Contents

List of Figures	iii
Chapter 1: Foundations	1
Basic Category Theory	1
Categories	1
Functors	2
Subcategories	2
Limits	3
Basic Algebra	4
The Isomorphism Theorems	4
Basic Point-Set Topology	4
The Closed Map Lemma	4
Homological Algebra	4
Diagram Lemmas	4
Chapter 2: The Fundamental Group	9
The Fundamental Grupoid	9
Construction of the fundamental Grupoid	9
The Fundamental Group	12
	14
	16
Coproducts and Pushouts in Grp	16
The Seifert-Van Kampen Theorem and its Consequences	19
	19
Chapter 3: Singular Homology	20
	20
· · · · · · · · · · · · · · · · · · ·	20
	21
	24
	25
H_0	25
	25

401-3001-61L Algebraic Topology I					Yannis Bähni							
Autumn Semester 2017		yan	nis	s.b	ael	hn	i@	uz	h.ch			
The Homotopy Axiom									26			
The Hurewicz Theorem												
Abelianizations									26			
The Hurewicz Morphism												
Barycentric Subdivision									31			
Applications									31			
The Brouwer Fixed Point Theorem						•			31			
Appendix A: Set Theory									32			
Basic Concepts												
Bibliography									33			

List of Figures

1	Proof of the snake lemma.
2	
3	
4	Proof of injectivity of h
5	Proof of surjectivity of h
6	Visualization of the proof that $\Pi(X)$ is a grupoid object

CHAPTER 1

Foundations

Basic Category Theory

Categories. We use the first order theory of Neumann-Bernays-Gödel (BNG) as described in [Men15, p. 231].

Definition 1.1 (Category). A category & consists of

- A class ob(\mathcal{C}), called the **objects of** \mathcal{C} .
- A class $mor(\mathcal{C})$, called the morphisms of \mathcal{C} .
- Two functions dom: $mor(\mathcal{C}) \to ob(\mathcal{C})$ and $cod: mor(\mathcal{C}) \to ob(\mathcal{C})$, which assign to each morphism f in \mathcal{C} its **domain** and **codomain**, respectively.
- For each $X \in ob(\mathcal{C})$ a function $ob(\mathcal{C}) \to mor(\mathcal{C})$ which assigns a morphism id_X such that $dom id_X = cod id_X = X$.
- A function

$$\circ : \{ (g, f) \in \operatorname{mor}(\mathcal{C}) \times \operatorname{mor}(\mathcal{C}) : \operatorname{dom} g = \operatorname{cod} f \} \to \operatorname{mor}(\mathcal{C})$$
 (1)

mapping (g, f) to $g \circ f$, called **composition**, such that $dom(g \circ f) = dom f$ and $cod(g \circ f) = cod g$.

Subject to the following axioms:

• (Associativity Axiom) For all $f, g, h \in mor(\mathcal{C})$ with dom h = cod g and dom g = cod f, we have that

$$(h \circ g) \circ f = h \circ (g \circ f). \tag{2}$$

• (Unit Axiom) For all $f \in mor(\mathcal{C})$ with dom f = X and cod f = Y we have that

$$f = f \circ id_X = id_Y \circ f. \tag{3}$$

Remark 1.1. Let \mathcal{C} be a category. For $X, Y \in ob(\mathcal{C})$ we will abreviate

$$\mathcal{C}(X,Y) := \{ f \in \text{mor}(\mathcal{C}) : \text{dom } f = X \text{ and } \text{cod } f = Y \}.$$

Moreover, $f \in \mathcal{C}(X, Y)$ is depicted as

$$f: X \to Y.$$
 (4)

Example 1.1. Let * be a single, not nearer specified object. Consider as morphisms the class of all cardinal numbers and as composition cardinal addition. By [Hal12, pp. 112–113], cardinal addition is associative and \varnothing serves for the identity id_{*}.

Definition 1.2 (Locally Small, Hom-Set). A category \mathcal{C} is said to be **locally small** if for all $X, Y \in \mathcal{C}$, $\mathcal{C}(X, Y)$ is a set. If \mathcal{C} is locally small, $\mathcal{C}(X, Y)$ is called a **hom-set** for all $X, Y \in \mathcal{C}$.

Definition 1.3 (Isomorphism). Let \mathcal{C} be a category. An **isomorphism in \mathcal{C}** is a morphism $f: X \to Y$ in \mathcal{C} , such that there exists a morphism $g: Y \to X$ in \mathcal{C} with

$$g \circ f = \mathrm{id}_X$$
 and $f \circ g = \mathrm{id}_Y$.

In algebraic topology, there is a very useful construction on categories.

Definition 1.4 (Congruence). *Let* \mathcal{C} *be a category. A congruence on* \mathcal{C} *is an equivalence relation* \sim *on*

$$\bigcup_{(X,Y)\in \text{ob}(\mathcal{C})\times \text{ob}(\mathcal{C})} \mathcal{C}(X,Y),$$

such that

- (a) If $f \in \mathcal{C}(X,Y)$ and $f \sim g$, then $g \in \mathcal{C}(X,Y)$.
- (b) If $f_0: X \to Y$ and $g_0: Y \to Z$ such that $f_0 \sim f_1$ and $g_0 \sim g_1$, then $g_0 \circ f_0 \sim g_1 \circ f_1$.

Exercise 1.1. Let \mathcal{C} be a category. Show that for any congruence on \mathcal{C} , there exists a category \mathcal{C}' , called *quotient category*, with $ob(\mathcal{C}') = ob(\mathcal{C})$, for any objects $X, Y \in \mathcal{C}'$

$$\mathcal{C}'(X,Y) = \{ [f] : f \in \mathcal{C}(X,Y) \},\$$

and pointwise composition.

Functors.

Definition 1.5 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ is a pair of functions (F_1, F_2) , $F_1: ob(\mathcal{C}) \to ob(\mathcal{D})$, called the **object function** and $F_2: mor(\mathcal{C}) \to mor(\mathcal{D})$, called the **morphism function**, such that for every morphism $f: X \to Y$ we have that $F_2(f): F_1(X) \to F_1(Y)$ and (F_1, F_2) is subject to the following **compatibility conditions**:

- For all $X \in ob(\mathcal{C})$, $F_2(id_X) = id_{F_1(X)}$.
- For all $f \in \mathcal{C}(X,Y)$ and $g \in \mathcal{C}(Y,Z)$ we have that $F_2(g \circ f) = F_2(g) \circ F_2(f)$.

Remark 1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. It is convenient to denote the components F_1 and F_2 also with F.

Subcategories.

Definition 1.6 (Subcategory). Let \mathcal{C} be a category. A subcategory \mathcal{S} of \mathcal{C} consists of

- A subclass $ob(S) \subseteq ob(C)$.
- A subclass $mor(S) \subseteq mor(C)$.

Subject to the following conditions:

• For all $X \in \mathcal{S}$, $id_S \in mor(\mathcal{S})$.

Example 1.2 (Top²). Define the objects of Top² to be the class of tuple (X, A), where $X \in \text{ob}(\mathsf{Top})$ and A is a subspace of X. Moreover, given objects (X, A) and (Y, B) in Top^2 , a morphism between (X, A) and (Y, B) is a tuple (f, g), where $f \in \mathsf{Top}(X, Y)$ and $g \in \mathsf{Top}(A, B)$, such that

$$\begin{array}{ccc}
A & \hookrightarrow & X \\
\downarrow g & & \downarrow f \\
B & \hookrightarrow & Y
\end{array}$$

commutes.

Example 1.3 (Top*). Define the objects of Top* to be the class of all tuple (X, p), where X is a topological space and $p \in X$. Moreover, given objects (X, p) and (Y, q) in Top*, define Top* $((X, p), (Y, q)) := \{ f \in \text{Top}(X, Y) : f(p) = q \}$. It is easy to check that Top* is a category, called the *category of pointed topological spaces*.

Limits.

Definition 1.7 (Diagram). Let \mathcal{C} be a category and A a small category. A functor $A \to \mathcal{C}$ is called a **diagram in** \mathcal{C} **of shape** A.

Definition 1.8 (Cone and Limit). Let \mathcal{C} be a category and $D: A \to \mathcal{C}$ a diagram in \mathcal{C} of shape A. A **cone on D** is a tuple $(C, (f_{\alpha})_{\alpha \in A})$, where $C \in \mathcal{C}$ is an object, called the **vertex** of the cone, and a family of arrows in \mathcal{C}

$$\left(C \xrightarrow{f_{\alpha}} D(\alpha)\right)_{\alpha \in A}. \tag{5}$$

such that for all morphisms $f \in A$, $f : \alpha \to \beta$, the triangle

commutes. A (small) limit of D is a cone $(L, (\pi_{\alpha})_{\alpha \in A})$ with the property that for any other cone $(C, (f_{\alpha})_{\alpha \in A})$ there exists a unique morphism $\overline{f}: C \to L$ such that $\pi_{\alpha} \circ \overline{f} = f_{\alpha}$ holds for every $\alpha \in A$.

Remark 1.3. In the setting of definition 1.8, if $(L, (\pi_{\alpha})_{\alpha \in A})$ is a limit of D, we sometimes reffering to L only as the limit of D and we write

$$L = \lim_{\leftarrow A} D. \tag{6}$$

Basic Algebra

The Isomorphism Theorems.

Basic Point-Set Topology

The Closed Map Lemma.

Lemma 1.1 (Closed Map Lemma). Let $X, Y \in \text{ob}(\mathsf{Top})$ such that X is compact and Y is Hausdorff, and $f \in \mathsf{Top}(X, Y)$. Then:

- (a) f is a closed map.
- (b) If f is injective, it is a topological embedding.
- (c) If f is surjective, it is a quotient map.
- (d) If f is bijective, it is a homeomorphism.

Homological Algebra

Diagram Lemmas.

Proposition 1.1 (Snake Lemma). *Suppose we are given a commutative diagram in* AbGrp *with exact rows:*

$$\begin{array}{ccc}
A & \xrightarrow{i} & B & \xrightarrow{j} & C & \longrightarrow & 0 \\
\downarrow^{f} & \downarrow^{g} & \downarrow^{h} & & \downarrow^{0} \\
0 & \longrightarrow & A' & \xrightarrow{i'} & B' & \xrightarrow{j'} & C'
\end{array}$$

Then there exists $\delta \in \mathsf{AbGrp}(\ker h, \operatorname{coker} f)$ such that the sequence

$$\ker f \longrightarrow \ker g \longrightarrow \ker h \xrightarrow{\delta} \operatorname{coker} f \longrightarrow \operatorname{coker} g \longrightarrow \operatorname{coker} h \tag{7}$$
is exact.

