1 Дифференциальное исчисление. Функции нескольких переменных

1.1 Метрические пространства

Пусть имеется пространство неких элементов X.

Определение 1.1. Пространство X называется метрическим, если $\forall x, y \in X$, \exists вещественное число $\rho(x,y)$, удовлетворяющее аксиомам:

- 1) $\rho(x,y) \ge 0$; $\rho(x,y) = 0 \Leftrightarrow x = y$.
- $2) \rho(x,y) = \rho(y,x);$
- 3) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$

 $\forall x, y, z \in X$.

Тогда величина $\rho(x,y)$ можно назвать метрикой или расстоянием между элементами.

Пример 1.1. $X = \mathbb{R}$. Здесь $\rho(x, y) = |x - y|$.

Пример 1.2. X = C[a, b] — непрерывные функции, заданные на отрезке [a, b].

$$\rho_1(f(x), g(x)) = \max_{[a,b]} |f(x) - g(x)|,$$
 где $x \in [a,b].$

$$\rho_2(f(x), g(x)) = \int_a^b |f(x) - g(x)| dx.$$

и так далее.

Если $\rho_1(f(x),g(x))$ мало, то $\rho_2(f(x),g(x))$ — мало. Обратное вообще говоря неверно.

Определение 1.2. $V_{\varepsilon}(x) = \{y \in X : \rho(x,y) < \varepsilon\}$ — эпсилон-окрестность x; шар с центром в x и радиусом ε .

Пример 1.3. $X = \mathbb{R} \ \rho(x,y) = |x-y|. \ V_{\varepsilon}(x) = (x-\varepsilon,x+\varepsilon).$

Пример 1.4. $X = C([a,b]), \, \rho_1(f(x),g(x)) = \max_{[a,b]} |f(x)-g(x)|.$ Отступаем ε от каждого f(x) вверх и вниз. Любая функция, лежащая в получившемся участке пространства, принадлежит эпсилон-окрестности функции.

Определение 1.3. Далее элементы пространства будем называть точками.

Определение 1.4. $x \in X$ — внутренняя точка X, если $\exists \varepsilon > 0 : V_{\varepsilon}(x) \subset X$.

Определение 1.5. Множество X открыто, если все его точки внутренние. (Привет, топология. Я скучал).

Пример 1.5. $x^2 + y^2 < 1$.

Определение 1.6. x — предельная точка X, если $\forall \varepsilon > 0 \; \exists y \in X \; (y \neq x): \; y \in V_{\varepsilon}(x).$

Замечание 1.1. Предельная точка может как входить во множество, так и не входить.

Определение 1.7. X замкнуто, если оно содержит все свои предельные точки.

Пример 1.6. $x^2 + y^2 < 1$ не замкнуто. А вот $x^2 + y^2 \le 1$ замкнуто.

Определение 1.8. Замыкание множества — процедура присоединения к множеству всех его предельных точек.

Пример 1.7. $\mathbb Q$ не открыто и не замкнуто.

Определение 1.9. $\overline{\mathbb{Q}}$ — замыкание.

Пример 1.8. $\overline{\mathbb{Q}} = \mathbb{R}$.

Определение 1.10. $x \in X$ — изолированная точка X, если $\exists \varepsilon > 0 : \not\exists y \in X : y \neq x, y \in V_{\varepsilon}(x)$.

Определение 1.11. $x \in X$ — граничная точка X, если $\forall \varepsilon > 0$, $\exists y_1 \in X$, $\exists y_2 \notin X$: $y_1, y_2 \in V_{\varepsilon}(x)$. При этом граничная точка может как принадлежать множеству, так и не принадлежать.

1.2 Пространство \mathbb{R}^n

Определение 1.12. Под пространством \mathbb{R}^n будем понимать множество упорядоченных наборов из n вещественных чисел. (Пространство n-мерных векторов).

