732G33/83 – R-programmering

Föreläsning 1

Josef Wilzén

Linköpings Universitet

Föreläsning 1:

- Introduktion till kursen
- R, RStudio
- Introduktion till R-programering
 - Miniräknare
 - Variabler
 - Vektorer
 - Hjälp
 - Funktioner
 - Logik

Vilka är vi

Lärare:

- Josef Wilzén (examinator), ansvarig för del 1
- Johan Alenlöv, ansvarig för del 2

Labbassistenter:

- Algot Larsson Eskilsson
- Hampus Beijer
- Duy Thai Pham
- Joseph Mumper

Kursens mål

Information om kursen finns i kursplanen: länk

Lärandemål

Skapa enkla program i programspråket R med hjälp av grundläggande programmeringstekniker som inläsning och utskrift av data, tilldelning och manipulation av datastrukturer, skriva egna funktioner, upprepningar och villkorsstyrda satser. Tillämpningar i statistik.

4

Kursens mål

Information om kursen finns i kursplanen: länk

Lärandemål

Skapa enkla program i programspråket R med hjälp av grundläggande programmeringstekniker som inläsning och utskrift av data, tilldelning och manipulation av datastrukturer, skriva egna funktioner, upprepningar och villkorsstyrda satser. Tillämpningar i statistik.

Vi sammanfattar detta till

- Bli bekväm med att använda R
- Hantera data med R
- Skriva program i R

Tidigare år

Kollar man på tidigare kursutvärderingar har kursen fungerat bra. Antal svar 2024: 5/51=9.8~%

- 1. Kursens ämnesinnehåll har gett mig möjlighet att uppnå kursens lärandemål: 4,60
- 2. Kursens examinerande moment har varit relevanta i relation till kursens lärandemål: 4,25
- 3. Vilket helhetsbetyg ger du kursen? 4,40

Förändringar till detta år:

Mindre förändringar i föreläsningar, seminarier och datorlaborationer

5

Kursupplägg

Kursen består av två delar:

- Del 1: Grundläggande programering
- Del 2: Tillämpningar relaterade till statistik, grafik och datahantering

Kursupplägg

Kursen består av två delar:

- Del 1: Grundläggande programering
- Del 2: Tillämpningar relaterade till statistik, grafik och datahantering

Varje vecka

- Föreläsning
 - Nytt material och teorier
- 2 x laborationer
 - Jobba med uppgifter och inlämningar
- Seminarie från kursvecka 2
 - Koddemo, lösningar, svara på frågor
- Inlämningar:
 - Dels via Lisam, varannan söndag från kursvecka 3
 - Muntligt f\u00f6r l\u00e4rare/assistent under laborationerna

Del 1: Grundläggande programering

- Grunderna i R
 - Lära sig hantera RStudio
- Fyra föreläsningar
- 2 inlämningar
- Labbarna görs en och en

Del 2: Tillämpningar

- Statistisk analys med R
- Fyra föreläsningar
- 2 inlämningar + miniprojekt
- Labbarna och miniprojektet förs genom parprogrammering (grupper om två)

Del 2: Tillämpningar

- Statistisk analys med R
- Fyra föreläsningar
- 2 inlämningar + miniprojekt
- Labbarna och miniprojektet förs genom parprogrammering (grupper om två)

Jobba med materialet och skriv egen kod!

Praktisk information

Kurslogistik

Hemsidan innehåller föreläsningar, labbar m.m.

LISAM används för inlämning av labbar och kompletteringar

Teams används för kommunikation

Programvara

I denna kurs använder vi R och RStudio

Kurslitteratur I:

Kursboken

The Book Of R av Tilman M. Davies, 2016

Den finns som e-bok via biblioteket.

Artiklar

Dessa finns tillgängliga via kurshemsidan

- Dates and Times Made Easy with lubridate
- Handling and processing string in R
- Best practices for scientific computing

Kurslitteratur II:

Videoföreläsningar

- Google Developers videomaterial
- Roger Pengs föreläsningar

Länkar finns på kurshemsidan

Reference cards:

Olika referenskort med funktionsnamn och hjälp finns på kurshemsidan.

