

Leistungselektronik Cheat Sheet

1. Allgemeines

Allgemeines Tastverhältnis: $D = \frac{\tau_i}{x}$ $U_{di\alpha} = U_{di0} \cdot \cos \alpha$

Physikalische Größen U₀: Gleichspannung û: Scheitelwert

u(t): zeitabhängige Spannung

T: Periodendauer

t_i: Impulszeit

 $\overline{\it U}$: Arithmetischer Mittelwert

2. Mathematische Verfahren

2.1. Mittel- & Effektivwert

Arith. Mittelwert einer Mischspannung:
$$\overline{u}_{di}=U_{di}=\frac{1}{T}\int\limits_0^T u_d(t)\,dt$$
 Effektivwert: $U_{RMS}=\sqrt{\frac{1}{T}\cdot\int\limits_0^\beta u_d^2(t)\,dt}$ Für Sinusspannung: $U_{RMS}=\frac{u_d\cdot\sqrt{2(\sin(2a)-2a-\sin(2\beta)+2\beta)}}{4\cdot\sqrt{\pi}}$

Effektivwert einer diskreten Spannung

- 1. Spannung in Spannungen mit gleichem \hat{U} aufteilen
- 2. Effektivwerte der Einzelspannungen berechnen: $U_{xRMS} = \sqrt{D}\hat{U}$.
- 3. Quadratische Summe aller U_{xRMS} berechnen: $U_{RMS} = \sqrt{U_{xRMs}^2 + U_{x+1RMs}^2 \dots}$

2.2. Welligkeit, Klirr und Formfaktor

Klirrfaktor (THD) & Formfaktor

$$K_U = \frac{U_{RMS\,OS}}{U_{RMS}}$$
 $K_I = \frac{I_{RMS\,OS}}{I_{RMS}}$ $F = \frac{U_{d\,RMS}}{U_{d\,i}}$

2.3. Mittel- und Effektivwerte

 $\overline{U} = \frac{\hat{U}_S \cdot t_i}{2T} \mid U = \hat{U}_S \cdot \sqrt{\frac{t_i}{2T}}$

$$\overbrace{U} = \underbrace{\frac{\hat{U}_S}{\pi}} \mid U = \underbrace{\frac{\hat{U}_S}{2}} \qquad \underbrace{\overline{U}} = \underbrace{\frac{2 \cdot \hat{U}_S}{\pi}} \mid U = \underbrace{\frac{\hat{u}}{\sqrt{2}}}$$

3. Leistungsberechnung

3.1. Leistungsarten

 $S = U_{0\,RMS} \cdot I_{O\,RMS}$

Für rein sinusförmige Verläufe gilt:

 $\lambda = \frac{P}{S} = \cos \phi$ $S = \sqrt{P^2 + Q^2}$

 $Q = \sin(\phi)$

3.2. Betriebsquadranten

4. Wärmemanagement

4.1. Verlustleistung

Thermische Energie: Q Momentanleistung am PN Übergang: $p_v = u \cdot i$

Bauelement	Kennbuchstabe	Temperatur
Siliziumkristall - Junction	J	ϑ_J
Gehäuse - case	С	ϑ_C
Kühlkörper - heatsink	К	ϑ_K
Kühlmedien - ambient	U / A	ϑ_A

5. Mittelpunktschaltungen

5.1. Nomenklatur

id ud: Zeitverläufe von Strom und Spannung

 $I_d U_d$: In den Zeitverläufen von i_d und u_d enthaltene Mittelwerte

uT: Zeitlicher Verlauf der Spannung an einem Thyristor

 u_S : Zeitlicher Verlauf der Netzspannung

 U_S : Effektivwert der Netzspannung

UN: Effektivwert der verketteten Spannung

d: Ausgangsgröße

T: Transistor

S: Strang

N: verkettet Größe

5.2. Einphasige Mittelpunktschaltung M1 5.2.1. Aufbau und Funktion

5.2.2. Steuergesetz

Rein ohmsche Last: $U_{di\alpha} = \frac{\hat{U}_S}{2\pi} \cdot (1 + \cos \alpha)$

