Mason Competitive Cyber

Upcoming Competitions

- National Cyber League Spring
 - Occurs throughout Spring semester
 - Registration happening soon! If you're interested, try the qualifier challenges
- CyberFusion State Cup (Team already full)
 - February 22-23
- VT Summit
 - March 28
- PatriotCTF 2020 :
 - April 11
 - Want to be a challenge writer? Talk to exec!
- UMDCTF
 - April 18

News

lowa caucuses: app whoopsie

Citrix N-Day attack still affecting people because they're not patching (CVE-2019-19781)

- Minebridge backdoor targeting US Finance Sector
 - VBA Stomping to bypass AV
 - Basically, a fancy macro attack

Developing Story: Surprise JC Remodel

What is Exfiltration?

Assumptions

Attacker has sufficient control over the target machine to communicate on the network

Attacker has some network path back to a Command and Control server

Attacker has found some data that they want to get out of the network

What's there to steal?

- Usernames/Passwords
- Industrial Secrets
- Cryptographic Material
- Credit Card Numbers
- CEO's documents

The list goes on

How do we steal it?

- Insider threat: Just put it on a flash drive and walk out the door
- Remote threat (unencrypted/unobfuscated):
 - HTTP/S File Retrieval
 - o FTP
 - Email
 - \circ IM
- Remote threat (encrypted/obfuscated):
 - SSH/SFTP
 - Protocol tunneling
 - Steganography

Of course, there's other techniques that are much more interesting and fun

Stealy Wheely Datamobile-y

Other fun techniques:

- Public service exfiltration
 - Youtube comments, GitHub gists, PasteBin pastes, StackOverflow questions etc.
- Layer 2 exfiltration
 - Cram stuff into wifi/ethernet headers
 - Obviously an attacker has to be in close proximity (same subnet for wired attacks, close enough to receive wireless data for wifi attacks)

DNS

- Put your data in as a subdomain (usually just called DNS exfiltration)
- Cram your whole connection over a DNS tunnel
 - https://www.aldeid.com/wiki/Dns2tcp
- Pros: DNS is rarely restricted through outbound firewalls
 - Easy to break things if you're restricting it
- Cons: Efficiency
 - Like breathing through a straw, but with the internet
 - DNS limits messages to 255 bytes with a fairly restrictive character set
 - But if you thought that was bad...

EXTREME protocol abuse

- Why just abuse one protocol? (DNS)
- Why not do a bunch?
- At the same time?
- And also make it so that even if engineers are looking for exfiltrated data, it'd be damn hard to find?

Example tool: Protocol Hopping

Basis: Frequency hopping in RF

Used in Military Radios (and WiFi [and fancy Civilian Radios])

Highly resistant to jamming

Protocol Hopping

- 1. Choose a random UDP protocol from a list of available protocols
- 2. Embed data into a packet of that protocol
- 3. Send packet to c2
- 4. C2 has several different UDP servers running on it
- 5. Depending on which server the packet hits, we know which bytes are data bytes
- 6. Pull out the data and append it to the running total of received data
- 7. Repeat until out of data to exfiltrate
- 8. When no more packets are being received, that means that exfil is completed and we can read the received data on the c2 server
- 9. Optionally, sort packets and read to file

Playing with ID fields

- A bunch of UDP protocols have these
- Between 2 and 4 bytes
- Not always clear where these values come from
 - In fact, in the case of DNS sometimes these are deliberately difficult to predict

Is anybody really going to miss that one field?

UDP Unreliability

- The data won't arrive *that* out of order
- They'll probably be within 256 places of where they're supposed to be
- Sort by queue number then by counter value

Result?

