AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the present application.

IN THE CLAIMS:

Claim 1. (Canceled).

Claim 2. (Previously Presented) The method according to claim 24, wherein the nucleotide sequence is operably ligated to a promoter sequence and a terminator sequence both of which are functional in the plant cell.

Claims 3-4. (Canceled).

Claim 5. (Previously Presented) The method according to claim 24, wherein the weed control compound inhibits porphyrin biosynthesis of a plant.

Claim 6. (Previously Presented) The method according to claim 24, wherein the weed control compound is a protoporphyrinogen IX oxidase inhibitory-type herbicidal compound.

Claims 7-23. (Canceled).

Claim 24. (Previously Presented) A method for producing a transgenic plant which is resistant to a weed control compound, comprising the steps of:

introducing into a plant cell, a nucleotide sequence encoding a variant of plant protoporphyrinogen IX oxidase that lacks the FAD binding sequence;

expressing the nucleotide sequence; and regenerating said plant cell into a transgenic plant.

Claim 25. (Previously Presented) The method according to Claim 24, wherein the variant of plant protoporphyrinogen IX oxidase is derived from soybean.

Claims 26-42. (Canceled).

Claim 43. (Previously Presented) A weed control compoundresistant plant produced by the method of claim 24.

Claim 44. (Canceled).

Claim 45. (Previously Presented) A method for protecting a plant which comprises applying a weed control compound to a growth area of the plant of claim 43.

Claim 46. (Canceled).

Claim 47. (Original) A method for selecting a plant which comprises applying a weed control compound to which the plant of claim 43 is resistant to a growth area of the plant of claim 43 and other plants, and selecting either plant on the basis of difference in growth between the plants.

Claim 48. (Canceled).

Claim 49. (Original) The method according to claim 47, wherein the plants are plant cells.

Claim 50. (Canceled).

Claim 51. (Currently Amended) The method according to claim 24, wherein the weed control compound is a protoporphyrinogen IX

oxidase inhibitory-type herbicidal compound selected from the compounds of (1) to (3) below:

- (1) chlormethoxynil, bifenox, chlornitrofen, acifluorfen and its ethyl ester, acifluorfen-sodium, oxyfluorfen, oxadiazon, 2-[4-chloro-2-fluoro-5-(prop-2-ynyloxy)phenyl]-2,3,4,5,6,7 hexahydro-1H-isoindol-1,3-dione, chlorphthalim, TNPP-ethyl, or N3-(1-phenylethyl)-2,6-dimethyl-5-propyonylnicotinamide;
- (2) a compound represented by the general formula: J-G (I), wherein G is a group represented by any one of the following general formulas G-1 to G-9 and J is a group represented by any one of the following general formulas J-1 to J-30:

*.		
\mathbb{R}^2 \mathbb{R}^3	R ⁴ R ⁵ X R ¹	R ¹ R ³
G-1	G-2	G-3
R ^a Y	\mathbb{R}^{1}	R ^t Y R ^t R ^s
G-4	G−5	G-6
R^{1} R^{2}	R ⁷ S N R ⁸ R ³	R ⁸ Q Q Q R ⁴ R ⁷
G-7	G-8	G-9

J-1⁻

J-2

J-24

J-23

·J-22

wherein the dotted lines in the formulas J-5, J-6, J-12 and J-24 represent that the left hand ring contains only single bonds, or one bond in the ring is a double bond between carbon atoms;

X is oxygen atom or sulfur atom;

Y is oxygen atom or sulfur atom;

R1 is hydrogen atom or halogen atom;

R2 is hydrogen atom, C1-C8alkyl group, C1-C8 haloalkyl group, halogen atom, OH group, OR27 group, SH group, S(0)pR27 group, COR27 group, COR27 group, C(0)SR27 group, C(0)NR29R30 group, CHO group, CR27-NOR36 group, CH-CR37CO2R27 group, CH2CHR37CO2R27 group, CO2N-CR31R32 group, nitro group, cyano group, NHSO2R33 group, NHSO2NHR33 group, NR27R38 group, NH2 group or phenyl group optionally substituted with one or more and the same or different C1-C4 alkyl groups;

pis 0, 1 or 2;

