Configuring Stellaris® Microcontrollers with Pin Multiplexing

With Examples Using the LM3S9B90 and LM3S9790 Devices

Application Note

Copyright

Copyright © 2009 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com

Table of Contents

Introduction	4
Pin Muxing Overview	4
Pin Allocation	
Examples	
Examples	Ç
Example 2	11
Example 3	
Evample 1	15
Example 5	
Conclusion	1º
References	10

Introduction

The fourth generation of the Stellaris® family of microcontrollers provides system designers with a great deal of control over the placement and selection of peripheral module signals that are alternate functions for GPIO signals. The LM3S9B90 and LM3S9790 microcontrollers are all pin compatible and have 60 pins that can be used for peripheral functions or as GPIOs. Using a unique pin multiplexing implementation, these 60 pins can be customized to provide the best possible signal combination and placement for each individual system design. The remaining 40 pins are power and ground pins, crystal inputs, and a few other functions (Hibernation module signals, USB and Ethernet I/O signals, and BIAS inputs) that require fixed pin location and function.

This application note provides an overview of the pin muxing implementation, an explanation of how a system designer defines a pin configuration, and six examples of the pin configuration process using the LM3S9B90 microcontroller. Although the LM3S9B90 is used to illustrate these concepts, any of the microcontrollers mentioned above can be configured in the same manner.

Pin Muxing Overview

Most of the GPIO pins default to GPIO signals at reset, with the following exceptions:

- JTAG/SWD signals needed at power up for the debugger
- UART0 Rx/Tx signals needed to allow the Stellaris Boot Loader to operate from ROM
- SSI0 Clk/Fss/Rx/Tx signals needed to allow the Stellaris Boot Loader to operate from ROM
- I²C SCL/SDA signals needed to allow the Stellaris Boot Loader to operate from ROM

Users can select one from up to 9 possible alternate functions for each pin using the **GPIO PORT CONTROL** registers. The data sheet for the specific device has a table in the General Purpose Input/ Outputs (GPIOs) chapter that shows all the possible functions for each GPIO pin.

To configure a GPIO pin to an alternate function, follow these steps:

- 1. Enable the clock to the appropriate GPIO port using the SysCtlPeripheralEnable function.
- 2. Enable the clock to the peripherals using the SysCtlPeripheralEnable function.
- **3.** Configure the pins to the appropriate function using the GPIOPinConfigure function.
- **4.** Configure the signal attributes using the GPIOPinTypexxx function to configure the pins for specific peripheral function.

Pin Allocation

To decide how to distribute the signals on the device, make a list of the signals needed in the system. Three factors to keep in mind when allocating signals are:

■ The number of possible pin assignments for each signal. Some signals can only be assigned to one pin, while others can be assigned to up to ten pins.

- Some signals should be assigned to the same GPIO port so that they can be accessed in a single write, for example, when using both PWM2 and PWM3 for bit banging.
- Some signals with similar functions are fungible. For example, if you need 4 CCP signals, you can choose any of the 4 CCPx signals; if you need 1 Fault signal, you can choose any of the Faultx signals.

To begin pin allocation, first assign the signals that have only one available location, then assign the ones that have two, then three, and so on, bearing in mind the factors listed above. Once the pins have been allocated, then write the code to properly configure the GPIOs for the signal selections.

Table 1 shows the possible pin assignments for each signal on the LM3S9B90 and LM3S9790 microcontrollers.

Table 1. Possible Pin Assignments for the LM3S9B90 and LM3S9790 Microcontrollers

Number of Possible Assignments	Signal Name	GPIO
1	CAN1Rx	PF0
	CAN1Tx	PF1
	EPI0S0	PH3
	EPI0S1	PH2
	EPI0S2	PC4
	EPI0S3	PC5
	EPI0S4	PC6
	EPI0S5	PC7
	EPI0S6	PH0
	EPI0S7	PH1
	EPI0S8	PE0
	EPI0S9	PE1
	EPI0S10	PH4
	EPI0S11	PH5
	EPI0S12	PF4
	EPI0S13	PG0
	EPI0S14	PG1
	EPI0S15	PF5
	EPI0S16	PJ0
	EPI0S17	PJ1

