statistical-analysis

September 5, 2024

1 Exercises for Applying Statistical Methods

1.1 Loading the Diabetes Dataset

```
[3]: import pandas as pd
from sklearn.datasets import load_diabetes

# Load the dataset
diabetes = load_diabetes()
df = pd.DataFrame(data=diabetes.data, columns=diabetes.feature_names)
df['target'] = diabetes.target

# Display the first few rows
print(df.head())
```

```
bmi
                                      bp
                                                s1
                                                          s2
                                                                    s3
        age
                  sex
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401
1 - 0.001882 - 0.044642 - 0.051474 - 0.026328 - 0.008449 - 0.019163 0.074412
2 0.085299 0.050680 0.044451 -0.005670 -0.045599 -0.034194 -0.032356
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142
         s4
                   ธ5
                                target
                            s6
0 -0.002592 0.019907 -0.017646
                                 151.0
1 -0.039493 -0.068332 -0.092204
                                  75.0
2 -0.002592 0.002861 -0.025930
                                  141.0
3 0.034309 0.022688 -0.009362
                                 206.0
4 -0.002592 -0.031988 -0.046641
                                 135.0
```

1.2 Performing Descriptive Statistics

```
[7]: # Calculate basic descriptive statistics
    print("Mean:\n", df.mean())
    print("\nMedian:\n", df.median())
    print("\nMode:\n", df.mode().iloc[0])
    print("\nStandard Deviation:\n", df.std())
    print("\nVariance:\n", df.var())
```

```
# Additional descriptive statistics
print("\nRange:\n", df.max() - df.min())
print("\nSkewness:\n", df.skew())
print("\nKurtosis:\n", df.kurt())

Mean:
    age     -1.444295e-18
sex     2.543215e-18
```

sex 2.543215e-18 bmi -2.255925e-16 bp -4.854086e-17 s1 -1.428596e-17 s2 3.898811e-17 s3 -6.028360e-18 -1.788100e-17 s4 s5 9.243486e-17 s6 1.351770e-17 1.521335e+02 target

dtype: float64

Median:

0.005383 age sex -0.044642 bmi -0.007284 bр -0.005670 -0.004321 s1 s2 -0.003819 s3 -0.006584 s4 -0.002592 s5 -0.001947 s6 -0.001078 target 140.500000 dtype: float64

Mode:

age 0.016281 -0.044642 sex bmi -0.030996 bp -0.040099 s1 -0.037344 s2 -0.001001 s3 -0.013948 s4 -0.039493 s5 -0.018114 s6 0.003064 target 72.000000 Name: 0, dtype: float64

Standard Deviation: age 0.047619

age	0.047619
sex	0.047619
bmi	0.047619
bp	0.047619
s1	0.047619
s2	0.047619
s3	0.047619
s4	0.047619
s5	0.047619
s6	0.047619
target	77.093005

dtype: float64

Variance:

age	0.002268
sex	0.002268
bmi	0.002268
bp	0.002268
s1	0.002268
s2	0.002268
s3	0.002268
s4	0.002268
s5	0.002268
s6	0.002268
target	5943.331348

dtype: float64

Range:

•	
age	0.217952
sex	0.095322
bmi	0.260831
bp	0.244442
s1	0.280694
s2	0.314401
s3	0.283486
s4	0.261629
s 5	0.259694
s6	0.273379
target	321.000000
<pre>dtype:</pre>	float64

Skewness:

age	-0.231382
sex	0.127385
bmi	0.598148
bp	0.290658
s1	0.378108

```
s2
          0.436592
s3
          0.799255
s4
          0.735374
s5
          0.291754
s6
          0.207917
          0.440563
target
dtype: float64
Kurtosis:
          -0.671224
 age
         -1.992811
sex
bmi
          0.095094
         -0.532797
bp
          0.232948
s1
          0.601381
s2
s3
          0.981507
s4
          0.444402
s5
         -0.134367
s6
          0.236917
target
         -0.883057
dtype: float64
```

