Introdução a Econometria 6ª Edição - (Wooldridge)

Análise da decisão de políticas com agrupamentos de cortes transversais - Exemplo 13.3

Fábio Rocha | rochaviannafj@gmail.com

24 de janeiro, 2023

Efeito da localização de um incinerador de lixo sobre os preços dos imóveis.

A ideia geral que o exercício traz é reproduzir uma análise econométrica empreendida por Kiel e McClain no sentido de verificar a influencia da construção de um incinerador numa determinada região da cidade sobre os preços dos imóveis. Wooldridge assume que a análise produzida pelos autores foi um tanto mais sofisticada e complexa mas ele traz de forma mais simples e didática.

O que se passa é que na cidade de North Andover, no ano de 1978, havia rumores de que um novo incinerador de lixo seria construido por lá. Entretanto, só foi iniciar a construção em 1981. O incinerador iniciou a operação em 1985.

O exercicio então, consiste em avaliar duas amostras de dados, uma de 1978 e outra de 1981, contendo preços e localizações dos imóveis. A hipótese geral é de que imóveis próximos (4,8km) ao incinerador teriam preços mais baixos em relação aos mais distantes.

Começamos então carregando os dados para reproduzir o exercício.¹

Carregamento de pacotes - pacotes necessário para o exercício

```
library(tidyverse)
library(wooldridge)
library(stargazer)
```

Carregar o dado do exercício a partir do pacote wooldridge

```
data("kielmc")
```

Um analista ingenuo, diz Wooldridge, usaria apenas a amostra para os anos 1981 e estimaria uma Regressão Simples conforme mostramos abaixo.

Filtrando os dados apenas para 1981

```
kielmc_1981 <- kielmc %>%
filter(year == 1981)
```

Estimando o modelo de Regressão Linear Simples - 1981

De forma geral o modelo teórico é este:

¹Há duas formas de carregar os dados: a primeira é carregando a partir do pacote wooldridge, a segunda é indo até o site da Cengage e baixando todos por lá na seção onde se encontra o livro Introdução a Econometria 6ª Edição.

```
rprice = \beta_0 + \beta_1 nearinc + \varepsilon \tag{1}
```

Em que : rprice é o preço dos imóveis, beta zero o preço médio dos imóveis que não estão próximos ao incinerador, beta um o coefiente angular da função e nearinc indica a proximidade do imóvel ou não ao incinerador. **nearinc** é uma variável binária e assume 1 se for próximo ao incinerador e 0 se distante.

Table 1: Regressão Linear Simples

	Dependent variable:
	rprice
nearinc	-30,688.270***
	(5,827.709)
Constant	101,307.500***
	(3,093.027)
Observations	142
\mathbb{R}^2	0.165
Adjusted R ²	0.159
Residual Std. Error	31,238.040 (df = 140)
F Statistic	27.730^{***} (df = 1; 140)
Note:	*p<0.1; **p<0.05; ***p<0.0

O modelo estimado na tabela, por conter apenas uma variável dependente e binária, mostra o seguinte; O intercepto é preço médio dos imóveis afastados do incinerador, ou seja, o preço médio desses imóveis é de 101.307,5. Já o coeficiente *nearinc* indica que o preço dos imóveis próximos ao incinerador é 30.688,27 a menos do que os que estão distantes do incinerador: 101.307,5 -30.688,27 = 70.619,23

A estatística t é significativa, o que implica dizer que podemos rejeitar com certeza a hipótese de que os preços médios de venda dos imóveis situados próximos do incinerador e daqueles distantes deles sejam os mesmos, diz Wooldridge, e o R quadrado de 0.165~(16,5%) - o que implica dizer que a variabilidade de nearinc explica 16.5% da variabilidade de rprice.

Infelizmente este modelo simples não implica que a causa dos preços médio de venda dos imoveis próxima do incinerador seja de fato a sua localização. Basta reproduzirmos esse mesmo exercício, mas com o conjunto de dados para 1978, antes da construção do incinerador, para vermos isso, conforme orienta o exercício de Wooldridge.

Filtrando os dados apenas para 1978

```
kielmc_1978 <- kielmc %>%
filter(year == 1978)
```

Estimando o modelo de Regressão Linear Simples - 1978

Table 2: Regressão Linear Simples

Dependent variable:
rprice
-18,824.370**** (4,744.594)
82,517.230*** (2,653.790)
179
0.082
0.076
29,431.960 (df = 177)
15.741^{***} (df = 1; 177)
*p<0.1; **p<0.05; ***p<0.01

Como se vê, mesmo antes de qualquer comentário sobre a construção do incinerador, o preço médio de venda de um imóvel próximo do local já era \$18.824,37 menor que um imóvel distante do incinerador, conforme mostra a tabela 2 para o coeficiente nearinc.

Identificando o efeito sobre o preço

A forma pela qual se verifica como a construção do incinerador reduziu o preço médio de venda dos imóveis próximo, é observando como o coeficiente *nearinc* mudou entre 1978 e 1981. Isto é, a diferença entre as médias 30.688,27 - 18.824,37 = 11.863,9.

