Facts, results that can be used on Test 2.

Here is a list of results, facts that you can use on Test 2. Below F is a field, and K is an extension field of F. You can take these into Test 2, and refer to any of them (by number) in your proofs. I will also distribute a copy of this at the beginning of Test 2 (in case you don't bring it to the exam for some reason.)

- 1. "Roots-to-Roots": Suppose [K:F] is finite. Let $\gamma \in K$ with minimal polynomial $m_{\gamma,F}(x)$: If $\sigma \in Aut(K/F)$, then $\sigma(\gamma)$ is also a root of $m_{\gamma,F}(x)$.
- 2. Let $t(x) \in F[x]$ be a polynomial, and let K/F be a splitting field of t(x). Let $\{r_1, \ldots, r_k\}$ be the roots of t(x). Thus $K = F(r_1, \ldots, r_k)$.
 - (a) Aut(K/F) acts on $\{r_1, \ldots, r_k\}$ —it permutes the elements of $\{r_1, \ldots, r_k\}$. (This is just a special case of "Roots-to-Roots" above.)
 - (b) Aut(K/F) acts **faithfully** on $\{r_1,\ldots,r_k\}$ —meaning that if $\sigma \in Aut(K/F)$, and for all $i \in \{1,\ldots,k\}$, we have $\sigma(r_i) = r_i$, then $\sigma = id_K$ —from which it follows that Aut(K/F) can be embedded in S_k , the symmetric group on k letters.
- 3. Let $n \in \mathbb{N}$. Recall that $\Phi_n(x) = (x \alpha_1) \dots (x \alpha_{\phi(n)})$, where $\{\alpha_1, \dots, \alpha_{\phi(n)}\}$ is the set of all primitive n-th roots of unity. Then $\Phi_n(x) \in \mathbb{Q}[x]$ is irreducible and separable, and $\deg(\Phi_n(x)) = \phi(n)$, the Euler number of n.
- 4. Finite fields: If K is a finite field, then the following hold. Let p be prime, and let F_p denote the p-element field.
 - (a) There exist a prime number p and a positive integer n such that $|K| = p^n$.
 - (b) K is an extension of the field F_p (also known as \mathbb{Z}_p).
 - (c) For all $c, d \in K$, $(c+d)^p = c^p + d^p$.
- 5. The following four properties are equivalent for a finite dimensional field extension K/F:
 - (a) K/F is Galois. (That is, |Aut(K/F)| = [K : F].)
 - (b) The fixed field of Aut(K/F) is F.

- (c) For $\gamma \in K$, $m_{\gamma,F}(x) \in F[x]$ is separable and all roots of $m_{\gamma,F}(x)$ are in K.
- (d) K is a splitting field of a separable polynomial $t(x) \in F[x]$.
- 6. Let K be a splitting field of a polynomial $t(x) \in F[x]$. Recall that Sub(Aut(K/F)) is the set of all subgroups of Aut(K/F), a set that is partially ordered under set-inclusion, and that Subf(K/F) is the set of all intermediate fields, the fields $\{J: F \subseteq J \subseteq K \text{ where } J \text{ is a field}\}$.

Let $\iota : Sub(Aut(K/F)) \to Subf(K/F)$ be the following map: For all $H \in Sub(Aut(K/F))$, $\iota(H)$ is the fixed field of H. The Fundamental Theorem of Galois Theory states, in part, that

- (a) ι is an order-reversing bijection, and
- (b) if $H_1 \leq H_2$ in Sub(G), J_2 is the fixed field of H_2 , and J_1 the fixed field of H_1 , then $[J_1:J_2]=[H_2:H_1]$.