

CLASSROOM CONTACT PROGRAMME

(Academic Session : 2024 - 2025)

ENTHUSE COURSE

PHASE: MEA,B,C,D,L,M,N,O,P,Q & MEPS

TARGET: PRE-MEDICAL 2025

Test Type: SRG-MAJOR Test Pattern: NEET (UG)

TEST DATE: 26-11-2024

	Ne		W	EV
R	ИЭ	EN		EY

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	3	4	2	3	2	4	4	3	4	4	1	2	3	2	1	1	4	4	1	2	1	2	3	4	1	3	3	1	1	3
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	3	4	2	1	3	4	4	2	3	1	4	2	1	2	1	1	1	1	3	2	2	3	4	1	4	1	3	1	1	1
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	3	1	2	4	3	4	3	2	2	4	4	3	4	2	3	3	1	2	1	1	2	3	3	2	1	3	3	3	4	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	1	2	3	4	3	3	1	1	2	2	1	2	2	3	1	1	2	4	2	3	4	2	2	1	2	3	3	2	2	1
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	2	4	3	1	4	3	4	2	3	2	3	2	4	4	4	1	1	3	4	2	2	3	4	4	2	3	3	3	2	4
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	3	2	4	3	4	4	3	4	3	1	3	1	1	2	4	3	2	2	3	1	2	1	3	3	2	4	2	1	3	2
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
A.	4	4	3	1	3	1	4	1	1	1	1	3	2	1	4	2	3	3	4	1										

HINT - SHEET

SUBJECT: PHYSICS

SECTION - A

5. Ans (2)

Since surface is smooth so force is normal so horizontal component of velocity will remain unchanged while vertical component of velocity either decreases or remain same that's why angle from vertical will increase or remain same.

6. Ans (4)

$$\begin{aligned} p_1 &= p_2 \\ k_1 + k_2 &= E = 6 \times 10^4 \text{ J} \\ or \ \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} &= E \ ; \ \frac{p_1^2}{2} \left[\frac{m_1 + m_2}{m_1 m_2} \right] = E \\ p_1 &= \sqrt{\frac{2m_1 m_2 E}{m_1 + m_2}} = \sqrt{\frac{2x1 \times 3 \times 6 \times 10^4}{1 + 3}} \\ p_1 &= 3 \times 10^2 \text{ kgms}^{-1} \end{aligned}$$

7. $\operatorname{Ans}(4)$

$$\begin{split} K_R &= \frac{40}{100} K_T \; \; ; \; \; \frac{1}{2} I \left(\frac{v^2}{R^2} \right) = \frac{2}{5} \times \frac{1}{2} m v^2 \\ I &= \frac{2}{5} m R^2 \end{split}$$

8. Ans (3)

$$K = \frac{L^2}{2I} \Rightarrow \frac{K_1}{K_2} = \frac{L_1^2}{L_2^2} \Rightarrow \frac{K_1}{K_2} = \left(\frac{100}{110}\right)^2 = \frac{100}{121}$$
$$\Rightarrow \frac{100}{K_2} = \frac{100}{121} \Rightarrow K_2 = 121 = 100 + 21$$

Increase in kinetic energy = 21%.

9.

$$\begin{split} a &= \frac{g \sin \theta}{1 + \frac{K^2}{R^2}} = \frac{g \sin \theta}{1 + \frac{1}{2}} = a_0 \text{ (given)} \\ g \sin \theta &= \frac{3}{2} a_0 \\ f_r &= \frac{mg \sin \theta}{1 + \frac{R^2}{K^2}} = \frac{m}{1 + \frac{2}{1}} \left(\frac{3}{2} a_0 \right) = \frac{ma_0}{2} \end{split}$$

10. Ans (4)

(a)
$$\frac{\text{ma}^2}{2}$$
; (b) ma^2 ;
(c) $\frac{\text{m}(4\text{a}^2)}{6} = \frac{2}{3}\text{ma}^2$; (d) $\boxed{}$

$$4 \times \left(\frac{\text{m}}{4}\frac{4\text{a}^2}{12} + \frac{\text{ma}^2}{4}\right) = \frac{\text{ma}^2}{3} + \text{ma}^2 = \frac{4}{3}\text{ma}^2$$

