Arizona State University

MSE Software Engineering

IEE 578 Applied Regression Analysis

Final Project

John Raphael Fox

Abstract

In the following paper, we present to you a linear regression model that tries to identify if mortality rate due to lung cancer is a function of income. We attempt to gain knowledge from different models that involve variables such as interest dividends and government subsidies. We analyze each variable individually, and the relation between each of them. An analysis of *collinearity* between each of the regressors is presented, and the identification of *influential* or *leverage* points is studied. We hope that the reasons for the decisions taken in this text are sufficient so that the reader concurs with our findings.

Does Income Help Survive Cancer?

In 2016, it was estimated that 1,685,210 new cases of cancer would be diagnosed in the United States and 595,690 people would die from the disease (Institute, 2018). This includes many types of cancer: breast cancer, leukemia, lung and bronchus cancer, pancreatic cancer, etc.

It is known that cancer mortality rate is higher among men than women (207.9 per 100,000 men and 145.4 per 100,00 women) (Institute, 2018). Race also plays a role in the susceptibility of obtaining cancer; it is highest in African American men (261.5 per 100,000) and lowest in Asian/Pacific Islanders women (91.5 per 100,000) (Institute, 2018). What if other variables besides gender and race exist, that may influence the mortality rate due to cancer? The primary roll of this paper is to analyze and discuss whether other possible factors such as *economic status* and/or *location* within the United States affects mortality rate due to cancer.

Two different resources were used to obtain the required data sets: National Cancer Institute (NIH) and the U.S. Census Bureau. For our **response** variable we downloaded, from the NIH, the **incidence** and **mortality rates** of Lung and Bronchus cancer datasets. This specific type of cancer was selected because of regulations on health data. After the cleaning, preparation, and exploration part of the process was finished, the decision to eliminate the incidence dataset was made. This was because of the large amount of data that was missing.

The US Census Bureau in partnership with data.world allowed an easy way of obtaining and querying the **regressor** variables that were used in the analysis. Since we want to relate lung cancer mortality rate with economic status, the following data was used:

- 1. All Poverty This was selected for the obvious reasons.
- 2. Med_Income_With_Interest_Dividends If you are earning interest dividends, this probably means you are not considered poor.
- 3. Med_Income_With_SS Are people that besides having an income, also have social security, which is more than \$1,000 per month.

- 4. Med_Income_With_SSI Are people with an income and Supplemental Social Security which is approximately \$750 per month.
- 5. Med_Income_With_Public_Assitance These are people that are assisted by the government with cash or vouchers.
- 6. Med_Income_With_Public_Assis_Food_Stamps People that are assisted by the government with food vouchers
- 7. Retirement Income People that are retired.

The data used for the regressor are thought to include the information necessary to span from low income to higher income. It is important to note that the regressors are normalized per 100,000 people.

By using the Federal Information Processing Standards (FIPS) county codes, we were able to merge the datasets. This information also allowed us to easily extract the state in which each county was located, and with this, we constructed three **indicator** variables that dealt with the regions of the United States: West, Mid-West, and South; the North-East is implicit in the analysis.

The GitHub and data.world links are included in the reference (Fox, GitHub, 2018) (Fox, data.world, 2018). The first contains the Jupyter Notebook code that was utilized for the data gathering and cleansing process, and the second, the data that was used for the analysis. JMP was employed for the regression analysis.

Analysis

In the following section we will walk you through the analysis, and the logic behind the choices that were made. Like George Box said, "All models are wrong" (I read it in a comment posted on the discussion board), but we tried our best to choose an appropriate one.

Model Selection Process

The analysis started by viewing the regressors individually and the relation between them; this is illustrated in Appendix A. For the most part, the regressors seem to be normally distributed; some may seem a little skewed, but they conserve the same basic form. (See figure A.1) The *correlation matrix* seems to show a bit of *multicollinearity* between SSI and Food_Stamps, with a value of 0.8134. (See table A.1) This can be confirmed by how narrow the density ellipses are between these two variables in the *scatter plot matrix*. (See figure A.2)

We then fit a 1st order linear regression model with all the variables. (See Appendix B) The analysis of this model indicates that the parameters are significant. Furthermore, the residual analysis indicates that there may be constant variance (see figure B.1) and that the assumption of normality is correct (see figure B.2). Figures B.1 and B.2, also indicate that a *transformation* for the regressors or response variables is not required. It is important to notice, that the objective of this paper is to demonstrate that cancer mortality depends on income. That said, contrary to our belief, the sign of the parameter related to the poverty regressor is negative; which indicates negative correlation with mortality rate. This might be a consequence of multicollinearity being present in the dataset. Also, the parameters are small because of the normalization; they are normalized per 100,000 people. Possible influential and leverage points are also labeled on the residual plots. (See figures B.1 and B.2)

The whole process of model selection can be seen by looking over Appendices B-H. By using the mixed stepwise regression option (with $\alpha = 0.05$) in JMP; we decided to use a 2nd order polynomial regression model. For this data we selected a cutoff value for the VIF of 5. This will enable us to assume multicollinearity between All_Poverty, SSI, and Food_Stamps. The decision

was made because of the authors life experience. So, we decided to eliminate SSI and Food_Stamps from the analysis. Observations 9 and 10 were also eliminated from the analysis. The reasons behind this were: their $h_{ii} > \frac{2p}{n}$ and that their Cook's D's are 3 orders of magnitude greater that the mean of all the Cook's D's. To further justify this decision, data regarding mortality rate and population was investigated. They had a mortality rate of 103.2 and 132.5 per 100,000 people, and population of 9846 and 9687, respectively. Which seems highly unlikely.

Residual Analysis

The overall analysis of the residual plots indicated that there seems to be *constant variance* and the assumption of *normality* is correct. Also, no transformations were required. The residual plots also helped us identify that observations 9 and 10 were outliers. With the decision that were taken, the residual plots even evolved to something more esthetic.

Conclusions

The signs and magnitudes of the final parameters indicate that cancer mortality does depend on income and even age (when referring to retirement income). People with public assistance are more likely to die from cancer than others, and people with interest dividend are less likely to die from this disease. The reason behind this might be the capability of acquiring state of the art treatments and better physicians. Finally, region is not a factor in cancer mortality.

Recommendations

It is recommended to further investigate the matter at hand. Creating a model that utilizes a piece of the data as training data, and the remainder as test data would be useful to *validate* the model. Using other available data for the regressors would be also necessary. We believed that 4 of the 7 regressors could be considered low income, in other words, they could be related. For instance, in the US if you are low income or you qualify for government help, it is very likely you can obtain food stamps.

References

- Fox, J. (2018). *data.world*. Retrieved from data.world: https://data.world/johnfox/canceranalysis-hackathon-challenge
- Fox, J. (2018). *GitHub*. Retrieved from GitHub: https://github.com/johnfox17/IEE-578-Reg-Analysis-Project
- Institute, N. C. (2018). *National Cancer Institute*. Retrieved from National Cancer Institute: https://www.cancer.gov/about-cancer/understanding/statistics

Appendix A

Initial analysis

Figure A.1 – Histograms of each of the regressors.

Correlations							
	All_Poverty_PC Med_Income_W	ith_Interest_Dividends_PC Median_Inc	ome_With_SS_PC Median_Ir	come_With_SSI_PC Median_Income_	With_Public_Assistance_PCMeadian_Income_With_Pr	ublic_Assis_Food_Stamps_PC Retireme	nt_Income_Pr
All_Poverty_PC	1.0000	-0.6126	0.2155	0.7158	0.2114	0.7902	-0.055
Med_Income_With_Interest_Dividends_PC	-0.6126	1.0000	0.2050	-0.4362	0.0175	-0.4802	0.275
Median Income With SS PC	0.2155	0.2050	1.0000	0.4420	0.2008	0.4164	0.688
Median Income With SSI PC	0.7158	-0.4362	0.4420	1.0000	0.2895	0.8134	0.186
Median_Income_With_Public_Assistance_PC	0.2114	0.0175	0.2008	0.2895	1.0000	0.3986	0.171
Meadian_Income_With_Public_Assis_Food_Stamps_PC	0.7902	-0.4802	0.4164	0.8134	0.3986	1.0000	0.186
Retirement Income PC	-0.0558	0.2751	0.6880	0.1869	0.1713	0.1868	1.000

Table A.1 – Correlation matrix.

Figure A.2 – Scatter plot matrix.

Appendix B

First order polynomial regression with all regressors and indicator variables.

