Supplementary Material of Towards Recommendation on Good Quality Data Science Solutions

Yawen Chen[†], Yile Chen[†], Jian Chen[†], Zeyi Wen[‡], Jin Huang[§]

†South China University of Technology, [‡]Hong Kong University of Science and Technology (Guangzhou),

§South China Normal University

{ywchenscut, jireh.x6}@gmail.com, ellachen@scut.edu.cn, wenzeyi@ust.hk, huangjin@m.scnu.edu.cn

I. Information of the Data sets in Each Benchmark

In this section, we provide additional details of the data sets regarding the 110-classifiers and openML benchmarks.

- The 110-classifiers benchmark includes 121 data sets, 4 of them are real-world data sets [1] about estimating the reproductive capacity of fish populations in fisheries, and the others are from UCI machine learning repository [2]. More details of the data sets can be found in Table 1 and Table 2 of the original study [3].
- The OpenML benchmark covers 956 data sets from various domains. These data sets contain multiple realworld problems such as medical image analysis, digit image identification, time series analysis, preference analysis and so on. The IDs of the 956 data sets collected on OpenML platform [4] are: 2-16, 18, 20, 22-32, 34-44, 46, 48-57, 59-62, 70-78, 115-144, 146-164, 171, 172, 179-188, 195, 210, 244-269, 271-279, 285, 293, 300, 307, 310-313, 316, 327-329, 333-340, 342, 343, 346, 350, 351, 354, 357, 373, 375, 377, 378, 381-401, 443, 444, 446, 448, 450-455, 457-459, 461-470, 472, 474-477, 479-481, 488, 554, 679, 682, 683, 685, 694, 713-780, 782-808, 810-821, 823- 855, 857-871, 873-882, 884-947, 949-1023, 1025, 1026, 1037-1042, 1044-1050, 1053-1057, 1059-1069, 1071, 1073, 1075, 1077-1088, 1100-1102, 1104, 1106, 1107, 1109-1117, 1119-1167, 1169, 1178-1183, 1185, 1186, 1205, 1209, 1211, 1212, 1214, 1218-1220, 1222, 1233, 1235-1238, 1240-1242, 1351-1410, 1413, 1441-1444, 1446, 1447, 1451-1453, 1455, 1457-1468, 1471-1473, 1475-1504, 1506-1520, 1523-1549, 1551-1560, 1562- 1569, 1590, 1596, 1597, 4134, 4135, 4153, 4154, 4329, 4340, 4534, 4538, 4552, 6332, 23380, 23381, 23499, 23512, 23517, 40474-40478, 40496-40499, 40514-40520, 40536, 40646-40648, 40650, 40660, 40663-40666, 40668-40671, 40677, 40678, 40680, 40681-40683, 40685-40687, 40690, 40691, 40693, 40700-40702, 40704-40711, 40713, 40714, 40900, 40910, 40923, 40926, 40927, 40966, 40971, 40975, 40978, 40979, 40981, 41168, 41169, 41496, 41526, 41671.

II. META-FEATURES USED FOR EACH BENCHMARKS

We categorize the meta-features used in the two benchmarks into the following groups.

- 1) general features: number of class, number of attributes and number of binary attributes, etc;
- statistical features: mean value of distinct attributes, the percentage of numeric features, etc;
- 3) information theory: Shannon's entropy, etc;
- 4) landmarking features: performance of naive Bayes, the performance of decision tree, etc;
- model-based features: depth of each node in a decision tree, etc;

Specifically, we utilize a total of 86 meta-features provided by the Pymfe library [5] for each data set in 110-classifiers benchmark. The 86 data meta-features are listed in Table III.

We use a set of 69 meta-features directly provided by the OpenML platform [4] to capture the characteristics of data sets in *OpenML* benchmark. The 69 data meta-features are presented in Table I.

III. Pre-processing Techniques and Algorithms in Each Benchmark

The 110-classifiers benchmark consists of 110 classifiers along with the pre-processing methods provided by the study [3]. Furthermore, the pre-processing techniques and algorithms included in openML benchmark are carefully collected from OpenML. We chose the pre-processing techniques and algorithms that have been trained on at least 10 data sets available on OpenML. This ensures that the benchmark includes well-established and widely-used techniques, providing a more comprehensive representation of the data science solution space. We summarize the pre-processing techniques adopted in the two benchmarks into the following categories.