Proof. Consider the augmented diagram in figure 1, where the morphisms k, l, p and q are induced by i, j, i' and j', respectively.

Step 1: Exactness at ker g. Let $a \in \ker f$. Then l(k(a)) = j(i(a)) = 0 by exactness at B and thus im $k \subseteq \ker l$. Conversly, let $b \in \ker l$. Then j(b) = 0 and by exactness at B, there exists $a \in A$ such that i(a) = b. Moreover 0 = g(b) = g(i(a)) = i'(f(a)) since $b \in \ker g$ and thus f(a) = 0 by injectivity of i'. Hence $\ker j \subseteq \operatorname{im} k$.

Step 2: Exactness at coker g. Let $a' + \text{im } f \in \text{coker } f$. Then

$$q(p(a' + im f)) = i'(i'(a')) + im h = im h$$

by exactness at B' implies im $p \subseteq \ker q$. Conversly, let $b' + \operatorname{im} g \in \ker q$. Then

$$0 = q(b' + \operatorname{im} g) = j'(b') + \operatorname{im} h$$

FIGURE 1. Proof of the snake lemma.

and thus $j'(b') \in \operatorname{im} h$. Hence there exists $c \in C$, such that j'(b') = h(c). Since j is surjective, we find $b \in B$ such that j(b) = c. Therefore j'(b') = h(j(b)). By commutativity we get j'(b') = j'(g(b)) which is equivalent to j'(b' - g(b)) = 0. Thus $b' - g(b) \in \ker j'$ and exactness at B' yields the existence of $a' \in A'$ such that i'(a') = b' - g(b). Now

$$p(a' + \operatorname{im} f) = i'(a') + \operatorname{im} g = b' - g(b) + \operatorname{im} g = b' + \operatorname{im} g$$

and thus $\ker q \subseteq \operatorname{im} p$.

Step 3: Definition of δ . Consider the snakelike path indicated in figure 2a. Let $c \in \ker h$. Since j is surjective, we find $b \in B$ such that j(b) = c. Since $c \in \ker h$, we get that 0 = h(c) = h(j(b)) = j'(g(b)) and thus $g(b) \in \ker j'$ which implies $g(b) \in \operatorname{im} i'$ by exactness at B'. Hence there exists $a' \in A'$ such that i'(a') = g(b). Actually this a' is unique since i' is injective. Define $\delta : \ker h \to \operatorname{coker} f$ by

$$\delta(c) := a' + \operatorname{im} f$$
.

Step 4: Checking that δ is a morphism of groups. Since j is only surjective, we have to show that δ is a function. So suppose we choose $b_0 \in B$ instead of $b \in B$ in figure 2b with $b_0 \neq b$. We want to show that $\delta(c) = a' + \operatorname{im} f = a'_0 + \operatorname{im} f$, or equivalently $a' - a'_0 \in \operatorname{im} f$. Since $c = j(b) = j(b_0)$, we have that $b - b_0 \in \ker j$. Hence by exactness at B there exists $a \in A$ such that $i(a) = b - b_0$. Applying g and invoking commutativity

Figure 2

yields

$$g(b) - g(b_0) = g(i(a)) = i'(f(a))$$

Hence $i'(a') - i'(a'_0) = i'(f(a))$ and thus the injectivity of i' yields $a' - a'_0 = f(a)$. In the same manner one can show that δ is a morphism of groups.

Step 5: Exactness at ker h. Let $b \in \ker g$. Then im $l \subseteq \ker \delta$ immeddiately follows from figure 3a. Conversly, suppose $c \in \ker \delta$. From figure 3b we get that

$$g(b) = i'(a') = i'(f(a)) = g(i(a))$$

and thus $b - i(a) \in \ker g$. So l(b - i(a)) = j(b) - j(i(a)) = j(b) = c by exactness at B and thus $\ker \delta \subseteq \operatorname{im} l$.

Step 6: Exactness at coker f. Suppose that $a' + \operatorname{im} f \in \operatorname{im} \delta$. Then

$$p(a' + \text{im } f) = i'(a') + \text{im } g = g(b) + \text{im } g = \text{im } g$$

and thus im $\delta \subseteq \ker p$. Conversly, suppose that $a' + \operatorname{im} f \in \ker p$. Hence $i'(a') \in \operatorname{im} g$ and we find $b \in B$ such that g(b) = i'(a'). Consider j(b). By exactness at B' follows

$$h(j(b)) = j'(g(b)) = j'(i'(a')) = 0$$

So $j(b) \in \ker h$. Moreover, by construction $\delta(j(b)) = a' + \operatorname{im} f$ and thus $\ker p \subseteq \operatorname{im} \delta$.

(a) im $l \subseteq \ker \delta$.

(B) $\ker \delta \subseteq \operatorname{im} l$.

Figure 3

Proposition 1.2 (Five Lemma). *Suppose we are given a commutative diagram in AbGrp with exact rows and columns:*

Then h is an isomorphism.

Proof. We show that *h* is bijective.

Step 1: h is injective. See figure 4. Let $c \in \ker h$. Hence h(c) = 0 and since φ_3 is a morphism of groups, we have that $(\varphi_3 \circ h)(c) = 0$. By commutativity, $(k \circ \varphi_3)(c) = 0$ and thus since k is injective, $\varphi_3(c) = 0$. Exactness at C implies that there exists some $b \in B$ such that $\varphi_2(b) = c$. Moreover, by commutativity $\psi_2(g(b)) = 0$ and thus we find $a' \in A'$ such that $\psi_1(a') = g(b)$. Sujectivity of f implies the existence of $a \in A$ such that f(a) = a'. Commutativity yields $g(b) = g(\varphi_1(a))$ and thus $b - \varphi_1(a) \in \ker g$. Since g is injective, $b = \varphi_1(a)$ and thus $c = \varphi_2(\varphi_1(a)) = 0$.

Step 2: h is surjective. See figure 5. Let $c' \in C'$. Since k is surjective, we find $d \in D$ such that $k(d) = \psi_3(c')$. Hence exactness at D' together with commutativity yields

FIGURE 4. Proof of injectivity of h.

 $(l \circ \varphi_4)(d) = 0$. Since l is injective, we get that $\varphi_4(d) = 0$. Thus by exactness at D we find $c \in C$ such that $\varphi_3(c) = d$. Hence by commutativity, $(\psi_3 \circ h)(c) = \psi_3(c')$ or equivalently, $c' - h(c) \in \ker \psi_3$. By exactness at C' we find $b' \in B'$ such that $\psi_2(b') = c' - h(c)$. Moreover, since g is surjective, we find $b \in B$ such that g(b) = b'. Finally, commutativity yields $(h \circ \varphi_2)(b) = c' - h(c)$ or equivalently $c' = h(c + \varphi_2(b))$.

$$c \longmapsto d \longmapsto 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$c' \longmapsto \psi_3(c') \longmapsto 0$$

FIGURE 5. Proof of surjectivity of h.

CHAPTER 2

The Fundamental Group

The Fundamental Grupoid

Construction of the fundamental Grupoid.

Lemma 2.1 (Gluing Lemma). Let $X, Y \in \text{ob}(\mathsf{Top})$, $(X_{\alpha})_{\alpha \in A}$ a finite closed cover of X and $(f_{\alpha})_{\alpha \in A}$ a finite family of maps $f_{\alpha} \in \mathsf{Top}(X_{\alpha}, Y)$ such that $f_{\alpha}|_{X_{\alpha} \cap X_{\beta}} = f_{\beta}|_{X_{\alpha} \cap X_{\beta}}$ for all $\alpha, \beta \in A$. Then there exists a unique $f \in \mathsf{Top}(X, Y)$ such that $f|_{X_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$.

Proof. Let $x \in X$. Since $(X_{\alpha})_{\alpha \in A}$ is a cover of X, we find $\alpha \in A$ such that $x \in X_{\alpha}$. Define $f(x) := f_{\alpha}(x)$. This is well defined, since if $x \in X_{\alpha} \cap X_{\beta}$ for some $\beta \in A$, we have that $f(x) = f_{\beta}(x) = f_{\alpha}(x)$. Clearly $f|_{X_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$ and β is unique. Let us show continuity. To this end, let $K \subseteq Y$ be closed. Then

$$f^{-1}(K) = X \cap f^{-1}(K)$$

$$= \bigcup_{\alpha \in A} X_{\alpha} \cap f^{-1}(K)$$

$$= \bigcup_{\alpha \in A} (X_{\alpha} \cap f^{-1}(K))$$

$$= \bigcup_{\alpha \in A} (X_{\alpha} \cap f_{\alpha}^{-1}(K)).$$

Since each f_{α} is continuous, $f_{\alpha}^{-1}(K)$ is closed in X_{α} for each $\alpha \in A$ and thus since X_{α} is closed, $f^{-1}(K)$ is closed as a finite union of closed sets.

Theorem 2.1. There is a functor Top \rightarrow Grpd.

Proof. The proof is divided into several steps. Let us denote Π : Top \rightarrow Grpd for the claimed functor.

Step 1: Definition of Π on objects. Let $X, Y \in \text{ob}(\mathsf{Top}), f, g \in \mathsf{Top}(X, Y)$ and $A \subseteq X$. A map $F \in \mathsf{Top}(X \times I, Y)$ is called a **homotopy from X to Y relative to A**, if

- F(x,0) = f(x), for all $x \in X$.
- F(x, 1) = g(x), for all $x \in X$.
- F(x,t) = f(x) = g(x), for all $x \in A$ and for all $t \in I$.

If there exists a homotopy between f and g relative to A we say that f and g are **homotopic** relative to A and write $f \simeq_A g$. If we want to emphasize the homotopy relative to A, we write $F : f \simeq_A g$.

Lemma 2.2. Let $X, Y \in \text{ob}(\mathsf{Top})$ and $A \subseteq X$. Then being homotopic relative to A is an equivalence relation on $\mathsf{Top}(X,Y)$.

Proof. Define a binary relation $R_A \subseteq \mathsf{Top}(X,Y) \times \mathsf{Top}(X,Y)$ by

$$fR_Ag$$
 : \Leftrightarrow $f \simeq_A g$.

Let $f \in \text{Top}(X, Y)$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := f(x)$$
.

Then clearly $F: f \simeq_A f$. Hence R_A is reflexive.

Let $g \in \text{Top}(X, Y)$ and assume that fR_Ag . Thus $G : f \simeq_A g$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := G(x, 1-t).$$

Then it is easy to check that $F: g \simeq_A f$ and so R_A is symmetric.