Введем в пространстве \mathbb{R}^n метрику:

1) Сферическая (евклидова) метрика:

Если
$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}, \ y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$$
, то

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_1)^2}$$

Докажем неравенство треугольника (неотрицательность и симметричность очевидны):

Доказательство. $\forall a_i, b_i, \ i=1,...,n. \ \forall t \ \sum_{i=1}^n (a_i t + b_i)^2 \geq 0.$ Раскроем скобки: $\underbrace{t^2 \sum_i a_i^2}_A + \underbrace{2t \sum_i a_i b_i}_B + \underbrace{\sum_i b_i^2}_C$

0. Чтобы это неравенство выполнялось, должно выполняться $B^2 - AC \leq 0$. Отсюда $\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum a_i^2\right) \left(\sum b_i^2\right)$. Извлечем корень: $\left|\sum a_i b_i\right| \leq \sqrt{\sum a_i^2} \sqrt{\sum b_i^2}$. Умножим на 2 и прибавим ... : $\sum a_i^2 + \sum b_i^2 + 2\sum a_i b_i \leq \sum a_i^2 + \sum b_i^2 + 2\sqrt{\sum a_i^2} \sqrt{\sum b_i^2}$. Вынесем полные квадраты: $\sum (a_i + b_i)^2 \leq \left(\sqrt{\sum a_i^2} + \sqrt{\sum b_i^2}\right)^2$. Извлекаем корень, получаем $\sqrt{\sum (a_i + b_i)^2} \leq \left(\sqrt{\sum a_i^2} + \sqrt{\sum b_i^2}\right)$ (*).

В неравенстве (*) $a_i=x_i-z_i,\,b_i=z_i-y_i,\,i=\overline{1,n},$ где $x,y,z\in\overline{\mathbb{R}^n}.$ Отсюда

$$\sqrt{\sum_{i=1}^{n} (x_i - y_1)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} + \sqrt{\sum_{i=1}^{n} (z_i - y_i)^2}$$

Пример 1.9. $V_{\varepsilon}(x) = \{y \in \mathbb{R}^n : \rho(x,y) < \varepsilon\} = \{y \in \mathbb{R}^n : \sum_{i=1}^n (x_i - y_i)^2 < \varepsilon^2\}$ эпсилон-окрестность, шар.

2) Параллелепипедальная метрика:

 $\forall x, y \in \mathbb{R}^n \ \rho(x, y) = \max_{i=\overline{1,n}} |x_i - y_i|.$

Аксиомы очевидны.

Пример 1.10. $V_{\varepsilon}(x)=\{y\in\mathbb{R}^n:\; \rho(x,y)<\varepsilon\}=\{y\in\mathbb{R}^n:\; |x_i-y_i|<\varepsilon,\; i=\overline{1,n}\}.$

Лемма 1.1. $\forall x \in \mathbb{R}^n$

 $\forall \varepsilon > 0 \ \exists \varepsilon_1 > 0$:

- 1) $V_{\varepsilon_1}^{(1)}(x) < V_{\varepsilon}^{(2)}(x)$
- 2) $V_{\varepsilon_1}^{(2)}(x) < V_{\varepsilon}^{(1)}(x)$

zде $V^{(1)}-c$ ферическая окрестность, а $V^{(2)}-$ парамелепипедальная.

Доказательство. Очевидно.

Из леммы вытекает, что сферическая и параллелепипедальная метрики эквивалентны в плане близости.

Поэтому далее можно использовать любую из этих метрик и теоремы, доказанные в одной метрике, верны и для другой.

Далее, если не оговорено противное, под расстоянием в пространстве \mathbb{R}^n будем понимать сферическую метрику.

В различных задачах могут быть использованы и другие метрики пространства \mathbb{R}^n .

1.3 Последовательности в пространстве \mathbb{R}^n

Пусть
$$\forall k \in \mathbb{N} \ \exists x^{(k)} = \begin{pmatrix} x_1^{(k)} \\ \dots \\ x_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 — последовательность в пространстве \mathbb{R}^n .

