Análise dos deslocamentos devido a acção sísmica

Luis Moura

7 Abril 2018

Exemplo do processo de cálculo através do espectro de resposta, e devido à acção sísmica regulamentar, dos valores de deslocamento de uma estrutura em Leiria.

1	Estrutura	1
2	Frequência Própria e Período	2
2.1	Massa	2
2.2	Rigidez	2
2.3	Frequência	2
2.4	Período	2
3	Parâmetros pelo Eurocódigo 8	2
3.1	Espectro de cálculo para a análise elástica, $S_d(T)$	3
4	Esforços e Deslocamentos	4
4.1	Sismo Tipo 1	4
4.2	Sismo Tipo 2	4
5	Resultados	5

1 Estrutura

Estrutura simples 1 , em betão C30/37, e com 10 metros de altura, localizada no concelho de Leiria. A Classe de Importância é II e encontra-se localizada em um terreno tipo C. Tem um peso próprio de 90 kN e uma sobrecarga de 45 kN com um respectivo $\psi_2=0.6$.

Na tabela 1, encontra-se sumariado as condições iniciais, assim como na seguinte figura:

¹ A análise dos parâmetros do espetro de resposta para uma estrutura em Leiria, foi previamente feita no trabalho "Espetro de Resposta para prédio localizado em Leiria".

Figura 1: Diagrama da estrutura em análise, na cidade de Leiria

NOTA: Serviu de base para este processo de cálculo, o trabalho do Professor João Veludo [Veludo, 2019], da ESTG em Leiria.

Tabela 1: Condições iniciais em análise

Nome	Descrição
Localização	Leiria
Tipo de Terreno	С
Classe de Importância	II
Betão	C30/37
Carga Própria (CP)	90 kN
Sobre-Carga (SC)	45 kN

Terreno Tipo C : "Depósitos profundos de areia compacta ou mediamente compacta, de seixo (cascalho) ou de argila rija com uma espessura entre várias dezenas e muitas centenas de metros."

-Quadro 3.1 - Tipos de Terreno, Eurocódigo 8 [Instituto Português de Qualidade LNEC, 2010]

2 Frequência Própria e Período

2.1 Massa

$$m = \frac{G + \psi_2 Q}{g} = \frac{90 + 0, 6 \cdot 45}{9, 8} = 11,94tn$$

2.2 Rigidez

$$k_X = K_Y = \frac{3EI}{L^3} = \frac{3 \cdot 33E6 \cdot \left[\pi \cdot \left(1, 2^4 - 0, 8^4\right)/64\right]}{10^3} = 8086, 5 \mathrm{kN/m}$$

2.3 Frequência

$$f_X = f_Y = \frac{1}{2\pi} \cdot \sqrt{\frac{8086, 5}{11, 94}} = 4,14Hz$$

2.4 Período

$$T = \frac{1}{f} \to T = \frac{1}{4, 14} = 0,242 \, s$$

Tabela 2: Resultados da análise da estrutura

Parâmetro	Valor
Massa	11.94 Ton
Rigidez	$8086.4 \frac{kN}{m}$
Frequência	4.14~Hz
Período	0.241s

3 Parâmetros pelo Eurocódigo 8

Figura 2: Gráfico da relação deslocamento no tempo, para o primeiro segundo, e com amortecimento pulo

Tabela 3: Valores dos diversos parâmetros em análise

Parâmetros	Tipo 1	Tipo 2
Localização	Leiria	Leiria
Tipo de Terreno	С	С
Coeficiente de Importância	1	1
Coeficiente de correcção do amortecimento η	1	1
Aceleração à superfície, a_g	0.6	1.1
Parâmetro S_{max}	1.6	1.6
Parâmetro $T_B(s)$	0.1	0.1
Parâmetro $T_{C}(s)$	0.25	0.25
Parâmetro $T_D(s)$	2	2
Parâmetro S	1.68	1.58

3.1 Espectro de cálculo para a análise elástica, $S_d(T)$

O valor de espetro de cálculo 2 é feito de acordo com a secção 3.2.2.2 do Eurocódigo 8 [Instituto Português de Qualidade LNEC, 2010].

Espectro de cálculo para a análise elástica: "A capacidade dos sistemas estruturais de resistir às acções sísmicas no domínio não linear permite, em geral, efectuar o seu cálculo para resistirem a forças sísmicas inferiores às que corresponderiam a uma resposta elástica linear."

- Secção 3.2.2.5.(a), Eurocódigo 8 [Instituto Português de Qualidade LNEC, 2010]

"O coeficiente de comportamento, q, é uma aproximação da razão entre as forças sísmicas a que a estrutura ficaria sujeita se a sua resposta fosse completamente elástica, com 5 % de amortecimento viscoso, e as forças sísmicas que poderão ser adoptadas no projecto, com um modelo de análise elástica convencional, que continuem a assegurar uma resposta satisfatória da estrutura."

Secção 3.2.2.5.(b), Eurocódigo 8 [Instituto Português de Qualidade LNEC, 2010]³

 $^{^2\,}a_{
m g},~S,~T_{
m B},~T_{
m C},~{
m e}~T_{
m D}$ são calculados de acordo com a secção 3.2 do Eurocódigo 8.

³ Por se tratar de uma estrutura isostática, o coef. de comportamento é q=1.

