Token 912 989

Elettron: Projettik

$$|\Delta P| = \int_{0}^{+\infty} F \, dx = \underbrace{e}_{0} \int_{0}^{+\infty} E_{1} \cdot dx \qquad \widehat{F} = \underbrace{e}_{0}^{+\infty} \int_{0}^{+\infty} e^{-\frac{\pi}{2}} \, dx = \underbrace{e}_{0}^{+\infty} \int_{0}^{+\infty} E_{1} \cdot dx = \underbrace{e}_{0}^{+\infty} \int_{0}^{+\infty} E_{1}$$

$$T = \Delta E = \left(\frac{2p \cdot e^2}{E_0}\right)^2 \frac{1}{(eab)^2} \frac{1}{ewc^2 \beta^2} \propto \frac{A}{b^2}$$

$$DE = -\Delta E \cdot 2\pi b db \Delta x$$

$$F = \frac{q^2}{4qE_0} \frac{1}{r^2}$$

$$Ta \frac{A}{b^2} \cdot \frac{1}{E} = \frac{q^2}{4qE_0} \frac{1}{r^2}$$

$$Zr | b db | = dc \quad a \quad dI \quad .$$

$$\frac{dc}{dT} = \frac{1}{T^2} = cuti \quad con \quad I \quad piccoli \quad qwensow più spesso \quad qwensow più spesso \quad all \quad expersor \quad all \quad expersor \quad all \quad expersor \quad all \quad expersor \quad expers$$

$$= \frac{\partial E}{\partial x} = \frac{\partial E}{\partial x} = - \text{Ne ATI } \frac{\partial T}{T}$$

$$X_{1} = 10$$

$$X_{2} = 1$$

$$X_{3} = \sqrt{30.1} = 3.5$$

$$X_{3} = \sqrt{40.1} = 3.5$$

Tuin 5 I Us en medle jou Hezione.

$$\frac{\partial E}{\partial x} =: \frac{dE}{dx} = -Ne \text{ ATT} \left(\frac{dT}{T} \right) \left(\frac{dE}{dx} \right)$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T} \right) \frac{T_{min}}{T_{min}}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$\frac{dE}{dx} = -C \frac{B^2}{\beta^2} P NA \left(\frac{S}{A} \right) \ln \frac{Mec^2 \beta^2 r^2}{T}$$

$$-\frac{1}{2}\frac{dE}{dR}\Big|_{Min} \times 1-2 \frac{MeV}{cm} \neq$$

$$\frac{1}{2}\frac{dR}{dR}\Big|_{Min} \times 1-2 \frac{MeV}{cm} \neq$$

$$\frac{1}{2}\frac{dR}{dR}\Big|_$$

BT= 3

