1 The Hájek Central Limit Theorem for Simple Random Sampling without Replacement

Suppose we are given a sequence of finite populations, on each of which is defined an \mathbb{R} -valued population characteristic. Suppose on each of the finite populations, we use SRSWOR (of fixed sample size) to select a sample, observe the values of the corresponding population characteristics on the selected elements, and use the Horvitz-Thompson estimator for the population mean. We seek to determine a necessary and sufficient condition for the (associated sequence of) "standardized deviations from the mean" of the Horvitz-Thompson estimator for population mean to converge in distribution to the standard Gaussian distribution.

Theorem 1.1 (The Hájek Central Limit Theorem for SRSWOR)

Suppose we have the following:

- Let $\{U_{\nu}\}_{\nu\in\mathbb{N}}$ be a sequence of finite populations, and $N_{\nu}=|U_{\nu}|\geq 2$ be the population size of U_{ν} . Let the elements of U_{ν} be indexed by $1,2,3,\ldots,N_{\nu}$.
- For each $\nu \in \mathbb{N}$, let $y^{(\nu)}: U_{\nu} \longrightarrow \mathbb{R}$ be a non-constant \mathbb{R} -valued population characteristic. For each $i \in U_{\nu}$, let $y_i^{(\nu)}$ denote $y^{(\nu)}(i)$, the value of $y^{(\nu)}$ evaluated at the i^{th} element of U_{ν} .
- For each $\nu \in \mathbb{N}$, let $n_{\nu} \in \{1, 2, 3, \dots, N_{\nu} 1\}$ be given, and let \mathcal{S}_{ν} be the set of all n_{ν} -element subsets of U_{ν} . Let \mathcal{S}_{ν} be endowed with the uniform probability function, namely

$$P(s) = \frac{1}{\binom{N_{\nu}}{n_{\nu}}}, \text{ for each } s \in \mathcal{S}_{\nu}.$$

• For each $\nu \in \mathbb{N}$, let $\widehat{\overline{Y}}_{\nu} : \mathcal{S}_{\nu} \longrightarrow \mathbb{R}$ be the random variable defined as follows:

$$\widehat{\overline{Y}}_{\nu}(s) := \frac{1}{n_{\nu}} \sum_{i \in s} y_i^{(\nu)}, \text{ for each } s \in \mathcal{S}_{\nu}$$

Let

$$\mu_{\nu} := E\left[\widehat{\overline{Y}}_{\nu}\right] = \frac{1}{N_{\nu}} \sum_{i \in U_{\nu}} y_{i}^{(\nu)} \text{ and } \sigma_{\nu}^{2} := \operatorname{Var}\left[\widehat{\overline{Y}}_{\nu}\right] = \left(1 - \frac{n_{\nu}}{N_{\nu}}\right) \frac{S_{\nu}^{2}}{n_{\nu}},$$

where

$$S_{\nu}^2 \ := \ \frac{1}{N_{\nu}-1} \sum_{i \in U_{\nu}} \left(y_i^{(\nu)} - \mu_{\nu}\right)^2 \ > \ 0 \quad \left(\text{since } y^{(\nu)} : U^{(\nu)} \longrightarrow \mathbb{R} \text{ is non-constant}\right).$$

• For each $\nu \in \mathbb{N}$ and each $\delta > 0$ define:

$$U_{\nu}(\delta) := \left\{ i \in U_{\nu} \mid |y_i^{(\nu)} - \mu_{\nu}| > \delta \sqrt{\sigma_{\nu}^2} \right\} \subset U_{\nu}.$$

Suppose $n_{\nu} \longrightarrow \infty$ and $N_{\nu} - n_{\nu} \longrightarrow \infty$. Then,

$$\lim_{\nu \to \infty} P \left\{ s \in \mathcal{S}_{\nu} \mid \frac{\widehat{\overline{Y}}_{\nu}(s) - \mu_{\nu}}{\sqrt{\sigma_{\nu}^{2}}} < x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt, \text{ for each } x \in \mathbb{R}$$

Study Notes May 7, 2015 Kenneth Chu

if and only if

$$\lim_{\nu \to \infty} \frac{\sum\limits_{i \in U_{\nu}(\delta)} \left(y_i^{(\nu)} - \mu_{\nu} \right)^2}{\sum\limits_{i \in U_{\nu}} \left(y_i^{(\nu)} - \mu_{\nu} \right)^2} = 0, \text{ for every } \delta > 0.$$

OUTLINE OF PROOF For each $\nu \in \mathbb{N}$, deploying the Hájek Sampling Design (see Definition 1.3 below) of size n_{ν} on each U_{ν} yields a pair of samples $\left(s_{\nu}^{(0)}, s_{\nu}^{(1)}\right)$, where $s_{\nu}^{(0)}$ is a simple random sample of U_{ν} of sample size n_{ν} , and $s_{\nu}^{(1)}$ is a Bernoulli sample of U_{ν} .

