Tutorial de infraestructura de red Zybo

Jesús Rodríguez Heras 4 de abril de 2019

Resumen

En este documento se desarrolla la creación de la infraestructura de red física de cuatro placas Zybo, un ordenador y un switch.

Índice

1.	Mate	erial necesario	(
	1.1.	Placas Zybo Zynq-7000	3
	1.2.	Software	4
	1.3.	Switch	4
2.	Paso	os para el montaje de la infraestructura	4

1. Material necesario

Para la creación de la infraestructura de red física de placas Zybo contaremos con el siguiente material:

- Placas Zybo Zynq-7010.
- Un ordenador con sistema operativo Linux (Debian 9 Stretch)¹ y Windows 7.
- Un switch tp-link modelo TL-SG1024D.

1.1. Placas Zybo Zynq-7000

Figura 1: Placa Zybo Zynq 7010

Para este proyecto necesitaremos poder programar la FPGA integrada en la placa desde la tarjeta SD de memoria. Para ello se va a preparar una imagen para que el procesador ARM integrado en la placa arranque desde la tarjeta SD y pueda programar la FPGA. El sistema operativo elegido es Xilinux².

Las placas Zybo Zynq 7010 tienen tres posibles modos de arranque que podemos seleccionar con el jumper JP5: QSPI, SD, JTAG. En este proyecto, el sistema operativo estará en la tarjeta SD, por lo tanto, tendremos que cambiar el jumper JP5 (situado arriba a la derecha) a la posición "SD"³.

¹También es posible usar cualquier otra distribución de Linux.

²Más información en: http://xillybus.com/xillinux.

³Dicho jumper está identificado con el número 21 en la siguiente página.

Callout	Component Description	Callout	Component Description
1	Power Switch	15	Processor Reset Pushbutton
2	Power Select Jumper and battery header	16	Logic configuration reset Pushbutton
3	Shared UART/JTAG USB port	17	Audio Codec Connectors
4	MIO LED	18	Logic Configuration Done LED
5	MIO Pushbuttons (2)	19	Board Power Good LED
6	MIO Pmod	20	JTAG Port for optional external cable
7	USB OTG Connectors	21	Programming Mode Jumper
8	Logic LEDs (4)	22	Independent JTAG Mode Enable Jumper
9	Logic Slide switches (4)	23	PLL Bypass Jumper
10	USB OTG Host/Device Select Jumpers	24	VGA connector
11	Standard Pmod	25	microSD connector (Reverse side)
12	High-speed Pmods (3)	26	HDMI Sink/Source Connector
13	Logic Pushbuttons (4)	27	Ethernet RJ45 Connector
14	XADC Pmod	28	Power Jack

Figura 2: Diagrama de Zybo Zynq 7010 substraído del manual de referencias

https://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZYBO/documentation/ZYBO_RM_B_V6.pdf

1.2. Software

El ordenador usado en el proyecto tendrá dos sistemas operativos.

- **Debian 9 Stretch:** Este sistema operativo tendrá un usuario llamado zybo y su contraseña será zybomonitor. La contraseña para los permisos de super-usuario también será zybomonitor. En este sistema operativo se realizará la compilación del sistema operativo Xilinux⁴ de las tarjetas Zybo y la programación del bitstream con el software Vivado.
- Windows 7: También tendrá la capacidad de programar la FPGA de la tarjeta usando el software Vivado..
- **Vivado:** Versión 2018.2 instalado en ambos sistemas operativos.

1.3. Switch

El switch usado en este proyecto es el tp-link TL-SG1024D que cuenta con 24 puertos con tecnología Gigabit y conectores RJ-45. También cuenta con interfaz accesible para su configuración.

2. Pasos para el montaje de la infraestructura

Llegados a este paso las tarjetas ya tienen su sistema operativo instalado y pueden arrancar e iniciar sesión en Xilinux.

Para asignarles una dirección IP debemos acceder al fichero /etc/network/interfaces con el editor vi que es el que trae Xilinux por defecto. Para ello introducimos el comando sudo vi /etc/network/interfaces, localizamos la interfaz y establecemos la dirección IP siguiendo la siguiente tabla:

Dispositivo	Dirección IP
Monitor	192.168.1.1
Zybo1	192.168.1.2
Zybo2	192.168.1.3
Zybo3	192.168.1.4
Zybo4	192.168.1.5

Tabla 1: Direcciones IP de las placas

Las tarjetas estarán identificadas como ZyboX (siendo "X" un número entre 1 y 4) y el ordenador se identificará como "Monitor".

Una vez tengamos los dispositivos identificados tenemos que conectarlos al switch⁵. Para probar la conectividad entre todos los dispositivos tendremos que ejecutar el test de interconexión de red.

⁴Más información en: http://xillybus.com/xillinux.

⁵Podemos conectar los dispositivos al puerto del switch que queramos debido a que se encargará de ir rellenando su tabla CAM con las direcciones de los dispositivos que tiene conectados.