Agrégation Interne

Probabilités et théorie des nombres

- I - Fonction indicatrice d'Euler

Pour tout entier naturel $n \geq 2$, $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est l'anneau des classes résiduelles modulo n.

On note $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^* = \left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right) \setminus \left\{\overline{0}\right\}$ et $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^\times$ est le groupe multiplicatif des éléments inversibles de l'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$.

- 1. Soit a un entier relatif. Montrer que les propriétés suivantes sont équivalentes :
 - (a) \overline{a} est inversible dans $\frac{\mathbb{Z}}{n\mathbb{Z}}$;
 - (b) a est premier avec n;
 - (c) \overline{a} est un générateur du groupe additif $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},+\right)$.
- 2. Quel est le nombre de diviseurs de $\overline{0}$ dans l'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$?
- 3. Soient $(\Omega, \mathcal{B}, \mathbb{P})$ un espace probabilisé et $(A_k)_{1 \leq k \leq n}$ une suite finie de $n \geq 2$ événements. Montrer que A_1, \dots, A_n sont mutuellement indépendants si, et seulement si, pour tout entier k compris entre 1 et n, les événements $\Omega \setminus A_1, \dots, \Omega \setminus A_k, A_{k+1}, \dots, A_n$ sont mutuellement indépendants.
- 4. Soit $n \geq 2$ un entier naturel.

On se place sur l'espace probabilisé $(\Omega_n, \mathcal{P}(\Omega_n), \mathbb{P})$, où $\Omega_n = \{1, \dots, n\}$ et :

$$\forall k \in \Omega_n, \ \mathbb{P}(\{k\}) = \frac{1}{n}$$

ce qui revient à considérer l'expérience aléatoire qui consiste à choisir de manière équiprobable un entier k compris entre 1 et n.

Pour tout entier d compris entre 1 et n, on désigne par A_d l'événement : « l'entier k choisi dans Ω_n est divisible par d ».

Pour tout réel x, on note [x] la partie entière de x.

- (a) Montrer que pour tout entier d compris entre 1 et n, on a $\mathbb{P}(A_d) = \frac{1}{n} \left[\frac{n}{d} \right]$.
- (b) Montrer que si $2 \le q_1 < q_2 < \dots < q_r \le n$ sont tous les diviseurs premiers de n, les événements A_{q_1}, \dots, A_{q_r} sont alors mutuellement indépendants.
- (c) On désigne par B_1 l'événement : « l'entier k choisi dans Ω_n est premier avec n ». En calculant $\mathbb{P}(B_1)$ de deux manières différentes, montrer que :

1

$$\varphi(n) = n \prod_{k=1}^{r} \left(1 - \frac{1}{q_k} \right) \tag{1}$$

- 5. Donner une démonstration « non probabiliste » de l'égalité (1) .
- 6. Montrer que, pour tout entier $n \geq 3$ l'entier $\varphi(n)$ est pair.

7. Pour tout diviseur positif d de n, on désigne par B_d l'événement : « l'entier k choisi dans Ω_n est tel que $a \wedge n = d$ ».

En calculant $\mathbb{P}(B_d)$, pour tout diviseur positif d de n, montrer que :

$$n = \sum_{d/n} \varphi\left(\frac{n}{d}\right) = \sum_{d/n} \varphi\left(d\right) \tag{2}$$

(la notation d/n signifie que d est un diviseur positif de n).

8. Pour tout entier $m \geq 1$, on désigne par Φ_m le m-ème polynôme cyclotomique défini par :

$$\Phi_m(X) = \prod_{\substack{1 \le k \le m \\ k \land m = 1}} \left(X - e^{\frac{2ik\pi}{m}} \right)$$

en notant $a \wedge b$ le pgcd de deux entiers a et b.

