import the libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import accuracy_score
from sklearn import svm
from sklearn.tree import DecisionTreeClassifier
```

load the data

In [2]: data = pd.read_csv("/home/tamanna/Downloads/creditcard.csv")
 data

Out[2]:		Time	V1	V2	V3	V4	V5	V6	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.0
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.
	•••								
28	4802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4
28	4803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.0
284	4804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.
28	4805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.
284	4806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.

284807 rows × 31 columns

data preprocessing

```
In [3]: data.head()
```

Out[3]:		Time	V1	V2	V3	V4	V5	V6	V7	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.0
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.0
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.2
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.3
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.2

5 rows × 31 columns

In [4]: data.tail()

Out[4]:		Time	V1	V2	V3	V4	V5	V6	
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.0
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.2
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.6
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.1

5 rows × 31 columns

In [5]: # generating descriptive statistics
data.describe()

Out[5]:		Time	V1	V2	V3	V4	
	count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848
	mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.91!
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433
	75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480

8 rows × 31 columns

In [6]: data.shape

Out[6]: (284807, 31)

```
In [7]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 284807 entries, 0 to 284806
       Data columns (total 31 columns):
             Column
                     Non-Null Count
                                        Dtype
        0
             Time
                     284807 non-null
                                        float64
        1
             ٧1
                     284807 non-null
                                        float64
        2
             ٧2
                     284807 non-null
                                        float64
        3
             ٧3
                     284807 non-null
                                        float64
        4
             ٧4
                     284807 non-null
                                        float64
        5
             ۷5
                     284807 non-null
                                        float64
        6
             ۷6
                     284807 non-null
                                        float64
        7
             ٧7
                     284807 non-null
                                        float64
        8
             ٧8
                     284807 non-null
                                        float64
                     284807 non-null
                                        float64
        9
             ۷9
         10
             V10
                     284807 non-null
                                        float64
         11
             V11
                     284807 non-null
                                        float64
                                        float64
        12
             V12
                     284807 non-null
        13
             V13
                     284807 non-null
                                        float64
        14
             V14
                     284807 non-null
                                        float64
        15
             V15
                     284807 non-null
                                        float64
         16
             V16
                     284807 non-null
                                        float64
         17
             V17
                     284807 non-null
                                        float64
                                        float64
        18
             V18
                     284807 non-null
        19
             V19
                                        float64
                     284807 non-null
        20
             V20
                     284807 non-null
                                        float64
                     284807 non-null
        21
             V21
                                        float64
        22
             V22
                     284807 non-null
                                        float64
        23
             V23
                     284807 non-null
                                        float64
                     284807 non-null
        24
             V24
                                        float64
        25
             V25
                     284807 non-null
                                        float64
        26
             V26
                     284807 non-null
                                        float64
        27
             V27
                     284807 non-null
                                        float64
        28
             V28
                     284807 non-null
                                        float64
        29
             Amount
                     284807 non-null
                                        float64
        30
                     284807 non-null
            Class
                                        int64
```

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

```
In [8]: data.isnull().sum()
```

```
Out[8]:
                     0
          Time
                     0
          ٧1
          ٧2
                     0
          ٧3
                     0
          ٧4
                     0
          ۷5
                     0
          ۷6
                     0
          ٧7
                     0
          ۷8
                     0
          ۷9
                     0
          V10
                     0
          V11
                     0
          V12
                     0
          V13
                     0
          V14
                     0
          V15
                     0
          V16
                     0
          V17
                     0
          V18
                     0
          V19
                     0
          V20
                     0
          V21
                     0
          V22
                     0
          V23
                     0
          V24
                     0
          V25
                     0
          V26
                     0
          V27
                     0
          V28
                     0
          Amount
                     0
          Class
                     0
          dtype: int64
 In [9]: data['Class'].value_counts()
 Out[9]: Class
                284315
          0
                   492
          Name: count, dtype: int64
In [10]: data['Class'].value_counts().plot(kind = 'bar')
Out[10]: <AxesSubplot: xlabel='Class'>
```


dataset is highly imbalanced.