11. Ans (1)

Moment of inertia of disc about given axis

$$I_{d} = \frac{5mr^{2}}{4}$$
So, $mk_{d}^{2} = \frac{5mr^{2}}{4} \implies K_{d} = \frac{\sqrt{5}}{2}r$

Moment of inertia of ring about given axis, $I_R = 2mr^2$

So,
$$mk_f^2 = 2mr^2 \implies K_f = \sqrt{2}r$$

$$\frac{K_d}{K_f} = \frac{\sqrt{5}r}{2 \times \sqrt{2}r} = \frac{\sqrt{5}}{2\sqrt{2}}$$

12. Ans (2)

$$\theta = 2 \times \frac{\pi}{8}$$

$$\theta = \frac{\pi}{4} \operatorname{rad}$$

$$\theta = 45^{\circ}$$

$$\vec{r} = 10 \cos 45^{\circ} \hat{i} + 10 \sin 45^{\circ} \hat{j}$$
 [$|\vec{r}| = 10$ m]
 $\vec{r} = 5\sqrt{2} \hat{i} + 5\sqrt{2} \hat{i}$

13. Ans (3)

$$\theta = \frac{1}{2}\alpha(2)^2 \qquad \text{(first 2 seconds)}$$

$$\theta = 2\alpha$$

$$\theta_1 = \frac{1}{2}\alpha(4)^2$$
 (first 4 seconds)

$$\theta_1 = 8\alpha = 4\theta$$

 \therefore Disc rotates by $4\theta - \theta = 3\theta$ in the next 2 seconds.

14. Ans (2)

$$V = -\frac{GM}{2R^3} \left[3R^2 - r^2 \right]$$
Recential due to solid s

Potential due to solid sphere

$$V_s = -\frac{GM}{2R^3} \left[3R^2 - R^2/4 \right] = -\frac{11}{8} \frac{GM}{R}$$
Potential due to removed part

$$V_c = -\frac{3}{2} \frac{GM'}{R/2} = -\frac{3}{8} \frac{GM}{R}$$

$$V_{\text{Net}} = V_{\text{s}} - V_{\text{c}} = \frac{-11\text{GM}}{8\text{R}} + \frac{3\text{GM}}{8\text{R}} = -\frac{\text{GM}}{\text{R}}$$

15.

$$v \uparrow , r \downarrow U \downarrow$$

 $\vec{L} = const$

16. Ans (1)

17. Ans (4)

At Earth surface,
$$g = \frac{GM}{R^2}$$

At height h, $g' = \frac{GM}{(R+h)^2}$

$$\Rightarrow \frac{g'}{g} = \left(\frac{R}{R+h}\right)^2 \Rightarrow \frac{81}{100} = \left(\frac{R}{R+h}\right)^2$$

$$\Rightarrow \frac{9}{10} = \frac{R}{R+h} \Rightarrow h = \frac{R}{9}$$

$$\Rightarrow h = 711 \text{ km}$$

Ans (4)

$$\frac{1}{2}\text{mv}^2 = 54 \ ; \ \frac{1}{2} \times 3\text{v}^2 = 54$$

$$\text{v}^2 = 36$$

v = 6 m/s (Here, v = escape velocity)

19. Ans (1)

 $I_1\omega_1 = I_2\omega_2$ (Angular momentum is conserved) As I_2 decreases. ω_2 increases.

Thus
$$T = \frac{2\pi}{\Omega}$$
 i.e. T decreases.

Therefore the earth is completing each circle around its own axis in lesser time.

K.E. = $\frac{1}{2}$ I ω^2 Therefore K.E. of rotation increases.

Duration of the year is dependent upon time taken to complete one revolution around the sun.