Table 1. Possible Pin Assignments for the LM3S9B90 and LM3S9790 Microcontrollers (Continued)

Number of Possible Assignments	Signal Name	GPIO
1 (cont.)	EPIOS18	PJ2
	EPI0S19	PD4
	EPI0S20	PD2
	EPI0S21	PD3
	EPI0S22	PB5
	EPI0S23	PB4
	EPI0S24	PE2
	EPI0S25	PE3
	EPI0S26	PH6
	EPI0S27	PH7
	EPI0S28	PD5
	EPI0S29	PD6
	EPI0S30	PD7
	EPI0S31	PG7
	I2C0SCL	PB2
	I2C0SDA	PB3
	I2S0RXSCK	PD0
	I2S0RXWS	PD1
	I2S0TXMCLK	PF1
	LED0	PF3
	LED1	PF2
	NMI	PB7
	SSI0Clk	PA2
	SSI0Fss	PA3
	SSIORx	PA4
	SSIOTx	PA5
	TCK/SWCLK	PC0
	TMS/SWDIO	PC1
	TDI	PC2

Table 1. Possible Pin Assignments for the LM3S9B90 and LM3S9790 Microcontrollers (Continued)

Number of Possible Assignments	Signal Name	GPIO
1 (cont.)	TDO/SWO	PC3
	UORx	PA0
	UOTx	PA1
	U1DSR	PF0
	U1DTR	PD7
	U1RI	PD4
	U1RTS	PF1
2	C20	PC6, PE7
	I2S0RXMCLK	PA3, PD5
	I2S0RXSD	PA2, PD4
	I2S0TXSD	PE5, PF0
3	I2S0TXSCK	PA4, PB6, PD6
	I2S0TXWS	PA5, PD7, PE4
	SSI1Clk	PE0, PF2, PH4
	SSI1Fss	PE1, PF3, PH5
	SSI1Rx	PE2, PF4, PH6
	SSI1TX	PE3, PF5, PH7
	U1CTS	PA6, PD0, PE6
	U1DCD	PA7, PD1, PE7
4	CANORX	PA4, PA6, PB4, PD0
	CANOTX	PA5, PA7, PB5, PD1
	I2C1SCL	PA0, PA6, PG0, PJ0
	I2C1SDA	PA1, PA7, PG1, PJ1
	U2Rx	PB4, PD0, PD5, PG0
	U2Tx	PD1, PD6, PE4, PG1
5	C00	PB5, PB6, PC5, PD7, PF4
	C10	PC5, PC7, PE6, PF5, PH2
	CCP4	PA7, PC4, PC7, PD5, PE2
	CCP6	PB5, PD0, PD2, PE1, PH0

Table 1.	Possible Pin Assignments for the LM3S9B90 and LM3S979	0
	Microcontrollers (Continued)	

Number of Possible Assignments	Signal Name	GPIO				
5 (cont.)	CCP7	PB6, PD1, PD3, PE3, PH1				
	USB0EPEN	PA6, PB2, PC5, PG0, PH3				
6	CCP5	PB5, PB6, PC4, PD2, PE5, PG7				
	U1Rx	PA0, PB0, PB4, PC6, PD0, PD2				
	U1Tx	PA1, PB1, PB5, PC7, PD1, PD3				
7	CCP1	PA6, PB1, PB6, PC4, PC5, PD7, PE3				
	USB0PFLT	PA7, PB3, PC6, PC7, PE0, PH4, PJ1				
8	CCP3	PA7, PB2, PC5, PC6, PD4, PE0, PE4, PF1				
9	CCP0	PB0, PB2, PB5, PC6, PC7, PD3, PD4, PF4, PJ2				
	CCP2	PB1, PB5, PC4, PD1, PD5, PE1, PE2, PE4, PF5				

Table 1-1 summarizes the examples in this application note. The code for these examples can be found at the www.luminarymicro.com/products/software_updates.html web site. If your application matches or is a subset of one of these examples, you can simply use the code for that example, modifying it to remove any unneeded signals. If your application requires additional or different signals that have several possible pin assignments, you may be able to easily modify one of the following examples to meet your requirements. However, if the additional signals your application requires have few possible pin assignments, it is usually easiest to start from scratch with the pin assignments following the described in the Pin Allocation section.

