Array n-dimensionali Matrici e cenni di Algebra lineare

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Array multidimensionali

- Un array a 2 dimensioni n x m di tipo T, è un array di n array, ciascuno di m elementi di tipo T. Gli array bidimensionali vengono comunemente detti matrici, e sono utilizzatissimi nel calcolo scientifico
- Un array a 3 dimensioni n x m x p di tipo T, è un array di n elementi, ciascuno dei quali è un array bidimensionale m x p, ossia un array di m elementi, ciascuno dei quali è un array di p elementi di tipo T. Lo si può visualizzare come un parallelepipedo rettangolo di n strati. Ciascuno strato è una matrice m x p
- Un array a 4 dimensioni è...

Array multidimensionali

int matr[3][4];

array bidimensionale 3 x 4 di int: è un array di 3 array, ciascuno dei quali di 4 int. La memoria non è inizializzata

double $m[][3] = \{\{1, 2.12, 3\}, \{0.5, 0.1, 1\}\};$

array bidimensionale 2 x 3 di double, inizializzato. Il compilatore deduce la prima dimensione dall'inizializzatore. Infatti, tra le graffe ci sono 2 array. <u>La dimensione interna va specificata obbligatoriamente</u>

Algebra lineare - definizioni

- Una matrice quadrata è detta matrice identità se la diagonale principale è composta da tutti 1, e in tutte le altre posizioni si hanno solo 0
- Data la matrice A di dimensioni n x m, la sua trasposta A_T è una matrice A_T di dimensioni m x n tale che per ogni coppia (i, j) si ha A_T[i][j] == A[j][i]
- Prodotto scalare: il prodotto scalare tra due vettori v e w si esprime come:

$$\sum_{i=0}^{n-1} v_i w_i$$

dove v_i e w_i sono le componenti i-esime rispettivamente di v e di w

calcoliamo $v \cdot w$ utilizzando la definizione data sopra

 $5 \cdot 8 +$

$$5 \cdot 8 + 6 \cdot 7$$

W				
8				
7				
9				
1				

$$5 \cdot 8 + 6 \cdot 7 + 1 \cdot 9$$

$$5 \cdot 8 + 6 \cdot 7 + 1 \cdot 9 + 2 \cdot 1 = 93$$

A (3	3 x 4)
------	--------

6	5	4	4
8	2	1	3
6	5	3	1

$B(4 \times 5)$

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

$C(3 \times 5)$

- C[i, j] assume come valore il prodotto scalare tra la riga i di A e la colonna j di B
- il numero di colonne di A deve essere uguale al numero di righe di B
- dimensioni di C: num. di righe di A x num. colonne di B

A (3 x 4)

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128		

A (3 x 4)

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

		 •	
128	124		

A (3 x 4)

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

 $C(3 \times 5)$

128	124	68	

A (3 x 4)

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

 $C(3 \times 5)$

128	124	68	74	

A (3 x 4)

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69

A (3	x 4)
------	------

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100				

A (3)	x 4)
-------	------

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77			

$A(3 \times 4)$	A	(3	X	4)
-----------------	---	-----------	---	----

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39		

A (3)	x 4)
-------	------

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	

A (3)	x 4)
-------	------

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	49

A (3	X	4)
------	---	----

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	49
96				

A (3	X	4)
------	---	----

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	49
96	95			

A (3	X	4)
------	---	----

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	49
96	95	41		

A (3	X	4)
------	---	----

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	49
96	95	41	65	

A (3	X	4)
------	---	----

6	5	4	4
8	2	1	3
6	5	3	1

B (4 x 5)

7	4	1	4	3
6	8	2	6	3
5	8	6	3	4
9	7	7	2	5

C (3 x 5)

128	124	68	74	69
100	77	39	53	49
96	95	41	65	50

Eliminazione gaussiana

- L'eliminazione gaussiana è un algoritmo molto importante per la risoluzione di sistemi lineari
- Studiare l'algoritmo <u>qui</u> e pensare ad una possibile implementazione