Frequentists and Bayesian methods to incorporate recruitment rate stochasticity at the design stage of a clinical trial

Pilar Pastor Martínez
Supervision by Malgorzata Roos
Biostatistics Master Exam

Content

- O Recruitment and Patient Leakage
- O Methods for Recruited Counts
- Methods for Waiting Time
- Exact methods vs MC simulations
- Conclusions
- Reproducibility (GitHub)

Recruitment and Patient Leakage

Why recruitment rates?

According to Carter (2004)

Timely recruitment vital to the success of a clinical trial Inadequate number of patients \rightarrow lack of power Recruitment period too long \rightarrow competing treatments Recruitment of patients varies at each stage Methods applicable to all the stages

CONSORT

Target Population

Target Population

Eligibility

Enrollment

Randomization

Statistical Analysis

Patient Leakage

Definitions

Recruitment rate: Per time-unit (Piantadosi, 2024)

$$\lambda = \frac{\Delta C}{\Delta T} = \frac{C_1 - C_0}{T_1 - T_0} = \frac{C_1}{T_1}$$

Accrual: Cumulative Recruitment

Aleatory uncertainty: randomness inherent and unpredictable

Epistemic uncertainty: arises from limited knowledge about recruitment rates

Methods for Recruited Counts

Motivation Models for Counts

Models for Counts

Recruitment in unit of time (t=1):

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C = \lambda$	λ	0	No	No
Poisson	$C \sim Po\left(\lambda\right)$	λ	λ	Yes	No
Poisson - Gamma	$\mathit{C} \sim \mathit{Po}(\Lambda); \Lambda \sim \mathit{G}(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Accrual for time t [0,t]:

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim Po(\lambda t)$	λt	λt	Yes	No
Poisson - Gamma	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$	$t^{\frac{\alpha}{\beta}}$	$t^{\frac{\alpha(\beta+t)}{\beta^2}}$	Yes	Yes

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

Recruitment Rate $\lambda = 0.591$ per day

Time Ttaget = 550 days

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

Recruitment Rate $\lambda = 0.591$ per day

Time Ttarget = 550 days

Models for Counts at time point *t*:

Expectation: $EC(t) = \lambda t$

Poisson: $C(t) \sim Po(\lambda t)$

Poisson - Gamma: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$

 $\alpha =$ 32.4 and $\beta =$ 54.8

 $E\Lambda = \frac{\alpha}{\beta} = 0.591$

Accrual at time point t

Expectation:
$$EC(t) = E(C + ... + C) = tEC = \lambda t$$
Poisson: $Po(\lambda) + ... + Po(\lambda) = Po(\lambda t)$

Accrual of 1 study

Accrual of 1 study

Accrual of 2 studies

Accrual of 2 studies

Accrual of 100 studies

Exact uncertainty bands

Two versions of randomness of ∧

Version 1: Random recruitment rate realization λ varies across studies and remains **fixed** within study **over** time

→ PoG distribution

Version 2: Random recruitment rate realization λ varies across studies and **varies** within study **over time**

→ Distribution with surprising properties

Version 1 different from Version 2

Comparison

Negative binomial derived from Poisson-Gamma model at time point \boldsymbol{t}

Let $C(t)|\Lambda \sim Po(\Lambda t)$ and $\Lambda \sim G(\alpha, \beta)$

$$\begin{split} \rho(c) &= \int_0^\infty \rho(c|\lambda) \rho(\lambda) d\lambda \\ &= \int_0^\infty \frac{(\lambda t)^c \exp(-\lambda t)}{c!} \bigg[(\lambda)^{\alpha - 1} \exp(-\beta \lambda) \frac{\beta^\alpha}{\Gamma(\alpha)} \bigg] d\lambda \\ &= \frac{\beta^\alpha t^c \Gamma(\alpha + c)}{c! \Gamma(\alpha)(\beta + t)^{\alpha + c}} \underbrace{\int_0^\infty \frac{(\beta + t)^{\alpha + c}}{\Gamma(\alpha + c)} \lambda^{\alpha + c - 1} \exp(-(\beta + t)\lambda) d\lambda}_{=1} \\ &= \binom{\alpha + c - 1}{\alpha - 1} \bigg(\frac{t}{\beta + t} \bigg)^c \bigg(\frac{\beta}{\beta + t} \bigg)^\alpha, \end{split}$$

$$C(t) \sim \textit{NBin} \bigg(\alpha, \frac{\beta}{\beta + t} \bigg)$$

May 28, 2025 Recruitment rate stochasticity at the design stage of a clinical trial, Master Exam

Expectation and Variance for Counts

Using the expressions of iterated expectation and variance (Held and Bové, 2014)

$$E(C(t)) = E_{\Lambda}[E_{C(t)}(C(t)|\Lambda)] = E_{\Lambda}[\Lambda t] = t\alpha/\beta$$

$$Var(C(t)) = Var_{\Lambda}[E_{C(t)}(C(t)|\Lambda)] + E_{\Lambda}[Var_{C(t)}(C(t)|\Lambda)]$$

$$= Var_{\Lambda}[\Lambda t] + E_{\Lambda}[\Lambda t]$$

$$= t^{2}\alpha/\beta^{2} + t\alpha/\beta = \frac{t\alpha(\beta + t)}{\beta^{2}}$$

May 28, 2025 Recruitment rate stochasticity at the design stage of a clinical trial, Master Exam

Methods for Waiting Time

Motivation Models for Waiting Time

Models for Waiting Time until Target Sample Size c

Methods	Time	Expectation	Variance	Aleatory	Epistemic
Expectation	$T(c) = c/\lambda$	c/\lambda	0	No	No
Erlang	$T(c) \sim \mathrm{G}(c,\lambda)$	c/λ	c/λ^2	Yes	No
Gamma-Gamma	$T(c) \sim G(c, \Lambda); \Lambda \sim G(\alpha, \beta)$	$c \frac{\beta}{\alpha - 1}$	$\frac{c\beta^2(c+\alpha-1)}{(\alpha-1)^2(\alpha-2)}$	Yes	Yes

Two versions of randomness of Λ

Version 1 → GG distribution

Similar derivations as shown for counts

Sensitivity Analysis for Waiting Time

Exact Methods vs MC simulations

Exact Methods vs MC simulations – Poisson-Gamma Counts

Exact Methods vs MC simulations – Gamma-Gamma Time

Exact Methods vs MC simulations

Model	Estimated Probabilty	MCse	Exact Probability
$C(T) \sim \text{Po}(\lambda T)$	$P(C(T) \ge 324) = 0.5044$	0.005	0.5085
$C(T) \sim \text{PoG}(T, \alpha, \beta)$	$P(C(T) \ge 324) = 0.4799$	0.005	0.5008

Model	Estimated Probabilty	MCse	Exact Probability
$T(C) \sim G(C, \lambda)$	$P(T(C) \ge 548) = 0.4978$	0.005	0.4955
$T(C) \sim \mathrm{GG}(C, \alpha, \beta)$	$P(T(C) \ge 548) = 0.5196$	0.005	0.5201

Number of simulations: $M = 10^4$

Aleatory VS Aleatory & Epistemic

90% chance of accruing *Ctarget* = 324 patients:

 $M=10^3$ from Carter's \rightarrow 580 days (innacurate)

Erlang exact distribution \rightarrow 588 days

Gamma-Gamma exact distribution \rightarrow 707 days

Aleatory & Epistemic

Conclusions

- Visual tools
- Unified Notation
- Exact Methods
- Flexible Recruitment
- Practical Impact

References

Carter, R. E. (2004). Application of stochastic processes to participant recruitment in clinical trials. *Controlled Clinical Trials*, 25(5):429–436.

Held, L. and Bové, D. S. (2014). *Applied Statistical Inference*. Springer.

Piantadosi, S. (2024). *Clinical Trials: A Methodologic Perspective*. John Wiley & Sons.

Thank you for your attention