ACESSIBILIDADE À FAST-FOOD NO CONTEXTO PERI-ESCOLAR EM PORTUGAL UM ESTUDO NACIONAL

Aluno: Dr. João de Sousa Bento Almeida Santos

Orientador: Prof. Mário José Costa de Macedo Co-Orientador: Prof. Lino Jorge de Jesus Mendes

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

INTRODUÇÃO

Impacte dos erros alimentares

- Tema extremamente actual
- São o comportamento de risco mais letal
- Contribuem para o <u>excesso de peso e a obesidade</u>
 - Contribuem para ≃4M mortes /ano
 - Custo directo e indirecto: ≃USD 2B
 - Tendência crescente em quase todo o mundo (+++ nas crianças em idade escolar)
 - Prevalência global em 2016 [5-9a]: 20.6% e 9.0%

[10-19a]: **17.3**% e **5,6**%

• Venda de alimentos ultra-processados continua a aumentar globalmente

INTRODUÇÃO

Que medidas implementar?

- Informar a população
- Capacitar para a realização de escolhas saudáveis
- Regulamentar e dificultar o acesso aos produtos alimentares pouco saudáveis

•

INTRODUÇÃO

Acessibilidade aos alimentos

- Física, económica, ...
- Tem impacte nos hábitos alimentares (+++ nas crianças e adolescentes)
- Muitas crianças estão expostas a ambientes "obesogénicos"
- Em algumas cidades do mundo, os estabelecimentos de fast-food (EFF) concentram-se em redor das escolas!
- Limitar os EFF em redor das escolas?
- Estudos existentes são maioritariamente nos EUA; não existem estudos em Portugal

QUAL É A ACESSIBILIDADE GEOGRÁFICA À FAST-FOOD NO CONTEXTO PERI-ESCOLAR, EM PORTUGAL CONTINENTAL?

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

OBJETIVOS

Para cada escola em Portugal continental:

- 1. Calcular a distância ao EFF mais próximo e identificar as regiões em que essa distância é tendencialmente menor
- 2. Determinar quantos EFF estão a curta distância* e identificar as regiões em que esse número é tendencialmente maior
- 3. Determinar se os EFF apresentam dependência espacial das escolas (ou seja, se a localização dos EFF exibe um padrão de *clustering* em redor das escolas)

^{*}raios de 5 e 10 minutos de marcha (400 e 800m, respectivamente)

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

Tipo de Estudo

- Observacional, do tipo ecológico
 - ✓ Mede variáveis existentes no ambiente de estudo
 - ✓ Não intervém no ambiente de estudo
 - ✓ Formula hipóteses (ex: será que os EFF apresentam dependência espacial das escolas?)

População & Amostra

- População
 - ✓ Todas as escolas em Portugal continental presentes na base de dados da DGEE (n= 8537)
 - √ Todos os EFF em Portugal continental
- Amostra
 - √ 1812 escolas
 - **√** 411 EFF

DGEE: Direção Geral dos Estabelecimentos Escolares

Critérios de Inclusão das Escolas

- ✓ Ministram 3° ciclo, ensino secundário, ensino artístico e/ou ensino profissional
- x Ensino pré-escolar, 1º ciclo e 2º ciclo (falta de autonomia por limitação etária)
- x Ensino especial (falta de autonomia por limitação funcional)
- x Ensino extra-escolar (não pertença à escolaridade obrigatória)

Critérios de Inclusão dos EFFs

- Estabelecimentos das 3 principais marcas de fast-food com representação nacional
 - √ McDonald's
 - ✓ Burger King
 - ✓ Telepizza
- Juntas representaram ≈65% do valor total do mercado de restauração rápida em 2018

Procedimento - Selecção da Amostra

Procedimento - Dados Geográficos de Portugal Continental

- Obteve-se um ficheiro shapefile com o mapa de Portugal continental e a respectiva divisão em NUTS3
- No mapa é possível identificar dois tipos de marcadores de povoações:
 - Vilas
 - 1.000 50.000 habitantes (ou >50.000 habitantes mas dimensão ≤ 0.5 km²)
 - pontos
 - Áreas Urbanas
 - 50.000 habitantes e dimensão ≥ 0.5 km²
 - polígonos

