Stable Matching with Proportionality Constraints

Thành Nguyen and Rakesh Vohra

Presented by Shaily Mishra

Bipartite Matching

- Single capacity
- Gale shapely algorithm
- Always exists
- Match $\mu := \{(h1,d1), (h2,d2)\}$
- Blocking pair pair (h,d) that prefer each other over assigned match $\boldsymbol{\mu}$
- Stable Matching no blocking pair

d2

h1

h2

d1: h1 > h2

Preferences:

h2: h1 > h2

h1: d1 > d2

h2: d1 > d2

Bipartite Matching

- x(h,d) is 1 if h and d are assigned to each other
- Equations:
 - $x(h1,d1) + x(h2,d1) \le 1$
 - $x(h1,d2) + x(h2,d2) \le 1$
 - $x(h1,d1) + x(h1,d2) \le 1$
 - $x(h2,d1) + x(h2,d2) \le 1$

1	0	1	0
0	1	0	1
1	1	0	0
0	0	1	1

$$x(h1,d1)$$
 $x(h1,d2)$
 $x(h2,d1)$
 $x(h2,d2)$

 $Ax \le b$

- $A = m \times n$ nonnegative matrix and $b \in \mathbb{R}^{m_+}$ with b>> 0
- $P = \{x \in \mathbb{R}^{n}_{+} : Ax \le b\}$ Each row $i \in [m]$ of A has a strict order \succ_i over the columns $\{j : a_{ij} > 0\}$
- A vector $x \in P$ **dominates** column r if there exists a row i such that.
- 1) $a_{ir} > 0$, $\sum_{j} a_{ij} x_{j} = b_{i}$ and 2) $k \ge r$ for all $k \in [n]$ such that $a_{ik} > 0$ AND $x_{k} > 0$

Scarf Lemma: P has an extreme point that dominates every column of A

Apply scarf's lemma on bipartite

Column

$$h1: d1 > d2$$

 $h2: d1 > d2$

$x=(1,0,0,1)^T$
is dominating

Column	ROW	Cona - 1	Cona - 2	Cona - 3	Dominates
r=1	i=1	a[11] = 1	1+0+0+0=1	k ∈ {1} 1 ≽ 1	Υ
r=2	i=1	a[12] = 0			
	i=2	a[22] = 0	0+1+0+0=1	$k \in \{2\}$ $2 \geqslant 2$	Υ
r=3	i=1	a[13]=1	1+0+0+0=1	$k \in \{1\}$ $1 \geqslant 3$	Υ
r=4	i=1	a[14]=0			
	i=2	a[24]=1	0+1+0+0=1	$k \in \{2\}$ $2 \geqslant 4$	Υ

 $x=(0,1,1,0)^T$ is not dominating

Column	Row	Cond - 1	Cond - 2	Cond - 3	Dominates
r=1	i=1	a[11] = 1	0+0+1+0=1	k ∈ {3} 1 ≽ 3	N
	i=2	a[21] = 0			N
	i=3	a[31] = 1	0+1+0+0=1	k ∈ {2} 1 ≽ 2	Ν
	i=4	a[13]=0			N

Ordinal Matching

Finding a matching that is not dominated by any other Gale Shapely (immediate rejection) for bipartite graph (single match)

Extending – matching many doctors to a hospital, immediate rejection method will not revisit doctors in round k+1 that got rejected in round k, need to define choice function accordingly

Choice_h (.): $2^D \rightarrow 2^D$, each hospital's h preferences over subsets of D respects \succ_h as well as side constraints μ is coalitional stable if for every set of doctors D* who prefer h to their current match, Choice_h(μ (h) U D*) = μ (h)

Scarf's lemma does not constrain us in this way

Matching with proportionality constraints

d1

Preference: h1>h2

d2

Preference: h1>h2

h1

Preference: d1>d2

 $K_{h1} = 2$

Groups: {1,2}

 $D^{h1}_1 = \{d1\}$

 $D^{h1}_2 = \{d2\}$

>=33.33% from D^{h1}_{1}

 $\alpha^{h1}_{1} = 1/3$

 $\alpha^{h1}_2 = 0$

h2

Preference: d1>d2

 $K_{h2} = 2$

Groups: {1,2}

 $D^{h2}_1 = \{d1, d2\}$

 $\alpha^{h2}_{1} = 0$

Stable Match μ :

