ТЕМА 2. ОБРАТНЫЕ ОПЕРАТОРЫ. РЕШЕНИЕ ОПЕРАТОРНЫХ УРАВНЕНИЙ

Непрерывно обратимые операторы. Пусть $A: X \to Y$ – линейный оператор с областью определения $\mathcal{D}(A) \subseteq X$ и областью значений $\mathcal{R}(A) \subseteq Y$. Если оператор A осуществляет взаимно однозначное соответствие между $\mathcal{D}(A)$ и $\mathcal{R}(A)$, то к оператору A существует обратный оператор A^{-1} , и решение уравнения Ax = y может быть записано в явном виде $x = A^{-1}y$.

Теорема 1. Линейный оператор A переводит $\mathcal{D}(A)$ в $\mathcal{R}(A)$ взаимно однозначно тогда и только тогда, когда

$$KerA = \{x \in \mathcal{D}(A) : Ax = 0\} = \{0\}.$$
 (2.1)

Теорема 2. Если $A: X \to Y$ линеен, то и $A^{-1}: Y \to X$ линеен.

Теорема 3. Оператор A^{-1} существует и одновременно ограничен на $\mathcal{R}(A)$ тогда и только тогда, когда для некоторой постоянной m>0 и любого $x\in\mathcal{D}(A)$ выполняется энергетическое неравенство

$$||Ax||_Y \geqslant m||x||_X. \tag{2.2}$$

Будем говорить, что линейный оператор $A: X \to Y$ непрерывно обратим, если $\mathcal{R}(A) = Y$, оператор A обратим и A^{-1} ограничен.

Теорема 4 (Банаха об обратном операторе). Пусть X и Y – банаховы пространства, $A: X \to Y$ – линейный ограниченный оператор, отображающий X в Y взаимно однозначно. Тогда обратный оператор $A^{-1}: Y \to X$ ограничен.

Следствие 1. Пусть на нормированном пространстве X заданы две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ и пространство X полно относительно каждой из норм. Если $\|x\|_1 \leqslant c\|x\|_2$ для всех $x \in X$, то эти нормы эквивалентны.

Левый и правый обратные операторы. Пусть X,Y – нормированные векторные пространства и $A:X\to Y$.

Оператор $A_r^{-1}: Y \to X$ называется правым обратным оператором к A, если $AA_r^{-1} = I_y$. Оператор $A_l^{-1}: Y \to X$ называется левым обратным оператором к A, если $A_l^{-1}A = I_x$.