The code to create the examples implements Steps 1 and 3 described in the Pin Muxing Overview. Steps 2 and 4 are outside the scope of this example and are not included in the code.

Table 1-1. Example Configurations

Example	Ethernet	USB	EPI ^a	НІВ	CAN	UART	I ² C	SSI	I ² S	ADC	Ext Ref	Timer	ССР
1	Y	Host	N	Υ	1	3	2	2	0	16	Υ	4	8
2	Y	OTG	N	Υ	1	2	2	2	1	4	Υ	4	7
3	Y	OTG	N	Υ	0	2 ^b	2	2	0	0	N	4	0
4	Y	OTG	НВ	Υ	2	1	1	1	0	4	Υ	4	0
5	Y	OTG	GP	Y	0	1	1	0	1	4	Υ	4	0

a.N = no EPI interface, HB = Host-Bus interface, GP = General-Purpose interface b.UART1 uses modem controls

The first example uses the LM3S9B90 device with the modules and signals shown in Table 1-2.

Table 1-2. Example 1 Module and Signal List

Module	Signals	Notes
Ethernet	LEDO, LED1	Remaining signals have fixed locations.
USB Host	USBOPFLT, USBOEPEN	Remaining signals have fixed locations.
Hibernate		Signals have fixed locations.
CAN	CANORX, CANOTX	
UART	UORX, UOTX, U1RX, U1TX, U2RX, U2TX	
l ² C	I2COSCL, I2COSDA, I2C1SCL, I2C1SDA	
SSI	SSIOC1k, SSIOFss, SSIORX, SSIOTX, SSI1C1k, SSI1Fss, SSI1RX, SSI1TX	
ADC	AIN[15:0], VREFA	PB[5:4], PD[7:0], PE[7:2], and PB6 used as analog functions
4 Timers, 8 CCP inputs	CCP0, CCP1, CCP2, CCP3, CCP4, CCP5, CCP6, CCP7	
System Control	NMI	
JTAG/SWD	TCK/SWCLK, TMS/SWDIO, TDI, TDO/SWO	

Step 1: Assign signals with only 1 available pin assignment:

- Port A UORx (PAO), UOTx (PA1), SSIOC1k (PA2), SSIOFSS (PA3), SSIORX (PA4), SSIOTX (PA5)
- Port B 12COSCL (PB2), 12COSDA (PB3), NMI (PB7)
- Port C TCK/SWCLK (PC0), TMS/SWDIO (PC1), TDI (PC2), TDO/SWO (PC3)
- Port F LED1 (PF2), LED0 (PF3)

Step 2: Assign signals with 2 available pin assignments:

■ This configuration does not use any of the pins with 2 possible pin assignments.

Step 3: Assign signals with 3 available pin assignments:

■ Port H - SSI1Clk (PH4), SSI1Fss (PH5), SSI1Rx (PH6), SSI1Tx (PH7)

Step 4: Assign signals with 4 available pin assignments:

- Port A CANORX (PA6), CANOTX (PA7)
- Port G U2Rx (PG0), U2Tx (PG1)
- Port J 12C1SCL (PJ0), 12C1SDA (PJ1)

Step 5: Assign signals with 5 available pin assignments:

- Port C CCP4 (PC4)
- Port H CCP6 (PH0), CCP7 (PH1), USB0EPEN (PH3)

Step 6: Assign signals with 6 available pin assignments:

- Port C U1Rx (PC6), U1Tx (PC7)
- Port G CCP5 (PG7)

Step 7: Assign signals with 7 available pin assignments:

- Port C CCP1 (PC5)
- Port E USBOPFLT (PE0)

Step 8: Assign signals with 8 available pin assignments:

■ Port F - CCP3 (PF1)

Step 9: Assign signals with 9 available pin assignments:

- Port E CCP2 (PE1)
- Port F CCP0 (PF4)

Table 1-3 shows the final pin assignments for Example 1. "NA" appears in a column when a pin is not available on the microcontroller. "-" appears in a column when a pin is not used for an analog or alternate digital function.

