# Un modèle pour les nids d'oiseaux

CARVAILLO, CÔME, PRALON

Soutenance de projet de Master 1

3 juin 2022







## Introduction

## Introduction

Je bite dans vos culs, je bite dans vos bouches!!!







# Définition et hypothèses

## Loi de mélange

Si l'on se donne J densités  $f_1(x), \dots, f_J(x)$ , alors toute variable aléatoire X dont la densité f s'exprime, pour tout  $x \in \mathbb{R}$ , sous la forme

$$f(x) := \sum_{j=1}^{J} \alpha_j f_j(x)$$

οù

$$\alpha_j \in \mathbb{R}_+^*$$
 et  $\sum_{j=1}^J \alpha_j = 1$ 

suit une loi de mélange continue.







# Définition et hypothèses

### Une histoire de variables

Nous introduisons les deux variables aléatoires (V.A.) suivantes :

- la V.A. X, modélisant le volume des nids, de densité f
- la V.A. discrète  $Z \in [1, J]$ , représentant l'espèce d'oiseau

### Hypothèse 1

X conditionnellement à (Z=j) suit une loi normale  $\mathcal{N}(\mu_j, v_j)$ 







## Hypothèse 2 (Existence)

Soit

$$\Theta := \{\theta = (\alpha_j, \mu_j, \mathsf{v}_j)_{1 \le j \le J} \mid \alpha_j > 0 \ \forall j \in \llbracket 1, J \rrbracket \ \text{et} \ \sum_{j=1}^J \alpha_j = 1\}$$

Soit  $X_1, \dots, X_n$  un échantillon de même loi que X.

On supposera qu'il existe un  $\theta \in \Theta$  tel que les données récoltées soient la réalisation du précédent échantillon.







## Une histoire de densités

• Densité de la loi X conditionnellement à (Z = j) :

$$f(x|Z=j)=\gamma_{\mu_i,\nu_i}(x)$$

• Densité de la loi de X :

$$f_{\theta}(x) = \sum_{j=1}^{J} \alpha_j \gamma_{\mu_j, \nu_j}(x)$$

• Probabilité de la loi de Z conditionnellement à (X = x) :

$$\mathbb{P}_{\theta}(Z = j | X = x) = \frac{\gamma_{\mu_j, v_j} \times \alpha_j}{f_{\theta}(x)}$$



# Une approche idéaliste

- Nous observons et le volume et l'espèce d'oiseau
- Log-vraisemblance du modèle :

$$\mathcal{L}_{\theta}(X_{1}, \cdots, X_{n}, Z_{1}, \cdots, Z_{n})$$

$$= \ln \left( \prod_{i=1}^{n} h_{\theta}(X_{i}, Z_{i}) \right)$$

$$= \sum_{j=1}^{J} \#A_{j} \ln(\alpha_{j}) + \sum_{j=1}^{J} \sum_{i \in A_{j}} \ln(\gamma_{\mu_{j}, \nu_{j}}(X_{i}))$$

οù

$$A_i := \{i \in \llbracket 1, n \rrbracket \text{ tels que } Z_i = j\}$$





# Une approche idéaliste

## Estimateurs du maximum de vraisemblance (EMV)

$$\widehat{\alpha_j} = \frac{\#A_j}{n}$$

$$\widehat{\mu_j} = \frac{\sum_{i \in A_j} X_i}{\#A_j}$$

$$\widehat{v_j} = \frac{\sum_{i \in A_j} (X_i - \widehat{\mu_j})^2}{\#A_j}$$







# Une approche réaliste

- Nous observons seulement le volume des nids
- Log-vraisemblance du modèle :

$$\mathcal{L}_{obs}(\theta, X_1, \cdots, X_n)$$

$$= \ln \left( \prod_{i=1}^n f_{\theta}(X_i) \right)$$

$$= \sum_{i=1}^n \ln \left( \sum_{j=1}^J \alpha_j \gamma_{\mu_j, \nu_j}(X_i) \right)$$







# Log-vraisemblance conditionnelle

- L'existence d'une expression analytique des EMV n'est pas assurée
- Nécessité de construire une méthode permettant d'approcher les valeurs des estimateurs
- Nous définissons ainsi la log-vraisemblance conditionnelle comme :

$$\mathcal{L}_c(\theta, \tilde{\theta}, X_1, \cdots, X_n)$$

$$= \mathbb{E}_{\tilde{\theta}}[\mathcal{L}_{\theta}(X_1, \cdots, X_n, Z_1, \cdots, Z_n) | X_1, \cdots, X_n]$$







### Estimateurs du maximums de vraisemblance

$$\widehat{\alpha_j} = \frac{1}{n} \sum_{i=1}^n \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)$$

$$\widehat{\mu_j} = \frac{\sum_{i=1}^n X_i \times \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}$$

$$= \frac{\sum_{i=1}^n (X_i - \widehat{\mu_j})^2 \times \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}$$





# L'algorithme EM

### Pseudo code de l'algorithme EM

Algorithm 1 L'algorithme EM (Dempster et al., 1977).

