PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-317595

(43) Date of publication of application: 16.11.1999

(51)Int.Cl.

H05K 13/02

(21)Application number: 11-044002

(71)Applicant: JUKI CORP

(22)Date of filing:

23.02.1999

(72)Inventor: KYU FEN WAN

(30)Priority

Priority number: 98 30172

Priority date : 24.02.1998

Priority country: US

(54) PART FEEDING SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an intelligent part-feeding system, which is equipped with feeders which are capable of communicating so as to effectively acquire and update data on parts and feeders at a low cost in a manufacturing process and capable of using various types of feeders.

SOLUTION: A feeder 10 is possessed of a memory 14 connected to a terminal part 16 and mounted on a surface mounting equipment 30, equipped with a computer 34 connected to one or more terminals 36. When the feeder 10 is mounted on the surface-mounting equipment 30, the terminal part 16 of the feeder 10 is brought into contact with the corresponding terminal 36 of the surface-mounting equipment 30, and the computer 34 communicates direct with the memory of the feeder 10, so as to transmit or receive data as to the type of the feeder 10 and the kind and number of parts. The system is possessed of a network where addresses can be designated, and the computer 34 is

made to detect the state of slots occupied by the feeder 10. This system is simple, inexpensive, and capable of controlling a production in real time by the use of all the data and coping with various kinds of feeders.

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-317595

(43)公開日 平成11年(1999)11月16日

(51) Int.Cl.⁶

識別記号

H 0 5 K 13/02

FΙ

H 0 5 K 13/02

В

審査請求 未請求 請求項の数7 OL (全 10 頁)

(21)出願番号

特願平11-44002

(22)出願日

平成11年(1999) 2月23日

(31)優先権主張番号 09/030172

(32)優先日

1998年2月24日

(33)優先権主張国

米国(US)

(71)出願人 000003399

ジューキ株式会社

東京都調布市国領町8丁目2番地の1

(72)発明者 キュ フェン ウァン

アメリカ合衆国 ノースカロライナ州

27514 チャペルヒル セントトーマスド

ライブ 311

(74)代理人 弁理士 加藤 卓

(54) 【発明の名称】 部品供給システム

(57)【要約】

【課題】 各フィーダが、生産工程中に部品やフィーダ の情報を安価に効果的に取得・更新するように通信でき て、種々の形のフィーダを使用できる知的部品供給シス テムを提供する。

【解決手段】 フィーダ10は端子部16に結合された 記憶部14を有し、1個以上の端子36に結合されたコ ンピュータ34を備えた表面実装機30に装着される。 フィーダが表面実装機に装着されると、フィーダの端子 部16が表面実装機の対応する端子36に接触し、コン ピュータ34は、フィーダの種類・部品の種類・部品数 等の情報を送受するようにフィーダの記憶部と直接交信 できる。このシステムはまた番地指定が可能なネットワ ークを持ち、コンピュータはフィーダが占めるスロット の占有状態を検出する。とれら全ての情報を利用すると とによって、このシステムは生産をリアルタイムに管理 でき、安価で簡単な構成で多種類のフィーダに対応でき る。

(図 2)

【特許請求の範囲】

【請求項1】 部品供給部に複数のフィーダを搭載し、 フィーダに収容された部品を吸着ノズルにより吸着して 移動した後、部品を基板に搭載する部品装着装置の部品 供給システムであって、

1

情報を蓄積可能で電源断時でも不揮発性の記憶部と、と の記憶部に蓄積されている情報の送受を中継可能な接続 端子部とを有するフィーダと、

フィーダ外部にあってこの接続端子部を経由して前記記 憶部内の内容を読出し・書込みできる制御手段とを有し ているととを特徴とする部品供給システム。

【請求項2】 前記制御手段が前記部品装着装置の制御 手段であることを特徴とする請求項1 に記載の部品供給 システム。

【請求項3】 請求項1に記載の部品供給システムに、 さらに、前記フィーダを複数収容するフィーダバンクに は接続端子部の番地を設定できるスイッチを有し、前記 接続端子部を経由して記憶部の内容を読出し・書込み可 能な制御手段に接続されたネットワークを具備している ことを特徴とする部品供給システム。

【請求項4】 部品供給部に複数のフィーダを搭載し、 フィーダに収容された部品を吸着ノズルにより吸着して 移動した後、部品を基板へ搭載する部品装着装置の部品 供給システムであって、

情報を蓄積可能で電源断時でも不揮発性の記憶部と、と の記憶部に蓄積されている情報の送受を中継可能な接続 端子部とを有するフィーダと、

この接続端子部を経由して前記記憶部内の内容を読出し ・書込みでき、かつ、フィーダバンクに装着されている フィーダが所定の番地にあることを識別できる制御手段 30 とを有していることを特徴とする部品供給システム。

