Aplicacions Estadístiques

Enginyeria Edificació 2009/10.

Antonio E. Teruel

Temari

- ► Estadística Descriptiva
 - Tema 1. Anàlisi exploratori de dades.
 - Tema 2. Distribucions estadístiques bidimensionals.
- Probabilitat.
 - Tema 3. Teoria de la probabilitat.
- Estadística Inferencial.
 - Tema 4. Variables aleatòries discretes.
 - Tema 5. Variables aleatòries continues.
 - Tema 6. Estimació de paràmetres.
 - Tema 7. Contrast d'hiptesis.

- Les mesures de tendència central no són suficients per a descriure una distribució de valors
- Exemple:

Moda=21 Mediana=22 Mitjana=21.82

Moda=21 Mediana=22 Mitjana=21.82

- Els estadístics de dispersió més habituals són:
 - el ratio de variació
 - el rang
 - el rang interquartílic
 - la variància (desviació típica)

Ratio de variació: medeix la concentració dels valors respecte a la moda. (Única mesura de dispersió possible per a variables nominals).

$$RV = 1 - f_{moda} = 1 - \frac{n_{moda}}{n}$$

- $ightharpoonup 0 \le RV \le 1$
- ► Exemple:

x_i	n _i	f_i
Colómbia	350	0.35
Equador	250	0.25
Perú	120	0.12
Argentina	100	0.1
Romania	80	0.08
Marroc	70	0.07
Senegal	30	0.03

$$n = 1000$$

 Ratio de variació: medeix la concentració dels valors respecte a la moda. (Única mesura de dispersió possible per a variables nominals).

$$RV = 1 - f_{moda} = 1 - \frac{n_{moda}}{n}$$

- ▶ $0 \le RV \le 1$
- ► Exemple:

x_i	n _i	fi
Colómbia	350	0.35
Equador	250	0.25
Perú	120	0.12
Argentina	100	0.1
Romania	80	0.08
Marroc	70	0.07
Senegal	30	0.03

$$\begin{array}{c|c}
35 \\
25 \\
\hline
12 \\
1 \\
08 \\
\hline
07 \\
03
\end{array}$$

$$RV = 1 - 0.35 = 1 - \frac{350}{1000} = 0.65$$

$$n = 1000$$

▶ Rang: diferència entre els valors màxim i mínim

$$Rang = \max x_k - \min x_k$$

▶ Rang interquartíl: diferència entre el tercer i primer quartíl

$$RIQ = Q_3 - Q_1$$

$$\sigma_X = \sqrt{Var_X}$$

- ► Var_X és la variància de les dades
- ► Es compleix que:
 - ▶ Menys del 75% dels valors estàn continguts en $(\bar{x} 2\sigma_X, \bar{x} + 2\sigma_X)$.
 - ▶ Menys del 89% dels valors estàn continguts en $(\bar{x} 3\sigma_X, \bar{x} + 3\sigma_X)$.
 - ▶ Menys del 93% dels valors estàn continguts en $(\bar{x} 3\sigma_X, \bar{x} + 3\sigma_X)$.

$$\sigma_X = \sqrt{Var_X}$$

- ► Var_X és la variància de les dades
- ► Càlcul de la variància amb dates brutes

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}, \quad Var_X = \frac{x_1^2 + x_2^2 + \ldots + x_n^2}{n} - \bar{x}^2$$

$$\sigma_X = \sqrt{Var_X}$$

- ► Var_X és la variància de les dades
- Càlcul de la variància amb la taula de freqüències

$$\bar{x} = \frac{x_1 n_1 + x_2 n_2 + \ldots + x_k n_k}{n}, \quad \textit{Var}_X = \frac{x_1^2 n_1 + x_2^2 n_2 + \ldots + x_k^2 n_k}{n} - \bar{x}^2$$

$$\sigma_X = \sqrt{Var_X}$$

- ► Var_X és la variància de les dades
- Càlcul de la variància amb la taula de freqüències

$$\bar{x} = \frac{x_1 n_1 + x_2 n_2 + \ldots + x_k n_k}{n}, \quad Var_X = \frac{x_1^2 n_1 + x_2^2 n_2 + \ldots + x_k^2 n_k}{n} - \bar{x}^2$$

