CHAP 5: SHIFTING BOTTLENECK (25pts)

(Machine, Job)

Given the following job shop problem

Job	Sequence	Processing Time
1	1,2,3	$p_{11} = 10$, $p_{21} = 8$, $p_{31} = 4$
2	2,1,4,3	$p_{22} = 8$, $p_{12} = 3$, $p_{42} = 5$, $p_{32} = 6$
3	1,2,4	$p_{13} = 4$, $p_{23} = 7$, $p_{43} = 3$

Step 1: Draw the initial graph of this problem

Total processing time of job 1: 10 + 8 + 4 = 22

Total processing time of job 2: 8 + 3 + 5 + 6 = 22

Total processing time of job 3: 4 + 7 + 3 = 14

$$C_{max} = 22$$

Step 2: Apply the 1st iteration to find the sequence

					1,2					
P	10	8	4	8	3	5	6	4	7	3
ES	0 !	10	18	0	8 11	11	16	0 !	4	11
EC	10	18	22	8	11	16	22	4	11	14
LS	0	10	18	0	8 11	11	16	8 !	12	19
LC	10	18	22	8	11	16	22	12	19	22
Sla	[0]	0	0	0	(0)	0	0	[8]	8	8

				1,3
Machine 1	1,1	1,2	1,3	1,51
Processing T	10	3	4	141
Release (ES)	0	8	0	←
Due date (LC)	10	11	12	8
Begin	0	14	10	12
Finish	10	17	14	. 8
Lateness	0	6	2	(_)

Earliest Release Day First

J1 – J3 – J2

Begin $J_i = \max$

(Finish J_{i-1}, Release J_i)

Lateness = max (0, Finish – Due date)

M2	2,1	2,2	2,3
P	8	8	7
R	10	0	9
D	18	8	19
В	15	0	8
F	23	8	15
L	5	0	0

 M3
 3,1
 3,2

 P
 4
 6

 R
 18
 16

 D
 22
 22

 B
 22
 16

 F
 26
 22

 L
 4
 0

4,2	4,3
5	3
11	11
16	22
11	16
16	19
0	0
	5 11 16 11 16

For machine 1, the sequence is (1,1) – (1,3) – (1,2) , $L_{max}(1)=6$

For machine 2, the sequence is (2,2) – (2,3) – (2,1) , $L_{max}(2)=5$

For machine 3, the sequence is (3,2) – (3,1) $L_{max}(3) = 4$

For machine 4, the sequence is (4,2) - (4,3) , $L_{max}(4) = 0$

Focus on machine with largest bottle neck. Machine ${f 1}$ is selected to be included in ${f M}_0$

Step 3: Draw the graph after the first iteration

Cmax = U - (1,1) - (1,3) - (1,2) - (4,2) - (3,2) - V = 28

CHAP 6: PROFILE FITTING HEURISTIC (20pts)

Job	1	2	3
Machine 1	0	1	0
Machine 2	0	0	0
Machine 3	1	0	1
Machine 4	1	1	0

Step 1: Find the first job in the sequence

Select the job with the longest total processing time as the initial job.

Job	1	2	3
Machine 1	0	(1)	0
Machine 2	0	0	0
Machine 3	1	0	1
Machine 4	1_1_	1 5	-Q
Total	2	2	1

Job 1 is selected as the initial job.

Step 2: Find the second job in the sequence

- 2.1: First column = cumulative processing time of Initial job
- 2.2: Second column = Processing Time (J2)

Job	Leave time			Loss
Machine 1	= <mark>0</mark> +0=0			
Machine 2	=0+ 0 =0	0	_	
Machine 3	=0+ 1 =1	! 0 ←		
Machine 4	=1+ 1 =2	1_1_		
Total				

2.3: Leave of next job

First machine:

= MAX (leave time + next job PT, Leave time (next))

Middle machines:

= MAX (leave of next job (previous) + next job PT, Leave time (next))

Last machine:

= leave time + Next job PT

	Visualization					
Machine 1	Job 1	Job 2	Job 2 finished but cannot leave			
Machine 2			Job 1			
1 1: 4	114					
Machine 1	Job 1	Jo	ob 2			
Machine 2		Job 1				

Job	Leave time	Next job is 2	Leave of next job	Loss
Machine 1	0	1	$= \max(0+1,0) = 1$	
Machine 2	0	0	= max (1+0, 1) = 1	
Machine 3	1	0	$= \max(1+0, 2) = 2$	
Machine 4	2	1	= 2 + 1 = 3	
Total				

2.4. Last column = Leave of next job - Next job PT - Leave time

Job	Leave time	Next job is 2	Leave of next job	Loss
Machine 1	0	1	1	=1-1-0=0
Machine 2	0	0	1	=1-0-0=1
Machine 3	1	0	2	=2-0-1=1
Machine 4	2	1	3	=3-1-2=0
Total				2

Doing similarly for other jobs that has not yet been scheduled

Job	Leave time	Next job is	Leave of next job	Loss
Machine 1	0	0	$=\max(0+0,0)=0$	0
Machine 2	0	0	$=\max(0+0,1)=1$	1
Machine 3	1	1	$=\max(1+1,2)=2$	0
Machine 4	2	0	=2+0 = 2	0
Total				1

2.5 Conclusion

Since the loss regarding to job 3 is the smallest, so job 3 is the next job.