Lemma 1.2

Bernoulli sampling from a finite population U of size N with individual selection probability n/N, where n = 1, 2, ..., N, is equivalent to the following two-step sampling scheme:

- Step 1: Sample k from Binomial (N, n/N).
- Step 2: Take an SRSWOR sample s of size k from U.

PROOF Note that the collection of possible samples for both schemes is the power set $\mathcal{P}(U)$ of U, i.e. all possible subsets of U. Let P_{B} and P_{1} be the probability functions defined on $\mathcal{P}(U)$ under Bernoulli sampling and the two-step scheme, respectively. Then,

$$P_{\mathrm{B}}(s) = \left(\frac{n}{N}\right)^k \left(1 - \frac{n}{N}\right)^{N-k}, \text{ for each } s \in \mathcal{P}(U), \text{ where } k = |s|.$$

On the other hand,

$$P_{1}(s) = P(S = s \mid S \sim SRSWOR(k, N)) \cdot P(K = k \mid K \sim Binomial(N, n/N))$$

$$= \frac{1}{\binom{N}{k}} \cdot \binom{N}{k} \left(\frac{n}{N}\right)^{k} \left(1 - \frac{n}{N}\right)^{N-k}$$

$$= \left(\frac{n}{N}\right)^{k} \left(1 - \frac{n}{N}\right)^{N-k}, \text{ for each } s \in \mathcal{P}(U), \text{ where } k = |s|.$$

Thus, $P_B = P_1$ as (probability) functions on $\mathcal{P}(U)$. Hence, the two sampling schemes are equivalent.

Definition 1.3 (The Hájek Sampling Design of size n)

Suppose U is a finite population of size $N \in \mathbb{N}$ with $N \geq 3$. Let $n \in \{2, ..., N\}$ be fixed. Let $\mathcal{P}(U)$ be the power set of U. Let $\mathcal{S}(U,n)$ be the collection of all subsets of U with exactly n elements. The **Hájek Sampling Design of size** n on U, by definition, selects an ordered pair of samples $(s^{(0)}, s^{(1)}) \in \mathcal{S}(U, n) \times \mathcal{P}(U)$ as follows:

• First, select $k \in \{0, 1, 2, ..., N\}$ based on the binomial distribution Binomial (N, n/N).

More precisely, let $K \sim \text{Binomial}(N, n/N)$, i.e. let K be a random variable following the binomial distribution with number of trials N and probability of success n/N. In other words,

$$P(K=k) = \binom{N}{k} \cdot \left(\frac{n}{N}\right)^k \cdot \left(1 - \frac{n}{N}\right)^{N-k}, \quad \text{for each } k = 0, 1, 2, \dots, N.$$

Let $k \in \{0, 1, 2, ..., N\}$ be a realization of the random variable $K \sim \text{Binomial}(N, n/N)$.

- If k = n, take an SRSWOR sample $s^{(0)} \subset U$ of size n, and let $s^{(1)} = s^{(0)}$.
- If k > n, take an SRSWOR sample $s^{(1)} \subset U$ of size k. Then, select an SRSWOR sample $s^{(0)}$ of $s^{(1)}$ of size n.

Study Notes May 7, 2015 Kenneth Chu

• If k < n, take an SRSWOR sample $s^{(0)} \subset U$ of size n. Then, select an SRSWOR sample $s^{(1)}$ of $s^{(0)}$ of size k.

