

SÍLABO QUÍMICA INDUSTRIAL

ÁREA CURRICULAR: PRODUCCIÓN

CICLO: IV SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09007204050

II. CRÉDITOS : 05

III. REQUISITOS : 09005603050 Física I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Química Industrial es de naturaleza teórico y práctico. El propósito del curso es brindar al estudiante los conocimientos básicos de la ciencia y tecnología química a fin de contribuir al desarrollo de su capacidad profesional idónea en la gestión de la Industria Química. El desarrollo del curso comprende las siguientes unidades de aprendizaje: I.Conceptos básicos de la Química. II. Balance de Materia sin reacción química. III. Estequiometria. IV. Balance de Materia con Reacción Química. V. Balance de Energía.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Atkins P. (2006). Principios de Química. Los caminos del descubrimiento. Tercera Edición. Editorial Médica Panamericana S.A. Madrid-España.
- Brown, L.; Lemay, E; Murphy, C. Bursten, B.; Woodward, P. (2014). Química. La Ciencia Central. Décimo segunda Edición. Pearson Educación. México-México.
- Chang R. (2002). Química. Séptima Edición. Mc GRAW-HILL Interamericana Editores S.A de C.V. México-México.
- Ebbing D.; Gammon S. (2010). Química General. Novena Edición. Cengage Learning Editores S.A. México-México.
- Felder, R.; Rousseau, R. (2013). Principios Elementales de los Procesos Químicos. Tercera edición. Editorial Limusa S.A. Grupo Noriega Editores. México D.F.
- Himmelblau, D. (2002). Principios y Cálculos en Ingeniería Química. México. Ed. Prentice Hall.
- Monsalvo, R.; Romero, M.; Miranda M.; Muñoz, G. (2010). Balance de Materia y Energía. Procesos Industriales. Primera reimpresión. Grupo Editorial Patria S.A. de C.V. Azcapotzalco-México. D.F.
- Petrucci, R.; Herring, G.; Madura, J.; Bissonnette, C. (2011). Química General. Décima edición. Prentice Educación S.A. Madrid.
- Whitten, K.; Davis, R.; Peck, L. (2011). Química. Octava Edición. Edamsa Impresiones S.A de C.V. Iztapalapa-México.

Electrónicas

http://www.frlp.utn.edu.ar/materias/integracion3/UT2 Balance de materia.pdf

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: QUÍMICA: CONCEPTOS BÁSICOS

OBJETIVOS DE APRENDIZAJE

- Conocer las propiedades de la Materia y relación con el ambiente
- Relacionar los conceptos de la química en procesos de ingeniería básica.
- Resolver problemas de soluciones y composición química.

PRIMERA SEMANA

Primera sesión:

Sistema de Evaluación. Fechas de evaluación.

Introducción. Materia. Clasificación de la materia. Estados de agregación de la materia. Sistema Gaseoso. Gases Ideales

Segunda sesión:

Propiedades Físicas y Químicas de la Materia. Leyes de la conservación de la materia. Concepto de Mol. Pesos Fórmula.

SEGUNDA SEMANA

Primera sesión:

Composición. Mezclas. Porcentaje en peso. Porcentaje en Volumen. Porcentaje Molar. Ejemplos de aplicación.

Segunda sesión:

Composición: Soluciones: Tipos de Soluciones. Concentraciones. Molaridad, Molalidad, Normalidad. Ejemplos de aplicación

UNIDAD II: BALANCE DE MATERIA: SISTEMAS, RECIRCULACION Y REBASE

OBJETIVOS DE APRENDIZAJE:

- Aplicar conceptos de balance de materia sin reacción química
- Analizar y esquematiza procesos con sistemas de recirculación y rebase
- Resolver problemas de balance de materia sin reacción química con sistemas de recirculación y rebase.

TERCERA SEMANA

Primera sesión:

Conceptos básicos en Balance de masa. Balances sin reacción Química.

Ejemplos de aplicación de balance de masa sin reacción química.

Segunda sesión:

Cálculos para los balances de masa sin reacción química en sistemas de recirculación y rebase.

CUARTA SEMANA

Primera sesión:

Problemas de balances de masa sin reacción química en sistemas de rebase y recirculación.

Segunda sesión:

Primera Práctica Calificada.

