Predicting amyloid burden at screen in Anti-Amyloid Treatment in Asymptomatic AD (A4) study participants

Donohue M^1 , Raman R^1 , Sun C- K^1 , Langford O^1 , Yaari R^2 , Siemers E^3 , Holdridge KC^2 , Johnson $K^{4,5}$, Aisen PS^1 , Sperling $RA^{4,5}$, and The A4 Study Team

 1 Alzheimer's Therapeutic Research Institute, University of Southern California 2 Eli Lilly and Company, 3 Siemers Integration LLC 4 Brigham and Women's Hospital, 5 Massachusetts General Hospital

AAIC July 22, 2018

Disclosures

- Consultant to Neurotrack & Kyowa Kirin
- Spouse is fulltime employee of Janssen

Background

- Screening for asymptomatic AD is expensive and slow
- For A4, 4,486 individuals received amyloid PET scans in order to identify 1,323 $A\beta$ + individuals for an **amyloid PET screen fail rate of 71%**
- Number Needed to Screen (NNS) was 3.39 individuals per A $\beta+$ individual
- Can we use less expensive measures to identify a population at increased risk for asymptomatic AD to make screening for asymptomatic AD more efficient?
- We explore possible approaches using machine learning (Random Forests*) applied to the A4 screening data

^{*}Leo Breiman (2001). Random Forests. *Machine Learning*, 45(1), 5-32.

Predictors considered

We considered models with and without APOE ε 4, as well as:

- Age
- Education
- Sex
- Family Hx (sibling or parent)
- Preclinical Alzheimer's Cognitive Composite (PACC)
- Mini-Mental State Exam (MMSE)

- Free and Cued Selective Reminding (FCSRT)
- LMIa Immediate Recall
- LMIa Delay Recall
- Digit Symbol Substitution (DSST)
- Cognitive Function Instrument (CFI)
- Activities of Daily Living (ADL)

We considered models with either a binary (PET elegible or ineligible) and continuous (SUVR) outcome

Classification tree* with APOE ε 4

^{*}Breiman, Friedman, Olshen, Stone. (1984). Classification and regression trees.

Classification tree with APOE ε 4

Classification tree with APOEarepsilon4

Random forests*

- Consist of many trees "grown" on random subsamples (like bootstrapping)
- Predictions are based on the consensus among the trees
- Subsampling allows for built-in cross-validation
- Difficult to visualize & summarize
- Variable importance: relative contribution of each predictor to predictive accuracy
- Imbalanced data (only 29.5% A β +), so A β + observations were up-weighted when fitting models

^{*}Leo Breiman (2001). Random Forests. *Machine Learning*, 45(1), 5-32.

Predictor importance in random forest of SUVR

Predictor importance in random forest of SUVR

Predictor importance in random forest of SUVR

Predictor importance in random forest of (binary) amyloid eligibility

Predicted SUVR by APOE ε 4, Family Hx & age

Predicted SUVR by APOE ε 4, Family Hx & PACC

ROC curves for random forest models of amyloid SUVR

Predictive accuracy for APOE ε 4 known, unknown, or negative

Applying cutoff of 1.15 to out-of-sample predicted SUVR, and comparing to observed $A\beta$ status:

			y NPV		NNS^*	NNS reduction
known 6	8.8% 58.4%	73.2%	80.8%	47.6%	2.10	38.1%
unknown 6	3.9% 38.5%	74.5%	74.4%	38.8%	2.58	23.9%
negative 7	9.5% 11.8%	95.4%	82.1%	37.8%	2.65	49.4%

^{*}Number Needed to Screen (NNS) to identify an A $\beta+$ individual, which was 3.39 individuals in A4 (5.24 for $\varepsilon 4-$).

Summary of predictive performance

- Machine learning algorithms have potential to reduce number needed to screen by $[38\% \mid 24\% \mid 49\%]$ when APOE ε 4 is [known | unknown | negative], and greatly reduce screening costs.
- However, sensitivity is only [58% | 38% | 12%], meaning [42% | 62% | 88%] of $A\beta+$ subjects would be falsely screened out (sensitivity can be improved by lowering the cutoff applied to predicted SUVR.)
- Predictive performance was similar regardless of whether we modelled binary or continuous outcomes, though Family Hx was more important in binary model without APOE.

Summary of predictor importance

- As expected APOE, Age, Cognition (both performance and subjective concerns), and Family Hx were important.
- The importance of cognitive composite in this *cross-sectional* analysis suggests *longitudinal* cognitive change might improve performance.

Acknowledgements

- NIA, Eli Lilly and Co., Alzheimer's Association, GHR Foundation, Accelerating Medicines Partnership, Anonymous Foundation, private donors, Avid and Cogstate
- ATRI, Avid, Mayo, Cogstate A4 teams
- Site Pls and coordinators
- Study participants and families
- A4 Study Team list at A4STUDY.org