10.2 berivatives of Integrals.

Recall (1 - variable derivatives)

$$\frac{df(x)}{dx} = f'(x) = \lim_{n \to \infty} \frac{f(x+1) - f(x)}{n} \quad \text{if limit exists}$$

$$F(x) = (x+1), g(x), h(x) : a vector function$$

$$\Rightarrow \frac{dF}{dx}(x) = F'(x) = \lim_{n \to \infty} \frac{F(x+1) - F(x)}{n} \quad \text{if limit exists}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad \text{weathr} \quad \text{of the cure to a function}$$

$$F(x) = \lim_{n \to \infty} \frac{F(x)}{n} \quad$$

$$\vec{T}(0) = \frac{\vec{F}'(0)}{|\vec{F}'(0)|} = \frac{1}{\sqrt{0^2 + (^2 + 2^2)}} (0, 1, 2) = (0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}})$$

Example) Find parametric equations for the tangent line to $y = 2\cos t$ $y = 5\sin t$ of $(0, 1, \frac{\pi}{2})$

- 7 大型, ア(型)=(o, 1, 型).
 - 图 产(1)=(-2,0,1)
 - A tangent line: I parallel to (-2,0,1) $\Rightarrow \chi = -2 + \frac{1}{2}$ $\Rightarrow \chi = -2 + \frac{1}{2}$

* Differentiation Rules

$$O(\frac{1}{2}(1)) = f'(x) Q(x) + f(x) Q'(x)$$

$$3 \stackrel{?}{\rightleftharpoons} (\vec{J}(H) \cdot \vec{J}(H)) = \vec{J}(H) \cdot \vec{J}(H) + \vec{J}(H) \cdot \vec{J}(H)$$

* Integrals

$$\Rightarrow \int_{\alpha} \frac{1}{2}(x) dx = \left(\int_{\alpha} \frac{1}{2}(x) dx \right) \int_{\alpha} \frac{1}{2}(x) dx + \int_{\alpha} \frac{1}{2}(x) dx$$

$$\Rightarrow \frac{1}{2} \int_{0}^{\infty} P(x) dx = \left(2 \sin x \right)^{\frac{1}{2}}, -\cos x^{\frac{1}{2}}, x^{2} \int_{0}^{\frac{1}{2}} dx$$

$$= \left(2, 1, \frac{\pi^{2}}{4} \right)$$