Traslazione dell'ellisse

Tommaso Severini

Elementi teorici

Definizione

L'ellisse è il luogo geometrico dei punti del piano per i quali è costante la somma delle distanze da due punti fissi detti fuochi. In termini più generali un'ellisse è una conica non degenere.

Partiamo dalla definizione di ellisse anticipata e spieghiamone il significato:

DefinitionELLISSE

Si definisce ellisse il luogo geometrico dei punti del piano per cui è costante la somma da due punti fissi F_1eF_2 , detti fuochi.

Indicando con P uno dei punti appartenenti all'ellisse, possiamo tradurre la definizione data in formule:

 $\overline{\mathrm{PF}_1} + \overline{\mathrm{PF}_2} = 2a$ dove a rappresenta il semiasse maggiore dell'ellisse

Questa condizione, una volta espansa attraverso l'utilizzo della formula di disanza tra 2 punti, si traduce analiticamente nella seguente:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \text{con } a > b > 0 \tag{1}$$

Parametri

Assi principali

In questo articolo, tutte le considerazioni riguardanti il **semiasse maggiore** e il **semiasse minore** sono indicati rispettivamente con le lettere a e b. In particolar modo, in questo articolo è fatta l'assunzione a > b, in modo da semplificare di molto i calcoli.

Nonostante ciò, è possibile che si verifichi il caso in cui a < b. In tale situazione, i fuochi dell'ellisse saranno situati lungo l'asse y.

Eccentricità

La deformazione di un ellisse è misurata attraverso la sua eccentricità e, che può assumere valori compresi tra 0, nel caso in cui l'ellisse degenera in una circonferenza, e 1, nel caso in cui l'ellisse degenera in un segmento.

Questo valore è espresso dal rapporto tra la distanza focale ed il semiasse maggiore dell'ellisse, ovvero:

$$e = \frac{2c}{2a} = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}$$

Rette tangenti

Dato un punto dell'ellisse di coordinate $P(x_0; y_0)$, la retta tangente all'ellisse nel punto P avrà equazione:

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$$

Applicazioni pratiche

Gli ellissi sono comuni in ambiti come la fisica, l'astronomia e l'ingegneria. Per esempio, l'orbita di ogni pianeta del sistema solare, secondo la prima legge di Keplero, è un ellisse in cui uno dei fuochi è rappresentato dal Sole.

Lo stesso ragionamento risulta corretto anche per molte lune che orbitano i rispettivi pianeti e tutti gli altri sistemi astronomici costituiti da due corpi celesti.

Oltre a ciò, la forma di pianeti e stelle può essere approssimata da un ellissoide, solido ottenuto attraverso la rotazione di un ellisse attorno ad uno dei propri assi.

Interpretazione geometrica

In questa sezione di articolo osserveremo quale modifiche subisce l'equazione dell'ellisse nell'ipotesi in cui il centro sia un punto diverso dall'origine degli assi.

Consideriamo un ellisse γ , di semiassi a e b, avente centro nell'origne O. Definiamo quindi il sistema di traslazione che sposti il centro dell'ellisse da O ad un punto $C(x_C; y_C)$:

$$\begin{cases} x' = x + x_C \\ y' = y + y_C \end{cases} \Rightarrow \begin{cases} x = x' - x_C \\ y = y' - y_C \end{cases}$$
 (2)

Applicando la traslazione (2) all'equazione (1), otterremo la formula dell'ellisse traslata di centro C.

$$\frac{(x-x_C)^2}{a^2} + \frac{(y-y_C)^2}{b^2} = 1 \tag{3}$$

Interpretazione algebrica

In geometrai analitica, ogni sezione conica può essere rappresentata mediante l'utilizzo di uno strumento dell'algebra lineare noto come **rappresentazione matriciale delle sezioni coniche**. Questa metodologia consente di studiare dati elementi matematici senza ridurre essi ad una forma canonica condizionata da rotazioni o traslazioni, rendendo lo studio molto più semplice.

