```
In [114]:
```

```
import seaborn as sns # data visualization
import pandas as pd # functions and reading the files
import numpy as np
```

In [115]:

```
S = pd.read_csv(r"C:\Users\Vishal\Downloads\Serve.csv")
```

In [116]:

```
S.head() ##reading the data columns and rows
```

Out[116]:

	Amount	Tip	Gender	Smoker	Day	Time	Partysize
0	16.99	1.01	Female	No	Sun	Dinner	2.0
1	10.34	1.66	Male	No	Sun	Dinner	3.0
2	21.01	3.50	Male	No	Sun	Dinner	3.0
3	23.68	3.31	Mal	No	Sun	Dinner	2.0
4	24.59	3.61	Female	No	Sun	Dinner	4.0

In []:

```
Finding the days apart from weekends
```

In [117]:

```
S.Day.unique()
```

Out[117]:

In []:

```
Eating time of people
```

In [118]:

```
S.Time.unique()
```

Out[118]:

```
array(['Dinner', 'Lunch', 'LD', 'L', 'D'], dtype=object)
```

```
10/20/22, 5:37 PM
                                                         Untitled - Jupyter Notebook
  In [ ]:
  ....
  Finding the last row of the data
  In [119]:
  S.tail()
  Out[119]:
```

	Amount	Tip	Gender	Smoker	Day	Time	Partysize
322	19.09	3.00	Female	No	Thur	Dinner	3.0
323	23.90	3.98	Male	Yes	Thur	Dinner	3.0
324	25.89	3.89	Female	No	NaN	Lunch	3.0
325	20.09	2.96	Female	No	Sun	Dinner	4.0
326	14.56	2.78	Female	Yes	Sat	Lunch	2.0

```
In [ ]:
```

```
Count of lunches and dinners served
0.00
```

In [120]:

```
S.Time.value_counts()
```

Out[120]:

```
Dinner
           212
Lunch
           110
L
             3
             1
LD
D
```

Name: Time, dtype: int64

In []:

```
Data cleaning
0.00
```

In [122]:

```
S["Time"] = S["Time"].replace(['l'], 'Lunch') #replacing the value of L with Lunch
```

In [123]:

```
S["Time"] = S["Time"].replace(['D'],'Dinner') #replacing the D value with dinner
```

```
In [124]:
S.Time.value_counts()
Out[124]:
Dinner
          213
Lunch
          110
L
            3
LD
Name: Time, dtype: int64
In [ ]:
....
Counting the nan values
In [125]:
S['Day'].isna().sum()
Out[125]:
2
In [ ]:
dropping all the nan values
....
```

In [126]:

```
S2 = S.dropna()
S2
```

Out[126]:

	Amount	Tip	Gender	Smoker	Day	Time	Partysize
0	16.99	1.01	Female	No	Sun	Dinner	2.0
1	10.34	1.66	Male	No	Sun	Dinner	3.0
2	21.01	3.50	Male	No	Sun	Dinner	3.0
3	23.68	3.31	Mal	No	Sun	Dinner	2.0
4	24.59	3.61	Female	No	Sun	Dinner	4.0
321	19.76	2.21	Male	No	Sat	Dinner	3.0
322	19.09	3.00	Female	No	Thur	Dinner	3.0
323	23.90	3.98	Male	Yes	Thur	Dinner	3.0
325	20.09	2.96	Female	No	Sun	Dinner	4.0
326	14.56	2.78	Female	Yes	Sat	Lunch	2.0

317 rows × 7 columns

In [127]:

```
S2.Day.value_counts()
```

Out[127]:

Sat 106
Sun 91
Thur 77
Fri 34
Thurs 4
S 3
Friday 1
San 1

Name: Day, dtype: int64

In []:

```
replacing the values and making it equal
```

```
In [128]:
```

```
S2["Day"] = S2["Day"].replace(['Thurs'],'Th')
S2["Day"] = S2["Day"].replace(['S'],'Sun')
S2["Day"] = S2["Day"].replace(['Friday'],'Fri')
S2["Day"] = S2["Day"].replace(['San'],'Sun')
```

