Definition 1. The set \mathcal{I} is defined to be all the intervals of rational numbers (a,b) s.t. a < b. A relation \sqsubseteq is defined so that if $(a,b) \sqsubseteq (c,d)$ then $c \le a$ and $b \le d$.

We can see that \sqsubseteq is an ordering of \mathcal{I} by the fact that it abides by:

Definition 2. A non strict partial ordering is defined by:

- Reflexivity: $(a, b) \sqsubseteq (a, b)$.
- Antisymmetry: If $(a,b) \sqsubseteq (c,d)$ and $(c,d) \sqsubseteq (a,b)$ then (a,b) = (c,d).
- Transitivity: If $(a,b) \sqsubseteq (c,d)$ and $(c,d) \sqsubseteq (e,f)$ then $(a,b) \sqsubseteq (e,f)$.

Problem 3. Is \sqsubseteq an ordering of \mathcal{I} ?

Proof. Let $x \in \mathbb{Q}$ so that $x \leq x \implies x = x$, and so reflexivity holds.

Let $x,y\in\mathbb{Q}$ so that $x\leq y$ and $y\leq x\implies x=y,$ and so antisymmetry holds

Let $x,y,z\in\mathbb{Q}$ so that $x\leq y\leq z$ if $x\leq y$ and $y\leq z$ then $x\leq z$, and so transitivity holds.

And so \sqsubseteq is an ordering, and therefore $(\mathcal{I}, \sqsubseteq)$ is a poset.

Definition 4. A poset (\mathcal{L}, \leq) is called a *lattice* if for any two-element subset $\{a, b\} \subseteq L$ has both *joins* $a \vee b$ and *meets* $a \wedge b$.

A lattice is said to be a *complete lattice* if every subset $S \subseteq \mathcal{L}$ has both all meets $\bigwedge S$ and all joins $\bigvee S$.

A lattice where there are finite meets, all joins and where meets distribute over all joins:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

or more precisely, for all $x, \{y_i\}_i$ in \mathcal{L} :

$$x \wedge (\bigvee_i y_i) \le \bigvee_i (x \wedge y_i)$$

is said to be a frame.

Problem 5. If \mathcal{I} is a poset is it a *lattice* and if so is it a *complete lattice* or even a *frame*?

Proof. Let $S \subseteq (\mathcal{I}, \sqsubseteq)$ so that S = (a, b)

As a < b, we have $a \lor b = b$ and $a \land b = a$. This holds for any arbitrary interval $(a,b) \in \mathcal{I}$, and so $(\mathcal{I},\sqsubseteq)$ is a *complete lattice*.

Let $T \subseteq S$ and T = (a', b') so that $(a \le a')$ and $(b' \le b)$, so that we have $a \le a' < b' \le b$, then

$$a \wedge (b \vee b') = a \wedge \top = a$$

 $(a \vee b) \wedge (a \vee b') = b \wedge b' = \bot$

. So meets do not distribute over joins, meaning this is not a frame.