

Devoir surveillé 8 - 25/03/25

Exercice 1: Soient E, F des espaces vectoriels normés munis des normes $\|.\|_E$ et $\|.\|_F$ et $f \in \mathcal{L}(E, F)$

- 1. Question de cours : Démontrer que si E est de dimension finie alors f est continue.
- 2. Soit $E = F = \mathbb{R}[X]$ muni de la norme $||P|| = \sup |P(t)|$ et $f: P \mapsto P'$. Démontrer que f n'est pas continue.
- 3. On suppose que f est continue sur E, démontrer que $||f|| = \sup_{x \in E \setminus \{0\}} \frac{||f(x)||_F}{||x||_E}$ est bien définie et est une norme. On l'appelle norme subordonnée à $\|.\|_E$ et $\|.\|_F$.
- 4. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de la norme infinie. Soit $\phi: E \to \mathbb{R}$ une forme linéaire positive, c'est-à-dire vérifiant : pour toute fonction $f \in E$ positive, $\phi(f) \ge 0$.
 - (a) Démontrer que pour tous $f, g \in E$ telles que pour tout $x \in [0, 1], f(x) \ge g(x)$ alors $\phi(f) \ge \phi(g)$.
 - (b) Démontrer que ϕ est continue et $\|\phi\| = \phi(\tilde{1})$ en notant la norme subordonnée à la norme infinie.

Exercice 2 : Soit \mathbb{R}^2 muni de la norme $\| \begin{pmatrix} x \\ y \end{pmatrix} \| = \sqrt{x^2 + y^2}$

On considère $m_1,...,m_n\in\mathbb{R}^2$ (avec $n\in\mathbb{N}^*$) et $K=\{m_1,...,m_n\}$, on souhaite démontrer l'existence et l'unicité d'une boule fermée de rayon minimal contenant K. Pour tout $x \in \mathbb{R}^2$, on pose $r(x) = \max \{ ||m_k - x||, 1 \le k \le n \}$

- 1. Déterminer deux boules fermées de centre différent contenant $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.
- 2. Démontrer que $r: x \mapsto r(x)$ est 1-lipschitzienne sur \mathbb{R}^2 .
- 3. (a) Démontrer que pour tout $x \in \mathbb{R}^2$, $||x|| \le r(0) + r(x)$.
 - (b) En déduire qu'il existe $\alpha \geq 0$ tel que pour tout $x \in \mathbb{R}^2$, $||x|| \geq \alpha \Rightarrow r(x) \geq r(0)$
 - (c) Démontrer que r admet un minimum sur $B_f(0,\alpha)$ (avec α de la question précédente) atteint en un point noté w.
 - (d) Justifier que r(w) est le minimum de r sur \mathbb{R}^2 .
 - (e) En déduire que $B_f(w, r(w))$ est une boule fermée contenant K et r(w) est le rayon minimal d'une boule fermée de centre w et contenant K.
- 4. On note $D = \{r \in \mathbb{R}^*_+, \exists x \in \mathbb{R}^2, K \subset B_f(x, r)\}, R = \inf D$.
 - (a) Justifier l'existence de R.
 - (b) Pour tout $n \in \mathbb{N}^*$, on pose $r_n = R + \frac{1}{n}$, démontrer qu'il existe $x_n \in \mathbb{R}^2$ tel que $K \subset B_f(x_n, r_n)$
 - (c) Démontrer que pour tout $n \in \mathbb{N}^*$, $||x_n|| \le r(0) + R + 1$.
 - (d) On admet (théorème de Bolzano-Weierstrass) que (x_n) admet une sous-suite convergente, on note x sa limite. Démontrer que $K \subset B_f(x,R)$
- 5. (a) i. Démontrer que pour tout $u, v \in \mathbb{R}^2, ||u+v||^2 = 2(||u||^2 + ||v||^2) ||u-v||^2$

$$\|m_k - \frac{x+y}{2}\|^2 = \frac{1}{2}\|m_k - x\|^2 + \frac{1}{2}\|m_k - y\|^2 - \frac{1}{4}\|x - y\|^2$$

- ii. En déduire que pour pour tous $x, y \in \mathbb{R}^2, k \in [|1, n|],$ $\|m_k \frac{x+y}{2}\|^2 = \frac{1}{2}\|m_k x\|^2 + \frac{1}{2}\|m_k y\|^2 \frac{1}{4}\|x y\|^2$ (b) Supposons que $K \subset B_f(x, R)$ et $K \subset B_f(y, R)$ alors pour tout $k \in [|1, n|],$ $\|m_k \frac{x+y}{2}\|^2 \le R^2 \frac{1}{4}\|x y\|^2.$
- (c) En déduire l'unicité d'une boule fermée de rayon minimal contenant K.