Procedimento - Selecção da Distância a Analisar

- Raios de 400m e 800m
 - √ valores habitualmente utilizados na literatura
 - √ distância equivalente a 5 e 10 minutos de marcha
 - √ 800m como o espaço de exposição na hora de almoço, e antes e depois do horário escolar
- Raio de 1500m (≈1 milha terrestre)
 - ✓ Utilizado na função K (de Ripley) bivariada, em conformidade com trabalhos anteriores

Análise Estatística

- Importou-se os dados para um Jupyter Notebook
- Excluiu-se os dados relativos às regiões autónomas
- Converteu-se as coordenadas para o CRS padrão de Portugal
- Mapeou-se as escolas e EFF
- Agregou-se os dados por NUTS3

```
# Extracting the geodataframe from the shapefile and converting to the standard Coordinate
# Reference System (CRS) of Portugal
def read_shp(path):
   gdf = gp.read_file(path, index = False)
   gdf = gdf.to crs(epsg = 3763)
   return (gdf)
portugal_gdf = read_shp('portugal_map_shapefile/DATA/Countries/PT/NUTS_3.shp')
urban_gdf = read_shp('portugal_map_shapefile/DATA/Countries/PT/BuiltupA.shp')
villages_gdf = read_shp('portugal_map_shapefile/DATA/Countries/PT/BuiltupP.shp')
# Excluding Azores and Madeira, since this study focuses in mainland Portugal; note that
# 'intersects' is a better choice than 'within' in the case of 'urban', because part of its
# polygons overflow the 'portugal' ones
azores = portugal_gdf[(portugal_gdf['NUTS_LABEL'] == 'Região Autónoma dos Açores')].index
madeira = portugal_gdf[(portugal_gdf['NUTS_LABEL'] == 'Região Autónoma da Madeira')].index
portugal = portugal_gdf.drop(azores.union(madeira))
portugal_polygon = portugal.unary_union
urban = urban_gdf[urban_gdf['geometry'].intersects(portugal_polygon) == True]
villages = villages_gdf[villages_gdf['geometry'].within(portugal_polygon) == True]
# Keeping only the relevant information
urban = urban[['geometry']]
villages = villages[['NAMA1', 'geometry']].rename({'NAMA1':'Nome'}, axis = 1)
# Unifying all polygons of urban; this will be useful to check which POI are within 'urban'
urban_polygon = urban.unary_union
```

CRS: Coordinate Reference System

OBJETIVOS

Para cada escola em Portugal continental:

- 1. Calcular a distância ao EFF mais próximo e identificar as regiões em que essa distância é tendencialmente menor
- 2. Determinar quantos EFF estão a curta distância* e identificar as regiões em que esse número é tendencialmente maior
- 3. **Determinar se os EFF apresentam dependência espacial das escolas** (ou seja, se a localização dos EFF exibe um padrão de *clustering* em redor das escolas)

^{*}raios de 5 e 10 minutos de marcha (400 e 800m, respectivamente)