【請求項5】 部品供給部に複数のフィーダを搭載し、 フィーダに収容された部品を吸着ノズルにより吸着して 移動した後、部品を基板に搭載する部品装着装置の部品 供給システムであって、

情報を蓄積可能で電源断時でも不揮発性の記憶部と、と の記憶部に蓄積されている情報の送受を中継可能な接続 端子部とを有するフィーダと、

部品装着装置に装着前に予め必要なフィーダを搭載でき るフィーダバンクを有する移動可能な部品一括交換手段 40 と、

この部品一括交換手段に内蔵され、前記接続端子部を経 由して前記記憶部内の内容を読出し・書込みでき、フィ ーダバンクに装着されているフィーダが所定の位置にあ ることを識別でき、かつ、部品装着装置に装着時は部品 情報の送受を行うことができる制御手段とを有している ことを特徴とする部品供給システム。

【請求項6】 部品供給部に複数のフィーダを搭載し、 フィーダに収容された部品を吸着ノズルにより吸着して 供給システムであって、

情報を蓄積可能で電源断時でも不揮発性の記憶部と、と の記憶部に蓄積されている情報の送受を中継可能な接続 端子部とを有するフィーダと、

部品装着装置に装着前に予め必要なフィーダを搭載でき るフィーダバンクを有する移動可能な部品一括交換手段 Ł.

前記接続端子部を経由して前記記憶部内の内容を読出し ・書込みでき、かつ、フィーダバンクに装着されている 10 フィーダが所定の位置にあることを識別できる前記部品 一括交換手段外に設置される制御手段とを有していると とを特徴とする部品供給システム。

【請求項7】 部品供給部に複数のフィーダを装着し、 フィーダに収容された部品を吸着ノズルにより吸着して 移動した後、部品を基板に搭載する部品装着装置の部品 供給システムであって、

情報を蓄積可能で電源断時でも不揮発性の記憶部と、電 磁誘導結合あるいは電界結合により非接触で供給される 交流電力を電源用の直流電力に変換すると共に、前記記 20 憶部に蓄積されている情報の送受を行う第1の送受信回 路とを有するフィーダと、

このフィーダの前記第1の送受信回路に対応して交流電 力供給と情報の送受を行う第2の送受信回路と、

フィーダの外部にあって前記第1及び第2の送受信回路 を経由して前記記憶部内の内容を読出し・書込みできる 制御手段とを有していることを特徴とする部品供給シス テム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、部品供給システ ム、更に詳細には、電子部品を表面実装機に供給する知 的部品供給システムに関する。

[0002]

【従来の技術】従来から、この技術分野で自動部品搭載 機が知られており、この搭載機は大量の部品を印刷回路 基板上に高速で効果的に高い信頼性で搭載する際に使用 されている。この技術は、ときには表面実装技術(Surf ace Mounting Technology、SMT)と呼ばれており、 部品を印刷回路基板上に搭載する機械は表面実装機とし て知られており、ときには、ピック・アンド・プレース (pick-and-place)機ともよばれる。

【0003】典型的には、表面実装機に対して少なくと も1台のフィーダが使用される。このフィーダは、表面 実装機に部品を供給する。最も一般的なフィーダは、テ ープフィーダであり、搭載部品を収容したテープを巻い たリールを使う。リールは機械的または電気的に駆動さ れ、テープを表面実装機に送る。他のタイプのフィーダ として、トレイフィーダ、スティックフィーダ、ベルト フィーダ、バルクフィーダ(部品の箱を振動させて表面 移動した後、部品を基板に搭載する部品装着装置の部品 50 実装機上に一度に1個づつ部品を落とす)等がある。

【0004】表面実装機には1度に多数のフィーダを装備するのが望ましい。との場合、各フィーダには異なる種類の部品が収納できて、供給工程を単純化し、搭載工程をより自動化できる。

[0005]

【発明が解決しようとする課題】しかし、これらのフィ ーダを表面実装機に使用する際、種々の問題がある。第 一に、特定のフィーダに部品切れが生じた時、フィーダ (または、リールのようなフィーダの一部)を交換しな ければならない。この作業は一般的には時間を要する。 速度は金に換算されるから、フィーダの部品が減少して きたことが分かる方法があって、フィーダまたはリール を交換する準備ができれば、作業者にとって有効であ る。他の問題として、フィーダは異なる部品を持ってい ても同じ外観をしていることがある。作業者が、無意識 のうちにフィーダバンクの間違った位置にフィーダをセ ットすると、基板上に間違った部品が搭載されたり、部 品が正常に搭載されなかったりする。フィーダが正しい 位置にセットされているかどうかを監視し、また問題が あればアラームをだし、時には問題を自動修正するシス 20 テムが望ましい。

