$\{X=C\}=\left(\left(\frac{1}{2}\right)^{2}X\in\left(\frac{1}{2}\right)^{2}X\in\left(\frac{1}{2}\right)^{2}X$ $C+|_{1}$ $C+|_{1}$ $=> |P(x=c) \leq |P(x \in (c-\frac{1}{n}, c+\frac{1}{n})) = \int_{-\infty}^{\infty} f_{x}(x) dx =>$ $= \int |P(x=c)| \leq \lim_{n \to \infty} \int \int |f(x)| dx = \int \int |f(x)| dx = \int |f(x)| dx =$ • $\{X \in [a,b]\} = \{X \in [a,b]\}$ $\mathcal{Y}\{X=a\} \cup \{X=b\}$ Dheguneune na henpeunaugu ce ushine $||P(x \in [a, b])| = ||P(x \in [a, b])| + ||P(x = a)| + ||P(x = b)| = ||P(x \in [a, b])|$ Definition (bymus na passipegeneure)

Hera X e HCB c naturno out f_X . Avoiaba by un $f_X(x) = H(X = x) = \int f_X(y) dy$ Ce napura fyrm ha payupegeneune na X.

- ano $\int X$ e neup b ur X_0 , up $\int \frac{dFx}{dx}\Big|_{x=X_0} = \int X(X_0)$ $-F_{X}(-\infty) = \lim_{x \to -\infty} P(x \in x) = \lim_{x \to -\infty} \int_{\infty} f_{X}(y) dy = 0$ $-f_X(+\infty)=L$ - Fx(x) = P(X=x) = P(X=x) = P(X=x) Cuena na uponeunubure na HIB Sagera e Heb X c mountocat fx. y = g(x) = 1 y = g(x) $y = g(x) = \begin{cases} 0, 1 \end{cases}$ y = g(x) = 1 $y = g(x) = \begin{cases} 0, 1 \end{cases}$ $y = g(x) = \begin{cases} 0, 1 \end{cases}$ 4 ~ Be (1P(x20)) Mesperia Hera X e hG c uneumous f. Here g e supero non possessal variantelega Torabo Y = g(X) e HGB c unoumous $S(y) = f(g^{-1}(y))g^{-1}(y) = f(h(y))' \cdot (h'(y)) \cdot h = g^{-1}$.