Remark 1.4

Note that the Hájek Sampling Design defines implicitly a probability function P_H on $S(U, n) \times P(U)$, making it a finite probability space. More explicitly, for each $(s^{(0)}, s^{(1)}) \in S(U, n) \times P(U)$, writing $k = |s^{(1)}|$, we have

$$P_{\mathrm{H}}\left(s^{(0)},s^{(1)}\right) \ = \begin{cases} \left(\begin{array}{c} N \\ n \end{array} \right) \left(\frac{n}{N} \right)^n \left(1 - \frac{n}{N} \right)^{N-n} \cdot \frac{1}{\left(\begin{array}{c} N \\ n \end{array} \right)}, & \text{if } s^{(0)} = s^{(1)} \\ \left(\begin{array}{c} N \\ k \end{array} \right) \left(\frac{n}{N} \right)^k \left(1 - \frac{n}{N} \right)^{N-k} \cdot \frac{1}{\left(\begin{array}{c} N \\ k \end{array} \right)} \cdot \frac{1}{\left(\begin{array}{c} k \\ n \end{array} \right)}, & \text{if } s^{(0)} \subsetneq s^{(1)} \\ \left(\begin{array}{c} N \\ k \end{array} \right) \left(\frac{n}{N} \right)^k \left(1 - \frac{n}{N} \right)^{N-k} \cdot \frac{1}{\left(\begin{array}{c} N \\ n \end{array} \right)} \cdot \frac{1}{\left(\begin{array}{c} n \\ k \end{array} \right)}, & \text{if } s^{(0)} \supsetneq s^{(1)} \\ 0, & \text{otherwise} \end{cases}$$

Lemma 1.5 (Properties of the Hájek Sampling Design)

Suppose U is a finite population of size $N \in \mathbb{N}$ with $N \geq 3$. Let $n \in \{2, ..., N\}$ be fixed. Let $P_H : \mathcal{S}(U, n) \times \mathcal{P}(U) \longrightarrow [0, 1]$ be the Hájek Sampling Design. Then, the following statements are true:

- (a) The marginal sampling design induced on S(U,n) by P_H is SRSWOR(U,n).
- (b) The marginal sampling design induced on $\mathcal{P}(U)$ by P_H is Bernoulli Sampling from U with unit selection probability n/N.
- (c) For each fixed $k \in \{n+1, n+2, ..., N\}$, the sampling design induced on S(U, k-n) by pushing forward the conditional sampling design of $P_H|_{|S^{(1)}|=k}$ via the following map:

$$\left\{\;\left(s^{(0)},s^{(1)}\right)\in\mathcal{S}(U,n)\times\mathcal{P}(U)\;\middle|\;\left|s^{(1)}\right|=k\;\right\}\longrightarrow\mathcal{S}(U,k-n):\left(s^{(0)},s^{(1)}\right)\longmapsto s^{(1)}\backslash\;s^{(0)}$$

is equivalent to SRSWOR(U, k - n).

(d) For each fixed $k \in \{0, 1, 2, ..., n-1\}$, the sampling design induced on S(U, n-k) by pushing forward the pertinent restriction of P_H via the following map:

$$\left\{\;\left(s^{(0)},s^{(1)}\right)\in\mathcal{S}(U,n)\times\mathcal{P}(U)\;\middle|\;\left|s^{(1)}\right|=k\;\right\}\longrightarrow\mathcal{S}(U,n-k):\left(s^{(0)},s^{(1)}\right)\longmapsto s^{(0)}\backslash\;s^{(1)}$$

is equivalent to SRSWOR(U, n - k).

Proof

(a) For each $s^{(0)} \in \mathcal{S}(U,n)$, it suffices to show that the marginal probability $P_{H}(s^{(0)}, \cdot)$ is given by:

$$P_{\mathrm{H}}\left(s^{(0)}, \cdot\right) = \frac{1}{\left(\begin{array}{c} N \\ n \end{array}\right)}$$

To this end,

$$\begin{split} P_{\mathrm{H}}\Big(s^{(0)},\,\cdot\,\Big) &= \sum_{s^{(1)}=s^{(0)}} P_{\mathrm{H}}\Big(s^{(0)},s^{(1)}\Big) + \sum_{s^{(1)}\supsetneq s^{(0)}} P_{\mathrm{H}}\Big(s^{(0)},s^{(1)}\Big) + \sum_{s^{(1)}\varsubsetneq s^{(0)}} P_{\mathrm{H}}\Big(s^{(0)},s^{(1)}\Big) \\ &= \binom{N}{n} \left(\frac{n}{N}\right)^n \left(1 - \frac{n}{N}\right)^{N-n} \cdot \frac{1}{\binom{N}{n}} \\ &+ \sum_{k=n+1}^N \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1 - \frac{n}{N}\right)^{N-k} \cdot \frac{1}{\binom{N}{k}} \cdot \frac{1}{\binom{k}{n}} \cdot \binom{N-n}{k-n} \\ &+ \sum_{k=0}^{n-1} \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1 - \frac{n}{N}\right)^{N-k} \cdot \frac{1}{\binom{N}{n}} \cdot \frac{1}{\binom{n}{k}} \cdot \binom{n}{k} \end{split}$$

