→ Meritorium Project-1

▼ Importing Data

```
import pandas as pd
import numpy as np

# importing data
#Note :Because the data does not include headers, we can add an argument headers

path = r"https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-am_df = pd.read_csv(path, header=None)

am_df

$\therefore\text{$\text{C}$}$
```

	0	1	2	3	4	5	6	7	8	9	• • •	16	17	18	19	20	21	22	23	24	25
0	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495
1	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.0	111	5000	21	27	16500
2	1	?	alfa-romero	gas	std	two	hatchback	rwd	front	94.5		152	mpfi	2.68	3.47	9.0	154	5000	19	26	16500
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	3.40	10.0	102	5500	24	30	13950
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4		136	mpfi	3.19	3.40	8.0	115	5500	18	22	17450

NOTE : Point to Remember : pandas automatically set the header by an integer. To better describe our data we can introduce a heade

headers = ["symboling", "normalized-losses", "make", "fuel-type", "aspiration", "num-of-doors", "body-style", "drive-wheels", "engine-locati print("headers\n", headers)

headers

['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engine-lo

am_df.columns = headers

am_df

		symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	•••	engine- size	fuel- system	bore	S¹
	0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	
	1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	
	2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5		152	mpfi	2.68	
	3	2	164	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	
	4	2	164	audi	gas	std	four	sedan	4wd	front	99.4		136	mpfi	3.19	
	200	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		141	mpfi	3.78	
	201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		141	mpfi	3.78	
→ Prej	proc	essing														
#chec	_	-1 type of dat	95 :a	volvo	gas	turbo	four	sedan	rwd	front	109.1		141	mpfi	3.78	

type(am_df)

pandas.core.frame.DataFrame

#checking the datatype for ? using index location

type(am_df.iloc[0,1])

str

```
## NOTE : Relacing all '?' with NaN type
am_df=am_df.replace(['?'],np.nan)
```

#The info() method prints information about the DataFrame.
#The information contains the number of columns, column labels, column data types, memory usage, range index, and the number of cells
am_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	normalized-losses	164 non-null	object
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	aspiration	205 non-null	object
5	num-of-doors	203 non-null	object
6	body-style	205 non-null	object
7	drive-wheels	205 non-null	object
8	engine-location	205 non-null	object
9	wheel-base	205 non-null	float64
10	length	205 non-null	float64
11	width	205 non-null	float64
12	height	205 non-null	float64
13	curb-weight	205 non-null	int64
14	engine-type	205 non-null	object
15	num-of-cylinders	205 non-null	object
16	engine-size	205 non-null	int64
17	fuel-system	205 non-null	object
18	bore	201 non-null	object
19	stroke	201 non-null	object
20	compression-ratio	205 non-null	float64
21	horsepower	203 non-null	object
22	peak-rpm	203 non-null	object
23	city-mpg	205 non-null	int64

```
24 highway-mpg 205 non-null int64
25 price 201 non-null object
dtypes: float64(5), int64(5), object(16)
memory usage: 41.8+ KB

#coverting the object datatype to numeric datatype using the information we get from above code

am_df[['price', 'peak-rpm', 'horsepower', 'stroke', 'bore', 'normalized-losses']] = am_df[['price', 'peak-rpm', 'horsepower', 'stroke')
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204

am_df.info()

Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
-	normalized-losses		
1		164 non-null	float64
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	aspiration	205 non-null	object
5	num-of-doors	203 non-null	object
6	body-style	205 non-null	object
7	drive-wheels	205 non-null	object
8	engine-location	205 non-null	object
9	wheel-base	205 non-null	float64
10	length	205 non-null	float64
11	width	205 non-null	float64
12	height	205 non-null	float64
13	curb-weight	205 non-null	int64
14	engine-type	205 non-null	object
15	num-of-cylinders	205 non-null	object
16	engine-size	205 non-null	int64
17	fuel-system	205 non-null	object
18	bore	201 non-null	float64
19	stroke	201 non-null	float64
20	compression-ratio	205 non-null	float64
21	horsepower	203 non-null	float64
22	peak-rpm	203 non-null	float64

