FATORIAL 2^k

- Os experimentos fatoriais são caracterizados por um arranjo dos tratamentos resultantes da combinação de duas ou mais variáveis independentes, denominadas por fatores.
- Importância: estudar a relação de dependência entre os fatores. Tal estudo em geral é feito por técnicas gráficas ou pela análise de variância.

Tabela 1: Número de tratamentos para fatoriais 2k, 3k e pk.

•		Fatores	•	•
Níveis	K= 2	K=3	K=4	K=5
2	2 ² =4	2 ³ =8	2 ⁴ =16	2 ⁵ =32
3	3 ² =9	$3^3=27$	3 ⁴ =81	3 ⁵ =243
р	p ²	p^3	p ⁴	p ⁵

EXEMPLO FATORIAL 22

- Fator A: efeito de concentração do reagente: níveis de 15% (baixo) e 25% (alto)
- Fator B: presença de catalisador: ausência (baixo) e presença (alto)
- Resposta: tempo de reação de um processo químico
- Nº de repetições: 3
- Efeitos: A, B, AB

EXEMPLO FATORIAL 23

- Fator A: efeito da porcentagem de gaseificação: 10% e 12%
- Fator B: pressão de operação no enchimento: 25 psi e 30 psi
- Fator C: velocidade da esteira: 200 e 250
- Resposta: volume de bebida gaseificada embalada em cada garrafa
- Nº de repetições: 2
- Efeitos: A, B, AB, AC, BC, ABC

OUTROS EXEMPLOS

- → Fatorial 2⁴
- 4 efeitos principais, 6 interações de segunda ordem, 4 interações de terceira ordem e 1 interação de quarta ordem;

- → Fatorial 2⁶
- 6 efeitos principais, 15 interações de segunda ordem, 20 interações de terceira ordem, 15 interações de quarta ordem e 1 interação de sexta ordem;
- As interações de terceira ordem e superiores geralmente são negligenciadas;

EXPERIMENTOS EM FATORIAL 2K

- É uma das aplicações mais importantes;
- Propiciam um menor número de tratamentos;
- Qualquer planejamento 2^k resultará ou se projetará em um outro planejamento 2^k com menos variáveis, se um ou mais dos fatores originais for(em) retirado(s);
- "Screening experiments" (Meyers e Montgomery, 1995)
- Situações: indisponibilidade de material, custo elevado, questões operacionais e situações extremas onde é possível a realização de uma única repetição.

Experimentos em Fatorial 2k

- Notação Geométrica
- Algoritmo de Yates

Exemplo de Fatorial 2²

NOTAÇÃO GEOMÉTRICA

- No planejamento 2²
- Costume denotar os níveis baixo e alto dos fatores A e B
- pelos sinais (-) e (+), respectivamente,
- Ambos fatores no nível baixo é denotado por (1),
- Se uma letra estiver <u>presente</u>, o fator correspondente é corrido no <u>nível alto</u> naquela combinação de tratamento, se ele estiver <u>ausente</u>, o fator é corrido em um <u>nível baixo</u>.

Exemplo de Fatorial 2²

$$A = \frac{\bar{y}_{A+} - \bar{y}_{A-}}{2r}$$
$$A = \frac{a + ab}{2r} - \frac{b + (1)}{2r}$$

$$A = \frac{1}{2r} [a + ab - b - (1)]$$

$$B = \overline{y}_{B+} - \overline{y}_{B-}$$

Tratamento A B
(1) - a + b - +

$$B = \frac{b+ab}{2r} - \frac{a+(1)}{2r}$$

Efeito B

$$B = \frac{1}{2r} [b + ab - a - (1)]$$

$$AB = y_{AB+} - y_{AB-}$$

$$AB = \frac{ab + (1)}{2r} - \frac{a+b}{2r}$$

Efeito AB

$$AB = \frac{1}{2r} \left[ab + (1) - a - b \right]$$

Algumas relações importantes

Contraste

$$[a+ab-b-(1)]$$

$$[b+ab-a-(1)]$$

$$[ab+(1)-a-b]$$

$$Efeito = \frac{Contraste}{r2^{k-1}}$$

$$A = \frac{a + ab - b - (1)}{r2^{k-1}}$$

$$B = \frac{b + ab - a - (1)}{r2^{k-1}}$$

$$AB = \frac{ab + (1) - a - b}{r2^{k-1}}$$

$$SQ = \frac{\left(Contraste\right)^2}{r2^k}$$

$$SQA = \frac{\left[a + ab - b - (1)\right]^2}{r2^k}$$

$$B = \frac{b + ab - a - (1)}{r2^{k-1}} \qquad SQB = \frac{\left[b + ab - a - (1)\right]^{2}}{r2^{k}}$$

$$SQAB = \frac{[ab + (1) - a - b]^2}{r2^k}$$

Consideremos um estudo do efeito da concentração de um reagente (fator A com dois níveis de 15% e 25%) e da quantidade de catalisador (fator B com fator baixo - 1 Dose e fator alto - 2 Doses) no tempo de reação de um processo químico.

COMBINAÇÕES	ENSAIO	REPLICA 1	REPLICA 2	REPLICA 3	TOTAL
A baixo, B baixo	(1)	28	25	27	80
A alto, B baixo	a	36	32	32	100
A baixo, B alto	Ъ	18	19	23	60
A alto, B alto	ab	31	30	29	90

$$Efeito = \frac{Contraste}{r2^{k-1}} \qquad SQ = \frac{\left(Contraste\right)^2}{r2^k} \qquad \begin{cases} k = 2\\ r = 3 \end{cases}$$

$$A = \frac{1}{2r} [a + ab - b - (1)] \qquad SQA = \frac{[a + ab - b - (1)]^2}{4r}$$

$$B = \frac{1}{2r} [b + ab - a - (1)]$$

$$SQB = \frac{[b + ab - a - (1)]^2}{4r}$$

$$AB = \frac{1}{2r} [ab + (1) - a - b]$$
 $SQAB = \frac{[ab + (1) - a - b]^2}{4r}$

Exemplo prático fatorial 22

$$A = \frac{1}{2(3)} [(100+90) - (80+60)] = \frac{50}{6} = 8,33$$

$$B = \frac{1}{2(3)} \left[(60 + 90) - (80 + 100) \right] = \frac{-30}{6} = -5,00$$

$$AxB = \frac{1}{2(3)}[(80+90) - (100+60)] = \frac{10}{6} = 1,67$$

$$SQA = \frac{(50)^2}{4(3)} = 208,33$$
 $SQB = \frac{(-30)^2}{4(3)} = 75,00$ $SQAxB = \frac{(10)^2}{4(3)} = 8,33$

Exemplo prático fatorial 22

$$SQTotal = \sum_{ijk} Y_{ijk}^{2} - \frac{\left(\sum_{ijk} Y_{ijk}\right)^{2}}{4(3)} = 28^{2} + ...29^{2} - \frac{330^{2}}{4(3)} = 9398 - 9075 = 323$$

Fonte de	Soma de	Graus de	Quadrado	
Variação	Quadrados	Liberdade	Médio	F_0
A	208.33	1	208.33	53.15**
В	75.00	1	75.00	19.13**
AB	8.33	1	8.33	2.13
Erro	31.34	8	3.92	
Total	323.00	11		

^{**} significativo a 1%

Sinais para os Efeitos do Fatorial 2²

-	E	Efeito F	atorial	
Combinação				
Tratamento	I	A	В	AB
(1)	+	-	-	+
a	+	+	-	-
b	+	-	+	-
ab	+	+	+	+

PROPRIEDADES IMPORTANTES

Com exceção da 1ª coluna, todas as demais tem o mesmo nº de sinais positivos e negativos;

A soma dos produtos dos sinais em quaisquer duas colunas é zero;

A coluna I multiplicada por qualquer outra coluna deixa esta inalterada, isto é, a coluna I é um elemento identidade;

O produto de qualquer duas colunas produz uma coluna da tabela, por exemplo, AxB = AB

Exemplo de Fatorial 2³

- Nesse caso tem-se 3 fatores cada um com 2 níveis, produzindo 8 combinações de tratamentos;
- [(1), a, b, c, ab, ac, bc e abc].

$$A = \overline{y}_{A+} - \overline{y}_{A-}$$

$$A = \frac{a+ab+ac+abc}{4r} - \frac{(1)+b+c+bc}{4r}$$

$$A = \frac{1}{4r} [a + ab + ac + abc - (1) - b - c - bc]$$

$$B = \frac{\bar{y}_{B+} - \bar{y}_{B-}}{4r}$$

$$B = \frac{b + ab + bc + abc}{4r} - \frac{(1) + a + c + ac}{4r}$$

$$B = \frac{1}{4r} [a + ab + bc + abc - (1) - a - c - ac]$$

$$C = \frac{c - c - c}{y_{C+}}$$

$$C = \frac{c + ac + bc + abc}{4r} - \frac{(1) + a + b + ab}{4r}$$

$$C = \frac{1}{4r} [c + ac + bc + abc - (1) - a - b - ab]$$

a) Efeitos principais

b) Interações de segunda ordem

c) Interações de terceira ordem

Exemplo de Fatorial 2³

$$AB = \frac{1}{2} \left\{ \frac{1}{2} \left[\frac{(ab-b)}{r} - \frac{(a-(1))}{r} \right] + \frac{1}{2} \left[\frac{abc-bc}{r} - \frac{(ac-c)}{r} \right] \right\}$$

