

 $fines\ comerciales.$

Topología I Examen VIII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Jose Antonio Gálvez López¹.

Descripción Convocatoria Ordinaria.

Fecha 18 de enero de 2023.

Duración 3 horas.

¹El examen lo pone el departamento.

Ejercicio 1 (5 puntos). Sea $\|\cdot\|$ la norma euclídea usual en \mathbb{R}^2 . Se consideran los conjuntos $X = \{(x,y) \in \mathbb{R}^2 \mid \|(x,y)\| \leq 2\}$ y $S = \{(x,y) \in \mathbb{R}^2 \mid \|(x,y)\| = 2\}$. Para cada $p = (x,y) \in X$, se considera la siguiente familia:

- Si $p \in S$, $\beta_p = \{B((0,0), r) \cup \{p\} \mid 0 < r < 1\}.$
- Si $p \notin S$, $\beta_p = \{B(p,r) \mid 0 < r < 2 ||p||\}.$

Responde razonadamente a las siguientes preguntas:

1. (1.5 puntos) Demuestra que existe una única topología \mathcal{T} en X tal que las familias anteriores forman una base de entornos de cada punto. En los siguientes apartados, se considera el espacio topológico (X, \mathcal{T}) .

Demostramos las 4 condiciones del Teorema corespondiente. En primer lugar, sea $p \in S$:

- V1) Veamos que $\beta_p \neq \emptyset$. Como $]0,1[\neq \emptyset$, entonces $\beta_p \neq \emptyset$. Por ejemplo, $B(0,1/2) \cup \{p\} \in \beta_p$.
- V2) Dado $V \in \beta_p$, de forma directa se tiene que $p \in V$.
- V3) Sean $V_1, V_2 \in \beta_p$. Tenemos que ver que $\exists V_3 \in \beta_p$ tal que $V_3 \subset V_1 \cap V_2$. Sean $V_1 = B(0, r_1) \cup \{p\}$ y $V_2 = B(0, r_2) \cup \{p\}$, con $r_1, r_2 \in]0, 1[$. Entonces, tomando $r_3 = \min\{r_1, r_2\}$, tenemos que $V_3 = B(0, r_3) \cup \{p\} \in \beta_p$, y además $V_3 = V_1 \cap V_2$, por lo que V_3 cumple lo que buscamos.
- V4) Sea $V \in \beta_p$. Comprobemos que $\exists V' \in \beta_p$ tal que $V' \subset V$ y, para todo $q \in V'$, $\exists V_q \in \beta_q$ tal que $V_q \subset V$. Sea $V = B(0,r) \cup \{p\}$, con $r \in]0,1[$. Entonces, tomando r' = r/2, sea $V' = B(0,r') \cup \{p\} \in \beta_p$. Como r' < r, entonces $V' \subset V$. Sea ahora $q \in V'$:
 - Si q = p, tomamos $V_q = V'$, y tenemos que $V_q \subset V$.
 - Si $q \neq p$, entonces $q \in B(0, r')$, por lo que $q \notin S$. Por tanto, tenemos que $V_q = B(q, r_q) \in \beta_q$, para cierto $0 < r_q < 2 \|q\|$. Calculemos r_q de forma que $V_q = B(q, r_q) \subset V$. Para ello, necesitamos que, para todo $x \in B(q, r_q)$, se tenga que $\|x\| < r$:

$$||x - q|| < r_q \Longrightarrow ||x|| < r_q + ||q|| < r_q + r' = r_q + \frac{r}{2} < r \Longleftrightarrow r_q < \frac{r}{2}$$

Por tanto, tomando $r_q = \frac{\min\left\{\frac{r}{2}, \ 2 - \|q\|\right\}}{2}$, tenemos lo buscado.

Sea ahora $p \in X \setminus S$, por lo que $p \in B(0,2)$. Veamos que β_p cumple las condiciones del Teorema:

- V1) Veamos que $\beta_p \neq \emptyset$. Como ||p|| < 2, tenemos que $]0, 2 ||p||[\neq \emptyset$, por lo que $\beta_p \neq \emptyset$. Por ejemplo, $B(p, nicefrac2 ||p||2) \in \beta_p$.
- V2) Dado $V \in \beta_p$, de forma directa se tiene que $p \in V$.