En utilisant l'égalité (2), montrer que :

$$X^{n} - 1 = \prod_{d/n} \Phi_{d}(X)$$

- II - Un théorème de Cesàro

Pour tout entier $n \geq 2$, on se place sur l'espace probabilisé $(\Omega_n^2, \mathcal{P}(\Omega_n^2), \mathbb{P})$, où $\Omega_n = \{1, \dots, n\}$, avec la mesure de probabilité \mathbb{P} définie par :

$$\forall (a,b) \in \Omega_n^2, \ \mathbb{P}\left(\{(a,b)\}\right) = \frac{1}{n^2}$$

et on s'intéresse à l'événement :

$$C_n = \left\{ (a, b) \in \Omega_n^2 \mid a \wedge b = 1 \right\}$$

Précisément, on se propose de calculer $\mathbb{P}(C_n)$ de deux manières différentes, puis de montrer que $\lim_{n\to+\infty}\mathbb{P}(C_n)=\frac{6}{\pi^2}.$

En notant $m=\prod_{i=1}^r q_i^{\alpha_i}$ la décomposition en facteurs premiers d'un entier $m\geq 2$ où $r\geq 1$, les q_i étant premiers deux à deux distincts et les α_i entiers naturels non nuls, on définit la fonction μ de Möbius par :

$$\forall m \in \mathbb{N}^*, \ \mu(m) = \begin{cases} 1 \text{ si } m = 1\\ (-1)^r \text{ si } m = \prod_{i=1}^r q_i \text{ (i. e. } m \text{ est sans facteurs carr\'es)}\\ 0 \text{ sinon} \end{cases}$$

Pour tout réel x, on note [x] la partie réelle de x.

1. Montrer que:

$$\forall n \geq 2, \ \mathbb{P}(C_n) = \frac{1}{n^2} \left(2 \sum_{k=1}^n \varphi(k) - 1 \right)$$

2. Pour $n \ge 2$, on note $q_1 < q_2 < \cdots < q_r$ tous les nombres premiers compris entre 1 et n et pour tout entier k compris entre 1 et r, on note :

$$D_k = \{(a, b) \in \Omega_n^2 \mid q_k \text{ divise } a \text{ et } b\}$$

(a) Montrer que:

$$\mathbb{P}\left(C_{n}\right) = 1 - \mathbb{P}\left(\bigcup_{k=1}^{r} D_{k}\right)$$

(b) Montrer que pour $1 \le k \le r$ et $1 \le i_1 < \cdots < i_k \le r$, on a :

$$\mathbb{P}\left(D_{i_1} \cap \dots \cap D_{i_k}\right) = \frac{1}{n^2} \left[\frac{n}{q_{i_1} \cdots q_{i_r}}\right]^2$$

(c) En déduire que :

$$\mathbb{P}\left(C_{n}\right) = \frac{1}{n^{2}} \sum_{d=1}^{n} \mu\left(d\right) \left[\frac{n}{d}\right]^{2}$$

3. Montrer que:

$$\forall n \geq 2, \ \sum_{d/n} \mu(d) = 0$$

4. Déduire de ce qui précède que :

$$\forall n \ge 1, \sum_{k=1}^{n} \varphi(k) = \frac{1}{2} \left(\sum_{d=1}^{n} \mu(d) \left[\frac{n}{d} \right]^2 + 1 \right)$$

puis que:

$$\forall n \geq 1, \ \varphi(n) = \sum_{d/n} \mu(d) \frac{n}{d}$$

5. Justifier la convergence de la série numérique $\sum \frac{\mu(n)}{n^2}$, puis montrer que :

$$\lim_{n \to +\infty} \mathbb{P}\left(C_n\right) = \sum_{n=1}^{+\infty} \frac{\mu\left(n\right)}{n^2}$$

6. Le produit de convolution (ou le produit de Dirichlet) de deux suites réelles $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ est la suite $(w_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ w_n = \sum_{d/n} u_d v_{\frac{n}{d}}$$

(a) Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ deux suites à valeurs réelles positives et $(w_n)_{n\in\mathbb{N}^*}$ leur produit de convolution.

Montrer si les séries $\sum u_n$ et $\sum v_n$ sont convergentes, il en est alors de même de la série $\sum w_n$ et on a :

$$\sum_{n=1}^{+\infty} w_n = \left(\sum_{n=1}^{+\infty} u_n\right) \left(\sum_{n=1}^{+\infty} v_n\right)$$

(b) Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ deux suites à valeurs réelles et $(w_n)_{n\in\mathbb{N}^*}$ leur produit de convolution.

