Math 5601 Independent Study Project

Jacob Hauck

1 Introduction

2 Theory

Definition 1. (Index slice) Let $m \le n$, where m and n are integers. Define the index slice from m to n by the sequence

$$m: n = \{i\}_{i=m}^{n}.$$
 (1)

Definition 2. (Submatrix) Let $A \in \mathbf{R}^{m \times n}$ be a matrix. Let $I = \{I_i\}_{i=1}^r$ be a sequence of distinct row indices of A, and let $J = \{J_j\}_{j=1}^c$ be a sequence of distinct column indices of A. The **submatrix** of A with rows I and columns J is the matrix $A(I,J) \in \mathbf{R}^{r \times c}$ with entries

$$[A(I,J)]_{ij} = A_{I_iJ_i}. (2)$$

If the special symbol: is used as row indices or column indices, it means the entire sequence 1:m or 1:n.

If I or J is a single integer i or j instead of a sequence, we take this to mean I = i : i or J = j : j, the sequence consisting of that one integer.

Definition 3. (Skeleton decomposition) Let $A \in \mathbf{R}^{m \times n}$, and let $B = A(I, J) \in \mathbf{R}^{r \times r}$ be a nonsingular, square submatrix of A. Then the **skeleton decomposition of** A with core B = A(I, J) is given by

$$\mathscr{S}_B = A(:,J)A(I,J)^{-1}A(I,:) \in \mathbf{R}^{m \times n}.$$
 (3)

Theorem 1. Let $A \in \mathbf{R}^{m \times n}$. If $B = A(I, J) \in \mathbf{R}^{r \times r}$ is a square submatrix of A with rank r, then

$$A(I,J) = \mathcal{S}_B(I,J). \tag{4}$$

Proof. Let $C = \{b_{ij}\} = A(I, J)^{-1}$. Then, for $i, j \in 1 : r$,

$$[RHS(4)]_{ij} = \sum_{k=1}^{r} \sum_{\ell=1}^{r} A_{I_i J_k} C_{k\ell} A_{I_\ell J_j} = \sum_{k=1}^{r} \sum_{\ell=1}^{r} A(I, J)_{ik} C_{k\ell} A(I, J)_{\ell j}$$
(5)

$$= [A(I,J)A(I,J)^{-1}A(I,J)]_{ij} = A_{I_iJ_i} = A(I,J)_{ij}$$
(6)

$$= [LHS(4)]_{ij}, \tag{7}$$

which completes the proof.

Definition 4. (Standard basis) Let $e_j \in \mathbb{R}^n$ denote the jth standard basis vector in \mathbb{R}^n .

Theorem 2. (Exact skeleton decomposition) Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank r. If $B = A(I, J) \in \mathbb{R}^{r \times r}$ is a square submatrix of A with rank r, then

$$A = \mathcal{S}_B. \tag{8}$$

Proof. The columns of A at indices J (that is, $\{A(:,J_j)\}_{j=1}^r$) are linearly independent because

$$\sum_{j=1}^{r} \alpha_j A(:, J_j) = 0 \implies \sum_{j=1}^{r} \alpha_j A(I, J_j) = 0 \implies \alpha_j = 0, \quad j \in 1: r$$

$$(9)$$

because the columns $\{A(I,J_j)\}_{j=1}^r$ of A(I,J) must be linearly independent by the fact that A(I,J) has rank r.

Thus, since A has rank r, every other column of A must be a linear combination of the columns at indices J. That is, there exists $\{\alpha_{\ell j}\}$ for $j \in 1: r$ and $\ell \in 1: n$ such that

$$A(:,\ell) = \sum_{j=1}^{r} \alpha_{\ell j} A(:,J_j).$$
 (10)

Define $\varphi : \mathbf{R}^r \to \operatorname{span}\{A(:,J_j) \mid j \in 1 : r\}$ by $\varphi(e_j) = A(:,J_j)$. Clearly, φ is linear and onto. By the linear independence of $\{A(:,J_j)\}$, φ maps an r-dimensional space onto an r-dimensional space, so φ must also be one-to-one. Thus, φ is invertible, with $\varphi^{-1}(A(:,J_j)) = e_j$ for $j \in 1 : r$.

