SAS Data Analysis Poisson Regression

Poisson regression is for modeling count variables.

Please note: The purpose of this page is to show how to use various data analysis commands. It does not cover all aspects of the research process which researchers are expected to do. In particular, it does not cover data cleaning and checking, verification of assumptions, model diagnostics or potential follow-up analyses.

This analysis was done using SAS version 9.22.

Examples of Poisson regression

Example 1. The number of persons killed by mule or horse kicks in the Prussian army per year. von Bortkiewicz collected data from 20 volumes of *Preussischen Statistik*. These data were collected on 10 corps of the Prussian army in the late 1800s over the course of 20 years.

Example 2. A health-related researcher is studying the number of hospital visits in past 12 months by senior citizens in a community based on the characteristics of the individuals and the types of health plans under which each one is covered.

Example 3. A researcher in education is interested in the association between the number of awards earned by students at one high school and the students' performance in math and the type of program (e.g., vocational, general or academic) in which students were enrolled.

Description of the data

For the purpose of illustration, we have simulated a data set for Example 3 above: poisson_sim.sas7bdat. In this example, **num_awards** is the outcome variable and indicates the number of awards earned by students at a high school in a year, **math** is a continuous predictor variable and represents students' scores on their math final exam, and **prog** is a categorical predictor variable with three levels indicating the type of program in which the students were enrolled. It is coded as 1 = "General", 2 = "Academic" and 3 = "Vocational".

```
proc means data = poisson_sim n mean var min max;
  var num_awards math;
run;
```

The MEANS Procedure

Variable Minimum	Label Maximum	N	Mean	Variance
num awards		200	0.6300000	1.1086432
0 6.000	0000			
math	math score	200	52.6450000	87.7678141
33.0000000	75.0000000			

Each variable has 200 valid observations and their distributions seem quite reasonable. The *unconditional* mean and variance of our outcome variable are not extremely different. Our model assumes that these values, conditioned on the predictor variables, will be equal (or at least roughly so).

We can look at summary statistics by program type. The table below shows the mean and variance of numbers of awards by program type and seems to suggest that program type is a good candidate for predicting the number of awards, our outcome variable, because the mean value of the outcome appears to vary by **prog**. Additionally, the means and variances within each level of **prog**--the *conditional* means and variances--are similar. A frequency plot is also produced to display the distribution of the outcome variable.

```
proc means data = poisson_sim mean var;
  class prog;
  var num_awards;
run;
```

The MEANS Procedure

Analysis Variable : num awards

type of program	N Obs	Mean	Variance
1	45	0.2000000	0.1636364
2	105	1.0000000	1.6346154
3	50	0.2400000	0.2677551

proc freq data=poisson_sim; tables num_awards / plots=freqplot; run;

proc freq data = poisson_sim; tables prog;

run;

The FREQ Procedure

type of program

prog	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1 2	45 105	22.50 52.50	45 150	22.50 75.00
3	50	25.00	200	100.00

Analysis methods you might consider

Below is a list of some analysis methods you may have encountered. Some of the methods listed are quite reasonable, while others have either fallen out of favor or have limitations.

 Poisson regression - Poisson regression is often used for modeling count data. It has a number of extensions useful for count models.

- Negative binomial regression Negative binomial regression can be used for over-dispersed count data, that is when the conditional variance exceeds the conditional mean. It can be considered as a generalization of Poisson regression since it has the same mean structure as Poisson regression and it has an extra parameter to model the over-dispersion. If the conditional distribution of the outcome variable is over-dispersed, the confidence intervals for Negative binomial regression are likely to be narrower as compared to those from a Poisson regession.
- Zero-inflated regression model Zero-inflated models attempt to account for excess zeros. In other words, two kinds of zeros are thought to exist in the data, "true zeros" and "excess zeros". Zero-inflated models estimate two equations simultaneously, one for the count model and one for the excess zeros.
- OLS regression Count outcome variables are sometimes log-transformed and analyzed
 using OLS regression. Many issues arise with this approach, including loss of data due to
 undefined values generated by taking the log of zero (which is undefined) and biased
 estimates.

Poisson regression analysis

At this point, we are ready to perform our Poisson model analysis. **Proc genmod** is usually used for Poisson regression analysis in SAS.

On the **class** statement we list the variable **prog**, since **prog** is a categorical variable. We use the global option **param** = **glm** so we can save the model using the **store** statement for future post estimations. The **type3** option in the model statement is used to get the multi-degree-of-freedom test of the categorical variables listed on the **class** statement, and the **dist** = **poisson** option is used to indicate that a Poisson distribution should be used. Statement "store" allows us to store the parameter estimates to a data set, which we call p1, so we can perform post estimation without rerunning the model.

