

Evaluating Graph Embeddings and Graph Similarity Measurements for Database Systems

Josephine Rehak

Profilprojekt Anwendungsforschung in der Informatik

Motivation

Motivation I

Overview

Creating a directed graph from database

- Vertices: IDs + Table entries
 - Except: foreign keys, mn-tables

id	Name	Year	mid	gid	id	Genre
1	Star Wars	1977	1	1	1	Science Fiction
2	Star Trek	1979	2	1		1 iction

"Star Wars"

movie_1

197*

movie_2

"Star Trek"

genre_1

Creating a directed graph from database

- Vertices: IDs + Table entries
 - Except: foreign keys, mn-tables
- Edges: Inner + Inter Table Relations
 - Directed edges: id to table values + Foreign keys
 - MN-Table-Relations to bidirected edges

id	Name	Year	mid	gid	id	Genre
1	Star Wars	1977	1	1	1	Science Fiction
2	Star Trek	1979	2	1		TICHOTT

Similarity Measures in Verse

- Adjacency Similarity:
 - Similarity to neighbours only
 - Low complexity

$$sim_{G}^{ADJ}(u, v) = \begin{cases} 1/Out(u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Similarity Measures in Verse

- Personalized Page Rank:
 - Random walker with jump back probability (lpha)
 - Initial assignment, then recursive
 - Ranks converge to:

$$\pi_s = \alpha s + (1 - \alpha) \pi_s A$$

Similarity Measures in Verse

SimRank:

- Objects are similar when referenced by similar objects
- Initial assignment, then recursive
- importance of farther nodes: C
- complexity of O(n4)

$$sim_{G}^{SR}(u,v) = \frac{C}{|I(u)| |I(v)|} \sum_{i=1}^{|I(u)|} \sum_{j=1}^{|I(v)|} sim_{G}^{SR}(I_{i}(u), I_{j}(v))$$

Verse (VERtex Similarity Embeddings)

- Trains unsupervised 1-layer-NNs
- Scalable: Processes 10⁶ nodes in less than a day
- Global: similarity on any pair of graph nodes
- Versatile: supports any similarity measure between nodes

$$\sum_{v \in V} \text{KL}\left(\text{sim}_{G}(v, \cdot) \mid\mid \text{sim}_{E}(v, \cdot)\right)$$

Verse Vertex Embeddings

- Mapping of graph vertex to vector space
 - Maintains: neighborhood, connections, graph topology
 - Efficiency for large graphs
 - individual dimensions have no meaning

Usecases:

- ML
- similarity measures
- NearestNeighbour
- ..

Motivation I

Overview

Spearman coeficcient

• Example, n=3

Movie id	r 1	r 2	d_i	d_i^2
1	2	1	1	1
2	1	3	-2	4
3	3	2	1	1

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}.$$

$$\rho = -0.5$$

- Values between -1 and 1
 - -1 inverted correspondence
 - 0 no correspondence
 - 1 strong correspondence

Experimental Setup

Experimental Setup

Data Set

Used excerpt has: 45433 movies, 18001 directors, 20 genres

https://www.kaggle.com/rounakbanik/the-movies-dataset/home

Motivation I

Overview

Experimental Setup

Overview

Motivation I

Investigation

Results

PPageRank Graph

	Movie Names
1	Star_Wars
2	Nana_Neul
3	Aki_Kaurismäki
4	The_Circle
5	Cross_Creek
6	Jean_Mach

AdjacencySimilarity Graph

Movie Names
Star_Wars
Hellboy
Get_Carter
Der_Totmacher
Begotten
Laws_of_Gravity

PPageRank Embeddings

	Movie Names
1	Star_Wars
2	Soldier's Girl
3	Незнайка_на_Луне
4	Lignes_de_Front
5	Best_Night_Ever
6	London_Boulevard

SimRank Embeddings

	Movie Names
1	Star_Wars
2	Roswell
3	THE_DARK_SIDE_OF_ DIMENSIONS
4	Perfect
5	Love_and_Distrust
6	National_Lampoon's_ Last_Resort

Spearman on Similarity Rankings

Computation Time

	Adjacency Similarity	PPageRank	SimRank
Graph:	2.77s	12.82s	∞

Embeddings: 0.32s 0.36s 0.21s

Discussion

Discussion

What went wrong?

Discussion

id	Name	Year	d_id		id	Director
1	Star Wars	1977	1	M 1	. 1	George Lucas
2	Star Trek	1979	2		2	Robert Wise

Conclusion

Conclusion I

- Translates across tasks/databases
- Speeding up similarity calculation
 - Supports many similarity measures
 - ,Simple' solution for complex db problem

- Verse needs preparation time
 - Good parameters / similarity measure required
 - Dependant of graph structure

Fragen?