【0006】とのシステムを使用する上での他の問題として、各フィーダでの部品の数が正しく計数されていても、新しい種類の基板が機械にセットされた時に数が失われることがある。多種類の基板でも同じ部品を搭載することがあるので、基板が変わっても機械に装着されているフィーダには正しい数が残っているシステムが望ましい。更に、多数のフィーダを管理することは困難なことであり、システムにかかる負担が顕著になる。

【0007】かかる問題を解決するためにいくつかのフィーダシステムが考えられている。バーコードとか、IC(または磁気)カード/チップとか、モータ式リーダシステム等がある。過去数年間バーコード法がSMT業界で使用されている。この方式では、部品情報やフィーダの位置情報がフィーダ上のバーコードに記録されている(代わりに、リールのようなフィーダの一部に、さらにフィーダ上にも記録することができる)。バーコードリーダでこの情報を走査し、コンピュータに送る。そこでコンピュータは、この情報とユーザによって入力された基板上の所定の部品搭載位置情報と共に生産用ファイル(production file)を生成する。この生産用ファイルは、作業者が生産時の監視に使用する。

【0008】IC(または磁気)カード/チップ法は、バーコード法と同じ原理で動作する。この方法では、(部品名や数量のような)部品情報がフィーダ上のIC(または磁気)カード/チップに記録されている。稼動前に、機械に設けられている読取装置でこのカード/チップ上の部品やフィーダ位置情報を読み取って、これがコンピュータに送られる。一方法として、このカード/チップの情報を読み取り可能なヘッドの下部に、フィーダ自体を50

一度に一個送る。他の方法としては、ヘッドがフィーダの上を移動する。 どちらの方法にしても、生産開始前に各フィーダの情報が読み取られ、新しい種類の基板が使われる毎に再度読み取られる。

【0009】バーコードやIC(または磁気)カード/チップの方法にはいくつかの欠点がある。まず、情報をフィーダとかリールに書き込み、(バーコードを走査したりIC(磁気)カード/チップを読んだりして)フィーダやリールから情報を読み取りコンピュータに送らねばならな10い。これは時間の浪費である。バーコード法では、各フィーダやリールの上をバーコードリーダでなぞらなければならない。IC(または磁気)カード/チップ法では、各フィーダやリールの情報を読めるように機械を構成して、読み取り動作に時間をかけねばならない。

【0010】この方法の他の欠点として、フィーダとか(リールのようなフィーダの一部分)の情報を更新したり、表面実装機で生産中の情報をアクセスする方法がなく、生産の開始後に情報を変更できないことである。このリアルタイム情報管理が欠落していることは非常に非生産的なことである。更に、システムをリアルタイムに監視していないので適切な部品の計数が困難である。

【0011】電気モータ方式では、各フィーダは小型コ ンピュータを持っている。このコンピュータはフィーダ の各ステップをカウントし、フィーダの部品数をリアル タイムに数えて表面実装機に送り続ける。フィーダに は、また多数の端子がある。フィーダがフィーダバンク に装着されると、端子が表面実装機の端子に接触して、 情報交換ができるようになる。表面実装機の特定のスロ ットの端子の数がスロットの番地となり、機械はプロセ 30 スを制御することができる。例えば、現在の部品数を送 るのにスロットに1端子を設ける。バンクが16フィー ダを持っている時、各スロットには少なくとも4個の端 子があって、特定の端子の有る無しでスロットの番地を 指示できる。バンクのスロット〇の場合、4端子ともな くて数量を知らせる端子だけが有る(バイナリ0000 で番地0を示している)。他方、スロット13では、数 量交信の端子の他に2端子、ブランク、最後の1端子が 有る(バイナリ1101で番地13を示している)。

【0012】しかし、との設計にはいくつかの欠点がある。各フィーダの内部に部品数の監視のためにコンピュータが使用され、各フィーダのコストが高くなる。各フィーダに複数の端子を使用することで、追加端子のコストがかかるばかりでなく、各端子に接続される配線が複雑になり、各端子を監視するためのシステム資源のコストもかかって高くつく。この設計の他の欠点は、使用が特定の形のフィーダ、つまりリール上のテーブ送りにモータを使うフィーダ(電気式テープフィーダ)に限定されることである。多種類のタイプのフィーダを使用できるのが望ましい。

【0013】との設計では、またシステムの自由度に制

限がある。バンクの各スロットが(スロットの端子で)特 定の番地に固定されるので、大きさの異なるフィーダを 使うのが極めて困難となる。表面実装機に大きさの異な るフィーダを使うことが必要になることがある。例え ば、ある種の部品のフィーダはバンクの1スロットでよ いが、大きい部品のフィーダでは実際に3スロットを占 めるかもしれない。例えば3スロットのフィーダでも1 番地を当てればすむように番地を変更できるシステムが 望ましい。

【0014】本発明の課題は、各フィーダが、生産工程 中に部品やフィーダの情報を安価に効果的に取得・更新 するように通信できて、種々の形のフィーダを使用でき る知的部品供給システムを提供することである。