Определение 1.13. Пусть $a \in \mathbb{R}^n$. Точка a называется пределом последовательности $\{x^{(k)}\}$ при $k \to \infty$, если $\forall \varepsilon > 0 \ \exists N > 0, \ \forall k > N \Rightarrow \rho(x^{(k)}, a) < \varepsilon$. Запись: $\lim_{k \to \infty} x^{(k)} = a$.

Теорема 1.1.
$$a=\begin{pmatrix}a_1\\\ldots\\a_n\end{pmatrix},\ x^{(k)}=\begin{pmatrix}x_1^{(k)}\\\ldots\\x_n^{(k)}\end{pmatrix}.$$
 Тогда $a=\lim_{k\to\infty}x^{(k)}\Leftrightarrow a_i=\lim_{k\to\infty}x_i^{(k)},$ где $i=\overline{1,n}.$

Доказательство.
$$\lim_{k\to\infty} x^{(k)} = a \Leftrightarrow \rho(x^{(k)}, a) \to_{k\to\infty} 0 \Leftrightarrow \max_{i=\overline{1,n}} \left| x_i^{(k)} - a_i \right| \to_{k\to\infty} 0 \Leftrightarrow \lim_{k\to\infty} x_i^{(k)} = a_i$$
 (по лемме из прошлого параграфа).

3амечание 1.2. Последовательность $\{x_i^{(k)}\}$ — одномерные числовые последовательности. В результате по теореме исследование многомерного предела сводится к исследованию одномерных пределов и теоремы, доказанные для одномерного случая в той или иной степени переносятся на многомерный случай.

 \exists конечний $\lim_{k\to\infty} x^{(k)} \Leftrightarrow \forall \varepsilon > 0 \ \exists N > 0 \ \forall k \geq N \ \forall p > 0 \Rightarrow \rho(x^{(k+p)}, x^{(k)}) < \varepsilon.$

Определение 1.14. $\{x_k\}_{k=1}^{\infty}$ ограничена в \mathbb{R}^n , если $\exists M>0: \ \rho(x^{(k)},\phi)\leq M \ \forall k=1,2,...,$ где ϕ обычно является началом координат.

Теорема 1.3. (Больцано-Вейерштрасса для многомерного случая) Если последовательность ограничена, то из нее можно выделить сходящуюся подпоследовательность.

Доказательство. Пусть $\{x^{(k)}\}$ ограничена в \mathbb{R}^n . Распишем: $x^{(k)} = \begin{pmatrix} x_1^{(k)} \\ \dots \\ x_n^{(k)} \end{pmatrix}$. Если огра-

ничены вектора, то следует, что последовательность первых координат $\{x_1^{(k)}\}$ ограничена. По теореме Больцано-Вейерштрасса для одномерного случая из этой последовательности можно выделить сходящуюся подпоследовательность: $\exists \{x_1^{(m_k)}\}$. Теперь возьмем эту последовательность для всех векторов (рассматриваем многомерную подпоследовательность):

$$x^{(m_k)} = \begin{pmatrix} x_1^{(m_k)} \\ \dots \\ x_n^{(m_k)} \end{pmatrix}$$
. Рассмотрим последовательность вторых координат $\{x_2^{(m_k)}\}$. Она огра-

ничена, а значит, существует сходящаяся подпоследовательность $\{x_2^{(p_{m_k})}\}$. Теперь рассмат-

риваем
$$x^{(p_{m_k})} = \begin{pmatrix} x_1^{(p_{m_k})} \\ \dots \\ x_n^{(p_{m_k})} \end{pmatrix}$$
. Полученная последовательность векторов сходится по первым

двум координатам. По индукции распространяем правило на оставшиеся координаты.

1.4 Функции нескольких переменных.

Определение 1.15. Пусть $E \subset \mathbb{R}^n$. И пусть $\forall x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in E \; \exists$ некоторое вещественное

число, которое будем обозначать f(x) или $f(x_1,...,x_n)$. Тогда говорят, что на множестве E задана функция от нескольких переменных.

