Exercise 1.1: Let P be a probability measure on (Ω, \mathcal{F})

i) Monotonicity: If $A \subset B$ then $P(B) - P(A) = P(B - A) \ge 0$.

Let $C = B \cap A^c$. Then $A \cup C = B$. Because A and C are disjoint, we have that $P(B) = P(A \cup C) = P(A) + P(C)$. Then $P(B) - P(A) = P(C) = P(B \setminus A)$ which is greater or equal to zero since $P(C) \geq 0$.

ii) Subadditivity: For $\langle A_m \rangle \in \mathcal{F}$ and $A \subset \cup^{\infty} A_m$ it follows that $P(A) \leq \sum^{\infty} P(A_m)$

Since $\langle A_m \rangle \in \mathcal{F}$ and \mathcal{F} is a sigma field, there exists $\langle B_m \rangle$ such that $B_i \cap B_j = \emptyset$ for $i \neq j$ and $\cup^{\infty} A_m = \cup^{\infty} B_m$ [2, pp. 17–18]. From (i) we know that $A \subset \cup B_m \implies P(A) \leq P(\cup B_m)$. Then

$$P(A) \le P(\cup^{\infty} B_m) = \sum_{m=1}^{\infty} P(B_m) \le \sum_{m=1}^{\infty} P(A_m)$$

The (*) inequality follows from how we define each element of $\langle B_m \rangle$:

$$B_i = A_i \setminus [A_1 \cup \cdots A_{i-1}] \implies P(B_i) = P(A_i) - \sum_{i=1}^{i-1} P(A_j)$$

 $\implies P(B_i) \le P(A_i), \ \forall i$

iii) Continuity from below: If $A_i \uparrow A$ then $P(A_i) \uparrow P(A)$

By supposition, we know that for every i we have $A_i = \bigcup_{j=1}^i A_j$

$$\lim_{i \to \infty} P(A_i) = \lim_{i \to \infty} P(\cup^i A_j) = P(A)$$

(I'm not sure if this is rigorous enough but ...)

iv) Continuity from above: If $A_i \downarrow A$ then $P(A_i) \downarrow P(A)$

For every i we have that $A_i = \bigcap_{j=1}^i A_j$

$$\lim_{i \to \infty} P(A_j) = \lim_{i \to \infty} P(\cap^i A_j) = P(A)$$

Exercise 1.2:

i) If \mathcal{F}_i , $i \in I$ are σ -fields then $\cap_{i \in I} \mathcal{F}_i$ is.

Suppose \mathcal{F}_i are σ -fields.

- Consider $A \in \cap_{i \in I} \mathcal{F}_i$. Then $\exists i$ such that $A \in \mathcal{F}_i$. So $A^c \in \mathcal{F}_i$ because \mathcal{F}_i is a σ -field σ -field. Then $A^c \in \cap_{i \in I} \mathcal{F}_i$.
- Consider $A_j \in \cap_{i \in I} \mathcal{F}_i$ a countable sequence of sets. Then $\forall j, \forall i, A_j \in \mathcal{F}_i$. Then $\cup A_j \in F_i$, $\forall i$ because \mathcal{F}_i is a σ -field. Then $\cup A_j \in \cap_{i \in I} \mathcal{F}_i$

ii) Use the result in (i) to show if we are given a set Ω and a collection \mathcal{A} of subsets of Ω then there is a smallest σ -field containing \mathcal{A} .

Let \mathcal{A} be a collection of subsets of Ω . let $\mathcal{F}_{\mathcal{A}}$ be the set of sigma fields that contain \mathcal{A} . Define $\mathcal{F} = \cap_{\mathcal{A}} \mathcal{F}_{\mathcal{A}}$. From (i) we know that \mathcal{F} is a sigma field. By definition \mathcal{F} is the smallest sigma field containing \mathcal{A} since for sigma field \mathcal{C} such that $\mathcal{A} \subset \mathcal{C}$, we have $\mathcal{F} = \cap_{\mathcal{A}} \mathcal{F}_{\mathcal{A}} \subset \mathcal{C}$

With $(\mathbb{R}, \mathcal{F}, P)$ and \mathcal{B} the borel sets, define a random variable as a real valued function such that $X : \Omega \to \mathbb{R}$ is \mathcal{F} measurable for every borel set

$$X^{-1}(B) \in \mathcal{F}, \quad B \in \mathcal{B}$$

Then X induces a probability measure on $\mathbb R$ called its distribution

$$\mu(A) = P(X \in A) = P(X^{-1}(A)), \quad A \in \mathcal{B}$$

The **distribution function** is defined as

$$F(x) = P(X \le x)$$

When the distribution function $F(x) = P(X \le x)$ has the form

$$F(x) = \int_{-\infty}^{x} f(y)dy$$

we say that X has **density function** f.

Exercise 1.5: A σ -field \mathcal{F} is said to be countably generated if there is a countable collection $\mathcal{C} \subset \mathcal{F}$ so that $\sigma(\mathcal{C})$. Show that \mathcal{R}^d is countably generated.

 \mathcal{R}^d are the Borel subsets of \mathbb{R}^n . First let's look at \mathcal{R} . We'll show that $\mathcal{G} = \{[q, \infty) : q \in \mathbb{Q}\}$ generates \mathcal{R} . Consider an arbitrary open interval $(a, b) \subset \mathbb{R}$, a < b. See that

$$[b,\infty)^c \cap \bigcup_{n=0}^{\infty} [a+1/n,\infty) = (-\infty,b) \cap (a,\infty) = (a,b)$$
 (1)

Remembering that every open set of real numbers is the countable union of disjoint open intervals [2, p. 42], we observe that using 1 as a way to generate open intervals, we can also generate any open set. Therefore $\mathcal{R} \subset \sigma(\mathcal{G})$. To see that $\sigma(\mathcal{B}) \subset \mathcal{R}$, observe that any interval $[q, \infty)$ can be generated by unions, intersections, and complements of open sets (very easy to show). Therefore $\mathcal{R} = \sigma(\mathcal{G})$

Since \mathcal{G} is countable, $\mathcal{G} \times \cdots \times \mathcal{G}$ is countable and $\sigma(\mathcal{G} \times \cdots \times \mathcal{G}) = \mathcal{R} \times \cdots \times \mathcal{R} = \mathcal{R}^d$.