```
23 city-mpg
                            205 non-null
                                            int64
      24 highway-mpg
                            205 non-null
                                            int64
      25 price
                            201 non-null
                                            float64
     dtypes: float64(11), int64(5), object(10)
     memory usage: 41.8+ KB
list num = [j for j in am df.columns if am df[j].dtype != 'object']
                                                                       ##List of numberic columns headers
list cat = [j for j in am df.columns if am df[j].dtype == 'object']
                                                                       ##List of category column headers
#using Heatmap to see the relation between different variables present in one DataFrame and it can be helpful in data understanding
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(18,10))
sns.heatmap(am df[list num].corr(), annot=True)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f2e76c92940>

symboling -	1	0.53	-0.53	-0.36	-0.23	-0.54	-0.23	-0.11	-0.13	-0.009	-0.18	0.072	0.27	-0.036	0.035	-0.082		1.00
normalized-losses -	0.53	1	-0.074	0.023	0.11	-0.43	0.12	0.17	-0.036	0.066	-0.13	0.3	0.26	-0.26	-0.21	0.2		
wheel-base -	-0.53	-0.074	1	0.87	0.8	0.59	0.78	0.57	0.49	0.16	0.25	0.35	-0.36	-0.47	-0.54	0.58	-	0.75
length -	-0.36	0.023	0.87	1	0.84	0.49	0.88	0.68	0.61	0.13	0.16	0.56	-0.29	-0.67	-0.7	0.69		
width -	-0.23	0.11	0.8	0.84	1	0.28	0.87	0.74	0.56	0.18	0.18	0.64	-0.22	-0.64	-0.68	0.75	-	0.50
height -	-0.54	-0.43		0.49	0.28	1	0.3	0.067	0.18	-0.057	0.26	-0.11	-0.32	-0.049	-0.11	0.14		
curb-weight -	-0.23	0.12	0.78	0.88	0.87	0.3	1	0.85	0.65	0.17	0.15	0.75	-0.27	-0.76	-0.8	0.83	-	0.25
engine-size -	-0.11	0.17	0.57	0.68	0.74	0.067	0.85	1	0.59	0.21	0.029	0.81	-0.24	-0.65	-0.68	0.87		
bore -	-0.13	-0.036	0.49	0.61	0.56	0.18	0.65	0.59	1	-0.056	0.0052	0.58	-0.26	-0.59	-0.59	0.54		0.00

Maximum Null Values are in Normalized-losses and its co-relation with the target variable (price) is also weak (0.2 < 0.5), Hence we can drop this column. But, for now proceeding with same data.

```
am_df[list_cat].info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 10 columns):
    Column
                      Non-Null Count Dtype
    -----
                                      object
0
    make
                      205 non-null
    fuel-type
                      205 non-null
                                      object
1
 2
    aspiration
                      205 non-null
                                      object
    num-of-doors
                      203 non-null
                                      object
 3
    body-style
                      205 non-null
                                      object
    drive-wheels
                      205 non-null
                                      object
    engine-location
                      205 non-null
                                      object
    engine-type
                      205 non-null
                                      object
7
    num-of-cylinders 205 non-null
                                      object
8
    fuel-system
                      205 non-null
                                      object
```

- -0.25

dtypes: object(10)
memory usage: 16.1+ KB

import seaborn as sns
sns.countplot(data=am df, x='num-of-doors', hue='body-style')

<matplotlib.axes._subplots.AxesSubplot at 0x7f2e6c5863d0>

Replacing all the Numberic missing values with "Mean", because all numeric missing values are continous type and Categorical missing value with "Mode" (most frequent). Ideally replacement should be done based on data understanding. Ex: num-of-doors missing value should be done based on co-relation with body-style as shown in above figure.

am_df['num-of-doors'].mode()
 0 four
 dtype: object

#Filling misssing values
for j in am_df.columns:

```
if am df[j].dtype != 'object':
    #am_df[j] = am_df[j].fillna(am_df[j].mode())
 #else:
    am_df[j] = am_df[j].fillna(am_df[j].mean())
am df['num-of-doors'].value counts()
             114
     four
              89
     two
     Name: num-of-doors, dtype: int64
am_df.loc[:,'num-of-doors'].fillna('four', inplace=True)
am df.isnull().any()
     symboling
                          False
     normalized-losses
                          False
     make
                          False
     fuel-type
                          False
     aspiration
                          False
     num-of-doors
                          False
     body-style
                          False
     drive-wheels
                          False
     engine-location
                          False
     wheel-base
                          False
     length
                          False
     width
                          False
     height
                          False
     curb-weight
                          False
     engine-type
                          False
     num-of-cylinders
                          False
     engine-size
                          False
     fuel-system
                          False
     bore
                          False
     stroke
                          False
     compression-ratio
                          False
     horsepower
                          False
```

```
peak-rpm
                          False
     city-mpg
                          False
     highway-mpg
                          False
     price
                          False
     dtype: bool
111
NOTE:
am df.mean()
am df.mode()
am df.median()
this will give mean and median for dtype- numeric and mode for dtype - numeric and object
but this will give type error from the next revision
. . .
     '\nNOTE : \n\nam df.mean()\nam df.mode()\nam df.median()\n\nthis will give mean and median for dtype- numeric and mode for dtyp
     e - numeric and object\nbut this will give type error from the next revision\n\n'
am df[list num].mean()
                            #provide mean for all numeric dtypes
     symboling
                              0.834146
     normalized-losses
                            122.000000
     wheel-base
                             98.756585
     length
                            174.049268
     width
                             65.907805
     height
                             53.724878
     curb-weight
                           2555.565854
     engine-size
                            126.907317
```