[0015]

【課題を解決するための手段】本発明は、上記課題を解 決するために、部品供給部に複数のフィーダを搭載し、 フィーダに収容された部品を吸着ノズルにより吸着して 移動した後、部品を基板に搭載する部品装着装置の部品 供給システムであって、情報を蓄積可能で電源断時でも 不揮発性の記憶部と、この記憶部に蓄積されている情報 20 の送受を中継可能な接続端子部とを有するフィーダと、 フィーダ外部にあってとの接続端子部を経由して前記記 憶部内の内容を読出し・書込みできる制御手段とを有し ている構成を採用している。

【0016】前記制御手段は前記部品装着装置の制御手 段である。

【0017】また、本発明では、請求項1に記載の部品 供給システムにおいて、さらに、前記フィーダを複数収 容するフィーダバンクに接続端子部の番地を設定できる スイッチを有し、前記接続端子部を経由して記憶部の内 30 容を読出し・書込み可能な制御手段に接続されたネット ワークを具備している。

【0018】また、本発明では、部品供給部に複数のフ

ィーダを搭載し、フィーダに収容された部品を吸着ノズ ルにより吸着して移動した後、部品を基板へ搭載する部 品装着装置の部品供給システムであって、情報を蓄積可 能で電源断時でも不揮発性の記憶部と、この記憶部に蓄 積されている情報の送受を中継可能な接続端子部とを有 するフィーダと、この接続端子部を経由して前記記憶部 内の内容を読出し・書込みでき、かつ、フィーダバンク に装着されているフィーダが所定の番地にあることを識 別できる制御手段とを有している構成も採用している。 【0019】また、本発明では、部品供給部に複数のフ ィーダを搭載し、フィーダに収容された部品を吸着ノズ ルにより吸着して移動した後、部品を基板に搭載する部 品装着装置の部品供給システムであって、情報を蓄積可 能で電源断時でも不揮発性の記憶部と、この記憶部に蓄 積されている情報の送受を中継可能な接続端子部とを有

するフィーダと、部品装着装置に装着前に予め必要なフ

ィーダを搭載できるフィーダバンクを有する移動可能な

部品一括交換手段と、との部品一括交換手段に内蔵さ れ、前記接続端子部を経由して前記記憶部内の内容を読 出し・書込みでき、フィーダバンクに装着されているフ ィーダが所定の位置にあることを識別でき、かつ、部品 装着装置に装着時は部品情報の送受を行うことができる 制御手段とを有している構成も採用している。

【0020】また、本発明では、部品供給部に複数のフ ィーダを搭載し、フィーダに収容された部品を吸着ノズ ルにより吸着して移動した後、部品を基板に搭載する部 品装着装置の部品供給システムであって、情報を蓄積可 能で電源断時でも不揮発性の記憶部と、この記憶部に蓄 積されている情報の送受を中継可能な接続端子部とを有 するフィーダと、部品装着装置に装着前に予め必要なフ ィーダを搭載できるフィーダバンクを有する移動可能な 部品一括交換手段と、前記接続端子部を経由して前記記 憶部内の内容を読出し・書込みでき、かつ、フィーダバ ンクに装着されているフィーダが所定の位置にあること を識別できる前記部品一括交換手段外に設置される制御 手段とを有している構成も採用している。

【0021】また、本発明では、部品供給部に複数のフ ィーダを装着し、フィーダに収容された部品を吸着ノズ ルにより吸着して移動した後、部品を基板に搭載する部 品装着装置の部品供給システムであって、情報を蓄積可 能で電源断時でも不揮発性の記憶部と、電磁誘導結合あ るいは電界結合により非接触で供給される交流電力を電 源用の直流電力に変換すると共に、前記記憶部に蓄積さ れている情報の送受を行う第1の送受信回路とを有する フィーダと、このフィーダの前記第1の送受信回路に対 応して交流電力供給と情報の送受を行う第2の送受信回 路と、フィーダの外部にあって前記第1及び第2の送受 信回路を経由して前記記憶部内の内容を読出し・書込み できる制御手段とを有している構成も採用している。

[0022]

【発明の実施の形態】当技術分野における通常の技術者 にとっては、本発明の以下の説明は一つの実施の形態に すぎず、これに限定されるものではなく、他の実施の形 態も容易に考えられることが認識できるであろう。

【0023】図1は、本発明の一実施形態における知的 部品供給システムの部品供給部を示す。フィーダ10 は、良く知られている一般的なテープフィーダで、リー ル12を受けるようになっており、部品が貯えられてい るリール上のテープが繰り出されて部品が表面実装機に 送られる。テープフィーダには、一般に機械式または電 気式の2つの形がある。電気式テープフィーダはモータ を使用してリールを回しテープを繰り出す。電気式フィ ーダの利点は、モータがミニコンと関連して使われリー ルの歩進数をカウントできることである(搭載された部 品数を意味する)。しかしながら、電気式フィーダには 欠点があり、特にコストと信頼性の欠点が顕著である。

