1.- Dibuja los siguientes puntos en coordenadas cartesianas sobre un mismo plano cartesiano.

$$A(6,5)$$
 $B(2,-5)$ $C(-3,6)$ $D(-4,-3)$

- 2.- Escribe la equivalencia en coordenadas polares para cada uno de los puntos anteriores. Dibújalos sobre un mismo plano polar.
- 3.- Para el punto A en coordenadas polares del ejercicio anterior, escribe otras dos formas polares equivalentes. Dibújalas en un mismo sistema polar.
- 4.- Para los puntos A(3,5,-6), B(-2,-4,3), C(4,-3,2), D(-4,4,-2) en coordenadas cartesianas, escribe su equivalente en
 - i. Coordenadas cilíndricas
 - ii. Coordenadas esféricas
 - iii. Dibuja cada uno en un sistema cartesiano indicando los valores correspondientes a sus ángulos y radios polares y esféricos.
- 5.- Para cada uno de los siguientes incisos, dibuja el triángulo *ABC* en un plano cartesiano y determina el valor de su perímetro.
 - i. A(2,0), B(-3,2), C(0,5)
 - ii. A(4,6), B es el punto simétrico del punto A con respecto del origen, y C es el punto simétrico del punto A con respecto del eje X
 - iii. A(3,-6), A es el punto simétrico del punto B con respecto del eje Y, y C es el punto simétrico del punto A con respecto del origen.
- 6.- Para cada uno de los siguientes incisos, dibuja las rectas en un plano cartesiano. Escribe las ecuaciones de cada recta en forma ordinaria, paramétrica y general. Identifica el valor de su pendiente, así como el ángulo de inclinación que tiene respecto de la horizontal.
 - i. La recta contiene a los puntos A(4,3) y B(-3,5)
 - ii. La recta tiene pendiente m = 4 y su ordenada al origen es b = -5
- iii. La recta contiene al punto C(2, -6) y es paralela a la recta 2x + 5y = 10
- iv. La recta contiene al punto D(-5, -4) y es perpendicular a la recta 5x 7y = 14

7.- Para cada una de las siguientes rectas, determina el valor de su pendiente (m), de su ordenada al origen (b) así como el ángulo de inclinación (α) que tiene respecto de la horizontal. Dibuja su gráfica en un plano cartesiano.

i.
$$4x - 3y = 2$$

ii.
$$R: \begin{cases} x = 2t - 3 \\ y = 4 + t \end{cases}$$

iii.
$$3(x+2) = 4(5-y)$$

iv.
$$L: \begin{cases} x = -1 + 3t \\ y = 2 - 2t \end{cases}$$

v.
$$4x + 3y + 8 = 3y - 5x - 6$$

vi.
$$M: \begin{cases} x = 5 \\ y = t \end{cases}$$

8.- Sean los puntos A(-6,2), B(8,6) y C(2,-6) vértices de un triángulo.

- i. Dibuja el triángulo en un plano cartesiano
- ii. Determina la pendiente de cada uno de sus lados
- iii. Determina el valor de sus ángulos interiores
- iv. Determina la ecuación general de cada una de sus rectas medianas. Dibuja su gráfica en color rojo.
- v. Determina la ecuación general de cada una de sus rectas alturas. Dibuja su gráfica en color azul.
- vi. Determina la ecuación general de cada una de sus rectas mediatrices. Dibuja su gráfica en color verde.

9.- Dibuja en un mismo plano cartesiano a las rectas R, L, M y determina el área del triángulo que forman.

La ecuación de la recta R es 3y - 4 = x - 18

La recta L es perpendicular a la recta R y contiene al punto A(-4, -6)

La recta M es el eje de las ordenadas

10.- Para cada uno de los siguientes incisos, dibuja las circunferencias en un plano cartesiano. Escribe las ecuaciones de cada circunferencia en forma ordinaria, paramétrica y general.

i. Centro en
$$C(-5, 3)$$
 y radio $r = 5$

ii. Centro en
$$C(0, 0)$$
 y radio $r = 4$

iii. Centro en
$$C(0, -6)$$
 y radio $r = 3$

iv. Centro en
$$C(5, 0)$$
 y radio $r = 9$

v. Centro en
$$C(2, -1)$$
 y radio $r = 2$

vi. Centro en
$$C(-5, -6)$$
 y radio $r = 7$

11.- Para cada una de las siguientes circunferencias, determina el valor de su radio (r) y las coordenadas de su centro (C). Dibuja su gráfica en un plano cartesiano.

