MATH 355: NOTES

ALEXANDER LEE

THE REAL NUMBERS

Some Preliminaries.

Theorem. Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

The Axiom of Completeness.

Axiom (Axiom of Completeness). Every nonempty set of real numbers that is bounded above has a least upper bound.

Definition. A set $A \subseteq \mathbf{R}$ is *bounded above* if there exists a number $b \in \mathbf{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an *upper bound* for A.

Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbf{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition. A real number s is the *least upper bound* for a set $A \subseteq \mathbf{R}$ if it meets the following two criteria:

- (1) s is an upper bound for A;
- (2) if b is any upper bound for A, then $s \leq b$.

The least upper bound is also frequently called the *supremum* of the set A. We write $s = \sup A$ for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way and is denoted by $\inf A$.

Definition. A real number a_0 is a *maximum* of the set A if a_0 is an element of A and $a_0 \ge a$ for all $a \in A$. Similarly, a number a_1 is a *minimum* of A if $a_1 \in A$ and $a_1 \le a$ for every $a \in A$.

Lemma. Assume $s \in \mathbf{R}$ is an upper bound for a set $A \subseteq R$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

1