

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : E21B 43/10, 43/30	A1	(11) International Publication Number: WO 99/06670 (43) International Publication Date: 11 February 1999 (11.02.99)
--	----	--

(21) International Application Number: PCT/EP98/04984	(81) Designated States: AL, AM, AT, AU; AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 31 July 1998 (31.07.98)	
(30) Priority Data: 97305832.4 1 August 1997 (01.08.97) EP	
(71) Applicant (for all designated States except CA): SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. [NL/NL]; Carel van Bylandlaan 30, NL-2596 HR The Hague (NL).	
(71) Applicant (for CA only): SHELL CANADA LIMITED [CA/CA]; 400 - 4th Avenue S.W., Calgary, Alberta T2P 2H5 (CA).	
(72) Inventors: CUMMING, Francis, Alexander; Volmerlaan 8, NL-2288 GD Rijswijk (NL). FISHER, Simon, Lawrence; Volmerlaan 8, NL-2288 GD Rijswijk (NL). STEWART, Robert, Bruce; Volmerlaan 8, NL-2288 GD Rijswijk (NL).	

(54) Title: CREATING ZONAL ISOLATION BETWEEN THE INTERIOR AND EXTERIOR OF A WELL SYSTEM

(57) Abstract

A method is provided for creating a zonal isolation between the exterior and interior of an uncased section of an underground well system which is located adjacent to a well section in which a well casing is present. The method comprises inserting an expandable tubular through the existing well casing into an uncased section, such as a lateral branch, of the underground well system and subsequently expanding the expandable tubular such that said one end is pressed towards the wall of the uncased section of the well system and the outer surface of said other end is pressed against the inner surface of the well casing thereby creating an interference fit capable of achieving a shear bond and a hydraulic seal between said surrounding surfaces.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

CREATING ZONAL ISOLATION BETWEEN THE INTERIOR AND
EXTERIOR OF A WELL SYSTEM

Background of the invention

The invention relates to a method of creating zonal isolation between the interior and exterior of an uncased section of an underground well system which is located adjacent to a well section in which a well casing is present.

It is known in the art to create such zonal isolation by inserting a casing having a smaller diameter than the existing well casing into the uncased section of the borehole such that said small diameter casing extends through and beyond the existing well casing whereupon the small diameter casing is cemented into place.

If the uncased section of the underground well system is formed by a lateral borehole that extends from a well section in which a well casing is present then it is known to create zonal isolation by inserting a casing or liner through an opening that has been milled in the wall of the well casing and then cementing said casing or liner into place. A difficulty of this known technique is that the milled opening generally has an irregular shape and that the cement that is pumped into the annulus around the casing or liner is not always equally distributed into the annular and provides an imperfect seal.

A general difficulty with the known zonal isolation cementing techniques is that they require an annulus having a significant width to create a cement body of uniform thickness and strength which results in a significant reduction of diameter of the completed well

and consequent limitations of the well production capacity.

A method in accordance with the preamble of claim 1 is known from International patent application 5 WO93/25799. In the known method a casing is expanded against the borehole wall, whereas in washouts cement is pumped into the surrounding annulus.

It is an object of the present invention to provide a zonal isolation method which can be carried out easier 10 than the known method and which provides an adequate zonal isolation and does not require the presence of an annulus which is filled with cement.

Summary of the Invention

The method according to the invention thereto 15 comprises the steps of

- inserting an expandable tubular which is made of a formable steel grade through the existing well casing into said uncased section of the underground well system such that one end of the expandable tubular protrudes beyond the well casing into the uncased section of the well system and another end of the expandable tubular is located inside the well casing; and
- expanding the expandable tubular using an expansion mandrel having a conical ceramic surface such that said one end is pressed towards wall of the uncased section of the well system and the outer surface of said other end is pressed against the inner surface of the well casing thereby creating an interference fit capable of achieving a shear bond and a hydraulic seal between said surrounding surfaces.