Class Level Information

Class Levels Values prog 3 1 2 3

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2	196 196 196 196	189.4496 189.4496 212.1437 212.1437	0.9666 0.9666 1.0824 1.0824
Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)		-135.1052 -182.7523 373.5045 373.7096 386.6978	

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Wald 95% C	onfidence	
Wald Parameter Square	Pr > Cl	DF hiSq	Estimate	Error	Limi	ts	Chi-
Intercept 60.28	<.00	1 001	-4.8773	0.6282	-6.1085	-3.6461	
prog	1	1	-0.3698	0.4411	-1.2343	0.4947	
0.70	0.403	18					
prog	2	1	0.7140	0.3200	0.0868	1.3413	
4.98	0.02	57					
prog	3	0	0.0000	0.0000	0.0000	0.0000	
•	•						
math		1	0.0702	0.0106	0.0494	0.0909	
43.81	<.00	001					
Scale		0	1.0000	0.0000	1.0000	1.0000	

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source	DF	Chi- Square	Pr > ChiSq
prog	2	14.57	0.0007
math	1	45.01	<.0001

- The output begins with the basic model information and then provides a list of goodness-of-fit statistics including the log likelihood, AIC, and BIC.
- Next you will find the Poisson regression coefficients for each of the variables along with standard errors, Wald Chi-Square statistics and intervals, and p-values for the coefficients. The coefficient for **math** is .07. This means that the expected increase in log count for a one-unit increase in **math** is .07. For our three-level categorical predictor **prog**, the model presents coefficients relating levels 1 and 2 to level 3. The indicator variable **prog(2)** is the expected difference in log count between group 2 (**prog=2**) and the reference group (**prog=3**). So the expected log count for level 2 of **prog** is 0.714 higher than the expected log count for level 3 of **prog**. Similarly the expected log count for level 1 of **prog** is 0.3698 lower than the expected log count for level 3.
- To determine if **prog** itself, overall, is statistically significant, we can look at the Type 3 table in the outcome that includes the two degrees-of-freedom test of this variable. This is testing the null hypothesis that both **prog** estimates (level 1 vs. level 3 and level 2 vs. level 3) are equal to zero. We see there that **prog** is a statistically significant predictor.

To help assess the fit of the model, we can use the goodness-of-fit chi-squared test. This assumes the deviance follows a chi-square distribution with degrees of freedom equal to the model residual. From the first line of our Goodness of Fit output, we can see these values are 189.4495 and 196.

```
data pvalue;
  df = 196; chisq = 189.4495;
  pvalue = 1 - probchi(chisq, df);
run;
proc print data = pvalue noobs;
run;
df chisq pvalue

196 189.450 0.61823
```

This is not a test of the model coefficients (which we saw in the header information), but a test of the model form: Does the poisson model form fit our data? We conclude that the model fits reasonably well because the goodness-of-fit chi-squared test is not statistically significant. If the test had been statistically significant, it would indicate that the data do not fit the model well. In that situation, we may try to determine if there are omitted predictor variables, if our linearity assumption holds and/or if there is an issue of over-dispersion.

Cameron and Trivedi (2009) recommend using robust standard errors for the parameter estimates to control for mild violation of the distribution assumption that the variance equals the mean. In SAS, we can do this by running **proc genmod** with the **repeated** statement in order to obtain robust standard errors for the Poisson regression coefficients.

```
proc genmod data = poisson_sim;
  class prog id /param=glm;
  model num_awards = prog math /dist=poisson;
  repeated subject=id;
```

GEE Model Information

```
Correlation Structure Independent
Subject Effect id (200 levels)
Number of Clusters 200
Correlation Matrix Dimension 1
Maximum Cluster Size 1
Minimum Cluster Size 1
```

Algorithm converged.

GEE Fit Criteria

QIC 256.8581 OICu 257.6478

> Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates

Parameter		Estimate	Standard Error		fidence its	Z	Pr > Z
Intercept		-4.8773	0.6297	-6.1116	-3.6430	-7.74	<.0001
prog	1	-0.3698	0.4004	-1.1546	0.4150	-0.92	0.3557
prog	2	0.7140	0.2986	0.1287	1.2994	2.39	0.0168
prog	3	0.0000	0.0000	0.0000	0.0000		
math		0.0702	0.0104	0.0497	0.0906	6.72	<.0001

We can see that our estimates are unchanged, but our standard errors are slightly different.