Finally, let $h \in \text{Top}(X, Y)$ and suppose that fR_Ag and gR_Ah . Hence $F_1: f \simeq_A g$ and $F_2: g \simeq_A h$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := \begin{cases} F_1(x,2t) & 0 \le t \le \frac{1}{2}, \\ F_2(x,2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

Continuity of F follows by an application of the gluing lemma 2.1. Then it is easy to check that $F: f \simeq_A h$ and hence R_A is transitive.

Let $X \in \text{ob}(\mathsf{Top})$ and u a path in X from p to q. Define the **path class [u] of u** by $[u] := [u]_{R_{\mathcal{U}}}$. Define now

- ob $(\Pi(X)) := X$.
- $\Pi(X)(p,q) := \{[u] : u \text{ is a path from } p \text{ to } q\} \text{ for all } p,q \in X.$
- Let $p \in X$. Then define $\mathrm{id}_p \in \Pi(X)(p,p)$ by $\mathrm{id}_p := [c_p]$, where c_p is the constant path defined by $c_p(s) := p$ for all $s \in I$.
- And $\Pi(X)(q,r) \times \Pi(X)(p,q) \to \Pi(X)(p,r)$ by

$$([v],[u]) \mapsto [u * v]$$

Where $u * v \in \text{Top}(p, r)$ is the *concatenated path of u and v*, defined by

$$(u * v)(s) := \begin{cases} u(2s) & 0 \le t \le \frac{1}{2}, \\ v(2s-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

Continuity follows again from the gluing lemma 2.1 whereas well definedness follows from the next lemma.

Lemma 2.3. Suppose that $[u_1]$, $[u_2] \in \Pi(X)(p,q)$ and $[v_1]$, $[v_2] \in \Pi(X)(q,r)$ such that $[u_1] = [u_2]$ and $[v_1] = [v_2]$. Then $[u_1 * v_1] = [u_2 * v_2]$.

Proof. By assumption we have $G: u_1 \simeq_{\partial I} u_2$ and $H: v_1 \simeq_{\partial I} v_2$. Define $F \in \mathsf{Top}(I \times I, X)$ by

$$F(s,t) := \begin{cases} G(2s,t) & 0 \le s \le \frac{1}{2}, \\ H(2s-1,t) & \frac{1}{2} \le s \le 1. \end{cases}$$

Again, continuity follows from the gluing lemma 2.1 and it is easy to check that $F: u_1 * v_1 \simeq_{\partial I} u_2 * v_2$.

Let us now check that $\Pi(X)$ is indeed a category. Let $[u] \in \Pi(X)(p,q)$. We want to show that $u \simeq_{\partial I} c_p * u$. To this end, we consider figure 6a and conclude that a suitable homotopy is given by $F \in \text{Top}(I \times I, X)$ defined by

$$F(s,t) := \begin{cases} p & 0 \le 2s \le t, \\ u\left(\frac{2s-t}{2-t}\right) & t \le 2s \le 2. \end{cases}$$

Similarly, considering figure 6b leads to $F \in \text{Top}(I \times I, X)$ defined by

FIGURE 6. Visualization of the proof that $\Pi(X)$ is a grupoid object.

$$F(s,t) := \begin{cases} u\left(\frac{4s}{t+1}\right) & -1 \le 4s - 1 \le t, \\ v(4s - t - 1) & t \le 4s - 1 \le t + 1, \\ w\left(\frac{4s - t - 2}{4 - t - 2}\right) & t + 1 \le 4s - 1 \le 3. \end{cases}$$

Lastly, we check that $\Pi(X)$ is a grupoid. To this end, for a path u from p to q, define its reverse path \overline{u} by

$$\overline{u}(s) := u(1-s).$$

We claim that $u * \overline{u} \simeq_{\partial I} c_p$. From figure 6c we deduce that $F \in \text{Top}(I \times I, X)$ is given by

$$F(s,t) := \begin{cases} u(2s) & 0 \le 2s \le 1 - t, \\ u(1-t) & 1 - t \le 2s \le t + 1, \\ \overline{u}(2s-1) & t + 1 \le 2s \le 2. \end{cases}$$

Step 2: Definition of Π on morphisms. Let $f \in \text{Top}(X, Y)$. Then $\Pi(f)$ is a functor from $\Pi(X)$ to $\Pi(Y)$. Define $\Pi(f)$ as follows:

- Let $p \in \text{ob}(\Pi(X))$. Then define $\Pi(f)(p) := f(p) \in \text{ob}(\Pi(Y))$.
- Let $[u] \in \Pi(X)(p,q)$. Then define $\Pi(f)[u] := [f \circ u] \in$. We have to check that this definition is independent of the choice of the representative.

Lemma 2.4. Let u and v be paths from p to q in X and suppose that [u] = [v]. Then for any $f \in \text{Top}(X, Y)$ we also have that $[f \circ u] = [f \circ v]$.

Proof. Suppose that $H: u \simeq_{\partial I} v$. Define $F \in \text{Top}(I \times I, Y)$ by

$$F(s,t) := (f \circ F)(s,t).$$

Then $F: f \circ u \simeq_{\partial I} f \circ v$.

Checking that Π satisfies the functorial properties is left as an exercise.

Exercise 2.1. Check that $\Pi : \mathsf{Top} \to \mathsf{Grpd}$ is indeed a functor.

The Fundamental Group.

Lemma 2.5. Let \mathcal{G} be a locally small grupoid. Then for every $X \in \text{ob}(\mathcal{G})$, $\mathcal{G}(X, X)$ can be equipped with a group structure.

Proof. Since \mathcal{G} is locally small, $\mathcal{G}(X,X)$ is a set for every $X \in \text{ob}(\mathcal{G})$. Define a multiplication $\mathcal{G}(X,X) \times \mathcal{G}(X,X) \to \mathcal{G}(X,X)$ by $gh := h \circ g$. Clearly, this multiplication is associative. Moreover, the identity element is given by $\text{id}_X \in \mathcal{G}(X,X)$ and since every $g \in \mathcal{G}(X,X)$ is an isomorphism, the multiplicative inverse is given by the inverse in $\mathcal{G}(X,X)$.

Proposition 2.1. There is a functor $Top_* \to Grp$.

Proof. Define $\pi_1 : \mathsf{Top}_* \to \mathsf{Grp}$ on objects $(X, p) \in \mathsf{Top}_*$ by

$$\pi_1(X, p) := \Pi(X)(p, p).$$

By theorem 2.1 together with lemma 2.5, $\pi_1(X, p)$ is actually a group, called the **fundamental group of** X with basepoint p. On morphisms $f \in \text{Top}_*((X, p), (Y, q))$, define

$$\pi_1(f) := \Pi(f) : \Pi(X)(p, p) \to \Pi(Y)(q, q).$$

Let $[u], [v] \in \pi_1(X, p)$. Then

$$\pi_{1}([u][v]) = \Pi(f)([u][v])$$

$$= \Pi(f)[u * v]$$

$$= [f \circ (u * v)]$$

$$= [(f \circ u) * (f \circ v)]$$

$$= \Pi(f)[u]\Pi(f)[v]$$

$$= \pi_{1}(f)[u]\pi_{1}(f)[v].$$

Thus $\pi_1(f)$ is a morphism in Grp. Functoriality of π_1 immediately follows from the functoriality of Π .

Lemma 2.6. Let $X \in \text{ob}(\mathsf{Top})$, $p \in X$ and A be the path component of X containing p. Then $\pi_1(\iota)$, where $\iota : A \hookrightarrow X$ denotes the inclusion, is an isomorphism.

Proof. Suppose $[u] \in \ker \pi_1(\iota)$. Then $[\iota \circ u] = [c_p]$ and Hence $F : \iota \circ u \simeq_{\partial I} c_p$. Since $I \times I$ is path connected and $p \in F(I \times I)$, it follows that $F(I \times I) \subseteq A$ and thus $F : u \simeq_{\partial I} c_p$ in A and hence $[u] = [c_p]$. To see that $\pi_1(\iota)$ is surjective, just observe that $u(I) \subseteq A$ for $[u] \in \pi_1(X, p)$ since u(I) is path connected and $p \in u(I)$.

Lemma 2.7. Let $X \in \text{ob}(\mathsf{Top})$ be path connected and $p, q \in X$. Then

$$\pi_1(X, p) \cong \pi_1(X, q).$$

Proof. Since X is path connected we find a path v from p to q in X. Define a mapping $\Phi_v : \pi_1(X, p) \to \pi_1(X, q)$

$$\Phi_v[u] := [\overline{v} * u * v].$$

Clearly, Φ_v is invertible with inverse $\Phi_{\overline{v}}$. Moreover, for [u], $[w] \in \pi_1(X, p)$ we have that

$$\Phi_{v}([u][w]) = \Phi_{v}[u * w]
= [\overline{v} * u * w * v]
= [\overline{v} * u * v * \overline{v} * w * v]
= [\overline{v} * u * v] [\overline{v} * w * v]
= \Phi_{v}[u] \Phi_{v}[w].$$

 $\pi_1(\mathbb{S}^1)$.

Definition 2.1 (Exponential Quotient Map and Fundamental Loop). The mapping $\varepsilon : \mathbb{R} \to \mathbb{S}^1$ defined by

$$\varepsilon(x) := e^{2\pi i x} \tag{8}$$

is called the **exponential quotient map**. Moreover, the **fundamental loop** ω is defined to be the restriction $\omega := \varepsilon|_I$.

Proposition 2.2 (Lifting Property of the Circle). Let $n \in \mathbb{Z}$, $n \geq 0$, $X \subseteq \mathbb{R}^n$ compact and convex, $p \in X$, $f \in \mathsf{Top}_*((X, p), (\mathbb{S}^1, 1))$ and $m \in \mathbb{Z}$. Then there exists a unique map $\tilde{f} \in \mathsf{Top}_*((X, p), (\mathbb{R}, m))$, called the **lifting of** f, such that

$$(\mathbb{R}, m)$$

$$\downarrow \varepsilon$$

$$(X, p) \xrightarrow{f} (\mathbb{S}^1, 1)$$

commutes.

Proof. We show first existence and then uniqueness.

