# PENERAPAN RECURRENT NEURAL NETWORK DALAM IDENTIFIKASI TULISAN TANGAN HURUF JEPANG JENIS KATAKANA

## **SKRIPSI**

AMMAR ADIANSHAR 091402128



# PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA

**MEDAN** 

2014

# PENERAPAN RECURRENT NEURAL NETWORK DALAM IDENTIFIKASI TULISAN TANGAN HURUF JEPANG JENIS KATAKANA

## **SKRIPSI**

Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ijazah Sarjana Teknologi Informasi

# AMMAR ADIANSHAR 091402128



# PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA

**MEDAN** 

2014

#### **PERSETUJUAN**

Judul : PENERAPAN RECURRENT NURAL NETWORK

DALAM IDENTIFIKASI TULISAN TANGAN

HURUF JEPANG JENIS KATAKANA

Kategori : SKRIPSI

Nama : AMMAR ADIANSHAR

Nomor Induk Mahasiswa : 091402128

Program Studi : SARJANA (S-1) TEKNOLOGI INFORMASI

Departemen : TEKNOLOGI INFORMASI

Fakultas : ILMU KOMPUTER DAN TEKNOLOGI

**INFORMASI** 

Diluluskan di

Medan, Agustus 2014

Komisi Pembimbing

Pembimbing 2 Pembimbing 1

Dr. Erna Budhiarti Nababan, M.IT Romi Fadillah Rahmat, B.Comp.Sc., M.Sc

NIP. - NIP. 19860303 201012 1004

Diketahui/Disetujui oleh

Program Studi Teknologi Informasi

Ketua,

Muhammad Anggia Muchtar S.T.MM.IT

NIP 19800110 200801 1 010

#### **PERNYATAAN**

# PENERAPAN *RECURRENT NURAL NETWORK* DALAM IDENTIFIKASI TULISAN TANGAN HURUF JEPANG JENIS KATAKANA

## SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.

Medan, Agustus 2014

AMMAR ADIANSHAR 091402128

#### **PENGHARGAAN**

Puji dan syukur penulis panjatkan kepada Allah SWT Yang Maha Pengasih dan Maha Penyayang, dengan segala rahmat dan karuniaNya lah penulis bisa menyelesaikan penyusunan tugas akhir ini.

Proses penyusunan skripsi ini tidak lepas dari dukungan dan bantuan dari pihak lain. Oleh karena itu penulis mengucapkan terima kasih banyak kepada :

- 1. Keluarga penulis, terutama kedua orang tua penulis. Ibunda,Hj. Cut Suzana Adiningsih dan Ayahanda, H. Ir. Anshari Syahidin, MBA yang selalu sabar dalam mendidik dan membesarkan penulis. Abang penulis Aqsha Adianshar dan dr.Akbar Adianshar, dan adik penulis, Arief Adianshar, Alya Andarina yang selalu memberikan semangat kepada penulis, serta yang terkasih bagi Penulis Julia Annisa Sitepu, S.TI yang tidak henti-hentinya memberikan semangat dan motivasi kepada penulis sehingga terselesaikannya skripsi ini.
- 2. Bapak Romi Fadillah Rahmat, B.Comp.Sc., M.Sc dan Ibu Dr. Erna Budhiarti Nababan, M.IT selaku pembimbing yang telah banyak meluangkan waktu dan pikirannya, memotivasi dan memberikan kritik dan saran kepada penulis.
- 3. Bapak Muhammad Fadly Syahputra B.Sc.M.Sc.IT dan Ibu Sarah Purnamawati S.T.M.Sc selaku penguji yang telah banyak meluangkan waktu dan pikirannya, memotivasi dan memberikan kritik dan saran kepada penulis.
- 4. Ketua dan Sekretaris Program Studi Teknologi Informasi, Muhammad Anggia Muchtar S.T.MM.IT dan Muhammad Fadly Syahputra B.Sc.M.Sc.IT
- 5. Dekan dan Pembantu Dekan Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara, semua dosen serta pegawai di Fakultas Ilmu Komputer dan Teknologi Informasi.
- 6. Seluruh sahabat terbaik penulis yang selalu memberikan dukungan, Ridzuan Ikram Fajri, S.TI, Ade Tambunan, Reza Elfandra Srg, S.TI, Muhammad Ardiansyah, S.TI, Abdi Hafiz, SP, Fadli Rizky, Muhammad Fadlullah, Muhmmad Hafiz Yahya, SE, Yogi Suryo Santoso, Dwiky Syahputra, Ibnu Setiawan, Handra Akira Saito, Nurul Khadijah, S.TI, seluruh member grup SEM\*\*\*, serta seluruh angkatan 09, serta teman-teman seluruh angkatan mahasiswa USU lainnya yang tidak dapat penulis sebutkan satu persatu, Semoga Allah SWT membalas kebaikan kalian dengan nikmat yang berlimpah.

