IPRJ - Laboratório de Física 1 Experimento 3 – Grupo 10

Plano inclinado e coeficiente de atrito

Nome do aluno: Gustavo Dias de Oliveira

Matrícula: 2020-1-00785-11

Nome do aluno: Thiago Bastos da Silva

Matrícula: 2020-1-00760-11

Objetivos do Experimento

Esta tarefa é dividida em duas partes, na primeira parte medimos experimentalmente um ângulo critico, em um plano inclinado, para acharmos o coeficiente de atrito estático do sistema, e na segunda parte consiste em acharmos a aceleração desse mesmo plano inclinado para então podermos calcular o coeficiente de atrito cinético desse mesmo sistema.

Introdução e Desenvolvimento Teórico

O atrito é uma força que ocorre ao contato de duas superfícies, a força de atrito é uma força essencial para o nosso cotidiano, sem ela, não seriamos capazes de segurar objetos ou até mesmo nos locomovermos, a força de atrito pode ser calculada pela seguinte formula:

$$F_{at} = \mu * N$$

No qual, $\mu \rightarrow$ coeficiente de atrito e $N \rightarrow$ força normal.

Existem dois tipos de coeficiente de atrito, o coeficiente de atrito cinético e o estático, no qual o primeiro consiste em um sistema em que a partícula em questão se encontra em repouso e uma força é aplicada a essa partícula, porém, ela continua em repouso, pelo fato da força ser menor ou igual a força de atrito, no segundo caso, temos uma força aplicada em uma partícula, fazendo que essa mesma se mova, então a força de atrito continua atuando nesse sistema como uma força contraria a força aplicada e é menor que esta força[1].

Em um plano inclinado, podemos aplicar a 2° lei de newton no corpo em questão, sabemos que a segunda lei é definida por:

$$F_{res} = m \frac{d^2r}{dx^2}$$

No qual temos que m é a massa do objeto e $\frac{d^2r}{dx^2}$ é a derivada segunda da posição em relação ao tempo, que é a aceleração do sistema, resultando em:

$$F_{res} = m\alpha$$

Logo, aplicando em um plano inclinado temos que:

$$Fsin(\theta) - F_{at} = m\alpha$$

Como podemos ver nesse exemplo a seguir, a força é multiplicada pelo seno do ângulo pois a força peso está sempre apontando para o centro da terra, logo a igualdade N = P não poderia ser satisfeita em um plano inclinado, então deve-se fazer uma decomposição do vetor P em P_x e P_y , e pelas relações trigonométricas encontramos que:[1]

$$P_X = mgsin(\theta)$$
, $P_y = mgcos(\theta)$

Então a igualdade seria válida em N = P_v .

Plano inclinado

Assim, para um sistema em que não temos nenhuma força além da força peso e a de atrito temos a seguinte igualdade:

$$Psin(\theta) - \mu Pcos(\theta) = m\alpha$$

E dessa equação chegamos a desejada:

$$\mu = \frac{gsin(\theta) - \alpha}{gcos(\theta)}$$

Podemos chegar a essa conclusão pois P = mg, e como a massa é uma para todo o sistema podemos remove-la algebricamente da equação.

Na primeira parte do experimento, como não temos movimento, podemos dizer que a aceleração é zero, logo temos que:

$$\mu = \tan(\theta)$$

Serão usadas também as fórmulas para calcular o erro padrão e o a propagação de incerteza, que serão:

$$\sigma_m = \sqrt{\frac{1}{n(n-1)} \sum (x_i - \bar{x})^2}$$

Temos aqui n igual ao número de dados, x_i igual os valores dos dados e \bar{x} igual a medias dos dados encontrados

$$\sigma_p = \sqrt{(L^2 + \sigma_m^2)}$$

Aqui temos que o desvio padrão e igual a soma da raiz do erro instrumental (L) ao quadrado mais o desvio médio ao quadrado, e por fim usaremos a formula da propagação de incerteza que pode ser escrita das seguintes maneiras:

$$\frac{\delta x}{\bar{x}} = \sqrt{\sum_{i} \left(\frac{\delta x_{i}}{\bar{x}_{i}}\right)^{2}} \text{ ou } \delta x = \sqrt{\sum_{i} \left(\frac{\partial x}{\partial x_{i}}\right)^{2} \left(\frac{\delta x_{i}}{\bar{x}_{i}}\right)^{2}}$$

E usaremos também a equação do espaço pelo tempo para encontrar a aceleração e encontrar o coeficiente de atrito cinético no segundo caso, a fórmula é:

$$S = s_0 + vt + \frac{1}{2}\alpha t^2$$

Que pode ser comparada com uma função de segundo grau, por isso usaremos a função de segundo grau no modelo a seguir para fazermos os ajustes necessários e encontrarmos a aceleração do sistema:

$$y(x) = c + bx + ax^2$$

No qual teremos $c \to s_0$, $b \to v$, $\frac{a}{2} \to \alpha$.

