Matematická analýza II

Stručné výpisky z materiálů prof. Pultra

Zimní semestr2020/2021

Viktor Soukup, Lukáš Salak

Revize : Mgr. Karel Král,

druhá verze 1. února 2021

Obsah

1	Met	rické prostory	3
	1.1	Definice metrického prostoru	3
	1.2	Euklidovský prostor \mathbb{E}_n	3
	1.3	Diskrétní prostor	3
	1.4	-	3
	1.5	•	3
	1.6		3
	2.0	·	3
			4
			4
	17		
	1.7		4
	1.8		4
	1.9		4
			4
			5
		· · · · · · · · · · · · · · · · · · ·	5
	1.13	Vzory a obrazy	5
		1.13.1 Obraz	5
		1.13.2 Vzor	5
	1.14	Reálná funkce o n proměnných	5
			6
		·	6
0	D		_
2		4011140	7
	2.1		7
	2.2		7
			8
			8
			8
	2.3	1 1 1	9
		2.3.1 Věta pro derivaci složených funkcí o více proměnných	9
		2.3.2 Důsledek (Řetízkové Pravidlo)	C
	2.4	Aritmetická pravidla z řetězového násobení	C
		2.4.1 Násobení	C
		2.4.2 Dělení	C
	2.5	Lagrangeova věta ve více proměnných	
	2.6	Tvrzení o záměnnosti pořadí při parciálních derivacích	
	2.0	2.6.1 Důsledek tvrzení o záměnnosti	
	2.7	Věta o konvergentní podposloupnosti	
	2.1	veta o konvergentini podposlodpilosti	_
3	Kon	npaktní prostory	3
	3.1	Definice kompaktního prostoru	3
	3.2	Tvrzení o podprostoru kompaktního prostoru	3
	3.3	Tvrzení o uzavřenosti podprostoru	3
	3.4	Tvrzení o omezenosti kompaktního prostoru	
	3.5	Věta o součinu kompaktních prostorů	
	3.6	Věta : podprostor euklidovského prostoru je kompaktní právě když je omezený a uzavřený 1-	
	3.7	Tvrzení: obraz spojitého zobrazení je kompaktní	
	3.8	Tvrzení: každá spojitá funkce na kompaktním prostoru nabýva maxima i minima 1	
	J.U	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1

			14
		0 1 1 (10/10	14
		e v 1 1	15
			15 15
		Tvrzení: Každý kompaktní prostor je úplný	15
			15
		· · ·	15
	5.10		15
		5.10.1 Dusledek	10
4	Imp	olicitní funkce	16
	4.1	Ilustrační příklady	16
			16
		4.1.2 Příklad pro $F(x,y) = x^2 + y^2 - 1 \dots$	16
	4.2	Věta o implicitní funkci	16
	4.3	1	17
	4.4	Definice Jacobiho determinantu	17
5	Ext	rémy	17
J	5.1	v	17
	5.2	Definice Regulárního zobrazení	19
	5.3		19
	5.4	<u> </u>	19
	0.1		19
_	01.		
6			19
	6.1	Vlastnosti	20
7	\mathbf{Stej}	jnoměrná spojitost	20
	7.1	Definice stejnoměrné spojitosti	20
	7.2	Věta o stejnoměrné spojitosti	20
_	0		0.1
8	-		21
	8.1	0 0	21
			21
		8.1.2 Tvrzem o existenci Riemannova integralu	21 22
		8.1.4 Integrální věta o střední hodnotě	22
		8.1.5 Základní věta analýzy	23
		U U	23
		O.1.0 Dabledky Zakladili vedy aliany zy	20
9	Rie	mannův integrál ve více proměnných	2 3
	9.1	Pomocné definice	23
	9.2	Tvrzení o existenci Riemannova integrálu	26
	9.3		26
	9.4		26
	9.5	Lebesgueův integrál	28
	9.6	Tietzeova věta	28

1 Metrické prostory

1.1 Definice metrického prostoru

Metrický prostor : Nechť X je množina, $d: X \times X \to \mathbb{R}$ funkce t. ž. platí:

- $\forall x, y \in X : d(x, y) \ge 0, d(x, y) = 0 \iff x = y$
- $\forall x, y \in X : d(x, y) = d(y, x)$
- $\forall x, y \in X : d(x, z) \leq d(x, y) + d(y, z)$ (trojúhelníková nerovnost)

pak (X, d) je metrický prostor.

Příklady:

$$(\mathbb{R},|x-y|),$$

$$(\mathbb{C},|x-y|),$$

$$(G,d),G \text{ je orientovaný souvislý graf, } d \text{ je délka nejdelší cesty}$$

Pozor: trojúhelníková nerovnost v $(\mathbb{C}, |x-y|)$ není tak triviální jako v \mathbb{R} .

1.2 Euklidovský prostor \mathbb{E}_n

Definujeme jako metrický prostor (\mathbb{R}^n, d) , kde d:

$$d((x_1,...,x_n),(y_1,...,y_n)) = \sqrt{\sum_i (x_i - y_i)^2}$$

Pro nás zvlášť důležitý, známy v podobě vektorového prostoru \mathbb{R}^n se skalárním součinem $\langle \mathbf{u}|v\rangle$ a normou $\|\mathbf{u}\| = \sqrt{\mathbf{u}\mathbf{u}}$ a vzdáleností $d(\mathbf{u},v) = ||\mathbf{u} - \mathbf{v}||$

1.3 Diskrétní prostor

Definujeme jako (X, d), kde d(x, y) = 1 pro $x \neq y$

1.4 Podprostor

Buď (X,d) metrický prostor. Pak (Y,d') je podprostor, kde $Y\subseteq X$ a $\forall x,y\in Y:d'(x,y)=d(x,y)$.

1.5 Spojité zobrazení

 $f:(X,d)\to (Y,d')$ je spojité zobrazení, pokud

$$\forall x, y \in X, \forall \varepsilon > 0 \exists \delta > 0 : d(x, y) < \delta \Rightarrow d'(f(x), f(y)) < \varepsilon$$

1.6 Triviality

1.6.1 Identické zobrazení

f(x) = x je spojité zobrazení

$$(X,d) \rightarrow (X,d)$$

1.6.2 Vložení podprostoru

je spojité zobrazení

$$f_1: (X_1, d_1) \times (X_2, d_2) \to (X_1, d_1)$$

$$\forall x \in X_1 \forall y \in X_2: f_1(x, y) = x$$

$$f_2: (X_1, d_1) \times (X_2, d_2) \to (X_2, d_2)$$

$$\forall x \in X_1 \forall y \in X_2: f_2(x, y) = y$$
obecně pro $j = 1, ..., n$ máme
$$f_j: \prod_{i=1}^n (X_i, d_i) \to (X_j, d_j)$$

$$f_j(x_1, x_2, ..., x_n) = x_j$$

1.6.3 Složení spojitých zobrazení je spojité

Pokud jsou $f:(X,d)\to (Y,d')$ a $g:(Y,d')\to (Z,d'')$ spojité, pak i

$$g \circ f: (X, d) \to (Z, d'')$$

je spojité.

1.7 Věta o konvergenci

Zobrazení $f:(X_1,d_1)\to (X_2,d_2)$ je spojité právě když pro každou konvergentní $(x_n)_n$ v (X_1,d_1) posloupnost $(f(x_n))_n$ konverguje v (X_2,d_2) a platí $\lim_n f(x_n)=f(\lim_n x_n)$.

Důkaz: Buď f spojitá a nechť $\lim_n x_n = x$. Pro $\varepsilon > 0$ volme ze spojitosti $\delta > 0$ tak aby $\forall x, y \in X_1 : d_1(x,y) < \delta \implies d_2(f(y),f(x)) < \varepsilon$ pro $d_1(x,y) < \delta$. Podle definice konvergence posloupnosti existuje n_0 takové, že pro $n \le n_0$ je $d_1(x_n,x) < \delta$. Tedy je-li $n \le n_0$ máme $d_2(f(x_n),f(x)) < \varepsilon$ a potom $\lim_n f(x_n) = f(\lim_n x_n)$.

1.8 Okolí

Nechť (X, d) je metrický prostor, $x \in X$, pak $\Omega(x, \varepsilon) = \{y | d(x, y) < \varepsilon\}$ formulací $\Omega(x, \varepsilon)$ se říká otevřená koule s poloměrem ε okolo x.

Užití: "U je okolí x" $\equiv \exists \varepsilon > 0, \Omega(x, \varepsilon) \subseteq U$

1.9 Otevřená a uzavřená množina

 $U \subseteq (X,d)$ je **otevřená**, pokud je okolím *každého* svého bodu.

 $V \subseteq (X,d)$ je **uzavřená**, pokud $\forall (x_n)_n \subseteq A$ je konvergentní v X je $\lim_n x_n \in A$.

