fitToAll

Zongyan Wang March 28, 2016

Read data and packages

```
# Upload packages for data clean and analysis
require(plyr) #data clean
## Loading required package: plyr
require(dplyr) #data clean
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
require(tidyr) #data clean
## Loading required package: tidyr
require(reshape2) # data clean
## Loading required package: reshape2
require(ggplot2) # visualzation
## Loading required package: ggplot2
```

```
require(XML)
             # web scriping
## Loading required package: XML
require(testthat) #test model
## Loading required package: testthat
require(kernlab) # kernel and SVM
## Loading required package: kernlab
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
##
       alpha
require(datasets) # State data
require(caret) # Cross - Validation k fold
## Loading required package: caret
## Loading required package: lattice
require(RCurl) # load the website link
## Loading required package: RCurl
## Loading required package: bitops
## Attaching package: 'RCurl'
## The following object is masked from 'package:tidyr':
##
##
       complete
require(maps) # heatmap: map_data
## Loading required package: maps
##
## # maps v3.1: updated 'world': all lakes moved to separate new #
## # 'lakes' database. Type '?world' or 'news(package="maps")'. #
```

```
##
## Attaching package: 'maps'

## The following object is masked from 'package:plyr':
##
## ozone

require(ggmap) # for heatmap

## Loading required package: ggmap

require(gridExtra)

## Loading required package: gridExtra

##
## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
##
## combine
```

Read file

```
# Read Data and function files
LC <- read.csv(file.choose(), header = T) #Please read LC_biz_all.csv
source("clean_f2.R") # functions for cleaning the data
source("plot_f2.R") # functions for plot(heatmap)
source("analysis_f2.R") # functions for plot and data analysis</pre>
```

Data clean

```
lc <- perToN(LC) # transfer percentage to numeric
lc <- replaceBlank_all(lc) # replace the blank
# Transform earliest_cr_line, issue_d, last_pymnt_d from str to numeric
lc <- lc %>% dateToNum(., "earliest_cr_line") %>%
    dateToNum(., "issue_d") %>% dateToNum(., "last_pymnt_d")
lc <- lc %>% select(-id, -emp_title,-zip_code)
```

Data Summary

```
n.factor_all(lc)
```

```
## term emp_length home_ownership verification_status loan_status purpose
## 1 2 12 3 7 1
## addr_state next_pymnt_d last_credit_pull_d
## 1 48 4 24
```

hasNA_all(lc)

```
##
        mths_since_last_delinq
                                      mths_since_last_record
##
                                                         4302
                           2421
##
                                                 last_pymnt_d
                     revol_util
##
                                                           11
##
   mths_since_last_major_derog
                                                      bc_util
##
                           3674
                                                           77
##
          mths_since_recent_bc
                                    mths_since_recent_bc_dlq
##
                             68
                                                         3932
##
                                            num_tl_120dpd_2m
         mths_since_recent_inq
##
                            381
                                                          275
##
              percent_bc_gt_75
##
```

ANOVA

```
lc1 <- lc[, !(colnames(lc) %in% c(names(n.factor_all(lc))))]
lc1$loan_status <- lc$loan_status
lc1 <- lc1 %>% subset(!loan_status == "Current")
anova.p <- data.frame(var = names(anova(lc1)), p.value = anova(lc1))
anova.p_plot <- anova.p %>% subset(p.value < 0.05) %>%
    mutate(var = reorder(x = var, X = p.value, min)) %>%
    ggplot(aes(x = var, y = p.value, color = var)) +
    geom_point() +
    geom_hline(yintercept = 0.01, colour = "red", linetype = 3) +
        labs(x = "Variable", y = "p-value", title = "ANOVA p-value")
anova.p_plot
```


subset the data

```
lc2 <- lc[,c(var.names)]
lc2 <- lc2 %>% select(-purpose)
lc.categorical <- lc2[,names(n.factor_all(lc2))]
lc.categorical <- lc.categorical %>% select(-loan_status)
lc.numeric <- lc2[,!names(lc2) %in% names(n.factor_all(lc2))]
# Transform the categorical column to multiple numeric columns
categorical.list <- apply(lc.categorical, 2, function(x) model.matrix(~ x + 0))</pre>
```

