Gabriella Weis Mr. Lewis H Applied Statistics 8 February 2024

Are Snakes Left-Handed?

1) 1-Sample Mean T-test

 μ = mean of lateral index values

$$H_o$$
: $\mu = 0.5$
 H_o : $\mu \neq 0.5$
 $\alpha = 0.05$

Checks:

- Random: assume random selection
- Normal: CLT n>30, sample size is large enough

Calculations:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{0.5183611 - 0.5}{\frac{0.05658983}{\sqrt{36}}} = 1.9468$$

p-value =
$$p(t > 1.9468)x2 = 0.05962$$

Since the p-value(0.05962) $> \alpha(0.05)$, we fail to reject the null hypothesis. Therefore, there is not convincing evidence that snakes **do not** exhibit asymmetric coiling behavior (based on lateral index values).

Plot:

2) Categories and combinations of categories.

Model	Equation	R^2	R ² (adjusted)	S_{e}	F-statistic
Length	y = 0.50139 + 0.01471x	0.008874	-0.02028	0.05716	0.3044
Gender	y = 0.53644 - 0.03617x	0.105	0.07871	0.05432	3.99
Age	y = 0.54572 - 0.05472	0.2405	0.2181	0.05004	10.76
Age+Length	y = 0.65768 - 0.09503x1 - 0.07956x2	0.3696	0.3314	0.04627	9.673
Gender+Leng th	y = 0.47529 - 0.06233x1 + 0.06434x2	0.2198	0.1725	0.05148	4.649
Gender+Age	y = 0.56381 - 0.03617x -	0.3455	0.3058	0.04715	8.709

0.05472×2		
0.03472X2		

The chosen model has the highest R^2 and R^2 (adjusted) value, the lowest standard error, and the second highest F-statistic, which are all good things to have in a model.

- 3) Do adults differ from juveniles? Males from females?
- 2 2-Sample Difference in Means T-tests

First Test:

 μ_1 = lat index mean for juveniles μ_2 = lat index mean for adults

$$H_o: \mu_1 = \mu_2$$

 $H_o: \mu_1 \neq \mu_2$
 $\alpha = 0.05$

Checks:

- Normal: Box Plots do not appear normal. Two extreme outliers for adults, and one slight outlier for juveniles. Proceed with caution.

Lateral Index Based on Age

- Assume random selection.

Calculations:

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}} = \frac{(0.491 - 0.5457222) - 0}{\sqrt{\frac{0.03917232^2}{18} + \frac{0.05893546^2}{18}}} = -3.2808$$
 w/df = 29.568

p-value =
$$p(t > -3.2808) = 0.002657$$

Since the p-value(0.002657) $< \alpha(0.05)$, we reject the null hypothesis. Therefore, there is convincing evidence to suggest that the difference between the means of the lateral indexes for juveniles and adults are **not** equal to zero.

Second Test:

$$\mu_1^{}=$$
 lat index mean for males $\mu_2^{}=$ lat index mean for females

$$H_o: \mu_1 = \mu_2$$

 $H_o: \mu_1 \neq \mu_2$
 $\alpha = 0.05$

Checks:

- Normal: The female box plot appears relatively normal, but the male box plot appears skewed left. Proceed with caution.

Assume random selection.

Calculations:

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(0.5002778 - 0.5364444) - 0}{\sqrt{\frac{0.04560677^2}{18} + \frac{0.06181207^2}{18}}} = -1.9975 \quad \text{w/df} = 31.278$$

$$p$$
-value = $p(t > -1.9975) = 0.05453$

Since the p-value(0.05453) $\leq \alpha(0.05)$, we fail to reject the null hypothesis. Therefore, there is not convincing evidence to suggest that the difference between the means of the lateral indexes for males and females is **not** equal to zero.

4) Is there a difference in mean coiling laterality index per each categorical pairing of snake?

 μ_1 = lat index mean for adults/females (AF)

 μ_2 = lat index mean for juveniles/females (JF)

 μ_3 = lat index mean for adults/males (AM)

 μ_4 = lat index mean for juveniles/males (JM)

$$H_o$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$
 H_o : At least 2 means are different
 $\alpha = 0.05$

Checks:

- Normality: Boxplots do not appear normal. AM has extreme outliers, and JM looks the closest to approximately normal. Proceed with caution.

- Equal Variance: the largest standard deviation (S_3) is more than two times the smallest standard deviation (S_4) . Proceed with caution.

$$S_3 = 0.06218007$$

 $S_4 = 0.01399107$

- Independence: assume independence.
- Random: assume random selection.

Calculations:

	\overline{x}	S	n
$\mu_1(AF)$	0.5785556	0.03300042	9
$\mu_2(JF)$	0.4943333	0.0551362	9
$\mu_3(AM)$	0.5128889	0.06218007	9
$\mu_4(JM)$	0.4876667	0.01399107	9

$$N = 9(4) = 36$$

 $T = 9(0.5785556) + 9(0.4943333) + 9(0.5128889) + 9(0.4876667) = 18.661$

$$\frac{=}{x} = \frac{18.661}{36} = 0.5184$$

$$SSTr = 9(0.5785556 - 0.5184)^{2} + 9(0.4943333 - 0.5184)^{2} + 9(0.5128889 - 0.5184)^{2} + 9(0.4876667 - 0.5184)^{2} = 0.046555$$

$$SSE = 8(0.03300042)^{2} + 8(0.0551362)^{2} + 8(0.06218007)^{2} + 8(0.01399107)^{2} = 0.065529$$

$$MSTr = \frac{0.046555}{3} = 0.015518$$

$$MSE = \frac{0.065529}{32} = 0.00205$$

$$F\text{-stat.} = \frac{0.015518}{0.00205} = 7.5698$$

$$p$$
-value = $p(F > 7.5698) = 0.00058075$

Check means:

AF AM JF JM 0.5785556 0.5128889 0.4943333 0.4876667

Check standard deviations:

AF AM JF JM 0.03300042 0.06218007 0.05513620 0.01399107

ANOVA Test:

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 3 0.04656 0.015518 7.578 0.000577 ***
Residuals 32 0.06553 0.002048

Since the p-value(0.00058075) $< \alpha(0.05)$, we reject the null hypothesis. Therefore, there is convincing evidence to suggest that at least two of the mean coiling laterality indexes per each categorical pairing of snakes are **not** equal.