Examination

- Inlämningar, 4st
- Miniprojekt
- Datortentamen i datorsal
 - Hjälpmedel: R reference card (digitalt) + några fler. Information om vilka kommer komma på kurshemsidan. Dessa erhålls digitalt på tentamenstillfället, ni ska inte ta med er några papper.

Datorlaborationer

- Börja direkt
- Övningsuppgifter + inlämningsuppgifter
- Inlämningsuppgifterna är obligatoriska
- Ungefär 15 h arbete per vecka.
- Laborationsmall finns på hemsidan
- Laborationer lämnas in via LISAM
- Autorättning används på en del av uppgifterna, se till att följa instruktionerna.
 - Den ska visa helt rätt innan ni presenterar muntligt och laddar upp på Lisam.
 - Ta hjälp av labassistenter för att se till att detta sker.
- Muntlig redovisning där ni ska kunna förklara hur ni löst uppgiften
- 100% rätt för att bli godkänd

Datorlaborationer

Arbetstakt:

- Kursveckorna går måndag till söndag
- Kursen går på halvfart ~20h/vecka. Ungefär 15h/vecka till labbar.
- Mjuk deadline: söndag kväll varannan vecka från vecka 2 (föreslagen arbetstakt)
- Hård deadline: söndag kväll varannan vecka från vecka 3
- Kompletteringar:
 - Komplettering i samband med tentan och omtentor.
 - Möjlighet att redovisa lösningar då.

Generativ Al

- Generativ AI = program som kan generera text, bilder, ljud etc baserat på input/fråga
- Kan vara ett väldigt bra verktyg
- Förbjudet att använda generativ AI för inlämningar!
- Använd det gärna för:
 - Felmeddelanden
 - Förstå koncept
 - Hitta buggar

Studieteknik

- Ni har ansvar för er egen inlärning
- Detta kräver eget arbete kontinuerligt under kursen
- Programmering:
 - Teoretisk f\u00e4rdighet
 - Praktisk f\u00e4rdighet
- Skriv mycket kod!
- Räcker inte att bara jobba under laborationerna!
 - Kolla och jobba med materialet innan ni kommer.
- Förslag på upplägg för en vecka:
 - Föreläsning (2 h), seminarium (2 h)
 - Datorlaborationerna (4 h), läs kurslitteratur/se videor (1 h)
 - Eget arbete med datorlaborationerna (11 h)
 - = 20 h studietid

Lösa problem

- Lösa problem
- Hantera stora datormängder

- Lösa problem
- Hantera stora datormängder
- Replikerbarhet

- Lösa problem
- Hantera stora datormängder
- Replikerbarhet
- Komplexa beräkningar

- Lösa problem
- Hantera stora datormängder
- Replikerbarhet
- Komplexa beräkningar
- Automatisera

Programmering

- Programmering handlar om att beskriva för en dator vad den ska göra
- Kräver ett programmeringsspråk
 - Finns många olika språk med svagheter och styrkor
- Exempel:
 - Python
 - Javascript
 - C
 - Java
- För statistik/dataanalys
 - R
 - Python
 - Julia
 - Matlab

 $\blacksquare \ \ R \ \ \text{\"{ar}} \ \ \text{\it ett popul\"{art} programmeringsspråk} \ \ \text{\it för statistiker/dataanalytiker}$

- R är ett populärt programmeringsspråk för statistiker/dataanalytiker
- Öppen källkod

- R är ett populärt programmeringsspråk för statistiker/dataanalytiker
- Öppen källkod
- Många utvecklare

- R är ett populärt programmeringsspråk för statistiker/dataanalytiker
- Öppen källkod
- Många utvecklare
- Interpreterande högnivåspråk

Ett exempel på ett program i R

Skapa ett program som skriver ut talen från 10 till 1 och sen skriver "kör!".