Step 1: Existence. Since X is compact and f is continuous, f is uniformly continuous on X. Thus we find $\delta > 0$ such that |f(x) - f(y)| < 2, whenever $|x - y| < \delta$, i.e. f(x) and f(y) are not antipodal points. Moreover, since X is compact, X is bounded and hence we find $N \in \mathbb{N}$, such that $|x - y| < N\delta$ holds for all $x, y \in X$. Let $x \in X$. For $0 \le k \le N$, define $L_k : X \to X$ by

$$L_k(x) := \left(1 - \frac{k}{N}\right)p + \frac{k}{N}x.$$

Those are well defined functions since X is convex. Moreover, each L_k is continuous. Indeed, it is easy to check that L_k is Lipschitz. Also, for each $0 \le k < N$, $f(L_k(x))$ and $f(L_{k+1}(x))$ are not antipodal for all $x \in X$. Indeed, it is easy to check that $|L_k(x) - L_{k+1}(x)| < \delta$ holds for all $x \in X$. For $0 \le k < N$ define $g_k : X \to \mathbb{S}^1 \setminus \{-1\}$ by

$$g_k(x) := \frac{f(L_{k+1}(x))}{f(L_k(x))}.$$

Clearly g_k is well defined and continuous as a composition of continuous functions. Let $\text{Log}: \mathbb{S}^1 \setminus \{-1\} \to \mathbb{C}$ denote the principal branch of the logarithm. Define $\widetilde{f}: X \to \mathbb{R}$ by

$$\tilde{f}(x) := m + \frac{1}{2\pi i} \sum_{k=0}^{N-1} \text{Log}(g_k(x)).$$

Clearly, \tilde{f} is continuous and moreover we have that $\tilde{f} = m$ since $g_k(p) = 1$ for all $0 \le k < N$. Finally, for any $x \in X$ we have that

$$(\varepsilon \circ \widetilde{f})(x) = \varepsilon(m) \prod_{k=0}^{N-1} g_k(x) = \frac{f(L_N(x))}{f(L_0(x))} = \frac{f(x)}{f(p)} = f(x).$$

Step 2: Uniqueness. Suppose $\tilde{g} \in \text{Top}_*((X, p), (\mathbb{R}, m))$ is another such function. Define $\varphi \in \text{Top}_*((X, p), (\mathbb{R}, 0))$ by

$$\varphi(x) := \tilde{f}(x) - \tilde{g}(x).$$

Then clearly $\varepsilon \circ \varphi = 1$ and thus $\varphi(X) \subseteq \mathbb{Z}$. Since X is convex, X is connected and so $\varphi = 0$.

Corollary 2.1. Let $u, v \in \Omega(\mathbb{S}^1, 1)$ such that [u] = [v]. If $\widetilde{u}, \widetilde{v} : (I, 0) \to (\mathbb{R}, 0)$ are the liftings of u and v, respectively, then $[\widetilde{u}] = [\widetilde{v}]$.

Proof. Let $F: u \simeq_{\partial I} v$. By proposition 2.2, we find $\widetilde{F} \in \mathsf{Top}_* \big((I \times I, (0, 0)), (\mathbb{R}, 0) \big)$, such that $\varepsilon \circ \widetilde{F} = F$. We claim that $\widetilde{F}: \widetilde{u} \simeq_{\partial I} \widetilde{v}$. For $s \in I$ define $\widetilde{u}_0(s) := \widetilde{F}(s, 0)$. Then $\widetilde{u}_0(0) = \widetilde{F}(0, 0) = 0$ and since \widetilde{u}_0 is continuous we have that $\widetilde{u}_0 \in \mathsf{Top}_* \big((I, 0), (\mathbb{R}, 0) \big)$. Moreover

$$(\varepsilon \circ \widetilde{u}_0)(s) = \varepsilon (\widetilde{F}(s,0)) = F(s,0) = u(s)$$

for all $s \in I$ and thus \widetilde{u}_0 is a lifting of u. But by proposition 2.2, liftings are unique and thus $\widetilde{u}_0 = \widetilde{u}$. Next define $\widetilde{w}_0(t) := \widetilde{F}(0,t)$ for all $t \in I$. Then $\widetilde{w}_0(0) = \widetilde{F}(0,0) = 0$ and so $\widetilde{w}_0 \in \mathsf{Top}_* \big((I,0), (\mathbb{R},0) \big)$. Moreover

$$(\varepsilon \circ \widetilde{w}_0)(t) = \varepsilon \left(\widetilde{F}(0, t) \right) = F(0, t) = u(0) = v(0) = 1.$$

for all $t \in I$. Thus

$$(\mathbb{R},0)$$

$$\downarrow^{\varepsilon}$$

$$(I,0) \xrightarrow{c_1} (\mathbb{S}^1,1)$$

commutes. But also c_0 makes the above diagram commute. By uniqueness, $\widetilde{w}_0 = c_0$. Define $\widetilde{v}_0(s) := \widetilde{F}(s,1)$ for all $s \in I$. Then $\widetilde{v}_0(0) = \widetilde{F}(0,1) = \widetilde{w}_0(1) = 0$ and it is easy to check that \widetilde{v}_0 is a lift for v. Hence $\widetilde{v}_0 = \widetilde{v}$. Finally, define $\widetilde{w}_1(t) := \widetilde{F}(1,t)$ for all $t \in I$. Then $\widetilde{w}_1(0) = \widetilde{F}(1,0) = \widetilde{u}(1)$ and thus $\widetilde{w}_1 \in \mathsf{Top}_* (I,0), (\mathbb{R}, \widetilde{u}(0))$. Moreover

$$(\varepsilon \circ \widetilde{w}_1)(t) = \varepsilon \left(\widetilde{F}(1, t) \right) = F(1, t) = v(1) = u(1) = 1$$

for all $t \in I$. By proposition 2.2, we have again that $\widetilde{w}_1 = c_{\widetilde{u}(1)}$. So $F : \widetilde{u} \simeq_{\partial I} \widetilde{v}$.

Definition 2.2 (Degree). Let $u \in \Omega(\mathbb{S}^1, 1)$. The **degree of u**, written $\deg u$, is defined by $\deg u := \widetilde{u}(1)$, where \widetilde{u} is the unique lift of u such that $\widetilde{u}(0) = 0$.

Theorem 2.2 (Fundamental Group of the Circle). $\pi_1(\mathbb{S}^1) \cong \mathbb{Z}$.

Proof. Define deg : $\pi_1(\mathbb{S}^1, 1) \to \mathbb{Z}$ by deg $[u] := \deg u$. This is well defined by corollary 2.1, since if [u] = [v], then $[\widetilde{u}] = [\widetilde{v}]$ and in particular $\widetilde{u}(1) = \widetilde{v}(1)$.

Step 1: deg \in Grp $(\pi_1(\mathbb{S}^1, 1), (\mathbb{Z}, +))$. Let $[u], [v] \in \pi_1(\mathbb{S}^1, 1)$ and m := deg [u], n := deg [v]. Moreover, let \widetilde{u} and \widetilde{v} denote the unique liftings of u and v, respectively, such that $\widetilde{u}(0) = 0$ and $\widetilde{v}(0) = 0$. Define

$$\widetilde{w}(s) := \begin{cases} \widetilde{u}(2s) & 0 \le s \le \frac{1}{2}, \\ m + \widetilde{v}(2s - 1) & \frac{1}{2} \le s \le 1. \end{cases}$$

Clearly \widetilde{w} is continuous and $\widetilde{w}(0) = 0$. Hence $\widetilde{w} \in \mathsf{Top}_*((I,0),(\mathbb{R},0))$. Also we have that $\varepsilon \circ \widetilde{w} = u * v$ and thus \widetilde{w} is the lift of u * v. But $\widetilde{w}(1) = m + n$ and so

$$\deg([u][v]) = \deg[u * v] = \deg(u * v) = \tilde{w}(1) = m + n = \deg[u] + \deg[v].$$

Step 2: deg is injective. Suppose deg [u] = 0. Then $\tilde{u}(1) = 0$ and thus $\tilde{u} \in \Omega(\mathbb{R}, 0)$. Since \mathbb{R} is contractible, we have that $[\tilde{u}] = [c_0]$ and thus

$$[u] = [\varepsilon \circ \widetilde{u}] = \pi_1(\varepsilon) [\widetilde{u}] = \pi_1(\varepsilon) [c_0] = [c_1].$$

Thus ker(deg) is trivial.

Step 3: deg is surjective. Let $m \in \mathbb{Z}$. Then

$$\deg\left[\varepsilon^{m}\right] = \deg \varepsilon^{m} = \widetilde{\varepsilon^{m}}(1) = m.$$

The Seifert-Van Kampen Theorem

Coproducts and Pushouts in Grp.

Proposition 2.3 (Coproducts in Grp). Grp has all small coproducts.

Proof. Let $A \in \text{ob}(\mathsf{Set})$ and A be the small category defined as the discrete category with $\text{ob}(\mathsf{A}) := A$, i.e.

• • • • • • •

Let $D: A \to Grp$ be a functor. Hence we get a family $(G_{\alpha})_{\alpha \in A}$ in Grp, where $G_{\alpha} := D(\alpha)$ for all $\alpha \in A$. A **word** in $(G_{\alpha})_{\alpha \in A}$ is a finite sequence in $\coprod_{\alpha \in A} G_{\alpha}$. A word in $(G_{\alpha})_{\alpha \in A}$ will simply be written as (g_1, \ldots, g_n) , where $g_k \in G_{\alpha}$ for some $\alpha \in A$. The **empty word** is denoted by (). Let W denote the set of all words in $(G_{\alpha})_{\alpha \in A}$. On W define a multiplication by **concatenation**

$$(g_1, \ldots, g_n)(h_1, \ldots, h_m) := (g_1, \ldots, g_n, h_1, \ldots, h_m).$$

An *elementary reduction* is an operation of one of the following forms:

- $(g_1, \ldots, g_k, g_{k+1}, \ldots, g_n) \mapsto (g_1, \ldots, g_k g_{k+1}, \ldots, g_n)$, where $g_k, g_{k+1} \in G_\alpha$ for some $\alpha \in A$.
- $(g_1, \ldots, g_{k-1}, 1_{\alpha}, g_{k+1}, \ldots, g_n) \mapsto (g_1, \ldots, g_{k-1}, g_{k+1}, \ldots, g_n).$

Let \sim denote the equivalence relation on W generated by elementary reductions.

Lemma 2.8. W/\sim together with concatenation of representatives is an element of Grp.