$$AB = \frac{1}{4r} [ab - b - a + (1) + abc - bc - ac + c]$$

$$AC = \frac{1}{4r} [(1) - a + b - ab - c + ac - bc + abc]$$

$$BC = \frac{1}{4r} [(1) + a - b - ab - c - ac + bc + abc]$$

$$ABC = \frac{1}{4r} \{ [abc - bc] - [ac - c] - [ab - b] + [a - (1)] \}$$

$$= \frac{1}{4r} [abc - bc - ac + c - ab + b + a - (1)]$$

Sinais para os Efeitos do Fatorial 2³

Combinação de				Efeito F	atorial			
Tratamento	Ι	A	В	AB	С	AC	BC	ABC
(1)	+	-	-	+	-	+	+	-
a	+	+	-	-	-	-	+	+
b	+	_	+	-	-	+	_	+
ab	+	+	+	+	-	-	-	-
c	+	-	_	+	+	-	_	+
ac	+	+	-	-	+	+	_	-
bc	+	-	+	-	+	-	+	-
abc	+	+	+	+	+	+	+	+

PROPRIEDADES IMPORTANTES

Com exceção da 1ª coluna, todas as demais tem o mesmo nº de sinais positivos e negativos; A soma dos produtos dos sinais em quaisquer duas colunas é zero;

A coluna I multiplicada por qualquer outra coluna deixa esta inalterada, isto é, a coluna I é um elemento identidade;

O produto de qualquer duas colunas produz uma coluna da tabela, por exemplo, AxB = AB, ABxB=AB²=A

Análise geométrica – modelo geral de análise

Os métodos de análise podem ser generalizados por:

$$Efeito = \frac{(constraste)}{r2^{k-1}}$$

$$SQ efeito fatorial = \frac{(constraste)^{2}}{r2^{k}}$$

- Fator A: efeito da porcentagem de gaseificação: 10% e
 12%
- Fator B: pressão de operação no enchimento: 25 psi e 30 psi
- Fator C: velocidade da esteira: 200 e 250
- Resposta: volume de bebida gaseificada embalada em cada garrafa
- Nº de repetições: 2

$$\begin{cases} k = 3 \\ r = 2 \end{cases}$$

Tratamentos	Ensaio	Repetição1	Repetição2	Total
A10B25C200	(1)	-3	-1	-4
A12B25C200	а	0	1	1
A10B30C200	b	-1	0	-1
A12B30C200	ab	2	3	5
A10B25C250	С	-1	0	-1
A12B25C250	ac	2	1	3
A10B30C250	bc	1	1	2
A12B30C250	abc	6	5	11

As estimativas dos efeitos médios são:

$$A = \frac{1}{4r} [a - (1) + ab - b + ac - c + abc - bc]$$

$$= \frac{1}{8} [1 - (-4) + 5 - (-1) + 3 - (-1) + 11 - 2] = \frac{1}{8} [24] = 3.00$$

$$B = \frac{1}{4r} [b + ab + bc + abc - (1) - a - c - ac]$$

$$= \frac{1}{8} [-1 + 5 + 2 + 11 - (-4) - 1 - (-1) - 3] = \frac{1}{8} [18] = 2.25$$

$$C = \frac{1}{4r} [c + ac + bc + abc - (1) - a - b - ab]$$

$$= \frac{1}{8} [-1 + 3 + 2 + 11 - (-4) - 1 - (-1) - 5] = \frac{1}{8} [14] = 1.75$$

$$AB = \frac{1}{4r} [ab - a - b + (1) + abc - bc - ac + c]$$

$$= \frac{1}{8} [5 - 1 - (-1) + (-4) + 11 - 2 - 3 + (-1)] = \frac{1}{8} [6] = 0.75$$

$$AC = \frac{1}{4r} [(1) - a + b - ab - c + ac - bc + abc]$$

$$= \frac{1}{8} [-4 - 1 + (-1) - 5 - (-1) + 3 - 2 + 11] = \frac{1}{8} [2] = 0.25$$

$$BC = \frac{1}{4r} [(1) + a - b - ab - c - ac + bc + abc]$$

$$= \frac{1}{8} [-4 + 1 - (-1) - 5 - (-1) - 3 + 2 + 11] = \frac{1}{8} [4] = 0.50$$

$$ABC = \frac{1}{4r} [abc - bc - ac + c - ab + b + a - (1)]$$

$$= \frac{1}{8} [11 - 2 - 3 + (-1) - 5 + (-1) + 1 - (-4)] = \frac{1}{8} [4] = 0.50$$

