

Introdução à Computação Gráfica

Marcel P. Jackowski mjack@ime.usp.br

Aula #12

Objetivos

- Buffers
- Misturas ("Blending")
 - Translucidez
 - Neblina ("Fog")
 - Antiserrilhamento
- Sistemas de partículas

Buffers de OpenGL

- Buffers coloridos que podem ser visualizados:
 - Front
 - Back
 - Auxiliary
 - Overlay
- Depth
- Accumulation
 - Buffer de alta resolução
- Stencil
 - Armazena máscaras

Escrevendo nos buffers

- Podemos considerar a memória como uma matriz bidimensional de pixels;
- Podemos então ler e escrever blocos retangulares de pixels
 - Operações de "Bit block transfer" (bitblt)
- O frame buffer é parte desta memória

Modelo de escrita

Ler pixel de destino antes de re-escrevê-lo com o pixel origem:

Modos de escrita

- Pixels origem e destino são combinados bit a bit
- 16 diferentes funções são possíveis

		REPLACE						3	XOR OR									
S	d		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Modo XOR

- Em OpenGL:
 - glEnable(GL_COLOR_LOG
 IC OP);
 - glLogicOp(GL_XOR);
- XOR é especialmente útil para a troca de blocos de memória (e.g. menus) que são armazenados fora da tela
 - S = S XOR M
 - M = S XOR M
 - S = S XOR M

Opcode	Resulting Operation
GL_CLEAR	0
GL_SET	1
GL_COPY	S
GL_COPY_INVE	RTED ~s
GL_NOOP	d
GL_INVERT	~d
GL_AND	s & d
GL_NAND	~(s & d)
GL_OR	s d
GL_NOR	~(s d)
GL_XOR	s^d
GL_EQUIV	~(s ^ d)
GL_AND_REVER	RSE s & ~d
GL_AND_INVER	TED ∼s & d
GL_OR_REVERS	SE s ~d
GL_OR_INVERT	ED ~s d

O pipeline de pixels

- O OpenGL possui um pipeline separado para pixels
 - Na escrita
 - Mover pixels da memória para o frame buffer
 - Conversão entre formatos
 - Mapeamentos, Buscas e Testes
 - Na leitura
 - Conversão entre formatos

Posição de rasterização

- O OpenGL mantém uma posição de rasterização como parte do estado
- Especificado através de glRasterPos*()
 - glRasterPos3f(x, y, z);
- A posição de rasterização é uma entidade geométrica
 - Passa através do pipeline de geometria
 - Eventualmente usado como posição 2D em coordenadas da tela
 - Esta posição representa onde a próxima primitiva do tipo raster será desenhada dentro do frame buffer

Seleção de buffers

- O OpenGL pode desenhar (escrever) ou ler de qualquer um dos buffers coloridos (front, back, auxiliary)
- O buffer default de escrita é o back buffer
- Podemos alterar isto como os comandos:
 - glDrawBuffer and glReadBuffer
- O formato dos pixels no frame buffer é diferente do formato na memória principal;
 - Estes dois tipos de memória residem em lugares diferentes
- Precisamos então realizar um "packing" e "unpacking"
 - O desenho ou leitura pode se tornar mais lentos

Bitmaps

- O OpenGL trata pixels de 1-bit (bitmaps) de um modo diferente de pixels multi-bit (pixelmaps)
- Bitmaps são máscaras que determinam se o pixel correspondente no frame buffer será desenhado com a cor de raster corrente
 - 0 → cor é inafetada
 - 1 → cor é alterada de acordo com o modo de escrita
- Bitmaps são úteis para textos raster
 - GLUT font: GLUT_BIT_MAP_8_BY_13

Cor de rasterização

- Mesma cor especificada por glcolor*()
- Fixada pela última chamada à glRasterPos*()

```
glColor3f(1.0, 0.0, 0.0);
glRasterPos3f(x, y, z);
glColor3f(0.0, 0.0, 1.0);
glBitmap(.....).
glBegin(GL_LINES);
    glVertex3f(....)
```

