4.4 Undetermined Coefficients

Our goal now is to solve a nonhomogeneous linear differential equation with constant coefficients.

$$a y'' + b y' + c y = g(x)$$
 (*)

We saw in 4.1 that the general solution has the form:

$$y = y_c + y_p$$

Where ye = complementary function the general sol-of the homogeneous associated equation.

And yo is a particular solution. (of *.)

We will focus now on a method to find y_p . In 4.1 we briefly mentioned that y_p shall have similar form to g(x)...

MATH 267

February 14, 2018

• Case $g(x) = cx^m$ (m any positive integer).

For instance, find a particular solution to y'' + 3y' + 2y = 3x.

We first "guess" that $y_p = Ax$ & plug into the equation $y_p' = A_i y_p'' = 0$

$$(0) + 3(A) + 2(Ax) = 3x + 0$$

We'd need $3A=0 \Rightarrow A=0$ 7 impossible. $2A=3 \Rightarrow A=3/2$

Instead we let $y_p = Ax + B$; $y_p' = A$; $y_p'' = O$ and plugin:

$$0 + 3A + 2(Ax + B) = 3x$$

We need
$$2A=3 \Rightarrow A=3/2$$

 $3A+2B=0$ $2B=-3A=-\frac{9}{2}$ $\therefore y_p=\frac{3}{2}x-\frac{9}{4}$

:
$$y_p = \frac{3}{2}x - \frac{9}{4}$$

Due to the superposition principle, when g(x) is a polynomial, y_p has the format of a polynomial of the same degree (including all terms, a term for each power).

Example. If $g(x) = x^3 - x$ then we have $y_p = A \chi^3 + B \chi^2 + C \chi + D$

• Case
$$g(x) = ce^{ax}$$
. Now we would have $y_p = A e^{ax}$

Example. Find a particular solution to $y'' + 2y' + 2y = 10e^{3x}$

Let
$$y_p = Ae^{3x}$$
; $y_p' = 3Ae^{3x}$; $y_p'' = 9Ae^{3x}$ l plug in:
 $9Ae^{3x} + 2(3Ae^{3x}) + 2(Ae^{3x}) = 10e^{3x}$
 $17Ae^{3x} = 10e^{3x}$ ($e^{3x} \neq 0$ for all z).
 $=7A = \frac{10}{17}$: $y_p = \frac{10}{17}e^{3x}$

MATH 267

Section 4.4

February 14, 2018

However, there is a glitch in the method!!

Consider the following example: Find a particular solution y_p to the DE

$$y'' - 3y' + 2y = 3e^{2x}$$
.
Let $y_p = Ae^{2x}$; $y_p' = 2Ae^{2x}$; $y_p'' = 4Ae^{2x}$ & plug in:

Let
$$y_p = AC$$
, $y_p = 2AC$, $y_p = 2AC$, $y_p = 4AC$,

$$0 = 3e^{2x} / (mpossible.)$$

Note that
$$Ae^{2x}$$
 is a solution to $y''-3y'+2y=0$, indeed the auxiliary equ: $m^2-3m+2=(m-2)(m-1)=0 \Rightarrow m=2$, $m_2=1$

Then
$$y_P' = Ae^{2x} + 2Axe^{2x}$$
 ; $y_P'' = 2Ae^{2x} + 2Ae^{2x} + 4Axe^{2x}$ 2 plug in: $(4Axe^{2x} + 4Ae^{2x}) - 3(Ae^{2x} + 2Axe^{2x}) + 2(Axe^{2x}) = 3e^{2x}$ $Ae^{2x} = 3e^{2x}$ $\Rightarrow A = 3$ $y_P = 3xe^{2x}$

and the general solution is:

$$y = c_1 e^{2x} + c_2 e^{x} + 3x e^{2x}$$

MATH 267

Section 4.4

February 14, 2018 5 / 8

Example. Find a particular solution to $y'' - 4y' + 4y = 3e^{2x}$.

Aux. Egn:
$$M^2 - 24m + 4 = 0$$

 $(M-2)^2 = 0 \Rightarrow M = 2$ a repeated root

$$= 7 \quad \text{y}_1 = e^{2x} \quad \text{and} \quad \text{y}_2 = x e^{2x} \quad \text{so we need } \text{y}_p = Ax^2 e^{2x}$$

$$\text{y}_p' = 2Ax e^{2x} + 2Ax^2 e^{2x} \quad \text{i} \quad \text{y}_p'' = 2Ae^{2x} + 4Ax e^{2x} + 4Ax e^{2x} + 4Ax^2 e^{2x}$$

Plugin:
$$(4Ax^2e^{2x} + 8Axe^{2x} + 2Ae^{2x}) - 8Axe^{2x} - 8Ax^2e^{2x} + 4Ax^2e^{2x} = 3e^{2x}$$

 $\Rightarrow 2Ae^{2x} = 3e^{2x} \Rightarrow A = 3/2$.. $y_p = \frac{3}{2}x^2e^{2x}$

General:
$$y = c_1 e^{2x} + c_2 x e^{2x} + \frac{3}{2} x^2 e^{2x}$$

MATH 267

Section 4.4

February 14, 2018

6 / 8

• Case $g(x) = C \sin(\beta x)$ or $g(x) = C \cos(\beta x)$. (Or a linear combination of sines and cosines).

Example. Find y_p for the DE $2y'' - y' = 3\sin(3x)$.

$$-4/=-(-3B\sin(3x) + 3A\cos(3x))$$

$$2y_{P}^{"}-y_{P}^{'}=(-18A+3B)\sin(3x)+(-18B-3A)\cos(3x)=3\sin(3x)$$

We need
$$-18A+3B=3$$
 7 Solve $2x2$ $A=-\frac{6}{37}$, $B=\frac{1}{37}$
-18B-3A=0 | System 37 , $B=\frac{1}{37}$

$$\frac{1}{37} = -\frac{6}{37} \sin(3x) + \frac{1}{37} \cos(3x)$$

We could also have the case
$$g(x) = e^{2x} \cos x$$

root of the auxiliary eqn.

February 14, 2018

We could also have combinations such as.

$$g(x) = 2x e^{3x} = 7 y_p = (Ax+B) e^{3x}$$

$$g(x) = 12x^2 \left(\sin 4x\right) = 7$$
 $y_p = \left(Ax^2 + Bx + c\right) \left(D \sin 4x + E \cos 4x\right)$

and don't fuget the superposition principle.

$$g(x) = \chi^2 - 2e^{-x} + 3\cos(4x)$$