第一章 连续

1.1 函数的连续性

定义 1.1.1: 连续点的定义

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x\to x_0} f(x) = f(x_0)$$

那就称为函数 y = f(x) 在点 x_0 连续.

注 1.1.1: 函数连续的性质

• 当极限需要讨论时:

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0) \Leftrightarrow f(x)$$
 在点 x_0 处连续

- 连续性的四则运算: 设 f(x) 与 g(x) 都在点 $x=x_0$ 处连续, 则 $f(x)\pm g(x)$ 与 f(x)g(x) 在点 $x=x_0$ 处连续, 当 $g(x_0)\neq 0$ 时, f(x)/g(x) 在点 $x=x_0$ 处也连续。
- 复合函数的连续性: 设 $u = \varphi(x)$ 在点 $x = x_0$ 处连续, y = f(u) 在点 $u = u_0$ 处连续, 且 $u_0 = \varphi(x_0)$, 则 $f[\varphi(x)]$ 在点 $x = x_0$ 处连续。
- 反函数的连续性: 设 y=f(x) 在区间 I_x 上单调且连续, 则反函数 $x=\varphi(y)$ 在对应的区间 $I_y=\{y|y=f(x),x\in I_x\}$ 上连续且有相同的单调性
- f(x) 在点 $x = x_0$ 处连续,且 $f(x_0) > 0$ (或 $f(x_0) < 0$),则存在 $\delta > 0$,使得当 $|x x_0| < \delta$ 时 f(x) > 0 (或 f(x) < 0).

1.2 函数的间断点

1.2.1 间断点的相关概念

定义 1.2.1

可去间断点: 若 $\lim_{x \to x_0} f(x) = A \neq f(x_0)(f(x_0)$ 甚至可以无定义), 则这类间断点称为可去间断点

定义 1.2.2

跳跃间断点^a: 若 $\lim_{x\to x_0^-} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 都存在,但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$,则这类间断点 称为跳跃间断点

跳跃间断点函数图像

 a 一点极限存在 f(x) 在 x_0 连续

定义 1.2.3

无穷间断点: 若 $\lim_{x\to x_0}f(x)=\infty,$ 则这类间断点称为无穷间断点, 如 $y=\tan x$

第一章 连续 3

1.2.2 间断点的分类

通过求函数在该点的左右极限来判断

- 第一类间断点: $\lim_{x\to x_0^-}f(x)$ 和 $\lim_{x\to x_0^+}f(x)$ 均存在
 - 可去 1: $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0)$
 - 跳跃: $\lim_{x\to x_0^-}f(x)\neq \lim_{x\to x_0^+}f(x)$
- 第二类间断点: 除第一类以外的间断点 $\implies \lim_{x \to x_0^+} f(x)$ 和 $\lim_{x \to x_0^+} f(x)$ 均至少一个不存在

¹可去间断点上极限存在但是导数不存在