CHAP 9: TIME INTERVAL

1. Multiple machines (25pts)

Job	1	2	3	4
w_j	3	2	2	1
p_{j}	<mark>2</mark>	3	1	1
r_j	0	2	1	2
d_{j}	5	7	6	6
Machine 1	2	0	1	1
Machine 2	1	2	0	1

The number of machine type 1 and 2 are 2.

Step 1: Calculate the priority of each job

$$I_j = \frac{\left(\sum_{k=1}^K \frac{m_{jk}}{N_k}\right) \times p_j}{w_j}$$

 m_k : the number of resource type k which is required by job j

 N_k : the maximum numer of resource type k

Job	1	2	3	4
I_j	1	1.5	0.25	1

$$I_1 = \frac{\left(\frac{2}{2} + \frac{1}{2}\right) \times 2}{3} = 1$$
 $I_2 = \frac{\left(\frac{0}{2} + \frac{2}{2}\right) \times 3}{2} = 1.5$

Step 2: Write down the summary table of possible resource usage when no job is assigned

For machine 1

Time	0	1	2	3	4	5	6
J1	2	2	2	2	2		
J2							
J3		1	1	1	1	1	
J4			1	1	1	1	
Use1	2	3	4	4	4	2	0

For machine 2

Time	0	1	2	3	4	5	6
J1	1	1	1	1	1		
J2			2	2	2	2	2
J3							
J4			1	1	1	1	
Use2	1	1	4	4	4	3	2

Summary

Time	0	1	2	3	4	5	6
Use1	2	3	4	4	4	2	0
Use2	1	1	4	4	4	3	2
R1	2	2	2	2	2	2	2
R2	2	2	2	2	2	2	2

Step 3: Assign the first job with the highest priority then write down 2. Graph coloring (20pts) the table of the update resources and possible resource usage

Highest priority = Smallest Index value

3.1: Use1, Use2, R1, R2 are the same as previous

3.2: $J_i R_k$: loss of machine k if job j start at time t (from ES to LS)

$$\sum_{t}^{t+p-1} \frac{m_{jk}}{R_k} * Use_k$$

3.3: Total

3.4: Assign: choose the time slot with the smallest value

Time	0	1	2	3	4	5	6
Use1	2	3	4	4	4	2	0
Use2	1	1	4	4	4	3	2
R1	2	2	2	2	2	2	2
R2	2	2	2	2	2	2	2
J3R1		1.5	2	2	2	1	
Assign						X	

Assign job 3 to time slot 5.

3.5: Update

From when to when the job occupies in the possible resource usage?

How many resource of each type that the job uses, at which time slot?

Time	0	1	2	3	4	5	6
Use1	2	2	3	3	3	1	0
Use2	1	1	4	4	4	3	2
R1	2	2	2	2	2	1	2
R2	2	2	2	2	2	2	2

Step 4: Assign the 2nd job with the second high priority then write down the table of the update resources and possible resource usage

Time	0	1	2	3	4	5	6					
Use1	2	2	3	3	3	1	0					
Use2	1	1	4	4	4	3	2					
R1	2	2	2	2	2	1	2					
R2	2	2	2	2	2	2	2					
J1R1	4	5	6	6								
J1R2	1	2.5	4	4								
Total	5	7.5	10	10								
Assign	X											
	177	$m_{\rm tot} = 2$ $n_{\rm tot} = 2$										

 $\frac{m_{12} = 2 \quad p_1 = 2}{R_1(0)} \times Use_1(0) + \frac{m_{11}}{R_1(1)} \times Use_1(1) \ hoặc \ m_{11} \left[\frac{Use_1(0)}{R_1(0)} + \frac{Use_1(1)}{R_1(1)} \right]$ Update

Time	0	1	2	3	4	5	6
Use1	0	0	1	1	1	1	0
Use2	0	0	3	3	3	3	2
R1	0	0	2	2	2	1	2
R2	1	1	2	2	2	2	2

Activities	1	2	3	4	5	6	7
Gary	1	0	0	1	1	0	1
Hamilton	1	1	1	0	0	0	0
Izak	0	0	1	0	1	1	0
Reha	1	0	1	1	1	0	0

Step 1: Find the conflict matrix and degree of each job

Job	1	2	3	4	5	6	7
1	-	1	1	1	1	0	1
2	1	-	1	0	0	0	0
3	1	1	-	1	1	1	0
4	1	0	1	-	1	0	1
5	1	0	1	1	-	1	1
6	0	0	1	0	1	-	0
7	1	0	0	1	1	0	-
Degree	5	2	5	4	5	2	3