Entrée(s):  $\tilde{\theta}_0 \in \Theta$ , un jeu de données  $X_1 \cdots X_n$ ,  $K \in \mathbb{N}$ ;

- 1: pour k allant de 1 à K faire
- 2: **ETAPE E** : Calculer la probabilité  $\mathbb{P}_{\tilde{\theta}_{k-1}}(Z=j|X=X_i) = \frac{\alpha_j \times \gamma_{\mu_j, j_v}}{\sum\limits_{i=1}^{J} \alpha_k \times \gamma_{\mu_k, v_k}}$ ,  $\forall i \in \llbracket 1, n \rrbracket$
- 3: **ETAPE M**: Calculer  $\tilde{\theta}_k = \underset{\theta = (\alpha_j, \mu_j, v_j)_{j \in [1,J]}}{\operatorname{argmax}} \mathbb{P}_{\tilde{\theta}_{k-1}}(Z = j | X = X_i);$
- 4: fin du pour
- 5: **retourner**  $\tilde{\theta}_K$ ;







# Les étapes de l'algorithme EM

## L'étape E (Expectation)

Consiste à déterminer  $\mathbb{P}_{\tilde{\theta}}(Z=j|X=X_i)$  à l'aide de la formule suivante :

$$\mathbb{P}_{\tilde{\theta}}(Z=j|X=X_i) = \frac{\alpha_j \times \gamma_{\mu_j,\nu_j}}{\sum_{k=1}^{J} \alpha_k \times \gamma_{\mu_k,\nu_k}}$$







# Les étapes de l'algorithme EM

## L'étape M (Maximization)

Consiste à déterminer les EMV  $(\widehat{\alpha_j}, \widehat{\mu_j}, \widehat{\sigma_j})$  de la log-vraisemblance conditionnelle via les formules suivantes :

$$\widehat{\alpha_j} = \frac{1}{n} \sum_{i=1}^n \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)$$

$$\widehat{\mu_j} = \frac{\sum_{i=1}^n X_i \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}$$

$$\widehat{v_j} = \frac{\sum_{i=1}^n (X_i - \widehat{\mu_j})^2 \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}$$





## Un théorème de croissance

### Théorème

Soit  $(\theta_k)_{k \in [\![ 1,K ]\!]}$  la suite de paramètres construite à l'aide de l'algorithme EM.

La log-vraisemblance  $\mathcal{L}_{obs}$  des observations vérifie

$$\mathcal{L}_{obs}(\theta_{k+1}, X_1, \cdots, X_n) \geq \mathcal{L}_{obs}(\theta_k, X_1, \cdots, X_n)$$







• Nous cherchons donc à montrer que

$$\mathcal{L}_{\textit{obs}}(\theta_{k+1}, X_1, \cdots, X_n) - \mathcal{L}_{\textit{obs}}(\theta_k, X_1, \cdots, X_n) \geq 0$$

• Réécriture :

$$\mathcal{L}_c(\theta_{k+1}, \theta_k, X_1, \cdots, X_n) = \mathcal{L}_{obs}(\theta_{k+1}, X_1, \cdots, X_n) + \kappa_{\theta_{k+1}, \theta_k}$$

Avec

$$\kappa_{\theta_{k+1},\theta_k} = \sum_{i=1}^n \sum_{j=1}^J ln(\mathbb{P}_{\theta_{k+1}}(Z=j|X=X_i)) \times \mathbb{P}_{\theta_k}(Z=j|X=X_i)$$





Ainsi,

$$\mathcal{L}_{obs}(\theta_{k+1}, X_1, \cdots, X_n) - \mathcal{L}_{obs}(\theta_k, X_1, \cdots, X_n)$$

$$= \mathcal{L}_c(\theta_{k+1}, \theta_k, X_1, \cdots, X_n) - \kappa_{\theta_{k+1}, \theta_k} - \mathcal{L}_c(\theta_k, \theta_k, X_1, \cdots, X_n) + \kappa_{\theta_k, \theta_k}$$







• A l'étape M de l'algorithme, la quantité

$$\mathcal{L}_c(\theta, \theta_k, X_1, \cdots, X_n)$$

est maximisée en  $\theta$ , de maximum  $\theta_{k+1}$ 

Donc,

$$\mathcal{L}_c(\theta_{k+1}, \theta_k, X_1, \cdots, X_n) - \mathcal{L}_c(\theta_k, \theta_k, X_1, \cdots, X_n) \geq 0$$







