

**Report 11384
January 1999**

**AMSU-A VERIFICATION TEST REPORT
METSAT PHASE LOCKED OSCILLATOR ASSEMBLY**

**TEST ITEM:
AMSU-A PHASE LOCKED OSCILLATOR ASSEMBLY
P/N 1348360-1
SERIAL NUMBERS F09, F10**

**PREPARED FOR
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771**

**PREPARED BY
GENCORP AEROJET
POST OFFICE BOX 296
AZUSA, CALIFORNIA 91702-0296**

Summary of Test Results for AMSU-A Phase Locked Oscillator Testing
Serial Numbers F09 and F10

Paragraph	Description	Requirements	F09	F10
3.2.1.1	Input Voltage and Current	600 mA max, +15V 100 mA max, -15V	522 mA for +15V, 64 mA for -15V	533 mA for +15V, 70 mA for -15V
3.2.1.2	Operating Temperature	+1°C to 44°C	-24°C to +60°C	0°C to 57°C
3.2.1.3	Start-up	All loads, +60°C and -30°C; in vacuum	Verified at +60 and -30°C, ambient	Verified at +60 and -30°C, ambient
3.2.1.4 & 3.2.1.5	Frequency Stability from 57.290344 GHz	±200 kHz	+0kHz, -33 kHz	+16 kHz, -0 kHz
3.2.1.6	RF Output Power	17 to 20 dBm	18.1 dBm	17.9 dBm
3.2.1.7	Output Power Stability	<1.5 dB	1.4 dB	1.5 dB
3.2.1.8	Load VSWR	2.01:1 or less	Verified	Verified
3.2.1.9	AM Noise	<-130 dBc/Hz @ 1 MHz	-145 dBc/Hz @ 1MHz	-140 dBc/Hz @ 1Mhz
3.2.1.10	FM Noise	<-100 dBc/Hz @ 1 MHz	-104 dBc/Hz @ 1 MHz	-105 dBc/Hz @ 1 MHz
3.2.1.11	Spurious and Sub-Harmonic Signals	<-90 dBc	< -90 dBc	< -90 dBc
3.2.1.12	Harmonics	<-30 dBc	-40 dBc	- 70 dBc
3.2.1.14	Warm-up Time	< 30 minutes	Verified	Verified
3.2.1.15	Grounding and Shielding		By Design	By Design
3.2.1.16	Input Voltage Protection		By Design	By Design
3.2.1.17	Reverse Polarity Protection		By Design	By Design
Environmental Testing				
Microphonics		AE-26633	TCXO Test	TCXO Test
Radiation Hardness		AE-26633	By Analysis	By Analysis
EMI/RFI		AE-26633	Not Required	Not Required
Vibration		AE-26633	Acceptance Level	Acceptance Level
Thermal Vacuum		AE-26633	Verified at Ambient Pressure Only	Verified at Ambient Pressure Only
Weight		2.0 lbs	2.0 lbs	2.0 lbs

1.0 SUMMARY

Two Flight Model AMSU-A Phase Locked Oscillators (P/N 1348360-1, S/N F09 and F10) have been tested per AES Test Procedure AE-26758 Rev. C, which includes full functional testing, vibration testing, thermal testing, and AM/FM Noise testing. Both assemblies satisfactorily passed all performance requirements of the AE-26633 Product Specification.

During the manufacture of PLO F09, the DRO CCA lid was rotated 180 degrees, which rendered the unit unable to lock. After removing the 10 fastening screws and installing the lid in the correct orientation, the unit functioned to all specifications. During the vibration of PLO F10, the dielectric puck of the DRO was dislodged from its bonded attachment to the CCA. The PLO and DRO were opened, the puck was re-attached, and the unit was restored to full operation. The MAI was enhanced to increase the reliability of the bonding.

2.0 REQUIREMENTS

The acceptance test procedure AE-26758C consists of tests designed to show compliance of the Phase Locked Oscillator with all requirements stated in the PLO Product Specification AE-26633. The tests reported herein demonstrate the acceptability of the AMSU-A PLO assemblies S/N's F09 and F10, and therefore compatibility with the AMSU-A Receiver Assembly.

3.0 RESULTS

The results of the required tests are presented in the following section as test data. As indicated on the test data sheets, all measured data passed all requirements associated with the product specification.

4.0 TEST DATA

A summary of the test data is provided at the start of each of the acceptance test sections. Furthermore, the raw data is reproduced as recorded, and is included in each section. The following table provides a concise summary of each unit's performance ability.

The remainder of this report contains the raw data taken during the tests of the two flight PLOs. The data is arranged by the following segmentation:

- Section 1A: Initial Functional Testing - F09
- 1B: Initial Functional Testing - F10
- Section 2A: Acceptance Level Vibration - F09
- 2B: Acceptance Level Vibration - F10
- Section 3A: Frequency and Power Hysteresis - F09
- 3B: Frequency and Power Hysteresis - F10
- Section 4A: EMI/RE02 Testing - F09 (not required)
- 4B: EMI/RE02 Testing - F10 (not required)
- Section 5A: Final Functional Testing - F09
- 5B: Final Functional Testing - F10
- Section 6A: AM/FM Noise Levels - F09
- 6B: AM/FM Noise Levels - F10

The remainder of this report contains the raw data taken during the tests of the two flight PLOs. The data is arranged by the following segmentation:

- Section 1A: Initial Functional Testing - F09
- 1B: Initial Functional Testing - F10
- Section 2A: Acceptance Level Vibration - F09
- 2B: Acceptance Level Vibration - F10
- Section 3A: Frequency and Power Hysteresis - F09
- 3B: Frequency and Power Hysteresis - F10
- Section 4A: EMI/RE02 Testing - F09 (not required)
- 4B: EMI/RE02 Testing - F10 (not required)
- Section 5A: Final Functional Testing - F09
- 5B: Final Functional Testing - F10
- Section 6A: AM/FM Noise Levels - F09
- 6B: AM/FM Noise Levels - F10

Section 1A: Initial Functional Testing - F09

This section contains the results of a full functional test over temperature taken before PLO F09 endured thermal cycling. All tests passed.

TEST DATA SHEET 6A (Sheet 1 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Test Setup Verified: Signature
Signature

Paragraph 4.2.1.3, Functional Testing:

Step	Test	Expected	Measured	Pass/Fail
1	Potential Difference from ± 15 V RTN to:			
	PLO Base Plate	< 1.0 Vac	0.01	Pass
	Spectrum Analyzer	< 1.0 Vac	0.03	Pass
	Frequency Counter Chassis	< 1.0 Vac	0.01	Pass
	Power Meter Chassis	< 1.0 Vac	0.04	Pass
4	Evacuate vacuum chamber and record pressure	$<10^{-2}$ torr	N/A <i>OK AS IS SURVEYING 11-12-98</i>	N/A*
5	Thermal couple readings	TC1 = 22 ± 2 °C	TC1 = <u>22.3</u> °C	Pass
			TC2 = <u>22.5</u> °C	N/A
			TC3 = <u>21.8</u> °C	N/A
6	DRO L/A	0 to 1V	DRO L/A = <u>78 mV</u>	Pass
	PLO L/A	4.3 - 4.7 V to 1V	PLO L/A = <u>4.52 V</u>	Pass
	Is PLO locked?	Yes <i>10/12/98</i>	Yes <input checked="" type="checkbox"/>	
7	PLO Frequency	$57.290344 \pm .0002$ GHz	Freq. = <u>57.290321180</u> GHz	Pass
	PLO Power	17 to 20 dBm	P = <u>17.77</u> dBm	Pass
8	Input Voltage and Current			
	VM1 Voltage	$+15 \pm 0.1$ V	VM1 = <u>+15.40</u> V	Pass
	VM2 Voltage	-15 ± 0.1 V	VM2 = <u>-15.19</u> V	Pass
	IM1 Current	600 mA max.	IM1 = <u>522 mA</u> mA	Pass
	IM2 Current	100 mA max.	IM2 = <u>-64.7 mA</u> mA	Pass
	DRO L/A Voltage	4.3 - 4.7 V to 1V	DRO L/A = <u>4.52 V</u> <i>78 mV</i>	Pass
12	RF Output Power and Frequency	17 to 20 dBm	P = <u>17.77</u> dBm	Pass
		$57.290344 \pm .0002$ GHz	Freq. = <u>57.290321180</u> GHz	Pass
		Baseplate Temp. (TC1)	TC1 = <u>22.3</u> °C	Pass
13	Frequency vs. Voltage			
	± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = <u>15.20</u> V	Pass
		-15.2 ± 0.05 V	-Voltage = <u>15.2</u> V	Pass
		$57.290344 \pm .0002$ GHz	Freq. = <u>57.290321322</u> GHz	Pass
		17 to 20 dBm	P = <u>17.67</u> dBm	Pass

*Record data only if performing test under vacuum

ATTEN 30dB
RL 17. 1dBm

MKR 11. 10dBm
RL 17. 1dBm
10dB / 6. 87492GHz

F09
15.2V
run limit
STEP
13-4-14
5/6.536596

MKR
6.87492 GHz
11.10 dBm

CENTER 6.87485GHz *VBW 300kHz
*RBW 300kHz

SPAN 20.00MHz
SWP 50.0ms

CL 30. DBB V AVG 6 MKR - 93. 00 DBM
RL DBM 10DB / 56. 8606355GHZ

CENTER 56.86006439GHz SPAN 500.0KHz
RBW 3.0KHz *VBW 1.0KHz
*SWP 2.0000000000000002

CL 30. 0dB
RL 0dBm

V A V G 29
10dB/
MKR -94. 00dBm

□

CENTER 57. 0038613 GHz *RBW 3. 0kHz *VBW 1. 0kHz SPAN 500. 0kHz
*SWP 2. 00sec

CL 30.0dB VAVG 5 MKR -94.17dBm
RL 0dBm 10dB / 57.1470955GHz

□

CENTER 57.1470955GHz SPAN 500.0kHz
*RBW 3.0kHz *VBW 1.0kHz *SWP 2.00sec

CL 30. 0dB
RL 0dBm

VAVG 5
10dB /

MKR -93. 17dBm
57. 4335477GHz

□

CENTER 57. 4335477GHz
*RBW 3. 0kHz *VBW 1. 0kHz
SPAN 500. 0kHz
*SWP 2. 00sec

CL 30.0dB
RL 0dBm

VAVG 5
10dB/

MKR -93.17dBm
57.5767729GHz

□

CENTER 57.5767729GHz *VBW 1.0kHz
*RBW 3.0kHz SPAN 500.0kHz
*SWP 2.00sec

CL 30.0dB
RL 0dBm

VAVG 6
10dB/
RL

MKR -92.50dBm
57.7199987GHz

D

CENTER 57.7199987GHz *VBW 1.0kHz
*RBW 3.0kHz *SWP 2.00sec
SPAN 500.0kHz

CL 30. 0dB
RL 0dBm

MKR -70. 00dBm
114. 5806431GHz

CENTER 114. 5806434GHz
*RBW 300Hz *VBW 1. 0kHz *SPAN 100. 0kHz
*SWP 2. 80sec

CENTER 57. 29034GHz
*RBW 300kHz VBW 300kHz
SPAN 10. 00MHz SWP 50. 0ms

ATTEN 30dB
RL 17.1 dBm

MKR 11.77 dBm
6.87485 GHz

CENTER 6.87485 GHz
*RBW 300kHz *VBW 300kHz SPAN 20.00MHz
SWP 50.0ms

TEST DATA SHEET 6A (Sheet 2 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
14	Frequency vs. Voltage	+14.8 ± 0.05 V	+Voltage = <u>14.8</u> V	Pass
		-14.8 ± 0.05 V	-Voltage = <u>-14.8</u> V	Pass
		57.290344 ± .0002 GHz	Freq. = <u>57.29034027</u> GHz	Pass
		17 to 20 dBm	P = <u>17.65</u> dBm	Pass
15	Spurious and Sub	-200 to -90 dBc	See plots	Pass
16	Power level of 114.58 GHz signal	<10 dBm	<u>-70</u> dBm	Pass
17	Load VSWR and Frequency Pulling	N/A	Worst Case Freq = <u>10.6</u>	N/A
		N/A	Worst Case Power = <u>.35</u> dB Peak	N/A
		TC1 = 1 ± 2°C	TC1 = <u>2.3</u>	
		TC2 = <u>2.4</u>	TC2 = <u>2.4</u>	N/A
18	Operating Temperature @ 1°C baseplate	TC3 = <u>1.9</u>	TC3 = <u>1.9</u>	N/A
		0 - 1V	DRO L/A = <u>64.9 mV</u>	Pass
		<u>4.3 - 9.7 - 0 - 1V</u>	PLO L/A = <u>4.6</u> V	/
		<u>4.3 to 9.7 to 0 to 1V</u>		
19	Input Voltage and Current	VM1 Voltage	VM1 = <u>15.0</u> V	
		VM2 Voltage	VM2 = <u>-15.0</u> V	
		IM1 Current	IM1 = <u>50.8</u> mA	
		IM2 Current	IM2 = <u>-63.2</u> mA	
		DRO L/A Voltage	DRO L/A = <u>64.9 mV</u>	
		PLO L/A Voltage <u>(20)</u>	PLO L/A = <u>4.6</u> V	
		RF Output Power <u>(10) to (9)</u>	Power = <u>18.17</u> dBm	
		Frequency	Freq. = <u>57.290311900</u> GHz	
19	Frequency vs. Voltage	+15.2 ± 0.05 V	+Voltage = <u>15.2</u> V	
		-15.2 ± 0.05 V	-Voltage = <u>-15.2</u> V	
		57.290344 ± .0002 GHz	Freq. = <u>57.290311595</u> GHz	
		17 to 20 dBm	Power = <u>18.26</u> dBm	
19	Frequency vs. Voltage	+14.8 ± 0.05 V	+Voltage = <u>14.8</u> V	
		-14.8 ± 0.05 V	-Voltage = <u>-14.8</u> V	
		57.290344 ± .0002 GHz	Freq. = <u>57.29031177</u> GHz	
		17 to 20 dBm	Power = <u>18.30</u> dBm	Pass

