Catherine Huang Summer@ICERM 2020

1 The Spectral Theorem

1.1 A self-adjoint operator $T \in \mathcal{L}(V)$ is symmetric.

Proof. Consider a orthonormal basis of V: $e_1, ..., e_n$. Since we're working in an orthonormal basis,

$$Te_k = < Te_k, e_1 > e_1 + \ldots + < Te_k, e_n > e_n$$

The entry at the jth row and kth column of $[\mathcal{M}(T,(e_1,...,e_n),(e_1,...,e_n))]_{jk} = \langle Te_k,e_j \rangle$. The entry at the kth row and the jth column of $[\mathcal{M}(T,(e_1,...,e_n),(e_1,...,e_n))]_{kj} = \langle Te_j,e_k \rangle = \langle e_j,Te_k \rangle$ Over $\mathbf{F} = \mathbf{R}$, $\langle Te_k,e_j \rangle = \langle e_j,Te_k \rangle$, so the corresponding matrix representation is a symmetric matrix.

1.2 For self-adjoint operator $T \in \mathcal{L}(V)$, $b, c \in \mathbb{R}$, and $b^2 - 4c < 0$, $T^2 + bT + c$ is invertible.

Proof. An operator is invertible if 0 is not an eigenvalue. For any nonzero vector $v \in V$, consider

$$<(T^{2} + bT + c)v, v> = < T^{2}v, v> + b < Tv, v> + c < v, v>$$

$$\geq ||Tv||^{2} - b||Tv||||v|| + c||v||^{2}$$

$$= (||Tv|| - \frac{b}{2}||v||)^{2} + (c - \frac{b^{2}}{4})||v||^{2}$$

$$> 0$$

We can conclude that $T^2 + bT + c$ is invertible because there are no 0 eigenvalues.

1.3 A self-adjoint operator $T \in \mathcal{L}(V)$ always has a real eigenvalue

Proof. For a nonzero vector v and dim(V) = n, consider the set of vectors $v, Tv, T^2v, \ldots, T^nv$. Because there are n+1 elements, there exists constants a_0, \ldots, a_n not all zero such that $a_0v + a_1Tv + \cdots + a_nT^nv = 0$. This can be factorized as $a_n(T^2 + b_1T + c_1) \ldots (T^2 + b_MT + c_M)(T - \lambda_1) \ldots (T - \lambda_N)v = 0$ where $b_i^2 - 4c_i < 0$ and $\lambda, b, c \in \mathbf{R}$. From section 1.2, we know the inverses for the quadratic function exists, so $(T - \lambda_1 I) \ldots (T - \lambda_N I)v = 0$. Since we assumed v was a nonzero vector, there is some λ_i such that $(T - \lambda_i I)v = 0$, ie λ_i is an eigenvalue.

1.4 For a self-adjoint operator $T \in \mathcal{L}(V)$ and suppose U is invariant in T, then $T|_{U^{\perp}}$ is a self-adjoint operator.

Proof. Suppose $u \in U$ and $v \in U^{\perp}$, then $\langle u, Tv \rangle = \langle Tu, v \rangle = 0$ where the last equality is true because $Tu \in U$ and $v \in U^{\perp}$. This shows that U^{\perp} is an invariant subspace as well.

Since U^{\perp} is an invariant subspace, we know that $T|_{U^{\perp}} = T$ when applied on elements in U^{\perp} . Suppose $u, v \in U^{\perp}$, then $< T|_{U^{\perp}}u, v> = < Tu, v> = < u, Tv> = < u, < T|_{U^{\perp}}v>$, so $T|_{U^{\perp}}$ is a self-adjoint operator.

1.5 $T \in \mathcal{L}(V)$ is a self-adjoint operator iff it can be unitarily diagonalizable with real numbers.

Proof. We proceed by inducting on the dim(V).

<u>BaseCase</u>: dim(V) = 1 This is trivially true because a vector is orthogonal to itself.

 $\underline{InductiveHypothesis}$: Suppose for all dimensions less than dim V $\stackrel{.}{\iota}$ 1, the self-adjoint operator can be unitarily diagonalizable with real numbers.

Inductive Step: Section 1.3 tells us that T has a real eigenvalue λ . Let u be the corresponding eigenvector

and because $Tu = \lambda u$, $U = \mathrm{span}(u)$ is an invariant subspace. Section 1.4 tells us that $T|_{U^{\perp}}u$ is a self-adjoint operator with dimension dim(V) - 1. We can apply the inductive hypothesis on $T|_{U^{\perp}}u$, so the orthogonal diagonalization consists of $\{u\} \cup U^{\perp}$.