Arifmetik vector fazo

Tayin uzunlikka va yoʻnalishga ega boʻlgan kesma *vektor* deb ataladi va \overrightarrow{AB} yoki \overrightarrow{a} kabi belgilanadi. Bunda A nuqtaga vektorning boshlangʻich nuqtasi, B nuqtaga uning oxirgi nuqtasi deyiladi. \overrightarrow{BA} vektor \overrightarrow{AB} vektorga qarama-qarshi vektor hisoblanadi. \overrightarrow{a} vektorga qarama-qarshi vektor $(-\overrightarrow{a})$ bilan belgilanadi.

 \overrightarrow{AB} kesmaning uzunligiga \overrightarrow{AB} *vektorning uzunligi* yoki *moduli* deyiladi va $|\overrightarrow{AB}|$ koʻrinishda belgilanadi.

Boshlang'ich va oxirgi nuqtalari ustma-ust tushadigan vektor $nol\ vektor$ deb ataladi va $\vec{0}$ bilan belgilanadi.

Uzunligi birga teng vektorga *birlik vektor* deyiladi va \vec{e} orqali belgilanadi. \vec{a} vektor bilan bir xil yoʻnalgan birlik vektorga \vec{a} vektorning orti deyiladi va \vec{a}^0 bilan belgilanadi.

Bir to'g'ri chiziqda yoki parallel to'g'ri chiziqlarda yotuvchi vektorlar kollinear vektorlar deb ataladi.

 \vec{a} va \vec{b} vektorlar kollinear, bir xil yoʻnalgan va uzunliklari teng boʻlsa, ularga *teng vektorlar* deyiladi va $\vec{a} = \vec{b}$ kabi yoziladi. Teng vektorlar *erkin vektorlar* deb yuritiladi. Vektorni fazoning ixtiyoriy nuqtasiga oʻz-oʻziga parallel koʻchirish mumkin.

Bir tekislikda yoki parallel tekisliklarda yotuvchi vektorlar *komplanar* vektorlar deb ataladi.

 \vec{a} va \vec{b} vektorlar yigʻindisi deb \vec{a} va \vec{b} vektorlar bilan komplanar boʻlgan $\vec{a} + \vec{b}$ vektorga aytiladi. Ikki vektorning yigʻindisi *uchburchak* yoki *parallelogramm qoidalari* bilan topiladi.

Bir nechta vektorni uchburchak usuli bilan ketma-ket qoʻshib borish mumkin. Bir nechta vektorni bunday qoʻshish usuliga *koʻpburchak qoidasi* deyiladi.

 \vec{a} va \vec{b} vektorlarning ayirmasi deb, \vec{b} vektor bilan yigʻindisi \vec{a} vektorni beradigan $\vec{a} - \vec{b}$ vektor tushuniladi.

 \vec{a} vektorning $\lambda \neq 0$ songa koʻpaytmasi deb, \vec{a} vektorga kollinear, uzunligi $|\lambda| \cdot |\vec{a}|$ ga teng boʻlgan, $\lambda > 0$ boʻlsa \vec{a} vektor bilan bir xil yoʻnalgan, $\lambda < 0$ boʻlganda \vec{a} vektorga qarama-qarshi yoʻnalgan $\lambda \vec{a}$ vektorga aytiladi.

Agar $\vec{b} = \lambda \vec{a}$ bo'lsa, u holda \vec{a} ($\vec{a} \neq 0$) va \vec{b} vektorlar kollinear bo'ladi va aksincha, agar \vec{a} ($\vec{a} \neq 0$) va \vec{b} vektorlar kollinear bo'lsa, u holda biror λ son uchun $\vec{b} = \lambda \vec{a}$ bo'ladi.

 $\vec{a} = |\vec{a}| \cdot \vec{a}^{\circ}$, ya'ni har bir vektor uzunligi bilan ortining ko'paytmasiga teng bo'ladi.

1-misol. ABCD to g'ri to rtburchakning tomonlari AB = 3, AD = 4.

M-DC tomonning oʻrtasi, N-CB tomonning oʻrtasi (3-shakl). $\overrightarrow{AM}, \overrightarrow{AN}, \overrightarrow{MN}$ vektorlarni mos ravishda \overrightarrow{AB} va \overrightarrow{AD} tomonlar boʻylab yoʻnalgan \overrightarrow{i} va \overrightarrow{j} birlik vektorlar orqali ifodalang.

$$\implies \vec{a} = |\vec{a}| \cdot \vec{a}^{\circ}$$
 bo'lishidan, topamiz:

$$\overrightarrow{AB} = |\overrightarrow{AB}| \cdot \overrightarrow{i} = 3\overrightarrow{i}, \quad \overrightarrow{AD} = |\overrightarrow{AD}| \cdot \overrightarrow{j} = 4\overrightarrow{j}.$$

3-shaklga koʻra

$$\overrightarrow{DM} = \overrightarrow{MC} = \frac{1}{2}\overrightarrow{DC} = \frac{1}{2}\overrightarrow{AB} = \frac{3}{2}\overrightarrow{i},$$

$$\overrightarrow{BN} = \overrightarrow{NC} = \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AD} = 2\overrightarrow{j}.$$

1-shakl.