CL 30.0dB
RL 0dBm

MKR -96.50dBm
56.86063424GHz

CENTER 56.86063391GHz *RBW 1.0kHz SPAN 50.00kHz
*RBW 1.0kHz SWP 200ms

CL 30. 0dB
RL 0dBm

MKR -93. 17dBm
57. 00386002GHz

CENTER 57. 00385969GHz *VBW 1. 0kHz SPAN 50. 00kHz
*RBW 1. 0kHz SWP 200ms

CL 30.0dB
RL 0dB

10881

MKR - 94. 50dBm
57. 14708580CH 2

MKR	57.	14708580 GHz	
-94	50	dBm	
Fo9	STEP 13	1120C	
		10-9-98	
		6 ANCH	
		S/A 53456	

CENTER 57.14708546GHz
*RBW 1.0kHz *VBW 1.0kHz

SPAN 50.00KHN
SWP 20000S

CL 30.0 dB
RL 0 dBm

10 dB /

MKR -95.00 dBm
57.43353735 GHz

CENTER 57.43353702 GHz *VBW 1.0 kHz SPAN 50.00 kHz
*RBW 1.0 kHz SWP 200 ms

CL 30.0dB
RL 0dBm

10dB/
10dBm

MKR -95.17dBm
57.57676313GHz

CENTER 57.57676280GHz *RBW 1.0kHz SPAN 50.00kHz
*RBW 1.0kHz *VBW 1.0kHz SWP 200ms

CL 30.0dB
RL 0dBm

10dB/
RL

MKR -95.83dBm
57.719988891GHz

CENTER 57.719988858GHz *VBW 1.0kHz SPAN 50.00kHz
*RBW 1.0kHz SWP 200ms

CL 30.0dB

RL 0dBm

MKR -71.00dBm
114.5806221GHz

CENTER 114.5806221GHz *VBW 1.0kHz *RBW 300Hz
SPAN 100.0kHz *SWP 2.80sec

TEST DATA SHEET 6A (Sheet 3 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
19 (Cont)	Spurious and Sub Power level of 114.58 GHz signal	-200 to -90 dBc <-10 dBm	<i>see plots</i> <u>-71.0</u> dBm	PASS PAS
	Load VSWR and Frequency Pulling			
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <u>12 Hz</u>	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <u>-23</u> dB	N/A
21	Operating Temperature @ +44°C Baseplate	TC1 = $44 \pm 2^\circ\text{C}$	TC1 = <u>44.2</u> $^\circ\text{C}$	Pass
			TC2 = <u>44.3</u> $^\circ\text{C}$	N/A
			TC3 = <u>43.4</u> $^\circ\text{C}$	N/A
		0 - 1V	DRO L/A = <u>120mV</u>	Pass
		<u>0 to 1V 4.3-4.7V</u>	PLO L/A = <u>4.5</u> V	Pass
22	Input Voltage and Current <i>10/12/98</i>	+15 ± 0.1 V -15 ± 0.1 V 600 mA max. 100 mA max. 0 to 1V <u>0 to 1V 4.3-4.7V</u> 17 to 20 dBm 57.290344 ± .0002 GHz	VM1 = <u>+15.12</u> V VM2 = <u>-15.12</u> V IM1 = <u>535</u> mA IM2 = <u>~66</u> mA DRO L/A = <u>120mV</u> PLO L/A = <u>4.5</u> V Power = <u>17.04</u> dBm Freq. = <u>57.290313666GHz</u>	Pass Pass Pass Pass Pass Pass Pass Pass
	Frequency vs. Voltage			
	± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = <u>15.20</u> V	Pass
		-15.2 ± 0.05 V	-Voltage = <u>15.20</u> V	Pass
		57.290344 ± .0002 GHz	Freq. = <u>57.290313677GHz</u>	Pass
		17 to 20 dBm	Power = <u>17.02</u> dBm	Pass
	Frequency vs. Voltage			
	± 15 V Supplies	+14.8 ± 0.05 V	+Voltage = <u>14.8</u> V	Pass
		-14.8 ± 0.05 V	-Voltage = <u>14.8</u> V	Pass
		57.290344 ± .0002 GHz	Freq. = <u>57.290313674GHz</u>	Pass
		17 to 20 dBm	Power = <u>17</u> dBm	Pass

CL 30.0dB VAVG 4
RL 0dBm 10dB /

MKR - 94-50dBM
56, 860635486H-2

CL 30.0dB
RL 0dBm

V AVG 42
10dB/
RL

MKR -94. 17dBm
56. 86063548GHz

D

SPAN 50. 00KHz
CENTER 56. 86063631GHz *VBW 3. 0KHz *RBW 3. 0KHz
*RBW 3. 0KHz *VBW 3. 0KHz *SWP 2. 00sec

CL 30.0dB
RL 0dBm

MKR -93.83dBm
57.14708705GHz

D

CENTER 57.14708788GHz *RBW 3.0kHz *VBW 3.0kHz SPAN 50.00kHz *SWP 2.00sec

SPAN 50.0 kHz
 CENTER 57.43353845 GHz
 *RBW 3.0 kHz **VBW 3.0 kHz

CL 30.0dB
RL 0dBm

V AVG 9

10dB/
57.57676440GHz

MKR -94.33dBm
57.57676440GHz

CENTER 57.57676523GHz
*RBW 3.0kHz *VBW 3.0kHz
SPAN 50.00kHz *SWP 2.00sec

CL 30.0dB V AVG 23 MKR -94.33dBm
RL 0dBm 10dB/
57.71999019GHz

□

CENTER 57.71999102GHz SPAN 50.00kHz
*RBW 3.0kHz **VBW 3.0kHz *SWP 2.0sec

CL 30.0dB
RL 0dBm

CENTER 114. 5806288GHz *RBW 300Hz *VBW 1. 0kHz
*SWP 2. 80sec

TEST DATA SHEET 6A (Sheet 4 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
22 (Cont)	Spurious and Sub	-200 to -90 dBc	<i>see plot</i>	Pass
	Power level of 114.58 GHz signal	<-10 dBm	<i>-62</i> dBm	Pass
Load VSWR and Frequency Pulling				
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <i>10.62</i>	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <i>-25</i> dB	N/A

Shop Order No.: 538596

Test Engineer: _____

Operation: 0110

Quality Control: _____

OCT 13 '98

Unit Serial No.: F09Govt. Rep.: J. Palangac 11-1Date: 10-12-98

Section 1B: Initial Functional Testing - F10

This section contains the results of a full functional test over temperature taken before PLO F10 endured thermal cycling. All tests passed.

TEST DATA SHEET 6A (Sheet 1 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Test Setup Verified: J. C. Nguyen
Signature

Paragraph 4.2.1.3, Functional Testing:

Step	Test	Expected	Measured	Pass/Fail
1	Potential Difference from ± 15 V RTN to:			
	PLO Base Plate	< 1.0 Vac	0.03	Pass
	Spectrum Analyzer	< 1.0 Vac	0.03	Pass
	Frequency Counter Chassis	< 1.0 Vac	0.02	Pass
	Power Meter Chassis	< 1.0 Vac	0.03	Pass
4	Evacuate vacuum chamber and record pressure	< 10^{-2} torr	N/A	N/A*
5	Thermal couple readings	TC1 = 22 ± 2 °C	TC1 = 21.8 °C	
			TC2 = 22.3 °C	N/A
			TC3 = 21.22 °C	N/A
6	DRO L/A	0 to 1V	DRO L/A = 54 mV	Pass
	PLO L/A	0 to 1V 4.3-4.7v	PLO L/A = 4.49 V	
	Is PLO locked?	10/13/98 Yes	Yes ✓ No _____	
7	PLO Frequency	$57.290344 \pm .0002$ GHz	Freq. = 57.290341378 GHz	
	PLO Power	17 to 20 dBm	P = 18.48 dBm	
8	Input Voltage and Current			
	VM1 Voltage	+15 ± 0.1 V	VM1 = 15.0 V	
	VM2 Voltage	-15 ± 0.1 V	VM2 = -15.0 V	
	IM1 Current	600 mA max.	IM1 = 531 mA	
	IM2 Current	100 mA max.	IM2 = 67 mA	
	DRO L/A Voltage	0 to 1V	DRO L/A = 54 mV	
12	RF Output Power and Frequency	17 to 20 dBm 57.290344 ± .0002 GHz	P = 18.48 dBm Freq. = 57.290341378 GHz	
13	Baseplate Temp. (TC1)			
	Frequency vs. Voltage	TC1 = 22 ± 2 °C	TC1 = 21.8 °C	
± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = 15.2 V		
	-15.2 ± 0.05 V	-Voltage = -15.2 V		
	57.290344 ± .0002 GHz	Freq. = 57.290341368 GHz		
	17 to 20 dBm	P = 18.40 dBm	Pass	

