Elementi di Algebra e di Matematica Discreta Insiemi, relazioni

Cristina Turrini Alice Garbagnati

UNIMI - 2021/2022

index

- Matematica del Discreto
- Relazioni tra insiemi
- Applicazioni

discreto: opposto di continuo, "separato", per noi, molto spesso: finito.

Nel corso, due capitoli:

- Rudimenti di Matematica del discreto
 - relazioni tra insiemi (relazioni in un insieme, funzioni)
 - strutture algebriche (gruppi, anelli, campi)
 - proprietà dei numeri interi
 - Algoritmo di divisione
- Algebra Lineare
 - sistemi di equazioni lineari e algortimi di risoluzione
 - matrici
 - spazi vettoriali
 - applicazioni lineari

index

- Matematica del Discreto
- Richiami sugli insiemi
- Relazioni tra insiemi
- Applicazioni

Notazioni

Insieme: concetto primitivo, che non si definisce (si ritiene non a priori).

$$A, B, \dots X \dots$$
 insiemi; $a, b, \dots x \dots$ elementi

- Se a e' un elemento di A diremo che a appartiene a A e scriveremo $a \in A$. Altrimenti diremo che a non appartiene ad A e scriveremo $a \notin A$;
- Se A e B sono due insiemi, diremo che B e' contenuto in A e scriveremo $B \subset A$ (o $B \subseteq A$) se $\forall b \in B, b \in A$; se $B \subset A$ diremo che B e' un sottoinsieme di A;
- Dati due insiemi A e B diremo che essi sono uguali (A = B) se $B \subseteq A$ e $A \subseteq B$ (e quindi se ogni elemento di B e' contenuto in A e ogni elemento di A e' un elemento di B);
- ullet L'insieme privo di elementi, e' chiamato insieme vuoto e indicato con \emptyset
- $\bullet \ \emptyset \subset A, \quad \forall A.$

Siano *A* e *B* due sottoinsiemi di *X*.

- l'intersezione di A e B e' $A \cap B := \{x \in X \text{ tali che } x \in A \text{ e } x \in B\};$
- l'unione di A e B e' $A \cup B := \{x \in X \text{ tali che } x \in A \text{ oppure } x \in B\};$
- il complementare di A e' $A^c := \{x \in X \text{ tali che } x \notin A\};$
- la differenza fra A e B e' $A B := \{x \in X \text{ tali che } x \in A \text{ e } x \notin B\};$

Osservazione: valgono ovviamente le seguenti proprieta':

- \bullet $A \cap B \subset A \ e \ A \cap B \subset B$;
- $A \subset A \cup B$, e $B \subset A \cup B$;
- \bullet $A \cap B \subset A \cup B$.

Definizione: Dato un insieme X, l'insieme delle parti di X e'

$$P(X) := \{ A \text{ tale che } A \subset X \} := \{ \text{sottoinsiemi di } X \}.$$

Osserviamo che $\emptyset \in P(X)$ per ogni X.

Ci sono due modi per descrivere un insieme A,

- per elencazione: $A = \{a, b, c, \dots\}$
- per proprietà caratterizzante: $A = \{a \in X \mid P(a)\}$

Esempio Consideriamo gli insiemi:

- $\bullet A := \{0, 1, 2, 3, 4\}$
- $B := \{x \in \mathbb{N} \text{ tali che } x \le 4\}$
- $\bullet C := \{0, 2, 4\}$
- $D := \{x \in \mathbb{N} \text{ tali che } x \text{ e' pari } \}$

Gli insiemi A e C sono dati per elencazione.

Gli insiemi $B \in D$ sono definiti tramite una proprieta' che caratterizza i loro elementi.

L'insieme B contiene un numero finito di elementi, quindi puo' anche essere dato per elencazione, infatti A = B.

D contiene un numero infinito di elementi. Non puo' essere dato per elencazione.