5.3. Zweiphasige Mittelpunktschaltung M2C

 $u_{s12} = u_{s1} - u_{s2} = u_N \cdot \frac{N_2}{N_1}$

Bei induktiver Last gilt: $u_d = u_R + u_L = i_d \cdot R + L \cdot \frac{di_d}{dt}$

5.3.2. Steuergesetz Bei nicht lückendem Betrieb ergibt sich

$$U_{dia} = \frac{1}{\pi} \int_{-\pi}^{\pi+\alpha} u_d(\omega t) d(\omega t) = \frac{2 \cdot \hat{U}_S}{\pi} \cdot \cos \alpha$$

5.4. Dreiphasige Mittelpunktschaltung M3C

$$U_{RMS} = \hat{U}_S \sqrt{\left[\frac{1}{2} + \frac{3}{4\pi} \cdot \frac{\sqrt{3}}{2}\right]} = 0,8405 \cdot \hat{U}_S$$

Für nicht lückenden Betrieb $\alpha < 30^{\circ}$: $U_{di\alpha} = \frac{3 \cdot \sqrt{3} \cdot \hat{U_S}}{2\pi} \cdot \cos \alpha$

Für lückenden Betrieb($\alpha < 30^{\circ}$): $U_{di\alpha} = U_{di0} \cdot \frac{1 + \cos(30^{\circ} + \alpha)}{1 + \sqrt{3}/2}$

6. Gleichstromsteller im Einquadrantenbetrieb

6.1. Tiefsetzsteller

Tastgrad: $D = \frac{t_{Ein}}{T_S}$

Schaltbedingung:

 $u_{Komp} > 0 \Rightarrow MOSFET eingeschaltet u_0(t) = U_d$

 $u_{Komp} < 0 \Rightarrow \mathsf{MOSFET}$ ausgeschaltet $u_0(t) = 0$

Mittelwert der Ausgangsspannung: $U_0 = \frac{t_{ein}}{T_G} \cdot U_d = D \cdot U_d$

$$T_S = \frac{1}{f_S}$$

$$t_{Ein} = \frac{U_{Steuer}}{\hat{U}_{SZ}} \cdot T_{S}$$

Resonanzfrequenz: $f_C = \frac{1}{2\pi\sqrt{L \cdot C}}$

L und C sind so zu wählen: $f_C/f_S = 0.01 \Rightarrow \frac{1}{2\pi\sqrt{LC}} = 0.01 \cdot f_S$

Stromwelligkeit: $\Delta_{iL} = \frac{u_L}{L} \cdot t_{ein} = \frac{U_d - U_0}{L} \cdot t_{ein}$

6.1.1. Lückender Betrieb

$$\begin{split} I_{Lg} &= \frac{1}{2} \cdot i_{L\,peak} = \frac{t_{ein}}{2L} \cdot (U_d - U_0) = \frac{D \cdot T_S}{2L} \cdot (U_d - U_0) = I_{0g} \\ \frac{U_0}{U_D} &= \frac{D^2}{D^2 + \frac{1}{2} \cdot \frac{I_0}{L \cdot I_{cons}}} & D = \frac{U_0}{U_d} \cdot \sqrt{\frac{I_{L\,max}}{I_{L\,U}}} \\ \frac{I_{0}}{I_{0} \cdot U_{0}} &= \frac{I_{0}}{I_{0} \cdot U_{0}} & D = \frac{U_0}{U_0} \cdot \sqrt{\frac{I_{0}}{I_{0} \cdot U_{0}}} \end{split}$$

6.2. Hochsetzsteller

Der Mittelwert der Ausgangsspannung U_0 ist höher als der Mittelwert der Eingangsspannung U_d .

$$U_{d} = U_{L} = L \cdot \frac{dI_{L}}{dt}$$

$$i_{L} = \int U_{d} dt = \frac{U_{d}}{L} \cdot t = \frac{(U_{d} - U_{0})}{L} \cdot t$$

$$u_{l}(t)$$

$$i_{l} \cdot peak$$

$$i_{l}(t)$$

$$\frac{U_0}{U_d} = \frac{T_S}{T_S - t_{ein}} = \frac{1}{1 - D}$$

6.2.1. Lückender Betrieb

$$I_{Lg} = \frac{1}{2} \cdot i_{L \, peak} = \frac{t_{ein}}{2L} \cdot U_d = \frac{D}{2L} \cdot T_S \cdot U_d = \frac{T_S}{2L} \cdot D \cdot U_0 \cdot (1-D)^2$$

