Capítulo 7

Criptografia por Chave Pública

Plano de Curso

- Princípios
- RSA
- Gerenciamento de Chaves
- Troca de Chaves por Diffie-Hellman
- Curva Elíptica IEEE P1363

Chave Pública X Chave Secreta

- Segurança Depende do tamanho da Chave
- Não é de propósito geral
 - Chave Pública Aplicações de gerenciamento de chaves e a assinatura
- Gerenciamento das Chaves Não é Simples

Características Importantes

- Impossibilidade de se obter a chave privada, dados a chave pública e o algoritmo
- Alguns Algoritmos
 - Permitem que as duas chaves possam ser usadas para encriptar ou decriptar

Chave Secreta

Chave Pública

Para Usar

- Um algoritmo e uma chave
- Alice e Bob compartilham o algoritmo e a chave

Para a Segurança

- Chave secreta
- Impossibilidade de decifrar a msg
- Algoritmo + amostras do texto cifrado não devem ser suficientes para determinar a chave

Para Usar

- Um algoritmo e duas chaves
- Alice e Bob compartilham um par de chaves

Para a Segurança

- Uma das duas chaves é secreta
- Impossibilidade de decifrar a msg
- Algoritmo + amostras do texto cifrado + uma das chaves não devem ser suficientes para determinar a outra chave

Segredo por Chave Pública

Autenticação

Autenticação e Segredo

Requisitos

- Fácil B de gerar KU_b e KR_b
- Fácil A fazer $C = E_{KUb}(M)$
- Fácil **B** determinar $M = D_{KRb}(C) = D_{KRb}[E_{KUb}(M)]$
- Difícil determinar KR_b de KU_b
- Difícil determinar M a partir de KU_b e C
- $M = E_{KUb}[D_{KRb}(M)]$

Função de Caminho Único c/

Função de Caminho Único

$$Y = f(X)$$
 fácil
 $X = f^{-1}(Y)$ difícil

$$Y = f_k(X)$$
 trapdoor
 $X = f_k^{-1}(Y)$ fácil se k conhecidol
 $X = f_k^{-1}(Y)$ difícil se k desconhecido

Aplicações

Algoritmo	E/D	Assinatura Digital	Troca de Chaves
RSA	Sim	Sim	Sim
Diffie-Hellman	Não	Não	Sim
DSS	Não	Sim	Não

Criptoanálise

- Complexidade não é linear com o número de bits da chave
- Compromisso (Força Bruta e Viabilidade)
- Calcular KR a partir de KU
- Ataque da Mensagem Provável (56 bits DES)

Ron Rivest, Adi Shamir e Len Adleman

Blocos com valores binários menores que **n** Tamanho do Bloco é k bits, onde $2^k < \mathbf{n} \le 2^{k+1}$

Plano

$$KU = \{e,n\}$$
$$KR = \{d,n\}$$

Requisitos do Algoritmo

- É possível encontrar e, d, n tal que $M^{ed} = M \mod n$ para todo M < n
- É relativamente fácil calcular M^e e C^d para todos os valores de M < n
- É improvável determinar d dado e, n

Detalhes Matemáticos

```
Dados p e q primos,

n e m inteiros tal que n = pq, 0 < m < n

e um k arbitrário
```

$$m^{k\phi(n)+1} = m^{k(p-1)(q-1)+1} \equiv m \mod n$$
 (Eq. 7.8 - Corolário do Teor. Euler)

- φ(n) é a função totiente de Euler
 Número de Inteiros Positivos menor do que n e relativamente primos a n
- $\bullet \phi(pq) = (p-1)(q-1)$

```
M^{ed} = M \mod n

ed = k \phi(n) + 1

ed \equiv 1 \mod \phi(n)

d \equiv e^{-1} \mod \phi(n)
```

Relativamente primos a $\phi(n)$

Geração da Chave

Selecione **p**, **q p** e **q** primos

Calcular $\mathbf{n} = \mathbf{p} \times \mathbf{q}$

Calcular $\phi(n) = (p-1)(q-1)$

Selectionar e inteiro $gcd(\phi(n),e) = 1; 1 < e < \phi(n)$

Calcular **d** $\mathbf{d} = \mathbf{e}^{-1} \mod \phi(\mathbf{n})$

Chave Pública KU={e,n}
Chave Privada KR={d,n}

Algoritmo RSA

Cifrar

Texto Plano: M < n

Texto Cifrado: $C = M^e \pmod{n}$

Decifrar

Texto Plano: C

Texto Cifrado: $M = C^d \pmod{n}$

Exemplo

- Selecionar dois números primos: p = 7 e q = 17
- Calcular $n = pq = 7 \times 17 = 119$
- Calcular $\phi(n) = (p-1)(q-1) = 96$
- Selecionar e tal que e é relativamente primo a φ(n) e menor que φ(n); e = 5
- Determinar d tal que de = $1 \mod 96$ e d < 96; d = 77, pois $77 \times 5 = 385 = 4 \times 96 + 1$
- $KU = \{5,119\}$ e $KR = \{77,119\}$

