ENGINE MANAGEMENT SYSTEM

LABORATORY REPORT

ENGINE MANAGEMENT SYSTEM				
GASOLINE ELECTRONIC FUEL INJECTION (EFI)				
Group				
Lecturer Name				
Group Members	Matric No	Assessment		
1.		Introduction	10%	
2.		Observation	5%	
3.		Results	20%	
4.		Calculation	15%	
5.		Discussion	30%	
		Conclusion	15%	
		References	5%	
		Total	100%	
COMMENTS		RECEIVED STAMP		

1. INTRODUCTION

2. OBJECTIVE

Based on the experiment, student shall be able:

- 1. To operate On-Board Diagnostic scanner.
- 2. To understand how gasoline Electronic Fuel Injection (EFI) system works.
- 3. To determine basic parameters needed by the gasoline EFI's ECU.
- 4. To identify input, output, and correction factor of engine map.
- 5. To explore engine map of the gasoline EFI.

3. EQUIPMENT

- 1. A Petrol Engine Injection System Educational Trainer.
- 2. An On-Board Diagnostic (OBD) scanner.
- 3. A voltmeter
- 4. An oscilloscope.

4. PROCEDURE

- 1. Turn on power supply of the Whole CANBUS System Educational Training Equipment trainer.
- 2. Please ensure that all the toggle switches at the control panel are turned on and all the knob at zero position.
- 3. Turn on ignition key.
- 4. Connect the OBD scanner to the trainer.
- 5. Select vehicle type Hyundai Grandeur (HG) 2.4 MPI year 2014.
- 6. At the OBD scanner interface, read the data stream by selecting several parameters that need to be displayed as tabulated in **Table 1**.
- 7. Run the trainer with engine speed at 1500 rpm.
- 8. Record Cyl. 1 Injection Time-1st Pulse and Ignition Output Value-Cyl1 at specific accelerator pedal position according in **Table 2**.

Table 1: Selected readings in OBD scanner

Actual Engine Speed
Accelerator Pedal Position
Cyl. 1 Injection Time-1st Pulse
Ignition Output Value-Cyl1

5. OBSERVATION

State any observation involves during the experiment.

6. RESULT

Table 2: Experiment matrix.

Accelerator Pedal	Cyl. 1 Injection	Ignition Output
Position (%)	Time-1st Pulse (ms)	Value-Cyl1 (BTDC)
0		
10		
20		
30		
40		
50		
60		
70		
80		
90		

7. DISCUSSION

1. According to the experiment, identify input and output variables of the gasoline EFI's engine management system.

- 2. Based on the result, what is the definition of Cyl. 1 Injection Time-1st Pulse? With aided of a graph, explain and justify its trend against the accelerator pedal position?
- 3. Based on the result, what is the definition of Ignition Output Value-Cyl1? With aided of a graph, explain and justify its trend against the accelerator pedal position?

8. CONCLUSION

REFERENCES

- 1. Reif, K. (2015). Gasoline engine management. Bosch Professional Automotive Information, DOI, 10, 978-3
- 2. Banish, G. (2007). Engine management: Advanced tuning (Vol. 135). CarTech Inc.

- 3. Guzzella, L., & Onder, C. (2009). Introduction to modeling and control of internal combustion engine systems. Springer Science & Business Media.
- 4. Isermann, R. (2014). Engine modeling and control. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany