National University of Computer and Emerging Sciences, Lahore

Invigilator Signatures:

Course:	Quantum Computing	Course Code:	CS-4084
Program:	BS (Computer Science)	Semester:	Fall 2023
Duration:	60 Minutes	Total Marks:	57
Paper Date:	01-Oct-2023	Weightage:	15%
Exam:	First Midterm	Page(s):	10
Instructor	Dr. Faisal Aslam	Section:	
Name:		Roll Number:	

Questions	Q1	Q2	Q3	Q4	Q5	Q6	Total
Marks	10	7	7	8	5	15	52
Marks Obtained							

Please do not turn this page until instructed.

Questions

1. Consider the quantum circuit shown in Figure 1. If the input to the circuit is $|011\rangle$, determine its output. Please show your calculations at each stage of the circuit. [10 Marks]

Figure 1: Quantum circuit

			$ \psi_1\rangle$	$ \psi_2\rangle$)	$\psi_3\rangle$
\mathbf{x}	f(x)		+	\dashv		
00	1		H^{\otimes}	2		1
01	1		+	-	B_f	1
10	0		- į 🖳	-		ij
11	0					<u> </u>
	!			¦ l		-
			1			1

Figure 2: (a) Classical function inputs/outputs, (b) Quantum circuit

- 2. A classical function $f:\{0,1\}^n \to \{0,1\}$ for the 2-bits case is described in a table in Figure 2-a:
 - A quantum circuit B_f implements the classical circuit such that $B_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$. What will be the output of the circuit of Figure 2-b given its input is $|10\rangle |+\rangle$? [7 Marks]

This page is intentionally left blank!

3. Construct a **single** unitary matrix representing the entire quantum circuit of Figure 3. [7 Marks]

Figure 3: Quantum circuit

4. **a)** Draw the reverse quantum circuit of Figure 3 and **b)** determine the unitary matrix of the entire reverse circuit. [5+3=8 Marks]

5. Demonstrate that the qubits

$$|\psi\rangle = \frac{1}{2\sqrt{2}}|000\rangle - \frac{i}{2\sqrt{2}}|010\rangle + \frac{\sqrt{3}}{2\sqrt{2}}|100\rangle - \frac{i\sqrt{3}}{2\sqrt{2}}|110\rangle$$

are not entangled by expressing individual qubits separately. Please clearly display their amplitudes. [5 Marks]

- 6. Short questions [3 \times 5 = 15 Marks]:
 - (a) Express

$$|\psi\rangle = \frac{1}{4}|000\rangle + \frac{1}{4}|010\rangle + \frac{1}{\sqrt{2}}|100\rangle + \frac{1}{2}|110\rangle$$

as a vector.

(b) Calculate $\langle \psi | \phi \rangle$, given

$$|\psi\rangle = 2\,|00\rangle + 3\,|01\rangle\,,$$

 $\quad \text{and} \quad$

$$|\phi\rangle = 3|00\rangle + 4|01\rangle + 10|11\rangle$$

(c) Calculate $|\psi\rangle\langle\phi|$ given

$$|\psi\rangle = 2|0\rangle + 3|1\rangle$$
,

and

$$|\phi\rangle = 3|0\rangle + 4|1\rangle$$

(d) Calculate $|\psi\rangle\,|\phi\rangle$ given

$$|\psi\rangle = 2|0\rangle + 3|1\rangle$$
,

 $\quad \text{and} \quad$

$$|\phi\rangle = 3|0\rangle + 4|1\rangle$$

(e) Calculate $\langle \psi |$ given

$$|\psi\rangle = (2i+3)|0\rangle + 3|1\rangle$$

This page is intentionally left blank!