As somas de quadrados dos efeitos Fatoriais são:

$$SQA = \frac{(24)^2}{16} = 36.00$$

$$SQAB = \frac{(6)^2}{16} = 2.25$$

$$SQB = \frac{(18)^2}{16} = 20.25$$

$$SQAC = \frac{(2)^2}{16} = 0.25$$

$$SQAC = \frac{(4)^2}{16} = 12.25$$

$$SQBC = \frac{(4)^2}{16} = 1.00$$

$$SQABC = \frac{(4)^2}{16} = 1.00$$

SQErro = 5

Fonte de Variação	Soma de	Graus de	Quadrado	
	Quadrados	Liberdade	Médio	F_0
Percentagem de Gaseificação (A)	36.00	1	36.00	57.14**
Pressão (B)	20.25	1	20.25	32.14**
Velocidade da Esteira (C)	12.25	1	12.25	19.44**
AB	2.25	1	2.25	3.57
AC	0.25	1	0.25	0.40
BC	1.00	1	1.00	1.59
ABC	1.00	1	1.00	1.59
Erro	5.00	8	0.63	
Total	78.00	15		

^{**} significativo a 1%

Fatorial 2^k com uma repetição

Questionamentos

A estimação do erro experimental;

Solução

- Avaliar quais são os efeitos desprezíveis, detectados por resultados não significativos
- Geralmente as combinações das interações de ordem mais altas geram a estimativa do erro
- Por fim, utilizá-los para estimar o erro puro

Técnica

Gráfico da probabilidade normal

Ideia do Gráfico da probabilidade normal

- Construir um gráfico da estimativa dos efeitos em uma escala de probabilidade normal;
- Os efeitos que forem negligenciáveis são normalmente distribuídos, com média μ e variância σ², e tenderão a cair ao longo de uma linha reta nesse gráfico;
- Enquanto efeitos significativos não terão média zero e não repousaram ao longo de uma linha reta.

Fator A: temperatura: A0; A1

Fator B: pressão: B0; B1

Fator C: concentração de reagente:C0; C1

Fator D: taxa de mistura: D0; D1

 Resposta: a influência de fatores (quatro) na taxa de filtração de um produto químico

Nº de repetições: 1

		A	$\mathbf{\Lambda}_0$			A_1					
	$egin{array}{c c} \hline B_0 \\ \hline C_0 & C_1 \\ \hline \end{array}$			B_1	Е	\mathbf{B}_0	B_1				
			C_0	C_1	C_0	C_1	C_0	C_1			
D_0	45(1)	68c	48 b	80bc	71 <mark>a</mark>	60ac	65 <mark>ab</mark>	65abc			
\mathbf{D}_1	43 d	75cd	45bd	70bcd	100ad	86acd	104abd	96abcd			

4 efeitos principais

6 interações de segunda ordem

4 interações de terceira ordem

1 interação de quarta ordem;

Fonte de	Graus de
Variação	liberdade
Α	1
В	1
AB	1
С	1
AC	1
ВС	1
ABC	1
D	1
AD	1
BD	1
CD	1
ABD	1
ACD	1
BCD	1
ABCD	1
Erro	7
Total	(16-1)=15

Vamos assumir que as interações triplas e quádrupla são desprezíveis.

SQABC + SQABD + SQACD + SQBCD + SQABCD

SQErro (5 GL)

