TD/TP: FFD 2D

Exercice : déformation globale

1. Écrire la formule générale pour réaliser la rampe entre t_0 et t_1 ($0 < = t_0 < t_1 < = 1$) tel que $r(t) = || \text{interpolation linéaire entre } V_0 et V_1 \text{ si } t_0 < t < t_1,$

 $|V_1$ si $t < t_0$,

- 2. Rappeler la formule de déformation d'une transformation globale de type twist suivant
- 3. Calculer la Jacobienne du Twist suivant les x.
- 4. Donnez l'expression de la normale $\vec{N}_{F(S(u,v))}$ au point F(P) où $P = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} = S(u,v)$

est sur une surface S(u,v) à laquelle on a fait subir un twist suivant les x dans le repère locale de la surface. Cette surface « twistée » a été positionnée dans la scène à l'aide de la transformation MODEL.

Exercice: déformation locale Calcul

Soit en 2D un cercle centré unitaire, décrit par N points sur sa circonférence (notés C_0, \dots C_{N-1} .). Soit l = m = 2 le nombre d'intervalles divisant la boîte englobante sur l'axe des X et Y respectivement. Les points de la boîte sont notés P_{ii.}

Donner les coordonnées du point C_i = ($\cos \pi/4$, $\sin \pi/4$) quand on déforme P_{22} de (1,1) en (2,2). Les fonctions d'interpolation sont des fonctions de Bézier.

Algorithme

Écrire l'algorithme qui déforme une forme 2D quelconque donnée par N points, par application d'une translation sur des points de la grille englobante, divisée en l intervalles sur l'axe des X et m intervalles sur l'axe des Y.

Donnez les précisions nécessaires à une implémentation via shader.

On demande des structures de données et des fonctions suffisamment précises en pseudo-code pour qu'un codage dans un langage de programmation usuel soit immédiat.