

High-side driver

Datasheet - production data

Features

Туре	R _{DS(on)}	I _{OUT}	V _{CC}
VN820-E VN820SP-E VN820B5-E VN820PT-E VN820-12-E VN820-11-E	40 mΩ	9 A	36 V

- ECOPACK®: lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- Very low stadby current
- CMOS compatible input
- On-state open-load detection
- Off-state open-load detection
- Thermal shutdown protection and diagnosis
- Undervoltage shutdown
- Overvoltage clamp
- Output stuck to V_{CC} detection
- Load current limitation
- Reverse battery protection
- Electrostatic discarge protection

Description

The VN820-E is a monolithic device designed in STMicroelectronic's VIPower $^{\circledR}$ M0-3 technology. The VN820-E is intended for driving any type of load with one side connected to ground. The active V_{CC} pin voltage clamp protects the device against low energy spikes.

Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects the openload condition in both on- and off-state mode. In the off-state the device detects if the output is shorted to V_{CC} . The device automatically turns off where the ground pin becomes disconnected.

Table 1. Device summary

Poskogo	Order codes			
Package	Tube	Tape and reel		
PENTAWATT	VN820-E VN820-12-E VN820-11-E	-		
PowerSO-10	VN820SP-E	VN820SPTR-E		
P ² PAK	VN820B5-E	VN820B5TR-E		
PPAK	VN820PT-E	VN820PTTR-E		

Contents VN820-E

Contents

1	Bloc	k diagram and pin description
2	Elec	trical specifications 8
	2.1	Absolute maximum ratings
	2.2	Thermal data S
	2.3	Electrical characteristics
	2.4	Electrical characteristics curves
3	Арр	lication information
	3.1	GND protection network against reverse battery
		3.1.1 Solution 1: resistor in the ground line (RGND only)
		3.1.2 Solution 2: diode (DGND) in the ground line
	3.2	Load dump protection
	3.3	MCU I/Os protection
	3.4	Open-load detection in off-state
	3.5	PowerSO-10, P^2PAK , PPAK, PENTAWATT maximum demagnetization energy ($V_{CC} = 13.5V$) 21
4	Pacl	kage and PCB thermal data22
	4.1	P ² PAK thermal data
	4.2	PPAK thermal data
	4.3	PowerSO-10 thermal data
5	Pacl	kage and packing information
	5.1	ECOPACK® packages 3
	5.2	PENTAWATT mechanical data
	5.3	P ² PAK mechanical data 33
	5.4	PPAK mechanical data
	5.5	PowerSO-10 mechanical data
	5.6	PENTAWATT packing information
	5.7	P ² PAK packing information
	5.8	PPAK packing information

VN820-E			Conte	∍nts
	5.9	PowerSO-10 packing information		42
6	Revi	sion history		43

List of tables VN820-E

List of tables

Device summary	. 1
Absolute maximum ratings	
Thermal data	. 9
Power	10
Switching (V _{CC} = 13 V)	10
Input pin	11
V _{CC} output diode	11
Status pin	11
Protections	11
Open-load detection	12
Truth table	13
Electrical transient requirements	13
P ² PAK thermal parameters	24
PPAK thermal parameters	27
PowerSO-10 thermal parameters	30
PENTAWATT mechanical data	32
P ² PAK mechanical data	34
PPAK mechanical data	
PowerSO-10 mechanical data	
Document revision history	43
	Suggested connections for unused and not connected pins Absolute maximum ratings Thermal data. Power Switching (V _{CC} = 13 V) Input pin V _{CC} output diode. Status pin Protections Open-load detection Truth table. Electrical transient requirements P²PAK thermal parameters PPAK thermal parameters PPAK thermal parameters PENTAWATT mechanical data P²PAK mechanical data PPAK mechanical data PPAK mechanical data PPAK mechanical data PPAK mechanical data

