A hybrid parareal Monte-Carlo algorithm for the parabolic time dependant diffusion equation

Jad Dabaghi, Yvon Maday, Andrea Zoia

Sorbonne Université & CEA Paris Saclay

CANUM, December 3rd 2020

Outline

- Introduction
- 2 Model problem
- Numerical experiments
- Conclusion

0

Study the neutron transport in nuclear reactors

Study the neutron transport in nuclear reactors

Model: Linear Boltzmann equation for the angular flux

$$\partial_t \Psi(t, \boldsymbol{x}, \boldsymbol{v}) + \boldsymbol{v} \cdot \nabla \Psi(t, \boldsymbol{x}, \boldsymbol{v}) + \sigma(\boldsymbol{x}, \boldsymbol{v}) \Psi(t, \boldsymbol{x}, \boldsymbol{v}) - \int_{\mathbb{R}^3} k(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{v}') \Psi(t, \boldsymbol{x}, \boldsymbol{v}') \, \mathrm{d}\boldsymbol{v}' = 0$$

Balance between the free neutrons that are created and that disappear in the core.

Study the neutron transport in nuclear reactors

Model: Linear Boltzmann equation for the angular flux

$$\partial_t \Psi(t, \boldsymbol{x}, \boldsymbol{v}) + \boldsymbol{v} \cdot \nabla \Psi(t, \boldsymbol{x}, \boldsymbol{v}) + \sigma(\boldsymbol{x}, \boldsymbol{v}) \Psi(t, \boldsymbol{x}, \boldsymbol{v}) - \int_{\mathbb{R}^3} k(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{v}') \Psi(t, \boldsymbol{x}, \boldsymbol{v}') \, \mathrm{d}\boldsymbol{v}' = 0$$

Balance between the free neutrons that are created and that disappear in the core.

Numerical resolution:

- Monte-Carlo approach
- Deterministic approach

Can we speed up a Monte-Carlo resolution?

Introduction

Study the neutron transport in nuclear reactors

Model: Linear Boltzmann equation for the angular flux

$$\partial_t \Psi(t, \boldsymbol{x}, \boldsymbol{v}) + \boldsymbol{v} \cdot \nabla \Psi(t, \boldsymbol{x}, \boldsymbol{v}) + \sigma(\boldsymbol{x}, \boldsymbol{v}) \Psi(t, \boldsymbol{x}, \boldsymbol{v}) - \int_{\mathbb{R}^3} k(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{v}') \Psi(t, \boldsymbol{x}, \boldsymbol{v}') \, \mathrm{d} \boldsymbol{v}' = 0$$

Balance between the free neutrons that are created and that disappear in the core.

Numerical resolution:

- Monte-Carlo approach
- Deterministic approach

Can we speed up a Monte-Carlo resolution?

Parareal-in-time algorithm ⇒ important computational savings

Complicated problem... Start with a diffusion problem to understand the involved underlying mechanisms.

Outline

- Introduction
- Model problem
- Numerical experiments
- 4 Conclusion

Model problem and parareal algorithm

Time dependent diffusion equation with dirichlet boundary conditions:

$$\begin{cases} \partial_t u - \mathcal{D} \Delta u = g & \text{in} \quad \Omega \times [0, T], \\ u(\cdot, 0) = u^0 & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial \Omega \times [0, T]. \end{cases}$$

Time dependent diffusion equation with dirichlet boundary conditions:

$$\left\{ \begin{array}{lll} \partial_t u - \mathcal{D} \Delta u = g & \text{in} & \Omega \times [0, T] \,, \\ u(\cdot, 0) = u^0 & \text{in} & \Omega, \\ u = 0 & \text{on} & \partial \Omega \times [0, T]. \end{array} \right.$$

Parareal procedure: It constructs a sequence $\boldsymbol{u}_k^n := (\boldsymbol{u}_k^n)_{1 \le n \le N}$ such that $\boldsymbol{u}_k^n \approx u^n$. It involves a coarse propagator $\mathcal{G}_{\Delta t}$ and a fine propagator $\mathcal{F}_{\delta t}$.

