An LLL algorithm for module lattices

Changmin Lee¹, **Alice Pellet-Mary**², Damien Stehlé¹ and Alexandre Wallet³

¹ ENS de Lyon, ² KU Leuven, ³ NTT Tokyo

Lattices: Geometry, Algorithms and Hardness February 19, 2020

https://eprint.iacr.org/2019/1035

What is this talk about?

LLL-type algorithm for modules over a ring of integers

- all number fields
- ullet approx-factor pprox exponential in module rank
- ullet quantum poly-time ... given a CVP oracle depending on K

Motivation (crypto)

Improve efficiency of lattice-based schemes using structured lattices

Motivation (crypto)

Improve efficiency of lattice-based schemes using structured lattices

Example: NIST post-quantum standardization process

- 26 remaining candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

Motivation (crypto)

Improve efficiency of lattice-based schemes using structured lattices

Example: NIST post-quantum standardization process

- 26 remaining candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

	Frodo	Kyber	
	(unstructured lattices)	(structured lattices)	
public key size (in Bytes)	9 616	800	
ciphertexts size (in Bytes)	9 720	736	

(CCA2 KEMs, round 2 version, security level 1)

Motivation (crypto)

Improve efficiency of lattice-based schemes using structured lattices

Example: NIST post-quantum standardization process

- 26 remaining candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

	Frodo	Kyber
	(unstructured lattices)	(structured lattices)
public key size (in Bytes)	9 616	800
ciphertexts size (in Bytes)	9 720	736

(CCA2 KEMs, round 2 version, security level 1)

All 11 schemes use module lattices

Module

- $K = \mathbb{Q}[X]/P(X)$
- $R = \mathbb{Z}[X]/P(X)$ (or $R = O_K$)

with P monic and irreducible, degree d

Module

A (free) module M is a subset of K^k of the form $M = \{B\vec{x} \mid \vec{x} \in R^k\}$, with $B \in K^{k \times k}$ invertible. B is a basis of M; k is the rank of M.

Module

- $K = \mathbb{Q}[X]/P(X)$
- $R = \mathbb{Z}[X]/P(X)$ (or $R = O_K$)

with P monic and irreducible, degree d

Module

A (free) module M is a subset of K^k of the form $M = \{B\vec{x} \mid \vec{x} \in R^k\}$, with $B \in K^{k \times k}$ invertible. B is a basis of M; k is the rank of M.

A module is a 'lattice' of rank k over R.

Reminder:

- $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$
- ullet $M=\{Bec{x}:ec{x}\in R^d\}$, with $B=(ec{b}_1,\cdots,ec{b}_k)$ linearly independent

Reminder:

- $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$ with $\alpha_1, \dots, \alpha_d$ roots of P in \mathbb{C}
- $M=\{B\vec{x}:\vec{x}\in R^d\}$, with $B=(\vec{b}_1,\cdots,\vec{b}_k)$ linearly independent

Canonical embedding

$$\sigma: K \to \mathbb{C}^d$$

 $x \mapsto (x(\alpha_1), \cdots, x(\alpha_d))$

Reminder:

- $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$ with $\alpha_1, \dots, \alpha_d$ roots of P in \mathbb{C}
- $M=\{B\vec{x}:\vec{x}\in R^d\}$, with $B=(\vec{b}_1,\cdots,\vec{b}_k)$ linearly independent

Canonical embedding

$$\sigma: \mathcal{K} \to \mathbb{C}^d \qquad \qquad \sigma: \mathcal{K}^k \to \mathbb{C}^{kd}$$

$$x \mapsto (x(\alpha_1), \cdots, x(\alpha_d)) \qquad (x_1, \cdots, x_k) \mapsto (\sigma(x_1) \| \cdots \| \sigma(x_k))$$

Reminder:

- $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$ with $\alpha_1, \dots, \alpha_d$ roots of P in \mathbb{C}
- ullet $M=\{Bec{x}:ec{x}\in R^d\}$, with $B=(ec{b}_1,\cdots,ec{b}_k)$ linearly independent

Canonical embedding

$$\sigma: K \to \mathbb{C}^d \qquad \qquad \sigma: K^k \to \mathbb{C}^{kd}$$

$$x \mapsto (x(\alpha_1), \dots, x(\alpha_d)) \qquad (x_1, \dots, x_k) \mapsto (\sigma(x_1) \| \dots \| \sigma(x_k))$$

$$\mathcal{L}(M) = \{ \sigma(\vec{x}) : \vec{x} \in M \} \subset \mathbb{C}^{kd}$$