*Record data only if performing test under vacuum

CL 30.0dB
RL 0dBm

MKR -3.17dBm
57.29033GHz

ATTEN 30dB
RL. 20. 00dBm

MKR 12. 00dBm
6. 87485GHz

CENTER 6. 87483GHz
*RBW 300KHz VBW 300KHz

SPAN 10. 00MHz
SWP 50. 0ms

CL 30.0dB
RL 0dBm

MKR -90.00dBm
56.8607592GHz

CENTER 56.8607592GHz
RBW 3.0kHz *VBW 1.0kHz
SPAN 500.0kHz
*SWP 1.00sec

AMBIENT
9
F10
218.000MHz
STEP 1/5
S10 S38595
10-12-88

CL 30.0 dB
RL 0dBm

MKR --91.17dBm
57.0038825GHz

10dB /

CENTER 57.0038825GHz
RBW 3.0kHz *VBW 1.0kHz
SPAN 500.0kHz
*SWP 1.00sec

CL 30.0dB
RL 0dBm

MKR -91.33dBm
57.1471084GHz

CENTER 57.1471084GHz
RBW 3.0kHz *VBW 1.0kHz
SPAN 500.0kHz
SWP 1.00sec

CL 30.0 dB
RL 0dBm

MKR -96.17dBm
57.433560036GHz

10dB/
RL

CENTER 57.433560036GHz
RBW 300Hz *VBW 1.0kHz

SPAN 5.400kHz
*SWP 1.00sec

CL 30.0dB

RL 0dBm

MKR -95. 33dBm
57. 576785872GHz

CENTER 57. 576785872GHz *VBW 1.0kHz SPAN 5. 400kHz
RBW 300Hz **SWP 1.00sec

CL 30.0dB
RL 0dBm

10dB/
RL 0dBm

MKR -95.67dBm
57.720011707GHz

MKR
57.720011707 GHz
-95.67 dBm

ANALOG
9
21.8°C
S10 S11 S12 S13
STEP 15
10-2-38

CENTER 57.720011707GHz
RBW 300Hz *VBW 1.0kHz
SPAN 5.400kHz
*SWP 1.00sec

CL. 30. 0dB
RL 0dBm

CL 30.0 dB
RL 0 dBm

MKR -2.00 dBm
57.29033 GHz

CENTER 57.29034 GHz *VBW 300KHz
*RBW 300KHz *SPAN 10.00MHz
**SWP 50.0ms

ATTEN 40dB
RL 20.3dBm

MKR 11-80dBm
6.87483GHz
10dB/

CENTER 6.87483GHz
RBW 300kHz VBW 3

CL 30.0dB VAVG 26
RL 0dBm

MKR -97.33dBm
56.8606568GHz

□

CENTER 56.8606568GHz
*RBW 1.0kHz VBW 1.0kHz
SPAN 500.0kHz
SWP 1-30sec

CL 30.0dB V AVG 5
RL 0dBm

MKR -96.67dBm
57.0038826GHz

CENTER 57. 1471084GHz SPAN 500. 0kHz
 *RBW 1. 0kHz VBW 1. 0kHz SWP 1. 30sec

CL 30. DBB
RL DBm

V AVG 45
10 dB /

MKR -96. 83 dBm
57. 4435601 GHz

□

CENTER 57. 4435601 GHz
*RBW 1. 0KHz VBW 1. 0KHz SPAN 500. 0KHz
SWP 1 - 30sec

CL 30. 0dB VAVG 5 MKR -98. 33dBm
RL 0dBm 10dB /

CENTER 57. 5767860 GHz
RBW 1. 0kHz SWP 1. 30sec SPAN 500. 0kHz
**RBW 1. 0kHz

CL 30.0dB
RL 0dBm

VAVG 8
10dB/
V

MKR -97.00dBm
57.7200118GHz

CENTER 57.7200118GHz
RBW 1.0kHz
*RBW 1.0kHz
VWB 1.0kHz
SPAN 500.0kHz
SWP 1-30sec

30.04B
QD3M
CL

MKR - 55. 83dBm
114. 5806680GHz
10dB /

*R3W 300HZ *V3W 1.0KHZ
CENTER 114.5806680GHZ

SPAN 100.0KHZ
*SWP 2.80SEC

TEST DATA SHEET 6A (Sheet 2 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
14	Frequency vs. Voltage			
	± 15 V Supplies	+14.8 ± 0.05 V	+Voltage = <u>14.8</u> V	Pass
		-14.8 ± 0.05 V	-Voltage = <u>-14.8</u> V	✓
		57.290344 ± .0002 GHz	Freq. = <u>57.290342 008</u> GHz	
15	Spurious and Sub	-200 to -90 dBc	<u>see plots</u>	
	Power level of 114.58 GHz signal	<-10 dBm	<u>-56</u> dBm	Pass
17	Load VSWR and Frequency Pulling			
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <u>6 Hz</u>	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <u>-5 dB</u> dB Peak	N/A
18	Operating Temperature @ 1°C baseplate	TC1 = 1 ± 2°C	TC1 = <u>1.0</u>	Pass
			TC2 = <u>2.5</u>	N/A
			TC3 = <u>1.0</u>	N/A
		0 - 1V	DRO L/A = <u>44</u> mV	Pass
19	Input Voltage and Current	0 to 1V	PLO L/A = <u>4.54</u> V	Pass
		VM1 Voltage	VM1 = <u>15.0</u> V	Pass
		VM2 Voltage	VM2 = <u>-15.0</u> V	✓
		IM1 Current	IM1 = <u>519</u> mA	
		IM2 Current	IM2 = <u>-65</u> mA	
		DRO L/A Voltage	DRO L/A = <u>44</u> mV	
		PLO L/A Voltage	PLO L/A = <u>4.54</u> V	
		RF Output Power	Power = <u>19.36</u> dBm	
	Frequency vs. Voltage	Frequency	Freq. = <u>57.290344 28</u> GHz	
		± 15 V Supplies	+Voltage = <u>15.2</u> V	
			-Voltage = <u>-15.2</u> V	
		57.290344 ± .0002 GHz	Freq. = <u>57.290339166</u> GHz	
		17 to 20 dBm	Power = <u>19.35</u> dBm	
		Frequency vs. Voltage		
		± 15 V Supplies	+Voltage = <u>14.8</u> V	
			-Voltage = <u>-14.8</u> V	
		57.290344 ± .0002 GHz	Freq. = <u>57.29033951</u> GHz	✓
		17 to 20 dBm	Power = <u>19.35</u> dBm	Pass

TEST DATA SHEET 6A (Sheet 3 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
19 (Cont)	Spurious and Sub	-200 to -90 dBc	<u>see plots</u>	<u>Pass</u>
	Power level of 114.58 GHz signal	<-10 dBm	<u>-55.8</u> dBm	<u>Pass</u>
Load VSWR and Frequency Pulling				
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <u>6.443</u>	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <u>1.38</u> dB	N/A
21	Operating Temperature @ +44°C Baseplate	TC1 = 44 ± 2°C	TC1 = <u>43.3</u>	N/A
			TC2 = <u>44.0</u>	N/A
			TC3 = <u>43.0</u>	N/A
			DRO L/A = <u>111 mV</u>	<u>Pass</u>
22	Input Voltage and Current	0 - 1V -0 to +V 4.3 - 4.7V	PLO L/A = <u>4.52 V</u>	<u>Pass</u>
			VM1 = <u>15.0</u> V	
			VM2 = <u>-15.0</u> V	
			IM1 = <u>542</u> mA	
			IM2 = <u>-65.7</u> mA	
			DRO L/A = <u>111 mV</u>	
			PLO L/A = <u>4.52 V</u>	
			Power = <u>17.54</u> dBm	
	Frequency vs. Voltage	57.290344 ± .0002 GHz	Freq. = <u>57.290333903</u> GHz	
			+Voltage = <u>15.2</u> V	
			-Voltage = <u>-15.2</u> V	
			Freq. = <u>57.290334133</u> GHz	
			Power = <u>17.53</u> dBm	
	Frequency vs. Voltage	± 15 V Supplies	+Voltage = <u>14.8</u> V	
			-Voltage = <u>-14.8</u> V	
			Freq. = <u>57.290334184</u> GHz	<u>Pass</u>
			Power = <u>17.54</u> dBm	<u>Pass</u>

CL 30.0dB VAVG 10 MKR -97.33dBm
RL 0dBm 56.8606572GHz

CENTER 56.8606572GHz SPAN 500.0kHz
*RBW 1.0kHz **VBW 1.0kHz *SWP 1.30sec

CL 30. □ DIB

RUE D'BBE

3 VAG

100B/

MKR-94-6748m

54 - 008888002200

四

CENTER 57. 0038822GHZ
*RBW 1.0KHZ *VBW 1.0KHZ

SPAN 500. OKHZ

1. SWP * 300000

CL 30.0dB
RL 0dBm

VAVG 2
10dB/
dBm

MKR -97.17dBm
57.1471081GHz

□

CENTER 57.1471081 GHz *VBW 1.0kHz
*RBW 1.0kHz *SPAN 500.0kHz
*SWP 1.30sec

CL 30.0dB
RL 0dBm

VAVG 3 MKR -98.17dBm
10dB/
57.4335597GHz

□

CENTER 57.4335597GHz *RBW 1.0kHz *VBW 1.0kHz
*SPAN 500.0kHz
*SWP 1.30sec

CL 30.0dB
RL 0dBm

VAVG 3
10dB/
10dBm

MKR -97.17dBm
57.5767856GHz

□

CENTER 57.5767856GHz *VBW 1.0kHz
*RBW 1.0kHz SPAN 500.0kHz
*SWP 1.30sec

CL 30.0dB
RL 0dBm

V A V G 4
10dB/
MKR -96. 33dBm

□

CENTER 57.7200114GHz *RBW 1.0kHz
*RBW 1.0kHz SPAN 500.0kHz

*SWP 1.30sec

CL 30.0 dB
RL 0 dBm

MKR -4.00 dBm
57.29036 GHz

ATTEN 40dB
RL 20. 3dBm

MKR 11. 30dBm
6. 87480GHz

CENTER 6.87480GHz
*RBW 300KHz

SPAN 50.00MHz
SWP 50.0ms

CL 30.0dB
RL 0dBm

MKR -47.33dBm
114.580673GHz

CENTER 114.580673GHz SPAN 1.000MHz
*RBW 300Hz *VBW 1.0kHz **SWP 2.80sec

TEST DATA SHEET 6A (Sheet 4 of 4)
Functional Testing (Paragraph 4.2.1)

Pre-Environmental CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
22 (Cont)	Spurious and Sub	-200 to -90 dBc	<i>see plots</i>	<i>Pass</i>
	Power level of 114.58 GHz signal	<-10 dBm	<i>-47</i> dBm	<i>Pass</i>
Load VSWR and Frequency Pulling				
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <i>5 Hz</i>	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <i>-4</i> dB	N/A

Shop Order No.: 538595

Test Engineer: _____

Operation: O110Quality Control: OCT 13 '98Unit Serial No.: F10Govt. Rep.: D. Duvvuri 10/23/98Date: 10-12-98

Section 2A: Acceptance Level Vibration - F09

This section includes the data from the limited functional tests which take place before and throughout vibration, and the vibration-specific. The following table summarizes the results of the limited functional test.

Test	Expected Value	Post X axis	Post Y axis	Post Z axis
Output Frequency	57290344 ± 200 kHz	57290328 kHz	57290329 kHz	57290329 kHz
Output Power	18.5 dBm ± 1.5 dB	18.1 dBm	18.0 dBm	18.0 dBm

The following pages contain the raw data.

TEST DATA SHEET 8B
Limited Functional Test (Paragraph 4.2.3)

Post X-Axis LPT

Test Setup Verified: D. Liles

Signature

Paragraph 4.2.3.2:

Step	Test		Required	Measurement	Pass/Fail
3	Potential Difference				
	From	To			
	Power Supply RTN	Test Platform *	< 1.0 Vac	N/A	N/A
	Power Supply RTN	Frequency Counter Chassis	< 1.0 Vac	0.6 Vac	P
	Power Supply RTN	Power Meter Chassis	< 1.0 Vac	0.5 Vac	P
Step	Test	Expected	Measured	Pass/Fail	
8	Voltage Meter 1	+15 ± 0.1 V	+15.00 V	PASS	
	Voltage Meter 2	-15 ± 0.1 V	-15.03 V	PASS	
	Current Meter 1	600 mA max.	521 mA	PASS	
	Current Meter 2	100 mA max.	-64 mA	PASS	
9	Output Frequency	57.290344 ± .0001 GHz	57.290328 GHz	PASS	
10	Output Power	18.5 dBm ± 1.5 dB	18.07 dBm	PASS	

* If used. N/A this line entry if not used in test. Example: If PLO is to be vibrated and unit tested "in-place" after each axis, check potential difference between shaker table and power supply RTN.

Shop Order No.: 538596

Operation: 0150

Unit Serial No.: F09

Date: 11/12/98

Test Engineer: D. Liles

Quality Control: QA 11/12/98

Govt. Rep.: J. Gallegas 11-12-98

11/12/98
D. Liles
QA 11/12/98

TEST DATA SHEET 8C
Limited Functional Test (Paragraph 4.2.3)

Post Y-Axis LPT

Test Setup Verified: Dhruv
Signature

Paragraph 4.2.3.2:

Step	Test		Required	Measurement	Pass/Fail
3	Potential Difference				
	From	To			
	Power Supply RTN	Test Platform *	< 1.0 Vac	N/A	N/A
	Power Supply RTN	Frequency Counter Chassis	< 1.0 Vac	0.5 Vac	P
	Power Supply RTN	Power Meter Chassis	< 1.0 Vac	0.6 Vac	P

Step	Test	Expected	Measured	Pass/Fail
8	Voltage Meter 1	+15 ± 0.1 V	15.00 V	P
	Voltage Meter 2	-15 ± 0.1 V	-15.03 V	P
	Current Meter 1	600 mA max.	522 mA	P
	Current Meter 2	100 mA max.	~64 mA	P
9	Output Frequency	57.290344 ± .0001 GHz	57.290329	P
10	Output Power	18.5 dBm ± 1.5 dB	18.02	P

* If used. N/A this line entry if not used in test. Example: If PLO is to be vibrated and unit tested "in-place" after each axis, check potential difference between shaker table and power supply RTN.

