Funktionsprinzipien und Anwendungen von Algorithmen zur Pfadplanung

Tana Bögel, Moritz Hein, Jana Löwen

Einleitung

- Aufgabe: kostengünstigsten zw. kürzesten Weg finden
- → Abhängig von Faktoren wie Hindernissen oder variablen Wegekosten
- Vielfältige Anwendungen

BELLMAN-FORD ALGORITHMUS

Voraussetzungen

- Graph mit einer Menge von Knoten V und Kanten E
- Keine negativen Zyklen
- Startknoten s und Zielknoten t

Ablauf

- Initialisierungsphase
- N-1 Runden (N = |V|)
- Suche nach negativen Zyklen

Negativer Zyklus

Negativer Zyklus

Negativer Zyklus

 Pfad der aus mehreren Knoten besteht und negative Gesamtkosten besitzt

Initialisierungsphase

- d[s]=0
- parent[s]=s

V	d	parent					
S	0	S					
V	∞	-					
t	∞	-					

- d[v]=1
- parent[v]=s

V	d	parent					
S	0	S					
V	1	S					
t	∞	-					

- d[s]=1+(-3)=-2<0
- parent[s]=v
- $d[t]=1+2=3<\infty$
- parent[t]=v

V	d	parent
S	-2	v
V	1	S
t	3	V

Suche nach negativen Zyklen

- d[v]=-2+1=-1<1
- parent[v]=s

Negativer Zyklus

V	d	parent					
S	-2	V					
V	-1	S					
t	3	V					

Beispiel

Informatik

Initialisierungsphase

- $d[s]=0 \rightarrow parent[s]=s$
- Alle anderen Distanzen auf ∞ setzen
- Alle anderen Vorgänger auf setzen

V	d	parent					
S	0	S					
u	8	-					
V	8	-					
t	8	-					

- $d[u]=0+3=3<\infty \rightarrow parent[u]=s$
- $d[v]=0+1=1<\infty \rightarrow parent[v]=s$

V	d	parent					
S	0	S					
u	3	S					
V	1	S					
t	8	-					

- $d[v]=3+(-3)=0<1 \rightarrow parent[v]=u$
- d[s]=3+2=5>0
- d[t]=3+(-1)=2
- $d[t]=1+(-2)=-1<\infty \rightarrow parent[t]=v$

V	d	parent					
S	0	S					
u	3	S					
V	0	u					
t	-1	V					

- d[v]=5+1=6>1
- $d[t]=0+(-2)=-2<-1 \rightarrow parent[t]=v$

V	d	parent					
S	0	S					
u	3	S					
V	0	u					
t	-2	V					

Suche nach negativen Zyklen

•
$$d[t]=6+(-2)=4>-2$$

→ Keine negativen Zyklen gefunden

V	d	parent				
S	0	S				
u	3	S				
V	0	u				
t	-2	V				

Anwendungen

Distance-Vector Routing

- Runden sind "hops"
- Startknoten ist "root"
- Nachfolger statt Vorgänger
- Router sind die Knoten und Verbindungen zwischen diesen sind die Kanten

Vorteile

Gute Nachrichten verbreiten sich schnell

Nachteile

- Schlechte Nachrichten verbreiten sich langsam
- Count-To-Infinity Problem
- Router kennen nur Teile der Routing-Tabelle

Logistik- und Distributionsprobleme

- Für neue Knoten muss nicht gesamtes Netz neu berechnet werden
- Negative Kantengewichte sind erlaubt

DIJKSTRA-ALGORITHMUS

- Lösung des Single-Source Shortest Path Problems
 - → findet kürzeste Wege vom Startknoten zu allen anderen Knoten im Graphen
- Voraussetzungen:
 - Graph mit einer Menge von Knoten V und Kanten E
 - Nichtnegative Kostenfunktion c
 - Startknoten s
- Liefert einen Baum mit den kürzesten Wegen

Knoten erhalten nach jedem Schritt Markierungen

Noch unbekannte Knoten:

b

• Temporär markierte Knoten:

b

Permanent markierte Knoten:

- Initialisierung:
- Der Startknoten s temporär markieren mit d[s] = 0, parent[s] = s
- Alle anderen Distanzen sind unendlich und die Vorgänger noch unbekannt

