§ 4.3 三角函数的图像与性质

4.3.1 相关概念

正、余弦函数的图像

对于正弦函数 $y = \sin x$,我们知道它是奇函数,同时,由于 $\sin(x + 2\pi) = \sin x$,故 2π 为其一个周期,事实上, 2π 还是正弦函数 $y = \sin x$ 的最小正周期。下面我们利用特殊角的三角函数来研究它的图像。我们知道:

$$\sin 0 = 0$$
, $\sin \frac{\pi}{2} = 1$, $\sin \pi = 0$, $\sin \frac{3\pi}{2} = -1$, $\sin 2\pi = 0$,

也即
$$y = \sin x$$
 的图像经过如下五点: $O(0,0), P_1(\frac{\pi}{2},1), P_2(\pi,0), P_3(\frac{3\pi}{2},-1)$, $P_4(2\pi,0)$

将这五个点用光滑曲线连接起来,并借助 $y = \sin x$ 的奇函数性质和周期性,就得到了 $y = \sin x$ 的图像,如下图所示。

由于 $\sin(x+\frac{\pi}{2})=\cos x$,因此,我们将 $y=\sin x$ 的图像向左平移 $\frac{\pi}{2}$ 个单位(纵坐标不变),就可得到 $y=\cos x$ 的图像,如果还想得到 $y=-\cos x$ 的图像,只需将 $y=\cos x$ 的图像沿x 轴翻折,如下图所示。

正切函数 $y = \tan x$ 的图像

由于 $y = \tan x = \frac{\sin x}{\cos x}$,我们知道它是奇函数,且其定义域为: $x \in R$,且 $x \neq k\pi + \frac{\pi}{2}$, $k \in Z$ 。 考虑到 $\tan(x+\pi) = \tan x$,因此,正切函数 $y = \tan x$ 是以 π 为周期的周期函数。故,我们可以通过 $y = \tan x$ 在 $(0, \frac{\pi}{2})$ 上的图像,得到 $y = \tan x$ 在整个定义域内的图像。受**"五点法"** 画正弦函数

图像的启发,我们知道 $y = \tan x$ 的图像经过如下这些点

$$O(0,0)$$
, $P_1(\frac{\pi}{6}, \frac{\sqrt{3}}{3})$, $P_2(\frac{\pi}{4}, 1)$, $P_3(\frac{\pi}{3}, \sqrt{3})$

并考虑到 $x \to \frac{\pi}{2}$ (从小于 $\frac{\pi}{2}$ 的方向)时, $\tan x = \frac{\sin x}{\cos x} \to +\infty$,故, $y = \tan x$ 的图像如下图所示。

三角函数的图象和性质梳理

函数性质	$y = \sin x$	$y = \cos x$	$y = \tan x$
定义域	R	R	$x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$
图象	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} y_h \\ \hline 1 \\ \hline \frac{\pi}{2}0 \\ \hline -1 \\ -1 \end{array} $	-π/2 O π/2 x
值域	[-1,1]	[-1,1]	R
对称性	对称轴: $x = k\pi + \frac{\pi}{2}$ 对称中心: $(k\pi, 0)$	对称轴: $x = k\pi$ 对称中心: $(k\pi + \frac{\pi}{2}, 0)$	无对称轴 对称中心: $(\frac{k\pi}{2},0)$
周期	2π	2π	π

三角函数的图象和性质 (续)

函数性质	$y = \sin x$	$y = \cos x$	$y = \tan x$
奇偶性	奇	偶	奇

图象	$ \begin{array}{c c} & & & \\ 1 & & & \\ \hline 0 & & & \\ \hline -1 & -\frac{2}{2} & -\frac{3\pi}{2} & 2\pi \\ \hline -1 & & & \\ \end{array} $	$ \begin{array}{c c} y_h \\ \hline 1 \\ \hline \frac{\pi}{2}O & \frac{\pi}{2} \\ \hline -1 \\ \hline \end{array} $	-\frac{\pi}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
单调性	$[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}] \bot$ 单增	$[2k\pi, 2k\pi + \pi]$ 上单减	$[k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}]\perp$,
	$[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}] \perp$ 单减	[2kπ-π,2kπ]上单增	单增

函数 $y = A\sin(\omega x + \varphi)$ 的图像

- (1) |A|叫振幅, ω 叫角频率, $\omega x + \varphi$ 叫相位, φ 叫初相
- (2) 最小正周期为 $\frac{2\pi}{|\omega|}$,
- (3) $y = \tan(\omega x + \varphi)$ 的最小正周期为 $\frac{\pi}{|\varphi|}$ 。

