Teil I

Programmentwicklung

Ziele

Programmierung auf dem BeagleBoneBlack

- ▶ (fast) wie auf dem *Host*
- Toolchain auf dem Host
- nur Programme (runtime/executables) auf dem BeagleBoneBlack
 - Sourcefiles bleiben auf dem Host (Ausnahme Skripts)
- Entwicklung für
 - C/C++ Posix runtime
 - Java Java SE Runtime Environment BeagleBoneBlack
 - nicht prioritär
 - Python Praktische platformunabhängige Sprache

vom BeagleBoneBlack aus gesehen

Outline für C/C++

```
Host
dem git unterstellt
 somewhere_on_your_host
  __config
   Makefile
  \_ src ..... the own source files
  work .....seen by BeagleBoneBlack
   ⊥→ ../config/Makefile ......link
  __target-root ......for the toolchain
  tc .....toolchain
```

BeagleBoneBlack

somewhere_on_your_BeagleBoneBlack
workmounted on Host per sshfs

Entwicklung

wo ist was

Host

- Toolchain/TargetRoot
 http://sourceforge.net/projects/fhnw-tinl/files/
- ► Beispiele: src/*
- ► Herstellung: make the-app

BeagleBoneBlack

► Runtime GNU/Linux POSIX

$\mathsf{POSIX} \to \mathsf{Kernel}$

POSIX stdio.h & Co SysCalls → target-root/usr/include/syscall.h

Bibliotheken

am Beispiel hello-world-c.c

- ▶ Der Objectfile hello-world-c.o
 - Der Code objdump -d hello-world-c.o,
 - ▶ Die Symbole readelf -s hello-world-c.o
- ▶ Das Image hello-world-c
 - ▶ Der Code objdump -d hello-world-c
 - ▶ Die Symbole readelf -s hello-world-c.o
- puts
 - ist in einer Bibliothek

Statische/Dynamische Bibliothek Kopie vs. Referenz

Static

▶ frühes Binden

Dynamic

UNIX

▶ spätes Binden

Entwicklungsumgebung

- Entwicklungsumgebung aufsetzen
- Erste Programme
 - ▶ hello-world-c.c
- ► Minimale Programme
 - ▶ direct-call.S
 - minimal-1.c und minimal-2.c Makefile anpassen

Statische/Dynamische Bibliothek

- ▶ Die Programme
 - dynamisch linken
 - statisch linken

und vergleichen

- Grösse
- objdump
- readelf

Entwicklung Platformunabhängig

Host

- ► Toolchain sollte schon vorhanden sein
- ► Beispiel HelloWorld.java
- ► Herstellung java -d. sourceFile

BeagleBoneBlack

► Runtime default-jre

Aufgaben

▶ HelloWorld.java

Beachte java -version, javac -source -target

- Suche kleine Runtime
 - default-jre ist ziemlich gross
- Wie steht es mit
 - Oracle Java Platform, Micro Edition (Java ME)

Entwicklung https://www.python.org/ Platformunabhängig

Host

- Entwicklungsumgebung (Editor)
- ► Viele nützliche Module

 Batteries Included
- src/hello-world.py

BeagleBoneBlack

Interpreter

Aufgaben

https://github.com/adafruit/adafruit-beaglebone-io-python

▶ Versuchen Sie GPIO mit Python

Teil II

Makefile

Programmentwicklung von der Source zum Image

Gegeben: SourceFiles: viele Files

Gesucht: ImageFile: ein File

Programmentwicklung Files sind die Grundelemente

- Klassische Programmentwicklung
- Verschiedene Arten von Files
- ▶ Programme/Tools erzeugen die Files
- Die Files hängen voneinander ab
- Für etwas komplexere Projekte gibt es viele Files ≈ 100

Ein grosses Projekt GNU/Linux

- Anzahl Files
 - ▶ tools/count-files.sh
- SLOC: Source Line Of Code
 - ▶ tools/sloc-count.sh
 - ► Analyse mit z.B. excel

Der File Makefile das Programm make

Makefile Muss selber geschrieben werden:

Beschreibt, wie Files gemacht werden.