Model problem and parareal algorithm

Time dependent diffusion equation with dirichlet boundary conditions:

$$\begin{cases} \begin{array}{ll} \partial_t u - \mathcal{D} \Delta u = g & \text{in} & \Omega \times [0, T], \\ u(\cdot, 0) = u^0 & \text{in} & \Omega, \\ u = 0 & \text{on} & \partial \Omega \times [0, T]. \end{array} \end{cases}$$

Parareal procedure: It constructs a sequence $\boldsymbol{u}_k^n := (\boldsymbol{u}_k^n)_{1 \le n \le N}$ such that $\boldsymbol{u}_k^n \approx u^n$. It involves a coarse propagator $\mathcal{G}_{\Delta t}$ and a fine propagator $\mathcal{F}_{\delta t}$.

Coarse time grid discretization:

Model problem and parareal algorithm

Model problem

Time dependent diffusion equation with dirichlet boundary conditions:

$$\begin{cases} \begin{array}{ll} \partial_t u - \mathcal{D} \Delta u = g & \text{in} \quad \Omega \times [0, T] \,, \\ u(\cdot, 0) = u^0 & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial \Omega \times [0, T]. \end{array} \end{cases}$$

Parareal procedure: It constructs a sequence $\boldsymbol{u}_{k}^{n} := (\boldsymbol{u}_{k}^{n})_{1 \le n \le N}$ such that $\mathbf{u}_{k}^{n} \approx u^{n}$. It involves a coarse propagator $\mathcal{G}_{\Delta t}$ and a fine propagator $\mathcal{F}_{\delta t}$.

Coarse time grid discretization:

Fine time grid discretization:

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

1. Compute the coarse approximations:

$$u_{k=0}^1 = \mathcal{G}_{\Delta t}(u^0), \quad u_{k=0}^2 = \mathcal{G}_{\Delta t}^2(u^0), \quad u_{k=0}^3 = \mathcal{G}_{\Delta t}^3(u^0)$$

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

1. Compute the coarse approximations:

$$u_{k=0}^1 = \mathcal{G}_{\Delta t}(u^0), \quad u_{k=0}^2 = \mathcal{G}_{\Delta t}^2(u^0), \quad u_{k=0}^3 = \mathcal{G}_{\Delta t}^3(u^0)$$

2. Compute: $u_{k>1}^1 = \mathcal{F}_{\delta t}(u^0)$

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

Compute the coarse approximations:

$$u_{k=0}^1 = \mathcal{G}_{\Delta t}(u^0), \quad u_{k=0}^2 = \mathcal{G}_{\Delta t}^2(u^0), \quad u_{k=0}^3 = \mathcal{G}_{\Delta t}^3(u^0)$$

- 2. Compute: $u_{k>1}^1 = \mathcal{F}_{\delta t}(u^0)$
- 3. Compute in parallel:

$$\mathcal{F}_{\delta t}(u_{k=0}^{1}) - \mathcal{G}_{\Delta t}(u_{k=0}^{1}), \ \mathcal{F}_{\delta t}(u_{k=0}^{2}) - \mathcal{G}_{\Delta t}(u_{k=0}^{2}), \ \mathcal{F}_{\delta t}(u_{k=0}^{3}) - \mathcal{G}_{\Delta t}(u_{k=0}^{3})$$

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

1. Compute the coarse approximations:

$$u_{k=0}^1 = \mathcal{G}_{\Delta t}(u^0), \quad u_{k=0}^2 = \mathcal{G}_{\Delta t}^2(u^0), \quad u_{k=0}^3 = \mathcal{G}_{\Delta t}^3(u^0)$$

2. Compute: $u_{k\geq 1}^1 = \mathcal{F}_{\delta t}(u^0)$

3. Compute in parallel:

$$\mathcal{F}_{\delta t}(u_{k=0}^{1}) - \mathcal{G}_{\Delta t}(u_{k=0}^{1}), \ \mathcal{F}_{\delta t}(u_{k=0}^{2}) - \mathcal{G}_{\Delta t}(u_{k=0}^{2}), \ \mathcal{F}_{\delta t}(u_{k=0}^{3}) - \mathcal{G}_{\Delta t}(u_{k=0}^{3})$$