bore

stroke

horsepower

highway-mpg

peak-rpm

city-mpg

compression-ratio

3.329751

3.255423

10.142537

25.219512

30.751220

104.256158

5125.369458

price dtype: float64 13207.129353

am_df[list_num].median()

cymboling	1.00
symboling	
normalized-losses	122.00
wheel-base	97.00
length	173.20
width	65.50
height	54.10
curb-weight	2414.00
engine-size	120.00
bore	3.31
stroke	3.29
compression-ratio	9.00
horsepower	95.00
peak-rpm	5200.00
city-mpg	24.00
highway-mpg	30.00
price	10595.00
dtype: float64	

am_df.mode()

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	•••	engine- size	fuel- system	bore	stroke
0	0.0	122.0	toyota	gas	std	four	sedan	fwd	front	94.5		92	mpfi	3.62	3.4
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		122	NaN	NaN	NaN

2 rows × 26 columns

```
#changing units for ['city-mpg', 'highway-mpg'] columns
am df['city-mpg'] = 235 / am df['city-mpg']
am df['highway-mpg'] = 235 / am df['highway-mpg']
#we have to change the header name to reflect the unit change
am_df = am_df.rename(columns={'city-mpg': 'city-litres/100km', 'highway-mpg': 'highway-litres/100km'})
am df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 205 entries, 0 to 204
     Data columns (total 26 columns):
         Column
                               Non-Null Count Dtype
                               _____
          symboling
                               205 non-null
                                               int64
         normalized-losses
      1
                               205 non-null
                                               float64
      2
         make
                               205 non-null
                                               object
         fuel-type
                               205 non-null
                                               object
      3
         aspiration
                               205 non-null
                                               object
         num-of-doors
                               205 non-null
                                               object
         body-style
                               205 non-null
                                               object
        drive-wheels
                               205 non-null
                                               object
         engine-location
                               205 non-null
                                               obiect
         wheel-base
                               205 non-null
                                               float64
                                               float64
      10 length
                               205 non-null
      11 width
                               205 non-null
                                               float64
      12 height
                               205 non-null
                                               float64
      13 curb-weight
                                               int64
                               205 non-null
      14 engine-type
                               205 non-null
                                               object
      15 num-of-cylinders
                               205 non-null
                                               object
      16 engine-size
                               205 non-null
                                               int64
      17 fuel-system
                                               object
                               205 non-null
      18 hore
                               205 non-null
                                               float64
      19 stroke
                               205 non-null
                                               float64
      20 compression-ratio
                               205 non-null
                                               float64
      21 horsepower
                               205 non-null
                                               float64
```

```
23 city-litres/100km
                                205 non-null
                                                float64
      24 highway-litres/100km 205 non-null
                                                float64
      25 price
                                205 non-null
                                                float64
     dtypes: float64(13), int64(3), object(10)
     memory usage: 41.8+ KB
 #renewing old list num variable as column heading for the numeric variable is changed
list num = [i for i in am df.columns if am df[i].dtype != 'object']
# Standardising numerical variables using MinMaxScaler which scales all values in between a range of 0-1
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
#fit transform() - calculates mean and standard dev of each column - (x-mean)/std
am df numerical scaled = scaler.fit transform(am df[list num].to numpy())
                                                                              ## .to numpy converts dataframe to numpy array
am df numerical scaled
                       , 0.29842932, 0.05830904, ..., 0.48148148, 0.42105263,
     array([[1.
             0.207958891,
            [1.
                       , 0.29842932, 0.05830904, ..., 0.48148148, 0.42105263,
             0.282557971,
                       , 0.29842932, 0.2303207 , ..., 0.57017544, 0.4534413 ,
            [0.6
             0.282557971,
            . . . ,
                       , 0.15706806, 0.65597668, ..., 0.62191358, 0.56750572,
            [0.2
             0.40631051],
                       , 0.15706806, 0.65597668, ..., 0.31944444, 0.42105263,
            [0.2
             0.430763121.
            [0.2
                       , 0.15706806, 0.65597668, ..., 0.57017544, 0.48842105,
             0.43461099]])
```

22 peak-rpm

205 non-null

float64

#converting numpy array back to dataframe

am_df_numerical_scaled = pd.DataFrame(am_df_numerical_scaled, columns = list_num)
am_df_numerical_scaled.head(2)

	symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke	compression- ratio	horsepower
0	1.0	0.298429	0.058309	0.413433	0.316667	0.083333	0.411171	0.260377	0.664286	0.290476	0.125	0.2625
1	1.0	0.298429	0.058309	0.413433	0.316667	0.083333	0.411171	0.260377	0.664286	0.290476	0.125	0.2625
4												>