R3 is C1-C2 alkyl group, C1-C2 haloalkyl group, OCH3 group, SCH3 group, OCHF2 group, halogen atom, cyano group or nitro group;

R4 is hydrogen atom, C1-C3 alkyl group, C1-C3 haloalkyl group or halogen atom;

R5 is hydrogen atom, C1-C3 alkyl group, halogen atom, C1-C3 haloalkyl group, cyclopropyl group, vinyl group, C2 alkynyl group, cyano group, C(0)R38 group, C02R38 group, C(0)NR38R39 group, CR34R35CN group, CR34R35C(0)R38 group, CR34R35CO2R38 group, CR34R35C(0)NR38R39 group, CHR34OH group, CHR34OC(0)R38 group or OCHR34OC(0)NR38R39 group, or, when G is G-2 or G-6, R4 and R5 may form C=0 group together with the carbon atom to which they are attached;

-W1 is nitrogen atom or CH group; T is a group represented by any one of the following general formulas T-1, T-2 and T-3; R¹ is hydrogen atom or halogen atom; R^2 is hydrogen atom, C_1-C_8 alkyl group, C_1-C_8 haloalkyl group, halogen atom, OH group, OR²⁷ group, SH group, S(O)_pR²⁷ group, COR^{27} group, CO_2R^{27} group, $C(O)SR^{27}$ group, $C(O)NR^{29}R^{30}$ group, CHO group, $CR^{27}=NOR^{36}$ group, $CH=CR^{37}CO_2R^{27}$ group, $CH_2CHR^{37}CO_2R^{27}$ group, CO₂N=CR³¹R³² group, nitro group, cyano group, NHSO₂R³³ group, NHSO₂NHR³³ group, NR²⁷R³⁸ group, NH₂ group or phenyl group optionally substituted with one or more and the same or different C_1 - C_4 alkyl groups; p is 0, 1 or 2; R^3 is C_1-C_2 alkyl group, C_1-C_2 haloalkyl group, OCH₃ group, SCH₃ group, OCHF₂ group, halogen atom, cyano group or nitro group; \mathbb{R}^4 is hydrogen atom, \mathbb{C}_1 - \mathbb{C}_3 alkyl group, \mathbb{C}_1 - \mathbb{C}_3 haloalkyl group or halogen atom; R^5 is hydrogen atom, C_1-C_3 alkyl group, halogen atom, C_1-C_3 haloalkyl group, cyclopropyl group, vinyl group, C2 alkynyl group, cyano group, $C(0)R^{38}$ group, CO_2R^{38} group, $C(0)NR^{38}R^{39}$ group, $CR^{34}R^{35}CN$ group, $CR^{34}R^{35}C(0)R^{38}$ group, $CR^{34}R^{35}CO_2R^{38}$ group, $CR^{34}R^{35}C(0)NR^{38}R^{39}$ group, CHR³⁴OH group, CHR³⁴OC(O)R³⁸ group or OCHR³⁴OC(O)NR³⁸R³⁹ group,

