# Clase 3

### **Datamart**

- Un datamart es una base de datos departamental, especializada en el almacenamiento de los datos de un área de negocio específica.

### **Datamart**

- Se caracteriza por disponer la estructura óptima de datos para analizar la información a detalle desde todas las perspectivas que afecten a los procesos de dicho departamento.

### **Datamart**

 Los datamarts son subconjuntos de los datos del Datawarehouse con el propósito de ayudar a que un área específica dentro del negocio pueda tomar mejores decisiones.

# Representación gráfica de un Datamart.



# Representación gráfica de un Datamart.



## Datawarehouse y Datamart

- Si nos referimos a un Datawarehouse estamos hablando que este contiene **todos** los datos de una organización.
- Mientras que el Datamart solamente obtiene un **subconjunto** de los datos de una organización, lo que hace centrar lo en un área específica dentro de la organización.

## Datawarehouse y Datamart

- Un problema que surge es cuando el datawarehouse llega a crecer y a tornarse muy complejo. Debido a esto el rendimiento de las consultas decae y el modelo deja de ser óptimo.
- En estos casos la solución es la creación de datamarts especializados por áreas como Ventas, Compras, etc.

## Ventajas y Desventajas del Datamart

#### **VENTAJAS**

- Consultas más rápidas debido al poco volumen de datos a recorrer.
- Fácil acceso a los datos que se utilizan con frecuencia.
- Su costo de construcción es relativamente menor a la de un datawarehouse.

#### **DESVENTAJAS**

- No maneja grandes volúmenes de información.
- No considera otras fuentes de datos de la empresa.

- Dependiente.
- Independiente.
- Híbridos.

 Dependiente: se crea a partir de un datawarehouse existente.



Independiente: es un sistema autónomo que es creado sin utilizar ningun datawarehouse.

Este es conveniente para empresas pequeñas.



 Híbridos: en este tipo combina datos de un datawarehouse con otros sistemas de fuentes de datos.



### Datawarehouse vs Datamart

|                         | Datawarehouse                                                                                                  | Datamart                                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Alcance                 | Almacena información relacionada con todo el sistema.                                                          | Se limita a almacenar información de un área de la organización en específico.         |
| Tamaño e<br>integración | Almacena grandes cantidades de datos provenientes de muchas fuentes de datos, por lo que suele ser más grande. | Se concentra en resúmenes<br>de datos totalizados por lo<br>que suele ser más pequeña. |

### Datawarehouse vs Datamart

|                 | Datawarehouse                                                                               | Datamart                                                                                            |
|-----------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Creación        | La creación es más complicada ya que debe contemplar todos los datos del sistema.           | La creación es más simple ya que tiene menos relaciones y están enfocados a sólo un tema.           |
| Costo de manejo | Más costoso, porque requiere más recursos físicos para manejar grandes cantidades de datos. | Es menos costoso ya que requiere menos recurso físicos para manejar los datos requeridos.           |
| Objetivo        | Optimizar la obtención de datos,<br>integrando y optimizando los datos<br>fuente.           | Es diseñado para entregar de manera óptima la información para el soporte de decisiones de negocio. |

## Modelos de datos.

## Tipos de modelos

- Modelo Estrella o <u>Star Schema</u>.
- Modelo Copo de Nieve o Snowflake Schema.
- Modelo Constelación(Copo de Estrellas) o <u>Starflake Schema</u>.

### Modelo Estrella

- Es el más sencillo en su estructura, consta con:
  - Una tabla central de Hechos.
  - Varias tablas de dimensión.
- Lo característico de este modelo es que la única tabla que tiene relación con otras tablas es la de hecho.

### Modelo Estrella

- Las tablas de dimensión sólo están relacionadas con la tabla de hechos.
- Las tablas de dimensión se encuentran desnormalizadas.

Desnormalizado



#### Normalizado











## Modelo Copo de Nieve

- Es una variación o desviación de un modelo estrella.
- En este modelo la tabla de hechos deja de ser la única relacionada con otras tablas ya que existen otras tablas que se relacionan con las dimensiones.
- Puede implementarse luego de haber desarrollado un Modelo Estrella.

## Modelo Copo de Nieve

- Existen tablas que no tienen relación directa con la tabla de hechos.
- Este modelo fue creado para facilitar el mantenimiento de las dimensiones.
- La extracción de datos es más difícil y vuelve la tarea de mantener el modelo un poco más compleja.

## Modelo Copo de Nieve

 Su finalidad es normalizar las tablas y así reducir el espacio de almacenamiento al eliminar la redundancia de datos.

- Este modelo puede poseer tablas de dimensiones

organizadas en jerarquía.



# Representación gráfica del modelo Copo de Nieve



# Representación gráfica del modelo Copo de nieve



### Modelo Constelación

- Está compuesto por una serie de Esquemas en Estrella.
- Posee lo siguiente:
  - Una tabla de Hechos principal.
  - Una o más tabla de Hechos Auxiliares, dichas tablas están relacionadas con sus respectivas tablas de Dimensiones.

### Modelo Constelación

 Las tablas de Hechos Auxiliares pueden vincularse con solo algunas de las tablas de Dimensiones asignadas a la tabla de Hechos Principal, y también pueden hacerlo con nuevas tablas de Dimensiones que se necesiten.

### Modelo Constelación

- No es necesario pero se puede dar el caso que las diferentes tablas de Hechos compartan las mismas tablas de Dimensiones.
- Su capacidad analitica es mayor debido a que permite tener más de una tabla de hechos.
- Contribuye a reutilizar tablas de Dimensiones, ya que una misma tabla de Dimensión puede utilizarse para varias tablas de Hechos.

# Representación gráfica del modelo Constelación



## Modelo Estrella vs Modelo Copo de Nieve

|                  | Estrella                                                    | Copo de Nieve                                                                                                         |
|------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Tablas           | Contiene una tabla de hechos rodeada de varias dimensiones. | Contiene una tabla de hechos rodeada de varias dimensiones, que a su vez pueden estar rodeadas de varias dimensiones. |
| Redundancia      | Alta redundancia.                                           | Poca redundancia                                                                                                      |
| Facilidad de uso | Fácil uso.                                                  | Difícil de entender, uso mas complicado.                                                                              |

## Modelo Estrella vs Modelo Copo de Nieve

|                        | Estrella                                                                                | Copo de Nieve                                     |
|------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|
| Joins                  | Con un solo join es<br>posible relacionar la tabla<br>de hechos y la de<br>dimensiones. | Requiere múltiples joins para hacer los análisis. |
| Rendimiento de queries | Ejecuciones más rápidas.                                                                | Ejecuciones más complejas,<br>debido a cruces.    |

## Modelo Estrella vs Modelo Copo de Nieve

|                             | Estrella                                                | Copo de Nieve                                                           |
|-----------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|
| Estructura                  | Descentralizada.                                        | Normalizada.                                                            |
| Diseño de bases<br>de datos | Simple.                                                 | Complejo.                                                               |
| Cuando usarlo               | Cuando las tablas de<br>dimensión tiene pocas<br>filas. | Cuando las tablas de dimensión<br>tienen un tamaño bastante<br>elevado. |

## ¿Dudas o Preguntas?

