Lecture 1: Introduction to Reinforcement Learning

David Silver

Outline

- 1 Admin
- 2 About Reinforcement Learning
- 3 The Reinforcement Learning Problem
- 4 Inside An RL Agent
- 5 Problems within Reinforcement Learning

L_{Admin}

Lecture 1: I LAdmin

Class Information

- Thursdays 9:30 to 11:00am
- Website:

http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

- http://groups.google.com/group/csml-advanced-topics
- Contact me: d.silver@cs.ucl.ac.uk

Assessment

- Assessment will be 50% coursework, 50% exam
- Coursework
 - Assignment A: RL problem
 - Assignment B: Kernels problem
 - Assessment = max(assignment1, assignment2)
- Examination
 - A: 3 RL questions
 - B: 3 kernels questions
 - Answer any 3 questions

Textbooks

- An Introduction to Reinforcement Learning, Sutton and Barto, 1998
 - MIT Press, 1998
 - \sim 40 pounds
 - Available free online!
 - http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
- Algorithms for Reinforcement Learning, Szepesvari
 - Morgan and Claypool, 2010
 - ~ 20 pounds
 - Available free online!
 - $http://www.ualberta.ca/{\sim} szepesva/papers/RLAlgsInMDPs.pdf$

Many Faces of Reinforcement Learning

Branches of Machine Learning

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a *reward* signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

ecture 1: Introduction to Reinforcement Learning

LAbout RL

Lecture 1: Introduction to Reinforcement Learnin

Examples of Reinforcement Learning

■ Fly stunt manoeuvres in a helicopter

- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different Atari games better than humans

Helicopter Manoeuvres

ecture 1: Introduction to Reinforcement Learning

∟_{About RL}

Lecture 1: Introduction to Reinforcement Learning LAbout RL

Bipedal Robots

Atari

LThe RL Problem

Rewards

- \blacksquare A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected cumulative reward

Do you agree with this statement?

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
 - +ve reward for following desired trajectory
 - –ve reward for crashing
- Defeat the world champion at Backgammon
 - -+/-ve reward for winning/losing a game
- Manage an investment portfolio
 - +ve reward for each \$ in bank
- Control a power station
 - +ve reward for producing power
 - ve reward for exceeding safety thresholds
- Make a humanoid robot walk
 - +ve reward for forward motion
 - ve reward for falling over
- Play many different Atari games better than humans
 - +/-ve reward for increasing/decreasing score

The RL Problem

Sequential Decision Making

- Agent and Environment
- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

The RL Problem

Agent and Environment

At each step t the agent:

- \blacksquare Executes action A_t
- Receives observation Ot
- Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

L The RL Problem

History and State

■ The history is the sequence of observations, actions, rewards

- \blacksquare i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards

■ Formally, state is a function of the history:

 $S_t = f(H_t)$

Agent State

Environment State

- environment uses to pick the next observation/reward ■ The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

- The agent state S_t^a is the agent's internal 4 Acri representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

The RL Problem

Information State

An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

The future is independent of the past given the present $H_{1:t} o S_t o H_{t+1:\infty}$

$$H_{1,t} \rightarrow S_t \rightarrow H_{t+1,\infty}$$

- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

P[Hen | He] = P[Hen | Hi, ... He]

LThe RL Problem

Rat Example

- What if agent state = last 3 items in sequence? **LEVER**
- What if agent state = counts for lights, bells and levers? **FOOD**
- What if agent state = complete sequence? **X**

The RL Problem

Fully Observable Environments

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- Formally, this is a Markov decision process (MDP)
- (Next lecture and the majority of this course)

The RL Problem

Partially Observable Environments

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state \neq environment state
- Formally this is a partially observable Markov decision process 52 +5% (POMDP)
- Agent must construct its own state representation S_t^a , e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (\mathbb{P}[S_t^e = s^1], ..., \mathbb{P}[S_t^e = s^n])$
 - Recurrent neural network: $S_t^a = \sigma(\hat{S}_{t-1}^a W_s + \hat{O}_t W_o)$

PNN

Major Components of an RL Agent

Policy

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

7/(5): S.→ A.

Lecture 1: Introduction to Reinforcement Learnin

└ Inside An RL Agent

Lecture 1: Introduction to Reinforcement Learning

LInside An RL Agent

Value Function

Example: Value Function in Atari

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Lecture 1: Introduction to Reinforcement Learnin

└-Inside An RL Agent

Lecture 1: Introduction to Reinforcement Learning

└-Inside An RL Agent

Maze Example

Model

■ A model predicts what the environment will do next

- lacksquare $\mathcal P$ predicts the next state
- lacksquare $\mathcal R$ predicts the next (immediate) reward, e.g.