Step 2: Apply the graph coloring algorithm to find the schedule

Job	1	2	3	4	5	6	7
Degree	5	2	5	4	5	2	3

Select job with the highest degree

Update the new degree

opuate the new degree								
Job	1	2	3	4	5	6	7	
Degree	C1	1	4	3	4	2	2	
Job	1	2	3	4	5	6	7	
Degree	C1	0	C2	2	3	1	2	
Job	1	2	3	4	5	6	7	
Degree	C1	0	C2	1	C3	0	1	
Job	1	2	3	4	5	6	7	
Degree	C1	0	C2	C4	C3	0	0	

Possible solutions

	1	3	5	4
2			X	Х
6	X			Х
7		X		

One of the solutions

1	3	5	4
6	7	2	

Time slot 1: Job 1 & 6

Time slot 2: Job 3 & 7

Time slot 3: Job 5 & 2

Time slot 4: Job 4

CHAP 13: WORKFORCE SCHEDULING (10pts)

Days-off Scheduling

- There are 7 days and each day has two shifts, ie. Night Shift and Day
- Demands of Day Shift and Night Shift on day d are denoted as Dd and Nd.
- Assumed that there are L labors.
- Among them there are S labors who can work either as supervisor or as labor.

Objective:

Minimize the total usage number of labors

Constraints:

- Each labor works only one shift per day
- Each labor cannot work 2 consecutive shifts
- Each labor works 5 shifts in week
- Apart from the required demand, each shift must have one supervisor. !When labor works as supervisors, he is not counted when computing Dd or Nd.

Set:

L: set of labors

S: set of labors who can work as supervisors

Parameters

 D_d : demand of day shift d

 N_d : demand of night shift d

Variables

binary variable, $Y_i = 1$ if labor i is used

 XD_{id} : binary variable, $XD_{id} = 1$ if labor i works on day shift d as labor

 XN_{id} : binary variable, $XN_{id} = 1$ if labor i works on night shift d as labor

 XR_{id} : binary variable, $XR_{id} = 1$ if labor i is off on day d

 SD_{id} : binary variable, $i \in S$, $SD_{id} = 1$ if labor i works on day shift d as

 SN_{id} : binary variable, $i \in S$, $SN_{id} = 1$ if labor i works on night shift d as supervisor

Objective function

Minimize
$$\sum_{i}^{L} Y_{i}$$

Subject to

C1: Demand has to be served, including 1 supervisor

$$\sum_{i}^{L} X D_{id} \ge D_{d} + 1 \quad \forall d$$

$$\sum_{i}^{L} X N_{id} \ge N_{d} + 1 \quad \forall d$$

$$\sum_{i}^{L} X N_{id} \ge N_d + 1 \quad \forall d$$

C2: Each labor works only on shift per day

$$XD_{id} + XN_{id} + XR_{id} = 1$$
 $\forall d, i$

C3: Each labor cannot work 2 consecutive shifts

$$XN_{id} + XD_{i,d+1} \le 1$$
 $\forall d, i$

C4: Each labor works 5 shifts in week

$$\sum_{d}^{D} XR_{id} = 2$$
 $\forall i$

C5: Each shift must have one supervisor

$$\sum_{i}^{S} SD_{id} = 1 \quad \forall a$$

$$\sum_{i}^{S} SN_{id} = 1 \quad \forall d$$

C6: If labor works as the supervisor, it is still considered that they work in that shift

$$SD_{id} - XD_{id} \leq 0 \qquad \forall d, i$$

$$SN_{id} - XN_{id} \le 0 \quad \forall d, i$$

C7: Connect between Y_i and other variables

$$Y_i \geq XD_{id} \quad \forall d, i$$

$$Y_i \ge XN_{id} \quad \forall d, i$$

$$Y_i \le \sum_{i}^{L} X D_{id} + \sum_{i}^{L} X N_{id} \qquad \forall i$$

Shifting bottle neck

Job	Sequence	Processing Time
1	1,2,3	$p_{1,1} = 2$, $p_{2,1} = 3$, $p_{3,1} = 4$
2	1,3,2	$p_{1,2} = 5$, $p_{3,2} = 4$, $p_{2,2} = 3$
3	2,1,3	$p_{2,3} = 6$, $p_{1,3} = 3$, $p_{3,3} = 5$

Profile fitting heuristic

Job	1	2	3	4
Machine 1	3	4	4	3
Machine 2	7	5	5	3
Machine 3	5	3	4	5
Machine 4	5	6	3	4

Multiple machines

Job	1	2	3
w_j	4 4		2
p_{j}	1	2	2
r_{j}	0	2	3
d_{j}	7	7	7
Machine 1	1	2	0
Machine 2	1	1	2

The number of machine type 1 and 2 are 4.

Graph coloring

Job	1	2	3	4	5	6	7	8
Res 1	1	0	0	0	0	1	0	0
Res 2	0	1	1	0	0	0	0	1
Res 3	1	0	0	1	1	0	1	0
Res 4	0	1	0	1	0	1	0	1
Res 5	0	1	1	0	1	0	0	1