Properties of a Random Sample

Stat 205B

Department of Statistics University of California Santa Cruz

Winter, 2022

 Stat 205B
 Chapter 5
 Winter, 2022
 1 / 9

Recap: Expectation

For a continuous random variable,

$$\mathsf{E}\left\{g(X)\right\} = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

Properties:

- E(a) = a for any constant $a \in \mathbb{R}$
- $\mathsf{E}\left\{ag(X)\right\} = a\mathsf{E}\left\{g(X)\right\}$ for any constant $a \in \mathbb{R}$
- $E\{h(X) + g(X)\} = E\{h(X)\} + E\{g(X)\}$

Stat 205B Chapter 5 Winter, 2022 2 / 59

Notes				
Notes				

Recap: Variance

The variance of a random variable is

$$Var(X) = E[{X - E(X)}^{2}] = E(X^{2}) - {E(X)}^{2}$$

Properties:

- ullet Var(a)=0 for any constant $a\in\mathbb{R}$
- $\operatorname{Var}\left\{ag(X)\right\}=a^2\operatorname{Var}\left\{g(X)\right\}$ for any constant $a\in\mathbb{R}$

Stat 205B

Chapter 5

Winter, 202

3 / 59

Recap: Covariance

The covariance of two random variables, X and Y, is

$$Cov(X, Y) = E[{X - E(X)} {Y - E(Y)}] = E(XY) - E(X)E(Y)$$

Properties:

- $E\{h(X,Y)+g(X,Y)\}=E\{h(X,Y)\}+E\{g(X,Y)\}$
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
- If X and Y are independent, then Cov(X, Y) = 0 and $E\{h(X)g(Y)\} = E\{h(X)\}E\{g(Y)\}$

 Stat 205B
 Chapter 5
 Winter, 2022
 4 / 59

Notes			

Random Sample

Definition:

Random variables X_1, \ldots, X_n are said to be a random sample of size n from f(x) if X_1, \ldots, X_n are mutually independent and the marginal pdf or pmf of each X_i is f(x).

We also use the terminology X_1, \ldots, X_n are "independent and identically distributed (iid)" with pdf or pmf f(x).

 Stat 205B
 Chapter 5
 Winter, 2022
 5 / 59

Random Sample Examples

Two common situations in which a random sample is an appropriate model:

- X_1, \ldots, X_n are the measurements resulting from n identical experiments that are conducted independently of each other. Here, X_i may be either discrete or continuous.
- Take a simple random sample of size n with replacement from a population having a finite number of elements. X_i is the number selected on the ith draw. Here, X_i is discrete.

Stat 205B Chapter 5 Winter, 2022 6 / 59

Votes			
Notes			
Notes			
Votes			
Votes			
Notes			
Notes			
Votes			
Votes			
Votes			
Notes			
Votes			
Votes			
Votes			
Notes			

Populations

When X_1, \ldots, X_n area a random sample from a pdf or pmf f(x), then f(x) is often referred to as a population.

The joint pdf or pmf of X_1, \ldots, X_n is:

$$f(x_1,\ldots,x_n) = f(x_1)f(x_2)\cdots f(x_n)$$

$$= \prod_{i=1}^n f(x_i)$$
(1)

If f(x) is a member of a parametric family, we can write

$$f(x_1,\ldots,x_n)=\prod_{i=1}^n f(x_i|\boldsymbol{\theta})$$

Stat 205B

Chapter 5

Winter, 202

7 / 59

Typical Statistical Setting

We know that a certain population is in a parametric family of distributions, but we do not know the actual parameter value. We perform a sequence of experiments or take a SRS with replacement, yielding X_1, \ldots, X_n , a random sample from $f(\cdot|\theta)$. We then use the random sample to make an educated guess as to the value of θ .

 X_1, \ldots, X_n will "behave" differently depending on the underlying value of θ . This forms the basis for making an educated guess.

 Stat 205B
 Chapter 5
 Winter, 2022
 8 / 59

Notes	
Notes	

Example 1

Let X_1, \ldots, X_n be a random sample from a $\mathsf{Unif}(0,\theta)$ distribution, where $\theta > 0$. Define

$$Y = \max(X_1, \dots, X_n). \tag{2}$$

Clearly, Y will be closer to θ than any other value of X_i will be. To find out how close Y tends to be to θ , we can determine the probability distribution of Y.