11/12/98

Shop Order No.: 538596
Operation: 0150
Unit Serial No.: F09
Date: 11/12/98

Test Engineer: Dhruv
Quality Control: 7A 197 11/12/98
Govt. Rep.: J. Gallagher 11-12-98

TEST DATA SHEET 8D
Limited Functional Test (Paragraph 4.2.3)

Post Z-Axis LPT

Test Setup Verified: J. Holmes
Signature

Paragraph 4.2.3.2:

Step	Test		Required	Measurement	Pass/Fail
3	Potential Difference				
	From	To			
	Power Supply RTN	Test Platform *	< 1.0 Vac	N/A	N/A
	Power Supply RTN	Frequency Counter Chassis	< 1.0 Vac	0.5 Vac	P
	Power Supply RTN	Power Meter Chassis	< 1.0 Vac	0.5 Vac	P

Step	Test	Expected	Measured	Pass/Fail
8	Voltage Meter 1	+15 ± 0.1 V	15.00 V	P
	Voltage Meter 2	-15 ± 0.1 V	-15.02 V	P
	Current Meter 1	600 mA max.	522 mA	P
	Current Meter 2	100 mA max.	-64 mA	P
9	Output Frequency	57.290344 ± .0001 GHz	57.290329	P
10	Output Power	18.5 dBm ± 1.5 dB	18.0	P

* If used. N/A this line entry if not used in test. Example: If PLO is to be vibrated and unit tested "in-place" after each axis, check potential difference between shaker table and power supply RTN.

Shop Order No.: 538596
Operation: 0150
Unit Serial No.: F09
Date: 11/12/98

Test Engineer: J. Holmes
Quality Control: 7A 11/12/98
Govt. Rep.: J. Holmes 11-12-98

Test Level: 0.000 dB
Test Time: 0000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

11:34:21
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O538596-F09
X AXIS SYSTEM CHECKOUT P/N 1348360-1 S/N F09

11-12-98

Frequency (Hz)

Log

11:51:43
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09
X AXIS CHECKOUT P/N 1348360-1 S/N F09

Sine Test Name: PLO.tmp

7A
267

ENG
217

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

1Φ-12-98
ENG 1A
217 830

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT
X AXIS PRE SINE SWEEP/N 1348360-1 S/N F09

Sine Test Name: PLO.tmp

14:04:14
12-Nov-1998

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 00:03:19
Filter Type: Proportional
Fundamental: 80.000 %, E

14:04:28
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT
X AXIS PRE SINE SWEEP/P/N 1348360-1 S/N F09

Sine Test Name: PLO.tmp

UNIZ

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

14:22:27
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S10536596-F09 METSAT
X AXIS TEST P/N 1348360-1 S/N ,F09

Test Name: PL0.tmp

FNG
217002
V12

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

14:17:40
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S
Y AXIS TEST P/N 1348360-1 S/N F09

UNIT X AXIS

ENG
217
02

Test Name: PLOtmp

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off
Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

14:17:45
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538596-F09
X AXIS TEST P/N 1348360-1 S/N F09
METSAT
Test Name: PL0.tmp

ENG 002
2/17
V1

Test Level: -18.000 dB
Test Time: 000:01:31

Reference RMS: 13.576
Clipping: Off
Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

15:56:35
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O538596-F09 METSAT
X AXIS TEST P/N 1348360-1 S/N ,F09

11-12-98
ENG 217
COV

Test Name: PL0.tmp

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy
Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

14:41:10
12-Nov-1998

11-12-98
ENG
217
200

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09
X AXIS POST SINE SWEEP/N 1348360-1 S/N F09
METSAT

Sine Test Name: PLO.tmp

14:40:56
12-Nov-1998

AMSU PHASE LOCK OSC
X AXIS POST SINE SWEET
Sine Test Name: PLO.Imp

8596-F09 S/N F09 METS

UNIT X

11-12-98

7A
200
ENG
217

14:41:04
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09
X AXIS POST SINE SWEEP/PIN 1348360-1 SIN F09

Sine Test Name: PLO.1mp

11-12-98

ENG 7A
217 200

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 00:03:19
Filter Type: Proportional
Fundamental: 80.000 %, E

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

15:23:10
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09
Y AXIS PRE SINE SWEEP P/N 1348360-1 S/N F09
METSAT

Sine Test Name: PLo,imp

200
7A
217
ENQ

15:23:23
 12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT
 Y AXIS PRE SINE SWEEPIN 1348360-1 S/N F09 11-12-98
 Sine Test Name: PLO.tmp
 ENG 7A
 217 200

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT 11-12-98
 Y AXIS PRE SINE SWEETPP/N 1348360-1 S/N F09
 Sine Test Name: PLO.tmp
 15:23:44
 12-Nov-1998

ENG
 217
 100

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

11-12-99
12-11-99

ENG 1(A)
217 200

AMSU PHASE LOCK OSCILLATOR S/0538596-F09 METSAT

15:35:59
12-Nov-1998

Y AXIS TEST P/N 1348360-1 SIN ,F09
Test Name: PL0.Imp

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off
Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

15:36:15
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538596-F09 METSAT 11-12-98 UNIT Z AXIS
Y AXIS TEST P/N 1348360-1 S/N F09

ENCL 7A
2/7/2000

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

15:36:25
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538596-F09
Y AXIS TEST P/N 1348360-1 S/N F09

Test Name: PLO.tmp

ENG 7A
217 100

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy

ENG
11-12-98
217

AMSU PHASE LOCK OSCILLATOR S/O 5338596-F09 METSAT
Y AXIS POST SINE SWEETP/N 1348360-1 S/N F09

Sine Test Name: PLO.Imp

15:49:00
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR SIO 538596-F09 METSAT 11-12-98
 Y AXIS POST SINE SWEEP/N 1348360-1 S/N F09
 Sine Test Name: PLO.tmp
 15:49:25
 12-Nov-1998
 ENG 7A
 217 00

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

16:33:45
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09
Z AXIS PRE SINE SWEEP/P/N 1348360-1 S/N F09
Sine Test Name: PLO.lmp

ENG
217
07
11-12-98

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%
Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcyc

11-12-98
UNIT Z
ENG
2/17/98
AMSU PHASE LOCK OSCILLATOR S/O 538596-F09, METSAT
Z AXIS PRE SINE SWEETP/N 1348360-1 S/N F09
Sine Test Name: PLO.tmp
16:34:10
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT
 Z AXIS PRE SINE SWEEP/N 1348360-1 S/N F09

Sine Test Name: PLO.tmp

16:34:15
 12-Nov-1998

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

16:46:16
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538596-F09
Z AXIS TEST P/N 1348360-1 S/N F09
Test Name: PL0tmp

11-12-98
ENG
2/19/98

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

16:46:20
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538596-F09
Z AXIS TEST P/N 1348360-1 SN ,F09
Test Name: PL0.tmp

UNIT X AXIS
11-12-78
ENG
217
1997

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

16:46:24
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538596-F09
Z AXIS TEST P/N 1348360-1 S/N ,F09

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy/c

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

20 100 1000 2000

20 100

Log

11-12-98

16:58:16
12-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT
Z AXIS POST SINE SWEPP/N 1348360-1 S/N F09

Sine Test Name: PLO.Imp

ENG 21/1997

AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT 11-12-98
 Z AXIS POST SINE SWEEP/N 1348360-1 S/N F09
 Sine Test Name: PLO.tmp

ENCL 24
 2/17 1998

16:58:21
 12-Nov-1998

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

11-12-98
ENCL A
2178
Sine Test Name: PL0.tmp
Z AXIS POST SINE SWEEP/N 1348360-1 S/N F09
AMSU PHASE LOCK OSCILLATOR S/O 538596-F09 METSAT

Section 2B: Acceptance Level Vibration - F10

This section includes the data from the limited functional tests which take place before and throughout vibration, and the vibration-specific. The following table summarizes the results of the limited functional test.

Test	Expected Value	Post X axis	Post Y axis	Post Z axis
Output Frequency	57290344 ± 200 kHz	57290339 kHz	57290360 kHz	57290376 kHz
Output Power	18.5 dBm ± 1.5 dB	17.9 dBm	17.9 dBm	17.3 dBm

The following pages contain the raw data.

TEST DATA SHEET 8B
Limited Functional Test (Paragraph 4.2.3)
Post X-Axis LPT

Test Setup Verified: O Pines
Signature

Paragraph 4.2.3.2:

Step	Test		Required	Measurement	Pass/Fail
3	Potential Difference				
	From	To			
	Power Supply RTN	Test Platform *	< 1.0 Vac	N/A	N/A
	Power Supply RTN	Frequency Counter Chassis	< 1.0 Vac	1mVac	PASS
	Power Supply RTN	Power Meter Chassis	< 1.0 Vac	1mVac	PASS

Step	Test	Expected	Measured	Pass/Fail
8	Voltage Meter 1	+15 ± 0.1 V	15.00 V	PASS
	Voltage Meter 2	-15 ± 0.1 V	-15.02 V	PASS
	Current Meter 1	600 mA max.	534 mA	PASS
	Current Meter 2	100 mA max.	-70 mA	PASS
9	Output Frequency	57.290344 ± .0001 GHz	57.290339	PASS
10	Output Power	18.5 dBm ± 1.5 dB	17.89 dBm	PASS

92 (45/1) 11/4/98

* If used. N/A this line entry if not used in test. Example: If PLO is to be vibrated and unit tested "in-place" after each axis, check potential difference between shaker table and power supply RTN.

11/4/98

(45/1)

Shop Order No.: 538595
Operation: Q150
Unit Serial No.: F10
Date: 11/4/98

Test Engineer: O Pines
Quality Control: TA 11/4/98
Govt. Rep.: 11/4/98

SHEET 82 OF 11 June 1998
ECN NO. 1956TEST DATA SHEET 8C
Limited Functional Test (Paragraph 4.2.3)

Post Y-Axis LPT

Test Setup Verified: O. Perez
Signature

Paragraph 4.2.3.2:

Step	Test		Required	Measurement	Pass/Fail
3	Potential Difference				
	From	To			
	Power Supply RTN	Test Platform *	< 1.0 Vac	N/A	N/A
	Power Supply RTN	Frequency Counter Chassis	< 1.0 Vac	1m Vac	Pass
	Power Supply RTN	Power Meter Chassis	< 1.0 Vac	1m Vac	Pass

Step	Test	Expected	Measured	Pass/Fail
8	Voltage Meter 1	+15 ± 0.1 V	15.00 V	Pass
	Voltage Meter 2	-15 ± 0.1 V	-15.08 V	Pass
	Current Meter 1	600 mA max.	535 mA	Pass
	Current Meter 2	100 mA max.	-70 mA	Pass
9	Output Frequency	57.290344 ± .0001 GHz	57.2903360	Pass
10	Output Power	18.5 dBm ± 1.5 dB	17.89 dBm	Pass

* If used. N/A this line entry if not used in test. Example: If PLO is to be vibrated and unit tested "in-place" after each axis, check potential difference between shaker table and power supply RTN.

Shop Order No.: 538595Operation: 0150Unit Serial No.: F10Date: 11/4/98Test Engineer: O. PerezQuality Control: 11/4/98Govt. Rep.: Dorothy Lee11/4/98
45/1

TEST DATA SHEET 8D
Limited Functional Test (Paragraph 4.2.3)

Post Z-Axis LFT

Test Setup Verified: D. Hines
Signature

Paragraph 4.2.3.2:

Step	Test		Required	Measurement	Pass/Fail
3	Potential Difference				
	From	To			
	Power Supply RTN	Test Platform *	< 1.0 Vac	N/A	N/A
	Power Supply RTN	Frequency Counter Chassis	< 1.0 Vac	1m Vac	PASS
	Power Supply RTN	Power Meter Chassis	< 1.0 Vac	1m Vac	PASS

Step	Test	Expected	Measured	Pass/Fail
8	Voltage Meter 1	+15 ± 0.1 V	15.01 V	PASS
	Voltage Meter 2	-15 ± 0.1 V	-15.05 V	PASS
	Current Meter 1	600 mA max.	535 mA	PASS
	Current Meter 2	100 mA max.	70 mA	PASS
9	Output Frequency	57.290344 ± .0001 GHz	57.2903376 GHz	PASS
10	Output Power	18.5 dBm ± 1.5 dB	17.26 dBm	PASS

* If used. N/A this line entry if not used in test. Example: If PLO is to be vibrated and unit tested "in-place" after each axis, check potential difference between shaker table and power supply RTN.