Proof. Define

$$[(g_1,\ldots,g_n)][(h_1,\ldots,h_m)] := [(g_1,\ldots,g_n,h_1,\ldots,h_m)].$$

It is left to the reader to show that this is well defined and that \mathcal{W}/\sim is indeed a group. \square The group defined in lemma 2.8 will be denoted by $\bigstar_{\alpha\in A}G_{\alpha}$ and called the *free product of* $(G_{\alpha})_{\alpha\in A}$. Let us define a cocone on D. For this consider the inclusions $\iota_{\alpha}: G_{\alpha} \to \bigstar_{\alpha\in A}G_{\alpha}$ defined by

$$\iota_{\alpha}(g) := [(g)]$$

for all $\alpha \in A$. It is immediate from

$$\iota_{\alpha}(gh) = [(gh)] = [(g,h)] = [(g)][(h)] = \iota_{\alpha}(g)\iota_{\alpha}(h)$$

for $g, h \in G_{\alpha}$, that ι_{α} is a morphism of groups. Since there are only the identity morphisms in A, $(\bigstar_{\alpha \in A} G_{\alpha}, (\iota_{\alpha})_{\alpha \in A})$ is a cocone on D. Let us show that this is in fact a universal cocone. To this end, suppose that $(C, (\varphi_{\alpha})_{\alpha \in A})$ is another cocone on D. Define a mapping $\overline{f} : \bigstar_{\alpha \in A} G_{\alpha} \to C$ by

$$\overline{f}[(g_1,\ldots,g_n)] := \varphi_{\alpha_1}(g_1)\cdots\varphi_{\alpha_n}(g_n)$$

where $g_k \in G_{\alpha_k}$. Then \overline{f} is easily seen to be well defined since each φ_{α} is a morphism of groups. Moreover, if $g \in G_{\alpha}$, then

$$(\bar{f} \circ \iota_{\alpha})(g) = \bar{f}[(g)] = \varphi_{\alpha}(g)$$

for all $\alpha \in A$. Suppose that $f: \bigstar_{\alpha \in A} G_{\alpha} \to C$ is another homomorphism of groups such that $f \circ \iota_{\alpha} = \varphi_{\alpha}$ for all $\alpha \in A$. Then for $[(g_1, \ldots, g_n)] \in \bigstar_{\alpha \in A} G_{\alpha}$ we have

$$f [(g_1, \dots, g_n)] = f([(g_1)] \cdots [(g_n)])$$

$$= f [(g_1)] \cdots f [(g_n)]$$

$$= f (\iota_{\alpha_1}(g_1)) \cdots f (\iota_{\alpha_n}(g_n))$$

$$= \varphi_{\alpha_1}(g_1) \cdots \varphi_{\alpha_n}(g_n)$$

$$= \overline{f} [(g_1, \dots, g_n)].$$

Exercise 2.2. Check that W/\sim is indeed a group with the declared group structure and that \overline{f} is indeed well defined.

Proposition 2.4 (Pushouts in Grp). Grp has all pushouts.

Proof. Consider the diagram $D: A \rightarrow Grp$

and define N to be the normal subgroup of $H_1 * H_2$ generated by elements of the form $[(\varphi_1(g^{-1}), \varphi_2(g))]$ for $g \in G$. Let $K := (H_1 * H_2)/N$. Then

$$G \xrightarrow{\varphi_1} H_1$$

$$\varphi_2 \downarrow \qquad \qquad \downarrow \pi \circ \iota_1$$

$$H_2 \xrightarrow{\pi \circ \iota_2} K$$

commutes. Indeed, if $g \in G$, we have that $(\pi \circ \iota_1 \circ \varphi_1)(g) = [(\varphi_1(g))] N$ and similarly $(\pi \circ \iota_2 \circ \varphi_2)(g) = [(\varphi_2(g))] N$. Then

$$[(\varphi_1(g))]^{-1}[(\varphi_2(g))] = [(\varphi_1(g)^{-1})][(\varphi_2(g))] = [(\varphi_1(g^{-1}))][(\varphi_2(g))] \in N.$$

Suppose that we have another cocone on *D*:

$$G \xrightarrow{\varphi_1} H_1$$

$$\varphi_2 \downarrow \qquad \qquad \downarrow \psi_1$$

$$H_2 \xrightarrow{\psi_2} C$$

By proposition 2.3, there exists a unique morphism of groups $f: H_1 * H_2 \to C$ and we thus get the following diagram:

To show that $N \subseteq \ker f$ is left as an exercise. Hence by the factorization theorem (see [Gri07, p. 23]), f factors uniquely through π , i.e. there exists a unique morphism of groups $\overline{f}: K \to C$ such that $\overline{f} \circ \pi = f$.

Exercise 2.3. In the previous proposition, verify that $N \subseteq \ker f$.

Definition 2.3 (Amalgamated Free Product). The pushout of a diagram

$$G \xrightarrow{\varphi_1} H_1$$

$$\downarrow^{\varphi_2} \qquad \qquad H_2$$

in Grp is called the amalgamated free product of H_1 and H_2 along $(G, \varphi_1, \varphi_2)$, written $H_1 *_{(G, \varphi_1, \varphi_2)} H_2$.

The Seifert-Van Kampen Theorem and its Consequences.

Theorem 2.3 (Seifert-Van Kampen). Let $X \in \text{ob}(\mathsf{Top})$, (U, V) an open cover for X, such that U, V and $U \cap V$ are path connected. Moreover, let $p \in U \cap V$. Then

$$\pi_1(X, p) \cong \pi_1(U, p) *_{(\pi_1(U \cap V, p), \pi_1(\iota_U), \pi_1(\iota_V))} \pi_1(V, p), \tag{9}$$

where $\iota_U: U \cap V \hookrightarrow U$ and $\iota_V: U \cap V \hookrightarrow V$ denote inclusion.

Problems

Problem 2.1 (The Quotient Category hTop). In this exercise we will introduce some additional notions regarding homotopies.

- (a) Show that being freely homotopic induces a congruence on Top. The resulting quotient category is called the *homotopy category* and is denoted by hTop.
- (b) We say that two topological spaces X and Y are of the *same homotopy type*, if they are isomorphic in hTop. Moreover, a topological space X is said to be *contractible* if id_X is freely homotopic to a constant map. Show that a topological space X has the same homotopy type as a one point space X if and only if X is contractible.

CHAPTER 3

Singular Homology

Construction of the Singular Homology Functor

Aim of this section is to construct for each $n \in \omega$ a functor H_n : Top \to AbGrp, called the *n-th singular homology functor*.

Free Abelian Groups.

Proposition 3.1. *The forgetful functor* U : AbGrp \rightarrow Set *admits a left adjoint.*

Proof. We have to construct a functor $F: \mathsf{Set} \to \mathsf{AbGrp}$. Let S be a set. Define

$$F(S) := \{ f \in \mathbb{Z}^S : \text{supp } f \text{ is finite} \}.$$

Equipped with pointwise addition, F(S) is an abelian group. There is a natural inclusion $\iota: S \hookrightarrow U\left(F(S)\right)$ sending $x \in S$ to the function taking the value one at x and zero else. Hence we may regard elements of F(S) as formal linear combinations $\sum_{x \in S} m_x x$, where $m_x \in \mathbb{Z}$ for all $x \in S$. On morphisms $f: S \to T$ in Set, define $F(f): F(S) \to F(T)$ simply by setting $F(f)\left(\sum_{x \in S} m_x x\right) := \sum_{x \in S} m_x f(x)$.

Let $G \in \text{ob}(\mathsf{AbGrp})$ be an abelian group and $\varphi \in \mathsf{AbGrp}\left(F(S), G\right)$ a morphism of groups. Define $\overline{\varphi} \in \mathsf{Set}\left(S, U(G)\right)$ by $\overline{\varphi} := U(\varphi)$. Conversly, if we have $f \in \mathsf{Set}\left(S, U(G)\right)$, define $\overline{f} \in \mathsf{AbGrp}\left(F(S), G\right)$ by $\overline{f}\left(\sum_{x \in S} m_x x\right) := \sum_{x \in S} m_x f(x)$. This is well defined since all but finitely many m_x are zero and G is abelian. It is easy to check that \overline{f} is indeed a morphism of groups. Let $\varphi \in \mathsf{AbGrp}\left(F(S), G\right)$. Then

$$\overline{\varphi}\left(\sum_{x \in S} m_x x\right) = \sum_{x \in S} m_x \overline{\varphi}(x)$$

$$= \sum_{x \in S} m_x U(\varphi)(x)$$

$$= \sum_{x \in S} m_x \varphi(x)$$

$$= \varphi\left(\sum_{x \in S} m_x x\right).$$

And for $f \in Set(S, U(G))$ we have that

$$\overline{\overline{f}}(x) = U(\overline{f})(x) = \overline{f}(x) = f(x).$$

Hence $\overline{\overline{\varphi}} = \varphi$ and $\overline{\overline{f}} = f$ and so we have a bijection

$$\mathsf{AbGrp}\left(F(S),G\right)\cong\mathsf{Set}\left(S,U(G)\right).$$

The mapping $f \mapsto \overline{f}$ will be referred to as *extending by linearity*. To check naturality in S and G is left as an exercise.

Exercise 3.1. In proposition 3.1, check that $F : Set \to AbGrp$ is indeed a functor, called the *free functor from* Set *to* AbGrp, and the naturality of the bijection in both arguments.

Definition 3.1 (Free Abelian Group). Let $F : Set \to AbGrp$ be the free functor. For any set S, we call F(S) the free group generated by S.

Chain Complexes.

Definition 3.2 (Chain Complex). A chain complex is a tuple $(C_{\bullet}, \partial_{\bullet})$ consisting of a sequence $(C_n)_{n \in \mathbb{Z}}$ in ob(AbGrp) and a sequence $(\partial_n)_{n \in \mathbb{Z}}$ in mor(AbGrp), called **boundary operators**, such that we have $\partial_n \in \mathsf{AbGrp}(C_n, C_{n-1})$ and $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$.

Definition 3.3 (Chain Maps). Let $(C_{\bullet}, \partial_{\bullet})$ and $(C'_{\bullet}, \partial'_{\bullet})$ be two chain complexes. A **chain map** $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ is a sequence $(f_n)_{n \in \mathbb{Z}}$ in mor(AbGrp) such that $f_n \in \mathsf{AbGrp}(C_n, C'_n)$ and the diagram

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$f_{n} \downarrow \qquad \qquad \downarrow f_{n-1}$$

$$C'_{n} \xrightarrow{\partial'_{n}} C'_{n-1}$$

commutes for all $n \in \mathbb{Z}$.

Proposition 3.2. There is a category with objects chain complexes and morphisms chain maps.

Proof. Let $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ and $g_{\bullet}: C'_{\bullet} \to C''_{\bullet}$ be chain maps. Define a map $g_{\bullet} \circ f_{\bullet}$ by $g_n \circ f_n$ for each $n \in \mathbb{Z}$. This defines a chain map. Moreover, for each chain complex C_{\bullet} define $\mathrm{id}_{C_{\bullet}}$ by id_{C_n} for all $n \in \mathbb{Z}$. It is easy to check, that then \circ is associative and the identity laws hold.