Interested in the classification between Fully Paid and Potential Delinquency Events

```
lc3 <- as.data.frame(cbind(categorical.list, lc.numeric))
lc3$loan_status <- lc$loan_status
# Group the loan_status into 3 groups</pre>
```

```
lc3 <- lc3 %>% mutate(y = !(loan_status == "Current"))
lc3$y[lc3$loan_status == "Fully_Paid"] <- 2</pre>
1c3 <- 1c3 %>% select(-loan_status)
## Logistic Regression
lc4 <- lc3 %>% subset(y != 0)
lc4$y[lc4$y == 2] <- 0 # Fully Paid set to be zero, while potential delinquency events set to be 1
log.f <- logistic(lc4)</pre>
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
pred <- predict(log.f, lc4, type = "response")</pre>
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
# Compare the pred and true value
compare.data <- data.frame(pred = pred, true = lc4$y)</pre>
# in-sample prediction accuracy
# prediction accuracy when threshold = 0.5
pred1 = as.numeric(pred > 0.25)
1 - sum(pred1 == lc4$y, na.rm = T)/length(pred1)
## [1] 0.05228758
# Prediction and true status when threshold = 0.5 plot
pred_type_plot <- plot_pred_type_distribution(compare.data, 0.5)</pre>
print(pred_type_plot)
## Warning: Removed 30 rows containing non-finite values (stat_ydensity).
## Warning: Removed 30 rows containing missing values (geom_point).
```


Warning: Removed 30 rows containing non-finite values (stat_ydensity).

Warning: Removed 30 rows containing missing values (geom_point).

```
# roc, cost of FP = 1, cost of FN = 5
# Calculate the roc(FP: pred=1, true=0; FN:pred=0, true=1)
roc <- calculate_roc(compare.data, 1, 5, n = 100)
# Plot the roc, cost of FP = 1, cost of FN = 5
plot.roc <- plot_roc(roc, 0.5, 1, 5)</pre>
```



```
print(plot.roc)
```

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
cv_error
```

[1] 0.1391123

```
#Plot the significant value
significant_plot <- coeff_plot1(log.f, sig = T, 0.1)
print(significant_plot)</pre>
```



```
#Plot the coefficient value
coefficient_plot <- coeff_plot1(log.f, sig = F, 0.1)
print(coefficient_plot)</pre>
```

lized Parameter Estimated Value Plot

Interested in the classification between Current and Potential Delinquency Events

```
lc3 <- as.data.frame(cbind(categorical.list, lc.numeric))
lc3$loan_status <- lc$loan_status
# Group the loan_status into 3 groups
lc3 <- lc3 %>% mutate(y = !(loan_status == "Fully_Paid"))
lc3$y[lc3$loan_status == "Current"] <- 2
lc3 <- lc3 %>% select(-loan_status)

## Logistic Regression
lc4 <- lc3 %>% subset(y != 0)
lc4$y[lc4$y == 2] <- 0 # Fully Paid set to be zero, while potential delinquency events set to be 1
log.f <- logistic(lc4)

## Warning: glm.fit: algorithm did not converge

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

pred <- predict(log.f, lc4, type = "response")

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading</pre>
```

```
# Compare the pred and true value
compare.data <- data.frame(pred = pred, true = lc4$y)

# in-sample prediction accuracy
# prediction accuracy when threshold = 0.5
pred1 = as.numeric(pred > 0.5)
1 - sum(pred1 == lc4$y, na.rm = T)/length(pred1)
```

[1] 0.05796805

```
# Prediction and true status when threshold = 0.5 plot
pred_type_plot <- plot_pred_type_distribution(compare.data, 0.14)
print(pred_type_plot)</pre>
```

- ## Warning: Removed 88 rows containing non-finite values (stat_ydensity).
- ## Warning: Removed 88 rows containing missing values (geom_point).

Threshold at 0.14


```
ggsave(filename = "CD_pred_type_plot1.png", plot = pred_type_plot, path = ".",
    width = 10, height = 6, dpi = 400)
```

- ## Warning: Removed 88 rows containing non-finite values (stat_ydensity).
- ## Warning: Removed 88 rows containing missing values (geom_point).

```
# roc, cost of FP = 1, cost of FN = 5
# Calculate the roc(FP: pred=1,true=0; FN:pred=0, true=1)
roc <- calculate_roc(compare.data, 1, 5, n = 100)
# Plot the roc, cost of FP = 1, cost of FN = 5
plot.roc <- plot_roc(roc, 0.5, 1, 5)</pre>
```



```
print(plot.roc)
```

```
## TableGrob (1 x 2) "arrange": 2 grobs
           cells
##
    z
                    name
                                   grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
ggsave(filename = "CD_plot_roc1.png", plot = plot.roc, path = ".",
       width = 10, height = 6, dpi = 400)
# out-of-sample prediction accracy
cv_error <- cv_k(lc4, threshold = 0.14)</pre>
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

```
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