Stat 205B Chapter 5 Winter, 2022

Example 1 Cont.

Let $0 < y < \theta$. Then,

$$P(Y \le y) = P(X_1 \le y, X_2 \le y, \dots, X_n \le y)$$

$$= \prod_{i=1}^{n} P(X_i \le y)$$

$$= \left(\frac{y}{\theta}\right)^n$$

$$F_Y(y) = egin{cases} 0, & y \leq 0 \ \left(rac{y}{ heta}
ight)^n, & 0 < y \leq \theta \ 1, & y > heta. \end{cases}$$

Stat 205B Chapter 5 Winter, 2022 10 / 59

Notes					
Notes					
	Notes				

Notes

Example 1 Cont.

How likely is it that Y will be within $\epsilon\theta$ of θ (0 < ϵ < 1)?

$$P(\theta(1-\epsilon) < Y < \theta) = P(Y < \theta) - P(Y < \theta(1-\epsilon))$$

= 1 - (1 - \epsilon)ⁿ

Note that this tends to 1 as $n \to \infty$.

Suppose $\epsilon = 0.1$ and n = 10.

$$P(0.9\theta < X_i < \theta) = 0.1$$

$$P(0.9\theta < Y < \theta) = 1 - (0.9)^{10} \approx 0.65$$

Stat 205B

Chapter 5

Winter, 202

11 / 59

Statistics

Definition:

Let X_1, \ldots, X_n be a random sample from a population and let $T(x_1, \ldots, x_n)$ be a real-valued or vector-valued function that does not depend on unknown parameters, and whose domain contains the range of (X_1, \ldots, X_n) . Then the random vector $Y = T(X_1, \ldots, X_n)$ is called a <u>statistic</u>, and the probability distribution of Y is called the sampling distribution of Y.

 Stat 205B
 Chapter 5
 Winter, 2022
 12 / 59

Notes			
Notes			

Example 2

 $Y = \max(X_1, \dots, X_n)$ in (2) is a statistic.

Note: The function $\max(x_1, \ldots, x_n)$ does not depend on any unknown parameters. Hence, we can compute the value of Y as soon as we know x_1, \ldots, x_n , the realized sample values.

The probability distribution derived in Example 1 is the sampling distribution of the statistic Y.

 Stat 205B
 Chapter 5
 Winter, 2022
 13 / 59

More Statistics

Other examples of statistics:

- Sample mean: $\bar{X} = \sum_{i=1}^n \frac{X_i}{n}$
- Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$
- kth sample moment: $\sum_{i=1}^{n} \frac{X_i^k}{n}$

Stat 205B Chapter 5 Winter, 2022 14 / 59

Notes			
Notes			

Sums of iid Random Variables

Important properties of sums of iid random variables: Let g be a function such that $Var\{g(X_i)\}$ exists. Then

$$\mathsf{E}\left\{\sum_{i=1}^{n} g(X_i)\right\} = n\mathsf{E}\{g(X_1)\}\tag{3}$$

$$\operatorname{Var}\left\{\sum_{i=1}^{n} g(X_i)\right\} = n\operatorname{Var}\{g(X_1)\}\tag{4}$$

 Stat 205B
 Chapter 5
 Winter, 2022
 15 / 5

Proof

 X_1, \ldots, X_n are mutually independent, so

$$\operatorname{Var}\left\{\sum_{i=1}^n g(X_i)\right\} = \sum_{i=1}^n \operatorname{Var}\{g(X_i)\}.$$

Then, since X_i 's are identically distributed,

$$Var\{g(X_i)\} = Var\{g(X_1)\}, i = 1, ..., n$$

and hence

$$\operatorname{\mathsf{Var}}\left\{\sum_{i=1}^n g(X_i)
ight\} = n \operatorname{\mathsf{Var}}\{g(X_1)\}.$$