We remark that, for a given $s^{(0)} \in \mathcal{S}(U,n)$ and k > n, the quantity $\binom{N-n}{k-n}$ is the number of elements in $\mathcal{P}(U)$ (i.e. number of subsets of U) of size k containing $s^{(0)}$ as a proper subset. Note also that, for k > n,

$$\frac{1}{\binom{N}{k}} \cdot \frac{1}{\binom{k}{n}} \cdot \binom{N-n}{k-n} \ = \ \frac{k!(N-k)!}{N!} \cdot \frac{n!(k-n)!}{k!} \cdot \frac{(N-n)!}{(k-n)!(N-k)!} \ = \ \frac{n!(N-n)!}{N!} \ = \ \frac{1}{\binom{N}{n}}.$$

Hence, we have

$$P_{\mathbf{H}}\left(s^{(0)},\,\cdot\,\right) \;\; = \;\; \frac{1}{\left(\begin{array}{c}N\\n\end{array}\right)} \cdot \sum_{k=0}^{N} \left(\begin{array}{c}N\\k\end{array}\right) \left(\frac{n}{N}\right)^k \left(1 - \frac{n}{N}\right)^{N-k} \;\; = \;\; \frac{1}{\left(\begin{array}{c}N\\n\end{array}\right)} \cdot 1 \;\; = \;\; \frac{1}{\left(\begin{array}{c}N\\n\end{array}\right)}$$

(b) For each $s^{(1)} \in \mathcal{P}(U)$, it suffices to show that the marginal probability $P_{H}(\cdot, s^{(1)})$ is given by:

$$P_{\mathrm{H}}\Big(\cdot\,,s^{(1)}\Big) \ = \ \Big(\frac{n}{N}\Big)^k\cdot \Big(1-\frac{n}{N}\Big)^{N-k}\,, \quad \text{where } k=|\,s^{(1)}\,|.$$

To this end, first note that either $k=|s^{(1)}| \geq n$ holds, or $k=|s^{(1)}| < n$ holds. In the first case, i.e. $k=|s^{(1)}| \geq n$, we have

$$\begin{split} P_{\mathrm{H}}\Big(\cdot\,,s^{(1)}\Big) &= P\Big(S^{(1)}=s^{(1)} \;\middle|\; K=k\,\Big) \cdot P(K=k) \\ &= \frac{1}{\left(\frac{N}{k}\right)} \cdot \left(\frac{N}{k}\right) \left(\frac{n}{N}\right)^k \left(1-\frac{n}{N}\right)^{N-k} \\ &= \left(\frac{n}{N}\right)^k \cdot \left(1-\frac{n}{N}\right)^{N-k} \;. \end{split}$$

In the second case, i.e. $k = |s^{(1)}| < n$, we have

$$\begin{split} P_{\mathrm{H}}\Big(\cdot,s^{(1)}\Big) &= \sum_{s^{(0)}\supsetneq s^{(1)}} P_{\mathrm{H}}\Big(s^{(0)},s^{(1)}\Big) = \sum_{s^{(0)}\supsetneq s^{(1)}} \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1-\frac{n}{N}\right)^{N-k} \cdot \frac{1}{\binom{N}{n}} \cdot \frac{1}{\binom{n}{k}} \\ &= \binom{N-k}{n-k} \cdot \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1-\frac{n}{N}\right)^{N-k} \cdot \frac{1}{\binom{N}{n}} \cdot \frac{1}{\binom{N}{n}} \cdot \frac{1}{\binom{n}{k}} \\ &= \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1-\frac{n}{N}\right)^{N-k} \cdot \frac{(N-k)!}{(n-k)!(N-n)!} \cdot \frac{n!(N-n)!}{N!} \cdot \frac{k!(n-k)!}{n!} \\ &= \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1-\frac{n}{N}\right)^{N-k} \cdot \frac{k!(N-k)!}{N!} = \binom{N}{k} \left(\frac{n}{N}\right)^k \left(1-\frac{n}{N}\right)^{N-k} \cdot \frac{1}{\binom{N}{k}} \\ &= \left(\frac{n}{N}\right)^k \cdot \left(1-\frac{n}{N}\right)^{N-k} \end{split}$$

We remark that, for a given $s^{(1)} \in \mathcal{P}(U)$ with $|s^{(1)}| = k < n$, the quantity $\binom{N-k}{n-k}$ is the number of elements in $\mathcal{S}(U,n)$ containing $s^{(1)}$ as a proper subset.