```
## Warning: glm.fit: algorithm did not converge

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading

## Warning: glm.fit: algorithm did not converge

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading

cv_error
```

[1] 0.06779937

```
#Plot the significant value
significant_plot <- coeff_plot1(log.f, sig = T, 0.1)
print(significant_plot)</pre>
```

	_	iaəi_oreuii_puii_u.x10-0ep	-	auui_siai6.xLA	_	auui_siaic.xi\i	_	emh_lendn
th.x<_1_year`	•	`last_credit_pull_d.x16-Feb`	•	addr_state.xMA	•	addr_state.xSC	•	emp_lengtł
th.x10+_years`	•	`next_pymnt_d.x16-Apr`	•	addr_state.xMD	•	addr_state.xSD	•	fico_range_
t_pull_d.x14-Aug`	•	`next_pymnt_d.x16-Feb`	•	addr_state.xME	•	addr_state.xTN	•	home_own
t_pull_d.x14-Dec`	•	addr_state.xAK	•	addr_state.xMI	•	addr_state.xTX	•	home_own
t_pull_d.x14-Jul`	•	addr_state.xAL	•	addr_state.xMN	•	addr_state.xUT	•	inq_last_6r
t_pull_d.x14-Jun`	•	addr_state.xAR	•	addr_state.xMO	•	addr_state.xVA	•	int_rate
t_pull_d.x14-Nov`	•	addr_state.xAZ	•	addr_state.xMS	•	addr_state.xVT	•	issue_d
t_pull_d.x14-Oct`	•	addr_state.xCA	•	addr_state.xMT	•	addr_state.xWA	•	last_pymnt
t_pull_d.x15-Apr`	•	addr_state.xCO	•	addr_state.xNC	•	addr_state.xWI	•	last_pymnt
t_pull_d.x15-Aug`	•	addr_state.xCT	•	addr_state.xNE	•	addr_state.xWV	•	mort_acc
t_pull_d.x15-Dec`	•	addr_state.xDC	•	addr_state.xNH	•	bc_util	•	next_pymn
t_pull_d.x15-Feb`	•	addr_state.xDE	•	addr_state.xNJ	•	dti	•	percent_bc
t_pull_d.x15-Jan`	•	addr_state.xFL	•	addr_state.xNM	•	emp_length.x1_year	•	revol_util
t_pull_d.x15-Jul`	•	addr_state.xGA	•	addr_state.xNV	•	emp_length.x2_years	•	tax_liens
t_pull_d.x15-Jun`	•	addr_state.xHI	•	addr_state.xNY	•	emp_length.x3_years	•	term.x_36_
t_pull_d.x15-Mar`	•	addr_state.xIL	•	addr_state.xOH	•	emp_length.x4_years	•	verification_
t_pull_d.x15-May`	•	addr_state.xIN	•	addr_state.xOK	•	emp_length.x5_years	•	verification_
t_pull_d.x15-Nov`	•	addr_state.xKS	•	addr_state.xOR	•	emp_length.x6_years		

#Plot the coefficient value coefficient_plot <- coeff_plot1(log.f, sig = F, 0.1) print(coefficient_plot)</pre>

D	_	ιτιγ_ιαοι_υπιπο	_	อเทษ_เธเเชแเ.xo_yธลเจ	•	auui_siaic.xvvi	•
Plot .x14-Oct	•	home_ownership.xOWN	•	`last_credit_pull_d.x16=Feb`	•	addr_state.xIL	•
.x14-Nov`	•	home_ownership.xMORTGAGE	•	addr_state.xMO	•	addr_state.xSC	•
.x15-Feb`	•	dti	•	addr_state.xNJ	•	addr_state.xRI	•
.x15–Apr`	•	`last_credit_pull_d.x15-Oct`	•	addr_state.xWA	•	addr_state.xMD	•
.x14–Jul`	•	addr_state.xNE		addr_state.xME		addr_state.xCA	•
.x14-Dec`	•	addr_state.xNM		addr_state.xMI		addr_state.xOH	•
.x14–Aug`	•	addr_state.xAK	•	addr_state.xVA	•	addr_state.xAR	•
.x15–Jun`	•	percent_bc_gt_75	•	addr_state.xLA	•	addr_state.xNV	•
.x15–Jan`	•	revol_util	•	addr_state.xKY	•	`next_pymnt_d.x16-Feb`	•
.x15-May`	•	tax_liens	•	addr_state.xNC	•	addr_state.xSD	•
.x15-Aug`	•	verification_status.xNot_Verified	•	addr_state.xAL	•	addr_state.xFL	•
;	•	fico_range_low	•	addr_state.xWV	•	addr_state.xMN	•
.x15–Jul`	•	addr_state.xOK	•	addr_state.xMS	•	addr_state.xUT	•
	•	`next_pymnt_d.x16-Apr`	•	addr_state.xCO	•	addr_state.xOR	•
.x15–Mar`	•	`last_credit_pull_d.x15=Nov`	•	bc_util	•	addr_state.xGA	•
	•	addr_state.xVT	•	addr_state.xKS	•	addr_state.xNY	•
.x15-Sep`	•	addr_state.xDC	•	`last_credit_pull_d.x14-Jun`	•	addr_state.xHI	•
	•	addr_state.xMT	•	addr_state.xAZ	•	addr_state.xCT	