Essa é a estimativa do efeito da construção do incinerador sobre o preço dos imóveis proximos a ele. Esse valor é chamado em economia empírica de **estimador de diferença em diferenças**

Entretanto, precisamos identificar esse valor encontrado é estatisticamente significativo (diferente de zero) precisamos estimar uma nova regressão. Podendo ser assim estimado:

$$rprice = \beta_0 + \delta_0 y 81 + \beta_1 nearinc + \delta_1 y 81 * nearinc + \varepsilon$$
 (2)

Em que:

- rprice é o preço dos imóveis,
- beta_0, intercepto, preço médio de um imóvel distante do incinerador em 1978.
- delta_0 indica as alterações em todos os valores dos imóveis de 1978 a 1981. Variável binária igual a um se 1981 e zero se 1978.
- beta_1 mede o efeito da localização, que não é em razão da presença do incinerador. Variável binária igual a um se for próximo e zero se distante.
- Finalmente o parâmetro de interesse é o termo de interação entre as variáveis y81 multiplicado por nearinc. delta_1 mede o declínio dos valores dos imóveis em razão do novo incinerador, supondo que tanto os imoveis distantes e próximos não tenham sido valorizados por outras razões a taxas diferentes.

Estimando o modelo com ambos períodos 1978-1981

O modelo estimado retronou o intercepto/constante como significativo; y81, que representa a variação média dos dos preços de vendas dos imóveis entre 1978 e 1981, também significativo, e nearinc, que indica se o imovel está proximo ou não do incinerador, também significativo. Entretando o delta, que é a interação entre y81 e nearinc não foi significativo a 10% - talvez na margem, como diz Wooldridge, seria.

Table 3: Regressão Linear Multipla

	Dependent variable:
	rprice
y81	18,790.290***
•	(4,050.065)
nearinc	-18,824.370***
	(4,875.322)
y81nrinc	-11,863.900
	(7,456.646)
Constant	82,517.230***
	(2,726.910)
Observations	321
\mathbb{R}^2	0.174
Adjusted R ²	0.166
Residual Std. Error	30,242.900 (df = 317)
F Statistic	22.251^{***} (df = 3; 317)
Note:	*p<0.1; **p<0.05; ***p<0.0

Inserção de variáveis de controle

Kiel e McClain, diz Wooldridge, inseriram mais variáveis (caracteristicas) dos imóveis em suas análises, por duas razoes. A primeira é que os imóveis vendidos em 1978 podem ter características distintas dos de 1981. Desta forma, inserir mais variaveis que contam com essas caracteristicas podem ser relevantes para **controlar** essas diferenças. Por outro lado, embora tais caracteristicas não apresentem grande relevancia, isto é, não ser tao diferente entre os anos, a inserção dessas caracteristicas pode reduzir a variancia do erro e por sua vez o erro padrão (usado para o calculo da estatística t)

Vejamos como fica o nosso quarto modelo com variáveis de controle. Nesse quarto modelo, controlaremos apenas com a variável idade do imóvel (mais essa variável ao quadrado já que ela consegue capturar o efeito de valorização e desvalorização do imovel ao longo do tempo).

Conforme vemos na tabela 4, a simples inserção da variável age (idade do imóvel) já muda siginificativamente o R-quadrado, além do erro padrão e a intensidade do coeficiente y81.nrinc, que por sua vez passa ser siginificativo.

$$rprice = \beta_0 + \delta_0 y 81 + \beta_1 nearinc + \delta_1 y 81 * nearinc + \beta_2 age + \beta_3 age^2 + \varepsilon$$
(3)

Table 4: Regressão Linear Multipla

Dependent variable:
rprice
21,321.040***
(3,443.631)
9,397.936*
(4,812.222)
-21,920.270***
(6,359.745)
-1,494.424***
(131.860)
8.691***
(0.848)
89,116.540***
(2,406.051)
321
0.414
0.405
25,543.290 (df = 315)
44.591*** (df = 5; 315)
*p<0.1; **p<0.05; ***p<0.01

Por fim o quinto modelo inserimos mais variáveis para controlar, conforme consta no exemplo do livro. São inseridos *intst*, distancia até a rodovia estadual, área do terreno *land*, área construída *area*, o número de quartos *rooms* e o número de banheiros *baths*. Essa estimativa contendo essas variáveis de controle produz uma estimativa mais próxima daquela inicial sem nenhum controle.

$$rprice = \beta_0 + \delta_0 y 81 + \beta_1 nearinc + \delta_1 y 81 * nearinc + \beta_2 intst + \beta_3 land + \beta_4 area + \beta_5 rooms + \beta_6 baths + \beta_7 age + \beta_8 age^2 + \varepsilon$$
 (4)

As estimativas do modelo 5 são preferidas já que possuem maior controle dos fatores que afetam os preços e possuem menores erro padrão, o que leva a estatistica t e siginificancia estatística dos parametros estimados ser significativa.

