CSCI567 Homework 1

Question 1.1

In the case where the matrix is not invertable, one can say that the w matrix, has rows that are dependent on one another, meaning its true dimensionality is less than that of each X.

Ouestion 1.2

Starting with the residual sum of squares objective function we get:

$$b^* = argmin_b || \mathbf{y} - (\mathbf{w}\mathbf{x} + b\mathbf{1}_N) ||^2$$

Then, taking a derivative with respect to b we get:

$$\mathbf{1}_{N}^{T} \left(y - wx - b^* \mathbf{1}_{N} \right) = 0$$

Then using:

$$\frac{1}{N}\sum_{n}x_{n}=0$$

the equation is reduced to:

$$\mathbf{1}_{N}^{T} (y - b^* \mathbf{1}_{N}) = 0$$

which is exactly the same equation as which was given in the 0 dimension case. With that, we find that:

$$b^* = \frac{1}{N} \mathbf{1}_N^T y = \frac{1}{N} \sum_n y_n$$

Ouestion 2.1

We start with the objective function:

$$\min_{w,b} \varepsilon(w,b) = \min_{w,b} - \sum_{n} \{y_n \log \left(\sigma\left(w^T x_n + b\right)\right) + (1 - y_n) \log \left(1 - \sigma\left(w^T x_n + b\right)\right)\}$$

Taking a derivative and simplifying we get:

$$0 = -\sum_{n} \{y_{n} - \sigma(w^{T}x_{n} + b^{*})y_{n} + ((-\sigma(w^{T}x_{n} + b^{*}) + y_{n}(\sigma(w^{T}x_{n} + b^{*})))\}$$
$$0 = -\sum_{n} \{y_{n} - \sigma(w^{T}x_{n} + b^{*})\}$$

The simplest way for the above statement to be true is for each of the summed elements to equal zero:

$$y_n = \sigma\left(w^T x_n + b^*\right)$$

with that we get the optimal b:

$$b = \log\left(\frac{y_n}{1 - y_n}\right) - w^T x_n$$