group, C_1 - C_6 haloalkoxy group, C_2 - C_6 alkylcarbonyloxy group or C_2 - C_6
haloalkylcarbonyloxy group;
each R^{10} is independently hydrogen atom, C_1 - C_3 alkyl
group, hydroxyl group or halogen atom;
${\bf R}^{11}$ and ${\bf R}^{12}$ are independently hydrogen atom, halogen atom,
C_1-C_6 alkyl group, C_3-C_6 alkenyl group or C_1-C_6 haloalkyl group;
R^{13} is hydrogen atom, C_1-C_6 alkyl group, C_1-C_6 haloalkyl
group, C_3-C_6 alkenyl group, C_1-C_6 haloalkenyl group, C_3-C_6 alkynyl
group, C_3-C_6 haloalkynyl group, $HC(=0)$ group, $(C_1-C_4$ alkyl) $C(=0)$
group or NH ₂ group;
R ¹⁴ is C_1 - C_6 alkyl group, C_1 - C_6 alkylthio group, C_1 - C_6
haloalkyl group or N(CH ₃) ₂ group;
W is nitrogen atom or CR ¹⁵ ;
\mathbb{R}^{15} is hydrogen atom, \mathbb{C}_{1} - \mathbb{C}_{6} alkyl group, halogen atom, or
phenyl group optionally substituted with C_1-C_6 alkyl group, one or
two halogen atoms, C ₁ -C ₆ alkoxy group or CF ₃ group;
each Q is independently oxygen atom or sulfur atom;
Q^1 is oxygen atom or sulfur atom;
Z ¹ is $CR^{16}R^{17}$ group, oxygen atom, sulfur atom, S(0) group,
$S(0)_2$ group or $N(C_1-C_4$ alkyl) group;
each R ¹⁶ is independently hydrogen atom, halogen atom,
hydroxyl group CC. alkoyy group CC. haloalkyl group C.C.

`}

haloalkoxy g	roup,	C ₂ -C ₆ _	alkylcarbonylo	xy group	or	C ₂ -C ₆
haloalkylcarbo	nyloxy c	group;				
each	R ¹⁷ is i	indepen	dently hydrogen	atom, hydr	oxyl gr	oup or
halogen atom;						
R ¹⁸ :	is <u>C</u> 1-C6_	alkyl	group, halogen a	atom or C ₁	-C ₆ halc	alkyl
group;						
R ¹⁹ a	and R ²⁰ a	are ind	lependently hydr	ogen atom	, C ₁ -C ₆ _	alkyl
group, or C ₁ -C	6 haloal	kyl gro	oup;			
Z ² i	s oxygen	atom,	sulfur atom, NR	⁹ group or	CR ⁹ R ¹⁰ c	group;
R ²¹	and R ²²	are in	ndependently C_1	-C ₆ alkyl	group,	<u>C</u> 1 <u>-C</u> 6
haloalkyl grou	p, C ₃ -C ₆	alkeny	l group, C ₃ -C ₆ h	aloalkenyl	group,	<u>C</u> 3-C ₆
alkynyl group	or C ₃ -C ₆	haloal	kynyl group;			
R ²³ i	s hydro	gen ato	om, halogen atom	or cyano	group;	
R ²⁴ j	<u> </u>	alkylsı	ulfonyl group, (C ₁ -C ₆ alkyl	group,	<u>C</u> 1 <u>-C</u> 6
haloalkyl grou	1p, C ₃ -C ₆	₆ alker	nyl group, C ₃ -C ₆	alkynyl	group,	<u>C</u> 1-C ₆
alkoxy group,	<u>C₁-C₆ ha</u>	loalkox	y group or halo	gen atom;		
R ²⁵	is C ₁ -C ₆	alkyl	group, C ₁ -C ₆ h	naloalkyl	group,	
alkenyl group	or C ₃ -C ₆	alkyny	l group;			
R ²⁶ i	s C ₁ -C ₆	alkyl o	group, C ₁ -C ₆ halo	oalkyl gro	up or p	henyl
group optional	ly subst	ituted	with C ₁ -C ₆ alky	vl, one or	two ha	logen
atoms, one or	two nitr	o grou	ps, C ₁ -C ₆ alkoxy	group or	CF₃ gro	up;
W ¹ is	s nitrog	en ator	m or CH group;			

T is a group represented by any one of the following general formulas T-1, T-2 and T-3;

(wherein E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11 and E12 are independently hydrogen atom or C1-C3 alkyl group);