Summary of Fit			A	nalysis	of Var	iance		
RSquare 0.42116	7					Sum of		
RSquare Adj 0.41909	2		So	urce	DF	Squares	Mean Square	F Ratio
Root Mean Square Error 10.5690	3		Me	odel	10	226683.73	22668.4	202.9317
Mean of Response 52.2455	7		Em	ror	2789	311543.77	111.7	Prob > F
Observations (or Sum Wgts) 280	0		C.	Total	2799	538227.51		<.0001*
able B.1 – Summary of fit 1st ord	er polyno	mial	Tabl	le B.2 –	Analys	sis of varia	ance 1st order	polynon
near regression.	1 ,			ession.	•			1 ,
Parameter Estimates								
Term		Estimate	Std Error	t Ratio	Prob> t	t Lower 95	% Upper 95%	VIF
Intercept		41.46481	1.439194	28.81	<.0001	* 38.6428	16 44.286804	
All_Poverty_PC		-0.000333	6.417e-5	-5.19	<.0001	* -0.0004	59 -0.000207	3.8325619
All_Poverty_PC Med_Income_With_Interest_Dividends_PC		-0.000333 -0.001205			<.0001 <.0001			3.8325619 2.6227885
			0.000116	-10.36		* -0.0014	-0.000977	
${\sf Med_Income_With_Interest_Dividends_PC}$		-0.001205	0.000116 9.874e-5	-10.36 3.76	<.0001	* -0.0014 * 0.00017	-0.000977 77 0.000565	2.6227885 2.9462986
Med_Income_With_Interest_Dividends_PC Median_Income_With_SS_PC	oc.	-0.001205 0.0003714	0.000116 9.874e-5 0.000331	-10.36 3.76 9.50	<.0001 0.0002	* -0.0014 * 0.00017 * 0.00249	-0.000977 77 0.000565 88 0.0037981	2.6227885 2.9462986
Med_Income_With_Interest_Dividends_PC Median_Income_With_SS_PC Median_Income_With_SSI_PC		-0.001205 0.0003714 0.0031484 0.0015581	0.000116 9.874e-5 0.000331	-10.36 3.76 9.50 3.58	<.0001 0.0002 <.0001	* -0.0014 * 0.00017 * 0.00249 * 0.00070	-0.000977 77 0.000565 88 0.0037981 55 0.0024107	2.6227885 2.9462986 3.4099667 1.4460617
Med_Income_With_Interest_Dividends_PC Median_Income_With_SS_PC Median_Income_With_SSI_PC Median_Income_With_Public_Assistance_P		-0.001205 0.0003714 0.0031484 0.0015581	0.000116 9.874e-5 0.000331 0.000435 0.000187	-10.36 3.76 9.50 3.58 5.46	<.0001 0.0002 <.0001 0.0003	* -0.0014 * 0.00017 * 0.00249 * 0.00070 * 0.00065	-0.000977 77 0.000565 88 0.0037981 55 0.0024107 88 0.0013865	2.6227885 2.9462986 3.4099667 1.4460617
Med_Income_With_Interest_Dividends_PC Median_Income_With_SS_PC Median_Income_With_SSI_PC Median_Income_With_Public_Assistance_P Meadian_Income_With_Public_Assis_Food_		-0.001205 0.0003714 0.0031484 0.0015581 0.0010201	0.000116 9.874e-5 0.000331 0.000435 0.000187 0.000137	-10.36 3.76 9.50 3.58 5.46 4.28	<.0001 0.0002 <.0001 0.0003 <.0001	* -0.0014 * 0.00017 * 0.00249 * 0.00070 * 0.00065 * 0.00031	34 -0.000977 77 0.000565 38 0.0037981 55 0.0024107 38 0.0013865 78 0.0008542	2.6227885 2.9462986 3.4099667 1.4460617 5.0390531
Med_Income_With_Interest_Dividends_PC Median_Income_With_SS_PC Median_Income_With_SSI_PC Median_Income_With_Public_Assistance_P Meadian_Income_With_Public_Assis_Food_ Retirement_Income_PC		-0.001205 0.0003714 0.0031484 0.0015581 0.0010201 0.000586	0.000116 9.874e-5 0.000331 0.000435 0.000187 0.000137 0.473882	-10.36 3.76 9.50 3.58 5.46 4.28 5.57	<.0001 0.0002 <.0001 0.0003 <.0001	* -0.0014 * 0.00017 * 0.00249 * 0.00070 * 0.00065 * 0.00031 * 1.70879	34 -0.000977 777 0.000565 38 0.0037981 55 0.0024107 38 0.0013865 78 0.0008542 48 3.5671859	2.6227885 2.9462986 3.4099667 1.4460617 5.0390531 2.1520255

Figure B.1 – Residual by predicted plot 1st order polynomial linear regression.