	A	В	AB	C	AC	BC	ABC	D	AD	BD	ABD	CD	ACD	BCD	ABCD
(1)	-	-	+	-	+	+	-	-	+	+	-	+	-	-	+
a	+	-	-	-	_	+	+	-	-	+	+	+	+	-	-
b	-	+	-	-	+	-	+	-	+	_	+	+	-	+	-
ab	+	+	+	-	-	-	-	-	-	-	_	+	+	+	+
c	-	_	+	+	_	-	+	-	+	+	-	_	+	+	-
ac	+	-	-	+	+	-	-	-	-	+	+	_	-	+	+
bc	-	+	-	+	_	+	-	-	+	-	+	_	+	-	+
abc	+	+	+	+	+	+	+	_	_	_	_	_	_	-	-
d	-	_	+	-	+	+	_	+	-	-	+	_	+	+	-
ad	+	-	-	-	_	+	+	+	+	-	-	_	-	+	+
bd	_	+	_	-	+	_	+	+	_	+	_	_	+	-	+
abd	+	+	+	_	_	_	_	+	+	+	+	_	_	_	-
cd	-	_	+	+	_	_	+	+	_	_	+	+	_	_	+
acd	+	-	-	+	+	-	-	+	+	-	-	+	+	_	-
bcd	-	+	-	+	_	+	-	+	-	+	_	+	-	+	-
abcd	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

	Α	
(1)	-	1
а	+	$A = \frac{1}{8r}[-(1) + a - b + ab - c + ac - bc + abc - d +$
b	-	8r
ab	+	+ad-bd+abd-cd+acd-bcd+abcd
С	-	raa baraba caraca bcarabcaj
ac	+	1
bc	-	$=\frac{1}{9}[-45+71-48+65-68+60-80+65-43+$
abc	+	0
d	-	+100-45+104-75+86-70+96
ad	+	1
bd	-	$A = \frac{1}{8}[173]$
abd	+	8 -
cd	-	$(173)^2$
acd	+	$SQA = \frac{(173)^2}{16} = 1870,56$
bcd	-	16
abc	+	
d		

Fonte de Variação	Soma de	Graus de	Quadrado	
	Quadrados	Liberdade	Médio	Fc
A	1870.56	1	1870.56	73.15**
В	39.06	1	39.06	1.53
C	390.06	1	390.06	15.25*
D	855.56	1	855.56	33.46**
AB	0.06	1	0.06	< 1
AC	1314.06	1	1314.06	51.39**
AD	1105.56	1	1105.56	43.24**
BC	22.56	1	22.56	< 1
BD	0.56	1	0.56	< 1
CD	5.06	1	5.06	< 1
Erro	127.84	5	25.57	
Total	5730.94	15		

ABC, ABD,ACD,BCD,ABCD são as interações desprezíveis

Cálculos para construção do gráfico de Probabilidade Normal

Ordem (j)	Efeito	(Eixo x):Estimativa	(Eixo y): $(j5)/15$
15	A	21,63	.9667
14	AD	16,63	.9000
13	D	14,63	.8333
12	C	9,88	.7667
11	ABD	4,13	.7000
10	В	3,13	.6333
9	BC	2,38	.5667
8	ABC	1,88	.5000
7	ABCD	1,38	.4333
6	AB	0,13	.3667
5	CD	-0,38	.3000
4	BD	-1,13	.2333
3	ACD	-1,63	.1667
2	BCD	-2,63	.1000
1	AC	-18,13	.0333

Comentários:

- Efeitos pequenos → sobre uma reta
- Efeitos Grandes → fora da reta
- Interações tríplices e quádrupla sobre a reta → desprezíveis
- Desde que o efeito de B (pressão) é não sig. e todas interações que envolvem B são desprezíveis podemos descartar B do experimento e analisar como se fosse um experimento 2³ com os fatores A, C e D com 2 repetições.

Assumindo que o fator B é desprezível

C. Variação	GL	SQ	QM	F
A	1	1870,56	1870,56	83,36**
C	1	390,06	390,06	17,35**
D	1	855,56	855,56	38,13**
AC	1	1314,06	1314,	58,56**
AD	1	1105,56	1105,56	49,27**
CD	1	5,06	5,06	<1
ACD	1	10,56	10,56	<1
Erro	8	179,52	22,44	
TOTAL	15	5730,94		

Algoritmo de Yates – exemplo slide número 31

Tratamento	Resposta	(1)	(2)	(3)	(4)	estimativa do efeito	SQ	Efeito
(1)	45	116	229	502	1121	Cicito		
		113	273			21.62	1970 5625	_
a	71			619	173	21,63	1870,5625	A
b	48	128	292	20	25	3,13	39,0625	В
ab	65	145	327	153	1	0,13	0,0625	AB
c	68	143	43	14	79	9,88	390,0625	C
ac	60	149	-23	11	-145	-18,13	1314,0622	AC
bc	80	111	116	-16	19	2,38	22,5625	BC
abc	65	166	37	17	15	1,88	14,0625	ABC
d	43	26	-3	44	117	14,63	855,5625	D
ad	100	17	17	35	133	16,63	1105,5625	AD
bd	45	- 8	6	-66	-3	-0,38	0,5625	BD
abd	104	- 15	5	-79	33	4,13	68,0625	ABD
cd	75	57	-9	20	- 9	-1,13	5,0625	CD
acd	86	59	-7	-1	-13	-1,63	10,5625	ACD
bcd	70	11	2	2	-21	-2,63	27,5625	BCD
abcd	96	26	15	13	11	1,38	7,5625	ABCD

