GIST 4302/5302: Spatial Analysis and Modeling

Guofeng Cao www.gis.ttu.edu/starlab

Department of Geosciences Texas Tech University guofeng.cao@ttu.edu

Fall 2016

Review

Map Projection

- · Elements in map projection
 - datum
 - developable surface
 - projection
- Distortions
 - distance
 - shape
 - area
 - direction
- how to choose map projections?
 - depending on purposes, you may need to preserve a certain spatial property - most commonly shape or area - to achieve that purpose

Lab

Lab 1: ArcMap and map projection questions

Characteristics of spatial data

- spatial (auto/cross-)correlation (spatial context or spatial pattern in different context)
- spatial heterogeneity
 - · Simpson paradox in a spatial setting
- fractal behaviors
 - scale issues
 - measuring the length of coastline of Maine
 - travel traces of 'ants' vs. 'elephant'

Spatial Data Types

Data types

- spatial point pattern
- areal data
- geostatistical data
- network data

Representation of spatial data

Representations of spatial data (i.e., spatial database basics)

- object-based
 - · geometric primitives: points, lines and polygons
 - convex hull, Voronoi diagram, Delaunay triangulation
 - · primitive operations: point-in-polygon, buffer
 - spatial query and spatial join
 - data structures for spatial data
 - spaghetti models
 - NAA
 - spatial index
- field-based
 - points
 - contours
 - raster/lattice
 - triangulation (Delaunay triangulation)

Representation of spatial data

Labs

- Lab 2: Find what's inside
- Lab 3: Find what's nearby
- Lab 4: Raster spatial analysis
- Lab 5: Model builder
- Lab 6: Geocoding

Basic Probability and Statistics

Statistical tools

- histogram
- mean, median, variance
- z-score
- covariance, correlation coefficient
- p-value
- QQ-plot, box-plot

Pitfalls of spatial data

- MAUP
 - zone effect
 - scale effect
- Ecological fallacy

Contents in Exam II start from here

Spatial Point Pattern Analysis

Geographic distribution

- mean center, median center
- standard distance, standard ellipsoid distance

Point pattern analysis methods

- 1st order
 - Quadrat methods
 - Density estimation
- 2nd order
 - nearest neighbour distance
 - distance functions K,G,F

Spatial Point Pattern Analysis

Hypothesis testing of CSR

- CSR: complete spatial randomness
- Hypothesis testing
 - Monte Caro test

Lab

- Lab 7: Point Pattern Analysis
- Homework assignment

Areal data and spatial autocorrelation

Basics

- Spatial neighbourhood
- Spatial weight matrix

Measuring spatial autocorrelation

- Joint count
- Moran's / and Moran's / scatter plot
- Getis-Ord's G and G*
- Hypothesis testing
 - permutation test

Lab

• Lab 8: Exploratory analysis using GeoDa

Liner Regression and Spatial Regression I

Linear regression

- Correlation (coefficient) vs. regression
- Simple regression vs. multiple regression
- Find the best fit
- Evaluation of the Goodness of Fit R²
- Significant test (t-test, F-test)

Multiple regression

- Find the best fit
- Evaluation of the Goodness of Fit (adjusted R², p-value of coefficient, maximum likelihood, AIC)
- Procedures for multiple regression

Linear regression does not prove causal effects

Liner Regression and Spatial Regression II

Spatial regression

- Spatial autoregression vs. Correlation
- Diagnostic of spatial dependence (autocorrelation)
- Spatial econometrics approaches
 - Lag model
 - Error model
 - Which to use?
 - Evaluation of Goodness of Fit (AIC)

Lab

• Lab 9: Spatial regression using GeoDa

Spatial Fields

Representation of spatial fields

- Scalar fields vs. vector fields
- Countours
- Lattice
- TIN

Derivatives of spatial fields

- Gradient
- Slope/Aspect

Spatial Interpolation

Spatial interpolation

- Deterministic interpolator
 - Nearest neighours
 - Natural neighours
 - Trend surface
 - IDW
 - Spatial splines
 - Triangulation
- Stochastic interpolator
 - Kriging family of methods

Advantage of Kriging methods over the deterministic methods

Geostatistics

Kriging

- Semivariogram, covariogram
 - Range, nugget, sill
 - Empirical semivariogram and theoretical semivariogram models
- Kriging
- Procedures to conduct kriging
- Advantages of Kriging over determistic methods, such as IDW

Lab

• Lab 10: Spatial interpolation

Labs and software

Lab topics

- Map projection
- Find what's inside
- Find what's nearby
- Raster spatial analysis
- Model builder
- Geocoding
- Point pattern analysis
- Exploratory analysis (Moran's I)
- Spatial regression
- Kriging

Labs and software

Software

- ArcMap
 - Arctoolbox: 3D analytst, spatial analysis, spatial statistics, geostatistics
- GeoDa (open-source)
- OpenStreetMap (mapathon)

Project report due: Dec 10th before the final exam

 upload your project materials, including presentation, datasets and results to your folder on Techshare

Exam format

- Dec 10th, 1:30-4pm, Science 234
- open books and open notes, but access to any digital devices (e.g, phones, tables, computers) are not allowed
- multiple choices plus writing questions

New class avaiable at Fall

- Geog 5330: Applied Spatial and Spatiotemporal Data Analysis
- Graduate level class

Map links

- http://www.gis.ttu.edu/gist4302/links.html
- Ottugis, Oguofengcao

Thank you, any questions/comments