 Stat 205B
 Chapter 5
 Winter, 2022
 16 / 59

Notes			
Notes			

Properties of \bar{X} and S^2 in a Random Sample

Let X_1, \ldots, X_n be. random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

$$\mathsf{E}(\bar{X}) = \frac{1}{n}\mathsf{E}\left(\sum_{i=1}^n X_i\right) = \frac{1}{n} \cdot n\mathsf{E}(X_1) = \mu.$$

$$Var(\bar{X}) = \frac{1}{n^2} Var\left(\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n^2} \cdot nVar(X_1)$$
$$= \frac{\sigma^2}{n}$$

Stat 205B Chapter 5 Winter, 2022 17

Properties Cont.

$$E(S^{2}) = \frac{1}{n-1} \sum_{i=1}^{n} E\{(X_{i} - \bar{X})^{2}\}\$$

$$(X_{i} - \bar{X})^{2} = X_{i}^{2} - 2X_{i}\bar{X} + \bar{X}^{2}$$

$$E(X_{i}^{2}) = Var(X_{i}) + \mu^{2} = \sigma^{2} + \mu^{2}$$

$$E(\bar{X}^{2}) = Var(\bar{X}) + \mu^{2} = \sigma^{2}/n + \mu^{2}$$

$$E(X_{i}\bar{X}) = \frac{1}{n} E\left(X_{i} \sum_{j=1}^{n} X_{j}\right) = \frac{1}{n} \sum_{j=1}^{n} E(X_{i}X_{j})$$

$$= \frac{1}{n} \left\{ E(X_{i}^{2}) + \sum_{j \neq i} E(X_{i}X_{j}) \right\} = \frac{1}{n} \{\sigma^{2} + \mu^{2} + (n-1)\mu^{2}\}$$

$$= \frac{\sigma^{2}}{n} + \mu^{2}$$

Notes			
Notes			
-			

Properties Cont.

Therefore,

$$\mathsf{E}\{(X_i - \bar{X})^2\} = \sigma^2 + \mu^2 - 2\left(\frac{\sigma^2}{n} + \mu^2\right) + \frac{\sigma^2}{n} + \mu^2$$
$$= \left(\frac{n-1}{n}\right)\sigma^2.$$

Finally¹,

$$\mathsf{E}(S^2) = \sigma^2$$

Since $\mathsf{E}(\bar{X}) = \mu$ and $\mathsf{E}(S^2) = \sigma^2$, \bar{X} and S^2 are said to be <u>unbiased estimators</u> of μ and σ^2 respectively.

The proof on pg. 214 (CB) uses the fact that
$$S^2 = \frac{1}{n-1} \left\{ \sum_{i=1}^n X_i^2 - n\bar{X}^2 \right\}$$
.

Stat 205B

Chapter 5

Winter, 2022

19 / 59

Sampling Distribution of \bar{X}

Let X_1, \ldots, X_n be a random sample from a population having mgf M_X . Then we compute the mgf of \bar{X} as

$$\begin{aligned} M_{\bar{X}}(t) &= \mathsf{E}(e^{t\bar{X}}) \\ &= \mathsf{E}\left\{\exp\left(\frac{t}{n}\sum_{i=1}^{n}X_{i}\right)\right\} = \mathsf{E}\left\{\prod_{i=1}^{n}\exp\left(\frac{t}{n}X_{i}\right)\right\} \\ &= \prod_{i=1}^{n}\mathsf{E}\left\{\exp\left(\frac{t}{n}X_{i}\right)\right\} = \prod_{i=1}^{n}M_{X}(t/n) = \{M_{X}(t/n)\}^{n} \end{aligned}$$

If $\{M_X(t/n)\}^n$ is a "familiar" mgf, then we have found the probability distribution of \bar{X} .

Stat 205B Chapter 5 Winter, 2022 20 / 59

Notes			
Notes			

MGF Examples

- X_1, \ldots, X_n a random sample from $N(\mu, \sigma^2)$, then $\bar{X} \sim N(\mu, \sigma^2/n)$
- X_1, \ldots, X_n a random sample from gamma (α, β) , then $barX \sim \text{gamma}(n\alpha, \beta/n)$
- X_1, \ldots, X_n a random sample from Poisson(λ), then

$$M_X(t) = \exp\left\{\lambda(e^t - 1)
ight\}$$
 $M_{ar{X}}(t) = \exp\left\{n\lambda(e^{t/n} - 1)
ight\}$

Then \bar{X} has the same distribution as Y/n where $Y \sim \text{Poisson}(n\lambda)$.

