Cloud Computing

Vortragender: Björn Böing

FH Bielefeld Campus Minden - Sommersemester 2018

Agenda

Grundlagen & weiterführende Konzepte

- Charakteristika
- Servicemodelle
 - IaaS
 - PaaS
 - SaaS
 - FaaS
- Bereitstellungsmodelle
- Edge & Fog Computing
- Einschränkungen & Hinweise

Amazon Web Services (AWS)

- Grundlagen
- Identity and Access Management (IAM)
- EC2 & S3
- AWS Lambda

Cloud Design Patterns

- Grundlagen
- Cache-aside
- Sharding

Fragen

Grundlagen & weiterführende Konzepte

Charakteristika

- On-demand self-service
 Ressourcen können ohne menschliche
 Interaktion verwaltet werden
- Broad network access
 Dienste sind über Netzwerk und standardisiert erreichbar
- Resource pooling
 Anbieter kann mit derselben Ressource
 mehrere Kunden bedienen
 (mandantenfähigkeit)

- Rapid elasticity
 Funktionen können elastisch skaliert werden
 - Measured service
 Die Nutzung von Diensten wird
 automatisiert überwacht und kann
 dementsprechend abgerechnet werden

Servicemodelle

Infrastructure as a Service (laaS)

- Dienste zur Bereitstellung von IT-Infrastrukturen
- Typischerweise Rechenleistung und Speicherplatz
- Hypervisor werden genutzt, um mehrere VMs auf einem physischen System zu verwalten

- Cloud Computing bringt Hypervisor auf neues Level, um Rechner und Speicher automatisch zu verknüpfen
- **Beispiele**Amazon EC2, Microsoft Azure

Platform as a Service (PaaS)

- IaaS + vorinstallierter Software, die für das Entwickeln und Ausführen von Software notwendig ist
- Ziel ist es die Entwicklung von Softwareanwendungen zu vereinfachen und zu beschleunigen
- Häufig:
 - → Plattform wählen
 - → Anwendung hochladen
 - → Starten

- Fotango brachte 2006 als weltweit erster einen PaaS online
- Wurde Ende 2007 eingestellt, da Mutterkonzern es nicht als Kerngeschäft gesehen hat
- Beispiele
 AWS Elastic Beanstalk, Microsoft Azure
 Webapp

Software as a Service (SaaS)

- IaaS + PaaS + fertige Anwendung
- Meist mittels Webbrowser als Client genutzt
- Häufig auch "On demand Software" genannt
- Beispiele
 Google Docs, Spreadsheets und
 Presentation

- Grundidee nicht neu, da bereits in den 1990er "Application Service Provider" (ASP) Anwendungen bereitgestellt haben
- ASP Kunden benötigten spezielle Clients
- SaaS setzt in der Regel Continuous Delivery um

Function as a Service (FaaS)

- Aus dem "serverless" Bereich entstanden
- Ursprünglich nicht "ohne Server" gemeint, sondern ohne die Server-Aufgaben selbst zu erledigen
- Heutzutage häufig tatsächlich ohne den klassischen Server Gedanken

- Ressourcen fahren innerhalb von
 Millisekunden hoch und erledigen Aufgabe
- FaaS wir vor allem für die Entwicklung von Microservices genutzt
- **Beispiele** AWS Lambda, Hook.io

Bereitstellungsmodelle

Public

- Ressourcen von Dritten verwaltet
- Öffentlich zugänglich
- Weit verbreitet, um Arbeit auszulagern

Private

- Ressourcen von Dritten oder selbst verwaltet
- Kein Vertrauen an Dritte notwendig
- Entspricht meist traditioneller IT-Infrastruktur

Community

- Zwischen Public und Private
- Zusammenschluss von Unternehmen und/oder Organisationen
- Gemeinsame Ansprüche realisieren

Hybrid

- Zwei oder mehr Clouds werden miteinander verbunden
- Ermöglicht schrittweisen Umstieg zur Public Cloud
- NASA nutzt Private + Public Cloud

Edge & Fog Computing 1/2

Quelle: https://forestgiant.com/articles/fog-vs-edge/

Edge & Fog Computing 2/2

Gemeinsamkeiten

- Intelligenz zum Rand des Netzwerkes verlagern
- Vorteile
 - Senkung der Latenz
 - Steigerung der Sicherheit durch passendes Management
 - Senkung der benötigten Bandbreite
- Vorrangig von der Industrie getrieben, um z.B. Ausfallzeiten zu reduzieren