#creating dummies for one hot encoding categorical variables

```
am_df_categorical_ohe = pd.get_dummies(data = am_df[list_cat], columns = list_cat)
```

am_df_categorical_ohe.head()

	make_alfa- romero	make_audi	make_bmw	make_chevrolet	make_dodge	make_honda	make_isuzu	make_jaguar	make_mazda	make_mercedes- benz
0	1	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0

#adding numerical and categorical together to proceed further

am_df_scaled = pd.concat([am_df_numerical_scaled, am_df_categorical_ohe], axis = 1)

am_df_scaled

	symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke	• • •	num-of- cylinders_twelve
0	1.0	0.298429	0.058309	0.413433	0.316667	0.083333	0.411171	0.260377	0.664286	0.290476		0
1	1.0	0.298429	0.058309	0.413433	0.316667	0.083333	0.411171	0.260377	0.664286	0.290476		0
2	0.6	0.298429	0.230321	0.449254	0.433333	0.383333	0.517843	0.343396	0.100000	0.666667		0

#Creating Bins

am_df_scaled['Bin']=am_df_scaled['horsepower'].apply(lambda x: "Low" if x<=.33 else ("Medium" if 0.33<x<=0.66 else "High"))
am_df_scaled['Bin'].value_counts()</pre>

Low 163 Medium 37 High 5

Name: Bin, dtype: int64

heatmap using bore, stroke, comrpession-ratio, horsepower input features
sns.heatmap(am_df_scaled[['bore', 'stroke', 'compression-ratio', 'horsepower']].corr(), annot=True)

#creating scatter plots

import matplotlib.pyplot as plt

```
fig, ax = plt.subplots(1,1,figsize=(10,4))
ax.scatter(am_df_scaled['engine-size'], am_df_scaled['price'])
ax.set xlabel("Engine Size")
ax.set ylabel("Price")
```


am_df_scaled.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 77 columns):
    Column
                              Non-Null Count Dtype
```

0	symboling	205	non-null	float64
1	normalized-losses	205	non-null	float64
2	wheel-base	205	non-null	float64
3	length	205	non-null	float64
4	width	205	non-null	float64
5	height	205	non-null	float64
6	curb-weight	205	non-null	float64
7	engine-size	205	non-null	float64
8	bore	205	non-null	float64
9	stroke	205	non-null	float64
10	compression-ratio	205	non-null	float64
11	horsepower	205	non-null	float64
12	peak-rpm	205	non-null	float64
13	city-litres/100km	205	non-null	float64
14	highway-litres/100km	205	non-null	float64
15	price	205	non-null	float64
16	make_alfa-romero	205	non-null	uint8
17	make_audi	205	non-null	uint8
18	make_bmw	205	non-null	uint8
19	make_chevrolet	205	non-null	uint8
20	make_dodge	205	non-null	uint8
21	make_honda	205	non-null	uint8
22	make_isuzu	205	non-null	uint8
23	make_jaguar	205	non-null	uint8
24	make_mazda	205	non-null	uint8
25	make_mercedes-benz	205	non-null	uint8
26	make_mercury	205	non-null	uint8
27	make_mitsubishi	205	non-null	uint8
28	make_nissan	205	non-null	uint8
29	make_peugot	205	non-null	uint8
30	make_plymouth	205	non-null	uint8
31	make_porsche	205	non-null	uint8
32	make_renault	205	non-null	uint8
33	make_saab	205	non-null	uint8
34	make_subaru	205	non-null	uint8
35	make_toyota	205	non-null	uint8
36	make_volkswagen	205	non-null	uint8
37	make_volvo	205	non-null	uint8
38	fuel-type_diesel	205	non-null	uint8
39	fuel-type_gas	205	non-null	uint8
40	aspiration_std	205	non-null	uint8

