

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 786 519 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.07.1997 Bulletin 1997/31

(51) Int Cl.6: C12N 15/00

(21) Application number: 97100117.7

(22) Date of filing: 07.01.1997

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE
Designated Extension States:
AL LT LV RO SI

(30) Priority: 05.01.1996 US 9861

(71) Applicant: HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)

(72) Inventors:

Kunsch, Charles A.
 Gaithersburg, Maryland 20882 (US)

 Chol, Gil H. Rockville, Maryland 20850 (US)

Barash, Steven C.
 Rockville, Maryland 20850 (US)

Dillon, Patrick J.
 Gaithersburg, Maryland 20879 (US)

Fannon, Michael R.
 Silver Spring, Maryland 20906 (US)

 Rosen, Craig A. Laytonsville, Maryland 20882 (US)

(74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) Staphylococcus aureus polynucleotides and sequences

(57) The present invention provides polynucleotide sequences of the genome of *Staphylococcus aureus*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynu-

cleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

Description

5

10

15

20

25

30

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of Staphylococcus aureus, contigs, ORFs. fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

The genus Staphylococcus includes at least 20 distinct species. (For a review see Novick, R. P., The Staphylococcus as a Molecular Genetic System, Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below

Human Health and S. Aureus

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY, Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by S. aureus infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below

Burns

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling. contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. S. aureus is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by S. aureus in conjunction with S. pyrogenes. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of S. aureus and microaerophilic streptococci. It causes necrosis and treatment is limited to excision of the necrotic tissue.

40 Eyelid infections

S. aureus is the cause of styes and of sticky eye" in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

45 Food poisoning

50

55

Some strains of S. aureus produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin. in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections

S. aureus infects bone joints causing diseases such osteomyelitis.

Osteomyelitis

S. aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the end of long, growing bones

Skin infections

5

10

20

25

30

35

40

15

5C

S. aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. So aureus is the most important causative agent of infections in surgical wounds. So aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer So aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe So aureus septicaemia. Invasion of the blood stream by So aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This diseases occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation (also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Nocosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study ("NNIS") S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with *S. aureus* was unfavorable Following the introduction of penicillin in the early 1940s even the worst *S. aureus* infections generally could be treated successfully. The emergence of penicillin-resistant strains of *S. aureus* did not take long, however. Most strains of *S. aureus* encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for *S. aureus* encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally typically on a plasmid, and often is only one of several genes on an episomal element that, together, confer

a ong with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline objective many other antibiotics effective against this organism, including aminoglycosides, tetracycline objectamphenical macrolides and finoosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistance in *S. aureus* has been elucidated (See Lyon *et al., Microbiology Reviews* <u>51</u>: 88-134 (1987)). Generally, resistance is mediated by plasmids, as noted above regarding penicillin resistance; however, several stable forms of drug resistance have been observed that apparently involve integration of a resistance element into the *S. aureus* genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed.

Molecular Genetics of Staphylococcus Aureus

5

10

15

30

35

40

45

50

Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism.

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain, 8325-4 (also referred to as RN450), which is free of the prophages.

These studies revealed that the *S. aureus* genome, like that of other *staphylococci*, consists of one circular. covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee *et al.* published a low resolution and incomplete genetic and physical map of the chromosome of *S. aureus* strain NCTC 8325. (Pattee *et al.* Genetic and Physical Mapping of Chromosome of *Staphylococcus aureus* NCTC 8325, Chapter 11, pgs. 163-169 in. MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis ("PFGE").

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Smal chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Smal recognition sequence.

In sum, most physical characteristics and almost all of the genes of *Staphylococcus aureus* are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., *Antimicrobial Chemotherapy* 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. aureus* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. aureus* infection involves the programmed expression of *S. aureus* genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of *S. aureus* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. aureus* would provide reagents for, among other things, detecting, characterizing and controlling *S. aureus* infections. There is a need therefore to characterize the genome of *S. aureus* and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5,191.

The present invention provides the nucleotide sequence of several thousand contigs of the *Staphylococcus aureus* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS 1-5,191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

The nucleotide sequence of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequence of SEQ ID NOS:1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to:magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the Staphylococcus aureus genome.

Another embodiment of the present invention is directed to fragments, preferably isolated fragments, of the Staphylococcus aureus genome having particular structural or functional attributes. Such fragments of the Staphylococcus aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs," tragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs," and fragments which can be used to diagnose the presence of Staphylococcus aureus in a sample, hereinafter referred to as diagnostic fragments or "DFs."

5

10

15

20

25

30

35

40

50

Each of the ORFs in fragments of the Staphylococcus aureus genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the Staphylococcus aureus genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the Staphylococcus aureus has been inserted

The present invention further provides host cells containing any of the isolated fragments of the Staphylococcus aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them.

The invention further provides polypeptides, preferably isolated polypeptides, comprising Staphylococcus aureus epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against Staphylococcus aureus infection.

The invention further provides methods of obtaining homologs of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein

Lando, artital 🕶 🖫 çil — anînbasês and 🐠 de ti mmêdintê valu

Controctions installs respaighers and for immediate commercial value to the production of proteins or to contro

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

10

15

20

25

30

35

40

45

50

55

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR") for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3...

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ iD NOS:1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Staphylococcus aureus* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Staphylococcus aureus* open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables 1-3.

As discussed in detail below, the information provided in SEQ ID NOS:1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Staphylococcus aureus* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-5.191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-5.191. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS:1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5,191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of *Staphylococcus aureus* strains that can be used to prepare *S aureus* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC").

The nucleotide sequences of the genomes from different strains of *Staphylococcus aureus* differ somewhat. However, the nucleotide sequences of the genomes of all *Staphylococcus aureus* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5,191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

5

10

15

20

30

35

40

45

50

The nucleotide sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS.1-5,191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, Oprovided" refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; i.e., a nucleotide sequence provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the *Staphylococcus aureus* genome and parts thereof (e.g., a *Staphylococcus aureus* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Staphylococcus aureus* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-5.191, a representative fragment thereof or a nucleotide sequence at least 95% preferably at least 90% and

A plantage of a subtware which to be entertained by AZE. Brutiag et al. Comp. Onen 10.203-207, 1993 // search algorithms or a sybasu system was used to identify open reading frames (ORFs) within the *Staphylococcus aureus* genome which contain homology to ORFs or proteins from both *Staphylococcus aureus* and from other organisms. Among the ORFs discussed

herein are protein encoding fragments of the *Staphylococcus aureus* genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Staphylococcus aureus* genome.

5

10

15

20

25

30

35

40

45

50

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Staphylococcus aureus* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al., J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

5

10

15

20

25

30

35

40

45

50

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Staphylococcus aureus* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1. 2 and 3 list ORFs in the *Staphylococcus aureus* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists.

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S. aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly. by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand; and the fifth column indicates the length of each ORF in nucleotides.

In Tables 1 and 2, column six, lists the Reference* for the closest matching sequence available through Genbank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be the transfer of the numericlature are available from the National Center for Biotech-

in the content of the Liebondes of the highest solding segment was sidelified by the dick of the first section

[·] Table 3, the last column, column six, indicates the length of each OHF in amino acid residues

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (eg, at positions

1. 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter Thus. for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring segment pair" in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

10

15

20

25

40

45

50

55

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Staphylococcus aureus* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Staphylococcus aureus* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Staphylococcus aureus* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Staphylococcus aureus* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQ ID NOS:1-5,191, with a sequence from another isolate of the same species.

Furthermore, to accomodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORFs of the *Staphylococcus aureus* genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular *Staphylococcus aureus*. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for *Staphylococcus aureus*. Also particularly preferred are ORFs that can be used to distinguish between strains of *Sta-*

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee *et al.*, *Nucl. Acids Res.* 6. 3073 (1979); Cooney *et al.*, *Science* 241: 456 (1988); and Dervan *et al.*, *Science* 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, *J. Neurochem.* 56: 560 (1991) and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988))

10

15

20

25

30

35

40

45

50

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a, pNH16a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lact, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-1. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides and the commercial many he obtained most readily by synthesis are useful, for example, in generating antibodies

. 174 1 7 7

inippede in the sole skilled in the inclusive readily employ whick low the fields is soleting indicated in the present invention produced naturally by a bacterial site or by other methods. Methods for isolation and purification that can be employed in this regard include but are not limited to immunochromatography. HPLC, size-exclusion chromatography, ion-exchange chromatography, and immunochromatography.

no-affinity chromatography

10

15

20

25

35

40

45

50

55

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures. e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Staphylococcus aureus* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokary-otic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, MOLECULAR CLONING:A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, *e.g.*, the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *Staphylococcus aureus*, *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*. Others

may, also be employed as a matter of choice.

10

15

20

25

30

35

40

50

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides:

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S and Wu, H C Lipoproteins in bacteria. J Bioenerg, Biomembr. 22, 451-471; 1990)

It wall known that most anchored proteins found on the surface of gram positive hacteria possess a highly see

mediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins exmediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins examined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid

5

10

15

20

25

30

35

40

45

50

Amino acid sequence similarities to proteins of known function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen".

An algorithm for selecting antigenic and immunogenic *Staphylococcus aureus* polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful *Staphylococcus aureus* polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS:5,192 to 5,255. Thus the amino acid sequence of each of several antigenic *Staphylococcus aureus* polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing.

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS:5,192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for example the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS:5,191-5,255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides:

specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82: 5131-5135; this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No 4.631,211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

5

10

20

25

30

35

40

45

50

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance, Geysen et al., supra. Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus aureus* outermembrane proteins, as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO:5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Staphylococcus aureus, of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Staphylococcus aureus is defined as a homolog of a fragment of the Staphylococcus aureus fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Staphylococcus aureus genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99 9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-5,191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS:1-5,191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing along DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have

in the wife strains

and, the sequence of SEQ in NOS 1.5.1.4. One skilled in the art was recognize that by employing high stringeric, unditions (e.g. annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% nomologous to the primer will be amplified. By employing lower stringency

conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-5,191, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to *Staphylococcus aureus*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

5

10

15

20

25

30

35

40

45

50

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Staphylococcus aureus* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-5,191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Staphylococcus aureus*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds.. Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds.. Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872: 83 (1986), for instance

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger *et al.*, Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies *et al.*, Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists:hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

2. Generation of Antibodies

5

10

15

20

30

35

40

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and which is capable of secreting a

ABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY Elsevier Science Fublishers And Sterdam The Netherlands (1984). St. Groth et al., J. Immunol. Methods 35, 1-21 (1980). Kohler and Milstein. Nature 256, 495-497 (1975)), the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today).

4: 72 (1983), pgs. 77-96 of Cole et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss. Inc (1985)).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells. such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

10

15

20

30

40

45

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs, antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry; PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises:(a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of a bound DF, antigen or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

5

10

20

25

30

35

40

45

50

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Staphylococcus aureus* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and
- (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby *et al.*, Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak *et al.*, Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can agent the lifety dry or polymeric derivatives which have base attachment capacity.

ence you done i the card pervante, as perence zo "i mor time" of the translation as couldness in the

Raton FL (1988)) Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

5

10

15

20

25

30

35

40

45

50

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Staphylococcus aureus*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of *Staphylococcus aureus* or a related organism, *in vivo* or *in vitro*," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, *etc.* The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, *etc.* Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, *etc.* In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e. g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds

6. Shot-Gun Approach to Megabase DNA Sequencing

5

10

15

20

25

30

35

40

45

50

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2: 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage." For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Staphylococcus aureus DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA. DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C.

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1):5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating was carried out as follows. A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

25

30

5

10

35

40

45

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating. Our titer was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

25

30

35

40

45

50

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime → 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 uł) containing 50 ug DNA, 1X Sau3Al buffer, 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5x109 pfu/ul.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplified using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers. Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e..., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension including denaturation, annealing of primer and template, and extension including denaturation.

reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection, the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

10

15

20

25

30

40

45

50

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library).

3. Identifying Genes

The predicted coding regions of the *Staphylococcus aureus* genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all *Staphylococcus aureus* nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

10

15

20

25

30

35

40

45

50

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E coli*, or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.* Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier D., ed., Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples, they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent

and entering the example occords aureus genome in the tribe in the entering of uses. The PCH primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence

are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approxi-

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

4. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Staphylococcus aureus* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U. S. Patent No. 5,082,767, incorporated herein by this reference

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the *Staphylococcus aureus* genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of theLTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The *Staphylococcus aureus* DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the *Staphylococcus aureus* DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bglll at the 5' end of the corresponding *Staphylococcus aureus* DNA 3' primer, taking care to ensure that the *Staphylococcus aureus* DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

45

5

10

15

20

25

30

35

S aureus - Coding regions containing known sequences

5

ontig	ORF	Start (nt)	Stop	match	match gene name	percent	HSP nt length	ORF nt length
-	-	1419	1 757	-mh x17301[5A80	S. sureus DNA for hid gene and for part of agr gene	100	663	663
1		1 3273	2452	emb X52543 SAAG	S.auraus agra, agrB and hld genes	1 66	808	822
-	- 2	6418	5651	HAT2 111711 5TAH	Staphylococcus sureus HSP10 and HSP60 genes	96	223	768
~	-	107	439	omb x72700 SAPV	emb x72700 SAPV S.aureus genes for S and P components of Panton-Valentina leucocidins	183	216	369
	-	5031	1750	emb x72700 SAPV	S. aureus games for S and F components of Panton-Valentine leucocidins	95	424	1461
10		9	\$06	gb L25288	Staphylococcus aureus gyrase-like protein alphe and beta subunit (grlA and grlB) genes, complete cds	88	21.5	919
16	5	5302	6246	gb U35773	Staphylococcus aureus prolipoprotein discylglyceryl transferase (lgt) gene, complete cds	*	251	945
16		6269	7091	gb u3573	Staphylococcus aureus prollpoprotein diacylglyceryl transferase (lgt) gene. complete cds	6	843	84 3
16		7084	7584		Staphylococcus aureus prolipoprotein discylglyceryl transferese (1gt) gene, complete cds	6	342	201
20	1	995	549	gb L19300	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	100	44 3	••1
30		1011		dp[L19300	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	16	137	17.1
50	2	2010	1798	8p 118300	Staphylococcus aureus DNA saquence encoding three ORFs, complete cds; prophage phi-11 saquence homology, 5' flank	100	110	213
20	-	5300	3825	gb H'6714	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	876	1476
70	s	4788	4282	[gb] h7c714[Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	309	507
26	-	7	145	gb U41072	Staphylococcus aureus isoleucyl-RNA synthetase (iles) gene, partial cds	100	126	144
76	~	84	1 557	gb U41072	Staphylococcur aureus isoleucyl-tRNA synthetase (iles) gene, partial cds	66	430	1 74
56	<u> </u>	163	13531	embix74219 SAIL	S. aureus gene for isoleucyl-tRNA synthetese	- 66	2769	2769
2.9		1361	4392	599990 q5	Staphylococcus aureus DNA fragment with class II promoter activity	100	117	3332
31	=	14977	13463	emb[X73889[SAP1	S. aureus genes Pl and P2	66	1351	1515
31	51	14241	13855	emb 473889 5AP1	S. sureus genes Pl and P2	86	258	387
3.8	-	11284	133112,	13112 , [gb H12715	S. aureus geh gene encoding lipase (glycerol ester hydrolase)	100	372	1173
3.6	61	13634	15518	gb F.2715	S. aureus geh gene encoding lipase (glycerol ester hydrolase)	300	2085	2085

-
•
-
•

DA .	ORF	Start (nt)	Stop (nt)	Patch	9	percent		ORF nt length
3			1727	91041173374	istabir/lucoccus antivits Lyne 8 capsulo genes, cap8A, cap8D, cap8C, cap8D, cap8C, cap8D, cap8C, cap	ec .	1209	1209
9		1720	2295	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8E, cap8E, cap8H, cap8I, cap8I, cap8H, cap8N, cap8O, cap8P, cap8P, cap8N, cap8O, cap8P, complete cds	8	576	576
9	-	2259	3182	gb U73374 	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, cap8I, cap8C, cap8F, cap8P, complete cds	97	924	924
9	~	5718	4498	gb U73374	Staphylococcus mureus type B capsule genes, cap8A, cap8B, cap8B, cap8C, cap8B, cap8C, cap8F,	60	1263	1326
4	۰	4536	5720	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8B, cap8B, cap8E, cap8F,	ec on	1185	1185
\$		6455	6120	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8B, cap8C, cap8D, cap8E, cap8F, cap8C, cap8H, cap8I, cap8I, cap8K, cap8E, cap8H, cap8N,	6	278	336
4	-	~	955	[gb] L25893]	Staphylococcus aureus rech gene, complete cds	66	954	954
1 50	-	4465	2924	emp[X85029 SAAH	S. aureus AhpC gene	100	88	1542
- 80	-	4108	3515	emb X85029 SAAH	S. aureus AhpC gene	96	540	594
24	_	5074	3392	emb K62992 SAFN	S. eureus fnbB gene for fibronectin binding protein B	001	1668	1683
54	4	4865	4122	emb X62992 SAFN	fubB g	66	720	744
- 54	~	5056	4562	emb K62992 SAFN	S.aureus fnbB gane for fibronectin binding protein B	100	163	495
54		11386	8300		S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds	100	3087	3087
5.8	-	1743	2819	emb XA7104 SADN	S.aureus mdr, pbp4 and taqD genes (SG511-55 isolate)	68	89	101
- 58	-	2858	3280	emb X91786 SAPB	S. aureus abcA, pbp4, and tagD genes	66	423	423
88	·	6009	4701	emb X91786 SAPB	S. aureus abcA, pbp4, and tagD genes	66	1305	1305
88	<u></u>	5677	5378	95 029478	Staphylococcus aureus ABC transporter-like protein AbcA (abcA) gene, partial cds	1001	300	300
- 58	-	5086	6840,	emb x91786 SAPB	S. aureus abcA, pbp4, and tagD genes	66	1755	1755
22		688	445	gb 121854	S.aureus agr gene encoding an accessory gene regulator protein, complete cds	100	444	7,7
72	7	2457	1453	[emb X52543 SAAG	S aureus agrA, agrB and hld genes	66	673	\$001

S aureus - Coding regions containing known sequences

ont 19 ID	ONE	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt Length	ORF H
82		357	1917	emb x64172 SARP	S.aureum rpll, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7.LL12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	66	2396	3561
85	~ ~	4027	7637	emb x89233[SARP	S.aureus DNA for rpoC gene	- 66	3171	3651
82		7745	8068	gb \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Staphylococcus aureus ribosomal protein S12 (rpst) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	320	324
P.2		8103	8579	dp 020869	Staphylococcus aureus ribosomal protein S12 (rpst.) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	417	477
82	5	8618	8821	45 020 869	Staphylococcus aureus ribosomal protein S12 (rpst.) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	154	204
			191	db U73374	Staphylococcus aureus type 8 capsule genes, cap85, cap85, cap86, cap80,		164	174
=	~	189	893	96 073374	Staphylococcus aureus type 8 capsule genes, cap8s, cap8s, cap8c, cap8b, cap8s, cap8r,	*	705	705
	2		0991	qb U73374	Staphylococcus aureus type & capsule genes, cap8s, cap8s, cap8b, cap8E,	e 6	114	174
*		1584	1503	46 073374	Staphylococcus aureus type & capsule genes, cap83, cap88, cap80,		1920	1920
7	<u></u>	3394	6521	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E,	6	1128	112.88
*	9	4519	5643	gb U73374[Scaphylococcus atteus type 8 capsule genes, cap82, cap82, cap80, cap80, cap82, cap87,		1125	1125
96	2	1245	3896	emb 218852 SACF	S.aureus gene for clumping factor	63	099	2652
9.7	~	625	882	9b U41072	Staphylococcus aureus isoleucyl-tRNA synthetase (iles) gene, partial cds	6	89	258
111			452	qb L41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	450	450
111	2	526	1041	c L41499	, ORF2, OFF3, autolysin (a	66	516	516
117	~	1278	1958	Qb M83994 		100	19	681
1	111							

TABLE 1

aureus - Coding regions containing known sequences

ORF nt length	469	1044	453	864	912	1 2694	1947	828	1305	1182	465	285	1104	1485	420	984	1308	1413	1140	276
HSP nt length	467	956	416	, 409	838	2694	1947	822	1305	1170	677	75	1104	1485	332	305	1308	1413	1140	276
percent ident	56	80	96	86	1 66	100	66	66	- 66	001	1001	100	100	100	100	- 66	88	66	66	1000
match gene name	Staphylococcus aureus genes for OKF37; HSP20; HSP40; ORF35, complete cds	Staphylococcus aureus multi-resistance plasmid pSKI DNA containing transposon Tn4003	S. aureus dirB gene for dihydrofolate reductasa	S.aureus dirB gene for dihydrofolate reductase	S.auraus genes gyrB, gyrA and recF (partial)	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	recF cluster: dnaA=replisome assembly proteingyrB=DNA gyrase heta subunit (Staphylococcus aureus, YB886, Genomic, S genes, 3573 nt]	Staphylococcus sureus S-adenosylmethionine synthetase gene, complete cds	Staphv ococcus aureus (clone Kin50) phosphoenolpyruvate carboxykinase (pckA) gene, complete cds	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthatase (menc) genes, complete cds	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synchetase (menc) genes, complete cds	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	S. aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	recF cluster: dnaA=replisome assembly proteingyrB=DNA gyrase beta subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt]	recF cluster: dnaA=replisome assembly proteingyrB=DNA gyrase beta
match	dbj b30690 STAN	emb X13290 SATN	omb 216422 SADI	emb 216422 SADI	emb X71437 SAGY	dbj D10489 STAG	dbj J10489 STAG	95) 577055	[62£9£n]q5]	gb L42943	gb U51133	gb U51132	gb 05132	gb U\$1132		emb X58434 SAPD	emb X58434 SAPD	emb X58434 SAPD	gb 877055	de 577055
Stop (nt)	4254	3640	4265	5172	6207	8987	10940	11765	1 2867	4281	4718	7261	8361	9748	110320	3437	4820	6230	1526	2152
Start (nt)	3787	2597	3813	4309	5296	11680	12686	12592	4171	3100	4254	6977	9464	11232	10739	2454	3513	6 1 8 P	387	1877
ORF				9	-		9		-	•		5	2	===	===	\$				~
Contig	116	130	130	130	136	136	136	136	143	143	143	143	-	143	9	152	152	152	153	153

S. aureus - Coding regions containing known sequences

ont ig	ORF ItD	Start	Stop	match .	mptch gene name	percent	HSP nt Length	ORF nt length
153		2143	2283		recf cluster: dnaA=replisome assembly proteingyr8=DNA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt)	66	611	147
154	010	10792	9314	ab w6451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	91	154	1479
154	=	9935	5196	195 006451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	- 66	229	321
154	112	9943	10167	gb U06451	Staphylococcus aureus proline permesse homolog (put?) gene, complete cds	76	123	225
154	=======================================	10089	11501	60 006451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	66	1326	1413
159	- 5	2195	1212	db) (D28879 STAP	Staphylococcus sureus gene for penicillin-binding protein 1, complete cds	100	11	984
161		2596	2270	gb H83994	Staphylococcus avreus prolipoprotein signal peptidase (lsp) gene, complete cds	92	203	327
162		1406	1 705	gb u21221	Staphylococcus avreus hysluronate lysse (hysk) gene, complete cds	1000	102	102
163		1263	1772	dp 019710	Staphylococcus aureus pyrrolidone carboxyl pepticase (pcp) gene, complete cds	96	127	\$10
164		1 4774	1 9117	(db) [086727] [0867	Staphylococcus aureus DNA for DNA polymerase III, complete cds	66	3470	4344
168		7448	6447	qb u21636	Staphylococcus arreus cmp-binding-factor 1 (cbf1) and ORF X genes, complete cds	100	1002	1002
168	**	9538	7961	gb U21636	Staphylococcus avreus cmp-binding-factor 1 (cbf1) and ORF X genes, complete cds	66	1158	1578
 در ا		9240	7801	gb J03479	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	001	1440	1440
C-1		111252	9522	qb J03479	S.aureus enzyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta- galactosidase (lacG) genes, complete cds	66	1731	1111
5.1		_ R285	R704	qb J03479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	100	420	420
173		110168	9839	qb 303479	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	001	330	330
173	110	[11815	110829	emt X14827 SALA	Staphylococcus avreus lacC and lacD genes	100	786	987
173	=	12721	111774	emb X14827 SALA	Staphylococcus avreus lacC and lacD genes	100	948	948
173	112	12838	112305	gb H64724	S.aureus tagatose 6-phosphate isomerase gene, complete cds	1000	534	534
173	12	13243	112773,	12773 , [gb]::32103	Staphylococcus aureus lac repressor (lacR) gene, complete cds end lacA repressor (lacA), pertial cds	100	471	471
173		14633	13866	95 H32103	Staphylococcus aureus lac repressor (lacR) gene, complete cds and lacA repressor (lacA), partial cds	1000	168	768

TABLE 1

sednences
known :
Pains.
S CONT
regions
Coding
1
aureus
ď.

Contig	10 OE	Start (nt)	Stop (nt)	match acession	match gene name	percent	HSP nt length	ORF nt length	
178		2	655	 gb U52961	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes.	100	1115	654	
178	7	2201	1482	gb U52961	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	100	720	720	
178		2361	1909	gb U52961	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	100	453	\$3	
178		1551	1853	gb u52961	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	100	303	303	• — —
178	<u>.</u> -	3541	17.12	gb 1:42945	Staphylococcus aureus lytS and lytR genes, complete cds	66	165	1 592	. –
178	9	3294	3025	gb L42945	Staphylococcus aureus lytS and lytR genes, complete cds	66	270	270	•
181	-	1114	065	dp H63177	S.aureus signa factor (plaC) gene, complete cds	66	489	\$25	•
182	<u>-</u>		341	emb x61307 SASP	Staphylococcus avreus spa gene for protein A	86	772	1 666	
1 182	~	069	2312	95 .101786	S. sureus spe gene coding for protein A, complete cad	66	1332	1623	
182		5861	1 4251	emb X61307 SASP	Staphylococcus aureus spa gene for protein A	66	119	1191	
185		n	824	gb U31979	Staphylococcus aureus chorismate synthase (aroC) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroaufnate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	0	132	822	
161	- -	1 8 4 1	2760	emb x17679 SACO	Staphylococcus aureus coa gene for coagulase	66	1920	1920	
191	-	1 2967	3143	emb X16457 SAST	Staphylococcus aureus gene for staphylocosgulase	66	111	177	
191	~	1 5768	4566	emb X16457 SAST	ylococcus aureus	66	250	1203	
136		1741	872	gb L36472 	Staphylococcus aureus lysyl-tRNA sythetase gene, complete cds, transfer RNA (tRNA) genes, 5S ribosomal RNA (5S rRNA) gene, 16S ribosomal RNA (16S rRNA) gene, 23S ribosomal RNA (23S rRNA) gene,	6	870	870	
198	_	1688	1102	emb X93205 SAPT	S.aureus ptsH and ptsI genes	66	324	324	
198	-	2005	2310	[cm) X93205 SAPT	S.aureus ptsil and ptsi genes	6	304	300	
202	-	163	1305	emb x97985 SA12	S.aureus orfs 1,2,3 & 4	66	1143	1163	
202	~	1303	2175	emb x73889 SAP1	S. aureus genes P1 and P2	76	777	873	
210	-	3314	1558	db; D17366 STAA	Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	66	1552	1557	
210	7	2939	2232	0b L41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes. complete cds	66	88 44	708	
214	=_	7429	0777	db3 D86240 D862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes,complete cds	96	157	342	

S. aurius - Coding regions containing known sequences

percent HSP nt OMF nt ident length	BR 265 921	• 100 60 738	99 945 945	99 1164 1164	1869 1869	te 99 675 675	46 6 B	91 67 783	99 102 1350	1 306 376 336	100 792 792	99 501 501	99 1305 1485	96 648 1497	100 103 402	65) 699 66	96 447 447	94 142 1686	1 99 756 756	1213	99 941 942
, natch gene name	S aureus genes for S and F components of Panton-Valentine leucocidins	Staphylococcus aureus genes for ORF37; HSP20; HSP40; HSP40; ORF35, complete cds	Staphylococcus aureus genes for ORF17; HSP20; HSP70; HSP40; ORF15, complete cds	Staphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete cds	staphylococcus aureus gones for ORF37; HSP20; HSP70; HSP40; ORF35, complete cds	Staphylococcus aureus genes for ORF37; HSP20; HSP10; HSP40; ORF35, complete cds	Staphylococcus auraus genes for ORF37; HSP20; HSP70; HSP40; OAF35, completed	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	Staphylococcus aureus type 8 capsula genes, cap8A, cap8B, cap8B, cap8B, cap8E,	S.aureus orfs 1,2,3 & 4	S.aureus orfs 1,2,3 & 4	S.auraus orfs 1,2,3 4 4	S.auraus orfs 1,2,3 & 4	Staphylococcus aureus elastin binding protein (elppS) gene, complete cds	S.aureus DNA for penicillin-binding protein 2	Staphylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete cds	Staphylococcus auraus sarA gene, complete cds	Staphylococcus sureus scdA gene, complete cds	Staphylococcus sureus scdA gene, complete cds	Staphylococcus sureus glycerol ester hydrolese (lip) gene, complete cds	Staphylococcus aureus gene for a participant in homogeneous expression of Staphylococcus methicillin resistance, complete cds
match	emb x72700 SAPV	dbj D30690 STAN	dbj p30690 srAu 	dbj b30690 STAN	db. 030690 stAN	WTS 0690 [cqp	dbj n30690 STAN	gb 1.19298	 ab U73374 	emb x97985 SA12	emb x97985 SA12	emis x97985 SA12	emb x97985 SA12	gb U48826	emblx62288 SAPE	gb 1:25426	gb U46541	gb U57060}	dp 0570601	1900 [17] 1900 1	db: p21131 STAS
Stup (nt)	1318	1073	2035	3196	9/15	5883	1 6734	10034	1506	1.157	2485	3148	4604	5332	1 603	852	1 1093	1835	2728	1 1900	942
Star!	398	1810	2979	4159	7044	6557	6801	110816	2855	7	1694	2648	1 3120	3826	7	24.8	1539	1 150	1 1973	7	
0.00 C		7				9			;	-	~	-	-	9	-	~	2		-3	-	
Cont (g	216	219	612	219	610	219	219	221	223	234	234	234	234	236	248	248	253	254	254	260	265

TABLE 1

1 identification of the control of t	patch gene name Staphylococcus aureus gene for a participant in homogeneous expression of Nigh-level methicillin resistance, complete cds Staphylococcus aureus gene for a participant in homogeneous expression of Nigh-level methicillin resistance, complete cds Staphylococcus aureus HSP10 and HSP60 genes Remba-porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087) At a complete cds Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds Staphylococcus aureus panna-hemolysin components A, B and C (higA, higB, hglC) genue, complete cds Staphylococcus aureus ganna-hemolysin components A, B and C (higA, higB, hglC) genue, complete cds Staphylococcus aureus ganna-hemolysin components A, B and C (higA, higB, hglC) genue, complete cds Staphylococcus aureus at 1 gene for autolysin, complete cds Staphylococcus aureus at 1 gene for autolysin, complete cds Staphylococcus aureus at 1 gene for autolysin, complete cds Staphylococcus aureus methicillin-resistance protein (macR) gene and unknown ORP. complete cds Staphylococcus aureus D-specific D-2-hydroxyacid dehydrogenase (ddh) gene, complete cds	BARCh BARCh BACESSON		5 C C C C C C C C C C C C C C C C C C C		Contig
		•	i	-		
100	Staphylococcus aureus V8 seri	emb Y00356 SASP	•	- [326
	complete cds				_	
86	Staphylococcus aureus D-specific D-2-hydroxyacid dehydrogonase (ddh) gene, complete cds	gb U31175 		1998		323
74		gb 1,14017 	!	7019	9	312
86	Staphylococcus aureus lytS and lytR genes, complete cds	[gb L42945]	. :	2628		311
66		db; D17366 STAA	!	2707	-	305
9.0	aureus gamma-hemolysin components A, B and complete cds	ab L01055	3161	2367		303
100	gamma-hemolysin components A, B and cds		23#3	1409	~	103
66	B and		898	2		263
o		gb H32470 	1991	1536		289
æ Ф	Staphylococcus aureus helicase required for TIB1 replication (pcrA) gene, complete cds	gb M63176 	2202	0661		2 H 4
66	aureus helicase required for Ti81 replication (pcrA)		2026	1028		284
100	Staphylococcus aureus helicase required for Ti81 replication (pcrA) gene.		1034	282	~	284
80	aureus helicase required for T181 replication (pcrA)		170			284
100	SA1959,	gb S72488	1502	516	7	282
100	Aureus, SA1959, Genomic,	gb 5.72488	525			282
98	Staphylococcus aureus HSP10 and HSP60		1018	2	-	266
98	Staphylococcus aureus gene for a participant in homogeneous expression high-level methicillin resistance, complete cds	dbj D21131 STAS 	1765	2418		265
66	Staphylococcus aureus gene for a participant high-level methicillin resistance, complete	dbj D21131 STAS	476	688	2	265
percent ident	match gene name	acession	Stop (nt)	Start (nt)		Cont ig
	ident	Reactch gene name Staphylococcus aureus gene for a participant in homogeneous expression of high-level methicillin resistance, complete cds Staphylococcus aureus gene for a participant in homogeneous expression of high-level methicillin resistance, complete cds Staphylococcus aureus HSPIO and MSP60 genes Staphylococcus aureus HSPIO and MSP60 genes Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds Staphylococcus aureus genea-hemolysin components A, B and C (hlgA, hlgB, hglC) genes, complete cds Staphylococcus aureus genea-hemolysin components A, B and C (hlgA, hlgB, hglC) genes, complete cds Staphylococcus aureus genea-hemolysin components A, B and C (hlgA, hlgB, hglC) genes, complete cds Staphylococcus aureus genea-hemolysin components A, B and C (hlgA, hlgB, hglC) genes, complete cds Staphylococcus aureus algene for autolysin, complete cds and other ORF Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORP, complete cds Staphylococcus aureus anthicillin-resistance protein (mecR) gene and unknown ORP, complete cds Staphylococcus aureus methicillin-resistance protein (mecR) gene and complete cds Staphylococcus aureus antens VB earline proteame gene	Faith game name	accession match gene name lacession lacession	Gircy antich partch gene name Gircy antich Gircy accession Gircy accession Gircy accession Gircy Alph-level methicillin resistance, complete cds Gircy Gircy Gircy Alph-level methicillin resistance, complete cds Gircy Gircy	10 10.0 10

S aureus - Coding regions containing known sequences

Cont 19 ID	08F	Start	Stop (nt)	match	, match gene name	percent	HSP nt length	ORF nt length
342	7 -	625	1754	90,006462	Staphylococcus aureus SA4 Fts2 (fts2) gene, complete cds	100	1176	1176
344	~	1 517	1248	eml; v01281 SANU	281 SANU S.aureus mNNA for nuclease	86	732	732
349	-	1 457	230	gb H20393	S.aureus bacteriophage phi-11 attachment site (att8)	96	172	228
353		9101	516	gb HH3994	Staphylococcus auraus prolipoprotein signal peptidase (lsp) gene, completa cds	1000	187	501
353		1582	1046	gb H8394	Staphylococcus auraus prolipoprotein signal peptidase (1sp) gene, complete cds	6	537	537
356	-		674	qb \u20503	Staphylococcus aureus MHC class II analog gene, complete cds	25	671	672
361			903	qu c19298	Stankylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	86	747	903
191	· ~ - ·	1103	1507	35.38	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	9.2	80	\$0\$
373	-		1148	emb x62288 SAPE	S.aureus DNA for penicillin-binding protein 2	66	1146	1146
600	-	1904	1248	emb X62282 SATS	S.aureus target site DAA for 15431 insertion	9.	349	657
400	-	-	540	SAHL	S. aureus hib gene encoding sphingomyelinase	66	389	540
007	7	1693	1187	emb X13404 SAHL	404 SAML Staphylococcus aureus hlb gene for beta-hemolysin	66	178	507
8 0 0 +		0181	1049	gb S76213{	asp21=alkaline shock protein 23 (methicillin resistant) [Staphylococcus aureus, 912. Genomic, 1360 nt]	66	163	762
£			217	gb :,41499	Staphylococcus aureus ORF1, partial cds, ORF2, CRF3, autolysin (atl) genes, complete cds	100	216	216
4 18	~	854	639	dbj D17366 STAA	Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	100	186	216
4 21	~_	1262	2509	gb L43098	Transposon Thistot and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA	66	1248	1248
422	- -	2 .	325	gb K02985	S.aureus (strain RW450) transposon Tn554 insertion site	96	200	324
427	-	865	*	db; 028879{STAP	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	432	432
427	~	1829	1122	dbj 028879 STAP	dbj 028879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	151	108
435		~	80 0 80	db) E86240 D862	Staphylococcus aureus gens for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	100	\$5.6	807
435	~	A 3 2	666	div.j 0.86240 D862	Staphylococcus aureus gene for unbown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	100	134	168
9		1341	685	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance (fema) gene, complete cds, and trpA gene, 3' end	9.	657	657

TABLE 1

5	
10	
15	
20	
25	
30	
35	
40	
45	

ORF nt length 51, percent | HSP nt ident | length 9, **£**53 Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and grlB) genes, complete cds Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gena, complete Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete [cmb]N17688[SAFE | Stareus factor essential for expression of methicillin resistance (femA) [S.aureus rplL, orf202, rpoB(r1f) and rpoC genes for ribosomal protein | L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 Staphylococcus aureus gamma-hemolysin components A. B and C (higA, higB. |asp23-alkaline shock protein 23 (methicillin resistant) [Staphylococcus emp|X64172|SARP |S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein | L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta |cmb|x72700|SAPV |S.aureus genes for S and F components of Panton-Valentine leucocidins Staphylococcus aureus methicillin-resistance protein (mecR) gene and (Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, emb|X72014|SAFI |S.aureus fib gene for fibrinogen-binding protein gene, complete cds, and trpA gene, 3' and aureus - Coding regions containing known sequences [emb|X52543|SAAG |S.aureus agrA, agrB and hld genes |emb|218852|SACF |S.aureus gene for clumping factor aureus, 912, Genomic, 1360 nt] hglC) genes, complete cds griB) genes, complete cds unknown ORF, complete cds , match gene name heta' chains beta' chains --------cds cds emb | X64172 | SARP match acession | 8p | 77 2 2 8 8 | [gp | L2 5 2 8 8] | 466 EM | q6 | | 122120 | q6 | gb | M83994 | | 45 | 101055 | | 016 tu | de | 96 | 114013 | | ap | 576213 | |0226In]q6| Contig | ORF | Start | Stop ID | ID | (nt) | (nt) 1 1613 R120 1 2737 _ <u>-</u> <u>-</u> ۲: -s ç ~ ~ **7 3** 2 **(18** 4.9 4 B 3

|dbj|D17366|STAA |Staphylococcus aurous atl gene for autolysin, complete cds and other ORFs

3 | 1436 | 1801 | emb|X72013|SAFI |S.auraus fib gene for fibringgen-binding protein

1 | 2150 | 1092

s aureus - Coding regions containing known sequences

Contig 10 528	ORF IID	Stari	Stop Int)		match wene name Staphylococcus aureus DNA sequence encoding three OMFs, complete cds; prophage phi-11 sequence homology. 5. flank	percent ident	HSP nt Jength 260	ORF nt Jength
528		1098	2870	90,119300	Stabhylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	66	866	[77]
530			4.4	92110193	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dchydroauinate synthase (arob) and geranylgeranyl pyrophosphate synthatase homolog (gerCC) genes, partial cds	\$	432	43 2
530		1211	2395	95,610,140	Stabhylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genus, complete cds, dohydroauinate synthase (arob) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	2	1185	1185
530		2409	2801	6261En a6	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroeuinate synthase (arob) and y-ranyigeranyl pyrophosphate synthatase homolog (gerCC) genes, partial cds	80	181	393
530		2690	2 6 3 6	gp 1.05004	Stablylococcus aureus dehydroquinate synthase (arob) gene, 3. end cds; 3-phosphoshikimate-1-carboxyvinyltransfarase (arob) gene, complete cds; ORF), complete cds	100	27	795
510	5	3482	4792	dp L05004	Stabhylococcus aureus dehydroquinate synthase (aroB) gene, 3' end cds; 3-phosphoshikimato-1-carboxyvinyltransforase (aroA) gene, complete cds; OKF3, complete cds	66	905	1161
\$ 10	9	4190	5380	gb L05004	Stablylococcus aureus dehydroquinate synthase (aroB) gene, 3' end cds: 3-phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; 0RF), complete cds	100	196	165
5.19	-	~	338	emb x76490 SAGL	S.aureus (bb270) ginA and ginR genes	66	336	336
539	~	336	1527	emb X76490 SAGL	S.aureus (bb270) glnA and glnR genes	100	189	192
554		7.27	365	gb U/3374	Staphylococcus sureus type 8 capsula genes, cap8A, cap8B, cap8B, cap8E,	190	* ·	363
554	~	2175	1252	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8E, cap8D, cap8E, cap8F, cap8H,	6 6	818	924
554		1574	1374	95 073374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8D, cap8E, cap8F, cap8C, cap8D, cap8E, cap8F, cap8H, cap8H, cap8L, cap8F, cap8H, cap8N, cap8O, cap8P, complete cds	96	122	100
584	7	1019	705	ab;U21221	Staphylococcus aureus hyaluronate lyase (hysk) gene, complete cds	66	306	315
587	_	1475	4288	emp 218852 SACF	852 SACF S. aureus gene for clumping factor	86	2588	2814
29.R	-	3841	1953	dis D28879 STAP	disj D28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	66	1873	1929

5	
10	
15	
20	
25	
30	
35	
40	
45	

S. aureus - Coding regions containing known sequences

Contig	ORF I	Start (nt)	Stop (nt)	match	natch gene name	percent	HSP nt length	ORF nt
609		~	745	Jbj D86240 D862	Staphylococcus aureus gene for unkown function and dit operon dith, dith, dith, dith genes, complete cds	86	338	744
609	-	1628	816		S.aureus (bb270) glnA and glnR genes	1 001	561	813
614		1280	642	[9h[%32103]	Staphylococcus aureus lac repressor (lack) gene, complete cds and lach repressor (lack), partial cds	66	639	66.9
626		2508	1255	gh M63176	Staphylococcus aureus helicase required for TI81 replication (pcrA) gene, complete cds	1001	225, 1	1251
626	~	3315	2284	gb H63376	Staphylococcus aureus helicase required for TI81 replication (pcrA) gena, complete cds	- 66 -	808	1032
629		1999	1001	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	66	066	666
629	~- 	1407	1195	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance ([emA] gene, complete cds, and trpA gene, 3' end	86	194	213
631	7	5126	3228	emb 218852 SACF	S.aureus gene for clumping factor	82	1 684	1899
632		2	551	emb 230588 SAST	S.aureus (RM1220) genes for potential ABC transporter and potential membrane spanning protein	66	\$49	549
63.2	~	529	(32)	emb 230588 SAST	S.aureus (RN4220) genes for potential ABC transporter and potential	66	198	1 562
651		1909	1070	gb L19300 	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	66	478	840
657	~	1800	1105	gb L14017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds		950	969
662	7	908	456	emb X13404 SAHL	Staphylococcus sureus hlb gene for beta-hemolysin	100	369	453
662	7	230	475	emb X13404 SAHL	Staphylococcus aureus hlb gene for beta-hemolysin	100	246	246
662		746	1399	enb X13404 SAHL	Staphylococcus aureus hlb gene for beta-hemolysin	66	653	654
6.82		956	480	qb n63177	S.aureus signa factor (plac) gene, complete cds	100	136	1774
685		1182	592	000590 46	Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I signal peptidase SpsB (spsB) gene, complete cds	80 65	534	591
685		1716	1153	94 065000	Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I signal peptidase SpsB (spsB) gene, complete cds	96	264	264
697		-	\$ 227	95 1163177	S.aureus signa factor (plac) gene, complete cds	100	195	525
769	2	485	784	др н63177	S.aureus sigma factor (plac) gene, complete cds	9.7	280	300

sednences
Known
containing
regions
- Codi
auteus -

Contig	ORF	Start	Stop	inatch	Taktch gene name	percent	MSP nt length	ORF nt length
710	-	£	503	dbj D86240 D862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	66	- 612	489
133		2.5	205	[gb]H80252]	Staphylococcus aurous norAll99 gene (which mediates active efflux of [fluoroquinolones), complete cds	- 6	160	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104		1736	7611		Staphylococcus aureus DNA for LukM component, LukF-PV like component, complete cds		522	540
752	-	-	636	emb Y00356 SASP	Staphylococcus aureus VB serine protease gens	•	618	636
752	- 2	588	986	emb Y00356 SASP	Staphylococcus aureus VB serins protesse gene	- 66	340	369
756	-	9000	1 709	emb x01645 SATO	645 SATO Staphylococcus aureus (Wood 46) gene for alpha-toxin	96	1 195	1 009
111	-	1582	056	emb 249245 5A42	S. aureus partial sod gene for superoxide dismutase	- 66	(29	633
780	-	1111	553	gb U20503	Staphylococcus aureus MHC class II analog gene, complete cds	9.6	550	555
1 784	-		1 687	gb U63529	Staphylococcus aureus novel entigen gene. complete cds	66	568	615
197	-	1 182	544	db) D14711 STAH	711 STAK Staphylococcus aureus HSP10 and HSP60 genes	86	363	363
B66		532	302	eub X58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	2	961	231
823			467	95 577055	recF cluster: dnaAereplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt)	66	156	
# # # # # # # # # # # # # # # # # # #		343	271	gh L25288	Staphylococcus aureus gyrase-like protein sipha and beta subunit (grlA and griB) genes, complete cds	66	174	174
=	-	476	318	9b L25288	Staphylococcus sureus gyrase-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	100		159
998 		1 792	1 397	emb X64172 SARP	S.aureus rpli, orf202, rpoB[rif] and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta chains	56	395	396
883	-	-	1 285	dbj 090119 STAN	S. sureus nork gene	1 66 1	131	285
	-	909	334	emb X52543 SAAG	S. aurous agrh, agrB and hld genes	86	265	1 (62
7 8	- 2	116	522	emb	S. aurous agrh, agrB and hld genes	100	195	195
912	~_	517	681	emb 230588 SAST	S. aureus (RN4220) genes for potential ABC transporter and potential aembrane spanning protein	66	91	165
917	-	- 2	1 265	gb H64724	S.auraus tagatose 6-phosphate isomerase gene, complete cds	1 66	247	264
917	~	238	1 396	gb N64724	S. aureus tagatose 6-phosphate isomerase gene, complete cds	1 98	147	159
918	-	2426	1215	emt x93205 SAPT	S aureus ptsH and ptsI genes	66	1212	1212

TABLE 1

aureus - Coding regions containing known sequences

o aureus - coding regions containing known sequences

Cont.ig OSF	108F	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	OKF nt length
\$161		& 1	326	emb x64172 SARP	S aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L77Li2, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta' chains	86	277	309
1519	-	2	175	(db) [D28879 STAP	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	- 86	139	174
1 1663		1346	675	dbj ps6240 ps62	Stabbylococcus aureus gene for unkown function and dit operon ditA, ditB.	5	672	672
1797		4	324	 gb u73374	Staphylococcus aureus type 8 capsule ganes, cap8A, cap8C, cap8D, cap8E, cap8C, cap8H,	66	321	321
1857	-	-	192		Staphylococcus aureus alpha-hemolysin gens, 3' und	96	192	192
1923		7	181	emb X17688 SAFE	Staureus fector essential for expression of methicillin resistance (fenA) gene, complete cds, and trpA gene, J' end	001	180	081
1957	-	7	346	685090 95	Staphylococcus aureus novel antigen gene, complete cds	66	345	345
1988			402	db, D86240 D862	Staphylococcus aureus gene for unkown function and dit operon dita, dita, dita ditC and ditD genes, complete cds	1000	403	405
2100	-	=	208	qb H63177	S.aureus signa factor (plac) gene, complete cds	66	207	1 002
2199	-	- - -	402	ap 06664	Staphylococcus aurous DNA fragment with class If promoter activity	66	1.01	402
7837		304	156	cat) X17688 SAFE	S aureus (actor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	66	153	153
2891		2	400	gb 1.25426	Staphylococcus aureus penicillin-binding protein 2 (pbp2) gene. complete	66	399	39.0
2950		376	398	db3 D30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP40; HSP40; ORF35, complete cds	100	358	180
2971			398	gb US1132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	9.	272	396
2978		618	328	del:31979	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homology (gerCC) genes, partial cds		250	291
2985	-	832	797	emb XI7679 SAC0	Staphylococcus aureus coa gene for coagulase	- 96 -	347	369
3006		2170	1784	1867110 106	Staphylococcus aureus methicillin-resistant ATC: 33952 clone RRNV30 16S-23S rRNA spacer region	B 2	93	387
3008		***	238	dbj D30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40: ORF35, complete	88	178	237
3008		\$	281	dbj b30690 STAN	staphylococcus aureus genes for ORF37; HSP20; HSP10; HSP40; ORF35, complete cds		120	171

TABLE 1

S aureus - Coding regions containing known sequences

percent HSP ONF nt ident length	93 72 396	97 234 234	87 100 153	135 198	97 135 147	77 183 258	99 213 213	98 234 261	99 229 258	96 250 396	95 215 237	97 160 201	97 142 153	100 88 171	98 192 231	96 154 174	89 197 210	96 91 378	96 72 210	96 141 141
match gene name	S.aureus inbB gene for fibronectin binding protein B	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	Stabhylococcus aureus phosphoenolpyruvate carboxykinsse (pcks) gene, complete cds	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,	S. aureus rplL, orf202, rpo8(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta' chains	Staphylococcus aureus genes for ORF37; HSP20; HSP40; ORF35, complete	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	S.aureus rplL, orf202, rpo8(r1f) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DMA-directed RMA polymersse beta 6 beta: chains	Staphylococcus aureus DNA for DNA polymerase III, complete cds	S.auraus gene for DMA polymerase III	S.aureus enzyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta-galactosidase (lacG) genes, complete cds	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase. dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	S.auraus DNA for rpoC gene	S. auraus gene for clumping factor	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	S.aurmus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	S.aureus entyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds
Match acession	emb x62992 SAFN	196 July 196	[gh] (106451)	cc1150 q6	196 051133	gb us1133	emb X64172 SARP	db D30690 STAN	gb U06451	emb X64172 SARP	[db] [D86727 D867	cmb 248003 SAD	gb J03479	emb X58434 SAPD	cmb x89233 SAHP	emb z18852 SACF	db] 010489 STAC	emb 2,58434 SAPD	gb J03479	Bb 176714
Stop (nt)	398	235	233	287	191	327	215	261	284	197	239	244	155	398	233	175	211	378	211	57
Start (nt)	193	~	18	06	8	70	3		12	2		7	307	268	463	1 2	420		4 20	
ORF 110	1		-			7			-		-	-			-	-	-			-
Cont ig ID	3011	3019	1023	3029	9000	3039	3056	3059	1073	3074	3088	7600	3102	3121	3125	3133	3160	3176	3192	3210

					· · · · · · · · · · · · · · · · · · ·			
Contig ORP	10 V	Stace	Srop [(nt.)	natch	שישוני לפטפ חשוני	percent ident	list of length	ORF nt
3232		2105	1282	19512140171	Staphylococcus aureus mathicillin-resistance protein (mecR) gene and unknown ORF, complete cds	71	257	825
3534	- - -	; r.	1 334	cmb X89233 SARP	S.aureus DNA for rpoC gene	6	3,50	193
1 3543	-	1 392	634	[66]111530	Staphylococcus aureus transfer RMA sequence with two FRNAs	- 66	102	243
1 3555	-	1 637	1 320	emb 218852 SACF	S.aureus gene for clumping factor	9.6	307	318
13559	-		182	emt x17679 SACO	Staphylococcus aureus coa gene for coaquiase	100	141	100
1559	7	35		emb x17679 SACO	Staphylococcus aurens coa yene for coagulase	16	174	219
3563		278		16755731	Stabbyclococcus aureus proll; protein diacylglyceryl transferase (lgt) gene, complete cds	001	62	138
3563	7-	527	363	95 035773	Staphylococcus aureus prolipoprotein diacylylyceryl transferase (1gt) gene, complete cds	60	162	165
3566	-		422	emb X16457 SAST	Staphylococcus aureus gene for staphylocosquisse	86	175	450
3588		~	1 262	gb L43098	Transposon Thistot and insertion sequences [S]181 and [S]182 (from Staphylococcus aureus) DMA	6	253	261
1051	-	-	150	qb Ja3479	S. aurous onzymo III-lac (lacf), onzymo II-lac (lacf), and phospho-bets- galactosidase (lacG) genes, complete cds	66	145	E T
1 3600	-	758	181	emb 218852 SACF	S. aureus gene for clumping factor	72	346	378
3602	-	788	1 396	emb 218852 SACF	S. aureus gene for clumping factor	86	319	193
1 3656	-	1013	528	cm1, 218852 SACF	S. aureus gene for clumping factor	•	(0)	- 486
36.82	: :		236	c.ab X64172 SARP	S. aureus rpll, orf202, rpo8crif) and rpoC genes for ribosomal protein L7/LL2, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta. chains	001	102	234
36.82		224	415	emb X64172 SARP	S.aureus rpll, orf202, rpoBirif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DMA-directed RMA polymerase beta & beta' chains	001	112	192
1 3693	-	75A	(7)	BMU X62992 SAFN	S. aureus fnb8 gene for fibronectin binding protein B	100	229	336
1 3702	-	1 593	154	94/111530	Stapliylococcus aureus transfer RMA sequence with two rRNAs	- 55		240
37.25	-	924	463	emb 218852 SACF	S. aureus gene for clumping factor	71	367	462
3761		60	\$ \$ 0 \$ -	1001114011	Staphylococcus aureus methicillin-resistance protein (meck) gone and unknown ORF, complete cds	588	1333	160
3767			1 402	ent X64172 SARP	S.aureus rplt, orf202, rpoBirif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta E beta Chains	80 6	387	403

TABLE 1

5	
10	
15	
20	
25	
30	
35	
40	
45	

. aurous - Coding regions containing known sequences

Contag	ORF	Start (nt)	Stop (nt)	match		percent	HSF nt length	ORF nt length	
21.5		~	286	emb x64172 SARP	S.aureus rplt, orf202, rpo8(rlf) and rpoC genes for rlbosomal protein L7/Ll2, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	001	227	285	
3786	-	456	229	dbj D10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	001	204	228	•
1786	~	5.42	366	D10489 STAG	Staphylococcus aureus genes for DAA gyrass A and B, complete cds	36	123	17.1	: -
379R	-	3	1251	emb X17679 SACO	Staphylococcus aureus	66	249 ,	249	· -
1813	-	193	1 398	gb J04151	S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds	1 86	396	396	•
3819	-	1.84	705	emb X68425 SA23	S.aureus gene (or 235 rRNA	1 66	191	219	• -
3864	-	932	468	gb U48826	Staphylococcus auraus elastin binding protein (abps) gene, complate cds	1 81	204	465	· -
3845			381	emb x58434 SAPD	S. aureus publib, pdhC and pubD genes for pyruvate decarboxylase, dibydroliposmide acetyltransferase and dibydroliposmide debydrogenase	76	356	- E	:
3856	-	798	00	gb 1.14017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	76	192	399	•
1 3859	-	1049	673	emb 218852 SACF	S.aureus gene for clumping factor	1 88	347	477	• -
12.00	-	650	12.7	db N76714	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	1000	299	324	· —
3876	-	~	1 253	dbj D10489 STAG	Staphylococcus aureus genes for DAA gyrase A and B, complete cds	100	217	252	
3877		572	288	qb J03479 	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phoepho-beta- galactosidase (lacG) genes, complete cds		209	285	
187R	- -		237	cml) X58434 SAPD 	S. aureus pdhn, pkhC and pdhD genes for pyruvate docarboxylaso, diliydiolipoamido acetyltransferase and dihydrolipoamide dehydrogenase	96	155	762	•
3888	- -		173	emb X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	9.6	17.1	171	•
1 3893	-	-	183	emb x89233 SARP	S. aureus DNA for rpoC gene	100	170	183	. —
3893	~	ואו	357	emb x89233 SARP	S. aureus Dith for rpoC gene	86	1 64	17.1	•
3894			485	emb X64172 SARP	S.aureus rplL, or(202, rpoB(rif) and rpoC genes for ribosomel protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	6	4 50	: C 69 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3895	- -	H36	420	1915 304151	S. wureus (ibronectin-binding protein (InbA) mRNA, complete eds	- 66	114	417	
3905		æ	239	ap L05004	Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF3, complete cds	100	159	192	
3905	~	80	004	gb 1.05004	Staphylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (arob) gene, complete cds; ORF), complete cds	9.2		213	
					# 1 1 1 1 1 1 1 1 1 1				

S aureus - Coding regions containing known sequences

Conf.19	ORF	Start	Stop	match	match gene name	Dercent	HSP n:	ORF of
0.1	£	(int.)	(10)	acession		ident	length	length
3910		-	359	emb X58434 SAPD	S.aureus pdhB, pdhC end pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	66	278	150
1915			330	951.14017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	75	175	330
3964	_	169	347	emb 248003 SADN	S. aureus gene for DNA polymerase III	100	295	345
4007	_ 	199	390	emb. x16457 SAST	Staphylococcus aureus gene for staphylocoagulase	86	163	192
4036	- -	^	1.7	db. D10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	- 66	339	369
4046	_	:69	348	emb 218852 SACF	S. aureus gene for clumping factor	87	221	365
090+	_	~	27.5	emb 218852 SACF	S. aureus gene for clumping factor	96	271	375
4061	-	096	432	emb 248003 SADN	S.aureus gene for DNA polymerase III	- 66	429	429
4062		909	304		Staphylococcus aureus methicillin-resistance procein (mecs) gene and unknown ORF, complete cds	75	961	303
4045		8	+05 -	986110 46	Stabhylococcus aureus methicillin-resistant ATCC 11952 clone RNIV42 165-235 FRMA spacer region		721	345
4 E		2	100	gb 14309#	Transposon 105404 and insertion sequences ISI181 and ISI182 (from Staphylococcus aureus) DAA		722	300
4093	-	~	7.7.	rml: X58434 SAPD	S.aureus pdhB, pdhC and p. ND genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase		2.16	276
4097	-	-	402	emt 218852 SACF	S.aureus gene for clumping factor	1 46	307	407
91.1		22	402	1702004	Staphylococcus aureus dehydroquinate synthase (aroh) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (aroh) gene, complete cds; ORF3, complete cds		157	186
4125		5	401	gb U733741	Stanily Jecoccus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8F, cap8F, cap8F, cap8H, cap8H	8	90	100
4149	-	35	247	ap 204151	S.aureus fibronectin-binding protein (fnbA) mRNA complete cds	66	200	213
4151		629	366	95/514017/	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	687	150	264
4154		154	398	embix64172 SARP	S.aureus rplL, orf102, rpoBirif, and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF102, DNA-directed RNA polymerase beta it beta' chains	66	297	357
4179			294	emb X64172 SARP	S.aureus rplu, orf202, rpoBirif) and rpoC genes for ribosomal procein L7/L12, hypothetical protein ORF202, DMA-directed RNA polymerase beta a beta' chains	• — — — — — — — — — — — — — — — — — — —	240	294

5
10
15
20
25
30
35
40
45

HSP nt ORF nt length length	239 255	236 303	65 150	76 207	326 327	132 297	141 168	164 177	150 174	265 270	282 315	183	144 327	94 156	158 183	75 210	294 294	116 285	140
:	-	-	_			-		-	-				-	-				-	
percent	66	100	95	8		97	2	100	99	66	60	66	36	001	100	96	96	100	9.5
match gene name	S.aureus DRA for spoC gene	S.aureus gene for clumping factor	S.aureus gene for clumping factor	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogensse	S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	Staphylococcus sureus transfer RNA sequence with two rRNAs	Staphylococcus aureus methicillin-resistant ATCC 33952 clone RBNV40 165-235 rBNA spacer region	S.aureus gene for DNA polymerase III	Staphylococcus aureus gene for staphylocoagulase	S.aureus rplu, or 1202, rpoB(rif) and rpoC genes for rlbosomal protein L7/L12, hypothetical protein ORF202, DMA-directed RNA polymerase beta & beta' chains	S.aureus rplL, or1202, rpoB(rff) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta chains	S.aureus rplL, or1202, rpo8(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta' chains	Staphylococcus aureus gene for staphylocoagulase	Staphylococcus aureus transfer RNA sequence with two rRNAs	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidasa (lacG) genes, complete cds	Transposon Tu5404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DAA	Staphylococcus aureus ATCC 25923 165 rRNA gene, partial sequence	S.aureus rplL, or[202, rpoB(rif) and rpoC genes for ribosomal protein 1.7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta L beta chains
match	emk (N89233 SARP	emb 218852 SACF	enb 218852 SACF	emb (2'58434 SAPD	emb X58434 SAPD	ab L11530	ab u11784 	emt 248003 SADN	emib X16457 SAST	emt X64172 SARP	emb X64172 SARP	emb X64172 SARP	emb X16457 SAST	196 [11530]		gb J03479 	gb 1.43098	016201 06	emb X64172 SARP
Stop (nt.)	255	303	344	*	027	298	363	671	771	270	7.7.6	191	329	280	1.85	310	294	919	146
Start (nt)			195	108	959	594	216	355	-		691	379		435	_	101		603	
ONF	-	-	7			-		- -	-				-	-		~		- -	
Cont ig ID	4203	4206	4206	4208	4216	4226	4260	4272	4376	4277	42R2	4291	4295	4313	4315	4315	4327	4360	4364

S. aureus - Coding regions containing known sequences

5

ant 19	ORF	Start	Stop	match	actor gene name	percent	HSP nt Length	ORF nt
100	<u> </u>	7	313	92 SAFN	S. aureus finbs gene for fibronectin binding protein B	9.7	2.03	312
4421	-	36	281	dbj D12572 STA2	Staphylococcus sureus rrnA gene for 215 ribosomal luiA	1001	112	246
4426	-		293	emb 218852 SACF	S. aureus gene for clumping factor	98.2	185	291
4428		493	248	emt x64172 SARP	S.aureus rplL, orf202, rpcB(rif) and rpoC genes for rlbosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase bets to beta' chains	100	139	246
4462		2	271	emb. x64172 SARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7-Li12, hypothetical protein ORP202, DNA-directed RNA polymerase beta L beta' chains	66	270	270
1466	-		240	emb Z18852 SACF	S. aureus gene for clumping factor	66	231	2:10
6901			312		S.aureus enzyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta- galactosidase (lacG) genes, complete cds	66	265	312
4485			263	gb L43098	Transposon Th5404 and insertion sequences [S118] and [S1182 (from Staphylococcus avreus] DNA	8 0	259	261
4492		74	000	gb[H86227	Staphylococcus aureus DNA gyrase B subunit (gyra) RacF homologue (recF) and DNA gyrase A subunit (gyra) gene, complete cds	<u>.</u>	104	127
4497	; -	1 515	697	lemb[218852 SACF	S. Jureus gund for clumping factor	66	213	192
4529		~	172	 emb x64172 SARP	S. aureus rpll, orf203, rpoBirif) and rpoC genes for ribosomel protein L7/LL2, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	100	151	171
1547	-	-	1 300	cnb x62992 SAFN	enb x62092 SAFN S.aureus fnbB gene for fibronectin binding protein B	100	157	1 000
6554	-	1 316	160	emb 218852 SACF	S.aureus gene for clumping factor	7-80	126	651
4565	-	6 -	1 227	en-b 218852 SACF	S. auraus gene for clumping factor	84	213	219
6951	-	1 79	222	emb 218852 SACF	S. auraus gene for clumping factor	86	721	144
460A	<u>-</u> -	~~	216	emb x58434 SAPD	5 aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase. dihydrolipoamide acetyltransfersse and dihydrolipoamide dehydrogenase	92	16.8	195
1197	-	199	234	emb 219852 SACF	S. aureus gene for clumping factor	986	169	1 162
4623	-	105	1 302	gb J04151	S auraus (ibronectin-binding protein (fnbA) mRNA, complete cds	66	152	198
4632		801	206	4 4 4 4 4 4 4 4 4 4	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	8 6	183	189
4646	-	-	1 222	emb 218852 SACF	S.aureus gene for clumping factor	84	100	222
4687	-	2	166	gb J04151	S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds	86	156	191
1111								

5		match gene name percent HSP nt ORF nt	4695 1 313 158 GP L14017 Staphylococcus aureus methicillin-resistance protein (necR) gene and 75 156 156	SAPD S. aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, 98 103 153 dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrolipoamide decetyltransferase and dihydrolipoamide dehydrolipoamide dehydrol
15			() gene and	ase,
20			Staphylococcus aureus methicillin-resistance protein (necR) gene and unknown ORF, complete cds	S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase
25	n sequences		cillin-resistan	D genes for pyr
30	- Coding regions containing known sequences	name	Staphylococcus aureus methicunknown ORF, complete cds	B, pdhC and pdhi
35	oding regions	match gene name	Staphylococc	S.aureus pdh
40	S. aureus - Co	match	4695 1 313 158 GE L14017	470) 1 153 cmb X58434 SAPD S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,
45		Stop (nt)	158	153
		Contig ORF Start Stop ID ID (nt) (nt)	313	
50		ORF		
50		tig.		60
		COU	90	4

an proteins
known
2
gimilar
proteins similar
novel
ō
regions of novel
coding
Putative coding
40100

Contag	lorf	Start	Stop	match	metch gene name	E in	1 sdent	length i
C1	2	(ref.)	(nt)	B C C C C C C C C C C C C C C C C C C C	institute bacteriophage phi 11]	1001	1001	1111
20	•	6806			The state of the s	1001	1001	1 950
601	_	2032	1577	pir 849 703 849 7	TOTAL GENERAL CONTRACTOR AND		- 001	- 401
149	<u>د</u>	2109	1912	191 166161	Bacteriophage phi-11 int gene activator (Staphylococcus accessophage pni	9	2	-
349	7	558	409	91 166159	integrase (int) (Staphylococcus bacterlophage phi 11)	001	1000	150
398		11372	707	91 166159	integrase (int) [Staphylococcus becterlophage phi 11]	100	66	1 999
#60	7	7.83	1001	91 455128	excisionase (xis) (Staphylococcus bacteriophage phi 11)	1 001	1001	219 [
203	-	1914	1764	91 1204912	H. influences predicted coding region M10660 [Hasmophilus influences]	100	117	1161
5	-	~	292	191 1373002	polyprotein [Bean common mosaic virus]	100	46	192
1349		722	140	91111359	protein synthesis initiation factor 2 (infB) (Bacillus subtilis) gl 49319 IF2 gene product (Bacillus subtilis)	100	95	:
2880	-	12	108	191 062933	protein kinese C inhibitor-[(Moso sapiene)	100		288
3045	-	1 428	216	91 1354211	PET112-11ke protein (Sacillus subtilis)	100	100	213
4168		1521	398	19111354211	PETII2-like protein (Bacilius subtilis	001	100	174
1331	-	~ -	247	91 426473	nusG gene product (Staphylococcus carnosus)	96	96	246
207	-	1 1272	1463	1911460259	enolase (Secilius subtilis)	97	90	192
111	-	1 395	H50	191 541638	11.11 protein (Staphylocor cue cernosus)	16	5	456
366	<u>:</u>	6.	215	911.66161	Bacteriophage phi-11 int gene activator (Staphylococcus actariophage phi 11 11 11 12 13 14 15 17 17 17 17 17 17 17	97	\$6	711
680	-	718	936	gi 426473	nusd gene product [Staphylococcus carnosus	97	6	191
HUS1	-	- 2 R4		191;1339950	large submit of NAM: shywident glutamate synthase [Plectonema horyanum]	97	11	141
157	-	1221	518	gi 1022726	unknown [Staphylococcus hemolyticus]	96	88	198
1 205	=======================================	116470	16147	01 1165302	S10 [Bacillus subt[lis]	96	91	324
3919	-	48	10+	1911971784	Clp-like ATP-dependent protease binding subunit (Bos taurus)	96		354
4133	-		1 417	91,1022726	unknown Staphylococcus hasmolyticus	96	84	
4168	-	1.708	35\$	191,1354211	PET112-11ke protein (Bacillus subtilis] .	96	95	354
4207		312	157	g1 (602031	similar to trimethylemine DH [Mycoplasma capricolum] pir S49950 S49950 probable trimethylemine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum (SGC3) (fragment)	96	19	156
-	_							

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	sapth yens name	E	I ident	length
4227	7	152	331	91 871784	[Cip-like ATP-dependent protesse binding subunit [Bos taurus]	96	81	180
4416	-	570	286	191 1022726	unknown (Staphylococcus haemolyticus)	96	7 8	285
22	-	856	430	91 511070	UreG (Staphylococcus xylosus)	98		429
1 22	,	4362	4036	191:581787	urease gamma subunit (Staphylococcus xylosus)	98	1 60	327
8.2	9	8794	9114	pir JG0008 JG00	omal protein S7 - Bacill	95	83,	321
154	•	9280	7838	91 1354211	PET112-like protein (Bacillus subtilis)	1 56	92	1443
186	_	2798	2055	gi 1514656	serine O-acetyltransferase (Staphylococcus xylosus)	95	87	744
205	S	4406	4014	g1 142462	ribosomal protein S11 (Bacillus subtilis)	56	85	393
205	_	5017	1793	101 142459	initiation factor 1 (Bacillus subtilis)	36	78	225
205	121	11365	10991	91 1044974	ribosomal protein L14 (Bacillus subtilis)	95	1 66	375
259	- 2	7288	6644	sp P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA S'REGION (ORFI) (FRAGHENT).	95	- \$8	645
302		795	1097	91 40186	homologous to E.coli ribosomal protein L27 (Bacillus subtilis) i 143592 L27 ribosomal protein Bacillus subtilis ir C21895 C21895 xibosomal protein L27 - Bacillus subtilis p PU5657 RL27_BACSU 50S RIBOSOMAL FROTEIN L27 (BL30) (BL24). 1 40175 L24 gene prod	98	66	303
310	-	579	1523	91 1177684	chorismate mutase (Staphylococcus xylosus)	\$6	92	945
414	-	2	163	pir C48396 C483	ribosomal protein L34 - Becilius stearothermophilus	95	1 06	162
4185	~ ;	125	112	91 1276841	glutamate synthase (GOGAT) Porphyra purpurea	95	989	153
22	7 -	1028	123	gi 511069	UreF [Staphylococcus xylosus]	76	- 16	306
1 22	2	5046	3310	gi 410516	urease alpha subunit [Staphylococcus xylosus]	***	88	1 7871
09	-	815	1372	191 666116	glucose kinase (Staphylococcus xylosus)	*	1 18	958
205	=	110012	9536	gi 1044978	ribosomal protein 58 (Bacillus subtilis)	*	7.0	1 447
326		3378	2542	91 557492	dihydroxynapthoic acid (DHNA) synthetase [Bacillus subtilis] gi l43186 dihydroxynapthoic acid (DHNA) synthetase [Bacillus ubtilis]		85 -	837
7.7		737	955	91/467386	thiophen and furan oxidation [Bacillus subtilis]	76	1 11	219
426		2260	1823	1823 , [gi 1263908	putative (Staphylococcus epidermidis	76	1 68	438
534		2	355	191 633650	enzyme II(mannicol) (Staphylococcus carnosus)	75	40	354
1017		2	229	91 149435	putative (Lactococcus lactis)	- 76	7.3	228
3098	-	330	184	q: 413952	ips-28d gene product (Bacillus subtilis	6	20	141

3 aureus - Putative coding regions of novel proteins similar to known proteins

5	ORF	Stert	Stop	match	match gene name	E 7 4	* ident	length (nt)
- 1	0	1 (00)	(90)		maknoum (Stanbly) ococcus haemolyticus)	76	84	315
3232		054	516	1000	unable	93	69.1	171
7	· · ·	1 2087			. 6	9.3	85	163
101	- 1	1	7007	186.16	SOS RIBOSONAL PROTEIN LIG.	25	83	363
607	-	1		1	sech protein (Staphylococcus carnosus)	93	9.6	2619
	,	3326	7111	1011633650	entyme II(mannitol) (Staphylococcus cernosus)	93	98	1113
777		6207	5773	101 1022726	unknown (Stephylococcue haemolyticus)	93	81	435
		152	622	gi 46912	ribosomal protein Lil (Staphylococcus carnosus)	93		471
1 607		1674	2033	91 1022726	unknown (Staphylococcus hasmolyticus)	6 1	-	360
653	-	573	889	91 580890	translation initiation factor 173 (AA 1-172) [Bacillus tearothermophilus]	3	1 4	486
1864	-		5.	01 306553	ribosmal protein small subunit [Nomo sapiens]	3	56	192
2997	-	28	100	91 143390	cerbanyl phosphate synthetase [Becillus subtilin]	£ .	62	1 (12
3232		506	296	91 1022725	unknown (Staphylococcus haemolyticus)	6	70	1216
1 3761	7	794	621	91 1022725	unknown (Staphylococcus haemolyticus)		:	1 174
16			374	91 142781	puterive cycopiasmic protein; puterive [acillus mubilis] sp p17954 UVRh_BACSU EXCINUCLEASE ABC SUBUNIT 3 (DINA PROTEIN) FRACMENT).	32	2	572
	-	5915	6124	g1 1136430	KIAA0185 protein Homo sepiens	92	•	210
2.0	67	:	191721	91 467401	unknown [Bacillus subtilis]	92	B.	1 606
69	•	1 5882	6130	91 530200	trophoblastin (ovis aries	92	- 83	249
145		25.68	2038	91 1022725	unknown (Staphylococcus heanolyticus	92	08	1 105
171	-	2760	2362	91 517475	[D-amino acid transaminase [Staphylococcus hassolyticus]	92	98	199
205		7495	6963	91 49189	secY gene product [Staphylococcus carnosus]	92	95	534
205	13	10812	10255	91 1044976	ribosomal protein LS [Bacillus subtilis]	92	82	1 858
219	-	710	1357	[91]1303812	Yqav [Becillus subtilis]	- 92	98	354
344	-	1575	5081	i	CspC protein (Bacillus cereus)	92	88	162
669	-	1 20	361		ipa-75d gene product (Bacillus subtilis)	92	18	342
	-		160		ribosomal protein L19 - Bacillus stearothermophilus	85	-	159
	- ;							

S. aureus - Putative coding regions of novel proteins similar to known proteins

100	- uac	0.000	00.49		STATE OF TAMES	a is	1 ident	Length
10	5 8	(10)	(nt)	acession				(nt)
1958	-	524	264	qi,407908	Ellacr (Staphylococcus xylosus)	9.5	80	261
3578	7	718	386	[91[1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	9.2	78	333
3585	-	44	324	41 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	9.5	19	321
3640	=	-	405	91 1022726	unknown [Staphylococcus haemolyticus]	9.5	- 18	399
4362		7	178	91 450688	hsdM gene of Ecopril gene product (Escherichia colii pir 538477 538477 hsdM protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	93	2	165
1111	-	358	182	[41 1022725	unknown [Staphylococcus haemolyticus]	92		1 571
4549		1 462	232	91 1022726	unknown [Staphylococcus hasmolyticus]	92	06	231
4626	-	0	1 224	91 1022725	unknown [Staphy]ococcus hasmolyticus]	92	¥	222
2	-	1980	16531	91 535349	Codw (Bacillus subtilis)	91	7.	552
28	-	7	1126	191 1001376	hypothetical protein (Symechocystis sp.)	9.1	- 82	1125
09	2	1354	1071	91 1226043	orf2 downstream of glucose kinase (Staphylococcus xylosus)	91	- 08	348
101		1989	1036	01 150728	arsenic efflux pump protein (Plasmid p1258)	91	80	954
187	7	412	1194	93 142 559	ATP synthese alpha subunit [Bacillus megaterium]	91	1.67	783
205	122	111579	11298	91 40149	S17 protein (AA 1-87) [Bacillus subtilis]	9.1	83	282
306	_	1 8184	10262	91 1072418	glcA gana product [Staphylococcus carnosus]	9.1	8	2079
306	7	3885	2326	91 143012	GMP synthetass (Bacillus subtilis)	9.1	1 8/	1560
306	-	6168	3826	91 467399	IMP dehydrogenese [Bacillus subtilis]	91	60	1494
310	-	2194	1 3207	91/1177685	ccpA gene product (Staphylococcus xylosus)	9.1	18	1014
343	-	2974	3150	gi 949974	sucrose repressor [Staphylococcus xylosus]	9.1	82	177
087	_	1606	3042	91 (433991	ATP synthase subunit beta (Bacillus subtilis)	16	85	1437
536		2026	1280	91 143366	adenylosuccinate lyase (PUR-B) [Bacillus subtilis] pir C29326 WZBSDS adenylosuccinate lyase (PC 4.3.2.2) - Bacillus ubtilis	16	79	747
552		1064	615	gi 297874	fructose-bisphosphate aldolase (Staphylococcus carnosus) pir/A49943/A49943 fructose-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnosus (strain TH300)	91	7.9	05.
637	-		1536	1536 91 143597	CTP synthetase (Bacillus subtilis)	16	1 66	1536
889	-	21	359	191385178	unknown (Recillus subtilis)	16	99	139

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont 16	ORF	Start	Stop	match	Match gene name	e in	1 1dent	length (nt)
1327	-	333	530	91 496558	orfx (Bacillus subtilis)	7	1.7	192
2515	-	466	275	91 511070	Ured (Staphylococcus xylosus)	91	- S 0	192
2594	-	7	202	91 146824		91	1.5	201
3764	-	647	425	91 1022725	unknowm (Staphylococcus hasmolyticus)	16	78	423
4011	-	127	495	91 1022726	unknown (Staphylococcus haemolyticus)	16	• • •	369
4227	-	-	721	gi 296464	ATPase [Lectococcus lactis]	16	99	177
7	-	1 115	1033	gi 520401	cetalage [Haemophilus influenzae]	<u>.</u>	90	219
5.1	=	13717	1 4607	191 580899	OppF gene product (Bacillus subtilis)	06	74	891
129	-	1 5317	1001	gi 1146206	glutamate dehydrogenase (Bacillus subtilis)	06	76	1317
164	113	16628	[1691]	sp P05766 RS15_	JOS RIBOSOMAL PROTEIN S15 (BS18).	06	74	306
171	- 5	2983	1 2819	191 (517475	D-amino acid transaminase (Staphylococcus haemolyticus)	0.6	7.	165
205	-	1 4497	1 3550	01 142463		0.6	96	948
205	9	1 4748	4410	191 1044989	ribosomal protein S13 (Bacillus subtilis)	2	2	1 600
205	110	7165	1019	gi 49189	sect gene product [Staphylococcus carmosus]	0	10	762
205	===	6645	6472	91 49189	sect gene product [Staphylococcus carnosus]	0.6	7.6	174
205		113692	113345	191 746157	Ribosome: Protein S19 (Dacillus subtilis)	06	79	34.8
205	=======================================	15858	15496	191 1165303	[L3 [Bacillus subtilis]	0,	79	1963
760	- 3	1 7023	5773	911 116	IcaA (Staphylococcus epidermidis)	0,	78	1251
299	9-	33.78	3947	91 467440	'phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-317) (Sacillus subtilis)	0.6	7.8	570
320	7	1025	7171	91 312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) (Secillus aldolyticus)	06	7.5	693
330	-	1581	1 1769	gi 986963	beta-tubulin (Sporidiobolus pararosaus	0.6	04	189
1 369	-	954	523	pir 534762 5347	L-serine dehydratase beta chain - Clostridium sp.	90	77	432
587	-	-	168	91 1511589	H. jannaschii predicted coding region MJ1624 (Nethanococcus jannaschii)	06	25	186
663	~-	657	1200	91 143786	tryptophanyl-rRNA synthetase (EC 6.1.1.2) [Bacillus subtilis] pir[JT0481[YMDS tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	0.6	12	25
717	-	-	261	91 143065	hubst (Bacillus stearothermophilue)	0.6	97	261
745	-	1 1359	1 865	61 1205433	H. influenzae predicted coding region HII190 (Heemophilus influenzae)	90	19	195
•			1 1 1 1 1 1					

5	
10	
15	
20	
25	
30	
35	
40	
45	

S. aureus - Putative coding regions of novel prototos somilar to basen prototos

length (nt)	D 81	249	591	204	462	267	162	231	723	504	279	213	1089	141	330	201	516	837	:	816	324	462	255	157
ident	- "	- 05	0.0	- *	27	76	52 -	192	1.5	١٠ - ١	1.5	7	90	7.6	- 08	- 18	- 08	1.4	7.	- 47	- 98	7.0	82	3
E 18		- 06	- 06	9 06	06	 6	- 06	1 06	68	5	- 68	- 69	68	- 68	- 60	68	- 68	- 6.80	66	68	- 68	89	- 68	- 68
match gene name	ademylosuccinate lysse (FUR-B) (Bacillus subtilis) pir [C29126 WZBSDS ademylosuccinate lysse (EC 4.3.2.2) - Becillus ubtilis	ONF_f729 [Escherichia coll]	ClpP Bacillus subtilis	unknown [Becillus subtilis]	phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus] ir S15916 NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	formylterrahydrofolate synthetase (FTHFS) (ttg start codon) (EC 3.4.3) [Noorells thermoscetics]	[protein-dependent [Becillus subtilis]	Cip-like ATP-dependent protesse binding subunit (Bos teurus)	unknown [Becillus subtilis]	ATP-binding protein [Streptococcus mutans]	[YqeQ [Bacillus subtilis]	triose phosphate isomerase (Bacillus subtilis)	IF2 (am 1-741) (Bacillus stearothermophilus)	ONF for L15 ribosomal protein [Bacillus subtilis]	[L3 (Becillus subtilis)	arsenate reductase (EC 1,-,-,-) - Staphylococcus xylosus plasmid pSX267	[glutamate racemase (Staphylococcus haemolyticus]	protesse (Staphylococcus epidermidis)	phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus Ir S15936 NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	Yqev (Bacillus subtilis)	[L] (Bacillus subtills)	thermonuclease (Staphylococcus intermedius)	ATP-dependent protesse binding subunit (Haemophlius influenzee)	cell division protein (Becillus subtilis)
match acession	91 143366	91 1033122	91 1477776		91 40046	91 144816	91 1070014	91 871784	191 467327	91 153741	91 1303804	91 460257	91 39954	r i 216338	91 1165303	pir C41902 C419	01 520574	91 396259	91 40046	91 1303812	[gi [1165303	91 47146	91 1205108	q1 467458
Stop	565	331	707	205	462	269	166	233	1750	\$0\$	398	13757	12755	7405	15823	2207	672	839	:	1210	141	813	256	1967
Start	386	678	117	408			327		1028	7	120	3545	111667	1875	116152	2407	157	~	-	2124	1.8	352	2	
100 PF		-	-	-						-		-	!	!	76	_	- 5	-		-	-	-	-	
Contig	1007	1054	1156	1180	1253	2951	3140	1654	67	112	118	128	164	205	205	270	395	161	510	615	841	1111	1875	1 2963

s aureus - Putative coding regions of nuvel proteins similar to known proteins

5

Contig	ORF	Start	Stop	match	match gene name	E 19	ident	length (nt)
1020		06	362	886	hypothetical protein (Bacillus subtilis)	6.9	99	273
1565		7	000	635	dihydroxy-acid dehydratase (Bacillus subtilis)	6.0	- 21	1660
3586		105	314	-	ATP synthase subunit gamma (Bacillus subtilis)	6.0	9.5	210
3629	-	194	199		Respiratory nitrate reductase [Becilius subtilis]	6.8	9,	396
3683	-	~	00+	-	glutamate dehydrogenese [Becilius subtilis]	6.8	7.8	199
3699	-	794	399	191 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	68	25	396
910+	-	428	216	19111009366	Respiratory nitrate reductase (Bacillus subtilis)	68	7.1	213
1 4177	-	471	101		putative [Lactococcus lactis]	68	76	171
4436	-	1 601	1 302		unknown (Staphylococcus haemolyticus)	68	0.0	300
4635	-	1 320	162	91 1022725	unknown (Staphylococcus haemolyticus)	89	1 67	159
1 2	7	1130	2676	91 520754	putative (Bacillus subtilis)	88	16	1347
1 42	2	7.68	878		CATALASE (EC 1 11 1.61)	88	96	181
53	- 5	6389	1722		alpha-D-1,4-glucosidase [Staphylococcus xylosus]	=	0	1668
95	91	18018	110617	91 467411	recombination protein [Bacillus subtilis]	•	۱ ۲۲	009
09	-	1 376		91 666116	glucose kinasa (Staphylococcus xylosus)	=	٠,	468
0,4	1 2	1583	1245	91 44095	replication initiator protain (Listeria monocytugenes)		7	139
	-	111514	112719	[pir A60663 A606	translation elongation factor Tu - Bacillus subtills	88	67	1206
103		6414	1619	oi 167181	sering/threoning kinase receptor (Brassica napus)	69	11	213
114	-	17732	8232	91 1022726	unknown Staphylococcus hasmolyticus	99	127	501
118	~	1 308	1 2011	9111303804	Yqeg Bacillus subtilis	88	''	1704
141	-	657	1 1136	91 1405446	transketolase (Bacillus subtilis	9.0	1 22	083
148		5871	6116	91 1118002	dihydropteroate synthase (Staphylococcus haemolyticus	88	78	246
165	2	.428	2231	01 40053	phenylalanyl-tRNA synthetase alpha subunit [Bacillus subtilis] r sli70 YFBSA phenylalaninetRNA ligase (EC 6.1.1.20) alpha ain - Bacillus subtilis	=	0	908
205	128	115027	114185	gi 1165306	L2 [Bacillus subtilis]	88	82	843
225	-	1569	898	pi 1303840	YqfS (Bacillus subtilis)	89	70	672
235	-	2	2761	g1 452309	valy -tRNA synthetese (Bacillus subtilis)	88	92	1974

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	' ident	length (nt.)
339		2060	1566	91 1118002	dihydropteroate synthase (Staphylococcus haemolyticus)	6 0	ا د <i>د</i>	567
443	-	4325	2928	gi 558559	pyrimidine nucleoside phosphorylase (Bacillus subtilis)	80	73	1398
532		•	617	gi 143797	valy1-trwa synthetase (Bacilius stesrothermophilus) sp[Pl1931 SYV_BACST VALYL-TRWA SYNTHETASE (EC 6.1.1.9) VALINETRWA LIGASE) (VALRS).	80	78	417
534		2504	2968	qi 153049	mannitol-specific enzyme-III (Staphylococcus carnosus) plr/JQ0086/JQ0086 phosphotransferase system enzyme ii (EC 77.1.69), mannitol-specific, factor iii - Staphylococcus carnosus sp[Pi7876 PTHA_STACA PTS SYSTEM, MANNITOL-SPECIFIC IIA COMPONENT EIIA-HTU) (ec ec	,	\$9\$
105	7	584	399	191710018	nitrite reductese (nirB) (Bacillus subtilis	89	0.0	186
1000	-	1.824	1309	19:11022726	unknown Staphylococcus haemolyticus	83	78	516
1299	-	587	324	1911401786	picosphomannomutase [Mycoplasma pirum]	8	55	261
1341	~	170	00	91 39963	ribosomal protein L20 (AA 1-119) (Bacillus stearothermophilus Ir S05348 R5B520 ribosomal protein L20 - Bacillus estothermophilus	₩ •	97	16.2
1386	-	=	214	pir B47154 B471	signal recognition particle 54K chain homolog Fih - Bacillus subtills	88	7.1	174
1386		183	533	[pir]B47154 8471	signal recognition particle 54K chain homolog Ffh - Bacillus subtilis	ec 60	1.7	151
2949	-	304	199	1911535350	Codx [Bacillus subtilis]	10	٤٢	306
2984	-	s	169	19:1218277	O-scetylserine(thiol) lysse (Spinacia oleracea)		0.0	165
1 3035	-	-	138	gi 493083	dihydroxyacetone kinase [Citrobacter freundii]	£	67	138
1 3089	-	-	152	qi 606055	ORF_1746 [Escherichia coli]	£	88	150
3917	-	419	\$ 10	91 143378	pyruvate decarboxylase (E-1) beta subunit (Bacillus subtilis) gi[1377836 pyruvate decarboxylase E-1 beta subunit (Bacillus ubtilis)	80	۲۲	\$0
6617	-	680	342	91 1405454	aconitase (Bacillus subtilis)	80 80	82	139
4201		734	369	91515938	glutamate synthase (ferredoxin) (Synechocystia sp.) plr[S46957] glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystia sp.	8	8	366
4274			336	91 515938	glutamate synthase (ferredoxin) (Synechocystia sp.) pir[S46957]S46957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystia sp.	80 80	ec e	336
4308	-	794	1399	911146206	glutamate dehydrogenase (Bacillus subtilis)	ec ec	11/	396
2		1 4570	0009	91 535350	Codx (Bacillus subtilis)	87	70	1431
- 52	a	6781	6482	191 1064791	[tunction unknown [Bacillus subtills]	8.7	99	300

3 aureus - Putative coding regions of noval proteins similar to known proteins

5

Contig ORF I	ORF	Start	Stop (nt)	match	match gene name	a is	1 ident	length int)
		1584	2480	91 142992	glycerol kinase (glpK) (EC 2.7.1.30) [Bacillus nubtilis] pir B4586B[B4586B] glycerol kinase (glpK) (EC 2.7.1.30) - Bacillus subtilis splp18157 [GLPK_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP.GLYCEROL -PHOSPHOTRANSFERASE) (GLYCEROKINASE) (GK).	69	7	268
86	112	BAL3	9100	gi 467433	unknown (Bacillus subtilis)	87	62	288
124		4265	2988	91,556886	serine hydroxymethyltransferase (Bacillus subtilis pir s49363 s49363 serine hydroxymethyltransferase - Becillus ubtilis	18		1278
124	9	1 4457	4032	91 55683	Unknown (Bacillus subtilis)	9.7	99	136
148	- \$	3741	4559	91 467460	unknown (Bacillus subtilis)	67	102	819
164	==	112710	13810	91 39954	IF2 (am 1-741) [Bacillus stearothermophilus]	8	72	11011
111	7	1104	2126	91 467385	unknown (Bacillus subtilis)	۲.	78	10201
199	-	1982	1158	91 143527	iron-sulfur protein (Bacilius subtilis)	1.0	1, 1,	625
199	2	4117	1 2933	pir A27763 A277	succinate dehydrogenase (EC 1.3.99.1) flavoprotein - Bacillus subtills	6 1	0.0	1785
205	123	111782	1150	94 104	ribosomal protein L29 [Bacillus subtilis]	6.1	100	240
205	25	113275	112607	911/16	S] (Bacillus subtilis)	8.7	٠,	699
1 222	1 -	2033	11107	91/1177249	rec233 gene product [Bacillus subtilis]	8.1	02	927
236	-	1635	1333	91 1146198	[ferredoxin [Bacillus subtilis]	60	0.00	1 000
9.7.7	5	2585	2232	191. 407373	ribosomal protein SI8 (Bacillus aubtilis)	87	1	294
260		4189	3422	gi 1161382	[cmc [Staphylococcus epidermidis]	187	12	168
320	-	1696	2391	gi 312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) [bacillus aldolyticus]		90	1 969
380	-	11165	1383	qi 142570	ATP synthase c subunit (Bacillus firmus)	60	1 80	219
7	7	006	1 1073	191 467386	[thiophen and furan oxidation (Bacillus subtilis]	1 87		174
425	- 7	1001	794	91 1046166	pilin repressor (Mycoplasma genitalium)	187	69	210
877	-	11255	727	91 405134	acetate kinase (Bacillus subtilis)		1 \$5	534
084	-	-	1117	gi 142559	(ATP synthase alpha subunit (Bacillus megaterium)	1 97	64	7117
167	-	1 2	1 352	S; Q06797 RL1_B	52 Q06797 KLI_B 505 RIBOSOMAL PROTEIN L1 (BL1).	R7	72	351
677	7	1 359	955	01 460911	[fructose-bisphosphate sldolase (Bacillus subtills]	69.	1 94	597
677	-	934	1 1284	191 460911	[fructose-bisphosphate aldolase [Bacillus subtills]	1 87	92	151
876	-		1 452	91 1146247	asparaginyl-tRNA synthetase (Bacillus subtilis)	87	62	450

10		
15		
20		
?5		
80		
35		
0		
:5		

S. aureus - Putative coding regions of novel proteins similar to known proteins

l length (nt)	213	1 372	1 288	183	1 399	1 (12	1692	1 453	606	624	2100	222	747	2121	909	1 278	3.15	324	345	462	354	192	1320	381	7161
1 Julent	27.	72	69	12	8	23	72	7.3	07	7,	27	33	27	27	0.8	רר	75	0ر ا	0,4	9.4	59	1,	7.8	7.6	73
e is	6.3	7.88	6.7	87	6.	#0	98	90	98	98	98	90	96	98	98	9.0	9 80	98	86	98	98	86	98	99	86
match gene name	[F&6H6.4 gene product [Caenorhabditis elegans]	excisionase (Bacteriophage 154a)	GTP-binding protein (Bacillus subtilis)	IMP dehydrogenase [Bacillus subtilis]	aconitase [Bacilius subtilis]	[HutU protein, urocanase (Bacillus subtilis]	HutU protein, urocanase (Bacillus subtilis)	urease beta subunit (Staphylococcus xylosus)	UDP-glucose pyrophosphorylase (Bacillus subtilis)	uracil phosphoribosyltransferase (Bacillus subtilis) pir 549364 549364 uracil phosphoribosyltransferase - Bacillus ubtilis	cell division protein (Bacillus subtilis)	unknown [Bacillus subtilis]	pyruvate decarboxylase E-1 alpha subunit (Bacillus subtilis)	polynuclectide phosphorylase (Bacillus subtilis]	ribosomal protein S4 [Bacillus subtilis]	ribosomal protein L17 (Bacillus subtilis)	ribosomal protein L22 (Bacillus stearothermophilus) ir S10612 S10612 ribosomal protein L22 - Bacillus earothermophilus	ribosomal protein S6 (Bacillus subtilis)	spoVG gene product [Bacillus megaterium]	phosphoribosylpycophosphate synthetase [Bacillus subtilis] gi 40218 PRPP synthetase (AA 1-317) [Bacillus subtilis]	[putative ATP binding subunit (Bacillus subtilis]	chorismate mutase (Staphylococcus xylosus)	isocitrate dehydrogenase (Bacillus subtilis)	dihydroneopterin aldolase (Staphylococcus haemolyticus)	[28.3% of identity to the Escherichia coli GTP-binding protein Era; putative [Bacillus subtilis]
match	91,1065555	91 215098	91 508979	Q1 467399	1405	91 603769	191 603769	91 410515	91 289287	9: 556887	91 467458	91 467460	91 11377835	91 1184680	gi 143467	191 142464	191 (40107	91 467375	ci 39656	gi 467440	gi 666983	91/11/1684	51 487434	91,1118003	 gi 1146219
Stop (nt)	214	374	290	308	100	275	8736	3738	1572	1713	3448	3859	2086	19467	1159	2592	12990	3140	1540	4345	252	1678	3405	1109	3440
Start (nt)	426			126	3	547	110427	4190	2480	2336	1349	3638	1340	117347	554	2966	13364	3463	1196	3884	2170	1487	2086	1489	2124
OHF	-	-	-	2			- 8	9	- 5 -			-		118	1 2 1	; — : <u> </u>	1 26		-		- 5	- 2 -	- 5		7
Cent ig	1376	2206	2938	3081	15.15	4238	-	12	75	124	148	148	152	164	180	205	205	246	299	299	304	310	337	339	35.8

aureus - Putative coding regions of movel proteins similar to known proteins

Cont.19		Start	Stop	match	match gene name	E	1 tdent	length (nt)
404	7	1 1015	2058	191 1303817	YqfA (Bacıilus subtilis)	99	7.8	1064
581	7	199	452	191 40056	phop gene product [Bacillus subtilis]	96	1.1	210
642	1 2	338	2101	91 1176399	[Spir (Staphylococcus spidermidis)	96	72	138
077	-	622	347	gi 143328		9	69	276
865	-	1,177	1 A90	gi 1146247	esperaginyl-tRNA synthetese (Becillus subtilis)	8 0	Z.	
898		963	1113	q1 1002911	transmembrane protein Saccharomyces cerevisiae	99 80	69	171
706	1		162	[91 [1303912	Yqhw Bacillus aubtilis	98	- 21	162
989	-	35	. 633		YqkL (Bacillus subtilis)	90 80	9,6	1 660
1 1212	= -	296	150	01 414014	ips-90d gene product [Bacillus subtilis]	90	70	147
1323	=		148	0 i 40041	pyruvate dehydrogenase (lipoamide) (Bacillus steerothermophilus) irisio798 [DESSPF pyruvate dehydrogenase (lipoamide) (EC 1.2.4.1) pha chain - Bacillus steerothermophilus	40 40	25	167
3085	7	546	1 310	91 1354211	PET112-like protein [Bacillus subtilis]	980	98	1162
7. P. R. 1	-	-	228	1411296464	ATPase (Lactococcus lactis)	9	(9	228
4487	-	476	240	91 1022726	unknown [Staphylococcus haemolyticus]	9	1.5	1 , (12
1 4583	-	576	187	91 [1022725	unknown (Staphylococcus haemolyticus)	94	1,0	186
\$2	5 1	4287	1 5039	iñ	[]-ketoacyl-acyl cerrier protein reductase [Baci.lus subtilis]	88	79	753
95	21	130627	129395	197 11408	pyrimidina nucleoside transport protein (Bacillus subtilis)	£	69	1233
	~	332	1192	91 467376	unknown (Bacillus subtilis	59	74	198
<u></u>		000	1707	qi 142992	glycerol kinase (glpK) (EC 2.7.1.30) [Bacillus subtilis] pir B45868 B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp PIBIS7 GLPK_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL -PHOSPHOTRANSFERASE) (GLYCEROKINASE) (GK).	2 6 0	72	978
907	-	1 1505	1490	91 143766	(thrsv) (EC 6.1.1.3) [Bacillus subtilis]	8.5	7.	1986
128	~	1153	2202	01(311924	glyceriadahyda-3-phosphate dehydrogenase (Clostridium pasteurianum) pir[5]4254[5]4254 glyceraldahyda-3-phosphate dehydrogenase (EC .2.1.12) = Clostridium pasteurianum	S .	25	1050
129	-	6466	5252	91 1064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	88	(1	1215
138	9	3475	1 5673	91 1072	gleB gene product Staphylococcus carnosus	\$8	1,74	2199
189	-	1 2	1 169	91 667385	unknown (Bacillus subtilis]	88		168
			124111					

S. aureus - Putative coding regions of novel proteins similar to known proteins

sim Vident length (nt)	85 27 89	85 72 333	060 99 58	85 70 85	85 27 88	85 73 2709	85 72 336	85 69 2478	85 68 2115	85 68 654	85 73 399	88	85 71 603	85 62 408	85 73 237	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	85 74 273	85 85 297	65 67 315	95	95 70 384	85 56 306		85 59 246
patch gene name	ribosomal protein SS (Bacillus subtilis)	ribosomal protein L24 - Bacillus stearothermophilus	secA gene product (Bacillus subtilis)	Hucs (Becillus subtilis)	Ipa-87r gene product (Bacillus subtilis)	aconitase [Becillus subtilis]	homolog of E.coli ribosomal protein L21 (Becillus subtilis) Ir S18439 S18439 Ribosomal protein L21 - Bacillus subtilis p P26908 RL21_BACSU 50S RIBOSOMAL PROTEIN L21 (BL20).	CIPC adenosine triphosphatase (Bacillus subtilis)	CIp-like ATP-dependent protesse binding subunit (Bos taurus)	acetate kinese (Bacillus subtilis)	orf-X; hypothetical protein; Method: conceptual translation supplied by author (Bacillus subtilis)	hemin permease (Yersinia enterocolitica)	signal recognition particle 54K chain homolog Ffh - Bacillus subtilis	disminopimelate decarboxylage (Bacillus methanolicus) sp[P41023]DCDA_BACHT DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20) DAP DECARBOXYLASE)	excisionasa [Bacteriophage 154a]	Pyruvate Kinase [Bacillus licheniformis]	pyruvate formate-lyase (AA 1-760) [Escherichia coli] ir s01788 501788 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coli	limb deformity protein (Gallus gallus)	beta-subunit of HDT [Pseudomonas fragi)	type I restriction enzyme ECOR124/3 I M protein [Heemophilus influenzae]	formate acetyltransferase Chlamydomonas reinhardtii ir 524997 \$24997 formate C-acetyltransferase EC 2.3.1.54 - lamydomonas reinhardtii	type I restriction enzyme ECOR124/3 I M protein [Maemophilus influenzae]	glcA gene product Staphylococcus carnosus	[fructose enzyme II [Rhodobacter capsulatus]
match	91 1044981	pir A02819 R5BS	91 48980	91 1002520	gi 414011	gi 1405454	g 40173	gi 442360	91 871784	91 405134	gi 1373157 	91 541768	pir B47154 B471	91 304155	91 215098	9601901	91 42370	921 63568	91 391840	gi 1204472	93 18178	91 1204472	91 1072418	91 151932
Stop (nt)	8106	10596	1019	3159	8783	33.86	475	2968	8196	1339	853	467	909	409	251	390	275	299	316	387	386	340	181	330
Start	8624	10928	06490	1 4877	8013	1 5894	140	5445	6082	1992	1251	159	1208	816	487	376		595	630	-	n	38	2	575
ORF	511	50	9	-	6	- 2	-	-		~		- 5	-		-	-		-	-	-	-	-	-	-
Contig	205	205	220	231	243	249	302	333	364	877	747	984	1089	1163	1924	2932	3030	1116	3778	3435	4042	4053	4108	4300

TABLE 2

Contig ORF	100 I	Start	Stop (nt)	match	match gene name	E i i	1 ident	length Int)
1 4192	-	627	155	91 1022725	unknown Scaphylococcus haemolyticus	85	74	273
1409	-	7	235	91 871784	rip-like ATP-dependent protesse binding subunit (Bos taurus)	98	62	234
4130	_	578	291	91 1009366	Respiratory nitrate reductase [Bacillus subtills]	85	- 89	288
4555			253		hadwigene of Ecopril gene product [Escherichia coli) pir 518437 518437 hadwin protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (508 40-520)	€	52	282
4611	-	187	242	91 1256635	dihydroxy-acid dehydratase [Becillus subtilis]	985	65	240
•	110	19001	10591	(gr. 46982	foaB gene product (Staphylococcus epideraidis)	4	E	1165
a		1148	1172 91 162	8i 142450	ahrC protein (Becillus subtilis)	3	95	1 771
91	-	1803	4652	91 1277198	DNA repair protein (Deinococcus radiodurans)	7	6.7	2850
22	_	1535	1128	gi 511069	[Uref Staphylococcus xylosus]	7	67	# 0B
23	-	5505	9068	91/603320	YerO82p (Saccharomyces cerevisiae)		5	252
2	===	111597	111145	91 1303948	Yqiw (Becilius subtilis)	7	•	453
	===	114059	112770	141 162613	hranched chain alpha-keto acid dehydrogenase El (Bacillus subtills) gi 1303944 Bimse (Bacillus subtills)	5	11	1290
0, 1	-	1332	982	91,16647	(repE) (99	351
(ر ا	-	2512	164	01/142993	giycerol-3-phosphate dehydrogenase (glpD) (EC 1.1.99.5) (Bacillus ubtilis)	7	74	1800
*6	-	4324	9609	gi 467427	methionyl-tRMA synthotase [Bacillus subtilis]	•	99	1021
001	-	9501	8680	91 1340128	ORF1 (Staphylococcus aureus)	9	78	822
1117		1934	3208	91 1237019	Srb [Bacillus subtilis]	6	89	1275
169	9	4720	5670	91 467462	cysteine synthetase A [Bacillus subtilis]	2	69	951
251	-	2064	2456	[4: 143377	pyruvate decarboxylase (E-1) alpha subunit (Bacillus subtilis) pir B16718 HEBSPA pyruvate dehydrogenase (liposmido) (EC 1.2.4.1) lpha chain - Bacillus subtilis	2	0,	193
169		7634	3861	91 1001342	hypothetical protein [Synechocystis sp.]	9	99	228
171	-	2992	2657	191 517475	D-smino acid transaminose (Staphylococcus haemolyticus)	7	1,1	1 966
186	9	6941	6216	gi 467475	unknown [Bacillus subtilis]	78	0,	726
205		1 6261	5695	91/216340	ORF for adenylate kinase (Bacillus subtilis)	7	11/	012
224	7	915	1391	91 288269	beta-fructofuranosidase (Staphylococcus xylosus)	*	07	1,77

S. aureus - Putative coding regions of novel proteins similar to known proteins

TABLE 2

1887 1 98 390 282 339 153 450 303 168 297 606 297 19.R 954 255 393 255 321 363 109 1311 | I sim | I ident | length 62 70 5 9 69 11 23 9.6 73 72 65 53 70 89 86 6.9 69 4 8 . 3 Z 8 8 recombination protein (ttg start codon) [Bacillus subtilis] gi|1303923 RecN |chreonine synthese (thrC) (AA 1-352) [Bacillus subtilis] ir|A25364|A25364 | threonine synthese (EC 4.2.99.2) - Bacillus btilis 67 kDa Nyosin-crossreactive streptococcal antigen (Streptococcus yogenes) |glutamate-1-semialdehyde 2,1-aminotransferase [Bacillus aubtilis] | pir|D42728|D42726 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) [ormate acetyltransferase [Chlamydomonas reinhardtii] ir|524997|524997 | formate C-acetyltransferase (EC 2.3.1.54) - lamydomonas reinhardtii |cobalamin biosynthesis protein N (Methanococcus januaschii] osmotically inducible protein [Mycoplasma genitalium] [Integrin-like protein alpha Intip (Candida albicans) pir|S08564|R1BS |ribosomal protein S9 - Bacillus stearothermophilus |pir|S08564|R3BS |ribosomal protein S9 - Bacillus stearothermophilus carbamyl phosphate synthetase (Bacillus subtilis) |HutU protein, urocanase [Bacillus subtilis] glutamate dehydrogenase (Bacillus subtilis) [fructose enzyme II [Rhodobacter capsulatus] gleA gene product (Staphylococcus carnosus) liquendopeptidase F [Lactococcus lactis] macil permease [Bacillus caldolyticus] unknown [Staphylococcus haemolyticus] protein-dependent (Bacillus subtilis) DNA polymerase [Bacillus caldotenax] aconitase (Bacillus subtilis) ClpB (Symechococcus sp.) |YbbQ [Bacillus subtilis] |Yqer [Bacillus subtilis] [Bacillus subtilis] Bacillus subtilis | match gene name ' | 1 match acession 91 1046173 |yi|1510953 | 351 |gi|1072418 1 388 |91 | 1303790 91 1256146 191 11405454 1 169 / | 51 | 114 6206 19111070014 |gi|1022725 9: 11144531 | · i | 151932 162160 [19] 01 | 912445 | cj. | 143402 9: | 885934 1.11 | 510140 91 | 603769 13:1517205 91 143390 9i | 143040 91 | 181 | 16 | 91 40211 2836 (1)(2959 4229 1341 1748 Ξ 257 156 1 323 348 375 908 395 452 257 296 1 392 5 6 6 Contro | ORF | Start 2201 1 5 | 3138 110 | (חר) 3 | 1526 4 | 2343 12 | 2701 1 1 92 1 1 1362 1 1 737 4108 | 2 | 106 2 624 13 | 836 1 1 308 1 1 650 -2954 2996 354 16 957 975 548 169 251 320 413 439 491 728 372 194 487

10

15

20

25

30

35

40

45

50

aureus - Putative coding regions of novel proteins similar to known proteins

S aureus - Putalive coding regions of novel proteins similar to known proteins

4183	=======================================	10.	(nt)	match acession	match gene name			(141)
	-	-	308	93 603769		78	1 27	306
4726		\$\$	234	91 146208	<pre>glutamate synthase large subunit (EC 2.6.1.53) (Escherichia coli) pir[A29617[A29617] glutamate synthase (NADPH) (EC 1.4.1.13) large hain -</pre>		2	0.00
22	-	5063	1576	19. (393297	urease accessory protein (Bacillus sp.)	83	1 19	1 899 1
53	113 11	114722	13745	 gi 142612	branched chain alpha-keto acid dehydrogenase El-beta (Secillus ubtills)	63	99	978
\$	91	13357	112872	9: 1143132	Lactate dehydrogenase (AC 1.1.1.27) [Bacillus taldolyticus pir B29704 B29704 L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus aldolyticus	2	99	9 1
99		3119	2274	01/1303894	Yqhm (Bacillus subtilis	- 5	63	978
99	- 2	6118	1643	91 1212730	Yqhk (Becillus subcilis)	83	59	1476
1 00		1864	1523	191 44095	replication initiator protein [Listeria monocytogenes]	3	13	342
0		1.1.6	1429	qi 155571	alcohol dehydrogensse I (adha) (EC 1.1.1.1) (2ymomenss mobilis) pir[a35260[a35260 alcohol dehydrogensse (EC 1.1.1.1) I - 2ymomenss obilis	6	0,	1053
96	~	708	1 2162	iō	phospho-beta-glucosidase (Bacillus subtilis	63	1 07	1455
(11)	-	19	169	gi 467391	initiation protein of replicaton (Bacillus subtilis)	3	1 11	627
0	-	1209	1 2742	91 634107	kdpB [Escherichia coli]	63	6.5	1 899
1 142		3468	1 2989	91 1212776	[lumaxine synthase (b-subunit) [Becillus amylohiquefaciens]	•	69	1 0#7
191	= =	5749	9699	91 903307	ONF75 (Bacillus subtilis)			1 #16
164	6	9880	111070	91 (49316	ORF2 game product (Bacillus subtilis)	69	99	11911
164	=	14148	114546	91 580902	ORF6 gane product (Bacillus subtilis)	83	09	399
170	~	3144	1 2467	[g+ \$20844	orf4 [Bacillus subtilis]		3	1 463
1.86	- 2	2029	0,(1)	gi 289284	cysteinyl-tRNA synthetase [Bacillus subtilis]		72	999
507	=	7822	1 7607	01 216337	ORF for L30 ribosomal protein (Bacillus subtilis)	83	74	216
762	9	3683	4540	oi 1510488	[imidazoleglycerol-phosphate synthase (cyclase) [Methanococcus jannaschil]	83	09	- et :
100		985	638	51 467419	unknown [Bacillus subtilis]	83	65	348
302	-	1421	2743	gi 508979	CTP-binding protein [Becilius subtilis]	83	89	1323
127	-	1933	1586	194139844	[fumarase [citG] (as 1-462) [Bacillus subtilis]		99	1 696
367			352	1111039479	ORFU Lectococcus lactis	63	3	351

10	
15	
20	
25	
30	
35	
40	

Contig ID	ORF	Stark Int)	Stop (nt)	match	match gene name	Eis 1	1 ident	length (nt)
387	-		662	91 806281	UNA polymerase I [Bacillus stearothermophilus]	63	904	099
527	7	916	1566	91 396259	[protease [Staphylococcus epidermidis]	83	1 69	159
533	; 	355	179		alanine dehydrogensae (EC 1.4.1.1) Bacillus stearothermophilus pir 834261 834261 alanine dehydrogensae (EC 1.4.1.1) - Bacillus tearothermophilus	2	99	177
536		1 1617	1438	gi 1143366	ademylosuccinate lyase (PUR-B) Bacillus subtilis ir (C29126 WZBSDS ademylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis	83	, , , , , , , , , , , , , , , , , , ,	0.81
652	-	7	828	1911520753	DWA topolsomerase [Bacillus subtilis]	83	72	858
774	. ~	200	361	91 1522665	M. jannaschil predicted coding region MJECL28 [Methanococcus jannaschil]	83	58	162
R97	-	120	1 296	91 1064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	8	91	1.11
1213		-	491	91 289288	[lexA (Bacillus subtilis]	80	67	689
2529	<u>-</u>	296	150	91 143786	[tryptophany]-tRNA synthetase (EC 6.1.1.2) [Bacillus subtliss] [pir[JT0481[YWBS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtills	68	69	147
2973	_	649	326	gi 1109687	[ProZ (Bacillus subtilis]	83	88	324
1001	_	#. -	1 366	41 482532	ORF_0294 (Eschorichia coll)	8	65	363
3035	~	\$	305	01 950062	hypothetical yeast protein 1 (Mycoplasma capticolum) pir 548578 548578 hypothetical protein - Mycoplasma capticolum 5GC3) (fragment)	8	59	261
1904	-	. 6	309	gi 1353197	thioredoxin reductase [Eubacterium acidaminophilum]	6	41	241
4458	-	540	1 271	1911397526	clumping factor [Staphylococcus aureus]	2	78	2 70
4570	-	444	223	91 1022726	[unknown Staphylococcus haemolyticus]	68	74	222
4654	-	۲6	261	191 1072419	gics gene product (Staphylococcus carnosus)	63	62	165
9.	~	295	1191	191 153854	uvs402 protein [Streptococcus pneumonise]	82	67	769
16	_	1193	1798	91 153854	[uvs402 protein [Streptococcus pneumoniae]	82	70	909
ĸ	112	9644	8724		[N-acetylneuraminate lyase [Haemophilus influenzae]	92	85	921
45	-	988	2019	91 841192	catalase (Bacteroides fragilis)	82	0,0	1032
51	9	2590	3489	91,143607	sporulation protein (Bacillus subtilis)	82	69	006
96	11	12270	113925	[gi 39431	oligo-1,6-glucosidase [Bacillus cereus]	82	0.9	1656
26	115	17673	118014	gi 467410	unknown Bacilius subtilis	83	999	342
61	7	681	1 3313	911143148	transfer RNA-Leu synthetase [Bacillus subtilis]	82	70	2433
						*	,	

TABLE 2

s aurous - Putative coding regions of novel proteins similar to known proteins

Cont.19	ORF	Start (nt)	Stop (nt)	match	march gene name	E is	1 1dent	length (nt)
2		9162	11318	(5,: 48240	elongation factor G (AA 1-691) (Thermus aquaticus: thermophilus r 515928 EFTWG translation elongation factor G - Thermus aquaticus p e1353 eFG_THETH ELONGATION FACTOR G (EF-G).	82	99	2157
	1 2	5470	3260	qi 143369	[phosphoribosylformyl glycinamidine synthetase II (PUR-Q) [Becillus ubtills]	92	99	2211
102	9	3662	1 5380	91 1256635	dihydroxy-acid dehydratese (Bacillus subtilis)	82	69	19171
(11)	-	3262	3493	pir A47154 A471	orfi 5' of Fth . Bacillus subtilis	1 82	5,5	252
128	9	1 4377	5933	191 460258	(phosphoglycerate mutase (Bacillus subtilis)	92	9.9	1557
129	<u>-</u>	1229	2182	191 (403373	glycerophosphoryl diester phosphodiesterase [Becillus subtilis] pir[5]7551 5]725 glycerophosphoryl diester phosphodiesterase - acillus subtilis		62	954
170	-	2	=======================================	[91]1377831	unknown [Bacillus subtilis]	82	67	1640
771	1 -		1094	gi 467386	thiophen and furan oxidation [Bacillus subtilis]	82	65	1092
184	-	1 3572	1 4039	91 153566	ORF (19% protein) (Enterococcus fescalis)	82	6.0	899
13.9	-	1455	1 4225	91 1001878	Capl protein Listeria monocytogenes	82	٤٢	162
206	6	121366	120707	91 (473916		2 2 2	20	099
122	7	1 805	1722	91 517205	67 kDa Myosin-crossreactive streptococcal antigun (Streptococcus yogenes)	85	63	918
223	-	3866	3651	q1 439619 	[Salmonella typhimurium IS200 insertion sequence from SARA17, artial.], gene product [Salmonella typhimurium]	95	69	216
7 260	-	1 5207	4296	91 1161381	tcaB (Staphylococcus epidermidis)	#2	19	912
1115	-	7987	2855	di 143397	quinol oxidase (Bacillus subtilis	82	67	2010
	2	#\$20 #\$20	7965	9) 142981	OMFS; This ORF includes a region (a23-103) containing a potential ron- aulphur centre homologous to a region of Rhodospirillum ruhrum nd Chromatium vinosum; putative (Bacillum stearothermophilus) pir[PQ0239]PQ0299 hypothetical protein 5 (gldA 1 region) -		5	576
166	-	1 1055	1342	91 (436574	ribosomal protein L1 [Bacillus subtilis]	92	112	288
07.0	2	1 262	618	[9:[1303793	YqeL (Bacillus subtilis)	1 82	5.9	157
¥04 I	-	1 3053	1024	19111303	(YqfE (Bacillus subtills)	82	6.8	972
405	-	0777	1 3073	[cs [1303913	YqhX (Becillus subtilis)	1 82	62	1368
436	2	4096	5864	91149521	tryptophan synthase beta subunit [Lactococcus lactis] pir[535129 535129 tryptophan synthase (EC 4.2.1.20) beta chain - actococcus lactis subap.	82	5	1233

10	
15	
20	
25	
30	
35	
40	
45	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF	Start (nt)	Stop (nt)	match	match gene name	E	1 ident	length (nt)
	7	3394	1 2573	91 142952	glyceraldehyde-3-phosphate dehydrogenase (Bacillus tearothermophilus)	82	69	622
**	112	10415	111227	(gx)1204354	spore germination and vegetative growth protein [Haemophilus influenzae]	82	67	813
446	-	_	161	91 143387	aspartate transcarbamylase [Becilius subtilis]	82	99	189
462		1007	1210	91 142521	decoxyribodipy:midine photolysse [Becilius subtilis] pir[A37192 A37192 uvrB procein - Bacilius subtilis sp P14951 UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C	8 5	4	204
788	-	1560	784	Qi 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus ubtilis]	82	19	166
680	~	404	700	91 426472	sack gane product (Staphylococcus carnosus)	82	69	294
724	2	565	386	41 143373	phosphoribosyl aminoimidazole carboxy formyl ormyltransferase/inosine monophosphate cyclohydrolase (FUR-H(J)) Bacillus aubtilis]	82	89	180
1 763	-	422	213	gi 467458	cell division protein (Bacillus subtilis)	82	35	210
818	-	564	283	41 1064787	[function unknown [Bacillus subtilis]	82	69	282
858		175	1176		uroporphyrinogen decarboxylase (Bacillus subtilis) pir B47045 B47045 uroporphyrinogen decarboxylase (EC 4.1.1.37) - acillus subtilis	3	2.2	1002
1 895	-		665	91 1027507	ATP binding protein [Borrelia burgdorfert]	62	72	1 665
939	-	07	399	gi 143795	transfer RWA-Tyr Synthetase (Bacillus subtilis)	8.2	09	190
196	-	-	306	gi 577647	gamma-hemolysin (Staphylococcus aureus)	82	69	306
1192	-	1 307	1 155	191/146974	NH3-dependent NAD synthetase [Escherichia coli]	82	114	151
1317	-	6	375	91 407908	Eliser (Staphylococcus xylosus)	83	72	121
1341			150	191 13962	ribosomal protein L35 (AA 1-66) [Bacillus stearothermophilus ir S05347 R58535 ribosomal protein L35 - Bacillus earothermophilus	2	89	150
2990	~	567	349	91 534855	ATPRES SWITHASE EPSILON CHAIN (EC 3.6.1.34).	82	47	219
3024	- ·	\$	224	91 467402	unknown (Bacillus subtilis)	48.2	• •	081
3045	-	276	139	91 467335	ribosomal protein L9 (Bacillus subtilis]	82	0.9	138
3045	7	558	400	[51 467335	ribosomal protein 1.9 (Bacillus subtilis)	#2	82	159
1 3091		474	238	41 499335	secA protein [Staphylococcus carnosus]	82	78	237
3107		4 16	210	91 546918	orfy 3' of comk [Bacillus subtilis, E26, Peptide Partial, 140 aa] pir[54]613[54]612 hypothetical protein Y - Bacillus subtilis sp[P40398]YHXD_BACSU HYPOTHETICAL PROTEIN IN COMK 3'RECION (ORFY) FRAGHENT).	20	3	207

TABLE 2

o aureus - Putative coding regions of novel proteins similar to known proteins

		acession				(11)
n - v + n e n o r n - v	319	9 : 42086	nitrate reductase alpha subunit [Escherichia coli] p[P09152 NARG_ECOLI RESPIRATORY NITRATE REDUCTASE 1 ALPHA CHAIN (EC 7.99.4). (SUB 2-1247)	8.2	25	8.1.2
- 0 + 7 6 6 0 7 7 7 - 9	1 2574	[45]1199573	spsB (Sphingomonas sp.)	90	79	702
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1321	1911466778	lysine specific permease (Escherichia coli)	189	65	318
• n c o o c n - v	1 4350	01 1045937	N. genitalium predicted coding region NG246 [Nycoplasma genitalium]	100	62	300
~ E 6 0 7 ~ ~ •	1 2579		dciAC protein - Bacillus subtilis	180	ss	1007
6 6 6 7 7 7 7	1 1494	194 1303961	VqjJ (Bechlius subtilis)	60	67	1611
5 0 F N - 9	1767	91 146930	6-phosphogluconate dehydrogenase (Escherichia col.i)	10	99	1449
0 - 0 - 0	110119	91 143016	permesso (Bacillus subtilis)	18	59	689
- 9	111786	oi 143015	glucomate kinase (Bacillus subtilis)	76	•	15751
~	113366	[pir A25805 A258	L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus subtilis	7.00	1 1/4	619
- 0	1 2217	[91(1222302	NifU-related protein (Hasmophilus influentse)	10		492
	374	191 414017	ipa-91d gene product [Bacillus subtilis]	=	70	372
	1987	91971342	Intrace reductase beta subunit [Bacillus subtilis] sp[P42176 MARH_BACSU MITMATE REDUCTASE BETA CHAIN (EC 1.7.99.4).		3	1578
170 12 10842	5 112338	Qi 1524392	GbsA (Becillus subtilis)	-	62	1494
12R 5 3676	4413	(9:(143319	[triose phosphate isomerase [Bacillus megaterium]	=	199	91.7
131 6 10308	9280	0. [299163	Bec i 1		89	1029
143 6 6088	5471	9: [439619	[Salmonella typhimurium 52200 insertion sequence from SARA17, artial.], gene product [Salmonella typhimurium]	E .	5	618
169 1 43	. B25	gi (897795	[305 ribosomal procesh [Pediococcus acidilactici] sp[P49668]RS2_PEDAC 30S RIBOSOMAL PROTEIN S2.	6	S	783
230 1 450	226	91 1125826	short region of weak similarity to tyrosine-protein kinase receptors in a fibronectin type III-like domain (Geenorhabditis elegans)	6	35	225
233 \$ 2000	1 2677	91 467 404	unknown [Becillus subtilis]	8	5	678
241 2 3081	2149	gi 16510	succinateCoA ligase (GDP-forming) (Arabidopsis thallana) ir 530579 530579 succinateCoA ligase (GDP-forming) (EC 6.2.3.4) pha chain - Arabidopsis thallana (fragment)	:	6	116
256 1 1	186		spolliE protein - Bacillus subtills	81	\$	981
259 3 3752	1 2691	sp P2836	7 RF2_B PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRAGMENT).		9	1062

sim vident length (nt)	81 68 1854	63 732	B1 67 1 1308	81 64 300 1	81 51 240	81 60 309	B1 67 1068	_	81 65 573	_	81 65 903	81 66 609	61 57 237	91 56 966	-	81 68 345	81 57 399	81 72 150	43 189	61 43 222	81 62 174	81 58 237	A1 68 324	
match gene name	L-glutamine-D-fructose-6-phosphate amidotransferase (Becillus ubtilis)	g region HIU594	adenylosuccinate synthetase (Bacillus subtilis)	queA [Escherichia coli!	resolvase [Transposon Tn917]	yeeD [Escherichie coli]	asparty1-tRMA synthatase [Haemophllus influenzae]	methyleted-DNAprotein-cysteing methyltransferase [Haemophilus influentee]	unknown (Becilius subtilis)	spoiliE protein - Bacillus subtilis	Dex [Bacillus subtilis]	Manganese superoxide dismutase (Bacillus caldotenax) ir 522053 522053 superoxide dismutase (EC 1.15.1.1) (Mn) - Bacillus ldotenax	liypothetical protein II (ompil 3' region) - Salmonella typhimurium (fragment)	protein kinase PknB (Mycobacterium lepras)	YqhU [Bacillus subtilis]	transketolase (Bacillus subtilis]	dipeptide transport ATP-binding protein [Haemophilus influenzee]	synergohymenotropic toxin Staphylococcus intermedius pir S44944 S46944 synergohymenotropic toxin - Staphylococcus ntermedius	M. genitalium predicted coding region MG423 (Mycoplasma genitalium)	helicase (Aucographa californica nuclear polyhedrosis virus) sp p24307 V143_NPVAC HELICASE.	sevalonate pyrophosphate decarboxylase [Rattus norvegicus]	ORF_[388 (Escherichia coli)	[Salmonella typhimurium IS200 insertion sequence from SARA17, artisl.], gene product (Salmonella typhimurium)	◆ 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
match	gi 726480	91 1204844	91 467328	gi 147485	91 154961	191 405955	19111204570	91 1204652	91 467416	pir S09411 S094	91 606745	91 19453		191 1262360	gi 1303902	91 1405446	91 1205429	91 487686	91 1046138	91 559164	gi 1322245	61 537137	91 4 39 6 19	
Stop (nt)	3581	735	1406	5889	11376	1342	1742	5706	1135	603	6154	1119	5 H # 9	2070	1064	430	000	10+	681	43	1 241	239	325	
Start (nt)	1728	1466	- 66	0655	1137	1034	1404	6251	1707	3	5252	7271	1,465	11105	504	98	798	252		670	89	1 475	2	
ORF IID	- 2 -		-	6	1 2 1	- 2	2	- 5	- 2	1 -	- 6 -	7		-		-	-	7	-		-	-		
Cont ig				,		,				:	1				2				1035	1280	3371		3908	ŧ

TABLE 2

3 aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match	match gene name	E	1 ident	length (nt)
3954	-	-	318	91 1224069	emidase [Horaxella catarrhalis]	81	1 89	318
4049		337	170	91 603768	Hutt protein, imidazolone-5-propionate hydrolase [Bacillus subtilis] gi 603766 Huti protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	=	« •	EC 1
4209		:	324	91 (403373	[q]ycerophosphoryl disster phosphodisstersse (Becillus subtills) pir[537231[53725] glycerophosphoryl disster phosphodisstersse - acillus subtilis	=	88	324
437:		627	322	91216677	indolepyruvate decarboxylase [Enterobacter clos.:es pir S16013 S16013 indolepyruvate decarboxylase (EC 4.1.1) - ntrrobacter closcae		27	306
4387		19	228	91 460689	TVG (Thermoactinomyces vulgaris)	81	65	230
1610	-	SR1	306	91 (1524193	[unknown Mycobacterium tuberculosis]	. E	67	276
4425	-		7	1911143015	[gluconate kinase (Bacillus subtilis]	81	99	1 661
•	-	1593	1.847	91 11064786	[function unknown [Becilius subtilis]	0.0	62	747
1,17		3	116		helicass [Autographs californics mucles: polyhedrosis virus] sp[p24307 v143_MPVAC HELICASE.	0	9	234
45	-	11159	2448	gi 1109684	Prov Becillus subtilis	B 0	63	1290
\$	-	4032	4733	91 1109607	!	0	\$\$	702
3	=	110266	9502	gi 563952	(gluconate permesse (Bacillus licheniformis)	00	62	1 592
62	112	8852	7545	7545 gi 854655	Na/H antiporter system (Sacillus alcalophilus)	080	62	1308
62	Ξ	8087	8683	8683 91 559713	[ORF [Homo saplens]	90	1 68	1.65
67	91	13781	114122	91 305002	ORF_f356 [Escherichia coli]	0.00	65	342
0, 1	2	111495	110296	01 1303995	YqkN [Bacillus subtills]	0.00	• • • • • • • • • • • • • • • • • • • •	1200
	-	6336	1 7130	QI 467428	unknown (Bacillus subtilis)	D 90	89	1 295
86	100	7294	1833	91 467430	unknown (Bacillus subtilis)	D.	49	240
96	=	1 7820	7.8.	91 467431	high level kasgamycin resistance (Bacillus sub:ills)	0.00	61	1 816
109	9.1	116 14154	114813	91 580875	ipe-57d gene product [Bacillus subtilis]	0.0	63	099
1112	115	114294	116636	91 1072361	pyruvate-formate-lyase (Clostridium pasteurian.ms)	0	65	2343 [
139	-	1448	1 726	191 506699	CapC (Staphylococcus aureus)	0	1 58	127
139	2	1 2179	1448	1448 91 506698	caps [Staphylococcum aureum]	0.	65	267
174	-	1726	1 2870		supertate 1-decarboxylass (Bacillus subtilis)	0	61	402
							•	

TABLE 2

15	
20	
25	
30	
35	
40	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	; —	; –	:-		. match gene name	e sin	1 ident	length
<u>e</u>	2	(nt)	(00)	acession	_	1	_ :	(nt)
1177	_	2102	2842	91 467385	unknown (Bacillus subtilis)	80	70	147
184	9	6124	2165	91 161953	85-kDa surface antigen [Trypanosoma cruzi]	80	46	213
1 186	-	5368	3875	91 289282	glutamyl-tRNA synthetase (Bacillus subtilis)	0.8	9	1494
1 205	130	115796	15140	91 40103	ribosomal protein L4 [Bacillus stearothermophilus]	0.0	999	657
1 207	-	110	1315	91 460259	enolase (Bacillus subtilis)	0	6.1	1176
112	-	1078	1590	gi 410131	ONFX7 (Bacillus subtilis)	0.60	19	513
235		1962	2255	01/143797	valyl-tRNA synthetase (Bacillus stearothermophilus) sp P11931 SYV_BACST VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALRS).	0	\$	294
239			1263	91113000	proton glutamate symport protein [Bacillus stearothermophilus] pix[526247]526247 glutamate/aspartate transport protein - Bacillus tearothermophilus	0	53	1263
272	-	-	1 2461	gi 709993	hypothetical protein (Bacillus subtilis)	080	\$	264
100 1	_	1446		91 467418	unknown (Bacillus subtills]	080	98	336
310	-	1 5697	4501	91/11/1686	acuc gene product (Staphylococcus xylosus)	80	67	1197
310	_	5258	7006	gi 348053	acetyl-CoA synthetese (Bacillus subtilis)	90	67	1749
310	-	1 7410	9113	q1 1103865	[formyl-tetrahydrofolate synthetase [Streptococcus mutans]	90	67	1704
325	_	1114	1389	[9: 310325	outer capsid protein (Rotavirus sp.)	80	0.4	276
7.00	-	1268	636	[91]537049	ORF_o470 (Escherichia coli)	90	55	633
374	~	1 929	1228	gi 1405448	[Yner [Bacillus subtilis]	90	02	300
27.5	_	3062	1666	91 467448	[unknown [Bacillus subtilis]	80	6.8	270
8 # n	_	1 267	587	91 1064791	[function umknown [Bacillus subtilis]	80	65	321
294	 -	6	659	gi 304976	matches PS00017: ATP_GTP_A and PS00301: EFACTOR_GTP; similar to longation factor G, TetM/TetO tetracycline-resistance proteins Escherichia coli)	0.80	65	651
456	_	625	1263	[51]1146183	putative [Bacillus subtilis]	90	\$9	619
475	_	-	654	gi 288269	beta-fructofuranosidase [Staphylococcus xylosus]	CR	99	634
544	7	1449	2240	oi 529754	spec (Streptococcus pyogenes)	80	20	792
622	-	1623	1.671	gi 1483545	unknown (Mycobacterium tuberculosis)	80	65	249
917	-	-	1257	191 1064791	function wmknown (Bacillus subtilis)	80	89	1257
667	-	1 107	838	Qi 666983	[putative ATP binding subunit (Bacillus subtilis]	08	6.1	132

s. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contin	¥ 01	Start	Stop	match	match gene hane	E 1 8	1 ident	length
745	~	581	13	-	coentyme PQQ synthesis protein III [Methanococcus jannaschii]	080	- 19	168
822			619	91 410141	ONFX17 [Bacillus subtilis]	80	99	663
R27	~	991	836	13 (1205301	leukotoxin secretion ATP-binding protein (Maemophilus influenzae)	80	>4	136
104	1		149	32	vp2 [Marburg virus]	08	55	147
1220	~	571	413	72 EPSG	gallidermin precursor - Staphylococcus gallinarum	08	2	159
2519		7.5	275	: -	dpj (Escherichia coli)	0	\$	201
2947	-	503	279	91 1184680		08	62	225
3120	-	~	1 226		67 kDa Hyosin-crossreactive straptococcal antigen (Streptococcus yogenes)	0.0	1 65 1	225
3191		767		91 151259	HMG-CoA reductess (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymathyiglutaryl-CoA reductess (EC 1.1.1.88) Pseudomonas sp.	0	\$	147
1560	2	285	70			00	1 07	150
3655	-	+	346	91 415655	decayribose aldolass [Mycoplasma hominis]	0.89	95	1 000
3658	~	1 324	584	191 551531	2-nitropropane dioxygenese [Williopsis saturnus]	0.80	54	261
3769	-	19R	004	91(1339950	large subunit of MADM-dependent glutamete synthase [Plectoneme boryanum]	90	1 89	199
37.81	-	692	348	di 166412	MADH-glutamate synthase (Medicago sativa)	08	62	345
3988	-		1 287	191 1204696	[fructose_permease IIBC component (Masmophilus influenzee]	08	69	240
4030	-	1.57.1	1 287	19111009366	Respiratory nitrate reductasa (Sacillus subtilis)	080	09	285
4092	-		275	gi 1370207	orf6 [Lactobacillus sake]	08	69	273
4103	-	089	1 342	191 39956		080	- 65	9600 1
4231	-	697	348	q1 289287	UDF-glucose pyrophosylase [Bacillus subtilis]	00	. 65	345
4265		595	299	91 603768		2	3	297
4504	-	498	1 250	41 1339950	large subunit of NADM-dependent glutamete symthase [Plectonema boryanum]	080		249
7	9	5998	6629	a 535351	Cody (Bacillus cubtilis)	9.6	69	108
		8295	705 #	di 603768	Hett protein, imidazolone-5-propionate hydrolase [Sacillus subtilis] gi[603768 Hett protein, imidazolone-5-propionate hydrolase Becillus subtilis]		3	1245
25	9-	5273	1 5515	pir A36728 A367	acyl carrier protein - Rhizobium mellloti	73	65	243

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match ,	. match gene name	Eis	* ident	length (nt)
1 59	1 2	1173	1424	gi 147923	[threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]	66	25	252
09		-	204	91 666115	orfl upstream of glucose kinase (Staphylococcus xylosus) pir 552351 552351 hypothetical protein 1 - Staphylococcus xylosus	79	09	204
- ¥1		3005	1590	195146	pps1; B1496_C2_189 [Mycobacterium leprae]	19 (79	1413
88		1 7023	620\$	Qi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) [Bacillus ubtilis]	62	0,9	519
2	9	2660	4554	94 144906	product homologous to E.coli thloredoxin reductase: J.Biol.Chem. 1988) 263:3015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A	19	38	1107
102	=	7489	8571	91 143093	ketol-acid reductoisomerase (Bacillus subtilis) sp P37233 ILVC_BACSU KETOL- ACID REDUCTOISOMERASE (EC 1.1.1.86) ACETOHYDROXY-ACID ISOHEROREDUCTASE) (ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOMERASE).	97	3	1083
102	=	111190	12563	91 149428	[putative [Lactococcus lactis]	9.6	\$9	1374
127	6	17792	9372	91 458688	PrfC/RF3 (Dichelobacter nodosus)	61	89	1581
139		2540	1 1983	91 506697	CapA (Staphylococcus aureus)	61	\$\$	558
144	~	1644	1156	91 1498296	[peptide methionine sulfoxido reductase [Straptococcus pnaumonias]	79	47	689
4		529	1098	91 467457	hypoxanthine-guanine phosphoribosyltransferase [Bacillus subtilis] gi 467457 hypoxanthine-guanine phosphoribosyltransferase [Bacillus ubtilis]	- 67	\$	570
150	-	965	1 891	91 755602	unknown [Bacillus subtilis]	64	61	375
176		1039	587	91 297874	fructose-bisphosphate aldolase (Staphylococcus carnosus) pir A49943 A1000 fructose-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnosus (strain TM100)	66	\$9	453
186		7584	6874	91 1314298	ORFS: putative Sms procein; similar to Sms proteins from Haemophilus influenzae and Escherichia coli [Listeria monocytogenes]	62	9	1117
502	911	HART	8498	qi 1044980	ribosomal protein LIR (Bacillus subtilis)	7.9	70	1 060
211	-	-	519	qi 1303994	YqkM [Bacillus subtilis]	79	62	519
1 223	- 5	4183	2801	91 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	66	09	1383
1 243	E -	8915	7896	91 580683	ipa-88d gene product (Bacillus subtilis)	67	09	1020
912	-	3721	4329	191 (413930	ipa-6d gene product (Bacillus subtilis)	7.9	65	609
300	-	-	1393	191 403372	glycerol 3-phosphate permease (Bacillus subtilis)	66	62	1363
307		2930	1935	191 950062	hypothetical yeast protein 1 (Mycoplasma capricolum) pir 548578 548578 hypothetical protein - Mycoplasma capricolum SGC3) (fragment)	97	0.9	966

TABLE 2

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop	match	match gene name	E is	1 ident	length (nt)
352	9	90101	9886	gi 216854	PATK Pseudomonas chlororaphis	- 6L	65	1221
412		1153	578	[91]143177	putative Bacillus subtilis	1.67	5.1	576
1		621	1124	[91]786163		1 62	99	\$04
516	1	702	352	91 805090	NisF (Lactococcus lactis)	1.9	- 87	351
525	2	2457	1426	95 1143371	[phosphoribosyl aminoimidazole synthetase (PUR-H) (Bacillus subtilis) [pir[H29326]AlbscL phosphoribosylformylqlycinamidine cyclo-ligase EC 6.3.3.1) - Bacillus subtilis	96	19	1032
53.8	*	3468	2825	191 1370207	ori6 Lactobacillus sake	66	6.7	624
5.10	-	2	157	(91)476160	arginine permease substrate-binding subunit (Listeria monocytogenes)	79	19	420
645		1 2663	3241	gi 153898	transport protein (Salmonella typhimurium)	61	62	678
6.83	- 1	25	374	gi 1064795	[function unknown [Bacillus subtilis]	7.9	62	1 000
816	: - -	4100	3987	gi 1407784	orf-1; novel antigen (Staphylococcus aureus)	1 62	62	714
2929	-		107	[91]1524397	[glycine betaine transporter OpuD (Bacillus subtilis]	96	1.9	199
2937	-	1357	202	pir S52915 S529	intrate reductase alpha chain - Bacillus subtilis (fragment)	66	58	156
2940	-	768	385	1911149429	putstive [Lectococcus lectis]	6.	72	384
2946	: -	025	286	91 143267	[2-oxogluterate dehydrogenase (odhA; EC 1.2.4.2) (Becillus subtilis)	79	19	285
2999	-	-	212	1911710020	initrite reductase (nirB) (Bacillus subtilis)	79	53	210
3022	-	1 514	1332	41 450686		96	19	183
3064	-	-	314	gi 1204436	pyruvate formate-lyase (Haemophilus influentae)	96	09	312
3083	-	1 2	1 220	91 1149662	hypD gene product (Clostridium perfringens)	79	56	219
3126	-	102	111	9. 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	79	55	291
13161	-	1 607	326	91 1339950	large subunit of NADH-dependent glutamata synthese (Plectonema boryanum)	7.9	65	202
3345	-		1 476	191 871784	Clp-like ATP-dependent protesse binding subunit (Bos taurus)	79	63	474
3718	-	536	1 270	pir C3689 C368	leus protein, ina	79	17	267
3724	7	159	1 401	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	79	99	243
3836	-	809	312	1 1 2 4 9 3	unknown [Mycobacterium tuberculosis]	79	65	1 792
1941	-	2	1334	91 415855	deoxyribose aldolase (Mycoplasma hominis)	79	36	1 866
1 4113		-	341	191/143015	[gluconate kinase [Bacillus subtilis]	7.9	63	600

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	Ris 4	1 ident	length (nt)
4501	-	904	209	91,1022726	unknowm (Staphylococcus haemolyticus)	79	99	198
1 4612	-	1 2	1 238	93 460689	TVG Thermoactinomyces vulgaris	96	58	237
2	-	7	1213	91 520753	ONA topolsomerase I (Bacillus subtilis	78	9	1212
		1 2266	1220	91/216151	DNA polymerase (gene L; ttg start codon) (Bacteriophage SP02) gi[579197 SP02 DNA polymerase (as 1-648) (Bacteriophage SP02) pir[A21498 DJBPS2 DNA directed DNA polymerase (EC 2.7.7.7) - phage P02	8.	,	1047
6	-	1340	1089	91 1064787	[function unknown (Bacillus subtilis]	7.8	57	252
1 32		6803	1 7702	91 146974	NH3-dependent NAD synthetase [Escherichia coli]	7.8	63	006
36	-	1 2941	3138	1911290503	glutamate permease (Escherichia coli)	80	1 53	198
53	115	17684	116221	91 1303941	Yqiv (Bacillus subtilis)	7.8	1 58	1464
1 57	==	110520	112067	91 1072418	glcA gene product (Staphylococcus carnosus)	78	6.5	1548
99	- 1	679R	5812	191 (1212729	YqbJ (Bacillus subtilis)	78	67	987
6.7	-	4029	4376	91 466612	nika [Escherichia coli]	7.8	17	348
91	6	10058	10942	91/467380	stage 0 sporultion [Bacillus subtilis]	7.8	05	988
102	112	8574	10130	gi 149426	putative (Lactococcus lactis)	78	61	1557
112	9	1 3540	(446)	91 854234	cymC gene product [Klebsiella oxytoca]	78	99	924
124	- 2	1888	1001	91 405622	unknown [Becilius subtilis]	2.8	09	828
130	_	1805	1 2260	911256636	putative (Bacillus subtilis)	78	17	456
133	_	132	1.75	91 168060	lamb (Emericella nichulans)	98	65	375
166	-	1125	6163	gi 451216	Mannosephosphate Isomerase [Streptococcus mutans]	78	63	696
186	-	1586	267	1911289284	cysteinyi-tRNA synthetase (Bacillus subtilis)	7.8	63	192
195	4	2749	2315	9111353874	unknown (Rhodobacter capsulatus)	78	88	435
188		4279	3623	91 143525	succinate dehydrogenase cytochrome b-558 subunit (Bacillus subtilis) pir[A2984][DEBSSC succinate dehydrogenase (EC 1.3.99.1) cytochrome 558 - Bacillus subtilis	78	52	657
199		1 7209	\$557	9. 1142521	deoxyribodipyrimidine photolysse [Bacillus subtilis] pir A37192 A37192 uvrB protein - Bacillus subtilis sp P14951 UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	78	62	1653
223		1 E 80 C	3523	171139596		86	47	309

S aureus - Putative coding regions of novel proteins similar to known protains

Contig	ORF	Start (nt)	Stop	match	pacch gene name	E 1	1 ident	length (nt)
299	-	1865	2149	91 467439	temperature sensitive cell division (Bacillus subtilis)	788	3	285
321		1734	7315	91 142979	ORF) is homologous to an ORF downstream of the spot gene of E.coli; RF) [Bacillus stearothermophilus]	78	55	420
352	-	3716	3944		actin 1 {Pneumocystis carinii	80 (42	231
352		1 7592	1 609	91 903587	NADH dehydrogenase subunit 5 (Becilius subtilis) sp[P39755 NDHP_BACSU NADH DEHYDROCENASS SUBUNIT 5 (EC 1.6.5.3) NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5).	•		1500
376	1-	7	583	[61[551693	dethiobiotin synthese Becillus sphaericus	18	34	582
424	2	1595	1768	91 [1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	78	89	1.14
150	-	1914	988	91 1030068	NADIP H oxidoreductase, isoflavore reductase homologue (Solanum tuberosum)	7.8	19	927
	<u>-</u>	762	1 562	oi 1511588	bifunctional protein (Methanococcus Jannaschii)	78	0.9	201
0.04	-	1 1152	1 1589	9111122759	unknown Becilius subtilis	184	3	138
714	-	79	1 732	91 143460	17 kd minor signa factor (rpof, sigs; ttg start codon) [Bacillus ubtilis]	76	57	699
* 1 × 1	-	-	368	[91]1377833	unknown [Bacillus subtilis]	78	89	366
116	-	1381	692	91 143802	[GerC2 [Bacillus subcilis]	78	99	690
995	2	918	727	91 296947	uridine kinase (Escherichia coli)	84	3	252
1045	-	-	10+	q1 1407784	orf-1; novel antigen [Staphylococcus aureus]	78	5	399
1163	7	368	1 1 1 1 6	gi 410117	diaminopimelate decarboxylase [Bacillus subtl.1s]	78	7.	183
1617	-	1 294	1399	21 212098	[excisionase [Bacteriophage 154s]	78	9	396
1 2933	-	2 -	181	91 1204436	pyruvate formate-lysse (Hasmophilus influentae)	182	7.3	180
3041	-	621	1 317	91 624632	GitL (Escherichia coli)	78	53	189
35#1	-	1 105		91 763186	[3-ketoscyl-coa thiolass [Saccharonyces cerevisiae]	186	\$5	297
3709			230	101 460689	TVG [Thermoactinomyces vulgaris]	78	88	228
3974	-	528	1 265	19: 558839	unknown (Bacillus subtilis	76	65	264
3980	-	- 3	104	191 39956		18	62	199
4056	-	1 647	354	' gi 1256635	dihydroxy-acid dehydratese Bacillus subtilis	1 78	\$\$	294
4114		630	316	pir 509372 5093	hypothetical protein - Trypanosome brucei	1 78	62	315
4185	-	-	179	91/1339950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	78	58	177

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene neme	e i a	* ident	Jength (nt.)
4235	-	959	329	191 558839	unknown [Becillus subtilis]	78	09	327
0.52		541	302	94 603768	HutI procesin, inidazolone-5-propionate hydrolese [Bacillus subtilis] gi 603768 HutI protein, imidazolone-5-propionate hydrolese Bacillus subtilis]	89	5	240
4368	1	612	307	91 1353678	heavy-metal transporting P-type ATPass (Proteus mirabilis)	78	59	306
1461	-	428	216	91 1276841	glutamate synthase (GOGAT) [Porphyra purpures]	76	36 .	213
4530	-	*2*	238	19139956	IIGIc (Sacillus subtilis	7.8	- 59	237
	- 2	2969	1 2073	91 1109684	Prov [Bacillus subtilis]	77	56	1 68
1 12	2	2426	1965	91 467335	ribosomal protein L9 (Bacillus subtilis)	1,1	- 65	162
1 27	-	7	388	91/1212728	Yqhi (Bacillus subtilis]	1.6	63	387
1 39	7	280	1252	91 40054	phenylalanyl-tRNA synthetese beta subunit (AA 1-804) [Bacillus btilis]	1 6	0.9	663
2	•	2704	2931	91 606241	105 ribosomal subunit protein S14 (Escherichia coli) spiP02370 RS14_ECOLI 105 RIBOSOMAL PROTEIN S14. (SUB 2-101)	- 11		228
*	=	6575	16622	91 297798	micochondrial formate drhydrogenase precursor [Solanum tuberosum] pir JQ2272 JQ2272 formate dehydrogenase (EC 1.2.1.2) procursor. itochondrial = potato	۲۲	\$5	1164
100	-	4562	4002	9111340128	ORF1 (Staphylococcus aureus)	[[75	561
1 102		5378	5713	91 1311482	acetolactate synthase (Thermus aquaticus)	1.1	57	336
109		4742	5383	191/710637	Unknown [Bacillus subtilis]	۲۲	9.5	642
117		7	1228	91 1237015	ORP4 [Bacillus subtilis]	۱ در	53	1227
124	01	6323	7688	91 405819	thymidine kinase (Bacillus subtilis)	1 11	63	636
147	_	1146	985	91 849027	hypothetical 15.9-kDe protein (Bacillus subtilis)	77	37	162
152	01-	7354	1953	91 1205583	spermidine/putrescine transport ATP-binding protein (Haemophilus	5	\$\$	009
691	~	1004	1282	gi 473825	elongation factor EF-Ts' (Escherichia coli)	1 77	- 88	279
181	- 7	380	1147	01 216314	esterase (Bacillus stearothermophilus)	1 77	1 09	768
691	-	3296	3868	101 853809	ORF3 [Clostridium perfringens]	1.2	87	573
193	-	132	290	qi 130378B	YqeH (Bacillus subtilis)	77	24	159
195	8	8740	8414	91 1499620	H. jannaschii predicted coding region MJ0798 [Nethanococcus jannaschii]	77	*	327
1 205	ec !	5428	5204	91/216340	ORF for adenylate kinase (Bacillus subtills)	7.	61	225

S aureus - Pulative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	E 18	dent	length (nt)
1 205	129	114795	114502	01 786155	Ribosomal Protein L23 (Bacillus subtilis)	۱ ۲۲	6.2	294
211	5	1 1908	2084	01 410132	OMFX8 (Bacillus subtilis)	ا رر	47	177
712	- 5	3478	4416	01 196254	(ibronectin/fibrinogen-binding protein (Strepto:occus pyogenes)	1 77	>5	939
232	-	1 267	866	91 1407784	orf-l; novel antigen (Staphylococcus aureus)	''	5.1	132
233	- 7	1819	1346	91 467408	unknown (Becillus subtilis)	1.4	- 19	1 4/4
1 243	-	1 2661	2299	91 516155	unconventional myosin (Sus scrofs)	11	32	363
299	-	6.8	694	91 467436	unknown (Bacillus subtilis)	1 11	22	102
301		1468	1283	1911950071	Aff-bind, pyrimidine kinase (Mycoplasma capricolum) pir S48605 S48605 hypothetical protein - Mycoplasma capricolum SGC3) (fragment)	77	=	186
302	- 2	2741	1 3211	086805 15	pheB [Bacillus subtilis]	1	57	471
302	-	1 3835	1 4863	91 147783	ruva protein (Escherichia coli)	۱ ۲۲ ا	09	1029
1 307	-	1 5402	(61)	91 1070015	protein-dependent (Bacillus subtilis)	ا دد ا	0.9	909
2			1391	91 143165	melic enzyme (EC 1.1.1.38) (Bacillus steerothermophilus) pir[A33307 DEBSXS malate dehydronchasc oxaloacetate-decarboxylating) (EC 1.1.1.38) - Bacillus tearothermophilus	7.	62	1293
313	~	1341	1 2663	1199855	carboxyltransferase beta subunit (Symechococcum PCC7942)		28	903
121	-	9995	9651	01 39844	funarase (citG) (sa 1-462) [Bacillus subtilis]	۲۲ ا	65	1071
30	-	4	1 S68	91 1 154634	Yman (Bacillus subtilis)	1.2	1.5	122
365			1021	91 143374	phosphoribosyl glycinamide synthetase (FUR-D; gtg start codon) Bacillus subtilis)		62	1020
374	-	-	1 708	91 1405446	transketolase (Bacillus subtilis)	1.4	6.1	100
3.85	-	11128	1 \$65	91 533099	endonuclease III (Bacillus subtilis)	1 11	63	564
392	~	294	0761	91 556014	UDP-N-acetyl muramate-alanine ligase (Becilius subtilis) sp reo778 MURC_BACSU UDP-N-ACETYLMURAMATEALANINE LIGASE (EC. 3.2.8) (UDP-N- ACETYLMURANOYL-L-ALANINE SYNTHETASE) (FRAGMENT).	7.7	\$9	1347
405	- 5	1 4079	0726	91/1303912	Yqhw (Bacillus subtilis)	17	199	510
1 487	-	1 1302	1472	91/432427	ORF1 gene product (Acinetobacter calcoaceticus)	17	•	171
522	-	~	562	pir A01179 SYRS	tyrosinethMA ligase (EC 6.1.1.1) - Becillus stearothermophilus	1 77	3	\$61

Putative coding regions of novel proteins similar to known proteins
ž ze
L LEI 4
proteins
novel
ot
regions
coding
Putative
aureus

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	EIR	1 rdent	Jength
523	2	1587	1351	91 1387979	44% Identity over 302 residues with hypothetical protein from Synechocystis sp. accession D6406_CD; expression induced by environmental strass; some similarity to glycosyl transferases; two potential membrane-spanning helices [Bacillus subtil	7.2		237
536		983	612	91/143366	adenylosuccinate lysse (FUR.B) (Bacillus subtilis) pirrc29326[WZBSDS adenylosuccinate lysse (FC 4.3.2.2) - Bacillus ubtilis	66	19	372
548	2	339	872	91 143387	aspartate transcarbamylase (Bacillus subtilis)		26	534
1 597	-	7	481	91 904198	hypothetical protein (Bacillus subtilis)	77	33	460
633	~	1747	1313	91,387577	ORFIA [Bacillus subtilis]	7,	99	435 (
642	-	. B.S	360	qi 46971	epiP gene product (Staphylococcus epidermidis)	77	61	276
659	-	521	1219	91 1072381	qlutamyl-aminopeptidase [Lactococcus lactis]	۲۲	62	1095
0.9	-	1587	1820	91 1122760	unknown (Becillus subtilis)	7.7	5.8	234
789		7	391	94 1377823	aminopeptidase [Bacillus subtilis]	۲۲	6.5	390
815	-	10	573	[gi]1303B61	YqgN Bacillus subtilis	7.1	49	564
64.8	-	-	522	94 1204844	II. influenzan predicted coding region 1110594 (Haemophilus influenzae)	τι	55	225
1 1083	. –	. ~	188	91 460828	B969 Saccharoaydes cerevisiae	77	99	186
1942		415	500	91 160047	pi01/acidic basic repeat antigen (Plasmodium falciparum) pir A29232 A29232	נג	86	207
1 2559	-	1 -	121	191 1499034	M. jannaschii predicted coding region MJ0255 (Methanococcus jannaschii)	7.7	- 19	17.1
1 2933	- 2	243	6	qi 42370	pyruvate formate lyase (AA 1-760) [Escherichia coli) ir S01788 S01788 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coli	רר	22	159
1 2966	-	95	1 292	91 1524397	[glycine betains transporter OpuD [Bacillus subtilis]	7.7	45	237
2976		614	309	91 (40003	oxoglutarate dehydrogensse (MADP+) (Bacillus subtilis) p[P21129]obol_BACSU 2-OXOGLUTARATE DEHYDROGENASE El COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROGENASE).	77	9	306
1 2979	~	678	00+	91 1204354	spore germination and vegetative growth protein (Maemophilus influenzae)	11	61	279
298R		109	1377	gi 438465 	Probable operon with orf? Possible alternative initiation codon, ases 2151-2153. Homology with acetyltransferases.; putative Bacillus subtilis)	77	\$\$	225
2990		188	167	491/142562	ATP synthase epsilon subunit [Bacillus megaterium] pir B28599 PMBSEM H+- transporting ATP synthase (EC 3.6.1.34) psilon chain - Bacillus megaterium	7.7	63	165
3032	-		389	91 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	77	5.6	387
1 3057		7	195	91 468764	mock gene product (Rhizobium melilati)	77	80	195

proteins
known
ţ
similar
proteins
novel
jo
regions of novel
coding
Putative

Saureus

Contig ORF	IORF I	Start	Stop (nt)	###tch	mecch gene neme	E 18	1 ident	length (nt)
4008		726	400	91 603768	Hurr protein, imidazolone-5-propionate hydrolase [Bacillus subtilis] gi[603/68 Hurl protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	7.2	52	327
8404	-	1 703	386	gi 216278	grenicidin S synthetese 1 (Bacillus brevis)	77	55	318
4110	-		368	pir 552915 5529	nitrate reductage alpha chain - Bacilius subtilis (fragment)	1.1	15	366
\$113	-	1 1	348	91 517205	67 kDe Myosin-crossreactive straptococcal antigen (Streptococcus yogenes)	- 11	1, 59	348
4225	-	065	297	(gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	1 11	0.9	294
4611	- 7	464	716	91 508979	crp-binding protein [Bacillus subtills]	77	5.7	168
4668	-	196	1 182	pir S\$2915 S\$29	Interate reductase alpha chain - Bacillus subtilis (fragment)	1	61	1 081
25	-	2	1627	91 1150620	Imak Streptococcus pneumonise	96	58	19291
R.	- 5	1488	2537	1435	regulatory protein pfoR - Clostridium perfringens	96	57	1050
22	5	1 2962	1001	91/1161061	diaxygenase (Methylobacterium extorquens	1 26	62	1080
95	120	127389	127955	91 467402	unknown [Becillus subtilis]	16	95	567
57	=======================================	112046	112219	9111206040	weak similarity to heratin [Caenorhabditis elegans]	9,	•	174
16	-	1 1062	2261	91 475715	acetyl comzyme A acetyltransferase (thiolase) Clostridium cetobutylicum)	16	57	1200
	-	818	1624	91 467422	(unknown (Bacillus subtilis)	92	62	100
86	-	1 2965) 322R	101 897793	y98 gene product (Padiococcus acidilactici)	9,	52	264
86	-	5922	6326	gi 467427	methionyl-tRNA synthetase [Bacillus subtilis]	1 76	53	405
101		1322	1885	91 216151	DAN, polymerasa (gene L; ttg start codon) [Bacteriophage SPO2] gi 579197 SPO2 DAN polymerasa (aa 1-648) [Bacteriophage SPO2] pir A21498 DJBPS2 DMA-idirected DNA polymerasa (EC 2.7.7.7) - phage EO2	76	63	564
124		8134	1 7055	gi 853776	release factor 1 Sacill	76	8.5	1080
164	- 5	2832	13311	gi 1204976	proly1-tRNA synthetass (Masmophilus influenzae	9,	53	480
168	~ -	1 2517	1841	[91]1177253	putative ATP-binding protein of ABC-type (Bacillus subtilis)	76	5.8	177
189	7	1 163	888	gi 467384	unknown (Bacillus subtilis)	1 76		726
235		1 2253	1 3518	191 142936	folyl-polyglucamete synthetese [Bacillus subtilis] pir Bio646 Bio666 fold -	1 76	53	1266
1 236	-	335	925	91 1146197	putative (Bacillus subtills)	76	54	591
765	-	5323	5541	91 1279261	[F13G3.6 (Ceenorhabditis elegans)	1 76	47	219

TABLE 2

15	roteins
20	to known p
25	ns similar
25	vel protei
30	regions of no
35	aureus - Putative coding regions of novel proteins similar to known proteins
40	S. aureus

Contig	ORF	Start (nt)	Stop (nt)	match	abich gene name	E	1 ident	length (nt)
263	3	0615	4585	91 1510348	dihydrodipicolinate synthase [Methanocu cus jannaschil]	1 9/	6.	906
700	<u></u>	1051	1794	gi 666982	putative membrane spanning subunit [Bacillus subtilis] pir 552382 552382 probable membrane spanning protein - Bacillus ubtilis	26	09	744
312	-	3611	4624	01/143312	6-phospho-1-fructokinase (gtg start codon; EC 2.7.1.11) (Bacillus tearothermophilus)	76	56	1014
7	-	2	1036	91 405956	yeeE [Escherichia coli]	96	, 65	1035
1 347	-	607	1071	91 396304	scetylornithine descetylase [Escherichia coli]	76	72	1293
358		672	1907	9111146215	39.0% identity to the Eacherichia coli Si ribosomal protein; putative [Bacillus subtilis]	36	88	1236
1178			222	91 537084	alternate gene name mgt; CG Site No. 497 (Escherichia coli) pir S56468 S56468 mgtA protein - Escherichia coli	76	61	222
1 379	7	1 4331	4858	91 143268	dihydroliposmide transsuccinylase (odhB; EC 2.3.1.61) [Bacillus ubtilis]	1 26	61	528
1 404	-	1 4022	1 4492	1911303823	[YqfG (Bacillus subtilis]	1 76	1 09	471
411	-	1 2	701	gi 186025	ORF YKL027w [Saccharomyces cerevisiae]	76	55	306
1 412	-	4156	2854	91 1405464	Aler (Dactilus subtilis)	9/	57	1503
546		273	566	91 153821	streptococcal pyrogenic exotoxin type C (speC) precursor Streptococcus pyogenes]	26	36	723
588	-	1054	1 557	91 1002520	MutS (Becillus subtilis)	94	19	467
1 591	-	16	1.35	gi 885934	CipB Synechococcus sp.	9,	7	720
602	-	175	798	gi 1486422	OppD homologue [Rhizoblum sp.]	96	52	624
619	~	1 547	1 290	[91]330613	major capsid protein (Human cytomegalovirus)	92	47	258
099	-	1 2568	1 3302	91 904 199	Inypothetical protain [Bacillus subtilis]	9/	55	735
119	-	452	1 228	gi 40177	spoof gene product (Bacillus subtilis)	16	88	225
962		24	206	91 142443	adenylosuccinate synthetase (Bacilius subtilis) sp P29726 PURA_BACSU ADENYLOSUCCINATE SYNTHETASE (EC 6.3 4.4) IMPASPARTATE LIGASE).	76	69	183
978	-	1158	1 580	9111511333	H. jannaschii predicted coding region MJ1322 [Hethanococcus jannaschii]	94	95	579
1 997	-	486	1 244	911467154	No definition line found (Mycobacterium leprae)	92	38	243
1 1563	-	1 529	1 266	[91]1303984	YqkG [Bacillus subtilis]	96	52	264
2184	-	1 361	1 182	91 506706	CapJ [Staphylococcus aureus]	9/	3.8	180
2572	-	-	187	21 153898	transport protein (Salmonella typhimurium)	1 76	59	387

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig ORF	098F	Start	Stop	match	match gene name	E 10	, ident	length (nt)
2942	-	62	00	 gi 710020	nitrite reductase (nirB) [Bacillus subtills]	76	6.	172
2957	-	77.6	216		hypothetical protein (SP:P42404) [Methanococcus janneschil]	16	47	162
2980	-	554	675	-	Aist (Bacillus subtilis)	76	53 -	276
1 3015		649	326	01 108115	ornithine acetyltransferase (Bacillus subtilis)	76	6.1	324
1 3124		1 23	174	19:1882705	ORF_0401 (Escherichia coli)	76	92, 1	162
9711			161	1011168477	ferredoxin-dependent glucamate synthase [Zea mays] pir [A38596 A38596 glutamate synthase (ferredoxin) (EC 1.4.7.1) - alze	76	63	159
3789	-	2	978	91 39956		76	55	378
1492	-		1 314	0111510398	[erripyochelin binding protein [Methanococcus junnaschii]	76	52	312
1928	=	1 798	00+	91 143016	permesse (Bacillus subtilis)	76	- 89	199
4159	-	757	1 386	sp P80544 MRSP_	HETHICILLIN-RESISTANT SURFACE PROTEIN (FRAGMENTS)	76	99	372
4204	-	1.1	1331	[91]296464	Affece [Lactococcus lactis]	26	95	315
4398	-	194	249	g1 987255	Menkes disease gens [Homo sapiens]	76	4.8	246
4506	-	~	1313	91 216746	D-lactate dehydrogenase [Lactobacillus planterum]	36	47	312
4546		1.47	1 242	191(1339950	largs subunit of NADM-dependent glutamate synthsse [Plectonems boryanus]	96	119	231
4596	-	1 379	161	91 560027	cellulose synthase Acetobacter xylinum	92	100	189
-	- 2	1 \$257	1 4337	gi R82532	OFF. 0294 [Escherichia coli]	25	29	921
9	-	164	952	91 409 60	OfCase [Escherichia coli]	75	96	789 [
122	-	5835	3944	91 467336	[unknown (Bacillus subtilis]	25	1 72	1992
52	£	18272	01871	91 1296433	O-acetylserine sulfhydrylase B (Alcaligenes eutrophus)	25	55	1 196
52	-	2356	1393	91 1502419	Plax [Sacillus subtilis]	15	95	1038
36	-	5 7 6 5	6037	91 1256517	unknown Schizosaccharomyces pomba	75	45	273
97	=	11186	12058	91 48972	Initrate transporter (Synechococcus sp.]	75	97	673
51		1 7 - 1 3474	1 3677	91 113607	sporulation protein (Bacillus subtilis)	27	61	204
2		16850	16590	' q5 143402 	recombination protein (ttg start codon), (Bacillus subtilis) g1[1303923 RecN Bacillus subtilis]	25		261
7.		3572	2568	911204847	ornithine carbamoyltransferase [Heemophilus in:luenzae]	75	61	1005

> aureus = Putative coding regions of novel proteins similar to known proteins

Contig	CAF	Start (nt)	Stop	match	match gene name	Eis	1 Ident	length
88		4628	3930	gi 143368 	phosphoribosylformyl glycinamidine synthetase I (PUR-L; gtg start odon) [Bacillus subtilis]	7.5	63	1 669
#5	\$	5588	4878	91/143367	phosphoribosyl aminoidazole succinocarboxamide synthetase (PUR-C; tg start codon) (Bacillus subtilis)	75	55	1117
8.5		6625	7530	91 1303916	Yqia (Bacillus subtilis)	75	53	906
87	2	2340	3590	91 1064813	[homologous to sp:PHOR_BACSU [Bacillus subtilis]	7.5	56, [1251
1 87	9	60R4	9689	91 1064810	[function unknown (Bacillus subtilis)	1 84	61	813 (
108		1844	1503	91 1001824	hypothetical protein (Symechocystis sp.)	15.	5.1	342 (
110		1748	רברנ	91 1147593	putative ppGpp synthetase [Streptomyces coelicolor]	75	55	1980
110		4173	5252	01 1177251	clwD gena product (bacillus subt[lis)	7.5	7.5	1 006
120	71	111266	10649	911524394	ORF-2 upstream of gbsAB operon (Bacillus subtilis)	75	55	618
121	2	2050	4221	91 1154632	NrdE (Bacillus subtilis)	75	24	2112
124		283	G1	91 405622	unknown (Becillus subtilis)	75	95	141
128	- !	=	1139	94 143316	igap gene products [Racillus megaterium]	75		1 6501
130	æ :	5760	5903	91 1256654	54.8% identity with Neisseria gonorrhoese regulatory protein P118; putative	25	62	7
1 136	7	4480	3185	91 467403	seryl-tRNA synthetese (Bacillus subtilis)	75	54	1296
161	01	5439	5798	191 1001195	[hypothetical protein [Synechocystis ap.]	1.81		360
172	-	3819	2995	91 755153	ATP-binding protein (Bacillus subtilis)	1.50	52	825
179	-	2024	1107	gi 143037	porphobilinogen deaminase [Bacillus subtilis]	75	58	918
195	01	9529	9374	sp P25745 YCFn_	(INPOTHETICAL PROTEIN IN PURB 5'REGION (ORF-15) (FRACHENT).	1.57	1 09	1961
200	-	2605	9654	91 142440	ATP-dependent nuclease (Bacillus subtilis)	75	99	1992
1 206		0069	5620	[01,1256135	YbbF (Bacillus subtilis)	75	- 65	1281
216	2	159	389	91 11052800	unknown [Schizosaccharomyces pombe	75	58	231
229		29	847	qi 1205958	branched chain as transport system II carrier procein (Haemophilus	25	6.	819
230	7 7	518	1714	91 (971337	initrite extrusion protein [Bacillus subtilis]	75	53	1 197
231		2240	1122	9: 1002521	Mutt. (Bacillus subtilis)	75	34	1 6111
233		1314	1859	g1 467405	unknown [Bacillus subtilis]	75	65	546

3 aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	180 10	Start	Stop	match acession	and ch dene name	e in	1 ident	length
1 269	-	328	164	91 1511246	methyl coenzyme H reductase system, component A2 (Methanococcus jannaschii)	- 51	20	162
1 292	: -	1369	1112	9111511604	N. jannaschii predicted coding region MJ1651 (Methanococcus jannaschiil	75	9	H19
304	-	1,173	1 2261	191 1205328		75	5.5	6.0
312	-	1 2417	13387	01 285621	undefined open reading frame (macillus stearothermophilus)	5.	62	951
312	-	1 4622	6403	91 1041097	Pyruvate Kinase (Bacillus psychrophilus)	1.57	57.	1782
119	-	1 353	1 877	91 1212728	Yqhi (Bacillus subcilis)	15	34	525
320	-	1217	1 \$031	19101010101	OMP decarboxylese (Lactococcus lactis)	7.5	95	111
120	9	1 5010	5642	91 143394	OMP-PRPP transferese [Bacillus subtilis]	25	0.9	633
1 337	-	1519	1 2088	91 487433	citrate synthese Il (Sacillus subtilis)	7.5	85	570
394	~	699	1271	gi 304976	matches PS00017: APP_GTP_A and PS00101: EFACTOR_GTP; similar to longstion factor G, TetH/TetO tetracycline-resistance proteins Escherichia colii	2.2	5.1	603
1 423	-	127	570	(01)1183839	unknown [Pseudosonas seruginose]	7.5	59	7 7 7
1 433	~	1603	1929	gi 149211	acetolactate synthase (Klebsiella pneumoniae)	25	63	127
446	-	176	1540	gi 312441	dihydroorotase Bacillus caldolyticus	25	62	1365
4.8.6	-	767	249	91 1149682	potF gane product (Clostridium perfringans)	75	55	246
146	-		1 794	gi 143582	apoliiEA protein (Bacillus subtilis)	75	59	792
438	-	1 824	1 1504	gx 14332B	phoP protein (put.); putative (Bacillus subtilis)	75	47	681
669		1061	7 29 2	91 1387979	144% identity over 302 residues with hypothetical protein from Synachocystis sp, accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transfereses; two potential membrane-spanning helices [Becillus subtil	25	\$ 1	264
26.8		641	453	ptr JC4110 JC41	riacylglycerol lipase (EC 3.1.1.3) 2 - Mycoplesma mycoides subap. mycoides (SGC3)	25	90	60
613	- 2	01.	1 233	gi 330993	tegument protein Saimiriine herpesvirus 2	75	25	198
621	-	-	1 525	gi 529754	spec Streptococcus pyogenes	75	4	\$25
642	- 2	1 1 1 1 0 9	1 2474	01 1176401	EpiG (Staphylococcus epidermidis)	75	\$1	999
646	~	- 654	1 657	· 9x 172442	ribonuclease P Saccharomyces cerevisise	75	7.1	204
1 657	-	-	1 347	91 882541	ORF_0236 (Eschorichia coli)	75	.,	345
1 750	-	1 1662	832	gi 46971	epiP gene product Staphylococcus epidermidis	75	57	831
				.,.,.,				

S. aureus - Putative coding regions of novel proteins similar to known proteins

s aurous - lutative coding regions of novel proteins similar to known proteins

5

1 602 101 91 1 608 106 91 1 668 106 91 1 668 106 91 1 668 106 91 1 715 189 91 2 206 6221 91 3 5776 6126 91 4 6910 6221 91 5 2246 1622 91 6 5063 4868 91 6 5063 4868 91 1 114314 114319 91 1 115 12561 11136 91 1 1 1 1 1 1 1 2 2 4 4 1 1 2 2 2 4 1 2 2 4 1 2 2 4 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 3 2 2 3 3 2 3 4 4 4 3 5 6 1 6 6 1 6 6 7 5 6 8 1 5 6 9 1 5 6 1 5 6 1 5 7 1 6 7 1 1 1 1 1 1 1 1	Contag	IORF I	Start	Stop	match cossion	. Match gene name	E is	1 1 dent	length (nt)
1 602 101 01 450688 Include game of Recopting Decidencials, colin pari/Statal/Statal Protein 75 75 75 75 75 75 75 7	4111	-	·	139	gi 149435	putative [Lectococcus lectis]	15	5,1	339
1 6.64 374 G 1139950 Intrase temaporter Symachococcus PP 75 75 75 75 75 75 75	4136		602	303	Q1 450688	gene 1s col	25	56	300
1 115 115 115 115103950 Illings subunit of Mobi-dependent glutamate synthas (Plactomes becyluled 75 6 6 71 715	4146	-	999	336		Initrate transporter (Symechococcus sp. 1	- 22	\$	133
1 715 739 9 291266 Raijor aurice glycoprotein (Promomocyteis cacinii) 75 75 75 75 75 75 75 7	4237		799	374	9111339950	large subunit of MADM-dependent glutamate synthase (Plectonema boryanum)	75	, 55	291
1 115	4106		22	318	gi 294260	major surface glycoprotein (Pneumocystis carinii)	7.5	6.8	246
1 620 312 911376464 AFFase [Lactococcus Lactis] 34 35 376 6126 91144773 NupC [Escherichia coli] 34 34 376 6126 91144773 NupC [Escherichia coli] 34 34 35 376 12221 911000431 Trep [Sechlius subtilis] 34 34 35 376 12221 911000431 Trep [Sechlius subtilis] 34 34 34 37 37 37 37 37	3	-	115	359	91 1204652	methylated-DNA - protein-Cysteine methyltransferase [Haemophilus influenzae]	7.5	\$2	151
6 6310 6221 91 403793	45\$2	-	620	1 312	911296464	ATPase [Lectococcus lactis]	75	\$5	309
6 6910 6221 91 229988 Phypothetical protein Bacillus subtilis 74 72 72 72 72 72 72 7		-	3718	1 6126	gi 443793	Nupc [Escherichia coli]	74	\$0	351
9 10770 12221 gil1000431 Tree [Secilius subtilis] 74 1 2 2346 1622 gil41015 Japartake-tMA ligase [Eschorichia colii 74 2 2346 1622 gil41015 Japartake-tMA ligase [Eschorichia colii 74 3 3 4446 gil121779 Yobi Isacilius subtilis 74 4 4871 1392 gil121779 Yobi Isacilius subtilis 74 4 4871 1392 gil134435 Putative (Lactococcus Jamaschii) 74 5 4871 1392 gil134435 Putative (Lactococcus Jamaschii) 74 6 1312 4483 gil134435 Putative (Lactococcus Jamaschii) 74 7 4872 4883 gil134435 Putative (Lactococcus Jamaschii) 74 8 4873 1392 gil134435 Putative (Lactococcus Jamaschii) 74 9 4874 7093 gil144939 Putative (Lactococcus Jamaschii) 74 9 4874 7093 gil144930 Libonoclassic Paramage protein (Bacillus Septerichia oli pir/A77311 A77311	205	-	0169	6221	[gx 1239988	hypothetical protein (Bacillus subtilis)	74	5.5	069
2 2246 1622 gil(1015) sapartate-tibA 11gase [Escherichia colli] 74 4 506.3 4446 gil(1212729 Yoh- Bacillus aubtilis] 74 506.3 4446 gil(1212729 Yoh- Bacillus aubtilis] 74 14 4873 3702 gil(149429 putative (Lactococcus lactis) 74 14 4873 3702 gil(149429 putative (Lactococcus lactis) 74 4 4873 3702 gil(149429 putative (Lactococcus lactis) 74 5 4874 7093 gil(149429 ATP-binding protein of framaport ATP-sase Bacillus firmus ir \$1946 \$1346 74 5 4874 7093 gil(1205430 ATP-binding protein - Bacillus firmus pi25946 YATL,BACT HYPOTHETICAL 7 4142 4803 gil(1205430 ATP-BINDING TRANSPORT PROTEIN 74 8 574 7093 gil(1205430 Gibonuclaoside triphosphate reductase Escherichia old pir/ A47731 74 9 7 7472 74	56	-	1107:0	112221	91 1000451	Tree [Becillus subtilis]	14	57	1452
6 5063 4846 9 2117729 Yqha Bacillus aubtilis 74 18 14314 11897 9 1510631 endoglucanase Methanococcus Janhachiii 74 18 11315 11316 9 1510631 endoglucanase Methanococcus Janhachiii 74 18 1312 14419 9 149435		-	2266	1622	qi 41015	sspartate-thWA ligase (Escherichia coli!	24	52	645
	99	-	5043	1848	91 1212729		٥, ١	47	216
	67	=======================================	1634	14897	gi 1510631	endoglucanase (Methanococcus jannaschii)	74	23	564
16 13121 14419 g1 149435 putaeitve [Lactococcus lactis]	102		12561	13136	lgi 149429	[putative (Lactococcus lactis]	7.	67	576
4 4873 3902 91 39478 ATP binding procein of transport APPasss [Bacillus firmus] ir[513486 515486 74 ATP-binding procein - Bacillus firmus p[P26946 VATR_BACFI HYPOTHETICAL ATP-binding procein - Bacillus firmus p[P26946 VATR_BACFI HYPOTHETICAL ATP-binding procein - Bacillus firmus p[P26946 VATR_BACFI HYPOTHETICAL ATP-binding procein - Bacillus segatorichia oli 74 A 142	102	=	13121	11419	91 149435	[putative [Lactococcus lactis]	74	5.3	1299
5 8574 7093 gi 1205430 dipeptide transport system permease protein (Haumophilus influenzae) 74 7 4142 4803 gi 146970 ribonucleoside triductase Escherichia coli pir A47331 74 7 4342 4803 gi 146970 ribonucleoside reductase Escherichia coli pir A47331 74 7 5561 6581 gi 140328 trg start Campylobecter coli 74 7 5220 3531 gi 143318 phosphoglycerate kinase Bacillus megaterium 74 7 5237 5791 gi 143076 hisridase Bacillus subtilis 74 8 6745 5150 gi 44076 hisridase Bacillus subtilis 74 8 664 1168 gi 40773	# 0 T		4873	3902		ATP binding protein of transport ATPases (Becillus firms) ir Si5486 Si5486 ATP-binding protein - Bacillus firms p P26946 YATR_BACFI HYPOTHETICAL ATP-BINDING THANSPORT PROTEIN.	7.4	S	972
7 4142 4803 gi[146970 ribbmucleoside triphosphate reductase [Escherichia coli] pir[A47331 74 7 4142 4803 gi[146970 ribbmucleotide reductase - Escherichia oli 74 7 5961 6581 gi[1107528 ttg start [Campylobacter coli] 74 7 5220 3531 gi[143318 phosphoglyceric Minase [Bacillus aegaterium] 74 8 5150 gi[143076 histidase [Bacillus subtilis] 74 8 6745 5150 gi[143076 histidase [Bacillus subtilis] 74 8 6745 5150 gi[143076 histidase [Bacillus subtilis] 74 8 6745 5150 gi[1437833 unknown [Bacillus subtilis] 74 9 6745	116	-	1 8574	1 7093	91 (1205430	dipeptide transport system permease protein (Macmophilus influenzee)	74	\$	1482
7 5961 6581 gi[1107528 ttg mlast [Campylobaccer coli]	120		4342	4803	gi 146970	ribonucleoside triphosphate reductase [Escherichia coli pir A47331 A47331 anaerobic ribonucleotide reductase - Escherichia oli	74	85	462
3 2320 3531 gi 143316 phosphoglycerate kinase [Bacillus aegaterium] 74 7327 5791 gi 1256653 Dula-binding protein (Bacillus subtilis) 74 74 74 7527 5150 gi 143076 hisridase (Bacillus subtilis) 74 74 752 777 gi 1377833 devA gane product [Anabaena sp. 6 1 552 277 gi 1377833 unknown [Bacillus subtilis] 74 74 74 752 777 gi 1377833 unknown [Bacillus subtilis]	121		1965	1 6581	91(1107528	trg mtart [Campylobacter coli]	P/ 1	51	621
7 5237 5791 Gi 1256653 DRA-binding protein (Bacillus subtilis) 74 74 74 75 5150 Gi 143076 histidase (Bacillus subtilis) 74 74 75 75 75 75 75 75	128		1 2320	1531	91 143	[phosphoglycerate kinase [Bacillus megaterium]	74	57	1212
3 6745 5150	130	-	1 5237	1878	(Dua-binding protein (Becillus subtilis)	7.	9	555
2 664 1368 gl 407733 devA gane product Anabaena sp.i 74 74 752 277 gi 1377833 unknown Bacillus subtilis	136	-	6745	5150	191 143076	histidase (Bacillus subtilis)	*	ns	1596
1 552 277	145	- 7	199	1368	[91]40773	devA game product Anabaena sp.	7.	45	705
	152	-	552	772	[gi 1377833	unknown [Becillus subtilis]	7.	54	276

	aureus - Putative coding regions of novel proteins similar to known proteins
	L MODEN
	2
:	SIMILAR
	proteins
	novel
	ot
	regions
	coding
	Putat ive
) 93
	aureu
	s.

