Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 17 de enero de 2023

Grupo, apellidos y nombre: 1,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/9)$.

Supóngase que tenemos dos cajas con 40 naranjas en la primera y 80 naranjas en la segunda. La primera caja contiene 9 naranjas Navelina y 31 Caracara. La segunda caja contiene tres veces más naranjas Navelina que Caracara. Ahora supóngase que se escoge una caja al azar, y luego una naranja al azar de la caja escogida. Si la naranja escogida es Navelina, la probabilidad P de que proceda de la primera caja es: P=0.23

A)
$$0/4 \le P < 1/4$$
.

B)
$$1/4 \le P < 2/4$$
.

C)
$$2/4 \le P < 3/4$$
.

D)
$$3/4 \le P \le 4/4$$
.

2 D Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :

A)
$$\varepsilon^* < 0.40$$

B)
$$0.40 < \varepsilon^* < 0.45$$
.

C)
$$0.45 \le \varepsilon^* < 0.50$$
.

D)
$$0.50 \le \varepsilon^*$$
.

2	ĸ	$P(c \mid \mathbf{x})$				
x_1	x_2	c=1	c=2	c=3	c=4	$P(\mathbf{x})$
0	0	0.1	0.3	0.1	0.5	0
0	1	0.2	0.5	0.3	0	0.1
1	0	0.2	0.4	0.1	0.3	0.3
1	1	0.1	0.3	0.3	0.3	0.6

$$\varepsilon^* = 0.65$$

3 B Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador equivalente al dado?

A)
$$\mathbf{w}_1 = (0, -2, 0)^t$$
 y $\mathbf{w}_2 = (0, 0, -2)^t$.

B)
$$\mathbf{w}_1 = (0, 2, 0)^t$$
 y $\mathbf{w}_2 = (0, 0, 2)^t$.

C)
$$\mathbf{w}_1 = (0, 0, 2)^t$$
 y $\mathbf{w}_2 = (0, 2, 0)^t$.

D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.

- Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha=1$ y margen b=0.1, a un conjunto de 4 muestras bidimensionales de aprendizaje para un problema de 4 clases, c=1,2,3,4. En un momento dado de la ejecución del algoritmo se han obtenido los vectores de pesos $\mathbf{w}_1=(-2,-2,-6)^t$, $\mathbf{w}_2=(-2,-2,-6)^t$, $\mathbf{w}_3=(-2,-4,-4)^t$, $\mathbf{w}_4=(-2,-4,-4)^t$. Suponiendo que a continuación se va a procesar la muestra $(\mathbf{x},c)=((4,5)^t,2)$, ¿cuántos vectores de pesos se modificarán?
 - A) 0
 - B) 2
 - C) 3
 - D) 4
- 5 D Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de dos clases, c=A,B. El algoritmo ha alcanzado un nodo t cuya impureza, medida como la entropía de la distribución empírica de las probabilidades a posteriori de las clases en t, es I=0.72. ¿Cuál es el número de muestras de cada clase en el nodo t?
 - A) 2 de clase A y 32 de clase B
 - B) 2 de clase A y 16 de clase B
 - C) 4 de clase A y 32 de clase B
 - D) 4 de clase A y 16 de clase B
- $\begin{array}{c} \textbf{6} \ \boxed{\textbf{A}} \end{array} \ \text{Dado el conjunto de muestras de 2 clases (o y \bullet) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?} \end{array}$

7 D La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, • y o:

Si transferimos de clúster el punto $(1,0)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

A) $\Delta J < -7$.

$$\Delta J = 52.5 - 9.3 = 43.2$$

- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- $8\ \square$ Sea M un modelo de Markov de representación gráfica:

 $\dot{\epsilon}$ Cuántas cadenas distintas de longitud 3 que empiezan por el símbolo a puede generar M? 4

- A) Ninguna.
- B) Una.
- C) Dos.
- D) Más de dos.
- 9 C Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{2}{3}, \pi_2 = \frac{1}{3}$; matriz de probabilidades de transición entre estados A y de emisión de símbolos B, y matriz Forward α :

A	1	2	F
1	$\frac{3}{7}$	$\frac{3}{7}$	$\frac{1}{7}$
2	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{2}{6}$

B	a	b
1	$\frac{1}{2}$	$\frac{1}{2}$
2	$\frac{1}{2}$	$\frac{1}{2}$

α	b	b
1	$\frac{1}{3}$	α_{12}
2	1/6	α_{22}

¿Cuáles son los valores correspondientes a α_{12} y α_{22} ? $\alpha_{12} = \frac{1}{3} \cdot \frac{3}{7} \cdot \frac{1}{2} + \frac{1}{6} \cdot \frac{2}{6} \cdot \frac{1}{2}$, $\alpha_{22} = \frac{1}{3} \cdot \frac{3}{7} \cdot \frac{1}{2} + \frac{1}{6} \cdot \frac{2}{6} \cdot \frac{1}{2}$

A)
$$\alpha_{12} = \frac{25}{252}$$
, $\alpha_{22} = \frac{1}{14}$

B)
$$\alpha_{12} = \frac{1}{14}$$
, $\alpha_{22} = \frac{25}{252}$

C)
$$\alpha_{12} = \frac{25}{252}$$
, $\alpha_{22} = \frac{25}{252}$

D)
$$\alpha_{12} = \frac{1}{14}$$
, $\alpha_{22} = \frac{1}{14}$

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 17 de enero de 2023

Grupo, apellidos y nombre: 1,

Problema sobre Viterbi

Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; y probabilidades de transición entre estados y de emisión de símbolos:

A	1	2	F
1	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
2	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Se pide:

- 1. (1 punto) Realiza una traza del algoritmo de Viterbi para obtener la secuencia de estados más probable con la que M genera la cadena ab.
- 2. (1 punto) Dados los pares de entrenamiento, cadena secuencia de Viterbi, (ba, 22F) y (baa, 111F) junto con la cadena ab y su secuencia de Viterbi calculada en el apartado anterior, reestima los parámetros de M mediante una iteración del algoritmo de reestimación por Viterbi.

Solución:

1. Traza de Viterbi para la cadena ab (los estados 1 y 2 se representan como 0 y 1, respectivamente):

2. Reestimación por Viterbi a partir del par ab y 12F calculado en el apartado anterior, junto con los pares dados (ba, 22F) y (baa, 111F), obtenemos los parámetros reestimados deseados:

π	1	2
	$\frac{2}{3}$	$\frac{1}{3}$

A	1	2	F
1	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
2	$\frac{0}{3}$	$\frac{1}{3}$	$\frac{2}{3}$

B	a	b
1	$\frac{3}{4}$	$\frac{1}{4}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Se puede comprobar, mediante una nueva iteración de reestimación por Viterbi, que el algoritmo converge al modelo anterior.