- ▶ Per a dades agrupades en intervals els valors de x_i es substitueixen per les **marques de classe**
- ▶ Per a dades procedents de una mostra es calcula la variància mostral

$$VarM_X = \frac{n}{n-1} VarP_X$$

Exemple de desviació típica i variància

4	1
5	2
6	2
7	3
9	1

5

Exemple de desviació típica i variància

$$\bar{x} = \frac{7 + 5 + \ldots + 4}{9} = 6.22$$

$$Var_X = \frac{7^2 + 5^2 + \dots + 4^2}{9} - (6.22)^2$$
= 1.98

$$\sigma_X = \sqrt{Var_x} = 1.4$$

4	1
5	2
6	2
7	3
g	1

Exemple de desviació típica i variància

$$\bar{x} = \frac{7+5+\ldots+4}{9} = 6.22$$

$$Var_{X} = \frac{7^{2}+5^{2}+\ldots+4^{2}}{9} - (6.22)^{2}$$

$$= 1.98$$

$$\bar{x} = \frac{4*1+\ldots+9*1}{9} = 6.2$$

$$\frac{4}{9}$$

$$\frac{1}{5}$$

$$\frac{2}{6}$$

$$\frac{2}{7}$$

$$\frac{7}{3}$$

$$\frac{7$$

$$\bar{x} = \frac{4*1 + \dots + 9*1}{9} = 6.22$$

$$Var_X = \frac{4^2*1 + \dots + 9^2*1}{9} = -(6.22)^2 = 1.98$$

$$\sigma_X = \sqrt{Var_X} = 1.4$$

▶ Representacigràfica de la dispersió: Diagrames de capsa

► Exemple de diagrames de capsa

Xi	ni	P_i
18	120	19,1693
19	150	43,1310
20	90	57,5080
21	70	68,6901
22	65	79,0735
23	50	87,0607
24	30	91,8530
25	20	95,0479
26	10	96,6454
27	7	97,7636
28	8	99,0415
29	2	99,3610
30	1	99,5208
34	1	99,6805
35	1	99,8403
40	1	100,0000

$$n = 626$$
 $Q_1 = 19$ $Q_1 = 19$ $Q_1 - 1.5RIC = 14.5$ $Q_3 = 22$ $Q_3 + 1.5RIC = 26.5$ mediana=20

- ► Tipificació de dades estadístiques: z-scores
 - La tipificació és un càlcul que permet comparar dades procedents de diferents estudis estadístics
 - Per a cada valor x d'una variable estadística (quantitativa) es calcula l'anomenat z-score

$$z = \frac{x - \bar{x}}{\sigma \chi}$$

 Dues variables diferents es comparen comparant els seus respectius z-scores

- ► Tipificació de dades estadístiques: z-scores
 - La tipificació és un càlcul que permet comparar dades procedents de diferents estudis estadístics
 - Per a cada valor x d'una variable estadística (quantitativa) es calcula l'anomenat z-score

$$z = \frac{x - \bar{x}}{\sigma_X}$$

- Dues variables diferents es comparen comparant els seus respectius z-scores
- ▶ Dues persones opten a una beca esportiva. La primera té una marca de 7.60m en salt de longitud i la segona una de 65.4s en 100 metres lliures de natació. Si tenim que en salt de longitud la mitjana és 7.40m i desviaci tpica és de 0.4m i en 100m lliures natació la mitjana és de 68.30s i la desviació típica és de 1.6s, quina persona mereix ms la beca?

- ► Tipificació de dades estadístiques: z-scores
 - La tipificació és un càlcul que permet comparar dades procedents de diferents estudis estadístics
 - Per a cada valor x d'una variable estadística (quantitativa) es calcula l'anomenat z-score

$$z = \frac{x - \bar{x}}{\sigma_X}$$

- Dues variables diferents es comparen comparant els seus respectius z-scores
- ▶ Dues persones opten a una beca esportiva. La primera té una marca de 7.60m en salt de longitud i la segona una de 65.4s en 100 metres lliures de natació. Si tenim que en salt de longitud la mitjana és 7.40m i desviaci tpica és de 0.4m i en 100m lliures natació la mitjana és de 68.30s i la desviació típica és de 1.6s, quina persona mereix ms la beca?

$$z_1 = \frac{7.60 - 7.40}{0.4} = 0.5$$
 $z_2 = \frac{65.4 - 68.3}{1.6} = -1$