Monte Carlo method for a Bivariate Variance Gamma model for financial applications and Calibration method

Matteo Gardini

10 aprile 2019

Sommario

In questo documento presentiamo l'implementazione Monte Carlo del modello proposto in [2]. Si definisce anche la metodologia di calibrazione e vengono eseguiti dei test numerici per la verfica della correttezza degli algoritmi proposti.

1 α -gamma process and Monte Carlo simulations

Seguendo quanto proposto in [2] consideriamo, per semplicità, un processo bivariato. L'estensione al caso n-variato è immediata.

$$\mathbf{G} = \begin{pmatrix} G_1(t) \\ G_2(t) \end{pmatrix} = \begin{pmatrix} X_1(t) + \alpha_1 Z(t) \\ X_2(t) + \alpha_2 Z(t) . \end{pmatrix}$$

dove X_1, X_2, Z sono subordinaltori indipendenti tra loro. Allora, come mostrato in [2], il processo \mathbf{G} è un subordinatore multivariato di cui è noto anche l'esponente caratteristico.

Fissiamo la legge delle componenti X_j e G_j

$$X_j \sim \Gamma\left(\frac{b}{\alpha_j} - a, \frac{b}{\alpha_j}\right)$$

 $Z \sim \Gamma\left(a, b\right)$

a cui si aggiungono le condizioni sui parametri

$$0 < \alpha_j < \frac{b}{a}$$
.

Grazie alle proprietà delle distribuzioni Γ otteniamo che:

$$G_j \sim \Gamma\left(\frac{b}{\alpha_j}, \frac{b}{\alpha_j}\right).$$

Algorithm 1 Gamma Process Simulation

- 1: Data una griglia di istanti temporali equispaziati $t_1, \ldots t_n$ con passo Δt .
- 2: Genera n variabili indipendenti $X_i \sim \Gamma\left(\Delta t \left(\frac{b}{\alpha_j} a\right), \frac{b}{\alpha_j}\right)$ 3: Genera n variabili indipendenti $Z_i \sim \Gamma\left(a\Delta t, b\right)$
- 4: Imponi $G_i = X_i + \alpha_j Z_i$. 5: $G\left(t\right) = \sum_{t_i \leq t} G_i$.

Figura 1: Processo subordinatore α -gamma

E' possibile quindi costruire il processo stocastico $G_{j}\left(t\right)$ con legge:

$$G_j(t) \sim \Gamma\left(\frac{tb}{\alpha_j}, \frac{b}{\alpha_j}\right)$$

La legge degli incrementi di X(t) e di Z(t) è nota: potremo quindi simulare $X\left(t\right)$ e di $Z\left(t\right)$ da cui poi ricomporremo $G\left(t\right)$ seguendo l'Algoritmo 1.

Una possibile realizzazione del processo α -gamma simulato tramite l'Algoritmo 1 è mostrato in Figura 1.

2 Brownian subordination and Monte Carlo simulations

Possiamo usare allora il subotdinatore G per costruire il processo seguente:

$$\mathbf{Y}(t) = \begin{pmatrix} Y_{1}(t) \\ Y_{2}(t) \end{pmatrix} = \begin{pmatrix} \mu_{1}G_{1}(t) + \sigma_{1}B_{1}(G_{1}(t)) \\ \mu_{1}G_{2}(t) + \sigma_{1}B_{2}(G_{2}(t)) \end{pmatrix}$$
(1)

con $\mathbf{B} = (B_1(t), B_2(t))$ indipendente da $\mathbf{G} \in B_1(t), B_2(t)$ indipendenti. Come mostrato in [2] anche $\mathbf{Y}(t)$ è un processo di Lévy. Inoltre, è semplice verificare che:

$$\rho^{\mathbf{Y}(t)} = \frac{\mu_1 \mu_2 \alpha_1 \alpha_2 a}{b\sqrt{(b\sigma_1^2 + \mu_1^2 \alpha_1)(b\sigma_2^2 + \mu_2^2 \alpha_2)}}$$
(2)

Questa relazione sarà utile per ricavare i parametri a e b nella fare di calibrazione. Considerando invece le marginali di Y si può dimostrare che sono dei Variance

Figura 2: Moto Browniano subordinato al processo α -gamma.