21.

$$F_{net} = +\frac{Gm^2}{d^2} + \frac{Gm^2}{4d^2} = \frac{5 Gm^2}{4d^2}$$

22. Ans (2)

$$Stress = \frac{T}{A} = \frac{M}{L} \frac{(L - x)}{A} g$$

$$stress = \frac{Mg}{A} - \frac{Mg}{LA} x$$

23. Ans (3)

Let $L \rightarrow$ natural length

$$L_1 - L = \frac{T_1 L}{AY} \qquad \dots(i)$$

$$L_2 - L = \frac{T_2 L}{AY} \qquad \dots(ii)$$

Dividing (i) by (ii) and solving

$$L = \frac{L_1 T_2 - L_2 T_1}{T_2 - T_1}$$

24. Ans (4)

$$\frac{\Delta V}{V} = \frac{\frac{\frac{M}{\rho^{'}} - \frac{M}{\rho}}{\frac{M}{\rho}}}{\frac{M}{\rho}} = \frac{\rho - \rho^{'}}{\rho^{'}}$$

Bulk modulus, $K = \frac{-p}{\Delta V} \Rightarrow \frac{\Delta V}{V} = \frac{-p}{K}$

$$\frac{\rho'}{\rho} = \left(1 - \frac{p}{K}\right)^{-1} = 1 + \frac{p}{K}$$

25. Ans (1)

Energy density =
$$\frac{\text{(Stress)}^2}{2Y} = \frac{F^2}{2A^2Y}$$

E.D. $\propto \frac{1}{A^2} \propto \frac{1}{D^4}$
 $\frac{E.D_I}{E.D_{II}} = \left(\frac{D_2}{D_1}\right) = \frac{16}{1}$

26. Ans (3)

Apparent weight of balloon = W_2

Apparent weight = Real weight - buoyant force or W_2 = real weight – W

Now, Real weight = $W_1 + W$

$$W_2 = W_1 + W - W = W_1$$

28. Ans (1)

Pseudo force acts along direction opposite to acceleration of container.

 \Rightarrow P_{max} at point B

29. Ans (1)

Using Bernonlli's theorem

$$\begin{split} & \rho_a + \frac{200}{0.5} + 10^3 \times 10 \times 0.5 \\ & = \rho_a + \frac{1}{2} \times 10^3 v^2 \end{split}$$

30. Ans (3)

$$\begin{split} &V_t \propto (\sigma_S - \rho_L) \\ &\frac{V_{t_1}}{V_{t_2}} = \frac{\sigma_1 - \rho}{\sigma_2 - \rho} \Rightarrow \frac{15}{V_{t_2}} = \frac{6 - 1}{3 - 1} \Rightarrow V_{t_2} = 6 \text{ m/s} \end{split}$$

31. Ans (3)

$$2T\ell = mg$$

$$2T\ell = \rho \, (hd\ell)g$$

$$h = \frac{2T}{\rho dg}$$

$$h = \frac{2 \times 0.075}{10^3 \times 10^{-3} \times 10} = 0.015 \text{ m} = 1.5 \text{ cm}$$
Ans (4)

32. Ans (4)

$$\begin{aligned} ma &= F_B - F_V - mg \\ a &= \frac{F_B - 6\pi\eta rv - mg}{m} \\ As &F_B &= constant \ and \ F_V \uparrow \ with \ \begin{matrix} F_B \\ F_B = mg \end{matrix} \end{aligned}$$

increase in speed.

so acceleration decreases with time

33. Ans (2)

$$\rho = \frac{m}{V} = \frac{\pi}{2 \times \frac{4}{3}\pi (0.5)^3}$$

$$= \frac{3}{8} \times \frac{1}{0.125} = 3 \text{gm/cc}$$

$$\text{Now } \eta = \frac{2}{9} \frac{r^2 (\rho - \sigma)}{V_T} \text{g} \quad \left[V_T = \frac{S}{t} \right]$$

$$= \frac{2}{9} \frac{(0.25)(3 - 1.2)(980)(5)}{50}$$

$$= 9.8 \text{ poise}$$

34. Ans (1)

$$100 \frac{\Delta \ell}{\ell} = \frac{F}{AY} \times 100$$

$$0.1 = \frac{F}{AY} \times 100 \Rightarrow Y = \frac{1000 \times 100}{10^{-6} \times 0.1} = 10^{12} \text{ N/m}^2$$

35. Ans (3)

$$h = \frac{2T \cos \theta}{r \rho g}$$

$$\Rightarrow \frac{h_w}{h_m} = \frac{T_w \cos \theta_w \rho_m}{T_m \cos \theta_m \rho_w}$$

$$\frac{h_w}{-1 \text{cm}} = \frac{\left(72 \times 10^{-3}\right) (\cos 0^\circ) \left(13.6 \times 10^3\right)}{\left(468 \times 10^{-3}\right) (\cos 135^\circ) \left(10^3\right)}$$

$$\Rightarrow h_w = 3 \text{cm}$$

SECTION - B

36. Ans (4)

After explosion C.O.M. moving is the same path but particles moving in different direction.