Ett exempel på ett program i R

Skapa ett program som skriver ut talen från 10 till 1 och sen skriver "kör!".

I R ser det ut på följande sätt

```
start <- 10
for (i in 1:10) {
    print(start)
    start <- start - 1
}
print("Kör!")</pre>
```

Resultatet

```
Kör vi koden i R får vi följande resultat
```

```
## [1] 10
## [1] 9
## [1] 8
## [1] 7
## [1] 6
## [1] 5
##
  [1] 4
## [1] 3
## [1] 2
## [1] 1
## [1] "Kör!"
```

R och RStudio

- R är både ett program och ett programeringsspråk
- RStudio är en IDE för R
- Båda är gratis och går att ladda ner och installera på er egna dator.
 Se kurshemsidan för information.

Demo

Demo: RStudio

Datorsalarna: SU

- Datorlaborationerna sker i SU-salarna i B-huset
- Linuxdatorer
- Om det är ledigt är det bara att använda datorerna för självstudier.
- Går också bra att använda PC1-5 i E-huset

Datorsalarna: SU

Hur kommer man igång i datorsalarna

- 1. Logga in med Liu-ID och lösenord
- 2. Öppna en terminal
- Tryck ctrl+alt+T
- Eller högerklicka på skrivbordet och välj open terminal here
- 3. Skriv module add courses/732G33 i terminalen och tryck enter
- Gör så att ni får tillgång till all programvara som behövs i kursen
- 4. Skriv rstudio i terminalen och tryck enter

Att hitta hjälp

- Inbyggd hjälp i R
- Sök i Google / Generativ Al
- Sök på ENGELSKA
- Kolla på felmeddelandet

Error in eval(expr, envir, enclos) : object 'x' not found

Variabler och vektorer

- Variabler kan spara värden
 - Sätts med <- (eller ->)
- Vektorer är en samling av likadana element
 - Skapas med c()
 - Välj element med []

Exempel:

a <- 1

[1] 2 5

```
a

## [1] 1

testVektor <- c(2,3,5,7,11,13)

testVektor[c(1,3)]
```

Räkna med vektorer

Beräkningar sker elementvis

```
testVektor <- c(2,3,5,7,11,13)
testVektor+1
```

```
## [1] 3 4 6 8 12 14
```

Beräkningar mellan vektorer sker cykliskt

```
testVektor <- c(2,3,5,7,11,13)
testVektor+c(1,2)
```

```
## [1] 3 5 6 9 12 15
```

Olika typer av värden

- Värden kan vara en av flera olika typer
 - t.ex. heltal, flyttal, textsträngar etc.
- Dessa typer kallas atomära klasser
- Kan kolla vilken typ det är med typeof()
- Kan konvertera med as.

```
## [1] "4" "5" "6" "7" "8"
```

as.character(4:8)

Olika typer av värden

Beskrivning	Synonymer	typeof()	Exempel i R
Heltal (\mathbb{Z})	int	integer	-1, 0, 1
Reella tal (\mathbb{R})	real,	double	1.03,
	float		-2.872
Komplexa tal (\mathbb{C})	cplx	complex	1 + 2i
Logiska	boolean,	logical	TRUE
värden	bool		FALSE
Textsträngar	string,	character	En
	char		textsträng

Demo: Variabler

Demo: Variabler

Funktioner i R

- En funktion utför något \rightarrow har en specifik uppgift
- Tar noll eller flera argument
- Funktioner samlas i R-paket
- Många små funktioner, en funktion gör en sak.

Funktioner i R II

En funktion i R är uppbyggd av

- ett funktionsnamn, t.ex. area
- en funktionsdefinition: function()
- 0 eller flera argument, t.ex. hojd och bredd
- "måsvingar" { }
- kod, t.ex. area <- hojd * bredd
- returnera värde, t.ex. return(area)

Exempel på funktion i R

```
area <- function(hojd, bredd){</pre>
  area <- hojd * bredd
  return(area)
area(hojd = 2, bredd = 3)
## [1] 6
area(hojd = 5, bredd = 11)
## [1] 55
```

Demo: Funktioner

Demo: Funktioner

Lokal miljö

"Det som sker i en funktion stannar i funktionen"

```
f <- function(x, y){
   z <- 5
   svar <- z*x + y
   return(svar)
}</pre>
```

z och svar kan inte användas utanför funktionen.

