计算方法编程作业3实验报告

张博厚 PB22071354

目录

1	问题描述	2
2	问题分析与算法 2.1 反幂法	
3	实验结果	2
4	结果分析	3

1 问题描述

使用 C++ 实现带规范方法的反幂法,求解给定矩阵的按模最小特征值及相应的特征向量,其中迭代方程 $X^{k+1} = A^{-1}Y^k$ 使用 LU 分解(Doolittle 分解)来求解。

2 问题分析与算法

2.1 反幂法

算法执行过程如下:

- 1. 初始化 X⁰, Y⁰, 对矩阵 A 做 LU(Doolittle) 分解, 转 2.
- 2. 解方程 $AX^{k+1} = Y^k$, 转 3.
- 3. 计算 λ 与 Y_{k+1} , 转 4.
- 4. 若两次 λ 之差小于给定精度,则退出,否则转 2.

2.2 LU 分解

矩阵 L, U 分别为下/上三角矩阵, L 的对角元已知, 均为 1, 按照分别计算 U 的第 k 行, L 的第 k 列的顺序 (k=1,2...n-1), 最后计算 U 的第 n 行。按此方法, L 与 U 均只需计算一次, 可以减少在迭代中解方程的开支。

3 实验结果

实验结果如下:

A1:

k	X^k	Y^k	λ
0	(1, 1, 1, 1, 1)	(1, 1, 1, 1, 1)	1
1	(630, -1120, 630, -120, 5)	(0.5625, -1, 0.5625, -0.1071, 0.00446)	1120
2	(146253, -297849, 196175, -45114.4, 2377.25)	(0.49103, -1, 0.658639, -0.151467, 0.00798141)	297849
3	(149113, -304047, 200595, -46244.7, 2446.56)	$(0.490426, \hbox{-}1, 0.65975, \hbox{-}0.152097, 0.00804664)$	304047
4	(149157, -304142, 200661, -46261.1, 2447.54)	(0.49042, -1, 0.659762, -0.152104, 0.00804735)	304142
5	(149158, -304143, 200662, -46261.3, 2447.55)	(0.49042, -1, 0.659762, -0.152104, 0.00804736)	304143
6	(149158, -304143, 200662, -46261.3, 2447.55)	(0.49042, -1, 0.659762, -0.152104, 0.00804736)	304143
7	(149158, -304143, 200662, -46261.3, 2447.55)	(0.49042, -1, 0.659762, -0.152104, 0.00804736)	304143

故 A1 的按模最小的特征值为 $1/304143 = 3.2879 \times 10^{-6}$, 对应的特征向量为 (0.49042, -1, 0.659762, -0.152104, 0.00804736).

A2:

k	X^k	Y^k	λ
0	(1,1,1,1)	(1,1,1,1)	1
1	(0, 2, -0, 1)	(0, 1, -0, 0.5)	2
2	(-0.625, 5.625, -2.375, 3.5)	(-0.1111111, 1, -0.422222, 0.622222)	5.625
3	(-0.933333, 8.07778, -3.43333, 5.04444)	(-0.115543, 1, -0.425034, 0.624484)	8.07778
4	(-0.93621, 8.08992, -3.44378, 5.05433)	(-0.115725, 1, -0.425687, 0.624769)	8.08992
5	(-0.936712, 8.09382, -3.44549, 5.05681)	(-0.115732, 1, -0.425694, 0.624774)	8.09382
6	(-0.936719, 8.09386, -3.44551, 5.05684)	(-0.115732, 1, -0.425695, 0.624775)	8.09386

故 A2 的按模最小的特征值为 1/8.09386 = 0.12355, 对应的特征向量为 (-0.115732, 1, -0.425695, 0.624775).

4 结果分析

1. 是否有"A 的按模最小特征值越趋近 0, 收敛越快"?

比较可知,A1 的按模最小特征值更趋近 0,但迭代次数多于 A2,因此不满足上述条件。 事实上,反幂法收敛快慢取决于 A 的按模最小特征值与按模次小特征值的比值大小,该比 值越接近 0,则收敛越快。

2. 估计每次特征值中是否遇到问题? 如何解决?

通过观察每次迭代后 X^k, Y^k 的值,发现 $\{X^k\}$ 收敛,这说明 A 的按模最小特征值仅有一个且为正,因此每次取 X^k 中模最大的分量,即近似于 A^{-1} 的按模最大特征值(A 的按模最小特征值倒数),同时 Y^k 近似为对应特征向量。