In the Claims:

Please amend the claims as follows:

1-8 (cancelled)

 (currently amended) A method of making artificial dental bridges, comprising: prior to carrying out a one step heat treating treatment

applying a <u>premixed</u> suspension comprising <u>aluminum oxide</u> particles to densely sintered high strength ceramic individual bridge parts;

drying the suspension eomprising particles to form a layer joint of particles between the bridge parts; and

applying a suspension $ext{of}$ comprising glass material to the $ext{layer}$ $ext{joint}$ of particles; and

after applying the heat treating the individual bridge parts with the applied layer of particles and the suspension of glass material <u>carrying out the with-a</u> one step heat treatment to melt the glass material, thereby forming particle reinforced glass between the bridge parts wherein the particles are entirely surrounded by glass after the one step heat treatment.

10. (previously presented) The method according to claim 9, wherein the suspension comprising particles comprises particles, dispersant for the articles, binder for the particles, and a solvent.

- 11. (cancelled)
- (previously presented) The method according to claim 9, wherein the suspension of glass comprises SiO₂, B₂O₃, Al₂O₃, La₂O₃, and TiO₂.
- 13. (previously presented) The method according to claim 9, wherein the individual bridge parts comprise high strength ceramic material with a relative density greater than 98%.
- 14. (previously presented) The method according to claim 9, wherein the individual bridge parts comprise one or more of the oxides Al₂O₃, TiO₂, MgO, ZrO₂ or ZrO₂ with up to 10 mol % Y₂O₃, MgO or CaO.
- 15. (previously presented) The method according to claim 9, wherein the suspension of glass has a surface energy at a joining temperature lower than a surface energy for the densely sintered individual bridge parts.
- 16. (previously presented) The method according to claim 9, wherein the suspension of glass material comprises the same metal oxides as the densely sintered high strength ceramic individual bridge parts in an amount less than a degree of saturation of the metal oxides in the suspension of glass material at the joining temperature.
- 17. (previously presented) The method according to claim 9, wherein the glass material has a coefficient of thermal expansion that is less than or equal to a coefficient of thermal

expansion of the densely sintered high strength ceramic individual bridge parts.

- 18. (previously presented) The method according to claim 9, wherein the glass material comprises SiO_2 32 mol %, B_2O_3 24 mol %, Al_2O_3 18 mol %, and La_2O_3 12 mol %.
- 19. (previously presented) The method according to claim 9, wherein the particles in the layer of particles are large enough such that drying stresses on removal of solvent from the suspension of glass material do not lead to catastrophic failure of the dental bridge prior to melting and solidification of the glass material.