3 – Conceitos de análise de circuitos na prática

Objectivos – Montagem e estudo de circuitos em DC. Utilização de duas fontes de tensão. Demonstração prática do Princípio da Sobreposição e do Teorema de Thévenin.

3.1 – Princípio da Sobreposição

Monte o circuito da fig. 3.1. As duas fontes de tensão, V_{SI} e V_{S2} , são obtidas da fonte de alimentação da sua bancada que deve ser configurada em modo **série** (veja como se faz no Apêndice 1 do Trabalho 1). Neste modo de funcionamento o controlo do valor da tensão de ambas as fontes é feito no Canal 1 da fonte. As tensões obtidas são de valor simétrico.

Fig. 3.1

- a) Meça com o multímetro a tensão nodal V_X . = 0,968 \vee
- **b)** Confirme teoricamente o valor obtido em *a*).
- c) Determine a potência dissipada em cada uma das resistências.
- d) Meça agora os valores da tensão da tensão V_X mas tendo só uma das fontes de tensão ligada, à vez, ao circuito. Apenas com a fonte V_{SI} ligada, o circuito deverá ser o da fig. 3.2-a). Seguidamente deve ligar só a fonte de tensão V_{S2} de acordo com o circuito da fig. 3.2-b). Meça os valores de V_{XA} e V_{XB} e verifique que $V_{XA} + V_{XB}$ é igual ao V_X medido em a).

3.2 – Divisor de tensão e equivalente de Thévenin

A fig. 3.3-a) ilustra um dos circuitos mais simples mas também mais recorrentes em electrónica: o divisor de tensão. É um circuito usado sobretudo quando, a partir duma tensão dada, V_s , precisamos de obter uma tensão diferente, V_o (mais baixa).

- a) Considerando o circuito da fig. 3.3-a) com $V_S = 15V$ e $R_1 = 3.3k\Omega$, calcule R_2 para que o valor de V_o seja o mais próximo possível de 8.8V. Monte o circuito e verifique o resultado obtido.
- b) Suponha que o divisor de tensão que montou se destina a fornecer a tensão V_o à resistência de carga R_L representada na fig. 3.3-b).

Para perceber como se irá comportar o divisor de tensão em condições de carga, ligue a resistência R_L , com o valor de $10k\Omega$, à saída do divisor de tensão. Qual é o novo valor de V_o ? Meça também o valor de V_o para $R_L = 2.2k\Omega$.

c) Uma maneira fácil de perceber o comportamento observado do divisor de tensão, e até de prever o valor de V_o para qualquer valor de resistência de carga, é através do **equivalente de Thévenin**.

Usando o que aprendeu nas aulas teóricas, determine o equivalente de Thévenin do divisor de tensão, ou seja calcule o valor dos elementos V_{TH} e R_{TH} da fig. 3.4-b.

d) O equivalente de Thévenin também pode ser determinado experimentalmente.

Segundo a definição, a tensão em circuito aberto já medida em a) corresponde ao valor da tensão de Thévenin, V_{TH} . A resistência de Thévenin, por sua vez, é obtida de forma indirecta através da corrente de curto-circuito, I_{sc} , na saída. Para medir esta última, ligue o múltimetro, configurado em modo amperímetro, entre a saída do divisor de tensão e a massa⁵ (ver fig. 3.5). O valor da resistência de Thévenin, R_{TH} , será dado por

$$R_{TH} = \frac{V_{TH}}{I_{sc}}$$

Compare este valor com o que determinou em c).

medição da corrente de curto-circuito

Fig. 3.5

$$R_1 //R_2 = \frac{R_1 \times R_2}{R_1 + R_2}$$

⁵ Note que este procedimento só é recomendável na prática quando os valores esperados para a corrente de curtocircuito são baixos, como acontece no caso presente.

