Univerzita Komenského, Bratislava fakulta Matematiky, Fyziky a Informatiky

Moderné regulárne výrazy

Bakalárska práca

Univerzita Komenského, Bratislava _{Fakulta Matematiky}, Fyziky a Informatiky

Moderné regulárne výrazy

Bakalárska práca

Študijný program: Informatika Študijný odbor: 2508 Informatika Školiace pracovisko: Katedra Informatiky

Školiteľ: RNDr. Michal Forišek, PhD.

Bratislava, 2013 Tatiana Tóthová

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Tatiana Tóthová

Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)

Študijný odbor: 9.2.1. informatika

Typ záverečnej práce: bakalárska **Jazyk záverečnej práce:** slovenský

Názov: Moderné regulárne výrazy

Ciel': Spraviť prehľad nových konštrukcií používaných v moderných knižniciach

s regulárnymi výrazmi (ako napr. look-ahead a look-behind assertions). Analyzovať tieto rozšírenia z hľadiska formálnych jazykov a prípadne tiež

z hľadiska algoritmickej výpočtovej zložitosti.

Vedúci:RNDr. Michal Forišek, PhD.Katedra:FMFI.KI - Katedra informatikyVedúci katedry:doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 23.10.2012

Dátum schválenia: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.

garant študijného programu

Podakovanie

Tatiana Tóthová

Abstrakt

Abstrakt po slovensky

 $\mathbf{K}\mathbf{l}\mathbf{\acute{u}}\mathbf{\acute{c}}\mathbf{o}\mathbf{v\acute{e}}$ slová: napíšme, nejaké, kľučové, slová

Abstract

Abstract in english

 $\textbf{Key words:} \ \mathrm{some, \ key, \ words}$

Obsah

Úvod												1							
1.1	v kapitoly Podnadpis Podnadpis	1																	2 2 4
Záver																			5
Literatí	ira																		6

$\mathbf{\acute{U}vod}$

Kapitola 1

Názov kapitoly 1

V tejto kapitole formálne definujem operácie z uvedenej dokumentácie jazyka Python [doc12] a ukážem ich silu. Budem používať nasledovné zápisy:

 L_1L_2 – zreťazenie jazykov L_1 a L_2

 L^* – iterácia $(L^* = \bigcup_{i=0}^{\infty} L^i, \text{ kde } L^0 = \{\varepsilon\}, L^1 = L \text{ a } L^{i+1} = L^i L)$

 \mathcal{R} – tradičné označenie triedy regulárnych jazykov

DKA/NKA – deterministický/nedeterministický konečný automat

1.1 Podnadpis 1

Definícia 1.1.1 (Greedy iterácia).

$$L_1 \circledast L_2 = \{uv \mid u \in L_1^* \land v \in L_2 \land u \text{ je najdlh} \check{s}ie \text{ } tak\acute{e}\}$$

Definícia 1.1.2 (Minimalistická iterácia).

$$L_1*?L_2 = \{uv \mid u \in L_1^* \land v \in L_2 \land u \text{ je najkrat} \\ \text{šie } tak\'e\}$$

Veta 1.1.3.
$$L_1 \circledast L_2 = L_1 *? L_2 = L_1^* L_2$$

 $D\hat{o}kaz$. \subseteq : Nech $w \in L_1 \circledast L_2$. Potom z definície w = uv vieme, že $u \in L_1^*$ a $v \in L_2$, teda $uv \in L_1^*L_2$. Analogicky ak $x = yz \in L_1*?L_2$, potom $yz \in L_1^*L_2$.

 \supseteq : Majme $w \in L_1^*L_2$ a rozdeľme na podslová u, v tak, že $u \in L_1^*, v \in L_2$ a w = uv. Takéto rozdelenie musí byť aspoň jedno. Ak je ich viac, vezmime to, kde je u najdlhšie. Potom $uv \in L_1 \otimes L_2$. Ak zvolíme u najkratšie, tak zasa $uv \in L_1 *?L_2$.

Dôsledok 1.1.4. Trieda \mathcal{R} je uzavretá na operácie \circledast a *?.

