Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

Introdução a Big Data

Neste trabalho final da disciplina de introdução a Big Data, será apresentado os seguintes tópicos, conforme orientação acadêmica:

- 1. Descrição das opções listadas: Apaches Hudi, Iceberg e DeltaLake;
- 2. Comparação de características entre as opções anteriores;
- 3. Projeto de um data lake para atender a um caso de uso (fictício ou não).

1. Descrição das opções listadas:

a. Apache Hudi: é uma plataforma open source desenvolvida pela Uber. Visa simplificar e otimizar a ingestão, gerenciamento e transformação de grandes volumes de dados em sistemas distribuídos. "Hudi" significa "Hadoop Upserts Deletes and Incrementals" e reflete sua capacidade única de suportar operações de atualização incremental em conjuntos de dados distribuídos. Site: https://hudi.apache.org/

Principais características:

- Suporte a atualizações incrementais: uma das propriedades exclusivas do Apache Hudi é a sua capacidade de efetivamente suportar atualizações incrementais nas operações de grandes conjuntos de dados dispersos. Isso significa que o usuário pode efetuar inserções, exclusões e atualizações nos dados previamente existentes sem precisar recalcular os conjuntos de dados dispersos completos.
- Suporte ACID: capaz de garantir atomicidade, consistência, isolamento e durabilidade (ACID) para operações de escrita, o Hudi assegura a integridade e consistência dos dados em ambientes distribuídos e concorrentes.
- Controle de particionamento e pesquisa de passado: com recursos avançados de controle de particionamento, ele facilita a organização e recuperação eficiente de dados. Além disso, é possível realizar pesquisas definindo uma data passada, como um snapshot dos dados em determinada data.
- Operações de atualização e exclusão: O Hudi permite realizar operações de atualização (upserts) e exclusão (deletes) de dados de forma eficiente e escalável. Essa

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

capacidade é especialmente útil em cenários onde correções ou remoções nos dados são necessárias após a ingestão inicial. Upsert seria a junção de Update + Insert onde caso exista o dado, faça update, caso contrário, insira.

- Compatibilidade com diferentes formatos de arquivos: é
 compatível com uma variedade de formatos de arquivos,
 como Parquet, HFile, Avro e ORC, amplamente utilizados em
 ambientes de Data Lake para armazenamento de dados
 estruturados.
- Integração com Hadoop: como parte integrante do ecossistema Hadoop, integra-se com outras ferramentas e frameworks como Apache Spark, Hive e HDFS. Simplificando a construção de pipelines de dados completos e escaláveis.
- Gerenciamento robusto de metadados e índices: possui um sistema robusto de gerenciamento de metadados, que registra informações sobre operações realizadas nos dados, versões de dados e outras informações relevantes. Também suporta índices, visando melhorar o desempenho das consultas.
- Serviços de otimização: oferece vários serviços para melhorar a performance, como definição de tamanho de arquivo automático, clusterização e compactação de dados, limpeza automática de arquivos antigos.
- b. Apache Iceberg: é um projeto de open source, desenvolvido pela Netflix e projetado para simplificar o gerenciamento de tabelas de dados em ambientes de Data Lakes distribuídos. Resumidamente, consiste em um formato de tabela de dados distribuídos, específico para grandes volumes de dados. Site: https://iceberg.apache.org/

Principais características:

 Versionamento: Permite o controle das versões das tabelas de dados, possibilitando a visualização das alterações ao longo do tempo e a recuperação de versões anteriores dos dados. Serve para rastrear e analisar mudanças históricas nos dados.

