вариант	ф.	номер	група	поток	курс	от	предишна	година?
${f A}$								
Име:								

Второ контролно по ИС (теория), 14.01.17

Зад 1. Нека \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.

- а) Дайте определение за ефективност на оператор $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1.$
- б) Докажете, че $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1$ е ефективен тогава и само тогава, когато функцията $F(a,x)\simeq \Gamma(\varphi_a)(x)$ е изчислима.
- в) Докажете, че за всеки ефективен оператор Γ съществува **примитивно** рекурсивна функция h, такава че

$$\Gamma(\varphi_a) = \varphi_{h(a)}.$$

- г) Нека h е рекурсивна функция. Да дефинираме оператор $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ по следния начин: $\Gamma(\varphi_a) = \varphi_{h(a)}$ за всяко $a \in N$ и $\Gamma(f) = f$, ако f не е изчислима. Може ли да се твърди, че Γ е ефективен?
- **2 зад.** Нека $f \in \mathcal{F}_1$ е тотална функция. Докажете, че f е рекурсивна точно тогава, когато нейната графика е разрешимо множество.

Зад 3. Нека $A \subseteq N$. Докажете, че:

- а) A е полуразрешимо $\Longleftrightarrow A = Dom(f)$ за някоя изчислима функция f.
- б) A е полуразрешимо $\Longleftrightarrow A = Range(f)$ за някоя изчислима функция f.

Приятна работа и успех :)!

вариант	ф.	номер	група	поток	курс	от	предишна	година?
${f A}$								
Име:								

Второ контролно по ИС (теория), 14.01.17

Зад 1. Нека \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.

- а) Дайте определение за ефективност на оператор $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1.$
- б) Докажете, че $\Gamma:\mathcal{F}_1\longrightarrow \mathcal{F}_1$ е ефективен тогава и само тогава, когато функцията $F(a,x)\simeq \ \Gamma(\varphi_a)(x)$ е изчислима.
- в) Докажете, че за всеки ефективен оператор Γ съществува **примитивно** рекурсивна функция h, такава че

$$\Gamma(\varphi_a) = \varphi_{h(a)}.$$

- г) Нека h е рекурсивна функция. Да дефинираме оператор $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ по следния начин: $\Gamma(\varphi_a) = \varphi_{h(a)}$ за всяко $a \in N$ и $\Gamma(f) = f$, ако f не е изчислима. Може ли да се твърди, че Γ е ефективен?
- **2 зад.** Нека $f \in \mathcal{F}_1$ е тотална функция. Докажете, че f е рекурсивна точно тогава, когато нейната графика е разрешимо множество.

Зад 3. Нека $A\subseteq N$. Докажете, че:

- а) A е полуразрешимо $\Longleftrightarrow A = Dom(f)$ за някоя изчислима функция f
- б) A е полуразрешимо $\iff A = Range(f)$ за някоя изчислима функция f.

Приятна работа и успех :)!

вариант	ф.	номер	група	поток	курс	от	предишна	година?
A								
Име:								

Второ контролно по ИС (теория), 14.01.17

Зад 1. Нека \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.

- а) Дайте определение за ефективност на оператор $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1.$
- б) Докажете, че $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ е ефективен тогава и само тогава, когато функцията $F(a,x) \simeq \Gamma(\varphi_a)(x)$ е изчислима.
- в) Докажете, че за всеки ефективен оператор Γ съществува примитивно рекурсивна функция h, такава че

$$\Gamma(\varphi_a) = \varphi_{h(a)}.$$

- г) Нека h е рекурсивна функция. Да дефинираме оператор $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1$ по следния начин: $\Gamma(\varphi_a)=\varphi_{h(a)}$ за всяко $a\in N$ и $\Gamma(f)=f$, ако f не е изчислима. Може ли да се твърди, че Γ е ефективен?
- **2 зад.** Нека $f \in \mathcal{F}_1$ е тотална функция. Докажете, че f е рекурсивна точно тогава, когато нейната графика е разрешимо множество.

Зад 3. Нека $A \subseteq N$. Докажете, че:

- а) A е полуразрешимо $\Longleftrightarrow A = Dom(f)$ за някоя изчислима функция f.
- б) A е полуразрешимо $\Longleftrightarrow A = Range(f)$ за някоя изчислима функция f.

Приятна работа и успех :)!

вариант	ф.	номер	група	поток	курс	от	предишна	година?
A								
Име:								

Второ контролно по ИС (теория), 14.01.17

Зад 1. Нека \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.

- а) Дайте определение за ефективност на оператор $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1.$
- б) Докажете, че $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ е ефективен тогава и само тогава, когато функцията $F(a,x) \simeq \Gamma(\varphi_a)(x)$ е изчислима. в) Докажете, че за всеки ефективен оператор Γ съществува
- **примитивно** рекурсивна функция h, такава че

$$\Gamma(\varphi_a) = \varphi_{h(a)}.$$

- г) Нека h е рекурсивна функция. Да дефинираме оператор $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1$ по следния начин: $\Gamma(\varphi_a)=\varphi_{h(a)}$ за всяко $a\in N$ и $\Gamma(f)=f$, ако f не е изчислима. Може ли да се твърди, че Γ е ефективен?
- **2 зад.** Нека $f \in \mathcal{F}_1$ е тотална функция. Докажете, че f е рекурсивна точно тогава, когато нейната графика е разрешимо множество.

Зад 3. Нека $A \subseteq N$. Докажете, че:

- а) A е полуразрешимо $\Longleftrightarrow A = Dom(f)$ за някоя изчислима функция f.
- б) A е полуразрешимо $\iff A = Range(f)$ за някоя изчислима функция f.

Приятна работа и успех :)!