Esempio (continuazione) Osserviamo che $C \subset D$ e $C \subset A (= B)$:

$$D \cap C = A \cap C = B \cap C = C$$

Inoltre $A \cap D = C$

 $D \cup C$ e' infinito e coincide con D, $D \cup A$ e' infinito e non coincide con D. Calcoliamo ora l'insieme delle parti di C:

$$P(C) := \{\emptyset, \{0\}, \{2\}, \{4\}, \{0, 2\}, \{0, 4\}, \{2, 4\}, C\}$$

Osserviamo che C ha 3 elementi e l'insieme delle parti di C ne ha $8=2^3$. Se si scrivesse l'insime delle parti di A si osserverebbe che ha $32=2^5$ elementi e quindi osserviamo che al crescere degli elementi di un insieme cresce (molto piu' velocemente) il numero di elementi dell'insieme delle parti

Ricordiamo la seguente notazione:

 \mathbb{N} e' l'insieme dei numeri naturali $\mathbb{N} = \{0, 1, 2, \dots\},\$

 \mathbb{Z} e' l'insieme dei numeri interi (relativi) $\mathbb{Z} = \{\cdots -2, -1, 0, 1, 2, \dots\}$.

Esempio/Esercizio

- $X = \{x \in \mathbb{N} \mid x \text{ divide } 12\}, Y = \{x \in \mathbb{N} \mid x \text{ divide } 18\}$ $X \cap Y = \{1, 2, 3, 6\}$ e $X \cup Y = \{1, 2, 3, 4, 6, 12, 9, 18\}$;
- $A = \{x \in \mathbb{Z} \mid x = 2h, h \in \mathbb{Z}\}, B = \{x \in \mathbb{Z} \mid x = 6k, k \in \mathbb{Z}\},\$ dimostrare che $A \cup B = A$.

Per mostrare l'uguaglianza bisogna mostrare che $A \subseteq A \cup B$ e $A \cup B \subseteq A$. La prima inclusione e' ovvia. $A \cup B \subseteq A$?? Occorre mostrare che $\forall x \in A \cup B$ si ha $x \in A$.

Se $x \in A \cup B$ allora, o $x \in A$ o $x \in B$

Nel primo caso abbiamo finito, altrimenti osserviamo che se $x \in B$, allora $x = 6k = 2(3k) = 2h \operatorname{con} k \in \mathbb{Z}$ e h = 3k, quindi $x \in A$.

Definizione Se X e' un insieme con un numero finito n di elementi, diciamo che X ha cardinalita' n e scriviamo |X| = n.

Proposizione Sia *X* un insieme finito, con |X| = n, allora $|P(X)| = 2^n$.

Definizione Dato un insieme X non vuoto, una *partizione* di X, è una collezione di sottoinsiemi non vuoti A_i di X, $i \in I$, tali che:

- $A_i \cap A_j = \emptyset, \forall i \neq j \text{ (gli } A_i \text{ sono insiemi disgiunti)};$
- $X = \bigcup_{i \in I} A_i$ (gli A_i ricoprono X.).

Esempio $X = \mathbb{N}$,

 $A_1 = \{\text{numeri pari}\}, A_2 = \{\text{numeri dispari}\}, \{A_1, A_2\} \text{ e' una partizione di } X.$

Esempio $X = \mathbb{N}$,

 $A_1 = \{x \in X \text{ tali che } x \le 5\}, A_2 = \{x \in X \text{ tali che } x > 5\}, \{A_1, A_2\} \text{ e' una partizione di } X.$

Esempio $X = \mathbb{N}$,

 $A_1 = \{x \in X \text{ tali che } x \leq 5\}, A_2 = \{x \in X \text{ tali che } x > h\}, \{A_1, A_2\}$ e' una partizione di X se h = 5, altrimenti non e' una partizione di X.

Esempio $B = \{0, 1, 2, 3, 4\}, C = \{0, 2, 4\},$ $A_1 = B \cap C, A_2 = B - C, \{A_1, A_2\}$ e' una partizione di B.