 $\{(h1,d1), (h1,d2)\}$

 $\mu(h1) = \{d1,d2\}$

 $\mu(h1) = \{\emptyset\}$

 $\mu(d1)=1$

 $\mu(d2)=1$

Bilateral Stability

Feasible matching - satisfies capacity and proportionality constraints

A feasible matching is bilaterally stable if

- Each hospital with a non empty waitlist is at its effective capacity
- If da is on the waitlist of h, dr \in μ (h) and da > dr, then dr is protected and da and dr are not of the same type

Wait listed Doctors - when d and h are mutually acceptable. If D^h_t does not contain any wait listed doctors, h cannot increase the #admitted doctors of type t as they have already matched to more preferred.

Effective Capacity
$$k_h^{\mu} := \min\{k_h, \min_{t \in T_0} \frac{1}{\alpha_t^h} | \mu(h) \cap D_t^h| \}, \text{ and if } T_0 = \emptyset \text{ or } \alpha_t^h = 0, \text{ then } k_h^{\mu} \coloneqq k_h$$

Protected Type of doctors $|\mu(h) \cap D_t^h| = \alpha_t^h \cdot k_h^\mu$

Bilateral Stability and Coalitional Stability

If μ is bilateral stable matching, then μ is also coalitional stable

(Maximal) Given a feasible matching that is coalitional stable, there is no other feasible matching that assigns more doctors to hospitals such that no doctor is worse off

A stable matching need not exist

- Doctors are divisible (fractional matching)
- Rounding the fractional solution

Fractional Stable Matching

•
$$x(h1,d1) + x(h2,d1) \le 1$$

•
$$x(h1,d2) + x(h2,d2) \le 1$$

•
$$x(h1,d1) + x(h1,d2) \le 2$$

•
$$x(h2,d1) + x(h2,d2) \le 2$$

•
$$\frac{1}{3}[x(h1,d1) + x(h1,d2)] \le x(h1,d1)$$

•
$$0[x(h1,d1) + x(h1,d2)] \le x(h1,d2)$$

•
$$0[x(h2,d1) + x(h2,d2)] \le x(h2,d1) + x(h2,d2)$$

Cannot apply scarf's lemma directly

$$\begin{array}{c|c}
 x(h1,d1) & 0 \\
 x(h1,d2) & \geq 0 \\
 x(h2,d1) & > 0
 \end{array}$$
 $x(h2,d2) & > 0$

To apply Scarf's Lemma

$$\{x \in \mathbb{R}^n_+ | \mathcal{M}x \ge 0\}$$
 \longrightarrow $\{\mathcal{V}z|z \ge 0\}$ Generator of Cone, non negative

$$Q = \{z \ge 0 : \mathcal{AV}z \le b\} \qquad x^* = \mathcal{V}z^*$$

Generator of Cone

For each hospital h, we will have at most $T_h \prod_t |D_t^h|$ generators

For h1,
$$T_{h1} = 2$$
, $|D_1^{h1}| = 1$, $|D_2^{h1}| = 1$, total 2 generators

For each hospital h, select each doctor from D_t^h and for each doctor, select a extreme point

- (a) Choose an index $t^* \in \{1, \ldots, T_h\}$ and and set $v(d_{t^*}, h) = 1 \sum_{t \neq t^*} \alpha_t^h \ge \alpha_{t^*}^h$.
- (b) For all $t \neq t^*$, set $v(d_t, h) = \alpha_t^h$.

