Scientific Computing Lab MA - 322 Lab -3

Name – Rasesh Srivastava

Roll Number – 210123072

Branch – Mathematics and Computing

1) fixed-point iteration method

$$x_0 = 2$$

$$f(x) = x^4 - x - 10$$

$$g(x) = (x+10)^{\frac{1}{4}}$$

Fixed Point Iteration method for Question 1 No. of iterations Approximate solution Error |X n - X n-1|0 2.0000000000000000 1 1.861209718204199 0.138790281795801 2 0.005405121164422 1.855804597039777 3 1.855593139618166 0.000211457421611 1.855584865579022 0.000008274039144

Solution found after 4 iterations

Solution is: 1.85558487

- 2) Modified Newton's method
- a) $x_0 = 1.5$

$$f(x) = x^4 - 8x^2 - x + 16$$

1.6561651276480170.1561651276480171.6481547640249110.0080103636231061.6480953687017670.000059395323145

Solution found after 3 iterations

Solution is: 1.64809537

2

3

b)
$$x_0 = -1$$

$$f(x) = e^{6x} + 3(\ln 2)^2 e^{2x} - (\ln 8)e^{4x} - (\ln 2)^3$$

Modified Newton's method for Question 2 part b

	~	
No. of iterations	Approximate solution	Error X_n - X_n-1
0	-1.000000000000000	
1	-0.597623770991382	0.402376229008618
2	-0.315924472491960	0.281699298499422
3	-0.199398569173855	0.116525903318105
4	-0.183514246382248	0.015884322791607
5	-0.183256523940214	0.000257722442034

Solution found after 5 iterations Solution is: -0.18325652

3) Muller's method a)
$$x_0 = -0.5$$
 $x_1 = 0$ $x_2 = 0.5$

$$f(x) = x^4 - 3x^3 + x^2 + x + 1$$

Muller's method for Question 3 part a

No. of Iterations	Approximate solution	Error X_n - X_n-1
1	-0.1-0.88882i	1.0724
2	-0.28802-0.23825i	0.67719
3	-0.37441-0.37424i	0.16111
4	-0.34704-0.4522i	0.08263
5	-0.33922-0.4465i	0.0096806
6	-0.33909-0.44663i	0.00018065
7	-0.33909-0.44663i	1.5694e-07

Solution found after 7 iterations Solution is: -0.33909284 + -0.44663010i.

b)
$$x_0 = -0.5$$
 $x_1 = 0.1$ $x_2 = 0.5$

$$f(x) = \frac{\sin(x)}{x} + e^{-x}$$

Muller's method for Question 3 part b

No. of Iterations	Approximate solution	Error X_n - X_n-1
1	1.5813-1.8924i	2.1795
2	2.5209+0.38995i	2.4682
3	3.0428+0.037602i	0.62968
4	3.2357-0.0033364i	0.19724
5	3.2663+0.00016696i	0.030749
6	3.2665+4.8147e-08i	0.00028303
7	3.2665+2.0862e-14i	7.4473e-08

Solution found after 7 iterations Solution is: 3.26650044 + 0.00000000i.

4) fixed-point iteration method to approximate square root of 31 $x_0 = 5$

$$f(x) = x - \sqrt{31}$$

$$g(x) = \frac{1}{2} \left(x + \frac{31}{x} \right)$$

Fixed Point Iteration method for Question 4

No. of iterations	Approximate solution	Error X_n - X_n-1
0	5.00000000000000	
1	5.60000000000000	0.600000000000000
2	5.567857142857143	0.032142857142857
3	5.567764363603042	0.000092779254101

Solution found after 3 iterations

Solution is: 5.56776436

