Ficha de Exercícios sobre DFAs

Resoluções/soluções para os exercícios selecionados: 1, 2, 3a), 5, 4

1.

a)

	A	В	C	0	1	2
q0	q0	q1	q2 q2 q2	q0	q1	q2
q1	q0	q1	q2	q0	q1	q2
q2	q0	q1	q2	q0	q1	q2

b) Cada estado representa o andar em que o elevador se encontra.

2.

	09	-
→ q0	q1	Ø
q1	q2	q5
q2	q3	q5
q3	q4	q5
q4	Ø	q5
q5	q6	Ø
q6	q7	q8
q7	Ø	q8
q8	q9	Ø
* q9	q10	Ø
* q10	Ø	Ø
Ø	Ø	Ø

(o DFA anterior não valida se a data introduzida no formato especificado é uma data válida ou não.)

3a)

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q0 & q1 & q0 \\ q1 & q2 & q0 \\ * q2 & q2 & q0 \\ \end{array}$$

5.

a)

- 5 estados: um para cada valor possível do resto (q0 identifica resto 0; q1 resto 1, q2, resto 2; q3, resto 3, e q4, resto 4):

	0	1
→ * q0	q0	q1
q1	q2	q3
q2	q4	q0
q3	q1	q2
q4	q3	q4

(no DFA anterior estamos a considerar que a cadeia de comprimento 0, ϵ , representa um múltiplo de 5, mas seria fácil evitarmos aceitar $\epsilon!$)

- Forçar começo com 1: acrescentar estado inicial que liga a estado "morto" caso a cadeia comece por 0, e que liga a q1 caso comece por 1:

	0	1
\rightarrow s	d	q1
* q0	q0	q1
q1	q2	q3
q2	q4	q0
q3	q1	q2
q4	q3	q4
d	d	d

b)

Observações:

- Basta inverter todas as ligações!
- O estado de partida anterior passa a ser o único estado de aceitação (como já o era, mantém-se).
- Os estados de aceitação anteriores passam a ser pontos de partida possíveis (como o único estado de aceitação já era ponto de partida, mantém-se).

	0	1
→ * q0	q0	q2
q1	q3	q0
q2	q1	q3
q3	q4	q1
q4	q2	q4

4)

Hipótese: $\delta^{\wedge}(q, xy) = \delta^{\wedge}(\delta^{\wedge}(q, x), y)$

Caso base: $y = \varepsilon$

$$\delta^{\wedge}(q, x) = \delta^{\wedge}(\delta^{\wedge}(q, x), \varepsilon)$$

Da base da definição de δ ':

Podemos tomar $\delta^{N}(q, x) = p$, e sabemos que $\delta^{N}(p, \varepsilon) = p$

Passo indutivo: dado |y| = n, assumir as strings de comprimento n+1 originadas pela concatenação de uma letra (identificada por 'a') com y: |ya| = n+1

$$\delta^{\wedge}(q, xya) = \delta^{\wedge}(\delta^{\wedge}(q, x), ya)$$

Passos da demonstração:

os da demonstração.	
Expressão	Razão
$\delta^{\wedge}(\delta^{\wedge}(q, x), ya)$	partida
$\delta^{\wedge}(\delta^{\wedge}(q, x), y), a)$	pela definição de δ , considerando δ (q , x) como um estado
$\delta^{\wedge}(\delta^{\wedge}(q, xy), a)$	por hipótese
δ \(q, xya)	pela definição de δ ^

Obtemos assim δ ^(q, xya) qed