Gamma $VG(\mu_j, \sigma_j, \alpha_j)$: osserviamo che i parametri a e b non determinano la distribuzione delle maginali. Questo fatto sarà utile nella fase di calibrazione.

Simulare il processo (1) è semplice una volta noto l'Algoritmo 1. L'Algoritmo 2 mostra come simulare un processo Variance Gamma bivariato.

Algorithm 2 Variance Gamma Process Simulation

- 1: Data una griglia di istanti temporali equispaziati $t_1, \ldots t_n$ con passo Δt .
- 2: Generare un pocesso $G_i(t)$ secondo l'Algoritmo 1.
- 3: Generare n variabili indipendenti $W_{i} \sim \mathcal{N}\left(0,1\right)$.
- 4: Porre l'incremento $Y_i(t) = \mu_i G_i(t) + \sqrt{G_i(t)} W_i$.
- 5: $Y(t) = \sum_{t_i < t} Y_i(t)$.

Una possibile realizzazione del processo $\mathbf{Y}(t)$ simulato tramite l'Algoritmo 2 è mostrato in Figura 2.

3 Financial Model

Il processo appena definito $\mathbf{Y}(t)$ può essere usato per modellizzare il prezzo del sottostante come exponential Lévy:

$$S_i(t) = S_i(0) \exp(Y_i(t))$$

4 Risk-Netutrality

Per porsi sotto la misura neutrale al rischio è necessario considerare la seguente versione del processo $S\left(t\right)$:

$$S_i(t) = S_i(0) \exp(m_i t + Y_i(t))$$

dove m è scelto in modo tale che il processo scontato sia una martingala: ovvero $m \coloneqq r - \omega_i$ è tale che

$$\mathbb{E}\left[S_i\left(t\right)\right] = S_i\left(0\right) \exp\left(rt\right)$$

Perciò otteniamo che:

$$\omega_i = \frac{b}{\alpha_i} \log \left(1 - \frac{\alpha_i}{b} \left(\mu_i + \frac{1}{2} \sigma_i^2 \right) \right) \tag{3}$$

5 Pricing Plain Vanilla contracts

Per verificare la correttezza del metodo Monte Carlo proposto confrontiamo il pricing ottenuto tramite Monte Carlo con quello ottenuto tramite FFT [1]. Come abbiamo notato, infatti, le marginali del processo Variance Gamma non dipendono dai parametri comuni a e b. Per questo motivo i prodotti scritti sullo stesso sottostante possono essere prezzati in maniera indipendente utilizzando il modello univariato $VG(\mu_j, \sigma_j, \alpha_j)$.

Per il metodo FFT si rimanda a [1]. Il metodo Monte Carlo, invece, è mostrato nell'Algoritmo 3.

Algorithm 3 Monte Carlo Pricing

- 1: Simulare N_{sim} repliche indipendenti del processo $\mathbf{Y}\left(T\right)$ secondo l'Algoritmo 2.
- 2: Porre $S_i\left(T\right) = S_i\left(0\right) \exp\left(m_i T + Y_i\left(T\right)\right)$
- 3: Call Value: $C(t, S_i(t)) = \exp(-rT) \mathbb{E}\left[\left(S_i(T) K\right)^+\right]$.

I risultati del confronto tra pricing via Monte Carlo e via FFT sono mostrati nella Sezione 9.

