Homework 1 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

2023/9/19

1. Let $R = \{f(x) \mid x \in X\}$ and $r = \sup R$. Then, for any β which is upper bound of R, $r \le \beta$. Thus, $a + \beta$ is an upper bound of $R' = \{a + f(x) \mid x \in X\}$.

Assume there exists $\beta' = \sup R'$ s.t. $\beta' < a + r$. Since $\beta' \ge a + f(x)$, $\forall x \in X \Rightarrow \beta' - a \ge f(x)$, $\forall x \in X$. Therefore, $\beta' - a$ is an upper bound of R and it should greater or equal to r. This causes contradiction to the assumption.

Thus, for every upper bound f R', it is greater or equal to a + r.

That is $\sup\{a + f(x) \mid x \in X\} = a + \{f(x) \mid x \in X\}$

2. let a be greastest lower bound of $\{f(x) \mid x \in X\}$, b be greastest lower bound of $\{f(x) \mid x \in X\}$. That is $a \le f(x) \forall x \in X$ and $b \le g(x) \forall x \in X$. Then, a + b is an lower bound of $\{f(x) + g(x) \mid x \in X\}$. Therefore $a + b \le \inf\{f(x) + g(x) \mid x \in X\}$. In other world, $\inf\{f(x) \mid x \in X\} + \inf\{g(x) \mid x \in X\} \le \inf\{f(x) + g(x) \mid x \in X\}$

Using the same way we can prove $\sup\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\}$ Then, we want to show $\inf S \le \sup S$ for all set S:

For a upper bound of S " β " and lower bound of S " α ". For any element $x \in S$, $\alpha \le x \le \beta$. Then, inf $S \le x \le \sup S$ for all $x \in S$

Then, $\inf\{f(x) \mid x \in X\} + \inf\{g(x) \mid x \in X\} \le \inf\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\}$

Ex. Let $f(x) = \sin(x)$, $g(x) = \cos(x)$, $X = (0, 2\pi)$, then $-2 < -\sqrt{2} < 2$.

- 3. Using the steps from Rudin's book.
 - (a) For any $n \in \mathbb{N}$, $b^n 1 \ge n(b-1)$

Proof.

•
$$n = 1, b - 1 \ge 1(b - 1)$$
 trivially true

• Assume
$$n = k, b^k - 1 \ge k(b - 1)$$

•
$$n = k+1, b^{k+1} - 1 = (b-1)(b^k + b^{k-1} + \dots + 1) \ge (b-1)(k+1)$$
 since $b \ge 1$

Then, by math induction, $b^n - 1 \ge n(b-1)$ for all $n \in \mathbb{N}$

(b) Then, $b-1 > n(b^{1/n}-1)$

Proof.
$$(b^{1/n})^n - 1 \ge n(b^{1/n} - 1)$$

(c) If
$$t > 1$$
 and $n > \frac{b-1}{t-1}$, then $b^{1/n} < t$

Proof.
$$n > \frac{b-1}{t-1} \ge \frac{n(b^{1/n}-1)}{t-1}$$
, then $t-1 > b^{1/n} - 1 \Rightarrow b^{1/n} < t$ for $t > 1$

(d) If w s.t. $b^w < y$, then exists some $n \in \mathbb{N}$ s.t. $b^{w+1/n} < y$

Proof. $b^{w+1/n} = b^w * b^{1/n}$, then from (c), we can know that there exists some $n \in \mathbb{N}$ s.t. $b^{1/n} < \frac{y}{b^w}$ since $\frac{y}{b^w} > 1$. Thus, $b^{w+1/n} < y$ if $b^w < y$ with some $n \in \mathbb{N}$

(e) If $b^w > y$, then $b^{w-1/n} > y$

Proof. $b^{w-1/n} = \frac{b^w}{b^1/n}$. By (c), there exists some $n \in \mathbb{N}$ s.t. $b^{1/n} \le \frac{b^w}{y}$. Thus, $b^{w-1/n} > y$ if $b^w > y$ for some $n \in \mathbb{N}$

(f) $A = \{ w \mid b^w < y \}, x = supA \text{ satisfies } b^x = y \}$

By Bernoulli's inequality, $b^n=(1+c)^n\geq 1+nc$ by let c=b-1>0, then by Archimedean property, there exists some $n\in\mathbb{N}$ s.t. $b^n>1+nc>y$. Thus, A is bounded above. And since $b^{-n}=\frac{1}{b^n}$, there exists some $n\in\mathbb{N}$ s.t. $b^n\geq \frac{1}{y}\Rightarrow b^{-n}\leq y$. Thus, $A\neq\emptyset$.

Thus, by the completement of real number, there exists $x = \sup A$.

If $b^x < y$, from (d), $b^{x+1/n} < y \Rightarrow x+1/n \in A$. Thus, x is not upper bound of A. If $b^x > y$, form (f), $b^{x-1/n} > y$. Then, x is not the least upper bound of A. So, b^x must to be equal to y.

(g) Uniqueness

Proof. Assume there exists x, x' s.t. $b^x = y = b^{x'}$.

Then, assume $x \neq x'$, since b > 1 and $x' - x \neq 0 \Rightarrow b^{x'-x} \neq 1$, then $b^x - b^{x'} = b^x (1 - b^{x'-x}) \neq 0$

Thus, if $b^x = b^{x'} \Rightarrow x = x' \Rightarrow x$ is unique.