

COMP210: Interfaces & Interaction

4: Code Review

Session 4: Code Review

Register Attendance

Module Attendance:

Figure 1: Attendance monitoring is in place. It is your responsability to ensure that you have signed yourself in.

Learning Outcomes

After this session you will be able to:

- ▶ Execute a code review
- Write well formed docstrings
- Check code and comments using linters

Code Review

Statistical Analysis

- More labor intensive than data collection
- Important to choose the appropriate methods
- This module is only converned with descriptive statistics

Side note: Understanding statistical analysis will help you to understand the validity of findings reported in other studies

To err is human (Alexander Pope, "Essay on Criticism")

- Reasonableness
- Fomatting
- Fix or removal (do not fudge!)

Preparation

- Grouping
- Organising Some statistical tools require data to be presented in a specific way
- Formatting
- ▶ Coding
 - Yes or no answers could be coded as 1 or 0 accordingly
 - Example of complex codeing Paper: Hu and Feng(2015)

Descriptive Statistics

- 1. Central Tendency
- 2. Spread

1.Central Tendency

The Bill Gates Effect (Mean vs. Median)

Bob, Pete, Dave and Baz are sitting at the bar. Don't judge, they are working class folk who like a beer thats all.

Name	Salary
Bob	21k
Pete	27k
Dave	28k
Sam	29k
Baz	31k

Mean

The mean of their salaries is (X-Bar represents the sample mean):

$$\bar{x} = (\sum Xi)/n$$

$$(21 + 27 + 28 + 29 + 31)/5 = 27.2k$$

In Comes Bill Gates

And shoves poor old Bax off his chair. Baz panics and runs out of the building. Meanwhile, Bill Gates convinces the others they are better off for him being there.

- ► How?
- ► And why is this not true?

Let's Recalculate

Name	Salary
Bob	21k
Pete	27k
Dave	28k
Sam	29k
Bill	1,000,000k

New Mean: (21 + 27 + 28 + 29 + 1000000) / 5 = 200k-ish (who cares, Bill Gates is already drunk!) The average salary has gone up and everyone is wealthier!

Median

It is the value that separates the lower half of the values from the upper half

The median is resistant to extreme data values meaning that it will not be skewed by Bill Gates

Original Median = 21, 27, 28, 29, 31

Bill Median = 21, 27, 28, 29, 1000000

Mode

The value that occurs most frequently.

Unfortunately, there is no mode in the bar at the moment but if Bill leaves and Daves mate Jim appears who also earns 28k then the mode would be 28!

- ► The mode is resistant to extreme data values
- useful for qualitative inspection
- Not capable of further mathematical treatment

2. Spread

The second objective in descriptive statistics is to describe how far the results deviate from the center. This is know as the spread.

- Range
- Variance
- Standard Deviation
- Normal Distribution

Range

- The range is the distance between the highest and lowest values.
- The higher ther range the wider the distribution

Example:

$$55 - 5 = 49$$

Therefore, the range is 49

Variance

Variance is the, "mean of the squared distances of all the values from the mean of the data set"

(Lazar et al, 2017)

- ▶ Sigma²
- Describes how far a set of values are spread out from the mean

$$\sigma^2/s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

Variance and Mean

Figure 2: Example of samples from two populations with the same mean but different variances.

Normal Distribution

Figure 3

Standard Deviation

$$\sigma/s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$$

Statistical Tools

- Spreadsheets (Excel, Google Sheets)
- Statistical Package for the Social Sciences (SPSS)
- R programming language and free software environment for statistical computing

Box Plots

Figure 4

Box Plots

Box Plots are easy to generate using ChemGrid's Boxplotr Tool

QUICK BREAK

- ▶ Fresh Air
- Rehydrate
- ► Snack food for the brain?

Qualitative Data Analysis

- Unstructured
- Complex
- Unpredictable
- ► Subjective
- ► Time

The Goal

- Convert unstructured data into meaning to describe a situation of phenomenon
- To be transparent about the process
- Use proven methodolgy to ensure valid and reliable results

Content Analysis

The process of reducing a piece of content down into a representative description based on rules of coding. The term, 'content', describes any qualitative data collected directly or indirectly from the participants.

- ▶ Text
- ► Image
- Audio
- Video
- ► Photos

Preparation

- Lock in scope
- Define your data set (exactly what is being taken into consideration)
- Clearly define the popluation
- Remove any data that doesn't fit the criteria

Coding

"involves assigning categories and descriptors to blocks"

(Lazar et al, 2017)

- ▶ Comparisons
- Deriving concepts
- Convert concepts into properties or dimensions

Emergent Coding

- Conducted without guidance from existing theory of modeling
- Note down interesting concepts
- Continually refine
- Good for new research
- ► See: Grounded Theory

Priori Coding

- Draws upon established theories or existing models
- Categories are defined before analysis
- Based on solid theoretical framework (taxonomies)
- Good for research in well established areas
- Higher levels of rigour and validity
- Transparent and less vulnerable to bias

Step-by-step Guide

A Step-By-Step Guide To Qualitative Data Analysis - Nancy Gibson

Activities

- 1. Recruit three experts to carry out heuristic evaluations
- 2. Write methodology for report
- 3. Plan your study