Definícia 1.1.5 (Lookahead).

$$L_1(? = L_2)L_3 = \{uvw \mid u \in L_1 \land v \in L_2 \land vw \in L_3\}$$

Operáciu (? = ...) nazývame lookahead.

Veta 1.1.6. Nech $L_1, L_2, L_3 \in \mathcal{R}$. Potom $L = L_1(? = L_2)L_3 \in \mathcal{R}$.

 $D\hat{o}kaz$. Nech L_1, L_2, L_3 sú regulárne, nech $A_i = (K_i, \Sigma_i, \delta_i, q_{0i}, F_i)$ sú DKA také, že $L(A_i) = L_i, i \in \{1, 2, 3\}$. Zostrojím NKA $A = (K, \Sigma, \delta, q_0, F)$ pre L, kde $K = K_1 \cup K_2 \times K_1 \cup K_2 \times K_2 \cup K_3 \cup K_3 \cup K_4 \cup K_4 \cup K_4 \cup K_4 \cup K_5 \cup K_4 \cup K_5 \cup K_4 \cup K_5 \cup$

 $K_3 \cup K_3$ (predp. $K_1 \cap K_3 = \emptyset$), $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$, $q_0 = q_{01}$, $F = F_3 \cup F_2 \times F_3$, δ funkciu definujeme nasledovne:

$$\forall q \in K_{1}, \forall a \in \Sigma : \delta(q, a) \ni \delta_{1}(q, a)$$

$$\forall q \in F_{1} : \delta(q, \varepsilon) \ni [q_{02}, q_{03}]$$

$$\forall p \in K_{2}, \forall q \in K_{3}, \forall a \in \Sigma_{2} \cap \Sigma_{3} : \delta([p, q], a) \ni [\delta(p, a), \delta(q, a)]$$

$$\forall p \in F_{2}, \forall q \in K_{3} : \delta([p, q], a) \ni \delta(q, a)$$

L(A) = L.

 \supseteq : Máme $w \in L$ a chceme preň nájsť výpočet na A. Z definície L vyplýva w = xyz, kde $x \in L_1, y \in L_2$ a $yz \in L_3$, teda existujú akceptačné výpočty pre x, y, yz na DKA A_1, A_2, A_3 . Z toho vyskladáme výpočet pre w na A nasledovne. Výpočet pre x bude rovnaký ako na A_1 . Z akceptačné stavu A_1 vieme na ε prejsť do stavu $[q_{02}, q_{03}]$, kde začne výpočet pre y. Ten vyskladáme z A_2 a A_3 tak, že si ich výpočty napíšeme pod seba a stavy nad sebou budú tvoriť karteziánsky súčin stavov v A (keďže A_2 aj A_3 sú deterministické, tieto výpočty na y budú rovnako dlhé). $y \in L_2$, teda A_2 skončí v akceptačnom stave. Podľa δ funkcie v A vieme pokračovať len vo výpočte na A_3 , teda doplníme zvyšnú postupnosť stavov pre výpočet z. Keďže $yz \in L_3$ a $F_3 \subseteq F$ (resp. $F_2 \times F_3 \subseteq F$ pre $z = \varepsilon$), automat A akceptuje.

 \subseteq : Nech $w \in L(A)$, potom existuje akceptačný výpočet na A. Z toho vieme w rozdeliť na x,y a z tak, že x je slovo spracovávené od začiatku po prvý príchod do stavu $[q_{02},q_{03}],y$ odtiaľto po posledný stav reprezentovaný karteziánskym súčinom stavov a zvyšok bude z. Nevynechali sme žiadne znaky a nezmenili poradie, teda w=xyz. Do $[q_{02},q_{03}]$ sa A môže prvýkrát dostať len vtedy, ak bol v akceptačnom stave A_1 . Prechod do $[q_{02},q_{03}]$ je na ε , takže $x \in L_1$. Práve tento stav je počiatočný pre A_2 aj A_3 . Ak $z=\varepsilon$, tak akceptačný stav A je z $F_2 \times F_3$ a $y \in L_2, y \in L_3$ a aj $yz \in L_3$. Z toho podľa definície vyplýva, že $xyz=w \in L$. Ak $z \neq \varepsilon$, potom je akceptačný stav A z F_3 . Podľa δ funkcie sa z karteziánskeho súčinu stavov do normálneho stavu dá prejsť len tak, že A_2 akceptuje, teda $y \in L_2$. A_3 akceptuje na konci, čo znamená $yz \in L_3$. Znova podľa definície operácie lookahead $xyz=w \in L$.