Exercise 1.6: Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

We want to show that $Z^{-1}(B) \in \mathcal{F}$ given $B \in \mathcal{R}$ (borel set). By supposition we have $Z^{-1}(B) \cap A = X^{-1}(B) \cap A$ and $Z^{-1}(B) \cap A^c = Y^{-1}(B) \cap A^c$. Therefore,

$$Z^{-1}(B) = (Z^{-1}(B) \cap A) \cup (Z^{-1}(B) \cap A^c)$$
$$= (X^{-1}(B) \cap A) \cup (Y^{-1}(B) \cap A^c) \stackrel{*}{\in} \mathcal{F}$$

To show (*), observe that since X and Y are random variables, we know that $X^{-1}(B), Y^{-1}(B) \in \mathcal{F}$. Then since $A, A^c \in \mathcal{F}$ it's clear that both $X^{-1}(B) \cap A$ and $Y^{-1}(B) \cap A^c \in \mathcal{F}$. So their intersection must also be an element of \mathcal{F} .

Exercise 1.8: Show that a distribution function has at most countably many discontinuities.

Let $D = \{x \in \mathbb{R} : F(x-) \neq F(x+)\}$. Since F is increasing, $x \in D \implies F(x-) < F(x+) \implies F(x+)-F(x-) > 0$. However, it's also clear from the fact that F is increasing and $F(-\infty) = 0, F(\infty) = 1$ that $\sum_{x \in D} F(x+) - F(x-) \le 1 < \infty$. Therefore D must be countable infinite since the sum over the terms is finite [1, p. 11].

Alternate solution partially inspired from a clever answer on stack exchange Let D be the set of points of discontinuity. Since F(x-) < F(x+) for all $x \in D$, choose a rational r_x such that $F(x-) < r_x < F(x+)$. Because F is increasing, the intervals (F(x-), F(x+)) are mutually disjoint. So $x \to r_x$ is an injective function from $D \to \mathbb{Q}$. Therefore D must be countably infinite.

Exercise 1.9: Show that if $F(x) = P(X \le x)$ is continuous then $Y = F_X(X)$ has a uniform distribution on (0,1). That is, if $y \in [0,1]$, $P(Y \le y) = y$

Suppose $F_X(x) = P(X \le x)$ is continuous. Let $Y = F_X(X)$. Then for $y \in [0, 1]$

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$= P(X \le F_X^{-1}(y)) \qquad \text{(using } F^{-1} \text{ on page 6)}$$

$$= F_X(F_X^{-1}(y)) = y$$

Exercise 1.10: Suppose that X has density f, $P(\alpha \le X \le \beta) = 1$ and g is a function that is increasing and differentiable on (α, β) . Then g(X) has density $f(g^{-1}(x))/g'(g^{-1}(x))$ for $x \in (g(\alpha), g(\beta))$ and 0 otherwise. When g(x) = ax + b with $a \ge 0$ the answer is f((y - b)/a)/a.

Let $F_{g(X)}(x)$ be the distribution function for g(x). Then the density function is $h = \frac{d}{dx}F_{g(X)}(x)$. Then

$$F_{g(X)}(x) = P(g(X) \le x)$$

= $P(X \le g^{-1}(x))$ (this exists because g is increasing)
= $F_X(g^{-1}(x))$

So by definition

$$h = F_{g(X)}(x) = \frac{d}{dx} F_X(g^{-1}(x))$$

$$= f(g^{-1}(x)) \left(\frac{d}{dx} g^{-1}(x)\right)$$

$$= f(g^{-1}(x)) \frac{1}{g'(g^{-1}(x))} = \frac{f(g^{-1}(x))}{g'(g^{-1}(x))}$$

Also notice that

$$P(\alpha \leq X \leq \beta) = 1 \implies P(g(\alpha) \leq g(X) \leq g(\beta)) = 1 \implies x \in (g(\alpha), g(\beta))$$

Exercise 1.11: Suppose X has a normal distribution. Use the previous exercise to compute the density of $\exp(X)$. This is called the **lognormal distribution**.

I'm assuming X has a standard normal distribution ($\mu = 0$, $\sigma = 1$). Then using the previous problem we have that $g(X) = \exp(X)$ has density

$$\frac{f(g^{-1}(x))}{g'(g^{-1}(x))} = \frac{f(\ln(x))}{\exp(\ln(x))}$$

$$= \frac{f(\ln(x))}{x}$$

$$= \frac{1}{x\sqrt{2\pi}} \exp\left(\frac{-\ln(x)^2}{2}\right), \quad \text{for } x \in (\exp(-\infty), \exp(\infty)) = (0, \infty)$$

Exercise 1.12:

- i) Suppose X has density function f. Compute the distribution function of X^2 and then differentiate to find its density function.
- ii) Work out the answer when X has a standard normal distribution to find the density of the **chi-square** distribution.

References

- [1] G.B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2013. ISBN: 9781118626399.
- [2] H. L. Royden. Real analysis / H.L. Royden. eng. Third edition. New York: Macmillan, 1988 1988. ISBN: 0024041513.