1.3 Performing Inferential Statistics

```
[10]: from scipy import stats

# Example data: BMI values
bmi_values = df['bmi']

# Hypothetical population mean for BMI
population_mean = 0.05

# Perform one-sample t-test
t_stat, p_value = stats.ttest_1samp(bmi_values, population_mean)

print(f"T-Statistic: {t_stat}")
print(f"P-Value: {p_value}")
```

T-Statistic: -22.074985843710174 P-Value: 2.7634312235044638e-73

1.4 Confidence Intervals

```
[13]: import numpy as np
from scipy import stats

# Sample mean and standard error for BMI
sample_mean = np.mean(bmi_values)
```

```
standard_error = stats.sem(bmi_values)

# Compute 95% confidence interval for BMI
confidence_interval = stats.norm.interval(0.95, loc=sample_mean,__
scale=standard_error)

print(f"95% Confidence Interval for BMI: {confidence_interval}")
```

95% Confidence Interval for BMI: (-0.004439332370169141, 0.0044393323701686915)

1.5 Regression Analysis

```
[16]: import statsmodels.api as sm

# Define independent variable (add constant for intercept)
X = sm.add_constant(df['bmi'])

# Define dependent variable
y = df['target']

# Fit linear regression model
model = sm.OLS(y, X).fit()

# Print model summary
print(model.summary())
```

OLS Regression Results

========		:=======		=====		=======	========
Dep. Variabl	.e:	ta	arget	R-sq	uared:		0.344
Model:			OLS	Adj.	R-squared:		0.342
Method:		Least Sqı	ıares	F-sta	atistic:		230.7
Date:		Thu, 05 Sep	2024	Prob	(F-statistic)	:	3.47e-42
Time:		23:1	L2:36	Log-	Likelihood:		-2454.0
No. Observat	ions:		442	AIC:			4912.
Df Residuals	s:		440	BIC:			4920.
Df Model:			1				
Covariance T	Type:	nonro	bust				
				=====			
	coef	std err		t	P> t	[0.025	0.975]
const	152.1335	5 2.974	 51	.162	0.000	146.289	157.978
bmi	949.4353	62.515	15	. 187	0.000	826.570	1072.301
Omnibus:	:======	 1:	-==== L.674	===== Durb:	======== in-Watson:	=======	1.848
Prob(Omnibus	s):	(0.003	Jarqı	ue-Bera (JB):		7.310
Skew:		(0.156	Prob			0.0259
Kurtosis:		2	2.453	Cond	. No.		21.0

Notes:

3

0.2098

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.6 Exercise 1: Analyzing a Health-Related Dataset

1.6.1 Loading dataset(breast cancer dataset)

Create visualizations to illustrate the relationships between variables and the regression line.

```
[25]: import pandas as pd
      from sklearn.datasets import load_breast_cancer
      # load the dataset
      cancer=load breast cancer()
      df=pd.DataFrame(data=cancer.data, columns=cancer.feature_names)
      df['target'] = cancer.target
      # Display the first few rows
      print(df.head())
        mean radius mean texture mean perimeter mean area mean smoothness \
     0
              17.99
                             10.38
                                                        1001.0
                                                                        0.11840
                                            122.80
              20.57
                             17.77
     1
                                            132.90
                                                        1326.0
                                                                        0.08474
     2
              19.69
                            21.25
                                            130.00
                                                        1203.0
                                                                        0.10960
     3
              11.42
                             20.38
                                             77.58
                                                         386.1
                                                                        0.14250
     4
              20.29
                             14.34
                                            135.10
                                                        1297.0
                                                                        0.10030
        mean compactness mean concavity mean concave points mean symmetry \
     0
                 0.27760
                                   0.3001
                                                        0.14710
                                                                        0.2419
                 0.07864
                                   0.0869
                                                        0.07017
                                                                        0.1812
     1
     2
                 0.15990
                                   0.1974
                                                        0.12790
                                                                        0.2069
     3
                 0.28390
                                   0.2414
                                                        0.10520
                                                                        0.2597
     4
                                   0.1980
                 0.13280
                                                        0.10430
                                                                        0.1809
        mean fractal dimension ... worst texture worst perimeter worst area \
     0
                        0.07871 ...
                                            17.33
                                                             184.60
                                                                         2019.0
                        0.05667 ...
                                            23.41
                                                             158.80
                                                                         1956.0
     1
     2
                        0.05999 ...
                                            25.53
                                                             152.50
                                                                         1709.0
     3
                        0.09744 ...
                                            26.50
                                                              98.87
                                                                          567.7
     4
                        0.05883 ...
                                            16.67
                                                                         1575.0
                                                             152.20
        worst smoothness worst compactness worst concavity worst concave points
     0
                  0.1622
                                      0.6656
                                                        0.7119
                                                                              0.2654
                  0.1238
                                      0.1866
                                                        0.2416
                                                                              0.1860
     1
                  0.1444
                                      0.4245
                                                        0.4504
     2
                                                                              0.2430
```

