© S.Boukaddid Optique MP2

Cohérence de la lumière

Table des matières

1	Cohérence temporelle	2
	1.1 Cas d'un doublet λ_1 et λ_2 : doublet jaune du soudium	2
	1.2 Raie à profil rectangulaire de largeur Δv	3
2	Cohérence spatiale	4

1 Cohérence temporelle

•La cohérence temporelle consiste à étudier l'influence, sur la figure d'interférence, de la monochromaticité de la source primaire supposée pnctuelle.

Dans le cas d'une source ponctuelle:

- $I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(\frac{2\pi}{\lambda}\delta(M)\right)$
- $si I_1 = I_2 = I_0$

$$I(M) = 2I_0 \left[1 + \cos \left(\frac{2\pi}{\lambda} \delta(M) \right) \right]$$

1.1 Cas d'un doublet λ_1 et λ_2 : doublet jaune du soudium

- I_{λ} : intensité spéctrale de la source
- $\lambda_1 = 589 nm \text{ et } \lambda_2 = 589,6 nm$
- $\lambda_1 \neq \lambda_2$: les deux ondes n'interfèrent pas
- $$\begin{split} \bullet \quad & I(M) = I_1(M) + I_2(M) \\ & = 2I_0 \left[1 + \cos \left(\frac{2\pi}{\lambda_1} \delta(M) \right) \right] + 2I_0 \left[1 + \cos \left(\frac{2\pi}{\lambda_2} \delta(M) \right) \right] \end{split}$$

- $\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$
- $\lambda_m = \frac{\lambda_1 + \lambda_2}{2}$; $\Delta \lambda = \lambda_2 \lambda_1$; $\lambda_1 \lambda_2 \approx \lambda_m^2$

$$I(M) = 4I_0 \left[1 + \cos \left(\pi \frac{\Delta \lambda}{\lambda_m^2} \delta \right) \cos \left(\frac{2\pi}{\lambda_m} \delta \right) \right]$$

• le contraste de la figure d'interférence dépend de δ

$$C = |V| = \left| \cos \left(\pi \frac{\Delta \lambda}{\lambda_m^2} \delta \right) \right|$$

avec V : visibilité des franges d'interférence

- le maximum de contraste est dû au fait que les deux figures d'interférence données par λ_1 et λ_2 sont en coïncidence
- le brouillage du figure s'explique par le fait que les deux figures sont en anti-coïncidence
- entre deux brouillages successifs

$$\Delta \delta = \frac{\lambda_m^2}{\Delta \lambda}$$

à l'aide de l'interféromètre de Michelson, on peut déterminer $\Delta\lambda$ facilement

1.2 Raie à profil rectangulaire de largeur Δv

• l'intensité spéctrale de la source pnctuelle : $I_v = \frac{dI_0}{dv}$

• l'intensité élementaire : $dI(M) = 2dI_0 \left[1 + \cos \left(\frac{2\pi v}{c} \delta \right) \right] = 2I_v \left[1 + \cos \left(\frac{2\pi v}{c} \delta \right) \right] dv$

•
$$I(M) = 2I_v^0 \int_{v_0 - \frac{\Delta v}{2}}^{v_0 + \frac{\Delta v}{2}} \left[1 + \cos\left(\frac{2\pi v}{c}\delta\right) \right] dv$$

• $sinc\left(\frac{\pi\Delta\nu}{c}\delta\right) = \frac{\sin\left(\frac{\pi\Delta\nu}{c}\delta\right)}{\frac{\pi\Delta\nu}{c}\delta}$: fonctin sinus cardinal

$$I(M) = 2I_{\nu}^{0} \Delta \nu \left[1 + sinc\left(\frac{\pi \Delta \nu}{c} \delta\right) \cos\left(\frac{2\pi \nu}{c} \delta\right) \right]$$

• le contraste de la figure d'interférence

$$C = \left| sinc\left(\frac{\pi\Delta\nu}{c}\delta\right) \right|$$

• Conclusion :Pour que le contraste de la figure d'interférence soit bon il est nécessaire que : $\delta(M) < l_c = c\tau = \frac{c}{\Delta v}$, ou l_c représente la longueur de cohérence temporelle.

2 Cohérence spatiale

La cohérence spatiale consiste à étudier l'influence, sur la figure d'interférence, de l'étendue de la source supposée monochromatique

► Cas des trous de Young avec une fente

Considérons le dispositif des trous de Young avec une fente source de largeur b

- l'intensité par unité de longeur $I_l = \frac{dI_0}{dx'}$
- la fente éclaire les deux trous de Young

•
$$dI = 2dI_0 \left[1 + \cos \left(\frac{2\pi}{\lambda} \delta(M) \right) \right] = 2I_l dx' \left[1 + \cos \left(\frac{2\pi}{\lambda} \delta(M) \right) \right]$$

•
$$\delta(M) = \frac{ax'}{d} + \frac{ax}{D}$$

•
$$I = 2I_l^0 \int_{-b/2}^{b/2} \left[1 + \cos\left(\frac{2a\pi}{\lambda} \left(\frac{x'}{d} + \frac{x}{D}\right)\right) \right] dx'$$

 $= 2I_l^0 \left[b + \frac{\lambda d}{2\pi a} \left\{ \sin\frac{2\pi a}{\lambda} \left(\frac{x}{D} + \frac{b}{2d}\right) - \sin\frac{2\pi a}{\lambda} \left(\frac{x}{D} - \frac{b}{2d}\right) \right\} \right]$

• $\sin(A+B) - \sin(A-B) = 2\sin B\cos A$

$$I(M) = 2I_l^0 b \left[1 + sinc\left(\frac{\pi ab}{\lambda d}\right) \cos\left(\frac{2\pi}{\lambda} \cdot \frac{ax}{D}\right) \right]$$

• le contraste de la figure d'interférence

$$C = \left| sinc\left(\frac{\pi ab}{\lambda d}\right) \right|$$

- - la visibilité : $V = sinc(\frac{\pi ab}{\lambda d}) > 0$
 - le contraste de la figure d'interférence est maximale pour les valeurs de b tendant vers zéro
 - lorsque la largeur de la source augment (b augmente), le contraste de la figure diminue

- - la visibilité : $V = sinc\left(\frac{\pi ab}{\lambda d}\right) = 0$
 - $I(M) = 2I_l^0 b$ est constante ,l'écran est donc uniformément éclairé
 - la longuer de cohérence spatiale est définie par

- $b_s = \frac{\lambda d}{a}$
- ► Cas n°3: $b_s < b < 2b_s$
 - la visibilité : $V = sinc\left(\frac{\pi ab}{\lambda d}\right) < 0$
 - il y a inversion de contraste : une frange brillante du 1^{er} cas devient sombre dans le $3^{\grave{e}me}$ cas et inversement
 - le contraste de la figure d'interférence diminue

- Dans le cas d'une source primaire ponctuelle, les interférences sont non localisées
- Dans le cas d'une source primaire non ponctuelle (étendue) les interférences sont localisées