Convex Sets (III) + Convex Functions (I)

Lecture 3, Nonlinear Programming

National Taiwan University

October 4, 2016

Table of contents

- Separating and Supporting Hyperplanes
 - Separating hyperplane theorem
 - Supporting Hyperplanes
- 2 Dual Cones
 - Definitions and Basic Properties
 - Dual generalized inequalities
 - Minimum and minimal elements via dual inequalities
- Convex Functions Basics
 - Definition
 - First-Order Conditions
 - Second-Order Conditions
 - Examples

Separating Hyperplane Theorem

Separating Hyperplane

The hyperplane $\{x \mid a^Tx = b\}$ is called a **separating hyperplane** for the sets C and D, or is said to **separate** the sets C and D if $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

Separating Hyperplane Theorem

Suppose C and D are two convex sets that do not intersect, i.e., $C \cap D = \phi$. Then there exist $a \neq 0$ and b such that the hyperplane $\{x \mid a^Tx = b\}$ separates C and D.

Separating Hyperplane Theorem – Proof Proof of a special case

- Consider that C and D are both convex, closed, and bounded.
- Assume that the **Euclidean distance** between *C* and *D*, defined as

$$dist(C, D) = \inf\{||u - v||_2 \mid u \in C, v \in D\},\$$

is positive.

• Since C and D are both closed and bounded, there exist $c \in C$ and $d \in D$ such that

$$||c-d||_2 = \operatorname{dist}(C,D).$$

Separating Hyperplane Theorem – Proof Proof of a special case

Let

$$a = d - c$$
, $b = \frac{||d||_2^2 - ||c||_2^2}{2}$.

Then, it can be shown that the affine function

$$f(x) = a^{T}x - b = (d - c)^{T}\left(x - \frac{d + c}{2}\right)$$

is nonpositive on C and nonnegative on D.

Example – A Convex Set and An Affine Set

- Suppose C is convex and D is affine, i.e., $D = \{Fu + g | u \in \mathbb{R}^m\}$, where $F \in \mathbb{R}^{n \times m}$.
- Suppose C and D are disjoint, so by the separating hyperplane theorem there are $a \neq 0$ and b such that $a^T x \leq b$ for all $x \in C$ and $a^T x > b$ for all $x \in D$.
- : $a^T x \ge b$ for all $x \in D$, : $a^T F u \ge b a^T g$ for all $u \in \mathbb{R}^m$.
- But a linear function is bounded below on \mathbb{R}^m only when it is zero, so we conclude $a^T F = 0$ (and hence, $b \leq a^T g$).
- Thus we conclude that there exists $a \neq 0$ such that $F^T a = 0$ and $a^T x < a^T g$ for all $x \in C$.

Strict Separation of Convex Sets

Strict separation of convex sets

For two sets $C, D \subseteq \mathbb{R}^n$, if there exists $a \in \mathbb{R}^n$, $b \in \mathbb{R}$ such that

$$a^T x < b \ \forall x \in C \ \text{and} \ a^T x > b \ \forall x \in D,$$

then C and D are said to be strictly separable, and the hyperplane $\{x \mid a^T x = b\}$ is called strict separation of C and D.

 Remark: The separating hyperplane theorem only dictates that two convex sets that are disjoint to be separated by a hyperplane. A strict separation is not guaranteed (even when the sets are closed).

Example – A Point and A Closed Convex Set

- Let C be a closed convex set and $x_0 \notin C$. Then there exists a hyperplane that strictly separates $\{x_0\}$ from C.
- Proof idea:
 - The two sets C and $B(x_0, \epsilon)$ do not intersect for some $\epsilon > 0$.
 - Apply the separating hyperplane theorem on C and $B(x_0, \epsilon)$ (getting a^T and b), and let f(x).
 - The affine function

$$f(x) = a^{\mathsf{T}} x - b - \epsilon ||a||_2 / 2$$

strictly separates C and $\{x_0\}$.