- V3) Sean $V_1, V_2 \in \beta_p$. Tenemos que ver que $\exists V_3 \in \beta_p$ tal que $V_3 \subset V_1 \cap V_2$. Sean $V_1 = B(p, r_1)$ y $V_2 = B(p, r_2)$, con $r_1, r_2 \in]0, 2 - ||p||[$. Entonces, tomando $r_3 = \min\{r_1, r_2\}$, tenemos que $V_3 = B(p, r_3) \in \beta_p$, y además $V_3 = V_1 \cap V_2$, por lo que V_3 cumple lo que buscamos.
- V4) Sea $V \in \beta_p$. Comprobemos que $\exists V' \in \beta_p$ tal que $V' \subset V$ y, para todo $q \in V'$, $\exists V_q \in \beta_q$ tal que $V_q \subset V$. Sea V = B(p, r), con $r \in]0, 2 - ||p||[$. Entonces, tomando r' = r/2, sea $V' = B(p, r') \in \beta_p$. Como r' < r, entonces $V' \subset V$. Sea ahora $q \in V'$:
 - Si $||q|| \ge 2$: Veamos que este caso no se puede dar. Como $q \in V' = B(p, r')$, entonces ||q - p|| < r' < r < 2 - ||p||. Además, por la desigualdad triangular, tenemos que:

$$||q|| - ||p|| \le ||q - p|| < 2 - ||p||$$

Por tanto, tenemos que ||q|| - ||p|| < 2 - ||p||, por lo que ||q|| < 2. Pero esto es una contradicción, ya que habíamos supuesto que $||q|| \ge 2$.

■ Si ||q|| < 2: Tenemos que $V_q = B(q, r_q) \in \beta_q$, para cierto $0 < r_q < 2 - ||q||$. Calculemos r_q de forma que $V_q = B(q, r_q) \subset V$. Para ello, necesitamos que, para todo $x \in B(q, r_q)$, se tenga que ||x|| < r:

$$||x - q|| < r_q \Longrightarrow ||x|| < r_q + ||q|| < r_q + r' = r_q + \frac{r}{2} < r \Longleftrightarrow r_q < \frac{r}{2}$$

Por tanto, tomando $r_q = \frac{\min\left\{\frac{r}{2}, \ 2 - \|q\|\right\}}{2}$, tenemos lo buscado.

2. (1 punto) Dado el subconjunto $A = \{(x, y) \in X : x > 0\}$, calcula el interior y la frontera de A.

Representamos en la siguiente figura el conjunto A:

Calcularemos en primer lugar A° . Tenemos que:

$$p \in A^{\circ} \iff \exists V \in \beta_p \mid V \subset A$$

Veamos que, si $p \in S$, entonces $p \notin A^{\circ}$. Sea $p \in S$, por lo que dado $V \in \beta_p$, se tiene que $V = B(0,r) \cup \{p\}$, con $r \in]0,1[$. Por tanto, tenemos que $\left(-\frac{r}{2},0\right) \in V$, pero $\left(-\frac{r}{2},0\right) \notin A$, por lo que $V \not\subset A$. Por tanto, $p \notin A^{\circ}$.

Veamos entonces que $A^{\circ} = \widetilde{A}$, con:

$$\widetilde{A} = A \cap B(0,2) = A \setminus S(0,2) = \{(x,y) \in X \mid x > 0, \ \|(x,y)\| < 2\}$$

- ⊃) Sea $p = (x, y) \in \widetilde{A}$, y veamos que $p \in A^{\circ}$. Como $p \in X$, $p \notin S$, entonces dado $V \in \beta_p$, se tiene que V = B(p, r), con $r \in]0, 2 ||p||[$. Buscamos el valor de r tal que $V = B(p, r) \subset A$. Para ello, necesitamos que, para todo $(x', y') \in B(p, r)$, se tenga que $(x', y') \in A$; es decir, x' > 0 y $||(x', y')|| \leq 2$. Tomamos entonces $r = \min\{2 ||p||, ||x/2\}$, y veamos que $B(p, r) \subset A$:
 - C) Sea $q = (x', y') \in B(p, r)$, y veamos que $q \in A$. En primer lugar, comprobamos que $q \in X$, es decir, $||q|| \leq 2$. Como $q \in B(p, r)$, entonces ||q p|| < r, por lo que:

$$||q - p|| < r \Longrightarrow ||q|| < r + ||p|| < 2 - ||p|| + ||p|| = 2$$

Por tanto, $q \in X$. Veamos ahora que $q \in A$, es decir, x' > 0. Supongamos que $x' \leq 0$, y veamos que esto es una contradicción. Como $q \in B(p, r)$, entonces ||q - p|| < r, por lo que:

$$||q - p|| = \sqrt{(x' - x)^2 + (y' - y)^2} < r \Longrightarrow |x' - x| < r \Longrightarrow$$
$$\Longrightarrow x - r < x' < x + r \Longrightarrow x - r < x'$$

No obstante, esto es una contradicción, ya que:

$$x - r > x - x/2 = x/2 > 0$$

Por tanto, x' > 0, por lo que $q \in A$.

Por tanto, como $\exists r \in]0, 2 - ||p||[$ tal que $B(p, r) \subset A$, entonces $p \in A^{\circ}$.

C) Sea $p \in A^{\circ}$, y veamos que $p \in A$. Sabemos que $p \in A$, y supongamos que $p \in A \cap S$. Como hemos visto antes, esto es una contradicción, ya que $p \notin A^{\circ}$. Por tanto, $p \in A \setminus S = \widetilde{A}$.

Por tanto, queda demostrado que $A^{\circ} = \widetilde{A}$. Calculemos ahora el cierre. Para ello, sabemos que:

$$p \in \overline{A} \iff \forall V \in \beta_p, \ V \cap A \neq \emptyset$$

Veamos entonces que $\overline{A} = \widehat{A}$, con:

$$\widehat{A} = A \cup S \cup \{(0, y) \in X\}$$

- ⊃) Sea $p = (x, y) \in \widehat{A}$, y veamos que $p \in \overline{A}$. Distinguimos en función de si $p \in S$ o no:
 - Si $p \in S$, entonces dado $V \in \beta_p$, se tiene que $V = B(0, r) \cup \{p\}$. Por tanto, tenemos que:

$$\left(\frac{r}{2},0\right)\in V\cap A\subset B(0,r)\cap A\neq\emptyset$$

■ Si $p \in A \setminus S$, entonces dado $V \in \beta_p$, se tiene que V = B(p, r), con $r \in]0, 2 - ||p||[$. Por tanto,

$$p \in V \cap A = B(p,r) \cap A \neq \emptyset$$

■ Si p = (0, y), $y \neq \pm 2$, entonces dado $V \in \beta_p$, se tiene que V = B(p, r), con $r \in]0, 2-\|p\|[$. Por tanto, tomando $\delta = \min\{r/2, \sqrt{4 - \|p\|^2}\}$, tenemos que:

$$q = (\delta, y) \in V \cap A = B(p, r) \cap A \neq \emptyset$$

En primer lugar, tenemos que $q \in V$ ya que $||q-p|| = |\delta| < r$. Veamos ahora que $q \in X$:

$$||q|| = \sqrt{\delta^2 + y^2} \leqslant \sqrt{4 - ||p||^2 + y^2} = \sqrt{4} = 2$$

Por tanto, $q \in X$. Además, como $\delta > 0$, entonces $q \in A$. Por tanto, $q \in V \cap A$.

Por tanto, en los tres casos, $\forall V \in \beta_p, \ V \cap A \neq \emptyset$, por lo que $p \in \overline{A}$.

C) Sea $p \in \overline{A}$, y veamos que $p \in \widehat{A}$. Supongamos que $p \in X$ pero $p \notin \widehat{A}$. Entonces, p = (x, y), con x < 0 y ||p|| < 2. Veamos que esto es una contradicción. Como ||p|| < 2, entonces para todo $V \in \beta_p$, se tiene que V = B(p, r), con $r \in]0, 2 - ||p||[$. Consideramos entonces el valor $r = \min\{2-||p||, -x/2\}$, y veamos que $V \cap A = \emptyset$. Para ello, sea $q = (x', y') \in V$, y veamos que $q \notin A$. Tenemos que:

$$||q - p|| = \sqrt{(x' - x)^2 + (y' - y)^2} < r \Longrightarrow |x' - x| < r \Longrightarrow$$
$$\Longrightarrow x - r < x' < x + r \Longrightarrow x' < x + r$$

No obstante, tenemos que $x + r \le x + \frac{-x}{2} = \frac{x}{2} < 0$, por lo que x' < 0, por lo que $q \notin A$. Por tanto, $V \cap A = \emptyset$, por lo que $p \notin \overline{A}$, lo cual es una contradicción. Por tanto, $p \in \widehat{A}$.