```
In [11]: non_fraud = data[data.Class == 0]
    fraud = data[data.Class == 1]

In [12]: non_fraud.shape

Out[12]: (284315, 31)

In [13]: fraud.shape

Out[13]: (492, 31)

In [14]: non_fraud_sample = non_fraud.sample(600)

In [15]: non_fraud_sample
```

Out[15]:		Time	V1	V2	V3	V4	V5	V6	
	79938	58251.0	-1.053308	0.588041	0.497243	0.514123	-0.243353	-1.143231	0.5
	94158	64757.0	-4.283375	3.543912	-2.966651	-1.359581	0.587368	2.866529	-1.74
	49211	43957.0	1.018221	0.085412	-0.353711	1.066409	0.340708	-0.150033	0.48
	267573	162831.0	2.133450	0.005781	-2.323607	0.049250	0.971403	-0.498335	0.5
	138673	82787.0	-0.935118	1.202229	1.257032	0.404653	0.133229	0.160176	0.10
	•••								
	212291	138799.0	-0.878858	0.645186	-0.272966	-1.193022	3.076594	3.633350	0.2
	27185	34430.0	1.209556	-0.166461	1.181014	0.565935	-0.981248	-0.130360	-0.78
	93551	64483.0	1.105351	-1.457671	0.749924	-2.015344	-1.728027	-0.056765	-1.1!
	185371	126638.0	2.101841	0.625172	-2.668427	0.594459	0.963007	-1.364090	0.4
	283626	171743.0	0.425363	-0.062341	-0.857997	0.326586	1.822954	-0.914518	0.30

600 rows × 31 columns

In [16]:	<pre>new_data = pd.concat([non_fraud_sample,fraud], axis =0)</pre>									
In [17]:	new_dat	:a								
Out[17]:		Time	V1	V2	V3	V4	V5	V6		
	79938	58251.0	-1.053308	0.588041	0.497243	0.514123	-0.243353	-1.143231	0.51	
	94158	64757.0	-4.283375	3.543912	-2.966651	-1.359581	0.587368	2.866529	-1.74	
	49211	43957.0	1.018221	0.085412	-0.353711	1.066409	0.340708	-0.150033	0.48	
	267573	162831.0	2.133450	0.005781	-2.323607	0.049250	0.971403	-0.498335	0.51	
	138673	82787.0	-0.935118	1.202229	1.257032	0.404653	0.133229	0.160176	0.10	
	•••									
	279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.88	
	280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.41	
	280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.23	
	281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.20	
	281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.22	

1092 rows × 31 columns

values of x and y

```
In [18]: x = \text{new data.drop}(['Class'], axis = 1)
In [19]: print(x)
                                ٧1
                                          ٧2
                                                    ٧3
                                                              ٧4
                                                                        ۷5
                                                                                  ۷6
                    Time
                 58251.0 -1.053308 0.588041 0.497243 0.514123 -0.243353 -1.143231
        79938
        94158
                 64757.0 -4.283375 3.543912 -2.966651 -1.359581 0.587368 2.866529
        49211
                 43957.0 1.018221 0.085412 -0.353711 1.066409 0.340708 -0.150033
        267573 162831.0 2.133450 0.005781 -2.323607 0.049250 0.971403 -0.498335
                 82787.0 -0.935118 1.202229 1.257032 0.404653 0.133229 0.160176
        138673
        279863 169142.0 -1.927883 1.125653 -4.518331 1.749293 -1.566487 -2.010494
        280143 169347.0 1.378559 1.289381 -5.004247 1.411850 0.442581 -1.326536
        280149 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
        281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
        281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
                      ٧7
                                8V
                                          ۷9
                                                                  V21
                                                        V20
                                                                            V22 \
                                              . . .
        79938
                0.516954  0.188210  -0.619711  ...  -0.083019  0.128897
        94158 -1.748133 3.303362 -0.647340 ... 0.147722 0.057162 -0.549032
                0.484130 \ -0.056734 \ -0.563302 \ \dots \ 0.021810 \ 0.117429 \ 0.155288
        49211
        267573 0.518368 -0.259087 -0.017044 ... -0.206715 0.098535 0.411672
        138673 0.103757 0.633826 -1.232453 ... 0.066806 -0.115048 -0.531792
                                        . . . . . . . . .
                                                        . . .
                                                                  . . .
                     . . .
        279863 -0.882850 0.697211 -2.064945 ... 1.252967 0.778584 -0.319189
        280143 -1.413170 0.248525 -1.127396 ... 0.226138 0.370612 0.028234
        280149 -2.234739 1.210158 -0.652250 ... 0.247968 0.751826 0.834108
        281144 -2.208002 1.058733 -1.632333 ... 0.306271 0.583276 -0.269209
        281674 0.223050 -0.068384 0.577829 ... -0.017652 -0.164350 -0.295135
                     V23
                               V24
                                         V25
                                                   V26
                                                             V27
                                                                       V28
                                                                            Amount
        79938
                0.014889   0.415131   -0.413715   0.457807   -0.151270   0.062739
                                                                             72.98
                0.024283 \quad 1.006805 \quad 1.059677 \quad 0.419387 \quad -0.541254 \quad 0.052017
        94158
                                                                              6.76
        49211 -0.250932 -0.289248 0.743356 -0.257872 -0.017277 0.010981
                                                                            100.75
        267573 -0.081135 0.165554 0.441014 0.700315 -0.124472 -0.095485
                                                                              0.76
        138673 -0.110064 -0.339523 -0.035581 0.308557 -0.068997 -0.007041
                                                                              9.99
                                         . . .
                     . . .
                               . . .
                                                   . . .
                                                             . . .
                                                                       . . .
                                                                               . . .
        279863 0.639419 -0.294885 0.537503 0.788395 0.292680
                                                                  0.147968
                                                                            390.00
        280143 -0.145640 -0.081049 0.521875 0.739467 0.389152
                                                                  0.186637
                                                                              0.76
        280149 0.190944 0.032070 -0.739695 0.471111 0.385107 0.194361
                                                                             77.89
        281144 -0.456108 -0.183659 -0.328168 0.606116 0.884876 -0.253700
                                                                            245.00
        281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                             42.53
        [1092 rows x 30 columns]
In [20]: | y = new_data["Class"]
In [21]: | print(y)
```