 Corollary: a closed convex set is the intersection of all halfspaces that contain it. (Hint: proof by contradiction)

Converse of Separating Hyperplane Theorems

- Question: If there exists a hyperplane that separates convex sets C and D, does this imply C and D are disjoint?
 - (No. Consider $C = D = \{0\} \subseteq \mathbf{R}$.)
- Suppose C and D are convex sets, with C open, and there exists an affine function f that is nonpositive on C and nonnegative on D. Then C and D are disjoint.
 - Hint: f is negative on C.

$\mathsf{Theorem}$

Any two convex sets, at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Theorem of alternatives for strict linear inequalities

Theorem of alternatives for strict linear inequalities

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The inequalities

$$Ax \prec b$$

are infeasible if and only if there exists $\lambda \in \mathbb{R}^m$ such that

$$\lambda \neq 0$$
, $\lambda \succeq 0$, $A^T \lambda = 0$, $\lambda^T b \leq 0$.

• Proof idea: consider the open convex set

$$D = \mathbf{R}_{++}^{m} = \{ y \in \mathbf{R}^{m} \mid y \succ 0 \}$$

and the affine set (hence convex)

$$C = \{b - Ax \mid x \in \mathbb{R}^n\}.$$

Supporting Hyperplanes

Supporting hyperplanes

Suppose $C \subseteq \mathbb{R}^n$, and x_0 is a point in its boundary **bd** C, i.e.,

$$x_0 \in \mathsf{bd}\ C = \mathsf{cl}\ C \backslash \mathsf{int}\ C.$$

If $a \neq 0$ satisfies $a^T x \leq a^T x_0$ for all $x \in C$, then the hyperplane $\{x | a^T x = a^T x_0\}$ is called a supporting hyperplane to C at the point x_0 .

- This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x|a^Tx=a^Tx_0\}$.
- The hyperplane is tangent to C at x_0 , and the halfspace $\{x|a^Tx \leq a^Tx_0\}$ contains C.

Supporting Hyperplanes

- This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x|a^Tx=a^Tx_0\}$.
- The hyperplane is tangent to C at x_0 , and the halfspace $\{x|a^Tx \leq a^Tx_0\}$ contains C.

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

For any nonempty convex set C, and any $x_0 \in \mathbf{bd}\ C$, there exists a supporting hyperplane to C at x_0 .

Proof: Use the separating hyperplane theorem.

- If int $C \neq \phi$: then by applying the separating hyperplane theorem on $\{x_0\}$, the statement is proved.
- If int $C = \phi$, then C lies in an affine set of dimension less than n. Then any hyperplane that contains this affine set contains both C and x_0 and therefore is a supporting hyperplane.

(Partial) Converse of the Supporting Hyperplane Theorem

Converse of the Supporting Hyperplane Theorem

If a set C is closed, has nonempty interior, and has a supporting hyperplane at any $x_0 \in \mathbf{bd}$ C, then C is convex.

Dual Cones

Dual Cones

Let K be a cone. The set

$$K^* = \left\{ y \mid x^T y \ge 0 \text{ for all } x \in K \right\}$$

is called the dual cone of K.

Basic Properties of Dual Cones

- K^* is a cone.
- K^* is convex (even when K is not convex).

Dual Cones

Dual Cones

Let K be a cone. The set

$$K^* = \left\{ y \mid x^T y \ge 0 \text{ for all } x \in K \right\}$$

is called the dual cone of K.

• $y \in K^*$ if and only if -y is the normal of a hyperplane that supports K at the origin.

Dual Cones – Examples

Dual Cones

Let K be a cone. The set

$$K^* = \left\{ y \mid x^T y \ge 0 \text{ for all } x \in K \right\}$$

is called the dual cone of K.

