Neural Nets (NN), с элементами Deep Learning

Хасанова Кристина, Гриненко Юрий

гр. 22.М03-мм Санкт-Петербургский государственный университет Кафедра статистического моделирования

21 ноября 2023 г.

Постановка задачи

Пусть X — множество объектов, Y — множество ответов. Пусть есть обучающая выборка $X^n=(x_i,y_i)_{i=1}^n,\,x_i\in\mathbb{R}^p.$ Обозначим $(x^1,\ldots,x^p)\in\mathbb{R}^p$ — вектор признаков объекта $x\in X$. Рассмотрим следующую задачу построения предсказывающей модели:

$$Q(a,X^n) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}(a,x_i,y_i) \to \min_w,$$

Постановка задачи

Пусть X — множество объектов, Y — множество ответов. Пусть есть обучающая выборка $X^n=(x_i,y_i)_{i=1}^n,\,x_i\in\mathbb{R}^p.$ Обозначим $(x^1,\ldots,x^p)\in\mathbb{R}^p$ — вектор признаков объекта $x\in X$. Рассмотрим следующую задачу построения предсказывающей модели:

$$Q(a,X^n)=\frac{1}{n}\sum_{i=1}^n\mathcal{L}(a,x_i,y_i)\to\min_w,$$

где предсказывающую функцию а зададим следующим образом (рассмотрим особый класс функций):

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{p} w_j x^j - w_0\right),$$

где $w_k\in\mathbb{R},\;k=0,\ldots,p$ — параметры; $\sigma:\mathbb{R}\to\mathbb{R}$ — функция активации; $\mathcal{L}(a,x_i,y_i)$ — функция потерь, $i=1,\ldots,n$

Функции потерь в задачах классификации

Функции потерь $\mathcal{L}(M)$ в задачах классификации на два класса

$$E(M) = e^{-M}$$
 — экспоненциальная (AdaBoost);

$$L(M) = \log_2(1 + e^{-M})$$
 — логарифмическая (LogitBoost);

$$G(M) = \exp(-cM(M+s))$$
 — гауссовская (BrownBoost);

$$Q(M) = (1 - M)^2$$
 — квадратичная;

$$S(M) = 2(1 + e^{M})^{-1}$$
 — сигмоидная;

$$V(M)=(1-M)_+$$
 — кусочно-линейная (SVM);

Основные задачи

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{p} w_j x^j - w_0\right),$$

Задача классификации. Пусть $Y = \{+1, -1\}$. Если $\sigma(z) = \text{sign}(z)$, то a(x, w) — линейный классификатор, и задача выглядит следующим образом:

$$Q(w,X^n) = \sum_{j=1}^n \mathcal{L}\left(a(x_j,w),y_j\right) = \sum_{j=1}^n [y_j\langle w,x_j\rangle < 0] \to \min_w.$$

Задача регрессии. Пусть $Y=\mathbb{R}$. Если взять $\sigma(z)=z$, то получим многомерную линейную регрессию:

$$Q(w,X^n) = \sum_{j=1}^n \mathcal{L}(a(x_j,w),y_j) = \sum_{j=1}^n (\langle w,x_j \rangle - y_j)^2 \to \min_w.$$

Нейрон

Рассмотренный класс функций удобно представить схематически. Такой класс функций является простейшей математической моделью нервной клетки — нейрона. Если $\sigma=[z\geq 0]$, то $\sigma\left(\sum_{j=1}^p w_j x^j - w_0\right)$ — нейрон МакКаллока-Питтса.

Функции активации

В качестве функций активации чаще всего используются следующие функции:

- ullet Сигмоидная функция: $\sigma(z)=rac{1}{1+e^{-az}}$, $a\in\mathbb{R}$;
- Softmax: $SM_i(z) = \frac{e^{z_i}}{\sum_{k=1}^K e^{z_k}};$
- Гиперболический тангенс: $\sigma(z) = \frac{e^{az} e^{-az}}{e^{az} + e^{-az}}, \ a \in \mathbb{R};$
- Выпрямитель: $ReLU(p) = \max(0, p)$;

Activation Functions

 $\max(0,x)$

Leaky ReLU $\max(0.1x, x)$

Операция 'НЕ'

Логическая операция 'НЕ' может быть представлена в виде $\neg x^1 = [-x^1 + \frac{1}{2} > 0]$. Далее представлен нейрон, реализующий эту операцию.