We have the model stored in a data set called **p1**. Using **proc plm**, we can request many different post estimation tasks. For example, we might want to displayed the results as incident rate ratios (IRR). We can do so with a **data** step after using **proc plm** to create a dataset of our model estimates.

```
ods output ParameterEstimates = est;
proc plm source = p1;
 show parameters;
run;
data est exp;
 set est;
 irr = exp(estimate);
 if parameter ^="Intercept";
proc print data = est_exp;
run;
                                               StdErr
Obs
      Parameter
                           prog Estimate
                                                           irr
1
      type of program 1
                                   -0.3698
                                                0.4411
                                                          0.69087
      type of program 2
                                   0.7140
                                                0.3200
                                                       2.04225
```

The output above indicates that the incident rate for **prog**=2 is 2.04 times the incident rate for the reference group (**prog**=3). Likewise, the incident rate for **prog**=1 is 0.69 times the incident rate for the reference group holding the other variables constant. The percent change in the incident rate of **num awards** is by 7% for every unit increase in **math**.

Recall the form of our model equation:

```
log(num awards) = Intercept + b_1(prog=1) + b_2(prog=2) + b_3math.
```

This implies:

```
num_awards = exp(Intercept + b_1(prog=1) + b_2(prog=2) + b_3math) = exp(Intercept) * exp(b_1(prog=1)) * exp(b_2(prog=2)) * exp(b_3math)
```

The coefficients have an *additive* effect in the log(y) scale and the IRR have a *multiplicative* effect in the y scale.

For additional information on the various metrics in which the results can be presented, and the interpretation of such, please see *Regression Models for Categorical Dependent Variables Using Stata, Second Edition* by J. Scott Long and Jeremy Freese (2006).

Below we use **Ismeans** statements in **proc plm** to calculate the predicted number of events at each level of **prog**, holding all other variables (in this example, **math**) in the model at their means. We use the "**ilink**" option (for inverse link) to get the predicted means (predicted count) in addition to the linear predictions.

<pre>proc plm source = p1;</pre>	
lsmeans prog /ilink	cl;
run;	

3 -1.1841 1.7499 -0.6183

type of program Lower	Estimate Upper	Standard Error	z Value	Pr > z	Alpha	
1	-1.5540	0.3335	-4.66	<.0001	0.05	-
2.2076 2 0.7407	-0.9003 -0.4701 -0.1995	0.1381	-3.40	0.0007	0.05	-

-1.1841 0.2887 -4.10 <.0001 0.05

prog Least Squares Means

prog Least Squares Means

		Standard		
type of		Error of	Lower	Upper
program	Mean	Mean	Mean	Mean

1	0.2114	0.07050	0.1100	0.4064
2	0.6249	0.08628	0.4768	0.8191
3	0.3060	0.08834	0.1738	0.5388

The first block of output above shows the predicted log count. The second block shows predicted number of events in the "mean" column.

In the output above, we see that the predicted number of events for level 1 of **prog** is about .21, holding **math** at its mean. The predicted number of events for level 2 of **prog** is higher at .62, and the predicted number of events for level 3 of **prog** is about .31. Note that the predicted count of level 1 of **prog** is (.2114/.3060) = 0.6908 times the predicted count for level 3 of **prog**. This matches what we saw in the IRR output table.

Below we will obtain the averaged predicted counts for values of **math** that range from 35 to 75 in increments of 10, using a data step and the **score** statement of **proc plm**.

```
data toscore;
   set poisson_sim;
   do math cat = 35 to 75 by 10;
        math = math cat;
        output;
   end;
run;
proc plm source=p1;
   score data = toscore out=math /ilink;
proc means data = math mean;
   class math cat;
   var predicted;
run:
                              N
     math_cat Obs

      35
      200
      0.1311326

      45
      200
      0.2644714

      55
      200
      0.5333923

      65
      200
      1.0757584

      75
      200
      2.1696153
```

The table above shows that with **prog** at its observed values and **math** held at 35 for all observations, the average predicted count (or average number of awards) is about .13; when $\mathbf{math} = 75$, the average predicted count is about 2.17.

If we compare the predicted counts at math = 35 and math = 45, we can see that the ratio is (.2644714/.1311326) = 2.017. This matches the IRR of 1.0727 for a 10 unit change: $1.0727^{10} = 2.017$.

You can graph the predicted number of events using **proc plm** and **proc sgplot** below.

```
ods graphics on;
ods html style=journal;
```

```
proc plm source=p1;
  score data = poisson_sim out=pred /ilink;
proc sort data = pred;
  by prog math;
proc sgplot data = pred;
  series x = math y = predicted /group=prog;
run;
ods graphics off;
      3.0
      2.5
      2.0
 Predicted Value
      1.5
      1.0
      0.5
                                                                                 70
         30
                           40
                                             50
                                                               60
                                              math score
```

Things to consider

- When there seems to be an issue of dispersion, we should first check if our model is appropriately specified, such as omitted variables and functional forms. For example, if we omitted the predictor variable **prog** in the example above, our model would seem to have a problem with over-dispersion. In other words, a mis-specified model could present a symptom like an over-dispersion problem.
- Assuming that the model is correctly specified, you may want to check for overdispersion. There are several tests including the likelihood ratio test of overdispersion parameter alpha by running the same regression model using negative binomial distribution.

type of program

- One common cause of over-dispersion is excess zeros, which in turn are generated by an additional data generating process. In this situation, a zero-inflated model should be considered.
- If the data-generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.
- The outcome variable in a Poisson regression cannot have negative numbers.
- Poisson regression is estimated via maximum likelihood estimation. It usually requires a large sample size.

