Primitive Recursion

$$h = \operatorname{Rec}(f,g) \Longleftrightarrow \left\{ egin{array}{ll} h(ec{x},0) &= f(ec{x}) \ h(ec{x},y+1) &= g(ec{x},y,h(ec{x},y)) \end{array}
ight.$$

where $\vec{x} = x_1, x_2, \dots, x_k$

$$h=M_f\iff h(ec x)=\min\{y\in\mathbb{N}_0: f(ec x,y)=0\}$$
 where $ec x=x_1,x_2,\ldots,x_k$

Definições:

 As funções recursivas primitivas são as funções iniciais e todas aquelas que podem ser obtidas das funções iniciais pela aplicação de um número finito de vezes das operações de composição e de recursão primitiva.

Teoremas

- 1. Todas as funções recursivas primitivas são computáveis.
- 2. Todas as funções recursivas primitivas são funções totais.
- 3. Existem funções totais computáveis que não são recursivas primitivas.
- 4. Uma função diz-se parcial μ-recursiva (ou simplesmente parcial recursiva) se é uma função inicial ou pode ser obtida destas pela aplicação de um número finito de vezes das operações de composição, recursão primitiva e minimização. Uma função parcial recursiva que seja total diz-se recursiva.
- 5. Uma função $f:\mathbb{N}_0^k o \mathbb{N}_0$ é parcial recursiva se e só se é computável

Funções primitivas recursivas (provadas em exercícios)

- $\operatorname{mult}(x, y) = x \cdot y$
- $\exp(x,y) = x^y$
- $fat(x) = \begin{cases} 1 & \text{se } x = 0 \\ x \cdot (x-1) \cdot \ldots \cdot 2 \cdot 1 & \text{se } x > 0 \end{cases}$
- $ullet \ {
 m ad}^{(k)}(x_1,\ldots,x_k) = x_1 + \cdots + x_k$

Complexity

Ordem

$$egin{aligned} g(n) &\in \mathcal{O}(f(n)) \Longrightarrow \ \exists (c \in \mathbb{R}^+). \ \exists (n_0 \in \mathbb{N}). \ orall (n > n_0). \ 0 \leq g(n) \leq cf(n). \end{aligned} \ \mathcal{O}(f(n)) = \{g(n): \exists (c \in \mathbb{R}^+). \ \exists (n_0 \in \mathbb{N}). \ orall (n > n_0). \ 0 \leq g(n) \leq cf(n). \end{aligned}$$

Complexidade determinista

Seja $\mathcal T$ uma máquina de Turing que pára sempre (ou seja, $\mathcal T$ é um algoritmo). A complexidade temporal de $\mathcal T$ é a função $tc_{\mathcal T}:\mathbb N_0\to\mathbb N_0$ tal que, para cada $n\in\mathbb N_0$,

$$tc_{\mathcal{T}}(n) = \max \left\{ egin{array}{l} u \ {
m \'e} \ {
m uma} \ {
m palavra} \ {
m de} \ {
m comprimento} \ n \ {
m e} \ m_u \ {
m \'e} \ {
m o} \ {
m n\'emero} \ {
m de} \ {
m parar} \ {
m quando} \ {
m \'e} \ {
m \'e} \ {
m executa} \ {
m (at\'e} \ {
m parar}) \ {
m quando} \ {
m \'e} \ {
m \'e} \ {
m remove} \ {
m remove} \ {
m remove} \ {
m quando} \ {
m \'e} \ {
m remove} \ {
m rem$$

Complexidade não-determinista

Seja $\mathcal T$ uma MT não-determinista que pára sempre. A **complexidade temporal** de $\mathcal T$ é a função $tc_{\mathcal T}:\mathbb N_0\to\mathbb N_0$ definida, para cada $n\in\mathbb N_0$, por

$$tc_{\mathcal{T}}(n) = \max \left\{ egin{align*} m_u \ lpha \ \mathrm{o} \ \mathrm{maior} \ \mathrm{n\'umero} \ \mathrm{de} \ \mathrm{computa} \ \mathrm{com} \ \mathrm{gue} \ \mathrm{podem} \ \mathrm{ser} \ \mathrm{efetuadas} \ \mathrm{por} \ \mathcal{T} \ \mathrm{quando} \ \mathrm{iniciada} \ \mathrm{com} \ \mathrm{uma} \ \mathrm{palavra} \ u \ \mathrm{de} \ \mathrm{comprimento} \ n. \end{array}
ight\}$$