Subspace

The dual cone of a subspace $V \subseteq \mathbb{R}^n$ (which is a cone) is its orthogonal complement

$$V^{\perp} = \left\{ y \mid y^{\mathsf{T}} v = 0 \quad \forall v \in V \right\}.$$

Dual Cones – Examples

Dual Cones

Let K be a cone. The set

$$K^* = \left\{ y \mid x^T y \ge 0 \text{ for all } x \in K \right\}$$

is called the dual cone of K.

Nonnegative orthant

The cone \mathbb{R}^n_+ is its own dual:

$$y^T x > 0$$
, $\forall x \succ 0 \Leftrightarrow y \succ 0$.

We call such a cone self-dual.

Dual of a Positive Semidefinite Cone

Positive semidefinite cone

The positive semidefinite cone S^n_+ is self-dual, i.e., for $X, Y \in S^n$,

$$\operatorname{tr}(XY) \geq 0$$
 for all $X \succeq 0 \Leftrightarrow Y \succeq 0$.

Here, we used the standard inner product $\operatorname{tr}(XY) = \sum_{i,j=1}^{n} X_{ij} Y_{ij}$ on the set of symmetric $n \times n$ matrices S^n .

Proof:

- If $Y \notin \mathbf{S}_{+}^{n}$, then $\exists q \in \mathbf{R}^{n}$ s.t. $q^{T}Yq < 0$. Let $X = qq^{T}$, then $\operatorname{tr}(XY) = \operatorname{tr}(qq^{T}Y) = \operatorname{tr}(q^{T}Yq) < 0$.
- If $Y \in \mathbf{S}_+^n$, then for any $X \in \mathbf{S}_+^n$, i.e., $X \succeq 0$, X can be expressed as $X = \sum_{i=1}^n \lambda_i q_i q_i^T$, with $\lambda_i \geq 0$ and $q_i \neq 0$. Then,

$$\operatorname{tr}(XY) = \sum_{i=1}^{n} \lambda_{i} \operatorname{tr}(q_{i}q_{i}^{T}Y) = \sum_{i=1}^{n} \lambda_{i} \operatorname{tr}(q_{i}^{T}Yq_{i}) \geq 0.$$

Properties of Dual Cones

Properties of Dual Cones

Dual cones satisfy the following properties:

- K* is closed and convex.
- $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.
- If K has nonempty interior, then K^* is pointed.
- If the closure of K is pointed, then K^* has nonempty interior.
- K** is the closure of the convex hull of K.
- If K is convex and closed, then $K^{**} = K$.

Moreover, if K is a proper cone, then

- K* is also a proper cone.
- $K^{**} = K$

Dual generalized inequalities

Dual generalized inequalities

If K is a proper cone which induces a generalized inequality \leq_K . Then we refer to the generalized inequality \leq_{K^*} as the dual of the generalized inequality \leq_K . (Note that K^* is also a proper cone).

Properties of dual generalized inequalities

- $x \leq_K y$ if and only if $\lambda^T x \leq \lambda^T y$ for all $\lambda \succeq_{K^*} 0$.
- $x \prec_K y$ if and only if $\lambda^T x < \lambda^T y$ for all $\lambda \succeq_{K^*} 0$, $\lambda \neq 0$.

Theorem of alternatives for strict generalized inequalities

Theorem of alternatives for linear strict generalized inequalities

Suppose $K \subseteq \mathbb{R}^m$ is a proper cone. The strict generalized inequality

$$Ax \prec_{K} b$$
,

where $x \in \mathbb{R}^n$, is infeasible iff there exists $\lambda \in \mathbb{R}^m$ s.t.

$$\lambda \neq 0$$
, $\lambda \succeq_{K^*} 0$, $A^T \lambda = 0$, $\lambda^T b \leq 0$.

Proof idea:

- Apply the separating hyperplane theorem on $\{b Ax \mid x \in \mathbb{R}^n\}$ and int K.
- Converse: Proof by contradiction.