Se bem observarmos veremos que o coeficiente nearinc diminuiu em relação a modelo anterior e passou a não ser significativo. Isso mostra que as características incluídas no ultimo modelo indicam em grande parte as características dos imóveis mais importantes para determinação dos preços dos imóveis.

Table 5: Regressão Linear Multipla

	Dependent variable:
	rprice
y81	13,928.480***
	(2,798.747)
nearinc	3,780.337
	(4,453.415)
y81nrinc	-14,177.930***
	(4,987.267)
intst	-0.539***
	(0.196)
land	0.141***
	(0.031)
area	18.086***
	(2.306)
rooms	3,304.227**
	(1,661.248)
baths	6,977.317***
	(2,581.321)
age	-739.451***
	(131.127)
I(age^2)	3.453***
	(0.813)
Constant	13,807.670
	(11,166.590)
Observations	321
\mathbb{R}^2	0.660
Adjusted R ²	0.649
Residual Std. Error	19,619.020 (df = 310)
F Statistic	60.189^{***} (df = 10; 310)
Note:	*p<0.1; **p<0.05; ***p<0.01

Vejamos os três modelos juntos numa unica tabela:

De fato é possível perceber que depois de controlado, y81nearinc teve seu coeficiente aumentado (negativamente) e passou ser siginificativo, enquanto que naquele terceiro modelo isso não acontecia embora tinha valor exatamente ao calculado pelas diferenças de médias dos modelos 1 e 2. Isso significa que de fato a localização próxima ao incinerador teve algum efeito sobre os preços de venda dos imóveis após a construção. E ao que tudo indica o ultimo modelo estimado o número de quartos e banheiros representam um grande peso na formação dos preços de venda.

Table 6: Regressão Linear Multipla

	Dependent variable: rprice		
	(1)	(2)	(3)
v81	18,790.290***	21,321.040***	13,928.480***
, -	(4,050.065)	(3,443.631)	(2,798.747)
nearinc	-18,824.370***	9,397.936*	3,780.337
	(4,875.322)	(4,812.222)	(4,453.415)
81nrinc	-11,863.900	-21,920.270***	-14,177.930***
	(7,456.646)	(6,359.745)	(4,987.267)
intst			-0.539***
			(0.196)
and			0.141***
			(0.031)
area			18.086***
			(2.306)
ooms			3,304.227**
			(1,661.248)
oaths			6,977.317***
			(2,581.321)
age		-1,494.424***	-739.451***
		(131.860)	(131.127)
I(age^2)		8.691***	3.453***
, ,		(0.848)	(0.813)
Constant	82,517.230***	89,116.540***	13,807.670
	(2,726.910)	(2,406.051)	(11,166.590)
Observations	321	321	321
\mathbb{R}^2	0.174	0.414	0.660
Adjusted R ²	0.166	0.405	0.649
Residual Std. Error	30,242.900 (df = 317)	25,543.290 (df = 315)	19,619.020 (df = 310)
F Statistic	22.251^{***} (df = 3; 317)	44.591*** (df = 5; 315)	60.189*** (df = 10; 310

Verificando esse efeito em termos percentuais

Table 7: Regressão Linear Multipla

	Dependent variable:
	log(rprice)
v81	0.193***
	(0.045)
nearinc	-0.340***
	(0.055)
y81nrinc	-0.063
	(0.083)
Constant	11.285***
	(0.031)
Observations	321
\mathbb{R}^2	0.246
Adjusted R ²	0.239
Residual Std. Error	0.338 (df = 317)
F Statistic	$34.470^{***} (df = 3; 317)$
Note:	*p<0.1; **p<0.05; ***p<0.01

O termo de interação do modeo 3, y81nearinc indica a redução percentual aproximada dos imóveis próximos do incinerador. Isso implica dizer que, os imóveis próximos ao incinerador desvalorizaram na média aproximadamente 6,3%. Porém ja vimos que esse coeficiente assim estimado nao é estatisticamente significativo. A

forma pela qual contornamos esse problema é controlar por outras variávies (características) do modelo cinco 2

Table 8: Regressão Linear Multipla

	Dependent variable:
	log(price)
y81	0.426***
-	(0.028)
nearinc	0.032
	(0.047)
y81nrinc	-0.132**
	(0.052)
log(intst)	-0.061*
	(0.032)
log(land)	0.100***
	(0.024)
log(area)	0.351***
	(0.051)
rooms	0.047***
	(0.017)
baths	0.094***
	(0.028)
age	-0.008***
	(0.001)
I(age^2)	0.00004***
	(0.00001)
Constant	7.652***
	(0.416)
Observations	321
\mathbb{R}^2	0.790
Adjusted R ²	0.784
Residual Std. Error	0.204 (df = 310)
F Statistic	116.909***(df = 10; 310)
Note:	*p<0.1; **p<0.05; ***p<0.01

Assim, é possível constatar que a desvalorização dos imóveis proxímo ao incinerador foi de 13,2% depois de sua construção.

 $^{^2}$ Conforme orientação do professor Wooldridge, é necessário colocar as variáveis intst, land e area em log.