IndoorGML - OGC Candidate Standard for Indoor Navigation

Nov. 6, 2012

Jiyeong Lee, University of Seoul, South Korea Ki-Joune Li, Pusan National University, South Korea

<Source: Google Earth 3D>

<Source: Google Earth 3D>

Background and Motivations

Some services of indoor spatial information

ISA 2012 Workshop

Prior work for indoor space

CityGML: LoD 4: Interior space

- KML
- others

CityGML

LOD 0 – Regional model

2.5D Digital Terrain Model

"block model" w/o roof structures

LOD 2 – City / Site model

textured, differenciated roof structures

LOD 3 – City / Site model

detailed architecture model

LOD 4 – Interior model

"walkable" architecture models

[source: Thomas H. Kolbe, March 21, 2008]

CityGML

What is missing in CityGML

Navigation ?? Symbolic Representation ?

For example, CityGML

- LoD 4 (Interior space)
 - How to compute the optimal path
 - navigation network

<Source: CityGML>

- Specification of location
 - "How many persons are in [(12.45, 43.23),(12.488, 43.27)]?" or
 - "How many persons are in room 422 of Building C-28?"
 - \Rightarrow

Symbolic notion of space

IndoorGML as complements

IndoorGML and Other Standards

CityGML+IndoorGML

2D Image + IndoorGML

Basic Components of IndoorGML

Space Model of IndoorGML

- Poincare Duality
 - Conversion from k D object $\rightarrow 3 k D$ objects

Space Model of IndoorGML - Example

Example: Wall and Door as Space Boundary

Topographic Space

Dual Space

Space Model of IndoorGML - Example

Symbolic space and topology

Symbolic Space:

- Location is identified by Symbolic Code of Cell (e.g. Room Number)
- Topology is mandatory
- Geometry is optional

Indoor Symbolic Space:

Represented by geometryc graph

```
G = (V, E)

V = \{ n \mid n = (c_{ID}, p, attr), c_{ID} : cell ID, p : representative point of <math>c_{ID} \}

E = \{ (n_s, n_e, attr) \mid attr : distance \}
```

Multiple-Layered Space Model

An given indoor space is interpreted for several purposes

Example – Multi-Layered Space

Example – Multi-Layered Space

Example – Multi-Layered Space

Example – Type of Positioning Sensor

- Point Sensor (or Coordinate Sensor)
 - Gives (x, y, z) coordinates
 - e.g. GPS, WPS
- Presence Sensor
 - Determines whether it is on a sensor coverage or not
 - e.g. RFID
- Indoor Map Matching
 - -F(p) = c (c is cellular number)
 - Mapping from (x, y, z) to cellular number

Inter-layer connection edges

Data Model of IndoorGML – Geometric Graph

IndoorGML - Core Module and Extensions

30

IndoorGML –Example of multi-layered model

CityGML and IndoorGML

Examples – Browsing indoor map

Examples – Browsing indoor map

Examples – Panoramic images and IndoorGML

Issues

- Node and Edge definition
- Space subdivision
- Extension for Robotics
- or for Ships, why not?

Space Subdivision – Another Example

Blocked Path
Escape Path

Examples – Avatar movement in indoor space

Examples – Avatar movement in indoor space

Issues – Space Subdivision

Issues – Space Subdivision

Issues – Space Subdivision

For More Natural Movements of Robots

Source: cruises.priceline.com

Source: ship illustration com

Source: ship-Illustration.com Nov. 6, 2012

ISA 2012 Workshop

Oasis of the Seas

Gross Tonnage: 220,000

Length: 1,184 feet

Beam: 154 feet

No. of Decks: 16

Hosts: up to 5,400 guests

Crews: 1,800

No. of Rooms: 2,700

• IMO requires the evacuation analysis

When the ship is damaged, flooding water changes the damage scenarios

[source: IndoorGML Workshop – http://stem.cs.pusan.ac.kr/indoorGMLWorkshop

Nov. 6, 2012 ISA 2012 Workshop

Milestones - 2012

Milestones - 2013

Harmonization with other standardization

1. ISO TC204 – WG 17, WG 3, and WG 8

Indoor navigation for personal and vehicle ITS station

- Part 1: General information and use cases definition
- Part 2: Requirements and specification for indoor map data format
- Part 3: Requirements and specification for indoor positioning reference data format
- Part 4: Personal/Vehicle and central ITS stations interface requirements and specification for indoor map and indoor positioning reference data
- New Working Item Proposal: Adopted on May 7, 2012, (ISO 17438-1)

Harmonization with other standardization

IEEE MDR (Map Data Representation for Robotics) WG

- WG Approved on Nov. 2011 by IEEE SA

Summary

IndoorGML

- A Candidate Standard for Indoor Navigation
- Basic Concepts
 - Symbolic Space and Geometric Graph (Topology)
 - Multi-Layered Space
- Planning to publish it in mid-2013

Two Strategies

- As simple as possible: Core Module and Application Modules
- As flexible as possible
 - To be used as a base standard of other fields and standards

References

- Nagel, Becker, Kaden, Li, Lee, Kolbe, "Requirements and space-eve nt modeling for indoor navigation," OCG 10- 191r1, 2010
- http://stem.cs.pusan.ac.kr/indoorGMLWorkshop