UNIDAD III: ESTEQUIOMETRÍA, REACCIONES QUÍMICAS, GASES DE COMBUSTIÓN

OBJETIVOS DE APRENDIZAJE:

- Aplicar conceptos de estequiometria en soluciones y gases. Entender las leyes de la estequiometria.
- Obtener datos de rendimientos de reacciones químicas mediantes los conceptos estequiométricos
- Calcular composición de productos de combustión

QUINTA SEMANA

Primera sesión:

Estequiometria. Reacciones Químicas. Tipos de Reacciones Químicas. Cálculos en reacciones químicas. Reactivo limitante.

Segunda sesión:

Estequiometria en reacciones en estado gaseoso. Pureza de reactivos. Rendimiento de reacciones. Problemas de aplicación.

SEXTA SEMANA

Primera sesión:

Nomenclatura orgánica: Determinación fórmula global de un combustible. Gases de Chimenea húmedos y secos.

Segunda sesión:

Reacciones de Combustión. Aire teórico. Aire en exceso. Aire Húmedo Ejercicios obtención gases de chimenea secos y húmedos.

SÉPTIMA SEMANA

Primera sesión:

Reacciones de Combustión combustibles contaminados con oxígeno o azufre Combustión de un combustible con aire húmedo.

Segunda sesión:

Problemas de aplicación de gases de chimenea.

OCTAVA SEMANA

Examen Parcial

UNIDAD IV: BALANCE DE MATERIA CON REACCIÓN QUÍMICA: RECIRCULACION Y REBASE

OBJETIVOS DE APRENDIZAJE:

- Aplicar conceptos de estequiometria en problemas de balance de materia con reacción química
- Analizar y esquematiza procesos con sistemas de recirculación y rebase con reacción química

NOVENA SEMANA

Primera sesión:

Cálculos para los balances de masa con reacción química.

Segunda sesión:

Problemas de Balance de materia con reacción química.

DÉCIMA SEMANA

Primera sesión:

Cálculos para los balances de masa con reacción química con recirculación.

Segunda sesión:

Problemas de Balance de materia con reacción guímica y recirculación.

UNIDAD V. BALANCE DE ENERGÍA: TERMOQUIMICA

OBJETIVOS DE APRENDIZAJE:

- Resolver ejercicios para la determinación que involucran cálculos de energía
- Calcular valores de Capacidades caloríficas y entalpías que involucran más de dos reacciones.
- Plantear diagramas que involucran procesos de balance de energía.
- Resolver problemas de balance de masa y energía.

UNDÉCIMA SEMANA

Primera sesión:

Balance de energía. Formas de energía. Procedimientos para el Balance de Energía. Ley de Hess. Entalpía de formación.

Segunda sesión:

Ejemplos de aplicación. Hess. Calor de reacción. Calores específicos.

DUODÉCIMA SEMANA

Primera sesión:

Capacidad calorífica a presión constante. Cambio de entalpía a diferente temperatura.

Segunda sesión:

Segunda práctica calificada

DECIMOTERCERA SEMANA

Primera sesión:

Ecuación general de Balance de energía. Bombas. Turbinas

Segunda sesión:

Ejemplos de Aplicación. Balance de Energía.

DECIMOCUARTA SEMANA

Primera sesión:

Balance de materia con balance de energía

Segunda sesión:

Aplicación problemas involucran balance materia y cambio de entalpía.

DECIMOQUINTA SEMANA

Primera sesión:

Exposiciones del trabajo de curso

Segunda sesión:

Exposiciones del trabajo de curso

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
5
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones...
- . Método de Demostración Ejecución. El docente demuestra cómo se hace y el estudiante ejecuta demostrando lo que asimiló.

X. MEDIOS Y MATERIALES

Equipos: Ecrán, proyector de multimedia.

Materiales: Manual universitario, textos bibliográficos, calculadora.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE + EP + EF) / 4

PE = (PPR + W1 + PL)/3

PPR = (P1 + P2) / 2

PL = ((Lb1+Lb2+Lb3+Lb4+Lb5+Lb6)/6+EO)/2

Donde:

PF: Promedio Final

PE: Promedio de evaluaciones EP: Examen parcial (escrito) EF: Examen Final (escrito) PPR: Promedio practicas P#: Practica calificada PL: Promedio de laboratorio

W1: Trabajo

Lb#: Practica de laboratorio **EO**: Examen final de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería		
(f)	Comprensión de lo que es la responsabilidad ética y profesional		
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida		
(j)	Conocimiento de los principales temas contemporáneos	K	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	R	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	2	2

- b) Sesiones por semana: Tres sesiones.
- c) **Duración**: 7 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Manuel Ballena Gonzales

XV. FECHA

La Molina, marzo de 2017