(c) Let $\widetilde{P}: \mathcal{S}(U, k-n)$ be the induced sampling design on $\mathcal{S}(U, k-n)$. Then, for each $s^{(2)} \in \mathcal{S}(U, k-n)$, we have

$$\begin{split} \widetilde{P}\Big(s^{(2)}\Big) &= \sum_{s^{(1)} \setminus s^{(0)} = s^{(2)}} P_{H}\Big(s^{(0)}, s^{(1)} \,\Big|\, K = k\Big) \\ &= \sum_{s^{(1)} \setminus s^{(0)} = s^{(2)}} \frac{1}{\binom{N}{k}} \cdot \frac{1}{\binom{k}{n}} \\ &= \binom{N - k + n}{n} \cdot \frac{1}{\binom{N}{k}} \cdot \frac{1}{\binom{k}{n}} \\ &= \frac{(N - k + n)!}{n!} \cdot \frac{k!(N - k)!}{N!} \cdot \frac{n!(k - n)!}{k!} \\ &= \frac{(k - n)!(N - k + n)!}{N!} \\ &= 1 / \binom{N}{k - n} \end{split}$$

This proves that \widetilde{P} is indeed equivalent to SRSWOR(U, k - n).

(d) Let $P': \mathcal{S}(U, n-k)$ be the induced sampling design on $\mathcal{S}(U, n-k)$. Then, for each $s^{(2)} \in \mathcal{S}(U, n-k)$, we have

$$P'\Big(s^{(2)}\Big) = \sum_{s^{(0)} \setminus s^{(1)} = s^{(2)}} P_{\mathbf{H}}\Big(s^{(0)}, s^{(1)} \mid K = k\Big) = \sum_{s^{(0)} \setminus s^{(1)} = s^{(2)}} \frac{1}{\binom{N}{n}} \cdot \frac{1}{\binom{n}{k}}$$

$$= \binom{N - n + k}{k} \cdot \frac{1}{\binom{N}{n}} \cdot \frac{1}{\binom{n}{k}} = \frac{(N - n + k)!}{k!(N - n)!} \cdot \frac{n!(N - n)!}{N!} \cdot \frac{k!(n - k)!}{n!}$$

$$= \frac{(n - k)!(N - n + k)!}{N!} = 1 / \binom{N}{n - k}$$

This proves that P' is indeed equivalent to SRSWOR(U, n - k).

The proof of this Lemma is complete.

Theorem 1.6 (The Hájek Fundamental Lemma)

Suppose U is a finite population of size $N \in \mathbb{N}$ with $N \geq 3$, and $y: U \longrightarrow \mathbb{R}$ is a population characteristic. Let $n \in \{2, \ldots, N\}$ be fixed. Let $\overline{y}_U := \frac{1}{N} \sum_{i \in U} y_i$. Let $\mathcal{S}(U, n) \times \mathcal{P}(U)$ be endowed with the probability function P_H defined

by the Hájek Sampling Design. Define the \mathbb{R}^2 -valued random variable $Y = (Y^{(0)}, Y^{(1)}) : \mathcal{S}(U, n) \times \mathcal{P}(U) \longrightarrow \mathbb{R}^2$ as follows: For any $(s^{(0)}, s^{(1)}) \in \mathcal{S}(U, n) \times \mathcal{P}(U)$,

$$Y^{(0)}\Big(s^{(0)}\Big) \ := \ \frac{1}{n} \sum_{i \in s^{(0)}} \left(y_i - \overline{y}_U\right), \quad \text{and} \quad Y^{(1)}\Big(s^{(1)}\Big) \ := \ \frac{1}{n} \sum_{i \in s^{(1)}} \left(y_i - \overline{y}_U\right).$$

Then,

$$E\left[\left(\frac{Y^{(0)}}{\sqrt{\text{Var}\big[Y^{(1)}\,\big]}} - \frac{Y^{(1)}}{\sqrt{\text{Var}\big[Y^{(1)}\,\big]}}\right)^2\right] \ = \ \frac{E\Big[\left(Y^{(0)} - Y^{(1)}\right)^2\Big]}{\text{Var}\big[Y^{(1)}\,\big]} \ \le \ \sqrt{\frac{1}{n} + \frac{1}{N-n}}$$