Let $x \in \mathbf{R}^n$. Viewing A and A(I,J) as linear mappings defined by matrix-vector multiplication, we have

$$(A(I,J) \circ \varphi^{-1} \circ A)(x) = (A(I,J) \circ \varphi^{-1}) \left(\sum_{\ell=1}^{n} A(:,\ell) x_{\ell} \right) = \sum_{\ell=1}^{n} x_{\ell} A(I,J) \varphi^{-1}(A(:,\ell))$$
(11)

$$= \sum_{\ell=1}^{n} x_{\ell} A(I, J) \varphi^{-1} \left(\sum_{j=1}^{r} \alpha_{\ell j} A(:, J_{j}) \right)$$
 (12)

$$= \sum_{\ell=1}^{n} x_{\ell} A(I, J) \sum_{j=1}^{r} \alpha_{\ell j} e_{j} = \sum_{\ell=1}^{n} x_{\ell} \sum_{j=1}^{r} \alpha_{\ell j} A(I, J_{j})$$
(13)

$$= \sum_{\ell=1}^{n} x_{\ell} \left(\sum_{j=1}^{r} \alpha_{\ell j} A(:, J_{j}) \right) (I, :) = \sum_{\ell=1}^{n} A(I, \ell) x_{\ell}$$
 (14)

$$= A(I,:)x. \tag{15}$$

Since x was arbitrary, and A(I,J) and φ^{-1} are invertible, it follows that

$$A = \varphi \circ A(I, J)^{-1} \circ A(I, :) \tag{16}$$

as a linear map.

For any $x \in \mathbf{R}^n$, we can write $A(I,J)^{-1}A(I,:)x$ as a linear combination of $\{e_j\}_{j=1}^r$; that is, there exists $\{\beta_j\}$ such that

$$A(I,J)^{-1}A(I,:)x = \sum_{j=1}^{r} \beta_j e_j.$$
(17)

Then

$$Ax = \varphi\left(\sum_{j=1}^{r} \beta_{j} e_{j}\right) = \sum_{j=1}^{r} \beta_{j} A(:, J_{j}) = A(:, J) \sum_{j=1}^{r} \beta_{j} e_{j} = A(:, J) A(I, J)^{-1} A(I, :) x.$$
 (18)

Since x was arbitrary, (8) follows.

Definition 5. (Chebyshev Norm) If $A \in \mathbb{R}^{m \times n}$, define the Chebyshev norm of A by

$$||A||_{\infty} = \max_{i,j} |A_{ij}|. \tag{19}$$

Definition 6. (Volume) Let $A \in \mathbb{R}^{r \times r}$ be a square matrix. Then the volume of A is defined to be

$$\mathcal{V}(A) = |\det(A)|. \tag{20}$$

Definition 7. (Maximum volume submatrix) Let $A \in \mathbb{R}^{m \times n}$. A submatrix $A_{\blacksquare} = A(I, J) \in \mathbb{R}^{r \times r}$ of A is a rank-r maximum volume submatrix of A if

$$\mathcal{V}(A_{\blacksquare}) = \max \Big\{ \mathcal{V}(A(I', J')) \mid A(I', J') \in \mathbf{R}^{r \times r} \text{ is a submatrix of } A \Big\}.$$
 (21)

We will typically denote maximum volume submatrices of A by A_{\blacksquare} .