Обозначения: Если будем доказывать теоремы для n-мерного случая, то будем обозначать несколько переменных как $f(x_1,...x_n)$. В трехмерном/двухмерном будем писать f(x,y,z)/f(x,y).

Определение 1.16. E — область определения функции.

Определение 1.17. Диаметр области $diamE = \sup_{x^{(1)}, x^{(2)} \in E} \rho(x^{(1)}, x^{(2)})$. Если diamE конечен, то область E ограничена.

Определение 1.18. Область E — связная, если любые две точки из этой области можно соединить непрерывной кривой, целиком лежащей в этой области.

Пример 1.11. $f(x,y) = \ln xy$. Область определения $E = \{(x,y) \in \mathbb{R}^2 : xy > 0\}$. E — неограничена, несвязна.

Замечание 1.3. Функция от двух переменных задает поверхность в трехмерном пространстве.

В общем случае получаем n-мерную поверхность в n+1-мерном пространстве.

Определение 1.19. (предел функции по Гейне)

Пусть f(x) определена на $E \subset \mathbb{R}^n$, a — предельная точка E. Если $\forall \{x^{(k)}\} \in E$ верно, что $\rho(x^{(k)}, a) \to_{k \to \infty} 0 \Rightarrow |f(x^{(k)}) - g| \to_{k \to \infty} 0$, то $g = \lim_{x \to a} f(x)$.

Предложение 1.1.
$$a = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix}$$
, $x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$. Зафиксируем все координаты кроме x_1 .

Предположим $\exists \lim_{x_1 \to a_1} f(x_1, ..., x_n) = f^{(1)}(x_2, ..., x_n)$. Проведем эту операцию для оставиихся координат. В результате приходим к так называемому повторному пределу $\lim_{x_1 \to a_1} ... \lim_{x_1 \to$

Если перебирать аргументы $x_1, ..., x_n$ в другом порядке, то получим другой повторный предел. Всего получится n! повторных пределов. Если существуют оба предела (повторный и Гейне), то они равны. Может оказаться, что какой-то повторный предел существует, а многомерного предела нет. И наоборот.

Пример 1.12. $\binom{x}{y} \in \mathbb{R}^2$. $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$. $a = \binom{0}{0}$. Здесь $\lim_{x \to 0, y \to 0} f(x,y) = 0$. То есть многомерный предел существует и равен нулю, так как $0 \le |f(x,y)| \le |x| + |y|$. Вычислим повторный предел: $\lim_{y \to 0} \lim_{x \to 0} f(x,y)$. Внутреннего предела не существует. Если поменять пределы местами, то тоже ничего хорошего не получится.

Пример 1.13. Все то же самое, только $f(x,y) = x \sin \frac{1}{y} + y$. Опять-таки многомерный предел есть. Повторный предел $\lim_{y\to 0} \lim_{x\to 0} f(x,y) = \lim_{y\to 0} y = 0$. А вот наоборот не выйдет по той же причине, по которой мы не смогли вывести в предыдущем примере.

Пример 1.14. Опять-таки все то же самое, но $f(x,y) = \frac{xy}{x^2+y^2}$. Повторные пределы существуют и $\lim_{y\to 0}\lim_{x\to 0}f(x,y)=0$; $\lim_{x\to 0}\lim_{y\to 0}f(x,y)=0$. Покажем, что многомерного предела не существует. Будем стремиться к нулю по лучам. То есть $y=px,\ p=const.$ Вычисляем: $\lim_{x\to 0}f(x,px)=\lim_{x\to 0}\frac{px^2}{x^2+p^2x^2}=\frac{p}{1+p^2}$. То есть для каждого луча значение предела свое. Тогда по Гейне получается, что предела нет.