 Stat 205B
 Chapter 5
 Winter, 2022
 21 / 59

Convolutions

Let X and Y be independent and absolutely continuous random variables with densities f_X and f_Y respectively. The pdf of Z = X + Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$
$$= \int_{-\infty}^{\infty} f_Y(z - x) f_X(x) dx$$

The integral $\int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy$ is called the <u>convolution</u> of f_X and f_Y .

 Stat 205B
 Chapter 5
 Winter, 2022
 22 / 59

Notes			
Notes			

Example 3

Convolution of iid uniform random variables. Let X and Y be iid Unif(0,1). Find the pdf of Z = X + Y.

$$f_Z(z) = \int_{-\infty}^{\infty} I_{(0,1)}(z-y)I_{(0,1)}(y)dy$$
$$= \int_{0}^{1} I_{(0,1)}(z-y)dy$$

If z < 0 or z > 2, $f_Z(z) = 0$. Let $z \in (0,1)$, then $f_Z(z) = \int_0^z dy = z$. Let $z \in (1,2)$, then $f_Z(z) = \int_{z-1}^1 dy = 1 - (z-1) = 2 - z$. Thus,

$$f_Z(z) = (1 - |1 - z|)I_{(0,2)}(z).$$

Stat 205B Chapter 5 Winter, 2022 23 / 5

Example 3 Cont.

Figure: Irwin-Hall Distribution

Stat 205B Chapter 5 Winter, 2022 24 / 59

Notes			

Notes		

Convolutions Cont.

 $X_1 + X_n + \cdots + X_n$ is called an <u>n-fold convolution</u> when X_1, \ldots, X_n are independent random variables.

Let X_1, \ldots, X_n be a random sample. We can use the convolution formula to get the density of $X_1 + X_2$. Then, $(X_1 + X_2) + (X_3 + X_4)$ is the convolution of $X_1 + X_2$ with itself. We can use the convolution formula repeatedly to find the distribution of $X_1 + X_n + \cdots + X_n$ and hence \bar{X} .

The <u>Central Limit Theorem</u> says that the sum of n iid random variables is approximately normally distributed when n is large.

Stat 205B Chapter 5 Winter, 2022 25 / 59

Convergence of a Sequence of Random Variables

To approximate various aspects of the sampling distributions of statistics, a common practice is to consider these aspects as n, the sample size, tends to ∞ .

For example, suppose X_1, \ldots, X_n is a random sample from a population with finite variance, σ^2 and population mean, μ . Then

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

and $\mathsf{E}(ar{X_n}) = \mu$ and $\mathsf{Var}(ar{X_n}) = \sigma^2/n$.

Does \bar{X}_n converge (in some sense) to μ as $n \to \infty$? To answer this, we first need to define some convergence concepts.

Stat 205B Chapter 5 Winter, 2022 26 / 59

Notes				

Convergence in Probability

Definition:

Let $\{X_n: n=1,2,\ldots\}$ be any sequence of random variables. We say that $\{X_n\}$ converges in probability to a random variable X, if for each $\epsilon>0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0$$

It is equivalent to show that

$$\lim_{n\to\infty} P(|X_n-X|<\epsilon)=1,$$

for each $\epsilon > 0$.

Does \bar{X}_n converge to μ in probability?

Stat 205B Chapter 5 Winter, 2022 27 / 59

Weak Law of Large Numbers

Suppose X_1, \ldots, X_n are iid random variables with $\mathsf{E}(X_i) = \mu$ and $\mathsf{Var}(X_i) = \sigma^2 < \infty,$ for $i = 1, 2, \ldots$ Define for each $n = 1, 2, \ldots,$

$$\bar{X}_n = \sum_{i=1}^n \frac{X_i}{n}.$$

Then \bar{X}_n converges in probability to μ as $n \to \infty$.