Análise Estatística - Objectivo #1

- Com a função cKDTree, identificou-se:
 - √ o EFF mais próximo de cada escola
 - √ a respectiva distância
- Agregou-se os dados por NUTS3 (spatial join e dissolve)
- Obteve-se o valor mediano dessa distância em cada NUTS3
- Obteve-se um mapa coropleto com a optimização FisherJenks

```
# For each school, find the closest fast-food restaurant and get the distance between them
# from: gis.stackexchange.com/questions/222315/geopandas-find-nearest-point-in-other-dataframe
def ckdnearest(gdA, gdB):
    nA = numpy.array(list(gdA.geometry.apply(lambda x: (x.x, x.y))))
    nB = numpy.array(list(gdB.geometry.apply(lambda x: (x.x, x.y))))
    btree = cKDTree(nB)
    dist, idx = btree.query(nA, k=1)
    gdf = pandas.concat([gdA.reset_index(drop=True),
                         gdB.loc[idx, gdB.columns != 'geometry'].reset_index(drop=True),
                         pandas.Series(dist, name='dist')],
    gdf['dist'] = gdf['dist'] / 1000 #conversao de m para km
    return gdf
schools_temp = schools.drop(columns=['Lat', 'Lon']).rename({'Nome': 'ESCOLA'}, axis =1)
rest_temp = rest.drop(columns=['Lat', 'Lon', 'NUTS_LABEL'])
prox = ckdnearest(schools temp, rest temp)
# Aggregating the distance between the closest school-restaurant per NUTS3, in order to make a
# choropleth map. Notice that we're doing so using 4 different measures. In the end, the median
# is the one we're looking for, since it's less sensitive to outliers
prox = prox.drop(columns=['NUTS_LABEL'])
def aggregate_prox(measure):
    joined = gp.sjoin(portugal, prox, predicate='contains', how='left')
    if measure in ('mean', 'median'):
        trimmed = joined[['NUTS_LABEL', 'geometry', 'ESCOLA', 'Nome', 'dist']]
        trimmed = joined[['NUTS_LABEL', 'geometry', 'dist']]
    dissolved = trimmed.dissolve(by='NUTS_LABEL', aggfunc=measure).reset_index()
    renamed = dissolved.rename({'dist': measure}, axis=1)
    return (renamed)
prox_mean = aggregate_prox('mean')
prox_median = aggregate_prox('median')
prox_min = aggregate_prox('min')
prox max = aggregate prox('max')
prox_nut = prox_mean.merge(prox_min.drop(columns='geometry'), on='NUTS_LABEL')
prox_nut = prox_nut.merge(prox_median.drop(columns='geometry'), on='NUTS_LABEL')
prox_nut = prox_nut.merge(prox_max.drop(columns='geometry'), on='NUTS_LABEL')
```

OBJETIVOS

Para cada escola em Portugal continental:

- 1. Calcular a distância ao EFF mais próximo e identificar as regiões em que essa distância é tendencialmente menor
- 2. Determinar quantos EFF estão a curta distância* e identificar as regiões em que esse número é tendencialmente maior
- 3. **Determinar se os EFF apresentam dependência espacial das escolas** (ou seja, se a localização dos EFF exibe um padrão de *clustering* em redor das escolas)

^{*}raios de 5 e 10 minutos de marcha (400 e 800m, respectivamente)

Análise Estatística - Objectivo #2

- Com os métodos buffer e within, obteve-se:
 - √ o número de EFF num raio de 400m de cada escola
 - √ o número de EFF num raio de 800m de cada escola
- Agregou-se os dados por NUTS3 (spatial join e dissolve)
- Obteve-se o valor médio de EFF nesses raios em cada NUTS3
- Obteve-se um mapa coropleto com a optimização FisherJenks

```
# Calculate how many restaurants are within 5 and 10min walking distance from each school. Note
# that 5min and 10min walking distance correspond to approximately 400m and 800m.
radius = copy.deepcopy(schools) # Deep copy does an actual copy (instead of a new linked object)
radius['400m'] = ''
radius['800m'] = ''
for i in range(len(schools)):
   radius.loc[i,'400m'] = len(rest[rest['geometry'].within(schools['geometry'][i].buffer(400))])
   radius.loc[i,'800m'] = len(rest[rest['geometry'].within(schools['geometry'][i].buffer(800))])
radius
# Aggregating the number of restaurantes within short distance per NUTS3, in order to make a
# choropleth map. Notice that we're doing so using both sum and mean.
radius = radius.drop(columns=['NUTS LABEL'])
def aggregate radius(measure):
    joined = gp.sjoin(portugal, radius, predicate='contains', how='left')
   trimmed = joined[['NUTS_LABEL', 'geometry', 'Nome', '400m', '800m']]
   dissolved = trimmed.dissolve(by='NUTS_LABEL', aggfunc=measure).reset_index()
   if measure == 'sum':
        dissolved = dissolved.rename({'400m': '400m Sum', '800m': '800m Sum'}, axis=1)
   return (dissolved)
radius_sum = aggregate_radius('sum')
radius_mean = aggregate_radius('mean')
radius nut = radius sum.merge(radius mean.drop(columns=['geometry']), on='NUTS LABEL')
radius nut
```