R27 is C1-C8 alkyl group, C3-C8 cycloalkyl group, C3-C8 alkenyl group, C3-C8 alkynyl group, C1-C8 haloalkyl group, C2-C8 alkoxyalkyl group, C2-C8 alkylsulfinylalkyl group, C2-C8 alkylsulfonylalkyl group, C1-C8 alkylsulfonylalkyl group, C1-C8 alkylsulfonyl group, phenylsulfonyl group whose phenyl ring may be substituted with at least one substituent selected from the group consisting of halogen atom and C1-C4 alkyl group, C4-C8 alkoxyalkoxyalkyl group, C4-C8 cycloalkylalkyl group, C4-C8 cycloalkoxyalkyl group, C4-C8 alkenyloxyalkyl group, C4-C8 alkynyloxyalkyl group, C4-C8 haloalkoxyalkyl group, C4-C8 cycloalkylalkyl group, C4-C8 cycloalkylthioalkyl group, C4-C8 alkenyloxyalkyl group, C4-C8 alkenyloxyalkyl group, C4-C8 cycloalkylthioalkyl group, C4-C8 alkenylthioalkyl group, C4-C8 alkenylthioalkyl group, C4-C8 alkynylthioalkyl group, C4-C8 alkenylthioalkyl group, C4-C8 alkynylthioalkyl group, C

group whose ring is substituted with at least one substituent selected from the group consisting of halogen atom, C1-C3 alkyl group and C1-C3 haloalkyl group, benzyloxy group whose ring is substituted with at least one substituent selected from the group consisting of halogen atom, C1-C3 alkyl group and C1-C3 haloalkyl group, C4-C8 trialkylsilylalkyl group, C3-C8 cyanoalkyl group, C3-C8 halocycloalkyl group, C3-C8 haloalkenyl group, C5-C8 alkoxyalkenyl group, C5-C8 haloalkoxyalkenyl group, C5-C8 alkylthioalkenyl group, C3-C8 haloalkynyl group, C5-C8 alkoxyalkynyl group, C5-C8 haloalkoxyalkynyl group, C5-C8 alkylthioalkynyl group, C2-C8 alkylcarbonyl group, benzyl group whose ring is substituted with at least one substituent selected from the group consisting of halogen atom, C1-C3 alkyl group and C1-C3 haloalkyl group, CHR34COR28 group, CHR34COOR28 group, CHR34P(O) (OR28) 2 group, CHR34P(S) (OR28) 2 group, CHR34C(O) NR29R30 group or CHR34C(O)NH2 group;

R28 is C1-C6 alkyl group, C2-C6 alkenyl group, C3-C6 alkynyl group or tetrahydrofuranyl group;

R29 and R31 are independently hydrogen atom or C1-C4

R30 and R32 are independently C1-C4 alkyl group or phenyl group whose ring may be substituted with at least one substituent

selected from the group consisting of halogen atom, C1-C3 alkyl group and C1-C3 haloalkyl group; or, R29 and R30 together may form - (CH2)5-, - (CH2)4--or-CH2CH2OCH2CH2-, or the ring thus formed may be substituted with at least one substituent selected from the group consisting of C1-C3 alkyl group, phenyl group and benzyl group; or, R31 and R32 may from C3-C8 cycloalkyl group together with the carbon atom to which they are attached; R33 is C1-C4 alkyl group, C1-C4 haloalkyl group or C3-C6 alkenyl group; R34 and R35 are independently hydrogen atom or C1-C4 alkyl group; R36 is hydrogen atom, C1-C6 alkyl group, C3-C6 alkenyl group or C3-C6 alkynyl group; R37 is hydrogen atom, C1-C4 alkyl group or halogen atom; R38 is hydrogen atom, C1-C6 alkyl group, C3-C6 cycloalkyl group, C3-C6 alkenyl group, C3-C6 alkynyl group, C2-C6 alkoxyalkyl group, C1-C6 haloalkyl group, phenyl group whose ring may be substituted with at least one substituent selected from the group consisting of halogen atom, C1-C4 alkyl group and C1-C4 alkoxy group, -CH2CO2(C1-C4 alkyl) group or -CH(CH3)CO2(C1-C4 alkyl) group;