Esempio $B = \{0, 1, 2, 3, 4\},$ $A_1 = \{0, 3\}, A_2 = \{2\}, A_3 = \{1\} A_4 = \{4\}$ e' una partizione di B.

Prodotto cartesiano

Definizione Dati due insiemi A e B, il *prodotto cartesiano* di A e B, $A \times B$, è l'insieme costituito da tutte le coppie ordinate $((a,b) \neq (b,a))$ di elementi di A e B, cioè:

$$A \times B = \{(a,b) | a \in A, b \in B\}.$$

Se A = B, $A \times A$ si denota anche con A^2 .

Esempio/esercizio

- $A = \{0, 1, 2\}, C = \{0, 2, 4\}$ $A \times C = \{(0, 0), (0, 2), (0, 4), (1, 0), (1, 2), (1, 4), (2, 0), (2, 2), (2, 4), \}.$ $A \times C \neq C \times A \text{ (infatti } (1, 2) \in A \times C \text{ ma } (1, 2) \notin C \times A).$ Calcolare $A \times C \cup C \times A \text{ e } A \times C \cap C \times A.$
- $A = \mathbb{R}$ retta cartesiana, $A \times A = \mathbb{R}^2$ piano cartesiano.

Proposizione Se A ha cardinalità |A| = h e B ha cardinalità |B| = k allora $A \times B$ ha cardinalità hk.

Il prodotto cartesiano si estende anche a tre o più insiemi. Se si considerano n insiemi A_1, A_2, \ldots, A_n , il loro prodotto cartesiano è definito così:

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i, \forall i = 1, \dots, n\}$$

N.B. La scrittura $\{a,b\}$ denota l'insieme i cui elementi sono a e b, quindi la coppia a,b (per cui $\{a,b\}=\{b,a\}$), mentre la scrittura (a,b) denota la coppia ordinata (a,b) (per cui $(a,b)\neq (b,a)$). Lo stesso accade per $\{a_1,a_2,\ldots,a_n\}$ e (a_1,a_2,\ldots,a_n) .

index

- Matematica del Discreto
- Relazioni tra insiemi
- Applicazioni

Relazioni in un insieme

Siano A e B insiemi. In modo informale possiamo dire che una relazione R tra A e B è una legge che a qualche elemento di A associa qualche elemento di B. Quindi data una relazione si creano delle copie (a, b) formate da $a \in A$ e $b \in B$, tale che b e' in relazione con B. Questo da' senso alla seguente definizione.

Definizione Una *relazione* (binaria) *R* tra due insiemi *A* e *B* è un sottoinsieme del prodotto cartesiano $A \times B$.

Sia $R \subset A \times B$ una relazione. Se $(a,b) \in R$ si dice che $a \in in relazione con <math>b$ (spesso si scrive aRb, invece di $(a,b) \in R$).

Se invece a e b non sono in relazione si scrive $(a, b) \notin R$.

Esempio $A = \{x \in \mathbb{N} \text{ tali che } 1 \le x \le 7\}, B = \{2,4\} R : a \in A \text{ e' in relazione con } b \in B \text{ solo se } a \text{ e' divisore di } b. \text{ Allora } R = \{(1,2), (1,4), (2,2), (2,4), (4,4)\}.$

Esempio $A = \{ \text{ rette del piano } \}, B = \{ \text{ punti del piano } \}, R : r \in A \text{ e' in relazione con } b \in B \text{, se e solo se } b \in r.$

Esempio $A = B = \mathbb{Z}$, $(a, b) \in R$ se $b^2 = a$. Quindi (1, 1), (1, -1), (4, 2) sono tutti elementi di R. Ma, per esempio, 2 non e' in relazione con nessun elemento.

La stessa relazione ma con $A = B = \mathbb{R}$, da' un risultato totalmente diverso!