Algoritmo de Yates

- coluna (1):
- 1ª metade → soma dos adjacentes na coluna resposta
- 2ª metade → (segundo primeiro) na coluna resposta
- coluna (2): idem na coluna (1)
- coluna (3): idem na coluna (2)
- coluna (4): idem na coluna (3)

$$Efeito = \frac{(constraste)}{r2^{k-1}}$$

$$SQ = \frac{(constraste)^2}{r2^k}$$

$$Efeito = \frac{Coluna4}{1x2^{4-1}}$$

$$SQ = \frac{(Coluna4)^2}{1x2^4}$$

Comentários:

Tratamento Resposta (1) (2) (3) (4) estimativa do SQ Efeito

- Fatorial $2^4 \rightarrow$ as colunas: (1), (2), (3) e (4)
- Fatorial $2^3 \rightarrow$ as colunas: (1), (2) e (3)
- Fatorial $2^2 \rightarrow$ as colunas: (1) e (2)
- As interações de ordem elevada poderão não ser desprezíveis.
 Mas como saber quais são ou não são desprezíveis?
- Gráfico da probabilidade normal;
- Os efeitos desprezíveis são normalmente distribuídos e estarão numa reta num gráfico de probabilidade normal.

ANÁLISE DE VARIÂNCIA PARA DOIS FATORES (ENSAIOS FATORIAIS)

1 - MOTIVAÇÃO

- 1. Os exemplos estudados até agora envolve apenas 1 fator e são conhecidos como ensaios simples.
- 2. Suponha que o pesquisador deseja estudar 2 fatores: cultivares: A, B, C e D e espaçamentos: 0,5; 0,75 e 1m.

Possibilidades de estudo:

- Escolhe um espaçamento e planta as 4 cultivares, separando o mais produtivo.
- 2. Escolhe uma cultivar e planta nos 3 espaçamentos.

2- PROBLEMAS

- 1. A combinação ótima de cultivar e espaçamento seria encontrada em uma situação especial.
- 2. Os fatores de um estudo podem ou não se auto relacionar.
- 3. O melhor nível de um fator poderia depender do nível do do outro fator.

A alternativa correta é estudar os dois fatores ao mesmo tempo através dos experimentos denominados FATORIAIS

3 - DEFINIÇÃO E CARACTERÍSTICAS

- 1. Experimentos fatoriais: são experimentos nos quais são estudados, ao mesmo tempo, os efeitos de dois ou mais fatores.
- 2. Cada subdivisão de um fator é denominada nível de um fator.
- 3. Os tratamentos são todas as combinações possíveis entre os diversos níveis dos fatores.

EXEMPLOS

1. 3 variedades de arroz: V1, V2 e V3

4 espaçamento: E1, E2, E3 e E4

Notação: Fatorial (3x4)

Tratamentos: V1E1, V1E2, V1E3, V1E4

V2E1, V2E2, V2E3, V2E4 V3E1, V3E2, V3E3, V3E4

2. 3 níveis de espécies: E1, E2 e E3

2 fatores de adubação: A0 e A1

2 níveis de calalagem: C1 e C2

Notação: Fatorial (3x2x2)

Tratamentos: E1A0C1, E2A0C1, E3A0C1

E1A0C2, E2A0C2, E3A0C2 E1A1C1, E2A1C1, E3A1C1

E1A1C2, E2A1C2, E3A1C2

EXPERIMENTOS FATORIAIS NÃO CONSTITUI UM DELINEAMENTO EXPERIMENTAL, MAS SIM <u>UM ESQUEMA DE ARRANJO DE TRATAMENTOS</u> QUE SÃO DISTRIBUÍDOS EM UM DIC, BDC OU DQL

Notação

Fatorial em DIC (2x2) ou 2², sendo 2 cultivares e presença e ausência de calagem.

Tratamento	Níveis dos Fatores	Notação 1	Notação 2	Notação 3
1	cultivar A, sem calagem	A-sem	Α0	Α
2	cultivar B, sem calagem	B-sem	B0	В
3	cultivar A, com calagem	A-com	A1	A +
4	cultivar B, com calagem	B-com	B1	B+

Notação

Fatorial em DIC (2x2x2) ou 2³, considerando o estudo dos nutrientes N, P e K, cada qual estando presente ou ausente.