Figure B.2 – Residual normal quantile plot 1st order polynomial linear regression.

Appendix C

Second order polynomial regression with all regressors.

Figure C.1 – Residual by predicted plot 2nd order polynomial linear regression.

Figure C.2 – Residual normal quantile plot 2nd order polynomial linear regression.

Appendix D

Second order polynomial regression using stepwise regression methods with $\alpha=0.05$.

Summary of Fit			Analys	is of Va	arian	ce			
RSquare	0.437277				S	um of			
RSquare Adj	0.434448		Source	DF	Sc	uares	Mean S	quare	F Ratio
Root Mean Square Error	10.4284		Model	14	235	354.53	16	5811.0	154.5821
Mean of Response	52.24557		Error	2785	302	872.97		108.8	Prob > F
Observations (or Sum Wgts)	2800		C. Total	2799	538	227.51			<.0001*
able D.1 – Summary of f	it 2 nd order no	lynomial	Table D.2	Ana	lveie d	of varia	nce 2nd	dorder	nolynor
-		•			•				
near regression with mix	ed stepwise ai	$a \alpha = 0.05.$	regression	i with n	nixea	stepwi	se and	$\alpha = 0$.05.
Parameter Estimates									
Term				Es	stimate	Std Error	t Ratio	Prob> t	VIF
Intercept				39	.919698	1.454179	27.45	<.0001*	
						1.454179 6.917e-5		<.0001* 0.0748	
All_Poverty_PC	ty_PC-16265.3)			-0.	000123		-1.78		4.5743366
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert	·-			-0. -2	.000123 .667 e- 8	6.917e-5	-1.78 -6.27	0.0748	4.5743366 1.9554113
Intercept All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividends)	s_PC	d_Income_With_Interest	t_Dividends_PC-76	-0. -2 -0.	.000123 .667e-8 .001208	6.917e-5 4.256e-9	-1.78 -6.27 -9.23	0.0748 <.0001*	4.5743366 1.9554113 3.4090618
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert Med_Income_With_Interest_Dividends	s_PC	d_Income_With_Interest	t_Dividends_PC-76	-0. -2 -0. (87.11) 4.3	.000123 .667e-8 .001208	6.917e-5 4.256e-9 0.000131	-1.78 -6.27 -9.23 2.07	0.0748 <.0001* <.0001* 0.0386*	4.5743366 1.9554113 3.4090618
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividend	s_PC	J_Income_With_Interest	t_Dividends_PC-76	-0. -2 -0. (87.11) 4.3	.000123 .667e-8 .001208 3194e-8 0003093	6.917e-5 4.256e-9 0.000131 2.087e-8	-1.78 -6.27 -9.23 2.07 3.08	0.0748 <.0001* <.0001* 0.0386* 0.0021*	4.5743366 1.9554113 3.4090618 1.4671114
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividend Median_Income_With_SS_PC	s_PC ls_PC-7687.11)*(Med		t_Dividends_PC-76	-0. -2 -0. (87.11) 4.3 0.0	.000123 .667e-8 .001208 3194e-8 .003093 .026878	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001	-1.78 -6.27 -9.23 2.07 3.08 6.57	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Poverty_PC-16265.3)*(All_Povert) Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividend) Median_Income_With_SS_PC Median_Income_With_SSI_PC	s_PC ls_PC-7687.11)*(Med 27)*(Median_Income		:_Dividends_PC-76	-0. -2 -0. 687.11) 4.3 0.0 0.0	.000123 .667e8 .001208 3194e8 .003093 .026878 9928e7	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001 0.000409	-1.78 -6.27 -9.23 2.07 3.08 6.57 3.40	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001* 0.0007*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283 5.3443787
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividend Median_Income_With_SS_PC Median_Income_With_SS_PC (Median_Income_With_SSI_PC-2363.2)	s_PC ls_PC-7687.11)*(Med 27)*(Median_Income nce_PC		:_Dividends_PC-76	-0. -2 -0. 687.11) 4.3 0.0 0.0 2.9	.000123 .667e-8 .001208 3194e-8 .003093 .026878 .9928e-7 .0015592	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001 0.000409 8.808e-8	-1.78 -6.27 -9.23 2.07 3.08 6.57 3.40 3.60	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001* 0.0007* 0.0003*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283 5.3443787 2.4132079