alkylsulfonyl group, phenylsulfonyl group whose phenyl ring may be substituted with at least one substituent selected from the group consisting of halogen atom and C_1 - C_4 alkyl group, C_4 - C_8 alkoxyalkoxyalkyl group, C_4 - C_8 cycloalkylalkyl group, C_6 - C_8 cycloalkoxyalkyl group, C_4 - C_8 alkenyloxyalkyl group, C_4 - C_8

alkynyloxyalkyl group, C_3-C_8 haloalkoxyalkyl group, C_4-C_8 haloalkenyloxyalkyl group, C_4-C_8 haloalkynyloxyalkyl group, C_6-C_8 cycloalkylthioalkyl group, C_4-C_8 alkenylthioalkyl group, C_4-C_8 alkynylthioalkyl group, C₁-C₄ alkyl group substituted with phenoxy group whose ring is substituted with at least one substituent selected from the group consisting of halogen atom, C_1 - C_3 alkyl group and C_1-C_3 haloalkyl group, benzyloxy group whose ring is substituted with at least one substituent selected from the group consisting of halogen atom, C_1-C_3 alkyl group and C_1-C_3 haloalkyl group, C_4-C_8 trialkylsilylalkyl group, C_3-C_8 cyanoalkyl group, C_3-C_8 halocycloalkyl group, C_3-C_8 haloalkenyl group, C_5-C_8 alkoxyalkenyl group, C₅-C₈ haloalkoxyalkenyl group, C₅-C₈ alkylthioalkenyl group, C_3-C_8 haloalkynyl group, C_5-C_8 alkoxyalkynyl group, C_5-C_8 haloalkoxyalkynyl group, C_5-C_8 alkylthioalkynyl group, C_2-C_8 alkylcarbonyl group, benzyl group whose ring is substituted with at least one substituent selected from the group consisting of halogen atom, C_1-C_3 alkyl group and C_1-C_3 haloalkyl group, $CHR^{34}COR^{28}$ group, $CHR^{34}COOR^{28} \quad group, \quad CHR^{34}P(O) (OR^{28})_2 \quad group, \quad CHR^{34}P(S) (OR^{28})_2 \quad group,$ CHR³⁴C(O)NR²⁹R³⁰ group or CHR³⁴C(O)NH₂ group;

 R^{28} is C_1-C_6 alkyl group, C_2-C_6 alkenyl group, C_3-C_6 alkynyl group or tetrahydrofuranyl group;

substituted with at least one substituent selected from the group consisting of halogen atom, C_1 - C_4 alkyl group and C_1 - C_4 alkoxy group, $-CH_2CO_2(C_1-C_4$ alkyl) group or $-CH(CH_3)CO_2(C_1-C_4$ alkyl) group;

R³⁹ is hydrogen atom, C_1 - C_2 alkyl group or $C(0)O(C_1-C_4$ alkyl) group;

R⁴⁰ is hydrogen atom, C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group or NH(C_1 - C_6 alkyl) group;

R⁴¹ is C_1 - C_6 alkyl group, C_1 - C_6 haloalkyl group, C_1 - C_6 alkoxy group, NH(C_1 - C_6 alkyl) group, phenyl group whose ring may be substituted with one substituent selected from the group consisting of R⁴² group, benzyl group and C_2 - C_8 dialkylamino group; and

 R^{42} is C_1-C_6 alkyl group, one or two halogen atoms, C_1-C_6 alkoxy group or CF_3 group;

(3) a compound of the formula (II):

or nipilacrofen,

wherein R43 is C1-C4 alkyl group;

R44 is C1-C4 alkyl group, C1-C4 alkylthio group, C1-C4 alkoxy group, C1-C4 haloalkyl group, C1-C4 haloalkylthio group or C1-C4 haloalkoxy group;

R⁴⁵ is hydrogen atom or halogen atom;

 R^{46} is hydrogen atom or C_1-C_4 alkyl group;