PROOF We write $k := |s^{(1)}|$. First, observed that

$$Y^{(0)} - Y^{(1)} = \begin{cases} \frac{|k-n|}{n} \cdot \frac{1}{|k-n|} \cdot \sum_{i \in s^{(0)} \setminus s^{(1)}} (y_i - \overline{y}_U), & \text{if } k < n \\ \frac{|k-n|}{n} \cdot \frac{1}{|k-n|} \cdot \sum_{i \in s^{(1)} \setminus s^{(0)}} (y_i - \overline{y}_U), & \text{if } k > n \end{cases}$$

By Lemma 1.5(c,d), for $k := |s^{(1)}|$ fixed, we may regard $s^0 \setminus s^{(1)}$ and $s^1 \setminus s^{(0)}$ as realizations from SRSWOR(U, |k-n|). Hence,

$$E\left[\left.\left(Y^{(0)} - Y^{(1)}\right) \;\middle|\; \left|s^{(1)}\right| = k\;\right] = \frac{\left|k - n\right|}{n} \cdot E\left[\,\widehat{\overline{T}}_{\text{SRSWOR}}^{\text{HT}}\,\right] = 0$$

Hence,

$$\begin{split} E\bigg[\left.\left(Y^{(0)} - Y^{(1)}\right)^2 \, \Big| \, \left|s^{(1)}\right| &= k\, \bigg] &= \operatorname{Var}\bigg[\left.Y^{(0)} - Y^{(1)}\, \right| \, \left|s^{(1)}\right| &= k\, \bigg] \\ &= \frac{\left|k - n\,\right|^2}{n^2} \left(1 - \frac{\left|k - n\,\right|}{N}\right) \frac{1}{\left|k - n\,\right|} \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U\right)^2}{N - 1} \\ &= \frac{\left|k - n\,\right|}{n^2} \left(\frac{N - \left|k - n\,\right|}{N - 1}\right) \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U\right)^2}{N} \\ &\leq \frac{\left|k - n\,\right|}{n^2} \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U\right)^2}{N} \end{split}$$

Consequently,

$$\begin{split} E \bigg\{ \left(Y^{(0)} - Y^{(1)} \right)^2 \bigg\} &= E \bigg\{ E \bigg[\left(Y^{(0)} - Y^{(1)} \right)^2 \bigg| \left| s^{(1)} \right| = k \bigg] \bigg\} \\ &\leq E \bigg\{ E \bigg[\frac{\left| k - n \right|}{n^2} \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U \right)^2}{N} \bigg| \left| s^{(1)} \right| = k \bigg] \bigg\} \\ &= \frac{1}{n^2} \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U \right)^2}{N} \cdot E \{ \left| k - n \right| \right\} &\leq \frac{1}{n^2} \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U \right)^2}{N} \cdot \sqrt{E \Big\{ \left| k - n \right|^2 \Big\}} \\ &\leq \frac{1}{n^2} \frac{\sum\limits_{i \in U} \left(y_i - \overline{y}_U \right)^2}{N} \cdot \sqrt{n \left(1 - \frac{n}{N} \right)}, \end{split}$$

where we used the Cauchy-Schwarz inequality (Theorem 9.3, [2]) for the second last inequality. Next, we compute $\operatorname{Var}[Y^{(1)}]$. To this end, note that

$$Y^{(1)} = \sum_{i \in U} Z_i,$$

where, for each $i \in U$,

$$Z_i: \mathcal{S}(U,n) \times \mathcal{P}(U) \longrightarrow \mathbb{R}: \left(s^{(0)}, s^{(1)}\right) \longmapsto \begin{cases} \frac{1}{n} \left(y_i - \overline{y}_U\right), & \text{if } i \in s^{(1)} \\ 0, & \text{if } i \notin s^{(1)} \end{cases}$$

Note that, since Z_i depends only on $s^{(1)}$, which can be regarded as a Bernoulli sample from U, by Lemma 1.5, we see that the Z_i , $i \in U$, are independent, and

$$P\left(Z_i = \frac{1}{n}(y_i - \overline{y}_U)\right) = \frac{n}{N}$$
, and $P(Z_i = 0) = 1 - \frac{n}{N}$.