Table 1-3. Final Pin Assignments for Example 1

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
0	U0Rx	-	TCK/	AIN15	USB0PFLT	-	U2Rx	CCP6	I2C1SCL
			SWCLK						
1	UOTx	-	TMS/	AIN14	CCP2	CCP3	U2Tx	CCP7	I2C1SDA
			SWDIO						
2	SSI0Clk	I2C0SCL	TDI	AIN13	AIN9	LED1	NA	-	-
3	SSI0Fss	I2C0SDA	TDO/	AIN12	AIN8	LED0	NA	USB0EPEN	NA
			SWO						
4	SSIORx	AIN10	CCP4	AIN7	AIN3	CCP0	NA	SSI1Clk	NA
5	SSIOTx	AIN11	CCP1	AIN6	AIN2	-	NA	SSI1Fss	NA
6	CAN0Rx	VREFA	U1Rx	AIN5	AIN1	NA	NA	SSI1Rx	NA
7	CANOTX	NMI	U1Tx	AIN4	AIN0	NA	CCP5	SSI1Tx	NA

The second example uses the LM3S9B90 device with the modules and signals shown in Table 1-4.

Table 1-4. Example 2 Module and Signal List

Module	Signals	Notes
Ethernet	LEDO, LED1	Remaining signals have fixed locations.
USB OTG	USB0PFLT, USB0EPEN	USB0ID and USB0VBUS use PB0 and PB1 as analog functions, remaining signals have fixed locations.
Hibernate		Signals have fixed locations.
CAN	CANORX, CANOTX	
UART	UORx, UOTx, U1Rx, U1Tx	
l ² C	I2COSCL, I2COSDA, I2C1SCL, I2C1SDA	
SSI	SSIOC1k, SSIOFss, SSIORx, SSIOTx, SSI1C1k, SSI1Fss, SSI1Rx, SSI1Tx	
l ² S	I2SORXMCLK, I2SORXSCK, I2SORXSD, I2SORXWS, I2SOTXMCLK, I2SOTXSCK, I2SOTXSD, I2SOTXWS	
ADC	AIN[3:0], VREFA	PE[7:4] and PB6 used as analog functions
4 Timers, 7 CCP inputs	CCP0, CCP1, CCP2, CCP3, CCP4, CCP5, CCP6	
System Control	NMI	
JTAG/SWD	TCK/SWCLK, TMS/SWDIO, TDI, TDO/SWO	

Step 1: Assign signals with only 1 available pin assignment:

- Port A UORX (PAO), UOTX (PA1), SSIOCIK (PA2), SSIOFSS (PA3), SSIORX (PA4), SSIOTX (PA5)
- Port B 12COSCL (PB2), 12COSDA (PB3), NMI (PB7)
- Port C TCK/SWCLK (PC0), TMS/SWDIO (PC1), TDI (PC2), TDO/SWO (PC3)
- Port D 12SORXSCK (PD0), 12SORXWS (PD1)
- Port F 12SOTXMCLK (PF1), LED1 (PF2), LED0 (PF3)

Step 2: Assign signals with 2 available pin assignments:

- Port D 12SORXSD (PD4), 12SORXMCLK (PD5)
- Port F 12SOTXSD (PF0)

Step 3: Assign signals with 3 available pin assignments:

- Port D 12SOTXSCK (PD6), 12SOTXWS (PD7)
- Port E SSI1Clk (PE0), SSI1Fss (PE1), SSI1Rx (PE2), SSI1Tx (PE3)

Step 4: Assign signals with 4 available pin assignments:

- Port A CANORX (PA6), CANOTX (PA7)
- Port G 12C1SCL (PG0), 12C1SDA (PG1)

Step 5: Assign signals with 5 available pin assignments:

- Port C USB0EPEN (PC5), CCP4 (PC7)
- Port H CCP6 (PH0)

Step 6: Assign signals with 6 available pin assignments:

- Port B U1Rx (PB4), U1Tx (PB5)
- Port D CCP5 (PD2)

Step 7: Assign signals with 7 available pin assignments:

- Port C CCP1 (PC4)
- Port H USBOPFLT (PH4)

Step 8: Assign signals with 8 available pin assignments:

■ Port C - CCP3 (PC6)

Step 9: Assign signals with 9 available pin assignments:

- Port D CCP0 (PD3)
- Port F CCP2 (PF5)

Table 1-5 shows the final pin assignments for Example 2. "NA" appears in a column when a pin is not available on the microcontroller. "-" appears in a column when a pin is not used for an analog or alternate digital function.