Remark: Es gibt Programme z.B. automake die erzeugen Makefile's

make Programm:

interpretiert den Makefile

Dokumentation

http://www.gnu.org/software/make/manual/make.html

make: Aufruf

make name

make Das Programm

name Name des Files, der hergestellt werden soll ¹

Makefile muss nicht angegeben werden. make sucht den File mit dem Namen Makefile im current directory

Alternative:

make -f path-to-makefile name

¹Allgemeiner: name ist der Name einer Regel

Makefile: Struktur

Variablen Siehe \rightarrow config/Makefile

Rules der wichtige Teil

Remark: Eine Regel beschreibt Abhängigkeiten

Makefile: rule Regel

```
\begin{array}{l} \texttt{target:} \ \to \ \texttt{file1} \ \texttt{file2} \ \texttt{file3} \ \dots \\ \ \to \ \texttt{tool} \end{array}
```

Remark: '→' steht für das unsichtbare Tabulator Zeichen

target File, der hergestellt wird

file1,file2.. prerequisites Files, die es braucht um das target herzustellen

- tool Programm, das aus den *prerequisites* das target herstellt.
 - Muss normalerweise nicht angegeben werden. make kann aus den Fileextensions das tool bestimmen.

Ziel

Programme

- 1. lauffähig auf Host
- 2. lauffähig auf BeagleBoneBlack

dank POSIX

Verzeichnisstruktur auf dem *Host*

Remark: Wie immer!

Abhängigkeiten 9 Files

Die Operationen

target	prerequisites	action
udp-server-demo:	udp-server-demo.o udp.o	link
udp-client-demo:	udp-client-demo.o udp.o	link
udp-server-demo.o:	udp-server-demo.c udp.h	compile
udp-client-demo.o:	udp-client-demo.c udp.h	compile
udp.o:	udp.c udp.h	compile

Die Include Files

Die include files:

- müssen im Makefile angegeben werden
- werden erst im vom Präprozessor includiert

Die Include Files Andere Sichtweise

Aufgabe

- Anpassung an BeagleBoneBlack
- ► Für BeagleBoneBlack und Host
 - ▶ ist POSIX
- Nutzen Sie die tools
 - netcat
 - wireshark

Teil III

Crosscompiler

Crosscompiler Notationen

Hostrechner H

Targetrechner T

Beispiel BeagleBoneBlack

Sourcefile file.src

► Beispiel hello-world.c

Executable file (M) ausführbar auf dem Rechner M,

$$M = H|T$$

Beispiel hello-world(T) für BeagleBoneBlack

Compiler Definition

$$\begin{aligned} & \textbf{file.src} \rightarrow \boxed{\textbf{compiler}(\texttt{M})} \rightarrow \textbf{file}(\texttt{N}) \\ & \textbf{file.src} \ \, \text{der Source File} \\ & \textbf{compiler}(\texttt{M}) \ \, \text{der Compiler ein } \textit{executable} \ \, \text{für den Rechner } \textit{M} \\ & \textbf{file}(\texttt{N}) \ \, \text{das } \textit{executable} \ \, \text{für den Rechner } \textit{N} \end{aligned}$$

Beispiel

Programm auf dem Host

$$\textbf{hello_world}.\mathtt{src} \rightarrow \boxed{\textbf{compiler}(\mathtt{H})} \rightarrow \textbf{hello_world}(\mathtt{H})$$

```
gcc -O2 -std=c99 \
../src/hello-world-c.c \
-o hello-world-c
```

Beispiel

Crosscompilation

$\textbf{hello_world}.\mathtt{src} \rightarrow \boxed{\textbf{compiler}(\mathtt{H})} \rightarrow \textbf{hello_world}(\mathtt{T})$

Crosscompiler Herstellung

$$\textbf{compiler}.\mathtt{src} \to \boxed{\textbf{compiler}(\mathtt{H})} \to \textbf{compiler}(\mathtt{H})$$