Optimization Theory and Applications

Kun Zhu (zhukun@nuaa.edu.cn)

December 19, 2018

General Integer Programming Problem

- An integer programming problem is a mathematical optimization program in which all of the variables are restricted to be integers
- A general integer program has the form

$$\begin{aligned} & \text{minimize} & & f(\mathbf{x}) \\ & \text{subject to} & & \mathbf{g}(\mathbf{x}) \leq 0 \\ & & & \mathbf{x} \in \mathbb{Z}^n \end{aligned}$$

In general, integer programming is NP-hard

Integer Linear Programming

- Integer linear programming (ILP): Linear programs with additional constraint that the variables are integers
- A general ILP has the form

Variants of Integer Linear Programming

- Mixed integer linear programming (MILP):
 - Some of the variables are constrained to be integers, while others are allowed to be non-integers
- 0-1 binary integer linear programming
 - The variables are restricted to be either 0 or 1
 - Note that any bounded integer variable can be expressed as a combination of binary variables

E.g., for $0 \le x \le b$, the variable x can be expressed using $\lfloor \log_2 b \rfloor + 1$ binary variables

$$x = x_1 + 2x_2 + 4x_3 + \dots + 2^{\lfloor \log_2 b \rfloor} x_{\lfloor \log_2 b \rfloor + 1}$$

 0-1 binary integer linear programming is one Karp's 21 NP-complete problems

Applications of Integer Linear Programming

- Examples of problems that can be formulated as ILPs
 - Traveling salesman
 - Knapsack (Packing) problem (e.g., WDP in combinational auction)
 - Assignment problem (e.g., channel assignment)
- Two main motivations for using integer variables:
 - The integer variables represent quantities that can only be integer
 - The integer variables represent decisions and so should only take on the value 0 and 1

Applications of Integer Linear Programming

• Example: shipping problem

Cargo	Volume	Weight	Profit
	(m^3/box)	(100kg/box)	(\$/box)
1	5	2	20
2	4	5	10
Transportation	24 m^3	1300 kg	
Restriction			

• How to ship the cargoes to have the largest profit?

Applications of Integer Linear Programming

- Denote x₁, x₂ the quantities of the shipped box of cargo 1 and 2, respectively
- The problem can be formulated as an ILP as

maximize
$$20x_1 + 10x_2$$

subject to $5x_1 + 4x_2 \le 24$
 $2x_1 + 5x_2 \le 13$
 $x_1, x_2 \in \mathbb{Z}^+$

Solving Methods for ILP

- Intuitive idea: LP relaxation of the ILP
- Consider special case: using unimodularity
- Exact algorithms
 - Cutting plane method
 - Dynamic programming
 - Branch and bound method
 - Branch and cut method
- Heuristic methods

LP Relaxation

- Main idea:
 - Remove the constraint that x is integer
 - Solve the corresponding LP
 - Then round the entries of the solution to the LP relaxation
- Problems:
 - The solution may not be optimal
 - The solution may not even be feasible
- However, optimal objective value of LP relaxation gives a lower bound of the ILP problem

LP Relaxation

Example: the original ILP

$$\begin{array}{ll} \text{maximize} & 2x_1 + 5x_2 \\ \text{subject to} & x_1 \leq 4 \\ & x_2 \leq 6 \\ & x_1, x_2 \in \mathbb{Z}^+ \end{array}$$

The LP Relaxation is

$$\begin{array}{ll} \text{maximize} & 2x_1 + 5x_2 \\ \text{subject to} & x_1 \leq 4 \\ & x_2 \leq 6 \\ & x_1, x_2 \geq 0 \end{array}$$

- The solution is $x_1 = 2, x_2 = 6$
- Luckily, we get the solution by LP relaxation

LP Relaxation

Another Example: the original ILP

$$\begin{array}{ll} \text{maximize} & 7x_1+6x_2\\ \text{subject to} & 2x_1+x_2\leq 3\\ & x_1+4x_2\leq 4\\ & x_1,x_2\in \mathbb{Z}^+ \end{array}$$

The LP Relaxation is

maximize
$$7x_1 + 6x_2$$

subject to $2x_1 + x_2 \le 3$
 $x_1 + 4x_2 \le 4$
 $x_1, x_2 \ge 0$

- The solution is $x_1 = 8/7, x_2 = 5/7$
- We round the solution and get $x_1 = 1, x_2 = 1$
- Question: is it a feasible solution?