(ロ) (個) (国) (国) (国) (国)

Definizioni

- Se A = B e $R = \{(a, a), \forall a \in A\} \subset A \times A$ diciamo che R e' la relazione identica (cioe' ogni elemento a e' in relazione solo con se stesso).
- Se $R = A \times B$ diciamo che R e' la relazione totale, cioe' ogni elemento di A e' in relazione con ogni elemento di B.

Sia R una relazione su un insieme X (quindi $R \subset X \times X$), allora diciamo che R e'

- riflessiva se $(x, x) \in R$, $\forall x \in X$, equivalentemente se xRx per ogni $x \in X$
- simmetrica se $(x, y) \in R \Rightarrow (y, x) \in R$, cioe' se vale "x in relazione con y implica y in relazione con x".
- antisimmetrica se $(x, y) \in R$ e $(y, x) \in R$ \Rightarrow x = y, cioe' se vale "x in relazione con y e y in relazione con x, implica x = y"
- transitiva se $(x, y) \in R$ e $(y, z) \in R \Rightarrow (x, z) \in R$, cioe' se x e' in relazione con y e y e' in relazione con z, allora x e' in relazione con z.

Esempio

$$R_1:=\{(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}.$$

In particolare R_1 e' non riflessiva, non simmetrica, antisimmetrica e transitiva.

• Se invece $R_2 = " \le "$, allora

$$R_2 = R_1 \cup \{(0,0), (1,1), (2,2), (3,3), (4,4)\}$$

ed R_2 e' riflessiva.

• $B = \{rette\}, R_3 = "essere parallele o cioncidenti".$ E' riflessiva, e' simmetrica ed e' transitiva

Definizione Sia *R* una relazione in *X*. Diciamo che *R* e' una *relazione di equivalenza* se e'una relazione

- riflessiva
- simmettrica
- transitiva

Spesso indicheremo le relazione di equivalenza con il simbolo \sim .

Esempio $X = \{\text{rette nel piano}\}, R = \text{"essere parallele o coincidenti".}$ La relazione R e' una relazione di equivalenza.

Esempio: $X = \mathbb{N}$, R : nRm se e solo se $\exists k \in \mathbb{N}$ tale che n = km (relazione: n e' mulitplo di m).

- R e' riflessiva (k = 1);
- R e' antisimmetrica (se n = km e m = hn, allora m = hkm, quindi h = k = 1 e n = m)
- e' transitiva (se n = mk e m = ho allora n = kho)

In particolare R non e' relazione di equivalenza.

Vedremo altre relazioni di equivalenza nelle prossime lezioni.

Definizione Sia R una relazione su un insieme X, diciamo che R e' una relazione d'ordine se R e'

- riflessiva;
- antisimmetrica:
- transitiva

Spesso indicheremo le relazione d'ordine con il simbolo \prec .

Esempio $X = \mathbb{N}, R = "<" e'$ una relazione d'ordine.

Quindi le relazioni d'ordine generalizzano agli insiemi (non necessariamente di numeri) la relazione gia' nota "\le " che esiste fra i numeri interi, relativi, razionali, reali.

Definizioni Sia X un insieme $e \leq$ una relazione d'ordine su X. Si dice che l'insieme X con la relazione $\prec e^{-}$ un insieme parzialmente ordinato.

Due elementi x e y in X si dicono confrontabili se $x \prec y$ oppure $y \prec x$ (cioe' se x e' in realzione con y oppure, viceversa, y e' in relazione con x).

Un insieme si dice *totalmente ordinato* se e' parzialmente ordinato e ogni coppia di elementi di X e' confrontabile (cioè' presa una qualsiasi copia di elementi x e y, allora o $X \prec y$ o $y \prec x$).

In questo caso la relazione si dice di *ordine totale*.

Esempio: (\mathbb{N}, \leq) e' un insieme totalmente ordinato.

Osservazione L'insieme \mathbb{C} non ammette una relazione di ordine totale.

Esempio:
$$A = \{a, b, c\}, R := \{(a, a), (a, b), (a, c), (b, b), (c, c)\}$$
 e'

- riflessiva;
- antisimmetrica:
- transitiva.