Table 1-5. Final Pin Assignments for Example 2

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
0	U0Rx	USB0ID	TCK/ SWCLK	I2SORXSCK	SSI1Clk	I2SOTXSD	I2C1SCL	CCP6	-
1	UOTx	USB0VBUS	TMS/ SWDIO	I2S0RXWS	SSI1Fss	I2S0TXMCLK	I2C1SDA	-	-
2	SSI0Clk	I2C0SCL	TDI	CCP5	SSI1Rx	LED1	NA	-	-
3	SSI0Fss	I2C0SDA	TDO/ SWO	CCP0	SSI1Tx	LED0	NA	-	NA
4	SSIORx	U1Rx	CCP1	I2S0RXSD	AIN3	-	NA	USB0PFLT	NA
5	SSIOTx	U1Tx	USB0EPEN	I2S0RXMCLK	AIN2	CCP2	NA	-	NA

Table 1-5. Final Pin Assignments for Example 2 (Continued)

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
6	CAN0Rx	VREFA	CCP3	I2S0TXSCK	AIN1	NA	NA	-	NA
7	CAN0Tx	NMI	CCP4	I2SOTXWS	AIN0	NA	-	-	NA

The third example uses the LM3S9B90 device with the modules and signals shown in Table 1-6.

Table 1-6. Example 3 Module and Signal List

Module	Signals	Notes
Ethernet	LEDO, LED1	Remaining signals have fixed locations.
USB OTG	USBOPFLT, USBOEPEN	USB0ID and USB0VBUS use PB0 and PB1 as analog functions, remaining signals have fixed locations.
Hibernate		Signals have fixed locations.
UART	U0RX, U0TX, U1RX, U1TX, U1CTS, U1DCD, U1DSR, U1DTR, U1RI, U1RTS	
l ² C	I2COSCL, I2COSDA, I2C1SCL, I2C1SDA	
SSI	SSIOClk, SSIOFss, SSIORx, SSIOTx, SSIIClk, SSIIFss, SSIIRx, SSIITx	
4 Timers		No signals.
System Control	NMI	
JTAG/SWD	TCK/SWCLK, TMS/SWDIO, TDI, TDO/SWO	

Step 1: Assign signals with only 1 available pin assignment:

- Port A UORX (PAO), UOTX (PA1), SSIOCIK (PA2), SSIOFSS (PA3), SSIORX (PA4), SSIOTX (PA5)
- Port B 12COSCL (PB2), 12COSDA (PB3), NMI (PB7)
- Port C TCK/SWCLK (PC0), TMS/SWDIO (PC1), TDI (PC2), TDO/SWO (PC3)
- Port D u1RI (PD4), u1DTR (PD7)
- Port F Uldsr (PF0), ulrts (PF1), Led1 (PF2), Led0 (PF3)

Step 2: Assign signals with 2 available pin assignments:

This configuration does not use any of the pins with 2 possible pin assignments.

Step 3: Assign signals with 3 available pin assignments:

■ Port A - u1CTS (PA6), u1DCD (PA7)

June 26, 2009

- Port E SSIICIk (PE0), SSIIFSS (PE1), SSIIRX (PE2), SSIITX (PE3)
- Step 4: Assign signals with 4 available pin assignments:
 - Port G 12C1SCL (PG0), 12C1SDA (PG1)
- Step 5: Assign signals with 5 available pin assignments:
 - Port C USBOEPEN (PC5)
- Step 6: Assign signals with 6 available pin assignments:
 - Port B U1Rx (PB4), U1Tx (PB5)
- Step 7: Assign signals with 7 available pin assignments:
 - Port C USBOPFLT (PC6)
- Step 8: Assign signals with 8 available pin assignments:
 - This configuration does not use the pin with 8 possible pin assignments.
- Step 9: Assign signals with 9 available pin assignments:
 - This configuration does not use any of the pins with 9 possible pin assignments.