Пример 1.15. Все то же самое, но $f(x,y) = \frac{x^2y}{x^4+y^2}$. Попытаемся идти вдоль лучей. $\lim_{x\to 0} f(x,px) = \lim_{x\to 0} \frac{px^3}{x^4+p^2x^2} = \lim_{x\to 0} \frac{px}{x^2+p^2} = 0 \ \forall p$. То есть вдоль любого луча получаем ноль. Но не факт, что предел существует, так как мы не обязаны идти по лучам. Пойдем по параболам: $y = px^2$. Тогда $\lim_{x\to 0} f(x,px^2) = \frac{p}{1+p^2}$. Опять зависимость от p. Значит, этот предел не существует.

Замечание 1.4. Таким образом определение предела по Гейне отлично подходит для того, чтобы доказать, что предела нет.

Определение 1.20. (предел по Коши)

f(x) определена на $E \subset \mathbb{R}^n$. g — предел f(x) при $x \to a$, если $\forall \varepsilon > 0, \exists \delta > 0 \ \forall x \in E$: $\rho(x,a) < \delta \Rightarrow |f(x) - q| < \varepsilon$.

Замечание 1.5. Определения предела по Коши и Гейне эквивалентны.

Теорема 1.4. (Критерий сходимости Коши)

Чтобы $\exists \lim_{x\to a} f(x) \Leftrightarrow \forall \varepsilon > 0, \ \exists \delta > 0, \ maкое, \ что \ \forall x^{(1)}, x^{(2)} \in E: \ x^{(1)}, x^{(2)} \in U_{\delta}(a) \Rightarrow |f(x^{(1)}) - f(x^{(2)})| < \varepsilon.$ Доказательство аналогично одномерному случаю.

Теорема 1.5. (арифметические свойства)

Пусть $\exists \lim_{x\to a} f(x) = g \ u \ \exists \lim_{x\to a} h(x) = l$. Тогда $\exists \lim_{x\to a} (f(x) + h(x)) = g + l$, аналогично с произведением и частным.

Определение 1.21. Пусть y = f(x) : $\mathbb{R}^n \to \mathbb{R}^m$. А z = g(y) : $\mathbb{R}^m \to \mathbb{R}$. Здесь $y_k = f_k(x_1,...,x_n)$, где $k = \overline{1,n}$; $z = g(y_1,...,y_m)$ Тогда z = g(f(x)) : $\mathbb{R}^n \to \mathbb{R}$ — суперпозиция функций f,g.

Теорема 1.6. Пусть $\exists \lim_{x\to a} f(x) = b$ и при этом $\exists \lim_{y\to b} = l$. Тогда $\exists \lim_{y\to b} g(f(x)) = l$.

1.5 Непрерывные функции

Определение 1.22. f(x) определена на $E \subset \mathbb{R}^n$, $a \in E$. f(x) непрерывна в точке a, если $\exists \lim_{x \to a} f(x) = f(a)$.

Теорема 1.7. (арифметические свойства)

f,g — непрерывны в a. Тогда непрерывны сумма, произведение и отношение (если g(a) не равно нулю).

Теорема 1.8. $y = f(x): \mathbb{R}^n \to \mathbb{R}^m$ и она непрерывна в а. Пусть $z = g(y): \mathbb{R}^m \to \mathbb{R}$ и она тоже непрерывна в f(a). Тогда их суперпозиция будет непрерывна в точке a.

Определение 1.23. Если функция непрерывна в каждой точке $E \subset \mathbb{R}^n$, то она называется непрерывной на множестве E.

Теорема 1.9. (Больцано-Коши о нуле функции)

Пусть f(x) определена и непрерывна на $E \subset \mathbb{R}^n$ и множество E связно. И пусть $\exists a,b \in E: \ f(a)f(b) < 0.$ Тогда $\exists c \in E, \ makas, \ umo \ f(c) = 0.$

Доказательство. По условию E — связное, следовательно, \exists непрерывная кривая L, которая:

1) L соединяет точки a, b;

2)
$$L:$$

$$\begin{cases} x_1 = x_1(t) \\ \dots \\ x_n = x_n(t) \end{cases}$$

 $t \in [\alpha, \dot{\beta}], x_1(t), ..., x_n(t)$ определены на $[\alpha, \beta],$ при этом $x(\alpha) = a, x(\beta) = b.$

Введем функцию $F(t) = f(x_1(t), ..., x_n(t))$. По теореме о непрерывности суперпозиции F(t) непрерывна на $[\alpha, \beta]$, причем $F(\alpha) = a$, $F(\beta) = b$. По одномерной теореме Коши-Больцано $\exists j \in [\alpha, \beta] : F(j) = 0; \ c = \lambda(j) \subset E \ f(c) = F(j) = 0$.