OBJETIVOS

Para cada escola em Portugal continental:

- 1. Calcular a distância ao EFF mais próximo e identificar as regiões em que essa distância é tendencialmente menor
- 2. Determinar quantos EFF estão a curta distância* e identificar as regiões em que esse número é tendencialmente maior
- 3. Determinar se os EFF apresentam dependência espacial das escolas (ou seja, se a localização dos EFF exibe um padrão de *clustering* em redor das escolas)

^{*}raios de 5 e 10 minutos de marcha (400 e 800m, respectivamente)

Análise Estatística - Objectivo #3

- Procurou-se uma correlação espacial estatisticamente significativa entre as escolas e os restaurantes
- Utilizou-se a função K (de Ripley) bivariada heterogénea

avalia se há dependência espacial entre duas variáveis utiliza uma janela espacial heterogénea

- O conceito de heterogeneidade é crucial!
- As escolas e os EFF não têm igual probabilidade de calhar em todos os pontos de Portugal
 - x Não se pode comparar com uma distribuição totalmente aleatória
- Existe um certo *clustering* de ambos em redor das povoações
 - à necessário introduzir essa correção no cálculo da correlação espacial

Análise Estatística - Objectivo #3

• Não é possível utilizar polígonos e pontos na mesma função K bivariada heterogénea

Procedimento - Dados Geográficos de Portugal Continental

- Obteve-se um ficheiro shapefile com o mapa de Portugal continental e a respectiva divisão em NUTS3
- No mapa é possível identificar dois tipos de marcadores de povoações:
 - Vilas
 - 1.000 50.000 h itantes (ou >50.000 habitantes mas dimensão ≤ 0,5 km²)
 - pontos

Áreas Urbanas

- 50.000 habitante dimensão ≥ 0.5 km²
- polígonos

Análise Estatística - Objectivo #3

- Não é possível utilizar polígonos e pontos na mesma função K bivariada heterogénea
- Procedeu-se a 2 análises separadas, ambas considerando o clustering em redor das Vilas:
 - 1. Dentro dos polígonos das Áreas Urbanas
 - 2. Restante área de Portugal continental (i.e. Áreas Não-Urbanas)
- Calculou-se também intervalos de confiança de 95% com o teste de Monte Carlo

```
rest_urbanas_ppp_temp = ppp(rest_urbanas $x, rest_urbanas $y, as.owin(areas_urbanas), marks = rest_urbanas$Tipo)
rest_urbanas_ppp = cut(rest_urbanas_ppp_temp, breaks=2, labels=c("escola","restaurante"))
rest_rural_ppp_temp = ppp(rest_rural$x, rest_rural$y, as.owin(rural), marks = rest_rural$Tipo)
rest_rural_ppp = cut(rest_rural_ppp_temp, breaks=2, labels=c("escola","restaurante"))
vilas_urbanas_ppp = ppp(vilas_urbanas$x, vilas_urbanas$y, as.owin(areas_urbanas))
vilas_urbanas_ppm = ppm.ppp(vilas_urbanas_ppp)
vilas_rural_ppp = ppp(vilas_rural$x, vilas_rural$y, as.owin(rural))
vilas_rural_ppm = ppm.ppp(vilas_rural_ppp)
raio = 0:1500
 lot(envelope(rest_urbanas_ppp, fun = Kcross.inhom , nsim=19, i="escola", j="restaurante", lambdaX = vilas_urbana
 itle(ylab="Bivariate K Function", line=1)
  egend("topleft",legend = c("Observed K Function", "Expected K Function", "95% CI under H0 (no clustering)"), col
 lot(envelope(rest_rural_ppp, fun = Kcross.inhom , <math>nsim=19, i="escola", j="restaurante", lambdaX = vilas_rural_pp
 itle(ylab="Bivariate K Function", line=1)
axis(1, xaxp=c(275, 275, 1), las=1)
abline(v='275', col=alpha('black', 0.4), lty=2)
   pend("topleft",legend = c("Observed K Function", "Expected K Function", "95% CI under H0 (no clustering)"), col
```