Continuação do Exemplo

Aspectos Computacionais E/D

 $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

Seja m =
$$\mathbf{b_k b_{k-1} ... b_0}$$
 $m = \sum_{b_i \neq 0} 2^i$
 $a^m = a^{\sum_{b_i \neq 0} 2^i} = \prod_{b_i \neq 0} a^{2^i}$
 $a^m \mod n = \left[\prod_{b_i \neq 0} a^{2^i}\right] \mod n = \prod_{b_i \neq 0} a^{2^i} \mod n$

```
d = 1
para i = k passo -1 até 0 faça
d = (d x d) \mod n
se b_i = 1 então
d = (d x a) \mod n
fim se
fim para
retorna d
```

 $d = a^b \mod n$

[CORM 90]

Exercício

Decifrar

Usar o algoritmo para calcular $d = a^b \mod n$

$$d = 66^{77} \mod 119 = ?$$

Aspectos Computacionais Chaves

- Determinar dois primos **p** e **q**
 - n = pq 'e conhecido
 - r randômico ($\approx 2^{200} \rightarrow \text{tentativas} = \ln(2^{200})/2 = 70$
 - a < r randômico
 - Testa r para primalidade
 - Se r passa em vários testes, aceita-se r
- Selecionar e ou d e calcular o outro
 - Algoritmo Estendido de Euclides

Segurança do RSA

- Força Bruta
- Ataques Matemáticos
 - Fatorar Números Primos
 - Determinar $\phi(n)$ diretamente
 - Determinar d diretamente
- Ataques temporais

Fatoração

Número de	Aproximado	Data N	IIPS - Ano	Algoritmo
dígitos Dec.	de bits			
100	332	04/1991	7	sieve quadrático
110	365	04/1992	75	sieve quadrático
120	398	06/1993	830	sieve quadrático
129	428	04/1994	5000	sieve quadrático
130	431	04/1996	500	No. de campo
				sieve generalizado

Pentium 200 MHz = 50 MIPS

MIPS ano para fatorar

Gerenciamento de Chaves

- Distribuição de Chaves Públicas
 - Anúncio Público (Ex: PGP)
 - Diretório Público
 - Autoridade de Chave Pública
 - Certificados de Chave Pública
- Chave Pública para Distribuir Chave Secreta
 - Distribuição Simples de Chaves Secretas
 - Distribuição com Confidencialidade e Autenticação
 - Esquema Híbrido

Diretório Público **Elementos** Autoridade • Autoridade Mantém {Nome; Chave Pública} • Participante Registra sua Chave Pública • Participante pode trocas sua Chave Pública • Autoridade publica Diretório Periodicamente Diretório Público KUa KUb B

Autoridade de Chave Pública

Certificados de Chave Pública

Distribuição Simples de Chaves Secretas

- Protocolo Simples
- As chaves só existem durante a comunicação
- Problema com a Interceptação

Distribuição de Chaves Secretas com Confidencialidade e Autenticação

Esquema Híbrido

- KDC Key Distribution Center
- Usa chave pública para troca de chave mestre
- Usa chave mestre para troca de chave de sessão

Usado pela IBM nos mainframes Motivo: Desempenho

Raiz Primitiva e Logaritmo Discreto

 \mathbf{q} - Número Primo $\mathbf{\alpha} < \mathbf{q}$ - raiz primitiva de \mathbf{q}

Raiz Primitiva a:

{**a mod p, a² mod p, ..., a^{p-1} mod p**} são distintos e consistem dos inteiros de 1 a p-1

Logaritmo Discreto i:

 $b = a^i \mod p$, onde $0 \le i \le (p-1)$ $ind_{a,p}(b)$

Exercício

Calcular as raízes primitivas de 7

a	a^2	a^3	a^4	a^5	a^6
1					
2					
3					
4					
5					
6					

Troca de Chaves por Diffie-Hellman

q - Número Primo, α < q - raiz primitiva de q

Exemplo

K = 75