SAS Data Analysis Multivariate Regression Analysis

As the name implies, multivariate regression is a technique that estimates a single regression model with multiple outcome variables and one or more predictor variables.

Please Note: The purpose of this page is to show how to use various data analysis commands. It does not cover all aspects of the research process which researchers are expected to do. In particular, it does not cover data cleaning and checking, verification of assumptions, model diagnostics and potential follow-up analyses.

Examples of multivariate regression analysis

Example 1. A researcher has collected data on three psychological variables, four academic variables (standardized test scores), and the type of educational program the student is in for 600 high school students. She is interested in how the set of psychological variables relate to the academic variables and gender. In particular, the researcher is interested in how many dimensions are necessary to understand the association between the two sets of variables.

Example 2. A doctor has collected data on cholesterol, blood pressure and weight. She also collected data on the eating habits of the subjects (e.g., how many ounces of red meat, fish, dairy products, and chocolate consumed per week). She wants to investigate the relationship between the three measures of health and eating habits.

Example 3. A researcher is interested in determining what factors influence the health African Violet plants. She collects data on the average leaf diameter, the mass of the root ball, and the average diameter of the blooms, as well as how long the plant has been in the current container. For predictor variables, she measures several elements in the soil, in addition to the amount of light and water each plant receives.

Description of the data

Let's pursue Example 1 from above. We have a hypothetical dataset, <u>mvreg.sas7bdat</u>, with 600 observations on seven variables. The psychological variables are **locus of control**, **self-concept** and **motivation**. The academic variables are standardized tests scores in **reading**, **writing**, and **science**, as well as a categorical variable giving the type of program the student is in (general, academic, or vocational). In our example the dataset **mvreg.sas7bdat** is saved in a library called **data**.

Let's look at the data (note that there are no missing values in this data set).

```
proc means data = data.mvreg;
  vars locus_of_control self_concept motivation read write science;
run;
```

The MEANS Procedure

Variable Minimum	Label Maximum	N	Mean	Std Dev	
LOCUS_OF_CONTR	ROL	600	0.0965333	0.6702799	-
1.9959567	2.2055113				
SELF_CONCEPT	0.0005.600	600	0.0049167	0.7055125	_
2.5327499 MOTIVATION	2.0935633	600	0.0038979	0.8224000	-
2.7466691	2.5837522				
READ		600	51.9018333	10.1029831	
24.6200066 WRITE	80.5864944	600	52.3848332	9.7264550	
20.0688801	83.9348221				
SCIENCE		600	51.7633331	9.7061791	
21.9895325	80.3694153				

proc freq data = data.mvreg;
 table prog;
run;

The FREQ Procedure

program type

PROG	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	138	23.00	138	23.00
2	271	45.17	409	68.17
3	191	31.83	600	100.00

proc corr data = data.mvreg nosimple;
 var locus_of_control self_concept motivation;
run;

The CORR Procedure

3 Variables: LOCUS_OF_CONTROL SELF_CONCEPT MOTIVATION

Pearson Correlation Coefficients, N = 600 Prob > |r| under H0: Rho=0

	LOCUS_OF_ CONTROL	SELF_ CONCEPT	MOTIVATION
LOCUS_OF_CONTROL	1.00000	0.17119 <.0001	0.24513 <.0001

SELF_CONCEPT	0.17119 <.0001	1.00000	0.28857 <.0001
MOTIVATION	0.24513 <.0001	0.28857 <.0001	1.00000

proc corr data = data.mvreg nosimple; var read write science; run;

The CORR Procedure

3 Variables: READ WRITE SCIENCE

Pearson Correlation Coefficients, N = 600Prob > |r| under HO: Rho=0

	READ	WRITE	SCIENCE
READ	1.00000	0.62859 <.0001	0.69069 <.0001
WRITE	0.62859 <.0001	1.00000	0.56915 <.0001
SCIENCE	0.69069 <.0001	0.56915 <.0001	1.00000

Analysis methods you might consider

Below is a list of some analysis methods you may have encountered. Some of the methods listed are quite reasonable while others have either fallen out of favor or have limitations.