VN820-E List of figures

List of figures

Figure 1.	Block diagram	7
Figure 2.	Configuration diagram (top view)	7
Figure 3.	Current and voltage conventions	8
Figure 4.	Status timings	12
Figure 5.	Switching time waveforms	12
Figure 6.	Waveforms	14
Figure 7.	Off-state output current	15
Figure 8.	High-level input current	15
Figure 9.	Input clamp voltage	15
Figure 10.	Status leakage current	15
Figure 11.	Status low output voltage	15
Figure 12.	Status clamp voltage	15
Figure 13.	On-state resistance vs T _{case}	16
Figure 14.	On-state resistance vs V _{CC} .	16
Figure 15.	Open-load on-state detection threshold	16
Figure 16.	Input high-level	16
Figure 17.	Input low-level	16
Figure 18.	Input hysteresis voltage	16
Figure 19.	Overvoltage shutdown	17
Figure 20.	Open-load off-state voltage detection threshold	17
Figure 21.	Turn-on voltage slope	17
Figure 22.	Turn-off voltage slope	
Figure 23.	Ilim vs Tcase	
Figure 24.	Application schematic	
Figure 25.	Open-load detection in off-state	
Figure 26.	PowerSO-10, P ² PAK, PPAK, PENTAWATT maximum turn-off current versus inc	
	-0	
Figure 27.	P ² PAK PC board	
Figure 28.	P ² PAK Rthj-amb vs PCB copper area in open box free air conditions	
Figure 29.	P ² PAK thermal impedance junction ambient single pulse	
Figure 30.	Thermal fitting model of a single channel HSD in P ² PAK	
Figure 31.	PPAK PC board	
Figure 32.	PPAK Rthj-amb vs PCB copper area in open box free air conditions	
Figure 33.	PPAK thermal impedance junction ambient single pulse	
Figure 34.	Thermal fitting model of a single channel HSD in PPAK	
Figure 35.	PowerSO-10 PC board	
Figure 36.	PowerSO-10 Rthj-amb vs PCB copper area in open box free air conditions	
Figure 37.	PowerSO-10 thermal impedance junction ambient single pulse	
Figure 38.	Thermal fitting model of a single channel HSD in PowerSO-10	
Figure 39.	PENTAWATT package dimensions	
Figure 40.	P ² PAK package dimensions	
Figure 41.	PPAK package dimensions	
Figure 42.	PowerSO-10 package dimensions	
Figure 43.	PENTAWATT tube shipment (no suffix)	
Figure 44.	P ² PAK tube shipment (no suffix)	
Figure 45.	P ² PAK tape and reel (suffix "TR")	
Figure 46.	PPAK suggested pad layout	
Figure 47.	PPAK tube shipment (no suffix)	41

List of figu	res VN820-E
Figure 49. Figure 50.	PPAK tape and reel (suffix "TR")
Figure 51.	PowerSO-10 tape and reel shipment (suffix "TR")

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	Status	N.C.	Output	Input
Floating	Х	Х	Х	X
To ground		Х		Through 10 KΩ resistor

Electrical specifications 2

Figure 3. **Current and voltage conventions**

2.1 **Absolute maximum ratings**

Stressing the device above the rating listed in the Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute maximum rating conditions for extended periods may affect device reliability.

Table 3.	Absolute	maximum	ratings

Symbol	Parameter	Value				Unit
Symbol	Farameter	PowerSO-10	PENTAWATT	P ² PAK	PPAK	Unit
V _{CC}	DC supply voltage		41			V
-V _{CC}	Reverse DC supply voltage		- 0.3			V
-I _{gnd}	DC reverse ground pin current		- 200			mA
I _{OUT}	DC output current		Internally limited			
-I _{OUT}	Reverse DC output current		- 9			
I _{IN}	DC input current		+/- 10			
I _{STAT}	DC Status current	+/- 10				mA
V _{ESD}	Electrostatic discharge (human body model: R = 1.5 KΩ; C = 100 pF) - INPUT - STATUS - OUTPUT - V _{CC}		4000 4000 5000 5000			V V V

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value				Unit
Symbol	Faranietei	PowerSO-10	PENTAWATT	P ² PAK	PPAK	Onit
E _{MAX}	Maximum switching energy (L = 1.4 mH; R_L = 0 Ω ; V_{bat} = 13.5 V; T_{jstart} = 150 $^{\circ}$ C; I_L = 13 A)	156				mJ
P _{tot}	Power dissipation T _C = 25 °C	65.8				W
T _j	Junction operating temperature	Internally limited				°C
T _c	Case operating temperature	- 40 to 150			°C	
T _{stg}	Storage temperature		- 55 to 150		•	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Max. value				Unit
	Farameter	PowerSO-10 PEN	PENTAWATT	P ² PAK	PPAK	Ollit
R _{thj-case}	Thermalresistance junction-case	1.9	1.9	1.9	1.9	°C/W
R _{thj-lead}	Thermalresistance junction-lead	-	-	-	-	°C/W
R _{thj-amb}	Thermalresistance	51.9 ⁽¹⁾	61.9 ⁽²⁾	51.9 ⁽²⁾	76.9 ⁽²⁾	°C/W
	junction-ambient	37 ⁽²⁾	-	37 ⁽⁴⁾	45 ⁽⁴⁾	°C/W

^{1.} When mounted on a standard single-sided FR-4 board with 0.5cm² of Cu (at least 35µm thick).