Por tanto, queda demostrado que $\overline{A} = \widehat{A}$. Por tanto, tenemos que:

$$\partial A = \overline{A} \backslash A^\circ = \widehat{A} \backslash \widetilde{A} = (A \cup S \cup \{(0,y) \in X\}) \backslash (A \cap B(0,2)) = S \cup \{(0,y) \in X\}$$

3. (0.5 puntos) Estudia si (X, \mathcal{T}) Hausdorff o no.

Veamos que no lo es. Sean $p, q \in S \subset X$, con $p \neq q$. Entonces tenemos que, para todo $V \in \beta_p$, $U \in \beta_q$, se tiene que $0 \in V \cap U$. Por tanto, $\nexists V \in \beta_p$, $U \in \beta_q$ tal que $V \cap U = \emptyset$, por lo que (X, \mathcal{T}) no es Hausdorff.

4. (1 punto) Estudia si (X, \mathcal{T}) es conexo o no.

Veamos en primer lugar que $V_p = B(p, 1/2)$ es conexo para todo $p \in X, ||p|| \le 1/2$. Veamos que $\mathcal{T}_{V_p} \subset \mathcal{T}_{uV_p}$:

C) Sea $q \in V_p$, y un entorno básico de q en \mathcal{T}_{V_p} será de la forma $B(q,r) \cap V_p$, con $r \in]0, 2 - ||q||[$. Veamos que dicho conjunto es un entorno de q en \mathcal{T}_{uV_p} . Como $B(q,r) \in \mathcal{T}_u$, entonces $B(q,r) \cap V_p \in \mathcal{T}_{uV_p}$. Además, como $q \in B(q,r) \cap V_p$, entonces $B(q,r) \cap V_p$ es un entorno de q en \mathcal{T}_{uV_p} , por lo que se tiene que $\mathcal{T}_{V_p} \subset \mathcal{T}_{uV_p}$.

Por tanto, supongamos que V_p no es conexo, es decir, que existen $U, V \in \mathcal{T}_{V_p}$ no triviales tales que $U \cap V = \emptyset$ y $V_p = U \cup V$. Como $\mathcal{T}_{V_p} \subset \mathcal{T}_{uV_p}$, entonces $U, V \in \mathcal{T}_{uV_p}$, por lo que $(V_p, \mathcal{T}_{uV_p})$ no es conexo, lo cual es una contradicción, ya que V_p es una bola abierta y sabemos que es conexa por ser estrellada. Por tanto, V_p es conexo.

Sea ahora $q \in S$, y consideramos $V_q = B(0, 1/2) \cup \{q\} \in \beta_q$. Veamos que V_q es conexo. Para ello, supongamos que V_q no es conexo, es decir, que existen $U, V \in \mathcal{T}$ no triviales tales que $U \cap V = \emptyset$ y $V_q = U \cup V$. Supongamos sin pérdida de generalidad que $q \in U$. Como U es abierto, entonces U es entorno de q, por lo que $\exists r \in]0, 1/2[$ tal que $B(0,r) \subset U$. Como $U \cap V = \emptyset$, entonces $V \subset B(0,1/2) \setminus B(0,r)$.

Consideramos ahora $V_0 = B(0, 1/2)$, y tenemos que $\mathcal{T}_{V_0} \subset \mathcal{T}_{uV_0}$. Sean $\widetilde{U} = U \cap V_0$, $\widetilde{V} = V \cap V_0$, y tenemos que $\widetilde{U}, \widetilde{V} \in \mathcal{T}_{V_0}$. Además,

$$\widetilde{U} \cap \widetilde{V} = (U \cap V_0) \cap (V \cap V_0) = U \cap V \cap V_0 = \emptyset$$

$$\widetilde{U} \cup \widetilde{V} = (U \cap V_0) \cup (V \cap V_0) = (U \cup V) \cap V_0 = V_q \cap V_0 = V_0$$

Por tanto, tenemos que V_0 es disconexo. No obstante, esto es una contradicción, ya que antes hemos visto que V_0 era conexo. Por tanto, V_q es conexo.