- Multivariate multiple regression, the focus of this page.
- Separate OLS Regressions You could analyze these data using separate OLS regression
 analyses for each outcome variable. The individual coefficients, as well as their standard
 errors, will be the same as those produced by the multivariate regression. However, the
 OLS regressions will not produce multivariate results, nor will they allow for testing of
 coefficients across equations.
- Canonical correlation analysis might be feasible if don't want to consider one set of variables as outcome variables and the other set as predictor variables.

Multivariate regression analysis

Technically speaking, we will be conducting a multivariate multiple regression. This regression is "multivariate" because there is more than one outcome variable. It is a "multiple" regression because there is more than one predictor variable. Of course, you can conduct a multivariate regression with only one predictor variable, although that is rare in practice.

To conduct a multivariate regression in SAS, you can use **proc glm**, which is the same procedure that is often used to perform ANOVA or OLS regression. The syntax for estimating a multivariate regression is similar to running a model with a single outcome, the primary difference is the use of the **manova** statement so that the output includes the multivariate statistics. The f- and p-values for four multivariate criterion are given, including Wilks' lambda, Lawley-Hotelling trace, Pillai's trace, and Roy's largest root. By specifying **h**=_**ALL**_ on the **manova** statement, we indicate that we would like multivariate statistics for all of the predictor variables in the model, if we were only interested in the multivariate statistics for some variables, we could replace **ALL** with the name of a variable (e.g. **h=read**).

The SAS output for multivariate regression can be very long, especially if the model has many outcome variables. The output from our example has four parts: one for each of the three outcome variables, and the fourth from the **manova** statement. Below we will discuss the output in sections.

The	GLM	Procedure

C	lass	s Leve	els	Vá	alı	ıes	
PI	ROG		3	1	2	3	
		Observations Observations					600 600

Above we see that the class variable **prog** has three levels. Just below the class level information, we see the number of observations read form the data and the number of observations used in the analysis. If the variables used in the analysis contained missing values the number of observations used would be smaller than the number of observations read.

Dependent Variable: LOCUS OF CONTROL

Value	Source Pr > F	DF	Sum of Squares	Mean Square	F
27.28	Model <.0001	5	50.2595509	10.0519102	
	Error	594	218.8562365	0.3684448	
	Corrected Total	599	269.1157874		

Mean		R-Square	Coeff Var	Root MSE	LOCUS_OF_CONT	ROL
0.0965	33	0.186758	628.7948	0.606997		
Value	Source Pr > F		DF	Type III SS	Mean Square	F
11.31	READ 0.0008		1	4.16815963	4.16815963	
12.82	0.0008 WRITE 0.0004		1	4.72524304	4.72524304	
	SCIENCE		1	0.92248638	0.92248638	
2.50	0.1141 PROG		2	5.02961991	2.51480995	
6.83	0.0012					

- The dependent variable, **locus of control**, is listed at the top of the output above.
- The ANOVA table for **locus_of_control** gives the sum of squares and mean square for both the model and error term. The model for **locus_of_control** is statistically significant with a p-value of less than 0.0001.
- Below the ANOVA table we see the R-square value of 0.187, indicating that 18.7% of variance in **locus_of_control** is explained by the model.
- The final table shown above gives the predictor variables in the model, along with the type III sum of squares for each variable. We can see that **read**, **write**, and **prog** are statistically significant. Note that because **prog** is a class variable with three levels, it uses 2 degrees of freedom (shown in the column labeled DF).

> t	Paramete:	r	Estimate	Standard Error	t Value	Pr
<.0001	Intercept	t	-1.373094234 B	0.16259260	-8.44	
0.0008	READ		0.012504619	0.00371779	3.36	
0.0008	WRITE		0.012145048	0.00339136	3.58	
0.1141	SCIENCE		0.005761477	0.00364116	1.58	
0.0003	PROG	1	-0.251670509 В	0.06846988	-3.68	
0.0003	PROG	2	-0.123875431 B	0.05760714	-2.15	
0.0319	PROG	3	0.000000000 B			
•						

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve

the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

- The table above gives the parameter estimates, their standard errors, t-value, and associated p-value. The coefficients are interpreted in the same manner as OLS regression coefficients. For example, a one unit increase in read is associated with a 0.013 increase in the predicted value of **locus of control**.
- The note shown above is SAS's way of telling us that it could not include the terms for all three levels of **prog** and the intercept in the model. Instead it has included the intercept and terms for **prog**=1 and **prog**=2, leaving **prog**=3 as the reference group.

The output for the first outcome variable (locus of control) is followed by similar output for each additional outcome (self_concept and motivation). This output is shown below, but we will not discuss it further, instead we will move on to the multivariate output.