 $\mathcal{L}(M)$ is a lattice of rank kd, spanned by $(\sigma(\vec{b}_1), \sigma(x\vec{b}_1), \cdots, \sigma(x^{d-1}\vec{b}_k))$

Module lattices

- dimension n = kd over \mathbb{Z}
- dimension k over R

Module lattices

- dimension n = kd over \mathbb{Z} typically $500 \le kd \le 1500$
- dimension k over R typically $k \le 10$

$\label{eq:Lattice reduction over \mathbb{Z}} \\ \mbox{(in blue: BKZ trade-offs [Sch87, SE94])}$

Module lattices

- dimension n = kd over \mathbb{Z} typically $500 \le kd \le 1500$
- dimension k over R typically $k \le 10$

[[]Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[[]SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische

 $\label{eq:Lattice reduction over \mathbb{Z}} \\ \mbox{(in blue: BKZ trade-offs [Sch87, SE94])}$

Module lattices

- dimension n = kd over \mathbb{Z} typically $500 \le kd \le 1500$
- dimension k over R typically $k \le 10$

Can we extend the LLL algorithm to lattices over *R*?

[[]Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[[]SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische

What is small in K?

Remember

$$\sigma: K \to \mathbb{C}^d$$

 $x \mapsto (x(\alpha_1), \cdots, x(\alpha_d))$

What is small in K?

Remember

$$\sigma: \mathcal{K} \to \mathbb{C}^d$$

 $x \mapsto (x(\alpha_1), \cdots, x(\alpha_d))$

Two generalization of $|\cdot|$:

• $||x|| := ||\sigma(x)||$

(Euclidean norm)

• $\mathcal{N}(x) := \prod_i |x(\alpha_i)|$

(algebraic norm)

What is small in K?

Remember

$$\sigma: \mathcal{K} \to \mathbb{C}^d$$

 $x \mapsto (x(\alpha_1), \cdots, x(\alpha_d))$

Two generalization of $|\cdot|$:

• $||x|| := ||\sigma(x)||$

(Euclidean norm)

• $\mathcal{N}(x) := \prod_i |x(\alpha_i)|$

(algebraic norm)

$$||x|| \text{ small } \stackrel{\Rightarrow}{\not=} \mathcal{N}(x) \text{ small }$$

	Bound on	Bound on
	quality	runtime
Napias [Nap96]:		
specific number fields	X	X

[[]Nap96] H. Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. Journal de théorie des nombres de Bordeaux.

	Bound on quality	Bound on runtime
Napias [Nap96]:		
specific number fields	X	X
Fieker-Pohst [FP96]:		
all number fields	X	X
▶ totally real fields	X	✓

[[]FP96] C. Fieker, M. E. Pohst. Lattices over number fields. ANTS.

	Bound on quality	Bound on runtime
Napias [Nap96]:		
specific number fields	×	X
Fieker-Pohst [FP96]:		
all number fields	X	X
▶ totally real fields	X	✓
Kim-Lee [KL17]:		
norm Euclidean fields	X	✓
▶ biquadratic norm euclidean	✓	✓

[[]KL17] T. Kim, C. Lee. Lattice reductions over euclidean rings with applications to cryptanalysis. IMACC.

	Bound on	Bound on runtime
	quality	runtime
Napias [Nap96]:		
specific number fields	X	X
Fieker-Pohst [FP96]:		
all number fields	X	X
▶ totally real fields	X	✓
Kim-Lee [KL17]:		
norm Euclidean fields	X	✓
▶ biquadratic norm euclidean	✓	✓
This work [LPSW19]:		
any number field	✓	\approx

[[]LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, A. Wallet. An LLL algorithm for module lattices.

	Bound on quality	Bound on runtime
	quanty	runtime
Napias [Nap96]:		
specific number fields	X	X
Fieker-Pohst [FP96]:		
all number fields	X	X
▶ totally real fields	×	✓
Kim-Lee [KL17]:		
norm Euclidean fields	X	✓
▶ biquadratic norm euclidean	✓	✓
This work [LPSW19]:		
any number field	✓	\approx
		(✓ if we have an oracle for CVP in a fixed lattice depending only on R)

[[]LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, A. Wallet. An LLL algorithm for module lattices.