```
41 aspiration_turbo
                             205 non-null
                                            uint8
42 num-of-doors_four
                             205 non-null
                                            uint8
43 num-of-doors_two
                             205 non-null
                                            uint8
44 body-style_convertible
                             205 non-null
                                            uint8
45 body-style hardtop
                             205 non-null
                                            uint8
46 body-style hatchback
                             205 non-null
                                            uint8
47 body-style sedan
                             205 non-null
                                            uint8
48 body-style wagon
                             205 non-null
                                            uint8
49 drive-wheels 4wd
                             205 non-null
                                            uint8
50 drive-wheels_fwd
                             205 non-null
                                            uint8
51 drive-wheels rwd
                             205 non-null
                                            uint8
```

plt.figure(figsize=(18,10))
sns.heatmap(am_df_scaled[list_num].corr(), annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f2e6a5c8ee0>

symboling -	1	0.47	-0.53	-0.36	-0.23	-0.54	-0.23	-0.11	-0.13	-0.0087	-0.18	0.071	0.27	0.063	-0.03	-0.082
normalized-losses -	0.47	1	-0.057	0.019	0.084	-0.37	0.098	0.11	-0.029	0.055	-0.11	0.2	0.24	0.23	0.18	0.13
wheel-base -	-0.53	-0.057	1	0.87	0.8	0.59	0.78	0.57	0.49	0.16	0.25	0.35	-0.36	0.47	0.58	0.58
length -	-0.36	0.019	0.87	1	0.84	0.49	0.88	0.68	0.61	0.13	0.16	0.55	-0.29	0.66	0.71	0.68
width -	-0.23	0.084	0.8	0.84	1	0.28	0.87	0.74	0.56	0.18	0.18	0.64	-0.22	0.68	0.73	0.73
height -	-0.54	-0.37	0.59	0.49	0.28	1	0.3	0.067	0.17	-0.055	0.26	-0.11	-0.32	-0.0023	0.086	0.13
curb-weight -	-0.23	0.098	0.78	0.88	0.87	0.3	1	0.85		0.17	0.15	0.75	-0.27	0.79	0.84	0.82
engine-size -	-0.11	0.11	0.57	0.68	0.74	0.067	0.85	1	0.58	0.2	0.029	0.81	-0.24	0.74	0.78	0.86
bore -	-0.13	-0.029	0.49	0.61	0.56	0.17		0.58	1	-0.056	0.0052	0.58	-0.25	0.56	0.55	0.53
stroke -	-0.0087	0.055	0.16	0.13	0.18	-0.055	0.17	0.2	-0.056	1	0.19	0.088	-0.067	0.043	0.055	0.082
compression-ratio -	-0.18	-0.11	0.25	0.16	0.18	0.26	0.15	0.029	0.0052	0.19	1	-0.21	-0.44	-0.3	-0.22	0.071
horsepower -	0.071	0.2	0.35	0.55	0.64	-0.11	0.75	0.81	0.58	0.088	-0.21	1	0.13	0.87	0.8	0.76
peak-rpm -	0.27	0.24	-0.36	-0.29	-0.22	-0.32	-0.27	-0.24	-0.25	-0.067	-0.44	0.13	1	0.12	0.016	-0.1

-1.0

- 0.8

- 0.6

- 0.4

#Creating Boxplots

#Box and whisker plots, sometimes known as box plots, are a great chart to use when showing the distribution of data points across a

#These charts display ranges within variables measured. This includes the outliers, the median, the mode, and where the majority of t

plt.figure(figsize=(10,6))
sns.boxplot(x='body-style', y='price', data=am_df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f2e6a3b3d30>

plt.figure(figsize=(10,6))
sns.boxplot(x='engine-location', y='price', data=am_df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f2e6a299fa0>

plt.figure(figsize=(10,6))
sns.boxplot(x='drive-wheels', y='price', data=am_df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f2e6a36e100>

am_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	normalized-losses	205 non-null	float64
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	aspiration	205 non-null	object
5	num-of-doors	205 non-null	object
6	body-style	205 non-null	object
7	drive-wheels	205 non-null	object
8	engine-location	205 non-null	object
9	wheel-base	205 non-null	float64
10	length	205 non-null	float64
11	width	205 non-null	float64
12	height	205 non-null	float64

```
13 curb-weight
                         205 non-null
                                         int64
14 engine-type
                         205 non-null
                                         object
15 num-of-cylinders
                         205 non-null
                                         object
16 engine-size
                         205 non-null
                                         int64
17 fuel-system
                         205 non-null
                                         object
18 bore
                                         float64
                         205 non-null
19 stroke
                         205 non-null
                                         float64
20 compression-ratio
                         205 non-null
                                         float64
21 horsepower
                         205 non-null
                                         float64
                                         float64
22 peak-rpm
                         205 non-null
23 city-litres/100km
                         205 non-null
                                         float64
24 highway-litres/100km 205 non-null
                                         float64
25 price
                         205 non-null
                                         float64
```

dtypes: float64(13), int64(3), object(10)

memory usage: 41.8+ KB

groupby is used to separate identical data into groups to allow for further aggregation and analysis.
am df[['body-style', 'price']].groupby('body-style').agg(np.mean)

price

body-styleconvertible21890.500000hardtop22208.500000hatchback10050.289410sedan14433.658945wagon12371.9600000

gk = am_df.groupby('make')

