Modeling transition/transversion bias of nucleotide substitution over time

Case study 4

AUTHOR

Stefan Schmutz

PUBLISHED

Dec. 15, 2019

TABLE OF CONTENTS

Estimating nucleotide frequencies

Estimating transition transversion rate ratio

AFFILIATION

ZHAW

Estimating nucleotide frequencies

Estimate nucleotide frequencies from the pairwise alignment of human and mouse cytochrome b gene as given in the file "mt-cyb-human- mouse_cDNAalignment.fasta". Use these values to parameterize the model.

One way to estimate the nucleotide frequencies is to count them.

Since we're working with a pairwise alignment without indels, the total length of both sequences is the same (1140 nt). The detailed composition is listed in Table 1.

Table 1: Nucleotide frequencies

nucleotide	human	mouse
Т	286	327
С	391	312
Α	326	361
G	137	140

Estimating transition transversion rate ratio

Propose a simple way of estimating transition transversion rate ratio from the dataset and use this estimate for the parameterization of the model.

Table 2: Nucleotide comparisons

human-mouse	n
a-a	264
а-с	27
a-g	15
a-t	20
c-a	59
C-C	249
c-g	11
c-t	72
g-a	19
g-c	4
g-g	111
g-t	3
t-a	19
t-c	32
t-g	3
t-t	232