

25W MONO CLASS-D AMPLIFIER

- 25W OUTPUT POWER: $R_L = 8\Omega/4\Omega$; THD = 10%
- HIGH EFFICIENCY
- WIDE SUPPLY VOLTAGE RANGE (UP TO ±25V)
- SPLIT SUPPLY
- OVERVOLTAGE PROTECTION
- ST-BY AND MUTE FEATURES
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7482 is an audio class-D amplifier assembled in Multiwatt15 package specially designed for high efficiency applications mainly for TV and Home Stereo sets.

Figure 1: Test and Application circuit.

June 1998 1/6

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	±28	V
P _{tot}	Power Dissipation T _{case} = 70°C	35	W
T_{stg} , T_{j}	Storage and Junction Temperature	-40 to 150	°C
V_{FREQ}	Maximum Voltage Across RF (pin6)	8	V
T _{op}	Operating Temperature Range	0 to 70	°C
ESD	Max ESD on Pins	±1.2	KV

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Symbol Parameter		Max.	Unit
R _{th j-case}	R _{th j-case} Thermal Resistance Junction-case		2.5	°C/W

PIN FUNCTIONS

N.	Name	Function
1	OUT	PWM OUTPUT
2	BOOTDIODE	BOOTSTRAP DIODE ANODE
3	BOOT	BOOTSTRAP
4	NC	NOT CONNECTED
5	FEEDCAP	FEEDBACK INTEGRATING CAPACITOR
6	FREQ	SETTING FREQUENCY RESISTOR
7	SGN-GND	SIGNAL GROUND
8	-V _{CC} SIGN	SIGNAL NEGATIVE SUPPLY
9	IN	INPUT
10	ST-BY/MUTE	CONTROL STATE PIN
11	+V _{CC} SIGN	POSITIVE SIGNAL SUPPLY
12	VREG	INTERNAL VOLTAGE REGULATOR
13	+V _{CC} POW	POSITIVE POWER SUPPLY
14	-V _{CC} POW	NEGATIVE POWER SUPPLY (to be connected to pin 13 via CS)
15	-V _{CC} POW	NEGATIVE POWER SUPPLY (to be connected to pin 13 via CS)

2/6

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, V_{CC} = $\pm 21V$; R_L = 8Ω ; R_S = 50Ω ; R_F = $12K\Omega$; Demod.. filter L = $60\mu H$, C = 470nF; f = 1KHz; T_{amb} = 25° C unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		±10		±25	V
Iq	Total Quiescent Current	$R_L = \infty$, No LC Filter 40		40	60	mA
Vos	Output Offset Voltage	Output Offset Voltage Play Condition -7		-30	10	mV
Po	Output Power	THD = 10% THD = 1%	20 14	25 18		W W
Po	Output Power	R_L = 4Ω ; V_{CC} = $\pm 16V$; THD = 10% THD = 1% (*)		25 18		W W
P _D	Maximum Dissipated Power	V_{CC} =±21V; R_L = 8 Ω ; P_O = 25W THD 10%		3.8		W
η	Efficiency = $\frac{P_O}{P_O + P_D} = \frac{P_O}{P_I}$ (**)	$V_{CC} = \pm 21V; R_L = 8\Omega;$ $P_O = 18W THD 10%$		87		%
η _{max}	Top Efficiency maximum	$V_{CC} = \pm 25V; R_L = 8\Omega;$ $P_O = 43W \text{ THD } 20\%$		88.5		%
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$		0.1		%
I _{max}	Overcurrent Protection Threshold	$R_L = 0$	3.5	5		А
Tj	Thermal Shut-down Junction Temperature			150		°C
G _V	Closed Loop Gain		29	30	31	dB
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz		7 12		μV μV
Vccтот мах	Maximum Total V _{CC} Protection		50			V
Ri	Input Resistance		20	30		kΩ
SVR	Supply Voltage Rejection	$f = 100Hz; V_r = 0.5$	46	60		dB
T _r , T _f	Rising and Falling Time			50		ns
R _{DSON}	Power Transistor on Resistance			0.4		Ω
F _{SW-OP}	Switching Frequency Operative Range		100		200	KHz
F _{SW}	Switching Frequency		100	120	140	KHz
B _F	Zero Signal Frequency Constant (***)			1.4x10 ⁹		HzΩ
R _F	Frequency Controller Resistor Range (****)		7	12	14	ΚΩ
		& STAND-BY FUNCTIONS				
V _{ST-BY}	Stand-by range				0.8	V
V _{MUTE}	Mute Range		1.8		2.5	V
V_{PLAY}	Play Range (1)		4			V
A _{MUTE}	Mute Attenuation		60	80		dB
I _{qST-BY}	Quiescent Current @ Stand-by			3	5	mA

^{*:} The output LC filter must be changed to: L = $30\mu H$; C = $1\mu F$

^{**:} Po = measured across the load using the following inductor: COIL 58120 MPPA2 (magnetics) TURNS: 28 \varnothing 1mm

^{***:} The zero-signal switching frequency can be obtained using the following expression: $F_{SW} = B_F/R_F$

^{****:} The maximum value of R_F is related to the maximum possible value for the voltage drop on R_F itself

⁽¹⁾ For V10 >5.2V, an input impedance of $10 \text{K}\Omega$ is to be considered

Figure 2: Recommended P.C. Board and Component Layout of the Circuit of Figure 1 (1.25:1 scale)

Note: Capacitor C5 must be as close as possible to device's pins 16 and 17

MULTIWATT15 PACKAGE MECHANICAL DATA

DIM.	mm				inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			5			0.197		
В			2.65			0.104		
С			1.6			0.063		
D		1			0.039			
E	0.49		0.55	0.019		0.022		
F	0.66		0.75	0.026		0.030		
G	1.02	1.27	1.52	0.040	0.050	0.060		
G1	17.53	17.78	18.03	0.690	0.700	0.710		
H1	19.6			0.772				
H2			20.2			0.795		
L	21.9	22.2	22.5	0.862	0.874	0.886		
L1	21.7	22.1	22.5	0.854	0.870	0.886		
L2	17.65		18.1	0.695		0.713		
L3	17.25	17.5	17.75	0.679	0.689	0.699		
L4	10.3	10.7	10.9	0.406	0.421	0.429		
L7	2.65		2.9	0.104		0.114		
М	4.25	4.55	4.85	0.167	0.179	0.191		
M1	4.63	5.08	5.53	0.182	0.200	0.218		
S	1.9		2.6	0.075		0.102		
S1	1.9		2.6	0.075		0.102		
Dia1	3.65		3.85	0.144		0.152		

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

