

planetmath.org

Math for the people, by the people.

proof of finitely generated torsion-free modules over Prüfer domains

 ${\bf Canonical\ name} \quad {\bf ProofOfFinitelyGeneratedTorsionfreeModulesOverPruferDomains}$

Date of creation 2013-03-22 18:36:14 Last modified on 2013-03-22 18:36:14

 $\begin{array}{ll} \text{Owner} & \text{gel (22282)} \\ \text{Last modified by} & \text{gel (22282)} \end{array}$

Numerical id 4

Author gel (22282)

Entry type Proof

Classification msc 13F05 Classification msc 13C10 Let M be a finitely generated torsion-free module over a Prüfer domain R with field of fractions k. We show that M is isomorphic to a http://planetmath.org/DirectSumdirect sum of finitely generated ideals in R.

We shall write $k \otimes M$ for the vector space over k generated by M. This is just the http://planetmath.org/LocalizationOfAModulelocalization of M at $R \setminus \{0\}$ and, as M is torsion-free, the natural map $M \to k \otimes M$ is one-to-one and we can regard M as a subset of $k \otimes M$.

As M is finitely generated, the vector space $k \otimes M$ will http://planetmath.org/Dimension2fini dimensional, and we use induction on its dimension n. Supposing that n > 0, choose any basis e_1, \ldots, e_n and define the linear map $f: k \otimes M \to k$ by http://planetmath.org/Projectionprojection onto the first component,

$$f(x_1e_1 + \dots + x_ne_n) = x_1.$$

Restricting to M, this gives a nonzero map $M \to k$. Furthermore, as M is finitely generated, f(M) will be a finitely generated fractional ideal in k. Choosing any nonzero $c \in R$ such that $\mathfrak{a} \equiv cf(M) \subseteq R$,

$$q: M \to \mathfrak{a}, \ q(u) = cf(u)$$

defines a homorphism from M onto the nonzero and finitely generated ideal \mathfrak{a} . As R is Prüfer and invertible ideals are projective, g has a right-inverse $h \colon \mathfrak{a} \to M$. Then h has the left-inverse g and is one-to-one, so defines an isomorphism between \mathfrak{a} and its http://planetmath.org/ImageOfALinearTransformationimage. We decompose M as the direct sum of the kernel of g and the image of h,

$$M = \ker(g) \oplus \operatorname{Im}(h) \cong \ker(g) \oplus \mathfrak{a}.$$

Projection from the finitely generated module M onto ker(g) shows that it is finitely generated and,

$$\dim(k \otimes \ker(g)) = \dim(k \otimes M) - \dim(k \otimes \mathfrak{a}) = n - 1.$$

So, the result follows from applying the induction hypothesis to ker(g).