Introduction to Data Science

GETTING STARTED: EXPLORATORY DATA ANALYSIS

BRIAN D'ALESSANDRO

<u>Fine Print</u>: these slides are, and always will be a work in progress. The material presented herein is original, inspired, or borrowed from others' work. Where possible, attribution and acknowledgement will be made to content's original source. Do not distribute, except for as needed as a pedagogical tool in the subject of Data Science.

FIRST THINGS FIRST: KNOW THE SHAPE OF YOUR DATA

2. What does it look like?

- Feature Types
- Missing values/outliers
- Distribution
- Covariance structure

A ROSE BY ANY OTHER NAME

Given the multiple disciplinary origins of what is now Data Science, we often see several words used to mean the same concepts.

	<u>Statistics</u>	<u>Machine</u> <u>Learning</u>	<u>Common</u> <u>Symbols</u>
Thing you want to predict	Dependent Variable	Target Variable / Label	Y, f(X)
Things you use to predict	Independent Variable	Feature	X

NB: Admittedly, I often use these terms interchangeably.

TYPES OF FEATURES

Most variables fall under four basic categories

*Notably missing from this chart is text data, but I view text as a special type of unordered categorical variables

IMPLICATIONS OF FEATURE TYPE

Modeling

- Every algorithm has requirements on what type of data can be used as an input. I.e., regression based methods require numeric or binary variables, while tree methods can accept any type*.
- Often times you can 'cheat' linear models by transforming the data to capture non-linear form (more on this in later lectures).

Analysis/Exploration

 Not all distributional statistics are defined on categorical data, but you can use category labels to compare statistics across category groupings.

*Note: this often varies by software implementation. It is best to consider software documentation as the authoritative guide

STEP 1 IN KNOWING YOUR DATA: LOOK AT IT

Simply looking at the first 10 lines (and get to know your Unix commands to do this) can reveal a lot of what you need to know

MacB	ook-Air-2:	data bri	an <mark>d\$</mark> hea	ıd ads_dat	taset.t	xt											
isbu	yer buy_fr	req	visit_	freq	buy_i	nterval	sv_ir	nterval	expec	ted_time.	_buy	expec	ted_time_	visit	last_b	uy	last_vis
t	multip	ole_buy	multip	le_visit	uniq_	urls	num_c	heckins	y_buy								
	0	NaN	1	0	0	0	0	106	106	0	0	169	2130	0			
	0	NaN	1	0	0	0	0	72	72	0	0	154	1100	0			
	0	NaN	1	0	0	0	0	5	5	0	0	4	12	0			
	ø	NaN	1	0	0	0	0	6	6	0	0	150	539	0			
	0	NaN	2	0	.5	0	-101.	1493	101	101	0	1	103	362	0		
	0	NaN	1	0	0	0	0	42	42	0	0	17	35	0			
	0	NaN	1	0	0	0	0	42	42	0	0	42	110	0			
	0	NaN	2	0	29.79	167	0	-106.1	.883	121	121	0	1	101	401	0	
	0	NaN	3	0	45.47	917	0	-34.14	473	64	64	0	1	100	298	0	

EMPIRICAL DISTRIBUTIONS

Most data comes in as is and it doesn't always matter what you call its Distribution (in terms of known, parametric probability distributions)...

but its still useful to understand its shape. The histogram is a great tool for this.

EMPIRICAL DISTRIBUTIONS

It is often very useful to know the distributional statistics of your data...

```
loansData['Monthly.LogIncome'].describe()
In [7]:
Out[7]: count
                 2499.000000
                    8.501915
        mean
        std
                    0.523019
        min
                   6.377577
        25%
                    8.160518
        50%
                  8.517193
        75%
                   8.824678
                   11.540054
        max
        dtype: float64
```

DATA CLEANING

Beyond general data exploration and transformations, one usually wants some degree of data cleanup, looking for outliers and missing values.

Outliers are often the result of erroneous data collection or processing. Not only are they a good clue for data processing QA, but they can have severe influence on model estimates or summary statistics.

Missing values can indicate processing/collection errors. When present in the data (as either null, NA or ""), they can break a lot of modeling algorithms.

HANDLING OUTLIERS/NULLS

What should one do when faced with these issues? The easiest answer in data science is *it depends...*

If missing/bad at random...

- If the occurrence is rare, delete observations (most extreme)
- Can also impute/replace with average or median for that feature.

Otherwise...

- Impute with some constant (usually the average or median), create a dummy variable to indicate missing/bad
- Exploit multi-collinearity, i.e., use a model to estimate E[Missing Val|X].

No matter your preferred technique, this becomes a testable design choice. I.e,

- Identify multiple competing methods for imputation and/or outlier cleaning
- 2. Train a model for each method (on the same training data)
- 3. Evaluate each method against the same out-of-sample validation data
- Choose the best performing