- 1) imputation: conditional/simple imputer, etc.;
- 2) scaling: min-max scaler, standard scaler, etc.;
- 3) normalization: normalizing with L_1 or L_2 distance, etc.;
- 4) standardization: pre-process the feature to have zero mean and standard deviation one, etc.;
- 5) encoding: one-hot encoder, ordinal encoder, etc.;
- 6) feature selection: variance threshold, etc.;
- 7) feature converting: convert the nominal inputs to numeric values using a simple quantization, etc.;

The algorithms contained in these benchmarks can be organized into multiple categories as follows.

- 1) decision tress: C5.0, CART, etc.;
- 2) discriminant analysis: linear discriminant analysis (LDA), high-dimensional discriminant analysis, etc.;
- 3) ensemble (bagging): bagging ensemble of LDAs, bagging ensemble of multilayer perceptrons (MLPs), etc.;
- 4) ensemble (boosting): gradient boosting decision tree (GBDT), eXtreme gradient boosting (XGBoost), etc.;
- 5) ensemble (forest): parallel random forest, rotation forest, etc.;
- 6) ensemble (others): ensemble of SMOs, ensemble of zero rule base classifiers, etc.;
- 7) general linear/rule model: decision table, multi-log linear model, one rule, zero rule, conjunctive rule, etc.;
- 8) Bayesian approaches: naive Bayes (NB), Bayesian network, variational Bayesian multinomial probit regression with Gaussian process priors, etc.;
- 9) nearest neighbors: *k*-nearest neighbors (*k*-NN), NN classifier with non-nested generalized exemplars, etc.;
- 10) neural networks: MLP, rbf net, etc.;
- 11) SVMs: kernel SVMs, linear SVMs, etc;
- 12) other methods: partition around medoids, classification via regression, etc.

The complete list of the algorithms used in 110-classifiers benchmark is shown in Table II. The IDs of the flows from the OpenML platform which serve as the solutions in this benchmark are: 56-60, 61, 62, 64-67, 70, 72, 74-87, 90-99, 101, 103, 105, 106, 108, 121, 124, 126, 130, 131, 133, 139, 144, 148, 150, 151, 156, 180, 182-184, 193, 198, 199, 204, 206, 208, 209, 212, 213, 364, 365, 375, 376, 378, 380, 384, 385, 387, 389-394, 396-398, 404-407, 411, 413, 417-420, 422, 423, 441, 471, 482, 506, 522-524, 527-535, 563, 582-585, 589, 591-593, 595-599, 611, 613, 615, 616, 622, 675, 677, 708, 710, 1068-1071, 1073-1080, 1082, 1084, 1087-1091, 1094-1096, 1098-1101, 1103-1106, 1108, 1111, 1112, 1114-1117, 1120, 1122-1125, 1127, 1129, 1130, 1132, 1133, 1135-1138, 1143, 1145, 1148, 1154, 1155, 1160, 1163, 1165, 1166, 1168, 1172, 1174, 1177-1180, 1182, 1183, 1185-1188, 1190-1197, 1199, 1200, 1244, 1349, 1350, 1716, 1718-1721, 1724-1730, 1745, 1750, 1789, 1805, 1817-1823, 1880, 1944, 1965, 1970, 2010, 2032, 2034, 2048, 2054, 2058, 2070, 2072, 2074, 2094, 2096, 2136, 2140, 2151, 2183, 2228, 2230, 2236,