Теорема 1.10. (Коши-Больцано о промежуточном значении)

f(x) определена и непрерывна на $E \subset \mathbb{R}^n$, E связно. $\exists a,b \in E: \ f(a) = A, \ f(b) = B \ u$ A < B. Тогда $\forall C: \ A < C < B: \ \exists c \in E: \ f(c) = C.$

Доказательство. Введем функцию $\varphi(x) = f(x) - C$. Эта функция по-прежнему непрерывна. Тогда $\varphi(a) = f(a) - C < 0$, и $\varphi(b) = f(b) - C > 0$. Сведено к предыдущей теореме. Тогда $\exists c \in E : \varphi(c) = 0$. $\varphi(c) = f(c) - C$, теорема доказана.

Теорема 1.11. (первая Вейерштрасса)

Пусть f(x) непрерывна на $E \subset \mathbb{R}^n$ и E замкнута и ограничена. Тогда f(x) будет ограничена в области E и достигает там своего максимума и минимума.

Доказательство.

1) Покажем, что функция является ограниченной:

От противного. Пусть это не так: f(x) не ограничена E. Тогда $\{x^{(n)}\} \in E$. E ограничена $\Rightarrow \{x^{(k)}\}$ — ограничена. А раз она ограничена, то по теореме Больцано-Вейерштрасса \exists сходящаяся подпоследовательность $\{x^{(m_k)}\} \Rightarrow \exists x^* : x^{(m_k)} \to x^*$, из определения непрерывности по Гейне следует, что $f(x^{(m_k)}) \to_{k\to\infty} f(x^*)$. С другой стороны, из (*) следует, что подпоследовательность уходит на бесконечность. Противоречие.

2) Покажем, что f(x) достигает максимума (для минимума доказательство аналогично).

Обозначим $M = \sup_E f(x)$. Функция ограничена, значит, супремум конечен. От противного. Предположим, что f(x) < M, $\forall x \in E$. Рассмотрим $g(x) = \frac{1}{M - f(x)}$. Знаменатель не обращается в ноль, значит, она непрерывна на E. По уже доказанной первой части g(x) ограничена на E. То есть $g(x) \leq L$. Подставим значение $g(x) : \frac{1}{M - f(x)} \leq L \ \forall x \in E \Rightarrow f(x) \leq M - \frac{1}{L}$. Получаем противоречие с определением супремума.

Определение 1.24. (равномерная непрерывность)

f(x) равномерно непрерывна на $E \in \mathbb{R}^n$ если $\forall \varepsilon > 0, \; \exists \delta(\varepsilon) > 0 : \; \forall x^{(1)}, x^{(2)} \in E$, таких, что $\rho(x^{(1)}, x^{(2)}) < \delta \Rightarrow |f(x^{(1)}) - f(x^{(2)})| < \varepsilon$.

Теорема 1.12. (Кантора)

f(x) непрерывна на $E \in \mathbb{R}^n$. E замкнуто и ограничено. Тогда f(x) равномерно непрерывна.

Доказательство. От противного. Положим, функция непрерывна, но не равномерно непрерывна на E. Тогда $\exists \varepsilon > 0: \ \forall \delta > 0: \ \exists x^{(1)}, x^{(2)} \in E: \ \rho(x^{(1)}, x^{(2)}) < \delta \Rightarrow |f(x^{(1)}) - f(x^{(2)})| \geq \varepsilon$. Возьмем $\delta_k = \frac{1}{k}, \ k = 1, 2, \ldots \Rightarrow \exists x^{(1k)}, x^{(2k)} \in E: \ \rho(x^{(1k)}, x^{(2k)}) < \frac{1}{k}, \ |f(x^{(1k)}) - f(x^{(2k)})| \geq \varepsilon$. $\{x^{(1k)}\} \in E$ — ограничена, следовательно, по теореме Больцано-Вейерштрасса \exists сходящаяся подпоследовательность $\{x^{(1m_k)}\} \to_{k \to \infty} x^*$. E замкнуто, следовательно, $x^* \in E$.