Transitions
$$\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

$$\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$$

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

■ Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

■ Numbers represent value $v_{\pi}(s)$ of each state s

└ Inside An RL Agent

Maze Example: Model

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- The model may be imperfect
- lacktriangle Grid layout represents transition model $\mathcal{P}^a_{ss'}$
- lacktriangle Numbers represent immediate reward \mathcal{R}_s^a from each state s(same for all a)

└ Inside An RL Agent

Categorizing RL agents (1)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Inside An RL Agent

└_{Inside} An RL Agent

RL Agent Taxonomy

Model-Fre Value Function Policy Model

Categorizing RL agents (2)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

Learning and Planning

Two fundamental problems in sequential decision making

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Atari Example: Reinforcement Learning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Problems within RL

Problems within RL

Atari Example: Planning

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search

Exploration and Exploitation (1)

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

Problems within RL

Problems within RI

Exploration and Exploitation (2)

- Exploration finds more information about the environment
- Exploitation exploits known information to maximise reward
- It is usually important to explore as well as exploit

Examples

■ Restaurant Selection

Exploitation Go to your favourite restaurant Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location Exploration Drill at a new location

■ Game Playing

Exploitation Play the move you believe is best Exploration Play an experimental move

Prediction and Control

Gridworld Example: Prediction

■ Prediction: evaluate the future

■ Given a policy

■ Control: optimise the future

Find the best policy

What is the value function for the uniform random policy?

Problems within RL

Course Outline

Gridworld Example: Control

a) gridworld

b) v_{st}

What is the optimal value function over all possible policies? What is the optimal policy?

Course Outline

- Part I: Elementary Reinforcement Learning
 - 1 Introduction to RL
 - 2 Markov Decision Processes
 - Planning by Dynamic Programming
 - 4 Model-Free Prediction
 - 5 Model-Free Control
- Part II: Reinforcement Learning in Practice
 - 1 Value Function Approximation
 - 2 Policy Gradient Methods
 - 3 Integrating Learning and Planning
 - 4 Exploration and Exploitation
 - 5 Case study RL in games

Lecture 2: Markov Decision Processes

David Silver

- 1 Markov Processes
- 2 Markov Reward Processes
- 3 Markov Decision Processes
- 4 Extensions to MDPs

Lecture 2: Markov Decision Process

Markov Processes

Introduction to MDPs

└─ Markov Processes
└─ Markov Property

Markov Property

- Markov decision processes formally describe an environment for reinforcement learning
- Where the environment is *fully observable*
- i.e. The current *state* completely characterises the process
- Almost all RL problems can be formalised as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

"The future is independent of the past given the present"

Definition

A state S_t is *Markov* if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future

Lecture 2: Markov Decision Processe

Markov Processes

Markov Property

State Transition Matrix

For a Markov state s and successor state s', the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[\mathcal{S}_{t+1} = s' \mid \mathcal{S}_t = s
ight]$$

State transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s',

$$\mathcal{P} = \textit{from} \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1.

Lecture 2: Markov Decision Processes

- Markov Processes

Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states $S_1, S_2, ...$ with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple (S, P)

- lacksquare \mathcal{S} is a (finite) set of states
- $\blacksquare \mathcal{P}$ is a state transition probability matrix,

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

Example: Student Markov Chain

Example: Student Markov Chain Episodes

Sample episodes for Student Markov Chain starting from $S_1 = C1$

$$S_1, S_2, ..., S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Example: Student Markov Chain Transition Matrix

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $(S, \mathcal{P}, \mathcal{R}, \gamma)$

- lacksquare $\mathcal S$ is a finite set of states
- $\blacksquare \mathcal{P}$ is a state transition probability matrix, $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$
- \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}\left[R_{t+1} \mid S_t = s\right]$
- lacksquare γ is a discount factor, $\gamma \in [0,1]$

Example: Student MRP

Definition

Return

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The *discount* $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - $\ \ \, \gamma$ close to 0 leads to "myopic" evaluation
 - $\ \ \, \gamma$ close to 1 leads to "far-sighted" evaluation

Why discount?

Most Markov reward and decision processes are discounted. Why?

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behaviour shows preference for immediate reward
- It is sometimes possible to use *undiscounted* Markov reward processes (i.e. $\gamma=1$), e.g. if all sequences terminate.