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	E	1 ident	length (nt)
1 164	01	111064	111175	1911580900	ORF) gane product (Bacillus subtilis)	74	52	312
175	2	3109	1 2624	gi 642656	unknown [Rhizobium meliloti]	٦.	*	987
271	-	1 6064	5612	gi 854656 i	Na/H antiporter system ORF2 (Bacillus alcalophilus)	4	91	453
195	117	111346	10339	191 1204430	hypothetical protein (SP:P25745) (Haemophilus influenzae)	*	58	1008
205	1.7	6196	9029	01 1044979	ribosomal protein L6 [Bacillus subtilis]	7.	, 19	196
236		5574	6710	191,1146207	putative [Becillus subtilis]	74	63	1 (111
241		4521	3334	191 694121	# H	74	52	1188
1 246	9 -	3305	2799	gi 467374	single strand DNA binding protein (Bacillus subtilis)	74	64	507
249	-	6551	1 5313	19111524397	glycine betaine transporter OpuD [Bacillus subtilis]	74	55	1239
261	7	4389	4081	91 809542	ChrB protein [Erwinia chrysanthemi]	74	42	309
278	9 -	5714	1 4665	gi 1204872	ATP-binding protein [Haemophilus influenzae]	74	54	10501
309	-	1 1220	999		hypothetical protein (GB:U14003_302) (Haemophilus influenzae)	74	53	\$55
315	1 2	143	862	gi 143398	quinol oxidase (bacillus subtilis)	74	52	612
320	<u>:</u>		1065	01 143389	gluteminase of carbenyl phosphate synthetase [Bacillus subtilis] (EC pit[E3845]E29845 [E39845]E29845 carbanoyl-phosphate synthase glutamine-hydrolyzing) (EC 6.3.5.5), pyrimidine-repressible, small hain - Bacillus subtilis	7.	09	1065
380	~	382	11128		ATPase aubunit a (Bacillus stearothermophilus)	7.4	26	747
405	7	1742	1161	19111303915		7.4	99	432
433		2503	1 3270	1911473902	alpha-acetolactate synthase [Lectococcus lactis]	74	56	768
452	-	-	942	91/413982	ipa-58r gene product (Bacillus subtilis)	74	52	942
194	-		11193	91 558494	homoserine dehydrogenase (Bacillus subtilis)	74	51	1191
194	~-	1174	1407	gi 40211	threonine synthase (thrc) (AA 1-352) [Bacillus subtilis] ir[A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btilis	3.6	56	234
1 462	7	405	734	91 142 520	thioredoxin [Bacillus subtilis]	7.4	62	333
478	-	1 574	1 320	10, [1499005	glycyl-tRNA synthetase (Methanococcus jannaschii)	**	52	255
501	7	967	1740	1740 / 91 217040	acid glycoprotein (Streptococcus pyogenes)	7.4	58	1002
551	~	4083	2791	91,143040	glutamate-1 semialdehyde 2,1-aminotransferase [Bacillus subtilis] pir[D42728 D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis	**	51	1293
	111111		11111111					

3 unreus - Putative coding regions of novel proteins similar to known proteins

ontig ORF ID III	ORF	Start	Stop (nt)	match	natch gene name	E	1 tdent	length (nt)
573	-	1 1	777	-	hypothetical protein (Synachocyatis ap.1	74	45	477
965	2	1780	1 1298		Yqor [Bacillus subtilis]	74	55	483
6 1 8	~	2924	1758	91 111 46237	21.4% of identity to trans-acting transcription factor of Sacharomyces cerevisiae; 25% of identity to sucross synthase of Zea mays; putative [Bacillus subtilis]	7.	25	1167
659	7	1269	1595	9111072380	ORF3 [Lactococcus lactis]	74	62	327
724		575	861	gi 143374	phosphoribosyl glycinamide synthetase (PUR-D; grg start codon) Bacillus subtilis)	7.4	85	186
343		1 604	1209	91 153833	ORFI; putative (Streptococcus parasanguis)	74	20	909
836		7	259	91 143458	ORF V [Bacillus subtilis]	74		258
989	7	143	124		Yqkm (Bacillus subtilis)	74	- 94	282
1106	-	1 1	1 492	gi 16970	epiD gene product [Staphylococcus apidermidis]	74	24	492
1135	7	573	528	gi 413948	ipa-24d gene product (Bacillus subtilis)	74	60	156
1234	-	1 817	452	gi 495245	recJ gene product (Frwinia chrysanthemi)	14	36	366
2586	-	2	238	01 1149701	sbcC gene product (Clostridium perfringens)	74	53	767
2959	-	1 798	007	91 1405454	aconitase [Bacillus subtilis]	74	09	1999
2962		1 650	1 363	gi 450686	3-phosphoglycerate kinase (Thermotoga maritima)	74	E 5	288
2983	-		161		Yqht (Bacillus subtilis)	74	>\$	189
3018		2	223	01:143040	qlucamate-l-semialdehyde 2,1-aminotransferase Becillus subtilis pir[b42728 D42728 glutamate-l-semialdehyde 2,1-aminomutase (EC 4.3.8) - Bacillus subtilis	74	\$	222
3038	-	1 510	1 256	pir 552915 5529	Initrate reductase alpha chain - Bacillus subtilis (fragment)	74	52	255
3062	-	1 374	189	91,1107528	trg start [Campylobacter coli	74	- 51	186
4035	-	184	1 360	gi 1022725	unknown (Staphylococcus haemolyticus)	1 74	3	177
4045	-	1 607	1 305	gi 1510977	[M. jannaschii predicted coding region MJ0938 (Methanococcus jannaschii)	7.	\$	303
4283	-	471	304	gi 520844	orf4 (Bacillus subtilis)	74	5.8	168
6977	-		1 221		peptide-synthetase ORFI (Bacillus subtilis)	74	3.6	219
4587	-	458	231	19111170207	orf6 [Lactobacillus sake]	74	59	228
				111111111111111111111111111111111111111				

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contig OHF	F Start (nt)	Stop (nt)	match acession	match gene name	E S I	1 ident	length (nt)
				17 A29617 glutamate synthase (NADPH) (EC 1.4.1.13)		3	
_	366	184	gi ,256135	YbbF (Bacillus subtilis)	74	119	183
2	1 7953	7162	91 143727	putative (Bacillus subtilis)	7.3	42	792
~	2454	1372	gi 166338	dihydroorotate dehydrogenase [Agrocybe aegerita]	7.3	54	1083
	2024	1020	91 143373	phosphoribosyl aminoimidazole carboxy formyl ormyltransferase/inosine monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis)	13	40	1005
<u>~</u>	5426	4635	01 1468939	meso-2,3-butanediol dehydrogenase (D-acetoin forming) [Klebsiella pneumoniae]	73	288	792
12	(17379	116360	gi 297060	ornithine cyclodesminase (Rhizobium meliloti)	7.3	37	10701
~	692	1 1273	91 467442	stage V sporulation [Bacillus subtilis]	7.3	24	582
<u>~</u>	6467	4914	91 414000	ipa-76d gene product (Bacillus subtilis)	7.3	55	1554
	8658	7402	gi .429259	pepT gene product (Bacillus subtilis)	73	59	1251
_	7738	1562	191,168367	alpha-isopropylmalate isomerase (put.); putative [Rhizomucor ircinelloides]	13	52	1771
_	3931	4896	[91 405885	yein [Escherichia coli]	7.3	58	1 996
•	5041	4238	[gi 5H0895	unknown (Bacillus subtilis)	7.3	53	804
Ξ	17767	9306	91 42009	moaB gune product Escherichia coli	6.7	05	1 005
2	2439	3080	gi 1109685	ProW [Bacillus subtilis]	1.1	()	642
3	14036	13794	gi 413931	ipa-7d gane product (Bacillus subtilis)	٤٢	19	243
-	1430	2248	[01]147923	threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]	7.3	53	R19
_	1458	730	191 677944	Appr (Bacillus subtilis)	7.3	96	729
~	1375	860	gi 580932	murD gene product (Bacillus subtilis)	13	5.3	516
3	10124	11179	91 580891	3-isopropylmalate dehydrogenase (AA 1 - 365) [Bacillus subtilis] pir[A26522[A26522 3-isopropylmalate dehydrogenase (EC 1.1.1.85) - acillus subtilis	٤٢	\$5	1056
~	3493	1 2600	[gi 1510849	M. jannaschil predicted coding region MJ0775 (Methanococcus jannaschil)	13	40	894
*	4782	5756	91 146970	ribonucleoside triphosphate reductase [Escherichia coli] pir A47331 A47331 anaerobic ribonucleotide reductase - Escherichia oli	٤٢	9,5	975
_	5726	6223	91 1204333	anserobic ribonucleoside triphosphate reductase [Haemophilus influenzae]	73	62	1 864
				•			

S aureus - Putative coding regions of novel proteins similar to known proteins

ont 19 1D	ORF 1.0	Start	Stop (nt)	match	'natrh gene name	Eis	Vident	length (nt)
. 32	- 5	1511	4363	a1 87104B	(HPSR2 - heavy chain potential motor protein (Giardia intestinalia)	73	1 0	213
140	9	1 5952	4324	91 634107	kdpB [Escherichie coll]	13	65	1629
142		1 2060	6165	qi 410125	rius gene product (Macillus subtilis)	6.2	57	1122
149		1866	7171	91 (460892	heparin binding protein-44, HBP-44 [mice, Peptide, 360 as) pir JX0281 JX0281 heparin-binding protein-44 precursor - mouse gi 220434 ORF Mus musculus] (SUB 2-360)	٤٢	3	150
158	-	1	1671	qi 882504	ONF_1560 [Escherichia coli]	7.3	5.7	1431
174	9	5352	4525	91 1146240	ketopantoate hydroxymethyltransferase Bacillus subtilis	66	55	A28
175	x	1.5537	5178	91 854657	[Na/H antiporter system ORF] [Bacillus alcalophilus]	7.3	96	360
186	- 5	6593	5493	91 467477	unknown [Bacillus subtilis	٤٢		1101
549	9 -	6283	5729	[9: 1524397	[glycine betaine transporter OpuD [Bacillus subtilis]	7.3	95	555
265	-	1873	2280	01 39848	[U3 (Bacillus subtilis]	67	-	804
270	-	328	582	q1 780461	[220 kDa polyprotein (African swine fever virus)	67	53	1 552
27.8	-	42A3	3618	Q1 120H96S	hypothetical 23.3 kd protein (Escherichia coll)	13	6	999
279	- 1	1884	1 3593	gi 1185288	[isochorismate synthase [Bacillus subtilis]	1 73	5.8	1392
291	-	1207	1575	(gi 1511440	glutaminefructose-6-phosphate transaminase [Mathanococcus jannaschii]	67	63	1691
299	2	1 735	1166	gi 467437	unknown [Bacillus subtilis]	13	5.8	432
299		1 2050	3234	gi 667439	[temperature sensitive cell division [Bacillus subtilis]	1 73	63	1185
***	-	1237	728	91 536655	ORF YBR2444 [Saccharosydes cerevisiass]	1 73	6	510
336	- 2	1827	1036	191 (790943	ures amidolysse (Bacillus subtilis]	67	51	792
374	-	1389	1874	91 1405451	YneJ [Bacillus subtilis]	33	55	486
433	-	1916	2554	191 473902	alpha-acetolactate synthase [Lactococcus lactis]	33	24	639
\$09	- 2	1 1795	1028	gi 467483	unknown (Bacillus subtilis)	31 ا	98	768
513	-	1709	918	91 1146220	[NAD+ dependent glycerol-3-phosphate dehydrogename [Bacillus subtilis]	1 73	95	792
533	7	239	. 667	, [91 1510605	thanococcus janna	33	7	1 667
546	7	1148	2815	[q: 41748	hadW protein (AM 1-520) (Escherichia coli)	7.3	52	1668
549	-	762	382	191 1314847	CinA [Bacillus subtilis]	7.3	57	381
567	-	1346	675	91 410137	ORFX13 (Bacillus subtilis)	73	5.8	672

aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	. match gene name	ETS	1 ident	length
1 716	2	654	1112	91 1256623	exodeoxyribonuclease (Bacillus subrilis)	13	96	1 654
ςττ	-		7.69	 gi 142010	Shows 70.2% similarity and 48.6% identity to the EnvH protein of almonella typhimurium (Anabaena sp.)	13	۲5	675
174	-		209	91 409286	baru (Bacillus subtilis)	נר	52	102
1 782	1 -	1	1 402	91 143320	[gap] gene products [Bacillus megaterium]	1.3	56	402
789		451	762	gi 1063246	low homology to Pid procesh of Hesmophius influenzar and 14.2 kDa procesh of Escherichia coli (Bacillus subtilis)	13	26	312
964	-		1 911	941 853754	ABC transporter (Bacillus subtilis)	در	85	606
908		1209	949	91 143786	tryptophanyl-tRNA synthetase (EC 6.1.1.2) [Bacillus subtilis] pir[JT0481 YMBS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	67	51	261
816	~	4839	1 3097	91 41748	hsdw protein (AA 1-520) [Escherichia coli]	2	52	1743
639		798	00+	906988	9 1	2.5	59	199
1 857	-	2	290	gi 348052	acetoin utilization protein (Becillus subtilis)	٤٢	05	288
1008		790	398	91 40100	rodC (tag3) polypeptide (AA)-746) [Bacillus subtilis] ir S06049 S06049 rodC procein - Bacillus subtilis p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	در	7	193
101			1 213	qi 529357	No delinition line found (Genorhabditis elegans) sp P46975 STT3_CAEEL OLIGOSACCHARYL TRANSFERASE STT3 SUBUNIT OMOLOG.	73	ß	213
1013	-	1	491	191 142706	comcl gone product (Bacillus subtiliu)	1,3	5	(. 27)
1174	-	395	204	91 1149513	alphalm subunit of laminin 5 (Homo sepiens)	2.2	09	192
1175	-	655	329	[91](73817	('ORF' [Escherichia coli)	נג	57	327
1187	-		1 209	91 580870	ipa-37d qoxA gene product (Bacillus subtilis)	73	52	207
1206		22	245	91 144816	commylearahydrofolate synthetase (FTHFS) (ttg start codon) (EC .3.4.3) [Hoorella thermoscetica]	13	-	174
1454	-	423	1 241	91 11213253	unknown [Schitosaccharomyces pombe]	5	53	183
1469	-	517	1 260	[91 1303787	YqeG (Bacillus subtilis)	נר	\$5	258
1761	-	374	1189	\$616]19]	Hutl6Am gene product (Drosophile simulans)	7.3	34	186
1849	-	1 467	1 243	91 162307	DNA topolsomerase II (Trypenosoma cruzi)	در	09	225
2055	-	2	007	qi 559381	P47K protein (Rhodococcus erythropolis)	33	34	1 996
2556	-	2	1 244	91 145925	[fecB [Escherichia coli]	13	62	243
***	1 1 1 1 1	1 1 2 1 1 1						

TABLE 2

S aureus - Putative coding regions of novel proteins similar to known proteins

							1000	- Lenor
Contig ID	ORF	Start (nt)	Stop (nt)	match	mpatch gene name			(10)
2947	1 2	549	400	91 1184660	polymucleotide phosphorylase (Bacillus subtilis)	13	5.1	150
2956	-	746	575		quinol oxidase [Bacillus subtilis]	ι,		1 270
7.000	-	655	329	161111091	acetolactate synthase [Dacillus subtilis]	۲.	85	122
31115		385	194	qi 323866	overlapping out of phase protein [Eggplant mosaic virus] sp[p20129[V70K_EPHV 70 KD PROTEIN.	ני	53	192
3603	7	1 700	755	qi 14.9521	gluteryl-CoA dehydrogenase precursor (Mus musculus)	5	9,	174
1743	ļ	298	007	gi 450688	hack gene of Ecopril gene product (Escherichia coli) pir 518437 518437 hack protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	13	\$	1999
1752	-	019	950	gi 1524193	unknown [Mycobacterium tuberculosis]	5	1 65	282
3852	-	1 2	1 181	91 216746	D-lactate dehydrogename [Lactobacillus plantarum]	در	• • • • • • • • • • • • • • • • • • • •	180 1
3914	-	1 475	239	pir S13490 S134	Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5) - Chicken (fragment)	7.3	ı s	1 '(12
3914	~	1 \$70	5.	[91]528991	unknown [Becilius subtilis]	2.2	•	228
1069			316	01140003	oxoglutarate dahydrogenase (MADPr) Bacillus suutilis) p[P23129 0D01_BACSU 2-OXOGLUTAMATE DEHYDROGENASE EI COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTAMATE DEHYDROGENASE):	٤	\$	315
4165	-	1.15	1 365	91 1439521	glutary]-CoA dehydrogenase precursor [Mus musculus]	22	•	151
9614			771	91 409660	decayribose-phosphate aldolase [Becillus subtilis] pir \$4945 \$4945 decayribose-phosphate aldolase [EC 4.1.2.4) - scillus subtilis		09	177
(202	-	572	378	1911528991	unknown (Becilius subtilis)	2	HC 1	195
4314			193	91 136797	N-acyl-L-amino acid amidohydrolase Dacillus stearothermophilus sp P37112 AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC .5.1.14) (AMINOACYLASE):	73		192
4093	-		1 263	91 216267	ONTY [Bacillus megaterium]	2	47	261
- z	~	1 903	1 1973	21 1146196	phosphoglycerate dehydrogenese [Bac[]]us subtilis]	72	53	1001
		19094	17877	E 602031	similar to trimethylamine DH (Mycoplasma capricolum) pir 549950 549950 probable trimethylamine dehydrogenase (EC .5.59.7) - Mycoplasma capricolum (SGC3) (fragment)	72		1218
	[23	110134	19162	191 413968	ipa-44d gene product (Bacillus subtilis]	27	- 54	1029
*	119	111895	112953	gi 516272	unknown [Bacillus subkilis]	27	49	1059
	1	6240	1117	91 (3499	pyruvate synthase [Halobacterium halobium]	22	6	670
50	-	1 6563	1 5691	91 (1205399	proton glutamate symport protein [Heemophilus influenzee]	2	53	47.8

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig	ORF	Start (nt)	Stop (nt)	match	maich gene name	E .	* ident	length (nl)
53	6	10521	9259		YajE (Becillus subtilis)	72	52	1263
95	123	29549	29995	191 1467471	unknown [Becillus subcilis]	72	47	447
69	-	5298	4123	91/1354775	pfos/R [Treponema pallidum]	72	9	1176
69	-	1.0377	4982	91 904198	hypothetical protein (Bacillus subtilis)	72	C	909
ετ	- 1	7	958	 gi 142997	[glycerol uptake facilitator [Bacillus subtilis]	72	59,	655
86	123	1788	10258	[91 467435	unknown (Bacillus subtilis)	72	20	89
1 127			1593	94/217144	alanine carrier protein (thermophilic becterium PS3) pir A45111 A45111 alanine transport protein - thermophilic acterium PS-3	72	26	1593
<u> </u>		1 5197	2600	gi 153952	polymerase III polymerase subunit (dnaE) (Salmonella typhiaurium) pir A45915 A45915 DAA-directed DNA polymerase (EC 2.7.7.7) III lpha chain - Salmonella typhimurium	27	cs	2598
141	-	1 1040	1978	91 1405446	transketolase (Bacillus subcilis)	72	24	939
149	80	2819	2535	gi 606234	eecy [Escherichia coli]	72	3	285
149	117	5472	5245	gi 1304472	DNA polymerase [Unidentified phycodnavirus clone OTU\$]	72	- 55	228
154	-	1 1	210	91 1205620	[ferritin like protein [Naemophilus influenzae]	72	07	210
158		2207	1320	 g1 391610	[arnesy] diphosphate synthase [Becillus stearothermophilus] pir[JX0257]JX0257 geranyltranstransferase (EC 2.5.1.10) - Decillus tearothermophilus	27	S	60 I
180	-	2	328	gx 433630	A180 (Saccharomycas cerevisiae)	72	62	327
184	-	1145	3553	191 1205110	virulence associated protein homolog [Heemophilus influenzae]	22	6.7	2409
195	- 2	1923	1279	91 1001730	hypothetical procein (Synachocystis sp.)	72	45	645
206	==	114646	115869	91 1064807	ORTHININE AMINOTAANSFERASE [Bacillus subtills]	7.2	05	1224
209	7	1 462	932	91 120466	hypothetical protein (GB:X73124_53) [Haemophilus influenzae]	72	09	471
215	~	764	522	91 081513	insulin receptor homolog (Drosophila melanogaster) pir 557245 557245 insulin receptor homolog - fruit fly (Drosophila elanogaster) (SUB 46- 2146)	5t	63	243
1 224	-	- 2	790	191,949974	sucrose repressor (Stephylococcus xylosus)	7.2	54	189
1 233	-	1526	1 765	gi 1408493	homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	72	52	762
240	-	1 220	1485	91 537049	ORF_o470 [Escherichia coli]	72	52	1266
245	-	e -	1340	191,1204578	hypothetical protein (GB:U06949_1) [Haemophilus influenzae]	72	1 94	1338

FABLE 2

45

S. aureus. Putative coding regions of novel proteins similar to known proteins

Contig	lore	Start	Stop	match	ndalch gene name	E	1 ident	length (nt)
259	1 2	2108	1245	gi 134012B	ORF1 [Staphylococcus aureus]	12	- 65	864
304	7	285	1094	91 1205330	glutamine-binding periplasmic protein (Haemophilus influenzae)	72	52	018
101	011	5326	5039		protein-dependent [Bacillus subtilis]	22	53	266
315	1	715	1 260	91 143399	quinol oxidase (Bacillus subtilis)	72	55	258
316	Ξ	9622	9308	01 1204445	hypothetical protein (SP:P27857) [Haemophilus influenzae]	72	, 3¢	115
117		926	1609	Qi 467433	citrate synthese II (Becillus subtilis)	12	55	1 199
364	-	12538	10493	gi 1510643	[ferrous iron transport protein B [Methanococcus januaschil]	7.2	53	2046
607	7	340	1263	91 1402944	orfRMI gane product (Bacillus subtilis)	72	6	924
177		7,515	1590	91 312379	highly conserved among subscreris (Clostridium scetobutylicum) pir[534312 834312 hypothetical protein V - Clostridium cetobutylicum	27	E	58H
453	9	2654	1 2505	[pir[500601 8x5A	entibacterial protein 3 - Staphylococcus haemolyticus	72	20	150
099		2	625	91 1016162	ABC transporter subunit (Cyanophora paradoxa)	נר	51	723
(9)		3253	1628	91 66 6014	The polymorphysm (RFLP) of this game is associated with usceptibility to essential hypertension. The SA game product has light homology to acetyl-CoA synthetese [Homo sepiens]	22	09	1626
087	-	3047	3466	gi 433992	ATP synthase subunit epsilon (Secillus subtilis)	27	53	420
\$02	-	1086	586	01 310659	OMP2 [Synachococcus sp.]	27	\$0	105
\$19	-		1184	gi 1303704	YrkE [Bacillus subtilis]	21	\$4	1104
559		-	746	91 1107530	ceuD gene product (Campylobacter coli)	72	>\$	744
575		1142	573	91 1303866	YqgS (Bacillus subtilis)	7.2	\$\$	570
671	- 1	- 2	592	9. 1204497	[protein-export membrane protein [Neemophlius influenzee]	72	-	165
619	- 2	295	1251	19.1563258	virulence-associated protein E [Dichelobacter nodosus]	72	52	1 788
687		295	1 957	91 1146214	44% identical amino acids with the Escherichia coli smba supress; putative (Bacillus subtilis)	72	6	3
837	-	-	1.635	91 1146183	putative (Bacillus subtilis)	12	*	1 605
998	-	150	7.88	91/1377842	unknown (Bacillus subtilis	27	1 55	619
922	-	130	1 432	91 1086269	unknown protein (Azotobacter vinelandii)	12	28	1 303
136	-	- 2	238	91 (153929	NADPH-sulfite reducatase flavoprotein component [Salmonella yphimurium]	72	67	1 762
986	-	078	1 421	gi 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase (Bacillus ubtills)	72	98	420
111111								

aureus - Putative coding regions of novel proteins similar to known proteins

Contig 1D	ORF	Start (nc)	Stop (nt)	match	math gene name	e i a	1 ident	length (nt)
1209	-	383	213	91 144735	neurotoxin type B (Clostridium botulinum)	7.2	77	171
1469	1 2	1.63	474	gi 1205458	hypothetical protein (GB:D26562_47) [Haemophilus influenzae]	72	63	198
1956	;	727	365	01 154409	hexosephosphate transport protein [Selmonelle typhimurium] pir[B4163] [84163] hexose phosphate transport system requistory rotein uhp8 - Selmonelle typhimurium	27	₹	363
2101	- 1	n -	107	gi 1303950	YqiY [Bacillus subtilis]	72	50	399
2503		1 569	399	[g1 149713	formate dehydrogenase [Nethanobacterium formicicum] pir A42712 A42712 formate dehydrogenase [EC 1.2.1.2] - ethanobacterium formicicum	27	36	171
2967	-	e –	155	91 (1212729	YqhJ (Bacillus subtilis)	72	97	153
3004	-	1 367	185	666599 15	hypothetical protein (Bacillus subtilis)	72	55	183
3109	-	1 278	-	91 413968	[Ipa-44d gene product (Becillus subtilis)	7.2	\$	138
3171			287	91 (515938	glutamate synthase (ferredoxin) [Synechocysis sp.] pir [546957] 846957 glutamate synthase (ferredoxin) [EC 1.4.7.1) - ynechocystis sp.	72	25	285
1771		26	1 367	qi 1408501	homologous to N-ecyl-L-amino acid amidohydrolase of Bacillus stearothermophilus (Bacillus subtilis)	72	63	342
3951	-		222	gi 1500409	M. jannaschii predicted coding region MJ1519 [Methanococcus jannaschii]	22	98	222
4190	-	1 721	362	91 39956		7.2	57	360
4444	-	7	1347	91 1009366	[Respiratory nitrate reductase [Bacillus subtilis]	7.2	\$\$	345
و	-	===	1200	1911537095	ornithina carbamoylttansforana (Eschorichia coll)	1,		270
=======================================	115	111350	10859	gi 532309	[35 kDa protein (Escherichia coli]	1,1	4.4	492
13	- 2	1248	1 2435	gi 1244574	[D-alanine:D-alanine ligase [Enterococcus hirae]	71	52	1188
12	~_	868	1488	91 149629	anthranilate synthase component 2 (Leptospira biflexa) pir C12840 C12840 anthranilate synthase (EC 4.1.3.27) component II Leptospira biflexa	1,	£.	591
34	-	1 -	1 567	9111303983	Yqhr (Bacillus subtilis)	7.1	59	567
37	-	3192	2806	gi 1209681	glutamate-rich protein [Bacillus firmus]	7.1	90	387
3.8	81	112250	112462	91 927645	arginyl endopeptidase (Porphyromonas gingivalis)	11	20	213
39	-	1246	4431	pir S09411 S094	spoili protein - Bacillus subtilis	1.0	6.	3186
53		07721	14760	91 142611	branched chain slpha-keto acid dahydrogenase El-alpha (Bacillus ubtilis)	12	5.8	1011
5.5	=	13461	112625	91 143014	ont repressor [Bacillus subcilis]	1,2	9,	637
					· · · · · · · · · · · · · · · · · · ·			

. Aureus - Putative coding regions of novel proteins similar to known proteins

100	ORF	Start (nt)	Stop	match	natch gene name	£	* 1 dent	length (nt)
57		7152	5860	gi 508175	EliC domain of PTS-dependent Gat transport and phosphorylation Escherichia coli	1.5	80 1	1293
5.2	91	13897	14334	91 1063247	high homology to [lavohemoprotein (Haemoglobin-like protein) of Alcaligenes eutrophus and Saccheromyces cerevisiae (Bacillus subtilis)	17	3.6	7
62	- 91	9831	110955	91 1303926	YqiG (Becillus subtilis)	7.1	24	1125
2	12	6505	9968	gi 147198	phng protein (Escherichia coli)	7.1	38,	462
9		2394	1 2089		hypothetical protein (Bacillus subtilis)	11	51	306
96		7601	8269	191 709991	hypothetical protein [Bacillus subtilis]	7.1	6	699
100	9	4H22	11.65	01 1060848	opine dehydrogenase (Arthrobacter sp.)	1,1	\$	1110
103	-	1062	532	91 143089	iep protein (Becillus subtilis)	1,	5	531
109	1	15312	15695	191 413985	ipa-61d game product Bacillus subtilis	11	57	384
113	-	630	316	qi 663254	probable protein kinase [Saccharomyces ceravisian]	11	52	315
711	-	6598	5603	91 143156	sembrane bound protein (Bacillus subtilis)	1,	0	966
133	~	3087	1 1723	gi 1303913	Yqhx (Becilius subtilis)	נר	53	1365
149	5.	6335	1 5895	91 529650	G40P Becteriophage SPP1	11	. 51	461
154	~	3635	1 3087	1911425488	[repressor protein [Streptococcus sobrinus]	11.	•	549
164	===	11354	111649	91 4938	ONF4 gene product [McLillus subtilis]	1,7	22	1 316
169	•	1936	1 2745	91 1403403	unknown (Mycobacterium tuberculosis)	7.7	95	810
193	~	272	1234	91 1303788	YqaH (Bacillus aubtilis	11.	49	696
205	-	1743	895	91 1215694	Glng (Mycoplesme pneumonlee)	71	99	1 649
233	-	1849	2022	91 633732	ONF1 Campylobacter fajuni	12	80	174
237		4501	6915	911149384	HisIE (Lactococcus lactis)	112	54	1 699
272	-	2848	(722)	191 709993	hypothetical protein (Bacillus subtilis)	1,2	=	576
274	<u></u>	8 19	1496	91 143038	NADIP)H.glucamyl-transfer RNA reductase [Bacillus subtilis] pir A35252 A35252 5-aminolevulinate synthase (EC 2.3.1.37) - acillus subtilis	71	2	613
276	- 5	3349	1 2720	91 303562	ORF210 [Escherichia coli]	12	05	630
287	1-	136	099	1911310634	20 kDe protein Streptococcus gordonii	17	53	525
288	9	3322	1772	91 1256625	putative [Bacillus subtilis	1 21	47	552
1 1 1				1				

S. aureus - Putative coding regions of novel proteins similar to known proteins

******	* ident length (nt)	57 1032	56 1386	45 612	51 648	46. 1302	57 58	55 375	57 1212	43 543	49 387	57 1020	66 432	49 1278	56 429	1 169 17		47 252	55 156	50 654	52 621	53 585	51 486	47 279	53 609	52 504
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E I	1.1	71	11	17	11	11.	12	1.1.	71 1	11.	7.1	71	71	11	116	7.1	71	71	71	71	7.1	7.1	17	71	17
	andch gene name	similar to lysine decarboxylase (Bacillus subtilis)	transport protein (Bacillus subtilis)	orfC (Mycoplasma capricolum)	acetoin utilization protein (Bacillus subtilis)	hypothetical protein [Symechocystis sp.]	unknown (Bacillus subtilis	ONF 1 [Lactococcus lactis]	unknown (Becillus subtilis)	ATP synthase b subunit [Bacillus megaterium]	homologous to E.coli rnpA (Bacillus subtilis)	[L-lactate dehydrogenses [Lactobacillus plantarus]	phosphoribosylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtilis (fragment)	OMFX18 [Bacillus subcilis]	[phosphoribosylpyrophosphate amidotransferasm (PUR-F; EC 2.4.2.14) Bacillus [subtilis]	OKF_£109 [Escharichia coli]	ORF4 (Bacillus subtilis)	725G3.2 [Caenorhabditis elegans]	[fimbrise 2 [Salmonelle typhimurium]	lysins specific persesse (Escherichia coli)	poly(A) polymerese (Becillus subtilis	unknown [Bacillus subcilis]	comE ORF1 (Bacillus subtilis)	NACH dehydrogenase aubunit V (AA 1-605) [Gallus gallus] ir S10197 S10197 NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain - chicken mitochondrion (SGC1)	YqfL (Bacillus subtilis)	unknowm (Bacillus subtilis]
	match	95 467417	91 1256618	91 622683	gi 348052	91 1001819	91 167673	91 551879	91 467447	91 142557	91:580904	91,581305	pir PN0501 PN05	91 410142	91 143370	051909 16	91 1237015	9111301730	91 153968	21 466778	gi 1146238	gi 1486243	gi 289260	12971	191 1303830	41 1377843
1	Stop (nt)	2461	5222	925	5146	1303	3995	922	3071	2102	637	1354	3270	1280	1844	2047	696	255	1	654	623	586	641	427	777	970
	Start (nt)	3492	6607	1536	5793	2	4171	548	1860	1560	251	315	3701		2272	66.72	22	206	1068	1	1243	1170	1126	641	169	1473
	ORF ID	9	-	- 7	- 2	-	-	- 5	-		7	-		-	2	-	-	-	- 5	-	-			~	7	2
	Cont ig	301	306	307	310	322	333	350	375	380	=======================================	424	436	482	525	529	563	185	612	613	618	630	169	7 69	715	746

2 aureus - Pucative coding regions of novel proteins similar to known proteins

5

0 61	ORF S	Start (nt)	Stop (nt)	astch *Cession	match gene name	e is 1	1 ident	length (nt)
-		1637	802	91 1405459	Ynes (Becillus subtilis)	117	- 67	1 909
-		1018	524	9111510389	N. jannaschii predicted coding region MJ0296 [Methanococcus jannaschii]	71	23	198
-	-	1	215	01 475972	[pentafunctional enzyme [Pneumocystis carinii]	11.	47	213
-	-	1203	703	91 536655	ORF YBR244W (Secharomyces cerevisiae)	7.1	52	105
0	-	1292	987	1911:204326	RNA delta(2) - isopentenylpyrophosphate transferase (Heemophilus influentee	1,4	.07	1 900
مِ	-	116	286	91 1419075	cbim gene product (Mathanobacterium thermosutotrophicum)	7.1	90	171
=	-	973	488	01 893358	PgsA (Bacillus subtilis)	11	95	98)
14		2	262	91 1408507	[pyrimidine nucleoside transport protein [Bacillus subtilis]	71	1 65	261
1.000	-	2	172	[91]709993	hypothetical protein (Bacillus aubtilis)	1,7	46	171
176		52	365	91/151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevaloni1] pir[A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	ני	\$	309
181	-	366	184	191146971	epir gene product (Staphylococcus epidermidis)	71	05	163
781	-		290	191 153016	ORF 419 protein [Staphy]ococcus aureus]	17	05	288
14.8	-	456	229	191 602683	orfc [Hycoplasma capricolum]	1,7		228
002	-	756	975	gi 1008177	ORF YJLO46W [Saccharomyces cerevisies]	1.1	87	378
119	-	2	217	101 1046088	arginyl-tRNA synthetase (Mycoplasma genitalium)	71	20	216
418	-	,	320	9i 1499771	N. jannaschil predicted coding region NJ0936 [Wethanococcus jannaschil]	1,7	57	318
961	-	2	187	[91]312443	carbamoyl-phosphate synthase (glutemine-hydrolysing) (Becillus aldolyticus)	1,	57	186
666	7	6.1	306	qi 710020	nitrite reductese (nirm) (Becillus subtilis)	11	0	240
033	-	~	184	(gi [1262335	Ymax [Bacillus subtilis]	1,	57	183
584	-	3	338	91 401716	beta-isopropylasiate dehydrogenase (Neurospora crassa)	11	55	336
715	- 7	743	1 399	gi 563952	gluconate permease [Bacillus licheniformis]	נר	- 59	345
785		770	1 387	gi 47382	acyl-CoA-dehydrogenase (Streptomyces purpurascens)	1, 1,	57	364
875	-	541	272	qi 1001541	hypothetical protein (Synechocyatis sp.	11.	38	270
4135		637	320	ŋ: 142695	S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase Bacillus megaterium	17	- 52	-
4249		63	239	gi 1205363	deoxyribose aldolase [Hasmophilus influentse]	1,2	63	177
1508	-	530	267	91 1197667	vitallogenin (Anolis pulchellus)	1,	97	264
	. +							

TARLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

length (nt)	1485	918	1410	864	228	783	924	672	1353	636	096	678	101	828	609	1503	243	240	1545	2328	1500	534	126	588	1095
• ident	\$	7	6)	91	\$0,	52	20	52	51	4.1	7	69	45	53	20	51	47	43	47	95	3	5.1	80	45	60
E	70	70	0,	0,0	70	70	0,	0,0	70	10	70	70	0,	0,0	0,	0ر	0ر	0،۲	70	7.0	70	20	7.0	70	0.0
match gene name	erginine ornithine antiporter [Clostridium perfringens]	P47K [Pseudomonas chlororaphis]	[replicative DNA helicase (Bacillus subtilis]	Hannosephosphate Isomerase [Streptococcus mutans]	unknown [Bacillus subtilis]	choline dehydrogenase (Escherichia coli)	anthranilate synthase alpha subunit (Lactococcus lactis) pir [535124 535124 anthranilate synthase (EC 4.1.3.27) alpha chain - actococcus lactis subsp. lactis	ORF3 (Bacillus subtilis)	[YqhB [Bacillus subtilis]	methyl purine glycosylase (Mus musculus)	pyrimidine nucleoside transport protein (Bacillus subtilis)	hypothetical protein [Synechocystis sp.]	ccCD gene product [Alcaliganes eutrophus]	unknowm (Bacillus subtilis)	esterase Ilacarboxylesterase (EC 3.1.1.1) (Pseudomonas fluorescens, eptido,	small subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	competence protein 2 [Bacillus subtilis]	molybdopterin biosynthesis protein [Haemophilus influenzae]	cyc	methionine synthase [Catharanthus roseus]	alkaline phosphatase (EC 3.1.3.1) III precursor - Bacillus subtilis	adenine phosphoribosyl-transferase [Escherichia coli]	sporulation protein (Bacillus subtilis)	ttg start (Campylobacter coli)	prolidase PepQ [Lactobacillus delbrueckii]
match	gi 1321788	91 216854	u1 467330	91 451216	91 476092	gi 145402	91 149516	91 1389549	[91]1303875	[gi 500755	9111408507	91 1006620	gi 1403126	91 1486247	g1 244501 	1339951	91 1142702	91 1204377	91 1204834	gi 886471	pix B39096 B390	91 145294	[91]143607	91 1107528	91 1150454
Stop (nt)	2721	7486	1891	893	1050	1350	925	6251	7423	1594	1 5860	5989	10020	1900	4656	1 9962	290	541	3595	5466	1255	1300	9767	6988	7936
Start	7821	6572	2890	1756	1277	2132	7	5580	6071	956	4901	5312	0568	7272	8707	8460	84	0801	5139	1793	8754	192	1026	6401	6842
ORF	-	=======================================	-		- 7	- 2			9	- 2	60	- -	110	~	9	8	-	-	- 5	-	- 5	-	9		- -
Cont 19 ID	•	11	12	15	15	17	21	25	33	36	38	7	94	52	52	5.6	62	3	7.0	91	96	110	116	121	131

S. Aureus - Putative coding regions of novel proteins similar to known proteins

5

136		1489	01111100	•	100	- 69	1488
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		_		putative membrane-bound protein with four times repirition of ro-Ser-Ale et the N-terminus; function unknown [Alcaligenes utropius]			
3 2 5 19	<u>:</u> –	¥1.6	91 904 181	hypothetical protein (Bacillus subtilis)	0,	9	297
7 7 7 7 9		9874	di 49315	ORF1 gene product (Bacillus subtilis)	100	+ 43	\$31
	:	116618		hypothetical protein (GB:D1048)_18) (Maemophilus influenzae)	70	50,	993
	<u>;</u>	1803	91 1215695	peptide transport system protein Sapf homolog; Supf homolog (Mycoplasme pneumoniae)	0		933
	<u>-</u>	1386	91 1204665	hypothetical protein (GB:X73124_26) [Hacmophilus influenzae]	- 0,	=	613
	<u>:</u> —	756	91 215098	excisionase [Bacteriophage 154a]	70	-	417
	9 9187	6119	91 142540	aspartokinase II (Bacillus sp.)	107	51	1128
	-	1	91 1340128	ORF1 [Staphylococcus aureus]	101	50	906
302 6 32		3827	91 147782	ruvA protein (919 start) [Escherichia coli)	70	- 97	627
302 10 58	5879	7051	pir c38530 c385	queuine tRNA-ribosyltransferase (EC 2.4.2.29) - Escherichia coll	10	- 88	1173
313 1 25	2520	1414	91 1205934	aminopeptidase a/i [Hasmophilus influentas]	0.	9	1 101 1
355 2 379	-	699	91 10070013	protein-dependent [Becillus subtilis]	107	- 47	291
403 1 12	-	629	121 733347	Guaf (Xanthomonus campestrie)	0,	- 37	627
444 110 87	M770	9273	[6] [1204752	high effinity ribose transport protein (Macmophlius influenzae)	1 07	5.2	105
449 1 2	·	1243	gi 619724	MgtE [Bacillus firmus]	1 01	7	1242
472 1 637		320	01/27/145	open reading frame; putative (Bacillus amyloliquefaciens) pir 829091 829091 hypothetical protein (bgiA region) - Bacillus myloliquefaciens (fragment)	2		318
480 2 727	_	1608	gi 142560	ATP synthase gamma subunit [Bacillus megaterium]	7.0	-	082
1 1		307	gi 602292	RCH2 protein [Brassice napus]	70	- 59	306
525 1 823	-	413	1911143372	phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus ubtills]	1.07	52	1 = 1
565 4 36	3625	2552	91 881434	ORFP (Bacillus subtilis)	7.0	5.1	1 101
607 4 629	-	1284	91 1511524	hypothetical protein (SP:P37002) (Methanococcus jannaschii)	1 07	50	456
633 1 13	1383	703	gi 431231	uracil permesse (Bacillus caldolyticus)	1 07	53	681
646 3 1683	-	1309	91 467340	unknown (Bacillus subtilis)	1 07	- 67	375
663 1 1 830	- :	417	9111303873	V.72 [Becillus subtilis]	1 07	- 07	

Cont ig ID	11D	Start int]	Stop (nt)	match cession	match gene name	E is	1 ident	length (nt)
6.81	-	1488	781	91 001678	hypothetical protein (Symechocystis sp.)	ا ٥٥	53	108
7.08	-	2	448	sp P33940 YOJH_	HYPOTHETICAL 34.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	0.	51	447
725	-	51	227	91 1001644	hypothetical pritein (Symechocystis sp.)	70		672
37.6	-	1371	787	gi 145165	[putative [Bacherichia coli]	70	£3	585
834	-	250	783	91 552971	NADH dehydrogenase (ndhF) (victa faba)	7.0	43,	\$ T &
865	7	1585	1379	191 1204636	ATP-dependent helicase (Haemophilus influenzae)	0,	\$	207
894		515	1 269	gi 467364	DMA binding protein (probale) (Bacillus subtilis)	0,	7	267
919	-	-	1317	Q1 334847	(CinA [Becillus subtilis]	70	0	315
944	-	-	572	di 709991	hypothetical protein [Bacillus subtilis]	0,	7	\$70
986	1 2	277	509	91 112441	ORF 3; putative [Bacillus subtilis]	0،	20	168
1055	-		1 335	gi 529755	spec Streptococcus pyogenes	70	37	133
1093	- 1	2	904	91 853754	ABC transporter (Bacillus subtilis)	0,0	6.	606
1109	-	2	310	gi 1001827	hypothetical protein (Symechucystis sp.)	02	42	309
1220	-	468	1 235	pir \$23416 \$234	epis protein - Staphylococcus epidermidis	70	0	234
1279	-	£	3,48	91 153015	FemA protein [Staphylococcus aureus]	70	47	276
1336	-	1 195	542	sp P31776 PBPA_	PENICILLIN-BINDING PROTEIN 1A (PBP-1A) (PENICILLIN-DINDING PROTEIN A).	1 70	05	348
1537	- 5	232	1 402	91 1146181	putative Bacillus subtilis	0ر ا	30	171
1574	1-	451	1 272	91 219630	endothelin-A receptor (Nomo saplens)	100	47	180
1640		069	346	91 1146243	22.4% identity with Escherichia coli DNA-damage inducible protein; putative [Becillus subtilis]	٥٢	9	345
2504	-	7	1 286	91 495179	[transmembrane protein [Lactococcus lactis]	10	51	285
1900		264	301	91 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia coli	0,	4	264
3128	-	- 2	199	gi 1340096	unknown (Mycobacterium tuberculosis)	07	51	198
3218			488	q1 515938 	glutamate synthase (ferredoxin) Synechocystis sp.) pir 546957 546957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.	70	20	98
3323	-	1 794	1 399	[91]1154891	ATP binding protein (Phormidium Laminosum)	1 70	52	396

TABLE 2

S. aureus . Putative coding regions of novel proteins similar to known proteins

5

(ont 19	180	Star	Stop (nt)	match	match gene name	E is	* 1 dent	length (nt)
3841	-	706	198		hypothetical 23.3 kd protein (Escherichia coli)	1 07	47	309
3929		: -	401	-	putative (Lectococcus lactis)	100	69	1 660
*		595	174		similar to trimethylamine DH (Mycoplasma capricolum) ptr[S4950[S49950 probable trimethylamine dehydrogenase (EC 5.99.7) - Mycoplasma capricolum (SGC3) (fragment)	0,	9	222
4129		558	280	1339951	small subunit of NADH-dependent glutamate synthams [Plectonema boryanum]	0,	, 69	279
4422		1 576	289	7	ATPASE [Lactococcus lactis]	70	57	288
4647	-	361	200	91 166412	NADH-glutamate synthase [Medicago sativa]	70	65	162
91		7571	1 9031	91 1499620	H. Jannaschii predicted coding region MJ0798 (Methanococcus Jannaschii)	69	-	1461
16	-	9080	110033		thioredoxin reductasa (Eubacteriua acidaminophilum)	69	75	954
30	-	1452	727	91 1204910	hypothetical protein (GB:U14003_102) [Heemophilus influentee]	69	52	726
38	-	1023	1298	191 407773	devA gene product Anabeana sp.	69	7	276
3		5987	\$659	91 1205920	molybbars uptake system hydrophilic membrane-bound protein [Heemophilus influenzae]	• •	\$\$	609
1 62	115	9104	9475	94 385178	unknown (Becillus subtilis)	69	-	372
99	-	1 2402	2803	91 (1303893	Yqhi Bacillus subtilis	69	3.	402
	=======================================	14124	13627	91 149647	ORF2 Listeria monocytogenes	69	1 33	1 #6#
	12	114653	14382	91 305002	ONF_f156 [Escherichia coli]	69	69	000
65	6.7	15130	15807	91 1109684	Prov [Bacillus subtilis]	69	45	678
7.8	-	1467	2124	(gi)1256633	putative (Bacillus subtilis)	69	23	678
38	-	4513	1 3725	01 1103958	YqjG (Becillus subcilis)	69	1 32	1 692
- 8	-	1 4521	1 4213	pir E29326 E293	hypothetical protein (pur operon) - Bacillus subtilis	•	32	1 600
98	9	1 3253	1 2654	gi 473332	orfc [Bacillus subtilis]	69	05	009
\$6		96	710	91 78646A 	4All antigen, sperm tail membrane antigen-putative sucross-specific 4All antigen, sperm tail membrane antigen populde Partial, 72 as hosphotransferase enzyme II homolog (sice, testis, Peptide Partial, 72 as	59	-	615
001		6023	17426	19111205355	Na-/H- antiporter [Haemophilus influentae]	69	96	1404
102	-	2578	1650	gi{561690	sialoglycoprotease (Pasteurella haemolytica)	6.9	4	1 1029
(01	-	112241	1 8537	19111009366	Respiratory nitrate reductase (Bacilius subtilis)	6.9	24	1 3705
103	=	114987	112552	gi 710020	nitrite reductase (nirB) (Bacillus subtilis)	69	51	2436
	• • •							

S. aureus · Putative coding regions of novel proteins similar to known proteins

sim Vident length (nt)	69 51 1461	69 50 771	69 43 921	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	69 53 1002	69 43 588	69 39 267	69 47 786	69 52 2412	69 45 552	69 69 348	69 48 1188	69 49 2775	69 48 243	HII	69 48 957	69 53 3492	30 291	69 61 231	69 45 426	69 58 69	69 54 957	69 40 1029	57 414	69 44 1041
match gene name	huxosephosphate transport protein (Salmonella typhimurium) pir[p41853][041853] haxose phosphate transport system protein uhpT - almonella typhimurium	[pyruvate formate-lyase activating enzyme [Hammophilus influenzae]	ol07 (Escherichia coli)	pic A42771 A427 reticulocyte-binding protein 1 - Plasmodium vivex	NrdF [Becillis subtilis]	ipa-7d gene product (Bacillus subtilis)	hypothetical protein A - yeast (Zygosaccharonyces bisporus) plesmid pSB)	hypothetical protein (GB:U14003_302) (Haemophilus influenzae)	phenylalanyl-tRNA synthetase beta subunit (AA 1-504) (Bacillus btilis)	elongation factor Ts (Spirulina platenais)	Fine protein [Escherichia coli]	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9) (IMIDAZOLE ACETOL-PHOSPHATE TRANSAMINASE).	hads protein (AA 1-1033) (Escherichia coli)	Ybbr [Bacillus subtilis]	Ynep Uacillins subtlife]	hypothetical protein (Synechocystis sp.)	pyruvate carboxylase Rhizobium etli	[TO4H1.4 [Caenorhabditis elagens]	ORF (Balaenoptera acutorostrata)	ORFI (Bacillus subtilis)	phosphoglyceromutase [Zymomonas mobilis]	arginase [Bacillus caldovalox]	[purine synthesis repressor [Haemophilus influenzae]	unknown (Bacillus subtilis	mury homolog [Homo sepiens]
match acression	93 154111	91 1204435	gi 290509	pir A4271 A427	191 1154633	91 (413931	pir S28089 S280	gi 1205538	191 40054	91 296031	qi 732682	sp P17731 HIS8_	91 41750	[91 [1256135	gi 1405456	gi 1001768	91 1256798	91 1491664	[gi 336458	91 556015	91 155611	gi 1276985	gi 1221782	gi 1122758	Di 1458228
St op (nt)	1	17414	953	1058	5310	854	110400	813	1 6633	1361	8339	1671	7775		GIT I	9276	3893	1808	2305	2424	611	1129	1741	415	2246
Start	· †	16644	33	1 537	4309	267	110666	1 1598	2222	1 1210	9898	484	5551	603R	636	4820	7384	2098	2075	1 1999	87	1 2085	6713	1 828	3286
ORF	1 2	1.6	~	2	9	- 5	127	-	-	-3	112		-	-	= -	-	- 2	-	- 3	<u> </u>	-	-		-	- 2
Cont ig	112	112	113	114	121	125	149	161	165	169	175	190	206	206	343	302	324	351	369	392	410	421	**	453	469

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

Contrg	IONF IID	Start (nt)	Stop	natch	datch geno name	E 3	* tolent	length (nt)
\$09		1 1730	1111	gi 49224	URP 4 Symechococcus sp.	69	19	1 091
\$20	<u></u>	3023	2823	91 726427	similar to D. melanogeater HST101-2 protein (PIR:S34154) Caenorhabditis alegans!	69	60	201
511	-	26	760	gi 509672	repressor protein (Bacteriophage Tuc2009	69	. c.	135
685		107	253	91 169101	17.9 kDe heat shock protein (hspl7.9) [Pisum sativum]	- 69	5.2	147
594	~	1 597	1391	gi 142783	DNA photolyane (Bacillus (irmus)	6.9		795
604	-	2475	2114	91 413930	ipa-6d gene product [Bacillus subtilis]	6.9	45	163
607	-	7	510	91 1236103	W08D2.3 Caenorhabditis elegans]	6,9		312
607	2	590	312	191(536715	ORF YBR275C (Saccharomyces cerevisiae)	69	3.9	1 675
734		864	- 63	91 467327	unknown [Bacillus subtilis]	69	-	432
759	-		338	191 1009367	Respiratory nitrate reductase (Bacillus subtilis)	69	05	336
191		392	586		Leucy -tRNA synthetase (cytoplasmic) (Saccharomyces cerevisiae) 1370340 ORF YPL160w (Saccharomyces cerevisiae)	6	•	195
802	-	27	1013	91 143044	[ferrochelatese [Becillus subtilis]	69	55	942
916	-	1 2573	1368	gt 1510268	restriction modification system 6 subunit (Methanococcus janneschii)	9	\$	1206
838	~_		387	91/1255371	coded for by C. elegans cDNA ykl4s9.5, coded for by C. elegans cDNA ykl4s9.1; Similar to quanylate kinase (Coenorhakiitis elegans)	69	9	255
136		345	1 1005	91 268998	secA gene prounct (Antithamilon Sp.	69	6.5	192
867	-	515	1 269	gi 1070014	protein-dependent [Bacillus subtilis]	69	47	1 267
366	-	954	478	gi 1205569	transcription elongation factor (Meemophilus influentee)	69	53	477
666	-	1 1009	905	01 899254	predicted trithorax protein (Drosophila virilis)	69	12	204
11127	-	1 1315	629	gi 1205434	H. influenzae predicted coding region Hill91 (Macmophilus influenzae)	69	95	1 657 1
1138	-	248	099	gi 1510646	H. jannaschil predicted coding region MJ0568 Methanococcus jannaschii)	69	40	213
2928	-	-	100	 g1 290503	glutamate permease [Escherichia coli]	69	41	199
3090	-	100	223	91 1204987	DNA polymerase III, alpha chain [Haemophilus influenzae]	69	36	222
3817	-	1 2	000	gi 1483199	peptide-synthetase (Amycolatopsis mediterranel)	59	45	1 998
1833		1 667	335	01 1524193	[unknown [Mycobacterium tuberculosis]	59	90	133
			1 1 1 1 1 1					

15	roteins
20	to known p
25	ins similar
25	novel prote
30	S. aureus - Putative coding regions of novel proteins similar to known proteins
35	ve coding
	s - Putati
40	S. aureuz

length (nt.)	£	981	1 566	228	1 282	291	1110	519	2445	3 0 0	1530	240	597	987	810	1068	1038	957	1.6	1215	171	1011
1 ident	9	65	36	‡	3	6	9	45	80	ž.	7	47	39	99	0	£	5.2	\$ \$	87	9	\$ 9	20
E is	69	6.9	69	5	6.9	69	8.9	6.8	89	5	889	89	6.8	99	99	6.8	5 9	89	89	89	89	S 9
raptch gene name	orfy 3' of comk [Bacillus subtilis, E26, Peptide Partial, 140 aa] pir S43612 S43612 hypothetical protein Y - Bacillus subtilis ap P40398 YHXD_BACSU HYPOTHETICAL PROTEIN IN COHK 3'REGION (ORFY) FRACHENT).	67 kbs Myosin-crossreactive streptococcs! antigen [Streptococcus yogenes]	hypothetical protein (Symechocystis sp.)	restriction-modification enzyme subunit NI [Nycoplasma pulmonis] pir S49395 S49395 HadMI protein - Mycoplasma pulmonis (SGC3)			ProW [Bacillus subtilis]	unknown Saccharomyces cerevisiae	ATPase (Enterococcus hirae)	open far upst [Escherichia	aldehyde dehydrogenase (Vibrio cholerse)	[241k polyprotein [Apple stem grooving virus]	M. genitalium predicted coding region MG246 [Mycoplasma genitalium]	YqjA (Bacillus subtills)	phnE protein [Escherichia coll]	35 kDa protein [Escherichia coli]	precursor (as -20 to 381) (Acinetobacter calcosceticus) ir A29277 A29277 aldose 1-epimerase (EC 5.1.3.3) - Acinetobacter Icosceticus	MelC Streptococcus pneumoniae	sporulation protein [Bacillus subtilis]	YqeR [Bacillus subtilis]	SULPITE REDUCTASE (NADPH) FLAVOPROTEIN ALPHA-COMPONENT (EC 1.8.1.2) (SIR-PP).	argininosuccinate lysse [Escherichia coli]
match	91 546918	91 \$17205	91 1208451	91 496158	91 413967	91 396296	91 1109685	st 807973	91 290642	91 606342	91 155276	91 285608	91 (1045937	91 1303952	91 147198	fgi 145173	91 38722	91 153724	gi 143608	91 1303805	sp P38038 CYSJ_	91 396307
Stop (nt)	009	00+	333	230	374	293	1193	2074	8772	750	8415	3404	4132	10685	8155	2966	1150	3622	8638	3698	1594	1011
Start	747	215		457	. 06		2302	2592	6328	11.15	9889	3643	3536	11671	7346	1899	2187	2666	7865	2484	1424	-
ORF								•			: •	2	-	01	6	-		:	- 1	-	7	
Contig	4079	4115	4139	4258	4317	4465		15	31	0	9.	\$	\$	23	0,	69	108	112	116	11.8	120	129

aureus - Putative coding regions of novel proteins similar to known proteins

5

11.19 10.19	FORE	Start	Stop (nt)	match acession	match gene name	=	* ichnit	length (at)
32	-	1 1857	96.72	91 2.6267	ORF2 (Bacillus megaterium)	89	8	673
*	~ -	878	1012	91 147545	DNA recombinase [Escherichia coli]	99	05	165
=======================================	2	372	919	gi 872116	ati (stress inducible protein) (Glycine max)	2	36	243
64	7	2454	1 2260	91 145774	hsp70 protein (dnaK gene) [Escherichia coli]	68	89	195
:55	-	1 1776	1534	91 216583	OMF1 [Eacherichie coli]	89	-	201
. 58	-	1826	3289	\$10, P33940 YOJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	99	5.1	1464
169	9	2749	3318	91:1403402	unknown [Mycobacterium tuberculosis]	89	9.9	570
175	130	9158	1 7365	91 1072395	phaA gene product [Rhizobium meliloti]	89	2	1794
188		4184	5434	gi 1173863	[]-ketoacyl-ACP synthase II (Vibrio harveyi)	89	#D	1251
189	-	106	1665	91 467383	DNA binding protein (probable) (Bacillus subtilis)	8.9	\$5	654
306	- 5	1 7683	6009	91 1256138	YbbI [Bacillus subtilis]	89	89	975
206	-	110425	12176	01 452687	[pyruvate decarboxylase [Saccharomyces cerevistae]	•	8	1752
212		3421	3648	101 (136994)	cl gene product (Bacteriophage Bl]	3	39	228
214	8 -	1 5457	6482	91 1420467	ORF YOR196c [Saccharomyces cerevisiae]	99	15	1026
237	-	1 2507	1 3088	gi 149381	HisH [Lectococcus lactis]	89	99	582
343	- 5	5540	4542	qi 1235684	mevalonate pyrophosphate decarboxylace [Saccharonyces cerevisiae]	89	47	666
262	-		1 164	9i 150974	4-oxalocrotonate tautomerase [Pseudomonas putida]	6.0	42	162
262	- 2	1 1984	1118	gi 1147744	PSR [Enterococcus hirae]	89	69	1 867
276	9	1 3702	3139	sp P30750 ABC_E	ATP-BINDING PROTEIN ABC (FRAGHENT).	89	50	564
306	9	6345	5272	91 1256617	adenine phosphoribosyltransferase (Bacillus subtilis)	89	53	621
133	-	4599	3850	gi 467473	unknown (Bacillus subtilis	89	45	150
365	9	5017	4838	91 1130643	[12283.3] (Caenorhabditis elegans)	99	45	180
376	- 7	549	1646	gi 1277026	DAPA aminotransferase (Bacillus subtilis)	69	5	1098
405	-	11741	872	191 1303917	YqiB (Decillus subtilis)	89	47	N.10
90+		1 853	688	ai 1511513	ABC transporter, probable ATP-binding subunit (Methanococcus fannaschii)	8.9	**	315
426	9	1 3558	1 3391	91 624632	[Glt] [Escherichia coli]	89	4.0	169
438	-	108	329	01 146923	initrogenase reductase (Escherichia coli)	89	63	222

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF 11D	Start (nt)	Stop (nt)	match acession	match gene name	e ia	1 ident	length (nt)	
143	-	476	240	gi 535810		6.8	4.2	237	
403		818	1015	91 1204742	H. influenzae predicted coding ragion H10491 [Haemophilus influenzae]	6.8	6	498	
443		4447	3779	10111204660	decxyribose-phosphate aldolase [Bacillus subrills] pir 549455 549455 decxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subrillis	9	\$\$	699	
476		240	1184	91,571345	unknown, gimilar to E.coli cardiolipin synthase (Becillus subtilis) sp P45860 YWIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC REGION.	80	\$	945	
486		1876	1046	91 147328	transport protein (Escharichia coli)	89	;	831	
517		1764	2084	91 523809	orf2 (Bacterlophage A2)	8.9	99	321	
572	-	2	172	sp P39237 Y05L_	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC RECION.	99	Ş	078	
949	-	914	459	91 413982	ips-58r gene product (Bacillus subtilis)	89	52	954	
659	-	1668	1901	91/1107541	C33D9.8 [Caenorhabditis elegans]	89	36	234	
1 864	5 -	1 1510	1716	101 145774	hap70 protein (dnaK gene) [Escherichia culi]	89	4.8	207	
920		1 860	432	101 1710416	hypothetical protein (SP:P31(66) (Methanococcus jannaschii)	6.8	₹\$	429	
952	-	1096	611	91/03456	[reductase [Leishmania major]	9	46	987	
970	1	16	402	91 1354775	pfos/R [Treponema pallidum]	50	9	312	
103.8	-	1 1064	534	191 410117	diaminopimelate thearboxyluse (Bacillus subtilis)	5	47	1103	
1029			216	g1 135714	Plasmodium falciparum mRNA for asparayine-rich antigun (clone 1701) [Plasmodium falciparum]	æ 9	=	213	
1058	-	692	348	gi [81649	epic gene product (Staphylococcus epidermidis)	9	9.	345	
1096	7	1 665	465	91/143434	Rho Factor [Bacillus aubtilis]	89	:	201	
1308	-	1 2	1 694	91 69939	group B oligopeptidase. PepB (Streptococcus agalactiae)	99	20	693	
1679	-		238	91/17205	67 kDa Myosin-crossreactive streptococcal antigen [Streptococcus yogenes]	99	53	237	_
2039	-	- n	1383	gi 153898	transport protein (Salmonella typhimurium)	89	51	181	_
7.02	-	-	326	pir c33496 c334	hisC homolog - Bacillus subtilis	68	-	324	
1 2112	-	613	374	gi 64884	lamin LII (Kenopus laevis)	6.8	1 05 1	240	_
1 2273	-	1 793	398	91 581648	epiB gene product (Staphylococcus epidermidis)	89	55	396	
2948		7	385	91 2 1 6 8 6 9	branched-chain amino acid transjort carrier {Pseudomonas aeruginosa} pir A38534 A38534 branched-chain amino acid transport protein braZ Pseudomonas aeruginosa	**	5	384	
					· · · · · · · · · · · · · · · · · · ·				

5 aureus - Putative coding regions of novel proteins similar to known proteins

atig	100	Start	Stop (nt)	match	match gene name	E ts	1 ident	length (nt)
2955	-	76.8	007	1911304179	hypothetical protein (Bacillus subtilia)	80	- 67	369
2981	-	572	288	91 508979	GTP-binding protein (Bacillus subtilis)	89	87	285
3014	-	584	294	19111524394	ORF-2 upstreem of gbsAB operon [Bacillus subtilis]	899	-	162
3042	-	336	169	gi 1204696	[fructose-permease liBC component [Heemophilus influenzee]	89	23	168
3108	-	103	258	91 217855	heat shock protein (Arabidopsis thaliana)	69	.07	156
1639	-	919	461	gi 1510490	sport persease prot	89	1 4	459
3657	-	-	330	[9:[155369	PTS enzyme-11 [ructose [Xanthomonas campestris]	89	97	330
3A23		780	191	g1 603768	inti procein, imidazolone-5-propionare hydrolase (Bacillus aubtilis) gi 603768 Huti protein, imidazolone-5-propionate hydrolase Bacillus subtilis	ec vo	3	390
1982	-	2	775	01 149435	putative [Lactococcus lactis]	99	47	276
4051			342	91 450588	hadw gene of Ecopril gene product (Eacherichia coli) pir[534437 534437 hadw protein - Eacherichia coli pir[509429 509429 hypothetical protein A - Eacherichia coli (SUB 40-520)		\$	342
4089	-	27	209	gi 1353678		5	47	198
1143	-	()	187	01 603769			88	141
41.4		2	352	91 450688	hadw gene of EccprrI gene product [Escherichia coli] pir(538437 538437 hadw protein - Enchrichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (508-600)	9	5	351
6173	-	~	382	gi 1041097	Pyruvate Kinase Bacillus psychrophilus]	•	97	381
4182	-	867	1 250	91 413968	ipa-44d gene product (Bacillus subtilis)	89	1 05 1	249
4362	÷ ~	148	21.8	91 450688	hadw gene of Ecoperi gene product (Escherichia coli) pir 538437 538437 hadw protein - Escherichia coli pir 509629 509629 h/pothetical protein A - Escherichia coli (SUB 40-520)	89	7	171
'n	=======================================	9493	0018	[gi]103727	[putative [Bacillus subtilis]	67	97	1194
31	===	10318	9833	gi 216746	[D-lactate dehydrogenese [Lectobecillus plenterum]	63	7	1987
32	-	1560	1 1155	gi 1098557	renal sodium/dicarboxylate cotransporter (Homo sapiens)	2.9	97	1596
32	-	1945	4145	gi 1510720	prephenate dehydratase (Methanococcus jannaschii)	67	51	801
36		5350	4268	91 :'46216	45% identity with the product of the ORF6 gene from the Erwinia herbicola carotenoid blosynthesis cluster; putative [Bacillus subtilis]	67	88	1083
***	1 7	4492	5304	191 1006621	hypothetical protein [Synachocystis sp.]	63	5	813

15	aureus - Putative coding regions of novel proteins similar to known proteins
20	to known
	similar
25	proteins
	f novel
30	regions o
	coding
35	Putative
) 9
40	aure)
	s.

Cont ig	ORF IID	Scare (nc)	Stop (nt)	seresion	match gene name	v sim	Vident	length (nt)
99		3943	8481	 qi 304131	glucamate synthase large subunit precureor (Azospirillum brasilene) pir B46602 B46602 glucamate synthase (NADPH) (EC 1.4.1.13) alpha hain - Azospirillum brasilense	6.7	52	4539
96	21	13923	14678	01 1000453	Trek [Bacillus subtilis]	67	87	156
62	6	5092	4757	91 1113949	orf3 (Bacillus, C-125, alkali-sensitive mutant 18224, Peptide Mutant, 112 as)	67	\$	336
1 62	01	1 7570	6338	91/084655	Na/H antiporter system [Bacilius alcalophilus]	67	48	1233
66	-	2119	1255	gi 1204349	hypothetical protein (GB:GB:D90212_3) [Hasmophilus influenzae]	67	20	1203
1 102	6	5695	17176	91 149432	putative [Lactococcus lactis]	67	15	1682
103	=======================================	14549	114049	91 1108497	LP9D gene product (Bacillus subtilis)	67	6.7	105
109	115	114821	113982	91 413976	[pe-52r gene product [Bacillus subtilis]	.9	64	840
109	71	114811	115194	91 413983	ipa-59d gene product (Bacillus subtilis)	67	29	384
121	-	6171	1 2153	91 1262335	YmeA (Bacillus subtilis)	67	22	- 17
122	-	-	1149	91 143047	ONFB (Bacillus subtilis)	67	3.5	1149
1 124	-	4060	3518	91 556885	Unknowm [Becillus subtilis]	67	-	543
131	~	4584	3569	91 1046081	hypothetical protein (GB:D26185_10) [Mycoplasma genitalium]	67	30	9.66
140	-	2899	2297	191 146549	kdpC (Escharichia colii	67	45	603
142	: - -	5409	4198	191 1212175	GTP cyclohydrolasc II [Bacillus amyloliquefaciens]	67	35	7171
147	- 5	1 2913	1 2374	gi 1303709	YrkJ [Becillus subtilis]	69	7	240
152		6341	6673	19: 1377841	unknown (Bacillus subtilis)	67	97	133
161	-	1 2720	1 3763	gi 496319	SphX Symechococcus sp.]	67	47	1044
163	9 -	1 1989	1 3428	gi 595681	[2-oxoglutarate/malate translocator (Spinacia oleracea)	67	47	1440
193	-	1351	1626	1011151 16	shikimate 5-dehydrogenase [Methanococcus jannaschii]	67	53	276
200	-	917	9712	191 142439	Arp-dependent nuclease [Bacillus subtitis]	67	48	1263
1 206	110	112445	112801	sp P37347 YECD_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION.	ا وع	47	357
1 206	=======================================	13047	114632	gi 32813	branched-chain amino acid carrier [Lactobacillus delbrueckil]	69	46	1386
208	- 5	1 1321	608	gi 1033037	100 kDs heat shock protein (Hsp100) [Leishmanis major]	67	1 36	513
238	-	1 1039	1 2052	gi 809542	CbrB protein [Erwinis chrysenthemi]	67	42	1014
						•	•	

pr
known
ţ
SIMILAR
proteins
novel
o
regions
001
codi
Live
Put

Cont 13	2 N.F.	Starr (nt)	Stop (nt)	match acession	match gene name	F 18	1 ident	Jength (nt)
246	2 -	176	367	q\ (215098	excisionase (Bacteriophage 154a)	67	37	192
276	- 2	2260	1412	gi 303560	ORF271 (Escherichia coli)	67	80	849
297	9 -	1 2223	3056	91 142764	CtaA protein (Bacillus firmus)	67	9 9	834
307		5220	4186	91 (1070013	protein-dependent (Bacillus subtills)	67	7	1035
316	-	36	1028	9111161061	dioxygenese (Methylobecterium extorquens)	67	52	166
324	-	2650	5030	94:1469784	putative cell division protein (tsW (Enterococcus hirse)	67	1 67	621
336	-	524	264	gi,173122	cres saidolysse [Seccharosyces 'Cerevisise]	67	45	261
9110	<u>:</u> -	HO1 1	1194	Lup Pages SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.3.21) (HISTIDHNETRNA LIGASE) (HISKS).	6.9	-	1287
364		1 4890	1 3592	91 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonis] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	67	9	1299
1 365	-	2940	1 2113	01 1296823	orf2 gene product (Lactobacillus helveticus)	67	4)	858
367	7	1 325	918	Qi 1039479	ONFU (Lactococcus lactis)	67	47	594
395	-	999	1121	gi 1204516	hypothetical protein (GB:U00014_4) [Haemophilus influenzae]	67	55	909
415	-	1800	106	91 382579	[CG Site No. 29739 [Escherichia coli]	67	91	006
419	-	1799	1 903	91 520752	[putative (Bacillus subtilis]	69	97	1 697
474			796	gi A86906	argininosuccinate synthetase (Streptomyces clavuligerus) pir 557659 557659 argininosuccinate synthase (EC 6.3.4.5) - treptomyces clavuligarus	6	6	24.
485	~	1361	1 2226	gi 143434		67	3	900
965	-	1 1728	1 865	91:1303853	YqgF [Bacillus subtilis]	67	47	994
001	-		1 218	gi 1204628	hypothetical protein (SP:P21498) [Haemophilus influenzae]	67	47	216
908	2	1.20	647	gi 677947	AppC [Bacillus subtilis]	62	51	1 996
B 2 8	- 2	340	006	[91 77761	IrrA (Symechococcus sp.)	.9	7.5	561
833	-	1407	916	91 142996	regulatory protein (Bacillus subtilis)	67	7	492
1 AS6	-	1555	667	191780224	[2K970.2 [Ceenorhabditis elegans]	69	3.8	777
888	-	1 1614	850	91 437315	TTG start codon (Bacillus licheniformis)	6.5	0.	265
1034	-	1190	1 597	91 1205113	hypothetical protein (GB:L19201_15) (Heemophilus influenzee)	67	45	594
1 1062	-	636	1 319	191 1303850	YqgC (Bacillus subtilis)	67	7	316
1067	-	916	1 460	ptr A32950 A329	pir A32950 A329 probable reductase protein - Leishmania major	67	54	1 654

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF I I D	Start (nt)	Stop (nt)	match	satch gene neme	e ia	1 ident	length (nt)
1358	-		293	91/1001369	hypothetical protein (Symechocystis sp.)	69	-	291
2181	-		302	9111510416	hypothetical protein (SP:P31466) [Methanococcus Jannaschii]	69	-	300
3000	-	-	507	91/517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	. 69	95	\$00
3066	-	1464	234	91 30861	GTG start codon (Lactococcus lactis)		46	231
3087	-	454	1251	91 1205366	oligopeptide transport ATP-binding protein (Hasmophilus influenzas)	67	7,	204
1010	7	7	356	91 1531541	uroporphyrinogen III methyltransferase [Zee mays]	69	- 55	255
3598		728	193	91 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756]A44756 hydroxymethylglutasyl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	5	99	336
3765	7	584	1 366	911557489	menD (Bacillus subtilis)	69	\$	219
3788	-	658	398	pir S52915 S529	initrate reductase alpha chain - Bacillus subtilis (fragment)	69	45	261
383	- -	~	265	191/704397	cystathionins beta-lysse (Arabidopsis thalians)	67	9,	264
3926	-	2	340	qi 1483199	peptide-synthetese [Amycolatopsis mediterranel]	69	-	339
4417	-	82	396	191 1205337	ribonucleotide transport ATP-binding protein [Macmophilus influenzae]	19	***	315
7	-	1 3075	3989	191 535348	Codv (Bacillus subtilis]	99	7	818
15	9	1 2273	2542	101 46491	SmtB (Synechococcus PCC7942)	99	14	270
= -	_	8059	7.826	Ui 292046	mucin (Homo sapiens)	99	3	234
ī.	0.7	9034	9258	9111204545	mercury scavenger protein (Memophilus influenzae)	99	•	223
32	9	6347	5253	Q1 998342	inducible nitric oxide synthese (Gallus gallus)	99		1095
7	13	8856	10124	121(1510751	molybdenum cofactor biosynthesis moeA protein [Methanococcus jannaschii]	99	9	1269
# *	~	1 1276	2868	[gi]150209	ORF 1 (Mycoplesme mycoides)	99	0.7	1593
88	a	1 7178	8428	gi 665999	hypotherical protein (Bacillus subtilis)	99	47	1251
62	7	5143	4370	91/1072398	phaD gane product [Rhizobium meliloti]	99	07	774
70		11693	10998	91 809660	decoxyribose-phosphate aldolase (Bacillus subtilis) pir S49455 S49455 decoxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	99	55	969
92	-	-	1305	gi: 142440	ATP-dependent nuclease (Bacillus subtilis)	99	42	1305
16	9	9236	820\$	gi 704397	cystathionine beta-lyase (Arabidopsis thallana)	99	Q	1032
102	- 2	3810	3265	[gi{1204323	hypothetical protein (SP:P31805) [Haemophilus influenzae]	99	7	546
					• 1 4 3 4 5 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			

TABLE 2

Cant of JOHE	1084	Start (nt.)	Stop (nt)	match	states gene name	E S	1 ident	Length fut)
103		3418	22.72	91 971344	Intrace reductase gamma subunit [Bacillus subtilis] sp[84177]MAMI_BACSU NITAATE REDUCTASE GAMMA CHAIN (EC 1.7.99.4). g; 1009169 Respiratory nitrate reductase [Bacillus subtilis] (SUB -160)	9	9	7 20 2
109		424)	4674	91 170886	glucosamine-6-phosphate deaminase [Candida abbitms] pir A46632 A46632 Quicosamine-6-phosphate isomerase (EC 5.3 1.10) - east (Candida abbitms)	99	\$	77
1112	117	117491	117112	91 1323179	ORF YGRIILW [Saccharomyces cerevisiae]	99	2	222
1116	~ -	1 4667	2637	91 1491813	gamma-glutamyltranspeptidase (Bacillus subtilis)	99	•	2031
150	5	1 3189	2963	91 1146224	[putative [Bacillus subtilis]	99	0.0	201
172		3264	3662	91 755152	[highly hydrophobic integral membrane protein [Bacillus subtilis] sp[P42951]TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERHEASE PROTEIN ACG.	99	3	399
76.	- 5	1 4592	1 3723	91 1146241	[pantothenate synthetase [Bacillus subtilis]	99 1	\$	8.70
1.75	-	3209	1 2880	01 642655	unknown Rhizobium meliloti	99	1 29	130
175	==	1 8743	1994	91 854655	Na/H antiporter system [Bacillus alcalophilus]	99	7	750
190	- 5	9707	1572	gi 451072	di-tripeptide transporter [Lactococcus lactis]	99	0.	1 6561
195	12	11919	מינון	91 1322411	unknown (Mycobacterium tuberculosis	•	42	207
213	-	2822	1 2595	gi 1143542	siternative stop codon (Rattus norvegicus)	99	3,6	224
	-	1133	6135	91 1458327	[FOSF3.4 gene product [Caenorhabditis elegans]	99	44	1 666
	-	5	1041	91 809541	i 7	99 -	÷	
241	-	2012	1053	gi 153067	peptidoglycan hydrolasa (Staphylococcus aureus)	99	2	1050
261	-	11178	879	gi 1510859	H. jannaschil predicted coding region NJ0790 (Methanococcus januaschil)	99	•	1 183
263	-	1 3731	2973	91 1205865	terrahydrodipicolinate N-succinyltransferese Haemophilus influenzae	99	- • 1	1881
272		6548	5484	91 882101		99	=	1065
375	-	1 2805	2104	91 1208965	hypothatical 23.3 kd protein (Escherichia col.:)	99	47	1 702
278	2	1 2830	1784	91 1488662	phosphatase-associated protein (Becilius subtilis)	99	*	1047
278	-	1 3830	1 2952	91 303560	ORF271 [Escherichia coli]	99	45	879
279		3894	2218	gi 1185289	[2-succiny]-6-hydroxy-2,4-cyclohexadiane-1- carboxylate synthase (Bacillus subtilis)	99	=	1 7731
288	-	1 2535	2275	gi 1256625	putative (Bacillus subtilis)	99	42	261
292	7	1111	912	191 1511604	[K. jannaschil predicted coding region NJ1651 [Methanococcus jannaschil]	99	30	192
			1 1 1 1 1 1					

s aureus . Putative codiny regions of novel proteins similar to known proteins

10	
15	
20	
25	
30	
35	
40	
45	

saterase [Bacillus stearothermog cytochrome a assembly facto [Bac signate lyase [Pseudomonas aer, blotin synthetase [Bacillus sph 7, 8-dihydro-6-hydroxymethylpter epic gane product [Staphylococc unknown [Schizosaccharomyces po PREPHENATE DEHYDROGENASE (EC 1. unknown [Bacillus aubtilis] purine nucleoside phosphorylase [S aminobenzolc acid synthase [S aminobenzolc acid synthase [S cyidine deaminase [Bacillus su unknown [Mycobacterium tubercul Na* ATPase subunit J [Mycoplasm H: Jannaschill prudicted coding lysostaphin (tog start codon) [lysostaphin precursor [Staphy Lysostaphin precursor (EC 3.5. DNA-1-methyladenine glycosidase H: genitallum predicted coding ORF_o214 [Escherichia coli) hypothetical protein [Synschocy HYPOTHETICAL 46.7 ND PROTEIN IN	THE PROPERTY OF THE PROPERTY O	114 set set	gene name 's sim 's ident length	esterase [Bacillus stearothermophilus]		alginate lyase [Pesudomonas aeruginosa] 66 40 630	biotin synthetase (Bacillus sphaericus) 66 59 159	7, 8-dihydro-6-hydroxymethylpterin-pyrophosphokinese [Bacillus ubtilis] 66 52 480	epiC gana product (Staphylococcus epidermidis)	unknown (Schizosaccharomyces pombe) 252	PREPHENATE DEHYDROGENASE (EC 1.3.1.12) (PDH).	[Becillus subtilis] 552	purine nucleoside phosphorylase (Escherichia coli)	benzoic acid synthase (Streptomyces griseus) pir JN0531 JN0531 p- 66 46 46 462 entoic acid synthase - Streptomyces riseus	cytidine deaminase (Bacillus subtilis)	unknown (Mycobacterium tuberculosis)	Nav ATPase gubunit J (Mycoplasma genitalium)	Jannaschii prodicted coding region MJ1154 (Muthanococcus Jannaschii) 66 50 858	9) 99	phin (ttg start codon) (Staphylococcus simulans) pir A25881 A25881 66 51 993 aphin precursor - Staphylococcus simulans sp[P10547]LSTP_STASI APHIN PRECURSOR (EC 3.5.1).	DNA-3-methyladenine glycosidase I [Haemophilus influenzae] 66 45 477	genitalium predicted coding region MG372 [Mycoplesma genitalium] 66 52 318	(4 [Escherichia coli)	hypothetical protein (Synechocystis sp.)	INTROTHETICAL 46.7 KD PROTEIN IN MSBB-RUVB INTERGENIC REGION (ORFU). 66 48 330	ORP266; putative (Lactococcus lactis phage BK5-T) 705
7 TYRA 17 TYRA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Stop (nt)	55	1	<u>;</u> —	-	-	!-	2 -	468	150	112		1826	1738	2	-	6679	3405	956	1066		1190	2	: -
Stop Accession 1978 91 91 91 91 91 91 91 9	Stop (nt) 559 1978 1978 1978 1978 483 483 483 1009 1109 1109 1109 1109 1109 1109 110			-	2913	2053	2460	121	-	23	7	. 7	. 7		1	1	1		t .	!	!	!	!		!	: -
Stop match 1978 91 216314 1978 91 216314 1978 91 924794 1978 91 924794 1978 91 1107839 2302 91 120750 1202 91 120750 1203 91 1477109 11009 91 1477109 1209 91 1477109 1209 91 1477109 1209 91 1477109 1209 91 1460081 1209 91 1200008 1209 91 1200008 1209 91 1200008 1209 91 1200008 1209 91 12000008 1209 91 12000008 1209 91 12000008 1209 91 12000008 1209 91 12000008 1209 91 12000008 1209 91 12000008 1209 91 12000008 1209 91 12000008 12000008 12000008 120000008 1200000000000000000000000000000000000	51.art Stop (nt) 1116	212 2468 2460 2460 2468 212 212 212 212 213 214 2150 2150 2150 2150 2150 2150 2150 2150	Start (nt)	1 1116		-	-	-		-	-	-	-		-	-	-		-		-	-	-	-	-	-

S aureus - Putative coding regions of novel proteins similar to known proteins

1	ontig ORF		Start Stop	Stop (match	math gene name		ident	length (nt)
2 561 355 91 800 808 8	-		:		gi 746573	aimilar to M. musculus transport system membrane protein. Nemp PIR:A40739) and S. cerevisiae SMFI protein (PIR:A45154) Caenorhabditis elegans)	99	45	378
2 673 512 91 1519085 1 310 747 91 435296 1 318 171 91 536952 1 462 232 91 813061 1 462 232 91 813061 1 1425 733 91 580842 1 1425 733 91 580842 1 1425 733 91 140117 1 179 549 91 410117 1 179 552 91 48713 1 125 315 91 105502 1 25 315 91 105503 1 1 2 574 91 1051493 1 1 2 574 91 1055653 1 1496 250 91 11256653 1 1123 587 91 1258653 2 589 358 91 2158811	-	-	-	;	91 804808	unknown protein (Rattus norvegicus)	99	97	207
1 310 747 91 1209272 1 310 747 91 43296 1 338 171 94 516955 1 462 232 91 813061 1 462 232 91 149006 1 1425 733 91 790462 1 1425 733 91 790462 1 179 549 91 140117 1 179 549 91 140117 1 100 552 91 140117 1 1 2 349 91 1401146 1 1 2 349 91 1401149 1 1 2 374 91 1409034 1 1 2 574 91 1409034 1 1 1 1 1 1 1 1 1 1					91 1519085	phosphatidylcholine binding immunoglobulin heavy chain 1gH variable region	9	09	162
1 310 747 91 432396 1 1 338 171 91 536955 1 1 462 232 91 813061 1 1 2 247 91 149086 1 1 1425 733 91 560842 1 1 1425 733 91 560842 1 1 100 552 91 48713 1 1 100 552 91 48713 1 1 1 2 315 91 1008085 1 1 2 3 3 91 1008085 1 1 2 3 3 91 1008085 1 1 2 3 3 91 1008085 1 1 2 3 3 91 1008085 1 1 2 3 4 91 1008149 1 1 2 574 91 1008149 1 1 1 2 574 91 1008149 1 1 1 1 1 1 1 1 1	-	! –	-		gi 1209272	argininosuccinate: lysse [Campylobacter jejuni]	99	1 /0	315
1 138 111 91 516555 IGC Site No. 361 Escherichia coll] 1 1 1 1 1 1 1 1 1		- -			91 435296		3	3	***
1 462 232 91 189302 Gerichtome-binding protein [Bacillus subtilistics 12 247 91 18908 Putative [Helicobacter pylori] 1 1425 733 91 180842 P3 [Bacillus subtilists 1475 91 190845 P3 [Bacillus subtilists 1475 91 190845 P3 [Bacillus subtilists 1475 91 190845 P3 [Bacillus subtilists 1475 91 190840 P3 P4 P4 P4 P4 P4 P4 P4	-	-	-	-	91 536955	CG Site No. 361 (Escherichia coli)	99	C	1 191
1 462 222 91 813061	-	-	-	1	91 289272	[ferrichross-binding protein [Bacillus subtilis]	99	3	156
1 2 247	-	! –	-		91 833061	HCMVUL77 (AA 1-642) [Human cytomegalovirus]	99	99	231
1 1425 733 gi 560842 P3 [Bacillus subtilis] 2 2300 1473 gi 730945	-	-	-	:	91 149008	putative (Helicobacter pylori)	99	\$	306
2 2300 1473 gi 79045 aryl-alcohol dehydrogenaee [Bacillus subtilians 1 1 1 1 2 2 4 gi 410117 diaminopimelate decarboxylase Bacillus subtilians 1 1 1 1 2 2 gi 48713 orfits [Staphylococcus aureus] 1 1 1 2 1 1 1 2 1 1	-	 	-		91 580842	F3 [Bacillus subtilis]	9	3.6	693
1 79 549 91 410117	-	-	-	i	gi 790945		99	53	828
1 1100 552 gi 48713 orfits [Stephylococcus aureus]	<u> </u>	_	-		91 (410117	[disminopimelate decarboxylase [Bacillus subtilis]	99	4.7	121
2 89 475 gi 1204390 Uridine kinase (uridine monophosphokinase) [H 25 115 gi 105002 ONF_£136 [Escherichia coli] 1 2 203 gi 1003853 VrggF [Escherichia coli] 1 1 294 gi 575913 Unknown (Saccharomyces cerevisiae) 1 1 2 574 gi 1001493 methylgalactosida permease ATP-binding protei 1 2 574 gi 1001493 methylgalactosida permease ATP-binding protei 1 498 250 gi 1499034 M. Jannaschii prodicted coding region M00255 1 498 250 gi 1208474 hypothetical protein [Synachocystis sp.] 1 1 402 gi 1208474 hypothetical protein [Synachocystis sp.] 2 589 198 gi 215811 tail fiber protein [Bactiluas subtilis]	<u> </u>	-			91 48713	orf145 (Stephylococcus aureus)	99	35	645
2 1304 997 91 457146	-	_	-		91 1204390	uridine kinase (uridine monophosphokinase) (Haestophilus influenzae)	9	20	387
1 25 315 91 305002 ORF_1356 [Recherichia coli]	-	-	-		91 457146	rhoptry protein [Plasmodium yoelii]	وي	E	· · ·
1 1 294 gi 575913 Yege Bacchius subtilis 1 1 294 gi 575913 unknown (Saccharosyces cerevisiae) 1 1 201 gi 1001493 hypothetical protein (Synechocystis sp.) 1 498 250 gi 1499034 M. jannaschii predicted coding region MJ0255 2 707 453 gi 125908 DNA polymerase (g43) (Bacteriophage T4) 1 1123 587 gi 1256653 DNA-binding protein (Bactillus subtilis) 1 1 402 gi 1208474 hypothetical protein (Synechocystis sp.) 2 589 398 gi 215811 tail fiber protein (Bacteriophage T3)	-	-	-	<u> </u>	91 305002	ORF_[136 (Escherichia coli]	99	3.1	767
1 1 294 91 575913	. ·	-	· ·		91 1303853	YqgF Bacillus subtilis	99	40	201
1 1 2 574 gi 1001493 hethylgalactoside persesse ATP-binding protein 2 574 gi 1001493 hypothetical protein (Synechocystis sp.) 1 498 250 gi 11499034 M. jennaschii predicted coding region MJ0255 2 707 453 gi 125908 DNA polymerase (g43) (Bacteriophage T4) 1 1123 587 gi 1256653 DNA-binding protein (Bactillus subtilis) 1 1 402 gi 1208474 hypothetical protein (Synechocystis sp.) 2 589 398 gi 215811 tail fiber protein (Bacteriophage T3)	-		29		gi 575913	unknown (Saccharomyces cerevisiae)	99	53	294
1 2 574 gi 1001493 hypothetical protein (Synechocystis sp.) 1 498 250 gi 1499034 M. jannaschii predicted coding region M0255 2 707 453 gi 125908 DNA polymerase (g43) (Bacteriophage T4) 1 1123 587 gi 1256653 DNA-binding protein (Bactlilus subtilis) 1 402 gi 1208474 hypothetical protein (Synechocystis sp.) 2 589 358 gi 215811 tail fiber protein (Bacteriophage T3)	-	-	. —	1	gi 1045799	methylgalactoside permesse ATP-binding protein [Mycoplasma genitalium]	99	9	231
1 498 250 qi 1499034 N. jannaschii predicted coding region MJ0255 2 707 453 qi 215908 DNA polymerase (q43) Bacteriophage T4 1 1123 587 qi 1256653 DNA-binding protein Bacillus subcliis 1 1 402 qi 1208474 hypothetical protein Symechocystis sp. 2 589 398 qi 215811 tail fiber protein Bacteriophage T3	-	-	_		qi 1001493	hypothetical protein (Synechocystis sp.)	99	9	573
2 707 453	-	-	-		gi 1499034	[M. jannaschii predicted coding region MJ0255 [Methanococcus jannaschii]	99	0,	249
1 1123 587 (9 1256653 1 402 91 1208474 2 589 398 (91 215811	<u>-</u>		-	1	91 215908	DNA polymerase (g43) (Bacteriophage T4)	99	9	255
1 1 402 91 1208474 2 589 398 91 215611	-	<u>. </u>			gi 1256653	DNA-binding protein [Bacillus subtilis]	99	\$8	768
2 589 398 91 215811	! — ·	<u>-</u>	<u>.</u> – ·	! .	91 1208474	hypothetical protein (Symechocystis sp.)	99	53	402
	-	-	_	;	91 215811	tail fiber protein [Becterlophage T3]	99	\$0	192

10	
15	
20	
25	
30	
35	
40	

S aureus - Putative coding regions of novel proteins similar to known proteins

5

ident length	40 249	46 225	38 186	47 162	39, 234	44 279	47 273	46 192	42 198	41 189	44 180	48 195	49 387	47 399	60 201	46 249	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46 228	1 906 58	47 858	44 996	38 1032	50 537	52 1026	1 616 54
a sum	99	1 99	99	99	99	99) 99	1 99	99	99	99	99	[99	1 99	1 99	9 99	66 1	99	65	9	65	65	59	9	65
match gene name	DNA helicase II (Mycoplasma genitalium)	precursor for the major merozoite surface antigens [Plasmodium alciparum]	exodeoxyribonuclesse (Secillus subtilis)	unknown (Schizosaccheromyces pombe)	[putative transcriptional regulator (Methanococcus jannaschii]	cytotoxin L (Clostridium sordellli)	autolysin (Staphylococcus auraus)	[heterocyst maturation protein [Haemophlius influenzae]	Yqew (Bacillus subtilis)	protein-dependent (Bacillus subtilis)	[unknown [Schizosaccharomyces pombe]	[DNA polymerase III, alpha chain [Haemophilus influenzae]	Respiratory nitrate raductase (Bacillus subtilis)	Prov Bacillus subtilis	acyl-CoA dehydrogenase [Bacillus subtilis]	gluconate permoase [bacillus licheniformis	[HHG-CoA reductase (EC 1.1.1.88) [Pseudononas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	C hemocyanin subunit II - Atlantic horseshoe crab	cynR [Escherichia col1]	ORF_0310 (Escherichia coli	recombination protein (ttg start codon) [Bacillus subtilis] gi 1303923 RecN [Bacillus subtilis]	crcD gene product (Alcaligenes eutrophus)	acyltransferase [Saccharomyces cerevisiae]	phosphoribosyl anthranilate transferase (Lectococcus lactis) pir S35126 S35126 anthranilate phosphoribosyltransferase (EC .4.2.18) - Lactococcus lactis subsp. lactis	malonyl-CoA:Acyl carrier protein transacylase (Bacillus subtills)
match	gi 1045935	gi 929798	[91 [1256623	9111019410	91 1510394	191 1000695	91 765073	gi 1205784	gi 1303813	91 1070014	91 984212	91 (1204987	91 1009366	gi 1109684	91 853760	191 563952	gi 151259	ріс А26713 ВИНС	91 145646	91 887824	gi 143402	91 1403126	gi 349187	91 149518	gi 1502420
Stop (nt)	251	400	188	164	235	280	275	305	17.2	189	225	386	387	00	202		350	234	9750	3565	866	3524	1372	2492	(312
Start	669	921	173	325	468	558		114	08	~ ~	404	580	~	798	402	1.65		,	8845	2708	1993	2493	1908	1467	3374
08F 10	~	7	-	1		-	-	-		-	-	7	-	-				-	6	2			~ !		-
Contig	1983	2103	2341	2458	2505	2525	2935	3005	3048	1 3071	3081	3090	3318	13739	3796	¥24.1	4240	4604	₹ .	9		15	18	1	25

TABLE 2

50

S aureus - Putative coding regions of novel proteins similar to known proteins

5

entig ID	1 OKE	Start	Stop	match	match gene name	1 S	# ident	length (nt)
27	2	1 390	1 626	gi 1212729	YqhJ (Bacillus subtilis)	9,	45	237
117	112	111040	110387	91 509245	D-hydroxyisoceproate dehydrogenase [Lectobacillus delbrueckii]	9	7	654
38		19172	119528	91 547: -	H-protein (Flaveria cronquistii)	59	7	357
=======================================	-	1 790	1746	91 405882	yeik (Escherichia coli)	59	97	957
7	112	9356	8832	191/1205905	molybdenum cefactor blosynthesis protein (Neemophilus influencee)	65	50	\$25
\$\$	89	6635	1 7588	191 493074	Apply protein (Salmonella typhimurium)	6.5	99	954
5.1	- 7	580	1 1503	91 580897	Opps gene product [Bacillus subtilis]	65	65	924
52	-	225	1 953	91 1205518	NAD(P)11-flavin oxidoreductase [Haemophilus influenzae]	65	65	729
\$\$	-	6111	1058	pir A44459 A444	troponin T beta InT-5 - rabbit	69	7	282
67		1421	1 8272	q1 143607	sporulation protein (Bacillus subtilis	65	42	852
2	- 5	1446	1 5375	qi 1204896	lysophospholipese L2 [Heemophilus influences]	• 65	37	930
74	-	954	1 478	[gi]1204844	H. Influenzae predicted coding region H10594 (Hasmophilus influences)	6.5	80	477
7.1	-	- 2	757	91 1046082	M. ganitalium predicted coding ragion M0172 (Mycoplesma genitalium)	6.5	*	1 956
	-	1 795	1433	91 [1222116	permesse [Haemophilus influentee]	65	1 37	1 60
ē	-	4728	3454	gi 100170#	hypothetical protein (Synachocyatis sp.)	• 65	\$	5671
9.1	-	1 8548	1 8357	91 (1399263	cystathionine beta-lyase (Emericalla midulans)	65	0	192
8.6	-	1 1608	1988	gi 467423	unknowm (Becilius subtilis)	65	38	381
96	-	- 2250	1 2987	91 467424	unknowm (Bacillus subtilis	65	\$	738
102		2598	2119	91 1511532	N-terminal acetyltransferase complex, subunit ARD1 (Methanococcus Sannaschii)		5	- 4 NO
102	-	1 3647	1 2862	91 1204637	H. influenzae predicted coding region HI0388 (Haemophilus influenzae)	69	32	1 982
103		10851	9841	91/142695	S-adenosyl-L-mathionine:uroporphyrinogen III mathyltransferese Bacillus megaterium	\$		1011
10)	0.7	110439	110119	191 710021	nitrike reductase (nirD) (Bacillus subtilis)	65	51	321
106	7	1 262	1140	Qi 39861	ORF 311 (AA 1-311) (Bacillus subtilis)	- 65	7	879
109	-	1 3909	4268	01 1204399	glucosamine-6-phosphate desminase protein [Haemophilus influenzae]	- 65	7	1 360
109	110	1 7165	8898	91 536955	[CG Site No. 361 [Escherichia coli]	9	7	1431
		11111111						

10	
15	teins
20	r to known pro
25	proteins simila
30	aureus - Putative coding regions of novel proteins similar to known proteins
35	ative coding re
40	5. aureus - Pul

45 228 56 150 56 150 52 579 32 762 33 642 34 1926 46 1931 46 1931 46 1938 46 1938	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	stringent response-like protein (Streptococcus equisimilis) pip(2997) (51997) stringent response-like protein - Streptococcus quisimilis ORF1 (Streptococcus equisimilis) ORF1 (Streptococcus equisimilis) Influenzae predicted coding region HOD18 (Hamophilus influenzae) Influenzae predicted (An 1-673) (Becillus subtilis) Influenzae predicted (An 1-673) (Becillus subtilis) Influenzae predicted (An 1-673) (Hamophilus influenzae) Influenzae producted (An 1-673) (Hamophilus influenzae) Influenzae (Hamophilus inf	gi 407881 gi 407880 gi 407880 gi 1139574 gi 1139574 gi 1204571 gi 1204571 gi 1204571 gi 1209768 gi 1209768 gi 121943 gi 121943 gi 146225 gi 146225 gi 146225 gi 151943 gi 151943 gi 151943 gi 151943 gi 151968 gi 151968	Stop (nt) 1915 4295 4380 8640 111288 1202 422 422 422 422 422 422 422 422 422	3882 3882 4231 9218 9218 12049 12049 12049 1387 1387 1387 1387 1388 1388 1388 1388	Contrig OWF 10 4 110 4 110 6 110 6 111 112 112 112 112 112 113 1145 5 1145 5 1145 5 1145 5 1149 7 1149
- ;	9	[DNA or KNA helicase, DNA-dependent ATPase (Bacillus subtilis]	9111146200	1 3709	2327	
-	7.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:	
		(AA 1-673) [Bacillus subtilis] - bacillus subtilis sp P13484 Tr E) LPHA-GLUCOSYLTRANSFERASE [EC IN E).		13751	5265	
-					2000	;
_	1 59	Kinase	14:11205974	1 1215	1848	Ι.
-	65	ornithing acetyltransferase [Bacillus subtilis]	19:1468115	118191	16896	! .
- :	65	V alpha-subunit (Escherichia	91 882711	1 8104	110599	: ~
: 	59	alanyl-tRNA synthetese (Escherichla coll)	1911 145220	5773	9066	_
	 59 :	IV (AA 1-489)	gi158812	47.85	1 4382	_
	65	ORF3; putative (Rhodobacter cepsulatus)	-	4178	3195	
:	59	[Enterococcus hirae] - Enterococcus irae (g: 148304 	1948	3858	
			gi 1146225	2841	3482	
		D02_ox[559 [Mycoplasma prieumoniae]	91 1209768	3838	3587	5
-		· · · · · · · · · · · · · · · · · · ·				1
	9	transversion) (Escherichia	91 216513	7004	7543	
-	59	to sp: IITRA_ECOL1 (Bacillus	gi 1064809	112658	((701)	; –
	65	precursor (Homo sapiens)	91 37589	422		-
	65	organellar protein (Plasmodium	91 1151158	1 202	2	-
- :	59	activator	gi 710496	111288	12049	2 - 2
-	65	coding	91 1204571	8640	9218	
	65	Orf1 (Streptomyces griseus)	10111139574	4380	4231	-
	65	ORF1 Streptococcus equisimilis	91 407880	4295	3882	
	59	response-like protein (Streptococcus equisi 5 839975 stringent response-like protein	91 407881	3915	1688	
(ac)	-		match	Stop	St art (nt.)	÷ ~

TABLE 2

aureus : Putative coding regions of novel proteins similar to known proteins

5

Contig ORF	ORF	Start	Stop	match	match gene name	£ 75	1 ident	length
2.14	: _ : _ : _	: <u> </u>	1 27R	191 496558	orfx [Bacillus subtilis]	65	42	2 /6
301	- 7	9.82	815	911. 67418	unknown (Bacillus subtilis)	6.5	- S-	169
307	•	3586	2864	100704119	protein-dependent (Bacillus subtilis)	9	0.	723
335		2286	11399	[41]:46913	N-acetylglucosamine transport protein (Escherichia coli) pir 82885 MQEC2N phosphortansferase system enzyme II (EC. 7.1.69), N-acetylglucosamine-specific - Escherichia coli sp P09321 PTAA_ECOLI PTS SYSTEM, N-ACETYLGLUCOSAMINE-SPECIFIC IIABC OMPONENT (EIIA		05	
338	: 5	02(7	3170	91 1277029	biotin synthase (Bacillus subtilis	63	6,	951
343	: — : —	0671	2800	91 143264	membrane-associated protein (Bacillus subtilis)	6.5	89	1311
344	-	276.	12531	191 1050540	[RNA-glucamine synthetase [Lupinus luteus]	6.5	76	231
358		1 3421	1296	91/1146220	[NAD+ dependent glycerol-1-phosphate dehydrogename (Becillus subtilis)	5,		201
1 364	-	238	669	[91]1340128	ORFI (Staphylococcus aureus)	\$	51	462
3.79			2 2 6	91 143331	akaline phosphatase regulatory protein [Bacillus subtilis] pir[A27650 A27650 regulatory protein phoR - Bacillus subtilis sp[e21545 PHOR_BACSU ALKALINE PHOSPIATASE SYNTIESIS SEMSOR PROTEIN HOR (EC 2.7.3).	\$	9	576
1 379	-	3666	4346	91 143268	[dihydrolipoamide transsuccinylase (odhs; EC 2.3.1.61) [Bacillus ubtilis]	9	80	661
428	-	187	4.83	gi 1420465	ORF YOR195w [Saccharomyces cerevisiae]	\$	Ş	297
4.X	-	272	B.8	(ai (143498	[degS protein [Dacillus sublilis]	65	*	196
7	=======================================	9280	110215	91 1204756	[ribokinase Hacmophilus influentee]	\$	4	976
644	-	1241	1531	qi 599848	Na/H antiporter homolog [Lactococcus lactis]	.	7	291
478	7	1452	865	10111045942	[glycyl-tRMA synthetase [Hycoplasma genitalium]	6.5	39	583
617	-	1032	517	gi 1498192	putative (Pseudomonas aeruginosa)	65	0	516
	9	4312	5637	911415662	UDP-N-acetylglucosamine i-carboxyvinyl transferase (Acinetobacter alcoaceticus)	99	89	1326
484	-	2	430	[qi 146551	[transmombrane protein (kdpD) [Eschorichia coll]	59	7	429
66+	-	54	932	1911603456	reductase [Loishwania major]	59	53	UTA
505	-	914	489	91(1518853	OafA Salmonella typhimurium	65	39	454
178	7	1509	883	qi 49399	open reading frame upstream glnE (Escherichia coli) ir 537754 537754 hypothetical protein XE (glnE 5' region) - churichia coli	\$9	-	627
611	7	\$00	270	91 10961	RAP-2 (Plasmodium falciparum)	9	0,	237

15	
20	
25	
30	
35	
40	
25 30	

S. aureus - Putative coding regions of novel proteins similar to known proteins

	1000	44440	00.00	Actual I	march dene name	E S	1 ident	length
1 10 110	9	(nt)	Cuc)	acession		,		(nr.)
705		564	283	91 710020	nitrite reductase (nirB) [Bacillus subtilis]	6.5	52	282
112		-	177	gi [289272	[ferrichrome-binding protein [Bacillus subtilis]	6.5	37	7.21
211	2	196	354	gi 289272	ferrichrome-binding protein (Bacillus subtilis)	6.5		159
743		2	631	310631	ATP binding protein (Streptococcus gordonii)	6.5	45	019
149	- 7	393	677	gi 167374	single strand DNA, binding protein [Bacillus subtilis]	99	29'	187
1 162		1698	850	91 160399	multidrug resistance protein [Plasmodium falciparum]	65	48	849
788		85	315	91 1129096	unknown protein (Bacillus sp.)	59	35	231
1 850		-	804	19111006604	hypothetical protein (Synechocystis sp.)	99	37	408
904	-		444	911199546	2362 Saccharomyces cerevisiae	99	9	**
925		-	174	91 1256653	DMA-binding protein (Bacillus subtilis)	\$9	24	174
1031		26	232	gi 238657	AppCecytochrome d oxidase, subunit I homolog [Escherichia coli, K12, eptide, 514 aa]	65	\$	207
1037	-	7	262	91 1491813	gamma-glutamyltranspeptidase (Bacillus subtilis)	59	9.7	153
1053	- - -	- FFT	175	91 642655	unknown Rhizobium meliloti]	6.5	34	7.1
1149	- -	1399	752	19111162980	ribulose-5-phosphate 3-epimerase (Spinacia :leracea)	6.5	9	919
1 1214	-	881	495	9111205959	lactam utilization protein [Haemophilus influenzae]	99	\$	387
1276		476	276	pir 535493 5354	site-specific DNA-methyltransferase StsI (EC 2.1.1) - Streptococcus	59	á	201
1276	- 2	006	1577	qi 473794	'ORF' [Escherichia coli]	6.5	34	324
1 2057	-	272	138	91 633699	TrsH (Yersinia enterocolitica)	6.5	21	135
1 2521	-	336	169	91 1045789	hypothetical protein ICB:U14003_76) [Mycoplasma genitalium]	9	-	168
1 2974	-	290	297	191 152052	enantiomerase selective amidase (Rhodococcus sp.)	65	45	294
1001		306	154	pir J01024 J010	Inypothetical 30K protein (DmRP140 5' region) - fruit fly (Drosophila melanoguster)	\$3	=	3
3069			278	01 144906	product homolognus to E.coli thioredoxin reductase: J.Biol.Chem. 1988) 263:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A	95	9	276
3146	1	282	142	91 49315	ORF1 gene product (Bacillus subtills)	6.5	47	141
3170	-	6.29	176	9111507711	indolepyruvate decarboxylasa (Erwinia herbicola)	6.5	7	339

s, aureus - Putative coding regions of novel proteins similar to known proteins

terg ORF	ORF	Start (nt)	Stop (at)	match	match gene nama	E	1 ident	length (nt)
246		-	101	450688	hadw gene of Ecopril gene product [Escherichia coli] pir[538437 538437 hadw protein - Escherichia coli pir[509629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	65	ci ,	303
782	1 1	~	328	 gi 166412	NAOH-glutamate synthase (Medicago sativa)	68	42	127
066	-	374	189	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	6.5	- \$3	186
1033	-	613	308	191 1323127	ORP YGROB1c (Saccharomyces cerevisiae)	65	20	306
1278	2	726	364	91 1197667	vitellogenin (Anolis pulchellus)	6.5	42	163
61	-	4259	5518	91 145727	deaD Escherichia coli	9	\$	1360
61	- 9	7639	6926	91 1016232	ycf27 gene product (Cyanophora peradoxa)	9	36	714
20	- E	1 7053	6454	191 765073	autolysin Staphylococcus aureus	99	47	1 009
31	1 2	12706	111537	91 (414009	ipa-85d gene product (Bacillus subtilis)	79	45	1170
33	-	2388	4364	gi 1204696	[fructose-permease IIBC component [Haemophilus influenzae]	3	47	1 6161
3.6		1671	1 3013	gi 290503	glutamate permease (Escherichia coll)	99	0	1163
17	9	4065	6074	qi 39815	orf 2 gene profict (Bacillus subtilis)	79	9	345
\$	6	7852	8760	gi 1230585	nucleotide sugar epimerase Vibrio cholerae 0139	99	53	606
5.3		1540	1899	191 1303961	YdjJ (Bacillus subtilis)	79	05	360
5.6	9	4793	3855	gi 457514	gltC (Bacillus subtilis)	64	15	61.6
56		30002	30247	91 <70331	similar to zinc (ingers [Caenorhabditis elegans)	9	Ç	246
62	-	2759	1 2421	[91] 642655	unknown [Rhizobium meliloti]	99	28	1 906
88	9	7178	6027	 gi 157702	S-aminoimidazole ribonucleotide-carboxilase [Pichia methanolica] pir S19112 S19112 phosphoribosylaminoimidazole carboxylase (EC .1.1.21) =	94	9	1152
9.6	6	9251	10030	gi 1511513	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	1 64	1 42	780
100			009	[91]:65073	autolysin (Staphylococcus aureus)	P9	*	009
106	- 5	3868	1 4854	91 466778	[lysine specific permease [Eschacichia coli]	- 64	46	987
123	2	838	554	91 467484	unknowm (Bacillus subtilis)	1 64	47	285
127		7514	7810	91 /10061		64	28	297
131	- 1	7134	6721	91/1511160	H. jannaschii predicted coding region MJ1163 (Methanococcus jannaschii)	- 64	94	414
1 1 1 1 1								

S aureus - Putative coding regions of novel proteins similar to known proteins

143 1	1D (nt)	(nt)	acession	match gene name	ETS	- ident	length (nt)
	5 5455	4817	91/11/3517	riboflavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	64	4	689
	1 709	356	pir A32950 A329	probable reductase protein - Leishmania major	64	52	354
-	0 3555	1 3295	[91]398151	major surface antigen MSG2 (Pneumocystis carinii	P9	3	261
-	4 3134	1 2307	911984587	DinP (Escherichia coli)	79	50	82.8
161	5 3855	4880	91 903 304	ORF72 [Bacillus subtilis]	64	- ''	1026
1 165 1	1 33	1 791	91,467483	unknown [Bacillus subtilis	79	38	759
175 6	6 6355	9:25	91 1072398	phaD gene product [Rhizobium meliloti]	64	42	1512
188	3 2042	1 2500	1961007 161	HHC class II analog (Staphylococcus aureus)	64	45	459
195 14	4 13667	13446	91 396380	No definition line found (Escherichia coli)	79	47	222
206 15	5 16429	116938	91 304134	argC (Bacillus stearothermophilus)	9	6.8	\$10
215	1 560	1 282	91 142359	ORF 6 (Azotobacter vinelandii)	64	39	279
_	7 7818	6928	91 41 4014	ipa-90d gana product (Bacillus subtilis)	64	- 69	168
258	2 1330	845	95 664754	Pl7 [Listeria monocytogenes]	64	80.6	486
1 259	1 462	232	Q1 1499663	M. Jannaschii predicted coding region MJ0837 [Methanococcus jannaschii]	79	52	231
263	9 9 9	5567	gi 142828	ASPATEALE SENIAIGENYGE GENYGROGENASE [Bacillus subtilis] sp Q04797 nHAS_BACSU ASPARTATE-SEMIAIDENYDE DENYDROGENASE (EC .2.1.11) (ASA DENYDROGENASE).	•	2. 20.	666
1 271	1 3	1163	91 467091	hflX; B2235_C2_202 [Mycobacterium leprae]	9	2	1161
280	1 173	11450	gi 1303839	YqfR (Bacillus subtilis)	64	.	1278
293	1 2532	1267	91 147345	primosomal protein n' [Escherichia coli]	7	45	1266
295	2 742	1488	qi 459266	Potential membrane spanning protein (Staphylococcus hominis) pir S42932 S42932 potential membrane spanning protein - taphylococcus hominis	4	39	747
301	5 1625	1446	gi 580835	lysine decarboxylase (Bacillus subtilis)	64	35	180
315	4 5064	3949	91 143396	quino oxidase [Bacillus subtilis]	64	45	1116
321	1 1264	635	gi 710496	transcriptional activator protein (Bacillus bravis)	9	4.1	630
333	5 4520	4239	gi 1314295	ORF2; putative 19 kDa protein [Listeria monocytoyenes]	64	43	282
342	-	6 7 5 4 9	91 142940	ftsA (Bacillus subtilis)	6.4	38	549
353	3 2878	2324	gi 537049	ORF_0470 Escherichia coli	64	77	\$55

s aureus - Putative coding regions of novel proteins similar to known proteins

404 6 4429 4839 407 1 2020 1133 425 1 1109 591 430 2 1035 1604 470 5 1680 6107 486 4 1911 1471 497 1 2217 1159 551 4 1162 1323 603 4 759 956 653 2 940 746 650 1 11 502 702 1 1 1 502 826 1 1 1 1 502 826 1 1 1 1 1 1 1 1 1	pir	oxoglutarate dehydrogenase (lipoamide) (EC 1.2.4.2) - Bacillus subtilia diacylglycerol kinase homolog - Streptococcus mu:sns Orfx (Bacillus subtilia) Phosphorransferase system glucose-specific enzyme II (Bacillus subtilia) purine nucleoside phosphorylase (Escherichia coli) ORF_ol62 (Escherichia coli) ORF_ol62 (Escherichia coli) host interacting protein (Bacteriophage B1)	3 3	47	2832
6 429 1 1 2020 1 1 109 6 4082 6 4082 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pir	OSS-Specific entyme II SECHETICAL COLI) SECHETICAL COLI) SECHETICAL COLI)	3		
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91 969026 91 146177 91 147309 91 1569948 91 1205582 120 1205582 92 1205582	e specific enzyme II [Escherichia coli] iophage Bil		35	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	91 1146177 91 1147309 91 147309 91 1269948 91 1269948 91 1269948 91 126999 FMU_E 92 1162450 91 1162450	Escharichia coli) [Escharichia coli) iophage Bil	•	7	88
6 4082 5 1035 1 1 2217 4 1911 4 3162 4 3163 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91 147309 91 166376 91 169948 91 1269948 pp 1269948 pp 1269948	purine nucleoside phosphorylese [Escherichia coli] ORF_0162 [Escherichia coli] host interacting protein [Bacterlophage Bl]	-	7	519
2 1035 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91 106376 91 1369948 91 1205582 sp 936929 FMU_E	ORF_0162 (Escharichia coli) host interacting protein (Bacteriophaga B1)	64	51, 1	717
2 1 1 8 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91 1369948 91 1205582 5D 936929 FMU_E 91 142450	host interacting protein (Bacteriophage B1)	79	- 86	570
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91 1205582 8P P36929 FMU_E 91 142450		9	45	1428
2	sp P36929 FMU_E gi 162450	spermidine/putrescine transport system permease protein [Naemophilus influenzae]	64	35	‡
1 1 1 1 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1		FHU PROTEIN.	- 79	38	1059
4 4 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ahrC protein (Bacillus subtilis)	- 79	36	809
4 1 2 3 440 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	gi 1204496	H. influenzae predicted coding region H10238 (Maemophilus influenzae)	79	77	288
2 4 755 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 91 1204511	bacterioferritin comigratory protein [Heemophilus influenzee]	- 79	-	162
1 1 1 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	911755823	NADH dehydrogenase F (Streptogyna americana)	79	35	198
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	911.213234	dicarboxylic smino acids Dip5p permesse (Saccharomyres cerevisiae)	3		195
	sp P46133 YDAIL_	HYPOTHETICAL PROTEIN IN OGT 5 REGION (FRAGMENT).	79	1 66	1545
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[91 [1001383	hypothetical protein (Symechocystis sp.)	94	- 17	192
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91,142865	DAA primase (Bacillus subtilis)	99	97	150
3 675	91 97 1336	arginyl tRMA synthetase [Bacillus subtilis]	94	20	139
1 675	91 1354775	pfos/R (Treponema pallidum)	9		915
	91 39833	cyclomaltodextrin glucanotransferese [Bacillus stearothermophilus] 19815 cyclomaltodextrin glucanotransferese [Bacillus earothermophilus]	79		270
	91 153002	enterotoxin type E precursor (Staphylococcus aureus) pir A28179 A28179 enterotoxin E precursor - Staphylococcus aureus sp P12991 ZTXE_STAAU ENTEROTOXIN TYPE E PRECURSOR (SEE)	99	9	675
928 2 1172 563	91 311976	fibrinogen-binding protein [Staphylococcus aureus] pir 534270 534270 fibrinogen-binding protein - Staphylococcus uraus	40		210
1049 2 800 606	91 1049115	Pap60 (Bacilius subtilis)	64	42	195
1067 2 999 748	gi 1151072	HhdA precursor (Haemophilus ducreyi)	- 79	50	252

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig	08.F	Start (nt)	Stop (nt)	match.	match gene name	mis -	* ident	length (nt)
1120	-	05	202	úi 142439	ATP-dependent nuclease [Bacillus subtilis]	1 64	30	153
1125	-	1.75.1	377	gi 581648	epi8 gene product (Staphylococcus epidermidis)	64	44	1 578
1688	-	402	214	r A01365 TVMS	transforming protein K-ras - mouse	1 64	47	189
1 2472	-	7	358	91 487282	Ne+ -ATPase subunit J [Enterococcus hirae]	1 64] 96	357
2989	-	520	356	gi 304134	argC (Bacillus stuarothermophilus)	1 64	05	165
1 3013	-	630	352	191/551699	[cytochrome oxidase subunit I [Bacillus firmus]	79	51	279
3034	- :	546	274	1911 1204349	hypothetical protein (GB:GB:D90212_3) [Haemophilus influenzae]	1 64	50	273
7616	-	613	308	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	99	46	306
1 3303	-	06	362	gi 1107839	alginate lyase (Pseudomonas aeruginosa)	99	43	273
3852	7	82	288	91/216746	D-lactate dehydrogenase (Lactobacillus plantarum)	79	42	207
3868		-	312	gi 149435	putative [Lactococcus lactis]	99	88	312
3918	- -	099	331	91 5532	acetyl-CoA acyltransferase (Yarrowia lipolytica)	99	46	330
4000	-	112	378	91,994688	unknown (Saccharomyces cerevisiae)	64	-	267
4009	-	18	368	gi 39372	graß gene product [Bacillus brevis]	79	7	288
4166	-	7	349	gi 149435	putative [Lactococcus lactis]	9	1 97	348
1366	-	2	700	911216267	ONF2 [Bacillus mogaterium]	79		300
4457	-	7	00	gi 1197667	vitellogenin (Anolis pulchellus)	79	- 07	399
11		1539	2438	91 438228	סאר כ (Staphylococcus aureus)	63	32	1 006
24	,	1 5611	5423	gi 1369943	al gene product (Bacteriophage Bl)	63	7.	189
53	- 		390	gi 467441	expressed at the end of exponential growyh under condtions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) gi 467441 expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil	.0	7	1 060
31	9	6329	5712	gi 496943	ORF (Saccharomyces cerevisiae)	63	1 4	618
77	123	14669	15019	pir A04446 QQEC	hypothetical protein F-92 - Escherichia coli	63	36	351
43	9	4403	6250	gi 43498	pyruvate synthase [Halobacterium halobium]	63	42	1848
05	- 2	3869	4738	91 413967	ipa-41d gene product (Bacillus subcilis)	63	43	9.00
53	9	6764	5742	gi 474176	regulator protein (Staphylacoccus xylosus)	63	4.9	1023

TABLE 2

inteus - Putative coding regions of novel proteins similar to known proteins

1	Cutty 1D	ORF	Start	Stop (nt)	ratch	match gene name	E	Lident	length (nt)
13 242 2314 91 42856 Unkhoom Inhitobium malilotii 23 24 24 24 24 24 24 24	, 95	=	15880	117607	[gi 467409	DMA polymerase [[I subunit (Baci]]us subtilis]	63	7	1728
1 1719 2114 211 121554 Universal Photo (Phitobius mellioti) 1 1 2 2 2 2 2 2 2 2	5.7	= =	1 7945	1 7376	1911:37036	[ORF_o158 [Escherichia coli]	63	19	570
1 12 123 1	29		2479	2114	911 42656	unknown [Rhizobium meliloti]	3	7	366
1 23 24 440 91-141990 [Lipa-244 gene product [Bactlius subtilia] 61 2 492 442 91-141990 [Lipa-244 gene product [Bactlius subtilia] 61 3 906 722 91-14597 [Lipa-244 gene product [Bactlius subtilia] 61 4 724 726 91-14597 [Lipa-244 gene product [Bactlius subtilia] 62 5 727 726 91-14597 [Lipa-244 gene product [Bactlius subtilia] 62 6 727 726 91-14597 [Lipa-244 gene product [Bactlius subtilia] 62 7 727 726 91-14597 [Lipa-244 gene product [Bactlius subtilia] 62 8 727 726 91-14597 [Lipa-244 gene product [Bactlius subtilia] 62 9 727 728 91-14597 [Lipa-244 gene product [Bactlius subtilia] 62 1 72 72 72 72 72 72 72	70	6	1 6562	1 7353	91/1399821	(Rhizobium	6.3	9	792
1 12 1906 1914 1915 1914	75	7	223	1 927	91/149376	HisG [Lactococcus lactis]	63	45	105
1 21 1206 91446997	7 *	- 5	4912	1 4403	91 413950		63	7	510
8 10566 9448 gi 1200344 Cyteathionine garma-synthase [Maeophilus influences] 63 1 21 1508 gi 822657 sulfice reductase (MADPH) [Lavoprocein beta submit [Bacherichia oll] 63 4 2722 4123 gi 645594 hypothatical procein [Bacillus subtilis] 65 5 6044 7566 gi 60162 mure gene product [Macillus subtilis] 65 6 2721 7105 gi 41850 [dax [Erysipelochrix rhusiopathiae] 65 6 2721 7105 gi 41850 [dax [Erysipelochrix rhusiopathiae] 65 7 6044 7107 4184 gi 41850 [dax [Erysipelochrix rhusiopathiae] 65 8 7207 4184 gi 41876 [CoP-diglycerida synthesiae [Ercherichia coll] 65 9 7207 4184 gi 41876 [CoP-diglycerida synthesiae [Ercherichia coll] 65 9 7208 4208 gi 718286 [slongation fector Ts (taf) [Spicoplasma citril 65 9 7208 7208 gi 7208 [slongation fector Ts (taf) [Spicoplasma citril 65 10 7208 7208 [gi 7208 [slongation fector Ts (taf) [Spicoplasma citril 65 11 74 7208 [gi 7208 [slongation fector Ts (taf) [Spicoplasma citril 7208 7	16		9406	7220	gi 466997	metH2; B2126_C1_157 (Mycobacterium leprae)	63	7	1857
1 21 1508	91	:	10566	8776	91 1204344	cystathionine gamma-synthase [Haemophilus influenzae]	63	\$	6111
4 2722 4125 4126 414503 hypothetical protein [Bacillus subtilis] 63 5 2311 2306 91 48503	120		21	1508	91 882657	sulfite reductase (NADPH) flavoprotein beta subunit [Escherichia oli]	63	99	1488
7 6064 756 91 40162 mure gene product MacIllus subtilia) 63 8 2221 2106 91 1148503 ddax Eryatpalochrix rhusiopathiaa) 63 9 10445 10170 91 470 10470 10472 has similarity to DNA polymeras [Saccharomyces Niuvveri] 63 1 2 507 1238 91 115476 100Pedial/Seciel syntheras Escherichia coli 63 1 2 507 1238 91 115476 100Pedial/Seciel syntheras Escherichia coli 63 1 1 1 1 1 1 1 1 1	120	-	2272	4125	191 665994	hypothetical protein [Bacillus subtills]	63	34	1404
6 2121 2106 91 148503	127		1909	7566	191 (40162	murE gene product [Bacillus subtilis]	63	*	1503
126 10445 10170 91 4870 1 1 1 1 1 1 1 1 1	149	•	12321	1 2106	gi 148503	dnaK Erysipelothrix rhusiopathiae	63	0	216
2 507 1298 gi 143476 CDP-diglyceride synthacease [Escherichia coll] 63 4 1704 H164 qi 151932 [fructoso unzyme II (Rhydobacter capsulaturs] 61 5 3145 2951 gi 1314547 GIY COI ill grp IB protein (Podospora anserina) 63 13 11767 12804 gi 606100 ORP_coll5 Eacherichia coll 63 7 607 2283 gi 43354 arginyl-RNA synthecase (Cormabacterium glutamicum glutamicu	149	56	10445	10170	91 (4870		6	Ç	276
6 7107 R164 Gri 151912	164	~	1 507	1298	191 145476		63	Ţ	792
4 1704 1886 91 15866 Elongation (actor Ts (tsf) [Spiroplasma citri) 63 63 64 65 65 65 65 65 65 65	16.6	9	19907	#164	40 151932	[fructose enzyme 1] (Rhadobacter capsulatus)	5	÷	971.1
5 3145 2951 91 1314547	169	-	1704	1886	gi 152886	elongation (actor 7s (taf) (Spiroplasma citri)	69	•	181
13 11767 12804 91 606100	80		3145	2951	gi 1334547	GIY COI 114 grp IB protein (Podospora anserina)	63	5	195
2 607 2283 gi 433534 arginyl-FRMA synthatase Corynabacterium glutamicum pix A49936 A4996 63 argininetRMA ligase EC 6.1.1.19) - orynabacterium glutamicum 63	195	=	111767	112804	91 606100	ORF_0335 [Escherichia coli]	63	0.4	1038
14 15891 16489 gi 580828	201	~	607	2283	gi 433534 	arginyl-tRNA synthetase Corynebacterium glutamicum pir A49936 A49936	63	9	1677
1 74 907 gi 677945 AppA (Bacillus subtilis) 63 1 74 907 gi 677945 AppA (Bacillus subtilis) 63 3 944 1708 gi 185511 ONF YKRO54c (Saccharomyces cerevisies) 63 5 804 1070 gi 486511 ONF YKRO54c (Saccharomyces cerevisies) 63 63 1960	506	;	15893	16489	91 580828	N-acetyl-glutamate-gamma-semialdehyde dehydrogenase Bacillus ubtills	63	64	1 7 6 8
1 74 907 91 677945 AppA (Bacillus subtilis) 5 944 1708 91 1510558 cobyric acid synthase (Methanococcus jannaschii) 63 63 2 804 1070 91 486511 ONF YKR054c (Saccharomyces cerevisiae) 63 2 3606 1960 91 148221 DNA-dependent ATPASSE, DIA helicase (Escherichia coli) pir JS0137 8VECR0 63 2 3606 1960 91 148221 x ecq protein - Escherichia coli	220	- S	1163	5766	9 216334	secA protein (bacillus subtilis)	63	42	2004
3 944 1708 91 1510558 cobyric acid synchase (Methanococcus Jannaschii) 63 63	221	-	7.4	1 907	91 677945	AppA (Bacillus subtilis)	63	4	- ₹£
2 804 1070 gi 486511 ONF YKRO54c [Saccharomyces cerevisiae] 63	227	-	944	1708	91/1510558	cobyric acid synthase [Methanococcus jannaschii]	63	46	165
2 3606 1960 (91 148221 DMA-dependent ATPase, DIA helicase (Escherichia coll) pir JS0137 BVECRQ 63	261	~	804	1070	91 486511	ORF YKR054c [Saccharomyces cerevisiae]	63	45	267
	269	~	3606	1960	(91)148221	DNA-dependent ATPase, DNA helicase (Escherichia coli) pir JS0137 BVECRQ recQ protein - Escherichia coli	5	3	1647

TABLE 2

S. dureus - Putative coding regions of novel proteins similar to known proteins

CYSTATHIONINE GARMA-SYNCHASE (NYCOBACTERIAN ISPARSO) INCTA. MICHOL. CYSTATHIONINE GARMA-SYNCHASE (ET 4.2.95.3) O-SUCCINITIONINE (TRIOL). 65 19 10 10 10 10 10 10 10	Contig	ORF	Start (nt.)	Stop (nt)	match	match gene name	s sim	1 ident	length (nt)
1 2 248 3134 Gillossia Protective (Beccilius abbtilis) 60 61 62 64 64 65 65	278	œ	7417	6176	gi 099273	gamma-synthase (Mycobacterium leprae) E GaMHA-SYNTHASE (EC 4.2.99.9) 0-SUCCIN	69	-	1242
1 2 214 3134 3134 314 31500 Control of the control	287	1 2	1 738	1733	91 405133	putative (Bacillus subtilis)	63	38	966
2 1246 1214 121	295	-	- 2	748	91,1239983	hypothetical protein (Bacillus subtilis)	63	1,1	747
1 125 1216	328	<u></u>	2148	3134	91 45302	protein (AA 1 - 437) [Pseudomonas aerugino ed-chain amino acid trport protein braß	63	36	987
1 1756 1051 105	1 362	1 2	11026	1216	sp +35136 SERA_		63	3.8	411
1 151 1715 [011120344 [VigNY [Bacillus subtilis] 151 1715 [011120344 [VigNY [Bacillus subtilis] 1715 [011120342] [0111	404	-	326	1051	91 1303816	YdeZ (Bacillus subtilis)	69	35	726
1 431 227 91 11213 Sulfate parmease (9to start coden) [Synachococcus PCC501] 65 41 11 12 1318 91 103640 Irransport After incamport protein Synachococcus 65 41 11 11 12 1319 91 103640 Irransport After protein Synachococcus 91 91 91 91 91 91 91 9	40\$		2101	1715	91/1303914		63	42	387
1 177 2735 [31] 1205402 Itemaport ATP-binding protein (Streptococcus presumentae) 191 19	906		451	427	gi 142152 	codon) (Synechococcus PCC6301) ransport protein - Synechococcus sp.	63	7	225
4 3575 2679 91 33266 19-kilobalton procein (Streptococcus preumonise) sp e42362 228K_STRRM 39 ND 63 19 3 1347 2155 91 318999 Orff (Lactobacillus sake) 63 40 1 2 574 91 546917 Cook (Bacillus subtilis, E36, Peptide, 132 as) 63 35 2 146 1064 91 41365 Initiate reductase (Machanococcus jannaschii) 63 52 3 147 220 91 510994 Serine aminotransferase (Machanococcus jannaschii) 63 52 4 27 215 91 81340 Nord protein (Farecoccus denitrificans) 63 54 5 1 2 400 91 47366 Open reading frame (Streptomyces lividans) 63 77 7 1 2 400 91 4736 Orff (Lactococcus lactis) 63 27 8 1 571 287 O 154133 W. Jannaschii predicted coding region WJ132 (Methanococcus Jannaschiii 63 27 8 1 154 154 154 154 154 154 154 154 154 154 154 9 1 154 154 154 154 154 154 154 154 154 154 1 1 1 1 1 1 1 1 1	415	1 2	1048	2718	91 1205402	[transport ATP-binding protein [Haemophilus influenzae]	63		1671
1 2 574 gil 54899 Orf4 [Laccobacillus sake] 63 640 65 65 65 65 65 65 65 6	426	-	3575	2679	91 33268	procein (Streptococous pneumoniae) sp P42362 P29K STRPM 29 EIN IN PSAA 5 REGION ONE)	63	96	897
1 2 574 94 546917	505	- 3	1347	2195	91 1418999	orf4 (Lactobacillus sake)	63	1 07	678
2 146 1084 91 13985 InifS-like gene [Lactobacillus delbrueckii] 63 45 427 215 92 92 92 92 93 93 93 93	507	-	~	574	-	subtilis, E26, Peptide, 192	63	1 35	573
1 427 215 91 510994 Serine aminotransferase (Nethanococcus jannaachii) 63 29 1 1 2 230 91 517356 Initrate reductase (NADH) [Lotus japonicus] 63 52 1 1 2 400 91 517356 Initrate reductase (NADH) [Lotus japonicus] 63 35 1 1 1 2 400 91 7166 Open reading frame (Streptomycas lividans) 63 41 1 1 1 2 400 91 7166 Open reading frame (Streptomycas lividans) 63 41 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	562		1.46	1084	[91 43985	nifS-like gene [Lactobacillus delbrueckii]	63	45	666
1 3 230 9i 517356 Initrate reductase (NADH) [Lotus japonicus] 63 52 8 8 8 8 8 8 8 8 8	675	-	427	215	gi 1510994	serine aminotransferase [Methanococcus jannaschii]	63	29	213
1 3 392 91 881940 Nord procein (Paracoccus denitrificans) 1 2 400 91 47168 Open reading frame (Streptomyces lividans) 63 41 1 1 1 22 321 91 1261932 Unknown (Mycobacterium tuberculosis) 63 41 1 1 1 1 22 321 91 12425 OPF1 (Lactococcus lactis) 63 63 27 1 1 1 1 1 1 1 1 1	686	-	7	230		Initrate reductase (NADH) [Lotus japonicus]	63	52	228
1 2 400 91 4768 lopen reading frame (Streptomyces lividans) 1 2 400 91 261932 lunknown (Mycobacterium tuberculosis) 1 2 321 91 1261932 lunknown (Mycobacterium tuberculosis) 2 41 1 1 1 1 1 1 1 1	101	-	e -	392		protein (Paracoccus	63	- (0	390
1 571 287 gi 261932 unknown (Mycobacterium tuberculosis]	720		7	000	91 47168		63	35	399
1 22 323 g1 149445 ORF1 (Lactococcus lactis)	611		1571	2.87	oi 1261932	unknown [Mycobacterium tuberculosis]	63	41	285
1 194 399 9 1511235 W. jannaschii predicted coding region W.1232 (Methanococcus jannaschiii 63 27 1 1154 618 9 1204277 hypothetical protein (GB.U00019_14) [Haemophilus influonzae] 63 38 1 1 3 542 9 770943	1.06	<u>-</u>	22	321	gi 149445	ORF1 (Lactococcus lactis)	63	27	300
1 1154 618 91 1204277 hypothetical protein (CB:U00019_14) (Haemophilus influonzae 63 38 1 1 3 542 91 770943 urea amidolyase [Bacillus subtilis] 63 63 63 64 1 1 1 1 1 1 1 1 1	972		794	399	91 1511235	H. jannaschii predicted coding region HJ1232 (Methanococcus jannaschii	63	12	396
1 3 542 gi 770943 urea amidolyase [Bacillus subtilis]	1085	-	1154	618	gi 1204277	protein (CB:U00019_14)	63	38	537
1 3 482 pir 549892 5498 regulation protein - Bacillus subtilis 63 44 1231 617	1094	-		542		urea amidolyase (Bacillus subtilis)	63	1 66	540
1 1231 617 yr 493017 endocarditis specific antigen [Enterococcus faecalis] 63 45	1106	-		482	pir 549892 5498		63	*	480
	1113	-	1231	617	91 493017	endocarditis specific antigen [Enterococcus facelis]	63	45	615