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\83213700.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Day"] = S2["Day"].replace(['Thurs'],'Th')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\83213700.py:2: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Day"] = S2["Day"].replace(['S'],'Sun')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\83213700.py:3: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Day"] = S2["Day"].replace(['Friday'],'Fri')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\83213700.py:4: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Day"] = S2["Day"].replace(['San'],'Sun')

```
In [129]:
```

```
S2.Day.value_counts()
Out[129]:
Sat
        106
Sun
         95
Thur
         77
Fri
         35
Τh
Name: Day, dtype: int64
In [130]:
S2["Time"] = S2["Time"].replace(['LD'],'Lunch')
C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\1637844370.py:1: SettingW
ithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand
as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
ersus-a-copy)
  S2["Time"] = S2["Time"].replace(['LD'],'Lunch')
In [131]:
S2.Amount.value_counts()
Out[131]:
19.65
         4
10.07
         3
8.88
         3
13.42
         3
20.69
10.65
         1
12.43
         1
24.08
         1
11.69
         1
20.09
Name: Amount, Length: 286, dtype: int64
```

In [132]:

S2.applymap(np.isreal)

Out[132]:

	Amount	Tip	Gender	Smoker	Day	Time	Partysize
0	True	True	False	False	False	False	True
1	True	True	False	False	False	False	True
2	True	True	False	False	False	False	True
3	True	True	False	False	False	False	True
4	True	True	False	False	False	False	True
321	True	True	False	False	False	False	True
322	True	True	False	False	False	False	True
323	True	True	False	False	False	False	True
325	True	True	False	False	False	False	True
326	True	True	False	False	False	False	True

317 rows × 7 columns

In [133]:

S2[~S2.applymap(np.isreal).all(1)]

Out[133]:

	Amount	Tip	Gender	Smoker	Day	Time	Partysize
0	16.99	1.01	Female	No	Sun	Dinner	2.0
1	10.34	1.66	Male	No	Sun	Dinner	3.0
2	21.01	3.50	Male	No	Sun	Dinner	3.0
3	23.68	3.31	Mal	No	Sun	Dinner	2.0
4	24.59	3.61	Female	No	Sun	Dinner	4.0
321	19.76	2.21	Male	No	Sat	Dinner	3.0
322	19.09	3.00	Female	No	Thur	Dinner	3.0
323	23.90	3.98	Male	Yes	Thur	Dinner	3.0
325	20.09	2.96	Female	No	Sun	Dinner	4.0
326	14.56	2.78	Female	Yes	Sat	Lunch	2.0

317 rows × 7 columns

In [134]:

```
S2.Time.value_counts()
```

Out[134]:

Dinner 206 Lunch 108 L 3

Name: Time, dtype: int64

In []:

....

People pay on dinner as compared to that of lunch, as the value of dinner is more than lunc

In [135]:

```
S2.Time.value_counts().plot(kind = "bar")
```

Out[135]:

<AxesSubplot: >

In [136]:

```
Contribution
Dinner = 65%
Lunch = 35%"""
```

Out[136]:

'\nContribution\nDinner = 65%\nLunch = 35%'

```
In [137]:
S2.Time.value_counts(normalize = True)
Out[137]:
Dinner
          0.649842
Lunch
          0.340694
          0.009464
L
Name: Time, dtype: float64
In [138]:
....
Finding tip
....
Out[138]:
'\nFinding tip\n'
In [139]:
S2.groupby(["Time"])["Tip"].mean()
Out[139]:
Time
Dinner
          3.077233
          2.450000
Lunch
          2.701296
Name: Tip, dtype: float64
In [140]:
```

```
"""Plotting"""
```

Out[140]:

'Plotting'

In [141]:

```
S2.groupby(["Time"])["Tip"].mean().plot.bar()
```

Out[141]:

<AxesSubplot: xlabel='Time'>

In [142]:

S2.Smoker.value_counts()

Out[142]:

No 181 Yes 129 N 5 Y 2

Name: Smoker, dtype: int64

```
In [143]:
```

```
S2["Smoker"] = S2["Smoker"].replace(['N'],'No')
S2["Smoker"] = S2["Smoker"].replace(['Y'],'Yes')
```