30 Optionally a gasket material is inserted between said surrounding surfaces before expanding the tubular.

If the uncased section of the underground well system 35 is formed by a lateral borehole that extends laterally

from the well section in which the well casing is present through an opening in the tubular wall of the well casing and one end of the expandable tubular is inserted through said opening into the lateral borehole such that the
5 other end of the expandable tubular still extends into the well-section in which the well casing is present such that said other end is substantially co-axial to the well casing and the expandable tubular is subsequently expanded such that said one end is pressed towards the
10 wall of the lateral borehole and said other end is pressed against the inner surface of the well casing. In that case, after expansion of the tubular an opening may be created in the wall of the expanded tubular to provide fluid communication between two parts of the well section
15 in which the well casing is present above and below the lateral borehole.

Said opening may be created by milling a window in the wall of the expanded tubular.

Alternatively said opening may be created by creating
20 a pre-configured section having a smaller wall thickness than the other parts of the tubular which section breaks open as a result of the expansion process.

It is observed that International patent application WO94/03698 discloses a method for sealing the
25 intersection between a main borehole and a branch borehole wherein use is made of a whipstock.

Brief Description of the Invention

These and other features, aspects and advantages of the method according to the invention will be more fully appreciated by referring to the following detailed
30 description of preferred embodiments of the invention which should be read in conjunction with the accompanying drawings in which:

Fig. 1 is a schematic longitudinal sectional view of a well in which zonal isolation is created by expanding a
35

tubular against an existing well casing;

Fig. 2 is a schematic longitudinal sectional view of a well in which zonal isolation is created by expanding a tubular against an existing well casing of which the lower end has an enlarged inner diameter to create a mono-diameter well;

Fig. 3 is a schematic longitudinal sectional view of a lateral borehole which extends from a mother well which contains a well casing in which a window has been milled to create access to the lateral borehole, and

Fig. 4 is a schematic longitudinal sectional view of the well system of Fig. 3 after an expandable tubular has been inserted into the lateral well and expanded against the well casing of the mother well.

15 Detailed description of the Preferred Embodiments

Referring now to Fig. 1 there is shown a borehole 1 traversing an underground formation 2 and a well casing 3 that has been fixed within borehole 1 by means of an annular body of cement 4.

An expandable tubular 5 in the form of a liner is run into the well casing 3 and maintained in a position that the lower end of the tubular protrudes into an uncased lower section of the borehole 1 and the upper end of the tubular is surrounded by the upper end of the well casing 3.

An expansion mandrel 6 is moved axially through the tubular 5 by pulling, pushing, and/or pumping the pig 7 in the direction of the arrow A. This causes the outer surface of tubular 5 to expand against the inner surface of the lower end of the well casing 3, thereby creating an interference fit 8 capable of achieving a shear bond and a hydraulic seal between the surrounding surfaces.

Experimental test data on clad steel tubulars and steel tubulars clad with a polymer material has confirmed that significant shear bond can be achieved. This is

evidenced for example, by the shifting force of 650 kN/m required to remove a expanded tubular of dimensions (108 x 119 mm) (ID/OD) from a steel casing pipe of dimensions 119 x 133 mm (ID/OD).

5 The expansion mandrel 7 has a conical ceramic outer surface having a semi-top angle A between 5° and 45°, and preferably between 20° and 30°. The expandable tubular 5 is made of a formable steel grade which is subject to strain hardening without incurring any necking or ductile
10 fracturing as a result of the expansion. Suitable formable steel grades are steel grades having a yield strength-tensile strength ratio which is lower than 0.8, preferably between 0.6 and 0.7, and a yield strength of at least 275 MPa. Steel grades which have these properties are dual phase (DP) high-strength low-alloy (HSLA) steel, such as Sollac grade DP55 or DP60 or Nippon grade SAFH 540 or 590 D, and formable high-strength steel grades, such as ASTM A106 HSLA seamless pipe, ASTM A312 austenitic stainless steel pipe, grades TP304 and TP316
15 20 and high-retained austenite high strength hot rolled steel, known as TRIP steel. These formable steel grades can be expanded by a ceramic cone 7 to an outer diameter which is at least 20% larger than the outer diameter of the unexpanded tubular.

25 In the example shown in Fig. 1 the expandable tubular 5 is a well liner which may be surrounded by a gravel pack (not shown) before the expansion pig 7 is run through the liner.

30 As a result of the expansion process the gravel pack will be compressed in the annular space which stabilizes the borehole 1 against caving in.