函数 $y = A\sin(\omega x + \varphi)$ 的图像:

为简单计,不妨令 $A>0,\omega>0$ 。利用前面的知识,将 $y=\sin x$ 的图像向左或右平移 $|\varphi|$ 个单 位,得到 $y = \sin(x + \varphi)$ 的图像,再把所得图像的横坐变为原来的 $\frac{1}{\varphi}$ 倍(纵坐标不变),则得到 $y = \sin(\omega x + \varphi)$ 的图像,最后,将所得图像的纵坐标变为原来的 A 倍 (横坐标不变),则得到 $y = A \sin(\omega x + \varphi)$ 的图像。

4.3.2 典型例题

例 1 (1). 若
$$0 < \alpha < \frac{\pi}{2}$$
, $g(x) = \sin(2x + \frac{\pi}{4} + \alpha)$ 是偶函数,则 α 的值为_____

(2) 在函数 $y = \sin|x|$ 、 $y = |\sin x|$ 、 $y = \sin(2x + \frac{2\pi}{3})$ 、 $y = \cos(2x + \frac{2\pi}{3})$ 、 $y = \cos|2x|$ 中,最小正周期为π的函数的个数为(

- A. 1个

- B. 2↑ C. 3↑ D. 4↑

【解析】(1) 要使
$$g(x) = \sin(2x + \frac{\pi}{4} + \alpha)$$
 为偶函数,需 $\frac{\pi}{4} + \alpha = k\pi + \frac{\pi}{2} (k \in \mathbb{Z})$

解得
$$\alpha = k\pi + \frac{\pi}{4}(k \in \mathbb{Z})$$
 , $\because 0 < \alpha < \frac{\pi}{2}$, $\therefore \alpha = \frac{\pi}{4}$.

(2) 由 $y = \sin|x|$ 的图象知,它是非周期函数,另外, $\cos|2x| = \cos 2x$,故选 D。

例 2.已知函数
$$y = 3\sin\left(x + \frac{\pi}{5}\right)$$
的图像为 C 。

(1) 为了得到函数
$$y = 3\sin\left(x - \frac{\pi}{5}\right)$$
 的图像,只要把 C 上所有的点(

A. 向右平移
$$\frac{\pi}{5}$$
个单位长度 B. 向左平移 $\frac{\pi}{5}$ 个单位长度

B. 向左平移
$$\frac{\pi}{5}$$
个单位长度

C. 向右平移
$$\frac{2\pi}{5}$$
 个单位长度

C. 向右平移
$$\frac{2\pi}{5}$$
 个单位长度 D. 向左平移 $\frac{2\pi}{5}$ 个单位长度

(2) 为了得到函数
$$y = 3\sin\left(2x + \frac{\pi}{5}\right)$$
 的图像,只要把 C 上所有的点(

A. 横坐标伸长到原来的两倍,纵坐标不变 B. 横坐标缩短到原来的 $\frac{1}{2}$,纵坐标不变

C. 纵坐标伸长到原来的两倍,横坐标不变 D. 纵坐标缩短到原来的 $\frac{1}{2}$,横坐标不变

【解析】(1) C; (2) B

例 3.下图为一向右传播的绳波在某一时刻绳子各点的位置图,经过 $\frac{1}{2}$ 周期后,乙点的位置将 移至何处?

【解析】这是波动图,绳上各点只做上下振动(横坐标不变),经过 $\frac{1}{2}$ 周期,质点乙从波峰变 到波谷,也就是说:此时处于它关于 x 轴的对称点位置。

延伸问题: 同样是经过 $\frac{1}{2}$ 周期,丙的位置不变。事实上质点丙先向上移动(上坡下,下坡上), 到达波峰需要 $\frac{1}{4}$ 周期,接着从波峰向下移动,又经 $\frac{1}{4}$ 周期,回到原来的位置。

例 4.已知函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0)$ 在[$\frac{\pi}{12}$, $\frac{\pi}{6}$]上存在零点、且在[$\frac{\pi}{3}$, $\frac{\pi}{2}$]上存在最值,

则 ω 的最小值为()