Ouindi e' relazione d'ordine.

Ma b e c non sono confrontabili, quindi non e' una relazione di ordine totale.

Date delle relazione di ordine, si possono generalizzare dei concetti gia' noti negli insiemi numerici $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$,

Definizioni: Sia (X, \leq) un insieme parzialmente ordinato.

Un elemento $a \in X$ si dice *massimo* di X se $\forall x \in X$ si ha $x \leq a$.

Un elemento $b \in X$ si dice *minimo* di X se $\forall x \in X$ si ha $b \leq x$.

Sia $Y \subseteq X$. Anche Y risulta parzialmente ordinato da \leq .

Un elemento $s \in X$ si dice *estremo superiore* di Y, e si scrive s = Sup(Y), se

- $\forall y \in Y \text{ si ha } y \leq s$;
- se $x \in X$ è tale che $y \leq x, \forall y \in Y$, allora anche $s \leq x$.

Un elemento $t \in X$ si dice *estremo inferiore* di Y, e si scrive t = Inf(Y), se

- $\forall y \in Y \text{ si ha } t \leq y$;
- se $x \in X$ è tale che $x \leq y, \forall y \in Y$, allora anche $x \leq t$.

index

- Matematica del Discreto
- Richiami sugli insiemi
- Relazioni tra insiemi
- Applicazioni

Applicazioni

Una relazione R tra due insiemi (non vuoti) A e B è detta applicazione, o funzione, se $\forall a \in A$ esiste uno e un solo $b \in B$ tale che aRb.

Di solito, se R è una applicazione tra A e B, si scrive

$$R:A\rightarrow B$$
,

e se aRb, si scrive b = R(a).

A e B vengono detti rispettivamente dominio e codominio di R.

Dato a, l'elemento R(a) viene detto immagine di a tramite R.

L'insieme $R(A) = \{b \in B \mid \exists a \in A \mid b = R(a), \}$ viene detto *immagine* di R.

Dato $b \in B$, un qualsiasi $a \in A$ tale che R(a) = b viene detto retroimmagine o controimmagine di b.

L'insieme (che può anche essere vuoto) delle retroimmagini di b viene denotato con $R^{-1}(b)$, ossia $R^{-1}(b) = \{a \in A \mid R(a) = b\}$. Due applicazioni F e G tali che F, $G: X \to Y$ si dicono uguali (F = G) se $\forall x \in X$, F(x) = G(x).

Esempi: Sia $A = B = \mathbb{Z}$.

La relazione Φ , definita da $a\Phi b$ se e solo se a è il doppio di b, non è una applicazione perché 3 non è associato ad alcun b.

La relazione Ψ definita da $a\Psi b$ se e solo se $a=b^2$, non è una applicazione perché 9 è in relazione sia con 3 che con -3.

La relazione Θ definita da $a\Theta b$ se e solo se a è la metà di b, è una applicazione, perché ogni intero a, esiste b(=2a) tale che $a\Theta b$.

Definizioni Sia $F: A \rightarrow B$ un'applicazione. Si dice che F e':

- iniettiva se $F(a) = F(b) \Rightarrow a = b$, ossia se ogni elemento di B ammette al più una controimmagine;
- *suriettiva* se $\forall b \in B, \exists a \in A \text{ tale che } F(a) = B,$ ossia se F(A) = B, ossia se ogni elemento di B ammette almeno una controimmagine;
- biettiva o biunivoca se è sia iniettiva che suriettiva, cioe' ogni elemento $b \in B$ ammette esattamente una controimmagine.