1.10 Uzávěr

Uzávěr: Nechť (X,d) je metrický prostor, $A \subseteq X, x \in X$, pak

$$d(x, A) = \inf\{d(x, a) \mid a \in A\}$$

a uzávěrem rozumíme $\overline{A}: \{x \mid d(x,A)=0\}$

1.11 Vlastnosti zobrazení mezi metrickými prostory

Buďte (X_1, d_1) a (X_2, d_2) metrické prostory a buď zobrazení $f: X_1 \to X_2$. Následující jsou potom ekvivalentní:

- 1. f je spojité.
- 2. $\forall x \in X_1$ a \forall okolí V bodu f(x) existuje okolí U bodu x takové, že $f[U] \subseteq V$.
- 3. \forall otevřenou U v X_2 je vzor $f^{-1}[U]$ otevřený v X_1 .
- 4. \forall uzavřenou A v X_2 je vzor $f^{-1}[U]$ uzavřený v X_1 .
- 5. $\forall A \subseteq X_1 \text{ je } f[\overline{A}] \subseteq \overline{f[A]}$

1.12 Silně ekvivalentní metriky

Buďte d_1, d_2 metriky. d_1 a d_2 na téže množině jsou silně ekvivalentní, pokud

$$\exists \alpha, \beta > 0 : \alpha d_1(x, y) \leq d_2(x, y) \leq \beta d_1(x, y)$$

1.13 Vzory a obrazy

$$f: X \to Y, A \subseteq X, B \subseteq Y$$

1.13.1 Obraz

Obraz podmnožiny $A \subseteq X$ v Y:

$$f[A] = \{f(x) | x \in A\}$$

1.13.2 Vzor

<u>Vzor</u> podmnožiny $B \subseteq Y$ v X:

$$f^{-1}[B] = \{x | f(x) \in B\}$$
$$X \underset{f^{-1}[-]}{\overset{f[-]}{\rightleftharpoons}} Y$$

Platí:

$$f[A] \subseteq B \equiv A \subseteq f^{-1}[B],$$

$$f[f^{-1}[B]] \subseteq B...f^{-1}[f[A]] \supseteq A$$

Pozor: f^{-1} má dvá významy:

- inverze $f^{-1}: Y \to X$, nemusí existovat
- část v symbolu $f^{-1}[-]$, má smysl vždy

1.14 Reálná funkce o n proměnných

$$f: D \to \mathbb{R}, D \subseteq \mathbb{E}_n$$

Podobně jako ve funkcích jedné proměnné se nemůžeme omezit na případy, kdy definiční obor je celý prostor \mathbb{E}_n . V Případě funkcí jedné proměnné byly definiční obory obvykle intervaly nebo jednoduchá sjednocení intervalů. Tady budou definiční obory D složitější, často (ale né vždy) otevřené množiny v \mathbb{E}_n .

O D se často mluví jako o oblasti na níž je funkce definovaná. To není termín (ve specifických kontextech slovo "oblast" termín je, tady ne).

1.15 Součiny

Pro $(X_1,d_i), i=1,...,n$ definujeme na kartézskem součinu $\prod_{i=1}^n X_i$ metriku

$$d((x_1, ..., x_n), (y_1, ..., y_n)) = \max_i d_i(x_i, y_i)$$

Získaný

$$\prod_{i=1}^{n} (X_i, d_i)$$

se nazývá součin prostorů (X_i, d_i) . Píše se též

$$(X_1, d_1) \times \cdots \times (X_n, d_n).$$

1.16 Věta o spojitých zobrazeních

- 1. Projekce $p_i = ((x_i)_i \mapsto x_j) : \prod_{i=1}^n (X_i, d_i) \to (X_j, d_j)$ jsou spojitá zobrazení.
- 2. Buďte $f_j:(Y,d')\to (X_j,d_j)$ libovolná spojitá zobrazení. Potom jednoznačně určené zobrazení $f:(Y,d')\to \prod_{i=1}^n(X_i,d_i)$ splňujíci $p_j\circ f=f_j$, totiž zobrazení definované předpisem $f(y)=(f_1(y),...,f_n(y))$, je spojité.

Jak to vypadá:

Tedy pokud vím, že $(x_1, x_2, x_3) \in \prod (x_i, d_i)$, Pak

$$f(y) = (f_1(y), f_2(y), f_3(y))$$

$$(p_1 \circ f)(y) = p_1(f(y)) = p_1(f_1(y), f_2(y), f_3(y)) = f_1(y)$$

$$(p_2 \circ f)(y) = \dots = f_2(y)$$

$$(p_3 \circ f)(y) = \dots = f_3(y)$$

Existuje přesně jedno f takové, že

$$p_i \circ f = f_i$$

a je spojité.

2 Parciální derivace

2.1 Definice a značení

Pro $f(x_1, ..., x_n)$ vezmeme

$$\phi_k(t) = f(x_1, ..., x_{k-1}, t, x_{k+1}, ...x_n)$$
...t = x_k...

Parciální derivace funkce f podle x_k (v bodě $(x_1,...,x_n)$) je (obvyklá) derivace funkce ϕ_k ,

$$\lim_{h\to 0} \frac{f(x_1,...,x_{k-1},x_k+h,x_{k+1},...x_n)-f(x_1,..)}{h}.$$

Označení

$$\frac{\partial f(x_1,...,(x_n)}{\partial x_k} \text{ nebo } \frac{\partial f}{\partial x_k}(x_1,...,x_n),$$

Pro f(x,y) píšeme

$$\frac{\partial f(x,y)}{\partial x}$$
 a $\frac{\partial f(x,y)}{\partial y}$, atd.

Když $\frac{\partial f(x_1,...,x_n)}{\partial x_k}$ existuje pro všechna $(x_1,...,x_n)$ v nějaké oblasti D máme funkci

$$\frac{\partial f}{\partial x_k}: D \to \mathbb{R}.$$

Když budeme mluvit o parciální derivaci bude vždy zřejmé máme-li na mysli funkci, nebo jen číslo (hodnotu té limity nahoře).

2.2 Totální diferenciál

Nespojitá funkce f může mít po souřadnicích obě parciální derivace v každém bodě, to však ale neimplikuje spojitost.

Existence parciálních derivací neimplikuje spojitost!

Budeme potřebovat něco silnejšího. Připomeňte si tvrzení ekvivalentní se standardní derivací: Existuje μ konvergující k 0 při $h\to 0$ a A takové, že

$$f(x+h) - f(x) = Ah + |h| \cdot \mu(h)$$

Geometrický pohled: f(x+h) - f(x) = Ah vyjadřuje tečnu ke grafu funkce v bodě (x, f(x)). $|h| \cdot \mu(h)$ je jakási malá chyba.

Mysleme podobně o funkci f(x,y) a uvažujme plochu

$$S = \{(t, u, f(t, u)) : (t, u) \in D\} \subseteq \mathbb{R}^3.$$

Dvě parciální derivace vyjadřují směry dvou tečných přímek k S v bodě (x, y, f(x, y)), ale <u>ne tečnou rovinu</u>, která teprve bude uspokojivé rozšíření faktu nahoře.

Pro $\mathbf{x} \in \mathbb{E}_n$ definujeme

$$||\mathbf{x}|| = \max_{i} |x_i|$$

To bude místo absolutní hodnoty, místo h bude n-tice blízká nule.

2.2.1 Definice

Funkce f má totální diferenciál v bodě \mathbf{x} existuje-li funkce μ spojitá v okolí U bodu $\mathbf{o} \in \mathbb{R}^n$ taková, že $\mu(\mathbf{o}) = 0$ a čísla $A_1, ..., A_n$ pro která

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} A_k h_k + ||\mathbf{h}|| \mu(\mathbf{h}).$$

2.2.2 Tvrzení o spojitosti funkce a totálním diferenciálu

Nechť má funkce f totální diferenciál v bodě \mathbf{a} . Potom platí, že

- 1. f je spojitá v a,
- 2. f má všechny parciální derivace v a, a to s hodnotami

$$\frac{\partial f(\mathbf{a})}{\partial x_k} = A_k.$$

Důkaz:

1. Máme

$$|f(\mathbf{x} - \mathbf{y})| \le |\mathbf{A}(\mathbf{x} - \mathbf{y})| + |\mu(\mathbf{x} - \mathbf{y})| \cdot ||\mathbf{x} - \mathbf{y}||$$

a limita na pravé straně pro $\mathbf{y} \to \mathbf{x}$ je 0.

2. Máme

$$\frac{1}{h}(f(...x_{k-1},x_k+h,x_{k+1},...)-f(x_1,...))=A_k+\mu((...,0,h,0,...))\frac{||(0,...,h,...,0)||}{h},$$

a limita na pravé straně je zřejmě A_k .

Teď již spojitost dostaneme. Vidíme, že v případě funkcí jedné proměnné není rozdíl mezi existencí derivace v bodě a a vlastností mít totální diferenciál v tomto bodě. V případě více proměnných je však tento rozdíl zcela zásadní. Může být trochu překvapující, že zatímco existence parciálních derivací mnoho neznamená, existence spojitých parciálních derivací je něco úplně jiného.

2.2.3 Věta o totálním diferenciálu

Buď

$$\mathbf{h}^{(0)} = \mathbf{h}, \mathbf{h}^{(1)} = (0, h_2, ..., h_n), \mathbf{h}^{(2)} = (0, 0, h_3, ..., h_n)$$
 atp.

