Lecture 7: Properties of regular languages

Theorem 1 The set of regular languages are closed under

- 1. Concatenation (L_1 and L_2 regular, then so is L_1L_2),
- 2. Union $(L_1 \text{ and } L_2 \text{ regular, then so is } L_1 \cup L_2)$,
- 3. Kleene star (L regular, then so is L^*),
- 4. Complementation (L regular, then so is $\overline{L} = \Sigma^* L$), and
- 5. Intersection (L_1 and L_2 regular, then so is $L_1 \cap L_2$).

Proof:

- 1.-3. We have seen two ways of proving these statements in earlier lecture notes. The first way is to show that there exists a regular expression that represents the resulting language, the second way is to show that there exists an (N)FA that accepts the resulting language.
 - 4. Since L is regular, L is accepted by some DFA M. Let M' be the same as M except that:

A state is a final state in M' iff it is not a final state in M.

 \overline{L} is accepted by the DFA M'. Hence, \overline{L} is regular. 5.

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}.$$

Since the set of all regular languages is closed under union and complementation, thus it is also closed under intersection.

Summary:

There are 3 main ways to prove that a language is regular

- show that the language can be expressed as a regular expression
- show that the language can be recognized by an NFA or DFA
- use closure properties of regular languages

Example:

$$\Sigma = \{0, 1, \dots, 9\}$$

Prove that the following language is regular.

L= the set of decimal representations of natural numbers divisible by 2 or 3.

e.g.
$$0, 2, 3, 984330, 2378127, \dots$$

Proof:

• The set of decimal representation of natural numbers is

$$L_1 = \{0\} \cup \{1, 2, \dots, 9\} \Sigma^*$$

which is regular.

• The set of decimal representation of natural numbers divisible by 2 can be expressed as

$$L_2 = L_1 \cap \Sigma^* \{0, 2, 4, 6, 8\}$$

which is regular

• The set of decimal representation of natural numbers divisible by 3 is

$$L_3 = L_1 \cap L_4$$

where L_4 is the set of strings whose digits sum to a number which is divisible by 3 (but may begin with 0). We claim that the following FA accepts L_4 .

 q_0 : sum of digits mod 3 = 0.

 q_1 : sum of digits mod 3 = 1.

 q_2 : sum of digits mod 3 = 2.

Since L_1 and L_4 are regular and the set of regular languages is closed under intersection, hence L_3 is regular.

• $L = L_2 \cup L_3$ and hence is regular