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

- Compactação e consistência de dados: reduz o espaço de armazenamento necessário, especialmente útil para grandes conjuntos de dados, além de promover a consistência dos dados.
- Suporta diferentes formatos de arquivos: Aceita vários formatos de arquivos, incluindo Parquet e Avro, amplamente utilizados em ambientes de Data Lake para armazenamento de dados estruturados.
- Esquema evolutivo: permitindo que os esquemas(estruturas) sejam modificados sem a necessidade de reescrever os dados existentes. Proporciona flexibilidade e facilidade na evolução dos modelos de dados.
- Otimizações de desempenho: Implementa várias otimizações para consultas analíticas, incluindo pruning(poda) de dados não necessários e compressão de dados, resultando em consultas mais eficientes e tempos de resposta mais rápidos.
- Integração com frameworks de processamento: Integra-se com o Apache Spark, Hive e Presto, permitindo uso do lceberg em diversos ambientes de processamento de dados. Alguns serviços da AWS também suportam nativamente o lceberg, como AWS Athena, EMR e Glue.
- Compatibilidade com diversos sistemas de armazenamento: compatível com uma variedade de sistemas de armazenamento, como HDFS e serviços de armazenamento em nuvem, como AWS S3 e Azure Data Lake Storage proporcionando a flexibilidade na escolha do ambiente de armazenamento.
- c. **Delta Lake:** é uma camada de armazenamento e formato padrão open source para todas as operações no Databricks, oferecendo uma extensão dos arquivos Parquet, gerando um log de transações ACID. Oferecendo recursos avançados às APIs do Apache Spark, o Delta Lake garante transações seguras, qualidade de dados e processamento em tempo real.

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

Principais características:

- Processamento em tempo real: além do processamento em lote, suporta processamento em tempo real, permitindo consultas interativas e análises de streaming sobre os mesmos dados. Muito importante para análises em tempo real em ambientes que exigem decisões rápidas.
- Esquema evolutivo e invariante: permite a evolução do esquema de dados de forma invariável, ou seja, os esquemas podem ser alterados sem reescrever os dados existentes. Isso facilita a adaptação dos modelos de dados conforme as necessidades do negócio evoluem e se ajustam.
- Controle transacional ACID: garante a integridade dos dados durante inserções, atualizações e exclusões. Isso muito importante para ambientes sensíveis à consistência, como em setores financeiros e ou ambientes transacionais.
- Suporte a diversos formatos de arquivos: assim como o Apache Spark, suporta uma variedade de formatos de arquivos, incluindo Parquet e Delta, oferecendo flexibilidade na escolha do formato mais adequado para os dados.
- Otimizações de desempenho: Implementa várias otimizações, como compactação de arquivos e pruning de partições desnecessárias para melhorar a performance das consultas e reduzir o tempo de processamento.
- Integração com ferramentas da databricks: integrado nativamente ao ambiente Databricks, sua implementação e gerenciamento dentro do ecossistema é simplificado. Também se integra facilmente com outras ferramentas, como Apache Spark, Apache Hadoop e Apache Airflow.
- Comparação de características entre as opções (Apache Hudi, Apache Iceberg e Databricks Delta Lake).

Tabela comparativa criada com base nas informações apresentadas anteriormente:

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

Característica	Apache Hudi	Apache Iceberg	Delta Lake
Modelo de Dados	Baseado em registros versionados (Parquet)	Baseado em tabelas particionadas	Baseado em arquivos versionados e unificados – Uniform*
Formatos de Arquivo	Principalmente Parquet e Avro	Parquet, Avro, ORC, entre outros	Principalmente Parquet
Gerenciamento de Metadados	Automático para versionamento e rastreamento	Eficiente para snapshot e controle de versão	Automático para controle de versão
Transações	Suporta transações ACID para garantir a integridade dos dados durante operações de gravação e exclusão	Suporta transações ACID para garantir a integridade dos dados durante operações de gravação e exclusão	Suporta transações ACID para garantir a integridade dos dados durante operações de gravação e exclusão
Evolução de Esquema	Oferece evolução de esquema flexível, garantindo compatibilidade com versões anteriores	Oferece evolução de esquema flexível, garantindo compatibilidade com versões anteriores	Oferece evolução de esquema flexível, garantindo compatibilidade com versões anteriores
Integração com Hadoop	Integra-se facilmente com o Hadoop e é amplamente utilizado em plataformas como Apache Spark e Apache Hive	Também se integra bem com o ecossistema Hadoop e é suportado por várias ferramentas, incluindo Spark, Hive e Presto	Integração nativa com o ecossistema Databricks e suporte total com o Apache Spark
Escalabilidade	Projetado para lidar com cargas de trabalho de data lake em grande escala, oferecendo alta escalabilidade e desempenho	Altamente escalável e trabalha com grandes volumes de dados distribuídos em várias camadas de armazenamento	Altamente escalável, adaptando-se bem a cargas de trabalho de qualquer tamanho
Comunidade e Maturidade	Suportado por uma comunidade ativa, mas a	Também suportado por uma comunidade	Suportado pela Databricks, com atualizações