B.
$$\frac{3}{2}$$

c.
$$\frac{6}{5}$$

B.
$$\frac{3}{2}$$
 C. $\frac{6}{5}$ D. $\frac{3}{4}$

【解析】注意: $y = \sin x$ 的零点为 $k\pi(k \in \mathbb{Z})$,最值点为 $k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$

由题意知: 存在
$$x_1 \in \left[\frac{\pi}{12}, \frac{\pi}{6}\right]$$
、整数 k_1 ,使得 $\omega x_1 + \varphi = k_1 \pi$, ①

以及
$$x_2 \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$
 和整数 k_2 ,使得 $\omega x_2 + \varphi = k_2 \pi + \frac{\pi}{2}$, ②

②-① 得
$$\omega(x_2-x_1)=(k_2-k_1)\pi+\frac{\pi}{2}$$
, $\&\omega=\frac{(k_2-k_1)\pi+\frac{\pi}{2}}{x_2-x_1}$,

显然,要 $\omega(>0)$ 最小,需 x_2-x_1 最大,且 (k_2-k_1) 最小,

易知
$$x_2 - x_1$$
 最大可取 $\frac{\pi}{2} - \frac{\pi}{12} = \frac{5\pi}{12}$, $(k_2 - k_1)$ 最小为 0,

故
$$\omega$$
的最小值为 $\frac{\pi}{2} \times \frac{12}{5\pi} = \frac{6}{5}$,选 C。

例 5.将函数 $f(x) = 2\sin(2x + \frac{\pi}{6})$ 的图像向左平移 $\frac{\pi}{12}$ 个单位,再向上平移 1 个单位,得到 g(x) 的图像,若 $g(x_1)g(x_2)=9$,且 $x_1,x_2\in[-2\pi,2\pi]$,则 $2x_1-x_2$ 的最大值为(

A.
$$\frac{25\pi}{6}$$

B.
$$\frac{35\pi}{6}$$

c.
$$\frac{17\pi}{4}$$

B.
$$\frac{35\pi}{6}$$
 C. $\frac{17\pi}{4}$ D. $\frac{49\pi}{12}$

【解析】 易知
$$g(x) = 2\sin(2(x + \frac{\pi}{12}) + \frac{\pi}{6}) + 1 = 2\sin(2x + \frac{\pi}{3}) + 1$$

曲
$$g(x_1)g(x_2) = 9$$
知: $\sin(2x_1 + \frac{\pi}{3}) = \sin(2x_2 + \frac{\pi}{3}) = 1$

因此
$$2x_1 + \frac{\pi}{3} = 2k_1\pi + \frac{\pi}{2}$$
, $2x_2 + \frac{\pi}{3} = 2k_2\pi + \frac{\pi}{2}$,

得
$$x_1 = k_1 \pi + \frac{\pi}{12}$$
, $x_2 = k_2 \pi + \frac{\pi}{12}$ (k_1, k_2 为整数),

要 $2x_1-x_2$ 最大,考虑到 $x_1,x_2\in[-2\pi,2\pi]$,因此 $k_1=1$,此时 x_1 最大; $k_2=-2$,此时 x_2 最 小; 即 $2x_1 - x_2$ 得最大值为 $2(\pi + \frac{\pi}{12}) - (-2\pi + \frac{\pi}{12}) = \frac{49\pi}{12}$, 选 D。

例 6.已知偶函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, 0 < \varphi < \pi)$ 的部分图象如图所示,

 $\triangle KLM$ 为等腰直角三角形, $\angle KML = 90^{\circ}$, $KL \models 1$,则 $f(\frac{1}{3})$ 的值为____

【解析】 $\triangle KLM$ 为等腰直角三角形, $\angle KML = 90^{\circ}$,|KL| = 1,所以 $A = \frac{1}{2}$,T = 2, $\omega = \frac{2\pi}{T} = \pi$,

又
$$f(x)$$
 是偶函数, $0 < \varphi < \pi$,所以 $\varphi = \frac{\pi}{2}$, ∴ $f(x) = \frac{1}{2}\sin(\pi x + \frac{\pi}{2}) = \frac{1}{2}\cos \pi x$,

所以
$$f(\frac{1}{3}) = \frac{1}{2}\cos\frac{\pi}{3} = \frac{1}{4}$$

例 7 (全国 I) 已知函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0, |\varphi| \le \frac{\pi}{2}), x = -\frac{\pi}{4}$ 为 f(x) 的零点, $x = \frac{\pi}{4}$

为 y = f(x) 图像的对称轴,且 f(x) 在 $\left(\frac{\pi}{18}, \frac{5\pi}{36}\right)$ 单调,则 ω 的最大值为