7. Gleichstromsteller im Zweiguadrantenbetrieb

7.1. Zweiquadrantensteller mit Stromumkehr

7.2. Zweiquadrantensteller mit Spannungsumkehr

7.2.1. Steuergesetz

Nicht lückender Betrieb:
$$\frac{U_0}{U_d} = 2 \cdot D_{TA+} - 1$$

Versetzte Taktung: $\frac{U_0}{U_d} = (D-1)$

8. Gleichstromsteller im Vierquadrantenbetrieb

8.1. Grundlagen

Die Verriegelungszeit bezeichnet das Zeitintervall, in dem beide Schalter einer Halbbrücke gleichzeitig abgeschaltet sind.

 $u_0(t) = u_{AN}(t) - u_{BN}(t)$

8.2. Pulsbreitenmodulation mit zwei Spannungsniveaus

Mittelwerte U_{AN} und U_{BN}

$$U_{AN} = \frac{U_d \cdot t_{ein} + 0 \cdot t_{aus}}{T_S} = U_d \cdot \frac{t_{ein}}{T_S} = U_d \cdot D_{TA+}$$

$$U_{BN} = \frac{U_d \cdot t_{ein} + 0 \cdot t_{aus}}{T_S} = U_d \cdot \frac{t_{ein}}{T_S} = U_d \cdot D_{TB+}$$

Schaltbedingungen

 T_{A+}, T_{B-} ein wenn: $u_{Steuer} > u_{\Delta}$ T_{A-}, T_{B+} ein wenn: $u_{Steuer} \leq u_{\Delta}$

 $\begin{aligned} u_{\Delta} &= \hat{U}_{\Delta} \cdot \frac{t}{T_{S}/4} \text{ mit } -\frac{T_{S}}{4} < t < \frac{T_{S}}{4} \\ t_{1} &= \frac{u_{Steuer}}{\hat{U}_{\Delta}} \cdot \frac{T_{S}}{4} \end{aligned}$

$$t_1 = \frac{\text{"Steuer}}{\hat{U}} \cdot \frac{1}{4}$$

$$D_{TA+} = \frac{t_{ein}}{T_S} = \frac{2 \cdot t_1 + \frac{T_S}{2}}{T_S} = 2 \cdot \frac{t_1}{T_S} + \frac{1}{2} = \frac{1}{2} \left(1 + \frac{u_{Steuer}}{\hat{U}_\Delta} \right)$$

$$U_0 = U_{AN} - U_{BN} = U_d \cdot D_{TA+} - U_d \cdot D_{TB+} = U_d \cdot \frac{U_{Steeuer}}{\hat{U}_{\Delta}}$$

8.3. Pulsbreitenmodulation mit drei Spannungsniveaus (PWM3)

Schaltbedingungen

 T_{A+} ein, wenn $u_{Steuer} \geq u_{\Delta}$, T_{A-} ein, wenn $u_{Steuer} < u_{\Delta}$

$$T_{B+}$$
ein, wenn $-u_{Steuer} \geq u_{\Delta}$, T_{B} ein, wenn $-u_{Steuer} < u_{\Delta}$

9. Umrichter

9.1. Grundlagen

 $\hat{U}_{0,1}$: Sinusförmige Grundschwingung.

F der Grundschwingung = F der Rechteckspannung.

9.2. Einphasige spannunngseinprägende Wechselrichter

 $\hat{U}_{0,1} = \frac{2}{\pi} \cdot U_d$

9.3. Vierquadrantensteller mit Grundfrequenztaktung

 $\hat{U}_{0,1} = \frac{4}{\pi} \cdot U_d.$

9.4. Unterschwingungsverfahren

 $U_0 = U_d \cdot \frac{{}^{u}Steuer}{\hat{U}_{\Delta}}$