Akhir kata, penulis memohon maaf bila dalam penulisan tugas akhir ini terdapat beberapa kesalahan, oleh karena itu penulis sangat mengharapkan adanya masukan - masukan yang membangun dan semoga tugas akhir ini dapat bermanfaat bagi semua pihak yang memerlukannya.

#### ABSTRAK

Bahasa Jepang termasuk salah satu bahasa penting dan digunakan secara internasional. Bahasa Jepang menduduki urutan keempat dari sepuluh bahasa yang sering digunakan didunia. Teknik pengenalan pola memiliki banyak perkembangan dan semakin sering dipakai dalam memecahkan suatu permasalahan. Teknik pengenalan pola digunakan untuk pengenalan tulisan tangan, gambar, dan sebagainya. Tulisan tangan Jepang jenis huruf Katakana dengan segala kompleksitasnya ternyata memiliki aturan yang ketat dalam penulisannya. Dalam penerapannya, terdapat ketidakakurasian dalam penulisan huruf Katakana. Hal ini disebabkan oleh banyaknya variasi dan tata cara penulisan Katakana yang berbeda - beda. Tata cara penulisan huruf Katakana memiliki aturan tersendiri khusunya mengenai jumlah goresan Maka dalam penelitian ini, penulis memanfaatkan jaringan *Recurrent Neural Network* untuk mengenali kata berdasarkan tulisan tangan huruf Katakana. Hasil dari identifikasi tulisan Jepang huruf Katakana menggunakan metode *Recurrent Neural Network* terbilang cukup berhasil. Dengan menggunakan *Recurrent Neural Network*, tingkat akurasi pengenalan pada tulisan Jepang huruf Katakana sebesar 86.1952 %

Kata kunci : huruf Katakana,  $image\ processing$  ,  $Recurrent\ Neural\ Network$ 

IMPLEMENTATION OF RECURRENT NEURAL NETWORK ON RECOGNITION JAPANESE HANDWRITTING OF KATAKANA

#### **ABSTRACT**

Japanese language is one of the important and it used internationally. Japanese ranks fourth of ten languages commonly used in the world. Pattern recognition techniques have a lot of developments and are increasingly being used to solve a problem. Pattern recognition techniques used for handwriting recognition, image, etc. Japanese handwriting of Katakana with all complexity its has a strict rules in writing. In practice, there are inaccuracies in katakana writing. This is due to the many variations and manner of writing Katakana different - different. The syntax of writing katakana has a rules especially about number stokes. So for this research, authors using Recurrent Neural Network for recognizing handwritting of Katakana. The results of the identification of writing Japanese Katakana using Recurrent Neural Network method is quite successful. With using *Recurrent Neural Network*, accuracy on Japanese handwriting of Katakana are 83.1952 %

Keyword: Katakana, image processing, Recurrent Neural Network

# **DAFTAR ISI**

|                                        | Hal. |
|----------------------------------------|------|
| ABSTRAK                                | i    |
|                                        |      |
| ABSTRACT                               | 11   |
| DAFTAR ISI                             | iii  |
| DAFTAR TABEL                           | v    |
| DAFTAR GAMBAR                          | vi   |
| BAB 1 PENDAHULUAN                      | 1    |
| 1.1. Latar Belakang                    | 3    |
| 1.2. Rumusan Masalah                   | 3    |
| 1.3. Batasan Masalah                   | 3    |
| 1.4. Tujuan Penelitian                 | 3    |
| 1.5. Manfaat Penelitian                | 3    |
| 1.6. Metodologi Penelitian             | 4    |
| 1.7. Sistematika Penulisan             | 5    |
| BAB 2 LANDASAN TEORI                   | 7    |
| 2.1. Citra                             | 7    |
| 2.2. Image Processing                  | 8    |
| 2.3. Ekstraksi Fitur                   | 13   |
| 2.4. Diagonal Based Feature Extraction | 14   |
| 2.5. Jaringan Syaraf Tiruan            | 16   |
| 2.6. Recurrent Neural Network          | 18   |
| 2.7. Huruf Katakana                    | 20   |
| 2.8. Penelitian Terdahulu              | 21   |
| BAB 3 ANALISIS DAN PERANCANGAN SISTEM  | 24   |
| 3.1. Data yang Digunakan               | 25   |
| 3.2. Analisis Sistem                   | 26   |
| 3.2.1 Prapengolahan citra              | 26   |