37. Ans (4)

 $'\tau_{net}'$ about C.O.M. = 0 2 × 1.5 + 6 × x = 4 × 1.5 \Rightarrow x = 0.5 m So, BD = 1m

38. Ans (2)

39. Ans (3)

41. Ans (4)

$$mgh = \frac{1}{2} mv^2 + \frac{1}{2} I\omega^2$$

$$mgh = \frac{1}{2} mv^2 + \frac{1}{2} \frac{MR^2}{2} \times \frac{v^2}{R^2}$$

$$v = \sqrt{\frac{4mgh}{2m+M}}$$

42. Ans (2)

To topple, clockwise moment must be more than anticlock wise direction moment, so

About point $G \rightarrow$

$$(\mu \text{ mg}) \left(\frac{h}{2}\right) > \text{mg} \left(\frac{a}{2}\right)$$

$$\mu > \frac{a}{h}$$

43. Ans (1)

$$\omega = 3t^{2} - 2t$$

$$\alpha = \frac{d\omega}{dt} = 6t - 2$$

$$a_{t} = R\alpha = 6t - 2$$

Rate of change of angular velocity = α

44. Ans (2)

$$v_{B}^{2} = v_{A}^{2} - 2gR = 9gR - 2gR = 7gR \Rightarrow$$

$$v_{B} = \sqrt{7gR}$$

$$v_{C}^{2} = v_{A}^{2} - 2g(2R) = 5gR \Rightarrow v_{C} = \sqrt{5gR}$$

$$T \stackrel{\uparrow}{\longleftarrow} V_{B} = \frac{mv_{B}^{2}}{R} = 7mg$$

$$V_{C} \stackrel{\downarrow}{\longleftarrow} T_{C} + mg = \frac{mv_{C}^{2}}{R} \Rightarrow T_{C} = 4mg$$

45. Ans (1)

$$\mu N = mg$$
(ii)

$$\mu m \ell \omega^2 = mg$$

$$\omega = \sqrt{\frac{g}{u\ell}}$$

46. Ans (1)

$$mg = 1 \times 10 = 10 \text{ N}, \frac{mv^2}{r} = \frac{1 \times (4)^2}{\frac{1}{r}} = 16$$
Tension at the top of circle =
$$\frac{mv^2}{r} - mg = 6N$$

Tension at the bottom of circle = $\frac{mv^2}{r}$ + mg = 26 N

47. Ans (1)

Theory Based

48. Ans (1)

Theory Based

Ans (2) 50.

Surface tension of a liquid is due to its cohesive force only. Surface tension is independent of the area of liquid surface.

SUBJECT: CHEMISTRY

SECTION (A)

51. Ans (2)

NCERT XI Pg. # 121

52. Ans (3)

No hybridisation is possible between ns and (n-1) P orbitals

53. Ans (4)

Xe, Rn, Kr have some known compounds.

Ans (1) 54.

NCERT Pg. # 116

55. Ans (4)

NCERT Pg. # 102

56. Ans (1)

NCERT Pg. # 108

57. Ans (3)

$$H - C \equiv C - H$$

sp hybridisation

58. Ans (1)

NCERT, Pg. # 115

59. Ans (1)

NCERT, Pg. # 110

SO₂ H₂O Both have bent shape $sp^2 sp^3$

$$sp^2 sp$$

60. Ans (1)

Only $p_{\pi} - d_{\pi}$ bond.