Рис.: Представление логической операции 'НЕ' в виде нейрона.

Операции 'ИЛИ', 'И'

Логические операции 'ИЛИ', 'И' могут быть представлены в таком виде: $x^1\vee x^2=[x^1+x^2-\frac{1}{2}>0]$ и $x^1\wedge x^2=[x^1+x^2-\frac{3}{2}>0]$. Далее представлены нейроны, реализующие эти булевы функции.

Рис.: Представление логических операций 'ИЛИ' и 'И' в виде нейронов.

'Исключающее ИЛИ'

Такая операция не может быть реализована одним нейроном с двумя входами x^1 и x^2 . Возможны два варианта решения такой задачи.

Первый вариант — пополнить пространство признаков, добавить нелинейное преобразование исходных признаков. Например, если добавить произведение исходных признаков, тогда нейрон будет строить уже не линейную, а полиномиальную разделяющую поверхность. Таким образом, мы перейдем к спрямляющему пространству признаков. Функцию "исключающего ИЛИ" можно представить в виде $x^1 \oplus x^2 = [x^1 + x^2 - 2x^1x^2 - \frac{1}{2} > 0]$, схема нейрона представлена на рисунке.

'Исключающее ИЛИ'

Рис.: Представление логической операции 'исключающее ИЛИ' виде одного нейрона.

'Исключающее ИЛИ'

Второй вариант — построить композицию из нескольких нейронов. Например, 'исключающее ИЛИ' можно представить в таком виде: $x^1 \oplus x^2 = [\neg((x^1 \lor x^2) - (x^1 \land x^2)) > 0].$ Получаем суперпозицию нейронов — нейронную сеть.

Рис.: Представление логической операции 'исключающее ИЛИ' в виде суперпозиции нейронов.

Насколько богатый класс функций может быть реализован нейроном

Тheorem (Цыбенко, 1989)

Пусть $\sigma(x)$ — ограниченная и монотонно возрастающая непрерывная функция; $C(I_{p_0})$ — множество непрерывных функций на $[0,1]^{p_0}$.

Тогда $\forall f \in C(I_{p_0})$ и $\forall \varepsilon > 0 \; \exists \; p_1 \in \mathbb{Z}$ и α_i , b_i , $w_{ij} \in \mathbb{R}$, $i=1,\ldots,p_1,\; j=1,\ldots,p_0$, такие что для любого $x=(x^1,\ldots,x^{p_0})\in I_{p_0}$ выполняется

$$|F(x^1,\ldots,x^{p_0})-f(x^1,\ldots,x^{p_0})|<\varepsilon,$$

где

$$F(x^1,\ldots,x^{p_0}) = \sum_{i=1}^{p_1} \alpha_i \, \sigma \left(\sum_{j=1}^{p_0} w_{ij} x^j - w_{0i} \right).$$

Следствия

Верно следующее:

- **①** Двухслойная сеть в $\{0,1\}^n$ позволяет реализовать любую булеву функцию (ДНФ).
- ② Двухслойная сеть в \mathbb{R}^n позволяет реализовать любой выпуклый многогранник.
- **③** Трехслойная сеть в \mathbb{R}^n позволяет отделить любую многогранную область, не обязательно выпуклую и не обязательно связную.
- С помощью линейных операций и одной нелинейной функции активации можно приблизить любую непрерывную функцию с любой точностью (теорема Горбаня, 1998).

Алгоритм обратного распространения ошибки BackProp

Рис.: Двухслойная нейронная сеть

В случае двухслойной сети: $a^{m}(x_{i}), m = 1, ..., M$ на объекте x_{i} :

$$a^m(x_i) = \sigma_m \left(\sum_{h=0}^H w_{hm} u^h(x_i) \right), \qquad u^h(x_i) = \sigma_h \left(\sum_{i=0}^p w_{jh} x_i^j \right).$$

Проблема оптимизации

В случае двухслойной нейронной сети получим (p+1)H+(H+1)M весовых коэффициентов. Для решения поставленной задачи используются градиентные методы, в частности, стохастический градиентный спуск, однако при таком большом количестве параметров посчитать градиент довольно трудоемко. Для решения этой проблемы возник метод обратного распространения ошибки, который с некоторыми затратами памяти эффективно вычисляет градиент.

