SEQUENCE LISTING

Advisys, Inc.

- <120> Codon optimized Synthetic Plasmid
- <130> 108328.00146
- <160> 21
- <170> PatentIn version 3.1
- <210> 1
- <211> 3534
- <212> DNA
- <213> artificial sequence
- <220>
- <223> Plasmid vector having an analog GHRH sequence.
- <400> 1

gttgtaaaac	gacggccagt	gaattgtaat	acgactcact	atagggcgaa	ttggagctcc	60
accgcggtgg	cggccgtccg	ccctcggcac	catcctcacg	acacccaaat	atggcgacgg	120
gtgaggaatg	gtggggagtt	atttttagag	cggtgaggaa	ggtgggcagg	cagcaggtgt	180
tggcgctcta	aaaataactc	ccgggagtta	tttttagagc	ggaggaatgg	tggacaccca	240
aatatggcga	cggttcctca	cccgtcgcca	tatttgggtg	teegeeeteg	gccggggccg	300
cattcctggg	ggccgggcgg	tgctcccgcc	cgcctcgata	aaaggctccg	gggccggcgg	360
cggcccacga	gctacccgga	ggagcgggag	gcgccaagct	ctagaactag	tggatcccaa	420
ggcccaactc	cccgaaccac	tcagggtcct	gtggacagct	cacctagctg	ccatggtgct	480
ctgggtgttc	ttctttgtga	tcctcaccct	cagcaacagc	tcccactgct	ccccacctcc	540
ccctttgacc	ctcaggatgc	ggcggcacgt	agatgccatc	ttcaccaaca	gctaccggaa	600
ggtgctggcc	cagctgtccg	cccgcaagct	gctccaggac	atcctgaaca	ggcagcaggg	660
agagaggaac	caagagcaag	gagcataatg	actgcaggaa	ttcgatatca	agcttatcgg	720
ggtggcatcc	ctgtgacccc	tccccagtgc	ctctcctggc	cctggaagtt	gccactccag	780
tgcccaccag	ccttgtccta	ataaaattaa	gttgcatcat	tttgtctgac	taggtgtcct	840
tctataatat	tatggggtgg	aggggggtgg	tatggagcaa	ggggcaagtt	gggaagacaa	900
cctgtagggc	ctgcggggtc	tattgggaac	caagctggag	tgcagtggca	caatcttggc	960
tcactgcaat	ctccgcctcc	tgggttcaag	cgattctcct	gcctcagcct	cccgagttgt	1020

1080 tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1140 1200 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320 1380 ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct 1440 tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1500 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 1560 gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620 1680 ggagaggegg tttgegtatt gggegetett eegetteete geteactgae tegetgeget 1740 cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800 accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc 1860 acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920 1980 egttteecee tggaagetee etegtgeget etectgttee gaccetgeeg ettaceggat acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt 2040 atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 2100 agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 2160 acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2220 gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg 2280 gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 2340 2400 gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 2460 gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2520 actogtoaag aaggogatag aaggogatgo gotgogaato gggagoggog atacogtaaa 2580 gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2640 2700 agcggccatt ttccaccatg atattcggca agcaggcatc gccatgggtc acgacgagat

cctcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc gcgagcccct 2760 2820 gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete 2880 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 2940 3000 ggagateetg eeceggeact tegeecaata geageeagte cetteeeget teagtgaeaa cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct 3060 cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc 3120 3180 cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt catagoogaa tagoototoo acccaagogg coggagaaco tgogtgcaat coatottgtt 3240 3300 caatcatgcg aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea acettaeeag 3360 agggegeece agetggeaat teeggttege ttgetgteea taaaacegee cagtetagea 3420 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3480 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac 3534

<210> 2

<211> 2739

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having an analog GHRH sequence.