Definition 3.4 (Comp). The category in 3.2 is called the **category of chain complexes** and we refer to it as Comp.

Theorem 3.1. There is a functor Top \rightarrow Comp.

Proof. The proof is divided into several steps. Let us denote C_{\bullet} : Top \rightarrow Comp for the claimed functor.

Step 1: Construction of a sequence of abelian groups. Let $v_0, \ldots, v_k \in \mathbb{R}^n$ for some $n, k \in \omega$. We say that (v_0, \ldots, v_k) is **affinely independent** if $(v_1 - v_0, \ldots, v_k - v_0)$ is linearly independent. We define the **k-simplex spanned by** (v_0, \ldots, v_k) , written $[v_0, \ldots, v_k]$, to be

$$[v_0, \dots, v_k] := \{ \sum_{i=0}^k s_i v_i : s_i \ge 0 \text{ for all } i = 0, \dots, k \text{ and } \sum_{i=0}^k s_i = 1 \}.$$
 (10)

equipped with the subspace topology. Moreover, we define the *standard n-simplex* Δ^n to be the *n*-simplex spanned by (e_0, \ldots, e_n) where $e_0 := 0 \in \mathbb{R}^n$ and (e_1, \ldots, e_n) is the standard ordered basis of \mathbb{R}^n . Let $X \in \text{ob}(\mathsf{Top})$. Define a *singular n-simplex in* X to be a morphism $\sigma \in \mathsf{Top}(\Delta^n, X)$. Let $n \in \mathbb{Z}$. Define

$$C_n(X) := \begin{cases} F\left(\mathsf{Top}(\Delta^n, X)\right) & n \ge 0, \\ 0 & n < 0. \end{cases}$$
 (11)

We will call elements of $C_n(X)$ singular n-chains.

Step 2: Construction of boundary operators. Let $X \in \text{ob}(\mathsf{Top})$ and σ a singular n-simplex in X for $n \geq 1$. We define $\varphi_k^n : \Delta^{n-1} \to \Delta^n$, called the k-th face map, to be the unique affine map determined by the vertex map

$$\begin{array}{cccc} & \varphi_k^n \\ e_0 & \mapsto & e_0 \\ \vdots & & \vdots \\ e_{k-1} & \mapsto & e_{k-1} \\ e_k & \mapsto & e_{k+1} \\ \vdots & & \vdots \\ e_{n-1} & \mapsto & e_n. \end{array}$$

Explicitely, given $\sum_{i=0}^{n-1} s_i e_i \in \Delta^{n-1}$, we have that (see [Lee11, p. 152])

$$\varphi_k^n\left(\sum_{i=0}^{n-1} s_i e_i\right) = \sum_{i=0}^{n-1} s_i \varphi_k^n(e_i).$$

Define now

$$\partial \sigma := \sum_{k=0}^{n} (-1)^k \sigma \circ \varphi_k^n \in U\left(C_{n-1}(X)\right)$$
 (12)

to be the **boundary of** σ . Moreover, the **singular boundary operator** is defined to be $\overline{\partial_n}$ and $\partial_n := 0$ for $n \le 0$.

Step 3: $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$. It is enough to consider $n \ge 1$, since $\partial_n \circ \partial_{n+1} = 0$ holds trivially in the other cases. Let $X \in \text{ob}(\mathsf{Top})$ and $\sigma \in \mathsf{Top}(\Delta^{n+1}, X)$. Then we have

$$(\partial_{n} \circ \partial_{n+1})(\sigma) = \partial_{n} \left(\sum_{k=0}^{n+1} (-1)^{k} \sigma \circ \varphi_{k}^{n+1} \right)$$

$$= \sum_{k=0}^{n+1} (-1)^{k} \partial_{n} \left(\sigma \circ \varphi_{k}^{n+1} \right)$$

$$= \sum_{k=0}^{n+1} \sum_{j=0}^{n} (-1)^{k+j} \sigma \circ \varphi_{k}^{n+1} \circ \varphi_{j}^{n}$$

$$= \sum_{0 \le k \le j \le n} (-1)^{k+j} \sigma \circ \varphi_{k}^{n+1} \circ \varphi_{j}^{n} + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_{k}^{n+1} \circ \varphi_{j}^{n}$$

$$= \sum_{0 \le j \le k \le n} (-1)^{k+j} \sigma \circ \varphi_{j}^{n+1} \circ \varphi_{k}^{n} + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_{k}^{n+1} \circ \varphi_{j}^{n}$$

$$= \sum_{0 \le j < k \le n+1} \left((-1)^{k+j-1} \sigma \circ \varphi_{j}^{n+1} \circ \varphi_{k-1}^{n} + (-1)^{k+j} \sigma \circ \varphi_{k}^{n+1} \circ \varphi_{j}^{n} \right)$$

Since $\varphi_j^{n+1} \circ \varphi_{k-1}^n = \varphi_k^{n+1} \circ \varphi_j^n$, it follows that

$$\partial_n \circ \partial_{n+1} = 0.$$

Indeed, consider the following chart of vertex maps:

Step 4: Construction of chain maps. Let $X, Y \in \text{ob}(\mathsf{Top})$ and $f \in \mathsf{Top}(X, Y)$. For $n \geq 0$, define $f_n^\# : \mathsf{Top}(\Delta^n, X) \to U\left(C_n(Y)\right)$ by $f^\# := f \circ \sigma$. Extending this map by linearity yields a homomorphism $f_n^\# : C_n(X) \to C_n(Y)$. Moreover, set $f_n^\# := 0$ for n < 0. Let

 $n \ge 1$ and $\sigma \in \mathsf{Top}(\Delta^n, X)$. Then on one hand we have

$$(f_{n-1}^{\#} \circ \partial_n)(\sigma) = f_{n-1}^{\#} \left(\sum_{k=0}^n (-1)^k \sigma \circ \varphi_k^n \right) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n$$

and on the other

$$(\partial_n \circ f_n^{\#})(\sigma) = \partial_n (f \circ \sigma) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n.$$

Checking, that C_{\bullet} is indeed a functor is left as an exercise.

Exercise 3.2. Show that C_{\bullet} : Top \rightarrow Comp is a functor.

The Homology Functor.

Proposition 3.3. For each $n \in \mathbb{Z}$ there exists a functor Comp \rightarrow AbGrp.

Proof. Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex. Let $x \in \text{im } \partial_{n+1}$. Hence there exists $y \in C_{n+1}$ such that $x = \partial_{n+1}y$. But then $\partial_n x = (\partial_n \circ \partial_{n+1})(y) = 0$ and thus im $\partial_{n+1} \subseteq \ker \partial_n$. Define

$$H_n(C_{\bullet}, \partial_{\bullet}) := \frac{\ker \partial_n}{\operatorname{im} \partial_{n+1}} \in \operatorname{ob}(\mathsf{AbGrp}).$$

Let $(C'_{\bullet}, \partial'_{\bullet})$ be a chain complex and $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ a chain map. Then $f_n(\ker \partial_n) \subseteq \ker \partial'_n$. Indeed, if $y \in f_n(\ker \partial_n)$, there exists $x \in \ker \partial_n$, such that $y = f_n(x)$. Since f_{\bullet} is a chain map, we thus have $\partial'_n y = (\partial'_n \circ f_n)(x) = (f_{n-1} \circ \partial_n)(x) = 0$. Moreover, we have that im $\partial_{n+1} \subseteq \ker \pi'_n \circ f_n$, where $\pi'_n : \ker \partial'_n \to H_n(C'_{\bullet}, \partial'_{\bullet})$ is the usual projection. Indeed, if $y \in \operatorname{im} \partial_{n+1}$, we find $x \in C_{n+1}$, such that $y = \partial_{n+1} x$. Since again f_{\bullet} is a chain map, we have that $f_n y = (f_n \circ \partial_{n+1})(x) = (\partial'_{n+1} \circ f_{n+1})(x) \in \operatorname{im} \partial'_{n+1} = \ker \pi'_n$. Hence $\pi'_n \circ f_n$ factors uniquely through $\pi_n : \ker \partial_n \to H_n(C_{\bullet}, \partial_{\bullet})$. Define $H_n(f_{\bullet})$ to be this map. \square

Remark 3.1. Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex and $n \in \mathbb{Z}$. Then we will write $\langle x \rangle$ for an element in $H_n(C_{\bullet}, \partial_{\bullet})$, the so-called *homology class*. Hence if $(C'_{\bullet}, \partial'_{\bullet})$ is another chain complex and $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ a chain map, then $H_n(f)\langle c \rangle = \langle f_n c \rangle$.

Definition 3.5 (Cycles and Boundaries). Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex and $n \in \mathbb{Z}$. Then elements of ker ∂_n are called **n-cycles** and elements of im ∂_{n+1} are called **n-boundaries**.

Definition 3.6 (Homology Functor). Let $n \in \mathbb{Z}$ and $H_n : \mathsf{Comp} \to \mathsf{AbGrp}$ be the functor defined in proposition 3.3. We call H_n the n-th homology functor.

Definition 3.7 (Singular Homology Functor). *Let* $n \in \mathbb{Z}$. *The composition*

$$H_n \circ C_{\bullet} : \mathsf{Top} \to \mathsf{AbGrp}$$
 (13)

of the singular chain complex functor C_{\bullet} in theorem 3.1 and the n-th homology functor of proposition 3.3 is called the **singular homology functor**, written H_n^{sing} .

Remark 3.2. For notational purposes we will often refer to the functor H_n^{sing} simply as H_n .

First Properties of Singular Homolgy

 H_0 .

Proposition 3.4 (Zeroth Singular Homology Group). Let $X \in \text{ob}(\mathsf{Top})$ be non empty and path connected. Then $H_0(X) \cong \mathbb{Z}$.