(A) 11 (B) 9 (C) 7 (D) 5

【解析】注意到函数 $\sin x$ 的零点为 $k\pi$,其图像的对称轴为直线 $x = k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$

故,由题意知,存在 $k_1,k_2\in Z$,使得 $-\frac{\pi}{4}\omega+\varphi=k_1\pi$, $\frac{\pi}{4}\omega+\varphi=k_2\pi+\frac{\pi}{2}$;

故,
$$2\varphi = k\pi + \frac{\pi}{2} \Rightarrow \varphi = \frac{k\pi}{2} + \frac{\pi}{4} \Rightarrow \varphi = \pm \frac{\pi}{4}$$
,

当
$$\varphi = \frac{\pi}{4}$$
时, $11x + \frac{\pi}{4} \in (\frac{31\pi}{36}, \frac{16\pi}{9})$,不合要求;

当
$$\varphi = -\frac{\pi}{4}$$
时, $11x - \frac{\pi}{4} \in (\frac{13\pi}{36}, \frac{23\pi}{18})$,不合要求;

$$\stackrel{\text{def}}{=} \varphi = \frac{\pi}{4} \text{ By}, \quad 9x + \frac{\pi}{4} \in (\frac{3\pi}{4}, \frac{3\pi}{2}),$$

 $\sin t$ 在 $(\frac{3\pi}{4}, \frac{3\pi}{2})$ 单调递减,满足要求,选 B

例 8.将函数 $f(x) = 2\sin 2x$ 的图象向右平移 $\varphi(0 < \varphi < \frac{\pi}{2})$ 个单位后得到函数 g(x) 的图象,

若方程 $|f(x_1)-g(x_2)|=4$ 的根 x_1,x_2 满足 $|x_1-x_2|_{\min}=\frac{\pi}{6}$,则 φ 的值是()

A.
$$\frac{\pi}{4}$$

A.
$$\frac{\pi}{4}$$
 B. $\frac{\pi}{6}$ C. $\frac{\pi}{3}$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

【解析】由题 $g(x) = 2\sin[2(x-\varphi)] = 2\sin(2x-2\varphi)$,

不妨设 $\sin 2x_1 = 1$, $\sin(2x_2 - 2\varphi) = -1$

则
$$2x_1 = 2k_1\pi + \frac{\pi}{2}$$
 , $2x_2 - 2\varphi = 2k_2\pi - \frac{\pi}{2}$, $k_1, k_2 \in Z$,

$$|x_1 - x_2| = \left| k_1 \pi + \frac{\pi}{4} - \left(k_2 \pi - \frac{\pi}{4} + \varphi \right) \right| = \left| (k_1 - k_2) \pi + \frac{\pi}{2} - \varphi \right|$$

又
$$0 < \varphi < \frac{\pi}{2}$$
 ,则 $|x_1 - x_2|_{\min} = \left|\frac{\pi}{2} - \varphi\right| = \frac{\pi}{2} - \varphi = \frac{\pi}{6}$,解得 $\varphi = \frac{\pi}{3}$;

同理当
$$\sin 2x_1 = -1$$
 , $\sin(2x_2 - 2\varphi) = 1$, 仍得 $\varphi = \frac{\pi}{3}$,

综上,
$$\varphi = \frac{\pi}{3}$$
。

例 9.函数 $f(x) = \sin \omega x + \sqrt{3} \cos \omega x$ ($\omega > 0$) 与函数 y = g(x) 的图像关于点 $\left(\frac{\pi}{3}, 0\right)$ 对称,

且 $g(x) = f(x - \frac{\pi}{3})$,则 ω 的最小值等于

C 3

【解析】 $f(x) = 2(\frac{1}{2}\sin \omega x + \frac{\sqrt{3}}{2}\cos \omega x) = 2\sin(\omega x + \frac{\pi}{3})$,由题意知 $f(x) + g(\frac{2\pi}{3} - x) = 0$,

$$f(x)$$
 的图像关于 $(\frac{\pi}{6},0)$ 对称,故 $f(\frac{\pi}{6})=0$,即 $\sin(\frac{\pi}{6}\omega+\frac{\pi}{3})=0$

因 $\omega > 0$,故 ω 的最小值为4.选D。

例 10 (1) 函数 $f(x) = \sin\left(\omega x + \frac{\pi}{4}\right)(\omega > 0)$ 的图象在 $\left|0, \frac{\pi}{4}\right|$ 内有且仅有一条对称轴,则实

