Printed Page 1 of 3 Sub Code:KAS302

Paper Id: | 199352 | Roll No: | | | | | |

B. TECH (SEM-III) THEORY EXAMINATION 2019-20 MATHEMATICS-IV

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Q no.	Question	Marks	CO
a.	Solve the following partial differential equation $yq - xp = z$.	2	1
b.	Solve the Cauchy's problem $u_x - u_y = 0$. $u(x, 0) = x$	2	1
c.	Classify the following equation. $x^2 \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial t^2} = u$	2	2
d.	Solve the partial differential equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 0$.	2	2
e.	Find the median of 6,8,9,10,11,12.13.	2	3
f.	The first three central moments of a distribution are 0,15,-31. Find the moment of coefficient of skewness.	2	3
g.	If the p.m.f of a discrete random variable X is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4
	Determine $E(X)$ and $V(X)$.	0).	
h.	The probability density function $f(x)$ of a continuous random variable X is defined by $f(x) = \begin{bmatrix} \frac{A}{x^2}, & 5 \le x \le 10 \\ 0, & \text{otherwise} \end{bmatrix}$ Find the value of A.	2	4
i.	Find the mean of the Binomial Distribution $B(4, \frac{1}{3})$.	2	4
j.	A machine which produces mica insulating washers for use in electric device to turn out washers having a thickness of 10 mm. A sample of 10 washers hasan average thickness 9.52 mm with a standard deviation of 0.6 mm. Find out t.	2	5

SECTION B

2. Attempt any *three* of the following:

 $3 \times 10 = 30$

Q no.	Question	Marks	СО
a.	Solve $(D^2 - DD' - 2D'^2)z = (y - 1)e^x$	10	1
b.	A rectangular plate with insulated surface is 10 cm wide and so long compared to its	10	2
	width that it may be considered infinite in length without introducing an appreciable		
	error. If the temperature along the short edge y=0 is given by:		
	$u(x,0) = 20x \ 0 \le x \le 5$		
	20 (10-x) 5 <x<10< td=""><td></td><td></td></x<10<>		
	While the two edges $x=0$ and $x=10$ as well as the other short edge are kept at 0° C.		
	Find the steady state temperature at any point (x,y) of the plate.		

Printed Page 2 of 3

Paper Id: 199352

Sub Code:KAS302

Roll No:							

c.	Find ar	expon	ential	curve	PV^{γ}	= k	for th	ne data	a:					10	3
	V	50	100		50	200)								
	P	135	48	2	26	17									
d.												of yeast cells	10	4	
	per square for 400 squares										_				
	X	0	1	2	3	4	5	6	7	8	9	10			
	F	103	143	98	42	8	4	2	0	0	0	0			
	It is giv	en that	$e^{-1.52}$	0.26	74.				•		•	•	<u>.</u>		
e.	To test the effectiveness of inoculation against cholera, the following table wa obtained														5
			A	ttach	ed		Not	attach	ed	Tota	ıl]		
	Inocu	lated		30			160			190					
	Not i	noculat	ed 1	40			460			600					
	Total		1	70			620			790					
	(The figure represents the number of persons)										-				
	Use Cl	hi squa	re tes	t to c	defend	l or	refute	e the	stateı	nent.	The in	nocula	tion prevents		
	attack t	from ch	olera.	The v	value o	of χ	² for 1	l degr	ee of	freedo	m at 5	5% lev	el is 3.841.		

3. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Solve $(D+1)(D+D'-1)z = \sin(2x+3y)$	10	1
b.	In a partial destroyed laboratory record of an analysis of correlation data, the following result only are legible: Variance of $x = 9$ Regression equation: $8x-10y+66=0$, $40x-18y=214$. What were (a) the mean value of x and y (b) the standard deviation of y and the co-efficient of correlation between x and y?	10	3

4. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Solve $x^2 \frac{\partial^2 z}{\partial x^2} - 4y^2 \frac{\partial^2 z}{\partial y^2} - 4y \frac{\partial z}{\partial y} - z = x^2 y^2 \log y$	10	1
b.	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_0 \sin^3\frac{\pi x}{l}$. If it is released from rest from this position, find the displacement $y(x,t)$.	10	2

5. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	An insulated rod of length <i>l</i> itsends A and B maintained at 0°C and 100° C respectively until the steady state condition prevails. If B is suddenly reduced to 0°C		2
	and maintained at 0°C, Find the temperature at a distance x from A at time t.		

Printed Page 3 of 3

Paper Id: 199352

Roll No: Sub Code:KAS302

b.	Find the r	nultiple re	gression ed	quation of	X_1 on X_2 a	and X ₃ fro	m the data
	Given bel	ow:					
	X_1	3	5	6	8	12	10
	X_2	10	10	5	7	5	2
	X_3	20	25	15	16	15	2

6. Attempt any *one* part of the following:

 $1 \times 10 = 10$

10

3

Q no.	Question	Marks	CO
a.	State the Bayes' theorem. The probability that a civilian can hit a target is $\frac{2}{5}$ and the	10	4
	probability that an army officer can hit the same target is $\frac{3}{5}$ While the civilian canfire		
	8 shots in the time, the army officer fires 10 shots. If they fire together, then what is		
	the probability that army officer shoots the target?		
b.	Define the Normal distribution. The daily wages of 1000 workers are distributed	10	4
	around a mean of Rs. 140 and with a standard deviation of Rs. 10. Estimate the		
	number of workers whose daily waged will be (i) between Rs. 140 and Rs. 144, (ii)		
	less than Rs. 126 (iii) more than Rs. 160.		

7. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Q no.									Ques	stion	1)							Marks	СО
a.	An IT their e given end of one tra	ngine 5 day the trainer of	ers. s tra raini over	Four ining of the	r gro g by on the er thr	up o the eir S ee tr	f 7,8 4 tra kills	3,10 tiners . Let	and s. Sc t us o	11 e ores exan	ngin wer nine	eers e av the	from vard pref	m to led 1 feren	otal 3 to the oce o	6 enge eng	igine gine e en	ers vers a	were t the er of	10	5
b.	Disting size 50										10	ber o	of do	efec	tives	in 1	7 sa	mple	es of	10	5
	No.of defectives Find of the profile of the profil								20 nber	of d	23 lefec	12	9 Uni	ts an	22 nd als	32 so cl	35 heck	38 whe	ether		