Referring now to Fig. 2 there is shown a borehole in which a well casing 10 has been installed and cemented in place by an annular body of cement 11. An expandable
35 tubular 12 has been installed and expanded by a ceramic

expansion cone in the same manner as described with reference to Fig. 1. However the lower end 10A of the well casing 10 has been expanded to a larger internal diameter than the rest of the casing. The tubular 12 is 5 expanded against the lower end 10A of the well casing 10, thereby creating an interference fit between the mating surfaces of the tubular 12 and well casing 10. The lower end 10A of the well casing may be expanded together with the tubular 12 by the expansion cone while the annular 10 body of cement 11 is still in a liquid state. As a result of the expansion a strong bond will be created between the cement and the tubular, the casing and the surrounding formation 13. The enlarged diameter of the lower part 10 of the casing 10 results in a well having a uniform 15 internal diameter throughout the length of the well.

Referring now to Fig. 3 there is shown a mother well 15 in which a well casing 16 is cemented in place by an annular body of cement 17. A lateral borehole 18 has been drilled laterally away from the mother well 15 into 20 the underground formation 19.

At the junction point between the two wells an opening 20 has been milled in the casing 16 and surrounding body of cement 17 using, e.g. a conventional milling device which is induced by a whipstock below the 25 junction point to mill the opening 20 the casing at the desired location. Such a milling operation generally generates an opening 20 having quite an irregular shape so that it is difficult to provide a zonal isolation between the well exterior and interior at the junction 30 point and to anchor the casing (not shown) of the lateral borehole to the well casing of the mother well 15.

Fig. 4 shows how an expandable tubular 21 is inserted into the lateral borehole 18 from the mother well 15 such that the upper end of the tubular fits co-axially inside 35 the well casing 16 of the mother well 15. The tubular 20

is expanded by moving an expansion mandrel 22 axially therethrough by pumping, pushing and/or pulling. The properties of the tubular 21 and mandrel 22 are the same as those described with reference to Fig. 1. As a result of the expansion process outer surface the upper end of the expanded tubular 21 is pressed against the inner surface of the casing 16 thereby creating an interference fit capable of creating a shear bond and a hydraulic seal between the mating surfaces.

The expanding tubular 21 is also pressed against the inner surface of the lateral borehole and the rims of the opening 20 in the well casing 16 and cement body 17 thereby creating a hydraulic bond between the expanded tubular 21 and said rims of the opening 20 and the inner surface of the lateral borehole 18.

In this manner the expanded tubular 21, and well casing 16 provide an adequate zonal isolation between the interior and exterior in the region of the junction between the lateral borehole 18 and the mother well 15 and robust anchoring of the tubular 21 to the well casing 16 is provided.

After having installed and expanded the tubular 21 a window (not shown) can be created in the wall of the tubular 21 to provide access to the part of the mother well 15 below the junction point.

Optionally a gasket material is provided on the outer surface of the tubular 21 before expansion of the tubular 21 to further enhance the zonal isolation provided by the expanded tubular 21.

If the rims of the milled opening 20 are irregular a liner having a regular oval opening may be installed against the inner surface of the casing 16 at the location of the junction, for example by expanding said liner using an expansion mandrel and arranging a slot or oval opening in the liner which will open up as a result

of the expansion process to the desired oval shape.

Optionally at least the upper end of the tubular 21 may be expanded in a two stage expansion process where a flexible expansion mandrel is used in the second stage of 5 the expansion process in order to firmly expand the tubular 21 against the casing 16, or optionally against the liner installed therein at the location of the junction, and against the rims of the opening 20 (or of the oval opening in the liner) and against the inner 10 surface of the lateral borehole 18.