i.
$$x^2 + y^2 = 16$$

iv.
$$x^2 + y^2 + 4x - 10y + 13 = 0$$

ii.
$$C: \begin{cases} x = 3 \cos t \\ y = 3 \sin t \end{cases}$$

v.
$$C: \begin{cases} x = 2\cos t - 5 \\ y = 2\sin t + 3 \end{cases}$$

iii.
$$x^2 + y^2 - 2x + 6y + 1 = 0$$

vi.
$$x^2 + y^2 - 8x - 10y + 37 = 0$$

12.- Para cada uno de los siguientes incisos, dibuja las parábolas en un plano cartesiano. Escribe las ecuaciones de cada parábola en forma ordinaria, paramétrica y general.

- i. Su vértice es V(0,0) y su foco es F(3,0)
- ii. Su vértice es V(0,0) y su foco es F(0,-4)
- iii. Su vértice es V(4,2) y su foco es F(7,2)
- iv. Su vértice es V(-3,4) y su foco es F(-3,10)
- Su vértice es V(0,0) y su directriz es la recta x + 4 = 0v.
- Su vértice es V(0,0) y su directriz es la recta y-5=0vi.

13.- Para cada una de las siguientes parábolas, determina las coordenadas de su vértice (V) e indica hacia donde abren (concavidad). Dibuja su gráfica en un plano cartesiano.

i.
$$x^2 + 4y = 0$$

iii.
$$C: \begin{cases} x = t^2 - 1 \\ y = 2t \end{cases}$$
 v. $x^2 - 4x + 4y - 5 = 0$

$$v. \quad x^2 - 4x + 4y - 5 = 0$$

ii.
$$C: \begin{cases} x = 3t \\ y = 2t^2 \end{cases}$$

iv.
$$y^2 - 5x = 0$$

vi.
$$y^2 + 2x - 8y + 1 = 0$$

14.- Para cada una de las siguientes elipses, dibuja su gráfica en un plano cartesiano. Escribe las ecuaciones de cada elipse en forma ordinaria y paramétrica.

i.
$$36x^2 + 9y^2 - 324 = 0$$

iii.
$$4x^2 + y^2 + 8x + 6y + 9 = 0$$

ii.
$$4x^2 + 25y^2 - 100 = 0$$

iv.
$$x^2 + 4y^2 - 2x + 8y + 1 = 0$$

15.- Una elipse tiene radio menor b=2, mientras que su diámetro mayor se encuentra comprendido entre los puntos A(-3,5) y B(-3,-9). Dibuja la elipse en un plano cartesiano.

Escribe sus ecuaciones en forma ordinaria, paramétricas y general.

16.- Para cada una de las siguientes hipérbolas, dibuja su gráfica en un plano cartesiano. Escribe las ecuaciones de cada hipérbola en forma ordinaria y paramétrica.

i.
$$9x^2 - 4y^2 = 36$$

iii.
$$25x^2 - 9y^2 - 150x - 36y - 36 = 0$$

ii.
$$x^2 - 9y^2 + 9 = 0$$

iv.
$$x^2 - y^2 - 8x - 4y + 13 = 0$$

17.- Una hipérbola es cóncava hacia el eje Y, con a = 2 y b = 3, y tiene su centro coincidiendo con el vértice de la parábola

$$y^2 + 6y - 4x + 17 = 0$$

Dibuja la parábola y la hipérbola en un mismo plano cartesiano. Escribe las ecuaciones de cada curva en forma paramétrica y ordinaria.

18.- Para cada una de las siguientes ecuaciones, identifica la curva y dibuja su gráfica en un plano cartesiano.