Theorem 3. (Approximate skeleton decomposition) Let $A \in \mathbb{R}^{m \times n}$ be a matrix with singular values $\{\sigma_i\}$. If $A_{\blacksquare} = A(I, J)$ is a rank-r maximum volume submatrix of A, then

$$||A - \mathcal{S}_{A_{\blacksquare}}||_{\infty} \le (r+1)\sigma_{r+1}, \tag{22}$$

where $\sigma_{\max\{m,n\}+1} = 0$ by convention.

Definition 8. (Dominant submatrix of a tall matrix) Let $A \in \mathbb{R}^{m \times r}$ have rank r (which means that $m \geq r$). A nonsingular, square submatrix $A_{\square} = A(I,:) \in \mathbb{R}^{r \times r}$ of A is a dominant submatrix of A if

$$||AA_{\square}^{-1}||_{\infty} \le 1. \tag{23}$$

We will typically denote dominant submatrices of A by A_{\square} .

Lemma 1. Let $A \in \mathbb{R}^{m \times r}$, and let $B \in \mathbb{R}^{r \times r}$. Then for any row indices I of A,

$$(AB)(I,:) = A(I,:)B.$$
 (24)

Proof. Observe that

$$[(AB)(I,:)]_{ij} = (AB)_{I_ij} = \sum_{k=1}^r A_{I_ik} B_{kj} = \sum_{k=1}^r A(I,:)_{ik} B_{kj} = [A(I,:)B]_{ij}, \quad i \in 1:n, \ j \in 1:r, \quad (25)$$

so
$$(AB)(I,:) = A(I,:)B$$
.

Lemma 2. Let $A \in \mathbf{R}^{m \times r}$, and let $B \in \mathbf{R}^{r \times r}$ be nonsingular. If $A(I,:), A(I',:) \in \mathbf{R}^{r \times r}$ are square submatrices of A, and A(I',:) is nonsingular, then (AB)(I',:) is nonsingular, and

$$\frac{\mathcal{V}(A(I,:))}{\mathcal{V}(A(I',:))} = \frac{\mathcal{V}((AB)(I,:))}{\mathcal{V}((AB)(I',:))}.$$
(26)

Proof. By Lemma 1, (AB)(I,:) = A(I,:)B, and (AB)(I',:) = A(I',:)B. Thus,

$$\det((AB)(I',:)) = \det(A(I',:)B) = \det(A(I',:))\det(B) \neq 0.$$
(27)

Similarly, det((AB)(I,:)) = det(A(I,:)) det(B). Therefore,

$$\frac{\det((AB)(I,:))}{\det((AB)(I',:))} = \frac{\det(A(I,:))\det(B)}{\det(A(I',:))\det(B)} = \frac{\det(A(I,:))}{\det(A(I',:))}.$$
 (28)

Taking the absolute value on both sides gives (26).

Theorem 4. (Maximum volume submatrices are dominant) Let $A \in \mathbb{R}^{m \times r}$ have rank r, and let $A_{\blacksquare} \in \mathbb{R}^{r \times r}$ be a maximum volume submatrix of A. Then A_{\blacksquare} is a dominant submatrix of A.

Proof. Since the rank of A is r, there must be a set of r linearly independent rows of A, say at indices I'. Then A(I',:) is nonsingular, and $\mathcal{V}(A(I',:)) > 0$. This implies that $\mathcal{V}(A_{\blacksquare}) \geq \mathcal{V}(A(I',:)) > 0$.

Since $\mathcal{V}(A_{\blacksquare}) > 0$, it follows that A_{\blacksquare} is invertible. Define $B = AA_{\blacksquare}^{-1}$. There is some row index sequence I such that $A_{\blacksquare} = A(I,:)$. By Lemma 2, A_{\blacksquare} has maximal volume in A if and only if B(I,:) has maximal volume in B, as multiplication by the invertible matrix A_{\blacksquare}^{-1} preserves the ratios of $r \times r$ submatrix volumes.

