Partie I : Déterminant de VANDERMONDE

Soit $(\lambda_0, \ldots, \lambda_n) \in \mathbb{C}^{n+1}$. On pose

$$V_n(\lambda_0, \dots, \lambda_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_0 & \lambda_1 & \cdots & \lambda_n \\ \vdots & \vdots & & \vdots \\ \lambda_0^n & \lambda_1^n & \cdots & \lambda_n^n \end{vmatrix}$$

1. Calcul.

- a) Montrer que $Q_n(X) = V_n(X, \lambda_1, \dots, \lambda_n)$ est un polynôme de degré au plus n.
 - **b)** Déterminer les racines de Q_n .
 - c) Déterminer le coefficient dominant de Q_n .
 - **d)** En déduire la valeur de $V_n(\lambda_0,\ldots,\lambda_n)$.

2. Polynômes de HILBERT.

- **3. a)** Pour tout $m \in [0, n]$, soit $P_m = X^m + \sum_{i=1}^m a_{m,i} X^{m-i} \in \mathbb{C}_m[X]$. Déterminer det $((P_i(\lambda_i))_{0 \le i, i \le n})$.
- **b)** On pose $H_0(X) = 1$ et $H_m(X) = \frac{X(X-1)\cdots(X-m+1)}{m!}$. Déterminer $\det\left((H_i(\lambda_i))_{0\leqslant i,j\leqslant n}\right)$
 - c) Soit $(a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}$ tels que $a_0 < \cdots < a_n$. Montrer que

$$\prod_{0 \le i < j \le n} \frac{a_j - a_i}{j - i} \in \mathbb{N}.$$

Partie II : Déterminant circulant

Soit $(a_0,\ldots,a_{n-1})\in\mathbb{C}^n$. On pose $\omega_n=e^{\frac{2i\pi}{n}}$ et

$$C(a_0, \dots, a_{n-1}) = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & \cdots & a_{n-2} \\ \vdots & & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_0 \end{pmatrix}.$$

4. Montrer, en utilisant les notations de la partie précédente, que

$$C(a_0, \dots, a_{n-1})V_n(1, \omega_n, \dots, \omega_n^{n-1}) = \det\left((\omega_n^{(i-1)(j-1)}b_j)_{1, \le i, j \le n}\right),$$

où
$$b_j = \sum_{n=0}^{n-1} a_p \omega_n^{(j-1)p}$$
.

- 5. En déduire $C(a_0, \ldots, a_{m-1})$
- 6. On note une matrice circulante par blocs, où les blocs sont des matrices carrées d'ordre $n: A_0, \ldots, A_{n-1}$. Montrer que

$$C(A_0, \dots, A_{n-1}) = \prod_{j=0}^{n-1} \det \left(\sum_{p=0}^{n-1} \omega_n^{(j-1)p} A_p \right).$$

Partie III : Déterminant de CAUCHY

Soit $(a_1, \ldots, a_n) \in \mathbb{C}^n$ et $(b_1, \ldots, b_n) \in \mathbb{C}^n$. On suppose que pour tout $(i,j) \in [1,n]^2, a_i + b_j \neq 0$. On note

$$D = \det\left(\left(\frac{1}{a_i + b_j}\right)_{1 \leqslant i, j \leqslant n}\right).$$
7. Exprimer D en fonction $\det\left(\begin{array}{ccc} \frac{\alpha_n + \beta_1}{\alpha_1 + \beta_1} & \dots & \frac{\alpha_n + \beta_n}{\alpha_1 + \beta_n} \\ \vdots & & \vdots \\ \frac{\alpha_n + \beta_1}{\alpha_{n-1} + \beta_1} & \dots & \frac{\alpha_n + \beta_n}{\alpha_{n-1} + \beta_n} \\ 1 & \dots & 1 \end{array}\right).$
8. En remarquant que $\frac{\alpha_n + \beta_j}{\alpha_i + \beta_j} = 1 + \frac{\alpha_n - \alpha_i}{\alpha_i + \beta_j}$, montrer que

$$D = \frac{(\alpha_n - \alpha_1) \cdots (\alpha_n - \alpha_{n-1})}{(\alpha_n + \beta_1) \cdots (\alpha_n + \beta_n)} \begin{pmatrix} A & * \\ 0_{1,n-1} & 1 \end{pmatrix},$$

Thème XI PSI

où
$$A = \left(\frac{\beta_n - \beta_j}{(\alpha_i + \beta_j)(\alpha_i + \beta_n)}\right)_{1 \le i, j \le n - 1}$$
.

- **9.** En déduire la valeur de \tilde{D} .
- **10.** Montrer que, lorsque $a_i = b_i = i$, alors

$$D = \frac{2^{2n-5}3^{2n-8}\cdots(n-1)^{4-n}}{n^{n-1}(n+1)^n\cdots(2n)}.$$

Il s'agit presque du déterminant de la matrice de HILBERT.

Mathématiciens

VANDERMONDE Alexandre-Théophile (28 fév. 1735 à Paris-1^{er} jan. 1796 à Paris).

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux). HILBERT David (23 jan. 1862 à Wehlau-14 fév. 1943 à Göttingen).