Today's Content

Connecting the Robes
Heap Introduction
Insertion
Extract Min
Build Heap

Q. Conne	cting th	c Ropes			
You can	_			gether, th	nexe's a
cost asso					
			necting.		
			o connect	_	pes.
	5				
	–	2	6	3	
Ans = 40					Cost
		_		2 (3)	7
2 + .	5		<u> </u>	-,0,-,	•
					•
- + -			8 C7,	8 3)	8
2	6		6		
9	- + -	3 =		(7,11)	- 11
8			***		+
					18
	+		18	<u> </u>	
			Tot	المارة <u>- المارة</u>	44
				C02/	

2, 5, 2,6,3 Cost 2. 2 4 0 4, 5, 6, 3 3 + 4 7 3 7,11 18 Total = 40 Idea: Always pick 2 smallest ropes and maye them TZ O

Case 1 2 3 SKP 1: X+7 4+2 X+2 step 2: 7742 | 1+3+2 | 1+2+8 Case 1 6 Case 3 < case 2 C3,4,5,63 Cork C3,5,6,43 $\begin{bmatrix} 1 \\ 7 \\ 5 \\ 6 \end{bmatrix} \xrightarrow{\text{Sove}} \begin{bmatrix} 6 \\ 7 \end{bmatrix} \xrightarrow{\text{Sove}} \begin{bmatrix} 11 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 7 \end{bmatrix}$ 10:0((n-1)M102M) = 0(M270) M) Use insertion sort: Ng NT (N-1)N $\Rightarrow \tau c : o(N^2)$ 1 connection -> 3 N N-1 connections > (0-1) N

C1, 2,3,4] Quiz

> 1+2 = 3 C3,3,42 6 C 6,43 3 + 3 = 6 C 103 6+4 = 10 19

Cost

We need a DS which is obtimized in fall operations

Inscrt (No Bol) Heap Extract Min (log N)

1 connection - 3 lay N

Complete BT (CBT) All levels are filled completely except last led, data can be filled from left to right

	138
2) Order of dements	
\(\)	
Heap Order Proper	EHOP]
Max	Heap Nock > Children
min (x)	Heap Node & Children
	,
(24)	
	18
(12) (20)	(26)
	1 1 1
25 (3) (24) (22)	34 (2) (3) (9)
^	1 1 1 1 1 1 1 1 1 1
35 34	(6)
1. Complete BT	1. Complete BT
2. Min Heap	2. Max Heap
	<u>, </u>
Min Heap - min Se	(1)0 toor to 0(1)
Max Heap -> Max	ele is at root ocis

Heap - CBT (can be implemented using array) Level ~ 02961 Traversal 8 10 1 RC ida Par ich LC idn

N log 2 N

7 log 7 = 2. -

log 11 = 3.

TC: OCH) CBT O(log2N)

void insert (list line > heap, int x) <

heap. add (+) // val -> last

i = heap. size () -1

while (i >0) <

pi = (i-1)/2

if (heap Chi3 > heap Ci3) <

Swap(1 ida, 4 ida) is invalid leaf node STOP / list cint? heap Swap (heap CO), map (heap. size()-1) trap. remove () // remove last trapily (0, heap) void heapify (int i, list <int? heap) < son find more while (2i+1 < heap. size()) < 1 = 2 (+1, = 2 (+2 N= min (heap (i), heap (1)) if (& < neap. size ()) N=min (N, heap(3)) of Cheab Cis == K) < Asc if (heapEl3 == N) < such (hap Ci], hap [2]

Build Heap

our of it.

Ex: [5 13 -2 11 27 31 0 19]

Approach 1: Sort the array

[-2 0 5 11 13 19 27 31]

-2 5 5 T(:0(Mlg N)

Approach 2: Start with an empty heap and call insert 11 times.

LC: 0(MJ09 N)

Approach 3: Build heap - linear time

Ida of last non-leaf model

parent of last leaf

N-1 $N-1-1) = \frac{2}{(N-2)}$

 $\frac{1}{2} = \frac{1}{1 - 1/2} = 1$ => $\frac{1}{2} = 1$

$$TC: \frac{N}{2}(AuP) = \frac{N}{2}(2) = O(N)$$