6 Marginal Calibration

Il fatto che le marginali del processo $\mathbf{Y}(t)$ non dipendano dai parametri comuni a e b permette che, dati i prodotti plain vanilla sul singolo sottostante, si possano ricavare i parametri $\alpha_i, \mu_i, \sigma_i$ a partire dal processo univariato. Dati n prezzi di mercato C_i con $i=1,\cdots,n$ e posto $\theta=(\alpha_j,\mu_j,\sigma_j)$ si tratta di risolvere i problema ai minimi quadrati non lineari seguente:

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{n} \left(C_i^{\theta} \left(K, T \right) - C_i \right)^2 \tag{4}$$

dove $C_i^{\theta}(K,T)$ è il prezzo stabilito dal modello mentre set di parametri è $\theta^* = (\mu_j, \sigma_j, \alpha_j)$.

L'algoritmo utilizzato per la risoluzione del problema di minimizzazione generalmente è un algoritmo di tipo gradiente mentre l'algoritmo di pricing per ottenere il valore $C_i^{\theta}(K,T)$ è, generalmente, basato sulla FFT.

Il problema di minimizzazione (4) va risolto due volte in maniera indipendente per consentire la stima dell'intero set di parametri $\mu_1, \mu_2, \sigma_1, \sigma_2, \alpha_1, \alpha_2$.

7 Structure Dependence Analysis

In questa sezione analizziamo quale sia il massimo valore possibile di correlazione catturabile da modello. Consideriamo l'espressione della correlazione 2:

$$\rho^{\mathbf{Y}(t)} = \frac{\mu_{1}\mu_{2}\alpha_{1}\alpha_{2}a}{b\sqrt{\left(b\sigma_{1}^{2} + \mu_{1}^{2}\alpha_{1}\right)\left(b\sigma_{2}^{2} + \mu_{2}^{2}\alpha_{2}\right)}}$$

a cui si aggiungono i vincoli

$$0 \le a \le \frac{b}{\alpha_j} \quad j = 1, 2. \tag{5}$$

Supponiamo di fissare il parametro b: a questo punto, dal vincolo (5) ricaviamo che il valore massimo consentito a_{max} è dato da:

$$a_{max} = \min\left(\frac{b}{\alpha_1}, \frac{b}{\alpha_2}\right). \tag{6}$$

La correlazione diventa allora:

$$\rho^{\mathbf{Y}(t)} = \frac{\mu_1 \mu_2 \alpha_{min}}{\sqrt{\left(b\sigma_1^2 + \mu_1^2 \alpha_1\right) \left(b\sigma_2^2 + \mu_2^2 \alpha_2\right)}}$$

Osserviamo ora che il valore massimo di correlazione si ha per $b\to 0$. In questo caso otteniamo che il valore di correlazione è:

$$\rho_{b\rightarrow 0}^{\mathbf{Y}(t)} = \sqrt{\frac{\alpha_{min}}{\alpha_{max}}}$$

Inoltre se $\alpha_1 = \alpha_2$ allora $\rho_{b \to 0}^{\mathbf{Y}(t)} = 1$.

Osserviamo inoltre che se $\mu_i = 0$ la correlazione $\rho^{\mathbf{Y}(t)}$ è nulla, sebbene la dipendenza tra i due processi sia ancora presente.

Il modello proposto presenta anche un grosso limite pratico: supponendo di aver ricavato dalla calibrazione su prodotti Plain Vanilla i parametri delle marginali (ovvero $\mu_i, \sigma_i, \alpha_i$ i=1,2) il valore massimo di correlazione replicabile dal modello è fortemente dettato dal massimo dei valori di α_i i=1,2 calibrati. Infatti da 6 possiamo fissare a_{max} ma la massima correlazione replicabile, ponendo $b \to 0$ è data da

$$\rho_{b\to 0}^{\mathbf{Y}(t)} = \sqrt{\frac{\alpha_{min}}{\alpha_{max}}}$$

8 Structure Dependence Calibration

Anche la stima dei parametri a e b si traduce in un problema di minimizzazione. La correlazione tra i due sottostanti è da stimare sul processo di prezzi dei log-return del sottostante. Detta ρ la correlazione di mercato tra le due serie storiche di sottostanti è possibile stimare i parametri a,b minimizzando la seguente quantità:

$$RMSE^{2} = 2 (\rho - \tilde{\rho}),$$

s.t. $0 \le a \le \frac{b}{\alpha_{i}}$

dove $\tilde{\rho}$ è data dall'equazione (2).