(takže $\mathbf{h}^{(n)} = \mathbf{0}$). Potom máme

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} (f(\mathbf{a} + \mathbf{h}^{(k-1)}) - f(\mathbf{a} + \mathbf{h}^{(k)})) = M.$$

Podle Lagrangeovy věty existují $0 \le \Theta_k \le 1$ takové, že

$$f(\mathbf{a} + \mathbf{h}^{(k-1)}) - f(\mathbf{a} + \mathbf{h}^{(k)}) = \frac{\partial f(a_1, ..., a_{k-1}, a_k + \theta_k h_k, a_{k+1}, ..., a_n)}{\partial x_k} h_k$$

a můžeme pokračovat

$$\begin{split} M &= \sum \frac{\partial f(a_1, \dots a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} h_k = \\ &= \sum \frac{\partial f(\mathbf{a})}{\partial x_k} h_k + \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) h_k = \\ &= \sum \frac{\partial f(\mathbf{a})}{\partial x_k} h_k + ||\mathbf{h}|| \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) \frac{h_k}{||\mathbf{h}||}. \end{split}$$

Položíme

$$\mu(\mathbf{h}) = \begin{cases} \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) \frac{h_k}{||\mathbf{h}||}.\\ 0 \text{ pokud } \mathbf{h} = \mathbf{o} \end{cases}$$

Jelikož $\left|\frac{h_k}{||\mathbf{h}||}\right| \leq 1$ a jelikož jsou funkce $\frac{\partial f}{\partial x_k}$ spojité, $\lim_{\mathbf{h}\to\mathbf{0}}\mu(\mathbf{h})=0$.

Můžeme tedy schematicky psát spojité PD ⇒ TD ⇒ PD

2.3 Pravidla pro počítání parciálních derivací

Aritmetická pravidla jsou stejná jako pro obyčejné derivace (tady totiž obyčejnými derivacemi jsou). Trochu jinak tomu je u pravidla pro skládání. Pro derivace jedné proměnné se dokazuje z formule

$$f(a+h) - f(a) = Ah + |h|\mu(h)$$

tedy z diferenciálu (který je pro ně totéž jako existence derivace). Pravidlo pro skládání v Pravidlo pro skládání v nejjednodušší podobě následuje.

2.3.1 Věta pro derivaci složených funkcí o více proměnných

Nechť má $f(\mathbf{x})$ totální diferenciál v bodě a. Nechť mají $g_k(t)$ derivace v bodě b a nechť je $g_k(b) = a_k$ pro k = 1, ...n. Položme

$$F(t) = f(\mathbf{g}(t)) = f(g_1(t), ...g_n(t)).$$

Potom má F derivaci v b, totiž

$$F'(b) = \sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_k} \cdot g'_k(b).$$

Důkaz:

$$\begin{split} \frac{1}{h}(F(b+h) - F(b)) &= \frac{1}{h}(f(\mathbf{g}(b+h)) - f(\mathbf{g}(b)) = \\ &= \frac{1}{h}(f(\mathbf{g}(b) + (\mathbf{g}(b+h) - \mathbf{g}(b))) - f(\mathbf{g}(b)) = \\ &= \sum_{k=1}^{n} A_k \frac{g_k(b+h) - g_k(b)}{h} + \mu(\mathbf{g}(b+h) - \mathbf{g}(b)) \max_k \frac{|g_k(b+h) - g_k(b)|}{h}. \end{split}$$

Máme $\lim_{h\to 0}\mu(\mathbf{g}(b+h)-\mathbf{g}(b))=0$ jelikož jsou funkce g_k spojité v b. Jelikož funkce g_k mají derivace, jsou $\max_k\frac{|g_k(b+h)-g_k(b)|}{h}$ omezené v dostatečně malém okolí nuly. Limita poslední sčítance je tedy nula a máme

$$\lim_{h \to 0} \frac{1}{h} (F(b+h) - F(b)) = \lim_{h \to 0} \sum_{k=1}^{n} A_k \frac{g_k(b+h) - g_k(b)}{h} =$$

$$= \sum_{k=1}^{n} A_k \lim_{h \to 0} \frac{g_k(b+h) - g_k(b)}{h} = \sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_k} g'_k(b)$$

Co se děje geometricky: Tečná nadrovina vyjádřená diferenciálem vnější funkce f nemá žádny důvod preferovat hlavní osy v nichž se dějí derivace vnitřních funkcí. Proto by tady jen parciálni derivace nestačily.

2.3.2 Důsledek (Řetízkové Pravidlo)

Nechť má $f(\mathbf{x})$ totální diferenciál v bodě **a**. Nechť mají funkce $g_k(t_1,...,t_r)$ parciální derivace v **b** = $(b_1,...,b_r)$ a nechť je $g_k(\mathbf{b}) = a_k$ pro k = 1,...,n. Potom má funkce

$$(f \circ \mathbf{g})(t_1, ..., t_r) = f(\mathbf{g}(t)) = f(g_1(t), ..., g_n(t))$$

všechny parciální derivace v b, a platí

$$\frac{\partial (f \circ \mathbf{g})(\mathbf{b})}{\partial t_j} = \sum_{k=1}^n \frac{\partial f(\mathbf{a})}{\partial x_k} \cdot \frac{\partial g_k(\mathbf{b})}{\partial t_j}.$$

Skládali jsme

$$\mathbb{E}_k \xrightarrow{\mathbf{g}} \mathbb{E}_n \xrightarrow{f} \mathbb{R}$$

Skládejme místo f m-tici funkcí $\mathbf{f}=(f_1,...,f_m),$ tedy $\mathbf{f}:\mathbb{E}_n\to\mathbb{E}_M$

$$\mathbb{E}_k \xrightarrow{\mathbf{g}} \mathbb{E}_n \xrightarrow{f} \mathbb{E}_m$$

Pravidlo z předchozí věty dá tedy

$$\frac{\partial (f_i \circ \mathbf{g})(b)}{\partial t_j} = \sum_{k=1}^n \frac{\partial f_i(\mathbf{a})}{\partial x_k} \cdot \frac{\partial g_k(\mathbf{b})}{\partial t_j}.$$

Zavedeme-li matice $D\mathbf{f} = \left(\frac{\partial f_i(\mathbf{a})}{\partial x_k}\right)_{ik}$ je $D(\mathbf{f} \circ \mathbf{g}) = D\mathbf{f} \cdot D\mathbf{g}$ (napravo násobení matic), a tak to má být. $D\mathbf{h}$ je matice lineární aproximace funkce \mathbf{h} : lineární aproximace se skládají spolu s aproximovanými funkcemi.

2.4 Aritmetická pravidla z řetězového násobení

2.4.1 Násobení

Potom
$$\frac{\partial f}{\partial u} = v$$
 a $\frac{\partial f}{\partial v} = u$ a pro $u = \psi(x)$ a $v = \phi(x)$ platí:

$$(\phi(x)\psi(y))' = \frac{\partial f}{\partial u}\phi'(x) + \frac{\partial f}{\partial v}\psi'(x) = \phi(x)\psi'(x) + \phi'(x)\psi(x)$$

2.4.2 Dělení

$$f(u,v) = \frac{u}{v}$$

Potom $\frac{\partial f}{\partial u}=\frac{1}{v}$ a $\frac{\partial f}{\partial v}=-\frac{u}{v^2}$ a pro $u=\psi(x)$ a $v=\phi(x)$ platí:

$$\left(\frac{\phi(x)}{\psi(x)}\right)' = \frac{\partial f}{\partial u}\phi'(x) - \frac{\partial f}{\partial v}\psi'(x) = \frac{1}{\psi(x)}\phi'(x) + \frac{1}{\psi(x)^2}\psi'(x) = \frac{\psi(x)\phi'(x) - \phi(x)\psi'(x)}{\psi(x)^2}$$

2.5 Lagrangeova věta ve více proměnných

Nechť má f spojité parciální derivace v konvexní otevřené množině $U \subseteq \mathbb{E}_n$. Potom pro libovolné dva body $x, y \in D\exists 0 \le \theta \le 1$ takové, že:

$$f(\mathbf{y}) - f(\mathbf{x}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x} + \theta(\mathbf{y} - \mathbf{x}))}{\partial x_j} (y_j - x_j)$$

Důkaz: Mějme **g**, pro které platí $g_j(t) = x_j + t(y_j - x_j)$. Potom máme $F(t) = f \circ \mathbf{g} = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$ a

$$F'(t) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_j} g'_j(t) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_j} (y_j - x_j)$$

Podle Lagrangeovy věty $\exists \theta : 0 \leq \theta \leq 1$:

$$f(\mathbf{y}) - f(\mathbf{x}) = F(1) - F(0) = F'(\theta)$$

Poznámka: Často se užívá v tomto tvaru:

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x} + \theta \mathbf{h})}{\partial x_j} h_j$$

(Porovnej s formulí pro totální diferenciál)

2.6 Tvrzení o záměnnosti pořadí při parciálních derivacích

Mějme funkci f(x,y) takovou, že existují parciální derivace $\frac{\partial^2 f}{\partial x \partial y}$ a $\frac{\partial^2 f}{\partial y \partial x}$, které jsou spojité v nějakém okolí bodu (x,y). Potom:

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}$$

Důkaz: Pokusíme se spočíst obě derivace v jednom kroku, tedy počítejme limitu $\lim_{h\to 0} F(h)$ funkce

$$F(h) = \frac{f(x+h, y+h) - f(x, y+h) - f(x+h, y) + f(x, y)}{h^2}$$

Položíme li

$$\varphi_h(y) = f(x+h,y) - f(x,y) \text{ a}$$

$$\psi_k(x) = f(x,y+k) - f(x,y),$$

dostaneme pro F(h) dva výrazy:

$$F(h) = \frac{1}{h^2} (\varphi_h(y+h) - \varphi_h(y))$$

$$F(h) = \frac{1}{h^2} (\psi_h(x+h) - \psi_h(x)).$$

První: Funkce φ_h má derivaci (podle y, jinou proměnnou nemá)

$$\varphi'_h(y) = \frac{\partial f(x+h,y)}{\partial u} - \frac{\partial f(x,y)}{\partial u}$$

a tedy podle Lagrangeovy formule

$$F(h) = \frac{1}{h^2} (\varphi_h(y+h) - \varphi_h(y)) = \frac{1}{h} \varphi'_h(y+\theta_1 h)$$
$$= \frac{\partial f(x+h, y+\theta_1 h)}{\partial y} - \frac{\partial f(x, y+\theta_1 h)}{\partial y}.$$

Potom znovu, podle L. formule,

$$F(h) = \frac{\partial}{\partial x} \left(\frac{\partial f(x + \theta_2 h, y + \theta_1 h)}{\partial y} \right)$$

pro nějaká θ_1, θ_2 mezi 0 a 1.

