OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

AUTUMN EXAMINATIONS, 2011

B.E. (ELECTRICAL)

DIGITAL SIGNAL PROCESSING EE4008

> Dr. L. Seed Dr. M. Creed Dr. W.P. Marnane

Time Allowed: 3 hours

Answer five questions.

All questions carry equal marks.

The use of departmental approved non-programmable calculators is permitted

- 1. (a) Starting with the ideal frequncy response $H_d(\omega)$, describe the windows method of designing a band pass filter. [10 marks]
 - (b) Determine the filter length M and the coefficients h(1) and $h(\frac{M-1}{2})$ using the "Windows" method of the band pass filter design that meets the following specification:
 - Passband: 150 250Hz
 - Transition Width:- 50Hz
 - Passband Ripple:- 0.01dB
 - Stopband attenuation:- > 60dB
 - Sampling frequency:- 1kHz

The parameters of common window functions are given in the Appendix. [10 marks]

2. (a) A First Order Lowpass IIR Digital Filter has a transfer function

$$H_{LP}(z) = G \frac{1 + z^{-1}}{1 - \alpha z^{-1}}$$

Determine the Gain factor G in terms of α .

[5 marks]

(b) Derive an expression for α in terms of the 3dB cutoff frequency ω_c . [5 marks]

- (c) Determine the transfer function $H_1(z)$, of a first-order low pass filter with a 3-dB cutoff Frequency of 0.6π . Draw the pole/zero Plot of $H_1(z)$ and sketch the magnitude response of the filter for $0 \le \omega \le \pi$, clearly identifying the 3dB cutoff frequency ω_c [5 marks
- (d) A comb filter with a transfer function $G_1(z)$ is formed by taking the transfer function $H_1(z)$ and replacing each delay by M delays, such that:

$$G_1(z) = H_1(z^M)$$

Draw the pole/zero plot for M=2 and sketch the magnitude response for the same value of M, for $0 \le \omega \le \pi$. [5 marks]

3. Consider the z-transform

$$H(z) = \frac{z(z+0.5)}{z^2 - 0.65z + 0.1}$$

- (a) Draw the Pole-Zero plot of H(z) and identify the three possible regions of convergence. [6 marks]
- (b) Use the partial fractions method to determine the inverse z-transform h(n) where
 - i. h(n) is a causal sequence
 - ii. h(n) is an anti-causal sequence
 - iii. h(n) is a two sided sequence.

[10 marks]

- (c) Determine the first three values of the causal h(n) sequence, using the long division method of inverting the z-transform. [4 marks]
- 4. (a) Let x(n) be a Wide Sense Stationary random process with mean m_X , autocorrelation $\phi_{XX}(k)$ and power spectral density $P_{XX}(\omega)$. x(n) is filtered by a Stable Linear Time Invariant System with impulse response h(n) to produce output y(n). Determine the mean m_Y , autocorrelation $\phi_{YY}(k)$ and power spectral density $P_{YY}(\omega)$ of y(n). [10 marks]
 - (b) Unit variance white noise is filtered by a LTI filter with impulse response:

$$h(n) = \frac{1}{5} \left(-\frac{1}{5} \right)^n u(n) + \frac{1}{5} \left(-\frac{1}{5} \right)^{n-3} u(n-3)$$

Determine the mean and the power spectral density of the filter output in trigonometric form.

[10 marks]

5. (a) Show how the N point DFT

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{(\frac{-j2\pi nk}{N})} \quad k = 0, 1, \dots, N-1$$

can be reduced to two $\frac{N}{2}$ point DFTs of the odd and even indexed values of x(n).

[6 *marks*]

(b) Hence show that the computational complexity of a radix 2 decimation in time FFT algorithm is

$$O\left(\frac{N}{2}\log_2 N\right)$$

[*4 marks*]

(c) 1024 data values of the Wide Sense Stationary Random Process

$$x(n) = A\sin(n\omega_1 + \phi_1) + A\sin(n\omega_2 + \phi_2) + w(n)$$

are recorded, where A, ω_1 and ω_2 are fixed constants; ϕ_1 and ϕ_2 are random variables uniformly distributed over the interval $-\pi$, π and w(n) is Gaussian White Noise with variance σ_w . For $\Delta\omega=(\omega_2-\omega_1)=0.015\pi$ compare the performance of the following 4 methods of spectral estimation in terms of resolution, variance reduction and computation complexity.

- i. Periodogram
- ii. Modified Periodogram using a Hamming window
- iii. Bartlett method
- iv. Welch method with 50% overlap and a Hanning window

You may assume that the FFT is used in each of the spectral estimation methods and parameters of the window function are given in the Appendix.

[10 marks]

6. (a) Starting with the Yule Walker Equation for an ARMA process of order (p, q)

$$\phi_{XX}(k) = -\sum_{l=1}^{p} a(l)\phi_{XX}(k-l) + \sigma_v^2 \sum_{l=0}^{q-k} b(l+k)h^*(l)$$

derive the Yule Walker Equations for an

- i. AR Process of order p
- ii. MA Process of order q

[4 marks]

- (b) Compare the following AR methods of parametric spectral estimation
 - i. Autocorrelation
 - ii. Covariance
 - iii. Modified Covariance

[9 marks]

(c) In the covariance method of parametric spectral estimation the value $\hat{c}(j,k)$, where

$$\hat{c}(j,k) = \frac{1}{N-p} \sum_{p=0}^{N-1} x^*(n-j)x(n-k)$$

is used as an estimate of the autocorrelation values $\phi_{XX}(j-k)$. Given

$$\hat{c}(0,0) = 1
\hat{c}(0,1) = \hat{c}(1,0) = 0.66
\hat{c}(0,2) = \hat{c}(2,0) = 0.25
\hat{c}(1,1) = 0.95
\hat{c}(1,2) = \hat{c}(2,1) = 0.65
\hat{c}(2,2) = 0.94$$

Estimate the spectrum using the covariance method of AR parametric spectral estimation for an AR(2) process.

[*7 marks*]

Appendix of Equations

• Window Functions

Window	Sidelobe	$\triangle f$	Stopband	Passband			
w(n)			Attenuation	Ripple	$\Delta\omega_{3db}$		
Rectangular	-13db	$\frac{0.9}{N}$	21db	0.7416 db	$0.89 \frac{2\pi}{N}$		
		2 4			11		
$\langle \cdot \rangle$ $\int 1$	$0 \le n \le 1$	N-1					
$w(n) = \begin{cases} 1\\0 \end{cases}$ Hanning	otherw	ise					
Hanning	-31db	$\frac{3.1}{N}$	44db	0.0546db	$1.44\frac{2\pi}{N}$		
$w(n) = \begin{cases} 0.5 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) & 0 \le n \le N-1\\ 0 & \text{otherwise} \end{cases}$							
$w(n) = \left\{ \right.$	0	(11 17	otherwise				
Hamming	-41db	$\frac{3.3}{N}$	53db	0.0194 db	$1.30\frac{2\pi}{N}$		
		2 4			11		
$\left(0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right) 0 \le n \le N-1\right)$							
$w(n) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right) & 0 \le n \le N-1\\ 0 & \text{otherwise} \end{cases}$							

• Table of Z-Transforms

Signal	Z-Transform	
x(n)	X(z)	ROC
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a