NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lin Mingyan Simon, Chang Hai Bin

MA2108 Mathematical Analysis I AY 2011/2012 Sem 2

Question 1

- (a) (i) We shall prove by induction that $2 \le x_n \le 5$ for all $n \in \mathbb{N}$. Let P(n) denote the proposition $2 \le x_n \le 5$ for all $n \in \mathbb{N}$. P(1) is clearly true by the question. Assume that P(k) holds for some $k \in \mathbb{N}$. By induction hypothesis, one has $2 \le x_k \le 5$. Then one has $x_{k+1} = \sqrt{6x_k - 5} \ge \sqrt{6(2) - 5} = \sqrt{7} \ge 2$, and $x_{k+1} = \sqrt{6x_k - 5} \le \sqrt{6(5) - 5} = 5$. So one has $2 \le x_{k+1} \le 5$ and hence P(k+1) is true as well. Therefore, by the principle of mathematical induction, we have P(n) to be true for all $n \in \mathbb{N}$.
 - (ii) We shall prove by induction that $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$. Let P(n) denote the proposition $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$. We have $x_2 = \sqrt{6x_1 5} = \sqrt{6(2) 5} = \sqrt{7} \ge 2 = x_1$. So P(1) is true. Assume that P(k) holds for some $k \in \mathbb{N}$. By induction hypothesis, one has $x_{k+1} \ge x_k$. Then one has $x_{k+2} = \sqrt{6x_{k+1} 5} \ge \sqrt{6x_k 5} = x_{k+1}$. Hence P(k+1) is true as well.

Therefore, by the principle of mathematical induction, we have P(n) to be true for all $n \in \mathbb{N}$.

Since (x_n) is bounded and increasing, it follows from the Monotone Convergence Theorem that (x_n) is convergent. Let x denote the limit of the sequence (x_n) . Then one has

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sqrt{6x_n - 5}$$

$$\Rightarrow x = \sqrt{6x - 5}$$

$$\Rightarrow x^2 = 6x - 5$$

$$\Rightarrow (x - 1)(x - 5) = 0$$

$$\Rightarrow x = 1 \text{ or } x = 5.$$

Moreover, since $x_n \ge 2$ for all $n \in \mathbb{N}$, one has $x = \lim_{n \to \infty} x_n \ge \lim_{n \to \infty} 2 = 2$. So x = 5.

(b) Let M > 0 be given. Choose $K \in \mathbb{N}$ such that $K > M^2$. Then it follows that for all $n \in \mathbb{N}$, $n \geq K$, one has

$$\frac{3n^3-1}{\sqrt{n^5+2n^3+1}} \geq \frac{3n^3-n^3}{\sqrt{n^5+2n^5+n^5}} = \frac{2n^3}{2n^2\sqrt{n}} = \sqrt{n} \geq \sqrt{K} > M.$$

Hence, by definition, one has $\lim_{n\to\infty} \frac{3n^3-1}{\sqrt{n^5+2n^3+1}} = \infty$.

(c) Let $a_n = n\left(\sqrt{n^2 + 1} - n\right)$ for all $n \in \mathbb{N}$. Then we have $x_n = a_n \sin \frac{n\pi}{8}$, so it is easy to see that $-a_n \le x_n \le a_n$ for all $n \in \mathbb{N}$. Also, we note that

$$a_n = n\left(\sqrt{n^2 + 1} - n\right) = \frac{n\left(\sqrt{n^2 + 1} - n\right)\left(\sqrt{n^2 + 1} + n\right)}{\sqrt{n^2 + 1} + n} = \frac{n}{\sqrt{n^2 + 1} + n} = \frac{1}{\sqrt{1 + \frac{1}{n^2} + 1}}.$$

Therefore, we have $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n^2}+1}} = \frac{1}{2}$.

Hence, it follows that if (x_{n_k}) is a convergent subsequence with x as its limit, then one has $x = \lim_{k \to \infty} x_{n_k} \le \lim_{k \to \infty} a_{n_k} = \frac{1}{2}$. So $\frac{1}{2}$ is an upper bound on the set of cluster points of (x_n) . On the other hand, one has

$$x_{16k+4} = a_{16k+4} \sin \frac{(16k+4)\pi}{8} = a_{16k+4} \sin \left(2k + \frac{1}{2}\right)\pi = a_{16k+4}.$$

This implies that $\lim_{k\to\infty} x_{16k+4} = \lim_{k\to\infty} a_{16k+4} = \frac{1}{2}$. So $\limsup x_n = \frac{1}{2}$.