- Geometria é desenhada em azul
- Bitmap é desenhado na cor vermelha

Desenhando bitmaps

glBitmap(width, height, x0, y0, xi, yi, bitmap) distância da posição raster incrementos na posição raster depois do desenho do bitmap primeira posição (x_r, y_r)

segunda posição raster

Desenhando um tabuleiro de xadrez

```
GLubyte wb[2] = {0x00, 0xff};
GLubyte check[512];
int i, j;
for(i=0; i<64; i++)
    for (j=0; j<64, j++)
        check[i*8+j] = wb[(i/8+j)%2];

glBitmap(64, 64, 0.0, 0.0, 0.0, 0.0, check);</pre>
```


Mapas de pixels (pixmaps)

- O OpenGL trabalha com arrays retangulares de pixels chamados de pixmaps ou imagens
- Pixels são armazenados em bytes (8 bit)
 - Luminância (tons de cinza) ocupa 1 byte/pixel
 - RGB 3 bytes/pixel
- Três funções principais:
 - Desenho: memória do sistema para o frame buffer
 - Leitura: frame buffer para a memória do sistema
 - Cópia: frame buffer para frame buffer

Leitura

```
glReadPixels(x,y,width,height,format,type,myimage)
                       tamanho / tipo dos pixels
        início
                         tipo da imagem
                                         ponteiro para
                                            a memória
  GLubyte myimage[512][512][3];
   glReadPixels(0,0, 512, 512, GL RGB,
         GL UNSIGNED BYTE, myimage);
  glDrawPixels(width, height, format, type, myimage)
        desenha pixmap na posição raster atual
```

Formatos

- Normalmente trabalhamos com imagens em formatos padrões (JPEG, TIFF, PNG)
- Como ler/escrever tais imagens em OpenGL?
- Infelizmente, n\u00e3o existe suporte a estes formatos em OpenGL
 - Precisamos escrever funções para leitura e escrita de tais formatos

Formato PPM (Portable Pixel Format)

- Formato simples: ASCII ou binário
- Cada arquivo de imagem consiste de um header seguido dos pixels
- Cabeçalho:

```
P3
# comentário 1
# comentário 2
...
# comentário n
linhas colunas valormáximo
pixels
```

Lendo o cabeçalho

```
FILE *fd;
int i, k, nm;
char c, nome[100];
float s;
int red, green, blue;
printf("Entre com o nome do arquivo\n");
scanf("%s", nome);
fd = fopen(nome, "r");
fscanf(fd, "%[^\n] ", nome);
if (nome[0]!='P' || nome[1] != '3'){
      printf("%s não é um arquivo PPM!\n", nome);
      exit(0);
```

Lendo o cabeçalho

```
fscanf(fd, "%c",&c);
while(c == '#')
{
        fscanf(fd, "%[^\n]", nome);
        printf("%s\n",nome);
        fscanf(fd, "%c",&c);
}
ungetc(c,fd);

pula os comentários
```

Lendo os pixels

```
fscanf(fd, "%d %d %d", &n, &m, &k);
printf("linhas=%d, colunas=%d, valmax=%d\n",n,m,k);
nm = n*m;
image=malloc(3*sizeof(GLuint)*nm);
s=255./k;
                                    fator de escala
for (i=0; i<nm; i++)
      fscanf(fd, "%d %d %d", &red, &green, &blue);
      image[3*nm-3*i-3]=red;
      image[3*nm-3*i-2]=green;
      image[3*nm-3*i-1]=blue;
```

Escalando os pixels

Podemos escalar a imagem no pipeline:

```
glPixelTransferf(GL_RED_SCALE, s);
glPixelTransferf(GL_GREEN_SCALE, s);
glPixelTransferf(GL_BLUE_SCALE, s);
```

Dependendo do processador, talvez precisemos trocar a ordem dos bytes quando transferimos a imagem da memória para o frame buffer. Para isso, usamos

```
glPixelStorei(GL_UNPACK_SWAP_BYTES,GL_TRUE);
```

Callback de display

```
void display()
{
   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(0,0);
   glDrawPixels(n, m, GL_RGB, GL_UNSIGNED_INT, image);
   glFlush();
}
```

