Text Preprocessing

COMP90042
Natural Language Processing
Lecture 2

Definitions

- Corpus: a collection of documents.
- Document: one or more sentences.
- Sentence
 - "The student is enrolled at the University of Melbourne."
- Words
 - Sequence of characters with a meaning and/or function
- Word token: each instance of "the" in the sentence above.
 - E.g. 9 word tokens in the example sentence.
- Word type: the distinct word "the".
 - Lexicon ("dictionary"): a group of word types.
 - ▶ E.g. 8 word types in the example sentence.

How Many Unique Words?

	#Tokens (N)	#Type (IVI)
Switchboard phone conversation	2.4 million	20 thousand
Shakespeare	800 thousand	31 thousand
Google N-gram	1 trillion	13 million

Church and Gale (1990): $IVI > O(N^{1/2})$

Why Preprocess?

- Most NLP applications have documents as inputs:

 - "Eu estive em Melbourne no ano passado." → "I
 was in Melbourne last year."
- Key point: language is compositional. As humans, we can break these documents into individual components. To understand language, a computer should do the same.
- Preprocessing is the first step.

Preprocessing Steps

- 1. Remove unwanted formatting (e.g. HTML)
- 2. Sentence segmentation: break documents into sentences
- 3. Word tokenisation: break sentences into words
- Word normalisation: transform words into canonical forms
- 5. Stopword removal: delete unwanted words

```
"Hi there. I'm ["Hi there.", [["hi", "there", "."], "I'm TARS."] ["i", "am", "tars", "."]]

"Hi there. I'm [["Hi", "there", "."], ["I", "m", "TARS", "."]] [[],["tars"]]
```

Sentence Segmentation

Sentence Segmentation

- Naïve approach: break on sentence punctuation ([.?!])
 - But periods are used for abbreviations!
 (U.S. dollar, ..., Yahoo! as a word)
- Second try: use regex to require capital ([.?!] [A-Z])
 - But abbreviations often followed by names (Mr. Brown)
- Better yet: have lexicons
 - But difficult to enumerate all names and abbreviations
- State-of-the-art uses machine learning, not rules

Binary Classifier

- Looks at every "." and decides whether it is the end of a sentence.
 - Decision trees, logistic regression
- Features
 - Look at the words before and after "."
 - Word shapes:
 - Uppercase, lowercase, ALL_CAPS, number
 - Character length
 - Part-of-speech tags:
 - Determiners tend to start a sentence

Word Tokenisation

Word Tokenisation: English

- Naïve approach: separate out alphabetic strings (\w+)
- Abbreviations (*U.S.A.*)
- Hyphens (merry-go-round vs. well-respected vs. yesbut)
- Numbers (1,000,00.01)
- Dates (3/1/2016)
- Clitics (n't in can't)
- Internet language (http://www.google.com, #metoo, :-))
- Multiword units (New Zealand)

Word Tokenisation: Chinese

- Some Asian languages are written without spaces between words
- In Chinese, words often correspond to more than one character

墨大

的

学生

与众不同

Unimelb

'S

students (are)

special

Word Tokenisation: Chinese

- Standard approach assumes an existing vocabulary
- MaxMatch algorithm
 - Greedily match longest word in the vocabulary

 $V = \{ \mathbb{B}, \mathbb{T}, \mathbb{N}, \mathbb{P}, \mathbb{T}, \mathbb{P}, \mathbb{N}, \mathbb{N$

墨大的学生与众不同

match 墨大, match 的, match 学生, match 与众不同, move to 的 move to 学 move to 与 done

Word Tokenisation: Chinese

- But how do we know what the vocabulary is
- And doesn't always work

去 买新西兰花go buyNew Zealandflowers去 买新 西兰花go buynew broccoli

Word Tokenisation: German

- Lebensversicherungsgesellschaftsangestellter
- = life insurance company employee
- Requires compound splitter

