Statistics 520 - Assignment 3

Sam Olson

Assignment 3

1. (10 pt.) Suppose that a random variable Y has a beta distribution with parameters α and β . A standard form for the probability density function of Y is, for $\alpha > 0$ and $\beta > 0$,

$$f(y \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \quad 0 < y < 1.$$

Put this density in canonical exponential family form.

Using properties of exponential families, find $E\{\log(Y)\}$ and $E\{\log(1-Y)\}$ expressed in terms of the original α and β parameters.

Note: Use $\Gamma'(x)$ to denote the derivative of the gamma function,

$$\frac{d}{dx}\Gamma(x).$$

Answer

2. (5 pt.) Suppose that a random variable Y has a Poisson distribution with parameter λ . A standard form for the probability mass function of Y is, for $\lambda > 0$,

$$f(y \mid \lambda) = \frac{1}{y!} \lambda^y \exp(-\lambda), \quad y = 0, 1, 2, \dots$$

Put this probability mass function in canonical exponential family form.

Using properties of exponential families, verify that $E(Y) = \lambda$.

Answer

3. Suppose that a random variable Y has a gamma distribution with parameters α and β . A standard form for the probability density function of Y is, for $\alpha > 0$ and $\beta > 0$,

$$f(y \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} \exp(-\beta y), \quad y > 0.$$

Note: You may have seen a gamma density written with a parameter that is equal to $1/\beta$ in the above expression. Use the parameterization given above to answer this question (I think it will be easier).

- (a) (5 pts.) Write the gamma density in the form of a two-parameter exponential family. Using properties of exponential families, derive the expected values of Y and $\log(Y)$.
- (b) (5 pts.) Write the gamma density in the form of an exponential dispersion family with parameters θ and ϕ .

Derive the expected value of Y.

Answer

- (a)
- (b)