Tratamento	Níveis dos Fatores	Notação 1	Notação 2
1	sem nutrientes	(T)	000
2	só N	N	100
3	só P	Р	010
4	só K	K	001
5	NeP	NP	110
6	NeK	NK	101
7	РеК	PK	011
8	Todos os nutrientes	NPK	111

Notação

Tabela 1: Número de tratamentos para fatoriais 2k, 3k e pk.

•		Fatores	•	1
Níveis	K= 2	K=3	K=4	K=5
2	2 ² =4	2 ³ =8	2 ⁴ =16	2 ⁵ =32
3	3 ² =9	3 ³ =27	3 ⁴ =81	3 ⁵ =243
p	p ²	p ³	p ⁴	p ⁵

4 - VANTAGENS

- 1. Economia de tempo e recursos, especialmente materiais;
- 2. Permite o estudo das interações;
- 3. Amplia base de inferência: maior proximidade entre a população amostrada e a população objeto de pesquisa;
- 4. Aumenta a precisão do experimento, em decorrência do maior tamanho de um exprimento único em relação aos tamanhos de experimentos isolados.

5 - DESVANTAGENS

- O número de tratamentos aumenta muito, e, muitas vezes, não podemos distribuí-los em blocos completos casualizados, devido a exigência de homogeneidade dentro de cada bloco;
- A análise estatística é mais trabalhosa;
- 3. A interpretação dos resultados se torna mais difícil à medida que aumenta o número de níveis e de fatores no experimento.

7 - CASUALIZAÇÃO

Experimento fatorial 2x3, 2 níveis de calagem (C0, C1) e três níveis de adubação (A1, A2, A3) em DIC com 3 repetições.

C0A1	C1A1	C1A3
C1A2	C0A2	C0A3
C1A3	C0A3	C1A1
C0A2	C1A2	C0A3
C1A1	C0A1	C1A2
C0A1	C1A3	C0A2

7 - CASUALIZAÇÃO

Experimento fatorial 2x3, 2 níveis de calagem (C0, C1) e três níveis de adubação (A1, A2, A3) em DIC com 3 blocos.

C0A1		C1A1		C1A2	
C1A2		C0A2		C0A1	
C1A3		C0A3		C1A3	
C0A2		C1A2		C0A3	
C1A1		C0A1		C1A1	
C0A3		C1A3		C0A2	
Bloco 2	Е	Bloco1	ВІ	осо 3	

8 - ESTUDO PRÉVIO DE INTERAÇÕES por meio das médias dos tratamentos

Ausência de interação (a) e Presença de interação (b) e (c)

Quando não existe interação entre os fatores, basta estudar os efeitos principais.

9 - MODELO MATEMÁTICO - DIC

Fatorial 2x2

$$y_{ijk} = \mu + \alpha_i + b_j + \alpha b_{ij} + \varepsilon_{ijk}$$

y_{ijk} valor observado para a var iável em estudo referente a k – ésima repetição da combinação do i – ésimo nível do $fator\ A\ com\ o\ j-\acute{e}simo\ n\'{i}vel\ do\ fator\ B;$ μ média geral; α_i é o efeito do i – ésimo nível do fator A (i = 1, 2); b_i é o efeito do j – ésimo nível do fator B (j = 1, 2); αb_{ii} representa a interação entre os fatores $A \ e \ B$; ε_{iik} é o erro experimental referente a UE.

9 - MODELO MATEMÁTICO - DBC

Fatorial 2x2

$$y_{ijk} = \mu + \alpha_i + b_j + B_k + \alpha b_{ij} + \varepsilon_{ijk}$$

y_{iik} valor observado para a var iável em estudo referente ao k – ésimo bloco da combinação do i – ésimo nível do $fator\ A\ com\ o\ j-\acute{e}simo\ n\'{i}vel\ do\ fator\ B;$ μ média geral; α_i é o efeito do i – ésimo nível do fator A (i = 1, 2); b_{j} é o efeito do j – ésimo nível do fator B (j = 1, 2); B_{ν} é o efeito do k – ésimo bloco (k = 1, 2, ..., K); αb_{ii} representa a interação entre os fatores $A \ e \ B$; ε_{iik} é o erro experimental referente a UE.

