1 Projeção Ortogonal

Seja \vec{u} um vetor não-nulo. Qualquer que seja \vec{v} , sempre é possível encontrar vetores \vec{p} e \vec{q} tais que

$$\vec{v} = \vec{p} + \vec{q}, \text{ com } \vec{p} \parallel \vec{u} \text{ e } \vec{q} \perp \vec{u}. \tag{1}$$

De fato, como $\vec{p} \parallel \vec{u}$, temos que $\vec{p} = \lambda \vec{u}$, onde $\lambda \in \mathbb{R}$. Vamos determinar este λ em função de \vec{u} e \vec{v} .

Multiplicando-se a equação (1) por \vec{u} , e observando que $\vec{u} \cdot \vec{q} = 0$, temos que

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{u}} \cdot \vec{\mathbf{p}} + \vec{\mathbf{u}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{u}} \cdot (\lambda \vec{\mathbf{u}}) = \lambda ||\vec{\mathbf{u}}||^2.$$

Como $\vec{u} \neq \vec{0}$, temos que $\|\vec{u}\| \neq 0$, daí,

$$\lambda = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2}.$$

Portanto, temos que

$$\vec{p} = \lambda \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2}\right) \vec{u}$$

e, consequentemente, $\vec{q} = \vec{v} - \vec{p}$. É fácil ver que $\vec{q} \perp \vec{u}$.

Ao vetor \vec{p} damos o nome de projeção ortogonal de \vec{v} sobre \vec{u} e o denotamos por proj $_{\vec{u}}$ \vec{v} , isto é,

$$\operatorname{proj}_{\vec{u}} \vec{v} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2}\right) \vec{u} \tag{2}$$

2 Exercícios

- 1. Determine a projeção ortogonal de $\vec{v} = (1, -2, 2)$ sobre $\vec{u} = (3, -1, 1)$.
- 2. Decomponha $\vec{v}=(-1,-3,2)$ como a soma de dois vetores \vec{p} e \vec{q} tais que \vec{p} é paralelo e \vec{q} é ortogonal a $\vec{u}=(0,1,3)$.
- 3. Calcule a norma do vetor \vec{p} .
- 4. Mostre que $\vec{q} \perp \vec{u}$.
- 5. Dados \vec{u} e \vec{v} não-nulos.
 - a) Prove que $\operatorname{proj}_{\vec{v}}\operatorname{proj}_{\vec{u}}\vec{v} = \frac{(\vec{u}\cdot\vec{v})^2}{\|\vec{u}\|^2\|\vec{v}\|^2}\vec{v}$, e faça um desenho da situação.
 - b) Obtenha uma expressão para $\operatorname{proj}_{\vec{u}}\operatorname{proj}_{\vec{v}}\operatorname{proj}_{\vec{u}}\vec{v}$.
 - c) Por analogia, tente generalizar os resultados dos itens (a) e (b) para n projeções sucessivas.
 - d) Na treliça representada na figura abaixo, a barra AB tem 20 metros de comprimento. Calcule a distância entre A e H.

