

Amorphous Silicon/Low-temperature Poly-silicon TFT Panel 528-channel Source Driver with Internal RAM for 260-thousand-color Displays

(Customized specification for SAMSUNG Electronics)

REJxxxxxx-xxxZ Rev.1.1-3 Oct.14.2003

Description	5
Features	6
Type Numbers	7
Block diagram	8
Pin Function	9
PAD Assignment (Straight)	14
PAD Coordinate (Straight)	15
PAD Assignment (Laced)	17
PAD Coordinate (Laced)	18
BUMP Arrangement	20
Connection example: HD66772-HD66774	21
Connection example: HD66772-HD66775-HD667P00	22
Block Function	23
System Interface	
External Display Interface	
Bit Operations	
Address Counter (AC)	
Graphics RAM (GRAM)	
Grayscale Voltage Generation Circuit	
Timing Generator	
Oscillation Circuit (OSC)	
Liquid Crystal Display Driver Circuit	
Interface with Gate driver	

GRAM Address Map (HD66772)	26
Instructions	32
Outline	
Index	
Status Read	
Start Oscillation (R00h)	
LCD-Driving-Waveform Control (R02h)	
Entry Mode (R03h)	
Compare Register 1 (R04h)	
Compare Register 2 (R05h)	
Display Control 1 (R07h)	
Display Control 2 (R08h)	
Gate Driver Interface Control (R0Ah)	43
Frame Cycle Control (R0Bh)	
External Display Interface Control (R0Ch)	
Internal clock operation mode	50
RGB interface mode (1)	50
RGB interface mode (2)	51
VSYNC interface mode	51
LTPS Interface Control (R0Dh)	52
Power Control 1 (R10h)	54
RAM Address Set (R21h)	57
Write Data to GRAM (R22h)	58
RAM Access via RGB-I/F and System I/F	
Read Data from GRAM (R22h)	
RAM Write Data Mask (R23h)	
RAM Write Data Mask (R24h)	66
γ Control Instructions	67
γ Control (R30h to R3Fh)	67
Position Control Instructions	68
Gate Scan Position (R40h)	68
Vertical Scroll Control (R41h)	69
1st-Screen Driving Position (R42h)	
2nd-Screen Driving Position (R43h)	69
Horizontal RAM Address Position (R44h)	70
Vertical RAM Address Position (R45h)	70
Instruction List	71
Reset Function	73
Interfece Energifications	75
Interface Specifications	15
System Interface	77
80-system 18-bit interface	<i>7</i> 8
Data format for 18-bit interface	78
80-system 16-bit interface	<i>79</i>
Data format for 16-bit interface	
80-system 9-bit interface	
Data format for 9-bit interface	
80-system 8-bit interface	82

Data format for 8-bit interface	
Serial clock synchronized interface (SPI)	
Data format for serial interface	. 83
VSYNC Interface	. 87
Usage on VSYNC Interface	. 89
External Display Interface	. 91
RGB interface	
VLD and ENABLE signals	
RGB interface timing	
Moving picture display	
RAM access via the system interface when RGB-I/F is in use	
6-bit RGB interface	
16-bit RGB interface	
18-bit RGB interface	
Usage on external display interface	
Timing of LCD Panel I/F	. 101
Low-temperature poly-silicon TFT panel control	
Output timing for HD66772 signals	. 107
High-Speed Burst RAM Write Function	. 108
High-Speed RAM Write in the Window Address	
Window Address Function	. 113
Graphics Operation Function	. 114
Write-data Mask Function	
Graphics Operation Processing	
γ-Correction Function	. 119
Configuration of Grayscale Amplifier	
γ-Correction Registers	
Ladder resistors and 8 to 1 selector	
Variable resistor	
Relationship between RAM data and output level	
8-color Display Mode	. 130
Example of System Configuration	. 132
Example of Connection to HD66771 and HD667P00	
•	. 133
Specification of capacitor connected to HD667P00	
Specification of capacitor connected to HD667P00	. 135

n-raster-row Reversed AC Drive	139
Interlaced Driving	140
AC Drive Timing	142
Frame-Frequency Adjustment Function	143
Relationship between LCD Drive Duty and Frame Frequency	
Screen-division Driving Function	144
Restrictions on the 1st/2nd Screen Driving Position Register Se	ettings 145
	8
Absolute Maximum Ratings	_
Absolute Maximum Ratings DC Characteristics	147
DC Characteristics	147
DC CharacteristicsAC Characteristics	
DC CharacteristicsAC Characteristics	
DC Characteristics	
DC Characteristics	
DC Characteristics	
DC Characteristics	

Description

The HD66772 528-channel source driver LSI is used in combination with the HD66774 gate driver/power-supply IC to display 176RGB-by-240-dot graphics on TFT color LCD displays in 262,144 colors. As well as signals for amorphous silicon TFTs, the HD66772 is capable, in conjunction with the HD667P00 (power-supply IC), of outputting the signals for the control of low-temperature poly-silicon TFTs.

The HD66772's bit-operation functions, 8/9/16/18-bit high-speed bus interface, and high-speed RAM-write functions enable the efficient transfer of data and the high-speed rewriting of data in the graphics RAM. The HD66772's 6/16/18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, and PD 17 to 0) and VSYNC interface (system interface + VSYNC) provide interfaces for use with animated displays. These interfaces provide a window-addressing function that facilitates the construction of a display in any area of the screen and allows the simultaneous display of animated images and the contents of internal RAM without concern for the static image areas.

The HD66772 and HD66774 have various functions for reducing the power consumption of an LCD system. The HD66772 features low-voltage operation (1.8 V min.) and an internal RAM from which it is able to drive a maximum of 176RGB-by-240-dot color images, while the HD66774 features an interface to drive the 240 TFT gate lines and voltage-followers to generate the LCD-driving voltage. Since the HD66772 incorporates a circuit that interfaces with the HD66774, it is capable of setting instructions for the HD66774. The device supports functions such as an eight-color display function and standby and sleep modes that allow precise power control by software. This LSI is suitable for any medium-sized or small portable product that is battery driven and requires a long battery life, such as digital cellular phones that support a WWW browser and small PDAs.

Features

- 176RGB x 240-dot graphics display LCD controller/driver for 262,144 TFT colors (when used with the HD66774)
- Control signals for the low-temperature poly-silicon TFT-panel compatible gate driver (HD66772 + HD667P00)
- System interfaces
 - 8-/9-/16-/18-bit high-speed bus interface
 - Serial peripheral interface (SPI)
- Interfaces for use with animated displays
 - 6-/8-/18-bit RGB-I/F (VSYNC, HSYNC, DOTCLK, ENABLE, and PD 17 to 0)
 - VSYNC-I/F (system I/F + VSYNC)
- High-speed burst-RAM write function
- A window-addressing function allows writing to the set of addresses in RAM that correspond to a window's shape.
 - The interfaces for animated displays facilitate the placing of animated pictures in any area of the screen
 - Selective transmission to the animated-display area reduces the amount of data transmitted.
 - The contents of internal RAM may be displayed at the same time as the animated display.
- Bit-operations for graphics processing:
 - Write data mask function in bit units
 - Logical operations and conditional writing in units of pixels
- Various functions for controlling color displays:
 - —Simultaneous availability of 262,144 colors (γ-correction function)
 - --- Vertical scrolling in raster-row units
- Features for low-power operation include:
 - Vcc = 1.8 to 3.3 V (low-voltage range)
 - DDVDH = 4.5 to 5.5 V (liquid-crystal driving voltage)
 - Power-save functions such as the standby and sleep modes
 - Partial LCD drive that displays two sub-screens in any position
 - Maximum 12-times step-up circuit for the liquid-crystal driving voltage (HD66774)
 - Voltage followers to decrease the flow of direct current in the LCD drive's bleeder-resistors (HD66774)
- Built-in circuit for interfacing with the HD66774 gate-driver/power-supply IC
- Maximum 176RGB-by-240-dot display in combination with the HD66774 gate-driver/power-supply IC
- 95,040 bytes of internal RAM
- 528-output liquid-crystal display driver
- n-raster-row AC liquid-crystal drive (can be set to a different polarity each line)

- Internal oscillation and hardware reset
- Reversible direction for the feeding of signals from RAM to the source driver

Type Numbers

Type Number	External Appearance
HD667A72BP	Die with gold bump (straight output arrangement)
HD667B72BP	Die with gold bump (laced output arrangement)

Block diagram

Pin Function

Table 1

Signals	Number of Pins	I/O	Connected to	Funct	ions				
IM3-1, IM0/ID	3	I	GND or V _{CC}	Setting	gs sel	ect the MP	U-inte	erface mode as listed	below.
				IM3	IM2	IM1	IM0	MPU-Interface Mode	DB Pin
				GND	GND	GND	GND	Setting disabled	
				GND	GND	GND	Vcc	Setting disabled	
				GND	GND	Vcc	GND	80-system 16-bit interface	DB17 to 10 and 8 to 1
				GND	GND	Vcc	Vcc	80-system 8-bit interface	DB17 to 10
				GND	Vcc	GND	ID	Clocked serial peripheral interface (SPI)	DB1 to 0
				GND	Vcc	Vcc	*	Setting disabled	
				Vcc	GND	GND	GND	Setting disabled	
				Vcc	GND	GND	Vcc	Setting disabled	
				Vcc	GND	Vcc	GND	80-system 18-bit interface	DB17 to 0
				Vcc	GND	Vcc	Vcc	80-system 9-bit interface	DB17 to 9
				Vcc	Vcc	*	*	Setting disabled	
						erial interfa		selected, the IM0 pin vice.	is used
CS*	1	I	MPU	Low: t High:	he H[HD66	772 is not	select	ed and is accessible ted and is inaccessibl vel when not in use.	e
VLD	1	I	MPU	the RALLOW: No. 10 High: The Rallow. Must & This s	AM. /alid (Invalid AM a be fixe ignal	(Writing dated (Not writing defense will lead to the Greense average)	ta to F ng da be up ND le	e data is valid when work RAM) ta to RAM) odated whether VLD is vel when not in use. e when an external di	s high or
						in use.			
				CS		RAM Write		RAM Add	ress
				0	0	Valid		Updated	
				0	1	Invalid		Updated	
				1	*	Invalid		Hold	

Signals	Number of Pins	I/O	Connected to	Functions
RS	1	I	MPU	Selects the register. Low: Index/status High: Control Fix to the "Vcc" or "GND" level while using SPI.
WR*/SCL	1	I	MPU	For an 80-system bus interface, serves as a write strobe signal. Data is written on this signal's low level.
				For a synchronous clock interface, serves as the synchronous clock signal.
RD*	1	I	MPU	For an 80-system bus interface, serves as a read-strobe signal. Data is read on this signal's low level. Fix to the "Vcc" or "GND" level while using SPI.
DB0/SDI	1	I/O	MPU	Serves as an I/O line in data transfer via an 18-bit parallel bidirectional data bus. The following pins are used in parallel transfer. 8-bit bus: DB17-DB10 9-bit bus: DB17-DB9 16-bit bus: DB17-DB10 and DB8-DB1 18-bit bus: DB17-DB0 Unused pins must be fixed to the Vcc or GND level.
				Serves as the serial data input pin (SDI) of a clock- synchronous serial interface. The input level is read on the rising edge of the SCL signal.
DB1/SDO	1	I/O	MCU	Serves as an I/O line in data transfer via a 18-bit parallel bidirectional data bus. The following pins are used in parallel transfer. 8-bit bus: DB17-DB10 9-bit bus: DB17-DB9 16-bit bus: DB17-DB10 and 8 to 1 18-bit bus: DB17-DB0 Unused pins must be fixed to the Vcc or GND level. Serves as the serial data output pin (SDO) of a clock-synchronous serial interface. Output is from the falling edge of the SCL signal.
DB2-DB17	16	I/O	MPU	Serve as pins for a bidirectional and parallel data bus. The following pins are used in parallel transfer. 8-bit bus: DB17-DB10 9-bit bus: DB17-DB9 16-bit bus: DB17-DB10 and 8 to 1 18-bit bus: DB17-DB0 Unused pins must be fixed to the Vcc or GND level.

Signals	Number of Pins	I/O	Connected to	Functions
ENABLE	1	I	MPU	Indicates whether or not RAM data is valid when the RGB interface is in use. Low: Selected (access enabled) High: Not selected (access disabled) Must be fixed to the Vcc level when not in use. According to the setting of EPL resister, EVABLE signals reverse its polarity.
				EPL ENABLE LVD RAM Write RAM Address
				0 0 0 Valid Updated
				0 0 1 Invalid Updated
				0 1 * Invalid Held
				1 0 * Invalid Held
				1 1 0 Valid Updated
				1 1 1 Invalid Updated
VSYNC	1	I	MPU	Frame synchronization signal This signal is active low. Must be fixed at the Vcc level when not in use.
HSYNC	1	I	MPU	Raster-row synchronization signal This signal is active low. Must be fixed at the Vcc level when not in use.
DOTCLK	1	I	MPU	Dot-clock signal This signal is active low. Data is read on its falling edge. Must be fixed at the Vcc level when not in use.
PD0-PD17	18	I	MPU	Serves as a 18-bit bus for RGB data. The following pins are used in transfer on this bus. 6-bit bus: DB17-DB12 16-bit bus: DB17-DB13 and 11 to 1 18-bit bus: DB17-DB0 Must be fixed unused pins to the Vcc or GND level.
S1-S528	528	0	LCD	Outputs voltages for supply to the LCD. The SS bit can change the direction with which segment signals are obtained from RAM. For example, if SS = 0, the data at RAM address 0000 is output on S1. If SS = 1, it is output on S528. S1, S4, S7, display red (R), S2, S5, S8, display green (G), and S3, S6, S9, display blue (B) (SS = 0).
CL1	1	0	HD66774	The one-raster-row-cycle pulse is output.
				*Connect either right or left terminal of a chip. Set unused pins open.
M	1	0	HD66774	Output for the AC-cycle signal.
				*Connect either right or left terminal of a chip. Set unused pins open.
FLM	1	0	HD66774	Output for the frame-start pulse.
				*Connect either right or left terminal of a chip. Set unused pins open.

Signals	Number of Pins	I/O	Connected to	Functions
EQ	1	0	HD66774	Indicates setting of the Vcom output to its high-impedance state during transitions of Vcom when Vcom is being AC-cycled. Low: VcomH or VcomL is being output on the Vcom pin. High: Vcom pin is in high-impedance state.
				*Connect either right or left terminal of a chip. Set unused pins open.
DISPTMG	1	0	HD66774	Gate-off signal during the partial display. Low: Outputs Voff signal. High: Outputs normal signal.
				*Connect either right or left terminal of a chip. Set unused pins open.
DCCLK	1	0	HD66774	Outputs the clock signal for the step-up circuit.
				*Connect either right or left terminal of a chip. Set unused pins open.
SFTCLK	1	0	HD66774	The one-raster-row-cycle pulse is output. *Connect either right or left terminal of a chip. Set unused pins open.
GCL	1	0	HD66774	Clock signal for the serial transfer of register settings to the gate-driver/power-supply IC. Data is output on the falling edges of this signal. *Connect either right or left terminal of a chip. Set unused pins open.
GDA	1	0	HD66774	Data signal for the serial transfer of register settings to the gate-driver/power-supply IC. *Connect either right or left terminal of a chip. Set unused pins open.
GCS*	1	0	HD66774	Chip-select signal for the HD66772. Low: the HD66772 is selected and can receive serially transferred data. High: the HD66772 is not selected and cannot receive serially transferred data. *Connect either right or left terminal of a chip. Set unused pins open.
DDVDH	1	I	HD66774	Input for the LCD-driving voltage, which can be provided by the HD66774. VDH (max.) ≤ DDVDH - 0.5 V
VDH	1	I	HD66774	Reference level for grayscale voltage generation circuit, which can be provided by the HD66774. VDH (max.): DDVDH-0.5V.
Vcom	1	I	HD66774	Signal for the equalizer functions All LCD outputs (S1-S528) are shorted to the Vcom level (high-impedance). When VcomL is lower than 0 V, this signal should not be connected.
V _{CC} , GND	2	_	Power supply	V _{CC} : + 1.8 V to + 3.3 V; GND (logic): 0 V
OSC1, OSC2	2	I or O	Resistor for the oscillator	For connecting an external resistor for R-C oscillation. An external clock signal should be supplied through OSC1 with OSC2 open-circuit.

Signals	Number of Pins	I/O	Connected to	Functions
RESET1* RESET2*	1	I	MPU or external R-C circuit	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied. Input data through RESET1 or RESET2. Unused pins should not be connected.
VccDUM		0	Input pins	Outputs the internal V_{CC} level; shorting this pin sets the adjacent input pin to the V_{CC} level.
GNDDUM		0	Input pins	Outputs the internal GND level; shorting this pin sets the adjacent input pin to the GND level.
Dummy1,4, 19,20	4	_	_	Dummy pad. Must be left disconnected.
Dummy5-18 Dummy21-34	28	_	_	Dummy pad. Can be connected to COG panel wiring.
TEST	1	1	GND	Test pin. Must be fixed at GND level.
V0, V1P, V2P, V4P, V59P, V61P, V62P, and V63P	8	I or O	Stabilizing capacitor	Internal op-amp outputs that produce a positive polarity (V0 can be used for both polarities) when the internal op-amp is on (SAP2-0 ="001", "010", "001", "100", or "101"). For connection to stabilizing capacitors.
V1N, V2N, V4N, V59N, V61N, V62N, and V63N	7	I or O	Stabilizing capacitor	Internal op-amp outputs that produce a negative polarity when the internal op-amp is on (SAP2-0 ="001", "010", "001", "100", or "101"). For connection to stabilizing capacitors.
V8, V14, V20, V28, V35, V43, V49, and V55	, 8	0	Open	Test pins. Must not be connected.
VGS	1	I	GND or External resistor	Reference level for the grayscale-voltage generation circuit. For connection to a variable resistor that adjusts the source-driver level for a panel.
VTEST	1	0	Open	Test pin. Must not be connected.
TS0-TS7	8	0	Open	Test pins. Must not be connected.

Patents of dummy pin which is used to fix pin to VCC or GND are pending and granted.

PATENT ISSUED: United States Patent No. 6,323,930 PATENT PENDING: Japanese Application No. 10-514484 Korean Application No. 19997002322

Taiwanese Application No.086103756 (PCT/JP96/02728(W098/12597)

HD667A72 Pad Assignment (Straight)

New assignment pad from 770 in I/O part

PAD Coordinate (Straight)

Nα	pad name	Х	Υ	Nα	pad name	Х	Υ	Nα	pad name	Χ	Υ	Nα	pad name	Х	Υ	Nα	pad name	X	_
_ 1	DÚMMYI	-8788	-1453	81	GND	82	-1453	161	DUMMY14	8750	9 00	241	S 454	7580	1415	321	\$374	4380	14
2	RESET1 *	-8474	-1453	82	GND	182	-1453	162	DUMMY15	8750	-860	242	S453	7540	1415	322	S 373	4340	14
3	D BPTMG	8339	-1453	83	GND	282	-1453	163	DUMMY16	8750	-820	243	S452	7500	1415	323	\$372	4300	14
4	CLI	-8204	-1453	84	GND	382	-1453	164		8750	-780	244	S451	7460	1415	324	S 371	4260	14
5		-8069	-1453		GND	482	-1453	165		8750	-740	245	S 450	7420	1415	325	S 370	4220	14
	M	-7934	-1453		GND	582	-1453	166		8750	-700	246	S 149	7380	1415	326	3 369	4180	14
	EQ	-7799	-1453		GND	682	-1453	167		8750	660	247	SI48	7340	1415	327	3 368	4140	14
8		-7664	-1453	88	GND	782	-1453	168		8750	620	248	SI47	7300	1415	328	3 367	4100	14
9		-7529	-1453	89	GND	882	-1453	169		8750	-580	249	\$146	7260	1415	329	3 366	4060	14
10		-7394	-1453		GND	982	-1453	170		8750	-540	250	S 145	7220	1415	330	\$365	4020	14
11	GCL	-7259	-1453	91	DDVDH	1133	-1453	171	S 523	8750	-500	251	S1 44	7180	1415	331	S 364	3980	14
12	DCCLK	-7124	-1453	92	DDVDH	1233	-1453	172	S 522	8750	460	252	S 443	7140	1415	332	\$363	3940	14
13	VCCDUM1	6974	-1453	93	DDVDH	1333	-1453	173	S 521	8750	420	253	\$142	7100	1415	333	\$362	3900	14
14	M0/ D	-6874	-1453	94	DDVDH	1433	-1453	174		8750	-380	254	SI41	7060	1415	334	S 361	3860	14
15		6774	-1453		DDVDH	1533	-1453	175		8750	340	255	\$440	7020	1415	335	\$360	3820	14
16		-6674	-1453		DDVDH	1633	-1453	176		8750	300	256	SH39	6980	1415	336	3 359	3780	14
17								177							1415			3740	14
	VCCDUM2	6574	-1453		DDVDH	1733	-1453			8750	-260	257	S438	6940		337	3 358		
18		6474	-1453	98	VDH	1883	-1453	178		8750	-220	258	S437	6900	1415	338	3 357	3700	14
19		6373	-1453		VDH	1983	-1453	179		8750	-180	259	S #36	6860	1415	339	S 356	3660	14
20	Mβ	-6273	-1453	100	VDH	2083	-1453	180	S 514	8750	-140	260	S #35	6820	1415	340	S 355	3620	14
21	GNDDUM2	6173	-1453	101	VDH	2183	-1453	181	S 513	8750	-100	261	S 434	6780	1415	341	3 354	3580	14
22	TEST	6073	-1453	102	VGS	2334	-1453	182	S 512	8750	-60	262	S4 33	6740	1415	342	\$ 353	3540	14
23	0901	-5923	-1453	103	VGS	2434	-1453	183		8750	-20	263	\$432	6700	1415	343	\$352	3500	14
24		5773	-1453	104	VOS	2584	-1453	184		8750	20	264		6660	1415	344	S351	3460	14
25		5623	-1453	105	VI P	2734	-1453	185	\$509	8750	60	265	S430	6620	1415	345	3 350	3420	14
26		-5523	-1453	106	VI N	2884	-1453	186		8750	100	266	SI29	6580	1415	346	\$349	3380	14
27	DB15	-5423	-1453	107	V2P	3034	-1453	187	\$507	8750	140	267	S428	6540	1415	347	S 348	3340	14
28	DB14	-5323	-1453	108	V2N	3184	-1453	188	\$506	8750	180	268	S427	6500	1415	348	\$347	3300	14
29	DB13	-5223	-1453	109	V4P	3334	-1453	189	S 505	8750	220	269	S426	6460	1415	349	S 346	3260	14
30		-5122	-1453	110	V4N	3484	-1453	190		8750	260	270	\$425	6420	1415	350	S 345	3220	14
31		5022	-1453	111	V59 P	3635	-1453	191		8750	300	271	SI24	6380	1415		S344		14
	DB11															351		3180	
32		4922	-1453	112	V59 N	3785	-1453	192		8750	340	272	SH23	6340	1415	352	S 343	3140	14
33	DB9	4822	-1453	113	V61 P	3935	-1453	193	S 501	8750	380	273	S 1 22	6300	1415	353	\$342	3100	14
34	GNDDUM3	4722	-1453	114	V61 N	4085	-1453	194	\$500	8750	420	274	S421	6260	1415	354	\$341	3060	14
35	DB8	4622	-1453	115	V62 P	4235	-1453	195		8750	460	275	S420	6220	1415	355	S 340	3020	14
36		4522	-1453		V62 N	4385	-1453	196		8750	500	276	S 419	6180	1415	356	S 339	2980	14
37		4422	-1453		V63 P	4535	-1453	197		8750	540	277	S#18	6140	1415	357	S 338	2940	14
38	DB5	4322	-1453	118	V63 N	4685	-1453	198		8750	580	278	S#17	6100	1415	358	\$337	2900	14
39	DB4	4222	-1453	119	V8	4836	-1453	199		8750	620	279	S#16	6060	1415	359	S 336	2860	14
40	DB3	4122	-1453	120	V14	4936	-1453	200	S 494	8750	660	280	S#15	6020	1415	360	S 335	2820	14
41	DB2	4022	-1453	121	V20	5036	-1453	201	S493	8750	700	281	S414	5980	1415	361	S 334	2780	14
42	DB1 / SDO	-3921	-1453	122	V28	5136	-1453	202	\$492	8750	740	282	S#13	5940	1415	362	\$ 333	2740	14
43	DB0/SDI	-3821	-1453	123	V35	5236	-1453	203	S 491	8750	780	283	SI12	5900	1415	363	S 332	2700	14
44	GNDDUM4		-1453	124	V43		-1453	204		8750	820	284	SI11	5860	1415	364	S331	2660	14
		3721				5336													
45		-3621	-1453	125	V49	5436	-1453	205	S 489	8750	860	285	S#10	5820	1415	365	3 330	2620	14
	WR*/ SCL	-3521	-1453	126	V55	5536	-1453	206	S488	8750	900	286	S409	5780	1415	366	S 329	2580	14
47	RS	-3421	-1453	127	VTEST	5636	-1453	207	S487	8750	940	287	S408	5740	1415	367	S 328	2540	14
48	CS*	-3321	-1453	128	VCOM	5786	-1453	208	S486	8750	980	288	S 407	5700	1415	368	\$327	2500	14
49	VLD	-3221	-1453	129	VCOM	5886	-1453	209	S485	8750	1020	289	\$406	5660	1415	369	\$326	2460	14
50		-3121	-1453		DCCLK	6036	-1453	210		8750	1060	290	\$405	5620	1415	370	\$325	2420	14
51	VSYNC	-3021	-1453	131	GCL	6171	-1453	211		8750	1100	291	S 404	5580	1415	371	\$324	2380	14
	HSYNC	-2921	-1453	132		6306	-1453	212			1140	292	S403	5540	1415	372		2340	14
52					GCS*					8750							\$323		
53	DOTCLK	-2821	-1453	133	GDA	6441	-1453	213		8750	1180	293	SH02	5500	1415	373	\$322	2300	14
54		-2721	-1453	134	SFTCLK	6576	-1453	214		8750	1220	294	S#01	5460	1415	374	S 321	2260	14
55	PD17	-2620	-1453	135	EQ	6711	-1453	215	S 479	8750	1260	295	\$400	5420	1415	375	\$320	2220	14
56	PD16	-2520	-1453	136	M	6846	-1453	216	DUMMY19	8788	1453	296	3 399	5380	1415	376	S 319	2180	14
57	PD15	-2420	-1453	137	FLM	6981	-1453	217		8540	1415	297	3 398	5340	1415	377	S 318	2140	14
58	PD14	-2320	-1453	138		7116	-1453	218		8500	1415	298	3 397	5300	1415	378	\$317	2100	14
59		-2220	-1453		D BPTMG	7251	-1453	219	S476	8460	1415	299	S396	5260	1415	379	S316	2060	14
	PDI2			140						8420	1415				1415			2020	14
60		-2120	-1453		RESET2 *	7386	-1453	220				300	S395	5220		380	S315		
61	GNDDUM6	-2020	-1453	141	TSD	7537	-1453	221		8380	1415	301	S 394	5180	1415	381	\$314	1980	14
62		-1920	-1453	142	TSI	7637	-1453	222		8340	1415	302	3 393	5140	1415	382	S 313	1940	14
63	PD10	-1820	-1453	143	TS2	7737	-1453	223	S472	8300	1415	303	3 392	5100	1415	383	S 312	1900	14
64	PD9	-1720	-1453	144	TS3	7837	-1453	224	S471	8260	1415	304	S 391	5060	1415	384	S 311	1860	14
65	PD8	-1620	-1453	145	TSI	7937	-1453	225	\$470	8220	1415	305	\$390	5020	1415	385	S 310	1820	14
66	PD7	-1520	-1453	146	TS5	8037	-1453	226	S469	8180	1415	306	3 389	4980	1415	386	3 309	1780	14
67	PD6	-1419	-1453	147	TS6	8137	-1453	227	S468	8140	1415	307	3 888	4940	1415	387	\$308	1740	14
68	PD5	-1319	-1453	148	TS7	8237	-1453	228	S467	8100	1415	308	S 387	4900	1415	388	3 307	1700	14
	PD4	-1219	-1453		DUMMY2	8387	-1453	229		8060	1415	309	3 386	4860	1415	389	3 306	1660	
70	PD3	-1119	-1453	150	DUMMY3	8487	-1453	230	S465	8020	1415	310	3 385	4820	1415	390	3 305	1620	14
	PD2	-1019	-1453		DUMMY4	8788	-1453		S 464	7980	1415	311		4780	1415	391	\$304	1580	14
	PDI	9 19	-1453		DUMMY5	8750	-1260		S463	7940	1415	312	S383	4740	1415	392	3 303	1540	14
	PD0	819	-1453		DUMMY6	8750	-1220		S462	7900	1415	313		4700	1415	393	\$302	1500	14
	Vcc	-669	-1453		DUMMY7	8750	-1180	234		7860	1415	314	\$381	4660	1415	394	\$3 01	1460	14
75	Vcc	-569	-1453	155	DUMMY8	8750	-1140	235	S460	7820	1415	315	3 80	4620	1415	395	\$300	1420	14
76		469	-1453		DUMMY9	8750	-1100	236		7780	1415	316	3 379	4580	1415	396	\$299	1380	14
77		369	-1453		DUMMY10	8750	-1060	237	S458	7740	1415	317	S378	4540	1415	397	\$298	1340	14
78		-269	-1453		DUMMY11	8750	-1020	238		7700	1415	318	S377	4500	1415	398	\$297	1300	14
	Vcc	-168	-1453	159	DUMMY12	8750	9 80	239	S456	7660	1415	319	S 376	4460	1415	399	\$296	1260	14
	Vcc	-68	-1453		DUMMY13	8750	940		S 455	7620	1415	320	S 375	4420	1415		\$295	1220	14

Nα	pad name	X	Υ	No.	pad name	X	Υ	No.	pad name	X	Υ	No. pad name	XY
401	\$294	1180	1415	481	\$214	-2020	1415	561	\$134	-5220	1415	641 S54	8420 1415
402	\$293	1140	1415	482	\$213	-2060	1415	562	\$133	-5260	1415	642 \$53	8460 1415
403	\$292	1100	1415	483	\$212	-2100	1415	563	\$132	-5300	1415	643 S 52	8500 1415
404	\$291	1060	1415	484	\$211	-2140	1415	564	\$131	-5340	1415	644 351	8540 1415
405	\$290 \$290	1020	1415	485	\$210	-2180 -2220	1415	565 566	S130	-5380 -5420	1415	645 DUMMY20	8788 1453 8750 1260
406 407	\$289 \$288	980 940	1415 1415	486 487	\$209 \$208	-2220 -2260	1415 1415	566 567	S129 S128	-5420 -5460	1415 1415	646 S50 647 S49	8750 1260 8750 1220
407	\$287	940	1415	488	\$208 \$207	-2260	1415	568	SI 27	-5500	1415	648 S48	8750 1220
409	\$286	860	1415	489	S206	-2340	1415	569		-5540	1415	649 \$47	8750 1160
410	\$285	820	1415	490	\$205	-2380	1415	570		-5580	1415	650 S46	8750 1100
411	\$284	780	1415	491	\$204	-2420	1415	571		-5620	1415	651 S45	8750 1060
412	\$283	740	1415	492	\$203	-2460	1415	572	\$123	-5660	1415	652 SH4	8750 1020
413	\$282	700	1415	493	\$202	-2500	1415	573	\$122	-5700	1415	653 SH3	-8750 980
414	\$281	660	1415	494	\$201	-2540	1415	574	SI21	-5740	1415	654 SH2	8750 940
415	\$280	620	1415	495	\$200	-2580	1415	575	\$120	-5780	1415	655 SH1	8750 900
416	\$279	580	1415	496	\$199	-2620	1415	576		-5820	1415	656 SH0	8750 860
417	\$278	540	1415	497	\$198	-2660	1415	577	SI 18	-5860	1415	657 \$39	8750 820
418	\$277	500	1415	498	\$197	-2700	1415	578	917	-5900	1415	658 \$38	8750 780
419	S276	460	1415	499	S196	-2740	1415	579	SI 16	-5940	1415	659 \$37	8750 740
420	S275	420	1415	500	S195	-2780	1415	580		-5980	1415	660 \$36	8750 700
421	S274	380	1415	501	S194	-2820	1415	581	SI 14	6020	1415	661 \$35	8750 660
422 423	\$273 \$272	340 300	1415 1415	502	\$193 \$192	-2860 -2900	1415 1415	582 583	SI 13 SI 12	-6060 -6100	1415 1415	662 \$34 663 \$33	8750 620 8750 580
423	S271	260	1415	504	SI 91	-2900 -2940	1415	584		6140	1415	664 \$32	8750 540
425	S270	220	1415	505	SI 90	-2940	1415	585	SI10	-6180	1415	665 331	8750 500
426	S269	180	1415	506	S189	-3020	1415	586		6220	1415	666 330	8750 460
427	\$268	140	1415	507	S188	-3060	1415	587	SI08	6260	1415	667 \$29	8750 420
428	\$267	100	1415	508	S187	-3100	1415	588	\$107	-6300	1415	668 528	8750 380
429		60	1415	509	S186	-3140	1415	589		-6340	1415	669 \$27	8750 340
430	\$265	20	1415	510	\$185	-3180	1415	590	\$105	-6380	1415	670 \$26	8750 300
431	\$264	-20	1415	511	3184	-3220	1415	591	\$104	-6420	1415	671 S25	8750 260
432	\$263	-60	1415	512	383	-3260	1415	592		-6460	1415	672 \$24	8750 220
433	\$262	-100	1415	513	S182	-3300	1415	593	\$102	-6500	1415	673 \$23	8750 180
434	S261	-140	1415	514	SI 81	-3340	1415	594	S101	-6540	1415	674 \$22	8750 140
435		-180	1415	515	S180	-3380	1415	595		-6580	1415	675 521	8750 100
436	\$259	-220	1415	516	S179	-3420	1415	596	S 99	-6620	1415	676 520	8750 60
437 438	\$258 \$257	-260 -300	1415 1415	517 518	<u>\$178</u> \$177	-3460 -3500	1415 1415	597 598	\$98 \$97	-6660 -6700	1415 1415	677 S19 678 S18	8750 20 8750 -20
439	S256	-340	1415	519	S176	-3540	1415	599	S96	6740	1415	679 317	8750 -20
440	\$255	-340 -380	1415	520	S175	-3580	1415	600	3 95	6780	1415	680 S16	8750 -100
441	\$254	420	1415	521	S174	-3620	1415	601	S 94	-6820	1415	681 35	8750 -140
442	\$253	460	1415	522	S 173	-3660	1415	602	S 93	-6860	1415	682 SI4	8750 -180
443	\$252	-500	1415	523	S 172	-3700	1415	603	S 92	-6900	1415	683 SI3	-8750 <i>-</i> 220
444	\$251	-540	1415	524	S 171	-3740	1415	604		-6940	1415	684 SI2	-8750 -260
445	\$250	-580	1415	525	SI70	-3780	1415	605	S 90	-6980	1415	685 SI1	8750 -300
446	\$249	620	1415	526	S169	-3820	1415	606		-7020	1415	686 310	8750 340
447	\$248	-660	1415	527	SI 68	-3860	1415	607	S88	-7060	1415	687 S 9	8750 380
448	\$247 \$246	-700 740	1415	528	S167	-3900	1415	608		-7100 -7140	1415	688 38	8750 420
449	\$246	-740 -790	1415	529	SI 66	-3940	1415	609	3 86	-7140 -7190	1415	689 57	8750 460
450 451	\$245 \$244	-780 -820	1415 1415	530 531	S165 S164	-3980 -4020	1415 1415	610	S 85 S 84	-7180 -7220	1415 1415	690 S 6 691 S 5	8750 500 8750 540
451	\$243	860	1415	531	S163	4020	1415	611 612	3 83	-7220 -7260	1415	691 S5 692 S4	8750 540 8750 580
453	\$242	900	1415	533	SI 62	4100	1415	613		-7300	1415	693 S3	8750 620
454	S241	940	1415	534	SI 61	4140	1415	614		-7340	1415	694 52	8750 660
455	\$240	980	1415	535	3160	4180	1415	615	S \$0	-7380	1415	695 SI	8750 -700
456	\$239	-1020	1415	536	3 59	4220	1415	616	3 79	-7420	1415	696 DUMMY21	-8750 <i>-</i> 740
457	\$238	-1060	1415	537	SI 58	-4260	1415	617	5 78	-7460	1415	697 DUMMY22	-8750 <i>-</i> 780
458	\$237	-1100	1415	538	S 157	4300	1415	618		-7500	1415	698 DUMMY23	8750 820
459	\$236	-1140	1415	539	SI 56	4340	1415	619		-7540	1415	699 DUMMY24	8750 860
460	\$235	-1180	1415	540	9 55	4380	1415	620		-7580	1415	700 DUMMY25	8750 9 00
461	\$234	-1220	1415	541	SI 54	-4420	1415	621		-7620	1415	701 DUMMY26	8750 9 40
	\$233	-1260	1415	542		-4460		622		-7660		702 DUMMY27	8750 980
	\$232	-1300	1415		SI 52	4500		623		-7700		703 DUMMY28	8750 -1020
	S231	-1340	1415	544	SI 51	4540	1415	624		<i>-</i> 7740	1415	704 DUMMY29	8750 -1060
	\$230	-1380	1415	545	SI 50	4580	1415	625		-7780 -7920	1415	705 DUMMY30	8750 -1100
	\$229	-1420 -1460	1415 1415	546	SI 49	4620		626		-7820 -7860	1415	706 DUMMY31 707 DUMMY32	8750 -1140 8750 -1180
468	\$228 \$227	-1460 -1500	1415	547 548	SI 48 SI 47	-4660 -4700		627 628		-7860 -7900	1415 1415	707 DUMM Y32	8750 -1180 8750 -1220
	\$226	-1500 -1540	1415	549		4740	1415	629		-7900 -7940	1415	709 DUMMY34	8750 -1220
470		-1540	1415	550	SI 45	4740	1415	630		-7940 -7980	1415	700 DOMINI 134	0/00 1/200
	\$224	-1620	1415		SI 44	4820		631		-8020			
	\$223	-1660	1415	552		4860		632		-8060			
473	\$222	-1700	1415	553	SI 42	4900	1415	633	S 62	-8100			
474	\$221	-1740	1415	554	SI 41	4940	1415	634		-8140			
	\$220	-1780	1415		\$140	4980		635		-8180			
	\$219	-1820	1415	556	\$139	-5020	1415	636		-8220	1415		
477	\$218	-1860	1415	557	\$138	-5060		637		-8260			
478	\$217	-1900	1415	558	\$137	-5100	1415	638	S 57	-8300	1415		
479		-1940	1415	559	\$136	-5140	1415	639		-8340	1415		
	\$215	-1980	1415	560	S 135	-5180	1415	640	S 55	-8380	1415	i)	

HD667BA72 PAD Assignment (Laced

PAD Coordinate (Laced)

Nα	pad name	XIY	Nα	pad name	Х	Υ	No.	pad name	Х	Υ	No. pad name	X	Υ	Nα	pad name	X	Υ
1	DUMMY1	-8788 -1453		SND	82	-1453	161	DUMMY14	8796	-9 00	241 \$454	7580	1368	321	\$374	4380	136
2		8474 -1453		SND	182	-1453	162	DUMMY15	8703	-860	242 SI53	7540	1461	322	S 373	4340	
3	D SPTMG	8339 -1453	83 G	SND	282	-1453	163	DUMMY16	8796	-820	243 SI52	7500	1368	323	\$372	4300	
4		-8204 -1453	84 G		382	-1453	164	DUMMY17	8703	-780	244 SI51	7460	1461	324	\$371	4260	
5		8069 -1453		SND	482	-1453	165	DUMMY18	8796	-740	245 SI50	7420	1368	325	S 370	4220	130
6		-7934 -1453		SND	582	-1453	166	S 528	8703	-700	246 \$449	7380	1461	326	3 369	4180	
7	EQ	-7799 -1453		SND	682	-1453	167	S 527	8796	-660	247 SI48	7340	1368	327	3 368	4140	
8	SFTCLK	-7664 -1453		SND	782	-1453	168	S 526	8703	-620	248 \$447	7300	1461	328	\$367	4100	
ç		-7529 -1453		SND	882	-1453	169	S 525	8796	-580	249 \$446	7260	1368	329	\$366	4060	
10		-7394 -1453	90 G		982	-1453	170	S 524	8703	-540	250 \$445	7220	1461	330	\$365	4020	
11		-7259 -1453		DVDH	1133	-1453	171	S 523	8796	-500	251 \$444	7180	1368	331	\$364	3980	
12		-7124 -1453		DVDH	1233	-1453	172	\$522	8703	460	252 \$43	7140	1461	332	\$363	3940	
13		6974 -1453		DVDH	1333	-1453	173	S 521	8796	420	253 SI42	7100	1368	333	\$362	3900	
14		6874 -1453		DVDH	1433	-1453	174	\$520	8703	-380	254 \$41	7060	1461	334	3 361	3860	
15		6774 -1453		DVDH	1533	-1453	175	S 519	8796	-340	255 SI40	7020	1368	335	\$360	3820	
16		6674 -1453		DVDH	1633	-1453	176	S 518	8703	-300	256 SI39	6980	1461	336	3 359	3780	
17		6574 -1453		DVDH	1733	-1453	177	S 517	8796	-260	257 SI38	6940	1368	337	S 358	3740	
18		6474 -1453		DH	1883	-1453	178	S 516	8703	-220	258 SI37	6900	1461	338	S 357	3700	146
19		6373 -1453		DH	1983	-1453	179	S 515	8796	-180	259 SI36	6860	1368	339	\$356	3660	
20		6273 -1453		DH	2083	-1453	180	S 514	8703	-140	260 SI35	6820	1461	340	S 355	3620	
21		6173 -1453	101 V		2183	-1453	181	S 513	8796	-100	261 \$434	6780	1368		S 354	3580	
22		6073 -1453		GS	2334	-1453	182	S512	8703	-60	262 SI33	6740	1461	342	S 353	3540	
23		5923 -1453		GS GS	2434	-1453	183	S511	8796	-20	263 S432	6700	1368	343	3 352	3500	136
24		5773 -1453	104 V		2584	-1453	184	S 510	8703	20	264 SI31	6660	1461	344	S351	3460	
25		5623 -1453		1 P	2734	-1453	185	S 509	8796	60	265 SI30	6620	1368	345	S350	3420	
26		5523 -1453		1 N	2884	-1453 -1453	186	3 508	8703	100	266 St29	6580	1461	346	S349	3380	
27		5423 -1453		2P	3034	-1453	187	S 507	8796	140	267 St28	6540	1368	347	S348	3340	
28		5323 -1453		2 N	3184	-1453	188	S 506	8703	180	268 St27	6500	1461	348	S347	3300	
29		5223 -1453		4P	3334	-1453	189	S 505	8796	220	269 St26	6460	1368	349	S346	3260	
30		5122 -1453		4 N	3484	-1453	190	S 504	8703	260	270 St25	6420	1461	350	S345	3220	
31		5022 -1453		59 P	3635	-1453	191	S 503	8796	300	271 \$424	6380	1368	351	S344	3180	136
32		4922 -1453		59 N	3785	-1453	192	S 502	8703	340	272 \$123	6340	1461	352	S343	3140	
33		4822 -1453		61 P	3935	-1453	193	S 501	8796	380	273 SI22	6300	1368	353	\$342	3100	
34		4722 -1453	114 W		4085	-1453	194	S 500	8703	420	274 SI21	6260	1461	354	S341	3060	
35		4622 -1453		62 P	4235	-1453	195	S499	8796	460	275 St20	6220	1368	355	S340	3020	
36		4522 -1453		62 N	4385	-1453	196	S498	8703	500	276 S419	6180	1461	356	S 339	2980	
37		4422 -1453		63 P	4535	-1453	197	S497	8796	540	277 S418	6140	1368	357	3 338	2940	
		4322 -1453		63 N	4685	-1453	198	S496	8703	580	278 S417	6100	1461	358	S337	2900	
38		4222 -1453	119 V		4836	-1453	199	S495	8796	620	279 S416	6060	1368	359	S336	2860	
	DB3	4122 -1453	120 V		4936	-1453	200	S494	8703	660	280 S415	6020	1461	360	3 335	2820	
41		4022 -1453		20	5036	-1453	201	\$493	8796	700	281 \$414	5980	1368	361	S 334	2780	
42		3921 -1453		28	5136	-1453	202	S492	8703	740	282 \$413	5940	1461	362	\$333	2740	
43	2217 020	-3821 -1453		35	5236	-1453	203	St91	8796	780	283 SH12	5900	1368	363	\$332	2700	
44		3721 -1453		43	5336	-1453	204	S490	8703	820	284 \$411	5860	1461	364	S 331	2660	146
45		3621 -1453		49	5436	-1453	205	S489	8796	860	285 SI10	5820	1368	365	\$330	2620	
46		3521 -1453		55	5536	-1453	206	S488	8703	900	286 \$409	5780	1461	366	S 329	2580	
47		3421 -1453		TEST	5636	-1453	207	S487	8796	940	287 S408	5740	1368	367	S328	2540	
48		3321 -1453		COM	5786	-1453	208	S486	8703	980	288 S407	5700	1461	368	S327	2500	
49		3221 -1453		COM COM	5886	-1453	209	S485	8796	1020	289 S406	5660	1368	369	S326	2460	
50		3121 -1453	130 D		6036	-1453	210	S484	8703	1060	290 \$405	5620	1461	370	S325	2420	
					6171	-1453	211		8796		291 \$404			371	S324		
51 52		-3021 -1453 -2921 -1453		GCL GCS*	6306	-1453 -1453	212	S483 S482	8796	1100 1140	291 St04 292 St03	5580 5540	1368 1461	372	S323	2380 2340	
53		-2921 -1453 -2821 -1453		DA SDA	6441	-1453 -1453	213	S482 S481	8703 8796	1180	292 S403 293 S402	5500	1368	373	S322	2340	
54 54		-2821 -1453 -2721 -1453		FTCLK	6576	-1453 -1453	214	S480	8796	1220	293 S402 294 S401	5460	1461	374	S321	2260	
55					6711	-1453 -1453		S480 S479	8703 8796			5420	1368	375		2220	
56		-2620 -1453 -2520 -1453	135 E		6846	-1453 -1453	215 216	DUMMY19	8796 8788	1260 1453	295 S 400 296 S 399	5380	1461	376	\$320 \$319	2180	
57		-2520 -1453 -2420 -1453	136 IVI		6981	-1453 -1453	217	S478	8788 8540	1368	296 3399	5340	1368	376	S318	2140	136
58		-2320 -1453		LI	7116	-1453	218	S477	8500	1461	298 \$397	5300	1461	378	S317	2100	
59		-2220 -1453 -2220 -1453		ISPTIMG	7251	-1453	219		8460	1368	299 \$396	5260	1368	379	S316	2060	
	PD12	-2120 -1453		RESET2 *	7386	-1453	220	S475	8420	1461	300 \$395	5220	1461	380	S315	2020	
61		-2120 -1453 -2020 -1453	140 R		7537	-1453 -1453	221	S475	8380	1368	301 \$394	5180	1368	380	S314	1980	
62		-1920 -1453		3	7637	-1453	222	S474 S473	8340	1461	302 \$393	5140	1461	382	S313	1940	
63		-1920 -1453 -1820 -1453		32	7737	-1453	223	S473	8300	1368	303 \$392	5100	1368	383	S312	1900	
						-1453	223	S472					1461	384		1860	
64 65		-1720 -1453 -1620 -1453		S3 O1	7837 7937	-1453 -1453	225	S471 S470	8260 8220	1461 1368		5060 5020	1368	385	\$311 \$310	1860	
		-1620 -1453 -1520 -1453		Si Si	8037	-1453 -1453	226	S469	8180	1461	305 \$390 306 \$389	4980	1461	386	3 309	1780	
66		-1520 -1453 -1419 -1453	146 T		8137	-1453 -1453	227	S468	8140	1368	307 \$388	4980	1368	387	S308	1740	130
			147 T	3			220	5						388		1740	100
68		-1319 -1453			8237	1453	228	S467	8100	1461	308 \$387	4900			3 307		
	PD4	-1219 -1453		DUMMY2 DUMMY3	8387	1453	229	S466	8060	1368	309 \$386	4860		389	3 06	1660	
	PD3	1119 -1453			8487	1453	230	S465	8020	1461	310 \$385	4820	1461	390	\$305	1620	
	PD2	-1019 -1453		OUMMY4	8788	-1453	231	S464	7980	1368	311 \$384	4780		391	\$304	1580	
72		919 -1453		DUMMY5	8703	-1260	232	S463	7940	1461	312 \$383	4740		392	\$303	1540	
	PD0	819 -1453		DUMMY6	8796	-1220	233		7900	1368	313 \$382	4700		393	\$302	1500	
	Vcc	669 -1453		UMMY7	8703	-1180	234	S461	7860	1461	314 \$381	4660		394	S301	1460	
75		-569 -1453		NMMY8	8796	-1140	235	S460	7820	1368	315 \$380	4620		395	\$300	1420	
	Vcc	469 -1453		UMMY9	8703	-1100	236	S 459	7780	1461	316 \$379	4580		396	\$299	1380	
	Vcc	-369 -1453		UMMY10	8796	-1060	237	S458	7740	1368	317 \$378	4540		397	\$298	1340	
78		-269 -1453		UMMY11	8703	-1020	238	S457	7700	1461	318 \$377	4500	1461	398	\$297	1300	
	Vcc	-168 -1453		UMMY12	8796	-9 80		S456	7660	1368	319 \$376	4460		399	\$296	1260	
	Vcc	68 -1453	160ID	UMMY13	8703	-9 40	240	S \$455	7620	1461	320 S 375	4420	1461	400	\$295	1220	14

No.	pad name	Χ	Υ	No.	pad name	Χ	Υ	No.	pad name	X	Υ	No.	pad name	X	Υ
401	\$294	1180	1368	481		-2020	1368	561	\$134	-5220		641	S 54	-8420	1368
402	\$293	1140	1461	482		-2060	1461	562	\$133	-5260		642		-8460	1461
403	\$292	1100	1368	483	\$212	-2100	1368	563	\$132	-5300	1368	643		8500	1368
404		1060	1461	484	_	-2140	1461	564	SI 31	-5340	1461	644		8540	1461
405 406	\$290 \$289	1020 980	1368 1461	485 486	\$210 \$209	-2180 -2220	1368 1461	565 566	\$130 \$129	-5380 -5420	1368 1461	645 646		-8788 -8703	1453 1260
407	\$288	940	1368	487	S208	-2260	1368	567	SI 28	-5420 -5460		647		-8796	1220
408	\$287	900	1461	488	S 207	-2300	1461	568	SI 27	-5500		648		-8703	1180
409	\$286	860	1368	489	\$206	-2340	1368	569	SI 26	-5540		649		-8796	1140
410	\$285	820	1461	490		-2380	1461	570		-5580		650		-8703	1100
411	\$284	780	1368	491	\$204	-2420	1368	571	\$124	-5620	1368	651		-8796	1060
412	\$283	740	1461	492	\$203	-2460	1461	572	\$123	-5660	1461	652	S14	-8703	1020
413	\$282	700	1368	493	\$202	-2500	1368	573	\$122	-5700	1368	653	S 43	-8796	980
414		660	1461	494	\$201	-2540	1461	574	SI 21	-5740		654		-8703	940
415	\$280	620	1368	495	\$200	-2580	1368	575	\$120	-5780		655		-8796	900
416		580	1461	496		-2620	1461	576	SI 19	-5820		656		-8703	860
417	\$278	540	1368	497	S198	-2660	1368	577	SI 18	-5860		657		-8796	820
418 419	\$277 \$276	500 460	1461 1368	498 499	S197 S196	-2700 -2740	1461 1368	578 579	SI 17 SI 16	5900 5940		658 659		-8703 -8796	780 740
420	\$275	420	1461	500		-2780	1461	580	SI 15	5980		660		-8703	700
421	\$274	380	1368	501	SI 94	-2820	1368	581	SI 14	6020	1368	661	S 35	-8796	660
422	\$273	340	1461	502	\$193	-2860	1461	582	\$113	6060	1461	662	\$34	-8703	620
423	\$272	300	1368	503	\$192	-2900	1368	583	SI 12	6100		663		-8796	580
424	S271	260	1461	504		-2940	1461	584	911	-6140		664		-8703	540
425	\$270	220	1368	505	\$190	-2980	1368	585	\$10	-6180	1368	665	S 31	-8796	500
426	\$269	180	1461	506		-3020	1461	586	3109	-6220	1461	666		-8703	460
427	\$268	140	1368	507	\$188	-3060	1368	587	\$108	-6260		667		-8796	420
428	\$267	100	1461	508		-3100	1461	588	S107	6300		668		-8703	380
429	\$266	60	1368	509		-3140	1368	589	S106	6340		669		-8796	340
430	\$265	20	1461	510		-3180	1461	590	SI 05	6380	1461	670		-8703	300
431 432	\$264 \$263	-20 -60	1368 1461	511 512	S184 S183	-3220 -3260	1368 1461	591 592	S104 S103	6420 6460		671 672		-8796 -8703	260 220
433	\$262	-100	1368	513	SI 82	-3300	1368	593	\$102	6500	1368	673		-8796	180
434	S261	-140	1461	514		-3340	1461	594	SI 01	6540		674		-8703	140
435	\$260	-180	1368	515		-3380	1368	595	\$100	6580		675		-8796	100
436	\$259	-220	1461	516		-3420	1461	596	S 99	-6620	1461	676		-8703	60
437	\$258	-260	1368	517		-3460	1368	597	S 98	-6660		677		-8796	20
438	\$257	-300	1461	518	SI 77	-3500	1461	598	S 97	-6700	1461	678	318	-8703	-20
439	\$256	-340	1368	519	\$176	-3540	1368	599	S 96	-6740	1368	679	S 17	-8796	-60
440	\$255	-380	1461	520		-3580	1461	600	S 95	-6780	1461	680		-8703	-100
441	\$254	420	1368	521		-3620	1368	601	\$94	-6820	1368	681	S 15	-8796	-140
442	\$253	460	1461	522	\$173	-3660	1461	602	\$93	-6860	1461	682	314	-8703	-180
443	\$252	-500	1368	523	\$172	-3700	1368	603	S 92	-6900	1368	683		-8796	-220
444 445	S251	-540	1461	524	S171	-3740	1461	604	S91	-6940	1461	684		-8703	-260
445	\$250 \$249	580 620	1368 1461	525 526	\$170 \$169	-3780 -3820	1368 1461	605 606	S 390 S 389	-6980 -7020	1368 1461	685 686		-8796 -8703	-300 -340
447	\$248	660	1368	527	S168	-3860	1368	607	3 88	-7060	1368	687	S9	-8796	-380
448	\$247	-700	1461	528		-3900	1461	608	S 87	-7100		688		-8703	420
449	\$246	-740	1368	529	\$166	-3940	1368	609	S \$6	-7140	1368	689		-8796	-460
450	\$245	-780	1461	530	\$165	-3980	1461	610	S \$5	-7180	1461	690	S 6	-8703	-500
451	\$244	-820	1368	531	\$164	-4020	1368	611	S 84	-7220	1368	691	S 5	-8796	-540
452	\$243	-860	1461	532	\$163	4060	1461	612	S 33	-7260	1461	692	SI	-8703	-580
453	\$242	9 00	1368	533	\$162	4100	1368	613	S 82	-7300	1368	693	3	-8796	-620
454	\$241	9 40	1461	534	SI 61	4140	1461	614	S 81	-7340	1461	694		-8703	-660
455	\$240	9 80	1368	535	S160	4180	1368	615	3 80	-7380 7420	1368	695		-8796 9702	-700 -740
456 457	\$239 \$238	-1020 -1060	1461 1368	536 537	3159 3158	4220 4260	1461 1368	616 617	3 79 3 78	-7420 -7460	1461 1368	696 697		-8703 -8796	-740 -780
457	\$237	-1100	1461	538		4300	1461	618	37 37	-7460 -7500		698		-8703	-760 -820
459	\$236	-1140	1368	539	SI 56	4340	1368	619	3 76	-7540		699		-8796	860
460	\$235	-1180	1461	540		4380	1461	620	3 75	-7580	1461	700		-8703	900
461	\$234	-1220	1368	541	SI 54	-4420	1368	621	3 74	-7620	_	701		-8796	-9 40
462	\$233	-1260	1461	542		-4460	1461	622	S 73	-7660		702		-8703	9 80
	\$232	-1300	1368		\$152	4500		623		-7700	1368		DUMMY28		-1020
	\$231	-1340	1461		\$151	4540	1461	624		-7740			DUMMY29		-1060
	\$230	-1380	1368		SI 50	4580	1368	625	3 70	-7780 -7000			DUMMY30		-1100
	\$229	-1420	1461		SI 49	4620	1461	626		-7820 -7820			DUMMY31		-1140
	\$228 \$227	-1460	1368		9148	4660	1368	627			1368		DUMMY32		-1180
	\$227	-1500 -1540	1461 1368		SI 47 SI 46	-4700 -4740		628 629	S67 S66		1461 1368		DUMMY33 DUMMY34		-1220 -1260
	\$225	-1540	1461		SI 45	4740	1461	630	365	-7940 -7980		709	UNIVI 134	0/90	-1200
	S224	-1620	1368		SI 44	4820	1368	631	364		1368				
	\$223	-1660	1461		\$143	4860	1461	632	S 63		1461				
	\$222	-1700	1368		\$142	4900	1368	633			1368				
	\$221	-1740	1461		3141	4940	1461	634			1461				
	\$220	-1780	1368	555		4980	1368	635	3 60		1368				
	S 219	-1820	1461		\$139	-5020	1461	636			1461				
477	\$218	-1860	1368		\$138	-5060	1368	637	S 58		1368				
	\$217	-1900	1461		\$137	-5100	1461	638		-8300					
	\$216	-1940	1368		\$136	-5140	1368	639		-8340					
	S 215	-1980	1461	560	\$135	-5180	1461	640	S 55	-8380	1461				

BUMP Arrangement

Block Function

System Interface

The HD66772 has five high-speed system interfaces: an 80-system 18-bit/16-bit/9-bit/8-bit bus and a clocked serial peripheral (SPI: Serial Peripheral Interface) port. The interface mode is selected by the IM3-0 pins.

The HD66772 has three registers: a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal.

Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in succession.

Table 2 Register Selection (8/9/16/18 Parallel Interface) 80-system Bus

WR*	RD*	RS*	Operation
0	1	0	Writing of an index to the IR
1	0	0	Reading of internal status
0	1	1	Writing to control registers or the GRAM through the WDR
1	0	1	Reading from the GRAM through the RDR

Table 3 Values of CS and VLD during RAM Write

CS*	VLD*	Operations
0	0	Data is written to the GRAM. RAM address is updated.
1	0	Data is not written to the GRAM. RAM address is not updated.
0	1	Data is not written to the GRAM. RAM address is updated.
1	1	Data is not written to the GRAM. The RAM address is not updated.

Note: The value of VLD only has a meaning for the RAM write instructions.

Table 4 Register Selection (Serial Peripheral Interface) Start bytes

WR*	RD*	RS*	Operations
0	1	0	Writing of an index into IR
1	0	0	Reading of internal status
0	1	1	Writing into control registers and the GRAM through the WDR
1	0	1	Reading from the GRAM through the RDR

External Display Interface

The HD66772 incorporates RGB and VSYNC interfaces as external interfaces for the reproduction of animated displays. When the RGB-I/F is selected, the synchronization signals, which are VSYNC, HSYNC, and DOTCLK and are supplied from the external interfaces, are available for use in operating the display. The data for display (PD17-0) are written according to the values of the data enable signal (ENABLE) and data valid signal (VLD) in synchronization with the VSYNC, HSYNC, and DOTCLK signals. This allows flicker-free updating of the screen. When the VSYNC-I/F is selected, operations other than frame synchronization by the VSYNC signal are synchronized with the internal clock. The data for display is written to the GRAM via the conventional system interface. There are some limitations on the timing and methods of writing to RAM. See the section on the external display interface.

Switching from and to the conventional system interface is done by instructions. The interface, therefore, can be selected according to whether the screen is displaying moving or still pictures. All data written via the RGB-I/F are written to the GRAM. Therefore, data is only transferred when the screen is updated, which reduces the amount of data transferred and the consumption of power when moving pictures are being displayed.

Bit Operations

The HD66772 supports the following functions: a write data mask function that selects and writes data into the GRAM in bit units and logic operation functions that perform logic operations or conditional determination the contents of the control registers and writes into the GRAM. For details, see the section on the graphics operation functions.

Address Counter (AC)

The address counter (AC) assigns addresses to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading from the data, the AC is not updated. A window address function allows for data to be written only to a window area specified by GRAM.

Graphics RAM (GRAM)

The graphics RAM (GRAM) has 18 bits/pixel and stores the bit-pattern data of 176 x 240 bytes.

Grayscale Voltage Generation Circuit

The grayscale voltage generation circuit generates LCD-driving voltages according to the grayscale data set in the γ -correction register. 262,144 colors are simultaneously available for display. For details, see the section on the γ -correction register.

Timing Generator

The timing generator generates timing signals for the operation of internal circuits such as the GRAM. The RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interference with one another. The timing generator generates the interface signals (M, FLM, CL1, EQ, DCCLK, DISPTMG, and SFTCLK) for the gate-driver/power-supply IC.

Oscillation Circuit (OSC)

The HD66772 can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced. For details, see the Oscillation Circuit section.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 528 source drivers (S1 to S528).

Display pattern data is latched when 528-bit data has arrived. The latched data then enables the source drivers to generate drive waveform outputs. The shift direction of 528-bit data can be changed by the SS bit by selecting an appropriate direction for the device mounting configuration.

Interface with Gate driver

A serial interface circuit provides an interface with the HD66774. When sending an instruction setting from the HD66772 to the HD66774, a register setting value from within the HD66772 is transferred via the serial interface circuit. A transfer is started by setting a serial transfer enable in the HD66772. However, transfer to and reading from the HD66774 are not possible during standby. For details, see the Gate serial transfer to and from the gate driver.

GRAM Address Map (HD66772)

Table 5 Relationship between GRAM Addresses and Placement in the Display (SS = 0)

S/G	Pin	S2 S3	S5 S6	S8 S9	S10 S11 S12	 S517 S518 S519	S520 S521 S522	S523 S524 S525	S526 S527 S528
GS = 0	GS = 1	PD PD 17 0	PD PD 17 0	PD PD 17 0	PD PD 17 0	PD PD 17 0			
G1	G240	"0000"H	"0001"H	"0002"H	"0003"H	 "0080"H	"0081"H	"0082"H	"00AF"H
G2	G239	"0100"H	"0101"H	"0102"H	"0103"H	 "0180"H	"0181"H	"0182"H	"01AF"H
G3	G238	"0200"H	"0201"H	"0202"H	"0203"H	 "0280"H	"0281"H	"0282"H	"02AF"H
G4	G237	"0300"H	"0301"H	"0302"H	"0303"H	 "0380"H	"0381"H	"0382"H	"03AF"H
G5	G236	"0400"H	"0401"H	"0402"H	"0403"H	 "0480"H	"0481"H	"0482"H	"04AF"H
G6	G235	"0500"H	"0501"H	"0502"H	"0503"H	 "0580"H	"0581"H	"0582"H	"05AF"H
G7	G234	"0600"H	"0601"H	"0602"H	"0603"H	 "0680"H	"0681"H	"0682"H	"06AF"H
G8	G233	"0700"H	"0701"H	"0702"H	"0703"H	 "0780"H	"0781"H	"0782"H	"07AF"H
G9	G232	"0800"H	"0801"H	"0802"H	"0803"H	 "0880"H	"0881"H	"0882"H	"08AF"H
G10	G231	"0900"H	"0901"H	"0902"H	"0903"H	 "0980"H	"0981"H	"0982"H	"09AF"H
G11	G230	"0A00"H	"0A01"H	"0A02"H	"0A03"H	 "0A80"H	"0A81"H	"0A82"H	"0AAF"H
G12	G229	"0B00"H	"0B01"H	"0B02"H	"0B03"H	 "0B80"H	"0B81"H	"0B82"H	"0BAF"H
G13	G228	"0C00"H	"0C01"H	"0C02"H	"0C03"H	 "0C80"H	"0C81"H	"0C82"H	"0CAF"H
G14	G227	"0D00"H	"0D01"H	"0D02"H	"0D03"H	 "0D80"H	"0D81"H	"0D82"H	"0DAF"H
G15	G226	"0E00"H	"0E01"H	"0E02"H	"0E03"H	 "0E80"H	"0E81"H	"0E82"H	"0EAF"H
G16	G225	"0F00"H	"0F01"H	"0F02"H	"0F03"H	 "0F80"H	"0F81"H	"0F82"H	"0FAF"H
G17	G224	"1000"H	"1001"H	"1002"H	"1003"H	 "1080"H	"1081"H	"1082"H	"10AF"H
G18	G223	"1100"H	"1101"H	"1102"H	"1103"H	 "1180"H	"1181"H	"1182"H	"11AF"H
G19	G222	"1200"H	"1201"H	"1202"H	"1203"H	 "1280"H	"1281"H	"1282"H	"12AF"H
G20	G221	"1300"H	"1301"H	"1302"H	"1303"H	 "1380"H	"1381"H	"1382"H	"13AF"H
G232	G8	"E800"H	"E801"H	"E802"H	"E803"H	 "E880"H	"E881"H	"E882"H	"E8AF"H
G234	G7	"E900"H	"E901"H	"E902"H	"E903"H	 "E980"H	"E981"H	"E982"H	"E9AF"H
G235	G6	"EA00"H	"EA01"H	"EA02"H	"EA03"H	 "EA80"H	"EA81"H	"EA82"H	"EAAF"H
G236	G5	"EB00"H	"EB01"H	"EB02"H	"EB03"H	 "EB80"H	"EB81"H	"EB82"H	"EBAF"H
G237	G4	"EC00"H	"EC01"H	"EC02"H	"EC03"H	 "EC80"H	"EC81"H	"EC82"H	"ECAF"H
G238	G3	"ED00"H	"ED01"H	"ED02"H	"ED03"H	 "ED80"H	"ED81"H	"ED82"H	"EDAF"H
G239	G2	"EE00"H	"EE01"H	"EE02"H	"EE03"H	 "EE80"H	"EE81"H	"EE82"H	"EEAF"H
G240	G1	"EF00"H	"EF01"H	"EF02"H	"EF03"H	 "EF80"H	"EF81"H	"EF82"H	"EFAF"H

The ways that data is read from the GRAM for display when SS = "00", BGR = "0" are shown below.

80-System 16-Bit Interface GRAM Data DB 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 **RGB** Arrangement R5 R3 R2 G4 G3 G2 G1 G0 В5 В4 B2B3B1 Output S(3n + 1)S(3n + 2)S(3n + 3)Note: n = lower eight bits of an address (0 to 175) 80-System 9-Bit Interface .2nd Transfer 1st Transfer GRAM Data DB 15 14 13 12 15 14 13 12 17 16 11 10 9 17 16 RGB Arrangement G4 G3 G2 G1 G0 В5 B4 R3 R2 B2B3B1 Output S(3n + 1)S(3n + 2)S(3n + 3)Note: n = lower eight bits of an address (0 to 175)80-System 8-Bit Interface/SPI (twice transmission) 1st Transfer-·2nd Transfer-GRAM Data DB DΒ DB DB DB 15 14 13 12 11 10 17 16 15 14 13 12 11 10 RGB Arrangement R5 R4 R3 R2 G4 G3 G2 G1 G0 B5 B4 Output S (3n + 1) S(3n + 2)S(3n + 3)

Note: n = lower eight bits of an address (0 to 175)

18-Bit RGB Interface GRAM Data PD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 **RGB** Arrangement R5 G1 B5 B4 R4 R3R2 R0 G5 G4 G3 G2 G0 B2B3B1 В0 Output S(3n + 1)S(3n + 2)S(3n + 3)Note: n = lower eight bits of an address (0 to 175)16-Bit RGB Interface GRAM Data | PD 15 14 13 11 10 9 8 7 6 5 4 3 16 2 1 **RGB** Arrangement R3R2 R0 G4 G3 G2 G1 G0 B5 R4 G₅ B4 B2B3B1 во Output S(3n + 1)S(3n + 2)S(3n + 3)Note: n = lower eight bits of an address (0 to 175) 6-Bit RGB Interface Transfer 2nd Transfer 3rd Transfer PD PD GRAM Data PD PDPD PD 16 17 16 15 14 13 12 17 16 15 14 13 12 17 15 14 13 12 RGB Arrangement R5 R4 R3R2 RO G5 G4 G3 G2 G1 G0 B5 B4 B2B3B1 Output S(3n + 1)S(3n + 2)S(3n + 3)Note: n = lower eight bits of an address (0 to 175)

Table 6 Relationship between GRAM Addresses and Placement in the Display (SS = 1/BGR=1)

S/G	Pin	S2 S3	S5 S6	S7 S8 S9	S11 S12	 S517 S518 S519	S520 S521 S522	S523 S524 S525	S526 S527 S528
GS = 0	GS = 1	PD PD 17	PD PD 17	PD PD 17	PD PD 17	PD PD 17	PD PD 17	PD PD 17	PD PD 17
G1	G240	"00AF"H	"00AE"H	"00AD"H	"00AC"H	 "0003"H	"0002"H	"0001"H	"0000"H
G2	G239	"01AF"H	"01AE"H	"01AD"H	"01AC"H	 "0103"H	"0102"H	"0101"H	"0100"H
G3	G238	"02AF"H	"02AE"H	"02AD"H	"02AC"H	 "0203"H	"0202"H	"0201"H	"0200"H
G4	G237	"03AF"H	"03AE"H	"03AD"H	"03AC"H	 "0303"H	"0302"H	"0301"H	"0300"H
G5	G236	"04AF"H	"04AE"H	"04AD"H	"04AC"H	 "0403"H	"0402"H	"0401"H	"0400"H
G6	G235	"05AF"H	"05AE"H	"05AD"H	"05AC"H	 "0503"H	"0502"H	"0501"H	"0500"H
G7	G234	"06AF"H	"06AE"H	"06AD"H	"06AC"H	 "0603"H	"0602"H	"0601"H	"0600"H
G8	G233	"07AF"H	"07AE"H	"07AD"H	"07AC"H	 "0703"H	"0702"H	"0701"H	"0700"H
G9	G232	"08AF"H	"08AE"H	"08AD"H	"08AC"H	 "0803"H	"0802"H	"0801"H	"0800"H
G10	G231	"09AF"H	"09AE"H	"09AD"H	"09AC"H	 "0903"H	"0902"H	"0901"H	"0900"H
G11	G230	"0AAF"H	"0AAE"H	"0AAD"H	"0AAC"H	 "0A03"H	"0A02"H	"0A01"H	"0A00"H
G12	G229	"0BAF"H	"0BAE"H	"0BAD"H	"0BAC"H	 "0B03"H	"0B02"H	"0B01"H	"0B00"H
G13	G228	"0CAF"H	"0CAE"H	"0CAD"H	"0CAC"H	 "0C03"H	"0C02"H	"0C01"H	"0C00"H
G14	G227	"0DAF"H	"0DAE"H	"0DAD"H	"0DAC"H	 "0D03"H	"0D02"H	"0D01"H	"0D00"H
G15	G226	"0EAF"H	"0EAE"H	"0EAD"H	"0EAC"H	 "0E03"H	"0E02"H	"0E01"H	"0E00"H
G16	G225	"0FAF"H	"0FAE"H	"0FAD"H	"0FAC"H	 "0F03"H	"0F02"H	"0F01"H	"0F00"H
G17	G224	"10AF"H	"10AE"H	"10AD"H	"10AC"H	 "1003"H	"1002"H	"1001"H	"1000"H
G18	G223	"11AF"H	"11AE"H	"11AD"H	"11AC"H	 "1103"H	"1102"H	"1101"H	"1100"H
G19	G222	"12AF"H	"12AE"H	"12AD"H	"12AC"H	 "1203"H	"1202"H	"1201"H	"1200"H
G20	G221	"13AF"H	"13AE"H	"13AD"H	"13AC"H	 "1303"H	"1302"H	"1301"H	"1300"H
G232	G8	"E8AF"H	"E8AE"H	"E8AD"H	"E8AC"H	 "E803"H	"E802"H	"E801"H	"E800"H
G234	G7	"E9AF"H	"E9AE"H	"E9AD"H	"E9AC"H	 "E903"H	"E902"H	"E901"H	"E900"H
G235	G6	"EAAF"H	"EAAE"H	"EAAD"H	"EAAC"H	 "EA03"H	"EA02"H	"EA01"H	"EA00"H
G236	G5	"EBAF"H	"EBAE"H	"EBAD"H	"EBAC"H	 "EB03"H	"EB02"H	"EB01"H	"EB00"H
G237	G4	"ECAF"H	"ECAE"H	"ECAD"H	"ECAC"H	 "EC03"H	"EC02"H	"EC01"H	"EC00"H
G238	G3	"EDAF"H	"EDAE"H	"EDAD"H	"EDAC"H	 "ED03"H	"ED02"H	"ED01"H	"ED00"H
G239	G2	"EEAF"H	"EEAE"H	"EEAD"H	"EEAC"H	 "EE03"H	"EE02"H	"EE01"H	"EE00"H
G240	G1	"EFAF"H	"EFAE"H	"EFAD"H	"EFAC"H	 "EF03"H	"EF02"H	"EF01"H	"EF00"H

The ways that data is read from the GRAM for display when SS is set are shown below.

Instructions

Outline

The HD66772 has an 18-bit bus architecture. Before the internal operation of the HD66772 starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66772 is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (DB15 to DB0), make up the HD66772 instructions. The accesses to the GRAM use the internal 18-bit data bus. There are nine categories of instructions that:

- Specify the index
- · Read the status
- · Control the display
- · Control power management
- · Process the graphics data
- Set internal GRAM addresses
- · Transfer data to and from the internal GRAM
- Set grayscale level for the internal grayscale γ-adjustment
- Interface with the gate driver and power supply IC

Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after each data write can reduce the amount of transferred data and lighten the microcomputer program load with the window address function.

The 16-bit instruction assignments (IB15-0) differ according to the interface as is shown below. Issuing of instructions should be in accord with the data format in use.

80-System 16-Bit Interface

80-System 9-Bit Interface

80-System 8-Bit Interface (SPI two transfers/pixel)

Ensure that you are aware of the assignments of instruction bits (IB15-0) for each interface that are illustrated below.

Index

The index instruction specifies the RAM control indexes (R00h to R4Fh). It sets the register number in the range of 00000 to 111111 in binary form. Those instruction bits of the index register which are not allocated to the index register should not be accessed.

Figure 1 Index Instruction

Status Read

The status read instruction reads the internal status of the HD66772.

L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

Figure 2 Status Read Instruction

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly, 0772H is read.

Figure 3 Start Oscillation Instruction

Driver Output Control (R01h)

Figure 4 Driver Output Control Instruction

GS: Selects the output shift direction of a gate driver. The scan order is set to match the specifications of the gate driver. Select an appropriate direction for the device's configuration. When used with a HD66771, it is possible to select scanning in both directions in sequence. When a HD66774 is used, any of six scanning modes may be selected by using the GS bit and SCM2-1 settings. For details, see the data sheet for HD66774.

SS: Selects the output shift direction of the source driver. When SS = 0, the sequence is from S1 to S528. When SS = 1, the sequence is from S528 to S1. In addition, SS and BGR bits should be specified when the bit order for R, G, and B are changed. When SS = 0 and BGR = 0, R, G, and B are assigned in order from the S1 pin. When SS = 1 and BGR = 1, R, G, and B are assigned in order from the S528 pin. Rewrite data to the RAM whenever you change the SS and BGR bits.

EPL: Set the polarity of ENABLE pin while using RGB interface.

EPL = "0": ENABLE = "Low" / Writes data of PD17-0.

: ENABLE = "High"/ Does not write data of PD17-0.

EPL ="1": ENABLE = "High" / Writes data of PD17-0.

: ENABLE = "Low" / Does not write data of PD17-0.

The table below shows the relationship between EPL, ENABLE, VLD and RAM access.

Table 5

EPL	ENABLE	VLD	RAM write	RAM address
0	0	0	Valid	Updated
0	0	1	Invalid	Updated
0	1	*	Invalid	Hold
1	0	*	Invalid	Hold
1	1	0	Valid	Updated
1	1	1	Invalid	Updated

Note: The GS bit is used to set the gate driver. Control by the gate driver is according to this bit's value. For details, see the data sheet for the gate driver.

NL4-0: Specify the number of raster–rows to be driven. The number is adjusted in units of eight. Mapping of addresses in the GRAM is independent of this setting. The selected size should be larger than the panel to be driven.

Table (6 NL Bi	ts					
NL4	NL3	NL2	NL1	NL0	Display Size	LCD Raster-Rows	Gate-Driver Lines Used
0	0	0	0	0	Setting disabled	Setting disabled	Setting disabled
0	0	0	0	1	528 x 16 dots	16	G1–G16
0	0	0	1	0	528 x 24 dots	24	G1-G24
0	0	0	1	1	528 x 32 dots	32	G1-G32
0	0	1	0	0	528 x 40 dots	40	G1-G40
0	0	1	0	1	528 x 48 dots	48	G1-G48
0	0	1	1	0	528 x 56 dots	56	G1-G56
0	0	1	1	1	528 x 64 dots	64	G1-G64
0	1	0	0	0	528 x 72 dots	72	G1-G72
		•			•		
		•			•	•	•
		•			•	•	•
1	0	0	0	0	528 x 200 dots	200	G1-G200
1	0	0	0	1	528 x 208 dots	208	G1-G208
1	0	0	1	0	528 x 216 dots	216	G1-G216
1	0	0	1	1	528 x 224 dots	224	G1-G224
1	0	1	0	0	528 x 232 dots	232	G1-G232
1	0	1	0	1	528 x 240 dots	240	G1-G240

Note: A front porch period (set in the FP register) and back porch period (set in the BP register) will respectively be inserted as blank periods (all gates output Vgoff level) before and after the driver scans through all of the gates.

LCD-Driving-Waveform Control (R02h)

W 1 0 0 0 FLD1 FLD0 B/C EOR 0 0 NW5 NW4 NW3 NW2 NW1 NW0	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NW0

Figure 5 LCD-Driving-Waveform Control Instruction

FLD1-0: Specify the number of fields when an n-field interlaced drive is used. For details, see the section on interlaced driving.

Note: This function is not available when the external display interface is in use. In that case, FLD1 should be 0 and FLD0 should be 1.

Table 7 FLD Bits

FLD1	FLD0	Number of Fields
0	0	Setting disabled
0	1	1
1	0	Setting disabled
1	1	3

B/C: When B/C = 0, a field-AC waveform is generated and the LCD-driving signal alternates frame by frame. When B/C = 1, an n-raster-row AC waveform is generated and its polarity alternates on each raster-row specified by bits EOR and NW5–NW0 of the LCD-driving-waveform control register. For details, see the section on the n-raster-row reversed AC drive.

EOR: When the C-pattern waveform is set (B/C=1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated the set values of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected.

Note: The FLD1-0 bits are instruction bits for the gate driver. Control by the gate driver is according to the values of these bits. For details, see the data sheet on the gate driver.

Entry Mode (R03h) Compare Register 1 (R04h) Compare Register 2 (R05h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	BGR	0	0	HWM	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0
				<u> </u>													
W	1	0	0	CP11	CP10	CP9	CP8	CP7	CP6	0	0	CP5	CP4	CP3	CP2	CP1	CP0
												an	an.	an		an.	an.
W	1	0	0	0	0	0	0	0	0	0	0	CP17	CP16	CP15	CP14	CP13	CP12

Figure 6 Entry Mode and Compare Register Instruction

The write data sent from the microcomputer is modified in the HD66772 and written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the Graphics Operation Function section.

HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four words of data are written to the GRAM in a single operation after writing to RAM four times. Write to RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address. For details, see High-Speed RAM Write Mode section.

I/D1-0: When I/D1-0 = 1, the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D1-0 = 0, the AC is automatically decremented by 1 after the data is written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done independently for the upper (AD15-8) and lower (AD7-0) addresses. The direction of moving through the addresses when the GRAM is written to is set by the AM bit.

AM: Sets the automatic update method of the AC after the data is written to the GRAM. When AM = 0, the data is continuously written in parallel. When AM = 1, the data is continuously written vertically. When window address range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM settings.

Figure 7 Address Direction Settings

LG2–0: Compare the data read from the GRAM by the microcomputer with the compare registers (CP17–0) by a compare/logical operation and write the results to GRAM. For details, see the Logical/Compare Operation Function.

CP17–0: Set the compare register for the compare operation with the data read from the GRAM or written by the microcomputer.

Note: This function is not available when the external display interface is in use. LG2 - 0 should be "000", respectively.

BGR: In the writing of 18 bits of data to RAM, this bit may be used to reverse the bit order from R, G, and B to B, G, and R. Please be aware that setting BGR to 1 will convert the order of the CP17-0 and WM17-0 bits in the same way.

Note1: Data is written to the GRAM in 18-bit units. Logical and compare operations are also performed in 18-bit units. For the bit assignment for each interface, see the section parallel transfer.

2: The write data mask (WM17-0) is set by the register in the RAM write data mask section.

Figure 8 Logical/Comparison Operation and Swapping for the GRAM

Display Control 1 (R07h)

Figure 9 Display Control Instruction 1

PT1-0: Normalize the source outputs when non-displayed area of the partial display is driven. For details, see the section on screen-division driving function.

Table 8 PT Bits

		Source Output for N	lon-Display Area	Gate Output for Non-Display Area
PT1	PT0	Positive Polarity	Negative Polarity	Gate Driver Used
0	0	V63	V0	Normal Drive
0	1	V63	V0	Vgoff
1	0	GND	GND	Vgoff
1	1	High impedance	High impedance	Vgoff

VLE2–1: When CL = 1, the first screen is vertically scrolled. When VLE2 = 1, the 2nd screen is vertically scrolled. It is not possible to simultaneously control the vertical scrolling of both screens.

Note: This function is not available when the external display interface is in use. In such a case, both VLE2 and 1 should be clear (0).

Table 9 VLE Bits

VLE2	VLE1	Image on 1st Screen	Image on 2nd Screen
0	0	Stationary	Stationary
0	1	Stationary	Scrolled
1	0	Scroll	Stationary
1	1	Setting disabled	Setting disabled

CL: VLE1 = 1 selects the eight color display mode. For details, see the section on the eight-color display mode.

Table 10	CL Bit
CL	Number of Colors
0	262,144
1	8

SPT: SPT = 1 selects the two-division driving of the LCD. For details, see the section on the screen-division driving function.

Note: This function is not available when the external display interface is in use. In such a case, SPT should be clear (0).

REV: REV = 1 selects the inversion of the display of all characters and graphics. For details, see the section on the inverted display function. Making it possible to invert the grayscale levels allows the display of the same data on both normally white and normally black panels.

The output on the source lines during the periods of the front and back porch and blanking of the partial display is determined by PT1-0.

Table 11 Source Output in the Display Area

Source Output in the Display Area*

REV	GRAM Data	Positive Polarity	Negative Polarity
	18'h00000	V63	V0
0			
	18'h3FFFFF	V0	V63
1	18'h00000 18'h3FFFFF	V0 	V63 V0

Note: The output on the source lines during the periods of the front and back porch and blanking of the partial display is determined by PT1-0.

GON: When GON = 0, the gate-off level will be GND.

DTE: When DTE = 0, the DISPTMG output will be fixed to GND.

Table 12	GON Bit	
GON	Gate Output	
0	Vgon/GND	
1	Vgon/Vgoff	

Table 13	DTE Bit
DTE	DISPTMG Output
0	Halt (GND)
1	Operation (Vcc/GND)

D1–0: The display is on when D1 = 1 and off when D1 = 0. When the display is off, the data for display is retained in the GRAM, and can instantly be redisplayed by setting D1 = 1. When D1 is 0 (i.e., the display is off) all of the source outputs are set to the GND level. This allows the HD66772 to control the charging current for the LCD during AC driving.

When D1-0=01, the internal display operations of the HD66772 continue although the actual display is off. When D1-0=00, the internal display operations halt and the display is also switched off.

These bits, in combination with GON and DTE, control the display. For details, see the section on the flow for setting instructions.

Table 14 D 1-0

D1	D0	Source Output	HD67772 Internal Operations	Gate-Driver Control Signals (CL1, FLM, and M)l
0	0	GND	Halt	Halt
0	1	GND	Operate	Operate
1	0	Unlit display	Operate	Operate
1	1	Display	Operate	Operate

Note 2 : Data can be written to the GRAM from the microcomputer regardless of the contents of D1-0.

3 : In sleep and standby modes, "00" will be read. However, the contents of D1-0 before entering the sleep and standby modes will be held.

Note: The GON bit is used to set the gate driver. Control by the gate driver is according to this bit's value. For details, see the data sheet for the gate driver.

Display Control 2 (R08h)

ĺ.	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	w	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0

Figure 10 Display Control Instruction 2

FP3-0/BP3-0: Set the periods of blanking (the front and back porch), which are placed at the beginning and end of the display. FP3-0 are for a front porch and BP3-0 are for a back porch. When a front and back porch are set, the settings should meet the following conditions.

BP + FP = 16 raster-rows

 $FP \ge 2$ raster-rows

 $BP \ge 2$ raster-rows

When the external display interface is in use, the front porch (FP) will start on the falling edge of the VSYNC signal and display operation commences at the end of the front-porch period. The back porch (BP) will start when data for the number of raster-rows specified by the NL bits has been displayed. During the period between the completion of the back-porch period and the next VSYNC signal, the display will remain blank.

Note: In the internal clock operation mode, the blanking periods described above should be BP = 0011 (3 raster-rows) and FP = 0101 (5 raster-rows)

Tabl	e 15	F	P and	BP				
FP3	FP2	FP1	FP0	Number of Raster Periods in the Front Porch				
BP3	BP2	BP1	BP0	Number of Raster Periods in the Back Porch				
0	0	0	0	Setting disabled				
0	0	0	1	Setting disabled				
0	0	1	0	2				
0	0	1	1	3				
0	1	0	0	4				
	•			·				
	•			·				
1	1	0	0	12				
1	1	0	1	13				
1	1	1	0	14				
1	1	1	1	Setting disabled				

Note: The output timing to LCD panels displayed two raster-rows after the input synchronization signal.

Set BP3-0, FP3-0 within the range indicated below.

Table 16

Operation of	FLD1-0 = 01	BP>= 2 line	FP >= 2 line	FP +BP <= 16 line
internal clock	FLD1-0 = 11	BP= 3 line	FP = 5 line	
RGB interface		BP >= 2 line	FP >= 2 line	FP +BP <= 16 line
VSYNC interface		BP >= 2 line	FP >= 2 line	FP +BP = 16 line

Gate Driver Interface Control (R0Ah)

Figure 11 Gate Driver Interface Control Instruction

IDX2-0: Index bits that select instructions for the gate-driver/power-supply IC. The instruction that corresponds to the setting made here is transferred, with the index, to the gate-driver/power-supply IC via the serial interface. These instructions are transferred in bit rows as shown below. The upper 3 bits correspond to IDX2-0. The IDX2-0 setting at the time of transfer selects the instruction for the gate-driver/power-supply IC as listed below.

To change an instruction setting on the gate-driver/power-supply IC, first change the instruction bit on the HD66772, select the instruction, which includes the changed instruction bit, from the list below, by setting IDX2-0 as required. The instruction is transferred to the gate-driver/power-supply IC as the transfer starts (TE=1), and is the executed.

TE: Serial transfer enable for the gate-driver/power-supply IC. When TE=0, serial transfer is possible. Do not change the instruction during transfer. When TE=1, transfer starts. TE returning to 0 indicates the end of the transfer. Note that, serial transfer to the gate-driver/power-supply IC requires 18 clock cycles at most. Do not change the instruction during the transfer.

* New instructions should be transferred to the gate-driver/power-supply IC soon after they have been set on the HD66772.

IDX1	IDX0		DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
0	0		0	GON	VCOMG	BT2	BT1	вто	DC2	DC1	DC0	AP2	AP1	AP0	SLP				
0	1		CAD	VRL3	VRL2	VRL1	VRL0	PON	VRH3	VRH2	VRH1	VRH0	VC2	VC1	VC0				
1	0		0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	VCM4	VCM3	VCM2	VCM1	VCM0				
1	1							Settin	ng disa	abled									
0	0			Setting disabled															
0	1			Setting disabled															
1	0		EPL	0	GS	NL4	NL3	NL2	NL1	NL0	SCN4	SCN3	SCN2	SCN1	SCN0				
1	1		0	0	0	0	0	0	0	0	0	0	0	FLD1	FLD0				
IDX1	IDX0		DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
0	0		0	GON	VCOMG	BT2	BT1	вто	DC2	DC1	DC0	AP2	AP1	AP0	SLP				
0	1		CAD	VRL3	VRL2	VRL1	VRL0	PON	VRH3	VRH2	VRH1	VRH0	VC2	VC1	VC0				
1	0		0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	VCM4	VCM3	VCM2	VCM1	VCM0				
1	1							Setti	ng disa	abled									
0	0		Setting disabled																
0	1							Settin	ng disa	abled									
1	0		*	*	*	*	*	*	*	*	*	*	*	*	*				
1					-	i 	i	i	i	i	i	i	i	i	i –				
1	1		*	*	*	*													
	0	0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1	0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1	0 1 CAD 1 0 0 1 1 1 0 0 0 1 1 0 EPL 1 1 0 DB12 0 0 0 CAD 1 0 0 1 1 0 O	0 1 CAD VRL3 1 0 0 0 1 1 1 0 0 0 1 1 0 EPL 0 1 1 0 0 0 IDX1 IDX0 DB12 DB11 0 0 GON 0 1 CAD VRL3 1 0 0 0	0 1 CAD VRL3 VRL2 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 EPL 0 GS 1 1 0 0 0 0 IDX1 IDX0 DB12 DB11 DB10 0 0 GON VCOMG 0 1 CAD VRL3 VRL2 1 0 0 0 0 1 1 1 0 0 0 0	0 1 CAD VRL3 VRL2 VRL1 1 0 0 0 0 VDV4 1 1 1 0 0 0 0 1 1 0 GS NL4 1 1 0 0 0 0 0 IDX1 IDX0 DB12 DB11 DB10 DB9 0 0 GON VCOMG BT2 0 1 CAD VRL3 VRL2 VRL1 1 0 0 0 0 VDV4 1 1 1 0 0 0	0 1 CAD VRL3 VRL2 VRL1 VRL0 1 0 0 0 0 VDV4 VDV3 1 1 1 0 0 0 GS NL4 NL3 1 1 0 0 0 0 0 0 0 IDX1 IDX0 DB12 DB11 DB10 DB9 DB8 0 0 GON VCOMG BT2 BT1 0 1 CAD VRL3 VRL2 VRL1 VRL0 1 0 0 0 0 VDV4 VDV3 1 1 1 0 0 0	0 1 CAD VRL3 VRL2 VRL1 VRL0 PON 1 0 0 0 VDV4 VDV3 VDV2 1 1 1 Settin 0 0 1 Settin 1 0 GS NL4 NL3 NL2 1 1 0 0 0 0 0 0 0 0 IDX1 IDX0 DB12 DB11 DB10 DB9 DB8 DB7 0 0 GON VCOMG BT2 BT1 BT0 0 1 CAD VRL3 VRL2 VRL1 VRL0 PON 1 0 0 0 VDV4 VDV3 VDV2 1 1 1 Settin 5 Settin 5 Settin 6 Settin 7 Settin 8 Settin 8 Settin 8 Settin 8 Settin 8 Settin 8 Settin 9 Settin	0 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 1 0 0 0 0 VDV4 VDV3 VDV2 VDV1 1 1 0 0 0 VDV4 VDV3 VDV2 VDV1 1 1 0 0 0 VDV4 VDV3 VDV2 VDV1 1 0 0 GS NL4 NL3 NL2 NL1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 VDV4 VDV3 VDV2 VDV1 1 1 0 0 0 VDV4 VDV3 VDV2 VDV1 1 1 1 1 Setting disa <td>0</td> <td>0 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 VRH2 VRH1 1 0 0 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 VCM4 1 1 1 Setting disabled Setting disabled Setting disabled 1 0 0 0 0 0 0 0 0 0 1 1 0 <</td> <td>O 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 VRH2 VRH1 VRH0 O 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 VCM4 VCM3 Setting disabled Setting disabled Setting disabled Setting disabled D 0 0 O O O O O O O O O O O O O O O O DDS12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 O 0 O O O O O O O O O O O O O O O O O</td> <td>0</td> <td>0 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 VRH2 VRH1 VRH0 VC2 VC1 1 0 0 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 VCM4 VCM3 VCM2 VCM1 1 1 Setting disabled Setting disabled 1 0 0 0 Setting disabled 1 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	0	0 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 VRH2 VRH1 1 0 0 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 VCM4 1 1 1 Setting disabled Setting disabled Setting disabled 1 0 0 0 0 0 0 0 0 0 1 1 0 <	O 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 VRH2 VRH1 VRH0 O 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 VCM4 VCM3 Setting disabled Setting disabled Setting disabled Setting disabled D 0 0 O O O O O O O O O O O O O O O O DDS12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 O 0 O O O O O O O O O O O O O O O O O	0	0 1 CAD VRL3 VRL2 VRL1 VRL0 PON VRH3 VRH2 VRH1 VRH0 VC2 VC1 1 0 0 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 VCM4 VCM3 VCM2 VCM1 1 1 Setting disabled Setting disabled 1 0 0 0 Setting disabled 1 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

Figure 12 Gate Interface: Serial Transfer Sequence

- Note 1. Transfer to the gate-driver/power-supply IC must take place immediately after setting up the instruction.
- Note 2. The serial transfer period takes a maximum of 1/fosc x 18clock cycles (sec).
- Note 3. Serial transfer cannot be executed in standby mode. If the chip enters standby mode during transfer, the serial transfer is forcibly suspended. Transfer must be executed again because correct transfer is not guaranteed in this situation.
- Note 4. Serial transfer can be forcibly suspended by writing TE = 0. Transfer must be executed again because correct transfer is not guaranteed in this situation.
- Note 5. Do not enter standby mode during transfer r forcibly terminate transfer except incase of emergency. Before executing, confirm that the transfer is completed.

Frame Cycle Control (R0Bh)

R/V	/ RS	-	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1		NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

Figure 13 Frame Cycle Control Instruction

RTN3-0: Set the 1H period (1 raster-row).

DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks which are frequency divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the 1H period (RTN 3-0). When changing the number of raster-rows, adjust the frame frequency. For details, see the frame frequency adjustment Function section. When RGB interface is in use, this function will not be available.

Table 1	17	RTN I	Bits and	Clock Cycles
RTN3	RTN2	RTN1	RTN0	Clock Cycles per Raster-row
0	0	0	0	16
0	0	0	1	17
0	0	1	0	18
		:		:
1	1	1	0	30
1	1	1	1	31

Table	18	DIV Bits and C	Clock Frequency
DIV1	DIV0	Division Ratio	Internal Operating Clock Frequency
0	0	1	fosc / 1
0	1	2	fosc / 2
1	0	4	fosc / 4
1	1	8	fosc / 8

^{*} fosc = R-C oscillation frequency

Frame frequency = \frac{fosc}{Clock cycles per raster-row \times division ratio \times (Line + 16)}{Clock cycles per raster-row \times division ratio \times (Line + 16)}

fosc: R-C oscillation frequency
Line: number of driven raster-rows (NL bit)
Division ratio: DIV bit
Clock cycles per raster-row: RTN bit

EQ1-0: Equalized period is added as specified by bits of EQ1-0. The equalization signal is output for AC raster-rows.

Table	19	EQ Bits Equalized period	
EQ1	EQ0	Internal Operation (synchronized with the internal operating clock)	RGB I/F Operation (synchronized with DOTCLK)
0	0	Not equalized	Not equalized
0	1	1 clock	8 clock
1	0	2 clock	16 clock
1	1	3 clock	24 clock

SDT1-0: Specify the timing on which a source signal is output after falling edge of a gate signal.

Table 2	20	SDT Bits Delay Time for Source Signal	
SDT1	SDT0	Internal Operation (synchronized with the internal operating clock)	RGB I/F Operation (synchronized with DOTCLK)
0	0	1 clock	8 clock
0	1	2 clock	16 clock
1	0	3 clock	24 clock
1	1	4 clock	32 clock

Note: The amount of source delay is defined from the falling edge of the CL1.

NO1-0: Specify the amount of non-overlap time.

Table	21	NO Bits Non-overlap time	
NO1	NO0	Internal Operation (synchronized with the internal operating clock)	RGB I/F Operation (synchronized with DOTCLK)
0	0	0 clock	0 clock
0	1	4 clock	32 clock
1	0	6 clock	48 clock
1	1	8 clock	64 clock

Note: The amount of non-overlap time is defined from the falling edge of the CL1.

Note: The values specified by the bits of EQ,SDT1-0, and NO1-0 vary in a reference clock for each interface mode.

Internal operation mode : Internal R-C oscillation clock

RGB-I/F mode : DOTCLK

VSYNC-I/F : Internal R-C oscillation clock

External Display Interface Control (R0Ch)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	RM	0	0	DM1	DM2	0	0	RIM1	RIM0

RIM1–0: Specify the RGB I/F mode when the RGB interface is used. Specifically, this setting specifies the mode when the bits of DM and RM are set to RGBI/F. These bits should be set before display operation through the RGB I/F and should not be set during operation.

Table 2	22	RIM Bits
RIM1	RIM0	RGB Interface Mode
0	0	18-bit RGB interface (one-time transfer/pixel)
0	1	16-bit RGB interface (one-time transfer/pixel)
1	0	6-bit RGB interface (three-time transfers/pixel)
1	1	Setting disabled

DM1–0: Specify the display operation mode. The interface can be set based on the bits of DM1-0. This setting enables switching interfaces between internal operation and the external display interface. Switching between two external display interfaces (RGB-I/F ad VSYNC-I/F) should not be done.

Table	23	DM Bits
DM1	DM0	Display Interface
0	0	Internal clock operation
0	1	RGB interface
1	0	VSYNC interface
1	1	Setting disabled

RM: Specifies the interface for RAM accesses. RAM accesses can be performed through the interface specified by the bits of RM1-0. When the display data is written via the RGB-I/F, 1 should be set. This bit and the DM bits can be set independently. The display data can be rewritten via the system interface by clearing this bit while the RGB interface is used.

Table 24RM BitsRMInterface for RAM Access0System interface/VSYNC interface1RGB interface

Depending on the external display interface settings, different interfaces for use can be specified to match the display state. While displaying moving pictures (RGB-I/F/VSYNC-I/F), the data for display can be written in high-speed write mode, which achieves both low power consumption and high-speed access.

Table 25 Display state and interfaces

Display State	Operation Mode	RAM Access (RM)	Display Operation Mode (DM1-0)
Still pictures	Internal clock operation	System interface (RM = 0)	Internal clock operation $(DM1-0=00)$
Moving pictures	RGB interface (1)	RGB interface (RM = 1)	RGB interface (DM1-0 = 01)
Rewrite still picture area while displaying moving pictures.	RGB interface (2)	System interface (RM = 0)	RGB interface (DM1-0 = 01)
Moving pictures	VSYNC interface	System interface (RM = 0)	VSYNC interface (DM1-0 = 10)

Note 1: The instruction register can only be set through the system interface.

- 2 : Switching between RGB-I/F and VSYNC-I/F cannot be done.
- 3: The RGB-I/F mode should not be changed during RGB I/F operation.
- 4: For the transition flow for each operation mode, see the External Display Interface section.
- 5 : RGB-I/F and VSYNC-I/F should be used in high-speed write mode (HWM = 1).

Internal clock operation mode

All the display operations are controlled by signals generated by the internal clock in internal clock operation mode. All inputs through the external display interface are invalid. The internal RAM can be accessed only via the system interface.

RGB interface mode (1)

The display operations are controlled by the frame synchronization clock (VSYNC), raster-row synchronization signal (VSYNC), and dot clock (DCLK) in RGB interface mode. These signals should be supplied during display operation in this mode.

The display data is transferred to the internal RAM via PD17-0 for each pixel. Combining the function of the high-speed write mode and the window address enables display of both the moving picture area and the internal RAM area simultaneously. In this method, data is only transferred when the screen is updated, which reduces the amount of data transferred.

The periods of the front (FP) and back (BP) porch and the display are automatically generated in the HD66772 by counting the raster-row synchronization signal (HSYNC) based on the frame synchronization signal (VSYNC). When pixel data is transferred via PD 17 to 0, the transfer should be operated according to the settings above.

RGB interface mode (2)

When RGB-I/F is in use, data can be written to RAM via the system interface. This write operation should be performed while data for display is not being transferred via RGB-I/F (ENABLE = High). Before the next data transfer for display via RGB-I/F, the setting above should be changed, and then the address and index (R22h) should be set.

VSYNC interface mode

The internal display operation is synchronized with the frame synchronization signal (VSYNC) in VSYNC interface mode. When data is written to the internal RAM with the required speed after the falling edge of VSYNC, moving pictures can be displayed via the conventional interface. There are some limitations on the timing and methods of writing to RAM. See the section on the external display interface.

In VSYNC-I/F mode, only the VSYNC input is valid. The other input signals for the external display interface are invalid.

The periods of the front porch (FP), back porch (BP), and display period (NL) are automatically generated by the frame synchronization signal (VSYNC) according to the settings of the HD66772 registers.

LTPS Interface Control (R0Dh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	CLW2	CLW1	CLW0	0	0	SHW1	SHW0	0	STG2	STG1	STG0

The HD66772 outputs timing signals for controlling a low-temperature poly-silicon TFT (LTPS-TFT) panel with built-in gates. The HD66772's output level is shifted to the LTPS-TFT level so that the HD66772 directly connects the LTPS-TFT. For details, see the section on LTPS-TFT control.

STG2–0: Specify the pulse output timing of the SFTCLK signal.

Table 26	STG	Bits			
			Pulse Output Timing of SFTC	LK	
STG 2	STG 1	STG 0	Internal Operation (Internal Clock)	RGB-I/F (DOTCLK)	
0	0	0	0 clock	0 clock	
0	0	1	1 clock	8 clock	
0	1	0	2 clock	16 clock	
0	1	1	3 clock	24 clock	
1	0	0	4 clock	32 clock	
1	0	1	5 clock	40 clock	
1	1	0	6 clock	48 clock	
1	1	1	7 clock	56 clock	

Note: The values indicate the number of clocks after the falling edge of CL1.

SHW1–0: Specify the high pulse width of the SFTCLK signal.

Table 27	SHV	V Bits High Pulse Width of SFTCLK	
SHW 1	SHW 0	Internal Operation (Internal Clock)	RGB-I/F (DOTCLK)
0	0	1 clock	8 clock
0	1	2 clock	16 clock
1	0	3 clock	24 clock
1	1	4 clock	32 clock

Limitations on SFTCLK timing settings

 $STG2-0 + SHW1-0 \le 8$ clock: Internal operation mode

 $STG2-0 + SHW1-0 \le 64 \text{ clock: RGB-I/F mode}$

CLW2–0: Specify the low pulse width of the CL1 signal.

Table 28	CLW	Bits		
			Low Pulse Width of CL1	
CLW 2	CLW 1	CLW 0	Internal Operation (Internal Clock)	RGB-I/F (DOTCLK)
0	0	0	1 clock	8 clock
0	0	1	2 clock	16 clock
0	1	0	3 clock	24 clock
0	1	1	4 clock	32 clock
1	0	0	5 clock	40 clock
1	0	1	6 clock	48 clock
1	1	0	7 clock	56 clock
1	1	1	8 clock	64 clock

Note: The values indicate the number of clocks after the falling edge of CL1.

Power Control 1 (R10h) Power Control 2 (R11h)

_	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	SAP2	SAP1	SAP0	BT2	BT1	вто	DC2	DC1	DC0	AP2	AP1	AP0	SLP	STB
	w	1	CAD	0	0	VRN4	VRN3	VRN2	VRN1	VRN0	0	0	0	VRP4	VRP3	VRP2	VRP1	VRP0

Figure 14 Power Control Instruction

SAP2-0: Adjust the amount of fixed current from the fixed current source in the operational amplifier for the LCD. When the amount of fixed current is large, function of an operation amplifier stabilizes. But the current consumption is increased. Adjust the fixed current by considering both the display quality and the current consumption.

During operation with no display, when SAP2-0 = 000, the current consumption can be reduced by halting the operational amplifier and step-up circuit operation.

Table :	29	SAP I	Bits				
SAP2	SAP1	SAP0	Op-amp Current	SAP2	SAP1	SAP0	Op-amp Current
0	0	0	Halt	1	0	0	Medium/large
0	0	1	Small	1	0	1	Large
0	1	0	Small/medium	1	1	0	Setting disabled
0	1	1	Medium	1	1	1	Setting disabled

BT2–0: Switch the output factor for step-up. Adjust scale factor of the step-up circuit to meet the voltage used. Lower amplification of the step-up circuit consumes less current.

DC2–0: Select the operating frequency for the step-up circuit. When this frequency is high, the driving ability of the step-up circuit and the display quality are high, but the current consumption is increased. Adjust the frequency by considering both the display quality and the current consumption.

AP2–0: Adjust the amount of fixed current from the fixed current source in the operational amplifier for the LCD. When the amount of fixed current is large, the LCD driving ability and the display quality are high, but the current consumption is increased. Adjust the fixed current by considering both the display quality and the current consumption.

During operation with no display, when AP2-0 = 000, the current consumption can be reduced by ending the operational amplifier and step-up circuit operation.

SLP: When SLP = 1, the HD66772 enters sleep mode, in which the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. Only serial transfer to a gate-driver/power-supply IC and the following instructions can be executed during sleep mode.

Power control (BS2-0, DC2-0, AP2-0, SLP, STB, VC2-0, CAD, VR3-0, VRL3-0, VRH4-0, VCOMG, VDV4-0, and VCM4-0 bits)

Common interface control (TE, IDX)

During sleep mode, other GRAM data and instructions cannot be updated, although they are retained.

STB: When STB = 1, the HD66772 enters standby mode, in which display operation completely stops, halting all internal operations including the internal R-C oscillator. In addition, no external clock pulses are supplied. For details, see the Standby Mode section.

Only the following instructions can be executed during standby mode.

- a. Standby mode cancel (STB = 0)
- b. Start oscillation

During standby mode, GRAM data and instructions may be lost. To prevent this, they must be set again after standby mode is canceled. Serial transfer to the common driver is not possible when it is in standby mode. Transfer the data again after standby mode is canceled.

CAD: Set according to the configuration of the TFT

CAD = 0 Set when Cst is set.

CAD = 1 Set when Cadd is set.

VRP4-0: Controls the 64-grayscale amplitude (positive polarity). For details, see the section on the instruction bits for the amplitude adjustment circuit.

VRN4-0: Controls the 64-grayscale amplitude (negative polarity). For details, see the section on the instruction bits for the amplitude adjustment circuit.

Note: The BS2-0, DC2-0, AP2-0, SLP, and CAD bits are for setting the power-supply IC. Control based on the bits' values is executed by the common driver. For details, see the data sheet for the common driver.

Power Control 3 (R12h)

Power Control 4 (R13h)

Power Control 5 (R14h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0
W	1	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	PON	VRH3	VRH2	VRH1	VRH0
w	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0

VC2-0: The reference voltages of VREG1OUT, VREG2OUT, and VciOUT can be set to any voltage specified by the ratio of Vci. When VC2 = "1", it is possible to stop the internal reference voltage generator. This setting enables VREG1OUT and VREG2OUT to generate any voltage by using REGP and REGN as reference voltages, respectively.

VRL3-0: Sets an amplification factor for VREG2OUT, which is a voltage for the reference voltage VREG2 to generate Vgoff. The amplification factor can be set to -2 to -8.5 times the REGN input.

PON: Operation start bit for the step-up 3 circuit. PON = 0 is to stop and PON = 1 is to start operation.

VRH3-0: Sets an amplification factor for VREG1OUT, which is a voltage for the reference voltage VREG2 to generate VDH. The amplification factor can be set to 1.45 to 2.85 times the REGP input.

VCOMG: When VCOMG = 1, VcomL can output a negative voltage of up to -5 V. When VCOMG = 0, VcomL is at GND level and amplifiers for a negative voltage stop. This reduces power consumption. When VCOMG = 0 and Vcom AC drive is performed, the settings for VDV4-0 are invalid. In this case, adjust the AC amplification of the Vcom and Vgoff with VcomH using VCM 4-0.

VDV4-0: Sets amplification factors for Vcom and Vgoff while Vcom AC drive is being performed. The amplification factors can be set to 0.6 to 1.23 times the VREG1 input. When Vcom AC drive is not performed, the settings are invalid.

VCM4-0: Sets the VcomH voltage, which is positive when Vcom AC drive is being performed. The amplification factor can be set to 0.4 to 0.98 times the VREG1 input. Setting VCM4-0 to "1111" stops the internal resistor adjustment, and the external resistor connected to VcomR can be used to adjust VcomH.

Note: The VC2-0, VRL3-0, PON, VRH3-0, VCOMG, VDV4-0, and VCM4-0 bits are for the power-supply IC. Control according to the bits' values is executed by the power-supply IC. For details, see the data sheet for the power-supply IC.

RAM Address Set (R21h)

Figure 15 RAM Address Set Instructions

AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting the addresses. Once the GRAM data is read, the AC is not automatically updated. GRAM address setting is not allowed in standby mode. Ensure that the address is set within the specified window address.

When RGB-I/F is in use (RM = 1), AD15-0 will be set at the falling edge of the VSYNC signal.

When the internal clock operation and VSYNC-I/F (RM = 1) are in use, AD15-0 will be set upon execution of an instruction.

Table 30	GRAM Address Range	
AD15-AD0	GRAM Setting	
0000H – 00AFH	Bitmap data for G1	
0100H – 01AFH	Bitmap data for G2	
0200H – 02AFH	Bitmap data for G3	
0300H – 03AFH	Bitmap data for G4	
:	:	
EC00H – ECAFH	Bitmap data for G237	
ED00H – EDAFH	Bitmap data for G238	
EE00H – EEAFH	Bitmap data for G239	
EF00H – EFAFH	Bitmap data for G240	

Write Data to GRAM (R22h)

R/W RS	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
W 1		R	AM wri	ite data	(WD17	-0) The 1	pin assig	nment f	or DB1	7-0 vai	ies for ea	ach inter	face (se	e below	·).	
When RGB-I/F	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD

WD17–10: GRAM data is expanded to 18 bits to be written. Please keep in mind that the expansion format varies for each interface.

The grayscale level is determined by the GRAM data. The address is automatically updated by the bits of AM and I/D after GRAM writing. GRAM cannot be accessed in standby mode. When the 8- or 16-bit interface is in use, the write data is expanded to 18 bits by writing the MSB of the RB data to its LSB.

When data is written to RAM used by RGB-I/F via the system interface, please make sure that write data conflicts do not occur.

When the 18-bit RGB-I/F is in use, 18-bit data is written to RAM via PD17-0 and 262,144 colors are available. When the 16-bit RGB-I/F is in use, the MSB is written to its LSB and 65,536 colors are available.

Table 31 GRA	M Data and	LCD Outp	out		
GRAM Data Setting	Grayscale	Polarity	GRAM Data Setting	Grayscale	Polarity
RGB	Negative	Positive	RGB	Negative	Positive
000000	V0	V63	100000	V32	V31
000001	V1	V62	100001	V33	V30
000010	V2	V61	100010	V34	V29
000011	V3	V60	100011	V35	V28
000100	V4	V59	100100	V36	V27
000101	V5	V58	100101	V37	V26
000110	V6	V57	100110	V38	V25
000111	V7	V56	100111	V39	V24
001000	V8	V55	101000	V40	V23
001001	V9	V54	101001	V41	V22
001010	V10	V53	101010	V42	V21
001011	V11	V52	101011	V43	V20
001100	V12	V51	101100	V44	V19
001101	V13	V50	101101	V45	V18
001110	V14	V49	111110	V46	V17
001111	V15	V48	111111	V47	V16
010000	V16	V47	110000	V48	V15
010001	V17	V46	110001	V49	V14
010010	V18	V45	110010	V50	V13
010011	V19	V44	110011	V51	V12
010100	V20	V43	110100	V52	V11
010101	V21	V42	110101	V53	V10
010110	V22	V41	110110	V54	V9
010111	V23	V40	110111	V55	V8
011000	V24	V39	111000	V56	V7
011001	V25	V38	111001	V57	V6
011010	V26	V37	111010	V58	V5
011011	V27	V36	111011	V59	V4
011100	V28	V35	111100	V60	V3
011101	V29	V34	111101	V61	V2
011110	V30	V33	111110	V62	V1
011111	V31	V32	111111	V63	V0

RAM Access via RGB-I/F and System I/F

All the data for display is written to the internal RAM in the HD66772 when RGB-I/F is in use. In this method, data, including that in both the moving picture area and the screen update frame, can only be transferred via RGB-I/F. In addition to using the high-speed write mode (HWM = 1) and the window address function, the power consumption can be reduced and high-speed access can be achieved while moving pictures are being displayed. Data for display that is not in the moving picture area or the screen update frame can be rewritten via the system interface.

RAM can be accessed via the system interface when RGB-I/F is in use. When data is written to RAM during RGB-I/F mode, the ENABLE bit should be high to stop data writing via RGB-I/F, because RAM writing is always performed in synchronization with the DOTCLK input when ENABLE is low. After this RAM access via the system interface, a waiting time is needed for a write/read bus cycle before the next RAM access starts via RGB-I/F. When a RAM write conflict occurs, data writing is not guaranteed.

Figure 16 Example of Updating Still Picture Area during Displaying Moving Picture

Read Data from GRAM (R22h)

Figure 17 Read Data from GRAM Instructions

RD17-0: Read 18-bit data from GRAM.

When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data in the data bus (DB17–0) becomes invalid and the second-word read is normal.

When bit processing, such as a logical operation, is performed by the HD66772, only one read can be processed since the latched data in the first word is used. Please make sure bit processing is performed in 18-bit units.

When the 8-/16-bit interface is in use, the LSB of RB write data will not be read.

When RGB-I/F is in use, this function is not available.

Figure 18 GRAM Read Sequence

RAM Write Data Mask (R23h)

RAM Write Data Mask (R24h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	w	1	0	0	WM	WM	WM	WM	WM	WM	0	0	WM	WM	WM	WM	WM	WM
	W	1	0	0	0	0	0	1	1	1	0	1	WM	WM	WM	WM	WM	WM
I					ļ					ļ		ļ						لــــــــــــــــــــــــــــــــــــــ

Figure 19 RAM Write Data Mask Instructions

WM17–0: In writing to GRAM, these bits mask the writing in a bit unit. When WM17 = 1, this bit masks the MSB of the write data and does not write to GRAM. Similarly, the WM14-0 bits mask the data written to GRAM in a bit unit. For details, see the Graphics Operation Function section.

Please make sure the write data to GRAM (18-bit data) is masked.

When the 8-/16-bit interface is in use, the LSB of RB write data will not be read.

When RGB-I/F is in use, this function is not available.

γ Control Instructions

γ Control (R30h to R3Fh)

	R/W	RS	IB15	IB14	IB13 I	В12 П	B11 II	310	IB9	IB8	IB7	IB6	IB5	IB	4 IB	3 IB	2 IB1	IB0
R30	W	1	0	0	0	0	0	PKP	PKP	PKP	0	0	0	0	0	PKP	PKP	PKP
R31	w	1	0	0	0	0	0	PKP	PKP	PKP	0	0	0	0	0	PKP	PKP	PKP
R31	w	1	0	0	0	0	0	PKP	PKP	PKP	0	0	0	0	0	PKP	PKP	PKP
R33	w	1	0	0	0	0	0	PRP	PRP	PRP	0	0	0	0	0	PRP	PRP	PRP
R34	W	1	0	0	0	0	0	PKN	PKN	PKN	0	0	0	0	0	PKN	PKN	PKN
R35	W	1	0	0	0	0	0	PKN	PKN	PKN	0	0	0	0	0	PKN	PKN	PKN
R36	W	1	0	0	0	0	0	PKN	PKN	PKN	0	0	0	0	0	PKN	PKN	PKN
R37	w	1	0	0	0	0	0	PRN	PRN	PR N	0	0	0	0	0	PRN	PRN	PRN
R3F	w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	VDR	VDR

Figure 20 γ Control Instructions

PKP52-00 :The γ fine adjustment registers for positive polarity

PRP12-00 : The γ gradient adjustment registers for positive polarity

PKNP52-00:The γ fine adjustment registers for negative polarity

PRN12-00:The γ gradient adjustment registers for negative polarity

VDR1-0:The grayscale average adjustment resistor.

For details, see the section on the γ adjustment

Position Control Instructions

Gate Scan Position (R40h)

Figure 21 Gate Scan Position Instructions

SCN4-0: Specifies the position at which gate driver scanning starts. Set the data to match the gate driver's specification.

Table 32 SCN Bits (Example of HD66772)

					Scan Start Position	
SC4	SC3	SC2	SC1	SC0	GS = 0	GS = 1
0	0	0	0	0	G1	G228
0	0	0	0	1	G9	G220
0	0	0	1	0	G17	G212
•						
	•	•	•		•	
1	1	0	1	0	G209	G20
1	1	0	1	1	G217	G12

Figure 22 Relationship between NL and SCL Set Values

Note: The SCN4-0 bits are for setting the gate driver. Control based on the bits' values is executed by the gate driver. For details, see the data sheet for the gate driver.

Vertical Scroll Control (R41h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0

Figure 23 Vertical Scroll Control Instructions

VL7–10: Specify the amount of scroll in the display to enable smooth vertical scrolling. Any raster-row from 0 to 240 can be displayed with scrolling. After the 240th raster-row is displayed, the display restarts from the 1st raster-row. The display-start raster-row (VL7–10) is valid only when VLE1 = 1 or VLE2 = 1. The raster-row display is fixed when VLE2-1 = 00. (VLE1 is the 1st-screen vertical-scroll enable bit, and VLE2 is the 2nd-screen vertical-scroll enable bit.)

^{*:} When the external display interface is in use, this function is not available.

Table	33	VL B	its and D	isplay-st	tart Rast			
VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	Amount of Scrolling (Number of raster-row)
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
•				•	•	•		
<u> </u>	•	•	•	•	•	•	•	•
1	0	1	0	1	1	1	0	238
_1	0	1	0	1	1	1	1	239

Note: Do not set to over 239 (EFh) raster-rows.

1st-Screen Driving Position (R42h)

2nd-Screen Driving Position (R43h)

Figure 24 1st-Screen Driving Position and 2nd-Screen Driving Position Instructions

SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the 'set value + 1' gate driver.

SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set value + 1' gate driver. For instance, when SS17–10 = 07H and SE17–10 = 10H are set, the LCD driving is performed from G8 to G17, and non-selection driving is performed for G1 to G7, G18, and others. Ensure that SS17–10 \leq SE17–10 \leq EFH. For details, see the Screen-division Driving Function section.

SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set value + 1' gate driver. The second screen is driven when SPT = 1.

SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the 'set value + 1' gate driver. For instance, when SPT = 1, SS27–20 = 20H, and SE27–20 = 4FH are set, the LCD driving is performed from G33 to G80. Ensure that SS17–10 \leq SE17–10 \leq SS27–20 \leq SE27–20 \leq EFH. For details, see the Screen-division Driving Function section.

Horizontal RAM Address Position (R44h)

Vertical RAM Address Position (R45h)

R/	/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
v	N	1	HEA7	HEA6	HEA5	HEA4	НЕА3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
V	W	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

Figure 25 Horizontal/Vertical RAM Address Position Instructions

HSA7-0/HEA7-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA7-0. Note that an address must be set before RAM is written to. Ensure $00h \le HSA7-0 \le HEA7-0 \le AFh$.

VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must be set before RAM is written to. Ensure $00h \le VSA7-0 \le VEA7-0 \le EFh$.

Instruction List

Table 34

1-2	reg. No		1135	IBI4	IBI3	IBI2	IBI1	IBI0	IB9	IB8	IB7	IB6	IB5	IB4	IB8	IE2	IBI	
	-		+ -	*	*	*	, ×	*	*	*	*	ID6	ID5	ID#	ID3	ID2	ID21	
	-		17	16	L5	L4 *	L3	L2	<u>L1</u>	LΩ	0	0	0	0	0	0	0	
Display control	00 h						_					÷	<u> </u>		_			
				0	0	0	0 EPL	11	1 GS	1 SS	0	1	1	1 NL4	0 NL3	0 NL2	NL1	
	01 h	Driver output control	0	0	0	0	(0)	0	(0)	(0)	0	0	0	(1)	(1)	(1)	(0)	
	02 h	LCD driving waveform	0	0	0	0	FLD	FLD)	B/C	EOR	0	0	N/8	N/4	N/3	N/2	N/A	NVØ
	0211	Bab-di TV mg-wave rollin	U	U	U		(0)	(1)	(0)	(0)	U	U	(0)	(0)	(0)	(0)	(0)	(0)
	03 h	Entry mode	0	0	0	BGR (0)	0	0	HWM (0)	0	0	0	(1)	ID0 (1)	AM (0)	(0)	(0)	
			.		CP11	OP10	OP9	CP8	(0) OP7	OF6			OP5	OP4	OP3	(U) OP2		
	04 h	Compare register 1	0	0	(0)	(0)	(0)	(0)	(0)	(0)	0	0	(0)	(0)	(0)	(0)	(0)	(0)
	05 h	Compare register 2	0	0	0	0	0	0	0	0	0	0	OP17	OP16	CP15	CP14	CPI3	OPI2
			Ů			•					Ů	•	(0)	(0)	(0)	(0)	(0)	(0)
			_			PTI	PTD	VLE2	VLB	SPT			GON	DTE	Q.	REV	D	Dθ
	07 h	Desplay control 1	0	0	0	(0)	(0)	(0)	(0)	(0)	0	0	(0)	(0)	(0)	(0)		
	00 6	Display control 2	_	0	0	0	FF8	FF2	FPI	FF0	0	0	0	0	BP3	BP2	BPI	BR0
		1 1	U	U	U	U	(1)	(0)	(0)	(0)	U	U	U	U	(1)	(0)	(0)	(0)
	09 h	Setting disabled																
	0 Ah	Gate driver interface control	0	0	0	0	0	0	0	(0)	0	0	0	0	0	(0)		
	o Di	Farm male and all	NO	NO)	SDTI	SDT0	EQ	EQ)	DIM	DIVO	_	_		_	RTN8	RTN2		
	0 Bh	Frame cycle control	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	0	0	0	0	(0)	(0)	(0)	(0)
	0 Ch	External display interface control	0	0	0	0	0	0	0	RM	0	0	DM	DM)	0	0	RIM	RIM
							-	CITAI	GM	(0) CLV0			(0)	(0) SHW		STC2		
	0 Dh	LTPS interface control	0	0	0	0	0	(1)	(1)	(1)	0	0	(0)	(0)	0	(0)		
	0 Eh	Setting disabled						,	,	,			12/	\2/		(3)	(2)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
Daves Control			0	0	SAP2	SAPI	SAPO	BT2	BTI	B10	D02	DCI	D0)	AP2	API	AP0	CP	STB
Device code read 0	1011	rower control i		U	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		
		0	0	(0)	VRN8 (0)	VRN2 (0)	VRN (0)	VRN0 (0)	0	0	0	VRP4 (0)	VRP3 (0)	VRP2 (0)				
																VC2		
	12 h	Power control 3	0	0	0	0	0	0	0	0	0	0	0	0	0	(0)		
	13 h	Power control 4	0	0	0	0	VRI3	VRI2	VRL1	VR10	0	0	0	PON	VRH3	VRH2	(2 VCI (0) (0) (42 VRH (0) (0)	
	1011	TONOT CONTTON	Ů				(0)	(0)	(0)	(0)	Ů	0 (0) (0) 0 VOM VOM						
	14 h	Power control 5	O O VCOMG VDV4 VDV8 VDV2 VDM VC	VDV0 (0)	0	0	0	(0)	(O)		VOM (O)	(U)						
	15 h	Setting disabled			(0)	(0)	(0)	(0)	(0)	(0)				(0)	(0)	(0)	(0)	(0)
																		(0) VR+0 (0) VOM
																VON2 VOM		
	18 h																	
	19 h	Setting disabled																
	1 Ah	Setting disabled																
DM4 Assess																		
ravi access			ΔΠΕ	ADI4	AD13	AD12	ADI1	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD8	AD2	ΔDI	ΔΠα
RAM Access	21 h	RAM address set		(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(O)	(O)	(0)	(O)	(0)	(0)	
	22 h	RAM data write/read		RAM v	vrite da				data (F						or sele	cted in	terface.	
			n	0	VM1	WM0	WV.9	W/8	VW	W/6	0	0	VW5	W 4	W.3	VW2	WM	
	2011	sara mirro naon i	Ů	,	(0)	(0)	(0)	(0)	(0)	(0)	,	,	(0)	(0)	(0)	(0)	(0)	
	24 h	RAM data write mask 2	0	0	0	0	0	0	0	0	0	0	(0)	WM6 (0)	WM5 (0)	WM4 (0)	WM3 (0)	
	25 h	Setting disabled											(0)	(0)	(0)	(0)	(0)	(0)
	29 h	Setting disabled																
	2 Ah																	

Table 34 (continued)

Control	30 h	Control 1	0	0	0	0	0	PKP12	PKPI1	PKP10	0	0	0	0	0	PKR02	PKR01	PKF
Control	3011	Californ	U	- 0	- 0	- 0	U	(0)	(0)	(0)	U	U	U	U	0	(0)	(0)	(0
	31 h	Control 2	0	0	0	0	0	PKP32 (0)	PKP31 (0)	PKP30 (0)	0	0	0	0	0	PKP22 (0)	PKP21 (0)	PKF (0
	32 h	Control 3	0	0	0	0	0	PKP52 (0)	PKP51 (0)	PKP50 (0)	0	0	0	0	0	PKP42 (0)	PKP41 (0)	PKF (0
	33 h	Control 4	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRR01	PRE
							_	(0) PKN 2	(0) PKN 1	(0) PKN0					_	(0) Pk 0 02	(0) Pk N 01	(0 PK1
	34 h	Control 5	0	0	0	0	0	(0)	(0)	(0)	0	0	0	0	0	(0) Pk022	(0) PkN21	(C
	35 h	Control 6	0	0	0	0	0	PKN\$2 (0)	PKN\$1 (0)	PKN80 (0)	0	0	0	0	0	(0)	(0)	(0
	36 h	Control 7	0	0	0	0	0	PKN52 (0)	PKN51 (0)	(0) (0)	0	0	0	0	0	PKN12 (0)	PKN1 (0)	PK1
	37 h	Control 8	0	0	0	0	0	PRN12 (0)	PRN11 (0)	PRN10 (0)	0	0	0	0	0	PRN02 (0)	PRN01 (0)	PRI (C
	38 h	Setting disabled																
	39 h	Setting disabled																
	3 Ah	Setting disabled																
	3 Bh	Setting disabled																
	3 Ch	Setting disabled																
	3 Dh	Setting disabled																
	3 Eh	Setting disabled																
	3 Fh	Control 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	VDRII (0)	VD ((
Position Control	40 h	Gate scan start position	0	0	0	0	0	0	0	0	0	0	0	SON4 (0)	SON8 (0)	SON2 (0)	SON (0)	SX ((
	41 h	Vertical scroll control	0	0	0	0	0	0	0	0	VL7 (0)	VL6 (0)	VL5 (0)	VL4 (0)	VL3 (0)	VL2 (0)	VL1 (0)	V ((
	42 h	1 st screen driving position	SE17 (1)	S⊟6 (1)	SE15 (1)	SE14 (1)	S⊞3 (1)	SE12 (1)	SE1 (1)	S⊟0 (1)	SS17 (0)	S316 (0)	S35 (0)	S314 (0)	SS13 (0)	SS12 (0)	SSI1 (0)	S. ((
	43 h	2 nd screen driving position	SE27 (1)	SE26 (1)	SE25 (1)	SE24 (1)	SE23 (1)	SE22 (1)	SE21 (1)	SE20 (1)	SS27 (0)	S326 (0)	S325 (0)	SS24 (0)	S23 (0)	SS22 (0)	SS21 (0)	SS ((
	44 h	Horizontal RAM address position	HEA7 (1)	HEA6 (0)	HEA6 (1)	HEA4 (0)	HEA8 (1)	HEA2 (1)	HEA1 (1)	HEA0 (1)	HSA7 (0)	HSA6 (0)	HSA6 (0)	HSA4 (0)	HSA8 (0)	HSA2 (0)	HSA1 (0)	Ht ((
	45 h	Vertical RAM address position	VEAT (1)	VEA6 (1)	VEA6 (1)	VEA4 (0)	VEA8 (1)	VEA2 (1)	VEA1 (1)	VEA0 (1)	VSA7	VSA6 (0)	VSA6 (0)	VSA4 (0)	VSA8 (0)	VSA2 (0)	VSAI (0)	V5
	46 h	Setting disabled	(1)	(1)	(1)	(0)	(1)	(1)	(1)	(1)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	- (,
	47 h	Setting disabled																
	48 h	Setting disabled																
	49 h	Setting disabled																
	4 Ah	Setting disabled																
	4 Bh	Setting disabled																
	4 Ch	Setting disabled																
	4 Dh	Setting disabled																
	4 Eh	Setting disabled																
	4 Fh	Setting disabled																
	*	Setting disabled																
	*	Setting disabled																
		oo cong uraabitu																

Parenthitic numbers are the initial values for each bit.
Do not access the instructions which is described above that setting is disabled

Reset Function

The HD66772 is internally initialized by RESET input. Because the busy flag (BF) indicates a busy state (BF = 1) during the reset period, no instruction or GRAM data access from the MPU is accepted. Reset the gate-driver/power-supply IC as its settings are not automatically reinitialized when the HD66772 is reset. The reset input must be held for at least 1 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (NL4–0 = 11101, SS = 0, GS = 0, EPL = "0")
- 3. LCD driving AC control (FLD1-0 = 01, B/C = 0, EOR = 0, NW5-0 = 00000)
- 4. Entry mode set (HWM = 0, I/D1-0 = 11: Increment by 1, AM = 0: Horizontal move, LG2-0 = 000: Replace mode, BGR = 0)
- 5. Compare register (CP17–0: 00 0000 0000 0000 0000)
- 6. Display control 1 (PT1-0 = 00, VLE2-1 = 00: No vertical scroll, SPT = 0, GON = 0, DTE = 0, CL = 0: 65536-color mode, REV = 0, D1-0 = 00: Display off)
- 7. Display control 2 (BP3-0 = 1000, FP3-0 = 1000)
- 8. Gate driver interface control (TE = 0, IDX2-0 = 000)
- 9. Frame cycle control (NO1-0 = 00, SDT1-0 = 00, EQ1-0 = 00: No equalization, DIV1-0 = 00: 1-divided clock, RTN3-0 = 0000: 16 clocks in 1H period)
- 10. External display interface (RIM1-0 = 00: 18-bit RGB interface, DM1-0 = 00: Operated by internal operating clock, RM = 0: System interface)
- 11. LTPS interface control (STG2-0 = 000, SHW1-0 = 00, CLW2-0 = 000)
- 12. Power control 1 (SAP2-0 = 000, BT2-0 = 000, DC2-0 = 000, AP2-0 = 000: LCD power off, SLP = 0, STB = 0: Standby mode off)
- 13. Power control 2 (CAD = 0, VRN4-0 = 00000, VR4-0 = 00000)
- 14. Power control 3 (VC2-0 = 000)
- 15. Power control 4 (VRL3-0 = 0000, PON = 0, VRH3-0 = 0000)
- 16. Power control 5 (VCOMG = 0, VDV4-0 = 00000, VCM4-0 = 00000)
- 17. RAM address set (AD15-0 = 0000H)
- 18. RAM write data mask (WM17–0 = 18'h00000: No mask)
- 19. γ control

```
(PKP02-00 = 000, PKP12-10 = 000, PKP22-20 = 000, PKP32-30 = 000, PKP42-40 = 000, PKP52-50 = 000, PRP02-00 = 000, PRP12-10 = 000, PKN02-00 = 000, PKN12-10 = 000, PKN22-20 = 000, PKN32-30 = 000, PKN42-40 = 000, PKN52-50 = 000, PRN02-00 = 000, PRN12-10 = 000)
```

- 20. Gate scan starting position (SCN4-0 = 00000)
- 21. Vertical scroll (VL7–0 = 00000000)
- 22. 1st screen division (SE17-10 = 111111111, SS17-10 = 00000000)
- 23. 2nd screen division (SE27-20 = 111111111, SS27-20 = 00000000)
- 24. Horizontal RAM address position (HEA7-0 = 10000011, HSA7-0 = 00000000)
- 25. Vertical RAM address position (VEA7-0 = 10101111, VSA7-0 = 00000000)

HD66772

GRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D1-0=00).

Output Pin Initialization:

- 1. LCD driver output pins (source outputs): Output GND level
- 2. Oscillator output pin (OSC2): Outputs oscillation signal
- 3. Gate interface signals (GCS*, GCL, and GDA): Halt
- 4. Timing signals (CL1, M, FLM, DISPTMG, and DCCLK): Halt

Interface Specifications

The HD66772 incorporates a system interface, which is used to set instructions, and an external display interface, which is used to display moving pictures. Selecting these interfaces to match the screen data (moving or still) enables efficient transfer of data for display.

The external display interface includes RGB-I/F and VSYNC-I/F. This allows flicker-free screen update.

When RGB-I/F is selected, the synchronization signals (VSYNC, HSYNC, and DOTCLK) are available for use in operating the display. The data for display (PD17-0) is written according to the values of the data enable signal (ENABLE) and data valid signal (VLD), in synchronization with the VSYNC, HSYNC, and DOTCLK signals. The data for display is written to GRAM, so that data transfer is reduced only when switching the screen. In addition, using the window address function enables rewriting only to the internal RAM area to display moving pictures. Using this function also enables simultaneously display of the moving picture area and the RAM data that was written.

While displaying moving pictures, the data for display should be written in high-speed write mode, which achieves both low power consumption and high-speed access via RGB-I/F or VSYNC-I/F.

The internal display operation is synchronized with the frame synchronization signal (VSYNC) in VSYNC interface mode. When writing to the internal RAM is done within the required time after the falling edge of VSYNC, moving pictures can be displayed via the conventional interface. There are some limitations on the timing and methods of writing to RAM. See the section on the external display interface.

The HD66772 has four operation modes for each display state. These settings are specified by control instructions for external display interface. Transitions between modes should follow the transition flow.

Table 35 Operation modes and interfaces				
Operation Mode	RAM Access Setting (RM)	Display Operation Mode (DM1-0)		
Internal operating clock only (Displaying still picture)	System interface (RM = 0)	Internal operating clock (DM1-0 = 00)		
RGB interface (1) (Displaying moving picture)	RGB interface (RM = 1)	RGB interface (DM1-0 = 01)		
RGB interface (2) (Rewriting still picture while displaying moving pictures)	System interface (RM = 0)	RGB interface $(DM1-0=01)$		
VSYNC interface (Displaying moving pictures)	System interface (RM = 0)	VSYNC interface (DM1-0 = 10)		

Note 1: Instruction registers can only be set via system interface.

- 2: RGB-I/F and VSYNC-I/F cannot be used at the same time.
- 3: RGB-I/F mode (RIM-0) cannot be set while RGB I/F is operating.
- 4: For mode transitions, see the section on the external display interface.
- 5: RGB-I/F and VSYNC-I/F modes should be used in high-speed write mode (HWM = 1).

Figure 27 RGB Interface and HD66772

System Interface

The following interfaces are available as system interface. It is determined by setting bits of IM3-0. Instructions and RAM accesses can be performed via the system interface.

Table	Table 36 IM bits		its		
IM3	IM2	IM1	IM0	MPU-Interface Mode	DB Pin
GND	GND	GND	GND	Setting disabled	
GND	GND	GND	Vcc	Setting disabled	
GND	GND	Vcc	GND	80-system 16-bit interface	DB17 to 10 and 8 to 1
GND	GND	Vcc	Vcc	80-system 8-bit interface	DB17 to 10
GND	Vcc	GND	ID	Clocked serial peripheral interface (SPI)	DB1 to 0
GND	Vcc	Vcc	*	Setting disabled	
Vcc	GND	GND	GND	Setting disabled	
Vcc	GND	GND	Vcc	Setting disabled	
Vcc	GND	Vcc	GND	80-system 18-bit interface	DB17 to 0
Vcc	GND	Vcc	Vcc	80-system 9-bit interface	DB17 to 9
Vcc	Vcc	*	*	Setting disabled	

80-system 18-bit interface

80-system 18-bit parallel data transfer can be used by setting IM3/2/1/0 pins to Vcc/GND/Vcc/GND levels.

Figure 28 Example of Interface with the 18-bit Microcomputer

Data format for 18-bit interface

80-system 16-bit interface

80-system 16-bit parallel data transfer can be used by setting IM3/2/1/0 pins to GND/GND/Vcc/GND levels.

Figure 29 Example of Interface with the 16-bit Microcomputer

Data format for 16-bit interface

80-system 9-bit interface

80-system 9-bit parallel data transfer can be used by setting IM3/2/1/0 pins to Vcc/GND/Vcc/Vcc levels. 16-bit instruction is divided into two parts, which are lower and upper, and the upper eight bits are first transferred. The LSB of the bus is not used. RAM data is also divided into two parts, which are lower and upper, and the upper nine bits are first transferred. Unused pins (DB8-0) must be fixed to the Vcc or GND level. Ensure that upper bytes have to be written when writing the index register.

Figure 30 Example of Interface with the 9-bit Microcomputer

Data format for 9-bit interface

Note:Transfer synchronization function for an 9-bit bus interface.

The HD66772 supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 9-bit data transfer in the 9-bit bus interface. Noise causing transfer mismatch between the nine upper and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

Figure 31 9-bit Transfer Synchronization

80-system 8-bit interface

80-system 8-bit parallel data transfer can be used by setting IM3/2/1/0 pins to GND/GND/Vcc/Vcc levels. 16-bit instruction is divided into two parts, which are lower and upper, and the upper eight bits are first transferred. The LSB of the bus is not used. RAM data is also divided into two parts, which are lower and upper, and the upper nine bits are first transferred. Data for RAM write is expanded to 18-bit data in this LSI. Unused pins (DB9-0) must be fixed to the Vcc or GND level. Ensure that upper bytes have to be written when writing the index register.

Figure 32 Example of Interface with the 8-bit Microcomputer

Data format for 8-bit interface

Note: Transfer synchronization function for an 8-bit bus interface

The HD66772 supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

Serial clock synchronized interface (SPI)

Setting the IM3 pin to the GND level, the IM2 pin to the Vcc level, the IM1 pin to the GND level allows standard clock-synchronized serial data (SPI) transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data (SDI), and serial output data (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins which are not used must be fixed at Vcc or GND.

The HD66772 initiates serial data transfer by transferring the start byte at the falling edge of CS* input. It ends serial data transfer at the rising edge of CS* input.

The HD66772 is selected when the 6-bit chip address in the start byte transferred from the transmitting device matches the 6-bit device identification code assigned to the HD66772. The HD66772, when selected, receives the subsequent data string. The least significant bit of the identification code can be determined by the ID pin. The five upper bits must be 01110. Two different chip addresses must be assigned to a single HD66760 because the seventh bit of the start byte is used as a register select bit (RS): that is, when RS = 0, data can be written to the index register or status can be read, and when RS = 1, an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is 0, and is transmitted when the R/W bit is 1.

When writing to RAM via this serial interface, the data is written to the GRAM after two-byte data has been transferred. The MSB of RB data is added to its LSB so that data to be written to the RAM will be 18 bits.

After receiving the start byte, the HD66772 receives or transmits the subsequent data byte-by-byte. The data is transferred with the MSB first. All HD66772 instructions are 16 bits. Two bytes are received with the MSB first (DB15 to 0), then the instructions are internally executed. Data for RAM write is expanded to 18-bit data in this LSI.) After the start byte has been received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is fetched internally as the lower eight bits of the instruction.

Four bytes of RAM read data after the start byte are invalid. The HD66763 starts to read correct RAM data from the fifth byte.

Note: ID bit is selected by the IM0/ID pin.

HD66772

Table 38		RS and R/W Bit Function	
RS	R/W	Function	
0	0	Sets index register	
0	1	Reads status	
1	0	Writes instruction or RAM data	
1	1	Reads instruction or RAM data	

Data format for serial interface

VSYNC Interface

The HD66772 incorporates VSYNC-I/F, which enables moving pictures to be displayed with only the conventional system interface and the frame synchronization signal (VSYNC). This interface requires minimal changes from the conventional system to display moving pictures.

Figure 35 Example of VSYNC Interface

When DM1-0 = 10 and RM = 0, VSYNC-I/F is available. In this interface the internal display operation is synchronized with VSYNC. Data for display is written to RAM via the system interface with higher speed than for internal display operation. This method enables flicker-free display of moving pictures with the conventional interface.

Display operation can be achieved by using the internal clock generated by the internal oscillator and the VSYNC input. Because all the data for display is written to RAM, only the data to be rewritten is transferred. This method reduces the amount of data transferred during moving picture display operation. The high-speed write mode (HWM = 1) achieves both low power consumption and high-speed access.

Figure 36 Moving Picture Data Transfer via VSYNC Interface

HD66772

VSYNC-I/F requires taking the minimum speed for RAM writing via the system interface and the frequency of the internal clock into consideration. RAM writing should be performed with higher speed than the result obtained from the calculation shown below.

- Internal clock frequency (fosc) [Hz] = Frame frequency × (Display raster-row (NL) + Front porch (FP) + Back porch (BP)) × 16 Clock × Fluctuation
- Minimum speed for RAM writing [Hz] > 176 × Display raster-row (NL) / {((Back porch (BP) + Display raster-row (NL) Margin) × 16 clock) / fosc}

Note: When RAM writing does not start immediately after the falling edge of VSYNC, the time between the falling edge of VSYNC and the RAM writing start timing must also be considered.

An example is shown below.

Example

Display size $176 \text{ RGB} \times 240 \text{ raster-rows}$

Display raster-row 240 raster-rows (NL = 11110)

Back/front porch 14/2 raster-rows (BP = 1110/FP = 0010)

Frame frequency 60 Hz

Internal clock frequency (fosc) $Hz = 60 Hz \times (240 + 2 + 14) \times 16 Clock \times 1.1 / 0.9 = 300 kHz$

Note 1: Calculating the internal clock frequency requires considering the fluctuation. In the above case a 10% fluctuation within the VSYNC period is assumed.

Note 2: The fluctuation includes LSI production variation and air temperature fluctuation. Other fluctuations, including those for the external resistors and the supplied power, are not included in this example. Please keep in mind that a margin for these factors is also needed.

Minimum speed for RAM writing Hz $> 176 \times 240 / \{((14 + 240 - 2) \text{ raster-rows} \times 16 \text{ clock}) / 300 \text{ kHz}\} = 3.14 \text{ MHz}$

Note 3: In this case RAM writing starts immediately after the falling edge of VSYNC.

Note 4: The margin for display raster-row should be two raster-rows or more at the completion of RAM writing for one frame.

Therefore, when RAM writing starting immediately after the falling edge of VSYNC is performed at 3.14 MHz or more, the data for display can be rewritten before display operation starts. This means that flicker-free display operation is achieved.

Figure 37 Operation for VSYNC Interface

Usage on VSYNC Interface

- 1. The Example above is a calculated value. Please keep in mind that a margin for these factors is also needed. Because production variation of the internal oscillator requires consideration.
- 2. The example above is a calculated value of rewriting the whole screen. A limitation of the moving picture area generates a margin for the RAM write speed.

Figure 38 Limitation of Moving Picture Area

- 3. During the period between the completion of displaying one frame data and the next VSYNC signal, the display will remain front porch period.
- 4. Transition between the internal clock operation mode (DM1-0 = 00) and VSYNC interface mode will be valid after the completion of the screen which is displayed when the instruction is set.
- 5. Partial display, vertical scroll, and interlaced driving functions are not available on VSYNC interface mode.

- 6. The VSYNC interface is performed by the method above, therefore, AM bit should be 0.
- 7. Data for display should be written in high-speed write mode (HWM = 1) when the VSYNC interface is in use.

Figure 39 Transition between the Internal Operating Clock Mode and VSYNC Interface Mode

External Display Interface

The following interfaces are available as external display interface. It is determined by setting bits of RIM1-0. RAM accesses can be performed via the RGB interface.

Table 39		RIM bits		
RIM1	RIM0	RGB Interface	PD Pin	
0	0	18-bit RGB interface	PD17-0	
0	1	16-bit RGB interface	PD17-13, 11-1	
1	0	6-bit RGB interface	PD17-12	
1	1	Setting disabled		

Note: Multiple interfaces cannot be used.

RGB interface

The RGB-I/F is performed in synchronization with VSYNC, HSYNC, and DOTCLK. Combining the function of the high-speed write mode and the window address enables transfer only the screen to be updated and reduce the power consumption.

Figure 40 RGB Interface

HD66772

VLD and ENABLE signals

The relationship between VLD and ENABLE signals is shown below.

Table 40 Relationship between VLD and ENABLE

EPL	ENABLE	VLD	RAM Write	RAM Address
0	0	0	Valid	Updated
0	0	1	Invalid	Updated
0	1	*	Invalid	Hold
1	0	*	Invalid	Hold
1	1	0	Valid	Updated
1	1	1	Invalid	Updated

RGB interface timing

16-/18-bit RGB interface timing

Timing chart for RGB-I/F is shown below.

VLW: The period in which VSYNC is low level

 $HLW: \qquad \hbox{The period in which HSYNC is low level}$

Note: Data for display should be written in the high-speed write mode (HWM = 1) in VSYNC-I/F is in use.

Figure 41 16-/18-bit RGB Interface Timing

6-bit RGB interface timing

Timing chart for RGB-I/F is shown below.

VLW: The period in which VSYNC is low level

HLW: The period in which HSYNC is low level

 $Note 1: Three \ clocks \ are \ regarded \ as \ one \ clock \ for \ transfer \ when \ data \ is \ transferred \ in \ 6-bit \ interface.$

2: VSYNC, HSYNC, EVABLE, DOTCLK, VLD, and PD17-2 should be transferred in units of three clocks.

Figure 42 6-bit RGB Interface Timing

Moving picture display

The HD66772 incorporates RGB interface to display moving pictures and RAM to store data for display. For displaying moving pictures, the HD66772 has the following features.

- Moving picture area can only be transferred by the window address function
- The high-speed write mode achieves both low power consumption and high-speed access
- Moving picture area to be rewritten can only be transferred.
- Reducing the amount of data transferred enables reduce the power consumption to the whole system.
- Still picture area, such as an icon, can be updated while displaying moving pictures combining with the system interface.

RAM access via the system interface when RGB-I/F is in use

RAM can be accessed via the system interface when RGB-I/F is in use. When data is written to RAM during RGB-I/F mode, the ENABLE bit should be high to stop data writing via RGB-I/F, because RAM writing is always performed in synchronization with the DOTCLK input when ENABLE is low. After this RAM access via the system interface, a waiting time is needed for a write/read bus cycle before the next RAM access starts via RGB-I/F. When a RAM write conflict occurs, data writing is not guaranteed.

Example of display moving picture via RGB-I/F and updating still picture via the system interface are shown below.

6-bit RGB interface

6-bit RGB interface can be used by setting RIM1-0 pins to 10. Display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Data for display is transferred to the internal RAM via 6-bit RGB data bus (PD17-12), the data valid signal (VLD), and the data enable signal(ENABLE). Unused pins (DB11 to 0) must be fixed to the Vcc or GND level.

Note: Instructions should be set via the system interface.

Figure 44 Example of 6-Bit RGB Interface

Data format for 6-bit interface

Note: Transfer synchronization function for a 6-bit bus interface

The HD66772 has the transfer counter to count 1st, 2nd and 3rd data transfer in the 6-bit bus interface. The transfer counter is reset on the falling edge of VSYNC and enters the 1st data transmission state. Transfer mismatch can be corrected by a reset triggered on the falling edge of VSYNC, which means the beginning of a frame. The next transfer restarts correctly. In this method, when data is consecutively transferred such as displaying moving pictures, the effect of transfer mismatch will be reduced and recover normal operation.

Note: The internal display is operated in units of three DOTCLK. When the DOTCLK is not input in units of pixels, clock mismatch occurs and the frame which is operated and the next frame are not displayed correctly.

HD66772

16-bit RGB interface

16-bit RGB interface can be used by setting RIM1-0 pins to 01. Display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Data for display is transferred to the internal RAM in synchronization with display operation via 6-bit RGB data bus (PD17-13 and 11-1), the data valid signal (VLD) and data enable signal (ENABLE).

Note: Instructions should be set via the system interface.

Figure 46 Example of 16-Bit RGB Interface

Data format for 16-bit interface

18-bit RGB interface

18-bit RGB interface can be used by setting MIF1-0 pins to 01. Display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Data for display is transferred to the internal RAM in synchronization with display operation via 6-bit RGB data bus (PD17-13 and 11-1), the data valid signal (VLD) and data enable signal (ENABLE).

Note: Instructions should be set via the system interface.

Figure 47 Example of 18-Bit RGB Interface

Data format for 18-bit interface

Usage on external display interface

a) When external display interface is in use, the following functions are not available.

Table 41 Relationship between VLD and ENABLE

Function	External Display Interface	Internal Display Operation
Partial display	Not available	Available
Scroll function	Not available	Available
Interlaced driving	Not available	Available
Graphics operation function	Not available	Available

- b) VSYNC, HSYNC, and DOTCLK signals should be supplied during display operation via RGB-I/F.
- c) Please make sure that when setting bits of NO1-0, SDT1-0, and EQ1-0 in RGB-I/F, the clock on which operations are based changes from the internal operating clock to DCLK.
- d) RGB data is transferred for three clock cycles in 6-bit RGB-I/F. Data transferred, therefore, should be transferred in units of RGB.
- e) Interface signals, VSYNC, HSYNC, DOTCL, ENABLE, VLD, and PD17-0 should be set in units of RGB (pixels) to match RGB transfer.
- f) Transitions between internal operation mode and external display interface should follow the mode transition sequence shown below.
- g) During the period between the completion of displaying one frame data and the next VSYNC signal, the display will remain front porch period.
- h) RGB-I/F should be used in high-speed write mode (HWM = 1).
- i) An address set is done on the falling edge of VSYNC every frame in RGB-I/F.

Figure 48 Transition between the Internal Operating Clock Mode and RGB Interface Mode

Timing of LCD Panel I/F

Relationship between RGB I/F signal and LCD panel signal while internal clock and RGB I/F is operating.

(3) Resistor Setting

Table 42 CL1 signal "Low" width setting

			CL1 signal low period	
CLW2	CLW1	CLW0	Internal clock operation	RGB I/F operation
			(1clock = internal oscillation clock)	(1 clock = DOUTCLK)
0	0	0	1 clock	8 clock
0	0	1	2 clock	16 clock
0	1	0	3 clock	24 clock
0	1	1	4 clock	32 clock
1	0	0	5 clock	40 clock
1	0	1	6 clock	48 clock
1	1	0	7 clock	56 clock
1	1	1	8 clock	64 clock

Setting value above "above are clock of CL1 signal from a falling edge

Table 43EQ signal "High" width setting

		Equalize period			
EQ1	EQ0	Internal clock operation	RGB I/F operation		
		(1clock = internal oscillation clock)	(1 clock = DOUTCLK)		
0	0	Non equalization	Non equalization		
0	1	1 clock	8 clock		
1	0	2 clock	16 clock		
1	1	3 clock	24 clock		

Table 44 Delay amount of source output

		Delay amount of source output	
SDT 1	STD 0	Internal clock operation	RGB I/F operation
		(1clock = internal oscillation clock)	(1 clock = DOUTCLK)
0	0	1 clock	8 clock
0	0	2 clock	16 clock
0	1	3 clock	24 clock
0	1	4 clock	32 clock

Delay amount of source is defined from a falling edge of CL1.

HD66772

Table 45	Amount of non-over lap for gate output				
		Amount of non-over lap			
No 1	No 0	Internal clock operation	RGB I/F operation		
		(1clock = internal oscillation clock)	(1 clock = DOUTCLK)		
0	0	0 clock	0 clock		
0	1	4 clock	32 clock		
1	0	6 clock	48 clock		
1	1	8 clock	64 clock		

Delay amount of source is defined from a falling edge of CL1.

Table 46 SFTCLK signal position of pulse output

			SFTCLK signal position of pulse output		
STG2	STG1	STG0	Internal clock operation	RGB I/F operation	
			(1clock = internal oscillation clock)	(1 clock = DOUTCLK)	
0	0	0	0 clock	1 clock	
0	0	1	1 clock	8 clock	
0	1	0	2 clock	16 clock	
0	1	1	3 clock	24 clock	
1	0	0	4 clock	32 clock	
1	0	1	5 clock	40 clock	
1	1	0	6 clock	48 clock	
1	1	1	7 clock	56 clock	

Note: Setting value above "above are clock of CL1 signal from a falling edge.

Table 47 SFTCLK signal "High" period

		SFTCLK signal High period	
SHW1	SHW 0	Internal clock operation	RGB I/F operation
		(1clock = internal oscillation clock)	(1 clock = DOUTCLK)
0	0	1 clock	8 clock
0	1	2 clock	16 clock
1	0	3 clock	24 clock
1	1	4 clock	32 clock

Low-temperature poly-silicon TFT panel control

The HD66772 outputs timing signals (FLM, CL1 and SFTCLK) for controlling a low-temperature polysilicon TFT (LTPS-TFT) panel with built-in gates. The output level of the HD66772's signals, FLM, CL1 and SFTCLK, is shifted to the LTPS-TFT level so that the HD66772 directly connects the LTPS-TFT.

The HD667P00 incorporates ports with level shifter for LTPS-TFT.

Source driver (HD66772)

Table 48 Output signals

Output control timing signal	FLM (Output for the frame-start pulse)	
	CL1 (Output for the one-raster-row-cycle pulse)	The low pulse width is variable by bits of CLW2-0
	SFTCLK (Output for the one- raster-row-cycle pulse	The output timing is variable by bits of STG2-0 and SHW1-0.

Power supply IC (HD667P00)

Table 49 Power supply

	THE V
Level shifter	Built-in level shifter for converting amplitude Input (Vcc - GND) → Output (VGH to -VGH)
Port for LTPS	Input (CL1/SFTCLK) \rightarrow Output (TESTFAI1)
	Input (FLM) \rightarrow Output (TESTFAIIN)

Figure 49 System Configuration

Output timing for HD66772 signals

The HD66772 outputs timing signals (FLM, CL1 and SFTCLK) for controlling a low-temperature polysilicon TFT (LTPS-TFT) panel with built-in gates. Output timing of CL1 can be changed by LTPS-TFT control instruction.

Output timing should be specified to match the gate circuit configuration in the LTPS-TFT.

Figure 50 Output Timing

Figure 51 Example of LTPS-TFT Control Signals

High-Speed Burst RAM Write Function

The HD66772 has a high-speed burst RAM-write function that can be used to write data to RAM in one-fourth the access time required for an equivalent standard RAM-write operation. This function is especially suitable for applications which require the high-speed rewriting of the display data, for example, display of color animations, etc.

When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the HD66772 internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can be executed for animated displays, etc.

Figure 52 Flow of Operation in High-Speed Consecutive Writing to RAM

Figure 53 Example of the Operation of High-Speed Consecutive Writing to RAM

HD66772

Figure 54 Example of the Operation of High-Speed Consecutive Writing to RAM (8-Bit Interface)

When high-speed RAM write mode is used, note the following.

Notes: 1. The logical and compare operations cannot be used.

- 2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to the following values.
 - *When ID0=0, the lower two bits in the address must be set to 11 and be written to RAM.
 - *When ID0=1, the lower two bits in the address must be set to 00 and be written to RAM.
- 3. Data is written to RAM each four words. If less than four words of data are written to RAM, the last data will not be written to RAM.
- 4. When the index register and RAM data write (22H) have been selected, the data is always written first. RAM cannot be written to and read from at the same time. HWM must be set to 0 while RAM is being read.
- 5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched and the address must then be set.
- 6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be required to suit the window address range-specification. Refer to the High-Speed RAM Write in the Window Address section.

Table 50 Comparison between Normal and High-Speed RAM Write Operations
Normal RAM Write
(HWM=0) (HWM=1)

Logical operation function Can be used Cannot be used

Compare operation function Can be used Cannot be used

Bogical operation function	can be asea	cumot be used
Compare operation function	Can be used	Cannot be used
BGR function	Can be used	Can be used
Write mask function	Can be used	Can be used
RAM address set	Can be specified by word	ID0 bit=0: Set the lower two bits to 11
		ID0 bit=1: Set the lower two bits to 00
RAM read	Can be read by word	Cannot be used
RAM write	Can be written by word	Dummy write operations may have to be inserted according to a window address-range specification
Window address	Can be set by word	the horizontal range(HSA/HSE): more than four words
		the number of horizontal writing : $4N (N>=2)$
External display interface	Can be used	Can be used
AM Setting	AM = 1/0	AM = 0

High-Speed RAM Write in the Window Address

When a window address range is specified, RAM data which is in an optional window area can be rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts become 4N as shown in the tables below.

Dummy write operations may have to be inserted as the first or last operations for a row of data, depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). Number of dummy write operations of a row must be 4N.

Table 51	Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)			
HSA1 HSA0		Number of Dummy Write Operations to be Inserted at the Start of a Row		
0	0	0		
0	1	1		
1	0	2		
1	1	3		

Table 52	Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits)				
HEA1	HEA0	Number of Dummy Write Operations to be Inserted at the End of a Row			
0	0	3			
0	1	2			
1	0	1			
1	1	0			

Each row of access must consist of $4 \times N$ operations, including the dummy writes.

Horizontal access count =

first dummy write count + write data count + last dummy write count = $4 \times N$

An example of high-speed RAM write with a window address-range specified is shown below.

The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes at the start of a row and three dummy writes at the end of a row, as determined by using the window address-range specification bits (HSA1 to 0=10, HEA1 to 0=00).

Figure 55 Example of the High-Speed RAM Write with a Window Address-Range Specification

Window Address Function

When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address register (start: HSA7 to 0, end: HEA 7 to 0) or the vertical address register (start: VSA7 to 0, end: VEA7 to 0) can be written to consecutively.

Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this.

The window must be specified to be within the GRAM address area described below. Addresses must be set within the window address.

[Restriction on window address-range settings]

(horizontal direction) $00H \le HSA7$ to $0 \le HSA7$ to $0 \le AFH$

(vertical direction) $00H \le VSA7$ to $0 \le VEA7$ to $0 \le EFH$

[Restriction on address settings during the window address]

(RAM address) HSA7 to $0 \le AD7$ to $0 \le HEA7$ to 0

VSA7 to $0 \le AD15$ to $8 \le VEA7$ to 0

Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below according to the value of the ID0 bit.

ID0=0: The lower two bits of the address must be set to 11.

ID0=1: The lower two bits of the address must be set to 00.

Figure 56 Example of Address Operation in the Window Address Specification

Graphics Operation Function

The HD66772 can greatly reduce the load of the microcomputer graphics software processing through the 18-bit bus architecture and internal graphics-bit operation function. This function supports the following:

- 1. A write data mask function that selectively rewrites some of the bits in the 18-bit write data.
- 2. A conditional write function that compares the write data and the compare-bit data and writes the data sent from the microcomputer only when the conditions match.

The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAM-write-data mask register, and the write from the microcomputer.

Table 53 Graphics Operation
Bit Setting

		_		
Operation Mode	I/D	AM	LG2-0	Operation and Usage
Write mode 1	0/1	0	000	Horizontal data replacement
Write mode 2	0/1	1	000	Vertical data replacement
Write mode 3	0/1	0	110 111	Conditional horizontal data replacement
Write mode 4	0/1	1	110 111	Conditional vertical data replacement

Figure 57 Data Processing Flow of the Graphics Operation

Write-data Mask Function

The HD66772 expands 16-bit data sent from the microcomputer to 18-bit data (when 18-bit interface is in use, data is not expanded). A bit-wise write-data mask function controls writing the 18-bit data from the microcomputer to the GRAM. Bits that are 0 in the write-data mask register (WM17–0) cause the corresponding DB bit to be written to the GRAM. Bits that are 1 prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only one-pixel data is rewritten or the particular display color is selectively rewritten.

Figure 58 Example of Write-data Mask Function Operation

Graphics Operation Processing

1. Write mode 1: AM = 0, LG2-0 = 000

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (GRAM) or to draw borders. The write-data mask function (WM17–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

Figure 59 Writing Operation of Write Mode 1

2. Write mode 2: AM = 1, LG2-0 = 000

This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask function (WM17–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D=1) or upper-left edge (I/D=0) following the I/D bit after it has reached the lower edge of the GRAM.

Figure 60 Writing Operation of Write Mode 2

Write mode 3: AM = 0, LG2-0 = 110/111

This mode is used when the data is horizontally written by comparing the write data and the set value of the compare register (CP17–0). When the result of the comparison in units of pixels satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM17–0) are also enabled. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

Figure 61 Writing Operation of Write Mode 3

4. Write mode 4: AM = 1, LG2-0 = 110/111

This mode is used when a vertical comparison is performed between the write data and the set value of the compare register (CP17–0) to write the data. When the result by the comparison in units of pixels satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, write-data mask function (WM17–0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Figure 62 Writing Operation of Write Mode 4

γ-Correction Function

The HD66772 incorporates a γ -correction function to simultaneously display 262,144 colors. The γ -correction operation specifies eight levels of grayscale with gradient-adjustment and fine-adjustment registers. Select the polarity of these registers to match the LCD panel used. These registers are available for both polarities.

Configuration of Grayscale Amplifier

Eight levels (VIN0-7) are specified by the gradient-adjustment and fine-adjustment registers. 64 levels (V0-63) are generated by ladder resistors, which divide each level specified by the registers into more detailed levels.

Figure 64 Configuration of Grayscale Amplifier

Figure 65 Ladder Amplifiers and 8 to 1 Selectors

γ-Correction Registers

This block has register groups for specifying a grayscale voltage that meets the γ -characteristics for the LCD panel used. These registers are divided into four groups, which correspond to the gradient, amplitude, average value and fine adjustment of the grayscale characteristics for the voltage. The polarity of each register can be specified independently. (average value and R, G, and B are common.)

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient in the middle of the grayscale characteristics for the voltage without changing the dynamic range. This function is implemented by controlling the variable resistor (VRHP (N)/VRL (N)) in the ladder resistor block for grayscale voltage generation. A register can be separated into positive/negative polarities to perform an asymmetric drive.

2. Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage. This function is implemented by controlling the variable resistor (VRP (N)) under the ladder resistor block for grayscale voltage generation. The VDH level can be adjusted higher. There is an independent register on the positive/negative polarities as well as the gradient adjustment register.

3. Resister of average value

Resister of average value is used to adjust the average value of the grayscale voltage. This function is implemented by controlling the variable resistor (VDR) above the ladder resistor block for grayscale voltage generation. This resistor is common to both the positive and negative.

4. Fine adjustment registers

The fine adjustment register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls the each reference voltage level by the 8 to 1 selector towards the 8-leveled reference voltage generated from the ladder resistor. Also, there is an independent register on the positive/negative polarities as well as other adjustment registers.

HD66772

Table 54	γ-Correction Reg		
Register Groups	Positive Polarity	Negative Polarity	Description
Gradient	PRP0 2 to 0	PRN0 2 to 0	Variable resistor VRHP (N)
adjustment	PRP1 2 to 0	PRN1 2 to 0	Variable resistor VRLP (N)
Amplitude adjustment	VRP 4 to 0	VRN 4 to 0	Variable resistor VRP (N)
Average adjustment	VD	R 1 to 0	Variable resistor VDR
Fine adjustment	PKP0 2 to 0	PKN0 2 to 0	8-to-1 selector (voltage level of grayscale 1)
	PKP1 2 to 0	PKN1 2 to 0	8-to-1 selector (voltage level of grayscale 8)
	PKP2 2 to 0	PKN2 2 to 0	8-to-1 selector (voltage level of grayscale 20)
	PKP3 2 to 0	PKN3 2 to 0	8-to-1 selector (voltage level of grayscale 43)
	PKP4 2 to 0	PKN4 2 to 0	8-to-1 selector (voltage level of grayscale 55)
	PKP5 2 to 0	PKNS5 2 to 0	8-to-1 selector (voltage level of grayscale 62)

Ladder resistors and 8 to 1 selector

Block configuration

The block consists of two ladder resistors including variable one, and 8 to 1 selector which selects one voltage level generated by the ladder resistors and outputs the reference voltage for grayscale voltage. Furthermore, the block has pins to connect a variable resistor. It can adjust the variation between panels.

Variable resistor

The variable resistors are three types, gradient adjustment(VRHP(N)/VRLP(N)), amplitude adjustment (VRP(N)), and average adjustment (VDR). The resistances are set by the gradient adjustment and amplitude adjustment registers. Their relationship is shown below.

Table 55 Gradient adjustment		Table 56 Amplitude adjustment		Table 57Average Control	
Contents of Register PRP(N) 2-0	Resistance VRP(N)	Contents of Register VRP(N) 4-0	Resistance VRP(N)	Contents of Register VDR 1-0	Resistance VDR
000	0R	00000	0R	00	0R
001	4R	00001	1R	01	4R
010	8R	00010	2R	10	8R
011	12R	•	•	11	12R
100	16R				
101	20R	11101	29R		
110	24R	1111	30R		
111	28R	1111	31R		

HD66772

8 to 1 selector

In the 8 to 1 selector, the voltage level can be selected from the levels which are generated by ladder resistors, and be output the six types of the reference voltage, the VIN1 to VIN 6. The following figure explains the relationship between the fine adjustment register and the selecting voltage.

Table 58	KVPP and KVPN
Contents of Regis	ter Selected Voltage

Contents of Register	beleeted voltage					
PKP(N)2-0	VINP(N)1	VINP(N)2	VINP(N)3	VINP(N)4	VINP(N)5	VINP(N)6
000	KVP(N)1	KVP(N)9	KVP(N)17	KVP(N)25	KVP(N)33	KVP(N)41
001	KVP(N)2	KVP(N)10	KVP(N)18	KVP(N)26	KVP(N)34	KVP(N)42
010	KVP(N)3	KVP(N)11	KVP(N)19	KVP(N)27	KVP(N)35	KVP(N)43
011	KVP(N)4	KVP(N)12	KVP(N)20	KVP(N)28	KVP(N)36	KVP(N)44
100	KVP(N)5	KVP(N)13	KVP(N)21	KVP(N)29	KVP(N)37	KVP(N)45
101	KVP(N)6	KVP(N)14	KVP(N)22	KVP(N)30	KVP(N)38	KVP(N)46
110	KVP(N)7	KVP(N)15	KVP(N)23	KVP(N)31	KVP(N)39	KVP(N)47
111	KVP(N)8	KVP(N)16	KVP(N)24	KVP(N)32	KVP(N)40	KVP(N)48

The grayscale levels are determined by the following formulas.

Table 59 Voltage calculation formula (positive polarity) 1

Table Voltage Calculation Formula (positive polarity) 1

Pin	Formula		Fine adjustment register value	Reference voltage
KVP0	VDH*r		-	VINP0
KVP1	VINP0 -	V * 5R /SUMRP	PKP02-00= 000	VINP1
KVP2	VINP0 -	V * 9R /SUMRP	PKP02-00= 001	_
KVP3	VINP0 -	V * 13R /SUMRP	PKP02-00= 010	_
KVP4	VINP0 -	V * 17R /SUMRP	PKP02-00= 011	
KVP5	VINP0 -	V * 21R /SUMRP	PKP02-00= 100	_
KVP6	VINP0 -	V * 25R /SUMRP	PKP02-00= 101	_
KVP7	VINP0 -	V * 29R /SUMRP	PKP02-00= 110	
KVP8	VINP0 -	V * 33R /SUMRP	PKP02-00= 111	
KVP9	VINP0 -	V * (33R+VRHP) /SUMRP	PKP12-10= 000	VINP2
KVP10	VINP0 -	V * (34R+VRHP) /SUMRP	PKP12-10= 001	_
KVP11	VINP0 -	V * (35R+VRHP) /SUMRP	PKP12-10= 010	
KVP12	VINP0 -	V * (36R+VRHP) /SUMRP	PKP12-10= 011	
KVP13	VINP0 -	V * (37R+VRHP) /SUMRP	PKP12-10= 100	
KVP14	VINP0 -	V * (38R+VRHP) /SUMRP	PKP12-10= 101	
KVP15	VINP0 -	V * (39R+VRHP) /SUMRP	PKP12-10= 110	_
KVP16	VINP0 -	V * (40R+VRHP) /SUMRP	PKP12-10= 111	
KVP17	VINP0 -	V * (45R+VRHP) /SUMRP	PKP22-20= 000	VINP3
KVP18	VINP0 -	V * (46R+VRHP) /SUMRP	PKP22-20= 001	
KVP19	VINP0 -	V * (47R+VRHP) /SUMRP	PKP22-20= 010	
KVP20	VINP0 -	V * (48R+VRHP) /SUMRP	PKP22-20= 011	_
KVP21	VINP0 -	V * (49R+VRHP) /SUMRP	PKP22-20= 100	
KVP22	VINP0 -	V * (50R+VRHP) /SUMRP	PKP22-20= 101	_
KVP23	VINP0 -	V * (51R+VRHP) /SUMRP	PKP22-20= 110	
KVP24	VINP0 -	V * (52R+VRHP) /SUMRP	PKP22-20= 111	
KVP25	VINP0 -	V * (68R+VRHP) /SUMRP	PKP32-30= 000	VINP4
KVP26	VINP0 -	V * (69R+VRHP) /SUMRP	PKP32-30= 001	
KVP27	VINP0 -	V * (70R+VRHP) /SUMRP	PKP32-30= 010	
KVP28	VINP0 -	V * (71R+VRHP) /SUMRP	PKP32-30= 011	_
KVP29	VINP0 -	V * (72R+VRHP) /SUMRP	PKP32-30= 100	_
KVP30	VINP0 -	V * (73R+VRHP) /SUMRP	PKP32-30= 101	_
KVP31	VINP0 -	V * (74R+VRHP) /SUMRP	PKP32-30= 110	_
KVP32	VINP0 -	V * (75R+VRHP) /SUMRP	PKP32-30= 111	
KVP33	VINP0 -	V * (80R+VRHP) /SUMRP	PKP42-40= 000	VINP5
KVP34	VINP0 -	V * (81R+VRHP) /SUMRP	PKP42-40= 001	
KVP35	VINP0 -	V * (82R+VRHP) /SUMRP	PKP42-40= 010	
KVP36	VINP0 -	V * (83R+VRHP) /SUMRP	PKP42-40= 011	
KVP37	VINP0 -	V * (84R+VRHP) /SUMRP	PKP42-40= 100	
KVP38	VINP0 -	V * (85R+VRHP) /SUMRP	PKP42-40= 101	_
KVP39	VINP0 -	V * (86R+VRHP) /SUMRP	PKP42-40= 110	
KVP40	VINP0 -	V * (87R+VRHP) /SUMRP	PKP42-40= 111	_
KVP41	VINP0 -	V * (87R+VRHP+VRLP) /SUMRP	PKP52-50= 000	VINP6
KVP42	VINP0 -	V * (91R+VRHP+VRLP) /SUMRP	PKP52-50= 001	
KVP43	VINP0 -	V * (95R+VRHP+VRLP) /SUMRP	PKP52-50= 010	_
KVP44	VINP0 -	V * (99R+VRHP+VRLP) /SUMRP	PKP52-50= 011	_
KVP45	VINP0 -	V * (103R+VRHP+VRLP) /SUMRP	PKP52-50= 100	
KVP46	VINP0 -	V * (107R+VRHP+VRLP) /SUMRP		_
KVP47	VINP0 -	V * (111R+VRHP+VRLP) /SUMRP		
KVP48	VINP0 -	V * (115R+VRHP+VRLP) /SUMRP		_
KVP49	VINP0 -	V * (120R+VRHP+VRLP) /SUMRP		VINP7

r : {[(SUMRP*SUMRN)/(SUMRP+SUMRN)]/[(SUMRP*SUMRN)/(SUMRP+SUMRN)]+EXVR} SUMRP : Sum of positive ladder resistors = 128R + VRHP + VRLP + VRP SUMRN : Sum of negative ladder resistors = 128R + VRHN + VRLN + VRN

V: Difference of voltage between KV0 and KV49
= VDH * SUMRP * SUMRN / [SUMRP * SUMRN + EXVR * (SUMRP + SUMRN)]

Table 60 Voltage calculation formula (positive polarity) 2

Grayscale voltage	Formula
V0	VINP0
V1	VINP1
V2	V3+(V1-V3)*(8/24)
V3	V8+(V1-V8)*(450/800)
V4	V8+(V3-V8)*(16/24)
V5	V8+(V3-V8)*(12/24)
V6	V8+(V3-V8)*(8/24)
V7	V8+(V3-V8)*(4/24)
V8	VINP2
V9	V20+(V8-V20)*(22/24)
V10	V20+(V8-V20)*(20/24)
V11	V20+(V8-V20)*(18/24)
V12	V20+(V8-V20)*(16/24)
V13	V20+(V8-V20)*(14/24)
V14	V20+(V8-V20)*(12/24)
V15	V20+(V8-V20)*(10/24)
V16	V20+(V8-V20)*(8/24)
V17	V20+(V8-V20)*(6/24)
V18	V20+(V8-V20)*(4/24)
V19	V20+(V8-V20)*(2/24)
V20	VINP3
V21	V43+(V20-V43)*(22/23)
V22	V43+(V20-V43)*(21/23)
V23	V43+(V20-V43)*(20/23)
V24	V43+(V20-V43)*(19/23)
V25	V43+(V20-V43)*(18/23)
V26	V43+(V20-V43)*(17/23)
V27	V43+(V20-V43)*(16/23)
V28	V43+(V20-V43)*(15/23)
V29	V43+(V20-V43)*(14/23)
V30	V43+(V20-V43)*(13/23)
V31	V43+(V20-V43)*(12/23)

Grayscale voltage	Formula
V32	V43+(V20-V43)*(11/23)
V33	V43+(V20-V43)*(10/23)
V34	V43+(V20-V43)*(9/23)
V35	V43+(V20-V43)*(8/23)
V36	V43+(V20-V43)*(7/23)
V37	V43+(V20-V43)*(6/23)
V38	V43+(V20-V43)*(5/23)
V39	V43+(V20-V43)*(4/23)
V40	V43+(V20-V43)*(3/23)
V41	V43+(V20-V43)*(2/23)
V42	V43+(V20-V43)*(1/23)
V43	VINP4
V44	V55+(V43-V55)*(22/24)
V45	V55+(V43-V55)*(20/24)
V46	V55+(V43-V55)*(18/24)
V47	V55+(V43-V55)*(16/24)
V48	V55+(V43-V55)*(14/24)
V49	V55+(V43-V55)*(12/24)
V50	V55+(V43-V55)*(10/24)
V51	V55+(V43-V55)*(8/24)
V52	V55+(V43-V55)*(6/24)
V53	V55+(V43-V55)*(4/24)
V54	V55+(V43-V55)*(2/24)
V55	VINP5
V56	V60+(V55-V60)*(20/24)
V57	V60+(V55-V60)*(16/24)
V58	V60+(V55-V60)*(12/24)
V59	V60+(V55-V60)*(8/24)
V60	V62+(V55-V62)*(350/800)
V61	V62+(V60-V62)*(16/24)
V62	VINP6
V63	VINP7

Note: The folloing relationship should be retained.

DDVDH-V0 > 0.5V

DDVDH-V8 > 1.1V

V55-GND > 1.1V

Table 61 Voltage calculation formula (negative polarity) 1

Pin	Formula			Fine adjustment register value	Reference voltage
KVN0	VDH*r			-	VINN0
KVN1	VINNO -	٧	* 5R /SUMRN	PKN02-00= 000	
KVN2	VINNO -	V	* 9R /SUMRN	PKN02-00= 001	_
KVN3	VINNO -	V	* 13R /SUMRN	PKN02-00= 010	_ '
KVN4	VINNO -	V	* 17R /SUMRN	PKN02-00= 011	
KVN5	VINNO -	V	* 21R /SUMRN	PKN02-00= 100	VINN1
KVN6	VINNO -	V	* 25R /SUMRN	PKN02-00= 101	_
KVN7	VINNO -	V	* 29R /SUMRN	PKN02-00= 110	_
KVN8	VINNO -	V	* 33R /SUMRN	PKN02-00= 111	
KVN9	VINNO -	V	* (33R+VRHN) /SUMRN	PKN12-10= 000	
KVN10	VINNO -	V	* (34R+VRHN) /SUMRN	PKN12-10= 001	_ '
KVN11	VINNO -	V	* (35R+VRHN) /SUMRN	PKN12-10= 010	_ '
KVN12	VINNO -	٧	* (36R+VRHN) /SUMRN	PKN12-10= 011	- VININIO
KVN13	VINNO -	V	* (37R+VRHN) /SUMRN	PKN12-10= 100	- VINN2
KVN14	VINNO -	V	* (38R+VRHN) /SUMRN	PKN12-10= 101	_
KVN15	VINNO -	V	* (39R+VRHN) /SUMRN	PKN12-10= 110	_
KVN16	VINNO -	V	* (40R+VRHN) /SUMRN	PKN12-10= 111	
KVN17	VINNO -	V	* (45R+VRHN) /SUMRN	PKN22-20= 000	
KVN18	VINNO -	٧	* (46R+VRHN) /SUMRN	PKN22-20= 001	
KVN19	VINNO -	٧	* (47R+VRHN) /SUMRN	PKN22-20= 010	
KVN20	VINNO -	٧	* (48R+VRHN) /SUMRN	PKN22-20= 011	- VININIO
KVN21	VINNO -	٧	* (49R+VRHN) /SUMRN	PKN22-20= 100	- VINN3
KVN22	VINNO -	٧	* (50R+VRHN) /SUMRN	PKN22-20= 101	
KVN23	VINNO -	٧	* (51R+VRHN) /SUMRN	PKN22-20= 110	
KVN24	VINNO -	٧	* (52R+VRHN) /SUMRN	PKN22-20= 111	
KVN25	VINNO -	٧	* (68R+VRHN) /SUMRN	PKN32-30= 000	
KVN26	VINNO -	٧	* (69R+VRHN) /SUMRN	PKN32-30= 001	
KVN27	VINNO -	V	* (70R+VRHN) /SUMRN	PKN32-30= 010	
KVN28	VINNO -	٧	* (71R+VRHN) /SUMRN	PKN32-30= 011	
KVN29	VINNO -	٧	* (72R+VRHN) /SUMRN	PKN32-30= 100	– VINN4
KVN30	VINNO -	٧	* (73R+VRHN) /SUMRN	PKN32-30= 101	
KVN31	VINNO -	٧	* (74R+VRHN) /SUMRN	PKN32-30= 110	
KVN32	VINNO -	V	* (75R+VRHN) /SUMRN	PKN32-30= 111	
KVN33	VINNO -	٧	* (80R+VRHN) /SUMRN	PKN42-40= 000	
KVN34	VINNO -	V	* (81R+VRHN) /SUMRN	PKN42-40= 001	
KVN35	VINNO-	V	* (82R+VRHN) /SUMRN	PKN42-40= 010	
KVN36	VINNO -	V	* (83R+VRHN) /SUMRN	PKN42-40= 011	– VINN5
KVN37	VINNO -	V	* (84R+VRHN) /SUMRN	PKN42-40= 100	CHININ
KVN38	VINNO -	V	* (85R+VRHN) /SUMRN	PKN42-40= 101	_
KVN39	VINNO -	V	* (86R+VRHN) /SUMRN	PKN42-40= 110	_
KVN40	VINNO -	V	* (87R+VRHN) /SUMRN	PKN42-40= 111	
KVN41	VINNO -	V	* (87R+VRHP+VRLN) /SUMRN	PKN52-50= 000	
KVN42	VINNO -	V	* (91R+VRHP+VRLN) /SUMRN	PKN52-50= 001	_
KVN43	VINNO -	V	* (95R+VRHP+VRLN) /SUMRN	PKN52-50= 010	_
KVN44	VINNO -	V	* (99R+VRHP+VRLN) /SUMRN	PKN52-50= 011	– VINN6
KVN45	VINNO -	V	* (103R+VRHP+VRLN) /SUMRN	PKN52-50= 100	VIININO
KVN46	VINNO -	V	* (107R+VRHP+VRLN) /SUMRN	PKN52-50= 101	
KVN47	VINNO -	V	* (111R+VRHP+VRLN) /SUMRN	PKN52-50= 110	
KVN48	VINNO -	V	* (115R+VRHP+VRLN) /SUMRN	PKN52-50= 111	
KVN49	VINNO -	V	* (120R+VRHP+VRLN) /SUMRN	-	VINN7
(I/CI	IN ADD*CLIN	4DAI)	//OLIMPE - OLIMPAINI/E/OLIMPE+	CLIMPNI\//CLIMPD.CLIMPNI\1.EV\	

r: {[(SUMRP*SUMRN)/(SUMRP+SUMRN)]/[(SUMRP*SUMRN)/(SUMRP+SUMRN)]+EXVR}

SUMRP : Sum of positive ladder resistors = 128R + VRHP + VRLP + VRP SUMRN : Sum of negative ladder resistors = 128R + VRHN + VRLN + VRN

V: Difference of voltage between KVO and KV49
= VDH * SUMRP * SUMRN / [SUMRP * SUMRN + EXVR * (SUMRP + SUMRN)]

Table 50 Voltage calculation formula (negative polarity) 2

Table Voltage Calculation Formula (negative polarity) 2

Grayscale voltage	Formula
V0	VINN0
V1	VINN1
V2	V3+(V1-V3)*(8/24)
V3	V8+(V1-V8)*(450/800)
V4	V8+(V3-V8)*(16/24)
V5	V8+(V3-V8)*(12/24)
V6	V8+(V3-V8)*(8/24)
V7	V8+(V3-V8)*(4/24)
V8	VINN2
V9	V20+(V8-V20)*(22/24)
V10	V20+(V8-V20)*(20/24)
V11	V20+(V8-V20)*(18/24)
V12	V20+(V8-V20)*(16/24)
V13	V20+(V8-V20)*(14/24)
V14	V20+(V8-V20)*(12/24)
V15	V20+(V8-V20)*(10/24)
V16	V20+(V8-V20)*(8/24)
V17	V20+(V8-V20)*(6/24)
V18	V20+(V8-V20)*(4/24)
V19	V20+(V8-V20)*(2/24)
V20	VINN3
V21	V43+(V20-V43)*(22/23)
V22	V43+(V20-V43)*(21/23)
V23	V43+(V20-V43)*(20/23)
V24	V43+(V20-V43)*(19/23)
V25	V43+(V20-V43)*(18/23)
V26	V43+(V20-V43)*(17/23)
V27	V43+(V20-V43)*(16/23)
V28	V43+(V20-V43)*(15/23)
V29	V43+(V20-V43)*(14/23)
V30	V43+(V20-V43)*(13/23)
V31	V43+(V20-V43)*(12/23)

Grayscale voltage	Formula
V32	V43+(V20-V43)*(11/23)
V33	V43+(V20-V43)*(10/23)
V34	V43+(V20-V43)*(9/23)
V35	V43+(V20-V43)*(8/23)
V36	V43+(V20-V43)*(7/23)
V37	V43+(V20-V43)*(6/23)
V38	V43+(V20-V43)*(5/23)
V39	V43+(V20-V43)*(4/23)
V40	V43+(V20-V43)*(3/23)
V41	V43+(V20-V43)*(2/23)
V42	V43+(V20-V43)*(1/23)
V43	VINN4
V44	V55+(V43-V55)*(22/24)
V45	V55+(V43-V55)*(20/24)
V46	V55+(V43-V55)*(18/24)
V47	V55+(V43-V55)*(16/24)
V48	V55+(V43-V55)*(14/24)
V49	V55+(V43-V55)*(12/24)
V50	V55+(V43-V55)*(10/24)
V51	V55+(V43-V55)*(8/24)
V52	V55+(V43-V55)*(6/24)
V53	V55+(V43-V55)*(4/24)
V54	V55+(V43-V55)*(2/24)
V55	VINN5
V56	V60+(V55-V60)*(20/24)
V57	V60+(V55-V60)*(16/24)
V58	V60+(V55-V60)*(12/24)
V59	V60+(V55-V60)*(8/24)
V60	V62+(V55-V62)*(350/800)
V61	V62+(V60-V62)*(16/24)
V62	VINN6
V63	VINN7

Note: The folloing relationship should be retained.

DDVDH-V0 > 0.5V

DDVDH-V8 > 1.1V

V55-GND > 1.1V

Relationship between RAM data and output level

Figure 67 Relationship between RAM Data and Output Voltage

Figure 68 Relationship between Source Output and Vcom

8-color Display Mode

The HD66772 incorporates an 8-color display mode. The grayscale level to be used is V0 and V63, and the other levels (V1-V62) are stopped. This, therefore, achieved to reduce the power consumption.

 γ -fine-adjustment registers, PKP00-PKP52 and PKN00-PKN52 are invalid in 8-color display mode. Since V1-V62 are stopped, the RGB data in the GRAM should be set to 000000 or 111111 before setting the mode so that V0 or V63 is selected.

Figure 69 Grayscale Control

Example of System Configuration

The connecting method is changed by setting of the Vcom voltage. The following diagram indicates a connection example of the HD66772 and HD667P00 when VcomL < 0V, 0V \le VcomL < 0.5V.

Figure 71 System Configuration

Example of Connection to HD66771 and HD667P00

The connecting method is changed by setting of the Vcom voltage.

The following diagram indicates a connection example of the HD66771 and HD667P00 when VcomL < 0

Note 1: Vcc (GND) input to HD66772, HD6771, and HD67P00 should be the same.

- 2: EQ pin of HD66772 should be connected to one of HD667P00. Vcom pins of HD66772 should not be connected. EQ pin of HD667P00 should be connected to ones of HD667P00. Vcom pins should not be supplied 5.5V or more.
- 3: Use 1-uF capacitors for stabilizing.
- 4: The following capacitors are not described here. Connect these capacitors according to the HD667P00 pin function. C11- to C12-, C11+ to C12+, C21- to C23-, C21+ to C23+, C31- to C41-, and C41+ $\frac{1}{2}$
- 5: Vci should be supplied an external voltage of 2.5 to 3.3V. Connect Vciout to Vci1 or supply an external voltage of 2.5 to 3.3V to Vci1. When Vci1 is connected an external voltage, Vciout should not be connected.
- 6: Connect a Schottky barrier diode (approximately VF = 0.4V/20mA and VR330V).
- 7: Use 0.1-mF capacitors for stabilizing.

The following diagram indicates a connection example of the gate driver, HD66771 and power supply IC when $0 \text{ V} \leq \text{VcomL} < 5.5 \text{V}$ and an equalizing function is used

Note 1: Vcc (GND) input to HD66772, HD6771, and HD67P00 should be the same

- 2: EQ pin of HD66772 should be connected to one of HD667P00. Vcom pins of HD66772 should not be connected. EQ pin of HD667P00 should be connected to ones of HD667P00. Vcom pins should not be supplied 5.5V or more.
- 3: Use 1-uF capacitors for stabilizing
- 4: The following capacitors are not described here. Connect these capacitors according to the HD667P00 pin function. C11- to C12-, C11+ to C12+, C21- to C23-, C21+ to C23+, C31- to C41-, and C41+ $\frac{1}{2}$
- 5: Vci should be supplied an external voltage of 2.5 to 3.3V. Connect Vciout to Vci1 or supply an external voltage of 2.5 to 3.3V to Vci1. When Vci1 is connected an external voltage, Vciout should not be connected.
- 6: Connect a Schottky barrier diode (approximately VF = 0.4V/ 20mA and VR330V).
- 7: Use 0.1-mF capacitors for stabilizing.

Figure 73 Example of Connection to HD66771 when $0 \text{ V} \leq \text{VcomL} < 5.5 \text{ V}$

Specification of capacitor connected to HD667P00

The following table indicates the specification of capacitor connected to HD667P00.

Table 62

Product	Capacity of Capacitor	Recommendation resist pressure for capacitor	Connect pins
		6V	VREG1OUT, Vciout, C41-/+*1,
			VLOUT4*1, VcomH, VcomL*1
HD667P00 HD66774 0.1uF (B Character)		10V	VLOUT1, C11-/+, C12-/+, C21-/+, C22-/+, C23-/+
	25V	VREG2OUT, VLOUT2, VLOUT3, C31/+, VgoffH*1 , VgoffL	
	0.1uF	6V	VDH, (TESTA1) *2 , (TESTA2) *2, (REGN) *2
	(B Character)	25V	(TESTA3) *2 , (TESTA4) *2
HD66772	0.1uF (B Character)	6V	V0,V1P, V1N, V2P, V2N, V4P, V4N, V59P, V59N, V61P, V61N, V62P, V62N, V63P, V63N

^{*1} According to the mode set to HD667P00, there is some cases in which capacitor is unnecessary.

^{*2} Connect a capacitor to stabilize picture. Be noticed that power consumption may rise in great amount.

Instruction Setting Flow

When the HD66771/HD667P00 are used, follow the instruction setting flow. The instruction setting for the HD66771/HD667P00 is executed by the serial interface. When the instruction for the HD66771/HD667P00 is set, the serial transfer must be executed to the HD66771/HD667P00. The transfer to the HD66771/HD667P00 must be executed immediately after the instruction set.

Follow the below serial transfer flow about each setting and then transfer must be executed.

Figure 74 Instruction Setting Flow

Note: For more information on the flow for power settings, refer to the $\rm HD667P00$ data sheet.

Figure 75 Instruction Setting Flow (standby and sleep modes)

Oscillation Circuit

The HD66772 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decrease, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section.

n-raster-row Reversed AC Drive

The HD66772 supports not only the LCD reversed AC drive in a one-frame unit but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 raster-rows. When a problem affecting display quality occurs, the n-raster-row reversed AC drive can improve the quality.

Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.

Note: In an n-raster row driving, EOR should be "1" so that DC bias voltage is not applied.

Figure 78 Example of an AC Signal under n-raster-row Reversed AC Drive

Interlaced Driving

The HD66772 supports the interlaced driving to avoid flicker. One frame is divided into n-field to drive.

Determine the number of fields after confirmation of the display quality with the actual LCD panel. The gate selection where the number of fields is 1 or 3 are shown in table, the output waveform when 3-field interlaced driving is performed is shown in figure.

Table 63	FLD and filed			
GS = 0				
FLD1-0	01		11	
Field		1	2	3
Gate				

01		11	
ld	1	2	3
_			
0	О		
О		О	
О			О
О	О		
О		О	
О			О
О	О		
О		О	
О			O
:	:	:	:
О	О		
0		О	
0			O
О	О		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GS = 1				
FLD1-0	01		11	
Fie	ld	1	2	3
Gate	_			
G228	О	O		
G227	О		О	
G226	О			O
G225	О	О		
G224	О		O	
G223	О			O
G222	О	O		
G221	О		О	
G220	О			О
•		:	:	:
G56	О	О		
G55	О		О	
G54	0			О
G53	О	О		

Figure 79 Output Timing for Interlaced Gate Signals when Three-Field is Selected

AC Drive Timing

The following diagram indicates the timing of changing polarity on the each A/C drive method. LCD drive polarity is changed after every frame. After the A/C this timing, the blank (all outputs from the gate: Vgoff output) in a 16H period is inserted. Also, LCD drive polarity is change after every field when it is on the interlace drive and blank is inserted in every timing. The amount of blanking periods becomes 16H in a frame. When the reversed n-raster-row is driving, a blank period of the 16H period is inserted after all screens are drawn.

Note: The settings for the front and back porch should be the number of fields or more when the interlaced drive is in use.

Figure 80 AC Drive Timing

Frame-Frequency Adjustment Function

The HD66772 has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the instruction setting (DIV, RTN) during the LCD drive as the oscillation frequency is always same.

If the oscillation frequency is set to high, an animation or a static image can be displayed in suitable ways by changing the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power consumption mode can be entered. When high-speed screen switching, for an animated display, etc. is required, the frame frequency can be set high.

Relationship between LCD Drive Duty and Frame Frequency

The relationship between the LCD drive duty and the frame frequency is calculated by the following expression. The frame frequency can be adjusted in the 1-H period bit (RTN) and in the operation clock division bit (DIV) by the instruction.

(Formula for the frame frequency)				
	fosc			
Frame frequency =		[Hz]		
Clock cycles per raster-row \times division ratio \times (Line + 8)				
	fosc: R-C oscillation frequency			
	Line: number of drive raster-rows (NL bit)			
	Clock cycles per raster-row: RTN bit			
	Division ratio: DIV bit			

Example Calculation In the case of the maximum frame frequency = 60 Hz

Number of drive raster-rows: 240

1-H period: 16 clock cycles (RTN3-0 = 0000)

Operation clock division ratio: 1 division

 $fosc = 60 \text{ Hz} \times (0 + 16) \text{ clock} \times 1 \text{ division} \times (240 + 16) \text{ lines} = 246 \text{ (kHz)}$

In this case, the R-C oscillation frequency becomes 246 kHz. The external resistance value of the R-C oscillator must be adjusted to be 246 kHz. The display duty can be changed by the partial display, etc. and the frame frequency can be the same by setting the RNT bit and DIV bit to achieve the following.

Screen-division Driving Function

The HD66772 can select and drive two screens at any position with the screen-driving position registers (R42 and R43). Any two screens required for display are selectively driven, thus reducing power consumption.

For the 1st division screen, start line (SS17-10) and end line (SE17-10) are specified by the 1st screen-driving position register (R42). For the 2nd division screen, start line (SS27-20) and end line (SE27-20) are specified by the 2nd screen driving position register (R43). The 2nd screen control is effective when the SPT bit is 1. The total count of selection-driving lines for the 1st and 2nd screens must be the number of LCD drive raster-rows or less.

Figure 81 Example of Screen-Division

Restrictions on the 1st/2nd Screen Driving Position Register Settings

The following restrictions must be satisfied when setting the start line (SS17-10) and end line (SE17-10) of the 1st screen driving position register (R42) and the start line (SS27-20) and end line (SE27-20) of the 2nd screen driving position register (R43) for the HD66772. Note that incorrect display may occur if the restrictions are not satisfied.

Table 64 Restrictions on the One Screen Driving (STP = 0)

Register Settings	Display Operation
(SE17-10) - (SS17-10) = NL	Whole screen display The area of (SE17-10) - (SS17-10) is normally displayed.
(SE17-10) - (SS17-10) < NL	Partial screen display The area of (SE17-10) - (SS17-10) is normally displayed. In all other display area refers to the output level based on the PT setting (non-display).
(SE17-10) - (SS17-10) > NL	Setting disabled

Notes: 1. $SS17-10 \le SE17-0 \le "EF"H$

2. The SS27-20 and SE27-20 settings are ignored.

Table 65 Restrictions on the Two Screen Driving (STP = 1)

Register Settings	Display Operation
((SE17-10) - (SS17-10)) + ((SE27-20) - (SS27-20)) = NL	Whole screen display The area of (SE27-20) - (SS17-10) is normally displayed.
((SE17-10) - (SS17-10)) + ((SE27-20) - (S27-20)) < NL	Partial screen display The area of (SE27-10) - (SS17-10) is normally displayed. In all other display area refers to the output level based on the PT setting (non-display).
((SE17-10) - (SS17-10)) + ((SE27-20) - (SS27-20)) > NL	Setting disabled

Notes: 1. $SS17-10 \le SE17-10 < SS27-20 \le SE27-20 \le EFH$

2. The ((SE27-20) - (SS17-10)) setting should be NL or less.

The driver output can be set for non-display area during the partial display. Determine based on characteristic of the display panels.

Table 66 Source and gate outputs for non-display area

		Source Output for N	lon-Display Area	Gate Output for Non-Display Area
PT1	PT0	Positive Polarity	Negative Polarity	Gate Driver Used
0	0	V63	V0	Normal Operation
0	1	V63	V0	Vgoff
1	0	GND	GND	Vgoff
1	1	High-Z	High-Z	Vgoff

Setting of the partial display should follow the flow shown below.

Figure 82 Setting of Partial Display

Absolute Maximum Ratings

Table 67

Item	Symbol	Unit	Value	Notes*
Power supply voltage (1)	Vcc	V	-0.3 to + 4.6	1, 2
Power supply voltage (2)	Vcil	V	-0.3 to + 6.0	1, 3
Input voltage	Vt	V	-0.3 to Vcc + 0.3	1
Operating temperature	Topr	°C	-40 to + 85	1, 4
Storage temperature	Tstg	°C	-55 to + 110	1, 5

Note 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged.

Using the LSI within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

Note 2. $Vcc \ge GND$ must be maintained

Note 3. DDVDH \geq GND must be maintained.

Note 4.For die and wafer products, specified up to 85 °C.

Note 5. This temperature specifications apply to the TCP package.

DC Characteristics

Table 68 (V_{CC} = 1.8 to 3.7 V, Ta = -40 to $+85^{\circ}C^{*1}$)

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V_{IH}	V	$V_{CC} = 1.8 \text{ to } 3.7 \text{ V}$	0.7 V _{CC}	_	V _{CC}	2, 3
Input low voltage (1) (OSC1 pin)	V _{IL} 1	V	$V_{CC} = 1.8 \text{ to } 3.7 \text{ V}$	-0.3	_	0.15V _{CC}	2, 3
Input low voltage (2)	V _{IL} 2	V	Vcc=1.8V to 2.4V	-0.3	_	0.15Vcc	2,3
(Except OSC1 pin)			Vcc=2.4V to 3.7V	-0.3	_	0.2Vcc	2,3
Output high voltage (1) (DB0-17 pins)	V_{OH1}	V	$I_{OH} = -0.1 \text{ mA}$	0.75V _{CC}	_	_	2
Output low voltage (1) (DB0-17 pins)	V _{OL1}	V	$V_{CC} = 1.8 \text{ to } 2.4 \text{ V},$ $I_{OL} = 0.1 \text{ mA}$	_	_	0.2 V _{CC}	
			$VCC = 2.4 \text{ to } 3.7 \text{ V},$ $I_{OL} = 0.1 \text{ mA}$	_	_	$0.15V_{CC}$	2
I/O leakage current	I_{Li}	μΑ	$Vin = 0$ to V_{CC}	-1	_	1	4
Current consumption during normal operation	I_{OP}	μΑ	R-C oscillation; fosc = 250kHz (240line)	_	190	300	5,6
$(V_{CC} - GND)$			$V_{CC} = 3.0 \text{ V},$				
			Ta = 25°C, RAM data 0000h				
Current consumption during standby mode	I_{ST}	μA	Vcc = 3V, Ta<=50°C	_	0.1	5	
(V _{CC} – GND)			Vcc = 3V, Ta>50°C	_	_	20	5
LCD Power Current (DDVDH-GND)	I_{LCD}	μΑ	Vcc=3V, VLCD=5.5V, VDH=5.0V, CR Oscillation; fosc=250kHz(240line), Ta=25°C, RAMdata:0000h, REV="0", SAP="001", VRN4-0="0", PKP52- 00="0", PRP12-00="0", VRN4-0=VRP4-0="0"	_	500	650	5,6
			PKP52-00="0", PRP12- 00="0"				
LCD Driving Voltage (DDVDH-GND)	V_{LCD}	V	_	4.5	_	5.5	_
Output Voltage deviation	∠Vo	mV	_	_	5	_	7
Variation of average output voltage	∠V∠	mV	_	_	_	35	8

AC Characteristics

 $(V_{CC}$ = 1.7 to 3.7 V, Ta = –40 to +85°C* $^1\!\!\!/$

Table 69 Clock Characteristics (V_{CC} = 1.8 to 3.7 V)

Item	Symbol	Unit	Test Condition	Min	Typ	Max	Notes
External clock frequency	fcp	kHz	$V_{CC} = 1.8 \text{ to } 3.3 \text{ V}$	100	270	600	9
External clock duty ratio	Duty	%	$V_{CC} = 1.8 \text{ to } 3.3 \text{ V}$	45	50	55	9
External clock rise time	trcp	μs	$V_{CC} = 1.8 \text{ to } 3.3 \text{ V}$	_	_	0.2	9
External clock fall time	tfcp	μs	$V_{CC} = 1.8 \text{ to } 3.3 \text{ V}$	_	_	0.2	9
R-C oscillation clock	f_{OSC}	kHz	$Rf = TBD V_{CC} = 3 V$	244	305	366	10

${\bf 80\text{-}system\ Bus\ Interface\ Timing\ Characteristics}$

Table 70 Normal Write Mode (HWM=0) (Vcc = 1.8 to 2.4 V)

	Item	Symbol	Unit	Timing diagram	Min	Typ	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 88	600	_	
Bus cycle time	Read	t _{CYCR}	ns	Figure 88	800	_	
Write low-level p	ulse width	PW_{LW}	ns	Figure 88	90		
Read low-level pu	ılse width	PW_{LR}	ns	Figure 88	350		
Write high-level p	oulse width	PW_{HW}	ns	Figure 88	300		
Read high-level p	ulse width	PW_{HR}	ns	Figure 88	400	_	
Write/Read rise/fa	all time	t _{WRr, WRf}	ns	Figure 88	_	_	25
Setup time	Write (RS to CS*,WR*)		200	Figure 88	0	_	
	Read (RS to CS*, RD*)	t_{AS}	ns	rigule oo	10	_	
Address hold time	2	t_{AH}	ns	Figure 88	5	_	
VLD setup time		t_{VS}	ns	Figure 88	60	_	
VLD hold time		t_{VH}	ns	Figure 88	15	_	
Write data set up	time	t_{DSW}	ns	Figure 88	60	_	
Write data hold ti	me	t _H	ns	Figure 88	15	_	
Read data delay ti	ime	t_{DDR}	ns	Figure 88	_	_	200
Read data hold tir	ne	t _{DHR}	ns	Figure 88	5	_	

Table 71 High-Speed Write Mode (HWM=1) (Vcc = 1.8 to 2.4 V)

	Item	Symbol	Unit	Timing diagram	Min	Typ	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 88	200	_	
	Read	t_{CYCR}	ns	Figure 88	800	_	
Write low-level pu	ılse width	PW_{LW}	ns	Figure 88	90	_	
Read low-level pu	lse width	PW_{LR}	ns	Figure 88	350	_	_
Write high-level p	ulse width	PW_{HW}	ns	Figure 88	90	_	_
Read high-level pu	ılse width	PW_{HR}	ns	Figure 88	400	_	_
Write/Read rise/fa	ll time	t _{WRr, WRf}	ns	Figure 88	_	_	25
Set up time	Write (RS to CS*, WR*)	4	***	Figure 88	0	_	_
	Read (RS to CS*, RD*)	- t _{AS}	ns	rigule oo	10	_	
Address hold time		t_{AH}	ns	Figure 88	5	_	
VLD setup time		t_{VS}	ns	Figure 88	60	_	
VLD hold time		t_{VH}	ns	Figure 88	15	_	
Write data set up t	ime	t_{DSW}	ns	Figure 88	60	_	
Write data hold tir	ne	t _H	ns	Figure 88	15	_	
Read data delay ti	me	t _{DDR}	ns	Figure 88	_	_	200
Read data hold tin	ne	t _{DHR}	ns	Figure 88	5	_	

Table 72 Normal Write Mode (HWM=0) (Vcc = 2.4 to 3.7 V)

	Item	Symbol	Unit	Timing diagram	Min	Typ	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 88	250	_	
Bus cycle time	Read	t_{CYCR}	ns	Figure 88	500	_	
Write low-level	pulse width	PW_{LW}	ns	Figure 88	40	_	
Read low-level	pulse width	PW_{LR}	ns	Figure 88	250	_	_
Write high-leve	l pulse width	PW_{HW}	ns	Figure 88	70	_	_
Read high-level	pulse width	PW_{HR}	ns	Figure 88	200	_	_
Write/Read rise	/fall time	t _{WRr, WRf}	ns	Figure 88	_	_	25
Sat un tima	Write (RS to CS*, WR*)	4	ns	Figure 88	0	_	
Set up time	Read (RS to CS*, WR*)	- t _{AS}	118	Figure 66	10	_	_
Address hold tir	ne	t_{AH}	ns	Figure 88	2	_	
VLD set up time	e	t _{VS}	ns	Figure 88	25	_	
VLD hold time		$t_{ m VH}$	ns	Figure 88	2	_	
Write data setup	time	t_{DSW}	ns	Figure 88	25	_	
Write data hold	time	$t_{\rm H}$	ns	Figure 88	2	_	_
Read data delay	time	t_{DDR}	ns	Figure 88	_	_	200
Read data hold	time	t_{DHR}	ns	Figure 88	5	_	

Table 73 High-Speed Write Mode (HWM=1) (Vcc = 2.4 to 3.7 V)

	Item	Symbol	Unit	Timing diagram	Min	Typ	Max
Bus cycle time	Write	t_{CYCW}	ns	Figure 88	100	_	_
Bus cycle time	Read	t _{CYCR}	118	rigure 66	500	_	_
Write low-level p	ulse width	PW_{Lw}	ns	Figure 88	40	_	_
Read low-level pr	alse width	PW_{LR}	ns	Figure 88	250	_	_
Write high -level	pulse width	PW_{HW}	ns	Figure 88	40	_	_
Read high -level 1	pulse width	PW_{HR}	ns	Figure 88	200	_	_
Write/Read rise/fa	all time	t _{WRr, WRf}	ns	Figure 88	_	_	_
Sat un tima	Write (RS to CS*, WR*)	4	***	Eigura 99	0	_	25
Set up time	Read (RS to CS*, RD*)	- t _{WRr} , _{WRf}	ns	Figure 88	10		_
Address hold time	e	t_{AH}	ns	Figure 88	2	_	_
VLD set-up time		t _{VS}	ns	Figure 88	25	_	_
VLD hold time		t_{VH}	ns	Figure 88	2	_	_
Write data set up	time	t_{DSW}	ns	Figure 88	25	_	_
Write data hold ti	me	t_{H}	ns	Figure 88	2	_	_
Read data delay t	ime	$t_{\rm DDR}$	ns	Figure 88	_	_	200
Read data hold tin	ne	$t_{\rm DHR}$	ns	Figure 88	5	_	_

Clock Synchronized Serial Interface Timing Characteristics

Table 74 (Vcc = 1.8 to 2.4 V)

Item		Symbol	Unit	Timing diagram	Min	Typ	Max
Sovial aloak avala tima	Write (received)	t_{SCYC}	us	Figure 89	0.1	_	20
Serial clock cycle time	Read (transmitted)	t_{SCYC}	us	Figure 89	0.5	_	20
Social clock high layed pulse width	Write (received)	t_{SCH}	ns	Figure 89	40	_	
Serial clock high-level pulse width	Read (transmitted)	t_{SCH}	ns	Figure 89	230	_	
0 1 1 1 1 1 1 1 1 1 1	Write (received)	t_{SCL}	ns	Figure 89	40	_	
Serial clock low-level pulse width	Read (transmitted)	t_{SCL}	ns	Figure 89	230	_	
Serial clock rise/fall tim	ne	t _{scr, tscf}	ns	Figure 89	_	_	20
Chip select set up time	•	t_{CSU}	ns	Figure 89	20	_	
Chip select hold time		t_{CH}	ns	Figure 89	60	_	
Serial input data set up ti	me	t_{SISU}	ns	Figure 89	30		
Serial input data hold tir	ne	t_{SIH}	ns	Figure 89	30	_	
Serial input data delay ti	me	t_{SOD}	ns	Figure 89			200
Serial input data hold tir	ne	t _{SOH}	ns	Figure 89	5		

HD66772

Table 75 (Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max
	Write	t_{SCYC}	us	Figure 89	0.1	_	20
Serial clock cycle time	(received)						
Serial clock cycle time	Read	t_{SCYC}	us	Figure 89	0.35	_	20
	(transmitted)						
	Write	t_{SCH}	ns	Figure 89	40	_	_
Serial clock high-level pulse width	(received)						
Serial clock high-level pulse width	Read	t_{SCH}	ns	Figure 89	150	_	
	(transmitted)						
	Write	t_{SCL}	ns	Figure 89	40	_	_
Sarial aloak love lavel pulse width	(received)						
Serial clock low-level pulse width	Read	t_{SCL}	ns	Figure 89	150	_	_
	(transmitted)						
Serial clock rise/fall time		$t_{scr, scf}$	ns	Figure 89	_	_	20
Chip select set up time		t_{CSU}	ns	Figure 89	20	_	
Chip select hold time		t_{CH}	ns	Figure 89	60	_	
Serial input data set up time		t_{SISU}	ns	Figure 89	30	_	_
Serial input data hold time		t_{SIH}	ns	Figure 89	30	_	
Serial output data delay time		t_{SOD}	ns	Figure 89	_		130
Serial output data hold time		t_{SOH}	ns	Figure 89	5	_	

Table 76 Reset Timing Characteristics (V $_{CC}$ = 1.8 to 3.7 V)

Item	Symbol	Unit	Timing	Min	Typ	Max
			diagram			
Reset low-level width	t_{RES}	ms	Figure 90	1	_	_
Reset rise time	t_{rRES}	us	Figure 90	_	_	10

RGB interface timing characteristics

Table 77 <<18/16 bit RGB interface (HWM =1), Vcc = 1.8V to 2.4V>>

Item	Symbol	Unit	Timing diagram	min.	typ.	max.
VSYNC/HSYNC Set up time	tSYNCS	clock	Figure 91	0	_	1
ENABLE Set up time	tENS	ns	Figure 91	20	_	_
ENABLE Hold time	tENH	ns	Figure 91	80	_	_
VLD Set up time	tVLS	ns	Figure 91	20	_	_
VLD Hold time	tVLH	ns	Figure 91	80	_	_
DOTCLK "Low" Level pulse width	PWDL	ns	Figure 91	90	_	_
DOTCLK "High" Level pulse width	PWDH	ns	Figure 91	90	_	_
DOTCLK cycle time	tCYCD	ns	Figure 91	200	_	_
Data Set up time	tPDS	ns	Figure 91	20	_	_
Data Hole time	tPDH	ns	Figure 91	80	_	_
DOTCLK, VSYNC, HSYNC rising and falling time	trgbr, trgbf	ns	Figure 91	_	_	25

Table 78 <<18/16 bit RGB interface (HWM = 1), Vcc = 2.4V to 3.7 V>>

Item	Symbol	Unit	Timing diagram	min.	typ.	max.
VSYNC/HSYNC Set up time	tSYNCS	clock	Figure 91	0	_	1
ENABLE Set up time	tENS	ns	Figure 91	10	_	_
ENABLE Hold time	tENH	ns	Figure 91	20	_	_
VLD Set up time	tVLS	ns	Figure 91	10	_	_
VLD Hold time	tVLH	ns	Figure 91	40	_	_
DOTCLK "Low" Level pulse width	PWDL	ns	Figure 91	40	_	_
DOTCLK "High" Level pulse width	PWDH	ns	Figure 91	40	_	_
DOTCLK cycle time	tCYCD	ns	Figure 91	100	_	_
Data Set up time	tPDS	ns	Figure 91	10	_	_
Data Hole time	tPDH	ns	Figure 91	40	_	_
DOTCLK, VSYNC, HSYNC rising and falling time	trgbr, trgbf	ns	Figure 91	_	_	25

Table 79 <<6 bit RGB interface (HWM = 1), Vcc = 1.8V to 2.4 V>>

Item	Symbol	Unit	Timing diagram	min.	typ.	max.
VSYNC/HSYNC Set up time	tSYNCS	clock	Figure 91	0		1
ENABLE Set up time	tENS	ns	Figure 91	20		1
ENABLE Hold time	tENH	ns	Figure 91	50		1
VLD Set up time	tVLS	ns	Figure 91	20		
VLD Hold time	tVLH	ns	Figure 91	65		
DOTCLK "Low" Level pulse width	PWDL	ns	Figure 91	50		
DOTCLK "High" Level pulse width	PWDH	ns	Figure 91	50		1
DOTCLK cycle time	tCYCD	ns	Figure 91	120		1
Data Set up time	tPDS	ns	Figure 91	20		
Data Hold time	tPDH	ns	Figure 91	65		
DOTCLK, VSYNC, HSYNC rising and falling time	trgbr, trgbf	ns	Figure 91	_		25

Table 80 <<6 bit RGB interface (HWM = 1), Vcc = 2.4V to 3.3 V>>

Item		Symbol	Unit	Timing diagram	min.	typ.	max.
VSYNC/HSY	NC Set up time	tSYNCS	clock	Figure 91	0	_	1
ENABLE	Set up time	tENS	ns	Figure 91	10	_	_
ENABLE	Hold time	tENH	ns	Figure 91	20	_	_
VLD Se	t up time	tVLS	ns	Figure 91	10	_	_
VLD Hold time	Vcc=2,4 to2,7V	tVLH	ns	Figure 91	40	_	_
VLD Hold tille	Vcc=2,7 to 3,7V	tVLH	ns	Figure 91	30	_	_
DOTCLK "Low"	DOTCLK "Low" Level pulse width		ns	Figure 91	30	_	_
DOTCLK "High"	Level pulse width	PWDH	ns	Figure 91	30	_	_
DOTCLK	cycle time	tCYCD	ns	Figure 91	70	_	_
Data Se	t up time	tPDS	ns	Figure 91	10	_	_
Data Hole time	Vcc=2,4 to 2,7V	tPDH	ns	Figure 91	40	_	_
Data Hole tille	Vcc=2,7 to 3,7V	tPDH	ns	Figure 91	30		_
	DOTCLK, VSYNC, HSYNC rising and falling time		ns	Figure 91	_	_	25

HD66772

Table 81 LCD driver output

Item	Sign	Unit	Condition for measure	min.	typ.	max.	Note
			Vcc=3V, VLCD=5.5V, VDH=5.0V,				
Delay time of driver output	tdd	μs	CR oscillation ;fosc=270kHz(240 lines),	_	40	_	(11)
			Ta=25 、REV="0", SAP="001",				
			VRN4-0="0",VRP4-0="0"				

Electrical Characteristics Notes

- 1. For bare die and wafer products, specified up to 85°C.
- 2. The following three circuits are I pin, I/O pin, O pin configurations.

Pins: DB15 -DB2, DB1/SD0. DB0/SD1

Figure 83 I/O Pin Configuration

- 3. The TEST pin must be grounded and the IM2/1 and IM0/ID pins must be grounded or connected to Vcc.
- 4. Applies to the resistor value (RSEG) between VSH, GND pins and segment signal pins.
- 5. This excludes the current flowing through output drive MOSs.
- 6. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change.
- 7. The following shows the relationship between the operation frequency (fosc) and current consumption (Icc) (figure).

Figure 84 Relationship between the Operation Frequency and Current Consumption

- 8. Each SEG output voltage is within ± 0.15 V of the LCD voltage (VSH, GND) when there is no load.
- 9. Applies to the external clock input (figure).

Figure 85 External Clock Supply

10. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).

Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Figure 86 Internal Oscillation

Table 82 External Resistance Value and R-C Oscillation Frequency (Referential Data)

External Resistance	R-C Oscillation Frequency: fosc					
(Rf)	Vcc = 1.8 V	Vcc = 2 V	Vcc = 2.4 V	Vcc = 3 V	Vcc = 3.3 V	
110 kΩ	299	333	372	401	411	
150 kΩ	234	258	284	305	311	
180 kΩ	202	222	243	258	263	
200 kΩ	186	203	222	235	240	
240 kΩ	160	173	188	198	202	
270 kΩ	145	157	169	177	181	
300 kΩ	132	143	153	161	163	
390 kΩ	106	113	121	126	128	
430 kΩ	97	104	110	115	116	

11. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).

Vcc =3V, VLCD = 5.5V, VDH = 5.0V, CR Oscillation; fosc = 270kHz (240line), Ta = 25°C, REV = "0", SAP = "001", VRN4-0 = "0", VRP4-0 = "0", PKP52-00 = "0", PRP12-00 = "0", All pins chage at the same time from same grayscale. The time till output level reaches ± 35v when VCOM polarity changes. Load resistance R = 10k/pin

AC characteristic measuring load circuit

LCD driver output characteristic measuring load circuit

LCD output: S1-S528

Data bus: DB17-DB0, PD17-0

Test Point O $\frac{W}{Lord}$ Lord $\frac{1}{E}$ Lord $\frac{1}{E}$ Ci_{20p}Fy C

Figure 87 Test circuit

80-system Bus Operation

Note 1) PWLW and PWLR is specified in the overlapped period when CS* is low and WR* or RD* is low. Note 2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND.

Figure 88 80-system Interface Timing

Clock Synchronized Serial Interface Operation

Figure 89 Clock Synchronized Serial Interface Timing

Reset operation

Figure 90 Reset Timing

RGB I/F Operation

Figure 91 RGB I/F Timing

LCD driver output

Figure 92 LCD output Timing

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

- contact Renesas Technology Corporation or an authorized Renesas Technology Corporation of scribed here may contain technical inaccuracies or typographical errors.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

HD66772

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
1.1-3	2003.10.14	First issue		