Opacidade e transparência

- Superfícies opacas não permitem a passagem da luz (não existe refração)
- Superfícies transparentes deixam toda a luz passar
- Superfícies translúcidas deixam passar alguma luz translucência = 1 – opacidade (α)

Modelo de escrita

- Usar o componente A do RGBA (or RGBα) para armazenar a opacidade
- Durante a renderização, podemos expandir o nosso modelo de desenho para usar valores RGBA

Equação de mistura

 Podemos definir fatores de mistura para a origem e destino para cada componente RGBA

$$\mathbf{s} = [\mathbf{s}_{r}, \mathbf{s}_{g}, \mathbf{s}_{b}, \mathbf{s}_{a}]$$
$$\mathbf{d} = [\mathbf{d}_{r}, \mathbf{d}_{g}, \mathbf{d}_{b}, \mathbf{d}_{a}]$$

Suponha que as cores origem e destino sejam

$$\mathbf{b} = [b_r, b_g, b_b, b_{\alpha}]$$
$$\mathbf{c} = [c_r, c_g, c_b, c_{\alpha}]$$

Combine-as da seguinte forma:

$$\mathbf{c'} = [\mathbf{b_r} s_r + \mathbf{c_r} d_r, \ \mathbf{b_g} s_g + \mathbf{c_g} d_g, \ \mathbf{b_b} s_b + \mathbf{c_b} d_b, \ \mathbf{b_\alpha} s_\alpha + \mathbf{c_\alpha} d_\alpha]$$

Composição e Mistura em OpenGL

 Devemos habilitar e escolher os fatores de mistura para origem e destino

```
glEnable(GL_BLEND)
glBlendFunc(fator origem, fator destino)
```

- Somente um subconjunto de fatores são suportados:
 - GL_ZERO, GL_ONE
 - GL SRC ALPHA, GL ONE MINUS SRC ALPHA
 - GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

Exemplo

- Começamos com um fundo opaco (R₀,G₀,B₀,1)
 - Esta cor é a cor destino inicial
- Agora queremos desenhar um polígono translúcido com cor (R₁,G₁,B₁,α₁)
- Então precisaremos selecionar gl_src_alpha e gl_one_minus_src_alpha como fatores origem e destino

$$R'_1 = \alpha_1 R_1 + (1 - \alpha_1) R_{0_1} \dots$$

 Esta fórmula funciona quando tanto quando o polígono é opaco ou transparente

Exemplo 2

 Gostaríamos de combinar 3 imagens, com as frações de mistura 1/3, 1/3, 1/3:

```
glEnable(GL_BLEND)

// primeira primitiva: mantém 1/3 da sua cor

glColor4f(1.0, 1.0, 1.0, 0.333f); // define valor de alfa ~= 1/3
glBlendFunc(GL_SRC_ALPHA, GL_ZERO);

// desenha primeira primitiva

// segunda primitiva: adiciona 1/3 da sua à cor existente
glColor4f(1.0,1.0,1.0, 0.333f);
glBlendFunc(GL_SRC_ALPHA, GL_ONE); 1/3 + 1/3

// desenha segunda primitiva
```

Translucidez

- A imagem ao lado é uma imagem correta?
 - Provavelmente não...
 - Polígonos são desenhados na ordem que são passados no pipeline
 - As funções de mistura são dependentes da ordem de renderização

Polígonos opacos e translúcidos

- Vamos supor que temos um grupo de polígonos opacos e alguns translúcidos
- Como usar a remoção de superfícies escondidas?
- Ordenar a sequência de desenho:
 - Desenhar todos os polígonos opacos primeiro
 - Desenhar os objetos translúcidos (do mais distante ao mais perto)
- Polígonos translúcidos não deveriam afetar o buffer de profundidade:
 - Renderizar objetos opacos primeiro
 - Renderizar objetos translúcidos com glDepthMask (GL_FALSE), que faz com que o depth buffer não possa ser alterado.