i.
$$C: \begin{cases} x = 1 + 2t \\ y = 1 + 5t \end{cases}$$

i.
$$C: \begin{cases} x = 1 + 2t \\ y = 1 + 5t \end{cases}$$
 iii. $C: \begin{cases} x = 2 \sec t + 1 \\ y = 3 \tan t - 2 \end{cases}$ v. $C: \begin{cases} x = 2 \tan t + 1 \\ y = 2 \sec t + 1 \end{cases}$

$$V. \quad C: \begin{cases} x = 2 \tan t + 1 \\ y = 2 \sec t + 1 \end{cases}$$

ii.
$$C: \begin{cases} x = 4\cos t + 5 \\ y = 4\sin t + 2 \end{cases}$$
 iv. $C: \begin{cases} x = \cos t - 2 \\ y = 3\sin t + 4 \end{cases}$ vi. $C: \begin{cases} x = 2t^2 - 4 \\ y = 2t + 1 \end{cases}$

iv.
$$C: \begin{cases} x = \cos t - 2 \\ y = 3 \operatorname{sen} t + 4 \end{cases}$$

vi.
$$C: \begin{cases} x = 2t^2 - 4 \\ y = 2t + 1 \end{cases}$$

19.- Para cada una de las siguientes ecuaciones, identifica la curva y dibuja su gráfica en un plano cartesiano.

i)
$$y = -2 \pm \sqrt{9 - (x+1)^2}$$

ii)
$$y = -4 \pm \sqrt{(x+3)^2 - 4}$$

20.- Para cada una de las siguientes ecuaciones, usa el valor del discriminante para identificar a la cónica:

i.
$$2x^2 - 4xy + 2y^2 - 5x - 5 = 0$$

iii.
$$6x^2 + 10xy + 3y^2 - 6y = 36$$

ii.
$$x^2 - 2xy + 3y^2 = 8$$

iv.
$$9x^2 - 6xy + 2y^2 + 6x - 2y = 0$$

SOLUCIONES. A continuación, se presentan las soluciones de todos los ejercicios, con la finalidad de que el estudiante pueda verificar sus propios resultados.

4.- cartesianas B(-2, -4, 3)

Cilíndricas $B(\sqrt{20}, 243.44^{\circ}, 3)$

Esféricas $B(\sqrt{29}, 243.44^{\circ}, 56.15^{\circ})$

4.- cartesianas C(4, -3, 2)

Cilíndricas *C*(5,323.13°,2)

Esféricas $C(\sqrt{29}, 323.13^{\circ}, 68.20^{\circ})$

4.- cartesianas D(-4,4,-2)

Cilíndricas $D(\sqrt{32}, 135^{\circ}, -2)$

Esféricas $D(6,135^{\circ},109.47^{\circ})$

5.- Triángulos y perímetro.

Fórmula utilizada: distancia entre dos puntos

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

6.- Rectas y sus ecuaciones.

Fórmulas utilizadas

$$m = \frac{\Delta y}{\Delta x}$$

$$\alpha = tan^{-1}m$$

$$y = mx + k$$

$$Ax + By + C = 0$$

$$m = \frac{\Delta y}{\Delta x} \qquad \alpha = tan^{-1}m \qquad y = mx + b \qquad Ax + By + C = 0 \qquad R: \begin{cases} x = x_0 + \Delta x \ t \\ y = y_0 + \Delta y \ t \end{cases}$$

$$y = -\frac{2}{7} x + \frac{29}{7}$$

$$2x + 7y - 29 = 0$$

$$R: \begin{cases} x = 4 + 7t \\ y = 3 - 2t \end{cases}$$

$$y = 4x - 5$$

$$4x - y - 5 = 0$$

$$R: \begin{cases} x = 1 + t \\ y = -1 + 4t \end{cases}$$

$$y = -\frac{2}{5} x - \frac{26}{5}$$

$$2x + 5y + 26 = 0$$

$$R: \begin{cases} x = 2 + 5t \\ y = -6 - 2t \end{cases}$$

$$y = -\frac{7}{5}x - 11$$

$$7x + 5y + 55 = 0$$

$$R: \begin{cases} x = -5 + 5t \\ y = -4 - 7t \end{cases}$$

7.- Rectas, pendiente (m) y ordenada al origen (b)

Fórmulas utilizadas

$$y = mx + b$$

$$R: \begin{cases} x = x_0 + \Delta x \ t \\ y = y_0 + \Delta y \ t \end{cases}$$

$$\alpha = tan^{-1}m$$

$$m = \frac{\Delta y}{\Delta x}$$

$$b = \frac{11}{2}$$

$$P_0(-3, 4) \qquad \alpha = 26.57^{\circ}$$

$$m = \frac{1}{2}$$

 $R: \begin{array}{c} x = 2t - 3 \\ y = 4 + t \end{array}$

8.- Rectas Medianas, alturas y mediatrices.