数 ω 的取值范围是(

B.
$$(1,+\infty)$$
 C. $[1,5)$

D.
$$[1,+\infty)$$

(2) 若函数 $f(x) = 2\sin(4x + \varphi)(\varphi < 0)$ 的图象关于直线 $x = \frac{\pi}{24}$ 对称,则 φ 的最大值为

A.
$$-\frac{5\pi}{3}$$
 B. $-\frac{2\pi}{3}$ C. $-\frac{\pi}{6}$ D. $-\frac{5\pi}{6}$

B.
$$-\frac{2\pi}{3}$$

$$C.-\frac{\pi}{6}$$

D.
$$-\frac{5\pi}{6}$$

【解析】易知 $\omega x + \frac{\pi}{4} \in \left[\frac{\pi}{4}, \frac{\pi}{4}\omega + \frac{\pi}{4}\right]$,即 $\sin t$ 在 $\left[\frac{\pi}{4}, \frac{\pi}{4}\omega + \frac{\pi}{4}\right]$ 只有一条对称轴,

故,
$$\frac{\pi}{2} \le \frac{\pi}{4}\omega + \frac{\pi}{4} < \frac{3\pi}{2}$$
,解得 $\omega \in [1,5)$,故选 C.

(2) 易知:
$$4 \times \frac{\pi}{24} + \varphi = k\pi + \frac{\pi}{2}$$
, 故 $\varphi = k\pi + \frac{\pi}{3} (k \in \mathbb{Z})$,

因
$$\varphi$$
<0,故 $\varphi_{\text{max}} = -\frac{2\pi}{3}$,选B。

例 11. (1) 求函数 $f(x) = \sin\left(\frac{\pi}{3} + 4x\right) + \sin\left(4x - \frac{\pi}{6}\right)$ 的周期和单调递增区间;

(2) 求函数 $f(x) = a \sin x + b \cos x (a^2 + b^2 \neq 0)$ 的最大值和最小值

【解析】(1) $f(x) = \sin 4x \cos \frac{\pi}{3} + \cos 4x \sin \frac{\pi}{3} + \sin 4x \cos \frac{\pi}{6} - \cos 4x \sin \frac{\pi}{6}$

$$=\frac{\sqrt{3}+1}{2}\sin 4x + \frac{\sqrt{3}-1}{2}\cos 4x = \sqrt{2}(\frac{\sqrt{6}+\sqrt{2}}{4}\sin 4x + \frac{\sqrt{6}-\sqrt{2}}{4}\cos 4x)$$

$$= \sqrt{2}(\sin 4x \cos \frac{\pi}{12} + \cos 4x \sin \frac{\pi}{12}) = \sqrt{2}\sin(4x + \frac{\pi}{12}),$$

故,
$$f(x)$$
的周期为 $T = \frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$;

即
$$f(x)$$
 的单调递增区间为 $\left[\frac{k\pi}{2} - \frac{7\pi}{48}, \frac{k\pi}{2} + \frac{5\pi}{48}\right](k \in \mathbb{Z})$

(2)
$$f(x) = \sqrt{a^2 + b^2} \sin(x + \varphi)$$
, 其中 φ 满足: $\tan \varphi = \frac{b}{a}$ 。

故
$$f(x)_{\text{max}} = \sqrt{a^2 + b^2}$$
, $f(x)_{\text{min}} = -\sqrt{a^2 + b^2}$ 。

例 12.已知函数
$$f(x) = \sin x - \sqrt{3}\cos x$$
 ,且 $f(x_1) \cdot f(x_2) = -4$,则 $|x_1 + x_2|$ 的最小值为(

A.
$$\frac{\pi}{3}$$
 B. $\frac{\pi}{2}$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{2\pi}{3}$$
 D. $\frac{3\pi}{4}$

D.
$$\frac{3\pi}{4}$$

【解析】 ::
$$f(x) = \sin x - \sqrt{3}\cos x = 2\left(\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x\right) = 2\sin\left(x - \frac{\pi}{3}\right)$$

$$\mathbb{Z} f\left(x_1\right) \cdot f\left(x_2\right) = -4 , \quad \mathbb{H} 2 \sin\left(x_1 - \frac{\pi}{3}\right) \cdot 2 \sin\left(x_2 - \frac{\pi}{3}\right) = -4 , \quad \therefore \sin\left(x_1 - \frac{\pi}{3}\right) \cdot \sin\left(x_2 - \frac{\pi}{3}\right) = -1 ,$$