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

	maturidade pode variar dependendo dos casos de uso específicos e das necessidades da empresa	ativa, mas a maturidade pode variar dependendo dos casos de uso específicos e das necessidades da empresa	regulares e ampla adoção na indústria
Particionamento	Suporte a particionamento para melhorar a eficiência de consultas e operações de ETL	Oferece suporte a particionamento para organização eficiente de dados em várias dimensões	Suporta particionamento para otimizar operações de leitura e escrita
Indexação	Indexação global e local para melhorar o desempenho de consultas	Índices para otimização de leitura, permitindo consultas eficientes em grandes conjuntos de dados	Indexação automática para melhorar o desempenho de consultas e operações de mesclagem

^{* &}lt;a href="https://www.databricks.com/blog/announcing-delta-lake-30-new-universal-format-and-liquid-clustering">https://www.databricks.com/blog/announcing-delta-lake-30-new-universal-format-and-liquid-clustering

Comparando as principais características individualmente:

Apache Hudi versus Apache Iceberg versus Delta Lake:

Todos são open source, porém com focos diferentes. O Hudi possui como base uma capacidade de gestão incremental e atualizações eficientes, enquanto o Iceberg possui recursos avançados como versionamento de arquivos e esquema evolutivo. Já o Delta Lake se destaca pelas operações ACID e consultas em real time. Tanto o Delta Lake como o Iceberg possuem recursos como controle transacional e suporte a formatos populares, porém o Delta Lake é integrado ao Spark da Apache oferecendo assim consultas de batch e streaming, sendo um forte candidato para processamento e análise de dados em real time.

A escolha de cada deve ser ponderada visando as características e prioridades de cada projeto, por exemplo a garantia da consistência dos dados durante as transações e atualizações, a complexidade analítica das consultas ou então a velocidade de retorno das consultas.

Site para consulta mais aprofundada sobre a comparação entre os 3: https://www.onehouse.ai/blog/apache-hudi-vs-delta-lake-vs-apache-iceberg-lakehouse-feature-comparison

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

3. Projeto de um data lake para atender a um caso de uso.

Atualmente na visão de negócios, dados são mais que números ou fatos, dados são a base para tomada de decisões sobrea as estratégias e direções a serem seguidas.

Dados são gerados e armazenados em todas as áreas, desde o pequeno comércio até a multinacional que precisa de velocidade para armazenar e consultar estes dados. É nesse ponto que um Data Lake é relevante.

Mas qual a razão para utilizar um data lake ao invés de um banco de dados convencional? Pelos 4 motivos a seguir:

- 1. Escalabilidade;
- 2. Flexibilidade;
- 3. Custo Eficiente:
- 4. Análise de dados Avançada.

Escalabilidade por manusear, tratar e comportar grandes volumes de dados de vários tipos. Imagine que o core do seu negócio possa ser armazenado em um balde de água, trazendo para o sentido de data lake, conforme o tempo passa e a empresa cresce, é necessário trocar e aumentar este armazenamento para uma piscina e logo mais para um lago.

Flexibilidade para se adaptar a diferentes tipos de informações, supondo que seja necessária criar uma nova área de negócio, ou uma nova empresa do grupo empresarial. O data lake pode ser o mesmo já existente, podendo ainda ser utilizado para consultas e análises entre as empresas, uma visão mais superior.

Custo eficiente, pois, como vimos acima, os data lakes são criados utilizando softwares open source, ou seja, não há custo de licenciamento e implantação por parte do fabricante, além de que possuem a capacidade de se integrar com outras ferramentas de análise facilmente. O custo de armazenamento em nuvem escalável também pode ser considerado neste item, pois, utiliza-se somente o necessário de armazenamento. Num passado breve, era necessário adquirir armazenamento on-site, com uma margem e previsão de crescimento, onde comprava-se um volume maior de armazenamento para ficar esperando ser utilizado.

Análise de dados Avançada, a possibilidade de armazenamento em grande escala, escalabilidade de hardware/software e baixo custo, garante que a análise de dados seja avançada, pois, é possível analisar qualquer faceta dos dados, mesmo que precise aumentar o processamento ou utilizar um novo software.