Complexidade de linguagens

Sejam $f:\mathbb{N}_0 \to \mathbb{R}$ uma função (total) e L uma linguagem. Diz-se que L é **aceite em tempo determinista (resp. não-determinista)** f(n) se existe um algoritmo determinista (resp. não-determinista) $\mathcal T$ tal que:

- \mathcal{T} aceita L
- $tc_{\mathcal{T}}(n) \in \mathcal{O}(f(n))$

A classe destas linguagens é denotada por $\operatorname{DTIME}(f(n))$ (resp.) $\operatorname{NTIME}(f(n))$. Note-se que $\operatorname{DTIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.

Podemos agora definir duas classes de complexidade importantes:

$$\mathrm{P} = igcup_{k \geq 0} \mathrm{DTIME}(n^k) \qquad \mathrm{e} \qquad \mathrm{NP} = igcup_{k \geq 0} \mathrm{NTIME}(n^k)$$

Redução

Consideremos linguagens $L_1\subseteq A_1^*$ e $L_2\subseteq A_2^*$. Diz-se que L_1 é **polinomialmente reduzível** a L_2 (ou que L_1 **se reduz a** L_2 **em tempo polinomial**), e escreve-se $L_1\leq_p L_2$, se existe uma função $f:A_1^*\to A_2^*$ tal que:

- $\forall u \in A_1^*. u \in L_1 \Longleftrightarrow f(u) \in L_2$
- a função f é computável em tempo polinomial, ou seja, f é calculada por um algoritmo $\mathcal T$ tal que $\exists k \in \mathbb N.\ tc_{\mathcal T}(n) \in \mathcal O(n^k)$

Teoremas:

Sejam L_1, L_2, L_3 linguagens.

1. Se
$$L_1 \leq_p L_2$$
 e $L_2 \leq_p L_3$, então $L_1 \leq_p L_3$

2. Se
$$L_1 \leq_p L_2$$
 e $L_2 \in \mathrm{P}$, então $L_1 \in \mathrm{P}$

Uma linguagem L diz-se:

- NP-difícil se $L' \leq_p L$ para toda linguagem $L' \in \operatorname{NP}$.
- NP-completa se L é NP-difícil e $L \in \text{NP}$.

Teoremas:

Sejam L e K linguagens:

- Se L é NP-difícil e $L \leq_p K$, então K é NP-difícil
- Se L é NP-completa, então $L \in \mathbf{P}$ se e só se $\mathbf{P} = \mathbf{NP}.$

O problema SAT, de decidir se uma fórmula lógica em forma normal conjuntiva admite alguma valoração das variáveis que a satisfaça é NP-completo.

Teste 2017-2018

2.b)

Suppose (*) $A(3,y) = 2^{y+3}$

Prove
$$A(4,y) = 2 \uparrow \uparrow (y+3) - 3$$
.

Using induction on y:

- y=0: $A(4,y)=A(4,0)=A(3,1)\stackrel{*}{=}2^4-3=2\uparrow\uparrow 3-3$ which proves the property for y=0.
- Let $y \in \mathbb{N}_0$ and suppose, as the induction hypothesis,

$$A(4,y) = 2 \uparrow \uparrow (y+3) - 3$$

We want to prove that

$$A(4, y + 1) = 2 \uparrow \uparrow (y + 4) - 3$$

Well.

$$A(4, y + 1) \stackrel{2.ii}{=} A(3, A(y, 4)) \stackrel{*}{=} 2^{A(4, y) + 3} - 3 \stackrel{\text{hip.}}{=} 2^{2\uparrow\uparrow(}$$