Fórmulas utilizadas			
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$	$PM\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$	$y - y_0 = m(x - x_0)$	
$m_1 m_2 = -1 \rightarrow m_1 = -\frac{1}{m_2}$	$\alpha = tan^{-1}m$	$\theta = \alpha_2 - \alpha_1$	

Ángulos interiores del triángulo:

$$\alpha = 15.95^{\circ} + 45^{\circ} = 60.95^{\circ}$$

$$\beta = 63.43^{\circ} - 15.95^{\circ} = 47.48^{\circ}$$

$$\gamma = 180^{\circ} - 45^{\circ} - 63.43^{\circ} = 71.57^{\circ}$$

Mediana: Recta que une un vértice con el punto medio del lado opuesto.

Medianas.

Con AB: 10x + y - 14 = 0

Con AC: 4x - 5y - 2 = 0

Con BC: 2x + 11y - 10 = 0

Baricentro: punto de intersección de las medianas.

Altura: Recta perpendicular a un lado y que cruza por el vértice opuesto.

Alturas:

Con AB: 7x + 2y - 2 = 0

Con AC: x - y - 2 = 0

Con BC: x + 2y + 2 = 0

Ortocentro: punto de intersección de las alturas.

Mediatriz: Recta perpendicular a un lado y que lo divide exactamente en dos segmentos iguales.

Mediatrices

Con AB: 7x + 2y - 15 = 0

Con AC: x - y = 0

Con BC: x + 2y - 5 = 0

Circuncentro: punto de intersección de las mediatrices.

9.- Rectas y área del triángulo que forman

$$\acute{A}rea = \frac{base \times altura}{2}$$

$$\text{Área} = \frac{\left(\frac{40}{3}\right)(4)}{2} = \frac{80}{3}$$

$$Area = \frac{80}{3} u^2$$

10.- Circunferencias y sus ecuaciones

Fórmulas utilizadas

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-h)^2 + (y-k)^2 = r^2$$
 $Ax^2 + Ay^2 + Cx + Dy + E = 0$

$$x = r \cos t + h$$
$$y = r \sin t + k$$

$$r = 4$$
 $C(0,0)$
 $C(0,0)$

$$(x+5)^2 + (y-3)^2 = 25$$

$$C: \begin{cases} x = 5\cos t - 5 \\ y = 5\sin t + 3 \end{cases}$$

$$x^2 + y^2 + 10x - 6y + 9 = 0$$

$$x^2 + y^2 = 16$$

$$C: \begin{cases} x = 4\cos t \\ y = 4\sin t \end{cases}$$

$$x^2 + y^2 - 16 = 0$$

$$x^2 + (y+6)^2 = 9$$

$$C: \begin{cases} x = 3\cos t \\ y = 3\sin t - 6 \end{cases}$$

$$x^2 + y^2 + 12y + 27 = 0$$

$$(x-5)^2 + y^2 = 81$$

$$C: \begin{cases} x = 9\cos t + 5 \\ y = 9\sin t \end{cases}$$

$$x^2 + y^2 - 10x - 56 = 0$$

$$(x-2)^2 + (y+1)^2 = 4$$

$$C: \begin{cases} x = 2\cos t + 2\\ y = 2\sin t - 1 \end{cases}$$

$$x^2 + y^2 - 4x + 2y + 1 = 0$$

$$(x+5)^2 + (y+6)^2 = 49$$

$$C: \begin{cases} x = 7\cos t - 5\\ y = 7\sin t - 6 \end{cases}$$

$$x^2 + y^2 + 10x + 12y + 12 = 0$$

11.- Circunferencias, radio (r) y centro (C)

Fórmulas utilizadas: completar un trinomio cuadrado perfecto.

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-h)^2 + (y-k)^2 = r^2$$
 $Ax^2 + Ay^2 + Cx + Dy + E = 0$

$$x = r \cos t + h$$
$$y = r \sin t + k$$

12.- Parábolas y sus ecuaciones

Fórmulas utilizadas:			
$(x-h)^2 = 4p (y-k)$	$Ax^2 + Cx + Dy + E = 0$	$x = b t + h$ $y = a t^2 + k$	
$(y-k)^2 = 4p (x-h)$	$Ay^2 + Cx + Dy + E = 0$	$x = a t^2 + h$ $y = b t + k$	

13.- Parábolas, vértice (V) y concavidad

Fórmulas utilizadas: completar el trinomio cuadrado perfecto			
$(x-h)^2 = 4p (y-k)$	$Ax^2 + Cx + Dy + E = 0$	$x = b t + h$ $y = a t^2 + k$	
$(y-k)^2 = 4p (x-h)$	$Ay^2 + Cx + Dy + E = 0$	$x = a t^2 + h$ $y = b t + k$	

14.- Elipses y sus ecuaciones

Fórmulas utilizadas: completar un trinomio cuadrado perfecto.