機械的手段でリールを送る機械式テープフィーダは、下

10

記に述べるようにフィーダ(またはリールのようなフィ ーダの一部)上の部品数が別の手段で正確に保持される ので、本発明の実施形態として取り上げる。しかしなが ら、本発明は他のどの形のフィーダ(例えば、トレイフ ィーダ、スティックフィーダ、バルクフィーダ)でも使 えるばかりでなく、電気式フィーダにも使用できる。 【0024】図示の実施形態では、フィーダに、記憶部 14と、端子部16とが有る。記憶部14は、情報を貯 えられるどんな形の素子でもよい。例としてRAM、EPRO M. EEPROWなどがあるが、この例に限定されるものでは ない。EEPROMは、表面実装機で消去・再書き込みが容易な ので都合の良い記憶素子である。さらに、フィーダ上に 別電源も必要としない。一実施形態として、本発明で は、このような情報を蓄積可能で電源断時でも不揮発性 の記憶部が用いられる。

【0025】記憶部14は、フィーダ10の端子部16 に結合さえしていれば、フィーダ10上のどの位置に配 置されていてもよい。テープフィーダの場合、記憶部1 4は、リール12上にも配置でき、情報の蓄積はフィーダ に限定されることなく、各リールが保持することもでき る。フィーダとリール両方に記憶部を持っている設計も 考えられる。テープを使わないフィーダの場合、記憶部 はフィーダの種々の部分に配置することができる。フィ ーダ上での記憶部の物理的な配置には関係ない。フィー ダがフィーダバンクに実装されると、記憶部が端子部に 結合されているので、記憶部と表面実装機の間の交信が 可能になる。

【0026】記憶部14をフィーダに持つ目的は、各フ ィーダ(又はフィーダの―部分)に情報を貯えることであ る。本発明の実施形態では、記憶部14は、フィーダの識 別子(identification)、(各フィーダは時には異なる部 品を収容しているので)部品情報、フィーダの部品残存 数の情報を保持している。しかし、どんな形の情報でも 記憶部14に保持できよう。

【0027】フィーダ10には、ユーザに情報を表示す るLED18も含まれることがある。これにより、ある 状態を色の変化で表示することが出きる。例えば、赤の点 灯でフィーダ上の部品数が少なくなったことを意味し、 ユーザにフィーダ又はリールを交換する時期を知らせる のに使用できる。別の色で、システムのどこかに異常があ るとか、フィーダが間違ったスロットにあるとかを表示 できる。LED18が端子部16に結合されており、フ ィーダ10がフィーダバンクに装着されると、情報が表 面実装機からLED18に送られる。

【0028】図2は、本発明の実施形態におけるフィー ダ付きの表面実装機(部品装着装置)を示す。この表面 実装機30は、フィーダに収容された部品を吸着ノズル (不図示)により吸着して移動した後、部品を回路基板 に搭載する。また、表面実装機30は、回路基板への搭

ピュータ(制御手段)34を備えている。フィーダバン ク32には、1個以上のフィーダ10を装着できる位置 が設けられている。フィーダバンクには又、1個以上の端 子が有り、各端子36は1個のフィーダ10に対応して いる。フィーダの端子部16が実装機30の端子36に 接触すると、表面実装機は、フィーダが対応するフィー ダスロットに装着されたことを識別する。端子36は又、 表面実装機とフィーダ10の端子部16の間の情報の通 路となる。

8

【0029】表面実装機の全端子はコンピュータ34に 結合されている。これを実現する最も簡単で効果的な方 法は、マイクロラン (MicroLan) ネットワークのような 番地指定可能なネットワークを使用し、端子36の全て をコンピュータ34に結合することである。このネット ワークで重要なことは、各端子が個々に番地指定可能な ことである。図3は、表面実装機内部のネットワーク4 0を詳細に示しており、これはネットワークと端子36 の間に番地指定スイッチ38を設けて実現できる。番地 指定スイッチ38は、コンピュータ34が正しいフィー ダと交信できるように、各端子に特別の識別子 (スロッ ト番地等)を与えている。番地指定スイッチでコンピュ ータは各端子に割り当てられた番地を変更でき、異なる 大きさのフィーダでも、色々なスロットに生産工程を再 編成することなく配置できる。しかし、これはこの設計 を実現する一つの方法にすぎない。各端子36(と従っ て各フィーダ)が個々に番地指定可能でさえあれば、端 子36を番地指定可能にする方法にはこだわらない。さ らに、番地指定可能なネットワークが望ましいが、当分 野における通常の技術者ならば、各端子36をコンピュ 30 ータ34に結合する他の様々な方法があることが理解で きるであろう。