4. **Update:** $u_{k=1}^2$ and $\mathcal{G}_{\Delta t}(u_{k=1}^2)$, $u_{k=1}^3$ and $\mathcal{G}_{\Delta t}(u_{k=1}^3)$, and $u_{k=1}^4$

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

1. Compute the coarse approximations:

$$u_{k=0}^1 = \mathcal{G}_{\Delta t}(u^0), \quad u_{k=0}^2 = \mathcal{G}_{\Delta t}^2(u^0), \quad u_{k=0}^3 = \mathcal{G}_{\Delta t}^3(u^0)$$

- 2. Compute: $u_{k\geq 1}^1 = \mathcal{F}_{\delta t}(u^0)$
- 3. Compute in parallel:

$$\mathcal{F}_{\delta t}(u_{k=0}^{1}) - \mathcal{G}_{\Delta t}(u_{k=0}^{1}), \ \mathcal{F}_{\delta t}(u_{k=0}^{2}) - \mathcal{G}_{\Delta t}(u_{k=0}^{2}), \ \mathcal{F}_{\delta t}(u_{k=0}^{3}) - \mathcal{G}_{\Delta t}(u_{k=0}^{3})$$

- 4. **Update:** $u_{k=1}^2$ and $\mathcal{G}_{\Delta t}(u_{k=1}^2)$, $u_{k=1}^3$ and $\mathcal{G}_{\Delta t}(u_{k=1}^3)$, and $u_{k=1}^4$
- Compute in parallel:

$$\mathcal{F}_{\delta t}(u_{k=1}^1) - \mathcal{G}_{\Delta t}(u_{k=1}^1), \quad \mathcal{F}_{\delta t}(u_{k=1}^2) - \mathcal{G}_{\Delta t}(u_{k=1}^2), \quad \mathcal{F}_{\delta t}(u_{k=1}^3) - \mathcal{G}_{\Delta t}(u_{k=1}^3)$$

$$u_{k=0}^{n+1} := \mathcal{G}_{\Delta t}(u_{k=0}^n), \quad \text{where} \quad u_{k=0}^0 := u^0.$$

$$u_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta t}(u_{k+1}^n)}_{\text{prediction}} + \underbrace{\left[\mathcal{F}_{\delta t}(u_k^n) - \mathcal{G}_{\Delta t}(u_k^n)\right]}_{\text{correction}}.$$

Illustration of the procedure: n = 4, k = 2

Model problem

1. Compute the coarse approximations:

$$u_{k=0}^1 = \mathcal{G}_{\Delta t}(u^0), \quad u_{k=0}^2 = \mathcal{G}_{\Delta t}^2(u^0), \quad u_{k=0}^3 = \mathcal{G}_{\Delta t}^3(u^0)$$

- 2. Compute: $u_{k>1}^1 = \mathcal{F}_{\delta t}(u^0)$
- 3. Compute in parallel:

$$\mathcal{F}_{\delta t}(u_{k=0}^{1}) - \mathcal{G}_{\Delta t}(u_{k=0}^{1}), \ \mathcal{F}_{\delta t}(u_{k=0}^{2}) - \mathcal{G}_{\Delta t}(u_{k=0}^{2}), \ \mathcal{F}_{\delta t}(u_{k=0}^{3}) - \mathcal{G}_{\Delta t}(u_{k=0}^{3})$$

- 4. **Update:** $u_{k=1}^2$ and $\mathcal{G}_{\Delta t}(u_{k=1}^2)$, $u_{k=1}^3$ and $\mathcal{G}_{\Delta t}(u_{k=1}^3)$, and $u_{k=1}^4$
- 5. Compute in parallel:

$$\mathcal{F}_{\delta t}(u_{k=1}^1) - \mathcal{G}_{\Delta t}(u_{k=1}^1), \quad \mathcal{F}_{\delta t}(u_{k=1}^2) - \mathcal{G}_{\Delta t}(u_{k=1}^2), \quad \mathcal{F}_{\delta t}(u_{k=1}^3) - \mathcal{G}_{\Delta t}(u_{k=1}^3)$$