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 Ax^2 + Cy^2 + Dx + Ey + F = 0$$

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

$$x = a \cos t + h$$
$$y = b \sin t + k$$

$$36x^2 + 9y^2 - 324 = 0$$

$$\frac{x^2}{9} + \frac{y^2}{36} = 1$$

$$C: \begin{cases} x = 3\cos t \\ y = 6\sin t \end{cases}$$

$$4x^2 + 25y^2 - 100 = 0$$

$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$

$$C: \begin{cases} x = 5\cos t \\ y = 2\sin t \end{cases}$$

$$4x^2 + y^2 + 8x + 6y + 9 = 0$$

$$(x+1)^2 + \frac{(y+3)^2}{4} = 1$$

$$C: \begin{cases} x = \cos t - 1 \\ y = 2 \operatorname{sen} t - 3 \end{cases}$$

$$x^2 + 4y^2 - 2x + 8y + 1 = 0$$

$$\frac{(x-1)^2}{4} + (y+1)^2 = 1$$

$$C: \begin{cases} x = 2\cos t + 1\\ y = \sin t - 1 \end{cases}$$

15.- Elipse con b = 2, diámetro A(-3, 5), B(-3, -9)

$$49x^2 + 4y^2 + 294x + 16y + 261 = 0$$

$$\frac{(x+3)^2}{4} + \frac{(y+2)^2}{49} = 1$$

$$C: \begin{cases} x = 2\cos t - 3\\ y = 7\sin t - 2 \end{cases}$$

16.- Hipérbolas y sus ecuaciones

Fórmulas utilizadas: completar un trinomio cuadrado perfecto.

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 Ax^2 - Cy^2 + Dx + Ey + F = 0$$

$$Ax^2 - Cy^2 + Dx + Ey + F = 0$$

$$x = a \sec t + h$$
$$y = b \tan t + k$$

$$9x^2 - 4y^2 = 36$$

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

$$C: \begin{cases} x = 2 \sec t \\ y = 3 \tan t \end{cases}$$

$$x^2 - 9y^2 + 9 = 0$$

$$y^2 - \frac{x^2}{9} = 1$$

$$C: \begin{cases} x = 3 \tan t \\ y = \sec t \end{cases}$$

$$25x^2 - 9y^2 - 150x - 36y - 36 = 0$$

$$\frac{(x-3)^2}{9} - \frac{(y+2)^2}{25} = 1$$

$$C: \begin{cases} x = 3 \sec t + 3 \\ y = 5 \tan t - 2 \end{cases}$$

$$x^2 - y^2 - 8x - 4y + 13 = 0$$

$$(y+2)^2 - (x-4)^2 = 1$$

$$C: \begin{cases} x = \tan t + 4 \\ y = \sec t - 2 \end{cases}$$

17.- Hipérbola y parábola

Parábola (azul)

$$(y+3)^2 = 4(x-2)$$

$$C_1: \begin{cases} x = t^2 + 2 \\ y = 2t - 3 \end{cases}$$

Hipérbola (rojo)

$$\frac{(y+3)^2}{4} - \frac{(x-2)^2}{9} = 1$$

$$C_2: \begin{cases} x = 3 \tan t + 2 \\ y = 2 \sec t - 3 \end{cases}$$

18.- Identifica las curvas

19.- Identifica las curvas

20.- Para cada una de las siguientes ecuaciones, usa el valor del discriminante para identificar a la cónica:

$$\Delta = (-4)^2 - 4(2)(2) = 0 \Rightarrow parábola$$

$$x^2 - 2xy + 3y^2 = 8$$

$$\Delta = (-2)^2 - 4(1)(3) = -8 < 0 \implies elipse$$

$$6x^2 + 10xy + 3y^2 - 6y = 36$$

$$\Delta = (10)^2 - 4(6)(3) = 28 > 0 \implies hipérbola$$

$$9x^2 - 6xy + 2y^2 + 6x - 2y = 0$$

$$\Delta = (-6)^2 - 4(9)(2) = -36 < 0 \implies elipse$$