0.6869

0.2575

0.8663

4	0.1374	0.2050	0.4000	0.1625
	worst symmetry worst	fractal dimension	target	
0	0.4601	0.11890	0	
1	0.2750	0.08902	0	
2	0.3613	0.08758	0	
3	0.6638	0.17300	0	
4	0.2364	0.07678	0	

[5 rows x 31 columns]

1.6.2 Performing Descriptive Statistics

Calculate the mean, median, mode, standard deviation, and variance for all the relevant features.

```
[28]: # Calculate basic descriptive statistics
     print("Mean:\n", df.mean())
      print("\nMedian:\n", df.median())
      print("\nMode:\n", df.mode().iloc[0])
      print("\nStandard Deviation:\n", df.std())
      print("\nVariance:\n", df.var())
      # Additional descriptive statistics
      print("\nRange:\n", df.max() - df.min())
      print("\nSkewness:\n", df.skew())
      print("\nKurtosis:\n", df.kurt())
```

Mean:

mean radius	14.127292
mean texture	19.289649
mean perimeter	91.969033
mean area	654.889104
mean smoothness	0.096360
mean compactness	0.104341
mean concavity	0.088799
mean concave points	0.048919
mean symmetry	0.181162
mean fractal dimension	0.062798
radius error	0.405172
texture error	1.216853
perimeter error	2.866059
area error	40.337079
smoothness error	0.007041
compactness error	0.025478
concavity error	0.031894
concave points error	0.011796
symmetry error	0.020542
fractal dimension error	0.003795

worst	radius	16.269190
worst	texture	25.677223
worst	perimeter	107.261213
worst	area	880.583128
worst	smoothness	0.132369
worst	compactness	0.254265
worst	concavity	0.272188
worst	concave points	0.114606
worst	symmetry	0.290076
worst	fractal dimension	0.083946
target	t	0.627417

Median:

Median.	
mean radius	13.370000
mean texture	18.840000
mean perimeter	86.240000
mean area	551.100000
mean smoothness	0.095870
mean compactness	0.092630
mean concavity	0.061540
mean concave points	0.033500
mean symmetry	0.179200
mean fractal dimension	0.061540
radius error	0.324200
texture error	1.108000
perimeter error	2.287000
area error	24.530000
smoothness error	0.006380
compactness error	0.020450
concavity error	0.025890
concave points error	0.010930
symmetry error	0.018730
fractal dimension error	0.003187
worst radius	14.970000
worst texture	25.410000
worst perimeter	97.660000
worst area	686.500000
worst smoothness	0.131300
worst compactness	0.211900
worst concavity	0.226700
worst concave points	0.099930
worst symmetry	0.282200
worst fractal dimension	0.080040
target	1.000000

dtype: float64

Mode:

mean radius	12.340000
mean texture	14.930000
mean perimeter	82.610000
mean area	512.200000
mean smoothness	0.100700
mean compactness	0.114700
mean concavity	0.000000
mean concave points	0.000000
mean symmetry	0.160100
mean fractal dimension	0.056670
radius error	0.220400
texture error	0.856100
perimeter error	1.778000
area error	16.640000
smoothness error	0.005080
compactness error	0.011040
concavity error	0.000000
concave points error	0.000000
symmetry error	0.013440
fractal dimension error	0.001784
worst radius	12.360000
worst texture	17.700000
worst perimeter	101.700000
worst area	284.400000
worst smoothness	0.121600
worst compactness	0.148600
worst concavity	0.000000
worst concave points	0.000000
worst symmetry	0.222600
worst fractal dimension	0.074270
target	1.000000
Name: 0, dtype: float64	

Standard Deviation:

Dodinacia Doviacion.	
mean radius	3.524049
mean texture	4.301036
mean perimeter	24.298981
mean area	351.914129
mean smoothness	0.014064
mean compactness	0.052813
mean concavity	0.079720
mean concave points	0.038803
mean symmetry	0.027414
mean fractal dimension	0.007060
radius error	0.277313
texture error	0.551648
perimeter error	2.021855
area error	45.491006

smoothness error	0.003003
compactness error	0.017908
concavity error	0.030186
concave points error	0.006170
symmetry error	0.008266
fractal dimension error	0.002646
worst radius	4.833242
worst texture	6.146258
worst perimeter	33.602542
worst area	569.356993
worst smoothness	0.022832
worst compactness	0.157336
worst concavity	0.208624
worst concave points	0.065732
worst symmetry	0.061867
worst fractal dimension	0.018061
target	0.483918
1. 63 .04	

Variance:

variance:	
mean radius	12.418920
mean texture	18.498909
mean perimeter	590.440480
mean area	123843.554318
mean smoothness	0.000198
mean compactness	0.002789
mean concavity	0.006355
mean concave points	0.001506
mean symmetry	0.000752
mean fractal dimension	0.000050
radius error	0.076902
texture error	0.304316
perimeter error	4.087896
area error	2069.431583
smoothness error	0.000009
compactness error	0.000321
concavity error	0.000911
concave points error	0.000038
symmetry error	0.000068
fractal dimension error	0.000007
worst radius	23.360224
worst texture	37.776483
worst perimeter	1129.130847
worst area	324167.385102
worst smoothness	0.000521
worst compactness	0.024755
worst concavity	0.043524
worst concave points	0.004321

worst symmetry	0.003828
worst fractal dimension	0.000326
target	0.234177

Range:

italige.	
mean radius	21.129000
mean texture	29.570000
mean perimeter	144.710000
mean area	2357.500000
mean smoothness	0.110770
mean compactness	0.326020
mean concavity	0.426800
mean concave points	0.201200
mean symmetry	0.198000
mean fractal dimension	0.047480
radius error	2.761500
texture error	4.524800
perimeter error	21.223000
area error	535.398000
smoothness error	0.029417
compactness error	0.133148
concavity error	0.396000
concave points error	0.052790
symmetry error	0.071068
fractal dimension error	0.028945
worst radius	28.110000
worst texture	37.520000
worst perimeter	200.790000
worst area	4068.800000
worst smoothness	0.151430
worst compactness	1.030710
worst concavity	1.252000
worst concave points	0.291000
worst symmetry	0.507300
worst fractal dimension	0.152460
target	1.000000
dtype: float64	

Skewness:

mean radius	0.942380
mean texture	0.650450
mean perimeter	0.990650
mean area	1.645732
mean smoothness	0.456324
mean compactness	1.190123
mean concavity	1.401180
mean concave points	1.171180

mean symmetry	0.725609
mean fractal dimension	1.304489
radius error	3.088612
texture error	1.646444
perimeter error	3.443615
area error	5.447186
smoothness error	2.314450
compactness error	1.902221
concavity error	5.110463
concave points error	1.444678
symmetry error	2.195133
fractal dimension error	3.923969
worst radius	1.103115
worst texture	0.498321
worst perimeter	1.128164
worst area	1.859373
worst smoothness	0.415426
worst compactness	1.473555
worst concavity	1.150237
worst concave points	0.492616
worst symmetry	1.433928
worst fractal dimension	1.662579
target	-0.528461