| 3.2.2 Ekstraksi Fitur                                   | 29 |
|---------------------------------------------------------|----|
| 3.2.3 Recurrent neural Network                          | 31 |
| 3.3. Perancangan Sistem                                 | 33 |
| 3.3.1 Use case diagram                                  | 33 |
| 3.3.2 Use case spesification                            | 34 |
| 3.3.3 Diagram aktivasi aplikasi                         | 36 |
| 3.3.4 Perancangan antarmuka aplikasi                    | 37 |
| BAB 4 IMPLEMENTASI DAN PENGUJIAN                        | 40 |
| 4.1. Kebutuhan Sistem                                   | 40 |
| 4.1.1. Perangkat Keras                                  | 40 |
| 4.1.2. Perangkat Lunak                                  | 40 |
| 4.2. Hasil Tampilan Aplikasi                            | 41 |
| 4.2.1. Tampilan Awal Aplikasi                           | 41 |
| 4.2.2. Tampilan Utama Aplikasi                          | 41 |
| 4.2.3. Tampilan Pemilihan Citra                         | 42 |
| 4.2.4. Tampilan Pengenalan Pola                         | 43 |
| 4.3. Rencana Pengujian Sistem                           | 44 |
| 4.4. Hasil Pengujian Sistem                             | 45 |
| 4.4.1.Pengujian mulai aplikasi                          | 45 |
| 4.4.2. Pengujian input citra                            | 45 |
| 4.4.3. Pengujian prapengolahan citra (image processing) | 46 |
| 4.4.5. Pengujian Kinerja Sistem                         | 47 |
| 4.4.6. Hasil Pengujian Data Latih                       | 50 |
| 4.4.7. Hasil Pengujian Sistem                           | 53 |
| BAB 5 KESIMPULAN DAN SARAN                              | 55 |
| 5.1. Kesimpulan                                         | 55 |
| 5.2. Saran                                              | 55 |
| DAFTAR PUSTAKA                                          | 56 |

# **DAFTAR TABEL**

|                                                                      | Hal |
|----------------------------------------------------------------------|-----|
|                                                                      |     |
| Tabel 2.1 Penelitian Terdahulu                                       | 21  |
| Tabel 3.1 <i>Use Case</i> Spesikasi untuk <i>Use Case</i> Cari Citra | 34  |
| Tabel 3.2 Use Case Spesikasi untuk Use Case Proses Citra             | 35  |
| Tabel 4.1 Rencana Pengujian Sistem                                   | 44  |
| Tabel 4.2 Pengujian Halaman Mulai Aplikasi                           | 45  |
| Tabel 4.3 Pengujian Input Citra                                      | 45  |
| Tabel 4.4 Pengujian Prapengolahan Citra ( image processing )         | 46  |
| Tabel 4.5 Pengujian Recurrent Neural Network                         | 46  |
| Tabel 4.6 Hasil Pengujian Citra yang Dilatih                         | 51  |
| Tabel 4.7 Hasil Pengujian Citra Uji                                  | 52  |

# DAFTAR GAMBAR

|                                                                      | Hal. |
|----------------------------------------------------------------------|------|
|                                                                      |      |
| Gambar 2.1 Proses <i>Grayscalling</i>                                | 10   |
| Gambar 2.2 Proses Resizing                                           | 11   |
| Gambar 2.3 Proses Normalisasi                                        | 11   |
| Gambar 2.4 Proses <i>Thinning</i>                                    | 12   |
| Gambar 2.5 Penghapusan Pixel                                         | 13   |
| Gambar 2.6 Diagonal Based Featured Extraction                        | 15   |
| Gambar 2.7 Histogram Diagonal Zona                                   | 15   |
| Gambar 2.8 Struktur Recurrent Neural Network                         | 19   |
| Gambar 2.9 Arsitektur umum Recurent Neural Network                   | 20   |
| Gambar 2.10 Tabel huruf Katakana                                     | 21   |
| Gambar 3.1 Skema Pengenalan Kata Tulisan Tangan Huruf Katakana       | 24   |
| Gambar 3.2 Contoh Penulisan Huruf Katakana                           | 25   |
| Gambar 3.3 Tahapan Prapengolahan Citra                               | 26   |
| Gambar 3.4 Hasil citra grayscalling                                  | 27   |
| Gambar 3.5 Hasil citra resizing                                      | 28   |
| Gambar 3.6 Hasil citra normalisasi                                   | 28   |
| Gambar 3.7 Hasil citra thinning                                      | 29   |
| Gambar 3.8 Diagram Ekstraksi Fitur Diagonal Based Feature Extraction | 30   |
| Gambar 3.9 Histogram Diagonal Zona                                   | 30   |
| Gambar 3.10 Diagram alur Recurrent Neural Network                    | 32   |
| Gambar 3.11 <i>Use case diagram</i>                                  | 34   |
| Gambar 3.12 Diagram Aktivasi untuk Mencari Citra                     | 36   |

| Gambar 3.13 Diagram Aktivasi untuk Proses Citra | 37 |
|-------------------------------------------------|----|
| Gambar 3.14 Rancangan Halaman Awal              | 38 |
| Gambar 3.15 Rancangan Halaman Utama             | 39 |
| Gambar 4.1 Tampilan Awal Aplikasi               | 41 |
| Gambar 4.2 Tampilan Utama Aplikasi              | 42 |
| Gambar 4.3 Tampilan Pemilihan Citra             | 43 |
| Gambar 4.4 Tampilan pengenalan Pola             | 44 |
| Gambar 4.5 Proses grayscalling                  | 47 |
| Gambar 4.6 Proses resizing                      | 48 |
| Gambar 4.7 Proses thinning                      | 49 |
| Gambar 4.8 Proses klasifikasi                   | 50 |