Question 2

(a) (i) Let $a_n = \frac{n(2n^3+1)}{7n^5-2n^2+1}$ and $b_n = \frac{1}{n}$. Then one has $\frac{a_n}{b_n} = \frac{2n^5+n^2}{7n^5-2n^2+1}$, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^5 + n^2}{7n^5 - 2n^2 + 1} = \lim_{n \to \infty} \frac{2 + \frac{1}{n^3}}{7 - \frac{2}{n^3} + \frac{1}{n^5}} = \frac{2}{7} > 0.$$

Since $\sum_{n=1}^{\infty} b_n$ diverges, we have $\sum_{n=1}^{\infty} a_n$ to diverge by the Limit Comparison Test.

(ii) We have

$$0 \le \sum_{n=1}^{\infty} \left| \frac{(-1)^n n^5}{3^n (n^2 + 1)} \right| = \sum_{n=1}^{\infty} \frac{n^5}{3^n (n^2 + 1)} \le \sum_{n=1}^{\infty} \frac{n^5}{3^n n^2} = \sum_{n=1}^{\infty} \frac{n^3}{3^n}.$$

Let $a_n = \frac{n^3}{3^n}$ for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{3} \left(1 + \frac{1}{n}\right)^3 = \frac{1}{3} < 1$, it follows from the Ratio Test that the series $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$ converges absolutely. Hence, the series $\sum_{n=1}^{\infty} \frac{n^5}{3^n(n^2+1)}$ converges by the Comparison Test, and this implies that $\sum_{n=1}^{\infty} \frac{(-1)^n n^5}{3^n(n^2+1)}$ converges (absolutely).

(iii) We have

$$0 \le \sum_{n=1}^{\infty} \left| \frac{3\cos n - 2^n}{6^n} \right| \le \sum_{n=1}^{\infty} \left(\left| \frac{3\cos n}{6^n} \right| + \left| \frac{2^n}{6^n} \right| \right) \le \sum_{n=1}^{\infty} \left(\frac{3}{6^n} + \frac{1}{3^n} \right).$$

Since $\sum_{n=1}^{\infty} \frac{3}{6^n}$ and $\sum_{n=1}^{\infty} \frac{1}{3^n}$ both converge, it follows that the series $\sum_{n=1}^{\infty} \left(\frac{3}{6^n} + \frac{1}{3^n}\right) = \sum_{n=1}^{\infty} \frac{3}{6^n} + \sum_{n=1}^{\infty} \frac{1}{3^n}$ converges. Therefore it follows from the Comparison Test that $\sum_{n=1}^{\infty} \left|\frac{3\cos n - 2^n}{6^n}\right|$ converges. This implies that $\sum_{n=1}^{\infty} \frac{3\cos n - 2^n}{6^n}$ converges (absolutely).

(b) Suppose $\sum_{n=1}^{\infty} c_n$ converges. For each $k \in \mathbb{N}$, let $s_k = \sum_{n=1}^k c_n$, $t_k = \sum_{n=1}^k a_n$ and $u_k = \sum_{n=1}^k b_n$. Note that $s_{2k} = \sum_{n=1}^{2k} c_n = \sum_{n=1}^k c_{2n-1} + \sum_{n=1}^k c_{2n} = \sum_{n=1}^k a_n + \sum_{n=1}^k b_n = t_k + u_k$. Since $\sum_{n=1}^{\infty} c_n$ and $\sum_{n=1}^{\infty} a_n$ converges, it follows that both limits $\lim_{k \to \infty} s_k$ and $\lim_{k \to \infty} t_k$ exist, and thus it follows that the limit $\lim_{k \to \infty} s_{2k}$ exists as well. Therefore, the limit $\lim_{k \to \infty} u_k = \lim_{k \to \infty} (s_{2k} - t_k) = \lim_{k \to \infty} s_{2k} - \lim_{k \to \infty} t_k$ exists, which implies that the series $\sum_{n=1}^{\infty} b_n$ is convergent, a contradiction. So the desired holds.

Question 3

(a) Let $\varepsilon > 0$ be given. Choose $\delta = \min\{\frac{\varepsilon}{6}, \frac{1}{4}\}$. Then it follows that if $|x-2| < \delta$, then one has $x-2 > -\delta \ge -\frac{1}{4}$, so one has $2x-3 = 2(x-2)+1 > 2\left(-\frac{1}{4}\right)+1 = \frac{1}{2}$. This implies that $|2x-3| > \frac{1}{2}$, or equivalently, $\frac{1}{|2x-3|} < 2$. Hence, we have

$$\left| \frac{x}{2x - 3} - 2 \right| = \left| \frac{x - 2(2x - 3)}{2x - 3} \right| = \left| \frac{6 - 3x}{2x - 3} \right| = \frac{3|x - 2|}{|2x - 3|} < 3 \cdot \delta \cdot 2 = 6\delta \le 6 \cdot \frac{\varepsilon}{6} = \varepsilon$$

whenever $|x-2| < \delta$. Since $\varepsilon > 0$ is arbitrary, it follows from the $\varepsilon - \delta$ definition that $\lim_{x \to 2} \frac{x}{2x-3} = 2$.