Materiais Utilizados e Roteiro Experimental

Os matérias usados para o experimento foram:

Uma régua para podermos ter noção do espaço no software, um transferidor para podermos medir os ângulos, uma borracha como o objeto para medirmos o ângulo crítico e a trajetória em MRUV, um livro e um ponte para montar o plano inclinado e o celular, para gravar o vídeo de seu movimento e nos dizer o tempo da trajetória em questão.

Matérias usados para o experimento.

Para a primeira parte do experimento, realizamos 20 medições do ângulo crítico para podermos então calcular o coeficiente de atrito estático.

Após isso, usamos o software Tracker para, pelo vídeo, encontrarmos os pontos do espaço (eixo y) e do tempo (eixo x) do experimento, depois usando o software SciDAVIs pegamos esses pontos encontrados no Tracker para plotar um gráfico e realizar o MMQ para encontrar a melhor curva, que se encaixam nas equações, para assim poder calcular o coeficiente de atrito cinético.

1. Apresentação e Análise dos Dados Experimentais

As 20 medições para a primeira parte do experimento foram os seguintes:

Tabela 1 - Dados experimentais.

θ:	± 1	,980	
	32,	75	
	28,	00	
	30,	00	
:	32,	00	
	30,	00	
;	30,	50	
:	31,	50	
	27,	75	
	28,	00	
;	30,	50	
:	29,	00	
	29,	50	
	31,	00	
	30,	50	
	28,	00	
	31,	75	
	30,	00	
	30,	50	
	29,	50	
	29,	75	

Tirando a media de todos esses ângulos encontramos o ângulo critico e para calcular o seu erro foi usado a fórmula de desvio padrão mostrada anteriormente.

Logo, conclui-se que:

$$\theta \approx (30.0 \pm 1.98)^{\circ}$$

Tabela 2 - Dados experimentais.

t(s)	S(m)
0,000	0,000
0,033	0,001
0,067	0,004
0,100	0,010
0,133	0,018
0,167	0,028
0,200	0,040
0,233	0,054
0,267	0,071
0,300	0,090
0,333	0,111
0,367	0,135
0,400	0,160
0,433	0,188
0,467	0,218
0,500	0,250
0,533	0,285
0,567	0,322
0,600	0,361
0,633	0,402
0,667	0,447
0,700	0,493
0,733	0,541
0,767	0,594
0,800	0,648
0,833	0,704
0,867	0,765
0,900	0,827
0,933	0,892
0,967	0,963
1,000	1,033
· · · · · · · · · · · · · · · · · · ·	

Grafico S x t

Movimento e ajuste polinomial

Através desses dados encontramos que a aceleração do sistema é:

$$\alpha = (2.12 \pm 0.012) \, ms^{-2}$$

logo podemos usar a fórmula para encontrar o coeficiente de atrito cinético.

Agora calcularemos a precisão dos dados encontrados com a fórmula:

$$100\% - \left(\left| \frac{\sigma x}{\bar{x}} \right| * 100 \right)$$

Logo, para o primeiro caso temos:

A precisão de $\theta \cong 93,4\%$ de precisão

Para o segundo caso temos:

Precisão de $\alpha \cong 99,4\%$ de precisão

2. Resultados e Conclusões

O ângulo critico como foi dito anteriormente, foi igual a 30,025 e achamos o seu erro pela equação do desvio padrão, logo podemos calcular o coeficiente de atrito estático resultando em:

$$\mu = \tan(30,025) = 0,578$$

Temos esse resultado, pois, como dito anteriormente, o sistema está sem movimento, logo sua aceleração é zero.

Calculando pela formula de propagação de incerteza, encontramos o desvio do coeficiente como 0,0037 portanto temos:

$$\mu = (0.578 \pm 0.037)$$

Para o segundo caso, como foi mostrado anteriormente temos que, com o ângulo de 35 graus:

$$\mu = \frac{gsin(\theta) - a}{gcos(\theta)}$$

Substituindo os valores temos que:

$$\mu = \frac{9,81sin(35) - 2,12}{9,81cos(35)}$$

Que nos mostra o resultado de:

$$\mu = 0.463$$

Para o atrito cinético, usando a fórmula para calcular a propagação da incerteza temos que:

$$\mu = (0.463 - 0.002)$$

3. Bibliografia

[1] Fundamentos de Física – Volume 1; D. Halliday, R, Resnick, J. Walker; LTC Editora (2006).