<400> 2

ccaccgcggt ggcggccgtc cgccctcggc accatcctca cgacacccaa atatggcgac 60 gggtgaggaa tggtggggag ttatttttag agcggtgagg aaggtgggca ggcagcaggt 120 180 gttggcgctc taaaaataac tcccgggagt tatttttaga gcggaggaat ggtggacacc 240 caaatatggc gacggttcct cacccgtcgc catatttggg tgtccgccct cggccggggc cgcattcctg ggggccgggc ggtgctcccg cccgcctcga taaaaggctc cggggccggc 300 360 ggcggcccac gagctacccg gaggagcggg aggcgccaag cggatcccaa ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct ctgggtgttc 420 ttetttgtga teeteaceet cageaacage teecactget eeceacetee ceetttgace 480

ctcaggatgc ggcggtatgc agatgccatc ttcaccaaca gctaccggaa ggtgctgggc 540 600 cagctgtccg cccgcaagct gctccaggac atcatgagca ggcagcaggg agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg ggtggcatcc 660 ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag tgcccaccag 720 ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct tctataatat 780 tatggggtgg aggggggtgg tatggagcaa ggggcaagtt gggaagacaa cctgtagggc 840 tcgaggggg gcccggtacc agcttttgtt ccctttagtg agggttaatt tcgagcttgg 900 tetteegett eetegeteae tgaetegetg egeteggteg tteggetgeg gegageggta 960 1020 tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 1080 tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 1140 1200 tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg egeteteetg tteegaceet geegettace ggatacetgt eegeetttet eeetteggga 1260 agegtggege ttteteatag etcaegetgt aggtatetea gtteggtgta ggtegttege 1320 tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 1380 aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 1440 1500 ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta tttggtatct gcgctctgct gaagccagtt 1560 accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 1620 ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 1680 ttgatetttt etaeggggte tgaegeteag etagegetea gaagaaeteg teaagaagge 1740 gatagaaggc gatgcgctgc gaatcgggag cggcgatacc gtaaagcacg aggaagcggt 1800 1860 cageceatte geegecaage tetteageaa tateaegggt agecaaeget atgteetgat ageggteege cacacceage eggecacagt egatgaatee agaaaagegg ceattiteea 1920 ccatgatatt cggcaagcag gcatcgccat gagtcacgac gagatcctcg ccgtcgggca 1980 tgcgcgcctt gagcctggcg aacagttcgg ctggcgcgag cccctgatgc tcttcgtcca 2040 gatcatectg ategacaaga ceggetteea teegagtaeg tgetegeteg atgegatgtt 2100 tegettggtg gtegaatggg eaggtageeg gateaagegt atgeageege egeattgeat 2160

cagccatgat ggatactttc tcggcaggag caaggtgaga tgacaggaga tcctgccccg 2220 2280 gcacttegee caatageage cagtecette eegetteagt gacaaegteg ageacagetg 2340 cgcaaggaac gcccgtcgtg gccagccacg atagccgcgc tgcctcgtcc tgcagttcat tcagggcacc ggacaggtcg gtcttgacaa aaagaaccgg gcgcccctgc gctgacagcc 2400 2460 ggaacacggc ggcatcagag cagccgattg tctgttgtgc ccagtcatag ccgaatagcc tetecaceca ageggeegga gaacetgegt geaatecate ttgtteaate atgegaaaeg 2520 atcctcatcc tgtctcttga tcagatcttg atcccctgcg ccatcagatc cttggcggca 2580 agaaagccat ccagtttact ttgcagggct tcccaacctt accagagggc gccccagctg 2640 2700 gcaattccgg ttcgcttgct gtccataaaa ccgcccagtc tagcaactgt tgggaagggc 2739 gatcgtgtaa tacgactcac tatagggcga attggagct

<210> 3

<211> 795

<212> DNA

<213> artificial sequence

<220>

<223> Coding sequence having an antibiotic resistance gene Kanamycin.

<400> 3

atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc 60 ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 120 180 gegeagggge geceggttet ttttgteaag acegaeetgt ceggtgeeet gaatgaactg caggacgagg cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 240 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 300 360 gatctcctgt catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 420 eggeggetge atacgettga teeggetace tgeceatteg accaceaage gaaacatege atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 480 gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac 540 600 ggcgaggatc tcgtcgtgac tcatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 660 720 atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc

ctcgtgctti	t acggtatcgc	cgctcccgat	tcgcagcgca	tcgccttcta	tcgccttctt	780
gacgagttc	t tctga					795
<210> 4 <211> .219 <212> DNA <213> ard		ience				
<220> <223> Sec	quence for an	n analog por	cine GHRH s	sequence.		
<400> 4 atggtgctct	t gggtgttctt	ctttgtgatc	ctcaccctca	gcaacagctc	ccactgctcc	60
ccacctccc	c ctttgaccct	caggatgcgg	cggcacgtag	atgccatctt	caccaacagc	120
taccggaag	g tgctggccca	gctgtccgcc	cgcaagctgc	tccaggacat	cctgaacagg	180
cagcagggag	g agaggaacca	agagcaagga	gcataatga			219
<210> 5 <211> 240 <212> DN3 <213> are		ience				
000						
<220> <223> Sec	quence for an	n analog mou	ıse GHRH sed	quence.		
<223> Sec <400> 5	quence for ar				ccactgcagc	60
<223> Sec <400> 5 gccatggtg		ctttgtgatc	ctcatcctca	ccagcggcag		60 120
<223> Sec <400> 5 gccatggtgc ctgcctccc	c totgggtgot	ctttgtgatc	ctcatcctca aggcacgtgg	ccagcggcag	caccaccaac	
<223> Sec <400> 5 gccatggtg ctgcctccca tacaggaag	c tetgggtget	ctttgtgatc caggatgcag gctgtacgcc	ctcatcctca aggcacgtgg aggaaggtga	ccagcggcag acgccatctt tccaggacat	caccaccaac	120
<223> Sec <400> 5 gccatggtg ctgcctccca tacaggaag	c tetgggtget a gecetecett c tgetgageca	ctttgtgatc caggatgcag gctgtacgcc	ctcatcctca aggcacgtgg aggaaggtga	ccagcggcag acgccatctt tccaggacat	caccaccaac	120 180
<223> Sec <400> 5 gccatggtggctcccccctacaggaaggcgaggttctaa <210> 6 <211> 23 <212> DN	c tetgggtget a geeeteeett c tgetgageea a ggateeagga	ctttgtgatc caggatgcag gctgtacgcc gcagagggcc	ctcatcctca aggcacgtgg aggaaggtga	ccagcggcag acgccatctt tccaggacat	caccaccaac	120 180 240
<223> Sec <400> 5 gccatggtggcctccccctacaggacgagacttctaa <210> 6 <211> 23 <212> DN <213> ar <220>	c tetgggtget a geeeteett c tgetgageea a ggateeagga	ctttgtgatc caggatgcag gctgtacgcc gcagagggcc	ctcatcctca aggcacgtgg aggaaggtga aggctgagct	ccagcggcag acgccatctt tccaggacat gataagcttg	caccaccaac	120 180 240
<223> Sec <400> 5 gccatggtggctccccctacaggaaggcgagacttctaa <210> 6 <211> 23 <212> DN <213> ar <220> <223> Sec <400> 6	c tetgggtget a geeeteeett c tgetgageea a ggateeagga 4 A tificial sequ	ctttgtgatc caggatgcag gctgtacgcc gcagagggcc	ctcatcctca aggcacgtgg aggaaggtga aggctgagct	ccagcggcag acgccatctt tccaggacat gataagcttg	caccaccaac catgaacaag cgatgagttc	120 180 240

tacaggagga	tcctgggcca	gctgtacgct	aggaagctcc	tgcacgagat	catgaacagg	180
cagcagggcg	agaggaacca	ggagcagagg	agcaggttca	actgataagc	ttgc	234
<210> 7 <211> 225 <212> DNA <213> arti	ificial sequ	ience				
<220> <223> Sequ	uence for ar	n analog bov	vine GHRH se	equence.		
<400> 7 gccatggtgc	tgtgggtgtt	cttcctggtg	accctgaccc	tgagcagcgg	ctcccacggc	60
tccctgccct	cccagcctct	gcgcatccct	cgctacgccg	acgccatctt	caccaacagc	120
taccgcaagg	tgctcggcca	gctcagcgcc	cgcaagctcc	tgcaggacat	catgaaccgg	180
cagcagggcg	agcgcaacca	ggagcaggga	gcctgataag	cttgc		225
	ificial sequ	ience				
<220> <223> Sequ	lence for ar	n analog ovi	ne GHRH sec	quence.		
<400> 8 gccatggtgc	tgtgggtgťt	cttcctggtg	accctgaccc	tgagcagcgg	aagccacggc	60
agcctgccca	gccagcccct	gaggatccct	aggtacgccg	acgccatctt	caccaacagc	120
tacaggaaga	tcctgggcca	gctgagcgct	aggaagctcc	tgcaggacat	catgaacagg	180
cagcagggcg	agaggaacca	ggagcagggc	gcctgataag	cttgc		225
<210> 9 <211> 246 <212> DNA <213> arti	ificial sequ	ience				
<220> <223> Sequ	uence for ar	n analog chi	.cken GHRH s	sequence.		
<400> 9						
gccatggtgc	tctgggtgct	ctttgtgatc	ctcatcctca	ccagcggcag	ccactgcagc	60
ctqcctccca	gccctccctt	caggatgcag	aggcacgtgg	acqccatctt.	caccaccaac	120