5. aureus - Putative coding regions of novel proteins similar to known proteins

Concig	ORF	Start	Stop (nt)	match acession	madch gene name	E 15	J ident	length Int)
1100			569	sp P33940 YoJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	63	9 +	69)
1325	-	-	204	91926989	pl00 protein [Borrelia burgdorferi]	63	01	204
1814		3	245	[91]1303914	YqhY (Bacillus subtilis)	63	34	243
2021	-	867	250	(pir(c)3496 c)34	hisC homolog - Bacillus subtilis	5	9 7	249
2325			193	 qi 436132	product is similar to TmpA of transposon Tn554 from Staphylococcus ureus [[Clostridium butyricum]]	3	9	192
2335		-	195	91 1184298	[flagellar HS-ring protein (Borrelia burgdorferi)	63	47	198
2406	-	451	722	91 1041785	rhoptry protein [Plasmodium yoelii]	63	13	225
2961	~	136	360	01 312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]	63	52	225
2965	-	-	1 402	91 1407784	orf-1; novel antigen (Staphylococcus aureus)	63	\$0	1 405
2987		583	293	91 1224069	emidase (Moraxella caterrhalis)	63	35	1 162 1
2994	-	266	1.135	91 836646	phosphoribosylformimino-prais kmtoisomerase Rhodobecter pheeroides	63	5.1	132
3043	-	440	252	[41]1480237	phenylacetaldehyde dehydrogenasa (Escherichia coli)	3	0	189
307	-	609	007	qi 1487982	intrinsic membrane protein [Mycoplesma hominis]	S	36	210
3139		~	712	gi 439126	glutamate synthase (NADPH) [Azospirillum brasilense] pir A49916 A49916 glutamate synthase (NADPH) (EC 1.4.1.13) - zospirillum brasilense	63	47	216
1625	-	187	198	(4) (62307)	One bod; partative (factor bephase 14.41)	3	æ	761
3658	 : <u>-</u>		399	191 1303697	YrkA (Bacillus subtilis)	6.3	7.	1 998
3659	-		395	91/1256135	YbbF (Becillus subtilis)	63	8	393
3783		720	361	91 11256902	Pyruvate decarboxylase isozyme 2 (Swiss Prot. accession number P16467) [Saccharomyces cerevisiae]	63	×	1 360
3900		338	171	sp P10537 AMYS_	BETA-ANYLASE (EC 3.2.1.2) (1.4-ALPNA-D-GLUCAN MALTOHYDROLASE).	63	3	169
4309	-		176	pir A37967 A379	neural call adhesion molecule Ng-CAM precursor - chicken	63	72	174
(4367	-	1	195	91 1121932	Per6p gene product (Pichia pastoris)	63	90	261
4432		-	312	91/101259	HMG-CoA reductase (EC 1.1.1.88) Pseudomonas mevalonii) pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC.1.1.1.88) Pseudomonas s.:	63	15	112
4468	-	9	800	01 296464	ATPase [Lactococcus lactis]	63	96	100
133		1411	2400	gi t53675	ragatose 6-P kinase Streptococcus mutans	62	-	066
36	6	59.85	6218	191 1490521	[HASH] [Homo sapiens]	62	51	234

S. aureus - Putative coding regions of novel proteins similar to known proteins

t ident length	33 350	86.9	41 804	1 55 744	35 35	34 558	31 765	44 822	1 43 474	18 2172	42 963	615	1 109 100	NOT NOT	37 1191	44 852	1 105 05	41 867	1 150 27	38 960	38 282	1 3000 11	
m s s	29	62	62	62	5	62	3	62	62	62	62	62	G	62	62	62	62	62	62	62	62	62	
match gene name	ceuE gene product (Campylobacter coli]	[H. influenzae predicted coding region HIN1279 [Haemophilus influenzae]	ORF2 (Alcaligenes eutrophus)	[orf] (Haemophilus influenzae]	EIIB domain of PTS-dependent Gat transport and phosphorylation Escherichia coli)	highly hydrophobic integral membrane protein (Bacillus subtilis) sp[842953]TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG.	Shows similarity with ATP-binding proteins from other ABC-transport porons, Swiss Prot Accession Numbers P24137, P08007, P04285, P24136 Escherichia coli)	actVA 4 gene product (Streptomyces coelicolor)	UDP-N-acetylmuramoylalanineD-glutamata ligase [Bacillus subtilis]	S'-nucleotidase precursor [Vibrio parahaemolyticus]	[phosphoglycerate dehydrogenase [Methanococcus jannaschil]	mismatch repair protein Streptococcus pneumoniae pir C28667 C28667 DJA mismatch repair protein hexA ~ Streptococcus neumoniae	ATP-binding protein (Streptococcus mutans)	L-fucose operon activator (Naemophilus influenzae)	AppC (Bacillus subtilis)	product similar to E.col. PFFA2 protein (Bacillus subtilis) pir 655418 555418 ywkE protein - Bacillus subtilis sp P45873 HEHK_BACSU POSSIBLE PROTOPORPHYRINGEN OXIDASE (EC. 3.3).	unknown (Becillus subtilis)	replicative DNA helicase (Maemophilus influenzae)	X gene product (Bucillus sphaericus)	P35 gene product (AA 1 - 314) (Eschorichia coli)	phenylalanyl-tRMA synthetase alpha subunit (Gly294 variant) unidentified cloning vector	GTG start codon (Lactococcus lactis)	hymnethatical protein (CD.012040) Historyland against alism
match	19111107531	91 1222058	gi 695280	91/171234	91 508174	91(755152	gi 470683 	91 46816	q.i. 39993	191/121/191	91 1511047	91 153655	91 153741	91 1204866	91 677947	7,4,5,5,1,0	91 467456	191 1205807	191 40067	91 42219	91 403936	91 308861	1211044053
Stop (nt)	121	111589	120329	1780	6350	529	9014	7494	1320	9205	3089	520	1068	1562	5633	6004	554	6725	1153	15632	1447	5089	100
Start (nt)	2	10912	119526	2523	6646	7	A250	8315	1793	7034	4051	. 2	466	6855	6823	6855	24	7591	(05,1	14673	1166	2084	
ORF 1.0	-	115	25	~	6	- - -	2	e	-		_		~	~	-		-	120	-	115	~	7	
Cont 19 10	1,1	3.8	3.8	57	5.7	5.8	67	69	80	. X	100	102	112	114	911	124	148	149	G	164	165	991	

5 aureus : Putative coding regions of novel proteins similar to known proteins

. 	ORF 110	Start	Stop (nt)	match acession	match gene name	Ein	* 1dent	length
1.63	-	1282	1310	9i 143045	hemy (Bacillus subcilis)	62	45	1212
000	-		956	91 142419	ATP-dependent nuclease (Bacillus subtilis)	62	32	954
237	- 2	935	1966	91 41695	hisC protein [Escherichia coli]	62	- -	1032
261	-	4004	2605	(91/143121	ORF A: putative (Bacillus firmus)	62	4.2	1404
299		-	4 7 1 6 1 6 1	91,467441	expressed at the end of exponential growyh undur conditions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) gi 467441 expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil	53	Ç	G-72
304		5018	3819	91/153015	FemA protein (Staphy)ococcus sureus	62	\$	1200
324		~	262	91 142717	cytochrome aal controlling protein (Bacillus subtilis) pir Al3960 Al3960 cta protein - Bacillus subtilis sp Pl2946 CTAA_EACSU CYTOCHROME AAl CONTROLLING PROTEIN.	62	2	261
328	7	692	1207	91 581088	methionyl-tRNA formyltransferase (Escherichia coli)	62	39	606
200	•	1641	1631	[41]149960	uridine 5'-monophosphate synthase [Hethanococcus jannaschii]	62	36	797
155	-	7	370	91 145925	fecB (Escherichia coli)	53	75	369
365	-	6626	6804	qi 413943	ipa-19d gene product (Bacillus subtilis)	62	2.4	177
369	~	2744	1626	pir A43577 A435	regulatory protein pfoR - Clostridium perfringenu	62	<u>-</u>	6111
3.10	-		1 264	191 40665	Incla-ylucosidase (Clostridium thermocollum)	5		167
415	-	2,109	1 1176	91 1205401	transport ATP-binding protein (Haemophilus influenzae)	62	35	1 6.A
429	-	1578	1 790	1911:046024	Na+ ATPase subunit J [Hycoplassa genicalium]	62	0	189
‡	~	704	1369	91 581510	nodulation gene; integral membrane protein; homology to Rhizobium equainosarum nodi (Rhizobium loti)	29	۲.	999
£17		1 251	1869	pin A18440 A484	ring-infected erythrocyte surface antigen 2, RESA-2 - Plasmodium falciparum	62	=	6111
485	-	241	1 1707	91 17934	betains aldehyd dehydrogenase (Beta vulgaris)	62	Ç	1467
4.87	_	1141	1311	91 149445	ORF1 (Lactococcus lactis)	62		171
464	~	1134	1313	91 166835	ribulose bispliosphate carboxylase/oxygenase activasa (Arabidopsis haliana)	62	37	1 081
518	-	193	982	Pgi 153491	O-methyltransferase (Streptomyces glaucescens)	62	39	069
534	7	169	2522	91 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	62	35	2154
551	9	1 (37)	4820	[6:[51113]	fertic uptake regulation protein (Campylobacter jejuni)	62	1. 71	450
574	-	-	07.5	191 153600	enterotoxin B [Staphylococcus aureus]	• 5	3	570
1	1 1 1 1 1		1	· · · · · · · · · · · · · · · · · · ·				

5 aureus - Putative coding legions of novel proteins similar to known proteins

Contig	DAF 1D	Start (nt)	Stop (nt)	match acession	ישור קרן gene חמשפ	E 5 2	t adent	length
290	- 5	344	1171	191 40367	ORFC Clostridium acetobutylicum	62	1 37	- C
655	-	396	- R30	91 147195	phnB protein (Escherichia coli)	62		435
959	-	2	478	191 1205451	cell division inhibitor (Naemophilus influenzae)	29	36	477
676	-	69.2	348	91 1511613	methyl coensyme H reductase system, component A2 (Nethanococcus jannaschil)	62	36	345
687	-	493	248	191 49272	Asparaginase (Bacillus licheniformis)	62	46	246
1 700	7	1267	914	91 1205822	hypothetical protein (CB:X75627_4) [Haemophilus influenzae]	62	0,	1 87.9
840	~	2171	1041	gi 1045865	M. genitalium predicted coding region MGIRI [Mycoplasma genitalium]	62	36	675
A64	-	898	1491	91 1144332	decxyuridine nucleatidohydrolase [Homo sapiens]	62	38	1 165
916	-	35	400	gi 413931	ipa-7d gene product [Bacillus subtilis]	62	45	366
1011	-		177	9111510649	aspartokinase [[Methanococcus jannaschii]	62	07	177
1084		19	609	91 688011	AgX-1 antigen (human, infertile patient, testis, Peptide, 505 aa)	62	1 60 1	591
1103	- 	r 	203	gi 581261 	ONF homologous to E.coli metB (Herpetosiphon aurantiscus) pir S14030 514030 Hypothitical protein - Herpetosiphon aurantiscus fragment)	62	51	201
1217	-	463	233	gi 460025	ORF2, putative [Streptococcus pneumoniae]	62	-	211
1533	-	644	7.	91 (413968	line-44d gene product (Bacillus subtilis)	62	- 44	231
1537	-		257	gi 1510641	aleny -tRNA synthetase [Methanococcus jannaachii]	62	23	255
2287	- ;	٠,	161	[gi 185956	minC gone product (Protous mirabilis)	62	45	1 65.1
2386	-	c	245	gi 285708	nontoxic component [Clostridium botulinum]	62	7	243
2484	-	331	167	gi 142092	DNA-repair protein (recA) (Anabaena variabilis)	62	35	165
2490	:	798	000	gi 581648	[epiB gene product [Staphylococcus epidermidis]	62	42	199
9101	-	526	300	01 710022	uroporphyrinogen III (Bacillus subtilis)	62	51	1 62
3116	-	-	213	91 466883	[nifS; Bl496_C2_193 [Mycobacterium leprae]	62	-	213
1 3297		623	413	[91/475715	acetyl coenzyme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	62	42	411
3609		31	276	gi 1408501 s	homologous to N-acyl-L-amino acid amidohydrolase of Bacillus stearothermophilus (Bacillus subtilis)	62	 	246
3665		584	402	gi 151259 	HMG-CoA reductase (EC 1.1.1.88) Pseudomonas mevalonii pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	62	0	183
1733	-		374	91 1353197	[thioredoxin reductase [Eubacterium acideminophilum]	62	42	372

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (mt)	Stop	natch	הימית קרוש מים הימים ויים הימים		. ident	length (nt)
3898	-	1 1 1	237	91 153675	tagatose 6-P kinase (Streptococcus mutans)	62	4.5	237
4027	-	283	143	01 330705	homologue to gene 30 (as 1-59); putative (Bovine herpsevirus 4)	62	7	141
4109	-		365	91 41748	hadw protein (AA 1-520) (Escherichia coli)	62	45	363
()()	-		303	9111303813	Yqew [Bacillus subtilis]	62	\$	303
0867	-	530	1 267	gi 1235684	mevalonate pyrophosphate decarboxylase (Saccharomyces cerevisies)	62	\$5,	264
1494	-	2	1 256	91 510692	enterotoxin H [Staphylococcus aureus]	62	7	255
4598	-	411	1 223	91 763513	ORF4: putative (Streptomyces violaceoruber)	62	(5)	189
1624	-		222	91 41748	hady protein (AA 1-520) [Escherichia coli]	62	-	222
5	- 2	K C 7	1912	gt 928831	ORF95; putative [Lactococcus lactis phage BK5-7]	61	36	157
-		320	162	pir c33356 c333	prothymosin alpha homolog (clone 32) - human (fragment)	19	- 57	159
16	=	10001	11938	19111205391	pothetical	- 19	7	9.6
32	-		104	191 1066504	[rxo-bata 1,] glucanase [Cochliobolus carbonum]	1.9	20	519
: •		919	1107	91 1510864	glutamine transport ATP-binding protein Q [Methanococcus jannaschil]	61	7	492
\$	-	1 3082	4038	01 1109686	Prox (Bacillus subtilis)	19	\$	957
e	8	7118	17504	91 498839	ORF2 (Clostridium perfringens)			180
5	- 6	4605	5570	ut 388269	trac (Plasmid pAD1)	61	~	996
0.9		1 1689	2243	91/1205893	hypothetical protein (GB:U00011_3) [Haemophilus influenzae]	9	32	\$55
79	- 6	5559	5122	91 854656	Na/H antiporter system ORF2 (Bacillus alcalophilus)	61	ec :	438
19	- 5	4330	5646	91 466612	nika Escherichia coli!	19	36	1317
7.	- 7	2400	1504	9111204846	i ii	10	0	897
88	-	2198	1101	91 1498756	[amidophosphoribosyltransferase PurF [Rhisoblum etli]	19	7	1098
86	-	1 1995	1582	91 1499931	[M. jannaschli predicted coding region MJ1083 (Methanococcus jannaschiil	19	7	1 717
	-	74	649	gi 1518679	orf [Bacillus subtilis]	- 19	*	576
66	7 -	2454	1990	, git413958		61	100	199
134		6223	5123	gi 556881	Similar to Saccharomyces ceretiste SUAS protein [Bacillus subtilis] pir[s49388 S4938 ipc-29d protein - Bacillus subtilis sp P39153 YMLC_BACSU HYPOTHETICAL 37.0 KD PROTEIN IN SPOIIR-GLYC HTENGENIC REGION.	19	3	11011
125	-	1668	1831	91 1491643	ORFA gene product (Chloroflexus aurantiacus)	61	\$	864

10	
15	
20	
25	
30	
35	
40	

S. aureus - Putative coding regions of novel proteins similar to known proteins

1	:		1			1		1	
Contig	108 F	Start (nt)	Stop	match acession	date) gone name	Sin	1 ident	length (nt)	
132		1350	627	pir PQ0259 PQ02	hypothetical protein 1 - Enterococcus faecalis plasmid pAM-beta-1 [fragment]	1.9	\$	624	
149		1 3617	3075	gi 11144332	decxyuridine nuclectidohydrolase [Homo sapiens]	61	0.7	543	
	2_	0698	7869	gi 160047 	mic repeat antigen antigen precursor	19	35	822	
168	-	1915	2361	gi 1499694	HIT protein, member of the HIT-family [Methanococcus januaschii]	61	7	447	
171	6	1 9675	7948	19: 1467416	similar to SpoVB Bacillus subtilis	19	38	1728	
174	-	1042	2340	01 216374	glutaryl 7-ACA acylase precursor (Sacillus laterosporus)	6.1	- 67	1299	
190	-	1 5034	7.7	1911409286	bart (Bacillus subtilis)	6.1	37	924	
236	- :	~	190	91415861	eukaryotic initiation factor 2 beta (elf-2 beta) [Oryctolagus uniculus]	19	29	1 6 8 1	
227	- ,	4161	5048	91 216341	ORF for methionine amino peptidase (Bacillus subtilis)	19	17	888	
238	-	1959	3047	91 409543	CbrC protein [Erwinia chrysanthemi]	61	38	1089	
247	-	- 2	694	191 537231	herichia	19	38	693	
247		67A	1034	gi 142226	chub protein (Agrobacterium tumefaciens)	19	0.4	357	
257		1 3523	2627	gi 699379	glvr-1 protein (Mycobacterium leprae)	19	0.7	897	
1 268	7	1 3419	3051	gi 40364	ORFA1 (Clostridium acetobutylicum)	61		369	
275	-	4621	4827	91 1204848	hypothetical protein (GP:M87049_57) [Haemophilus influenzae]	61	36	207	
217			1845	gi 784897	beta N-acetylhexosaminidase (Streptococcus pneumoniae) pir [A56190 As6190 Mannosyl-glycoprocein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	5	2	
27A	-	8003	1 7032	gi 467462	cysteine synthetase A (Bacillus subtilis)	61	43	972	
278	<u>-</u> _	9878	8535	91 1205919 	Na* and Cl- dependent gamma-aminobutryic acid transporter [Haemophilus influenzae]	61	38	1344	
283	-	-	366	gi 755607	polyA polymerase (Bacillus subtilis)	61	36	366	
288	~ -	1918	1496	91 388108	cell wall entymenterococcus faecalis	61	43	423	
291		A6	334	gi 454265	FBP3 (Petunia hybrida)	61	3.8	549	
31.8		1104	769	91 290531	similar to beta-glucoside transport protein (Escherichia coli) sp Pl1451 PTIB_ECOLI PTS SYSTEM, ARBUTIN-LIKE IIB COMPONENT PHOSPHOTRANSFERASE ENZYME II. B COMPONENT) (EC 2.7.1.69).			411	
330	- 5	1912	1190	91 1001805	hypothetical protein (Symechocystis sp.)	919	10	721	

aureus - Putative coding regions of novel proteins similar to known proteins

Cont 1g 15	CRF	Starr	Stop	match	match gene name		1 sdent	length (at)
385	2	1513	1025	91 533098	Doad protein (Bacillus subtilis)	61	~	4.R9
426		794	661	[u1 1303853	YqoF Becillus subtilis	- 19	-	396
438	-	018	1421	ui 1293660	AbsA2 (Streptonyces coelicolor)	61	36	612
454	-	1580	792	91 733522	phosphatidylinositol-4, 5-diphosphate 3-kinase [Dictyostelium iscoldeum]	- 19	000	1 687
797	~	784	095	19111123120	product (Caenorhabditis elegans)	19	38,	225
470		6077	7367	qi 623073	ORF360; putative (Bacteriophage LL-H)	- 19	47	1281
\$03	-	554	279	91 467484	unknown [Bacilius subtilis]	19	45	276
555		1916	1296	gi 141800	anthranitate synthase glutamine amidotransferasu (Acinetobacter alcoaceticus)	19	?	621
695	-	1111	857	91 467090	R2235_C2_195 (Mycobacterium leprae)	19	42	855
585	~	196	803	sp P36686 SURE_	SURVIVAL PROTEIN SURE HONOLOG (FRAGHENT).	9	33	159
592	-	1694	1422	91 1221 602	immunity repressor protein (Heemophilus influencee)	19	32	1 675
603	-	\$	1357	91 507738		5		315
699		2467	1235	91 1146243	[22.4% identity with Escherichia coli DNA-damage inducible protein: putative (Bacillus subtills)		7.	1233
675		805	1101	911403373	dycerophosphoryl disater phosphodiesterase (Bacillus subtilis) pir 537251 537251 qlycerophosphoryl disater phosphodiesterase - acillus aubtilis	19	36	297
1 703	-	9591	829	191 (51)181	ORF_f470 [Escherichia coli]	13) 2 (N2N
728	-	1628	916	91 (806281	DNA polymerase I (Bacillus stearothermophilus)	61	19 1	813
R21	-	61	318	911709992	hypothetical protein [Bacillus subtilis]	1.9	96	258
958	7	2313	1567	015609116	[portal protein gp3 (Bacteriophage HK97)	19	0,	147
923	_	1081	542	91 [143213	[putative (Bacillus subtilis)	119	38	240
1124	_	65	1 170	91 1107541	[C33D9.8 [Caenorhabditis elegans]	61	26	312
1492	-	548	276	91 406397	unknown [Mycoplasma genitalium]	1 19	32	173
1 1602	-	9.	318	911733522	phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostelium iscoideum]	19	7.	173
2500	=======================================	1.577	790	91 1045964	hypothetical protein (GB:U1400)_297) [Mycoplesma genitalium]	61	110	286
2968	-	7	808	91 397526	clumping factor (Staphylococcus aureus)	119	25	807
3076	-		248	91 169373	ONF 1 [Lactococcus lactis]	61	7	246

S. aureus - Putative coding regions of novel proteins similar to known proteins

sim Vident length (nt)	61 39 105	61 42 738	50	61 (41 219	61 46 396	61 47 399	61 45 383	61 24 303		61 42 402	61 46 345	61 50 336	231	61 50 270	61 35 171	61 47 267	61 50 201	60 43 1128
match gene name	homologous to N-acyl-L-amino acid amidohydrolase of Bacillus stearothermophilus [Bacillus subtilis]	YqeW [Bacillus subtilis]	beta-N-acetylhexosaminidase Streptococcus pneumonies pir A56390 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	Respiratory nitrate reductase (Bacillus subtilis)	AppD (Bacillus subtilis)	beta-N-acetylhexosaminidase (Streptococcus pneumoniae) pir A56390 Mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	beta.N-wcetylhexosaminidase Streptococcus pneumoniae pir A56390 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	ipa-29d gene product [Becillus subtilis]	unknown (Becilius subtilis)	HrsA (Escherichia coli)	beta-N-acetylhexosaminidase Streptococcus pneumonise pir[A56190 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	hadM yene of Ecopril gene product (Escherichie coll) pir S36437 536437 hadM protein - Escherichia coll pir S09629 S09629 hypothetical protein A - Escherichia coll (SUB 40-520)	beta.N-acetylhexosaminidase [Streptococcus pneumonias] pir N56390 A56390 nannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	ribokinase [Escherichia coli]	beta.W.ecetylhexosaminidase [Streptococcus pneumoniae] pir 556390 Asimposyl-glycoprotein ndo-beta.N.ecetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	HrsA (Escherichia coli)	homologous to Nacyl-L-amino acid amidohydrolase of Bacillus stearothermophilus (Bacillus subtilis)
match	01 1408501	[91]1303813	911/84897	91 1009366	91 677943	91 784897	91 784897	191113399"	q1 413953	101 528991	91 976025	91 784897	91 450688	91 784897	91 147516	gi 784897	' qi 976025	gi 1408501
Stop (nt)	401	740	442	220	398	401	383	359	274	402	345	336	233	273	172	268	227	5536
Start (nt)	20.7	1477	7	7	-			661	546	-	-	-	G	542	2	~	27	6663
ORF				-	-			- -	- -	-	-		-		-		- -	4 0
Contag	609(3662	3672	3724	3728	3884	3971	4038	1041	4047	4102	4155	4 2 6 8	4374	4389	4621	4663	-

5 aureus Putative coding regions of novel proteins similar to known proteins

5

	11 01 10 10 10 10 10 10 10 10 10 10 10 1	OKF	Start (nt)	Step	metch	Talich gene name	E	1 ident	length (nt.)
14	11		3426	11125	91 410748	ring-infested er/thlocyte surface antigen (Plasmodium falciparum) pir/A25526/A2536 ting-infected erythrocyte surface antigen recursor - plasmodium falciparum (strain FC27/Papua New Guinea) sp Pl3830 RESA_PLAFF Ring-INFECTED ERYTHROCYTE SURFACE ANTIGEN RE	9	. .	COC
12 11917 12930 91 388109 1 26 469 91 388109 1 12047 1025 91 1418626 1 2047 1025 91 141822 1 2047 1025 91 141882 1 2047 1025 91 414824 1 2047 1025 91 414824 1 2047 2043 91 414824 1 27842 26430 91 4180429 1 1 1 1 1 1 1 1 1		i	111035	110313	19111217651	carbonyl reductase (NADPH) (Rattus norvegicus)	0.9	2.8	723
1 26 469 91 388109 1 1 26 469 91 388109 1 364 452 91 4872 1 2047 1025 91 14882 1 2474 3607 91 468046 1 1 27842 25430 91 46874 9074 91 448724 1 27842 25430 91 46874 9 1 1188 91 1130864 1 2 357 1619 91 467124 1 787 395 91 1518653 1 1 1 1 1 1 1 1 1	16	112	(11917	112930	dx 1001453		0,	7.	1014
1	13	-	26	699	[91]388109	regulatory protein [Enterococcus faecalis]	0,	ţ	3
4 4364 4522 91 4872 1 2047 1025 93 142822 1 1 2047 1025 93 142822 1 2474 3607 91 468046 10 6756 7769 91 468046 10 6756 7769 91 468744 1 2 173 368 91 1303864 1 787 395 91 1303864 1 787 395 91 1518853 1 1 1 1 1 1 1 1 1	3.7	=	11001	9834	91 1336656	Or {1 [Necillus subtilis}	09	04	186
1 2047 1025 91 142822 10 6756 7769 91 414234 10 6756 7769 91 414234 10 6756 7769 91 414234 10 17842 25430 91 468764 12 173 1088 91 1303864 12 173 1088 91 1467124 11 1787 195 91 146813 11 1787 195 91 146613 11 1188 91 1466613 11 1188 91 1466613 10 1349227 10 12 12 12 12 12 12 12	39	-	4364	1 4522	91 4872		0,	47	159
4 2474 3607 91 468046 10 6756 7769 91 414234 10 8874 9074 91 414234 11 127842 26430 91 468046 12 173 388 91 1518853 11 1 1 1188 91 1518853 1 1 1 1188 91 1480429 1 1 1 1 1 1 1 1 1	77	-	1 2047	1 1025	9 1142822		0,	3.9	1023
10 6756 7769 91 414234 10 10 6756 7769 91 416234 11 12 17842 26430 91 466764 12 173 368 91 1303864 13 173 395 91 1518653 14 1787 395 91 1518653 14 1787 395 91 1518653 15 1881 91 1480429 11 11 11 11 11 11 11	•	-	1 2474	1 3607	91 468046	esterase (Bacillus	09	07	1134
10 8874 9074 91 141949	*	101	1 6756	6922	91 414234	thif [Escherichia coli]	0,9	52	₹101
1	45	120	1 8874	₹06	9: 343949	(var1(40.0) [Saccharomyces cerevisiae)	0.9	*	201
2 173 188 91 1301864 1 2 157 1519 91 1467124 1 1 1186 91 1518653 1 1 1186 91 1518653 1 1 1 188 91 1466513 1 1 1 1 1 1 1 1 1	95	Ξ	127842	26430	gi 468764	mocR gene product [Rhizoblum mellloti]	09	35	1413
2 357 1619 91 467124 1 787 395 91 1518853 6 4735 3881 91 1480429 7 5996 4923 91 466613 7 5996 4923 91 466613 8 7166 71,744 91 472215 6 3212 4069 91 467425 9 7158 7430 91 143092 9 9127 90515 91 143092 9 9127 90515 91 143954	09	-	1 173	1 388	01 1303864		0.9	33	216
1 787 395 91 1518853 1 1188 91 14880429 6 4735 3881 91 14880429 1 5996 6923 91 466613 1 949 476 91 1510925 6 3212 4069 91 407275 6 3212 4069 91 407425 1 9127 10515 91 141954 1 9127 10515 91 141954 2 4630 3134 91 1524280	63		1 357	1619	gi 467124		09	43	1263
1 1 1188	69	-	1 787	395	gi 1518853	OsfA (Salmonella typhimurium	09	36	193
6 4735 3881	*	-	-	1188	91)1480429	putative transcriptions regulator [Bacillus stearothermophilus]	09	30	1188
7 5996 4923 91 466613 1 949 474 91 1510925 6 3212 4069 91 472.15 10 7158 7430 91 143092 11 9127 10515 91 141954 12 10499 11656 91 141954 2 4630 3134 91 1524280	92	- 1	1 4735	1881		transmembrane protein (Escherichia coli)	09	٦٤ ا	855
1 949 476 9111510925 6 3212 4069 911467425 10 7158 7430 911143092 11 9127 10515 9111252259 12 10499 11656 9111524280	9.2	-	1 5996	1 4923	91 (6661)	nikB [Escherichia coli]	9	38	1074
6 7186 7478 91 472715 Aricassory protein [Carnohaccerium pignifola] 6 3212 4069 91 467425 Unknown [Bacillus mubtilis] 10 7158 7430 91 143092 Acetolactate synthese small mubunit [Bacillus subtilis] 10 7158 7430 91 143092 Acetolactate synthese small mubunit [Bacillus subtilis] 10 1158 10 11555559 O-Succinylbenzoic acid (OSB) CoA ligase [Staphylococcus aureus] 11 9127 10515 91 141954 Deta-ketothiolase [Alcaligenes eutrophus] 2 4630 3134 91 1524280 Unknown [Mycobacterium tuberculosis]	9.3	<u>-</u>	949	1076	91 1510925	coenzyme F420-reducing hydrogenase, beta subunit (Methanococcus Jannaschii)	09	1 27	474
6 1212 4069 91 467425 UNKNOWN (Bacillus subtilis)	9.6	-	1 7366	# 1-17 —	(91/4/2715	Jacossony protein (Carumbacterium piscicola)	09	00	213
10 715A 7430	86	9	1 3212	4069	911657425	(Bacillus	9	42	858
11 9127 10515 [91 1255259 12 10459 11656 [91 141954 2 4630 3134 [91 1524280	102	2	7158	7430	01 143092	VIT (EC	09	τι	67.5
12 10499 11656 141954	601	=	1 9127		, 9: 1255259	o-succinylbenzoic acid (0SB) CoA ligase (Staphylococcus aureus)	09	28	1389
2 4630 3134 91 1524280	109	112	110499	111656	91 141954	beta-ketothiolase [Alcaligenes eutrophus]	90	7	1158
THE RESERVE TO THE PARTY OF THE	119	~		3134	9111524280	unknown (Mycobacterium tuberculosis)	09	45	1497

10	
15	
20	
25	
30	
35	
40	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	DKF ID	Start (nt)	Stop (nt)	match	match gene name	E	d ident	length (nt)	
121	-	1 6957	1646	91 1107529	ceuC gene product [Campylobacter coli]	09	35	069	
140	-	1 7704	(109)	91 146547	kdpA (Escherichia coli)	0.9	45	1692	
145	-	7	703	91 1460077	unknown Mycobacterium tuberculosis	09	23	702	
150	_	1 2809	2216	91 1146230	[putative (Sacillus subtilis]	0,	0	594	
157	~	1389	1961	91 1303975	Yqjx (Becillus subtilis)	0.9	30,	429	
158	5	5125	1 4769	91 1449288	unknown [Mycobacterium tuberculosis]	09	36	357	
159	-	511	1 257	91 580932	murD gene product (Bacillus subtilis]	9	7	255	
160	-	159	11187	91 1204532	hypothetical protein (GB:L19201_29) [Haemophilus influenzae]	9	34	1029	
191		8249	7866	91 149 6003	ORF3; PepY; putative oligoendopeptidase based on homology with Lactococcus lactis PepF (GenBank Accession Number 232522) [Caldicellulosiruptor accharolyticus]	0.9	7	28. 4.8.	
172		1331	2110	91 485280	18.1 kDa protein (Streptococcus pneumonise)	9		780	
1 173	1 2	1 4082	2460	91 1524397	glycine betaine transporter OpuD (Bacillus subtilis]	0.9	3	1623	
173	-	1963	4983	1.8 50011 16	NADP depandent louketreine b4 12-hydroxydehydrogenase (Sus scrofa)	09	7	1011	
198	-		566	01 413943	ips-19d gene product (Bacillus subtilis)	09	7	993	
201	-	1641	6573	sp P37028 YADT_	HYPOTHETICAL 29.4 KD PROTEIN IN HEML-PPS INTERGENIC REGION PRECURSOR.	9	1,0	633	
102	_	1 3269	2415	91 927798	[09719.34p; CAI: 0.14 [Saccharomyces cerevisiae]	0.9	•	858	
206	6	112234	112515	sp P37347 YECD_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5. REGION.	09	7	282	
212	-	1213	1410	1911332711	hemagglutinin-neuraminidase fusion protein [Human parainfluenza irus 3]	9	34	861	
214	-	- 65	1153	91 1204366	hypothetical protein (GB:U14003_130) [Haemophilus influenzae]	0.9	36	1089	
1 237	-	~	937	91 149377	HisD (Lactococcus lactis)	99	0.	916	
243	9	9695	499B	91 1046160	hypothetical protein (GB:U00021_5) [Mycoplesma genitalium]	9	37	669	
260	•	5919	6485	153	similar to a B.subtills gene (GB: BACHEHEHY_5) (Clostridium asteurianum)	09	15	567	
264	-	1 2432	1218	91 397526	clumping factor [Staphylococcus auraus]	99	53	1215	
267	- -	-	1409	01 148316	NaH-antiporter protein (Enterococcus hirae)	9	27	1407	
275		3804	4595	pir F36889 F368 	laub 3'-region hypothetical protein - Lactococcus lactis subsp. lactis (strain Iul403)	9	56	792	
291		9860	1198	911208889	coded for by C. elegans CDNA ykl30el2.5; contains C2H2-type zinc fingers Caenorhabditis elegans	09	7	67.6	

S aureus . Putative coding regions of novel proteins similar to known proteins

Contig 1D	ONF	Start	Stop (nt)	scession	match gene name	E i	• ident	length (nt)	
101	9	3421	3176	91 1070014	[protein-dependent (Bacillus subtilis]	09	36	246	
316		4957	5823	gi 413952	ipa-28d gene product (Bacillus subtilis)	0.9	41	867	
328		2996	3184	91 1204484	membrane-sasociated component, branched amino acid transport system	9	39	683	
332	- 2	(88)	1 4363	gi 1205449	colicin V production protein (pur regulon) (Memophilus influenzes)	9	37	525	
357	-	1062	532	91 PR7842	e (Escheric	0.9	-	531	
27.6	~	99	362	91 1057	adenyly cyclase gene product [Saccharosyces kluyveri] r JQ1145 oYBYK adenylate cyclase [EC 4.6.1.1] - yeast ccharosyces kluyveri)	9	Ç	267	
397	1-	99	9;+	91 709999	Glucarate dehydratase (Bacillus subtilis)	60	37	151	
607	-	~ -	163	91 499700	[glycogen phosphorylase [Saccharomyces cerevisiae]	9	35	162	
\$3	-	916	1237	91 1196899	unknown protein (Stephylococcus aureus)	09	36	324	
453	-	3838	3620	ap P12222 YCF1_	HYPOTHETICAL 226 KD PROTEIN (ORF 1901).	0.9	31	219	
1 470	~	622	945	pir \$30782 \$307	pir S30782 S307 integrin homolog - yeast (Saccharomyces cerevisias)	09	31	324	
005	-	£11	909	91 467407	unknown (Becillus subtilis)	09	36	689	
1 503	1	152	982	gi 167835	myosin heavy chain [Dictyostellium discoideum]	9	7.	231	
1 505	-	2238	13563	91 1510732	NADH oxidase (Methanococcus jamnaschii)	09	56	1326	
523			1043	91 143331	alkaline phosphatase regulatory protein (Bactillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.3).	09	•	1041	
543	-		465	01 1511103	cobalt transport ATP-binding protein 0 [Methenococcus januschii]	09	0.	465	
545	7	1 1	726	q1 1498192	[putative (Pseudomonas aeruginosa)	09	0.	726	
556	-	7	1054	91 1477402	tex gene product (Bordetella pertussis	0.9	42	1053	
578	-	974	489	91/1205129	[H. Influentae predicted coding region MI0882 [Haemophilus influentae]	0.9	42	987	
2.5	-		624	oi 1212755	[adanyly] cyclase (Aeromonas hydrophila)	09	15	624	
909	-		530	91 145925	[fecB [Escherichia coli]	09	42	528	
620	-	926	465	191 1205483	bicyclomycin resistance protein [Haemophilus .nfluenzae]	9	33	462	•
630	7	1.6	1122	gi 1486242	unknown (Bacillus subtilis	99	3	252	
645	-	574	1 425	91 1205136	serine hydroxymethyltransferase (serine methylase) [Heemophilus influenzae]	<u>ي</u>	28	150	

S aureus - Putative coding regions of novel proteins similar to known proteins

1	Contig	ORF	Start (nt)	Stop	aatch	match gene name	E is	• Ident	length (nt)
1 588 344 5411109944 Description and product [abelling and blild] 60 1 1 1 258 5411109943 Unrea anicolynes [abelling addition] 60 1 1 1 258 5411109493 Depretation Description Descr	684	-	1082	843	91 1205538	(GB:U14003_302)	09	96	240
1 1 226 [1173664] Grow reductions (Descrits Lumbiconidas) 60 1 1 1 226 [21102465] Grow reductions (Descrits Lumbiconidas) 60 1 1 126 [21102465] [12004465] [12004465] [12004465] [12004465] [12004465] [12004465] [12004465] [12004465] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [12004466] [1200446] [1 786	-	196	485		gene product	09	9.	483
1 174 874 91 100193 Physothetical protein [Synchocyetts sp.] 60 1 1754 874 91 100193 Physothetical protein [Synchocyetts sp.] 60 1 1553 839 91 604926 Physothetical protein [Synchocyetts sp.] 60 1 1553 839 91 604926 Physothetical protein [St.] 110 2 255 91 102325 Physothetical protein [Sccilitis schollis] 60 3 25 91 102325 Physothetical protein [Sccilitis schollis] 60 448 273 91 102325 Physothetical protein [Sccilitis schollis] 60 1 15 25 91 102325 Physothetical protein [Sccilitis schollis] 60 1 15 25 91 102325 Physothetical protein [Sccilitis schollis] 60 1 17 52 91 102325 Physothetical protein [Sccilitis schollis] 60 1 17 52 91 102325 Physothetical protein [Sccilitis schollis] 60 1 17 52 91 102325 Physothetical protein [Sccilitis schollis] 60 1 17 52 91 102325 Physothetical protein [Sccilitis schollis] 60 1 18 19 91 102325 Physothetical protein [Sccilitis schollis] 60 1 18 19 91 102325 Physothetical protein [Sccilitis schollis] 60 1 18 19 19 10 10 1 19 10 10 10 1 10 10 10 1	844	-	588	346	91 790943	ures smidolyese [Becillus subtilis]	09	Q	243
1354 814 914 914 914 915	851	-	-	726	191 159661	GMP reductase (Ascaris lumbricoides)	09	Ţ	726
1538 833 91 604926	1.48	-	1746	874	91 1001493	hypothetical protein [Symechocystis sp.]	09	39,	673
1 2 595 911122255 putative; orti Bacillus subtilia 60	B 968		1558	839	91 604926	subunit 5 (Schizophyllum commune) IDOREDUCTASE CHAIN 5 (EC .6.5.1).	0.9	66	720
1 2 595 91 1429355 putative; orf! [Bacillus subtilis] 60 1 669 502 91 881055 Immer membrane copper tolerance procesin [Eachercibis coli] 91 871299 60 1 7150 650 91 871055 ORF3 Streptomyces grrawish 60 1 715 552 91 1271407 Vypsp Saccharosyces grrawish 60 1 715 552 91 122056 Immorthalis process grrawish 60 1 716 716 716 717 718	806	7	6 7	753	91 662880	novel hemolytic factor [Bacillus cereus]	09	31	306
1 669 502 G1 581035 Huner membrane copper tolerance procein [Bacherichis coli] G 871029 60 1 1150 650 G 40785 ORTS Streptomyces grisums 60 1 1150 650 G 40785 ORTS Streptomyces grisums 60 1 17 552 G 4171407 Vydapp Saccharomyces grisums 60 1 17 552 G 4122056 Hainottensidense Memophilus influenzes 60 1 18 186 G 4122056 Hainottensidense Memophilus influenzes 60 1 19 18 19 G 4122056 Hainottensidense Memophilus influenzes 60 1 19 18 19 G 4122056 Hainottensidense Memophilus influenzes 60 1 19 18 G 4122056 Hainottensidense Memophilus influenzes 60 1 19 18 G 4122056 Hainottensidense Memophilus influenzes 60 1 19 18 G 412052 G 41404001-4-reductase DR (Hordoum vulgarerbarley, cv. Gula, eptide, 60 1 19 19 19 G 4191656 ORF (Palamid pAQ1) 60 1 19 10 G 4191656 ORF (Palamid pAQ1) 60 1 19 10 G 4100591 Ort-li novel antidem Glashylococcus aureus 60 1 19 10 G 4100597 Cytchherence-accessory protein Hycoplasas genitalius 60 1 19 19 G 4100597 Cytchherence-accessory protein Hycoplasas genitalius 60 1 19 19 19 G 4100597 Cytchherence-accessory protein Hydoxyglouslass 60 1 19 19 19 19 19 19 1	919	-	7	585		putative; orfl [Bacillus subtilis]	09	30	\$65
1 1150 620 GI 107485 ONF1 Straptomyces grimmes 60	1078	: 	699	502		Copper	09	o ,	168
1 176 1872 Gill123981 Hypothetical protein Bacillus subtilis 60	1112	-	1150	620	Q1 407885	Streptomyces	09	•	531
1 17 562	1135	-	484	275	91 1171407		09	36	210
1 116 160 pir[557510 5575 Carboxyl esterase - Acinetobacter calcoaceticus 60 60 60 61 62 61 62 61 62 61 62 62	1146	-	1.7	295	gi 1239981	hypothetical protein (Becillus subtilis)	09	36	546
1 316 169 91 1222056 aminotransferase (Haemophilus influenzae) 60 1 3 146 91 205619 (ferritin like protein (Haemophilus influenzae) 60 1 570 286 91 24052 dihydroflavonol-4-reductase, DPR (Hordeum vulgare-barley, cv. Gula, eptide, 60 1 363 200 91 497626 ORF 1 Plasmid pAQ1 60 1 588 302 91 146199 putative (Bacillus subtilis) 60 1 588 302 91 146199 putative (Bacillus subtilis) 60 1 58 302 91 146199 putative (Bacillus subtilis) 60 1 58 302 91 146199 putative (Bacillus subtilis) 60 1 58 302 91 146199 putative (Bacillus subtilis) 60 1 58 326 91 146097 cytadherance-accessory protein (Hycoplasma genitalium) 60 1 368 186 91 510108 mitochondrial long-chain encyl-CoA hydratase/J-hydroxycyl-CoA ehydrogenase 60 1 486 244 91 51259 HHG-CoA reductase (EC 1.1.1.88) (Pseudomonas mayalomia) pir/A44756/A4456 60 1 148 41 414192 iucC gene product (Escherichia coli) 60	1291	-	1716	360	57530 8575	esterase	09	30	357
1 370 286 gi 1203619 [farritin like protein [Haemophilus influenzae] 60 60 61 240052 344 aah 60 60 344 aah 60 60 344 aah 60 60 344 aah 60 60 344 aah 60	1332	-	336	169	gi 1222056	aminotransferase (Haemophilus influentes)	09	7	168
1 570 286 94 240052 334 aa) 335 200 94 497256 08F 1 Prephenate dehydratase (Bacillus subtilis 60 60 60 60 60 60 60	1429	-	_	146	gi 1205619	[ferritin like protein [Heemophilus influenzae]	09	39	144
1 385 200 git 497256 10RF 1 Phasaid pAQ1 60 60 61 61 62 63 64 65 65 65 65 65 65 65	1722		570	286	gi 240052 	DFR [Hordeum vulgare=barley, cv.	09	36	285
1 568 302 91 306881 prephenate dehydratase (Bacillus subtilis 668 102 91 1146199 putative (Bacillus subtilis 60 60 91 1140784 orf-1; novel antigen (Staphylococcus aureus 60 91 1140784 91 1140784 91 1111114 91 11114114 91 111114 91 11114 91 111114 91 111114 91 111114 91 11114 91 11114 91 11114 91 11114 91 1114 91 11114 91 1114 91 1114 91 1114 91 1114 91 11414	2350	-	1 385	1 200	91 497626	ORF 1 [Plasmid pAQ1]	09	20	186
1 568 302 qi 1146199 putative Bacillus subtilis 60 1 20 208 yi 1407784 Orf-1: novel antigen Staphylococcus aureus 60 1 2 226 gi 1046097 Cytadherence-accessory protein [Mycoplasma genitalium] 60 1 368 186 qi 510108	3936	- -	519	310	186805 16	prephenate dehydratase (Bacillus subtilis)	0.9	6.8	210
20 208	1 3027	 -	898	302	191,1146199	putative (Bacillus subtilis)	09	7.6	267
1 2 226 gi 1046097 Cytadherance-accessory protein Mycoplasma genitalium 60 1 368 186 gi 510108 mitochondrial long-chain encyl-CoA hydratase/3-hydroxycyl-CoA ehydrogenase 60 1 486 244 gi 151259 HHG-CoA reductase (EC 1.1.1.88) Pseudomonas mevalonis pir A44756 A44756 1 486 244 gi 151259 Hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp. 1 3 146 gi 474192 iucC gene product [Escherichia coli] 60	3084	- -	02	208	gi 1407784		0.9	51	687
	1 3155	-	~	326	91 1046097	cytadherence-accessory protein (Mycoplasma genitalium)	09	34	225
1 486 244 gi 151259 HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mavalonii] pir A44756 A44756 60 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp. hydroxymethyllogram hyd	1603		368	186		mitochondrial long-chain encyl-CoA hydratase/]-hydroxycyl-CoA ehydrogenase alpha-subunit (Rattus norvegicus)	9	7	183
1 3 146 gi 474192 iucC gene product [Escherichia coli]	1665	- 	486	244	91 151259	(Pseudomonas mevalonii) tase (EC 1.1.1.88) Pseu	09	4 2	243
この こうしょう かいしょう かいしょ しょうしょ しょうしょ しょうしょ しょうしゅ しゅうしゅ しゅうしゅう しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅうしゅう しゅうしゅう しゅう	1 3747	-		146		lucC gene product (Escherichia coli)	09	36	144

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig	108F	Start (nt)	Stop Int)	match	match gene name	E is	1 ident	length Intl
3912	-		335	911:488695	novel antigen; orf-2 (Staphylococcus aureus)	09	-	1 555
4072			272	0 i 405879	yein [Escherichia coli]	0.9	- 66	1 012
700		510	352	191180656	chemoraceptor protein [Rhizobium leguminosarum bv. viciae] gl 780656 chemoraceptor protein [Rhizobium leguminosarum bv. iciae]	9	28	159
4207	~	677	407	91 602031	similar to trimethylamine DH (Mycoplasma capricolum) piris49950 [849950 probable trimethylamine dehydrogenasm (EC .5.99.7) - Mycoplasma capricolum (SGC3) (fragment)	9	-	276
424)		127	324	gi 899317	peptide synthetase module (Microcystis aeroginosa) pir[549111]549111 probable amino acid activating domain - icrocystis aeruginosa (fragment) (SUB 144-528)	9	5	# 6 ·
1110	=	624	1 313	91 508980	phoB [Bacillus subtilis]	9	28	312
4345		343	271	96 510108	mitochondrial long-chain enoyl-CoA hydratase/3-hydroxycyl-CoA ehydrogenase alpha-subunit [Rattus norvegicus]	0.9	7	171
1 4382	-	1 498	1 280	91 47382	acyl-CoA-dehydrogenase (Streptomyces purpurascens)	9	- 87	219
4434		53	223	91 510108	mitochondrial long-chain enoyi-coa hydratass/3-hydroxycyl-coa ehydrogenass alpha-subunit (Rattus norvegicus)	09	7	171
2 -	-	4518	1 3523	91 426446	VipB protein [Salmonella typhi]	65	- 60	966
3	-	1 707	31	pir \$48604 \$486	hypothetical protein - Mycoplasma capricolum (SGC3) (fragment)	88	33	111
<u> </u>	-	4651	5853	91 6721	[75982.3 [Caenorhabditis elegans]	89	1 66	1203
Ç1 1		1228	0620	qi 142833	ORF2 [Dacillus subtilis]	\$9	1 11	9.30
	= =	16784	16593	911912576	BiP (Phaeodactylum tricornutum)	\$9	0,	192
\$2	-	2648	2349	1911536	ORF_090a [Escherichia coll]	59	*	1000
3	112	14181	113402	1911403940	transcription regulator (Sacillus subtilis)	59	37	180
53	-	1 4397	1 3339	91/508176	Cat-1-P-DM, NAD dependent (Escherichie coli)	59	0,	1 6501
99	-	986	495	194(1303901	Yqhr (Bacillus subtilis)	59	74	492 [
67		6552	1 2460	91/912461	nikC (Escherichie coli)	5.9	37	1 606
0,		5383	6365	94 1399822	PhoD precursor (Rhizobium meliloti)	59	7 94	1 186
88		-		fgi 971345	unknown, similar to E.coli cardiolipin synthase [Bacillus subtilis] sp P45860 YWIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA MTERGENIC REGION.	65	39	1449
82	110	114329	115534	ai 490328	LORF F (unidentified)	53	*	1206

S. aureus - Putative coding regions of novel proteins similar to known proteins

1	Cont ig	OKF 11D	Start (nt)	Stop (nt)	match acession	.match gene name	E is	1 ident	length (nt)	
1 2 20 Gil (47721 Limilar to B. mobilis Dark [deciling aubtilist] 5 20 Gil (47721 Limilar to B. mobilis Dark [deciling aubtilist] 5 20 Gil (47721 Limilar to B. mobilist Dark [deciling aubtilist] 5 20 Gil (47721 Limilar to B. mobilist Dark [deciling aubtilist] 5 20 20 20 20 20 20 20	89	- 2	1 1602	958	91 642801		- 65	32	645	
1 166 1357 gell(4731) clebilate co. B. cubbillia Doublilate anbillial 156 1357 gell(43)32 clopf By putchive [Bacillus (trans)] 15 156 1357 gell(43)32 clopf By putchive [Bacillus (trans)] 15 15 15 15 15 15 15 1	96	-	1 4940	5473	91 1333802	protein of unknown function (Rhodobacter capsulatus)	29	33	534	•
1 164 1555 19113334 OPE 55 9 Descention based that (Tennal) 15 15 15 15 15 15 15 1	86	-	~	020	91 467421	similar to B. subtilis DnaH (Bacillus subtilis)	65	76	618	•
10 10314 6754 91119344 1087 55 a libeccentiophose 704 105 10314 10411908525 1041 10411908525 1041 10411908525 1041 10411908525	119	-	166	1557	91 143122	ORF B; putative [Bacillus (iraus]	65	36	1392	-
1 170 645 1911 196537	120	10	6214	6756	91 15354	ORF 55.9 [Bacterlophage T4]	65	7, 61	243	• -
1 170 445 1911 1914	120	116	112476	13510	q1 1086575	Bath (Rhitobium meliloti)	65	7	1035	• -
1 370 645 gi[1356634 15, 81 (dentity over 120 as with the Symenococcus januachii putetin putetin putetin putetin putetin belianse in the Symenococus januachii 59 31 1 328 5312 gi[1001342 Physothetical protein (Symenocytis as.) 59 41 1 122 2221 gi[1001342] Physothetical protein (Symenocytis as.) 59 34 1 122 2221 gi[100134] Physothetical protein (Symenocytis as.) 59 34 1 122 2221 gi[100134] Physothetical protein (Symenocytis as.) 59 34 1 122 2216 gi[100134] Physothetical protein (Symenocytis as.) 59 34 1 122 2218 146 Mill Symenocytis as.) 59 34 1 122 2218 146 Mill Symenocytis as.) 59 34 1 122 2218 146 Mill Symenocytis as.) 59 41 1 122 2218 141 17 17 17 17 2 1236 211 21 21 21 21 21	1 123	-	1 386	195		catalase Campylobacter jejuni	88	8 6	192	•
4 5278 5717 Gell 15106555 Phypothetical procein (SP:P47277) Phethanococcus Jannaschill 59 59 41 51 509 Gell 1001342 Phypothetical procein (Symachocystis sp.) 59 41 51 522 522 Gell 1001342 Phypothetical procein (Symachocystis sp.) 59 59 51 52 522 Gell 1001341 Phypothetical procein (Phymerhocystis sp.) 59 59 59 59 59 59 59 5	130		370	645	91 125634	[25.81 identity over 120 as with the Synenococcus sp. MpeV protein; putative [Becillus subtilis]	65		276	
1 37 509 [4111001342] Phypotherical protein [Synechocystis sp.] 1 1529 2021 [411205165] Phypotherical protein [Synechocystis sp.] 1 1529 2021 [411205165] Phypotherical protein [Synechocystis sp.] 1 1 1 1 1 1 1 1 1	100	-	\$278	5712	91/1510655	[hypothetical protein (SP:P42297) [Methanococcus jannaschii]	59	96	435	•
4 1529 2821 [q1 1205165 Phypothetical procein [SP-P37764] [Haamophilus influence) 59 35 1 1 1 1 1 1 1 1 1	1 164	-	E -	605	gi 1001342	hypothetical protein (Symechocystis sp.)	65	17	507	•
12 17643 21376	1 164	-	1529	2821	191 1205165	hypothetical protein (SP:P37764) (Haemophilus influenzee)	65	35	1293	
3 4727 7717 G	164	61	119643	21376	191 1001381	hypothetical protein (Symechocystis sp.)	65	7	1734	
2 1268 1668 91 143036 Unidentified gene product [Abellius subtilis] 59 53 51 51 5269 11503 91 762796 MilfS gene product [Anabeana arollae] 59 41 13 51 520 91 1510240 Hemin permease [Methanococcus januachii] 59 32 32 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 35	173	-	6727	7171	91 1184121	auxin-induced protein [Vigna radiata]	65	05	101	
12 12669 11503	179	- 5	2218	1688	91/143036	unidentified gene product (Bacillus subtilis)	89	с -	531	
5 402 5670 94 1510240 hemin permease Methanococcus jannaschii] 59 32 32 31 32 319 411 319 411 319 411 319 411 319 411 319 411 319 411 319 411 319 411 319 411 319	195	77		11503	gi 762778	NifS gene product (Anabaena azollas)	65	7	1167	-
7 5719 6315 gil 531456 H. Jannaachil predicted coding region WJ1437 [Methanococcus Jannaachil] 59 34 1 102 461 gil 204666 hypothetical protein (GB:X7)124_SJ) [Haemophilus influenzes] 59 42 3 1050 2214 gil 551531 (2-nicropropane dioxygense [Williopsis saturnus] 59 36 31 5 3291 4135 gil 301709 YrkJ [Bacillus subtilis] 59 36 31 7 316 960 gil 301791 YqvJ (Bacillus subtilis] 59 34 8 316 960 gil 301791 YqvJ (Bacillus subtilis] 79 31 79 31 9 9 9 9 9 9 9 9 9	100	2	1 4702	5670	91 1510240	hemin permease (Methanococcus jannaschii)	65	32	696	
1 102 461 gil 204666 hypothetical protein (GB:X73124_55) [Haemophilus influences] 59 42 1 1 105 2234 gil 531531 (2-nitropropane dioxygenase [Williopsis saturnus] 5 3291 4135 gil 103709 YrkJ [Bacillus subtilis] 59 31 1 1 1 1 1 1 1 1	201	-	6172	6315	191 1511456	[M. jannaschil predicted coding region MJ1437 [Methanococcus jannaschil]	6.5	76	597	
3 1050 2234 g1 531531 (2-nitropropane dioxygenese [Williopsis maturnus] 59 36 1 1 1 1 1 1 1 1 1	209	-	1 102	1 461	191 1204666	hypothetical protein (GB:X73124_53) [Haemophilus influenzae]	65	42	360	
5 3291 4135 91 1303709 YTAJ [Bacillus subtilis] 2 3378 3785 91 149382 HisA [Lactococcus lacits] 3 3078 3785 91 149382 HisA [Lactococcus lacits] 4 1621 812 91 1405879 YquJ [Bacillus subtilis] 5 4978 3860 91 405879 YqiH [Escherichia coli] 59 31 1 1 1 1 1 1 1 1	214	-	1 1050	1 2234	[91 [551531	[2-nicropropana dioxygenase [Williopsis saturnus]	89	36	1185	
2 3378 3778 gi 149382 HisA (Lactococcus lactis) 5 3078 3778 gi 149382 HisA (Lactococcus lactis) 5 3078 3778 gi 149382 HisA (Lactococcus lactis) 5 378 378 960 gi 1303791 Yq.J (Bacillus subtilis) Escherichia colii 5 4978 3860 gi 405879 YeiH (Escherichia colii 5 4978 3860 gi 405879 YqeH (Bacillus subtilis) 35 35 35 35 35 35 35 3	214	<u>.</u>	1 3293	4135	1	YrkJ [Bacillus subtilis]	59	32	843	
5 3078 3785 gi 49382 HisA [Lactococcus lactis] 2 376 960 gi 303791 Yquu (Bacillus subtilis) 1 1621 812 gi 46551 Eransmembrane protein (kdpD) (Escherichia coli) 5 4978 3860 gi 405879 yeiH (Escherichia coli) 3 1 1 1 1 1 1 1 1 1	1 217	-	13381	2167	91 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	dfp (CG Site No. 18430) [Escherichia coli]	29	₹	1215	
2 376 960 gi[303791 Yquu (Bacillus subtilis) 1 1621 812 gi[146551 transmembrane protein (kdpD) [Escherichia coli] 5 4978 3860 gi[405879 yeiH [Escherichia coli] 3 1 1 1 1 1 1 1 1 1	1 237	2	1 3078	3785	911149382	HisA [Lactococcus lactis]	59	=	70R	-
1 1621 912 91 146551 transmembrane protein (kdpD) [Escherichia coli] 59 31	251	7	376	096	gi 1303791	אַניִם (Bacillus subtilis)	89	7	585	. —
5 4978 3860 91 405879 yein (Escherichia coll) 3 600 761 91 1303794 YqeN (Bacillus subtilis)	2 R6	-	1621	812	fgi 146551	[Escherichia	59	116	810	
3 600 761 gi 1303794 YqeM (Bacillus subtilis]	316	2	4978	3860	191 405879	yeiH [Escherichia coll]	89	32	1119	_
	370	-	009	1 761	191 1303794	Yqek (Bacillus subtilis)	89	35	162	

S. aureus - Futative coding regions of novel proteins similar to known proteins

Contag	OKF	Start (nt)	Stop	match	macch gene name	E in	1 idunt	length (nt)
382	-	6001	906	91 (547513	orf3 (Naemophilus influentae)	- 88	34	504
166	-	1620	1273		ORF 3 (Spirochasta aurantia)	59	7.6	348
901	-	2805	1705		hypothetical protein (Bacillus subtilis)	- 65	34	1101
426		3832	3245	9111204610	Iron(III) dicitrate transport ATP-binding protein PECE (Haemophilus	\$	36	\$58
429	- 2	1513	1148	91 1064809	homologous to sp:NTRA_ECOLI [Bacillus subtilis]	- 65	42	366
097	- 5	1 708	1011	91 466882	ppsi: Bl496_C2_189 [Mycobacterium laprae]	65	1 / (1 765
1 461	-	2212	1 3135	01 1498295	homomerine kinase homolog (Streptococcus pneumonise)	89	17.	924
1 473	-	2529	1 1607	91 147989	trigger factor (Escherichia coli)	59	- 00	1323
0 8 7		5862	6110	91 (1205311	(3R) hydroxymyristol acyl carrier protein dehydrase [Hasmophilus influenzee]	65	9	249
1 521	-	-1	1354	pir A25620 A256	staphylocoagulass - Staphylococcus sureus (fragment)	59	32	1341
534		2994	4073	91/153746	mannitol-phosphate dehydrogenase Streptococcus mutans pir C44798 C44798 mannitol-phosphate dehydrogenase KiD - treptococcus mutans	52	36	1080
515	-	-	954	gi 1469939	group B bligopeptidase PepB (Streptococcus agaiacties)	- 59		954
1 551		2836	3186	91 1204511	[bacterioferritin comigratory protein (Heemophilus influentee]	89	\$	151
573	- 7	449	940	91 386681	[ORF YAL022 [Saccharomyces cerevisiaes]	88)6	492
650		· <u>·</u> · · · · · · · · · · · · · · · · ·	1 748	91 396400	similar to sukmryotic Na'/H+ exchangers [Excharichis coli] sp p12703 YJCE_ECOLI HYPOTHETICAL 60.5 KD PRCTEIN IN SOXR-ACS NTERGENIC REGION (0549).	65	S.	447
799	-	1 566	1 285	91 1262748	[LukF-PV like component [Staphylococcus aureus]	65		282
0.29	-	-	455	91 1122758	unknown (Bacillus subtilis)	\$	42	683
674	-	55	929	91 293033	[integrase [Bacteriophage phi-LC3]	59	94	387 [
758	-	349	9,11	91 1500472	M. jannaschii predicted coding region MJ1577 [Methanococcus jannaschii]	65	ا بر	174
167	~	2270	1461	91 522150	bromoperoxidase BPO-Al Streptomyces aureofaciens sp P33912 BPA1_STRAU HON-HAEM BROMOPEROXIDASE BPO-Al (EC 1.11.1) BROMIDE PEROXIDASE) (BPO1). (SUB 2-275)	65	3	0
828	-	1 2191	1097	191 397526	clumping factor (Staphylococcus aureus),	- 55	- 42	1095
1052		1 1094	1 723	91 289262	comp ORF3 [Bacillus subtilis]	25	36	372
1152	-	(76)	188	91/1276668	ORF238 gene product [Porphyxe purpures]	65	37	196

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig OR 10 110	ORF Start ID (nt.) 1 492	Stop (nt)	match acossion of 142439	match gene name	mia v	1 ident	length (nt)	_
1441	1 468	235		[glycyl-tRNA synthetase [Mycoplasma genitalium]	59	111	234	
2103 1	1 1	1 186	91 459250	triacylglycerol lipase [Galactomyces geotrichum]	65	33	186	
2205	1 793	398	94 1303794	Yqem (Bactilus subtilis)	65	38	960	
2578	1 484	284	91 258003	insulin-like growth factor binding protein complex acid-labile ubunit (rats, liver, Peptide, 603 aa)	59	B	201	
2967	2 145	348	91 1212730	YqhK (Bacillus subtilis)	- 65	44	204	
3012	1 3	248	152577.120	neurofilament protein NFT0 [Helix aspersa]	59	31	246	
3544	1 3	401	191 1055218	crotonase [Clostridium acetobutylicum]	65	7,	661	
3548		1 401	91 105 5218	crotonase [Clostridium acetobutylicum]	65	42	399	
3580	1 698	351	91 1055218	crotonase [Clostridium acetobutylicum]	65	42	348	
3720	1 722	190	gi 1408494	homologous to penicillin acylase (Bacillus subtilis)	65	36	360	
4171		296	gi 1055218	crotonase (Clostridium acetobutylicum)	59	42	294	
4305	1 618	310	91 1524193	unknown (Mycobacterium tuberculosis)	88	39	608	
=====	1 1242	622	g1 146913	N-ecetylglucosamine transport protein (Escherichia coli) pir 829895 WQEC2N phosphotransferase system enzyme II (EC 7.1.69), N-acetylglucosamine- specific - Escherichia coli ap P09121 PTA_ECOLI PTS SYSTEM, N-ACETYLGLUCOSAMINE-SPECIFIC IIABC OMPONENT [EIIA	8	Ç	62	
20	7 7020	5845	gi 50502	collagen alpha chain precursor (AA -27 to 1127) (Mus musculus)	88	50	1176	
21	5 3234	3626	191 1054860	phosphoribosyl authiunilate isomerase [Thermotoga maritima]	98	32	193	
23	2 2841	1669	gi 1276880	EpsG (Streptococcus thermophilus)	58	29	15.11	
23	10 6 9 301	0608	pir A31133 A311	diaminopimelate decarboxylass (EC 4.1.1.20) - Pseudomonas aeruginoss	58	37	1212	
38 (29	9 (22555	22884	Qi 973249	vestitone reductass [Hedicago sativa]	5.8	37	330	
-	1 - 2	1 406	gi 289272	(errichrome-binding protein (Bacilius subtilis)	5.8	33	\$0\$	
\$		552	91 29464	embryonic myosin heavy chain (1085 AA) (Homo sapiens) ir S12460 S12460	88	13	552	_
55	2 759	538	gi 158852	glucose regulated protein (Echinococcus multilocularis)	8.8	3.2	222	
62 13	3 8493	8068	[01 975353	kinase-associated protein B (Bacillus subtilis)	58	35	426	
63	3 1553	7171	91 1166926	Axabidopsis thaliana unidentified mRNA sequence, complete cds.], ene product (Axabidopsis thaliana)	8 5	2	591	
1								

s aureus - Putative coding regions of novel proteins similar to known proteins

NADR dehydrogerase subunit 2 (Chorthippus parallelus)	Contag ORF	086 110	Start	Stop	match acession	match gene name	Eis	1 ident	length (at)
8 6276 334 91 909322 Eschericial posent Bacillas subtilis 2 2005 334 91 91135558 Gachericial posent Gachericial posent Gachericial posent Gachericial solid 3 4519 5513 91135558 91 91 91 91 91 91 91 9	:	,	112017	111229	gi 1228083		6.5	7	789
2 2005 1344 91 100377 Secupariticity Coll ImpA Gene for A protein similar to yeast Paris and A722 4519 5411 54	96		820B	9167	191 709992	hypothetical protein [Bacillus subtilis]	88	42	096
7 (4519 5611 [011153588 [011cccas-fractore collobe-ductase [EC 11] Frecurer - Typescones mobilis [011161219] [01161219] [01161219] [01161219] [107	7	1 2065	1364	91 806327	Escherichia coli hipA gene for A protein similar to yeast PRF16 and AF22 (Escherichia coli)	20		702
6 7118 6503 91 377843 withhose [Bacillus subtilis] 2 2261 1375 pil A35605 A458 mature-parasto infocted stythrocyce surface artigen MESA - Plesmodium 2 777 750 91 170261 unknown [Machine to list and the content of	1112		6157	5613	91/155588	glucose-fructose oxidoreductase [2ymomonas mobilis] pir[A42289] A42289 glucose-fructose oxidoreductase [EC 1.1] recursor - Zymomonas mobilis	5.8	38	1095
2 2261 1395 pii A3505 A455 A41000000000000000000000000000000000000	114	9	1 7118	6503	[91]1377843	unknown (Decillus subtilis)	5.8	90	816
6 6015 4627 910 1370261 Unthrown Mycohacterium tuloarculosia 6 6015 4627 911209277	3	~_	1 2261	1395			28	15	867
6 6015 4627 91 1109277	===		717	950	gi 1370261	unknown Mycohacterium tulkarculosis	5.8	31	234
16 14281 13541 [41]146613 [OMA 11gase (RC 6.5.1.2] [Escherichia coli] 1 1056 529 [41]130397 [Voil Beacillus aubtilis] 1 1 2 234 [41]131633 [OMA binding protein [probable] (Bacillus aubtilis] 1 1 2 234 [41]131635 [OMA binding protein [probable] (Bacillus aubtilis] 1 1 1 1 1 1 1 1 1	154	-	6015	1 4627	91 1209277	pCTHom1 gene product [Chlamydia trachomatis]	88	5	1389
1 1269 1892 94 1303937 Vqiia Bacillus subtilis 1 1156 5.9 fill 904148	154	116	14281	113541		DMA ligame (EC 6.5.1.2) [Escherichia coli]	28	39	741
1 1056 539 folionism hypothetical protein (Bacillus subtilis) 1 2 238 gil (67383)	155	-	2269	1 1892	191 1303917	YqiB Bacillus subtilis	88	7.	378
4 1513 1769 91 467383 DaAN binding protein (probable) (Sacillus subtilis] 1 2 238 91 276729 phycobilisome linker polymeptide (Porphyra purpures) 1 14575 13058 91 276729 phycobilisome linker polymeptide (Porphyra purpures) 1 14575 13058 91 37026 Clumping factor (Staphylococcus aureus) 1 1475 13058 91 1463023 No definition line found (Coenorhabditis elegins) 1 1 1 1 1 1 1 1 1	134	-	1056	6.53		[hypothetical protein (Bacillus subtilis)	88	3.6	528
1 2 236 3307 [4] [1311433]	189	-	1 1533	1769		DNA binding protein (probable) (Bacillus subtilis)	88	25	127
1 2 23A 94 1276729 phycobilisome linker polypeptide [Porphyra purpures] 1 14575 1305A 94 397526 clumping factor [Staphylococcus aureus] 1 1629 1474 94 1002520 Huts (Bacillus subtilis) 1 1474 94 1002520 Huts (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	102		1 2669	1 3307	gi 1511453	endonuclease	28	*	619
1 14575 13058 gi 199526 Clumping factor [Staphylococcus aureus] 1 1457 gi 1463023 Huts (Bacillus subtilis) 1 120 1497 gi 1463023 Ho definition line found (Caenorhabditis elegans) 10082 gi 1463023 Ho definition line found (Caenorhabditis elegans) 1 1 1 1 1 1 1 1 1	208	-	~ -	238	911276729	phycobilisome linker polypeptide [Porphyra purpures]	58	29	1 712
1 1629 1474 gi 1002520	220		114575	13058		clumping factor (Staphylococcus aureus)	5.8	15	1514
6 4201 1497 gi 1465023 No definition line found (Caenorhabditis elegans) 10 9101 10082 gi 537207 ORF (2277 (Escherichia coli) 11 11 1143 gi 1340128 ORF X (Bacillus subtilis) 12 460 801 gi 40174 ORF X (Bacillus subtilis) 13 1914 2747 gi 1239996 hypothetical protein (Bacillus subtilis) 4 2724 1497 '[gi 454818 ORF 6; putative (Pseudomonas aeruginosa) 5 184 665 gi 467478 Unknown (Bacillus subtilis) 8 184 665 gi 141407 Dara-aminobenzoic acid synthase, component I (pab) (Bacillus ubtilis)	231	-	1 1629	1474	191 100	HutS (Bacillus subtilis)	1 SB	45	156
10 9303 10082 gil537207 ORF (Staphylococcus aureus) 1 1331 1143 gil1330128 ORF1 (Staphylococcus aureus) 2 460 801 gil40174 ORFX (Bacillus subtilis) 1394 5747 gil1239996 hypothetical protein (Bacillus subtilis) 4 2774 3497 gil45488 ORF 6; putative (Pseudomonas aeruginose) 1 1 663 gil45478 unknown (Bacillus subtilis) 1 1 665 gil45478 unknown (Bacillus subtilis) 1 1 665 gil413407 para-eminobenzoic acid synthase, component I (pab) Bacillus ubtilis)	233	9	1 4201	3497	gi 1463023	No definition line found (Caenorhabditis elegans)	5.0	39	1 205
1 131 1143 gi 1340128 ORFI (Staphylococcus aureus)	243	011	1 9303	10082	1911537207	ORF_[277 Escherichia coli	58	32	1 087
2 460 301 91 101342 YqfU [Bacillus subtilis] 1 6984 6127 91 1213996 hypothetical protein [Bacillus subtilis] 4 2724 1497 91 454836 ORF 6: putative [Pseudomonas aerusinose] 1 1 663 91 467478 unknown [Bacillus subtilis] 2 384 665 91 143407 para-aminobenzoic acid synthase, component I (pab) [Bacillus ubtilis]	755	-	133	110	91 1340128	ORFI (Staphylococcus aureus)	5.8	*	1 813
1 6984 6127 gi 1303842 YqfU [Bacillus subtilis]	302	7	09+	1 801		ONF X (Bacilius subtilis)	58	*	342
3 1914 2747 gi 123996 hypothetical protein [Bacillus subtilis] 4 2724 3497 gi 454838 ORF 6: putative [Pseudomonas aeruginosa] 1 663 gi 457478 unknown [Bacillus subtilis] 2 384 605 gi 143407 para-aminobenzoic acid synthase, component I (pab) Bacillus ubtilis]	1 307	=======================================	1 6984	6127	!	[yqfu [Bacillus subtilis]	1 58	30	ASB
4 2724 3497 'gil454838 ONF 6: putative (Pseudomonas aeruginose) 1 663 gil457478 unknown (Bacillus subtilis) 2 384 605 gi 143407 para-aminobenzoic acid synthase, component I (pab) Bacillus ubtilis	321	-	13914	2747	[21] 15]	hypothetical protein [Bacillus subtilis]	5.0	7	834
1 1 663 gi 467478 unknown (Bacillus subtilis 2 384 605 gi 141407 para-aminobenzoic acid synthase, component I (pab) Bacillus ubtilis	342	-	1 2724	1 3497	/[gi]454	6; putative (Pseudomonas	88	7	174
2 384 605 gi 143407 para-aminobenzoic acid synthase, component I (pab) Bacillus ubtilis	348	-	-	1 663	91 457478	unknown [Bacillus subtilis]	58	36	[663
	401	~	384	509	gi 143407	(qed) I	58	53	222

15	
20	
25	
30	
35	
40	

8. aureus - Putative coding regions of novel proteins similar to known proteins

1 10 10 10 10 10 10 10	Contig	ID	Start (nt)	Stop (nt)	match	match gene name	E	ident	length (nt)
1 100 1442 gp 191343	437		125	1554	Qi 1303866	ΥηςS [Bacillus subtilis]	85	35	1230
1 128 955 [4] [10094555 Unknown (Schlissenschkrowyces pombal 159 1278 2017 [4] [577244 7] [9] [9 14 1577244 7] [9 15 15 15 15 15 15 15 1	445	-	105	1442		(Staphylococcus	8.5	3.2	1338
2 731 1444 gi 175621 Gary of identity in 156 as to a Proceditive Delication Apportation 59 2 731 1444 gi 175621 Gary of identity in 156 as to a Proceditive Delication Procedition 59 3 442 Gary of identity in 156 Gary of identity in 156 Gary of identity 100 4 412 Gary of identity in 156 Gary of identity 100 5 442 Gary of identity in 156 Gary of identity 100 5 442 Gary of identity 100 Gary of identity 100 5 442 Gary of identity 100 Gary of identity 100 Gary of identity 100 5 442 Gary of identity 100 Gary of id	453	-	789	965	91 1009455	unknown (Schizosaccharomyces pombe)	58	- *	1 771
1 100 1444 91 135621 164 91 135621 164 91 135621 156 10 10 10 10 10 10 10 1	453	5	2748	2047		yjjG gene product (Escherichia coli)	88	- 07	702
1 11 1164	479	~	131	31		identity in 165 as to a 6; putative (Bacillus su	28	36	714
1 1164 Fig Pario 1 1 1 1 1 1 1 1 1	064	-	606	542		pir S06048 AGE_BACSU P 2.4.1.52)	•	9	363
1 2 2402 4019 91 886022 Frestriction modification system S subunit [Spiroplasma circi] 588 1 2 1019 91 886022 Frestriction modification system S subunit [Spiroplasma circi] 588 1 3 1199 91 81913 Integral modification system S subunit [Spiroplasma circi] 588 2 1121 1156 91 1101133 Integral membrane procein [Moso sopiena] 588 3 1 1 504 91 208774 Integral membrane procein [Homo sopiena] 588 4 1 1 504 91 208774 Integral membrane procein [Homo sopiena] 588 5 1 1 2 104 91 208774 Integral membrane procein [Homo sopiena] 588 6 1 1 1 1 1 1 1 1 1	1 517	~ -	-	1164	4 Y018_	HYPOTHETICAL HELICASE MG018.	885	30	1164
1 179 91 886032	517	•	4182	4564		orfles gene product (Mycoplasma hominis)	88	29	363
1 1 1156 91 1181813 Unitropen ISacedeminions serviziones 58 117 1156 91 1181813 Unitropen ISacedeminions serviziones 58 117 1156 91 1181813 Unitropen ISacedeminions serviziones 58 117 1156 91 1181813 Unitropen Integral membrane protein Honoros sopians 58 117	546		2802	4019		S subunit (Spiroplasma citri) n S subunit (Spiroplasma itri)	288	37	1218
2 1147 1156 91 1181819 Unkhown [Pseudomonas erruyinose] 58 120 120 191 1001153 Phypothetical protein [Symechocystis sp.] 58 120 12	562	-	~	179	91 43831	nifS protein (AA 1-400) [Klebsiella pneumoniae]	58	34	171
2 1231 1001 94 1001353 hypothetical protein Synechocystis sp. 56 1 1 2 1564 94 903748 Integral membrane protein Homo saptema; 58 1 2 1564 94 1208474 hypothetical protein Synechocystis sp. 58 1 1492 755 ni 1310995	009	7	1347	1156	91 1183839	unknown (Pseudomanas aeruginosa)	58	- 84	192
1 1 204 91 9013748 Integral membrane protein 1940 91 91 91 91 91 91 91 9	1 604	- 5	1231	1001	91 1001353		80		231
1 2 354 91 1208474 hypothetical protein [Synechocystis sp.] 58 1 1492 755 ni 1510955 translociase [Hethenococcus jannaschii] 58 1586 91 677882 ileal sodium-dependent bile acid transporter [Rattus norregicus] 58 1586 94 123999 hypothetical protein (Bacillus subtilis) 58 58 1 1 1 1 1 1 1 1 1	619			504	- i	integral membrane protein [Homo sapiens]	86	43	\$04
1 1492 755 fil	628	-	1 2	364	911208474	hypothetical protein [Symechocystis sp.]	5.8		363
1 1 846 91 677882 11eal sodium-dependent bile acid transporter [Rattus norvegicus] 58 11eal sodium-dependent so	635	-	1492	755	01 1510995	transaldolass [Methanococcus jannaschii]	58		138
1 771 532 91 1200262 hypothetical protein (GB.L10028_61) Haemophilus influenzae 58	645		- ·	A 46		1	80	33	846
1 771 532	645	-	906	1556	91 1239999	hypothetical protein (Bacillus subtilis)	58	7	651
1 615 327 91 498817 ORF8; homologous to small subunit of phage terminases [Racillus ubtills] 58 2 1312 806 91 42181 OsmC gone product [Escherichia coll] 58 310 91 1200432 Coentyme PQQ synthesis protein III [DqqIII] [Haemophilus influenzae] 58 2 242 1174 91 12004669 Colladense [Haemophilus influenzae] 58 2 242 1174 91 12004669 Colladense [Haemophilus influenzae] 58 3 242 117961 ERNA isopentenyl transferase [Saccharomyces cerevisiae] 58 4 91 171961 ERNA isopentenyl transferase [Saccharomyces Cerevisiae] 58 50 POPRS POPRS	599	-	ורר	532	91 1204262	hypothetical protein (GB:L10328_61) [Haemophilus influenzae]	28	96	240
2 1312 806 gi 42181 osmC gone product (Escherichia coli) 58	674		615	327	91 49817	phage terminases	5.8	1 60	1 600
1 618 310 91 1205432 coenzyme PQQ synthesis protein III (pqqIII) [Haemophilus influenzae] 58 2 242 1174 91 1204669 collagenae [Haemophilus influenzae] 58 2 1096 614 91 171963 ERNA isopentenyl transferase [Saccharomyces cerevisiae] 58 3 1096 614 91 171963 ERNA isopentenyl transferase [Saccharomyces cerevisiae] 56 1 1096 614 91 171963 ERNA isopentenyl transferase [Saccharomyces cerevisiae] 56 1 1096 614 91 171963 ERNA isopentenyl transferase [Saccharomyces cerevisiae] 58 1 1 1 1 1 1 1 1 1	675	- 5	1312	908	91 42181	gene product	5.8	28	507
2 242 1174 g1 1204669 collaganase [Haemophilus influenzae] 2 1096 614 g1 171961 TRNA isopentenyl transferase [Saccharomyces cerevisiae] 58	745	-	618	310		coenzyme PQQ synthesis protein III (pqqIII) [Haemophilus influenzae]	5.8	32	309
2 1096 614 91 171963 [ERNA isopentenyl transferase [Saccharomyces cerevisiae] 56 sp P07884[MDD5_YEAST TRNA ISOPENTENYLTRANSFERASE (EC 2.5.1.8) ISOPENTENYL- DIPHOSPHATE: TRNA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE) (IPPT).	199	~	242	1174	91 1204669	collagenase [Haemophilus influenzae]	58	36	933
こう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	800	~	1096	614	91 171963	isopentenyl transferase [Saccharomyces cerevisiee] 07884 HOD5_YEAST TRNA ISOPENTENYLTRANSFERASE (EC 2.5.1 10SPHATE: TRNA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE)	286	37	483

TABLE 2

superior coding regions of novel proteins similar to known proteins
known
Ç
similar
proteins
novel
of
regions
pulpos
971.44
-
¢

				match	match gene name	E .	Toene	(ut)
10 11		(nt)	(nt)	acession		- 88	7	504
856	-	1108	605	91 466778		1 88	33	240
ARS	-	481	242	91 861199	protoporphyrin IX Mg-chelatase subunit precurabe (notocom	88 1	31	525
	-		527	191 1293660	AbsA2 Streptomyces coelicolor		30	1 597
160	•	-		1011405567	tran (Plasmid DSK41)			
942		931	9		Intelligit (Stabhylococcus aureus)	8 5	-	***
1002		952	521	91 581558		8 5	06	201
•				_	TENA LIANZE TOURS	88	7.	162
1442	· ·	~	463	91 971394		- S	#C	240
1873		480	1 241	gi 1339951	small subunit of NAM: department small spipe spi	88		156
1876		<u>_</u>	1 21	1	HYPOTHETICAL 7.3 KD PROTEIN F23F12.7 IN HAUNOSCHE	88	29	294
			401	10111405458	YneR (Bacillus subtilis)		-	661
1989	- !	01			hypothetical protein Synechocystis sp.	ES.	15	
2109	- 		107	1011101101	Transferent date F Lactococcus lactis	- 58	87	
1473	_	288	145	91 510140	1190eniudraphae	- 28	71	1 225
2523	-	452	228	gi 644873	Catabolic denydroquinate denydrocation Hashoohilus influentae)	- 58	96	1 210
3041	-	-	1 211	191 1205367	oligopeptide transport ATP-binding process		RC	1 261
3094	-	-	263	19111185288	isochorismete synthese (Bactlius suction)	88	-	1 3R1
1706	-		1 383	91 45614	mevalonate kinase (Arabidopsis thaliana)	**	1 32	1 405
	- ;			1011808869	Numan gcp372 (Homo sapiens)			46.
1854	- -	15	224	911508551	[ribulose-1,5 bisphosphate carboxylass large subunit -methyltransferase ribulose-1,5 bisphosphate carboxylass large subunit -methyltransferase	8 5		
4278	-		1 206	91 180189	cerebellar-degeneration-related antigen (CDR34) [Nomo sapiens] gl 182737 cerebellar degeneration-associated protein (Homo sapiens) cerebellar degeneration-associated protein - human			204
					pir[A29770 A29770 Genucates Control pir A29770 A29770 Pir A29770 A29770 Pir A297	1 57	1.	950
19		1 7818	1363	91110	hypothetical protein (Symechocyatus by)	1 57	1 29	· -
23	111	6996	8872	990909116	ORF_£256 [Eacherichia coll]	1 57	32	1 2400
7	-	1 4801	2402	[q1]15	ORF3 (Streptomyces coelicolor)	55	10	916
8	==	11911	110796	6 91 144859		75	1 25	86
9	=	112063	113046	6 [91]1001319	hypothetical protein (Symechocystis ap.)	,	:	1 1 1 1 1 1 1 1
111111								

5 aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	E I	1 ident	length (nt)	
1 51	-	1411	1187	pir B33856 B338	hypothetical 80K protein - Bacillus sphaericus	57	3.8	225	•
54	-	-	453	191 684950	staphylococcal accessory regulator A (Staphylococcus aureus)	57	31	453	
25.			239	9111000470	C27B7.7 (Caenorhabditis elegans)	57	42	237	• —
1 92	- 5	3888	3061	91 143607	sporulation protein (Bacillus subtilis)	57	35	795	• •
96		4006	(777)	91 144297	acetyl esterase (XynC) [Caldocellum saccharolyticum] pir B37202 B37202 acetylesterase (EC 3.1.1.6) (XynC) - Caldocellum accharolyticum	5.5	, , ,	768	
107	-	1480	2076	91 460955	TagE [Vibrio cholerae]	57	42	597	• —
109	=	1 5340	5933	91,1438846	Unknown (Bacillus subtilis)	5.7	=	294	
112	-	6679	1077	91/1486250	unknown (Bacillus subtilis)	57	1 (1	1023	
-		6384	4108	Qi B71456	putative alpha subunit of formate dehydrogenesse (Nethanobacterium hermoautotrophicum)	53	37	122	
126	- 7	£30	1053	91 288301	ORF2 gene product [Bacillus megaterium]	57	וינ	624	
100		6537	6277	9111511160	H. jannaschil predicted coding region MJ1163 [Methanococcus jannaschil]	57	38	261	•
1 133	-	2668	1 2201	91 1303912	Yohw Bacillus subtilis	57	0.0	468	. —
133	-	3383	2784	91 1221884	(ureal) saidolyase (Haemophilus influenzae)	57	37	009	• — •
167	-	2164	1694	gi 467469	unknown {Becilius subtilis	57	ı.	431	
091	-	1293	1060	91 558604	chitin synthase 2 [Neurospore crasse]	5.7	2.8	234	
163	-	5687	4764	91/145580	rarD gene product [Escherichia coli]	57	38	924	
168	9	4336	5325	91/39782	[33kDa lipoprotein (Bacillus subtilis]	57	32	066	
1 170	- 2	1 3297	3455	191 603404	Yer164p [Saccharomyces cerevisiae]	57	37	159	
1 221	9	8026	6089	gi 1136221	carboxypeptidase Sulfolobus solfatericus	57	32	1218	
228		134	1791	gi 288969	[fibronecin binding protein [Streptococcus dysgalactiae] pir [S]1850 S]1850 fibronecin-binding protein - Streptococcus ysgalactiae	5.5	32	ŧ	
1 263	-	4411	3686	91/1185002	[dihydrodipicolinate reductase [Pseudomonas syringae pv. tabaci]	57	42	726	
1 276	-	494	1 255	91 396380	No definition line found (Escherichia coli)	5.7	40	240	
283	7	335	1324	[gi 773349	BirA protein (Becillus subtilis)	57	32	066	
1 297	-	69)	236	gi 1334820	reading frame V [Cauliflower mosaic virus]	57	9,	234	
342	-	1993	2805	gi 1204431	[hypothetical rotein (SP:P33644) [Haemophilus influentee]	57	35	813	, — •
	1								,

aureus - Putative coding regions of novel proteins similar to known proteins

F12-5	0.F.	Start	Stop (nt)	match acession	match gene base	l sin	* ident	length (nt)
375	; 9	3340	3741	91 385177	cell division protein (Bacillus subtilis)	5.	76 –	402
433	9	3286	1 4011	gi 1524117	alpha-acetolectate decarboxylase [Lactococcus lactis]	57	- 03	136
02.	- 3	1 903	11145	gi R04819	protein serine/threonine kinase [Toxoplasma gondil]	5.	70	203
187	5	1 1 1 3 9 1	1723	91 507323	ONF1 [Bacillus stearothermophilus]	1 52	28	1 (((
867	-	274	852	91 1334549	t &L (Podo	57	74.	\$79
503	-	343	173	gi 1502283	organic cation transporter OCT2 (Rattus norvegicus)	57	30	171
505	~	1 1619	1284	91 466884	B1456_C2_194 (Mycobacterium leprae)	۲۶ ا	0	336
519	1 2	1 1182	2549	191 1303707	Yrkk (Bacillus subtilis)	57	7.	1368
1 522	2 -	3234	1945	gi 1064809	[homologous to sp:HTRA_ECOLI [Bacillus subtilis]	1 57	1 96	1290
518		606	1415	qi 153179	phosphorinothyrcin n-actyltransferase (Streptomyes coelicolor pir JN0246 J10246 phosphinothricin N-acatyltransferase (EC 2.3.1) Streptomyces coelicolor		•	507
1 547	-	B96	981	91 467340	unknown (Bacillus subtilis)	75	05	483
599	-	1062	532	ap P20692 TYRA_	PREPHENATE DELIYDROJENASE (EC 1.3.1.12) (PDH).	- 57	7	1105
620	- 7	751	572	91 1107894	unknown Schizoseccharomyces poebe	۱ ،		186
622		0091	1130	911173028	thiorodoxin 11 (Saccharomyces cerevisiae)		39	171
625		1 362	1111	91 1262366	hypothetical protein (Mycobacterium leprae)	- 57	34	1637
089			204	91 143544	RNA polymerase signa 10 factor (Bacillus subtilis) pir A28625 A28625 transcription initiation factor signa H - acillus subtilis	51	30	204
069	-	-	629	191 466520	pocR [Selmonella typhimurium]	52	62	627
969	-	~ -	- 63	gi 413972	ipa-48r gene product [Bacillus subtilis]	1 57	2	432
104	-	1 36	1 638	gi 1499931	H. jannaschli predicted coding region MJ1083 Methanococcus jannaschii	57	90	603
732	-	2316	1 1621	101 1418999	orf4 (Lactobacillus sake)	57	1. 37	969
746	==	451	1 227	91 392973	Rob3 (Aplysta californica	57	*	225
757		50	466	91 (43979	Correcus small cryptic plasmid gene for rep protein [Lactobacillus rvatus]	57	\$	447
862	-	- 2	1 295	gi 1303827	YqfI (Bacillus subtilis)	- 57	12	294
1049	-	106	455	91 1510108	[ORF-1 Agrobacterium tumefactens]	- 57	1 35	453
1117	-	1 1387	1 695	91 896286	[NH2 terminus uncertain [Leishmania terentoles]	57	28	693

aureus - Putative coding regions of novel proteins similar to known proteins

nt length (nt)	38 321	40 423	28 735	35 189	31 261	23 399	39 228	40 180	37 360	40 423	6 351	39	1 966	7 1 297	285	8 297	300	183	231	1 285	2 255	38 240	5 213	8 6 9
i ident		-	2	(2		-			1 36			47	05	80	~	100	35	3	5		35	· · · · · · · · · · · · · · · · · · ·
e is 1	57	7.2	57	57	57	57	57	57	57	57	57	5.5	57	57	52	57	57	57	57	57	57	57	57	2 9 9
, mptch gene name	YqqF (Bacillus subtilis)	voltage-activated calcium channel alpha-1 subunit (Rattus orvagicus)	[M. januaschii predicted coding region MJ1143 [Methanococcus januaschii]	putative membrane protein; putative (Bacillus subtilis)	uracil permease (Escherichia coli)	ORF4 (Bacillus subtilis)	[isochorismate synthuse [Haemophilus influenzae]	ORF_of64 (Escherichia coli)	tetracenomycin C resistance and export protein [Streptomyces laucescens]	glucose-fructose oxidoreductase (Zymomonas mobilis) pir A42289 A42289 glucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	ipa-29d gene product (Bacillus subtilis)	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevaloniij pir A44756 A14756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	nitrate reductase (EC 1.7.99.4) slphs chain - Escherichia coli	T06C10.5 gene product (Caenorhabditis elegans)	potatin (Solanum tuborosum)	Spotfing (Bacillus subtilis	EF [Streptococcus suis]	1-phosphofructokinasa [Escherichia coli]	Pristinamycin I synthase I [Streptomyces pristinaespiralis]	yeiH [Escherichia colli]	glutamate synthase (ferredoxin) [Synechocystis sp.] pir 546957 546957 glutamate synthase (ferredoxin) [EC 1.4.7.1) - ynechocystis sp.	leukotoxin secretion ATP-binding protein (Haemophilus influenzae)	restriction modification enzyme, subunit MI (Methanococcus jannaschii)	histidine utilization repressor G (Klebsfella aerogenes) pir A36730 A36730 hutG protein - Klebsfella pneumoniae (fragment) sp P19452 HUTC KLEAE FORMIMINOGLUTAMATE HYDROLASE) (HISTIDINE
match acession	91 1303853	91 310083	91 1511146	91 1142780	gi 313777	41 1237015	91 1204540	gi 882472	91,153490	gi1155588	gi 413953	91 151259	Dis JUNOST RDEC	91 (1086633	91/21512	91 1000365	91 298032	gi 405894	91 1483603	91 405879	91 515938	91,1205301	91 1511222	gi 149204
				-		_	:	-	-		-	;·			_				_	_		-		
Stop (nt)	322	1 611	1 738	558	1 399	400	1 230	181	1 361	434	354	384	398	300	C#5	335	302	1 290	1 232	288	354	242	1 256	11524
Start (nt)	7	1033	1472	746	629	7		360	7	958	704		793	965	152	631		108	~	1 572	515	491	468	112201
ID	-	2 -	-	- 2		-	-	-	-				-	-	- -	~	-	7	<u>-</u>	-		- -	-	=
Contig 1D	1136	114	1172	1500	1676	2481	1099	3122	3560	3850	3931	1993	4065	4100	4163	4267	4358	4389	4199	4 B 1	4486	4510	4617)

🔩 aureus - Putative coding regions of novel proteins similar to known proteins

18 2119 2254 91 140072 Model Home spiring 18 1119 2254 91 140072 Model Home spiring 18 18 18 18 18 18 18 1	ent i g I b	ORF	Start (nt)	Stop (nt)	match	match gene name	E S	1 ident	length (nt.)
1181 2224 611 (100070) Typene product Unidentified 35 31 31 32 32 32 32 32 32	22	.	4248	נרוז	91 132222	[RACH] [Homo saplens]	95	1 (6	016
1 115	: 86	1	(21179	22264	91/1480705		95	*	1086
15 10.00 10.004 10.110.00019 Paperthatical Decision (doi:10.1001)11 Homomobilius Information 156 147 4 20.06 2372 10.110.00019 Ichaer Decision (Homan admonitrus type 5) 10.110.00019 10	7	-	1861	2421	91 490320	Y gene product [unidentified]	95		\$61
4 2076 2372 01 (23.01) (Tiber protein libeaen adenovirus types 51 19 19 19 19 19 19 19	3	115	10103	10606	191 1205099	hypothetical protein (GB:L19201_1) [Heemophilus influenzee]	26	6.0	\$04
1 2016 2512 91 92 92 93 94 94 94 94 94 94 94	20	9	4820	5161	[91/209931	[fiber protein Human adenovirus type 5]	3.6		342
5 5354 5514 [511 (46561)] Initial iterharich's coli] 5154 1110 [511 (46561)] [512 (46561)]	53		2076	2972	91 623476		26	0.	897
1 1364 1810 Gillessez Process with Nome Jogy to past represent of B. subtills (Lactobecillus 1810 18	6.7	•	5656	6594	[91 466613	nik8 [Escherichia coli]	95	32	616
1 201 913 911195594 COMPTRECED Protein (EPP) (Excherichia coll) 56 35 35 37 31 31 31 31 31 32 31 32 31 32 32	2		2364	1810	gi 482922	protein with homology to pail repressor of B.sub;ills [Lactobacillus elbrueckii]	\$ \$	6	\$55
12 18250 17846 gal 1200157 Phypothetical protein (GB:Ult000_278) Heamophilus influences 56 27 18250 18251 18251 18252 182	9.6	-	203	1 913	91 145594	CAMP receptor protein (crp) (Escherichie coli)	26	35	1117
1 12 122 91 115588 91 10058 - Fructose oxidoreductase (EC. 1.1) Fecurior - Exposons sobilis 56 40 91 15588 91 10058 - Fructose oxidoreductase (EC. 1.1) Fecurior - Exposons sobilis 56 50 50 91 15124 91 92 92 92 93 93 93 93 93	109	121	118250	117846	gx 1204367	hypothetical protein (GB:U14003_278) [Haemophilus influenzae]	95	27	405
3 4004 5130 Gu 519774 Magre [Bacillus ifraus] 56 50 11 2 655 232 Gu 413948 Ipa-24d gane product [Bacillus subtilis] 56 31 1 4 823 1551 Gu 50068 Ipa-22r came product [Bacillus subtilis] 56 31 1 5 740 447 Gu 1046009 M. genitalium predicted coding region MGJ09 (Mycoplasma genitalium) 56 37 7 740 447 Gu 1046009 M. genitalium predicted coding region MGJ09 (Mycoplasma genitalium) 56 37 8 740 747 Gu 7495000 M. genitalium predicted coding region MGJ09 (Mycoplasma genitalium) 56 37 9 7 7 7 7 7 7 7 7 7	112		1 5611	6678	91 15558	glicose-fructose oxidoreductase (Er. 1.1) recursor - Eymomonas mobilis	99	9	1068
4 R22 132 91 413948	131	<u>.</u>	9089	0015	91 619724	MgtE (Bacillus firmus)	95	or	1305
4 M23 1521 gil580868 lipa-22r gene product [Bacillus subtilis] 56 31 31 31 31 32 34 447 gil 1046099 H. genitalium predicted coding region MGD09 (Mycoplasma genitalium) 56 37 37 38 38 38 38 38 38		~	\$	1 232	91 413948	ipa-24d gene product (Bacilius subtilis)	95	ī	168
2 740 447 gi 1046009 N. genitalium predicced coding region MGJ09 (Mycoplesma genitalium) 56 37 2 1639 1067 gi 945380 terminase small subunit [Bacteriophage LL-II] 56 35 30 3 223 gi 143947 Glucamina synthase Eacteriodes (Fagilis) 56 26 30 4 2 221 gi 105922 ONFIS4 Pseudomonas putida 56 30 5 6745 6449 gi 405792 ONFIS4 Pseudomonas putida 56 30 6 11 2 373 gi 1109686 Prox (Bacillus subtilis) 56 35 34 6 11591 647 gi 1109686 Prox (Bacillus subtilis) 56 39 6 11591 647 gi 1109242 collagenase Methanococcus Jannaschii 56 39 7 2321 2022 gi 147753 SarA (Staphylococcus aureus) 56 31 8 1171 gi 175533 sarA (Staphylococcus aureus) 56 41 8 1171 gi 765073 autolysin (Staphylococcus aureus) 56 41	138	-	1 #23	1521	91 580868		9		669
2 1619 1067 91 945380 terminase small subunit [Bacteriophage LL-II] 2 223 91 143947 91 91 925380 92 92 92 92 92 92 93 93	146	~	740	7	91 1046009	N. genitalium predicted coding region MG309 (Mycoplasma genitalium)	•\$	11	767
1 2 223 gi[43947 glucamine synthatase [Bacceroides fregilis] 56 30 26 30 31 393 gi[313237 [H(:)-transporting ATP synthase [Zea mays] 56 30 30 31 393 gi[311237 [H(:)-transporting ATP synthase [Zea mays] 56 35 35 35 35 35 35 35	67-	- 5	1639	1067		terminase small sulvunit (Bacteriophage LL-II)	95	3.5	573
5 6745 6449 qii 405792 ONFIS4 Pseudomonas putidal 56 26 26 26 31 39 qii 103792 W(***)-transporting ATP synthase [Zee mays] 56 35 30	163	-	7	223	01(143947	[glucamine syntherase [Bacteroides fragilis]	\$6	00	222
1 31 393 91 111237	166		6745	6449		ORFIS4 [Pseudomonas putida]	95	78	297
1 2 373 gi 1109666 Prox (Becillus subtilis) 56 35 35 36 35 373 gi 581070 acyl coentyme A synthetase (Escherichia coli) 56 35 34 373 2072 gi 1510242 collagenase (Methanococcus jannaschii) 56 39 39 373 2072 gi 40363 heat shock protein (Clostridium acetobutylicus) 5 3383 3775 gi 1477533 sarA (Staphylococcus aureus) 5 3383 3775 gi 705073 autolysin (Staphylococcus aureus) 56 31 31 32 3383 3775 gi 705073 autolysin (Staphylococcus aureus) 56 31 31 32 3383 3775 gi 705073 autolysin (Staphylococcus aureus) 58 58 58 58 58 58 58 5	187	-	7	1 393		[H(+)-transporting ATP synthase [Zea mays]	98	30	363
8 11538 9943 gil 881070 acyl Coenigyme A synthetase (Excherichia coli) 56 35 1 1 1 1 1 1 1 1 2 2	190	-	7	173	91/1109686	Prox (Bacillus subtilis)	95	3.5	276
1 1291 647 gi 510242 collagenase Hethanococcus jannaschii] 3 2323 2072 gi 40363 heat shock protein Clostridium acetobutylicum 56 39 39 5 3383 3775 gi 1477533 sarA (Stabhylococcus aureus) 5 813 1712 gi 765073 autolysin (Staphylococcus aureus) 56 41 56	161	,	111538	66	91 581070	acyl coenzyme A synthetase [Escherichia coli]	95	35	1596
3 2323 2072	195	-	1621	647	91 1510242	collagenase Methanococcus jannaschii]	95	7	645
5 3183 3775 g1: 477533 sarA (Staphylococcus aureus) 2 813 1712 g1: 765073 autolysin (Staphylococcus aureus)	230	_	1 2323	2002	491 40363	heat shock protein (Clostridium acetobutylicum)	95	96	252
2 813 1712 gi 765073 autolysin (Staphylococcus aureus)	238	s -	3383	27.75	91/1477533	sarA (Staphylococcus aureus)	95	- 10	393
	2.0	7	813	2171		autolysin (Staphylococcus aureus)	95	Ţ	006

5. aureus - Putative coding ragions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e in	1 ident	length (nt)
290	-	3221	1632	191 (547513	orf3 [Naemophilus influenzae]	95	7	1590
297	<u>.</u>	11140	נינו	9111511556	N. jannaschii predicted coding region MJ1561 [Methanococcus jannaschil]	95	0,	234
121	~	1 2947	1799	91 1001801	hypothetical protein (Symechocystis sp.)	9.5	76	1 6711
359	7	1 1279	149	191/46336	noll gene product [Rhizobium meliloti]	90	56	619
176		1 360	1823	91/145304	L-ribulokinase [Escherichia coll]	5.6	7 60	1464
1 391	-	1 1762	1 2409	19111001634	hypothetical protein (Synechocystis sp.)	95	*	849
403	-	380	192	191 1438904	5-HT4L receptor [Nomo sapiens]	995	S	189
416	-	2480	2109	91 1408486	HS74A gene product [Bacillus subtilis]	9 \$		372
124	_	1756	2334	91 142471	Acetolactate decarboxylase [Bacillus subtilis]	26	32	61.8
1 457	-	1907	1017	gi 1205194	formamidopyrimidine-DWA glycosylase [Haemophilus influenzae]	2.6	36	168
458	~	2423	1 1812	91/15466	terminase Bacteriophage SPP1}	3.6	7.6	612
204	7	1 2152	1283	91 1142681	Lpp38 (Pasteurella haemolytica)	95	38	870
3	<u>-</u>	-	1284	ai 217049	brng protein (Salmonella typhimurium)	9.5	3.7	1244
603		1099	1701	91 467 109	rim; 30S Nibosomal protein S18 alanine acetyltransferase; 229_C1_170 Hycobacterium leprae]	56	3	(0)
099	<u> </u>	1 3547	1 3774	9111229106	ZK930.1 [Cmenorhabditis elegans]	95	00	228
100	-	35	000	1911153929	NADPI-sulfite reducatese flavoprotein component [Salmonella yphimurium]	26		364
109		1385	1095	qi 1510801	hydrogenese accessory protein (Nethanococcus jannaschii)	95	80	291
718	-		495	gi 413948	ipa-21d gene product (Bacillus subtilis)	99	35	567
743	-	l 87	CT 9	91 928836	repressor protein [Lactococcus lactis phage BKS-7]	95	35	165
790	-	977	1399	91 1511513	[ABC transporter, probable ATP-binding subunit [Methanococcus janneschii]	26		374
795		3	407	91 1205382	cell division protein [Haemophilus influenzael	36	9	405
813	-	19	930	91 1222161	permease [Haemorhilus influenzae]	26	28	912
			515	91/1256621	[36.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative (Bacillus subtilis)	\$6	6	513
896	-	7	994	91 547513	orf3 [Haemophilus influenzae]	56	7.6	465
97.3	~	1049	132	91 886022	MexR [Pseudomonas aeruginosa]	56	1,	318
1203	-	s –	(22)	91 184251	HHG-1 Homo sapiens	9 9	7.	219
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

S numeus Putative coding regions of novel proteins similar to known proteins

10	ID CRF	Stert	Stop	match	match gene name	EIS	1 ident	length
9761		(55	237	9086 16	ysine-rich aspartic acid-rich protein Plasmodium chabaudi r S22183 S22183 ysine/aspartic acid-rich protein - Plasmodium baudi	95	33	216
2161	-	~	007	191 (1237015	ORP4 (Bacillus subtilis)	56	12	399
2958	-	362	1.83	21 46685	[No definition line found (Escherichia coli]	26	56	180
2979	-	124	212	91 1204354	spore germination and vegetative growth protein [Haemophilus influenzae]	96	0	210
2994	-	526	12.6	91 836646	phosphoribosylforminino-praic ketoisomerase [Rhodobacter phaeroides]	26	29	201
3026	-	(11)	1 328	gi 143306	penicillin V amidase (Bacillus sphaericus)	56	30	150
3189	-	289	146	191 1166604	Similar to aldehyde dehydrogenase (Caenorhabditis elegans)	26	37	144
07.70	-		107	91 1129145	acetyl-CoA C-acyltransferase [Mangifera indica]	\$6	4	666
4054	- 2	720	196	91 1205355	Na+/H+ antiporter [Hassophilus influentse]	96	10	360
4145	-		326	191 72 6095	long-chain acyi-CoA dehydrogenase (Nus musculus)	20	36	324
4200		\$0\$	254	91 155588	glucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	95	•	252
4273	-	675	1 355	91 30861	[GTG start codon [Lactococcus lactis]	95		321
		4095	3436	91 5341	Purative orf YCLX8c, len:192 (Seccharomyces cerevisies) r (553591 (53359) hypothetical protein - yeast (Seccharomyces evisies)	\$5	25	099
	112	5111	8505	91 216773	[haloscetate dehalogenase H-1 [Horaxella sp.]	\$5	75	R73
1 12	-	1 \$133	4534	91 467337	unknown [Bacillus subtilis]	\$5	92	1 009
61	-	5404	2864	91 1001 19	hypothetical protein (Synechocystis ap.)	\$5	52	141
	=======================================	114087	112339	gi 474190	lucA gene product (Escherichia coli)	\$5	000	1749
24	-	5168	6888	19111340096	unknown [Mycobacterium tuberculosis]	55	1,6	1521
<u>~</u>	-	2569	1808	91 1303968	[YqjQ (Bacillus subtilis]	\$5	39	162
7	- \$	1 3960	3412	91 1303962	[YqjK [Bacillus subtilis]	55	33	549
1 36	-	1521	647	911606045	ORF_oll8 Escherichia coli]	55		645
36	9	6220	5243	9111001341	hypothetical protein (Symechocystim sp.)	1 55	31	876
•	2	3054	3821	fgi 1001819	[hypothetical protain [Symechocystis sp.]	55	21	1 89
\$		2065	1127	91 1403373	glycerophosphoryl diester phosphodiesterase [Hacillus subtilis] pir S37251 S37251 glycerophosphoryl diester phosphodiesterase - acillus subtilis	25	% 	939

TABLE 2

TABLE 2

1. 1. 1. 1. 1. 1. 1. 1.	Contig ORF	ORF 110	Start	Stop (nt)	match	match, gene name	E is	* ident	length (nt)
1 151	1.067		9968	1	qi 153053	norAll99 protein (Staphylococcus aureus)	55	23	009
1 1517 1618 64 1132211 Carboryopoticlase (Bulfotobus solitatricus) 55 1 1517 1615 64 11066812 Charciton unknoom (Bacillus subtilis) 55 1 1512 1616 64 182463 Procedin-Nigli-Phosphoh-Stdine-suger Phosphotremferase (Becherichia oli) 55 1 1512 1616 64 182463 Procedin-Nigli-Phosphoh-Stdine-suger Phosphotremferase (Becherichia oli) 55 2 1512 1616 64 1107047 Leasanthin spouldate (Hictisas plumbagin/Idia) 55 3 2416 2546 2546 64 1107047 Leasanthin spouldate (Hictisas plumbagin/Idia) 55 4 2546 2546 2546 254100747 Leasanthin spouldate (Hictisas spould Rechamococcus Januarchii) 55 5 2546 2546 254100747 Leasanthin spouldate (Hictisas spould Rechamococcus Januarchii) 55 5 2545 2546 254100747 University State (State (Stat	27.	-	1 881	1273	gi :1698	oxidoreductase (EC 1.1.1.23) (as 1-434)	55	33	193
1 1517 1617 1616 161	R2	-	115387	114194	. ~	carboxypeptidase (Sulfolobus solfataricus)	55	35	1194
2 1172 1656 91 882463 Direction Mipple phospholistical resuger phospholistication with a post-lass platform and the properties and the properties of the properties of the properties and the properties of the properti	1 87	-	1 3517	1 4917	19111064812		55	26	1401
1 177 516 41 1277822			2711	!	91 882463	protein-Nipil-phosphohistidine-sugar phosphotransferase [Escherichia oli]	55	35 '	165
2 816 2003 91 1170274 Personnthin operiodical (Microtina plumbaginifolia) 55 5137 4628 91 1170274 Personnthin operiodical codung region Milod (Methonococus Januarchii) 55 5137 4628 91 119666 Unkhoom Open reading frame Buchners aphidicola) 55 52 52 52 52 52 62 91 1100277 Unkhoom (Saccharooyees caravisiae) 55 52 52 52 52 52 52 5	1 92.	-	127	1 516	gi 1377832	unknowm Becillus subtilis	5.5	36	190
5 5137 4658 91 39666 H. Jannaschil predicted Coding region Milo24 (Methanococcus Jannaschill) 55 1 4266 2346 2346 91 143966 H. Jannaschil predicted Coding region Milo24 (Methanococcus Jannaschill) 55 1 2316 1334 91 131367 (formate dehydrogenese crevisiae) 55 2 2316 1335 1476 91 100797 Unkhown (Saccharoayces crevisiae) 55 3 2316 2328 92 100797 Unkhown (Saccharoayces crevisiae) 55 4 1315 1476 91 1143569 Art synthase a subunit (Bacillus filmus) 55 5 2325 2576 91 1143569 Art synthase a subunit (Bacillus filmus) 55 6 9116 6857 91 1143569 Art synthase a subunit (Bacillus filmus) 55 7 144 1416 1411356 Art synthase a subunit (Bacillus filmus) 55 8 141 1414	001	- 2	836	2035	91 1370274	(zeazanthin epoxidase (Nicotiana plumbaginifolia)	55	36	1200
1 1786 2346 91111396	100	5	1 5137	4658	gi 396660	unknown open reading frame Buchnera aphidicola	55	29	480
13 2616 1834 9j1[351]67 [formate dehydrogenase, alpha subunit [Mathanococcus Jannaschill] 55 13 1865 1776 9j1[100787 Unkown [Saccharomyces cerevislae] 55 15 6212 5508 9j1[100584 [H. gentaltun predicted coding region MG199 [Hycoplaana genitaliua] 55 15 2205 5276 9j1[14356 ATP synthase a subunit [Bacillus firmus] 55 1 13 64 916 6316 9j1[43594] [Ba222.] [Ceanorhabditia elegans] 55 1 13 64 1335 616 9j1[43316] ATP synthase a subunit [Bacillus firmus] 55 1 13 64 1335 1410 OPFKK (Bacillus subtilis) 55 1 2 144 1336 144 154 9j1[40130] OPFKK (Bacillus subtilis) 55 1 2 144 541 144 541 144 541 144 144 144 144 144 144 144 144 144 144 </td <td>108</td> <td>-</td> <td>4266</td> <td>1 2986</td> <td>91 1499866</td> <td> H. janneschii predicted coding region HJ1024 (Methanococcus jannaschii)</td> <td>55</td> <td>11</td> <td>12.81</td>	108	-	4266	1 2986	91 1499866	H. janneschii predicted coding region HJ1024 (Methanococcus jannaschii)	55	11	12.81
5 1805 1476 gl 1100787 Unkown (Sarcharomyces carevislae) 55 5 6212 5508 g 1049884 H. Genitalium predicted coding region MG199 (Hycoplasma genitalium) 55 6 9126 6857 g 1458911 B0272.3 (Caenorhabditia elegans) 55 1 1164 68.6 g 145766 KX kinesin-like protein (Dictyottellium discoldeum) 55 2 164 115 [167] g 145766 KX kinesin-like protein (Dictyottellium discoldeum) 55 2 164 1135 [1140139] RX kinesin-like protein (Bortyottellium) 55 2 164 1135 [1140139] RAPPORTECIAL (Schlichendeum) 55 2 644 1137 [g 401039] RAPPORTECIAL (Schlichendeum) 55 3 644 1137 [g 401039] RAPPORTECIAL (Schlichendeum) 55 4 1137 [g 401001793] RAPPORTECIAL (Schlichendeum) 66 76 4 1137 [g 401001793] RAPPORTECIAL (Schlineum) 76 <	114	-	2616	1 1834		alpha subunit	55	59	783
5 6212 5508 91 1005884 Genitalium predicted coding region MG199 [Mycoplasma genitalium] 55 6 9136 6857 91 559411	7	-	1 1805	1476	91 1100787	unkown (Saccharomyces cerevisiae)	55	35	330
5 2205 2576 gill2569 ATP synthage a gubunit [Becillus firmus] 55 6 9136 6657 gill2569 [AT kinesin-like protein [Dictyostellum discoldems] 55 7 1364 636 gill14576 [KY kinesin-like protein [Dictyostellum discoldems] 55 8 1315 1676 gill40136 [KY kinesin-like protein [Dictyostellum discoldems] 55 1 1315 1676 gill40136 [AK kinesin-like protein [Becillus subcills] 55 2 644 1372 gill601793 [Akpothetical protein [Synechocystis sp.]] 55 7 1414 5481 gill001793 [Akpothetical protein [Synechocystis sp.]] 55 8 5308 4817 gill201793 [Akpothetical protein [Becillus subtills] 55 8 5308 4817 gill201793 [Akpothetical luminosmills] 55 1 1143 544 gill46530 [Akpothetical luminosmills] 55 1 1 126 134 [Akpothetic calutas [Akpothetical protein [Becillus subtil	1 165	- 2	6212	5508	91 1045884	[M. genitalium predicted coding region MG199 [Mycoplasma genitalium]	55	27	105
6 9136 6857 gil559411 B0072.3 Ccemorhabditis elegans 55	1.89	5	1 2205	2576	gi 142569	subunit	55	35	372
2 164 616 Gill Gill	191	9	9116	1 6857	gi 559411	B0272.3 [Caenorhabditis elegans]	55	39	2280
4 1315 1676 91 473357 Libit gene product [Schizosaccharomyces pombe] 55 1 1 1 1 1 1 1 1	194	- 5	1 364	1 636		K7 kinesin-like protein [Dictyostelium discoideum]	55	7.	273
2 1693 1145 git 4100130 OMFN6 (Bacillus subtilis) 55 55 56 57 57 57 57 57	500	-	1 1335	1 1676	91 473357	this gene product (Schizosaccharomyces pomba)	\$5	35	342
2 644 1372 gi 633692 Treak (Yersinia enterocolitica) 55	211	1 2	1 1691	11145	91 410130	ONFX6 (Bacillus subtilis)	55	1 '1	549
7 4144 5481 gi 1000193 hypothetical protein [Symechocyetis sp.] 55	1 213		1 644	1 1372	91 633692	Trak (Versinia enterocolitica)	\$5	28	729
7 11473 9197 git 466520 pocR [Salmonalla typhimurium] 55	214	-	4144	1 5481	gi 1001793	hypothetical protein (Synechocystis sp.)	\$5	30	1338
8 5908 4817 gi 1237063 unknown (Mycobacterium tuberculosis) 5 1375 2240 gi 1146199 putative (Bacillus subtilis) 5 1 1 1 1 1 1 1 1 1	1 221	1	111473	1 9197	g1;466520	pocR [Salmonella typhimurium]	55	32	2277
4 1375 2340 gi 1146199	1 233	-	1 5908	1 4817	gi 1237063	unknown (Mycobacterium tuberculosis)	5.5) 80	1092
2 380 1885 gi 455907 improveric reductate Plannid p1288] 1 786 394 gi 455006 orf6 Rhodococcus faccians 1 126 938 gi 1408493 homologous to SwissProt:YIDA_ECOLT hypothetical protein (Bacillus subtilis) 55 1323 2102 gi 1486447 LuxA homologue (Rhizobium sp.) 5 5 5 5 5 5 5 5 5	236	-	1 1375	1 2340	gi 1146199		\$\$	32	1 996
1 786 394 gi 455006 Orf6 [Rhodococcus fascians] 55 126 938 gi 1408493 homologous to SwissProt: YIOA_ECOLI hypothetical protein [Bacillus subtilis] 55 1323 2102 gi 1486447 LuxA homologue [Rhizobium sp.] 5 5 5 5 5 5 5 5 5	243	- 7	1 380	1 1885	gi 459907	mercuric reductase (Plasmid pl258)	\$\$	29	1506
1 126 938 gi 1408493	258	-	1 786	1 394	gi 455006		55	36	166
3 1323 2102 gi 1486447 LuxA homologue (Rhizobium sp.) 5	281	-	1 126	938	gi 1408493	hypothetical protein (Bacillus	55	35	813
5 2968 2744 gi 1296824 proline iminopeptidase [Lactobacillus helvaticus]	316	-	1323	1 2102	gi 1486447	LuxA homologue (Rhizobium sp.)	55	30	780
	326	5	1 2968	2744	gi 1296824	proline iminopeptidase [Lectobacillus helveticus]	55	36	225

S. dureus - Putative coding regions of novel proteins similar to known proteins

S aureus · Putative coding regions of novel proteins similar to known proteins

Cont 19	ORF	Start	Stop (nt)	metch	match, gene name		1 ident	length (nt)
1 351	~	2322	1429	94 1204820	hydrogen peroxide-inducible activator [Haemophilus influenzae]	\$5	2.8	894
	-	1 2197	2412	gi 1272475	chitin synthase (Emericella nidulans)	55	50	216
360	-		976	91 142554	ATP synthese 1 subunit [Bacillus megaterium]	5.5	- ''	366
1 383	-	462	232	91 789272	[ferrichrome-binding protein [Bacillus subtilis]	\$\$	3.6	231
386	-	-	936	91 11510251	DNA helicase, putative [Nethanococcus jannaschil]	55	0.00	936
410	- 5	1208	1881	91 1205144	multidrug resistance protein (Hasmophilus influenzae)	55	27	1 189
183	- 2	17	833	91 (13934	ipa-10r gens product (Bacillus subtilis)	55	36	423
529		1777	1433	91 606150	ONF_f109 (Escharichia coli)	55		345
555	-	1088	585	91 143407	[para-sminobenzoic scid synthese, component I (pab) (Bacillus ubtilis]	25	2.8	\$04
595	-	1 402	202	91 1223961	[CDF-tyvelose epimerase [Yersinia pseudotuberculosis]	52	7	201
- 5.82		751	452	91 1256643	[20.2% identity with NACH dehydrogeness of the Leishmania major altochondrion; putative [Bacillus subtilis]	55	36	000
\$	<u>~</u>	2260	2057	91 110824	fusion protein F (Bovine respiratory symcytial virus) pir JQ1481 VGWZ&A fusion glycoprotein procursor - bovine espiratory symcytial virus (strain A51908)	2	\$2	204
572	- 2	1957	2216	61 1511333	M. jannaschii predicted coding region MJ1322 [Methanococcus jannaschii]	55	36	1260
06.7	-	955	679	191 537007	ORF_f179 (Escherichia coli)	\$\$	30	100
, te	-	1859	948	[91]536963	[CG Site No. 18166 [Escherichia coli]	\$\$	30	915
742	2	228	1.572	91 304160	product unknown (Bacillus subtills	55	38	345
F17	~	11211	1 903	91 1136289	histidine kinase A [Dictyostelium discoideum]	\$5	29	309
R19	-	582	1355	91 558073	[polymorphic antigen [Plasmodium falciparum]	55	22	228
832	~	11152	124	191140367	ORFC (Clostridium acetobutylicum)	55	32	1 629
078	-	1 769	386	91 1205875	pseudouridylate synthase I [Hacmophilus influenzee]	55	39	384
1021	-	1 23	529	gi 48563	beta-lactamuse (Yersinia enterocolitica)	\$5	38	1 606
1026	-	09	511	91 47804	Opp C (AA1-301) [Selmonells typhimurium]	\$5	26	276
1525	-	-	282	qi 1477533	sarA Staphylococcus aureus]	\$5	29	282
1814	- 7	224	1 985	qi 1046078	H. genitalium predicted coding region MG169 [Pycoplasma genitalium]		38	162
3254	-	427	254	91/413968	ipa-44d gene product [Bacillus subtills]	55	30	174

aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	יו פֿו בּוֹץ מַפְּרִים הַ הַּאָּהָם.	E	1 Ident	length (nt)	
3695		989	345	91 216773	haloacetate dehalogenase H-1 [Moraxella Sp.]	55	32	342	
12721		-	312	91/42029	ORF1 gene product (Escherichia coli)	55	31	312	
1799	- 1		1 272	91 42029	ORF1 gene product (Escherichia coli)	55	38	270	
3889	-	1 22	423	91 1129145	acetyl-CoA C-acyltransferase (Mangifera indica)	5.5	45	402	
3916	-	~ _	385	1911529754	spec (Streptococcus pyogenes)	- 55	38	384	
1 3945	-	-	198	1911476252	phase I flagellin (Salmonella enterica)	5.5	36	195	
404	-	1 488	246	91 (42029	ORF1 gene product (Escherichia coli)	55	38	243	
4184	-	- 2	1 343	91 1524267	unknown Mycobacterium tuberculosis	55	28	342	
4284	-	14	1 208	91 1100774	[terredoxin-dependent glutamate synthase (Symechocystis ap.]	55	36	195	
4457	~	644	378	91 180189	cerebellar-degeneration-related antigen (CDR34) (Homo sapiens) gi 182737 cerebellar-degeneration-associated protein (Homo sapiens) pir A29770 A29770 cerebellar-degeneration-related protein - human	\$5	80 E	267	
4514	-	- 5	244	91 (216773	haloacetate dehalogenase H-1 (Moraxella sp.)	55	32	243	
4599	-	1 432	1 217	91 1129145	acetyl-CoA C-acyltransferase (Mangifera indica)	55	42	216	
4606		416	210	gi 386120	myosin alpha heavy chain (S2 subfragment) [rabbits, masseter, eptide Portial, 234 as]	\$5	27	20.7	
2	-	1 5348	1 4932	91 536069	ORF YBL047c [Saccharomycas cerevisiae]	3	27	417	
= -		1 7166	6165	911205504	[homoserine acetyltransferase [Haemophilus influenzae]	. 54	30	1001	
1 23	116	117086	115326	91 474192	lucC gene product [Escherichia coli]	3.4	31	1761	
			979	91 48054	small submit of soluble hydrogenase (AA 1-384) [Symechococcus sp.] ir S06919 HQYCSS soluble hydrogenase (EC 1.12) small chain - inchococccus sp. (PCC 6716)	₹	36	87.6	
71	===	9437	1 8667	193 537207	ORF_£277 [Escherichia col1]	54	38	177	
1 17	112	8165	8332	91,1160967	palmitoyl-protein thioesterase [Homo sapiens]		37	168	
9	- 15	113025	13804	gi 438473 	protein is hydrophobic, with homology to E. coli ProW; putative Bacillus subtilis]	¥.	28	780	
95	7	1 203	1 736	491 11256139	YbbJ (Bacillus subtilis	54	70	534	
57	<u> </u>	111117	10179	91 1151248	Inosine-uridine preferring nucleoside hydrolase [Crithidia fasciculata]	54	32	939	
99	7	516	11133	91:1335781	Cap (Drosophila melanogaster)	54	2.9	618	-
0,	01	8116	8646	91 139983	PhoE (Rhizabium meliloti)	25	31	531	

s nureus. Putative coding regions of novel proteins similar to known proteins

5

ntig ID	IORF	Start	Step (nt)	match	match gene name	E	* ident	length (nt)
7.0	15	112556	11801	sp P02983 TCR_S	TETRACYCLINE RESISTANCE PROTEIN.	24	29	756
87	- 5	4915	\$706	gi 1064811	[unction unknown (Bacillus subtilis]	24		792
9.2	4	3008	2289	91 1205366	oligopeptide transport ATP-binding protein (Haemophilus influenzae)	24	133	117
103	2	2596	1556	91/710495	protein kinase (Bacillus bravis)	75	<u>.</u>	1041
20.	2	3565	2095	91 143727	putative (Bacillus subtilis)	24	30, 1	1491
112		2117	27.12	91(15)724	HalC Streptococcus pneumoniae	54	7	196
123		1,720	2493	gi 144297	acetyl esterase (KynC) [Caldocellum seccharolyticum] pir[837202[837202] acetylesterase (EC 3.1.1.6) (KynC) - Caldocellum accharolyticum	\$	9°	174
138	-	1 1600	3306	91 42473	pyruvate oxidase (Escherichia coli)	54	36	1707
152		525	1172	91 1377834	unknown [Bacillus subtilis]	₹	23	648
191		1881	5469	1911903305	ORF73 [Bacillus subcilis]	24	28	639
161	13	1 699	1251	91 (1511039	phosphate transport system regulatory protein (Methanococcus jannaschii)	25	32	558
164		1 3263	4543	91 1204976	prolyl-tRNA synthetase [Haemophilus influenzae]	34	7	1281
164	120	21602	122243	91 143582	spoiling protein (Becilius subtilis)	- 54) 2	642
1.7.1	· ·	56.83	4250	91 436965	malh gene products [Bacillus stearothermophilus] pir{543914 543914 hypothetical protein 1 - Bacillus tearothermophilus	35	7.	1634
;		119208	119720	19111240016	R09E10.3 (Caenorhabditis elegans)	54	38	\$13
218	7	0601	1905	91 467378	unknown (Bacillus subtilis)	24	36	1918
220		1322	663	[91 1353761	myosin II heavy chain (Maegleria fowleri)	24	22	099
220	=	12655	13059	pir S00485 S004	gene 11-1 protein precursor - Plasmodium falciparum (fragments)	54	35	405
221		2030	3709	91 1303813	YqeW (Bacillus subtilis)	54	74	1680
272		5055	4219	9 62964	arylamine N-acetyltransferase (AA 1-290) (Gallus gallus ir S06652 XYCHY3 arylamine N-acetyltransferase (EC 2.3.1.5) (clone NAT-3) - chicken	24	33	837
316		4141	104	[gi]682769	mccE gene product (Escherichie coli!	24	-	195
316	10	P669	8742	q1 413951	ipa-27d gene product (Bacillus subtilis)	84	28	1749
338		7466	2214	gi 490328	LORF F [unidentified]	54	28	1164
341	-	3201	3614	91 171959	myosin-like protein [Saccharomyces cerevisiae]	54	25	414

10	
15	
20	
25	
30	
35	
40	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name		1 Ident	length (nt.)
346		1820	912	91 396400	similar to eukaryotic Na*/H* exchangers [Escherichia coli] sp[P32703]YJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC REGION (0549).	5	7	606
348	2	623	1321	601/23/169	ONF_£343a (Escherichia coli)	34	76	1 627
378	1 2 1	1007	1942	sp P02983 TCR_S	TETRACYCLINE RESISTANCE PROTEIN.	24		936
408	9 -	4351	1 5301	91 474190	iucA gene product [Escherichia coli]	54	79'	951
*	-	7934	8854	91/216267	ORF2 [Bacillus megaterium]	*	32	921
1 463		7172	2229	91 304160	product unknown (Bacillus subtilis)	3	50 1	489
1 502	~	9691	1133	91 1205015	hypothetical protein (SP:P10120) [Haemophilus influenzae]	24	38	264
505	9	6262	1 5357	91 1500558	[2-hydroxyhepta-2,4-diene-1,7-dioate Asomerase [Methanococcus jannaschii]	24	17	906
1 550		2736	1522	91 40100	rodc (teg3) polypeptide (AA 1-746) [Bacillus subtilis] ir S06049 S06049 rodc protein - Bacillus subtilis p Pi]485 TAGP_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	×	35	1215
155		\$0[f	4279	gi 950197	unknown Corynebacterium glutamicum	35	7.	978
1 558	7	1356	958	91 485090	No definition line found (Caenorhabditis elegans)	24	32	199
5.80	-	16	936.	91(331906	[used envelope glycoprotein precursor [Friend spleen focus-forming irus]	24	6.5	846
603	-	554	157	9111323423	ORF YGRII4M (Sectharomyces cerevisiae)	2.5	36	204
617	-	25	249	gi Z19959	ornithine transcarbamylase [Homo sapiens]	3.5	- G	225
622	-	1097	1480	91/1303873	Y992 (Bacillus subtilis)	3.6	25	384
623			\$ 0	gi,1063250	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	Ň	\$	402
689		1547	1011	gi 552446	NADH dehydrogenase subunit 4 [Apis mellifera ligustica] pir 552968 552968 NADH dehydrogenase chain 4 - honeybee itochondrion (SGC4)	35	00	537
725	7	686	1461	91 987096	sensory protein kinase [Streptomyces hygroscopicus]	54	26	756
956	-	-	249	pir 530782 5307	pir S30782 S307 integrin homolog - yeast (Saccharomyces cerevisiae)	24	24	249
978	- 5	11137	R S 9	gi 1301994	ORF YML091w [Saccharomyces cerevisiae]	54	33	279
1314	-		281	ai 1001108	hypothetical protein (Symechocystis sp.)	54	1 16	279
2450	-		1 228	91 1045057	ch-fog (Homa sepiens	34	32	228
2934	-	1	187	gi 580870	ips-37d qoxA gene produ. (Bacillus subtilis)	3.0	36	387
2970	-	499	251	sp P3734# YECE_	4P YECE HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	35	42	249

45

3 aureus - Putative coding regions of novel proteins similar to known proteins

ontig	IORF	Start	Stop (nt)	Batch	maych gene name	E .	• 1dent	length (nt)
3002			309	91 44027	The protein [Lactococcus lactis]	8	33	309
1561		6	+9	91 151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevaloni1] pir[A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	PS	35	456
3572		72	401	91 450688	hadw gane of Ecopril gene product [Escherichia coli) pir 938437 538437 hadw protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	3	9	330
3829	-	864	000	91 1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	35	29	399
1909	-		273	91 29865	CENP-E (Homo sapiens)	54	0.5	273
1921		-	209	 pir \$24325 \$243	glucan 1,4-beta-glucosidase (EC 3.2.1.74) - Pseudomonas fluorescens subsp.	* ·		207
4438	-	995	285	191 1196657	unknown protein (Mycoplasma pneumoniae)	54	30	282
4459	1-	6 -	1 272	gi 1046081	hypothatical protein (GB:D26185_10) [Mycoplasma (jenitalium]	75	36	270
1564	-		1 221	91 216267	ORF2 [Bacillus megaterium]	54	38	219
23	113	112538	10685	91 474192	lucC gene product [Escherichie coli]	53	35	1854
23	11	114841	13579	gi 42029	ORF1 gene product [Escherichia coli]	53	32	1263
77	-	1 4440	3940	91 1369947	c2 game product [Bacterlophage Bl]	53	36	501
26	-	3818	4618	gi 1486247	unknown (Bacillus subtilis)	53	1 37	109
3.8	9	1 2856	3998	911405880	yell (Escherichia coli)	53	0.7	100
38	110	9380	7806	91 139954	thyroid sodium/iodide symporter NIS [Rattus norvegicus]	53	29	1575
2.6	110	112324	112100	pir A54592 A545	110k actin films - associated protein - chicken	53	32	225
57	9-	5047	4583	pir A00341 DEZP	alcohol dehydrogenase (EC 1.1.1.1) - fission yeast (Schizosaccheromyces pombe)	S	39	165
57	112	110515	8932	91 480429	[putative transcriptional regulator [Bacillus stearothermophilus]	1 53	30	1584
19	[12	9676	130218	gi 1511555	quinolone resistance norA protein protein (Methanococcus janueschii)	53	31	123
69		1 3125	2382	91 1687017	arabinogalactan-protein, AGP Micotiana alata, cell-suspension culture filtrate, Peptide, 461 aa	2	0.0	744
79	-	r	11011	91 1523802	gluce: ise (Anabaene variabilis	53	32	1029
80	-	1 673	1 338	91 452428	ATPase 3 (Plasmodium falciparum)	23	36	336
. so	4	1 1910	2524	91 337034	ORF_o488 (Escherichia coli)	53	25	615
ec ec	5	2467	3282	gi 537034	ORF_0488 [Escherichia coli]	2	29	816

10	
15	
20	
25	
30	
35	
40	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start (nt)	Stop	natch	makth gene name	E 18	, ident	length (nt)	_
92	80	1 5870	5055	91 399598	amphotropic murine retrovirus receptor [Rattus norvegicus]	68	33	366	_
76	- 2	4417	3239	gi 173038	tropomyosin (TPM1) [Saccharomyces cerevisiae]	53	25	1179	
66		4207	5433	sp P28246 BCR_E	8246 BCR_E BICYCLOMYCIN RESISTANCE PROTEIN (SULFONANIDE RESISTANCE PROTEIN).	53	30	1227	
120	-	1639	2362	91 576655	ORF1 [Vibrio anguillarum]	53	35	624	
120	=	1257	8897	gi 1524397	[glycine betains transporter OpuD [Bacillus subtilis]	83	33.	1641	
127	9	6893	5895	(91)1256630	[putative [Bacillus subtilis]	53	32	1209	_
147	7	1 255	1 557	91 581648	epiB gene product [Staphylococcus epidermidis]	53	34	303	
158		4705	4256	gi 151004	mucoidy regulatory protein AigR [Pseudomonas acruginosa] pir[A33802[A32802] regulatory protein algR - Pseudomonas acruginosa sp P26275 ALGR_PSEAE POSITIVE ALGINATE BIOSYNTHESIS REGULATORY NOTEIN.	53	32	0 \$ \$	
171	7	15717	5421	gi 1510669	hypothetical protein (GP:D64044_18) (Methanococcus jannaschii)	53	70	297	_
161	<u></u>	13087	11.483	91 298085	acetoscetate decarboxylase [Clostridium acetobutylicum] pir B49346 B49346 b49346 butyrateacetoscetate CoA-transferase (EC .8.3.9) small chain Clostridium acetobutylicum sp P33752 CTFA_CLOAB BUTYRATE-ACETOACETATE COA TRANSFERASE SUBUNIT (EC 2.8.3.9) (COAT A)	53	ī.	1605	
203		3763	4326	91 143456	rpoE protein (ttg start codon) [Bacillus subtills]	53	29	264	
206		18204	18971	91 304 36	acetylglutamate kinase [Bacillus steekothermophlus] sp[007905 ARGs_BACST ACETYLGLUTAMATE KINASE (EC 2.7.2.8) (NAG INASE) (AGK) (N-ACETYL-L-GLUTAMATE 5-PHOSPHOTRANSFERASE).	53	36	896	
212	<u>-</u>	1 4021	4221	41 9878	[protein kinase Plasmodium falciparum]	53	2.8	201	
231	7	1580	1350	gi 537506	[paramyosin [Dirofilaria immitis]	53	7	1162	
272	•	2719	3249	pir A33141 A331	hypothetical protein (gtfD 3' region) - Streptococcus mutans	53	~ *	531	_
308	-	1 927	2576	gi 606292	ORF_0696 (Escherichia coli)	53	33	1650	
320		5645	5884	91 160596	RNA polymerase III largest subunit [Plassodium falciparum] spip27625[RFC1_PLAFA DNA-DIRECTED RNA POLYMERASE III LARGEST UBUNIT (EC 2.7.7.6).	53	7	240	
1327	-	218	106	gi 854601	unknown (Schitosaccharomyces pombe)	53	31	684	
341	~	212	1 2500	gi 633732	ORF1 Campylobacter jejuni	53		2289	-
150	-	1 763	383	Sp P31675 YABM_	HYPOTHETICAL 42.7 KD PROTEIN IN TBPA-LEUD INTERGENIC REGION (ORFID4).	53	32	3.81	_
433	_	1 5087	4731	gi 1001961	MMC class II analog (Staphylococcus aureus	53	0.0	357	-
454	~-	1240	086	pir A60328 A603	40K cell wall protein pracursor (sr 5' region) - Streptococcus mutans (strain OHZ175, serotype f)	53	27	261	

TABLE 2

50

S. sureus - Putative coding regions of novel proteins similar to known proteins

	Ontig ORF	ORF	Start	Stop (nt)	match	Nefqh gene name	E 7	• Ident	length Intl
1 132 137 131400237 pacetive transcriptional regulator [batillua steacoherosphilas] 1 1516 132 1315 1315	470	-	1123	1761	gi 516826		53	30	639
1 516 1339 Gil(45577 Opt 1,194, 11,1374, Discussion of Children Opt 1,194, 11,1374, Discussion Opt 1,194, Opt 1,194, Discussion Opt 1,194, Opt 1,194	483		1 432	1 217	g1 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	53	1	216
10 1957 1754 Guilionome International Content International Conten	244		516	1259	91 46587	- 12)) (1 is 2nd base in codon) (Staphylococcus 515765 hypothetical protein 1 (hlb 5' region) - sgment)	S	8	7
1 1669 441 041 531738 Hump (VIDETIO parchimemolyFitcus† 1 1669 441 041 531733 Fondic ahootk proficeme toxin-1 precursor Etabhylococcus auteus 1 1667 441 041 53173 Parriade(MICSAS) Toxic ahootk proficeme toxin-1 precursor - taphylococcus 1 1 2 673 041 687600 OrfA2 orfA2 forms an operon with orfA1 Listeria annocytogenes 1 1 2 673 041 687600 OrfA2 orfA2 forms an operon with orfA1 Listeria annocytogenes 1 1 2 673 041 1204531 Dillin biogenesis protein Heamophilus influences 1 1 2 673 041 1204531 Dillin biogenesis protein Heamophilus influences 1 1 2 674 041 1204531 Dillin biogenesis protein Heamophilus influences 1 1 2 674 041 1204532 EF Estreptococcus axis 1 1 2 674 041 120453 Listeria	558	110	7868	3754	gi 15140	res gene [Becterlophage P1]	53	32, 1	204
1 1667 541 0 53123 PartLate Specification of S	(09	~ -	339	620	qi 507738	Hamp (Vibrio parahaemolyticus)	53	56	282
1 2 673 191 667560 10f42; Off22 forms an Operon with OrfA1 [Listeria monocytogenes] 1 667 315 91 1201521 91 11 biogenesis procesin [Beamphilius influences] 1 3 545 91 1204531 91 120400 58ph procesin [Beamphilius odd] 1 2 910 94 69528 11pase-11ke antyme [Alcaligenes extrophus] 1 1 1 1 1 1 1 1 1	(69)	:	1669	941	91 153123	<pre>toxic shock syndroms toxin-1 precures (Stabhylococcus aureus) pir/Az4606 xCSAS1 toxic shock syndroms toxin-1 precureor - taphylococcus aureus</pre>	53	20	729
1 3 45	766		2	[673	191 687600	orfA2; orfA2 forms an operon with orfA1 [Listeria monocytogenes]	53	4 3	672
1 1 2 910 91 695278	781	-	1 667	1335	91 1204551	(pilin biogenesis protein (Heemophilus influentse)	53	36	133
1 2 910 91 695228	108	-	-	545	q1 1279400	SapA protein [Eacherichie coli]	53	25	543
1 1177 590 gil 29802 EF [Streptococcus auis]	803	-	7	016	91 695278	lipame-like enzyme (Alcaligenes eutrophus)	3	30	606
1 2 184 91 1044936 unknown [Schizosaccharomyces pombe]	872	- 1	7711	590	91 296032	[EP [Streptococcus suis]	53	30	888
1 794 199 91 :90508 similar to unidentified ORF near 47 minutes (Escherichia coli) REGION REGION	910	-	2	184	91 1044936		53	2.9	183
1 1004 504	96		194	399	1911:90508	similar to unidentified ORF mear 47 minutes [Escherichia coli] sp Pli436 YICK_ECOLI HYPOTHETICAL 43.5 KD PROTEIN IN SELC-NLPA HTERGENIC REGION.	2	00	396
1 1 1 1 1 1 1 1 1 1	988	-	1004	504		ORF 3; putative [Bacillus subtilis]	53	28	501
1 1 1 447 91 1303822 transmembrane protein [Lactococcus lactis] 1 792 197 91 1303949 Mypothetical protein [Synachocystis sp.] 1 1 1447 91 1303949 MgK [Bacillus subtilis] 1 1 1 1 1 1 1 1 1	1064	-	-	- 0	191 305080	myosin heavy chain (Entamosba histolytica)	53	1 26	432
1 792 397 gi 1001774 hypothetical protein [Symachocystis sp.] 1 447 gi 1303969 YqiX [Bacillus subtilis] 1 1 447 gi 1303969 YqiX [Bacillus subtilis] 1 1 327 gi 450688 hsdw gene of Ecoprii gene product [Excherichia coli] pir[SJ8437]83847 hsdw protein - Excherichia coli pir 509629 609629 hypothetical protein A - Escherichia coli (SUB 40-520) Escherichia coli (SUB 40-520) Escherichia coli (SUB 40-520) Escherichia coli (SUB 40-520) 137 gi 1477486 transposase [Burkholderia cepacia] 5 3049 3441 gi 868224 Mo definition line found [Ceenorhabditis elegans]	1366	-	-	1 452	941308852	transmembrane protein [Lactococcus lactis]	53	1 33	450
1 1 147 91 1303969 Yq1X Bacillus subtilis 1 798 400 91 1146243 122.4% identity with Escherichia coli DNA-damage inducible protein : 1 1327 93 450688 hacter of Ecopril gene product (Escherichia coli) pir(538437 83847 hadm 1 1 1327 93 450688 hacter - Escherichia coli pir 509629 509629 hypothetical protein A - 2 137 937 94 1477486 transposase (Burkholderia cepacia) 3 3049 3441 93 868224 No definition line found (Ceenorhabditis elegans)	1758	-	792	1 397		hypothetical protein (Synechocystis sp.)	25	1 30	396
1 798 400 91 1146243 22.4% identity with Eacherichia coli DNA-damage inducible protein; putative Pacillus subtilis	1897	-	-	447	91 1303969	[Yqix [Becillus subtilis]	53	27	467
1 127 93 450688 hsdw gene of Ecopril gene product (Eacherichia coli) pir 538437 hsdw protein - Eacherichia coli pir 509629 509629 hypothetical protein A - Eacherichia coli (SUB 40-520) Eacherichia coli (SUB 40-520) 2 137 997 991 1477486 transposase (Burkholderia cepacia) 5 13049 1341 991 868224 No definition line found (Ceenorhabditis elegans)	1 2381		198	000		[22.4% identity with Escherichia coli DNA-damage inducible protein; putative [Bacillus subtilis]	cs .	37	199
2 137 397 gi 1477486 transposase [Burkholderia cepacia] 5 3049 3441 gi 868224 No definition line found [Ceenorhabditis elegans]	1 3537	-		327		Ecopril gene product scherichia coli pir 50 coli (SUB 40-520)	53	35	327
5 3049 3441 Ji 868224 No definition line found [Ceenorhabditis elegans]	3767	7	1112	7.56		transposase (Burkholderia cepacia)	53	53	261
	=	•	3049	3461	d 86824	[No definition line found (Ceenorhabditis elegans)	22	33	193

proteins
r L
ţ
similar
proteins
novel
jo
regions
coding
aureus - Putative coding regions of novel proteins similar to known proteins
- Snaine
Ś

Contig	ORF	Start	Stop (nt)	match	match gene name	E i a	* ident	length
15	- 5	2205	2369	91 215966	[64] protein (gig start codon) (Bacteriophage 74)	52	7.	165
19	-	2429	3808	91 1205379	UDP-murnac-pentapoptide synthetase [Haemophilus influenzae]	52	31	1380
24		6920	3462	91 579124	predicted 86.4kd protein; 52kd observed [Mycobacteriophage 15] pir[530971]530971 gane 26 protein - Mycobacterium phage L5 sp[Q05233]vG26_BPML5 MINOR TAIL PROTEIN GP26. (SUB 2-837)	52	32	3459
37	- 5	3015	3935	91 1500543	P115 protein [Mathanococcus jannaschii]	52	25	921
3.8	13	8795	1 9703	gi 46851	glucose kinase Streptomyces coelicolor	52	29	606
*	116	110617	111066	gi 42012	moaE gene product (Escherichia coli)	52	36	450
94	-	m	521	91 1040957	NADH dehydrogenese subunit 6 [Anopheles trinkse]	52	25	916
1.5.1	01	5531	6280	gi 388269		52	32	1 05.
95	<u></u>	3968	2826		endochelial differentiation protein (edg-1) [Homo sapiens] pir[A35300[A35300 G protein-coupled receptor edg-1 - human sp[e2145][EDGI_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1.	25	23	1163
75	5	4.850	1413	gi 304153	sorbitol dehydrogenase (Bacillus subtilis)	52	27	678
62	s –	3364	2870	91 (1072399	phaE gene product (Rhizobium meliloti)	52	25	495
- 62	9-	4445	3651	91 46485	NADH dehydrogenese [Symechococcus PCC7942]	52	7.2	195
1 67	77	111355	112962	9111211365	glutamate synthase (NADPH), subunit alpha [Methanococcus jannaschii]	52	30	1608
1 67	121	16935	18158	91 1204393	hypothetical protein (SP:P31122) [Msemophilus influentse]	52	25	1224
70		2185	1997	91 7227	cycoplasmic dynain haavy chain [Dictyostalium discoidaum] r[A44357] dynain heavy chain, cytosolic - slime mold ctyostalium discoidaum)	52	36	68.
96	110	10005	10664	9111408485	B65G gene product [Bacillus subtilis]	52	36	099
103	- 2	3986	13351	91 1009368	[Respiratory nitrate reductase (Bacillus subtilis)	52	42	636
601	-	4102	0566	191 699274	ImbE gene product (Mycobacterium leprae)	52	39	753
109	119	115732	117300	91/1526981	amino acid permease Yeef like protein (Salmonella typhimurium)	52	1 0 0	1569
121	-	1412	981	191732931	unknown [Saccharomyces cerevisiae]	52	32	432
125	-	598	1680	91 1296975	puT gene product (Porphyromonas gingivalis	52	38	816
130		659	1807	gi 1256634	[25.8% identity over 120 as with the Synenococcus sp. HpeV protein; putative [Recillus subtilis]	52	36	1149
149	-	11164	583	91 1225943	PBSX terminase (Bacillus subtilis)	52	33	582
149	1 7	4687	4415	91/1510368	H. Janneschii predicted coding region MJ0272 (Methanococcus janneschii)	52	35	273

S aureus - Putative coding regions of novel proteins similar to known proteins

nt 13	ORF	Start	Stop (nt)	match	match gene name	e e	/ ident	length (nt)
. 69		216	1001	91 146025	cell division protein (Escherichia coli)	52	3	786
oc ec		120	1256	gi 1474915	orf 337; translated orf similarity to SW: BCR_ECO.I bicyclomycin esistance protest of Escherichia coli [Coxiella burnetii] [SIT S44207 S44207 hypothetics! protein 337 - Coxiella burnetii [SUS -338]	25	56	1137
561	6	9161	8760	91 1028	initochondrial outer membrane 72K protein (Neurospora crassa) r Als6882 Als682 72K mitochondrial outer membrane protein - rospora crassa	52	25	402
200		2065	1 2607	gi 142439	ATP-dependent nuclease (Bacillus subcilis)	52	35	543
203	-	2,76	3684	91 1303698	BltD (Bactilus subtilis)	52	25	1 606
111		5250	5651	[91]305080	myosin hesvy chain [Entamoeba histolytica]	52	24	402
242	-	77	1424	gi 1060877	Enry [Escherichia coli]	52	32	1404
249	5	4526	4753	pir c37222 c372	cytochrome \$450 iAl, hepatic - dog (fragment)	52	23	228
255	-	1 2107	1055	gi 143290	penicillin-binding protein [Bacillus subtilis]	52	28	1053
276	- 2	1 3963	3664	91 11001610	hypothetical protein (Synechocystis ap)	52	0.0	300
276		1 4456	4055	91 416235	orf 13 [Mycoplasma capricolum]	52	26	402
2.89	7	1 1856	1449	gi 150900	GTP phosphohydrolase [Proteus vulgaris]	\$2	34	1 800
325			279	91 1204874	polypeptide deformylase (formylmethionine deformylase) Haemophilus influentae	52	33	279
140		2017	1010	91 1215695	peptide transport system protein SapF homolog; SapF homolog (Mycoplasma pneumoniae)	52		100#
375	-	340	1878	01 467446	similar to SpovB (Bacillus subtilis	52	28	1539
424		4104	3262	01 1478239	unknown [Mycobacterium tuberculosis]	52	36	843
430	-	-	575	pir A42606 A426	orfA 5: to orf405 - Seccharopolyspora erythraea (fragment)	52	1 28	573
4 4 4	-	4728	1 3712	gi 1408494	homologous to penicillin acylase (Bacillus subtilis)	52	31	1 101
165		1802	06	91 163331	alkeline phosphatese regulatory protein [Bacillis subtilis] pix A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P21545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (BC 2.7.3).	25	96	0006
691	5	4705	4169	91 755152	highly hydrophobic integral membrane protein [Bacillus subtilis] sp[P12953]TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERHEASE PROTEIN AGG.	22	32	537
495		1262	1 633	91 1204607	transcription activator [Haemophilus influenzae]	52	25	630
\$05	7	*009	5762	91,112440	ATP-dependent nuclease (Bacillus subtilis)	52	28	243

S. aureus - Putative coding regions of novel proteins similar to known proteins

Vident Jength (nt)	35 453	25 852	36 336	30, 1 423	35 231	28 345	34 324	30 282	35 258	34 294	36 306	36 219	50 267	33	42 387	47 249	32 219	40 210	28 573	32 798	25 666	31 234	35 264	37 279
E	25	52	52	52 -	52	- 25	52	52	52	52	52	52	- 23	25	25	52	52	52	15	51	- 15	51	51	2
match gene name	Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi 11)	[putative orf; GT9_orf434 [Mycoplasma pneumoniae]	epiB gene product (Staphylococcus epidermidis)	FdhC (Methanobacterium thermoformicicum)	ATP-dependent nuclease (Bacillus subtilis)	comm ORF1 (Bacillus subtilis	DNA polymerase (gene L; ttg start codon) [Bacteriophage SP02] gi[579197 SP02 DNA polymerase (aa 1-648) [Bacteriophage SP02] pir[A21498 DJBPS2 DNA- directed DNA polymerase (EC 2.7.7.7) - phage P02	YbbG (Bacillus subtilis)	hisa ORF (AA 1-245) [Escherichie coli]	EF (Streptococcus suis)	hypothetical 64.7-kDa protein [Bacillus subtilis]	[BACA Bacillus licheniformis]	[U87 [Human herpesvirus 6]	Na+ and Cl - dependent gamma-aminobutryic acid transporter (Haemophilus Influenzae)	Oxoglutarate dehydroganase (NADP+) [Bacillus subtilis] p[P23129[ODO]_BACSU 2-OXOGLUTARATE DEHYDROGENASE El COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROGENASE).	ornithine decarboxylase [Leishmania donovani]	No definition line found [Escherichia coli]	Adrép (Saccharomyces cerevisiae)	putative cel operon regulator (Bacillus subtilis)	indole-1-glycerol phosphate synthase [Nethanococcus jannaschii]	Yqin (Bacillus subcills)	Srp1 [Schilosaccharomyces pombe]	moaD gene product [Escherichia coli]	vacuolating toxin (Helicobacter pylori)
match	 gi 166162 	gi 1215693	91 581648	91,1279769	91 142439	91 289262	91 21 61 51	91,1256136	01 41713	91 298032	91 849025	91 1218040	91 854064	91 1205919	gi 40003	91 159388	91 1409795	191 965077	gi 895747	91 1510962	91 1303933	91 1519460	9, 42011	91 495471
Stop	1614	1295	336	426	330	307	324	285	320	295	307	260	347	6	389	249	320	212	575	3276	9965	1283	111305	6731
Start	1162	444		848	100	691		995	577	588	612	478	613	06		1	438			2479	5301	1516	111042	6453
ORF	7	2		-	7	-		-		1 1		-	- 2	-		-	-1-		-	-	- 6 -		177	111
Contig	517	543	989	773	1120	1614	2495	2931	2943	2993	3667	3944	3954	3986	1002	4020	4098	4248	7	21	22	7	4	5.1

S. aureus - Putative coding regions of novel proteins similar to known proteins

ot 19	ORF	Start (nt)	Stop	match	medich gene name	e i	1 ident	length (nt)
\$25		2537	2995	q1 1256652	25% identity to the E.coli regulatory protain MprA; putative [Bacillus subtilis]	5.1	32	459
57	10	1667	6843	191,508173	KIIA domain of PTS-dependent Gat transport and phosphorylation Escherichia coli!	51	32	69
65	-	62	11111	01 299163	alenine dehydrogenase (Bacillus subtilis)	51	33	1083
63	120	15791	116576	19111510977	M. jannaschii predicted coding region M0938 (Methanococcus jannaschii)	51	24	786
69	2	1559	1218	01 467359	unknown [Bacillus subtilis]	51	34	342
7.1	-	7	1196	91 298032	EF (Streptococcus suis)	51	32	1194
7.8		349	176	01 1161242		51	28	174
66	-	1 3357	0404	gi 642795	TFIID subunit TAFIISS [Homo sapiens]	51	25	684
601		2852	1428	91 580920	rodb (gtan) polypeptide (AA 1-673) (Bacillus subtilis) pir 506048 506048 probable rodb protein - Bacillus subtilis sp P11464 TAGE_BACSU PROBABLE POLY (GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).	51	27	1425
109	-	1 6007	1 6693	gi 1204815	hypothetical protein (SP:P32662) [Neemophilus influenzae]	51	23	687
112	-	1066	1 2352	pir s05330 s053	(maltose-binding protein precursor - Enterobacter serogenes	51	42	1207
112	=	114432	112855	191 (405857	yehu [Escherichia coli	51	29	1870
114	- 6	9725	18967	qi 435098	orfi (Mycoplasma capricolum)	51	30	759
		: -	1 912	94 1431110	ONF YDLOBSW (Succharomycus cutuvistau)		2.8	412
127	100	1 9647	(10477	9111204314	H. influenzae predicted coding region HI0056 (Haemophilus influenzae)	51	1 37	831
152	-	1 6814	1 7356	gi 431929	Muni regulatory protein [Mycoplasma sp.]	51	38	543
154		575	1153	gi 1237044	unknown (Mycobacterium tuberculosis	51	36	678
154		[6587	5634	01 409286	berg Secilius subtilis	51	1 27	1 954
171	-	6943	1 6236	191 (1205484	hypothetical protein (SP:P33918) (Heemophilus influenzae)	15	32	104
181	-	1	1 291	01 466886	B1496_C3_206 [Mycobacterium lepres]	15	n	291
212		1502	1 2139	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium	21	23	639
228		1 707	1378	191 4204	nuclear protein Drosophila melanogaster	12	27	672
236	- ec	8137	7481	01 49272	Asparaginase (Bacillus licheniformis)	15	-	657
243	-	1 4637	3546	91 1511102	melvalonate kinase [Methanococcus jannaschii]	15	29	1092
			:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