2238, 2242-2245, 2247, 2250, 2254-2259, 2261-2270, 2272, 2277, 2278, 2283, 2291-2324, 2326-2328, 2330-2338, 2390-2393, 2408-2411, 2459, 2517, 2539, 2540, 2553-2555, 2560, 2561, 2563, 2565-2588, 2590-2599, 2601-2608, 2687-2690, 2697-2699, 2722, 2724, 2726, 2728, 2749-2751, 2753, 2754, 2762, 2763, 2775, 2777-2779, 2791, 2793, 3284, 3287, 3326, 3332, 3353, 3354, 3357-3364, 3416, 3418-3421, 3448, 3456-3461, 3463-3467, 3469-3481, 3548, 3554, 3558, 3564, 3568-3571, 3903, 3905, 3910, 3914, 3916, 3918, 3920, 3932, 3934, 3935, 3939, 3947, 3949, 3951, 3957, 3960, 3963, 3971, 3985, 4002, 4006, 4016, 4019, 4024, 4027, 4028, 4030, 4283, 4289, 4295, 4326, 4693, 4793, 4798-4812, 4814, 4821, 4822, 4825-4827, 4829, 4830, 4833-4835, 5434, 5528, 5531, 5533-5539, 5541, 5546, 5548, 5551, 5552, 5706, 5707, 5710, 5711, 5713-5715, 5721, 5724, 5725, 5728, 5909, 5910, 5978, 6023, 6840, 6946, 6952, 6969, 6970, 7026, 7089, 7096, 7116, 7122, 7170, 7694, 7707, 7722, 7725, 7729, 7754, 7756, 7777, 7778, 7781, 7782, 7784, 7786, 7787, 7789-7794, 7798-7801, 7835, 7836, 7838-7840, 7842-7845, 7847, 7849, 7850, 8299, 8308, 8309, 8311, 8312, 8315, 8317, 8330, 8351, 8353, 8365, 8399, 8455, 8456, 8673, 8690, 8692, 8693, 8695, 8774, 8786, 8788, 8789, 8793, 8795-8797, 8815, 8817, 8834, 8844, 8885, 8890, 8908, 8918, 9666, 9767, 12736, 12738, 13013, 13293, 13295, 15083, 16345, 16360, 17311, 17369, 17371, 17373, 17374, 17401, 17411, 17413, 17419, 17420, 17429, 17431, 17433, 17434, 17436, 17438, 17440, 17442, 17444, 17475, 17476, 17488, 17640, 17642, 18594.

REFERENCES

- [1] E. González-Rufino, P. Carrión, E. Cernadas, M. Fernández-Delgado, and R. Domínguez-Petit, "Exhaustive comparison of colour texture features and classification methods to discriminate cells categories in histological images of fish ovary," *Pattern Recognition*, vol. 46, no. 9, pp. 2391–2407, 2013.
- [2] M. Kelly, R. Longjohn, and K. Nottingham, "The UCI Machine Learning Repository." [Online]. Available: https://archive.ics.uci.edu
- [3] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?" *The Journal of Machine Learning Research (JMLR)*, vol. 15, no. 1, pp. 3133–3181, 2014.
- [4] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo, "Openml: networked science in machine learning," ACM SIGKDD Explorations Newsletter, vol. 15, no. 2, pp. 49–60, 2014.
- [5] E. Alcobaça, F. Siqueira, A. Rivolli, L. P. F. Garcia, J. T. Oliva, A. C. de Carvalho et al., "Mfe: Towards reproducible meta-feature extraction." The Journal of Machine Learning Research (JMLR), vol. 21, pp. 111–1, 2020.

TABLE I: 69 meta-features for the data sets in OpenML.