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

O Projeto: Data Lake para área de Saúde

Com base nesta introdução, foi elaborado um projeto de estruturação para um Data Lake que recebe e armazena dados de uma operadora de hospitais em âmbito nacional. As informações contidas neste trabalho são fictícias e foram planejadas para resolver possíveis dificuldades encontradas por essas operadoras.

Para resolver a problemática da desorganização dos dados e promover a eficácia na tomada de decisões estratégicas, propõe-se a centralização das informações em um Data Lake. Este repositório único permitirá o acesso instantâneo às informações por diversos agentes da área da saúde, desde pacientes até analistas de dados. A segurança dos dados é uma preocupação essencial e será garantida por uma abordagem abrangente de criptografia em toda a rede de dados, protegendo a confidencialidade das informações dos pacientes e assegurando a conformidade com regulamentações de privacidade.

A estruturação dos dados será realizada com base no padrão HL7 - Fast Healthcare Interoperability Resources (FHIR), facilitando a integração e a interoperabilidade dos sistemas. O uso de módulos permitirá a representação de entidades de dados específicas, como pacientes, consultas médicas e

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

resultados de laboratório, proporcionando uma estrutura flexível e expansível para o Data Lake.

Para proporcionar uma interface de acesso intuitiva e operável para pacientes e médicos, serão implementadas APIs que organizarão os dados armazenados no Data Lake e os disponibilizarão de maneira estruturada e compreensível. Essa interface personalizada permitirá que cada tipo de usuário acesse informações relevantes de forma eficiente e segura.

Em resumo, a estruturação do Data Lake com base nos princípios de centralização, segurança dos dados, interoperabilidade e interfaces de acesso intuitivas é fundamental para otimizar a análise e o compartilhamento de informações na área da saúde. Essa abordagem contribuirá significativamente para a melhoria dos serviços de saúde, facilitando a tomada de decisões informadas e a implementação de políticas de saúde eficazes.

Estruturas de Armazenamento de Dados:

- Utilização do Amazon Simple Storage Service (S3) em conjunto com o Amazon HealthLake como sistema de armazenamento distribuído em nuvem para escalabilidade e resiliência, garantindo segurança cibernética e eficiência das análises, utilizando conceitos de IA e Machine Learning. Site: https://aws.amazon.com/pt/healthlake/
- Formato de dados Parquet para otimizar o desempenho do processamento analítico e maior compressão, se compararmos ao .csv;

Estruturas de Processamento de Dados:

 Streaming: Processamento em tempo real dos dados de saúde para detecção de surtos epidemiológicos, monitoramento de epidemias e notificação de eventos de interesse em saúde pública.

Alunos: Emerson Adam – Matheus Voi

Disciplina: Introdução a Big Data Professor: Leandro Almeida

Data: 14/04/2024

 Batch: Processamento periódico para geração de relatórios de indicadores de saúde, análises epidemiológicas e avaliação de desempenho de políticas de saúde.

Tecnologias Utilizadas:

- Apache Spark: Plataforma de processamento de dados distribuído para análise em larga escala.
- Apache Hive: Data Warehouse para consultas SQL sobre grandes conjuntos de dados de saúde.
- Apache Kafka: Plataforma de streaming para processamento de dados em tempo real.

Estimativa de Volume de Dados:

- Milhões de registros de pacientes, consultas, exames, imagens e prontuários gerados diariamente em todo o país.
- Estimativa de petabytes de dados por ano.

Estimativas de Estrutura de Hardware e Software:

- Armazenamento:
 - Amazon AWS S3.
- Capacidade:
 - Vários petabytes (dimensionado para comportar dados de saúde em larga escala, que podem ser escalonados. Média de crescimento anual em 10%).
- Tipo de instância:
 - S3 Standard e HealthLake Advanced.
- Escalabilidade:
 - De forma automática, segundo informações do site da AWS.

Com este projeto de DataLake, o sistema de saúde nacional poderá consolidar e analisar dados em tempo real para monitoramento epidemiológico, planejamento de recursos de saúde, detecção precoce de doenças e avaliação de políticas de saúde, promovendo campanhas de conscientização sobre prevenção de doenças e melhorando os serviços de saúde pública e o bemestar geral da população.