Sprawozdanie Metody numeryczne 2 **Temat 2, Zadanie nr 12**

Mateusz Śliwakowski, F428/10/2018

1 Treść zadania

Interpolacja funkcjami kwadratowymi na obszarze $D: |x| + |y| \le 1$ podzielonym na $4n^2$ trójkątów przystających. Tablicowanie funkcji, przybliżenia i błędu w środkach ciężkości trójkątów. Obliczenie błędu maksymalnego w tych punktach.

2 Opis metody

2.1 Podział obszaru

Na początku zobaczmy jak wygląda obszar $D: |x| + |y| \le 1$.

Podzielimy go na 4 trójkąty prostokątne:

Każdy z trójkątów podzielimy na n^2 trójkątów przystających w następujący

sposób:

- 1. Przyprostokatne dzielimy na n odcinków równej długości.
- 2. Tworzymy odcinki łączące punkty podziału z przeciw
prostokątną równoległe do osi odpowiednio OX ora
z OY.
- 3. W każdym z powstałych kwadratów prowadzimy jedną przekątną.

Tym sposobem w trójkącie otrzymujemy $1+3+\cdots+2n-1=n^2$ trójkątów, zatem podział jest poprawny.

2.2 Interpolacja funkcjami kwadratowymi

Niech f - interpolowana funkcja dwóch zmiennych. Będziemy przybliżać tę funkcję za pomocą funkcji kwadratowej postaci $w(x,y) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2$, gdzie dla $i = 0, \ldots, 5$ $a_i \in \mathbb{R}$.

Aby wyznaczyć współczynniki funkcji interpolacyjnej w musimy skorzystać z wartości funkcji f w 6 punktach. Weźmy zatem wierzchołki trójkąta (oznaczmy je P_0, P_1, P_2) oraz środki boków (oznaczmy P_{01}, P_{12}, P_{20}). Przyjmijmy ponadto, że $P_i := (x_i, y_i)$. Utwórzmy zatem układ równań:

```
\begin{cases} w(x_0, y_0) = f(x_0, y_0) \\ w(x_1, y_1) = f(x_1, y_1) \\ w(x_2, y_2) = f(x_2, y_2) \\ w(x_{01}, y_{01}) = f(x_{01}, y_{01}) \\ w(x_{12}, y_{12}) = f(x_{12}, y_{12}) \\ w(x_{20}, y_{20}) = f(x_{20}, y_{20}) \end{cases}
```

Rozwiązując powyższy URL otrzymamy współczynniki szukanej funkcji w.

3 Implementacja metody

```
function [B, err] = squareInterpolation(fun, n)
```

Parametry wejściowe:

- fun Uchwyt do interpolowanej funkcji dwóch zmiennych,
- ullet n liczba naturalna, parametr zadania.

Parametry wyjściowe:

- \bullet B tablica zawierająca: współrzędne x oraz y środków ciężkości trójkątów, wartości funkcji interpolowanej w tych punktach, wartości funkcji interpolacyjnej w tych punktach, błąd przybliżenia.
- err maksymalny błąd interpolacji.

Na początku musimy znaleźć wierzchołki trójkątów wymaganych podczas interpolacji. W tym celu za pomocą funkcji meshgrid dzielimy obszar na siatkę równoodległych punktów na obszarze $[-1,1] \times [-1,1]$. Następnie wyznaczamy podział lewego górnego trójkąta i zapisujemy go w wektorze pomocniczym. Podział ten odbijamy wzdłuż osi OY, a następnie OX otrzymując wszystkie wymagane punkty.

Potem następuje właściwa interpolacja. Dla każdego z trójkatów:

- Zapisujemy do tablicy wynikowej współrzędne środka ciężkości danego trójkąta.
- Zapisujemy wartość funkcji interpolowanej w środku ciężkości.
- Wyznaczamy współczynniki funkcji interpolacyjnej.
- Tablicujemy wartość funkcji interpolacyjnej oraz błąd interpolacji.

Na koniec wyznaczamy maksymalny błąd.

Dla uproszczenia kodu, użyta została prosta funkcja initialize AFrom T, która konwertuje współrzędne iteracyjne (z zakresu [1,n]) na współrzędne na płaszczyźnie.

4 Przykłady i wnioski

4.1 Przykłady

Wszystkie przedstawione przykłady zdefiniowane są w skrypcie testInterpolation.m. Najpierw przetestujemy funkcję interpolacyjną pod kątem maksymalnego błędu przybliżenia. W ramkach przedstawiona jest część wyjścia Matlaba po uruchomieniu skryptu testInterpolation.

• Rozpoczniemy od przykładu, gdzie nasz program powinien działać praktycznie bezbłędnie, czyli wywołamy funkcję squareInterpolation dla funkcji kwadratowej dwóch zmiennych.

Zgodnie z oczekiwaniami otrzymujemy dokładność porównywalną z dokładnością maszynową.

• Zobaczmy jak program zachowa się dla funkcji złożonej z funkcji trygonometrycznych.

Program zachowuje się poprawnie - wraz ze wzrostem liczby trójkątów, których używamy do interpolacji rośnie dokładność.

• Dla wielomianu wyższego stopnia:

Również osiągamy dobrą dokładność dla wysokich n, lecz już nie tak wysoką jak dla funkcji trygonometrycznej.

 Na koniec sprawdźmy jak program zadziała dla funkcji, która w zadanym przedziale ma punkty, dla których nie jest określona.

W tym przypadku nie jesteśmy w stanie przeprowadzić poprawnej interpolacji - dla wszystkich wartości n maksymalny błąd osiąga wysokie wartości. Dzieje się tak dlatego, że w otoczeniu punktów, gdzie funkcja tangens nie jest określona jej pochodna osiąga bardzo wysokie wartości nie jest zatem możliwa dokładna interpolacja.

4.2 Doświadczalne wyznaczenie współczynnika zbieżności

Sprawdźmy teraz jaki jest współczynnik zbieżności naszej metody. W każdej iteracji będziemy zwiększać parametr n dwa razy i wyświetlać iloraz kolejnych błędów.

```
5.7240
7.6428
7.3948
7.7738
7.9081
7.9693
7.9837
7.9916
```

Jak widać $n \to 8$ zatem współczynnik zbieżności może wynosić 3 (bo $2^3 = 8$).