 R^{47} is hydrogen atom, nitro group, cyano group, $-COOR^{49}$ group, $-C (=X) NR^{50}R^{51}$ group or $-C (=X^2) R^{52}$ group;

R⁴⁸ is hydrogen atom, halogen atom, cyano group, C₁-C₄ alkyl group optionally substituted with at least one substituent selected from the group consisting of halogen atom and hydroxyl group, C₁-C₄ alkoxy group, phenyl group optionally substituted with at least one substituent selected from the group consisting of halogen atom, nitro group, cyano group, C₁-C₄ alkyl group, C₁-C₄ alkyl group, C₁-C₄ alkoxy group and halo-C₁-C₄ alkyl group, pyrrolyl group, C₂-C₈ alkyl group, C₃-C₈ alkenyl group, C₃-C₈ alkoxy group, a group selected from the group consisting of C₂-C₈ alkyl group, C₃-C₈ alkenyl group, C₃-C₈ alkoxy group into which at least one oxygen atom is inserted, or any one of groups represented by the following formulas:

$$-NR^{53}R^{54} -NR^{55}GR^{56} -N(GR^{57})_{2} -N[(GH_{2})_{a}GR^{57}]_{2}$$

$$-NR^{53}R^{54} -NR^{55}GR^{56} -N(GR^{57})_{2} -N[(GH_{2})_{a}GR^{57}]_{2}$$

$$-NR^{53}R^{54} -NR^{55}GR^{56} -N(GR^{57})_{2} -N[(GH_{2})_{a}GR^{57}]_{2}$$

$$-NR^{55}R^{54} -N(GR^{57})_{2} -N[(GH_{2})_{a}GR^{57}]_{2}$$

wherein R49, R50 and R52 are, the same or different,
hydrogen atom or C1-C4 alkyl group;

R50 and R51 may form saturated alicyclic 5 or 6 membered
ring together with the nitrogen atom to which they are attached;

R52 is hydrogen atom, C1-C4 alkyl group or C1-C4 alkyl
group substituted with at least one halogen atom;

R53 is hydrogen atom, C1-C4 alkyl group optionally
substituted with at least one halogen atom, C2-C6 alkenyl group
optionally substituted with at least one halogen atom, C3-C6
alkynyl group optionally substituted with at least one halogen

atom, phenyl group optionally substituted with at least one halogen atom, C3-C8 cycloalkyl group, cyanomethyl group, or R63C0- group; R54 is hydrogen atom, C1-C6 alkyl group optionally substituted with at least one halogen atom, C2-C6 alkenyl group optionally substituted with at least one halogen atom, C3-C6 alkynyl group optionally substituted with at least one halogen atom, phenyl group optionally substituted with halogen atom, C3-C8 cycloalkyl group, cyanomethyl group, C1-C4 alkoxy-C1-C6 alkyl group, di-C1-C4 alkylamino-C1-C4 alkyl group, tetrahydrofurfurylmethyl group, C3-C6 alkynyloxy-C1-C4 alkyl group, benzyl whose ring may be substituted with substituent selected from the group consisting of halogen atom, nitro group, cyano group, C1-C4 alkyl group, C1-C4 alkoxy group and halo-C1-C4 alkyl group, -C(-X2)R63 group, -(CH2)a-(O)d-R70 group, -(CH2)a-O-(CH2)b-R70group, -(CH2)a-X2-R76 group;

R53 and R54 together with the nitrogen atom to which they are attached may form saturated alicyclic 3, 5 or 6 membered ring or aromatic 5 or 6 membered ring in which a carbon atom may be optionally replaced with oxygen atom;

R55 is hydrogen atom, C1-C4 alkyl group, C2-C6 alkenyl group or C3-C6 alkynyl group, or R55 and R56 together may form - (CH2)e-;

