

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Электротехника **Отчет по контрольной работе №4.** Анализ переходного процесса в цепи второго порядка

> Студент: Евстигнеев Дмитрий Группа: R3242 Преподаватель: Горшков К.С.

Задача.

ЗАДАНИЕ 7. Выполнить анализ переходного процесса в цепи второго порядка, варианты схем которой изображены на рис.1, 2 в обобщенном виде. Начальные условия ненулевые.

Перед анализом необходимо составить схему исследуемой цепи, воспользовавшись информацией таблицы 7. Ключ расположен либо параллельно любому из элементов, либо последовательно элементам какой-либо ветви. До коммутации (t<0) ключ либо замкнут (3) либо разомкнут (P).

В качестве примера на рис. 2 изображена схема с параметрами 27-го варианта из таблицы 7.

24	1	$J=5,6$; $R_1=R_2=100$; $R_3=150$; $R_4=450$; $L_5=65$; $C_7=6$	$i_{R3}(t),$ $u_1(t)$	Параллельно R ₂	P	
		$R_4=450$; $L_5=65$; $C_7=6$	$u_{\rm L}(t)$	A2		

В данном варианте шестого элемента нет, поэтому он закорочен.

Рис. 3

Методом, рекомендованным преподавателем, рассчитать i(t), u(t) в момент коммутации и после нее. Представить обе величины графиками.

I	a	бı	H	Ш	a	7

Вар.	Рис.	Элементы $J[A], E[B],$ R[OM], L[мГн], C[мкФ]	Искомые величины	Расположе- ние ключа	Ключ при <i>t</i> <0
1	1	$J=3$; $R_1=R_2=R_7=50$; $L_6=20$; $C_4=2$	$i_L(t),$ $u_C(t)$	Параллельно R_2	P
2	2	E=90; R_2 =45; R_5 =15; R_6 =30; L_1 =25; C_3 =2,5	$i_{\mathbb{C}}(t),$ $u_{\mathbb{L}}(t)$	Параллельно R ₅	3
3	1	$J=9$; $R_1=R_6=R_7=100$; $L_2=30$; $C_5=3$	$i_{L}(t),$ $u_{R6}(t)$	Параллельно R_6	3
4	2	$E=84$; $R_2=R_5=50$; $R_6=300$; $L_1=35$; $C_3=3,5$	$i_L(t),$ $u_C(t)$	Параллельно R_5	P

Решение.

Проведем расчеты:


```
Puc = 62 - uc
3,5 - 3,5 - 3,5 - 3,50
   Pil = -\frac{uc}{35} - \frac{50}{35}i_1 + \frac{84}{35}
  12 - Uc (p + 1/35)2) =0
 42(-p-35)- 42 + 35 = 0
\Delta P = \begin{vmatrix} \frac{1}{3.5} & -(p + \frac{1}{(35)^2}) \\ -(p + \frac{50}{35}) & -\frac{1}{35} \end{vmatrix} = 0
     p2 + 1751 × + 16 = 0
    p, ≈ -1,42283
    p. ≈ -9,00656
ile (+) = Clef + Are Pr+ + Aze Pr+
  LL(+) = lef + Brepet + Brepet
  Uc(0+)= Ucf + A, + Az = 72 (1(0+)= 16 + B1+B2 = 0,24
    A_1 + A_2 = -1, 5
B_1 + B_2 = 0, 03
U(c'(0^+)) = p_1 A_1 + p_2 A_2 = \overline{1225}
C'_L(0^+) = p_1 B_1 + p_2 B_2 = 0

\begin{cases}
P_1 + A_2 = -1, 5 \\
P_1 + A_1 + P_2 + P_2 + P_3 = 1225
\end{cases}

\begin{cases}
P_1 + B_2 = 803 \\
P_1 + B_2 + P_2 + P_3 = 0
\end{cases}

     A1 = 0,000031
                                              Bi = -8,000139
     Az = -1,50003
                                              B2 = 0,030/39
 Uc(t)=73,5+0,000031e -1,50003e -0,00656+
  i_ (+) = 0,21 - 0,000139e-1,42283+ + 8,030139e-0,00056+
   Ecru rhydo oppgeness go sorax (c) = 73,5 - 1,5e -901+
                                                 (2(+) = 0,21+903-0,01+
```

Построим и проведем симуляцию в утилите LTSpice и сравним с нашими расчетами

$$y = 0.21 + 0.03e^{-0.01x}$$