De esta forma, tenemos que:

$$X = S \cup (X \setminus S) = \left(\bigcup_{p \in S} \{s\}\right) \cup X \setminus S = \bigcup_{s \in S} \left(B\left(0, \frac{1}{2}\right) \cup \{s\}\right) \cup X \setminus S \subset \left(B\left(0, \frac{1}{2}\right) \cup \{s\}\right) \bigcup_{\substack{p \in X \\ \|p\| = \frac{1}{2}}} B\left(p, \frac{1}{2}\right) \subset X$$

Por tanto, tenemos que:

$$X = B(0, 1/2) \cup \left(\bigcup_{s \in S} \left(B(0, 1/2) \cup \{s\} \right) \right) \bigcup_{\substack{p \in X \\ \|p\| = 1/2}} B\left(p, \frac{1}{2}\right)$$

Entonces, X es la unión de conjuntos conexos en (X, \mathcal{T}) , y todos ellos intersecan a B(0, 1/2), por lo que (X, \mathcal{T}) es conexo.

5. (1 punto) Estudia si (X, \mathcal{T}) es compacto o no.

Veamos que $X \setminus S$ es abierto. Sea $p \in X \setminus S$, y veamos que $\exists V \in \beta_p$ tal que que $V \subset X \setminus S$. Como $p \in X \setminus S$, entonces $\|p\| < 2$. Por tanto, dado $V \in \beta_p$, se tiene que V = B(p,r), con $r \in]0, 2 - \|p\|[$. Tomamos entonces $r = \frac{2 - \|p\|}{2}$, y veamos que $V \subset X \setminus S$. Para ello, sea $q \in V$, y veamos que $q \in X \setminus S$. Como $q \in V$, entonces:

$$\|q-p\| < r = \frac{2-\|p\|}{2} = 1 - \frac{\|p\|}{2} \Longrightarrow \|q\| < 1 - \frac{\|p\|}{2} + \|p\| = 1 + \frac{\|p\|}{2} < 2 \Longleftrightarrow \|p\| < 2$$

Por tanto, $q \in X \setminus S$, por lo que $V \subset X \setminus S$. Por tanto, $X \setminus S$ es abierto.

Veamos ahora que, dado $p \in S$, $U_p = B(0, 1/2) \cup \{p\}$ es abierto. Para ello, veamos que dado $q \in U_p$, $\exists V \in \beta_q$ tal que $V \subset U_p$. Distinguimos en función de si q = p o no:

- Si q = p, entonces $V = U_p$ cumple lo que buscamos.
- Si $q \neq p$, entonces $q \in B(0, 1/2)$, por lo que ||q|| < 1/2. Por tanto, dado $V \in \beta_q$, se tiene que V = B(q, r), con $r \in]0, 2 ||q||[$. Por tanto, tomando r lo suficientemente pequeño, tenemos que $V \subset B(0, 1/2)$, por lo que $V \subset U_p$.

Por tanto, U_p es abierto. Por tanto, consideramos el siguiente recubrimiento de X mediante abiertos:

$$X = \left(\bigcup_{p \in S} U_p\right) \cup (X \setminus S)$$

Supomgamos entonces que X es compacto. Entonces, dado dicho recubrimiento, existe un subrecubrimiento finito. Sea entonces $S_0 \subset S$ finito tal que:

$$X = \left(\bigcup_{p \in S_0} U_p\right) \cup (X \setminus S)$$

No obstante, esto es una contradicción, ya que S es no numerable (infinito), y S_0 es finito. Por tanto, hay puntos de S que no están en S_0 , por lo que no están en dicho subrecubrimiento recubrimiento, lo cual es una contradicción.

Por tanto, X no es compacto.

Ejercicio 2 (2.5 puntos). Elige una de las siguientes preguntas (2a o 2b):

- 2a. Da una definición de subespacio compacto en un espacio topológico y prueba las siguientes afirmaciones:
 - a) Un subespacio cerrado de un espacio topológico compacto es compacto.
 - b) Todo subespacio compacto de un espacio topológico Hausdorff es cerrado.
- 2b. Razona si son verdaderas o falsas las siguientes afirmaciones:
 - a) Todo entorno de un punto de un espacio topológico es abierto. Esto es falso. Como contraejemplo, consideremos el espacio topológico $(\mathbb{R}, \mathcal{T}_u)$, donde \mathcal{T}_u es la topología usual. Entonces, el conjunto [-2, 2] es un entorno de 0, ya que existe una bola abierta]-1,1[tal que se tiene que $0 \in]-1,1[\subset [-2,2]$. No obstante, este conjunto no es abierto, ya que no es entorno del 2.
 - b) Si (X, \mathcal{T}) es un espacio topológico entonces la aplicación identidad dada por $Id: (X, \mathcal{T}) \to (X, \mathcal{T}_{CF})$ es continua si y solo si (X, \mathcal{T}) es T1. Aquí, \mathcal{T}_{CF} denota la topología cofinita.