(b) (i) Write $f(x) = \cos\left(\frac{1}{2-\sqrt{x}}\right)$ and let $x_n = \left(2 - \frac{1}{n\pi}\right)^2$ for all $n \in \mathbb{N}$. Since $0 < 2 - \frac{1}{n\pi} < 2$ for all $n \in \mathbb{N}$, it follows that $x_n \neq 4$. Also, we have $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(2 - \frac{1}{n\pi}\right)^2 = (2 - 0)^2 = 4$, and $f(x_n) = \cos n\pi$. From here, we see that for all $k \in \mathbb{N}$,

$$f(x_{2k}) = \cos 2k\pi = 1 \Rightarrow \lim_{k \to \infty} f(x_{2k}) = 1,$$

 $f(x_{2k+1}) = \cos(2k+1)\pi = -1 \Rightarrow \lim_{k \to \infty} f(x_{2k+1}) = -1.$

Consequently, the sequence $(f(x_n))$ diverges so the limit $\lim_{x\to 4} f(x)$ does not exist.

(ii) Take a rational sequence (x_n) and an irrational sequence (y_n) such that $\lim_{n\to\infty} x_n = 0 = \lim_{n\to\infty} y_n$. Then we see that

$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} (x_n - 1)^3 = (0 - 1)^3 = -1,$$

$$\lim_{n \to \infty} F(y_n) = \lim_{n \to \infty} \frac{2^{y_n}}{1 + y_n^2} = \frac{2^0}{1 + 0^2} = 1.$$

Since $\lim_{n\to\infty} F(x_n) \neq \lim_{n\to\infty} F(y_n)$, it follows that the limit $\lim_{x\to 0} F(x)$ does not exist.

(c) Let $\varepsilon > 0$ be given. Since $\lim_{x \to b^-} f(x) = L$, it follows that there exists some $\delta > 0$, such that $a < b - \delta$, and if $b - \delta < x < b$, then one has $|f(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$, or equivalently, $L - \varepsilon < f(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$. This implies that $L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$, or equivalently, $|g(x) - L| < \varepsilon$. Since $\varepsilon > 0$ is arbitrary, it follows from definition that $\lim_{x \to b^-} g(x) = L$.

Question 4

- (a) Note that $f(x)^2 = 1 \Leftrightarrow f(x) = 1$ or f(x) = -1. Suppose on the contrary that f is not a constant function on (0,1). Then necessarily, there must exist $a,b \in (0,1)$ such that f(a) = 1 and f(b) = -1. WLOG, we may assume that a < b. Since f is continuous on (0,1), f is certainly continuous on [a,b], and thus by the Intermediate Value Theorem, there exists some $c \in [a,b] \subseteq (0,1)$ such that f(c) = 0. This would imply that $f(c)^2 = 0$, which is a contradiction. So the desired holds.
- (b) For each $n \in \mathbb{N}$, define $\varepsilon_0 = 1$, $x_n = 1 \frac{1}{n+2}$ and $y_n = 1 \frac{1}{n+1}$. Clearly, we have $x_n, y_n \in (0,1)$. Then we see that $\lim_{n \to \infty} |x_n y_n| = \lim_{n \to \infty} \left| \frac{1}{n+1} \frac{1}{n+2} \right| = 0$. However, we have $g(x_n) = n+2$ and $g(y_n) = n+1$, so $|g(x_n) g(y_n)| = 1 \ge \varepsilon_0$ for all $n \in \mathbb{N}$. So g is not uniformly continuous on (0,1).

Page: 3 of 5

Question 5

- (a) Let $\limsup b_n = b$. Note that for a given bounded sequence (x_n) , $\limsup x_n = x$ if and only if:
 - (1) There exists a convergent subsequence (x_{n_k}) of (x_n) converging to x, and
 - (2) For every other convergent subsequence $(x_{n_{\ell}})$ of (x_n) , one has $\lim_{\ell \to \infty} x_{n_{\ell}} \leq x$.

