■ IDEOLOGICAL-SCIENTIFIC CONTEXT

"Coherence Energy Computing and Informational Light"

1. Foundation

Reality can be understood as a system of interactive energetic fields, where light, magnetism, and motion carry information. The proposal is to replace the paradigm of electronic computing (based on electrons) with photonic–energetic computing, where coherent energy is the data itself.

"Light does not merely transmit information — it is information in motion."

2. Conceptual Structure

Layer	Function	Core Concept	
Electromagnetic Field	Propagation medium	Vibrational energy carrying data	
Laser (Coherence Carrier)	Emitter of photonic information	Maintains phase and frequency constants	
Reader (Decoder)	Translates energetic patemsrts	ight/field variations into binary or quantum info	ormation
Computational Converter	Interprets energetic informationes	data structures based on coherence and interfe	ference
Photonic / Quantum Network	Processing and memory systemDa	ta flows as light; energy becomes computation	n

3. Principles of Operation

- Energetic Coherence: Alignment between the frequencies of the emitter (laser) and the receiving field (magnetic, human, or environmental).
- Constructive Interference: Overlapping coherent waves generate stable patterns energetic information matrices.
- State Conversion: Variations in electromagnetic magnitude are interpreted as data, allowing direct energy-based computation.
- Intelligent Feedback: The system "learns" from energetic patterns, adjusting the laser to maintain coherence similar to a photonic neural circuit.

4. Philosophical Meaning

This model represents the fusion of Energy (physical), Information (computational), and Consciousness (perceptual and human). Light acts as a bridge between

matter and data, creating a new era of computing that depends not on transistors, but on frequency, coherence, and alignment. Information ceases to be a code and becomes a living vibration.

■ RESEARCH AND RESOURCE DIRECTION

1. Key Scientific Topics

Field What to Study		Application to the Project	
Photonic Computing L	ght chips, waveguides, optical modu lato	sdation for information processing via lase	
Quantum Optics	Photon entanglement and coherenceB	uilding quantum logic and communication	
Plasma Physics & EM Fields	Interaction of ionized energy with fields	Model of intelligent energy-field reading	
Electromagnetic Coherence Theory	Coupling and wave synchronization	Field → data conversion	
Photonic Neural Networks	Al using light instead of electrons Imp	lementation of energetic machine learning	
Bioelectromagnetism & Biophotons	Human bioenergetic emissions Inter	action between human and information fie	
nal Processing via Interference Patte	erns Interferometry and holography M	ethod for reading energetic data patterns	

Sighal Processing via Interference Patterns Interferometry and holography Method for reading energetic data patterns

2. Technological Direction (Practical Steps)

- Step 1 Physical Conceptualization: Model how the laser can carry and modulate energetic signals. Map coherence and interference frequencies.
- Step 2 Virtual Prototype: Simulate a light reader interpreting light variations as binary data.
- Step 3 Computational Architecture: Define a system that "thinks" in light photonic processor, optical bus, and phase memory.
- Step 4 Energetic Interaction: Explore human-plasma coupling: how bioelectrical fields affect laser coherence.
- Step 5 Quantum Integration: Apply superposition and entanglement principles to create "quantum-energy bits."

3. Advanced Research Sources

- Nature Photonics research on photonic processing and optical computing.
- Optica (OSA) studies on coherence and laser interference.
- IEEE Photonics Journal practical applications in communication and light sensors.
- Max Planck Institute for the Science of Light interferometry and quantum photonics research.

- HeartMath Institute human coherence and bioelectromagnetic studies.
- MIT OpenCourseWare Photonics and Quantum Computing open lectures for simulating optical systems.

Author: Vinicios Ongaratto — Original Intellectual Source