 Stat 205B
 Chapter 5
 Winter, 2022
 28 / 59

Notes			
Notes			

Proof

We can use Markov's inequality.

$$P(|\bar{X}_n - \mu| \ge \epsilon) = P((\bar{X}_n - \mu)^2 \ge \epsilon^2)$$

$$\le \frac{E((\bar{X}_n - \mu)^2)}{\epsilon^2}$$

$$= \frac{\sigma^2}{n\epsilon^2}$$

Since this tends to 0 for each $\epsilon > 0$, \bar{X}_n converges in probability to μ .

Stat 205E

Chapter 5

Winter, 202

29 / 59

Almost Sure Convergence

Definition:

A sequence $\{X_n: n=1,2,\ldots\}$ of random variables is said to converge almost surely to a random variable X if

$$P\left(\lim_{n\to\infty}X_n=X\right)=1.$$

 Stat 205B
 Chapter 5
 Winter, 2022
 30 / 59

N			
Notes			

Almost Sure Convergence Cont.

What does this mean? In the definition, it is implicit that X, X_1, X_2, \ldots are all defined on the same sample space \mathcal{S} . Say we do the experiment and the result is, say, $s \in \mathcal{S}$. This yields a sequence of measurements, $X_1(s), X_2(s), \ldots$ and X(s).

Then, $\{X_n(s): n=1,2,\ldots\}$ is a sequence of real numbers that either converges to the real number X(s) or it doesn't. We can divide S into two disjoint sets, S_c and $S - S_c$, where

$$S_c = \left\{ s \in S : \lim_{n \to \infty} X_n(s) = X(s) \right\}.$$

If $P(S_c) = 1$ then we say that $X_n \to X$ almost surely (a.s.). Convergence with probability 1 is another term for almost sure convergence.

Stat 205B Chapter 5 Winter, 2022 31 / 59

Convergence Relationship

Important Fact:

If X_n converges almost surely to X, then X_n converges in probability to X.

The converse is not necessarily true. See CB 5.5.8 for example.

Stat 205B Chapter 5 Winter, 2022 32 / 59

Notes			

Strong Law of Large Numbers

Let $X_1, X_2,...$ be iid random variables with $\mathsf{E}(X_i) = \mu$ and $\mathsf{Var}(X_i) = \sigma^2 < \infty$.

Then \bar{X}_n converges almost surely to μ as $n \to \infty$.

Stat 205B Chapter 5 Winter, 2022

Convergence in Distribution

Definition:

 X_1, X_2, \ldots converge in distribution to a random variable X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

for every point x at which F_X is continuous.

Convergence in distribution is very nearly point-wise convergence of the distribution function to F_X , the only exception being cases where F_X is not continuous at all points.

Stat 205B Chapter 5 Winter, 2022 34 / 59

Notes				
Notes				

Convergence Relationship

Important Fact:

If the sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X, the sequence also converges in distribution to X.

 Stat 205B
 Chapter 5
 Winter, 2022
 35 / 59

Central Limit Theorem (CLT)

Let X_1, X_2, \ldots be iid random variables with $\mathsf{E}(X_i) = \mu$ and $0 < \sigma^2 < \infty$. Define

$$Z_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma},$$

and let $Z \sim N(0,1)$. Then, Z_n converges in distribution to Z.

Thus, regardless of the population we are sampling from, so long as the population has finite variance, $\frac{\sqrt{n}(\bar{X_n}-\mu)}{\sigma}$ will have approximately a standard normal distribution for all n sufficiently large.

Stat 205B Chapter 5 Winter, 2022 36 / 59

Notes				
Votes				
Notes				

Slutsky's Theorem

If X_n converges to X in distribution and Y_n converges in probability to a constant a, then

 \bigcirc Y_nX_n converges to aX in distribution and

② $X_n + Y_n$ converges to X + a in distribution

Stat 205E

Chapter 5

Winter, 202

37 / 59

Important Application of Slutsky's Theorem

Under the conditions of the CLT,

$$rac{\sqrt{n}(ar{X_n}-\mu)}{\sigma} o \mathsf{N}(0,1)$$

in distribution as $n \to \infty$.