Dual characterization of minimum element

Dual characterization of minimum element

Consider a set $S \subseteq \mathbb{R}^n$, not necessarily convex. Then, x is the minimum element of S, with respect to the generalized inequality \leq_K , if and only if for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over $z \in S$.

• This means that for any $\lambda \succ_{K^*} 0$, the hyperplane $\{z \mid \lambda^T(z-x)=0\}$ is a **strict supporting hyperplane** to S at x (i.e., the hyperplane intersects S only at the point x).

Dual characterization of minimum element

Dual characterization of minimum element

Consider a set $S \subseteq \mathbb{R}^n$, not necessarily convex. Then, x is the minimum element of S, with respect to the generalized inequality \preceq_K , if and only if for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over $z \in S$.

Proof.

Dual characterization of minimal elements

Dual Characterization of minimal elements

If $\lambda \succ_{K^*} 0$ and x minimizes $\lambda^T z$ over $z \in S$, then x is minimal.

• The converse is not true: if x is minimal in S, there does not necessarily exist $\lambda \succ_{K^*} 0$ that minimizes $\lambda^T z$ over $z \in S$. (Example: if S is not convex).

Dual characterization of minimal elements

Dual Characterization of minimal elements in convex sets

Suppose the set $S \subseteq \mathbb{R}^n$ is convex. Then, for any minimal element x in S there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over $z \in S$.

Proof: Suppose x is minimal: $((x - K) \setminus \{x\}) \cap S = \phi$. By applying the separating hyperplane theorem to the convex sets $(x - K) \setminus \{x\}$ and S, we have $\exists \lambda \neq 0$ and μ such that $\lambda^T(x - y) \leq \mu$ for all $y \in K$ and $\lambda^T z \geq \mu$ for all $z \in S$. Note that $\lambda^T x = \mu$ since $x \in S$ and $x \in x - K$. So $\lambda^T y \geq 0$ for all $y \in K$ and therefore $\lambda \in K^*$ (i.e., $\lambda \succeq_{K^*} 0$). Finally, $\lambda^T z \geq \mu = \lambda^T x$ for all $z \in S$ suggests that x minimizes $\lambda^T z$ over $z \in S$.

Question: Must there exist a $\lambda \succ_{K^*} 0$ such that x minimizes $\lambda^T z$ over $z \in S$?

Dual characterization of minimal elements

• Suppose the set $S \subseteq \mathbb{R}^n$ is convex. There does not necessarily exist a nonzero $\lambda \succ_{K^*} 0$ such that a minimal point in S, x, minimizes $\lambda^T z$ over $z \in S$.

Pareto optimal production frontier

Pareto optimal production frontier

- Consider a production set $P \subseteq \mathbb{R}^n$ consisting of vectors that correspond to some production method: $x \in P$ corresponds to a method that consumes x_i units of resource i, i = 1, ..., n.
- Production methods with resource vectors that are minimal elements of P, with respect to component-wise inequality, are called Pareto optimal or efficient.
- The set of minimal elements of P is called the efficient production frontier.

Definitions of Convex Functions

Convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} \ f$ and for all $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

• The line segment between (x, f(x)) and (y, f(y)), which is the **chord** from x to y, lies above the graph of f.

Definitions of Convex Functions

Convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} \ f$ and for all $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y). \tag{1}$$

• A function f is **strictly convex** if strict inequality holds in (1) whenever $x \neq y$ and $0 < \theta < 1$:

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$
.

• We say f is concave if -f is convex, and strictly concave if -f is strictly convex.

Affine Functions

Affine Functions

For an affine function we always have equality in (1), i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y),$$

so all affine functions are both convex and concave.

• Conversely, any function that is convex and concave is affine.

Convexity

- A function is convex if and only if it is convex when restricted to any line that intersects its domain:
- That is, f is convex if and only if $\forall x \in \text{dom } f, v \in \mathbb{R}^n$, the function g(t) = f(x + tv) is convex on $\{t \mid x + tv \in \text{dom } f\}$.
- A convex function is continuous on the relative interior of its domain; it can have discontinuities only on its relative boundary.