Demo FirstTransp.c

Neblina

- Podemos compor uma cena com uma cor fixa e variar o fator de mistura para que a cor final dependa da profundidade
 - Simular neblina
- Dados a cor origem C_s e a cor de neblina C_f, a cor final é dado pela equação:

$$C_{s}' = f C_{s} + (1-f) C_{f}$$

- Onde f é o fator de atenuação de neblina:
 - Exponencial
 - Gaussiano
 - Linear

Funções de neblina em OpenGL

```
GLfloat fcolor[4] = {.....};
glEnable(GL FOG);
glFogf(GL FOG MODE, GL EXP);
glFogf(GL FOG DENSITY, 0.5);
glFogv(GL FOG, fcolor);
                f = e^{-(density \cdot z)}
                                     (GL EXP)
                f = e^{-(density \cdot z)^2}
                                     (GL EXP2)
                                     (GL LINEAR)
```

Demo fog.c

Serrilhamento

- Todos os segmentos de linha, exceto os verticais e horizontais, cobrem parcialmente os pixels
- Algoritmos simples de rasterização produzem efeitos indesejáveis:
 - serrilhamento ("aliasing");
- Também é problemático na renderização de polígonos

Antiserrilhamento

- Podemos colorir um pixel adicionando somente uma fração da sua cor no frame buffer
- Esta fração depende da porcentagem do pixel coberto pelo fragmento
- Fração também depende da existência de sobreposição ou não

A .040510 B .040510 C .878465 D .434255 E .007639 F .141435 G .759952 H .759952 J .007639 K .434258 L .878469 M .040510 N .040510

Antiserrilhamento em OpenGL

 Podemos habilitar a técnica de antiserrilhamento separadamente para pontos, linhas e polígonos

```
glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
```

Demo antiserrilhamento

Sistemas de partículas

- Um dos mais importantes métodos procedurais
- Usado na modelagem de:
 - Fenômenos naturais
 - Nuvens
 - Terrenos
 - Plantas
 - Multidões
 - Processos físicos reais

Leis de Newton

- Primeira lei de Newton ou princípio da inércia:
 Um corpo que esteja em movimento ou em repouso,
 tende a manter seu estado inicial.
- <u>Segunda lei de Newton</u> ou princípio fundamental da <u>mecânica</u>:
 - A resultante das forças de agem num corpo é igual ao produto de sua massa pela aceleração adquirida.
- Terceira lei de Newton ou lei de ação e reação:
 Para toda força aplicada, existe outra de mesmo módulo, mesma direção e sentido oposto.

Partículas Newtonianas

- Um sistema de partículas representa um conjunto de partículas
- Cada partícula é ponto ideal de massa
- Seis graus de liberdade
 - Posição x = vt
 - Velocidade
- Cada partícula obedece a segunda lei de Newton

$$f = ma$$

Equações

$$\mathbf{p}_{i} = (\mathbf{x}_{i}, \mathbf{y}_{i} \mathbf{z}_{i})$$

$$\mathbf{v}_{i} = d\mathbf{p}_{i} / dt = \mathbf{p}_{i}' = (d\mathbf{x}_{i} / dt, d\mathbf{y}_{i} / dt, d\mathbf{z}_{i} / dt)$$

$$\mathbf{a}_{i} = \mathbf{v}_{i}' = d\mathbf{v}_{i} / dt$$

$$\mathbf{m} \mathbf{v}_{i}' = \mathbf{f}_{i}$$

A parte complicada é a definição do vetor força!

Vetor Força

- Partículas independentes
 - Gravidade
 - Forças do vento
 - Cálculo em O(n)
- Partículas interligadas O(n)
 - Malhas
 - Sistemas de molas
- Partículas interligadas O(n²)
 - Forças de atração e repulsão

Algoritmo

```
float tempo, dt, estado[6*n], força[3*n];
estado = estado inicial();
for (tempo=t0;tempo<tempo final,tempo+=dt)</pre>
  força = calcula força(estado, tempo);
  estado = edo(força, estado, tempo, dt);
  desenha partículas (estado, tempo);
```