5	
10	
15	
20	
25	
30	
35	
40	
45	

S aureus - Putative coding regions of novel proteins similar to knowm proteins

Cont.ig ID	ORF ID	Start (nt)	Stop int	match ression	match gene name	E S J	I ident	length (nt)
1 257	-	1 3540	1 3373	911-204579	H. influenzae predicted coding region H10326 [Haemophilus influenzae]	51	22	16.8
258		2397	1609	91 160299	glutamic acid-rich protein [Plasmodium falciparum] pir A54514 A54514 glutamic acid-rich protein precursor - Plasmodium alciparum	22	• n	789
1 265		1 2419	1881	91 580841	F1 (Bacillus subcilis)	51	32	17.1
1 298	- 5	518	748	91/1336162	SCPB [Streptococcus agalactiae]	51	- ·	231
316	6	5817	1 7049	91 413953		1 \$1	66	1233
1 332	- 2	3775	1 2057	91 1209012	mutS [Thermus aquaticus thermophilus]	5.1	7.0	1719
364	-	1816	1667	91 528991	unknown (Bacillus subtilis)	15	32	1176
440		44.8	684	91 2819		15	32	237
495	1 2	1353	7,111	qi 297861	protease G (Erwinia chrysanthemi)	18	‡	177
495	-	2287	1718	gi 1513317	serine rich protein Entamoeba histolytica	15	25	570
909		840	421	91 455320	cll protein Bacteriophage P4	51	133	420
009		1474	983	91 587532	orf, len: 201, CAI: 0.16 (Saccharomyces cerevisias) pir 548818 548818 hypothetical protein - yeast (Saccharomyces erevisiae)	51	0.	492
1 607	-	479	1 934	gi 1511524	hypothetical protein (SP:P37002) [Methanococcus jannaschii]	51	0	456
686	- 2	127	009	91 493017	endocarditis specific antigen (Enterococcus faecalis)	51	30	474
1 726	-	2	1 230	gi 1353851	unknown [Prochlorococcus marinus]	15	\$	194
861	-	176	652	gi 410145	dehydroquinate dehydratase [Bacillus subtilis]	51	34	477
B 69		782	393	91 40100	rodc (tag1) polypeptide (AA 1-746) [Bacillus subtilis] ir S06049 S06049 rodc protein - Dacillus subtilis p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	<u>.</u>	23	390
1003	-	642	322	191 1279707	hypothetical phosphoglycerate mutase (Saccharomyces cerevisiae)	51	1 60	321
1046	- 5	998	624	191 510257	glycosyltransferase [Escherichia coli]	15	29	243
1467	-	1 702	352	91,1111175	M. jannaschii predicted coding region MJ1177 (Methanococcus jannaschii)	15	32	351
1 2558	-	1 457	230	sp P10582 DPOH_	DNA POLYKERASE (EC 2.7.7.3) (S-1 DNA ORF 3).	51	26	228
3003	-	666	1 399	91 809543	CbrC protein (Erwinia chrysanthemi]	5.1	27	381
1 3604	-	-	1 399	pit JC4210 JC42]]-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) - mouse	51	1,0	399
3732	-	2	316	gi,145906	acyl-CoA synthetase [Escherichia coll]	51	33	315
111111								

TABLE 2

S aureus . Putative coding regions of novel proteins similar to known proteins

Contig 10	ORF	Start (at)	Stop (nt)	watch acession	match gene name	E	1 Ident	length (nt)
1618		2	274	91 1061351	semaphorin III family homolog (Homo saptens)	15	3.7	273
3995	-	9.	336	91 216346	surfactin synthetase [Bacillus subtilis]	15	38	291
4193		612	100	101 42749	ribosomal procein L12 (AA 1-179) Exchetichla coli] Ir So4776 XXECPL peptide N-acetyltransferase rink (EC 2.3.1) - cherichia coli	51	25	306
4539	-	367	185	qi 1408494	homologous to penicillin acylase [Bacillus subtilis]	51	9	181
4562	<u> </u>	442	239	9111458280	coded for by C elegans CDNA cm01s7; Similar to hydroxymethy1glutary1-CoA synthase (Caenorhabditis elegans)	2.	3.5	204
	-	3576	4859	91 559160	GAAIL score: null; cap site and late promoter mutifs present patream; putative (Autographa californica nuclear polyhidrosis irus)	0,5	3	1284
=		4014	5165	91 1146207	putative (Bacillus subtilis)	05	3.5	1122
	113	110509	9496	91,1208451	hypothetical protein (Symachocyatis sp.)	05	39	1014
119	-	2034	1 1018	gi 413966	ipa-42d gene product [Bacillus subtilis]	05	29	1017
20		1 8586	8407	gi 1323159	ORF YGRIOJW (Seccharomydes ceravishes)	05	28	180
~	- 5	5408	4824	[gi 496280	structural protein [Bacteriophage Tuc2009]	05	29	585
	-	1926	65/.7	1911303966	[vqjo [Bacillus subtilis]	05	36	B34
£	200	122865	23440	19111072179	Similar to dibydroflavonol-4-reductase (maize, petunia, tomato) [Caenorhabditis elegans]	05	32	576
+	7	17.05	2976	[gi 153015	FemA protein (Staphylococcus aureus	05	29	1272
;	=_	06251	15841	191606096	ONF [16]; end overlaps end of 0100 by 14 bases; start overlaps (174, there starts possible [Escherichia coli]	05	n	550
52	-	1 2135	11077	gi 640922	[xylitol dehydrogenase [unidentified hemisscomycete]	05	1 29	6501
28	- 7	628	1941	gi 143725	putative (Bacillus subtilis)	05	29	1 1134
: : : = -		4393	3884	91 1072179	Similar to dihydroflavonol 4-reductase (maize, petunia, tomato) [Caenorhabditis elegans]	000	22	510
89	- 5	3700	3356	91 1276658	ORF174 gene product (Porphyra purpurea)	1 50	25	345
141	-	-	1 239	191 1476024	carbamoyl phosphata synthetase II (Plasmodium (alciparum)	50	33	237
151	-	186	626	91 1403441	unknown [Mycobacterium tuberculosis]	- 50	35	1177
166	1	11:065	9623	gi 895747	putative cel operon regulator (Bacillus subtills)	- 50	32	1443
201	9	5284	9605	91 160229	circumsporozoite protein (Plasmodium reichenowi)	20	42	189
206	[22	30784	29555	19. 1052754	[LarP integral membrane protain [Lactococcus lactis]	20	24	1230
	1				111111111111111111111111111111111111111			

10	
15	
20	
25	
30	
35	
40	
45	

aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig	ORF	Start	Stop (nt)	match	match gene name	nis 1	1 ident	length (nt)
211	-	1523	1927	161 410131	OMFX7 (Bacillus subtilis)	200	29	405
214	-	2411	3295	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5 REGION (FRAGHENT).	50	37	985
228		5068	4406	91 313580	envelope protein [Human immunodeficiency virus type 1] pir[5]5835 [53835] envelope protein - human immunodeficiency virus ype 1 (fragment) [5UB 1-77]	20	35	663
272	2	3048	1723	91 1408485	B65G gene product [Bacillus subtilis]	20	22,	1326
273	~	9191	984	191 184186	[phosphoglycerate mulase [Saccharomyces cerevisiae]	20	2.8	633
328	- 2	2507	1605	91 148896	inpoprotein [Maemophilus influenzae]	20	26	903
332	-	5469	3802	gi 1526547	DNA polymerase family X [Thermus aquaticus]	20	27	1668
342	- 2	3473	3931	91 456562	G-box binding factor (Dictyostellum discoideum)	20	35	459
352	-	1478	741	91 288301	ORF2 gene product [Bacillus megaterium]	80	56	738
408		5299	5523	91 11665	ORF2116 [Marchantia polymorpha]	05	27	225
420		059	1825	91757842	UDP-sugar hydrolase (Escherichia coli)	\$0	0.00	1176
464	-		165	91 487282	Na+ -ATPase subunit J (Enterococcus hirae)	50	29	165
472	- 5	1418	864	91 551875	[Bg]R [Lactococcus lactis]	\$0	23	555
520	-	23	541	gi 567036	CapE (Staphylococcus aureus]	\$0	27	519 (
529		9	01	91 1256652	25% identity to the E.coli regulatory protein MprA; putative [Bacillus subtilis]	20	# :	405
534	- -	7726	6029	911295671	selected as a weak suppressor of a mutant of the subunit AC40 of DNA pendant RNA polymerase I and III (Saccharomyces cerevisiae)	80	=	1664
647		2990	1497	gi 405568	Trai protein shares sequence similarity with a family of opolsomerases [Plasmid pSK41]	\$0	31	1494
1 664	- 3	1133	111	gi 410007	leukocidin F component (Staphylococcus aureus, MRSA No. 4, Peptide, 23 aa)	50	32	423
678	-	1	627	911238032	FF Streptococcus suis	90	29	627
255		947	1171	gi:150572	cytochrome cl precursor (EC 1.10.2.2) Paracoccus denitrificans gl 45465 cytochrome cl (AA 1-450) Paracoccus denitrificans pir C29413 C29413 ubiquinolcytochrome-c reductass (EC 1.10.2.2) ytochrome cl precursor - Paracoccus denitrificans sp Pl3627 CY1	05	ÇE.	225
827	-	1363	683	91 142020	heterocyst differentiation protein (Anabaena sp.)	80	21	681
892	-		752	gi .408485	[B65G gene product Bacillus subtills	20	27	750
016	- 5	438	887	gi 11.04727	tyrosine-specific transport protein (Meemophilus influenzae)	80	25	450

TABLE 2

s aureus - Putative coding regions of novel proteins similar to known proteins

Cun 19 ORE		Start	Stop	match	match gene name		1 ident	length
933	-	524	760	ig1 1205451	cell division inhibitor [Haemophilus influenzae]	05	32	237
973	-	424	236	-	or(3 gene product (Saccharomyces cerevistae)	l os l	0.	188
6001		653	429	7276211491	H protein (group G streptococcus)	20	28	225
1027		5111	1 257	[91]433934	ipa-10r gene product [Bacillus subtilis]	05	25	255
1153	2	556	326	173676	ncck (Alcaligenes xylosoxydans)	05	36	231
1222	-	198	000	91 1408485	B65G gene product (Bacillus subtilis)	0.5	21	399
1350		269	1 399	91 289272	[ferrichrowe-binding protein [Bacillus subtilis]	05	32	294
2945	-	365	1.184		hexaprenyl pyrophosphate synthetase (COQ1) [Saci:haromyces erevisiae]	05	34	183
2968	. – : 7	1634	804	gi 397526	clumping factor (Staphylococcus aureus)	05	133 +	109
2998	2	657	194	91,495696	F54E7.3 gene product (Caenorhabditis elegans)	05	0	264
1 3046	-	3,06	306	BE13 613E13 14d	acyl carrier protein - Anabaena variabilis (fragment)	05	12	201
3063		\$47	275		juck gene product [Escherichia coli)	05	7 59	1 1.75
3174	-		146	1911151900	alcohol dehydrogenase Rhodobacter sphaeroides	0,5	7	144
3792		62.5	314	gi 1001423	hypothetical protein (Symechocystis sp.)	05	15.	312
3,400	-	1 74	262	91(1447)3	NAD-dependent beta-hydroxybutyryl coensyme A dehydrogenase Cloatridium acetobutylicum		2A	261
1 1946		1.13	1.86	911576765	cytochrome b Myrmecia pilosula	05	86	146
1 986	: -	5.78	291	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	05	78	288
	100	8250	7885	gi 1204367	hypothetical protein (GB:U14003_278) [Haemophilus influenzae]	67	1 08	366
46	116	13802	14848	ç1 466860	acd; B1308_F1_34 [Mycobacterium leprae]	67	24	1047
65		2267	1091	Ei 606304	ORF_o462 (Escherichia coli)	\$	72	1335
1112	118	17884	118615	91 559 502	ND4 protein (AA 1 - 409) [Caenorhabditis elegans]	67	25	132
138	- 6	1 6973	1 7902		esterase Acinetobacter calcoaceticus]	67	29	930
217		1040	5138	91 496254	[fibronectin/fibrinogen-binding protein [Streplococcus pyogenes]	64	16	138
220	112	111803	12657	91 397526	clumping factor (Staphylococcus aureus)	6.7	31	855
228	-	1 1842	2692	pir 523692 5236	3692 8236 hypothetical protein 9 · Plasmodium falciparum	49	24	651
268		5016	2614	gi 1243047	[ORFB Bacillus subtills]	64	26	2403

proteins	
known	
to	
similar	
aureus - Putative coding regions of novel proteins similar to known proteins	
novel	
of	
regions	
coding	
Putative	
- 1	
Aureus	
s,	

Contig ONF ID ID	ONF	Start (nt)	Stop (nt)	metch	match gene name	E	1 ident	Jength (nt)
27.1	7	1164	1373	gi 1001257	hypothetical protein (Synechocystis sp.)	67	38	210
300	-	4340	3160	q1 1510796	hypothetical protein (GP:X91006_2) (Methanococcus jannaschii)	6	26	1161
381	<u>-</u>	2281	1142	91 396301	matches PS00041: Bacterial regulatory proteins, araC family ignature {Escherichia coli)	\$	5	1140
466	-		947	19111303863	YqgP [Bacillus subtilis]	6.4	26	945
999	-	1 379	161	91 633112	ORFI (Streptococcus sobrinus)	6.5	29	189
670	1 2	403	1014	911122758	unknown {Bacillus subtilis	69	32	612
709	-	1433	795	git1143830	xpaC (Bacillus subtilis)	67	29	639
	-	943	1 433	91 401786	[phosphomannomutase (Mycoplasma pirum]	6+	29	471
1052	-	1 422	1 213	gi 1303799	Yqen (Bacillus subtilis)	6.3	2.1	210
1800		342	172	qi 216300	peptidoglycan synthesis enzyme [Bacillus subtilis] sp P37585 HURG_BACSU HURG PROTEIN UPD-N-ACETYLGLUCOSAMINEN-ACETYLMURAMYL- PENTEPEPTIDE) PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCOSAMINE RANSFERASE).	\$	28	171
2430		- 2	376	sp P27434 YFGA_	HYPOTHETICAL 36.2 KD PROTEIN IN NDK-GCPE INTERGENIC REGION.	6)	36	375
3096	-	542	[7.2]	91 516360	surfactin synthetase (Bacillus subtilis)	64	25	270
32	-	נרונ	3100	91 1217963	hepatocyte nuclear factor 4 gamma (HNF4gamma) [Homo sapiens]	8.7	36	672
38	-	-	609	gi ;205790	H. influenzae predicted coding region H11555 [Haemophilus influenzae]	8	2#	609
45	9	5021	6427	91 1524267	unknown Hycobacterium tuberculosis	48	20	1407
65	7.	116346	96018	91,1197336	[Lmp] protein (Mycoplasma howinis]	89	2.8	14751
19	-		809	91 1511555	quinolone resistance norA protein protein (Methanococcus jannaschii)	9	90	909
. 61	-	3311	3646	9i 1303893	[Yqht [Bacillus subtilis]	9	29	336
		8	415	911671708	su(s) homolog: similar to Drosophila melanogaster suppressor of able (su(s)) protein, Swiss-Prot Accession Number P22293 Drosophila virilis)	8	25	318
121	-	11131	610	911314584	unknown (Sphingomonas S88)	84	29	522
136		1 2014	1280	[gi 1205968	И. influenzae predicted coding region H11738 (Haemophilus influenzae)	48	23	735
171	01	8220	9557	gi 1208454	hypothetical protein [Synachocystis sp.]	8	3.4	1338
175		3625	1814	911396400	similar to eukaryotic Na+/H+ exchangers [Escherichia coli] sp[932703]YJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC REGION 10549).	80	29	1812
194	-	2	385	91,1510493	H. jannaschii predicted coding region MJ0419 [Methanococcus jannaschii]	99	25	384
			1 1 1 1 1 1 1				•	

TABLE 2

TABLE 2

174 1017 231 1227 7212 590 1401 123 \$7.6 591 ۲0۲ 405 327 396 1056 165 960 | N SIM | N ident | length 25 24 ... 7 9 2 53 . . . 9 35 24 0 0 23 30 56 23 **\$** : * : = 8 Ę **4** 8 89 : : : 9 48 . 8 7 |spermidine/putrescine transport ATP-binding protein [Mycoplasma genitalium] | |ORFE_E211; alternate name yqqA; orf5 of X14436 |Escherichia coli] gl|41425 | ORF5 (AA 1-197) |Escherichia coli] (SUB 15-211) [tetracenomycin C resistance and export protein [Streptomyces laucescens] N-carbamoylsarcosine amidohydrolase (EC 3.5.1.59) - Arthrobacter ap. replication initiation protain (Bacillus subtilis) pir | 826580 | 826580 | replication initiation protein - Bacillus ubtilis protein localized in the nucleoil of pea nuclei, ORF; putative Pisum magnesium and cobalt transport protein (Methanococcus januaschii) [mevalonate kinase (Methanobacterium thermoautotrophicum] G1 protein - fowlpox virus (strain HP444) (fragment) No definition line found (Caenorhabditis elegans) transmembrane protein (kdpD) (Escherichia coli) division initiation protein (Bacillus subtilis) gramicidin S synthetase 2 [Bacillus brevis] |reverse gyrase (Methanococcus jannaschii) [HS74A gene product (Bacillus subtilis) ONF YJR151c [Saccharomyces cerevisiae] unknown (Schizosaccharomyces pombe) |SecY protein [Lactococcus lactis] [paramyosin (Dirofilaria immitis] PepV [Lactobacillus delbrueckii] OKF B (Clostridium perfringens) |lipoxygenase [Pisum sativum| [putative [Escherichia coli] inucleolin (Xenopus laevis) |Trio (Momo sapiens) match gene name |pit | 528969 | 5289 |pir|H48563|H485 acession 191 (1103507 191 | 1499 876 191,1500401 191 1353703 91 | 1045714 1015101 gi | 1408486 91 (1184118 |gi|146551 91 1153490 93153116 gi [493730 91 | 142850 91 | 577569 match 91 | 142863 gi 145836 91 1144859 gi|882452 91 | 940288 191 | 529202 191 511490 Qi (295899 91 (44073 111426 2000 5491 1110 1019 127760 13308 768 233 236 166 730 665 1 508 174 381 405 546 20 134815 1425 1532 5 (3.9.8 112652 6450 | 1 | 1363 2 | 388 2398 | 1 | 463 2425 | 1 | 476 2432 | 1 | 446 2998 | 1 | 469 2 10 9 <u>-</u> 1020

5

10

20

25

Putative coding regions of novel proteins similar to known proteins

30

35

40

45

5	
10	
15	
20	
25	
30	
35	
40	
45	

aureus - Putative coding regions of novel proteins similar to known proteins

5

1011 1086 1065 1689 249 707 519 267 1410 009 273 831 963 816 192 9 H ₹ 432 744 480 405 * sim | * ident | length (ut) 5.6 17 32 8.2 27 1 3.8 32 7 32 6. 5 9 2 B 53 5.2 28 42 -47 Ç 47 4 17 47 4 **C** 17 _ 8 4 8 ORF 5' of ECRF3 (herpesvirus saimiri HVS, host-aquirrel monkey, eptide, 407 2 predicted membrane helices, homology with B. subtilis men Orf3 Rowland et. al. unpublished Accession number M74183), approximately 1 minutes on updated Rudd mep; putetive [Excharichia coli] sp[P37355]YFBB_ECOLI HYPOTHETICAL 26.7 KD PROTEIN IN MEND-MENB 26.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative (Bacillus subtilis) quinolone resistance norA protein protein (Methanococcus jannaschii) Possible operon with orfG. Hydrophilic, no homologue in the atabase; putative [Bacillus subtilis] |pir S51177|S511 |trans-activator protein - Equine infectious anemia virus myo-inositol transporter (Schizosaccharomyces pombe) D9509.27p; CAI: 0.12 (Saccharomyces cerevisiae) G-box binding factor [Dictyostellum discoideum] C33GB.2 gene product [Caenorhabditis elegans] hypothetical EcsB protein (Bacillus subtilis) D-alanine racemase cds [Bacillus subtilis] pps1: B1496_C2_189 [Mycobacterium leprae] processing protease (Bacillus subtilis) ORF YKL094w [Saccharomyces cerevisiae] unknown [Mycobacterium tuberculosis] [hippuricase [Haemophilus influenzae] PC4-1 gene product [Bradysia hygida] esterase (Acinetobacter Iwoffii) 40 kDa protein (Plasmid pJM1) [putative [Escherichia coli] YqjV (Bacillus subtilis) YqkI (Bacillus subtilis) mucin (Homo sapiens) match gene name acession |gi|1420856 gi | 1256621 |gi|1303989 91 1403455 lgi | 1511555 |gi|1204835 91 1255425 [qi|1303973 191 (11177254 gi [1209223 |gi | 945219 91 145836 911540083 gi | 927340 91 486143 91 456562 |gi | 142824 |gi |243353 91 | 150756 91 (438466 91 466882 91 11 12822 91 | 516608 match 1884 1174 1093 1676 6925 1 2773 1084 4279 8863 1257 2232 15108 6710 3107 633 818 561 00 280 943 483 405 301 831 Contig | ORF | Start 2022 2321 9135 2178 1884 2620 2072 2145 1634 5022 (nt) 3641 116118 7141 1109 1524 665 196 152 115 -962 492 -7 _ _ --~ -_ _ ~ 0. 4 = 2 ~ 3042 3686 4027 120 142 263 6 3 16A 389 **†**0 2.4 9 43 7 69 391 529 565 692 654

TABLE 2

TABLE 2

615 1068 1260 7.0% 282 219 3990 936 H61 615 1209 1209 1716 228 348 396 201 29 - 2 23 30 35 envelope glycoprotein C2V3 region (Human immunodeficiency virus type | | 46 | 35 |ORF_f286 [Escherichia coli] | 46 | 35 31 24 27 27 27 30 30 28 26 30 2.8 9 9 7 46 9 1 2 9 9. 9 7 9 🛊 9 |pir|S31910|S519 |G4 protein - Sauroisishaania tarentolae |Aspartate aminotransferase [Bacillus circulans] |portal protein | Bacteriophage SPP1| |myosin heavy chain |Entamoeba histolycica| |cerebellar-degeneration-related antigen (CDR14: [Homo sapiens| qi|182737 | cerebellar-degeneration-associated protein [Homo sapiens] orf4; putative transporter; Method: conceptual translation supplied by pir | A29770 | A29770 cerebellar degeneration-related protein - human |single-stranded-DNA-specific exonuclesse (Haemophilus influenzae) dihydroliposmide acetyltransferase [Naemophilum influenzae] [hypothetical protein SP:P45869 [Methanococcus januaschii] proton antiporter efflux pump (Mycobacterium smegmatis) (urea?) amidolyase (Haemophilus influenzae) ATP-dependent (NA ligase (Candida albicans) [polymorphic antigen (Plasmodium falciparum] [ATP-binding protein [Bacillus subtilis] (clumping factor (Staphylococcus aureus) [Yel040p (Saccharomyces cerevisiae] author [Mycobacterium smegmatis] [F54D5.7 [Caenorhabditis elegans] ORF_f181 (Escherichia coli) [putative [Escherichia coli] orf5 (Bacteriophage A2) pacA (Bacteriophage P1) [EF [Streptococcus suis] matth gene name acession |qi | 1041334 91 1205456 191 | 1511057 gi (1204449 19111111918 |gi|1147557 91 11.21884 91:1197634 191 11523812 |di;1246901 match 925266 15 91 | 558073 91 | 755153 191:603639 9i | 298032 91 1180189 |gi|607573 91 (537052 1911215635 9: 537148 91 | 145836 911305080 91 115470 1 4093 1 1023 00001 81001 111 1930 3652 8284 2490 1771 540 | 3 | 1512 | 1285 1242 4.01 1 3058 4192 753 563 198 1 293 961 385 H 6. 515 191 Cortig | OHE | Start | ... ID | ID | (nt) | 2777 2663 5 | 549 6 | 47CR ₩ 5028 191 | 7 | 9543 1 1 2419 1 5 | 2477 1 4 | 3941 4719 1 4 | 1876 1 1218 | 1 | 747 **485** _ 4192 | 1 | 3 914 | 1 | 1 132

s aureus - Putative coding regions of novel proteins similar to known proteins

10

15

20

25

30

35

40

45

\$ \$

|M. Jannaschii predicted coding region MJ1323 (Methanococcus jannaschil)

|replication initiation protein (Bacillus subtilis) pir|826580|826580 | replication initiation protein - Bacillus ubtilis

|similar to protein kinases and C. elegans proteins F37C12.8 and 37C12.5

[ORF_f310 (Escherichia coli]

gi!1511334

9.8.2

91 1142863

[Caenorhabditis elegans]

91 156400

|wyosin heavy chain (isozyme unc-54) (Caenorhabditis elegans) | pir|A91958|HWKW myosin heavy chain B - Caenorhabditis elegans | sp|P02566|MYSB_CAEEL MYOSIN HEAVY CHAIN B (MHC B).

ransmission-blocking target antigen (Plasmodium falciparum)

[ORF287 gene product [Porphyra purpures]

191 | 1276705

191 1441155

|gi|976025

1967 | 1 | 42

2551 | 1

|HrsA [Escherichia coli]

÷ \$

\$

9.8.3

 . 5 **\$**

5	
10	
15	
20	
25	
30	
35	
40	
45	

maich gene name	hadw gene of Ecopril gene product (Escherichia coli) pir 536437 536437 hadw 46 protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	FIM-C.1 gene product (Xenopus laevis) 66	ORF_f408 [Escherichia coli)	protain tyrosine phosphatase (PTP-BAS, type 2) [Homo sapiens] 45	homologous to sp:PHOR_BACSU [Bacillus subtilis]	hypothetical protein (Synechocystis sp.)	H. influenzae predicted coding region MID131 [Haemophilus influenzae] 45	open reading frame [Mus musculus]	AppC=cytochrome d oxidase, subunit I homolog (Escherichia coli, K12, estide, 514 as)	aminotransferase (Haemophilus influenzae)	glutamic acid-rich protein [Plasmodium falciparum] pir 554514 A54514 455 glutamic acid-rich protein precursor - Plasmodium alciparum	[C33G8.2 gane product [Caenorhabditis elegans]	NADH dehydrogenase (Escherichia coli) 45	CENTRAL OF COMMUNICATION OF THE PERSON OF TH
match	91 450688	91 951460	gi 606064	Qi 452192	9:11064813	9111001307	91 1204389	191 1220578	91 238657	91 11222056	91 (160299	91 1255425	91 581140	101 1870966
	402	338	5922	12004	2407	113385	13811	3462	4965	4346	716	2101	3128	150
Stop			13	66	1748	14182	4791	4483	6329	5230	09	7	4339	1 4 1 0
Start Stop		673	4813	11699		=	=		<u> </u>			-		
		[1 673	1 7 48	116 116	2 1	112	114 (14791	4	•	7		-		-

length TABLE 2

480 1269 1242 2733 1992 999 1464 519 612 609 1440 951 1173 1416 210 1086 sim | 1 ident | length (pt) 77 7 1.8 51 5 6 22 7 1 27 32 5 6 30 3 7 Ç Ţ 3 ; Ç 7 7 ; ; 10 3122 | sp | 006530 | DHSU_ | SULFIDE DEHYDROGENASE (FLAVOCYTOCHROME C) FLAVOPROTEIN CHAIN PRECURSOR (EC solybdopterin-guanine dinucleotide blosynthesis protein A [Mathenococcus |tetracenomycin C resistance and export protein [Streptomyces laucescens] |tetracenomycin C resistance and export protein (Streptomyces laucescens) selected as a weak suppressor of a mutant of the subunit AC40 of DNA ependant RNA polymerase I and III (Saccharomyces cerevisiae) | low homology to P20 protein of Bacillus lichinifermis and bleomycin | acetyltransferase of Streptomyces verticillus [Bacillus subtills] 15 aureus : Putative coding regions of novel proteins similar to known proteins 2303 |pir|A60540|A605 |sporozoite surface protein 2 - Plasmodium yosii. (fragment) hypothetical protein (GB:U00022_9) [Haemophilus influenzae] high molecular weight neurofilament (Rattus norvegicus) 20 orfl gene product [Lactobacillus helveticus] |carboxypeptidase | Sulfolobus solfataricus| thioredoxin II [Saccharomyces cerevisiae] clumping factor (Staphylococcus aureus) FIM-C.1 gene product (Xenopus laevis) unknown (Mycobacterium tuberculosis) |lipase [Staphylococcus epidermidis] 25 ORF2 (Trypanosoma bruce!) unknown (Bacillus subtilis) 1.8.2.-) (FC) (FCSD). 30 match gene name jannaschi l | 35 19111119051 191 295671 1091 [gi | 501027 19111511614 112134 [91] 397526 1527 191 153022 acession 19111136221 9111296822 91 363250 1911205680 91 153490 91 | 1204989 1911951460 91 | 467378 91 1153490 91,173028 match 40 13321 5128 4892 681 1833 11911 2093 6849 3524 21195 1122 613 5R46 Stop 45 2547 12051 1768 2782 1 5536 1346 3665 9402 1224 11303 1 3942 1 2 | 1331 1 2 | 3265 4963 1115 1 1 6931 1 8 | 6475 1 5 | 7032 1 æ ---_ 01 Ĕ 50 113 519 66 310 59 59 365 2.1

|rodD (gtaA) polypeptide (AA 1.673) [Bacillus subtilis] pir[506048|506048| |rodD (gtaA) polypeptide (AA 1.673) [Bacillus subtilis ap];11484|TAGE_BACSU PROBABLE | POLY (GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (BC 2 4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).

JORF 2 (AA 1-203) (Bacillus thuringlensis)

yeer (Escherichia coli)

91 | 580920 1115 [gi]405957

1223

ORF1 gene product (Escherichia coli)

ORF1; putative [Bacillus firmus]

1016 |91 |142790

1515

_ 9

297 121

191 | 42029

4550

1615 | 1

9 4

|ri|40320

1525

404 1 2167

1053

7

30

087 573

52

42

3 \$ B sim | tident | length (2) 5 6 **\$** | |coded for by C. elegans cDNA yk3/g1.5; coded for by C. elegans cDNA j yk5c9.5; coded for by C. elegans cDNA ykla9.5; alternatively spliced form | of F52C9.8b [Caenorhabditis elegans] asparagine-rich antigen Pfa15-2 (Plasmodium falciparum) pir | 527826 | S27826 | asparagine-rich antigen Pfa15-2 - Plasmodium alciparum (fragment) spermidine/spermine NI-acetyltransferase (Mus saxicola) pir|S43430|S43430 orf4; putative transporter; Method: conceptual translation supplied by sparmidine/spermine NI-acetyltransferase - spiny ouse (Nus saxicola) aureus - Putative coding regions of novel proteins similar to known proteins protein tyrosine phosphatase (Dictyostelium discoldeum) observed 35.2Kd protein [Mycobacteriophage 15] [C33G8.2 gene product [Caenorhabditis elegans] orf4 gene product [Methanosarcina barkeri] |pir|S42251|S422 |hypothetical protein 5 - fowlpox virus ORF YJR151c (Saccharomyces cerevisiae) STARP antigen [Plasmodium reichenowi] |rhoptry protein [Plasmodium yoelii] author [Mycobacterium amegmatis] |TrsA [Yersinia enterocolitica] |YqeD [Bacillus subtilis] |EF |Streptococcus suis| | match gene name |pir|JH0148|JH01 |nucleolin - rat acession 91 | 1055055 |gi|1255425 [gi|1015903 |qi!1303784 |gi|1022910 91 1197634 |gi|552184 91 | 535260 91 | 552195 match |gi|457146 91 298032 |gi|633692 gi | 15873 (nt) Contig | ORF | Start ~ ~ _ \$ _ <u>-</u> ~ 6

-
~

1	1
ş	v

1	5	

2	n	

25	

30

S aurius | Putative coding regions of novel proteins not similar to known proteins

_	_

1	\cap
7	v

4	5

-	

			_,	•		•		<u>-</u> :	- :	- ;	•	- -	-	- ;	-;	- ;	-:	-	- :	- :	- ;	- ;	- ;	_	- ;		-
(nt)	6	2278		2585	1601	1771	4550	6422	8547	1982	176	5983	6498	6284	11271	4942	4862	1650	10835	917	7764	8230	8803	110470	339	5485	1 2
	1234	1712	3703	1073	25.39	1532	4741	1939	8711	2359	349	5144	8968	6472	10954	5352	4596	1895	11263	1093	9125	8571	9201	112158	674	6138	
ORF - S	_	-	-	1	2	_	-	-	112	-			- 6 -	01	116	2	9	-	110	- 5	6	110	112	52	7	9	
Contig	-	-	-	-	2	2	2	\$		9	-	11	11		=	12	12	15	16	18		20	02	20	2	23	

_
5
_

1	0

1	5	
•	0	

20	
20	

2	5	:
_	·	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

7	n
-	

1	

40	

٠,	_	٠.	,	·

C	1
J	c

Stop (nc)	1 88	12830	4185	5241	2402	849	1524	3005	1388	8575	8728	9379	087	1049	5801	7261	7621	2964	086	6868	16371	20804	21264	627	707		2324
Start	1	126	4556	5642	1624	505	1177	2454	765	7952	8591	9738	10797	3161	5226	7575	7424	3158	1585	6425	16982	20253	20722	-	908	ارها	2674
ORF		115	-	9	- 2	7	: —	. :	-	6	201	1	2			=	in		~	12	20	26	72)	-	-	-	•
Contig	23	23		77	25	31	-	11	32		32	1	32	34				37	38	3.8	£	38	3.8	39	0	7	7
•	•-	• –	• –	• –	• -	• –	• -	• –	• –	• –	• –	• –	• —	• –			•	•	•	•	• –	•-		• –	• –	• —	•

5

0
0

5	

_	_	
,	U	

2	_
~	

2	,	7	

5 aureus Putative coding regions of novel proteins not similar to known proteins

2	0	

4	0

4	5
---	---

•	• —	• •		. — .	· —		• — ·	· —		· ·	<u>.</u> – :	· —	• — •	<u>. </u>		. – ·	<u>.</u> — ·	<u> </u>	. – :	<u>.</u> —		· ·		<u>.</u> –	. – -	, –	<u>.</u> –
Stop (nt)	3263		13536	13994	i	5520	9760	15424	1079	8776	962	1316	370	2245	287		870	326		261	1228	1560	18712	3521	5822	8553	1509
Start	i			96561	6575	6365	10449	503		7620		i				2	9014	592	1052	-	1551	1970	19092	3696	5436	8885	1366
ORF ID	-		_	_	_	-	27	-		6		1 ~	i	- 5	i							-	117	-		<u> </u>	
Contig	77	44	7	-	45	46	9.	7	4	;		!	:	'n		53	i in	\$\$		· •	26	26	26	57	52	85	65
1	<u>.</u> –	-	-	-	!	<u>:</u> –	: —	! –	! —	! –	<u>-</u>	: –	: —	- -	-	! —	-	<u> </u>	:-	-	: –	: —	: _	: —	-	: –	÷ -

\mathcal{L}
J

	_
7	n
	v

2	n	

25	

3	0
	-

S. auters - Putative coding regions of novel proteins not similar to known proteins

2	ϵ	
۰	J	

45

٤	51	0	

_	0
ാ	

Stop (nt)	. ~	3570	4563	8378	16403	1521	5757	336	1781	2610	390	6955	326	5199	8645	1192	1228	1791	4 03	8653	8781	1232	9366	1922	161	4878	550
Start (nt)	3026	3770	4946	7518	10401	2696	2440	-	006	17	2.0	1 =	78	6761	8935	1590	1509	1411		8300	6968			1620		5042	1 9801
ONF	9	_	6	12	12	- 2	=	i 📶		7			-	9	===	2	i n		-	6	01	-	*	n			-
Contig	65	89			29		. 62	63		-		59	ì	70	70	1	79	,	6	88		99	8.7	80	88	68	91
			•	•	•	•	•		_	. –	•	•	•	•	•	-	-				•		_	, —		•	. –

S. aureus - Putative coding regions of novel proteins not similar to known proteins

•	• —	•	• —	•		•	•		.		•	• — ·	• –	• —		•	•	• —	• –	•	•		•	• —	• —		• —
Stop (nt)	=	28		6024	332	1813	2197	11050	4523	4784	7287	4368	2035	769	1277	693	2655	221	1355	242	3651	11996	12268	17688	760		309
Start (nt)	3938		13		199	244	2583		4672	5014	1658	1699	2496	7	669		3233	-	1209	1081	4025	11625	11981	17401	~	9764	7
ORE		2	7	- 6 -	-	2	-	11	•		-		2	-	7	-	<u> </u>	-		-	-	13	7	120	-	01	-
Contig	9.1		9.2	92	76	9.6	9.6	96	88		100	102	l .	104	104			175	106	107	109	109	601	109	110	114	116
•	• —	•	• —	• –	•	• —	• –	• —	• —	-	•	• -	• —	• —	•	• —	• —	• —	• –	• –	• —	•	•	•	• —	•	• —

5	
_	
_	

ŧ	

20	

25	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

3	1	١
,	·	•

3	5	

	_

45

4462	9266	10158	3320	3869	9844	569	818		4395	6438	1695	667	· •	729	152	6463	8	1513	2743	2388	7586	6502	049	511	35	2540
6273	0	10313	3703	4270	9290	417	1090	2648	1807	6773	7.15	~	512		^	•	2060	2019	2387	1360	1 8830	7290	7221		20	1 673
E -	80		- -	9	=	7		-		9	~		~		_	1		~		7		- 1	_	7		-
116	116	116	120	120	120	121	126	127	127	133	132	134	\$64	138	138	1 7	140	0+1	140	142	142	3	*	971	146	146

S. Aureus - Putative coding regions of novel proteins not similar to known proteins

5	5 (2

					.			•	•	. —	• •			. .			•		· —	• —	•	•	• —	• —	• —	• — .		
Stop (nt)	3071	339	3615	3785	4145	4610	5049	5491	7054	8521	9106	1686	1587	1508	6398	12147	12803	593	2232	1064	808	1808	4279	4540	4717	5638	940	1
Start	874			i	,	•	1	,	•	•	•		2303			ŧ	1	•	1	1		ı	,	100	4896	5817	1604	
ORF			: -	-		-	-	-				ī	7				ī	i	i	i		i .	i		•	77	7	
Cont.19	146	147	149	149	149	149	149	149	149	149	149	1	150	154	154	154	154	156	157	158	159	161	161	191	161	161	163	
•		· –	: —	- -	: —	: –	: –	<u>. </u>	: —	: —	: — ·	-	: —	÷ ·	: —	: —	• –	: —	-	: —	. ·	: —	: —	-	. —	⊹ — ₹	· — ·	•

$^{\circ}$

20	

2	5
<i>د</i>	

_	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

,	v	

-	-
J	ο

1	n

5	0

-								
	,							

.	; -	<u> </u>	;	, –	- -	<u>,</u> –	, —	• ·	, –	+	; —	<u>. </u>	•	;	; — ·	•	; —·	; — ·	· —	; — ·	; –	· –	· –	• —	,	. –
Stop (nt)	1 8	2647	5132	11147	4854	2868	4158	1 2777	<u> </u>	2	278	11149	108			2890	3335	4506	4986	5702	1755	2994	3039	2564	153	699
, vs =		2952	4905	1338	5213	2500	3595	2517	7722	12576	_	4	7	1006	593	2552	3820	4342	5477	6043	1210	2647	2614	1998	7	950
ORF	- 5		6	-		-	5		~	=		7			7	. ~			-	5	7	-		2	-	- 2
Contig (18	163	i i	163	164	166	168	169	170	1	ı	172		C.1	1.13	1 1	i	175	i	182	=	i	188	189	190	191	191

-	2

1	n
	•

2	0	

2	U

2	5	

s aureus . Putative ciding regions of novel proteins not similar to known proteins

3	n
~	v

_	-	

.1	Ω

50

;	- ;	-;	- :	- :	-	- :	- ;	-;	-;	-;	-		_	_	_						,		69	29	8	19	
nt)	36		•		1591		1466	3	3636	7960	19		_		2	-	573	•	-			21	=	77	2	98	
, = ; 	= =	. –	. –	-	-	-	-	-	=	-	<u> </u>			-	-	9	_ ;		_	7		y o	- 1	-	Z.	4	
ָר בּ בּ		- 1	90			0,		. ~		1 2	170	. 6	2	3749		107	9	99	786	192	2.	17,	182	2	82	102	
3 =	129	-	7	~	=	-	-	-	13	- 28		-	-	-	-	-	-	-	-	-	-	: —		-	-	_	•
	_			1	. ~	-	7	۰	12	17	7	ļ	-	6	1-	~	9	-	12	-	-	1-		-		_	÷.
<u> </u>	=	: :	! –	-	-	-	-	-	-	<u> </u>	i –	-	-	-		-		į			!						į
10	-	2		38	. 86	: 70	13	90	90	90	12	22	2	212	213	: =	214	77		1	218		1 2	1 0			1
Cogn	-	-	=	-	: -	7		7	, 7				1_	1 _	!_	! —	<u> </u>	<u>:</u> _	<u>:</u> _	-	<u> </u>	<u> </u>	: —	: –	÷ —	-	÷

	,		
ć)	

1	
,	v

1	5	

2	5	

۷.	

S, aureus - Putative coding regions of novel proteins not similar to known proteins

3	0	

35

1	1	٦

50

_	
5	-
J	

•	•					•	• —	• —	• —	•	• •		• —	• —	· _		• •		· —			•			•	· — ·	
St	261	075		1459	1961				2345	3768		1 0	im	3762	i in		9	Ţ	1363			1962	1258	215	1733	3712	249
tart	1 560	428 1	-			2	09	855	052	760		5	9	3944	_	1 5/6	417	495	677	27	291	35	614	69	738	3906	96
	-	= -	-		-	-	2 - 4	-	5 2		6	-	-		-		2 1	- 5		-	7	2 - 3	-	1	-	-	1
ntig	21 1	27	26	76	26	27	27	27	27	1 72	72	28	28	3	36	38	239	241	242	43	7	244	45	1 9 9	246	. •	250
1 0	1 (4	1 (4	_	- 2	-	- 1			-	-		-		-	_	_	_	_		-	-		_				-

4	\sim
1	U

2	n	

ċ	_	:	>

30

s aurius - Putative coding regions of novel proteins not similar to known proteins

2	c

1	_
4	U

	-
-4	5

							· •					· - •		- :	· – ;	- ;				· - ·		-	· – ;	· - ;	- ;	-;	<u>-</u>
Stop (nt)	9		2				439	4533	5107	1	4700	977	1439	4909	6035	1901	3	3448	7	36	1950		1055	1932	1 622	1 2051	1349
Start	1	956	- 004	906		7	155		; 2 '	2	5140			1697	69	1746	224	3299	1 4849	-	156	1 2055	2		. ~ .	1545	1606
20	-	2	_			•	~		9	~ -	-	-		6	201	-	-	5	7	- 2		- 5	-	- 2	7	2	-
Contig	254	256	; 2	260	261	261	264	264	264	267	268	272	272	272	272	276	278	278	1 6	285	288	288	289	290		291	295
	· –	• -	<u>:</u> –	: –	! —	÷ —	: –	: –	-	÷ –	• —	÷ –	• —	• -	• –	• –	• –	•	•	• –	•	•					

S. aureus - Putative coding regions of novel proteins not similar to known proteins

;	5.	5	

			•																							•	
Stop (nt)	2141	2762	465	205	1928	2624	194	654	4257	339	3995	654	599	1 2	1919	702	1341	3165	1114	3458	5217	6140	6794	\$43	1112	1467	469
Start (nt)	2728	2220	788	2	2380	2794		109	4036		3645	-	1120	2643	2314		982	2758	~	4570	\$645	6119	7450	827	165	1117	936
0 KF	- ·	5	2	-	2	1 7	-	-		-1-	•		7 -	-	1 2	-	- 7	9	-	~	9	- 2	6	- 7	7 -		7
Ü	. ~	295	297	298	300	301	304		306		307	308		308	313	314	316	316	317	317	321	321	321	322	326	326	328
	• —	• –	• –	•	• —	•	• –	•	• —	• —	• –	•	• —	• –	•	• —	• -	• —	• —	• —	• —	• —	• —	• —	• —	• —	• –

r
0

	-
1	

1	

•	,	1	7	

2	5

_			
4	Č.	ſ	}

s autous - Putative coding regions of novel proceins not similar to known proteins

9	2	4

4	1

5	
	•

Stop (nt)	276	916	1212	1833	289	1623	2204	5138	3128	-	526	356	7	192	4	258	90	80	592	598	.90	2	8404	9247	9854	246	787
Start (nt)	452	_	9.1	17.7	9.	147	2353	11.6	295	3	56	į Ā		2476	36	i i	3197	1532	221	1410	2	3167	7967	9068	17101	-	*
OAF ID			7		. ~				7	-	7	7	-		:	•	- 5	-	7	2	,		•			-	-
- ق		329	29	329	330	i	332	12		3.15	337	7	341	341	7	341	344	345	346	350	ı m		-	٠.	352	359	

5	
_	

1	0
,	v

0	Δ	

0	5

S. aureus - Putative coding regions of novel proteins not similar to known proteins

	ι	

-	-	

.1	n

4	ς	ı	1	۱

	: -	: — ·		<u>.</u> –	· ·	_	· -	<u>.</u> – .	<u>.</u> – :	_	_	: - :	·	. —	-	<u> </u>				<u> </u>	_		· —	_		
Stop (at)	1808	10714		4090	6239	1719	1085	464	: 🗅 :	1097				260		ě		69	847	465	5370	ı ñ	2672	1423	1890	488
ωÇ	2158	10974		1 089	4980	520	906	748	1	1351	-	~		751	ı m	~	1344	1/6	995		5561		2875	3524	2111	880
ORF ID	7		7		-		-	-	-	m	-	i i	i	~	-	-	- ·	-	-	7		~	-	2	_	7
Ŭ.		364		365	365	366			375	380	. 69	06	390	391	395	_			401	402	\$ 0 \$	408	807	408	410	613

_	
J	

	0

_

2	0

2	5

3	0

S aureus - Putative coding regions of novel proteins not similar to known proteins

$^{\circ}$	ε

	c

_	
-	1

		• -	•		•	·					•	:	<u> </u>	<u>.</u> ·				<u> </u>	<u>.</u>		<u> </u>	<u> </u>		-	<u> </u>		- ;	-
1	Stop (nt)	R 4.7	159	179	91	2		1407		417		535	35		20	20	969	99	614	36	9	4512	2 :	219	930	687		1 907
•	Ster (nt)	578	21		161		5	26	9		2311	2	2089		-			67	076	968	3833	1.1	4937	434	472	265	~	1494
	ID	7	!	!		- 7	- 2		7		-	-	-	<u> </u>	• —		-	_	-		-	• —	01		7	-	-	
	cont 19	416	, -	417	417		5	- 5		; ;		7	7	077	77		444	, 🕶	. •	453		. 53	(5)	455		459	462	997
		<u> </u>	<u>:</u> –	<u>:</u> _	<u>.</u> –	i 	- –	<u> </u>	-	<u>.</u> –	! —	: –	. —	- -	-	-	: –	-	. –	÷ —	•	: –	: —	÷ —	: —	: —	. —	· –

0

|--|

1	5	

^	^

2	0

>	٤	7	
-	•	•	

S. aurous - Putative coding regions of novel proteins not similar to known proteins

3	0	

35	

40

5	0

_	-
^	•

Stop	6.0	20	925	3372	3706	538	3694	5686	8181	9773	200	1017		760	2081	2332	4261	480	174	2112	359	675	520	1242	1571	346	4150
Start			1488	2386	3464	17	8600	6330	1351	8175	. 4	. ~		2		990	4016	956	613	1795	315	127	~	496	1149	069	4566
ORF		-	7		-	1	9		6	10		7	-	7	-	-	5	7	-	9	-	-	<u>-</u>	7		-	2
Contig	467	468	697	697	697	410	670	470	470	470	471	471	476	477	477	477	180	481	987	487	888	492	493	493	502		505
•	• —	•	•	• –		• —		-	. –	• –	•	• –	• —	• –	-		_		•		•			. —		-	

ϵ
J

4	α
-1	U

15

2	n	

2	2	4	5	

30	

S aureus - Putative coding regions of novel proceins not similar to known proteins

2	-
. 3	Э

4	C
÷	0

							_ •	•			_ •	. - :	_ :	· - ;	-:	;	. — ;	-;	;	-;	-;	- :	- ;	-;	- ;	-;	
(nt)	23	~	7	3	2360	3669		335		. n	156	736	2880	~ 1	1111	664	1011	~	432	1272	734	1129	104	11154	1458	1881	1 2020
t)	741		1 60	621	2097	90	-	637	1 🕶	5298	308	1362	2203	1531	4348	986	1495	. 60	719	1048	1012	2145	892	1357	1760	1 2105	2166
ORF S	2 1	-	-	-	_	9		- 1				-		- 5	-	-	- 2 -	-	7	- 2	- 2	-	-	-	-	5	y
0 1		512		: 5		520	527	528	529	530	536	538	538	538	538	540				542			555	1 10	1 0	558	

1	5	
1	J	

0	-
۷	0

S. aureus - Putative coding regions of novel proteins not similar to known proteins

3	0	
•	_	

-		

45

•		• -	<u>. –</u>	_	. –	. –	· –	· -	<u>.</u> –	<u>.</u> —	_	· —	• –	. –	-	·	. –	<u>.</u> –	• -	• -	• –	• –	• -	<u>-</u>	<u>.</u> –	• -	•	<u>.</u> –
1	Sto (nt	in			921			1206	199	453	477	200	966	539	573	1372	1554	7	141	75	122	890		69	1469	89	326	541
1	St	2636	3053	3986	475	1706	308	984	7	163	-	1784	. 60	946	22	و ا		: 0	1455		817	87	1593		101	322	1001	1029
	F 0	_	e	•		2	-					~				7 -				-			_	-	~	-	8	-
1	5 H		558			9	571	571	577	11	579	\$79		585	587	588	58	i -	592	593	1	295	965	602	603	909	607	610
•		• -	• —	. –	• –	•	•	•	• —	•	• —	• —	• –	• —	•	• –	•	• –	•	• —	• -		•	•	•	•	• •	·

_

4	Λ
- 3	U

2	0	

25	

S aureus - Putative coding regions of novel proteins not similar to known proteins

30)

	_
~	

4	0

	4	ч	2
•	۲		j

	5	•	ι
ľ	_		

		•			. – •	.		· — •	_ •	•	:	· – :		- :	- :	- 1	; — <u>;</u>	- ;	-	- ;	- ;	-		- ;	-	- :	•	-;
		200	650	491	347	2549	210	452	4004	759	368	1063	1994	1081	261	111	3	1331	1847	909	1758	1212	2188	1045	109	872	961	304
•	Start	1	166	736	36	2046	67	901	4789	1448	169	1929	1 6262	227	816	7781	118	1615	1 2260	_	1534	1 2025	2940	7	7.	576	11725	68
	ORF		-	7	-	-	-	-		-	-1	7	7	-	-	7	-	-	-	-	-	9 -	-	-	-	-	-	7
	Contis	612	919	617	622	625	627	628	611	634	636	636	637	638	639	619	119	642	642	613	645	645	645	648	099	099	661	1 664
	·	÷	: –	÷	: —	•	•	• -	-	• –	• –	• -	•-		-	• -												

5

1	0

1	5	
,	0	

2	Λ	

25	

S. aureus - Putalive coding regions of movel proteins not similar to known proteins

•	,		٦
•)	ζ	,

2	~
J	Э

4	0

ú	_	,	1
c	7	ι	J

$\boldsymbol{\varepsilon}$	-
J	ū

1		<u>.</u> –	•	·	<u>.</u> –	<u>.</u> –	<u>.</u> –	• -	•	<u>.</u> –	<u>:</u> –	; –	<u>:</u> –	• — ·	<u>.</u> –	<u>.</u> –	• -	<u>.</u> –	·	• —	•	<u>.</u> –	:	· ·	<u>.</u> –	• - ·	<u>.</u> –	<u>.</u> –
	ω÷	=	330	. ~	338	584	237		835	1077	153	(-	. ~	1449	908	167	2	\$70	383	829	1112	472	441	828	214	782	298	230
	Start (nt)		!			965		1589	-	1352	-	1 60					7	133		1656	1498		268	130	7	_	2	3
	ORF	i	-	7	-	~	-	-	1	7	-	2	-	4		-	-	-	1	-	- 2	-	-	1	-	-	1	1
	Contig		999		673	674	679	; -	9		694	969	706	709		715	7	721	722	723	723	727	729	731	735	736	738	742
-	· -	• –	: —	• —	· —	i —	·	: —	· —	: –	: —	•	. —	• ·	-	<u>.</u> —	•	. —	. –	· —	: —	· —	• –	• —	• -	• •	· —	•-

5	

	Γ
,	v

1	5

_		_
2	1	7

2	5

3	0	

5 sureus - Putative coding regions of novel proteins not similar to known proteins

1	12
J	

40

-	,
-	

•	• –	• —		•	. –	•			•	•	· _ ·			.						· _ ·		· _ ·		· _ ·	. _		• –
Stop (nt)	i	464	•	452	522	918	400	: -		•	534		1023		224		111	989	842	1112		979	358	1104	1032	1419	1064
Start		282	685	. 0	9.7		. 99	1033	<u>.</u>	~	1058	173	0641	1260	-	; -	304	-	219	2221	1774	. 8	71.4	487	1529	1748	195
ORF	-	7	-	-	-	i i	; –	: -	-		-	-	-		1	-		-	-	-	- 5			7			-
		1 7	749	751	755	755	758			•	17.1		785	•	b .		•	805	808			812	817	818	619	819	820
÷ — -	•	• –	• -	• –	• –	•	• –	• –	• –	•	• –	• -	• —	• –	•	• –	• –	• –	• —	• –	• –	• -	• –	• –	• –	•	•

lar to known proceins
known
20
similar
not
l proteins not similar to
novel
0
regions of novel pr
coding
Putative

Stop	255	008	1 291	298	1 196	1 709	1 457	449	359	256	410	1 212	1 1828	588	454	294	1020	544	7.85	263	1 909	805	398	544	188	- 000
Start (nt)	905	87	578	594	320	491	912	303	715	2	18	383	1676	-	906	584	1661	961	1567	-	389	1 2	193	852	1 373	-
ORF			-		-		- -	~	-	-	-	- 2	9	-	-	-	-	-	-	-	-	- 1	-	-	- 1	-
	828	829	830	832	835	840	845	850	853	860	864	864	#64	870	873	875	677	878	879	881	882	890	905	906	912	

5	

	٥

2	0
_	•

3	0

5. aureus - Putative coding regions of novel proteins not similar to known proteins

4	£

-	

•		<u>.</u> –	<u> </u>		<u> </u>	<u> </u>	-		-	<u> </u>	-	-	-	-	-	_	. – :	-	-	<u>-</u>	-	-	-	-	-		-	-
	Stop (nt)	161	402	386	808	385	00.	00	384	528	616	645	1242	9 20	270	362	3	00	162	346	909	302	170	161	348	211	982	362
	35	9	169	56	i in	~	i ~	~	-	1052	7	220	673	1702	-		-	227	-		1079	i	7	319	692	~	1926	589
	í Le					1 -	-	-	-	-	-	-	7	-			7		-	-	~	-	-	-	-	-	-	
. :	Contig	915	15	9.5	i N	9.2	929	932	974	936	937	945	2	946	2.0	126	955	096	963		996		971		976	616	9.82	984
•		• –	•	. –	• –	• –	• –	•	• -	• –	• -	• –	•	• -	•	• –	• —		• –	•	•	• -	•		• -	• –	• –	• -

15	
----	--

2	•	ι	Ì	

2	5

_	^	

S. auteus - Putative coding regions of novel proteins not similar to known proteins

3	0	

,	_

	_

_	\sim
	u

_	c
J	C

	•																				•			•			
Stop (nt)	467	525	549	316	313	6 53	145	099	474	299	431	338	179	399	269	399	159	354	733	400	148	533	399	405	4 38	384	4 31
Start	ĺ	-	920		624	~	288	1205	6	595	276		355	794		115		704	1233			769	707	- 6	58	-	246
ORF	-	7	-	-	-	-	-	-			7	-	i	-	-	~			2			7	-	_	-	-	7
Contig '.rp	987	666	966	1004	1014	1015	1016	6101			1024		2	1040	1043	1044	1047	1051	1051	1063	1069	1069	1075	1077	1081	1086	1087
	• –		•	• -	• —	• —	• —	• —	• —	• —	•		• —	_	. –				• —			-	. —	-	• —	• —	

5	
0	

†	0

2	n
_	•

30

S autrus - Putative coding regions of novel proteins not similar to known proteins

35

J	*
7	•

50

·	. –		_	; - ;	<u> </u>	<u> </u>	; —	, – ;	-	, – :	-	. –	; —	. – ;	<u> </u>	<u>. </u>	-	-	- :	<u> </u>	<u>. </u>	-	•	_		-	-
Stop (nt)			2	= 1	3	5	4	280	422	768	267	342	; –	376	225	90	53	8	2	8	2	9	99	179	79	. = .	197
Start (nt)		474	1015	1020	20					2	22	0		609	446	558	-			! ! =	-	61	96	~	55		33
ORF S	-	:-		-	•				-	-	-	-	_		-	: -	-			-	-					-	-
Contig (8801	9601	1098	1100	1100	101	102	1107	1114	1115	1119	1129	1112	1133		1147	1153	154	159	161	791	171	171	=	1195	13	1200
	-	÷ —	: –	<u>.</u> –	: –	: _	: —	·	: –	: —	÷ —	· –	-	<u>:</u> –	• —	: —	•	• –	• -	• —	• –		• —	• –	• —	• —	• —

_
5
_

1	\cap
1	v

1	5	

2	0
_	v

_	_	
2	5	

S. aurius - Putative coding regions of novel proteins not similar to known proteins

3	0	

-	_
υ	0

4	0

	4	ı	-
4	1	•	٦

ζ	1	7
0		

•		-	:	<u>.</u> – ·	-	-	· -	-	<u>. – </u>	: -		•	-		. — ·	. –	. –	.	-	-		-	-	-	, – ·		-	-
	Stop (nt)	464	401	387	175	311	221	595	165	1 00	631	570	193		345	5.7	00+	£3	432	167	256	149	398	639	399	449	143	401
	Start	129	105		~	520	412	2	-		158	[0.	384	,		710		!	202	331		295	721	869	194	126	283	
	ORF ID	6	2	1	-	-	-	_			~			_		-	1 -	_	i	-	i	-	-	-	-		-	-
	contig	1203	122	1232	1240	1247	1271	1286	95	12	1 7	9	359	! -	1371	1374	378	1392	• -	1433		1453	1471	1477	1502	1518	1534	1546
	• ——	• —	•	• -	• –	• –	•			• -	•	•	• —	• —	• —	• —	• –	•	• -	• —	•	-	•	•	•	•	•	• -

5
_

)
)

1	5

2	0	
_	•	

٥.
25

3	0

S. auteus - Putative coding regions of novel proteins not similar to known proteins

2	$\boldsymbol{\mathcal{L}}$
v	U

4	0

4	5
	~

50

	. –	; — ;	-	-	- -	-	<u>. </u>	<u>. </u>	-	<u>.</u> –	<u>.</u> –	<u>.</u> – ·	-		-	<u> </u>		-	-		-		<u>-</u>		. – :	_	• -
Stop (nt)	255	i mi		. 6	2	235	314	200		67	8	=	9	1.67	563	399	283	00	100	367	167	166	398	352	3	152	150
Start	909				i	468	625		119	7		215	22	111		. ~	564	218	• 🕶	732		330	1 2	+	679	ŧ	296
ORF	-	-	-	7			-		. ~	-		7	. ~		-		-			-		-	7	-	-	-	
₹ ==	1547	1583	ذ ف	1602	53	1665	1760	1762	1876	1895	1931			2056		2157	2164			2338	2342	2352	2352	2355	2356	2359	2421
	- –	÷	<u>:</u> –	<u>:</u> —	-	-	: -	<u>-</u>	- -	-	: <u> </u>	: —	<u>-</u>	<u>:</u>	_	-	-	-	-	: —	: —	÷ —	-	-	÷ —	-	÷ –

aureus - Putative coding regions of novel proteins not similar to known proteins

_	$\boldsymbol{\epsilon}$
0	Э

	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>. </u>	-		<u> </u>	-	:
Stop (nt)	185	278	314	253	157	190	222	285	162	250	762	298	174	145	147	-	203	386	170	384	1 76	145	150	00	199	148	401
Start	36	1 5	i ~		7	357		; _	120	11	52	Ç	344	7	_	336		. 4	337	202	12	288	-	239	211		36
ONF	-	-			-	-	-	:-		-	-	-	7	-		-	-		_	~	-	-	-	~	~	-	~
Contig		1 🕋	. ~		(~	3070	3075	3080	1 2601	1 8608	3100	3103	8111	3123	3127	3138	3142	3144	3151	3155	3168	3205	3282	3303	3371	3558	3558
•	• –	•-	• -	• -	• –	•	•	•	• –		-	-	-	-		-	•	-	•	•							

wn proteins
ř
2
similar to known p
nor
proteins not a
novel
90
oding regions of nove
coding
Putative
1
aureu:
S

			-	-	-	-		-	7	-				-	-	-	-	-	-	-			-			-	-
S	. 60	27	. ~		13	67	5	28	. 9	25	2	52	11	; =	: =	1 1 6	1 2	38	137	38		=	15	9	6.	=	=
Start (nt)	5			\$04		357			. ~	=	22	Ç	7	1 ~	-		388		337	202		288		239	211	7	36
ORF		-	-	7	1	7 7				I	١ -	i	١	1		-	١	-	-	~	-	-	-	~	~		7
; ह_∓	3046	3049	3050	3052	3065	3070	3075	3080	3092	3093	3100	3103	٠.	3123			3142	3144	1151	3155	3168	3205	3282		1371	3558	3558
•	• —	•	•	•	• -	• –	•	•	• –	• –	• –	• –	•	• –	• —	• -	• –	• –	• –	• -	• –	• —	• –	• –	• –	•	• •

4	-
1	U

2	0	

2	5	
_	_	

^	,	^	
J	L	,	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

Contig ORF Start | Stop |

0	$\overline{}$	
,	J	

4	Λ

	,	_

_	. ,
.5	
_	-

1 666	380	238	402	358	398	439	398	314	637	402	=	07	269	256	157	135	377	375	262	298	389	00+	320	392	399	324
151	157	~	130	9.	664	9.76	781	625	467	55	619	-	535	510	554	266	667	638	1.4	4 53	!	!	•	781	671	-
 -	-		7		-	• ·						-	_	_	-	-	~	~	-	_			t .	-	-	-
3568	3595	3618	3618	3622	3622	3642	3649	3651	3664	3674	3677	3704	3726	3765	9778	3794	3794	3796	3801	3806	3807	3815	3827	3842	3853	3855
•	• —	• –	• —		• —	•	•	• •	• –	•	. –	•		•	• —	• —	• —	• —	-	-	• —	• —	• —		•	•

)	
	1	5

|--|

1	5
•	-

2	n	
_	•	

25	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

3	0
_	•

35	

	,
~	ŧ

·		· - ·	<u>.</u> –	<u>.</u> – :	<u> </u>		<u>.</u> –	<u>.</u> –	· —	. – ·	,		<u>. </u>	. —	· —	; ·	; –	, —	; — ·	-	,	·	-	<u> </u>	· — ·	<u>.</u>	; - ;
Stop (nt)	35	16:		173		10		375	2.4		77.	7		111	356	962	335	259	100	345	=	=	9	~	0		372
	2	069	565	_		125	103	100	76	651	105	646	195	-	_	187	06	7	186	-		i	;	-		-	127
ORF	-		-		-	-		-	-	~	~	-	: -	-	-	-	-	-			i	-		1	7	- 1 -	7
	3857	3861	3865	3897	3897	1898	921	39	3930	3946	1951	3965	0.0	1981	3998	4001	4003	4018	4010	4021	1043	4054	990	4070	. 72	4073	4011
1	-	. ·	-	! —	: —	<u>:</u> –	. –	<u>:</u> –	: —	! –	: –	: —	: –	: _	-	: -	: –	: —	: –	:	: –	- -	: –	: _	: _ ·	: —	· — :

c	
J	

|--|

2	0

		c	
_	. •	·	,

S. auraus - Putative coding regions of novel proteins not similar to known proteins

)	U	

2	5	
J	U	

40

45

50

_	
-5	c

	•	• — ·	•								•		• —			•	•		•	• •	•		• -	• —	•	• •	
Stop (nt)	159	368	297	306		339		230	341	į			206	254	256	348		296	174	323	334	144	304	163	319		186
Start (nt)	3		103		570		740				768			505	2			28	-		867	284	2	303	471	153	_
ORF	-	÷	-	_	. — .	-		-	: —	. —	<u>:</u> —	-	; —	;	-		-		-		7	-	-	-	-	-	_
ont.	1 0	60	4101	4105	4107	4119	4121	4123	4127	4128	4130	4146	4157	4186	4224	4239	4242	4252	4253	4256	4258	4267	4271	4287	4289	4302	4304
	÷	• —	. ·	.	. :	•	· —	÷	. —	. ·	• —	• —	. — .	. —	. —	i —	• — ÷	· —	· ·			· ·	· — ·	. — ·	. — :		_

1	5

20)	

	,	_	
4	-	0	

S aureus Putative coding regions of novel proteins not similar to known proteins

٠	3	0	

_

<u>;</u>	; –	• — ·	. –	<u> </u>	<u> </u>	, –	,	; —	, –	· - ·	; -	-	: – :	, —	; —	. –	; —	,	. –	. –	, —	<u>.</u> –	<u>. </u>	• !	• — ·	<u>-</u>	. –
Stop (nt)	314	151	289	148	22.1	364	399	277	311	268	326	309	111	249	328	317	280	398	364	330	398	215	123	172	583	302	206
Start (nt)	96	2	576	'n		528	128	471		. ~	574	614		-	909	-	7	i	~	i	601	427	643	540	20	. 0	12
ORF	•	•	·	•	-	~	• —	•	•	• —	• —	• -	•	_				7		-	-	-	-	-	-	-	-
Contig	1						1338	1346	1367	4373	4381	284	4397						4412			443	4471	471	4482	4489	4491
÷	÷ —	! —	: —	-	: —	- -	! —	: —	: –	: —	- +	: –	÷ –	:	÷ –	÷ —	: —	-	: —	:	• —	÷ —	: —	. —	÷	•	÷ –

180 176

4620 | 1 | 349 4662 | 1 | 1

4619 | 1 | 1

1322 1 231

4578 | 1 | 642 4573 | 1 | 1

157

4669 | 1 | 2 | 4680 | 1 | 28 |

4690 | 1 | 344

1	0
	-

1	5	

2	0	

0	5	

_			
3	1)	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

Contig | ORF | Start | Stop | 110 | (nt) | (nt) | 4495 | 1 | 3 | 179

248

306

246

4518 | 1 | 1

241

163

4526 1 480

239

175 1 200

4552

4567 | 1 | 36

3	5

4	Λ

50

-	,
5	ð.
_	-

Table 4

ORF	SEQ ID NO	BLAST	Antigenic	Regions		
		HOMOLOG	Region 1	Region 2	Region 3	Region 4
168_6	5192	lipoprotein	36-45	84-103	152-161	176-185
238_1	5193	chrA	21-39	48-58	84-95	232-249
51_2	5194	OppB gene product (B. sub	20-36	70-79	100-112	121-131
278_3		lipoprotein 1	20-29	59-73	85-97	162-171
276_2	5196	lipoprotein	21-33	65-74	177-186	211-220
45_4	5197	ProX	28-37	59-69	85-100	120-129
315_8	5198	hypothetical protein	45-54	88-97	182-192	243-253
154_15		unknown	31-40	48-58	79-88	95-104
228_3	5200	unknown	25-38	40-52	64-74	80-89
228_6	5201	unknown	29-41	89-101	128-143	173-184
50_1	5202	unknown	21-33	52-61	168-182	197-200
112_7	5203	iron-binding periplasmic	21-31	58-67	92-101	111-120
442_1	5204	unknown	30-39	91-100	122-137	182-192
	5205	unknown	50-59	104-116	127-136	167-182
66 <u>2</u> 304 <u>2</u>	5206	Q-binding periplasmic	19-28	48-57	75-84	103-110
	5207	hypothetical protein	27-36	86-95	129-138	192-20
44_1 161_4	5208	SphX	27-44	149-161	166-175	201-210
	5209	cmpC (permease)	21-33	61-70	83-92	100-10
46_5	5210	traH [Plasmid pSK41]	83-92	109-118	127-142	
942_1		ORF (S. aureus)	12-22	87-96	111-120	151-16
5_4	5211	peptidoglycan hydrolase (S:	24-34	129-138	141-150	161-17
20_4	5212	lipoprotein (H. flu)	81-90	123-133	290-299	, , , , , , , , , , , , , , , , , , ,
328_2	5213	fibronectin binding protein	44-54	63-79	81-90	95-110
520_2	5214		30-39	65-82	96-106	112-12
771_1	5215	emm1 gene product (S. pyc	7-16	120-129	157-166	
999_1	5216	predicted trithorax prot. (D	43-52	88-97	102-111	
853_1		ORF2136 (Marchantia polyr	13-22	28-44	72-82	114-12
287_1	5218	psaA hornolog	14-23	89-98	72 02	
288_2	5219	cell wall enzyme	40-49	59-68	76-87	106-11
596_2		penicillin binding protein 2b		40-49	62-71	93-111
<u> 217_5</u>		fibronectin/fibrinogen bindi	28-37	31-40	54-62	73-92
217_6		fibronectin/fibrinogen bp	10-19			
528_3		myosin cross reactive prote	4-13	29-47	60-73	90-99
171_1		EF	20-31	91-110	95-104	
63_4	5225	penicillin binding protein 2b	12-21	59-68	35-104	
353_2		· · · · · · · · · · · · · · · · · · ·	46-55	62-71	04 102	175 10
743_1	5227	29 kDa protein in fimA regi	23-32	68-79	94-103	175-18
342_4	5228	Twitching motility	10-19	48-60	83-92	111-12
69_3	5229	arabinogalactan protein	97-106	132-141	158-167	180-18
70_6	5230	nodulin	36-45	48-57	137-160	179-18
129_2	5231	glycerol diester phosphodie	8-17	41-50	55-74	97-108
58_5	5232	PBP (S. aureus)	26-35	70-79	117-126	152-16
188_3		MHC class II analog (S. aure	72-81	94-103	115-124	136-14
236_6		histidine kinase domain (Dic	24-33	52-67	81-94	106-12
310_8	5235	clumping factor (S. aureus)	59-71	77-86	93-102	118-12
601_1	5236	novel antigen/ORF2 (S. aui	45-54	91-104	108-117	186-19
544_3		ORF YJR151c (S. cerevisae)	76-90	101-111	131-140	154-16
662_1	5238	MHC class II analog (S. aure	22-32	71-80	89-98	114-12
87_7	5239	5' nucleotidase precursor ('	29-45	62-71	105-114	125-13
- 	5240	R65G gene product (B. sub	102-111			

Table 4

5	ORF		Antigenic	Regions	(cont)		
		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
	168_6	244-272	303-315				
	238_1	260-269	291-301	308-317			
1.	51_2	140-152	188-208	211-220	256-266	273-283	
10	278_3	198-209					
	276_2	255 -268					
	45_4	177-199	221-230	234-243	268-279	284-293	304-313
	316_8				i		
I.	154_15	148-157	177-187	202-211	1		
15	228_3	101-119	139-154	166-181			
	228_6		:				
Ì.	50_1						<u> </u>
	112_7	136-149	197-211	218-229	253-273		<u> </u>
-	442_1	199-210	247-257	264-277	287-309		
20	66_2		!		<u> </u>		
	304_2	178-187	250-259				
	44_1						<u> </u>
	161_4						
-	46_5	131-141	162-176	206-215	243-252	264-273	285-294
25	942_1						270.007
	5_4	189-205	230-239	246-264	301-318	340-354	378-387
-	20_4	202-212	217-234	260-275	314-336	366-373	380-391
	328_2						<u> </u>
	520_2					: 	
30	771_1	145-154			 		1
].	999_1						<u>:</u>
	853_1	154164			-		<u>i</u>
	287_1	154-164			-		
35	288_2	121 120					:
35	596_2	121-130	259-268	288-297	302-311		
}.	217_5 217_6	244-253 144-158	174-183	188-197	207-216	226-242	
}-	528_3	144-130	174-103	100-137	207-210	220-242	1
	<u>328_3</u> 171_11				- 		1
40	63_4			<u> </u>			
ŀ	353_2			<u></u>	 		<u> </u>
ŀ	743_1	197-207					1
-	342_4		<u> </u>				:
-	69_3	195-211			1		
45	70_6	206-215	263-272	291-301	331-340	358-371	390-414
ľ	129_2	117-127	141-157	168-183	202-211	222-231	261-270
	58_5	184-203	260-269	275-299	330-344	372-381	424-433
Ì	188_3			:	1		
ľ	236_6	138-147	163-172	187-198	244-261	268-278	308-317
50	310_8	131-140	144-153	177-186	190-199	204-213	216-227
	601_1	208-218			1		
1	544_3	170-179	184-193	224-235	274-287	327-336	352-361
	662_1			, 5.X			
	87_7				1		
55	120_1	·····					
Ł	120_1						

Table 4

	ORF		Antigenic	Regions	(cont)		-
		Region 11	Region 12	Region 13	Region 14	Region 15	Region 1
	168_6	1					
	238_1			i I			*
	51_2						
	278_3	i					
	276_2	1					1
- 1	45_4						1
ľ	316_8						7
1	154_15						
	228_3					1	
-	228_6		1			İ	
	50_1	1	 				
-	112_7						
-	442_1						
1	66_2						
ľ	304_2				1	:	
-	44_1						1
-	161_4			1			
	46_5	306-315					
-	942_1	1	,				
	5_4	393-407	416-426	456-465		ı	
- 1	20_4	396-405	410-419	461-481			
	328_2						
1	520_2		! !				
-	771_1	 				i	
ŀ	999_1			<u> </u>	!		
- 1-	853_1	<u> </u>	!				
-	287_1	†				:	
-	288_2	1	<u> </u>				
	596_2		****			:	
-	217_5						
[217_6	1				0	
-	528_3			1			
	171_11						
-	63_4						
-	353_2	<u> </u>					
-	743_1	1					
	342_4	1					
-	69_3			 			_ ,
1	70_6	453-471	506-515				
1	129_2	296-315	T L .	1		 ·	
1	58_5	*		·			
1	188_3	···		1	!		i
	236_6	358-377	410-423	428-439	442-457	467-476	480-493
ļ*	310_8	238-251	256-275	281-290	296-310	314-333	338-347
- 1	601_1			1			

Table 4

5	ORF		Antigenic	Regions	(cont)		and the second of the second o
,		Region 17	Region 18	Region 19	Region 20	Region 21	Region 22
		1		i		<u> </u>	
	238_1	0		·	i	<u>:</u>	
	51_2						
	278_3	1					1
10	270	i]	!		
ļ					!		
	316_8			· ·		<u> </u>	
	154_15			1	<u> </u>		
_	228_3	-			-i	1	
15	228_6			!		<u> </u>	
	50_1			l	-		
	112_7	<u>†</u>		·		·	
		<u> </u>				-	
	442_1						
20	66_2	-	<u> </u>			-	
	304_2	 				- 	
	44_1					·	
	161_4			i 1·—— ·———	·		
	46_5					ļ	
25	942_1				<u></u>		
	5_4	1					·:
1	20_4				:		
	328_2				1	<u> </u>	
	520_2				,		
30	771_1						
	999_1			İ	:		
	853_1	1					:
	287_1	1					
	288_2			 			
35	596_2						
	217_5	· · · · · · · · · · · · · · · · · · ·		,		1	
	217_6	···		 		1	
		<u> </u>		 			:
	528_3	<u> </u>		<u> </u>		1	
40	1/1-11	<u> </u>		·			
40	63_4	<u> </u>	.	<u> </u>			
	353_2						
	743_1						
į	342_4	<u> </u>					
	69_3			 -			
45	70_6	i		· 		!	i.
į	129_2						
	58_5	<u> </u>				1	
	188_3						
	236_6						
50	310_8	357-366	370-379	429-438	443-452	478-487	\$\$1-560
	601_1			1			
	544_3						
	662_1			·			
	004_1	· · · · · · · · · · · · · · · · · · ·					
5 <i>5</i>	87_7					· · · · · · · · · · · · · · · · · · ·	
	120_1			-			

Table 4

5	ORF		Antigenic	Regions	(cont)		
3		Region 23	Region 24	Region 25	Region 26	Region 27	Region 28
	168_6				1	,	
	238_1	*			1		
	51_2						
10	278_3				i i		
,,	276_2						1
	45_4	1					
	316_8				1		1
	154_15	1					
15	228_3	:	1			1	
, 0	228_6	1			_		
	. 50_1	1					
	112_7	i				1	
	442_1						
20	66_2		!				
	304_2	;	*	1			
	44_1	1				:	
	161_4	:					
	46_5						
25	942_1						
	5_1					1	
	20_4		i			1	
	328_2						
	520_2	1				i	
30	771_1	i					
	999_1	Į.					
	853_1					:	
	287_1			1			
	288_2		-		1	÷	
35	596_2						:
	217_5	l		1			i
	217_6						
	528_3	:		!		·	
	171_11						
40	63_4			l.		1	
	353_2			i		1	
	743_1						
	342_4					·	: -
	69_3						· · · · · · · · · · · · · · · · · · ·
4 5	70_6						
	129_2					,	
	58_5						:
	188_3						
	236_6						i.
50	310_8	622-632	670-685	708-718	823-836	858-867	877-886
	601_1						
	544 3						1

ORF	Antigenic	(cont)	
	Region 29	Region 30	
168_6			
238_1		1	1
51_2		1	:
278_3		1	
276_2	!		
45_4			1
316_8		!	
154_15			
228_3	1		
228_6		Ţ - - · · · ·	
50_1		1	
112_7	:	 	
442_1	• · · · · · · · · · · · · · · · · · · ·		
66_2	i		
304_2	·		
44_1	<u> </u>		1
161_4			
46_5		 	·
942_1	:	 	1
5_4		ļ	· · · · · · · · · · · · · · · · · · ·
20_4		!	· · · · · · · · · · · · · · · · · · ·
328_2		 	·
520 <u>-</u> 2			
771_1		 	-;
999_1	<u> </u>		
853_1		 	
287_1	<u> </u>	 	
288_2	,	 	
		-	-
596_2 217_5		1	-i
		ļ	
217_6 528_3			
	:	 	
171_11	1	1	-i
63_4 353_2	1	1	
	1	· · · · · · · · · · · · · · · · · · ·	
743_1			1
342_4	:		
69_3			!
70_6		·	:
129_2			
58_5			
188_3			
236_6			1
310_8			.,
601_1_			
544_3_			
662_1			
87_7_			
120_1			

Table 4

ORF		BLAST	Antigenic	Regions		
		HOMOLOG	Region 1	Region 2	Region 3	Region 4
46_1	5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
63_4	5242	glycerol ester hydrolase (P.	9-26	57-73	93-107	123-133
174_6		5243 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
206_16		ornithine acetyltransferase	1-10	34-43	54-63	194-210
	5245	NaH-antiporter protein (E.)	120-129	332-347	398-408	
322_1	5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
415_2		transport ATP-binding prote	108-126	218-227	298-308	315-334
214_3	5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
587_3		clumping factor	5-14	43-54	59-68	76- 9 5
	5250	signal peptidase	59-68	72-81	86-95	99-108
54_3	5251	fibronectin binding protein l	23-32	37-46	50-59	89-98
54_4	5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
54_5	5253	fibronectin binding protein I	49-60	81-90		
54_6	5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
328 1	5255	lipoprotein (H. flu)	11-20	61-70	96-105	

Table 4

ORF		Antigenic	Regions	(cont)	1	1
	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
46_1	215-242	333-352	376-385	416-432	471-487	
63_4	145-154	191-202	212-223	245-265	274-283	291-300
174_6						<u> </u>
206_16	239-259	275-284			<u> </u>	
267_1			L	<u> </u>	<u> </u>	·
322_1	298-319	350-3 59		<u> </u>	<u> </u>	
415_2	344-353	371-380	395-404	456-465	486-495	518-527
214_3	318-337	365-375	1			ļ —
587_3	106-115	142-151	156-166	173-182	186-198	204-213
685_1	113-122	130-145				ļ · · · · · · ·
54_3	128-138	185-194	217-226	251-260	268-277	295-305
54_4	175-188	191-200	203-212	220-229		<u> </u>
54_5						
54_6	220-230	287-304	317-326	344-353	364-373	378-387
328_1			1			

Table 4

5	

ORF	:	Antigenic	Regions	(cont)		
	Region 11	Region 12	Region 13	Region 14	Region 15	Region 17
46_1						
63_4	306-315	319-328	366-376	395-420	453-462	467-476
174_6						
206_16						1
267_1					ir	!
322_1	1					.1
415_2	539-555				i	
214_3						
587_3	217-226	278-287	318-327	332-342	351-360	377-386
685_1_						
54_3	316-325	329-345	355-372	387-396	416-425	438-448
54_4	1					ļ
54_5						1
54_6	396-407	427-436	514-531	541-550	569-578	612-622
328_1		;		Ţ	İ	

Table 4

30	

ORF	1	 Antigenic 	Regions	(cont)		1
	Region 18	Region 19	Region 20	Region 21	Region 22	_ Region 2
46_1		1	1			
63_4	485-500	513-525				
174_6	1					
206_16			1			
267_1	ŀ					
322_1	1	· 				
415_2						
214_3			!		<u> </u>	
587_3	396-405	426-442	459-470	485-494	505-514	531-562
685_1		İ			1	· ·-
54_3	455-462	472-491	517-536			<u> </u>
54_4		1	l		<u> </u>	
54_5						
54_6	639-648	673-681	703-715	723-732	749-760	772-788
328_1		i	!			<u> </u>

Table 4

_	ORF		Antigeni	c Regions	(cont)	4	
5		Region 24	Region 25	Region 26	Region 27	Region 28	Region 29
	46_1						
	63_4					1 1	
	174_6			<u> </u>		<u> </u>	
10	206_16				··	 	
10	267_1				!		
	322_1				<u> </u>		
	415_2					÷	<u></u>
	214_3		J		· 		. !
15	587_3	567-578	584-601	607-840	844-854	858-870	877-886
, 5	685_1		1			<u> </u>	
	54_3			_ :			
	54_4						
	54_5	1		1			
20	54_6	793-802	811-826	834-848	866-876	893-903	907-918
	328_1	E	ļ	1			

Table 4

5	

	ORF	Antigenic	Regions	(cont)
		Region 30	Region 31	1
	46_1			
30	63_4			
	174_6			
	206_16		:	1
	267_1			
	322_1		1	(1) (1) 4
35	415_2	-:		
	214_3		i	
	587_3	889-911	927-936	
	685_1			
	54_3			
40		· · · · · · · · · · · · · · · · · · ·	:	

925-944

951-997

54_4 54_5 54_6

328_1

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland
15	(E) COUNTRY: US (F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text
30	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/009,861 (B) FILING DATE: 05-JAN-1996</pre>
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5895 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

SASSAM VIEW CONTRACTOR

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

10		_		-			
10	TCCATTATGA	AGTCACAAGT	ACTATAAGCT	GCGATGTTAC	CAATGTTTTT	TAAAATCCCA	60
	GTAATAAAAT	CAAAAAATAA	GTTAAATAAT	GTATTCATTT	TAAGTCCTCC	TTAATAAAGa	120
15	aaataGGTAA	TAATGTAATA	GCTTCTATTA	TGATGCCTAA	TTGAATGAAT	TGGGCAAATG	180
	GCTCTTTGAT	GATAAGTGTG	ATAATGAAAA	GGGTTAAACT	AACAATAATC	GCATAATATT	240
	TTTTTCGTTT	AATAAGTCGC	ACAGGAATGG	GCTTCTTTTT	AGTTGCTGCA	GGAGCATATA	300
20	CTCACATTAC	ACCTAAAGAA	ATAACTGTTA	AAATAATCAT	AATTAAAAAG	TTAATATGAA	360
	AATTTACTAT	TACTAAAGGT	AAAAGTATAA	ATAGTATAAT	ACTTTCTACA	TAACACCAAA	420
	AAGAAGAAGG	TGCATGTGCa	CCATGTGCAT	GECTTCTTAT	TAAATAAAAT	GTTAAATTCG	480
25	TAATTAACGT	AAACAGAAAA	ATGTTTAAAA	TATAGGCAAT	AGTATACATA	ACAATTAATT	540
	TACCTATATT	TTTAGCTAAG	ACCTGCATCC	CTAATCGTAC	TTGCAAAAAT	TGAATATGAT	600
30	CTAAGTTATT	TCTCTTTTGA	AGATACGTGG	CAAACTGGTC	AATTTTATTA	TCAAAATAAT	660
	TCAATTTTAC	ACCACTCTCC	TCACTGTCAT	TATACGATTT	AGTACAATCT	TTTATCATTA	720
	TATTGCCTAA	CTGTAGGAAA	TAAATACTTA	ACTGTTAAAT	GTAATTTGTA	TTTAATATTT	780
35	TAACATAAAA	AAATTTACAG	TTAAGAATAA	AAAACGACTA	GTTAAGAAAA	ATTGGAAAAT	840
	AAATGCTTTT	AGCATGTTTT	AATATAACTA	GATCACAGAG	ATGTGATGGA	AAATAGTTGA	900
	TGAGŦTGTTT	AATTTTAAGA	ATTTTTATCT	TAATTAAGGA	AGGAGTGATT	TCAATGGCAC	960
40	AAGATATCAT	TTCAACAATC	GGTGACTTAG	TAAAATGGAT	TATCGACACA	GTGAACAAAT	1020
	TCACTAAAAA	ATAAGATGAA	тааттаатта	CTTTCATTGT	AAATTTGTTA	TCTTCGTATA	1080
45	GTACTAAAAG	TATGAGTTAT	TAAGCCATCC	CAACTTAATA	ACCATGTAAA	ATTAGCAAGT	1140
40	GAGTAACATT	TGCTAGTAGA	GTTAGTTTCC	TTGGACTCAG	TGCTATGTAT	TTTTCTTAAT	1200
	TATCATTACA	GATAATTATT	TCTAGCATGT	AAGCTATCGT	AAACAACATC	GATTTATCAT	1260
50	TATTTGATAA	ATAAAATTT	TTTCATAATT	AATAACATCC	CCAAAAATAG	ATTGAAAAAA	1320
	TE A CTGTAAA	AÇATTCCCTT	AATAATAAGT	ATGGTCGTGA	GCCCCTCCCA	AGCTCGCGGC	1380

- *1 °

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	ATTATAAAAA	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATACAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
10	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
15	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
25	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
20	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
30	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTCTTTA	GAAATTAGTA	2640
	TTTCTTATAC	ATGAGTTTTA	CTCATGTATT	CCTATTCTTA	AGTGCACATT	AGCAGCGGCT	2700
40	AATGTGTAAG	AACTACTACA	TAATGAATAA	CTAATGATTC	TTTATCATTT	CTGTCCCATT	2760
40	CCTAACAATA	TATTGATTAT	TTTTTTATTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGCAATAAGT	TTCCAACTTT	2880
45	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
	TTTGAGTTGA	CCATATTGCA	AAATTATCAT	AGTAGTTTGG	CATTTGTTCT	TGTAAACCAC	3060
50	TTACAACATC	TTGATCTTCA	TAAAACAAAA	TTGTACCGTA	TGAATGTTTG	AAGTTATCAA	3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
<i>E.E.</i>	TTGTGTTATC	CCAAAATTTA	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240
55							

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATTGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	CCAAATATAA	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3600
	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
20	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	CAAAATCCTA	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	ATTAATAAGT	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
10	TACAÃCAGCA	ATCGAATTAC	TTTAGATTCC	aATATTTCAA	TCCATTGAAA	TCAGAAAGGT	4560
40	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	AAAATAAAAA	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	#CCCC#CCC#	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980

AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	5220
ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
TCTTTAACTT	CTAATTCTAA	TTTTGTTGGA	TTTTTAATTT	TTAAATTAAT	TAAAATAATC	5460
GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
AATATATAA	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
ATATTTGTTT	ATAATTTATT	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
TGATAGTGCT	AAAGA					5895

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

5

10

15

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

60	CTACACGTAT	AGAACCGATT	AACATATATG	TTGGTTTAAT	CAAGGTACGA	TTTGAAAAAA
120	GTGAATCTTA	GATAAATACG	GTATATAACT	AAGCAAAACA	GCCAAAGTTG	TTCaGATACT
180	AGGCTATTAG	GATGCCCATG	AGGTGACCAA	CAGGGAAACA	CGTAAAGCAT	CACTTCTAAA
240	AAGACCAATA	TTTTTGACGA	TATGAAGTCA	CGCCAGATGA	ACTATGCGTA	ACCTTCAAGT
300	CAGCAATACT	CAAATGGCTC	TGTTGCTAGT	GGGAACGATT	AAATTAATTT	CCGATTATAC
360	ATGGTCAAAC	TTTAGAGCGA	TGACATTAAA	TAACACAAGG	TCATTAGACA	TGATACAGTC
420	GTGATAGCGA	AAAGATGATA	TGTAGAAACT	TGACACTTTA	AAAGGATTTA	AATCAAGTTT
480	CTCAAATTGA	GTCACAGCAA	AGGTGATAAA	AATTAGAGCA	AAACTGCCTA	AAAGGAAAAT
540	TAGTAAAAAC	GAGGCGAGAT	AAGATATACT	AACCACCTCC	CACTATACAC	ACCAGCTCAA

55

	AAAGCGTAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	660
_	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
5	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGaTG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	A GČĞČĀ GĀĀĀ	TAATATTTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	TTAATCTAAA	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAMAGA	CATAAATGAC	aATAAAAGGA	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	AATGAGAAGA	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
40	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	*****	דרבתהממיי	СЕТТАВАТТА	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280

	TATGTAGAAA	GCGCAgcTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	TAAAATATTA	2460
5	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
J	TCTCATGCTA	AAAACAATAA	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	CAAAAAAACT	TTATAAAATA	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
15	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
20	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
25	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
80	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAAATT	3480
35	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
10	GGAGCAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
15	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGAAA	AGTGTATCTA	AATGCACATC	3960
50	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	GGGCAAGTAA	CGCTTGGTCA	4080
5	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
5	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
5	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4560
	AATTAATTTT	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	CGCGCGCCAT	TTATAAAAGT	AGAAGCTACT	4 860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATCAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	ACTTGAAAAA	GAAAAGGTAA	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
1 0	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
45	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
		NOR NOR MANAGE	TOCACOTOCA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TTTTT	CAMCCONACAA	5000

	AAATATACAA AAGGAGAAAA ATTCATGAGC TTATTATCTA AAACGAGAGA GTTAAACACG	6060
_	TTACTTCAAA AACACAAAGG TATTGCGGTT GATTTTAAAG ATGTAGCACA AACGATTAGT	6120
5	AGCGTAACTG TAACAAATGT ATTTATTGTA TCGCGTCGAG GTAAAATTTT AGGATCGAGT	6180
	CTAAATGAAT TATTAAAAAG TCAAAGAATT ATTCAAATGT TGGAAGAAAG ACATATTCCA	6240
10	AGTGAATATA CAGAACGATT AATGGAAGTT AAACAAACAG AATCAAATAT TGATATCGAC	6300
	AATGTATTAA CAGTATTCCC ACCTGAAAAC AGAGAATTAT TCATAGATAG TCGTACAACT	6360
	ATCTTCCCAA TTTTAGGTGG AGGGGAAAGA TTAGGTACAT TAGTACTTGG TCNAGTACAT	6420
15	GATGATTTTA ATGAAAATGA TTTGGTACTA GGTGAATATG CTGCTACAGT TATTGGTATG	6480
	GAAATCTTAC GTGAGAAGCA TAGTGAAGTA GAAANAGAAG CGCGCGATAA AGCTGCTATT	6540
	ACAATGGCAA TTAATTCATT ATCTTATTCT GAAAAAGAAG CGATTGAACA TATCTTTGAA	6600
20	GAACTTGGCG GTACGGAAGG CCTATTAATC GCATCAAAAG TTGCAGATAG AGTTGGTATT	6660
	ACTAGATCTG TAATTGTAAA TGCACTACGT AAATTAGAAA GTGCTGGTGT AATTGAATCA	6720
25	CGTTCTTTAG GAATGAAAGG TACTTTCATT AAAGTTAAAA AAGAAAAATT CTTAGATGAA	6780
	TTAGAAAAA GTAAAT	6796
	(2) INFORMATION FOR SEQ ID NO: 3:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2073 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
40	ATCCTAAAAT ThAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCt GGACGATCAT	60
, •	kAAATTCCaA TGTAAATCCT GGTTTAAAGT TGATCTTTAA CCTTATTTAA AYCACCAATT	120
	GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA	180
45	TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT	240
	TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT	300
	GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT	360
50	GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA	420
	ATTTTATACA TATTTGTAAT AATCGATGGC TCGGAGCCAA GCTTTCCAGC TAACGTAATT	480
	TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA	540

55

	TCAAATATAA	TTGCCAATAA	GGCTGCTGGA	ATTGCACCTA	ATAATATCAA	CGATGCATTG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
10	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
15	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
?5	AATATCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTTTTTCA	TTTGTGGCAC	1860
10	TTGTGCAAtA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACKCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	CTTTAAAATA	1980
15	AATATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
	ACAACCTGAA	GGTCCAATTA	GCACAAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13321 base pairs
 - (B) TYPE: nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
10	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
70	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
15	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CATTAAATTT	TGCCACTGTT	660
25	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
25	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
30	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	CTCCAAATAT	1020
35	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTTAGC	1080
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	TACCÃAACTA ·	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
40	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
45	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTE	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
50	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680
55							

	TCCTACAGAC	GTCCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCTACAAT	1800
_	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	ТААААТАААА	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TTCCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCAT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	СТАТАТАТАА	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTTGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTITCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
		TEACTEAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420

	GTTTTTTGAC	CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	3600
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
10	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
70	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
25	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	CTAAAAATTA	4380
	CTTTCTTCTT	TATAAAAACA	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTTAAATTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	ATACTATTAA	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGCTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	ATAATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	CCTTCATTTT	5280

	CAGCTATACA	ACTCAGACCT	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGTGGTAAGT	5400
_	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
5	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTAAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	CTATACAAAA	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTTCTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATITICT	CTATCTAATC	6600
, 0	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	. w . e.s s entre	and a comme	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	7200
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	7260
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
10	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
15	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
20	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
25	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
30	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
35	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
40	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
40	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
45	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
50	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	AAATAAATAT	8820
55	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	8880
55							

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
5	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
5	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAAT	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
10	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
15	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	СТАТТТТААТ	9480
	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTÄĞĞ	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9960
	CTCAGTCAAC	TGTATACCTT	TIGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	AAATAATTTA	10140
40	TTATĂAAAAT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
,,	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
45	TGAAGAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
		سالاداساندا	בדב בבר בדד	≆ دادندنند∀سن	ATAAAAAGGC	CTCTTGAACT	10620

NIA 'AC IOO I

	TTACTGCAAT	TATTTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	ATATAAATAT	TTTTAATTAT	TTTAAAAAAT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCTGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	ТААТСАААТА	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
25	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
20	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
40	TGTŢĀĀTĀĀĀ	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
40	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
45	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
50	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
<i>55</i>	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480
33							

TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT	GCTTCAATGA	CATTCGGACT	12720
TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
AGAATCAGC m	Gaatcagtta	NACAA GCACC	ACmAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
A						13321

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8549 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

5

10

15

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

60	AGTAGCATTT	AATGAAAACA	TACTTATCTC	TTGAAAAAGC	AACTTTTATG	ATGTGTTGTA
120	ATTAAGTTTG	TTTAACTTGA	CTAATTGTTC	GCTAGTTTTT	TTAGTATACA	AATTAAATTAA
180	TTTTCGTTCA	TTGTCCTTCA	TTTGAATTGC	TGATCCATCG	AGAGGCAGAT	ACCGTATTAG
240	TGAGCTTGTG	AAGACGCGCA	CCATTTGATC	AACTGTTGTG	AACAACTTCA	AGCCATTACA
300	CGTTGTATAC	GATAATTCGT	ATGGCGAATA	TCATAATGTG	AAACATATCG	TGTTTAAAAT
360	TGTGTTTTCC	TTTAAACCTC	TTTTGGCATT	ATATCAACGG	AAACCTTGTC	AAACGTATAA
420	AAAAACACAA	GCCCCGAAAA	CCCTTTTTTC	AAATAATTTG	GCCCTTATTT	ACGCATGTTT
480	AGGGGTATAA	TGTTGATTGT	GGTGTGGTTT	ATTAATAGGT	a da concesa a	

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
_	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
5	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	TATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCTTG	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AAATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TTAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
	TACGATATCC	CACCAGATAA	AATAGATGaT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTAcACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	ATAACATAAA	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	CCTATAATTA	ATGTAGCAAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340

	CTGGCACTGG	TGGATTTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TTATATTTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
,,	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
	TATATTTACG	GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
23	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CCTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
40	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	רמיית מממרי	THE TANK THE TERM OF THE TERM	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080

	TGCGTTCTCA	GACTGTCTTC	TATTCTGTCG	AATTTTTCAA	ACATAGTCTT	ATCATTTTCT	4260
-	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	TAAATCCAAA	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	TCTTTATCTA	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	CTCTCCTTTA	ACCTCTTCTA	ATTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	ттаааааста	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTTTGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
20	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	AAAATTAATA	AAATAAATTG	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
10	TTAACAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5460
40	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	5640
	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
5.5	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940
5 5							

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kTTGATATTT	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	6300
70	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTTGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	СТАСАТАТАА	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATITIT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
25	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
25	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataààà	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTATATTTG	CAAACCTTtC	TgCTTCCGCA	7140
	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
	TCTCCTGTTT	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
40	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
45	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	ATADDTAKKT	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCCACCT	7680

ATTACTGCAT	TTGTAAgAGG	TGCAAGTTCT	GTCACAAATA	AAAATTCTTG	CTTATCAGGT	7860
TCAAAACGAT	ACTCGATATC	AAGAATTTCT	TGTTTGGTCT	TATTTAATTC	TCTTATAGTT	7920
TCCTCTTTAT	TAATTTGAGT	TTTGGTTTCC	CAATCGTCTA	AATGTTCTTT	TAATGTGTCA	7980
AAGGTTTCGC	CGTTTACATT	AACTCGAGCT	TGAACAATCT	CATTAGCACT	GTTATTACGT	8040
GGTGCCACAA	CAAGTGCGTT	AATTTGACTT	TGTAAAGATT	TGTTTACTGC	TGCTTGCGAT	8100
CTACCATTAT	AATAAATTTG	CTCAGCGAAG	TGTTGAATTG	TTTTAGCTyT	CTGATGCAAC	8160
TTAAACTCTG	TTGTCAAGCC	AAGCGCAAAT	TGCTCTATTC	TTTGTAAGTT	TTGTATTTCC	8220
TTAGCTCTAT	AATCTCGACC	TGCTAAAGCT	CCCAAATCCT	TTATTAAATA	CAAATTTTCC	8280
ATAATGCACC	TTCCTTTCTA	ATAAAATAGC	ACTGTACCAA	GTTTCCCACT	ATCGTCAACT	8340
GTTATTTTCC	ACAATTTACC	GTTTGGGGAT	TTCTGTACAA	TGCTATTTTG	AATAATTgcC	8400
TGCtTCGCCT	ATTTTTAAAT	TATCTAATTT	ATTTKTATCA	TTTACCGAAA	TGATACCGTC	8460
TTGAGGCAAT	CCATCAATAn	CACTACTGCC	TGCATAAGGT	ATCCCATTTA	TAGCTTTCCA	8520
ATGTGTAGCT	GGAAAGTACT	GTTTATCGT				8549

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

55

30

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

AGGCGTGTAG	TGACTTACGG	nTAGGAAACT	ATGTATCCGA	ATGATTTATT	GAGACCAAAA	60
AGGCATTAAA	GTCCATTGAA	ATATCnGGTA	GCGmGTTGGT	ACGTGGACGT	GGGGGCCCTA	120
GATGTATGAG	TCAACCATTA	TTCAGAGAGG	ACATTTAACG	TAATAAATTA	TAGAMACGAG	180
GGTGAAAATA	ATGACAGAAA	TTCAAAAACC	GTATGATTTA	AAAGGCAGAT	CATTATTAAA	240
AGAAAGTGAT	TTTACCAAAG	CAGAATTCGA	AGGACTTATT	GATTTTGCAA	TTACATTAAA	300
AGAGTATAAG	AAAAACGGTA	TTAAGCATCA	CTACTTATCT	GGAAAAAATA	TTGCACTACT	360
ATTCGAAAAG	AATTCGACGA	GAACGCGTGC	TGCGTTTACA	GTTGCGTCTA	TTGATTTAGG	420
TGCGCATCCA	GAATTTTTAG	GAAAAAATGA	TATTCAATTA	GGCAAAAAAG	AATCTGTAGA	480
GGATACTGCG	AAAGTATTAG	GTAGAATGTT	CGATGGTATT	GAATTCCGTG	GTTTTTCACA	540
ACAAGCTGTT	GAAGATTTAG	CGAAGTTCTC	TGGTGTACCG	GTGTGGAATG	GATTAACAGA	600

	TCTAGAAGGA	ATAAACTTAA	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rGAAAAaGCG	AGTCAaTATG	GTGGTYCAGT	840
	CATGATTACG	GATAATATTG	CAGATCCAGT	TGAAAaTwCm	GATGCTATAT	ATmCAGATGT	900
10	TTGGGTATCG	ATGGGTGAAG	AAAGTGAATT	TGAACACGTA	TTAATTTATT	AAAAGACTAT	960
	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
	AAATCTTCTT	TAATTGGACT	AGTTATAGGA	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
25	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
	TCAÇÃGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGTTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTTTTTC	TAGTAGAGCT	1980
	nAAAATGAGA	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
45	TATYTCTTAT	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	ramadadama	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
J	GCTCTTCTTG	TTTATACaAT	CGkTCmAAAG	rATWATCAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	tATCGTACTT	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
10	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2880
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
20	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	AATAGTGATA	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	AAGTAGATAA	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	AGTTGAAGAA	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGcGT	CACCACTACC	3240
	TCaATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
30	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
35	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGGaAACCAA	3600
	A						3601
40	(2) INFORM	ATION FOR SE	Q ID NO: 7:	:			
		EQUENCE CHAP (A) LENGTH: (B) TYPE: nu	573 base pa				

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

CGACACTATT	AAATGAATTA	GAGCACAATC	TAACAAATCA	AATTCATTTT	TCAAAAGATG	60
AACGACTCAC	ACATATCGCT	TTAAAGTTAT	TCGAAACAAC	CGATCCTGTT	TCAACAAAGC	120
AACTTGCGCA	AGATGTTAAT	GTTTCGCGTC	GGACAATTGC	AGATGATATT	AAAATGATTC	180

TTATTGGTGA	GGAAGATCAT	TATCGTAAAG	CGTATGCACA	CTTTATACAT	CAATATATGA	300
AACAAGCTGC	ACCTTTTATA	GAGGCGGATA	TCTTTAATTC	AGAATCAATC	GCATTGGTTC	360
GCCGTGCCAT	TATTAAGACA	TTAAATAGTG	AAAATTATCA	TTTAGTTCAG	TCGGCTATCG	420
ATGGCTTAAT	CTATCATATA	CTCATTGCCA	TTCAGCGTTT	AAATGAAAAT	TTTTCGTTCG	480
ATATACCTAT	CAATGAAATT	GATAAATGGC	GACATACTAA	TCAGTATGCn	ATTGCTTCAA	540
AAATGATAGA	AAACTTAGAA	CGCAGTGTAA	TGT			573

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1221 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20

25

30

35

40

45

50

5

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTC	CCGCC 60
AAATTTTCTT TTTCTTTATC AATCTGaTkG TAATTAACaC TTTCGaCTTC TGTAGG	AATT 120
CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTA	ATCC 180
TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCA	ATCA 240
ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTAT	TTCT 300
ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCT	TTGCT 360
ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTT	CCCCA 420
CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAAC	CAACT 480
TGACTACCCC AACTATTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCC	CACTA 540
GGCAGTTCAA TCATTAGAAA ACCTTTTTTC ATATAAAATC TAAGTCCATG TGTATG	SATGC 600
GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATT	CAACT 660
ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTC	CAATG 720
CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAA	AAGCT 780
AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTAC	CCGGT 840
ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATAC	CATCT 900
ARACGOCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAA	AATCA 960

AGATCTCTTG CTATTTCTAA TTCAGTATCT GAAATATAAT GCTTTGTTAA ATTCTGAA	GT 1140
TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTC	TT 1200
ACCCGTTCAT CACTGCACAT C	1221
(2) INFORMATION FOR SEQ ID NO: 9:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAATAC	AT 60
AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAA	CC 120
ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAA	TG 180
ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTT	TT 240
CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATT	TT 300
TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCT	GA 360
TTAAAATGTT AGGTGAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGAT.	AA 420
CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGA	AA 480
TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTT	T T 540
TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATT	CG 600
AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTG	CG 660
TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTC	TA 720
TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGT	GT 780
AAATAATTTT ATTGGAAATA CTTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAAT	TA 840
TAAATTAATG TAATCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGG	TC 900
TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATA	TT 960
GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAATCATTT AAAAATTCAT AAATTTCA	
AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCT	

(2) INFORMATION FOR SEQ ID NO: 10:

CAATAAGAAA

5	(A) LENGTH: 904 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
20	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTTTGATG TTTTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
	AAATTTAAAA ATAACGCTTA ATGATTTACG CnwGGgTAAA GAGCGTCAAG AGCATTACCA	840
35	TTATGAAGAA GGGAtCaAAG rGTTgTTAGT atGTCCAaTG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) INFORMATION FOR SEQ ID NO: 11:	
4 5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTICIAAA TCAAGATCIG TITTACGATA ACCATICAAA CCTIGACGIT CATCITCIIC	60
	and the property of the companies of the	٠ ٢٠ ١

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	СТАТААТТАА	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
0.5	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	TAATTCTAAA	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
30	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	GaAACTTTTG	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATÁCATAA	TTTCCTAGTT	AAAACTAAAA	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
40	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
45	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
	CATTTTTCTT	ACTTGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
	GCTTCTCATT	ACCTTATGAA	GGTGGCGATA	TTTCTTTTGA	TAATCATTGG	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	2100
	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2220
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	2280
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT	2520
	ATTTGTGCGT	TTTTATTGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TTTCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	AATAAAAGTG	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
20	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TAAAATAATT	2760
25	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
25	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
35	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3180
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAATATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
40	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
45	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	TTTATTTAAA	AGAAGGTTCG	CAAAAGTTAA	3480
	TGATTATTAA	TAGAGGmCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AAATTTTAAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
10	TTATcGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
15	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
20	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgCCAT	4 500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCaAT	4560
25	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAAATG	4620
25	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
30	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
35	TTAAATTAAC	AACACATGAT	GAATCGACAC	GTTATCCGAA	TATTTTTATG	ATTGGTGCAA	4980
	CAGTTGAAAA	TGATAATGCC	AAATTATGCT	ATATCTATAA	ATTTAGAGCG	CGATTTGCAG	5040
	TACTTGCACA	TCTTTTAACA	CAGCGGGAAG	GCTTACCAGC	TAAACAAGAT	GTCATTGAAA	5100
40	ATTATCAAAA	AAATCAAATG	TATTTAGATG	ATTATTCATG	TTGTGAAGTG	TCATGCACAT	5160
	GTTAGAAGTG	AAATATGATA	TGAGAACTGG	GCATTATACG	CCCATACCTA	ATGAACCTCA	5220
45	TTATTTGGTT	ATTAGTCATG	CGGATAAACT	TACCGCAACA	GAAAAAGCGA	AATTAAGATT	5280
	ATTAATCATA	AAACAGAAAT	TAGATATTTC	ATTGGCAGAA	AGTGTAGTTT	CTTcGCCTAT	5340
	AGCGAGTGAA	CATGTGATAG	AACAATTGAC	ACTATTTCAA	CATGAGCGAC	GACATTTAAG	5400
50	ACCTAAAATA	AGTGCGACAT	TTTTAGCCTG	GTTGTTGATA	TTTTTAATGT	TTGCATTGCC	5460
	AATCGGTATC	GCTTATCAAT	TTTCAGATTG	GTTTCAAAAT	CAGTATGTGT	CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GAAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
25	TCGGTCACAA	TGACGATGCT	TTTGAAACAT	TTAGGTGGTC	AGTCAGCACT	AAAATTAATT	6420
23	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAA CG	ACTGTCTTAA	ATCATTTGCT	6660
	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
40	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
4 5	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
	AACAACGAGC	AAACTATTGA	AAGATTTAGA	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
5	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TTGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
20	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TTTAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
0.5	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	AGTTCGGCAA	TGTCCTGTGC	8220
25	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA	8340
30	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
40	AATTATTTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
45	TTGGATAACG	ATCAAAAATA	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
, •	TGTGCCAACC	ATAACCAAAA	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTTTC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCGCGCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
5	CTTGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
25	CGTACGATAC	CGAATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
25	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAĀĀ	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	СТАААТАААТ	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TTGAAtTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	AAAAATAATA	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	AGTGATAAAA	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
50	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920

ACCTTATCGG TTCAAATGAT TGCTGAAAAA CTGAATGTCA CTACAGAAGA TGTGGAAAAA 11100
GTATTAGCTA TGACAGCGCC ACTAGGCATT TTTAGTCATC AATTACAACG ATTTATTCAT 11160
TTAGTATGGG ATGTCAGAGA TGTAATAAAC GACAATATTA AAGGAAATGG ACAAACACCA 11220
GAACCATATA CGTATTTAAA AGGTGAAAAA GAGGACTATT GGTTTTTAAG A 11271

10

5

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6261 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15

20

25

30

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

CAACCCGTTC AGAACAAAT AAAAACCGTA CAATTTTATC ATCTTAATGA TTATTGTACG 60 GAAAAACTTT TTTACATCAT ATCTGCATGT GCATAATCGA TATCGGTAAA TTTATTATAT 120 TGTTTCATAA AATGTAACTT AACTGTGCCT GTTGGACCGT TACGTTGCTT AGCAATGATA 180 ATTTCAATTT CACCGTTTTC ATCATTCGTT TGTGGCTCGA AACCACCATC ATCGTCATCA 240 TCTTCATCGC CGCCACGGTT ATAGTAATCA TCACGGTATA AGAATGCAAC GATATCGGCA 300 TCTTGCTCAA TCGAACCAGA TTCACGAATA TCACTCATCA TTGGACGTTT ATCTTGTCGT 360 TGTTCAACAC CACGAGATAA CTGACTTAAT GCGATAACTG GACATTTTAA TTCACGGGCT 420 AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT 480 GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT 540 TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA 600 ATAAÂAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC 660 TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA 720 CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT 780 TCATGCGTTG CAACTITTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA 840 CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT 900 CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT 960 TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080 TTATATCCAT CATTGGCAAT ACTATCTGCA GTTTGAATCA ATCTACGTTT TAATGCATGC 1140

55

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	1260
5	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	1320
	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	1380
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	1440
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	1500
	ACTTTATTGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	1560
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	1620
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	1680
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGaTACTTCA	ACTTCAATGT	TTGATAACGT	1740
	TTCTTTTAAT	GCTTTAgCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	1800
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTTCAA	1860
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
25	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
25	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
30	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
35	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
40	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
45	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAAAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
50	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
5	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	3180
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	AAAAATATAT	TATACTCAGT	TGCCCATCGA	3300
	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
	GTAATCTCAT	CGTAGTTATC	TAAAAAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
15	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
20	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
25	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
30	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC	TGCATTCGGC	AAACCTTTCG	4080
35	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
	TGAŢAACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
40	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
45	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTnArCTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAAGTGC	ACTAATCCCG	AAAGATTGTA	TTGATTTATT	CCATAAAACG	ATACCTGGTA	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTTTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAATAA	TAACTTTCAT	GTTTTATAAG	4980
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	5040
	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
10	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	AAAATATATA	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
15	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	AAAATTTTTA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
30	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATATT	5760
30	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
35	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
40	GTnATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	AAATTTAAAG	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
4 5	GGTTGCTGAA	GTATCACAGG	G				6261

(2) INFORMATION FOR SEQ ID NO: 13:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1222 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	ATGCGATTAA CTCTGGAAAT ATCTTTTCCA TATTTACGTn TTAAATTATT CAGCAAATTC	60
5	ATACGAGATT CATACTCGTT YAACACTTGT TCGTCGAATT CTGTATTAGC CATTTCATCA	120
	TATAACTCAT GTTTTGCATC TTCTAAAATG TAGTAAAATT GATCAATATC TTCTTTTAAT	180
	TTGTCATATT TGTTTGGAAC TATATCGTTT ATTGTTAACA AATGGTTGCT TAGTTCATAT	240
10	AAACGATCAG TGATAGCATT TTCATCCGTT AATGTCATAT ATGCGTTATT AAGCGCTAAG	300
	CTTAATTTTT CAGAGTTTTG AATGCGTTTA ATATCTATTT CAAGTTGCTC TATTTCGCCT	360
15	TCTTTTAGAT GTGCTTCAGA CAATTCTTCT AATTGGAATT TCATTAAATC TAAACGCTGT	420
	AGCAATGCTT GGTCTGCTGA TTCTAAATCT TCTAACTCTT GCTTTTTGGC TTTATAATTT	480
	TGAAAAGTTT GGTGATATTT ATCCAACAAA TCTTGATAAC GTGATTCTGC GTAATTATCC	540
20	AATAATGTTA AATGGTATTT TTGTTTCAAC AAAGACTGCG TTTCATGTTG GCCATGAATA	600
	TCTAATAATT CTTGCATAAC TTTTCGTAAA TCTTGTAAAG TAACTGTTTG ATTATTAATT	660
	TTACAAAGAC TTTTACCAGA GCTGAAAATT TCCCGTTTAA CTAATAAAAA ATCTTCATCT	720
25	ACATCAATAT CCATATTTTT CAATATATGT ATAGCATCTT TACTCTCGTC AATATCAAAT	780
	ATACCTTCGA TGACAGCCTT TTTTTCACCA TGTCTTACAA AATCAGATGA AGCTCTCATT	840
22	CCAATTAATT GTCCAATTGC ATCTATAATA ATTGACTTAC CTGAACCCGT TTCACCACTT	900
30	AAAACAGTTA AACCATCAGA AAATTGAATT TCTAATTCTT CAATAATAGC AAATTGCTTG	960
	ATTGATAAGG TTTGTAACAT AAACTCATCG CATCCTTATA ACAAATTGAA AATTCTTGAC	1020
35	TTGATTTCAT CACTTGCCTC TTTGCTTCGA CAAATAATTA AACAAGTATC ATCACCACAA	1080
	ATTGTGCCTA GTACTTCTTC CCAATTGATT TGGTCTAATA TAGCTCCAAT AGATTGTGCA	1140
	TTACEAGGTA TGTTTTTAGA ACAAGTAAAT TATCAGTACC ATCTATATTA ACAAAGGAAT	1200
40	CCATTAAATA ACGTCCCAAT TT	1222
	(2) INFORMATION FOR SEQ ID NO: 14:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTTGTTATTA TTACnTnAAA TAATTGCATT ACTTTTTACT GATGGTACAA CTTTCCATCC 60

TTCTTTTGGC	ACGACATAAT	TGTCTTTATC	TTGAACTAAA	TATCCGCCAG	ATACTGAAAC	180
AAACTCTTCT	TCGTTACTGT	CTATAGTCAT	ATCAATTTCT	AATAATCTTA	CATTCTTCTT	240
TTGTTTTAAA	ATATCTAATG	CTTCATCTGT	AAATTTTGGT	GCAATAATGA	CTTCCAAAAA	300
GATACTATGC	AATTGCTCTG	CTAACTCAGG	TGTTACAGCT	CGGTTTAATG	CAACAATTCC	360
ACCAAATATT	GATTGACTAT	CCGCTTCATA	CGCATGTTGA	AATGCTTGTT	CTATCGTGTC	420
ACCGATACCA	ACACCACATG	GATTCATGTG	TTTAACCGCA	ACTGTAGCAG	GTGTATCAAA	480
CTTTTTAACT	AAAGCTAGTG	TAGCATCTGC	ATCTTTAATA	TTGTTATAGC	TTAATTGTTT	540
CCCATGTAAT	TGTTTAGCGC	CTGCAATCGT	GTGCTTAGCA	TTCGAAGTTC	TCACAAAATA	600
CGCTGATTGT	TGTGGATTTT	CTCCATATCT	TAAAGTTTCT	TTATCCCCTT	TAAAGAAACG	660
TACAATCGCT	TCATCATATT	CTGCAGTATG	CTCAAAAACT	TTAATCATTA	ATGATTGTCT	720
ATATGACTCA	TCTAACGAAT	CGTTTCTTAA	TCGCGTCAAT	ACTTCTTGAT	AATCTGCCGG	780
ATGTACAATT	GTTGTTACAT	GTTTATAGTT	TTTAGCTGCA	GCACGTAACA	TTGTTGGACC	840
ACCAATATCA	ATATTTTCAA	TTGCTTCGTC	CATCGTCACA	TCAGGGTTTG	CAACAGTTTG	900
TTGGAATGGA	татаааттаа	CTACTACCAT	ATCAATTAAA	TCTATATGTT	GTTCTGATAA	960
TTCATTTAAA	TGCTGCGGTT	TATTTCGATC	AGCTAAAATG	CCACCATGAA	CAGCCGGATG	1020
T						1021
(2) INFORMA	ATION FOR SE	EQ ID NO: 15	:			
	(A) LENGTH: (B) TYPE: nu	ACTERISTICS 3759 base p icleic acid DNESS: doubl ': linear	pairs			
5						
(xi) 5	SEQUENCE DES	SCRIPTION: S	SEQ ID NO: 1	.5:		
TCATTCACTC	CTAAATTGTT	ATTACACTAT	TACACATAGC	TAATCATCAA	TGTGAAATCA	60
CCTTCAAAGA	CACTATCCAA	ATCTTCAGAA	GTCAAAATAA	AGTTTGTACC	AGTAGTCAGT	120
TET CINN NIN TOTAL		* * ** C * **********	CCTTCGCCTT	CCAACACTGT	AACTAAACAG	180
TIGAMAATTI	CACCATCGAC	AATCATTIGC	cciicoccii	ceruiere.		
					CAATGTAAAG	240
AACTCTCTAG	GCTTCATATA	ATTTAACGTG	CCAGAAATTT	CCCATTTAAC		240

	MANANCAGE.	ATTCYCCAGG	KITIACCITA	ACACATCYAA	grateGaete	CAICGIICCG	540
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	600
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCgTTTTCA	660
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	720
10	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	780
U	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	840
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	900
5	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	960
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	1020
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	1080
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	1140
	CACTTAAATT	TACAGTACTT	TAACATTTTC	AAAAATTTAT	AGCATAGAGA	TTATATCTCT	1200
	CTTACATTTG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAAACAA	1260
?5	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	1320
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA	AGTAACCCGC	1380
20	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	1440
30	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	1500
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	1560
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	1620
	AATTGTATAA	TTCAAACCTG	nAACGTCTTA	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	1680
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	1740
10	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	1800
	CTAAATCGAC	AATAATTGTT	TTATCTGCAC	CCGTGTTCCC	TCCAGAACCT	ACTGAAAAGA	1860
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	1920
15	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	1980
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	2040
50	CGCCATTAGC	ACCTATAACC	AAAATATTCA	TTTACAACAC	TCTCCTATKT	ATTATTCTCT	2100
	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	CTATAAAAAT	CAATTGACAT	2160
	ACTACTGGGA	ACGTATTAAA	TTAATATATG	AACAAATATT	CATATGAAAG	GATTGTCATA	2220

tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TTGTTATCAG	TCAGCGAAgC	2340
AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
ATATGTTTAT	CGAAATCATC	GGCGGTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TTTATTTATG	2760
CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
CGTTATTTAA	CGGTGTAACG	CTTTTTGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
ATTTAAATAT	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
CCATTACTGC	AGCTAKTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
GTATTTTAGT	TTCCGTTATT	AAAAATTTTA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
ACATITIAAT	GGaAGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
ATTCACATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
TTTGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
TCATATTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	ATTAATTTTT	3720
ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT			3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13086 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	60
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTTACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
10	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	240
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTC	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTCCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	AAAGGTTAGA	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
25	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	mAAAGACAAA	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
35	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTGAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
40	aACCACATAC	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	ATTGAAATAA	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
45	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAaGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATGAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	ССТААААСАА	ттаатааааа	AATACATGAT	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	AAGAAGATGA	CGAAAAAAGA	1680

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	1800
	AGTAAATGAA	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	1860
5	TTGATATCGA	ACTACCTAAA	Aataaattaa	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	1920
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	1980
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAA TTG	2040
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	2100
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	2160
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	2220
	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	2280
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	2340
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	2400
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	2460
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	2520
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	2580
	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	2640
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	2700
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	2760
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	2820
	TAACAGAACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2880
35	CATTTACACA	ACGTCAAGGT	GGTACTAGAA	AACGAACAAT	GGTTTTCGAG	GGTGTAGTTC	2940
	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
40	AATATATGAC	TGAACTACCT	TGCGAAACTT	GTCATGGAAA	GCGATTGAGT	CGTGAAGCkT	3060
	TATCTGTTTA	TGTAGGTGGT	TTAAATATTG	GTGAAGTAGT	CGAATATTCA	ATCAGTCAAG	3120
	CGCTGAACTA	TTATAAAAAC	ATTGATTTGT	CAGAACAAGA	TCAAGCGATT	GCAAATCAAA	3180
45	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAA	TGTGGGACTT	GAATATTTAA	3240
	CGTTAAACAG	AGCTTCAGGT	ACACTTTCAG	GTGGTGAAGC	ACAACGTATT	CGATTAGCAA	3300
	CGCAAATTGG	GTCGCGTTTG	ACTGGTGTCT	TATATGTATT	AGATGAGCCA	TCAATTGGAC	3360
50	TGCATCAAAG	AGATAATGAT	CGATTAATTA	ATACACTTAA	AGAAATGAGA	GATTTAGGAA	3420
	TAATTTAAT	TGTAGTTGAA	CACGATGATG	ATACAATGCG	TGCGGCTGAT	TACTTAGTGG	3480

	AGGTAATGAA	AGATAAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	3600
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	3660
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	3720
	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	3780
	AAAAAATTAA	TAAATCTAAA	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	3840
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	3900
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	3960
15	CTAAAATTCG	AGGATATCAA	AAAGGCCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	4020
	AAgcTTGTAA	AGGTGACGGT	ATTATTAAAA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	4080
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	4140
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTTTTTG	4200
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	4260
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaACTTG	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
35	TTTATCCTTC	GCTTCTTTTT	ATTAATTTAG	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGÃATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
40	GGGACAGAAA	TGATAAAGAA	TCACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGaAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
45	GAATTTCTTT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	TAAAATAATA	ACAATAATGA	ACAATTAATA	5220
	TTTATTTTAG	CTTTTCAATG	TAGATTGGTG	TTATATTTT	GATATGATAA	GAAGAGATGT	5280

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	5400
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	5460
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	5520
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	5580
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	5640
10	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	5700
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	5760
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	5820
,5	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5880
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	5940
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	AAATATTAAT	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	AGTGAAATTA	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AATTTAA	6600
40	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
40	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
45	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	TTTAAAATTA	GGAGAAACAT	TCTTTTTATA	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50	TTGCACAATT	AGTATCAATT	CTTTTAATTT	TAATAAGTAT	AAGTTTAATT	GTATATAGAA	7020
	GGATTAAGTA	TAATCCACCG	TTGTATAGCA	AAGTTGGGGC	GCTTCCATGG	CCAACAAAAA	7080

	TIMIGGGIG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	720
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	АТАТАТАТАА	ACAACTTTTA	726
5	AATATTAATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTAC	732
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	738
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	750
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	AAAAATATAT	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	ACTTTGAAAA	AGTGTTAGAA	TTGTCACCTG	ATGATCTGGA	7740
?0	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	ATTGAAGTTA	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
?5	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	GATTAAAAGA	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	ACGGCTAAAG	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
35	AAAATATTTA	AAAATATTAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGTATTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTT	8400
10	ATATAAAAAA	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATAATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
15	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	AAATGATGTA	ATGGTTGCAT	GGATTAATCA	AGGTGAACTC	ATAATTGCTG	AAAAAGTAGA	8880

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATAA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	9180
	TTTAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
10	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
4.5	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
15	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAACA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATIT	TACAAGATAG	9660
	AGCATTCAAA	AATGATAAAA	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
25	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
30	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TTGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
35	TTTTAATAGT	GTCATCACAĞ	CGTTAAAATA	ATGTCTTACT	TTTAAATTAA	AGCAAATTAT	10140
	ATAGAAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
10	TATGTTATAT	TAAACTTATA	ACTITATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
40	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
45	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
50	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCAACTCGC	ATTGCCTGTA	GAATTTCTTT	TCGAAATTCT	CTGTGTTGGG	GCCCACACCC	10680

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	10800
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10980
10	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTTAG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
35	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
00	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAATAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGTTATGGC	TAGGGGATTA	12000
40	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
45	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC	ATGCCATTAA	AGCATTAAGT	AAAATTTTAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	ATATTCCTAA	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	CAATGGAAGA	AGCAATCGAT	GCTTTAAGGG	AAGCAGATTT	AATCGTTCTT	12480

GCGTTAATTC	ATTCTGATGC	GCCTAAGCTA	TATGTTTCTA	ATGTGATGAC	GCAACCTGGG	12600
GAAACAGATG	GTTATAGCGT	GAAAGATYAT	ATCGATGCGA	TTCATAGACA	AGCTGGACAA	12660
CCGTTTATTG	ATTATGTCAT	TTGTAGTACA	CAAACTTTCA	ATGCTCAAGT	TTTGAAAAAA	12720
TATGAAGAAA	AACATTCTAA	ACCAGTTGAA	GTTAATAAGG	CTGAACTTGA	AAAAGAAAGC	12780
ATAAATGTAA	AAACATCTTC	AAATTTAGTT	GAAATTTCTG	AAAATCATTT	AGTAAGACAT	12840
AATACTAAAG	TGTTATCGAC	AATGATTTAT	GACATAGCTT	TAGAATTAAT	TAGTACTATT	12900
CCTTTCGTAC	CAAGTGATAA	ACGTHAATAA	TATAGAACGT	AATCATATTA	TGATATGATA	12960
ATAGAGCTGT	GAAAAAAATG	AAnATAGACA	GTGGTTCTAA	GGTGAATCAT	GTTTTAAATA	13020
AGAAAGGAAT	GACTGTACGA	TGAGCTTTGC	ATCAGAAATG	AAAAATGAAT	TAACTAGAAT	13080
AGACGT						13086

(2) INFORMATION FOR SEQ ID NO: 17:

5

10

15

20

25

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

60	TTATTTTAGC	CACCGGCCTT	TCTGTGAAAT	GACAACTTCA	GAAAATAGCC	CATTAGTCAT
120	TCTTTTTACA	GAGAAAGTGA	TGATCATACA	CGATTTTAAT	TCTGATTTTA	TAACTTTATT
180	AATGTTTTCT	AATAAGACAA	ATTTGATGAA	TATATTGGAC	ACTCATGATC	ATTTCTAAAA
240	TAATTCGCCT	TCCAAATCGC	TCTTCTTTAA	GAATGAATCA	CTTGTTTTGG	GTTAGCTTCT
300	AGTATTCCTT	AAAAGCTCAT	ATATATTCGT	AAATGTTTGT	TATCATCTTT	AATĢĒTGTTT
360	AATTAAATGT	AAGAAAACAC	GAAAGCTTTC	ATCCTACCAC	ACTTATATAA	CTCTCAATTT
420	AGGTCAATTA	TCTGCCAATT	TCTTTTAATG	GGTTGTGCAC	AACTTTTTAA	CTATTTAGTG
480	CGTTTTTGAA	ACTCACACAC	CAGTTCATAT	ACTCTATTTT	TGTACAATTA	ATCATCACAA
540	TACAATAGAT	CTGGCACCAA	GCAAAAAAGC	TAGATAAAAC	ACTTCTCATT	CAACACATTA
600	CGATTGCACC	GGTTTTACTT	TTTAGCGTAT	TATAAATTTA	GAGTCTACTA	GCCAGACTAA
660	CTAAAGGCTT	TATTGTGGCT	ATAATCAATA	CATGCTTATA	TCATGAACAC	TTCATTTTCA
720	CGTGTATATT	AAAACAGGTG	AGCTAACATT	CTGCTTTTTC	ATAATGTCTG	TCTGCCACGT
780	CCATACCGTG	CGTAAATTTT	ATCAACTACA	TAGCTGATGC	STACGTGGCA	د د د د سستان د د د د د د د د د د د د د د د د د د د

	ACTACAAGAT	GGGTGTAATG	CTGTTTCACC	ATCTCTACGA	ACCCAATCAA	GAATTTCTTC	900			
	GTCTGTTTGC	ACTTCTGGTC	CTGGTGAAAT	TTCTCCACCA	TTGAATGGAT	CCATTGCTTT	960			
	TTGAGATAAG	ATATTTCTTG	CTACACGAAT	TGCTTCTACC	CATTCTTTTT	TATCTTCTTC	1020			
	TGTTGATAAA	TAATTAAAGC	GGATACTTGG	TTTTTCGAAT	GGATCTTTAG	ATTTGATTTT	1080			
	CAAGCTACCA	CGAGAGTTTG	AATACATTGG	TCCTACGTGA	ACTTGATAAC	CATGTGCGAC	1140			
	CGCTGCCTTT	TGACCATCAT	ATCTTACAGC	TATTGGTAAG	AAATGGAACA	TTAAGTTAGG	1200			
	ATAAtCAACT	TCGTTATTTG	AACGTACAAA	TCCGCCACCT	TCAAAATGGT	TAGATGCTGC	1260			
	TGCACCTGTA	CGTGTGAAAA	TCCATTGTAA	ACCAATAAAT	GGcATGCGCT	TGALATCTAA	1320			
	GCTTGGCtGt	AATGATACAG	GTTCCTTACA				1350			
(2) INFORMATION FOR SEQ ID NO: 18:										
	(i) SEQUENCE CHARACTERISTICS:									

(A) LENGTH: 1376 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

30

35

40

45

50

5

10

15

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TAATGCTATT GGCAACACCA TATATGAAAn CTCCAAACGA TCCTAAACCG ACTATAGATT 60 CACCAAATTT NACAATCCAT GAATAAAGTA GTGGCCATAA GAATAACAAT ATGACAACTA 120 AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG TTTACCACTA AAAAATGATA 180 ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC ATAAGCTGCT ATTAAACCTA 240 TTACAATACC AACAAAGACA TTGCCATTAT TCATCTTTTC AAAAGCTGAA TTTATTTCCG 300 Argetticat tectaataaa ggegetaatt teattggtga taatacaact gtaactaaaa 360 AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT TTTCTTTGCC ATTCCTATAG 420 CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CGTAGTACCT ACCGTAGTAA 480 AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CGTATTACCA ATTCCGGCAA 540 TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CGAACGCCCT AAATTTTGGA 600 AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AGAAATATAA AGATTACTAA 660 TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC CTAGGCTTAC TAACCAGCTA 720 780 TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT CATGCAATTC TTGTTGTAAC 840 TTTGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TACGCTCGTT TCGTTTTAAA

AAAGACCGTG	AATCTTAGTA	GGACCAACAT	AAGCAACAGG	TAATATTGGT	GACTTACTTA	960
ACATTGCAAT	TGTTGAAGCA	CCaCGTTTCA	AAGGTGCACC	TTCTTGCGAT	GTGCGAGAAC	1020
CTGTTGGGAA	GATACCAACT	GTCTTATTAT	CTTTCAACAA	ATTGATTGGG	CGTTTTAAAG	1080
TACTAGGTCC	TGGATTTTCA	CGATCTACAG	GAAATGCATT	TAAAGACGTT	AAAAATTTAC	1140
CAATCCATTT	ATTTTTGAAT	AATTCTTTTT	TAGCCATATA	ATGAATTTGA	TTAGGATATA	1200
ATGCCATACC	TAGCATAATG	ACTTCGTTAT	AACTTTCATG	CGTACAAGTT	ACGACATATT	1260
TACTATCCTT	AGGAATATTA	TCTTTACCGA	TTACGTATAA	TGATTTTGAC	ATTTTAACTA	1320
AAATGAAATT	CAAAATCTTA	CTAATCACTG	AATACATTGT	GCCACCTACT	TAACTT	1376
(2) INFORMA	ATION FOR SE	EO ID NO: 19	9 :			

(2) INFORMATION FOR SEQ ID NO: 19:

5

10

15

20

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7363 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19: 25

TTGTCATACC	AATATTTTGT	AAAATATGGA	ACACAAGTAA	AGTGACGAAA	CCAACGATAA	60
AGATTTTGTT	AAATTGATCT	TCAATTTTCG	CAGCTAATCT	TATTAGATGG	AAGATTAAAA	120
ATAAAAATAT	TAAGATCAAT	ATGACAGAAC	CGATAAAGCC	AAGTTCCTCT	CCAATCACTG	180
AAAAGATAAA	GTCAGTATGA	TTTTCAGGTA	TATAAACTTC	ACCGTGATTG	TATCCTTTAC	240
CTAGTAACTG	TCCAGAACCG	ATAGCTTTAA	GTGATTCAGT	TAAATGaTAG	CCATCACCAC	300
TACTATATGT	ATAGGGGTCA	AGCCATGAAT	TGATTCGTCC	CATTTGATAC	AGTTGGaCAC	360
CTAATAAATT	TTCAATTAAT	GCGGGTGCAT	ATAGAATACC	TAAAATGACT	GTCATTGCAC	420
CAACAATACC	TGTAATAAAG	ATAGGTGCTA	AGATACGCCA	TGTTATACCA	CTTACTAACA	480
TCACACCTGC	AATAATAGCA	GCTAATACTA	ATGTAGTTCC	TAGGTCATTT	TGCAGTAATA	540
TTAAAATACT	TGGTACTAAC	GAGACACCAA	TAATTTTGAA	AAATAATAAC	AAATCACTTT	600
GGAATGATTT	ATTGAATGTG	AATTGATTAT	GTCTAGAAAC	GACACGCGCT	AATGCTAAAA	660
TTAAAATAAT	TTTCATGAAT	TCAGATGGCT	GAATACTGAT	AGGGCCAAAC	GTGTACCAAC	720
TTTTGGCACC	ATTGATAATA	GGTGTAATAG	GTGACTCAGG	AATAACGAGC	AAGCCTATTA	780
ATAATAGACA	GATTAAGAAA	TACAATAAAT	ATGTATAATG	TTTAATCTTT	TTAGGTGAAA	840
TAAACATGAT	GATACCTGCA	AAAATTGCAC	CTAAAATGTA	ATAAAAAATT	TGTCTGATAC	900

	TIOCIAMAC	AGCIAIAGIG	GCIACIAAIA	CCCAGTCTAC	TTTGCGAAnC	aATGCTTATC	1020
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	1080
5	TCAATTTTAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	1140
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	1200
	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	1260
0	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	ATATTAATTT	1320
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	1380
5	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	1440
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	1500
	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	1560
0	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	1620
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	1680
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	ATGTAGGAAA	TGGTGTATTG	TCAGCTGCAA	1740
5	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	1800
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	1860
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	1920
0	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	1980
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	2040
	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	2100
5	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	2160
	ACGAĀGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	2220
0	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	2280
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	2340
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	2400
5	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	2460
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	2520
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	2580
0	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	2640
	TGGGGCTGCT	TTTTATCAAA	GAGGGACACC	TATAGATGAA	AATGTAAGCG	GGCCTATTAT	2700

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	2820
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	2880
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	2940
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	3000
	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	3060
10	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATATATGA	3120
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	3180
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TTGTTCTGTT	GATGATAGAG	ATACTACAGG	3240
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	3300
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	3360
20	AATCTATCAA	AATTTAAAAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	3420
	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	3480
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	3540
25	AGAATTAGGT	GAAAATAGCA	AAGAAATGCA	TATCGGTGTA	GGTAATTATT	TAGAAGAAAA	3600
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	3660
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	3720
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	AGTTAAAGGA	TCACGTGGTA	TGAAATTAGA	3780
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	CTTATAAAAA	3840
	TGATTTGAAT	TAATACTAAA	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	3900
35	TTGCCTTTTT	CTTTTTATGT	TAAATCTATA	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	3960
	GTAÇÃCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	4020
40	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	4080
7.0	ATACGTATTT	TATAAAAAAT	TTTTTATAAT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	4140
	СТТАТСТААТ	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	4200
45	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	4260
	AAATATTAAT	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	4320
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	4380
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	4440
	AATTGATATC	CTTGGGCAAG	CTCAAACCGG	TACAGGTAAA	ACAGGAGCAT	TCGGTATTCC	4500

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAAGG	4680
5	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
10	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
10	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ATTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	AGAAATTTGA	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	AAGCTGAAGG	TTTACATGGT	GATATTACAC	AAGCGAAACg	5160
20	TTtAGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCAAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATACAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAy	TCGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
30	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
35	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAAGT	5760
	ACAĀAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
40	ACATTTGCTG	ACCATCAAAA	ATAATTTATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aAAGTaCTAA	CGTTTTAAAG	5940
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
45	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	TTTTAAATTA	AGAATAATCG	6060
	AACATAAATA	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	ATAAAAAACA	ATAGGGCTTT	6120
	TTGctGACGC	TAGTGCGCGA	TAAATAATAA	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	6180
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTATTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	6240
	TAACCAATGC	GTGGATGTGT	TTTAATAATA	TCTTTTGCGT	CCTCATGACA	TTGTGAAAGT	6300

AGTTCTAACA AGCTAAATTC ATTTGGCGTC AAATGTACCT CCTGATTATT AATAACAACA GATTTGGAGC CAAAGTCGAT GCTTAGCAAA CCGTTAGTAA ATACAATGTT AGTTTCTTGA GGTTTAGTCA CGATTCTCTC GATGACTCGT ATTCGTGCCC GAAGCTCATC AACATTAAAA GGTTTAGTCA TATAGTCATT CGCACCGTTA TCTAAAGCTT GAATAATTGT TTGTTCTTCT GGGTTTAGCAC TTATTACAAT GATAGGAATG TCAGTATGTT GCCTGATTTC TGAAATCAAA G720 CATAATCCAT CTTTATCTGG TAAACCTAAA TCTAATAAAA TGACATCTGG TTTATCAATT TGAATTTTAA AGTGTGCTTG TGTGGCATTG TCGGCTGTAG TTACATTGTA ATAATCTAAA GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTTA G900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATCTCC CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTTAGAG ATAGTCTGTA CCTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG TGTCAGTAGA AGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA (2) INFORMATION FOR SEQ ID NO: 20: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	6420
TGTGACTTAG CGATTCTCTC GATGACTCGT ATTCGTGCCC GAAGCTCATC AACATTAAAA 6600 GGTTTAGTCA TATAGTCATT CGCACCGTTA TCTAAAGCTT GAATAATTGT TTGTTCTTCT 6660 TGTCTTGCAC TTATTACAAT GATAGGAATG TCAGTATGTT GCCTGATTTC TGAAATCAAA 6720 CATAATCCAT CTTTATCTGG TAAACCTAAA TCTAATAAAA TGACATCTGG TTTATCAATT 6780 TGAATTTTAA AGTGTGCTTG TGTGGCATTG TCGGCTGTAG TTACCATTGTA ATAATCTAAA 6840 GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTA 6900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATCTGC 6960 CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAA AGGCTCGAAT ATCTTTTGTL GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA ACLGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	6480
GGTTTAGTCA TATAGTCATT CGCACCGTTA TCTAAAGCTT GAATAATTGT TTGTTCTTCT 6660 TGTCTTGCAC TTATTACAAT GATAGGAATG TCAGTATGTT GCCTGATTTC TGAAATCAAA 6720 CATAATCCAT CTTTATCTGG TAAACCTAAA TCTAATAAAA TGACATCTGG TTTATCAATT 6780 TGAATTTTAA AGTGTGCTTG TGTGGCATTG TCGGCTGTAG TTACATTGTA ATAATCTAAA 6840 GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTTA 6900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATCTGC 6960 CGTGTGGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAAA AGGCTCGAAT ATCTTTTGTL GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	6540
TGTCTTGCAC TTATTACAAT GATAGGAATG TCAGTATGTT GCCTGATTTC TGAAATCAAA 6720 CATAATCCAT CTTTATCTGG TAAACCTAAA TCTAATAAAA TGACATCTGG TTTATCAATT 6780 TGAATTTTAA AGTGTGCTTG TGTGGCATTG TCGGCTGTAG TTACATTGTA ATAATCTAAA 6840 GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTTA 6900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATACTGC 6960 CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTGAAAA AGGCTCGAAT ATCTTTTGT GTTCTTAAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	6600
CATAATCCAT CTTTATCTGG TAAACCTAAA TCTAATAAAA TGACATCTGG TTTATCAATT G780 TGAATTTTAA AGTGTGCTTG TGTGGCATTG TCGGCTGTAG TTACATTGTA ATAATCTAAA 6840 GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTTA 6900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATACTGC 6960 CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAA AGGCTCGAAT ATCTTTTGTE GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	6660
TGAATTTTAA AGTGTGCTTG TGTGGCATTG TCGGCTGTAG TTACATTGTA ATAATCTAAA 6840 GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTTA 6900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATACTGC 6960 CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAA AGGCTCGAAT ATCTTTTGTE GTTCTTCAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	6720
GTTAATGCAA CATCAAGTAA ATGTGTGATT GCGTGATCAT CTTCAATTAT CAATATTTTA 6900 GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATACTGC 6960 CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAA AGGCTCGAAT ATCTTTTGTE GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	6780
GATTGCATTA TACGTCTCCT TCGTTAAAGT CTGTATATAT ATTGAAATAG AATATACTGC 6960 CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA 7020 CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAA AGGCTCGAAT ATCTTTTGTT GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	ATAATCTAAA	6840
CGTGTGGTTG GTTCGGTTTA TATTGTAAGT TTGATTGATG TTTGTGTAGG ATAGTCTGTA CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC CTGTGTAAAA AGGCTCGAAT ATCTTTTGTT GTTCTTAA ACTAATTCCA GGTCCTTCGT CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
CTAAATATAA GCCTAGTCCC ATGCTTTCTT TTTGGTTATC TTTAAAATAT TTATTTGATC 7080 CTGTGTAAAA AGGCTCGAAT ATCTTTTGTE GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
CTGTGTAAAA AGGCTCGAAT ATCTTTTGTE GTTCTTCTAA ACTAATTCCA GGTCCTTCGT 7140 CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
CTATAACGGC AAATTCGATT TGTTCATAGC TAGCATAACG AATAGATAAA TTGATTTTGG 7200 TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	СТАААТАТАА	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
TGTCAGTAGA AGTGTGTTTA ACTGCATTTT CAATCAAATT GAALAAAGCT TGTAAAATCA 7260 ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
ACTTACTGTC AATGTGTATA AACLGTAAAT TTACTGAGGA TGATACAGTT ATACGCTTTT 7320 TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA 7363 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	AATAGATAAA	TTGATTTTGG	7200
TTAAATGGCG ACGTTCTAAA ATACATATCG ATTTCTTATA CTA (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAtAAAgCT	TGTAAAATCA	7260
(2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363
(A) LENGTH: 10470 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	(2) INFORMA	ATION FOR SE	EQ ID NO: 20):			
		(A) LENGTH: (B) TYPE: nu (C) STRANDE	10470 base cleic acid NESS: doubl	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTAACAATCG ATAACCACAA TACTTCTATT GTAATTGTTT AACGATTTCN CGATTAAAAT 60

CATCTAAAATC GTCTGGTACT CGACTTGTTA CAATATTGTT GTCTACACTA CTGACTCATC 120

AACTACATGT GCGCCTGCAT TTGATAAATC TTTGCGTACA TTTAATACTG CTGTTAACGT 180

ACGACCTTTT AAATCGTCTG TATCTATTAG TATTTGTGGC CCATGACAAA TGGCAAATGT 240

TGGTACATCA TTTTTAGTAA AGTATTTAGC AAATGTGCCA TATCGACCTT CTGTATCTCC 300

**CCTAAATCA TCTGGTGAAA ATCCTCCAGG AATTAATAAT GCATCATAAT CTTCTGGTTT 360

	HIIIGCAGIA	ICICCAMICA	CIACAGIAII	AAAGCCTGCA	TICICIAAIG	CCICITIAGG	480
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	540
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	600
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	660
10	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	CCTTTTCTTC	AAGCTGATCT	AACAATCCAA	720
10	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	780
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	840
15	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	СТТТТААААА	TCCCCTTTTC	960
	AATTAACTAA	AATTAAGAGA	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	TaTCATACCG	1020
20	ATATGAACCA	AATAGAAAGA	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	1080
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	1140
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
25	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	1260
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
30	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
35	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
35	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTTGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
40	CATATTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
45	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	TAATATTATA	TTATATAAGT	1920
	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
50	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
	ACACATAATT	TGTAAGTCAT	CAACTAACCT	ACAAATATAA	TTATACTAAA	CAAATGTTTA	2160

	GTTATCTACA	TTTAAATCTT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGaCATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
10	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
70	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCGCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
25	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	3240
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
25	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
35	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TTGTTCGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
40	ATCTAAAGTT	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	3600
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	3660
4 5	TCCAAACAAA	ACTITCCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	3720
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	3780
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	3840
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	3900
	v imccededa	TAAACTACTG	TCTTGTGATG	ATTTCCACGT	AACTTGTTGT	TCTTCTTTTT	3960

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	4080
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	4140
5	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	4200
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	CCAAAATAAA	AAAACGACTA	AAAATTAGTC	4260
10	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	4320
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	4380
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	4440
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	4500
	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	4560
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	4620
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	4680
	TTAAATATAA	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	4740
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	АТАТАААТТА	TCCGCTTGTT	4800
25	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTTTTGAGC	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTTC	AACTTCTTGC	AATTTATTTT	5100
0.5	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
40	GTCCCGGTTC	ACCTTTATCA	CCTTTCGCAC	CTTTAAATCT	ACTTTCATTC	TTTTCGATGT	5340
	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
45	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5580
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	5640
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	5700
	GATCGATACG	ACCTTGTTTG	TCATTGATAC	CTATTCTTAT	AGATGCTGTA	TTTTCATCTT	5760

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	5880
	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	5940
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	6000
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCGCCCA	6060
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	6120
70	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	6180
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	6240
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	6300
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	6360
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	6420
20	GTGCTCGTGT	AGCGTTAscC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	6480
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	6540
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	6600
25	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	6660
	ATTTAATAAT	TTTTCTCTGT	TTTTAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	6720
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	6780
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	6840
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	AAAATAAATT	CATTTTTACT	6900
25	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	6960
35	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	7020
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	7080
40	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	7140
	TATATATATA	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	7200
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TTTTTCGTTA	TCATCACTAT	CATCTTCTGG	7260
45	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	CTAACAAAAT	ATTTAACCCC	7320
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTATAA	GGTGGACTTC	CTGTTGCGTT	7380
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	7440
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	7500
	AAAATCTTTT	GTATTTCTAA	TTATCTTGAA	ATCTCTACCT	CTATAATTGG	ATTTTTGAGC	7560

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TTTTGTTTTT	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	TCAAAATAAA	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	ATATCCTAAA	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
10	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
15	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
, 5	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
20	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTTCT	CCAGTGATTA	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	83 4 0
	TATAGTAACC	CCAAACATAA	AAAGTTTTAA	TGTCTTTAAA	AGTTGGATAA	ATCATCTTCA	8400
25	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
30	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
35	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
10	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
40	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
45	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
50	AACGAATACC	GATAAATAAC	CCTCATAACT	TTCAACGCTA	CCTGGTAAAT	CCGGCACTCT	9300
	TGTTGCATAG	TAATTACCAG	CAGTTAAATA	TCCCAAATCG	CCTTGCGCAT	TATTTAAGTT	9360

GAATTTATCA	TCTACATACT	GCTTAGCTTG	ATTTAAAGCG	TTGTTAGACG	TTTCTTCAAC	9480
AAATTGCTTA	GTTAAGTTTC	CATCATTCTT	TTTATAAAAC	GGGTACCATG	TGCCGTAGAT	9540
TTTGTATTTT	GTGTACTCAT	CGTTTGAATC	GTCTGGGTAC	CATGTTGCAC	GAGCAGTATT	9600
ATTATCAACA	ACATAAACAA	CTAACACACC	AGATTTGCTT	GATGTATAAG	TTGATTCATC	9660
GAACGAAGAA	CCGTCATCAA	CACCATCTTG	TCCAGGCTTC	TCTAACGTGC	CTATATCCGT	9720
CTTTTCTGGC	GCATCTGTTG	CATTAGTAAT	ATGAATAATC	CTAGATGTGT	TAACTGCGCT	9780
TAAAACGCTA	TCTATGGACT	GCTCATACGA	TTCAATTGCT	TTACCGTAAT	CATCTGTAAG	9840
TTTAGACTTT	TGCCAATTCG	TTGTTGAATT	ACCTTTAACA	AGGTCAGCGC	CATTGATTTG	9900
TTGTTCAACT	TCGTTAACAC	GTTCAAAAAT	CGCTTGCTCT	TTTTCAACTA	TTTTATCGAA	9960
TTCAGCTGTA	ACAGCTTGTG	TTGCACTAGT	TTGCGTCGCA	GTAATAGCTT	GTATAGCTTC	10020
GTTTTGCTTG	ATTTCGATTT	GTTGAATGCC	TTTTGTCGCA	CTATCATTCA	CTTTTGCTAT	10080
TAACGTTTGT	GTATCAGCCA	TATTTTGCTT	TAATTGGTTA	AAATCTTTAC	CGACAGCTTC	10140
GATAGTATCT	TGAATAGATT	TGATATAAAC	AAGCTTTGTT	ATACCATCAA	ACCCACTAAC	10200
TAAATCATTT	TCAATATTGA	AGCTAAATTG	ACGTTCAACA	ACAACATTAT	TACTCCCGTT	10260
TTGTGTAAAG	AATGCCTGAG	CATGCACCTT	GCCTGAATGT	TTTAAAAATT	CATTCGGTAT	10320
CACATACTGC	AAACGCCCAT	TAATTGCGTC	TACTATCGTT	AATTCGTCTG	AAATATAAGC	10380
GCCTCTATCT	ACGTTATAAT	CATCGGTTTT	TAAnACGATA	GATGTTTTAA	CATGTTCAGA	10440
ACTTATAGAT	AAGGGTCTGT	TATnCTTAGT				10470
(2) INFORM	ATION FOR SE	EQ ID NO: 21	L:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3647 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

ATCAGATCTT	GAGAATCGAG	TTATTAAGTC	TATCGAAGAC	TTAACTAAAA	TCCAACCATT	60
CATGCCTACA	CAAGATTTTG	ATTTTAAAAC	TAAAGAAATT	CAATCAAACA	TTTCTGAAGA	120
AAGATTTATC	GAAATGATTC	AGTATTTCAA	AGAGAAAATA	ACAGAAGGGG	ATATGTTCCA	180
AGTTGTGCCA	TCAAGAATTT	ACAAATATGC	GCATCATGCT	AGTCAGCATT	TAAATCAACT	240
TTCGTTTCAA	CTGTATCAAA	ATTTAAAACG	ACAAAACCCA	AGTCCATATA	TGTATTATCT	300

	TCAAATTGTA	ACAACTAATC	CTATTGCAGG	TACGATTCAA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACTTAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATT	GCGAATTTAT	TACCAACAGG	660
0	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	AATTGAAAGA	ATATATGAAC	AATATCCACA	720
	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
5	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATCAACGTAG	AAGCTGGTTG	840
	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	AGTTAATGAA	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
10	AATTTTCCAG	AAGAATTGAA	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	AAGGATGAAA	ACCATGACAT	1500
15	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA	GAGCTAATCG	1560
	ATATÁCTTAT	TTCTCCTAGT	ATTGGAACTG	ATATTAAATA	TGAATTACTT	AGTTCCTATT	1620
0	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
.0	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGCGTAA	1800
5	AAGTTATAAA	ACATGGLAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGtTAA	1860
	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnAAAG	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
0	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040
	ACTTAACGTA	TCAAATGGTA	GGCGTCTTTG	ATCCTACAAA	GTTAAAGTTA	GTTGCTAAAA	2100