Для начала поставим промежуточную задачу эффективного вычисления частных производных $\frac{\partial \mathcal{L}_i(w)}{\partial a^m}$ и $\frac{\partial \mathcal{L}_i(w)}{\partial u^h}$. Идея состоит в том, что при первом вычислении сети мы будем сохранять некоторые величины, которые впоследствии помогут быстро посчитать градиент.

В случае двухслойной сети: $a^m(x_i)$, $m=1,\ldots,M$ на объекте x_i :

$$a^m(x_i) = \sigma_m \left(\sum_{h=0}^H w_{hm} u^h(x_i) \right), \qquad u^h(x_i) = \sigma_h \left(\sum_{j=0}^P w_{jh} x_i^j \right).$$

Пусть для конкретности

$$\mathcal{L}_i(w) = \frac{1}{2} \sum_{m=1}^{M} (a^m(x_i) - y_i^m)^2,$$

для других функций потерь рассуждения можно провести по аналогии.

Ошибки на выходном и промежуточном слоях

Выпишем выражения для частных производных. Для краткости записи будем обозначать $\sigma'_m = \sigma'_m (\sum\limits_{h=0}^H w_{hm} u^h(x_i))$ и аналогично для других производных в соответствующих точках.

$$\frac{\partial \mathcal{L}_i(w)}{\partial a^m} = a^m(x_i) - y_i^m = \varepsilon_i^m$$
 — ошибка на выходном слое,

$$\frac{\partial \mathcal{L}_i(w)}{\partial u^h} = \sum_{m=1}^M (a^m(x_i) - y_i^m) \sigma'_m w_{hm} = \sum_{m=1}^M \varepsilon_i^m \sigma'_m w_{hm} = \varepsilon_i^h.$$

По аналогии назовем это также ошибкой на нейроне промежуточного слоя.

Вычисление ε

Теперь заметим, что ε_i^h вычисляется по ε_i^m , если запустить сеть в обратном порядке, справа налево:

Формулы для компонент вектора градиента

Итак, имеем формулы для компонент вектора градиента:

$$\frac{\partial \mathcal{L}_i(w)}{\partial w_{hm}} = \frac{\partial \mathcal{L}_i(w)}{\partial a^m} \frac{\partial a^m}{\partial w_{hm}} = \varepsilon_i^m \sigma_m' u^h(x_i), \quad h = 0, \dots, H, \ m = 1, \dots, M.$$

$$\frac{\partial \mathcal{L}_i(w)}{\partial w_{jh}} = \frac{\partial \mathcal{L}_i(w)}{\partial u^h} \frac{\partial u^h}{\partial w_{jh}} = \varepsilon_i^h \sigma_h' f_j(x_i), \quad j = 0, \dots, p, \ h = 1, \dots, H.$$

Будем сохранять промежуточные величины ε_i^m и ε_i^h , чтобы эффективно вычислить компоненты вектора градиента. Полученный алгоритм — это метод стохастического градиентного спуска с быстрым вычислением градиента.

Обучение двухслойной нейронной сети методом обратного распространения ошибки (back-propagation)

```
Input: \mathbb{X}^n = \{x_i, y_i\}_{i=1}^n — обучающая выборка, x_i \in \mathbb{R}^p, y_i \in \mathbb{R}^M, H —
          число нейронов на скрытом слое, \eta — темп обучения, параметр \lambda
Output: w_{jh}, w_{hm} — веса
Инициализация весов w_{jh}, w_{hm};
repeat
      Выбираем x_i из \mathbb{X}^n:
      Прямой ход:
       u^h := \sigma_h(\sum_{i=0}^n w_{jh}x_i^j), \quad h = 1, \ldots, H;
       a^m := \sigma_m(\sum_i w_{hm}u_i^h), \quad \varepsilon_i^m := a_i^m - y_i^m, \quad m = 1, \dots, M;
       \mathcal{L}_i := \sum_{i=1}^{M} (\varepsilon_i^m)^2;
      Обратный ход: \varepsilon_i^h := \sum_{j=1}^M \varepsilon_i^m \sigma_m' w_{hm}, \quad h=1,\ldots,H;
      Градиентный шаг:
        w_{hm} := w_{hm} - \eta \varepsilon_i^m \sigma_m' u^h(x_i), \qquad h = 0, \dots, H, \ m = 1, \dots, M
      w_{jh} := w_{jh} - \eta \varepsilon_h^i \sigma_h' f^j(x_i), \qquad j = 0, \dots, p, \ h = 1, \dots, H;
Q := (1 - \lambda)Q + \lambda \mathcal{L}_i;
until Q не сойдется;
                                                                                4D + 4B + 4B + B + 900
```

