

Report No. : EESZG07160009-2 Page 1 of 38

Product: Bluetooth Speaker

Trade mark : NUDE AUDIO

Model/Type reference: Nude SuperM, PS039STD, PS039BKG,

PS039CLG, PS039MTG, PS039PTG,

PS039PNG, PS039PLG, PS039YLE, PS039MTJ,

PS039KCG, PS039KSG, PS039CPG,

PS039DSG, PS039NLG

Serial number : N/A

Ratings : Charging input: 5V==, 1A

lithium ion battery: 3,7V===, IPX5, Class III

FCC ID : 2AACFPS039

Report number : EESZG07160009-2

Date : July 29, 2014

Regulations : See below

Test Standards	Results
	PASS

Prepared for:

Disruptive Hong Kong Limited
Room 2002,20/F, King Palace Plaza, 52A Sha Tsui Road, Tsuen Wan, N.T.
Hong Kong

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested	by:	lf I	Reviewed by:	Quisa la
loctoa	IJ.		Troviovica by.	Disciser on

Approved by: _____ Date: _____ July 29, 2014

Check No.: 1702005401

TABLE OF CONTENTS

1. CE	RTIFICATION INFORMATION			 	4
2. TES	ST SUMMARY				4
3. ME	ASUREMENT UNCERTAINTY				5
4. PR	ODUCT INFORMATION				5
5. TE	ST EQUIPMENT LIST		(a)	 <u>()</u>	5
6. SU	PPORT EQUIPMENT LIST				5
7. 99%	% BANDWIDTH MEASUREMENT				6
7.1. 7.2.	LIMITS BLOCK DIAGRAM OF TEST SETUP				
7.3.	TEST PROCEDURE				_
7.4.	TEST RESULT				6
8. 6DI	B BANDWIDTH MEASUREMENT			 	9
8.1.	LIMITS				
8.2. 8.3.	BLOCK DIAGRAM OF TEST SETUP TEST PROCEDURE				
8.4.	TEST RESULT				
9. PO	WER SPECTRAL DENSITY				12
9.1.	LIMITS			 	12
9.2.	BLOCK DIAGRAM OF TEST SETUP				
9.3.	TEST PROCEDURE				
9.4. 10. I	MAXIMUM PEAK CONDUCTED OUTP				
10.1.	LIMITS				
10.2. 10.3.	BLOCK DIAGRAM OF TEST SETUP TEST PROCEDURE				
10.3.					
	NDUCTED BANDEDGE EMISSION M				
11. 60	NADOCTED BANDEDGE EMISSION MI	EASUREWE	IN 1	 	10

	D 0 -f 00
	Page 3 of 38

11.1.	LIMITS			18
11.2.	BLOCK DIAGRAM OF TEST SETUP			18
11.3.	TEST PROCEDURE			18
11.4.	TEST RESULT			18
12. (CONDUCTED SPURIOUS EMISSION MEASUREME			
12.1.	LIMITS			20
12.2.	BLOCK DIAGRAM OF TEST SETUP			20
12.3.	TEST PROCEDURE			20
12.4.	TEST RESULT			20
13. F	RADIATED BANDEDGE EMISSION / RADIATED SP	URIOUS EMISS	SION MEASUREMENT	23
13.1.	LIMITS			23
13.2.	BLOCK DIAGRAM OF TEST SETUP			23
13.3.	TEST PROCEDURE			24
13.4.	TEST RESULT			25
14.	AC CONDUCTED EMISSION TEST			
14.1.	LIMITS			29
14.2.	BLOCK DIAGRAM OF TEST SETUP			29
14.3.	PROCEDURE OF CONDUCTED EMISSION TEST			29
14.4.	GRAPHS AND DATA			30
APPEND	DIX 1 PHOTOGRAPHS OF TEST SETUP			32
APPEND	DIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT			34
	oix 3 INTERNAL PHOTOGRAPHS OF PRODUCT			36

