMICON	111110000	
			210	220	230	240	
A.	190	200	210	220			
		GACCAAAGAG	GGGGACC'I"I'C	GGGCCTCTTG	CCATCGGAIG	A CCCCMCMAC	
5	TTGCAGCGTT	CTGGTTTCTC	CCCCTGGAAG	CCCGGAGAAC	GGTAGCCTAC	ACGGGICIAC	
		CTGGTTTCTC			000	200	
	250	260	270	280	290	300	
	GGATTAGCTA	GTAGGTGGGG	TAACGGCTCA	CCTAGGCGAC	GATCCCTAGC	TGGTCTGAGA	
	CCTA MTCGMT	CATCCACCC	ATTGCCGAGT	GGATCCGCTG	CTAGGGATCG	ACCAGACTCT	
Ш	0021211200111	•					
æ	310	320	330	340	350	360	
	CCATCACCAG	CCACACTGGA	ACTGAGACAC	GGTCCAGACT	CCTACGGGAG	GCAGCAGTGG	
	CCMACMCCMC	GGTGTGACCT	ТСАСТСТСТСТС	CCAGGTCTGA	GGATGCCCTC	CGTCGTCACC	
		GGIGIGACCI	10110101010	TGA	GGATGCCCTC	CGTCGTC	1659
				200			
		200	390	400	410	420	
	370	380 ACAATGGGCG	UEC MEDMODOLES	0.05			
	GGAATATTGC	ACAATGGGCG	CAAGCCTGAT	CCMCCCMACC	CCCCACATAC	TTCTTCCGGA	
	CCTTATAACG	TGTTACCCGC	GITCGGACTA	CGTCGGTACG	GCGCACAIAC	110110000	
		4.4.0	450	460	470	480	
	430	440	450				
	TCGGGTTGTA	AAGTACTTTC	AGCGGGGAGG	AAGGGAGTAA	MC33MM3MCC	TTTGCTCATT	
	AGCCCAACAT	TTCATGAAAG	TCGCCCCTCC	TTCCCTCATI	TCAATTATGG	AAACGAGTAA	
				E20	530	540	
	490	500	510				
	GACGTTACCC	GCAGAAGAAG	CACCGGCTAA	CTCCGTGCCA	GCAGCCGCGG	TAATACGGAG	
	CTGCAATGGG	G CGTCTTCTTC	: GTGGCCGATT	' GAGGCACGG'I	, CGLCGGCGCC	ATTATGCCTC	
	550	560	570	580			
	GGTGCAAGCC	TTAATCGGA	TTACTGGGCG	TAAAGCGCAC	C GCAGGCGGT'I	TGTTAAGTCA	
	CCACGTTCG	AATTAGCCTT	AATGACCCGC	ATTTCGCGTC	G CGTCCGCCA	ACAATTCAGT	
	610	620	630				
	GATGTGAAA	r ccccgggcT	AACCTGGGA	A CTGCATCTG	A TACTGGCAAC	CTTGAGTCTC	
	CTACACTTT	A GGGGCCCGA	TTGGACCCT	GACGTAGAC	r ATGACCGTT	GAACTCAGAG	
	67	0 680	690	700		-	
	OMA CA COCCO	~	- - አርርጥርጥልርር(GTGAAATGC	G TAGAGATCT	GAGGAATACC	
	CATCTCCCC	CATCTTAAGO	TCCACATCG	CACTTTACG	C ATCTCTAGA	C CTCCTTATGG	
	CATCICCC	CIII CIII III.O.					
	73	0 74	0 75	0 76		-	
	CCTCCCCAA	c c coccorror	T GGACGAAGA	C TGACGCTCA	G GTGCGAAAG	C GTGGGGAGCA	•
	GGTGGCGAA	a acadecece	2 CCTCCTTCT	G ACTGCGAGT	C CACGCTTTC	G CACCCCTCGT	
	CCACCGCTT		(1 CCIOCIICI				