tacagga	aagc	tgctgagcca	gctgtacgcc	aggaaggtga	tccaggacat	catgaacaag	180
cagggcg	gaga	ggatccagga	gcagagggcc	aggctgagct	gataagcttg	cgatgagttc	240
ttctaa							246
<210> <211> <212> <213>	10 190 DNA arti	ificial sequ	ıence				
<220> <223>	Nucl	leic acid se	equence of	human growt	th hormone p	ooly A tail.	
<400> gggtggd	10 catc	cctgtgaccc	ctccccagtg	cctctcctgg	ccctggaagt	tgccactcca	60
gtgccca	acca	gccttgtcct	aataaaatta	agttgcatca	ttttgtctga	ctaggtgtcc	120
ttctata	aata	ttatggggtg	gaggggggtg	gtatggagca	aggggcaagt	tgggaagaca	180
acctgta	aggg						190
	11 55 DNA arti	ificial sequ	ıence				
<220> <223>	Nuc] ion	leic acid se	equence of h	numan growth	n hormone 5	' untranslated	reg
<400> caaggco	11 ccaa	ctccccgaac	cactcagggt	cctgtggaca	gctcacctag	ctgcc	55
<210><211><212><212><213>	12 782 DNA arti	ificial sequ	ıence				
<220> <223>	Nucl	leic acid se	equence of a	a plasmid pu	JC-18 origin	n of replicaito	on
<400>	12	cctcactcac	taactcacta	cgctcggtcg	tteaactaca	acaeacaate	60
				tccacagaat			120
				aggaaccgta			180
				catcacaaaa			240

tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 3	00			
cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 3	60			
agcgtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 4	20			
tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 4	80			
aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 5	40			
ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 6	00			
cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt 6	60			
accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 7	20			
ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 7	80			
tt 7	82			
<210> 13 <211> 5 <212> DNA <213> artificial sequence <220> <223> This is a NEO ribosomal binding site <400> 13				
tcctc	5			
<210> 14 <211> 29 <212> DNA <213> artificial sequence				
<pre><220> <223> Nucleic acid sequence of a prokaryotic PNEO promoter.</pre>				
<400> 14 accttaccag agggcgcccc agctggcaa	29			
<210> 15 <211> 323 <212> DNA <213> artificial sequence				
<220> <223> Nucleic acid sequence of a eukaryotic promoter c5-12.				
<400> 15 cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg gtgaggaatg	60			

gtggggagt	t atttttagag	cggtgaggaa	ggtgggcagg	cagcaggtgt	tggcgctcta	120
aaaataact	c ccgggagtta	tttttagagc	ggaggaatgg	tggacaccca	aatatggcga	180
cggttcct	ca cccgtcgcca	tatttgggtg	teegeeeteg	gccggggccg	cattcctggg	240
ggccgggc	gg tgctcccgcc	cgcctcgata	aaaggctccg	gggccggcgg	cggcccacga	300
gctacccgg	ga ggagcgggag	gcg				323
<212> Di	5 10 NA ctificial sequ	uence				
	otimized nuclo	eic acid sed	quence of a	human growt	ch hormone pol	y A
<400> 16	gt ggcatccctg	tgacccctcc	ccagtgcctc	tectggeeet	ggaagttgcc	60
actccagt	gc ccaccagect	tgtcctaata	aaattaagtt	gcatcatttt	gtctgactag	120
gtgtcctt	ct ataatattat	ggggtggagg	ggggtggtat	ggagcaaggg	gcaagttggg	180
aagacaac	ct gtagggctcg	aggggggcc				210
<212> Di	7 722 VA ctificial sequ	uence		·		
<220> <223> P	lasmid vector	having a co	odon optimi:	zed mouse G	HRH sequence	•
<400> 17	n gt ggeggeegte	cgccctcggc	accatcctca	cgacacccaa	atatggcgac	60
gggtgagga	aa tggtgggag	ttatttttag	agcggtgagg	aaggtgggca	ggcagcaggt	120
gttggcgct	c taaaaataac	tcccgggagt	tatttttaga	gcggaggaat	ggtggacacc	180
caaatatgg	gc gacggttcct	cacccgtcgc	catatttggg	tgtccgccct	cggccggggc	240
cgcattcct	g ggggccgggc	ggtgctcccg	cccgcctcga	taaaaggctc	cggggccggc	300
ggcggccca	ac gagctacccg	gaggagcggg	aggcgccaag	cggatcccaa	ggcccaactc	360
cccgaacca	ac tcagggtcct	gtggacagct	cacctagctg	ccatggtgct	ctgggtgctc	420
tttgtgato	c tcatcctcac	cagcggcagc	cactgcagcc	tgcctcccag	ccctcccttc	480