The	GLM	Procedure

Dependent	Variable:	SELF	CONCEPT
-----------	-----------	------	---------

Parameter

Depend	lent Variable:	SELF_CONCEPT				
Value	Source Pr > F		DF	Sum of Squares	Mean Square	F
6.79	Model <.0001		5	16.1107053	3.2221411	
	Error		594	282.0402900	0.4748153	
	Corrected To	otal	599	298.1509953		
		R-Square	Coeff Va	ar Root MSE	SELF_CONCE	PT Mean
		0.054035	14014.9	0.689068	0.	.004917
Value	Source Pr > F		DF	Type III SS	Mean Square	F
0.10	READ 0.7568		1	0.04557875	0.04557875	
	WRITE		1	0.59051932	0.59051932	
	0.2652 SCIENCE		1	0.78237876	0.78237876	
	0.1998 PROG <.0001		2	14.21838537	7.10919268	
14.3/	√. 0001					
				Stand	dard	

Estimate

Error t Value

Pr

0.7823	Intercept	5	0.0510179965 B	0.18457670	0.28
	READ		0.0013076138	0.00422047	0.31
0.7568	WRITE		0042934282	0.00384990	-1.12
0.2652	SCIENCE		0.0053059405	0.00413348	1.28
0.1998	PROG	1	4233591913 В	0.07772768	-5.45
<.0001	PROG	2	1468757972 В	0.06539618	-2.25
0.0251	PROG	3	0.0000000000 B		
•					

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve

the normal equations. Terms whose estimates are followed by the letter $\mbox{{\sc 'B'}}$ are not

uniquely estimable.

The GLM Procedure

Dependent Variable: MOTIVATION

				S	um of				
Value	Source Pr > F		DF	Sq	uares		Mean	Square	F
20.96	Model <.0001		5	60.76	72827		12.1	534565	
	Error		594	344.36	14302		0.5	5797330	
	Corrected Tot	al	599	405.12	87128				
		R-Square	Coeff V	ar	Root	MSE	MC	TIVATION	Mean
		0.149995	19533.	65	0.762	1402		0.0	03898
Value	Source Pr > F		DF	Type I	II SS		Mean	Square	F
4 20	READ		1	2.494	45035		2.49	9445035	
	0.0385 WRITE		1	9.850	52717		9.85	5052717	
	<.0001 SCIENCE		1	2.251	73630		2.25	5173630	
3.88	0.0492 PROG		2	30.180	84209		15.09	0042104	
26.03	<.0001								

Standard

> t	Paramet	er	Estimate	Error	t Value	Pr
0 0007	Interce	pt	6911458885 В	0.20395228	-3.39	
0.0007	READ		0.0096735465	0.00466350	2.07	
	WRITE		0.0175354486	0.00425404	4.12	
<.0001	SCIENCE		0090014528	0.00456739	-1.97	
	PROG	1	6196960376 В	0.08588699	-7.22	
<.0001	PROG	2	2593666472 В	0.07226102	-3.59	
0.0004	PROG	3	0.0000000000 в			
•						

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve

the normal equations. Terms whose estimates are followed by the letter $\mbox{'B'}$ are not

uniquely estimable.

The final section of output for our model is output for the multivariate tests of the model.

The GLM Procedure Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for READ E = Error SSCP Matrix

	Characteristic		Characteristic Ve	ctor V'EV=1
MOTIVATION	Root	Percent	LOCUS_OF_CONTROL	SELF_CONCEPT
0.02560444	0.02414400	100.00	0.05725523	-0.00912678
0.00102214	0.0000000	0.00	-0.00704393	0.05979895
0.04972124	0.00000000	0.00	-0.03710958	-0.01295454

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall READ Effect

H = Type III SSCP Matrix for READ
E = Error SSCP Matrix

S=1 M=0.5 N=295

Statistic Value F Value Num DF Den

 $\mathtt{DF} \qquad \mathtt{Pr} > \mathtt{F}$

592	Wilks' Lambda 0.0027	0.97642519	4.76	3
	Pillai's Trace	0.02357481	4.76	3
592	0.0027 Hotelling-Lawley Trace	0.02414400	4.76	3
592	0.0027 Roy's Greatest Root	0.02414400	4.76	3
592	0.0027			

• The second table shown above gives the tests for the overall effect of **read**. These results indicate that **read** is statistically significant regardless of what type of multivariate criteria is used (i.e., all of the p-values are less than 0.01).

SAS prints similar output for each of the predictor variables in the model (in this case **write**, **science**, and **prog**), this output is shown below, but we will not discuss it further. Instead we will move on to additional tests.