Unterschiede

- Speicher, Rechenleistung und Intelligenz
 - Edge: Auf das Endgerät
 - Fog: Auf Fog-Node
- Fog Computing durch schrittweise Verarbeitung komplexer als Edge Computing

Einschränkungen & Hinweise 1/2

- Abhängigkeit muss abgewogen werden
- Layer 8 Fehler
 - Verlust oder Kompromittierung kann Zugang zu gesicherten Cloud Systemen ermöglichen
 - Phishing und Social Engineering
 - Marketing Exactis im letzten Monat 340
 Mil. Datensätze öffentlich zugänglich gemacht

Mangelhafte Backups

- Daten müssen adäquat synchronisiert werden
- Ransomware als große Bedrohung, da enorme Datenmengen zentralisiert werden

Systemfehler

- Mandantenfähige Systeme müssen Daten sauber trennen
- Code Space verlor fast alle Daten durch Angriff auf AWS Management Console

Einschränkungen & Hinweise 2/2

- Privatsphäre

- Immer mehr Informationen online in Clouds gespeichert ("gläserner Bürger")
- AGBs erlauben vielen Anbieter die weitergabe von Informationen an Dritte
- Staat kann Informationen unter Umständen einfordern
- EU-DSGVO soll mehr Transparenz und Sicherheit im Umgang mit personenbezogenen Daten schaffen

- Inflexibilität

- Kontrolle zu genutzten Systemen geht stückweit verloren
- Individualisierungen geringer
- "Vendor Lock-In", was den Wechsel zwischen Cloud-Anbietern erschwert

Amazon Web Services (AWS)

Grundlagen

- Im März 2006 der Öffentlichkeit bereitgestellt
- 2017 34% Marktanteil
 → 17,4 Mil. \$ Umsatz
- Insgesamt über 90 Dienste zu über 20 verschiedenen Themenbereichen

- Pay per Use, um nur verbrauchte bzw. genutzte Ressourcen zu bezahlen
- AWS Educate als Netzwerk für Bildungsbeauftragte und Studenten
- In den USA zwei "Pop-Up Lofts", um kostenlose Hilfestellung zu bieten

Identity and Access Management (IAM)

- Nutzer- und Rechteverwaltung innerhalb von AWS
- Grob- und feingranulare Rechtezuweisung möglich
- Beschränkungen von Nutzern auf bestimmte Uhrzeiten und/oder Zeiträume

- Richtlinien zu Passwörtern und Multi-Faktor-Authentifizierung
- AMI-Rollen haben besondere Aufgabe
 - Dienste und Anwendungen können eine hinterlegte Rolle einnehmen, um Zugriff auf gesicherte Ressourcen zu erhalten
- Amazon Resource Names (ARNs)
 ermöglichen eindeutige Identifizierung

EC2 & S3

Elastic Compute Cloud (EC2)

- Erstellung und Verwaltung von Rechenkapazitäten
- Amazon Machine Images (AMIs) dienen als fertige Templates
- Je nach Anwendungsfall speziell zugeschnittene Instanztypen möglich
 - 64 CPUs + 976 GB RAM + 8 NVIDIA K80-Hochleistungs-GPUs
 - bis zu 1952 GB RAM
 - 24 HDDs je 2048 GB oder 8 SSD je 1900 GB

Simple Storage Service (S3)

- Beliebig große Datenspeicher
- "von Grund auf für eine Beständigkeit von 99,999999999 entwickelt"
- Abfragen vor Ort in Datenmengen von mehreren Exabyte
- Meist automatische Spiegelung von Daten in min. 3 AZs

Quelle: https://aws.amazon.com/de/lambda/

Lambda runs image resizing code to generate

web, mobile, and tablet sizes

AWS Lambda

Photo is uploaded to

S3 Bucket

- Bildet das FaaS Modell ab
- Automatische Skalierung durch parallele Abfrageverarbeitung
- Unterstützt
 - C# (.NET Core 1.0 und 2.0)
 - Go 1.x
 - Java 8
 - Node.js (4.3, 6.10 und 8.10)
 - Python (2.7 und 3.6)

- Online-Editor für Node.js und Python
- Trigger müssen hinterlegt werden, um automatisierte Ausführungen zu ermöglichen

Cloud Design Patterns

Grundlagen

- Zu verstehen als Leitfäden und Hinweise für eine höhere Softwarequalität
- In der Regel Lösungen zu konkreten Problemstellungen
- Die Microsoft "patterns & practices group"
 hat ein Buch mit 24 Patterns veröffentlicht

- Problemfelder
 - Erreichbarkeit
 - Daten Management
 - Design und Implementierung
 - Benachrichtigungen
 - Management und Überwachung
 - Performanz und Skalierbarkeit
 - Stabilität
 - Sicherheit