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Povert Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividend Median_Income_With_SS_PC Median_Income_With_SSI_PC (Median_Income_With_SSI_PC-2363.2 Median_Income_With_Public_Assistan	s_PC ls_PC-7687.11)*(Med 27)*(Median_Income nce_PC		t_Dividends_PC-76	-0. -2 -0. 687.11) 4.3 0.0 0.0 2.9 0.0	.000123 .667e8 .001208 3194e8 .003093 .026878 .9928e7 .0015592 .008133	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001 0.000409 8.808e-8 0.000433	-1.78 -6.27 -9.23 2.07 3.08 6.57 3.40 3.60 4.37	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001* 0.0007* 0.0003*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283 5.3443787 2.4132079 1.4749162 5.1364374
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Poverty_PC-16265.3)*(All_Povert) Med_Income_With_Interest_Dividends (Med_Income_With_SS_PC Median_Income_With_SSI_PC (Median_Income_With_SSI_PC-2363.2 Median_Income_With_Public_Assistar Meadian_Income_With_Public_Assis_f Retirement_Income_PC	s_PC ls_PC-7687.11)*(Med 27)*(Median_Income nce_PC Food_Stamps_PC	.With_SSI_PC-2363.27)	t_Dividends_PC-76	-0. -2 -0. 687.11) 4.3 0.0 0.0 2.9 0.0 0.0	000123 .667e8 .001208 3194e8 .003093 .026878 .0928e7 .015592 .008133 .008643	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001 0.000409 8.808e-8 0.000433 0.000186	-1.78 -6.27 -9.23 2.07 3.08 6.57 3.40 3.60 4.37 5.99	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001* 0.0007* 0.0003* <.0001*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283 5.3443787 2.4132079 1.4749162 5.1364374 2.4635191
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_P	s_PC ls_PC-7687.11)*(Med 27)*(Median_Income nce_PC Food_Stamps_PC	.With_SSI_PC-2363.27)	t_Dividends_PC-76	-0. -2 -0. 687.11) 4.3 0.0 0.0 2.9 0.0 0.0 0.0	000123 .667e8 .001208 3194e8 .003093 .026878 .9928e7 .0015592 .008133 .008643 .615e7	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001 0.000409 8.808e-8 0.000433 0.000186 0.000144	-1.78 -6.27 -9.23 2.07 3.08 6.57 3.40 3.60 4.37 5.99 -6.35	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001* 0.0007* 0.0003* <.0001* <.0001*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283 5.3443787 2.4132079 1.4749162 5.1364374 2.4635191
All_Poverty_PC (All_Poverty_PC-16265.3)*(All_Poverty_PC-16265.3)*(All_Povert) Med_Income_With_Interest_Dividends (Med_Income_With_Interest_Dividend) Median_Income_With_SS_PC Median_Income_With_SSI_PC-2363.2 Median_Income_With_SSI_PC-2363.3 Median_Income_With_Public_Assis_Interest	s_PC ls_PC-7687.11)*(Med 27)*(Median_Income nce_PC Food_Stamps_PC	.With_SSI_PC-2363.27)	t_Dividends_PC-76	-0. -2 -0. 687.11) 4.3 0.0 0.0 2.9 0.0 0.0 0.0	000123 .667e8 .001208 3194e8 .003093 .026878 .9928e7 .0015592 .008133 .008643 .615e7 .866896	6.917e-5 4.256e-9 0.000131 2.087e-8 0.0001 0.000409 8.808e-8 0.000433 0.000186 0.000144 2.544e-8	-1.78 -6.27 -9.23 2.07 3.08 6.57 3.40 3.60 4.37 5.99 -6.35 6.02	0.0748 <.0001* <.0001* 0.0386* 0.0021* <.0001* 0.0007* 0.0003* <.0001* <.0001*	4.5743366 1.9554113 3.4090618 1.4671114 3.1270283 5.3443787 2.4132079 1.4749162 5.1364374 2.4635191 1.224625

Figure D.1 – Residual by predicted plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$.