 $\label{local-temp-ipy-kernel} C:\Users\Vishal\AppData\Local\Temp\ipy-kernel_22540\966997748.py:1: Setting With Copy Warning:$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Smoker"] = S2["Smoker"].replace(['N'],'No')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\966997748.py:2: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Smoker"] = S2["Smoker"].replace(['Y'],'Yes')

In [144]:

```
S2.Smoker.value_counts()
```

Out[144]:

No 186 Yes 131

Name: Smoker, dtype: int64

In []:

```
....
```

Checking tips rate of somkers Vs Non Smokers

In [145]:

```
S2.groupby(["Smoker"])["Tip"].mean().plot.bar()
```

Out[145]:

<AxesSubplot: xlabel='Smoker'>

In []:

"""Maximum tip day"""

In [146]:

```
S2.groupby(["Day"])["Tip"].mean().plot.bar()
```

Out[146]:

<AxesSubplot: xlabel='Day'>

In [147]:

S2.Gender.value_counts()

Out[147]:

Male 187
Female 126
M 2
Mal 1
F 1

Name: Gender, dtype: int64

```
In [148]:

S2["Gender"] = S2["Gender"].replace(['M'],'Male')
S2["Gender"] = S2["Gender"].replace(['Mal'],'Male')
S2["Gender"] = S2["Gender"].replace(['F'],'Female')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\2345461062.py:1: SettingW ithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Gender"] = S2["Gender"].replace(['M'],'Male')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\2345461062.py:2: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Gender"] = S2["Gender"].replace(['Mal'],'Male')

C:\Users\Vishal\AppData\Local\Temp\ipykernel_22540\2345461062.py:3: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

Con the assert in the desermentation between // conden and of

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

S2["Gender"] = S2["Gender"].replace(['F'],'Female')

```
In [149]:
```

```
S2.Gender.value_counts()
```

Out[149]:

Male 190 Female 127

Name: Gender, dtype: int64

In []:

```
"""Gender giving more tip
```

In [150]:

```
S2.groupby(["Gender"])["Tip"].mean().plot.bar()
```

Out[150]:

<AxesSubplot: xlabel='Gender'>

In []:

"""Party paying more tip"""

In [151]:

```
S2.groupby(["Partysize"])["Tip"].mean().plot.bar()
```

Out[151]:

<AxesSubplot: xlabel='Partysize'>

In []:

"""Gender wise distribution on tip on the basis of smoker and non smoker"""

In [152]:

```
S2.groupby(['Smoker','Gender'])['Tip'].mean()
```

Out[152]:

Smoker Gender

No Female 2.800127 Male 3.069626 Yes Female 2.803333 Male 2.997349

Name: Tip, dtype: float64

In [153]:

```
S2.groupby(['Smoker','Gender'])['Tip'].mean().unstack()
```

Out[153]:

Gender	Female	Male		
Smoker				
No	2.800127	3.069626		
Yes	2.803333	2.997349		

In []:

"""Which day do smokers and non-smokers tip more generously on average?"""

```
10/20/22, 5:37 PM
                                                 Untitled - Jupyter Notebook
  In [154]:
  S2.groupby(['Smoker','Day'])['Tip'].mean().unstack()
  Out[154]:
               Fri
                                      Th
      Day
                       Sat
                               Sun
                                             Thur
  Smoker
      No 2.720667 3.017358 3.216308 4.350 2.571961
      Yes 2.527000 2.932075 3.144000 4.425 2.855000
  In [ ]:
  In [155]:
  S2.info()
  <class 'pandas.core.frame.DataFrame'>
  Int64Index: 317 entries, 0 to 326
  Data columns (total 7 columns):
   #
       Column
                  Non-Null Count Dtype
       ----
                   -----
   0
       Amount
                  317 non-null
                                   float64
                  317 non-null
                                   float64
   1
       Tip
   2
       Gender
                  317 non-null
                                   object
   3
       Smoker
                  317 non-null
                                   object
   4
       Day
                  317 non-null
                                   object
   5
       Time
                  317 non-null
                                   object
       Partysize 317 non-null
                                   float64
  dtypes: float64(3), object(4)
  memory usage: 19.8+ KB
  In [156]:
  S2 = S2.astype({'Amount':'float'})
  print(S2.dtypes)
               float64
  Amount
               float64
  Tip
  Gender
                object
  Smoker
                object
  Day
                object
  Time
                object
               float64
  Partysize
  dtype: object
  In [ ]:
  """Make a new column to track the percentage of tips compared to the total bill."""
```

In [157]:

```
S2['tip_pct'] = S2.Tip / S2.Amount
```

In [158]:

```
S2.head()
```

Out[158]:

	Amount	Tip	Gender	Smoker	Day	Time	Partysize	tip_pct
0	16.99	1.01	Female	No	Sun	Dinner	2.0	0.059447
1	10.34	1.66	Male	No	Sun	Dinner	3.0	0.160542
2	21.01	3.50	Male	No	Sun	Dinner	3.0	0.166587
3	23.68	3.31	Male	No	Sun	Dinner	2.0	0.139780
4	24.59	3.61	Female	No	Sun	Dinner	4.0	0.146808

In []:

```
""""When is the tip percentage the highest?"""
```

In [159]:

```
S2.groupby(["Time"])["tip_pct"].mean().plot.bar()
```

Out[159]:

<AxesSubplot: xlabel='Time'>

In []:

```
"""When is the tip percentage the highest?"""
```

In [160]:

```
S2.groupby(["Smoker"])["tip_pct"].mean().plot.bar()
```

Out[160]:

<AxesSubplot: xlabel='Smoker'>

In []:

"""Which gender's percentage of tips is higher?"""

In [161]:

```
S2.groupby(["Gender"])["Tip"].mean().plot.bar()
```

Out[161]:

<AxesSubplot: xlabel='Gender'>

In []:

"""Let's illustrate the connection between the cost and the tips."""

In [162]:

```
S2.plot.scatter(x = "Amount", y = 'Tip')
```

C:\Users\Vishal\AppData\Local\Programs\Python\Python310\lib\site-packages\pa
ndas\plotting_matplotlib\core.py:1114: UserWarning: No data for colormappin
g provided via 'c'. Parameters 'cmap' will be ignored
 scatter = ax.scatter(

Out[162]:

<AxesSubplot: xlabel='Amount', ylabel='Tip'>

In []:

```
"""According to this graph, the tip likewise rises as the overall bill does.
There are a few outliers in the graph above as well.
a better view of this graph using Seaborn"""
```

In [163]:

```
sns.scatterplot(x = "Amount" , y = 'Tip', data = S2)
```

Out[163]:

<AxesSubplot: xlabel='Amount', ylabel='Tip'>

In []:

"""adding the impact of column gender to the data to better understand it"""

In [164]:

```
sns.scatterplot(x = "Amount" , y = 'Tip', data = S2, hue = 'Gender')
```

Out[164]:

<AxesSubplot: xlabel='Amount', ylabel='Tip'>

In []:

"""dividing the time on the graph based on the gender column"""

In [165]:

```
sns.relplot(x = 'Amount', y = 'Tip', data = S2, col = 'Gender', hue = 'Time')
```

Out[165]:

<seaborn.axisgrid.FacetGrid at 0x2676fe3dc30>

In []:

"""Let's examine the amount by time distribution. Distribution plot"""

In [167]:

```
sns.displot(data = S2, x = 'Amount' , col = 'Time', kde = True)
```

Out[167]:

<seaborn.axisgrid.FacetGrid at 0x26770f5ca90>

In [168]:

"""Evidently, more customers pay at supper than at lunch; perhaps the restaurant could conc

Out[168]:

'Evidently, more customers pay at supper than at lunch; perhaps the restaura nt could concentrate more on lunch?'

In [169]:

Out[169]:

<seaborn.axisgrid.FacetGrid at 0x267738ba050>

In []:

"""The graph is left tailed"""

In []:

"""generating a distribution and connection for all numerical values according to gender"""

In [171]:

```
sns.pairplot(data = S2, hue = 'Gender')
```

Out[171]:

<seaborn.axisgrid.PairGrid at 0x26773d4dfc0>