Le sezioni coniche possono essere rappresentate come l'insieme dei punti del piano che rispettano la seguente equazione di secondo grado in 2 incognite:

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$$
(4)

I valori A, B e C sono influenzati e possono essere usati per ricavare un possibile angolo di rotazione dell'ellisse (nel caso in cui B=0, l'ellisse è privo di rotazione), mentre i valori D, E ed F sono influenzati e possono essere utilizzati per ricavare le coordinate del centro dell'ellisse.

I principali strumenti che ci permettono di determinare la tipologia di sezione conica rappresentata dalla formula sovracitata sono le matrici A_Q e A_{33} :

$$A_Q = \begin{vmatrix} A & B/2 & D/2 \\ B/2 & C & E/2 \\ D/2 & E/2 & F \end{vmatrix}$$
 $A_{33} = \begin{vmatrix} A & B/2 \\ B/2 & C \end{vmatrix}$

Dove A_Q è nota come equazione dell'equazione quadratica e A_{33} è nota come matrice della forma quadratica, rappresentata dalla prima minore di A_Q .

In particolare, il determinante della matrice A_Q è utilizzata per distinguere le sezioni coniche degeneri da quelle proprie, mentre il determinante della matrice A_{33} permette di individuare la tipologia di sezione conica che si sta studiando.

Nel caso di un ellisse non degenere, le condizioni necessarie sono $det(A_Q) \neq 0$, affinchè non si ottenga un ellisse degenere, e $det(A_{33} > 0)$, che identifica l'ellisse.

Theorem

Un'equazione della forma $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ conB = 0 rappresenta un ellisse se e solo se è verificata la condizione di realtà:

$$\frac{D^2}{4A} + \frac{E^2}{4C^2} - F > = 0$$

Il centro di tale ellisse sarà dato dal punto di coordinate:

$$\left(-\frac{D}{2A}; -\frac{E}{2C}\right)$$

Proof. Per dimostrare quale sia la condizione di realtà di un ellisse, utilizzeremo la proprietà* che indica come in un ellisse reale e non degenere, il prodotto $C \cdot det(A_Q) < 0$ (5).

$$det(A_Q) = \left(AC - \frac{B^2}{4}\right)F - \frac{BED}{4} - \frac{CD^2}{4} - \frac{AE^2}{4}$$

Poichè B=0 per ipotesi, è possibile semplificare ulteriormente il valore del determinante:

$$det(A_Q) = ACF - \frac{CD^2}{4} - \frac{AE^2}{4}$$

Sostituendo il valore ottenuto nell'equazione (5), otteniamo:

$$C \cdot ACF - \frac{CD^2}{4} - \frac{AE^2}{4} < 0$$

$$AC^2F - \frac{C^2D^2}{4} - \frac{AE^2C}{4} < 0$$

Dividendo per $-AC^2$ entrambi i membri, otteniamo la condizione di realtà:

$$\frac{D^2}{4A} + \frac{E^2}{4C^2} - F >= 0$$

*Lawrence, J. Dennis, A Catalog of Special Plane Curves, Dover Publ., 1972. pag. 63

Proof. Il centro di una conica, se esso esiste, è il punto medio di tutte le corde dell'ellisse che attraversano il centro stesso. Questa proprietà* può essere usata per calcolare le coordinate del centro, che può essere rappresentato come il punto in cui il gradiente della funzione funzione di secondo grado Q diviene 0:

$$\nabla Q = \left[\frac{\partial Q}{\partial x}; \frac{\partial Q}{\partial y} \right] = [0; 0]$$

Svolgendo le rispettive derivate parziali mettendo a sistema le equazioni ottenute, è facile constatare come le coordinate del centro risulteranno essere:

$$\left(\frac{2CD - BE}{B^2 - 4AC}; \frac{2AE - BD}{B^2 - 4AC}\right)$$

Poichè stiamo considerando il caso in cui B=0, le coordinate assumeranno la forma:

$$\left(-\frac{D}{2A}; -\frac{E}{2C}\right)$$

^{*}Ayoub, A. B. (1993), "The central conic sections revisited", Mathematics Magazine