Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

3	Settembre	2021 -	14:00
	ESAME (NLIN	IE.

1.	Sia	assegnata	la.	matrice
т•	Dia	assegnava	\mathbf{r}	maurice

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 & 0 & 0 \\ 2 & 6 & 0 & 0 & 0 \\ 4 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & -1/45 & 5 \\ 0 & 0 & 0 & 5 & 1 \end{bmatrix}.$$

	$\left[\begin{array}{cccc} 0 & 0 & 1 & -1/45 & 5 \\ 0 & 0 & 0 & 5 & 1 \end{array}\right]$
a)	Spiegare se ${\bf A}$ ammette fattorizzazione LU senza pivoting.
b)	Scrivere il proprio codice Matlab/Python per calcolare la fattorizzazione LU di A senza pivoting (qualora dall'analisi effettuata nel punto a) risulti possibile) o, in caso contrario, con pivoting parziale Punti: 5
c)	Sfruttare la fattorizzazione implementata al punto b) per calcolare $det(\mathbf{A})$ in maniera efficiente e indicare il numero di operazioni necessarie per il suo calcolo (escludendo quelle richieste dalla fattorizzazione).
	Punti: 3
d)	Sia \mathbf{v} un vettore colonna di lunghezza 5 definito da numeri random. Dopo aver calcolato la soluzione \mathbf{x} del sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{v}$, si calcoli $det(\mathbf{A} + \mathbf{v}\mathbf{v}^T)$ utilizzando la seguente espressione equivalente $(\mathbf{v}^T\mathbf{x} + 1)det(\mathbf{A})$, e si spieghi perché il suo calcolo risulta computazionalmente più efficiente.

Punti: 5

Totale: 16