Рассмотрим те же номера для второй последовательности: $\{x^{(2m_k)}\}$. $0 \le \rho(x^{(2m_k)}, x^*) \le \underbrace{\rho(x^{(2m_k)}, x^{(1m_k)})}_{<\frac{1}{m_k} \to 0} + \underbrace{\rho(x^{(1m_k)}, x^*)}_{\to 0} \to 0.$

f(x) непрерывна в точке x^* , тогда, по Гейне, $f(x^{(1m_k)}) \to f(x^*)$ и $f(x^{(2m_k)}) \to f(x^*)$. Следовательно, $|f(x^{(1m_k)}) - f(x^{(2mk)})| \to 0$. Противоречие с предположением.

1.6 Дифференцируемость функций нескольких переменных

 $E \subset \mathbb{R}^3$. f(x,y,z) определена на E. $\forall M=(x,y,z) \in E$.

Будем считать y, z фиксированными, а x зададим приращение Δx . То есть мы сдвинемся вдоль оси x. Посмотрим, как изменятся значения функции:

 $\Delta_x f = f(x + \Delta x, y, z) - f(x, y, z)$ — частичное приращение f по x.

Определение 1.25. Если существует

$$\lim_{\Delta x \to 0} \frac{\Delta_x f}{\Delta x} = f_x' = \frac{\partial f}{\partial x}$$

, то он называется частной производной. Аналогично можно ввести определения частной производной для остальных координат:

$$\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta_y f}{\Delta y}$$

$$\frac{\partial f}{\partial z} = \lim_{\Delta z \to 0} \frac{\Delta_z f}{\Delta z}$$

При вычислении частной производной все переменные, кроме одной, фиксируются, то есть нахождение частных производных сводится к одномерному дифференцированию.

Пример 1.16.
$$f(x, y, z) = xe^{yz^2}$$
. $f'_x = e^{yz^2}$, $f'_y = x^{yz^2} \cdot z^2$, $f'_z = xe^{yz^2} \cdot 2yz$.

Определение 1.26. Зададим приращение сразу всем трем переменным.

 $\Delta f = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$. Такая величина называется полным приращением функции точки M.

Определение 1.27. f(x,y,z) называется дифференцируемой в точке M, если ее полное приращение может быть представлено в виде $\Delta f = A\Delta x + B\Delta y + C\Delta z + o(\rho)$, где A,B,C — константы, а $\rho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$.

Теорема 1.13. (необходимое условие дифференцируемости)

Для того, чтобы f(x, y, z) была дифференциреумой в точке, необходимо, чтобы в этой точке существовали ее частные производные. (условие не является достаточным!)

Доказательство. f(x,y,z) — дифференцируема, отсюда существует $\Delta f = A\Delta x + B\Delta y + C\Delta z + o(\rho)$. Пусть $\Delta x \neq 0$, $\Delta y = \Delta z = 0$. То есть полное приращение равно частному по x. Отсюда $\frac{\Delta_x f}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}$. При $x \to 0$ $\exists \lim_{\Delta x \to 0} \frac{\Delta_x f}{\Delta x} = A$. Аналогично доказываются остальные координаты.

Из доказанной теоремы следует, что если функция дифференцируема, то ее производная представима в виде $\Delta f = f_x' \Delta x + f_y' \Delta y + f_z' \Delta z$.

Теорема 1.14. (достаточное условие дифференцируемости)

Для того, чтобы функция была дифференцируема в точке, достаточно, чтобы существовали непрерывные частные производные $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$.