【0030】再度、図2に戻って、コンピュータ34は システムを管理するのに使用される。フィーダ10がフ ィーダバンク32に装着される(端子部16が端子36 に接触する)と、フィーダ(又はフィーダの一部)の記憶 部14からの情報がコンピュータ34に送られる。そと で、コンピュータ34は、フィーダ10がフィーダバン ク32のどの位置に有るかを示す端子36を通して、ど のフィーダ10がどの情報を送っているかを認識でき る。これには又、フィーダが交換された時、生産開始前 でも生産中でも、フィーダ10が正しいスロットに配置 されたかを確認できる利点がある。また、フィーダ10 が間違った位置に置かれても、ユーザがフィーダ10を 正規の位置に移動する必要がないように、生産用ファイ ルを再構成できるようにコンピュータ34を設定すると とも考えられる。例えば、部品Aのフィーダがスロット 1に置かれると、フィーダの記憶部にある情報により、 スロット1のフィーダには部品Aが収容されていること を知る。そのフィーダがスロット1から外されてスロッ 載に必要な部材だけでなく、フィーダバンク32とコン 50 ト3に置かれた時、コンピュータはスロット1にはフィ

ーダがなく、部品Aのフィーダがスロット3に有ること を検知する。そとで、コンピュータはこの変更を考慮し て生産工程を再構築できる。このタイプのリアルタイム 部品・フィーダ情報管理システムは、従来のフィーダシ ステムに比べて自由度が高く効率が良い。

【0031】とのフィーダシステムの他の特長は、フィ ーダ(又はフィーダの一部)の記憶部内に部品数量を記憶 する際に生かされる。フィーダが歩進する毎に数を減じ るために、コンピュータからフィーダ(又はフィーダの 一部)の記憶部に信号を送る。工程の開始時に記憶部に 正確な数量をプログラムしておくと、フィーダ(又はフ ィーダの一部)の部品数が少なくなるとコンピュータは そのことを検知してフィーダのLEDに信号を送り、ユ ーザにフィーダ(又はフィーダの一部)を交換する時であ るとの警報を出す。ユーザにこの状態を通知するのに、 音声信号とか他の形の警報を出すこともできる。この種 の警報により生産工程がスピードアップされ、回路基板 の実生産により多くの時間を割くことが出来る。

【0032】別種の基板に交換されても、フィーダの部 品残存数は維持されている。従って、生産が新しい種類 20 の基板に切り替えられても、ユーザは全部のフィーダを 交換する必要はなく、フィーダをスロットにそのままに しておいても、コンピュータが正確なリアルタイムの数 量をフィーダと交信できる。

【0033】との発明の実施形態では、コンピュータが 牛産を管理するのに部品情報を使用するので、このシス テムの信頼性は、生産開始前に記憶部に記録されている 正確な部品と部品情報に依存する。図4は、生産開始前 に情報を記憶部に記録する一方法を示している。 リール 又はフィーダの生産者が、バーコード50をフィーダ (又はフィーダの一部)に付与することができる。このバ ーコードはユーザがバーコードリーダ52で走査でき る。コンピュータ54にはバーコードリーダ52が接続 されており、またバーコードからの情報は、正確を期す ために、(生産者から供給される在庫リストのような) 他のメディアで供給される情報に照らしてチェックでき る。正しいことが確認されると、情報はプローブ56を 使ってフィーダ(またはフィーダの一部)の記憶部14 に書き込まれる。プローブは端子部16又はフィーダ (又はフィーダの一部)に設けられた別の入力節点 (inpu t node)に接触させて、情報を記憶部14へ送ることが できる。最近のバーコードリーダは、これら複数のユニ ットが1台のバーコードリーダ/ライタに統合された形 になっている。なかには、バーコード値の正確さをチェ ックするのにコンピュータも必要としないシステムもあ る。これは、記憶部を正しい値に初期化する多くの方法 のうちの一例にすぎない。(フィーダの)生産者が出荷前 に情報を記憶部に書き込むとか、初期値を配線で設定し ておくことも考えられる。

