Review Week 4

- CPA
- Semantic security
- Confidentiality: semantic security against a CPA attack
 - encryption secure against eavesdropping
- Existential unforgeability -
- Integrity:
 - Existential unforgeability under chosen message attack
- Authenticated Encryption
 - Two requirements
 - Semantically secure
 - Ciphertext Integrity:
 - attacker cannot create new ciphertexts that decrypt properly
 - Authenticity attacker cannot fool bob into thinking a message was sent alice
- CTR mode -
- CBC -
- IV -
- TCP Checksum
- Active attack modifying information that is in route
- Chosen ciphertext security (CCA is chosen ciphertext attack)
 - can obtain encryption of arbitrary messages of his choice
 - can decrypt any ciphertext of his choice, other than the challenge text
 - goal: break semantic security
- MACs
 - designed for integrity not confidentiality
 - Encrypt-then-mac
 - always provides A.E.
 - MAC then encrypt
 - may be insecure against CCA attacks
 - MAC security
 - cannot create a new valid tag for the same message (semantic security)
- TLS record protocol
 - decryption
 - dec(k bs, record, ctr bs)
 - check pad format
 - check tag on [ctr_bs II header II data]
- Padding oracle:
 - attacker submits cipher text and learns if last bytes of plaintext are a valid pad
 - allowed to learn something about the resulting text
 - timing attacker result of the padding oracle
- SSH binary protocol
 - attack on the length field of the packet
 - learns the length field from the packet
 - to prevent this send the length field unencrypted
 - add a mac after the length field
- Key Derivation
 - when source key is uniform use a CTX a string that uniquely identifies the application II 0 ...
 n for the block
- Slow hash function

- iterate the hash function k times
- Deterministic encryption
 - cannot be CPA secure
 - attacker can tell when when two ciphertexts encrypt the same message
- SIV (Synthetic IV)
 - CPA that doesn't use nonces has to be randomized
- EME: constructing a wide block PRP
- Deterministic authenticated encryption
 - deterministic CPA security
 - ciphertext integrity
- Disk encryption
 - encrypt sectors using a PRP
- Tweakable block ciphers
 - use sector number as the tweak => every sector gets its own independent PRP
 - security
 - did we interact with pseudo random functions or truly random functions
 - Trivial construction
 - The trivial tweakable construction
 - $E_{\text{tweak}}(k,t,x) = E(E(k,t),x)$
 - to encrypt n blocks need 2n evaluations of E(.,.)
 - XTS tweakable block cipher
 - more efficient then the trivial construction
- Format preserving encryption (FPE)
 - map given CC# to {0,...,s-1} => apply PRP to get an output in {0,....,s-1} => map output back to CC#
 - Same security as Luby-Rackoff construction