Table 1-7 shows the final pin assignments for Example 3. "NA" appears in a column when a pin is not available on the microcontroller. "-" appears in a column when a pin is not used for an analog or alternate digital function.

Table 1-7. Final Pin Assignments for Example 3

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
0	U0Rx	USBOID	TCK/	-	SSI1Clk	U1DSR	I2C1SCL	-	-
			SWCLK						
1	UOTx	USB0VBUS	TMS/	-	SSI1Fss	U1RTS	I2C1SDA	-	-
			SWDIO						
2	SSI0Clk	I2C0SCL	TDI	_	SSI1Rx	LED1	NA	_	-
3	SSI0Fss	I2C0SDA	TDO/	-	SSI1Tx	LED0	NA	-	NA
			SWO						
4	SSIORx	U1Rx	-	U1RI	-	-	NA	-	NA
5	SSIOTx	U1Tx	USB0EPEN	-	-	-	NA	-	NA
6	U1CTS	-	USB0PFLT	-	-	NA	NA	-	NA
7	U1DCD	NMI	-	U1DTR	_	NA	-	-	NA

The fourth example uses the LM3S9B90 device with the modules and signals shown in Table 1-8.

Table 1-8. Example 4 Module and Signal List

Module	Signals	Notes
Ethernet	LEDO, LED1	Remaining signals have fixed locations.
USB OTG	USBOPFLT, USBOEPEN	USB0ID and USB0VBUS use PB0 and PB1 as analog functions, remaining signals have fixed locations.
EPI interface to Host Bus	EPIOS[31:0]	
Hibernate		Signals have fixed locations.
CAN	CANORX, CANOTX, CAN1RX, CAN1TX	
UART	UORx, UOTx	
I ² C	I2COSCL, I2COSDA	
SSI	SSIOClk, SSIOFss, SSIORx, SSIOTx	
ADC	AIN[3:0], VREFA	PE[7:4] and PB6 used as analog functions.
4 Timers		No signals.
System Control	NMI	
JTAG/SWD	TCK/SWCLK, TMS/SWDIO, TDI, TDO/SWO	

Step 1: Assign signals with 1 available pin assignment:

- Port A UORX (PAO), UOTX (PA1), SSIOCIK (PA2), SSIOFSS (PA3), SSIORX (PA4), SSIOTX (PA5)
- Port B 12COSCL (PB2), 12COSDA (PB3), EPIOS23 (PB4), EPIOS22 (PB5), NMI (PB7)
- Port C TCK/SWCLK (PC0), TMS/SWDIO (PC1), TDI (PC2), TDO/SWO (PC3), EPIOS2 (PC4), EPIOS3 (PC5), EPIOS4 (PC6), EPIOS5 (PC7)
- Port D EPI0S20 (PD2), EPI0S21 (PD3), EPI0S19 (PD4), EPI0S28 (PD5), EPI0S29 (PD6), EPI0S30 (PD7)
- Port E EPIOS8 (PE0), EPIOS9 (PE1), EPIOS24 (PE2), EPIOS25 (PE3)
- Port F CAN1RX (PF0), CAN1TX (PF1), LED1 (PF2), LED0 (PF3), EPI0S12 (PF4), EPI0S15 (PF5)
- Port G EPIOS13 (PG0), EPIOS14 (PG1), EPIOS31 (PG7)

