

27 AUGUST 2024

ASE 367K: FLIGHT DYNAMICS

TTH 09:30-11:00 CMA 2.306

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Instructor and Teaching Assistant

DR. JOHN-PAUL CLARKE

E-mail: johnpaul@utexas.edu

Office: ASE 3.222

EDWARD JUNG

E-mail:

edward.jung@utexas.edu

TUTORIALS:

W 15:00-17:00

ASE 3.204

Learning Objectives

- Understand aircraft configuration aerodynamics, performance, stability, and control
- Estimate an aircraft's aerodynamic characteristics from geometric and inertial properties
- Analyze linear and nonlinear dynamic systems
- Recognize airplane modes of motion and their significance
- Compute aircraft motions
- Appreciate historical development of aviation

Course Topics

- Aerodynamics
- Statics & Dynamics
- Cruise Flight Performance
- Accelerated Flight Performance
- Differential Eçquations & Linear Algebra
- Non-Linear 6-Degree of Freedom Equations of Motion

- Airplane Control
- Linearized Equations of Motion
- Longitudinal & Lateral Dynamics
- Stability & Analysis of Linear Systems

Textbook

Title: Dynamics of Flight

Stability and Control

3rd Edition

Authors: Bernard Etkin and Lloyd Duff Reid

Publisher: Wiley

Year: 2010

Deliverables and Grade Contributions

HW 1	FRI	06-SEP	23:59	7.5%
HW 2	FRI	13-SEP	23:59	7.5%
HW 3	FRI	20-SEP	23:59	7.5%
HW 4	FRI	27-SEP	23:59	7.5%
Exam 1	TUE	01 - OCT	09:30	10.0%
HW 5	FRI	18 - OCT	23:59	7.5%
HW 6	FRI	25 - OCT	23:59	7.5%
HW 7	FRI	01-NOV	23:59	7.5%
HW 8	FRI	08-NOV	23:59	7.5%
Exam 2	TUE	12-NOV	09:30	10.0%
Term Project	FRI	06-DEC	23:59	20.0%

Homework and Exams

Homework:

Homework due electronically at 23:59 on due dates.

Working together on assignments is permitted; however, every student must turn in their own original work.

Late assignments will ONLY be accepted if an extension is requested a priori due to the observance of a religious holy day.

Exams:

The exams during the term (01-OCT and 12-NOV) will take approximately one hour and 15 minutes and occur during the lecture period on the respective days.

There will be NO final exam.

AIRCRAFT BASICS

From Various Sources

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Airplane Components

Aircraft Control Surfaces

Phases of Flight (Commercial)

BASICS OF AERODYNAMICS

From Clarke + Stengel

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Wing Lift and Drag

- Lift: <u>Perpendicular</u> to free-stream airflow
- Drag: <u>Parallel</u> to the free-stream airflow

- Aerodynamic force that opposes an aircraft's motion through the air
 - Caused by interaction of a solid body with a fluid
 - Aerodynamic "friction" or resistance to motion
- Depends on:
 - Wing shape
 - Angle of attack
 - Air viscosity
 - Compressibility
- Two components
 - Profile drag
 - Induced drag

- Also called "form drag" because the separation of the boundary layer around an object is a function of its form
 - Related to viscous effects of flow over lifting surface
- Question:
 - What happens to yourbody when you are running and just happen to brush against a stationary object?

- Dimples = greater skin friction drag = greater distance to separation of flow = lower profile drag
- Vortices "take away" energy from the airflow
- Question: Why is this important for drag?

- Arises from 3-dimensional effects of a wing caused by downwash velocity near wing tip
- Vortices create a downward velocity component at the wing
- Non-dimensional coefficient of induced drag:

$$-C_{D_I} = C_L^2 / \pi eAR$$

Source: Newman, Dava J., Interactive Aerospace Engineering and Design

Total drag = profile drag + induced drag

Coefficient of total drag

$$- C_{D_{TOTAL}} = C_{D_0} + C_L^2 / \pi eAR$$

- Lift is the force that holds an aircraft in the air
 - L = W in straight and level flight!!!
- Coefficient of lift: empirical non-dimensional parameter for easier evaluation of lift
 - $C_1 = L / (0.5 \rho v^2 S)$
 - -q = dynamic pressure = $0.5 \rho v^2$
 - Substituting in q, $L = qSC_L$

How does a wing generate lift?

