Equations Of Motion Of a Wheeled Inverted Pendulum

Munzir Zafar

July 30, 2014

In an earlier report [3] we had derived using Newton-Euler method the equations of motion of a wheeled inverted pendulum. But this model did not take into account the spin motion of the robot. Before attempting to derive the new equations including the spin, we will look at the equations derived in the existing literature.

1 Using the equation from [1]

The equations derived in [1] for the motion of two-wheeled inverted pendulum robot are:

$$3(m_c + m_s)\ddot{x} - m_s d\cos\phi\ddot{\phi} + m_s d\sin\phi(\dot{\phi}^2 + \dot{\psi}^2) = -\frac{\alpha_3 + \beta_3}{R}$$
 (1)

$$\{(3L^{2} + 1/2R^{2})m_{c} + m_{s}d^{2}sin^{2}\phi + I_{2}\}\ddot{\psi} + m_{s}d^{2}sin\phi\cos\phi\dot{\psi}\dot{\phi} = \frac{L}{R}(\alpha_{3} - \beta_{3})$$
(2)

$$m_s d\cos\phi \ddot{x} + (-m_s d^2 - I_3)\ddot{\phi} + m_s d^2 \sin\phi \cos\phi \dot{\phi}^2 + m_s g d\sin\phi = \alpha_3 + \beta_3$$
 (3)

where,

 \dot{x} is the heading speed of the robot

 ϕ is the rotation of the C.G. about n_3 -directional

 ψ is the heading angle (angle between n_1 and the world frame)

 α_3 is the torque of the left wheel

 β_3 is the torque of the right wheel

 m_c is the mass of the wheel

 m_s is the mass of the body

d is the distance between wheel axis to C.G.

R is the radius of the wheel

L is the half distance between wheels

 I_2 is the n_2 -directional rotational inertia of the body

 I_3 is the n_3 -directional rotational inertia of the body

 n_2 is the unit vector pointing vertically upwards

 n_3 is the unit vector pointing from the left wheel to the right wheel

The equations that we had derived in our earlier report [3] did not include the rotation about the vertical axis of the robot. One of the equations above represent that motion. We will try to first match the equations we had derived with the equations listed above as a sanity check. Then we will write down the thrid equation using the variables that we had used in our earlier report. Then we will attempt to derive the equation using Newton-Euler method. Equations from our earlier report are listed here:

$$[(m+M)r + I_w/r + \eta^2 I_m/r]\ddot{x} + (mrlcos\theta - \eta^2 I_m)\ddot{\theta} = K_f u - \tau_f + F_{ext}rcos\theta + mrl\dot{\theta}^2 sin\theta$$
(4)

$$(mlcos\theta - \eta^2 I_m/r)\ddot{x} + (ml^2 + I + \eta^2 I_m)\ddot{\theta} = -K_f u + \tau_f + F_{ext}l + mglsin\theta$$
(5)

where,

m is the mass of the body

M is the mass of the wheels

r is the radius of the wheel

 I_w is the inertia of the wheel

 η is the gear ratio of the motor

 I_m is the motor inertia

 \dot{x} is the heading speed

l is the distance between wheel axis and the C.G.

 θ is the rotation of the C.G. about the wheel axis

 K_f is the torque to current ratio of the motor

 τ_f is the frictional torque on the wheels

 F_{ext} is the external force being applied at the C.G. perpendicular to l

I is the inertia of the robot about the wheel axis

Using the symbols used in equations 4-5, we re-write the equations 1-3:

$$3(M+m)\ddot{x} - mlcos\theta\ddot{\theta} + mlsin\theta(\dot{\theta}^2 + \dot{\psi}^2) = -\frac{K_f(u_1 + u_2)}{r}$$
(6)

$$\{(3L^2 + 1/2r^2)M + ml^2 sin^2 \theta + I_2\} \ddot{\psi} + ml^2 sin\theta cos\theta \dot{\psi} \dot{\theta} = \frac{L}{r} K_f (u_1 - u_2)$$
 (7)

$$mlcos\theta\ddot{x} + (-ml^2 - I)\ddot{\theta} + ml^2sin\theta cos\theta\dot{\theta}^2 + mglsin\theta = K_f(u_1 + u_2)$$
(8)

where, we have retained the symbols for quantities that do not appear in equations 4-5 i.e. ψ and I_2 which represent the heading direction and the inertia about the vertical axis respectively.