- Knoten s besuchen und permanent markieren
- Entfernungen vom Startknoten zu dessen Nachbarknoten gemäß der Kostenfunktion anpassen:

$$d[a] = 2$$
, parent $[a] = s$
 $d[b] = 6$, parent $[b] = s$

Knoten a und b temporär markieren

- Temporär markierten Knoten mit geringster Entfernung zu s besuchen und permanent markieren
- Entfernungen vom Startknoten über den besuchten Knoten zu dessen Nachbarknoten berechnen [1]:

$$d[b] = d[a] + c(a,b)$$

Relaxierung bei Knoten b [2]:

$$d[b] = 5$$
, parent $[b] = a$

- Temporär markierten Knoten mit geringster Entfernung zu s besuchen permanent markieren
- Da alle Knoten nun permanent markiert sind, ist der Algorithmus beendet

Laufzeit

- Alle N Knoten erhalten genau einmal eine permanente Markierung
- Jeder Knoten hat maximal N-1 Nachbarn, für die die Distanz berechnet werden muss
- Damit ergibt sich: $O(N \cdot N-1) = O(N^2)$
- Die exakte Laufzeit ist von der Wahl der Priorityqueue abhängig → Verbesserung möglich

Anwendungen

Routenplanung

- Straßennetz wird durch den Graphen repräsentiert
- Lösung des Single-Pair Shortest Path Problems
 - → findet kürzesten Weg von s zu t
- Angabe der Fahrtzeit anhand von Durchschnittsgeschwindigkeiten → Berechnung von
 - Entfernung auf schnellstem Weg sowie
 - Fahrtzeit auf kürzestem Weg
- Effizientere Varianten: frühzeitiges Stoppen, bidirektionale Suche

- Zur Auswertung medizinischer Bilder für Diagnosen und Therapien
- Abgrenzung von relevanten
 Strukturen, beispielsweise Tumoren
- Verwendung des Live-Wire-Verfahrens:
 - Hervorhebung der Objektkontur ausgehend vom Startpunkt über gewählte Saatpunkte bis zum Mauszeiger [1]

Segmentierung des Darmbeins [2]

Segmentierung medizinsicher Bilder

- Live-Wire-Verfahren:

 - Bei der Kostenfunktion entspricht kostengünstigster Weg entspricht möglichst der Objektkontur
 - Kostengünstigsten Weg mit Hilfe des Dijkstra-Algorithmus berechnen und optisch hervorheben

Routing im Internet

- Ermöglicht die Kommunikation und Datenübertragung zweier Rechner aus verschiedenen lokalen Netzwerken (LANs) [1]
- Router speichern Nachbarn und Distanzen in Link-State-Paketen → Verteilung an Router im Netzwerk per Flooding [2]
- Berechnung des kürzesten Weges zu allen andere Routern mit Hilfe des Dijkstra-Algorithmus
- Verkürzung der Laufzeit durch Aufteilung in Teilnetzwerke [1]

A-STERN ALGORITHMUS

- Berechnet kürzesten Pfad eines kanten-gewichteten Graphen
- Basiert auf Dijkstra-Algorithmus
- Unterstützt keine negativ gewichteten Kanten
- Nutzt eine heuristische Funktion um effizienter zu suchen

					,	 	,	 ,	,
; i									
 - -									
! ! !									
1									
' ! !									
1 1									
! !									
i I									
1									
 									l i
I I									
i i									
! !									
! !									
I I									
1 1									
! !									l i
<u> </u>									
! 									
! !									
1 1									
! !									
: !									
<u>i</u>									
! !									
, ! !									
I									
! !									
! !									
									!
! !									
!									
	·	·	1	'	٠	 	1	 	

Informatik Hauptcampus

HOCH SCHULE TRIER

Informatik

 PLACEHOLDER - Dijkstra erkundete Nachbarn zum Ziel, Pfeil direkt zum Ziel mit kleinerer erkundeten Fläche auf der nächsten Folie

Heuristische Funktion

Informatik

Heuristische Funktion

"Mit begrenztem Wissen und wenig Zeit dennoch zu wahrscheinlichen Aussagen oder praktikablen Lösungen zu kommen."

- "Simple heuristics that make us smart", G. Gigerenzer und P. M. Todd (1999)

Veränderte Kostenfunktion

$$f(n) = g(n) + h(n)$$

Kosten vom Startknoten

Geschätzte Kosten bis zum Zielknoten

Zusammenfassung & Ausblick

Zusammenfassung

- Bellman-Ford Algorithmus: Umgang mit negativen Kantengewichten
- Dijkstra-Algorithmus: universell einsetzbar
- A*-Algorithmus: Anpassung an Problemdomäne
- → Hohe Relevanz auch in Zukunft

Gibt es noch Fragen?

Informatik

Vielen Dank für eure Aufmerksamkeit!