6. **Update:** $u_{k=2}^2$ and $u_{k=2}^3$ and $u_{k=2}^4$

Coarse propagator

 \mathcal{T}_h : mesh of the domain Ω

 V_h : Lagrange nodes, V_h^{int} : interior nodes,

 \mathcal{N}_h^{int} : number of internal Lagrange nodes, N_{sp} : number of elements

Conclusion

Coarse propagator

 \mathcal{T}_h : mesh of the domain Ω

 V_h : Lagrange nodes, V_h^{int} : interior nodes,

 \mathcal{N}_h^{int} : number of internal Lagrange nodes, \textit{N}_{sp} : number of elements

The finite element propagator

$$\begin{split} & X_h^{p} := \left\{ v_h \in \mathcal{C}^0(\Omega); v_h|_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_h \right\} \subset H^1(\Omega) \\ & X_{0h}^{p} := \left\{ v_h \in \mathcal{C}^0(\Omega); v_h|_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_h, \ v_h|_{\partial\Omega} = 0 \right\} \subset H^1_0(\Omega) \end{split}$$

The discrete vector of unknowns : $\mathbf{U}_h^n \in \mathbb{R}^{\mathcal{N}_h^{int}}$ satisfies $\mathbf{U}_h^n = \mathcal{G}_{\Delta t}(\mathbf{U}_h^{n-1})$ with

$$\mathcal{G}_{\Delta t}(\boldsymbol{\textit{U}}_{h}^{n-1}) = [\mathbb{A}^{n}]^{-1} \times \boldsymbol{\textit{F}}^{n-1}, \qquad \qquad \underbrace{[\mathbb{A}^{n}]^{-1}}_{} \quad \in \mathbb{R}^{\mathcal{N}_{h}^{int}, \mathcal{N}_{h}^{int}}, \quad \boldsymbol{\textit{F}}^{n-1} \in \mathbb{R}^{\mathcal{N}_{h}^{int}}$$

Stiffness matrix+mass matrix

Coarse propagator

 \mathcal{T}_h : mesh of the domain Ω

 \mathcal{V}_h : Lagrange nodes, $\mathcal{V}_h^{\text{int}}$: interior nodes,

 \mathcal{N}_h^{int} : number of internal Lagrange nodes, N_{sp} : number of elements

The finite element propagator

$$\begin{split} & X_h^{p} := \left\{ v_h \in \mathcal{C}^0(\Omega); v_h|_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_h \right\} \subset H^1(\Omega) \\ & X_{0h}^{p} := \left\{ v_h \in \mathcal{C}^0(\Omega); v_h|_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_h, \ v_h|_{\partial\Omega} = 0 \right\} \subset H^1_0(\Omega) \end{split}$$

The discrete vector of unknowns : $\mathbf{\textit{U}}_{h}^{n} \in \mathbb{R}^{\mathcal{N}_{h}^{int}}$ satisfies $\mathbf{\textit{U}}_{h}^{n} = \mathcal{G}_{\Delta t}(\mathbf{\textit{U}}_{h}^{n-1})$ with

$$\mathcal{G}_{\Delta t}(\boldsymbol{\textit{U}}_{h}^{n-1}) = [\mathbb{A}^{n}]^{-1} \times \boldsymbol{\textit{F}}^{n-1}, \qquad \qquad \underbrace{[\mathbb{A}^{n}]^{-1}}_{= \mathbb{R}^{N_{h}^{\text{int}}, \mathcal{N}_{h}^{\text{int}}}, \quad \boldsymbol{\textit{F}}^{n-1} \in \mathbb{R}^{N_{h}^{\text{int}}}$$

Stiffness matrix+mass matrix

The cell centered finite volume propagator

 $extbf{\emph{U}}_{h}^{n} := (extbf{\emph{U}}_{K}^{n})_{K \in \mathcal{T}_{h}}, \quad ext{one value per cell and time step}$

The discrete vector of unknowns : $\boldsymbol{U}_h^n \in \mathbb{R}^{N_{\mathrm{sp}}}$ satisfies $\boldsymbol{U}_h^n = \mathcal{G}_{\Delta t}(\boldsymbol{U}_h^{n-1})$ with

$$\mathcal{G}_{\Delta t}(oldsymbol{U}_h^{n-1}) = [\mathbb{A}^n]^{-1} imes oldsymbol{F}^{n-1}, \quad \underbrace{[\mathbb{A}^n]^{-1}}_{ ext{Sparse}} \in \mathbb{R}^{N_{ ext{sp}},N_{ ext{sp}}}, \quad oldsymbol{F}^{n-1} \in \mathbb{R}^{N_{ ext{sp}}}$$

The discontinuous galerkin propagator

 $\mathcal{N}_h^{\text{int}}$: total number of local internal degrees of freedom.