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

ASPECTOS ÉTICOS E LEGAIS

- Os dados alvo de estudo são públicos e acessíveis
- Não foram colhidos ou sistematizados dados pessoais de qualquer tipo
- Não foi colocada em causa a privacidade ou os direitos de qualquer indivíduo ou instituição

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

Schools

- McDonalds
- Telepizza

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

- Burger King
- McDonalds

Amostra

- Concentração no litoral
- Concentração nas Áreas Metropolitanas de Lisboa e Porto
- Tendência ainda mais evidente se agregarmos os dados por NUTS3

Nationwide Distribution of Schools and the Top 3 Fast-Food Brands

- Villages
- Schools
- Burger King
- McDonalds
- Telepizza

Amostra

Schools and the Top 3 Fast-Food Brands in Portugal: Count per NUTS3

Objectivo #1 (distância ao EFF mais próximo)

- Destacam-se várias regiões em que a distância mediana é <2.18km:
 - AM Lisboa
 - AM Porto
 - Alentejo Central
 - Algarve
 - Ave
 - Cávado
 - Médio Tejo
 - Beira Baixa

NUTS3	Distância Mediana (km)
Alentejo Central	0,949
Alentejo Litoral	34,797
Algarve	1,453
Alto Alentejo	10,757
Alto Minho	3,453
Alto Tâmega	18,437
AM de Lisboa	0,760
AM do Porto	1,029
Ave	2,181
Baixo Alentejo	29,069
Beira Baixa	1,486
Beiras e Serra da Estrela	a 16,181
Cávado	1,320
Douro	22,773
Lezíria do Tejo	10,135
Médio Tejo	1,718
Oeste	5,508
Região de Aveiro	3,890
Região de Coimbra	9,083
Região de Leiria	4,587
Tâmega e Sousa	5,709
Terras de Trás-os-Monte	es 29,970
Viseu Dão Lafões	16,044

Objectivo #1 (distância ao EFF mais próximo)

- Destacam-se várias regiões em que a distância mediana é <2.18km:
 - AM Lisboa
 - AM Porto
 - Alentejo Central
 - Algarve
 - Ave
 - Cávado
 - Médio Tejo
 - Beira Baixa

Median Distance (in km) from Schools to the Closest Fast-Food Restaurant

Objectivo #2 (número de EFF a curta distância)

- Continuam a se destacar:
 - AM Lisboa
 - AM Porto
 - Alentejo Central
 - Cávado
- Outros NUTS3 problemáticos (+++ para 400m):
 - Oeste
 - Terras de Trás-os-Montes.

NUTS3	<400m	< 800m
Alentejo Central	0,15	0,36
Alentejo Litoral	0,00	0,00
Algarve	0,08	0,40
Alto Alentejo	0,03	0,26
Alto Minho	0,08	0,33
Alto Tâmega	0,00	0,00
AM de Lisboa	0,23	0,89
AM do Porto	0,16	0,58
Ave	0,05	0,38
Baixo Alentejo	0,00	0,03
Beira Baixa	0,05	0,21
Beiras e Serra da Estrela	0,04	0,19
Cávado	0,16	0,72
Douro	0,10	0,26
Lezíria do Tejo	0,03	0,20
Médio Tejo	0,10	0,47
Oeste	0,16	0,44
Região de Aveiro	0,07	0,23
Região de Coimbra	0,10	0,33
Região de Leiria	0,03	0,18
Tâmega e Sousa	0,10	0,21
Terras de Trás-os-Montes	5 0,13	0,29
Viseu Dão Lafões	0,08	0,25

Objectivo #2 (número de EFF a curta distância)

- Continuam a se destacar:
 - AM Lisboa
 - AM Porto
 - Alentejo Central
 - Cávado
- Outros NUTS3 problemáticos (+++ para 400m):
 - Oeste
 - Terras de Trás-os-Montes.

