NEC

NPN SILICON POWER TRANSISTOR 2SC3567

DESCRIPTION The 2SC3567 is NPN silicon epitaxial transistor designed for switching regulator, DC-DC converter and high frequency power amplifier application.

FEATURES

- Easy mount by eliminating Insulation Sheet and Bushing.
- Low Collector Saturation Voltage.
- High Switching Speed.
- Complementary to 2SA1395.

ABSOLUTE MAXIMUM RATINGS

Maximum T	emperatures		
Storage T	「emperature −55 t	to +1!	50 °C
Junction	Temperature 150 °C	Maxi	mum
Maximum P	ower Dissipation (T _a = 25 °C)		
Total Pov	wer Dissipation	15	W
Maximum V	oltages and Currents (T _a = 25 °C)		
V_{CBO}	Collector to Base Voltage	150	٧
V_{CEO}	Collector to Emitter Voltage	100	٧
V_{EBO}	Emitter to Base Voltage	7.0	V
I _{C(DC)}	Collector Current (DC)	3.0	Α
(C(pulse)	Collector Current (pulse)*	6.0	Α
I _{B(DC)}	Base Current (DC)	1.5	Α
	* PW \leq 300 μ s, Duty	Cycle	≤ 10 %

ELECTRICAL CHARACTERISTICS ($T_a = 25$ °C)

	· · · · · · · · · · · · · · · · · · ·					
SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT.	TEST CONDITIONS
ton	Turn-on Time			0.5	μs	$I_{C} = 1.5 \text{ A}, I_{B1} = -I_{B2} = 0.15 \text{ A}$
t _{stg}	Storage Time			1.5	μs	$R_L = 33 \Omega$, $V_{CC} = 50 V$
tf	Fall Time			0.5	μs	/ HE = 33 22, VCC = 30 V
hFE1	DC Current Gain**	40			_	$V_{CE} = 5.0 \text{ V}, I_{C} = 0.2 \text{ A}$
hFE2	DC Current Gain**	40		200		$V_{CE} = 5.0 \text{ V, } I_{C} = 1.0 \text{ A}$
V _{CE(sat)}	Collector Saturation Voltage**			0.6	V	I _C = 1.5 A, I _B = 0.15 A
V _{BE(sat)}	Base Saturation Voltage**			1.5	V	I _C = 1.5 A, I _B = 0.15 A
V _{CEO} (SUS)	Collector to Emitter Sustaining Voltage	100			V	I _C = 1.0 A, I _B = 0.1 A, L = 1 mH
VCEX (SUS)1	Collector to Emitter Sustaining Voltage	100			V	$I_C = 1.0 \text{ A}, I_{B1} = -I_{B2} = 0.1 \text{ A},$ L = 180 μ H, Clamped
V _{CEX} (SUS)2	Collector to Emitter Sustaining Voltage	100			V	I _C = 2.0 A, I _{B1} = -I _{B2} = 0.2 A, L = 180 µH, Clamped
ІСВО	Collector Cutoff Current			10	μΑ	V _{CB} = 100 V, I _E = 0
ICER	Collector Cutoff Current			1.0	mA	$V_{CE} = 100 \text{ V, R}_{BE} = 51 \Omega, T_a = 125 ^{\circ}\text{C}$
ICEX1	Collector Cutoff Current			10	μА	$V_{CE} = 100 \text{ V}, V_{BE(OFF)} = -1.5 \text{ V}$
ICEX2	Collector Cutoff Current			1.0	mA	$V_{CE} = 100 \text{ V}, V_{BE(OFF)} = -1.5 \text{ V},$ $T_a = 125 \text{ °C}$
I _{EBO}	Emitter Cutoff Current			10	μΑ	$V_{EB} = 5.0 \text{ V, } I_{C} = 0$

Classification of h_{FE2}

Rank M		L	К		
Range	40 to 80	60 to 120	100 to 200		

Test Conditions: $V_{CE} = 5.0 \text{ V}$, $I_{C} = 1.0 \text{ A}$

**	PW	≦	350	μs,	Duty	Cycle	≦	2	%
----	----	---	-----	-----	------	-------	---	---	---

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME (t_{on} , t_{stg} , t_{f}) TEST CIRCUIT