In random samples where each X_i has finite fourth moment, one can show that S_n^2 converges in probability to σ^2 . This implies that S_n converges in probability to σ . Then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \frac{\sigma}{S_n}$$

Since $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}$ converges in distribution to N(0,1) and σ/S_n converges in probability to one, it follows from Slutky's theorem that

$$rac{\sqrt{n}(ar{\mathcal{X}}_n-\mu)}{\mathcal{S}_n} o \mathsf{N}(0,1)$$

in distribution.

Stat 205B

Chapter 5

Winter, 2022

38 / 59

Notes Notes

Sampling from the Normal Distribution

Let $X_1, X_2, ..., X_n$ be a random sample from the $N(\mu, \sigma^2)$ distribution. then we have the following properties:

- $\bar{X}_n \sim N(\mu, \sigma^2/n)$
- $\bullet \ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$
- \bullet \bar{X} and S^2 are independent random variables

Stat 205B Chapter 5 Winter, 2022 39 / 5

Student's t Distribution

Again, let X_1, \ldots, X_n be a random sample from the $N(\mu, \sigma^2)$ distribution. the random variable

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

is important in the problem of statistical inference. It is used to infer (guess) the values of μ based on the information in X_1, \ldots, X_n .

What is the probability distribution of T?

Stat 205B Chapter 5 Winter, 2022 40 / 59

Notes				

Notes

Student's t Distribution Cont.

T is a function of \bar{X} and $(n-1)S^2/\sigma^2$, whose joint distribution is

$$f(w,z) = \frac{1}{\sqrt{2\pi}\sigma/\sqrt{n}} \exp\left\{-\frac{1}{2} \left(\frac{w-\mu}{\sigma/\sqrt{n}}\right)^2\right\} \frac{z^{(n-1)/2-1} \exp\left(-\frac{z}{2}\right)}{\Gamma\left\{(n-1)/2\right\} 2^{(n-1)/2}} I_{(0,\infty)}(z),$$

where $W = \bar{X}$ and $Z = (n-1)S^2/\sigma^2$. Then

$$T = \frac{W - \mu}{\sigma / \sqrt{n}} \sqrt{\frac{n-1}{Z}}.$$

Stat 205E

Chapter 5

Winter, 202

41 / 59

Student's t Distribution Cont.

We may then find the density of T as follows:

- ① Using the transformation method, find the density of (T,U), where U=Z
- ② Having obtained the joint density $f_{T,U}$, find the marginal distribution of T in the usual way

$$f_{T}(t) = \int_{0}^{\infty} f_{T,U}(t,u) du$$

 Stat 205B
 Chapter 5
 Winter, 2022
 42 / 59

Notes			
Notes			

Student's t Distribution Cont.

The density of T is the so-called "t-distribution with n-1 degrees of freedom."

The Student's *t* density with *k* degrees of freedom is

$$f(t|k) = \frac{\Gamma\left\{\frac{k+1}{2}\right\}}{\Gamma\left(\frac{k}{2}\right)\sqrt{k\pi}} \left(\frac{1}{1+\frac{t^2}{k}}\right)^{\frac{k+1}{2}}$$

where k = 1, 2, ...

Stat 205B Chapter 5

122 /3

Order Statistics

The <u>order statistics</u> for a random sample X_1, \ldots, X_n are simply X_1, \ldots, X_n arranged in order from smallest to largest. These are denoted $X_{(1)}, \ldots, X_{(n)}$ where

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}.$$

The sample median, M, is defined in terms of order statistics:

$$M = \begin{cases} X_{\left(\frac{n+1}{2}\right)}, & n \text{ is odd} \\ \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}}{2}, & n \text{ is even.} \end{cases}$$

The statistic $\max(X_1, \dots, X_n)$ in Example 2 is one example of an order statistic, where $\max(X_1, \dots, X_n) = X_{(n)}$.

Stat 205B Chapter 5 Winter, 2022 44 / 59

	-			
Notes				

Order Statistics Cont.

What if we want to find the cdf of $X_{(j)}$?

Let Y_x be the number of values in the random sample that are less than or equal to x. Then

$$P(X_{(j)} \leq x) = P(Y_x \geq j).$$

Now, $Y_x \sim \text{Bin}(n, F_X(x))$, where F_X is the cdf of each X_i . Hence,

$$P(X_{(j)} \le x) = \sum_{k=j}^{n} {n \choose k} F_X(x)^k (1 - F_X(x))^{n-k}.$$

Stat 205B Chapter 5 Winter, 2022 45 / 5

Order Statistics Cont.