Vektorlarni qoʻshish qoidasi bilan topamiz:

$$\overrightarrow{AM} = \overrightarrow{AD} + \overrightarrow{DM} = 4\vec{j} + \frac{3}{2}\vec{i}; \qquad \overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{BN} = 3\vec{i} + 2\vec{j};$$
$$\overrightarrow{MN} = \overrightarrow{MC} + \overrightarrow{CN} = \overrightarrow{MC} - \overrightarrow{NC} = \frac{3}{2}\vec{i} - 2\vec{j}.$$

 $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + ... + \alpha_n \vec{a}_n$ ifodaga $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ vektorlarning chiziqli kombinatsiyasi deyiladi, bunda $\alpha_1, \alpha_2, ..., \alpha_n$ – tayin sonlar.

Agar $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ vektorlar uchun kamida bittasi nolga teng boʻlmagan shunday $\alpha_1, \alpha_2, ..., \alpha_n$ sonlar topilsaki, bu sonlar uchun $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + ... + \alpha_n \vec{a}_n = 0$ tenglik bajarilsa, u holda $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ vektorlarga chiziqli bogʻliq vektorlar deyiladi.

Agar $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + ... + \alpha_n \vec{a}_n = 0$ tenglik faqat $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$ boʻlganda oʻrinli boʻlsa, u holda, $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ vektorlarga *chiziqli erkli vektorlar* deyiladi.

Ikkita vektor chiziqli bogʻliq boʻlishi uchun ular kollinear boʻlishi zarur va yetarli. Uchta vektor chiziqli bogʻliq boʻlishi uchun ular komplanar boʻlishi zarur va yetarli.

Agar R^n fazoda ixtiyoriy \overline{a} vektorni n ta chiziqli erkin $\overline{e}_1, \overline{e}_2, ..., \overline{e}_n$ vektorlarning chiziqli kombinatsiyasi orqali ifodalash mumkin boʻlsa, ya'ni $\overline{a} = \alpha_1 \overline{e}_1 + \alpha_2 \overline{e}_2 + ... + \alpha_n \overline{e}_n$ tenglik bajarilsa, u holda $\overline{e}_1, \overline{e}_2, ..., \overline{e}_n$ vektorlar R^n fazoning bazisi deb ataladi.

 $\vec{a} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_3 + \alpha_3 \vec{e}_3$ tenglikka \vec{a} vektorning $\vec{e}_1, \vec{e}_2, \vec{e}_3$ bazis bo'yicha yoyilmasi, $\alpha_1, \alpha_2, \alpha_3$ sonlarga \vec{a} vektorning $\vec{e}_1, \vec{e}_2, \vec{e}_3$ bazisdagi affin koordinatalari deyiladi.

Uch o'lchovli R³ fazoda komplanar bo'lmagan $\vec{e}_1, \vec{e}_2, \vec{e}_3$ vektorlar bazis tashkil qiladi. Ikki oʻlchovli R² fazoda kollinear bo'lmagan \vec{e}_1, \vec{e}_2 , vektorlar bazis tashkil etadi.

2 - misol. Uchburchakli muntazam piramidada AB, AC, AD - A uchning qirralari, DO – D uchdan tushirilgan balandlik (2-shakl). Agar $\vec{e}_1, \vec{e}_2, \vec{e}_3$ mos ravishda AB, AC, AD qirralar bo'ylab yo'nalgan vektorlar bo'lsa, DO vektorning $\vec{e}_1, \vec{e}_2, \vec{e}_3$ bazis bo'yicha yoyilmasini toping.

Vektorlarni songa koʻpaytirish amalining xossasiga asoslanib, topamiz:

2-shakl. $\overrightarrow{AB} = \lambda_1 \overrightarrow{e}_1$, $\overrightarrow{AC} = \lambda_2 \overrightarrow{e}_2$, $\overrightarrow{AD} = \lambda_3 \overrightarrow{e}_3$, bu yerda $\lambda_1, \lambda_2, \lambda_3$ - haqiqiy sonlar.

Piramidada $\vec{e}_1, \vec{e}_2, \vec{e}_3$ qirralar komplanar emas. Shu sababli \overrightarrow{DO} vektorni $\vec{e}_1, \vec{e}_2, \vec{e}_3$ bazis bo'yicha yoyish mumkin.

Piramida muntazam boʻlgani uchun uning balandligi asosining medianalari kesishish nuqtasiga tushadi, ya'ni *O*-uchburchak medianalarining kesishish nuqtasi boʻladi.

Vektorlarni qoʻshish qoidasiga koʻra $\overrightarrow{DO} = \overrightarrow{DA} + \overrightarrow{AO}$. Bunda

$$\overrightarrow{DA} = -\overrightarrow{AD} = -\lambda_3 \vec{e}_3, \qquad \overrightarrow{AO} = \frac{2}{3} \overrightarrow{AM} = \frac{2}{3} \cdot \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2} = \frac{1}{3} (\lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2).$$

Demak,

$$\overrightarrow{DO} = -\lambda_3 \overrightarrow{e}_3 + \frac{1}{3}(\lambda_1 \overrightarrow{e}_1 + \lambda_2 \overrightarrow{e}_2). \quad \bullet$$