Firstly, we shall show that $ab \leq \limsup a_n b_n$. Since $\limsup b_n = b$, by property (1) it follows that there exists a convergent subsequence (b_{n_k}) of (b_n) that converges to b. Since $\lim_{n\to\infty} a_n = a$, it follows that (a_{n_k}) converges to a as well. Hence, the subsequence $(a_{n_k}b_{n_k})$ of (a_nb_n) converges to ab and so by property (2) one has $ab \leq \limsup a_nb_n$.

Next, we shall show that $\limsup a_nb_n \leq ab$. By property (1), it follows that there exists a convergent subsequence $(a_{n_k}b_{n_k})$ of (a_nb_n) that converges to $\limsup a_nb_n$. As $\lim_{k\to\infty}a_{n_k}=a>0$, it follows that there exists some $N\in\mathbb{N}$ such that $a_{n_k}>0$ for all $k\geq N$. Henceforth, we may assume that $a_{n_k}>0$ for all $k\in\mathbb{N}$ (else, we may simply discard the first N-1 terms of the sequence (a_{n_k})). We have $\lim_{k\to\infty}b_{n_k}=\lim_{k\to\infty}\frac{a_{n_k}b_{n_k}}{a_{n_k}}=\frac{1}{a}\limsup a_nb_n$. As $\limsup b_n=b$, by property (2) one has $\frac{1}{a}\limsup a_nb_n\leq b$, so $\limsup a_nb_n\leq ab$. Therefore, $\limsup a_nb_n=ab$ as desired.

(b) Let $L = \lim_{n \to \infty} n^p x_n$. Then one has $\lim_{n \to \infty} \frac{|x_n|}{1/n^p} = \lim_{n \to \infty} |n^p x_n| = |L| \ge 0$. As p > 1, we see that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges, and thus the series $\sum_{n=1}^{\infty} |x_n|$ converges by the Limit Comparison Test. The desired now follows.

Question 6

(i) First Solution (by Hai Bin):

Define the function h on [0,1] as follows: h(x) = g(x) - f(x) for all $x \in [0,1]$. Clearly, h is continuous on [0,1] with h(x) > 0 for all $x \in [0,1]$. Then it suffices to show that there exists some $\mu > 0$, such that $\mu f(x) \le h(x)$ for all $x \in [0,1]$.

By the Extreme Value Theorem, there exists some $c \in [0,1]$, such that $h(x) \geq h(c) > 0$ for all $x \in [0,1]$. Let L = h(c). Also, since f is continuous on [0,1], it follows that |f| is continuous on [0,1], and hence by the Extreme Value Theorem, there exists some $d \in [0,1]$, such that $|f(x)| \leq |f(d)| < |f(d)| + 1$ for all $x \in [0,1]$. Let M = |f(d)|, and we note that $M \geq 0$. This implies that $M + 1 \geq 1$ and $\frac{|f(x)|}{M+1} < 1$ for all $x \in [0,1]$. Thus, for all $x \in [0,1]$, we have

$$\frac{L}{M+1}f(x) \leq \frac{|f(x)|}{M+1} \cdot L \leq L \leq h(x).$$

The desired now follows by setting $\mu = \frac{L}{M+1}$ and $\lambda = 1 + \mu$.

Second Solution (by Simon):

If $f(x) \leq 0$, then any $\lambda > 1$ would do since $\lambda f(x) \leq f(x) < g(x)$. Henceforth, we shall consider only the case where f(x) > 0. Define the set $A = \left\{\frac{g(x)}{f(x)} : x \in [0,1], f(x) > 0\right\}$. Note that if $t \in A$, then $t = \frac{g(s)}{f(s)} > 1$ for some $s \in [0,1]$ such that f(s) > 0, so it follows that 1 is a lower bound of the set A, and hence inf $A \geq 1$. The claim is that inf A > 1.

Suppose inf A = 1. This implies that for each $n \in \mathbb{N}$, $1 + \frac{1}{n}$ is not a lower bound of A, so there exists some $x_n \in [0,1]$ such that $\frac{g(x_n)}{f(x_n)} < 1 + \frac{1}{n}$, or equivalently, $g(x_n) < \left(1 + \frac{1}{n}\right) f(x_n)$. Since

 $0 \le x_n \le 1$ for all $n \in \mathbb{N}$, it follows that (x_n) is bounded, and hence there exists a convergent subsequence (x_{n_k}) of (x_n) by the Bolzano-Weierstrass Theorem. Let $x = \lim_{k \to \infty} x_{n_k}$.

