WHAT IS CLAIMED IS:

1	1. A method of providing a single system image in a clustered environment
2	comprising:
3	assigning an internet protocol (IP) address as a cluster IP address;
4	binding the cluster IP address to a node in a cluster;
5	receiving a client request directed to the cluster IP address;
6	multicasting the request to all nodes in the cluster;
7	filtering the request based on a dynamically adjustable workload distribution
8	function, wherein the function is configured to allow a single node to process the client
9	request;
10	obtaining a response to the request;
11	inserting a cluster media access control (MAC) address into the response;
12	sending the response from the single node to the client.
1	2. The method of claim 1 further comprising informing other nodes in the
2	cluster of the cluster IP address and a media access control (MAC) address associated with
3	the node that is bound to the cluster IP address.
1	3. The method of 1 further comprising:
2	(a) forming a virtual local area network (VLAN) comprising:
3	(1) a master node wherein the master node is the node that is bound to
4	the cluster IP address;
5	(2) at least one network interface for each node in the cluster; and
6	(b) wherein multicasting comprises packet forwarding and processing the client
7	request from the master node to the other nodes in the VLAN.

1

2

1

2

3

4

1

2

l	4. The method of claim 1 further comprising:
2	forming a multicasting group comprising all of the cluster nodes; and
3	wherein the multicasting comprises automatically multicasting the request to all of
4	the cluster nodes in the multicasting group.

- The method of claim 4 wherein the multicasting group is formed by setting
 the MAC addresses of network interface cards of nodes in the cluster to be a multicast MAC
 address.
- 1 6. The method of claim 5 wherein the MAC addresses are set by setting a first bit of a first byte to a certain value.
 - 7. The method of claim 1 wherein the workload distribution function is installed in a driver on each node in the cluster.
 - 8. The method of claim 1 wherein the workload distribution function filters the client request based on workload distribution and whether a packet header of the client request indicates that destination MAC and IP addresses are the cluster IP and cluster MAC addresses.
 - 9. The method of claim 1 wherein the response is sent from the single node to the client without multicasting.
- 1 10. The method of claim 1 wherein the workload distribution function 2 distributes the workload by moding a source IP address with a number of nodes in the 3 cluster.

1		11.	The method of claim 1 wherein the workload distribution function
2	distribu	ites the	workload by:
3		repres	enting a total workload observed by the cluster as a bitmap with a number of
4	bits k;		
5		obtain	ing a bit m by moding a source IP address of the client by the number of bits
6	k; and		
7		assign	ing the client request to a cluster node that has a specified value at bit m.
1		12.	The method of claim 1 wherein the workload distribution function
2	distrib	utes the	e workload based on workload statistics that are periodically collected by at
3	least o	ne clust	ter node.
1		13.	The method of claim 12 wherein cluster nodes periodically exchange
2	worklo	oad stat	istics information.
1		14.	The method of claim 1 further comprising:
2		adjust	ting a number of nodes in the cluster;
3		recon	nputing a workload distribution based on the number of nodes in the cluster;
4	and		
5		redist	ributing the workload among nodes in the cluster based on the recomputation
1		15.	An apparatus for providing a single system image in a clustered environmen
2	comp	rising:	
3		(a)	a master node in a storage cluster, wherein a node in the storage cluster is
4	design	nated as	s the master node by assigning an internet protocol (IP) address as a cluster IP

5	address and bi	nding the cluster IP address to the master node, wherein the master node is
6	configured to:	
7		(1) receive a client request directed to the cluster IP address;
8		(2) multicast the request to all nodes in the cluster;
9	(b)	at least one additional node in the storage cluster;
10	(c)	a dynamically adjustable workload distribution function installed on each
11	node in the ch	uster, wherein the function is configured to filter the client request by allowing
12	a single node	to process the client request;
13	where	in each node in the cluster is configured to:
14		obtain a response to the request;
15		insert a cluster media access control (MAC) address into the response; and
16		send the response from the single node to the client.
1	16.	The apparatus of claim 15 wherein the master node is further configured to
2		her nodes in the cluster of the cluster IP address and a media access control
3		ss associated with the master node.
1	17.	The apparatus of claim 15 wherein:
2	the ste	orage cluster comprises a virtual local area network (VLAN); and
3	the m	aster node is configured to multicast the request by packet forwarding and
4	processing th	e client request from the master node to the other nodes in the VLAN.
1	18.	The apparatus of claim 15 wherein:
2	the st	orage cluster comprises a multicasting group comprising all of the cluster
3	nodes; and	

