FT II – Difusão de Eletrolitos

Felipe B. Pinto 61387 – MIEQB

24 de julho de 2024

Conteúdo

1	Velocidade do ion	2	Exemplo 1	6
2	Equação Nerst-Plank	3	4 Ionic conductivity and diffusion at	
3	Tabela dos coeficientes de difusão de		infinite dilution	7
	ions em agua a 25°C	4		

$$v_i = u_i \left(
abla \mu_i + z_i \, F \, \,
abla \Psi
ight)$$

$$\mu_i = \mu_i^0 + RT \ln a_i;$$
 $\nabla \mu_i = \frac{RT}{c_i} \nabla c_i;$ $\mathscr{D}_i = u_i RT$ (Relação Einstein)

$$-J_i = c_i v_i = \mathscr{D}$$

 μ_i : Mobilidade do ion

 $\nabla \mu_i$: Potencial químico

 z_i : Carga ionica

F: $9.649 \, \mathrm{E}^4 \, \mathrm{C/mol}$ (Constante de Faraday)

 Ψ : Potencial eletrostático

 u_i : Propriedade física do ion: $u_i \sim (6 \pi \eta R_0)^{-1}$ (Stokes-Einstein)

 R_0 Raio efetivo (Efeitos solvatação)

$$J_i - J_i = \mathscr{D}\left(
abla c_i + c_i\, z_i\, rac{F\,\,
abla\Psi}{R\,T}
ight)$$

Soluções Diluidas

Demonstration

$$\begin{split} &-J_{i}=-c_{i}\,v_{i}=-c_{i}\,\left(-u_{i}\left(\nabla\mu_{i}+z_{i}\,F\,\,\nabla\Psi\right)\right)=c_{i}\,u_{i}\,\left(\left(\frac{R\,T}{c_{i}}\,\,\nabla c_{i}\right)+z_{i}\,F\,\,\nabla\Psi\right)=\\ &=\mathscr{D}\,\left(\nabla c_{i}+z_{i}\,c_{i}\,\frac{F\,\,\nabla\Psi}{R\,T}\right); \end{split}$$

$$\mu_i = \mu_i^0 + RT \ln a_i \wedge a_i \xrightarrow{\text{Sol diluidas}} c_i \implies \nabla \mu_i = \frac{RT}{c_i} \nabla c_i;$$

$$\mathscr{D}_i = u_i R T$$
 (Relação Einsntein)

Tabela dos coeficientes de difusão de ions em agua a 25°C

3

Cation	\mathscr{D}_i	Anion	\mathscr{D}_i
H ⁺	9.31	OH ⁻	5.28
$\mathrm{Li}^{^{+}}$	1.03	F^{-}	1.47
Na ⁺	1.33	Cl ⁻	2.03
K^{+}	1.96	Br ⁻	2.08
$\mathrm{Rb}^{\scriptscriptstyle +}$	2.07	I-	2.05
Cs ⁺	2.06	NO ₃	1.90
Ag^{+}	1.65	CH₃COO⁻	1.09
$\mathrm{NH_4}^+$	1.96	CH ₃ CH ₂ COO ⁻	0.95
$N(C_4H_9)_4^{+}$	0.52	$B(C_6H_5)_4^-$	0.53
Ca ²⁺	0.79	SO ₄	1.06
${ m Mg}^{2+}$	0.71	CO ₃ ²⁻	0.92
La ³⁺	0.62	Fe(CN) ₆ ³⁻	0.98

Note: Values at infinite dilution in $1 E^{-5} \text{ cm}^2/\text{s}$. Calculated from data of Robinson and Stokes (1960)