11/4/98

Shop Order No.: 538595
Operation: O150
Unit Serial No.: F10
Date: 11/4/98

Test Engineer: D. Hines
Quality Control: 24 11/4/98
Govt. Rep.: H. Hines 11/5/98

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
 Y AXIS SYSTEM CHECKOUT P/N 1348360-1 S/N F10
 Sine Test Name: PLO.tmp

10:09:36
 26-Oct-1998

Test Level: 0.000 dB
Test Time: 000:01:13
Reference RMS: 13.576
Clipping: Off

AMSU PHASE LOCK OSCILLATOR S/0584921, 53854922
Y AXIS SYSTEM CHECKOUT P/N 1348360-1 SN-F08, F10
Test Name: PLO.lmp
09:59:42 26-Oct-1998
ENG 217
ENG 217
EOT
e62
10-26-98

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 00:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcyc

11:32:04
26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
PRE Y AXIS SINE SWEEP TEST P/N 1348360-1 S/N F10

Sine Test Name: PLO.tmp

ENG 217 E.O.I 10/24/98

11:32:09
 26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
 PRE Y AXIS SINE SWEEP TEST P/N 1348360-1 SIN F10
 Sine Test Name: PLOtmp

10/26/98 UNIT Z
 ENG 217
 E.O.I.
 24
 267

Elapsed Time: 00:00
 Filter Type: Propo
 Fundamental: 80.0
 Sweep Number: 1.00
 Sweep Rate 1: 2.000 oct/min
 Compression: 75%
 Hz
 g (0-pk)
 1
 -1501.
 4.7424
 100
 3
 Auxiliary
 Fundamental

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

11:34:15
26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
PRE Y AXIS SINE SWEEP TEST P/N 1348360-1 S/N F10

Sine Test Name: PLO.tmp

UNITY
EOT
ENG
217

10/26/98 UNIT X
 AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
 PRE Y AXIS SINE SWEEP TEST P/N 1348360-1 S/N F10
 Sine Test Name: PLO.tmp

11:32:54
 26-Oct-1998

EOT
 7A
 267
 ENG
 217

Test Level: 0.000 dB
Test Time: 000:01:00

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

Reference RMS: 13.576
Clipping: Off

10/26/98
EOT
217
267

AMSU PHASE LOCK OSCILLATOR S/0538595
Y AXIS TEST P/N 1340360-1 S/N, F10

Test Name: PL0.tmp

11:45:44
26-Oct-1998

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

11:45:53
26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
Y AXIS TEST P/N 1348360-1 S/N F10
Test Name: PL0.tmp

UNIT Y AXIS

10 $^{1/2}$ (PSS)
E0Z
217

AMSU PHASE LOCK OSCILLATOR S/0538595
Y AXIS TEST P/N 1348360-1 S/N F10
Test Name: PL0.tmp

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

11:45:57
26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/O538595
Y AXIS TEST P/N 1348360-1 S/N ,F10

UNIT X AXIS

26/98
EOT
7A
26/1

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

11:55:30
26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
POST Y AXIS SINE SWEEP TEST P/N 1348360-1 S/N F10

Sine Test Name: PLO.tmp

10/26/98
ENCL 217
2A
e67

11:55:34
26-Oct-1998

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
POST Y AXIS SINE SWEEP TEST P/N 1348360-1 S/N F10
Sine Test Name: PLO.ltmp

10/26/98 UNIT Z
ENG EOT
24
267

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. m/s/c

10/26/98 UNIT Y
AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
POST Y AXIS SINE SWEEP TEST P/N 1343360-1 S/N F10
Sine Test Name: PLO.tmp

11:57:50
26-Oct-1998

ENG 217 267

10/26/98 UNIT X
 AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
 POST Y AXIS SINE SWEEP TEST P/N 1348360-1 S/N F10
 Sine Test Name: PLO.tmp

11:55:42
 26-Oct-1998

ENIG
 261
 27

Remaining Time: 000:00:00
Elapsed Time: 000:03:19
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%
Control

11(4)(98)
10:47:55
04-Nov-1998
AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
Y AXIS SYSTEM CHECKOUT P/N 1348360-1 S/N F10
Sine Test Name: PLO.tmp
ENG 7A
217 267

10:56:02
 04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O538595
 Y AXIS SYSTEM CHECKOUT P/N 1348360-1 S/N F10

Test Name: PLO.tmp

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mvc

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

11/4/98

1A
267

ENG
217

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
Y AXIS TEST P/N 1348360-1 S/N F10

Sine Test Name: PLO.tmp

14:22:27
04-Nov-1998

UNIT Z

11-4-98
 1A
 ENG
 217
 261

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
 Y AXIS TEST P/N 1348360-1 SIN F10

Sine Test Name: PLO.tmp

14:22:32
 04-Nov-1998

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Remaining Time: 000:00:00
Test Range: 20,000, 2000.000 Hz
Points Per Sweep: 450

14:22:41
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S10 538595-F10
Y AXIS TEST P/N 1348360-1 S/N F10
Sine Test Name: PLO.tmp
11-4-98
WESI

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

14:41:59
04-Nov-1998
AMSU PHASE LOCK OSCILLATOR S/0538595
Y AXIS TEST P/N 1348360-1 S/N ,F10
Test Name: PL0.Imp
11-4-98
ENG 217
TA 261

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off
Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

14:42:08
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
Y AXIS TEST P/N 1348360-1 S/N ,F10
Test Name: PL0.tmp

UNIT Y AXIS

11-4-98

ENG
217
263

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcyc
Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

14:55:56
04-Nov-1998
AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
Y AXIS POST SINE TEST P/N 1348360-1 S/N F10
Sine Test Name: PLO.tmp
11-4-98
ENG 217 261

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
 Y AXIS POST SINE TEST P/N 1348360-1 SIN F10
 11-4-98
 Sine Test Name: PLO:tmp
 04-Nov-1998
 14:56:02
 ENG 1A
 217 267

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcyc

Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

15:37:11
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S10 538595-F10
X AXIS SINE TEST P/N 1348360-1 S/N F10
Sine Test Name: PL0.tmp

11-4-98
11 261
ENG 217

1A
261
217

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
X AXIS SINE TEST P/N 1348360-1 S/N F10

Sine Test Name: PLO.tmp

15:37:15
04-Nov-1998

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%
Elapsed Time: 00:03:19
Test Range: 20.000, 2000.000 Hz
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcy

UNIT X

11-11-98

AMSU PHASE LOCK OSCILLATOR S10 538595-F10
X AXIS SINE TEST P/N 1348360-1 S/N F10

Sine Test Name: PL0.tmp

15:37:36
04-Nov-1998

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

15:51:48
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
X AXIS TEST P/N 1348360-1 S/N F10

Test Name: PLO;tmp

161
217

11-4-98

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 20000.000 Hz
Resolution: 5.000 Hz

15:51:55
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
X AXIS TEST P/N 1348360-1 S/N ,F10
Test Name: PLO.tmp

ENG $\frac{<6}{217}$

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Resolution: 5.000 Hz

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

15:52:05
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O538595
X AXIS TEST P/N 1348360-1 S/N F10
Test Name: PLO.tmp

UNIT X AXIS

11-4-98

ENG 16
217

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcyc

2000
1000
100
20

11/4/98

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
X AXIS POST SINE TEST P/N 1348360-1 SN F10

Sine Test Name: PLO.tmp

16:01:18
04-Nov-1998

ENG
L3I
42
217

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Elapsed Time: 000:03:19
Filter Type: Proportional
Fundamental: 80.000 %, BB RMS: 509. mcyc

16:01:27
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/I 538595-F10
X AXIS POST SINE TEST P/N 1348360-1 SN F10
Sine Test Name: PLO.Imp

UNIT Y

1/4/98

16
217

1/4/98

16:34:17
 04-Nov-1998

Test Level: 0.000 dB
Test Time: 00:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

17:13:00
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O538595
Z AXIS TEST P/N 1348360-1 S/N, F10

Test Name: PL0.tmp

ENG
217
197
148

Test Level: 0.000 dB
Test Time: 000:01:00
Reference RMS: 13.576
Clipping: Off

17:13:07
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
Z AXIS TEST P/N 1348360-1 SIN_F10
Test Name: PLO.tmp

ENG
217

18.051

0.0001

Test Level: 0.000 dB
Test Time: 000:01:00

Reference RMS: 13.576
Clipping: Off

Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

17:13:11
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
Z AXIS TEST P/N 1348360-1 S/N ,F10

Test Name: PL0.Imp

ENG
217
1974
 $\mu\text{-}\mathcal{F}_c$

Test Level: 0.000 dB
Test Time: 000:01:00
Reference RMS: 13.576
Clipping: Off
Test Range: 20.000, 2000.000 Hz
Resolution: 5.000 Hz

17:13:15
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/0538595
Z AXIS TEST PN 1348360-1 SIN.F10
Test Name: PLO.tmp

ENG
217
197

CL-X.G.

Test Report

Sweep Number: 1.00
Sweep Rate 1: 2.000 oct/min
Compression: 75%

Control

Elapsed Time: 000:03:19
Remaining Time: 000:00:00
Test Range: 20.000, 2000.000 Hz
Points Per Sweep: 450

17:23:25
04-Nov-1998

AMSU PHASE LOCK OSCILLATOR S/O 538595-F10
Z AXIS POST SINE TEST P/N 1348360-1 S/N F10
Sine Test Name: PLO.tmp

11-4-98

ENG
217
7A
197

Section 3A: Frequency and Power Hysteresis - F09

Worst case frequency and power hysteresis at 22°C for S/N F09 are 11 kHz and approximately 0.4 dBm, respectively.

TEST DATA SHEET 7 (Sheet 1 of 3)
Temperature Cycling (Paragraph 4.2.2)

Test Setup Verified: *John Auger / J. Auger*
Signature

Temperature Cycle	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6
Frequency 57.290344 GHz ± 200 kHz	57.290327 490 GHz	57.290328 285 GHz	57.290330 856 GHz		N	
Output Power 17 to 20 dBm	17.95 dBm	17.8 dBm	17.59 dBm		A	17.85 dBm 11/18/98
Frequency 57.290344 GHz ± 200 kHz	57.290335 074 GHz	57.290335 877 GHz	57.290338 062 GHz			
Output Power 17 to 20 dBm	18.03 dBm	18.05 dBm	17.85 dBm			

ambient →

	Beginning of cycle 3
freq	= 57.290330050 GHz
P _o	= 17.7 dBm

ambient →

	freq = 57.290338062
P _o	= 17.85 dBm

Shop Order No.: 538596
Operation: 0170
Unit Serial No.: F09
Date: 11-13-98

Test Engineer: *John Auger*
Quality Control: *2A* *NOV 18 '98*
Govt. Rep.: *M. Am. docc 11/18/98*

Section 3B: Frequency and Power Hysteresis - F10

Worst case frequency and power hysteresis at 22°C for S/N F10 are 12 kHz and approximately 0.1 dBm, respectively.

TEST DATA SHEET 7 (Sheet 1 of 3)
Temperature Cycling (Paragraph 4.2.2)

Test Setup Verified: John Ruyngs
Signature

Temperature Cycle	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6
Frequency 57.290344 GHz ±200 kHz	57.290338 986 GHz	57.290336 775 GHz	57.290343 942 GHz			
Output Power 17 to 20 dBm	17.85 dBm	17.8 dBm	17.8 dBm		NJP John Ruyngs 11-5-98	
Frequency 57.290344 GHz ±200 kHz	57.290343 GHz	57.290347 GHz	57.290348 725 GHz			
Output Power 17 to 20 dBm	17.80 dBm	17.83 dBm	17.9 dBm			

Shop Order No.: 538595

Test Engineer: John Ruyngs

Operation: 0170

Quality Control: 268 NOV 10 '98

Unit Serial No.: F10

Govt. Rep.: 11/11/98

Date: 11-5-98

Section 4A: EMI/RE02 - F09

Not required. Qualification Testing done on S/N's F01, F02.

Section 4B: EMI/RE02 - F10

Not required. Qualification Testing done on S/N's F01, F02.

Section 5A: Final Functional Testing - F09

This section contains the results of a full functional test over temperature taken after PLO
F09 endured thermal cycling. All tests passed.