```
# Let's print the first entries
# in all the groups formed.
gk.first()
```

		symboling	normalized- losses	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	•••	engine- size	fuel- system	
	make														
alfa-ro	omero	3	122.0	gas	std	two	convertible	rwd	front	88.6	168.8		130	mpfi	
aı	ıdi	2	164.0	gas	std	four	sedan	fwd	front	99.8	176.6		109	mpfi	
bn	nw	2	192.0	gas	std	two	sedan	rwd	front	101.2	176.8		108	mpfi	
chev	rolet	2	121.0	gas	std	two	hatchback	fwd	front	88.4	141.1		61	2bbl	
do	dge	1	118.0	gas	std	two	hatchback	fwd	front	93.7	157.3		90	2bbl	
hoi	nda	2	137 N	กลร	etd	two	hatchhack	fwd	fr∩nt	86 6	144 6		92	1hhl	

Finding the values contained in the "audi" group
gk.get_group('audi')

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	•••	engine- size	fuel- system	bore	stroke
3	2	164.0	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	3.4
4	2	164.0	audi	gas	std	four	sedan	4wd	front	99.4		136	mpfi	3.19	3.4
5	2	122.0	audi	gas	std	two	sedan	fwd	front	99.8		136	mpfi	3.19	3.4
6	1	158.0	audi	gas	std	four	sedan	fwd	front	105.8		136	mpfi	3.19	3.4
7	1	122.0	audi	gas	std	four	wagon	fwd	front	105.8		136	mpfi	3.19	3.4
8	1	158.0	audi	gas	turbo	four	sedan	fwd	front	105.8		131	mpfi	3.13	3.4
9	0	122.0	audi	gas	turbo	two	hatchback	4wd	front	99.5		131	mpfi	3.13	3.4

7 rows × 26 columns

toyota 1 01.0 gao ota two natoribaon iwa nont oo.1 100.1 ... oz za

```
# First grouping based on "make"
# Within each team we are grouping based on "fuel-type"
gkk = am_df.groupby(['make', 'fuel-type'])
# Print the first value in each group
gkk.first()
```

		symboling	normalized- losses	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	width	•••	engine- size
make	fuel- type												- 1
alfa-romero	gas	3	122.0	std	two	convertible	rwd	front	88.6	168.8	64.1		130
audi	gas	2	164.0	std	four	sedan	fwd	front	99.8	176.6	66.2		109
bmw	gas	2	192.0	std	two	sedan	rwd	front	101.2	176.8	64.8		108
chevrolet	gas	2	121.0	std	two	hatchback	fwd	front	88.4	141.1	60.3		61
dodge	gas	1	118.0	std	two	hatchback	fwd	front	93.7	157.3	63.8		90
honda	gas	2	137.0	std	two	hatchback	fwd	front	86.6	144.6	63.9		92
isuzu	gas	0	122.0	std	four	sedan	rwd	front	94.3	170.7	61.8		11 1
jaguar	gas	0	145.0	std	four	sedan	rwd	front	113.0	199.6	69.6		258
mazda	diesel	0	122.0	std	four	sedan	fwd	front	98.8	177.8	66.5		122
	gas	1	104.0	std	two	hatchback	fwd	front	93.1	159.1	64.2		91
mercedes- benz	diesel	-1	93.0	turbo	four	sedan	rwd	front	110.0	190.9	70.3		183
Deliz	gas	-1	122.0	std	four	sedan	rwd	front	115.6	202.6	71.7		234
mercury	gas	1	122.0	turbo	two	hatchback	rwd	front	102.7	178.4	68.0		140
mitsubishi	gas	2	161.0	std	two	hatchback	fwd	front	93.7	157.3	64.4		92
nissan	diesel	1	128.0	std	two	sedan	fwd	front	94.5	165.3	63.8		103
= am_df.groupb	y(['mak	e', 'body-s	tyle'])										
peugot	aiesei	U	161.0	turbo	tour	sedan	rwd	tront	107.9	186.7	68.4		152

dd.first()

		symboling	normalized- losses	fuel- type	aspiration	num- of- doors	drive- wheels	engine- location	wheel- base	length	width	•••	engine siz
make	body- style												
alfa-romero	convertible	3	122.0	gas	std	two	rwd	front	88.6	168.8	64.1		13
	hatchback	1	122.0	gas	std	two	rwd	front	94.5	171.2	65.5		15
audi	hatchback	0	122.0	gas	turbo	two	4wd	front	99.5	178.2	67.9		13
	sedan	2	164.0	gas	std	four	fwd	front	99.8	176.6	66.2		10
	wagon	1	122.0	gas	std	four	fwd	front	105.8	192.7	71.4		13
bmw	sedan	2	192.0	gas	std	two	rwd	front	101.2	176.8	64.8		10
chevrolet	hatchback	2	121.0	gas	std	two	fwd	front	88.4	141.1	60.3		6
	sedan	0	81.0	gas	std	four	fwd	front	94.5	158.8	63.6		9
dodge	hatchback	1	118.0	gas	std	two	fwd	front	93.7	157.3	63.8		9
	sedan	1	148.0	gas	std	four	fwd	front	93.7	157.3	63.8		9
	wagon	-1	110.0	gas	std	four	fwd	front	103.3	174.6	64.6		12
honda	hatchback	2	137.0	gas	std	two	fwd	front	86.6	144.6	63.9		9
	sedan	0	110.0	gas	std	four	fwd	front	96.5	163.4	64.0		9
	wagon	0	78.0	gas	std	four	fwd	front	96.5	157.1	63.9		9
isuzu	hatchback	2	122.0	gas	std	two	rwd	front	96.0	172.6	65.2		11
	sedan	0	122.0	gas	std	four	rwd	front	94.3	170.7	61.8		11
jaguar	sedan	0	145.0	gas	std	four	rwd	front	113.0	199.6	69.6		25
mazda	hatchback	1	104.0	gas	std	two	fwd	front	93.1	159.1	64.2		9
	sedan	1	113.0	gas	std	four	fwd	front	93.1	166.8	64.2		9

mercedes-	convertible	3	142.0 ga	s std	two	rwd	front	96.6	180.3	70.5	 23
benz	hardtop	0	93.0 dies	el turbo	two	rwd	front	106.7	187.5	70.3	 18

▼ Pearson-corelation coefficient