Достоинства и недостатки

Достоинства метода обратного распространения ошибок:

- эффективность: быстрое вычисление градиента. В случае двухслойной сети прямой ход, обратный ход и вычисление градиента требуют порядка O(Hp + HM) операций;
- метод легко обобщается на любые функции потерь, функции активации, произвольное количество слоев и произвольную размерность входов и выходов;
- возможно динамическое (потоковое) обучение;
- ullet на сверхбольших выборках не обязательно брать все x_i .

Недостатки (есть все те же, что и у метода стохастического градиента):

- метод не всегда сходится;
- возможна медленная сходимость;
- застревание в локальных минимумах;
- проблема переобучения.

Инициализация весов

- Часто веса инициализируются случайно, небольшими по модулю значениями. Например, в качестве начального приближения берутся случайные значения из отрезка $\left[-\frac{1}{2k},\frac{1}{2k}\right]$, где k число нейронов в том слое, из которого выходит связь.
- Существует вариант инициализации весов в зависимости от корреляции признака и столбца ответов:

$$w_{jh} = \frac{\langle x^j, y \rangle}{\langle x^j, x^j \rangle} + \varepsilon_{jh}.$$

 Начальное приближение также можно сформировать по-другому. Идея заключается в том, чтобы сначала настроить нейроны первого слоя отдельно, как Н однослойных нейронных сетей.

Выбор градиентного метода

 Метод стохастического градиента с адаптивный шагом.:

$$Q(w-\eta rac{\delta Q}{\delta w})
ightarrow \min_{\eta}$$
 .

Adagrad:

$$G_{k+1} = G_k + (\nabla f(x_k))^2$$

$$x_{k+1} = x_k - \frac{\alpha}{\sqrt{(G_{k+1} + \epsilon)}} \nabla f(x_k)$$

RMSProp

$$G_{k+1} = \gamma G_k + (1 - \gamma G_k)(\nabla f(x_k))^2 x_{k+1}$$

$$x_{k+1} = x_k - \frac{\alpha}{\sqrt{(G_{k+1} + \epsilon)}} \nabla f(x_k)$$

Выбор градиентного метода

Adam:

$$x_{k+1} = x_k - \frac{\alpha}{\sqrt{(G_{k+1} + \epsilon)}} v_{k+1}$$
$$v_{k+1} = \beta_1 v_k - (1 - \beta_1 v_k) \nabla f(x_k)$$
$$G_{k+1} = \beta_2 G_k + (1 - \beta_2 G_k) (\nabla f(x_k))^2 x_{k+1}$$

Выбор числа слоёв в случае классификации

Если знаем, что классы линейно разделимы, то нам достаточно ограничиться одним слоем. Если граница между классами нелинейная и извилистая, то в большинстве случаев достаточно взять двухслойную сеть. Трёхслойными сетями имеет смысл пользоваться для представления сложных многосвязных областей. Теоретически, можно взять нейронную сеть с большим количеством слоев, однако тогда хуже сходятся градиентные методы, и тем труднее нам будет её обучить.

Выбор числа нейронов в скрытом слое (выбор Н)

- Визуальный способ. Если граница классов (или кривая регрессии) слишком сглажена количество нейронов в слое нужно увеличить, а если есть резкие колебания, то, наоборот, уменьшить. Этот способ подходит для задач с небольшим числом признаков.
- ② По внешнему критерию. Можно смотреть на среднюю ошибку на тестовой выборке или использовать cross-validation. Недостаток этого способа высокая трудоёмкость. Приходится много раз заново строить сеть при различных значениях параметра H, а в случае скользящего контроля ещё и при различных разбиениях выборки на обучающую и контрольную части.