Forças simples

Considere a força aplicada na partícula i

$$\mathbf{f}_{i} = \mathbf{f}_{i}(\mathbf{p}_{i}, \mathbf{v}_{i})$$

• Gravidade $\mathbf{f}_i = \mathbf{g}$

$$\mathbf{g}_{i} = (0, -g, 0)$$

- Força do vento
- Fricção

$$\mathbf{p}_{i}(t_{0}), \mathbf{v}_{i}(t_{0})$$

Malhas de partículas

- Cada partícula é connectada aos seus vizinhos
- Partículas conectadas através de molas

Força elástica

- Assume-se que cada partícula possui massa unitária e está conectada por uma mola
- Lei de Hooke: a força é proporcional a distância (d = ||p - q||) entre os pontos

Lei de Hooke

 Seja s a distância entre p e q quando em equilíbrio:

$$\mathbf{f} = -\mathbf{k}_{s}(|\mathbf{d}| - \mathbf{s}) \mathbf{d}/|\mathbf{d}|$$

- onde k_s representa a constante elástica e d/|d| é o vetor unitário apontando de p para q
- Podemos modelar a interação de cada partícula em uma malha através de 4 forças aplicadas à elas.

Resistência

- Um sistema elástico puro oscila eternamente
- Deve-se adicionar um termo de resistência ("damping")

$$\mathbf{f} = -(\mathbf{k}_{s}(|\mathbf{d}| -) + \mathbf{k}_{d} \mathbf{d} \cdot \mathbf{d}/|\mathbf{d}|) \mathbf{d}/|\mathbf{d}|$$
onde $\mathbf{d} = \mathbf{sp} - \mathbf{q}$

 O coeficiente de damping ou resistência depende da velocidade entre as partículas

Forças de atração e repulsão

Inversamente proporcional a distância d entre duas partículas

$$\mathbf{f} = -\mathbf{k}_{\mathbf{r}} \mathbf{d} / |\mathbf{d}|^3$$

- O caso genérico requer cálculo da ordem O(n²)
- Na maioria dos problemas, nem todas as partículas irão contribuir para a força de repulsão ou atração em uma determinada partícula
- A fim de simplificar o problema, podemos dividir o espaço em células;

Caixas

- Técnica de subdivisão espacial
- Dividir o espaço em caixas
- Uma partícula somente dependerá de forças de partículas da sua própria caixa ou da sua caixa adjacente
- A cada passo de tempo, precisamos determinar a caixa à qual a partícula pertence

Uma Equação Diferencial Canônica

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

 $\mathbf{x}(t)$: um ponto em movimento

 $f(\mathbf{x},t)$: velocidade de x

Campo vetorial

A equação diferencial

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

define um campo vetorial em x.

Curvas integrais

 Escolha qualquer ponto de início e siga a direção dos vetores.

Problema de valor inicial

 Dado um ponto inicial, seguir a curva integral.

Método de Euler

- Método numérico mais simples.
- Utiliza passos discretos de tempo.
- Quanto maiores forem os passos, maiores serão os erros.
- Magnitude do erro depende da curvatura da solução.

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}, t)$$

Problema 1: Inacurácia

O erro faz com que x(t)
saia de um círculo e
entre em uma espiral
de sua escolha.

Problema 2: Instabilidade

 O método de Euler pode se tornar instável dependo do campo vetorial.

Método do Ponto Médio

a. Calcule um passo de Euler

$$\Delta \mathbf{x} = \Delta t \mathbf{f}(\mathbf{x}, t)$$

b. Avalie f no ponto médio

$$\mathbf{f}_{\text{med}} = \mathbf{f} \left(\frac{\mathbf{x} + \Delta \mathbf{x}}{2}, \frac{t + \Delta t}{2} \right)$$

 Dê um passo usando o valor do ponto médio

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}_{\text{med}}$$

Outros Métodos

- O método de Euler é de 1^a. ordem
- O método do Ponto Médio é de 2^a. ordem
 - Runge-Kutta 2
- Outros métodos:
 - Runge-Kutta 3^a. e 4^a. ordem
 - Passos adaptativos
- Dicas básicas:
 - Não use o método de Euler (embora você acabará usando);
 - Use passo de tempo adaptativo;