Extended-Value Extensions

Extended-Value Extensions

If f is convex we define its extended-value extension

$$\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$
 by

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$

First-Order Conditions

First-Order Conditions

Suppose f is differentiable (implying that $\operatorname{dom} f$ is open). Then f is convex if and only if $\operatorname{dom} f$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

- Observation: the first-order Taylor approximation is a global underestimator of the function.
- Conversely, if the first-order Taylor approximation of a function is always a global underestimator of the function, then the function is convex.

First-Order Conditions

A convex function f satisfies

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom } f$.

- This shows that from local information about a convex function (i.e., f(x), $\nabla f(x)$), we can derive global information (i.e., a global underestimator).
- Example: if $\nabla f(x) = 0$, then for all $y \in \text{dom } f$, $f(y) \ge f(x)$. (x is the global minimizer of f.)

First-Order Conditions - Strict Convexity, Concavity

First-Order Conditions for strict convexity

f is strictly convex if and only if **dom** f is convex and for $x, y \in \text{dom } f, x \neq y$, we have

$$f(y) > f(x) + \nabla f(x)^T (y - x).$$

First-Order Conditions for (strict) concavity

f is concave if and only if $\operatorname{dom} f$ is convex and for $x, y \in \operatorname{dom} f$, we have

$$f(y) \leq f(x) + \nabla f(x)^T (y - x).$$

f is strictly concave if and only if dom f is convex and for $x, y \in \text{dom } f, x \neq y$, we have

$$f(y) < f(x) + \nabla f(x)^T (y - x).$$

Proof of First-Order Conditions

Proof ideas:

- Consider the special case n = 1 first.
 - Then we only need to prove that f is convex if and only if

$$f(y) \ge f(x) + f'(x)(y - x).$$

• For the general case $f: \mathbb{R}^n \to \mathbb{R}$, with dom f convex, consider the line passing by any two points $x, y \in \text{dom } f, x \neq y$, and define a function $g: \mathbb{R} \to \mathbb{R}$ with g(t) = f(ty + (1-t)x).

Second-Order Conditions

 Assume that f: R → R is twice differentiable with dom f = R, then it is convex if and only if its second derivative is nonnegative.

Second-Order Conditions

• Assume that f is twice differentiable, that is, its **Hessian** or second derivative $\nabla^2 f$ exists at each point in **dom** f (open).

Second-Order Conditions

Then, f is convex if and only if **dom** f is convex and its Hessian is positive semidefinite:

$$\nabla^2 f(x) \succeq 0, \ \forall x \in \text{dom } f.$$

• For a function on R, this means $f''(x) \ge 0$, and dom f is convex.

Second-Order Conditions – Strict Convexity, Concavity

Second-Order Conditions for Concavity

A function f is concave if and only if **dom** f is convex and $\nabla^2 f(x) \leq 0$ for all $x \in \text{dom } f$.

Second-Order Conditions for Strict Convexity

If $\nabla^2 f(x) > 0$ for all $x \in \text{dom } f$, then f is strictly convex.

- If f is strictly convex, do we have $\nabla^2 f(x) \succ 0$? (e.g., think $f(x) = x^4$)
- Is $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1/x^2$ a convex function? Why?

Example - Quadratic Functions

• Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$, with dom $f = \mathbb{R}^n$, given by

$$f(x) = (1/2)x^{T}Px + q^{T}x + r,$$

with $P \in S^n$, $q \in \mathbb{R}^n$, and $r \in \mathbb{R}$.

- Note that $\nabla^2 f(x) = P$.
- The function f is convex if and only if $P \succeq 0$.
- The function f is concave if and only if $P \leq 0$.
- The function f is strictly convex if and only if $P \succ 0$.
- The function f is strictly concave if and only if $P \prec 0$.