ンクを表面実装機と分離した形にすることができる。図 5で、フィーダバンクは台車57に設けられている。と の台車は、部品装着装置(表面実装機)に装着前に予め 必要なフィーダを搭載できるフィーダバンクを有する移 動可能な部品一括交換手段としての機能を果たす。フィ ーダバンクを表面実装機と分離して持つ利点は、フィー ダを表面実装機59に装着する前に、分離しているコン ピュータ58でフィーダの位置を確認できることであ る。とれにより貴重な生産時間を節約できる。台車57 10 を、コンピュータ58と接続してフィーダ位置を容易に 確認できる。さらに、番地指定スイッチは、表面実装機 の中ではなく台車上のフィーダバンクに配置できる。フ ィーダの位置情報は、接続点を通してコンピュータ58 から表面実装機59に送り渡すことも出来る。これによ り、基板から基板への交換がより容易になる。例えば、 設計Aの基板に対して、相当数のフィーダが台車57の 所定の位置に配置され、情報がコンピュータに送られフ ィーダの位置が確認される。そこでこの情報は表面実装 機に送られ、台車57が図に示すように表面実装機59 に装着される。部品が設計Aの基板に搭載されている間 に、新しい設計Bの基板のために、別の台車57にフィ ーダを多分異なる配列でセットしコンピュータ58で位 置を確認して、搭載の準備をしておくことができる。 【0035】図6に、本発明の実施形態に対応する方法 を記す。工程は記憶部の情報を初期化することから始ま る。とれには種々の方法があるが、一例として、バーコ ードシステムを使用する方法がある。ステップ60で は、バーコードリーダで各フィーダのバーコードを読み とる。次にステップ62でバーコードはコンピュータで 翻訳される。バーコード情報の正確さを期すため、情報 は他の媒体からの情報と比較され、情報(特に部品情 報)の編集が行われる。コンピュータは独立している必 要はなく、バーコードリーダ自体に備えることもでき る。次に、ステップ64で、情報はフィーダ(又はフィ ーダの一部)の対応する記憶部に書き込まれる。これ は、プローブを使いフィーダの端子部又は入力節点に接 触させて行われる。もちろん、バーコードを使わずに情 報を単にコンピュータに入力し、ステップ62の編集と ステップ64の対応する記憶部への書き込みをコンピュ ータ自体で処理するシステムに設定することも可能であ る。さらに、記憶部にフィーダや部品の識別子を記録す る方法は他にも数多く可能である。

【0036】との初期化のステップが済むと、フィーダ は表面実装機のフィーダバンクにセットされる。ステッ ブ66で、各フィーダの端子部を表面実装機の異なる端 子に接触することになる。すると、表面実装機のコンピ ュータはフィーダ(又はフィーダの一部)の記憶部やLE Dと直接交信し、また、端子部が端子に接触していると とにより、フィーダがフィーダバンクの所定の位置で現 【0034】本発明の他の実施形態として、フィーダバ 50 在使用されていることをコンピュータに伝える。ステッ

プ68で、コンピュータは、生産前から走査を始めて、 ネットワーク上の各端子の走査を周期的に行う。つぎ に、ステップ70で、フィーダのIDや部品情報(又は ユーザが記録したいその他の情報)を各フィーダの記憶 部から読み取る。

【0037】記憶部から読み取られた情報は、ステップ 72で、正しいかどうかを生産ファイルに照らしてチェ ックされ、間違ったスロットに装着されている時は正し いスロットに差し替え(reset the feeder)、部品が間違 っている時は正しい部品に変更する(reset its compone 10 nts)。この時点で、ステップ74で生産が開始される。 ステップ76では、生産が開始されてから、再度ネット ワーク上の端子が周期的に走査される。そとで、ステッ プ78で記憶部が読み出されて、使用された部品数が求 められる。ステップ80では、いずれかのフィーダ(又 はフィーダの一部)の残存部品数が少なくなっていない かが問われ、少なくなければ、ステップ84に進む。少 ない時は、ステップ84に進む前に警告信号が対応する フィーダのLEDに送られる(ステップ82)。この警 告信号は、LEDに限らず、音声警告とかその他の警報 手段に送られて、ユーザに、フィーダの部品が少なくな ったので間もなく交換が必要であることを知らせるよう になっている。

【0038】ステップ84で、コンピュータは、生産が 終了したかどうかを問う。そうであれば、プロセスは終 了する。終わりでなければ、ステップ86で、(数を含 む)部品情報が更新されて記憶部に書き込まれて、ステ ップ76に戻り、生産が完了するまでループが繰り返さ

【0039】上記の方法は、本発明の一実施形態にすぎ ず、本発明に対応して、多くのステップを削除したり順 序を変えたり出来る。

【0040】上述した実施形態では、フィーダとフィー ダバンク側(一括交換台を含む)との接続を端子を介し た接触により行ったが、本発明は、これに限定されるも のでなく、フィーダと本体側が非接触で情報を交換する ことも可能である。例えば、磁気の変化によって導体に 起電力が生じる電磁誘導結合によって実現することがで きる。との例が図7に図示されている。

【0041】図7において、フィーダに設けられる記憶 40 部14がフィーダの第1の送受信回路90と接続され る。との第1の送受信回路90は、電源回路、変調回 路、復調回路、クロック、記憶部制御回路などから構成 されている。このフィーダ側の回路はアンテナコイル9 1、91 を介してフィーダバンク側(一括交換台を含 む)の第2の送受信回路92と接続される。第2の送受 信回路92は、変調回路と復調回路から構成され、キャ リア周波数端子92a、入力データ端子92b、出力デ ータ端子92c、それに電力(電源)端子92を有してい る。