Druhá, $\frac{1}{h^2}(\varphi_h(x+h)-\varphi_h(x)))$ dá podobně

$$F(h) = \frac{\partial}{\partial y} \left(\frac{\partial f(x + \theta_4 h, y + \theta_2 h)}{\partial x} \right)$$

Obě $\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})$ a $\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})$ jsou spojité (x,y), a $\lim_{h\to 0} F(h)$ můžeme počítat z kteréhokoli výrazu (první nebo druhá):

$$\lim_{h \to 0} F(h) = \frac{\partial^2 f(x, y)}{\partial x \partial y} = \frac{\partial^2 f(x, y)}{\partial y \partial x}.$$

2.6.1 Důsledek tvrzení o záměnnosti

Nechť má funkce f v proměnných spojité parciální derivace do řádu k. Potom hodnoty těchto derivací záleží pouze na tom, kolikrát bylo derivováno v každé z proměnných $x_1, ..., x_n$.

Tedy za daných předpokladů můžeme obecné parciální derivace řádu $r \leq k$ psát

$$\frac{\partial^r f}{\partial x_1^{r_1} \partial x_2^{r_2} \dots \partial x_n^{r_n}} \text{ kde } r_1 + r_2 + \dots + r_n = r$$

 $(r_j = 0 \text{ indukuje absenci symbolu } \partial x_j)$

2.7 Věta o konvergentní podposloupnosti

Z každé posloupnosti na kompaktním intervalu lze vybrat konvergentní podposloupnost.

Explicitně: Mějme $a, b \in \mathbb{R}$ taková, že $\forall n : a \leq x_n \leq b$. Potom existuje podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$ která konverguje v \mathbb{R} a platí $a \leq \lim_n x_{k_n} \leq b$

Důkaz: Vezměme

$$M = \{x : x \in \mathbb{R}, x \le x_n \text{ pro nekonečně mnoho n} \}$$

M je neprázdná a omezená protože $a\in M$ a b je horní mezM. Musí tedy existovat s=sup(M) a platí $a\leq s\leq b.$ Dále, pro každé n je množina

$$K(n) = \{k : s - \frac{1}{n} < x_k < s + \frac{1}{n}\}$$

nekonečná: skutečně, máme $x>s-\varepsilon$ takové, že $x_n>x$ pro nekonečně mnoho n, zatím co podle definice množiny M je jen konečně mnoho n takových, že $x_n\geq s+\varepsilon$.

Zvolme k_1 tak, aby

$$s - 1 < x_{k_1} < s + 1$$
.

Mějme zvolena $k_1 < k_2 < \cdots < k_n$ taková, že j = 1, ..., n

$$s - \frac{1}{j} < x_{k_j} < s + \frac{1}{j}.$$

Jelikož K(n+1) je nekonečná, můžeme zvolit $k_{n+1} > k_n$ tak, aby

$$s - \frac{1}{n+1} < x_{k_{n+1}} < s + \frac{1}{n+1}.$$

Takto zvolená podposloupnost $(x_{k_n})_n$ naší $(x_n)_n$ zřejmě konverguje k s.

3 Kompaktní prostory

3.1 Definice kompaktního prostoru

Metrický prostor (X,d) je kompaktní, pokud každá posloupnost v něm obsahuje konvergentní podposloupnost.

3.2 Tvrzení o podprostoru kompaktního prostoru

Podprostor kompaktního prostoru je kompaktní právě když je uzavřený.

Důkaz:

- 1. Buď Y uzavřený podprostor kompaktního X a buď $(y_n)_n$ posloupnost v Y. Jako posloupnost v X má konvergentní podposloupnost s limitou a z uzavřenosti je konvergentní podposloupností a tato limita je v Y.
- 2. Nechť Y není uzavřená. Potom existuje posloupnost $(y_n)_n$) v Y konvergentní v X taková, že $y = \lim_n y_n \notin Y$. Potom $(y_n)_n$ nemůže mít podposloupnost konvergentní v Y protože každá její podposloupnost konverguje k y.

3.3 Tvrzení o uzavřenosti podprostoru

Buď (X,d) libovolný metrický prostor a buď podprostor $Y\subseteq X$ kompaktní. Potom Y je uzavřený v (X,d).

Důkaz: Nechť $(y_n)_n$ posloupnost v Y konverguje v X k limitě y. Potom každá podposloupnost $(y_n)_n$ konverguje k y a tedy je $y \in Y$.

Metrický prostor (X, d) je omezený, jestliže pro nějaké K platí, že

$$\forall x, y \in X : d(x, y) < K.$$

3.4 Tvrzení o omezenosti kompaktního prostoru

Každý kompaktní prostor je omezený.

Důkaz: Zvolme x_1 libovolně a x_n tak, aby $d(x_1, x_n) > n$. Posloupnost $(x_n)_n$ nemá konvergentní podposloupnost; kdyby x byla limita takové podposloupnosti, bylo by pro dost velké n nekonečně mnoho členů této podposloupnosti blíže k x_1 než $d(x_1, x_n) + 1$, což je spor.

3.5 Věta o součinu kompaktních prostorů

Součin konečně mnoha kompaktních prostorů je kompaktní.

Důkaz: Stačí dokázat pro součin dvou prostorů. (protože součin prostorů je komutativní)

Buďte $(X, d_1), (X, d_2)$ kompaktní a buď $((x_n, y_n))_n$ posloupnost v $X \times Y$. Zvolme konvergentní podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$ a konvergentní podposloupnost $(y_{k_{l_n}})_n$ posloupnosti $(y_{k_n})_n$. Potom je

$$((x_{k_{l_n}}, y_{k_{l_n}}))_n$$

konvergentní podposloupnost posloupnosti $((x_n, y_n))_n$.

Kompaktní interval v \mathbb{E}_n : součin intervalů $\langle a_i, b_i \rangle$

3.6 Věta : podprostor euklidovského prostoru je kompaktní právě když je omezený a uzavřený

Podprostor euklidovského prostoru \mathbb{E}_n je kompaktní právě když je uzavřený a omezený.

Důkaz:

- 1. Že je uzavřený a omezený už víme (3.4, 3.5).
- 2. Buď nyní $Y\subseteq\mathbb{E}_n$ omezený a uzavřený. Jelikož je omezený, je pro dostatečně velký kompaktní interval

$$Y \subseteq J^n \subseteq \mathbb{E}_n$$
.

 J^n je kompaktní jako součin intervalů $\langle a_i, b_i \rangle$, a jelikož je Y uzavřený v \mathbb{E}_n je též uzavřený v J^n a tedy kompaktní.

3.7 Tvrzení: obraz spojitého zobrazení je kompaktní

Buď $f:(X,d)\to (Y,d')$ spojité zobrazení a buď $A\subseteq X$ kompaktní. Potom je f[A] kompaktní.

Důkaz: Buď $(y_n)_n$ posloupnost v f[A]. Zvolme $x_n \in A$ tak, aby $y_n = f(x_n)$. Buď $(x_{k_n})_n$ konvergentní podposloupnost Potom je $(y_{k_n})_n = (f(x_{k_n}))_n$ konvergentní podposloupnost $(x_n)_n$.

3.8 Tvrzení: každá spojitá funkce na kompaktním prostoru nabýva maxima i minima

Buď (X,d) kompaktní. Potom každá spojitá funkce $f:(X,d)\to\mathbb{R}$ nabývá maxima i minima (t.j. nejsou nekonečné).

Důkaz: Buď $Y = f[X] \subseteq \mathbb{R}$ kompaktní. Je to tedy omezená množina a musí mít supremum $M \in \mathbb{R}$ a infimum $m \in \mathbb{R}$. Zřejmě máme d(m,Y) = d(M,Y) = 0 a jelikož Y je uzavřená, $m,M \in Y$. Víme, že spojitá f je charakterizována tím, že všechny vzory uzavřených množin jsou uzavřené. Nyní vidíme, že je-li definiční obor kompaktní, platí též, že obrazy uzavřených podmnožin jsou uzavřené.

Z toho plyne následujíci:

3.9 Věta o vzájemně jednoznačném spojitém zobrazení

Je-li (X,d) kompaktní a je-li $f:(X,d)\to (Y,d')$ vzájemně jednoznačné spojité zobrazení, pak je f homeomorfismus.

Obecněji: Nechť $f:(X,d) \to (Y,d')$ je spojité zobrazení. Mějme potom $g:(X,d) \to (Z,d'')$ a $h:(Y,d') \to (Z,d'')$ takové, že $h \circ f = g$. Potom je h spojité. (chybí předpoklad)

Důkaz: Buď B uzavřená v Z. Potom je $A = g^{-1}[B]$ uzavřená \Longrightarrow kompaktnost v $X \Longrightarrow f[A]$ je kompaktní \Longrightarrow uzavřená v Y. Jelikož je f zobrazení na, máme $f[f^{-1}[C]] = C \forall C$. Proto je

$$h^{-1}[B] = f[f^{-1}[h^{-1}[B]]] = f[(h \circ f)^{-1}[B]] = f[g^{-1}[B]] = f[A]$$

uzavřená.