Outline of the talk

1 The LLL algorithm

2 The Lagrange-Gauss algorithm

Computing the relaxed Euclidean division

Outline of the talk

1 The LLL algorithm

2 The Lagrange-Gauss algorithm

Computing the relaxed Euclidean division

LLL over \mathbb{Z}

- γ' -SVP in dim k < 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over \mathbb{Z}

- γ' -SVP in dim k < 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time
- Lagrange-Gauss algo for SVP in dim 2
 - ▶ poly time

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over $\mathbb Z$

- γ' -SVP in dim k \leq 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - ▶ poly time
- Lagrange-Gauss algo for SVP in dim 2
 - poly time

LLL over
$$R = \mathbb{Z}[X]/(X^d + 1)$$

- γ' -SVP in rank-k $\leq \gamma$ -SVP in rank-2
 - $\gamma' = (\gamma d)^{O(k)}$
 - poly time

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over $\ensuremath{\mathbb{Z}}$

- γ' -SVP in dim k< 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - ▶ poly time
- Lagrange-Gauss algo for SVP in dim 2
 - poly time

LLL over $R = \mathbb{Z}[X]/(X^d + 1)$

- γ' -SVP in rank-k $\leq \gamma$ -SVP in rank-2

 - poly time
- Algorithm for γ -SVP in rank-2
 - $\gamma = 2^{(\log d)^{O(1)}}$
 - heuristic, quantum
 - poly time if oracle solving CVP in a fixed lattice

(depending only on R)

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over Z

- γ' -SVP in dim k< 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time
- Lagrange-Gauss algo for SVP in dim 2
 - poly time

LLL over
$$R = \mathbb{Z}[X]/(X^d + 1)$$

- needs QR-factorisation • γ' -SVP in rank-k
- - $\gamma = 2^{(\log d) \circ \alpha}$ heu next section
 - ▶ poly oracle solving CVP in a fixed lattice (depending only on R)

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle ec{a}, ec{b}
angle_{K} = \sum_{i} a_{i} \overline{b_{i}} \in K \ \ (\text{or} \ K_{\mathbb{R}})$$

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,
$$(\vec{a},\vec{b})_K=\sum_i a_i\overline{b_i}\in K \ (\text{or } K_\mathbb{R})$$

$$\|\vec{a}\|_{\mathcal{K}} := \sqrt{\langle \vec{a}, \vec{a} \rangle_{\mathcal{K}}} \in \mathcal{K} \ (\text{or} \ \mathcal{K}_{\mathbb{R}})$$

For
$$\vec{a}=(a_1,\cdots,a_k)\in \mathcal{K}^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in \mathcal{K}^k$,

$$\langle ec{a}, ec{b}
angle_{\mathcal{K}} = \sum_{i} a_{i} \overline{b_{i}} \in \mathcal{K} \ \ ext{(or } \mathcal{K}_{\mathbb{R}})$$

$$\|\vec{a}\|_{\mathcal{K}} := \sqrt{\langle \vec{a}, \vec{a} \rangle_{\mathcal{K}}} \in \mathcal{K} \ (\text{or} \ \mathcal{K}_{\mathbb{R}})$$

Properties

$$\bullet \parallel \|\vec{a}\|_{K} \parallel = \|\sigma(\vec{a})\|$$

 $||x|| = ||\sigma(x)||$

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,
$$(\vec{a},\vec{b})_K=\sum_i a_i\overline{b_i}\in K \ (\text{or}\ K_\mathbb{R})$$

$$\|\vec{a}\|_{\mathcal{K}} := \sqrt{\langle \vec{a}, \vec{a} \rangle_{\mathcal{K}}} \in \mathcal{K} \ (\text{or} \ \mathcal{K}_{\mathbb{R}})$$

Properties

- $\bullet \parallel \|\vec{a}\|_{\mathcal{K}} \parallel = \|\sigma(\vec{a})\|$
- $ullet \ \mathcal{N}(\|ec{a}\|_{\mathcal{K}}) = \Delta_{\mathcal{K}}^{-1/2} \cdot \det(\mathcal{L}(ec{a}))$

$$\mathcal{N}(x) = \prod_{i=1}^{d} |\sigma(x)_i|$$

QR factorization over R

Let
$$B=(ec{b}_1,\cdots,ec{b}_k)\in \mathcal{K}^k$$
, define

$$\vec{b}_i^* = \vec{b}_i - \sum_{j < i} \mu_{ij} \vec{b}_j^*, \text{ with } \mu_{ij} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle_K}{\langle \vec{b}_j^*, \vec{b}_j^* \rangle_K}$$