Subword Tokenisation

- Colourless green ideas sleep furiously →
 [colour] [less] [green] [idea] [s] [sleep] [furious] [ly]
- One popular algorithm: byte-pair encoding (BPE)
- Core idea: iteratively merge frequent pairs of characters
- Advantage:
 - Data-informed tokenisation
 - Works for different languages
 - Deals better with unknown words

- Dictionary
 - ▶ [5] I o w _
 - ▶ [2] I o w e s t _
 - ▶ [6] n e w e r _
 - ▶ [3] wider_
 - ▶ [2] n e w _
- Vocabulary
 - _, d, e, i, l, n, o, r, s, t, w

- Dictionary
 - ▶ [5] I o w _
 - ▶ [2] I o w e s t _
 - ▶ [6] n e w e r_
 - ▶ [3] wider_
 - ▶ [2] n e w _
- Vocabulary
 - _, d, e, i, l, n, o, r, s, t, w, r_

- Dictionary
 - ▶ [5] I o w _
 - ▶ [2] I o w e s t _
 - ▶ [6] n e w er_
 - ▶ [3] wider_
 - ▶ [2] n e w _
- Vocabulary
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_

- Dictionary
 - ▶ [5] I o w _
 - ▶ [2] I o w e s t _
 - ▶ [6] n ew er_
 - ▶ [3] wider_
 - ▶ [2] n ew _
- Vocabulary
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_, ew

- Vocabulary
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_, ew
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_, ew, new
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_, ew, new, lo
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_, ew, new, lo, low
 - __, d, e, i, l, n, o, r, s, t, w, r__, er__, ew, new, lo, low, newer__
 - _, d, e, i, l, n, o, r, s, t, w, r_, er_, ew, new, lo, low, newer_, low_

- In practice BPE will run with thousands of merges, creating a large vocabulary
- Most frequent words will be represented as full words
- Rarer words will be broken into subwords
- In the worst case, unknown words in test data will be broken into individual letter

Word Normalisation

Word Normalisation

- Lower casing (Australia → australia)
- Removing morphology
- Correcting spelling
- Expanding abbreviations (U.S.A → USA)
- Goal:
 - Reduce vocabulary
 - Maps words into the same type

Inflectional Morphology

- Inflectional morphology creates grammatical variants
- English inflects nouns, verbs, and adjectives
 - Nouns: number of the noun (-s)
 - Verbs: number of the subject (-s), the aspect (-ing) of the action and the tense (-ed) of the action
 - Adjectives: comparatives (-er) and superlatives (-est)
- Many languages have much richer inflectional morphology than English
 - E.g. French inflects nouns for gender (un chat, une chatte)

Lemmatisation

- Lemmatisation means removing any inflection to reach the uninflected form, the *lemma*
 - ▶ speaking → speak
- In English, there are irregularities that prevent a trivial solution:
 - ▶ poked → poke (not pok)
 - stopping → stop (not stopp)
 - ▶ watches → watch (not watche)
 - was → be (not wa)
- A lexicon of lemmas needed for accurate lemmatisation

Derivational Morphology

- Derivational morphology creates distinct words
- English derivational suffixes often change the lexical category, e.g.
 - → -ly (personal → personally)
 - → -ise (final → finalise)
 - → -er (write → writer)
- English derivational prefixes often change the meaning without changing the lexical category
 - ▶ write → rewrite
 - ▶ healthy → unhealthy

Stemming

- Stemming strips off all suffixes, leaving a stem
 - ► E.g. automate, automatic, automation → automat
 - Often not an actual lexical item
- Even less lexical sparsity than lemmatisation
- Popular in information retrieval
- Stem not always interpretable

- Most popular stemmer for English
- Applies rewrite rules in stages
 - First strip inflectional suffixes,
 - E.g. *-ies* → *-i*
 - Then derivational suffixes
 - E.g -isation → -ise → -i

- c (lowercase) = consonant; e.g. 'b', 'c', 'd'
- v (lowercase) = vowel; e.g. 'a', 'e', 'i', 'o', 'u'
- C = a sequence of consonants
 - s, ss, tr, bl
- V = a sequence of vowels
 - o, oo, ee, io