12

【0042】本体側(実装機)から信号が供給され、端 子92 dを介して電力が第2の送受信回路92に供給さ れる。本体側のアンテナコイル91~とフィーダ側のア ンテナコイル91がある程度接近して配置されていれ ば、本体側から発射される電波によってフィーダ内のア ンテナコイル91に電磁誘導によって電流が流れ始め る。とのアンテナコイル91の両端に電流が流れるとと によって、フィーダ側の第1の送受信回路90に交流電 力が与えられ、そとで電源用の直流電力に変換され、情 報の送受信が可能になる。例えば、第1の送受信回路9 0は、記憶部14に格納された情報を変調してアンテナ コイル91、91 を介して第2の送受信回路92に送 り、第2の送受信回路92はこれを復調して端子92c を介して出力データを本体側に出力する。また、フィー ダバンク側では、端子92bに入力されるデータがキャ リア周波数で変調され、これがアンテナコイル91、9 1 を介して第1の送受信回路90に送られる。第1の 送受信回路90は、これを復調して内部の記憶部制御回 路を介して記憶部14に書き込む。このようにして、端 子36を介した接触型と同様に、電磁誘導結合を介して 非接触的な方法によっても、記憶部14の内容を読み出 したり、あるいはそこに書き込みを行ったりすることが

【0043】なお、図7において、アンテナコイル9 1、91 は実装機側とフィーダ側で1:1で図示され ているが、nを整数として、1 (実装機):n(フィー ダ側)とし、電磁誘導結合が十分到達する範囲内であれ ば、複数のフィーダにエネルギーや情報を供給すること

【0044】また、第1と第2の送受信回路90と92 を電磁誘導を介して結合する代わりに、コンデンサの原 理を利用して電界結合で結合することもできる。

【0045】上述した電磁誘導結合も、電界結合も公知 であり、前者の例が、例えば、特開昭61-10188 6号公報、特開平4-153896号公報に記載されて おり、また後者の例が特開昭63-39396号公報、 特開平3-171385号公報に記載されている。

【0046】本発明のいくつかの実施形態を示したが、 当分野における通常の技術者にとっては、本発明の概念 の範囲内で、上記以外に多くの変形が可能であることは 明らかであろう。

[0047]

できる。

【発明の効果】以上説明したように、本発明では、生産 工程中に部品やフィーダの情報を確実に取得することが でき、また、部品情報あるいはフィーダ情報を常に最新 なものに更新することが可能になり、部品の搭載効率を 飛躍的に向上させることができる。また、本発明は、テ ープフィーダに限定されず、種々の形のフィーダに使用 でき、汎用性があって効果的な部品供給システムが保証 50 される。

14

【図面の簡単な説明】

【図1】本発明の一実施形態におけるフィーダを示す側 面図である。

13

【図2】本発明の一実施形態における表面実装機とフィ ーダの配置構成を示す構成図である。

【図3】本発明の一実施形態における表面実装機内部の ネットワーク構成を示す構成図である。

【図4】本発明の一実施形態における記憶部ライタの配 置構成を示す構成図である。

【図5】本発明の他の実施形態における表面実装機とフ 10 50 バーコード ィーダバンクを持つ台車を示す概略斜視図である。

【図6】本発明の一実施形態における知的な部品供給の 方法の流れを示す流れ図である。

【図7】本発明の他の実施形態を示す回路ブロック図で ある。

【符号の説明】

10 フィーダ

*12 リール

14 記憶部

16 端子部

18 LED

30、59 表面実装機

32 フィーダバンク

34 表面実装機が有するコンピュータ

36 表面実装機の端子

38 番地指定スイッチ

52 バーコードリーダ

54 記憶部ライタのコンピュータ

56 プローブ

57 台車

58 独立のコンピュータ

90 第1の送受信回路

92 第2の送受信回路

[図1]

(図1)

【図2】

*

(図 2)

【図3】 40 (図 3)

(図 4)

【図5】

(図 5)

【図7】

(図 7)

【図6】

Japanese Unexamined Patent Application Publication No. 11-317595

SPECIFICATION < EXCERPT>

[0028] FIG. 2 shows a surface mounter (component mounting apparatus) with a feeder according to an embodiment of the present invention. The surface mounter 30 picks up the components contained in the feeder by suction with a suction nozzle (not shown) and moves, and then mounts the components onto the circuit board. Moreover, the surface mounter 30 is provided with not only members required for mounting onto the circuit board but a feeder bank 32 and a computer (control unit) 34. The feeder bank 32 has sections for equipping one or more feeders 10. The feeder bank also has one or more terminals 36, each of which corresponds to one of the feeders 10. In the case where the terminal part 16 of the feeder contacts the terminal 36 of the surface mounter 30, the surface mounter identifies that the feeder has attached to its corresponding feeder slot. The terminal 36 also serves as a communication path between the surface mounter and the terminal unit 16 of the feeder 10.