

Figure 24.12: An affine line U and its direction.

obtained by setting the right-hand side of ax + by = c to zero. Indeed, for any m scalars λ_i , the same calculation as above yields that

$$\sum_{i=1}^{m} \lambda_i(x_i, y_i) \in \overrightarrow{U},$$

this time without any restriction on the λ_i , since the right-hand side of the equation is null. Thus, \overrightarrow{U} is a subspace of \mathbb{R}^2 . In fact, \overrightarrow{U} is one-dimensional, and it is just a usual line in \mathbb{R}^2 . This line can be identified with a line passing through the origin of \mathbb{A}^2 , a line that is parallel to the line U of equation ax + by = c, as illustrated in Figure 24.12.

Now, if (x_0, y_0) is any point in U, we claim that

$$U = (x_0, y_0) + \overrightarrow{U},$$

where

$$(x_0, y_0) + \overrightarrow{U} = \{(x_0 + u_1, y_0 + u_2) \mid (u_1, u_2) \in \overrightarrow{U} \}.$$

First, $(x_0, y_0) + \overrightarrow{U} \subseteq U$, since $ax_0 + by_0 = c$ and $au_1 + bu_2 = 0$ for all $(u_1, u_2) \in \overrightarrow{U}$. Second, if $(x, y) \in U$, then ax + by = c, and since we also have $ax_0 + by_0 = c$, by subtraction, we get

$$a(x - x_0) + b(y - y_0) = 0,$$

which shows that $(x - x_0, y - y_0) \in \overrightarrow{U}$, and thus $(x, y) \in (x_0, y_0) + \overrightarrow{U}$. Hence, we also have $U \subseteq (x_0, y_0) + \overrightarrow{U}$, and $U = (x_0, y_0) + \overrightarrow{U}$.

The above example shows that the affine line U defined by the equation

$$ax + by = c$$