feature name	description
	general features
dimensionality	the dimension of figure dataset.
numberOfBinaryFeatures	the number of binary features.
numberOfClasses	the number of classes.
numberOfFeatures	the number of features.
numberOfInstances	the number of instances.
numberOfInstancesWithMissingValues	the number of instances with has missing values.
numberOfMissingValues	the number of missing values.
numberOfNumericFeatures	the number of numeric features.
numberOfSymbolicFeatures	the number of symbolic features.
	statistical features
autoCorrelation	compute correlations of data.
majorityClassPercentage	the percentage of majority class.
majorityClassSize	the size of majority class.
maxNominalAttDistinctValues	the max value of distinct attributes.
meanNominalAttDistinctValues	the mean value of distinct attributes.
minNominalAttDistinctValues	the min value of distinct attributes.
minorityClassPercentage	the percentage of minority class.
minorityClassSize	the size of minority class.
percentageOfBinaryFeatures	the percentage of binary features.
percentageOfInstancesWithMissingValues	the percentage of instances with has missing values.
percentageOfMissingValues	the percentage of missing values.
percentageOfNumericFeatures	the percentage of numeric features.
percentageOfSymbolicFeatures	the percentage of symbolic features.
stdvNominalAttDistinctValues	the standard deviation of each distinct attribute.
info	ormation theory features
classEntropy	compute target attribute Shannon's entropy.
1	andmarking features
cfsSubsetEval_DecisionStump	the performance of DecisionStrump with CfsSubsetEval.
cfsSubsetEval_NaiveBayes	the performance of NavieBayes with CfsSubsetEval.
cfsSubsetEval_kNN1N	the performance of 1-NN with CfsSubsetEval.
decisionStump	the performance of DecisionStrump.
J48.00001	the performance of C4.5 DT with 0.00001 confidence factor.
J48.0001	the performance of C4.5 DT with 0.0001 confidence factor.
J48.001	the performance of C4.5 DT with 0.001 confidence factor.
naiveBayes	the performance of NavieBayes.
REPTreeDepth1	the performance of 1-depth REP tree.
REPTreeDepth2	the performance of 2-depth REP tree.
REPTreeDepth3	the performance of 3-depth REP tree.
randomTreeDepth1	the performance of 1-depth random tree.
randomTreeDepth2	the performance of 2-depth random tree.
randomTreeDepth3	the performance of 3-depth random tree.

TABLE II: Algorithms in 110-classifiers

category	algorithm					
decision trees	rpart_R, DecisionStump_weka , C5.0Tree_caret, RandomSubSpace_weka, NBTree_weka, RandomTree_weka, REPTree_weka rpart_caret					
discriminant analysis	lda_R, lda2_caret, rrlda_R, sda_caret, slda_caret, PenalizedLDA_R, sddaLDA_R, sddaQDA_R, fda_caret, fda_R, mda_R, rda_R, hdda_R, pda_caret					
ensemble (bagging)	Bagging_weka, ldaBag_R, nnetBag_R, MetaCost_weka					
ensemble (boosting)	logitboost_R, RacedIncrementalLogitBoost_weka, LogitBoost_weka, AdaBoostM1_weka, C5.0_caret, MultiBoostAB_IBk_weka, MultiBoostAB_OneR_weka, MultiBoostAB_PART_weka, MultiBoostAB_RandomTree_weka, MultiBoostAB_REPTree_weka, MultiBoostAB_weka, Bagging_DecisionStump_weka, Bagging_HyperPipes_weka, Bagging_J48_weka, Bagging_LWL_weka, Bagging_MultilayerPerceptron_weka, MultiBoostAB_MultiBoostAB_MultiBoostAB_NaiveBayes_weka, Bagging_OneR_weka, Bagging_NaiveBayes_weka, Bagging_PART_weka, MultiBoostAB_Logistic_weka, Bagging_RandomTree_weka					
ensemble (forest)	parRF_caret, RotationForest_weka					
ensemble (others)	RandomCommittee_weka, OrdinalClassClassifier_weka, MultiScheme_weka, MultiClassClassifier_weka, END_weka, Vote_weka CostSensitiveClassifier_weka, Dagging_weka					
general linear/ rule models	PART_weka, PART_caret, C5.0Rules_caret, JRip_caret, OneR_weka, OneR_caret, DTNB_weka, ZeroR_weka, gcvEarth_caret, DecisionTable_weka, ConjunctiveRule_weka, glm_R, glmnet_R, mlm_R, bayesglm_caret, SimpleLogistic_weka, multinom_caret					
navie Bayes	naiveBayes_R, NaiveBayes_weka, NaiveBayesUpdateable_weka, BayesNet_weka					
nearest neighbors	knn_R, knn_caret, IBk_weka, IB1_weka, spls_R, simpls_R					
neural networks	rbf_caret, mlp_matlab, mlp_caret, cascor_C, avNNet_caret, nnet_caret, pcaNNet_caret, MultilayerPerceptron_weka, elm_matlab, mlp_C, lvq_R, bdk_R, dkp_C, dpp_C					
SVMs	LibSVM_weka, LibLINEAR_weka, SMO_weka					
other methods	pam_caret, HyperPipes_weka, FilteredClassifier_weka, ClassificationViaClustering_weka, AttributeSelectedClassifier_weka, ClassificationViaRegression_weka, VFI_weka					