^{2.} When mounted on a standard single-sided FR-4 board with 6cm^2 of Cu (at least $35\mu\text{m}$ thick).

2.3 Electrical characteristics

Values specified in this section are for 8 V < V_{CC} < 36 V; -40 $^{\circ}C$ < Tj < 150 $^{\circ}C,$ unless otherwise stated.

Table 5. Power

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		5.5	13	36	V
V _{USD}	Undervoltage shutdown		3	4	5.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		٧
V _{OV}	Overvoltage shutdown		36			V
R _{ON}	On-state resistance	$I_{OUT} = 3 \text{ A}; T_j = 25 \text{ °C}; V_{CC} > 8 \text{ V}$ $I_{OUT} = 3 \text{ A}; V_{CC} > 8 \text{ V}$			40 80	mΩ
		Off-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = V_{OUT} = 0 \text{ V}$		10	25	μΑ
I _S	Supply current	Off-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = V_{OUT} = 0 \text{ V}$; $T_j = 25 ^{\circ}\text{C}$		10	20	μΑ
		On-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = 5 \text{ V}$; $I_{OUT} = 0 \text{ A}$		2	3.5	mA
I _{L(off1)}	Off-state output current	$V_{IN} = V_{OUT} = 0 V$	0		50	μΑ
I _{L(off2)}	Off-state output current	V _{IN} = 0 V; V _{OUT} = 3.5 V	-75		0	μΑ
I _{L(off3)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125^{\circ}\text{C}$			5	μΑ
I _{L(off4)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$			3	μΑ

Table 6. Switching $(V_{CC} = 13 \text{ V})$

Symbol	Parameter Test conditions Min. Typ. Ma		Max.	Unit		
t _{d(on)}	Turn-on delay time	$R_L = 4.3~\Omega$ from V_{IN} rising edge to $V_{OUT} = 1.3~V$		30		μs
t _{d(off)}	Turn-off delay time	$R_L = 4.3 \Omega$ from V_{IN} falling edge to $V_{OUT} = 11.7 V$		30		μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	$R_L = 4.3 \Omega$ from $V_{OUT} = 1.3 V$ to $V_{OUT} = 10.4 V$	See Figure 21		21	V/µs
dV _{OUT} /dt _(off)	Turn-off voltage slope	$R_L = 4.3 \Omega$ from $V_{OUT} = 11.7 V$ to $V_{OUT} = 1.3 V$	See Figure 22		22	V/µs

Table 7. Input pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low-level				1.25	V
I _{IL}	Low-level input current	V _{IN} = 1.25 V	1			μΑ
V _{IH}	Input high-level		3.25			V
I _{IH}	High-level input current	V _{IN} = 3.25 V			10	μΑ
V _{hyst}	Input hysteresis voltage		0.5			V
V _{ICL}	Input clamp voltage	I _{IN} = 1m A I _{IN} = -1m A	6	6.8 - 0.7	8	V V

Table 8. V_{CC} output diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on voltage	- I _{OUT} = 2 A; T _j = 150 °C	-	-	0.6	V

Table 9. Status pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status low output voltage	I _{STAT} = 1.6 mA			0.5	V
I _{LSTAT}	Status leakage current	Normal operation; V _{STAT} = 5 V			10	μΑ
C _{STAT}	Status pin input capacitance	Normal operation; V _{STAT} = 5 V			100	pF
V _{SCL}	Status clamp voltage	I _{STAT} = 1m A	6	6.8	8	V
V SCL	Status starrip voltage	I _{STAT} = - 1m A		- 0.7		V

Table 10. Protections⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		135			°C
T _{hyst}	Thermal hysteresis		7	15		°C
t _{SDL}	Status delay in overload condition	$T_j > T_{jsh}$			20	ms
I _{lim}	Current limitation	9 V < V _{CC} < 36 V 5.5 V < V _{CC} < 36 V	9	13	20 20	A A
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 3 A; V _{IN} = 0V; L = 6 mH	V _{CC} - 41	V _{CC} - 48	V _{CC} - 55	V

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.

