SURDS & INDICES

- KOUSTAV

CONCEPT

1. Laws of Indices:

i.
$$a^m (x) = a^m + n$$

ii.
$$\frac{a^m}{a^n} = a^{m-n}$$

iii.
$$(a^m)^n = a^{mn}$$

iv.
$$(ab)^n = a^n b^n$$

$$V.\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

vi.
$$a^0 = 1$$

2. Surds:

Let a be rational number and n be a positive integer such that $a^{(1/n)} = \sqrt[n]{a}$ Then, $\sqrt[n]{a}$ is called a surd of order n.

3. Laws of Surds:

i.
$$\sqrt[n]{a} = a^{(1/n)}$$

iii.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

iv.
$$(\sqrt[n]{a})^n = a$$

vi.
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

1.
$$(17)^{3.5} \times (17)^{?} = 17^{8}$$

- A. 2.29
- **B.** 2.75
- C. 4.25

$$3.5 + x = 8$$

 $x = 8 - 3.5$
 $= 4.5$

2. If
$$\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$$
, then the value of x is:

2. If
$$\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$$
, then the value of x is:

A. $\frac{1}{2}$

3. Given that $10^{0.48} = x$, $10^{0.70} = y$ and $x^z = y^2$, then the value of z is close to:

- **A.** 1.45
- **B.** 1.88
- 2.9
 - **D.** 3.7

- 0.48z 0.7x2
- $Z = \frac{1.4}{0.48} \sim 2.9$

4. If $5^a = 3125$, then the value of $5^{(a-3)}$ is:

- **A**. 25
 - **B.** 125
 - C. 625
 - D. 1625

- a = 5
- $5^{5\cdot3} = 5^2 = 25$

5. If $3^{(x-y)} = 27$ and $3^{(x+y)} = 243$, then x is equal to:

- A. 0
- y-y=3
- **B**. 2
- **C**. 4
 - **D**. 6

- x+y=5
 - 2x = 8

6.
$$(256)^{0.16} \times (256)^{0.09} = ?$$

- **A.** 4
 - **B**. 16
 - C. 64
 - D. 256.25

$$256 = 256$$

$$2 \times \frac{1}{4} = 2^{2} = 4$$

- 7. The value of $[(10)^{150} \div (10)^{146}]$
 - A. 1000
 - B. 10000
 - C. 100000
 - D. 10⁶

8.
$$\frac{1}{1 + x^{(b-a)} + x^{(c-a)}} + \frac{1}{1 + x^{(a-b)} + x^{(c-b)}} + \frac{1}{1 + x^{(b-c)} + x^{(a-c)}} = ?$$
A. 0
$$\frac{1}{1 + x b} + \frac{x^{c}}{x^{a}} = \frac{1}{x^{a} + x^{b} + x^{c}}$$
C.
$$x^{a-b-c}$$
D. None of these

9.
$$(25)^{7.5} \times (5)^{2.5} \div (125)^{1.5} = 5$$
?

- **A.** 8.5
- **ड**. 13
 - C. 16
 - D. 17.5
 - E. None of these

$$5^{2\times7.5}\times5^{2.5}\times5^{3\times1.5}$$
 $5^{15+2.5-4.5}$
 5^{13}

10.
$$(0.04)^{-1.5} = ?$$

- A. 25
- **6**. 125
 - C. 250
 - D. 625

$$\left(\frac{4}{100}\right)^{\frac{3}{2}} = \left(\frac{100}{4}\right)^{\frac{3}{2}}$$

$$= 25^{\frac{3}{2}} = 5^{\frac{3}{2}} = 125$$

11.
$$\frac{(243)^{n/5} \times 3^{2n+1}}{9^n \times 3^{n-1}} = ?$$

- A. 1
- B. 2
- C. 9
- D. 3ⁿ

12.
$$\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = ?$$

- A. 0
- B. $\frac{1}{2}$
- C. 1
- D. a^{m+n}

13. If m and n are whole numbers such that $m^n = 121$, the value of $(m - 1)^{n+1}$ is:

- A. 1
- **B**. 10
- C. 121
- D. 1000

14.
$$\left(\frac{x^b}{x^c}\right)^{(b+c-a)} \cdot \left(\frac{x^c}{x^a}\right)^{(c+a-b)} \cdot \left(\frac{x^a}{x^b}\right)^{(a+b-c)} = ?$$

- A. xabc
- B. 1
- C. X ab + bc + ca
- D. xa+b+c

ANSWER KEY

QUESTION	ANSWER	QUESTION	ANSWER
I	D	8	В
2	C	9	В
3	С	10	В
4	Α	П	С
5	C	12	C
6	Α	13	D
7	В	14	В

