Algorithms HW

- 1. (Lang Exercise I.6, Aluffi Exercise II.4.8) Let G be a group, and let $g \in G$ be an element. Let $\gamma_g \colon G \to G$ be the function given by $h \mapsto ghg^{-1}$. Show that:
 - γ_g is an automorphism of G;
 - the function G → Aut(G) given by g → γ_g is a homomorphism;
 - the image of the homomorphism G → Aut(G) is a normal subgroup of Aut(G).

(The image is the group Inn(G) of inner automorphisms of G, and the quotient Out(G) = Aut(G)/Inn(G) is the outer automorphism group of G.)

1. We show that γ_g is a bijective homomorphism, for some fixed $g \in G$. Let $k, \ell \in G$ then we have

$$\gamma_{g}(k \cdot \ell) = g \cdot (k \cdot \ell) \cdot g^{-1} = g \cdot k \cdot e \cdot \ell \cdot g^{-1} = (g \cdot k \cdot g^{-1}) \cdot (g \cdot \ell \cdot g^{-1}) = \gamma_{g}(k) \cdot \gamma_{g}(\ell),$$

since group products are associative and by definition of the identity element. Hence γ_g is a homomorphism for all $g \in G$.

Now suppose $\gamma_g(h) = e$ for some $h \in G$ we have

$$\gamma_g(h) = e$$

$$ghg^{-1} = e$$

$$(g^{-1}g)h(g^{-1}g) = g^{-1}eg$$

$$h = g^{-1}eg$$

$$h = e.$$

Thus, $\gamma_g(h)$ is injective. Now let $k \in G$ and notice that $\gamma_g(g^{-1}kg) = g \cdot g^{-1}kg^{-1}g = k$. Moreover, $g^{-1}kg \in G$ since G is closed under its group operation. That is, γ_g is surjective for all $g \in G$. Hence, we have shown that γ_g is an automorphism of G.

2. Let $g, h \in G$. And let $f : G \to Aut(G)$ be the map $f(g) = \gamma_g$.

Consider the action of γ_{gh} on some group element k. We have

$$\gamma_{gh}(k) = (gh)k(gh)^{-1}$$

$$= (gh)k(h^{-1}g^{-1})$$

$$= g(hkh^{-1})g^{-1}$$

$$= (\gamma_g \circ \gamma_h)(k),$$

holds for all $k \in G$. That is, we have shown $f(g \cdot h) = f(g) \circ f(h)$, where \cdot denotes the product in G and \circ denotes function composition — the group operation in Aut(G). Hence, f is a homomorphism

3. We show directly that im f is closed under conjugation by homomorphism in Aut(G). Let $h \in Aut(G)$ and $\gamma_g \in \text{im } f$. There then exists an inverse homomorphism h^{-1} and consider the action of

$$h \circ \gamma_{g} \circ h^{-1}$$
.

This is an automorphism since the composition of group homomorphisms is again a group homomorphism check this.

Let $k \in G$ and consider

$$(h \circ \gamma_g \circ h^{-1})(k) = h(g \cdot h^{-1}(k) \cdot g^{-1})$$

$$= h(g) \cdot k \cdot h(g^{-1}), \qquad \text{since h is a homomorphism}$$

Moreover, $h(g) = g' \in G$ since h is an automorphism of G. That is, we have shown $(h \circ \gamma_g \circ g^{-1}) = f(g') \in \text{im } f$. And so, im f is a normal sunbgroup of Aut(G) by definition.

Will Gilroy	Algs Homework #	03 November 2021

Will Gilroy	Algs Homework #	03 November 2021

Will Gilroy	Algs Homework #	03 November 2021