Tenemos que Id es continua si y solo si $\mathcal{T}_{CF} \subset \mathcal{T}$. Veamos por tanto que es cierta mediante doble implicación:

- \Longrightarrow) Supongamos que Id es continua, por lo que $\mathcal{T}_{CF} \subset \mathcal{T}$. Dados $x, y \in X$ tales que $x \neq y$, entonces como (X, \mathcal{T}_{CF}) es T1, entonces existen $U \in \mathcal{T}_{CF}$ con $x \in U$, $y \notin U$. Como $\mathcal{T}_{CF} \subset \mathcal{T}$, entonces $U \in \mathcal{T}$, por lo que (X, \mathcal{T}) es T1.
- \iff) Supongamos que (X, \mathcal{T}) es T1, y veamos que $\mathcal{T}_{CF} \subset \mathcal{T}$. Para ello, veamos que $C_{CF} \subset C_{\mathcal{T}}$. Sea $C \in C_{CF}$. Entonces, C es finito, por lo que $\exists n \in \mathbb{N}$ tal que $C = \{x_1, \ldots, x_n\}$:

$$C = \bigcup_{i=1}^{n} \{x_i\}$$

Como (X, \mathcal{T}) es T1, entonces $\{x\} \in C_{\mathcal{T}}$ para todo $x \in X$, por lo que C es una unión finita de cerrados, por lo que $C \in C_{\mathcal{T}}$. Por tanto, $C_{\mathrm{CF}} \subset C_{\mathcal{T}}$, por lo que $\mathcal{T}_{\mathrm{CF}} \subset \mathcal{T}$ e $Id: (X, \mathcal{T}) \to (X, \mathcal{T}_{\mathrm{CF}})$ es continua.

- c) Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una aplicación biyectiva entre espacios compactos y T2, entonces f es continua si, y solo si, f^{-1} es continua. Demostramos que es cierta mediante doble implicación:
 - \Longrightarrow) Supongamos que f es continua, y tenemos que f es biyectiva. Además, como (X, \mathcal{T}) es compacto y (Y, \mathcal{T}') es T2, entonces f es cerrada. Como f es continua, cerrada y biyectiva, entonces f es un homeomorfismo, por lo que f^{-1} es continua.
 - \iff) De manera análoga, como f^{-1} es continua, cerrada y biyectiva, entonces f^{-1} es un homeomorfismo, por lo que f es continua.

Ejercicio 3 (2.5 puntos). En $X = \mathbb{R} \times \{-1, 1\}$ consideramos la relación de equivalencia dada por:

$$(x_1, y_1)\mathcal{R}(x_2, y_2) \iff \begin{cases} (x_1, y_1) = (x_2, y_2), & \text{o bien} \\ x_1, x_2 > 1, & \text{o bien} \\ x_1, x_2 < -1. \end{cases}$$

Si sobre X consideramos la topología usual inducida de \mathbb{R}^2 , estudiar si:

1. La proyección canónica $p: X \to X/\mathcal{R}$ es una aplicación abierta, Veamos qué puntos identifica la relación de equivalencia:

Demostremos ahora que es abierta. Para ello, una base de (X, \mathcal{T}) es:

$$\mathcal{B} = \{ |a, b| \times \{1\}, |a, b| \times \{-1\} \mid a, b \in \mathbb{R}, \ a < b \}$$

Demostramos para el caso de $]a,b[\times\{1\},y]$ el otro caso es análogo. Distingumos entonces en función de a,b:

• Si $]a, b[\subset]1, +\infty[$: En este caso, tenemos que:

$$p(|a, b| \times \{1\}) = \{[|1, +\infty[\times \{1, -1\}] \} \in \mathcal{T}/\mathcal{R}$$

■ Si $]a, b[\subset] - \infty, -1[$: En este caso, tenemos que:

$$p(|a,b| \times \{1\}) = \{[] - \infty, -1[\times \{1,-1\}] \} \in \mathcal{T}/\mathcal{R}$$

■ Si $]a, b[\subset] -1, 1[:$ En este caso, tenemos que $]a, b[\times\{1\} \in \mathcal{T}_X$. Además,

$$p(]a, b[\times \{1\}) =]a, b[\times \{1\})$$
 $p^{-1}(p(]a, b[\times \{1\})) =]a, b[\times \{1\})$

Por tanto, $|a, b| \times \{1\}$ es saturado, por lo que $p(|a, b| \times \{1\}) \in \mathcal{T}/\mathcal{R}$.

