

MongoDB Hannover, 29.09..2023

Was ist NoSQL?

Was ist NoSQL?

Rang				
Sep 2023	Aug 2023	Sep 2022	DBMS	Datenbankmodell
1.	1.	1.	Oracle 🚹	Relational, Multi-Model 🚺
2.	2.	2.	MySQL 🚹	Relational, Multi-Model 🚺
3.	3.	3.	Microsoft SQL Server 🖽	Relational, Multi-Model 🚺
4.	4.	4.	PostgreSQL	Relational, Multi-Model 🚺
5.	5.	5.	MongoDB 🚹	Document, Multi-Model 🔞
6.	6.	6.	Redis 😷	Key-value, Multi-Model 🚺
7.	7.	7.	Elasticsearch	Suchmaschine, Multi-Model 🚺
8.	8.	8.	IBM Db2	Relational, Multi-Model 🚺
9.	1 0.	1 0.	SQLite 🚹	Relational
10.	4 9.	4 9.	Microsoft Access	Relational
11.	11.	1 3.	Snowflake 😷	Relational
12.	12.	4 11.	Cassandra 🛨	Wide column, Multi-Model 📵
13.	13.	4 12.	MariaDB 🚹	Relational, Multi-Model 🚺
14.	14.	14.	Splunk	Suchmaschine
15.	1 6.	1 6.	Microsoft Azure SQL Database	Relational, Multi-Model 🚺
16.	4 15.	4 15.	Amazon DynamoDB 🚹	Multi-Model 🔃

NoSQL ist ein Oberbegriff für eine Vielzahl von Datenbanken, die nicht das relationale Modell von SQL verwenden.

Relationale Systeme machen aufgrund von über 50 Jahren Erfahrung und Konstanter Entwicklung immernoch einen Großteil aller eingesetzten Lösungen aus.

NoSQL-Datenbanken sind häufig für Anwendungen mit großen Datenmengen und/oder komplexen Datenstrukturen geeignet.

Sinnvolle Ergänzung zu relationalen DB

Ein Riesen Vorteil an NoSQL-DB ggü relationalen ist die Skalierbarkeit. Eher ein FiSi-Thema aber es sollte dennoch erwähnt werden, wir können Relationale DB potentiell endlos Skalieren. Bei Relationalen: muss 1 Server das komplette System Tragen, bei den moderneren kann man einfach endlos neue Datenbankserver hinzufügen.

Im Gegensatz zu relationalen DB, können NoSQL-DB Daten losgelöst von Tabellenschemata speichern. Dies erhöht die Performance ungemein. Das heißt allerdings auch, dass Daten an kein Format gebunden sind. So können in diesen DB die Informationen als JSON oder XML-Dokument gespeichert werden, als Key-Value-Paar oder als ganze Graphen mit Knoten & Kanten.

ID	Nachname	Vorname	Geburtsdatum	Gehalt
1	Müller	Hans	21.04.1998	2700
2	Maier	Thea	03.11.2001	2220
3	Schulz	Simone	12.06.2002	1970

Zeilenorientierte Speicherung

1, Müller, Hans, 21.04.1998, 2700; 2, Maier, Thea, 03.11.2001, 2220; 3, Schulz, Simone, 12.06.2002, 1970;

Spaltenorientierte Speicherung

1, 2, 3; Müller, Maier, Schulz; Hans, Thea, Simone; 21.04.1998; 03.11.2001, 12.06.2002; 2700, 2220, 1970;

Gehört haben sollte man im Zusammenhang mit relationalen Datenbanken ja zumindest schonmal "ACID"

Zur Auffrischung: ATOMICITY, CONSISTENCY, ISOLATION, DURABILITY

Was SQL-Datenbanken ja umsetzen müssen bzw. Sollten. Bei NoSQL wird jetzt gesagt, dass ACID-Regeln per se erstmal nicht unterstützt warden, sondern das BASE-Modell, "Basically Available, Soft State, Eventually Consistent" Das heißt grob zsm gefasst: Verfügbarkeit vor Konsistenz.

Bei Isolation bspw. Werden die Bearbeitungen von Daten nicht abgekapselt durchgeführt, sondern der Letzte d.d.Daten.bearbeitet gewinnt.

SOFT STATE besagt, dass wegen der "Eventual Consistency", also der nur mäßigen Konsistenz der Daten, diese, ohne zutun von Nutzern, sich ändern können. Irgendwann sind die Daten konsistent, nur halt nicht immer.

Atomicity
Consistency
Isolation
Durability

VS

Basically Available
Soft State
Eventually Consistent

Wir können also Effizient, schnell eine große Menge an Daten behandeln, ohne dass wir irgendwelche Tabellen brauchen. Dieser performance-boost kostet allerdings, wie erwähnt regelmäßig viele der eben genannten ACID-Punkte.

Ich habe ja eben gezeigt, dass es bei NoSQL-DBs verschiedenste Modelle gibt und demnach auch unterschiedliche Wege, wie Daten gespeichert werden.

Bei MongoDB werden sie im BSON-Format gespeichert, was eine Binäre Umwandlung o. Variante von JSON ist. Effektiv kann man aber beim Programmieren von einem JSON-Objekt

ausgehen.

Basic Mongo DB				
db	Show name of current database			
mongod	Start database			
mongo	Connect to database			
show dbs	Show databases			
use db	Switch to database db			
show collections	Display current database collections			

insert(data) insert document(s) returns write result insertOne (data, options) insert one document insertMany(data, options) insert many documents insertMany([{},{},{}]) needs square brackets

Read					
db.collection.find()	Display documents from collection				
find(filter, options)	find all matching documents				
findOne(filter, options)	find first matching document				

Update	
updateOne(filter, data, options)	Change one document
updateMany(filter, data, options)	Change many documents
replaceOne(filter, data, options)	Replace document entirely

Delete			
deleteOne(filter, options)	Delete one document		
deleteMany(filter, options)	Delete many documents		

Praktische Übung

I MONGODB ATLAS

https://account.mongodb.com/account/register

For the next generation of intelligent applications

Sign in