1

2

1

2

3

4

- the master node is configured to multicast by automatically multicasting the request to all of the cluster nodes in the multicasting group.
- 1 19. The apparatus of claim 18 wherein the multicasting group is formed by setting the MAC addresses of network interface cards of nodes in the cluster to be a multicast MAC address.
- 1 20. The apparatus of claim 19 wherein the MAC addresses are set by setting a 2 first bit of a first byte to a certain value.
 - 21. The apparatus of claim 15 wherein the workload distribution function is installed in a driver on each node in the cluster.
 - 22. The apparatus of claim 15 wherein the workload distribution function filters the client request based on workload distribution and whether a packet header of the client request indicates that destination MAC and IP addresses are the cluster IP and cluster MAC addresses.
- 1 23. The apparatus of claim 15 wherein the response is sent from the single node 2 to the client without multicasting.
- The apparatus of claim 15 wherein the workload distribution function distributes the workload by moding a source IP address with a number of nodes in the cluster.
- 1 25. The apparatus of claim 15 wherein the workload distribution function 2 distributes the workload by:

3	representing a total workload observed by the cluster as a bitmap with a number of
4	bits k;
5	obtaining a bit m by moding a source IP address of the client by the number of bits
6	k; and
7	assigning the client request to a cluster node that has a specified value at bit m.
1	26. The apparatus of claim 15 wherein the workload distribution function
2	distributes the workload based on workload statistics that are periodically collected by at
3	least one cluster node.
1	27. The apparatus of claim 26 wherein cluster nodes periodically exchange
2	workload statistics information.
1	28. The apparatus of claim 15 wherein the workload distribution function is
2	further configured to adjust a number of nodes in the cluster by:
3	recomputing a workload distribution based on the number of nodes in the cluster;
4	and
5	redistributing the workload among nodes in the cluster based on the recomputation.
1	29. An article of manufacture, embodying logic to perform a method of
2	providing a single system image in a clustered environment, the method comprising:
3	assigning an internet protocol (IP) address as a cluster IP address;
4	binding the cluster IP address to a node in a cluster;
5	receiving a client request directed to the cluster IP address;
6	multicasting the request to all nodes in the cluster;

7	filtering the request based on a dynamically adjustable workload distribution
8	function, wherein the function is configured to allow a single node to process the client
9	request;
10	obtaining a response to the request;
11	inserting a cluster media access control (MAC) address into the response;
12	sending the response from the single node to the client.
1	30. The article of manufacture of claim 29 wherein the method further
2	comprises informing other nodes in the cluster of the cluster IP address and a media access
3	control (MAC) address associated with the node bound to the cluster IP address.
1	31. The article of manufacture of claim 29, the method further comprising:
2	(a) forming a virtual local area network (VLAN) comprising:
3	(1) a master node wherein the master node is the node that is bound to
4	the cluster IP address;
5	(2) at least one network interface for each node in the cluster; and
6	(b) wherein multicasting comprises packet forwarding and processing the client
7	request from the master node to the other nodes in the VLAN.
1	32. The article of manufacture of claim 29, the method further comprising:
2	forming a multicasting group comprising all of the cluster nodes; and
3	wherein the multicasting comprises automatically multicasting the request to all of
1	the cluster nodes in the multicasting group

3

be a multicast MAC address.

- 1 33. The article of manufacture of claim 32 wherein the multicasting group is 2 formed by setting the MAC addresses of network interface cards of nodes in the cluster to
- 1 34. The article of manufacture of claim 33 wherein the MAC addresses are set by setting a first bit of a first byte to a certain value.
- 1 35. The article of manufacture of claim 29 wherein the workload distribution 2 function is installed in a driver on each node in the cluster.
- 1 36. The article of manufacture of claim 29 wherein the workload distribution 2 function filters the client request based on workload distribution and whether a packet 3 header of the client request indicates that destination MAC and IP addresses are the cluster 4 IP and cluster MAC addresses.
- The article of manufacture of claim 29 wherein the response is sent from the single node to the client without multicasting.
- 1 38. The article of manufacture of claim 29 wherein the workload distribution 2 function distributes the workload by moding a source IP address with a number of nodes in 3 the cluster.
- 1 39. The article of manufacture of claim 29 wherein the workload distribution 2 function distributes the workload by:
- representing a total workload observed by the cluster as a bitmap with a number of bits k;

5	obtaining a bit m by moding a source IP address of the client by the number of bits
6	k; and
7	assigning the client request to a cluster node that has a specified value at bit m.
1	40. The article of manufacture of claim 29 wherein the workload distribution
2	function distributes the workload based on workload statistics that are periodically collected
3	by at least one cluster node.
1	41. The article of manufacture of claim 40 wherein cluster nodes periodically
2	exchange workload statistics information.
1	42. The article of manufacture of claim 29, the method further comprising:
2	adjusting a number of nodes in the cluster;
3	recomputing a workload distribution based on the number of nodes in the cluster;
4	and
5	redistributing the workload among nodes in the cluster based on the recomputation.