A study note about classical mechanism

 $A\ predictable\ subtitle$

ZUXIAN HE

Contents

1	Two	p-body problem	
	1.1	A introduce of the problem	
	1.2	The lagrangian of two-body problem	
	1.3	Reduced the problem to two single independent problems	
	1.4	The angulamentum	
	1.5	The euivalent one-dimentional problem	

1 Two-body problem

All human things are subject to decay, and when fate summons, Monarchs must obey

Mac Flecknoe John Dryden

1.1 An introduce of the problem

1.2 The lagrangian of two-body problem

Assume we have two particle with mass m_1 and m_2 . At time t = 0, the initial positions of the particles are r_1 and r_2 . According to Newtons second law:

$$\mathbf{F}_1$$
 (1)

From gratational force we know

$$F = G \frac{m_1 m_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|^2}$$

Hence the proentional energy of the two-body system is

$$U(\mathbf{r}_1, \mathbf{r}_2) = -G \frac{m_1 m_2}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Here you can clearly see that $U(r_1, r_2)$ is depend on:

- the difference of r_1 and r_2
- the magnitude of $U(\mathbf{r}_1, \mathbf{r}_2)$ or $U(\mathbf{r}_1, \mathbf{r}_2) = U(|\mathbf{r}_1 \mathbf{r}_2|)$.

If we introduce a new variable, $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ where \mathbf{r} is called *relative position*. The new variable maker U one more step easier to analyze. Which finally we have the potential energy for the tow body system is

$$U = U(r)$$

To conclude this section we write down the motion of two bodies with lagrangian formalism and we obtain

$$\mathcal{L} = \frac{1}{2}m_1\dot{r}^2 + \frac{1}{2}m_2\dot{r}_2^2 - U(r)$$
 (2)

1.3 Reduced the problem to two single independent problems

$$\mathcal{L} = \frac{1}{2}M\dot{R}^2 + (\frac{1}{2}\mu\dot{r}^2 - U(r))$$
 (3)

where

$$\mathcal{L}_{cm} = \frac{1}{2}M\dot{\boldsymbol{R}}^2$$

$$\mathcal{L}_{rel} = \frac{1}{2}\mu\dot{\boldsymbol{r}}^2 - U(r)$$

$$\mathcal{L}_{rel} = \frac{1}{2}\mu\dot{\boldsymbol{r}}^2 - U(r)$$

- The angulamentum 1.4
- The euivalent one-dimentional problem 1.5