577

Table 11. Open-load detection

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OL}	Open-load on-state detection threshold	V _{IN} = 5 V	70	150	300	mA
t _{DOL(on)}	Open-load on-state detection delay	I _{OUT} = 0 A			200	μs
V _{OL}	Open-load off-state voltage detection threshold	V _{IN} = 0 V	1.5	2.5	3.5	V
t _{DOL(off)}	Open-load detection delay at turn-off				1000	μs

Figure 4. Status timings

Figure 5. Switching time waveforms

Table 12. Truth table

Conditions	Input	Output	Status
Normal operation	L	L	Н
Normal operation	Н	Н	Н
	L	L	Н
Current limitation	Н	X	$(T_j < T_{TSD}) H$
	Н	X	$(T_j > T_{TSD}) L$
Overtemperature	L	L	Н
Overtemperature	Н	L	L
Lindonvoltogo	L	L	Х
Undervoltage	Н	L	X
Overveltage	L	L	Н
Overvoltage	Н	L	Н
Output voltage - V	L	Н	L
Output voltage > V _{OL}	Н	Н	Н
Output ourront al	L	L	Н
Output current < I _{OL}	Н	Н	L

Table 13. Electrical transient requirements

ISO T/R	Test level					
7637/1 Test pulse	ı	II	III	IV	Delays and impedance	
1	- 25V ⁽¹⁾	- 50V ⁽¹⁾	- 75V ⁽¹⁾	- 100V ⁽¹⁾	2ms, 10Ω	
2	+ 25V ⁽¹⁾	+ 50V ⁽¹⁾	+ 75V ⁽¹⁾	+ 100V ⁽¹⁾	0.2ms, 10Ω	
3a	- 25V ⁽¹⁾	- 50V ⁽¹⁾	- 100V ⁽¹⁾	- 150V ⁽¹⁾	0.1μs, 50Ω	
3b	+ 25V ⁽¹⁾	+ 50V ⁽¹⁾	+ 75V ⁽¹⁾	+ 100V ⁽¹⁾	0.1μs, 50Ω	
4	- 4V ⁽¹⁾	- 5V ⁽¹⁾	- 6V ⁽¹⁾	- 7V ⁽¹⁾	100ms, 0.01Ω	
5	+ 26.5V ⁽¹⁾	+ 46.5V ⁽²⁾	+ 66.5V ⁽²⁾	+ 86.5V ⁽²⁾	400ms, 2Ω	

^{1.} All functions of the device are performed as designed after exposure to disturbance.

^{2.} One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

2.4 Electrical characteristics curves

Figure 7. Off-state output current

Figure 8. High-level input current

Figure 9. Input clamp voltage

Vicl (V)

8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2
6
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)

Figure 10. Status leakage current

Figure 11. Status low output voltage

Figure 12. Status clamp voltage

4

Figure 13. On-state resistance vs T_{case} Figure 14. On-state resistance vs V_{CC}

Figure 15. Open-load on-state detection Figure 16. Input high-level threshold

Figure 17. Input low-level

Figure 18. Input hysteresis voltage

16/44 Doc ID 10890 Rev 7

Figure 19. Overvoltage shutdown

Figure 20. Open-load off-state voltage detection threshold

Figure 21. Turn-on voltage slope

Figure 22. Turn-off voltage slope

Figure 23. I_{lim} vs T_{case}

577

3 Application information

Figure 24. Application schematic

3.1 GND protection network against reverse battery

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to set a dimension the R_{GND} resistor.

- 1. $R_{GND} \le 600 \text{ mV} / (I_{S(on)max}).$
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where - I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power Dissipation in R_{GND} (when $V_{CC} < 0$: during reverse battery situations) is:

$$P_{D} = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift does not vary depending on how many devices are ON in case of several high-side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see below).

3.1.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND} = 1k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift not varies if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

The safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

3.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins are pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the microcontroller I/Os pins from latching-up.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μ C I/Os.

 $\text{-}V_{CCpeak}/I_{latchup} \leq R_{prot} \leq (V_{OH\mu C}\text{-}V_{IH}\text{-}V_{GND}) \; / \; I_{IHmax}$

Calculation example:

For V_{CCpeak} = - 100 V and $I_{latchup} \ge 20$ mA; $V_{OH\mu C} \ge 4.5$ V

 $5 k\Omega \le R_{prot} \le 65 k\Omega$.