ATTACACATT						
	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
rggataccat	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2460
rggaaaaata	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	AATTGTTAAA	2520
TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
STGAAGATTC	AGAATAAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
CCCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
SAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
GTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
CATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
TAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
GATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
TTTATATTAT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
GTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
TCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
CGTATTAAG	CAATACGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
TATACAGGA	AATTAAAAAG	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
TGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647
	ECGGTTCACC CAAGTCGACG CGGAAAAATA CATAAACAGT CGCAACAAA CAAAAGTACT CCGTATTAT CGTACTAC CATTATATTT CGTATCATT CGTATCATAT CATTATATTT CGTATCAAAA CATCAAAAA CTCAAAAAA CTCAAAATCA CGTATTAAAA CTCAAAATCA CGTATTAAGA CGTATTAAGA CTATAAAA CCGTATTAAGA CTATAAAAA CCGTATTAAGA CATAAAAAA CCGTATTAAGAAA CCGTATTAAGAAA CCGTATTAAGAAA CCGTATTAAGAAA CCGTATTAAGAAA	EGGTTCACC TGAAGAAAAT EAAGTCGACG TGATGTTGTC EGGATACCAT CGCAGAAGGC EGGAAAAATA CCATCAAATG EATAAACAGT CACTTTTACA ETGAAGATTC AGAATAAAAA ETTATTGCAG AAATTAAATC ECGCAACAAA TCTCAGATTA EAAAAGTACT TTGGTGGTAG ECGTATTAT GCAAAGACTT EATAACTACG CTATATCGCA ETAGAACGTG CCTATAAGGT EGATTGTTA CAAATGTGGA EATTATTT CTGAAAGTGG EGTATCGATG GCTTACTAAT EATACCACAAC TGAAAATGCA EATCAATAAA GGATGTTACA EATCAATAAA GGATGTTACA ETTATGAAAA AAGTAAAAGG ETCCAAATCA TATCGATAAA CCGTATTAAG CAATACGTCA ETATACAGGA AATTAAAAAGG	CGGTTCACC TGAAGAAAAT TTAGCAATCT CAAGTCGACG TGATGTTGTC TTACTAAATG CGGATACCAT CGCAGAAGGC ATAGAACTTG CGAAAAAATA CCATCAAATG AGAGGTGAAT CATAAACAGT CACTTTTACA AAATGGCTAT CTGAAGATTC AGAATAAAAA ATCTTTTATA CTTATTGCAG AAATTAAATC GAAGAGTCCT CCGCAACAAA TCTCAGATTA TGACCAATAT CAAAAGTACT TTGGTGGTAG TTTTGAAAGA CCGTATTAT GCAAAGACTT TATTATAGAC CATAAACTACG CTATATCGCA AAATCTAGAA CATAAACTACG CTATAACGCA AAATCTAGAA CATATATTT CTGAAAGTG TAATGCTAAA CATATATTT CTGAAAGTG TATTCACGAT CATATCGATG GCTTACTAAT AGGTGAGGCG CATCACAAC TGAAAATGCA AAAGGTGAAG CATCACAAAC TGAAAATGCA AAAGGTGAAG CATCAAAAAA AAGTAAAAAG CATCAAACAA CCCAAATCA TATCGATAAA GTATGTGCA CCGTATTAAG CAATACGATAAA GTATGTGTCA CCGTATTAAG CAATACGTCA ATTAACACAA CCGTATTAAG CAATACGTCA ATTAACACAA CCGTATTAAG CAATACGTCA ATTAACACAA CCGTATTAAG AAATTAAAAAAA AAATATTCAA	EGGTTCACC TGAAGAAAAT TTAGCAATCT CCCTTAATAT CAAGTCGACG TGATGTTGTC TTACTAAATG CGGGTTTAAG CGGATACCAT CGCAGAAGGC ATAGAACTTG CAACTACATT CGGAAAAATA CCATCAAATG AGAGGTGAAT AATATGACGA CATAAACAGT CACTTTTACA AAATGGCTAT TATCAAGACA CTGAAGATTC AGAATAAAAA ATCTTTTATA AACGCAATTG CTTATTGCAG AAATTAAATC GAAGAGTCCT ACAGTTAATG CCGCAACAAA TCTCAGATTA TGACCAATAT GGTGCAAATG CCGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA CTGACACCAT TGGTTGGTAG TTTTGAAAGA TTACAAGCAT CCGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA CTGACACCAC CTATATCGCA AAATCTAGAA GTGTTAGTTG CTGAAACGTG CCTATAAGGT TAATGCTAAA TTGATTGGTG CGTATTATTT CTGAAAGTG TAATGCTAAA TTGATTGTG CTTACCACAAC TGAAAATGCA AAAGGTGAAG TCATGATGAA CATCAATAAA GGATGTTACA GCGGCCAGTC AATTACCTAT CTTATGAAAA AAGTAAAAG CATCAAAACAA TTACCCAAAT CTCCAAATCA TATCGATAAA GTATGTTCA TGGTAAATCC CCGTATTAAG CAATACGTCA ATTACCAAA TACCCAAAT CTCCAAATCA TATCGATAAA GTATGTTCA TGGTAAATCC CCGTATTAAG CAATACGTCA ATTACCCAAAT CTCCAAATCA TATCGATAAA GTATGTTCA TGGTAAATCC CCGTATTAAG CAATACGTCA ATTACCCAAAT CTCCAAATCA TATCGATAAA GTATGTTCA TGGTAAATCC CCGTATTAAG CAATACGTCA ATTACCCAAAT CTCCAAATCA TATCGATAAA GTATGTTCA TGGTAAATCC CCGTATTAAG CAATACGTCA ATTAACACAA TACAGGTTACA CTATACCAGGA AATTAACACAA TACAGGTTACA CTATACCAGAA AATTACACAA TACAGGTTACA CTATACCAGAA AATTACCAA TACAGGTTACA CCGTATTAAG CAATTACAAAA AATTATCAA GCATTAAAAAT CTCCAAATCA TATCGATAAAA GTATGTGTCA TGGTAAAATCA CTATACCAGAA AATTAACACAA TACAGGTTACA CCGTATTAAG CAATTACAAAA AATTACCAA TACAGGTTAAAAT CTATACAGGA AATTAAAAAG AAATATTCAA GCATTAAAAAT CTATACAGGA AATTAAAAAAG AAATATTCAA GCATTAAAAAT	EGGTTCACC TGAAGAAAT TTAGCAATCT CCCTTAATAT CTTGAATGGT EAGTCGACG TGATGTTGTC TTACTAAATG CGGGTTTAAG CCTTTATGTT EGGATACCAT CGCAGAAGGC ATAGAACTTG CAACTACATT GATTGATAAT EGGAAAAATA CCATCAAATG AGAGGTGAAT AATATGACGA TTTTATCAGA ETGAAGATTC AGAATAAAAA ATCTTTTATA AACGCAATTG AGAAAGAACC ETGAACAAA TCTCAGATTA TGACCAATAT GGTGCAAATG CCGTGTCCAT EAAAAGTACT TTGGTGGTAG TTTTGAAAGA TTACAAGCA TGACGACAAA ECCGTATTAT GGAAAGACTT TATTATAGAC CCGCTTCAAA TTGATGTTGC EGTGCAACAA TGATTTATT GATCGTTAAC ATCTTATCTG ATAAACAAT ECGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA TTGATGTTGC EGTGCATCTA TGATTTATTT GATCGTTAAC ATCTTATCTG ATAAACAATT EATAACTACG CTATATCGCA AAATCTAGAA TTGATTGTTG AAATAAAAA EATTATATTT CTGAAAGTG TAATGCAAAT ACTATTTTAG AAAATAAAAA EATTATATTT CTGAAAGTGG TATTCACGAT GCATCTGATG TAAGAAAAAT EATTATATTT CTGAAAGTGG TATTCACGAT GCATCTGATG TAAGAAAAAT EATTATATTT CTGAAAGTGA AAAGGTGAAG TCATGATGAA ATTGAAATCT TTACCACAAC TGAAAATGCA AAAGGTGAAG TCATGATGAA ATTGAAATTT EATCAATAAA GGATGTTACA GCGGCCAGTC AATTACCTAT TGATGCGATA ETTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAATT EATTCAATAAA GGATGTTACA GCGGCCAGTC AATTACCTAT TGATGCGATA ETTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAAGTTA ETTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAAGTTA ETTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAAGTTA ETTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAAGTTA ETTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAAGTTA ETCCAAATCA TATCGATAAA GTATGGTCA TGGTAAATCC TGATTTAACA ECGTATTAAG CAATACGTCA ATTAACCAA TACAGTTACC TGATTTAACAC CGTATTAAG CAATACGTCA ATTAACCAAA TACAGTTACC TGATTTAACAC CGTATTAAG CAATACGTCA ATTAACCAAA TACAGTTACC TGATTTAACAC	COGNITICACO TGAAGAAAAT TTAGCAATCT CCCTTAATAT CTTGAATGGT AAAGATCAGT CAAGTCGACG TGATGTTGTC TTACTAAATG CGGGTTTAAG CCTTTATGTT GCAGAGAAAT CGGATACCAT CGCAGAAGGC ATAGAACTTG CAACTACATT GATTGATAAT GGTGAAGCAT CGGAAAAATA CCATCAAATG AGAGGTGAAT AATATGACGA TTTTATCAGA AATTGTTAAA CATAAACAGT CACTITITACA AAATGGCTAT TATCAAGACA AACTTAATAC CTTGAAAAGT CTGAAGATTC AGAATAAAAA ATCTTTTATA AACGCAATTG AGAAAGAACC AAAGCTAGCA CTTATTGCAG AAATTAAATC GAAGAGTCCT ACAGTTAATG ACTTACCTGA ACGAGATTTA CCGCAACAAA TCTCAGATTA TGACCAATAT GGTGCAAATG CCGTGTCCAT TTTAACTGAT CACGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA TTGATGTTGC TAAACAAGCT CGGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA TTGATGTTGC TAAACAAGCT CGGTACTAT TGATTTTATT GATCGTTAAC ATCTTATCTG ATAAACAATT GAAAGATTTA CATAACTACG CTATATCGCA AAATCTAGAA GTGTTAGTTG AAGTACATGA TCGCCATGAA CATTATTGTTA CAAATGGGA ACATCAAAAT ACTATTTTAG AAAATAAAAA AACAAATCAT CATTATTTTT CTGAAAGTGG TATTCACGAT GCACTCGAT TAAACAAAAT CTTGCATAGT CATTATATTT CTGAAAGTGG TATTCACGAT GCACTCGATG TAAACAAAAT CTTGCATAGT CATTATATTT CTGAAAGTGG TATTCACGAT GCACTCGATG TAAACAAAAT CTTGCATAGT CATTATATTT CTGAAAGTGG TATTCACGAT GCACTCGATG TAAACAAAAT CTTGCATAGT CATTATATATT CTGAAAATGCA AAAGGTGAAG TCATGTGATA ATTGAACAAT TTGATGATTT TGTGGCTTTA CATTATATATT CTGAAAATGCA AAAGGTGAAG TCATGAAGA ATTGAAAATT TTGTGGCTTTA CATCAATAAA GGATGTTACA GCGGCCAGTC AATTACCTAT TGATGCGATA GGTTTCATCC CTTATGGAAA AAGGTGAAAA TTACCCAAAT AAAAAAAATTT TGTGGCTTTA CATCAAATAAA GGATGTTACA GCGGCCAGTC AATTACCTAT TGATGCGATA GGTTTCATCC CTTATGGAAA AAGGTAAAAA ATTACCCAAAT AAAAAAAATCC TGATTTAACA ACAATTGAAC CCGTATTAAG CAATACAAAA AATTACACAA TACCCAAAT AAAAAAAA

(2) INFORMATION FOR SEQ ID NO: 22:

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5966 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	CcAcCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACaTCGaT	AATATATATT	60
5	GAAAgTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
10	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	GaCGTTCTCA	TGCGCCATTT	GATTTAGTTC	480
	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
25	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	TnACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	kTTGCACCAA	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGrACAr	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAaACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TTTACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
40	CAACTAAATA	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTATC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTTTCATAA	GCAGTTTTAG	1800
	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1860
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1980
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
23	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
30	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CCTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
35	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	ATTAATAAAA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
	CTATÂATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
40	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
45	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTTCC	3300
50	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
_	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTIGA	CTGCCTCCTT	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
10	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	Caatttacaa	AATTTATATT	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
20	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
20	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCATCA	TCGCCTATAC	TTTTGCGCGT	TTTATAAATT	4440
30	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	GAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
40	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
40	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
45	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTTTGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280
55							

(GTGTTAAACT	AGGAATAAAT	AATTTATATT	GTGTGTTGTG	TGGGGTGACT	AATATGAATG	5400
ì	ATATGGATAA	TTCCTTTTTA	ATAACAACGG	AAATTCAAAG	AAAATGGATT	GAAAATTCA	5460
ì	aagtaattag	AGATACATTT	AAGGCTAAAG	CTGAATATAA	TGATCAACAT	AGCCAATTTC	5520
(CATATAAAAA	TATTGAATGG	TTAATTAAAG	AAGGTTATGG	AAAATTAACG	TTACCAAAAG	5580
(CATATGGTGG	TGAAGGTGCG	ACCATAGAAG	ACATGGTTAT	TTTGCAATCA	TTTTTAGGCG	5640
1	AACTTGATGG	TGCCACAGCA	TTATCTATTG	GTTGGCATGT	GAGTGTCGTA	GGACAAATTT	5700
1	ATGAACAGAA	ATTATGGTCT	CAAGATATGT	TGGAGCAATT	TGCTGTTGAA	ATTAATAATG	5760
(GTGCATTAGT	TAATAGAGCA	GTTAGTGAAG	CTGAAATGGG	TAGTCCAACA	AGAGGGGGAA	5820
(GACCAAGTAC	ACATGCTGTT	AAAGCTGATG	ATGGGTATAT	TTTAAATGGT	GTGAAGACAT	5880
1	ATACATCAAT	GAGTAAAGCA	CTAACACATA	TTATTGTTGC	TGCTTATATA	GAAGAATTAG	5940
2	AAAGTGTTGG	TTTTTTCTTA	GTAGAC				5966

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17310 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CTGTGTCATC	GCGAAATAGT	TAGGGTCATT	CATTAATCCT	TTTGAACGTA	TTTCATCAAA	60
ATATAACAAT	TTCATTAGTA	AAGGGGACTT	GTTCAAACCA	GCTATAATAC	AAAATAGACC	120
TATAGTCACA	CTGCTTATAA	TATAAGAGGT	AACGATCACT	TTTTTGCTAT	TACCTAACTT	180
AAAGATGATC	ATCCCTAAAT	AGAAATAAAT	GACTACAAAT	GCATATTTAA	CTGTAGATGC	240
AAGAACTTCC	TTAACCGTAA	TAAATATCAA	ATCATCAAAA	AATaGCaAAC	AArGCGTAAT	300
AATCATACGA	TATGTATACA	AAATAATGA m	AAACTGTmAA	AAATGATTTG	CCTTTAATAA	360
ATGGTTAGCG	AAAAACAGTA	AATAAACTAA	TATTAGTAAT	GTGATAAAGT	CAGCTATAGA	420
AACATTCACA	CCGGCAATAA	CCGAAGATTG	CTGAATAAAA	ACCGCTAAAC	CGATAAGTAA	480
CAATGTTAGT	AATTTACTAT	TGTGTTGATT	TTCCATTATA	AACGTCTTCC	ACTTCTTTAA	540
TCATTTTCTC	CTCAGTAAAA	CATTCTAAAT	AACGTTTTCT	AGATTGATTA	CTCATTTTGA	600
TGTAATCACT	GTCTATTAAA	TATTTTTCCA	GGACTTTAGC	AATAGTTTCG	GGTTGGTTGT	660

	TAAAATTATA	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
-	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
10	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
15	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	ТААСТАААТА	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTECGCAATT	CGTCcGACCG	1380
20	TtCCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
25	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
20	TGACATAAAC	ATCATTGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	ATATAATTTT	CAACTGTTAC	AAACCCCTTT	1680
30	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
35	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	1980
	TTGTTGCGGT	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
40	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
45	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
50	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AAAATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTAGTTTG	TCTAATTTTC	TTTGATAGGC	ATAACCCTTA	TTATTATGGA	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	2640
5	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	2700
	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	2760
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	2820
10	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	2880
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	2940
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	ATTTAAAAAA	ACAACCGCTG	3000
15	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTT	3180
20	TAATGATTTC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
25	ATGTCTTCAT	GATTTGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
23	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCCACCAG	3480
30	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TTAAAAATAT	ATCATAAAAA	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	TTTTTTTTTA	TAAAAATAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
35	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTTTCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
	AATCCTTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
40	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
4 5	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
50	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	тсттссАттс	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260

	GCCAAATTGC	GCGGCAGTTT	GTCTTACTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	444(
	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
5	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AATTTTAAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
5	TATTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
25	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	AAATATAGAA	ATTATTGCCG	5280
80	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
15	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
0	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
5	GTGAAAAGAG	CCAATATTAA	TCCTAATAAA	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
	ATCCAAATTG	CTATTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	ATTTAAAATT	5940
0	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	TATTTATAAA	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	6240
	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	6300
5	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	6360
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	6420
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	6480
	AAATATTGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	6540
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	6600
15	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	6660
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	6720
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	6780
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	6840
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	6900
	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	6960
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	7020
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	7080
30	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	7140
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	7200
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	7260
35	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	7380
	GCAŢĀGTTAA	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
40	TCAGACCATG	CCTTTGCTTT	TTTAAAATAA	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCG	7560
45	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
50	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	CAAAAATAAT	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
10	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
15	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
20	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
\.C	TCTCATCATT	AATCGCCACG	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
25	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
80	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TTTTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
	AATGCTTCTT	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	9060
35	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	TATTAATAAA	GAAAAATGCA	9120
	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
	ACTTTTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
10	TGCtCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATTTTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA	9360
15	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
50	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ATATCTTGTT	GCTGTATCTG	CTTTAACCAA	TCCGTAATTT	GCGCTGCATT	TTCAATTGTA	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
5	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTTTATC	TTTGTCGATA	10080
10	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
15	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGACAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
20	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
25	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
30	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGCAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
35	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
40	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
15	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
45	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
50	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	ТААААТАААА	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
	ATGAAATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
15	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
25	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
23	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	AAATAAACTA	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	ATGGCAGCGC	12480
30	CACTAAGACT	GCCAATAATT	TGACCAACAA	CTAACATACT	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
35	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	TAAAAATCCA	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
40	AAGCÄAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
45	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	ctATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ATAAAATGTG	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACÁC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACAAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTTTC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT	14400
	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	CTTTTTTCTT	TAGCTAATGG	ATGAAATGGA	14880
	CGATCTTTTA	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	TAAATCTAAT	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	saskum	CATTA CTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
-	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TTGTTGTTGT	GCCTGTTGAT	AAATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	AGTAATATGA	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	AAATTAATTT	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTAGCC	AAATGCTTTG	15960
	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCtGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
40	TTTTTCTAAC	CATGTATCTG	AATAAACTAA	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
40	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAACCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
45	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
50	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920
55							

TACATTGGCA CCATAACTTT TAATAATTTT CAAATTTGTT G	GTGATATTT TAGGATCAAC 17040
AACACACGTG AGTTTTAATC CCTTGATTTT AGCTATCATT G	GCCAACGCAA TGCCTAAATT 17100
ACCAGAAGTA CTTTCAATTA AATGTGTATT CTCAGTGATT A	AAACCATGTT TAATACCATG 17160
TTCAATGATG TACTTGGCAG GTCGATCTTT CATGCTGCCT C	CCAGGATTCA TATACTCTAA 17220
CTTTGCAAAC ACTTCATGTT TCGGAAATAG TTGATGAAGT T	TGAACCATAG GTGTTTGCCC 17280
TACAGAATCT AACAATGAAT CGTGCACATG	17310

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5423 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

ATACTAGTAA GCGCATCGGT	TATTGACATC	GAATTCAACT	TTAACAGTTT	TCATGTTCGG	60
TGATGTTTCa ATAGAATGTG	TGTGTTGTAC	TTGCGCATTT	ATATTTCCAC	CTAAATTACT	120
TAAGTTTCCT GTAATACTAG	AAATGTCAGG	TGCGTTTAAT	GTAGGTTGAA	ATGCATCAAC	180
TACTTTATCT GCAACATTAG	AAACATTACG	GATAACTTTA	CTTGAATGAT	TATCTATACC	240
TTTAACGAAA CCTAACATTG	AATACATACC	AACATCCATG	AATTCACGTG	AAGGTGAGTG	300
AATACCTAGC GCTCTTTTGG	CTGCATTTAA	AGCACCTTTT	GCTACACTAG	CTGCTTTTTC	360
AGCTAAGTCT CTAGCCATAT	TACCAATACC	TCTCATCAAA	CCACGGATCA	TATCAGCACC	420
TGCTGATACA AAGTCATCCA	CAAAGCTTTT	AACTTTATTT	ACTGCATTTG	TCATACCTTG	480
ACTAACTTTG TTTACAACAT	TAACGAATCC	TTGAACAACT	CTATTAACAA	rGTTAATTAG	540
CGTACLTGTL ATAGTAGATA	CCCaTnGCAT	ACCTTTAGTG	ACMATGAAGT	TCCAAGCTTG	600
AGACATTTTG TCTGATATAG	TTGAAACAAC	TTGTGTGAAT	ATGCTTACAA	CTTTATTCCA	660
AATTGTCGTT AATATACCAG	ATAAGAAACT	CCAAATCGTA	TTCCATATAT	TAGAAATAAA	720
ACTCCATGCC GCTTGTAACG	CAGTAGATAT	AGCTGTAGTG	ATAGCGTTCC	AAACCTTAGT	780
TGCCACAGTA ACTATAGTGT	TCCACAACGT	TTGTAAGAAC	GTCCAAATAG	CGTTCCAAAT	840
TGTTATTGCG ATAGTCATAA	TTGTGGTAAA	CACTGTAGTT	ATTACAGTGA	CTAACAAATT	900
CONTRACTOR CTAGCGATTG	TAATTATCGT	ATTCCAGATT	GTACTTAAGA	ACGTCCAAAT	960

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
5	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
3	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTTGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
35	ACCCGTTGTA	TTCATCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	CAGCCCATTT	2220
	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	CCACTAAAAA	ACGGTTGTAA	2280
10	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
	TTGATTTTGC	TTTATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
15	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TCTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTIAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	CCTCTCTTTC	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540
	GCCGTTGGAT	ATTTTCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
0.5	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
25	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTATATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
30	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAACTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
35	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTŦGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
40	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	mArGCTTAAC	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
45	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
4 0	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
50	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560

	GTCCATTGTA TCCTCTGTAT CTGTATCAGC TTCATGTGAT AAGCCGTATT CAGTTAAAAA	4740
	AAGCATTTTA GTAGCATCTA CTTTTTCGCC AGCTTTTCTA AATAAAATAA	4800
5	ACTATTTTC ATATTTGCCA TTCAATATTC CTCCGTTTTT TAAAATGTTT TGTAAGATAT	4860
	CGTTACTGAT GTGTGTAGCA ATTCTTGATT GGTAGTATCA TCAACTAACT GTGTGATGTT	4920
10	AGTATCTTCT TCTTCAAAGT CATAATCGTT TGTTTTAACG CTAGGTGTTA AATCATCAAT	4980
	ACATCTTTTA ACAAGTCCGT CATGATGTCC TAAATCATCG CTTACACTCC AAATATCAAT	5040
	AACTAAATTC GTATCGCCAG AATAACTATC AAACGTGTAC TTACTTCTAT TTGACTCCGG	5100
15	CATTTTTATT ACAAAAAAG GATACGGAAT CTCTTGTTGC ATCTCTTTAC GAGAAATAAC	5160
	AGGGAATCCA TATCCTTGTA GCGTTTCATA CGCTTTATTA TAAAGTTGTA AGTTCGGTGT	5220
	CATGCTTTTA TCTCCTATTC AAACAACGCT TTCAATTCTT CTACAGTTGA TTTCCTAATC	5280
20	ACTTCGTATA CCGGCCACAT AAAAGGTTCA GCCTCCATGT ATCGAGTACC AAATTCTAAG	5340
	AAACCACTAT AAGCTGCGTG CGATGTGATA GTGTATTGCA AATCGCCAGT TTTTTTATAT	5400
25	CTGATATTGC GTGATAAATT ACC	5423
25	(2) INFORMATION FOR SEQ ID NO: 25:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	AAACGCAGAT GTTCAATTAG AACCAGTCTA TCGTATTAAG GAAGGTATTA AACAAAAGCA	60
	AATACGAGAC CAAATTAGAC AAGCGTTAAA TGATGTGACA ATTCATGAAT GGTTAACTGA	120

40

45

50

TGAACTAAGA GAAAAATATA AATTAGAGAC CTTGGACTTT ACTTTGAACA CATTACATCA 180 TCCTAAAAGT AAAGAGGATT TATTACGTGC TCGTAGAACC TATGCATTTA CTGAACTGTT 240 TTTATTCGAA TTACGTATGC AATGGCTAAA TAGATTAGAA AAGTCATCTG ACGAAGCAAT 300 TGAAATTGAT TATGACATAG ACCAAGTTAA ATCATTTATT GATCGTTTAC CTTTTGAACT 360 AACTGAAGCA CAGAAATCCA GTGTTAATGA AATTTTTAGA GATTTAAAAG CACCAATACG 420 TATGCATCGA TTACTTCAAG GTGATGTAGG TTCAGGAAAA ACAGTAGTTG CTGCAATTTG 480 TATGTATGCG TTAAAAACTG CTGGTTATCA ATCAGCATTG ATGGTACCAA CTGAAATTTT 540 AGCAGAGCAA CATGCTGAAA GTTTAATGGC TTTATTTGGA GATTCTATGA ACGTTGCATT 600

55

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	720
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	780
5	AAGAGAAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	840
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	900
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	960
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	1020
	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	1080
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
20	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	AGGAATTGAA	AGAATGACAA	TTATGACACA	1380
25	AACAACGGAT	GGATTTGAAT	TGAGTGAACG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT	1440
25	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
30	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
	ATAAACGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
40	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
45	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
, ,	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	TAAATTAAAT	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTTTTCGGT	2520
_	GACGAAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	2580
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	2640
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	2700
10	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	2760
	GCTTTAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	2880
15	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	2940
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
20	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	AAAATAAATT	AGCAGGTGCA	3180
25	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
23	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
30	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
35	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	3600
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	3720
40	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
45	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
	TTTAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
50	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	4140
	AGTACAATTC	ATTAACTCAA	CAGAATGGCT	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
5	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
10	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
, 0	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
15	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
20	TTTCTGATAT	GACAGATGCT	TTAAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
25	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
30	CCTAAGAAAC	ACTAATCAAT	aAATTGwTAA	GTGTTTCTAA	AATTTCTACT	TGTTTTTAG	5220
	AATTTAAAAT	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
35	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5460
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	AATAATAAAT	5520
40	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTT	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
45	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
4 5	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
50	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940

ATCAAGGACT AGATATAGTT TGGAAATTTG CTGAGAAAGT CATTTTCCCA CATGTAGAA	AC 6120
AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAG	GC 6180
AAAATAAAGG TGATGTAACC TATAATTTAA TAAAAGAAGA GGGACCGGCA CATCATCGT	CC 6240
TATTCACTTC A	6251
(2) INFORMATION FOR SEQ ID NO: 26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4920 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

60	GTCTTAAAGA	GAAATTGAAC	ACTAAGCACT	TTTTGGAGCA	GTTGCTAATT	ACCTACTGAA
120	AGTCTTATCA	ACTAATATTA	AGAGAGAGAT	AAGTAATCGA	CAACTTGAAA	AGATAAAAA
180	GGTGAAGAAA	TCAAAAAGCT	TGATACAAGC	AGTGATGCTT	TCAATCTGTA	AGACGTGgCA
240	GCGCAAgcTA	TAAGGCAGAA	CGATTATAGC	CAAGCTGAAG	TGCAGAGAAA	CTAAGCAAGC
300	ACTGAAGATA	AGCATTCCAG	CACGCCGTTT	GTAGAAAAAG	TGGTGACGCG	ATCAAATGGT
360	GCGCAATTAG	GTTAGTTGAA	GTTTCCGTAT	TTTAGATCGC	ATCAAAAGTA	TGAAACGTCA
420	GCTGAACAAG	TGATTTAGAC	TGTTGAATTA	TGGGATTACT	AAACGAAGAT	ACTTATTAAA
480	GAAGTTGCAG	AAAGCCAGAT	AAAATGATTT	CATTTGCATG	AAATATTCAT	TGACGCTTGA
540	AATGATTCAG	TCAACAATCC	CAGACAATAA	TCAAATACAC	AAATAATGCA	CAAATGCACA
600	TAACTTTTCA	AATATACATT	ACAGACGCGT	TTAAATAAAG	GAAGTAAGAA	AAACAACTAA
660	ACTGGCTTTT	ATGTTATATC	AAAAGCATGT	AGAGCCTAGT	GGTAATGGTG	CAGCGAATTA
720	GGTACCGCGA	TAATAAGGGT	TAAGTTGAGT	GAGAGAACTC	ATAATGTAAT	TAATATTTAA
780	GAAAAAAATG	TTTAAGGAGT	TTTTTAAATT	AACTTAGAGT	CTTTTAATTT	GCAATCGTCC
840	TGGTTTACCA	CAATGCGAGG	ACAGATTTCC	AATGCCTAAA	AAACGTTATT	GATTACAAAG
900	TAAAGCGTTA	ATCAATACCA	GATGCAGAAG	AGAAAAATGG	CGCAAATTCA	AACAAGGAAC
960	CGCGAATGGT	GCCCACCATA	TTACATGATG	AACATTCATT	AAGGTAACGA	GAAAAAA ATA
1020	ACGTTATAAA	ACTTTATTGT	ATTTTAAAAG	CTTGAACAAA	TGGGACATGC	AACTTACATA
1080	TTTACCAATT	ATACACATGG	CCAGGTTGGG	ACCATACGTA	GGTTCTATGC	ACTATGCAAG
1140	TGAATTCCGT	TGTCAACAGC	CGAAAGAAAA	AGGTGTTGAC	TAACGAAAAA	GAACAAGCAT

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GgTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
25	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
23	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTAA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
	AGAÇCGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
40	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	AAATGAGTAA	ATCTTTAGGT	2580
45	AATGTGATTG	TACCTGACCA	AGTGGTTAAA	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	AAAACAAACA	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
50	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTARATICE TT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	ATAAATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
20	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTTGT	GAATAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	AAAAATTATT	CAGGAATGGT	ACAAATTCTC	3720
25	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3 78 0
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	ATATTATAAA	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
40	CGAAGCGCAA	TGGACGAGGC	AAAATAATTT	AGTAAAAATT	GATATTAGAC	CATTAAATGT	4260
	ACCGAGATTA	GTGAGTCATG	CAACAAAATT	GTTATGGTTA	GGTATTCCAG	ATGACGCTAT	4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
45	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	4440
	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
	TATACTTTGA	ATGGACGAAC	CATATAATGA	ATCGTTTTTA	ATGATCTTTT	TATACAAGTT	4680
55	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	CTATTAATTA	4740
JJ							

	TTTTCCTTAT ATTAATTGCC ATTAATACAA AACCTAGCTC TCGTTTAACT TTATTTATTC	4860
	CTCGAACTGA CATTCGnGTG AACTCAAAAT nGCCTACTTn CTTAAATTAC CAATATCTAT	4920
5	(2) INFORMATION FOR SEQ ID NO: 27:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
	CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
20	TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
	TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
25	AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
23	GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
	TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
30	ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
	TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTTATT AAATAGAGAT TTAAATATTG	540
	CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTNAA TCGCATTGCA AGCAAGAGTA	600
35	TCACTAGAGG AACGCGTACA TCGTTT	626
	(2) INFORMATION FOR SEQ ID NO: 28:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	nggaagtggt gtatatattt gtaatgagtg tattgaatta tgctcagaaa tcgtcgaaga	60
50	AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
	GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180

AACCTTAGCC	AAGACGTTGA	ATGTACCATT	TGCAATTGCA	GATGCGACAA	GTTTAACTGA	3 60
AGCTGGTTAT	GTAGGCGATG	ATGTTGAAAA	TATCTTGTTG	AGATTAATTC	AAGCAGCTGA	420
CTTTGACATT	GATAAAGCCG	AAAAAGGTAT	TATTTATGTA	GATGAAATTG	ATAAAATTGC	480
ACGTAAATCT	GAAAACACAT	CTATAACACG	TGACGTTTCA	GGTGAAGGTG	TTCAACAAGC	540
ATTGCTTAAA	ATCTTAGAAG	GTACGACTGC	AAGTGTTCCG	CCACAAGGTG	GACGCAAACA	600
TCCAAACCAA	GAAATGATTC	AAATTGATAC	AACAAATATC	TTATTTATTC	TTGGTGGTGC	6 6 0
CTTTGATGGT	ATTGAAGAAG	TGATTAAGCG	CCGTCTTGGT	GAAAAAGTTA	TTGGTTTCTC	720
AAGCAATGAA	GCTGATAAAT	ATGACGAACA	AGCATTATTA	GCACAAATTC	GCCCAGAAGA	780
TTTGCAAGCC	TATGGTTTGA	TTCCTGAATT	TATCGGACGT	GTGCCAATTG	TAGCTAATTT	840
AGAAACATTA	GATGTAACTG	CGTTGAAAAA	CATCTTAACG	CAACCTAAAA	ATGCACTTGT	900
GAAACAATAT	ACTAAAATGC	TGGAATTAGA	TGATGTGGAT	TTAGAGTTCA	CTGAAGAAGC	960
TTTATCAGCA	ATTAGTGAAA	AAGCAATTGA	AAGAAAAACA	GGTGCGCGTG	GTTTACGTTC	1020
AATCATAGAA	GAATCGTTAA	TCGATATTAT	GTTTGATGTG	CCTTCTAACG	AAAATGTAAC	1080
GAaGGTAGTT	ATTACAGCAC	AAACmATTAA	TGrAGaACTG	AACCAG		1126
(2) INFORMA	ATION FOR SE	EQ ID NO: 29	9 :			
(:) or			_			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4392 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

60	AGTTCAATTA	TTGAAGTACC	GAACGTACTG	TaTGAGTGAA	TAGCAATnAA	ATTGACTTCT
120	ATTCAACTTA	AACAACCATT	GGCGTAGTTG	TAAAGAAGGC	CAGTAGGCGC	GTTGGTGAAG
180	TACTGAATTA	AAGTAGACAT	GAAGCAATCG	CAATATTCCA	CTACTCCAGA	GAAGTAACTG
240	CAAAATCGAA	CTGGCGACTT	GTTAAAGTAA	TGTTGCTGAT	ACAGCTTAAC	AACATTAACG
300	AACTGAAGAA	CTGAAGAACC	GTTGCTCCAA	AGTAACAGTA	CTGAATCAGT	AACGATTCAG
360	TGGCGAAAGC	CAGAAGTTGT	ACTGAAGAAC	CGAACAACAA	CTATGGAAGG	GAAATCGAAG
420	GTTTTTATAC	TTACATTAAA	TTTTAATCTG	TGAAGAGTAA	AAGAAAAAAC	AAAGAAGACG
480	TGTTATTATA	GTGCTTTTTG	TATAAGCATG	CTTATTTTAA	AAGCACTGTG	TTTGTTTAAC
540	GAGTAAAAGA	TAATTTTAGT	AAAGTTTAAT	ACTTTGTACT	AAACTTTATT	AAGCTTAATT

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTCTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
23	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	AATTTATAGA	TGCTGAAGAA	1500
30	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	AAGGTAAGAA	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
35	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
	GGTATTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
40	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
45	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
50	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	r amphalacha	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280

	TCATGTAAAC	CTGTCCAACA	ATTTTATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
	CGATATGTTA	ATCAAAACTA	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
5	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	AATGGATCAA	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
23	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	TGTAATGGAA	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
30	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
35	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
	AAAGAGCGTA	TTAAAACATT	AAAACATAAT	GTAGATGTAC	TAACATTGAC	TGCAACCCCA	3600
	ATACCTAGAA	CATTGCATAT	GAGTATGCTA	GGTGTGCGGG	ATTTGTCAGT	GATTGAAACG	3660
40	CCGCCAGAAA	ATCGTTTCCC	AGTTCAAACA	TATGTATTAG	AACAGAACAT	GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGT	GATGGCCAAG	TGTTTTATCT	TTATAATAAA	3780
45	GTGCAATCCA	TTTATGAAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	3900
	AATAATGAAT	ATGATATTTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	3960
50	AATGCAAATA	CTTTGATCAT	TGAAGATGCA	GATCGCTTTG	GATTGAGTCA	GTTGTATCAA	4020
	TTAAGAGGTC	GTGTTGGTCG	TTCAAGTCGT	ATTGGTTATG	CATACTTCTT	ACATCCAGCA	4080
	AATAAGGTAC	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	4140
C.C.							

TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
GCTAAAATTG AA	4392
(2) INFORMATION FOR SEQ ID NO: 30:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
TTGGCCCAAT GATTGCTATA TGATCGCCTT TAGAGACCTC TATACTCATA GGTTTGGTAA	420
TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
TATTTTTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
AGCGTTTGA	729
(2) INFORMATION FOR SEQ ID NO: 31:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 13856 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TtCTGACTAC	GAAGGCATCA	300
10	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
25	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATGGCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTtA	1320
10	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
15	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	AAAATAAATA	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

	AAATGACTTT	TAACATTATC	TCTAGAGCCA	TCTTTTAAAG	ATGTTTGACT	AACGTCATAT	1920
	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTTTAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2160
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TTTGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
20	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATTAATAATA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	AAATAATÄGA	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTAATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
40	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
45	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	AAAAATAAAT	GAGCCAACCG	CAATGGATGG	CCCTTGTTC	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTAT	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATCA	AATTCGTTTA	CCGCTTTAAT	3540

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTTTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
10	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
15	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
25	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAÄATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAAAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
70	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
10	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
15	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	594 0
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTCA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
20	CATCCATCTT	AATAATTTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
25	TCCTTTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTGTGCA	6240
23	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
30	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGT	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
35	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	ATTGAAAAAG	TGTTAAATAA	AATGGACGGC	6660
	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
40	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
45	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	СТТАТААААА	CTTAAGAAAT	7020
50	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
10	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
15	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATTTT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
20	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
?5	AAAGAAAAGC	AATTAATATT	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
:5	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	8100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA	CACATTATGA	ACGAGATGGT	8160
30	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
35	GATACTGTTA	TTGCAGATAT	TTTACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
10	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
15	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	8760
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	8820
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTnA	8880
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	8940
	ATTATTATAA	ATAATAAGTA	CACTACGGtT	TA'CAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	ттааатаата	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTCATC	AACACCAAAT	TAAAAAATCG	9300
10	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	AATGTTTAAA	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
25	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGtCGTA	TGCGACCACA	TCACTTTGAT	9840
25	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACC	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACCTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
40	CACTCATGAT	TTTAATTTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
4 5	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	AGCATTTGTG	10740

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	AGTTGGATTA	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	СТАААТААТС	CGTGTAGCCT	11160
	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCTTGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
0.5	GTATCACTCT	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAATATAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAAA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTT	CATCTGACCA	ATCGATTCCG	12300
	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGATT	TATCAGCGAC	CGCTGGTACA	TACACATAAA	TAGAAGGATC	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAAT	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATCT	ATACCGATAT	ACATTAAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGGT	GGATACTTTT	TAATAGGTGC	AAAATCTGGC	12600

ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGcCCT	12780
TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
GGAATAATTG	AATATAGTGA	CGGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATTT	TTTATAAACA	13080
TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTTC	TAGCATTTGC	13140
TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
GTGCTTCAAT	ACTAAATACT	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
CAAAATCTTC	ACCGACATCT	CTTAATATAT	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
(2) ÎNFORM	ATION FOR SE	EQ ID NO: 32	2:			

40

5

10

15

20

25

30

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10088 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60

AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATT	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
10	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTaT	540
	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
15	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TTGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACGA	840
?0	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
?5	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	TTAATAATAA	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC	AGATGTGATG	ACAGGaAAAG	1140
30	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATTGG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGATACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
35	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
	ATTÉATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
10	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
15	TGATATCGAA	AAGGTATTTA	ACATTCTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
50	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	TGGAATTTAC	1980

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATTTA	CAAGAAGCCA	2160
5	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTTAATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
	AAAGGTTACA	TTAGCAATTG	CTTGGACGAG	TGGTAACGAA	ACGTATACCG	CAGCATCGTG	3240
	TAAAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
40	TGACTCTTTA	TTTTATTTAA	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
4 5	CGAGACTCĀA	TCCAGGATAA	ATTAATATTA	AACAAAGCAA	ATGTATTAAG	CACACTTGCT	3540
	AACAACCCAG	GTTTATCATG	CATTGGTGTA	ATTAAAAAACA	TCAATGATGT	CGCATTTTGA	3600
50	TCAAATTGCT	GCTGATTTTT	TATAACTAAA	AAACGTGTCA	CGTTATGTGG	ATAGTCTTCA	3660
	ATATGTGTAT	CAATAGGTGT	AAAACCATAA	GctTCGCCAC	TACCTAAAGG	TGCAATTGCT	3720

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
_	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTITC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TTGCTTCATT	TTCAGAAAAA	4080
10	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАААТААТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
15	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TTGTGCTTCG	TTACGTTCGA	ATAGTTCGAA	TTGCTTTGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
25	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
30	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	GAACGATGCT	TCGTCAGTAA	CATCTCTTGC	ATCAATGACA	TTTAACGAAT	CCCAAAATAA	5040
10	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
40	TTCTGTATGT	GTATATGTCC	CAGTTTCTTT	TATTTCTAGT	TCAATGTCAT	GTAAACGTTT	5160
	ATTGATAATT	TGCGTTTCAT	AATGACACTC	TTTATACATG	TTTTCTATGA	AAGCTTGAGC	5220
45	CTCTTTAAAT	AACATTAACA	ACACCTCGCT	TTATATTATA	GTCTACATTA	TTAAAATACT	5280
	CTTAAAAATT	ATGTATATGT	CATTAAATTG	TTGGTTGATT	TTAATTAAAA	GTATGGAAAT	5340
	TAAGGGGCTC	TTATGTATAT	AAAAAAATGA	ATTATGATAA	AATGTAAGAA	AATATTTAGG	5400
50	TCGATTGGAG	AGATACAAGT	GTACCAATTA	GAAGACGACA	GTTTAATGTT	ACATAATGAC	5460
	TTATATCAAA	TAAATATGGC	TGAAAGTTAT	TGGAATGATA	ATATTCATGA	AAAAATGGCT	5520
	GTATTTGATT	TGTATTTTAG	AAAAATGCCA	TTTAATAGTG	GCTATGCTGT	TTTTAATGGT	5580

	TIMAAGICIA	TIGGCTACAA	GGATGATTTC	TTATCATATT	TAAAAGATTT	AAAATTCACA	5700
_	GGCAGCATCC	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	5760
5	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGAA	ATTATTTGGT	6000
	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTTTAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	actaaaatta	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
25	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
23	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	тттатаааат	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TTTAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
40	TATTGTACAA	GAAATGAAAG	TGAAAAAGCG	TATCGATAGT	GCTGAAGAAA	TTATGGAATT	6960
	AAAGCAATTT	АТААААААТТ	ATGTACAATC	ACATTCATTT	АТААААТСТТ	TAGTGTTAGG	7020
45	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG	AGCAAGCTTT	GCGATTCATT	GAACCAGATG	AAATAGTAAC	7200
50	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	Т АСААТТТ ТС	7320

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	АААТТАААТА	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	ACTAAAGTAA	GTATGTTCAT	TTGAGAATAA	ATTTTTTTT	ATGACAAATT	7860
15	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
	AGACCATATT	CAAAATATTA	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	AAATTTAGGA	TATGGCGTTA	CGCACTATGC	8340
30	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TAAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
35	TTATGAACCA	GAAGAACTGG	AAaGTGTAGT	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	AAtGCAAGGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
40	CGTTTTTGTA	GGTAAGAAAA	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
45	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGCTG	8880
45	GGGGTTCTTA	АТАТТТТААА	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
50	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	ATAAATATTT	9120
	CAATAACAAT	TGAGCTATTA	TTTTTATTAT	ATAATGTGAG	TTGTTTGTGT	TCTGTATTTA	9180

CATTTAAAT	TC TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
AATTACATI	T GAATTTATCA	АТАСТАААТА	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
TTCTAAAAT	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
TGGATACTG	G AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
TCCATATAA	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
CATGCCCTG	C GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
TATTATTTT	T AGTAAGATTG	TCAACTTCAT	TATATGTAGT	CATTCTATTA	AGAAGTTGTG	9660
GACTTCTTC	C CTGAGTTTGT	CCAAAATAAA	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
GGAATCGTT	G TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9780
TGTTAGTAT	T ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
TGTTACCTT	G AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGsTCGTTGT	9900
AAGTATAAT	T ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
GTTGCGTTA	C ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
GACGTGGTG	T TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	10080
TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

5

10

15

20

25

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7563 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

C (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGAAACGnA	CCCnATGCGT	ATGCTTGACG	TGCCAAAATT	AAATACGAAG	TTCATAGCTT	60
TGAGGTACCA	GAAGAACATT	TATCTGGTCA	AGAAGTCGCA	GnACTCATAC	AAGCAAATGT	120
TAAAACAGTA	TTTAAAACGC	TTGTTCTAGA	AAATACAAAA	CATGAACATT	TTGTATTTGT	180
TATCCCAGTA	AGTGAAACTT	TAGATATGAA	AAAGGCAGCT	GCTTTGGTTG	GAGAGAAGAA	240
ATTGCAGCTT	ATGCCTTTAG	ATAATTTGAA	AAATGTAACG	GGATACATTC	GTGGTGGGTG	300
TTCGCCTGTT	GGTATGAAAA	CATTGTTTCC	AACAGTCGTT	GACAAATCGT	GTGAAAATTA	360
TAGTCATATC	AGTGTGAGTG	GTGGGCTTCG	AACAATGCAA	ATCACAATAG	CTGTTGAGGA	420

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	600
	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	660
5	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	720
	GATGATAATT	ACTGaAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	780
10	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	840
, 0	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	900
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	960
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	1020
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	1080
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	1140
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	1200
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	1260
	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	1320
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	1380
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	1440
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	1500
	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	1560
	GCAACAGCAA	CATATAAATT	CGCTGGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	1620
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	1680
	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	1740
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	1800
10	ATAACGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	1860
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	1920
	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	1980
15	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	2040
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	2100
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	2160
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	2220
	GGTGATAGTA	CAGTTGCAGG	CATGGTGGCT	GGAATTGCTT	CAGGTTTAAC	GATTGAAAAA	2280

	CGGGACGCTA	TAGAAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	2400
	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	2460
5	ATGACAAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	2580
	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	2640
10	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGcAGcG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	2760
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	GATAAAATGG	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
25	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
30	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
30	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
35	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
40	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
	TATTAACAGT	GACGGCTACA	GGCTTATTGA	TGATTTATGC	CTTTAATCCA	CCAGCATCTT	3 780
45	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
	TAGGTTTAGT	TATTGGCGCT	ATGATGGCGA	TTGATATGGG	CGGTCCATTC	AACAAAGCGG	3900
50	CATATGTTTT	TGCAACAGGT	GCGTTGATTG	AAGGTAATGC	AGCACCAATT	ACAGCTGCAA	3960
50	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
			4 . p 4 . 1 . p 5	·	######################################	لالشسس لا ياستان لا	4080

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	4200
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	4260
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	4320
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	4380
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	4440
	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTTTCTATT	AATTCAGTTT	4500
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	4560
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	4620
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4680
	TTAATTATAT	ATAACGGCAA	AGTTTATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
30	GCGGAgCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
45	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAAGTA	5580
45	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	ATAAAACAAG	GCAAGGTTCA	CACATTTAGC	TAATAAATAA	TCATAATTAA	ATGTATGCAA	5880

	TTTTCTGGGG	GTGTCTAAAT	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	6000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6180
	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAAA	AGATGATTGC	6240
10	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTTG	AAGCAATCAA	6360
15	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
20	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
25	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
30	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	ATCAGTGATG	CATTAATTAG	AATGCAACGT	GAACATGTAC	ATATGAGTCT	7020
35	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
40	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
45	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAnGAAAA	7500
	GTGAAAATAG	TATTGGAACT	CAATATCTTT	AATGATTTAA	TGAATAAnTT	TTATTGAAAG	7560
50	CGA						7563

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

			-				
60	AAGCGCATTT	ACGAAACAAT	GACCCATTAG	AACCATTGAT	TTCATGGCGG	TTATATCAAC	10
120	TCGCCCAAAT	TTTCTTCTAT	GCTTACGGTA	AATTATACGT	AACAAGAAGG	satgaattga	
180	ATTCAATTTG	TAATGTCTCA	ATCGAAACGA	ACATAGTCAA	ATTATTTAAA	GTAATTGATT	
240	TAAAGTATTG	ACAATGATGT	GCAATTCACA	ATTATTAGAT	GTCCAGAATC	ATTGATAATC	15
300	GCTCGACAAT	GTGTTAATGT	ACTTCAAACA	AGGATTATTA	CTGTGTCTAA	GCAAGAGGAC	
360	AATAGCCTCT	TGGGTGAAAC	CATGATGAAT	TGATTATTCT	ATGGTATTTT	AAATTTAAAG	
420	ATCACATGAC	GTTATTTAAC	TTGACATTTA	TTTATCTGCA	TTGAAAGTAA	ATTAAAGAAA	20
480	AAATATTGAA	AATTAAAAGA	AGCGTCGACC	AGGTGCAAGT	CCATCATTGT	GTGCTTGGTT	
540	TGTAAAGGAT	CAAGAGCTCG	ATTAAAACAG	TTTAGATCAG	CTAAAGTTAG	AACTATCATA	05
600	AGCAGCATGA	TAATAAAAAC	TCATTTTCAG	AGTGTAGAAG	CCAATCATTT	TTGGAATATA	25
660	TATAATTTAT	TACAATTCGC	GTTGTTTATG	CCTTACTGCT	TATAAAAATG	GGCGTTTCAT	
720	CAGTATTTAG	CCTCACGCAT	AAAGCGTTGT	GATAGAAATT	ACTCACTTAT	GATTATGATT	30
780	TTAATAATTT	ACTTCATCTC	AACTTCTGCC	GCCTTAAGCA	TTGCGGCATT	TAATTTCGCC	
840	AGTTATTATT	CATCATTATT	CATGTTGATT	TTTCACTTCG	TCTTTCTATA	TATTAAAACA	
900	AGTATAATAT	ATTTTTCACA	AGTAGTTTGA	TTGCAACACA	GCACATTTCC	TGTACACCCA	35
960	CACTGTAAAT	AAATATCCAG	ATATCGCCTA	GTCTACAGAA	CTGAAATTTG	AATGTACCGT	
1020	ACTCTCCGAT	GTCTTACCAC	CGTACACAAA	TTCCGCATAT	CTGATAGTTG	TCTTCAAATA	
1080	AGGGAAACAT	TAAATAATTT	GCTTTATTTT	ACCTATTTAT	TTGCCATCCC	TGACAGTTCA	40
1140	CCATTTAGGC	CATGATGCAT	ATTTTCAACG	AATTTGATAC	ATCTAGGCGC	CGTTCAAAAA	
1200	AAGCTGATTA	TATCTTCTGC	CCATAAATGA	TGTTTTAATG	CCAATTGTTT	CGATTAATTT	
1260	GGCTTTTTGA	TTGATGGGTC	gCATACTTCA	CATCTTTTTA	TAATTTCCCC	GCATCAAGCA	45
1320	TGGTGACTCT	TATGTAAGTT	ACTGTCATGA	GCCAACATTA	TATCAATCGG	TGAAAAGGTG	
1380	ATGTGCAGCA	ATGCCCCATA	CCTGCTTTCG	TGCATAAAAC	CATTCATTAA	AGTCTTAAAG	50
1440	GTTAGATGTT	CAATATGTGC	GAAATACCTA	AGCTTGACTT	TGGAAAATGC	TTTGCTTGTG	
1500	CTGATACGTT	TTAAATTAAG	ТТААААСТАА	ATATAAAACA	TCAACACAGT	AAATATGGTC	

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATTGCA	GTGCCTGTAT	CGACTTCAAA	1620
	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	1680
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	1740
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	1800
10	ATCAATTAAC	СТТССТТТТС	AATTATATAG	AATGCAATTT	ATCAACTTTA	CATAATTGAG	1860
10	ACAAGTTGAT	TATCTTTCCT	AATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	1920
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1980
15	AAGCTATATT	TACAGGrATT	ATTAACTCMA	GCAACTTAGA	TGCCAATGAT	AATTTAA	2040
	CAAATAAATC	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	2100
	GTTATGAtGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CaGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
25	GTTTTTCAAA	CAACTTTGAC	CCTAAATCTA	AAGATGAAAT	TAACGATTTA	GTTAAAGCAT	2400
	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	ATTTTTATAT	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
30	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGAtTTG	AGCATGGCTC	AATTAAGAAA	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACA#ACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
40	ATAATTTATT	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
45	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
50	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT	3180
20	GTTTGGACTC	ACCTCTAAAA	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
				~~~~~ <b>~~</b>	1,00 <u>1,1,00</u> ,000	ביים או עריים עיים עריים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים א	3 7 0 0

CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
TCCACATATG CT	3492
(2) INFORMATION FOR SEQ ID NO: 35:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1973 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
CATCAATTTC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTLGCATT GGTGCTGTTG ATGTTGACAT	360
TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	660
CTTAÃAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATnG	780
CTTTAAAATA ACAATTGCng GTGGTCAAGG CCATCTTAAA GGTCAAATTT TNAGAATTGG	840
TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
TTTAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
TAATCAAAAT TATACCTTCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG	1140

AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG

GTA	ATACGAT	TTCAGCTACT	GAACATACAC	TGGCAATGTT	ATTATCAATG	GCACGAAATA	1320
TTC	CGCAAGC	ACACCAATCA	CTTACAAATA	AAGAATGGAA	TCGAAATGCA	TTTAAAGGTA	1380
CTG	AGCTTTA	TCATAAAACA	TTAGGTGTCA	TTGGTGCTGG	TAGAATTGGT	TTAGGTGTTG	1440
CTA	<b>AAC</b> GTGC	GCAAAGTTTC	GGAATGAAAA	TACTAGCTTT	TGACCCTTAC	TTAACGGATG	1500
AAA	AAGCAAA	ATCTTTAAGC	ATTACGAAGG	CAACAGTTGA	TGAGATTGCC	CAACATTCTG	1560
ATT	TCGTTAC	ATTACATACA	CCACTAACAC	CTAAAACAAA	AGGCTTAATT	AATGCTGTCT	1620
TTT	TTGCCAA	AGCAAAACCT	AGTTTGCAAA	TAATCAATGT	GGCACGTGGT	GGTATTATTG	1680
ATG	AAAAGGC	GCTAATAAAA	GCATTAGACG	AAGGACAAAT	TAGTCGGGCA	GCTATCGATG	1740
TGT	TTGAACA	TGAACCTGCA	ACTGACTCGC	CTCTTGTTGC	ACATGATAAA	ATTATTGTTA	1800
CAC	CTCATTT	GGGTGCTTCA	ACAGTCGAAG	CTCAAGAAAA	AGTGGCAATT	TCTGTTTCAA	1860
ATG	AAATCAT	CGAAATTTTA	ATTGATGGTA	CTGTAACGCA	TGCAgTGAAT	GCACCTAAAA	1920
TGG	ACTTAAG	CAATATAGAT	GATACTGTAA	AATCATTCAT	CAATTTAAGC	CAA	1973
(2)	INFORMA	ATION FOR SE	EQ ID NO: 36	5:			
	(3) 65	CUENCE CUAD	3	• .			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7620 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

GGTGTTTCAG	ATGTCACTGG	TTGATTTTTA	ATTGTAGACG	GGTATTTTGG	GCTTTCGCCA	60
TATTTATTTG	CCGGCTTACT	GTCAAAGCAT	AGGAATACTA	TCATAACAAT	TGTTAGGCCT	120
AAATAAACAA	AATAAAGAAG	TACTAACAAA	ATATTAAGAC	CCATCGGCAT	TAATGTAAAA	180
TCACTGTCAT	AATAACTATC	GATAATCTGT	AATACTATAT	AAAATATAAT	ACTGAATACT	240
GTCATAATCA	TTGGAAATAA	CATTGTTCTT	GATATATCGT	GAAATCTTCG	AACGCACAAC	300
GCTAAATTTG	GAATAAACGT	TGCCAAACTA	TAGACAAAAG	TATACACAGA	TGTAAGGATA	360
ATCATCAATA	TACTCATAAC	TATTAATGTT	TCGTTATCCG	CCGCTATAGA	AATAAAGAAT	420
AGAAATAGGT	TTATTATTAG	CACACACACA	GCTGGAACCA	TAAGTATCAA	ATGCCATAGT	480
GCCATATACC	AATATTCACT	ACGTCTTGAT	CTCCCCTTAA	AATTTACATA	ATTTTTCCAA	540
AATAAAACGA	ATGATTTCAT	AAAACCTACT	TGAGGTAATT	GTTCCATTGT	AATCTCCCTT	600
		2 1 4 4 THE WATER	مستواحات لا بمصا	ת עדי ע תאמייי ע יייי	ר ע הרד ער הרד ז'י	FFO

	GIAAAAIGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	78
	TTCGTTAACT	АТАСТАААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	84
5	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTTTA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTT	TTTCATTTTT	ATTTAAATTA	966
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	102
70	TAAAAACTTA	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
30	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
30	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
35	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
40	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
45	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
50	CGGTCATGGT	AATGCTGCTG	CTTATGGTAA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	ACTGACAGCG	GCTCTTGCAG	CTGCAACTTT	AGGTCTTGTA	TTTGGAGGGC	TTATCGGTGG	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATTTA	CATAGTAAAT	TTAATGCCAC	2580
	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	2640
5	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	2700
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	2760
10	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	2820
	CATTCAATTA	ATCGAAATTT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	2880
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	2940
15	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAc	GCCAAATGCC	3000
	ATGGCAAATT	TAGATGTTAT	тасталалал	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	3060
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
20	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
25	ATTGATTTCA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
30	CITTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
35	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
40	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
45	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
00	CGCATCTTAT	CAAAATCTGA	ATGCATTGCG	TCAGATTGGG	CCATTGCTAT	TTCAACATGT	4200
				- ope loss ga com to ga money a		marcontry man	: 260

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	438
5	TTCATACCAT	AAATCCCAGC	TATGAATGTT	AACGGTGAAA	ATATAACTGA	TACTAATGTC	444
3	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	450
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	456
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	462
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	468
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	474
15	AAATGATAAA	CACTATCTTC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	480
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC	486
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	492
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	498
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	504
25	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	510
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
30	CCCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	540
35	ATATCATTTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
40	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	564
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	5700
	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	576
45	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	5820
	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	5880
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	594
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	6000
	ACAGCTTGAA	AGATCAACAT	TTCCTAGAAC	ATTATGATAA	ATTTCAAAAT	GAGGTTGCTC	6060

ATAATTTTTT	AGATCAATTT	TATCAAATTA	AAGGGCAATA	CTTTATCATC	ACACATATCA	6180
ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
CTATATTTTC	АААААСАААА	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
ATTTATTCGG	TAATGGCTGT	TGATTAKCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GATACTAATT	6840
GaTCATAAAC	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGnAAACT	CTGGTGTCTT	6900
TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGtACTTAAA	GTGATTTTAT	CCCAACAATC	6960
TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
CTCTTTTATA	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
GAAGCAAATA	TTTATTGACA	ACGCTATTCA	TAACACGGTT	TCTAATCAAT	GTCTTAACCT	7260
ACCTTTATAT	ATTTTATGTA	TCCAATGATK	GTCTATCCCC	TACATTCTTT	GCCAAAAAA	7320
GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTTTCAAAT	TTAAGACTAC	AATTGAACAG	7380
TGATTTTTCA	TCATTATAAC	AGACAACTAG	ACATATTGAT	AAGTAAAGAA	AAGAACTTTA	7440
TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
TCAACAACCG	AATATTCATC	GTGGTAAGCG	ATATGGTAAG	AAAAAACGTT	CATTGGTAAG	7560
CATGATTATT	CAAATCATTG	TTGTWATATT	AACCACCATC	GCTGGAATAC	AGCATGGTGG	7620
			_			

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9834 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATLACCG	amTTTCtTAG	Aatcatttaa	AGATGATAAA	TATACAAACG	TTGGTAATTT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
10	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
15	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
20	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	ТАТТААААА	600
	TGTTAAAGCA	ATTAAAGAAG	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
25	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TTTTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
	TTGGTTGAAT	GAACATGTAC	TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
30	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GCCGGGCCC	AAACATAGAG	960
	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	CTCCCTATAA	1020
35	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGATATTT	ACAGCGATTG	1080
55	TTAAACCGAG	ATTGGCAATT	TGGACAACGC	TCTACCATCA	TATATTCATT	GATTGTTAAT	1140
	TCGTGTTTGC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
40	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
45	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560
50	AATTAGAATC	TTGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	CACATGAAGG	ATACTCTAAA	GGTTGTTTAG	ATTCTCTACG	TTCTGTTAAA	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	1800
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	1860
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	1920
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	1980
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	2040
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	2100
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	2160
15	TAGTAGGGGT	AATGTAAAAG	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	2220
75	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG	TTGTAAAGCT	TGATAGATGT	2280
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	2340
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	TATAATTATA	2400
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTCAAAG	TATTGTTGCT	2460
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	2580
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	2640
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	2700
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	2760
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGctACCGC	CAATATGTTT	2820
0.5	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	2880
35	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	2940
	AAAÇTCCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
40	ATTCATTTTC	ATAATAAACA	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	AGTAATAAGT	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
45	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	3240
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
	· · · · · · · · · · · · · · · · · · ·	ΑΛΑΑΑΑΑ	TTCATAGGTT	TATGTAATCA	ATCTATCAAG	TATAACGAAG	3480

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
	GTCTGCAGAA	CTATTATAAT	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAm	3840
10	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	TTGAAAAAA	GCTTGAAAAA	TTAGAAGAAA	AATAACTATA	ATCATTTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
	AACTATATGT	ATAAAAATGT	CACGCAGATG	CTATTTAAAT	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
?0	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
?5	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tATTTTGGAA	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	CTAAAATTTA	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
10	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	AGTTCAAGTA	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
15	GATTCTGTAT	TTTTATGGcm	ATCTGGGcaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
50	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	GATAGTTTTG	ATGCTGGTGC	AGGTATGTTA	CAAGCATTAG	GTGCTCAATT	CTATGATGAC	5280

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	5400
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCÃÃ	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
15	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATACGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
25	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCaTAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
35	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
40	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
70	AACGTATTGC	GTTTACCATT	GCATTTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
45	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	атаасааата	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
50	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	GAAATACTTT	AGGATCTAAG	ACACGTTTAG	TATTGCCTAG	TTTGTATGGC	TTACCATCAT	7080

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTTTCTAAT	GTAGCAAATA	7200
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	7260
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	7320
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TTGGTTCTTC	ATTATATTCG	7380
10	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	7440
70	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	7500
	AAAGCAATCG	CACCTGAAAT	CAGTGTACTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	7560
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7620
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7680
	TTAAGCCTAA	AATTAAGCTT	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATTG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
35	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
40	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	AATGAAAAAA	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
45	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTTTGTTTT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	8700
	TGAAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50	CTTGTATGGT	TCAAATTTAA	ATAAGAAAAA	CTGTTAATCT	TTGCTATTAT	ACTATGATTT	8820
	AATAATAGCA	AAGGATTAAC	AGTTTTGTCG	TTGTTATAAA	TTGATAATAG	GGTTAAACAT	8880

	TTTACGCTGT	GATTTTGGAT	CGTCATCTGT	TAAATAACCA	ACACCGATAG	ACACTGACAA	9000
	TTTAATAACT	TCTTTGTTTG	GTAAATGGAA	TGATGATTTT	TCAACACCCG	AACGAATATT	9060
5	TTCAGCTAAT	TTAACACTTT	GATCAAGTGA	ATAATTGTGA	ATGACAACTG	AGAACTCTTC	9120
	GCCACCATTT	CTAAAAATTT	TAAATTGATT	CGGCACATAG	TTTTTAAGTA	ATTGAGACAT	9180
	TTGTTTTAAT	ACAGCATCAC	CTGATTTGTG	TGAGTAGGTA	TCATTGaCAT	CTTTAAATCC	9240
10	ATCGATATCG	ATTAATAATA	ATGCGATACT	TTGATGTTCT	TTTTCAGCTT	TTCGTGAAAT	9300
	TTCATTTAAA	TGTCTATCAA	ATTCTTTTAC	ATTACCTAAG	CCTGTTAAGT	AATCATATTT	9360
15	ATCTTCGTTT	TCATAACGAT	TTACGAGTGA	GAAGAAATGC	CAAATATCGA	CAAATGTTAT	9420
, 0	CGCTGAAGCT	AAAGTGATAA	TTAATGAAAT	TGGTATTAAA	ATGATAACTT	CCGATAGTGT	9480
	GTAAATAGGA	CTCACTAACG	CGACACCAAA	TAAAATGATT	ATTGTAACAA	CATTAAGTAT	9540
20	TAATAATGAT	AGCACATCAT	TTTGTTTTAA	AAATGGTCCA	ATAGCACTTG	TTACTGCAGC	9600
	AATAACAATC	AACGTAACAC	CGTACATAAT	CGAGTTGTTA	AATACTACAA	TTTCAACAAT	9660
	TGCTACAATT	ACTGTGGCAG	ATAATGTATA	GACCATATTT	GTAAATCTAC	СТАААААСАА	9720
25	TAAAGGAACG	AATGTTAAGT	GAATTAAATA	ATCTTCACGA	TAAGGGATAG	GGTAGACAGA	9780
	TAATAATAAT	GATACGATTG	TCATTAAAAC	AGTGACATAA	GCCTTAGAAA	AAAC	9834
	(2) INFORMA	ATION FOR SE	Q ID NO: 38	3:			
30	• •	-	ACTERISTICS 23439 base				

- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

5

## C(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

TCTCAATCAG	ATGAAAAATT	GCATATCGTA	GGTTTTACAG	AAAGTGCAAA	ATATAATGCG	60
TCATCAGTCA	TTTTCACGAA	TGACGCTACC	ATTGCCAAGA	TCAATCCTAG	ATTGACTGGA	120
GATAAAATTA	ATGCAGTTGT	TGTACGTGAT	ACAAATTGGA	AAGACAAAAA	ATTAAACCAA	180
GAGCTTGAAG	CGGTAAGTAT	TAATGACTTT	ATTGAAAATT	TACCAGGTTA	TAAACCACAG	240
AACTTAACAT	TAAACTTTAT	GATTTCATTC	TTATTTGTCA	TTTCAGCTAC	AGTTATAGGC	300
ATTTTCCTAT	ATGTCATGAC	ATTACAAAAG	ACGAGTTTAT	TTGGCATATT	AAAAGCTCAA	360
GGATTTACGA	ATGGCTATTT	GGCGAATGTG	GTAATTTCGC	AGACGGTCAT	ATTAGCACTA	420
TTTGGTACGG	CATTTGGCTT	ACTGTTAACA	GGCGTTACAG	GTGCATTTTT	ACCTGATGCA	480

	ICIGIATIAG	GAAGTTTATT	CTCCATTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	AATGTTGAAA	TTTGAAAATG	TAACAAAGTC	ATTTAAAGAT	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
0	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
5	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
0	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT	TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
5	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	АТТААТААТА	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	AAATATAATA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
10	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAGCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
15	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACAGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
0	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
5	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
0	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	GTATTGAACC	TTTATCACAA	GCAGATATTG	TATCAGCCAA	TCCAATTCCA	ATCTATATTA	2280

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TTGTTACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	ACAAATAAAA	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	AAAAATTTTA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAÄĞĞ	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAgCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
45	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
70	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
	GCACGGGAGA	ACAATCAACC	GATTGTAGCA	TTAGAATCAA	CAATTATTTC	GCATGGTATG	4080

	GCCATTCCAG	CAACCATAGC	CATTATAGAT	GGCAAAATTA	AAATTGGTTT	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAC	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	4260
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	ACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGGCGTCCA	TAAAGGTGCA	4380
10	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	СТААААСААА	TGTCACTGTT	4440
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	4500
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
15	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	4680
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	4740
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAAA	4800
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	4860
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	4920
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4980
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTGAAGG	5100
30	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	5160
	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	5220
35	CATCTTTAAT	TATATTAAGG	TATTACCATT	TATTATCAAA	TATGTAGGTA	TCGCTATTAA	5280
33	TAAAATAACT	AGAATGGGGC	GCTTAGAAAG	TTATTTTGCT	ATTTCAACAG	CAATGTTTGG	5340
	GCAACCAGAA	GTATATTTAA	CAATAAAAGA	TATTATTCCA	AGATTATCTA	GAGCGAAATT	5400
40	ATATACAATT	GCGACGTCTG	GTATGAGTGC	TGTTAGTATG	GCAATGCTAG	GTTCATATAT	5460
	GCAGATGATT	GAACCCAAGT	TCGTAGTTAC	AGCAGTAATG	TTAAATATTT	TTAGTGCGCT	5520
	TATCATCGCC	AGTGTAATCA	ATCCCTATAA	ATCTGATGAT	ACTGATGTTG	AAATTGATAA	5580
45	CTTAACGAAA	TCCACAGAAA	CTAAAACATT	GAATGGAAAA	ACAGGAAAAC	CTAAGAAAGT	5640
	TGCCTTTTTC	CAAATGATTG	GTGATAGTGC	GATGGATGGG	TTTAAAATCG	CTGTTGTAGT	5700
	AGCCGTAATG	TTGTTAGCAT	TTATTTCATT	AATGGAAGCA	ATTAATATCA	TGTTTGGTAG	5760
50	TGTTGGTTTG	AACTTTAAAC	AGCTTATTGG	CTATGTGTTT	GCACCAATCG	CATTCTTAAT	5820
	GGGGATTCCA	TGGAGCGAAC	TGTTCCAGCT	GGCTCTTTAA	TGGCGACTAA	ATTAATTACA	5880

	CAAGGTATCA	TTTCAGTTTA	CTTAGTAAGc	TTCGCTAATT	TTGGTACGGT	TGGTATCATC	6000
	GTAGGTTCAA	TTAAAGGCAT	TAGTGATAAA	CAAGGAGAAA	AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTAC	TTGGTTCAAC	TCTAGCTTCA	ATCATTTCAG	GATCAATCAT	TGGCTTAGTA	6120
	TTGTAAATGA	ATCGAAGTAC	СТАААТТААА	TTCATGGCAA	AGCTAAACCC	CGTCACCAAG	6180
10	TTGGCGCAAC	AGCGCATGCA	TAACTTAGTG	ACGGGGTTTT	ATCATAACAA	TCTACTTTTT	6240
70	CGTAGCCGTT	TTTGAAATGT	ATGTTGATGG	TTTATCTTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGT	ATATAAGCAA	AGACAAAAGC	6360
15	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
20	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
30	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
55	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCGČCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
40	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
45	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	aatg <b>taa</b> tcg	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATOGCAAG	CGACCACTTG	CGGTAAAGAA	ACTATTGGTA	CTTTGGCTCG	CGCGCTTGGT	7680

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	7800
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	7860
5	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	7920
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	7980
10	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	8040
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	8100
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	8160
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTTT	CATGATTAAA	8220
	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	AGTAAATGGA	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	ATGAAAATGT	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACÃACAAA	AGTGAGCTTA	TTACTGACAA	AGTATATGAG	ATTGTAACAG	GATATATGAA	9000
40	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
70	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
45	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	9300
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50	ACGTGCTGCA	ACGAGTGCAT	TGAAAAAGCG	CATGATTGCC	GGAGGATTTA	CGAGAAGCAC	9420
	ACATGTGCCA	GTATTGTTTG	AAGCAGCTGA	AGAAGGTGAT	GATATTGCAA	AACAAATATT	9480

AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
TCACACTCTA	TCTAGGACCA	ATCTAAACTA	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
AAATTGAAGA	AGCTGAGATA	TTAAAATTT	AGAAAATGTA	AAAAAATATT	TGGTATTGAA	9900
ATTAAAAAAG	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	ATGTTGATAA	10020
GTTTGACTCA	GATTCGTATT	TTCTAATAAA	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	10080
GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
AATĀAATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
AATGATTACT	ATTATATATG	TTTATAAAAA	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
CCCAAAGAAA	CGTTAGACGA	ATTAGTATCA	TATATTAGAA	CACATGCACC	GAACGTTGAA	11280

	TATATTGGCA	CGACGTTACA	TGGCTATACT	AGTTATACGC	AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AATTTTTAAA	AGATGTACTA	CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	TATGTATAAA	CGTGTGATGG	ACTTAGGCGT	TCATTGTTCA	11520
	GTCGTTGGTG	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
10	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
10	TATCTTAGGT	GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
25	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
25	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
40	TAGCCCACTA	ATAAAGAAAG	cGcAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
	ATTAATTTTT	CAAACAAAAA	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TAAATAATGT	AATGACCAAG	12780
45	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	TGATTCATTA	AAGCAACCCC	TTTGTTTAAA	TGAATACACA	AAACTGTATG	ATGCATCTTC	13080

	ATAGTTTGAA	TTATTTTCAT	ACCAATACAA	ATTAACTAAT	TATATATAGA	TTGAAACTAT	13200
	ATTACTTAAT	AAAATATTTA	TCTTAAATGT	TGTTGTGTTG	ATTCAACACC	ACAACTAAAA	13260
5	GTGTTTATAA	ATTATTTGGA	AATACACATA	TTTGTAAATG	ATTAGTATCG	ATTTAATATC	13320
	GTATTATTAA	ATTTTTATTA	ATTTTGTAGT	CTTAATCMAA	AAATAATATA	TGTCATGTTA	13380
	TATTGAAGGT	GCAGTTGTTT	TTCATTCTCA	AGAGGGGGTC	AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGTT	AAGAGGACAA	GAAGAAAGAA	AGTATAGTAT	TAGAAAGTAT	TCAATAGGCG	13500
	TGGTGTCAGT	GTTAGCGGCT	ACAATGTTTG	TTGTGTCATC	ACATGAAGCA	CAAGCCTCGG	13560
15	AAAAAACATC	AACTAATGCA	GCGGCACAAA	AAGAAACACT	AAATCAACCG	GGAGAACAAG	13620
, 0	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	CAGGAAAGCA	ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
20	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGC	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
25	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
30	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
	CAGATAAAAA	TACTGATAAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
35	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG	ACCACTTAAA	GCGAATCAAG	14340
	TACAACCACT	TAACAAATAT	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
10	ATAÁTGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	TAAATTTAAA	GTTATCGAAG	14460
40	AATTGAGAAA	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
<b>4</b> 5	CACATGCAGC	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA	AGAGTTTTTA	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
50	ATGGTGGAGA	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTAGC	AACACCACAT	AATGGTTCAC	AAGCAGCTGA	TAAGTTTGGA	AATACAGAAG	14880

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATTGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	AAAATTTGGA	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
10	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
15	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	AATTTAATAT	15540
20	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ATAAATTGTA	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
25	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
30	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
35	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTCAG	TGTTGATGCG	16200
40	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	AATGAtGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
45	ATAAACGATA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAgATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	16560
50	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	16620
	TCATTATAAC	ACTGTCTTAA	ATTTCCATGA	AAAATAGTCT	TAAGACGATG	AGTCATGATA	16680

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	AGGTTCTGTG	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCAGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
10	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
15	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	AATGTTTGAA	TCAGCAAACG	17340
20	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGATTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
30	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
25	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
35	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
40	CTGAAAATAT	GAATATGAAA	AAGAAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
	AACGTTATCA	TATACGTGGG	TATATGAAGA	GGGAATGGTA	TTAAGAACGC	TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
<b>4</b> 5	AGACTATGCC	TTAATAGATG	AAGGTAAGGA	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	18240
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	18300
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTITIGATG	ATGCATACAT	TGGCGCAGAC	18360
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGT	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	18420
	TGCTGAGCAT	TTTAGAATGA	TGGCAGCGTT	ATATCCAAAT	CGTATTGATT	TAGGTATTGG	18480

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	ATTAGGTAAA	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
20	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	ATAAGATGAA	19200
	AAAGTTAGCC	AATTATTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	19380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
35	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATGTTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
40	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
45	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	CTCAAAGAAA	CAAATTCAAC	ATTGAAAGTC	GTGTTCAATG	TATTTACAGA	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACTGCGATTG	20400
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	20460
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	20520
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	20580
	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	20640
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	20700
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	20760
15	AACAGTGTAG	CTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGAATCA	21420
	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
35	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTĞATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TTGCATACAT	TAGGTGCAAC	21600
40	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
45	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
	TATAACCATT	GAAGAATTTA	TAATTTAAA	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50	TGATAAAAAG	TATAAAAATT	GGGATTGGAA	TTATGGCAAG	TCACCCAAAT	ATGAATACAA	22020
	TCGAAGTGAA	AGATTATCTT	CAGGTACGGT	AGACATAACA	ATTTCTGTTG	AACAAAATCG	22080

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
10	AAAGTATGAT	ATATATATGG	TTTTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
10	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTTTTATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	GATTTAAGTA	AAGCTGATAA	AGTAATTAAA	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGCAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
35	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGAGACGTA	GCTGAACTGC	ACATTTTGGC	23280
35	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tTTGTTGGGA	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	тастаааааа	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439
	(2) INFORMA	TION FOR SE	Q ID NO: 39	):			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4522 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT 60

45

50

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	180
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	240
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTATTAA	CTCAAATGAC	300
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	360
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	420
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	480
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	540
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	600
,3	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	660
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACtAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTTGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	ACTAAATGTA	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATITACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TTtTTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTTGATTC	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	Tracgatcat	1380
10	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
40	CCTATGAGCG	TAGCTTATGA	AAATGAAAAT	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
45	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	GTTTCAAGAC	TTCAGAGGTA	CCGTCAGCTA	TTTTTGGCAC	AATGAAACCT	1860

	AAACAAAAAT	ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	1980
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	2040
5	AATGTATCAT	CAACAACAAA	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	2100
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	2160
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	2220
10	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGcGGAACgC	2280
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	2400
15	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
20	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
	AAAGATGAAC	TAAAAAATCA	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
	aATAAAGAAG	AATATTCAGK	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
?5	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
30	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	AATAGAAAAG	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
35	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATCTGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	agtgaaagaa	TGCCTGCGAG	TCAAGCCACA	3240
10	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	CATATAAAAC	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
!5	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
·5	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
:0	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTTTCA	3600
	AATAAAAATG	AAGATACAGC	TAATGAAAAT	AGACCTCGGA	CGAACCAACA	AGATGTTGCA	3660

CCAAGTGTTT	CATTACTAGA	AGAACCACAA	GTTATTGAGT	CGGACGAGGA	CTGGATTACA	3780
GATAAAAAGA	AAGAACTGAA	TGACGCATTA	TTTTACTTTA	ATGTACCTGC	AGAAGTACAA	3840
GATGTAACTG	AAGGTCCAAG	TGTTACAAGA	TTTGAATTAT	CAGTTGAAAA	AGGTGTTAAA	3900
GTTTCAAGAA	TTACGGCATT	ACAAGATGAC	ATTAAAATGG	CATTGGCAGC	GAAAGATATT	3960
CGTATAGAAG	CGCCTATTCC	AGGAACTAGT	CGTGTTGGTA	TTGAAGTTCC	GAACCAAAAT	4020
CCAACGACAG	TCAACTTACG	TTCTATTATT	GAATCTCC&A	GTTTTAAAAA	TGCTGAATCT	4080
AAATTAACAG	TTGCGATGGG	GTATAGAATT	AATAATGAAC	CATTACTTAT	GGATATTGCT	4140
AAAACGCCAC	ACGCACTAAT	TGCAGGTGCA	ACTGGATCAG	GGAAATCAGT	TTGTATCAAT	4200
AGTATTTTGA	TGTCTTTACT	АТАТАААААТ	CATCCTGAGG	AATTAAGATT	ATTACTTATC	4260
GATCCAAAAA	TGGTTGAATT	AGCTCCTTAT	AATGGTTTGC	CACATTTAGT	TGCACCGGTA	4320
ATTACAGATG	TCAAAGCAGC	TACACAGAGT	TTAAAATGGG	CCGTAGAAGA	AATGGAACGA	4380
CGTTATAAGT	TATTTGCACA	TTACCCATGT	ACGTANTĀTĀ	ACAGCATTTA	ACTIAAAAAGC	4440
CCCATATGAT	GAAAGAATGn	CAAAAATTGT	CATTGTAaTT	GATGAGTTGG	CTGATTTAAT	4500
GATGATGGTC	CGCAAGAAGT	TG				4522
(2) INFORMS	TTON FOR CE	O ID NO. 40	١.			

#### (2) INFORMATION FOR SEQ ID NO: 40:

5

10

15

20

25

30

40

45

50

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

60	TTCATAATTT	TGCAATAATA	TGACATTTAG	ATATTTTGCA	GGATACGTAT	TCAAGTTTAC
120	CTGTTGGCTC	GCGCTCCAAC	CAAAATCTAG	AATGCTGTTA	GATAGCTTTC	GCCCGTTGTT
180	CAAGTGATAA	CAGCAATATG	TAACCTTTAC	TTTATGTTGA	AATCTTGATC	AATCGTTTAA
240	CTCATATTGT	CTCCATAATG	ACAGCATCTT	AATTTTTACA	CGTGCAGTAT	TGACACAATT
300	TGTACGTAAC	GTCCGCCTGT	AAAAGATAAC	ATGGGACTTT	TTTCAATATC	TTTGGATTAA
360	CGAAAGATTC	ATTTTTCTTC	GTACGTCCAA	ATGTCGAAAC	AATATGCACA	CTTTTATTAA
420	ATGATACTTT	ATCATCGTTA	ATGTGGATCA	GTCATTATTC	GCTGAAGTTT	TCAACCATTC
480	CACTGACAAT	ATATCACCAA	AACGTCAACG	TGTAAATCCA	TTGTCAATAC	GTCTTTATTT
540	GTCCATCTTG	ACATGGACAA	AAGTTTCGAA	ACTTCTTAGA	TTTTTTACGA	ATCCATTGGA

	TTTCATTCCT TCTTGTAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC	660
_	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1076 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TTGGTTTAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTTTT TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACCGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
40	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
45	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS:	

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

5	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	42:		
	TGACCACAAT	GCCCAATACA	ACCATCCCAT	GGTAAAGCCA	AGAGATGAGT	CAATAAAGCG	60
10	TGTTGAATAA	GAGCTGAATG	AACCTGATAC	TGGATAAAAT	GTTGCCAACT	CTCCAATTGA	120
	TGACATTAAG	AAATATAGCA	TGACACCAAT	AACAAGATAA	GCGAGTATAG	CGCCTCCAGG	180
	ACCAGCTTGA	GAAATGATAT	TACCAGTAGC	TACAAATAGA	CCAGTCCCAA	TTGCACCACC	240
15	TATAGCAATC	ATGGAAATGT	GTCTTGAGTT	AAGACTACGG	TTCATTTTAT	TATCTTCCAT	300
	ATTTAGTCTC	CCATCTATTT	AAATATACCC	ATTATTGTAA	GCTTTTTAAG	TGTACTATTC	360
	AATAACTATT	TAGTACTGTA	AAGCGAAAAA	TTTAAAATTT	TCTGATTTTT	TAATCATCTT	420
20	GAGCATGTTT	AATTGTAATT	TTGATGGGGT	AATTATAA	TATGTATTAA	ATTATAATTA	480
	TnATAAATTG	TGGAGGGaTG	ACTATGTCAC	AACAAGACAA	AAAGTTAACT	GGTGTTTTTG	540
	GGCATCCAGT	ATCAGACCGA	GAAAATAGTA	TGACAGCAGG	GCCTAGGGGA	CCTCTTTTAA	600
25	TGCAAGATAT	TTACTTTTTA	GAGCAAATGT	CTCAATTTGA	TAGAGAAGTA	ATACCAGAAC	660
	GTCGAATGCA	TGCCAAAGGT	TCTGGTGCAT	TTGGGACATT	TACTGTAACT	AAAGATATAA	720
	CAAAATATAC	GAATGCTAAA	ALATTCTCTG	AAATAGGTAA	GCAAACCGAA	ATGTTTGCCC	780
30	GTTTCTCTAC	TGTAGCAGGA	GAACGTGGTG	CTGCTGATGC	GGACGTGACA	TTCGAGGATT	840
	TGCGTTAAAG	TTCTACACTG	AAGAAGGGAA	CTGGGaTTTA	GTAGGGAATA	ACACACCAGT	900
25	ATTCTTCTTT	AGAGATCCAA	AGTTATTTGT	TAGTTTAAAT	CGTGCGGTGA	AACGAGATCC	960
35	TAGAACAAAT	ATGAGAGATG	CACAAAATAA	CTGGGATTTC	TGGaCGGGTt	TCCAGAAGCA	1020
	TTGCACCAAG	TAACGATCTT	AATGTCAGAT	AGAGGGATTC	CTAAAGATTT	ACGTCATATG	1080
40	CATGGGTTCG	GTTCTCACAC	ATACTCTATG	TATAATGATT	CTGGTGAACG	TGTTTGGGTT	1140
	AAATTCCATT	TTAGAACGCA	ACAAGGTATT	GAAAACTTAA	CTGATGAAGA	AGCTGCTGAA	1200
	ATTATAGCTA	CAGATCGTGA	TTCATCTCAA	CGCGATTTAT	TCGAAGCCAT	TGAAAAAGGT	1260
45	GATTATCCAA	AATGGACAAT	GTATATTCAA	GTAATGACTG	AGGAACAAGC	TAAAAACCAT	1320
	AAAGATAATC	CATTTGATTT	AACAAAAGTA	TGGTATCACG	ATGAGTATCC	TCTAATTGAA	1380
	GTTGGAGAGT	TTGAATTAAA	TAGAAATCCA	GATAATTACT	TTATGGATGT	TGAACAAGCT	1440
50	GCGTTTGCAC	CAACTAATAT	TATTCCAGGA	TTAGATTTTT	CTCCAGACAA	AATGCTGCAA	1500
	GGGCGTTTAT	TCTCATATGG	CGATGCGCAA	AGATATCGAT	TAGGAGTTAA	TCATTGGCAG	1560

	GGICAAAIGC (	GUAGTIGA	CAATAACCAA	GGTGGAGGAA	CACATTATTA	TCCAAATAAC	1680
	CATGGTAAAT 1	TTGATTCTCA	ACCTGAATAT	AAAAAGCCAC	CATTCCCAAC	TGATGGATAC	1740
5	GGCTATGAAT A	ATAATCAACG	TCAAGATGAT	GATAATTATT	TTGAACAACC	AGGTAAATTG	1800
	TTTAGATTAC A	ATCAGAGGA	CGCTAAAGAA	AGAATTTTTA	CAAATACAGC	AAATGCAATG	1860
10	GAAGGCGTAA C	GGATGATGT	TAAACGACGT	CATATTCGTC	ATTGTTACAA	AGCTGACCCA	1920
	GAATATGGTA A	AGGTGTTGC	AAAAGCATTA	GGTATTGATA	TAAATTCTAT	TGATCTTGAA	1980
	ACTGAAAATG A	ATGAAACATA	CGAAAACTTT	GAAAAATAAA	TTTGATATGT	AGTTTCTATA	2040
	TTGCGTAGTT G	AGCAGTTTA	TGATATCATA	ATAAATCGTA	AAGATTCCTA	ACAAGAGAGG	2100
15	GTGTTTAACG T	GCGCGTAAA	CGTAACATTA	GCATGCACAG	AATGTGGCGA	TCGTAACTAT	2160
	ATCACTACTA A	AAATAAACG	TAATAATCCT	GAGCGTATTG	AAATGAAAAA	ATATTGCCCA	2220
20	AGATTAAACA A	ATATACGTT	ACATCGTGAA	ACTAAGTAAT	TCTTATCATT	CAAATACGAC	2280
20	GATTTGAAAA 1	AAAGCGGGC	TTACCTATTA	TATTGGGGAG	CTCGCTTTTT	TATGAAATTT	2340
	TTGTGAAGAG T	GATTAATGG	ATTGAGTTTC	ATCGGTAGAA	CAATATATGA	TTATATTAGT	2400
25	TGTTACTTTA T	TAAAaTTTG	AGAATATTTA	TAGAAGGAAA	TAGATTACTG	ATTTTATAAA	2 <b>4</b> 60
	GTCACTTTGT T	AGCGAATGC	TTGAAAGAGT	ATTTAATATA	GTAGAATTTA	AAATTTCAAA	2520
30	GCGGAATTTA A	TAAGTACGA	AGTAGTTCTG	GGTATGTTTT	ATAAATGTTC	GATAATACAC	2580
	TTTAATCTTA A	ATATGATGG	TTTAGAAAAT	GATTTAACAA	AGAAATGAaA	CTTTACTGTT	2640
	GAATTATGTG A	GGATTGTGT	TATTATATAA	ATCGTAATAA	TTACGATTTG	ATAAAAAGTG	2700
	AGGTAACTAT A	TATGGCTAA	GAAATCTAAA	ATAGCAAAAG	AGAGAAAAAG	AGAAGAGTTA	2760
35	GTAAATAAAT A	TTACGAATT	ACGTAAAGAG	TTAAAAGCAA	AAGGTGATTA	CGAAGCGTTA	2820
	AGAAAATTAC C	AAGAGATTC	ATCACCTACA	CGTTTAACTA	GAAGATGTAA	AGTAACTGGA	2880
	AGAĆCTAGAG G	TGTATTACG	TAAATTTGAA	ATGTCTCGTA	TTGCGTTTAG		2930
40	(2) INFORMAT	ION FOR SE	Q ID NO: 43	:			
45	(A (B (C	) LENGTH: ) TYPE: nu	ACTERISTICS 3606 base p cleic acid NESS: doubl : linear	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

50

	TTATAAAAAA	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TTGGTGCGTG	GGAAGCATCA	360
0	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
5	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
25	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
.5	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
10	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
15	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
50	CAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
5	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAG	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
10	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTTTTTCT	ATAGAAATTA	GTATYCCTTA	2220
	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
15	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
	TCAGTCACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
20	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
20	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	AAATTAGAAG	ATTTTTTCTC	2700
25	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	TATCTAAATA	TTTGGAAACA	2760
. •	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
30	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTTT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	AATGTCATAA	AATGGGTGCA	3000
	TCAATTTATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG	GTCAGTCTGC	3060
35	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTÇGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATTTC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
10	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gctaaaacaa	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
	GAAACCAATT	TTTGCATGTT	ATACAAAAGA	TGAAGGCGAT	ATTATATTA	CTAGTGAACA	3420
15	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCaA	3540
	ACAGCCGATG	aAGCAATTTT	TACMACMACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
50	TGGCTT						3606

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15109 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

5

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGC	AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
	AAAATTATAC	ACTTACGGCG	ATAACTGGGG	TCGTGGTGGA	GAAGTATTAT	ATCAAGCATT	120
	TGGTTTGAAA	ATGCAACsAG	AACAACAAAA	GTTAACTGCA	AAAGCAGGTT	GGGCTGAAGT	180
15	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGaAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATĞÜĞTAAA	GATTTAAAAG	Ажаааттаат	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
25	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
23	AATTTAATTA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
	TATGATTTTG	TAGAAAGATA	TATAACAACG	TTTTATAAAA	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTTATTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCAGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTAATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	CATATGAACG	AGGAAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	TAAATTTTAA	1080
	GAGCCAGTCA	AACATGTTGC	TTCAAATGTG	AGCGACAAAG	AAGCCTTTGA	AGACATTATT	1140
	CAAACTTTAA	AGAGACAATC	AGAAAAGTA	ACATTATTAT	TTACAGGCCC	GCTTACAGAT	1200
45	TTAGCAAAAG	CACTACAAAA	AGATTCATCT	ATCGTTCAGT	ATATAGAAAA	ATTAGTTTGG	1260
	ATGGGTGGCA	CCTTTTTACC	AAAAGGAAAT	GTTGAAGAAC	CTGAGCATGA	TGGTTCTGCA	1320
	GAATGGAATG	CATATTGGGA	TCCAGAAGCG	GTTAAAATTG	TTTTTGATAG	CGATATAGAG	1380
50	ATTGATATGG	TTGCTTTAGA	AAGTACGAAT	CAAGTACCGC	TAACGTTAGA	TGTTAGACAA	1440

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	1680
	ATAAATCATG	TAGATAACAA	CGCATTTTT	GATTATATAA	CTGCACTTGC	TAAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
25	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
23	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	TATATAAAAA	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	2760
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
	TAAAAGTTGC	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	3060
	TTGGTGTATT	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	3120
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	3180
50	CAGCAAAAGA	TATGTATGCA	AAGCAAGGTT	ATGTCTATCA	ATCGTTTTGT	TATCAAATAT	3240

	IMAGCIGGII	ICGAGIAGAA	AICAACIIAC	IGCIIIIIAA	AIIGIIIIGA	GCIACITATA	3360
	CTTATAAAAA	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATTTA	GGTCATTAGC	TAAGGTTACA	3540
	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
10	ATTAAAATTT	CTGATGAAAT	ACGTCCACTA	AAAATTAATA	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
?5	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
30	TTATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTTGC	TTAAGTTTGA	AATTTGATTG	4320
	ATAAAAATTA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
35	GGGCATCAAT	TAATAAATAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
. •	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAAAAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TTGCTGTTGT	GATTGCAATG	4560
10	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	GTAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	AAAAAATTTA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
:5	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
	TATAAATATG	CGAAAAATAG	TCTAGTATTA	ATTGGTGATA	AAGATTCAAA	TTACACTTCA	4920
50	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	הדתשמגנבה	CGAAACAGTA	TTTAGATAAC	AATAACTTAT	TTAAAGAAGT	CGAAAGTAAA	5040

	CAAGGITITG	TGTATAAAAC	TGACTTATAT	AAACAAAATA	AAAAAATTGA	TACTGTAAAA	5160
	GTAATTAAAG	AAGTAGAACT	TAAGAAGCCA	ATCACATACG	AAGCTGGTGC	TACATCAGAT	5220
5	AGTAAATTAG	CAAAAGAGTG	GATGGAATTC	TTAAAATCAG	ATAAAGCTAA	AGAAATACTA	5280
	AAAGAATACC	ACTTTGCAGC	ATAAGGAGTT	GTAATCCATG	CCTGACTTAA	CACCTTTTTG	5340
	GATATCAATA	CGAGTTGCTG	TAATCAGTAC	GATTATTGTA	ACGGTTTTAG	GTATTTTTAT	5400
10	ATCTAAATGG	TTGTATCGTC	GTAAGGGTTC	GTGGGTTAAA	GTATTGGAAA	GTTTATTGAT	5460
	ATTACCTATT	GTTTTGCCGC	CAACGGTATT	AGGTTTTATT	CTATTAATCA	TCTTCTCGCC	5520
15	AAGAGGACCA	ATCGGTCAAT	TCTTTGCGAA	TGTACTACAT	TTACCTGTAG	TGTTCACTTT	5580
,0	GACAGGTGCT	GTGATAGCAT	CTGTCATTGT	TAGTTTTCCA	CTAATGTATC	AACATACTGT	5640
	GCAAGGCTTC	AGAGGTATAG	ACACGAAAAT	GATTAATACA	GCTAGAACGA	TGGGAGCAAG	5700
20	TGAAACGAAA	ATTTTCCTCA	AATTAATTTT	ACCATTAGCT	AAACGCTCTA	TTTTAGCAGG	5760
	TATAATGATG	AGTTTTGCTC	GTGCATTAGG	TGAGTTTGGT	GCTACATTAA	TGGTTGCAGG	5820
	ATATATTCCA	AATAAAACGA	ATACACTACC	TTTAGAAATA	TACTTCTTAG	TGGAACAAGG	5880
25	TAGAGAAAAT	GAAGCGTGGT	TATGGGTATT	AGTGCTAGTC	GCATTCTCTA	TTGTGGTTAT	5940
	ATCTACAATT	AATTTATTGA	ATAAAGATAA	ATATAAGGAG	GTCGACTAGA	TGCTTAAAAT	6000
	CAATGTGAAA	TATCAATTAA	AGAACACTTT	AATTCGCATC	AATATAGATG	ATACTGAACC	6060
30	AAAAATTTAT	GCAGTTCGTG	GTCCATCTGG	CATTGGTAAA	ACTACTGTTT	TAAATATGAT	6120
	TGCCGGATTA	CGTAAAGCAG	ATGAAGCTAT	TATCGAAGTG	AATGGGCAAT	TACTTACTGA	6180
	TACGGCAAAA	AACGTGAATG	TTAAAATTCA	ACAACGACGT	ATTGGATATC	TGTTTCAAGA	6240
35	CTACCAATTG	TTTCCTAATA	TGACGGTCTA	TAAAAATATT	ACTTTTATGG	CTGAACCATC	6300
	TGAACACATC	GATCAATTAA	TTCAAACTTT	AAACATTGAT	CATTTGATGA	AACAATATCC	6360
40	TATGACATTG	TCAGGTGGAG	AGGCACAACG	TGTAGCACTT	GCACGTGCAC	TTAGCACrAA	6420
	ACCAGATTTA	ATTTTATTAG	ATGAACCTTT	TTCTAGTTTG	GATGATACTA	CAAAAGATGA	6480
	GAGTATTACA	TTAGTTAAAC	GTATTTTCAA	CGAATGGCAA	ATACCAATCA	TATTTGTGAC	6540
45	ACATTCAAAC	TATGAAGCAG	AACAAATGGC	TCATGAAATT	ATTACAATTG	GGTAATCATT	6600
	TATTTGCCAT	TAAAGAGTTT	AGAACGTATT	TAAAATTGTA	GAAGTGAATG	CTTCTATCAG	6660
	CATTTTAATG	ATGTTTTAAA	CTCTTTTTTA	GGGGCAGTTT	TTTTGAGAGA	CATTGACGCG	6720
50	CGTCATATAA	TGAAAGTAAT	GATAAAAAGA	AAGGATAACT	TAATGTGAGT	CAAGAACGTT	6780
	ATTCAAGGCA	AATTTTATTT	AAACAAATAG	GTGAAATAGG	TCAAAGCAAA	ATAAATCAAA	6840

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATTGAATTT	AGTAATTTAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGATAT	TGATGATTAT	ATTGCCCATG	7080
	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ATTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	7500
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	TGAAAATGCA	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA	7680
25	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
55	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
40	GTGCATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAA	AATCTCCAGA	8340
45	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	CGGAATAAGT	GTTGATGTAT	TTTTGGCAGC	CATAATACCA	GCGATTTGAG	CAGTGTTCAA	8640

	AATGCTTGAA	TGAGCGACAG	CAGTTCTTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGT	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAAA	TAAAAGTTTT	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8880
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTC	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
10	CGGCAATTAC	GGTAGCACTT	GAAAAAAGTC	TAAATCATAT	CTTAGCAGAA	GATATTGTAG	9000
	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGTTTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGAAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
35	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nCCAGCTGTT	AAACATATGT	9840
	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGCAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
<b>4</b> 5	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	TGAAAAATCT	GTTACAATTG	ACACCAATAT	CGTATTAGTT	GAAGGCTTTA	AAAATGCTGA	10440

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	10560
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	10620
5	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	10680
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	10740
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	10900
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	10860
	GAATAGGGCC	ATTACAAATT	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	10920
15	GTAAAGATGC	CTATCGAGCA	AATGAATATG	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	10980
75	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	11040
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	11100
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	11160
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	aataaaagt	TTCAAGTTGC	11220
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	11280
25	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	11340
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	11400
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	11460
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT	ATAGATGATG	AGAATCATAA	11520
	TGATAAAGGT	CCATTAGCĀG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	11580
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	11640
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	11700
	TGGACGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	CTATAACTAA	11760
10	AGCACTACAT	TCTGATAATT	ACAGTTTTAA	AAATGTATAT	CATGAATTAT	CAACGGATTA	11820
40	TTTGGATGTA	AGGGATGTAG	ATGCGCCCTC	ATATTGGTAC	AAAAATATAA	ATTATCAGCA	11880
	TGATTTGGAC	GCTTTAATTC	AAAAATTGTA	AGCTGTTAGG	AGGTCCACAA	ATGGTAGAAC	11940
<b>4</b> 8	AAATAAAAGA	TAAACTAGGA	CGTCCCATCC	GTGACTTACG	GTTATCTGTG	ACAGATCGGT	12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA	TGAACTTTTA	ACGTTTGATG	AAATGGCTAG	AATCGCTAAG	GTATATGCAG	12120
50	AATTAGGTGT	AAAAAAAATA	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	12180
	ATGTACTTAT	AGCTAAATTA	AATCAAATCG	ATGGTATTGA	AGATATTGGT	TTGACTACAA	12240

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
10	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
15	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATAAATTTTA	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	AGATATAAAT	CTAAACAAGA	TATAGCCAGC	AATTTAATAT	TTGTAATAGA	TAAAATGCTA	13560
40	AGTTTGATAT	ATAATAAATT	TAAGTAATTG	TATAATAATA	TGAATTACAA	ACATCTAAGA	13620
70	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13680
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	13740
45	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	AAAAGATTAG	CGGTAAAGAA	TTGAGGGATm	13800
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAaTCT	13860
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	13920
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	13980
	GCGTTACAAA	CTAAAAACTT	aAAAAgcaTG	CCAATCTCTA	TTCATCATAA	TTGCGTCTTG	14040

GTTCATGGCA	TTTCTAGTTA	CATGACGTCC	ATGAATTAAG	AAGTAAACAA	GCATAGTAAT	14160
GATTGCTAAA	GCGGCCATAA	AGCCGAAGAT	TTCACTATAT	GAAAACATAT	GAGTAAATAA	14220
CCCAAGGAAT	GATGGACCGA	AGCCGACACC	TGCATCTAGA	CCAACGTAAA	AAGTAGATGT	14280
CGCGATACCA	TATTTAATCG	GGGGTGAGAC	TTTTATCGCA	ATAGATTGCA	TTGCAGATGA	14340
TAAATTTCCA	TACCCTAAAC	CTAGGCAAGC	ACCAGCAAGT	AATATTAACC	AGCTTTGATA	14400
GCTTGAAATT	AAGCATACAA	ATGAAAGGAA	AAGCATGATA	AATGCTGGGT	AGACAATAAT	14460
ATTTTCATTT	TTATCATCCA	TCAATCTACC	AGCAATAGGT	CTAGTAATTA	ACGATGCTAT	14520
AGCATAGCAA	ATAAAGAAAT	AGCTTGCTGC	AGTGACTAGG	TGTCGCTCTA	AAGCAAATGC	14580
TTGTAAATAA	GTTAGGATGG	ACGCATAGGT	AACGCCAATT	AAAAGCATAA	TTACAGCAAC	14640
AGGAATGGCC	TCTTTTGCAA	TAAATTGATG	AATACTAAAT	CTTGGTTTAT	CAATGACATT	14700
AGTTTCAGTT	TTGTTATTTG	TTACTTCGAA	ATCAACTTTT	ATAAATAATG	AGATAATGAG	14760
TCCGAGTATĠ	CCTAATATGA	CACAAATAAT	AAACAGTAAG	TCAATTGCGT	ATTTTGTAAT	14820
AAGTAACATG	CCTAGAAATG	GGCCAATCGC	TGTACCTAAT	ACTAAACTTA	AGGAAAATAA	14880
ACTGATGCCT	TCACTTTTTC	TATTAACAGG	GGTAACGTAT	GCCGCAATAG	TACCTGTTGC	14940
AGTTGTCACA	ACTGCAGTTG	CGATACCGTT	TATGAGACGT	ACAAAGATTA	AAAAGCTAA	15000
AGATCCATCA	ATAAAATAAA	GTAATTGCGT	GATAATTAAA	GCAATTAAAC	CAATAAATAA	15060
TAATCGTTTA	GGTCCrATTT	satttacaaa	TTTACCTGTA	GCAAATCGA		15109

#### (2) INFORMATION FOR SEQ ID NO: 45:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9072 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

40

45

5

10

15

20

25

30

35

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

GAGAGTCAAT	GGCAAGAAGA	ATATAAATAT	TTGAGAGCGT	TAATCTTTAA	TGAAACAGAA	60
TTAGAGGAAG	CGTATAAATG	GATGCATCCT	TGTTACACGT	TGAATAATAA	AAATGTAGTA	120
CTTATCCATG	GCTTCAAAAA	TTATGTTGCA	CTATTATTTC	ATAAAGGTGC	CATTTTGGAG	180
GATAAATATC	ATACACTCAT	TCAACAGACT	GAAAAGGTGC	AAGCAGCTCG	TCAGTTACGA	240
TTTGAAAATT	TAACAGAGAT	TCAAGCACGT	ACCGAAGAAA	TTAAATATTA	TCTAGCCGAA	300
GCAATTAAAG	CTGAAAAAGC	TGGTAAAAAA	GTTGAAATGA	AGAAAACAGA	GGAATATGTT	360

	AAATTAACGC	CAGGCAGACA	ACATCAATAT	ATATATCATA	TTGGACAAGC	TAAACGCAgT	480
	GgAACAAGAC	AAAAGCGTGT	TGAAAAGTAT	ATTAACCAAA	TACTAGAAGG	TAAAGGGATG	540
5	CATGATAAGT	AATTAATGAG	TAAAGCATAC	CGGTTATACA	ACAACATACA	AGATGACACG	600
	AAACAACCAA	TGGCTCATGC	TGTTGGTTGT	TTTTTTAGGT	GTGTCTGTCA	TGGGCAACAC	660
	TTTGACGTTG	GAATTCCGTT	ACAGGCTTGG	GAGTAGAAAA	TGTTAGCAAA	AGGCAAGGGT	720
0	GTCTACAATG	AATGATGAAG	ATATTAAAAT	ATAAGGATGA	CTTTGTGAGT	GGCGGATGGG	780
	CGGTTGTCCG	TCTGTAACAA	TGGATGCGTG	TGCATTATTA	CAAAAATTCG	ACTTTTGTAA	840
5	TAATATTTCA	CATTTTCGAC	ACTTTTTTGC	TATAAAACAA	CCAATTGAGC	GATAATAAAT	900
5	TCGCTTTTAA	AAAATATGAG	TTATCTATTT	AGTTGCCAAA	GATAAAATAA	TAATGTTTAA	960
	TAACATCATA	TAGAGTATGT	TAGTTTTAAA	TGTCGAATAT	ACGAATGTGC	AAACAAAGTA	1020
20	ATCGGTAGAA	ATTCAACATA	CATAGCGCCG	TTTACTGTTA	AGTATTCACA	TTACAGATGA	1080
	AAATATAAA	ATTCTACATA	ATCAAGACCA	TGATGTGTAC	TTGTTTAACT	TATGACTCTA	1140
	TTTGTTTAAC	AATTGCGATA	ATGGTCTTTT	TATTTTATGC	GTATCATTCG	TCATATTTTT	1200
25	TATGAGGAAG	GAGAAATGAT	TATGTTAAGT	ATTAAGCATT	TAACGAAAAT	TTATTCTGGT	1260
	AATAAAAAGG	CAGTAGATGA	CATCTCTTTA	GATATTCAAT	CTGGGGAATT	TATCGCATTT	1320
	ATTGGAACCA	GTGGAAGTGG	CAAAACGACT	GCTTTAAGAA	TGATAAACCG	TATGATTGAA	1380
80	GCGACAGAAG	GACAAATTGA	AATTGATGGT	AAAGATGTTC	GGAGTATGAA	TCCTGTCGAA	1440
	TTGCGTAGAA	ATATTGGCTA	TGTTATTCAA	CAAATTGGCT	TAATGCCTCA	TATGACGATT	1500
	AAAGAGAATA	TTGTGTTGGT	ACCCAAATTG	TTGAAATGGA	CTAAAGAGGA	AAAGGATAAA	1560
15	CGTGCAAAGG	AATTAATTAA	ACTTGTGGAT	TTACCGGAGT	CATTTTTAGA	GCGTTATCCA	1620
	GCAGAACTAT	CAGGTGGGCA	ACAACAACGT	ATCGGTGTTG	TAAGAGCACT	TGCGGCCGAA	1680
_	CAAGATATTA	TTTTAATGGA	TGAACCTTTT	GGTGCATTGG	ATCCTATTAC	GAGAGATACG	1740
0	TTACAAGATT	TAGTTAAAAC	GTTACAACGA	AAATTAGGCA	AGACGTTTAT	CTTTGTAACA	1800
	CATGATATGG	ATGAAGCGAT	TAAATTAGCA	GACAAAATTT	GTATTATGTC	AGAAGGTAAG	1860
:5	GTGGTGCAAT	TTGATACGCC	AGACAATATT	TTAAGACATC	CCGCAAATGA	TTTTGTACGT	1920
	GATTTTATAG	GACAAAATAG	ACTGATTCAA	GACCGTCCCA	ATGACAAGAC	TGTAGAAGGT	1980
	GTAATGATTA	AACCAATCAC	GATACAAGCA	GAAGCAACAC	TGAATGACGC	CGTTCATATT	2040
50	ATGAGACAAA	AACGTGTTGA	TACTATTTTT	GTAGTAGATA	GTAATAACCA	TTTACTAGGT	2100
	TTCTTAGACA	TTGAAGATAT	AAATCAGGGT	ATACGTGGAC	ACAAAAGTTT	ACGAGACACC	2160

	ATTTTAAAAA	GAAACGTTAG	GAATGTACCT	GTCGTAGATG	ATCAACAGCG	TTTAGTAGGA	2280
	CTGATTACGC	GTGCCAATGT	TGTTGATATT	GTATATGACA	CGATTTGGGG	CGATAGTGAG	2340
5	GATACAGTGC	AAACAGAACA	TGTGGGGGAA	GACACTGCGT	CCTCAAAAGT	GCATGAGCAA	2400
	CACACTACTA	ATGTCAAAGT	ACGTGACATA	GGAGATGATA	AATCATGATT	GAGTTCCTAC	2460
	ATGAACATGG	TGGACAGTTG	ATGTCGAAAA	CACTGGAACA	TTTCTATATT	TCTATAGTGG	2520
10	CATTATTACT	TGCCATCATT	GTTGCAGTAC	CTATAGGCAT	TTTATTATCA	AAAACAAAGC	2580
	GAACTGCCAA	TATTGTATTA	ACTGTGGCAG	GTGTCTTACA	AACTATTCCA	ACACTAGCTG	2640
15	TACTTGCTAT	TATGATACCG	ATTTTTGGTG	TTGGTAAAAC	GCCTGCAATT	GTAGCGCTAT	2700
15	TTATTTATGT	ATTATTACCT	ATTTTAAATA	ACACGGTACT	CGGTGTTCAA	AATATTGATA	2760
	GCAACATTAA	AGAAGCTGGA	AAAAGTATGG	GAATGACACA	ATTTCAATTG	ATGAAGGATG	2820
20	TTGAATTGCC	GTTAGCATTG	CCGCTTATCA	TTGGTGGCAT	TCGTTTGTCA	TCTGTGTATG	2880
	TAATTAGTTG	GGCTACACTT	GCAAGTTATG	TAGGTGCGGG	TGGATTAGGT	GATTTCATTT	2940
	TCAATGGTTT	AAATTTATAT	GATCCACTGA	TGATTGTAAC	TGCAACGGTA	CTCGTTACTG	3000
25	CACTAGCATT	AGGTGTTGAT	GCCTTATTAG	CTTTAGTTGA	AAAATGGGTA	GTTCCCAAAG	3060
	GCTTAAAAGT	ATCTGGATAA	TTAGGAGGCT	AAGATAATGA	AGAAAATTAA	ATATATACTT	3120
	GTCGTGTTTG	TCTTATCGCT	TACCGTATTA	TCTGGATGTA	GTTTGCCCGG	ACTAGGTAGT	3180
30	AAGAGCACGA	AAAATGATGT	CAAAATTACA	GCATTATCAA	CAAGCGAATC	GCAAATTATT	3240
	TCACATATGT	TACGGTTGTT	AATAGAGCAT	GATACACACG	GTAAGATAAA	GCCAACATTA	3300
	GTAAATAATT	TAGGGTCAAG	TACGATTCAA	CATAATGCCT	TAATTAATGG	GGATGCTAAT	3360
35	ATATCAGGTG	TTAGATATAA	TGGCACAGAT	TTAACGGGAG	CTTTGAAGGA	AGCACCAATT	3420
	AAAAAATCCTA	AGAAAGCAAT	GATAGCAACA	CAACAAGGAT	TTAAAAAGAA	ATTTGATCAA	3480
	ACGTTTTTTG	ATTCGTATGG	TTTTGCGAAT	ACGTATGCAT	TCATGGTAAC	GAAGGAAACC	3540
40	GCTAAAAAAT	ATCATTTAGA	GACAGTTTCA	GATTTAGCAA	AGCATAGTAA	AGATTTACGT	3600
	TTAGGTATGG	ATAGTTCATG	GATGAATCGT	AAAGGCGATG	GCTATGAAGG	ATTTAAAAAA	3660
45	GAGTATGGTT	TTGACTTTGG	TACAGTGAGA	CCAATGCAAA	TAGGTCTAGT	CTACGACGCA	3720
70	TTAAACTCAG	AGAAGTTAGA	CGTTGCATTA	GGTTATTCTA	CAGATGGTCG	AATTGCGGCG	3780
	TATGATTTGA	AAGTACTTAA	AGATGATAAA	CAATTTTTCC	CACCTTATGC	TGCGAGTGCT	3840
50	GTTGCAACAA	ATGAATTATT	ACGGCAACAC	CCAGAACTTA	AAACGACGAT	TAATAAGTTG	3900
	ACAGGAAAGA	TTTCGACTTC	AGAGATGCAA	CGCTTGAATT	ATGAAGCGGA	TGGTAAAGGT	3960

	MAGGIGGIC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	408
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	414
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	420
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	ATTGCAATGT	426
10	TAGCTATTTT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTTTTA	ACAGTGTTTT	4320
U	TATATGCGTT	ACTTCCAATT	ATAAAAAACA	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTTTTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	4740
	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
?5	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4980
30	ATATTAAAAA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	5040
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	5100
	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	5160
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	5220
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	5280
10	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	5340
	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	5400
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	5460
15	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	5520
	GCGTTCAATA	TTTGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	5580
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	5640
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	5700
	GACGTCTCAT	TTTGGTTTAG	TTTCACCGTT	AATTCTAGGT	TTAATTGTTG	TGTTTATCTG	5760

	AATTTTTAAA	AATAGAGGAT	ACAGTGGTGC	AACTATITCA	AACITCITAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGĆ	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAĞCĀ	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	AAAGAAAATG	TTATAAAAGT	7140
40	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
4.	TAATATGGCA	TCGCTGAATG	AAAGTAGTTA	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
<del>1</del> 5	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TTATATTAAT	GGCGCAGTTG	CAACATTAGG	7500
	TAAACAACGT	CaTATTGAAG	CGCCAGTCAA	TCGCTTTATT	ACTGATTTAA	TTCATACTAA	7560

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AATAAATAA	GAACAGCAGT	7680
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
10	CAAGCAAGTA	ATTATATTAA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TIGCIGGTIT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	aatgt <b>aaa</b> ag	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TCAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCACCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATTAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
45	ATACAGCAAT	CC					9072

### (2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16826 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAGC	TGTAACTATA	TCATTTCTTT	CAACATTTAT	TGGGAAAATG	TTAGCTACAT	60
5	TTCTATATCC	GATTAATAAT	GTAGTACTTT	CATATATnTC	TGTAAATGAA	AGTGACAATA	120
	TAAAGAAGCA	ATATTTGaAA	ACTAATCTAA	TTGCTATAGC	TGCCCTATGT	TTAGTCATGA	180
	TTATATGTTA	TCCAATTACA	ATAATTATTG	TCTCTTTACT	GTATAACATĪ	GATTCAAGTT	240
10	TATATTCGAA	GTTTATTATT	TTAGGTAATA	TAGGTGTTTT	ATTCAATGCA	GTGAGTATTA	300
	TGATCCAAAC	TTTAAATACA	AAACACGCAT	CAATAACATT	ACAAGCGAAT	TATATGACGC	360
15	TTCACACGAT	TACATTTATA	TTCATAACTA	TTTTAATGAC	AATTGCGTTT	GGTCTAAATG	420
7.5	GATTCTTTTG	GACAACGCTG	TTCAGCAACA	TTATTAAGTA	TGTGATTTTA	AATATTATAG	480
	GTTTAAAGTC	TAAATTCATT	AATAAAAAGG	ACGTCGATTA	GATGAGTGAA	AAAAAGATTT	540
20	TGATTTTATG	TCAGTATTTT	TATCCGGAAT	ATGTATCTTC	TGCGACGTTA	CCAACTCAAT	600
	TGGCGGAAGA	TTTAATTGCG	AATCACATTA	ATGTCGATGT	CATGTGTGGA	TGGCCATATG	660
	AATATAGTAA	TCATAAACAG	GTTTCTAAAA	CCGAGATGCA	TCGTGGTATT	CGCATTCGAC	720
25	GTCTCAAGTA	TTCGAGGTTT	AATAACAAAA	GTAAGGTTGG	AAGGATCATC	AATTTCTTTA	780
	GTTTATTTTC	AAAATTCGTG	ATTAATATAC	CTAAAATGTT	GAAATATGAT	CAGATTCTTG	840
	TTTACTCTAA	TCCACCAATC	TTGCCATTAA	TACCAGACGT	TTTACACAGA	CTGCTTAAGA	900
30	AAAAATATTC	TTTTGTGGTG	TATGATATAG	CACCTGATAA	TGCGATTAAG	ACAGGTGCAA	960
	CTCGTCCAGG	TAGCATGATT	GATAAGCTGA	TGCGTTACAT	TAATAGACAT	GTCTACAAGA	1020
	ATGCTGAAAA	TGTCATTGTC	CTTGGTACGG	AAATGAAAAA	CTACTTACTA	AATCATCAAA	1080
35	TTTCTAAAAA	TGCTGACAAT	ATCCATGTGA	TTCCTAACTG	GTATGACATG	CGTCAATTAC	1140
	AAGACAATCG	TATCTATAAT	GACACATTTA	AAGCTTACCG	TGAGCAATAC	GACAAAATTT	1200
	TATTGTATAG	CGGTAATATG	GGGCAGTTAC	AGGATATGGA	GACACTTATC	TCATTTTTAA	1260
40	AATTAAATAA	GGATCAGTCT	CAAACGTTAA	CAATACTTTG	TGGTCATGGT	AAGAAATTTG	1320
	CAGATGTCAA	AACGGCAATA	Gaagaccatc	GTATTGAAAA	TGTTAAAATG	TTTGAGTTTT	1380
45	TAACAGGTAC	AGACTATGCT	GACGTATTAA	AAATTGCGGA	TGTATGTATT	GCATCGCTGA	1440
	TTAAAGAAGG	CGTCGGTTTA	GGCGTGCCGA	GCAAGAATTA	TGGCTATCTT	GCAGCTAAGA	1500
	AAGCGTTGGT	ACTCATCATG	GATAAGCAAT	CTGATATCGT	TCAACATGTT	GAACAATATG	1560
50	ATGCGGGTAT	CCAAATTGAT	AATGGCGATG	CACATGCCAT	TTATAACTTC	ATCAACACTC	1620
	ACTCGAGTAA	GGAATTGCAC	GAGATGGGTG	AGCGCGCACA	TCAACTGTTT	AAAGATAAAT	1680

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTT	CAAACAAAAA	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	АТАТААСААА	GACAGGGAAG	1980
- 0	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	AAAAATATTT	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAATCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
10	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
70	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AAAATAATAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
<b>4</b> 5	AAGTCATCTA	TTAAATAAAA	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTGAAG	GTATCTACAA	CGCCAGATGC	ATCTGATGTT	TTTATCATTG	CCGTTCCGAC	3480

	TAGTATITTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	AGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TTGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	AATAACTTAA	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	TAATAATAAT	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	ACAAATAAAA	4500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	AAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG	TATATTTGAT	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
40	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
40	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
45	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
	AGATTTTTAA	AGCAGTAAGA	GATTTGGCAG	ATGAATATAA	AGATGTTGTC	TTCATTTATC	5280

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	5400
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	5460
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	5520
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	5580
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	5640
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	5700
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	5760
15	GGTGACTAGG	GGTTTTTAAT	ATATTTATTT	TTGATAGTGG	TAGCCAATAT	CATATTTGAA	5820
	TACTITATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5880
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TITAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	AATGTAAAGA	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTTTTAGTA	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
40	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
40	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
45	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	7200
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	7260
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	7320
	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7380
	GTAGGTGCTG	TTGTTGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	7440
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	7740
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
25	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGctGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
30	ATATTTGGAC	CAGTGTTAAC	AGTGATTAAA	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
35	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	AACTTATAAA	8340
	GGTGĈGTTAA	GTAACTATCA	ACAAGTTAAA	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
40	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
40	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
45	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
50	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8820
	TATTAAAATT	TTCTATATGA	TAGGAATAAA	GCAAAGCGCG	AGTGTGCTGT	AAAAGTTTTC	8880

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	9000
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	9060
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	9120
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	9180
0	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	9240
0	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	9300
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	9360
5	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	9420
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	9480
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	9540
0	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	9600
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	9660
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCGTGG	9720
5	tTAATTTTAA	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	9780
	AAAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	9840
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	9900
0	GCGATTGATC	AAGTATCATC	ATTGTTGAAA	GAAAAATATG	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	10080
5	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGAÇÃTCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
0	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
5	TTAAAAAAAT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTTCAAC	10440
	CATtGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
0	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	CAAATGACGA	aGCAGAAGCT	AAACAATTTT	TAACAGAAGC	AGATATTAGT	ATTCAATTAG	10680

	TTGATTACCT	TGTAACTTGG	AACATTCCGG	AAGGCATTAC	GATGGATCAA	TATTTAGCAC	10800
	GTAAAAAGAA	AAATTCTGTT	CATTATGAAG	AAGTGCCAGA	AGTTGAATTT	AAACGCACAT	10860
5	ATGTATGTGA	AGATATGTCT	AAATGTATTT	GTTTATACAA	CGCACCTGAT	GAAGAAGCGG	10920
	TACGTCGCGC	GCGCAAAGCA	GTTGATACAC	CGATTGATGG	CATCGAAAAA	CTTTAATAAG	10980
10	ACAACAAGTT	GATGAGATAT	ATGTATATAG	GTTTGGCATG	GATTTCGATT	GCAGTTAATT	11040
70	AGAATAGCTC	AATGCTATAA	ATGTAAGTAG	TTGATATGAA	GAAACTAATG	AACTAAATGC	11100
	AAGTATTGTC	TAAAACAATC	ATTTTATTGA	AATTTAGTAG	AGCTGAAATT	AATATAACGT	11160
15	CGTTAATTGA	ATAACGCTTA	TGTTATAAGA	GCACTCATAC	CAAACCATAA	TCATCTATAG	11220
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	11280
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	11340
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	11400
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTTTACTCA	ATATTATCGG	11460
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	11520
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	11700
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11760
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	11820
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	11940
	AATTACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	12060
40	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	12120
	GATGTGATTG	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	12180
45	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	AAAAAATTAT	12240
	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT	TAAATTCAAT	AATTGGCCAG	12300
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	GCAATGTCAT	TATGGGACAA	AAAGGTATGC	ACTTAAATGA	ATTTAATAAT	AATGGCGATG	12480

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	12600
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	12660
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	12720
	ATGCGTATTG	CTGTGTGCTA	GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	12780
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	12840
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	12900
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	12960
15	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	13020
,,,	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	13080
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	13140
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	13200
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	13260
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	13320
25	CGCTATCGAA	CCGCTATTTC	AATTGATTAG	GCCGATATCT	CCGATAGCAT	GGGCACCATT	13380
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	13440
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	13500
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	13560
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG	GATTATTTGG	13740
	TTTTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAAGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
40	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATTTC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
45	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
10	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	AATGATTTAG	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	TAATATTCAA	GAAGACCATT	ATTTTGGTGC	GATTTCGAAA	CATGAATCAT	CAGATGAATT	14280

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	14400
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	14460
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	14520
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	14580
10	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTĀĀC	14640
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	14700
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	14760
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	14820
	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	AAATTTTTTAAA	ATAATATAAA	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	14940
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGÄACTTC	TTATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	15300
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTAA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	15540
	CAACATGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
	AAATCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
40	AAAAAGCATT	AGGATTAAAA	ACATTTTTAG	AGGAAAGAGG	ACATGAGTTC	ATTATATTAG	15720
	CAGATAATGG	TGAAGACTTA	GATAAACATT	TACCAGATAT	GGATGTGATT	ATTAGTGCGC	15780
4 <i>5</i>	CATTTTATCC	TGCATATATG	ACTCGTGAAC	GTATTGAAAA	AGCACCGAAC	TTGAAATTAG	15840
70	CAATTACAGC	AGGTGTAGGA	TCTGACCATG	TAGATTTAGC	GGCAGCAAGT	GAACACAATA	15900
	TTGGTGTCGT	TGAAGTTACA	GGAAGTAATA	CAGTTAGTGT	GGCAGAACAT	GCGGTTATGG	15960
50	ATTTATTAAT	ACTTCTTAGA	AACTATGAAG	AAGGTCATCG	TCAATCAGTA	GAAGGTGAAT	16020
	GGAACTTGTC	TCAAGTAGGT	AATCATGCGC	ATGAATTACA	ACACAAAACA	ATTGGTATTT	16080

TACAACACTA	TGATCCAATC	AATCAACAAG	ACCATAAATT	GTCTAAATTT	GTAAGCTTTG	16200
ATGAACTTGT	TTCAACAAGT	GATGCGATTA	CAATTCATGC	ACCATTAACA	CCAGAAACTG	16260
ATAACTTATT	TGATAAAGAT	GTTTTAAGTC	GTATGAAAAA	ACACAGTTAT	TTAGTGAATA	16320
CTGCACGTGG	TAAAATTGTA	AATCGCGATG	CGTTAGTTGA	AGCGTTAgCA	TCCGAGCATT	16380
TACAAGGATA	TGCTGGTGAT	GTTTGGTATC	CaCAACCtGC	ACCTGCTGAT	CATCCATGGA	16440
GAACAATGCC	TAGAAATGCT	ATGACGGTTC	ACTATTCAGG	TATGACTTTA	GAAGCACAAA	16500
AACGTATTGA	AGATGGAGTT	AAAGATATTT	TAGAGCGTTT	CTTCAATCAT	GAACCTTTCC	16560
aagataaaga	TATTATTGTT	GCAAGTGGTC	GTATTGCTAG	TAAAAGTTAT	ACAGCTAAAT	16620
ag <b>aataagga</b>	TGCTGGGCTA	GCGATTAACG	CTTTCAATTT	TATATAAATG	AATCATATAA	16680
GCACTACTGC	TGTTGTAAAG	ATGGCAGTAG	TTTTTTTATG	ATTACATCTA	AGTATAGTCA	16740
CGGCTATGTT	AGGACAATGA	TTTAACATTT	ACGCACATAT	GTGTTCACTT	ACGCAATTAT	16800
TGAnAAATnT	CATTCATGTG	GnAATC				16826
/->			_			

#### (2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4012 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TTCAATGAGA GTAGTGGGCT GATGTTTAGC GATATCGCGT AAGATTAACC	ATTGGCCATA	60
ATATATTG TGTTTTCTA AAATCGGCTC GGCTAATTTT AAATAGGGGC	GATATATTGT	120
TATAAAACTA TTGAAAAATT CTTGTGATAG CATAGTGACA TCTCCTAAGA	CAAAATAGTT	180
AGCTTAGCTA MCCTTTTTAC AACAATAGTA ATTATAAAAC GGGAGCAATT	AGAAATCAAT	240
ATATAATTAT TAAGAGCAAA AATAATTATA CTTTGTTAAA ATAAGCGTAA	TTACATGTAA	300
ATAGGGGGAT ACTAATGATA TTGAAATTTG ATCACATCAT TCATTATATA	GATCAGTTAG	360
ATCGGTTTAG TTTTCCAGGA GATGTTATAA AATTACATTC AGGTGGGTAT	CATCATAAAT	420
ATGGAACATT CAATAAATTA GGTTATATCA ATGAAAATTA TATTGAGCTA	CTAGATGTAG	480
AAAATAATGA AAAGTTGAAA AAGATGGCAA AAACGATAGA mGGCGGAGTC	GCTTTTGCTA	540
CTCAAATTGT TCAAGAGAAG TATGAGCAAG GCTTTAAAAA TATTTGTTTG	CGTACAAATG	600
ATATAGAGGC AGTTAAAAAT AAACTACAAA GTGAGCAGGT TGAAGTAGTA	GGGCCGATTC	660

	ATCAGGATGA	TGATGAAATT	AAGCCACCAT	TTTTTATTCA	ATGGGAAGAA	AGTGATTCCA	780
	TGCGTACTAA	AAAATTGCAA	AAATATTTTC	AAAAACAATT	TTCAATTGAA	ACTGTTATTG	840
5	TGAAAAGTAA	AAACCGATCA	CAAACAGTAT	CGAATTGGTT	GAAATGGTTT	GATATGGACA	900
	TTGTAGAAGA	GAATGACCAT	TACACAGATT	TGATTTTAAA	AAATGATGAT	ATTTATTTTA	960
	GAATTGAAGA	TGGTAAAGTT	TCAAAATATC	ATTCGGTTAT	CATAAAAGAC	GCACAAGCAA	1020
10	CTTCACCATA	TTCAATTTTT	ATCAGAGGTG	CTATTTATCG	CTTTGAACCA	TTAGTATAAA	1080
	TATACGTAAG	TGCTATGAGC	GAGAATGCCC	ATATGAATAA	TGACAAGCAC	AATGGAAAGA	1140
	ATCGTTAATA	TATTATTTAA	TCGTGATGAC	TTAATTAAAA	TGAAAAAGAT	TGATAATATA	1200
15	AATGTGAAAA	AGATAAGTAT	AACCCGTAAA	CTAAAGTAAT	TCACGGTGAG	AGGTTGACTC	1260
	AATGTCATAA	TGATTGCAAC	GATGTTCATA	ATTATAAATA	GACTTAAAAT	AATTGTTCTC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
20	TTAATGTGGT	TGCTTGAGGA	AAAATTTATT	CATTGAAGTC	AAGTTGGTTC	ΛΤΤΤΤΛΟΑΛΛ	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
25	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTICA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	AGTAATAAAG	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	CAATTAAAAT	CGATCCTGAT	2040
40	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
45	GTGCGCTTGG	CTTTAAAGCG	AGGTACGACA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
5.2	AGTTACTTTG	AAAATATTTA	TGATGCGTTG	CATGAAGATG	GAGATGCTGA	ACTATTTTTA	2400
50	GTAAAGTTGG	ATCCAAAAGA	AAATATAGCG	AAAGTAAATC	AAGAATTGAA	TGAACTTCAT	2460

	CAAAATATGA	TTAATGATGC	GCAAAATAAA	ATTGCTAAAA	ATGAAGATTT	AAAACGAGAC	2580
-	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTTT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2820
	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	AGATTGGTGA	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	ATTGAAATTA	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÁAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
40	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	ТАААААСАТА	AATATTCCAT	TAACGTGGCA	3840
.0	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	3900
	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	3960
45	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	4012

(2) INFORMATION FOR SEQ ID NO: 48:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7778 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	60
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	180
10	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	GaTAAATCAG	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	AAATTTATAT	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
	TTTAGAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATT	TGTATGATTT	ATATATAATT	TCATAAAGTC	1260
40	ATATTGAATT	TCATATAAAG	AGCAAACCCT	AGAAAAGGAG	GTGTTTGTGT	GAATTTATTA	1320
	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
45	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
40	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	GATAAAAAAG	ATGAGATTTT	AGAGCAAAAA	GAATCAAAAA	TTGAAGAAAA	ACAACAACAA	1680

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
_	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAAA	1860
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
10	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
?0	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
?5	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
35	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	AtCTAGTTAG	ACAGCACTTT	2940
	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TATATTAAAT	3000
10	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TTTATATTAT	3060
10	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
15	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
50	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
	CTAACATATT	GAAGTTTTCA	GACAAAGTAA	TGTCTCTCTA	TAATTGAAGA	AAAATAATTC	3480

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	AAAATATATA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3840
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	ATATTGATGA	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
15	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
, 0	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
20	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
25	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TTTAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	САТАТААСТА	TGAAACCACA	4500
30	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGGTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	TAAAAATA	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTATC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
	AGGATGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
40	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
•	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	5040
45	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
50	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
	GGTTATTCAA	ACAGAAGATG	AAATTGCTGC	TGTAACTATG	GCTATTGGTG	CAAATTATGG	5280

	IGGATTATCT	GGTATGACTG	AAACGCCATT	AGTCATTATT	AATACCCAAC	GAGGTGGACC	5400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
0	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
5	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	CAACAACAAA	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
20	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	6060
25	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
_	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
15	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	6480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
10	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAGAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
5	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCAAGAT	AAAGAAACAC	CATCATATGA	7020
5	ATCLCAAATT	AAAGAGTTAG	ATGATMCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

TGTATTTATA	ACAGATCCAT	TTATGCTACT	CAGTTTTTTA	CTATTACAAA	AAATAAAGGA	7200
GTTTTTAAAA	ATGAAAGACA	CATTAATGAG	TATACAAATA	ATTCCTAAAA	CACCAAACAA	7260
TGACAATGTT	ATACCTTACG	TAGACGAGGC	GATTAAAATA	ATTGACGAAT	CTGGTTTGCA	7320
TTTTAGAGTA	GGTCCGTTAG	AAACGACAGT	ACAAGGAAAT	ATGAATGAAT	GTTTAATTTT	7380
AATACAATCA	TTAAATGAAC	GAATGGTGGA	ACTTGAATGT	CCAAGTATTA	TTAGCCAAGT	7440
TAAGTTTTAT	CATGTGCCAG	ATGGCATCAC	TATTGAAACT	TTAACTGAAA	AATATGATGA	750 <b>0</b>
ATAACATTAA	AAGTGAAGTA	AACTGGATTT	GAATTGGCTT	GTTAGAGATG	ACGTATAACT	7560
TTAACTGTTT	TTGCACTTTA	TAGTTAAATT	TAATATAATT	ATTAAATGAT	ACGGGCAAAT	7620
AGAAAGGATT	TTGTAAAGTG	AACGAAGAAC	AAAGAAAAGC	AAGTTCTGTA	GATGTTTTAG	7680
CTGAGAGAGA	TAAGAAAGCA	GAAAAAGATT	ATAGTAAATA	TTTTGAACAT	GTTTATCAGC	7740
CGCCTAATTT	AAAAGCAAGC	GCAAAAAAAG	AGGTnAAA			7778
(2) INFORMA	ATION FOR SE	EQ ID NO: 49	<b>)</b> :			

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

35

40

**4**5

50

5

10

15

20

25

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

AGATGAAGTT	GTTACGAAAA	TTGCGTACGC	TGTTTCAGAA	CATGTCAAAA	TAGAAACAGG	60
TAATCCATTC	TTTCAAACAT	CACATAGTGG	TTGTGCGACG	GGCGGATCCT	GTAATTGTTC	120
АТТАТАААА	ACATCGAGTC	AGAAAAAGGT	GGTTATTGAA	CCACTAACTA	GCATCTGACT	180
CGATGTTTTT	ATTTATTCGG	GATTGTTTGT	TTGAATTGTT	GTGCTAAATC	TGGTCGATCT	240
GTCACAATCG	TGTGTGCACC	TTTTTGGTAT	AAATCATTCA	TCAGATTTAT	ACTATTTACG	300
CCATAATAGC	CTGGAATGAT	ATTCATATCA	TTTAACCATT	TGATAAAACG	AGATGAAGTC	360
AAATCAATGC	CTTTAAAATG	AGTAGGCATT	TGGAACGTTT	GTGCTAATGG	TTGGTAGTAC	420
CTACCACCTA	ATAAATGATA	TTTTAAAAAT	GCTTCTGTAA	CTTCCTGTTG	GCTAGCACCA	480
ATTGCGACGG	ATCCTTGTGC	AATTTTATTA	AAACGAACGA	TTTGTTCTTT	ATAAAAACTT	540
GTCACAAGAA	CGCGGTCAAA	TGCTTGATTT	TCTGCAATTG	TATCAAACAT	AATTTGTGGT	600
податтала	CTTCATAGGA	TTCAGGAGCA	TCTTTTAAGT	CTACGTTTAT	ATACATATCA	660

AATGTATGGG	CACTAACTTT	TCCAGAGCCG	TTCGTCGTTC	TATCAACAGT	TGCGTCATGA	840
AAAACGATAA	GCTGTTGATC	TTTTGTGAGT	CTCACATCTG	TTTCAAAGCC	ATCAACGCCT	900
AATTGTTTAG	CATAGTCAAA	TGCAAGTTGC	GTTTGCTCTG	GTCTTAAAGC	CATACCACCG	960
CGATGCGCAA	ATATATATGG	TGCATTGCCT	TTGAAAAAAG	CAGGGATGGT	TTGCTTTTTA	1020
GTAATCACTT	TATTTTTATT	GATCATTAAT	AGACTACTTA	AAAATCCAGC	ACCGACTAGT	1080
ACCGCATTTA	AAATGTTTCT	GTTTACnTTT	TTCATAAAAA	ATTCCTCC		1128
(2) INFORM	ATION FOR SE	EQ ID NO: 50	) :			

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6252 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

	CAAGCAAACA	ATCGTCGATA	AAATTGCTAA	AATAATAAAA	GTAATTCGAA	CTTTCATCAT	60
	GATCATCCTT	TGTTTATAGA	GTCAATATAA	GTATGGAATA	TGTTAGGTAT	ATAGTCAAAT	120
	GCGTCAACTA	ATGGGAATTT	TGGCATAGAT	AGAGAATTTA	AGGCAATTAA	AAAGGCATCA	180
1	AACAGTAATA	TGCTGCTTGA	TGCCCAAATG	ATGACTTTAG	CTAAATTGAT	TAGTCACTTT	240
	TAAAGATAAA	GAATTGTCAT	GAATTAAAAC	TCATGTAATG	ATGTGTTACA	TTTCGCAATG	300
	ATGGCTTTCA	GTTATTTATC	GATAACATCA	CTCTTGATAC	CTTTAGATTT	TAAGAAATCT	360
	TTAATTTTAT	CTTGTTGCTT	TTTATTAACA	TCACCGGCAT	ATTTTGTTGG	CACGTCGACA	420
	ACATTGATTT	TATTTTGCGG	TTGATAGCTA	AGCTTTTCAA	TATCTTCATC	AACATTGGCG	480
ı	ATTOTACTAT	TTAAAGCTTT	GAAGTAATTC	ATCATTAATT	CAACGGGTTT	CTTATATTCT	540
	TTAGGAATAT	TGTTTTCAGT	GACAAATTTC	TTGAAATGCA	AATCGTTTTT	AACAGCTAAG	600
	TTAGATAAGT	GGCTAAGTGT	TTCTGCTTGT	TTTTCAGTCA	CTTTTGTTTG	ACTGTCAATT	660
	TGTTTATCTA	GTTTATGTTG	CATAATATAT	TTGTTATCAA	GTATATCGCT	ATTTACAGAC	720
	AAATACTTTT	CTATAGCTTG	CTTCATCTCT	GCATCACTAA	TATCACTATT	TTTCTTATCT	780
	GAGTTAAAGA	TATCTTTTGT	tTCTAATTTT	TTAGCGCTTT	TAGGTGCATG	GATGCCAGTA	840
1	CTTGTATGAT	GATCTTCGTT	ATCAGATTGA	TCGGACGCGC	AACCTGTAAG	AATTAATGTC	900
	GATGCTAAAA	ATGTACTTAG	TAGTAATCTC	TTTTTCATAA	TGTAATATAA	CTCCTTAGTT	960
	TATCTTTAAT	TGAAAAAATA	TGTATTCATG	TTTAATAGAG	TAACATTGAA	TTAGTTTGGA	1020

	TCTATCAATA	ATGCATCATT	TTGGACGTTG	TTAAGGATAG	CTTTATCTAT	AAATAACTGC	1140
_	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTTC	ATATTGATTT	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGaTAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TTTGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
40	AAGÃCATCAT	AAGGTTCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
45	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	TTAAACTAAT	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTAATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTTCAGA	AAGAGATAGT	2760

	IGITGTTTA	AATCAGCATT	AAGCATGGTT	GTAATGCCTC	CTTAGATTTT	ACCTACTAAA	294
5	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	300
	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	306
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	312
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	318
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	324
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	330
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	336
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
20	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
?0	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAGTGAAT	GATTACTTTT	AAAATAAAGA	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
15	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTTGTTAAGA	AATTGGTAGA	4080
10	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	ATTAAAGAAA	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
15	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
:0	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCC	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
5	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAGCA	4740
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATCG	TAATTAATGC	5400
25	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
23	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	ATGAGACTAC	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5940
40	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
45	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT					6252

(2) INFORMATION FOR SEQ ID NO: 51:

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

10	ATCAAATCnC	AAAATATTTA	TTAATnAnAA	GGGGATTATC	CaTGTgAGAA	ACAAAGTAAT	60
	GCTCTTTTT	TACCTCTTGT	GGGTTGAAAA	aTGGATCATC	AGAGATAGAC	TTCTTCTTTT	120
	TCGAAGATGA	CATTTGATAC	TTTAATCTTC	TAAAACCATA	ACTTGTCGCA	TCAAAAATGC	180
15	CTTCTTGTAC	AAGTAAAATC	AAAAATATGC	TAATAAAAAT	AATTAATGAA	ACATAAAACA	240
	ATATATTTAA	ATATGTAATG	ATAGTATGGC	TATTAAAAAG	ССАТАТААТА	AACGTTAATA	300
	TTGGCGTTAT	TAGTGCCATT	CCAAGCCATT	TTTTCAACAT	TTGATCACTC	CCACTTATAG	360
20	AAAACTCTTA	CGCATAGTTT	ACATTAAAAT	CAGACATTGA	GGAATGATTT	TTTAATTTCT	420
20	TCAGCTTTAT	TGAAATTCTA	AAATCAATCA	TTCTTCATTA	GTTTAAAGCA	AAAAAATATT	480
	GATATATAGT	AAATATTGTA	TATATAATAT	TAGTTAAGAT	TTCaGAAAAT	TTTGAAGGGA	540
25	ATGGAAATTT	AGAAATCGGA	ATTTGTTAGA	GGAGGGGATT	AGATGGGGAA	ATATATTTTC	600
	AAACGATTTA	TTTATATGCT	TATTTCTTTA	TTTATTATTA	TTACAATTAC	ATTTTTCTTA	660
	ATGAAATTAA	TGCCAGGTTC	GCCATTTAAC	GATGCTAAAT	TAAATGCTGA	ACAAAAAGAA	720
30	ATTTTAAATG	AAAAATATGG	ATTAAATGAT	CCTGtAGCTA	CGCAGTATTT	ACATTATTTA	780
	AAAAATGTTG	TTACAGGCGA	TTTTGGTAAT	TCATTCCAGT	ATCATAATCA	ACCTGTGTGG	840
	GATTTGATTA	AACCGAGACT	ACTACCTTCT	TTTGAAATGG	GTCTTACAGC	AATGTTCaTC	900
35	GGTGTGATAC	TGGGACTTAT	TTTAGGTGTT	GCAGCAGCTA	СТАААСАААА	TTCTTGGGTT	960
	GACTATACAA	CTACAGTTAT	TTCAGTTATT	GCAGTATCTG	TACCATCTTT	TGTACTTGCT	1020
40	GTACTTTTAC	AATATGTATT	TGCAGTTAAA	TTAAGATGGT	TCCCAGTAGC	TGGATGGGAA	1080
·	GGTTTTTCGA	CCGCGGTATT	ACCGTCACTT	GCATTATCTG	CAGCTGTTTT	AGCAACTGTC	1140
	GCCAGATACA	TAAGAGCAGA	GATGATAGAG	GTATTAAGTT	CAGACTATAT	TTTATTAGCG	1200
45	AGAGCTAAAG	GTAATTCGAC	AATGCGTGTA	CTTTTTGGAC	ATGCACTTAG	AAATGCTTTA	1260
	ATTCCAATTA	TTACAATTAT	CGTTCCCATG	TTAGCAAGTA	TTTTAACAGG	CACTTTAACA	1320
50	ATTGAAAATA	TTTTTGGAGT	TCCTGGATTA	GGGGATCAAT	TCGTACGTTC	AATTACAACA	1380
	AATGATTTCT	CAGTAATCAT	GGCAATCACA	СТАТТАТТТА	GCACACTGTT	TATCGTTTCT	1440
	ATTTTTATTG	TAGATATTTT	GTACGGTGTG	ATAGATCCAC	GAATTCGTGT	TCcAAGgAGG	1500
<i>55</i>	таааааатаа	TGGCTGAAAA	TAAAAACAAT	TTGTCGATTA	ACGACGATCA	TTCTAATGCA	1560
55							

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TTGGCAAGAT	GCTTGGGCTC	1680
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
J	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1800
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	1860
10	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
15	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT	AATTTTTGAA	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
20	GAGAATTTTT	ΔΑΑΑΤΤΑΑΑΑ	AATCAAGAGT	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
25	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTAAGT	TTCATTGGTA	2400
	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2460
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
30	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTATTT	GAACAAAGGG	2700
35	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
40	GAAGÁTTTAG	САААААААСС	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
40	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
<b>4</b> 5	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	ACAACAAAA	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300

	GGAGCGCCAC	CTGATTTATT	ACACCCACCT	AAAGGTGATG	CATTTGCGAG	ACGTAGCAAT	3480
5	ATGCATTAGA	TATTGATTTT	AAAGTAGAAC	CACCGTGGTT	TAAAGTTTCA	CCGACACATT	3540
	TTGTGAAATC	TTGGTTATTA	GACGCACGTG	CACCAAAAGT	TGAACTACCC	GAGCTGGTAA	3600
	AACAACGTAT	GAAACCGATG	CCTAATAATT	ATGAAAAACC	ACTCAAGGTA	GAAAGGGTGT	3660
10	CGTTCAATGA	AAAATGATGA	AGTGCTATTA	TCTATTAAAA	ATTTAAAGCA	ATATTTTAAC	3720
	GCAGGAAAGA	AAAACGAAGT	GgaGCGATTG	AAAATATTTC	GTTTGATATA	TACAAAGGGG	3780
	AAACATTAGG	TTTAGTAGGA	GAATCGGGGT	GTGGTAAATC	TACAACTGGT	AAATCAATTA	3840
15	TTAAACTTAA	TGATATTACA	AGTGGAGAAA	TTTTGTATGA	GGGTATTGAT	ATACAAAAGA	3900
	TTCGTAAACG	TAAAGATTTG	CTTAAATTTA	ATAAAAAGAT	ACAGATGATT	TTTCAAGACC	3960
	CATATGCGTC	TTTAAATCCT	AGGTTAAAAG	TAATGGATAT	AGTAGCTGAA	GGTATTGATA	4020
20	TCCATCATTT	AGCAACTGaT	AAGCGTGACC	GAAAAAAACG	TGTCTATGaT	TTACTTGaAA	4080
	CTGTTGGATT	AAGTAAAGAA	CATGCCAATC	GCTATCCTCA	TGAATTTTCA	GGTGGaCAAC	4140
25	GCCAACGTAT	TGGaATTGCC	CGTGCATTAG	CCGTTGaACC	AGAATTCATT	ATCGCGGACG	4200
	AACCAATATC	GGCATTGGAT	GTTTCAATCC	AAGCTCAAGT	AGTTAATTTA	TTATTAAAAT	4260
	TACAACGTGA	AAGAGGGATT	ACGTTCCTAT	TTATAGCTCA	TGATCTATCA	ATGGTGAAGT	4320
30	ATATTTCAGA	TCGTATTGCA	GTCATGCATT	TTGGGAAAAT	AGTTGAAATT	GGACCGGCAG	4380
	AAGAAATTTA	TCAAAATCCA	TTACACGATT	ATACTAAGTC	TTTATTATCA	GCCATTCCAC	4440
	AACCTGATCC	TGAATCAGAA	CGCAGTCGCA	AACGATTTAG	TTATATTGAT	GATGAAGCAA	4500
35	ATAATCATTT	AAGACAATTA	CATGAAATTA	GACCGAATCA	CTTTGTCTTT	AGTACTGAAG	4560
	AAGAAGCGGC	ACAACTACGA	GAAAATAAAT	TGGTGACACA	AAATTAAGGG	GAAGGGGGAA	4620
40	ATGCAATGAC	GAGAAAATTT	AGAACACTTA	TTTTAATTTT	GATTGCTACA	ATTGCATTAA	4680
40	GTGGTTGTGC	TAATGACGAT	GGTATTTATT	CAGATAAAGG	TCAAGTATTC	AGAAAAATTT	4740
	TGTCATCAGA	CTTAACATCC	CTTGATACAT	CATTAATAAC	GGATGAAATA	TCTTCTGAAG	4800
45	TGAcTGCGCA	AACATTCGAA	GGTTTATACA	CATTAGGAAA	AGGTGACAAA	CCGGTGTTAG	4860
	GTGTTGCGAA	AGCTTTTCCT	GAAAAGAGTA	AAGATGGTAA	AACTTTAAAG	GTTAAATTAA	4920
	GAAGCGATGC	TAAATGGAGC	AATGGTGACA	AAGTGACTGC	ACAAGACTTT	GTTTATGCTT	4980
50	GGAGAAAAAC	AGTTGACCCT	AAAACAGGTT	CTGAATTTGC	ATACATTATG	GGGGACATTA	5040
	AAAATGCGAG	TGATATTAGT	ACTGGTAAGA	AACCTGTAGA	GCAATTAGGT	ATCAAAGCAT	5100
	TAAATGATGA	AACATTACAA	ATTGAATTAG	AAAAGCCGGT	TCCATATATT	AATCAATTAT	5160
55							

ACGGTACGGC	AGCTGATAGA	GCGGTATACA	ATGGTCCaTT	TAAAGTTGAT	GATTGGAAAC	5280
AAGAAGATAA	AACCTTACTA	TCTAAAAATC	AGTATTATTG	GGATAAAAAG	AATGTAAAAT	5340
TAGATAAAGT	GAATTATAAA	GTTATTAAAG	ACTTACAAGC	CGGTGCATCA	TTGTATGATA	5400
CTGAATCAGT	AGATGACGCA	TTTATTACTG	CAGATCAAGT	AAATAAATAT	AAAGACAACA	5460
AAGGATTAAA	CTTTGTGTTA	ACGACTGGGA	CATTTTTTGT	AAAAATGAAT	GAAAAACAAT	5520
ATCCTGATTT	ТАААААСААА	AATTTAAGAT	TGSTATCGCA	CAAGCAATAG	ATAAAAAAGG	5580
ATACGTTGAT	TCAGTGAAAA	ACAATGGCTC	AATTCCTTCC	GATACACTAA	CAGCCAAAGG	5640
AATTGCGAAA	GCGCCTAATG	GCAAAGATTA	TGCGAGTACC	ATGAATTCGC	CTTTAAAATA	5700
TAATCCTAAA	GAAGCAAGAG	CACACTGGGA	CAAAGCTAAA	AAAGAGTTAG	GTAAAAATGA	5760
AGTGACATTT	TCAATGAACA	CAGAAGATAC	ACCAGATGCA	AAAATATCTG	CTGAATATAT	5820
CAAATCGCAA	GTTGAGAAAA	ATTTACCAGG	AGTTACTTTG	AAAATTAAGC	AATTACCGTT	5880
TAAACAAAGA	GTATCACTAG	AACTGAGTAA	CAATTTTGAA	GCATCACTTA	GTGGTTGGTC	5940
TGCAGATTAC	CCTGATCCTA	TGGCTTATTT	AGAAACAATG	ACCACAGGTA	GCGCACAAAA	6000
TAATACAGAC	TGGGGTAATA	AAGAATATGA	TCAATTACTT	AAAGTAGCAA	GAACCAAATT	6060
GGCACTTCAA	CCGAACGAAC	GATATGAAAA	CTTGAAAAAA	GCAGAAGAAA	TGTTCCTAGG	6120
AGATGCACCG	GTAGCACCAA	TTTATCAAAA	AGGTGTEGCA	CATTTAACAA	aTCCTCAAGT	6180
AAAAGGATTA	ATTEACCATA	AATTTGGTCC	AAATAACTCA	CTTAAACATG	TATATATTGA	6240
TAAATCGATA	GATAAAGAAA	CAGGTAAGAA	G <b>AAAAAAT</b> AA	TATGCTTTGT	AAATTAGGCT	6300
GGAGACATAT	CTCCAGTCTT	TTTGTGTTGG	ATAAAAaCTT	TGGGAATAAA	AATTTAAAAT	6360
AAGTCGTTTT	TTAAATTACT	GAAATTGATT	AAATGCATAA	ATAACTGAAT	ATTCTAAAAA	6420
TAAACTTGTA	ATAATTTTTT	CTATGAGTAA	ACTAAAAAGA	AAAAATTAGA	TTGAAAGTAG	6480
GAGGCATATG	TATGGGGAAG	CTAATTAAAT	ATATTTCAAT	ACTTCTTATT	GTCGTTTTAG	6540
TGTTGAGTGC	TTGCGGAAAA	AGCAGTAATA	AAGATGAAGG	AGTAAAAGAT	GCTACTAAAA	6600
CGGAAACCTC	AAAACATAAA	GGTGGTACCT	TAAATGTAGC	ATTAACAGCA	CCGCCAAGTG	6660
GTGTTTATTC	TTCGTTATTA	AATAGTACAC	ATGCAGATTC	TGTAGTTGAG	GGATATTTTA	6720
ACGAAAGCTT						6730

(2) INFORMATION FOR SEQ ID NO: 52:

(E) SEQUENCE CHARACTERISTICS:

A. C. Ball

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

5	AATTTTTGTC	ATTATTAAAA	ACCTCGCTTT	TAAAAGATTG	AAAAGTAAAT	GAGTGAAATT	60
	AAAGATTATG	CACATTAAAA	TCACGCCACA	ATTTAATTGT	GAAAAATATC	ACAAATATAT	120
	TATAACACTA	AATTTCCCAA	AATTCAAAAG	TGTGTTTTAT	TGCAGAAAAC	TTATAACAyG	180
10	TGCACAAGTT	ATAGTGAATT	GCAAACGGAT	TACTTTAGTC	TTTTTAAAAC	ATGAAGTATA	240
	ATTTGTATAG	CAATAAATAT	AAAAATGGGA	GGCTATGTTC	AATGAGCAAT	ATGAATCAAA	300
	CAATTATGGA	TGCATTTCAT	TTCAGACATG	CGACTAAGCA	ATTCGATCCA	CAAAAGAAAG	360
15	TTTCGAAAGA	AGATTTTGAA	ACAATATTAG	AGTCAGGTAG	ATTGTCTCCA	AGTTCTCTTG	420
	GGTTAGAACC	TTGGAAGTTT	GTCGTGATTC	AAGATCAAGC	GTTACGTGAT	GAATTAAAAG	480
20	CGCACAGTTG	GGGCGCAGCA	AAACAATTAG	ATACAGCGAG	CCATTTTGTG	CTAATTTTTG	540
20	CGCGTAAAAA	TGTAACGTCA	AGATCACCGT	ATGTACAACA	TATGTTAAGA	GATATTAAAA	600
	AATATGAGGC	ACAAACGATT	CCAGCTGTTG	AACAAAATT	CGATGCATTC	CAAGCAGATT	660
25	TCCATATTTC	TGATAATGAT	CAAGCCTTGT	ATGACTGGTC	AAGTAAACAA	ACGTATATTG	720
	CATTAGGCAA	TATGATGACG	ACAGCCGCAT	TGTTAGGTAT	TGATTCATGT	CCGATGGAAG	780
	GTTTTAGTCT	GGATACAGTG	ACAGACATTT	TAGCAAATAA	AGGGATCTTA	GATACTGAGC	840
30	AATTTGGTTT	ATCAGTGATG	GTCGCATTTG	GCTACAGACA	ACAAGAGCCA	CCGAAAAATA	900
	AAACACGCCA	AGCTTATGAA	GATGTTATTG	AATGGGTTGG	ACCAAAAGAA	TAAATAGAAT	960
	ACCGTATGTC	TAAATATATA	AAATTAAAA	GTTAGCAATA	AAAAAGCCTG	CGATTACATA	1020
35	AATGAATCGC	AGGCTTTTGC	GTGAAAAAAT	TGTATTAATA	AAGTATGGAT	GATTATTTTT	1080
	CTGGÆACAAG	GTCAGTATTT	GAATGAACTG	TGATGTCAAA	CCCTTCTGGT	GCCGTAAATG	1140
40	TATGTGTTGA	GGCGTCGGGT	TGATAAATAT	CAACATGTGT	TAATCCATAA	CTTTGTGAAT	1200
	TGTTTTGTCT	TGCTTGATTG	GATTGCCAAG	TATTAGCAGC	AATATGATGG	TGATAATGAT	1260
	TCGTTGACAT	AAATAGCGCA	CGTGGAAAAT	CAGACACATG	TTGGAATCCT	AATTGTTCAA	1320
45	TGTAACATTG	ATATGCTGCG	TCTAAATCAT	GTGTTTTTAA	ATGTAAGTGT	CCAATCATGC	1380
	CTTTTGCTGG	CATTCCTTGC	CAACCTTCAT	CAGTACGATG	TGTTAATAAG	GTTTGGCTAT	1440
	CAACTTCTAA	AGTATCCATT	TTAACTTTGC	CATTTTGCCA	TTCCCATGAA	GATGAAGGTC	1500
50	TATCGCGATA	GACTTCAATA	CCATTACCTT	CGGGGTCGTT	GAAATATAAA	GCTTCACTTA	1560
	CTAAATGATC	ACCAGCGCCG	ATGCCCATAT	TTTTTTGTGC	CACGAAATAT	AAGAAGTTAG	1620

	aAGTCTGACG	GCCGTCTTCT	AATAAATGTA	ACGTTAGAGT	ATGGCCACCA	GTCCCAACAG	1740
	ATAATACGGT	TGTATTATCG	TCAGAACTTT	TAACGGATAG	TCCTAAAATG	TTTTTGTAAA	1800
5	ATGTTGTCAT	TAAGTCTAAG	TCTCTTACGT	TCAGTACAAT	GTTTGTCACT	TGTGTTGCTG	1860
	TTTTATCGTG	AAATGCCATT	ATGCATCGCC	TCTTTTTCTA	TTTTTCTATA	AGTTAGTATA	1920
10	AAAAGTATAC	CAGAAAAGAA	AATGAATTGA	TAGCATAAAG	TTTGAAATGC	ААААТААСТА	1980
	GTCGTTTTGC	AATTTTAtAT	TGATGCGAAC	AAAAAAGCGA	TGGTACAGTT	GCACCATCGC	2040
	AAAATTTATT	TAACCAAGAT	ATACATCTTG	ATATGAATCT	TCTTTTTCTA	ACATATGTTT	2100
15	GGCAAATGAA	CATGAGGCAA	TAATTTTCAA	ATTATTTTCT	CGAGCGTGTT	CAACAACTGC	2160
	TTTAAGTAGT	TTTTTGCCAA	CACCTTGACC	ACCAAGTTCA	TCAGATACGC	CTGTATGATC	2220
	AATGTTAATT	TCATTATTAT	CCACAAAACG	GTATGTGATT	TCAGCTAAAG	CATTATTTTC	2280
20	ATCATCACCA	ATATAGAATT	TGTTCTCGCC	TTGTTTGATT	TCAAGGTTAC	TCATACATAT	2340
	CAACTCCTAT	CATGATTGAT	TATAGTATTT	CCCTATTCTA	TTTTAACTTA	AACGAAGTCA	2400
	AAGGTGCATG	ACAGTCATGT	GACGACATTG	CCACATCTAT	GTAGTCGTTT	TTATTAAGCA	2460
25	CAGTTTGAAA	TGAAGATGAA	AACACGTATC	TTGACATTAA	ATCTATTCAG	CTATATAATT	2520
	TATCTCGAAA	TCGAAATAAA	ATAAAAAAGT	TGGTGATCAT	ATGGATCGAA	CGAAACAATC	2580
30	TCTCAATGTT	TTTGTCGGAA	TGAATAGGGC	GTTAGACACA	TTAGAGCAAA	TTACAAAAGA	2640
	AGACGTAAAG	CGATATGGCT	TAAATATTAC	TGAATTTGCA	GTGCTCGAGT	TGCTTTATAA	2700
	TAAAGGTCCG	CAACCAATTC	AACGTATTAG	AGACCGCGTA	TTAATTGCAA	GTAGCAGCAT	2760
35	TTCATATGTT	GTAAGTCAAT	TAGAGGACAA	AGGTTGGATT	ACACGTGAAA	AGGATAAAGA	2820
	TGATAAACGT	GTATATATGG	CTTGTTTAAC	TGAAAAAGGT	CAAAGTCAAA	TGGCAGATAT	2880
	TTTÇCCTAAG	CATGCTGAGA	CATTAACAAA	AGCGTTTGAT	GTGTTAACAA	AGGATGAATT	2940
40	AACAATCTTA	CAACAAGCGT	TTAAGAAACT	AAGTGCACAA	TCTACAGAAG	TGTAAGGCGT	3000
	GCACTAAAAA	TTTACATTAA	AGTATCTCGA	TTTCGAGATA	AATGCACTAA	AAATATAAAG	3060
	AGGGTATATA	AAATGATAAA	TAATCATGAA	TTACTAGGTA	TTCACCATGT	TACTGCAATG	3120
45	ACAGATGATG	CAGAACGTAA	TTATAAATTT	TTTACAGAAG	TACTAGGCAT	GCGTTTAGTT	3180
	AAAAAGACAG	TCAATCAAGA	TGATATTTAT	ACGTATCATA	CTTTTTTTGC	AGATGATGTA	3240
50	GGTTCGGCAG	GTACAGACAT	GACGTTCTTT	GATTTTCCAA	ATATTACAAA	AGGGCAGGCA	3300
	GGAACAAATT	CCATTACAAG	ACCGTCTTTT	AGAGTGCCTA	ACGATGACGC	ATTAACATAT	3360