TEST DATA SHEET 6C (Sheet 1 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Test Setup Verified:

[Signature]
Signature

Paragraph 4.2.1.3, Functional Testing:

Step	Test	Expected	Measured	Pass/ Fail
1	Potential Difference from ± 15 V RTN to:			
	PLO Base Plate	< 1.0 Vac	0.03 Vac	Pass
	Spectrum Analyzer	< 1.0 Vac	0.02 Vac	Pass
	Frequency Counter Chassis	< 1.0 Vac	0.1 Vac	Pass
	Power Meter Chassis	< 1.0 Vac	0.07 Vac	Pass
4	Evacuate vacuum chamber and record pressure	$< 10^{-2}$ torr	Pressure = <i>10⁻² 9.999999999999999</i>	* <i>N/A</i>
5	Thermal couple readings	TC1 = 22 ± 2 °C	TC1 = <u>24.0</u> °C	Pass
			TC2 = <u>23.9</u> °C	N/A
			TC3 = <u>23.1</u> °C	N/A
6	DRO L/A	0 to 1V	DRO L/A = <u>87 mV</u>	Pass
	PLO L/A	S/N: F06, F08 = 14.6 ± 0.4 V S/N: F07 = 0 to 1V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = <u>4.53</u> V	Pass
	Is PLO locked?	Yes	Yes <u>yes</u>	Pass
		No _____		
7	PLO Frequency	$57.290344 \pm .0002$ GHz	Freq. = <u>57.29033910</u> GHz	
	PLO Power	17 to 20 dBm	P = <u>18.11</u> dBm	Pass
8	Input Voltage and Current			<i>11-17-98</i>
	VM1 Voltage	$+15 \pm 0.1$ V	VM1 = <u>+15.19</u> V	Pass
	VM2 Voltage	-15 ± 0.1 V	VM2 = <u>-15.14</u> V	Pass
	IM1 Current	600 mA max.	IM1 = <u>522</u> mA	Pass
	IM2 Current	100 mA max.	IM2 = <u>-63.4</u> mA	Pass
	DRO L/A Voltage	0 to 1V	DRO L/A = <u>86.6 mV</u>	Pass
	PLO L/A Voltage	S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = <u>4.53</u> V	Pass
12	RF Output Power and Frequency	17 to 20 dBm	P = <u>18.11</u> dBm	Pass
		$57.290344 \pm .0002$ GHz	Freq. = <u>57.29033910</u> GHz	Pass
	Baseplate Temp. (TC1)	TC1 = 22 ± 2 °C	TC1 = <u>23.4</u> °C	Pass

*Record data only if performing test under vacuum

CL 30.0 dB
RL 0 dBm

MKR -17 dBm
57.29034 GHz

CENTER 57.29034 GHz
*RBW 300KHz VBW 300KHz
SPAN 10.00MHz
*SWP 50.0ms

*ATTEN 30dB
RL 20.0dBm

MKR 11.17dBm
10dB / 6.87485GHz

CENTER 6.87485GHz
*RBW 300kHz VBW 300kHz
SPAN 20.00MHz SWP 50.0ms

SPAN 20.00MHz
SWP 50.0ms

CL 30.0dB V AVG 10
RL 0dBm

MKR -93.50dBm
56.8606544GHz

□

Fo.9
3780.15
23.4°C
AMSU
P 4.2
9
II-12-28
3/0 5333.96

CENTER 56.8606544GHz
RBW 3.0kHz *V BW 1.0kHz
SPAN 500.0kHz
*SWP 2.00sec

CL 30. 0dB
RL 0dBm

V AVG 1
10dB/
57. 1471061GHz

MKR -91. 00dBm
57. 1471061GHz

□

CENTER 57. 1471061GHz
RBW 3. 0kHz *V BW 1. 0kHz *SPAN 500. 0kHz
*SWP 2. 00sec

CL 30.0dB
RL 0dBm

V AVG 3
10dB/
/

MKR -93.83dBm
57.5767836GHz

CENTER 57.5767836GHz *VBW 1.0kHz
RBW 3.0kHz *SWP 2.00sec

CENTER 114.5806655 GHz *VBW 1.0 kHz
 RBW 300 Hz *SWP 2.80 sec
 SPAN 100.0 kHz

TEST DATA SHEET 6C (Sheet 2 of 4)
Functional Testing (Paragraph 4.2.1)
Post-Thermal Cycling CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/ Fail
13	Frequency vs. Voltage			
	± 15 V Supplies	$+15.2 \pm 0.05$ V	+Voltage = <u>15.2</u> V	Pass
		-15.2 ± 0.05 V	-Voltage = <u>-15.2</u> V	✓
		$57.290344 \pm .0002$ GHz	Freq. = <u>57.290344</u> GHz	
		17 to 20 dBm	P = <u>18.15</u> dBm	
14	Frequency vs. Voltage			
	± 15 V Supplies	$+14.8 \pm 0.05$ V	+Voltage = <u>14.8</u> V	
		-14.8 ± 0.05 V	-Voltage = <u>-14.8</u> V	
		$57.290344 \pm .0002$ GHz	Freq. = <u>57.290344</u> GHz	
		17 to 20 dBm	P = <u>18.18</u> dBm	
15	Spurious and Sub	-200 to -90 dBc	<u>see plots</u>	✓
16	Power level of 114.58 GHz signal	<-10 dBm	<u>-39.33</u> dBm	Pass
17	Load VSWR and Frequency Pulling			
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <u>7</u> Hz	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <u>1.0</u> dB Peak	N/A
18	Operating Temperature @ 1°C baseplate	TC1 = $1 \pm 2^\circ\text{C}$	TC1 = <u>2.7</u> $^\circ\text{C}$	Pass
			TC2 = <u>2.3</u> $^\circ\text{C}$	N/A
			TC3 = <u>1.9</u> $^\circ\text{C}$	N/A
		0 - 1V	DRO L/A = <u>71.8</u> mV	Pass
		S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = <u>4.53</u> V	Pass
19	Input Voltage and Current			
		VM1 Voltage	VM1 = <u>15.0</u> V	
		VM2 Voltage	VM2 = <u>-15.0</u> V	
		IM1 Current	IM1 = <u>508</u> mA	
		IM2 Current	IM2 = <u>62</u> mA	
		DRO L/A Voltage	DRO L/A = <u>71.8</u> mV	
		PLO L/A Voltage	PLO L/A = <u>4.53</u> V	
		RF Output Power	Power = <u>19.09</u> dBm	
	Frequency	57.290344 $\pm .0002$ GHz	Freq. = <u>57.290344</u> GHz	Pass

CL 30. Odd
RL Odd

MKR - 83DBE
57-29033GHN

CENTER 57.29034GHz
RBW 300kHz *VBW 31

ATTEN 30dB
RL 20. 0dBm

MKR 11. 33dBm

6. 87485GHz

10dB/
RL

CENTER 6. 87485GHz
*RBW 300KHz VBW 300KHz

SPAN 20. 00MHz SWP 50. 0ms

CL 30.0dB V AVG 3
RL 0dB / 10dB

MKR -94.83dBm
56.8606470GHz

CENTER 56.8606470GHz *VBW 1.0kHz
*RBW 3.0kHz *SWP 2.00sec

SPAN 500.0kHz

CL 30.0dB
RL 0dBm

VAVG 2
10dB/
RL 0dBm

MKR -95.83dBm
57.0038728GHz

CENTER 57.0038728GHz *VBW 1.0kHz
*RBW 3.0kHz *SPAN 500.0kHz
*SWP 2.00sec

CL 30.0dB VAVG 2
RL 0dBm

MKR -95.00dBm
57.1470986GHz

CENTER 57.1470986GHz
*RBW 3.0KHz *VBW 1.0KHz
SPAN 500.0KHz
*SWP 2.00sec

SPAN 500. 0kHz
 CENTER 57. 4335502GHz *RBW 3. 0kHz *SWP 2. 00sec
 *RBW 3. 0kHz *VBW 1. 0kHz

CL 30.0dB
RL 0dBm

VAVG 2
10dB/

MKR -94.17dBm
57.5767760GHz

CENTER 57.5767760GHz
*RBW 3.0kHz *VBW 1.0kHz
SPAN 500.0kHz
*SWP 2.00sec

CL 30. DBB V AVG 2
RL DBM 10DB

MKR-92-33DBE
57-7200018CHN

□

CENTER 57.7200018GHz SPAN 500.0kHz
*RBW 3.0Hz *VBW 1.0kHz *SWP 2.00sec

CENTER 114. 5806488GHz *VBW 1. 0kHz *RBW 300Hz
 SPAN 100. 0kHz *SWP 2. 80sec

TEST DATA SHEET 6C (Sheet 3 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/ Fail
19 (Cont)	Frequency vs. Voltage			
	± 15 V Supplies	+15.2 \pm 0.05 V	+Voltage = <u>15.2</u> V	<u>Pass</u>
		-15.2 \pm 0.05 V	-Voltage = <u>-15.2</u> V	
		57.290344 \pm .0002 GHz	Freq. = <u>57.290344394</u> GHz	
		17 to 20 dBm	Power = <u>18.62</u> dBm	
	Frequency vs. Voltage			
	± 15 V Supplies	+14.8 \pm 0.05 V	+Voltage = <u>+14.8</u> V	
		-14.8 \pm 0.05 V	-Voltage = <u>-14.8</u> V	
		57.290344 \pm .0002 GHz	Freq. = <u>57.2903424236</u> GHz	
		17 to 20 dBm	Power = <u>18.62</u> dBm	
	Spurious and Sub	-200 to -90 dBc	<u>See plots</u>	
	Power level of 114.58 GHz signal	<-10 dBm	<u>-20</u> dBm	<u>Pass</u>
Load VSWR and Frequency Pulling				
	2:1 mismatch over 1 λ	N/A	Worst Case Freq = <u>6.6</u>	N/A
	2:1 mismatch over 1 λ	N/A	Worst Case Power = <u>0.7</u> dB	N/A
21	Operating Temperature @ +44°C Baseplate	TC1 = 44 \pm 2°C	TC1 = <u>44</u> °C	<u>Pass</u>
			TC2 = <u>43.9</u> °C	N/A
			TC3 = <u>43.8</u> °C	N/A
		0 - 1V	DRO L/A = <u>139</u> mV	<u>Pass</u>
		S/N: F06, F07, F08 = 14.6 \pm 0.4V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = <u>4.54</u> V	
22	Input Voltage and Current			
	VM1 Voltage	+15 \pm 0.1 V	VM1 = <u>15.0</u> V	
	VM2 Voltage	-15 \pm 0.1 V	VM2 = <u>-15.0</u> V	
	IM1 Current	600 mA max.	IM1 = <u>534</u> mA	
	IM2 Current	100 mA max.	IM2 = <u>-65</u> mA	
	DRO L/A Voltage	0 to 1V	DRO L/A = <u>140</u> mV	
	PLO L/A Voltage	S/N: F06, F07, F08 = 14.6 \pm 0.4V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = <u>4.54</u> V	
	RF Output Power and Frequency	17 to 20 dBm	Power = <u>17.66</u> dBm	
			Freq. = <u>57.290325503</u> GHz	<u>Pass</u>

CENTER 57. 29034GHz
 *RBW 300kHz VBW 300kHz
 SPAN 10. 00MHz *SWP 50. 0ms

ATTEN 30dB
RL 20.0dBm

MKR 10.67dBm
6.87485GHz

CENTER 6.87485GHz
RBW 100kHz VBW 100kHz

SPAN 10.00MHz
SWP 50.0ms

SPAN 500.0KHz
CENTER 57.0038739GHz *VSW 1.0KHz
RBW 3.0KHz

CL 30.0dB VAVG 3 MKR --93.50dBm
RL 0dBm 57.0038739GHz

CL 30.0dB VAVG 2
RL 0dBm

MKR -93.83dBm
57.1470997GHz

CENTER 57.1470997GHz
RBW 3.0kHz *VBW 1.0kHz
SPAN 500.0kHz *SWP 2.00sec

CL 30.0dB
RL. 0dBm

VAVG 2
10dB/
MKR -94.17dBm

□

CENTER 57.4335513 GHz
RBW 3.0kHz *VBW 1.0kHz
SPAN 500.0kHz
*SWP 2.00sec

SPAN 500.0kHz

CL 30.0dB VAVG 2 10dB/
RL 0dBm

MKR -92.33dBm
57.5767771GHz

□

CENTER 57.5767771GHz *VBW 1.0kHz SPAN 500.0kHz
RBW 3.0kHz *SWP 2.00sec

CL 30.0dB
RL 0dBm

MKR -93. 67dBm
57. 7200029GHz

CENTER 57.7200029GHz *RBW 3.0kHz
SPAN 500.0kHz **SWP 2.00sec

CL 30. 0dB

RL 0dBm

MKR

-19. 00dBm

114.