Example Convex functions on R

- Exponential: e^{ax} is convex on R, for any $a \in R$.
- Powers: x^a is convex on R_{++} when $a \ge 1$ or $a \le 0$; it is concave when 0 < a < 1.
- Powers of absolute value: $|x|^p$ with $p \ge 1$ is convex on R.
- Logarithm: $\log x$ is concave on R_{++} .
- Negative entropy: $x \log x$ is convex on R_{++} (and also on R_{+} if defined as 0 for x = 0).

Example Convex Functions on \mathbb{R}^n

• Norms. Every norm on \mathbb{R}^n is convex.

Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ (with dom $f = \mathbb{R}^n$) is called a **norm** if for any $x, y \in \mathbb{R}^n, t \in \mathbb{R}$, we have

- $f(x) \ge 0$ (f is nonnegative).
- f(x) = 0 only if x = 0 (f is definite).
- f(tx) = |t|f(x) (f is homogeneous).
- $f(x + y) \le f(x) + f(y)$ (f satisfies the triangle inequality).

Example Convex Functions on \mathbb{R}^n

- Norms. Every norm on \mathbb{R}^n is convex.
- Max function. $f(x) = \max\{x_1, ..., x_n\}$ is convex on \mathbb{R}^n .
- Quadratic-over-linear function. The function $f(x,y) = x^2/y$, with dom $f = \mathbb{R} \times \mathbb{R}_{++} = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$, is convex.
- Log-sum-exp. The function $f(x) = \log(e^{x_1} + ... + e^{x_n})$ is convex on \mathbb{R}^n .
 - Note that $\max\{x_1, ..., x_n\} \le f(x) \le \max\{x_1, ..., x_n\} + \log n$.
- Geometric mean. The geometric mean $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}^n_{++}$.
- Log-determinant. The function $f(X) = \log \det X$ is concave on dom $f = \mathbf{S}_{++}^n$.

More on Norms

Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ (with dom $f = \mathbb{R}^n$) is called a **norm** if for any $x, y \in \mathbb{R}^n, t \in \mathbb{R}$, we have

- $f(x) \ge 0$ (f is nonnegative).
- f(x) = 0 only if x = 0 (f is definite).
- f(tx) = |t|f(x) (f is homogeneous).
- $f(x + y) \le f(x) + f(y)$ (f satisfies the triangle inequality).

I_p -norm

Let $p \ge 1$. Then the l_p -norm is defined as

$$||x||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

Question: When p < 1, is $||x||_p$ still a norm?

Examples of I_p -norm

• When p = 2, the l_2 -norm is actually the Euclidean norm:

$$||x||_2 = (x_1^2 + \cdots + x_n^2)^{1/2}.$$

• When p = 1, the l_1 -norm is the sum-absolute-value:

$$||x||_1 = |x_1| + \cdots + |x_n|.$$

• When $p \to \infty$, the l_{∞} -norm is:

$$||x||_{\infty} \triangleq \lim_{p \to \infty} ||x||_{p} = \lim(|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

It can be shown that $||x||_{\infty} = \max\{|x_1|,...,|x_n|\}.$

Other Examples of Norms

• For $P \in \mathbf{S}_{++}^n$, the P-quadratic norm is defined as

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2.$$

The unit ball of a quadratic norm,

$$\{x \in \mathbf{R}^n \mid ||x||_P \le 1\},$$

is an ellipsoid.

• The Frobenius norm, defined on $R^{m \times n}$, is

$$||X||_F = (\operatorname{tr} X^T X)^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}.$$

Norms and Max function

• If $f: \mathbb{R}^n \to \mathbb{R}$ is a norm, and $0 \le \theta \le 1$, then

$$f(\theta x + (1 - \theta)y) \le f(\theta x) + f((1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

since f satisfies the triangle inequality and f is homogeneous.

