Can you prove DeMorgan's Theorem using a truth table?

$$/(A+B) = /A./B$$

A	В	/A	/B	A + B	/(A + B)	/A . /B
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

$$/(A.B) = /A + /B$$

A	В	/ A	/ B	A . B	/(A.B)	/A or /B
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Simplification Theorem Truth Tables

$$A+A.B = A$$
 $A \text{ or } (A \text{ and } B) = A$

A	В	A.B	A+A.B
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

$$A+/A.B = A+B$$
 $A \text{ or } (NOTA \text{ and } B) = A \text{ or } B$

A	В	/ A	/A.B	A + /A.B	A + B
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1