aggatgcaga qgcacgtgga cgccatcttc accaccaact acaggaagct gctgagccag 540 ctgtacgcca ggaaggtgat ccaggacatc atgaacaagc agggcgagag gatccaggag 600 cagagggcca ggctgagctg ataagcttat cggggtggca tccctgtgac ccctcccag 660 720 tgcctctcct ggccctggaa gttgccactc cagtgcccac cagccttgtc ctaataaaat taagttgcat cattttgtct gactaggtgt ccttctataa tattatgggg tggaggggg 780 840 tggtatggag caaggggcaa gttgggaaga caacctgtag ggctcgaggg ggggcccggt 900 accagetttt gtteeettta gtgagggtta atttegaget tggtetteeg etteeteget 960 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 1020 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 1080 1140 ccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 1200 actataaaga taccaggegt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 1260 1320 tageteaege tgtaggtate teagtteggt gtaggtegtt egeteeaage tgggetgtgt 1380 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 1440 caacceggta agacacgact tategecact ggcagcagec actggtaaca ggattagcag 1500 agegaggtat gtaggeggtg ctacagagtt cttgaagtgg tggcctaact aeggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 1560 tggtagetet tgateeggea aacaaaceae egetggtage ggtggttttt ttgtttgeaa 1620 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 1680 gtctgacgct cagctagcgc tcagaagaac tcgtcaagaa ggcgatagaa ggcgatgcgc 1740 tgcgaatcgg gagcggcgat accgtaaagc acgaggaagc ggtcagccca ttcgccgcca 1800 1860 agetetteag caatateaeg ggtageeaac getatgteet gatageggte egeeacaeee 1920 agccggccac agtcgatgaa tccagaaaag cggccatttt ccaccatgat attcggcaag 1980 caggeatege catgagteac gacgagatee tegeogtegg geatgegege ettgageetg 2040 gcgaacagtt cggctggcgc gagcccctga tgctcttcgt ccagatcatc ctgatcgaca agaccggctt ccatccgagt acgtgctcgc tcgatgcgat gtttcgcttg gtggtcgaat 2100

gggcaggtag c	cggatcaag	cgtatgcagc	cgccgcattg	catcagccat	gatggatact	2160
ttctcggcag g	agcaaggtg	agatgacagg	agatcctgcc	ccggcacttc	gcccaatagc	2220
agccagtccc t	tecegette	agtgacaacg	tcgagcacag	ctgcgcaagg	aacgcccgtc	2280
gtggccagcc a	cgatagccg	cgctgcctcg	tcctgcagtt	cattcagggc	accggacagg	2340
teggtettga e	aaaaagaac	cgggcgcccc	tgcgctgaca	gccggaacac	ggcggcatca	2400
gagcagccga t	tgtctgttg	tgcccagtca	tagccgaata	gcctctccac	ccaagcggcc	2460
ggagaacctg c	gtgcaatcc	atcttgttca	atcatgcgaa	acgatcctca	tcctgtctct	2520
tgatcagatc t	tgatcccct	gcgccatcag	atccttggcg	gcaagaaagc	catccagttt	2580
actttgcagg g	cttcccaac	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	2640
gctgtccata a	aaccgccca	gtctagcaac	tgttgggaag	ggcgatcgtg	taatacgact	2700
cactataggg c	gaattggag	ct				2722

<210> 18

<211> 2725

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having a codon optimized rat GHRH sequence