TABLE III: 86 meta-features for the data sets in 110-classifiers

category	feature name	process	description
	attr_to_inst	1	ratio between number of attributes.
	freq_class	mean, sd	relative frequency of each distinct class.
	inst_to_attr	1	ratio between number of instances and attributes.
general	nr_attr	1	total number of attributes.
features	nr_bin	1	number of binary attributes.
	nr_class	1	number of distinct classes.
	nr_inst	1	number of instances (rows) in dataset.
	nr_num	/	number of numeric features.
	can_cor	mean	compute canonical correlations of data.
	cor	mean, sd	absolute value of correlation of distinct dataset column pairs.
	cov	mean, sd	absolute value of covariance of distinct dataset attribute pairs.
statistical features	eigenvalues	mean, sd	eigenvalues of covariance matrix from dataset.
	gravity	1	distance between minority and majority classes center of mass.

TABLE III: 86 meta-features for the data sets in 110-classifiers (Continued)

			·
	iq_range	mean, sd	interquartile range (IQR) of each attribute.
	kurtosis	mean, sd	kurtosis of each attribute.
	mad	mean, sd	Median Absolute Deviation (MAD) adjusted by a factor.
	max	mean, sd	maximum value from each attribute.
	mean	mean, sd	mean value of each attribute.
	median	mean, sd	median value from each attribute.
	min	mean, sd	minimum value from each attribute.
	nr_cor_attr	/	number of distinct highly correlated pair of attributes.
	nr_disc	/	number of canonical correlation between each attribute and class.
	nr_norm	/	number of attributes normally distributed based in a given method.
statistical	nr_outliers	/	number of attributes with at least one outlier value.
features	p_trace	/	Pillai's trace.
	range	mean, sd	range (max - min) of each attribute.
	sd	mean, sd	standard deviation of each attribute.
	skewness	mean, sd	skewness for each attribute.
	sparsity	mean, sd	compute (possibly normalized) sparsity metric for each attribute.
	t_mean	mean, sd	trimmed mean of each attribute.
	var	mean, sd	variance of each attribute.
	w_lambda	/	Wilks' Lambda value.
	attr_conc	mean, sd	compute concentration coef. of each pair of distinct attributes.
	attr_ent	mean, sd	compute Shannon's entropy for each predictive attribute.
	class_conc	mean, sd	compute concentration coefficient between each attribute and class.
information	class_ent	/	compute target attribute Shannon's entropy.
theory features	eq_num_attr	/	number of attributes equivalent for a predictive task.
	joint_ent	mean, sd	joint entropy between each attribute and class.
	mut_inf	mean, sd	mutual information between each attribute and target.
	ns_ratio	/	noisiness of attributes.
	leaves	/	number of leaf nodes in DT model.
	leaves_branch	mean, sd	size of branches in DT model.
	leaves_corrob	mean, sd	leaves corroboration of DT model.
	leaves_homo	mean, sd	DT model Homogeneity for every leaf node.
	leaves_per_class	mean, sd	proportion of leaves per class in DT model.
	nodes	/	number of non-leaf nodes in DT model.
model-based	nodes_per_attr	/	ratio of nodes per number of attributes in DT model.
features	nodes_per_inst	/	ratio of non-leaf nodes per number of instances in DT model.
	nodes_per_level	mean, sd	ratio of number of nodes per tree level in DT model.
	nodes_repeated	mean, sd	number of repeated nodes in DT model.
	tree_depth	mean, sd	depth of every node in DT model.
	tree_imbalance	mean, sd	tree imbalance for each leaf node.

TABLE III: 86 meta-features for the data sets in 110-classifiers (Continued)

tree_shape	mean, sd	tree shape for every leaf node.
var_importance	mean, sd	features importance of DT model for each attribute.