Figure D.2 – Residual normal quantile plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha = 0.05$.

Appendix E

Second order polynomial regression using stepwise regression methods with $\alpha=0.05$ and excluding Med_Income_With_SSI_PC.

Summary of Fit	
RSquare	0.417177
RSquare Adj	0.414458
Root Mean Square Error	10.61111
Mean of Response	52.24557
Observations (or Sum Wgts)	2800

Table E.1 – Summary of fit 2 nd order polynomial
linear regression with mixed stepwise and $\alpha = 0.05$.
(excluding Med_Income_With_SSI_PC)

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	13	224536.25	17272.0	153.3987		
Error	2786	313691.26	112.6	Prob > F		
C. Total	2799	538227.51		<.0001*		

Table E.2 – Analysis of variance 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_SSI_PC)

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIF
Intercept	38.899254	1.479987	26.28	<.0001*	
All_Poverty_PC	-2.883e-5	0.000072	-0.40	0.6890	4.7907984
(All_Poverty_PC-16265.3)*(All_Poverty_PC-16265.3)	-2.113e-8	4.656e-9	-4.54	<.0001*	2.2602461
Med_Income_With_Interest_Dividends_PC	-0.001424	0.00013	-10.93	<.0001*	3.2601245
(Med_Income_With_Interest_Dividends_PC-7687.11)*(Med_Income_With_Interest_Dividends_PC-7687.11)	4.976e-8	2.12e-8	2.35	0.0190*	1.4628607
Median_Income_With_SS_PC	0.0005567	9.682e-5	5.75	<.0001*	2.810764
Median_Income_With_Public_Assistance_PC	0.0016481	0.000441	3.74	0.0002*	1.4771909
Meadian_Income_With_Public_Assis_Food_Stamps_PC	0.0012851	0.000194	6.61	<.0001*	5.4175393
(Meadian_Income_With_Public_Assis_Food_Stamps_PC-5872.94)*(Meadian_Income_With_Public_Assis_Food_Stamps_PC-5872.94)	1.1117e-7	2.864e-8	3.88	0.0001*	2.1158809
Retirement_Income_PC	0.0009128	0.000148	6.17	<.0001*	2.4951377
(Retirement_Income_PC-7699.61)*(Retirement_Income_PC-7699.61)	-1.86e-7	2.583e-8	-7.20	<.0001*	1.2192397
West[0]	3.237367	0.483003	6.70	<.0001*	2.4631144
MidWest[0]	-2.402939	0.411001	-5.85	<.0001*	3.6797946
South[0]	-2.758764	0.441101	-6.25	<.0001*	4.8293287

Table E.3 – Parameter Estimates 2^{nd} order polynomial liner regression with mixed stepwise and $\alpha = 0.05$. (excluding Med_Income_With_SSI_PC)

Figure E.1 – Residual by predicted plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_SSI_PC)

Figure E.2 – Residual normal quantile plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha = 0.05$. (excluding Med_Income_With_SSI_PC)

Appendix F

Second order polynomial regression using stepwise regression methods and excluding Med Income With Public Assis Food Stamps PC.

Summary of Fit				
RSquare	0.433418			
RSquare Adj	0.430774			
Root Mean Square Error	10.46222			
Mean of Response	52.24557			
Observations (or Sum Wgts)	2800			

Table F.1 – Summary of fit 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha = 0.05$. (excluding

Med_Income_With_Public_Assis_Food_Stamps_PC)

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	13	233277.53	17944.4	163.9389		
Error	2786	304949.98	109.5	Prob > F		
C. Total	2799	538227.51		<.0001*		

