Наибольшее и наименьшее значения функции двух переменных в области

Так же, как в случае функции одной переменной, заданной на отрезке, функция двух переменных, заданная в замкнутой области, достигает своих наибольшего и наименьшего значений либо в критических точках, лежащих в заданной области, либо в граничных точках области. Трудность этого случая в том, что у области на плоскости, имеется бесконечное множество граничных точек.

Пример. Найти наибольшее и наименьшее значения функции

$$z = x^2 - xy + y^2 - 2x + y$$

в треугольнике, образованном прямыми

$$x = 0$$
, $y = x - 2$, $y = -x + 2$.

Решение: Прежде всего, найдем критические точки заданной функции, решив систему

$$\begin{cases} 2x - y - 2 = 0, \\ -x + 2y + 1 = 0. \end{cases}$$

Данная система имеет единственное решение, и мы получаем критическую точку (1,0). Эта точка лежит внутри заданной области, поэтому мы вычисляем в этой точке значение функции: z(1,0) = -1.

Теперь переходим к граничным точкам. Заданная область имеет 3 прямолинейных граничных участка:

- 1) x = 0, $-2 \le y \le 2$,
- 2) $0 \le x \le 2$, y = x 2,
- 3) $0 \le x \le 2$, y = -x + 2.

На участке 1) x = 0, $-2 \le y \le 2$

$$z = z_1(y) = y^2 + y, -2 \le y \le 2.$$

Функция $z_1(y)$ на отрезке [-2,2] принимает наибольшее значение, равное 6, в точке 2 (конец отрезка), и наименьшее значение, равное -1/4, в критической точке -1/2.

На участке 2) $0 \le x \le 2$, y = x - 2

$$z = z_2(x) = x^2 - x(x-2) + (x-2)^2 - 2x + (x-2) = x^2 - 3x + 2$$
, $0 \le x \le 2$.

Функция $z_2(x)$ принимает на отрезке [0,2] наибольшее значение, равное 2, в точке 0 (конец отрезка), и наименьшее значение, равное -1/4, в критической точке 3/2.

На участке 3) $0 \le x \le 2$, y = -x + 2

$$z = z_3(x) = x^2 - x(-x+2) + (-x+2)^2 - 2x + (-x+2) = x^2 - 9x + 6, \ 0 \le x \le 2$$

Функция $z_3(x)$ принимает на отрезке [0,2] наибольшее значение, равное 6, в точке 0 (конец отрезка), и наименьшее значение, равное -3/4, в критической точке 3/2.

Получив значения в критической точке и наибольшие и наименьшие значения на отрезках границы (-1, 6, -1/4, 2, -3/4), мы выбираем среди них наибольшее и наименьшее. Это значения 6 (наибольшее значение данной функции в заданном треугольнике) и -1 (наименьшее значение данной функции в заданном треугольнике).

Условный экстремум функции двух переменных

Задача:

Найти экстремум функции z = f(x, y), при условии $\varphi(x, y) = 0$.

І способ. Метод подстановки.

Из уравнения $\varphi(x,y)=0$ выразить $y=\psi(x)$ и подставить в z=f(x,y). Тогда условный экстремум – обычный экстремум функции одной переменной $z=f(x,\psi(x))$.

<u>II способ.</u> Метод Лагранжа.

Исследуется на экстремум функция Лагранжа:

$$F(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y),$$

где λ – множитель Лагранжа.

Необходимое условие экстремума:

$$\begin{cases} \frac{\partial F}{\partial x} = 0, \\ \frac{\partial F}{\partial y} = 0, \\ \frac{\partial F}{\partial z} = 0. \end{cases}$$

Или

$$\begin{cases} \frac{\partial f}{\partial x} + \lambda \frac{\partial \varphi}{\partial x} = 0; \\ \frac{\partial f}{\partial y} + \lambda \frac{\partial \varphi}{\partial y} = 0; \\ \varphi(x, y) = 0. \end{cases}$$

ТЕОРЕМА (достаточное условие условного экстремума функции 2-х переменных).

Пусть $M_0(x_0,y_0)$ — критическая точка для условного экстремума функции z=f(x,y) и в некоторой окрестности точки $M_0(x_0,y_0)$ функция имеет непрерывные частные производные до второго порядка включительно.

Обозначим

$$\Delta = - \begin{vmatrix} 0 & \varphi_x'(M_0) & \varphi_y'(M_0) \\ \varphi_x'(M_0) & F_{xx}''(M_0) & F_{xy}''(M_0) \\ \varphi_y'(M_0) & F_{xy}''(M_0) & F_{yy}''(M_0) \end{vmatrix}.$$

Тогда:

- 1) если $\Delta \geq 0$, то в точке M_0- условный минимум ;
- 2) если $\Delta < 0$, то в точке M_0 условный максимум;
- 3) если $\Delta = 0$, то никакого заключения о критической точке $M_0(x_0,y_0)$ сделать нельзя и требуются дополнительные исследования.

Пример: Найти точку условного экстремума функции

$$z = 4 - x^2 + 2x - y^2 + 4y$$
 при $y - x = 0$.

Решение.

Решим задачу первым способом.

Из уравнения y - x = 0 выразим y: y=x.

Вместо y в функцию z подставим x:

$$z = 4 - x^2 + 2x - x^2 + 4x \implies z = 4 - 2x^2 + 6x$$
.

Найдем производную $z'_x = -4x + 6$.

$$-4x+6=0 \Rightarrow x=1,5 \Rightarrow y=1,5 \Rightarrow$$

 $M_0(1,5; 1,5)$ – условный максимум.

Решим задачу вторым способом - методом Лагранжа.

Составляем функцию Лагранжа:

$$F(x; y; \lambda) = 4 - x^2 + 2x - y^2 + 4y + \lambda(y - x)$$
.

Найдем частные производные

$$\frac{\partial F}{\partial x} = -2x + 2 - \lambda;$$

$$\frac{\partial F}{\partial y} = -2y + 4 + \lambda;$$

$$\frac{\partial F}{\partial \lambda} = y - x.$$

Получаем систему уравнений

$$\begin{cases} -2x + 2 - \lambda = 0 \\ -2y + 4 + \lambda = 0 \end{cases} \Rightarrow \begin{cases} -2x + 2 = \lambda \\ 2y - 4 = \lambda \\ y = x \end{cases} \Rightarrow$$

$$\begin{cases}
-2x + 2 = 2x - 4 \\
2y - 4 = \lambda \\
y = x
\end{cases} \Rightarrow \begin{cases}
x = 1,5 \\
y = 1,5 \\
\lambda = -1
\end{cases}$$

Получили точку $M_0(1,5; 1,5)$, $\lambda = -1$.

Найдем вторые частные производные от функции $F(x; y; \lambda)$ и частные производные от функции $\varphi(x; y)$

$$F''_{xx} = -2;$$
 $F''_{yy} = -2;$ $F''_{xy} = 0;$ $\varphi'_{x} = -1;$ $\varphi'_{y} = 1.$

Теперь найдем

$$\Delta = - \begin{vmatrix} 0 & -1 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & -2 \end{vmatrix} = -3 < 0$$

Тогда $M_0(1,5; 1,5)$ — условный максимум.