3.10 Definice cauchyovské posloupnosti $(x_n)_n$

Posloupnost $(x_n)_n$ v (X,d) je Cauchyovská, jestliže

$$\forall \epsilon > 0 \exists n_0 : m, n \geq n_0 \implies d(x_m, x_n) < \epsilon$$

3.11 Tvrzení o konvergenci cauchyovské posloupnosti

Nechť má Cauchyovská posloupnost konvergentní podposloupnost. Potom posloupnost konverguje k limitě podposloupnosti.

Důkaz: Nechť je $(x_n)_n$ Cauchyovská a nechť $\lim_n x_{k_n} = x$. Buď $d(x_m, x_n) < \varepsilon$ pro $\forall m, n \geq n_1$ a $d(x_{k_n}, x) \leq \varepsilon$ pro $\forall n \geq n_2$. Položíme-li $n_0 = \max(n_1, n_2)$, máme pro $\forall n \geq n_0$ (protože $k_n \geq n$)

$$d(x_n, x) \le d(x_n, x_{k_n}) + d(x_{k_n}, x) < 2\varepsilon.$$

3.12 Definice úplného metrického prostoru

Metrický prostor (X, d) je **úplný**, pokud v něm každá Cauchyovská posloupnost konverguje.

3.13 Tvrzení: Podprostor úplného prostoru je úplný právě když je uzavřený

Podprostor úplného je úplný, právě když je uzavřený.

Důkaz:

- 1. Buď $Y \subseteq (X, d)$ uzavřený. Buď $(y_n)_n$ Cauchyovská v Y. Potom je Cauchyovská a tedy konvergentní v X a kvůli uzavřenosti je limita v Y.
- 2. Nechť Y není uzavřený. Potom existuje posloupnost $(y_n)_n$ v Y konvergentní v X taková, že $\lim_n y_n \notin Y$. Potom je $(y_n)_n$ Cauchyovská v X a jelikož je vzálenost stejná, též v Y. Ale v Y nekonverguje.

3.14 Tvrzení: Každý kompaktní prostor je úplný

Každý kompaktní prostor je úplný.

Důkaz: Cauchyovská posloupnost má podle kompaktnosti konvergentní podposloupnost a tedy konverguje.

3.15 Lemma o cauchyovské posloupnosti

Posloupnost $(x_1^1,...,x_1^n),(x_1^2,...,x_n^2),...,(x_1^k,...,x_n^k),...$ je Cauchyovská v $\prod_{i=1}^n(X_i,d_i)$ právě když každá z posloupností $(x_i^k)_k$ je Cauchyovská v (X_i,d_i) .

Důkaz: \implies plyne bezprostředně z toho, že $d_i(u_i, v_i) \leq d((u_j)_j, (v_j)_j)$.

 \Leftarrow : Nechť je každá $(x_i^k)_k$ Cauchyovská. Pro $\varepsilon > 0$ a i zvolme k_i tak, aby pro $k, l \geq k_i$ bylo $d_i(x_i^k, x_i^l) < \varepsilon$. Potom pro $k, l \geq \max_i k_i$ máme

$$d((x_1^k, ..., x_n^k), (x_1^l, ..., x_n^l)) < \varepsilon.$$

3.16 Věta: Součin úplných prostorů je úplný

Součin úplných prostorů je úplný. Speciálně, \mathbb{E}_n je úplný.

3.16.1 Důsledek

Podprostor Y euklidovského prostoru \mathbb{E}_n je úplný, právě když je uzavřený.

4 Implicitní funkce

4.1 Ilustrační příklady

4.1.1 Obecný příklad

Mějme spojité reálné funkce $F_i(x_1,...,x_m,y_1,...,y_n)$ pro každé $i \in \{1,...,n\}$ v n+m proměnných. Určuje systém rovnic

$$F_1(x_1, ..., x_m, y_1, ..., y_n) = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$F_n(x_1, ..., x_m, y_1, ..., y_n) = 0$$

v nějakém smyslu funkce

$$f_i \equiv y_i(x_1, ..., x_m)$$

pro $i \in \{1, ..., n\}$? Pokud ano, jak a kde je určuje a jaké mají funkce vlastnosti?

Konkrétněji viz následující příklad.

4.1.2 Příklad pro $F(x,y) = x^2 + y^2 - 1$

Mějme $F(x,y) = x^2 + y^2 - 1$, neboli rovnici

$$x^2 + y^2 = 1$$

Několik pozorování:

- Pro některá x_0 jako například $x_0 < -1$ řešení neexistuje, o funkci y(x) nemluvě.
- Přestože řešení v nějakém okolí x_0 existuje, nemůžeme v nějakých situacích hovořit o funkci. Potřebujeme kolem řešení (x_0, y_0) vymezit okolí jak x_0 , tak y_0 .
- Máme také případy, jako ten, kdy $x_0 = 1$, kde je v okolí mnoho řešení, ale žádný(ani jednostranný) interval, kde by y bylo jednoznačné.

V případě F(x,y) už zádná další situace nenastane.

4.2 Věta o implicitní funkci

Buď F(x,y) reálná funkce definovaná v nějakém okolí bodu (x_0,y_0) . Nechť má F spojité parciální derivace do řádu $k \ge 1$ a nechť platí:

$$F(x_0, y_0) = 0$$

$$\left| \frac{\partial F(x_0, y_0)}{\partial y} \right| \neq 0$$

Potom $\exists \delta > 0$ a $\Delta > 0$ takové, že $\forall x \in (x_0 - \delta, x_0 + \delta) \exists ! y \in (y_0 - \Delta, y_0 + \Delta) : F(x, y) = 0$. Dále, označíme-li toto jediné y jako y = f(x), potom získaná $f : (x_0 - \delta, x_0 + \delta) \to \mathbb{R}$ má spojité derivace do řádu k.

4.3 Věta o implicitních funkcích

Buď te $F_i(\mathbf{x}, y_1, ..., y_m)$ pro $i \in 1, ..., m$ funkce n + m proměnných se spojitými parciálními derivacemi do řádu $k \geq 1$. Buď

$$\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{o}$$

a buď totální diferenciál v bodě $(\mathbf{x}^0,\mathbf{y}^0)$

$$\frac{D(\mathbf{F})}{D(\mathbf{y})}(\mathbf{x}^0, \mathbf{y}^0) \neq 0$$

Potom existují $\delta > 0$ a $\Delta > 0$ takové, že pro každé

$$\mathbf{x} \in (x_1^0 - \delta, x_1^0 + \delta) \times \cdots \times (x_n^0 - \delta, x_n^0 + \delta)$$

existuje právě jedno

$$\mathbf{y} \in (y_1^0 - \Delta, y_1^0 + \Delta) \times \cdots \times (y_m^0 - \Delta, y_m^0 + \Delta)$$

takové, že

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$$

4.4 Definice Jacobiho determinantu

Pro konečnou posloupnost funkcí

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = (F_1(\mathbf{x}, y_1, ..., y_m), ..., F_m(\mathbf{x}, y_1, ..., y_m))$$

a pro $\mathbf{y} = (y_1, ..., y_m)$ se definuje **Jacobiho determinant**(Jacobián) jako

$$\frac{D(\mathbf{F})}{D(\mathbf{y})} = \det\left(\frac{\partial F_i}{\partial y_j}\right)_{i,j \in \{1,\dots,m\}}$$

5 Extrémy

5.1 Věta o hledání extrémů funkcí

Buď te $f, g_1, ..., g_k$ reálné funkce definované na otevřené množině $D \subseteq \mathbb{E}_n$. Nechť mají spojité parciální derivace. Nechť je hodnost matice

$$M = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \cdots & \frac{\partial g_k}{\partial x_n} \end{pmatrix}$$

maximální, tedy $k \leq n$, v každém bodě oboru D.

Jestliže funkce f nabývá v bodě $\mathbf{a} = (a_1, ..., a_n)$ lokálního extrému podmíněného vazbami

$$g_i(x_1,...,x_n) = 0 \forall i \in \{1,...,k\}$$

pak existují čísla $\lambda_1,...,\lambda_k$ taková, že $\forall i\in 1,...,n$ platí

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^k \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0$$

Důkaz: Matice M má hodnost k právě když aspoň jedna její $k \times k$ podmatice M je regulární (a tedy má nenulový determinant). Dejme tomu,

$$0 \neq \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \cdots & \frac{\partial g_k}{\partial x_k} \end{vmatrix}$$

Potom podle věty o implicitních funkcích máme okolí bodu **a** funkce $\phi_i(x_{k+1},...,x_n)$ se spojitými parciálními derivacemi takové, že (pišme $\tilde{\mathbf{x}}$ pro $(x_{k+1},...,x_n)$)

$$g_i(\phi_1(\tilde{\mathbf{x}}), ..., \phi_k(\tilde{\mathbf{x}}), \tilde{\mathbf{x}}) = 0 \text{ pro } i = 1, ..., k.$$

tedy lokální maximum nebo minimum funkce $f(\mathbf{x})$ v a podmíněné danými vazbami dává lokální maximum či minimum (nepodmíněné) funkce

$$F(\tilde{\mathbf{x}}) = f(\phi_1(\tilde{\mathbf{x}}), ..., \phi_k(\tilde{\mathbf{x}}), \tilde{\mathbf{x}}),$$

 $v \tilde{\mathbf{a}}$, a tedy je

$$\frac{\partial F(\tilde{\mathbf{a}})}{\partial x_i} = 0 \text{ pro } i = k+1, ..., n,$$

to jest, podle řetízkového pravidla

$$\sum_{r=1}^{k} \frac{\partial f(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} + \frac{\partial f(\mathbf{a})}{\partial x_i} \text{ pro } i = k+1, ..., n.$$

Derivováním konstantní $g_i(\phi_1(\tilde{\mathbf{x}},...,\phi_k(\tilde{\mathbf{x}}),\tilde{\mathbf{x}})=0$ dostaneme pro j=1,...,k

$$\sum_{r=1}^{k} \frac{\partial g_j(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} + \frac{\partial g_j(\mathbf{a})}{\partial x_i} \text{ pro } i = k+1, ..., n.$$

Dále použijeme znovu vlastnost toho, že determinant je nenulový. Vzhledem k hodnosti matice má systém lineárních rovnic

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0, i = 1, ..., k$$

jediné řešení $\lambda_1, ..., \lambda_k$. To jsou rovnosti z tvrzení, ale jen pro $i \leq k$. Musíme ještě dokázat, že to platí i pro i > k.

