DigiPen Institute of Technology Singapore

IBF- Day 2 Exericise Linear Algebra

Instructor: Yilin Wu

Jan 12 2020

Name: .		

This exercise contains 7 pages (including this cover page) and 10 questions. Total of points is 100. Good luck and Happy reading work!

Distribution of Marks

Question:	1	2	3	4	5	6
Points:	5	10	20	10	10	5
Score:						
Question:	7	8	9	10		Total
Points:	10	5	5	20		100
Score:						

1. (5 points) For the following pairs of matrices, determine if the sum A+B is defined. If so, find the sum.

•

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 3 \\ 0 & 1 & 4 \end{bmatrix}$$

•

$$A = \begin{bmatrix} 1 & 0 \\ -2 & 3 \\ 4 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 4 \end{bmatrix}$$

2. (10 points) For matrix A, find the product (-2)A, 0A, 3A.

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & -1 & 3 \\ 4 & 2 & 0 \end{bmatrix}$$

- 3. (20 points) Consider the matrices $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ -3 & 2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$, $E = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find the following if possible, If it is not possible explain why.
 - 1. -3A
 - 2. 3B A
 - 3. *AC*
 - 4. CB
 - 5. *AE*
 - 6. *EA*

4. (10 points) Let X = [-1 - 11] and Y = [012]. Find X^TY and XY^T if possible.

5. (10 points) Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & k \end{bmatrix}$. Is it possible to choose k such that AB = BA? If so what should k equal?

6. (5 points) Find 2×2 matrices, A, B, C such that $A \neq 0, C \neq B$, but AC = AB.

7. (10 points) Write the system

$$x_1 - x_2 + 2x_3$$
$$2x_3 + x_1$$
$$3x_3$$
$$3x_4 + 3x_2 + x_1$$

In the form $A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ where A is an appropriate matrix.

8. (5 points) A matrix A is called idempotent if $A^2 = A$. Let

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix}$$

and show that A is idempotent.

9. (5 points) Find the (1,2)-entry and (2,3) - entry of the product AB given

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 4 & 0 \\ 2 & 5 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 6 & -2 \\ 7 & 2 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

- 10. (20 points) Consider the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -5 & 2 \\ -3 & 2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 1 \\ 4 & -3 \end{bmatrix}$, $E = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Find the following if possible. If it is not possible explain why.
 - 1. $-3A^{T}$
 - 2. $3B A^T$
 - 3. E^TB
 - 4. EE^T
 - 5. B^TB
 - 6. CA^T
 - 7. D^TBE

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.