Thus,

$$\operatorname{Var}[Z_i] = \left(\frac{y_i - \overline{y}_U}{n}\right)^2 \cdot \frac{n}{N} \left(1 - \frac{n}{N}\right),$$

which in turn imples

$$\operatorname{Var}\left[Y^{(1)}\right] = \sum_{i \in U} \operatorname{Var}\left[Z_{i}\right] = \sum_{i \in U} \left(\frac{y_{i} - \overline{y}_{U}}{n}\right)^{2} \cdot \frac{n}{N} \left(1 - \frac{n}{N}\right) = \cdots = \frac{1}{n^{2}} \frac{\sum_{i \in U} \left(y_{i} - \overline{y}_{U}\right)^{2}}{N} \cdot n \left(1 - \frac{n}{N}\right)$$

Thus, we see that

$$\frac{E\left[\left(Y^{(0)} - Y^{(1)}\right)^{2}\right]}{\operatorname{Var}\left[Y^{(1)}\right]} \leq \frac{\frac{1}{n^{2}} \frac{\sum_{i \in U} \left(y_{i} - \overline{y}_{U}\right)^{2}}{N} \cdot \sqrt{n\left(1 - \frac{n}{N}\right)}}{\frac{1}{n^{2}} \frac{\sum_{i \in U} \left(y_{i} - \overline{y}_{U}\right)^{2}}{N} \cdot n\left(1 - \frac{n}{N}\right)} = \frac{1}{\sqrt{n\left(1 - \frac{n}{N}\right)}} = \cdots = \sqrt{\frac{1}{n} + \frac{1}{N - n}}.$$

This completes the proof of Hájek's Fundamental Lemma.

Corollary 1.7

Suppose we have the following.

- Let $\{U_{\nu}\}_{\nu\in\mathbb{N}}$ be a sequence of finite populations, and $N_{\nu}=|U_{\nu}|\geq 2$ be the population size of U_{ν} . Let the elements of U_{ν} be indexed by $1,2,3,\ldots,N_{\nu}$.
- For each $\nu \in \mathbb{N}$, let $y^{(\nu)}: U_{\nu} \longrightarrow \mathbb{R}$ be a non-constant \mathbb{R} -valued population characteristic. For each $i \in U_{\nu}$, let $y_i^{(\nu)}$ denote $y^{(\nu)}(i)$, the value of $y^{(\nu)}$ evaluated at the i^{th} element of U_{ν} . Let $\overline{y}_{U_{\nu}} := \frac{1}{N_{\nu}} \cdot \sum_{i \in U} y_i^{(\nu)}$.
- For each $\nu \in \mathbb{N}$, let $n_{\nu} \in \{1, 2, 3, \dots, N_{\nu} 1\}$ be given, and let $p_{\nu} : \mathcal{S}(U_{\nu}, n_{\nu}) \times \mathcal{P}(U_{\nu}) \longrightarrow [0, 1]$ be the Hájek Sampling Design of size n_{ν} on U_{ν} .
- For each $\nu \in \mathbb{N}$, let $Y_{\nu} = \left(Y_{\nu}^{(0)}, Y_{\nu}^{(1)}\right) : \mathcal{S}(U_{\nu}, n_{\nu}) \times \mathcal{P}(U_{\nu}) \longrightarrow \mathbb{R}^2$ be the \mathbb{R}^2 -valued random variable defined as follows: For any $\left(s_{\nu}^{(0)}, s_{\nu}^{(1)}\right) \in \mathcal{S}(U_{\nu}, n_{\nu}) \times \mathcal{P}(U_{\nu})$,

$$Y_{\nu}^{(0)}\Big(s_{\nu}^{(0)}\Big) \ := \ \frac{1}{n_{\nu}} \sum_{i \in s_{\nu}^{(0)}} \Big(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\Big) \,, \quad \text{and} \quad Y_{\nu}^{(1)}\Big(s_{\nu}^{(1)}\Big) \ := \ \frac{1}{n_{\nu}} \sum_{i \in s_{\nu}^{(1)}} \Big(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\Big) \,.$$

Then, the following implication holds:

$$\frac{n_{\nu} \longrightarrow \infty}{N_{\nu} - n_{\nu} \longrightarrow \infty} \\
\frac{Y_{\nu}^{(1)}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]}} \stackrel{\mathcal{L}}{\longrightarrow} N(0,1)$$

$$\Longrightarrow \frac{Y_{\nu}^{(0)}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(0)}\right]}} \stackrel{\mathcal{L}}{\longrightarrow} N(0,1).$$

PROOF By the Hájek Fundamental Lemma (Theorem 1.6), we have for each $\nu \in \mathbb{N}$,

$$E\left[\left(\frac{Y_{\nu}^{(0)}}{\sqrt{\text{Var}[Y_{\nu}^{(1)}]}} - \frac{Y_{\nu}^{(1)}}{\sqrt{\text{Var}[Y_{\nu}^{(1)}]}}\right)^{2}\right] \leq \sqrt{\frac{1}{n_{\nu}} + \frac{1}{N_{\nu} - n_{\nu}}}.$$