由 x_1, x_2 地位的对等性,不妨令 $\sin\left(x_1 - \frac{\pi}{3}\right) = 1$ 且 $\sin\left(x_2 - \frac{\pi}{3}\right) = -1$.

$$\therefore x_1 - \frac{\pi}{3} = 2k_1\pi + \frac{\pi}{2} , x_2 - \frac{\pi}{3} = 2k_2\pi - \frac{\pi}{2} , \left(k_1, k_2 \in \mathbf{Z}\right) , \therefore x_1 + x_2 = 2\left(k_1 + k_2\right)\pi + \frac{2\pi}{3}\left(k_1, k_2 \in \mathbf{Z}\right) ,$$

显然, 当 $k_1 + k_2 = 0$ 时, $|x_1 + x_2|$ 的最小值为 $\frac{2\pi}{3}$, 故选 C.

例 13.已知函数 $f(x) = \sqrt{3}\sin x \cos x + \frac{1}{2}\cos 2x$,若将其图象向右平移 φ ($\varphi > 0$)个单位 后所得的图象关于原点对称,则 ϕ 的最小值为(

A.
$$\frac{\pi}{6}$$

B.
$$\frac{5\pi}{6}$$

C.
$$\frac{\pi}{12}$$

B.
$$\frac{5\pi}{6}$$
 C. $\frac{\pi}{12}$ D. $\frac{5\pi}{12}$

【解析】 $f(x) = \frac{\sqrt{3}}{2} \sin 2x + \frac{1}{2} \cos 2x = \sin(2x + \frac{\pi}{6})$, 将其图像向右平移 $\varphi(\varphi > 0)$ 个单位

后得到 $g(x) = \sin[2(x-\varphi) + \frac{\pi}{6}] = \sin(2x-2\varphi + \frac{\pi}{6})$,

由题意知: g(x) 为奇函数, 故 $-2\varphi + \frac{\pi}{6} = k\pi$, 即 $\varphi = -\frac{k\pi}{2} + \frac{\pi}{12}$ $(k \in \mathbb{N})$,

因 $\varphi > 0$,故 φ 的最小值为 $\frac{\pi}{12}$.故选 C.

例 14.已知函数 $f(x) = \sqrt{3} \sin \omega x + \cos \omega x (\omega > 0)$ 在区间 $[-\frac{\pi}{4}, \frac{\pi}{3}]$ 上恰有一个最大值点和一 个最小值点,则实数 ω 的取值范围为(

A.
$$[\frac{8}{3},7)$$

B.
$$[\frac{8}{3}, 4]$$

A.
$$\left[\frac{8}{3}, 7\right)$$
 B. $\left[\frac{8}{3}, 4\right)$ C. $\left[4, \frac{20}{3}\right)$ D. $\left(\frac{20}{3}, 7\right)$

D.
$$(\frac{20}{3},7)$$

【解析】 易知: $f(x) = 2(\frac{\sqrt{3}}{2}\sin \omega x + \frac{1}{2}\cos \omega x) = 2\sin(\omega x + \frac{\pi}{6})$,

故
$$\omega x + \frac{\pi}{6} \in \left[-\frac{\omega \pi}{4} + \frac{\pi}{6}, \frac{\omega \pi}{3} + \frac{\pi}{6}\right]$$

问题等价于 $\sin t$ 在 $\left[-\frac{\omega\pi}{4} + \frac{\pi}{6}, \frac{\omega\pi}{3} + \frac{\pi}{6}\right]$ 恰有一个最大点和一个最小点,所以

取
$$\omega = \frac{8}{3}$$
,则 $\left[-\frac{\omega\pi}{4} + \frac{\pi}{6}, \frac{\omega\pi}{3} + \frac{\pi}{6}\right] = \left[-\frac{\pi}{2}, \frac{19\pi}{18}\right]$,满足要求,排除 C, D

取
$$\omega = 5$$
,则 $\left[-\frac{\omega\pi}{4} + \frac{\pi}{6}, \frac{\omega\pi}{3} + \frac{\pi}{6}\right] = \left[-\frac{13\pi}{12}, \frac{11\pi}{6}\right]$,不满足要求,排除 A,最终选 B。