Esempi

- $f: \mathbb{Z} \to \mathbb{Z}$ tale che f(x) = 2x: e' iniettiva (dati due x_1 e x_2 se $f(x_1) = f(x_2)$ significa che $2x_1 = 2x_2$, quindi $x_1 = x_2$), ma non suriettiva (non esiste la retroimmagine di 3).
- $f: \mathbb{R} \to \mathbb{R}_{\geq 0}$ tale che $f(x) = x^2$ dove $\mathbb{R}_{\geq 0}$ e' l'insieme dei numeri reali non negativi (quindi maggiori o uguali di 0): e' suriettiva (per ogni numero naturale $y \in \mathbb{R}_{\geq 0}$ esiste $x \in \mathbb{R}$ tale che $x^2 = y$, infatti prendo $x := \sqrt{y}$), ma non e' iniettiva (se $x_1 = 1$ e $x_2 = -1$, allora $x_1 \neq x_2$ ma $f(x_1) = f(x_2) = 1$).
- f: Q→ Q tale che f(x) = 2x:
 e' iniettiva (come prima)
 e' suriettiva (la controimmagine di 3 e' 3/2 e piu' in generale la controimmagine di y e' y/2).
 Quindi e' biiettiva.

Definizione Date due applicazioni $F: A \to B$ e $G: B \to C$, si può definire un'applicazione $G \circ F: A \to C$, che viene detta *composizione* di F con G, così:

$$(G \circ F)(a) = G(F(a)), \quad \forall a \in A.$$

Proposizione: La composizione di applicazioni è associativa (ossia se $F: A \to B$, $G: B \to C$ e $H: C \to D$, si ha $H \circ (G \circ F) = (H \circ G) \circ F$. **Osservazione** In generale, se si può considerare la composizione di F con G, non è detto che si possa anche considerare la composizione di G con G.

Nel caso di applicazioni $F, G: A \rightarrow A$ sono possibili sia la composizione $F \circ G$ che la composizione $G \circ F$. Tuttavia queste composizioni sono in generale applicazioni diverse, ossia la composizione di applicazioni non è commutativa.

Esempio: Siano F e G le applicazioni F, G : $\mathbb{Z} \to \mathbb{Z}$ definite rispettivamente da F(x) = 3x e da G(x) = x + 1, risulta $(G \circ F)(2) = G(6) = 7$, mentre $(F \circ G)(2) = F(3) = 9$.

Dato un insieme A, l'applicazione $id_A : A \to A$ definita da $id_A(a) = a \quad \forall a \in A$ viene detta applicazione identica o identita.

Proposizione Sia $F: B \to C$ un'applicazione e si considerino le applicazioni identiche $id_B: B \to B$ e $id_C: C \to C$. Risulta $F \circ id_B = F$ e $id_C \circ F = F$.

Date due applicazioni $\Phi: A \to B$ e $\Psi: B \to A$, se accade che sia $\Psi \circ \Phi = id_A$ si dice che Φ è *inversa destra* di Ψ (e che Ψ è *inversa sinistra* di Φ).

Se si ha sia $\Psi \circ \Phi = id_A$ che $\Phi \circ \Psi = id_B$, si dice che Φ e Ψ sono una *inversa* dell'altra.

Proposizione Le applicazioni biunivoche ammettono inversa.

dimostrazione. Sia $F: X \to Y$ biunivoca. Per ogni $y \in Y$ esiste uno e un solo $x_y \in X$ tale che $F(x_y) = y$. Considero la funzione $G: Y \to X$ tale che $y \mapsto x_y$. Si verifica che $(G \circ F)(x) = G(F(x)) = G(y) = x$, e $(F \circ G)(y) = F(G(y)) = F(x_y) = y$, quindi $\forall x \in X$, $(G \circ F)(x) = x$ e quindi $G \circ F = id_X$ e $\forall y \in Y$, $(F \circ G)(y) = y$ e quindi $F \circ G = id_Y$.

Di conseguenza F e G sono inverse e in particolare F ammette un'inversa . c.v.d.

L'applicazione $F: \mathbb{Z} \to \mathbb{Z}$ definita da F(x) = x + 1 ammette inversa (ossia sia inversa destra che inversa sinistra) e tale inversa è definita da G(x) = x - 1.