61. Ans (3)

 $_{90}$ Th = [Rn] $7s^2 6d^2 5f^\circ$

62. Ans (1)

$$O = O$$
 $N \equiv N$

$$2p_{\pi}-2p_{\pi}$$
 $2p_{\pi}-2p_{\pi}$

$$S = S$$
 $P \equiv 1$

$$3p_{\pi}-3p_{\pi}$$
 $3p_{\pi}-3p_{\pi}$

Strength of overlapping $\rightarrow 2p_{\pi} - 2p_{\pi} > 3p_{\pi} - 3p_{\pi}$

63. Ans (2)

Due to more l_p- l_p repulsion, Bond energy of N-N single bond is lesser than bond energy P-P single bond.

64. Ans (4)

- (A) HCl \rightarrow 431 kJ/mole
- (B) $N_2 \rightarrow 946 \text{ kJ/mole}$
- (C) $H_2 \rightarrow 435.8 \text{ kJ/mole}$.
- (D) $O_2 \rightarrow 498 \text{ kJ/mole}$.

65. Ans (3)

$$He = +48$$
, $Ne = +116$, $Ar = +96$, $Kr = +96$,

$$Xe = +77$$
, $Rn = +68$

66. Ans (4)

NCERT, Pg. # 86

67. Ans (3)

NCERT, Pg. # 90 (Table 3.9)

68. Ans (2)

NCERT-XI Pg. # 86 (Part-I)

69. Ans (2)

NCERT Pg. #77

70. Ans (4)

1st EA may be exothermic or endothermic in nature.

71. Ans (4)

The order of E.N. for boron family is. B > T1 > In > Ga > A1

72. Ans (3)

 \sqrt{v} v/s Z graph \Rightarrow straight line.

73. Ans (4)

Amphoteric oxides can behave as acid as need as base.

74. Ans (2)

$$\frac{1}{x} = R_{H} \left(\frac{1}{12} - \frac{1}{\infty} \right) \dots (i)$$

$$\frac{1}{\lambda} = R_{H} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}} \right) \dots (ii)$$

$$(i) \div (ii)$$

$$1 \times 4 \times 9 \quad 36x$$

$$\lambda = \mathbf{x} \times \frac{1 \times 4 \times 9}{5} = \frac{36\mathbf{x}}{5}$$

78. Ans (2)

$$n\lambda = 2\pi r$$

$$n\lambda = 2\pi \frac{n^2}{Z} a_0$$

$$n\lambda = 2\pi \times \frac{n^2}{Z} \times 52.9 \text{ pm}$$

$$\lambda = 2\pi \times 52.9 \times 2 \text{ pm}$$

 $= 211.6 \pi pm$

79. Ans (1)

Electron will absorb the energy on moving from lower shell to higher shell and $E_2 - E_1 = 10.2$ eV is maximum energy difference among the given options.

81. Ans (2)

Total energy of electron $E_T \propto -\frac{1}{n^2}$.

83. Ans (3)

NCERT Pg No. 53, Para-Ist [11th part Ist]

84. Ans (2)

NCERT Pg. # 55

Principal Quantum number determines, size & energy of shell.

Azimuthal Quantum number determines shape and angular momentum of electron in orbital.

SECTION-(B)

86. Ans (3)

NCERT, Pg. # 100 Lewis dot structure

87. Ans (3)

NCERT, Pg. # 111 (Table - 4.6)

88. Ans (3)

NCERT-XI Pg. # 117 (Part-I)

All type of orbitals participate in hybridisation.

89. Ans (4)

Trigonal planar Pyramidal base

90. Ans (3)

NCERT-XI, Part-I, Pg.#99

91. Ans (1)

NCERT, Pg. # 91

92. Ans (2)

NCERT-XI Part-I Pg. # 77 Uno, Hs

93. Ans (3)

NCERT-XIth Pg. 75 (Part-I)

94. Ans (4)

atomic number not atomic mass.