Proof. Since $\partial_0: C_0(X) \to 0$, $\ker \partial_0 = C_0(X)$. Moreover, a map in $\operatorname{Top}(\Delta^0, X)$ can be identified with a point in X and hence an element of $C_0(X)$ can be written as $\sum_{x \in X} m_x x$. Define a mapping $\Phi: C_0(X) \to \mathbb{Z}$ by $\Phi\left(\sum_{x \in X} m_x x\right) := \sum_{x \in X} m_x$. This mapping is well defined since all but finitely many m_x are zero. It is also easy to check, that Φ is a morphism of groups and that Φ is surjective. We claim that $\ker \Phi = \operatorname{im} \partial_1$. Indeed, if $\sum_{x \in X} m_x x \in \ker \Phi$, then $\sum_{x \in X} m_x = 0$. Let $p \in X$. Since X is path connected, we find for each $x \in X$ a path σ_x from p to x. Consider the singular 1-chain $\sum_{x \in X} m_x \sigma_x$. Then we have

$$\partial_1 \left(\sum_{x \in X} m_x \sigma_x \right) = \sum_{x \in X} m_x \left(\sigma_x(1) - \sigma_x(0) \right) = \sum_{x \in X} m_x (x - p) = \sum_{x \in X} m_x x.$$

Hence $\sum_{x \in X} m_x x \in \text{im } \partial_1$. Conversly, it is enough to show the claim on basis elements $\sigma \in \text{Top}(\Delta^1, X)$. We have

$$\Phi(\partial_1 \sigma) = \Phi\left(\sigma(1) - \sigma(0)\right) = 1 - 1 = 0.$$

Hence the first isomorphism theorem [Gri07, p. 23] implies that $H_0(X) \cong \mathbb{Z}$.

Proposition 3.5 (The Dimension Axiom). Let $* \in ob(\mathsf{Top})$ be a one point space. Then $H_n(*) = 0$ for all $n \in \mathbb{Z}$, n > 0.

Long Exact Sequence in Homology.

Theorem 3.2 (Long Exact Sequence in Homology). Let

$$0 \longrightarrow C_{\bullet} \xrightarrow{f_{\bullet}} C'_{\bullet} \xrightarrow{g_{\bullet}} C''_{\bullet} \longrightarrow 0$$

be a short exact sequence in Comp. Then there exists a sequence $(\delta_n)_{n\in\mathbb{Z}}$, where for all $n\in\mathbb{Z}$, $\delta_n\in\mathsf{AbGrp}(H_n(C_\bullet''),H_{n-1}(C_\bullet))$ and such that

$$\cdots \longrightarrow H_n(C_{\bullet}) \xrightarrow{H_n(f)} H_n(C'_{\bullet}) \xrightarrow{H_n(g)} H_n(C''_{\bullet}) \xrightarrow{\delta_n} H_{n-1}(C_{\bullet}) \longrightarrow \cdots$$

is a long exact sequence in AbGrp.

Proof. Let $n \in \mathbb{Z}$ and consider the following diagram of induced morphisms:

$$C_{n}/\operatorname{im} \partial_{n+1} \xrightarrow{f_{n}} C'_{n}/\operatorname{im} \partial'_{n+1} \xrightarrow{g_{n}} C''_{n}/\operatorname{im} \partial''_{n+1} \longrightarrow 0$$

$$\downarrow^{\partial_{n}} \qquad \qquad \downarrow^{\partial'_{n}} \qquad \qquad \downarrow^{\partial''_{n}}$$

$$0 \longrightarrow \ker \partial_{n-1} \xrightarrow{f_{n-1}} \operatorname{ker} \partial'_{n-1} \xrightarrow{g_{n-1}} \operatorname{ker} \partial''_{n-1}$$

It is left to the reader to show that the induced maps are actually well defined, the diagram commutes and the rows are exact. Hence an application of the snake lemma 1.1 yields $\delta_n \in \mathsf{AbGrp}(\ker \partial_n'', \operatorname{coker} \partial_n)$ and an exact sequence

$$\ker \partial_n \xrightarrow{f_n} \ker \partial'_n \xrightarrow{g_n} \ker \partial''_n \xrightarrow{\delta_n} \operatorname{coker} \partial_n \xrightarrow{f_{n-1}} \operatorname{coker} \partial'_n \xrightarrow{g_{n-1}} \operatorname{coker} \partial''_n$$

It is easy to check that this exact sequence is the same as

$$H_n(C_{\bullet}) \xrightarrow{H_n(f)} H_n(C'_{\bullet}) \xrightarrow{H_n(g)} H_n(C''_{\bullet}) \xrightarrow{\delta_n} H_{n-1}(C_{\bullet}) \xrightarrow{H_{n-1}(f)} H_{n-1}(C'_{\bullet}) \xrightarrow{H_{n-1}(g)} H_{n-1}(C''_{\bullet}).$$

Exercise 3.3. In the proof of theorem 3.2 in the diagram, show that the induced maps are actually well defined, the diagram commutes and the two rows are exact.

Definition 3.8 (Connecting Homomorphism). The sequence $(\delta_n)_{n\in\mathbb{Z}}$ of morphisms in AbGrp of theorem 3.2 is called the **connecting homomorphism of the short exact sequence** $0 \to C_{\bullet} \to C'_{\bullet} \to C'_{\bullet} \to 0$.

The Homotopy Axiom

Theorem 3.3 (The Homotopy Axiom). Let $f, g \in \text{Top}(X, Y)$ be freely homotopic. Then $H_n(f) = H_n(g)$ for all $n \in \mathbb{Z}$.

The Hurewicz Theorem

Abelianizations.

Proposition 3.6. The forgetful functor $U: AbGrp \rightarrow Grp$ admits a left adjoint.

Proof. Let $G \in \text{ob}(\mathsf{Grp})$. For $g, h \in G$, define the *commutator of g and h*, written [g, h], by $[g, h] := ghg^{-1}h^{-1}$. Moreover, set

$$X_G := \{ [g, h] : g, h \in G \}$$

and define the *commutator subgroup of G*, written [G, G], by $[G, G] := \langle X_G \rangle$.

Lemma 3.1. For all $G \in \text{ob}(\mathsf{Grp})$, $[G, G] \subseteq G$.

Proof. We follow [Lee11, p. 265]. Clearly, $[G, G] \leq G$. By [KM13, p. 31] we have that

$$\langle X \rangle = \{x_1 \cdots x_n : n \in \omega \setminus \{0\}, x_1, \dots, x_n \in X_G \cup X_G^{-1}\}.$$

It is easy to check that $X_G = X_G^{-1}$ and thus

$$\langle X \rangle = \{x_1 \cdots x_n : n \in \omega \setminus \{0\}, x_1, \dots, x_n \in X_G\}.$$

Let $k \in G$ and $x_1 \cdots x_n \in [G, G]$. Since

$$kx_1 \cdots x_n k^{-1} = kx_1 k^{-1} k x_2 k^{-1} k \cdots k x_n k^{-1}$$

it is enough to show that $k[g,h]k^{-1} \in [G,G]$ for all $g,h \in G$. But this immediately follows from

$$k[g,h]k^{-1} = kghg^{-1}h^{-1}k^{-1} = [kgk^{-1}, khk^{-1}].$$

Thus $[G, G] \leq G$.

Lemma 3.2. $G \in \text{ob}(\mathsf{AbGrp})$ if and only if $[G, G] = \{1\}$.

Proof. Let $G \in \text{ob}(\mathsf{AbGrp})$. Then [g,h] = 1 for all $g,h \in G$, which implies $X_G = \{1\}$ and thus $\langle X_G \rangle = \{1\}$. Conversly, since $X_G \subseteq [G,G] = \{1\}$, we have that [g,h] = 1 for all $g,h \in G$ which is equivalent to gh = hg for all $g,h \in G$.

Corollary 3.1. The quotient group G/[G,G] is abelian.

Proof. By lemma 3.2 it is enough to show that [G/[G,G],G/[G,G]] is trivial. We actually show that $X_{G/[G,G]}=\{1\}$. This immediately follows from

$$[g[G,G], h[G,G]] = ghg^{-1}h^{-1}[G,G] = [G,G]$$

for $g[G, G], h[G, G] \in G/[G, G]$.

Hence define $Ab : \mathsf{Grp} \to \mathsf{AbGrp}$ on objects by

$$Ab(G) := G/[G, G].$$

The abelian group Ab(G) is called the *abelianization of* G. On morphisms $\varphi: G \to H$ in Grp define $Ab(\varphi): Ab(G) \to Ab(H)$ by setting $Ab(\varphi)(g[G,G]) := \varphi(g)[H,H]$. It is easy to check that this is a well defined morphism of abelian groups.

Let $H \in \text{ob}(\mathsf{AbGrp})$ and $\psi \in \mathsf{AbGrp}(\mathsf{Ab}(G), H)$. Define $\overline{\psi} \in \mathsf{Grp}(G, U(H))$ by setting $\overline{\psi}(g) := \psi(g[G,G])$. If $\varphi \in \mathsf{Grp}(G,U(H))$, define $\overline{\varphi} \in \mathsf{AbGrp}(\mathsf{Ab}(G), H)$ by $\overline{\varphi}(g[G,G]) := \varphi(g)$. It is easy to check that this mapping is actually well defined and that $\overline{\psi} = \psi$ and $\overline{\overline{\varphi}} = \varphi$ holds.

Exercise 3.4. In proposition 3.6, check that Ab : $Grp \rightarrow AbGrp$ is indeed a functor and the naturality of the bijection in both arguments.

The Hurewicz Morphism. Since elements of $H_1(X)$ are homology classes of loops, one might suspect that there is a connection between the fundamental group $\pi_1(X, p)$ of a path connected space X at p and the first singular homology group $H_1(X)$. However, since $H_1(X)$ is always abelian and $\pi_1(X, p)$ is not necessarily abelian, they cannot be equal. In this section we use a little trick which makes matters simpler: if c is any singular n-chain, not necessarily an n-cycle, we can also take its equivalence class modulo n-boundaries. We shall denote this class also with $\langle c \rangle$. Clearly, if c is an n-cycle, then $\langle c \rangle$ is the usual homology class.

Theorem 3.4 (Hurewicz Theorem). Let $X \in \text{ob}(\mathsf{Top})$ be path connected and $p \in X$. Then $\mathsf{Ab}(\pi_1(X,p)) \cong H_1(X)$.

Proof. We show the result in a sequence of lemmata.

Lemma 3.3. The mapping $h: \pi_1(X, p) \to H_1(X)$ defined by $h([u]) := \langle u \rangle$ is well defined.