	14 2.987236	127.0.0.1	127.0.0.1	TCP	40 9229 → 4621 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	15 4.310024	127.0.0.1	127.0.0.1	HTTP	591 HTTP/1.1 404 Not Found (text/html) ◀
	16 4.310024	127.0.0.1	127.0.0.1	TCP	40 4346 → 80 [ACK] Seq=1 Ack=552 Win=256 Len=0
	17 4.310024	127.0.0.1	127.0.0.1	TCP	591 80 → 4346 [PSH, ACK] Seq=552 Ack=1 Win=256 Len=551 [TCP segment of a reassembled PDU]
	18 4.310024	127.0.0.1	127.0.0.1	TCP	40 4346 → 80 [ACK] Seq=1 Ack=1103 Win=254 Len=0
	19 4.320034	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	20 4.320034	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
F-2	21 4.391101	127.0.0.1	127.0.0.1	LLMNR	60 Standard query 0x7a00
1	22 4.509226	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	23 4.509226	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	24 4.887817	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	25 4.887817	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	26 4.891820	127.0.0.1	127.0.0.1	LLMNR	60 Standard query 0x6901
1000	27 4.988943	127.0.0.1	127.0.0.1	TCP	52 4623 → 9229 [SYN] Seq=0 Win=8192 Len=0 MSS=65495 WS=256 SACK_PERM=1
	28 4.988943	127.0.0.1	127.0.0.1	TCP	40 9229 → 4623 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	29 5.338653	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	30 5.338653	127.0.0.1	239.255.255.250	UDP	684 51443 → 3702 Len=656
	31 5.392787	127.0.0.1	127.0.0.1	LLMNR	60 Standard query 0x6202 ←
	32 5.489915	127.0.0.1	127.0.0.1	TCP	52 [TCP Retransmission] 4623 + 9229 [SYN] Seq=0 Win=8192 Len=0 MSS=65495 WS=256 SACK_PERM=
	33 5.489915	127.0.0.1	127.0.0.1	TCP	40 9229 → 4623 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	34 5.893412	127.0.0.1	127.0.0.1	DNS	75 Standard query 0x6103 ←
	35 5.990546	127.0.0.1	127.0.0.1	TCP	48 [TCP Retransmission] 4623 → 9229 [SYN] Seq=0 Win=8192 Len=0 MSS=65495 SACK_PERM=1
	36 5.990546	127.0.0.1	127.0.0.1	TCP	40 9229 → 4623 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	37 6.393988	127.0.0.1	127.0.0.1	NTP	75 reserved, reserved[Malformed Packet] ←
i	38 6.894676	127.0.0.1	127.0.0.1	DNS	75 Standard query 0x6505 ←
	39 6.992808	127.0.0.1	127.0.0.1	TCP	52 4625 → 9229 [SYN] Seq=0 Win=8192 Len=0 MSS=65495 WS=256 SACK_PERM=1
	40 6.992808	127.0.0.1	127.0.0.1	TCP	40 9229 → 4625 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	41 7.395414	127.0.0.1	127.0.0.1	LLMNR	60 Standard query 0x2d06 ←───
	42 7.493537	127.0.0.1	127.0.0.1	TCP	52 [TCP Retransmission] 4625 + 9229 [SYN] Seq=0 Win=8192 Len=0 MSS=65495 WS=256 SACK_PERM=
	43 7.493537	127.0.0.1	127.0.0.1	TCP	40 9229 → 4625 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
-1	44 7.896140	127.0.0.1	127.0.0.1	LLMNR	60 Standard query 0x3107 ←

whoami

	46 2.065723	127.0.0.1	127.0.0.1	HTTP	488 GET / HTTP/1.1
10	126 7.164778	127.0.0.1	127.0.0.1	HTTP	488 GET / HTTP/1.1
	132 8.524352	127.0.0.1	127.0.0.1	HTTP	488 GET / HTTP/1.1
200	179 12.557280	127.0.0.1	127.0.0.1	HTTP	488 GET / HTTP/1.1
	42 2.062720	127.0.0.1	127.0.0.1	HTTP	591 HTTP/1.1 404 Not Found (text/html)
	128 8.521351	127.0.0.1	127.0.0.1	HTTP	591 HTTP/1.1 404 Not Found (text/html)Continuation
	70 3.660452	127.0.0.1	127.0.0.1	NTP	76 NTP Version 4, client
	110 5.161997	127.0.0.1	127.0.0.1	NTP	76 NTP Version 4, client
	134 8.552379	127.0.0.1	127.0.0.1	NTP	76 NTP Version 4, client
	136 9.553555	127.0.0.1	127.0.0.1	NTP	76 NTP Version 4, client
_	176 11.055342	127.0.0.1	127.0.0.1	NTP	76 NTP Version 4, client
1	117 6.663983	127.0.0.1	127.0.0.1	DNS	76 Standard query 0x0a09 A watson.telemetry.microsoft.com
	71 4.160990	127.0.0.1	127.0.0.1	LLMNR	61 Standard query 0x2d04 ANY DESKTOP-8TD8H4Q
1	174 10.054240	127.0.0.1	127.0.0.1	LLMNR	61 Standard query 0x3103 ANY DESKTOP-8TD8H4Q
-	72 4.661517	127.0.0.1	127.0.0.1	DNS	76 Standard query 0x3105 A watson.telemetry.microsoft.com
E	175 10.554867	127.0.0.1	127.0.0.1	LLMNR	61 Standard query 0x5c04 ANY DESKTOP-8TD8H4Q
	49 2.659406	127.0.0.1	127.0.0.1	LLMNR	61 Standard query 0x6101 ANY DESKTOP-8TD8H4Q
1	111 5.662527	127.0.0.1	127.0.0.1	DNS	76 Standard query 0x6907 A watson.telemetry.microsoft.com
0.1	50 3.159946	127.0.0.1	127.0.0.1	DNS	76 Standard query 0x7702 A watson.telemetry.microsoft.com