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

Lecture 2: Markov Decision Processe

Markov Reward Processes

Example: Student MRP Returns

Sample returns for Student MRP: Starting from $S_1=$ C1 with $\gamma=\frac{1}{2}$

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$$

Lecture 2: Markov Decision Process

Markov Reward Processes

Example: State-Value Function for Student MRP (1)

Lecture 2: Markov Decision Process

Markov Reward Processes

Example: State-Value Function for Student MRP (2)

└─Markov Reward Processes
└─Value Function

Example: State-Value Function for Student MRP (3)

Bellman Equation for MRPs

The value function can be decomposed into two parts:

- immediate reward R_{t+1}
- discounted value of successor state $\gamma v(S_{t+1})$ $\gamma \in G_{t+1}$

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

Bellman Equation for MRPs (2)

$$v(s) = \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s\right]$$

$$v(s) \leftrightarrow s$$

$$v(s') \leftrightarrow s'$$

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}v(s')$$

$$\mathbf{E}\left[R_{t+1} \mid S_t = s\right]$$

-Markov Reward Processes

Example: Bellman Equation for Student MRP

☐ Markov Reward Processes

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

where v is a column vector with one entry per state

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

-Markov Reward Processes

Solving the Bellman Equation

- The Bellman equation is a linear equation
- It can be solved directly:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$(I - \gamma \mathcal{P}) v = \mathcal{R}$$
$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is $O(n^3)$ for n states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Markov Decision Processes

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- lacksquare $\mathcal S$ is a finite set of states
- \blacksquare \mathcal{A} is a finite set of actions
- lacksquare \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- $\blacksquare \mathcal{R}$ is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- \bullet γ is a discount factor $\gamma \in [0,1]$.

Example: Student MDP

Policies (1)

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent), $A_t \sim \pi(\cdot|S_t), \forall t > 0$

-Markov Decision Processes

Policies (2)

- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle \mathcal{S}, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
- where

$$\left\| \begin{array}{l} \mathcal{P}^{\pi}_{s,s'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'} \\ \mathcal{R}^{\pi}_{s} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}^{a}_{s} \end{array} \right.$$

☐ Markov Decision Processes

Value Function

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

Definition

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

-Markov Decision Processes

Example: State-Value Function for Student MDP

 $v\pi(s)$ for $\pi(a|s)=0.5$, $\gamma=1$ Facebook Sleep 4 35.0 Facebook Quit R = 0C>= 0.5 Study Study Study R = +10R = -2= 05 x1>+ 45 x C(+ 24 x C2+ a4 x C3 + 0.2 x C1) Pub

ecture 2: Markov Decision P

- Markov Decision Processes

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

Bellman Expectation Equation for V^{π}

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s,a)$$

Bellman Expectation Equation for Q^{π}

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Markov Decision Processes

∟Markov Decision Processes

Bellman Expectation Equation for v_{π} (2)

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_{\pi}(s') \right)$$

Bellman Expectation Equation for q_{π} (2)

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

-Markov Decision Processes

Markov Decision Processes

Example: Bellman Expectation Equation in Student MDP Bellman Expectation Equation (Matrix Form)

The Bellman expectation equation can be expressed concisely using the induced MRP,

$$\mathbf{v}_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}_{\pi}$$

with direct solution

$$\mathbf{v}_{\pi} = (\mathbf{I} - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

Optimal Value Function

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- The optimal value function specifies the best possible performance in the MDP.
- An MDP is "solved" when we know the optimal value fn.

Example: Optimal Value Function for Student MDP

- Markov Decision Processes

∟Markov Decision Processes

Optimal Policy

Example: Optimal Action-Value Function for Student MDP

Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Theorem

For any Markov Decision Process

- There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function, $v_{\pi_*}(s) = v_*(s)$
- All optimal policies achieve the optimal action-value function, $q_{\pi_*}(s,a)=q_*(s,a)$

ecture 2: Markov Decision P

-Markov Decision Processes

ecture 2: Markov Decision Pr - Markov Decision Processes

Finding an Optimal Policy Example: Optimal Policy for Student MDP

 $\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$

An optimal policy can be found by maximising over $q_*(s, a)$,

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy

 $\pi_*(a|s)$ for $\gamma = 1$ Facebook 0 $Quit \\ R = 0$ Facebook Sleep R = 0Study Study 10 $q_* = 10$ R = -2R = -2Pub