```
import pandas as pd
import scipy.stats as stats
r = stats.pearsonr(am_df['wheel-base'], am_df['price'])
print(r)
     (0.5831681499789549, 4.527625545686636e-20)
r1 = stats.pearsonr(am df['horsepower'], am df['price'])
print(r1)
     (0.7579169537498178, 1.6076703978129875e-39)
r2 = stats.pearsonr(am_df['length'], am_df['price'])
print(r2)
     (0.6829862954386219, 1.6498873291218535e-29)
r3 = stats.pearsonr(am_df['width'], am_df['price'])
print(r3)
     (0.7286988175931842, 3.214520483804299e-35)
plt.figure(figsize=(18,10))
sns.heatmap(am_df.corr(), annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f2e6a355520>

symboling -	1	0.47	-0.53	-0.36	-0.23	-0.54	-0.23	-0.11	-0.13	-0.0087	-0.18	0.071	0.27	0.063	-0.03	-0.082
normalized-losses -	0.47	1	-0.057	0.019	0.084	-0.37	0.098	0.11	-0.029	0.055	-0.11	0.2	0.24	0.23	0.18	0.13
wheel-base -	-0.53	-0.057	1	0.87	0.8	0.59	0.78	0.57	0.49	0.16	0.25	0.35	-0.36	0.47	0.58	0.58
length -	-0.36	0.019	0.87	1	0.84	0.49	0.88	0.68	0.61	0.13	0.16	0.55	-0.29	0.66	0.71	0.68
width -	-0.23	0.084	0.8	0.84	1	0.28	0.87	0.74	0.56	0.18	0.18	0.64	-0.22	0.68	0.73	0.73
height -	-0.54	-0.37	0.59	0.49	0.28	1	0.3	0.067	0.17	-0.055	0.26	-0.11	-0.32	-0.0023	0.086	0.13
curb-weight -	-0.23	0.098	0.78	0.88	0.87	0.3	1	0.85		0.17	0.15	0.75	-0.27	0.79	0.84	0.82
engine-size -	-0.11	0.11	0.57	0.68	0.74	0.067	0.85	1	0.58	0.2	0.029	0.81	-0.24	0.74	0.78	0.86
bore -	-0.13	-0.029	0.49	0.61	0.56	0.17		0.58	1	-0.056	0.0052	0.58	-0.25	0.56	0.55	0.53
stroke -	-0.0087	0.055	0.16	0.13	0.18	-0.055	0.17	0.2	-0.056	1	0.19	0.088	-0.067	0.043	0.055	0.082
compression-ratio -	-0.18	-0.11	0.25	0.16	0.18	0.26	0.15	0.029	0.0052	0.19	1	-0.21	-0.44	-0.3	-0.22	0.071
horsepower -	0.071	0.2	0.35	0.55	0.64	-0.11	0.75	0.81	0.58	0.088	-0.21	1	0.13	0.87	0.8	0.76
peak-rpm -	0.27	0.24	-0.36	-0.29	-0.22	-0.32	-0.27	-0.24	-0.25	-0.067	-0.44	0.13	1	0.12	0.016	-0.1

- 0.6

Pearson's r value Strength of relationship

0 - No linear relationship, 0.1 to 0.3 : Weak linear relationship, 0.3 to 0.5 : Moderate linear relationship, 0.5 to 0.7 : Strong linear relationship, 0.7

to 1: Very strong linear relationship, -0.1 to -0.3: Weak negative linear relationship, -0.3 to -0.5: Moderate negative linear relationship, -0.5 to