Recommended values: $R_{prot} = 10 \text{ k}\Omega$.

3.4 Open-load detection in off-state

Off-state open-load detection requires an external pull-up resistor (R_{PU}) connected between OUTPUT pin and a positive supply voltage (V_{PU}) like the +5 V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

- 1. no false open-load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition $V_{OUT} = (V_{PU} / (R_L + R_{PU})) R_L < V_{Olmin}$.
- 2. no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition $R_{PU} < (V_{PU} V_{OLmax}) / I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched off when the module is in standby.

The values of V_{OLmin} , V_{OLmax} and $I_{L(off2)}$ are available in the electrical characteristics section.

Figure 25. Open-load detection in off-state

3.5 PowerSO-10, P²PAK, PPAK, PENTAWATT maximum demagnetization energy (V_{CC} = 13.5V)

Figure 26. PowerSO-10, P²PAK, PPAK, PENTAWATT maximum turn-off current versus inductance

Note:

Values are generated with $R_L = 0~\Omega$. In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

4 Package and PCB thermal data

4.1 P²PAK thermal data

Figure 27. P²PAK PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness = 2 mm, Cu thickness = 35 μ m, Copper areas: 0.97 cm², 8 cm²).

Figure 28. $P^2PAKR_{thj-amb}$ vs PCB copper area in open box free air conditions

Figure 29. P²PAK thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$\begin{split} &Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ &\text{where } \delta = t_P / T \end{split}$$

Figure 30. Thermal fitting model of a single channel HSD in P²PAK

Table 14. P²PAK thermal parameters

Area/island (cm ²)	0.97	6
R1 (°C/W)	0.04	
R2 (°C/W)	0.25	
R3 (°C/W)	0.3	
R4 (°C/W)	4	
R5 (°C/W)	9	
R6 (°C/W)	37	22
C1 (W·s/°C)	0.0008	
C2 (W·s/°C)	0.007	
C3 (W·s/°C)	0.015	
C4 (W·s/°C)	0.4	
C5 (W·s/°C)	2	
C6 (W·s/°C)	3	5

4.2 PPAK thermal data

Figure 31. PPAK PC board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness = 2 mm, Cu thickness=35 μ m, Copper areas: 0.44 cm², 8 cm²).

Figure 32. PPAK R_{thj-amb} vs PCB copper area in open box free air conditions

Figure 33. PPAK thermal impedance junction ambient single pulse

Equation 2: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Table 15. PPAK thermal parameters

Area/island (cm ²)	0.44	6
R1 (°C/W)	0.04	
R2 (°C/W)	0.25	
R3 (°C/W)	0.3	
R4 (°C/W)	2	
R5 (°C/W)	15	
R6 (°C/W)	61	24
C1 (W·s/°C)	0.0008	
C2 (W·s/°C)	0.007	
C3 (W·s/°C)	0.02	
C4 (W·s/°C)	0.3	
C5 (W·s/°C)	0.45	
C6 (W·s/°C)	0.8	5

4.3 PowerSO-10 thermal data

Figure 35. PowerSO-10 PC board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 2 mm, Cu thickness = 35 μ m, Copper areas: from minimum pad lay-out to 8 cm²).

Figure 36. PowerSO-10 R_{thj-amb} vs PCB copper area in open box free air conditions

Figure 37. PowerSO-10 thermal impedance junction ambient single pulse

Equation 3: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where} \quad \delta &= t_p / T \end{split}$$

Figure 38. Thermal fitting model of a single channel HSD in PowerSO-10

Table 16. PowerSO-10 thermal parameters

Area / island (cm²)	Footprint	6
R1 (°C/W)	0.04	
R2 (°C/W)	0.25	
R3 (°C/W)	0.25	
R4 (°C/W)	0.8	
R5 (°C/W)	12	
R6 (°C/W)	37	22
C1 (W.s/°C)	0.0008	
C2 (W.s/°C)	7E-03	
C3 (W.s/°C)	0.015	
C4 (W.s/°C)	0.3	
C5 (W.s/°C)	0.75	
C6 (W.s/°C)	3	5