- In general, the solution of the LP relaxation will not be optimal
- However, for a special case, where \mathbf{A} is unimodular, and $\mathbf{b} \in \mathbb{Z}^n$, every basic feasible solution is integral
- Consequently, the solution returned by the simplex algorithm is guaranteed to be integral
- **Definition**: An $m \times n$ integer matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$, m < n, is **unimodular** if all its nonzero mth-order minors (the determinant of the mth square sub-matrix) are ± 1 (i.e., either 1 or -1)

- Consider the linear system Ax = b with $A \in \mathbb{Z}^{m \times n}, m \leq n$
- Let B be a basis
- Then the unimodularity of ${\bf A}$ is equivalent to $|\det {\bf B}|=1$ for any such ${\bf B}$
- The following lemma connects unimodularity with integer basic solutions

- *Lemma*: Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{Z}^{m \times n}, m \leq n$ is unimodular and $\mathbf{b} \in \mathbb{Z}^m$. Then all basic solutions are integral
- Proof:
 - Suppose the first m columns of A constitute a basis B, then the corresponding basic solution is

$$\mathbf{x}^* = \left[\begin{array}{c} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{array} \right]$$

- Since all elements of A are integers, B is an integer matrix
- Moreover, because **A** is unimodular, $|det\mathbf{B}| = 1$, which implies that \mathbf{B}^{-1} is also an integer matrix
- Therefore, x* is an integer vector

- *Corollary*: Consider the LP constraint $A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0$, where \mathbf{A} is unimodular, $\mathbf{A} \in \mathbb{Z}^{m \times n}$, and $\mathbf{b} \in \mathbb{Z}^m$. Then all basic feasible solutions are integral
- Unimodularity allows us to solve an ILP problem by solving the corresponding LP problem

$$\begin{array}{lll} \text{minimize} & \boldsymbol{c}^{\top}\boldsymbol{x} & \text{minimize} & \boldsymbol{c}^{\top}\boldsymbol{x} \\ \text{subject to} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} & \\ & \boldsymbol{x} \in \mathbb{Z}^n \end{array} \Leftrightarrow \begin{array}{ll} \text{minimize} & \boldsymbol{c}^{\top}\boldsymbol{x} \\ \text{subject to} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0}, \end{array}$$

If **A** is unimodular and $\mathbf{b} \in \mathbb{Z}^m$

Example: Consider the following ILP problem

$$\begin{array}{ll} \text{maximize} & 2x_1 + 5x_2 \\ \text{subject to} & x_1 + x_3 = 4 \\ & x_2 + x_4 = 6 \\ & x_1 + x_2 + x_5 = 8 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \\ & x_1, x_2, x_3, x_4, x_5 \in \mathbb{Z} \end{array}$$

We can write this problem in matrix form with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix}$$

- Note that $\mathbf{b} \in \mathbb{Z}^3$
- Moreover, it is easy to check that A is unimodular
- Hence, the ILP problem above can be solved by solving the LP problem

$$\begin{array}{ll} \text{maximize} & 2x_1 + 5x_2 \\ \text{subject to} & x_1 + x_3 = 4 \\ & x_2 + x_4 = 6 \\ & x_1 + x_2 + x_5 = 8 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0. \end{array}$$

• The optimal solution is $[2, 6, 2, 0, 0]^T$

Next, we consider the ILP problems of the form

minimize
$$c^{\top}x$$

subject to $Ax \leq b$
 $x \geq 0$
 $x \in \mathbb{Z}^n$

- We can transform it into standard form with [A, I]y = b (y contains x and the slack variables)
- To deal with matrix of the form [A, I], we need another definition

- **Definition**: An $m \times n$ integer matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if all its nonzero minors are ± 1
- From this definition, if an integer matrix is totally unimodular, then each entry is 0, 1, or -1
- \bullet The next proposition relates the total unimodularity of A with the unimodularity of [A,I]

- **Proposition**: If an $m \times n$ integer matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is totally unimodular, then the matrix $[\mathbf{A}, \mathbf{I}]$ is unimodular
- Combining the result above with previous lemma, we obtain the following corollary
- Corollary: Consider the LP constraint

$$[\mathbf{A}, \mathbf{I}]\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} > 0$$

where $\mathbf{A} \in \mathbb{Z}^{m \times n}$ is totally unimodular and $\mathbf{b} \in \mathbb{Z}^m$. Then, all basic feasible solutions have integer components

 Total unimodularity of A allows us to solve an ILP problem of the following form by solving the corresponding LP problem

Example: Consider the following ILP problem

maximize
$$2x_1 + 5x_2$$

subject to $x_1 \le 4$
 $x_2 \le 6$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$.

• This problem can be written in the matrix form with

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix}$$

- It is easy to check that A is totally unimodular
- Hence, the ILP problem can be solved by solving the LP problem

$$\begin{array}{ll} \text{maximize} & 2x_1 + 5x_2 \\ \text{subject to} & x_1 + x_3 = 4 \\ & x_2 + x_4 = 6 \\ & x_1 + x_2 + x_5 = 8 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0, \end{array}$$

- Proposed by R. E. Gomory in 1958
- Main idea:
 - Solve the LP relaxation of the given ILP
 - Check the solution
 - If the optimal solution is integer, then we get the solution
 - If not, we add additional constraints to remove the noninteger optimal solutions from the feasible set
 - The process is repeated until the optimal solution is an integer vector

- The additional constraints are referred as Gomory cuts and they will not eliminate integer feasible solutions from the feasible set
- An illustrative figure (maximizing x₁ + x₂ under certain constraints)