<400> 18

ccaccgcggt ggcggccgtc cgccctcggc accatcctca cgacacccaa atatggcgac 60 gggtgaggaa tggtggggag ttatttttag agcggtgagg aaggtgggca ggcagcaggt 120 gttggcgctc taaaaataac tcccgggagt tatttttaga gcggaggaat ggtggacacc 180 caaatatggc gacggtteet caccegtege catatttggg tgteegeeet eggeegggge 240 cgcattcctg ggggccgggc ggtgctcccg cccgcctcga taaaaggctc cggggccggc 300 ggcggcccac gagctacccg gaggagcggg aggcgccaag cggatcccaa ggcccaactc 360 cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggccct gtgggtgttc 420 ttcgtgctgc tgaccctgac cagcggaagc cactgcagcc tgcctcccag ccctcccttc 480 agggtgcgcc ggcacgccga cgccatcttc accagcagct acaggaggat cctgggccag 540 600 ctgtacgcta ggaagctcct gcacgagatc atgaacaggc agcagggcga gaggaaccag gagcagagga gcaggttcaa ctgataagct tatcggggtg gcatccctgt gacccctccc 660 cagtgcctct cctggccctg gaagttgcca ctccagtgcc caccagcctt gtcctaataa 720

aattaagttg catcattttg tctgactagg tgtccttcta taatattatg gggtggaggg 780 gggtggtatg gagcaagggg caagttggga agacaacctg tagggctcga gggggggccc 840 ggtaccagct tttgttccct ttagtgaggg ttaatttcga gcttggtctt ccgcttcctc 900 960 geteactgae tegetgeget eggtegtteg getgeggega geggtateag eteacteaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1020 1080 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1140 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1200 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1260 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegettte 1320 tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga 1380 gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 1440 cagagegagg tatgtaggeg gtgctacaga gttcttgaag tggtggccta actacggcta 1500 cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag 1560 1620 agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac 1680 1740 ggggtctgac gctcagctag cgctcagaag aactcgtcaa gaaggcgata gaaggcgatg cgctgcgaat cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg 1800 ccaagctctt cagcaatatc acgggtagcc aacgctatgt cctgatagcg gtccgccaca 1860 cccagccggc cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcggc 1920 aagcaggcat cgccatgagt cacgacgaga teetegeegt egggcatgeg egeettgage 1980 2040 ctggcgaaca gttcggctgg cgcgagccc tgatgctctt cgtccagatc atcctgatcg acaagaccgg cttccatccg agtacgtgct cgctcgatgc gatgtttcgc ttggttggtcg 2100 aatgggcagg tagccggatc aagcgtatgc agccgccgca ttgcatcagc catgatggat 2160 actttctcgg caggagcaag gtgagatgac aggagatcct gccccggcac ttcgcccaat 2220 agcagccagt cccttcccgc ttcagtgaca acgtcgagca cagctgcgca aggaacgccc 2280 gtcgtggcca gccacgatag ccgcgctgcc tcgtcctgca gttcattcag ggcaccggac 2340

aggtcggtct	tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggcggca	2400
tcagagcagc	cgattgtctg	ttgtgcccag	tcatagccga	atagcctctc	cacccaagcg	2460
gccggagaac	ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	tcatcctgtc	2520
tcttgatcag	atcttgatcc	cctgcgccat	cagatccttg	gcggcaagaa	agccatccag	2580
tttactttgc	agggcttccc	aaccttacca	gagggcgccc	cagctggcaa	ttccggttcg	2640
cttgctgtcc	ataaaaccgc	ccagtctagc	aactgttggg	aagggcgatc	gtgtaatacg	2700
actcactata	gggcgaattg	gagct				2725

<210> 19

<211> 2716

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having a codon optimized bovine GHRH sequence

<400> 19

ccaccgcggt ggcggccgtc cgccctcggc accatcctca cgacacccaa atatggcgac 60 gggtgaggaa tggtggggag ttatttttag agcggtgagg aaggtgggca ggcagcaggt 120 gttggcgctc taaaaataac tcccgggagt tatttttaga gcggaggaat ggtggacacc 180 caaatatggc gacggttcct cacccgtcgc catatttggg tgtccgccct cggccggggc 240 cgcattcctg ggggccgggc ggtgctcccg cccgcctcga taaaaggctc cggggccggc 300 ggcggcccac gagctacccg gaggagcggg aggcgccaag cggatcccaa ggcccaactc 360 cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct gtgggtgttc 420 ttcctggtga ccctgaccct gagcagcggc tcccacggct ccctgccctc ccagcctctg 480 cgcatccctc gctacgccga cgccatcttc accaacagct accgcaaggt gctcggccag 540 ctcagcgccc gcaagctcct gcaggacatc atgaaccggc agcagggcga gcgcaaccag 600 gagcagggag cctgataagc ttatcggggt ggcatccctg tgacccctcc ccagtgcctc 660 tectggeeet ggaagttgee aetecagtge ceaceageet tgteetaata aaattaagtt 720 gcatcatttt gtctgactag gtgtccttct ataatattat ggggtggagg ggggtggtat 780 ggagcaaggg gcaagttggg aagacaacct gtagggctcg agggggggcc cggtaccagc 840 ttttgttccc tttagtgagg gttaatttcg agcttggtct tccgcttcct cgctcactga 900 ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat 960

acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca 1020 1080 aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgccccc 1140 tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc 1200 1260 gettacegga tacetgteeg cetttetece ttegggaage gtggegettt eteatagete acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 1320 1380 acceccegtt cagecegace getgegeett atceggtaac tategtettg agtecaacee ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 1440 1500 gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 1560 aacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 1620 gattacgcgc agaaaaaaag gatctcaaga agatcctttg atctttcta cggggtctga 1680 cgctcagcta gcgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 1740 1800 tegggagegg egatacegta aageaegagg aageggteag eccattegee gecaagetet 1860 teageaatat caegggtage caaegetatg teetgatage ggteegeeac acceageegg ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 1920 1980 tegecatgag teaegaegag atectegeeg tegggeatge gegeettgag eetggegaae agtteggetg gegegagece etgatgetet tegteeagat cateetgate gacaagaceg 2040 gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc gaatgggcag 2100 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 2160 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 2220 2280 tecetteeeg etteagtgae aaegtegage acagetgege aaggaaegee egtegtggee 2340 agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 2400 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 2460 2520 cctgcgtgca atccatcttg ttcaatcatg cgaaacgatc ctcatcctgt ctcttgatca 2580 gatettgate ecctgegeea teagateett ggeggeaaga aageeateea gtttaetttg

cagggettee caacettace	agagggcgcc	ccagctggca	attccggttc	gcttgctgtc	2640
cataaaaccg cccagtctag	caactgttgg	gaagggcgat	cgtgtaatac	gactcactat	2700
agggcgaatt ggagct					2716
<210> 20 <211> 2716					
<212> DNA <213> artificial sequ	ence				
<220> <223> Plasmid vector	having a co	odon optimiz	zed ovine G	HRH sequence	
<400> 20					
ccaccgcggt ggcggccgtc	cgccctcggc	accatcctca	cgacacccaa	atatggcgac	60
gggtgaggaa tggtggggag	ttatttttag	agcggtgagg	aaggtgggca	ggcagcaggt	120
gttggcgctc taaaaataac	tcccgggagt	tatttttaga	gcggaggaat	ggtggacacc	180
caaatatggc gacggttcct	cacccgtcgc	catatttggg	tgtccgccct	cggccggggc	240
cgcattcctg ggggccgggc	ggtgctcccg	cccgcctcga	taaaaggctc	cggggccggc	300
ggcggcccac gagctacccg	gaggagcggg	aggcgccaag	cggatcccaa	ggcccaactc	360
cccgaaccac tcagggtcct	gtggacagct	cacctagctg	ccatggtgct	gtgggtgttc	420
ttcctggtga ccctgaccct	gagcagcgga	agccacggca	gcctgcccag	ccagcccctg	480
aggatcccta ggtacgccga	cgccatcttc	accaacagct	acaggaagat	cctgggccag	540
ctgagcgcta ggaagctcct	gcaggacatc	atgaacaggc	agcagggcga	gaggaaccag	600
gagcagggcg cctgataagc	ttatcggggt	ggcatccctg	tgacccctcc	ccagtgcctc	660
tcctggccct ggaagttgcc	actccagtgc	ccaccagcct	tgtcctaata	aaattaagtt	720
gcatcatttt gtctgactag	gtgtccttct	ataatattat	ggggtggagg	ggggtggtat	780
ggagcaaggg gcaagttggg	aagacaacct	gtagggctcg	agggggggcc	cggtaccagc	840
ttttgttccc tttagtgagg	gttaatttcg	agcttggtct	tccgcttcct	cgctcactga	900
ctcgctgcgc tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	960
acggttatcc acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	1020
aaaggccagg aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeeee	1080
tgacgagcat cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	1140
aagataccag gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	1200

gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	1260
acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	1320
acccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	1380
ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	1440
gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	1500
aacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	1560
ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	1620
gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	1680
cgctcagcta	gcgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	1740
tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	1800
tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	1860
ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	1920
tcgccatgag	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	1980
agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	2040
gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	2100
gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	2160
gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	2220
tcccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	2280
agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	2340
ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	2400
ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	2460
cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	ctcatcctgt	ctcttgatca	2520
gatcttgatc	ccctgcgcca	tcagatcctt	ggcggcaaga	aagccatcca	gtttactttg	2580
cagggcttcc	caaccttacc	agagggcgcc	ccagctggca	attccggttc	gcttgctgtc	2640
cataaaaccg	cccagtctag	caactgttgg	gaagggcgat	cgtgtaatac	gactcactat	2700
agggcgaatt	ggagct					2716

<211> 2725

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having a codon optimized chicken GHRH sequence

<400> 21

ccaccgcggt ggcggccgtc cgccctcggc accatcctca cgacacccaa atatggcgac 60 120 gggtgaggaa tggtggggag ttatttttag agcggtgagg aaggtgggca ggcagcaggt gttggcgctc taaaaataac tcccgggagt tatttttaga gcggaggaat ggtggacacc 180 caaatatggc gacggttcct cacccgtcgc catatttggg tgtccgccct cggccggggc 240 300 cgcattcctg ggggccgggc ggtgctcccg cccgcctcga taaaaggctc cggggccggc 360 ggeggeecac gagetaceeg gaggageggg aggegecaag eggateecaa ggeecaacte cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggccct gtgggtgttc 420 tttgtgctgc tgaccctgac ctccggaagc cactgcagcc tgccacccag cccacccttc 480 cgcgtcaggc gccacgccga cggcatcttc agcaaggcct accgcaagct cctgggccag 540 600 ctgagegeac geaactacet geacageetg atggeeaage gegtgggeag eggaetggga 660 gacgaggccg agcccctgag ctgataagct tatcggggtg gcatccctgt gacccctccc cagtgcctct cctggccctg gaagttgcca ctccagtgcc caccagcctt gtcctaataa 720 aattaagttg catcattttg tctgactagg tgtccttcta taatattatg gggtggaggg 780 840 gggtggtatg gagcaagggg caagttggga agacaacctg tagggctcga gggggggccc 900 ggtaccaget tttgttccct ttagtgaggg ttaatttcga gcttggtctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 960 1020 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1080 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1140 1200 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1260 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegettte 1320 tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga 1380 gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 1440 cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta 1500 1560 cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag 1620 agttggtage tettgateeg geaaacaaac cacegetggt ageggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac 1680 1740 ggggtctgac gctcagctag cgctcagaag aactcgtcaa gaaggcgata gaaggcgatg cgctgcgaat cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg 1800 ccaagetett cagcaatate acgggtagee aacgetatgt cetgatageg gteegeeaca 1860 1920 cccagccggc cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcggc 1980 aagcaggcat cgccatgagt cacgacgaga tcctcgccgt cgggcatgcg cgccttgagc 2040 ctggcgaaca gttcggctgg cgcgagcccc tgatgctctt cgtccagatc atcctgatcg acaagacegg cttccatecg agtacgtget egetegatge gatgtttege ttggtggteg 2100 aatgggcagg tagccggatc aagcgtatgc agccgccgca ttgcatcagc catgatggat 2160 actttctcgg caggagcaag gtgagatgac aggagatcct gccccggcac ttcgcccaat 2220 2280 agcagccagt cccttcccgc ttcagtgaca acgtcgagca cagctgcgca aggaacgccc 2340 gtegtggeca gecaegatag cegegetgec tegteetgea gtteatteag ggeaeeggae aggtcggtct tgacaaaaag aaccgggcgc ccctgcgctg acagccggaa cacggcggca 2400 tcagagcagc cgattgtctg ttgtgcccag tcatagccga atagcctctc cacccaagcg 2460 gccggagaac ctgcgtgcaa tccatcttgt tcaatcatgc gaaacgatcc tcatcctgtc 2520 tettgateag atettgatee eetgegeeat cagateettg geggeaagaa ageeateeag 2580 tttactttgc agggcttccc aaccttacca gagggcgccc cagctggcaa ttccggttcg 2640 cttgctgtcc ataaaaccgc ccagtctagc aactgttggg aagggcgatc gtgtaatacg 2700 2725 actcactata gggcgaattg gagct