Cache-aside

- Cache Invalidierung/Synchronisierung stellt Problem dar
- I/O Operationen werden auf dem Cache getätigt und von dort in den Datenspeicher weitergegeben (Write-Through)
- Problematisch wenn weitere Quelle auf dem Datenspeicher arbeitet

- 1. Daten im Cache suchen/bearbeiten
- Falls dort nicht vorhanden, dann aus Datenspeicher holen
- 3. Gleichzeitig in den Cache schreiben

Sharding

- Ein einziger Datenserver kann bei großen Anwendungen zu Problemen führen
 - Mangelnder Speicherplatz
 - Fehlende Rechenleistung
 - Netzwerk Bandbreite
 - Geographische Anforderungen
- Datenspeicher horizontal aufteilen in sogenannte "Shards"
- Jeder Shard besitzt den selben Aufbau, speichert aber verschiedene Datensätze

- Shard-Key zur Identifizierung (meist aus Datenattributen)
- Lookup Strategie mappt Key zu virtuellen/physikalischen Partitionen (standardmäßiger Ansatz)
- Range Strategie speichert ähnliche Daten zusammen (z.B. Bestellungen im Monat X)
- **Hash Strategie** nutzt Hashverfahren, um Daten gleichmäßig auf Shards zu verteilen

Fragen!

Quellen 1/4

Amazon Web Services (AWS) https://aws.amazon.com/de/ (abgerufen am 30.06.2018)

Bianchi, Alessandra; Inc., 01.04.2000: Say good-bye to software as we know it and hello to ASP start-up https://www.inc.com/magazine/20000401/18093.html (abgerufen am 26.06.2018)

Butler, Brandon; Network World, 21.09.2017: What is edge computing and how it's changing the network

https://www.networkworld.com/article/3224893/internet-of-things/what-is-edge-computing-and-how-it-s-changing-the-network.html (abgerufen am 29.06.2018)

Quellen 2/4

Gassner, Heinz; Smart Industry Forum, 02.12.2016: What Do We Actually Mean By: IaaS, PaaS, SaaS? https://smartindustryforum.org/what-do-we-actually-mean-by-iaas-paas-saas/ (abgerufen am 21.06.2018)

Han, Bowei; Medium, 05.11.2017: An Introduction to Serverless and FaaS (Function as a Service) https://medium.com/@BoweiHan/an-introduction-to-serverless-and-faas-functions-as-a-service-fb5cec https://medium.com/@BoweiHan/an-introduction-to-serverless-and-faas-functions-as-a-service-fb5cec https://medium.com/@BoweiHan/an-introduction-to-serverless-and-faas-functions-as-a-service-fb5cec https://medium.com/abserverless-and-faas-functions-as-a-service-fb5cec https://medium.com/abserverless-and-faas-functions-as-a-service-fb5cec https://medium.com/abserverless-and-faas-functions-as-a-service-fb5cec https://medium.com/abserverless-as-a-service-fb5cec <a href="https://medium.com

Homer, Alex; Sharp, John; Brader, Larry; Narumoto, Masashi; Swanson, Trent; Microsoft, 04.03.2014: Cloud Design Patterns

https://www.microsoft.com/en-us/download/details.aspx?id=42026 (abgerufen am 01.07.2018)

Quellen 3/4

Innocent, Johnson; DZone / Cloud Zone, 09.03.2017: Cloud Computing Deployment Models https://dzone.com/articles/cloud-computing-deployment-models (abgerufen am 28.06.2018)

Larkin, Andrew; Cloudacademy, 26.06.2018: Disadvantages of Cloud Computing https://cloudacademy.com/blog/disadvantages-of-cloud-computing/ (abgerufen am 29.06.2018)

National Institute of Standards and Technology (NIST) - The NIST Definition of Cloud Computing 2011 https://csrc.nist.gov/publications/detail/sp/800-145/final (abgerufen am 03.05.2018)

Quellen 4/4

OpenFog, 09.02.2017: OpenFog Reference Architecture for Fog Computing https://www.openfogconsortium.org/wp-content/uploads/OpenFog Reference Architecture 2 09 17-FINAL.pdf (abgerufen am 10.06.2018)

Rouse, Margaret; TechTarget, 09.2017: Infrastructure as a Service (IaaS) https://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS (abgerufen am 21.06.2018)

Utley, Gary; The CWPS Blog, 12.05.2018: 6 Most Common Cloud Computing Security Issues https://www.cwps.com/blog/cloud-computing-security-issues (abgerufen am 29.06.2018)