Problems with this method

- Caleb the network admin is looking through his firewall logs and sees that LLMNR and DHCP are leaving through the gateway.
- This makes Caleb very sad.
- Caleb calls the security team and your red team engagement is now over.
- Also, the fact that you only get 1-3 bytes from a 100 byte packet sent

Stealthy vs Loud

- Stealthy is good, but really slow
- Sometimes get less than 1% useful data from each packet sent
- Stealth transfer can be unreliable for long messages
- Loud transfers are easier to implement and much faster

OCSP hollowing

Disadvantages of OCSP

Let's play

SPOT THAT C2 DATA

Full Stealth, UDP Protocol hopping

"Partial Stealth" OCSP packets

1000 13.946751	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=39610 Ack=31383 Win=253 Len=0	
1001 13.966771	127.0.0.1	127.0.0.1	HTTP	245 GET /UQyNesimaNaCqmO8tDgbsi1gLwuJ/AmaRxtjPKd8DcXBe0yfMqd+XeklLNiHx8O3vIvvJ2FfGTjhCpGe+gbVr%3D HTTP/1.1	
1002 13.966771	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=31383 Ack=39815 Win=254 Len=0	
1003 13.968272	127.0.0.1	127.0.0.1	TCP	161 80 → 35782 [PSH, ACK] Seq=31383 Ack=39815 Win=254 Len=121 [TCP segment of a reassembled PDU]	
1004 13.968272	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=39815 Ack=31504 Win=253 Len=0	
1005 13.988792	127.0.0.1	127.0.0.1	HTTP	245 GET /Ffe89rGyxvedcwwVQyEYUITPoVhVD0YjiAdUv95TYT6MbVZJUqaxPPnTY/J4W/RDA6+0ygNlBUeAhg62Dfqgl%3D HTTP/1.1	
1006 13.988792	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=31504 Ack=40020 Win=253 Len=0	-
1007 13.990293	127.0.0.1	127.0.0.1	TCP	161 80 → 35782 [PSH, ACK] Seq=31504 Ack=40020 Win=253 Len=121 [TCP segment of a reassembled PDU]	
1008 13.990293	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=40020 Ack=31625 Win=252 Len=0	
1009 14.010812	127.0.0.1	127.0.0.1	HTTP	245 GET /+ePE12QaGO/QuPpqU0/veo/Y6qdzHI9fN4Wi9tDKH3hL1g/zvcY2TsExXZzmbCvY5FhzvJsh6p0BXkW/tlxjy%3D HTTP/1.1	
1010 14.010812	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=31625 Ack=40225 Win=252 Len=0	
1011 14.012314	127.0.0.1	127.0.0.1	TCP	161 80 → 35782 [PSH, ACK] Seq=31625 Ack=40225 Win=252 Len=121 [TCP segment of a reassembled PDU]	
1012 14.012314	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=40225 Ack=31746 Win=252 Len=0	
1013 14.032333	127.0.0.1	127.0.0.1	TCP	52 45332 → 9229 [SYN] Seq=0 Win=8192 Len=0 MSS=65495 WS=256 SACK_PERM=1	
1014 14.032333	127.0.0.1	127.0.0.1	TCP	40 9229 → 45332 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0	
1015 14.032833	127.0.0.1	127.0.0.1	HTTP	245 GET /wtDifUEyONV1i8aK/FHrAz3I4RHmtNtE+q293IWFhHd/WfHehqDyxm1ZZy5b0h9CcfziXEPrG29NH1K3VGNtd%3D HTTP/1.1	
1016 14.032833	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=31746 Ack=40430 Win=251 Len=0	
1017 14.034335	127.0.0.1	127.0.0.1	TCP	161 80 → 35782 [PSH, ACK] Seq=31746 Ack=40430 Win=251 Len=121 [TCP segment of a reassembled PDU]	
1018 14.034335	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=40430 Ack=31867 Win=251 Len=0	
