Fundamentals of Coq

Marco Maggesi — University of Florence, Italy School on Univalent Mathematics Cortona, July 2022, Italy

What is UniMath?

Coq vs UniMath

UniMath is a proof assistant for Univalent Mathematics. UniMath has been developed on top Coq, another proof assistant.

Roughly speaking, from the point-of-view of the logical systems:

```
Coq = Dependent Type Theory
+ Cumulative hierarchy of universes
+ (Co)Inductive constructions
+ ...
```

UniMath = Coq

- Cumulative hierarchy of universes
- (Co)Inductive constructions
- + A basic collection of datatypes (\mathbb{N} , bool, Π , Σ , Id, \mathcal{U} , ...)
- + Axiom of Univalence

. . .

What is Coq?

- Coq is:
 - 1. a programming language;
 - 2. a proof assistant.
- In other words: Coq allows to write programs that build mathematical entities and formal proofs.

Coq as a programming language

Your first program in Coq

This program takes a natural number n and returns n + 2.

Running a program

Coq source:

Output:

```
5 : nat
```

Terminology

Using the terminology of Type Theory (see First Lecture):

• Programs are called **terms**.

Use

Definition <u>ident</u>: <u>type</u> := <u>tm</u>

to bind the term *tm* to the constant *ident*.

• Running programs is called evaluation or normalization.

Use the command

Eval compute in tm.

to normalise the term <u>tm</u>.

Syntactic sugar for function definitions

• Functions are denoted using the λ abstraction:

```
Definition addtwo : nat -> nat := 
λ n, n + 2.
```

The λ construction can be made implicit

```
Definition addtwo (n : nat) : nat :=
  n + 2.
```

The two above snippets of code are equivalent.

Types

Basic examples of types

Туре	Inhabitants	Description
nat	0, 1, 2,	Natural numbers
bool	true, false	Booleans
unit	tt	Singleton
empty		Empty type
dirprod A B	(x,, y)	Direct product (Cartesian product)
coprod A B	ii1 a, ii2 b	Coproduct (disjoint union)
A -> B	λ <u>var</u> : <u>ty</u> , <u>body</u>	Function type
UU	nat, bool, A -> B,	Universe (the type of types)

Terms and Types

Every term has a univocally associated type.

Examples:

- \blacktriangleright (1 + 0) : nat
- ▶ true : bool
- \blacktriangleright (λ x:nat , x + 2) : nat -> nat

Coq command Check

Use the command

Check tm.

to print the type of term tm.

Examples

```
Command:
```

Check
$$(2 + 2)$$
.

Output:

: nat

Command:

Check true.

Output:

: bool

Command:

Check nat.

Output:

: UU

Notations

Special notations

Often two (or more) notations are available for certain mathematical expressions.

Examples:

Addition of natural numbers:

▶ add m n (basic syntax)

► m + n (alternative syntax)

Coproduct (disjoint sum) of types:

coprod A B (basic syntax)

► A ∐ B (alternative syntax)

Lambda expressions:

► fun <u>var</u> => <u>body</u> (basic syntax)

λ <u>var</u>, <u>body</u> (alternative syntax)

Frequently used notations

Basic syntax	Alt syntax	How to type	Description
add m n	m + n	+	Addition.
mul m n	m * n	*	Multiplication.
paths x y	x = y	=	Id-type (equality)
tpair x y	(x ,, y)	, ,	Pair
dirprod A B	$A \times B$	\times	Direct product (Cartesian product)
coprod A B	А ⊔ В	\amalg	Coproduct (Disjoint union)
fun v => b	λ x, b	\lambda	Lambda abstraction
A -> B	$A \rightarrow B$	\to	Function type
empty	Ø	\emptyset	Empty type

Π -types and Σ -types

Syntax for Π - and Σ -types

Given a type A and a type family

B : A -> UU

we have (see Lecture 1) the types
$$\prod_{a:A} B(a)$$
 and $\sum_{a:A} B(a)$

Basic syntax	Alternate syntax	How to type	Description
forall (a:A), B a	П (а:А), В а	\prod	Dependent function type
total2 (λ (a: A), B a)	Σ (a:A), B a	\sum	Dependent pair type

Π-types

Example: identity function $A \rightarrow A$ for all types A

$$idfun: \prod_{A:UU} (A \rightarrow A)$$

Definition in Coq:

Definition idfun : $\Pi A : UU, A \rightarrow A :=$

 λ (A : UU) (a : A) => a.

Functions with implicit arguments

In function application, certain arguments can be deduced by the context.

```
Example: Consider I_{\mathbb{N}} in mathematical notation I_{\mathbb{N}}(3)
```

the first argument (nat) can be deduced by the second one (3).

Arguments of a function can be declared implict using braces:

```
Definition idfun {A : UU} (a : A) : A := A.
```

Interacting with Coq

Our environment

- We will use Visual Studio Code or Codium to edit Coq scripts and to interact with Coq.
- Other options are available:
 - Emacs with Proof General
 - CoqIDE
- Contact us if you have problems setting up the environment on your computer.

Interacting with Coq in VScode

Interacting with Coq in VScode

Coq queries

Command	Linux & Win	Mac	Output
Check	Ctrl-Alt-C	^	The type of a term
Print	Ctrl-Alt-P	^	The definition of a constant
About	Ctrl-Alt-A	^	Various information on an object (e.g. implicit arguments),
Locate	Ctrl-Alt-L	^	Fully qualified name of an object or a special notation.

We now switch to the Coq demo