						,
790	800	810	820	830	840	
	GATACCCTGG					
TTGTCCTAAT	CTATGGGACC	ATCAGGTGCG	GCATTTGCTA	CAGCTGAACC	TCCAACACGG	
850	860	870	880	890	900	
	GGCTTCCGGA					
GAACTCCGCA	CCGAAGGCCT	CGATTGCGCA	ATTCAGCTGG	CGGACCCCTC	ATGCCGGCGT	
					2.50	
910	920	930	940	950	960	
	TCAAATGAAT					
TCCAATTTTG	AGTTTACTTA	ACTGCCCCCG	GGCGTGTTCG	CCACCTCGTA	CACCAAATTA	
000	000	000	1000	4010	***	
970	980	990	1000	1010	1020	
	GCGAAGAACC					
AGCTACGTTG	CGCTTCTTGG	AATGGACCAG	AACTGTAGGT	GCCTTCAAAA	GTCTCTACTC	
4000	7040	1050	1000	1070	1000	
1030	1040	1050	1060	1070	1080	
	CGGGAACCGT					
TTACACGGAA	GCCCTTGGCA	CTCTGTCCAC	GACGTACCGA	CAGCAGTCGA	GCACAACACT	
4000	***		4400	4450	3140	
1090	1100	1110	1120	1130	1140	
		AACGAGCGCA				SB-1
	TAAGTCCCGC					
TTACAACCCA	ATTCAGGGCG	TTGCTCGCGT	TGGGAATAGG	AAACAACGGT	CGCCAGGCCG	
1150		1170	1100	1100	1000	
1150	1160	1170	1180	1190	1200	
					ACGTCAAGTC	SB-3
					ACGTCAAGTC	SB-4
	AAGGAGACTG					
GCCCTTGAGT	ጥጥርርጥርጥርልር	GGTCACTATT	ጥርል୯୯ጥ୯୯ሞ	CC	መረረ እርመመረ እር	
	11001010110	0010111111	IGACCICCII	CCACCCCIAC	IGCAGIICAG	
1210	1220	1230	1240	1250	1260	_
1210 ATCATGGCCC	1220 TTA					SB-3
1210 ATCATGGCCC ATCATGGCCC	1220 TTA TTACGA	1230	1240	1250	1260	SB-3 SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC	1220 TTA TTACGA TTACGACCAG	1230 GGCTACACAC	1240 GTGCTACAAT	1250 GGCGCATACA	1260	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC	1220 TTA TTACGA	1230 GGCTACACAC	1240 GTGCTACAAT	1250 GGCGCATACA	1260	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG	1220 TTA TTACGA TTACGACCAG AATGCTGGTC	1230 GGCTACACAC CCGATGTGTG	1240 GTGCTACAAT CACGATGTTA	1250 GGCGCATACA CCGCGTATGT	1260 AAGAGAAGCG TTCTCTTCGC	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG	1220 TTA TTACGA TTACGACCAG AATGCTGGTC	1230 GGCTACACAC CCGATGTGTG 1290	1240 GTGCTACAAT CACGATGTTA 1300	1250 GGCGCATACA CCGCGTATGT 1310	1260 AAGAGAAGCG TTCTCTTCGC	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG	1220 TTA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG	1250 GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG	1220 TTA TTACGA TTACGACCAG AATGCTGGTC	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG	1250 GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC	1220 TTA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC	1250 GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC	1220 TTA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC	1250 GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT	1220 TTA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT	1220 TTA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT	1220 TTA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT	
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA	TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA	1220 TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT	1250 GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA	1220 TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA CACTTATGCA 1440 AGAAGTAGGT	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA	1220 TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGG	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA CACTTATGCA 1440 AGAAGTAGGT	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA	1220 TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGG	1230 GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA CACTTATGCA 1440 AGAAGTAGGT	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA	TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGGG ACATG	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT	AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA 1440 AGAAGTAGGT TCTTCATCCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA	TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGGG ACATG	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA 1440 AGAAGTAGGT TCTTCATCCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA AGGGCCCGGA	TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGG ACATG TCGGGAGGGC	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT 1490 TGACTGGGGT	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA CACTTATGCA TCTTCATCCA 1440 AGAAGTAGGT TCTTCATCCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA AGGGCCCGGA	TTA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGGG ACATG	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT 1490 TGACTGGGGT	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA CACTTATGCA TCTTCATCCA 1440 AGAAGTAGGT TCTTCATCCA	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA AGGGCCCGGA	TTA TTACGA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGG ACATG TCGGGAGGGC AGCCCTCCCG	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT 1470 GCTTACCACT CGAATGGTGA	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA 1480 TTGTGATTCA AACACTAAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT 1490 TGACTGGGGT ACTGACCCCA	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA TCAGAGTAGGT TCTTCATCCA 1500 GAAGTCGTAA CTTCAGCATT	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA AGGGCCCGGA 1450 AGCTTAACCT TCGAATTGGA	TTA TTACGA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGG ACATG TCGGGAGGGC AGCCCTCCCG	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT 1470 GCTTACCACT CGAATGGTGA	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA 1480 TTGTGATTCA AACACTAAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT 1490 TGACTGGGGT ACTGACCCCA	AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA TCAGAGTAGGT TCTTCATCCA 1500 GAAGTCGTAA CTTCAGCATT	SB-4
1210 ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG 1270 ACCTCGCGAG TGGAGCGCTC 1330 TCGACTCCAT AGCTGAGGTA 1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA 1450 AGCTTAACCT TCGAATTGGA	TTA TTACGA TTACGA TTACGA TTACGACCAG AATGCTGGTC 1280 AGCAAGCGGA TCGTTCGCCT 1340 GAAGTCGGAA CTTCAGCCTT 1400 TGTACACACC ACATGTGTGG ACATG TCGGGAGGGC AGCCCTCCCG	GGCTACACAC CCGATGTGTG 1290 CCTCATAAAG GGAGTATTTC 1350 TCGCTAGTAA AGCGATCATT 1410 GCCCGTCACA CGGGCAGTGT 1470 GCTTACCACT CGAATGGTGA 1530 CTGCGGTTGG	1240 GTGCTACAAT CACGATGTTA 1300 TGCGTCGTAG ACGCAGCATC 1360 TCGTGGATCA AGCACCTAGT 1420 CCATGGGAGT GGTACCCTCA 1480 TTGTGATTCA AACACTAAGT	GGCGCATACA CCGCGTATGT 1310 TCCGGATTGG AGGCCTAACC 1370 GAATGCCACG CTTACGGTGC GC 1430 GGGTTGCAAA CCCAACGTTT 1490 TGACTGGGGT ACTGACCCCA 1550 TA	1260 AAGAGAAGCG TTCTCTTCGC 1320 AGTCTGCAAC TCAGACGTTG 1380 GTGAATACGT CACTTATGCA CACTTATGCA TCAGAGTAGGT TCTTCATCCA 1500 GAAGTCGTAA CTTCAGCATT	SB-4