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for WRITE E = Error SSCP Matrix

Ch	aracteristic		Characteristic Vec		
MOTIVATION	Root	Percent	LOCUS_OF_CONTROL	SELF_CONCEPT	
0.04077279	0.05552705	100.00	0.03976623	-0.02762931	
0.04077273	0.00000000	0.00	0.00235865	0.05460081	
0.03645138	0.00000000	0.00	0.05583890	0.00907776	-

 ${\tt MANOVA}$ Test Criteria and Exact F Statistics for the Hypothesis of No Overall WRITE Effect

S=1 M=0.5 N=295

DF	Statistic Pr > F	Value	F Value	Num DF	Den
	Wilks' Lambda	0.94739400	10.96	3	
592	<.0001 Pillai's Trace	0.05260600	10.96	3	
592	<.0001 Hotelling-Lawley Trace	0.05552705	10.96	3	
592	<.0001			-	
592	Roy's Greatest Root <.0001	0.05552705	10.96	3	

Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for SCIENCE E = Error SSCP Matrix

Ch	aracteristic		Characteristic Vec	tor V'EV=1	
MOTIVATION	Root	Percent	LOCUS_OF_CONTROL	SELF_CONCEPT	
0.04456052	0.01687455	100.00	0.03609681	0.03206920	-
0.01603289	0.00000000	0.00	-0.02316137	0.05234944	
0.01003209	0.00000000	0.00	0.05353009	-0.00762467	

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall SCIENCE Effect

H = Type III SSCP Matrix for SCIENCE
E = Error SSCP Matrix

		S=1 $M=0.5$	5 N=295		
DF	Statistic Pr > F	Value	F Value	Num DF	Den
592	Wilks' Lambda	0.98340548	3.33	3	
0,52	Pillai's Trace	0.01659452	3.33	3	
592	0.0193				
	Hotelling-Lawley Trace	0.01687455	3.33	3	
592	0.0193 Roy's Greatest Root	0.01687455	3.33	3	
592	0.0193				

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for PROG E = Error SSCP Matrix

Ch	aracteristic Root	Percent	Characteristic Vec-	tor V'EV=1 SELF CONCEPT	
MOTIVATION				_	
0.03813193	0.12087752	99.34	0.01903925	0.02549291	
0.01435613	0.00080748	0.66	0.04668032	-0.04866125	
0.03832351	0.00000000	0.00	0.04651187	0.02844692	-
0.03632331					

Multivariate Analysis of Variance

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall PROG Effect

Overall PROG Ellect	H = Type III SSCP Matrix for PROG E = Error SSCP Matrix	
	S=2 M=0 N=295	
Statistic DF Pr > F	Value F Value Num DF	Den
Wilks' Lambda 1184 <.0001	0.89143832 11.67 6	
Pillai's Trace	0.10864869 11.35 6	
Hotelling-Lawley Trace 787.56 < .0001	0.12168500 12.00 6	
Roy's Greatest Root 593 <.0001	0.12087752 23.89 3	
	stic for Roy's Greatest Root is an uppe	r
bound.	The state of the s	

NOTE: F Statistic for Wilks' Lambda is exact.

As mentioned above, if you ran a separate regression for each outcome variable, you would get exactly the same coefficients, standard errors, t- and p-values, and confidence intervals as shown above. So why conduct a multivariate regression? One of the advantages is that you can conduct tests of the coefficients across the different models. Below we show a few of the hypothesis tests you can perform.

For the first test, the null hypothesis is that the coefficient for **prog**=1 is equal to the coefficient for **prog**=2 for each dependent variable separately. An alternative way to state this hypothesis is that the difference between the two coefficients (i.e., prog=1 - prog=2) is equal to 0. The estimate statement can be used to perform this test. The text between the apostrophes (i.e., ') is a label for the output. Next we list the variable name (prog) followed by a series of numbers, one for each level of **prog** in order, these are the values by which the coefficients will be multiplied to perform the test. To estimate the difference between the coefficient for prog=1 and prog=2 we multiply the coefficient for prog=1 by 1, and the coefficient for prog=2 by -1, prog=3 is not involved in this test, so we multiply it by 0.

```
proc glm data = data.mvreg;
  class prog;
 model locus_of_control self_concept motivation
    = read write science prog / solution ss3;
 manova h= _ALL_ ;
 estimate 'prog 1 vs. prog 2' prog 1 -1 0;
run;
quit;
```

The output produced by this model is similar to the output for the previous model, except that it contains additional output associated with the use of the estimate statement. To save space, we will only show the additional output.