The optimal value functions are recursively related by the Bellman optimality equations:

$$v_*(s) = \max_a q_*(s,a)$$

Bellman Optimality Equation for Q^*

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Markov Decision Processes

∟Markov Decision Processes

Bellman Optimality Equation for V^* (2)

$$v_*(s) = \max_{a} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Bellman Optimality Equation for Q^* (2)

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

-Markov Decision Processes

Markov Decision Processes

Example: Bellman Optimality Equation in Student MDP Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa

Linfinite MDPs

Extensions to MDPs

(no exam)

Infinite MDPs

(no exam)

- Infinite and continuous MDPs
- Partially observable MDPs
- Undiscounted, average reward MDPs

The following extensions are all possible:

- Countably infinite state and/or action spaces
 - Straightforward
- Continuous state and/or action spaces
 - Closed form for linear quadratic model (LQR)
- Continuous time
 - Requires partial differential equations
 - Hamilton-Jacobi-Bellman (HJB) equation
 - \blacksquare Limiting case of Bellman equation as time-step $\to 0$

Lecture 2: Markov Decision Process
LExtensions to MDPs

Partially Observable MDPs

Lecture 2: Markov Decision Processes

Partially Observable MDPs

POMDPs

(no exam)

Belief States

(no exam)

A Partially Observable Markov Decision Process is an MDP with hidden states. It is a hidden Markov model with actions.

Definition

A *POMDP* is a tuple $\langle S, A, \mathcal{O}, \mathcal{P}, \mathcal{R}, \mathcal{Z}, \gamma \rangle$

- lacksquare $\mathcal S$ is a finite set of states
- \blacksquare \mathcal{A} is a finite set of actions
- O is a finite set of observations
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^a = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$
- \mathbb{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- **Z** is an observation function,

$$\mathcal{Z}^{a}_{s'o} = \mathbb{P}\left[O_{t+1} = o \mid S_{t+1} = s', A_t = a\right]$$

lacksquare γ is a discount factor $\gamma \in [0,1]$.

Dofinitio

A history H_t is a sequence of actions, observations and rewards,

$$H_t = A_0, O_1, R_1, ..., A_{t-1}, O_t, R_t$$

Definition

A belief state b(h) is a probability distribution over states, conditioned on the history h

$$b(h) = (\mathbb{P}\left[S_t = s^1 \mid H_t = h\right], ..., \mathbb{P}\left[S_t = s^n \mid H_t = h\right])$$

Lecture 2: Markov Decision Processes

Partially Observable MDPs

Reductions of POMDPs

Extensions to MDPs
Average Reward N

(no exam)

Ergodic Markov Process

(no exam)

- The history H_t satisfies the Markov property
- The belief state $b(H_t)$ satisfies the Markov property

- A POMDP can be reduced to an (infinite) history tree
- A POMDP can be reduced to an (infinite) belief state tree

An ergodic Markov process is

- Recurrent: each state is visited an infinite number of times
- Aperiodic: each state is visited without any systematic period

Theorem

An ergodic Markov process has a limiting stationary distribution $d^{\pi}(s)$ with the property

$$d^\pi(s) = \sum_{s' \in \mathcal{S}} d^\pi(s') \mathcal{P}_{s's}$$

Ergodic MDP

(no exam) Average Reward Value Function

(no exam)

Definition

An MDP is ergodic if the Markov chain induced by any policy is ergodic.

For any policy π , an ergodic MDP has an average reward per time-step ρ^{π} that is independent of start state.

$$\rho^{\pi} = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} R_{t} \right]$$

ecture 2: Markov Decision Processes

Questions?

The only stupid question is the one you were afraid to ask but never did.

-Rich Sutton

- The value function of an undiscounted, ergodic MDP can be expressed in terms of average reward.
- $\tilde{v}_{\pi}(s)$ is the extra reward due to starting from state s,

$$ilde{v}_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=1}^{\infty}\left(R_{t+k} -
ho^{\pi}
ight) \mid S_{t} = s
ight]$$

There is a corresponding average reward Bellman equation,

$$egin{aligned} ilde{v}_{\pi}(s) &= \mathbb{E}_{\pi} \left[(R_{t+1} -
ho^{\pi}) + \sum_{k=1}^{\infty} (R_{t+k+1} -
ho^{\pi}) \mid S_{t} = s
ight] \ &= \mathbb{E}_{\pi} \left[(R_{t+1} -
ho^{\pi}) + ilde{v}_{\pi}(S_{t+1}) \mid S_{t} = s
ight] \end{aligned}$$