TRECORE 89TO TO THE SHOP 1/3

AGAGTTTGATCCTGGCTCAG AAATTGAAGGCTTGATTGAACGCTGGCGGCAGGCCTAACACATGCA ~!TTTTTATGGAGAGTTTGATCTGGCTCAGAGTGAACGCTGGCGGCGTGCCTAATACATGCATTTTTATGGAGAGTTTGATCCTGGCTCAGAGTGAACGCTGGCGGCGTGCCTAATACATGCA	GGCGGACGGAACGGTAACAGAAGAAGCTTGCTTCTTTGCTGACGAGTGGCGGACGGG AGTCGAACGATGAAGCTTCTAGCTAGAAGTGGATTAGTGGCGCACGGG AGTCGAGCGAACGGACGAGAAGCTTGCTTCTCTGATGTTAGCGGCGGACGGG	TGAGTAA TGAGTAATGTCTGGGA_AACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATA TGAGTAAGGTATAGTTAATCTGCCTACAAGAGGACAACAGTTGGAAACGACTGCTAATA TGAGTAACGTGGATAACCTACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATA	CCGCATAACGTCGCAAGACCAAAGAGGGGGACCTTCG_GGCCTCTTG CTCTATACTCCTGCTTAACACAGTTGAGTAGG_GAAAGTTTTTTCG CCGGATAATATTTTGAACCGCATGGTTCAAAAGTGAAAGAGGGGTCTTCTT	CCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGA GTGTAGGATGAGACTATATAGTATCAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGA CTTATAGATGGATCCGCGCTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGA	TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTA CGCTTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTA TACGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTA	CGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCGGCGTG CGGGAGGCAGCAGTAGGGAATATTGCGCAATGGGGGGAAACCCTGACGCAGCAACGCGCGTG CGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTG CGGGAGGCAGCAGT	TATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAA_GGGAAGTAAAGTTAAT GAGGATGACACTTTTCGGAGCGTAAACTCCTTTTCTTAGGGAAGAATT AGTGATGAAGGTCTTCGGATCGTAAAACTCCTGTTATTAGGGAAGAACATATGTGTAAGTAA	ACCTTTGCTCATTGACGTTACCCGCAGAAGAACACCGGCTAACTCCGTGCCAGCAGCGCGCGC
NO:151) SEQ ID NO:158)0 SEQ ID NO:159)0 SEQ ID NO:160)0	NO:152) 60 62 61	114 114 114	175 176 175	221 221 229	283 283 291	345 345 353	407 407 415	468 455 476
1638 (SEQ ID E.colirrsE (Cam.jejun5 (Stp.aureus (ER10 (SEQ ID E.colirrsE Cam.jejun5 Stp.aureus	ER10 E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus 1659(COMPL)	E.colirrsE Cam.jejun5 Stp.aureus 1659(COMPL)	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus

GTAATACGGAGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA	GTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTT ATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTA TTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTT	gagtctcgtagaggggggtagaattccaggtgtagcggtgaaaatgcgtagagatctggagga gagtgaggggagaggcagattggaattggtggtagtagggggtaaaatccgtagatatcaccaaga gagtgcagaaggaaaagtggaattccatgtgtagcggtgaaatgcgcagagatatggagga	ataccogtogcoaaggccccctggacgaactgacgctcaggtgcgaaaagcgtgggaa atacccattgcgaaggcgatctgctggaactcaactgacgctaaggccgcgaaagcgtgggga acaccagtggcgaaggcgactttctggtctgtaactgacgctgatgtgcgaaagcgtgggga	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGC GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTACACTAGTTGTTGGGGT TCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGG	C_CTTGA_GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGC G_CTAGT_CATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGC GT_TTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGC	AAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATT AAGATTAAAACTCAAAGGAATAGACGGGGACCCGCACAAAGCGGTGGAGCATGTGGTTTAATT AAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT	CGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAAT CGAAGATACGCGAAGAACCTTACCTGGGCTTGATATCCTAAGAACCTTTTAGAGATAAGAGG CGAAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTTTGACAACTCTAGAGATAGAGCC	GTGCCTTCGGGAA_CCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTGTGA GTGCTAGCTTGCTAGAA_CTTAGAGACAGGTGCTGCAGGTGTTGTCGTCAGCTCGTGTGTGT	acaacgacaacccaaacgaaccctratcctttgttgccagggcggcggccggcggcggcccggcagcggccccgcaaccgcaaccctratcctttaggttgccggttcggccccacaacgacccaccc
530 538 538	592 568 600	654 630 662	716 692 724	778 754 786	840 816 848	900 876 909	962 938 17	1024 1000 1033	1081 1061 1092
E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	SB-1 E.colirrsE Cam.jejun5 Stp.aureus

つうでいってい

```
SB-4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E.colirrsE 1204 ATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCTC Cam.jejun5 1183 ATGGCCCTTATGCCCAGGGCGACACACACGTGCTACAATGGCATATAGAATGAGACGCAATACC Stp.aureus 1214 ATGCCCCTTATGATTTGGGCTACACACGTGCTACAATGGACAATACAAAGGGCAGCGAAACC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Cam. jejun5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E.colirrsE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Stp.aureus
                                                                                                                                                                                                       Cam. jejun5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E.colirrsE
                                                                                                             E.colirrsE 1451 TCG_GGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCG Cam.jejun5 1427 AC_-_T_AGTTACCGTCCACAGTGGAATCAGCGGACTGGGGTGAAGTCGTAACAAGGTAACCG Stp.aureus 1461 TTTAGGAGCTAGCCGTCGAAGGTGGAAGATGAATGATTGGGGGTGAAGTCGTAACAAGGTAGCCG
                                                                                                                                                                                                                                                                                                                                             Stp.aureus 1338
1743 (compl)
                                                                                                                                                                                                                                                                                                                                                                                                Cam.jejun5 1306
                                                                                                                                                                                                                                                                                                                                                                                                                            E.colirrsE 1328
Stp.aureus
                                           E.colirrsE
                  Cam.jejun5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (SEQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (SEQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ID NO:157)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1122 GAGCACTCTAAATAGACTGCCTTCG_TAAGGAGGAGGAAGGTGTGGGGATGACGTCAAGTCATC 1152 GGGCACTCTAAGTTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAATCATC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1142 GGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGGATGACGTCAAGTCATC
                            1485
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1266 GCGAGAGCGAACCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTC 1245 GCGAGGGGAGCGGAACCCGATAAAATATGTCCCAGTTCGGATTGTTCTCTGCAACCTCGAGAG 1276 GCGAGGGTCAAGCAAATCCCATAAAAGTTGTTCTCAGTTCGGATTGTAGTCTGCAACTCGACTA
                          TAGGGGAACCTGCGGTTGGATCACCTCCT----
       TATCGGAAGGTGCGGCTGGATCACCTCCTTTCT~
                                                                                                                                                                                                                                                                                                                                                                             CATGAAGCCGGAATCGCTAGTAATCGTAGATCAGCCATGCTACGGTGAATACGTTCCCGGGT
CATGAAGCTGGAATCGCTAGTAATCGTAGATCAGC_ATGCTACGGTGAATACGTTCCCGGGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ATGGCCCTTACGA
                                                                                                                                                                                                                                                                                                                                                                                                                                CATGAAGTCGGAATCGCTAGTAATCGTGGATCAGA_ATGCCACGGTGAATACGTTCCCGGGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ATGGCCCTTA
                                                                                                                                                                                                                                                                                                                                                                     CGGTGAATACGTTCCCGGGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ATGACGTCAAGTCATC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ATGACGTCAAGTCATC
```


B.

8