Definícia 1.1.7 (Lookbehind).

$$L_1(? <= L_2)L_3 = \{uvw \mid uv \in L_1 \land v \in L_2 \land w \in L_3\}$$

Operáciu (? <= ...) nazývame lookbehind.

Veta 1.1.8. Nech $L_1, L_2, L_3 \in \mathcal{R}$. Potom $L = L_1$ (? $\leq L_2$) $L_3 \in \mathcal{R}$.

 $D\hat{o}kaz$. Podobne ako pri lookahead. (Karteziánsky súčin stavov L_1 a L_2 , ale A_2 sa pripája v každom stave A_1 - celkový NKA si potom nedeterministicky zvolí jeden moment tohto napojenia.)

TODO!!!lookbehind - podobne ako lookahead

Veta 1.1.9. \mathcal{L}_{CF} nie je uzavretá na operácie lookahead a lookbehind.

```
Dôkaz. Nech L_1, L_2, L_3, L_4 \in \mathcal{L}_{CF}. L_1 = \{a^n b^n \mid n \ge 1\}, L_2 = \{a * b^n c^n \mid n \ge 1\}, L_3 = \{a^n b^n c * \mid n \ge 1\}, L_4 = \{ab^n c^n \mid n \ge 1\}. Potom d(? = L_1)L_2 = \{da^n b^n c^n \mid n \ge 1\} a L_3(? <= L_4)d = \{a^n b^n c^n d \mid n \ge 1\}, čo nie sú bezkontextové jazyky.
```

Veta 1.1.10. \mathcal{L}_{CS} je uzavretá na operáciu lookahead.

 $D\hat{o}kaz$. Pre $L_1, L_2, L_3 \in \mathcal{L}_{CS}$ a slovo z $L = L_1(? = L_2)L_3$ zostrojíme LBA A z LBA A_1, A_2, A_3 pre dané kontextové jazyky. Najprv sa pozrime na štruktúru vstupu – prvé je slovo z L_1 a za ním nasleduje slovo z L_3 , pričom jeho prefix patrí do L_2 . Preto, aby A mohol simulovať dané lineárne ohraničené automaty, je potrebné označiť hranice jednotlivých slov.

Na začiatku výpočtu A prejde pásku a nedeterministicky označí 2 miesta – koniec slov pre A_1 a A_2 . Následne sa vráti na začiatok a simuluje A_1 . Ak akceptuje, A pokračuje a presunie sa za označený koniec vstupu pre A_1 . Inak sa zasekne. V tomto bode sa začína vstup pre A_2 aj A_3 , teda slovo až do konca prepíše na 2 stopy. Najprv na hornej simuluje A_2 . Pokiaľ A_2 neskončí v akceptačnom stave, A sa zasekne. Inak sa vráti na označené miesto a simuluje A_3 na spodnej stope až do konca vstupu. Akceptačný stav A_3 znamená akceptáciu celého vstupného slova.

1.2 Podnadpis 2

Záver

Literatúra

- [Cox07] Russ Cox. Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl, PHP, Python, Ruby, ...), 2007. http://swtch.com/~rsc/regexp/regexp1.html [Online; accessed 30-December-2012].
- [CSY03] CEZAR CÂMPEANU, KAI SALOMAA, and SHENG YU. A formal study of practical regular expressions. *International Journal of Foundations of Computer Science*, 14(06):1007-1018, 2003. http://www.worldscientific.com/doi/abs/10.1142/S012905410300214X [Online; accessed 19-March-2013].
- [doc12] Python documentation. Regular expressions operations, 2012. http://docs.python.org/3.1/library/re.html [Online; accessed 30-December-2012].