- Therefore any norm is convex.
- The function $f(x) = \max_i x_i$ is convex since

$$\begin{array}{rcl} \max_{i}(\theta x_{i}+(1-\theta)y_{i}) & \leq & \max_{i}\theta x_{i}+\max_{i}(1-\theta)y_{i} \\ & = & \theta\max_{i}x_{i}+(1-\theta)\max_{i}y_{i}. \end{array}$$

• In addition, $f(|x|) = \max_i |x_i|$ is a norm.

Quadratic-Over-Linear Function

• The quadratic-over-linear function $f: \mathbb{R}^2 \to \mathbb{R}$, dom $f = \mathbb{R} \times \mathbb{R}_{++}$, $f(x,y) = x^2/y$, is convex since:

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix} = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0.$$

Log-Sum-Exp

• The log-sum-exp function $f(x) = \log(e^{x_1} + ... + e^{x_n})$ is convex on \mathbb{R}^n since

$$\nabla^2 f(x) = \frac{1}{(\mathbf{1}^T z)^2} \left((\mathbf{1}^T z) \operatorname{diag}(z) - z z^T \right),$$

where $z = (e^{x_1}, ..., e^{x_n})$, and

• for all v,

$$v^{\mathsf{T}} \nabla^2 f(x) v = \frac{1}{(\mathbf{1}^{\mathsf{T}} z)^2} \left(\left(\sum_{i=1}^n z_i \right) \left(\sum_{i=1}^n v_i^2 z_i \right) - \left(\sum_{i=1}^n v_i z_i \right)^2 \right) \ge 0.$$

Geometric mean

- The geometric mean function $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}^n_{++}$ since its Hessian $\nabla^2 f(x)$ can be shown to be negative semidefinite.
- Note that

$$\frac{\partial f(x)}{\partial x_k} = \frac{1}{n} \frac{(\prod_{i=1}^n x_i)^{1/n}}{\prod_{i=1}^n x_i} \cdot \prod_{i=1, i \neq k}^n x_i = \frac{1}{n} \frac{(\prod_{i=1}^n x_i)^{1/n}}{x_k}$$

and

$$\frac{\partial^2 f(x)}{\partial x_{\nu}^2} = -(n-1) \frac{\left(\prod_{i=1}^n x_i\right)^{1/n}}{n^2 x_{\nu}^2}, \frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \frac{\left(\prod_{i=1}^n x_i\right)^{1/n}}{n^2 x_k x_l}$$

Geometric mean

- The geometric mean function $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}_{++}^n$ since its Hessian $\nabla^2 f(x)$ can be shown to be negative semidefinite.
- So,

$$\nabla^{2} f(x) = -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} \left(n \text{ diag } (1/x_{1}^{2}, ..., 1/x_{n}^{2}) - qq^{T} \right)$$

where $q_i = 1/x_i$

• For any $v \in \mathbb{R}^n$, we have

$$v^{T} \nabla^{2} f(x) v = -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} \left(n \sum_{i=1}^{n} v_{i}^{2} / x_{i}^{2} - \left(\sum_{i=1}^{n} v_{i} / x_{i} \right)^{2} \right) \leq 0$$

Log-Determinant

- The function $f: S^n \to R$, $f(X) = \log \det X$, with dom $= S_{++}^n$ is concave.
- Proof idea: consider an arbitrary line in S^n (that passes through some point in S^n_{++}) given by X = Z + tV, where $Z \in S^n_{++}$, $V \in S^n$, and define g(t) = f(Z + tV), dom $g = \{t \mid Z + tV \succ 0\}$.
- Then it can be shown that

$$g(t) = \sum_{i=1}^{n} \log(1 + t\lambda_i) + \log \det Z$$

where λ_i are the eigenvalues of $Z^{-1/2}VZ^{-1/2}$.

So,

$$g''(t) = -\sum_{i=1}^n \frac{\lambda_i^2}{(1+t\lambda_i)^2} \leq 0.$$