Динамическое наращивание сети

- ① Обучение сети при заведомо недостаточном числе нейронов $H \ll n$, пока ошибка не перестаёт убывать;
- Добавление нового нейрона и его инициализация путем обучения
 - либо по случайной подвыборке $X' \subseteq X^n$;
 - либо по объектам с наибольшими значениями потерь;
 - либо по случайному подмножеству входов;
 - либо из различных случайных начальных приближений.
- Онова итерации ВаскРгор;

Выбор числа эпох обучения

Выбор числа эпох обучения. Алгоритм работы нейронной сети является итеративным, его шаги называют эпохами или циклами. Эпоха - одна итерация в процессе обучения. Обычно, чем больше количество эпох, тем меньше лосс на обучающей выборке. Ниже можно увидеть сравнение динамики лосса для обучающей и валидационной выборки.

Разновидности нейронных сетей I

• Сеть прямого распространения (Feed Forward).

• Сеть радиальных базисных функций (RBFN).

Разновидности нейронных сетей II

• Рекуррентные нейронные сети (RNN).

• Долгая краткосрочная память (LSTM).

Разновидности нейронных сетей III

- Деконволюционные сети (DNN).
- Сверточные нейронные сети (CNN).

Разновидности нейронных сетей IV

• Автоэнкодер.

• Генеративно-состязательные сети (GAN).

Generative Adversarial Network

Разновидности нейронных сетей V

• transformer.

Глубокое обучение в парадигме методов машинного обучения

Рис.: Отличие между машинным обучением и глубоким обучением

Рекуррентные нейронные сети (RNN)

Рассмотрим устройство рекуррентных нейронных сетей. Пусть

 $extbf{\emph{x}}_t$ — входной вектор в момент времени t,

 $oldsymbol{h}_t$ — вектор скрытого состояния в момент времени t,

 $m{y}_t$ — выходной вектор в момент времени t. Стоит заметить, что в некоторых приложениях $m{y}_t \equiv m{h}_t$.

Разворачивание рекуррентной нейронной сети:

$$\mathbf{h}_t = \sigma_h(Ux_t + Wh_{t-1})$$

 $\mathbf{y}_t = \sigma_y(Vh_t)$

Рис.: Рекуррентная нейронная сеть

Обучение рекуррентной сети RNN

Возникает задача минимизации следующего функционала:

$$\sum_{t=0}^{\mathcal{T}} \mathcal{L}_t(\mathbf{U}, \mathbf{V}, \mathbf{W})
ightarrow \min_{\mathbf{U}, \mathbf{V}, \mathbf{W}},$$

где $\mathcal{L}_t(\mathbf{U},\mathbf{V},\mathbf{W})=\mathcal{L}(y_t(\mathbf{U},\mathbf{V},\mathbf{W}))$ — функция потерь от предсказания \hat{y}_t .

Используется вариант обратного распространения ошибок — Backpropagation Through Time (BPTT):

$$\frac{\partial \mathcal{L}_t}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial \mathbf{W}}.$$

Проблема: Затухание/взрыв градиентов, если $\frac{\partial h_i}{\partial h_{i-1}} o 1$, нужно ограничить частную производную(ввести архитектуру, чтобы эта величина стремилась к 1)

Мотивация LSTM: сеть должна долго помнить контекст, какой именно — сеть должна выучить сама. Поэтому вводится \mathcal{C}_t — вектор состояния сети в момент t.

Фильтр забывания (forget gate) с параметром W_f , b_f решает, какие координаты вектора C_{t-1} надо запомнить.

 \odot — операция покомпонентного перемножения векторов, $[h_{t-1},x_t]$ конкатенация векторов, σ сигмоидная функция.

Фильтр входных данных (input gate) с параметром W_i , b_i решает, какие координаты вектора состояния надо обновить. Модель нового состояния с параметрами w_C , b_C формирует вектор \widetilde{C}_t значений-координатов нового состояния.

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Новое состояние C_t формируется как смесь старого состояния C_{t-1} с фильтром f_t и вектора значений-кандидатов \widetilde{C}_t с фильтром i_t .

Настраиваемых параметров нет.

Фильтр входных данных с параметрами W_o , b_o решает какие координаты вектора состояния C_t надо выбрать.

Выходной сигнал h_t формируется из вектора состояния C_t с помощью нелинейного преобразования th и фильтра o_t .