3.1 Eletrolitos Fortes (1:1)

$$J_+-J_-=i/\left|z
ight|$$

i Densidade de corrente

+ Cation

z Carga ionica

Anion

3.2 Fluxo dos ioes

$$J_1 = -rac{2\,\mathscr{D}_2\,\,
abla c_1 + i/\,|z|}{1 + \mathscr{D}_2/\mathscr{D}_1}$$

$$J_{+} = J_{-} \iff i = 0$$
 (Sem corrente)
$$J_{1} = \frac{i/|z|}{1 + \mathscr{D}_{2}/\mathscr{D}_{1}} \iff \nabla c = 0$$
 (muito agitado)

$$\mathscr{D} = \frac{n}{\sum_{i=1}^{n} \mathscr{D}_{i}^{-1}} = H(\mathscr{D}_{i}); \qquad t_{i} = \frac{\mathscr{D}_{i}}{\sum \mathscr{D}_{j}}$$

- t_i Numero de transferencia (fração da corrente transportada pelo ion i)
- H Média harmonica

Exemplo 1

Difusão Qual o valor do coeficiente de difusão a 25 °C de HCl em água? Calcule o nº de transferência para o protão nestas condições.

Resposta

$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

Coeficiente de difusão

$$\mathscr{D} = \frac{2}{\mathscr{D}_{H,O^{+}}^{-1} + \mathscr{D}_{Cl^{-}}^{-1}} \cong \frac{2}{9.31^{-1} + 2.03^{-1}} \cong 3.333 \,\mathrm{cm}^{2}/\mathrm{s};$$

Numero de transferencia para H₃O⁺

$$t_{\rm H_3O^+} = \frac{\mathscr{D}_{\rm H_3O^+}}{\mathscr{D}_{\rm H_3O^+} + \mathscr{D}_{\rm Cl^-}} = \left(1 + \mathscr{D}_{\rm Cl^-}/\mathscr{D}_{\rm H_3O^+}\right)^{-1} = \left(1 + 2.03/9.31\right)^{-1} \cong \\ \cong 82.099\,\%$$

4 Ionic conductivity and diffusion at infinite dilution

Inorganic Cations	$rac{arLambda_{\pm}}{\mathrm{E}^{-4}\mathrm{m}^2\mathrm{S/mol}}$	$rac{\mathscr{D}}{\mathrm{E}^{-5}\mathrm{cm}^2/\mathrm{s}}$
Ag ⁺	61.90	1.648
$\frac{1}{3}$ Al ³⁺	19.00	0.541
$\frac{1}{2} Ba^{2+}$	63.60	0.847
$\frac{1}{2} Be^{2+}$	45.00	0.599
$\frac{1}{2}$ Ca ²⁺	59.47	0.792
$\frac{1}{2}$ Cd ²⁺	54.00	0.719
$\frac{1}{3}$ Ce ³⁺	69.80	0.620
$\frac{1}{2}$ Co ²⁺	55.00	0.732
$\frac{1}{3} [Co(NH_3)_6]^{3+}$	101.90	0.904
$\frac{1}{3} [Co(en)_3]^{6+}$	74.70	0.663
$\frac{1}{6}\left[\mathrm{Co_2}(\mathrm{trien})_3\right]^{6+}$	69.00	0.306
$\frac{1}{3}$ Cr ³⁺	67.00	0.595
Cs ⁺	77.20	2.056
Inorgania Aniona	$arLambda_\pm$	${\mathscr D}$
Inorganic Anions	$\overline{\mathrm{E}^{-4}\mathrm{m}^2\mathrm{S/mol}}$	$\overline{\mathrm{E}^{-5}\mathrm{cm}^2/\mathrm{s}}$
Au(CN) ₂	50.00	1.331
$Au(CN)_4^-$	36.00	0.959
$B(C_6H_5)_4^-$	21.00	0.559
Br ⁻	78.10	2.080
Br_3^-	43.00	1.145
BrO_3^-	55.70	1.483
CN^-	78.00	2.077
CNO ⁻	64.60	1.720
$\frac{1}{2} CO_3^{2-}$	69.30	0.923
Cl ⁻	76.31	2.032
ClO_2^-	52.00	1.385
ClO_3^-	64.60	1.720
ClO ₄	67.30	1.792
1 = - /> -2		0.050
$\frac{1}{3} [Co(CN)_6]^{3-}$	98.90	0.878
½ [Co(CN) ₆] ³⁻ ½ CrO ₄ ²⁻	98.90 85.00	0.878 1.132