Furthermore, B(I,:) is the identity matrix $I_{r\times r}$ because, by Lemma 1,

$$B(I,:) = (AA_{\blacksquare}^{-1})(I,:) = A(I,:)A_{\blacksquare}^{-1} = A_{\blacksquare}A_{\blacksquare}^{-1} = I_{r \times r}.$$
 (29)

Thus, B(I,:) is dominant in B if and only if $\|BB(I,:)^{-1}\|_{\infty} = \|B\|_{\infty} = \|AA_{\blacksquare}^{-1}\|_{\infty} \le 1$, that is, if and only if A_{\blacksquare} is dominant in A.

We now prove the claim by contradiction. Suppose that A_{\blacksquare} is not dominant in A. Then B(I,:) is not dominant in B; that is, there exists $k \in 1: m$ and $j \in 1: r$ such that $|B_{kj}| > 1$.

Let $I'_i = I_i$ if $i \neq j$, and let $I'_j = k$. Then every row of B(I',:) is a row of $I_{r \times r}$ except for the jth row, which is the kth row of B. That is,

$$B(I',:) = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ & B(k,:) & (j\text{th row}) & & & \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$
 (30)

Expanding by cofactors and expanding on the jth row of B(I',:) last shows that

$$|\det(B(I',:))| = |B_{kj}| > 1.$$
 (31)

This means that $\mathcal{V}(B(I',:)) > 1 = \mathcal{V}(B(I,:))$, so B(I,:) is not maximal in B. Then A_{\blacksquare} is not maximal in A, which is a contradiction.

Hence,
$$A_{\blacksquare}$$
 is dominant in A .

Lemma 3. (Hadamard's Inequality) Let $A \in \mathbb{R}^{m \times m}$. Then

$$\mathcal{V}(A) \le \prod_{i=1}^{m} ||A(:,i)||_2, \tag{32}$$

where $\|\cdot\|_2$ is the Euclidean vector norm.

Proof. CITE
$$\Box$$

Theorem 5. (Approximation by dominant submatrix) Let $A \in \mathbb{R}^{m \times r}$ have rank r, and let A_{\blacksquare} be a maximum volume submatrix of A. Then

$$\mathcal{V}(A_{\square}) \ge r^{-\frac{r}{2}} \mathcal{V}(A_{\blacksquare}) \tag{33}$$

for all dominant submatrices A_{\square} of A. The inequality is sharp.

Proof. Let A_{\square} be a dominant submatrix of A, and let $B = AA_{\square}^{-1}$. By definition, $||B||_{\infty} \leq 1$. Thus, if we take r rows of B at indices I, then $||B(I,:)||_{\infty} \leq 1$ as well, which implies that $||B(I,j)||_2 \leq \sqrt{r}$. By Hadamard's inequality (Lemma 3), then,

$$\mathcal{V}(B(I,:)) \le \prod_{j=1}^{r} ||B(I,j)||_2 \le r^{\frac{r}{2}},\tag{34}$$

with equality holding if $\{B(I,j)\}_{j=1}^r$ forms an orthogonal set.

In particular, choose I such that $A_{\blacksquare} = A(I,:)$. By Lemma 1, we have

$$r^{\frac{r}{2}} \ge \mathcal{V}(B(I,:)) = |\det(B(I,:))| = |\det(A(I,:))\det(A_{\square}^{-1})| = \frac{\mathcal{V}(A_{\blacksquare})}{\mathcal{V}(A_{\square})}.$$
 (35)

Then (33) follows.

If we choose $A = (1,1)^T$, then the maximum volume submatrix of A is $A_{\blacksquare} = [1]$, with volume 1. If we set $A_{\square} = A_{\blacksquare}$ and note that r = 1 for this choice of A, we see that $\mathcal{V}(A_{\square}) = 1 = r^{-\frac{r}{2}}\mathcal{V}(A_{\blacksquare})$.

- 3 The maxvol Algorithm
- 4 Implementation in NumPy
- 5 Experiments
- 6 Conclusion