Now suppose the distribution of each X_i is absolutely continuous. then the distribution of $X_{(i)}$ is absolutely continuous with density

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) F_X(x)^{j-1} \left(1 - F_X(x)\right)^{n-j}$$

where f_X is the density of each X_i . See CB for the proof.

Stat 205B Chapter 5 Winter, 2022 46 / 59

Votes			
lotes			
Jotes			
lotes			
Jotes			
lotes			
Notes			

The Delta Method

Definition:

Suppose g(x) has derivatives of order r, i.e. $g^{(r)}(x) = \frac{d^r}{dx^r}g(x)$ exists. Then for any constant a, the Taylor polynomial of order r about a is

$$T_r(x) = \sum_{i=0}^r \frac{g^{(i)}(a)}{i!} (x-a)^i.$$

Stat 205B Chapter 5 Winter, 2022 47 / 59

The Delta Method Cont.

Theorem:

If $g^{(r)}(x) = \frac{d^r}{dx^r}g(x)|_{x=a}$ exists, then

$$\lim_{x\to a}\frac{g(x)-T_r(x)}{(x-a)^r}=0$$

i.e. the approximation, $g(x) - T_r(x)$ always tends to zero faster than the highest order explicit term.

Since we are interested in approximations, we will ignore the remainder term.

 Stat 205B
 Chapter 5
 Winter, 2022
 48 / 59

Notes				
Notes				

The Delta Method Cont.

In statistics, we are usually concerned with the <u>first order</u> Taylor series (i.e. r=1). Let T_1, \ldots, T_k be random variables with means $\theta_1, \ldots, \theta_k$ and

define $T = (T_1, \ldots, T_k)$ and $\theta = (\theta_1, \ldots, \theta_k)$. Suppose there is a differentiable function g(T) (an estimator of some parameter) for which we want an approximate estimate of the variance. Define

$$\left. egin{aligned} g_i'(oldsymbol{ heta}) = rac{\partial}{\partial t_i} g(oldsymbol{t})
ight|_{t_1 = heta_1, ..., t_k = heta_k} \end{aligned}$$

Stat 205B Chapter 5 Winter, 2022 49

The Delta Method Cont.

The first order Taylor series expansion of g about θ is

$$g(oldsymbol{t}) = g(oldsymbol{ heta}) + \sum_{i=1}^k g_i'(oldsymbol{ heta})(t_i - heta_i) + \mathsf{Remainder}.$$

For our approximation, we omit the remainder and write

$$g(oldsymbol{t})pprox g(oldsymbol{ heta})+\sum_{i=1}^k g_i'(oldsymbol{ heta})(t_i- heta_i).$$

Stat 205B Chapter 5 Winter, 2022 50 / 59

Notes			
Notes			

The Delta Method Cont.

Taking expectations,

$$\mathsf{E}_{\mathcal{T}} g(\boldsymbol{t}) pprox g(\boldsymbol{ heta}) + \sum_{i=1}^k g_i'(\boldsymbol{ heta}) \mathsf{E}_{\mathcal{T}}(t_i - \theta_i) = g(\boldsymbol{ heta}).$$

We can now approximate the variance of g(T) by

$$\begin{aligned} \mathsf{Var}_{\boldsymbol{\mathcal{T}}} g(\boldsymbol{\mathcal{T}}) &\approx \mathsf{E}_{\boldsymbol{\mathcal{T}}} \left((g(\boldsymbol{\mathcal{T}}) - g(\boldsymbol{\theta}))^2 \right) \\ &\approx \mathsf{E}_{\boldsymbol{\mathcal{T}}} \left(\left(\sum_{i=1}^k g_i'(\boldsymbol{\theta}) (t_i - \theta_i) \right)^2 \right) \\ &= \sum_{i=1}^k \{ g_i'(\boldsymbol{\theta}) \}^2 \mathsf{Var}_{\boldsymbol{\mathcal{T}}} T_i + 2 \sum_{i>j} g_i'(\boldsymbol{\theta}) g_j'(\boldsymbol{\theta}) \mathsf{Cov}_{\boldsymbol{\mathcal{T}}} (T_i, T_j) \end{aligned}$$