- Port H EPIOS6 (PHO), EPIOS7 (PH1), EPIOS1 (PH2), EPIOS0 (PH3), EPIOS10 (PH4), EPIOS11 (PH5), EPIOS26 (PH6), EPIOS27 (PH7)
- Port J EPIOS16 (PJ0), EPIOS17 (PJ1), EPIOS18 (PJ2)
- Step 2: Assign signals with 2 available pin assignments:
 - This configuration does not use any of the pins with 2 possible pin assignments.
- Step 3: Assign signals with 3 available pin assignments:
 - This configuration does not use any of the pins with 3 possible pin assignments.
- Step 4: Assign signals with 4 available pin assignments:
 - Port D CANORX (PD0), CANOTX (PD1)
- Step 5: Assign signals with 5 available pin assignments:
 - Port A USBOEPEN (PA6)
- Step 6: Assign signals with 6 available pin assignments:
 - This configuration does not use any of the pins with 6 possible pin assignments.
- Step 7: Assign signals with 7 available pin assignments:
 - Port A USBOPFLT (PA7)
- Step 8: Assign signals with 8 available pin assignments:
 - This configuration does not use the pin with 8 possible pin assignments.
- Step 9: Assign signals with 9 available pin assignments:
 - This configuration does not use any of the pins with 9 possible pin assignments.

Table 1-9 shows the final pin assignments for Example 4. "NA" appears in a column when a pin is not available on the microcontroller. "-" appears in a column when a pin is not used for an analog or alternate digital function.

Table 1-9. Final Pin Assignments for Example 4

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
0	UORx	USB0ID	TCK/ SWCLK	CAN0Rx	EPIOS8	CAN1Rx	EPIOS13	EPIOS6	EPIOS16
1	UOTx	USB0VBUS	TMS/ SWDIO	CANOTX	EPIOS9	CAN1Tx	EPIOS14	EPIOS7	EPIOS17
2	SSIOClk	I2C0SCL	TDI	EPI0S20	EPI0S24	LED1	NA	EPIOS1	EPIOS18
3	SSI0Fss	I2C0SDA	TDO/ SWO	EPI0S21	EPI0S25	LED0	NA	EPI0S0	NA

Table 1-9. Final Pin Assignments for Example 4 (Continued)

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
4	SSI0Rx	EPI0S23	EPI0S2	EPIOS19	AIN3	EPIOS12	NA	EPIOS10	NA
5	SSI0Tx	EPI0S22	EPIOS3	EPI0S28	AIN2	EPIOS15	NA	EPIS011	NA
6	USB0EPEN	VREFA	EPI0S4	EPI0S29	AIN1	NA	NA	EPI026	NA
7	USB0PFLT	NMI	EPI0S5	EPIOS30	AIN0	NA	EPIOS31	EPI027	NA

The fifth example uses the LM3S9B90 device with the modules and signals shown in Table 1-10.

Table 1-10. Example 5 Module and Signal List

Module	Signals	Notes
Ethernet	LEDO, LED1	Remaining signals have fixed locations.
USB OTG	USBOPFLT, USBOEPEN	USB0ID and USB0VBUS use PB0 and PB1 as analog functions, remaining signals have fixed locations.
EPI interface in General-Purpose mode	EPIOS[31:0]	
Hibernate		Signals have fixed locations.
UART	UORx, UOTx	
I ² C	I2COSCL, I2COSDA	
l ² S	I2SORXMCLK, I2SORXSCK, I2SORXSD, I2SORXWS, I2SOTXMCLK, I2SOTXSCK, I2SOTXSD, I2SOTXWS	
ADC	AIN[3:0], VREFA	PE[7:4] and PB6 used as analog functions.
4 Timers		No signals.
System Control	NMI	
JTAG/SWD	TCK/SWCLK, TMS/SWDIO, TDI, TDO/SWO	

Step 1: Assign signals with only 1 available pin assignment:

- Port A UORx (PA0), UOTx (PA1)
- Port B 12COSCL (PB2), 12COSDA (PB3), EPIOS23 (PB4), EPIOS22 (PB5), NMI (PB7)
- Port C TCK/SWCLK (PC0), TMS/SWDIO (PC1), TDI (PC2), TDO/SWO (PC3), EPIOS2 (PC4), EPIOS3 (PC5), EPIOS4 (PC6), EPIOS5 (PC7)

