

Sipeed M1n 规格书 v1.0

特性:

- CPU: RISC-V 64bit 双核处理器, 400Mhz 标准频率(可超频)
- 图像识别:QVGA@60FPS/VGA@30FPS
- 声音识别:支持高达 8 个麦克风组成的阵列
- 深度学习框架:TensorFlow/Keras/Darknet
- 外设:FPIOA、UART、GPIO、SPI、I²C、I²S、WDT、TIMER、RTC etc.

深圳矽速科技有限公司 www.sipeed.com

本文档更新记录	
V1.0	2019年9月11日编辑;原始文档

CPU: RISC-V 双核 64bit, 400Mh 可调频率	强大的双核 64 位基于开放架构的处理器,具备丰富的社区资源支持
FPU 规格	满足 IEEE754-2008 标准
Debugging 支持	具备用以调试的高速 UART 与 JTAG 接口(只提供了焊线焊盘)
板载摄像头 DVP 座子	24pin 0.5mm 间距 FPC 座子; AVDD-3.0V; DVDD-1.3V
IO引出	除了 JTAG 接口的 4 个 IO,其余 IO 都引出到 M.2 接口
神经网络处理器 (KPU)	 支持主流训练框架按照特定限制规则训练出来的定点化模型 对网络层数无直接限制,支持每层卷积神经网络参数单独配置,包括输入输出通道数目、输入输出行宽列高 支持两种卷积内核 1x1 和 3x3 支持任意形式的激活函数 实时工作时最大支持神经网络参数大小为 5.5MiB 到 5.9MiB 非实时工作时最大支持网络参数大小为 (Flash 容量-软件体积)
音频处理器 (APU)	 可以支持最多 8 路音频输入数据流,即 4 路双声道 可以支持多达 16 个方向的声源同时扫描预处理与波束形成 可以支持一路有效的语音数据流输出 内部音频信号处理精度达到 16-位 输入音频信号支持 12-位,16-位,24-位,32-位精度 支持多路原始信号直接输出 可以支持高达 192K 采样率的音频输入 内置 FFT 变换单元,可对音频数据提供512 点快速傅里叶变换 利用系统 DMAC 将输出数据存储到 SoC 的系统内存中
静态随机存取存储器 (SRAM)	SRAM 包含两个部分,分别是 6MiB 的片上通用 SRAM 存储器与 2MiB 的片上 AI SRAM 存储器,共计 8MiB (1MiB 为 1 兆字 节)。
现场可编程 IO 阵列 (FPIOA/IOMUX)	FPIOA 允许用户将 255 个内部功能映射到芯片外围的 48 个自由 IO 上
数字视频接口 (DVP)	最大支持 640X480 及以下分辨率,每帧大小可配置
快速傅里叶变换加速器	FFT 加速器是用硬件的方式来实现 FFT 运算

软件概述	
FreeRtos & Standard SDK	支持 FreeRtos and Standrad development kit.
MicroPython Support	支持 MicroPython on M1
机器视觉	Machine vision based on convolutional neural network
机器听觉	High performance microphone array processor

硬件概述	
外部供电电压需求	5.0V ±0.2V
外部供电电流需求	> 300mA @ 5V
温升	<30K
工作温度范围	-30°C ~ 85°C

M1n 框图

M1n pin out

尺寸信息	
长	25.0mm
宽	22.0mm
厚度	2.7 mm(最厚处)

注意事项	
Boot 模式选择	在启动时,BOOT 引脚用于选择两个启动选项之一: 从主 FLASH 存储启动(设置BOOT 引脚为 3.3V)(让BOOT 引脚悬空或者上拉到 3.3V) 进入 ISP 下载模式(设置BOOT 引脚为 0V)
RST 引脚	RST 引脚的电平范围是 0-1.8V; 低电平有效; 请勿让 RST 引脚的电压大于 1.8V

资源	
官网	www.sipeed.com
Github	https://github.com/Sipeed
BBS	http://bbs.sipeed.com
Wiki	maixpy.sipeed.com
Sipeed 模型平台	https://maixhub.com/
SDK 相关信息	dl.sipeed.com/MAIX/SDK
HDK 相关信息	dl.sipeed.com/MAIX/HDK
E-mail(技术支持和商业合作)	support@sipeed.com
telgram link	https://t.me/sipeed
AI QQ 交流群	878189804

免责声明和版权声明

本文档中的信息(包括 URL 地址)如有更改,恕不另行通知。 该文档由 Sipeed 提供,不附带任何形式的担保,包括任何适销 性担保,以及其他地方提及的任何提案,规范或样本。 本文档 不构成责任,包括使用本文档中的信息侵犯任何专利权。

Copyrights © 2019 Sipeed Limited. All rights reserved.