	TTAAATGAAG	GGGTAGCACC	TGGTGTACCT	TGGAAGAATG	GACCGGTTCC	AGTAGATAAA	3540
	GCGATTTATG	GATTAGGCCC	CATTGAAATT	AAAGTAAGTT	ATTTTGACGA	CTTTAAAAAT	3600
5	ATTTTAGAGA	CTGTTTACGG	TATGACAACT	ATTGCGCATG	AAGATAATGT	CGCATTACTT	3660
	GAAGTTGGCG	AAGGAGGCAA	TGGTGGCCAG	GTAATCTTAA	TAAAAGATGA	TAAAGGGCCa	3720
10	GCaGCACGTC	AAGGTTATGG	tGAGGTACAT	CATGTGTCAT	TTCGTGTGAA	AGATCATGAT	3780
	GCAATAGAAG	CGTGGGCAAC	GAAATATAAA	GAGGTAGGTA	TTAATAACTC	AGGCATCGTT	3840
	AATCGTTTCT	ATTTTGAAGC	ATTATATGCA	CGTGTGGGGC	TAATTTTAAT	AGAAATTTCA	3900
15	ACAGATGGAC	CAGGATTTAT	GGAAGATGAA	CCTTATGAAA	CATTAGGCGA	AGGGTTATCC	3960
	TTACCACCAT	TTTTAGAAAA	TAAAAGAGAA	TATATTGAAT	CGGAAGTTAG	ACCTTTTAAT	4020
	ACGAAGCGTC	AACATGGTTA	ATTGGAATGA	GGAGGATTTG	TGATGGAACA	TATTTTTAGA	4080
20	GAAGGACAAA	ATGGTGCGCC	AACACTAATA	TTATTGCATG	GTACAGGTGG	TGATGAGTTC	4140
	GATTTATTAC	CGTTAGGCGA	AgcATTGAAT	GAAAATTATC	ACTTGTTAAG	TATTAGAGGA	4200
	CAAGTTTCAG	AAAATGGGAT	GAACCGTTAT	TTCAAACGTC	TTGGTGAAGG	TGTTTATGAT	4260
25	GAAGAAGATT	TGGCATTTCG	TGGACAAGAA	TTGTTGACGT	TCATTAAAGA	AGCTGCTGaA	4320
	CGTTATGATT	TTGaTATTGA	AAAAGCAGTA	CTTGTTGGAT	TTTCAAATGG	ATCAAATATA	4380
30	GCGATTAACT	TAATGTTGCG	TTCAGAAGCA	CCATTTAAAA	AAGCATTGTT	ATATGCACCG	4440
	TTATACCCAG	TTGAAGTAAC	GTCAACAAAG	GATTTATCAG	ATGTCAGTGT	GTTGCTTTCT	4500
	ATGGGGAAAC	ATGATCCAAT	TGTGCCATTA	GCTGCAAGTG	AACAAGTCAT	TAACTTGTTT	4560
35	AATACACGTG	GGGCACAAGT	CGAAGAAGTT	TGGGTGAAGG	GCCATGAAAT	TACAGAAACT	4620
	GGATTAACGG	CTGGTCAACA	AATACTTGGG	AAATAACAGT	TCTATTAAGA	AGCGGACAGA	4680
	TGGAÃAAGAT	TTTTACTTTT	CATCTGCCCG	CTTTTTTGAT	TTTGAAGTGC	TGTACTAAAT	4740
40	TTTACAATAG	TATAGATATT	TTAATCGATA	TGAGATTTGC	CGGTAATACG	CTTAATTAAA	4800
	CCTTTATAGA	GTACAGGTAT	GAGTAAGATG	AAACCGAACA	ATCCCATAAT	AGGGAATACT	4860
45	TTTCCAATTA	ATGAAATGAa	ACCGATAAAT	GTACTAATAT	AAGTGATGAC	AGCCATTGTA	4920
45	ATAATAATGA	TGAAGTAACG	TCTGCTGAAT	GGAACGCTGA	AACGTGACGC	AAATGCATAC	4980
	ATTAATCCAA	CAACAGTATT	GTAGATGACA	AGTATCATAA	TGACAGACAT	AATAATACCA	5040
50	ATTGACGGAG	ACATTTGTGT	CGCTAATTTT	AATGTAGGTA	GATCTACGTG	TTTAATTTTA	5100
	TCGAATTGAG	AAATTAAACC	TAGATTAATC	ATCATGAGTA	AAAATGTAAT	GATTAAACCG	5160
	CCAATCAAGC	CCCCGTATAA	CGTTGAGTCA	CGATATTTAA	CTTTACTACC	CATCACTGAT	5220

CCAGGTGATA	ATGATTTCTG	CTTATGAATC	TGAGCATCAT	TATTAGCGGC	AGTAAAATCA	5340
AGATGACTTG	TTGTGAAATA	GTAGACCGCA	ATCATAATGA	CAATCGCAAT	TAAAATGGG	5400
GTAACACCGC	CAAGCACAGC	AATTAAACGA	TCGAATTTTA	GAAACAGTGT	TGCTAAAATA	5460
AAGGCGACTA	ATATGAGTGC	GCTCAGCCAA	TACGGTAAGT	TGAAACTTTG	ATGAATGGTT	5520
GACGCACCAC	CTGCAGTCAT	AATAATAGCT	AAAGACAACA	TAAACATTGT	TAAAATAATA	5580
TCAAAACCTC	TTGCAATAGA	GGGGTATAAG	AAATAGTTAA	TTGAATCAGA	ATGATTTCTG	5640
GACTTTAGAT	GATGACCTGT	ATGCATGACA	ACCATTCCAC	CTAAAGTAAT	CAATAGTCCT	5700
GTTACAATAA	TGCCTGAAAT	GCTATATGCG	CCATGACTTG	TGAAAAACTG	GAAAATTTCT	5760
TGACCAGTAG	CAAAGCCGGC	ACCAACGACA	ACACCAACAA	AGGCAAATGC	CACAATAATG	5820
GACTCTTTTA	AGATACGCAT	GATTTAAAAA	TGTCCCTTCG	TAATTTTAAG	TAATATAGAA	5880
AATGTAACAT	ACATGTTAAT	GAAAAATATA	GTACTAATAT	AGTATTTTGT	TAAATTGGAG	5940
TAGAAGCGAG	GGTGTCGGTC	ATTTCATTAA	TTTATTAGTT	GATTTTGCAT	TTTTTTGCTG	6000
TAAAGTTGTT	ATAATACAGT	TAACAGGAAT	TAGCATAGAT	ACACCAATCC	CCTCACTACT	6060
CGCAATAGTG	AGGGGATTTT	TTTCGGTGTA	GCTAGGTCGC	CTATTTATCA	TCGTGTTTGC	6120
GTAgCaATGC	GTAAACACAG	TACCACTAAA	TAAGTGCACG	ATACATGCAT	CAAATGTCGT	6180
CTTTAGTCTA	AGTAACGATC	ATGCATTAAC	ATTTTCAAAA	TATCTATTTG	AGCTTGAAGA	6240
TCTTTACCAA	TATTGGTATC	ACGAATCTTC	TTACGTTGTA	ATTCTTTATC	TACGACGCGC	6300
TTTATAGAAA	GTTCATCGAT	ACCTTCGGAA	AGTATTTTTn	CTTTAGCGTT	AAATTGTTGG	6360
TGTGCAACGA	GTTGCATACC	GAATGAATTA	TACAATAGTG	TATAGCCTGC	AATGCCAGTn	6420
GTTGACTGAT	AAGCTTTTGA	AAAGCCACCA	TCAATGACAA	GCATCTTTCC	ATCAGCCTTG	6480
AT =						6482

#### (2) INFORMATION FOR SEQ ID NO: 53:

5

10

15

20

25

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16592 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

ATTTAAGGCG ATTGCTTGTG TATTTCTCTC TTTTGTAGGC AAACCTGCAC TCGTTCCAAA 60

Community of the community

	AATTTTTCTA	ACTTTAACGT	AGACATAACT	ATATAAATTT	TGATAATTAC	GTTATACTTA	240
	TCATTAATAA	GTATCACATT	AAACATGATA	CATGAATCGA	TATTTCATTT	AAGACACTGC	300
5	ATACAGTCGA	GCATATTGTA	TGACCTACTG	AATGGATTAT	СТТАТААТАА	TAAATCATAT	360
	ATCTAATTAA	GAATTGAGGT	TTTAATCTTG	AGTACTAAAA	ACAAACACAT	CCCATGTTTA	420
10	ATCACAATCT	TTGGTGCACT	GCGTGACTTA	AGCCATCGTA	AGTnGTTTCC	ATCAATATTC	480
	CATCTCTACC	AACAAGACAA	TTTAGATGAA	CATATTGCCA	TcATCgGTAT	TGGACGTCGT	540
	GACATkwnTA	ATGATGATTT	CCGTAATCAA	GTAAAATCAT	CAATTCAAAA	GCACGTAAAA	600
15	GATACAAACA	AAATTGACGC	GTTTATGGAA	CATGTCTTCT	ATCATAGACA	TGATGTTAGT	660
	AATGAAGAAA	GCTATCAAGA	ATTACTAGAT	TTTAGTAATG	AATTAGATAG	CCAATTTGAA	720
	TTAAAAGGTA	ATCGACTATT	CTATTTAGCA	ATGGCACCAC	AATTCTTTGG	CGTTATTTCT	780
20	GATTATCTAA	AATCTTCTGG	TCTTACTGAT	ACAAAAGGAT	TTAAACGCCT	TGTTATCGAA	840
	AAACCATTCG	GTAGTGATTT	AAAATCAGCC	GAAGCATTAA	ACAATCAAAT	TCGTAAATCA	900
	TTTAAAGAAG	AAGAAATTTA	TCGTATTGAC	CACTATTTAG	GAAAAGACAT	GGTTCAAAAT	960
25	ATCGAGGTAT	TACGTTTTGC	GAATGCGATG	TTTGAACCAT	TATGGAATAA	CAAATATATT	1020
	TCAAACATCC	AAGTTACATC	TTCTGAAATA	CTAGGTGTTG	AAGATCGTGG	TGGTTATTAT	1080
30	GAATCAAGTG	GCGCGCTAAA	AGATATGGTG	CAAAACCACA	TGTTACAAAT	GGTTGCATTA	1140
	TTAGCTATGG	AAGCACCTAT	TAGTTTAAAT	AGTGAAGATA	TCCGTGCTGA	GAAAGTAAAA	1200
	GTACTTAAAT	CACTGCGTCA	TTTCCAATCT	GAAGATGTTA	AAAAGAACTT	TGTTCGTGGT	1260
35	CAATATGGCG	AAGGCTATAT	CGATGGTAAA	CAAGTTAAAG	CATACCGTGA	TGAAGATCGC	1320
	GTTGCAGATG	ACTCTAACAC	ACCTACCTTT	GTTTCAGGTA	AATTAACAAT	TGATAACTTT	1380
	AGATGGGCTG	GTGTACCATT	CTATATTCGT	ACTGGTAAAC	GTATGAAATC	TAAAACAATT	1440
40	CAAGTTGTCG	TTGAATTTAA	AGAAGTACCA	ATGAACTTAT	ACTATGGAAA	CTGaTAAACT	1500
	GTTAGATTCA	AACCTATTAG	TAATCAATAT	CCAACCTAAT	GAAGGTGgTA	TCTTTLACAT	1560
	CtaaatGcta	AGaAAAATAC	ACAAGGTATC	gAAACAGrAC	CTGtCCmATT	GtCTTACTCm	1620
45	ATGAGCGcTC	aAGaTAAAAT	Gaatactgta	GATGCATATG	AAAATCTATT	ATTTGATTGT	1680
	CTTAAAGGTG	ATGCCACTAA	CTTCACGCAC	TGGGAAGAAT	TAAaATCAAC	ATGGAAATTT	1740
50	GTTGATGCAA	TTCAAGATGA	ATGGAATATG	GTTGaTCCAG	AATTCCCTAA	CTATGAATCA	1800
-	GGTACTAATG	GTCCATTAGA	AAGTGATTTA	CTACTTGCTC	GTGATGGTAA	CCATTGGTGG	1860
	GGACGATATT	CAATAATTGA	ATTAAAACGC	ACATGTTAAA	САЛАЛАТАЛА	TGAGCGAATG	1920

	TATATTATGA	AATTATATTT	TACAATGCCC	AAAACTATTT	TAATAATCAT	TGAACAAATG	2040
	GGTGTATAAT	TTATAGAAAT	AATGTAGAAT	AAAAATAAAT	GATTGAATTA	ATTGGAGTGA	2100
5	AAGTTTTGGA	CGTTATCAAG	CAAATACAAC	AGGCAATTGT	TTATATTGAA	GATCGTTTAT	2160
	TAGAGCCTTT	CAATTTGCAA	GAATTAAGTG	ATTACGTTGG	TCTTTCGCCA	TACCATCTTG	2220
10	ATCAATCATT	TAAAATGATT	GTCGGCTTAT	CTCCAGAAGC	TTATGCACGC	GCGCGTAAAA	2280
70	TGACACTCGC	TGCAAATGAT	GTGATTAATG	GTGCTACACG	ACTTGTAGAT	ATCGCTAAAA	2340
	AATATCACTA	TGCAAATTCA	AATGATTTTG	CAAATGATTT	TAGTGATTTT	CACGGCGTAT	2400
15	CACCTATTCA	AGCCTCTACT	AAAAAAGATG	AATTACAAAT	TCAAGAGCGA	TTATATATCA	2460
	AATTATCAAC	TACTGAGAGA	GCACCTTATC	CATACAGATT	AGAAGAGACA	GATGATATTT	2520
	CATTGGTTGG	ATATGCACGA	TTTATAGACA	CTAAGTATTT	GTCACATCCT	TTTAATGTTC	2580
20	CGGATTTTTT	AGAAGACTTG	CTCATTGATG	GTAAAATTAA	AGAGTTACGA	CGATATAATG	2640
	ACGTTAGTCC	ATTTGAACTA	TTTGTTATTA	GTTGTCCTCT	TGAAAATGGT	TTAGAAATAT	2700
	TTGTAGGTGT	ACCAAGTGAA	CGTTATCCTG	CACACTTAGA	AAGTCGATTT	TTACCTGGCA	2760
25	AACATTGTGC	GAAATTCAAT	TTACAAGGTG	AAATTGATTA	TGCAACTAAT	GAAGCTTGGT	2820
	ACTATATTGA	ATCAAGTTTG	CAGTTAACAT	TGCCATATGA	ACGAAATGAT	TTATATGTTG	2880
30	AAGTGTACCC	TCTCGATATT	TCATTTAATG	ACCCATTCAC	TAAAATTCAG	CTTTGGATTC	2940
	CTGTTAAACA	GAGTCCTTAT	GACGAAGATT	AAATAATAAA	AAACAAAGAA	GCCCCTAAT	3000
	ATATCTATAG	GTCTACAAAT	GGCCTTAGAT	TCTATTAGGG	GGCATATTAA	TATGTTAATT	3060
35	TAGTTCGATA	ACACATGCTT	CATATGGACG	TAACTGTTTT	AAATTAACTT	TGGCATCATA	3120
	ATTAAATAGC	TTTACTTCTC	CATGGCTTAA	ATCAAATGGT	ACAGTTAATT	CTGCTTCGTG	3180
	GTTAGTAAGA	TTACCTACAA	TAAGAACTTG	CTTTTCATTT	AATGTTCTCG	TGTACGCAAA	3240
40	AACTTGTGAA	TTTTCAGCAT	CTACTAAATC	AAATTGACCA	TATACGTATA	CATCATTAGA	3300
	CTTTCTTAAT	TGAATTAAAT	CTTTATAAAA	TTGTAATACT	GAATGCTCAT	CTTCTAATTG	3360
	TTGTGCAACA	TTGATAGTTT	TATAATTCGG	ATTCACTGGG	AACCACGGTT	CACCATTTGT	3420
45	AAATCCTCCA	TTTAACGTAT	CATCCCATTG	CATTGGTGTG	CGAGAATTAT	CTCGGTTCTC	3480
	ATCTTTATAT	TTCGCAAGTA	AAGCGTCTAC	ATCTCCACCT	TGAGCTTTCA	CTATTTGATA	3540
50	GTCATTTTTA	ACAGCAACAT	CGTTAAACGT	TTCAATACTT	TCAAATGGAT	AATTCGTCAT	3600
	ACCAATTTCT	TGACCTTGAT	AAATGAATGG	CGTACCTTGT	TGCAAGAAAT	AAACAGCTGC	3660

	CCATCTATTT	AATACAGATT	TATACGAATT	TACATCAAAG	TGAGAATCAC	CACTATTCCA	3840
	CAGTCCCAAA	TGTTCAAATT	GGAATATCAT	ATTAAATTTA	CCATTTTCTT	CCCCGACCCA	3900
5	GTCATCAGCA	TCATCAGGGC	TTACACCATT	CGCTTCACCA	ACAGTCATAA	TGTCATACTT	3960
	ACTTAATGAG	CGATCTTTCA	TCTCTTGTAA	CCAAGTTTGT	ATACCTGGCT	GATTCATATC	4020
10	TACATCAAAT	GCTGGGGCAT	ATGTTTTACC	CTCAGGTACA	GGTAAGTCAC	CCGCTTCAAA	4080
10	CGTCTTCTTA	ATATGCGTAA	TTGCATCTAC	TCTAAATCCA	TCAATGCCTT	TATCAAACCA	4140
	CCAGTTCATC	ATTTCAAATA	CAGCATCTCT	AACTTCCGGA	TTACCCCAAT	TCAAATCAGG	4200
15	TTGTTTTTTA	CTGAATAAAT	GGAAATAATA	TTGCTCAGTA	TTAGCATCAT	ATTCCCATGT	4260
	AGATCCATTA	AATATACTTT	CCCAGTTGTT	AGGTTCAGAG	CCATCTGGCT	TTGGATCTTG	4320
	CCAAATGTAC	CAATCACGTT	TGGGATTGTC	TTTACTAGAT	TTGGATTCTA	TAAACCAAGG	4380
20	ATGTTCATCA	GATGTATGAT	TTACAACTAA	ATCTAAAATA	AGCTTCATGC	CTCTATCATG	4440
	AACACCTTTT	AATAAACGAT	CAAAGTCTTC	CATCGTTCCA	AATTCATCCA	TAATCTCTTG	4500
	GTAGTCACTA	ATATCATAAC	CATTGTCATC	ATTAGGTGAT	TTAAACATTG	GACTGAGCCA	4560
25	AATGACATCG	ATACCGAAAT	CTTTTAAGTA	GTCCAATTTA	TCAATCATTC	CAGGTAAATC	4620
	CCCAATACCA	TCGTGATTAC	TATCATTAAA	ACTTCTTGGA	TATACTTGAT	ATGCTACTGC	4680
	TTCTTTCCAC	CATTGCTTAT	TCATTTTAAA	ACTCCTTTGC	TATCGCTGTG	TTGATTTTCT	4740
30	TATTTTTAAT	TCTGTATCTA	TAATGACGAG	TTCAATAACA	TCCTGTGCTT	TGTTTTTCAA	4800
	TATATTTAAA	ATTGCTGCAC	CAGCCTGTTG	ACCTAACATT	CGAGGCTTGA	TGTCAATACA	4860
35	GGTTTGTGGT	GGTGACGCAA	TTTCGGTTAA	ATAAGAATCA	TTGAACGTTG	CTGTCATTAC	4920
	ATCTTTCGGA	ATTTCAATAT	TAAGTTCATA	TAGGACACTT	AAAATCGCTA	AATGTAACAT	4980
	AGCATCTAAC	GAAATGATTG	CCTGTTTAAT	ATTTGGGTCC	TTCAAACGCG	TATGTAGATT	5040
40	TTGCATGTAA	TTAAAAATAA	CTTCTCTTTC	ATTACTAGTC	TCAATAATTT	GATAATTAAT	5100
	TTTATTTTGA	GAAGCTATCG	TTTCAAATCC	TTGAATTCTA	TCTTTTGAAA	CTTCAAAATT	5160
	TCCTTTTTCT	GTAATAAATA	TTAATTCATC	TACACCTTGT	TCAATAACAT	GTCGTGTCAA	5220
45	ATTTTCAGAA	GCTAATATAT	TATCATTATC	TATATGTGTA	AATTGATGAT	CTATATCCGA	5280
	TGTAGGCTTA	CCAATCACAA	TAAATGGCAT	GCTTTCATCA	ATTAACATTT	GTTTAATCGG	5340
	ATCATTTTCT	TTTGAATAGA	GCAGTATAAA	CGCATCAACC	ATTCGTTGTT	TAATCATTTT	5400
50	ATAAACTTCA	TCCATTAAAT	CATTCATATT	ATTTGAGACT	GTCGTTTGTG	TACCATAGCC	5460
	ATGCTGGTTA	CACGTTTCAG	AAATTCCTAG	CAATACATTG	ATGTAGAATG	GATTCAGTCG	5520

	AGTTCTAGCA	GCGGTATTAG	GAAAATAATT	CAATTCTTCC	ATAACTTTCT	TCACTTTTGA	5640
	AATTGTCGCT	TCGCTAATAC	GTTGATTTCC	TTTTATAACT	CTTGAAACTG	TCGAAGGAGA	5700
5	AACACCGGCT	TTTAGTGCAA	CATCTTTAAT	CGTAACCATT	TAATCACCTC	CTGTTAATTT	5760
	CTGCATCGGA	AAACGCTTCC	AACCACTGTA	TAATACCAGT	TTAGTCACAC	TTTCTAAAAA	5820
10	AGTCAAAAGA	TTTGTGCAAA	CGATTGCATA	AAACGATAAA	AATAAAACCT	TCATACTGAA	5880
10	ATTCAATCCG	AAAATCAATA	TAAAGGTTTG	TATAAATATT	AAAATCGATT	GTTTAGTCAC	5940
	TAACTGCAAA	ATAGTTACCT	TGGCCATCTT	GAAAATTAAA	TACACGTTGA	CCATTCATTT	6000
15	CTACTATATC	ATGCCCAGTT	AAACCTAAAT	CATTTAATTT	TGAGTATAAT	GCATCAAAGT	6060
	TTTTCTCTTT	AAACATTAAA	GATGGTGTTC	CTAGGTTCAC	TTCCGGGCTA	TGCTTTTCAA	6120
	TAAATTCTTT	TGCCATAATC	GTCAATGACG	TTTCAGCATC	TTTGGTAGGT	GATACTTCAA	6180
20	CTGCAACATA	GTCCTCAGCT	AACGGTGTTT	CACTTACAAC	AACAAATTCT	AAAGTTTCTG	6240
	TCCAAAATGC	TTTCGCTTTT	TCGACATCAT	CAACATATAA	CATAACTTGA	TTTAACTTTT	6300
	CCATAAAATA	GTACCTCTAT	TTCTCTATAG	TACATGCTAT	CATAACACAG	TAAATATTTT	6360
25	ATTACTTCAC	AAAATGCTTA	AAAATATGGC	GGGATGCTTT	TAAGGTCAAG	GATAATACTT	6420
	GTGTAATTTT	TTATAGGTTG	TAGCTACTCT	ATCACACTCT	CTTTTATATT	TATCAAAAGA	6480
20	TATAAAAAAG	GATAGTATCT	TTCAACTATC	CTTTAATCAA	TATTATTCTT	CAATCCATTG	6540
30	TGTATGGAAT	ACGCCLTCTT	TATCTTTTCT	TTCGTACGTA	TGAGCACCGA	AGTAGTCACG	6600
	TTGTGCTTGA	ATTAAGTTTG	CAGGTAAATC	AGCAGCACGG	TAACTATCAT	AGTAATTAAT	6660
35	ACTTGATGAG	AAACCAGGTG	TTGGTACACC	ATTTTGAACA	CCAGTTGCGA	CAACATCACG	6720
	TAACGCATCT	TGATATTCAG	TAACGATGTT	TTTAAAGTAA	GGATCTAGCA	ATAAGTTTTG	6780
	TAATCCTGGA	TTATTATCGT	AAGCATCTTT	GATCTTTTGT	AAGAATTGTG	CACGGATAAT	6840
40	GCAACCTTCT	CTCCAAATCA	TAGCTAAATC	ACCAAGTTTT	AAATTCCATT	CATTATCTTC	6900
	ACTTGCTTTA	CGCATTTGcG	CGAAACCTTG	TGCATAAGAA	CAAATTTTAC	TCATATATAA	6960
	TGCTTTACGA	ATTTTTTCTA	AAAAGTCTTT	CTTGTCACCA	TCAAATGATG	CTTTTGGACC	7020
45	ATTTAATTCT	TTAGAAGCAT	TTACGCGCTC	TTCTTTGaTT	GAAGAGATAA	AACGTGCAAA	7080
	TACAGATTCA	GTAATGATTG	TTAATGGAAT	ACCTAATTCT	AATGCGTTAA	TTGAAGTCCA	7140
	TTTTCCTGTA	CCTTTTTGaC	CTGCAGTATC	AAGAATTTT	TCAACTAATG	CTTCTTTATT	7200
50	TTCATCTAAT	TTCATGAAAA	TATCACCAGT	GATTTCAATT	AAATAACTTT	CTAATTCACC	7260
		17: × 6 ×		لا تعلى لا تعليد ساد	ار≱ د≱سر ددسه	سفطت عمدلا لاشت	7330

	CATTTTCACA	TAGTGTCCAG	CACCATTAGG	TCCAATATAA	GTAACACATG	AAGCACCGTC	7440
	TTTTGCCTTT	GCAGCAATTG	CATCAAGAAT	ATCTGCAACT	TTGTTATAAG	CTTCTTCTTG	7500
5	TCCACCCGGC	ATTAATGACG	GACCAGTTAA	CGCTCCAATT	TCACCACCAG	AAACGCCCAT	7560
	ACCAATAAAG	TTGATTGCAC	TTTGTGywaa	TGCTTTATTA	CGTCTGATAG	TATCTTGATA	7620
	GTTTGTATTA	CCACCATCAA	TTAAAATATC	TCCATCATCT	AATAAAGGTA	ACAAACTATC	7680
10	AATCGTTGCG	TCCGTAGCTT	TACCTGCTTG	AACCATTAAT	AAAATTTTAC	GTGGTTTTTC	7740
	TAAAGAATTA	ACAAATTCTT	CCAATGAATA	CGTTGGATGA	ATATTTTTCC	CTTTTGATTC	7800
15	TTCAACCATT	AAATCAGTTT	TTTCACTTGA	GCGGTTAAAT	ACAGATACAC	TATATCCGCG	7860
	TGATTCAATA	TTCCAAGCTA	GGTTTTTACC	CATAACGGCT	AAACCAATAA	CTCCAATTTG	7920
	TTGTGTCATA	TTACTTACCT	CACTTGTTGA	TTTTTCATTA	GTATTGTATC	ACAAAATAGA	7980
20	CATACACTAC	ACTAAATCAT	TTCGAATGTC	GCGCAACTAT	TTTGATTATT	TCTAACACTT	8040
	GACTTGCAAG	CAAGTTCAAT	GATTTAATCG	GCATTCTCTC	ATTTGTTGTA	TGGATTTTTT	8100
	CATAACCCAC	TCCTAAAATG	ACTGAAGGAA	TACCAAATGT	ATTAATAATA	CTGCCGTCTG	8160
25	AACCGCCACC	AGAAATAATT	GTATTTGCAG	ATAATCCTAA	ATTACGAGCA	CTTTCTTGTG	8220
	CAATTTTAAC	AACCGCTTCA	TTATCATTAA	TTTTAAATCC	TGGATAACTT	TGCTCCACTG	8280
	TAACTACTGC	TTTCCCACCT	AATTCTGATG	CAGTAGTTTC	AAACACATCA	GTCATATGTT	8340
30	TGACTTGTGT	TTTTATTCTT	TCTGGATCGT	GAGAACGTGC	CTCTGCTTCT	AAAATGACTT	8400
	CATCTGCAAC	AATATTCGTA	GCTGAACCGC	CATGAAACTT	ACCAATATTG	GCAGTAGTTA	8460
35	TTTCATCAAC	TTGTCCTAAT	TTCATTCGAC	TAATTGCTTT	CGCCGCAATA	TTAATAGCAC	8520
	TAACACCCTC	TTTTGGCGTA	CTTGCATGAG	CCGTTTTGCC	AAAAATTTTA	GCTGAAATTA	8580
	ACATTTGCGT	CGGTGCACCT	ACAACCGTAG	TACCGACATC	AGCACTTGCA	TCAATAGCAT	8640
40	AACCAAAGTC	CGCGTCCAAC	AACTCTGAAT	TTAATTCTTT	AGCACCAATT	AAACCTGATT	8700
	CTTCTCCAAC	AGTAATCACA	AATTGAATTT	GTCCATGTGG	GATTTGTTGT	TCCTTTATCA	8760
	CTTGCAAAAC	TTCAAGCATC	GCTGATAATC	CTGCTTTATC	ATCTGCACCT	AGAATAGTCG	8820
45	TACCATCAGA	GTATATGTAG	CCGTCATCTT	TTACAATTGG	CTTTACATTA	ATTGCGGGTA	8880
	CAACAGTATC	CATATGGCTC	GTCAAATATA	ATTTAGGTAC	TTCGCCTTCT	TCGATAGTAC	8940
	TATTCATTGT	ACACACTAGA	TTATTGGCAC	CTAATTTAGG	ATGTTTAGCC	GCTTCATCTT	9000
50	CTTTAACATC	TAACCCTAAT	GCTATGAATT	TTTCTTTTAA	AATAGGTTGG	ATTGTTGATT	9060
	CATTCCCTGT	CTCAGAATCG	ATTTGTACAA	GTTCAAAAAA	CGTATTAAGT	AATCTTTGCT	9120

	GATGAAATAA	AATGTTACAG	TAATTGACGT	TACACAGATT	TATCAGGTTT	GTAAATTGTG	9240
	TCATATTATT	TTCAATTTAT	TATATATAAT	TATTGTAACT	CAAACTAAGC	TTTGTCAAAA	9300
5	ATATATTGAT	TGATTTTTCA	AAGATATCGT	ATAATGAGGA	AAATGACATA	AGCAAACTTA	9360
	CTCATGTTTT	TTATTATATT	CCTTTATGAT	GATTGCTAGT	TATATCGTCT	CAAGTTAAAA	9420
10	GTTTTATATC	TTATGTCGTA	ATTATTAATA	CAAAGGTTAT	TCATTTGGAG	GCACACAAAA	9480
, 0	TGCAAAATAA	AGTTTTAAGA	ATTATCATTA	TCGTTATGCT	TGTATCAGTT	GTATTAGCAT	9540
	TGTTATTAAC	GAGTATCATT	CCAATTTTAT	AAACTATATC	TCAACTACCT	ATACAAAATC	9600
15	ATACAATTAA	AAATCCATCC	ATTATAAACG	CATGTATTAA	TAAGTTATCG	TATTGCAACG	9660
	ATTACTTTCA	AACATGGGTC	ATACGGATGG	ATTATTTTTT	AAGCTACTTC	ACTATGCATT	9720
	TTCAATGAAC	CAAATTGCGA	TTTGATTTGT	AAATATTCTT	CTAATTCATT	TAATATTTGA	9780
20	ATAATACTTG	CTCTCGAGTT	AAGCGCTTTG	TGTGTTGTTG	GCAATGGCAG	TTCATCCAAT	9840
	TTCAAACGCG	TCTCATACAA	ATTGTGTAAA	CGCATTGCTG	TATAGTCATT	ACTATTCACA	9900
	TTTAGACCAA	TTTCTTTCAG	CAGTGACGCA	ACATCATTTA	AAAGCGGATC	TTTATGACAG	9960
25	ATACTTTCGA	TGAGCGGTTT	CATTCTCATT	AACAATTCCA	CTTGCTCTTC	TCGCATATCA	10020
	AAATAATGAT	AGTATGAATT	TTCGTTTCTA	ACAAAATGAT	TTTTAACATC	TCGGAACGCG	10080
	ATAGACTECG	CCTTTTTAAT	ATTTAAAAGT	AACACTTCAA	ATTCAATCGC	AATGGTATCT	10140
30	TCATATTTTT	CACAAATATA	ACTATATTTA	CTAAAAATAT	CAGCAATTTG	TTGCTCAATT	10200
	TTACATTTGT	ATTCGTCtAG	TTGTTTGTCT	AAACTTGGCA	TCATTAAATT	Cattgtaaat	10260
35	GCAATGCTTA	GTCCAATTAA	CAGTAATAAT	GTTTCATTAA	CAATTAAATG	TGCATCAATT	10320
	GATTTTGCAT	TAAAAACATG	AAGTAATATA	ACGCAACTCG	TAATGACACC	TTCTTGTACT	10380
	TTTAATACGA	CAGTTAATGG	TATAAATAAC	AATACGATAA	TACCGAGTAC	AATTGGACTC	10440
40	TGACCTAATA	AACTAAATAT	TGCTGAACCT	AAAAACAATA	CTAAAAAACA	TGATACTAAT	10500
	CTTGAAATAA	TCGCTTGTAG	CGAATGTACT	TTTGTATGTT	TAATACATAA	TACGACTAAT	10560
	ATGGCGCTTG	AAGCATAATT	ATCTAAACCT	AACAGCTTAC	TAATAATTAC	ACCTAAAGTC	10620
45	ATACCCACTG	CTGTTTTTAT	TGTTCTAAAT	CCAATCTTGT	AAGGATTTAA	CTTTAACATG	10680
	GGTTAGCGCC	TCTTATCTTT	CTTCACAATA	TTTATTGAAT	AATGTTTGTA	ATTGATTAAT	10740
	TACGTTCATC	ACATCATGAC	CTTCGATTTG	ATGTCTTTCA	ATCATTTCTG	TAATCTTTCC	10800
50	ATCTTTTACT	AATGCAAATG	ACGGACTTGA	AGGCGCATAA	CCTTCGAAGT	ATTCACGCGC	10860
	- perma simetime	Jamen Company of American	Chicicopec	AAATACTGTO	ACTAGACGAT	CAGGTAATAC	10920

	AGAATIGATO	ATAACTAGTG	TIGTACCATC	TTGTTTAAGA	ACTITGTCAA	CATCTTCIGC	11040
c	AGTAGTTAAT	TGCTCATATC	CCGCAGATTC	AATTTCATTC	CTTGCTTGTT	CTACAACACC	11100
5	GTTCATGTAT	AAATCGAAAT	TCATGnCCAT	AAGTTCAATC	ACCTATCCCT	TTATATTTAA	11160
	ACTATCCTCA	TTCTACTAAT	TAATAACATA	TTGTTCAATA	AACTAATCTG	AATCACACCT	11220
0	ATATTTAGAC	ACAATTTTAA	CAATATACCA	AACATTATTG	TGCTTAAAAT	CATGGTAACT	11280
	AATTTGTTCA	CATGTTTTCA	TTAATATGTT	TCAAGTATGA	TGTCTTATTT	TGACTTTACT	11340
	GCAAAAATGC	ATTCAACCAT	GTTGATTATT	GTTCTTTATC	TTTTTTGAAT	ATATTGCACA	11400
5	TATTTTAGTG	CCAAAAAATA	ATACATCCAT	CGACAAGAAC	AAGATAAAAC	AAGTTGTCGA	11460
	TAGATGCATC	TATGTTATCA	СТААТАТАТА	TTTGTATTTT	CTAAAGTATA	CTGTTCGATA	11520
	CGCTGTTTAA	TATGATTCAT	Aratttacct	GTTTGTAAAC	CATCTAAAAT	ACGATGATCA	11580
0	ATTGAAATAC	ATAAATTAAC	CATGTTACGA	ATTGCAATCA	TATCATTAAT	TACTACTGGC	11640
	TTTTTAACGA	TTGATTCTAC	TTGTAAAATC	GCTGCTTGTG	GATGATTTAT	AATACCCATT	11700
	GATGATACTG	AACCAAATGT	ACCAGTATTA	TTTACCGTAA	ATGTACCGCC	CTGCATATCT	11760
5	TCAGCTGTCA	ATTGCTTATT	ACGCGCTTTC	GTTGCTAAAG	TATTAATTTC	TCTAGCTATA	11820
	CCTTTGATTG	ACTTTTCGTC	TGCATGCTTA	ATCACAGGTA	CGTATAATTT	ATTTTCATCA	11880
10	GCAACAGCAA	TTGAAATATT	AATGTCTTTA	TGTAAGACAA	TTTCATTTCC	TTGCCAGCTA	11940
Ü	CTATTTAATA	AAGGATATGC	TTTTAAAGCA	TCTGCTACAG	CTTTTACAAA	GAAAGCAAAG	12000
	AACGTTAGAT	TATATCCTTC	TTTATTTTTA	AAGCTGTTTT	TATAATGATT	TCTCGTATTC	12060
15	ACAAGATTTG	TAGCATCTAC	TTCAATCATC	ATCCATGCAT	GTGGAATCTC	TGTTACACTA	12120
	TTAACCATAT	TTTGCGCAAT	TGCTTTACGC	ACACCATTTA	CTGGTATTGT	GCTGTTTTCA	12180
	CTATTGTCTT	CAGATGATTG	GTTACTTGAT	GTATCTACTG	ATGTTGATTT	TGTTTGAACT	12240
0	TGTTTGTCAG	ATTGAGCTGT	GGTACCACCA	TTTTCAATAA	CTGACATTAT	ATCCTTCTTA	12300
	GTTACACGAC	CTTCAAATCC	ACTACCTACA	ACTTGTGATA	AATCAATGTC	ATGCTCTGAA	12360
	GCGAGTTTAA	ATACAACAGG	TGAAAAGCGA	CCATTATTAC	GTGGTTGATT	TTGTTTAGCA	12420
5	GTAGATGTCT	GTTCCACTGT	TGCACTAGCT	TTTTTAGTAG	ATTTCTGAGT	ATGCTCATCC	12480
	ACTTTTGCTT	GTATCTCTTC	AGTTGTTTCA	TTTGTCTTTT	CATCAGCAGT	TTCAATTTTA	12540
.0	CAGATAATTG	TATCAATAGC	TACTGTCTGC	CCCGCTTCAA	CTAAAATTTC	TGTAATTGTT	12600
0	CCTGATATCG	TGGAAGGGAC	TTCAGCTGTC	ACTTTATCTG	TAATAACTTC	ACATAATGGT	12660
	TCATATTCAT	CAATATGATC	ACCAACAGAA	ACTAACCATT	GTTCAATGGT	GCCTTCATGA	12720

	AATTCACGCA	ТТТТАТТТАА	GATTTTTCT	GGATTCATCA	TAATTTCATT	TTCTAATACA	12840
	GGAGAAAATG	GCATAGATGG	TACATCTGGA	GCAGCTAAAC	GCATGATTGG	TGCATCTAAA	12900
5	TCGAACAAGC	AATGCTCTGC	AATAATCGCT	GACACTTCTG	ACATAATACT	ACCTTCTAAA	12960
	TTATCTTCAG	TTACAAGTAA	AACTTTACCT	GTATGTTTAG	CACGATCAAT	AATTGTTTCT	13020
10	TTATCTAATG	GATAAACAGT	TCGTAAATCA	ACGACTTCAA	CATTGATACC	GTCTGCAGCT	13080
	AAAATATCCG	CTGCTTGTAA	ACAATAATTG	ACCATTAATC	CATAACAAAA	TACTGTTAAA	13140
	TCTTCACCTT	CACGTTTCAC	ATCTGCTTTT	CCTAAAGGTA	CAGTGTAATA	TTCTTCTGGC	13200
15	ACTTCTTCCT	TTAAGAAACG	ATAAGCTTTT	TTATGCTCAA	AGTACAATAC	TGGATCATTT	13260
	GATTCGATAG	ATGATAATAA	AAGCCCTTTA	GCATCATACG	GTGTGGAAGG	AATAACAATT	13320
	GTTAAACCTG	GCGATGAAGC	AAATATACTT	TCAATACTTT	GTGAATGATA	TAGTCCTCCG	13380
20	TGAACACCGc	CACCAAATGG	TGCACGAATC	GTTAATGGGC	ATTGCCAATC	ATTATTTGAA	13440
	CGATAACGCA	TTTTCGCAGC	TTCACTAATA	ATTTGATTTG	TCGCAGGTAA	AATAAAATCT	13500
	GCAAATTGAA	TTTCTGCAAT	TGGTCTTTTA	CCTACCATAG	CTGCACCAAT	GGCAGTTCCA	13560
25	ACAATATTTG	ACTCAGCTAA	TGGCGTATCG	ATAACTCTGT	CTTCACCATA	TTTTTGTTGC	13620
	AGTCCTTGAG	TAGTACCAAA	TACGCCACCT	TTTCTACCAA	CATCTTCACC	AAGAATAAAC	13680
30	ACATCTTTAT	TTTGTTGTAA	TGCTAAGTCT	TGTGCCtGcG	TATCGCCTCT	AAATAAGATA	13740
30	ATTTAGCCAT	TAGTTAAGAC	TCCCTTCTTC	GTACACAAAT	GCATAGGCTT	CTTCGACACT	13800
	TGGATATGGC	GCGTCTTCAG	CAGCCTTTGT	CGCTTTATTG	ATGATGTCTT	TnATgTCCGC	13860
35	TTCTATTTCT	GCCAACCAAG	CATCATCGAT	AATGCCAGCT	GAAAGCAACT	CTTTTTTGAA	13920
	CTTTTCATTG	CAGTCTGCTT	TTTTAAGcGT	TTCACGCTCT	TCTTTCGTAC	GATATTGGTC	13980
	GTCATCATCT	GATGAATGAG	CTGTCATACG	ACTTGTTACT	GCTTCAATCA	AAGTTGAACC	14040
40	TTGÁCCAGAA	ATAGCTCGAT	CTCTTGCTTC	TTTCATCGCT	TTATACATTG	CTAATGGATC	14100
	ATTACCATCT	ACTTGTTCAC	CATGTATACC	GTAACCAAGT	GCTCTATCCG	ATAATTTTTC	14160
	AGCTGCGTAT	TGTAATGAAT	CAGGTACTGA	AATTGCATAT	TTATTATTTA	TAATGACACA	14220
45	TACAAAAGGA	AGTTTGTGTA	CACCCGCGAA	GTTTAAACCT	TCATGGAAGT	CACCTTGGTT	14280
	TGAGCTACCT	TCACCAACAG	TTGCTGTTGC	AATTTTCTTC	TTACCATCCA	TTTTTAAAGC	14340
50	TAAAGCAGCA	CCAACAGCAT	GGGGTATTTG	AGTTGCTACC	GGTGAACTTT	GAGACAAAAT	14400
50	ATTCTTAGCT	CTACTACTAA	AGTGTGATGG	CATTTGTTTT	CCACCAGAGT	TAACATCGTC	14460
	i dimaka sa	ن د د د د د د د د د د د د د د د د د د د	רדמדרים במי	7474444	27727772772T	a ACTA ACCA a	14570

	AATCTGAGTT	GCTTCTTGTC	CTTGACCACT	TACAACAAAT	GGAATTTTAC	CTGCACGGTT	14640
5	CAATAACCAC	AGTCTTTCAT	CTATTTTTCT	ACCTAAATCC	ATCCATTTAT	ATATTACTTT	14700
3	TAGGTCTTCT	TCGCTAAGGC	CTAATGATTT	ATAATCAATC	ATGTTAAATC	CTCCTATTTA	14760
	TACGTGAATA	GCTCTACTTT	CTGCTTTCAA	TCCTAATTCC	ATCAACACTT	CAGAGATGGA	14820
10	AGGATGTGCG	TGTGTTGTTA	GTCCTAATTC	TAATGCCGAG	CCATTCATGA	ACTGTAACAG	14880
	TGATGCCTCA	TTAATCAATT	CTGTTACATG	TGGACCAATC	ATATTAATAC	CCACAATTTC	14940
	TTCAGTTGAT	TGATCAATCA	CCATTTCGCT	ATACCCTTCG	TTTGTGTCAT	GGCTATCAAT	15000
15	CACTGCTTTA	CCAATTGCTT	TAAATGGTAC	TTTAAAACTT	TTAACTTTCA	TTCCCTCTGC	15060
	CTTTGCTTGT	TCAATGTTTA	AACCGATAGA	AGCAATTTCA	GGTTGTGAAT	AAATACACTT	15120
	AGGCATCATG	TTATAGTTTA	CTGGGATTGG	GTTCCCCTCA	AACATATGAT	CAACAGCCAC	15180
20	AACACCTTCT	TTTGATCCAA	CATGTGCCAA	TTGTAATTTT	CCTATACAAT	CACCAGCTGC	15240
	ATAAATATGT	TTATCTTCAG	TTTGTTGAAA	TTCGTTCGTT	AAAATATGTC	CTGATGTTGa	15300
	AAGETTTATT	TTAGTGTTGT	TTAAACCAAT	ATCTGATGTG	TTAGGTTTTC	TACCAATCGA	15360
25	TAGCAACACT	TTATCTACTT	TAATTATGTC	TGAGGAAATT	TCAAACGTAA	CACCATCTTC	15420
	GTTAACATTT	ATATCATTTT	CAGAAAGTTT	TATTCCCTCA	TAGAATTTAA	CACCACGTGC	15480
30	TGACAATGAT	TTTTTTTAATA	GTTGTGAAGC	TTGTTTACTT	TCAGTTGGTA	AAATTCTTTC	15540
	ACCTGCTTCT	ATAACTGTTA	CGTCAACACC	TAAATCTATC	ATCAATGATG	CAAATTCCAT	15600
	TCCGATAACA	CCACCACCAA	TAATACCAAT	ACTTGATGGT	AACGTCTTTA	ATGATAATAT	15660
35	ATCATCGCTA	GATAAAATTT	TATCATGATC	AAATGATAAG	AATGGCAACT	CTGCAGGCGA	15720
	AGAACCAGTT	GCAATTAATA	CAAATTGGTT	GGGTAATAAG	TCTGATTCAC	CATCTTCATA	15780
	TTCGACAGAA	ATTGTGCCAC	TTTGAGGTGA	AAATATAGAT	GTACCTAGAA	TACGTCCCGT	15840
40	GCCATTATAA	ATGTCAATGT	GATTGTGTTG	CATTAAATGC	TTTACACCTT	GATACATTTG	15900
	ATTAATAATG	TCTTCTTTTC	GTGCCAACAT	ATTTTCAAAA	TTAACATTAG	CATCTTTGAC	15960
	ATCAACGCCA	AACATTGCTG	CCTGTTTTAC	TGTTTGAAAT	ACTTCAGCAG	ATTTAAGCAG	16020
45	CGATTTAGTA	GGAATACAAC	CTTTATGGAG	ACAAGTACCT	CCTAATAGTT	GTCGTTCTAC	16080
	TATTGCCACT	TTTTTACCTA	ATTGAGACGC	ACGTATCGCA	GCAACATATC	CTGCAGTACC	16140
50	TCCACCGAGA	ACGACTAAAT	CATATTGTTT	CTCTGACATG	TTCTTACTCC	TAACTAATGA	16200
50	TATATATCCA	TTGAAAATTT	ATTAATACAT	AGTTTTCATG	TCCATTAATT	ACCTATTTTA	16260
	CATGATTGTC	TATTTAGTTT	GAATGCACAT	AAATAAATCC	ATAAATGAGT	ATTCAACACA	16320

TAAATCAGTA	ACACTTGCAC	CTGAAATCAT	TCGTGCAATT	TCATCTACTT	TATCATCGCT	16440
AATTAACTCT	TGAACTTGTG	TTGTTGTACG	ATCATCTTTT	GATGATTTCG	AATTAATAA	16500
ATGATGGTCG	CTCATCGATG	CAACTTGTGG	TAAGTGAGAG	ATACAAATAA	CTTGTATATA	16560
TTCTGCTaTA	TCTCGCATTT	TCTCTGCCAT	TT			16592

(2) INFORMATION FOR SEQ ID NO: 54:

5

10

15

20

25

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13794 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

CCAATACAAC	GTAAAAAGAT	TGCTTGTGTT	ATTAATGAGT	TAGATAAAAT	AATTAAAGGA	60
TTTAATAAGG	AAAGAGACTA	CATAAAATAT	CAATGGGCTC	CAAAATATAG	CAAAGAnTTT	120
TTTATACTTT	TTATGAACAT	TATGTACTCA	AAAGATTTTT	TAAAATATCG	ATTTAATTTA	180
ACATTTCTTG	ATTTATCTAT	CTTATATGTA	ATATCATCTC	GAAAAAATGA	GATACTAAAT	240
TTAAAAGATT	TGTTTGAAAG	TATTAGATTT	ATGTATCCTC	AAATTGTTAG	GTCAGTTAAT	300
AGATTAAATA	ATAAAGGTAT	GCTAATCAAA	GAACGATCCC	TTGCAGATGA	AAGGATTGTG	360
TTAATCAAAA	TAAATAAAAT	ACAATATAAC	ACTATTAAAA	GCATATTCAC	AGATACTTCC	420
AAGATTCTCA	AACCAAGAAA	ATTTTTCTTT	TAAATTTAAA	CAGATTTACC	TCTTGATAAA	480
ATAAATAAGC	AATCATACTA	CTTCTCAATT	TAGTATAAAT	AAAAATACAT	AATTAACTTT	540
CTTTTGTTTT	TATATTATTT	CAATACCCTA	CTATATATCA	CAACACATAA	ATTAAGCATG	600
ACAÇTCATTC	AATTTAGTTC	ACCATTTCGT	GTTCCAATTT	TACTGAGTAT	CATGCTTTTA	660
ATGTTATAAA	CCTAATGCTT	TAATAAATCG	TGTTAATTCT	TCTCGCATAC	TGTCATCTTT	720
CAATGCATAT	TCTATGGTAG	TTTTAACGAA	GCCTAATTTT	TCTCCAACGT	CATAACGTTC	780
GCCTTCGAAG	TCATATGCAT	ACACTTGGTT	ATCATTATTC	ATACGTTCAA	TCGCATCTGT	840
TAACTGAATT	TCGTTACCTG	CGCCTTCTTT	TTGCGTTTTT	AAATAATCGA	AAATTTCAGG	900
CGTTAATACA	TAACGTCCCA	TAATAGCTAG	GTTTGATGGT	GCCGTACCTT	GTGCTGGCTT	960
TTCAACAAAC	TTTTTCACTT	CATACTGACG	TCCGTTTTTA	GTTAATGGGT	CAATAATTCC	1020
ATAACGATGA	GTATCTGCTT	CCGGAACTTC	TTGGACACCT	ATAACTGAGT	GCCCTGTTTC	1080
	s me	·mammas, amidia		י ארות בריייי בר	The demonstrate	** 10

	TAAACCTTTT	TGTTCTTTCT	GCCTTACATA	AAAAATATTC	GCAAGTTCCG	TTGAATACTG	1260
	AACTTTCTCT	AGTAATTCAG	ATTTACCTTT	TTCTTTTAAC	ACCATTTCTA	ATTCTTTTTG	1320
5	ACTATCAAAA	TGATCTTCAA	TCGCGCGTTT	GTGGCGACCT	GTCACTATAA	TAATATCTTC	1380
	AATTCCAGCT	CTTGCAGCTT	CTTCAACGAT	ATATTGTATT	GTGGGTTTAT	CTAAGATAGG	1440
	AAGCATTTCC	TTTGGCATCG	CTTTAGTTGC	TGGTAAAAAT	CTAGTCCCTA	AACCAGCAGC	1500
10	GGGAATGATT	GCCTTTTTTA	TTTTTTCAA	AGTTAATGTG	CTCCTTTTCC	TAAGTATTAA	1560
	ATCTATGTAT	CAACGTCATT	TTAACACTAA	TTAGAACGCC	TTCATAGTGT	CATTGAGTAT	1620
15	GTAATTATTT	CTTGGGAAAT	TTGTTTTAAT	TTTAAAAAAC	AGGCTTACTT	CATATAATTT	1680
	ATGAAATAAA	CCTGTCAATT	TTGGATTGAT	TATGCTTTGT	GATTCTTTTT	ATTTCTGCGT	1740
	AATAACGCTA	AACCTAAAAT	GCTAAATAAT	CCGCCGAACA	ACATGCCGTT	GTTTGTTGAT	1800
20	TCTTCTCCAC	CTGTTTCAGG	TAGTTCAGAT	TTCTTAGATT	GTGCTTTTTT	AGTTGGTACC	1860
	ACTGCTTTAA	CCTTTTCATT	GATTTCAATA	ACAGGTGTTA	CTACTTTACC	TTGTTCCACT	1920
	GGTTTAGAAG	GTTTTTTAGG	TTCTTCTTTA	GCAGGTGGTA	TTGGTTTACC	AGGTTCAGTT	1980
25	GGTACCTCTG	GCGTTGGCGG	TGTTGGTGTT	TCCGGCTCGC	TTGGTACTTC	TGGTGTCGGT	2040
	GGTGTTGGTG	TTTCCGGCTC	GCTTGGTACT	TCTGGTGTCG	GTGGCGTTGG	TGGCACGATT	2100
	GGAGGTGTTG	TATCTTCTTC	AATCGTTTGT	TGACCTTCAT	TATGACCACT	TACTTGTGGA	2160
30	AGTGTATCTT	CTTCAAAGTC	AACACTATTG	TGTCCACCGA	ATTGATAATT	TGGTTTATCT	2220
	TTATTTGTAT	CTTCTTCAAT	AATTTCAGTG	TGCTTATTGA	ATCCGTGAAT	ATGTGGCACA	2280
35	CTGTCGAAGT	CGATATCAAT	GATATTACCA	CCTTGTTCAT	ACTTAGGTTT	GTCTTTCTCT	2340
33	GTATCTTCTT	CGAATGATTG	GTTACCATTA	TTTTGACCAT	GAATTTGAGG	TACACTATCG	2400
	AAATCGATAT	CTACGATATT	GCCACCTTGT	TCATATTTCG	GTTTATCTTC	TTCTGTGTCT	2460
40	TCCTCAAATG	ACTGATTACC	GCTATTTTGG	CCACCTTCGT	AACCTAATTC	ACTCTTAATA	2520
	TCCACGTGGC	TATTTTCTTC	GATTTCTTCA	ATCACGCCAT	AATTACCGTG	ACCATTTTCA	2580
	GTTCCTAAAC	CAGAATGAGA	AATATGATGA	TTGTTTTCAG	TAATTTCCTC	GATTGGTCCT	2640
45	TGCGCTTGAC	CATGTTCTTC	AGGTAGTTCA	TCTACTAGTT	CAATCAGATT	ACTTTCAGTC	2700
	GTATATTCTT	TCGTATCTTC	AATTGTTGTA	TGATCGCTAA	CAGCACCAGT	TACAATACCT	2760
	TTTGTAGAAT	CTTCGTCAAA	TTCAACTAGG	TTAGACTCAG	TAGTAACCTG	ACCACCACCT	2820
50	GGGTTTGTAT	CTTCTTCATA	TTCAACAACA	TCAGCATGAT	GTTTTGAATT	TTCATGTGTC	2880
	GATTCTTCAA	AGTCTACATG	AATAGAATCT	TCTTCAGTTT	CAATGGTACC	TTCTGCATGA	2940

	TCTTCGATTG	TACCAGTCAA	TTCATGCTTC	TCCACTGGCG	GCTCTGATTT	AAATTCAAGT	3060
_	TCGATAGGAG	TACTATGTTC	TATAATAGGT	TCCTTTAGTT	TATCTTTGCC	GTCGCCTTGA	3120
5	GCGTTATTAG	AGTAAAATGC	AACGCCATTT	TTCCaAGTTA	AATTACTTGT	ATAATAATAG	3190
	TTATAATATC	CAAAAAGGTG	TGTTTGAAAT	TCTAAGTTGC	TAGCATTTGA	ATCATAATAC	3240
10	CCTTCATATT	TTATTACATA	ATTTTTACTT	TGGTCTAAAT	TATTAAAGTT	TAAAGAATAA	3300
	CCACCATTAG	TATCAAAATC	TAAACTCATA	TTATCAGTCA	CATCTTCAAA	TTTGCTGACA	3360
	TCATCAAGCT	TTGCATAnTn	AgctTTCAGC	TAAATCGTCT	GAACCAATGT	GTTTATATAC	3420
15	CTTAACTGTT	GGATTATTAA	CCCCTGGTTT	ATTTCCTTTA	GTTACTTGAC	CAGTTACTGT	3480
	CACAGAGCTT	AACGACTGGT	TGTTAGGTTT	CATGTACGCA	AAATGACTAA	ATTTCCCATC	3540
	TACTTTATTT	AAAGTATCAA	TTCGACCATT	AGCTGTTACT	CCCCAATTAT	CTCTAACTCC	3600
20	ACCTAAATAT	TGAATATTAA	ATATTTTGCT	AACCGTAGTC	TCACCCAATT	TAACTTCAAC	3660
	ATTTTGGTTA	CCTTTTTGCG	TCACTGTTGT	AGGATCAATA	AATAGATTTA	AAGATAATTC	3720
	AGCAGTTAAA	TCTTTCTTTT	CTTGTACATA	TTCTTTAAAC	GTATATCTAA	CTTTTCTTTC	3780
25	TCCAATTATT	TCTCCTGTCG	CCATAACTTG	ACCATCTGTA	CTTTTTATCT	CCGGAACTTT	3840
	ACGCAGTGTT	GAGATACCAT	GAGTTTCAAC	ATTATCGCTT	AATGTGAAAT	CAAAATAATC	3900
30	TCCCGCCTTA	ATTCCTTCTC	CAAATTTCCA	TTTATATTTC	AAGGTTACTC	TTTCTGCGTT	3960
50	ATGAGGATTT	ACAACATTCG	TATCTTGTTT	ATGTCCTACA	ATTTCACTAC	CTTCTTCTAC	4020
	TTCCACTTTA	TTTGTTACAT	CTGTACCTGT	CGCTTTAGTT	TCTTCCACTA	CTTCTTTCTC	4080
35	TGCAACTGCT	GTAACGTCAt	TGatCTTTTC	ATTCTTGGTT	TAATTTCTGA	GACGTTACTT	4140
	GGTTGAGCTA	TGTCAACTTG	AGTTCCTGTA	GTTTCCTTAT	CAGCAACTTT	TTCCGATGGC	4200
	AAAŢCAACTC	GCGAAgTTTC	TACTTTTGGT	GCTTGCAcAG	TTTTCGGTGC	TTCTTCTGTT	4260
40	GTTACTTGTG	TTGATTGTGA	TGGTTGCTCA	GTTGATGTCG	CGCTGTATGA	TTGTGTTTCA	4320
	TCTATTGTAT	TAACGTTATT	TGTAGTTGTT	TGTGTTTCGC	TTGCTTTACT	TTCAGTAGCT	4380
	GAACTCCCAC	TTTCCTCTAC	TGTAGTATTG	TTTTGTTCCG	ATGCTGCAGC	TTCTTTTTCT	4440
<b>4</b> 5	TGTCCCATTC	CAACAACGAT	CATTGTTCCT	AAGAATACTG	AGGCCGCTCC	CAATTTGTGT	4500
	TTTCTTATGC	CGTATCTAAG	ATTGCTTTTC	ACTATAATAT	TCTCCCTTAA	ATGCAAAATT	4560
	CATTTATTTT	TAAAACTCAA	TAAATGCAAT	TCTATATTGT	TCGGTTTTTA	AAAGCAATGA	4620
50	AAAAAAGCGA	GTTAATAAAA	AGTTAAGATT	GTTGTTAACI	TTATGTATAA	TGAGTTTTTT	4680
			· m · mm/· /· · · · · m ·	as significant par	والمشاك لا تا لا لا تا	PPADAATATA	4740

	INCINANCIA	IACAIAAIAA	TCGCCTGTAC	AATGCATCAT	TAACAAGTCA	CIGAAACGCC	4850
	TTTCATTGTA	TTAATAACGT	CACTATAATT	TTTATATCGT	TCGGTTTTTG	TTTGATTTTA	4920
5	ATGATTATTT	АТАСАААААС	AGCCGTATTT	CAAGCCGACA	TTTTAAATTT	AACTAAATTT	4980
	GCATCTAGTT	AATAATTGCA	TTTATCAAAT	TTGTCTTATT	GATCCAATCT	AATTTGTACT	5040
0	CACAAACTAG	TTTAAAATTC	TAACTTTATC	TCTCAGTTCG	TTATCAATCA	TCAGACATAA	5100
U	ACCAATGAAG	CAATCAGAAA	ACACTCTAAT	TTTCTATTAG	AAATTTGATT	TAATATAAAA	5160
	AAACAGGCTT	ACTTCATATA	ATTTATGAAA	TAAACCCGTC	AATTTTTGTT	TAATTATGCT	5220
5	TTGTGATTCT	TTTTATTTCT	GCGTAATAAT	GCTAAACCTA	GAATGCTGAA	TAATCCGCCG	5280
	AACAACATAC	CTTTGTTTGT	TGATTCTTCT	CCACCTGTTT	CAGGTAGTTC	AGATTTCTTA	5340
	GATTGTGGTT	TTTTAGTTGG	TGCCACTGCT	TTAACCTTTT	CATTGATTTC	AATAACAGGT	5400
0	GTTACTACTT	TACCTTGTTC	CACTGGTTTA	GAAGGCTTTT	TAGGTTCTTC	TTTGGCAGGT	5460
	GGTACTGGTT	TACCAGGTTC	AGCTGGTACC	TCTGGTGTTG	GCGGTGTTGG	AGTTTCTGGC	5520
	TCACTCGGCA	CTTCTGGTGT	CGGTGGTGTT	GGTGTTTCCG	GCTCACTTGG	TACTTCTGGT	5580
5	GTTGGTGGCG	TTGGTGTTTC	CGGCTCACTT	GGTACTTCTG	GTGTCGGTGG	CGTTGGTGGC	5640
	ACGATTGGAG	GTGTTGTATC	TTCTTCAATC	GTTTGTTGAC	CTTCATTTTG	GCCGCTTACT	5700
	TTTGGAAGTG	TATCTTCTTC	AAAGTCAACA	CTATTGTGTC	CACCGAATTG	ATAACTTGGT	5760
0	TTATCTTTAT	TTGTATCTTC	TTCAATAATT	TCAGTGTGCT	TATTGAATCC	GTGAATATGT	5820
	GGCACACTGT	CGAAGTCGAT	ATCAATGATG	TTACCGCCAT	GTTCATACTT	AGGTTTGTCT	5880
5	TTTTCTGTAT	CTTCCTCGAA	TGACTGATTA	CCTTTATTTT	GACCATGAAT	TTGAGGTACA	5940
	CTATCAAAAT	CGaTATCTAC	GATATTGCCA	CCTTGTTCAT	ATTTAGGTTT	GTCTTCTTCT	6000
	GTGTCTTCCT	CGAATGACTG	GTTACCGCTA	TTTTGGCCAC	CTTCATAACC	TAATTCACTC	6060
0	TTAATATCAA	CGTGGCTATT	TTCTTCGATT	TCTTCAATCA	CGTCATAATT	CCCGTGACCA	6120
	TTTTCAGTTC	CTAAACCAGA	ATGAGAAATA	TGATGATTGT	TTTTAGTAAT	TTCCTCGACT	6180
	GGTCCTTGTG	CTTGACCATG	CTCTTCAGGT	AATTCATCCA	CTAATTCAAT	CAGATTACTT	6240
5	tCAGTTGTAT	ATTCTTTCGT	ATCTTCAACT	GTTGTATGAT	CGCTCACLGC	GCCAGTTACA	6300
	ATACCTTTTG	TAGACTCTTC	GTCAAATTCA	ACTAAGTTAG	ACTCAGTAGT	AACCTGACCA	6360
	CCACCTGGGT	TTGTATCTTC	TTCATATTCA	ACAACATCAG	CGTGATGTTT	TGAATTTTCA	6420
0	TGTGTAGATT	CTTCAAAGTC	AATTGGATTT	GATTCCTCAG	AGGACTCAGT	GTATCCTCCA	6480
	ACGTGACCTG	CTCGCTATC	CACAGCAGTA	TGGTAATCGA	TATCAATAGC	TGATGAATCC	6540

	TGGTAATCAA	TGTCAAGAGT	TGATGAATCA	TATTCCTCTT	CAACAGTAGT	TACTAAATTC	6660
	TTATCATATT	GACCTGTAAG	AGTTTCTTTA	ATTGTATCTT	CTTTATATTC	AAATTTATTA	6720
5	TTTTGAATAA	TCGGACCATT	TTTCTCATTT	CCGTTCGCTT	TATTACTGTA	TAAAACTAAA	6780
	CCATTATCCC	AAGTTAAGGT	ATATCCTCTA	TCATAATAAT	ACTTATAAAG	TTGCTCTGGA	6840
10	TGTCCTACCA	TTTGTGTTCT	AAAATCAACT	TCATCAGTAC	CATTTAAATA	CTCTCCATCA	6900
10	TAGTGAACAA	CATAAGTTTT	ATCTAGATTT	TCTATATTCA	ATGAATAGCT	TCCATTATTT	6960
	TGTAAATTCA	AATTCCCACT	CATATTACTT	GTGACTTCTT	TAAATTTAGA	AGTATCTGTC	7020
15	GTATTTGCAT	ATACACTCTT	CGCTATGTCT	TCATTATTAC	CCAAGTATTC	AAATATCCTA	7080
	ACTITTGGTT	GATTTCCATT	CTGATTACTA	CCTTTCATTA	AAGTTCCAGT	AACAGTCACA	7140
	CTTGTCGTTT	TACCATTATT	AGGTTTAATA	AATGCAACAT	GCGAAAATCT	ATTATTCGCT	7200
20	TTATTAAATG	TCTCAATCGA	TCCATTTAAA	TTGGCATAAT	AATTCCCAAT	ACCATCTTTA	7260
	TATTTAACAT	CTAATTCCTT	TGAAGTTTGT	TCTTCATTTA	GTGTTGAAGT	TATAGTTTGA	7320
	TTTCCATTAG	TTTGTACAGT	TTTAGGATCA	ATAAATAAAT	TAATTTCTAG	TTCAGCCGTT	7380
25	ACATCAACCT	TATCTTCAAT	ATCATTTGTA	AATGTATATC	TAATCTTTCC	ACCTTCTAAA	7440
	ACTTCACCTG	TCGCCATTAC	GACTGAACCA	TTTTTAATTT	CTGGTACTTT	TCTAGCAGTT	7500
	GATACGCCAT	GCGTATTTAC	ATTATTTGAT	AAAGTAAAGT	CAAAGTAGTC	ACCTTGATGT	7560
30	AAACCATTCT	CAAATTTCAA	CTTATATTTT	AGTACCGCTC	GTTGTCCTGC	ATGAGGTTCT	7620
	ACTTTATTTG	TATTGTTATG	CCCCTCAATA	GAACCAATTT	CTACTGTAAC	TTTACTTGTT	7680
35	ACATCTGTAC	CCGTTTCCAC	TTTCGCGTTA	CTAGCTTCCT	TAGCTTCCGC	TACATCTGCT	7740
	GATCTTGTCA	CACGTGGCTT	ACTTTCTGAT	GCCGTTCTTG	GCTGTGCCAC	TTCAACTTGT	7800
	GTTTCTGCGA	CTTGATTTTG	TGTAGCCTTT	TTAGGTGTTA	AATCTACTTG	TCTTTGATCT	7860
40	CCGCTATTGT	CTTGAGATTG	TGTTGTTTCC	TTAACTTGAG	GTTTCGCTTC	TTCCTTAACT	7920
	ACCTCTTCTT	TAACTGTTTC	TATATTTGCT	GGTTGTGCAG	TTTGTGGTGC	TTGTACTGCT	7980
	TTTGGTGCTT	CTTCAGTTGT	TACTTGTGTT	GCGTTTGACG	GTTGTTCTGT	TACTGTTGCG	8040
45	TTATATGATT	GAGTTTCTTC	TATATGATTA	ACGTTAGTTG	CAGTTGTTTG	TGTTTCACTT	8100
	GTTTTATTAT	CAGTAGCTGA	ATTCCCATTT	TCTTCTACTG	TAGTTGTCTT	TTGTTCTGAT	8160
	GCTGCAGCTT	CTTTGTCTTG	TCCCATCCCA	ACAACGATCA	TTGTTCCTAA	GAATACTGAT	8220
50	GCTGCTCCCA	ATTTATGTTT	TCTAATGCCG	TACCTAAGAT	TGTTTTTCAC	TATAATATCT	8280
	·	~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	سماناسانيما لألأنين	מה בבה היה בבה	a AmdraAdiro	سلسلائىلىئىلىك	9340

	ATGTTAATTG	ATAATTTTAT	TATTTGAAAT	ATACCTATAA	ATTGTATTCA	AGTCATCAGA	8460
	AACCCTTGTC	ACACAAGGCT	TGTATTTTT	ATACTTATTT	TTTAAATTAA	ATTCATCATT	8520
5	ATCTAATTTA	AAACAATATA	CTAAACGTTT	CATAATTATC	GCCTGTACAA	TACGCACAAA	8580
	AACATGTCTT	GAAACGCCTT	TCATTACTCT	AAAATACCCA	ATATACTTTT	TATATCGTTC	8640
10	GGATTCTGAG	TATTTCAGAC	GATTTTCTGC	ATAAAAATAA	ACGTGTTTCA	AGGCAATATA	8700
, 0	TTGCAATTAC	CTAAAAACAC	GTTTACTTAA	TATTTAGTTA	AACAAATAAG	CTAATGAATA	8760
	AAATGAAGAT	GATACCTGAA	ACGGAAATAA	TCGTTTCTAA	TAATGACCAT	GTTAAGAATG	8820
15	TTTCTTTTAC	AGTTAAACCA	AAATATTCTT	TAAACATCCA	AAATCCTGCG	TCATTTACAT	8880
	GAGACAAAAT	CACACTACCT	GCACCTATCG	CAAGTACAAC	TAATGCAACA	TTTACATCTG	8940
	ATGATTGTAA	TAATGGTAAG	ACAATACCTG	TAGTTGAAAT	CGCAGCTACT	GTAGCCGAAC	9000
20	CTAATGCGAT	ACGTAGCACA	GCTGCAACAA	TCCATGCTAG	TAAAATCGGA	GACATCTCTG	9060
	TACCTTCAAA	CATTTTAGCA	ATTGTATTTC	CGACACCGCC	GTCAATTAAT	ACTTGTTTAA	9120
	ATGTACCGCC	ACCGCCAATA	ATCAATAACA	TCATTCCGAT	TGGATAAATC	GCATTCGTCA	9180
25	CTGATTCCAT	AATATGATTC	ATCTTACGCT	TTCTCATTAA	TCCCATCGTA	ACGATTGCAA	9240
	ATAATACTGC	TATTAGCATG	GCTGTCCCTG	CTGTTCCTAT	CATATAAATG	ATAGATTCAA	9300
	ATAGATTTGT	AGGTTTGTCA	TGCCCAGTTA	CAAGTTGCGT	TATCGTAGAC	ACTAACATTA	9360
30	ATATGACTGG	TAATGTTGCT	GTTAATAAAC	TCATACCAAA	TCCTGGCATC	TCTTGATCCG	9420
	TAAATTCTTT	TTGTGCACCT	AACGCTGAAA	TATCGCCTTC	TCGTGTATAC	GCAGACGGAA	9480
35	TCATTTTTTG	TGCAcTTTGT	TAAATATAGG	CCCTGCAATG	AGTGTAACTG	GaATGGCAAT	9540
	AATCATACCA	TACAGTAATA	CATCTCCAAC	ATTTGCCTTT	AATTCTTTTG	CGATGACTAC	9600
	CGGTCCTGGA	TGTGGTGGTA	AAAAGCCATG	TGTCACTGAT	AAAGCTGTTA	CCATAGGTAG	9660
40	TCCTAGTTTT	AACACTGAAA	CATTTGCGCG	TTTTGCTACT	GTAAATACTA	ATGGAATCAG	9720
	TAAGACTAAA	CCTACTTCAA	AGAACAATGC	AATACCGACG	ATAAATGCTG	CAACAAGCAT	9780
	TGCCCATTGT	ACATGTTTTT	GACCAAATTT	TTGAATCAAC	GTGTCTGCGA	TTCGAGTTGC	9840
45	ACCACCACCA	TCAGCAAGCA	ATTTCCCAAG	TATGGCACCT	AAACCGAATA	TCAGTGCAAT	9900
	GTGGCCGAGC	GTACTGCCCA	TTCCTTTCTC	AATCGTCTCC	ATAATTTTAG	TCAATGGTAT	9960
	ACCTAGCATT	AACGCTGTAA	TCATCGATGT	GATAATTAAT	GAAATAAATG	TATTTAATTT	10020
50	AAACCCAATA	ATTAATACTA	ATAAAATAAC	GATACCTAAA	ACAACACTGA	TTĄACGGCCA	10080
	TATTTCGTTA	AACATGACAT	TCCCCTCTTT	CTCTTTTCAA	TAGAATGTAA	CACCGTCGTC	10140

	GAGTGACGTA	TTTATTGTGT	TTTATTTTCA	GCGATATGTT	GGCGTTGAAA	ATCTGCAATT	10260
	TGTTCATAAT	TCTCTGTTAA	AGAACGACTT	AAATTGATAA	AAATGGATAC	GATCTCTTGG	10320
5	TAAACAGTGA	CATTTTCTTC	AATCGGCGTA	TGATTGTTTG	TGGCACCGAC	CATCGATGAA	10380
	ACGATTGAAA	AATCTTCAAT	GTCACCTACA	GCTTTAAGTC	CGAGCACGCA	GGCACCTAAG	10440
10	CATGAACTTT	CATAACTTTC	AGGAACCACT	AACTCTGTGT	CAAATATATC	TGACATCATT	10500
, 0	TGACGCCATA	CTTCACTTTT	CGCAAAACCA	CCTGTTGCTT	TTATCATCTT	AGGTGTTTCA	10560
	TTCATTACTT	CAATAAGCGC	AAGATAGACG	GTATACAAAT	TGTAAAGAAC	ACCTTCTAAT	10620
15	GCAGCGCGAA	TCATATGTTC	TTTTTTATGA	GATAAAGTTA	AACCGAAGAA	TGAACCTCTT	10680
	GCATTTGCGT	TCCAAAGCGG	CGCACGTTCT	CCTGCTAAAT	AGGGATGGAA	TATTAAACCA	10740
	TCTGCACCTG	GTTTAACACG	CTTTGCAATT	TGAGTTAAGA	CATCATAAGG	ATCAACACCG	10800
20	AGACGTTTCG	CAGTTTCGAC	TTCACTCGCT	AGCAACTCGT	CGCGCAACCA	TCTCAATACG	10860
	ACACCACCAT	TATTTACAGG	ACCTCCGATG	ACGTAGTGGT	CCTCTGTTAA	GACATAACAA	10920
	AATATTCTAC	CTTTGTAATC	AGTACGCGGT	TTATCTATCA	CAGTACGAAT	CGCCCCAGAT	10980
25	GTACCGATTG	TGACAGCAAC	TTCTCCTTTA	CCAACACTAT	TGACACCTAA	ATTAGAAAGG	11040
	ACCCCATCAC	TCGCACCAAT	AACAAACGGT	GTATCTTTAT	TAAGCCCCAT	TAATGTTGCA	11100
20	TAACGTTCTT	TCATACCTTT	CAtCACATAC	GTTGTTGGAA	CTAATTCCGG	CAACATTTCC	11160
30	TTGGAAATAC	CCAGCAGTTC	TAATGCCTCA	ACATCCCAAT	CTAATGTTTC	TAAATTAAAC	11220
	ATCCCTGTTG	CGGAAGCCAT	TGAATAATCA	ATGATATATG	TATCAAATAA	ATGATAGAAA	11280
35	ATGTATGTTT	TAATATCTGC	AAACTTAGCA	GTACGTTGAA	ATACATCTTG	CCATTCATGT	11340
	TTCATCCAAA	AAATCTTCGC	TAATGGCGAC	ATAGGATGAA	TCGGTGTGCC	TGTTCGCTGG	11400
	TAAÃTCGCAT	TGCCATCATG	CACTTCATTT	ATTACTGTTG	CATATTTTGC	AGCGCGGTTA	11460
40	TCTGCCCAAG	TAATATTATT	TGTTAATCTT	TGATGTTGCT	GATCCATCGC	AATCAAGCTA	11520
	TGCATTTGCG	CACTAAATGA	CACAAACTTA	ATGTCGTCTT	TATTAACTTT	GGATTCTCTC	11580
	ATAACATATT	TAATAGTCAT	TAGTACTGCA	TCAAATAATT	CATCTGGGTT	TTCTTCTGAG	11640
45	ACATCAACGT	TTGGTGTGTG	TAAATCATAG	CCTATTTGAT	GTTTCATGAT	AAAAGTTCCA	11700
	TTTTCATCAT	ATAAGACTGA	CTTGGTACTC	GTCGTTCCAA	TGTCGACACC	AATCATATAT	11760
	TTCATGATAA	ATCCTTCTTT	CTTTCATTTT	AATTCAACCA	AAATCCTTCA	ATATCTTTAC	11820
50	CAACATCGTC	GAAATTTAAA	TGAAACGCTT	CTTTCAAAAT	TTGACTGTCG	TATTGTTCCA	11880
			سالانسالاستالات	ىش <b>لا</b> شتەر ئىشد	7¥¥¥πc <del>Im</del> cC	ىنىڭىنىنى <u>نىڭ</u>	11940

	AAAATGAGTT	TAAATATTGA	TGATTAGATG	CTTTGATTAA	TGTTTCATGA	AATTCAAAGT	12060
-	CATGCTTCGT	AAATGATTCT	GCATCCTCAA	ATTTTACTGC	CACTTTCATC	ATTTCAAGTT	12120
5	GTTTCTTCAT	TTCTTTTACG	ATAGGTAGTC	GCTCTTGATT	TTTAACTCTT	GAAAATGCAA	12180
	ATGACTCTAA	CATCAGTCGC	AAATCATACA	TTTCTTTCTT	TTCTTGTTCC	CCAAACGGCA	12240
10	ACACATGTGC	ACCCATTCTT	TCTAATTGGA	TGAGTTGATT	TTGTTGCAAT	AATTTAAATG	12300
	CATCTCGAAT	TGGCGAACGA	CTCACATTAA	ATTGCTTTGC	CATTTGATTT	TCAGTGAGTA	12360
	ACGTACCTTC	AGCTATGTGA	CCATTCACAA	TGCCTAAGCG	TAATTCTGCC	GCGATACCTT	12420
15	CTCCAGTTGT	CATACCTTCC	AACCATTTCT	CTGGATATCC	ATACATCATC	AAAGTCACTC	12480
	CTTCATTACA	CGACATACTT	GTATACAAGT	ATGTTAATAT	AGTTATTATG	AGTTTGCAAG	12540
	CGCTTTCTTT	ACGAGCACTA	AAATAGTGAC	CACCCCTTTT	CGATTTAAAT	TTAAAGGAAA	12600
20	TGGTCACTAT	CACACGAATG	ATTTAATTGT	TATGTTGTAT	GTGGGATATT	TCTAATTGTT	12660
	CTGTACTCAT	ATGCGCTTTA	GGTACTTCAA	TGCAATAATG	CGTTTCATGA	CAGTTTGGAC	12720
	ATTCGAATCG	ACGTGTTGTC	GCTGTATGTT	TCGCTTTGAT	AACTGCCCAC	AAAGATGGTG	12780
25	AGAATATATG	CTGGCAGTTA	GGACATAAAT	AGGCAACCTT	TTGTTGGTAA	TAAAAAGTAA	12840
	CACCAATGCC	ATAACCAATC	ATAAATGGTA	AAGCAATTAA	AAACGGCCAT	TTATTTTCA	12900
30	TCAAAATTGC	ACTTATAATG	CTAGAATATT	GAATTATTCC	TATAATACCA	GCACTAATCC	12960
30	AAATGTTACG	ACGAATACTT	TTCATTTCAG	CTGATTTACT	CATGACATGC	TCTATGTCTT	13020
	TTAAGTGTGT	GATTGGAGAC	GTCGACGCTT	CATTTACGTA	ATATTGAACA	TTTTTAATTT	13080
35	TGTTTAATAC	CGCTTGTTGC	TGTTTAACTT	GTTGGTTAAT	TTCTTGTTGT	TTCATAGTTA	13140
	GTAAAGTATT	GAGCGTCTTC	AAAGTACCTT	CACCTTTTAG	CAACATATCT	ATATCGCTTA	13200
	ACGCACAACC	TAAATCTTTA	AGCAATAAGA	TTAACTCTAA	TGTTTGTCGC	TGTTGTTCTG	13260
40	TATACACACG	ACGCTTTCCT	TCTGTAAATC	CTTGTGGTTT	CAAAATACCT	TTGCGATCAT	13320
	AATATTGAAT	CGTTCGTGTT	GTCACATTGC	ATAATTTTGC	GAGTTCTCCA	GTCGAATAGT	13380
	TAGACATAGA	TTCCACCTCC	TATAATTACC	ATAGTTGATG	ACCCGACGTC	ACGAGCAAGT	13440
45	ACAATTTCCA	CATTTTAAAG	ATTTATTA	TACTAGGCGT	CTTATTTTTA	TGATTTCGTA	13500
	CCATGTTGAT	TTACAAACTC	ACTCAAACTA	AGTAACACAC	CTACTAAACA	TCTACTCTGT	13560
	TATTTCAGAA	TGAATTTGTT	GTAATTTATC	TTCAACTTCA	GTAATCTCTG	TCGCACATTC	13620
50	TTTCAGTAAA	TCTCGATACT	TTTCCGTCTC	TGCATTGTTT	TTATAACGTA	TTTTATGTTC	13680
	TAAACTTGcC	CACATATCCA	TACCTATCGT	TCTAATTTGA	ATTTCAACAG	GCAATACCTC	13740

#### (2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1059 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

15

20

25

30

35

40

45

5

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

GGATAAGTTC	AGGTAAATTC	ATTTCTTTTT	CAATTTTGAT	TTTCATTGTT	TCCGCCCTTT	60
TAAAATAAAG	TTAGTTGCTT	CTGTTCCTCA	TATTCCAAAT	CACTTTGCTT	TATATATGTT	120
TCAAGCTCTT	CCGCTGTATC	AAATGTCTTT	TTCACACCTT	GCCAACCTGG	CACGATATGA	180
CCGTGAAAGT	AATAAGTGCC	ATTTACTACA	TGGATATGTG	CCACTCGTTC	GTTATCCTGA	240
TACAGATATC	TCTTAGATCC	AAAGAATTGA	TTTAGGTATT	CTTTACGCGC	GCTATCTGTC	300
ATGGTCATCA	CTCCTTTTAA	CAATTAGGCA	GACCAAACGA	CATGCATTCG	TCGTATAGCT	360
CTTCATTACT	TATGCTTGCC	TTATAGTTTT	CAATCACATT	GCTAACTTCT	TTATGACTCA	420
TTGCTTTAAC	TTGTTCGTCT	GTATATTTTT	CGCAGTCTTC	TAATTCCAGT	TGCTCCTGTA	480
ATGACATCAC	ATATTCAACT	TGTCTTTGGG	TTGCCATCGT	TAACCCTCCC	ACAAGTCAAA	540
AGCTCTTTGG	ACGTAAAACT	TCGCCTTTGC	TAAATCCTCA	TGACCATTCT	TTAACGGTGC	600
TCTAGACATG	TATTTGATTG	CATTACCTAT	TGCGAATGCT	AGTTGAGGTG	GATACTGTGC	660
CGTAACCTGT	TCGATAAAAT	CTATAATTTC	AATGTCGCCG	TATGTGTAGT	GCGCTGGTTG	720
CTTAACATTG	TCTTGCGCTT	CGTTCATATC	TACTTTTCTG	TTACTGATTA	CGCTCATTAT	780
GCTTCACTCC	ATTTCTTGAA	CATTTGGTTA	TAAGTGACAT	CGAACCAGTA	CGGATCACGT	840
GAATGTTTTT	GTGGCGTTCC	ATCATAAAGC	CATGGTCTTA	ATCTTCTCTT	TCTTTCCTGT	900
TCATATTCCG	CTCTCACATT	TCGTTGGTAT	CGGTTCAAAA	TCGCTTTTTT	TCTGATTTTT	960
TCTCTCCCTT	TTTCTTCATC	TTTnATtTGA	CTCTnCATAT	ATTCAACTTC	TTCTGTAGAT	1020
nTTGAGTCCT	TTCTTCCACA	СААТААТТСА	nCGCCGCGC			1059

#### (2) INFORMATION FOR SEQ ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30246 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

	OAAA TAAAA	ANGAATTAAA	IIIAACAIIA	ACAATGGATG	AAATTGAATA	TGTCGGGACA	6 (
-	ATTGTAGGTC	CTGCATATCC	ACAACAGGAT	ATGTTAACTG	AGTTAAATGG	ATTTCGCGCA	120
•	TTAACCAAAA	TCGATTGGGA	AAACGTAACT	ATCAATAATG	AAATTACGGA	TATACGCTGG	180
	ATTGATAAAG	ATAATGATGC	GTTGATTGCG	CCTGCTGTCA	AAGTTTGGAT	TGAAACTTAT	240
0	GGTGGTAAAC	ATGACAAATA	ATGACACCAT	CATGTTACGA	CATTATGTCC	CACAAGATTA	300
•	TTCGATGTTA	GAAGCTTTTC	AATTAAGTGA	AAGTGATTTG	AAGTTTGTTA	AAACGCCAGA	360
	GGAAAATATT	ACAGCTGCAA	TGTCTGATAA	TGAAAGGTAT	CCCATCGTTG	TAATGGATGG	420
5	CAGGCAATGT	GTGGCCTTTT	TTACATTACA	TCGTGGAAAA	GGGGTCGCAC	CATTTAGCGA	480
	TAACCAAGAT	GCAGTATTTT	TCAGGTCATT	TAGTGTTGAT	CAACGTTATC	GTAATAGAGG	540
	AATAGGTAAA	GTGGTAATGG	AAAAATTGGC	GTCATTTATC	ACTTCAACAT	TTCAGGATAT	600
0	TAATGAGATT	GTGTTAACGG	TTAATACTGA	CAATCCACAT	GCCATGGCAC	TTTATCGCCA	660
	ACAAGGATAT	CAATATATGG	GAGATAGTAT	GTTCGTCGGA	AGACCTGTTC	ATATTATGGC	720
	GTTAACTATA	AAATAAATTA	AATTTAAAAG	CATCTTTACT	CATCGTCGAC	CACAACAATT	780
5	AATGATGAAT	AAAGGTGCTT	TTTGTTATAG	ATCATCGGAC	AATTTACTAT	AGTAAAAAGC	840
	GACCTAGTGA	ACAATTGACA	TATATCCACA	GGTCGCTTAA	CTTAAGTTAT	ATTGCTAGTT	900
	GCGATTAATT	GATAGACTCA	TCATTTTTGC	GCTGTCGAGA	TGGTCTTTTT	ATTAAAAATG	960
0	CCGTAATCCA	AGCCGTAATC	GGAATACTGA	TTGCAACGGC	AATACCGCCT	AAAATAATAG	1020
	AAATAAATTC	TTGGGCAAAT	ATTITCGAGT	TTATAATATG	ACCAAATGAA	TATTTAAGTT	1080
5	TGAAAAACCA	AATAAATAAA	GCAAGTTGGC	САССАААААА	GGCAAGGTAA	ATCGTGTTCG	1140
	CAGATGTCGC	TAAAATTTCT	CTACCAACAC	GCATGCCAGA	TTGGAATAAT	TCGTATTGCG	1200
	TAACGTTgGA	TTCACTTGAT	GCAATTCATA	AATGGGTGAA	CTAATGGTAA	TTGTTAAATC	1260
0	TATCACAGCT	GCAATAACAG	CAAGAATAAT	AGTGAACACC	ATAAATTGAA	CCATATCAAT	1320
	GCCAATATTC	ATTGAATACA	CATATGTTTC	ATCTTGTTGT	TCGGTTGaAA	AGCCTTGTAG	1380
	ATGACCGAAG	TAGACCGATA	AATAAATGAG	TGTAATCAAC	AATATTGTTG	TAACGATAgT	1440
5	GCtGgATAAA	TGCaGCTTGT	GTTTTAACAT	TGTAACTATT	GAGTACGAAT	AAATTACAAG	1500
	CGCCAATAAT	AATGCAGAAA	AAGAATGTGA	CGACATAAAT	CGGTACGCCA	AAAATAATCA	1560
	ATACAATACT	аатааттааа	ATAGCGAAAT	TTAAAAATAG	GGTTAAATAA	GAGATGAATC	1620
0	CCTTTTTACC	TCCGAAAATT	ATCATCAGAA	AGAGGAGCAA	TAACGCCAAT	ATAAATACAG	1680
	CATTCATTGT	TTCGCCCTCC	TTAATGTTTC	AAATATTTCC	ATAAACAATA	TTGTGATAGG	1740

	CATCGAAATA	GTATAAGTCA	CTGTATTGGC	ATTTTTTAAA	AAGATTAAAA	ACATAGGTAG	1860
	TGCACCGGAT	AAATATGAGA	ATAATAAGAT	GTTAGTCATT	GTTCCCATAA	TATCTTGGCC	1920
5	GATGTTTCGC	CCAGCAAGCG	CCCATCTCCT	CATTGAAATG	TGTGGCGTAC	GCTGTAAAAT	1980
	TTCATGCATA	CCACTAGCAA	TTGTAATTGC	AACATCCATA	ATAGCGCCAA	GTGAACCTAT	2040
	TAACACTGAG	GCTAGGAAGA	TATCTTTCGG	TGGTAATGAT	AAAAAGTTCA	TCGTTTCATA	2100
10	TTTAATGCCT	TTACCATCTG	TCATATATAT	GATTAATTCT	GTTAAACCTA	TACTCAAAAA	2160
	AGTTCCGATA	ATTGTACTGG	CTATGGTAAT	GAGTGTACGC	ATATGCCAGC	CTGTAACGAG	2220
15	CAATAAAGTG	AGTATTGTTG	AACAGATCAT	GGCAATGGTC	ATGAGTAAGA	ATAAATTAAT	2280
, 0	ATTGCTATGT	TGAATATGAA	TGTAAATTGC	GATTAATATG	GCAATAGAAT	TCAAGATTAA	2340
	CGATAAAATC	GATTGCAGTC	CGACTTTGCG	ACCAACCAAT	AATACAGTTA	ATAAGAACAA	2400
20	ACCAGTGATG	ATAACCGTTA	AGGTATCACG	CTTCTTTTCT	ATAATATAAG	CATCACTCGG	2460
	CTTGTTAGAA	ATATGTAATA	ATACTTTTTC	GTGTGTGCGA	AATGCCTCAG	AATCTGCTTG	2520
	CGATTTGACG	TACTGATGAT	TAATCGTCGT	CGTTTCTCCA	GCAAATTGAC	CATTTAATAT	2580
25	TTTGACTTTT	AATTGATTTT	TATATTTAAT	ATCACGATTA	TTTTGTGCAT	CTTTTGTAGG	2640
	TGTCGAAGAA	ACATGTTTGA	CATCTATAAT	TTGACCAATT	GGTTTGTTGT	AAAAGTTCTC	2700
	ATTATTGAAT	GTAAATAAAA	TAGCACCAAT	GAATGCGATG	CAGAACAAAC	CTAAAATTAT	2760
30	ATTAAATGGC	TTTGTAAATA	AATTTCTATA	TTTCAAAAAC	AAAACCCCAA	TTCTATGAAT	2820
	GAATTAATAT	GGTGATTATA	CGCCCTTAAT	TTTTTATTTT	CAAAGATATT	ACTGCTAAGT	2880
	GTAAAACGAA	AATCATCATT	GATAGCATCG	AATTACTTAA	TGGAATGTAG	ACGTTTTAGT	2940
35	CATTAATTGC	TGAATAAGTG	TTAATAATAT	GCCAATATCA	CTCTTTGTAT	AAGGCTCCTT	300 <b>0</b>
	TGTAATAGCA	CATATCGTTC	TTTTTAATTC	AGTATGATCT	AATTTTATAT	CTATCCATGA	3060
	TTTAGATTCT	GGTAAATGTA	TATTTTGTGA	TGAAATGATG	TAACCTTCTT	TTTGACGAAG	3120
40	GAGATAcTGC	GCAAGTGGTT	GGCTACTGAT	TGTGTATACA	TCTGATTTAG	TAATCTTGCG	3180
	CAATTGTTTT	TTTACAGTTT	CGGCAAATGG	TGCCAAGCAA	TAAATATGAC	TATGCTCAAA	3240
48	CTGAATTAAT	GGTGGGTGTG	TCGCCATCGT	AATTGGATCG	TCTGAAGGCG	CATATAAATG	3300
	ATAGTGCTCT	TCGAATAAAG	GTAGCATATG	TAATTGTTTG	TGTTTACGTA	TTTCTGGTGT	3360
	AAGTTCCGTG	AAACCAATGT	CTATATTCCC	ATTTAATACG	CTATTTATAA	TTGTGTCATG	3420
50	TTCTAATAAG	CTCGGTATGA	CATGTGTATC	ATTTTGTAAA	TGAAACGTTT	GGATAAGTGG	3480
	TAGTAACATG	TGGGATACGT	CACTCTCATC	ATAGCCAATG	TAGATACTTT	TATTTTTAGT	3540

	TTCATTAAAT	AATAATTTCC	CTTCAGATGT	GAGCGTAATA	TTGCGTCCTT	GCTTTTTAAA	3660
_	TAAAGACACA	TTAAGTTCTT	GTTCTAATAA	TGTAATTTGA	CGGCTTATCG	CTGATTGAGC	3720
5	AATGTTTAGT	TCAAGTGCTG	TTTCGGAGAT	ATGTTCTCTT	TTAGCGACCT	CGATAAAATA	3780
	TCTTAATTGT	TTAATTTCCA	TAGCGATATA	GGCACCTCCA	AAAATGAGTG	TTTTGTAACT	3840
10	ATTATAGCAA	TATTATTGAT	AAATGTTCTA	TTTTTTAGAT	GAATATCTTC	TATTTTATAT	3900
	ATTGAACAGA	TAAATTTTTT	AGATTATAGT	AATTATCATT	AATAACTAAT	ATCAGAATAT	3960
	TCTAAAAAAG	GGGTGTGCAT	CATGCACAAT	GAGAAATTAA	TTAAAGGCTT	ATATGACTAT	4020
5	CGTGAGGAAC	ATGATGCGTG	TGGTATTGGT	TTTTATGCGA	ATATGGATAA	TAAAAGGTCT	4080
	CACGACATCA	TTGATAAATC	GCTTGAAATG	TTGCGACGCT	TAGATCACAG	GGGCGGGGTC	4140
	GGCGCAGATG	GCATCACTGG	TGATGGCGCA	GGTATTATGA	CTGAAATACC	TTTTGCATTT	4200
20	TTCAAACAAC	ATGTAACGGA	CTTTGATATC	CCAGGTGAAG	GTGAATATGC	CGTGGGGTTA	4260
	TTTTTTTCCA	AAGAACGCAT	TTTAGGTTCT	GAACATGAAG	TAGTTTTTAA	AAAATATTTT	4320
	GAAGGCGAAG	GGTTATCAAT	TCTTGGTTAT	CGTAATGTAC	CAGTTAATAA	AGATGCCATT	4380
?5	GCTAAACATG	TAGCAGATAC	GATGCCAGTC	ATTCAACAAG	TGTTTATTGA	TATTAGGGAC	4440
	ATTGAAGATG	TTGAAAAGCG	TTTGTTTTTA	GCGAGAAAAC	AATTAGAGTT	CTATTCGACT	4500
	CAGTGCGATT	TAGAATTGTA	TTTTACGAGC	TTATCACGCA	AAACAATTGT	ATATAAAGGT	4560
10	TGGTTACGAT	CAGACCAAAT	тааааааста	TATACAGATT	TATCGGATGA	TTTATATCAA	4620
	TCAAAGCTAG	GGTTAGTGCA	TTCGAGATTT	AGTACGAATA	CATTCCCGAG	TTGGAAAAGG	4680
	GCACATCCTA	ACCGTATGTT	AATGCATAAT	GGTGAGATTA	ACACGATTAA	AGGTAATGTA	4740
15	AACTGGATGC	GAGCACGCCA	ACATAAATTA	ATCGAAACAT	TATTTGGCGA	GGATCAACAT	4800
	AAAGTGTTTC	AAATTGTCGA	TGAGGATGGT	AGTGACTCTG	CCATTGTAGA	TAATGCGCTA	4860
10	GAGTTCTTAT	CGTTAGCCAT	GGAGCCAGAA	AAGGCAGCGA	TGTTACTCAT	ACCTGAACCT	4920
	TGGTTATATA	ATGAAGCGAA	TGATGCAAAT	GTACGTGCGT	TTTATGAATT	TTATAGTTAT	4980
	TTAATGGAAC	CGTGGGATGG	TCCTACAATG	ATTTCGTTCT	GTAACGGTGA	CAAACTTGGC	5040
5	GCGCTTACAG	ATAGAAATGG	ATTACGTCCA	GGTCGTTATA	CGATTACTAA	AGATAACTTT	5100
	ATTGTCTTTT	CATCTGAAGT	GGGTGTTGTG	GACGTACCTG	AAAGTAATGT	TGCTTTTAAA	5160
	GGTCAATTGA	ATCCTGGAAA	GTTATTGCTT	GTTGATTTTA	AACAGAATAA	AGTCATTGAA	5220
50	AATAATGATT	TAAAAGGTGC	GATTGCTGGA	GAATTACCAT	ATAAAGCGTG	GATTGATAAC	5280
	CATAAAGTTG	ACTTTGATTT	TGAAAATATA	CAATATCAAG	ATTCGCAATG	GAAAGATGAG	5340

	CAGGAACTTG	TAGAAGGTAA	GAAGGATCCT	ATCGGTGCAA	TGGGATATGA	TGCGCCAATT	5460
5	GCAGTGTTGA	ACGAGCGACC	AGAATCACTA	TTTAATTACT	TTAAACAGCT	GTTTGCACAA	5520
3	GTTACGAATC	CACCAATTGA	TGCGTATCGT	GAAAAAATCG	TAACGAGTGA	ACTTTCTTAT	5580
	TTAGGTGGCG	AAGGTAACTT	ACTAGCACCT	GACGAAACGG	TTTTAGATCG	TATTCAATTG	5640
10	AAAAGGCCGG	TATTGAATGA	ATCACACTTA	GCAGCGATTG	ATCAGGAACA	TTTTAAATTA	5700
	ACTTATTTAT	CAACGGTATA	TGAAGGGGAT	TTGGAAGATG	CGTTAGAAGC	ATTAGGCCGA	5760
	GAAGCAGTGA	ATGCTGTAAA	GCAAGGCGCT	CAAATTCTAG	TGTTAGATGA	TAGTGGATTA	5820
15	GTTGATAGCA	ATGGCTTTGC	AATGCCGATG	TTACTCGCAA	TAAGTCATGT	GCATCAATTA	5880
	CTTATTAAAG	CAGATTTACG	TATGTCTACA	AGTTTAGTCG	CTAAATCTGG	TGAGACACGA	5940
	GAAGTGCATC	ATGTTGCTTG	TTTACTCGCA	TATGGCGCGA	ATGCAATTGT	GCCATACCTA	6000
20	GCGCAACGTA	CAGTTGAACA	ACTGACATTG	ACAGAAGGGT	TACAAGGCAC	CGTTGTCGAT	6060
	AATGTTAAGA	CATATACGGA	TGTATTGTCA	GAAGGTGTCA	TTAAAGTAAT	GGCTAAGATG	6120
	GGAATTTCGA	CAGTGCAAAG	TTATCAAGGG	GCACAAATAT	TTGAAGCGAT	TGGCTTGTCT	6180
25	CATGATGTGA	TTGATCGTTA	TTTTACTGGG	ACACAGTCTA	AGTTATCTGG	TATTTCGATT	6240
	GATCAAATTG	ATGCTGAAAA	TAAAGCACGT	CAACAAAGTG	ATGATAATTA	TCTTGCATCA	6300
	GGTAGTACAT	TCCAATGGAG	ACAACAAGGT	CAACATCATG	CTTTTAATCC	GGAATCTATT	6360
30	TTCTTATTGC	AGCACGCATG	TAAAGAAAAT	GACTATGCGC	AATTTAAAGC	ATACTCTGAA	6420
	GCGGTGAACA	AAAATAGAAC	AGATCACATT	AGACATTTAC	TTGAATTTAA	AGCATGTACA	6480
35	CCGATTGACA	TCGACCAAGT	TGAACCGGTA	AGTGACATTG	TCAAACGCTT	TAATACAGGG	6540
35	GCGATGAGTT	ATGGATCGAT	TTCAGCGGAA	GCACATGAAA	CGTTAGCACA	AGCCATGAAC	6600
	CAATTAGGTG	GAAAGAGTAA	TAGTGGTGAA	GGTGGCGAAG	ATGCAAAACG	TTATGAAGTA	6660
40	CAAGTTGATG	GAAGCAACAA	AGTAAGTGCG	ATTAAACAAG	TTGCTTCTGG	GCGTTTTGGT	6720
	GTAACTAGTG	ATTATTTACA	ACATGCCAAA	GAAATTCAAA	TTAAAGTTGC	GCAAGGTGCA	6780
	AAGCCTGGTG	AAGGTGGTCA	ATTACCTGGT	ACTAAGGTAT	ATCCGTGGAT	TGCGAAGACA	6840
45	AGAGGGTCAA	CGCCAGGTAT	CGGTCTGATT	TCACCACCGC	CACATCATGA	TATTTATTCA	6900
	ATAGAAGATT	TAGCGCAACT	GATACATGAT	TTGAAAAATG	CGAATAAAGA	TGCAGATATC	6960
	GCGGTAAAAT	TAGTTTCGAA	AACAGGTGTT	GGTACCATTG	CATCTGGGGT	GGCAAAAGCA	7020
50	TTTGCAGATA	AAATTGTCAT	CAGTGGTTAC	GATGGTGGTA	CAGGGGCTTC	ACCCAAAACG	7080
	AGTATTCAGC	ATGCCGGTGT	TCCTTGGGAG	ATTGGTTTAG	CAGAAACACA	TCAAACATTA	7140

	AAAGATGTAG	CGTACGCATG	TGCGCTTGGA	GCGGAAGAAT	TTGGATTTGC	AACTGCACCA	7260
	TTAGTGGTGT	TGGGCTGTAT	TATGATGCGT	GTATGCCATA	AAGATACATG	TCCAGTAGGA	7320
5	GTTGCAACTC	AAAACAAAGA	TTTACGTGCT	TTATATAGAG	GTAAAGCACA	TCATGTTGTT	7380
	AATTTTATGC	ATTTTATTGC	ACAAGAATTA	AGAGAAATTT	TAGCATCTTT	AGGTTTGAAA	7440
10	CGTGTAGAAG	ACTTAGTTGG	AAGAACTGAT	TTATTACAAC	GATCATCAAC	ATTAAAAGCG	7500
10	AATAGCAAAG	CGGCTAGTAT	TGATGTTGAA	AAACTGTTAT	GTCCTTTCGA	TGGGCCAAAC	7560
	ACAAAAGAAA	TTCAACAAAA	TCATAATCTT	GAGCATGGAT	TTGATTTAAC	AAATTTATAT	7620
15	GAAGTAACGA	AGCCATATAT	TGCTGAAGGG	CGTCGCTATA	CAGGTAGCTT	TACAGTAAAT	7680
	AATGAACAAC	GTGATGTAGG	GGTTATTACA	GGTAGTGAGA	TTTCGAAACA	ATATGGAGAA	7740
	GCAGGACTTC	CTGAAAATAC	AATTAATGTT	TATACGAATG	GTCATGCTGG	TCAAAGTCTT	7800
20	GCAGCATATG	CACCGAAAGG	CTTAATGATT	CATCATACTG	GAGATGCGAA	TGACTATGTT	7860
	GGTAAAGGAT	TATCTGGTGG	TACGGTCATT	GTCAAAGCAC	CTTTTGAAGA	ACGACAAAAT	7920
	GAAATTATTG	CTGGTAACGT	CTCATTCTAT	GGTGCGACAA	GTGGTAAGGC	ATTTATTAAC	7980
25	GGTAGTGCAG	GAGAAAGATT	CTGTATTAGA	AATAGTGGTG	TAGATGTTGT	CGTTGAAGGT	8040
	ATCGGCGACC	ATGGATTAGA	GTATATGACT	GGTGGACATG	TCATTAATTT	AGGTGATGTA	8100
	GGTAAGAACT	TCGGTCAAGG	TATGAGTGGT	GGTATTGCTT	ACGTTATCCC	GTCTGATGTA	8160
30	GAAGCTTTTG	TTGAAAATAA	TCAACTAGAT	ACGCTTTCGT	TTACAAAGAT	TAAACACCAA	8220
	GAAGAAAAAG	CATTCATTAA	GCAAATGCTG	GAAGAACATG	TGTCACACAC	GAATAGTACG	8280
	AGAGCGATTC	ATGTGTTAAA	ACATTTTGAT	CGCATTGAAG	ATGTCGTCGT	TAAAGTTATT	8340
35	CCTAAAGATT	ATCAATTAAT	GATGCAAAAA	ATTCATTTGC	ACAAATCATT	ACATGACAAT	8400
	GAAGATGAAG	CGATGTTAGC	TGCATTTTAC	GATGACAGTA	AAACAATCGA	TGCTAAACAT	8460
40	AAACCAGCCG	TTGTGTATTA	AGGAAAGGGG	GAGATACGAT	GGGTGAATTT	AAAGGATTTA	8520
40	TGAAGTATGA	CAAACAGTAC	TTAGGTGAAT	TATCACTGGT	AGACCGTTTG	AAGCATCATA	8580
	AAGCATATCA	ACAACGATTT	ACTAAAGAAG	ATGCCTCTAT	CCAAGGTGCA	CGATGTATGG	8640
45	ATTGTGGAAC	GCCGTTTTGT	CAAACCGGAC	AACAGTATGG	TAGGGAAACA	ATAGGTTGTC	8700
	CAATTGGAAA	CTACATTCCT	GAATGGAACG	ACTTAGTGTA	TCATCAAGAT	TTTAAAACTG	8760
	CTTATGAACG	CTTAAGCGAA	ACAAATAACT	TTCCTGACTT	TACAGGGCGT	GTATGTCCTG	8820
50	CACCATGCGA	AAGTGCTTGT	GTGATGAAGA	TTAATAGAGA	ATCGATTGCG	ATTAAAGGTA	8880
	TTGAACGCAC	AATTATTGAT	GAAGCTTTTG	AAAATGGTTG	GGTAGCGCCG	AAAGTTCCGA	8940

	CTGAAGAACT	TAATCTACTA	GGATATCAAG	TAACTATTTA	TGAACGTGCT	AGAGAATCAG	9060
	GCGGTTTATT	AATGTATGGT	ATTCCGAATA	TGAAACTTGA	TAAAGATGTG	GTTCGACGTC	9120
5	GTATTAAGTT	AATGGAAGAA	GCGGGCATTA	CTTTCATTAA	TGGTGTTGAA	GTCGGTGTTG	9180
	ATATTGATAA	AGCAACGTTA	GAATCTGAGT	ATGATGCCAT	TATATTATGT	ACTGGTGCAC	9240
	AAAAAGGTAG	AGATTTACCT	TTAGAAGGAC	GCATGGGTGA	TGGTATACAT	TTCGCTATGG	9300
10	ATTATTTAAC	TGAACAAACG	CAGTTGTTAA	ATGGAGAAAT	TGATGATATA	ACAATAACTG	9360
	CAAAAGATAA	GAATGTCATT	ATCATTGGTG	CTGGTGATAC	AGGGGCAGAC	TGTGTAGCGA	9420
	CAGCATTAAG	AGAAAATTGT	AAATCGATTG	TTCAATTTAA	TAAATATACG	AAATTGCCAG	9480
15	AAGCAATTAC	ATTTACAGAA	AATGCATCAT	GGCCTTTAGC	AATGCCGGTG	TTTAAAATGG	9540
	ACTATGCGCA	CCAAGAGTAC	GAAGCTAAGT	TTGGTAAGGA	ACCACGTGCA	TATGGTGTTC	9600
20	AAACAATGCG	TTACGATGTT	GACGATAAAG	GACACATACG	TGGTTTGTAT	ACTCAAATTT	9660
	TAGAGCAAGG	CGAAAATGGT	ATGGTCATGA	AAGAAGGACC	TGAAAGATTT	TGGCCTGCTG	9720
	ACCTTGTATT	ATTATCAATC	GGCTTCGAAG	GTACAGAACC	AACAGTACCG	AATGCTTTTA	9780
25	ACATTAAAAC	GGATAGAAAT	CGAATCGTGG	CGGATGATAC	AAACTATCAA	ACTAATAATG	9840
	AAAAGGTATT	TGCTGCTGGA	GATGCTAGAC	GTGGTCAAAG	TTTAGTTGTA	TGGGCAATTA	9900
	AAGAAGGTAG	AGGCGTAGCG	AAAGCAGTAG	ATCAGTATTT	AGCTAGTAAA	GTTTGTGTAT	9960
30	AATCTTTGTA	TGGAAATGGT	GGTTACGTTG	ACGTTGTGAC	ATGCTGAATC	GAGTTTGAAA	10020
	AAATCTAGTA	TCTATCAACG	TCACATGCCA	TCTTTGTAAC	CTAAAAACAA	AGGTTTGTAA	10080
	GACAACAAAT	AGATTAATTA	TAAGTAGTGA	TTTTTTACAT	TCGTTTATAG	GTCAACTGTA	10140
35	GTGGAAGACA	ATGATTTGTG	GTAATCATGT	AATGCTTAAA	AACAATATTG	ACTTTTACAG	10200
	AACOTTCATA	TATGATAAAT	ATTGTGTTTA	GGAGGAATAC	CCAAGTCCGG	CTGAAGGGAT	10260
	CGGTCTTGAA	AACCGACAGG	GGCTTAACGG	CTCGCGGGGG	TTCGAATCCC	TCTTCCTCCG	10320
40	CCATCAATAT	TTATATTAAA	TTCTATATAT	AATGAAGGTA	AGTGCTCAAA	TTTTGAGTAT	10380
	TTACCTTTTT	TATTTGTCTT	TGAATGGCTC	GTAATTTTTG	ATAATAGAAA	TGATAAGGCA	10440
	TTGAGATTGG	AAGGGCATTT	GGCTTGTGCA	ATATACATAG	CTAAATGTCT	TTTTTGTTTT	10500
45	GTGAAATATG	ATGGATGGCT	TGTGTGGACA	AGTTTGCTAT	TTATAGATAT	GCATTITTCA	10560
	ATTTAGGAGT	TGGCCATGCA	TCTACACTTT	ATAATGGTGA	GAGCGTGGTG	AGGTATTGTT	10620
50	AATAACGC <b>AA</b>	TTGTAGCGAG	GAGTTATTGC	TACATATGTC	GTTATGGCTC	ATTGATTTTC	10680
	TGAAATGGCT	ACCCCAGATA	ATTGTGACAA	аатааааата	TTTTGTTGAA	AGCCTTTACA	10740

	TAAAAAGAGA	AGATGTAAAA	GCCATCGTAA	CCGCTATTGG	GGGAAAAGAA	AATCTTGAAG	10860
	CTGCAACGCA	TTGTGTAACA	CGATTACGTT	TAGTGCTGAA	GGATGAAAGT	AAAGTTGATA	10920
5	AAGACGCATT	AAGTAATAAC	GCGTTGGTCA	AGGGGCAGTT	TAAAGCAGAC	CATCAATATC	10980
	AAATTGTCAT	TGGTCCAGGA	ACAGTCGATG	AAGTGTATAA	GCAGTTTATT	GATGAAACAG	11040
	GTGCTCAAGA	AGCTTCGAAA	GATGAAGCGA	AACAAGCAGC	TGCACAAAAA	GGGAATCCAG	11100
10	TACAACGTTT	GATCAAATTG	TtGGGGGATA	TTTTTATACC	AATATTACCT	GCGATTGTGA	11160
	CAGCTGGTTT	GTTAATGGGA	ATCAATAATT	TACTTACAAT	GAAAGGTTTA	TTTGGTCCAA	11220
15	AAGCACTTAT	TGAGATGTAT	CCACAAATTG	CTGATATTTC	AAACATCATT	AATGTGATTG	11280
15	CGAGTACGGC	ATTTATTTTC	TTACCAGCAT	TAATTGGTTG	GAGTAGTATG	CGTGTATTTG	11340
	GTGGTAGTCC	GATTCTAGGC	ATAGTCTTAG	GTTTGATTTT	AATGCATCCG	CAATTAGTAT	11400
20	CTCAGTATGA	TTTGGCAAAA	GGGAATATTC	CGACGTGGAA	CTTATTTGGC	TTAGAGATTA	11460
	AGCAGTTGAA	TTACCAAGGT	CAAGTGTTGC	CAGTTTTAAT	TGCAGCTTAC	GTTCTAGCTA	11520
	AAATTGAAAA	AGGATTAAAT	AAAGTCGTTC	ACGATTCGAT	AAAAATGTTG	GTCGTTGGAC	11580
25	CCGTAGCGCT	TTTAGTTACT	GGATTTTTAG	CATTTATTAT	CATTGGACCA	GTTGCGTTAT	11640
	TGaTTGGTAC	AGGTATTACA	TCTGGTGTTA	CATTTATATT	CCAACATGCA	GGATGGCTTG	11700
	GCGGAGCAAT	ATATGGATTG	TTATATGCAC	CACTTGTAAT	TACAGGACTA	CACCATATGT	11760
30	TTTTAGCAGT	AGATTTCCAA	TTGATGGGTA	GCAGCTTAGG	CGGTACGTAT	TTATGGCCAA	11820
	TTGTTGCGAT	TTCCAATATT	TGTCAGGGCT	CTGCAGCATT	TGGAGCATGG	TTTGTCTATA	11880
	AACGTCGTAA	AATGGTTAAA	GAAGAAGGCT	TGGCATTAAC	ATCTTGTATT	TCTGGTATGT	11940
35	TAGGTGTTAC	TGAACCAGCC	ATGTTCGGTG	TGAACTTACC	TCTGAAATAT	CCATTTATCG	12000
	CTGÇGATATC	AACGTCTTGT	GTATTGGGGG	CAATCGTTGG	TATGAATAAC	GTACTTGGAA	12060
	AAGTTGGTGT	TGGTGGCGTG	CCAGCATTCA	TTTCAATTCA	AAAAGAATTT	TGGCCAGTAT	12120
40	ATCTTATTGT	GACAGCTATT	GCTATTGTTG	TACCATGTAT	ACTAACAATT	GTGATGTCTC	12180
	ATTTTAGTAA	ACAAAAAGCG	AAAGAAATTG	TTGAAGATTA	ATAAAATAAA	AAAGGGCGT	12240
45	TCGTTATTTG	GACGTCCTTT	ATTACGTTAT	AAGGTGGTAA	TTGTGTGTCG	AAAGAAATAG	12300
45	ATTGGAGAAA	ATCCGTTGTA	TATCAAATTT	ATCCTAAGTC	GTTTAATGAT	ACGACGGGGA	12360
	ATGGTATAGG	AGATATCAAT	GGAATTATAG	AAAAATTGGA	TTATATCAAG	TTATTGGGTG	12420
50	TTGATTATAT	TTGGTTAACA	CCAGTGTATG	AATCACCGAT	GAATGATAAT	GGCTATGATA	12480
	TCAGCAATTA	TTTAGAAATC	aATGAAGACT	TTGGAACGAT	GGATGATTTT	GaAAAGTTAA	12540

	CGACGGAGCA	TGaATGGTTT	AAAGAAGCCC	GTAAATCTAA	AGATAACCCy	TATAGAGATT	12660
	ATTACTTTTT	CAGATCATCT	GAAGACGGGC	CGCCAACAAA	TTGGCATTCT	AAATTCGGTG	12720
5	GTAATGCATG	GAAGTATGAT	TCTGAGACAG	ATGAATATTA	TTTACATTTA	TTTGATGTCA	12780
	GTCAAGCTGA	TTTAAATTGG	GATAATCCGG	AAGTACGTCA	ATCGTTATAT	CGCATAGTCA	12840
	ATCATTGGAT	AGACTTCGGC	GTTGATGGTT	TTCGATTTGA	TGTCATTAAC	TTAATTTCTA	12900
10	AAGGTGAATT	TAAGGACTCT	GACAAAATAG	GTAAAGAATT	TTATACGGAT	GGTCCTAGAG	12960
	TGCATGAGTT	TCTGCATGAA	TTAAATCGTC	AAACGTTTGG	TAACACTGAC	ATGATGACTA	13020
	TAGGAGAAAT	GTCTTCGACG	ACGATTGAAA	ATTGTATTAA	GTATACACAA	CCAGAACGCC	13080
15	AAGAATTGAA	TAGTGTTTTT	AATTTTCATC	ATCTAAAGGT	TGATTATGTT	GATGGTGAAA	13140
	AGTGGACAAA	TGCGAgcTTG	nATTTTCATA	<b>AGTTAAA</b> GGA	AATTCTGATG	CAATGGCAAC	13200
20	GAGGTATTTA	TGACGGTGGC	GGATGGAACG	CGATTTTCTG	GTGTAATCAT	GATCAGCCAC	13260
	GGGTAGTGTC	TAGATTTGGT	GATGATACGT	CGGAAGAGAT	GAGGATACAA	AGTGCTAAAA	13320
	TGTTAGCTAT	CGCACTGCAT	ATGTTGCAAG	GGACGCCATA	TATTTACCAA	GGTGAAGAAA	13380
25	TTGGTATGAC	GGACCCACAT	TTTACATCAA	TAGCACAATA	TCGTGATGTT	GAATCGATTA	13440
	ATGCCTACCA	TCAGTTGTTA	AGTGAAGGGC	ATGCTGAAGC	GGATGTGTTA	GCGATTTTAG	13500
	GACAGAAGTC	ACGAGACAAT	TCGAGAACGC	CTATGCAATG	GAGTGATGAT	GTTAATGCTG	13560
30	GATTTACAGC	TGGTAAnCCT	TGGATTGATA	TTTCGGAAAA	TTATCATCAG	GTCAACGTTA	13620
	GACAAGCACT	TCAGAATAAA	GAGTCTATTT	TCTATACGTA	TCAAAAATTA	ATACAATTAA	13680
	GACATACGCA	TGATATTATT	ACGTATGGAG	ACATTGTGCC	ACGTTTTATG	GATCATGATC	13740
35	ATTTATTTGT	TTATGAACGT	CATTATAAGA	ATCAACAATG	GCTAGTAATT	GCGAATTTCT	13800
	CAGCATCGGC	TGTTGATTTG	CCAGAAGGAT	TGGCTAGAGA	AGGTTGTGTT	GTGATTCAAA	13860
	CAGGCACAGT	GGAAAATAAT	ACGATAAGCG	GGTTTGGTGC	AATTGTAATC	GAAACAAACG	13920
40	CGTAAAATAA	ATTGAGTGGA	TGCGTTTATA	TGGCGAAACA	AAAAAAGTTT	ATGAAGATTT	13980
	ATGAGGCGTT	GAAAGAAGAT	ATATTAAACG	GGCAGATTCA	ATATGGTGAA	CAAATTCCGT	14040
	CTGAACATGA	TTTGGTGCAA	TTGTACCAGT	CATCTCGAGA	GACCGTGCGT	AAGGCATTAG	14100
45	ATTTGTTGGC	ATTAGACGGC	ATGATTCAAA	AGATTCATGG	TAAAGGGTCA	CTTGTCATTT	14160
	ATCAGGAGGT	TACAGAGTTT	CCATTTTCTG	AACTTGTTAG	TTTTAAAGAA	ATGCAAGAAG	14220
50	AAATGGGCGT	CGCATATTTA	ACTGAAGTTG	TTGTGAATGA	GGTTGTTGAA	GCGCATGAAG	14280
2.0	TTCCAGAAGT	TCAACATGCT	TTAAACATCA	ATTCTAGTGA	ATCACTCATT	CATATTGTTA	14340

	TTGTTTCAGA	TATAGGTAAT	GATGTTGCGA	GTGATTCTAT	TTATGATTAT	TTGGAAAAGG	14460
	TATTAAATCT	TAATATTAGT	TATTCAAGTA	AGTCTATTAC	TTTTGAACCG	TTTGATGAAC	14520
5	AAGCATATCA	ATTGTTTGGT	GATGTATCGG	TGGCTTATTC	AGCAACAGTT	CGAAGTATTG	14580
	TGTATTTAGA	AAATACAATG	CCGTTTCAAT	ATAATATTTC	AAAACATCTT	GCAAATGAAT	14640
	TTAAATTTAA	TGACTTCTCA	AGACGTCGTA	TAAAGTAAAC	AATGATATAA	ATGATTTATA	14700
10	CTTGCAATTA	ACTATTAAAA	TATAGTAATA	TATATCTTGC	CGTGCTAGGT	GGGGAGGTAG	14760
	CGGTTCCCTG	TACTCGAAAT	CCGCTTTATG	CGAGGCTTAA	TTCCTTTGTT	GAGGCCGTAT	14820
	TTTTGCGAAG	TCTGCCCAAA	GCACGTAGTG	TTTGAAGATT	TCGGTCCTAT	GCAATATGAA	14880
15	CCCATGAACC	ATGTCAGGTC	CTGACGGAAG	CAGCATTAAG	TGGATCATCA	TATGTGCCGT	14940
	AGGGTAGCCG	AGATTTAGCT	AACGACTTTG	GTTACGTTCG	TGAATTACGT	TCGATGCTTA	15000
20	GGTGCACGGT	TTTTTATTTT	TTAAATATTA	AACCGATTAT	TAAGAGTTGA	AATATATAA	15060
	TTATAGAAGC	TACTTTCTTG	AAGACAATTC	AGCGTATTAT	ACGTGGAACA	TGTTTGTGGG	15120
	AAGTAGCTTT	TTTATATGTG	AAGTTTGATT	CAAGTGAACT	CGATGTGCAG	TTTGAATGAT	15180
25	TTTTGTGTCA	atgaaaagta	AGAAGTTATA	ATTTGATGAT	AAAGAAATGA	TGGTGAAATG	15240
	AGGGGGAGTA	TCTTACAATA	GAATTATTAA	TGAGATACGT	TATGATTATT	GACAATCAAA	15300
	TGCCTACGGA	GGACATATGC	AAATATATTT	AAGTACTTTA	ACAGAGTTAG	ATTATGATAA	15360
30	ATCTTTAAAT	AGTATTGAAG	AAAGTTTTGA	TGATAATCCT	GAAACGAGTT	GGCAAGCACG	15420
	TGCGAAAGTA	AAACATTTAA	GAAAATCTCC	TTGCTATAAT	TTTGAATTAG	AAGTAATAGC	15480
	GAAAAATGAA	AATAACGATG	TCGTTGGACA	CGTTTTATTA	ATTGAAGTAG	AAATTAATAG	15540
35	TGATGATAAG	ACGTATTATG	GTTTGGCGAT	TGCCTCTTTA	TCAGTTCATC	CTGAATTACG	15600
	TGGACAAAAA	TTAGGTCGTG	GCTTGGTTCA	AGCAGTAGAA	GAGCGTGCCA	AAGCACAAGA	15660
	GTATAGTACG	GTTGTTGTAG	ACCATTGTTT	TGACTACTTT	GAAAAGTTGG	GTTATCAAAA	15720
40	TGCTGCTGAG	CATGACATTA	AATTAGAATC	TGGTGATGCA	CCGTTACTTG	TAAAATATTT	15780
	ATGGGATAAT	TTGACGGATG	CACCACACGG	AATCGTAAAA	TTTCCAGAAC	ATTTTTATTA	15840
	ATTGTTCAAT	TAAGAAGTAA	AGGTATTATC	ATGCTATAAT	GAGAGGTAAT	TGTTTATGGA	15900
45	GGTGCTAACT	TGAATTATCA	AGCCTTATAT	CGTATGTACA	GACCCCAAAG	TTTCGAGGAT	15960
	GTCGTCGGAC	AAGAACATGT	CACGAAGACA	TTGCGCAATG	CGATTTCGAA	AGAAAAACAG	16020
50	TCGCATGCTT	ATATTTTTAG	TGGTCCGAGA	GGTACGGGGA	AAACGAGTAT	TGCCAAAGTG	16080
- •	TTTGcTAAAG	CAATCAACTG	TCTAAATAGC	ACTGATGGAG	AACCTTGTAA	TGAATGTCAT	16140

	AATAATGGCG	TTGATGAAAT	AAGAAATATT	AGAGACAAAG	TTAAATATGC	ACCAAGTGAA	16260
	TCGAAATATA	AAGTTTATAT	TATAGATGAG	GTGCACATGC	TAACAACAGG	TGCTTTTAAT	16320
5	GCCCTTTTAA	AGACGTTAGA	AGAACCTCCA	GCACACGCTA	TTTTTATATT	GGCAACGACA	16380
	GAACCACATA	AAATCCCTCC	AACAATCATT	TCTAGGGCAC	AACGTTTTGA	TTTTAAAGCA	15440
	ATTAGCCTAG	ATCAAATTGT	TGAACGTTTA	AAATTIGTAG	CAGATGCACA	ACAAATTGAA	16500
10	TGTGAAGATG	AAGCCTTGGC	ATTTAtcgCT	AAAGCGTCTG	AAGGGGGTAT	GCGTGATGCA	16560
	TTAAGTATTA	TGGATCAGGC	TATTGCATTT	GGTGATGGTA	CGTTAACATT	GCAAGATGCG	16620
15	TTGAATGTCA	CAGGTAGCGT	ACATGATGAA	GCGTTGGATC	ACTTGTTTGA	TGATATTGTA	16680
15	CAAGGTGACG	TACAAGCATC	TTTTAAAAAA	TACCATCAGT	TTATAACAGA	AGGTAAAGAA	16740
	GTGAATCGCC	TAATAAATGa	TATGATTTAT	TTTGTCaGAG	ATACGATTAT	GAATAAAACA	16800
20	TCTGAGAAAG	ATACTGAGTA	TCGAGCACTG	ATGAACTTAG	AATTAGATAT	GTTATATCAA	16860
	ATGATTGATC	TTATTAATGA	TACATTAGTG	TCGATTCGTT	TTAGTGTGAA	TCAAAACGTT	16920
	CATTTTGAAG	TGTTGTTAGT	AAAATTAGCT	GAGCAGATTA	AGGGTCAACC	ACAAGTGATT	16980
25	GCGAATGTAG	CTGAACCAGC	ACAAATTGCT	TCATCGCCAA	ACACAGATGT	ATTGTTGCAA	17040
	CGTATGGAAC	AGTTAGAGCA	AGAACTAAAA	ACACTAAAAG	CACAAGGAGT	GAGTGTCGCT	17100
	CCTGTTCAAA	AATCTTCGAA	AAAGCCTGCG	AGAGGCATAC	AAAAATCTAA	AAATGCATTT	17160
30	TCAATGCAAC	AAATTGCAAA	AGTGCTAGAT	AAAGCGAATA	AGGCAGATAT	CAAATTGTTG	17220
	AAAGATCATT	GGCAAGAAGT	GATTGATCAT	GCCAAAAATA	ATGATAAAAA	ATCACTCGTT	17280
	AGTTTATTGC	AAAATTCGGA	ACCTGTGGCG	GCAAGTGAAG	ATCACGTACT	TGTGAAATTT	17340
35	GAGGAAGAGA	TCCATTGTGA	AATCGTCAAT	AAAGACGACG	AGAAACGTAG	TAGTATAGAA	17400
	agtgītgtat	GTAATATCGT	TAATAAAAAC	GTTAAAGTTG	TTGGTGTACC	ATCAGATCAA	17460
	TGGCAAAGAG	TTCGAACGGA	ATATTTACAA	AATCGTAAAA	ACGAAGGCGA	TGATATGCCA	17520
40	AAGCAACAAG	CACAACAAAC	AGATATTGCT	CAAAAAGCAA	AAGATCTTTT	CGGTGAAGAA	17580
	ACTGTACATG	TGATAGATGA	AGAGTGATAC	ATGACAAGCG	ATATAATCGT	ATGTATAATG	17640
	AAAGAAACAT	CATTTTATTG	ATAAATATTT	ATTGATTTTC	AAGGAGGAAA	TGGAATATGC	17700
48 -	GCGGTGGCGG	AAACATGCAA	CAAATGATGA	AACAAATGCA	AAAAATGCAA	AAGAAAATGG	17760
	CTCAAGAACA	AGAAAAACTT	AAAGAAGAGC	GTATTGTAGG	AACAGCTGGC	GGTGGCATGG	17820
50	TTGCAGTTAC	TGTAACTGGT	CATAAAGAAG	TTGTCGACGT	TGAAATCAAA	GAAGAAGCTG	17880
50	TAGACCCAGA	CGATATTGAA	ATGCTACAAG	ACTTAGTGTT	AGCAGCTACT	AATGAAGCGA	17940

	TCCCTGGaAT	GTGATCATAG	ATGCATTATC	CAGAACCTAT	ATCAAAACTT	ATTGATAGCT	18060
	TTATGAAATT	GCCAGGCATT	GGTCCAAAGA	CAGCCCAACG	TCTGGCTTTT	CATACCTTAG	18120
5	ATATGAAAGA	AGACGATGTT	GTTCAGTTTG	CCAAAGCATT	AGTAGATGTT	AAGAGAGAAT	18180
	TAACATATTG	TAGCGTATGT	GGTCACATTA	CTGAAAATGA	TCCATGTTAT	ATTTGTGAAG	18240
10	ATAAGCAAAG	AGATCGTTCA	GTTATTTGTG	TTGTGGAAGA	TGACAAAGAT	GTCATAGCTA	18300
	TGGAAAAAAT	GAGAGAATAC	AAAGGTTTAT	ATCACGTTTT	ACATGGGTCT	ATTTCGCCTA	18360
	TGGATGGCAT	TGGACCAGAA	GATATTAATA	TTCCTTCATT	GATTGAACGC	TTGAAAAACG	18420
15	ATGAAGTTAG	CGAATTAATC	TTAGCTATGA	ACCCGAACTT	AGAGGGGGAA	TCTACAGCCA	18480
	TGTATATTTC	TAGATTAGTT	AAGCCTATAG	GTATCAAAGT	GACGAGATTA	GCACAAGGGT	18540
	TATCGGTAGG	TGGCGATTTA	GAGTATGCTG	ACGAAGTAAC	ATTATCTAAA	GCAATCGCAG	18600
20	GTAGAACAGA	AATGTAATKT	CTTCTATTAA	ACATTTTTGA	TTTTAATACT	ATAGTAAGAA	18660
	AAGTCACAGT	GTAATCATTG	TGGCTTTTTT	TATGGTGTGG	TGTGATGTAC	TACTTTATTT	18720
25	GCGGTGTGGC	GGTGGTATGG	TTTACCTAGT	TTTACTGAGG	GATGGGTAAT	CTTTAGGAAG	18780
	CAAGCCGTTG	GTTGTGATTT	GTTACTTCTA	ATAGTAATGA	TGTGAATTGG	ATTATCGAAT	18840
	TAGATCTATG	GTTATGGTGT	GTTGGTGCTA	TTAATTTGAT	AAATGCGGTT	AATGACTATG	18900
30	CAAATGAAAT	TCTTTTGTAA	TTGAAATGAT	AGATGCTGGC	TTAGTAAGTT	GTACTTCTTT	18960
	GGTCTAAAGC	TTATTAAATC	AGCCTGTATA	GCGGTGTTTT	GAGAGATTAT	TTAAAACTTG	19020
	TAAATTTATT	TTTAATTTCT	GGTAAAAAA	TAACGTTCTG	TTTTGCGTTT	TTTTTGATTG	19080
35	ATATGGTTAG	AGAAAAATCT	GTTTCTTGTT	CTAAAAAACG	TACTATTTAT	AAGTGGGGAT	19140
	TTTTTAAGTT	CGATTTTTAG	GATAAGGGCG	TTCAGTACAG	ATGACAAAGG	TGTAATTTTT	19200
	ACTGTTGTTA	AGCAGTTTGA	AAGCCTGTAT	AGTATTTATT	TGTTGAGGCA	AACAAAACAA	19260
	CTCAACTTAA	GAAATAACTT	GAATTACTAA	CGAAAATTAA	TTTTAAAAAG	TTATTGACTT	19320
40	AAATGTTAAT	AAAATGTATA	ATTAATTCTT	GTCGGTAAGA	AAAATGAACA	TTGAAAACTG	19380
	AATGACAATA	TGTCAACGTT	AATTCCAAAA	AACGTAACTA	TAAGTTACAA	ACATTATTTA	19440
	GTATTTATGA	GCTAATCAAA	CATCATAATT	TTTATGGAGA	GTTTGATCCT	GGCTCAGGAT	19500
45	GAACGCTGGC	GGCGTGCCTA	ATACATGCAA	GTCGAGCGAA	CGGACGAGAA	GCTTGCTTCT	19560
	CTGATGTTAG	CGGCGGACGG	GTGAGTAACA	CGTGGATAAC	СТАССТАТАА	GACTGGGATA	19620
50	ACTTCGGGAA	ACCGKAGCTA	ATACCGGATA	ATATTTTGAA	CCGCATGGTT	CAAAAGTGAA	19680
	AGACGGTCTT	GCTGTCACTT	ATAGATGGAT	CCGCGCTGCA	TTAGCTAGTT	GGTAAGGTAA	19740

	GAGACACGGT	CCAGACTCCT	ACGGGAGGCA	GCAGTAGGGA	ATCTTCCGCA	ATGGGCGAAA	19860
	gCtGaCGGAG	CAACGCCGCG	TGAGTGATGA	AGGTCTTCGG	ATCGTAAAAC	TCTGTTATTA	19920
5	GGGAAGAACA	TATGTGTAAG	TAACTGTGCA	CATCTTGACG	GTACCTAATC	AGAAAGCCAC	19980
	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGTGG	CAAGCGTTAT	CCGGAATTAT	20040
	TGGGCGTAAA	GCGCGCGTAG	GCGGTTTTTT	AAGTCTGATG	TGANAGCCCA	CGGCTCAACC	20100
10	GTGGAGGGTC	ATTGGAAACT	GGAAAACTTG	AGTGCAGAAG	AGGAAAGTGG	AATTCCATGT	20160
	GTAGCGGTGA	AATGCGCAGA	GATATGGAGG	AACACCAGTG	GCGAAGGCGA	CTTTCTGGTC	20220
	TGTAACTGAC	GCTGATGTGC	GAAAgCGTGG	GGATCAAACA	GGATTAGATA	CCCTGGTAGT	20280
15	CCACGCCGTA	AACGATGAGT	GCTAAGTGTT	AGGGGGTTTC	CGCCCCTTAG	TGCTGCAGCT	20340
	AACGCATTAA	GCACTCCGCC	TGGGGAGTAC	GACCGCAAGt	TGAAACTCAA	AGGAATTGAC	20400
	GGGGACCCGC	ACAAGCGGTG	GAGCATGTGG	TTTAATTCGA	AGCAACGCGA	AGAACCTTAC	20460
20	CAAATCTTGA	CATCCTTTGA	CAACTCTAGA	GATAGAGCCT	TCCCCTTCGG	GGGACAAAGT	20520
	GACAGGTGGT	GCATGGTTGT	CGTCAGCTCG	TGTCGTGAGA	TGTTGGGTTA	AGTCCCGCAA	20580
25	CGAGCGCAAC	CCTTAAGCTT	AGTTGCCATC	ATTAAGTTGG	GCACTCTAAG	TTGACTGCCG	20640
20	GTGACAAACC	GGAGGAAGGT	GGGGATGACG	TCAAATCATC	ATGCCCCTTA	TGATTTGGGC	20700
	TACACACGTG	CTACAATGGA	CAATACAAAG	GGCAGCGAAA	CCGCGAGGTC	AAGCAAATCC	20760
30	CATAAAGTTG	TTCTCAGTTC	GGATTGTAGT	CTGCAACTCG	ACTACATGAA	GCTGGAATCG	20820
	CTAGTAATCG	TAGATCAGCA	TGCTACGGTG	AATACGTTCC	CGGGTCTTGT	ACACACCGCC	20880
	CGTCACACCA	CGAGAGTTTG	TAACACCCGA	AGCCGGTGGA	GTAACCTTTT	AGGAGCTAGC	20940
35	CGTCGAAGGT	GGGACAAATG	ATTGGGGTGA	AGTCGTAACA	AGGTAGCCGT	ATCGGAAGGT	21000
	GCGGCTGGAT	CACCTCCTTT	CTAAGGATAT	ATTCGGAACA	TCTTCTTCAG	AAGATGCGGA	21060
	ATAACGTGAC	ATATTGTATT	CAGTTTTGAA	TGTTTATTTA	ACATTCAAAT	ATTITTTGGT	21120
40	TAAAGTGATA	TTGCTTATGA	AAATAAAGCA	GTATGCGAGC	GCTTGACTAA	AAAGAAATTG	21180
	TACATTGAAA	ACTAGATAAG	TAAGTAAAAT	ATAGATTTTA	CCAAGCAAAA	CCGAGTGAAT	21240
	AAAGAGTTTT	AAATAAGCTT	GAATTCATAA	GAAATAATCG	CTAGTGTTCG	AAAGAACACT	21300
45	CACAAGATTA	ATAACGCGTT	TAAATCTTTT	TATAAAAGAA	CGTAACTTCA	TGTTAACGTT	21360
	TGACTTATAA	AAATGGTGGA	AACATAGATT	AAGTTATTAA	GGGCGCACGG	TGGATGCCTT	21420
	GGCACTAGAA	GCCGATGAAG	GACGTTACTA	ACGACGATAT	GCTTTGGGGA	GCTGTAAGTA	21480
50	AGCTTTGATC	CAGAGATTTC	CGAATGGGGA	AACCCAGCAT	GAGTTATGTC	ATGTTATCGA	21540

	GAGGAAGAGA	AAGAAAATTC	GATTCCCTTA	GTAGCGGCGA	GCGAAACGGG	AAGAGCCCAA	21660
	ACCAACAAGC	TTGCTTGTTG	GGGTTGTAGG	ACACTCTATA	CGGAGTTACA	AAGGACGACA	21720
5	TTAGACGAAT	CATCTGGAAA	GATGAATCAA	AGAAGGTAAT	AATCCTGTAG	TCGAAAATGT	21780
	TGTCTCTCTT	GAGTGGATCC	TGAGTACGAC	GGAGCACGTG	AAATTCCGTC	GGAATCTGGG	21840
	AGGACCATCT	CCTAAGGCTA	AATACTCTCT	AGTGACCGAT	AGTGAACCAG	TACCGTGAGG	21900
10	GAAAGGTGAA	AAGCACCCCG	GAAGGGGAGT	GAAATAGAAC	CTGAAACCGT	GTGCTTACAA	21960
	GTAGTCAGAG	CCCGTTAATG	GGTGATGGCG	TGCCTTTTGT	AGAATGAACC	GGCGAGTTAC	22020
	GATTTGATGC	AAGGTTAAGC	AGTAAATGTG	GAGCCGTAGC	GAAAGCGAGT	CTGAATAGGG	22080
15	CGTTTAGTAT	TTGGTCGTAG	ACCCGAAACC	AGGTGATCTA	CCCTTGGTCA	GGTTGAAGTT	22140
	CAGGTAACAC	TGAATGGAGG	ACCGAACCGA	CTTACGTTGA	AAAGTGAGCG	GATGAACTGA	22200
20	GGGTAGCGGA	GAAATTCCAA	TCGAACCTGG	AGATAGCTGG	TTCTCTCCGA	AATAGCTTTA	22260
20	GGGCTAGCCT	CAAGTGATGA	TTATTGGAGG	TAGAGCACTG	TTTGGACGAG	GGGCCCCTCT	22320
	CGGGTTACCG	AATTCAGACA	AACTCCGAAT	GCCAATTAAT	TTAACTTGGG	AGTCAGAACA	22380
25	TGGGTGATAA	GGTCCGTGTT	CGAAAGGGAA	ACAGCCCAGA	CCACCAGCTA	AGGTCCCAAA	22440
	ATATATGTTA	AGTGGAAAAG	GATGTGGCGT	TGCCCAGACA	ACTAGGATGT	TGGCTTAGAA	22,500
	GCAGCCATCA	TTTAAAGAGT	GCGTAATAGC	TCACTAGTCG	AGTGACACTG	CGCCGAAAAT	22560
30	GTACCGGGGC	TAAACATATT	ACCGAAGCTG	TGGATTGTCC	TTTGGaCAAT	GGtAGGAGAG	22620
	CGTTCTAAGG	GCGTTGAAGC	ATGATCGTAA	GGACATGTGG	AGCGCTTAGA	AGTGAGAATG	22680
	CCGGTGTGAG	TAGCGAAAGA	CGGGTGAGAA	TCCCGTCCAC	CGATTGACTA	AGGTTTCCAG	22740
35	AGGAAGGCTC	GTCCGCTCTG	GGTTAGTCGG	GTCCTAAGCT	GAGGCCGACA	GCGTAGGCGA	22800
	TGGAȚAACAG	GTTGATATTC	CTGTACCACC	TATAATCGTT	TTAATCGATG	GGGGGACGCA	22860
	tAGGATAGGC	GAAgcGTGcG	ATTGGATTGC	ACGTCTAAGC	AGTAAGGCTG	AGTATTAGGC	22920
40	AAATCCGGTA	CTCGTTAAGG	CTGAGCTGTG	ATGGGGAGAA	GACATTGTGT	CTTCGAGTCG	22980
	TTGATTTCAC	ACTGCCGAGA	AAAGCCTCTA	GATAGAAAAT	AGGTGCCCGT	ACCGCAAACC	23040
	GACACAGGTA	GTCAAGATGA	GAATTCTAAG	GTGAGCGAGC	GAACTCTCGT	TAAGGAACTC	23100
45	GGCAAAATGA	CCCCGTAACT	TCGGGAGAAG	GGGTGCTCTT	TAGGGTTAAC	GCCCAGAAGA	23160
	GCCGCAGTGA	ATAGGCCCAA	GCGACTGTTT	ATCAAAAACA	CAGGTCTCTG	CTAAACCGTA	23220
50	AGGTGATGTA	TagGGcTGAC	GCCTGCCCGG	TGCTGGAAGG	TTAAGAGGAG	TGGTTAGcTT	23280
50	CTGCGAAgCT	ACGAATCGAA	GCCCCAGTAA	ACGGCGGCCG	TAACTATAAC	GGTCCTAAGG	23340

	TGTCTCAACG	AGAGACTCGG	TGAAATCATA	GTACCTGTGA	AGATGCAGGT	TACCCGCGAC	23460
	AGGACGGAAA	GACCCCGTGG	AGCTTTACTG	TAGCCTGATA	TTGAAATTCG	GCACAGCTTG	23520
5	TACAGGATAG	GTAGGAGCCT	TTGAAACGTG	AGCGCTAGCT	TACGTGGAGG	CGCTGGTGGG	23580
	ATACTACCCT	AGCTGTGTTG	GCTTTCTAAC	CCGCACCACT	TATCGTGGTG	GGAGACAGTG	23640
	TCAGGCGGGC	AGTTTGACTG	GGGCGGTCGC	CTCCTAAAAG	GTAACGGAGG	CGCTCAAAGG	23700
10	TTCCCTCAGA	ATGGTTGGAA	ATCATTCATA	GAGTGTAAAG	GCATAAGGGA	GCTTGACTGC	23760
	GAGACCTACA	AGTCGAGCAG	GGTCGAAAGA	CGGACTTAGT	GATCCGGTGG	TTCCGCATGG	23820
	AAGGCCATC	GCTCAACGGA	TAAAAGCTAC	CCCGGGGATA	ACAGGCTTAT	CTCCCCCAAG	23880
15	AGTTCACATC	GACGGGGAGG	TTTGGCACCT	CGATGTCGGC	TCATCGCATC	CTGGGGCTGT	23940
	AGTCGGTCCC	AAGGGTTGGg	CTGTTCGCCC	ATTAAAGCGG	TACGCGAGCT	GGGTTCAGAA	24000
20	CGTCGTGAGA	CAGTTCGGTC	CCTATCCGTC	GTGGGCGTAG	GAAATTTGAG	AGGAGCTGTC	24060
20	CTTAGTACGA	GAGGACCGGG	ATGGACATAC	CTCTGGTGTA	CCAGTTGTCG	TGCCAACGGC	24120
	ATAGCTGGGT	AGCTATGTGT	GGACGGGATA	AGTGCTGAAA	GCATCTAAGC	ATGAAGCCCC	24180
25	CCTCAAGATG	AGATTTCCCA	ACTTCGGTTA	TAAGATCCCT	CAAAGATGAT	GAGGTTAATA	24240
	GGTTCGAGGT	GGAAGCATGG	TGACATGTGG	AGCTGACGAA	TACTAATCGA	TCGAAGACTT	24300
	AATCAAAATA	AATGTTTTGC	GAAGCAAAAT	CACTTTTACT	TACTATCTAG	TTTTGAATGT	24360
30	ATAAATTACA	TTCATATGTC	TGGTGACTAT	AGCAAGGAGG	TCACACCTGT	TCCCATGCCG	24420
	AACACAGAAG	TTAAGCTCCT	TAGCGTCGAT	GGTAGTcGAA	CTTACGTTCC	GCTAGAGTAG	24480
	AACGTTGCCA	GGCAAAAAAT	GGATGCGATG	AGCCGCATTG	AGACCGCAAG	GTCTCTTTTT	24540
35	TTTATGTCTA	AAACGTCAAA	ATAAAAAGCA	AACACAAAGA	AAAATGGCTT	GGCGAAGTGA	24600
	AAACGTTTGA	ATCTGACGAA	ACGAGAAAAG	Arcgcaacga	GTTTAGTAGA	GCTAAATGAG	24660
	TAAGYGAGAG	CCGAAGrAGA	GGAAAGAAGC	AAGCGATTGT	CACAAGTCAA	GAAAGGTTCT	24720
40	TAGCGASGAT	GGTAGCCAAC	TTACGTTCCG	CTAGAGTAGA	ACTGGAAATG	ATAATTTAAT	24780
	AATGTACACT	TTCGATTGTC	TAAGTATGTA	CAACTTTAAT	TTTGTGTTTA	TATAAATTTA	24840
	AAATGATATC	ATCGAAAACA	AAATATTGTA	TAAATAGAGA	AGAGCAGTAA	GACGGTATCT	24900
45	AATTGAAAAT	GATCTTACTG	CTCTTTTATA	TACTTTATTG	AAATACAAAA	AGGAAATTAA	24960
	TTATTATACA	ATAGACAAGC	TATTGCATAA	GTAACACTAA	CTTTTATCAA	AGAAGTGTTA	25020
	CTTTATAATT	AATGATTTTA	TTAGAGCGTC	TACATGCGGT	TTTAAAGCAT	CATCGTCTAT	25080
50	ACCGCCAAAG	CCTAATATAA	ATTTAGGGGT	TTTCTTATAG	TCTTGATCAT	CATCAAAATT	25140

	TCCATTTTTT	ACTGTAATTG	TAAAATGCAT	ACCCGTTTCA	GCACCTTGAA	TATCAAGCTG	25260
	CTCTTTGTAA	GGTTTCAATC	TTTTTAAAAT	ATAGGTTAGT	TTTCTACGAT	AAATTCGTCT	25320
5	CATTTTATTT	AAATGCCTTT	CAAAACCACC	GGAAGATATA	AACGTTGCAA	TAAGGTTTTG	25380
	CATATGAACA	GGTACAGTGT	TGCCTTCAAT	GTGATTTTGA	GAATGATATT	TTTTCATTAT	25440
	AGAATAGGGT	AACACCATAT	ATGCAACTCG	ACAGCTAGGA	AAAATAGACT	TTGAAAATGT	25500
10	ACTGATATAA	ATCACTTTTT	CTCCTCTTGA	ATATAGACCT	TGAATTGCTG	GAATGGGTTT	25560
	GCCGAAATAT	CTAAACTCGG	AATCATAATC	ATCTTCTATA	ATAAATCGTT	CTTCTTTTTC	25620
4.5	TTGAGCCCAT	TGTATTAATT	GAGTTCGTTT	TTTTAAGTCC	ATCACATATC	CAGTTGGAAA	25680
15	TTGATGGGAA	GGCGTTATAT	ATACTATATT	TTTTTGTGAT	TTAATAACTT	CATCTACGTT	25740
	TATTCCATTA	TCTTCAACTT	CAATTTGTTC	ATATTCAACT	TGTTTTTTAT	CTAAAATATT	25800
20	TTTGATTGGT	GGATAACTAG	GTTTTTCGAT	AATAAATGTT	GAAGTATAAA	GTAAATCGAC	25860
	TAATTGATTT	ACTAATTGTT	CGGTAGATGA	GCCAATTATA	ATTTGATTAG	GATCACAAAT	25920
	TACGCCACGA	TTAGTAAATA	AATAAAATGC	CAGTTGAAAC	CGCAAATGTA	ATTCTCCTTG	25980
25	AAAATGTCCT	CTACGTAATT	GATTTAAATG	ATTTGTATCA	TAAAGATCTT	TGGAATACTT	26040
	TCTGAAAAGT	TCTATAGGGA	AATGTTTCGT	ATCTATTTCA	TCCAAATTAA	AAGCATAATC	26100
	ATAAGCTTCA	TCACTCGCTT	TTGGTTTATA	TGAATCATCA	TCAAAAAGAG	AGGGGATAGG	26160
30	TTGATTGTTT	AAAATTGTTA	AAGATTCAAT	TTCGGACACA	AAATATCCAG	AGCGAGGTCT	26220
	TGAATAAATG	TAACCTTCGT	CTAATAGAAG	TTGATATGCA	TGCTCTACGG	TTGTTTGGCT	26280
	AATAGATAAA	TGTTTGCTTA	ATTGTCTTTT	AGAATAAAAT	TTATCGCCTT	CTTTAAATTG	26340
35	ACCTTCAATT	ATTTGTTTTT	TTAATTTTTC	ATAAAGTTGA	TGGTATAAAG	TGTTTTCAA	26400
	TTTTATAACT	GACCTCCTAA	ATTTATCTTA	TTTTGTACCT	TTTTAAATAT	CAGTTTATAC	26460
	ATTACAATGT	ATTTAATCAA	CTTGAAAAGG	GGTTTTATGT	ATAATGAGTA	AAATTATTGG	26520
40	ATCAGACAGA	GTCAAAAGAG	GTATGGCTGA	AATGCAAAAA	GGCGGCGTTA	TTATGGATGT	26580
	CGTTAATGCT	GAGCAAGCAA	GAATTGCAGA	AGAAGCTGGC	GCGGTAgCAG	TTATGGCATT	26640
	AGAACGAGTA	CCTTCTGATA	TTAGAGCTGC	TGGTGGTGTT	GCACGTATGG	CAAACCCTAA	26700
45	AATTGTAGAA	GAAGTAATGA	ATGCTGTTTC	TATTCCAGTC	ATGGCTAAAG	CACGTATTGG	26760
	TCATATCACT	GAAGCAAGAG	TATTAGAGGC	GATGGGTGTT	GACTATATTG	ATGAATCAGA	26820
50	AGTGTTAACA	CCAGCAGATG	AGGAATATCA	CTTAAGAAAA	GATCAATTTA	CAGTACCATT	26880
50	TGTATGTGGA	TGTCGTAATT	TAGGTGAAgm	TGCGCGTAGA	ATTGGTGAAG	GTGCTGCTAT	26940

	ACAAGTTAAT	TCAGAAGTTA	GTCGATTGAC	TGTAATGAAT	GATGATGAGA	TTATGACTTT	27060
	TGCGAAAGAT	ATCGGTGCGC	CTTATGAAAT	TTTAAAACAA	ATTAAAGACA	ATGGTCGTTT	27120
5	ACCGGTAGTT	AACTTTGCAG	CTGGTGGCGT	TGCGACTCCT	CAAGATGCTG	CTTTAATGAT	27180
	GGAATTAGGT	GCTGACGGTG	TATTCGTTGG	ATCAGGTATT	TTTAAATCAG	AAGATCCAGA	27240
40	AAAATTTGCT	AAAGCAATTG	TTCAAGCAAC	AACACATTAC	CAAGACTATG	AACTAATTGG	27300
10	AAGATTAGCA	AGTGAACTTG	GCACTGCTAT	GAAAGGTTTA	GATATCAATC	AATTATCATT	27360
	AGAAGAACGT	ATGCAAGAGC	GTGGTTGGTA	AGATATGAAA	ATAGGTGTAT	TAGCATTACA	27420
15	AGGTGCAGTA	CGTGAACATA	TTAGACATAT	TGAATTAAGT	GGTCATGAAG	GTATTGCAGT	27480
	TAAAAAAGTT	GAACAATTAG	AAGAAATCGA	GGGCTTAATA	TTACCTGGTG	GCGAGTCTAC	27540
	AACGTTACGT	CGATTAATGA	ATTTATATGG	ATTTAAAGAG	GCTTTACAAA	ATTCAACTTT	27600
20	ACCTATGTTT	GGTACATGCG	CAGGATTAAT	AGTTCTAGCG	CAAGATATAG	TTGGTGAAGA	27660
	AGGATACCTT	AACAAGTTGA	ATATTACTGT	ACAACGAAAC	TCATTCGGTA	GACAAGTTGA	27720
	CAGCTTTGAA	ACAGAATTAG	ATATTAAAGG	TATCGCTACA	GATATTGAAG	GTGTCTTTAT	27780
25	AAGAGCCCCA	CATATTGAAA	AAGTAGGTCA	AGGCGTAGAT	ATCCTATGTA	AGGTTAATGA	27840
	GAAAATTGTA	GCTGTTCAGC	AAGGTAAATA	TTTAGGCGTA	TCATTCCATC	CTGAATTAAC	27900
	AGATGACTAT	AGAGTAACTG	ATTACTTTAT	TAATCATATT	GTAAAaAAAG	CATAGCTTAA	27960
30	TGTATGCTAA	ATCAACGAAT	TATTGATATT	TATAGATTTG	TTGAGAAGAA	AATATCTCCT	28020
	TCAAACTTAG	CTTTGGAGGA	GTTATTTTTT	ATGTCAAAAT	TAAAAATGAT	AAAAAATAAA	28080
35	GCTATACATA	AGAAAAAAAC	CCTTCAAAGA	GACTGAGAAT	AGTCAAAATT	TTGAAGGGGT	28140
	TAATTCGATG	TTGATGTATT	TGTTAAATAA	AGAATCcAGC	GATTGCAGCT	GAAATGAAAG	28200
	ATACTAGTGT	tGCACCGAAT	AATAATTTCA	AACCAAAGCG	GGCAACTGTA	TCTCCTTTTT	28260
40	TGTCATTAAG	TGATTTAATC	GCACCTGAAA	TAATACCGAT	AGAGCTAAAG	TTAGCAAATG	28320
	ATACTAAGAA	TACAGATGTA	ACACCTTTTG	CGTGTTCAGA	TAAATCACTA	AGTTTACCAA	28380
	GTGCTTGCAT	TGCTACAAAT	TCGTTAGATA	ATAGTTTTGT	CGCCATAACT	GAACCGGCTT	28440
<b>4</b> 5	GAACTGCATC	TTGCCATGGC	ACACCGACTA	AGAATGCAAA	TGGTGCAAAG	ACAAAACCAA	28500
	TTAATGTTTG	GAAATCCCAA	GAAATAGCGC	CACCTGAAAC	TGTACTAAAG	ATATTGCTTA	28560
	CAATTCCATT	TAATAGAGCG	ATAATGGCAA	TGTATCCGAT	TAACATTGCG	CCTACAATGA	28620
50	CAGCTACTTT	AAATCCATCT	AAAATATATT	CTCCTAGCAT	TTCGAAGAAT	GATTGTTGTC	28680
	TTTCAGT	TTCTTCAACT	AATAATTIGT	CATCTTCTTC	ALLINA CALLE	прасседтрая	^ R74^