5 Package and packing information

5.1 ECOPACK[®] packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

5.2 PENTAWATT mechanical data

Table 17. PENTAWATT mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А			4.8
С			1.37
D	2.4		2.8
D1	1.2		1.35
E	0.35		0.55
F	0.8		1.05
F1	1		1.4
G	3.2	3.4	3.6
G1	6.6	6.8	7
H2			10.4
H3	10.05		10.4
L		17.85	
L1		15.75	
L2		21.4	
L3		22.5	
L5	2.6		3
L6	15.1		15.8
L7	6		6.6
М		4.5	
M1		4	
Diam.	3.65		3.85

5.3 P²PAK mechanical data

Table 18. P²PAK mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	2.40		2.80
A2	0.03		0.23
b	0.80		1.05
С	0.45		0.60
c2	1.17		1.37
D	8.95		9.35
D2		8.00	
E	10.00		10.40
E1		8.50	
е	3.20		3.60
e1	6.60		7.00
L	13.70		14.50
L2	1.25		1.40
L3	0.90		1.70
L5	1.55		2.40
R		0.40	
V2	Oō		8º
Package weight		1.40 Gr (typ)	

5.4 PPAK mechanical data

Figure 41. PPAK package dimensions

Table 19. PPAK mechanical data

Dim.	mm		
	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
В	0.40		0.60
B2	5.20		5.40
С	0.45		0.60
C2	0.48		0.60
D1		5.1	
D	6.00		6.20
E	6.40		6.60
E1		4.7	
е		1.27	
G	4.90		5.25
G1	2.38		2.70
Н	9.35		10.10
L2		0.8	1.00
L4	0.60		1.00
L5	1		
L6		2.80	
R		0.2	
V2	0º		8º
Package weight		Gr. 0.3	

5.5 PowerSO-10 mechanical data

Figure 42. PowerSO-10 package dimensions

Table 20. PowerSO-10 mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А	3.35		3.65
A ⁽¹⁾	3.4		3.6
A1	0		0.10
В	0.40		0.60
B ⁽¹⁾	0.37		0.53
С	0.35		0.55
C ⁽¹⁾	0.23		0.32
D	9.40		9.60
D1	7.40		7.60
Е	9.30		9.50
E2	7.20		7.60
E2 ⁽¹⁾	7.30		7.50
E4	5.90		6.10
E4 ⁽¹⁾	5.90		6.30
е		1.27	
F	1.25		1.35
F ⁽¹⁾	1.20		1.40
Н	13.80		14.40
H ⁽¹⁾	13.85		14.35
h		0.50	
L	1.20		1.80
L ⁽¹⁾	0.80		1.10
α	0°		8°
α ⁽¹⁾	2°		8°

^{1.} Muar only POA P013P.

5.6 PENTAWATT packing information

Figure 43. PENTAWATT tube shipment (no suffix)

5.7 P²PAK packing information

Figure 44. P²PAK tube shipment (no suffix)

Figure 45. P²PAK tape and reel (suffix "TR")

5.8 PPAK packing information

Α Base Q.ty 75 3000 **Bulk Q.ty** Tube length (± 0.5) 532 6 В 21.3 C (± 0.1) 0.6 All dimensions are in mm. В

Figure 47. PPAK tube shipment (no suffix)

5.9 PowerSO-10 packing information

Figure 49. PowerSO-10 suggested Figure 50. PowerSO-10 tube shipment (no pad layout suffix)

Figure 51. PowerSO-10 tape and reel shipment (suffix "TR")

VN820-E Revision history

6 Revision history

Table 21. Document revision history

Date	Revision	Changes
07-Dec-2004	1	Initial release.
09-Feb-2005	2	Text changed.
23-Mar-2005	3	Configuration diagram (PowerSO-10) modification.
03-May-2006	4	SO-16L mechanical and shipment data insertion.
17-Dec-2008	5	Document reformatted and restructured. Added content, list of figures and tables. Added ECOPACK® packages information. Updated Figure 45: P2PAK tape and reel (suffix "TR"): - changed component spacing (P) in tape dimensions table from 16 mm to 12 mm.
29-Mar-2010	6	Updated features list. Updated Table 1: Device summary. Updated Table 3: Absolute maximum ratings. Updated Section 3.5: PowerSO-10, P2PAK, PPAK, PENTAWATT maximum demagnetization energy (VCC = 13.5V). Removed SO-16L package into the document.
07-June-2012	7	Updated Section 5.8: PPAK packing information.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

44/44 Doc ID 10890 Rev 7