1019 14.054854	127.0.0.1	127.0.0.1	HTTP	245 GET /fiimnJfS3V+9MipGHGvm9Ni5TNJnO3yxYFEQwMV1ZFLO8ZbT8Or5VCMiGpcqT1OSt8YTRCydLxDcGrYuQHs/N%3D HTTP/1.1	
1020 14.054854	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=31867 Ack=40635 Win=251 Len=0	
1021 14.056355	127.0.0.1	127.0.0.1	TCP	161 80 \rightarrow 35782 [PSH, ACK] Seq=31867 Ack=40635 Win=251 Len=121 [TCP segment of a reassembled PDU]	
1022 14.056355	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=40635 Ack=31988 Win=251 Len=0	
1023 14.076875	127.0.0.1	127.0.0.1	HTTP	245 GET /Qi/M97ScuRqA1rje/KBygT+Eli5uwTUnvN9w7Vp5YEmuyLfJ1dpTB728JHPgoBRbd2atu95a/FKY4yWpbuEK7%3D HTTP/1.1	
1024 14.076875	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=31988 Ack=40840 Win=256 Len=0	
1025 14.078377	127.0.0.1	127.0.0.1	TCP	161 80 → 35782 [PSH, ACK] Seq=31988 Ack=40840 Win=256 Len=121 [TCP segment of a reassembled PDU]	
1026 14.078377	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=40840 Ack=32109 Win=250 Len=0	
1027 14.098896	127.0.0.1	127.0.0.1	HTTP	245 GET //Th1i8NSFlSYsCTsfbkj0jzV8vHgCsf2Pyr2WTJGGHB/SZ18T5hbLVTJMb5Myvs4XgDSaNqbfar1T5dxAf3Za%3D HTTP/1.1	
1028 14.098896	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=32109 Ack=41045 Win=255 Len=0	
1029 14.100398	127.0.0.1	127.0.0.1	TCP	161 80 \rightarrow 35782 [PSH, ACK] Seq=32109 Ack=41045 Win=255 Len=121 [TCP segment of a reassembled PDU]	
1030 14.100398	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=41045 Ack=32230 Win=256 Len=0	
1031 14.120497	127.0.0.1	127.0.0.1	HTTP	245 GET /oWm6vP8gdZM6uYXY3XW0qf13dHfR7dCuoksn0rOsd0UOFgiynIluITVlIYfno+0YZe1ou0pJSue5/ZRre7EWw%3D HTTP/1.1	
1032 14.120497	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=32230 Ack=41250 Win=255 Len=0	
1033 14.121998	127.0.0.1	127.0.0.1	TCP	161 80 → 35782 [PSH, ACK] Seq=32230 Ack=41250 Win=255 Len=121 [TCP segment of a reassembled PDU]	
1034 14.121998	127.0.0.1	127.0.0.1	TCP	40 35782 → 80 [ACK] Seq=41250 Ack=32351 Win=256 Len=0	
1035 14.142018	127.0.0.1	127.0.0.1	HTTP	245 GET //2GS6EE/uYYDaR1kNqG+u+cP+FyYJLncsYxI1jiCZTumF6rkBlkIojOU+AyWCCLMc6tNVe1GzQuFmuV9X6i0g%3D HTTP/1.1	
1036 14.142018	127.0.0.1	127.0.0.1	TCP	40 80 → 35782 [ACK] Seq=32351 Ack=41455 Win=254 Len=0	

And yet

- Did the glaring flaws in these exfiltration methods stop me from actually writing tools to do both of them?
- Of course it didn't.
- In fact, if you want to try and recover some exfiltrated data, check out the Zaine's Forensics category on TCTF

Github link to tools: [redacted]

TCTF Challenge hints

- Youtube Procrastinator:
 - Flag is in that PCAP twice
- Localtoast/localtoastier are both protocol hopping stealth
- Whisper, Concert and Deafening all use OCSP cloaking
- Probably should automate Concert, Deafening, and Localtoastier

Upcoming Talks

- The full attack kill chain
- Lockpicking 101
- Hack The Box talks
- ...More!

Proud Sponsors

REDLattice