Thus, the hypotheses $n_{\nu} \longrightarrow \infty$ and $N_{\nu} - n_{\nu} \longrightarrow \infty$ together imply that

$$\frac{Y_{\nu}^{(0)}}{\sqrt{\text{Var}[Y_{\nu}^{(1)}]}} - \frac{Y_{\nu}^{(1)}}{\sqrt{\text{Var}[Y_{\nu}^{(1)}]}}$$

converges to 0 in the second mean (Definition 3, p.4, [1]), hence also in probability (by Theorem 1(b), p.4, [1]). This convergence to 0 in probability and the hypothesis $Y_{\nu}^{(1)} / \sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]} \stackrel{\mathcal{L}}{\longrightarrow} N(0,1)$ then together imply, by Slutsky's Theorem (Theorem 6(b), p.39, [1]),

$$\frac{Y_{\nu}^{(0)}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]}} \stackrel{\mathcal{L}}{\longrightarrow} N(0,1).$$

Next, recall from the proof of the Hájek Fundamental Lemma (Theorem 1.6) that

$$\operatorname{Var}\left[Y_{\nu}^{(1)}\right] = \cdots = \frac{1}{n_{\nu}} \left(1 - \frac{n_{\nu}}{N_{\nu}}\right) \frac{\sum_{i \in U_{\nu}} \left(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\right)^{2}}{N_{\nu}}.$$

On the other hand,

$$\operatorname{Var}\left[Y_{\nu}^{(0)}\right] = \operatorname{Var}\left[\frac{1}{n_{\nu}} \sum_{i \in \nu^{(0)}} \left(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\right)\right] = \operatorname{Var}\left[\frac{1}{n_{\nu}} \sum_{i \in \nu^{(0)}} y_{i}^{(\nu)}\right] = \frac{1}{n_{\nu}} \left(1 - \frac{n_{\nu}}{N_{\nu}}\right) \frac{\sum_{i \in U_{\nu}} \left(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\right)^{2}}{N_{\nu} - 1}$$

Hence,

$$\frac{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(0)}\right]}} = \left(\frac{\frac{1}{n_{\nu}} \cdot \left(1 - \frac{n_{\nu}}{N_{\nu}}\right) \cdot \sum_{i \in U_{\nu}} \left(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\right)^{2} / N_{\nu}}{\frac{1}{n_{\nu}} \cdot \left(1 - \frac{n_{\nu}}{N_{\nu}}\right) \cdot \sum_{i \in U_{\nu}} \left(y_{i}^{(\nu)} - \overline{y}_{U_{\nu}}\right)^{2} / (N_{\nu} - 1)}\right)^{1/2} = \sqrt{\frac{N_{\nu} - 1}{N_{\nu}}} \longrightarrow 1, \text{ as } \nu \longrightarrow \infty.$$

Note that $\left\{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]} \middle/ \sqrt{\operatorname{Var}\left[Y_{\nu}^{(0)}\right]}\right\}_{\nu \in \mathbb{N}}$ is a sequence of real numbers; we may regard it as a sequence of (constant) \mathbb{R} -valued random variables (defined on $\mathcal{S}(U_{\nu}) \times \mathcal{P}(U_{\nu})$). Its convergence (as a sequence of real numbers) to 1, as we have established above, implies that it converges (as constant \mathbb{R} -valued random variables) almost surely to 1, hence also in probability as well as in distribution (see Theorem 1, p.4, [1]). By a corollary of Slutkey's Theorem (Corollary and Example 6, p.40, [1]), we therefore have

$$\frac{Y_{\nu}^{(0)}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(0)}\right]}} \ = \ \frac{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(0)}\right]}} \cdot \frac{Y_{\nu}^{(0)}}{\sqrt{\operatorname{Var}\left[Y_{\nu}^{(1)}\right]}} \ \stackrel{\mathcal{L}}{\longrightarrow} \ 1 \cdot N(0,1) \ = \ N(0,1).$$

This completes the proof of the Corollary.

References

- [1] FERGUSON, T. S. A Course in Large Sample Theory, first ed. Texts in Statistical Science. CRC Press, 1996.
- [2] JACOD, J., AND PROTTER, P. Probability Essentials. Springer-Verlag, New York, 2004. Universitext.