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} =$$

$$= -\sum_{r=1}^k \frac{\partial f(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} - \sum_{j=1}^k \lambda_j \cdot \sum_{r=1}^k \frac{\partial g_j(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} =$$

$$= -\sum_{r=1}^n \left(\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} \right) \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} =$$

$$= -\sum_{r=1}^n 0 \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} = 0.$$

5.2 Definice Regulárního zobrazení

Buď $U \subseteq \mathbb{E}_n$ otevřená a nechť mají f_i pro $i \in 1, ..., n$ spojité parciální derivace. Výsledné zobrazení

$$\mathbf{f} = (f_1, ..., f_n) : U \to \mathbb{E}_n$$

je **regulární**, jestliže

$$\forall \mathbf{x} \in U : \frac{D(\mathbf{f})}{D(\mathbf{x})}(\mathbf{x}) \neq 0$$

5.3 Tvrzení o obrazu regulární funkce

Je-li $\mathbf{f}: U \to \mathbb{E}_n$ regulární, je obraz $\mathbf{f}[V]$ každé otevřené podmnožiny $V \subseteq U$ otevřený.

Důkaz: Vezměme $f(\mathbf{x}^0) = \mathbf{y}^0$. Definujeme $\mathbf{F}: V \times \mathbb{E}_n \to \mathbb{E}_n$ předpisem

$$F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i.$$

Potom je $\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{0}$ a $\frac{D(\mathbf{F})}{D(\mathbf{x})} \neq 0$, a tedy můžeme použít větu o IF a dostaneme $\delta > 0$ a $\Delta > 0$: $\forall \mathbf{y}$: $||\mathbf{y} - \mathbf{y}^0|| < \delta \exists \mathbf{x} : ||\mathbf{x} - \mathbf{x}^0|| < \Delta$ a $F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i = 0$. To znamená, že máme $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ (pozor, y_i jsou zde proměnné, x_j hledané funkce a

$$\Omega(\mathbf{y}^0, \delta) = {\mathbf{y} : ||\mathbf{y} - \mathbf{y}^0|| < \delta} \subseteq \mathbf{f}[V].$$

5.4 Tvrzení o inverzi regulárního zobrazení

Buď $\mathbf{f}: U \to \mathbf{E}_n$ regulární zobrazení. Potom $\forall \mathbf{x}^0 \in U \exists$ otevřené okolí V takové, že restrikce $\mathbf{f}|V$ je bijekce. Navíc, zobrazení $\mathbf{g}: f[V] \to \mathbb{E}_n$ inverzní k $\mathbf{f}|V$ je regulární.

Důkaz: Znovu použijeme zobrazení $\mathbf{F} = (F_1, ..., F_n)$, kde $F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i$. Pro dost malé $\Delta > 0$ máme právě jedno $\mathbf{x} = \mathbf{g}(\mathbf{y})$ takové, že $\mathbf{F}(\mathbf{g}(\mathbf{y}), \mathbf{y}) = 0$ a $||\mathbf{x} - \mathbf{x}^0|| < \Delta$. Toto \mathbf{g} má navíc spojité parciální derivace. Máme

$$D(id) = D(\mathbf{f} \circ \mathbf{g}) = D(\mathbf{f}) \cdot D(\mathbf{g}).$$

Podle řetízkového pravidla (a věty o násobení determinantů) je

$$\frac{D(\mathbf{f})}{D(\mathbf{x})} \cdot \frac{D(\mathbf{g})}{D(\mathbf{y})} = \det D(\mathbf{f}) \cdot \det D(\mathbf{g}) = 1$$

a tedy je pro každé $\mathbf{y} \in \mathbf{f}[V], \frac{D(\mathbf{g})}{D(\mathbf{y})}(\mathbf{y}) \neq 0.$

5.4.1 Důsledek tvrzení o inverzi regulárního zobrazení

Prosté regulární zobrazení $\mathbf{f}:U\to\mathbb{E}_n$ má regulární inverzi $\mathbf{g}:\mathbf{f}[U]\to\mathbb{E}_n$

6 Objemy a obsahy

 $A \subseteq \mathbb{E}_m$ (speciálne \mathbb{E}_2)

6.1 Vlastnosti

- $A \subseteq B \implies \mathbf{vol}(A) \le \mathbf{vol}(B)$
- $A, B \text{ disjunktn} \implies \mathbf{vol}(A \cup B) = \mathbf{vol}(A) + \mathbf{vol}(B)$
- vol je zachován isometrii
 - isometrie je zobrazení zachovávajíci vzdálenost
- V \mathbb{E}_2 : **vol** $(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1)(b_2 a_2)$
- V \mathbb{E}_n : vol $(\prod_i \langle a_i, b_i \rangle = (b_1 a_1) \cdot \cdot \cdot \cdot \cdot (b_n a_n)$

Obecně platí:

$$\mathbf{vol}(A \cup B) = \mathbf{vol}(A) + \mathbf{vol}(B) - \mathbf{vol}(A \cap B).$$

- pokud jsou všechny definované
- $\operatorname{vol}(A_1 \cup A_2 \cup A_3 ... \cup A_4) \implies \operatorname{Princíp} \operatorname{inkluze} \operatorname{a} \operatorname{exkluze}$

7 Stejnoměrná spojitost

7.1 Definice stejnoměrné spojitosti

Řekneme, že $f:(X,d)\to (Y,d')$ je stejnoměrně spojité, je-li

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x, y : d(x, y) < \delta \implies d'(f(x), f(y)) < \varepsilon$$

. Příklad:

 $f=(x\mapsto x^2): \mathbf{R}\to \mathbf{R}$ je spojitá, ale ne stejnoměrně spojitá. Máme $|f(x)-f(y)|=|x+y|\cdot|x-y|;$ tedy abychom dostali $|f(x)-f(y)|<\varepsilon$ v blízkosti x=100 potřebujeme δ stokrát menší než v blízkosti x=1.

7.2 Věta o stejnoměrné spojitosti

Je-li (X, d) kompaktní, je každé spojité $f: (X, d) \to (Y, d')$ stejnoměrně spojité. Zejména to platí pro spojité reálné funkce na kompaktních intervalech.

Důkaz: Nechť $f:(X,d)\to (Y,d')$ není stejnoměrně spojité. Potom $\exists \varepsilon>0: \forall n\exists x_n,y_n:$

$$d(x_n, y_n) < \frac{1}{n}$$

ale

$$d'(f(x_n), f(y_n)) > \varepsilon.$$

Zvolme konvergentní podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$. Označme $a = \lim_n x_{k_n}$. Potom podle $d(x_n, y_n) < \frac{1}{n}$ je též $a = \lim_n y_{k_n}$. Podle $d'(f(x_n), f(y_n)) \ge \varepsilon$ nemůže být $f(a) = \lim_n f(x_{k_n})$ a zároveň $f(a) = \lim_n f(y_{k_n})$, a tedy f není ani spojité.

8 Opakování

8.1 Riemannův integrál v jedné proměnné

Rozdělení intervalu $\langle a,b\rangle$: posloupnost

$$P: a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

Zjemnění:

$$P': a = t'_0 < t'_1 < \dots < t'_{n-1} < t'_m = b$$

$$kde \{t_j: j = 1, \dots, n-1\} \subseteq \{t'_j: j = 1, \dots, m-1\}.$$

Jemnost rozdělení $P: \mu(P) = \max_j (t_j - t_{j-1})$. Pro omezenou $f: J = \langle a, b \rangle \to \mathbf{R}$ a P definujeme dolní a horní součty

$$s(f, P) = \sum_{j=1}^{n} m_j (t_j - t_{j-1}) \text{ resp.}$$
$$S(f, P) = \sum_{j=1}^{n} M_j (t_j - t_{j-1})$$

kde

$$m_j = \inf\{f(x): t_{j-1} \le x \le t_j\}, M_j = \sup\{f(x): t_{j-1} \le x \le t_j\}.$$

 \bullet Pokud P' zjemňuje P dostáváme

$$s(f, P) \le s(f, P')$$
 a $S(f, P) \ge S(f, P')$

• Pro každá dvě P_1, P_2 je

$$s(f, P_1) < S(f, P_2).$$

8.1.1 Riemannův integrál

$$\int_{a}^{b} f(x)dx$$

a nazýváme ji Riemannův integrál funkce f přes $\langle a, b \rangle$.