【解法二】 易知
$$f(x) = 2(\frac{\sqrt{3}}{2}\sin \omega x + \frac{1}{2}\cos \omega x) = 2\sin(\omega x + \frac{\pi}{6})$$
,

问题等价于 $\sin t$ 在 $\left[-\frac{\omega\pi}{4} + \frac{\pi}{6}, \frac{\omega\pi}{3} + \frac{\pi}{6}\right]$ 恰有一个最大点和一个最小点,注意到 $\frac{\omega\pi}{3} + \frac{\pi}{6}$ 距

离
$$\frac{\pi}{2}$$
 较近,所以
$$\begin{cases} \frac{\pi}{2} \leq \frac{\omega\pi}{3} + \frac{\pi}{6} < \frac{3\pi}{2} \\ -\frac{3\pi}{2} < -\frac{\omega\pi}{4} + \frac{\pi}{6} \leq -\frac{\pi}{2} \end{cases}$$
, 解得 $\frac{8}{3} \leq \omega < 4$, 选 B。

例 15.已知函数 $f(x) = \cos \omega x(\omega > 0)$,若 $f(\frac{7}{4}\pi) + f(\frac{11}{4}\pi) = 0$,且 f(x) 在 $(\frac{7}{4}\pi, \frac{11}{4}\pi)$ 上 是增函数,则 f(x) 的最小正周期为(

$$B.\frac{9}{2}\pi$$

 ${\sf C.4\pi}$

D. 3π

【解析】: $\frac{7}{4}\pi$ 和 $\frac{11}{4}\pi$ 的中点 $\frac{9}{4}\pi$ 一定是 f(x) 的零点,

故
$$\frac{9}{4}\pi\omega = k\pi + \frac{\pi}{2}$$
,即 $\omega = \frac{4}{9}k + \frac{2}{9}$

如
$$\omega = \frac{6}{9} = \frac{2}{3}$$
,则 $x \in (\frac{7}{4}\pi, \frac{11}{4}\pi)$ 时, $\omega x \in (\frac{7}{6}\pi, \frac{11}{6}\pi)$ 在三、四象限,符合题意,故

的最小正周期为
$$\frac{2\pi}{\omega} = \frac{2\pi}{\frac{2}{3}} = 3\pi$$
,选 D

例 16.已知函数
$$f(x) = \frac{\sqrt{3}}{2} \sin\left(x + \frac{\pi}{6}\right) - \frac{1}{2} \cos\left(x + \frac{\pi}{6}\right)$$
,若存在 x_1, x_2, \dots, x_n 满足

 $0 \le x_1 < x_2 < \dots < x_n \le 6\pi$, \square

 $|f(x_1) - f(x_2)| + |f(x_2) - f(x_3)| + \dots + |f(x_{n-1}) - f(x_n)| = 12(n \ge 2, n \in N^*), \quad \text{则 n 的最}$ 小值为(

A. 6

B. 10

C. 8

D. 12

【解析 】 易知 $f(x) = \sin\left(x + \frac{\pi}{6} - \frac{\pi}{6}\right) = \sin x$,数形结合:取

 $x_1 = 0, x_2 = \frac{\pi}{2}, x_3 = \frac{3\pi}{2}, \dots, x_8 = 6\pi$,可满足要求。选 C。

例 17 (1) (全国卷) 函数 $f(x) = \cos\left(3x + \frac{\pi}{6}\right)$ 在 $\left[0, \pi\right)$ 的零点个数为_____.

- (2) $f(x) = \tan(2x \frac{\pi}{3})$ 的单调递增区间为_____
- (3) $f(x) = \cos(2x \frac{\pi}{3})$ 的图像的对称中心为_______,对称轴为______,单调递增区间为___

【解析】(1) $x \in [0, \pi)$ 时, $3x + \frac{\pi}{6} \in [\frac{\pi}{6}, \frac{19\pi}{6})$,问题等价于 $\cos t \in [\frac{\pi}{6}, \frac{19\pi}{6})$ 上的零点个数问题,显然, $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$ 均满足要求,故有 3 个零点。

(2) 因 $\tan x$ 的单调递增区间为 $(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})$,解 $k\pi - \frac{\pi}{2} < 2x - \frac{\pi}{3} < k\pi + \frac{\pi}{2}$ 得

 $\frac{k\pi}{2} - \frac{\pi}{12} < x < \frac{k\pi}{2} + \frac{5\pi}{12}$,即 $\tan(2x - \frac{\pi}{3})$ 的单调递增区间为 $(\frac{k\pi}{2} - \frac{\pi}{12}, \frac{k\pi}{2} + \frac{5\pi}{12})(k \in Z)$