Mean Number of Restaurants Within 400m of Schools

Objectivo #2 (número de EFF a curta distância)

- Continuam a se destacar:
 - AM Lisboa
 - AM Porto
 - Alentejo Central
 - Cávado
- Outros NUTS3 problemáticos (+++ para 400m):
 - Oeste
 - Terras de Trás-os-Montes.

Mean Number of Restaurants Within 800m of Schools

Objectivo #3 (dependência espacial)

- Áreas Urbanas:
 - x Não é possível rejeitar H0
 - x A distribuição dos EFF pode ser independente das escolas!
- Áreas Não-Urbanas:
 - √ Função K observada > IC 95% da esperada (H0) a partir de ≃275m
 - √ É possível rejeitar H0
 - √ Há um número significativamente superior de EFF a >275m das escolas ao que seria expectável se a sua localização fosse independente

"Urban" Areas

Non-"Urban" Areas

Objectivo #3 (dependência espacial)

- Áreas Urbanas:
 - x Não é possível rejeitar H0
 - x A distribuição dos EFF pode ser independente das escolas!
- Áreas Não-Urbanas:
 - √ Função K observada > IC 95% da esperada (H0) a partir de ≃275m
 - √ É possível rejeitar H0
 - √ Há um número significativamente superior de EFF a >275m das escolas ao que seria expectável se a sua localização fosse independente

Nas Áreas Não-Urbanas, e para uma distância >275m, a localização dos EFF exibe um padrão de *clustering* em redor das escolas!

"Urban" Areas

Non-"Urban" Areas

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

Contexto Teórico

- O aumento do consumo global de AUP é uma tendência preocupante
- A maioria dos alunos consome fast-food semanalmente (70% dos países no Global School-Based Student Health Survey)
- O impacte da acessibilidade à fast-food no seu consumo (e no IMC dos alunos) não é consensual

Contexto Teórico

- O aumento do consumo global de AUP é uma tendência preocupante
- A maioria dos alunos consome fast-food semanalmente (70% dos países no Global School-Based Student Health Survey)
- O impacte da acessibilidade à fast-food no seu consumo (e no IMC dos alunos) não é consensual

Davis et al (2009)	Califórnia (EUA)	 Maior probabilidade de excesso de peso/obesidade nas escolas com EFF a <800m
Laska et al (2010)	Minnesota (EUA)	• Correlação entre o consumo de soda e supermercados a <800 e <1600m da residência
Kwate et al (2010)	Nova Iorque (EUA)	• A localização dos EFF exibe clustering em redor das escolas (+++ escolas públicas)
Buck et al (2013)	Delmenhorst (Alemanha)	 A localização dos EFF não exibe clustering em redor das escolas Sem evidência de impacte do acesso na prevalência de obesidade infantil
Asirvatham et al (2019)	Arkansas (EUA)	 Sem impacte significativo dos EFF em redor das escolas no IMC dos alunos Contudo, a maioria das escolas não permitiam a saída dos alunos durante a hora de almoço
Dornelles et al (2019)	Nova Orleães (EUA)	 Correlação entre o IMC e o número de EFF a <1km do seu commute corridor