	TAGGTTCAAT	TAAGGTAAAG	TATGCACCGA	TAATTGAAGC	AGAAACAGTC	GACATTGCTG	28860
	AAGCTGTTAA	TGTGTATAAA	CGTTGCTTAG	GTATGTATGG	TAATTGTTTT	TTAATTGAAA	28920
5	TAAATACTTC	AGATTGTCCC	AAAATTGCTG	CAGCAACTGC	ATTGTATGAT	TCTAAACGTC	28980
	CCATACCATT	AATTTTAGAA	ATTAAGAATC	CTAAAACATT	AATGATTAAA	GGTAAAATCT	29040
10	TTGTGTATTG	AAGGATACCG	ATAATCGCTG	AAATAAATAC	GATAGGTAAT	AATACACTGA	29100
10	AGAAGAATGG	TGGTTGCTTA	GGATCGATAT	ATTGAATACC	ACCGAATACA	AAGTTAACAC	29160
	CATCTGCTGC	TTTTAATAAT	AAGTAGTTAA	AACCGTTTGA	AATACCACCA	ATAACCTTGA	29220
15	TTCCCATTGT	AGTTTTAAGC	AAGATAAATG	CAAAGATAAG	CTGAATTGCA	AGTAAAATTC	29280
	CTACATATTT	CCAGCGAATA	TTTTTCCTGT	CTGAGCTAAA	TAGAAACGCA	AGTGCTAAAA	29340
	AGAAGATAAT	TCCGATAATC	CCAATTAGAA	TATGCATATA	TTTCTCATTC	CTTTAGTTTT	29400
20	TTCTACaATc	TATCATACAA	TAAAATGGAA	GGGCTAACAT	CATAAATTTT	TGAAAATATA	29460
	AAAACAAATT	AATTGAAAAA	GGTCAAAATA	GGTCATATAA	TATAGTCAAA	GAAGGTCAAA	29520
	AAGGGGTGAT	ATACATGCAC	AATATGTCTG	ACATCATAGA	ACAATAaTCA	AACGTTTATT	29580
25	TGAAGAGTCG	AATGAAGATG	TCGTTGAAAT	TCAGAGAGCG	AATATCGCAC	AGCGTTTTGA	29640
	TTGCGTACCA	TCACAATTAA	ATTATGTAAT	CAAAACACGA	TTCACTAATG	AACATGGTTA	29700
	TGAAATCGAA	AGTAAACGTG	GTGGTGGTGG	TTACATCCGA	ATCACTAAAA	TTGAAAATAA	29760
30	AGATGCAACA	GGTTATATTA	ATCATTTGCT	TCAGCTGATT	GGACCTTCTA	TTTCTCAACA	29820
	ACAAGCTTAT	TATATTATTG	ATGGGCTTTT	AGATAAAATG	TTAATAAATG	AACGTGAAGC	29880
35	TAAAATGATT	CAAGCAGTTA	TTGATAGAGA	AACGCTATCA	ATGGATATGG	TTTCTAGAGA	29940
	TATTATTAGA	GCAAATATTT	TAAAACGTTT	GTTACCAGTT	ATAAATTATT	ACTAAATGAA	30000
	ATGAGGTGTT	GAAGTGCTTT	GTGAAAATTG	TCAACTTAAT	GAAGCGGAAT	TAAAAGTTAA	30060
40	AGTTACAAGT	AAAAATAAAA	CAGAAGAAAA	AATGGTGTGT	CAAACTTGTG	CTGAGGGGCA	30120
	CCATCCGTGG	AATCAAGCTA	ATGAACAACC	TGAaTATCAA	GAACATCAAG	ATAATTTCGA	30180
	AGAAGCATTT	GTTGTTAAGC	AAATTTTACA	ACATTTAGCT	ACGAAACATG	GAATTAATTT	30240
45	TCAAGA						30246

#### (2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14333 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

	TATTCCCCCA	TCGGTTTATT	AAATCGTCCA	TTTCAATACT	GTTTTTCCCC	AAGATGTCGA	60
5	TAAATCCATT	TCAAACGCTT	GGACGATATC	TTGCATCGTA	CATACATTAA	TTTCATGTCC	120
	ТТТТААТААТ	GCTAACTTTT	CAACTATGTC	TGGGTACTTA	CGATATAAAT	CAACAACTTG	180
	CTCAAAATCT	TTAGAGCCGC	TTCGACTACT	ACCAATCAAC	GTTAATCCTT	TTTCAAGTAC	240
10	TAATCGTGTA	TTCACTTCCA	CGGGTAATTC	ACTTACGCCT	AACAAAGCAA	TACTGCCTTC	300
	TGGTGAAATA	TGTTCAACTA	TTTGTTGAAG	TGCAACTTGA	CTTCCTTTAC	CTCCAACACA	360
15	TTCAAATGCA	TGATCAATTT	TAAGATCATC	TGGTATTTGA	TTTACTGTAA	AGATGTCATC	420
	TACAAATGAA	AAATGACTTA	ATTTATAGTC	TGTCTTACCA	AATACATAAG	TTTTAGCTTC	480
	TGGGTACAAC	TTACGTAGCA	AAATAGCAGT	AATATAACCT	AAGTTACCAT	CACCCCAAAT	540
20	ACCAAAGCTG	GTTTTCAAAG	GTATAGATTT	ACGTTCAAAT	CGTTGTATAG	CATGATAACT	600
	TACTGACACT	AACTCTGTGT	ATGAAATCGT	ACTCAAATCA	ATGTCATTAG	GCAGCGGAAC	660
	GATACGATCA	TGTGCCATCA	CAACGTAGTC	TTGCATAAAA	CCATCATAAC	CACTAGATCT	720
25	AAAATAACTA	GAGGCTAAGT	AATTCTCCGC	AATAATATGA	TGTTGCTCTG	TAGGTGTATT	780
	CGGTACCATT	ACTACTTTCG	TACCTTTTTC	AAATACCCCT	TTACTATCAA	ATACAACTTC	840
	ACCAACAGCT	TCATGAACTA	ATGACATTGG	TAATTTTTTG	CGTAGTACAT	TTTCATCTCT	900
30	TCGACCTGTG	TAATACCTTT	GATCAGCTGC	ACAAATAGAC	AAGTATAAAG	GTCTTACGAT	960
	GACATGATTA	CCATAAATAT	CAACATTATT	ATATGTGACG	TCGAACTGTC	TCGGTGCAAC	1020
35	GAGTTGATAT	ACTTGATTAA	TCATCGGCAA	TATCACCTTG	AATAATGGCA	TTTGCTACTT	1080
	TTAAATCATA	CGGTGTTGTC	ACTTTAATGT	TGTATAGTTC	TCCaCGTACC	AATTTAACTG	1140
	CATGTCCAGA	TTCGACAATG	ATTTTACATG	CATCTGATAA	GATTTCTTTT	TGTTCACTAC	1200
40	TTAAGGCGCG	ATAACTATCT	TGTAATAATT	TAATATTAAA	TGATTGTGGT	GTTTGGCCTT	1260
	GATACATTTC	ATTCCTTACA	GGGATACTGT	GTATGTTCTG	TTTATCTTTA	GACATTACAA	1320
	TCGTATCAAT	TGCTTCAATG	ACTGTATCTA	CTGCACCATA	TTTTGCTGCT	ACTTCAATGT	1380
45	TCTCTTTAAT	AATACGTTGA	GTTAAAAATG	GTCTTACGGC	ATCATGAGTT	ACAATCACAT	1440
	CATCATTATT	AATTCCATTT	ACATTGCGAA	TATGGTCGAT	AATGTTCATA	ATTGTTTCAT	1500
	TTCGATCCGT	ACCACCTGCA	ACTACTTTGA	CACGTTGATC	TGTAATGTTA	TATTTTTTA	1560
50	AAATATCCTG	TGTATGGGAA	ATCCACTGTG	CTGGCGTTGC	GATAATAATC	TCATTAAATT	1620
	22 cm c 2 cm y 2	N 3 T C N N COOM C	ጥር አ አመውርመ <b>አ</b> ጥ	רמ ממ מדד בר.	oddwww Francis	مستمسام سالا لإدرس	

	CTGCATAAAT	CATGTTGTCC	TCCATTCTGT	CATTACATCA	TTTCCATTTA	TACATTACTG	1800
	ACCTATGCCC	GCACATAAGC	CTAACCTATT	GCTCACTTGC	CTCTTTTATT	AATCCAAAGA	1860
5	TAGTTGTCAC	AATAGTGTGA	TAATTTTTTA	TAAAAATGTA	TTTTTGTAAC	TGACCATTCT	1920
	AAGTTGTTTT	GCCATGCAGT	TAATCATTAA	CTCTGACGAT	ATTAAATTGT	TAAAGGTATT	1980
10	AATGTTTACT	CTTTTTCAAA	TTCATTATTA	CTGCCATCAT	TTTACCATAT	ATTATAATAA	2040
	ATTTATCTTA	TTAAGTGGCT	GTACTTGATT	TTCACTTTAA	AAATTATCAA	ATATTGCCAT	2100
	CTCATTTTAA	GTATACAAAA	TGCAAAACAA	CCGATTCACA	AGCATATTTC	ACACAAGTAA	2160
15	ACCGGCTATT	TATCAACGTA	TATTCGAAGA	TGAATTATTT	CGATAGTATC	TATAGACCAG	2220
	ACGGCATTCG	CACTTTCATA	GCTATAACTA	TACCAGCGTT	TTCGTCCTCA	AAGGTGCATA	2280
	CTAATAAATC	GTAAACATGA	CTTTATCAAA	TCGTTCTTTC	TTGTTAACTA	ATTTATCAAA	2340
20	TGTCTCCGGG	CCTTTTTCTA	ACGGTAAAAA	ATGAGAAATA	ATAGGCTTTA	CATTAATATC	2400
	TTTCGTCTTC	ATATAATGTA	AGGTTGCCGT	CCACTCTTTG	CCCGGAAAAT	TACTGGACAA	2460
	ACAGTTCCAA	GAGCCACATA	CTGTCAACTC	GTTACGCAGA	ATTTTTTCAA	AATGAACGCG	2520
?5	ATCAATCTCA	ATATCATCAT	ATGGTATTCC	GAGTAATACC	ACCTCGCCAC	CTTTTTTAGG	2580
	TAGCGTCAAT	ATTTGACCAA	TCGTAACTTT	AGCACCTGAT	GATTCTATAG	CTAAATCGAT	2640
30	TTGATTGGCG	TAATGATTTT	CGATGAATTT	CTCAAGATTT	TCTTCTTTTG	AATTGATTGT	2700
, 0	TTGATGTGCG	CCCAATGATG	TTGCAATATC	TAGTTTATGC	GCATCTATAT	CTATAGCGAT	2760
	GATATGTGCA	GCACCAAATA	TTCGTGCCCA	TTGAATAGCT	AACAAACCTA	TACTGCCACA	2820
35	CCCCATTACT	GCAACAGTCA	TACCAGGTTG	TATATTCGAT	TTATAAAACC	CATGCGCAAC	2880
	AACGGCTGAT	GGCTCAACCA	TTGCTGCTTC	AATGTAATCA	ACATTGTCTG	GAACCTTTAA	2940
	AACATTTTGC	GCTGGCAATT	TGACATATTC	CGCGAACGAT	CCAGGTTCAT	ATGAGCCAAT	3000
10	GACGÂATAAC	TTTTCACATC	GTGCATATTC	ACCTTTTAAA	CAATACTCGC	ATTGATAACA	3050
	AGGTATTGCT	GGGCAACCTG	TCACTTTGTC	GCCCACATTA	ACATGCGTAA	CATCACTTCC	3120
	AATGGCATCT	ACTACACCTG	AAAATTCATG	ACCAAATGGC	ATACCTTTAA	TGTATGGCCC	3180
15	CATTTTTTTG	TATCGTGACG	TGTCTGAACC	ACATATGCCA	GTCGCTCGTA	CTTTAATAAT	3240
	AACGTCATTC	GCACTTTCAA	TGACTGGCTT	TTCATTATCC	TCATACCGTA	AATCTTCCAC	3300
50	GCCATATAAT	TTCAATGCTT	TCACTTGTAA	ATCACCTCAA	ATTTGATTTA	ATTCACAACT	3360
	TTTTTCTTTT	ТАААААТАСС	TGTCGCAAAA	TAACCTGCAA	TGACAATGGA	ATTACTTACG	3420
	AGTAAATGTT	CCATATAAAA	ATCAGTGATT	TGTCTTAATG	GCCCAAGCAT	AAAAGTTAGC	3480

	TGCTTTAATA	CCTTCGCCGG	ATTTTAAATG	TTGATACGCC	TCGTCCCATT	TCGAAATATC	3600
	ATATATTTT	GTCACCAAAG	CTTCAGCATT	TACTAAACCA	TCCGCCATAA	GTTGCAATGA	3660
5	AGGTTCCCAA	TCTGCTGGCT	TTTGACTTCT	ACTACCAACA	ACTGTTATTT	CTTTTTGAAT	3720
	CACTTTTTCC	ATATCAAATG	GAATTTCAGC	ATCCTTAAAA	ATACCTATTT	GACTGTAGAA	3780
	ACCTTTTTG	CGTAAAATAT	CCAAACCTTG	TCGTGCTGCT	GGAACTGCAC	CTGAACATTC	3840
10	AACAACAACA	TCTGCACCGT	AACCGTCTGT	AATTCCATTG	ATATACGTTT	TTAAGTCTGT	3900
	TTGTTGTAAA	TTGACTACAT	AATCCATGTG	CAATGCTTCT	GCTTTATCTA	ATCTGACTTT	3960
15	GTCATTGTCC	AATCCAGTTA	CCACAACAGT	TGCGCCTTTA	CTTTTTAACA	CTTGTGCTAC	4020
	AAGTAATCCG	ATTGGCCCAG	GTCCCATTAC	AACTGCTACA	TCGCCTGAAT	TGACTTGAAT	4080
	CTTAGAAACG	CCATGATGTG	CACATGCTAA	TGGTTCTGTC	ATAGCTGCAG	ACTGATACGA	4140
20	TALTCGTCTG	GAATATGATG	CAAACTTTCT	TCACGTGCAA	TGACATAATT	AGTAAATGCG	4200
	CCATCAACTT	GTGTTCCAAT	ACCTTTTCGA	TGGTTGCATA	AATTATAGTC	TTTTGATTTA	4260
	CAGTATTCAC	ACTCATTACA	AACATAGAAT	GTCGTTTCAG	aTGtGACACG	GTCACCAACT	4320
25	TTAAAATCTT	TAACGTCTGC	TCCAACTTCA	ACGATTTCAC	CAGAAAATTC	ATGACCTAAT	4380
	GTCACTGGAA	AATTAACTTT	ATAATGACCT	TCATAAGTAT	GAATATCTGT	GCCACAAATT	4440
	CCTGCATAAT	GTACTTTAAT	CTTTACTTTA	TCATCTAGCG	GTGTTGCAAC	TTCTTTATCA	4500
30	AGAAGTTCTA	AGTTGCCATG	TCCTTCTCTT	GTTTTTACTA	AAGCTTTCAC	CACAAACACC	4560
	TCGATTTTTA	ATTGAATAGA	CTAAATAGTT	TAAAGATAAG	ATAGTTAACG	ATATTACCAC	4620
25	CTTGATCAAT	ACTTGAAATT	TCAGATGAAC	CTTTTGGCAT	TTGTACATTC	GTACCTTTCG	4680
35	CCATATCTGT	GAAAATGGGT	GCTACGTCTG	TTGCAATATA	TAGTGAAATT	GCAATCATAA	4740
	TCGTACCCAC	AATGACAGAA	TGAATAATGT	TTCCTCTTGC	TGCACCAACA	ATAAACGCGA	4800
40	CAACAAATGG	TATCGTTGCT	AAGTCACCAA	AAGGTAGTAC	TTGGTTTCCT	GGTAAAATAA	4860
	CGGCTAATAA	AACAGTGATA	GGTACTAAAA	TTAATGCTGT	CGAAATAACT	GCTGGATGAC	4920
	CTAATGCTAC	AGCCGCATCC	AATCCAATAT	AAATTTCACG	TTCGCCAAAA	CGTTTATTTA	4980
45	GCCATGTTCT	TGCAGACTCT	GAAACTGGCA	TTAAACCTTC	CATTAAGATT	TTTACCATTC	5040
	TAGGCATTAA	TACCATTACT	GCAGCCATTG	ACATTCCTAA	ATTAATGATG	TCTCCAGGTT	5100
	TGTAACCTGC	TAACACACCA	ATACCTAAAC	СТААААТТАА	GCCGACAAAT	ATAGACTCTC	5160
50	CAAATGCGCC	AAAACGTTTT	TGAATTGTTT	CAGGATCAGC	ATCTAACTTA	TTCAGACCGG	5220
	GTACTTTTTG	TAACAATTTA	ACTAAGTAAA	TACCTGGTGC	ATAAGAAATT	GTACTTCCTG	5280

	CTACTTTCAA	ACAGATAATT	TGGAAAATAA	CTGCTGCTAA	TAACGCTTGC	CAAATACTGC	5400
5	CTGATACGGC	ATAAACCATT	GCTGCTGTAA	ACGTATAATG	CCAAAAATTC	CAAATATCTA	5460
5	CATTCATCGT	CTTTGTCACT	TTAGTTACTA	GCAATACAAC	GTTAACTATG	ATTCCGAGTG	5520
	GAATAATAAA	TGCTGCGACA	GATGATGCCC	AAGCGATAGA	TGATGTTGCT	GGCCAACCTA	5580
10	CATCAATCAC	ATTCAGACTG	ACGCCTAAAT	TTTTAACCAT	CGCTTGTGCT	GCTGGCCCTA	5640
	AATTTTTAAC	TAATAAATCG	ATGACTAAGA	AAATCCCTAC	AAAAGCCACA	CCTATTGTTA	5700
	AACCAGACCT	AAATGCCGCT	CCAATTTTCT	GCCTAAAGAA	TAGGCCAAGC	AAGAATATGA	5760
15	CAACCGGTAA	AATAACAGTt	GCACCTAAAT	CTAAAAATCC	CCTTACAAAA	TCAGTGAAGT	5820
	AACTCATATT	TAAACCCTCC	CTGTTATATA	TGCATTGTCA	CGATACTTTC	CGATTGTGAT	5880
	TACATTTGAC	GTTACAGTCA	TTTCAACGAC	AACCCTTGCT	AAATTCGACT	GCAGTCCTTT	5940
20	TGAATTACAG	tCACTGCGTT	TCTATGTCAT	CAACAATCAT	TTGTCGTGAT	AGTCATTTAT	6000
	ATGCAATTTG	CATATATTAA	TATGTTATCG	ACCCACGTTA	CATATCAATT	CCGTTATTTT	6060
	TGTAACTCTG	TTAAGATTTG	TTGTTTTGTT	TCTTCAATAC	CAATACCAGT	TAAGAAATTA	6120
25	CGTGCGTTGA	TAACTGGGAA	TTTATATTCT	TTTTTTGTCA	TTGCAGTTGT	AACTAATAAA	6180
	TCTGCAGTGT	CTTCATAAGG	TCCAACTTCT	GTAATTTTGA	TTTGTTTAAT	ATCTACTTTA	6240
30	ATATTGTGTT	CCTTTGCCAT	TTCTTCAATT	GCATTATTTA	CTACTGTTGA	CGTTGCAATA	6300
	CCTGCACCAC	ACGCTACTAA	TACTTGTTTC	ATTTTCAATT	CCTCCAATTA	ATTTTTAGTT	6360
	ATATTCCAAA	TAATCATTGA	TTAGTGTTGC	TAAAATTGTT	TCATCTTTCG	TTCGTAGAAT	6420
35	CTGCTCCAAT	TTTTCTTCAC	TTTGAAAAAT	TTGCATCAAC	TGTTGTAACA	GCTTAAGTTG	6480
	ATCATCTACT	TTATCCATTG	CTAACATAAA	AACGATTTTC	ACTTCTGTCT	GTTGATCAAG	6540
	TGTTCCCATT	TCAATAAACG	GCACTTCTTT	TTCTAGAACA	GCCACACCTA	TCGTTCTATG	6600
10	GTTAATATGT	TCGACATCTG	TATGCGGTAT	AGCGACCGAA	CATAGATGCG	TTGGTAAACC	6660
	AGTAGCAAAT	TCTTTTTCTC	TGTCGATGAC	TGCATCTTTA	AACGTTGACT	TCACGAACCC	6720
	ATTTTGAAAT	AACACATCTG	ACATTTGTGA	CAATACGGAT	TCTTTATCAG	TTGCCGACAA	6780
15	ATTGAGCATT	ATATTTTCTT	TATGCACTAA	TTGCTGTCCC	ATCCATTTTC	CCTCGCTTCT	6840
	TTATTTGAAT	AATTTTTTAA	AATCTCATTT	ACATCAGAAT	TTTTGCGACT	TTGTATGATG	6900
50	CGCTTAATTG	CGTCATTGTC	TTGCGCCACA	TCTCTCAATT	GTAGTAACGC	TCTTAAGTGT	6960
,,,	GTCACTTTAT	CAACAGCAGC	AATAGGTACA	ATAATATGGA	TTGCTGTGCC	ATCTGACATG	7020
	TATATTGGTT	CTTGTAATAT	CAACATACTC	ATCGCTGTTT	TATGTACATG	CTTTTCAGAG	7080

	TGCATCTCAT	GAATATATTT	AATATCAATA	AAATGATTAG	CAACTAACAC	ATCACTTGCT	7200
c.	TTAGCAATAG	CTTCATCAAT	ATTTTCAACA	TGATGCATTC	TTTTCACGTG	CCTTGCCGGT	7260
5	ATCAAGTCAG	CTAAATCTAA	TGyCTwATTT	tGTGtGACaA	TCGATCCATT	AATGGTTGAA	7320
	ATTGAATTAT	AATTGGCAAT	AAAATCTTCT	AAACCATCAC	GTAGTCTGTA	ATGTCATTAA	7380
10	CTGTCGTTGT	GCGTTCAATT	AATGCCATTA	ACTTGTTTAT	TTCCTTATCA	ATGTCAGCCG	7440
	ATTCCTTATT	AATGTACTTC	ATCACTTCTT	TACGTAACTT	TCGTTGCTCA	TTTTCAGATA	7500
	AAGCTACTTT	TGTGATAAAT	AATTTTTTAT	GTGTTAGGAC	AAACATTGGT	GAAAAGACGA	7560
15	TGTCATAATC	TAATGTGTAA	TTTTCAAATG	TTCTAAGTGA	AATCGCATCT	AAGAAAATAA	7620
	TTTCTGGAAA	TAAGTTTCGC	AACTCGTATA	ACATCATTTG	TGATACTGAC	GTGCCTTGTG	7680
	TACACACGAT	AATAGCTTTT	ATCTTGCCAT	CGAAGTTTTC	ATCTTGACGT	CTCAAACTAC	7740
20	CTCCGAACAA	CATGGTTAAA	TATGCTATTT	CATTATCAGG	CAACGATTTT	CCGAAATATT	7800
	CAGTTAACGA	TTGACATGAT	TGTTTCACCA	TATGAAATAA	GGATTGATAA	TTTCCTTGTA	7860
	AAGGATTTAT	TAATTCATCA	CGATCCGTTA	AGTTATATTT	AATCCTATAA	AAAGCAGGCG	7920
25	TTAAATGTAA	CAAGAGTTGC	TGTGATAATT	TCTCCTTATC	TTCAATGTTA	ATAAAAGTGA	7980
	TTTGTTCAAA	ATGGTGAATC	ATTTGAGCGA	TGGCCATCGT	TAAATTCGAT	ATGCTATCTG	8040
30	ATTCTTGCAA	ATCAGTCCAT	TGCACACTTG	TTGAAAGTAA	GTGTAATGTC	AAATATAACT	8100
30	TTTCCGCTTC	TGGCAAATCC	GGCTCATGTT	GCGTCATAAT	CTCCGTTGCT	TGATATTCTT	8160
	TCGTATCCCT	CAAATACTGA	TAATTAATAT	TTAATGGATT	CATCACATGA	CCACTTTGAA	8220
35	TTCGTCTACG	AATCACACAA	AGGACATAAG	GCAATGAACT	AAGTGATTTG	TCTATAAAGC	8280
	GACTCTTCAA	AAATTGTTCT	ACCTGTTTGA	TCTTGTCTTT	TTGATATGCG	ATATCTTCGA	8340
	ATGTTAAGTT	GAGCGCCTTT	AAAACTTCAC	TTTTAGTAAT	ATCATGATTC	AACCTTTGAT	8400
40	CAATCAACTT	AATGAAGAAA	CGGCGAACTT	CAAATTCATC	ACCAACAATT	TCATAACCAT	8460
	GTTTTCGAGA	ATACTTAAGT	GACAAACCAT	GATTTTCCAA	TTGCTCTTTC	ACATGATTTA	8520
	TATCGTGAAT	GACAGTATTT	TTACTGACTT	GTAAATCAAT	TGAAAAATGG	TTTAGAGACA	8580
45	TTGCGTTTTC	СТТАСТАААА	AGCATGAGCA	TTAAATAATA	ACGACGTGTT	TCTATGCTAA	8640
	AAATGACATT	GTTGCCGTTT	AACATTTGCT	GCTCCGATAC	ATCTCGCTTG	AATAACGTCA	8700
-	TGATTTCAGA	ACTTACAATA	AAATTTCCTT	GGCTTGTTCT	TTCAAGTTTT	GGATAACCCT	8760
50	CTTGTTCAAG	CCACAAATTG	ATTTTTTGAA	TGCGATATCC	TAGTTGTCTA	CGAGACAAAC	8820
	CAAATATCGA	TTCAAGTTCT	TTACCATGAA	TAGTAGGATT	CAATACAATT	TCTCTCACTA	0207

	ATTGTGATGT						
_		TTTAACAACA	TTTCAATTAT	ATCTATATTT	TTTGTGATTT	TAATCTTTTA	9060
5	AAATAAAGCA	ATTGAAATTT	TTGCATATAT	TTTTGTGTTT	TGTGTTTTTT	TGAAGCATTT	9120
	TTAACATACA	TATCTCAATC	ATTATCAAAT	TGTCATGACC	ATTGTAACCC	AATACAAAAA	9180
10	CCCTAAGGAC	GCTTATATCA	GGCGCCTTAG	GGTTAACTGT	ATCTATTTAA	TTAAGTATTA	9240
	TTATTCGTAT	GTACGTAACT	TATGGTCTAT	CAAGTTCCAC	ACTTCTTCAA	CATCAACTGC	9300
	TGTAGCAAAA	TAAGCATTGG	CAGGCTTACC	TGTAACATGA	TTTAAATCGA	CAGCCATAGT	9360
15	GCCATAAGTT	AGTGGACTTT	GATGTTCAAT	GTCGATATTA	ACGGGTACCA	TTGTAAACAA	9420
	TTCTGGTTGT	AACAAATACA	AAATTGTACA	AGCATCATGT	ATTGGACCAC	CATCCATATT	9480
	AAAGTGAGTC	TTGTATGTCT	TCTTAAAGAA	TTGCAATAAT	TCTACGACGA	ACTGTGCAAC	9540
20	AGGATTATTG	ATACTTTCAA	AGCGTTCAAT	CACGTGATCG	TCGGCTAAAA	CTTGATGTGT	9600
	TACATCTAAA	CCAAACACAT	TTATAGTAAT	CCCACTTTCA	AAAACACGCT	TCGCTGCTTC	9660
	AGCATCTACC	CAAATATTGA	ATTCTGCTGT	AGGCGTCCAA	TTTCCAAATG	TACCACCACC	9720
25	CATCAAAGTA	ATAGATTCAA	TATGCTCAGC	GATTCTTGGC	TCACGAATCA	ATGCCGTTGC	9780
	TACATTCGTA	AGAGGACCTG	TCGCTACAAT	TGTTACAGGT	GTATCACTCG	TCATCACTTT	9840
20	GTTTATAATC	ACATCTGATG	CTGGCATTGC	AACTGCTTGA	CGTGATGGTG	TCGACGGTAG	9900
30	TTTCGGACCA	TCTAATCCAG	ATTCCCCATG	TATTTCAGAA	GCAAAGGCAG	CTGGTTTAAT	9960
	TAACGGCCTA	TCCGCACCTT	TCGCTACTGC	TATATCTTGG	CGTCCCATAA	TATCCAATAC	10020
35	GTTCAAGGCG	TTTGTCGTAT	TCTTGTCAAC	TGATTGATTA	CCTGCGACTG	TTGTTACAGC	10080
	TAATATCTCT	AGTGGACTGT	CAATTGCCCC	CGCTAAAATT	AATGCTATTG	CATCATCGTG	10140
	TCCTGGATCA	CAATCCATAA	TAATCTTTCT	TTTCATTTAT	ATATCCACCT	TTCTTAAGTT	10200
40	GTTATCGATA	GCTTATGTAT	ATTTATTTAT	GTGGTGAATC	ATGTTTATTT	TGAAAAATAG	10260
	TTTTAACTTT	CTCATATTTT	TGGATACAAA	CACTATTTAT	CTATTTTATG	GCTTATAAAT	10320
	TTATCCGATA	TGCCTTATCA	ACCTACCTCG	CTAAAAATAG	GATGTCTACA	TATCTATACC	10380
45	GACTTTTGTC	AACTCATTTT	CACAACAATA	TAAACAGCAA	TTTATATGAT	TGTTACATGA	10440
	TTCAAACAAT	TTTTATGAAA	AATATTTTCA	TACACAGAAT	ATATATTGAT	ATTAAATTTC	10500
	TCAAAAGCTA	TATTGAGAAT	AATTAGGAGG	GATGTTGATG	AAATCTTTAT	TTGAAAAAGC	10560
50	ACAGCAGTTC	GGCAAGTCCT	TTATGTTACC	TATCGCAATC	TTACCAGCTG	CAGGTCTATT	10620
	GTTGGGTATC	GGTGGTGCAT	TAAGTAATCC	AAACACCGTT	AAAGCATACC	CTATTTTAGA	10680

	AAATTTACCG	GTCATCTTTG	CAATTGGTGT	CGCAATCGGA	TTATCTAGAA	GCGATAAAGG	10800
	TACTGCAGGT	tTAGctGCGC	TGCTCGGTTT	CTTAATTATG	AACGCAACTA	TGAATGGCTT	10860
5	ATTAACTATC	ACGGGCACAT	TGGCAAAAGA	TCAGCTTGCA	CAAAATGGAC	AAGGCATGGT	10920
	GCTCGGTATA	CAAACGGTTG	AAACCGGTGT	TTTTGGCGGG	ATTATCACAG	GTATTATGAC	10980
	CGCAATACTT	CACAACAAAT	ATCACAAAGT	GGTATTACCA	CCGTATTTAG	GTTTCTTTGG	11040
10	TGGCTCTAGA	TTTGTCCCTA	TTGTCACAGC	ATTTGCCGCA	ATCTTTTTAG	GTGTATTGAT	11100
	GTTTTTCATT	TGGCCAAGCA	TACAAGCCGG	CATTTATCAT	GTTGGTGGAT	TTGTAACGAA	11160
15	AACAGGTGCC	ATCGGTACTT	TTGTTTATGG	CTTCATCTTA	AGATTGTTAG	GTCCACTCGG	11220
	TTTACACCAT	ATTTTTTACT	TACCGTTTTG	GCAGACGGCA	CTTGGTGGTA	CTTTAGAAGT	11280
	CAAAGGGCAC	TTAGTTCAAG	GTACGCAGAA	CATCTTCTTT	GCTCAACTTG	GTGATCCAGA	11340
20	TGTGACGAAG	TATTATTCAG	GTGTGTCACG	CTTTATGTCA	GGCCGTTTTA	TTACGATGAT	11400
	GTTCGGCTTA	TGTGGTGCCG	CACTTGCAAT	TTATCACACA	GCTAAACCTG	AACATAAAAA	11460
	AGTTGTCGGC	GGTTTAATGT	TATCCGCTGC	ACTCACTTCA	TTTTTAACAG	GTATTACCGA	11520
25	ACCTTTAGAG	TTTAGTTTCT	TGTTTGTCGC	ACCTATTCTT	TATGTAATCC	ATGCCTTCTT	11580
	TGATGGATTA	GCATTTATGA	TGGCAGACAT	TTTCAACATT	ACAATTGGTC	AAACCTTCAG	11640
	TGGAGGCTTT	ATCGATTTCT	TACTCTTTGG	TGTGCTACAA	GGTAATAGTA	AAACAAACTA	11700
30	CCTATACGTC	ATACCTATTG	GAATTGTGTG	GTTCTGTTTG	TATTACATCG	TTTTCAGATT	11760
	CTTAATTACG	AAATTTAATT	TCAAAACACC	TGGTCGAGAA	GATAAAGCTG	CAGCACAACA	11820
<i>35</i>	AGTTGAGGCT	ACTGAAAGAG	CACAAACTAT	TGTTGCTGGT	TTGGGAGGCA	AAGATAACAT	11880
35	TGAAATCGTT	GACTGTTGTG	CAACGAGACT	ACGCGTCACA	CTTCATCAAA	ATGACAAAGT	11940
	CGATAAAGTA	TTACTCGAAA	GTACTGGTGC	CAAAGGTGTA	ATCCAGCAAG	GCACTGGTGT	12000
40	GCAAGTAATT	TATGGGCCTC	ACGTTACAGT	TATCAAAAAT	GAAATTGAAG	AATTGCTCGG	12060
	GGATTAAGAC	TAACCGAAAT	ATCAACAGAA	CTAATGGCAA	CGATGTACGA	AGTAAGAAGT	12120
	GACATCGTTG	CTTTTATTTT	TAATGTTACA	TTTGAAGCAT	TAAGTTCATC	ATGCACTGTA	12180
<b>4</b> 5	GTGAGCCCGC	AAATCGCCTC	TGCTAGACAA	TCATCTTAAT	GCTATGATTA	AAGCTTAAGT	12240
	GCCAGATTTG	AATTTAATTT	CAACAACGAC	TTTCACTACA	TTAAAAATAG	GGCCACTCGA	12300
	CACATATAGT	TGTATCAAAT	AGCCCTTTAT	ACAATTTTT	GGGTAAGGTT	TTACAATTTT	12360
50	TGGGATGGTA	TAGATTTTAT	AAAAAGTTAT	TTAAGTTCTT	CTGCTTCAGC	CATAATATCT	12420
	TTTAATGTTT	TAGCTGAATG	TGCGAACTTG	CTTTGTTCTT	CGTCGTTTAA	TGGGATTTCT	12480

	TCCTCATATT	CGCCTTCTAA	TAATGCTGAT	ACAGTCAATA	CGGCATCTTC	ATTTCTGAAA	12600
5	ATCGCTTCAG	TAATTCTAGC	TAATCCCATT	GCAACACCAT	AATAAGTGGC	ACCTTTAGCT	12660
3	TGAATAATGT	CATATGCTGC	ATCACGTGTT	TGAACAAAAA	TTTGTTCAAT	TTGCGCTTTG	12720
	CCCTCAGGAC	GTTGTTCAAG	TAATGTCTTC	AAAGGTTGAC	CCGCAATATT	AGCGTGTGAC	12780
10	CATACTGGTA	ATTCAGTGTC	ACCATGTTCA	CCAATAATTT	GAGCATCGAC	GCTACGTGGC	12840
	GCAACATCGn	AcgyTcGCTT	AACAATAATC	TAAAGCGTGC	AGAGTCTAAA	ATTGTACCAG	12900
	AACCTATAAC	ACGTTCTTTA	GGTAAACCAG	AGAATTTCCA	TGTTGCATAC	GCTAAAATAT	12960
15	CAACAGGATT	TGTAGCTACC	AAGAAAATAC	CATCAAATTT	TGATGCCATT	ACTTCACCAA	13020
	CAATTGATTT	GAATATTTTC	AAGTTTTTAG	ATACTAAATC	TAAACGTGTT	TCTCCAGGTT	13080
	TTTGTGCAGC	ACCAGCACAG	ATGACAACTA	GATCCGCATC	ATGACAATCA	CTGTATTCGC	13140
20	CAGCTTTCAC	ACGAACTGTT	GTTGGAGAAT	ATGGTGTGGC	ATGTTTTAAA	TCCATAACAT	13200
	CTCCTCGAAC	TTTTTCAGTG	TCTAAATCAA	TGATGACTAA	TTCATCAACA	ATGCTTTGGT	13260
	TCACTAATGA	AAATGCGTAG	CTTGAACCTA	CTGCACCATT	ACCTATTAAT	ACAACTTTGT	13320
25	TCCCTTTAAA	TTTGTTCATT	ACAAAAACTC	CCTTATGATT	AATTCACTAA	CATACATGTA	13380
	GCTTCAAATA	TGTTAGTTTA	ATGCTGCTTA	TTGACGATAC	AAAAGCAAAT	AAACATCTCT	13440
30	TTTATTTTCA	ACGCATAACT	TAAAAGGTCA	TGTGTCATCC	GCTTTTAAGT	TTGTGATTTA	13500
	TTTCACATAT	AAAATGTAAC	ATGCATTAAG	TACTGGGTCA	ATATTAAATT	GTGATTTATT	13560
	TCACATTTTA	TTTTAATTTT	TACACCTTTT	TAATTTGTAT	mCGATTACAT	CTTAGATGTC	13620
35	TTTAGTCTTC	GTACTTCGCC	AGTGATTATT	TACACTTTCA	CATTTTTATT	ATCATGTTTA	13680
	CTTTTTTCTA	GGAAAACAAC	AATGTTTTTT	GAATTAGTCA	AATAAATGCG	CTCAATCGTC	13740
	GGTGTGCAAA	CAGACAATTG	TACACAATGC	TTATTGATAA	GTATTTAAAA	AATTAAAAAT	13800
40	GTCATACAAT	TATCAAATTT	GCCATTTTAT	TTATATTTTC	TCAAACCAAT	TAATTGAATA	13860
	TCGAAATTTT	TAGTAGAATA	ATCAAAATAT	ACAGATTAAA	GGAGGAGTAT	CATGCTTACA	13920
	GAACAAGAGA	AAGACATTAT	CAAACAAACG	GTGCCTTTAC	TTAAAGAGAA	AGGGACAGAA	13980
45	ATTACGTCAA	TCTTTTATCC	AAAAATGTTT	AAAGCGCATC	CTGAACTTTT	AAACATGTTT	14040
	AATCAAACGA	ACCAAAAACG	AGGCATGCAA	TCTTCAGCAT	TAGCACAAGC	TGTAATGGCC	14100
50	GCAGCGGTTA	ATATCGATAA	CTTAAGTGTT	ATTAAACCAG	TCATTATGCC	AGTCGCATAT	14160
50	AAACACTGCG	CACTACAAGT	TTATGCTGAA	CATTATCCAA	TTGTGGGGAA	AAATTTATTA	14220
	AAAGCCATTC	AAGACGTGAC	AGGATTAGAA	GAAAATGACC	CTGTCATTCA	AGCTTGGGCA	14280

#### (2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8779 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

15

20

25

30

35

40

45

50

5

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

GGTATTTTnG	GAnGGGTACC	TAAAGCAATT	CCGGCAAAGG	GTnAATCCAG	GTACCGAAAT	60
GGACTTCCCG	TTATCGATAA	TACCGACATA	TATTGTGACA	AGTAGATTIT	ATGGACATTT	120
AGGCTTACTT	TTACTTGTGA	TAATTGCATG	TATGTTTACT	GGTATTTAtC	Catcaataca	180
TATCATTCAA	TTATTGATAT	ATGTACCGTT	TIGTTTTTTC	TTAACTGCCt	CGGTGACGTT	240
ATTAACATCA	ACACTCGGTG	TGTTAGTTAG	AGATACACAA	ATGTTAATGC	AAGCAATATT	300
AAGAATATTA	TTTTACTTTT	CACCAATTTT	GTGGCTACCA	AAGAACCATG	GTATCAGTGG	360
TTTAATTCAT	GAAATGATGA	AATATAATCC	AGTTTACTTT	ATTGCTGAAT	CATACCGTGC	420
AGCAATTTTA	TATCACGAAT	GGTATTTCAT	GGATCATTGG	AAATTAATGT	TATACAATTT	480
CGGTATTGTT	GCCATTTTCT	TTGCAATTGG	TGCGTACTTA	CACATGAAAT	ATAGAGATCA	540
ATTTGCAGAC	TTCTTGTAAT	ATATTTATAT	GACGAAACCC	CGCTAACCAT	TAATAAATGG	600
AAGTGGGGTT	CATTTTTGTT	TATAATTTAA	GTAAATAACA	TATTAAGTTG	GTGTATTATG	660
AACGTTTTAA	TAAAGAAATT	TTATCATTTG	GTAGTTCGAA	TACTTTCTAA	AATGATTACG	720
CCTCAAGTGA	TTGATAAACC	GCATATCGTA	TTTATGATGA	CTTTTCCAGA	AGATATTAAG	780
CCTATCATCA	AAGCATTAAA	TAATTCGTCG	TATCAGAAAA	CTGTTTTAAC	AACACCAAAA	840
CAAGCGCCTT	ATTTATCTGA	ACTTAGCGAC	GATGTTGATG	TGATAGAAAT	GACTAATCGA	900
ACATTGGTAA	AACAAATTAA	GGCTTTGAAA	AGCGCGCAGA	TGATTATTAT	CGATAATTAT	960
TACCTATTGC	TAGGTGGATA	TAATAAGACT	TCTAATCAAC	ACATTGTTCA	AACGTGGCAT	1020
GCAAGTGGTG	CATTAAAAAA	CTTTGGCTTA	ACAGATCATC	AAGTCGATGT	GTCTGACAAG	1080
GCAATGGTTC	AGCAGTACCG	TAAAGTTTAT	CAAGCGACGG	ATTTTTACTT	AGTGGGTTGT	1140
GAACAAATGT	CACAATGTTT	TAAACAGTCT	TTAGGTGCAA	CAGAAGAGCA	AATGCTGTAT	1200
TTTGGGCTTC	CGAGAATTAA	TAAATATTAC	ACAGCTGATA	GAGCAACGGT	TAAGGCAGAG	1260
TTAAAGGATA	AATATGGAAT	TACAAATAAG	TTGGTATTAT	ATGTACCAAC	ATATAGAGAA	1320
GATAAAGCAG	ATAATAGGGC	TATTGATAAA	ئىسلىسلىسىنىكا)،	μγγγαπατ <del>ιαια</del>	מת מתרבים ברים מ	

	ATCGACACGT	CTACATTAAT	GCTAATGTCA	GATATAATTA	TTAGCGACTA	TAGTTCGCTG	1500
	CCAATAGAAG	CTAGCTTGTT	AGATATTCCA	ACTATATTTT	ATGTGTATGA	TGAAGGAACA	1560
5	TATGATCAGG	TGAGAGGCCT	GAATCAATTT	TACAAAGCAA	TACCGGATAG	CTACAAAGTG	1620
	TATACTGAAG	AAGATTTAAT	AATGACGATA	CAAGAAAAAG	AACATCTATT	AAGTCCGTTA	1680
	TTTAAAGATT	GGCATAAGTA	TAATACTGAT	AAAAGTTTAC	ATCAGCTCAC	AGAATATATA	1740
10	GATAAGATGG	TGACAAAATG	AGGTTTACGA	TAATCATACC	TACATGTAAT	AATGAGGCAA	1800
	CAATTCGACA	ATTGTTAATA	TCTATTGAGA	GTAAAGAACA	CTATAGAATC	CTTTGTATTG	1860
15	ATGGTGGTTC	TACTGATCAA	ACAATTCCTA	TGATTGAACG	GTTACAAAGA	GAACTCAAGC	1920
	ATATTTCATT	AATACAATTA	CAAAATGCTT	CGATAGCTAC	GTGTATTAAT	AAAGGTTTGA	1980
	TGGATATCAA	AATGACAGAT	CCACATGATA	GTGACGCATT	TATGGTCATA	AAACCAACAT	204
20	CAATCGTATT	GCCAGGTAAA	TTAGATAGGT	TAACTGCTGC	TTTCAAAAAT	AATGATAATA	2100
	TTGATATGGT	AATAGGGCAG	CGAGCTTACA	ATTACCATGG	TGAATGGAAA	TTGAAAAGTG	2160
	CTGATGAGTT	TATTAAAGAC	AATCGAATCG	TTACATTAAC	GGAACAACCA	GATTTGTTAT	222
25	CAATGATGTC	TTTTGACGGA	AAGTTATTCA	GTGCTAAATT	TGCTGAATTA	CAGTGTGaCG	2280
	AAACTTTAGC	TAACaCATAC	AATCACGCAA	TACTTGTCAA	GGCGATGCAA	AAAGCTACGG	2340
	ATATACATTT	AGTTTCACAG	ATGATTGTCG	GAGATAACGA	TATAGATACA	CATGCTACAA	2400
30	GTAACGATGA	AGATTTTAAT	AGATATATCA	CAGAAATTAT	GAAAATAAGA	CAACGAGTCA	246
	TGGAAATGTT	ACTATTACCT	GAACAAAGGC	TATTATATAG	TGATATGGTT	GATCGTATTT	2520
	TATTCAATAA	TTCATTAAAA	TATTATATGA	ACGAACACCC	AGCAGTAACG	CACACGACAA	2580
35	TTCAACTCGT	AAAAGACTAT	ATTATGTCTA	TGCAGCATTC	TGATTATGTA	TCGCAAAACA	264
	TGTTTGACAT	TATAAATACA	GTTGAATTTA	TTGGTGAGAA	TTGGGATAGA	GAAATATACG	270
40	AATTGTGGCG	ACAAACATTA	ATTCAAGTGG	GCATTAATAG	GCCGACTTAT	AAAAAATTCT	276
	TGATACAACT	TAAAGGGAGA	AAGTTTGCAC	ATCGAACAAA	ATCAATGTTA	AAACGATAAC	282
	GTGTACATTG	ATGACCATAA	ACTGCAATCC	TATGATGTGA	CAATATGAGG	AGGATAACTT	288
45	AATGAAACGT	GTAATAACAT	ATGGCACATA	TGACTTACTT	CACTATGGTC	ATATCGAATT	294
	GCTTCGTCGT	GCAAGAGAGA	TGGGCGATTA	TTTAATAGTA	GCATTATCAA	CAGATGAATT	3000
	TAATCAAATT	AAACATAAAA	AATCTTATTA	TGATTATGAA	CAACGAAAAA	TGATGCTTGa	306
50	ATCAATACGC	TATGTCGATT	TAGTCATTCC	AGAAAAGGC	TGGGGACAAA	AAGAAGACGA	312
	TGTCGAAAAA	TTTGATGTAG	ATGTTTTTGT	TATGGGACAT	GACTGGGAAG	GTGAATTCGA	318

	TAAAATCAAA	CAAGAATTAT	ATGGTAAAGA	TGCTAAATAA	ATTATATAGA	ACTATCGATA	3300
	CTAAACGATA	AATTAACTTA	GGTTATTATA	AAATAAATAT	AAAACGGACA	AGTTTCGCAG	3360
5	CTTTATAATG	TGCAACTTGT	CCGTTTTTAG	TATGTTTTAT	TTTCTTTTTC	TAAATAAACG	3420
	ATTGATTATC	ATATGAACAA	TAAGTGCTAA	TCCAGCGACA	AGGCATGTAC	CACCAATGAT	3480
	AGTGAATAAT	GGATGTTCTT	CCCACATACT	TTTAGCAACA	GTATTTGCCT	TTTGAATAAT	3540
10	TGGCTGATGA	ACTTCTACAG	TTGGAGGTCC	ATAATCTTTA	TTAATAAATT	CTCTTGGATA	3600
	GTCCGCGTGT	ACTTTACCAT	CTTCGACTAC	AAGTTTATAA	TCTTTTTTAC	TAAAATCACT	3660
15	TGGTAAAACA	TCGTAAAGAT	CATTTTCAAC	ATAATATTTC	TTACCATTTA	TCCTTTGCTC	3720
15	ACCTTTAGAC	AATATTTTTA	CATATTTATA	CTGATCAAAT	GAGCGTTCCA	TTAATGCATT	3780
	CCCCATCATA	TTACGTTGCT	TCTCGCCACC	AAGGTTTTTA	TAGTCTCCTG	CACCCATGAT	3840
20	AACTTGATTA	ATTCTAAATT	TACCTCGTTT	GGTAGTAATC	GTATGGTTGT	AATTTGCTGT	3900
	ATCACTTGAT	CCAGTTTTTA	AACCATCTGT	ACCCGGCAAA	CTCATTTTTG	CACCTTCCAA	3960
	TGAAAAGTTG	AATGTGTAAT	ACGTAACTGC	ATGCGTTGTT	GGTGCTAACT	GCTTTGTAAA	4020
25	GTCTAATATT	TTAGGTGTCT	CTTTAATCAC	GTGTAAATCT	AAAATGGCAT	AGTCTCTAGC	4080
	AGTCGTTACA	GTACGTTCTT	GGTCTTTATA	CTTTGTTGGT	GCAAATGTAC	GTAATCTTGA	4140
	ATTTTCAGCA	CCCGTTGGAT	TGACGAAATG	TGTATTTTTC	ATTCCGATAG	CTTTAGCTTT	4200
30	GTTATTCATT	AAATCAACGA	AATCGCTGGT	GTTTTTTGAA	ACCTTCTTAG	СТААААТТАА	4260
	TGCCGCGGCA	TTACTAGAAT	TAGATACTGT	AATTTGTAAT	AGGTCTGCGA	TTGTCCATAC	4320
	TTGTCCAGGA	TATAGTTTCG	TATTACTCAA	CTCAGGTAGT	GTAGACATAA	TATATTCTTT	4380
35	GTTCGTCATT	GTGACTGTGT	CATCAAGTGA	AAGCTGCCCC	TTATTTACAG	CTTCCAATGT	4440
	TAAGTACATT	GTCATTAATT	TAGTCATAGA	CGCTGGAtTC	CACTTAGTAT	CGATATTGTA	4500
40	TTGATACAGT	AATTGTCCAG	TTTGACTTAC	ATTAACAGCA	CTCGTCGGTT	CGTATGCAGC	4560
40	CGACAAACCT	GCATAACCAT	ATTGATTTGC	TGCTTGTACA	GGGGTTACGT	CACTGTTAGT	4620
	AGCTTGTGCA	TATGGTGTCA	TAATACTTAA	TGTTAAACAT	AAAATGATGA	TAATAGATAT	4680
<b>4</b> 5	TAAATTTTTC	ATAAAGCGTT	AATCTTCCCT	TTTCCAATTC	TTAAATATTC	CCTAAAAGCA	4740
	ATGGTTATTC	CTACTTACGG	AAATCATTGC	TAATTCACTT	CACCTTAATT	AAATTGTTGA	4800
	AAATAAAGTT	TTCTGCAGTT	AATTTGAAAA	ATAATGCAAA	TATATTACGT	GTGTAGCTAA	4860
50	AGGTGTTATA	ATGTTTGTAC	GAAGAGCAAA	CTTACTCAAA	AGCGATTAAT	TTTCATGTTT	4920
	ТААТАТАААС	ACTTTGAGAA	СТТАТТАСАА	ΔΔΔΑΤΩΛΔΑΤ	асааататт <i>с</i>	<b>ፐስፐርስጥስጥ</b> ል እ	4990

	AAGTATATGA	TAGAAATGCA	TGTATCTATC	TAAATGAATT	AACTATAAAT	TTCAAACAGA	5100
	AGAGGTAAAA	CTATGAAACG	AGAAAATCCA	TTGTTTTTCT	TATTTAAAAA	ACTATCATGG	5160
5	CCAGTGGGTC	TTATCGTTGC	AGCTATCACT	ATTTCATCAC	TAGGGAGCTT	AAGTGGACTA	5220
	TTAGTGCCAC	TGTTTACTGG	ACGAATTGTA	GATAAATTTT	CCgTGAGCCA	TATCAATTGG	5280
10	AATCLAATCG	CATTATTTGG	TGGTATCTTT	GTCATCAATG	CTTTATTAAG	CGGATTAGGT	5340
10	TTATATTTAT	TAAGTAAAAT	TGGTGAAAAG	ATTATTTATG	CGATACGCTC	AGTTTTATGG	5400
	GAGCATATCA	TACAATTAAA	AATGCCATTC	TTTGACAAAA	ATGAAAGTGG	TCAATTAATG	5460
15	AGTCGATTAA	CTGACGATAC	GAAAGTGATA	AATGAATTTA	TTTCACAAAA	GCTACCTMAC	5520
	TTATTACCAT	CAATCGTTAC	ATTAGTTGGG	TCACTAATCA	TGTTATTTAT	TTTAGATTGG	5580
	AAAATGACAT	TATTAACATT	TATAACGATA	CCGATATTCG	TTTTAATTAT	GATTCCTCTA	5640
20	GGTCGTATTA	TGCAAAAGAT	ATCGACAAGT	ACACAATCTG	AAATTGCAAA	CTTCAGTGGT	5700
	TTGTTAGGGC	GTGTCCTAAC	TGAAATGCGT	CTTGTTAAAA	TATCAAATAC	AGAGCGTCTT	5760
	GAATTAGATA	ATGCACATAA	AAATTTGAAT	GAAATATATA	AATTAGGTTT	AAAACAGGCT	5820
25	AAAATTGCGG	CAGTTGTACA	ACCAATTTCA	GGTATAGTTA	TGTTGCTAAC	AATTGCAATT	5880
	ATTTTAGGTT	TTGGTGCATT	AGAAATTGCG	ACTGGTGCAA	TCACTGCAGG	TACATTAATT	5940
	GCAATGATAT	TTTATGTTAT	TCAGTTATCT	ATGCCTTTAA	TCAATCTTTC	CACGTTAGTT	6000
30	ACAGATTATA	AAAAGGCAGT	CGGTGCAAGT	AGTAGAATAT	ACGAAATCAT	GCAAGAACCT	6060
	ATTGAACCGA	CAGAAGCTCT	TGAAGATTCT	GAAAATGTAT	TAATTGATGA	CGGTGTATTG	6120
35	TCATTTGAAC	ATGTAGACTT	TAAATATGAT	GTGAAGAAAA	TATTAGATGA	TGTGTCGTTC	6180
33	CAAATCCCAC	AAGGTCAAGT	GAGTGCTTTT	GTAGGCCCTT	CTGGGTCTGG	TAAAAGTACG	6240
	ATATTTAATC	TGATAGAACG	TATGTATGAA	ATTGAGTCAG	GTGATATTAA	ATATGGCCTT	6300
40	GAAAGTGTCT	ATGATATCCC	GTTATCTAAG	TGGCGACGCA	AAATTGGATA	TGTTATGCAA	6360
	TCAAATTCGA	TGATGAGTGG	TACAATTAGA	GACAATATTT	TATACGGAAT	TAATCGTCAT	6420
	GTTTCAGATG	AAGAACTTAT	TAATTATGCT	AAATTAGCGA	ACTGTCATGA	TTTTATCATG	6480
45	CAATTTGATG	AAGGATATGA	CACGCTTGTA	GGTGAACGAG	GATTGAAACT	GTCTGGCGGA	6540
	CAACGTCAAC	GTATTGATAT	TGCTAGAAGT	TTTGTTAAAA	ATCCTGATAT	TTTGTTACTT	6600
	GATGAAGCAA	CAGCTAATCT	CGATAGTGAA	AGTGAATTGA	AAATTCAAGA	AGCTTTAGAA	6660
50	ACATTGATGG	AAGGTAGAAC	AACGATTGTC	ATTGCGCATC	GTTTGTCTAC	AATTAAAAAA	6720
	GCCGGTCAAA	TTATATTCTT	AGACAAAGGA	CAGGTAACAG	GTAAAGGTAC	GCATTCAGAA	6780

	IIIIAIAIAI	ATAAGTAAGC	TIGGAGCAAA	TACACATATA	CCATCGAGGA	AATTAAAGTG	6900
	TGGCACATTG	ATGGATATAG	ATGTTAATAA	ATTGCTTCAA	GCTTTTGTCT	ATTTTAAATC	6960
5	ATTTGAGAAG	TTACGACATA	ATAATTCTTA	AATTAATGAA	ATCGATATTT	TAAGAAAAA	7020
	ATGCTCATGG	TATAATACAA	GTTATAAGCA	AACATACATA	TATTAAATAC	TGTAGCCACG	7080
	AGTCATAATT	CTTCATATTT	TACATAGCAA	TTTAACTGAT	TTTAGAGTCC	ACGGTACAGA	7140
10	AGTTTGATAT	TTCAATGTTT	CTAAATTTTT	AAAAAATTAA	ATCATAGGTG	GGTGCCAAAT	7200
	GTTTTTATTA	ATCAACATTA	TTGGTCTAAT	TGTATTTCTT	GGTATTGCGG	TATTATTTTC	7260
	AAGAGATCGC	AAAAATATCC	AATGGCAATC	AATTGGGATC	TTAGTTGTTT	TAAACCTGTT	7320
15	TTTAGCATGG	TTCTTTATTT	ATTTTGATTG	GGGTCAAAAA	GCAGTAAGAG	GAGCAGCCAA	7380
	TGGTATCGCT	TGGGTAGTTC	AGTCAGCGCA	TGCTGGTACA	GGTTTTGCAT	TTGCAAGTTT	7440
20	GACAAATGTT	AAAATGATGG	ATATGGCTGT	TGCAGCCTTA	TTCCCAATAT	TATTAATAGT	7500
	GCCATTATTT	GATATCTTAA	TGTACITTAA	TATTTTACCG	AAAATTATTG	GAGGTATTGG	7560
	TTGGTTACTA	GCTAAAGTAA	CAAGACAACC	TAAATTCGAG	TCATTCTTTG	GGATAGAAAT	7620
25	GATGTTCTTA	GGAAATACTG	AAGCATTAGC	CGTATCAAGT	GAGCAACTAA	AACGTATGAA	7680
	TGAAATGCGT	GTATTAACAA	TCGCAATGAT	GTCAATGAGC	TCTGTATCGG	GAGCTATTGT	7740
	AGGTGCGTAT	GTACAAATGG	TACCAGGAGA	ACTGGTACTA	ACGGCAATTC	CACTAAATAT	7800
30	CGTTAACGCG	ATTATTGTGT	CATGCTTGTT	GAATCCAGTA	AGTGTTGAAG	AGAAAGAAGA	7860
	TATTATTTAC	AGTCTTAAAA	ACAATGAAGT	TGAACGTCAA	CCATTCTTCT	CATTCCTTGG	7920
	AGATTCTGTA	TTAGCAGCAG	GTAAATTAGT	ATTAATCATC	ATCGCATTTG	TTATTAGTTT	7980
35	TGTAGCGTTA	GCTGATCTAT	TTGATCGTTT	TATCAATTTG	ATTACAGGAT	TGATAGCAGG	8040
	ATGGATAGGC	ATAAAAGGTA	GTTTCGGTTT	AAACCAAATT	TTAGGTGTGT	TTATGTATCC	8100
40	ATTTGCGCTA	TTACTCGGTT	TACCTTATGA	TGAAGCGTGG	TTGGTAGCAC	AACAAATGGC	8160
40	TAAGAAAATT	GTTACAAATG	AATTTGTTGT	TATGGGTGAA	ATTTCTAAAG	ATATTGCATC	8220
	TTATACACCA	CACCATCGTG	CGGTTATTAC	AACATTCTTA	ATTTCATTTG	CAAACTTCTC	8280
<b>4</b> 5	AACGATTGGT	ATGATTATCG	GTACATTGAA	AGGCATTGTT	GATAAAAAGA	CATCAGACTT	8340
	TGTATCTAAA	TATGTACCTA	TGATGCTATT	ATCAGGTATC	CTAGTTTCAT	TATTAACAGC	8400
	AGCTTTCGTT	GGTTTATTTG	CATGGTAATA	TGTCGAAGAG	TGACTATGAT	AATACATTTT	8460
50	аастаатааа	TATGTCCAGG	CATGTCGTCT	ATTGATATAG	GTGAGATGCT	TGGACTTTTT	8520
	TATTATTGAT	ATAAAGGTAT	nTAAATATTT	TTAAAGTTAC	CGAAATTGAA	GCATTATAAA	8580

GACAGTAAGG ACTAGGTACA GTCATAGTAC TTCGAGCAAA ATTTGTTTTG TTATTATAAA	8700
CAACACAAAG GAGATAACTT CTCTANTGAA GAAGTTAAAA ACATTATAGC AGACAATGAA	8760
ATGAAAGTAA ATTAAAAAT	8779
(2) INFORMATION FOR SEQ ID NO: 59:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 31096 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
GTTGCAGTAG TCAAAGAATT AAACAAGGTG AAGGCGTGTA GCTTGCACAC CCGAAAATGT	60
GCGTAAGTTA aCGGATGCAG GACATAAAGT AATTGTTGAA AAAAATGCTG GCATTGGTTC	120
AGGATTTTCT AACGATATGT ATGAAAAAGA AGGCGCTAAG ATCGTAACTC ACGAACAAGC	180
ATGGGAAGCT GATCTTGTTA TCAAAGTAAA AGAACCTCAT GAAAGCGAAT ATCAATATTT	240
CAAAAAGAAT CAAATTATCT GGGGATTTTT ACATCTAGCA TCTTCAAAAG AAATAGTAGA	300
AAAAATGCAA GAAGTTGGTG TAACTGCGAT TAGTGGTGAA ACCATTATAA AAAATGGAAA	360
AGCAGAATTA TTAGCGCCAA TGAGTGCTAT AGCAGGTCAA CGCTCAGCAA TTATGGGAGC	420
TTACTACTCT GAAGCACAAC ATGGTGGTCA AGGTACTTTA GTGACTGGTG TACATGAAAA	480
TGTGGATATA CCTGGTAGTA CATATGTGAT TTTCGGTGGT GGAGTAGCAG CAACAAATGC	540
AGCAAATGTT GCCTTGGGAC TAAATGCTAA AGTAATCATT ATCGAGTTAA ACGATGACCG	600
CATTAAATAT CTTGAAGATA TGTATGCAGA AAAAGATGTC ACAGTAGTCA AATCAACACC	660
AGAAAATTTA GCAGAACAAA TTAAGAAAGC AGATGTATTT ATTTCTACAA TTTTAATTTC	720
AGGTGCGAAA CCGCCAAAAT TGGTTACTCG TGAGATGGTT AAATCAATGA AAAAAGGTTC	780
AGTATTAATC GATATAGCTA TTGACCAAGG TGGAACTATT GAAACAATTA GACCAACTAC	840
AATTTCTGAT CCAGTGTATG AAGAAGAAGG TGTGATTCAT TATGGTGTAC CAAATCAACC	900
AGGAGCAGTC CCAAGAACTT CAACAATGGC ATTAGCACAA GGAAATATTG ATTATATTT	960
AGAAATTTGT GACAAAGGCT TAGAACAAGC AATTAAAGAT AATGAAGCCT TAAGTACTGG	1020
TGTAAACATT TACCAAGGAC AAGTGACAAA TCAAGGATTA GCTTCATCAC ATGACCTAGA	1080
TTATAAAGAA ATATTAAATG TTATCGAATA GATAGTAATT TAAATGAAAT TGAGTGAAAT	1140
GAATATTTTA AATATAGCAT TATAGTTTGG ACTAAAAATT TACAAAACGG AAGGATGTAA	1200

	TCGAAGAAGC	TAAAGCAAGC	ATTAAACCAT	TTATTCGTCG	AACACCTCTA	ATTAAATCAA	1320
	TGTATTTAAG	CCAAAGTATA	ACTAAAGGGA	ATGTATTTCT	AAAATTAGAA	AATATGCAAT	1380
5	TCACAGGATC	TTTTAAATTT	AGAGGCGCTA	gCAATnAAAA	TTAATCACTT	AACAGATGAA	1440
	CAAAAAGAAA	AAGGCATTAT	CGCAGCATCT	GCTGGGGAAC	CATGCACAAG	GTGTTGCTTT	1500
	AACAGCTAAA	TTATTAGGCA	TTGATGCAAC	GATTGTAATG	CCTGAAACAG	CACCACAAGC	1560
10	GAAACAACAA	GCAACAAAAG	GCTATGGGGC	AAAGGTTATT	TTAAAAGGTA	AAAACTTTAA	1620
	CGAAACTAGA	CTTTATATGG	AAGAATTAGC	GAAAGAAAAT	GGCATGACAA	TCGTTCATCC	1680
15	ATATGACGAT	AAGTTTGTAA	TGGCAGGCCA	AGGAACAATT	GGTTTAGAAA	TTTTAGATGA	1740
15	TATTTGGAAT	GTGAATACAG	TCATCGTACC	AGTTGGCGGT	GGAGGATTAA	TTGCAGGTAT	1800
	TGCCACCGCA	TTAAAATCAT	TTAACCCTTC	AATTCATATT	ATCGGTGTTC	AATCTGAGAA	1860
20	TGTTCATGGT	ATGGCTGAGT	CTTTCTATAA	GAGAGATTTA	ACTGAACATC	GAGTGGATAG	1920
	CACAATAGCA	GATGGTTGTG	ATGTAAAAGT	TCCTGGTGAA	CAAACATATG	AAGTAGTTAA	1980
	ACATTTAGTA	GATGAATTTA	TTCTTGTTAC	TGAAGAAGAA	ATTGAACATG	CTATGAAAGA	2040
25	TTTAATGCAG	CGTGCCAAAA	TTATTACTGA	AGGTGCAGGC	GCATTACCAA	CAGCTGCAAT	2100
	TTTAAGTGGA	AAAATAAACA	ATAAATGGCT	TGAAGATAAA	AATGTTGTTG	CATTAGTTTC	2160
	AGGCGGGAAT	GTTGACTTAA	CTAGAGTTTC	AGGTGTCATT	GAACATGGAC	TGAATATTGC	2220
30	AGATACAAGC	AAGGGTGTGG	TAGGTTAAAA	CATTTAATCT	TAAAAATGAG	GTGTAATTAT	2280
	GTCAAATGGT	AAAGAATTAC	AAAAAATAT	AGGTTTCTTC	TCAGCGTTTG	CTATTGTTAT	2340
	GGGGACAGTT	ATTGGTTCAG	GAGTATTCTT	TAAAATATCA	AACGTAACAG	AAGTAACAGG	2400
35	AACAGCAGGA	ATGGCCTTGT	TTGTATGGTT	CCTAGGCGGC	ATCATTACCA	TTTGTGCGGG	2460
	GTTĄÃCAGCA	GCAGAACTTG	CTGCTGCAAT	CCCTGAAACA	GGTGGCTTAA	CGAAGTATAT	2520
40	AGAATATACA	TACGGTGATT	TCTGGGGCTT	CCTATCAGGT	TGGGCGCAAT	CATTTATTTA	2580
40	TTTTCCAGCT	AACGTAGCAG	CATTGTCTAT	CGTATTTGCG	ACACAGCTAA	TTATTTATT	2640
	CCATTTATCT	ATAGGTTCGT	TAATACCAAT	AGCAATCGCA	TCTGCGTTAT	CTATTGTGTT	2700
45	GATAAATTTC	CTAGGTTCAA	AAGCAGGCGG	AATTTTACAA	TCAGTTACTT	TAGTAATTAA	2760
	ACTGATTCCA	ATCATCGTTA	TTGTAATTTT	TGGTATTTTT	CAATCTGGAG	ATATCACTTT	2820
	TTCATTAATT	CCAACTACAG	GTAATTCaGG	AAATGGCTTC	TTTACAGCAA	TTGGTAGTGG	2880
50	TTTATTAGCA	ACTATGTTTG	CATATGATGG	TTGGATTCAT	GTAGGAAATG	TTGCGGGGGA	2940
	ACTTAAAAAT	CCTAAACGCG	ATTTACCTTT	AGCGATTTCA	GTTGGTATCG	GTTGTATTAT	3000

	TGGTAATTTA	AATGCAGCTT	CAGATACATC	AAAAATATTA	TTTGGTGAAA	ATGGCGGTAA	3120
	GATTATTACA	ATCGGTATAT	TAATTTCTGT	TTATGGTACG	ATCAATGGCT	ATACTATGAC	3180
5	TGGTATGCGC	GTACCATATG	CAATGGCTGA	AAGAAAATTA	TTGCCATTTA	GCCATTTATT	3240
	CGCAAAATTA	ACAAAATCTG	GCGCACCATG	GTTTGGCGCA	ATTATACAAC	TTATAATCGC	3300
	TATCATCATG	ATGTCAATGG	GAGCATTTGA	TACAATTACA	AATATGTTAA	TCTTTGTTAT	3360
10	TTGGTTGTTC	TATTGTATGT	CATTTGTTGC	GGTAATAATT	TTAAGAAAAC	GTGAACCAAA	3420
	TATGGAACGA	CCATATAAAG	TACCGTTATA	TCCGATCATA	CCTTTAATTG	CTATTTTGGC	3480
15	AGGATCATTT	GTATTAATTA	ATACACTGTT	TACACAATTT	ATATTAGCAA	TCATTGGAAT	3540
	TCTAATAACA	GCACTTGGTA	TACCAGTTTA	TTACTATAAA	AAGAAACAAA	AAGCAGCATA	3600
	AGGTAAGATA	ACTAGCATTG	AGAATAAATG	GATGGACTAC	TAATAAATTT	AAAGTTTTAC	3660
20	ACATTAAAAT	CAAAAACCAT	TCAATTATTC	TATGGAACAG	ACAAATTTCT	GTTATGGAAT	3720
	TTGTCTGTTT	TTCAAAAGTA	TAGGGAGGCA	AATAGAGATG	GAAAAGCCGT	CAAGAGAGGC	3780
	ATTTGAAGGC	AATAATAAGT	TGTTAATAGG	AATTGTTCTA	AGTGTAATAA	CGTTTTGGCT	3840
25	ATTTGCACAA	TCATTGGTTA	ATGTTGTACC	AATACTTGAA	GATAGTTTCA	ATACAGATAT	3900
	TGGAACGGTT	AATATCGCCG	TTAGTATAAC	TGCTTTATTT	TCAGGAATGT	TTGTAGTAGG	3960
	AGCAGGTGGT	CTTGCTGATA	AATATGGCAG	AATTAAACTC	ACGAACATTG	GTATTATCTT	4020
30	AAATATATTA	GGTTCATTAT	TAATCATTAT	TTCAAATATT	CCTTTATTAC	TTATTATAGG	4080
	AAGATTAATT	CAAGGACTTT	CAGCAGCATG	TATTATGCCT	GCAACTTTGT	CTATTATTAA	4140
25	GTCATATTAC	ATTGGGAAAG	ATAGACAACG	CGCTTTAAGT	TATTGGTCAA	TTGGCTCATG	4200
35	GGGCGGCTCT	GGTGTTTGTT	CATTTTTTGG	AGGTGCAGTT	GCAACGCTTT	TAGGTTGGCG	4260
	TTGGATTTTC	ATCCTATCAA	TTATAATTTC	ATTAATTGCA	CTGTTTCTTA	TTAAAGGCAC	4320
40	ACCTGAAACT	AAATCTAAAT	CGATTTCTCT	AAATAAATTT	GACATTAAAG	GTCTGGTTCT	4380
	TTTAGTCATT	ATGCTCCTCA	GTTTAAATAT	TTTAATTACT	AAAGGATCAG	AATTAGGTGT	4440
	AACCTCACTT	CTTTTTATTA	CTTTATTAGC	TATTGCAATT	GGATCTTTTA	GTTTATTTAT	4500
45	AGTTCTTGAA	AAGCGTGCTA	CAAATCCTTT	AATCGATTTT	AAATTATTTA	AAAATAAAGC	4560
	TTACACAGGT	GCAACAGCTT	CAAACTTTTT	GTTAAATGGT	GTTGCAGGAA	CATTAATAGT	4620
	AGCCAACACA	TTTGTTCAAA	GAGGTTTAGG	ATATTCTTCA	TTGCAAGCAG	GAAGTTTATC	4680
50	AATCACTTAT	TTAGTAATGG	TACTAATTAT	GATTCGTGTT	GGTGAAAAGT	TACTTCAAAC	4740
	ACTCGGATGC	AAGAAACCAA	TGTTAATTGG	AACAGGAGTT	CTTATTGTCG	GAGAATGTCT	4800

	ATTCTTTGGT	TTAGGACTAG	GGATATATGC	TACACCATCA	ACAGATACAG	CAATTGCAAA	4920
	TGCACCGTTA	GAAAAAGTAG	GCGTTGCTGC	AGGTATCTAT	AAAATGGCTT	CTGCATTAGG	4980
5	TGGAGCATTT	GGCGTCGCAT	TGAGTGGTGC	AGTATATGCA	ATCGTATCAA	ATATGaCAAA	5040
	CATTTATACA	GGTGcAATGa	TTGnCATTAT	GGTTaAATGC	AGGTATGGGa	ATATTATCAT	5100
_	TCGTTATCAT	TTTGtTACTT	GTGCCTAAAC	mAAACGACAC	TCAATTATGA	TAATTGAGAA	5160
10	TTAAATTGAA	ATCATACAAG	TCGCTACAAT	ATTAAACAAA	AATATAAACC	GATTCTTATG	5220
	TGTCATTATT	TTAAATGAAC	ATAGGGATTG	GTTTTTTATT	ACTCTTTTAC	GCTACTTTAT	5280
15	TTATAATTAT	TATAAATTGT	CACAAATTCA	ATTTACCTTA	CAATATATTT	TGTGTTATTA	5340
	TATTCTGGAG	САТАААТААА	TTGTTCAACA	CATAGTTGTA	ATGTGTTTCA	ATACTTTTTG	5400
	GATAGATTGC	GAAATTGTAT	TGAATCGTCA	TCGTTTTAAA	TTTTTAAATG	AGAATGGAAT	5460
20	GAGCATTACA	ATACACAAGC	AATCAAAAGT	AAATACATTC	ACAACACAAC	AGAGACATAA	5520
	CAACAAGATA	AGGAGTGAAC	AATAGCTGTG	AATTATCGTG	ATAAAATTCA	AAAGTTTAGT	5580
	ATTCGTAAAT	ATACAGTTGG	TACATTTTCA	ACTGTCATTG	CGACATTGGT	ATTTTTAGGA	5640
25	TTCAATACAT	CACAAGCACA	TGCTGCTGAA	ACAAATCAAC	CAGCAAGCGT	GGTTAAACAG	5700
	AAACAACAAA	GTAATAATGA	ACAGACTGAG	AATCGAGAAT	CTCAAGTACA	AAATTCTCAA	5760
	AATTCACAAA	ATGGTCAATC	ATTATCTGCT	ACTCATGAAA	ATGAGCAACC	AAATATTAGT	5820
30	CAAGCTAATT	TAGTAGATCA	AAAAGTAGCG	CAATCATCTA	CTACTAATGA	TGAACAACCA	5880
	GCATCTCAAA	ATGTAAATAC	AAAGAAAGAT	TCGGCAACGG	CTGCGACAAC	ACAACCAGAT	5940
	AAAGAACAAA	GTAAGCATAA	ACAAAACGAA	AGTCAATCTG	CTAATAAAAA	TGGAAACGAC	6000
35	AATAGAGCGG	CTCATGTAGA	AAATCATGAA	GCAAATGTAG	TAACAGCTTC	AGATTCATCT	6060
	GATAATGGTA	ACGTACAACA	TGACCGAAAT	GAATTACAAG	CGTTTTTTGA	TGCAAATTAT	6120
40	CATGATTATC	GCTTTATTGA	CCGTGAAAAT	GCAGATTCTG	GCACATTTAA	CTATGTAAAA	6180
	GGCATTTTTG	ATAAGATTAA	TACGTTATTA	GGCAGTAATG	ATCCAATAAA	CAATAAAGAC	6240
	TTGCAACTTG	CATACAAAGA	ATTGGAACAA	GCTGTTGCTT	TAATTCGTAC	AATGCCTCAA	6300
<b>4</b> 5	CGTCAACAGA	CTAGCCGACG	TTCAAATAGA	ATTCAAACGC	GTTCGGTTGA	GTCAAGAGCT	6360
	GCAGAGCCTA	GATCAGTATC	AGACTATCAA	AATGCAAATT	CATCATATTA	TGTTGAAAAT	6420
	GCTAATGATG	GTTCGGGCTA	TCCTGTTGGT	ACATATATCa	ATGCTTCTAG	TAAAGGGGCG	6480
50	CCATATAATT	TACCAACTAC	ACCATGGAAT	ACATTGAAGG	CCTCTGACTC	AAAGGAAATT	6540
	GCTCTTATGA	CAGCGAAACA	AACTGGAGAC	GGGTACCAAT	GGGTTATTAA	GTTTAATAAA	6600

	GTAGGAAGAA	CTGACTTTGT	AACAGTTAAT	TCAGATGGAA	CAAATGTACA	ATGGAGTCAT	6720
	GGAGCAGGAG	CAGGTGCAAA	TAAACCACTT	CAACAAATGT	GGGAATATGG	AGTAAATGAT	6780
5	CCTCATCGTT	CACATGACTT	TAAAATAAGA	AATAGAAGTG	GCCAAGTAAT	ATATGACTGG	6840
	CCAACTGTCC	ATATTTATTC	TTTAGAAGAT	TTATCTAGAG	CGAGTGATTA	TTTTAGTGAA	6900
	GCTGGAGCGA	CACCTGCTAC	TAAAGCTTTT	GGTAGACAAA	ATTTTGAATA	TATTAATGGT	6960
10	CAAAAACCTG	CTGAATCACC	GGGTGTTCCT	AAAGTTTATA	CTTTCATCGG	TCAAGGTGAT	7020
	GCAAGTTATA	CAATTTCATT	TAAAACACAA	GGTCCAACTG	TTAATAAATT	GTACTATGCA	7080
15	GCAGGTGGGC	GTGCTTTAGA	GTACAATCAA	TTATTTATGT	ACAGTCAACT	ATACGTCGAA	7140
15	TCAACGCAAG	ACCATCAACA	ACGTCTTAAT	GGTTTAAGAC	AAGTGGTTAA	TCGTACATAT	7200
	CGCATAGGTA	CAACTAAACG	TGTAGAAGTG	AGTCAAGGAA	ATGTACAAAC	GAAAAGGTA	7260
20	TTAGAAAGTA	CAAACCTAAA	TATAGATGAT	TTTGTTGATG	ATCCTTTAAG	TTATGTTAAG	7320
	ACGCCGAGTA	ATAAAGTGTT	AGGATTTTAT	TCGAATAATG	CAAATACTAA	TGCTTTTAGA	7380
	CCGGGTGGAG	CCCAACAATT	AAATGAATAT	CAATTAAGTC	AATTATTTAC	TGATCAAAAA	7440
25	TTACAAGAAG	CAGCAAGAAC	TAGAAACCCA	ATAAGATTAA	TGATTGGTTT	CGACTATCCT	7500
	GATGCTTATG	GTAATAGTGA	ACTTTAGTTC	CTGTTAACTT	AACGGTATTA	CCTGAAATCC	7560
	AACATAATAt	TaAATTCTTT	AAAAATGACG	ATACTCAAAA	TATTGCTGAA	AAACCATTTT	7620
30	CAAAACAAGC	TGGGCATCCA	GTTTTCTATG	TATATGCAGG	TAACCAAGGG	AATGCTTCCG	7680
	TGAATTTAGG	TGGTAGCGTA	ACATCTATTC	AACCATTACG	TATTAATTTA	ACAAGTAATG	7740
	AGAATTTTAC	AGATAAAGAT	TGGCAAATTA	CAGGTATTCC	GCGTACATTA	CACATTGAAA	7800
35	ACTCGACAAA	TAGACCTAAT	AATGCCAGAG	AACGCAATAT	TGAACTTGTT	GGTAACTTAT	7860
	TACCAGGGGA	TTACTTTGGA	ACGATACGTT	TTGGACGTAA	AGAACAATTA	TTCGAAATTC	7920
40	GTGTTAAACC	ACATACACCA	ACAATTACAA	CGACAGCTGA	GCAATTAAGA	GGTACAGCAT	7980
40	TACAAAAAGT	GCCTGTTAAT	ATTTCGGGAA	TACCGTTGGA	TCCATCGGCA	TTGGTTTATT	8040
	TAGTTGCACC	AACAAATCAA	ACTACGAATG	GTGGTAGTGA	GGCAGATCAA	ATACCATCTG	8100
45	GTTATACGAT	ACTTGCGACT	GGTACACCTG	ATGGGGTGCA	TAATACAATT	ACTATACGAC	8160
	CGCAAGATTA	TGTTGTATTC	ATACCACCTG	TAGGTAAACA	AATTAGAGCA	GTAGTTTATT	8220
	ATAATAAAGT	AGTTGCATCT	AATATGAGTA	ATGCTGTTAC	TATTTTGCCA	GATGACATTC	8280
50	CACCAACAAT	CAATAATCCT	GTTGGAATAA	ATGCCAAATA	CTATCGAGGC	GACGAAkCAA	8340
	CTTTACAATG	GGTGTCTCTG	ATAGACATTC	TGGTATAAAA	AATACAACTA	TTACGACATT	8400

	TACAGGTAGA	GTGAGTATGA	ATCAGGCATT	TAACAGTGAT	ATTACATTTA	AAGTGTCAGC	8520
	GACAGaCAAT	GTCAATAATA	CGACAAATGA	TAGTCAATCT	AAACATGTTT	CAATTCATGT	8580
5	AGGTAAAATT	AGTGAAGATG	CTCATCCGAT	TGTATTAGGA	AATACTGAGA	AAGTTGTAGT	8640
	AGTCAATCCG	ACTGCTGTAT	CTAATGATGA	AAAGCAAAGC	ATAATTACTG	CCTTTATGAA	8700
	TAAAAACCAA	AATATAAGAG	GATATTTAGC	ATCAACTGAT	CCAGTAACTG	TCGATAATAA	8760
10	TGGTAATGTC	ACATTACATT	ACCGTGATGG	CTCATCGACA	ACGCTTGATG	CTACAAATGT	8820
	GATGACATAC	GAACCAGTTG	TGAAACCTGA	ATACCAAACT	GTCAATGCTG	CTAAAACAGC	8880
15	AACGGTAACG	ATTGCTAAAG	GACAATCATT	TAGTATTGGT	GATATTAAAC	AATATTTTAC	8940
	TTTAAGTAAT	GGACAACCTA	TTCCAAGTGG	CACATTTACA	AATATTACAT	CTGATAGAAC	9000
	TATTCCAACT	GCACAAGAAG	TTAGTCAAAT	GAACGCAGGC	ACGCAGTTAT	ACCATATAAC	9060
20	TGCTACAAAT	GCGTATCATA	AAGATAGTGA	AGACTTCTAT	ATTAGTTTGA	AAATCATCGA	9120
	TGTGAAACAA	CCAGAAGGCG	ATCAACGTGT	ATATCGTACA	TCAACATATG	ATTTAACTAC	9180
	TGATGAAATC	TCAAAAGTAA	AACAAGCATT	TATTAATGCA	AATAGAGATG	TAATTACGCT	9240
25	TGCCGAAGGT	GATATTTCAG	TTACAAATAC	ACCTAATGGT	GCTAATGTAA	GTACTATTAC	9300
	AGTAAATATT	AATAAAGGTC	GATTAACGAA	ATCATTCGCG	TCAAACCTAG	CTAATATGAA	9360
	TTTCTTGCGT	TGGGTTAATT	TCCCACAAGA	TTATACAGTG	ACATGGACGA	ATGCAAAAAT	9420
30	TGCAAACAGA	CCAACAGATG	GTGGTTTATC	ATGGTCTGAT	GACCATAAAT	CTTTAATTTA	9480
	TCGTTATGAT	GCTACATTAG	GTACTCAAAT	TACGACGAAT	GATATTTTAA	CAATGTTAAA	9540
	AGCAACAACT	ACAGTGCCTG	GATTGCGAAA	TAACATTACT	GGTAATGAAA	AATCACAAGC	9600
35	AGAAGCTGGC	GGAAGACCTA	ACTTTAGAAC	GACTGGTTAT	TCACAATCAA	ATGCGACAAC	9660
	TGATGGTCAA	CGTCAATTTA	CGTTGAATGG	TCAAGTGATT	CAAGTGTTAG	ACATCATCAA	9720
40	CCCTTCAAAC	GGTTATGGTG	GGCAACCTGT	TACAAATTCA	AATACTCGTG	CAAACCATAG	9780
	TAACTCAACT	GTTGTTAACG	TAAACGAACC	GGCAGCTAAT	GGTGcTGGCG	CATTTACAAT	9840
	TGACCACGTT	GTAAAAAGTA	ATTCTACACA	TAATGCAAGT	GATGCAGTTT	ATAAAGCACA	9900
45	GTTATACTTA	ACGCCATATG	GTCCAAAACA	ATATGTTGAA	CATTTAAATC	AAAATACAGG	9960
	AAATACTACT	GACGCTATTA	ACATTTATTT	TGTACCAAGT	GACTTAGTGA	ATCCAACAAT	10020
	TTCAGTAGGT	AATTACACTA	ATCATCAAGT	GTTCTCAGGT	GAAACATTTA	CAAATACTAT	10080
50	TACAGCGAAT	GATAACTTTG	GTGTGCAATC	TGTAACTGTA	CCAAATACAT	CACAAATTAC	10140
	AGGTACTGTT	GATAATAACC	ATCAACATGT	TTCTGCAACG	GCACCAAATG	TGACATCAGC	10200

	GTTCAATGTA	ACAGTGAAAC	CTTTGCGTGA	TAAATATCGA	GTTGGTACTT	CATCAACGGC	10320
	TGCTAATCCT	GTGAGAATTG	CCAATATTTC	GAATAATGCG	ACAGTATCAC	AAGCTGATCA	10380
5	AACGACAATT	ATTAATTCGT	TAACGTTTAC	TGAAACAGTA	CCAAATAGAA	GTTATGCAAG	10440
	AGCAAGTGCG	AATGAAATCA	CTAGTAAAAC	AGTTAGTAAT	GTCAGTCGTA	CTGGAAATAA	10500
	TGCCAATGTg	CACAGTAACT	GTTACTTATC	AAGATGGAAC	AACATCAACA	GTGACTGTAC	10560
10	CTGTAAAGCA	TGTCATTCCA	GAAATCGTTG	CACATTCGCA	TTACACTGTA	CAAGGCCAAG	10620
	ACTTCCCAGC	AGGTAATGGT	TCTAGTGCAT	CAGATTACTT	TAAGTTATCT	AATGGTAGTG	10680
15	ACATTGCAGA	TGCAACTATT	ACATGGGTAA	GTGGACAAGC	GCCAAATAAA	GATAATACAC	10740
	GTATTGGTGA	AGATATAACT	GTAACTGCAC	ATATCTTAAT	TGATGGCGAA	ACAACGCCGA	10800
	TTACGAAAAC	AGCAACATAT	AAAGTAGTAA	GAACTGTACC	GAAACATGTC	TTTGAAACAG	10860
20	CCAGAGGTGT	TTTATACCCA	GGTGTTTCAG	ATATGTATGA	TGCGAAACAA	TATGTTAAGC	10920
	CAGTAAATAA	TTCTTGGTCG	ACAAATGCGC	AACATATGAA	TTTCCAATTT	GTTGGAACAT	10980
	ATGGTCCTAA	CAAAGATGTT	GTAGGCATAT	CTACTCGTCT	TATTAGAGTG	ACATATGATA	11040
25	ATAGACAAAC	AGAAGATTTA	ACTATTTTAT	CTAAAGTTAA	ACCTGACCCA	CCTAGAATTG	11100
	ACGCAAACTC	TGTGACATAT	AAAGCAGGTC	TTACAAACCA	AGAAATTAAA	GTTAATAACG	11160
	TATTAAATAA	CTCGTCAGTA	AAATTATTTA	AAGCAGATAA	TACACCATTA	AATGTCACAA	11220
30	ATATTACTCA	TGGTAGCGGT	TTTAGTTCGG	TTGTGACAGT	AAGTGACGCG	TTACCAAATG	11280
	GCGGAATTAA	AGCAAAATCT	TCAATTTCAA	TGAACAATGT	GACGTATACG	ACGCAAGACG	11340
	AACATGGTCA	AGTTGTTACA	GTAACAAGAA	ATGAATCTGT	TGATTCAAAT	GACAGTGCAa	11400
35	CAGTAACAGT	GACACCACAA	TTACAAGCAA	CTACTGAAGG	CGCTGTATTT	ATTAAAGGTG	11460
	GCGACGGTTT	TGATTTCGGA	CACGTAGAAA	GATTTATTCA	AAACCCGCCA	CATGGGGCAA	11520
40	CGGTTGCATG	GCATGATAGT	CCAGATACAT	GGAAGAATAC	AGTCGGTAAC	ACTCATAAAA	11580
, ,	CTGCGGTTGT	AACATTACCT	AATGGTCAAG	GTACGCGTAA	TGTTGAAGTT	CCAGTCAAAG	11640
	TTTATCCAGT	TGCTAATGCA	AAGGCGCCAT	CACGTGATGT	GAAAGGTCAA	AATTTGACTA	11700
45	ATGGAACGGA	TGCGATGAAC	TACATTACAT	TTGATCCAAA	TACAAACACA	AATGGTATCA	11760
	CTGCAGCATG	GGCAAATAGA	CAACAACCAA	ATAACCAACA	AGCAGGCGTG	CAACATTTAA	11820
	ATGTCGATGT	CACATATCCA	GGTATTTCAG	CTGCTAAACG	AGTTCCTGTT	ACTGTTAATG	11880
50	TATATCAATT	TGAATTCCCT	CAAACTACTT	ATACGACAAC	GGTTGGAGGC	ACTTTAGCAA	11940
	GTGGTACGCA	AGCATCAGGA	TATGCACATA	TGCAAAATGC	TACTGGTTTA	CCAACAGATG	12000

	TGAATAAACC	GAATGTGGCT	AAAGTCGTTA	ACGCAAAATA	TGACGTCATC	TATAACGGAC	12120
	ATACTTTTGC	AACATCTTTA	CCAGCGAAAT	TTGTAGTAAA	AGATGTGCAA	CCAGCGAAAC	12180
5	CAACTGTGAC	TGAAACAGCG	GCAGGAGCGA	TTACAATTGC	ACCTGGAGCA	AACCAAACAG	12240
	TGAATACACA	TGCCGGTAAC	GTAACGACAT	ACGCTGATAA	ATTAGTTATT	AAACGTAATG	12300
	GTAACGTTGT	GACGACATTT	ACACGTCGCA	ATAATACGAG	TCCATGGGTG	AAAGAAGCAT	12360
10	CTGCAGCAAC	TGTAGCAGGT	ATTGCTGGAA	CTAATAATGG	TATTACTGTT	GCAGCAGGTA	12420
	CTTTCAACCC	TGCTGATACA	ATTCAAGTTG	TTGCAACGCA	AGGAAGCGGA	GAGACAGTGA	12480
15	GTGATGAGCA	ACGTAGTGAT	GATTTCACAG	TTGTCGCACC	ACAACCGAAC	CAAGCGACTA	12540
	CTAAGATTTG	GCAAAATGGT	CATATTGATA	TCACGCCTAA	TAATCCATCA	GGACATTTAA	12600
	TTAATCCAAC	TCAAGCAATG	GATATTGCTT	ACACTGAAAA	AGTGGGTAAT	GGTGCAGAAC	12660
20	ATAGTAAGAC	AATTAATGTT	GTTCGTGGTC	AAAATAATCA	ATGGACAATT	GCGAATAAGC	12720
	CTGACTATGT	AACGTTAGAT	GCACAAACTG	GTAAAGTGAC	GTTCAATGCC	AATACTATAA	12780
	AACCAAATTC	ATCAATCACA	ATTACTCCGA	AAGCAGGTAC	AGGTCACTCA	GTAAGTAGTA	12840
25	ATCCAAGTAC	ATTAACTGCA	CCGGCAGCTC	ATACTGTCAA	CACAACTGAA	ATTGTGAAAG	12900
	ATTATGGTTC	AAATGTAACA	GCAGCTGAAA	TTAACAATGC	AGTTCAAGTT	GCTAATAAAC	12960
	GTACTGCAAC	GATTAAAAAT	GGCACAGCAA	TGCCTACTAA	TTTAGCTGGT	GGTAGCACAA	13020
30	CGACGATTCC	TGTGACAGTA	ACTTACAATG	ATGGTAGTAC	TGAAGAAGTA	CAAGAGTCCA	13080
	TTTTCACAAA	AGCGGATAAA	CGTGAGTTAA	TCACAGCTAA	AAATCATTTA	GATGATCCAG	13140
25	TAAGCACTGA	AGGTAAAAAG	CCAGGTACAA	TTACGCAGTA	CAATAATGCA	ATGCATAATG	13200
35	CGCAACAACA	AATCAATACT	GCGAAAACAG	AAGCACAACA	AGTGATTAAT	AATGAGCGTG	13260
	CAAÇÃCCACA	ACAAGTTTCT	GACGCACTAA	CTAAAGTTCG	TGCAGCACAA	ACTAAGATTG	13320
40	ATCAAGCTAA	AGCATTACTT	CAAAATAAAG	AAGATAATAG	CCAATTAGTA	ACGTCTAAAA	13380
	ATAACTTACA	AAGTTCTGTG	AACCAAGTAC	CATCAACTGC	TGGTATGACG	CAACAAAGTA	13440
	TTGATAACTA	TAATGCGAAG	AAGCGTGAAG	CAGAAACTGA	AATAACTGCA	GCTCAACGTG	13500
<b>4</b> 5	TTATTGACAA	TGGCGATGCA	ACTGCACAAC	AAATTTCAGA	TGAAAAACAT	CGTGTCGATA	13560
	ACGCATTAAC	AGCATTAAAC	CAAGCGAAAC	ATGATTTAAC	TGCAGATACA	CATGCCTTAG	13620
	AGCAAGCAGT	GCAACAATTG	AATCGCACAG	GTACAACGAC	TGGTAAGAAG	CCGGCAAGTA	13680
50	TTACTGCTTA	CAATAATTCG	ATTCGTGCAC	TTCAAAGTGA	CTTAACAAGT	GCTAAAAATA	13740
	GCGCTAATGC	TATTATTCAA	AAGCCAATAA	GAACAGTACA	AGAAGTGCAA	TCTGCGTTAA	13800

	CTGATAATAG	TGCTTTAAAA	ACTGCTAAGA	CGAAACTTGA	TGAAGAAATC	AATAAATCAG	13920
	TAACTACTGA	TGGTATGACA	CAATCATCAA	TCCAAGCATA	TGAAAATGCT	AAACGTGCGG	13980
5	GTCAAACAGA	ATCAACAAAT	GCACAAAATG	TTATTAACAA	TGGTGATGCG	ACTGACCAAC	14040
	AAATTGCCGC	AGAAAAAACA	AAAGTAGAAG	AAAAATATAA	TAGCTTAAAA	CAAGCAATTG	14100
10	CTGGATTAAC	TCCAGACTTG	GCACCATTAC	AAACTGCAAA	AACTCAGTTG	CAAAATGATA	14160
10	TTGATCAGCC	AACGAGTACG	ACTGGTATGA	CAAGCGCATC	TATTGCAGCA	TTTAATGAAA	14220
	AACTTTCAGC	AGCTAGAACT	AAAATTCAAG	AAATTGATCG	TGTATTAGCC	TCACATCCAG	14280
15	ATGTTGCGAC	AATACGTCAA	AACGTGACAG	CAGCGAATGC	CGCTAAATCA	GCACTTGATC	14340
	AAGCACGTAA	TGGCTTAACA	GTCGATAAAG	CGCCTTTAGA	AAATGCGAAA	AATCAACTAC	14400
	AACATAGTAT	TGACACGCAA	ACAAGTACAA	CTGGTATGAC	ACAAGACTCT	ATAAATGCAT	14460
20	ACAATGCGAA	GTTAACAGCT	GCACGTAATA	AGATTCAACA	AATCAATCAA	GTATTAGCAG	14520
	GTTCACCGAC	TGTAGAACAA	ATTAATACAA	ATACGTCTAC	AGCAAATCAA	GCTAAATCTG	14580
	ATTTAGATCA	TGCACGTCAA	GCTTTAACAC	CAGATAAAGC	GCCGCTTCAA	ACTGCGAAAA	14640
25	CGCAATTAGA	ACAAAGCATT	AATCAACCAA	CGGATACAAC	AGGTATGACG	ACCGCTTCGT	14700
	TAAATGCGTA	CAACCAAAAA	TTACAAGCAG	CGCGTCAAAA	GTTAACTGAA	ATTAATCAAG	14760
	TGTTGAATGG	CAACCCAACT	GTCCAAAATA	TCAATGATAA	AGTGACAGAG	GCAAACCAAG	14820
30	CTAAGGATCA	ATTAAATACA	GCACGTCAAG	GTTTAACATT	AGATAGACAG	CCAGCGTTAA	14880
	CAACATTACA	TGGTGCATCT	AACTTAAACC	AAGCACAACA	AAATAATTTC	ACGCAACAAA	14940
35	TTAATGCTGC	TCAAAATCAT	GCtGCGCTTG	AAACAATTAA	GTCTAACATT	ACGGCTTTAA	15000
35	ATACTGCGAT	GACGAAATTA	AAAGACAGTG	TTGCGGATAA	TAATACAATT	AAATCAGATC	15060
	AAAATTACAC	TGACGCAACA	CCAGCTAATA	AACAAGCGTA	TGATAATGCA	GTTAATGCGG	15120
40	CTAAAGGTGT	CATTGGAGAA	ACGACTAATC	CAACGATGGA	TGTTAACACA	GTGAACCAAA	15180
	AAGCAGCATC	TGTTAAATCG	ACGAAAGATG	CTTTAGATGG	TCAACAAAAC	TTACAACGTG	15240
	CGAAAACAGA	AGCAACAAAT	GCGATTACGC	ATGCAAGTGA	TTTAAACCAA	GCACAAAAGA	15300
45	ATGCATTAAC	ACAACAAGTG	AATAGTGCAC	AAAACGTGCA	AGCAGTAAAT	GATATTAAAC	15360
	AAACGACTCA	AAGCTTAAAT	ACTGCTATGA	CAGGTTTAAA	ACGTGGCGTT	GCTAATCATA	15420
	ACCAAGTCGT	ACAAAGTGAT	AATTATGTCA	ACGCAGATAC	TAATAAGAAA	AATGATTACA	15480
50	ACAATGCATA	CAACCATGCG	AATGACATTA	TTAATGGTAA	TGCACAACAT	CCAGTTATAA	15540
	CACCAAGTGA	TGTTAACAAT	GCTTTATCAA	ATGTCACAAG	TAAAGAACAT	GCATTGAATG	15600

	ATTTAAATAA	TGCACAACGT	CAAAACTTAC	AATCGCAAAT	TAATGGTGCG	CATCAAATTG	15720
	ATGCAGTTAA	TACAATTAAG	CAAAATGCAA	CAAACTTGAA	TAGTGCAATG	GGTAACTTAA	15780
5	GACAAGCTGT	TGCAGATAAA	GATCAAGTGA	AACGTACAGA	AGATTATGCG	GATGCAGATA	15840
	CAGCTAAACA	AAATGCATAT	AACAGTGCAG	TTTCAAGTGC	CGAAACAATC	ATTAATCAAA	15900
	CAACAAATCC	AACGATGTCT	GTTGATGATG	TTAATCGTGC	AACTTCAGCT	GTTACTTCTA	15960
10	ATAAAATGC	ATTAAATGGT	TATGAAAAAT	TAGCACAATC	TAAAACAGAT	GCTGCAAGAG	16020
	CAATTGATGC	ATTACCACAT	TTAAATAATG	CACAAAAAGC	AGATGTTAAA	TCTAAAATTA	16080
15	ATGCTGCATC	AAATATTGCT	GGCGTAAATA	CTGTTAAACA	ACAAGGTACA	GATTTAAATA	16140
	CARCGATGGg	TAACTTGCAA	GGTGCAATCA	ATGATGAACA	AACGACGCTT	AATAGTCAAA	16200
	ACTATCAAGA	TGCGACACCT	AGTAAGAAAA	CAGCATACAC	AAATGCGGTA	CAAGCTGCGA	16260
20	AAGATATTTT	AAATAAATCA	AATGGTCAAA	ATAAAACGAA	AGATCAAGTT	ACTGAAGCGA	16320
	TGAATCAAGT	GAATTCTGCT	AAAAATAACT	TAGATGGTAC	GCGTTTATTA	GATCAAGCGA	16380
	nCAAaCAGCA	AAACAGCAGT	TAAATAATAT	GACGCATTTA	ACAACTGCAC	AAAAAACGAA	16440
25	TTTAACAAAC	CAAATTAATA	GTGGTACTAC	TGTCGCTGGT	GTTCAAACGG	TTCAATCAAA	16500
	TGCCAATACA	TTAGATCAAG	CCATGAATAC	GTTAAGACAA	AGTATTGCCA	ACAAAGATGC	16560
	GACTAAAGCA	AGTGAAGATT	ACGTAGATGC	TAATAATGAT	AAGCAAACAG	CATATAACAA	16620
30	CGCAGTAGCT	GCTGCTGAAA	CGATTATTAA	TGCTAATAGT	AATCCAGAAA	TGAATCCAAG	16680
	TACGATTACA	CAAAAAGCAG	AGCAAGTGAA	TAGTTCTAAA	ACGGCACTTA	ACGGTGATGA	16740
	AAACTTAGCT	GCTGCAAAAC	AAAATGCGAA	AACGTACTTA	AACACATTGA	CAAGTATTAC	16800
35	AGATGCTCAA	AAGAACAATT	TGATTAGTCA	AATTACTAGT	GCGACAAGAG	TGAGTGGTGT	16860
	TGATACTGTA	AAACAAAATG	CGCAACATCT	AGACCAAGCT	ATGGCTAGCT	TACAGAATGG	16920
40	TATTAACAAC	GAATCTCAAG	TGAAATCATC	TGAGAAATAT	CGTGATGCTG	ATACAAATAA	16980
	ACAACAAGAG	TATGATAATG	CTATTACTGC	AGCGAAAGCG	ATTTTAAATA	AATCGACAGG	17040
	TCCAAACACT	GCGCAAAATG	CAGTTGAAGC	AGCATTACAA	CGTGTTAATA	ATGCGAAAGA	17100
45	TGCATTGAAT	GGTGATGCAA	AATTAATTGC	AGCTCAAAAC	GCAGCGAAAC	AACATTTAGG	17160
	TACTTTAACG	CATATCACTA	CAGCTCAACG	TAATGATTTA	ACAAATCAAA	TTTCACAAGC	17220
	TACAAACTTA	GCTGGTGTTG	AATCTGTTAA	ACAAAATGCG	AATAGTTTAG	ATGGTGCTAT	17280
50	GGGTAACTTA	CAAACGGCTA	TCAACGATAA	GTCAGGAACA	TTAGCGAGCC	AAAACTTCTT	17340
	GGATGCTGAT	GAGCAAAAAC	GTAATGCATA	CAATCAAGCT	GTATCAGCAG	CCGAAACCAT	17400

	TGTTAATAAT	GCGAAACATG	CATTAAATGG	TACGCAAAAC	TTAAACAATG	CGAAACAAGC	17520
	AGCGATTACA	GCAATCAATG	GCGCATCTGA	TTTAAATCAA	AAACAAAAAG	ATGCATTAAA	17580
5	AGCACAAGCT	AATGGTGCTC	AACGCGTATC	TAATGCACAA	GATGTACAGC	ACAATGCGAC	17640
	TGAACTGAAC	ACGGCAATGG	GCACATTAAA	ACATGCCATC	GCAGATAAGA	CGAATACGTT	17700
	AGCAAGCAGT	AAATATGTTA	ATGCCGATAG	CACTAAACAA	AATGCTTACA	CAACTAAAGT	17760
10	TACCAATGCT	GAACATATTA	TTAGCGGTAC	GCCAACGGTT	GTTACGACAC	CTTCAGAAGT	17820
	AACAGCTGCA	GCTAATCAAG	TAAACAGCGC	GAAACAAGAA	TTAAATGGTG	ACGAAAGATT	17880
15	ACGTGAAGCA	AAACAAAACG	CCAATACTGC	TATTGATGCA	TTAACACAAT	TAAATACACC	17940
	TCAAAAAGCT	AAATTAAAAG	AACAAGTGGG	ACAAGCCAAT	AGATTAGAAG	ACGTACAAAC	18000
	TGTTCAAACA	AATGGACAAG	CATTGAACAA	TGCAATGAAA	GGCTTAAGAG	ATAGTATTGC	18060
20	TAACGAAACA	ACAGTCAAAA	CAAGTCAAAA	CTATACAGAC	GCAAGTCCGA	ATAACCAATC	18120
	AACATATAAT	AGCGCTGTGT	CAAATGCGAA	AGGTATCATT	AATCAAACTA	ACAATCCGAC	18180
	TATGGATACT	AGTGCGATTA	CCCAAGCTAC	AACACAAGTG	AATAATGCTA	AAAATGGTTT	18240
25	AAACGGTGCT	GAAAACTTAA	GAAATGCACA	AAACACTGCT	AAGCAAAACT	TAAATACATT	18300
	ATCACACTTA	ACAAATAACC	AAAAATCTGC	CATCTCATCA	CAAATTGATC	GTGCAGGTCA	18360
	TGTGAGTGAG	GTAACTGCTA	CTAAAAATGC	AGCAACTGAG	TTGAATACGC	AAATGGGTAA	18420
30	CTTGGAACAA	GCTATCCATG	ATCAAAACAC	AGTTAAACAA	AGTGTTAAAT	TTACTGATGC	18480
	AGATAAAGCT	AAACGTGATG	CGTATACAAA	TGCGGTAAGC	AGAGCTGAAG	CAATTCTGAA	18540
95	TAAAACGCAA	GGTGCAAATA	CGTCTAAACA	AGATGTTGAA	GCGGCTATTC	AAAATGTTTC	18600
35	AAGTGCTAAA	AATGCATTGA	ATGGTGATCA	AAACGTTACA	AATGCGAAGA	ATGCAGCTAA	18660
	AAATGCATTA	AATAACTTAA	CGTCAATTAA	TAATGCACAA	AAACGTGACT	TAACAACTAA	18720
40	AATTGATCAA	GCAACAACTG	TAGCTGGTGT	TGAAGCTGTA	TCTAATACGA	GTACACAATT	18780
	GAALACAGCG	ATGGCTAACT	TGCAAAATGG	TATTAATGAT	AAAACAAATA	CACTAGCAAG	18840
	TGAAAACTAT	CATGATGCTG	ATTCAGATAA	GAAAACTGCT	TATACTCAAG	CCGTTACGAA	18900
45	CGCAGAAAAT	ATTTTAAATA	AAAATAGTGG	ATCAAATTTA	GACAAAACTG	CCGTTGAAAA	18960
	CGCGTTGTCA	CAAGTTGCTA	ATGCGAAAGG	TGCCCTAAAT	GGTAACCATA	ATTTAGAGCA	19020
	AGCTAAATCA	AATGCAAACA	СТАСТАТААА	CGGACTTCAA	CATTTAACAA	CTGCTCAAAA	19080
50	AGATAAATTG	AAACAACAAG	TGCAACAAGC	ACAAAATGTT	GCAGGTGTAG	ATACTGTTAA	19140
	ATCAAGTGCC	AACACATTAA	ATGGTGCTAT	GGGTACGTTA	AGAAATAGCA	TACAAGATAA	19200

	TAACAATGCT	GTTGATAGTG	CTAATGGTGT	CATTAATGCA	ACAAGCAATC	CAAATATGGA	19320
	TGCTAATGCA	ATTAACCAAA	TCGCTACACA	AGTGACATCA	ACGAAAAATG	CATTAGATGG	19380
5	TACACATAAT	TTAACGCAAG	CGAAACAAAC	AGCAACAAAT	GCCATCGATG	GTGCTACTAA	19440
	CTTAAATAAA	GCGCAAAAAG	ATGCGTTAAA	AGCACAAGTT	ACAAGTGCGC	AACGTGTTGC	19500
	AAATGTAACA	AGTATCCAAC	AAACTGCAAA	TGAACTTAAT	ACAGCTATGG	GTCAATTACA	19560
10	ACATGGTATT	GATGATGAAA	ATGCAACAAA	ACAAACTCAA	AAATATCGTG	ACGCTGAACA	19620
	AAGTAAGAAA	ACTGCTTATG	ATCAAGCTGT	AGCTGCTGCG	AAAGCAATTT	TAAATAAACA	19680
15	AACAGGTTCA	AATTCAGATA	AAGCAGCAGT	TGACCGTGCA	TTACAACAAG	TAACAAGTAC	19740
15	GAAAGATGCA	TTGAATGGTG	ATGCAAAACT	GGCAGAAGCG	AAAGCGGCAG	CTAAACAAAA	19800
	CTTAGGCACT	TTAAACCATA	TTACGAATGC	ACAACGTACT	GACTTAGAAG	GCCAAATCAA	19860
20	TCAAGCGACG	ACTGTTGATG	GCGTTAATAC	TGTAAAAACA	AATGCCAATA	CATTAGACGG	19920
	CGCAATGAAT	AGCTTACAAG	GTTCAATCAA	TGATAAAGAT	GCGACATTAA	GAAATCAAAA	19980
	TTATCTTGAT	GCGGATGAAT	CAAAACGAAA	TGCATATACG	CAAGCTGTCA	CAGCGGCTGA	20040
25	AGGCATTTTA	AATAAACAAA	CTGGTGGTAA	CACATCTAAA	GCAGACGTTG	ATAATGCATT	20100
	AAATGCAGTT	ACAAGAGCGA	AAGcGgCTTT	AAATGGTGCT	GACAACTTAA	GAAATGCGAA	20160
	AACTTCAGCA	ACAAATACGA	TTGATGGTTT	ACCTAACTTA	ACACAATTAC	AAAAAGACAA	20220
30	CTTGAAGCAT	CAAGTTGAaC	AAGCGCAAAA	TGTAGCAGGT	GTAAATGGTG	TTAAAGATAA	20280
	AGGTAATACG	TTÄAATACTG	CCATGGGTGC	ATTACGTACA	AGTATCCAAA	ATGATAATAC	20340
	GACGAAAACA	AGTCAAAATT	ATCTTGATGC	ATCTGACAGC	AACAAAAATA	ATTACAATAC	20400
35	TGCTGTAAAT	AATGCAAATG	GTGTTATTAA	TGCAACGAAC	AATCCAAATA	TGGATGCTAA	20460
	TGCGÃTTAAT	GGCATGGCAA	ATCAAGTCAA	TACAACAAAA	GCAGCGTTAA	ATGGTGCACA	20520
40	AAACTTAGCT	CAAGCTAAAA	CAAATGCGAC	GAACACAATT	AACAACGCAC	ATGACTTAAA	20580
40	CCAAAAACAA	AAAGATGCAT	TAAAAACACA	AGTTAACAAT	GCACAACGTG	TATCTGATGC	20640
	AAATAACGTT	CAACACACTG	CAACTGAATT	GAACAGTGCG	ATGACAGCAC	TTAAAGCAGC	20700
45	TATTGCTGAT	AAAGAAAGAA	CAAAAGCAAG	CGGTAATTAT	GTCAATGCTG	ATCAAGAAAA	20760
	ACGTCAAGCG	TATGATTCAA	AAGTGACTAA	CGCTGAAAAT	ATCATTAGTG	GTACACCGAA	20820
	TGCGACATTA	ACAGTCAATG	ACGTAAATAG	TGCGGCATCA	CAAGTCAATG	CGGCTAAAAC	20880
50	AGCATTAAAT	GGTGATAACA	ACTTACGTGT	AGCGAAAGAG	CATGCCAACA	ATACAATTGA	20940
	CGGCTTAGCA	CAATTGAATA	ATGCACAAAA	AGCAAAATTA	AAAGAACAAG	TTCAAAGTGC	21000

	GAAAGGCTTA AGAGATAGTA TTGCGAATGA AGCAACAATT AAAGCAGGTC AAAACTACAC	21120
	TGACGCAAGT CCAAATAATC GTAACGAGTA CGACAGTGCA GTTACTGCAG CAAAAGCAAT	21180
5	CATTAATCAA ACATCGAACC CAACGATGGA ACCAAATACT ATTACGCAAG TAACATCACA	21240
	AGTGACAACT AAAGAACAGG CATTAAATGG TGCGCGAAAC TTAGCTCAAG CTAAGACAAC	21300
	TGCGAAAAAC AACTTGAATA ACTTAACATC AATTAACAAT GCACAAAAAG ATGCGTTAAC	21360
10	GCGTAGCATT GATGGTGCAA CAACAGTAGC TGGTGTAAAT CAAGAAACTG CAAAAGCAAC	21420
	AGAATTAAAT AACGCAATGC ATAGTTTACA AAATGGTATC AATGATGAGA CACAAACAAA	21480
15	ACAAACTCAG AAATACCTAG ATGCAGAGCC AAGTAAGAAA TCAGCTTATG ATCAAGCAGT	21540
	AAATGCAGCG AAAGCAATTT TAACAAAAGC TAGTGGTCAA AATGTAGACA AAGCAGCAGT	21600
	TGAACAAGCA TTGCAAAATG TGAACAGTAC GAAGACGGCG TTGAACGGTG ATGCGAAATT	21660
20	AAATGAAGCT AAAGCAGCTG CGAAACAAAC GTTAGGTACA TTAACACACA TTAATAATGC	21720
	ACAACGTACA GCGTTAGACA ATGAAATTAC ACAAGCAACA AATGTTGAAG GTGTTAATAC	21780
	AGTTAAAGCC AAAGCGCAAC AATTAGATGG TGCTATGGGT CAATTAGAAA CATCAATTCG	21840
25	TGATAAAGAC ACGACGTTAC AAAGTCAAAA TTATCAAGAT GCTGATGATG CTAAACGAAC	21900
	TGCTTATTCT CAAGCAGTAA ATGCAGCAGC AACTATTTTA AATAAAACAG CTGGCGGTAA	21960
	TACACCTAAA GCAGATGTTG AAAGAGCAAT GCAAGCTGTT ACACAAGCAA ATACTGCATT	22020
30	AAACGGTATT CAMAACTTAG ATCGTGCGAA ACALGCTGCT AACACAGCGA TTACAAATGC	22080
	TTCGGACTTA AATACAAAAC MAAAAGAAGC ATTAAAAGCA CAAGTAACAA GTGCAGGACG	22140
25	TGTATCTGCA GCAAATGGTG TTGAACATAC TGCGACTGAA TTAAATACTG CGATGACAGC	22200
35	TTTAAAGCGT GCCATTGCTG ATAAAGCTGA GACAAAAGCT AGTGGTAACT ATGTCAATGC	22260
	TGATGCGAAT AAACGTCAAG CATATGATGA AAAAGTTACA GCTGCCGAAA ATATCGTTAG	22320
40	TGGTACACCA ACACCAACGT TAACACCAGC AGATGTTACA AATGCAGCAA CGCAAGTAAC	22380
	GAATGCTAAG ACGCAGTTAA ACGGTAATCA TAATTTAGAA GTAGCGAAAC AAAATGCTAA	22440
	CACTGCAATT GATGGTTTAA CTTCTTTAAA TGGTCCGCAA AAAGCAAAAC TTAAAGAACA	22500
45	AGTGGGTCAA GCGACGACGT TGCCAAATGT TCAAACTGTT CGTGATAATG CACAAACATT	22560
	AAACACTGCA ATGAAAGGTC TACGAGATAG CATTGCGAAT GAAGCAACGA TTAAAGCAGG	22620
	TCAAAACTAC ACAGATGCAA GTCAAAACAA ACAAACTGAC TACAACAGTG CAGTCACTGC	22680
50	AGCAAAAGCA ATCATTGGTC AAACAACTAG TCCATCAATG AATGCGCAAG AAATTAATCA	22740
	AGCGAAAGAC CAAGTGACAG CTAAACAACA AGCGTTAAAC GGTCAAGAAA ACTTAAGAAC	22800

	AGATGCAGTG	AAACGTCAAA	TCGAAGGTGC	AACGCATGTT	AATGAAGTAA	CACAAGCACA	22920
	AAATAATGCG	GATGCATTAA	ATACAGCTAT	GACGAACTTG	AAAAATGGTA	TTCAAGATCA	22980
5	GAATACGATT	AAGCAAGGTG	TTAACTTCAC	TGATGCCGAC	GAAGCGAAAC	GTAATGCATA	23040
	TACAAATGCA	GTGACGCAAG	CTGAACAAAT	TTTAAATAAA	GCACAAGGTC	CAAATACTTC	23100
	AAAAGACGGT	GTCGAAACTG	CGTTAGAaAA	TGTACAACGT	GCTAAAAACG	AATTGAACGG	23160
10	TAATCAAAAT	GTTGCGAACG	CTAAGACAAC	TGCGAAAAAT	GCATTGAATA	ACCTAACATC	23220
	AATTAATAAT	GCACAAAAAG	AAGCATTGAA	ATCACAAATT	GAAGGTGCGA	CAACAGTTGC	23280
15	AGGTGTAAAT	CAAGTGTCTA	CAACGGCATC	TGAATTAAAT	ACAGCAATGA	GCAACTTACA	23340
	AAATGGTATT	AATGATGAAG	CAGCTACAAA	AGCAGCGCTT	AATGGTACTC	AAAACCTTGA	23400
	AAAAGCTAAA	CAACACGCAA	ATACAGCAAT	TGACGGTTTA	AGCCATTTAA	CAAATGCACA	23460
20	AAAAGAGGCA	TTAAAACAAT	TGGTACAACA	ATCGACTACT	GTTGCAGAAG	CACAAGGTAA	23520
	TGAGCAAAAA	GCAAACAATG	TTGATGCAGC	AATGGACAAA	TTACGTCAAA	GTATTGCAGA	23580
	TAATGCGACA	ACAAAACAAA	ACCAAAATTA	TACTGATGCA	AGTCAGAATA	AAAAGGATGC	23640
25	GTACAATAAT	GCTGTCACAA	CTGCACAAGG	TATTATTGAT	CAAACTACAA	GTCCAACTTT	23700
	AGATCCGACT	GTTATCAATC	AAGCTGCTGG	ACAAGTAAGC	ACAACTAAAA	ATGCATTAAA	23760
	TGGTAATGAA	AACCTAGAGG	CAGCGAAACA	ACAAGCGTCA	CAATCATTAG	GTTCATTAGA	23820
30	TAACTTAAAT	AATGCGCAAA	AACAAACAGT	TACTGATCAA	ATTAATGGCG	CGCATACTGT	23880
	TGATGAAGCA	AATCAAATTA	AGCAAAATGC	GCAAAACTTA	AATACAGCGA	TGGGTAACTT	23940
25	GAAACAAGCG	ATAGCTGACA	AAGATGCTAC	GAAAGCGACA	GTTAACTTCA	CTGATGCAGA	24000
35	TCAAGCAAAA	CAACAAGCAT	ATAACaCTGC	TGTTACAAAT	GCTGAAAATA	TCATTTCAAA	24060
	AGCTÂATGGC	GGCAATGCAA	CACAAGCTGA	AGTTGAACAA	GCAATCAAAC	AAGTTAATGC	24120
40	TGCAAAACAA	GCATTAAATG	GTAATGCCAA	CGTTCAACAT	GCAAAAGACG	AAGCAACAGC	24180
	ATTAATTAAT	AGCTCTAATG	ACCTTAACCA	AGCACAAAAA	GACGCATTAA	AACAACAAGT	24240
	TCAAAATGCA	ACTACTGTAG	CTGGTGTAAA	CAATGTTAAA	CAAACAGCAC	AAGAGTTAAA	24300
45	CAATGCTATG	ACACAATTAA	AACAAGGCAT	TGCAGATAAA	GAACAAACAA	AAGCTGATGG	24360
	TAACTTTGTC	AATGCAGATC	CTGATAAGCA	AAATGCATAT	AATCAAGCAG	TAGCGAAAGC	24420
	TGAAGCATTA	ATTAGTGctA	CGCCTGATGT	TGTCGTTACA	CCTAGCGAAA	TTACTGCAGC	24480
50	GTTAAATAAA	GTTACGCAAG	CTAAAAATGA	TTTAAATGGT	AATACAAACT	TAGCAACGGC	24540
	GAAACAAAAT	GTTCAACATG	CTATTGATCA	ATTGCCAAAC	TTAAACCAAG	CGCAACGTGA	24600

	AGCGGCGACA	ACGCTTAATG	ACGCGATGAC	ACAATTGAAA	CAAGGTATTG	CGAATAAAGC	24720
	ACAAATTAAA	GGTAGCGAGA	ACTATCACGA	TGCTGATACT	GACAAGCAAA	CAGCATATGA	24780
5	TAATGCAGTA	ACAAAAGCAG	AAGAATTGTT	AAAACAAACA	ACAAATCCAA	CAATGGATCC	24840
	AAATACAATT	CAACAAGCAT	TAACTAAAGT	GAATGACACA	AATCAAGCAC	TTAACGGTAA	24900
	TCAAAAATTA	GCTGATGCCA	AACAAGATGC	TAAGACAACA	CTTGGTACAC	TAGATCATTT	24960
10	AAATGATGCT	CAAAAACAAG	CGCTAACAAC	TCAAGTTGAA	CAAGCACCAG	ATATTGCAAC	25020
	AGTTAATAAT	GTTAAGCAAA	ATGCTCAAAA	TCTGAATAAT	GCTATGACTA	ACTTAAACAA	25080
15	TGCATTACAA	GATAAAACTG	AGACATTAAA	TAGCATTAAC	TTTACTGATG	CAGATCAAGC	25140
15	TAAGAAAGAT	GCTTATACTA	ATGCGGTTTC	ACATGCAGAA	GGTATTTTAT	CTAAAGCAAA	25200
	TGGCAGCAAT	GCAAGTCAAA	CTGAAGTGGA	ACAAGCGATG	CAACGTGTGA	ACGAAGCGAA	25260
20	ACAAGCATTG	AATGGTAATG	ACAATGTACA	ACGTGCAAAA	GATGCAGCGA	AACAAGTGAT	25320
	TACAAATGCA	AATGATTTAA	ATCAAGCAAT	GACACAATTG	AAACAAGGTA	TTGCAGATAA	25380
	AGACCAAACT	AAAGCAAATG	GTAACTTTGT	CAATGCTGAT	ACTGATAAGC	AAAATGCTTA	25440
25	CAACAATGCG	GTAGCACATG	CTGAACAAAT	AATTAGTGGT	ACACCAAATG	CAAACGTGGA	25500
	TCCACAACAA	GTGGCTCAAG	CGTTACAACA	AGTGAATCaA	GCTAAGGGTG	ATTTAAACGG	25560
	TAACCATAAC	TTACAAGTTG	CTAAAGACAA	TGCAAATACA	GCCATTGATC	AGTTACCAAA	25620
30	CTTAAATCAA	CCACAAAAA	CAGCATTAAA	AGACCAAGTG	TCGCATGCAG	AACTTGTTAC	25680
	AGGTGTTAAT	GCTATTAAGC	AAAATGCTGA	TGCGTTAAAT	AATGCAATGG	GTACATTGAA	25740
	ACAACAAATT	CAAGCGAACA	GTCAAGTACC	ACAGTCAGTT	GACTTTACAC	AAGCGGATCA	25800
35	AGACAAACAA	CAAGCATATA	ACAATGCGGC	TAACCAAGCG	CAACAAATCG	CAAATGGCAT	25860
	ACCAÁCACCT	GTATTGACGC	CTGATACAGT	AACACAAGCA	GTGACAACTA	TGAATCAAGC	25920
40	GAAAGATGCA	TTAAACGGTG	ATGAAAAATT	AGCACAAGCG	AAACAAGAAG	CTTTAGCAAA	25980
40	TCTTGATACG	TTACGCGATT	TAAATCAACC	ACAACGTGAT	GCATTACGTA	ACCAAATCAA	26040
	TCAAGCACAA	GCGTTAGCTA	CAGTTGAACA	AACTAAACAA	AATGCACAAA	ATGTGAATAC	26100
45	aGCaATGAGT	AACTTGAAAC	aAGGTATTGC	aaacaaagat	ACTGTCAAAG	CAAGTGAGAA	26160
	CTATCATGAT	GCTGATGCCG	ATAAGCAAAC	AGCATATACA	AATGCAGTGT	CTCAAGCGGA	26220
	AGGTATTATC	AATCAAACGA	CAAATCCAAC	GCTTAACCCA	GATGAAATAA	CACGTGCATT	26280
50	AACTCAAGTG	ACTGATGCTA	AAAATGGCTT	AAACGGTGAA	GCTAAATTGG	CAACTGAAAA	26340
	GCAAAATGCT	AAAGATGCCG	TAAGTGGGAT	GACGCATTTA	AACGATGCTC	AAAAACAAGC	26400

	AGCAACGAGC	CTAGATCAAG	CAATGGATCA	ATTATCACAA	GCTATTAATG	ATAAAGCTCA	26520
	AACATTAGCG	GACGGTAATT	ACTTAAATGC	AGATCCTGAC	AAACAAAATG	CGTATAAACA	26580
5	GGCAGTAGCA	AAAGCTGAAG	CATTATTGAA	TAAACAAAGT	GGTACTAATG	AAGTACAAGC	26640
	ACAAGTTGAA	AGCATCACTA	ATGAAGTGAA	CGCAGCGAAA	CAAGCATTAA	ATGGTAATGA	26700
	CAATTTGGCA	AATGCAAAAC	AACAAGCAAA	ACAACAATTG	GCGAACTTAA	CACACTTAAA	26760
10	TGATGCACAA	AAACAATCAT	TTGAAAGTCA	AATTACACAA	GCGCCACTTG	TTACAGATGT	26820
	CACTACGATT	AATCAAAAAG	CACAAACGTT	AGATCATGCG	ATGGAATTAT	TAAGAAATAG	26880
15	TGTTGCGGAT	AATCAAACGA	CATTAGCGTC	TGAAGATTAT	CATGATGCAA	CTGCGCAAAG	26940
15	ACAAAATGAC	TATAACCAAG	CTGTAACAGC	TGCTAATAAT	ATAATTAATC	AAACTACATC	27000
	GCCTACGATG	AATCCAGATG	ATGTTAATGG	TGCAACGACA	CAAGTGAATA	ATACGAAAGT	27060
20	TGCATTAGAT	GGTGATGAAA	ACCTTGCAGC	AGCTAAACAA	CAAGCAAACA	ACAGACTTGA	27120
	TCAATTAGAT	CATTTGAATA	ATGCGCAAAA	GCAACAGTTA	CAATCACAAA	TTACGCAATC	27180
	ATCTGATATT	GCTGCAGTTA	ATGGTCACAA	ACAAACAGCA	GAATCTTTAA	ATACTGCGAT	27240
25	GGGTAACTTA	ATTAATGCGA	TTGCAGATCA	TCAAGCCGTT	GAACAACGTG	GTAACTTCAT	27300
	CAATGCTGAT	ACTGATAAAC	AAACTGCTTA	TAATACAGCG	GTAAATGAAG	CAGCAGCAAT	27360
	GATTAACAAA	CAAACTGGTC	AAAATGCGAA	CCAAACAGAA	GTAGAACAAG	CTATTACTAA	27420
30	AGTTCAAACA	ACACTTCAAG	CGTTAAATGG	AGACCATAAT	TTACAAGTTG	СТААААСААА	27480
	TGCGACGCAA	GCAATTGATG	CTTTAACAAG	CTTAAATGAT	CCTCAAAAAA	CAGCATTAAA	27540
	AGACCAAGTT	ACAGCTGCAA	CTTTAGTAAC	TGCAGTTCAT	CAAATTGAAC	AAAATGCGAA	27600
35	TACGCTTAAC	CAAGCAATGC	ATGGTTTAAG	ACAGAGCATT	CAAGATAACG	CAGCAACTAA	27660
	AGCAÃATAGC	AAATATATCA	ACGAAGATCA	ACCAGAGCAA	CAAAACTATG	ATCAAGCTGT	27720
40	TCAAGCCGCA	AATAATATTA	TCAATGAACA	AACTGCAACA	TTAGATAATA	ATGCGATTAA	27780
40	TCAAGCAGCG	ACAACTGTGA	ATACAACGAA	AGCAGCATTA	CATGGTGATG	TGAAGTTACA	27840
	AAATGATAAA	GATCATGCTA	AGCAAACGGT	TAGTCAATTA	GCACATCTAA	ACAATGCACA	27900
4 <i>8</i>	AAAACATATG	GAAGATACGT	TAATTGATAG	TGAAACAACT	AGAACAGCAG	TTAAGCAAGA	27960
	TTTGACTGAA	GCACAAGCAT	TAGATCAACT	TATGGATGCA	TTACAACAAA	GTATTGCTGA	28020
	CAAAGATGCA	ACACGTGCGA	GCAGTGCATA	TGTCAATGCA	GAACCGAATA	AAAAACAATC	28080
50	CTATGATGAA	GCAGTTCAAA	ATGCTGAGTC	TATCATTGCA	GGATTAAATA	ATCCAACTAT	28140
	CAATAAAGGT	AATGTATCAA	GTGCGACTCA	AGCAGTAATA	TCATCTAAAA	ATGCATTAGA	28200

	TCAATTAACA	CCAGCTCAAC	AACAAGCGCT	AGAAAATCAA	ATTAATAATG	CAACAACTCG	28320
	TGATAAAGTG	GCTGAAATCA	TTGCACAAGC	GCAAgCATtA	AATGAAGCGA	TGAAAGCATT	28380
5	AAAAGAAAGT	ATTAAGGATC	AACCACAAAC	TGAAGCAAGT	AGTAAATTTA	TTAACGAGGA	28440
	TCAAGCGCAA	AAAGATGCTT	ATACGCAAGC	AGTACAACAC	GCGAAAGATT	TGATTAACAA	28500
	AACAACTGAT	CCTACATTAG	CTAAATCAAT	CATTGATCAA	GCGACACAGG	CAGTGACAGA	28560
10	TGCTAAAAAC	AATTTACATG	GTGATCAAAA	ACTAGCTCAA	GATAAGCAAC	GTGCAACAGA	28620
	AACGTTAAAT	AACTTGTCTA	ACTTGAATAC	ACCACAACGT	CAAGCACTTG	AAAATCAAAT	28680
15	TAATAATGCA	GCAACTCGTG	GCGAAGTAGC	ACAAAAATTA	ACTGAAGCAC	AAGCACTTAA	28740
13	CCAAGCAATG	GAAGCTTTAC	GTAATAGCAT	TCAAGATCAA	CAGCAAACGG	AAGCGGGTAG	28800
	CAAGTTTATC	AATGAAGATA	AaccacmAAA	AGTTGCTTAC	CAAGCAGCAG	TTCAAAATGC	28860
20	AAAAGATTTA	ATTAATCAAA	CTAACAATCC	AACGCTTGAT	AAAGCACAAG	TTGAACAATT	28920
	GACACAAGCT	GTTAACCAAG	CTAAAGATAA	CCTACACGGT	GATCAAAAAC	TTGCAGACGA	28980
	TAAACAACAT	GCGGTTACTG	ATTTAAATCA	ATTAAATGGT	TTGAATAATC	CGCAACGTCA	29040
25	AGCACTTGAA	AGCCAAATAA	ACAACGCAGC	AACTCGTGGC	GAAGTAGCAC	AAAAATTAGC	29100
	TGAAGCAAAA	GCGCTTGATC	AAGCAATGCA	AGCATTACGT	AATAGTATTC	AAGATCAACA	29160
	ACAAACAGAA	TCTGGTAGCA	AGTTTATCAA	TGAAGATAAA	CCGCAAAAAG	ATGCTTACCA	29220
30	AGCAGCAGTT	CAAAATGCAA	AAGATTTAAT	TAACCAAACA	GGTAATCCAA	CACTCGACAA	29280
	ATCACAAGTA	GAACAATTGA	CACAAGCAGT	AACAACTGCA	AAAGATAATC	TACATGGTGA	29340
	TCAAAAACTT	GCTCGTGATC	AACAACAAGC	AGTAACAACT	GTAAATGCAT	TGCCAAACTT	29400
35	AAATCATGCA	CAACAACAAG	CATTAACTGA	TGCTATAAAT	GCAGCGCCTA	CAAGAACAGA	29460
	GGTTGCACAA	CATGTTCAAA	CTGCTACTGA	ACTTGATCAC	GCGATGGAAA	CATTGAAAAA	29520
40	TAAAGTTGAT	CAAGTGAATA	CAGATAAGGC	TCAACCAAAT	TACACTGAAG	CGTCAACTGA	29580
	TAAAAAAGAA	GCAGTAGATC	AAGCGTTACA	AGCTGCAGAA	AGCATTACAG	ATCCAACTAA	29640
	TGGTTCAAAT	GCGAATAAAG	ACGCTGTAGA	CCAAGTATTA	ACTAAGCTTC	AAGAAAAAGA	29700
45	AAATGAGTTA	AATGGTAATG	AGAGAGTCGC	TGAAGCTAAA	ACACAAGCGA	AACAAACTAT	29760
	TGACCAATTA	ACACATTTAA	ATGCTGATCA	AATTGCAACT	GCTAAACAAA	ACATTGATCA	29820
	AGCGACGAAA	CTTCAACCAA	TTGCTGAATT	AGTAGATCAA	GCAACGCAAT	TGAATCAATC	29880
50	TATGGATCAA	TTACAACAAG	CAGTTAATGA	ACATGCTAAC	GTTGAGCAAA	CTGTAGATTA	29940
	CACACAAGCA	GATTCAGATA	AACAAAATGC	TTATAAACAA	GCTATTGCTG	ATGCTGAAAA	30000

TGCAAAACAA	GCATTAAATG	GTGATGAACG	TGTAGCACTT	GCTAAAACAA	ATGGTAAACA	30120
TGACATCGAC	CAATTGAATG	CATTAAACAA	TGCTCAACAA	GATGGATTTA	AAGGTCGCAT	30180
CGATCAATCA	AACGATTTAA	ATCAAATCCA	ACAAATTGTA	GATGAGGCTA	AGGCACTTAA	30240
TCGTGCAATG	GATCAATTGT	CACAAGAAAT	CACTGACAAT	GAAGGACGCA	CGAAAGGTAG	30300
CACGAACTAT	GTCAATGCAG	ATACACAAGT	CAAACAAGTA	TATGATGAAA	CGGTTGATAA	30360
AGCGAAACAA	GCACTTGATA	AATCGACTGG	TCAAAACTTA	ACTGCAAAAC	AAGTTATCAA	30420
ATTAAATGAT	GCAGTCACTG	CAGCTAAGAA	AGCATTAAAT	GGTGAAGAAA	GACTTAATAA	30480
TCGTAAAGCT	GAAGCATTAC	AAAGATTGGA	TCAATTAACA	CATCTAAACA	ATGCTCAAAG	30540
ACAATTAGCA	ATCCAACAAA	TTAATAATGC	TGAAACGCTA	AATAAAGCAT	CTCGAGCAAT	30600
TAATAGAGCA	ACTAAATTAG	ATAATGCAAT	GGGTTCAGTA	CAACAATATA	TTGACGAACA	30660
GCACCTTGGT	GTTATCAGCA	GCACAAATTA	CATCAATGCA	GATGACAATT	TGAAAGCAAA	30720
TTATGATAAT	GCAATTGCGA	ATGCAGCACA	TGAGTTAGAT	AAAGTGCAAG	GTAATGCAAT	30780
TGCaAAAGCT	GAAGCAGAGC	AATTGAAACA	AAATATTATC	GATGCTCAAA	ATGCATTAAA	30840
TGGAGACCAA	AACCTTGCAA	ATGCCAAAGA	TAAAGCAAAT	GCGTTTGTTA	ATTCGTTAAA	30900
TGGATTAAAT	CAACAGCAAC	AAGATCTTGC	ACATAAAGCA	ATTAACAATG	CCGATACTGT	30960
ATCAGATGTA	ACAGATATTG	TTAATAATCA	AATTGACTTA	AATGATGCAA	TGGAAACATT	31020
GAAACATTTA	GTTGACAATG	AAATTCCAAA	TGCAGAGCAA	ACTGTCAATT	ACCAAAACGC	31080
TGACGATAAT	GCTAAA					31096

(2) INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2243 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

ATGACAGAAT	GGGAGCGAGG	ACTTAGAATG	TTTCCTAAAT	CAGGTTTATT	AAATTTTGAG	60
TTAGCGATAG	mAAATCGTTC	ATTAAATGAT	GATGAAAAAG	CATTAAAATA	TGTGCGTAAA	120
GCATTAAATG	CAGACCCTAA	AAATACAGAT	TATATTAACT	TAGAAAAAGA	GTTGACTAAA	180
TCAAATGAGT	CGAAAAATAA	ATAACTTTTA	TGATGTACAA	CAGTTATTGA	AAAGTTACGG	240
ATTTCTAATA	TATTTTAAAA	ATCCAGAAGA	TATGTACGAA	ATGATTCAAC	AGGAGATTTC	300

	TAATCAGAGA	AGGAATGAAC	AGAAATGACA	AAAATTATTT	TAGCAGCTGA	TGTAGGCGGG	420
	ACGACTTGTA	AATTAGGTAT	TTTCACACCT	GAATTAGAAC	AATTACATAA	ATGGTCTATT	480
5	CACACTGATA	CATCTGATAG	TACAGGATAT	ACACTTTTGA	AAGGAATTTA	TGATTCGTTT	540
	GTTGAAAAAG	TAAATGAAAA	TAATTATAAT	TTTTCAAATG	TACTTGGCGT	AGGTATTGGT	600
10	GTACCAGGTC	CTGTTGACTT	TGAAAAAGGT	ACAGTAAATG	GAGCAGTAAA	CTTATATTGG	660
10	CCAGAAAAAG	TTAATGTACG	TGAGATTTTT	GAACAATTCG	TTGATTGTCC	AGTGTATGTA	720
	GATAATGATG	CTAACATAGC	TGCTTTAGGG	Gagaaacaca	AAGGTGCTGG	TGAAGGTGCC	780
15	GATGATGTTG	TTGCCATCAC	ACTTGGTACA	GGTCTAGGTG	GAGGAATTAT	TTCCAAATGG	840
	TGAAATCGTA	CATGGTCATA	ATGGCTCtGG	CGCAGAAATA	GGTCATTTTA	GAGCAGACTT	900
	CGATCAACGA	TTTAAATGTA	ATTGTGGTCG	TTCTGGATGT	ATTGAAACAG	TTGCTTCaGC	960
20	GACAGGCGTT	GTTAACTTAG	TTAACTTCtA	CTATCCGAAG	TTGACGTTTA	GATCTTCTAT	1020
	ATTAGAATTG	ATTAAAGAAA	ATAAGGTLAC	aGCAAAAGCT	GTTTTTGATG	CGGCAAAAGC	1080
	TGGTGACCAA	TTCTGTATTT	TCATTACTGA	AAAGGTTGCA	AACTATATTG	GATATTTATG	1140
25	TAGTATTATT	AGTGTTACAA	GTAATCCGAA	ATATATCGTT	CTAGGTGGAG	GAATGTCTAC	1200
	TGCAGGACCT	ATTTTAATTG	AAAATATTAA	AACAGAATAT	CATAATTTAA	CATTTGCACC	1260
	TGCTCAATTT	GAAACTGAAA	TTGTACAAGC	GAAATTAGGT	AATGATGCAG	GTATTACAGG	1320
30	AGCAGCAGGA	TTAATCAAGA	CCTATGTATT	AGATAAAGAG	GGGGTAAAAT	AATGGCTATT	1380
	GTTGATGTGG	TTGTTATTCC	AGTTGGAACG	GAAGGTCCGA	GTGTTAGTAA	ATATATTGCA	1440
35	GATATTCAGA	AAAAACTTCA	AGAATATAAA	GCAATGGGTA	AAATTGATTT	TCAATTAACA	1500
	CCAATGAATA	CTCTAATTGA	AGGTGAATTA	AGCGATGTAT	TAGAAGTTGT	GCAAGTGATA	1560
	CATGAATTAC	CTTTTGATAA	AGGTTTAAGT	AGAGTTTGTA	CAAATATCCG	TATTGATGAC	1620
40	CGACGAGACA	AATCTAGAAA	AATGAATGAT	AAACTAACAT	CAGTACAAAA	ACATTTAGAA	1680
	AATAGTGGTG	AAAACCTATG	AGGATTTCAA	GCTTAACTTT	AGGCTTAGTT	GATACTAATA	1740
	CGTATTTCAT	CGAAAATGAC	AAAGCTGTTA	TTCTGATTGA	CCCTTCAGGT	GAAAGTGAAA	1800
45	AAATTATTAA	AAAATTAAAC	CAAATAAATA	AACCGTTAAA	AGCTATTTTA	TTAACACATG	1860
	CACACTTTGA	TCATATCGGA	GCAGTCGATG	ATATAGTTGA	TCGATTCGAT	GTCCCGGTTT	1920
	ATATGCATGA	AGCAGAGTTT	GATTTTCTAA	AAGATCCCGT	TAAAAATGGG	GCAGATAAAT	1980
50	TTAAGCAATA	TGGATTACCA	ATTATTACAA	GTAAGGTAAC	TCCTGAAAAG	TTAAmCGAAG	2040
	GTAGCACAGA	AATAGAAGGA	TTTAAGTTnT	nAyrTGTaCA	CACACCTGGA	CATTCACCAG	2100

	GAATCGGACG TACAGATTTA TATAAAGGTG ATTATGAAAC GCTAGTTGAT TCTATTCAAG	2220
	ATAAAATATT TGAATTAGAA GGC	2243
5	(2) INFORMATION FOR SEQ ID NO: 61:	
10	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 8009 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
15	TTGGnATCAT tyAcgGTAAA AAGAATAAAG CAAGATTLAT TTCATTAGTA CTAATTTGTG	60
	CAATGTTTGC AATTTGTTGG GTTGCATATA TTCAATGGGA GTCTACAATC GCTTCATTTA	120
20	CACAATCTAT TAATATTTCa ATGGCACAAT ATAGTGTTTT ATGGACAATT AACGGAATAA	180
	TGATTTTAGT AGCACAACCA TTAATTAAAC CGATTCTCTA TCTGTTAAAA GGAAACTTAA	240
	AGAAGCAAAT GTTTGTCGGC ATCATCATTT TTATGTTGTC GTTCTTTGTC ACGAGTTTTG	300
25	CCGAAAACTT TACAATATTT GTTGTCGGTA TGATTATTTT AACTTTTGGA GAAATGTTTG	360
	TATGGCCAGC AGTTCCAACT ATAGCCAATC AGTTAGCGCC AGATGGTAAG CAAGGACAGT	420
	ACCAAGGTIT TGTGAATTCA GCTGCTACAG TAGGAAAAGC ATTTGGTCCA TTTCTTGGTG	480
30	GTGTATTAGT TGATGCGTTT AATATGCGCA TGATGTTTAT CGGTATGATG CTACTACTTG	540
	TATTTGCATT AATATTATTA ATGGTTTTCA AGGAGAATAA TACGCAACCT AAAAAAATAG	600
	ATGCATAATG AGTAAATAGA ATTAACGTTA TAGACTTGAA ATAAATGTCG TTATAACATA	660
35	ATATTAATTT GTATAATTTA ATTTCGTTTG GAGCTTTTCT ACAGAAAGCT AGTGATGCTG	720
	AGAGÇTAGTG TTAAGGACTA AATGTAAATC GTATTAATTT TAAATTGAAT GAATGACATC	780
	TCTTACTATT AAAATGAGTG CACAATTTTT GTGAAATAGG GTGGTAACGC GGCAAATGTC	840
40	GTCCCTATGT AAATAGAATA GTTAGAGGTG TCTTTTTAT TGAATAGGAG GAAATGTGTT	900
	GAATTACAAC CACAATCAAA TTGAAAAGAA ATGGCAAGAC TATTGGGACG AAAATAAAAC	960
45	ATTTAAAACA AATGATAACT TAGGTCAAAA GAAATTTTAT GCTTTAGACA TGTTTCCATA	1020
. •	TCCATCAGGT GCTGGTTTAC ATGTTGGACA TCCTGAGGGC TATACAGCAA CAGATATCAT	1080
	TTCAAGATAT AAAAGAATGC AAGGATATAA TGTATTACAT CCGATGGGGT GGGATGCATT	1140
50	CGGATTACCA GCAGAGCAAT ATGCTTTAGA CACTGGCAAC GACCCACGTG AATTTACAAA	1200

GAAAAATATC CAAACTTTTA AACGACAAAT TAAAGAATTA GGGTTCAGTT ATGATTGGGA 1260

	GITATATAAC	AAAGGTTTAG	CATACGTTGA	TGAAGTTGCA	GTTAACTGGT	GTCCAGCATT	138
	AGGCACTGTT	TTATCTAACG	AAGAAGTGAT	TGATGGTGTC	TCTGAACGTG	GTGGACATCC	144
5	AGTTTATCGT	AAGCCGATGA	AACAATGGGT	ACTTAAAATC	ACAGAATATG	CAGATCAATT	150
	ATTAGCAGAT	TTAGATGATT	TAGATTGGCC	TGAGTCTTTA	AAAGATATGC	AGCGCAATTG	156
10	GATTGGACGT	TCTGAAGGGG	CCAAAGTTTC	ATTTGATGTA	GATAATACGG	AAGGAAAAGT	162
10	AGAAGTATTT	ACGACTAGAC	CAGATACAAT	CTATGGTGCA	TCATTCTTAG	TCTTAAGTCC	1680
	TGAACATGCA	TTAGTTAATT	CAATTACAAC	AGATGAATAT	AAAGAAAAAG	TAAAAGCTTA	174
15	TCAAACAGAA	GCTTCTAAAA	AGTCAGATTT	AGAACGTACA	GATTTAGCAA	AAGATAAATC	1800
	AGGTGTATTT	ACTGGTGCAT	ATGCAACTAA	TCCTTTATCT	GGTGAAAAAG	TACAAATTTG	1860
	GATTGCTGAT	TATGTATTAT	CAACATATGG	TACTGGAGCA	ATTATGGCAG	TACCAGCGCA	1920
20	TGATGACAGA	GATTATGAAT	TTGCTAAAAA	GTTTGATTTG	CCAATCATTG	AAGTCATCGA	1980
	AGGTGGAAAT	GTTGAAGAAG	CAGCATACAC	TGGTGAAGGT	AAACATATTA	ATTCTGGTGA	2040
	ACTTGATGGT	TTAGAAAATG	AAGCGGCAAT	TACTAAAGCT	ATTCAATTAT	TAGAGCAAAA	2100
25	AGGTGCTGGC	GAAAAGAAAG	TTAATTACAA	ATTAAGAGAT	TGGTTATTCA	GTCGTCAGCG	2160
	TTATTGGGGC	GAACCAATTC	CTGTCATTCA	TTGGGAAGAT	GGAACAATGA	CAACTGTTCC	2220
	TGAAGAAGAG	CTACCATTGT	TGTTACCTGA	AACAGATGAA	ATCAAGCCAT	CAGGGACTGG	2280
30	TGAGTCTCCA	CTAGCTAATA	TTGATTCATT	TGTAAATGTT	GTAGATGAAA	AAACAGGTAT	2340
	GAAAGGACGT	CGTGAAACAA	ATACAATGCC	ACAATGGGCA	GGTAGTTGTT	GGTATTATTT	2400
25	ACGTTACATC	GATCCTAAAA	ATGAAAATAT	GTTAGCAGAT	CCTGAAAAAT	TAAAACATTG	2460
35	GTTACCTGTT	GATTTATATA	TCGGTGGAGT	AGAACATGCG	GTTCTTCACT	TATTATATGC	2520
	AAGATTTTGG	CATAAAGTCC	TTTATGATTT	GGCTATCGTA	CCTACTAAAG	AACCTTTCCA	2580
40	TTTATTAAAA	AACCAAGGTA	TGATTTTAGG	AGAAGGTAAT	GAGAAGATGA	GTAAATCTAA	2640
	AGGAAATGTA	ATCAATCCTG	ATGATATAGT	ACAGTCTCAT	GGTGCAGATA	CTTTGCGTCT	2700
	TTACGAAATG	TTTATGGGAC	CTTTAGATGC	TGCAATTGCA	TGGAGTGAAA	AAGGATTAGA	2760
45	TGGGTCTCGT	CGATTCTTAG	ATCGCGTATG	GCGTTTAATG	GTAAATGAAG	ATGGGACATT	2820
	GAGTTCAAAA	ATTGTAACTA	САААТААТАА	ATCTTTAGAT	AAAGTTTATA	ACCAAACTGT	2880
	TAAAAAGGTA	ACAGAAGACT	TTGAAACATT	AGGATTTAAT	ACTGCTATTA	GTCAATTAAT	2940
50	GGTATTTATT	AATGAGTGTT	ATAAAGTTGA	TGAAGTTTAT	AAACCTTACA	TTGAAGGCTT	3000
	CGTTAAAATG	TTAGCACCTA	TTGCACCACA	TATCGGTGAA	GAATTATGGT	CAAAATTAGG	3060

	TGATGAAGTA	GAAATCGTTG	TTCAAGTGAA	TGGTAAATTG	AGAGCTAAAA	TTAAAATTGC	3180
	TAAAGATACA	TCAAAAGAAG	AAATGCAAGA	AATTGCCTTA	TCTAATGACA	ATGTTAAAGC	3240
5	GAGTATTGAA	GGTAAAGACA	TCATGAAAGT	CATCGCTGTT	CCTCAAAAAT	TAGTCAATAT	3300
	TGTAGCTAAA	TAATGTTTTA	AGGAGGACTT	TGAAATGAAG	TCAATTACTA	CAGATGAATT	3360
	AAAAAATAAA	CTTTTAGAAT	CTAAACCAGT	TCAAATTGTT	GATGTTCGTA	CTGATGAAGA	3420
10	AACAGCAATG	GGATATATTC	CTAATGCAAA	GTTAATTCCA	ATGGATACCA	TTCCGGATAA	3480
	TTTAAATTCA	TTTAATAAAA	ATGAAATATA	TTATATTGTA	TGTGCTGGTG	GAGTTCGAAG	3540
15	CGCTAAAGTT	GTAGAATATT	TAGAGGCAAA	TGGCATTGAT	GCCGTAAATG	TCGAAGGCGG	3600
,5	CATGCACGCA	TGGGGCGATG	AAGGTTTGGA	AATAAAAAGT	ATTTAAAGTA	GTGACATAAT	3660
	TAAAAATAAT	ATTACATTTG	TAATGACACC	AAGTAACGTT	TCGGTTGCTT	GGTGTTTTTT	3720
20	GGTATGAATT	ACTTTCTGTT	ACAAAACAAT	CTAAAGCGTT	CTTGTTATGT	TTTATTAAGA	3780
	TTTTAATTAC	AAAACGGAAA	CTAAATTGTA	AAATĀĀĀĀTĀ	ACTTTATTTT	ATAAAATGAT	3840
	GATGATAAAA	TTGAGTGAAC	TTAAAATATT	GTACAAAATA	ATATAGCTAT	AAATATAATA	3900
25	TAGCTATAAA	TATAATATGA	GGGAGCGTAT	ATTTTTAGCA	TAATTCTTAA	CAACACAGCA	3960
	GAGAACAGAC	AACCAGGAGG	AAAATGAAAT	GAATTTGTTA	AAGAAAAATA	AATATAGTAT	4020
	TAGGAAGTAT	AAAGTAGGCA	TATTCTCTAC	TTTAATCGGA	ACAGTTTTAT	TACTTTCAAA	4080
30	CCCAAATGGT	GCACAAGCCT	TAACTACGGA	TAATAATGTA	CAAAGCGATA	CTAATCAAGC	4140
	AACACCTGTA	AATTCACAAG	ATAAAGATGT	TGCTAATAAT	AGAGGTTTAG	CAAATAGTGC	4200
	GCAGAATACA	CCTAATCAAT	CTGCAACAAC	CAATCAAGCA	ACGAATCAAG	CATTGGTTAA	4260
35	TCATAATAAT	GGTAGTATAG	TAAATCAAGC	TACGCCAACA	TCAGTGCAAT	CAAGTACGCC	4320
	TTCAGCACAA	AACAATAATC	ATACAGATGG	CAATACAACA	GCAACTGAGA	CAGTGTCAAA	4380
40	CGCTAATAAT	AATGATGTAG	TGTCGAATAA	TACCGCATTA	AATGTACCAA	СТААААСААА	4440
	TGAAAATGGT	TCAGGAGGAC	ATCTAACTTT	AAAGGAAATT	CAAGAAGATG	TTCGTCATTC	4500
	TTCAAATAAA	CCAGAGCTAG	TTGCAATTGC	TGAACCAGCA	TCTAATAGAC	CGAAAAAGAG	4560
<b>4</b> 5	AAGTAGACGT	GCGGCACCGG	CAGATCCTAA	TGCAACTCCA	GCAGATCCAG	CGGCTGCAGC	4620
	GGTAGGAAAC	GGTGGTGCAC	CAGTTGCAAT	TACAGCGCCA	TATACGCCAA	CAACTGATCC	4680
	TAATGCCAAT	AATGCAGGAC	AAAATGCACC	TAACGAAGTG	CTGTCATTTG	ATGACAATGG	4740
50	TATTAGACCA	AGTACCAACC	GTTCTGTGCC	AACAGTAAAC	GTTGTTAATA	ACTTGCCGGG	4800
	CTTCACACTA	ATCAATGGTG	GCAAAGTAGG	GGTGTTTAGT	CATGCAATGG	TAAGAACGAG	4860

	ICGIAIACAT	GGAACTGATA	CGAATGACCA	TGGCGATTTT	AATGGTATCG	AGAAAGCATT	4980
	AACAGTAAAT	CCGAATTCTG	AATTAATCTT	TGAATTTAAT	ACAATGACTA	CTAAAAACGG	5040
5	TCAAGGCGCA	ACAAATGTTA	TTATCAAAAA	TGCTGATACT	AATGATACGA	TTGCTGAAAA	5100
	GACTGTTGAA	GGCGGTCCAA	CTTTGCGTTT	ATTTAAAGTA	CCTGATAATG	TGAGAAATCT	5160
	CAAAATTCAA	TTTGTACCTA	AAAATGACGC	AATAACAGAT	GCGCGTGGCA	TTTATCAACT	5220
0	AAAAGATGGT	TACAAATACT	ATAGCTTTGT	TGACTCTATC	GGACTTCATT	CTGGGTCACA	5280
	TGTTTTTGTT	GAAAGACGAA	CAATGGATCC	AACAGCAACA	AATAATAAAG	AGTTTACTGT	5340
5	AACAACATCA	TTAAAGAATA	ATGGTAATTC	TGGTGCTTCT	CTAGATACAA	ATGACTTTGT	5400
5	ATATCAAGTT	CAATTACCTG	AAGGTGTTGA	ATATGTGAAC	AATTCATTGA	CTAAAGATTT	5460
	TCCAAGTAAC	AATTCAGGCG	TTGATGTTAA	TGATATGAAT	GTTACATATG	ATGCAGCAAA	5520
0	TCGTGTGATA	ACAATTAAAA	GTACTGGAGG	AGGTACAGCA	AACTCTCCGG	CACGACTTAT	5580
	GCCTGATAAA	ATACTCGATT	TAAGATATAA	ATTACGTGTA	AATAATGTGC	CGACACCAAG	5640
	AACAGTAACA	TTTAACGAGA	CATTAACGTA	TAAAACATAT	ACACAAGATT	TCATTAATTC	5700
5	AGCTGCAGAA	AGTCATACTG	TAAGTACAAA	TCCATATACT	ATCGATATCA	TCATGAATAA	5760
	AGATGCATTA	CAAGCCGAAG	TTGACAGACG	TATTCAACAA	GCTGATTATA	CATTTGCGTC	5820
	ATTAGATATC	TTTAATGGTC	TGAAACGACG	CGCACAAACG	ATTTTAGATG	AAAATCGTAA	5880
0	CAATGTACCA	TTAAATAAAA	GAGTTTCTCA	AGCATATATT	GATTCATTAA	CTAATCAAAT	5940
	GCAACATACG	TTAATTCGAA	GTGTTGATGC	TGAAAATGCA	GTTAATAAAA	AAGTTGACCA	6000
	AATGGAAGAT	TTAGTTAATC	AAAATGATGA	ATTGACAGAT	GAAGAAAAAC	AAGCAGCAAT	6060
15	ACAAGTTATC	GAGGAACATA	AAAATGAAAT	AATTGGTAAT	ATTGGTGACC	AAACGACTGA	6120
	TGATGGCGTT	ACTAGAATCA	AAGATCAAGG	TATACAGACC	TTAAGTGGGG	ATACTGCAAC	6180
0	ACCGGTTGTT	AAACCAAATG	CTAAAAAAGC	AATACGTGAT	AAAGCAACGA	AACAAAGGGA	6240
•	AATTATCAAT	GCAACACCAG	ATGCTACTGA	AGACGAGATT	CAAGATGCAC	TAAATCAATT	6300
	AGCTACGGAT	GAAACAGATG	CTATTGATAA	TGTTACGAAT	GCTACTACAA	ATGCTGACGT	6360
5	TGAAACAGCT	AAAAATAATG	GCATCAATAC	TATTGGAGCA	GTTGTTCCTC	AAGTAACTCA	6420
	TAAAAAAGCT	GCAAGAGATG	CAATTAACCA	AGCAACAGCA	ACGAAAAGAC	AACAAATAAA	6480
	TAGTAATAGA	GAAGCAACTC	AGGAAGAGAA	AAATGCAGCA	TTGAACGAAT	TAACTCAAGC	6540
0	AACCAACCAT	GCTTTAGAAC	AAATCAATCA	AGCAACAACA	AATGCTAATG	TTGATAACGC	6600
	CAAAGGAGAT	GGTCTAAATG	CCATTAATCC	AATTGCTCCT	GTAACTGTTG	TTAAGCAAGC	6660