C L A I M S

1. A method of creating zonal isolation between the exterior and interior of an uncased section of an underground well system which is located adjacent to a well section in which a well casing is present, the method comprising the steps of
 - inserting an expandable tubular through the existing well casing into said uncased section of the underground well system such that one end of the expandable tubular protrudes beyond the well casing into the uncased section of the well system and another end of the expandable tubular is located inside the well casing; and
 - expanding the expandable tubular using an expansion mandrel having a conical surface, characterised in that the expandable tubular is made of a formable steel grade and is expanded by an expansion cone having a conical ceramic surface such that said one end is pressed towards wall of the uncased section of the well system and the outer surface of said other end is pressed against the inner surface of the well casing thereby creating an interference fit capable of achieving a shear bond and a hydraulic seal between said surrounding surfaces.
2. The method of claim 1, wherein a gasket material is inserted between said surrounding surfaces before expanding the tubular.
3. The method of claim 1, wherein the uncased section of the underground well system is formed by an extension of a wellbore which extends axially beyond the well section in which the well casing is present.

4. The method of claim 1, wherein the uncased section of the underground well system is formed by a lateral borehole that extends laterally from the well section in which the well casing is present through an opening in the tubular wall of the well casing and one end of the expandable tubular is inserted through said opening into the lateral borehole such that the other end of the expandable tubular still extends into the well section in which the well casing is present such that said other end is substantially co-axial to the well casing and the expandable tubular is subsequently expanded such that said one end is pressed towards the wall of the lateral borehole and said other end is pressed against the inner surface of the well casing.
5. The method of claim 4, wherein after expansion of the tubular an opening is created in the wall of the expanded tubular to provide fluid communication between the parts of the well section in which the well casing is present above and below the lateral borehole.
6. The method of claim 5, wherein said opening is created by milling a window in the wall of the expanded tubular.
7. The method of claim 1, wherein the tubular is made of a high-strength low-alloy (HSLA) steel having a yield strength-tensile strength ratio which is lower than 0.8 and a yield strength of at least 275 MPa.

1/1

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/EP 98/04984

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 E21B43/10 E21B43/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 93 25799 A (SHELL CANADA LTD ;SHELL INT RESEARCH (NL)) 23 December 1993 see page 2, line 21-24 see page 3, line 4-10 see page 3, line 13-22 see page 4, line 15 - page 5, line 22 see figures 1-5 ---	1
A	WO 94 03698 A (BAKER HUGHES INC) 17 February 1994 see figures 4A-4D, ,5A-5I. see page 16, line 23 - page 22, line 10 ---	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

Date of the actual completion of the international search

2 November 1998

Date of mailing of the international search report

13/11/1998

Name and mailing address of the ISA

European Patent Office, P B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Schouten, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 98/04984

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	METCALFE P: "EXPANDABLE SLOTTED TUBES OFFER WELL DESIGN BENEFITS" PETROLEUM ENGINEER INTERNATIONAL, vol. 69, no. 10, October 1996, pages 60-63, XP000684479 see figure 4 see page 62, column 2, paragraph 5 - page 63, column 1, paragraph 3	1
I A	WO 93 25800 A (SHELL CANADA LTD ;SHELL INT RESEARCH (NL)) 23 December 1993 see page 5, line 6-8	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Jnl Application No

PCT/EP 98/04984

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9325799	A 23-12-1993	AU 670948 B AU 4324493 A CA 2137560 A DE 69306110 D DE 69306110 T DK 643794 T EP 0643794 A JP 7507610 T NO 944721 A NZ 253124 A SG 46560 A US 5348095 A		08-08-1996 04-01-1994 23-12-1993 02-01-1997 05-06-1997 05-05-1997 22-03-1995 24-08-1995 07-12-1994 27-02-1996 20-02-1998 20-09-1994
WO 9403698	A 17-02-1994	US 5318121 A AU 663276 B AU 4804693 A DE 4393856 T DK 39194 A GB 2274863 A,B GB 2297988 A,B NL 9320010 A NL 9320010 T NO 941241 A		07-06-1994 28-09-1995 03-03-1994 10-11-1994 06-06-1994 10-08-1994 21-08-1996 01-11-1994 01-11-1994 01-06-1994
WO 9325800	A 23-12-1993	AU 672008 B AU 4324593 A CA 2137565 A DE 69305852 D DE 69305852 T DK 643795 T EP 0643795 A JP 7507611 T MO 260219 A NO 944746 A NZ 253125 A US 5366012 A		19-09-1996 04-01-1994 23-12-1993 12-12-1996 22-05-1997 14-04-1997 22-03-1995 24-08-1995 31-05-1997 03-02-1995 27-02-1996 22-11-1994

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.