-0.7 : Strong negative linear relationship, -0.7 to -1 : Very strong negative linear relationship

→ ANN model

am_df

		symboling	normalized- losses	make	fuel- type	aspiration	of- doors		drive- wheels	engine- location	wheel- base	• • •	engine- size	fuel- system	bore	Si
	0	3	122.0	alfa- romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	
X = a	m_df_s	scaled.drop	o(['price', '	Bin'],ax	is=1)	#independer	it/ feat	ture variab	les							
y = a	m_df.:	iloc[:, -1]] #dependen	t / targ	et vari	able-('price	')									
	3	2	164 በ	audi	nas	std	four	sedan	fwd	front	99 8		109	mnfi	3 19	
#conv	ertin	g to numpy	array													
X = n y = n	•				J											

#Splitting data

from sklearn.model_selection import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y , test_size=0.2, random_state=42, shuffle=True)
205 rows × 26 columns

Xtrain.shape

(164, 75)

Xtest.shape

(41, 75)

from keras.models import Sequential
from keras.layers import Dense

```
am df ANN = Sequential()
         sigmoid activation - binary [2 class classification]
#Note:
         softmax activation - multi [2+ class classification]
         relu activation
                          - regression
          output layer: number of units=number of class - multi [2+ class classification]
#Note:
                     : number of units=1 - binary [2 class classification]
#
                     : number of units=1 - regression
#
#hidden layer
am df ANN.add(Dense(units=1000, activation = 'relu'))
#hidden layer
am df ANN.add(Dense(units=400, activation = 'relu'))
#hidden layer
am df ANN.add(Dense(units=100, activation = 'relu'))
#output layer
am df ANN.add(Dense(units=1, activation = 'relu'))
am df ANN.compile(loss='mean squared error', optimizer='adam', metrics='mean absolute percentage error')
history = am df ANN.fit(Xtrain, ytrain, epochs=300)
    Epoch 1/300
    6/6 [============ ] - 2s 21ms/step - loss: 230089104.0000 - mean absolute percentage error: 99.9878
    Epoch 2/300
    6/6 [============ ] - 0s 14ms/step - loss: 229853360.0000 - mean absolute percentage error: 99.8983
    Epoch 3/300
    6/6 [============ - 0s 17ms/step - loss: 228971472.0000 - mean absolute percentage error: 99.6045
    Epoch 4/300
```

```
Epoch 5/300
Epoch 6/300
Epoch 7/300
Epoch 8/300
Epoch 9/300
Epoch 10/300
Epoch 11/300
Epoch 12/300
Epoch 13/300
Epoch 14/300
Epoch 15/300
Epoch 16/300
Epoch 17/300
Epoch 18/300
Epoch 19/300
Epoch 20/300
Epoch 21/300
Epoch 22/300
Epoch 23/300
Epoch 24/300
Epoch 25/300
```

am_df_ANN.summary()

Model: "sequential"

	Layer (type)	Output Shape	Param #
•	dense (Dense)	(None, 1000)	76000
	dense_1 (Dense)	(None, 400)	400400
	dense_2 (Dense)	(None, 100)	40100
	dense_3 (Dense)	(None, 1)	101

Total params: 516,601 Trainable params: 516,601 Non-trainable params: 0

```
#plotting graph
import matplotlib.pyplot as plt
plt.plot(history.history['loss'])
plt.show()
```


plt.plot(history.history['mean_absolute_percentage_error'])
plt.show()

from tensorflow.keras.utils import plot_model
plot_model(am_df_ANN, show_shapes=True, show_dtype=True, show_layer_activations=True, show_layer_names=True)

2/2 [=======] - 0s 12ms/step

```
array([[28775.596],
       [21453.652],
       [ 8687.918 ],
       [15152.876],
       [29039.51],
       [ 6841.043 ],
       [ 8211.549 ],
       [ 7617.6216],
       [ 8465.913 ],
       [ 8038.9126],
       [12781.753],
       [ 7672.5493],
       [17832.82],
       [10321.077],
       [40202.03],
       [ 6953.777 ],
       [ 1808.3495],
       [13309.161],
       [ 8192.34 ],
       [ 8563.055 ],
       [10216.857],
       [15347.728],
       [ 7472.5464],
       [ 4546.2915],
       [ 6286.6885],
       [28770.111],
       [11268.868],
       [15512.438],
       [ 6675.3003],
       [16056.0205],
       [30615.496],
       [ 6693.7173],
       [ 7804.5864],
       [23308.877],
       [ 8717.314 ],
       [32922.477],
       [11339.835],
      [12711.351],
       [ 9054.7705],
```