Table F.2 – Analysis of variance 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIE
Intercept	39.588395	1.456911	27.17	<.0001*	
All_Poverty_PC	0.0000191	6.122e-5	0.31	0.7550	3.5596182
(AII_Poverty_PC-16265.3)*(AII_Poverty_PC-16265.3)	-2.873e-8	4.244e-9	-6.77	<.0001*	1.9313978
Med_Income_With_Interest_Dividends_PC	-0.001298	0.00013	-10.01	<.0001*	3.3253862
(Med_Income_With_Interest_Dividends_PC-7687.11)*(Med_Income_With_Interest_Dividends_PC-7687.11)	5.0239e-8	2.087 e- 8	2.41	0.0162*	1.458356
Median_Income_With_SS_PC	0.0003594	0.0001	3.59	0.0003*	3.0862585
Median_Income_With_SSI_PC	0.0032795	0.000387	8.46	<.0001*	4.759303
(Median_Income_With_SSI_PC-2363.27)*(Median_Income_With_SSI_PC-2363.27)	3.1459e-7	8.829e-8	3.56	0.0004*	2.4093869
Median_Income_With_Public_Assistance_PC	0.0022072	0.000408	5.40	<.0001*	1.3021663
Retirement_Income_PC	0.0009456	0.000144	6.58	<.0001*	2.4226144
(Retirement_Income_PC-7699.61)*(Retirement_Income_PC-7699.61)	-1.696e-7	2.545e-8	-6.66	<.0001*	1.2182023
West[0]	3.0843582	0.474932	6.49	<.0001*	2.4497507
MidWest[0]	-2.786853	0.410042	-6.80	<.0001*	3.7676427
South[0]	-3.091332	0.439056	-7.04	<.0001*	4.9218083

Table F.3 – Parameter Estimates 2^{nd} order polynomial liner regression with mixed stepwise and $\alpha = 0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC

Figure F.1 – Residual by predicted plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC

Figure F.2 – Residual normal quantile plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha = 0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC

Appendix G

Second order polynomial regression using stepwise regression methods and excluding Med_Income_With_SSI_PC an Med_Income_With_Public_Assis_Food_Stamps_PC.

Summary of Fit	
RSquare	0.394468
RSquare Adj	0.392297
Root Mean Square Error	10.81004
Mean of Response	52.24557
Observations (or Sum Wgts)	2800

Table G.1 – Summary of fit 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha = 0.05$. (excluding

Med_Income_With_Public_Assis_Food_Stamps_PC and With_Public_Assis_Food_Stamps_PC)

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Ratio			
Model	10	212313.60	21231.4	181.6868			
Error	2789	325913.90	116.9	Prob > F			
C. Total	2799	538227.51		<.0001*			

Table G.2 – Analysis of variance 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC and With_Public_Assis_Food_Stamps_PC

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIF
Intercept	33.599816	1.513257	22.20	<.0001*	
All_Poverty_PC	0.0002583	0.000057	4.54	<.0001*	2.8804104
(AII_Poverty_PC-16265.3)*(AII_Poverty_PC-16265.3)	-1.054e-8	3.805e-9	-2.77	0.0056*	1.4545307
Med_Income_With_Interest_Dividends_PC	-0.001747	0.000117	-14.90	<.0001*	2.5471868
(Med_Income_With_Interest_Dividends_PC-7687.11)*(Med_Income_With_Interest_Dividends_PC-7687.11)	6.9315e-8	2.094e-8	3.31	0.0009*	1.3751224
Median_Income_With_SS_PC	0.0008025	0.000095	8.45	<.0001*	2.6084163
Median_Income_With_Public_Assistance_PC	0.0029524	0.000405	7.29	<.0001*	1.1996992
Retirement_Income_PC	0.0010517	0.000147	7.18	<.0001*	2.3615696
(Retirement_Income_PC-7699.61)*(Retirement_Income_PC-7699.61)	-2.081e-7	2.602e-8	-8.00	<.0001*	1.1918969
West[0]	6.0598815	0.337153	17.97	<.0001*	1.1563976
NorthEast[0]	2.3725938	0.406471	5.84	<.0001*	1.1273374

Table G.3 – Parameter Estimates 2^{nd} order polynomial liner regression with mixed stepwise and $\alpha = 0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC and With_Public_Assis_Food_Stamps_PC

Figure G.1 – Residual by predicted plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC and With_Public_Assis_Food_Stamps_PC

Figure G.2 – Residual normal quantile plot 2^{nd} order polynomial linear regression with mixed stepwise and $\alpha=0.05$. (excluding Med_Income_With_Public_Assis_Food_Stamps_PC and With_Public_Assis_Food_Stamps_PC

Appendix H

Final Model

- 1. Second order polynomial regression.
- 2. Stepwise mixed regression method with $\alpha = 0.05$.
- 3. Excluding Med_Income_With_SSI_PC and Med_Income_With_Public_Assis_Food_Stamps_PC
- 4. Excluded observation 9 and 10.
- 5. Included NorthEast indicator variable instead of South.

Figure H.2 – Residual normal quantile plot of final model