Natural Language Processing with Classification and Vector Spaces

Sentiment Analysis with Logistic Regression

2021.01.28

Supervised ML & Sentiment Analysis

- Supervised machine learning process:
 - Compare the predicted values of the inputs with the correct answers.
 - The difference represents the cost and updates the parameters of the prediction function.

Supervised ML & Sentiment Analysis

- Sentiment Analysis
 - Represent the text as features, then train logistic regression classifier.
 - Then use it to classify the text.
 - Classify 1, for a positive sentiment, or 0, for a negative sentiment.

Vocabulary & Feature Extraction

- ullet Represent text as a vector of dimension V (vocabulary size).
- Put a 1 in the corresponding index for any word, and a 0 otherwise.

- ullet As V gets larger, the vector becomes more sparse.
 - Having many more features, training parameters \rightarrow larger training/prediction time.

Feature Extraction with Frequencies

- Use as features into logistic regression classifier.
 - Keep track of the number of times, that's where it shows up as positive/negative class.

Positive tweets	Negative tweets
I am happy because I am learning NLP	I am sad, I am not learning NLP
I am happy	I am sad

Encode each tweet as a vector.

			-
Vocabulary	PosFreq (1)	NegFreq (0)	
I	3	3	•
am	3	3	fregs: dictionary mapping from
happy	2	0	(word, class) to frequency
because	1	0	(Word, class) to frequency
learning	1	1	
NLP	1	1	
sad	0	2	
not	0	1	
			•

Feature Extraction with Frequencies

- In the table \rightarrow How words like happy and sad tend to take clear sides.
 - Represent it with a vector of dimension 3 = Feature.

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	_1_
NLP	_1_
sad	0
not	0

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

End up getting the following feature vector [1, 8, 11].

Preprocessing

- Perform the following:
 - Eliminate handles and URLs.
 - 2. Tokenize the string into words.
 - 3. Remove stop words like 'and, is, a, on, etc.'.
 - 4. Stemming or convert every word to its stem. (dancer, dancing, danced → 'danc')
 - Convert all your words to lower case.

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

tuning GREAT AI model

Preprocessed tweet:

[tun, great, ai, model]

Putting it all together

Text → Preprocessing → Feature extraction → Numerical reps.

• Your input X becomes of dimension (m,3) as follows:

$$\boldsymbol{X} = \begin{bmatrix} 1 & X_1^{(1)} & X_2^{(1)} \\ 1 & X_1^{(2)} & X_2^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & X_1^{(m)} & X_2^{(m)} \end{bmatrix}$$

Logistic Regression Overview

- Same as supervised learning process
 - ullet For logistic regression, prediction function F is equal to the sigmoid function.

Logistic Regression Overview

- Use the sigmoid function which outputs a probability between 0 and 1.
 - ullet With some weight parameter heta and some input x^i is defined as follows:

$$h(x^{(i)},\theta) = \frac{1}{1+e^{-\theta^T x^{(i)}}} \underbrace{\frac{0.8}{0.6}}_{0.6} \underbrace{\frac{0.7}{0.6}}_{0.6} \underbrace{\frac{0.7}{$$

Logistic Regression: Training

• The process:

- Initialize θ , use in sigmoid, compute the gradient, update θ , then calculate the cost until good enough.
- Keep training until the cost converges.

Logistic Regression: Testing

- Test the validation set on model to get predictions.
 - The predictions are the outputs of the sigmoid function:
 - Over 0.5, assign it to a positive class, otherwise, a negative class.

$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \geq 0.5$$

$$\begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \geq 0.5 = \begin{bmatrix} 0.3 \geq 0.5 \\ \hline 0.8 \geq 0.5 \\ \hline 0.5 \geq 0.5 \\ \hline \vdots \\ pred_m \geq 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ \hline 1 \\ \hline 1 \\ \vdots \\ pred_m \end{bmatrix}$$

To compute accuracy,

Accuracy
$$\longrightarrow \sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

Logistic Regression: Cost Function

Logistic regression cost function:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log h\left(x^{(i)}, heta
ight) + \left(1 - y^{(i)}
ight) \log \left(1 - h\left(x^{(i)}, heta
ight)
ight)
ight]$$

$y^{(i)}$	$h(x^{(i)}, \theta)$		$y^{(i)}$			
0	any	0	1	any	0	
1	0.99	~0	0	0.01	~0	
1	~0	-inf	0	~1	-Inf	