Stat 205B

Chapter 5

Winter, 202

1 / 59

Approx. Mean and Variance Example

Suppose X is a random variable with $E(X) = \mu \neq 0$ and we want to estimate a function $g(\mu)$. A first order approximation gives

$$g(X) \approx g(\mu) + g'(\mu)(X - \mu).$$

If we use g(X) as an estimator of $g(\mu)$ then

$$\mathsf{E} g(X) pprox g(\mu)$$
 $\mathsf{Var} g(X) pprox \{g'(\mu)\}^2 \mathsf{Var}(X).$

For example, if $g(\mu) = 1/\mu$ and we estimate $1/\mu$ with 1/X, then

$$\mathsf{E}rac{1}{X}pproxrac{1}{\mu}$$
 $\mathsf{Var}rac{1}{X}pprox\left(rac{1}{\mu}
ight)^{4}\mathsf{Var}(X)$

 Stat 205B
 Chapter 5
 Winter, 2022
 52 / 59

Notes			
Notes			

Delta Method

Theorem:

Let Y_n be a sequence of random variables such that $\sqrt{n}(Y_n-\theta)\stackrel{D}{\to} N(0,\sigma^2)$. For a given function g and a specific value of θ , suppose $g'(\theta)\neq 0$ exists. Then

$$\sqrt{n}\left\{g(Y_n)-g(\theta)\right\} \stackrel{D}{\to} N\left(0,\sigma^2\left\{g'(\theta)\right\}^2\right).$$

The proof uses Slutsky's Theorem. See CB for details.

Stat 205E

Chapter 5

Winter, 202

53 / 59

Multivariate Delta Method

Theorem:

Let X_1, \ldots, X_n be a random sample with $\mathsf{E}(X_{ij}) = \mu_i$ and $\mathsf{Cov}(X_{ik}, X_{jk}) = \sigma_{ij}$. For a given function g with continuous first partial derivatives and a specific value of $\mu = (\mu_1, \ldots, \mu_p)$ for which $\tau^2 = \sum \sum \sigma_{ij} \frac{\partial g(\mu)}{\partial \mu_i} \frac{\partial g(\mu)}{\partial \mu_i} > 0$,

$$\sqrt{n}\left\{g(\bar{X}_1,\ldots,\bar{X}_p)-g(\mu_1,\ldots,\mu_p)\right\}\stackrel{D}{\to}\mathsf{N}(0,\tau^2).$$

 Stat 205B
 Chapter 5
 Winter, 2022
 54 / 59

Notes			
Notes			

Case Study

Data from the American Community Survey is often used to construct important population estimates for various domains. However, these estimates can often have high variance in domains with limited sample sizes.

Let's consider county level estimates of median household income for the state of California. If we denote the true median income for county i as μ_i , and the estimate as $\hat{\mu}_i$, then we might assume $\hat{\mu}_i \sim N(\mu, \hat{\sigma}^2)$, where $\hat{\sigma}$ is the estimated standard error.

Stat 205B Chapter 5 Winter, 2022 55 / 59

Case Study Cont.

Notes			
Notes			

Case Study Cont.

Case Study Cont.

In order to improve these estimates, we might want to consider a statistical model (e.g. consider covariates, spatial correlation, etc.). Small area models use the data $(\hat{\mu}_i, \hat{\sigma})$, for $i=1,\ldots,n$, to construct improved estimates with lower standard error. Because these estimates are skewed, it might be of interest to take a log transformation before modeling. However, when taking this transformation, we must consider the delta method to approximate the new standard error.

$$\mathsf{E}\log(\hat{\mu}_i)pprox \log(\mu_i)$$
 $\mathsf{Var}\log(\hat{\mu}_i)pprox \left(rac{1}{\mu_i}
ight)^2\hat{\sigma}^2.$

 Stat 205B
 Chapter 5
 Winter, 2022
 58 / 59

Votes		

Case Study Cont.

Notes		
Notes		