(3) 因 $\cos x$ 的对称中心为 $(k\pi + \frac{\pi}{2}, 0)$,

由于 $\cos x$ 的对称轴为直线 $x = k\pi$,

由于 $\cos x$ 的单调递增区间为[$2k\pi - \pi, 2k\pi$]

解 $2k\pi - \pi \le 2x - \frac{\pi}{3} \le 2k\pi$ 得 $k\pi - \frac{\pi}{3} \le x \le k\pi + \frac{\pi}{6}$, 故 $\cos(2x - \frac{\pi}{3})$ 的 单 调 递 增 区 间 为 $(k\pi-\frac{\pi}{3},k\pi+\frac{\pi}{6})$

注意:以上的 $k \in \mathbb{Z}$ 。

例 18.已知函数 $y = 2\sin(\omega x + \theta)$ 为偶函数 $(0 < \theta < \pi)$, 其图像与直线 y = 2 某两个交点的横坐标 分别为 x_1, x_2 ,若 $\left|x_2 - x_1\right|$ 的最小值为 π ,则该函数在区间()上是增函数。

A.
$$\left(-\frac{\pi}{2}, -\frac{\pi}{4}\right)$$
 B. $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ C. $\left(0, \frac{\pi}{2}\right)$ D. $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$

B.
$$\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$

C.
$$\left(0, \frac{\pi}{2}\right)$$

D.
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$

【解析】因 $y = 2\sin(\omega x + \theta)$ 为偶函数,且 $0 < \theta < \pi$, 故 $\theta = \frac{\pi}{2}$,进而得 $y = 2\cos\omega x$

又, 易知 $y = 2\cos\omega x$ 的周期为 π , 故 $\frac{2\pi}{\omega} = \pi$, 即 $\omega = 2$, 故 $y = 2\cos 2x$;

因 $\cos x$ 的单调递增区间为 $(2k\pi - \pi, 2k\pi)$,

即, $y = 2\cos 2x$ 的单调递增区间为 $(k\pi - \frac{\pi}{2}, k\pi)(k \in \mathbb{Z})$

显然,取k=0时,选项 A满足要求,故选 A。

例 19 (全国 I) 关于函数 $f(x) = \sin|x| + |\sin x|$ 有下述四个结论:

① f(x) 是偶函数 ② f(x) 在区间($\frac{\pi}{2}$, π) 单调递增 ③ f(x) 在[$-\pi$, π]有 4 个零点

④ f(x) 的最大值为 2

其中所有正确结论的编号是

A. (1)(2)(4)

B. (2)(4)

C. (1)(4)

D. (1)(3)

【解析】①显然正确。

$$x \in (\frac{\pi}{2}, \pi)$$
时, $f(x) = 2\sin x$, 单调递减, ② 错

显然
$$f(x) \le 2$$
, 因 $f\left(\frac{\pi}{2}\right) = 2$, 故 ④ 正确。

综上,选C。

事实上,
$$f(x) = \sin|x| + |\sin x| = \begin{cases} -2\sin x, & x \in [-\pi, 0] \\ 2\sin x, & x \in [0, \pi] \end{cases}$$

显然, f(x)在 $[-\pi,\pi]$ 上只有 3 个零点。(3) 错。

例 20 (1) 不等式
$$\sqrt{3} + 2\cos x \ge 0$$
 的解集是_____.

(2) 函数
$$y = \sqrt{\sin x - \cos x}$$
 的定义域为_____

【解析】(1)由題意得
$$\cos x \ge -\frac{\sqrt{3}}{2}$$
,知其解集为 $[2k\pi - \frac{5\pi}{6}, 2k\pi + \frac{5\pi}{6}](k \in \mathbb{Z})$

(2)解
$$\sin x \ge \cos x$$
得函数的定义域为 $[2k\pi + \frac{\pi}{4}, 2k\pi + \frac{5\pi}{4}](k \in \mathbb{Z})$

【解法二】 易知
$$y = \sqrt{\sqrt{2}\sin(x - \frac{\pi}{4})}$$
,

由
$$2k\pi \le x - \frac{\pi}{4} \le 2k\pi + \pi$$
 得 $2k\pi + \frac{\pi}{4} \le x \le 2k\pi + \frac{5\pi}{4}$