• Il reste donc à prouver que

$$\kappa_{\theta_k,\theta_k}, -\kappa_{\theta_{k+1},\theta_k} \geq 0$$

• On montre que, après quelques fastidieux calculs,

$$\kappa_{\theta_{k},\theta_{k}}, -\kappa_{\theta_{k+1},\theta_{k}}$$

$$\geq -n \times \ln \left( \sum_{i=1}^{n} \sum_{j=1}^{J} \mathbb{P}_{\theta_{k+1}} (Z = j | X = X_{i}) \times \frac{1}{n} \right)$$

$$= -n \times \ln(1)$$

$$= 0$$



# Cas des variables à "fortes séparations"









(b) Boxplot des erreurs pour  $\mu_1$ ,  $\mu_2$  et  $\mu_3$ 



# Cas des variables à "faibles séparations"









(d) Boxplot des erreurs pour  $\mu_1$ ,  $\mu_2$  et  $\mu_3$ 



## Préambule

|                                                  | Female   | Total mass  | Cup diameter | Cup diameter  | Nest diameter | Nest diameter | Upper wall  | Base        | Cup depth   | Nest Height | Volume (cm <sup>3</sup> ) |
|--------------------------------------------------|----------|-------------|--------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|---------------------------|
|                                                  | Body     | of nest (g) | parallel to  | perpendicular | parallel to   | perpendicular | thickness   | Thickness   | (mm)        | (mm)        |                           |
|                                                  | Mass (g) |             | long axis    | to long axis  | long axis     | to long axis  | (mm)        | (mm)        |             |             |                           |
|                                                  |          |             | (mm)         | (mm)          | (mm)          | (mm)          |             |             |             |             |                           |
| Fringillidae                                     |          |             |              |               |               |               |             |             |             |             |                           |
| European Goldfinch<br>(Carduelis Carduelis) [10] | 16.4     | 8.3 ± 2.4   | 62.8 ± 12.1  | 54.8 ± 7.4    | 91.4 ± 9.3    | 77.8 ± 7.9    | 12.8 ± 3.3  | 15.7 ± 4.3  | 26.0 ± 5.5  | 41.6 ± 7.4  | 38.0 ± 9.1                |
| Common Linnet (Linaria cannabina) [11]           | 18.0     | 18.9 ± 5.4  | 74.7 ± 6.3   | 59.9 ± 8.6    | 107.9 ± 8.8   | 95.1 ± 10.2   | 16.9 ± 4.9  | 24.5 ± 8.9  | 30.6 ± 9.8  | 55.1 ± 9.2  | 60.9 ± 20.8               |
| Common Chaffinch<br>(Fringilla coelebs) [11]     | 21.5     | 14.5 ± 2.9  | 63.3 ± 8.1   | 50.8 ± 8.0    | 98.7 ± 10.9   | 90.3 ± 9.8    | 18.5 ± 3.6  | 23.6 ± 7.6  | 34.3 ± 7.8  | 58.0 ± 7.3  | 58.3 ± 15.0               |
| European Greenfinch<br>(Chloris chloris) [5]     | 25.9     | 22.4 ± 6.2  | 75.6 ± 7.8   | 53.9 ± 11.8   | 128.6 ± 13.7  | 99.7 ± 16.2   | 24.9 ± 7.9  | 29.4 ± 6.0  | 35.4 ± 5.7  | 64.9 ± 9.4  | 74.5 ± 12.2               |
| Eurasian Bullfinch<br>(Pyrrhula pyrrhula) [17]   | 27.3     | 12.1 ± 4.6  | 80.8 ± 12.1  | 66.4 ± 8.1    | 129.7 ± 23.4  | 117.5 ± 19.6  | 24.8 ± 10.9 | 24.2 ± 10.7 | 22.6 ± 4.5  | 46.8 ± 11.3 | 45.0 ± 3.8                |
| Hawfinch (Coccothraustes<br>coccothraustes) [4]  | 52.9     | 27.4 ± 7.3  | 102.2 ± 17.9 | 78.8 ± 25.2   | 153.4 ± 19.1  | 131.3 ± 27.1  | 25.4 ± 5.9  | 23.3 ± 4.9  | 31.4 ± 10.9 | 54.7 ± 11.5 | 71.6 ± 12.9               |

Figure – Caractéristiques des nids







# Hypothèses, outils et démarche

#### Hypothèses

- la distribution du volume des nids est gaussienne
- le nombre d'espèce J est connu

#### Outils

- fonction simulation
- fonction algo\_EM

#### Démarche

- Génération de l'échantillon
- Représentation graphique de la densité de l'échantillon
- Détermination des paramètres initiaux
- Execution de l'algorithme EM







# Première exploration des données



Figure - Densité du mélange







3 juin 2022

# Heuristique graphique



Figure – Détermination des valeurs initiales







# Heuristique graphique

#### Paramètres initiaux

- $\mu_{1_{init}} = 40$  et  $\mu_{2_{init}} = 320$
- $\sigma_{1_{init}} = 80$  et  $\sigma_{2_{init}} = 140$
- ullet  $lpha_{1_{init}}=0.5$  et  $lpha_{2_{init}}=0.5$

#### Résultats

bird\_names alpha mu sigma 1 European Goldfinch 0.2910832 37.76285 9.512478 2 Ring Ouzel 0.7089168 302.51936 125.951894

#### Valeurs théoriques







3 juin 2022

# Détermination automatique

Comme dans le rapport ou fonction de Nicolas??







## Conclusion

## Conclusion

J'encule vos grosses marraines bien profond!!!