95. Ans (3)

Correct order of radius $-Al^{+3} < Mg^{+2} < Al < Mg$ Al in $[AlCl(H_2O)_5]^{2+}$ are +3 and 6, respectively

97. Ans (1)

Angular node = ℓ

Radial node = $n - \ell - 1$

Total node = n - 1

99. Ans (2)

NCERT, Class-11th, Part-I,

Structure of atom, introduction,

Page no. 29, Edition 2023-24

100. Ans (2)

Number of R.N. = 2 - 0 - 1 = 1

Graph start from non-zero value

SUBJECT: BOTANY

SECTION (A)

101. Ans (1) NCERT-XI, Pg. # 88

102. Ans (2) NCERT-XI, Pg. 88

103. Ans (2) NCERT-XI ; Page No. # 93, 94

104. Ans (3) NCERT XI, Pg. # 95,96

105. Ans (1) NCERT-XI; Page No. # 95

106. Ans (1) Module-2, Pg. # 147

107. Ans (2) NCERT XI, Pg # 98

108. Ans (4) NCERT-XI, Pg. # 99

109. Ans (2) NCERT-XI, Pg. # 98

110. Ans (3) NCERT-XI, Pg. # 102

111. Ans (4) NCERT-XI, Pg. # 121

112. Ans (2) NCERT-XI, Pg # 121

113. Ans (2) NCERT-XI, Pg. # 120 **114. Ans (1)** NCERT-XI, Module No. # 2, Pg # 193

115. Ans (2) NCERT-XI, Pg # 122

116. Ans (3) NCERT-XI Pg.#123

117. Ans (3) NCERT XI, Pg. # 125

118. Ans (2) NCERT-XI, Pg # 123

119. Ans (2) NCERT XI Pg. # 126

120. Ans (1) NCERT-XI, Pg # 127

121. Ans (2) NCERT-XI, Pg # 127

122. Ans (4) NCERT XI Pg. No. # 127

123. Ans (3) NCERT XI Pg. No. # 126

124. Ans (1) NCERT-XI, Pg. # 126

125. Ans (4) NCERT-XI, Pg. # 125

126. Ans (3) NCERT Pg#108

127. Ans (4) NCERT-XI, Pg # 104, 106, 108

128. Ans (2) NCERT Pg.106

129. Ans (3) NCERT Pg. # 110

130. Ans (2) NCERT-XI, Pg. # 106, 107

131. Ans (3) NCERT-XI, Pg # 105, 106

ALLEN®

- 132. **Ans (2)**NCERT-XI, Pg #
- **133. Ans (4)** NCERT-XI, Pg # 117
- **134. Ans (4)** NCERT Pg. # 116 (E)116(H)
- **135. Ans (4)** NCERT-XI, Pg. # 116

SECTION (B)

- 136. Ans (1) NCERT-XI; Page No. #89
- 137. Ans (1) NCERT XI, Pg. # 91, 94
- **138. Ans (3)** NCERT-XI ; Page No. # 95, 96
- **139. Ans (4)** NCERT-XI, Pg. # 101
- **140. Ans (2)** NCERT-XI, Pg. # 100
- **141. Ans (2)** NCERT-XI, Pg. # 122
- **142. Ans (3)** NCERT-XI, Pg # 120, 121
- **143. Ans (4)** NCERT-XI, Pg # 121
- **144. Ans (4)** NCERT-XI, Pg # 122, 126
- **146. Ans (3)** NCERT-XI, Pg # 105
- **147.** Ans (3) NCERT-XI, Pg # 110
- 148. Ans (3) NCERT Pg.112
- **149. Ans (2)** NCERT-XI, Pg # 118
- 150. Ans (4) NCERT Pg. # 118

SUBJECT: ZOOLOGY

SECTION - A

- **159. Ans (3)** NCERT Pg. No. 273
- **160. Ans (1)** NCERT XI- Pg. # 273
- **161. Ans (3)**NCERT Pg # 189, 190
- **162. Ans (1)** NCERT-XI, Pg. # 186, 187
- **163. Ans (1)** NCERT Pg # 209, 214, 215
- **170. Ans (1)** NCERT Pg # 210
- **173. Ans (3)** NCERT Pg. No. # 199-200
- **181. Ans (4)** NCERT Pg # 200, 201
- **182. Ans (4)** NCERT Pg. No. # 201
- **183. Ans (3)** NCERT Pg#280(E), 281(H)
- **185. Ans (3)** NCERT Pg. No. # 279

SECTION - B

- **189. Ans (1)** NCERT Pg. # 284
- 190. Ans (1) NCERT, Pg. # 288 (E), 289 (H)
- 192. Ans (3) NCERT Pg # 184
- **199. Ans (4)** NCERT Pg. # 205
- **200. Ans (1)** NCERT Pg # 213