8.1.2 Tvrzení o existenci Riemannova integrálu

Riemannův integrál $\int_a^b f(x) dx$ existuje právě když $\forall \varepsilon > 0 \exists$ rozdělení Ptakové, že

$$S(f, P) - s(f, P) < \varepsilon.$$

Důkaz:

1. Nechť $\int_a^b f(x) dx$ existuje a nechť $\varepsilon > 0$. Potom existují rozdělení P_1 a P_2 takové, že

$$S(f, P_1) < \int_a^b f(x)dx + \frac{\varepsilon}{2}$$
 a $s(f, P_2) > \int_a^b f(x)dx - \frac{\varepsilon}{2}$

Potom je pro společné zjemnění P těch dvou P_1, P_2

$$S(f,P) - s(f,P) < \int_a^b f(x)dx + \frac{\varepsilon}{2} - \int_a^b f(x)dx + \frac{\varepsilon}{2} = \varepsilon.$$

2. Nechť druhé tvrzení platí. Zvolme $\varepsilon>0:S(f,P)-s(f,P)<\varepsilon.$ Potom je

$$\overline{\int}_{a}^{b} f(x)dx \le S(f, P) < s(f, P) + \varepsilon \le \underline{\int}_{a}^{b} f(x)dx + \varepsilon,$$

a jelikož ε bylo libovolně malé, vidíme, že $\overline{\int}_a^b f(x) dx = \int_a^b f(x) dx$.

8.1.3 Věta: Existence Riemannova integrálu pro spojité funkce v \mathbb{R}

Pro každou spojitou $f:\langle a,b\rangle\to\mathbb{R}$ Riemannův integrál $\int_a^b f$ existuje. **Důkaz:** Pro $\varepsilon>0$ zvolme $\delta>0$

tak, aby

$$\forall x, y : |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b - a}.$$

Je-li $\mu(P) < \delta$ máme $t_i - t_{i-1} < \delta$ pro všechna j, a tedy

$$M_j - m_j = \sup\{f(x) : t_{j-1} \le x \le t_j\} - \inf\{f(x) : t_{j-1} \le x \le t_j\} \le$$

 $\le \sup\{|f(x) - f(y)| : t_{j-1} \le x, y \le t_j\} \le \frac{\varepsilon}{b-a}$

takže

$$S(f,P) - s(f,P) = \sum (M_j - m_j)(t_j - t_{j-1}) \le$$

$$\le \frac{\varepsilon}{b-a} \sum (t_j - t_j - 1) = \frac{\varepsilon}{b-a}(b-a) = \varepsilon.$$

8.1.4 Integrální věta o střední hodnotě

Buď $f:\langle a,b\rangle\to\mathbb{R}$ spojitá. Potom existuje $c\in\langle a,b\rangle$ takové, že

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

Důkaz: Položme $m = \min\{f(x)|a \le x \le b\}$ a $M = \max\{f(x)|a \le x \le b\}$ Zřejmě

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

Existuje tedy K takové, že $m \le K \le M$ a $\int_a^b f(x) \, dx = K(b-a)$. Jelikož f je spojitá, existuje $c \in \langle a, b \rangle$ takové, že K = f(c).

8.1.5 Základní věta analýzy

Buď $f:\langle a,b\rangle\to\mathbb{R}$ spojitá. Pro $x\in\langle a,b\rangle$ definujeme

$$F(x) = \int_{a}^{x} f(t) dt$$

Potom je F'(x) = f(x)

Důkaz: Pro $h \neq 0$ máme

$$\frac{1}{h}(F(x+h) - f(x)) = \frac{1}{h}\left(\int_{a}^{x+h} f - \int_{a}^{x} f\right) = \frac{1}{h}\int_{x}^{x+h} f = \frac{1}{h}f(x+\theta h)h = f(x+\theta h)$$

8.1.6 Důsledky základní věty analýzy

1. Spojitá funkce $f: \langle a, b \rangle \to \mathbb{R}$ má na intervalu (a, b) primitivní funkci spojitou na $\langle a, b \rangle$. Pro kteroukoli primitivní funkci G funkce f na (a, b) spojitou na $\langle a, b \rangle$ platí

$$\int_{a}^{b} f(t)dt = G(b) - G(a).$$

2. Integrální věta o střední hodnotě:

$$F(b) - F(a) = \int_{a}^{b} f = f(c)(b - a) = F'(c)(b - a)$$

9 Riemannův integrál ve více proměnných

9.1 Pomocné definice

V \mathbb{E}_n : Kompaktní interval (n-rozměrný) je

$$J = \langle a_1, b_1 \rangle \times \cdots \times \langle a_n, b_n \rangle$$

(interval nebo cihla)

Rozdělení intervalu J je posloupnost $P = (P^1, ..., P^n)$ rozdělení:

$$P^j: a_j = t_{j0} < t_{j1} < \dots < t_{j,n_j-1} < t_{j,n_j} = b_j$$

Intervalům

$$\langle t_{1,i_1}, t_{1,i_1+1} \rangle \times \cdots \times \langle t_{n,i_n}, t_{n,i_n+1} \rangle$$

říkáme cihly rozdělení P a $\mathcal{B}(P)$ je množina všech cihel rozdělení P. Je to skoro disjunktní rozklad intervalu J. Různe cihly z $\mathcal{B}(P)$ se totiž setkávají jen v podmnožinách okrajů, tedy v množinách objemu 0. Máme tedy:

$$\mathbf{vol}(J) = \sum \{\mathbf{vol}(B) : B \in \mathcal{B}(J)\}.$$

Jemnost rozdělení Diametr intervalu $J = \langle r_1, s_1 \rangle \times \cdots \times \langle r_n, s_n \rangle$ je

$$\mathbf{diam}(J) = \max_{i} (s_i - r_i)$$

Jemnost rozdělení P je

$$\mu(P) = \max\{\operatorname{diam}(B) : B \in \mathcal{B}(P)\}.$$

Zjemnění

Rozdělení $Q=(Q^1,...Q^n)$ zjemňuje rozdělení $P=(P^1,...,P^n)$ jestliže každé Q^j zjemňuje P^j . Zjemňění Q rozdělení P vytváří rozdělení Q_B cihel $B\in\mathcal{B}(P)$ a máme skoro disjunktní sjed-

nocení

$$\mathcal{B}(Q) = \bigcup \{ \mathcal{B}(Q_B) : B \in \mathcal{B}(P) \}.$$

Každá dvě rozdělení P,Q n-rozměrného kompaktního intervalu J mají spoločné zjemnění: \implies Je

dána omezená $f:J\to\mathbb{R}$ na n-rozměrném kompaktním intervalu J a $B\subseteq J$ je n-rozměrný kompaktní podinterval intervalu J. Položme

$$m(f,B) = \inf\{f(\mathbf{x}): \mathbf{x} \in B\}$$
a

$$M(f, B) = \sup\{f(\mathbf{x}) : \mathbf{x} \in B\}.$$

Fakt: $m(f, B) \leq M(f, B)$ a je-li $C \subseteq B$, pak

$$m(f,C) > m(f,B)$$
 a $M(f,C) < M(f,B)$.

Pro rozdělení P intervalu J a omezenou funkci $f: J \to \mathbb{R}$ definujeme

$$s_J(f,P) = \sum \{m(f,B) \cdot \mathbf{vol}(B) : B \in \mathcal{B}(P)\},$$

$$S_J(f,P) = \sum \{M(f,B) \cdot \mathbf{vol}(B) : B \in \mathcal{B}(P)\}.$$

Obecné pozorování:

 $f:X \to \mathbb{R}$ je omezená, $X = \bigcup X_i, X_i = \bigcup X_{ij}$ jsou konečná skoro disjunktní sjednocení.

$$M_i = \sup\{f(x) : x \in X_i\},\$$

$$M_{ij} = \sup\{f(x) : x \in X_{ij}\}$$

Triviálně $M_{ij} \leq M_i$ (M_i je horní mez množiny $\{f(x) : x \in X_{ij}\}$). Tedy:

$$\sum M_i \mathbf{vol}(X_i) = \sum_i M_i \sum_j \mathbf{vol}(X_{ij}) =$$

$$= \sum_{ij} M_i \mathbf{vol}(X_{ij}) \ge \sum_{ij} M_{ij} \mathbf{vol}(X_{ij})$$

a podobně pro infima.

Tvrzení: Nechť Q zjemňujě P. Potom

$$s(f,Q) \ge s(f,P)$$
 a $S(f,Q) \le S(f,P)$

Důkaz: Použijeme předchozí pozorování pro $\{X_i|i\} = \mathcal{B}(P), \{X_{ij}|j\} = \mathcal{B}(Q_B)$ a samozřejmě i pro $\{X_{ij}|ij\} = \mathcal{B}(Q).$

Tvrzení: Pro libovolná dvě rozdělení P,Q intervalu J máme $s(f,P) \leq S(f,Q)$.

