Desarrolle los siguientes problemas, deberá de obtener los siguientes elementos:

Realizar el Grafo. 1 punto (solo el inciso A)

Realizar la matriz de adyacencia 1 puntos (ambos incisos)

Realizar la lista de adyacencia 1 puntos (ambos incisos)

A)

GRAFO

Suponga que las líneas aéreas amistosas tienen nueve vuelos diarios:

Vuelo/Destino/Peso

0	103 Atlanta a Houston	2 hrs 57 min
0	203 Boston a Denver	5 hrs 7 min
0	305 Chicago a Miami	3 hrs 17 min
0	106 Houston a Atlanta	1 hrs 2 min
0	204 Denver a Boston	6 hrs 5 min
0	308 Miami a Boston	3 hrs 2 min
0	201 Boston a Chicago	1hrs 3 min
0	301 Denver a Reno	2 hrs 21 min
0	402 Reno a Chicago	1 hrs 47 min
0	909 Houston a Reno	3 hrs 10 min
0	807 Houston a Denver	2hrs 13min

717 Reno a Chicago 1 hr 23 min
 616 Denver a Reno 2 hrs 2 min
 629 Boston a Miami 2 hrs 53 min
 666 Atlanta a los Ángeles 3 hrs 2 min

Matriz de Adyacencia

	103	106	201	203	204	301	305	308	402	616	629	666	717	807	909
Atlanta	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Boston	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0
Chicago	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Denver	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
Houston	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
Los Angeles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Miami	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Reno	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0

Lista de Adyacencia

Claramente, los datos pueden guardarse eficientemente en un archivo en el que cada registro contenga tres campos: Número de vuelo Ciudad de origen Ciudad destino, Sin embargo, tal representación no puede responder fácilmente a preguntas elementales:

(a). - ¿Hay un vuelo directo entre la ciudad Houston y la ciudad Chicago, si no es así cuál es su mejor camino? (valor de 1 punto)

No hay un vuelo directo y el mejor y único camino es haciendo una escala en Reno.

El vuelo 909 de Houston a Reno tiene un tiempo de 3 hrs. 2 min. haciendo escala en Reno y posteriormente tomando el vuelo 717 con un tiempo de 1 hrs. 23 min; teniendo un tiempo total de **4hrs. 25 min**.

(b). - ¿Se puede volar con posibles escalas, de la ciudad Denver a la ciudad Boston, de ser así cuanto tiempo toma entre cada escala?

(valor de 1 punto)

Si se puedo volar con escalas, de Denver haciendo escala en Reno (vuelo 301) con un tiempo de 2 hrs. 21 min; de Reno a Chicago con dos posibles vuelos (717 (1 hr. 23 min.) o 402 (1hr. 47 min.)), finalmente haciendo escala en Miami (vuelo 305 (3 hrs. 17 min.)) y llegando a Boston en el vuelo 308 con un tiempo de 3hrs. 2 min.

Tomando el vuelo 717 con un tiempo total de 10 hrs. 03 min.

Tomando el vuelo 402 con un tiempo total de 10 hrs. 27 min.

(c). - ¿Cuál es la ruta más directa, o sea, con el menor número de escalas, desde la ciudad Miami a la ciudad de los Ángeles?

No es posible ya que no se cuentan con escalas hacia Houston ya sea de Denver o Reno.

(valor de 1 punto)

B)

Matriz de Adyacencia

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Lista de Adyacencia

Vertices	Arreglo de Lista Adyacente
1	2
2	3
3	
4	4
5	5
6	
7	4
8	6
9	
	→ 5
	5
	8
	7
	▶ 8
	9
	9
	9

Sea G= (V, E) un grafo dirigido con un costo definido en sus arcos. Sean S y T dos nodos de V. El problema consiste en hallar un camino dirigido de s a t de mínimo costo de la figura 1.

Nodos Nodos

Costo del Camino... 1 -> 3 -> 6 -> 9 = 21 o 1 -> 2 -> 4 -> 5 -> 7 -> 9 = 21 2 + 4 + 15 1 + 6 + 4 + 7 + 3

Realizar la representación del grado de los Nodos y los Vertices (valor de 1 punto)
1=2
2=2
3=2
4=4
5=1
6=2
7=1
8=1
9=0
Realizar el camino más corto del punto S a T (valor de 1 punto)
El camino más Corto con menos nodos es
Nodos
1 -> 3 -> 6 -> 9 con un costo de 21