QR factorization over R

Let $B=(\vec{b}_1,\cdots,\vec{b}_k)\in K^k$, define

$$\vec{b}_i^* = \vec{b}_i - \sum_{j < i} \mu_{ij} \vec{b}_j^*, \text{ with } \mu_{ij} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle_K}{\langle \vec{b}_j^*, \vec{b}_j^* \rangle_K}$$

QR-factorisation: B = QR, with

- $r_{ii} = \|\vec{b}_i^*\|_{\mathcal{K}}$, $r_{ij} = \mu_{ji}r_{ii}$ for i < j and $r_{ij} = 0$ otherwise
- ullet columns of Q are $ec{b}_i^*/\|ec{b}_i^*\|_{\mathcal{K}}$

QR factorization over R

Let $B=(\vec{b}_1,\cdots,\vec{b}_k)\in \mathcal{K}^k$, define

$$\vec{b}_i^* = \vec{b}_i - \sum_{j < i} \mu_{ij} \vec{b}_j^*, \text{ with } \mu_{ij} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle_K}{\langle \vec{b}_j^*, \vec{b}_j^* \rangle_K}$$

QR-factorisation: B = QR, with

- $r_{ii} = \|\vec{b}_i^*\|_{\mathcal{K}}$, $r_{ij} = \mu_{ji}r_{ii}$ for i < j and $r_{ij} = 0$ otherwise
- ullet columns of Q are $ec{b}_i^*/\|ec{b}_i^*\|_{\mathcal{K}}$

Properties

• $\forall \vec{x}, \vec{y}, \ \langle B\vec{x}, B\vec{y} \rangle_{K} = \langle R\vec{x}, R\vec{y} \rangle_{K}$

QR factorization over R

Let $B=(\vec{b}_1,\cdots,\vec{b}_k)\in \mathcal{K}^k$, define

$$\vec{b}_i^* = \vec{b}_i - \sum_{j < i} \mu_{ij} \vec{b}_j^*, \text{ with } \mu_{ij} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle_K}{\langle \vec{b}_j^*, \vec{b}_j^* \rangle_K}$$

QR-factorisation: B = QR, with

- $r_{ii} = \|\vec{b}_i^*\|_{\mathcal{K}}$, $r_{ij} = \mu_{ji}r_{ii}$ for i < j and $r_{ij} = 0$ otherwise
- ullet columns of Q are $ec{b}_i^*/\|ec{b}_i^*\|_{\mathcal{K}}$

Properties

- $\forall \vec{x}, \vec{y}, \ \langle B\vec{x}, B\vec{y} \rangle_{K} = \langle R\vec{x}, R\vec{y} \rangle_{K}$
- $\forall \vec{v} \in \mathcal{L}(B), \ \mathcal{N}(\|\vec{v}\|_{K}) \geq \min \mathcal{N}(r_{ii})$

Outline of the talk

1 The LLL algorithm

2 The Lagrange-Gauss algorithm

3 Computing the relaxed Euclidean division

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

Compute QR factorization

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

reduce b_2 with b_1

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of 7.3 by 10.2

$$M = \begin{pmatrix} 10.2 & -2.9 \\ 0 & 0.6 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

start again

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

reduce
$$b_2$$
 with b_1

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of -10 by 3

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

$$b_2$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For the Lagrange-Gauss algorithm over R, we need

- Rotation
- Euclidean division

$$b_2$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For the Lagrange-Gauss algorithm over R, we need

- Rotation \Rightarrow ok
- Euclidean division \Rightarrow ?

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b + ra| \le |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq \frac{1/2}{\star}$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b+ra| \leq |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq \frac{1/2}{\bullet}$

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b+ra| \leq |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq 1/2$

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

Find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

⇒ sufficient for Gauss' algo

Outline of the talk

1 The LLL algorithm

2 The Lagrange-Gauss algorithm

3 Computing the relaxed Euclidean division

Reminder: $\sigma(r) = (r(\alpha_1), \dots, r(\alpha_d))^T$ (multiplication is coefficient-wise)

Reminder:
$$\sigma(r) = (r(\alpha_1), \dots, r(\alpha_d))^T$$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Reminder:
$$\sigma(r) = (r(\alpha_1), \cdots, r(\alpha_d))^T$$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Properties of Log