Discontinuous galerkin space:

$$\begin{split} X_h^p &:= \left\{ v_h \in L^2(\Omega); v_h|_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_h \right\} \not\subset H^1(\Omega), \\ X_{0h}^p &:= \left\{ v_h \in L^2(\Omega); v_h|_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_h, v_h|_{\partial\Omega} = 0 \right\} \not\subset H^1_0(\Omega) \end{split}$$

The discrete vector of unknowns : $\boldsymbol{U}_h^n \in \mathbb{R}^{\mathcal{N}_h^{\text{int}}}$ satisfies $\boldsymbol{U}_h^n = \mathcal{G}_{\Delta t}(\boldsymbol{U}_h^{n-1})$ with

$$\mathcal{G}_{\Delta t}(\boldsymbol{\textit{U}}_{\textit{h}}^{n-1}) = [\mathbb{A}^{\textit{n}}]^{-1} \times \boldsymbol{\textit{F}}^{\textit{n}-1}, \quad [\mathbb{A}^{\textit{n}}]^{-1} \in \mathbb{R}^{\mathcal{N}_{\textit{h}}^{\text{int}}, \mathcal{N}_{\textit{h}}^{\text{int}}}, \quad \boldsymbol{\textit{F}}^{\textit{n}-1} \in \mathbb{R}^{\mathcal{N}_{\textit{h}}^{\text{int}}}$$

local matrix $[\mathbb{A}^n]_K^{-1} = \text{stiffness matrix} + \text{mass matrix} + \text{consistency and stability terms.}$

Fine propagator: Monte-Carlo

Principle: It gives an approximation of

$$\int_{K} u^{n}(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x}.$$

Fine propagator : Monte-Carlo

Principle: It gives an approximation of

$$\int_{K} u^{n}(\mathbf{x}) \,\mathrm{d}\mathbf{x}.$$

Consider *M* particles. Statistical weight: $\omega_i^n \in \mathbb{R}_+$.

Then,

$$\int_{K} u^{n}(\boldsymbol{x}) \, \mathrm{d} x = \overline{\mathbb{E}} \left[u^{n}(\boldsymbol{Z}) \right].$$

 $\textbf{\textit{Z}}:=(\omega_1^n,\cdots,\omega_M^n)\in\mathbb{R}^M$ the RV associated to f: $\omega_i^n=1$ if $i\in\mathcal{K}$, else $\omega_i^n=0$.

Principle: It gives an approximation of

$$\int_{K} u^{n}(\mathbf{x}) \,\mathrm{d}\mathbf{x}.$$

Consider *M* particles. Statistical weight: $\omega_i^n \in \mathbb{R}_+$.

Then,

$$\int_{\mathcal{K}} u^n(\boldsymbol{x}) \, \mathrm{d} x = \overline{\mathbb{E}} \left[u^n(\boldsymbol{Z}) \right].$$

 $\mathbf{Z}:=(\omega_1^n,\cdots,\omega_M^n)\in\mathbb{R}^M$ the RV associated to $f:\omega_i^n=1$ if $i\in\mathcal{K}$, else $\omega_i^n=0$.

Law of large numbers:

$$\lim_{M\to+\infty}\sum_{i=1}^M \omega_i^n|_{i\in\mathcal{K}} = \int_{\mathcal{K}} u^n(\boldsymbol{x})\,\mathrm{d}\boldsymbol{x}.$$

Fine propagator: Monte-Carlo

Principle: It gives an approximation of

$$\int_{\mathcal{K}} u^n(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x}.$$

Consider *M* particles. Statistical weight: $\omega_i^n \in \mathbb{R}_+$.