5806531GHz

CENTER 114.5806538GHz
*RBW 300Hz **VBW 1.0kHz

SPAN 100.0kHz
*SWP 2.80sec

TEST DATA SHEET 6C (Sheet 4 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
22 (Cont)	Frequency vs. Voltage			
	± 15 V Supplies	+15.2 \pm 0.05 V	+Voltage = <u>15.2</u> V	Pass
		-15.2 \pm 0.05 V	-Voltage = <u>-15.2</u> V	↑
		57.290344 \pm .0002 GHz	Freq. = <u>57.290325594</u> GHz	
		17 to 20 dBm	Power = <u>17.36</u> dBm	
	Frequency vs. Voltage			
	± 15 V Supplies	+14.8 \pm 0.05 V	+Voltage = <u>14.8</u> V	
		-14.8 \pm 0.05 V	-Voltage = <u>-14.8</u> V	
		57.290344 \pm .0002 GHz	Freq. = <u>57.290344</u> GHz	
		17 to 20 dBm	Power = <u>17.58</u> dBm	
	Spurious and Sub	-200 to -90 dBc	see plots	
	Power level of 114.58 GHz signal	<-10 dBm	<u>-19</u> dBm	Pass
Load VSWR and Frequency Pulling				
2:1 mismatch over 1 λ	N/A	Worst Case Freq = <u>1 Hz</u>	N/A	
2:1 mismatch over 1 λ	N/A	Worst Case Power = <u>1.0</u> dB	N/A	

Shop Order No.: 538596Operation: 0170Unit Serial No.: F09Date: 11-17-98Test Engineer: R. E. Quee 100704 18Quality Control: W. J. H. 100704 18Govt. Rep.: W. J. H. 100704 18

Section 5B: Final Functional Testing - F10

This section contains the results of a full functional test over temperature taken after PLO F10 endured thermal cycling. All tests passed.

TEST DATA SHEET 6C (Sheet 1 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Test Setup Verified: J. Ruyard
Signature

Paragraph 4.2.1.3, Functional Testing:

Step	Test	Expected	Measured	Pass/ Fail
1	Potential Difference from ± 15 V RTN to:			
	PLO Base Plate	< 1.0 Vac	0.01 V	Pass
	Spectrum Analyzer	< 1.0 Vac	0.02 V	Pass
	Frequency Counter Chassis	< 1.0 Vac	0.06 V	Pass
4	Power Meter Chassis	< 1.0 Vac	0.02 V	Pass
	Evacuate vacuum chamber and record pressure	< 10^{-2} torr	Pressure = _____ torr	*
5	Thermal couple readings	TC1 = 22 ± 2 °C	TC1 = 23.4 °C	
			TC2 = 24.0 °C	N/A
			TC3 = 22.9 °C	N/A
6	DRO L/A	0 to 1V	DRO L/A = 73 mV	Pass
	PLO L/A	S/N: F06, F08 = 14.6 ± 0.4 V S/N: F07 = 0 to 1V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = 4.54 V	Pass
	Is PLO locked?	Yes	Yes <input checked="" type="checkbox"/>	Pass
7	PLO Frequency	$57.290344 \pm .0002$ GHz	Freq. = 57.290346129 GHz	Pass
	PLO Power	17 to 20 dBm	P = 17.9 dBm	Pass
8	Input Voltage and Current			
		+15 ± 0.1 V	VM1 = +15.18 V	Pass
		-15 ± 0.1 V	VM2 = -15.20 V	Pass
		600 mA max.	IM1 = 533 mA	Pass
		100 mA max.	IM2 = -70.2 mA	Pass
		0 to 1V	DRO L/A = 73 mV	Pass
		S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = 4.54 V	Pass
12	RF Output Power and Frequency	17 to 20 dBm	P = 17.9 dBm	Pass
		$57.290344 \pm .0002$ GHz	Freq. = 57.290346129 GHz	Pass
	Baseplate Temp. (TC1)	TC1 = 22 ± 2 °C	TC1 = 23.6 °C	Pass

*Record data only if performing test under vacuum

L 30.0 dBm
R 1.0 dBm

MKR -3.33dBm
57.29034GHz

MKR
57.29034 GHz
-3.33 dBm

10 dBm

F0
STEP 12
AMBIENT
9
7/4.2.1
11-10-98
S/N 538555

CENTER 57.29034GHz
*RBW 300kHz
**VBW 1.0MHz

SPAN 10.00MHz
SWP 50.0ms

ATTEN 30dB
RL 20.0dBm

MKR 12.17 dBm
6.874858 GHz

F10
STEP 1/2
AMBIENT
ABU
9
TP 4.2-1
1170-98
5/6 536555

MKR
6.874858 GHz
12.17 dBm

CENTER 6.874858 GHz VBW 100kHz
*RBW 100kHz

SPAN 5.000MHz
SWP 50.0ms

CL 30.0 dB
RL 0 dB

MKR -94.33 dBm
56.360668516 GHz

CENTER 56.360668533 GHz *VBW 3.0 kHz
*RBW 3.0 kHz SPAN 1.0000 kHz
SWP 57.0 ms

MKR -93. 67 dBm
57. 003894381 GHz

CL 30. 0 dB
RL 0 dBm

VAVG 56

MKR
57. 003894381 GHz
-93. 67 dBm

F10

STEP 15
AMBIENT ^{AMBIENT}
TP 4.2.1
11-10-96
5/0 536595

SPAN 1. 000 kHz
SWP 67. 0 ms

CENTER 57. 003894388 GHz
*RBW 3. 0 kHz

CL 30.0dB VAVG 68
RL 0dBm

MKR -94.17dBm
57.147120247GHz

MKR
57.147120247 GHz
-94.17 dBm

□

F10
STEP 15
D 4.2.1
AMBIENT
11-10-98
S/N 538555

CENTER 57.147120264GHz *VBW 3.0kHz
x RBW 3.0kHz SPAN 1.000kHz

SWP 67.0ms

CL 30.0dB VAVG 26 MKR -94.67dBm
RL 0dBm

MKR 57.433571977 GHz
-94.67 dBm

D

FIO
Step 15
AUGMENT ANNU
P.4.2.
11-10-56
9/15/58551

CENTER 57.433571994 GHz
*RBW 3.0kHz *VBW 3.0kHz

SPAN 1.000 kHz
SWP 67.0ms

CL 30.0dB VAVG 15 MKR -94.33dBm

RL 0dBm 57.576797843GHz

MKR 57.576797843 GHz
-94.33 dBm

D

50
20.15
AMBEN
AUS
D42.1
9
810
1170-98-
S/0 538595

CENTER 57.576797860GHz SPAN 1.000kHz
*RBW 3.0kHz *VBW 3.0kHz SWP 67.0ms

SPAN 1.000kHz
 CENTER 57.720023725GHz
 *RBW 3.0kHz *VBW 3.0kHz
 SWP 67.0ms

CL - 30.0 dB
RL 0 dBm

MKR - 70. 33 dBm
114. 580556 GHz

10 dBm

MKR
114. 580556 GHz
-70. 33 dBm

F10
STEP 16 AMIG
P 4.2.1
AMBIGUITY
1170.76
S10536535

CENTER 114. 580556 GHz
RBW 1.0 kHz
**VBW 1.0 kHz

SPAN 1.000 MHz
SWP 2.50000

TEST DATA SHEET 6C (Sheet 2 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/ Fail
13	Frequency vs. Voltage			
	± 15 V Supplies	$+15.2 \pm 0.05$ V	+Voltage = <u>$+15.20$</u> V	Pass
	-	-15.2 ± 0.05 V	-Voltage = <u>-15.20</u> V	Pass
	-	$57.290344 \pm .0002$ GHz	Freq. = <u>57.290346667</u> GHz	Pass
	-	17 to 20 dBm	P = <u>17.83</u> dBm	Pass
14	Frequency vs. Voltage			
	± 15 V Supplies	$+14.8 \pm 0.05$ V	+Voltage = <u>$+14.80$</u> V	Pass
	-	-14.8 ± 0.05 V	-Voltage = <u>-14.80</u> V	Pass
	-	$57.290344 \pm .0002$ GHz	Freq. = <u>57.290354969</u> GHz	Pass
	-	17 to 20 dBm	P = <u>17.81</u> dBm	Pass
15	Spurious and Sub	-200 to -90 dBc	See Plot 5	Pass
16	Power level of 114.58 GHz signal	<-10 dBm	<u>-70.33</u> dBm	Pass
17	Load VSWR and Frequency Pulling			
	2:1 mismatch over 1λ	N/A	Worst Case Freq = <u>4.6</u> Hz	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = <u>0.7</u> dB Peak	N/A
18	Operating Temperature @ 1°C baseplate	TC1 = $1 \pm 2^\circ\text{C}$	TC1 = <u>1.7</u> $^\circ\text{C}$	
			TC2 = <u>2.4</u> $^\circ\text{C}$	N/A
			TC3 = <u>1.1</u> $^\circ\text{C}$	N/A
			DRO L/A = <u>1.60</u> mV	Pass
			PLO L/A = <u>4.55</u> V	Pass
19	Input Voltage and Current			
	VM1 Voltage	$+15 \pm 0.1$ V	VM1 = <u>$+15.0$</u> V	Pass
	VM2 Voltage	-15 ± 0.1 V	VM2 = <u>-15.0</u> V	Pass
	IM1 Current	600 mA max.	IM1 = <u>520</u> mA	Pass
	IM2 Current	100 mA max.	IM2 = <u>$~66.7$</u> mA	Pass
	DRO L/A Voltage	0 to 1V	DRO L/A = <u>60</u> mV	Pass
	PLO L/A Voltage	S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = <u>4.55</u> V	Pass
	RF Output Power	17 to 20 dBm	Power = <u>18.75</u> dBm	Pass
	Frequency	$57.290344 \pm .0002$ GHz	Freq. = <u>57.290339351</u> GHz	Pass