In equations 6-8, we make the following observations:

- (i) Equations 6 and 8 are the equivalents of the equations 4 and 5 respectively
- (ii) The equations 6 and 8 ignore the effects of wheel inertia I_w , the motor inertia I_m , frictional torque τ_f at the wheel motor and the external force F_{ext} , all of which were considered in equations 4 and 5
- (iii) The terms containing \ddot{x} in equations 4 and 5 appear with opposite signs in equations 6 and 8
- (iv) The term $mrlsin\theta\dot{\theta}^2$ of equation 4 appears as $mrlsin\theta(\dot{\theta}^2+\dot{\psi}^2)$ in equation 6
- (v) Equation 4 does not contain the coefficient 3 with the \ddot{x} term which appears in equation 6

(vi) Equation 5 does not contain the term $ml^2sin\theta cos\theta\dot{\theta}^2$ which appears in equation 8

Point number (iii) may be explained by assuming that the two derivations assumed x increases in different directions. Point number (iv) may be explained by the fact that equations 4 and 5 assume constant heading direction i.e. $\dot{\psi}=0$ But the last two points are not easy to explain. An interesting fact regarding point regarding (v) is that the paper [1] changes the term from $3(m_c+m_s)$ in the original equation that we cited above to $3m_c+m_s$ in the later equations of the same paper. It appears that the latter expression is more accurate and basically $3m_c$ represents the mass of three wheels of equal mass, one of which is a supporting wheel. The paper discusses supporting wheels at length, so it won't be surprise. That solves the mystery of the second last point. What remains now is to discuss the very last point. Since we see that there is a typo done in the earlier equation, we can expect this term to have a typo, in that it is missing a $\dot{\psi}$ term. If this was true we will safely assume that the reason this term isn't present in our earlier analysis (i.e. equations 4 and 5) is because we assumed constant heading direction i.e. $\dot{\psi}=0$.

2 Using equations from [2]

In the book [2] following equations of motion are derived:

$$\left(M + 2M_w + m + 2\frac{I_w}{r^2}\right)\dot{v} + ml\ddot{\alpha}cos\alpha - ml\dot{\alpha}^2sin\alpha = \frac{\tau_l}{r} + \frac{\tau_r}{r} + d_l + d_r \quad (9)$$

$$\left(I_p + 2\left(M_w + \frac{I_w}{r^2}\right)d^2\right)\dot{\omega} = 2d\left(\frac{\tau_l}{r} - \frac{\tau_r}{r} + d_l - d_r\right) \tag{10}$$

$$ml\dot{v}cos\alpha + (ml^2 + I_M)\ddot{\alpha} - mglsin\alpha = 0$$
 (11)

where,

M is the mass of the platform

 M_w is the mass of one wheel

m is the mass of the robot

 I_w is the inertia of one wheel

r is the radius of one wheel

v is the heading speed of the wheel

l is the distance from C.G. to wheel axis

 α is the rotation of C.G. about the wheel axis

 τ_l is the torque applied by left wheel motor

 τ_r is the torque applied by right wheem motor

 d_l is the external force acting on the left wheel

 d_r is the external force acting on the right wheel

Again replacing these variables with the ones we had used in [3], equations 9-11 become:

$$\left(M_p + M + m + \frac{I_w}{r^2}\right)\ddot{x} + ml\ddot{\theta}cos\theta - ml\dot{\theta}^2sin\theta = \frac{K_f u_1}{r} + \frac{K_f u_2}{r} + d_l + d_r$$
(12)

$$\left(I_z + \left(M + \frac{I_w}{r^2}\right)L^2\right)\ddot{\psi} = 2L\left(\frac{K_f u_1}{r} - \frac{K_f u_2}{r} + d_l - d_r\right) \tag{13}$$

$$ml\ddot{x}cos\theta + (ml^2 + I)\ddot{\theta} - mglsin\theta = 0$$
(14)

References

- [1] Yeonhoon Kim, Soo Hyun Kim, and Yoon Keun Kwak. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. *Journal of Intelligent and Robotic Systems*, 44(1):25–46, 2005.
- [2] Z. Li, C. Yang, and L. Fan. Advanced Control of Wheeled Inverted Pendulum Systems. SpringerLink: Bücher. Springer, 2012.
- [3] Munzir Zafar, Can Erdogan, and Mike Stilman. Towards stable balancing. Technical report, Georgia Institute of Technology. Center for Robotics and Intelligent Machines, 2013.