• Si -1 < a < 1 y b > 1: Tenemos que:

$$p(U) =]a, 1] \times \{1\} \cup \{[]1, +\infty[\times \{1, -1\}]\}$$

Veamos que dicho conjunto es abierto. Sea el siguiente conjunto:

$$V =]a, +\infty[\times\{1\} \cup]1, +\infty[\times\{-1\} \in \mathcal{T}_X]$$

Tenemos que $p^{-1}(p(V)) = V$, por lo que p(V) es abierto en \mathcal{T}/\mathcal{R} . Además, p(U) = p(V), por lo que p(U) es abierto en \mathcal{T}/\mathcal{R} .

• Si a < -1 y -1 < b < 1:

Tenemos que:

$$p(U) = \{[\]-\infty, -1[\times \{1, -1\}\]\}\ \cup\ [-1, b[\times \{1\}$$

Veamos que dicho conjunto es abierto. Sea el siguiente conjunto:

$$V =]-\infty, -1[\times \{-1\} \cup]-\infty, b[\times \{1\} \in \mathcal{T}_X$$

Tenemos que $p^{-1}(p(V)) = V$, por lo que p(V) es abierto en \mathcal{T}/\mathcal{R} . Además, p(U) = p(V), por lo que p(U) es abierto en \mathcal{T}/\mathcal{R} .

• Si a < -1 y b > 1:

Tenemos que:

$$p(U) = \{[\]-\infty, -1[\times \{1, -1\}\]\} \cup \{[\]1, +\infty[\times \{1, -1\}\]\} \cup [-1, 1] \times \{1\}$$

Veamos que dicho conjunto es abierto. Sea el siguiente conjunto:

$$V = \mathbb{R} \times \{1\} \cup]-\infty, -1[\times \{-1\} \cup]1, +\infty[\times \{-1\} \in \mathcal{T}_X]$$

Tenemos que $p^{-1}(p(V)) = V$, por lo que p(V) es abierto en \mathcal{T}/\mathcal{R} . Además, p(U) = p(V), por lo que p(U) es abierto en \mathcal{T}/\mathcal{R} .

Por tanto, como para todos los abiertos de la base \mathcal{B} se tiene que $p(U) \in \mathcal{T}/\mathcal{R}$, entonces p es abierta.

2. X/\mathcal{R} es T2,

En primer lugar, necesitamos calcular X/\mathcal{R} . Tenemos que:

$$X/\mathcal{R} = \{ [\]1, +\infty[\times\{1, -1\}\], [\] - \infty, -1[\times\{1, -1\}\] \} \bigcup \{A \times \{1\}, A \times \{-1\}, A \times \{1, -1\}\ |\ A \subset [-1, 1] \}$$

Sea $x = \{1\} \times \{1\} = (1,1) \in X/\mathcal{R}$. Buscamos $U \in \mathcal{T}_X$ saturado tal que $\{x\} \in p(U)$. Como $p^{-1}(\{x\}) = x$, buscamos $U \in \mathcal{T}_X$ saturado tal que $x \in U$, por lo que U es entorno de x, y entonces $\exists \varepsilon \in \mathbb{R}^+$ tal que $B((1,1),\varepsilon) \cap X \subset U$. Por tanto, se tiene que $U \cap (]1, +\infty[\times\{1,-1\}) \neq \emptyset$. Por tanto, como U es saturado,

$$(]1,+\infty[\times\{1,-1\})\cup(1,1)\subset U$$

Por tanto, tenemos que, tomando x = [(1,1)] e $y = []1, +\infty[\times\{1,-1\}]$, se tiene que $\forall U \in \mathcal{T}/\mathcal{R}$ con $x \in U$:

$$\{y\} \cap U \subset \{y\} \cap [\ (]1, +\infty[\times\{1, -1\}) \cup (1, 1)\] = \{y\} \cap (\{y\} \cup \{x\}) = \{y\} \neq \emptyset$$

Por tanto, no es T2.

Otra opción de ver que no es T2 es ver que tampoco es T1. Para esto, veamos que $\{[\]1, +\infty[\times\{1, -1\}\]\}$ no es cerrado en X/\mathcal{R} .