- · To begin, we first introduce the floor operator
- Definition: The floor of a real number, denoted $\lfloor x \rfloor$, is the integer obtained by rounding x toward $-\infty$
- For example: |3.4| = 3 and |-3.4| = -4

· Consider the ILP problem

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \ge 0$
 $x \in \mathbb{Z}^n$

 We begin by obtaining an optimal basic feasible solution to the LP problem

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \ge 0$,

 Suppose the first m columns form the basis. The corresponding canonical augmented matrix is

- Consider the *i*th component of the optimal basic feasible solution, y_{i0} . Suppose that y_{i0} is not an integer
- Note that any feasible vector x satisfies the equality constraint

$$x_i + \sum_{j=m+1}^{n} y_{ij} x_j = y_{i0}$$

- Based on this, we can derive an additional constraint
 - Eliminate the current optimal noninteger solution from the feasible set
 - Keep any integer feasible solution
- To see how, consider the inequality constraint

$$x_i + \sum_{j=m+1}^n \lfloor y_{ij} \rfloor x_j \le y_{i0}$$

- Observations:
 - Since $\lfloor y_{ij} \rfloor \leq y_{ij}$, any $\mathbf{x} \geq 0$ that satisfies the above equality constraint also satisfies this inequality constraint
 - Accordingly, any feasible x satisfies this inequality constraint
- Moreover, for any integer feasible vector x, the left-hand side is an integer. Therefore, we can have

$$x_i + \sum_{i=m+1}^{n} \lfloor y_{ij} \rfloor x_j \le \lfloor y_{i0} \rfloor$$

 Subtracting the above inequality from the equation, we deduce that any integer feasible solution satisfies

$$\sum_{i=m+1}^{n} (y_{ij} - \lfloor y_{ij} \rfloor) x_j \ge y_{i0} - \lfloor y_{i0} \rfloor$$

- Note that the non-integer optimal basic feasible solution does not satisfy this inequality (since the left side is 0, while the right side is positive)
- With this new constraint, the current optimal BFS is no longer feasible, but every integer feasible vector remains feasible
- · This new constraint is called a Gomory cut

• We can transform the new LP into standard form by introducing a surplus variable x_{n+1}

$$\sum_{j=m+1}^{n} (y_{ij} - \lfloor y_{ij} \rfloor) x_j - x_{n+1} = y_{i0} - \lfloor y_{i0} \rfloor$$

- We can now solve the new LP using simplex method and check the resulting optimal BFS
 - · If it is integer, then we are done
 - If not, then we introduce another Gomory cut and repeat the process
- This is the Gomory cutting-plane method
- Note that the additional variables introduced by slack variables are not constrained to be integers

Example: Consider the following ILP problem

$$\begin{array}{ll} \text{maximize} & 3x_1+4x_2\\ \text{subject to} & \frac{2}{5}x_1+x_2\leq 3\\ & \frac{2}{5}x_1-\frac{2}{5}x_2\leq 1\\ & x_1,x_2\geq 0\\ & x_1,x_2\in \mathbb{Z}. \end{array}$$

First solve the problem graphically

- We now solve the problem using the Gomory cutting-plane method
- First we represent the associated LP problem in standard form

$$\begin{array}{ll} \text{maximize} & 3x_1+4x_2\\ \text{subject to} & \dfrac{2}{5}x_1+x_2+x_3=3\\ & \dfrac{2}{5}x_1-\dfrac{2}{5}x_2+x_4=1\\ & x_1,x_2,x_3,x_4\geq 0. \end{array}$$

And the first tableau is

We perform elementary operations and obtain

• The corresponding optimal basic feasible solution is

$$\left[\frac{55}{14}, \frac{10}{7}, 0, 0\right]^T$$

which does not satisfy the integer constraints

 We start introducing the Gomory cut corresponding to the first row of the tableau. We obtain

$$\frac{10}{14}x_3 + \frac{4}{14}x_4 - x_5 = \frac{6}{14}$$

We add this constraint to our tableau

· Perform some elementary operations and obtain

- The corresponding optimal BFS is [7/2, 1, 3/5, 0, 0]^T, which is still
 not integer
- Next, we construct the Gomory cut for the second row of the tableau

$$\frac{1}{2}x_4 - x_6 = \frac{1}{2}$$

We add this constraint to our tableau to obtain

Perform some elementary operations, we get

• We obtain the optimal BFS $[2,2]^T$ which is also the solution to the ILP

- Note that in previous example, only the first two components are integers, the slack variables and variables introduced by the Gomory cuts are not constrained to be integers
- However, if we have only integer values in constraint data, then, all variables are automatically integer

Further Reading

- Algorithms
 - Dynamic programming
 - Branch and bound method
 - Branch and cut method
 - Hungarian algorithm (for assignment problem)
- Knapsack problems
 - Single knapsack problem
 - Multiple knapsack problem
 - Reference: Knapsack problems algorithms and computer implementations