Důkaz: Jelikož je triviálně $s(f, P) \leq S(f, P)$, použitím společného zjemnění R rozdělení P, Q dostaneme

$$s(f, P) \le s(f, R) \le S(f, R) \le S(f, Q).$$

Množina $\{s(f,P)|P$ rozdělení $\}$ je tedy shora omezená a můžeme definovat dolní Riemannův integrál funkce f přes J jako

$$\int_{I} f(\mathbf{x}) d\mathbf{x} = \sup\{s(f, P) | P \text{ rozdělení}\};$$

podobně definujeme horní Riemannův integrál

$$\overline{\int}_{J} f(\mathbf{x}) d\mathbf{x} = \inf \{ S(f, P) | P \text{ rozdělení} \}.$$

Jsou-li si rovny, máme Riemannův integrál funkce f přes J; značení:

$$\int_J f(\mathbf{x}) d\mathbf{x}$$
 nebo prostě $\int_J f$

Jiné značení:

$$\int_{J} f(x_1, ..., x_n) dx_1, ... x_n$$

nebo

$$\int_{J} f(x_1, ..., x_n) dx_1 dx_2 \cdots dx_n$$

Tvrzení: Riemannův integrál $\int_J f(\mathbf{x}) d\mathbf{x}$ existuje právě když $\forall \varepsilon > 0 \exists$ rozdělení P:

$$S_J(f, P) - s_J(f, P) < \varepsilon.$$

Důkaz: nerovnost dává

$$S_J(f,P) < \varepsilon + s_J(f,P)$$

a z toho máme

$$\overline{\int} \leq S_J(f,P) < \varepsilon + s_J(f,P) \leq \varepsilon + \int \leq \varepsilon + \overline{\int};$$

kde ε může být libovolně malé.

9.2 Tvrzení o existenci Riemannova integrálu

Riemannův integrál $\int_I f(\mathbf{x}) d\mathbf{x}$ existuje právě když $\forall \epsilon > 0$ existuje rozdělení P takové, že

$$S_J(f,P) - s_J(f,P) < \epsilon$$

Důkaz: Nerovnost dává

$$S_J(f,P) < \epsilon + s_J(f,P)$$

z toho dostaneme

$$\overline{\int} \le S_J(f,P) \le \epsilon + s_J(f,P) \le \epsilon + \underline{\int} \le \epsilon + \overline{\int}$$

pro libovolně malé ϵ

9.3 Věta: Každá spojitá funkce na n-rozměrnem kompaktním intervalu má Riemannův integrál

Každá spojitá funkce $f:J\to\mathbb{R}$ na n-rozměrném kompaktním intervalu má Riemannův integrál $\int_J f$.

Důkaz: V \mathbb{E}_n budeme používat vzdálenost σ definovanou předpisem

$$\sigma(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$$

Jelikož je f stejnoměrně spojitá, můžeme pro $\epsilon > 0$ zvolit $\delta > 0$ takové, že

$$\sigma(\mathbf{x}, \mathbf{y}) < \delta \Rightarrow |f(\mathbf{x} - f(\mathbf{y}))| < \frac{\epsilon}{\text{vol}(J)}$$

Připomeňme si jemnost $\mu(P)$. Je-li $\mu(P) < \delta$ je diam $(B) < \delta$ pro všechny $B \in \mathcal{B}(P)$ a tedy

$$M(f,B) - m(f,B) = \sup\{f(\mathbf{x})|\mathbf{x} \in B\} - \inf\{f(\mathbf{x})|\mathbf{x} \in B\} \le$$

$$\leq \sup\{|f(\mathbf{x}) - f(\mathbf{y})| : \mathbf{x}, \mathbf{y} \in B\} = \frac{\epsilon}{\operatorname{vol}(J)}$$

takže

$$S(f,P) - s(f,P) = \sum \{ (M(f,B) - m(f,B)) \cdot \operatorname{vol}(B) | B \in \mathcal{B}(P) \} \le \frac{\epsilon}{\operatorname{vol}(J)} \sum \{ \operatorname{vol}(B) | B \in \mathcal{B}(P) \} = \frac{\epsilon}{\operatorname{vol}(J)} \operatorname{vol}(J) = \epsilon$$

9.4 Fubiniova věta

Vezměme součin $J=J'\times J''\subseteq \mathbb{E}_{m+n}$ intervalů $J'\subseteq \mathbb{E}_m,\ J''\subseteq \mathbb{E}_n$. Nechť existuje

$$\int_{I} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \mathbf{y}$$

a nechť pro každé $\mathbf{x} \in J'$, resp. $\mathbf{y} \in J''$, existuje

$$\int_{J'} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \quad \text{resp.} \quad \int_{J''} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

Potom je

$$\int_{J} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \mathbf{y} = \int_{J'} \left(\int_{J''} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) d\mathbf{x} = \int_{J''} \left(\int_{J'} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \right) d\mathbf{y}$$

Tedy ve dvou proměnných

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x, y) \, dy \right) \, dx$$

ve třech proměnných

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1}$$

a obecně

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\dots \left(\int_{a_{n}}^{b_{n}} f(x_{1}, x_{2}, \dots, x_{n}) dx_{n} \right) \dots \right) dx_{2} \right) dx_{1}$$

Důkaz: Položme

$$F(\mathbf{x}) = \int_{J''} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$$

Dokážeme, že $\int_{I'} F$ existuje a že

$$\int_{J} f = \int_{J'} F$$

Zvolme rozdělení P intervalu J tak, aby

$$\int f - \epsilon \le s(f, P) \le S(f, P) \le \int f + \epsilon$$

Toto rozdělení je tvořeno rozděleními P' intervalu J' a P'' intervalu J''. Máme

$$\mathcal{B}(P) = \{B' \times B'' | B' \in \mathcal{B}(P'), B'' \in \mathcal{B}(P'')\}$$

a každá cihla P se objeví jako právě jedno $B' \times B''$. Potom je

$$F(\mathbf{x}) \leq \sum_{B'' \in \mathcal{B}(P'')} \max_{\mathbf{y} \in B''} f(\mathbf{x}, \mathbf{y}) \cdot \text{vol} B''$$

a tedy

$$S(F, P') \leq \sum_{B' \in \mathcal{B}(P')} \max_{\mathbf{x} \in B'} \left(\sum_{B'' \in \mathcal{B}} (P'') \max_{\mathbf{y} \in B''} f(\mathbf{x}, \mathbf{y}) \cdot \operatorname{vol}(B'') \right) \cdot \operatorname{vol}(B') \leq$$

$$\leq \sum_{B' \in \mathcal{B}(P')} \sum_{B'' \in \mathcal{B}(P'')} \max_{(\mathbf{x}, \mathbf{y}) \in B' \times B''} f(\mathbf{x}, \mathbf{y}) \cdot \operatorname{vol}(B'') \cdot \operatorname{vol}(B') \leq$$

$$\leq \sum_{B' \times B'' \in \mathcal{B}(P)} \max_{\mathbf{z} \in B' \times B''} f(\mathbf{z}) \cdot \operatorname{vol}(B' \times B'') =$$

$$= S(f, P)$$

a podobně

$$s(f, P) \le s(F, P')$$

Máme tedy

$$\int_{J} f - \epsilon \le s(F, P') \le \int_{J'} F \le S(F, P) \le \int_{J} f + \epsilon$$

a $\int_{J'} F$ je roven $\int_{J} f$.

9.5 Lebesgueův integrál

Riemannův integrál je intuitivně velmi uspokojivý a počítá to, co chceme, pokud tedy funguje. Jeho užití má ale několik problémů:

- Nemusí existovat i pro některé přirozeně definované funkce, nebo přinejmenším není snadno vidět, zda existuje.
- Nemůžeme provádět užitečné operace(limity, derivování) dost univerzálně.

Lebesgueův integrál je rozšíření Riemannova integrálu, kde můžeme dělat prakticky cokoliv, za snadno zapamatelných podmínek. Několik Lebesgueovských pravidel:

- 1. Je-li interval a Riemannův integrál $\int_I f$ existuje, shoduje se s Lebesgueovým.
- 2. Pokud $\int_{D_n} f$ f existuje pro n = 1, 2, ..., existuje i

$$\int_{\bigcup D_n} f$$

3. Pokud $\int_D f_n$ existuje a posloupnost $(f_n)_n$ je monotónní, platí

$$\int_{D} \lim_{n} f_{n} = \lim_{n} \int_{D} f_{n}$$

4. Pokud $\int_D f_n$ existuje a $|f_n| \leq g$ pro nějaké g pro které existuje $\int_D g$, platí

$$\int_{D} \lim_{n} f_{n} = \lim_{n} \int_{D} f_{n}$$

5. Je-li D omezená, $|f_n(x)| \leq C$ a $\int_D f_n$ existují, platí

$$\int_{D} \lim_{n} f_{n} = \lim_{n} \int_{D} f_{n}$$

6. Buď U okolí bodu t_0 a g takové, že existují $\int_D g$ a $\int_D f(t,x) \, dx$ a $\forall t \in U \setminus \{t_0\} : |f(t,x)| \leq g(x)$ (potom

$$\int_D f(t_0, x) dx = \lim_{t \to t_0} \int_D f(t, x) dx$$

7. Jestliže pro integrovatelnou g platí

$$\left|\frac{\partial f(t,x)}{\partial t}\right| \leq g(x)$$

a v nějakém okolí U bodu t_0 všechno dává smysl(?), potom platí

$$\int_{D} \frac{\partial f(t_0, -)}{\partial t} = \frac{d}{dt} \int_{D} f(t_0, -)$$

9.6 Tietzeova věta

Buď Y uzavřený podprostor metrického prostoru X. Potom můžeme každou spojitou reálnou funkci f na Y takovou, že $\forall x \in Y : a \leq f(x) \leq b$ rozšířit na stejně omezenou spojitou funkci g na X.

The End