IC220: HW 8

Due: 15 Apr 2019

Full Name: _	Alpha:							
Circle Your Section: Aviv/1001 Aviv/2001 Aviv/4001 Choi/5001 Missler/5002								
Total Points: 32								
Preliminary:	Carefully do the assigned reading for Chapter $4 (4.5-4.8)$							

1. [10 points] Draw a pipeline stage diagram for the following sequence of instruction. You dont need fancy pictures — just text for each stage: ID, MM, etc. Label the cycle number for each column, starting with cycle #1.

```
lw $v0, 0($a0)
lw $v1, 0($v0)
add $a0, $a0, $v1
sub $t0, $t0, $a0
```

IC220 HW 5b

2. Assume the previous sequence of instructions is repeated 100 times (so the processor does a load, another load, an add, a sub, then back to load, another load, an add, ...). There are no branches, just these 4 instructions repeated 100 times. Do NOT reorder the code to improve efficiency. HINT: this question takes a bit more thought and care then you may realize at first. (a) [5 points] What is the total number of cycles needed to execute those 400 instructions? (b) [2 points] What is the CPI? (c) [2 points] What is the CPI if we ran this same sequence on a non-pipeline cycle CPU, where it still takes 1 cycle per staging area. (d) [2 points] What is the CPI if we rant this sequence on a single cycle CPU? (e) [4 points] Using the various CPI calculations, argue why the CPI alone may or may not provide a

good estimate for the performance gained from the different CPU styles? For example, why would

a single-cycle CPU not actually be faster than a pipeline CPU even if its CPI is lower.?

IC220 HW 5b

3. Draw	v a pipeline stage	diagram for	the same	e sequence	of instruction	ons as	before,	\mathbf{but}	\mathbf{this}	$_{ m time}$	there	is
no F	FORWARDING	available.	Again, y	ou must sl	how the nun	aber of	f cycles					

```
lw $v0, 0($a0)
lw $v1, 0($v0)
add $a0, $a0, $v1
sub $t0, $t0, $a0
```

- 4. Again, assume the previous sequence of instructions is repeated 100 times with no forwarding! There are no branches and you cannot reorder.
 - (a) [5 points] What is the total number of cycles needed to execute those 400 instructions?

(b) [2 points] What is the CPI?