

1 Sistemi interconnessi

Si considerino i sistemi lineari S_1 e S_2 , descritti dalle seguenti equazioni:

$$S_1: \begin{cases} \dot{x}_1(t) = u_1(t) \\ y_1(t) = x_1(t) + u_1(t) \end{cases} \qquad S_2: \begin{cases} \dot{x}_2(t) = x_2(t) + u_2(t) \\ y_2(t) = 2x_2(t) \end{cases}$$

Si risponda in modo chiaro e preciso ai seguenti quesiti:

- 1. Discutere le proprietà di stabilità dei sistemi S_1 e S_2 , singolarmente.
- 2. Discutere le proprietà di stabilità della serie di S_1 e S_2 , cioè del sistema avente come ingresso $u(t) = u_1(t)$, dove $u_2(t) = y_1(t)$, e avente come uscita $y(t) = y_2(t)$.
- 3. Discutere le proprietà di stabilità del sistema costituito da S_1 e S_2 in parallelo, avente come ingresso $u(t) = u_2(t) = u_1(t)$ e avente come uscita $y(t) = y_1(t) + y_2(t)$.
- 4. I due sistemi vengono interconnessi come mostrato in Figura 1 per ottenere un sistema \mathcal{S} con ingresso u(t) e uscita y(t). Scrivere le equazioni del sistema \mathcal{S} in variabili di stato.

Figura 1: Sistema S con ingresso u(t) e uscita y(t).

- 5. Discutere le proprietà di stabilità del sistema \mathcal{S} .
- 6. Dire se le proprietà di stabilità del sistema interconnesso cambiano se i sistemi vengono interconnessi come in Figura 2 e 3.

Figura 2: Sistema S, prima variante.

Figura 3: Sistema S, seconda variante.

2 Sistema non lineare

Si consideri il sistema non lineare con ingresso u(t) e uscita y(t) descritto dalle seguenti equazioni

$$\begin{cases} \dot{x}_1(t) = -x_1(t) + x_2^2(t) + x_2(t)u(t) \\ \dot{x}_2(t) = 3x_2(t) + u(t) \\ y(t) = x_1(t) \end{cases}$$

Si risponda in modo chiaro e preciso ai seguenti quesiti:

- 1. Determinare il valore \overline{u} dell'ingresso $u(t)=\overline{u},\,t\geq0,$ a cui è associato l'equilibrio $\overline{x}=\begin{bmatrix}0&0\end{bmatrix}^T.$
- 2. Calcolare il movimento dello stato associato a

$$x(0) = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}, \quad u(t) = 0, t \ge 0.$$

3. Valutare le proprietà di stabilità dello stato di equilibrio $\overline{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, associato all'ingresso $u(t) = \overline{u}, t \geq 0$.

3 Sistema con saturazione sull'ingresso

Si consideri lo schema a blocchi in Figura 4.

$$u(t) \xrightarrow{f(u)} f(u) \xrightarrow{u^*(t)} S \xrightarrow{x(t)}$$

Figura 4: Sistema da analizzare

dove S è il sistema lineare a tempo continuo scalare descritto dalla equazione

$$\dot{x}(t) = 2x(t) + u^*(t),$$

e f(u) è una saturazione della variabile di ingresso, cioè

$$u^* = f(u) = \begin{cases} u_M & \text{se } u \ge u_M \\ u & \text{se } -u_M < u < u_M \\ -u_M & \text{se } u \le -u_M \end{cases}$$

descritta dal grafico in Figura 5

Figura 5: Saturazione

- 1. Si determini la condizione di equilibrio corrispondente all'ingresso $u(t) = \bar{u} = 0$. Si determini la proprietà di stabilità del suddetto movimento di equilibrio.
- 2. Il precedente sistema viene posto in retroazione come nella Figura 6, dove k è un parametro reale.

Figura 6: Sistema ad anello chiuso

- (a) Scrivere l'equazione dinamica del sistema complessivo.
- (b) Per quali valori del parametro k l'equilibrio $x(t) = \bar{x} = 0$ risulta asintoticamente stabile?
- (c) In corrispondenza dei valori di k trovati al punto precedente, la proprietà di stabilità asintotica dell'equilibrio $x(t) = \bar{x} = 0$ risulta locale o globale? Si giustifichi adeguatamente la risposta.

4 Modello di crescita logistica di Verhulst

Si consideri il sistema non lineare senza ingresso descritto dalla equazione

$$\dot{x}(t) = rx(t)\left(1 - \frac{x(t)}{k}\right), \quad r, k \in \mathbb{R}^+$$

che descrive l'evoluzione di una popolazione (modello logistico o equazione logistica). In particolare, si possono distinguere due contributi all'evoluzione della popolazione, e cioè

$$\dot{x}(t) = \overbrace{rx(t)}^{\blacktriangle} - \overbrace{\frac{r}{k}x^2(t)}^{\blacktriangledown}$$

in cui il termine \blacktriangle tiene conto della crescita della popolazione (r, tasso di crescita), proporzionalmente agli individui già presenti, mentre il termine \blacktriangledown tiene conto dell'effetto di "sovraffollamento", legato al numero di possibili incontri tra individui proporzionali a $x^2(t)$ (k, capacità).

Calcolare quali sono gli stati di equilibrio del sistema al variare dei parametri r e k e discuterne la stabilità.

5 Pendolo inverso

Si consideri il sistema pendolo rappresentato in Figura 7.

Figura 7: Sistema pendolo.

Si ipotizzi che la massa dell'asta a cui è sospesa la massa m sia trascurabile, così che il momento d'inerzia del pendolo sia $J=ml^2$. Si supponga inoltre che è anche presente un termine di dissipazione lineare con la velocità angolare (momento di attrito $\tau_a(t)=k\dot{\theta}(t),\,k>0$).

Si risponda in modo chiaro e preciso ai seguenti quesiti:

- 1. Scrivere il modello del sistema in variabili di stato, considerando come uscita l'angolo di inclinazione del pendolo rispetto alla verticale, e come ingresso il momento torcente $\tau(t)$ in figura.
- 2. Calcolare gli stati di equilibrio del sistema associati a ingresso nullo.
- 3. Discutere la stabilità degli stati di equilibrio calcolati al punto precedente. Verificare che il pendolo presenta un equilibrio instabile.
- 4. Il pendolo viene retroazionato come mostrato in Figura 8. Trovare, se possibile, un valore costante per l'ingresso $v(t) = \overline{v}$, $t \geq 0$, e un valore per il parametro $p \in \mathbb{R}$ tali che il sistema retroazionato ammetta come stato di equilibrio lo stato di equilibrio instabile del pendolo trovato al punto precedente e che tale equilibrio sia asintoticamente stabile.

Figura 8: Sistema di controllo in retroazione del pendolo.