```
79938
                  0
        94158
                  0
        49211
                  0
        267573
                  0
        138673
                  0
        279863
                  1
        280143
                  1
        280149
                  1
        281144
                  1
        281674
                  1
        Name: Class, Length: 1092, dtype: int64
         splitting of data into training and testing sets
In [22]: x train, x test, y train, y test = train test split(x,y, random state = 2, t
In [23]: print(x.shape, x train.shape, x test.shape)
        (1092, 30) (982, 30) (110, 30)
         Logistic Regression
In [24]: | model = LogisticRegression()
In [25]: model.fit(x train, y train)
Out[25]:
         ▼ LogisticRegression
         LogisticRegression()
         Model Evaluation
In [26]:
         x train prediction = model.predict(x train)
         training data accuracy = accuracy score(x train prediction, y train)
In [27]: training data accuracy
Out[27]: 0.9480651731160896
In [28]:
         x test prediction = model.predict(x test)
         testing data accuracy = accuracy score(x test prediction, y test)
In [29]: testing data accuracy
Out[29]: 0.9454545454545454
         svm classifier
```

model2 = svm.SVC(kernel = "linear")

In [30]:

```
In [31]: model2.fit(x train, y train)
Out[31]: ▼
                   SVC
         SVC(kernel='linear')
In [32]: x train prediction =model2.predict(x train)
         Model Evaluation
In [33]: training data accuracy = accuracy score(x train prediction, y train)
In [34]: training data accuracy
Out[34]: 0.8981670061099797
In [35]: x test prediction = model2.predict(x test)
In [36]: | testing_data_accuracy = accuracy_score(x_test_prediction, y_test)
         testing data accuracy
Out[36]: 0.91818181818182
         Decision Tree Classifier
In [37]:
         model3 = DecisionTreeClassifier(max leaf nodes = 10, random state = 0)
         model3.fit(x train, y train)
Out[37]:
                            DecisionTreeClassifier
         DecisionTreeClassifier(max_leaf_nodes=10, random_state=0)
In [39]: x_train_prediction = model3.predict(x_train)
         Model Evaluation
In [40]:
         training_data_accuracy = accuracy_score(x_train_prediction, y_train)
         training_data_accuracy
Out[40]: 0.955193482688391
In [41]: | x test prediction = model3.predict(x test)
In [42]: testing data accuracy = accuracy score(x test prediction, y test)
In [43]: testing data accuracy
Out[43]: 0.91818181818182
```

logistic regression has got the highest accuracy as compared to both decision tree classifier and $\ensuremath{\mathsf{sym}}$