Runge-Kutta 4^a. Ordem (RK4)

$$\mathbf{F}_{1} = \mathbf{f}(\mathbf{x}_{i}, t) \qquad h = \Delta t / 2$$

$$\mathbf{F}_{2} = \mathbf{f}(\mathbf{x}_{i} + h\mathbf{F}_{1}, t + h)$$

$$\mathbf{F}_{3} = \mathbf{f}(\mathbf{x}_{i} + h\mathbf{F}_{2}, t + h)$$

$$\mathbf{F}_{4} = \mathbf{f}(\mathbf{x}_{i} + \Delta t\mathbf{F}_{3}, t + \Delta t)$$

$$\mathbf{x}_{i+1} = \mathbf{x}_{i} + \frac{\Delta t}{6}(\mathbf{F}_{1} + 2\mathbf{F}_{2} + 2\mathbf{F}_{3} + \mathbf{F}_{4})$$

Implementação modular

- Operações genéricas:
 - Get Dim(x)
 - Get/Set x e t
 - Avaliar derivada na posição (x,t)
- Escrever resolução de EDOs em termos destas funções:
 - Código reutilizável
 - Simplificação do modelo de implementação

Interface do Resolvedor

Partícula Newtoniana

Equação diferencial

$$f = ma$$

- Forças podem depender de:
 - Posição
 - Velocidade
 - Tempo

$$\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$$

Equações de segunda ordem

$$\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$$

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{f} / m \end{cases}$$

 Não está na forma canônica porque contém derivadas de 2ª ordem

 Adicionar uma nova variável v, para conseguir um par de equações de 1ª. ordem

Espaço de Fase

$$egin{bmatrix} \mathbf{X} \\ \mathbf{V} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{V}} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \\ \mathbf{f} / m \end{bmatrix}$$

- Concatenar x e v para compor um vetor de 6 elementos: Posição em Espaço de Fase.
- Velocidade em Espaço de Fase (vetor-6)
- Equação diferencial de 1ª. ordem

Estrutura da Partícula

Interface com o Solver

Sistema de Partículas

Loop de Derivação

- Limpa forças
 - Para todas as partículas, zera acumuladores de força;
- Calcula forças
 - Soma todas as forças para cada acumulador
- Coleta resultados
 - Para todas as partículas, copia v e f/m no array de destino

Estruturas de Força

- Diferentemente das partículas, forças são heterogêneas
- Objetos de força:
 - caixas-pretas
 - apontam para as partículas que elas influenciam
 - adicionar suas próprias forças
- Cálculo global das forças
 - Loop, invocando os objetos de força

Sistemas de Partículas, com Forças

Força da Gravidade

Esquema Global

Colisões

- O problema geral de contato e colisão é difícil;
- Dois aspectos no tratamento de colisões:
 - Detecção
 - Reação
- Caso após um passo da resolução da EDO, uma colisão for detectada, devemos voltar ao "passado", resolvendo para o momento da colisão.

Detecção de Colisão

- Para descrever uma colisão, precisamos decompor os vetores de velocidade e posição nos seus componentes:
 - Normais
 - Tangenciais
- Seja o vetor de posição x:
 - Componente normal $x_n = (N \cdot x)x$
 - Componente tangencial x_t = x x_n

Componentes Normais e Tangenciais

Detecção de Colisão

- Seja P um ponto no plano, N a normal, então (X-P).N =
 - =0: X está em contato com o plano
 - <0: X colide com o plano
 - >0: X não colide com o plano

Colisão Elástica

O componente normal
 v_n da velocidade da
 partícula é
 simplesmente negado;

Colisão Inelástica

Em uma colisão inelástica, o componente v_n
é multiplicado pelo fator -k_r, chamado de
coeficiente de restituição;

Tarefa de casa

- Modifique o programa "particula.c" de forma que a bola fique contida dentro de um cubo (invisível).
- Trate a colisão da bola com as 6 paredes do cubo. A colisão deverá ser inelástica, ou seja a bola perde energia mecânica.
- A bola deverá ter posição e velocidade inicial aleatória a cada rodada.