For h1:

- Choosing d1 from D₁^{h1} and d2 from D₂^{h1}
- $t^* \in \{1,2\}$
- $t^* = 1$, $v(d2,h1) = \alpha^{h1} = 0$, v(d1,h1) = 1-0 = 1
- $t^* = 2$, $v(d1,h1) = \alpha^{h1} = 1/3$, v(d1,h1) = 1-1/3 = 2/3
- $V_{h1} = \{(1,0), (1/3, 2/3)\} = \{v1, v2\}$
- v1 means with probability 1, assigns d1 to h1

For h2:

- Choosing d1 from D₁h2
- $t^* \in \{1\}$
- $t^* = 1$, v(d1,h1) = 1
- Replicate the same for all doctors in this type
- $V_{h2} = \{(1,0), (0, 1)\} = \{v3, v4\}$
- v3 means with probability 1, assigns d1 to h2

V (generator matrix) is union of all generators

$$V = \begin{bmatrix} 1 & 1/3 & 0 & 0 \\ 0 & 2/3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$AV = \begin{bmatrix} 1 & 1/3 & 1 & 0 \\ 0 & 2/3 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad Q = \{z \ge 0 : \mathcal{AV}z \le b\} \qquad x^* = \mathcal{V}z^*$$

$$Q = \{z \ge 0 : \mathcal{AV}z \le b\} \qquad x^* = \mathcal{V}z^*$$

Rules for strict ordering

For hospital h, v and $v' \in V_h$, if d1 is lowest ranked doctor in v, and d1' is of v' (positive probability)

- If d > d' for h, v > v'
- -If d = d', compare v(d1,h) and v'(d1,h)
 - -If v(d1,h) > v'(d1,h), v > v'
 - -If v(d1,h) = v'(d1,h), move to next lowest ranked doctors

For h1, d1 is lowest in both v1 with 1 prob and v2, d2 is lowest with 1/3 prob,

As
$$d1 > d2$$
, $v1 > v2$

For h2, similar argument, v3>v4 as d1>d2

Rules for strict ordering

For each d, $v \in V$,

- $v > v^{\prime}$, if d is assigned to higher ranked hospital in v than in v^{\prime}
- If $v, v' \in V_h$ (assigned to same hospital)
 - -v(d,h) > v'(d',h), v' > v(lower prob better)
 - -v(d,h) = v'(d',h), order in the same way h would have

For d1, v2 > v1 > v3

For d2, v2 > v4

Apply scarf's lemma

					1			
1	1/3	1	0	z1		1	col2 > col1>col3	
0	2/3	0	1	z2		1	col2 > col4	$z=(1/2,3/2,0,0)^T$
1	1	0	0	z3		2	col1 > col2	x = Vz $V = (1, 1, 0, 0) T$
0	0	1	1	z4		2	col3 > col4	$X = (1,1,0,0)^{T}$

Column	Row	Cond - 1	Cond - 2	Cond - 3	Dominates
r=1	i=1	a[11] = 1	1/2+1/2+0+0=1	$k \in \{1,2\}$ 2 \ge 1,1 \ge 1	Υ
r=2	i=1	a[12] = 1/3	1/2+1/2+0+0=1	k ∈ {1,2} 2 ≽ 1	N
	i=2	a[22] = 2/3	0+1+0+0=1	$k \in \{2\}$ $2 \geqslant 2$	Υ
r=3	i=1	a[13]=1	1/2+1/2+0+0=1	$k \in \{1,2\}$ 1 \(\geq 3, 2 \(\geq 3 \)	Υ
r=4	i=1	a[14]=0			N
	i=2	a[24]=1	0+1+0+0=1	$k \in \{2\}$ $2 \geqslant 4$	Υ

Column	Row	Cond - 1	Cond - 2	Cond - 3	Dominates
r=1	i=1	a[11] = 1	1+0+0+0=1	k ∈ {1} 1 ≽ 1	Υ
r=2	i=1	a[12] = 1/3	1+0+0+0=1	$k \in \{1\}$ $2 \geqslant 1$	N
	i=2	a[22] = 2/3	0+0+0+1=1	$k \in \{4\}$ $2 \geqslant 4$	N
	i=3	a[13]=1	1+0+0+0 = 2		N
	i=4	a[14]=0			N

$z=(1,0,0,1)^T$
x = Vz
$X = (1,0,0,1)^{T}$
Not stable

Rounding fractional solution

- Capacities at the hospitals are not violated
- number of doctors for each type is rounded either up or down to the closest integral number
- And modify alphas

Summary

- Proportionality constraints: only lower bounds, both lower and upper bounds
- Stable matchings need not exists
- Fractional matchings always exists and is stable
- Violation of proportionality constraints at school h : $O(\frac{1}{\# accepted \ students})$
- Stable matching is maximal