9 Numerical Tests

Per verificare al correttezza del processo di calibrazione è stato eseguito il seguente test:

- Fissando il set di parametri $\theta = (\mu_1, \mu_2, \sigma_1, \sigma_2, \alpha_1, \alpha_2, a, b)$ si esegue il pricing tramite Monte Carlo per una serie di Call Europee con vari strikes K.
- Considerati i prezzi delle Opzioni cottenute tramite FFT si esegue la calibrazione delle marginali tramite risoluzione del problema non lineare ai minimi quadrati (dove i prezzi del modello in fase di calibrazione sono ottenuti sempre tramite FFT).
- Infine, si calibra la struttura di dipendenza basandosi sulla correlazione teorica calcolata a partire dai parametri θ secondo la (2) risolvendo i corrispondente problema di minimizzazione.
- Si confrontano i parametri calibrati θ^* con quelli noti a priori θ .

9.1 Pricing: Monte Carlo vs FFT

Scegliamo come set di parametri $\theta = (\alpha_1, \alpha_2, \sigma_1, \sigma_2, \mu_1, \mu_2, a, b)$ quelli riportati in Tabella 1, con prezzi di 50 opzioni Call Europee In the Money con strike da K_{min} a K_{max} .

Tabella 1: Parametri

Parametro	Valore
α_1	0.052
$lpha_2$	0.032
a	0.72
b	1
μ_1	0.03
μ_2	0.06
σ_1	0.2
σ_2	0.3
r	0.01
T	1
N_{sim}	$5 \cdot 10^{4}$
S_0^1	60
S_0^2	58
K_{min}	35
K_{max}	60

In Figura (3) son riportati i prezzi delle Call scritte sui due sottostanti ottenuti con metodo FFT e con metodo Monte Carlo della precedente sezione. In Figura (4) è riportato l'andamento dell'errore assoluto in funzione di K.

Figura 3: Pricing Monte Carlo confrontato con FFT

Come si può osservare i due metodi produco un prezzo molto simile per entrambe le Call scritte su i due sottostanti.

9.2 Model Calibration

Come mostrato nella Sezione 6 calibriamo i parametri delle marginali. In un secondo momento, calibriamo come mostrato nella Sezione 8 i parametri comuni a e b. I risultati sono mostrati in Tabella 2.

Tabella 2: Parametri

Parametro	Valore Reale	Valore Calibrato
α_1	0.052	0.052
α_2	0.032	0.032
a	0.72	0.5
b	1	0.9
μ_1	0.03	0.03
μ_2	0.06	0.06
σ_1	0.2	0.2
σ_2	0.3	0.3
ρ	$3.59 \cdot 10^{-5}$	$3.07 \cdot 10^{-5}$

9.3 Re-Pricing

Ottenuti i valori del processo tramite procedura di calibrazione della Sezione 9.2 usiamo il metodo Monte Carlo per eseguire i pricing di una spread-option con i parametri originali e quelli calibrati e ne confrontiamo i risulati. In Figura 5 sono graficati i prezzi delle spread-option ottenuti con i parametri reali e con i

Figura 4: Differenza di Pricing con i due metodi: MC v
sFFT

parametri calibrati, mentre in Figura 6 è mostrato l'errore di pricing. Il metodo di pricing utilizzato è il metodo Monte Carlo presentato all'inizio.

Figura 5: Prezzi delle spread option ottenuti con i parametri reali θ e con i parametri stimati $\theta*$

Figura 6: Errore di pricing dovuto alla non perfetta calibrazione dei parametri

Riferimenti bibliografici

- [1] P. Carr and D. Madan. Option valuation using the fast fourier transform. $Journal\ of\ Computational\ Finance,\ (2):61-73,\ 1999.$
- [2] P. Semeraro. A multivariate variance gamma model for financial applications. *International Journal of Theretical and Applied Finance*, (1):1–18, 2008.