R56 and R57 are independently C1-C4 alkyl group optionally substituted with at least one halogen atom, C2-C6 alkenyl group optionally substituted with at least one halogen atom, C3-C6 alkynyl optionally substituted with at least one halogen atom or phenyl group optionally substituted with at least one halogen atom, hydrogen atom, C3-C6 cycloalkyl group, XR60 group or -NR61R62 group; R58 is hydrogen atom, C1-C6 alkyl group, C2-C6 alkenyl group, C3-C6 alkynyl group, C1-C4 alkylcarbonyl group, cyano-C1-C3 alkyl group, C1-C4 alkoxycarbonyl-C1-C4 alkyl group, di-C1-C4 alkoxycarbonyl-C1-C4 alkyl group, benzyl group, C1-C4 alkoxy-C1-C4 alkynyl group, -(CH2)a-R75 group, -(CH2)a-X2-R72 group, -(CH2)a-X2-(CH2) b-R72 group or -(CH2) a-X2-(CH2) b-X2-(CH2) c-R72 group; - R59 is hydrogen atom, C1-C4 alkyl group, C2-C6 alkenyl group, C3-C6 alkynyl group, cyano-C1-C3 alkyl group, C1-C4 alkylcarbonyl-C1-C3 alkyl group or phenyl group; R60 is C1-C4 alkyl group optionally substituted with at least one halogen atom; -R61 and R62 are, the same or different, hydrogen atom or C1-C4 alkyl group; R63 is C1-C4 alkyl group optionally substituted with at

least one halogen atom, C1-C4 alkoxy-C1-C4 alkyl group, C1-C4

group optionally substituted with at least one halogen atom, C_3-C_8 cycloalkyl group, cyanomethyl group, or $R^{63}CO-$ group;

R⁵⁴ is hydrogen atom, C_1 - C_6 alkyl group optionally substituted with at least one halogen atom, C_2 - C_6 alkenyl group optionally substituted with at least one halogen atom, C_3 - C_6 alkynyl group optionally substituted with at least one halogen atom, phenyl group optionally substituted with halogen atom, C_3 - C_6 cycloalkyl group, cyanomethyl group, C_1 - C_4 alkoxy- C_1 - C_6 alkyl group, di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl group, tetrahydrofurfurylmethyl group, C_3 - C_6 alkynyloxy- C_1 - C_4 alkyl group, benzyl whose ring may be substituted with substituent selected from the group consisting of halogen atom, nitro group, cyano group, C_1 - C_4 alkyl group, C_1 - C_4 alkyl group, C_1 - C_4 alkyl group, C_1 - C_4 alkoxy group and halo- C_1 - C_4 alkyl group, C_1 - C_4 alkyl group, C_1 - C_4 alkoxy group, C_1 - C_4 alkyl group, C_1 - C_4 alkyl group, C_1 - C_4 alkoxy group, C_1 - C_4 alkyl group, C_1 -C

R⁵³ and R⁵⁴ together with the nitrogen atom to which they are attached may form saturated alicyclic 3, 5 or 6 membered ring or aromatic 5 or 6 membered ring in which a carbon atom may be optionally replaced with oxygen atom;

 R^{55} is hydrogen atom, C_1-C_4 alkyl group, C_2-C_6 alkenyl group or C_3-C_6 alkynyl group, or R^{55} and R^{56} together may form - $(CH_2)_e$ -;