Para Acção Sísmica Tipo 1:

$$T_B \le T \le T_C : S_d(T) = a_g \cdot S \cdot \frac{2,5}{g} = 0,6 \times 1,6 \times \frac{2,5}{1} = 2,4 \text{m/s}^2$$

Para Acção Sísmica Tipo 2:

$$T_B \le T \le T_C : S_d(T) = a_g \cdot S \cdot \frac{2,5}{q} = 1,1 \times 1,6 \times \frac{2,5}{1} = 4,4m/s^2$$

Tabela 4: Valor do espetro de cálculo, $S_d(T)$ para os dois tipos de Sismo

Intervalo	Sismo Tipo 1	Sismo Tipo 2
$T_B \le T \le T_C$	$2.40~\mathrm{m/s^2}$	$4.40~\mathrm{m/s^2}$

4 Esforços e Deslocamentos

4.1 Sismo Tipo 1

Determinação ⁴ da força ao nível do grau de liberdade (massa) e do momento flector na base:

$$F = m.S_d(T) = 11,94 \times 2.4 = 28.65 \text{ kN}$$

$$M = F.L = 28.65 \times 10 = 286, 5 \ \mathrm{kNm}$$

Determinação do deslocamento horizontal: d_x

$$d_X = \frac{F}{K_X} = \frac{28,65}{8086,50} = 3,54 \times 10^{-3} \mathrm{m} = 3,54 \mathrm{mm}$$

Determinação do deslocamento horizontal: d_y

$$d_Y = \frac{F}{K_Y} = \frac{28,65}{8086,50} = 3,54$$
mm

Combinação:

Para análise tridimensional, um determinado efeito X (esforço, deslocamento ou tensão) obtém-se pela combinação das duas direcções em estudo:

$$X = \pm E_x \pm 0, 3E_y$$

- $d_X = 3,54$ mm
- $d_Y = 0.3 \times 3.54 = 1.062mm$

$$d_{max} = \sqrt{3,54^2 + 1,06^2} = 3,7 \text{mm}$$

4.2 Sismo Tipo 2

Determinação ⁵ da força ao nível do grau de liberdade (massa) e do momento flector na base:

$$F = m.S_d(T) = 11,94 \times 4.4 = 52,54 \, \mathrm{kN}$$

$$M = F.L = 52,54 \times 10 = 525,4 \text{ kNm}$$

 $^{^4}$ Não foram considerados os Efeitos acidentais de torção: "Para ter em conta a incerteza na localização das massas e na variação espacial do movimento sísmico, o centro de massa calculado em cada piso i deve ser deslocado, em cada direcção, em relação à sua posição nominal de uma excentricidade acidental: $e_{\rm ai}=\pm 0,05 \cdot L_{\rm i}$ "—Secção 4.3.2, EC8

 $^{^5}$ Não foram considerados os Efeitos acidentais de torção: "Para ter em conta a incerteza na localização das massas e na variação espacial do movimento sísmico, o centro de massa calculado em cada piso i deve ser deslocado, em cada direcção, em relação à sua posição nominal de uma excentricidade acidental: $e_{\rm ai}=\pm 0,05 \cdot L_{\rm i}$ " –Secção 4.3.2, EC8

Determinação do deslocamento horizontal: d_x

$$d_X = \frac{F}{K_X} = \frac{52,54}{8086,50} = 6,50 \times 10^{-3} \mathrm{m} = 6,50 \ \mathrm{mm}$$

Determinação do deslocamento horizontal: d_y

$$d_Y = \frac{F}{K_Y} = \frac{52,54}{8086,50} = 6,50 \ \mathrm{mm}$$

Combinação:

Para análise tridimensional, um determinado efeito X (esforço, deslocamento ou tensão) obtém-se pela combinação das duas direcções em estudo:

$$X = \pm E_x \pm 0, 3E_y$$

- $\bullet \ d_X=6,50\mathrm{mm}$
- $d_Y = 0.3 \times 6.50 = 1.95 \, mm$

$$d_{max} = \sqrt{6,5^2 + 1,95^2} = 6,78 \text{ mm}$$

5 Resultados

Tabela 5: Resultados da análise pelo Espetro de Resposta e de acordo com o Eurocódigo 8, para uma estrutura localizada em Leiria, sujeita a uma acção sísmica

Parâmetro	Sismo Tipo 1	Sismo Tipo 2		
$S_d(T)$ intervalo $T_B \leq T \leq T_C$	$2.40~\mathrm{m/s^2}$	$4.40~\mathrm{m/s^2}$		
Força, ${\cal F}$	28.65~kN	52.54~kN		
${\it Momento}, M$	$286.5\ kNm$	525.4~kNm		
Deslocamento no eixo x , d_x	3.543~mm	$6.50\ mm$		
Deslocamento no eixo y,d_y	3.543~mm	$6.50\ mm$		
Combinação	3.70~mm	$6.78\ mm$		
$X = \pm E_x \pm 0, 3E_y$				

Referências

Instituto Português de Qualidade LNEC. Eurocódigo 8 – projecto de estruturas para resistência aos sismos parte 1: Regras gerais, acções sísmicas e regras para edifícios. 2010.

J. Veludo. Resposta a ações sísmicas. espectro de resposta. 2019.