Dependent Variable: LOCUS OF CONTROL

Pr > t	Parameter	Estimate	Standard Error	t Value		
0.0462	prog 1 vs. prog 2	-0.12779508	0.06395501	-2.00		
Dependent	Variable: SELF_CONCEPT		Q. 1 1			
Pr > t	Parameter	Estimate	Standard Error	t Value		
0.0002	prog 1 vs. prog 2	-0.27648339	0.07260235	-3.81		
Dependent Variable: MOTIVATION						
Pr > t	Parameter	Estimate	Standard Error	t Value		
<.0001	prog 1 vs. prog 2	-0.36032939	0.08022363	-4.49		

There is separate output for each of the outcome variables. Each of the tables in the output gives the estimate (in this case the difference between the coefficients), the standard error of this estimate, the t-value and associated p-value. The output indicates that the coefficient for **prog**=1 is significantly different from the coefficient for **prog**=2 for each of the outcomes.

The next example tests the null hypothesis that the coefficient for the variable **write** in the equation with **locus_of_control** as the outcome is equal to the coefficient for **write** in the equation with **self_concept** as the outcome. We request this test by adding a second **manova** statement, where **h** gives the predictor variable or variables to be tested (i.e., **h=write**) and **m** gives the combination of outcome variables to test (i.e., **m=locus_of_control-self_concept**).

Again, we will only show the portion of the output associated with the new **manova** statement. The first table (shown below) gives the matrix for the outcome variables. In this case, we want to subtract the coefficients for **self_concept** (multiplied by -1) from the values of the coefficients for **locus_of_control** (multiplied by 1). Because motivation isn't involved in the test, it is multiplied by zero.

M Matrix Describing Transformed Variables

LOCUS_OF_
CONTROL SELF_CONCEPT MOTIVATION

MVAR1 1 -1 0

The GLM Procedure Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for WRITE E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V'EV=1
Root Percent MVAR1

0.02001074 100.00 0.04807919

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall WRITE Effect

	S=1	M = -0.5	N=296		
Statistic F	Value	F Value	Num DF	Den DF	Pr >
Wilks' Lambda	0.98038183	11.89	1	594	
Pillai's Trace 0.0006	0.01961817	11.89	1	594	
Hotelling-Lawley Trace 0.0006	0.02001074	11.89	1	594	
Roy's Greatest Root 0.0006	0.02001074	11.89	1	594	

The last table in the output shows that regardless of which multivariate statistic is used, the coefficient for **write** with **locus_of_control** as the outcome and the coefficient for **write** with **self_concept** as the outcome are significantly different.

For the final example, we test the null hypothesis that the coefficient for **science** in the equation for **locus_of_control** is equal to the coefficient for **science** in the equation for **self_concept**, and that the coefficient for the variable **write** in the equation for **locus_of_control** is equal to the coefficient for **write** in the equation for **self_concept**. To perform this test we need to use both the **contrast** statement and the **manova** statement. In the **contrast** statement, we specify the predictor variables we wish to test, in this case, we want to multiply the coefficients for **write** and **science** by 1. In the **manova** statement, we specify the portions of the test specific to the

outcome variables, in this case, we want to compare the coefficients for **locus_of_control** and **self_concept**, by subtracting one set of coefficients from the other.

As before, we will only show the portions of output associated with the test we are performing. Towards the beginning of the output (just after the class level information section) we see the table of contrasts for the coefficients. The matrix has two columns, one for each of the effects we wish to test.

Coefficients for Contrast write & science

		Row	1	Row	2
Intercept			0		0
READ			0		0
WRITE			1		0
SCIENCE			0		1
PROG PROG PROG	1 2 3		0 0 0		0 0 0

The output shown below is generated by the **manova** statement, and as before it appears towards the end of the output.

M Matrix Describing Transformed Variables

```
LOCUS_OF_
CONTROL SELF_CONCEPT MOTIVATION

MVAR1 1 -1 0

Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SSCP Matrix for write & science
E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V'EV=1
Root Percent MVAR1
```

0.02150343 100.00 0.04807919

MANOVA Test Criteria and Exact F Statistics for the
Hypothesis of No Overall write & science Effect
on the Variables Defined by the M Matrix Transformation
H = Contrast SSCP Matrix for write & science
E = Error SSCP Matrix

	S=1 $M=0$	N=296			
Statistic F	Value	F Value	Num DF	Den DF	Pr >
Wilks' Lambda	0.97894924	6.39	2	594	
Pillai's Trace 0.0018	0.02105076	6.39	2	594	
Hotelling-Lawley Trace 0.0018	0.02150343	6.39	2	594	
Roy's Greatest Root 0.0018	0.02150343	6.39	2	594	

The last table in the above output shows that regardless of which multivariate statistic is used, taken together, the two sets of coefficients are significantly different.

Things to consider

- The residuals from multivariate regression models are assumed to be multivariate normal. This is analogous to the assumption of normally distributed errors in univariate linear regression (i.e., OLS regression).
- Multivariate regression analysis is not recommended for small samples.
- The outcome variables should be at least moderately correlated for the multivariate regression analysis to make sense.