- To really answer this question you need to understand:
 - Kinetic Theory
 - Bernoulli's Equation
- So... that's what we will cover next!

 The change in momentum in the x-direction for each individual molecule and each collision is:

$$\Delta Mom_x = 2 \cdot m \cdot v_x$$

 In a time interval ∆t the number of collisions for a given molecule on a box of length L in the xdirection is:

$$\Delta t \cdot V_X / (2 \cdot L)$$

• Thus, the momentum change for an individual molecule over a time interval Δt is:

$$\Delta Mom_x = \Delta t / L \cdot v_x^2$$

Generalizing to N molecules we get:

$$\Delta Mom_{x} = N \cdot \Delta t / L \cdot \overline{V^{2}}_{x}$$

Then, when we consider the Y and Z directions, we get:

$$\Delta Mom_x = N \cdot \Delta t / L \cdot 1/3 \cdot \overline{V^2}$$

• Finally, we use the definition of force and the definition of pressure to get:

$$P = (\Delta Mom_x / \Delta t) / A = 2/3 \cdot N / V \cdot (0.5 \text{ m} \overline{v^2})$$

Bernoulli's Equation

Simple form of Bernoulli's equation is:

$$P + 0.5 \rho v^2 = P_0$$

- This is a simple form of the law of conservation of energy for an incompressible fluid
 - Energy that is not used to move the fluid is used to generate pressure
 - Therefore, a moving fluid will have lower static pressure!!!

How does the airflow over a wing look?

- Air above is speeded up relative to the corresponding air below.
 - The different colored areas above and below the wind represent time slices through the flow

Source: http://www.av8n.com/how/

How does the airflow over a wing look?

- Each air parcel gets a temporary change in speed and a permanent offset in position.
 - The change in speed results in a change in pressure because the energy that is nominally used to create pressure is being used to move the flow.

Source: http://www.av8n.com/how/

What is the net effect of this airflow?

 Bernoulli's Principle states that faster air has lower pressure.

$$P + \frac{1}{2}\rho V^2 = k$$

- Strong suction (relative to ambient pressure) above the wing.
- Much less suction (or higher pressure) below the wing.
- Net force is lift!

What are the key points to remember?

- Suction on the top of the wing is more important than pressure acting on the bottom of the wing.
 - Almost no high pressure on the bottom of the wing at low angles of attack.
 - Suction above the wing does more than 100% of the job of lifting.
- The front quarter or so of the wing does half of the lifting.

Lift vs. Angle of Attack 2-D Lift (inviscid, incompressible flow)

Lift Curve

Drag Polar Curve

Effect of skin friction drag

Lift Curve

Drag Curve

Bernoulli and Pitot tubes

- Bernoulli's equation is also very important for measuring the speed of an aircraft
- Basis of Pitot tube a.k.a. a glorified manometer!

$$v = \sqrt{2((P_0 - P)/\rho)}$$

What do Pitot tubes look like?

Basic relationships of lift and drag (1)

 Lift and drag are functions of air density, airspeed, wing area, wing shape and angle of attack:

$$L = \frac{1}{2}\rho V^2 SC_L$$
$$D = \frac{1}{2}\rho V^2 SC_D$$

In "steady flight" all the forces must balance, thus:

$$-L\sin(\gamma) - D\cos(\gamma) + T\cos(\gamma + \alpha) = 0$$
$$L\cos(\gamma) - D\sin(\gamma) + T\sin(\gamma + \alpha) = W$$

Longitudinal Aerodynamic **Forces**

Non-dimensional force coefficients, C_L and C_D , are dimensionalized by

dynamic pressure, q, N/m² or lb/sq ft

reference area, S, m² of ft²

$$Lift = C_L \overline{q} S = C_L \left(\frac{1}{2} \rho V^2 \right) S$$

$$Lift = C_L \overline{q} S = C_L \left(\frac{1}{2}\rho V^2\right) S$$

$$Drag = C_D \overline{q} S = C_D \left(\frac{1}{2}\rho V^2\right) S$$