Reminder: $\sigma(r) = (r(\alpha_1), \cdots, r(\alpha_d))^T$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

Log $r = h + a\mathbf{1}$, with $h \in H$

- $\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$
- a > 0 if $r \in R$

Reminder: $\sigma(r) = (r(\alpha_1), \cdots, r(\alpha_d))^T$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

Log $r = h + a\mathbf{1}$, with $h \in H$

- $\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$
- a > 0 if $r \in R$
- $||r|| \simeq 2^{\|\operatorname{Log} r\|_{\infty}}$

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Solution: If $\| \operatorname{Log}(u) - \operatorname{Log}(v) \| \le \varepsilon$ then $\| u - v \| \le \varepsilon \cdot \min(\| u \|, \| v \|)$

(requires to extend Log to take arguments into account)

Let's say
$$d=1$$

$$\mathsf{Log}(x) = \mathsf{log}\,|x(\alpha_1)|$$

$$(\alpha_1 \in \mathbb{C})$$

Let's say
$$d=1$$

$$\mathsf{Log}(x) = \mathsf{log}\,|x(\alpha_1)|$$

 $(\alpha_1 \in \mathbb{C})$

Log 1 = Log i

19/02/2020

Let's say
$$d=1$$

$$\mathsf{Log}(x) = \mathsf{log}\,|x(\alpha_1)|$$

$$(\alpha_1 \in \mathbb{C})$$

$$Log 1 = Log i$$

$$|\operatorname{Log}(u) - \operatorname{Log}(v)| \le \varepsilon$$

 $\Rightarrow |u - v| \le \varepsilon'$

Let's say
$$d=1$$

$$\overline{\text{Log}}(x) = (\log r, \theta) \in \mathbb{R} \times \mathbb{Z}/(2\pi\mathbb{Z})$$
 $x(\alpha_1) = r \cdot e^{i\theta} \in \mathbb{C}$

$$x(\alpha_1) = r \cdot e^{i\theta} \in \mathbb{C}$$

$$\overline{\log} 1 \neq \overline{\log} i$$

$$|\overline{\operatorname{Log}}(u) - \overline{\operatorname{Log}}(v)| \le \varepsilon$$

$$\Rightarrow |u - v| \le \varepsilon'$$

Let's say
$$d=1$$

$$\overline{\mathsf{Log}}(x) = (\mathsf{log}\,r, \theta) \in \mathbb{R} \times \mathbb{Z}/(2\pi\mathbb{Z})$$

$$x(\alpha_1) = r \cdot e^{i\theta} \in \mathbb{C}$$

$$\overline{\operatorname{Log}} \, 1 \neq \overline{\operatorname{Log}} \, i$$

$$|\overline{\operatorname{Log}}(u) - \overline{\operatorname{Log}}(v)| \le \varepsilon$$

$$\Rightarrow |u - v| \lesssim \varepsilon \cdot \min(||u||, ||v||)$$

Using the Log space

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

(requires to extend Log to take arguments into account)

Using the Log space

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Solution: If $\| \operatorname{Log}(u) - \operatorname{Log}(v) \| \le \varepsilon$ then $\| u - v \| \lesssim \varepsilon \cdot \min(\| u \|, \| v \|)$

(requires to extend Log to take arguments into account)

New objective

Find $x, y \in R$ such that

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

$$r_i = Log(x_i), x_i \in R$$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

$$r_i = \text{Log}(x_i), x_i \in R$$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

$$r_i = Log(x_i), x_i \in R$$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve **exact** CVP in *L* with target *t*

$$L = \begin{pmatrix} r_1 & \cdots & r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \mathsf{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

$$r_i = \text{Log}(x_i), \ x_i \in R$$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} r_1 & \cdots & r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \mathsf{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

$$r_i = \text{Log}(x_i), \ x_i \in R$$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} r_1 & \cdots & r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \mathsf{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Complexity

Quantum poly time (with the oracle)

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} r_1 & \cdots & r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \mathsf{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Complexity

Quantum poly time (with the oracle)

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} U & r_1 & \cdots & r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \mathsf{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Complexity

Quantum poly time (with the oracle)

$$L = \begin{pmatrix} U & r_1 & \cdots & r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad t = \begin{pmatrix} \operatorname{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$L = \begin{pmatrix} \beta U & \beta r_1 & \cdots & \beta r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad t = \begin{pmatrix} \beta \operatorname{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$L = \begin{pmatrix} \beta U & \beta r_1 & \cdots & \beta r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad t = \begin{pmatrix} \beta \log(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Heuristic assumption

For any target $t = (\beta \cdot x, 0, \dots, 0)^T$, we have

$$\operatorname{dist}(L,t) \leq \sqrt{d}$$
.

$$L = \begin{pmatrix} \beta U & \beta r_1 & \cdots & \beta r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad t = \begin{pmatrix} \beta \log(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Heuristic assumption

For any target $t = (\beta \cdot x, 0, \dots, 0)^T$, we have

$$\operatorname{dist}(L,t) \leq \sqrt{d}$$
.