TGATGCGACT	CAAGAAGAAA	GACAAGCAGC	AATTGACAAA	GTGAATGCTG	CTGTAACTGC	6780
AGCAAACACA	AACATTTTAA	ACGCTAATAC	CAATGCTGAT	GTTGAACAAG	TAAAGACAAA	6840
TGCGATTCAA	GGAATACAAG	CAATTACACC	AGCTACAAAA	GTAAAAACAG	ATGCAAAAA	6900
TGCCATCGAT	AAAAGTGCGG	AAACGCAACA	TAATACGATA	ATAATAATT	ATGATGCGAC	6960
GCTCGAAGAA	CAACAAGCAG	CACAACAATT	ACTTGATCAA	GCTGTAGCCA	CAGCGAAGCA	7020
TAATTATAAA	GCAGCAGATA	CGAATCAAGA	AGTTGCACAA	GCAAAAGATC	AGGGCACACA	7080
AAATATAGTA	GTGATTCAAC	CGGCAACACA	AGTTAAAACG	GATACTCGCA	ATGTTGTAAA	7140
TGATAAAGCG	CGAGAGGCGA	TAACAAATAT	CAATGCTACA	ACTGGCGCGA	CTCGAGAAGA	7200
GAAACAAGAA	GCGATAAATC	GTGTCAATAC	ACTTAAAAAT	AGAGCATTAA	CTGATATTGG	7260
TGTGACGTCT	ACTACTGCGA	TGGTCAATAG	TATTAGAGAC	GATGCAGTCA	ATCAAATCGG	7320
CGCAGTTCAA	CCGCATGTAA	CGAAGAAACA	AACTGCTACA	GGTGTATTAA	ATGATTTAGC	7380
AACTGCTAAA	AAGCAAGAAA	TTAATCAAAA	<u> ČAČAAATGCA</u>	ACAACTGAAG	AAAAGCAAGT	7440
GGCTTTAAAT	CAAGTGGATC	AAGAGTTAGC	AACGGCAATT	AATMATATAA	ATCAAGCTGA	7500
TACAAATGCG	GAAGTAGATC	AAGCGCAACA	ATTAGGTACA	AAAGCAATTA	ATGCGATTCA	7560
GCCAAATATT	GTTAAAAAAC	CTGCAGCATT	AGCACAAATC	AATCAGCATT	ATAATGCTAA	7620
ATTAGCTGAA	ATCAATGCTA	CACCAGATGC	AACGAATGAT	GAGAAAAATG	CTGCGATCAA	7680
TACTTTAAAT	CAAGACAGAC	AACAAGCTAT	TGAAAGTATT	AAACAAGCTA	ACACAAATGC	7740
AGAAGTAGAC	CAAGCTGCGA	CAGTAGCAGA	GAATAATATC	GATGCTGTTC	AAGTTGATGT	7800
agtaaaaaa	CAAGCAGCGC	GAGATAAAAT	CACTGCTGAA	GTGGcGAacG	TATTGaAGCG	7860
GTTAAACAAA	CACCTAATGC	AACTGACGAA	GAAAAGCAGG	CTGCTGTTAA	TCAAATCCAA	7920
TCAĄCTTTAA	AGATTCAAGC	AATTTAATCC	AAATTTAATC	CAAAACCCAA	ACAAATGGAT	7980
TCAGGGTAGG	ACACCACTTA	CAAATCCAA				8009

(2) INFORMATION FOR SEQ ID NO: 62:

5

10

15

20

25

30

35

40

45

50

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10953 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

60

ACCCACCCC TGGGGATANT TTACCTGGTG GGGCCTTCGA TTGCCTTTAG GTGAAACCAG

	AGATGAATGC	TAACCATATT	CATTCTGCTA	AAGATGGTCG	TGTTACTGCG	ACAGCTGAAA	180
	TTATTCATCG	AGGTAAGTCG	ACACATGTAT	GGGATATAAA	AATTAAGAAT	GACAAAGAAC	240
5	AATTAATTAC	AGTTATGCGT	GGTACAGTTG	CTATTAAACC	TTTAAAATAA	AAGAACTGCT	300
	AGCTGAAATG	TTATGAGATA	TTCATAACTA	CGGCTAGCAG	TTTTTTTATG	CGCTATATTG	360
	TTGTAGTTTT	AGAAATGCTT	GTTCAATGCG	TTCGGCAGCT	TTACGGCCAC	CCATAACATT	420
10	TCTACCAAAT	GGTCCTAATT	CTAAGTCTGC	AAAGCATCCT	GCGACAAATA	GATTTGGTAT	480
	CCATTCTAAT	TTTTCGGAAA	TAACAGGGTA	ATTACATTCG	TTGATAGGTG	CATCATAATT	540
15	TTGTATTAAT	TGCTTAATAA	GTGGTTGTGA	CATAAAATCT	TGTTCAAAAC	CAGTTGCAAC	600
Ü	CATAATCTGT	TGATATGGAA	CAGAATCATT	TTCAGTGTTA	ATTACACCAC	CACTAATTTG	660
	AGTGATAGGT	GTTTTATGCa	CATTTATACG	ACCATTTTTA	ATATGTTTTT	TAAGGCGTAA	720
20	GTACAGTTCG	TGAGGCATTG	ATCCTTTATG	ACGTTCGCGT	TGTACAATGG	CATTTCTTTC	780
	AGGCATGCTT	TTAGTACTTA	AAAATGAAGA	CATATTTTTC	GGACCTAACC	AACCAGGATC	840
	AGCATCAAAG	TCATGTATTT	CAATATCTTT	ATTTAGCCAT	AAATGAATCT	TTTTATCGTT	900
25	ATCATGATTT	AACAATTTAA	GTGCAAGATG	TGCAGCAGTa	ATGCCGCTAC	CAACGATATG	960
	ATCGGTCTTA	TCATATACTA	CTTGATCAAG	TTCTTTCTCG	AAGATATGAT	TTACATTCTG	1020
	TTTGTCTTTT	AAAATGTCAG	GCATAAACGG	AATATTTGTA	CTGCCTATTG	CAATAACGAC	1080
30	GCAATCTGTA	GTGATAATTT	GTCCATCTTC	TAACTTGATA	TGCCATTTGT	CTTCTTGTTT	1140
	ATCTAAAGTT	TGAACTAAAC	CTTGAACCAA	GCAATCCTCT	AATTGATATT	GTTTAGAAGC	1200
	ATGTGCAATA	TGATCCATAA	ACATTGTCAA	TTCAGGTCGT	TGATAAGGAC	CATAAAAAGC	1260
35	ATTTGTATAT	TGGTGCTGTT	TAGCGAATTG	TTTTAGATGG	AACGGTTGTG	GATGTACGTG	1320
	ATGTACAATC	GGTGATCTTA	AATAAGGCAT	TTCTATTCGA	TTTGTATATG	AGTTAAACCT	1380
10	TTGGCAAAAA	GTTTCGTGTG	GGTCAATGAT	TGTTAATCGG	TCTGTTGTTA	ATCCGCTTGA	1440
	TAATAGTTTT	TGTGCGATTG	CAGTTCCCTG	TATGCCACCG	CCGATAATTG	TCCAATGCAT	1500
	AATAAAACCT	CTCTCTTTTT	AAAACGTAAT	AGTTACGATT	TATAATTATT	ATTATCATAA	1560
15	TACATAACGA	CATGAAAGGC	AATTAAATTA	AAGAGATATA	TGTAGATAGG	GCGAATCTGT	1620
	AGTCAAAGAA	AAAATCATTG	AAAAAGAGGT	AACAATGTCA	AAAGAWAACA	GCAGTAAAAT	1680
	CATTCCTAAT	TTGGAATCAT	CTTACTGCTG	TTTGTTGTTG	ATTTATATTC	ATGATTTTGT	1740
60	TATATAATCT	ACAATTTTGT	GTCTTTTAAG	TCTTCCGAAA	TTTCATCGAC	TTTAGTCTTT	1800
	TTAGTATAAG	GCGTTTTAAT	ATTATATGCT	GCTTTCATAA	TCATATGACT	TGAAAGAGGA	1860

	GCAATAAAAT	ATAAAAACGT	ACCAAATAGT	AATGACATTG	CACCTAATGT	TGATGCTTTT	1980
	CCGGCAGCAT	GTGCACGTGA	ATATACATCT	TCAAGTCTCA	ATAATCCTAT	AGCTGCTAGG	2040
5	GCGCTAATTA	AAGCACCGAT	GATAACAAAG	ATAAGTGCAA	GACTAATCAG	TATGATTTTG	2100
	ATCATGTTCA	ATCACCTTAC	CTTTGTCCAT	AAATTTAGAG	AATACTGCAG	TACCTAAAAA	2160
	AGCTAATATA	CCAATCATCA	TAATAACGAC	AATCATGTAT	TTAATATTTA	ATAAAATACT	2220
10	GAATAATGCT	ATAACTGCCA	TTAATTGAAG	ACCAATCGCA	TCTAATGCGA	CAACACGATC	2280
	GGCAAGTGAT	GGGCCTAGCA	CAACGCGAAT	GAGCATAGCT	AACATAGAAA	TGACAACTAT	2340
15	GATTAATGCA	ATAACGATAA	TAACATTATG	ATTCATTATA	TTTCGCCCAC	CTCTCTTACA	2400
, ,	ATTTTCTCTA	ATGATGTTTT	AATACTTTCT	ACTTCTTGCT	CTTTAGTTGA	AAAATCTATG	2460
	GCATGAATAT	AAATTTTTGT	ACGATCGTCA	CTTACACCAA	GCACTACAGT	ACCAGGTGTT	2520
20	AATGTAATTA	AATTAGACAG	CAAGACAATT	TGCCAATCTT	TTTTTAAATC	TGTGTGATAA	2580
	ACAAAGAATC	CTGGTTCATT	TTTAATCGAA	GGTTTAATAA	TAATTTTCAA	AACATCAAAA	2640
	TTAGCTTTAA	TCAGTTCGAT	TAAGAAAATA	ATAACTAATT	TAATAATACG	ATATAGCGTG	2700
25	ATGACATAAA	ATCTACCTGG	TAACACTCTG	TGTAAGAGGT	AAACAAGAAC	TAGGCCAAAG	2760
	ATGAAACCTA	ACACAAAGTT	ATTTGTTGTG	TAACTATTTG	TCACAAACAA	CCAAAACACT	2820
	GCGATAATAA	AGTTTAATAC	TAATTGTACA	GCCATGTTAT	TTACCTCCTA	ATACAGCTTT	2880
30	AACGTAGGTT	GATGGATTGT	AGAATGTTTC	TGCACCAGCT	TTTACCATTG	GATATAAGTA	2940
	ATCTGCTGAC	AATCCATATA	AAACAGTTAT	CACAACTGCA	ACGATTGCAA	TCGTAGTTAA	3000
	ATATTTGACG	TCGACTTTGT	TATTAAGATC	ATATCCTTTT	GGTTGACCGA	AAAAGCCTTG	3060
35	TAGGAATATG	CGAATGACAG	AATATAATAC	GACTAAACTT	GATAATAAGA	CGATGACACC	3120
	ACTŢĀAATAA	AATCCTCTTT	CAAATGTTGA	TTGGACAATA	AAAAATTTTC	CATAAAAGCC	3180
40	ACTGAGTGGG	GGAATGCCAG	CTAAACTTAA	TGCTGCGATA	AAGAATGACC	AACCAAGTAC	3240
40	AGGATATCGT	TTAATTAAGC	CACCAAATTG	TCTTAAATCA	GCAGTGCCTG	TAATTTTAAT	3300
	CATAATTCCG	ATAAGCAAGA	ATAATGCAAG	TTTTACTAAC	ATGTCGTGCA	ATGTATAGTA	3360
<b>4</b> 5	AATAGCCCCA	ATCATACCTG	ACTCTGTCAT	CATTGCAACG	CCGACTAAGA	TCACACCTAC	3420
	AGCAATCATG	ACATTGTATA	GGATGATTTT	TTTAATGTTG	GCATATGCAA	CAGCACCGAC	3480
	ACAACCAAAG	ATGATCGTTA	ATAGTGCTAA	GAATAAAATG	ACATAATGTG	AAAAGCTTAC	3540
50	ATTATCACTA	AAGAATAGGC	TCAATGTTCT	AGCGATTGCA	TAAACACCAA	CTTTTGTTAA	3600
	CAAAGCACCA	AAGAATGCAA	TGATTGGAAT	TGGTGGgCAT	AGTATGCACT	AGGTAACCAA	3660

	ATATTGACTA	AGCCACTGTC	ATGCGCTGAA	AGGTTAGCTA	ATTTATTGCT	TATATCTGCT	3780
	AGATTCAATG	TTCCTACTAC	TGAATATAAA	ATCGCTACAC	CCATTACGAA	GAAGGATGAC	3840
5	GATACAACGT	TAACAAGAAC	ATATTTTATT	GTTTCTTGTA	GTTGAATTTT	TGTAGAACCA	3900
	ATTACTAATA	AGAAATAAGA	TGACATTAAA	AATACTTCGA	AAAATACGAA	TAGGTTGAAA	3960
	ATGTCACCAG	TTGTGAATGC	ACCAATGATA	CCTATTAACA	TAAATAGTAC	TGAAAAATAA	4020
10	TAATAATATC	TTTCACGTTC	AATACCAATT	GTTTGGTATG	AATATAAAAT	CACAATAGCT	4080
	GTAATAATAA	TACTAGTAAT	TATTAGTAGG	GCACTGAATA	TGTCTAATAC	AAAGACAATA	4140
15	CTGTATGGTG	CTTTCCATGA	ACCTAGCTCT	ACGCGTATTG	GTCCATGTTT	AACAACATTT	4200
	GCTAAATTGA	TAATTGCCGC	GACCAAGGTT	AATAATGTAC	CGCCTAGTGC	GACATAACGC	4260
	TTTATAATAG	GACGCTTTCC	AATAAAGACA	AGTAATATGG	CTGTAATTAC	TGGAATAACT	4320
?0	AGCGTTAACA	CAAGCATATT	ACTTTCAATC	ATCTTCTGGA	ACTCCTTTCA	TACTCTCAAC	4380
	GTTATCTGTG	CCTAATTCTT	TATATGTTCT	AAATGCTAAT	ACTAAGAAAA	AGGCTGTTGT	4440
	CGCAAgGCGA	TAACGATTGC	TGTTAAAATA	AGTGCTTGCG	GGaTAGGaTC	AACATAGCTT	4500
?5	TTTACGTTCG	CTTCATAAAT	TGGAACAGTA	CCATGTTTAA	GTCCGCCCAT	AGTTATTAAA	4560
	AATAAATTTG	CTGCATGTGT	TAATAGTGTA	GTTCCCATAA	CAATTCGTAT	CAGACTTTTA	4620
	GACAAAACGA	GATAGACACT	AATTGCTGTG	AGAATACCAC	TAACAAAAAT	CATAATAATT	4680
30	TCCACTATTC	GTTCTCTCCA	ATCGAAATAA	TAATTGTCAT	GACAGTACCA	ACTACTGCAC	4740
	ATAAAACACC	GAAATCAAAG	AATACTGCTG	TTGTCATATG	AACAGGTTCT	AATATAAATA	4800
	ACGGTATATC	AAATGTGACA	TGCGTAAAGA	AATTTTTGCC	TAAAAACCAA	CTTGCGATAG	4860
35	GCGTCGCAAT	ACAAAAAACT	AATCCGATAC	CTATCAAGAT	TTTAAAATCT	AATGGGAAAA	4920
	TTTTACGCAT	TGTTTCTATA	TCAAATGCAA	TCGTAATGAT	AACAAGTGAA	CTTGCGAATA	4980
10	ATAATCCGCC	GACGAAACCG	CCACCAGGTG	TATAATGTCC	TGCTAAGAAA	AGTGAAAAAC	5040
	CAAAGACCAT	TACCATGAAA	AAGATAATAA	CTGCAGCAAA	TTGCAAAATT	AGATCATTTT	5100
	GTTGTCTATT	CATGATTTTT	CACCTCGTTA	CCTTGCGTTT	GACGCTTTTT	ACGTAATTTA	5160
15	ATCATTGTAT	ATACAGCTAA	TCCTGCGATA	CCAAGCACAG	ATGACTCGAA	TAAAGTATCC	5220
	ATACCACGGA	AATCAACAAG	TATGACGTTT	ACCATGTTTT	TACCGTGAGC	tAAATCATAA	5280
	ACGTGCTCTT	GATAAAACTT	AGATATCGAT	TCAAAATGTC	TATTTCCGTA	TGCAATTAAA	5340
50	CCGATAATAA	TGACGGACAA	ACCAACACCA	CCAGCAATTA	AAGCATTAGT	AAGCTGGAAT	5400
	GAGCGCTTTT	CATTATAACG	ATTTAAATTT	GGTAAGTGGT	AGAAGCATAA	TAAGAACAAT	5460

	ATAAACAATA	CAGACACAGC	ATATCCAACT	GCACTTAACA	TAATGATGCT	AAATAATCTT	5580
	GATTTAGCGA	AAAGAATTAA	AAAGGCAGCA	CTTAATAATA	AAATTACGAT	ACAAACTTCG	5640
5	AAAATTCTAA	TCGGACTAAC	GTCTTTAAAA	TTAATGTTGA	AAGGTACTGA	GAATATAGTG	5700
	ACAAATGTTA	ATAAAATTAA	TGCACCAAAA	ATGATAACTA	AATTATTACG	TGAATAATCG	5760
	GTAACATAGC	TATTCGTCAT	CTTTTCAGAG	TAGTTTGGAA	TAACATTTGC	ACTTCTGTTG	5820
10	TACCAATAAT	TGAATGTTAG	TTTACCAGGT	TGTCGTTGCA	ACAATTTCAC	CCAATAACTA	5880
	AATGTCACAA	TTAGTAAGAT	ACCTAAAATA	TAAATCACTA	ATGTTGATAA	AAAGGCAGGC	5940
15	GTTAATCCAT	GGAACATATG	GAATTCAACA	TCATCAATTA	CCGTATGATT	AATCGAAGag	6000
	TnAGCTGGTT	CAATAATCGA	ATTAGTTAAA	ATGCCAGGGA	ATAAACCAAA	TACAATTACT	6060
	AATGTAGCTA	AAATAGCTGG	TGATAAAAGC	ATTAATATTG	ATACTTCGTG	TGCTTTTTTA	6120
20	GGTAATTGTT	CAGGTTTATA	TTGTCCGAAA	AATATATGCA	TTATAAATTT	AATTGAATAT	6180
	ĀČAAATGTGA	AGACACTGCC	CACTATACCA	ATGATTGGGA	ATAGGTAGCC	TAATGTATCA	6240
	ACACTGAATA	AATTTGCTTG	GCTTGCTGTA	AATGTTGTTT	CTAAAAATGA	TTCTTTTGAT	6300
25	AAGAAACCAT	TGAACGGTGG	TACACCAGCg	CATACTTAAT	GCTGTAATAA	CAGTGATTGT	6360
	AAATGAAATA	GGCATAATTG	TTAGTAAGCC	ACCTAATTTC	TTAACATCAC	GTGTACCAGT	6420
	AGAATGATCC	ACTGCACCTG	TAATCATAAA	TAGGGCACCT	TTAAATGTTG	CATGGTTGAT	6480
30	TAAATGGAAT	ATTGCAGCCG	TAAATGCAGC	AGCATATATT	TTGCTATCAT	CGCCTTGATA	6540
	GTGATAACTA	ATGGCACCGA	TTCCAAGCAT	CGCCATAATC	ATACCTAATT	GGGATACTGT	6600
	TGAAAATGCC	AGTATACCTT	TCAAGTCTTG	TTGTTTTGTT	GCGTTTAGCG	AAgcccagaa	6660
35	TAATGTAATT	AAACCAACGA	GTGTGACAGT	CCATACCCAA	CCTTGCGATG	CTGCGAAGAT	6720
	TGGTGTCATT	CGAGCGATTA	AATATAACCC	TGCTTTAACC	ATTGTTGCTG	AATGAAGATA	6780
40	AGCACTGACT	GGTGTAGGTG	CTTCCATTGC	ATCTGGTAGC	CAAATATAAA	ATGGAAACTG	6840
	AGCAGATTTT	GTAAAAGCAC	CAATCATGAT	TAAAATCATC	GCAAAAATGA	AGAATGGGCT	6900
	ATTTTGAATT	TCAGAAGCAT	GTTGAATCAT	GTACTGAATG	CTAAATGATT	GTGTTGGTAT	6960
45	AGCGAGTAAG	ATGATACCAC	CTAATAATGA	TAGACCACCA	AATACTGTGA	TTATGAGCGA	7020
	TTTTTGAGCA	CCATATATAG	ATGCTTGTCG	TTCGCGCCAG	AATGAAATAA	GTAAAAAACT	7080
	AGAAAATGAC	GTTAGCTCCC	AGAATAAATA	TAGAATAATA	ACATTATCTG	AAAGTACGAC	7140
50	ACCTAACATT	GCACCCATAA	ATAGTAATAA	ATAACAATAA	AAATTCCCTA	GTTGTTCTGA	7200
	CTTACTTAAG	TAGCCGATTG	AATATAATAC	TACTAAACTG	CCGATTCCTG	AAATAAGCAA	7260

	CCAATTTAAG	GTTTTCATTA	CAGTATTACC	TGACATCGTC	GTTTTAATTA	ATGTAAGCAT	7380
	ATAAATAAAT	ATGACGATAG	GGACAGGTAA	TACGAACCAT	CCTAAATGTA	TACGTTTAAA	744
5	AAATCTATAC	AGGATAGGAA	TAATGAGTGC	GAATATTAAC	GGTAATATCA	CCGCAATATG	7500
	TAACAAACTC	ACTATGTTGT	CCTCCTTTAA	AAAATATTTA	TGTTATTCAT	TATACATGAA	7560
	TGATATAGTT	CTGAAAAACG	TACACACTCC	TTGTTGTGCT	TTATTTTCAG	AaGTATTTAA	7620
0	ATAAGAAGAA	ACACGTCATT	TTTTATTTAA	AATTTTCTTT	GTATTGAAGT	GAATAATCTT	7680
	CTTTTAAGCG	TGCTAAACTA	GCTAAAGACA	TTTCAGCATG	TTTTGTTTGC	TGAGCTTTAA	7740
5	GTTTAGTTTC	TAAATCTGTA	ATTGCTTGTT	GAAGTGAATC	TTCATAGCGC	AATACATCAA	7800
J	CATTGAAGTC	GCGTAATTGT	GAACGTTTCG	TATAGCGTTT	TTCAAAATGG	CTTAATGCTT	7860
	TGCGGTCATG	GAAAAATACA	CCTTCAGTTT	CAGTAGGGTT	ATGTAAATCA	CCTTGTTTCG	7920
0	GGTGTTTGAT	AACTTGTTCA	ACTTTAACAA	GGACATCGTC	TCCATTTTCT	TCAACAATCG	7980
	TGACACCATA	GCTACCTGTT	TTGTGTGAAA	ATCGATATAG	CTTCATGCTA	TTTTCCTCCC	8040
	TTAAAAGTAT	GTTAATATAT	ATGTATCATA	ACATGAATGG	AGAATATAAA	TGGCTAACTA	8100
5	TCCACAGTTA	AACAAAGAAG	TACAACAAGG	TGAAATCAAA	GTGGTTATGC	ACACAAATAA	8160
	AGGTGACATG	ACATTCAAAT	TATTTCCAAA	TATTGCACCA	AAAACAGTTG	AAAATTTTGT	8220
	GACACATGCA	AAAAATGGTT	ATTATGATGG	AATCACATTC	CACCGTGTCA	TTAATGACTT	8280
0	CATGATTCAA	GGTGGCGATC	CAACAGCTAC	TGGTATGGGT	GGCGAAAGTA	TTTATGGCGG	8340
	TGCTTTTGAA	GATGAATTTT	CATTAAATGC	ATTTAACTTA	TATGGCGCAT	TATCAATGGC	8400
	TAACTCAGGA	CCTAATACTA	ATGGTTCACA	ATTTTTCATT	GTTCAAATGA	AAGAAGTACC	8460
5	TCAAAATATG	TTAAGTCAAC	TTGCAGATGG	TGGCTGGCCT	CAACCAATCG	TTGATGCATA	8520
	TGGCGAAAAG	GGTGGTACAC	CATGGTTAGA	TCAAAAACAT	ACAGTATTCG	GTCAAATCAT	8580
0	TGATGGTGAA	aCTACATTAG	AAGATATTGC	AAATACAAAA	GTGGGACCAC	AAGATAAACC	8640
	ACTTCATGAT	GTTGTAATTG	AATCTATTGA	TGTTGAAGAA	TAATATCTAA	ACATAATTAA	8700
	CTACCAACAT	TTTAAACTCG	GATAAAGCTA	ATTTATGAAT	GGATTAGTAT	ATATTCCAAC	8760
5	gaaaataaat	AAACTAATAT	GATGAGCAAT	CTCAATATAT	TTATCaAGAA	AGCACAGTTT	8820
	TTAAATAGAT	GTGTATTTTA	AAGATAATAG	TTGAGGTTGC	TTTTTATGTT	TTTACAGAGA	8880
	ATTGCTATTC	AAATAGTAAA	TAAATTGAAA	ACAAAGTAGC	TGGATATCAT	ATTGATTTAG	8940
0	ATAGGAATTT	GTTGCTAATT	TTATTTGTAA	ATCCAAGTTT	GTAGAATTCT	TATTCATTTA	9000
	TAAAATAATA	TTCGTATGAT	TTGATTTTTT	AATTAGTCCA	CCATTTCGAT	TTGTGCTATG	9060

	AACATATCAA	GGTGCGTGTA	CTGGTATTCA	ACCATACGGT	GCGTTTGTTG	AGACCCCTAA	9180
	TCATACTGAA	GGACTGATTC	ATATATCAGA	AATTATGGAT	GACTACGTTC	ATAATTTGAA	9240
5	GAAATTTCTA	TCAGAAGGCC	AAATTGTTAA	AGCTAAAATT	TTGTCTATAG	ATGATGAAGG	9300
	AAAGCTTAAT	СТАТСАТТАА	AGGATAATGA	TTACTTCAAA	AATTATGAGC	GTAAGAAGGA	9360
	AAAACAATCA	GTATTAGATG	AAATCAGAGA	AACAGAAAAA	TATGGGTTTC	AAACACTTAA	9420
10	AGAACGCTTA	CCAATCTGGA	TAAAACAGTC	AAAGCGAGCA	ATTCGAAACG	ACTAAAGGAA	9480
	CAGATAAATC	GTACCGAAAA	TCATACAAAG	GGTCTGAAAT	GAAAGTTTCT	TAGACTATAA	9540
15	AAGAGATTAG	TATCTATTAA	ATTTTATTAG	ATACTAATCT	CTTTTTGTCT	ACGATAACGT	9600
15	AATATGaTTG	ATTCTATTTA	CACGTACAAA	TGGTTTAAGG	TGACATATCC	ATTATCTTTG	9660
	TTAGATAGAA	TCGTTGATTT	GCaATATTGT	ATGTGGATTT	GTTTTTTTA	TTTATTTTAG	9720
20	AAATGAGAAC	TACAACTTAA	AGTATTAAAC	GAATTGCAAC	TATATAAACA	GATAATTGGA	9780
	GAATGAAAAA	ATTACATGTT	ATAGTCAACT	CAATAATTTT	AAGGAGGAAT	TAAGTAATGA	9840
	AAAGTAAATA	CGAACCATTG	TTTGATAAAG	TAGAATTACC	AAATGGAGTA	GAGTTGAGAA	9900
25	ATCGATTTGT	GTTAGCCCCT	TTAACACATA	TTTCTTCAAA	TGATGATGGT	ACTATTTCAG	9960
	ATGTAGAACT	TCCTTATATT	GAAAAGCGTT	CACAAGATGT	TGGTATTACA	ATTAATGCTG	10020
	CGAGTAATGT	GAGTGATGTC	GGAAAAGCAT	TTCCAGGACA	GCCATCAATC	GCGCATGACA	10080
30	GTAATATTGA	AGGACTAAAA	CGATTAGCTA	CAGCAATGAA	GAAAAACGGT	GCCAAAGCAC	10140
	TCGTACAAAT	ACATCATGGC	GGTGCACAAG	CATTGCCTGA	ATTAACACCT	GATGGAGACG	10200
	TCGTAGCACC	AAGTCCAATT	TCTTTAAAAA	GTTTTGGTCA	GAAACAAGAA	CATAGTGCTA	10260
35	GAGAAATGAC	GAATGAAGAG	ATTGAACAAG	CAATCAAGGA	TTTTGGTGAA	GCAACGCGAC	10320
	GTGCAATTGA	AGCAGGGTTT	GATGGTGTTG	AAATACATGG	CGCGAATCAT	TACTTAATTC	10380
40	ATCAATTTGT	ATCACCATAC	TATAATAGAA	GAAATGATGT	ATGGGCAAAT	CAATATAAAT	10440
40	TCCCGGTCGC	TGTGATTGAA	GAAGTACTTA	AAGCGAAAGA	AGCGTATGGC	AATAAAGACT	10500
	TTATAGTTGG	ATACAGATTA	TCTCCAGAGG	AAGCGGAGTC	TCCAGGAATC	ACAATGGAAA	10560
45	TTACAGAGGA	ACTCGTTAAT	AAAATTAGCC	ATATGCCAAT	CGACTATATT	CATGTTTCAA	10620
	TGATGGATAC	GCATGCAACG	ACACGTGAAG	GTAAATACGC	TGGACAAGAA	AGACTGCCTT	10680
	TAATTCACAA	ATGGATAAAT	GGTCGTATGC	CACTTATCGG	TATTGGTTCA	ATTTTCACAG	10740
50	CTGACGAAGC	TTTAGATGCA	GTTGAAAATG	TTGGTGTTGA	CTTAGTAGCC	ATTGGTAGAG	10800
	AGCTACTACT	GGATTATCAA	TTTGTTGAAA	AAATTAAAGA	TGGACGGGAA	GATGAAATTA	10860

# AATTTAATGA AGGGTTTTAT CCATTACCAC GTA

10953

(2) INFORMATION FOR SEQ ID NO: 63:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8155 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

15

20

25

30

35

40

45

50

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

60	GAATTTACAA	CTAATGAAGT	TCGATTCAAC	ATTAAATGTA	AACTGAATnA	TTTGATAnAA
120	AGGTAGTTTA	TTAAACAGAA	AAAGTAAATG	CAnAAAGGTT	AGCCTTTTAG	GTTAAAGTAG
180	AATCTTCGGT	AAGAAATTGA	TTAGAAGATA	TTCGATTGAT	AAGAGTTAAG	GCAGATGATA
240	AGATGGTATT	AAGTAGATTT	GTTGATGCAG	TATAAGCGAA	ACTTACAAAA	AGTCGAGATG
300	TAAAGCACAA	AACATGTCAC	AATTTWCCAG	TGTAAAAATC	CTGAAAAGAC	TCAGAATCAA
360	GGAGAGTAAA	CTAAATTAAA	AAATAAATAG	TATAAATGTA	CGmAGGCTTA	CCAAGTGAAA
420	GAACTAACAC	CGCAAACCAA	TAAGAGGTGT	ACAGACGGAg	ATATTTTGGT	CAATGGGAAA
480	AATAAAGGTG	TCTAGCaCAT	GTGGCTATGT	GGAAGATACG	ATTTAAATTA	CTGAATTGGC
540	ATGTTAGAAT	TTCAGGTGAA	ATACTAGAGT	GTAGGTCGCG	ACGTGTACTT	AAAAACACCC
600	GGTATTATTT	GATGCGATTA	GTGCAGAAGT	ATTTCAATTG	AGCTGGTTTG	CAGCATTAAT
660	GTAATGATTT	AGAGTTAGGT	ATATGGGTGC	TTAACACGCG	TGTTGCATAT	CAACACCAGG
720	GATGGTTTTA	CTTTGGATCA	GTATTAAATT	GCAGATAATG	TAATCCAGTT	CAGCCTCTCA
780	AACCCAGAAT	GGATCAAGAA	AAGCATTATT	AATGAAATTG	TGAACAAGAA	AACTATCAGA
840	GGGGCACAAA	TTACTTTGAA	ATTATTCAGA	GATATTGTAC	AGTTGGCAAT	TACCAAGACC
900	AAAATTGCTT	TGAAGGTTTG	ATGTTAACTT	TCAACAGTAG	СТАТТТАААА	AATATTTGAG
960	GACTTAGAAG	CTTATTTGGT	TAGCGCCATT	ACATCATCAC	AAATGGTTCA	TAGATGGTGC
1020	AAATGTGGCT	TATCAATGAG	ATGGATATAA	TGTAGTCCTG	AACAATTGGA	CAGATACTGA
1080	TTTGGGTTAG	TGAAAGTGAT	TAGTTGAAAC	GCTGAAAAAG	TGAAAAATTA	CTACACATCC
1140	ATCGTTGACG	GAATGGTCAA	CAGTAGATGA	AGAATCATAG	CGATGGAGAC	CATTTGACGG
1200	TTGAATAATG	AAATCAAGAA	AAATGCATAA	ATTGGTCAAG	TATGTTTATT	GTGACCAAAT
1260	GAACAAGAAG	CAAAGCGCTT	TAGGTTTTTA	ATGAGTAATT	TTCTACTGTT	ACATGATTGT
1320	ATGCGTCGCG	AGTAGAAGAA	ACAGATATGT	AAAGTTGGCG	TAATAAAACT	GAATTAAATC

	CTGGTGATGG	TTTATTAACT	GGTATTCAAT	TAGCTTCTGT	AATAAAAATG	ACTGGTAAAT	1440
	CACTAAGTGA	ATTAGCTGGA	CAAATGAAAA	AATATCCACA	ATCATTAATT	AACGTACGCG	1500
5	TAACAGATAA	ATATCGTGTT	GAAGAAAATG	TTGACGTTAA	AGAAGTTATG	ACTAAAGTAG	1560
	AAGTAGAAAT	GAATGGAGAA	GGTCGAATTT	TAGTAAGACC	TTCTGGAACA	aACCATTAGT	1620
	TCGTGTCATG	GTTGAAGCAG	CAACTGATGA	AGATGCTGAA	aGATTTGCAC	AACAAATAGC	1680
10	TGATGTGGTT	CAAGATAAAA	TGGGATTAGA	ТАААТАААТА	CTGTATTACA	AATGAGCCGA	1740
	TGCGTATGCA	nTcgtTTTTT	GTGTTTGTAG	AAATAATTTA	TAGTACAAAC	GTAAAATGAT	1800
15	АТАААСАААА	TAAAAACAAA	GTAATCAATA	TGTAATATAA	AATACACTGG	TACTCAATAT	1860
,5	ATAATGATGA	TAAAATTAAT	TTTAATTAGA	TAGAGTTGCT	TTGTGTTTTT	AACGCAGATG	1920
	CTACTACTTA	TCTTAACAGT	TGATTAAGTG	AAATCATTTA	ACAGCGAGAA	TAATCAACCA	1980
20	GGAGGATGAC	TTAATGAATT	TATTCAGACA	ACAAAAATTT	AGTATCAGAA	AATTTAATGT	2040
	CGGTATTTT	TCAGCTTTAA	TTGCCACTGT	TACTTTTATA	TCTACTAACC	CGACAACAGC	2100
	GTCTGCAGCA	GAGCAAAATC	AGCCTGCACA	AAATCAACCA	GCACAACCAG	CTGATGCCAA	2160
25	TACACAGCCT	AACGCAAATG	CTGGTGCTCA	AGCTAATCCT	ACAGCACAGC	CAGCTGCACC	2220
	TGCCAACCAA	GGACAACCAG	CAGTACAACC	AGCAAACCAA	GGTGGACAGG	CTAATCCAGC	2280
	AGGAGGAGCA	GCACAACCAA	ATACACAACC	AGCTGGACAA	GGTGATCAAG	CTGATCCGAA	2340
30	TAACGCTGCA	CAAGCACAAC	CTGGAAATCA	AGCAACACCG	GCAAACCAAG	CAGGTCAAGG	2400
	AAATAACCAA	GCAACACCTA	ATAATAATGC	AACACCGGCA	AATCAAACAC	AGCCAGCGAA	2460
	TGCTCCAGCA	GCAGCGCAAC	CAGCAGCACC	TGTAGCAGCA	AACGCACAAA	CTCAAGATCC	2520
35	AAATGCTAGC	AATACTGGTG	AAGGCAGTAT	TAATACGACA	TTAACATTTG	ATGATCCTGC	2580
	CATATCAACA	GATGAGAATA	GACAGGATCC	AACTGTAACT	GTTACAGATA	AAGTAAATGG	2640
40	TTATTCATTA	ATTAACAACG	GTAAGATTGG	TTTCGTTAAC	TCAGAATTAA	GACGAAGCGA	2700
40	TATGTTTGAT	AAGAATAACC	CTCAAAACTA	TCAAGCTAAA	GGAAACGTGG	CTGCATTAGG	2760
	TCGTGTGAAT	GCAAATGATT	CTACAGATCA	TGGTAACTTT	AACGGTATTT	CAAAAACTGT	2820
<b>4</b> 5	AAATGTAAAA	CCAGATTCAG	AATTAATTAT	TAACTTTACT	ACTATGCAAA	CGAATAGTAA	2880
	GCAAGGTGCA	ACAAATTTAG	TTATTAAAĞA	TGCTAAGAAA	AATACTGAAT	TAGCAACTGT	2940
	AAATGTTGCT	AAGACTGGTA	CTGCACATTT	ATTTAAAGTA	CCAACTGATG	CTGATCGTTT	3000
50	AGATTTACAA	TTTATTCCTG	ACAATACAGC	AGTTGCTGAT	GCTTCAAGAA	TTACAACAAA	3060
	TAAAGATGGT	TATAAATACT	ATTCATTCAT	TGATAATGTA	GGTCTATTCT	CAGGATCACA	3120

	TAATACTGAA	ATCGGTAACA	ATGGTAATTT	TGGTGCTTCA	TTAAAAGCAG	ATCAATTTAA	3240
	ATATGAAGTA	ACATTACCAC	AAGGTGTAAC	TTACGTTAAT	AATTCATTAA	CTACAACATT	3300
5	CCCTAATGGT	AATGAAGACA	GTACAGTATT	GAAAAATATG	ACTGTTAATT	ATGATCAAAA	3360
	TGCAAATAAA	GTTACATTTA	CAAGCCAAGG	TGTGACAACG	GCACGTGGTA	CACACACTAA	3420
	AGAAGTTTTA	TTCCCAGATA	AATCTTTAAA	ATTATCATAT	AAAGTTAATG	TTGCGAATAT	3480
10	CGATACACCT	AAAAATATTG	ATTTTAATGA	AAAATTAACA	TATCGTACTG	CTTCAGATGT	3540
	TGTAATTAAT	AATGCGCAAC	CAGAAGTaCA	CTAACTGCAG	ATCCATTTTC	AGTAGCGGTT	3600
15	GAAATGAACA	AAGATGCGTT	GCAACAACAA	GTAAACTCAC	AAGTTGATAA	TAGTCATTAC	3660
13	ACAACAGCAT	CAATTGCAGA	ATACAATAAA	CTTAAACAAC	AAGCAGATAC	TATTTTAAAT	3720
	GAAGATGCGA	ATCATGTTAA	AACTGCAAAT	CGTGCATCTC	AAGCGGATAT	TGATGGTTTA	3780
20	GTAACTAAAT	TACAAGCTGC	ATTAATTGAT	AATCAAGCAG	CAATTGCTGA	ATTAGATACT	3840
	AAAGCTCAAG	AAAAGGTTAC	AGCAGCACAA	CAAAGTAAAA	AAGTTACGCA	AGATGAAGTT	3900
	GCAGCACTTG	TAACTAAAAT	TAACAATGAT	AAAAATAATG	CAATCGCAGA	AATTAATAAA	3960
25	CAAACTACAG	CACAAGGTGT	CACAACTGAA	AAAGATAATG	GTATCGCAGT	GTTAGAACAA	4020
	GATGTGATTA	CACCAACAGT	TAAACCTCAA	GCGAAACAAG	ATATTATCCA	AGCAGTTACA	4080
	ACTCGTAAAC	AACAAATTAA	AAAGTCAAAT	GCATCATTAC	AAGATGAAAA	AGATGTAGCA	4140
30	AATGATAAAA	TTGGTAAAAT	TGAAACAAAG	GCAATTAAAG	ATATTGATGC	AGCAACAACA	4200
	AATGCACAAG	TAGAAGCCAT	TAAAACAAAA	GCAATCAATG	ATATTAATCA	AACTACACCT	4260
	GCTACAACAG	CTAAAGCAGC	AGCTCTTGAA	GAATTTGACG	AAGTTGTTCA	AGCACAAATT	4320
35	GATCAAGCAC	CTTTAAATCC	TGATACAACA	AATGAAGAAG	TAGCGGAAgC	TATTGAACGT	4380
	ATTAATGCAG	CTAAAGTTTC	TGGTGTTAAA	GCAATTGAAG	CGACAACGAC	TGCACAAGAT	4440
40	TTAGAAAGAG	TTAAAAACGA	AGAAATCTCA	AAAATTGAAA	ATATTACTGA	CTCTACGCAA	4500
	ACAAAAATGG	ATGCCTATAA	TGAAGTTAAA	CAAGCTGCAA	CAGCTAGAAA	AGCTCAAAAT	<b>4</b> 560
	GCTACAGTTT	CAAATGCAAC	AAATGAAGAA	GTAGCAGAAG	CTGATGCAGC	AGTAGATGCA	4620
45	GCTCAAAAGC	AAGGTTTACA	TGACATCCAA	GTTGTTAAAT	CAAAACAGGA	AGTTGCTGAT	4680
	ACAAAATCAA	AAGTATTAGA	TAAAATCAAT	GCAATTCAAA	CACAAGCAAA	AGTTAAACCT	4740
	GCAGCTGATA	CGGAAGTAGA	AAACGCATAT	AATACACGTA	AACAAGAAAT	TCAAAATAGC	4800
50	AATGCTTCAA	CTACAGAAGA	AAAACAAGCT	GCATATACAG	AATTAGATAC	TAAAAAGCAA	4860
	GAAGCAAGAA	CAAATCTTGA	TGCTGCAAAT	ACAAACAGTG	ATGTAACAAC	AGCTAAAGAC	4920

	GCGGAAATCG	CTCAAAAAGC	AAGTGAACGT	AAAACAGCAA	TTGAAGCAAT	GAATGATTCG	5040
	ACTACTGAAG	AACAACAAGC	AGCGAAAGAC	AAAGTGGATC	AAGCAGTAGT	TACTGCAAAC	5100
5	GCTGATATAG	ATAATGCTGC	AGCAAACAAT	GATGTGGATA	ATGCAAAAAC	TACAAATGAA	5160
	GCTACAATCG	CAGCCATTAC	ACCTGATGCA	AATGTTAAAC	CAGCAGCAAA	ACAAGCAATT	5220
	GCAGATAAAG	TACAAGCTCA	AGAAACAGCA	ATTGATGGAA	ATAACGGCTC	AACAACTGAA	5280
10	GAAAAAGCAG	CTGCTAAACA	ACAAGTTCAA	ACTGAAAAA	CAACAGCTGA	TGCCGCAATA	5340
	GATGCAGCAC	ATACAAATGC	GGAAGTTGAA	GCGGCTAAAA	AAGCAGCAAT	TGCTAAAATT	5400
	GAAGCGATTC	AGCCAGCAAC	AACAACTAAA	GATAATGCGA	AAGAAGCAAT	TGCTACGAAA	5460
15	GCGAATGAAC	GTAAAACAGC	AATCGCTCAA	ACGCAAGACA	TTACTGCTGA	AGAAATTGCA	5520
	GCGGCTAATG	CGGACGTAGA	TAATGCTGTG	ACACAAGCAA	ATAGCAACAT	TGAAGCTGCT	5580
20	AATAGTCAAA	ATGATGTAGA	CCAAGCGAAA	ACGACAGGTG	AAAATAGTAT	TGATCAAGTA	5640
20	ACACCAACAG	AAAATAATT	AGCAACTGCA	CGTAATGAAA	TCACAGCAAT	TTTAAATAAC	5700
	AAATTGCAAG	AGATTCAAGc	tACGCCAGAT	GCAACAGATG	AAGAAAAACA	AGCAGCTGAT	5760
25	GCTGAAGCAA	ATACTGAAAA	TGGTAAAGCA	AATCAAGCCA	TTTCAGCAGC	AACTACTAAC	5820
	GCACAAGTTG	ATGAAGCTAA	AGCAAATGCA	GAAGCAGCGA	TTAATGCGGT	AACACCAAAA	5880
	GTTGTGAAGA	AACAAGCGGC	TAAAGATGAA	ATTGATCAAT	TACAAGCAAC	GCAAACAAAT	5940
30	GTTATCAATA	ATGATCAGAA	CGCTACAACA	GAAGAAAAAG	AAGCAGCTAT	TCAACAATTA	6000
	GCAACAGCAG	TTACAGACGC	GAAAAATAAT	ATTACAGCTG	CAACTGATGA	TAATGGTGTA	6060
	GATCAGGCGA	AAGACGCTGG	AAAGAATTCA	ATTCAAAGCA	CGCAACCAGC	AACAGCGGTT	6120
35	AAATCAAATG	CTAAAAATGA	TGTTGATCAA	GCTGTGACAA	CTCAAAATCA	AGCAATTGAT	6180
	AATAÉAACTG	GTGCTACAAC	TGAAGAGAAA	AATGCAGCAA	AAGATTTAGT	TITAAAAGCT	6240
	AAAGAAAAAG	CGTATCAAGA	TATCTTAAAT	GCACAAACAA	CTAATGATGT	TACGCAAATT	6300
40	AAAGATCAAG	CAGTTGCTGA	TATTCAAGGT	ATTACTGCAG	ATACAACAAT	TAAAGATGTT	6360
	GCGAAAGATG	AATTAGCAAC	AAAAGCAAAC	GAACAAAAAG	CGCTTATTGC	ACAAACTGCA	6420
45	GATGCGACTA	CTGAAGAAAA	AGAACAAGCA	AATCAACAAG	TAGACGCACA	ATTAACACAA	6480
	GGTAATCAAA	ATATTGAAAA	TGCACAGTCA	ATCGATGATG	TAAACACTGC	AAAAGATAAT	6540
	GCAATTCAAG	CAATTGACCC	AATTCAAGCA	TCAACAGATG	TTAAAACGAA	TGCAAGAGCG	6600
50	GAATTGCTAA	CTGAAATGCA	АААТАААТА	ACTGAAATAC	ТТААТААТАА	TGAGACTACT	6660
	AATGAAGAAA	AAGGTAACGA	TATTGGACCA	GTTAGAGCAG	CATATGAAGA	AGGTTTAAAT	6720

	AAAGTTCAAC	AACTTCATGC	AAATCCTGTT	AAGAAACCAG	CAGGTAAAAA	AGAATTAGAT	6840
	CAAGCTGCAG	CTGATAAGAA	AACACAAATA	GAACAAACAC	CAAATGCATC	ACAACAAGAA	6900
5	ATTAATGATG	CAAAACAAGA	AGTTGATACT	GAATTAAATC	AAGCGAAAAC	AAATGTCGAT	6960
	CAATCATCAA	CAAATGAATA	TGTTGATAAT	GCAGTTAAAG	AAGGAAAAGC	TAAAATTAAT	7020
	GCAGTTAAAA	CATTTAGTGA	GTACAAAAA	GATGCTTTAG	CTAAAATTGA	AGATGCATAT	7080
10	AATGCTAAAG	TAAACGAAGC	GGATAACTCT	AACGCATCGA	CTTCAAGTGA	AATTGCTGAA	7140
	GCGAAACAAA	AACTTGCTGA	ATTAAAACAA	ACTGCGGATC	AAAATGTTAA	TCAAGCTACT	7200
	TCTAAAGATG	ACATTGAAGT	TCAAATTCAT	AATGACTTAG	АТААТАТТАА	CGATTACACA	7260
15	ATTCCAACAG	GTAAAAAAGA	ATCAGCTACA	ACAGATTTAT	ATGCTTATGC	AGATCAGAAG	7320
	AAAAATAATA	TTTCAGCTGA	CACTAATGCA	ACACAAGATG	AAAAGCAACA	AGCAATTAAG	7380
20	CAAGTTGACC	AAAATGTTCA	AACTGCATTA	GAAAGCATTA	ATAATGGTGT	GGATAATGGT	7440
	GACGTTGATG	ATGCATTAAC	ACAAGGTAAA	GCAGCAATTG	ATGCTATTCA	AGTAGATGCT	7500
	ACTGTTAAAC	CTAAAGCGAA	CCAAGCTATT	GAAGTTAAAG	CAGAAGATAC	GAAAGAATCT	7560
25	ATTGATCAAA	GTGACCAGTT	AACTGCTGAA	GAAAAAACTG	AAGCATTAGC	AATGATTAAA	7620
	CAAATTACAG	ATCAAGCTAA	ACAAGGTATT	ACTGATGCAA	CAACAACTGC	TGAAGTTGAA	7680
	AAAGCGAAAg	cTCaAGGACT	TGAAGCATTT	GATAACATTC	AAATCGACTC	AACAGAAAAA	7740
30	CAAAAAGCTA	TCGAAGAATT	AGAAACTGCA	CTAGACCAGA	TTGAAGCAGG	TGTAAATGTC	7800
	AACGCTGATG	CTACAACTGA	AGAAAAAGAA	GCGTTTACGA	ATGCTTTAGA	AGACATTTTA	7860
	TCAAAAGCAA	CTGaAGATAT	TTCTGATCAA	ACTACAAATG	CAGAAATCGC	TACTGTCAAA	7920
35	AATAGTGCGC	TTGAACAACT	TAAAGCACAA	CGTATTAATC	CTGAAGTTAA	GAAAAATGCT	7980
	TTGGAÃGCAA	TCAGAGAAGT	GGTTAACAAG	CAAATAGGAA	taattaaaaa	TGCAGATGCA	8040
	GATGCATCGG	CGGAAAGAnA	TTGCACGTAC	GGGATTTAGG	TAGATATTTT	GGACCGATTT	8100
40	GCTGGATAAA	TTTAGGGTnA	AACCCCAACC	AATGCCGAAG	TTGCCTGAAT	TACCA	8155

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1630 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

	CTGTTTTATT	TGCAGCACCC	ATACTGGAAA	TCACTTTAAT	CCCTCGGTCA	AGACACTCTT	120
	TCATTAAGTG	TACTTTGTAC	ATTATTGTAT	CACTTGCATC	TACAAAATAA	TCTATATCGT	180
5	AGTTATCGAA	AATTTCTTCA	TATGTCTCTT	CTGTATAAAA	CATATGTAAG	GGCGTGACTT	240
	TACAATCTGG	ATTAATTAAT	TTAATACGTT	CTTCCATCAA	AGAAACTTTA	CTTTGTCCTA	300
	CCGTTGTAGT	TAAAGCGTGT	AATTGTCTGT	TTACATTTGT	AATATCAACA	TCATCTTTAT	360
10	CTATTAATAT	AATATGACCA	ATATTCGTTC	TTGCTAATGC	TTCAGCAGCA	AATGAACCAA	420
	CACCTCCAAC	GCCAAGTATG	ACAACAGTTT	GTTGCTTCAA	TAAATCTAAA	CCTTGTTGTC	480
	CAATCGCTAG	TTCATTTCTT	GAAAATTGAT	GTTTCATTAT	TTTACCTCTT	TCACTGATTT	540
15	ATACATAAGT	ACATAGTAAC	TTAAAATTTT	ATATTTAGCA	TTATCACTTT	GATTATTTTC	600
	CCAAAATTCA	ACGAGGAAAC	AAATTATTTA	CGCTATAAAA	CCCAACTAAT	TCTTTATTAA	660
20	AAACTTAAAG	AAACGCATAA	AAATACGCAA	GACAAAGTCT	TGCGTATCGA	TAGAGTCCGT	720
	ATTGCCGTAG	TTATAATAGC	TTGATCATTC	ĜĜĊĊŤĠŦŦĀŦ	ATACAGGTGG	GTGCCCTGTT	780
	TCTTGTTTTG	TACGTCCTTC	ATATAAGGCG	TGTACGCTGC	AAGAAAACCC	ATTGGGCTCC	840
25	CTTGATCAAA	GAGTGTTAGG	CCCAAATTAA	AAAGCAAACT	TACGAACAAC	TCAGATGACT	900
	ATCTTATGAT	GTTATATTAC	CACATAATTA	AAATTAATGA	AATTATAACA	AACCAAAGTT	960
	TATTGATTTT	TTAAAATTTA	GTGACGAATT	CGCAAAGAAA	GTTCTTCTAA	TTGTTTATCA	1020
30	GAAACTTCAC	TAGGCGCATT	CGTTAATAAA	CATGTAGCAG	ATGCTGTTTT	AGGGAATGCG	1080
	ATTGTATCTC	TCAAGTTTGT	TCTATTAGTC	AATAACATGA	CTAATCGGTC	<b>LAATCCTAAT</b>	1140
	GCAATACCGC	CATGTGGTGG	TGCACCATAT	TTAAATGCAT	CTAGTAAGAA	GCCGAACTGT	1200
35	TCCTgTGCTT	GTTCTTTAGT	AAATCCAAGA	ACTTCGAACA	TTTTTTCTTG	TAACTCACCA	1260
	TCATGAATTC	TGATTGAACC	GCCACCTAAT	TCATAACCAT	TTAATACTAT	GTCATAAGCA	1320
40	TTTGCCTCAG	CTTCtTCTGG	CGCAGTGCCA	AGCTTAGCAA	TATCAGCTTC	TTTTGGAGAT	1380
40	GTAAATGGAT	GATGTGCTGC	AACGTAACGT	TTCGCATCTT	CATCATATTC	TAATAATGGC	1440
	CAATCTGTCA	CCCATAAGAA	GTTTAATTTT	GTTTCATCGA	ттааасстаа	TTCTTTAGCT	1500
45	AATTTGACAC	GTAATGCACC	TAAACTTTGT	GCAACGACAT	TTGGTttGTC	TGCAACAAAC	1560
	ATTACTAAGT	CACCAGCTTC	AGCACCAGTT	AATGTAAGTA	ATGTTTCAAC	ATTITCTGTT	1620
	CAAAGAAACG						1630

(2) INFORMATION FOR SEQ ID NO: 65:

50

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 732 base pairs

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	CAATTGGACA TCTTGTATGA AAAGGACAAC CTTGCGGCGG ATTACTTGGC GAAGGTAATT	60
10	CTCCTTTTAA TATAATTCTA TTGTTATTAT GTTTATCAAT TTGTGGTATT GATGAAATCA	120
	ACGCTTTTGT ATATGGATGT TTGGGATTTT CATAAATTTC TTTATCAGAT GCGATTTCAA	180
	CTATATGACC TAAATACATA ACTCCAATGA CATCACTTAT ATGTTTTACT ACACTTAAAT	240
15	CATGTGCGAT AAATAAATAG CTTAAGTTAA ATTGTTCTTG TAAATCTTTT AATAAATTCA	300
	GTACTTGAGA TTGAACAGAT ACATCTAATG CACTTACAGG CTCATCAGCA ACAATTAAAC	360
	TCGGACGCAA AGCCAATGCT CTTGCAATTC CCACTCTTTG TCTCTGTCCA CCTGAAAATT	420
20	CATGTGCATA TTEATAATAT GCATCTTCAC TTAGGCCAAC ACATTTTAAT AAATATAGTA	480
	CTTCTTTTTT TATTTCTTCT TTTGGCAATT TTTTATAATT TAAAATAGGT TCTGAAATGA	540
25	TATCTCCAAC CATTTGCATC GGATTCAATG ATGCATACGG ATCTTGAAAT ATCATCTGAT	600
	ATTGTTGTCG TGATTTTCTG AGTTTTTTAC CTTGTAATCT TGTTATATCT TCACCATTAA	660
	CAATTATTGA GCCTGAAGTT GCATCTTCAA GCCTGATAAT CACTTTACCT AACGTTGACT	720
30	TACCACAACC CG	732
	(2) INFORMATION FOR SEQ ID NO: 66:	
35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 5838 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
	AATATATTCA TATGTTTCAT CAACAATATT AGCTGCTTTT TGAATTAAAG CAATTTCGTC	60
	AGCATCTTTG ACGTCTCTAA TTTTATCTAC AGTATTAGAA ATGCTTATTA ATGATATACG	120
45	GCTTTTATTT AATTCAAGGT ATGTATCATA ACTTACATGA TGCCCCTCAA AACCTACATT	180
	TTCAAAATTT TCTTGGTGTA GCAATTCTTT AATCTCACCA ATAATAGTAG ATTTACGATT	240
50	AATAATTTCA TAATTTGGCG CCTGCTTAGT TGCTTGATCA ATATATCTAA AGTCTGTTAT	300
	CAAATATTGT TTATCTTTAG ATATGATAAG TGCTCCACTG GTACCAGTAA AACCTGATAA	360
	ATATCTTCTA TTGTAATCCG AAAGAATGAT AATCGCATCT AAATGTTTTT GTTCTAAAAT	420
<i>55</i>		

	CAACTTTATA	CATTAAAATA	ATATCATAAT	AAGGATAAAA	AATAATAGAT	ATTGATTTTA	540
	GGGAGATAGT	AATGAAAAA	TTGGTTTCAA	TTGTTGGCGC	AACATTATTG	TTAGCTGGAT	600
5	GTGGATCACA	AAATTTAGCA	CCATTAGAAG	Anaaaacaac	AGATTTAAGA	GAAGATAATC	660
	ATCAACTCAA	ACTAGATATT	CAAGAACTTA	ATCAACAAAT	TAGTGATTCT	AAATCTAAAA	720
	TTAAAGGGCT	TGAAAAGGAT	AAAGAAAACA	GTAAAAAAAC	TGCATCTAAT	AATACGAAAA	780
10	TTAAATTGAT	GAATGTTACA	TCAACATACT	ACGACAAAGT	TGCTAAAGCT	TTGAAATCCT	840
	ATAACGATAT	TGAGAAAGAT	GTAAGTAAAA	ACAAAGGCGA	TAAGAATGTT	CAATCGAAAT	900
15	TAAATCAAAT	TTCTAATGAT	ATTCAAAGTG	CTCACACTTC	ATACAAAGAT	GCTATCGATG	960
	GTTTATCACT	TAGTGATGAT	GATAAAAAA	CGTCTAAAAA	TATCGATAAA	TTAAACTCTG	1020
	ATTTGAATCA	TGCATTTGAT	GATATTAAAA	ATGGCTATCA	AAATAAAGAT	AAAAAACAAC	1080
20	TTACAAAAGG	ACAACAAGCG	TTGTCAAAAT	TAAACTTAAA	TGCAAAATCA	TGATAGGAGT	1140
	CTTTTAATGC	GTAATATAAT	ATTTTATCTT	GTACTTATTA	TTGCTGCGAT	TGGATTAGTA	1200
	ATGAATCTAG	ATGCCTTTAT	TTTTTCAATC	GTCAGAATGT	TAATCAGCTT	TGcgTAaTAG	1260
25	CTGGTATTAT	TTATCTGATT	TATTATTTCT	TCATCTTAAC	TGAAGACCAA	CGCAAATATC	1320
	GCAAAGCAAT	GCgTrAaGTA	TAAAAGAAAT	CAAAGAAGAA	AATAGATAAA	AAAACGGAAG	1380
	CACTTGTAGG	TAAAATAGTC	TACGTGCTTC	CATTTTTTAT	TCTAAAAACT	ACTTTCTAAA	1440
30	CATCCATTCA	TCTGAACGAT	ATTTTTCAGT	TAATTCTTCC	ACTTCTGCCA	ATTGAGCTTC	1500
	TGTTAATTCA	AGTGGCTTTA	ATTCTATATT	TAAACCTTTC	TTAAAACCTT	TCTCGAAAGC	1560
35	TTCTTCCATT	TGACTAATAG	TAATGTGTTC	ATCTGAAATA	TCATTGATGG	CAACTGCTTT	1620
	TTCAACGAAT	GCCTCTTTCA	TTTTTAATTT	TAATCTTTCA	TTTTTATAAA	Traacatatc	1680
	AAAÇÃGTTCA	TCAATATCAA	TATCTTGTAA	AATCGAACCG	TGTTGGAGGA	TTACGCCCTT	1740
40	TTGTCTCGTT	TGAGCACTCC	CAGCAATCTT	ACGGCCTTCA	ACAACTAGCT	CATACCAACT	1800
	TGGTGCATCA	AAACACACTG	AACTTCGAGG	TTGTTTTAAT	TTTTGACGCT	CTTCAGGCGT	1860
	TTTAGGTACC	GCAAAATAAG	TATCAAATCC	TAAGTTTTTA	AATCCTTCTA	ATAATCCTTG	1920
45	TGAAATCACT	CTGTACGCTT	CTGTAACTGT	AGAAGGCATA	TTCGGATGCG	ATTCAGGCAC	1980
	AATCACACTG	TAAGTTAACT	CTTTATCATG	TAGCACCCCA	CGGCCACCAG	TTTGACGCCT	2040
	TACGAGACCA	AAACCTTTCT	CTTTAACCTT	ATCAATATCA	ATTTCTTTTT	GTAGCCTTTG	2100
50	GAAATACCCT	ATTGATAATG	TTGCAGGATT	CCATGTGTAA	AAACGTATAA	CTGGATCAAT	2160
	TTCACCTCTA	GAGACAAAAT	TTAATAACGC	TTCATCCATT	GCCATATTAT	AATATGGGTC	2220

	AAATGTATAA	TATTTGATTC	GCTAATTAAT	CAATTTAACT	AAATGAATAA	TAATTGCAAT	2340
	TCTTTAGTGA	AATATTTTGA	TAATTTGACC	TAACAGTCTT	ATAATTATAT	TATCGTTTAA	2400
5	TTAGGGAGGA	TGCAAGATGA	GTGCTAGTTT	GTACATCGCA	ATAATTTTAG	TTATAGCAAT	2460
	TATTGCTTAT	ATGATTGTTC	AACAAATTCT	TAACAAGCGA	GCTGTTAAAG	AATTAGATCA	2520
10	AAATGAATTC	CATAATGGGA	TTAGAAAAGC	TCAAGTCATC	GATGTTAGAG	AGAAAGTTGA	2580
10	CTATGACTAC	GGTCACATTA	ATGGGTCTCG	CAATATTCCT	ATGACAATGT	TCAGGCAACG	2640
	ATTCCAAGGA	TTAAGAAAAG	ATCAACCGGT	ATACTTATGT	GATGCCAATG	GGATTGCTAG	2700
15	CTATAGAGCC	GCTCGTATTT	TGAAAAAGAA	TGGATATACA	GATATCTATA	TGTTAAAAGG	2760
	CGGCTATAAA	AAATGGACTG	GAAAAATAAA	GTCTAAAAAA	TAGTTTTTGT	AAATTTAATA	2820
	TACGATTTAA	TAAAATCTGA	GTGTTAATTG	ATCATCAATA	ACAATACTCA	GATTTTAATT	2880
20	TTTTAACAAA	GTCTGTTACT	ATATTTCTCT	AGCTTCACTG	ATCATTAAAC	TTAGTTTCAG	2940
	CATAATAAAG	AAAGTTCAGC	TCATTTTCAA	TACGATTCAA	TTACCGCAAT	CTAAAAAATG	3000
	AAAAGACAAT	TTCTATGAAA	GAATAATACC	AAACCCTAAG	AGTTATTACT	TCGGTTTAGT	3060
25	TTTCTTGTTT	AAATAGAAAT	TGTCTTTTTC	AATTGATTTT	GAAACCATTA	TCCTTAAATC	3120
	TTCATACAAA	GTTAGAATAA	TAATTCTCGG	AATATGTGTT	TAATACTTTA	TTTTTCCTGT	3180
	TTAAGATTTT	CAAACTTTAA	TATTGGTTTA	CGAGCAGCTG	TAGCTTCGTC	TAATCGATCA	3240
30	ATCACAGTTG	TATGTGGTGC	TTCTAGCacT	TTATCAGGAT	CATTTTTAGC	TTCTTCAGCA	3300
	ATACTAATTA	ATGTATCGAT	AAAATAATCA	AGTGTTTCTT	TAGACTCTGT	CTCAGTCGGT	3360
35	TCAATCATCA	TACCTTCTTC	AACATTTAAT	GGGAAGTATA	TTGTTGGTGG	ATGTACACCG	3420
	AAATCTAATA	ATCGCTTAGC	CATGTCTAAA	GTACGTACAC	CAAATTCTTT	TTGACGCACA	3480
	CCACTTAACA	CAAACTCGTG	TTTACAATAT	TGTTTATAAG	GTATTTCAAA	GTGTTTAGAT	3540
40	AAACGTGCTT	TAATATAATT	CGCATTAAGA	ACCGCTGCTT	CAGAAACCTC	TTTAAGTCCA	3600
	GTTGCTCCCA	TAGTTCGAAT	ATACGTATAA	GCTCTTAAGT	AAATACCAAA	GTTACCATAA	3660
	AATGGTTTTA	CACGTCCGAT	AGAATTTTTA	ATGTCATTAT	CATATTTAAA	TTTGTCGCCA	3720
45	TCTTTAATAA	CCATTGGCTT	TGGTAAGTAA	CTTGCTAGTT	CTTTTACTAC	ACCGACTGGA	3780
	CCTGAACCAG	GACCGCCACC	ACCATGTGGA	CCAGTAAATG	TTTTATGCAA	GTTTAAATGA	3840
	ACAGCATCAA	ATCCCATATC	TCCTGGGCGA	ACTTTGTCCA	TAATAGCGTT	TAAATTCGCA	3900
50	CCATCATAAT	ATAATAGACC	ACCAGCATTA	TGGACGATTT	CACGGATTTC	CATAATATTT	3960
	TTTTCGAAAA	TACCTAAAGT	GTTTGGATTA	GTTAACATAA	TAGCTGCTGT	ATTTTCATTT	4020

	GATTTAAATC	CTGCAAATGa	AGCTGAGGCT	GGaTTCGTAC	CATGCGCAGA	ATCTGGCACA	4140
	ATGACTTCAT	CACGATGACC	TTCACCATTA	TTCTCATGGT	AAGCTTTAAA	TATCATCAAT	4200
5	GCAGTCCATT	CACCATGTGC	GCCAGCAGCT	GGTTGTAATG	TCACCTCATC	CATACCAGTA	4260
	ATTTCTTTTA	ATTCTTCTTG	CAAACTATAA	ATAATTTCTA	ATGAACCTTG	AACTTGATCT	4320
	TCATCTTGTA	ATGGATGTGA	TTCACTAAAT	CCTGGTATTC	TAGCAACCTT	TTCATTAATT	4380
10	TTAGGGTTAT	ACTTCATCGT	ACATGAACCC	AATGGATAAA	ATCCGTTGTC	TACACCGAAA	4440
	TTTTTATTTG	AAAGTTCAGT	ATAATGACGT	ACTAAGTCTA	GTTCAGCAAC	TTCAGGAAAC	4500
15	TCCGCTTTGT	TTTTACGAAT	AAATTTATCA	TCTAACAATG	ACTCAACAGA	ATTTGTTTTA	4560
15	ATATCACTTT	TTGGTAATGA	ATATGCATAT	CTGCCTTCAC	GAGATCTTTC	AAAAATTAAT	4620
	GGACTTGATT	TACTAGTCAT	TTAACTCACC	AGCCTTTTCT	ACAAATGTAT	CGATTTCATC	4680
20	TITTGTTCTT	AATTCAGTTA	CAGCTATTAA	CATGTGATTT	TTAAAGTCGT	CTGAAACAAC	4740
	ACCTAAATCA	AAACCACCGA	TAATATTGTA	CTTCACTAAT	TCCTCGTTAA	CTTGTTGAAT	4800
	TGGTTTGTCA	AATTTGACTA	CAAACTCATT	GmnAAGnTGT	ACCATCTAAT	ACTTCAAAAC	4860
25	CTTTTTTAAT	AAATTGTTGT	TTAGCATAGT	TAGCATGTTC	TATATTTTGA	ACTGCAATAT	4920
	CATAGATACC	TTGTTTACCA	AGTGCTGACA	TTGCAATTGA	TGaCGcTAAA	GCATTTAATG	4980
	CTTGGTTAGA	ACAAATATTA	GATGTCGCTT	TATCGCGTCG	AATATGTTGT	TCACGTGCTT	5040
30	GTAATGTTAA	TACAAAGCCA	CGATTACCTT	CATCATCTTG	TGTTTGACCG	ACTAATCTAC	5100
	CTGGCACTTT	ACGCATTAAC	TTTTTCGTCG	TTGCAAAATA	TCCACAATGT	GGCCCACCGA	5160
35	ATTGAGCAGG	AATTCCGAAT	GGCTGAGTAT	CACCTACAAC	AATATCTGCA	CCAAATGAAC	5220
35	CTGGAGGTGT	AAGTAATCCC	AATGCTAATG	GATTTGCATA	TACGATAAAT	AATGCTTTTT	5280
	TATCFTCAAT	AAAGCTATGA	ATCTTTTCAA	GATCTTCAAT	TGAACCGTAA	AAGTTTGGAT	5340
40	ATTGTACTGC	AACAGCTGCT	GTTTCATCAT	CCACTGCTGC	TTCTAATTTT	TTCAAATCTG	5400
	TAACAGTGCC	ATCTAAATCG	ATTTCCACTA	CTTCGAATTC	CTTACGCGTC	TTAGCATAAG	5460
	TATGAAGTAC	TTGTAATGCT	TGATAATGTA	AACCTTTTGA	GACTACAATT	TTATTTTTCT	5520
45	TTGTTTGACT	AAATGCTAAG	ATACATGCTT	CAGCAAAGCT	AGTCATCCCA	TCATACATAG	5580
	AAGAATTTGC	TACATCCATA	TCTGTTAATT	CACAAATTAA	AGTTTGGAAC	TCAAAAATGG	5640
	CTTGTAATTC	ACCTTGAGAA	ATTTCCGGTT	GATATGGCGT	ATATGCTGTG	TAAAATTCTG	570 <b>0</b>
50	ATCTTGAAAT	CATAGCATCC	ACAACTGATG	GCGCGTAATG	ATCATAAACA	CCAGCACCCA	5760
	rAAATGATGT	ATGCGTTTCT	TTAGTGATAT	tCTTGCTkGC	AATGGGGATT	TAAACnTCTA	5920

# (2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18355 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

	ATNATAATTG	GCTTTGCTAA	TAATTACTTC	CCTGAATTAC	aAGTATTAGC	AAACGAAATA	60
15	AAATCTGATA	TGGCTAGTTC	ATTAAAACAA	TGATATTTTT	ATTTAAATTT	TTaAAGCTTT	120
	GTACGAAATT	GTACAAAGCT	TTTTTGGTGC	GTATTGTATG	GGCAACAACT	TGACGATGAA	180
	AATCCGTTAC	AGGATTGGTA	ATAGGAAATG	TTAGCGAAAG	ACAAGGGTAT	CCATTGTAGA	240
20	TTAACAAAAG	GACGTTTCCA	CAAGTGTGGG	TTATTCTCAC	TAAAGCAATA	CGCAGAGACA	300
	ACTTACGTAA	AATTTTGAAC	TGACTAGAAC	GGAACTTCTA	CTCAATTATT	GATAAAAATT	360
	TTCAAAAAGA	CTTGAATGTG	CTGAGAATAC	GAAGTTTATG	GAAGGATTAT	СААААТАТАА	420
25	ATGTGCATTC	ATTTACAACC	TTTATTGACA	ATGATTCTCA	ACTAATATAG	TATATAATCA	480
	AATCGTAATA	GTTACGATTT	GTTTTCTGCA	ACTTTTTTGA	AGTTTTAGTT	GAGGTGAAAA	540
	CAATAAAAGC	ATCTAAGTGA	ATGTAGTTAA	CGGACAACTG	CATTCGCTTG	TAGAGCCACA	600
30	AGAAGCAACT	TTAAATAAGG	TTTACGGTTG	CATTTTGATA	CAACAACCGA	TTACTAAGTC	660
	ATGCTTTCCA	CTTTGCGGGT	TAGCATGACT	TACCTAATAG	ATAGAGCTAT	TAGGTTCAGC	720
35	TTCTAAAAAA	TTACAGTTTT	AGAGGAATAC	AGTTGcTTGc	tTCGCAACAA	CTGCATAAGA	780
	GCCATGGTTT	TCGCTTTTGC	GAATTAGCAT	GACTTACCTA	CTAGATAGAG	CTATTAGGTT	840
	CATCTTCTAA	AAAATTACAG	GTTTAGAGGA	ATACAGTTGT	TTGcTTCGCA	ACAACTGCAT	900
40	AAGAGCCTCT	AGTAATTAAA	ATTACAGAGG	СТСТАААААТ	ACATCTAAAG	GAGTGTCGTA	960
	TGAATCGGCA	GGTTATAGAA	TTTTCTAAGT	ATAATCCTTC	GGGGAATATG	ACGATACTTG	1020
	TTCATTCAAA	ACATGATGCT	AGTGAATATG	CATCTATCGC	CAATCAGTTG	ATGGCCGCAA	1080
45	CACATGTATG	CTGTGAACAG	GTAGGCTTTA	TAGRATCAAC	ACAAAATGAT	GATGGTAATG	1140
	ATTTTCACTT	AGTTATGAGC	GGTAATGAAT	TTTGCGGTAA	TGCGACGATG	TCATATATAC	1200
	ATCATTTGCA	GGAAAGTCAT	TTGCTTAAAG	ACCAACAGTT	TAAGGTGAAG	GTGTCTGGCT	1260
50	GTTCGGATTT	AGTGCAATGC	GCAATTCATG	ATTGCCAATA	CTATGAAGTT	CAAATGCCAC	1320
	AAGCCCATCG	TGTTGTGCCA	ACAACAATTA	ATATGGGTAA	TCATTCATGG	AAAGCAATAG	1380

	TTCAACATTT	GGTTGAAGCG	TTTGTGCGTG	AgcAACAATG	GAGTCACAAA	TATAAAACAG	1500
	TAGGTATGAT	GCTTTTTGAT	GAACAACGTC	AATTTTTACA	GCCATTAATC	TATATACCAG	1560
5	AAATTCAAAG	TTTAATTTGG	GAAAATAGCT	GTGGTTCTGG	TACAGCATCA	ATTGGGGTTT	1620
	TTAATAATTA	TCAACGTAAT	GACGCATGCA	AAGATTTTAC	AGTACATCAG	CCAGGGGGCA	1680
	GTATTTTAGT	GACATCAAAG	CGATGTCATC	AATTGGGATA	TCAAACTTCA	ATTAAAGGAC	1740
10	AGGTTACAAC	TGTAGCTACA	GGaAAAGCAT	ATATAGAATA	AGGAGCCTAC	AATGAATAAC	1800
	TTTAATAATG	AAATCAAATT	GATATTACAA	CAATATTTAG	AAAAGTTTGA	AGCGCATTAC	1860
15	GAGCGTGTAT	TACAAGACGA	TCAATATATC	GAAGCATTAG	AAACATTGAT	GGATGACTAT	1920
13	AGTGAATTTA	TTTTAAATCC	TATTTATGAA	CAACAATTTA	ATGCTTGGCG	TGACGTTGAA	1980
	GAAAAAGCAC	AAATTAATAAA	ATCACTGCAA	TATATTACAG	CGCAGTGTGT	TAAACAAGTG	2040
20	GAAGTCATTA	GAGCGAGACG	TCTATTAGAC	GGACAGGCGT	CTACCACAGG	TTACTTTGAC	2100
	AATATAGAAC	ATTGTATTGA	TGAAGAGTTT	GGACAATGTA	GTATAGCTAG	CAATGACAAA	2160
	TTATTGTTAG	TTGGTTCAGG	TGCATATCCA	ATGACGTTAA	TTCAAGTAGC	AAAAGAAACA	2220
25	GGTGCTTCAG	TTATCGGTAT	TGATATTGAT	CCACAAGCCG	TTGACCTAGG	GCGCAGAATC	2280
	GTTAACGTCT	TAGCACCAAA	TGAAGATATA	ACAATTACGG	ATCAAAAGGT	ATCTGAACTT	2340
	AAAGATATCA	AAGATGTGAC	GCATATCATA	TTCAGCTCGA	CAATTCCTTT	AAAGTACAGC	2400
30	ATTTTAGAAG	AATTATATGA	TTTAACAAAT	GAAAATGTCG	TAGTTGCAAT	GCGCTTTGGT	2460
	GATGGCATCA	AAGCAATATT	TAATTATCCG	TCACAAGAAA	CAGCGGAAGA	TAAGTGGCAA	2520
25	TGTGTGAATA	AACATATGAG	ACCACAGCAA	ATTTTTGATA	TAGCACTTTA	TAAAAAAGCA	2580
35	GCTATAAAGG	TAGGTATTAC	GGATGTCTAA	ATTATTAATG	ATAGGCACTG	GTCCgGTCGC	2640
	AATGCAATTA	GCGAATATTT	GCTATTTAAA	ATCAGATTAT	GAGATTGATA	TGGTTGGACG	2700
40	TGCCTCAACA	TCAGAAAAAT	CAAAACGCTT	ATATCAAGCG	TATAAAAAAG	AGAAACAATT	2760
	TGAAGTCAAA	ATACAAAACG	AGGCGCATCA	ACATCTGGAA	GGTAAGTTTG	AAATTAATCG	2820
	TTTGTATAAA	GATGTTAAAA	ACGTTAAGGG	TGAATACGAA	ACGGTTGTCA	TGGCATGCAC	2880
45	AGCAGATGCT	TATTATGACA	CACTACAGCA	ATTGTCGTTA	GAAACTTTGC	AAAGTGTCAA	2940
	ACATGTCATT	TTAATATCAC	CGACATTTGG	TTCGCAAATG	ATTGTCGAAC	AATTTATGTC	3000
	TAAATTTAAT	AAAGATATCG	AAGTGATTTC	ATTCTCAACT	TATCTTGGCG	ATACACGTAT	3060
50	TGTTGATAAA	GAAGCGCCTA	ATCATGTGTT	GACAACAGGT	GTAAAAAAGA	AATTGTACAT	3120
	GGGATCGACA	CATTCAAACT	CAACAATGTG	TCAACGAATC	TCTGCTTTAG	CTGAGCAATT	3 <b>1</b> 8 U

	TTATGTGCAC	CCACCACTAT	TTATGAATGA	CTTTTCATTG	AAAGCCATTT	TCGAAGGAAC	3300
	AGATGTACCG	GTTTATGTGT	ATAAGTTATT	TCCTGAAGGA	CCGATAACGA	TGACACTAAT	3360
5	CCGTGAAATG	CGTTTAATGT	GGAAGGAAAT	GATGGTTATT	TTACAAGCAT	TTAGAGTGCC	3420
	GTCAGTCAAC	CTGCTTCAAT	TTATGGTGAA	GGAAAATTAT	CCAGTACGTC	CTGAAACTTT	3480
10	GGATGAAGGT	GATATTGAGC	ATTTCGAAAT	CTTGCCAGAT	ATCTTACAAG	AATATCTGCT	3540
70	TTATGTAAGA	TATACCGCAA	TCCTCATTGA	TCCATTTTCA	CAGCCAGACG	AAAACGGACA	3600
	TTACTTTGAT	TTTTCAGCTG	TACCATTTAA	GCAAGTCTAT	AAAAATGAAC	AGGATGTTGT	3660
15	TCAAATTCCA	AGAATGCCAA	GTGAAGATTA	TTACAGAACG	GCGATGATTC	AGCATATTGG	3720
	GAAAATGCTA	GGTATCAAAA	CGCCAATGAT	TGATCAGTTC	CTAACTCGCT	ATGAAGCAAG	3780
	TTGCCAGGCG	TACAAGGATA	TGCATCAAGA	TCAACACTTA	TCTTCTCAAT	TTAATACAAA	3840
20	TCTATTTGAA	GGAGATAAAG	CACTCGTCAC	AAAATTTTTG	GAAATCAATA	GAACGCTTTC	3900
	ATAATAAGGG	TTTGAAGTTT	TATAATAGAA	AAAAATTATT	GAATTATGTT	TGACATTTAC	3960
	ATAAAAATAA	GCAAATAATT	GAGAAAAATA	ATCATTACGA	TTTGATTAAG	TAATGCAACT	4020
25	TATCAATTTA	GAAAGAGGAA	AAGCAAATGA	GAAAACTAAC	TAAAATGAGT	GCAATGTTAC	4080
	TTGCATCAGG	GCTAATTTTA	ACTGGTTGTG	GCGGTAATAA	AGGTTTAGAG	GAGAAAAAAG	4140
20	AAAACAAGCA	ATTAACGTAT	ACGACGGTTA	AAGATATCGG	TGATATGAAT	CCGCATGTTT	4200
30	ACGGTGGATC	AATGTCTGCT	GAAAGTATGA	TATACGAGCC	GCTTGTACGT	AACACGAAAG	4260
	ATGGTATTAA	GCCTTTACTA	GCTAAAAAGT	GGGATGTGTC	TGAAGATGGG	AAGACATACA	4320
35	CGTTCCATTT	GAGAGATGAC	GTTAAATTCC	ATGATGGTAC	GCCATTTGca	TGCtGACGCA	4380
	GTTAAGAAAA	ATATTGACGC	Agttcaagaa	AACAAAAAAT	TGCATTCTTG	GTTAAAGATT	4440
	TCGĂCATTAA	TTGACAATGT	TAAAGTTAAA	GATAAGTACA	CGGTTGAATT	GAATTTGAAA	4500
40	GAAGCATATC	AACCTGCATT	GGCTGAATTA	GCGATGCCTC	GTCCATATGT	ATTTGTGTCT	4560
	CCAAAAGACT	TTaAAAACGG	TACAACAAAA	GATGGCGTTA	AAAAGTTCGA	TGGTACTGGT	4620
	CCATTTAAAT	TAGGTGAACA	CAAAAAAGAT	GAGTCTGCAG	ACTTTAACAA	AAATGATCAA	4680
45	TACTGGGGCG	AAAAGTCTAA	ACTTAACAAA	GTACAAGCAA	AAGTAATGCC	TGCTGGTGAA	4740
	ACAGCATTCC	TATCAATGAA	AAAAGGTGAA	ACGAACTTTG	CCTTCACAGA	TGATAGAGGT	4800
	ACAGATAGCT	TAGACAAAGA	CTCTTTAAAA	CAATTGAAAG	ATACAGGTGA	CTATCAAGTT	4860
50	AAGCGTAGTC	AACCTATGAA	TACGAAAATG	TTAGTTGTCA	ATTCTGGTAA	AAAAGATAAC	4920
	GCTGTGAGTG	ACAAAACAGT	CAGACAAGCG	ATTGGTCATA	TGGTAAACAG	AGATAAAATT	4980

	ACAGACATTA	ATTTCGATAT	GCCAACACGT	AAGTATGACC	TTAAAAAAGC	AGAATCATTA	5100
	TTAGATGAAG	CTGGTTGGAA	GAAAGGTAAA	GACAGCGATG	TTCGTCAAAA	AGATGGTAAA	5160
5	AACCTTGAAA	TGGCAATGTA	CTATGACAAA	GGTTCTTCAA	GTCAAAAAGA	ACAAGCAGAA	5220
	TACTTACAAG	CAGAATTTAA	GAAAATGGGT	ATTAAGTTAA	ACATCAATGG	CGAAACATCA	5280
	GATAAAATTG	CTGAACGTCG	TACTTCTGGT	GATTATGACT	TAATGTTCAA	CCAAACTTGG	5340
10	GGATTATTGT	ACGATCCACA	AAGTACTATT	GCAGCATTTA	AAGAGAAAAA	TGGTTATGAA	5400
	AGTGCAACAT	CAGGCATTGA	GAACAAAGAT	AAAATATACA	ACAGCATTGA	TGACGCATTT	5460
15	AAAATCCAAA	ACGGTAAAGA	GCGTTCAGAC	GCTTATAAAA	ACATTTTGAA	ACAAATTGAT	5520
7.5	GATGAAGGTA	TCTTTATCCC	TATTTCACAC	GGTAGTATGA	CAGTTGTTGC	ACCAAAAGAT	5580
	TTAGAAAAAG	TATCATTCAC	ACAATCACAG	TATGAATTAC	CATTCAATGA	AATGCAGTAT	5640
20	AAATAAAGGA	GCAATTAGAT	GTTCAAATTT	ATCTTAAAAC	GTATTGCGCT	CATGTTTCCA	5700
	TTGATGATTG	TAGTAAGTTT	TATGACATTT	CTATTGACGT	ATATTACAAA	TGAAAATCCA	5760
	GCTGTGACAA	TTTTACATGC	ACAAGGGACG	CCAAATGTAA	CACCAGAGTT	GATTGCAGAA	5820
25	ACGAATGAGA	AGTACGGTTT	CAATGATCCA	TTATTAATTC	AAAAATATAA	TTGGTTACTT	5880
	GAAGCGATGC	AATTTAATTT	TGGTACAAGC	TACATTACAG	GTGACCCAGT	TGCTGAACGT	5940
	ATTGGTCCAG	CATTTATGAA	TACATTGAAA	TTAACAATAA	TTTCAAGTGT	TATGGTGATG	6000
30	ATTACATCAA	TTATTTTAGG	TGTAGTTAGT	GCATTAAAAA	GAGGAAAGTT	CACTGATCGT	6060
	GCGATACGTT	CAGTGGCTTT	CTTTCTAACT	GCATTACCAT	CATATTGGAT	AGCTTCAATA	6120
	CTTATTATTT	ACGTTTCAGT	GAAGTTAAAC	ATATTGCCGA	CTTCTGGATT	AACAGGTCCA	6180
35	GAAAGTTACA	TATTGCCAGT	GATCGTTATT	ACGATTGCCT	ATGCTGGTAT	TTACTTTAGA	6240
	AATGTTAGAC	GCTCGATGGT	GGAACAATTA	AATGAAGATT	ATGTACTTTA	TTTAAGAGCA	6300
40	AGCGGTGTGA	AATCTATCAC	ATTAATGTTG	CATGTGTTGC	GTAATGCTTT	ACAAGTTGCG	6360
	GTATCAATCT	TTTGTATGTC	TATACCAATG	ATAATGGGTG	GACTAGTTGT	TATCGAGTAT	6420
	ATCTTTGCAT	GGCCTGGACT	AGGTCAATTA	AGTTTAAAAG	CAATACTTGA	ACACGATTTT	6480
45	CCAGTCATTC	AAGCATATGT	ATTAATTGTA	GCGGTATTAT	TTATTGTATT	TAATACATTA	6540
	GCAGATATCA	TTAATGCGCT	ATTAAATCCA	AGATTAAGGG	aGGGCGCACG	ATGATAATTT	5600
	TAAAmCGATT	ATTmCArGwT	AAAGGTGCAG	TAATTGCTTT	AGGCATTATT	GTATTATATG	6660
50	TCTTTTTAGG	ATTAGCAGCA	CCACTTGTGA	CATTTTATGA	TCCTAACCAT	ATCGATACAG	6720
	CAAACAAATT	TGCTGGCATG	AGTTTTCAAC	ATCTACTAGG	TACTGACCAT	TTAGGTAGAG	6780

	TATTTGTTTC	TGTACTTATT	GGATCTATTT	TAGGATTCTT	ATCAGGATAT	TTCCAAGGGT	6900
	TTGTTGACGC	CTTAATCATG	CGTGCGTGTG	ATGTTATGTT	GGCATTCCCA	AGTTATGTTG	6960
5	TAACGTTAGC	ATTAATTGCA	TTGTTTGGAA	TGGGTGCCGA	AAATATTATC	ATGGCATTTA	7020
	TTTTGACGCG	TTGGGCATGG	TTCTGTCGTG	TTATACGTAC	AAGTGTTATG	CAGTACACTG	7080
	CTTCTGACCA	TGTAAGATTT	GCTAAAACAA	TCGGTATGAA	TGATATGAAA	ATTATTCACA	7140
10	AACATATTAT	GCCATTAACA	TTAGCAGATA	TTGCTATCAT	CTCTAGTAGC	TCGATGTGTT	7200
	CAATGATCTT	GCAAATATCT	GGCTTTTCAT	TTTTAGGATT	AGGTGTCAAA	GCGCCTACTG	7260
15	CAGAGTGGGG	CATGATGCTT	AACGAaGCTA	GAAAAGTGAT	GTTTACACAT	CCTGAAATGA	7320
	TGTTTGCGCC	AGGTATTGCC	ATAGTGATTA	TAGTGATGGC	ATTTAACTTC	TTATCCGATG	7380
	CTTTACAAAT	TGCTATTGAT	CCCCGCATCT	CTTCTAAAGA	TAAACTTCGT	TCTGTGAAAA	7440
20	AAGGAGTGGT	GCAATCATGA	CATTGTTAAC	AGTTAAACAT	TTGACGATTA	CAGATACCTG	7500
	GACAGATCAA	CCACTCGTGA	GTGATGTGAA	TTTTACATTA	ACTAAGGGTG	AAaCTTTAGG	7560
	CGTTATTGGA	GAAAGTGGTA	GTGGTAAATC	AATCACTTGT	AAATCGATTA	TTGGTTTGAA	7620
25	TCCCGAACGA	CTCGGGGTGA	CAGGTGAAAT	TATCTTTGAT	GGTACAt CAA	TGTTGTCATT	7680
	ATCTGAATCG	CAATTGAAAA	AGTACCGTGG	TAAAGACATT	GCGATGGTCA	TGCAACAAGG	7740
	TAGTCGTGCC	TTTGACCCAT	CAACTACTGT	CGGTAAACAA	ATGTTTGAGA	CTATGAAAGT	7800
30	ACATACGTCA	ATGTCTACAC	AAGAAATTGA	AAAGACATTG	ATTGAATATA	TGGATTATTT	7860
	AAGTTTGAAA	GATCCTAAAC	GTATATTAAA	ATCATACCCT	TACATGTTAT	CAGGAGGAAT	7920
	GTTACAGCGA	TTGATGATTG	CTTTAGCGTT	AgcTTTgAAA	CCAAAGTTAA	TCATTGCTGA	7980
35	TGAGCCGACA	ACGGCTTTAG	ATACAATTAC	ACAATATGAT	GTACTGGAAG	CATTTATAGA	8040
	TATŢAAAAAA	CACTTTGACT	GTGCGATGAT	TTTCATTTCA	CATGATTTAA	CGGTTATTAA	8100
40	CAAGATTGCA	GACCGTGTTG	TTGTGATGAA	AAATGGTCAG	CTTATTGAAC	AAGGGACACG	8160
	TGAATCAGTC	TTGCATCATC	CAGAACATGT	TTATACGArt	ATTKTATTAT	CAACGAAGAA	8220
	GAAGATTAAT	GATCATTTTA	AACATGTGAT	GAGGGGTGAT	GTACATGATT	AAAATTAAAG	8280
45	ATGTTGAAAA	GTCATATCAA	AGCGCACATG	TTTTTAAGCG	TCGTCGAACA	CCTATCGTGA	8340
	AAGGTGTGTC	ATTTGAGTGT	CCAATCGGTG	CGACGATTGC	GATTATCGGA	GAAAGTGGTA	8400
	GCGGTAAATC	GACGTTGAGT	CktATGATAT	TAGGTATTGA	GAAACCGGAT	AAAGGTTGTG	8460
50	TAACCTTAAA	TGATCAACCG	ATGCATAAGA	AGAAAGTGAG	ACGTCATCAA	ATTGGTGCTG	8520
	TATTTCAAGA	TTATACGTCA	TCATTACATC	CATTTCAGAC	TGTTAGAGAA	ATCTTATTTG	8580

	TGTTGGAAGA	AGTCGGTCTA	TCTAAGGCAT	ACATGGATAA	ATATCCTAAT	ATGTTATCAG	8700
	GTGGAGAGGC	GCAACGTGTT	GCGATTGCGC	GTGCAATATG	TATTAACCCT	AAATATATTT	8760
5	TGTTTGATGA	AGCCATTAGT	TCACTCGACA	TGTCAATTCA	AACACAAATA	TTAGATTTAT	8820
	TGATTCATTT	ACGTGAAACG	CGTCAGTTGA	GTTATATTTT	TATCACACAT	GATATTCAAG	8880
	CTGCCACGTA	TTTATGTGAT	CAATTAATTA	TTTTTAAAAA	CGGAAAAATA	GAAGAACAAA	8940
10	TTCCGACAAG	CGCATTGCAT	AAAAGTGACA	ATGCTTATAC	AAGAGAATTA	ATAGAAAAAC	9000
	AACTATCATT	CTAAGGAGTG	AGATAATGAA	AGGTGCAATG	GCTTGGCCCT	TTTTGAGATT	9060
15	АТАТАТАТТА	ACATTGATGT	TCTTTAGTGC	CAATGCAATC	TTAAACGTGT	TTATACCTTT	9120
,,,	ACGAGGGCAT	GATTTAGGCG	CAACGAATAC	GGTTATCGGT	ATCGTTATGG	GGGCATACAT	9180
	GTTAACAGCA	ATGGTATTTC	GACCATGGGC	AGGACAAATT	ATTGCTCGTG	TCGGTCCCAT	9240
20	TAAAGTATTA	AGAATTATTT	TGATTATCAA	TGCCATAGCT	TTAATTATTT	ATGGTTTTAC	9300
	TGGCTTAGAA	GGTTATTTCG	TAGCACGTGT	TATGCAAGGT	GTGTGTACGG	CATTCTTTTC	9360
	TATGTCTTTA	CAGCTAGGTA	TTATTGATGC	ATTACCAGAG	GAACATCGTT	CTGAAGGTGT	9420
25	ATCATTGTAC	TCGCTATTTT	CAACGATTCC	AAACTTAATC	GGACCATTAG	TTGCCGTAGG	9480
	TATTTGGAAT	GCAAATAATA	TTTCACTATT	TGCAATTGTC	ATTATCTTTA	TCGCATTAAC	9540
	AACAACATTC	TTTGsTATCG	CGTGACCTTT	GCTGAACAGG	AACCCGATAC	GTCAGATAAG	9600
30	ATTGAAAAAA	TGCCGTTTAA	CGCTGTAACT	GTTTTTGCGC	AATTTTTCAA	AAATAAAGAG	9660
	TTGTTGAACA	GTGGTATTAT	CATGATTGTT	GCATCGATTG	TATTTGGTGC	AGTTAGTACA	9720
	TTTGTACCGT	TATACACAGT	GAGTTTAGGA	TTCGCGAATG	CGGGAATCTT	TTTGACAATA	9780
35	CAGGCCATCG	CAGTTGTTGC	GGCAAGATTT	TACTTAAGGA	AATACATTCC	GTCAGATGGT	9840
	ATGTGGCATC	CTAAATATAT	GGTATCTGTA	CTATCATTAT	TAGTAATCGC	GTCATTTGTA	9900
40	GTGGCATTTG	GTCCGCAAGT	AGGTGCAATT	ATTTTCTATG	GTAGTGCGAT	ATTAATAGGA	9960
40	ATGACGCAAG	CAATGGTGTA	CCCAACATTA	ACATCATACT	TAAGCTTCGT	CTTACCAAAA	10020
	GTAGGTCGTA	ATATGTTGTT	AGGTTTATTT	ATTGCCTGTG	CAGACTTAGG	TATATCGTTA	10080
<b>4</b> 5	GGTGGCGCAT	TGATGGGACC	TATTTCCGAT	TTAGTAGGAT	TTAAATGGAT	GTATCTAATT	10140
	TGTGGTATGT	TAGTCATTGT	AATAATGATT	ATGAGTTTCT	TGAAAAAGCC	AACACCACGT	10200
	CCAGCGAGTA	GTCTTTAATG	AAGTGAATTA	AAGCATATTA	agttaatgaa	TATTTAAATT	10260
50	TTAAAAGGTA	TATTGaGCAT	GGCGATTCAT	GTGCTTCATG	CTAGGACATG	AAACATTCTA	10320
	TATGGCTCGT	TTTTAGAACG	ACATATCT	AAATAAAGCA	CGCTTArAAG	TGAGTTTTGA	10380

	TTACATGAAA ATATGCAAAA CGAGTATAAC TGCTAATTGA TAGAAATAGC TCACCATAAA	10500
	ATTACGGTAT GATTTTAAAT ATAAGTAAGT CGCACTACCT GCTAGTATCA ATGCTGGAAT	10560
5	GAATTCCCAC CATGTATTAA TGTATGGATA GTAGAACAGA GTTTCAAGGA TAATGGACAA	10620
	TACTATTGTA ATCTTTAAAG GTATTAATCT GCTTAATTCT TGAATTAAAA TATGACGGAA	10680
10	AATAAGTTGA CAAATCAAAG TATTTAATAT AATGGTTAAC GAAAATATAG CTATTAAACT	10740
,,,	GATGGAACCA TACCCTTTAA TGAGCGGGTA AATGTCAAAG ACAGTAAAGG AATCTACATT	10800
	TAGTGCGAAA ATATTGAAAT GATTTAAAAG TAAAAAGAGT ACGACACTTA GTGTAAATGA	10860
15	TATAAGAATA TGCCATTTAT ATTTAGCACT AGCAACGATT TGCGAACGTA TCATTGGAAT	10920
	AAACGCATCT TCATGCATCA GACGAAAAAT AGCTAGTGAA ATAATAACTG CGAGTAAATA	10980
	GCTAATGTTC ATTGAAATAG GAAAAGAGAA ACCCCACGGA GCTTGTTGAG TGAATACAGC	11040
20	TACTAACCCA AAAGTTAAAA AGACGATAAT GATCGGCAAG ATGTTAACCA AAAATATGTA	11100
	AAGGAAAATA AATCCAATAT CACGTTTGAA AAAACGCGAT TGTTCGGTAG CGTATTCTTC	11160
	TTCTATGTAA TGTTTATTTG TATTTGACAT AGTATACCTC TTAAATAGTT GTATTATATA	11220
25	GATACTTTAG CACATATTAC TTTGTATTGT ATGTTTTATA CATTAAAATT TAAAATGAAA	11280
	AACATATCAT AAAATTGTTT TATAAAATGA AGCGCTTCCA TTGTGTTTTG TTTTGTAAGG	11340
	TGTATCATAA ATATTGAATT GAAATTTTGG GGGGAGGTAT TGTAATGACG TTTCTTACAG	11400
30	TCATGCAATT TATAGTTAAC ATTATCGTTG TAGGATTCAT GCTTACGGTT ATTGTTATCG	11460
	GGCTTATTTG GTTAATTAAA GATAAAAGAC AATCACAACA TAGTGTATTA AGGAATTATC	11520
35	CTTTACTAGC ACGTATTAGA TATATTTCAG AAAAAATGGG ACCGGAATTA CGTCAGTATT	11580
33	TATTTCTGG GGATAATGAA GGGAAACCTT TTTCACGTAA TGATTATAAA AATATCGTTT	11640
	TGGCTGGAAA ATATAACTCT CGTATGACCA GCTTCGGTAC TACTAAAGAT TATCAAGACG	11700
40	GCTTTTACAT ACAGAACACA ATGTTTCCGA TGCAACGTAA TGAGATTTCA GTAGATAATA	11760
	CAACATTGTT ATCAACATTC ATTTATAAAA TCGCGAATGA GCGTTTATTT AGTCGTGAAG	11820
	AATATCGTGT GCCGACAAAG ATTGATCCGT ATTACTTAAG TGATGACCAT GCAATAAAAT	11880
45	TAGGTGAACA TTTAAAACAT CCATTTATTT TAAAACGTAT CGTAGGACAA TCTGGTATGA	11940
	GTTATGGCGC TTTAGGAAAA AATGCCATTA CAGCTTTATC TAAAGGTCTA GCTAAAGCGG	12000
	GCACTTGGAT GAATACAGGT GAAGGTGGCT TATCAGAATA TCATTTAAAA GGTAATGGGG	12060
50	ATATCATTTT CCAAATTGGT CCCGGTTTAT TTGGTGTTCG TGATAAAGAA GGTAATTTTA	12120
	GTGAAGGTTT ATTTAAAGAG GTTGCACAGT TATCTAACGT ACGCGCATTT GAGCTGAAGT	12180

	TTGCTAAAAT	CCGAAATGTT	GAACCTTATA	AAACAATCAA	TTCACCTAAC	CGTTACGAAT	12300
	TTATTCATAA	TGCTGAAGAT	TTGATTCGTT	TCGTCGATCA	GTTGCAGCAA	TTAGGTCAAA	12360
5	AACCAGTAGG	ATTCAAAATT	GTAGTAAGCA	AAGTTTCAGA	AATTGAAACA	CTTGTACGTA	12420
	CGATGGTGGA	ACTAGATAAG	TATCCAAGCT	TTATTACGAT	TGATGGTGGT	GAAGGTGGTA	12480
	CTGGTGCAAC	ATTCCAAGAA	TTACAAGATG	GTGTTGGCTT	ACCGCTATTT	ACAGCTCTAC	12540
10	CTATTGTGTC	TGGCATGTTA	GAAAAATATG	GTATTCGAGA	TAAAGTGAAA	TTGGCGGCAT	12600
	CTGGTAAGTT	AGTGACACCA	GATAAAATTG	CGATTGCACT	AGGTTTAGGT	GCAGATTTTG	12660
15	TAAATATCGC	ACGTGGGATG	ATGATTAGTG	TCGGTTGTAT	AATGAGTCAA	CAATGTCACA	12720
	TGAATACGTG	TCCTGTAGGT	GTTGCAACGA	CAGATGCGAA	GAAAGAAAAA	GCATTGATTG	12780
	TTGGAGAAAA	GCAATATCGT	GTCACAAACT	ATGTAACAAG	TTTGCATGAA	GGCTTATTCA	12840
20	ATATTGCAGC	AGCTGTTGGC	GTATCCAGTC	CTACAGAAAT	TACTGCTGAT	CATATTGTAT	12900
	ATCGAAAAGT	CGATGGTGAG	TTACAAACGA	TACATGATTA	TAAATTAAAA	CTCATTAGTT	12960
	AACTTAATTA	TTTCGGGAAA	TTGAAAGCAG	CGGATTTTAG	CGTTACTGCA	AATAATTTTA	13020
25	TATTAGTAGT	GGATGCTGGT	CACACAAGAA	CTTCAAATAT	TAAAGCCCTC	AGAATATGAA	13080
	TTAAGGTTTG	TAACCTTAGT	CTTATCTGAG	GGCATTTTTA	AGTTATAAAC	TATTTGTCGT	13140
	CCATTTTATC	TTTTTCTTTT	AAACCTCTGT	GCTTTAATTG	CTTTTCAAGT	TTTTCAAAAC	13200
30	TAATATCTTT	ATTTTCTTTA	GTCGAAACAC	CAAGACGTTT	ATTTAATTTT	TTCATGTCAA	13260
	CTTCTGTGTA	ATCTATGTCT	AAGTGYTCAA	TTGCTTTTTT	ATCTTTATAG	TCTACTTTGT	13320
25	ATTTTACGCC	TTTAAGGTCT	TTGAAAATAC	TTTCAGATTT	GGCGAATAAC	TTTTTGGCTT	13380
35	CGTCTTTATC	CATACCTAGA	TCGTCATATT	TAATTGTGTT	GATTGTAGAC	TGTTTTAAAA	13440
	CTTTATCATC	TTTATATGTG	ATAGAAGTTA	GTACATGTTT	ACCACTAACA	TCACCWTCAT	13500
40	ATGTTTTGGT	TTGTTCTTTA	CCACAAGCTG	ATAATGCAAT	GATACAAACT	AATGCTACTA	13560
	CAATTAATGA	ACATAATTTT	TTCAAAGTCA	GTCGCCTTCT	TTCGATATTT	GTATTATAAA	13620
	GAAATTATAA	CATTTACTAA	AAAATGATGT	TATTCAAAAA	TTTAAATTTT	GTCATTTTTT	13680
45	TTGAAGATAT	GAGTTTTTTT	AAGCGGATTC	CTCACAAAAT	тттааааата	TTTAAGCCTk	13740
	AAAATGATAA	AGCGKTAGGG	AACGTTTTTC	TGAAAGTTAG	TGATACAATA	GTTTTAAGTT	13800
	GAAATACAGG	AGGATGAATA	ACATGAATCA	GTCAGTCAAA	TTACTTAAAC	ATTTAACAGA	13860
50	TGTAAACGGC	ATTGCTGGTT	ATGAAATGCA	AGTTAAAGAA	GCAATGCGTa	ACTATATAGA	13920
	GCCTGTCAGT	GATCAAATTA	TTGAAGATAA	CTTGGGTGGC	ATTTTTGGAA	AGAAAAATGC	13990

	AACAAAGATT	GATAAACATG	GTTTTATTTC	ATTTACGCCA	kTgGTGGATG	GTGGAATCAA	14100
	GTCATGCTAT	CTCAAAAAGT	AACGATTACA	ACAGATTCGG	GCAAAGAAAT	TAGAGGTATC	14160
5	ATCGGTTCTA	AACCGCCACA	TGTCTTAACG	CCTGAAGAAC	GTAAAAAGCC	AATGGAAATC	14220
	AAAAATATGT	TTATAGATAT	TGGTGTTAGT	AGCAAGGAAG	AAGCTGAAGA	AGCTGGCGTT	14280
10	GAAGTAGGCA	ATATGGTTAC	GCCATATAGT	GAATTTGAAG	TGCTTGCAAA	TGATAAATAT	14340
	TTAACTGCGA	ArCATTTGAT	AATCGCTATG	GCTGTGCATT	AGCTATTGAG	GTATTAAAAC	14400
	GTTTAAAAGA	TGAAAATATT	GGCATTAACT	TATACAGTGG	TGCCACAGTG	CAAGAAGAAG	14460
15	TTGGTTTGCG	TGGTGCGAAA	GTGGCAGCGA	ATACGATTAA	ACCAGACTTG	GCGATAgcTG	14520
	TCGATGTAGG	TATTGCTTAT	GATACCCCAG	GTATGTCAGG	TCAAACGAGC	GATAGTAAAC	14580
	TAGGCGGTGG	TCCAGTTGTC	ATTATGATGG	ATGCTACAAG	TATTGCTCAC	CAAGGTTTGC	14640
20	GAAAgcATaT	TAAAGATGTA	GCTAAGGAAC	ATAACATCGA	AGTACAATGG	GATACGACAC	14700
	CAGGTGGAGG	TACAGATGCG	GGAAGTATTC	ATGTCGCAAA	TGAAGGTATT	CCAACGATGA	14760
	CAATCGGTGT	TACGCTGCGA	TACATGCATT	CTAATGTTTC	AGTGCTCAAT	GTAGATGATT	14820
25	ATGAAAATTC	TATCCGTCTT	GTTACTGAAA	TTGTCCGTTC	ATTGAATGAT	GAAAGTTATA	14880
	AAAATATCAT	GTGGTAATCA	AATCCATAAA	TAATAAAGAA	TCCTTTTAAT	ATGGTAGGTT	14940
	GTTAAACAAT	TGTCTAATTT	TAATTCTTAG	TCATTAGACA	GTATCCATGT	TAATAGGATT	15000
30	TTTTGTTTTT	AATTTAAATG	CTGAAAATCA	ATTATGCCTA	AATTTTGATA	TTACAAGAAA	15060
	ATGATTTTTT	CTTAAATGTA	ATTGCACTAA	AAACCAAAAA	AACGGGAATA	ATATACCTGA	15120
35	TATATTACAT	GAGGAGCGGT	GCAAATGTTG	TTAGAAATTA	AAGATTTAGT	GTATAAAGCG	15180
	AGCGATAGAA	TCATACTAGA	TCATATCAGT	CTAAAAGTAG	ATAAAGGCGA	GAGTATTGCC	15240
	ATTATAGGTC	CATCAGGTAG	TGGTAAAAGT	ACATTTCAAA	AGCAAATATG	TAATTTGTTT	15300
40	AGTCCAACTA	GTGGAGAACT	TTATTTTAAA	GGTAAACCCT	ATAATGATTA	TGACCCGGAA	15360
	GAATTGCGTC	AACGAATCAG	TTATTTGATG	CAGCAAAGTG	ACTTGTTTGG	TGAAACGATT	15420
	GAAGATAACA	TGATATTCCC	ATCACTTGCA	CGTAATGATA	AATTTGATAG	AAAACGTGCA	15480
45	AAGCAATTAA	TTAAAGATGT	CGGTTTGGGA	CATTATCAAT	TAAGTTCGGA	AGTGGAAAAT	15540
	ATGTCGGGTG	GTGAGCGGCA	AAGAATTGCT	ATAGCGCGCC	AACTGATGTA	TACACCGGAT	15600
	ATTCTTTTAT	TAGATGAATC	GACCAGTGCA	TTAGACGTTA	ATAATAAAGA	AAAGATAGAA	15660
50	AATATCATTT	TTAAATTAGC	AGATCAAGGC	GTGGCAATTA	TGTGGATTAC	CCACAGCGAT	15720
	GACCAAAGTA	TGCGACACTT	TCAAAAGCGT	ATAACAATTG	TTGATGGTCA	AATTTCTAAT	15780

	CATTCCGATT	ATCATTTCAT	ATAAAGAAGG	TTTACATATT	ATTAAAGATT	TAATTGTTGC	15900
	GACATTACGA	GCAGTTGTGC	AATTAATCAT	TTTGGGATTT	TTGCTGCATT	ATATTTTTAA	15960
5	AATAAACGAT	AAATGGCTGC	TTATTTTATG	TGTATTGGTC	ATTATTATTA	ATGCATCATG	16020
	GAATACAATT	AGTCGAGCAT	CACCAGTGAT	GCATCATGTG	TTTTGGATAT	CATTTCTAGC	16080
	TATCTTCATT	GGAACGGCAT	TACCGCTTGC	AGGTACTATT	GCGACAGGGG	CCATTCAATT	16140
10	TACCGCAAAT	GAAGTTATAC	CTATCGGCGG	CATGCTTGCA	AATAATGGCT	TGATTGCAAT	16200
	TAATTTAGCT	TACCAGAATT	TAGATCGTGC	ATTCGTACAA	GATGGTACTA	ATATTGAATC	16260
15	TAAATTATCA	CTTGCAGCTA	CACCTAAATT	GGCTTCTAAA	GGTGCAATAC	GTGAAAGTAT	16320
	TCGTTTAGCT	ATAGTGCCAA	CTATTGATTC	GGTTAAAACA	TATGGGCTTG	TGTCGATTCC	16380
	TGGTATGATG	ACAGGCTTAA	TTATTGGTGG	CGTACCACCT	TTACAAGCGA	TTAAATTTCA	16440
20	ATTGTTAGTC	GTGTTTATTC	ATACAACTGC	GACCATTATG	TCTGCTTTGA	TTGCGACATA	16500
	TTTAAGCTAT	GGTCAATTTT	TCAATGCAAG	ACATCAATTA	GTAGCACGAA	ATACTGATGT	16560
	TAAGAGTGAA	TCATGATAGA	TTTTACTGCA	TCAGATTTAG	GCATTAGTTT	TAATTGGAAA	16620
25	TGAAGTGACG	CGCACATATA	GTATCGCTAT	TCATTAGCGC	AGCGAAAATA	TTCATAAAGG	16680
	CACGCATACT	TTGTAGTCAG	TTATCTGTTC	TGACATATAA	AGCGTGCGTG	CTTTTTTGGA	16740
	GTTATTGTTG	AAACTGAAGT	AATTATACAT	AATTATTAAA	TGACATACTT	GTGTTAATTT	16800
30	TTCAAATACT	GAAAAACAAT	TTCaATAATT	TTCCaATTAA	GCACAGAAAA	TTAAAGCAAA	16860
	ATATTATATA	ATAGAACGGT	TATATATAAA	nATTngTgCA	CACATTTTTT	AATAAATCGT	16920
	TATTCTAAGG	GAAATGAATA	TCGGAAATTT	TGTTTGAAAG	GAGTTTTAAA	TTGTCAATCA	16980
35	TGCGACTATT	TACATTCATT	TTAAGTATTT	TTATCGTAGG	aatggttgaa	ATGATGGTTG	17040
	CAGGÃATTAT	GAACTTGATG	AGTCAGGACT	TACATGTATC	AGAAGCTGTC	GTTGGTCAAT	17100
40	TAGTGACAAT	GTACGCTTTA	ACATTTGCGA	TATGTGGACC	TATTCTGGTT	AAATTAACGA	17160
	ACCGTTTTTC	ATCAAGGCCT	GTATTATTAT	GGACATTACT	TATATTTATC	ATTGGTAATG	17220
	GCATTATTGC	TGTAGCGCCA	AATTTTTC <b>aA</b>	TATTAGTAGT	TGGTAGAATT	ATCTCATCTG	17280
45	CAGCAGCAGC	ACTAATTATC	GTAAAAGTAT	TAGCTATTAC	AGCGATGTTA	TCAGCACCTA	17340
	AAAATCGTGG	TAAAATGATT	GGACTTGTCT	ATACAGGGTT	TAGTGGTGCT	AATGTTTTTG	17400
	GTGTACCAAT	TGGAACGGTT	ATCGGCGATT	TAGTAGGTTG	GCGCTATACA	TTTCTATTCT	17460
50	TAATTATTGT	GAGTATTATT	GTTGGCTTCT	TGATGATGAT	CTATTTACCG	AAGGATCAGG	17520
	AAATACAACG	AGGCCCTGTG	AATCATGAGA	CACCATCTCA	TGAAAATCAT	GTTACTTCGA	17580

	CAAACTCAGT GACATTCGTC TTTATAAATC CACTTATTTT ATCTAATGGT CATGATATGT	17700
5	CATTCGTTTC ATTAGCACTT CTAGTAAATG GAATCGCTGG CGTTATTGGA ACATCATTAG	17760
J	GTGGTATATT CTCCGATAAA ATTACAAGTA AGCGTTGGTT AATGATTTCT GTTTCTATTT	17820
	TTATCGTCAT GATGTTACTT ATGAATTTAA TCTTACCTGG TTCAGGTCTA TTGTTAGCAG	17880
10	GACTATTTAT TTGGAATATC ATGCAATGGA GTACTAATCC AGCAGTGCAA AGCGGTGTGA	17940
	TTCAACATGT TGAAGGCGAC ACAAGCCAAG TAATGAGTTG GAACATGTCT AGTTTAAACG	18000
	CTGGTATTGG TGTTGGAGGC ATTATTGGAG GCTTGGTCAT GACACATGTT TCTGTTCAAG	18060
15	CTATCACATA TACGAGTGCC ATCATTGGCG CATTAGGATT AATCGTTGTT TTCACATTGA	18120
	AAAATAATCA TTATGCTAAA ACATTTAAAT CATCATAATT CTCATATGAm AAGCACGCCT	18180
	GCTATCAAAT TCAGGTGTGC TTTTTTAGAT GCGATAACGT TATTGATATG TGCGATAATA	18240
20	GCGACGTTCA TTATGATACA TCGGCCAAGG CATTTTACCG CTTTTAGCAA AATTAGCTAA	18300
	ATCATTTTGC ATTTGTCGAC TTAAAAATTT AAGGTGAGCA GTTGTTGGAT ATGAT	18355
	(2) INFORMATION FOR SEQ ID NO: 68:	
25 30	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1192 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
35	CGCAAAGAAG TACAAAAAAT GTTTTTACAA GAAGGTATTA AAACACCTCA ACCAATTATG	60
	ACTGCTTATA ATCATAGTGA AAACGGTGTT TAGTAGTTTA TAATACATGG AGGTCATATT	120
	TAATGGCGTC AAAATATGGA ATAAATGATA TAGTAGAAAT GAAAAAACAA CATGCGTGTG	180
40	GAACAAACCG TTTTAAGATT ATTAGAATGG GTGCAGACAT AAGAATTAAA TGTGAAAATT	240
	GTCAAAGAAG TATTATGATT CCACGTCAAA CGTTTGATAA AAAACTTAAA AAAATCATCG	300
	AATCTCATGA TGATACACAA AGATAGGAGA ATGATTAATG GCTTTAACAG CAGGTATCGT	360

TGGATTGCCA AACGTTGGTA AATCAACATT ATTTAATGCA ATAACAAAAG CAGGTGCTTT

AGCAGCGAAC TATCCATTCG CTACGATTGA TCCTAATGTA GGGATAGTAG AAGTGCCAGA

TGCTAGATTA CTTAAATTAG AAGAAATGGT TCAACCTAAA AAGACATTGC CGACTACATT

TGAATTTACA GATATCGCTG GTATTGTGAA AGGTGCTTCA AAGGGAGAAG GGTTAGGTAA

TAAATTCTTA TCACATATTA GAGAAGTAGA TGCGATTTGT CAGGTCGTTC GTGCATTTGA

420

480

540

600

660

45

50

TAATATGGAA	TTAGTACTAG	CGGACTTAGA	ATCTGTTGAG	AAACGTTTGC	CTAGAATTGA	780		
AAAATTAGCA	CGTCAAAAAG	ATAAGACTGC	TGAAATGGAA	GTACGTATTT	TAACAACTAT	840		
TAAAGAAGCT	TTAGAAAATG	GTAAACCCGC	TCGTAGTATT	GACTTTAATG	AAGAAGATCA	900		
AAAATGGGTG	AATCAAGCGC	AATTACTGAC	TTCTAAAAAA	ATGCTTTATA	TCGCTAATGT	960		
TGGTGAAGAT	GAAATTGGTG	ATGATGATAA	TGATAAAGTA	AAAGCGATTC	GTGAATATGC	1020		
AGCGCAAGAA	GACTCTGAAG	TGATTGTTAT	TAGTGCAAAA	attgaagaag	AAATTGCTAC	1080		
ATTAGATGAT	GAAGATAAAG	AAATGTTCTT	AGAAGaTTTA	GGTATCGaAG	AACCAGGATT	1140		
AGATCgrTTA	ATTAGGAMCA	ctTATGAATT	ATTAGGNTTA	TCCACCATAA	TT	1192		
(2) INFORMATION FOR SEQ ID NO: 69:								
(i) GROVENGE GUNDAGERDAGER								

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 7494 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 69: 

AATATAGCTG	CAATAGCATC	TCGTTTCATT	TGTATAATCA	ATTCCGGTTT	AAATATCAGT	60
GTGAACGTAA	GCACGACACA	GATTAAAAAT	AACACTGCCG	GAATGAGTCG	TTTCAATCGT	120
CGCTtCCAAA	ACTCTAGCAA	ATCGATTTTT	TGCGTCCGAT	AATACTCACT	TATCAACAAA	180
CTTGTTATTA	AATAACCTGA	AATAACGAAG	AATGTATCTA	CTCCTAAAAA	GCCCCCACTT	240
AACCATTGTG	CATTCAAGTG	ATAAATAATG	ATTCCTATAA	CTGCGAATGC	CCTCAATCCA	300
TCTAATCCAG	GTAAGTATCG	CGGGGAATAC	ATTTTTTCTA	AACGTTTAAA	GTCTTTTGTA	360
TCCATGTTAA	TAAACGCCCC	ATTTATTTTT	CTCTATTTTG	TAGTATATCA	CAATATTTTT	420
GAAAÀTAAAA	TATTGCACTG	aTTTTCATTA	ATTGATTTAA	CCCTTAATTA	AGATAGTTTT	480
AAATTTTTTA	TTAAGTAGAA	AACAATTATT	ACAGTTGATT	TCATTACTGC	AAACCACATA	540
TAAATTTGTC	GATTTTACTA	CATAACATAG	ATTATCATAG	ATTCTTGAAT	TTTTAGCAAA	600
ATAACTGTTA	TTTTCATTAT	ATTTTTACAA	AAAAAGGTTC	GTTTTATATT	TTATGCATCT	660
TACTGTAACA	GAATCATTAA	GATATGCTAT	TCGAATATAC	TTTTTCAAAA	TTTATATAAT	720
GAATAAATTA	ACATGTATTG	AAAAAAAAGC	GAAATGCAGC	CTATCCTCTA	ATGTAAACCA	780
AACGATATAT	CTCGTCAGAC	TTTATATTTA	AACGCTATGT	GTCACTTTTA	AAATGAATAT	840
TACTAAGATT	GTCATATCAA	TTATTATTGC	ATCGAATTAA	TCTTTTAAAT	TTCTGTAATA	900

	ACGGAAGTCA	TTATTAGAAT	AAAAATACTG	TGCACTAATA	AATTTATCAA	TTGTTCCTAA	1020
	ATAAATACCA	TCGATATTTT	GTTCTTTACA	TGTCATTATA	ACTTTATCTA	AAAGTTTTTT	1080
5	ACCTATTTT	AAATTCCTAT	AACCTTTATC	AACAAACATT	TTTTTAAGTG	CAGACATATT	1140
	ATTATCTAGT	CTAATCAAAC	CTATAGTACC	AACAATATTT	TGaTGATTGT	TTATTGCAAG	1200
10	CCAAAATgCC	CTCCATTATT	CAAATAGTTA	TGTTCGATGT	TCTCCAAATC	AGGTTGATCA	1260
, •	TCTCTATCAA	TTTTTATATA	AATTCATTTT	TTTGAATCGA	TAAAATAAAC	TCGATTAGCT	1320
	CTTCCTTATA	AGACCTATTA	TATTCAATTA	TGTTTATAGC	CATTTTTATC	TCCTTTTTCA	1380
15	TTTAATTTAA	TTATAAAATG	TGCGTTTAGT	TTGTATCTAG	TGTACTCAGT	ACAGCCTCAA	1440
	ATGAAGTTTC	ATTCCACTTG	GCACTTAATA	AAGACAAGTA	TTTTAGCAGT	AATACAATAA	1500
	AGTCCAATAA	ATTTCCCTAA	CTTCAATATC	CACTTTTTAA	AAAATGTATT	TTTAATTAAT	1560
20	AAAAAAACTC	TCCCCAATTT	CTATGGGAAG	AGCTATATAT	TTAATGTCTA	AACATTACTT	1620
	TTATTTATTA	TGAAGGAATT	AGAATCCCCA	AGCACCTAAA	CCTTGTGCTT	TGTATGCTTT	1680
	AACAGCTGCG	TTGATTTGTT	GGTCAACAGT	GTTTGTTGGA	CCCCAACCTG	GCATAGTTTG	1740
25	GAATAAACCT	GAAGCACCTG	ATGGGTTGTA	AGCATTTACT	TGACCATTTG	ATTCACGAGC	1800
	GATGATTGCA	GCCCATGTAG	AAGCTGAAAC	ACCAGTACGT	TGAGCCATGA	TTTGAGCTGC	1860
	TGATGAACCA	GTAGCACCTG	CAGTATTACC	ATTGCTTAAT	CTCACTGAAC	TTGAAGTAGT	1920
30	TGAAGTGCTG	TAGTTATGGT	AAGTTGGAGC	TGAAACAGCT	TCAACGTtTG	AGTTACTTGA	1980
	TTGTGCATTG	TAGCTTACTG	ATTGTACATT	TGAACCTTGG	TTGTATGAAG	TAGTGTAGTC	2040
35	TGCACCTGCA	ACGTTTGAGA	AACCAGCAGT	TTGACCATTA	GCTGCTTCAT	AGCTCCATGA	2100
	CCATGTAGTA	CCATTTGAAG	TGAAGTTATA	TTGGAAACCA	TCTTTTACAA	AGTGGATGTC	2160
	ATATGCACCA	TCTTTGATTG	GAGCTGCATT	TAATTGATCT	TGGTGATTAT	GCGCTAAGTC	2220
40	AACTAAGTGT	GCTTGATCAA	CGTTTACTTC	AGCAGCGTGT	GCTTGATGTC	CTGTACCTGC	2280
	TGCGTAACCT	GTTACACCTA	ATGCCACTGC	TAATGATGAT	GCCATAATTG	TCTTTTTCAT	2340
	AGTAAAAAAT	CCTCCAGTAA	TAATTGTnAG	TTTATGTTTT	TAGTAATTAT	AtTTTGaATT	2400
45	TGAATGTCGT	AGTgCAAGTT	TAAATTGTCT	TTTATTTCTT	TCaACGGTAC	TCACTATATC	2460
	ACAAAAAACC	AGCCAGTAAA	TTACACTTTC	TTTACAAAAC	ATTACAATAT	CAAGTGTTAT	2520
	TTGtAATGTT	GAAATATGGC	TGTTTTATAC	TGTAATGTGA	AATATGTGCC	CTTTAGAATC	2580
50	CAATCAACCC	TTGAAATAGT	CTTTAACACA	TAAGATTTTT	ACTATATTTA	GCTCAACTAT	2640
	TACAGCTTTC	GTAATATTAC	AGATTGTATT	TTTGTTACAT	AGCTGTAATA	TATCTGACAT	2700

	ma ca camoma	mmo a mmo om a				CA CA MOTHER	2222
	TACACATGTA	TTGATTGCTA	TTATTGTTGT	ATATTCAAAG	TTTTAAAACA	CACATCTTTT	2820
_	GTGAATTGTC	TTATCTTTTA	TTAGCGCAAA	TAAACTGCAG	CTCAATTATA	TTGTTCAACT	2880
5	TCATTCTCGC	AATTCACAAT	AACATTAAAT	AATTTTTGGT	CTCATATTTT	CAAAAAACAT	2940
	ACTGTTATTA	TCCCATGAAT	TTAAAAATAT	CATTAGTATA	TAAACGAAAC	ACTTTACGAT	3000
10	AAATGATATC	TGCAAGCCAA	GCTGTTACAA	ATGGTACAAC	AAAGAACGCT	ACTACAATTA	3060
10	GTAAGACACT	CAACCAAGCA	GAATCAACCT	CCATAAATTT	AAATGCATTA	ATCGGTCCTA	3120
	CCATTCCTAT	AAAACCAAAT	CCAGCTGACT	CTTTCGTTCC	ATGAATACCT	ACTAATGCTG	3180
15	ATACCAAACC	TGATACAATG	GCTGTCGTTA	ATATTGGTAA	CATAAGAATT	GGATATTTCA	3240
	CCATATTAGG	TATCATCATT	TTAACGCCTC	CAAAGAAGAC	GGATAACGGC	ACCCCTAAAC	3300
	GATTCACTTT	ACTTGTACCA	ATTATCAATA	CTGCTTCAGT	CGCGGAGATA	CCAATTGACG	3360
20	CTGATCCAGC	TGCTAAACCT	GTAATACCTA	TCGCAAAGGC	AATGGCCACA	GTTGATAGTG	3420
	GCGAAATAAT	AATAAGACTA	AATACCATTG	AAATCAAAAT	ACTCATGACA	ATCGGTTGTA	3480
	ATTCTGTAAA	ACCATTAACC	ATATTACCGA	TGGCTGTTGT	AATCATTTTC	GTATACGGCA	3540
25	ATATTAAAAC	ACCAATTGCA	CCTGAAATAC	CGCCAACAAC	TGTTGGGAAT	ACAATCAATG	3600
	CCATACTACC	TACGCGATGT	TGAATAAGTA	AAATGAATAA	CACTGCAATC	GCTGCTGTAA	3660
	TCATTGTATT	AATTAAATCA	CCAATACCCG	TAATCATCCA	AGCACCATTT	TTAAACTGCG	3720
30	CTGCACCGCT	TCCTACATAT	GCTGCACTTG	CCACAACAGC	AATTGCTAAT	GGCGATAGGT	3780
	CAAATTTCAT	GGCAACCAAT	GCACCAATCA	AAGCAGGTAC	TGTAAATTGA	ATTGCAACGA	3840
	CAACGCCTAA	TAACGTTTTA	AAAATCGGAT	GATAATCCAT	AAAGTATTTA	AAAATTTCTC	3900
35	CAAGTATCGC	ATTAGGAACT	AAACCCGCAA	CAATACCTAT	GGCGACACCT	GATAAAACTC	3960
	TAAATATAAA	ATCTTTGGGT	GTAATTGTTT	TAATTGATGT	CATAATATCA	TCCTTCCATT	4020
40	TATGTATATA	CATCTGTATG	САААТААТАА	AGAGCCTTAA	GTTATAAGCT	GCCACTAGCT	4080
	TAAATTCTAA	GATGTGCATG	CCGATGTTGT	TATATTTAGG	CTAGCAGTAT	CATCTATAAC	4140
	TCAAGACTAT	GAAAAATAGT	ATATCACAAA	ATTCTGAATT	TTTAGATAAA	TAAATTGGCA	4200
45	ATTTTTCAAA	CATATTGTTA	CAATACACTT	TTATTTTATC	TTCATTTTTA	AAATCCATTA	4260
	ATACAATAGA	AGAAAGACAT	TCAAATGCTT	ACCAAAAAGG	TACATTATTT	GTTAGGAGCG	4320
	TATCAGCaCT	TACATATCAT	CAACACAATT	GACAATATAA	TAGAAGATAC	TGATAATAAG	4380
50	TGTTAAAACA	ACAGATGTTA	GGTAGTGAAC	AAATGATGGA	AAGTAAATCC	ATAGATCCAA	4440
	CAATCGTTAG	AACCAAACAA	TTGCTTGTCG	ATGCTTTTCT	TAAAATTTCT	AGAGAAAGA	4500

	TTTACGCTCA	TTTCGCTGAT	AAAGAAGACC	TCCTAGACTA	CACATTATCT	GTAACCATTT	4620
_	TAAAAGACTT	GAATGATAAT	TTGAGCATTT	CTAATGTCAT	TAATGAAAAG	GTTCTGCGTA	4680
5	ATATTTTCAT	TTCAATTGCG	AGTTATATCA	AAGATGCTGC	AAAGTCTTGC	GAATTAAATA	4740
	GTGAAGCATT	TTGCAACAAA	GCACATCAAC	GTATTAATAA	TGAATTAGAA	GATATTTTTG	4800
10	CGATTATGTT	AGAAAACAGC	TATCCGGAGC	ATCAACGAGA	TATCATTGTA	AATAGTGCGA	4860
	GTTTTTTAGC	AGCTGGTATC	TCAGGCTTAG	CATTACATTG	GTTTAACACG	AGTCAAGAGA	4920
	CAGCCGATGT	GTTTATCGAT	CGCAACCTTC	CATTTTTAAT	TCATCATATA	GCACATTTTT	4980
15	AATAAAACTT	GGTATTTAGT	CATGCATCTT	GAAATCACTA	TGTGACTTAG	GTTCATACTT	5040
	GTACACACAA	TAAAATTTAA	CGTATTACGA	TTGATTAGCC	GTGTCTAGGA	CATAAATCAA	5100
	CGTCCTATAC	TCTACAATGT	CATATTAGCA	GTCGTTAACT	GAATGAAAAT	AAGCTTGTCA	5160
20	TTAAAACATA	TAGATTTTAG	TGACAAGCAT	TTTTGTTTTT	GCGTACTTAA	ACAACACTTC	5220
	AGGCAATATG	TTGTTTAGGC	AACAAATGAT	ATGTGCGTGT	TTATTGGCAA	ACGTACGACA	5280
	TAGTAGTATA	GTATGTCTAA	ACAACATATG	TTGCATAGTT	GATATGCGTT	GTTTAAATAC	5340
25	TAAGATAGGA	GGGATTGACG	TGAGCGAGAC	AGATGAACCT	CAGGGGTTTG	AACGCACGCA	5400
	TAATATATTA	AATATTAATC	AGAGTAGTCT	GGGTGTAGTG	ACATACATTA	CAAATAAATT	5460
20	AAAGTCGACG	TTGAAGCAAC	ACATAATAAT	TGCTCGTGGT	AAAAAGCGAA	TCGACTATCG	5520
30	ACTGTCGTAT	AACTTTTACA	TACGTATTAT	GATAATGTAG	AAATCAAGAA	AATCGACTGT	5580
	GAATATACCT	ATGCTATGCC	CATTGCAATT	TTAATAAGAC	ACACGATGTC	ATTCGACAAT	5640
35	GCTCATTTCT	TTGCTCAGTT	ACGTCATCCT	GTCTTATAAA	ACAACATTGC	AGACATGTAT	5700
	ATCAAACGAC	ACTTCAATAA	CATCACTTTG	CCCATCGTAC	TACTAGTAAA	ATCGTGTCTC	5760
	AAATÉCCTTA	TTTTAATTCC	AAAAAtCTGC	TGGTCAAAAG	ACCGAGAAAC	TAAAAACATT	5820
40	ACTTAATGTG	TTGATAAATT	ACCATATAAA	AATAATCTCA	AAATATATCA	ACACTTGATT	5880
	CTAAGGAGGA	TATGACAATA	TGAAAATTTT	AGATAGAATT	AATGAACTTG	CAAATAAAGA	5940
	AAAAGTACAA	CCACTTACTG	TAGCTGAAAA	ACAAGAACAA	CATGCATTGC	GTCAAGACTA	6000
45	CTTAAGCATG	ATCCGAGGAC	AAGTATTAAC	AACATTTTCC	ACAATAAAAG	TGGTTGATCC	6060
	AATCGGTcAG	GATGTCACAC	CAGATAAAGT	TTATGATCTT	CGCCAACAAT	ACGGTTATAT	6120
	TCaAAATTAA	tATTTGCTCA	CGAGGTATTG	CACTTAAGGT	GCCAACTGAC	CTCATAAACA	6180
50	AAGCCCATAC	TGATTGAAGA	CACTAATGTG	tCsaCCATGG	TGCACATTAC	GCTTCATCTC	6240
	TGTATGGGCT	TTTTATTTAT	TCTTTTGAGA	ATTTCATTTT	AGCAGACCAA	AAAATTAAAA	6300

IGAACGACIG	TGCCACCCGC	TTCTTTCACT	TTATTCACCA	ACIGGICAAC	TICTTCATTT	6420		
GTGTTCACAC	CTAGAGAAAT	CATCACTTCA	TTTGGTTCAG	TATTAAGGCT	TTGCTGACTT	6480		
ACATTTTGAA	<b>A</b> ATGCTTGTn	TTCTATTAAA	ATTACGGRTG	tTTGACCTAT	tTGAATGCCG	6540		
ACCATTTTAT	CTAACATTTG	TGGGTTTCTA	TTTATTTTAA	ATCCTAACGC	TTTATAAAAC	6600		
TGTGCGCTCT	TTTCTAAATC	TTGCACATGC	AAATTAAACC	ACATTGATTG	AATCATGATT	6660		
GCACCCCATT	CATTACTTAT	TATAGTTTTG	GACTTTAAGC	CAATCACTTA	ATGATAATCT	6720		
TGTTGGATTT	ATTTCAGCCA	TTAATTCAAA	GTCTACTTCA	TAACCTTTTT	CTTCCAACCA	6780		
TTGCTTTTCT	GCAACACCAC	TAACAAATTC	TCCTTCTATA	ACAGTAGATT	TACCTGTCAC	6840		
TTCACTAAAA	ATTGTTGCTG	CTTCACTTAA	TGTAACTTCA	TCGGAACCAA	TCTCTATTGA	6900		
TTGATGCGTA	AAGCTTTGTG	GATGTGCAAA	AATATACGAT	GCAATTTTAG	CTATATCAAT	6960		
AGAAGAAATC	ATTGTGAATT	TTATATTCGG	ATTAATAAAT	TCTGGTAATG	TAATACGTTC	7020		
ATCTTCGACT	TTAGCAATGC	GTAAAAAATT	ATCCATAAAG	AATGATGGTT	TGATAACTGT	7080		
TGCATTTATA	TTAGATTCCA	TTAATCTATT	TTCTATTTTT	GCTAGTACTT	CAAAGTGTGG	7140		
GCCAGTTCGA	TTTCGATTAA	CCCCTCCCGC	AGTACTATAC	ACAATATGTT	GAATATTTTC	7200		
TTGCTCAGCT	ATTTCAATTA	TCTTCATACC	TTGTCTTAAT	TCTTCGCTAA	CATCATCTTT	7260		
AACGATTGGC	TGAATACTGT	ATAAGCCATA	CTTACCTTTC	ATCGCTGATT	GCAAACTAAC	7320		
ATTATCACTC	AGATCACCTT	CArCGATTGA	TAAATGCGGA	TGTCCTATGT	CTGAAAGTTT	7380		
ACGATTATnC	TTATTTCTAG	TTAATGCACT	TACATACCAT	CCATCCTCTA	ACAACTGTTT	7440		
TACAACTGCA	TTACCTTGCT	TCCCTGTTGC	GCCTATTACn	AAAATATCTT	TCAT	7494		
(2) INFORMATION FOR SEQ ID NO: 70:								
	EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	11802 base cleic acid NESS: doubl	pairs					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

60	ATCCAATTTC	GAAATTGGGA	ATTGTCTGTA	CCCAACTTGC	GCCGTCCCAC	AATTTATTTC
120	GAAATTCTCT	ATTTCTTTTC	TGCCTGTAGA	CAACTCGCAT	GGCCCGGCCC	TCTTTGTTGG
180	TCGTTCAGTC	AAGCGCATTT	AGCTTATTAC	AATTGAAAAA	CCCTGACTAG	GTGTTGGGGC
7 4 7	<b>MCCCMA</b> MTCM	سشسلالسشسارارات	AGAACATTGA	CGTAGATCAT	AATATAACTT	AATTACTGCC

	AGCAAAGGTA	ATAATGATAT	TAATAATGTA	CAAAAAATAT	AAATCAAATC	GACATCCTTA	36
	TAAAACATCA	GAACCACTAA	AAACAAAAAA	GCACAAAATA	AAATTAAATT	TAAAATAAAC	42
5	GACCACTTT	САААААААТС	TCtTTTCaTa	TTTCCACCCC	TAATTTTAAT	AAGCATTATT	48
	TTATATTCTC	TTTTAAGTTT	ATTATTCAAA	AGGAAAACAG	AAATATCTTT	Caatattatt	54
10	ATAAACATTT	CAACTACTTT	TAAAAACCAA	САААААААТА	СТТАТТТТАА	GTAGATGAGC	600
	ATAAGTGAAC	ATAGTTCTTT	AGTTATAATA	ATTAATTCAA	CCAAAAGTCG	ATTTGTTTTT	660
	GCAATTGGTT	TTCATTTCCT	CTTAAAGATA	TTTTCATTAA	ATCTGTCAAA	TCAATAGACG	720
15	CTATATTTTT	CAACTTATCT	CTATATTTAT	TTTTAGTACG	TCTTTCTAAA	TTTCCCCATT	780
	CCTCTTCTTC	GTGAGTTAAT	AAATGAAGCA	TTGCTCGTTC	TTGTATATTT	TCAATCATTT	840
	TTAAATTCGG	TTTTAAAATA	TGCAAATCAT	CAAAACAATC	TTTCCAACAA	TCAACCATAT	900
20	CTCGTTTTAA	TTCAATTTCC	ACACGCCATA	GAAATGTTGA	ATCAATTTCA	ACATCTGCAT	960
	TATCTTTACG	TTCTTGTTTT	TATTATAAAT	CCGAATAAAC	CTATCACTAT	TACGCACACC	1020
25	AAAATATTTT	GTTTCTGGTT	TTACATTACG	TCCATAAAAT	ATAGTTTTCT	TTACCGACTT	1080
25	ATCTGACAAT	GCATAATAGT	CATTTAAATC	AAATTCAAAA	TCAAAAGCCA	AATCTAATCT	1140
	CGTAAAACTA	ACATCGTCCA	AATAACTGAT	GATATTTTGT	TTTAACCAAA	GCACTTCATC	1200
30	ATGCGAAAGC	TTATTAGGAT	TAAATTCAAC	GCGCATALAC	GTCTATTCCA	AAGAGTTGCT	1260
	TTTATTTTGT	CATATTCAAT	ATAAACTTTT	TCTTTAAGAG	CTTTAGCTTT	AAAGTTTGTT	1320
	TGTAAAATAT	CCCAAAGCCG	AATTTCAGGA	TTAGTACTCA	TAAAATGTGA	AAGTCTCTCT	1380
35	GCGTTAGACA	TGCTAAGATT	CCCAACAATC	GTTATAGCGT	CAAAAGACAA	TTTTGGAATA	1440
	GCTAGTGACA	TCCTATGTCG	ATTTAACCGG	CTATTACCGG	ATATTAGAGT	ATCCAGTTTT	1500
	ACAAATGGAT	GAAACGAAAT	TCAAAACACT	AAAAAATATG	TTCCACTAAC	AGCAAAAAAA	1560
40	TACCATTATG	TTCCTACTAA	ААААСуаааа	ATACTGGAGA	ACAAATGTCA	GGATATAACT	1620
	TAGGATACTA	TGTAATAAAA	ATTTACAATA	AAAAAACAGG	AAAACAAATT	TCAAGTAAAA	1680
45	GmATACCCAT	ACAAAGAGGA	TAAAATAAAA	AACCTCGAAC	TGAAATGATG	ATCTTTTCAG	1740
	CTCGAGGTTT	AAATATTGGT	GCCTTATTTA	TATAGATTCG	TTATATTATA	TTCTCTATTT	1800
	TCATTAACmT	AATCCTTAAA	GAGTTTTAAA	TTAATACCTG	CTAGATGATT	CAAAAATGTT	1860
50	TCATCAACTT	TTAAATAATT	CAATAATTTT	TGTGGTGTCA	GTAAATnTCT	ATCAAAATAC	1920
	AACTTTAATA	AACTATTCAT	TTTGACAGGA	CGTGACATTT	CAATCACGTC	GTCTAAAGAT	1980
	AATACTTTCT	CGCTTTAnAC	AAAnACAAAA	ACTTACCCGA	TTAAAATCAA	GTAAGTTTTA	2040
55							

	TATTTGATAA	AAAATCAATA	AGTAATTGTG	CGCCTTCAAC	TTGAATATCT	TTTACAACTG	2160
	GCGCGTCGAT	ATACATATCA	TACTGACCAC	CGCCTACTGC	ACGATAATTA	TTTACACAAA	2220
5	TTGTATATGT	CTGCTTTAAA	TCAACTGCGT	GACCTTGAAT	CATCATATTG	CTCACACGTT	2280
	GTCCCTTTGG	TCTTCCAACA	TGAATGGTAT	AACTTACGCC	ACCATATATA	TCATAATTAA	2340
10	AGTGTTGTGG	TTTGGGTTCA	AGGAAGTCTG	CGCTCACACT	AACTTCATCA	TTTTTCACGT	2400
	CAAAATATTC	TGCTGATCGT	TCAATGGCTT	CTTTAAGTTT	GGCACCACTT	ACAGCTAAAA	2460
	CTTTAAATGT	ATTTGGAAAT	GGGTAATTGT	TAATAACATC	TCGCATCGTC	ACGACTTGCT	2520
15	TGAAACCACT	AGCAGAATCA	AACAAAGCTG	TACAGGCAAC	ATCTGCGTCA	CTTTTTTCTA	2580
	ATAAAGCGTA	ATTCATAAAA	TTTGTAAAAG	GATGCGGTGC	CACACGTGCC	TCAAATGCAT	2640
	GATTAATCGT	CATATCATAT	GGCAATGTAG	TAATTTCGTA	ATCTAACCAG	TCCTCTAACT	2700
20	GCTTTCGTAA	ATGTTGGTCA	TCTTCATCAA	TAGTAAATGT	GGAATCATCT	ATAACAGGAA	2760
	GTAATTCACA	TGATTCAACG	GATAGATTTT	CATATTCATC	AGTACTCAAG	ACTACTCTGC	2820
25	CTACAGTTGT	ACCTCTCGTA	CCAGGTTGAA	TCACAGCCGT	TTGCTTAAAC	CTTTCAGCAA	2880
20	TTTGTCGATG	TTGGTGACCC	GTAATAAAGA	TATCTATATC	TTTAGAAAAC	GCTTCTAACA	2940
	TGGCATATCC	TTCATTTTCA	CCCGTTAATA	CTTCGGTCGG	CGTACCACTT	TCTAAATCCT	3000
30	TTTCAAATCC	ACCATGGTAA	CAAACCACAA	TGATATCTGC	ATGTCGCTTC	ATTTCAGGTA	3060
	AGTATTGTTG	AAGTATTTCA	AAAGCACTAT	GAAACGTArT	GnCnTGAATA	TGCTCTGGTT	3120
	GTTCCCAATG	GGGAATAAAT	TGTGTCGTTA	AACCTATCAC	ACCAACAGTT	TGATCTCCAA	3180
35	CCTGAAAATA	CTTCACACCG	TTATCAGTCA	ATGTACTATC	ATTTTCATAT	ATATTAGCGC	3240
	ACAAAACTGG	ATAATTGAGT	CTGCGTAAAG	TGTCTTTTAA	GTATGGTAAT	CCATAATTAA	3300
40	ATTÇATGATT	ACCAAGCGTA	CCAAAGTCGA	ATGCCATTCG	ATTATAAAAA	TCAACTAAAG	3360
40	GCTGGCTACT	GCCGCTATGC	GCGATTAAGT	AATTACAAAA	TGGTGACCCT	TGCAAAAAAT	3420
	CACCATTATC	TATTTTAAAA	CTTTGGTCAT	ACTGCCTTCT	GTSTTGTTCT	ATAACATGAT	3480
<b>4</b> 5	TCGCTAGTAA	CAATCCCATA	GGTTGATATT	GATTTCTACT	CGTAAAATCT	GTTGGGAAAA	3540
	TATAACCATG	TACGTCACTC	ACGACATAAA	ATGCTATGTT	TGACATCCTC	ACTCACTCCT	3600
	TCAATCACAA	ACATCTTTCT	TATTTCTATT	ATATATTTAT	TTGAAGTCTG	TTGTAATCAA	3660
50	GGTTTTGTCA	CCGAGTTTTA	AACGAATCTT	TGAACCTTCC	ATACTTTCAA	GTACTTTAGC	3720
	ΑΤΤΓΑΡΟΟΤΤΑ	ATTGTGACAT	TTCCGTTTTC	ATCTGCTTTA	ACTGTTGGCA	AAGTACTGTA	3780

V 3434

	TATTGTCATT TCAAATGGCT CATTTACAGA AACATTTTGC GGGATATCAA ATGTTACTTT	3960
5	TTCGTTCTGA TTTGGTGGTG TATGATCATC TGGTGTGTTT GGCTGAGGAT CTGCGCCTTT	4020
5	TTCGCTGCCA TAACTACCTG CTTTAAATGT TGTTGGATCA TACCATTTAT AACCACTCGG	4080
	CGGTTGTGAC CATGGCTCTT TTTCAGGCTC AGTTGAACGC TCTGGTCGTT CAAAATCAAG	4140
10	CAACTTAGTC TTTGTATCTA ATGTTAGGCT ACTCGCCTTA AGTGATTTCC CATCATTATC	4200
	TTTAGACATC CAAGCCGTTA TATTATTTAA TAGCTTACCG TTGTCTTGTT CTTTAAAACC	4260
	ATCATATGTT TTCTTCTTTT CTCCATTATC TTCTCTTACA TATTTGGGCG AACTATCTTC	4320
15	CACAAGTGAT GAATCACCGA TAAATGCTGC TTTACCTTTT CCAACTTTAG AAATTGCTAC	4380
	ATAGGGGCCT TCTGCTTTAC CGCCCCCATT ATAAATACCT TGATCTACAG CATGTGACCA	4440
	TTTACTTTTC GCTGGCAATT GTTCTGGTGT ATACACAATA CCTTTTGCTT TCTCTGGATT	4500
20	AGTAATTGCT AATGTCGATC CGGCATGCAT AGAGACAGAT TTCACACCTT CAGTAATACC	4560
	GAAACTTTCT TTTGAAGAAA CAATATTGCT CGTATTTAAA TCACCTAGTG CATTATATCG	4620
25	AAAACGTACG CCAAAGTTTG TAGATAACCA ATCTGAACTT TTCACACCTT GCATTGCAGT	4680
	AGAACTTTTT TCTTCTGCAT TCATACCTTT CGACATATCT TCATATGCTC CACGTCGATA	4740
	ACCATTCATT GCCTCCGATG AATCAATACG ATTTAAATTT CGGTCAGCAT TGTAATGATC	4800
30	TGAAATAAAG ACAACATTGC CACCTTGTTL CACATATTTA ACAATTGCTG CCTGTTCTGA	4860
	TTCTTTGAAA GGAATGTTAG CCTCAGGAAT TACAAATATT TTGGAACTTT TCAAACTTGC	4920
	TTCTGTTATG TTCGAATGAC CATCAATAGC TTTAACGTCA TAACCTTGTT TTTGTATTGA	4980
35	ATCCGCATAA TCTGAAAATG CACCATCACT AACCCAATCT GCAGCACCAG CTGTTTGACC	5040
	ATGAGAACGA TCGAATAATA CCGTTCGCTG TTGCTTTGTA GGTTGCGATT CATGCGTTAT	5100
40	AGCTAAAGAT TGCGGTAAAG CACTTAATGA TACCGTTGCA ACAATTGCAG AGACAGTTAA	5160
40	TGACTTATAT ATTTTTTCA TTTTGTGAGG CTCCTTTTAA AATAAATTTG TTCTTGAATT	5220
	ATAGGATAAA AATTCGTTGC ATATGAGCAA TTTAACGAAA AATTTACAAA ATCTTATCAA	5280
45	ACTCTTAAAG AAAGTTATTA AAATTCATTT TTATAAAATA CTTTTTAACA TTTAAATGTG	5340
	GTACGCTATA AGTGTAATTT CATTGCATAC ATATTACACG ATTAAGAATG TGAAGGGGAC	5400
	AGTTATCAAA TGAAAAATTT TAAGTGTTTA TTTGTATTAA TGTTAGCAGT CATTGTTTTT	5460
50	GCAGCAGCAT GTGGAAACTC AAGTTCTTTA GATAATCAAA AGAACGCTAG TAATGATTCG	5520
	GATTCTAAAT CAGGAGGATA CAAACCTAAA GAATTAACCG TTCAATTTGT ACCTTCGCAA	5580
	AATGCTGGAA CATTAGAAGC TAAAGCAAAA CCATTAGAAA AATTACTATC TAAAGAATTA	5640
55		

	TCTAAAAAAG	TTGATGTTGG	TTTCTTACCA	CCAACGGCAT	ACACATTAGC	ACATGATCAA	5760
	AAAGCAGCTG	ATTTATTATT	ACAAGCACAA	CGTTTCGGTG	TAAAAGAAGA	TGGTTCAGCA	5820
5	AGTAAAGAAC	TTGTAGATAG	ттатааатса	GAAATTCTTG	TTAAAAAAGA	CTCAAAAATT	5880
	AAAAGCTTGA	AAGATTTAAA	AGGTAAGAAA	ATTGCCTTAC	AAGATGTAAC	ATCAACTGCT	5940
10	GGATATACAT	TCCCACTTGC	GATGTTAAAA	AACGAAGCAG	GTATTAATGC	AACTAAAGAT	6000
70	ATGAAAATTG	TGAATGTTAA	AGGTCATGAC	CAAGCAGTTA	TCTCATTATT	AAATGGAGAt	6060
	GTAGATGCTG	CGGCTGTATT	TAACGATGCA	CGTAATACTG	TGAAAAAAGA	CCAACCAAAT	6120
15	GTATTTAAAG	ACACACGAAT	TTTAAAATTA	ACACAAGCTA	TTCCGAATGA	CACAATTTCT	6180
	GTAAGACCAG	ATATGGATAA	AGATTTTCAA	GAAAAATTGA	AAAAAGCTTT	TATAGACATT	6240
	GCTAAATCAA	AAGAAGGTCA	CAAAATTATT	AGCGAAGTTT	ATTCACATGA	AGGATACACA	6300
20	GAAACGAAAG	ATTCAAATTT	CGACATTGTA	AGAGAGTACG	AAAAATTAGT	TAAAGATATG	6360
	AAATAATCAT	TATTTAACAA	ATGAATCATT	AGCGAATTTG	GTATTAAAAG	CTTTCGTTCA	6420
	ATAGATATAT	TCTAGATTAA	TATTGAAAAG	CTAGGCGCTA	AACTGAAACA	GATATAGAAA	6480
25	GGTGTCGCTG	TACATTTGAA	ACCATTTGTA	CACAGAAACC	CAATGTCTAT	GATATTTCAG	6540
	TTTACCTTGG	CTTTTCTTTA	TTAAAGAAAG	GTGTCAAACA	TGAGTCAAAT	CGAATTTAAA	6600
30	AACGTCAGTA	AAGTCTATCC	TAACGGTCAT	GTAGGCTTGA	AAAATATTAA	CTTAAATATT	6660
	GAAAAAGGTG	AATTTGCAGT	TATTGTCGGA	CTATCTGGTG	CTGGGAAATC	CACGTTATTA	6720
	AGATCTGTAA	ATCGTTTGCA	TGATATCACG	TCAGGTGAAA	TTTTCATCCA	AGGTAAATCA	6780
35	ATCACTAAAG	CCCATGGTAA	AGCATTATTA	GAAATGCGCC	GAAATATAGG	TATGATTTTC	6840
	CAACATTTTA	ATTTAGTTAA	ACGGTCAAGT	GTATTACGAA	ATGTACTAAG	TGGACGTGTA	6900
	GGTTATCACC	CTACTTGGAA	AATGGTATTA	GGTTTATTCC	CAAAAGAAGA	CAAAATTAAG	6960
40	GCAATGGATG	CACTAGAACG	CGTCAATATC	TTAGATAAAT	ATAATCAACG	CTCTGATGAA	7020
	TTATCAGGTG	GCCAACAACA	ACGTATATCT	ATTGCACGTG	CGCTATGCCA	AGAATCTGAA	7080
45	ATTATTCTTG	CAGATGAACC	AGTTGCTTCA	TTAGACCCAT	TAACTACGAA	ACAGGTTATG	7140
	GATGATTTAA	GAAAAATCAA	CCAAGAATTA	GGCATCACAA	TTTTAATTAA	TTTACATTTT	7200
	GTTGACTTGG	CAAAAGAATA	TGGCACACGC	ATCATTGGTT	TACGTGATGG	TGAAGTTGTC	7260
50	TATGATGGTC	CTGCATCTGA	AGCAACAGAT	GACGTATTTA	GTGAAATATA	TGGACGTACA	7320
	ATTAAAGAAG	ATGAAAAGCT	AGGAGTGAAC	TAACATGCCT	TTAGAAATAC	CTACAAAGTA	7380

	AATACCTCAA	ATAGGTGATC	TATTCAAACA	AATGATTCCA	CCTGATTTCG	GAGTATTTACA	7560
	ACAAATTACA	ACGCCAATGT	TAGATACCAT	TCGAATGGCT	ATCGTAAGTA	CAGTATTAGG	7620
5	TAGCATCGTT	TCAATACCAA	TTGCGTTATT	ATGTGCTAGC	AATATCGTTC	ATCAAAAGTG	7680
	GATTTCAATA	CCCTCGCGCT	TTATTTTAAA	TATAGTTCGT	ACTATTCCAG	ATTTGTTATT	7740
10	AGCAGCAATC	TTTGTGGCTG	TATTTGGAAT	CGGTCAAATT	CCAGGGATAT	TAGCACTGTT	7800
	TATTTTAACT	ATCTGTATTA	TTGGAAAATT	ATTATATGAA	TCATTGGAAA	CGATAGATCC	7860
	AGGTCCAATG	GAAGCAATGA	CGGCTGTTGG	CGCTAATAAA	ATAAAATGGA	TTGTTTTCGG	7920
15	TGTTGTACCA	CAAGCCATAT	CGTCATTTAT	GTCATACGTA	TTATATGCAT	TTGAAGTAAA	7980
	TATACGTGCT	TCAGCTGTGC	TTGGATTAGT	CGGCGCTGGC	GGTATTGGAT	TGTTTTATGA	8040
	TCAAACACTT	GGTTTATTTC	AATATCCAAA	AACAGCAACG	ATTATTTTAT	TTACTTTAGT	8100
20	TATCGTCGTC	GTCATTGATT	ACATCAGTAC	GAAAGTGAGG	GCACATCTCG	CATGACACAG	8160
	GAAATAGCAA	AATATAATGT	TCACACAAAA	GCACACAAAC	GAAAATTGAT	TAAAAGATGG	8220
	CTTATTGCAA	TTGTCGTCTT	AGCTATTATC	ATCTGGGCAT	TTGCAGGTGT	ACCAAGTTTA	8280
25	GAACTTAAAA	GTAAATCATT	AGAAATCTTA	AAATCCATAT	TCAGCGGATT	ATTCCATCCT	8340
	GATATCAGCT	ATATCTATAT	ACCAGATGGC	GAAGACTTAT	TACGTGGTTT	ACTTGAAACC	8400
30	TTTGCGATAG	CCGTTGTAGG	TACTTTCATC	GCCGCAATTA	TCTGTATTCC	ATTAGCATTT	8460
	CTAGGTGCAA	ATAATATGGT	AAAGCTACGC	CCAGTTTCAG	GTGTTAGCAA	ATTTATTTTA	8520
	AGTGTTATAC	GTGTCTTCCC	AGAAATTGTA	ATGGCACTTA	TATTTATCAA	AGCTGTTGGC	8580
35	CCAGGTTCAT	TTTCAGGTGT	ATTAGCTTTA	GGTATCCATT	CCGTAGLATG	CTTGGGAAAC	8640
	TTTTAGCTGA	AGATATTGAA	GGTCTAGATT	TCAGTGCTGT	AGAATCATTA	AAGGCCAGTG	8700
	GTGCGAATAA	GATTAAAACA	CTCGTATTTG	CAGTCATACC	ACAAATTATG	CCTGCCTTTC	8760
40	TATCACTCAT	ACTITATCGC	TTTGAACTAA	ACTTACGTTC	AGCTTCTATA	CTGGGGCTAA	8820
	TTGGGGCTGG	TGGTATCGGG	ACACCACTCA	TATTTGCCAT	TCAAACACGT	TCTTGGGACC	8880
45	GTGTAGGTAT	TATATTAATC	GGTTTAGTAC	TAATGGTCGC	AATTGTCGAT	TTAATTTCCG	8940
43	GTTCAATCCG	AAAACGTATT	GTTTAACATT	AAATCAGGAT	ACTCCTAAAT	AAGAAGTCCT	9000
	ACCGTCTTAC	GTTTCTCTAT	TATAATAAAA	ACAGCAGTGA	AGAAAACTAT	TGTTATAGTT	9060
50	AACTTCACTG	CTGTTTTTAT	AATATCTAAA	TTTATTCTAT	TTCAATTCCT	TTAAATAACT	9120
	TTTACCGAAC	TCTGGTAATG	TTACGTTGAA	ATTATCTGCT	ATAGTTGCAC	CGATAGAACT	9180
	GAATGTAGTA	TCACTTTCTA	GTGCATGACC	ACCTTTAAAT	TTCGGACTGT	ACATAATTAC	9240