1. CERTIFICATION INFORMATION

Applicant: Disruptive Hong Kong Limited

Room 2002,20/F, King Palace Plaza,52A Sha Tsui Road, Tsuen

Wan, N.T. Hong Kong

Manufacturer: Disruptive Hong Kong Limited

Room 2002,20/F, King Palace Plaza,52A Sha Tsui Road, Tsuen

Wan, N.T. Hong Kong

FCC ID: 2AACFPS039

Product: Bluetooth Speaker

Model/Type reference: Nude SuperM, PS039STD, PS039BKG, PS039CLG,

PS039MTG, PS039PTG, PS039PNG, PS039PLG, PS039YLE, PS039MTJ, PS039KCG, PS039KSG, PS039CPG, PS039DSG,

PS039NLG

Trade Name: NUDE AUDIO

Serial Number: N/A

Report Number: EESZG07160009-2

Sample Received Date: July 19, 2014

Sample tested Date: July 19, 2014 to July 28, 2014

The above equipment was tested by Centre Testing International (Shenzhen) Corporation for compliance with the requirements set forth in the IC/FCC Rules and the measurement procedure according to ANSI C63.4:2009.

2. TEST SUMMARY

No.	Test Item	Rule	Result
1	99% Bandwidth	RSS-Gen 4.6.1	PASS
2	6dB Bandwidth	FCC PART15.247(a)(2) & RSS-210 A8.2	PASS
3	Transmitter Output Power	FCC PART15.247(b)(3) & RSS-210 A8.4	PASS
4	Power Spectral Density	FCC PART15.247(e) & RSS-210 A8.2	PASS
5	Conducted Bandedge Emission / Conducted Spurious Emission	FCC PART15.247(d) & RSS-210 A8.5	PASS
6	Radiated Bandedge Emission / Radiated Spurious Emission	FCC PART15.247(d) & RSS-210 A8.5	PASS
7	AC Conducted Emission	FCC PART15.207 & RSS-Gen 7.2.4	PASS
8	Antenna requirements	FCC PART15.203 & RSS-Gen 7.1.2	PASS (See Notes)

^{*:} According to Section 15.203 and RSS-Gen 7.1.2, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The EUT has a built in antenna which is a short wire solder on the PCB, this is permanently attached antenna and meets the requirements of this section.

Report No. : EESZG07160009-2 Page 5 of 38

3. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission Test	3.2 dB
Radiated Emissions / Bandedge Emission	4.5 dB

4. PRODUCT INFORMATION

Items	7 7 3	Description				
Rating	Charging input: 5V==, 1A lithium ion battery: 3,7V==, IPX5, Class III					
Type of Modulation	BT4.0: GFSK					
Antenna Type	Integral antenna				0	
Frequency Range	2402 ~ 2480 MHz					
Gain	-0.6dBi	(*)				

All the models are same product just different model names and outer colors. The test model is PS039BKG, and test results are applicable to others.

5. TEST EQUIPMENT LIST

Manufacturer	Model	Serial No.	Due Date
ETS-LINDGREN	FACT-3	3510	07/12/2016
Agilent	E4443A	MY45300910	01/15/2015
R&S	ESCI	100435	07/19/2015
schwarzbeck	VULB 9163	618	06/25/2015
ETS-LINGREN	2090	00057230	N/A
ETS-LINGREN	3117	00057407	07/19/2015
Agilent	8449B	3008A02425	03/19/2015
R&S	FSP40	100416	07/06/2015
R&S	ESCI	100009	07/19/2015
R&S	ENV216	100098	07/19/2015
	ETS-LINDGREN Agilent R&S schwarzbeck ETS-LINGREN ETS-LINGREN Agilent R&S R&S	ETS-LINDGREN FACT-3 Agilent E4443A R&S ESCI schwarzbeck VULB 9163 ETS-LINGREN 2090 ETS-LINGREN 3117 Agilent 8449B R&S FSP40 R&S ESCI	ETS-LINDGREN FACT-3 3510 Agilent E4443A MY45300910 R&S ESCI 100435 schwarzbeck VULB 9163 618 ETS-LINGREN 2090 00057230 ETS-LINGREN 3117 00057407 Agilent 8449B 3008A02425 R&S FSP40 100416 R&S ESCI 100009