• Numerical experiments (up to dimension d = 8)

$$L = \begin{pmatrix} \beta U & \beta r_1 & \cdots & \beta r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad t = \begin{pmatrix} \beta \log(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Heuristic assumption

For any target $t = (\beta \cdot x, 0, \dots, 0)^T$, we have

$$\operatorname{dist}(L,t) \leq \sqrt{d}$$
.

- Numerical experiments (up to dimension d = 8)
- Hand waving counting argument
 - ▶ assuming $(\beta \cdot x \| \vec{v})$ with $v \stackrel{\$}{\leftarrow} \{\vec{w} \in \{0,1\}^{d^2} | \|\vec{w}\|_1 = d\}$ implies x (almost) uniform mod U.

$$L = \begin{pmatrix} \beta U & \beta r_1 & \cdots & \beta r_{d^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad t = \begin{pmatrix} \beta \log(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Heuristic assumption

For any target $t = (\beta \cdot x, 0, \dots, 0)^T$, we have

$$\operatorname{dist}(L,t) \leq \sqrt{d}$$
.

- Numerical experiments (up to dimension d = 8)
- Hand waving counting argument
 - ▶ assuming $(\beta \cdot x \| \vec{v})$ with $v \stackrel{\$}{\leftarrow} \{\vec{w} \in \{0,1\}^{d^2} | \|\vec{w}\|_1 = d\}$ implies x (almost) uniform mod U.
 - ▶ related to Arakelov random walk ⇒ see Léo and Benjamin's talk

Under the carpet

- Any module
 - use pseudo-basis
 - ▶ add class group to *L* (cf [Buc88])
- Proving correctness
 - Lovász' swap condition
 - switch between $\mathcal{N}(\cdot)$ and $\|\cdot\|$
 - handling bit sizes

[Buc88] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

LLL algorithm for cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

LLL algorithm for cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

In practice? \Rightarrow replace the oracle by a CVP solver

LLL algorithm for cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

In practice? \Rightarrow replace the oracle by a CVP solver

LLL algorithm for cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

In practice? \Rightarrow replace the oracle by a CVP solver

- (1) Improving CVP in L
 - reduce its dimension to $\widetilde{O}(d)$?
 - ▶ use the structure of *L* to improve CVP solvers?

- (1) Improving CVP in L
 - reduce its dimension to $\widetilde{O}(d)$?
 - ▶ use the structure of *L* to improve CVP solvers?
 - ► CVP with pre-processing is NP-hard [Mic01]

"CVPP in NP-hard": $\forall n, \exists L, \forall \phi \text{ (SAT instance with } n \text{ variables)}, \exists \vec{t} \text{ and } \alpha \text{ s.t.}$

 ϕ is satisfiable \Leftrightarrow dist $(L, \vec{t}) \leq \alpha$.

[MicO1] D. Micciancio. The hardness of the closest vector problem with preprocessing. Transaction on Information Theory.

- (1) Improving CVP in L
 - reduce its dimension to O(d)?
 - use the structure of L to improve CVP solvers?
 - CVP with pre-processing is NP-hard [Mic01]
- (2) Generalizing LLL to all the BKZ trade-offs?
 - reduction rank k to rank β (cf [MS19])
 - sieving/enumeration in modules?

[[]MS19] T. Mukherjee, N. Stephens-Davidowitz. Lattice Reduction for Modules, or How to Reduce ModuleSVP to ModuleSVP, ePrint.

- (1) Improving CVP in L
 - reduce its dimension to $\widetilde{O}(d)$?
 - use the structure of L to improve CVP solvers?
 - CVP with pre-processing is NP-hard [Mic01]
- (2) Generalizing LLL to all the BKZ trade-offs?
 - reduction rank k to rank β (cf [MS19])
 - sieving/enumeration in modules?

Thank you