27.4

The prime and maximal ideals of $\mathbb{Z}_2 \times \mathbb{Z}_4$ will be the same. Furthermore the possible ideals for $\mathbb{Z}_2 \times \mathbb{Z}_4$ will be of the form $I \times J$ where I is an ideal of \mathbb{Z}_2 and J an ideal of \mathbb{Z}_4 . The possible prime ideal choices for I are $\langle 1 \rangle$ and $\langle 0 \rangle$. For J the possible choices are $\langle 1 \rangle$ and $\langle 2 \rangle$. By eliminating non-prime candidates it leaves

$$\langle (0,1)\rangle, \langle (1,2)\rangle.$$

27.8

Note that $\mathbb{Z}_5[x]/\langle x^2+x+c\rangle$ will be a field when $\langle x^2+x+c\rangle$ is maximal since $\mathbb{Z}_5[x]$ is a commutative ring with unity. Furthermore $\langle x^2+x+c\rangle$ will be maximal when it is irreducible over \mathbb{Z}_5 . Therefore the values of c are those that make x^2+x+c irreducible in \mathbb{Z}_5 . Let $f(x)=x^2+x$. Note that

$$f(0) = 0$$

 $f(1) = 2$
 $f(2) = 1$
 $f(-2) = 2$
 $f(-1) = 0$

Therefore c has to be chosen such that $f(x) + c \neq 0$ for all $x \in \mathbb{Z}_5$. This is only possible for c = 1 and c = 2. Therefore c = 1 or 2 makes $\mathbb{Z}_5[x]/\langle x^2 + x + c \rangle$ a field.

27.15

Since $\mathbb{Z} \times \mathbb{Z}$ is a commutative ring with unity, any maximal ideal lends itself to a factor ring that is a field and vice versa. Therefore $\mathbb{Z} \times 3\mathbb{Z}$ is a maximal ideal of $\mathbb{Z} \times \mathbb{Z}$ since $\mathbb{Z} \times \mathbb{Z}/\mathbb{Z} \times 3\mathbb{Z} \simeq \mathbb{Z}_3$ which is a field.

27.16

Note that $\mathbb{Z} \times \{0\}$ is a prime ideal. However $\mathbb{Z} \times \mathbb{Z}/\mathbb{Z} \times \{0\} \simeq \mathbb{Z}$ which is not a field and therefore $\mathbb{Z} \times \{0\}$ cannot be maximal.

27.17

Note that $\mathbb{Z} \times 4\mathbb{Z}$ is a nontrivial proper ideal of $\mathbb{Z} \times \mathbb{Z}$. However, since $\mathbb{Z} \times \mathbb{Z}/\mathbb{Z} \times 4\mathbb{Z} \simeq \mathbb{Z}_4$ which is not an integral domain, $\mathbb{Z} \times 4\mathbb{Z}$ is not a prime ideal.

27.18

 $\mathbb{Q}[x]/\langle x^2-5x+6\rangle$ will be a field if x^2-5x+6 is irreducible in \mathbb{Q} . The roots of the polynomial are

$$\frac{5 \pm \sqrt{25 - 4(1)(6)}}{2} = \frac{5 \pm 1}{2}.$$

Since both roots are rational numbers, $x^2 - 5x + 6$ is not irreducible in \mathbb{Q} and therefore the original factor ring is not a field.

27.30

Proof. Note that every ideal of F[x] must be principal since F is a field. Every proper non-trivial ideal prime ideal will be in the form $\langle f(x) \rangle \neq 0$. Assume towards contradiction that $\langle f(x) \rangle$ is not maximal. Then that means that f(x) is reducible over F meaning there exists some g(x) and h(x) with degrees less than f(x) such that f(x) = g(x)h(x). Since every polynomial in $\langle f(x) \rangle$ has degree greater than or equal to f(x), then g(x) and h(x) cannot be in $\langle f(x) \rangle$. However, since $\langle f(x) \rangle$ is a prime ideal, then since f(x) = h(x)g(x) either h(x) or g(x) must be in $\langle f(x) \rangle$. This is a contradiction and therefore $\langle f(x) \rangle$ must be maximal.

27.34

Part A

Proof. Let $x \in A + B$. Then x = a + b for some $a \in A$ and $b \in B$. Since A and B are ideals, then for any $r \in R$ it follows $ra, ar \in A$ and $rb, br \in B$. Therefore both ra + rb and ar + br are in A + B. Since

$$rx = r(a+b) = ra + rb$$

and

$$xr = (a+b)r = ar + br$$

it follows that $rx, xr \in A + B$. Note for $(a_1 + b_1), (a_2 + b_2) \in A + B$ that

$$(a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2) \in A + B$$

and $0 + 0 \in A + B$. Furthermore $(-a_1 - b_1) \in A + B$ and $(a_1 + b_1) + (-a_1 - b_1) = 0$. Therefore A + B is an ideal of R.

Part B

Proof. Since $0 \in R$ and for any ideal N of R it follows $rx \in N$ for any $x \in R$, $0 \in N$ by choosing r = 0. Therefore $0 \in A$ and $0 \in B$ meaning

$$A = \{a + 0 : a \in A\} \subseteq \{a + b : a \in A, b \in B\} = A + B$$

and

$$B = \{0 + b : b \in B\} \subseteq \{a + b : a \in A, b \in B\} = A + B.$$

27.35

Part A

Proof. AB is closed under addition since

$$\sum_{i=1}^n a_ib_i + \sum_{j=1}^m a_jb_j = \sum_{k=1}^{m+n} a_kb_k \in AB.$$

Since *A* and *B* are both ideals, then for any $r \in R$

$$r\sum_{i=1}^{n}a_{i}b_{i}=\sum_{i=1}^{n}(ra_{i})b_{i}\in AB$$

since $ra_i \in A$ and

$$\left(\sum_{i=1}^{n} a_i b_i\right) r = \sum_{i=1}^{n} a_i (b_i r) \in AB$$

since $b_i r \in B$. Furthermore since $0 \in A, B$ then $(0)(0) = 0 \in AB$ and $-(a_i b_i) = (-a_i)b_i$ then AB has both an additive identity and inverses. Therefore AB is an ideal of B.

Part B

Proof. Since a_ib_i must be in A since A is an ideal and must also simultaneously be in B since it is an ideal, then a_ib_i is in $A \cap B$. Since A and B are closed under addition, then any sum of a_ib_i must therefore be in A and B simultaneously meaning any element of AB must be in $A \cap B$. Hence $AB \subseteq A \cap B$.