6. SUPPORT EQUIPMENT LIST

Device Type	Brand	Model	Series No.	Data Cable	Remark
Notebook	DELL	Vostro 3400	GYQTVP1	N/A	FCC DOC
Mouse	L.Selectron	M004	02284699	Un-shielded 1.2M	FCC DOC

Report No. : EESZG07160009-2 Page 6 of 38

7. 99% BANDWIDTH MEASUREMENT

7.1. LIMITS

None

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. TEST PROCEDURE

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings for 99 % Bandwidth measurement. For 99% Bandwidth measurement, the RBW=30 kHz, and VBW = 100 kHz. Sweep = auto; Detector function = peak. Trace = max hold.
- 4. Measure and record the results in the test report.

7.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	99% BW (MHz)	Result
2402	1.023	PASS
2440	1.020	PASS
2480	1.020	PASS

Page 7 of 38

Please see the following plots (worst case):

2402MHz

2440MHz

Report No.: EESZG07160009-2

Page 8 of 38

2480MHz

Report No.: EESZG07160009-2 Page 9 of 38

8. 6DB BANDWIDTH MEASUREMENT

8.1. LIMITS

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. TEST PROCEDURE

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

8.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (kHz)	Result
2402	699	PASS
2440	696	PASS
2480	690	PASS

Please see the following plots (worst case):

2402MHz

2440MHz

Report No.: EESZG07160009-2

*RBW 100 kHz Marker 1 [T1]
*VBW 300 kHz -2.19 dBm
Ref 10 dBm *Att 20 dB *SWT 10 ms 2.47998800 GHz

10 ndB [T1] 6 00 dB
BW 690.00000000 kHz
Temp 1 [T1 ndB] -8 18 dBm
-8 18 dBm
-2.47963700 GHz

1 PM 2 1 T1 ndB] -8 12 dBm
-2.480327000 GHz

-30 2.480327000 GHz

-30 30 kHz Span 3 MHz

Page 11 of 38

2480MHz

Report No. : EESZG07160009-2 Page 12 of 38

9. POWER SPECTRAL DENSITY

9.1. LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2. BLOCK DIAGRAM OF TEST SETUP

9.3. TEST PROCEDURE

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz.
- d) Set the VBW \geq 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

9.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	-13.62	PASS
2440	-15.35	PASS
2480	-17.73	PASS

Page 13 of 38

Please see the following plots (worst case):

2440MHz

Report No.: EESZG07160009-2

*RBW 3 kHz *VBW 10 kHz -17.73 dBm
Ref 10 dBm *Att 20 dB SWT 170 ms 2.479982000 GHz

-10 -20 -30 -40 -50 -50 -50 -70 -80 -90 Center 2.48 GHz 150 kHz/ Span 1.5 MHz

Page 14 of 38

2480MHz

Report No.: EESZG07160009-2 Page 15 of 38

10. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

10.1. LIMITS

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt (30dBm).

10.2. BLOCK DIAGRAM OF TEST SETUP

10.3. TEST PROCEDURE

- a) Set the RBW ≥ DTS bandwidth.
- b) Set the VBW ≥ 3 x RBW
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

10.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	3.24	PASS
2440	3.09	PASS
2480	1.85	PASS

Remark:

Antenna Gain: -0.6dBi

Page 16 of 38

Please see the following plots (worst case):

2402MHz

Report No.: EESZG07160009-2

Page 17 of 38

2480MHz

CIL

Report No.: EESZG07160009-2

11. CONDUCTED BANDEDGE EMISSION MEASUREMENT

11.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

11.2. BLOCK DIAGRAM OF TEST SETUP

11.3. TEST PROCEDURE

- a) Set to the maximum power setting and enable the EUT transmit continuously.
- b) Set RBW = 100 kHz, VBW = 300 kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- c) Enable hopping function of the EUT and then repeat step a and b.
- d) Measure and record the results in the test report.

11.4. TEST RESULT

Worst case data attached.--- please see the following plots.

400-6788-333

Low Band Edge Plot on 2402MHz:

12. CONDUCTED SPURIOUS EMISSION MEASUREMENT

12.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

12.2. BLOCK DIAGRAM OF TEST SETUP

12.3. TEST PROCEDURE

- a) The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- b) Set to the maximum power setting and enable the EUT transmit continuously.
- c) Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- d) Measure and record the results in the test report.
- e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

12.4. TEST RESULT

Worst case data---Please see the following plots.

2440MHz:

Page 22 of 38

Report No. : EESZG07160009-2 Page 23 of 38

13. RADIATED BANDEDGE EMISSION / RADIATED SPURIOUS EMISSION MEASUREMENT

13.1. LIMITS

The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

millio de seiem	/ 4 7 / 4	7 / 4
Frequency (MHz)	Field strength (μV/m)	Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note: the tighter limit applies at the band edges.

13.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz

Report No.: EESZG07160009-2 Page 24 of 38

For radiated emissions from 1GHz to 25GHz

13.3. TEST PROCEDURE

Below 30MHz

- a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect (300Hz RBW in 9kHz to 150kHz and 10kHz RBW in 150kHz to 30MHz) Function and Specified Bandwidth with Maximum Hold Mode.

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 100 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value (120 kHz RBW): vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The EUT was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For AV vale testing, set the spectrum analyzer/receiver in RMS detector, Max Hold mode, and 1MHz RBW, VBW 3MHz.

13.4. TEST RESULT

Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

30MHz \sim 1GHz:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel are chosen as representative in below:

H:

No	. Freq.	Reading_Level (dBuV)		Correct Factor		Measurement (dBuV/m)		Limit (dBuV/m)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F Comment	
1	101.1333	6.77			15.85	22.62			43.50		-20.88		Р	
2	282.2000	8.91			15.52	24.43			46.00		-21.57		Р	
3	414.7667	8.20			18.53	26.73			46.00		-19.27		Р	
4	539.2500	8.07			20.00	28.07			46.00		-17.93		Р	
5	767.2000	7.54			24.40	31.94			46.00		-14.06		Р	

Page 26 of 38

No	Reading_Level o. Freq. (dBuV)		evel	Correct Factor	Measurement (dBuV/m)		Limit (dBuV/m)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F Comment
1	42.9333	6.89			15.01	21.90			40.00		-18.10		Р
2	97.9000	6.08			15.59	21.67			43.50		-21.83		Р
3	510.1500	7.76			19.88	27.64			46.00		-18.36		Р
4	799.5333	9.63			25.11	34.74			46.00		-11.26		Р

Report No. : EESZG07160009-2 Page 27 of 38

Above 1GHz:

Test Results-(Measurement Distance: 3m) Channel low 2402MHz GFSK mode:

Frequency (MHz)	· · · I DVDI Facto		Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	35.67	1.99	37.66	74	PK	Н	Р
2400.0	48.10	2.01	50.11	74	PK	Н	Р
2402.0*	96.72	2.01	98.73		PK	Н	Р
4804.0	44.73	6.13	50.86	74	PK	Н	Р
7206.0	50.48	11.6	62.08	74	PK	Н	Р
7206.0	38.73	11.6	50.33	54	AV	H	Р
2390.0	33.12	1.99	35.11	74	PK	V	Р
2400.0	48.71	2.01	50.72	74	PK	V	Р
2402.0*	95.12	2.01	97.13		PK	V	Р
4804.0	43.23	6.13	49.36	74	PK	V	Р
7206.0	53.15	11.6	64.75	74	PK	V	Р
7206.0	39.67	11.6	51.27	54	AV	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m) Channel middle 2440MHz GFSK mode:

Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Factor Measurement Limit Limit		Detector Type	Antenna (H/V)	Result (P/F)
2440.0*	92.07	2.11	94.18		PK	Н	Р
4880.0	43.68	6.18	49.86	74	PK	Н	P
7320.0	50.21	11.9	62.11	74	PK	Н	Р
7320.0	38.31	11.9	50.21	54	AV	Н	Р
2440.0*	86.22	2.11	88.33	-	PK	V	Р
4880.0	45.33	6.18	51.51	74	PK	V	Р
7320.0	53.73	11.9	65.63	74	PK	V	Р
7320.0	38.14	11.9	50.04	54	AV	V	Р

^{*:} fundamental frequency

Report No. : EESZG07160009-2 Page 28 of 38

Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2480.0*	89.42	2.18	91.60		PK	Н	Р
2483.5	43.15	2.18	45.33	74	PK	Н	Р
4960.0	43.83	6.21	50.04	74	PK	Н	Р
7440.0	50.51	12.3	62.81	74	PK	Н	Р
7440.0	38.79	12.3	51.09	54	AV	Н	Р
2480.0*	87.97	2.18	90.15		PK	V	Р
2483.5	43.80	2.18	45.98	74	PK	V	Р
4960.0	43.81	6.21	50.02	74	PK	V	Р
7440.0	49.15	12.3	61.45	74	PK	V	Р
7440.0	38.68	12.3	50.98	54	AV	V	Р

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.

14. AC CONDUCTED EMISSION TEST

14.1. LIMITS

Limits for Class B digital devices

Frequency range	Limits dB()	ıV)
(MHz)	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

14.2. BLOCK DIAGRAM OF TEST SETUP

14.3. PROCEDURE OF CONDUCTED EMISSION TEST

- a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

14.4. GRAPHS AND DATA

Product: Bluetooth Speaker Model/Type reference: PS039BKG

Power: DC 5VTemperature: 23° CMode: Keeping TXHumidity: 52%

L:

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1620	39.88		32.95	9.76	49.64		42.71	65.36	55.36	-15.72	-12.65	Р	
2	0.3460	33.21		31.66	9.80	43.01		41.46	59.06	49.06	-16.05	-7.60	Р	
3	0.6980	29.90		24.63	9.80	39.70		34.43	56.00	46.00	-16.30	-11.57	Р	
4	1.2260	29.11		23.12	9.82	38.93		32.94	56.00	46.00	-17.07	-13.06	Р	
5	2.0620	29.06		21.57	9.90	38.96		31.47	56.00	46.00	-17.04	-14.53	Р	
6	6.5100	38.41		30.44	10.00	48.41		40.44	60.00	50.00	-11.59	-9.56	Р	

Page 31 of 38

N:

No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	42.27		33.91	9.75	52.02		43.66	65.78	55.78	-13.76	-12.12	Р	
2	0.3460	33.52		29.56	9.80	43.32		39.36	59.06	49.06	-15.74	-9.70	Р	
3	0.7580	29.72		24.49	9.80	39.52		34.29	56.00	46.00	-16.48	-11.71	Р	
4	1.1980	28.74		24.95	9.82	38.56		34.77	56.00	46.00	-17.44	-11.23	Р	
5	6.4460	31.31		25.65	10.00	41.31		35.65	60.00	50.00	-18.69	-14.35	Р	

Report No. : EESZG07160009-2 Page 32 of 38

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF RADIATED EMISSION (30MHz-1GHz)

TEST SETUP OF RADIATED EMISSION (above 1GHz)

TEST SETUP OF CONDUCTED EMISSION

Hotline 400-6788-333

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT

External View of product-1

External View of product-2

Page 35 of 38

APPENDIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT

Internal View of product-1

Internal View of product-2

Internal View of product-3

Internal View of product-4

CENTRE TESTING INTERNATIONAL CORPORATION

Cil

Report No.: EESZG07160009-2

Internal View of product-5

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

