COMP-352 Tutorial #5

CASE: MergeSort (Look at the code)

Source: https://www.digitalocean.com/community/tutorials/merge-sort-algorithm-java-c-python

QuickSort: MergeSort's Sibling

-> QUESTION: Which methodology is used in Quick Sort? How is it achieved?

Source: https://www.geeksforgeeks.org/quick-sort/

QuickSort: An alternative approach

Source: https://www.techiedelight.com/quicksort/

DS: Trees and Binary Tree

- **Tree** (General) data structure is **a hierarchical (non-linear)** data structure. It is a collection of nodes that are connected by edges and has a hierarchical relationship between the nodes.
- Binary Tree: Each node can have at most 2 child nodes.

Heap Structure

 A specialized complete binary tree where the parent is either smaller or bigger than its children.

It satisfies the heap property:

- Any given node is always greater than its child node/s and the key of the root node is the largest among all other nodes. This property is also called max heap property.
- Any given node is always smaller than the child node/s and the key of the root node is the smallest among all other nodes. This property is also called min heap property.

The Two Heaps

Source: https://www.programiz.com/dsa/heap-data-structure

HeapSort: A Different Story

Source: https://www.lavivienpost.net/heapsort-iteration-and-recursion/

Algorithms Comparison

Sorting Algorithms	Time Complexity			Space Complexity
	Best Case	Average Case	Worst Case	Worst Case
Bubble Sort	O(n^2)	O(n^2)	O(n^2)	O(1)
Selection Sort	O(n^2)	O(n^2)	O(n^2)	O(1)
Insertion Sort	O(n)	O(n^2)	O(n^2)	0(1)
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
Quick Sort	O(nlogn)	O(nlogn)	O(n^2)	O(n)
Heap Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(1)

Source: https://www.enjoyalgorithms.com/blog/comparison-of-sorting-algorithms

Exercise: Better Quicksort

Task: Implement a median of three pivot selection algorithm for the quickSort algorithm.

- **Median of three:** selecting the median between the first, middle, and last elements in the array.
- Use the quickSort implementation given on the GitHub repo or use your own if you have one.
- Does this make the quickSort algorithm better?

THANK YOU