Buscamos $U \subset X$ saturado y cerrado tal que $p(U) = \{[\]1, +\infty[\times\{1, -1\}\]\}$. El único conjunto saturado de X tal que $p(U) = \{[\]1, +\infty[\times\{1, -1\}\]\}$ es $U =]1, +\infty[\times\{1, -1\},$ que no es cerrado, por lo que no existe dicho conjunto saturado y cerrado. Por tanto, $\{[\]1, +\infty[\times\{1, -1\}\]\}$ no es cerrado, por lo que X/\mathcal{R} no es T1, por lo que tampoco es T2.

3. X/\mathcal{R} es compacto,

Sabemos que X no es compacto por no ser \mathbb{R} acotado, por lo que el hecho de que la proyección p sea continua no nos sirve para demostrar si X/\mathcal{R} es compacto.

Opción 1: De forma directa.

Para ver que sí es compacto, demostraremos que X/\mathcal{R} es unión finita de compactos. Para ello, sean los siguientes conjuntos:

$$A_1 = \{[\]1, +\infty[\times\{1, -1\}\]\}$$
 $A_2 = \{[\]-\infty, -1[\times\{1, -1\}\]\}$
 $A_3 = [-1, 1] \times \{1\}$ $A_4 = [-1, 1] \times \{-1\}$

Es directo ver que $X/\mathcal{R} = A_1 \cup A_2 \cup A_3 \cup A_4$. Además, A_1, A_2 son compactos por ser conjuntos unitarios. Veamos ahora que A_3 es compacto. En primer lugar, sabemos que es cerrado y acotado en \mathbb{R}^2 , por lo que es

compacto en \mathbb{R}^2 y, como es cerrado en X, entonces es compacto en X. Además, como $\mathcal{T}/\mathcal{R}_{\mid A_3} = \mathcal{T}_{\mid A_3}$, entonces A_3 es compacto en X/\mathcal{R} . De forma análoga, se demuestra que A_4 es compacto.

Por tanto, X/\mathcal{R} es unión finita de compactos, por lo que es compacto.

Opción 2: Usando que la proyección canónica es continua.

Sea $C=[-2,2]\times\{-1,1\}\subset X$ un conjunto compacto en X. por ser unión de dos compactos. Como p es continua, tenemos que $p(C)=X/\mathcal{R}$ es compacto.

4. X/\mathcal{R} es conexo.

Sabemos que X no es conexo por no ser producto de conexos (ya que $\{-1,1\}$ no es conexo), por lo que el hecho de que la proyección p sea continua no nos sirve para demostrar si X/\mathcal{R} es conexo.

Opción 1: De forma directa.

Para ver si es conexo, buscamos $p(U) \in \mathcal{T}/\mathcal{R} \cap C_{\mathcal{T}/\mathcal{R}}$. Es decir, buscamos U saturado tal que $U \in \mathcal{T}_X \cap C_{\mathcal{T}_X}$. Como \mathbb{R} es conexo, los únicos abiertos y cerrados en $(\mathbb{R}, \mathcal{T}_u)$ son \emptyset y \mathbb{R} . Por tanto, los conjuntos abiertos y cerrados en X son:

$$\emptyset$$
, X , $\mathbb{R} \times \{1\}$, $\mathbb{R} \times \{-1\}$

No obstante, los dos últimos no son saturados, por lo que los únicos abiertos y cerrados en X saturados son \emptyset y X. Por tanto, $U = X, \emptyset$ por lo que $p(U) = X/\mathcal{R}, \emptyset$. Por tanto, tenemos que X/\mathcal{R} es conexo.

Opción 2: Usando que la proyección canónica es continua.

Sea $A = [-2, 2] \times \{-1\}, B = [-2, 2] \times \{1\} \subset X$ dos conjuntos conexos en X. Como p es continua, tenemos que p(A), p(B) son conexos en X/\mathcal{R} . Además, tenemos que:

$$X/\mathcal{R} = p(A) \cup p(B)$$

Además, $p(A) \cap p(B) \neq \emptyset$, ya que $p(2,1) = p(2,-1) = []1, +\infty[\times\{1,-1\}] \in p(A) \cap p(B)$. Por tanto, como X/\mathcal{R} es unión de dos conjuntos conexos con intersección no vacía, entonces X/\mathcal{R} es conexo.