Then.

$$\int_{K} u^{n}(\boldsymbol{x}) \, \mathrm{d} x = \overline{\mathbb{E}} \left[u^{n}(\boldsymbol{Z}) \right].$$

 $\mathbf{Z} := (\omega_1^n, \cdots, \omega_M^n) \in \mathbb{R}^M$ the RV associated to $f : \omega_i^n = 1$ if $i \in K$, else $\omega_i^n = 0$.

Law of large numbers:

$$\lim_{M\to+\infty}\sum_{i=1}^M \omega_i^n|_{i\in\mathcal{K}} = \int_{\mathcal{K}} u^n(\boldsymbol{x})\,\mathrm{d}\boldsymbol{x}.$$

Central limit Theorem:

error
$$\approx 1/\sqrt{M}$$
.

Sampling in 1D

Direct inversion of the cumulative:

Sampling in 1D

Direct inversion of the cumulative:

 $F: \Omega \to [0,1]$ such that $F(x) := \int_{-\infty}^{x} f(u) du$.

Let $\xi_1 \sim \mathcal{U}([0, 1])$.

Position of the particle: $X_i = F^{-1}(\xi_1)$.

Repeat *M* times the procedure.

Sampling in 1D

Direct inversion of the cumulative:

 $F:\Omega\to [0,1]$ such that $F(x):=\int_{-\infty}^{x}f(u)\,\mathrm{d}u.$

Let $\xi_1 \sim \mathcal{U}([0, 1])$.

Position of the particle: $X_i = F^{-1}(\xi_1)$.

Repeat *M* times the procedure.

The table lookup method:

Probability each element: $\mathbb{P}([x_{i-1}, x_i]) = \int_{[x_{i-1}, x_i]} f(x) dx$,

Cumulative function: $F_i: \Omega \to [0,1], \ F_i = \sum_{i \le i} \mathbb{P}([x_{i-1},x_i])$

Let $\xi_1 \sim \mathcal{U}([0,1])$. Identify the two intervals such that $F_{i-1} \leq \xi_1 \leq F_i$.

Position of the particle: $X_i = \frac{(x_i - x_{i-1})\xi_1 - x_i F_{i-1} + x_{i-1} F_i}{F_i - F_{i-1}}$.

Repeat *M* times the procedure.

Rejection method:

Often used when the PDF f is hard to invert. Assume there exists a PDF $g:\Omega\to\mathbb{R}_+$ "easy" to simulate such that

$$f(x) \le kg(x)$$
, where $k \ge 1$ is a constant.

Set
$$\alpha(x) = \frac{f(x)}{kg(x)}$$
.

Compute the cumulative function $G: \Omega \to [0,1]$ associated to g.

Let
$$\xi \sim \mathcal{U}([0,1])$$
.

Find $X_i \in K$ using the direct inversion procedure.

Compute $\alpha(X_i)$.

Let $\xi_1 \sim \mathcal{U}([0,1])$. If $\xi_1 \leq \alpha(X_i)$ accept X_i . Otherwise reject and and come back to first step.

How define the transport of the particles?

Conclusion

Kernel Transport

 (\mathbf{x},t) : position of the particle \mathbf{x} at time t

 (\mathbf{x}',t') : position of the particle \mathbf{x}' at time t'

Density transition kernel:

$$T(\mathbf{x}',t' o \mathbf{x},t) := \frac{1}{\sqrt{2\pi\mathcal{D}(t-t')}} \exp\left(-\frac{(\mathbf{x}-\mathbf{x}')^2}{2\mathcal{D}(t-t')}\right).$$

Pratical formula for the brownian motion:

$$T(\mathbf{X}^{n+\delta t}, t^n + \delta t) = T(\mathbf{X}^n, t^n) + \sqrt{2D\delta t} \, \mathcal{S}_n$$
 where $\mathcal{S}_n \sim \mathcal{N}(0, 1)$

Coarse propagator: Deterministic solver

 $\textbf{Fine propagator:} \ \ \textbf{Monte-Carlo solver:} \ \ \textbf{deterministic data} + \textbf{sampling} + \textbf{average}$