AUP: Alimentos Ultra-Processados, nos quais a fast-food se inclui

Contexto Teórico

- O aumento do consumo global de AUP é uma tendência preocupante
- A maioria dos alunos consome fast-food semanalmente (70% dos países no Global School-Based Student Health Survey)
- O impacte da acessibilidade à fast-food no seu consumo (e no IMC dos alunos) não é consensual
- Múltiplas explicações possíveis, que influenciam a escolha do restaurante:
 - ✓ Distância (+++ se tempo para almoçar limitado)
 - ✓ Marketing direccionado (com embalagens coloridas e brindes)
 - ✓ Preços muito atractivos

Limitações

- Não se conseguiu encontrar critérios objetivos para definir EFF
- Existência de outros factores que podem explicar a distribuição dos EFF:
 - ✓ Estabelecimentos do ensino superior (faculdades e politécnicos)
 - ✓ Ruas principais das povoações e outras localizações de interesse comercial
- Existência de outros pontos de acesso aos AUP em redor das escolas (que não EFF)
- Distâncias:
 - ✓ Euclidianas (não têm em consideração a distribuição urbana)
 - √ 400 e 800m são valores de caminhada de 5 e 10min para adultos
- Não se estimou o impacte real na obesidade infantil

Utilidade

- Escassez de trabalhos de análise espacial (na Saúde Pública mas +++ na Nutrição Clínica)
- 1º estudo nacional (e 2º a nível europeu)
- Informação que poderá fundamentar decisões políticas num futuro próximo:
 - ✓ Alocação preferencial de verbas para regiões mais críticas
 - ✓ Alteração do quadro legislativo
- Base de dados pública (futuros projectos de investigação?)

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

CONCLUSÃO

Por Objectivo

- 1. Calcular a distância ao EFF mais próximo e identificar as regiões em que essa distância é tendencialmente menor
 - ✓ AM Lisboa, AM Porto, Alentejo Central, Cávado, Algarve, Ave, Médio Tejo, e Beira Baixa
- 2. Determinar o número de EFF a curta distância e identificar as regiões em que esse número é tendencialmente maior
 - ✓ AM Lisboa, AM Porto, Alentejo Central, Cávado, Oeste e Terras de Trás-os-Montes
- 3. Determinar se os EFF apresentam dependência espacial das escolas
 - √ clustering estatisticamente significativo >275m, excepto nas Áreas Urbanas

CONCLUSÃO

Global

- Os EFF têm uma tendência estatisticamente significativa para se localizar perto das escolas na maioria do território de Portugal continental
- NUTS3 mais críticos: AM Lisboa, AM Porto, Alentejo Central e Cávado
- Será que o fácil acesso à fast-food tem repercussão nas escolhas alimentares dos alunos portugueses?
 - ✓ São necessários mais estudos
 - ✓ Se sim, problema de saúde pública! => Implementar novas políticas

ÍNDICE

- Introdução
- Objetivos
- Metodologia
- Aspectos Éticos e Legais
- Resultados
- Discussão
- Conclusão
- Propostas de Trabalhos Futuros

PROPOSTAS DE TRABALHOS FUTUROS

- Factores que influenciam o consumo de fast-food
 - ✓ Acessibilidade geográfica/fisica
 - ✓ Oferta alimentar na escola
 - ✓ Literacia dos encarregados de educação
 - ✓ Nível socioeconómico do agregado
 - **√** ...

PROPOSTAS DE TRABALHOS FUTUROS

- Haverá uma correlação entre o acesso aos EFF e:
 - 1. o seu consumo por parte dos alunos?
 - 2. o IMC dos alunos?
 - Abordagem #1:
 - √ recolha dados biométricos de alunos de escolas nos vários NUTS3
 - ✓ questionário alimentar sobre o seu consumo de fast-food
 - √ cruzamento com a base de dados do presente trabalho
 - Abordagem #2:
 - ✓ obter a lista dos alunos das várias escolas (via Ministério da Educação?)
 - √ obter os dados biométricos dessas mesmas crianças registados no RSE (via ARS?)
 - √ cruzamento com a base de dados do presente trabalho

RSE: Registo de Saúde Electrónico

ARS: Administrações Regionais de Saúde

Obrigado pela vossa atenção!