GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs

Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao, Xiaowei Zhou, NeurIPS 2019 @ZJU-3DV

Background

- Keypoint Matching
 - Fundamental to many downstream tasks like SfM, Visual Localization, SLAM.

Background

- Failure cases under large transformation
 - Traditional methods heavily rely on detector

Convolution operator are only equivariant to translation of the input

- Can we learn a invariant descriptor with theoretical guarantees?
 - Rotation and Scaling

Extract Equivariance (Group) Feature

• Equivariance Definition

- Here
 - Geometric transformation results in permutation

Structure of Group Feature

- Invariance of Local Structure
 - If we sample lots of scales and rotations, we will get two feature maps which are almost the same except for the edge of scales.

Group-Conv to Extract Information

Vanilla Convolution

$$f^{(l+1)}(x) = \sum_{h \in H} f^{(l)}(x+h) W(h)$$

Group Convolution

$$f^{(l+1)}(g)=\sum_{h\in H}f^{(l)}(gh)W(h)$$
 regards to one point, looks like a cylinder $H=\{r,r^{-1},s,s^{-1},rs,rs^{-1},r^{-1}s,r^{-1}s^{-1},e\}$

• Vanilla convolution is also a group convolution which is defined on the translation group

After Multiple Group-Conv Layers

 We still get a feature map, but our goal is to get a single invariant feature vector

- Which pooling? Max/Average?
- Bilinear pooling
 - Second order statistics are more informative
 - Generalized form of previous descriptors

Refer to paper for more details!

Proposed Method

Results

a) Sparse Correspondence

b) Dense Correspondence

c) Systematical Analysis

code is available!

Thank You!

Zehong Shen @ ZJU-3DV, zhshen0917@gmail.com 12/17/2019