

Titolo della Presentazione

Sottotitolo Descrittivo

Gabriel Rovesti

Università degli Studi di Padova Dipartimento di Matematica gabriel.rovesti@studenti.unipd.it

April 18, 2025

Indice

- **▶** Introduzione
- ► Metodologia
- ► Risultati
- **▶** Discussione

Contesto della Ricerca

Area di Ricerca

Descrizione dell'area di ricerca principale e motivazioni.

- ▶ Primo punto importante dell'introduzione
- ► Secondo punto con **enfasi** su aspetti cruciali
- ► Terzo punto con referenze alla letteratura

Nota importante

Questo template è stato progettato per l'Università di Padova e include elementi stilistici specifici dell'identità visiva UniPD.

Obiettivi

Gli obiettivi principali di questo lavoro sono:

- 1. Primo obiettivo strategico
- 2. Secondo obiettivo operativo
- 3. Terzo obiettivo di validazione

Contributo Atteso

Descrizione sintetica del contributo atteso e dell'impatto sulla ricerca attuale.

Approccio Proposto

- ► Descrizione dell'approccio metodologico
- ► Tecniche utilizzate nell'implementazione
- ► Framework e strumenti di sviluppo

Considerazioni Importanti

Aspetti da considerare durante l'implementazione dell'approccio.

Schema dell'approccio

Figure: Schema dell'approccio metodologico

Implementazione

Algoritmo Principale

```
def analyze_data(data, params):
results = {}
for key, values in data.items():
    # Elaborazione dei dati
    processed = preprocess(values)
    results[key] = model.fit(processed)
return results
```

- ► Principali passaggi dell'implementazione
- Strutture dati utilizzate
- ► Ottimizzazioni specifiche

Analisi dei Dati

Metrica	Modello A	Modello B	Modello C
Precisione	0.95	0.92	0.91
Recall	0.87	0.89	0.90
F1-Score	0.91	0.90	0.90
Tempo (ms)	145	120	180

Table: Confronto prestazionale dei modelli

Osservazione

Il **Modello A** mostra la precisione più elevata, mentre il **Modello B** risulta essere il più efficiente in termini di tempo di esecuzione.

Visualizzazione dei Risultati

Figure: Andamento dei risultati sperimentali

Interpretazione dei Risultati

Punti di Forza

- ► Elevata precisione nei casi di test principali
- ▶ Robustezza rispetto a variazioni nei parametri
- ► Efficienza computazionale migliorata del 25%

Limitazioni

- ▶ Necessità di dataset ampi per la fase di training
- ► Sensibilità ad alcuni parametri specifici
- ► Complessità di implementazione in scenari real-time

Confronto con lo Stato dell'Arte

Vantaggi

- ► Precisione superiore del 15% rispetto ai metodi esistenti
- ► Migliore scalabilità con dataset di grandi dimensioni
- ▶ Interpretabilità dei risultati ottenuti

Metodo	F1	Tempo
Nostro	0.91	145ms
Smith et al.	0.85	180ms
Zhang et al.	0.88	160ms

Table: Confronto con altri metodi

Conclusioni

- ▶ Riassunto dei principali risultati e contributi
- ▶ Impatto sulla letteratura e sul campo di ricerca
- Direzioni future di ricerca:
 - ► Estensione a nuovi domini applicativi
 - Ottimizzazione delle prestazioni
 - ► Integrazione con altre metodologie

Grazie per l'attenzione

Riferimenti I

- Autore A, Autore B, Titolo del Paper, Journal of Important Research, 2023.
- Autore C, Autore D, Autore E, Titolo del Libro, Editore Scientifico, 2022.
- Autore F. Titolo della Pubblicazione, International Conference on Research, pp. 123-130, 2021.

Slide Aggiuntive

Approfondimenti Tecnici

Questa sezione contiene dettagli tecnici aggiuntivi che possono essere utili durante la discussione.

- ▶ Dettaglio tecnico 1: specifiche dell'implementazione
- ▶ Dettaglio tecnico 2: dataset completo utilizzato
- ▶ Dettaglio tecnico 3: parametri di ottimizzazione avanzati

Note Implementative

Ambiente di Sviluppo

- ▶ Python 3.9, TensorFlow 2.8
- ▶ 16GB RAM, NVIDIA RTX 3080
- ▶ Ubuntu 22.04 LTS

Problemi Noti

- ► Compatibilità con versioni precedenti
- Requisiti di memoria per dataset grandi
- ▶ Ottimizzazione per CPU multi-core

Contatti per Supporto

Per ulteriori informazioni o supporto tecnico:

gabriel.rovesti@studenti.unipd.it