Consider p independent replicas and M' particles so that the total number of particles is $M = p \times M'$. The numerical solution obtained for a batch $j \in [1, p]$ at parareal iteration k is denoted by $\boldsymbol{U}_{k,j}^{n+1}$

$$U_k^{n+1} := \frac{1}{\rho} \sum_{j=1}^{\rho} U_{k,j}^{n+1}$$

When $U_{k,j}^{n+1}$ is computed, we need its statistical version for

the computation of $\boldsymbol{U}_{k+1,j}^{n+2} = \mathcal{G}_{\Delta t}(\boldsymbol{U}_{k+1,j}^{n+1}) \times \frac{\mathcal{F}_{\delta t}(\boldsymbol{U}_{k,j}^{n+1})}{\mathcal{G}_{\Delta t}(\boldsymbol{U}_{k,j}^{n+1})}$. Intro-

Updating the statistical weights

Example: How avoid sampling U_{k-1}^2 ?

$$[\omega_1^2]_{i\in\mathcal{K}} = [\omega_{\mathcal{F}}]_{i\in\mathcal{K}} \times \left(\frac{\mathbf{U}_{k=1}^2}{\mathcal{F}(\mathbf{U}_{k=0}^1)}\right)|_{\mathcal{K}}$$

$$\operatorname{hist}(\omega_{k=1}^2)|_{\mathcal{K}_1} = \frac{1}{8} \left(\omega_{\mathcal{F}_1} + \omega_{\mathcal{F}_2}\right) \times \left(\frac{\boldsymbol{U}_{k=1}^2}{\mathcal{F}(\boldsymbol{U}_{k=0}^1)}\right)|_{\mathcal{K}_1} = \boldsymbol{U}_{k=1}^2$$

Outline

- Numerical experiments

Numerical experiments

 Ω : one-dimensional core with length L=5m, **Final simulation time:** T=10s.

Numerical experiments

Deterministic propagator: \mathbb{P}_1 finite element, $\Delta t = 2s$.

Fine propagator: Monte-Carlo, $\delta t = 2 \times 10^{-4} s$.

Diffusion coefficient: $\mathcal{D} = 0.5 \text{m}^2 \cdot \text{s}^{-1}$,

Initial condition: $u_0(x) = \frac{1}{t}$.

Number of particles: 10⁴, Number of replicas: 10³

Hybrid solution

CPU time and convergence

Numerical experiments 000000

Number of particles	Number of batch	Parallelized Monte-Carlo	Hybrid parallelized Monte-Carlo $k = 1$	Hybrid parallelized Monte-Carlo $k = 2$	Gain factor $k = 1$	Gain factor $k=2$	
10 ⁵	10 ²	1653.4 s	335.76 s	534.16 s	4.92	3.04	
10 ⁴	10 ³	164.09 s	33.05 s	7.97 s	4.96	3.09	
10 ³	10 ⁴	16.86 s	3.39 s	0.83 s	4.97	3.07	
10 ²	10 ⁵	1.78 s	0.35 s	0.11 s	5.08	3.02	l

A second test case

Final simulation time: T = 14s.

Deterministic propagator: \mathbb{P}_1 finite element, $\Delta t = 2s$.

Fine propagator: Monte-Carlo, $\delta t = 2 \times 10^{-4} s$.

Diffusion coefficient MC: $\mathcal{D} = 0.5 m^2 \cdot s^{-1}$

Diffusion coefficient FEM: $\mathcal{D} = 0.48 m^2 \cdot s^{-1}$

Initial condition: $u_0(x) = \frac{1}{L} (1 + \cos(\frac{\pi x}{L})).$

Number of particles: 10⁵, Number of replicas: 10²

CPU time and convergence

Outline

- Introduction
- Model problem
- Numerical experiments
- Conclusion

Conclusion

- We devised for the diffusion equation a hybrid parareal algorithm.
- Our approach reduces the CPU time of a Monte-Carlo simulation.

Ongoing work:

Extension to Boltzmann equation in neutronics

J. DABAGHI, Y. MADAY, A. ZOIA, A hybrid parareal Monte-Carlo algorithm for the parabolic time dependant diffusion equation. IN PREPARATION

Thank you for your attention!