Proof. First of all, since $u \in \Omega(X,p)$, we have that $u \in C_1(X)$. Moreover, $\partial u = u(1) - u(0) = p - p = 0$. Thus u has a homology class $\langle u \rangle$. Let us check that h is well defined. Suppose that [u] = [v]. Hence $F : u \simeq_{\partial I} v$. Consider the fundamental loop $\omega \in \Omega(\mathbb{S}^1,1)$. By [Lee11, p. 70], ω is a quotient map. Since $u,v \in \Omega(X,p)$, there exist $\widetilde{u},\widetilde{v} \in \operatorname{Top}(\mathbb{S}^1,X)$, such that $\widetilde{u} \circ \omega = u$ and $\widetilde{v} \circ \omega = v$ (see [Lee11, p. 72]). Since I is a locally compact Hausdorff space [Lee11, p. 107] implies that $\omega \times \operatorname{id}_I$ is a quotient map. Thus F passes to the quotient and yields a map $\widetilde{F} \in \operatorname{Top}(\mathbb{S}^1 \times I,X)$. Now it is easy to check that $\widetilde{F} : \widetilde{u} \simeq_{\{1\}} \widetilde{v}$. Thus an application of the homotopy axiom yields

$$\langle u \rangle = \langle \widetilde{u} \circ \omega \rangle = H_1(\widetilde{u}) \langle \omega \rangle = H_1(\widetilde{v}) \langle \omega \rangle = \langle \widetilde{v} \circ \omega \rangle = \langle v \rangle.$$

Lemma 3.4. Let u be a path in X from p to q. Then $\langle \overline{u} \rangle = -\langle u \rangle$.

Proof. From figure 7a, we deduce that an appropriate definition of a singular 2-simplex σ would be

$$\sigma(x, y) := u(x)$$
.

Indeed

$$\partial \sigma = \overline{u} - c_p + u$$

and since c_p is the boundary of $\sigma_p \in \mathsf{Top}(\Delta^2, X)$ defined by $\sigma_p(x, y) := p$, we have that $\overline{u} + u$ is a boundary.

Lemma 3.5. Let u and v be paths in X from p to q and from q to r, respectively. Then $\langle u * v \rangle = \langle u \rangle + \langle v \rangle$.

(B) $\langle u * v \rangle = \langle u \rangle + \langle v \rangle$.

Proof. Consider figure 7b. The thin lines correspond to where y-x is constant. Hence define $\sigma: \Delta^2 \to X$ by

$$\sigma(x,y) := \begin{cases} u(y-x+1) & 0 \le y \le x \le 1, \\ v(y-x) & 0 \le x \le y \le 1. \end{cases}$$

An application of the gluing lemma shows that σ is actually a singular 2-simplex. Moreover

$$\partial \sigma = u * v - v + \overline{u}.$$

Hence lemma 3.4 yield

$$0 = \langle u * v - v + \overline{u} \rangle = \langle u * v \rangle - \langle v \rangle - \langle u \rangle.$$

(u * v - v + u) = (u * v) - (v) - (u).

Corollary 3.2. *h* is a morphism of groups.

Corollary 3.3. Let u, v, w be composable paths in X. Then $\langle (u * v) * w \rangle = \langle u * (v * w) \rangle$.

Lemma 3.6. *h* is surjective.

Proof. Let $x \in X$. If x = p, define $\gamma_p := c_p$. If $x \neq p$, by the path connectedness of X we can choose a path γ_x from p to x. Hence we get a map $\gamma : X \to \mathsf{Top}(\Delta^1, X)$. Extending by linearity yields a mapping $\gamma : C_0(X) \to C_1(X)$. Let $c := \sum_{k=1}^n m_k \sigma_k$ be a 1-cycle in X. Consider

$$[u] := \left[\gamma_{\sigma_1(0)} * \sigma_1 * \overline{\gamma_{\sigma_1(1)}}\right]^{m_1} \cdots \left[\gamma_{\sigma_n(0)} * \sigma_n * \overline{\gamma_{\sigma_n(1)}}\right]^{m_n} \in \pi_1(X, p).$$

Now lemma 3.4 and 3.5, corollary 3.2 and 3.3 yields

$$h([u]) = \sum_{k=1}^{n} m_k \langle \gamma_{\sigma_k(0)} * \sigma_k * \overline{\gamma_{\sigma_k(1)}} \rangle$$
$$= \sum_{k=1}^{n} m_k \left(\langle \gamma_{\sigma_k(0)} \rangle + \langle \sigma_k \rangle + \langle \overline{\gamma_{\sigma_k(1)}} \rangle \right)$$

$$= \sum_{k=1}^{n} m_k \left(\langle \gamma_{\sigma_k(0)} \rangle + \langle \sigma_k \rangle - \langle \gamma_{\sigma_k(1)} \rangle \right)$$

$$= \langle c \rangle - \sum_{k=1}^{n} m_k \langle \gamma_{\sigma_k(1) - \sigma_k(0)} \rangle$$

$$= \langle c \rangle - \sum_{k=1}^{n} m_k \langle \gamma_{\partial \sigma_k} \rangle$$

$$= \langle c \rangle - \langle \gamma_{\partial c} \rangle$$

$$= \langle c \rangle.$$

Lastly, we want to show that $\ker h = [\pi_1(X, p), \pi_1(X, p)]$. Since then the first isomorphism theorem implies $\operatorname{Ab}(\pi_1(X, p)) \cong H_1(X)$. Since $H_1(X)$ is abelian, clearly $[\pi_1(X, p), \pi_1(X, p)] \subseteq \ker h$ and thus h factors uniquely $\widetilde{h} : \operatorname{Ab}(\pi_1(X, p)) \to H_1(X)$. The next lemma will be useful.

Lemma 3.7. Let $\sigma: \Delta^2 \to X$ be a singular 2-simplex. Define $\sigma^{(k)} := \sigma \circ \varphi_k^2$ for k = 0, 1, 2. Then $[\sigma^{(0)} * \overline{\sigma^{(1)}} * \sigma^{(2)}] = [c_{\sigma(e_1)}]$.

Proof. Let $u := \sigma^{(0)} * \overline{\sigma^{(1)}} * \sigma^{(2)}$. Since $\mathbb{B}^2 \approx \Delta^2$, we can consider $\sigma : \mathbb{B}^2 \to X$. One can check that the circle representative \widetilde{u} of u is the reparametrized restriction $\sigma|_{\mathbb{S}^1}$. Since reparametrizations are invariant under homotopies, we have that u is a nullhomotopic loop.

Let $\sigma \in \text{Top}(\Delta^1, X)$. Define $g(\sigma) := [\gamma_{\sigma(0)} * \sigma * \overline{\gamma_{\sigma(1)}}]_{Ab}$, where $[u]_{Ab}$ denotes the equivalence class of [u] in $\text{Ab}(\pi_1(X, p))$. Since $\text{Ab}(\pi_1(X, p))$ is abelian, extension by linearity yields a map $g : C_1(X) \to \text{Ab}(\pi_1(X, p))$.

Lemma 3.8. g vanishes on im ∂_2 .

Proof. Let $\sigma \in \text{Top}(\Delta^2, X)$. Then lemma 3.7 yields

$$g(\partial \sigma) = g\left(\sigma^{(0)}\right) g\left(\sigma^{(1)}\right)^{-1} g\left(\sigma^{(2)}\right)$$

$$= \left[\gamma_{\sigma(e_1)} * \sigma^{(0)} * \overline{\gamma_{\sigma(e_2)}} * \gamma_{\sigma(e_2)} * \overline{\sigma^{(1)}} * \overline{\gamma_{\sigma(e_0)}} * \gamma_{\sigma(e_0)} * \sigma^{(2)} * \overline{\gamma_{\sigma(e_1)}}\right]_{Ab}$$

$$= \left[\gamma_{\sigma(e_1)} * \sigma^{(0)} * \overline{\sigma^{(1)}} * \sigma^{(2)} * \overline{\gamma_{\sigma(e_1)}}\right]_{Ab}$$

$$= \left[\gamma_{\sigma(e_1)} * c_{\sigma(e_1)} * \overline{\gamma_{\sigma(e_1)}}\right]_{Ab}$$

$$= \left[c_p\right]_{Ab}.$$

By lemma 3.8, g passes to the quotient and yields a map $\tilde{g}: H_1(X) \to \mathrm{Ab}(\pi_1(X,p))$. Moreover

$$(\widetilde{g} \circ \widetilde{h})[u]_{Ab} = \widetilde{g}(h[u]) = \widetilde{g}\langle u \rangle = g(u) = [c_p * u * \overline{c_p}]_{Ab} = [u]_{Ab}$$

and thus \widetilde{h} admits a retraction in AbGrp which implies that \widetilde{h} is injective. Hence $\ker \widetilde{h}$ is trivial and thus if we write $\pi: \pi_1(X, p) \to \operatorname{Ab}(\pi_1(X, p))$ for the canoncial projection

$$\ker h = \ker(\widetilde{h} \circ \pi) = (\widetilde{h} \circ \pi)^{-1}(0) = \pi^{-1}\left(\widetilde{h}^{-1}(0)\right) = \pi^{-1}(0) = [\pi_1(X, p), \pi_1(X, p)].$$

Definition 3.9 (Hurewicz Homomorphism). Let $X \in \text{ob}(\mathsf{Top})$ and $p \in X$. The homomorphism $h: \pi_1(X,p) \to H_1(X)$ defined in theorem 3.4 is called the **Hurewicz homomorphism**.

Barycentric Subdivision

Applications

The Brouwer Fixed Point Theorem.

Definition 3.10 (Retract). Let $X \in \text{ob}(\mathsf{Top})$ and $S \subseteq X$ a subspace. We say that S is a retract of X, if the inclusion $\iota: S \hookrightarrow X$ admits a retraction in Top .

Lemma 3.9. Let $n \in \mathbb{Z}$, $n \geq 1$. Then \mathbb{S}^n is not a retract of \mathbb{B}^{n+1} .

Proof.

Theorem 3.5 (Brouwer Fixed Point Theorem). *Let* $n \in \mathbb{Z}$, $n \geq 1$. *Then every mapping* $f \in \mathsf{Top}(\mathbb{B}^n, \mathbb{B}^n)$ *has a fixed point.*

Proof.

APPENDIX A

Set Theory

Basic Concepts

Problem A.1. Let $n \in \mathbb{N}$ and $a_{kj} \in \mathbb{C}$ for k = 0, ..., n + 1, j = 0, ..., n. Show that

$$\sum_{k=0}^{n+1} \sum_{j=0}^{n} a_{kj} = \sum_{0 \le k \le j \le n} a_{kj} + \sum_{0 \le j < k \le n+1} a_{kj}.$$

Bibliography

- [Gri07] Pierre Antoine Grillet. *Abstract Algebra*. Graduate Texts in Mathematics. Springer Science + Business Media, LLC, 2007.
- [Hal12] L.J. Halbeisen. *Combinatorial Set Theory: With a Gentle Introduction to Forcing*. Springer Monographs in Mathematics. Springer London, 2012.
- [KM13] Christian Karpfinger and Kurt Meyberg. *Algebra Gruppen Ringe Körper*. 3. Auflage. Springer Spektrum, 2013.
- [Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.
- [Men15] E. Mendelson. *Introduction to Mathematical Logic*. Sixth Edition. Textbooks in Mathematics. CRC Press, 2015.