EE1101 Signals and Systems JAN—MAY 2018 Tutorial 1

1. Given a continuous-time signal specified by

$$x(t) = \begin{cases} 1 - |t|, & -1 \le t \le 1\\ 0, & \text{otherwise} \end{cases}$$

Plot the discrete-time sequence that results from uniform sampling of x(t) for the following sampling intervals: (a) $0.25 \,\mathrm{s}$, (b) $0.5 \,\mathrm{s}$, and (c) $1 \,\mathrm{s}$.

2. For the continuous time signal x(t) shown below, sketch and label carefully each of the following signals: (a) x(t-1), (b) x(2-t), (c) x(2t+1), (d) $x(4-\frac{t}{2})$, (e) [x(t)+x(-t)]u(t) and (f) $x(t)[\delta(t+\frac{3}{2})-\delta(t-\frac{3}{2})]$.

3. Determine and sketch the even and odd parts of the signals depicted in figures below. Label your sketches carefully.

- 4. Consider the signal y(t) = (1/5)x(-2t 3) shown below.
 - (a) Determine and carefully sketch the original signal x(t).
 - (b) Determine and carefully sketch $y_o(t)$, the odd portion of y(t).

5. A sinusoid $e^{\sigma t} \cos \omega t$ can be expressed as a sum of exponentials e^{st} and e^{-st} with complex frequencies $s = \sigma + j\omega$ and $s = \sigma - j\omega$. Locate in the complex plane the frequencies of the following sinusoids:

(a)
$$\cos 3t$$
, (b) $e^{-3t}\cos 3t$, (c) $e^{2t}\cos 3t$, (d) e^{-2t} , (e) e^{2t} , and (f) 5.

- 6. (a) Show that the power of the signal $x(t) = \sum_{k=m}^{n} D_k e^{j\omega_k t}$ is $P_x = \sum_{k=m}^{n} |D_k|^2$ assuming all frequencies to be distinct i.e. $\omega_i \neq \omega_j$ for $i \neq j$.
 - (b) Determine the power and the RMS value of the signals (a) $x(t) = 10\cos 5t\cos 10t$ and (b) $x(t) = 10\cos(100t + \frac{\pi}{3}) + 5\sin(100t + \frac{\pi}{6})$
- 7. Consider the signal x(t) shown in figure.

- (a) Determine and carefully sketch $y(t) = 3x(-\frac{1}{2}(t+1))$.
- (b) Determine the energy and power of y(t).
- (c) Determine and carefully sketch the even portion of y(t), $y_e(t)$.
- (d) Let a = 2 and b = 3, sketch y(at+b), y(at) + b, ay(t+b) and ay(t) + b.
- 8. Let the energy of signal x(t) be denoted by E_x . Show that
 - (a) The signals -x(t), x(-t) and x(t-T) have the same energy.
 - (b) The energy of x(at) and x(at b) is $\frac{E_x}{|a|}$.
- 9. The unit pulse function $\Pi: R \longrightarrow R$ is defined as

$$\Pi(t) = \begin{cases} 1, & -\frac{1}{2} \le t \le \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

Sketch the following signals and evaluate the energy of each one of them

- (a) $\Pi(2t)$.
- (b) $6\Pi(0.5t)$.
- (c) $\Pi(t-4)$.
- (d) $\Pi(\frac{t+1}{2}) + \Pi(t-1)$.
- 10. (a) A binary signal $x_1(t) = 0$ for t < 0. For positive time, $x_1(t)$ toggles between one and zero in every one second. Determine the energy and power of $x_1(t)$.

(b) A binary signal $x_2(t) = 0$ for t < 0. For positive time, $x_2(t)$ toggles between one and zero as follows: one for 1 second, zero for 1 second, one for 1 second, zero for 2 seconds, one for 1 second, zero for 3 seconds, and so forth. That is, the "on" time is always one second, but the "off" time successively increases by one second between each toggle. A portion of $x_2(t)$ is shown below. Determine the energy and power of $x_2(t)$.

- 11. Determine which of the following signals are periodic. If a signal is periodic, what is the fundamental period and average power?
 - (a) $\cos(\pi t)$.
 - (b) $A\sin(10\pi t)$.
 - (c) $\sin(\sqrt{3}\pi t)$.
 - (d) e^{jt} .
 - (e) $A \sin(4\pi t + \pi)$.
 - (f) $\sum_{n=-\infty}^{\infty} \Pi(t-2n)$.
- 12. Carefully sketch the following signals. Mark all the critical points.
 - (a) $h(t) = e^{-tu(t)}, -1 \le t \le 1$
 - (b) $p[n] = (\frac{1}{2})^n u[n-3]$
 - (c) $g(t) = \frac{d}{dt} (u(t-2)r(t))$
 - (d) $f(t) = sgn(e^{-2t} \sin 2\pi t),$ sgn(t) = u(t) - u(-t)