 R^{56} and R^{57} are independently $C_1 - C_4$ alkyl group optionally substituted with at least one halogen atom, C_2 - C_6 alkenyl group optionally substituted with at least one halogen atom, C₃-C₆ alkynyl optionally substituted with at least one halogen atom or phenyl group optionally substituted with at least one halogen atom, hydrogen atom, C₃-C₆ cycloalkyl group, -XR⁶⁰ group or -NR⁶¹R⁶² group; R^{58} is hydrogen atom, C_1-C_6 alkyl group, C_2-C_6 alkenyl group, C_3-C_6 alkynyl group, C_1-C_4 alkylcarbonyl group, cyano- C_1-C_3 alkyl group, C_1-C_4 alkoxycarbonyl- C_1-C_4 alkyl group, $di-C_1-C_4$ alkoxycarbonyl-C₁-C₄ alkyl group, benzyl group, C₁-C₄ alkoxy-C₁-C₄ alkynyl group, $-(CH_2)_a-R^{75}$ group, $-(CH_2)_a-X^2-R^{72}$ group, $-(CH_2)_a-X^2-R^{72}$ $(CH_2)_b - R^{72}$ group or $-(CH_2)_a - X^2 - (CH_2)_b - X^2 - (CH_2)_c - R^{72}$ group; R^{59} is hydrogen atom, $C_1 - C_4$ alkyl group, $C_2 - C_6$ alkenyl group, C_3-C_6 alkynyl group, cyano- C_1-C_3 alkyl group, C_1-C_4 alkylcarbonyl-C₁-C₃ alkyl group or phenyl group; R^{60} is C_1-C_4 alkyl group optionally substituted with at least one halogen atom; R^{61} and R^{62} are, the same or different, hydrogen atom or C₁-C₄ alkyl group; R^{63} is C_1 - C_4 alkyl group optionally substituted with at <u>least</u> one halogen atom, C_1-C_4 alkoxy- C_1-C_4 alkyl group, C_1-C_4 alkylthio-C₁-C₄ alkyl group, C₃-C₆ cycloalkyl group, phenyl group

whose ring may be substituted with one substituent selected from
the group consisting of halogen atom, nitro group, cyano group, C_1 -
C_4 alkyl group, C_1 - C_4 alkoxy group and halo- C_1 - C_4 alkyl group, -
$NR^{73}R^{74}$ group or $-(CH_2)_a - (O)_d - R^{75}$ group;
\mathbb{R}^{64} is \mathbb{C}_1 - \mathbb{C}_4 alkoxycarbonyl group or carboxyl group;
R^{65} is chloromethyl group, cyanomethyl group, C_3-C_6
cycloalkyl group into which at least one oxygen atom may be
inserted, or C_1-C_4 alkoxycarbonyl- C_1-C_4 alkyl group;
R ⁶⁶ is hydroxyl group or -NR ⁶⁷ R ⁶⁸ group;
A is $-NR^{67}R^{68}$ group or $-S(O)_f-R^{69}$ group;
\mathbb{R}^{67} and \mathbb{R}^{68} are, the same or different, hydrogen atom or
C ₁ -C ₄ alkyl group;
\mathbb{R}^{69} is \mathbb{C}_1 - \mathbb{C}_4 alkyl group or \mathbb{C}_1 - \mathbb{C}_4 haloalkyl group;
R^{70} is hydrogen atom, hydroxyl group, halogen atom, $C_1 - C_4$
alkyl group optionally substituted with at least one C_1-C_4 alkoxy
group, C_3 - C_6 cycloalkyl group into which at least one oxygen atom
may be inserted, C_3-C_6 cycloalkyl group optionally substituted with
one or two methyl groups, furyl group, thienyl group or $-C(=0)R^{71}$
group;
\mathbb{R}^{71} and \mathbb{R}^{72} are, the same or different, \mathbb{C}_1 - \mathbb{C}_4 alkyl group
or C ₁ -C ₄ alkoxy group;

Application No. 09/697,719

R⁷³ and R⁷⁴ are, the same or different, C₁-C₄ alkyl group or phenyl group;

R⁷⁵ is C₃-C₆ cycloalkyl into which at least one oxygen atom may be inserted, C₃-C₆ cycloalkyl group optionally substituted with one or two methyl groups, furyl group, thienyl group or
C(=0)R⁷¹ group;

R⁷⁶ is C₁-C₄ alkyl group;

a, b and c is independently 1, 2 or 3;

d is 0 or 1;

e is 2 or 3;

f is 1 or 2; and

X² is oxygen atom or sulfur atom.

Claims 52-69. (Canceled).

Claim 70. (Previously Presented) The method according to claim 24, wherein said variant further lacks the chloroplast transit signal.