A Practical activity Report submitted

for Engineering Design Project-II (UTA-024)

by

Name of student Roll number

Submitted to

Dr.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, (A DEEMED TO BE UNIVERSITY), PATIALA, PUNJAB

INDIA

July-Dec 2021

NOTE: Select an appropriate objective only from the following list of experiments while making a softcopy of your report.

TABLE OF CONTENT

Sr. No.	Experiment no.	Objective		
1	1 (a)	To draw a schematic diagram of pulse width modulation (PWM		
		based transmitter for generating specified pulse width wavefor		
		for gantries placed at different locations on the path using CAD		
		tool (Eagle).		
2	1 (b)	To design a printed circuit board layout of pulse width modulation		
		(PWM) based transmitter circuit using CAD tool (Eagle).		
3	2 (a)	To draw a schematic diagram of receiver to receive specified pulse		
		width IR signals from gantries using CAD tool (Eagle).		
4	2(b)	To design a printed circuit board layout of receiver circuit using		
		CAD tool (Eagle).		
5	3 (a)	To draw a schematic diagram of IR sensor module circ		
		(required to move Buggy module on a predefined the path) using		
		CAD tool (Eagle).		
6	3 (b)	To design a printed circuit board layout of IR sensor module		
		circuit using CAD tool (Eagle).		
7	4	To solder and test a pulse width modulation (PWM) based		
		transmitter circuit (for gantries placed at different locations on the		
		path to be followed by Buggy robot) on a printed circuit board		
		(PCB).		
8	5	To solder and test pulse width modulation (PWM) based receiver		
		circuit (to receive IR signals from gantries connected to		
		transmitter circuit) on a printed circuit board (PCB).		
9	6	To solder and test an IR sensor module circuit (which helps Buggy		
		robot to move on a predefined path) on a printed circuit board		
		(PCB).		

Experiment: 1

Objective:

- (a) To draw a schematic diagram of pulse width modulation (PWM) based transmitter for generating specified pulse width waveforms for gantries placed at different locations on the path using CAD tool (Eagle).
- (b) To design a printed circuit board layout of pulse width modulation (PWM) based transmitter using CAD tool (Eagle).

Software Used: Eagle Software

Component Used:

Sr. No	Name of Components	Value	Specifications
1.	Resistor	220 Ω	Carbon Resistor with 5% Tolerance
2.	Capacitor	1000nF	Electrolytic Capacitor
3.	Capacitor	10nF	Electrolytic Capacitor
4.	DCJ0202		DC Power Jack
5.	HLMP6	5V	Dome Lamp
6.	IC 78L05Z	+5V	Positive Voltage Regulator
7.	22-23-2031		PCB Header
8.	PIC12F629		Microcontroller

Theory:

1. **Resistor**: Resistors are electronic components

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Fig. 1.1 Various types of resistors

(**NOTE:** Do not copy this image, select other image from internet)

2. **Capacitor**: The capacitor is a component which

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Fig. 1.2 Various types of capacitors

(**NOTE:** Do not copy this image, select other image from internet)

3. **HLMP6**: HLMP 6 is a sub miniature standard red LED lamp in

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Fig. 1.3 Various types of sub miniature standard LED

(NOTE: Do not copy this image, select other image from internet)

4. IC 78L05Z: 78L05Z is a fixed positive voltage regulator......

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Fig. 1.4 Voltage regulator 78L05Z

(**NOTE:** Do not copy this image, select other image from internet)

5. **PIC12F629**: PIC12F629 is a powerful easy to program CMOS.....

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Fig. 1.5 IC PIC12F629

(**NOTE:** Do not copy this image, select other image from internet)

6.**DCJ0202**: This is a common barrel-type

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Fig. 1.6 IC PIC12F629

(Do not copy this image, select other image from internet)

7. **22-23-2031**: 22-23-2031 is a 2.54 mm pitch wire to board connectors

NOTE: Explain the component in your way of writing without plagiarism. You may take help from internet and contents should not match to other reports.

Schematic diagram:

Fig. 1.7 Schematic diagram of Transmitter circuit

(**NOTE:** Do not copy this image, paste your simulated schematic diagram)

Printed Circuit Board layout:

Fig. 1.8 PCB layout of Transmitter circuit

(NOTE: Do not copy this image, paste your simulated PCB layout diagram)

Discussion:

In this experiment, we have learnt how

NOTE: Discuss this experiment in your way of writing without plagiarism.

Signature of Faculty member