Montrer si les séries $\sum u_n$ et $\sum v_n$ sont absolument convergentes, il en est alors de même de la série $\sum w_n$ et on a :

$$\sum_{n=1}^{+\infty} w_n = \left(\sum_{n=1}^{+\infty} u_n\right) \left(\sum_{n=1}^{+\infty} v_n\right)$$

7. Montrer que pour tout réel $\alpha > 1$, on a

$$\left(\sum_{n=1}^{+\infty} \frac{\mu(n)}{n^{\alpha}}\right) \left(\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}\right) = 1$$

et en déduire que :

$$\lim_{n\to+\infty}\mathbb{P}\left(C_{n}\right)=\frac{6}{\pi^{2}}\text{ (théorème de Cesàro)}.$$

- II - Fonction zêta de Riemann

On note $(p_n)_{n\in\mathbb{N}^*}$ la suite strictement croissante des nombres premiers. La fonction zêta de Riemann est définie par :

$$\forall \alpha > 1, \ \zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

On se propose de montrer, en utilisant des arguments « probabilistes » la formule d'Euler suivante :

$$\forall \alpha > 1, \ \zeta(\alpha) = \prod_{n=1}^{+\infty} \frac{1}{1 - \frac{1}{p_n^{\alpha}}}$$

puis d'en déduire la divergence de la série $\sum \frac{1}{p_n}$.

1. Montrer que $\lim_{\alpha \to 1^{+}} \zeta(\alpha) = +\infty$.

Pour ce qui suit, on munit l'ensemble \mathbb{N}^* de la tribu $\mathcal{P}(\mathbb{N}^*)$.

2. Soient $\alpha > 1$ un réel fixé et \mathbb{P} une mesure de probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ telle que :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(n\mathbb{N}^*) = \frac{1}{n^{\alpha}}$$

Montrer que, pour toute suite $(n_k)_{k\in\mathbb{N}^*}$ d'entiers deux à deux premiers entre eux, la suite $(n_k\mathbb{N}^*)_{k\in\mathbb{N}^*}$ est formée d'événements mutuellement indépendants.

- 3. Soient $\alpha > 1$ un réel fixé.
 - (a) Montrer que l'on définit une mesure probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ qui vérifie l'hypothèse de la question précédente en posant :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(\{n\}) = \frac{1}{\zeta(\alpha)} \frac{1}{n^{\alpha}}$$

(b) En utilisant cette mesure probabilité, montrer que :

$$\frac{1}{\zeta(\alpha)} = \prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n^{\alpha}} \right) \tag{3}$$

- (c) Calculer $\mathbb{P}(A)$ où A est l'ensemble des entiers naturels non nuls sans facteurs carrés. Que vaut la limite de $\mathbb{P}(A)$ quand α tend vers 1^+ ?
- 4. En utilisant l'égalité (3) , montrer que $\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty$.
- 5. Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements. On note :

$$\limsup_{n \to +\infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k \text{ et } \liminf_{n \to +\infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k$$

 $\limsup_{n\to +\infty}A_n$ est l'ensemble des $x\in\Omega$ qui appartiennent à une infinité de A_n et $\liminf_{n\to +\infty}A_n$ est l'ensemble des $x\in\Omega$ qui appartiennent à tous les A_n sauf au plus un nombre fini. Montrer que :

- (a) si la série $\sum \mathbb{P}(A_n)$ converge, on a alors $\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=0$;
- (b) si les événements A_n sont mutuellement indépendants et la série $\sum \mathbb{P}(A_n)$ diverge, on a alors $\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=1$ (loi du zéro-un de Kolmogorov ou lemme de Borel-Cantelli).
- 6. Montrer que, pour $0 < \alpha \le 1$, il n'existe pas de mesure de probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ telle que :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(n\mathbb{N}^*) = \frac{1}{n^{\alpha}}$$

7. Montrer que l'on définit une mesure probabilité sur $(\mathbb{N}^* \times \mathbb{N}^*, \mathcal{P}(\mathbb{N}^* \times \mathbb{N}^*))$ en posant :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, \ \mathbb{P}((n,m)) = \frac{1}{\zeta^2(\alpha)} \frac{1}{(nm)^{\alpha}}$$

Calculer $\mathbb{P}(A)$ où A est l'ensemble des couples d'entiers naturels non nuls qui sont premiers entre eux. Que vaut la limite de $\mathbb{P}(A)$ quand α tend vers 1^+ ?