Kurtosis:

nar cobib.	
mean radius	0.845522
mean texture	0.758319
mean perimeter	0.972214
mean area	3.652303
mean smoothness	0.855975
mean compactness	1.650130
mean concavity	1.998638
mean concave points	1.066556
mean symmetry	1.287933
mean fractal dimension	3.005892
radius error	17.686726
texture error	5.349169
perimeter error	21.401905
area error	49.209077
smoothness error	10.469840
compactness error	5.106252
concavity error	48.861395
concave points error	5.126302
symmetry error	7.896130
fractal dimension error	26.280847
worst radius	0.944090
worst texture	0.224302

```
1.070150
worst perimeter
worst area
                           4.396395
worst smoothness
                           0.517825
worst compactness
                           3.039288
                           1.615253
worst concavity
worst concave points
                          -0.535535
worst symmetry
                           4.444560
worst fractal dimension
                           5.244611
                          -1.726811
target
dtype: float64
```

1.6.3 Performing Inferential Statistics

```
[]: | ###
```

```
[41]: from scipy import stats
      # Select a specific feature for inferential statistics - let's choose 'mean_
       ⇔radius'
      mean_radius = df['mean radius']
      mean_val = mean_radius.mean()
      std_val = mean_radius.std()
      n = len(mean_radius)
      # 95% confidence interval for the mean of 'mean radius'
      conf_interval = stats.norm.interval(0.95, loc=mean_val, scale=std_val/np.
       ⇒sqrt(n))
      # Hypothesis test: Null Hypothesis HO: The average mean radius is 14
      chosen_value = 14
      t_statistic, p_value = stats.ttest_1samp(mean_radius, chosen_value)
      print(f"T-Statistic: {t_statistic}")
      print(f"P-Value: {p_value}")
      print(f"95% Confidence Interval for mean_radius: {conf_interval}")
```

```
T-Statistic: 0.8616173566232037
P-Value: 0.3892617071079777
95% Confidence Interval for mean_radius: (13.837734868964587, 14.416848610824518)
```

1.7 Exploring Regression Analysis on a New Dataset

a linear regression analysis to determine the relationship between two or more variables

```
[53]: from sklearn.linear_model import LinearRegression
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import mean_squared_error, r2_score
      # Select two variables for regression analysis:
      # Let's predict 'mean texture' (dependent variable) using 'mean radius' \Box
      \hookrightarrow (independent variable)
      X = df[['mean radius']]  # Independent variable
      y = df['mean texture']
                               # Dependent variable
      # Split the dataset into training and testing sets (80% train, 20% test)
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
       →random_state=42)
      # Create a Linear Regression model
      model = LinearRegression()
      # Fit the model to the training data
      model.fit(X_train, y_train)
      # Predict on the test set
      y_pred = model.predict(X_test)
      # Model evaluation: calculate R^2 and Mean Squared Error
      r2 = r2_score(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      # Output the coefficients and model performance metrics
      coef = model.coef_
      intercept = model.intercept_
      coef, intercept, r2, mse
```

```
[53]: (array([0.37025527]),
13.95790420860676,
0.12989038563227218,
16.946319739410345)
```

Create visualizations to illustrate the relationships between variables and the regression line.

```
[55]: import matplotlib.pyplot as plt

# Scatter plot with regression line for 'mean radius' vs 'mean texture'
plt.figure(figsize=(10,6))
plt.title('Mean Radius vs Mean Texture with Regression Line')
plt.xlabel('Mean Radius')
```

```
plt.ylabel('Mean Texture')
plt.legend()
plt.grid(True)
plt.show()
```


[]: