This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- (BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C12N 15/52, 9/10, 15/31, 5/10, 15/82, C12P 19/18

(11) Internationale Veröffentlichungsnummer:

WO 00/14246

A1

(43) Internationales Veröffentlichungsdatum:

16. März 2000 (16.03.00)

(21) Internationales Aktenzeichen:

PCT/EP99/06319

(22) Internationales Anmeldedatum: 27. August 1999 (27.08.99)

(30) Prioritätsdaten:

198 40 028.4

2. September 1998 (02.09.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V. [DE/DE]; Berlin (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HEYER, Amd, G. [DE/DE]; Kottesteig 10, D-12169 Berlin (DE). REHM, Jochen [DE/DE]; Hollander Strasse 58, D-13407 Berlin (DE). WENDENBURG, Regina [DE/DE]; Zittauer Strasse 116, D-12355 Berlin (DE).

(74) Anwalt: VOSSIUS & PARTNER; Postfach 86 07 67, D-81634 München (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PF, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: NUCLEIC ACID MOLECULES WHICH CODE FOR ENZYMES WITH FRUCTOSYLTRANSFERASE ACTIVITY AND USE THEREOF

(54) Bezeichnung: NUCLEINSÄUREMOLEKÜLE CODIEREND ENZYME, DIE FRUCTOSYLTRANSFERASEAKTIVITÄT
BESITZEN UND DEREN VERWENDUNG

(57) Abstract

The invention relates to nucleic acid molecules which code for polypeptides with the enzymatic activity of a fructosyltransferase. The invention also relates to vectors, host cells and transgenic plants containing nucleic acid molecules of this type and to methods for producing polyfructose, especially of the inulin type, using the hosts described and/or the fructosyltransferase that they produce.

(57) Zusammenfassung

Es werden Nucleinsäuremoleküle beschrieben, die Polypeptide mit der enzymatischen Aktivität einer Fructosyltransferase codieren. Weiterhin werden Vektoren, Wirtszellen und transgene Pflanzen beschrieben, die derartige Nucleinsäuremoleküle enthalten. Ferner werden Verfahren zur Herstellung von Polyfructose, insbesondere des Inulintyps, unter Verwendung der beschriebenen Wirte und/oder der von ihnen produzierten Fructosyltransferase beschrieben.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
ВЈ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Nucleinsäuremoleküle codierend Enzyme, die Fructosyltransferaseaktivität besitzen, und deren Verwendung

Beschreibung

Die vorliegende Erfindung betrifft Nucleinsäuremoleküle, die Polypeptide mit der enzymatischen Aktivität einer Fructosyltransferase codieren. Weiterhin betrifft diese Erfindung Vektoren und Wirte, die derartige Nucleinsäuremoleküle enthalten. Die vorliegende Erfindung betrifft ebenfalls Verfahren zur Herstellung von Fructosyltransferase und die Produktion von Polyfructosen des Inulintyps in verschiedenen Wirtsorganismen oder *in vitro*, sowie die von den beschriebenen Nucleinsäuremolekülen codierte Fructosyltransferase, mit deren Hilfe Polyfructosen des Inulintyps erzeugt werden kann.

Wasserlösliche, lineare Polymere besitzen vielfältige Anwendungen, beispielsweise zur Viskositätserhöhung von wäßrigen Systemen, als Detergenzien, als suspendierendes Agens oder zur Sedimentationsbeschleunigung und Komplexierung, aber auch zur Wasserbindung. Polymere auf der Basis von Sacchariden, beispielsweise Fructosylpolysacchariden, sind besonders interessante Rohstoffe, da sie biologisch abbaubar sind.

Neben einem Einsatz als nachwachsende Rohstoffe für industrielle Fertigung und Verarbeitung sind Fructosylpolymere aber auch als Lebensmittelzusatzstoffe, beispielsweise als Süßstoffe interessant. Für die verschiedenen Anwendungen werden Polymere unterschiedlicher Kettenlängen benötigt. Während für den Lebensmittelbereich vorzugsweise kurz- und mittelkettige Polymere erwünscht sind, verlangen technische Anwendungen, beispielsweise die Herstellung von Tensiden, Polymere mit hohem Polymerisationsgrad (DP; "Degree of Polymerisation").

Bisher sind verschiedene Verfahren zur Produktion von Fructanpolysacchariden in Pflanzen durch Expression von Fructosyltransferasen bakteriellen Ursprungs oder zur Produktion von Polyfructosen mittlerer Kettenlänge durch Expression von Fructosyltransferasen pflanzlichen Ursprungs beschrieben worden. So wird in PCT/US89/02729 die Möglichkeit der Erzeugung von Kohlenhydratpolymeren, insbesondere Dextran oder Polyfructose, in transgenen Pflanzen, und zwar speziell den Früchten transgener Pflanzen, beschrieben. Zur Erzeugung solcherart die wird Verwendung von Levansucrasen aus veränderter Pflanzen Mikroorganismen, insbesondere aus Aerobacter levanicum, Streptococcus salivarius und Bacillus subtilis, oder von Dextransucrasen aus Leuconostoc mesenteroides vorgeschlagen. Weder die Bildung der aktiven Enzyme, noch die von Levan oder Dextran sowie die Herstellung transgener Pflanzen wird beschrieben.

Die PCT/EP93/02110 offenbart ein Verfahren zur Herstellung transgener Pflanzen, die das <u>Isc</u> Gen der Levansucrase aus dem gram-negativen Bakterium *Erwinia amylovora* exprimieren. Die Pflanzen produzieren ein hochmolekulares, stark verzweigtes Levan.

In PCT/NL93/00279 wird die Transformation von Pflanzen mit chimären Genen beschrieben, die das <u>sacB</u> Gen aus *Bacillus subtilis* enthalten. Derartige Pflanzen produzieren ein verzweigtes Levan.

Die in der PCT/US89/02729, PCT/EP93/02110 und der PCT/NL93/00279 verwendeten bakteriellen Fructosyltransferasen synthetisieren Levan, ein β-2,6-verknüpftes Fructosylpolymer, das zahlreiche β-2,1-Verzweigungen aufweist. Levan birgt aber wegen der zahlreichen Verzweigungen entscheidende Nachteile für die technische Verarbeitung und ist daher als technischer Rohstoff weitaus weniger gefragt als Inulin, bei dem β-2,1-Verknüpfungen vorliegen. Derzeit ist nur ein bakterielles Gen bekannt, dessen Genprodukt an der Synthese von Inulin beteiligt ist. Hierbei handelt es sich um das ftf Gen aus Streptococcus mutans. Die PCT/NL93/00279 beschreibt die Transformation von Pflanzen mit diesem Gen, die zwar hochmolekulares Inulin synthetisieren, jedoch in so geringer Ausbeute, daß eine wirtschaftliche Nutzung nicht in Betracht kommt. Auch die PCT/EP97/02195 beschreibt ein Verfahren zur Herstellung von transgenen, Inulin erzeugenden Pflanzen mit Hilfe des ftf Gens aus Streptococcus mutans. Ebenso wie bei den in

der PCT/NL93/00279 beschriebenen Pflanzen ist jedoch die Ausbeute an hochmolekularem Inulin gering. Eine Expression des Gens in Pflanzen ist daher zwar möglich, wenn das Gen zuvor gentechnisch bearbeitet wurde. Doch ist die Ausbeute an Inulin, das aus transgenen Pflanzen gewonnen werden kann, so gering, daß eine wirtschaftliche Nutzung der transgenen Pflanzen nicht in Betracht kommt.

Ferner offenbart die PCT/NL96/00012 DNA-Sequenzen, die Kohlenhydratpolymersynthetisierende Enzyme codieren, sowie die Herstellung von transgenen Pflanzen mit Hilfe dieser DNA-Sequenzen. Die offenbarten Sequenzen stammen aus Helianthus tuberosus. Entsprechend PCT/NL96/00012 können die offenbarten Sequenzen genutzt werden, um das Fructanprofil von Petunie und Kartoffel, aber auch von Helianthus tuberosus selbst zu verändern. Bei Expression der offenbarten Sequenzen, die eine saccharoseabhängige Saccharose-Fructosyltransferase (SST) bzw. eine Fructan-Fructosyltransferase codieren, in transgenen Pflanzen ist die Produktion von Inulin möglich. Der durchschnittliche Polymerisationsgrad des Inulins liegt jedoch bei DP=6 bis DP=10. Bei einem solchen Polymerisationsgrad kann jedoch nicht von langkettigem Inulin gesprochen werden. Die Produktion von hochmolekularem Inulin ist mit dem in PCT/NL96/00012 beschriebenen Verfahren nicht möglich.

Vor kurzem wurde von Rehm et al. (J. Bacteriology 180 (1998), 1305-1310) die Erzeugung von Oligosacchariden in Hefe durch die Einführung einer SST aus Aspergillus foetidus beschrieben. Allerdings betrug der Polymerisationsgrad des erhaltenen Produkts lediglich DP=3.

Die DE 197 08 774.4 beschreibt die Herstellung von 1-Kestose und Nystose mit Hilfe von Enzymen, die Fructosylpolymeraseaktivität besitzen. Die Tri- und Tetrasaccharide können in transgenen Pflanzen hergestellt werden. Die Ausbeute ist hoch und entspricht in Kartoffel dem zellulären Gehalt an Saccharose. Eine Herstellung von längerkettigem Inulin wird jedoch nicht beschrieben.

Auch die Synthese von Polyfructosen durch Pilze wird vielfältig diskutiert. Barthomeuf und Pourrat (Biotechnology Letters 17 (1995), 911-916), beschreiben z.B. eine Enzympräparation von *Penicillium rugulosum*, die eine Fructosyltransferaseaktivität aufweist. Das Präparat hat aber verschiedene

4

enzymatische Eigenschaften, stellt also keine reine Fructosyltransferase dar. DNA-Sequenzen des Fructosyltransferasegens sind nicht bekannt. Cairns et al. (New Phytologist 129 (1995), 299-308), beschreiben eine transiente Synthese von Tri-, Tetra- und Pentasacchariden aus Saccharose im Kulturmedium von Monographella nivalis. Die zugrundeliegende Enzymaktivität scheint aber hauptsächlich hydrolytisch zu sein, da mit zunehmender Substratverarmung auch die Polyfructosen vom Enzym wieder abgebaut werden. Da keine DNA-Sequenz bekannt ist, kann auch nicht anhand der Homologie mit Fructofuranosidasen (Invertasen) beurteilt werden, ob eine Fructosyltransferase im eigentlichen Sinn oder eine Invertase vorliegt.

Für den Pilz Aspergillus sydowi IAM 2544 wurde gezeigt, daß er Polyfructosen des Inulintyps bilden kann. Harada et al. (in: Nishinari und Doi (Eds.), Food Hydrocolloids: Structures, Properties and Functions, Plenum, New York (1994), 77-82) beschreiben z.B. die Synthese von Inulin mit Konidien von Aspergillus sydowi. Es wurden 125 g Konidien in 25 l 20% Saccharoselösung inkubiert. Die Aufreinigung des gebildeten Produkts erfolgte durch HPLC. Ein derartiges Verfahren eignet sich aber nicht zur großtechnischen Produktion von Inulin. Weiterhin beschreiben Maramatsu et al. (Agric. Biol. Chem. 52 (1988), 1303-1304) die Produktion von Fructooligosacchariden mit Mycel des gleichen Pilzstammes (A. sydowi IAM 2544). Der Polymerisationsgrad wird mit 3 bis 13 angegeben. Die beteiligten wurden nicht bzw. nur teilweise Enzyme gereinigt. Aminosäuresequenzen oder DNA-Sequenzen der entsprechenden Gene sind nicht bekannt. Vorschriften zur Reinigung der Proteine sind nicht bzw. nur teilweise dargelegt.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Nucleinsäuremoleküle und Verfahren zur Verfügung zu stellen, mit deren Hilfe es möglich ist, gentechnisch veränderte Organismen herzustellen, die Polyfructosen des Inulintyps bilden können.

Diese Aufgabe wird durch die Bereitstellung der in den Patentansprüchen gekennzeichneten Ausführungsformen gelöst.

5 Somit betrifft die vorliegende Erfindung Nucleinsäuremoleküle, codierend eine

- Fructosyltransferase, ausgewählt aus der Gruppe bestehend aus
- Nucleinsäuremolekülen, die ein Protein codieren, das die unter SEQ ID No. 2 (a) angegebene Aminosäuresequenz umfaßt;
- Nucleinsäuremolekülen, die die Nucleotidsequenz der unter SEQ ID No. 1 (b) angegebenen codierenden Region umfassen oder eine korrespondierende Ribonucleotidsequenz;
- Nucleinsäuremolekülen, die mit einem komplementären Strang der unter (a) (c) oder (b) genannten Nucleinsäuremoleküle hybridisieren; und
- Nucleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration (d) des genetischen Codes von der Sequenz der unter (c) genannten Nucleinsäuremoleküle abweicht;

sowie die zu diesen komplementären Nucleinsäuremoleküle.

Die unter SEQ ID No. 1 dargestellte Sequenz codiert eine Saccharose-abhängige Fructan-Fructosyltransferase aus Aspergillus sydowi, die in pflanzlichen Zellen zur Synthese eines langkettigen Polyfructans vom Inulintyp führt. Es wurde überraschenderweise gefunden, daß es mit Hilfe dieser Sequenzen möglich ist, langkettige Polyfructane vom Inulintyp in hohen Ausbeuten in Wirtsorganismen, insbesondere in transgenen Pflanzen, Bakterien oder Pilzen herzustellen.

Im Rahmen der vorliegenden Erfindungen wurden Vorschriften zur Reinigung des Enzyms aus Aspergillus sydowi erarbeitet. Das Enzym wurde bis zur Homogenität gereinigt, um Aminosäuresequenzen ermitteln zu können. Anhand der gewonnen Seguenzinformationen wurden primer für eine Polymerase-Kettenreaktion ermittelt. Mit Hilfe der primer wurden Genfragmente amplifiziert, die zur Durchmusterung von wurden. Mehrere cDNA-Moleküle cDNA-Bibliotheken eingesetzt Sequenzhomologie zu den PCR-Amplifikaten wurden präpariert und verglichen. Die Mehrzahl der gewonnenen cDNA-Moleküle wies jeweils gleich große Insertionen auf. Die Vollständigkeit der cDNA-Moleküle zeigte sich bei der funktionalen Expression der DNA-Sequenzen in Saccharomyces bzw. in Kartoffel.

Die Reinigung der Enzyme, das Design von primern für die PCR, die Identifikation von cDNA-Molekülen und die heterologe Expression sind in den Beispielen

beschrieben. Die isolierte DNA-Sequenz und die von ihr ableitbare Proteinsequenz sind als SEQ. ID No. 1 bzw. 2 wiedergegeben. Die erfindungsgemäße DNA-Sequenz ist die erste, die eine saccharoseabhängige Fructan-Fructosyltransferase aus Pilzen codiert. Die DNA-Sequenz und die durch sie codierte Proteinsequenz unterscheiden sich sehr stark von DNA-Sequenzen, die bereits bekannte Fructosyltransferasen codieren. So besteht beispielsweise lediglich eine Identität von 22,6% bzw. 39% zu der Fructosyltransferase von Aspergillus naeslundii lev j auf der Protein-bzw. DNA-Ebene. Dagegen besteht zwar eine 64 bzw. 60,6%ige Identität auf der Protein- bzw. DNA-Ebene zu einem Invertase-Gen aus Aspergillus niger. Das von diesem Gen codierte Protein hat jedoch eine gänzlich andere Enzymaktivität. Dies zeigt, daß es sich bei den erfindungsgemäßen Nucleinsäuremolekülen und den durch sie codierten Fructosyltransferasen um bisher nicht beschriebene Moleküle handelt.

Im Zusammenhang mit der vorliegenden Erfindung wird daher unter einer Fructosyltransferase ein Protein verstanden, das in der Lage ist, die Knüpfung von ß-2,1-glycosidischen und/oder ß-2,6-glycosidischen Bindungen zwischen Fructoseeinheiten zu katalysieren. Dabei stammt der zu übertragende Fructosylrest aus Saccharose.

Die durch eine erfindungsgemäße saccharoseabhängige Fructan-Fructosyltransferase katalysierte Reaktion kann folgendermaßen dargestellt werden:

$$n(G-F) \rightarrow G - F_n + (n-1)G$$

Dabei ist G = Glucose, F = Fructose und G – F = Saccharose. D.h. das Enzym überträgt Fructosereste von Saccharose auf ein Polyfructan, das ausgehend von einem Saccharosemolekül durch β -2,1-glycosidische Verknüpfungen gebildet wird, wobei gegebenenfalls auch β -2,6-glycosidische Verknüpfungen auftreten können. Ein durch ein erfindungsgemäßes Nucleinsäuremolekül codiertes Polypeptid mit der Aktivität einer Fructosyltransferase führt zur Synthese von Polyfructose und insbesondere in Pflanzenzellen zur Synthese von Polyfructose des Inulintyps (im folgenden auch Inulin).

Im Zusammenhang mit der vorliegenden Erfindung wird unter Polyfructose ein Polyfructan mit einem Polymerisationsgrad von DP \geq 4, vorzugsweise von DP \geq 6, und insbesondere von DP \geq 8 verstanden. Unter "Polyfructose des Inulintyps" oder "Inulin" wird ein langkettiges Fructanpolymer verstanden, dessen Moleküle überwiegend β -2,1-glycosidisch verknüpft sind, und gegebenenfalls auch β -2,6-Verzweigungen aufweisen. "Langkettig" bedeutet dabei, daß ein Polymerisationsgrad (DP) von mehr als 20, vorzugsweise von mehr als 50, weiterhin bevorzugt von mehr als 100 und besonders bevorzugt von mehr als 200 vorliegt. Das Fructosylpolymer kann endständig einen Glucoserest tragen, der über die C-1 OH-Gruppe der Glucose und die C-2 OH-Gruppe eines Fructosylrests verknüpft ist. In diesem Fall ist also ein Molekül Saccharose im Fructosylpolymer enthalten.

Bei Verwendung des Enzyms zur Synthese von Polyfructan *in vitro* wird ein oligomeres Produkt (DP=4 bis 10) erhalten.

Das von den erfindungsgemäßen Nucleinsäuremolekülen codierte Enzym läßt sich von bekannten Fructosyltransferasen insbesondere aufgrund der katalysierten Reaktion unterscheiden. So katalysieren die bekannten pflanzlichen SSTs die Reaktion:

$$G-F+G-F\rightarrow G-F-F+G$$
.

Die pflanzlichen fructanabhängigen Fructan-Fructosyltransferasen katalysieren dagegen die Reaktion:

$$G - F_n + G - F_m \rightarrow G - F_{n+1} + G - F_{m-1}$$

wobei diese Reaktion vollständig reversibel ist.

Bakterielle Fructosyltransferasen, z.B. die durch das sacB-Gen codierte aus Bacillus subtilis, katalysieren ebenfalls eine Reaktion nach dem Schema

$$nG - F \rightarrow G - F_n + (n-1) G$$
.

Allerdings synthetisieren diese Enzyme Levan, d.h. ein β -2,6-glycosidisch verknüpftes Polyfructan, das β -2,1-Verzweigungen aufweist.

Das durch das ftf-Gen aus Streptococcus mutans codierte Protein (eine FTF) führt zwar auch zur Synthese von Inulin mit einem Molekulargewicht von mehreren Millionen Dalton. Das ftf-Gen bzw. das codierte Protein weist allerdings keine nennenswerte Homologie zu der unter SEQ ID No. 1 dargestellten

8

Nucleinsäuresequenz (nur 37,3%) bzw. zu der unter SEQ ID No. 2 dargestellten Aminosäuresequenz auf (nur 22,6%).

Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, beschrieben sind. Ein Beispiel für stringente Hybridisierungsbedingungen ist die Hybridisierung in 50% Formamid, 5 x SSC, 5 x Denhardt's-Lösung, 40 mM Natriumphosphat pH 6,8; 0,5% (Gew./Vol.) BSA, 1% Heringsperma-DNA bei einer 0,1 mg/ml (Gew./Vol.) SDS, Hybridisierungstemperatur von 42°C und anschließendes Waschen der Filter in 0.5 x SSC/0.5% SDS bei 60°C.

Ein Beispiel für konventionelle nicht stringente Hybridisierungsbedingungen ist eine Hybridisierung unter den angegebenen Bedingungen mit der Ausnahme, daß 30% Formamid anstatt 50% verwendet werden und die Filter anschließend in 2 x SSC/0,5% SDS bei 56°C gewaschen werden. Nucleinsäuremoleküle, die mit den erfindungsgemäßen Molekülen hybridisieren, können z.B. aus genomischen oder aus cDNA-Bibliotheken isoliert werden, die vorzugsweise aus Pilzen hergestellt wurden. Die Identifizierung und Isolierung derartiger Nucleinsäuremoleküle kann dabei unter Verwendung der erfindungsgemäßen Moleküle oder Teile dieser Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrook et al., 1989. Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Als Hybridisierungssonde können z.B. Nucleinsäuremoleküle verwendet werden, die exakt die oder im wesentlichen die unter SEQ ID No. 1 angegebene Nucleotidsequenz oder Teile dieser Sequenz aufweisen. Bei den als Hybridisierungssonde verwendeten Fragmenten kann es sich auch um synthetische Fragmente handeln, die mit Hilfe üblicher Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfindungsgemäßen Nucleinsäuremoleküls übereinstimmt.

9

Die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridisierenden Moleküle umfassen auch Fragmente, Derivate und allelische Varianten der oben beschriebenen Nucleinsäuremoleküle, die ein erfindungsgemäßes Protein codieren. Unter "Fragmenten" werden dabei Teile der Nucleinsäuremoleküle verstanden. die lang genug sind, um ein Protein mit Fructosyltransferaseaktivität zu codieren. Der Ausdruck "Derivat" bedeutet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen Nucleinsäuremoleküle an einer oder mehreren Positionen unterscheiden aber einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40%, insbesondere eine Identität von mindestens 60%, vorzugsweise über 80% und besonders bevorzugt über 90%. Dabei weisen die durch diese Nucleinsäuremoleküle codierten Proteine vorzugsweise eine Sequenzidentität zu der in SEQ ID No. 2 angegebenen Aminosäuresequenz von mindestens 60%, vorzugsweise mindestens 70%, insbesondere mindestens 80%. besonders bevorzugt mindestens 90% und ganz bevorzugt von mindestens 95% auf. Die Abweichungen zu den oben beschriebenen Nucleinsäuremolekülen können Deletion, Substitution. Insertion und/oder dabei beispielsweise durch Rekombination entstanden sein. Erfindungsgemäße Nucleinsäuremoleküle können auch anderweitige Derivate der Sequenzen pilzlichen Ursprungs sein. Eine Derivatisierung der Sequenzen kann notwendig sein, um eine Expression in bestimmten Wirtszellen möglich zu machen.

Bei den Nucleinsäuremolekülen, die homolog zu den oben beschriebenen Molekülen sind und Derivate dieser Moleküle darstellen, handelt es sich in der Regel um Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Stämmen oder Organismen, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten.

10

Varianten der erfindungsgemäßen Die den verschiedenen von Nucleinsäuremoleküle codierten Proteine weisen vorzugsweise bestimmte ge-Enzymaktivität, auf, wie Molekulargewicht, Charakteristika meinsame immunologische Reaktivität oder Konformation, oder physikalische Eigenschaften. wie das Laufverhalten in Gelelektrophoresen, chromatographisches Verhalten, Löslichkeit, spektroskopische Eigenschaften, Sedimentationskoeffizienten, Stabilität, pH-Optimum oder Temperatur-Optimum.

erfindungsgemäßen Ausführungsform codieren die bevorzugten In einer Eigenschaften Polypeptid mit den einer Nucleinsäureseguenzen ein Fructosyltransferase aus Pilzen, besonders bevorzugt aus Aspergillus und ganz besonders bevorzugt einer Fructosyltransferase aus Aspergillus sydowi.

Bei den erfindungsgemäßen Nucleinsäuremolekülen kann es sich sowohl um DNAals auch RNA-Moleküle handeln. Entsprechende DNA-Moleküle sind beispielsweise genomische DNA- oder cDNA-Moleküle. Die erfindungsgemäßen Nucleinsäuremoleküle können aus natürlichen Quellen isoliert werden, vorzugsweise aus Pilzen, insbesondere *Aspergillus* und bevorzugt aus *Aspergillus sydowi*, oder sie können nach bekannten Verfahren synthetisiert werden.

Mittels gängiger molekularbiologischer Techniken ist es ferner möglich (siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) verschiedenartige Mutationen in die erfindungsgemäßen Nucleinsäuremoleküle einzuführen, wodurch es zur Synthese von Proteinen mit eventuell veränderten biologischen Eigenschaften kommt. Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletionen vom 5'- oder vom 3'- Ende der codierenden DNA-Sequenz Nucleinsäuremoleküle erzeugt werden, die zur Synthese entsprechend verkürzter Proteine führen. Andererseits können auch gezielt Enzyme hergestellt werden, die aufgrund der Addition von Signalsequenzen in verschiedenen Kompartimenten lokalisiert sind. Um eine Lokalisierung der erfindungsgemäßen Proteine im Cytosol zu erreichen, müssen der unter SEQ ID No. 2 angegebenen Sequenz keine Signalsequenzen hinzugefügt werden.

11

Femer ist auch die Einführung von Punktmutationen denkbar an Positionen, bei denen eine Veränderung der Aminosäuresequenz einen Einfluß beispielweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z.B. Mutanten hergestellt werden, die einen veränderten K_m-Wert besitzen oder nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen z.B. über allosterische Regulation oder kovalente Modifizierung unterliegen.

Des weiteren können Mutanten hergestellt werden, die eine veränderte Substratoder Produktspezifität aufweisen. Weiterhin können Mutanten hergestellt werden, die ein verändertes Aktivitäts-Temperatur-Profil aufweisen.

Für die gentechnische Manipulation in prokaryontischen Zellen können die erfindungsgemäßen Nucleinsäuremoleküle oder Teile dieser Moleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren (vgl. Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2. Aufl., Cold NY, USA) können Basenaustausche Spring Harbor Laboratory Press, vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Ferner können Manipulationen, die passende Restriktionsschnittstellen zur Verfügung stellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen in Frage kommen, können in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Als Analysemethode werden im allgemeinen eine Sequenzanalyse, eine Restriktionsanalyse und weitere biochemisch-molekularbiologische Methoden durchgeführt.

Die Erfindung betrifft ferner Vektoren, die erfindungsgemäße Nucleinsäuremoleküle enthalten. Vorzugsweise handelt es sich dabei um Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik übliche Vektoren.

Vorzugsweise ist das erfindungsgemäße Nucleinsäuremolekül im erfindungsgemäßen Vektor mit regulatorischen Elementen operativ verbunden, die die Transkription und Synthese einer translatierbaren RNA in pro- und/oder

12

eukaryontischen Zellen gewährleisten. Beispielsweise enthält ein erfindungsgemäßer Vektor die folgenden Elemente:

- Einen Promotor, der die Transkription nachgeschalteter Codierregionen in Zellen des Wirtsorganismus sicherstellt, und gegebenenfalls Enhancer-Elemente.
- 2. Eine Codierregion als Fusion an den Promotor, die zumindest ein offenes Leseraster für die Translation eines Polypeptids enthält. Erfindungsgemäß handelt es sich bei der Codierregion um ein erfindungsgemäßes Nucleinsäuremolekül.
- 3. Gegebenenfalls weitere Sequenzen als Fusion an die Codierregion, beispielsweise Transkriptionsterminationssignale, wenn dies zur erfolgreichen Genexpression in einem bestimmten Wirtsorganismus erforderlich ist, oder Signalsequenzen, die die subzelluläre Lokalisation des Genprodukts beeinflussen oder die die Sekretion des Proteins bewirken.

Ein derartiger Vektor kann weitere Gene enthalten, wie Markergene, die die Selektion des Vektors in einer geeigneten Wirtszelle und unter geeigneten erfindungsgemäßen Die Expression des erlauben. Bedingungen Nucleinsäuremoleküls umfaßt die Transkription des Nucleinsäuremoleküls in translatierbare mRNA. Regulatorische Elemente, die die Expression des oder eukaryontischen Zellen prokaryontischen Nucleinsäuremolküls in gewährleisten, sind dem Fachmann bekannt. Mögliche regulatorische Elemente, die erfindungsgemäßen Nucleinsäuremoleküls für die Expression des prokarvontischen Wirtszellen geeignet sind, umfassen beispielsweise den P., lac, trp oder tac Promotor in E. coli. Besonders bevorzugt wird der in E. coli durch IPTG induzierbare lacZ-Promoter verwendet. Beispiele für regulatorische Elemente, die die Expression in eukaryontischen Wirtszellen erlauben, sind der AOX1 und der GAL1 Promotor in Hefe oder der CMV-, SV40-, RSV-Promotor, CMV-Enhancer, SV40-Enhancer oder ein Globin-Intron in Säugetierzellen oder anderen tierischen Zellen. Für die Expression in Hefe wird bevorzugt der in Hefe hochaktive Promotor des Alkohol-Dehydrogenase-Gens aus Saccharomyces cerevisiae verwendet. Weitere geeignete Vektorsysteme sind im Stand der Technik beschrieben,

13

beispielsweise Sambrook, Molecular Cloning A Laboratory Manual (1989), Cold Spring Harbor Laboratory Press N.Y., und in Ausubel, Current Protocols in Molecular Biology (1989), Green Publishing Associates and Wiley Interscience, N.Y..

Regulatorische Elemente für die Expression der erfindungsgemäßen Nucleinsäuremoleküle in Pflanzenzellen sind prinzipiell jeder in pflanzlichen Zellen aktive Promoter, Enhancer, Terminator, etc. Der Promotor kann dabei so gewählt sein, daß die Expression in den erfindungsgemäßen Pflanzen konstitutiv erfolgt oder nur in einem bestimmten Gewebe zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt. In Bezug auf die Pflanze kann der Promotor homolog oder heterolog sein.

Sinnvolle Promotoren sind z.B. der Promotor der 35S RNA des Cauliflower Mosaic Virus (siehe beispielsweise US 5,352,605) und der Ubiquitin-Promotor (siehe beispielsweise US 5,614,399) für eine konstitutive Expression, der Patatingen-Promotor B33 (Rocha-Sosa, EMBO J. 8 (1989), 23-29) für eine knollenspezifische Expression in Kartoffeln oder ein Promotor, der eine Expression lediglich in photosynthetisch aktiven Geweben sicherstellt, z.B. der ST-LS1-Promotor (Stockhaus, Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947; Stockhaus, EMBO J. 8 (1989), 2445-2451), der Ca/b-Promotor (siehe beispielsweise US 5,656,496. US 5,639,952, Bansal, Proc. Natl. Acad. Sci. USA 89 (1992), 3654-3658) und der Rubisco SSU-Promotor (siehe beispielsweise US 5,034,322, US 4,962,028). Es können jedoch auch Promotoren verwendet werden, die nur zu einem durch äußere Einflüsse determinierten Zeitpunkt aktiviert werden (siehe beispielsweise WO 93/07279). Von besonderem Interesse können hierbei Promotoren von heatshock Proteinen sein, die eine einfache Induktion erlauben. Ferner können samenspezifische Promotoren, wie z.B. der USP-Promotor aus Vicia faba, der eine samenspezifische Expression in Vicia faba und anderen Pflanzen gewährleistet, verwendet werden (Fiedler, Plant Mol. Biol. 22 (1993), 669-679; Bäumlein, Mol. Gen. Genet. 225 (1991), 459-467). Ferner können auch fruchtspezifische Promotoren eingesetzt werden, wie z.B. in WO 91/01373 beschrieben. Für die Expression in reifenden Tomatenfrüchten eignen sich z.B. cis-regulatorische Elemente eines Polygalacturonase-Promotors aus Tomate, die im äußeren bzw. inneren Pericarp aktiv sind (Nicholass et al., Plant Mol. Biol. 28 (1995), 423-435; Montgomery et al., Plant Cell 5 (1993), 1049-1062). Einen weiteren fruchtspezifischen Promotor für die Tomate beschreiben Van Haaren et al. (Plant Mol. Biol. 21 (1993), 625-640).

Darüberhinaus können Promotoren für eine endospermspezifische Expression verwendet werden, wie z.B. der Glutelinpromotor (Leisy, Plant Mol. Biol. 14 (1990), 41-50; Zheng, Plant J. 4 (1993), 357-366), der HMG-Promotor aus Weizen, der USP-Promotor, der Phaseolinpromotor oder Promotoren von Zein-Genen aus Mais (Pedersen, Cell 29 (1982), 1015-1026; Quattrocchio, Plant Mol. Biol. 15 (1990), 81-93) oder der shrunken-1-Promotor (sh-1) aus Mais (Werr, EMBO J. 4 (1985), 1373-1380).

Die Expression der erfindungsgemäßen Nucleinsäuremoleküle ist insbesondere in solchen Organen der Pflanze von Vorteil, die einen erhöhten Gehalt an Saccharose aufweisen oder Saccharose speichern. Solche Organe sind z.B. die Rübe der Zuckerrübe oder der Stamm des Zuckerrohrs und der Zuckerhirse. Besonders bevorzugt werden daher Promotoren verwendet, die die Expression in diesen Organen vermitteln, wie beispielsweise der Patatin-Promotor B33 aus Solanum tuberosum. Zur spezifischen Expression im Stamm von Zuckerrohrpflanzen kann der Ubiquitin-Promotor in Kombination mit dem ersten Intron verwendet werden.

Die erfindungsgemäßen Vektoren können darüberhinaus weitere Funktionseinheiten besitzen, die eine Stabilisierung des Vektors in einem Wirtsorganismus bewirken, wie einen bakteriellen Replikationsursprung oder die 2-Mikron-DNA zur Stabilisierung und autonomen Replikation in Hefe. Ferner können "left border"- und "right border"-Sequenzen agrobakterieller T-DNA enthalten sein, wodurch eine stabile Integration in das Erbgut von Pflanzen ermöglicht wird.

Ferner kann eine Terminationssequenz vorhanden sein, die der korrekten Beendigung der Transkription dient sowie der Addition eines Poly-A-Schwanzes an das Transkript, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. z.B. Gielen, EMBO J. 8 (1989), 23-29) und sind beliebig austauschbar.

In einer bevorzugten Ausführungsform umfaßt das in dem erfindungsgemäßen Vektor enthaltene Nucleinsäuremolekül eine Region, die eine funktionale Signalsequenz zur Sekretion des codierten Enzyms enthält. Derartige Sequenzen sind bekannt.

Ein Signalpeptid, das die Lokalisation des Proteins in der Vakuole gewährleistet, ist beispielsweise das Signalpeptid der Carboxypeptidase Y aus Hefe (CPY). Das entsprechende Gen ist beispielsweise in Valls et al. (Cell 48, 887-899) beschrieben. Pflanzliche Signalsequenzen sind z.B. die der Lektingene aus Gerste (Raikhel und Lerner, Dev. Genet. 12 (1991), 255-269) oder die 43 Aminosäuren aus dem Nterminalen Bereich des reifen Phytohämagglutinins der Bohne (Tague et al., Plant Cell 2 (1990), 533-546). Ein Beispiel für ein C-terminales Signalpeptid ist das der Chitinase (Neuhaus et al., Plant J. 5 (1994), 45-54).

Eine bevorzugte Signalsequenz ist beispielsweise die Signalsequenz des Proteinase-Inhibitor II Gens aus Kartoffel. Es kann aber auch jede andere Signalsequenz, die zur Sekretion eines Polypeptids in dem gewählten Wirt führt, verwendet werden. Die sektretierte Fructosyltransferase kann aus dem Kulturmedium gewonnen und für *in vitro* Synthesen eingesetzt werden.

In einer besonders bevorzugten Ausführungsform enthält das in dem Vektor enthaltene Nucleinsäuremolekül eine Region, die eine Signalsequenz zur vakuolären Lokalisation in pflanzlichen Zellen codiert, bevorzugt die aus dem Patatingen der Kartoffel (Sonnewald, Plant J. 1 (1998), 95-106). Dies erlaubt die subzelluläre Lokalisation der Fructosyltransferase in den Vakuolen von gentechnisch veränderten Pflanzenzellen und Pflanzen, beispielsweise Zuckerrübe oder Kartoffel, und die Akkumulation von hochmolekularen Polyfructosen des Inulintyps in den Vakuolen. Weitere vakuoläre Signalsequenzen sind beispielsweise beschrieben bei Matsuoka (Journal of Experimental Botany 50 (1999), 165-174), Chrispeels (Cell 68 (1992), 613-616), Matsuoka (Proc. Natl. Acad. Sci. USA 88 (1991), 834-838), Bednarek (Plant Cell 3 (1991), 1195-1206), Nakamura (Plant Phys. 101 (1993) 1-5).

16

In einer weiteren Ausführungsform der Erfindung enthält das in dem Vektor enthaltene Nucleinsäuremolekül eine Region, die eine Signalsequenz zur plastidären Lokalisation in pflanzlichen Zellen codiert.

Als Signalsequenz kann beispielsweise die Signalsequenz der Ferrodoxin: NADP(+)-oxidoreductase (FNR) aus Spinat verwendet werden. Die Sequenz enthält den 5'-nichttranslatierten Bereich sowie die flankierende Transitpeptidsequenz der cDNA des plastidären Proteins Ferrodoxin:NADP(+)-oxidoreductase aus Spinat (Nucleotid -171 bis +165; Jansen, Current Genetics 13 (1988), 517-522).

Ferner kann als Signalsequenz beispielsweise das Transitpeptid des waxy-Proteins aus Mais plus die ersten 34 Aminosäuren des maturen waxy-Proteins (Klösgen, Mol. Gen. Genet. 217 (1989), 155-161) verwendet werden. In einer bevorzugten Ausführungsform der Erfindung wird das Transitpeptid des waxy-Proteins aus Mais verwendet ohne die ersten 34 Aminosäuren des maturen waxy-Proteins.

In einer besonders bevorzugten Ausführungsform betrifft die Erfindung die Plasmide pSK-as1, p112-as1, pA7-as1, p35-as1, p35-as1, deren Konstruktion in den Beispielen beschrieben ist (Fig. 1 bis 5).

Die erfindungsgemäßen Nucleinsäuremoleküle und Expressionsvektoren gestatten die Herstellung von Polyfructosen des Inulintyps in verschiedenen Wirtsorganismen, insbesondere Pflanzen, Pilzen und Bakterien. Die codierten Enzyme können auch außerhalb der Wirtsorganismen zur Produktion von Polyfructosen des Inulintyps eingesetzt werden. D.h. es ist insbesondere möglich, die erfindungsgemäßen Nucleinsäuremoleküle zur Produktion der durch sie codierten Proteine in beliebigen Wirtszellen zu verwenden, das Protein aus den Wirtszellen und/oder dem Kulturmedium zu gewinnen und zur in-vitro Synthese von Inulin einzusetzen.

So kann beispielsweise ein Konstrukt, das den Alkoholdehydrogenase-Promotor und ein erfindungsgemäßes Nucleinsäuremolekül enthält, zur Transformation von Saccharomyces cerevisiae eingesetzt werden. Da Hefen nicht in der Lage sind, Saccharose aufzunehmen, sollten Zellen verwendet werden, die aufgrund der Einführung einer heterologen DNA-Sequenz einen Saccharosetransporter exprimieren. Die Herstellung solcher Zellen ist z.B. beschrieben in Riesmeier et al.

17

(EMBO J. 11 (1992), 4705-4713). Mit dem oben beschriebenen Konstrukt transformierte Hefen bilden langkettige Polyfructosen vom Inulintyp. Da die Fructosyltransferase von Aspergillus sydowi kein Signalpeptid besitzt, wird sie nicht sekretiert. Die langkettigen Polyfructosen entstehen daher in den Hefezellen. Hefezellen, die diese Polyfructosen enthalten, können direkt als Nahrungsmittelzusätze eingesetzt werden. Sollen die Polyfructosen fermentativ im Kulturmedium gewonnen werden, kann eine Signalsequenz zur Sekretion an ein erfindungsgemäßes Nucleinsäuremolekül fusioniert werden.

In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, die die erfindungsgemäßen Nucleinsäuremoleküle oder Vektoren transient oder stabil enthalten oder von einer solchen Zelle abstammen. Unter einer Wirtszelle wird ein Organismus verstanden, der in der Lage ist, in vitro rekombinierte DNA die den erfindungsgemäßen gegebenenfalls von aufzunehmen und Nucleinsäuremolekülen codierten Proteine zu synthetisieren. Die Wirtszellen können entweder prokaryontischen oder eukaryontischen Ursprungs sein. Der Begriff "prokaryontisch" schließt dabei alle Bakterien ein, die mit einem erfindungsgemäßen Nucleinsäuremolekül transformiert oder transfiziert werden **Proteins** mit vorteilhafterweise die Expression eines können und Fructosyltransferaseaktivität erlauben. Prokaryontische Wirtszellen schließen beispielsweise gram-negative wie auch gram-positive Bakterien ein, wie z.B. E. coli, Serratia marcescens und Bacillus subtilis. Der Begriff S. typhimurium, "eukaryontisch" schließt Insektenzellen, pilzliche Zellen, Pflanzenzellen, tierische und menschliche Zellen ein. Bevorzugte pilzliche Zellen sind beispielsweise solche, die für die Fermentation benutzt werden oder benutzt werden können. insbesondere Saccharomyces, dabei besonders bevorzugt S. cerevisiae, Schizosaccharomyces, Kluyveromyces, Pichia etc. Bevorzugt ist eine solche pilzliche Wirtszelle eine Zelle aus der Gattung Aspergillus und besonders bevorzugt aus der Spezies Aspergillus niger. Interessant ist insbesondere die Expression der erfindungsgemäßen Fructosyltransferase in diesen Zellen in Kombination mit einer sekretorischen Signalseguenz, z.B. der aus dem Patatingen oder des 1-SST-Gens aus Aspergillus foetidus (Rehm et al., J. Bac. 180 (1998), 1305-1319). Dadurch wird

die Fructosyltransferase in das Medium sekretiert. Vorteilhafterweise werden Zellen verwendet, die eine reduzierte oder gar keine sekretorische Invertaseaktivität besitzen. Pilzspezies, die keine eigene Invertaseaktivität besitzen, sind z.B. *Trichoderma reesei*. Ein Protokoll zur Expression einer β-Fructofuranosidase (der Invertase aus *A. niger*) ist beispielsweise beschrieben in Bergès et al. (Curr. Genet. 24 (1993), 53-59). Ein erfindungsgemäßes Nucleinsäuremolekül, das ein Protein mit Fructosyltransferaseaktivität codiert, oder ein entsprechender Vektor kann durch dem Fachmann geläufige Techniken in die Wirtszelle transfiziert oder transformiert werden. Verfahren zur Herstellung von fusionierten, operativ verknüpften Genen und deren Expression in geeigneten Wirtszellen sind dem Fachmann wohlbekannt und beschrieben beispielsweise in Sambrook oder Ausubel, siehe oben. Bevorzugte Wirte sind *E. coli*, Pilze, insbesondere Hefen, und Pflanzenzellen.

Vorzugsweise sind die erfindungsgemäßen Zellen dadurch gekennzeichnet, daß das eingeführte erfindungsgemäße Nucleinsäuremolekül entweder heterolog in Bezug auf die transformierte Zelle ist, d.h. natürlicherweise nicht in diesen Zellen vorkommt, oder an einem anderen Ort im Genom lokalisiert ist als die entsprechende natürlicherweise auftretende Sequenz.

Bei der Expression der erfindungsgemäßen Nucleinsäuremoleküle in Pflanzen besteht grundsätzlich die Möglichkeit, daß das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein kann. Um die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann das erfindungsgemäße Nucleinsäuremolekül mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährleisten; siehe oben. Derartige Sequenzen sind bekannt (siehe beispielsweise Braun, EMBO J. 11 (1992), 3219-3227; Wolter, Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald, Plant J. 1 (1991), 95-106; Rocha-Sosa, EMBO J. 8 (1989), 23-29). Die erfindungsgemäßen Wirte umfassen somit auch transgene Pflanzenzellen, Pflanzengewebe und Pflanzen, die mit einem oder mehreren erfindungsgemäßen Nucleinsäuremolekül(en) transformiert wurden, sowie transgene Pflanzenzellen, die von derartig transformierten Zellen abstammen. Derartige Zellen enthalten ein oder wobei diese(s) erfindungsgemäße(s) Nucleinsäuremolekül(e), mehrere

19

vorzugsweise mit regulatorischen DNA-Elementen verknüpft ist/sind, die die Transkription in pflanzlichen Zellen gewährleisten, insbesondere mit einem Promotor. Derartige Zellen lassen sich von natürlicherweise vorkommenden Pflanzenzellen dadurch unterscheiden, daß sie mindestens ein erfindungsgemäßes Nucleinsäuremolekül enthalten, das natürlicherweise in diesen Zellen nicht vorkommt, oder dadurch, daß ein solches Molekül an einem Ort im Genom der Zelle integriert vorliegt, an dem es natürlicherweise nicht vorkommt, d.h. in einer anderen genomischen Umgebung.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung Pflanzenzellen, die das erfindungsgemäße Protein im Cytosol enthalten. Hierzu ist die als SEQ ID No. 2 angegebene Sequenz ohne weitere Signalsequenzen zu verwenden.

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung Pflanzenzellen, die das erfindungsgemäße Protein in den Plastiden enthalten. Zur Erzielung einer plastidären Lokalisation des erfindungsgemäßen Proteins kann man die erfindungsgemäßen Nucleinsäuremoleküle und/oder die erfindungsgemäßen Vektoren in der oben beschriebenen Weise modifizieren.

Da die Vakuole in der Regel große Mengen an Saccharose speichern kann, die dem erfindungsgemäßen Protein als Substrat dient, ist dieses Kompartiment gut geeignet, um Pflanzenzellen zu erzeugen, die aufgrund der Aktivität eines erfindungsgemäßen Proteins Polyfructose in den Vakuolen produzieren. In einer besonders bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher Pflanzenzellen, die das erfindungsgemäße Protein in der Vakuole enthalten. bereits erläutert. wie die erfindungsgemäßen wurde Weiter oben Nucleinsäuremoleküle und/oder Vektoren konstruiert sein müssen, um eine vakuoläre Lokalisation des erfindungsgemäßen Proteins zu vermitteln.

Die transgenen Pflanzenzellen und Pflanzengewebe können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden. Die durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen erhältlichen Pflanzen sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind

Gegenstand der Erfindung Pflanzen, die die oben beschriebenen transgenen Pflanzenzellen enthalten. Die erfindungsgemäßen Pflanzenzellen können zu jeder beliebigen Pflanzenspezies gehören, vorzugsweise zu monokotyledonen oder dikotyledonen Pflanzen. Bevorzugt handelt es sich um Pflanzenzellen aus landwirtschaftlichen Nutzpflanzen, d.h. aus Pflanzen, die vom Menschen kultiviert werden für Zwecke der Ernährung oder für technische, insbesondere industrielle Zwecke. Vorzugweise betrifft die Erfindung faserbildende (z.B. Flachs, Hanf, Baumwolle), ölspeichernde (z.B. Raps, Sonnenblume, Sojabohne), zuckerspeichernde (z.B. Zuckerrübe, Zuckerrohr, Zuckerhirse, Banane) und proteinspeichernde Pflanzen (z.B. Leguminosen).

In einer weiteren bevorzugten Ausführungsform betrifft die Erfindung Futterpflanzen (z.B. Futter- und Weidegräser, Alfalfa, Klee etc.), Gemüsepflanzen (z.B. Melone, Tomate, Banane, Chicoree, Lauch, Spargel, Mohrrübe) oder stärkespeichernde Pflanzen (Weizen, Gerste, Hafer, Roggen, Kartoffel, Mais, Reis, Erbse, Maniok, Mungbohne).

In einer weiteren bevorzugten Ausführungsform betrifft die Erfindung Pflanzenzellen aus Saccharose enthaltenden Pflanzen (z.B. Zuckerrübe, Kartoffel, Reis, Weizen, Zuckerrohr, etc.). Besonders bevorzugt sind Zuckerrübe, Chicoree, Reis, Mais, Kartoffel, Zuckerrohr und Weizen. Die Erfindung umfaßt ebenfalls Vermehrungsmaterial und Ernteprodukte der erfindungsgemäßen Pflanzen, beispielsweise Früchte, Samen, Knollen, Wurzelstöcke, Sämlinge, Stecklinge, Calli, Zellkulturen etc.

Die vorliegende Erfindung betrifft auch Verfahren zur Herstellung transgener Pflanzen, wobei

- eine pflanzliche Zelle genetisch modifiziert wird durch die Einführung eines erfindungsgemäßen Nucleinsäuremoleküls und/oder eines erfindungsgemäßen Vektors; und
- (b) aus der Zelle eine Pflanze regeneriert wird; und gegebenenfalls
- (c) aus der Pflanze nach (b) weitere Pflanzen erzeugt werden.

WO 00/14246

21

PCT/EP99/06319

Der Begriff "genetisch modifiziert" bedeutet dabei im Zusammenhang mit der vorliegenden Erfindung, daß die pflanzliche Zelle durch Einführung eines erfindungsgemäßen Nucleinsäuremoleküls in ihrer genetischen Information verändert ist, und daß das Vorhandensein oder die Expression des erfindungsgemäßen Nucleinsäuremoleküls zu einer phänotypischen Veränderung führt. Phänotypische Veränderung bedeutet dabei vorzugsweise eine meßbare Veränderung einer oder mehrerer Funktionen der Zellen. Beispielsweise zeigen Aktivität erfindungsgemäße Pflanzen eine modifizierte genetisch Fructosyltransferaseerhöhte oder eine erfindungsgemäßen **Proteins** Gesamtaktivität.