10 - HIPÓTESES A SEREM TESTADAS EM UM FATORIAL COM 2 FATORES

$$H_o: A_1 = A_2 = ... = A_i = 0$$

 $H_a: A_i \neq 0$ para pelo menos um i

2. Fator B

$$H_o: B_1 = B_2 = \dots = B_j = 0$$

 $H_a: B_i \neq 0$ para pelo menos um j

3. Interação

$$H_o: AB_{11} = AB_{12} = ... = AB_{ii} = 0$$

 $H_a: AB_{ii} \neq 0$ para pelo menos um ij

11 - ESQUEMA DA ANOVA

DIC

	D	\frown
ע	ים	し

F.V	G.L
(Tratamentos)	(IJ — 1)
А	I - 1
В	J - 1
A*B	(I -1)(J — 1)
Erro	IJ(K − 1)
Total	IJK - 1

F.V	G.L
(Tratamentos)	(IJ – 1)
Blocos	K - 1
А	I - 1
В	J - 1
A*B	(I -1)(J - 1)
Erro	(IJ - 1)(K - 1)
Total	IJK - 1

12 - FÓRMULAS

$$C = \frac{\left(\sum_{i,j,k}^{I,J,K} Y_{ijk}\right)^2}{IJK}$$

$$SQA = \frac{\sum_{i}^{I} A_{i}^{2}}{JK} - C$$

$$SQB = \frac{\sum_{j}^{J} B_{j}^{2}}{IK} - C$$

$$SQB = \frac{\sum_{j}^{J} B_{j}^{2}}{IK} - C$$

$$SQTrat. = \frac{\sum_{i,j}^{I,J} Y_{ij.}^2}{K} - C$$

$$SQA * B = SQTrat. - SQA - SQB$$

$$SQTotal = \sum_{i,j,k}^{I,J,K} Y_{ijk}^2 - C$$

$$SQ \operatorname{Re} s. = SQtotal - SQtrat.$$

13 - COMPARAÇÕES DE MÉDIAS

Se não há interação

Fator A

Fator B

$$\Delta = q_{(I,Gl\,erro,\alpha)} \sqrt{\frac{QMerro}{JK}}$$

$$\Delta = q_{(J,Gl\,erro,\alpha)} \sqrt{\frac{QMerro}{IK}}$$

Média do Fator A:

■ Média do Fator B:

$$\hat{m}_{Ai} = \frac{A_i}{JK}$$

$$\hat{m}_{Bj} = \frac{B_j}{IK}$$

13 - COMPARAÇÕES DE MÉDIAS

Se há interação

Comparação de B/Ai

Comparação de A/Bj

$$\Delta = q_{(J,Glerro,\alpha)} \sqrt{\frac{QMerro}{K}}$$

$$\Delta = q_{(I,Glerro,\alpha)} \sqrt{\frac{QMerro}{K}}$$

• Média B/Ai =
$$\frac{Bj}{K}$$

• Média A/Bj =
$$\frac{Ai}{K}$$

14 - EXEMPLO DE APLICAÇÃO

- 1. Análise de um experimento fatorial com interação não significativa
- Fator A: efeito de concentração do reagente: níveis de 15% (baixo) e
 25% (alto)
- Fator B: presença de catalisador: ausência (baixo) e presença (alto)
- Resposta: tempo de reação de um processo químico
- Delineamento: DIC
- Nº de repetições: 3

Tratamentos	Repetições			
	I	II	III	Totais
R15	28	25	27	80
R25	36	32	32	100
R15 + C	18	19	23	60
R25 + C	31	30	29	90

	Cat		
Reagentes	Sem	Com	Totais
R15	803	60	1406
R25	100	90	190
Totais	180^{6}	150	33012

14 - EXEMPLO DE APLICAÇÃO

- 2. Análise de um experimento fatorial com interação significativa
- Fator A: efeito de três recipientes (R1, R2, R3)
- Fator B: 2 espécies de eucaliptos (E1, E2)
- Resposta: produção de mudas
- Delineamento: DIC
- Nº de repetições: 4

Trat.	Repetições					
	I	II	III	IV	Totais	
R1E1	26,2	26,0	25,0	25,4	102,6	
R1E2	24,8	24,6	26,7	25,2	101,3	
R2E1	25,7	26,3	25,1	26,4	103,5	
R2E2	19,6	21,1	19,0	18,6	78,3	
R3E1	22,8	19,4	18,8	19,2	80,2	
R3E2	19,8	21,4	22,8	21,3	85,3	

Espécies	R1	R2	R3	Totais
E1	102,64	103,5	80,24	286,312
E2	101,3	78,3	85,3	264,9
Totais	203,98	181,8	165,58	551,2 ²⁴