Lokal miljö II

```
ls()
## [1] "a"
              "area"
                            "f"
                                        "i"
                                                    "star
## [6] "testVektor"
f(1,2)
## [1] 7
ls()
                            "f"
                                        "i"
## [1] "a"
              "area"
                                                    "star
## [6] "testVektor"
```

Att tänka på

- Funktionen måste läsas in innan den fungerar.
- return() avslutar funktionen
- Skriv funktionen i flera delar
 - Skriv kod som gör det du vill
 - Lyft in koden i funktionen
 - Pröva funktionen

Demo: Funktioner II

Demo: Funktioner II

markmyassignment

- R-paket för att rätta uppgifter
- Används i kursen för en första koll om ni har gjort rätt
- Ska visa alla rätt innan ni reodivsar och lämnar in
 - En inlämning som inte ger alla rätt kommer inte godkännas!
 - Följ instruktionerna noggrant så blir det mycket lättare.

Demo: markmyassignment

Logik

- Logik är vanligt i programmering
 - Används i if-satser
- I R finns de logiska värdena TRUE, FALSE, och NA
- Skapas på två olika sätt
 - Som vanliga vektorer
 - Genom relationsoperatorer
- Kan användas för att välja element i vektorer

Logik i R

Kan skapa en vektor med värdena TRUE och FALSE

```
testVektor <- c(2,3,5,7,11,13)
boolVektor <- c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)</pre>
```

```
testVektor[boolVektor]
```

Logik i R

Kan skapa en vektor med värdena TRUE och FALSE

```
testVektor <- c(2,3,5,7,11,13)
boolVektor <- c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)</pre>
```

```
testVektor[boolVektor]
```

```
## [1] 2 7 13
```

Logik i R

Kan skapa en vektor med värdena TRUE och FALSE

```
testVektor <- c(2,3,5,7,11,13)
boolVektor <- c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)</pre>
```

testVektor[boolVektor]

[1] 2 7 13

Kan också skapa vektor genom en relation

```
testVektor > 5
```

[1] FALSE FALSE FALSE TRUE TRUE TRUE

Relationsoperatorer

- Relationer används för att jämförelser
- Skapar logiska vektorer

Beskrivning	Operatorer i R
Lika med	==
Inte lika med	! =
Större än	>
Mindre än	<
Större än eller lika med	>=
Mindre än eller lika med	<=
Finns i	%in%

Logiska operatorer

- Boolsk algebra
- Operatorer:

Operator	Symbol	Operator i R		
och	\wedge	&		
eller	\vee	1		
inte	\neg	!		

Logiska operatorer

- Boolsk algebra
- Operatorer:

Operator	Symbol	Operator i R		
och	\wedge	&		
eller	\vee	1		
inte	\neg	!		

Symbol	Α	В	$\neg A$	$A \wedge B$	$A \vee B$
i R	A	В	! A	A & B	A B
	TRUE	TRUE	FALSE	TRUE	TRUE
	TRUE	FALSE	FALSE	FALSE	TRUE
	FALSE	TRUE	TRUE	FALSE	TRUE
	FALSE	FALSE	TRUE	FALSE	FALSE

Demo: Logik

Demo: Logik

Logik exempel

```
testVektor <- c(2,3,5,7,11,13,17,19,23,29,31)
boolVektor <- testVektor < 6 | !(testVektor < 20)
```

Vad blir följande uttryck?

testVektor[boolVektor]

Logik exempel

[1] 2 3 5 23 29 31

```
testVektor <- c(2,3,5,7,11,13,17,19,23,29,31)
boolVektor <- testVektor < 6 | !(testVektor < 20)

Vad blir följande uttryck?

testVektor[boolVektor]
```