VİTMO

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки: 09.03.04 — Системное и прикладное программное обеспечение

Дисциплина «Информатика»

Отчёт по лабораторной работе №2 Синтез помехоустойчивого кода

Вариант №81

Выполнил: студентка группы Р3115

Галак Екатерина Анатольевна

Проверил:

Белокон Юлия Алексеевна

Оглавление

Задание	3
Порядок выполнения работы	3
Задачи	
Основные этапы вычисления:	
Задача 1	
Задача 1.1	
Задача 1.2	6
Задача 1.3	6
Задача 1.4	7
Задача 2	7
Задача 3	8
Дополнительное задание	9
Заключение	
Список используемых источников	

Задание

Порядок выполнения работы

- Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Мой номер ISU:
 408417 ⇒ мой номер варианта для второй лабораторной работы 81
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Задачи

1. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода (Таблица 1); построить схему декодирования классического кода Хэмминга (7; 4), которую представит в отчете в виде изображения; показать, исходя из выбранных вариантов сообщений, имеются ли в принятом сообщении ошибки, и, если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Номер задания	Полученное сообщение
1 (65)	1010100
2 (10)	1010000
3 (37)	1001010
4 (77)	0111101

(Таблица 1)

2. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода (Таблица 2); построить схему декодирования классического кода Хэмминга (15; 11), которую представить в отчёте в виде изображения; показать, исходя из выбранного варианта сообщений, имеются ли в принятом сообщении ошибки, и, если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Номер задания	Полученное сообщение
80	001010100000101

(Таблица 2)

3. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Основные этапы вычисления:

Задача 1

Задача 1.1

\mathbf{r}_1	\mathbf{r}_2	i ₁	r ₃	i ₂	i ₃	i ₄
1	0	1	0	1	0	0

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4	S
1	X		X		X		X	S ₁
2		X	X			X	X	S2
4				X	X	X	X	S 3

$$r_1 = i_1 \bigoplus i_2 \bigoplus i_4$$

$$r_2 = i_1 \bigoplus i_3 \bigoplus i_4$$

$$r_3 = i_2 \bigoplus i_3 \bigoplus i_4$$

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$$

 $s=(s_1,s_2,s_3)=110\Rightarrow$ ошибка в символе i_4 (исходя из таблицы на Рисунке 1) \Rightarrow верное сообщение: 1010101

	1	2	3	4	5	6	7	
2 ^x	r ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	S ₁
2		X	Х			Х	Х	S ₂
4				Х	Х	Х	Х	S ₃

$$\begin{split} r_1 &= i_1 \oplus i_2 \oplus i_4 \\ r_2 &= i_1 \oplus i_3 \oplus i_4 \\ r_3 &= i_2 \oplus i_3 \oplus i_4 \\ s_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 \\ s_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 \\ s_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 \end{split}$$

Синдром S (s1, s2, s3)	000	001	010	011	100	101	110	111
Конфигурация ошибок (позиция в сообщении)	HET	0001000	0100000	0000010	1000000	0000100	0010000	0000001
Ошибка в символе	HET	<i>r</i> ₃	r ₂	i ₃	<i>r</i> ₁	i ₂	i ₁	i ₄

(Рисунок 1 – код Хэмминга (7;4))

Ответ: 1010101

Задача 1.2

\mathbf{r}_1	r ₂	i ₁	r ₃	i ₂	i ₃	i 4
1	0	1	0	0	0	0

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	\mathbf{i}_2	i ₃	i ₄	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S 3

$$r_1=i_1 \bigoplus i_2 \bigoplus i_4$$

$$r_2 = i_1 \bigoplus i_3 \bigoplus i_4$$

$$r_3 = i_2 \bigoplus i_3 \bigoplus i_4$$

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 0$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$$

 $s=(s_1,\,s_2,\,s_3)=010\Rightarrow$ ошибка в символе r_2 (исхода из таблицы на Рисунке $1)\Rightarrow$ верное сообщение: 110000

Ответ: 1110000

Задача 1.3

\mathbf{r}_1	r ₂	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4
1	0	0	1	0	1	0

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i ₄	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S3

$$r_1=i_1 \bigoplus i_2 \bigoplus i_4$$

$$r_2 = i_1 \bigoplus i_3 \bigoplus i_4$$

$$r_3 = i_2 \bigoplus i_3 \bigoplus i_4$$

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 0$$

 $s=(s_1,\,s_2,\,s_3)=110\Rightarrow$ ошибка в символе i_1 (исходя из таблицы на Рисунке $1)\Rightarrow$ верное сообщение: $10\overline{1}1010$

Ответ: 1011010

Задача 1.4

\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4
0	1	1	1	1	0	1

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i ₄	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S 3

$$r_1=i_1 \bigoplus i_2 \bigoplus i_4$$

$$r_2=i_1 \bigoplus i_3 \bigoplus i_4$$

$$r_3 = i_2 \bigoplus i_3 \bigoplus i_4$$

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

 $s=(s_1,s_2,s_3)=111\Rightarrow$ ошибка в символе i_4 (исходя из таблицы на Рисунке $1)\Rightarrow$ верное сообщение: 0111100

Ответ: 0111100

Задача 2

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	\mathbf{i}_2	i ₃	i ₄	r ₄	i 5	i_6	i ₇	i ₈	i 9	i ₁₀	i ₁₁
0	0	1	0	1	0	1	0	0	0	0	0	1	0	1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i ₁	r ₃	i_2	i ₃	i ₄	r ₄	i ₅	i_6	i ₇	i ₈	i 9	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	S ₁
2		X	X			X	X			X	X			X	X	S ₂
4				X	X	X	X					X	X	X	X	S3
8								X	X	X	X	X	X	X	X	S4

$$\mathbf{r}_1 = \mathbf{i}_1 \oplus \mathbf{i}_2 \oplus \mathbf{i}_4 \oplus \mathbf{i}_5 \oplus \mathbf{i}_7 \oplus \mathbf{i}_9 \oplus \mathbf{i}_{11}$$

$$r_2 = i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11}$$

$$r_3 = i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11}$$

$$r_4 = i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11}$$

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

$$s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

 $s = (s_1, s_2, s_3, s_4) = 1100 \Rightarrow$ ошибка в символе $i_1 \Rightarrow$ верное сообщение:

000010100000101

Ответ: 000010100000101

Задача 3

Информационных разрядов в передаваемом сообщении: i = (65 + 10 + 37 + 77 + 80) * 4 = 1076

Пусть r – количество проверочных разрядов, тогда всего бит в сообщении: $2^r - 1$; информационных бит: $2^r - r - 1$. Требуется найти такое r, что

$$2^{r} > r + i + 1$$

$$2^r \ge r + 1076 + 1$$

r = 11, т. е. минимальное количество проверочных разрядов r = 11.

Коэффициент избыточности:

$$k = \frac{r}{i+r} = \frac{11}{1076+11} \approx 0.0101196$$

Ответ: 11; 0,0101196

Дополнительное задание

Код написан на языке программирования С++. Работает для любой длины сообщения (не только для длины 7). Также программа поддерживает аргумент командной строки (опцию) для ввода вручную количества контрольных разрядов (например, "-p=4", т.е. код отработает для 4 контрольных разрядов, если этого количества достаточно для покрытия введенных информационных разрядов, в случае, если введенного количества контрольных разрядов недостаточно, пользователь получает сообщение об этом, генерируется исключение). Использованы поразрядные операции:

- 1) S & (S-1) проверка числа на принадлежность степеням двойки (выражение равно нулю, если S степень двойки)
 - 2) (1 << r) возведение 2 в степень г.

```
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
int countSyndrom(std::string& message) {
    int numberControlDig = 0;
    while ((1 << numberControlDig) < message.size() + 1) {</pre>
        ++numberControlDig;
    int syndrom = 0;
    for (int r = 0; r < numberControlDig; ++r) {</pre>
        int parity = 0;
        for (int i = (1 << r) - 1; i < message.size(); i += (1 << (r + r) - 1)
1))) {
            for (int j = i; j < i + (1 << r) && j < message.size(); ++j)
{
                parity ^= (message[j] - '0');
            }
        }
        syndrom += parity * (1 << r);</pre>
    }
    return syndrom;
int parsingArgv(int argc, char** argv) {
    std::string ansString = "";
    for (std::size t i = 1; i < argc; ++i) {
        for (std::size t j = 0; j < strlen(argv[i]); ++j) {
            if (argv[i][j] == '-' || argv[i][j] == 'p' || argv[i][j] ==
' = ' ) {
                continue;
            ansString += argv[i][j];
```

```
return stoi(ansString);
main(int argc, char** argv) {
    std::string message;
    std::cout << "Enter a message: " << std::endl;</pre>
    std::cin >> message;
    int messegeSize = message.size();
    if (argc > 1) {
        int parity = parsingArgv(argc, argv);
        if (message.size() > (1 << parity) - 1) {</pre>
            throw std::invalid argument ("Too few parity bits: " +
parity);
        while (message.size() < (1 << parity) - 1) {</pre>
            message += '0';
    }
    int S = countSyndrom(message);
    if (!S) {
        std::cout << "There are no errors in the entered message" <<</pre>
std::endl;
        std::cout << "Information bits of the message: " << std::endl;</pre>
    } else {
        std::cout << "An error was found in bit number: " << S;</pre>
        message[S - 1] = (message[S - 1] == '0') ? '1' : '0';
        if (!(S & (S - 1))) {
            std::cout << " (r" << (int)log2(S) + 1 << ")" << std::endl;
        } else {
            std::cout << " (i" << S - (int)log2(S) - 1 << ")" <<
std::endl;
    for (int i = 1; i <= message.size() && i <= messegeSize; ++i) {</pre>
        if (!(i & (i - 1))) { // проверка на степень двойки
            continue;
        std::cout << message[i - 1];</pre>
    std::cout << std::endl;</pre>
```

Результаты работы программы (Рисунки 1 - 5):

```
PS D:\ITMO\sppo_2024\inf\lab2> .\a.exe -p=12
Enter a message:
1010100
An error was found in bit number: 7 (i4)
1101
PS D:\ITMO\sppo_2024\inf\lab2> .\a.exe
Enter a message:
1010100
An error was found in bit number: 7 (i4)
1101
```

(Рисунок 2 – Результат работы программы)

```
PS D:\ITMO\sppo_2024\inf\lab2> .\a.exe
Enter a message:
1011101010101
An error was found in bit number: 11 (i7)
110110001
PS D:\ITMO\sppo_2024\inf\lab2> .\a.exe
Enter a message:
1110101000001111111
An error was found in bit number: 14 (i10)
11010000101111
```

(Рисунок 3 – Результат работы программы)

```
PS D:\ITMO\sppo_2024\inf\lab2> .\a.exe -p=4
Enter a message:
10101010111111111111
terminate called after throwing an instance of 'std::invalid_argument'
what(): few parity bits: __ (Рисунок 4 —
```

Результат работы программы)

```
PS D:\ITMO\sppo_2024\inf\lab2> .\a.exe
Enter a message:
000010100000101
There are no errors in the entered message
Information bits of the message:
01010000101
```

(Рисунок 5 – Результат работы программы)

Заключение

Во время выполнения данной лабораторной работы я научилась работать с кодом Хэмминга, анализировать помехоустойчивые коды, находить в них ошибки и исправлять их.

Список используемых источников

- 1. Кудряшов Б. Д. Основы теории кодирования / Б. Д. Кудряшов Санкт-Петербург: БХВ-Петербург, 2016 400 с.
- 2. Ишмухаметов Ш. Т., Латыпов Р. Х., Рубцова Р. Г., Столов Е. Л. Введение в теорию кодирования и криптографию: Учебное пособие / Ш. Т.

Ишмухаметов, Р. Х. Латыпов, Р. Г. Рубцова, Е. Л. Столов — Казань: Казанский университет, 2021 — 211 с.