Time Series Analysis: Week 2 - April 8

Orkhan Hasanaliyev

Load ffp3 package

Load the following packages

```
library(tidyverse)
library(fpp3)
library(tswge)
```

Graphs

Plots allow us to identify:

- Patterns
- Unusual observations
- Changes over time
- Relationships between variables.

US GDP

Filter the US data from global_economy

```
us_economy <- global_economy %>%
filter(Country == "United States")
print(us_economy)
```

```
print(us_economy)

# A tsibble: 58 x 9 [1Y]

# Key: Country [1]
Country Code Year GDP Growth CPI I
```

	Country	/	oode	rear	QD1	OI OW CII	01 1	Tmpc
	<fct></fct>		<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<d< td=""></d<>
1	${\tt United}$	States	USA	1960	5.43e11	NA	13.6	4
2	United	States	USA	1961	5.63e11	2.30	13.7	4
3	United	States	USA	1962	6.05e11	6.10	13.9	4
								_

4	United	States	USA	1963	6.39e11	4.40	14.0	4
5	United	States	USA	1964	6.86e11	5.80	14.2	4
6	United	States	USA	1965	7.44e11	6.40	14.4	4
7	United	States	USA	1966	8.15e11	6.50	14.9	4

The US GDP

Plot the US GDP

```
us_economy |> autoplot(GDP) +
  labs(title = "Nominal GDP, the US ",
      subtitle = "",
      y = "Nominal GDP (trln US$)")
```

Nominal GDP, the US

Global Temperature

```
global_temp<- tibble(</pre>
  Year = 1850:2009,
  Temperature = hadley
global_temp<- global_temp|>
  as_tsibble(index=Year)
global_temp|>
  autoplot(Temperature)
```


Time series patterns

Trend pattern exists when there is a long-term increase or decrease in the data.

Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are not of fixed period

Time series components

Differences between seasonal and cyclic patterns:

- > seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Domestic Car Production

```
library(fredr)
fredr set key("33223ed79fd61ea6915872b9a2cc2256")
car_prod <- fredr(</pre>
  series id = "DAUPNSA"
car_prod<- car_prod|>
  mutate(date = yearmonth(date)) |>
  as_tsibble(
    index = date
```

Domestic Car Production

car_prod|>autoplot()

Plot variable not specified, automatically selected `.vars

Domestic Car Production

Use gg_season() to plot the data against the individual "seasons"

```
car_prod|>
  gg_season()
```

Plot variable not specified, automatically selected $\dot{y} = v_0$

Australian Electricity Production

```
aus_production |>
  filter(year(Quarter) >= 1980) |>
  autoplot(Electricity) +
  labs(y = "GWh", title = "Australian electricity production")
```



```
us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980) |>
  autoplot(Employed / 1e3) + geom_point() +
  labs(y = "Million people", title = "Retail employment, US
```



```
us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980) |>
  gg_season()+
  labs(y = "Million people", title = "Retail employment, US
```

Plot variable not specified, automatically selected `y = En

US Gas Consumption

1997

1

```
#install.packages('USgas')
library(USgas)
us_total
year state y
```

Alabama

324158

-	1001	mina	021100
2	1998	Alabama	329134
3	1999	Alabama	337270
4	2000	Alabama	353614
5	2001	Alabama	332693
6	2002	Alabama	379343
7	2003	Alabama	350345
8	2004	Alabama	382367
9	2005	Alabama	353156
10	2006	Alabama	391093
11	2007	Alabama	418512
12	2008	Alabama	404157

CA and ME gas consumption

```
us_tsibble <- us_total |>
   as_tsibble(index=year, key=state)
# Draw CA and ME gas consumption over time
us_tsibble |>
   filter(state %in% c("California","Maine")) |>
   autoplot(y/1e3) +
   labs(y = "billion cubic feet")
```


Unemployment Claims

```
un_claims <- fredr(
   series_id = "CCNSA"
)

un_claims<- un_claims|>
   mutate(date = yearweek(date)) |>
   as_tsibble(
    index = date
)
```

Unemployment Claims

```
un_claims|>autoplot()+
   labs(title = "Continued Claims ",
        subtitle = "Insured Unemployment",
        y = "Number")
```

Plot variable not specified, automatically selected `.vars

Unemployment Claims

```
un_claims|>
  gg_season()
```

Plot variable not specified, automatically selected $\dot{y} = var$

vic_elec

```
# A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
  Time
                       Demand Temperature Date
                                                       Holida
   <dttm>
                         <dbl>
                                     <dbl> <date>
                                                       <lgl>
                                      21.4 2012-01-01 TRUE
 1 2012-01-01 00:00:00
                        4383.
 2 2012-01-01 00:30:00
                        4263.
                                      21.0 2012-01-01
                                                      TRUE.
                        4049.
 3 2012-01-01 01:00:00
                                      20.7 2012-01-01
                                                      TRUE
 4 2012-01-01 01:30:00
                         3878.
                                      20.6 2012-01-01
                                                       TRUF.
 5 2012-01-01 02:00:00
                        4036.
                                      20.4 2012-01-01
                                                       TRUE
 6 2012-01-01 02:30:00
                         3866.
                                      20.2 2012-01-01
                                                       TRUF.
 7 2012-01-01 03:00:00
                         3694.
                                      20.1 2012-01-01 TRUE
 8 2012-01-01 03:30:00
                         3562.
                                      19.6 2012-01-01 TRUE
 9 2012-01-01 04:00:00
                        3433.
                                      19.1 2012-01-01 TRUE
10 2012-01-01 04:30:00
                        3359.
                                      19.0 2012-01-01 TRUE
# i 52,598 more rows
```

```
vic_elec |> autoplot()
```

Plot variable not specified, automatically selected `.vars

vic_elec |> gg_season(Demand)

vic_elec |> gg_season(Demand, period = "week")

vic_elec |> gg_season(Demand, period = "day")


```
us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980) |>
  gg_subseries()+
  labs(y = "Million people", title = "Retail employment, Usaes(color=Title)
```

Plot variable not specified, automatically selected `y = Er


```
us_employment |>
  filter(Title %in% c("Retail Trade", "Mining and Logging"
  autoplot()+
  labs(y = "Million people", title = "Employment by Sector")
```

Plot variable not specified, automatically selected `.vars


```
us_employment |>
  filter(Title %in% c("Retail Trade", "Mining and Logging"
  gg_season()+
  labs(y = "Million people", title = "Employment by Sectors")
```

Plot variable not specified, automatically selected `y = En


```
us_employment |>
  filter(Title %in% c("Retail Trade", "Mining and Logging"
  gg_subseries(period="month")+
  facet_wrap(vars(Title), nrow = 2, scales = "free_y")+
  labs(y = "Million people", title = "Employment by Sectors")
```

Plot variable not specified, automatically selected `y = Er