Notice that $0 \le x_{n_k} \le 1$, so one has $0 \le x = \lim_{k \to \infty} x_{n_k} \le 1$, i.e. $x \in [0,1]$. Since f and g are both continuous on [0,1], it follows that $\lim_{k \to \infty} f(x_{n_k}) = f(x)$ and $\lim_{k \to \infty} g(x_{n_k}) = g(x)$. Noting that $g(x_{n_k}) < \left(1 + \frac{1}{n_k}\right) f(x_{n_k})$ for all $k \in \mathbb{N}$, we see that by taking limits one has $g(x) = \lim_{k \to \infty} g(x_{n_k}) \le \lim_{k \to \infty} (1 + \frac{1}{n_k}) f(x_{n_k}) = f(x)$, which is a contradiction. Therefore, one has inf A > 1 as desired. The desired now follows by setting $\lambda = \inf A$.

(ii) Here, we shall construct a counter-example where the desired conclusion could not be reached if we replace the closed interval [0,1] by the open interval (0,1). Define the functions f and g on (0,1) as follows: $f(x) = \frac{1}{x}$ and $g(x) = 1 + \frac{1}{x}$ for all $x \in (0,1)$. Clearly, f and g are both continuous on (0,1) and 0 < f(x) < g(x) for all $x \in (0,1)$. Let $\lambda > 1$ be given.

Noting that $\frac{g(x)}{f(x)} = \left(1 + \frac{1}{x}\right)/\frac{1}{x} = x + 1$, we shall choose an $\varepsilon \in (0, 1)$, such that $1 < 1 + \varepsilon < \lambda$. Then we see that $\frac{g(\varepsilon)}{f(\varepsilon)} = \varepsilon + 1 < \lambda$. Thus one has $\lambda f(\varepsilon) > g(\varepsilon)$. Since $\lambda > 1$ is arbitrary, this would imply that such a λ could never be found, and hence the conclusion does not necessarily hold if the closed interval [0, 1] were to be replaced by the open interval (0, 1).

Question 7

(i) For each $n \in \mathbb{N}$, let $x_n = f(n)$. Since f is increasing, we must have $x_n = f(n) \le f(n+1) = x_{n+1}$, and hence we see that the sequence (x_n) is increasing. Also, since the function f is bounded, it follows that the sequence $(x_n) = (f(n))$ is bounded as well. Hence (x_n) is convergent by the Monotone Convergence Theorem. Let the limit of (x_n) be a.

Let $\varepsilon > 0$ be given. As $\lim_{n \to \infty} x_n = a$, it follows that there exists some $N \in \mathbb{N}$, such that if $n \geq N$, then one has $0 \leq a - f(n) = a - x_n < \varepsilon$. This implies that for all $x \geq N$, one has $0 \leq a - f(x) \leq a - f(N) < \varepsilon$, and thus $|f(x) - a| < \varepsilon$. Therefore, by definition, we have the limit $\lim_{x \to \infty} f(x)$ to exist (and equal to a).

(ii) We shall prove that f is uniformly continuous on $(0, \infty)$.

By a similar argument above, we can also show that the limit $\lim_{x\to 0} f(x)$ exists. Hence, we may define $f(0) = \lim_{x\to 0} f(x)$ so that the extended function f is continuous on $[0,\infty)$. Let $\varepsilon > 0$ be given. Since $\lim_{x\to \infty} f(x) = a$, it follows that there exists some K>0 such that if $x \ge K$, then one has $|f(x) - a| < \frac{\varepsilon}{4}$. Thus, for any $x_1, x_2 \ge K$, one has $|f(x_1) - f(x_2)| \le |f(x_1) - a| + |a - f(x_2)| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2} < \varepsilon$.

Next, since f is (uniformly) continuous on [0,K], it follows that there exists a $\delta>0$, such that if $x_1,x_2\in[0,K]$ and $|x_1-x_2|<\delta$, then one has $|f(x_1)-f(x_2)|<\frac{\varepsilon}{2}<\varepsilon$. Finally, if $0\leq x_1< K$, $x_2>K$ and $|x_1-x_2|=x_2-x_1<\delta$, then one has $|x_1-K|=K-x_1< x_2-x_1<\delta$, so one has $|f(x_1)-f(K)|<\frac{\varepsilon}{2}$. Thus, one has $|f(x_1)-f(x_2)|\leq |f(x_1)-f(K)|+|f(K)-f(x_2)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

The above argument now shows that if $x_1, x_2 \in [0, \infty)$ and $|x_1 - x_2| < \delta$, then one has $|f(x_1) - f(x_2)| < \varepsilon$. Hence f is uniformly continuous on $[0, \infty)$. The desired now follows.