MA 106 Help Session-2

Guramrit Singh (210050061)

March 23, 2023

These are some of the interesting questions discussed in the Help Session conducted on March 23, 2023.

Problem 1 (Tutorial 3: Q15)

Given n^2 functions $f_{ij}(x)$ each differentiable on the interval (a,b), define $f(x) = det(f_{ij}(x))$ for each $x \in (a,b)$. Let $A(x) = (f_{ij}(x))$. Let $A_i(x)$ be the matrix obtained from A(x) by differentiating the functions in the i^{th} row of A(x). Prove that $f'(x) = \sum_{i=1}^{n} det A_i(x)$

Solution:

We prove it by induction on order of matrix i.e. n.

Base case: n = 1

Trivial to see since $f(x) = f_{11}(x)$ and so $f'(x) = f'_{11}(x) = det A_1(x) = \sum_{i=1}^{1} det A_i(x)$ Induction hypothesis: Assume the result $f'(x) = \sum_{i=1}^{n-1} det A_i(x)$ holds true for all $(n-1) \times (n-1)$

matrices. Now, we show that it is true for all $n \times n$ matrices.

Let A_{jk} denote the sub-matrix of A obtained by removing the j^{th} row and the k^{th} column.

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+1} f_{1i}(x) \det(A_{1i})$$

Differentiate both sides

$$f'(x) = \sum_{i=1}^{n} (-1)^{i+1} (f'_{1i}(x) \det(A_{1i}) + f_{1i}(x) (\det(A_{1i}))')$$

Guramrit Singh 1 Spring 2022-23

Note that $(\det(A_{1i}))' = \sum_{j=1}^{n-1} \det(A_{1i_j}(x))$ by induction hypothesis as $\forall i \ A_{1i}$ is $(n-1) \times (n-1)$ matrix.

$$f'(x) = \sum_{i=1}^{n} (-1)^{i+1} (f'_{1i}(x) \det(A_{1i}) + f_{1i}(x) (\sum_{j=1}^{n-1} \det(A_{1i_j}(x))))$$

$$= \sum_{i=1}^{n} (-1)^{i+1} f'_{1i}(x) \det(A_{1i}) + \sum_{j=1}^{n-1} \sum_{i=1}^{n} (-1)^{i+1} f_{1i}(x) \det(A_{1i_j}(x))$$

$$= \det(A_1(x)) + \sum_{j=1}^{n-1} \det(A_{j+1}(x))$$

$$= \sum_{i=1}^{n} \det(A_i(x))$$

Hence proved

Problem 2

Let $\mathbf{A} \in \mathbb{R}^{9 \times 4}$ and $\mathbf{B} \in \mathbb{R}^{7 \times 3}$. Is there $\mathbf{X} \in \mathbb{R}^{4 \times 7}$ such that $\mathbf{X} \neq \mathbf{O}$ but $\mathbf{A}\mathbf{X}\mathbf{B} = \mathbf{O}$?

Hint: $\mathbf{AXB} = \mathbf{O}$ gives us $9 \times 3 = 27$ equations to solve in $4 \times 7 = 28$ variables.

Also note that the obtained system is homogeneous. The augmented matrix can have at most 27 pivots and therefore you can find at least one non-null solution to X

Problem 3

Given a square matrix **A** of order $n \geq 2$. Represent **A** as

- (a) Sum of two invertible matrices
- (b) Sum of two non-invertible matrices

Solution:

- (a) $\mathbf{A} = \mathbf{L} + \mathbf{U}$ where \mathbf{L} and \mathbf{U} are lower and upper triangular matrices, select diagonal entries s.t. in both \mathbf{L} and \mathbf{U} , they are all non-zero. Then \mathbf{L} and \mathbf{U} are required invertible matrices. (Determinant of either lower or upper triangular matrix is just the product of diagonal entries)
- (b) $\mathbf{A} = \mathbf{L} + \mathbf{U}$ where \mathbf{L} and \mathbf{U} are lower and upper triangular matrices respectively, select diagonal entries s.t. in both \mathbf{L} and \mathbf{U} , their is at least one zero entry. Then \mathbf{L} and \mathbf{U} are required non-invertible matrices. (Determinant of either lower or upper triangular matrix is just the product of diagonal entries)

Guramrit Singh 2 Spring 2022-23