L 30. 0dB
RL 0dBm

MKR -3. 00dBm
57. 29034GHz

10dB

MKR
57. 29034GHz
-3. 00 dBm

F10
STEP 19
P42.11
11-00C
11-0-95
S10538535

CENTER 57. 29034GHz
*RBW 300kHz VBW 300kHz SPAN 10. 00MHz
SWP 50. 0ms

ATTEN 30dB
RL 20.0dBm

MKR 12.50dBm

6.874850GHz

10dB

MKR
6.874850GHz
12.50dBm

F10
STW 19
TP 4.2.1
AMSU
1.0.0C
9
REIT
11-10-58
S/N 538555

CENTER 6.874850GHz VBW 100kHz
*RBW 100kHz

SPAN 5.000MHz
SWP 50.0ms

CL 30.0dBm V AVG 16 10dB/
RL 0dBm

MKR -94.00dBm
55.860661789GHz

PC
1°C
P4.2.1
STEP 1/16
11-10-98
S/N 538555

MKR
55.860661789GHz
-94.00 dBm

□

CENTER 55.860661806GHz *VBW 3.0kHz
*REF 3.0kHz SWF 67.0ms
SPAN 1.000kHz

CL 30.0dB MKR -92.50dBm

VAVG 37 10dB/¹

RL 0dBm

MKR 57.003888154 GHz
-92.50 dBm

F10
STEP 19
PQ2.1
1000-
11-10-58
3/0536555

CENTER 57.003888154 GHz SPAN 1.000kHz
*RBW 3.0kHz *VBW 3.0kHz SWP 67.0ms

CL -30. 0dB
RL 0dBm
VAVG 25
10dB/
MKR -93. 33dBm
57. 147113503GHz

MKR
57. 147113503 GHz
-93. 33 dBm

F10
57019
P. 4.2.
100
11-10-58
3/6 33555

CENTER 57. 147113503GHz *RBW 3. 0kHz SPAN 1. 000kHz
*RBW 3. 0kHz SWP 67. 0ms

MIXR - 57. 67 dBm
57. 433565199GHZ

CL - 30. 0dB
RL - 0dBm
VAVG 13
10dB

MIXR
57. 433565199 GHZ
- 94. 67 dBm

Fro
Loc
STEP 19
AUX
P 42. 1
11-10-98
S/N 538375

CENTER 57. 433565199GHZ
*RBW 3. 0KHz *VBW 3. 0KHz
SPAN 1. 000KHz
SWP 67. 0ms

CL 30.0483
X 10483m

WAVS 10

MKR 102.50483m
ES 7.5787910483m

CL 30.0483
X 10483m
MKR 102.50483m
ES 7.5787910483m

PRO
1°C
STEP 19
P4.2.1
11-10-98
861
S6 536555

CENTER 57.5787910483m
*RE3W 3.0483m
DIRECTION *VIB W 3.0483m

SPAN 1.000483m
SWP 67.0m

CU 30. Oct 83 VAVCS 122

RL 0dBm MKR -93. 67 dBm

57. 720016896GHZ

FRO
Aug 8
1°C
STEP 1/
P4.2.1
11-10-88
96538555

MKR 720016896 GHZ
-93. 67 dBm

C

SPAN 1 - COCHET HUE
SWP 67. COMES

DENTER 57. 720016896GHZ
*RBW 3. DKEHUE **VFBW 3. DKEHUE

CL 30. Oct 13

RIBW 0.0dBm

150dBm

MKR -59. 83dBm
114. 580dBm

MKR
114. 580dBm
-59. 83 dBm

F10
STEP 1.9 ^{AUDIO}
TP 4.2.
100
11-10-98
S1653555

CENTER 114. 580dBm
*RIBW 1. 0dBm *VFBW 1. 0dBm

SPAN 1. 000MHz SWP 2. 50sec

TEST DATA SHEET 6C (Sheet 3 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/ Fail
19 (Cont)	Frequency vs. Voltage			
	± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = +15.23 V	Pass
		-15.2 ± 0.05 V	-Voltage = -15.23 V	Pass
		57.290344 ± .0002 GHz	Freq. = 57.29034337429 GHz	Pass
		17 to 20 dBm	Power = 18.2 dBm	Pass
	Frequency vs. Voltage			
	± 15 V Supplies	+14.8 ± 0.05 V	+Voltage = +14.85 V	Pass
		-14.8 ± 0.05 V	-Voltage = -14.85 V	Pass
		57.290344 ± .0002 GHz	Freq. = 57.290333111 GHz	Pass
		17 to 20 dBm	Power = 18.6 dBm	Pass
20	Spurious and Sub	-200 to -90 dBc	see plots	Pass
	Power level of 114.58 GHz signal	<-10 dBm	~69 dBm	Pass
	Load VSWR and Frequency Pulling			
	2:1 mismatch over 1λ	N/A	Worst Case Freq = 5 Hz	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = 0.7 dB	N/A
21	Operating Temperature @ +44°C Baseplate	TC1 = 44 ± 2°C	TC1 = 43.3	
			TC2 = 43.2	N/A
			TC3 = 42.8	N/A
		0 - 1V	DRO L/A = 110 mV	Pass
		S/N: F06, F07, F08 = 14.6 ± 0.4V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = 4.55 V	Pass
22	Input Voltage and Current			
	VM1 Voltage	+15 ± 0.1 V	VM1 = +15.0 V	Pass
	VM2 Voltage	-15 ± 0.1 V	VM2 = -15.0 V	Pass
	IM1 Current	600 mA max.	IM1 = 343 mA	Pass
	IM2 Current	100 mA max.	IM2 = 71.3 mA	Pass
	DRO L/A Voltage	0 to 1V	DRO L/A = 110 mV	Pass
	PLO L/A Voltage	S/N: F06, F07, F08 = 14.6 ± 0.4V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = 4.55 V	Pass
	RF Output Power and Frequency	17 to 20 dBm	Power = 17.1 dBm	Pass
			Freq. = 57.290341590 GHz	Pass

CL. 30. Oct 13
RL. Oct 13m

VAVS 29

MKR - 94. 67 dBm
56. 850554011 GHz

MKR
56. 850554011 GHz
- 94. 67 dBm

FRO
STEP 22
P4.2.1 AMBI
9°
44°C
11-10-98
S/O 538595

CENTER 56. 850554023 GHz * VBW 3. 0 kHz
* FBW 3. 0 kHz SPAN 1. 000 kHz
SWP 67. 0 ms

CL. 30. 0dB

VAVG 8

10dB/
RL

MKR -94. 67dBm
57. 00338865 GHz

MKR

57. 00338865 GHz
-94. 67 dBm

FRO
9700 22
44. 6
1025
S/05338565

CENTER 57. 0kHz *V3W 3. 0kHz
*R3W 3. 0kHz SPAN 1. 00001Hz

SPAN 1. 00001ms SWP 67. 0ms

CL 30.0dB VAVG 7
RL 0dBm

MKR -93.33dBm
S7. 147115719GHz

MKR
S7. 147115719 GHz
-93.33 dBm

D

F10
STEP 22
TP 4.2.
44°C
11-10-95
S10 536555

CENTER S7. 147115736GHz
*RBW 3.0kHz *VBW 3.0kHz
SPAN 1.000kHz
SWP 67.0ms

CL 30. DDE

VAVC 100

100dB

MKR -94. 50dBm

RL 0dBm

100dB

100dB

MKR
-97. 433567427 GHz
-94. 50dBm

Fo
STEP 22
TP 4.2.1 AMU
44°C SEIT
11-10-68
S/0 538595

D

CENTER 57. 433567444.4 GHz
*RBW 3. 0kHz **VBW 3. 0kHz

SPAN 1. 0000kHz
SWP 67. 0ms

CH. 30. OUTS

VAVS 16

10WB/

MKR - 94. 50WB
57. 575293281 GHI

RL. OUTB

MKR
57. 575293281 GHI
54. 50WB

Fro
STEP 22
ANSD
9
SEIT
P 4.2.1
44°C
1170-98
S/05365531

CENTER 55. 57529328GHI
*R3W 3. OUTB
*V3W 3. OUTB

SFPAN 1. 0000KHz
SWP 67. OUT

GL 30. Dec 03

R1 50 dBm

1 Oct 03

T

NMR -69. 50 dBm
114. 580690 GHz

NMR
114. 580690 GHz
-69. 50 dBm

PRO
STEP 2.2
RP 4.2.1
44°C
11-10-98
310538565

CHINTAR 114. 580690 GHz
xR13W 1. Oct 03
SPAN 1. 000MHz
SWP 2. 500e0

TEST DATA SHEET 6C (Sheet 4 of 4)
Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Paragraph 4.2.1.3 (Cont):

Step	Test	Expected	Measured	Pass/Fail
22 (Cont)	Frequency vs. Voltage			
	± 15 V Supplies	+15.2 \pm 0.05 V	+Voltage = <u>+15.24</u> V	Pass
		-15.2 \pm 0.05 V	-Voltage = <u>-15.26</u> V	Pass
		57.290344 \pm .0002 GHz	Freq. = <u>57.290342419</u> GHz	Pass
		17 to 20 dBm	Power = <u>17.1</u> dBm	Pass
	Frequency vs. Voltage			
	± 15 V Supplies	+14.8 \pm 0.05 V	+Voltage = <u>+14.85</u> V	Pass
		-14.8 \pm 0.05 V	-Voltage = <u>-14.84</u> V	Pass
		57.290344 \pm .0002 GHz	Freq. = <u>57.290342793</u> GHz	Pass
		17 to 20 dBm	Power = <u>17.1</u> dBm	Pass
	Spurious and Sub	-200 to -90 dBc	see plots	Pass
	Power level of 114.58 GHz signal	<-10 dBm	<u>-69</u> dBm	Pass
	Load VSWR and Frequency Pulling			
	2:1 mismatch over 1 λ	N/A	Worst Case Freq = <u>0.5 Hz</u>	N/A
	2:1 mismatch over 1 λ	N/A	Worst Case Power = <u>0.6</u> dB	N/A

Shop Order No.: 538595

Operation: 0170

Unit Serial No.: F10

Date: 11-10-98

Test Engineer: AMSU
9 SEPT

Quality Control: TA
268 NOV 10 98

Govt. Rep.: 11/11/98

Section 6A: AM/FM Testing - F09

The following section contains the raw data from the AM/FM Noise Tests. Requirements are that the FM Noise level be less than -100 dBc/Hz for frequencies greater than 1 MHz. Requirements are that the AM Noise level be less than 130 dBc/Hz for all frequencies greater than 1 MHz. Both Tests Pass.

FM Noise Test, F09

AM Noise, F09

FM Noise Test, PLO F09

Section 6B: AM/FM - F10

The following section contains the raw data from the AM/FM Noise Tests. Requirements are that the FM Noise level be less than -100 dBc/Hz for frequencies greater than 1 MHz. Requirements are that the AM Noise level be less than 130 dBc/Hz for all frequencies greater than 1 MHz. Both Tests pass.

AM noi 2, F10

הנִמְלָאָה מִלְבָד

11/10/98 17:50:03 - 17:53:39
Herriger, E. 57-299E+9 Hz

ת. ו. מ. ל. ב. מ. פ. ל. ו. י. ת. ו. מ. ל. ב.

PLO As-Built Configuration

Part Name	Part Number	Serial Number	
		F09	F10
TCXO	1348325-1	51475	48691
VCGDO	1348351-1	79029	79026
PLL Assembly	1348500-2	F07	F10
DRO Assembly	1348400-1	F08	F12
Voltage Regulator	1357979-1	F07	F08

PLO F09

PLO F10

FORMS

National Aeronautics and
Space Administration

Report Documentation Page

1. Report No. ---	2. Government Accession No. ---	3. Recipient's Catalog No. ---	
4. Title and Subtitle Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. Report Date January 1999	
		6. Performing Organization Code ---	
7. Author(s) D. Pines		8. Performing Organization Report No. 11384	
		10. Work Unit No. ---	
9. Performing Organization Name and Address Aerojet 1100 W. Hollyvale Azusa, CA 91702		11. Contract or Grant No. NAS 5-32314	
12. Sponsoring Agency Name and Address NASA Goddard Space Flight Center Greenbelt, Maryland 20771		13. Type of Report and Period Covered Final	
15. Supplementary Notes ---		14. Sponsoring Agency Code ---	
16. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
17. Key Words (Suggested by Author(s)) EOS Microwave System		18. Distribution Statement Unclassified --- Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages	22. Price ---

NASA FORM 1626 OCT 86

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

Block 1. Report No. NASA report series number, if preassigned.

Block 2. Government Accession No. Leave blank.

Block 3. Recipient's Catalog No. Reserved for use by each report recipient.

Block 4. Title and Subtitle. Typed in caps and lower case with dash or period separating subtitle from title.

Block 5. Report Date. Approximate month and year the report will be published.

Block 6. Performing Organization Code. Leave blank.

Block 7. Authors. Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.

Block 8. Performing Organization Report No. NASA installation report control number and, if desired, the non-NASA performing organization report control number.

Block 9. Performing Organization Name and Address. Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.

Block 10. Work Unit No. Provide Research and Technology Objectives and Plants (RTOP) number.

Block 11. Contract or Grant No. Provide when applicable.

Block 12. Sponsoring Agency Name and Address. National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.

Block 13. Type of Report and Period Covered. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.

Block 14. Sponsoring Agency Code. Leave blank.

Block 15. Supplementary Notes. Information not included

elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.

Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.

Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.

Block 18. Distribution Statement. Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.

Block 19. Security Classification (of the report). Self-explanatory.

Block 20. Security Classification (of this page). Self-explanatory.

Block 21. No. of Pages. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.

Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. FUNDING NUMBERS NAS 5-32314	
6. AUTHOR(S) D. Pines		8. PERFORMING ORGANIZATION REPORT NUMBER 11384 January 1999	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702		10. SPONSORING/MONITORING AGENCY REPORT NUMBER ---	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center Greenbelt, Maryland 20771			
11. SUPPLEMENTARY NOTES ---			
12a. DISTRIBUTION/AVAILABILITY STATEMENT ---		12b. DISTRIBUTION CODE ---	
13. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
14. SUBJECT TERMS EOS Microwave System			15. NUMBER OF PAGES
			16. PRICE CODE ---
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT SAR

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, and year, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), and work unit number(s). Use the following labels:

C - Contract	PR - Project
G - Grant	TA - Task
PE - Program Element	WU - Work Unit
	Accession No.

Block 6. Author(s) Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Reports Number (if known).

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with ...; Trans. of ...; To be published in ... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12.a Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 *Distribution Statement on Technical Documents*

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 17 - 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

DOCUMENT APPROVAL SHEET

TITLE <u>Performance Verification Report</u> METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10			DOCUMENT NO. Report 11384 January 1999
INPUT FROM: D. Pines	CDRL: 208	SPECIFICATION ENGINEER: N/A	DATE
CHECKED BY: N/A	DATE	JOB NUMBER: N/A	DATE
APPROVED SIGNATURES		DEPT. NO.	DATE
Product Team Leader (D. Pines) <u>D. Pines</u>		8661	1/29/99
Systems Engineer (R. Platt) <u>Robert H. Platt</u>		8341	2/1/99
Design Assurance (E. Lorenz) <u>A. Suliman for</u>		8331	2/1/99
Quality Assurance (R. Taylor) <u>R. Taylor for</u>		7831	2/2/99
Technical Director/PMO (R. Hauerwaas) <u>R.V. Hauerwaas</u>		4001	1/29/99
Released: Configuration Management (J. Cavanaugh) <u>J. Cavanaugh</u>		8361	2/2/98
By my signature, I certify the above document has been reviewed by me and concurs with the technical requirements related to my area of responsibility.			
(Data Center) FINAL			
Please return this sheet and the reproducible master to Jim Kirk (Bldg. 1/Dept. 8631), ext. 2081.			