- Port D 12SORXSCK (PD0), 12SORXWS (PD1), EPIOS20 (PD2), EPIOS21 (PD3), EPIOS19 (PD4), EPIOS28 (PD5), EPIOS29 (PD6), EPIOS30 (PD7)
- Port E EPIOS8 (PE0), EPIOS9 (PE1), EPIOS24 (PE2), EPIOS25 (PE3)
- Port F 12SOTXMCLK (PF1), LED1 (PF2), LED0 (PF3), EP10S12 (PF4), EP10S15 (PF5)
- Port G EPIOS13 (PG0), EPIOS14 (PG1), EPIOS31 (PG7)
- Port H EPIOS6 (PHO), EPIOS7 (PH1), EPIOS1 (PH2), EPIOS0 (PH3), EPIOS10 (PH4), EPIOS11 (PH5), EPIOS26 (PH6), EPIOS27 (PH7)
- Port J EPIOS16 (PJ0), EPIOS17 (PJ1), EPIOS18 (PJ2)

Step 2: Assign signals with 2 available pin assignments:

- Port A 12SORXSD (PA2), 12SORXMCLK (PA3)
- Port F I2SOTXSD (PF0)

Step 3: Assign signals with 3 available pin assignments:

■ Port A - 12SOTXSCK (PA4), 12SOTXWS (PA5)

Step 4: Assign signals with 4 available pin assignments:

■ This configuration does not use any of the pins with 4 possible pin assignments.

Step 5: Assign signals with 5 available pin assignments:

■ Port A - USBOEPEN (PA6)

Step 6: Assign signals with 6 available pin assignments:

This configuration does not use any of the pins with 6 possible pin assignments.

Step 7: Assign signals with 7 available pin assignments:

■ Port A - USBOPFLT (PA7)

Step 8: Assign signals with 8 available pin assignments:

This configuration does not use the pin with 8 possible pin assignments.

Step 9: Assign signals with 9 available pin assignments:

■ This configuration does not use any of the pins with 9 possible pin assignments.

Table 1-11 shows the final pin assignments for Example 5. "NA" appears in a column when a pin is not available on the microcontroller. "-" appears in a column when a pin is not used for an analog or alternate digital function.

Table 1-11. Final Pin Assignments for Example 5

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
0	U0Rx	USBOID	TCK/ SWCLK	I2S0RXSCK	EPIOS8	I2S0TXSD	EPIOS13	EPI0S6	EPIOS16

Table 1-11. Final Pin Assignments for Example 5 (Continued)

Pin	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H	Port J
1	UOTx	USB0VBUS	TMS/ SWDIO	I2S0RXWS	EPIOS9	I2S0TXMCLK	EPIOS14	EPI0S7	EPIOS17
			SWDIO						
2	I2S0RXSD	I2C0SCL	TDI	EPI0S20	EPI0S24	LED1	NA	EPI0S1	EPIOS18
3	I2S0RXMCLK	I2C0SDA	TDO/	EPI0S21	EPI0S25	LED0	NA	EPI0S0	NA
			SWO						
4	I2S0TXSCK	EPI0S23	EPI0S2	EPI0S19	AIN3	EPI0S12	NA	EPIOS10	NA
5	I2SOTXWS	EPI0S22	EPI0S3	EPI0S28	AIN2	EPI0S15	NA	EPIOS11	NA
6	USB0EPEN	VREFA	EPI0S4	EPI0S29	AIN1	NA	NA	EPI0S26	NA
7	USB0PFLT	NMI	EPI0S5	EPI0S30	AIN0	NA	EPIOS31	EPI027	NA

Conclusion

The pin muxing capabilities of the Stellaris Tempest-class microcontrollers are highly flexible and easy to implement using the functions provided by the StellarisWare™ Peripheral Driver Library. A system designer can choose the most efficient pin configuration targeted for specific system requirements.

References

Documents used in the generation of this application note include:

- Stellaris® LM3S9B90 Microcontroller Data Sheet, Publication Number DS-LM3S9B90
- Stellaris® Peripheral Driver Library User's Guide An element of each StellarisWare® Firmware Development Package downloadable from http://www.luminarymicro.com/products/software_updates.html

Important Notice

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers Audio www.ti.com/audio amplifier.ti.com **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Broadband www.ti.com/broadband DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Military www.ti.com/military Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork **Power Mgmt** power.ti.com Security www.ti.com/security Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony RFID www.ti-rfid.com Video & Imaging www.ti.com/video RF/IF and ZigBee® Solutions Wireless www.ti.com/lprf www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated