Supervisior: Marton Havasi Lectures 1-3 08/11/2018

Core questions (everyone is expected to solve these)

- 1. Prove or disprove the following statements. Clear, step-by-step proofs are expected.
 - Suppose n is a natural number larger than 2, and n is not a prime number. Then 2n+13 is not a prime number.
 - If $x^2 + y = 13$ and $y \neq 4$ then $x \neq 3$.
 - For an integer n, n^2 is even if and only if n is even.
 - For all real numbers x and y there is a real number z such that x + z = y z.
 - For all integers x and y there is an integer z such that x + z = y z.
 - For all integers m and n, if mn is even, then either m is even or n is even.
 - $10|1526^{19} + 2^{58}$
- 2. Find all p prime numbers, such that $\frac{p^2-1}{p-1}$ is also prime.
- 3. Find all natural numbers n, such that $n^3 27$ is a prime.
- 4. Let P(m) be a statement for m ranging over the natural numbers, and consider the derived statement

$$P^{\#}(m) = (\forall \text{ natural number } k : 0 \le k \le m \implies P(k))$$

again for m ranging over the natural numbers.

- Show that for all natural numbers $l, P^{\#}(l) \implies P(l)$
- Prove by exhibiting a counter-example that $P(n) \implies P^{\#}(n)$ does not hold.
- Prove or disprove:
 - $-P^{\#}(0) \iff P(0)$
 - $\forall \text{ natural number } n.(P^{\#}(n) \implies P^{\#}(n+1)) \iff (P^{\#}(n) \implies P(n+1))$
 - $(\forall \text{ natural number } m.P^{\#}(m)) \iff (\forall \text{ natural number } m.P(m))$
- 5. Prove that for all integers d, k, l, m, n,
 - $d|m \wedge d|n \implies d|(m+n)$
 - $\bullet \ d|m \implies d|km$
 - $d|m \wedge d|n \implies d|(km + ln)$

Tryhard questions (do them if you can)

- 1. Prove that there are infinitely many natural numbers n, such that 4n + 3 is prime.
- 2. (Hard) Is it true that if p is a prime number, and k is an integer $2 \le k \le p$, then the sum of the products of each k-element subset of $\{1, 2, ..., p\}$ will be divisible by p?