Introdução: Complexos

Processamento Digital de Sinais

Revisão: Números complexos

- Afixo do complexo: $z \in \mathbb{C}: z(a,b), a,b \in \mathbb{R}$
- Parte real de um complexo: Re(z) = a
- Parte imaginária de um complexo: Imag(z)=b
- Unidade imaginária: $J = \sqrt{-1}$

■ Propriedades $J = \sqrt{-1}$

 $j^p = j^r$ sendo r tal que:

$$\begin{array}{c|c} p & 4 \\ r & q \end{array}$$

pois as potências de j têm período igual a 4.

 $\overline{z}=a-jb$ é o complexo conjugado de z

-z=-a-jb é o complexo simétrico de z

 $-\overline{z}=-a+jb$ é o simétrico do conjugado de z

Forma trigonométrica

$$z = Acis\left(\theta\right) \begin{cases} A = \sqrt{a^2 + b^2}, & \text{m\'odulo do complexo } Z \rightarrow |z| = A \\ \theta = Arg\left(z\right) = arctan\left(\frac{b}{a}\right), & \text{argumento do complexo } Z \end{cases}$$

■ Fórmula de Euler

$$z = Acis(\theta) = Ae^{j\theta}$$

Operações com números complexos

Adição

Forma mais conveniente: forma algébrica

$$\begin{vmatrix} z_1 = a_1 + jb_1 \\ z_2 = a_2 + jb_2 \end{vmatrix} \Rightarrow z_1 + z_2 = a_1 + a_2 + j(b_1 + b_2)$$

Exemplo

Multiplicação

Na forma algébrica:

$$\begin{vmatrix} z_1 = a_1 + jb_1 \\ z_2 = a_2 + jb_2 \end{vmatrix} \Rightarrow z = z_1 z_2 = \underbrace{a_1 a_2 - b_1 b_2}_{\text{Re}(z)} + j \left(\underbrace{a_1 b_2 + b_1 a_2}_{\text{Imag}(z)} \right)$$

Na forma exponencial.

$$z_{1} = A_{1}e^{j\theta_{1}}$$

$$z_{2} = A_{2}e^{j\theta_{2}}$$

$$z = z_{1}z_{2} = A_{1}A_{2}e^{j(\theta_{1}+\theta_{2})}$$

Divisão

Na forma algébrica:

$$\begin{vmatrix} z_1 = a_1 + jb_1 \\ z_2 = a_2 + jb_2 \end{vmatrix} \Rightarrow \frac{z_1}{z_2} = \frac{z_1\overline{z}_2}{z_2\overline{z}_2} = \frac{a_1a_2 + b_1b_2 + j(b_1a_2 - a_1b_2)}{a_2^2 + b_2^2}$$

Na forma exponencial.

$$z_{1} = A_{1}e^{j\theta_{1}}$$

$$z_{2} = A_{2}e^{j\theta_{2}}$$

$$\Rightarrow z = \frac{z_{1}}{z_{2}} = \frac{A_{1}}{A_{2}}e^{j(\theta_{1} - \theta_{2})}$$

Potenciação

Na forma exponencial:

$$z = Ae^{j\theta}$$
 $z^n = A^n e^{j(n\theta)}$, $n \in \square$

Radiciação

Na forma exponencial:

$$z = Ae^{j\theta} \qquad \sqrt[n]{z} = \sqrt[n]{A} e^{j\left(\frac{\theta + 2k\pi}{n}\right)}$$
$$k = 0, 1, ..., n - 1$$

Exemplo

- NOTA: De um modo geral, para efectuar operações com números complexos, deve-se escolher a forma algébrica ou a forma trigonométrica consoante a operação em causa.
- Assim são boas escolhas as seguintes:

$$a+jb$$
 para $\left\{ egin{array}{c} + \ - \ \times \ \div \end{array}
ight.$ $Ae^{j\theta}$ para $\left\{ egin{array}{c} \times \ + \ \cdot \ \end{array}
ight.$

- Dados os números complexos:
- Dados os números complexos:

 Represente graficamente x e y. $y = \frac{3\sqrt{2}}{2} + j \frac{3\sqrt{2}}{2}$
- Calcule:

$$i) x + y , ii) |y| , iii) arg(y) ,$$
 $iv) xy , v) $\frac{x}{v}$, $vi) x^3$$

- Repita o exercício anterior considerando: $\mathbf{x} = 2e^{j\frac{\pi}{3}}$ $\mathbf{y} = -1 + \mathbf{j}\sqrt{3}$
- Represente graficamente, para o inteiro $-4 \le n \le 1$, o módulo e o argumento (entre $-\pi$ e π) do sinal:

$$x[n] = (n+1)e^{j\frac{3\pi}{4}n}$$

4. Converta para a forma polar (fórmula de Euler):

a)
$$z = 10j$$
, b) $z = -10$, c) $z = (-10, -10)$,

d)
$$z = -2 + 2j$$
, e $z = -3 + \sqrt{3}j$, f $z = 20$

5. Converta para a forma algébrica e determine as partes real e imaginária de cada um dos seguintes complexos:

a)
$$z = 3\sqrt{2}e^{-j\frac{3\pi}{4}}$$
 c) $z = 4\angle\left(\frac{\pi}{3}\right)$ (módulo 4 e argumento $\frac{\pi}{3}$)

(b)
$$z = 5e^{j\frac{\pi}{2}}$$
 (d) $z = 5\angle(-61\pi)$

6. Considere os seguintes complexos:

$$z_1 = -2 + 2j$$
 e $z_2 = 3e^{-j\frac{3\pi}{4}}$

Determine:

a)	Z ₁ *	d) Z_2^2	g) $z_1 + z_2^*$
b) .	jz ₂	e) $Z_1^{-1} = \frac{1}{Z_1}$	$\left h \right \left \boldsymbol{z}_{2} \right ^{2} = \boldsymbol{z}_{2} \boldsymbol{z}_{2}^{*}$
c) 2	Z_2/Z_1	$f)$ Z_1Z_2	$z_2 + z_2^*$

7. Simplifique, apresentando o resultado na forma polar de Euler:

a)
$$z_a = e^{-j\frac{5\pi}{3}} + 2e^{j\frac{5\pi}{6}}$$
 b) $z_a = \sqrt{2}e^{j\frac{\pi}{4}} + \sqrt{2}e^{-j\frac{\pi}{4}} - 1$

8. Considere o seguinte excerto de um script em Python onde se apresentam formas de representar e operar números complexos:

```
1# -*- coding: utf-8 -*-
 3 Created on Sun Feb 28 17:10:04 2016
 5@author: Isabel
 8 import numpy as np
 9 import matplotlib.pyplot as plt
11 z1 = np.complex(2,3)
12 z2=np.sqrt(2)*np.exp((1j)*(np.pi/3))
13 z3=2-5j
14 z4=np.conjugate(z3)
15 print z1 , z2 , z2+z3 , z4
```

Escreva scripts em python para efectuar os cálculos indicados nos problemas anteriores.

Confirme os resultados obtidos analiticamente.

9. O sinal representado na figura pode ser expresso como:

$$X(t) = A\cos(\omega_0(t-t_0)) = A\cos(\omega_0t+\phi) = A\cos(2\pi f_0t+\phi)$$

Sinusoidal Signal: $x(t) = A \cos(\omega t + \phi)$

Determine os parâmetros \boldsymbol{A} , ω_0 , \boldsymbol{t}_0 e $\phi:\phi\in\left]-\pi,\pi\right]$

10. Considere o seguinte script python:

```
1# -*- coding: utf-8 -*-
 3 Created on Wed Feb 24 19:54:51 2016
 4 @author: Isabel
 5 """
 6 import numpy as np
 7 import matplotlib.pyplot as plt
 9 tt = np.arange(-0.05, 0.15, 0.001)
10 F0=8;
11 z = np.sqrt(2)*(1-1j)
12 xx=np.real(z*np.exp((0+2j)*np.pi*F0*tt))
13
14 fig = plt.figure('Grafico',facecolor='w',figsize=(15,8))
15 plt.plot(tt, xx, 'b-')
16 plt.grid(True)
17 plt.xlabel('t (s)')
18 plt.ylabel('x')
19 plt.title('Excerto de onda')
20 plt.show()
```

Determine a amplitude \mathbf{A} , a fase ϕ e o período $\mathbf{7}$ da onda cujo gráfico é criado pelo script.