- A word has one of the four forms:
 - CVCV ... C
 - CVCV ... V
 - VCVC ... C
 - VCVC ... V
- Which can be represented as:
 - ▶ [C]VCVC ... [V]
 - ▶ [C] (VC)^m [V]
 - m = measure

- m=0: TR, EE, TREE, Y, BY
- m=1: TROUBLE, OATS, TREES, IVY
- m=2: TROUBLES, PRIVATE, OATEN, ORRERY

- TREE = $C(VC)^0V$
- TREES = $C(VC)^1$
- TROUBLES = $C(VC)^2$

- Rules format: (condition) S1 → S2
- e.g. (m > 1) EMENT \rightarrow null
 - ▶ REPLACEMENT → REPLAC
- Always use the longest matching S1
 - ► CARESSES → CARESS
 - CARESS → CARESS
 - ▶ CARES → CARE

Rules: SSES → SS IES → I SS → SS S → null

Step 1: plurals and past participles

	Rule	Positive Example	Negative Example
a	SSES → SS	caresses → caress	
	IES → I	ponies → poni	
	SS → SS	caress → caress	
	S → null	cats → cat	
b	(m>0) EED → EE	agreed → agree	feed → feed
	(*v*) ED → null *v* = stem has vowel	plastered → plaster	bled → bled
	(*v*) ING →	motoring → motor	sing → sing
b+	AT → ATE	conflat(ed) → conflate	
С	(*v) Y → I	happy → happi	

• Step 2, 3, 4: derivational inflections

	Rule	Positive Example
2	(m>0) ATIONAL → ATE	relational → relate
	(m>0) TIONAL → TION	conditional → condition
	(m>0) ENCI → ENCE	valenci → valence
	(m>0) ANCI → ANCE	hesitanci → hesitance
3	(m>0) ICATE → IC	triplicate → triplic
	(m>0) ATIVE → null	formative → form
	(m>0) ALIZE → AL	formalize → formal
4	(m>1) AL → null	revival → reviv
	(m>1) ER → null	airliner → airlin
	(m>1) ATE → null	activate → activ

Step 5: tidying up

	Rule	Positive Example
5	(m>1) E → null	probate → probat
	<pre>(m=1 and not *o) E → null *o = stem ends cvc, and second c is not w, x or y (e.gWIL, -HOP)</pre>	cease → ceas
	<pre>(m>1 and *d and *L) null → single letter *d = stem ends with double consonant (e.gTT) *L = stem ends with 'l'</pre>	controll → control

- computational → comput
 - ▶ step 2: ATIONAL → ATE: computate
 - step 4: ATE → null: comput
- computer → comput
 - step 4: ER → null: comput

Fixing Spelling Errors

- Why fix them?
 - Spelling errors create new, rare types
 - Disrupt various kinds of linguistic analysis
 - Very common in internet corpora
 - In web search, particularly important in queries
- How?
 - String distance (Levenshtein, etc.)
 - Modelling of error types (phonetic, typing etc.)
 - Use an n-gram language model

Other Word Normalisation

- Normalising spelling variations
 - Normalize → Normalise (or vice versa)
 - Ur so coool! → you are so cool
- Expanding abbreviations
 - ▶ US, U.S. → United States
 - imho → in my humble opinion

Stopword Removal

Stop Words

- Definition: a list of words to be removed from the document
 - Typical in bag-of-word (BOW) representations
 - Not appropriate when sequence is important
- How to choose them?
 - All closed-class or function words
 - E.g. the, a, of, for, he, ...
 - Any high frequency words
 - NLTK, spaCy NLP toolkits

A Final Word

- Preprocessing unavoidable in text analysis
- Can have a major effect on downstream applications
- Exact steps may vary depending on corpus, task
- Simple rule-based systems work well, but rarely perfectly
- Language-dependent

Further Reading

- J&M3 Ch 2. on Normalisation (includes a review of regex and Levenshtien distance)
- Details on the Porter Stemmer algorithm http:// snowball.tartarus.org/algorithms/porter/ stemmer.html