Advanced Model Predictive Control

Recitation 2 Introduction to Code Framework

Alexandre Didier and Jérôme Sieber ETH Zurich Fall 2022

Programming Exercises

- All programming exercises (PEs) use a common MATLAB code framework
- You have two weeks to solve a PE (see tentative timetable)
- Hand in via Moodle (.zip file)
- You have to solve the PE individually (no groups allowed)
- Solving 5 out of 8 PEs correctly, awards you a bonus of 0.25 grade points

Programming Exercise	Hand Out	Hand In
PE 1	29.09.	12.10.
PE 2	06.10.	19.10.
PE 3	13.10.	26.10.
PE 4	03.11.	16.11.
PE 5	24.11.	07.12.
PE 6	01.12.	14.12.
PE 7	08.12.	21.12.
PE 8	15.12.	28.12.

MATLAB Code Framework for AMPC 2022

For all programming exercises we will use a unified MATLAB code framework, which consists of the following parts:

- Parameter File: params_PE1.m defines system, control, and simulation parameters; get_params.m loads these parameters to the main file.
- Main File: main_PE1.m initializes and simulates the complete control loop. You will only execute this file.
- **System Class:** System.m is an abstract parent class of all systems used in the programming exercises (PEs).
- **Control Class:** Controller.m is an abstract parent class of all controllers implemented in the PEs.
- Parameter Estimator Class:

Parameter_Estimator.m is an abstract parent class of all parameter estimators implemented in the PEs.

```
code/
   controllers/
      Nonlinear_MPC.m
   parameters/
      params_PE1.m
   svstems/
    __NonlinearSvstem.m
   Controller.m
   Parameter_Estimator.m
   System.m
   main PE1.m
  setup.m
```

Main File

- This file performs the following actions:
 - load system and control parameters from parameter file (params_xy.m),
 - initialize the system and controller objects,
 - simulate a defined number of closed-loop trajectories with a defined number of time steps,
 - plot the results of the closed-loop simulations.
- Execute only this file.

```
1 % get parameters and define system ...
       & controller
  params = get_params('params_PE1');
  sys = NonlinearSystem(params.sys);
  ctrl = Nonlinear_MPC(sys, ...
       params.ctrl);
  % control loop
  x(1) = params.sim.x_0;
  for i=1:nrTraj
       for j=1:nrSteps
           u = ctrl.solve(x(i)):
           x(j+1) = sys.step(x(j),u);
       end
12
  end
  % plot results
  plot(x); plot(u);
```

System Class

- System implements an abstract class from which LinearSystem and NonlinearSystem inherit.
- The class defines the interfaces between the system and any controller derived from the Controller class.
- You should not modify this class.
- However, feel free to go through the code and play with it.

```
classdef System
   %System class for segway system
   properties
     % class variables
   end
   methods
     % class methods
     function obj = System(params)
         %Class Constructor
     end
11
     function x1 = step(obj,x,u)
         %advance system from state x ...
13
             with input u
     end
14
     function y1 = get_output(obj,x,u)
         %evaluate output for state x ...
             and input u
     end
   end
   end
```

Segway System

We only consider the rotational dynamics of the segway and discretize the dynamics using Euler forward:

$$\begin{bmatrix} \alpha(k+1) \\ \dot{\alpha}(k+1) \end{bmatrix} = \begin{bmatrix} \alpha(k) + \delta t \cdot \dot{\alpha}(k) \\ \dot{\alpha}(k) + \delta t(-k\alpha(k) - c\dot{\alpha}(k) + \frac{g}{l} \cdot \sin \alpha(k) + u(k)) \end{bmatrix}$$

Controller Class

- All controllers you will implement in the programming exercises inherit from this class.
- We provide you with a nominal MPC (MPC) implementation as a reference.
- All controller classes need to define the property prob.
- The solve method works for both Yalmip and CasADi prob objects.

```
classdef Controller
  %Parent controller class
   properties
     % class variables
     prob % optimizer/solver object
   end
   methods
     % class methods
     function obj = ...
         Controller (params)
       %Class Constructor
11
     end
12
     function [u, out, info] = ...
13
         solve(obj, x, vars, verbose)
       %solve optimization ...
14
           problem with initial ...
           state x and auxilliary ...
           variables vars
     end
15
   end
   end
```

Parameter Estimator Class

- All parameter estimators you will implement in the programming exercises inherit from this class.
- We will use this class only in the second part of the course.

```
classdef Parameter_Estimator
Parent parameter estimator class
properties
class variables
end
methods
class methods
function obj = ...
Parameter_Estimator(sys)
class Constructor
end
end
end
end
```

Programming Exercise 1 (Nominal Nonlinear MPC)

Nominal Nonlinear MPC Problem:

$$\min_{x,u} \quad I_f(x_N) + \sum_{i=0}^{N-1} I(x_i, u_i)$$
s.t.
$$\forall i = 0, \dots, N-1$$

$$x_{i+1} = f(x_i, u_i)$$

$$x_i \in \mathcal{X}$$

$$u_i \in \mathcal{U}$$

$$x_N \in \mathcal{X}_f$$

$$x_0 = x(k)$$

First, make yourself familiar with the code base using the provided MPC example, i.e., running main_MPC.m and examining the files main_MPC.m, params_MPC.m, and MPC.m. Then, solve the programming exercise.

Nonlinear Programming using CasADi

Nonlinear Programming (NLP) Example:

$$\min_{x,y} (1-x)^2 + (y-x^2)^2$$
s.t. $x^2 + y^2 = 1$
 $x \le y$

MATLAB Code:

```
% initialize Opti stack
  prob = casadi.Opti();
  % define decision variables
  x = prob.variable();
  v = prob.variable();
  % objective
   prob.minimize((1-x)^2+(v-x^2)^2);
10
  % constraints
  prob.subject_to(x^2+y^2==1);
   prob.subject_to(y>=x);
15 % solve NLP
 prob.solver('ipopt');
  sol = prob.solve():
```

[Source: CasADi Opti Stack Documentation]