Oscillazioni accoppiate

Francesco Tarantelli, Francesco Sacco, Giovanni Sucamelo

30 Febbraio 2017

1 Scopo dell'esperienza

lo scopo di questa esperienza é lo studi del moto di due pendoli accoppiati e, in particolare, del fenomeno dei battimenti

2 Cenni Teorici

2.1 Pendolo singolo

In questa prima parte si cerca di verificare semplicemente che la pulsazione angolare ω_o del pendolo fisico senza attrito sia uguale a

$$\omega_o = \sqrt{\frac{mgl}{I}} \tag{1}$$

In seguito con lo smorzatore si é stimato il decadimento τ dell'ampiezza si oscillazione

$$\theta_o(t) = \theta_o(0)e^{-\frac{t}{\tau}} \tag{2}$$

2.2 Oscillazioni in fase e in controfase

Nelle oscillazioni in fase e in controfase si é in sostanza verificato l'equazione del moto dei pendoli nei due modi normali ottenuti dal sistema per un pendolo semplice:

$$\begin{cases}
m\ddot{\theta_1} = -\frac{mg}{l}\theta_1 + k(\theta_2 - \theta_1) - \frac{m}{\tau}\dot{\theta_1} \\
m\ddot{\theta_2} = -\frac{mg}{l}x_2 - k(\theta_2 - \theta_1) - \frac{m}{\tau}\dot{\theta_2}
\end{cases}$$
(3)

che equivale a:

$$\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \mathbf{q}'' = - \begin{bmatrix} \frac{mg}{l} + k & -k \\ -k & \frac{mg}{l} + k \end{bmatrix} \mathbf{q} - \begin{bmatrix} \frac{m}{\tau} & 0 \\ 0 & \frac{m}{\tau} \end{bmatrix} \mathbf{q}'$$
 (4)

dove q= $\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$. La soluzione generale di questa equzione puó essere scritta nella forma:

$$\theta(t) = A_0 e^{-\frac{t}{\tau}} \left[\cos(t\omega_f + \phi_1) + \sin(t\omega_c + \phi_2) \right]$$
 (5)

in particolare trascurando l'attrito, ω_f e ω_c sono uguali alle pulsioni angolari dei modi normali $(\omega_f^2 = \frac{g}{l}\omega_c^2 = \frac{g}{l} + 2\frac{k}{m})$. L'equazione 5 é molto importante perché viene utilizzata per descrivere i battimenti.

3 Apparato sperimentale

- Due pendoli
- Molla
- Due smorzatori
- Sistema di acquisizione

4 Analisi dati

4.1 Pendolo smorzato

Per prima misurazione abbiamo analizzato il moto di un pendolo con galleggiante e per trovare la costante di smorzamento τ_0

Dati	Parametri ottimali
$ au_0$	$16,24 \pm 0,02$
A_0	$4,51 \pm 6,01(10^{-6})$ cm
ω_0	$4,42 \pm 2,7(10^{-7})$ s ⁻¹
ϕ_0	$3,94 \pm 3,16$

Si osservi che i punti sperimentali non seguono perfettamente una curva esponenziale, poiché il modello teorico non tiene in considerazione distubi esterni come l'attrito del perno e rumore esterno, e a causa di ció il chi quadro risulta enorme, tuttavia la precisione sull'ampiezza e sul periodo é comunque parecchio elevata

4.2 Pendoli in fase

In seguito abbiamo raccolto i dati degli oscillatori in fase, come si puó notare ω_1 che τ_1 sono praticamente uguali a ω_0 e τ_0 , questo perché la molla resta alla sua posizione di riposo e quindi é come se non ci fosse

Dati	Parametri ottimali
$ au_f$	$15,72 \pm 0,02$
A_f	$17,29 \pm 6,75(10^{-7})$ cm
ω_f	$4,17 \pm 2,41(10^{-5})$ s ⁻¹
ϕ_f	$4,45\pm2,63(10^{-7})$

In questo grafico abbiamo traslato il centro dell'oscillazione a 0, perché la molla spostava la posizione d'equilibrio verso l'altro pendolo, inoltre abbiamo messo solo il grafico di uno dei due pendoli, visto che inserire l'altro risultava ridondante

4.3 Pendoli in controfase

Prima di effettuare la misura dei battimenti abbiamo fatto quella dei pendoli in controfase cosicché ottiniamo i valori di ω_c per verificare che ció che é scritto nei cenni teorici

Dati	Parametri ottimali
$ au_c$	$17,27\pm0,03$
A_c	$1,53 \pm 4,89(10^{-7})$ cm
ω_c	$6,51 \pm 2,11(10^{-5})$ s ⁻¹
ϕ_c	$4,61 \pm 2,87(10^{-7})$

La prima cosa che salta all'occhio é che ω ÃÍ aumentato come si ci aspettava, mentr τ non cambia di molto é

4.4 Battimenti

Dulcis in fundu, abbiamo fatto la raccolta dati dei battimenti e fatto il fit. Questo fit $\tilde{A}l$ risultato parecchio impegnativo perché sembrava non voler trovare il minimo χ^2 , ma alla fine cel'abbiamo fatta.

Dati	Parametri ottimali
τ	$64,30 \pm 0,09$
A	$3,55 \pm strano(10^{-7})$ cm
ω_a	$4,51 \pm 4,70(10^{-9}) \mathrm{s}^{-1}$
ω_b	$6,48 \pm 6,64(10^{-9})$ s ⁻¹
ϕ_a	$2,05 \pm 4,37(10^{-6})$
ϕ_b	$3,19 \pm 9,50(10^{-6})$

dalla lettura dei dati si ci accorge che ω_a é molto simile a ω_f e ω_b a ω_c , ció é previsto dalla teoria.

5 Conclusione

La raccolta dati ci conferma che il modello teorico è corretto anche se il χ^2 risulta straordinariamente alto (nell'ordine dei milioni) e il p-value viene 0 spaccato