PROBLEMAS DE AUTOEVALUACIÓN L1-PROB1-PAG44

XAVIER AZNAR HTTP://FISICAUNED.WORDPRESS.COM

Problema. Determinar la velocidad de propagación de las ondas de gravedad en el caso de una superficie sin limitaciones de un fluido de produndidad h.

Demostración. Para las ondas de gravedad en un fluido tenemos que las ecuaciones de movimiento a resolver son:

$$\Delta \phi = 0$$

(2)
$$\left(\frac{\partial \phi}{\partial z} - \frac{1}{g} \frac{\partial^2 \phi}{\partial t^2} \right)_{z=0} = 0$$

Las soluciones son periódicas, de la forma general

(3)
$$\phi = \left(Ae^{kz} + Be^{-kz}\right)\cos\left(kx - \omega t\right)$$

En nuestro caso, el fluido está ilimitado tanto en x como en y, pero tiene una superifice que lo limita en z=-h (el fondo). En este caso, la componente normal a la superficie debe anularse, es decir,

(4)
$$\frac{\partial \phi}{\partial z} = 0 \quad z = -h$$

Si sustituimos la ecuación (3) en (4) obtenemos

$$\frac{\partial \phi}{\partial z} = 0 = Ake^{-kh} - Bke^{kh}$$

$$B = Ae^{-2kh}$$
(5)

Es decir que ϕ es de la forma

$$\phi = A\left(e^{kz} + e^{-2kh - kz}\right)\cos\left(kx - \omega t\right) =$$

$$= A\left(e^{kz + kh - kh} + e^{-kh - kh - kz}\right)\cos\left(kx - \omega t\right) =$$

$$= Ae^{-kh}\left(e^{k(z+h)} + e^{-k(z+h)}\right)\cos\left(kx - \omega t\right) =$$

$$= C\cosh\left(k\left[z + h\right]\right)\cos\left(kx - \omega t\right)$$
(6)

Ahora introducimos el resultado obtenido en (2), con lo que obtenemos la relación

$$C \sinh(kh) k \cos(kx - \omega t) - \frac{\omega^2}{g} C \cosh(kh) \cos(kx - \omega t) = 0$$
$$k \tanh(kh) - \frac{\omega^2}{g} = 0$$

(7)
$$\omega^2 = kg \tanh(kh)$$

A partir de aquí, obtenemos las velocidades a partir de las derivadas espaciales de ϕ

$$v_x = \frac{\partial \phi}{\partial x} = -kC \cosh(kh) \sin(kx - \omega t)$$

$$v_z = \frac{\partial \phi}{\partial z} = kC \sinh(k(z+h)) \cos(kx - \omega t)$$

La velocidad de propagación de la onda viene dada por

(8)
$$U = \frac{\partial \omega}{\partial k} = \frac{g \tanh(kh) + kgh \frac{1}{\cosh^{2}(kh)}}{2\sqrt{kg \tanh(kh)}} = \frac{1}{2} \sqrt{\frac{g}{k \tanh(kh)}} \left(\tanh(kh) + \frac{kh}{\cosh^{2}(kh)}\right)$$