Die Regeneration von Pflanzen gemäß Schritt (b) kann nach dem Fachman bekannten Methoden erfolgen.

Die Erzeugung weiterer Pflanzen gemäß Schritt (c) der erfindungsgemäßen Verfahren kann z.B. erfolgen durch vegetative Vermehrung (beispielsweise über Stecklinge, Knollen oder über Calluskultur und Regeneration ganzer Pflanzen) oder durch generative Vermehrung. Die generative Vermehrung findet dabei vorzugsweise kontrolliert statt, d.h. es werden ausgewählte Pflanzen mit bestimmten Eigenschaften miteinander gekreuzt und vermehrt.

Die vorliegende Erfindung betrifft auch die durch die erfindungsgemäßen Verfahren erhältlichen Pflanzen.

Die vorliegende Erfindung betrifft auch Vermehrungsmaterial erfindungsgemäßer Pflanzen sowie der gemäß der erfindungsgemäßen Verfahren hergestellten transgenen Pflanzen. Der Begriff Vermehrungsmaterial umfaßt dabei jene Bestandteile der Pflanze, die geeignet sind zur Erzeugung von Nachkommen auf vegetativem oder generativem Weg. Für die vegetative Vermehrung eignen sich beispielsweise Früchte, Samen, Sämlinge, Protoplasten, Zellkulturen etc. Vorzugsweise handelt es sich bei dem Vermehrungsmaterial um Knollen und Samen.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung erntebare Pflanzenteile erfindungsgemäßer Pflanzen, wie Früchte, Blätter, Speicherwurzeln,

22

Wurzeln, Blüten, Knospen, Sprosse oder Stämme, vorzugsweise Samen oder Knollen.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung Futtermittel und/oder Nahrungsmittel, die die erfindungsgemäßen erntebaren Pflanzenteile, bevorzugt Samen oder Knollen, enthalten.

Vorzugsweise wirken die erfindungsgemäßen Pflanzenteile nach Verzehr im Vergleich zu entsprechenden Pflanzenteilen von Pflanzen, die nicht in der erfindungsgemäßen Weise genetisch modifiziert worden sind, vorteilhaft auf die Gesundheit des Menschen und/oder des Tieres. Entsprechendes gilt für die erfindungsgemäßen Futtermittel und/oder Nahrungsmittel. Bei Menschen beispielsweise kann der Verzehr der erfindungsgemäßen Nahrungsmittel zu einer verbesserten Zusammensetzung der Darmflora, insbesondere zu einer Steigerung des Gehalts an Bifidobakterien im Darm führen, was sich vermutlich positiv auf die Gesundheit des Menschen auswirkt (Izzo, Trends in Food Science & Technology 9 (1998), 255-257). Bei diesen positiven Effekten handelt es sich vorzugsweise um prophylaktische oder die Nahrungsverwertung unterstützende Effekte.

Gegenstand der Erfindung sind auch Verfahren zur Herstellung erfindungsgemäßer Wirtszellen, wobei geeignete Wirtszellen mit einem erfindungsgemäßen Nucleinsäuremolekül oder Vektor transformiert werden. Verfahren für die Transformation der verschiedenen in Betracht kommenden Wirtszellen sind dem Fachmann geläufig.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung Verfahren zur Herstellung einer Fructosyltransferase, bei dem ein erfindungsgemäßer Wirt unter Bedingungen kultiviert wird, die für die Expression des erfindungsgemäßen Nucleinsäuremoleküls genügen und anschließend die Fructosyltransferase aus der Kultur, d.h. den Zellen und/oder dem möglicherweise vorhandenen Kulturmedium, isoliert wird. In dem vorgenannten Verfahren werden die transformierten oder transfizierten Wirtszellen beispielsweise in Fermentern kultiviert, bis eine optimale

23

Zelldichte erreicht ist. Gegebenenfalls kann bei induzierbaren Promotoren erst am Schluß der Fermentation die Expression des Proteins, das durch das erfindungsgemäße Nucleinsäuremolekül codiert wird, induziert werden. Das so exprimierte Protein kann dann anhand von bekannten Techniken aus dem Medium, Zelllysaten, oder zellulären Membranfraktionen nach bekannten Techniken gereinigt werden. Die Isolation und Reinigung der beispielsweise mikrobiell exprimierten Proteine kann durch präparative chromatographische oder auch immunologische Trenntechniken erreicht werden, beispielsweise unter Zuhilfenahme von monoclonalen oder polyclonalen Antikörpern, die das von dem erfindungsgemäßen Nucleinsäuremolekül codierte Protein erkennen. In diesem Zusammenhang mag erwähnt werden, daß das von dem erfindungsgemäßen Nucleinsäuremolekül codierte Protein mit Fructosyltransferaseaktivität auch weitere funktionelle Aminosäuresequenzen enthalten kann, beispielsweise Protein tags (GST, GFP, Flag, HA-Peptid, His-tag), die von heterologen Proteinen stammen können oder synthetisch erzeugt wurden.

Die Erfindung betrifft ferner Proteine, die Fructosyltransferaseaktivität besitzen, d.h. Fructosyltransferasen, die durch die erfindungsgemäßen Nucleinsäuremoleküle codiert werden oder durch das erfindungsgemäße Verfahren erhältlich sind. Die erfindungsgemäßen Fructosyltransferasen können vorzugsweise zur Herstellung von Polyfructosen des Inulintyps verwendet werden. Andererseits können sie auch zur Herstellung von Antikörpern dienen, die wiederum zum Nachweis und/oder zur Reinigung von Fructosyltransferasen genutzt werden können.

Gegenstand der Erfindung sind auch Nucleinsäuremoleküle, die spezifisch mit erfindungsgemäßen Nucleinsäuremolekülen oder Teilen davon hybridisieren. Dabei handelt es sich vorzugsweise um Oligonucleotide mit einer Länge von mindestens 10, insbesondere von mindestens 15 und besonders bevorzugt von mindestens 50 Nucleotiden. Die erfindungsgemäßen Oligonucleotide können beispielsweise als Primer für eine PCR-Reaktion, als Hybridisierungssonden oder ähnliches verwendet werden.

24

Gegenstand der vorliegenden Erfindung sind auch Verfahren zur Herstellung von Polyfructose, insbesondere des Inulintyps, wobei erfindungsgemäße Wirtszellen, oder diese enthaltende Wirtsorganismen, unter Bedingungen kultiviert werden, die die Expression der erfindungsgemäßen Fructosyltransferase sowie die Synthese von Polyfructose erlauben.

Durch die Bereitstellung der erfindungsgemäßen Nucleinsäuremoleküle ist es möglich, mit Hilfe gentechnischer Methoden Polyfructosen, insbesondere solche des Inulintyps, in Organismen herzustellen, wie es bisher durch konventionelle Möglich ist somit die Expression Verfahren nicht möglich war. erfindungsgemäßen Nucleinsäuremoleküle in Wirten wie Bakterien, Pilzen oder pflanzlichen Zellen, um die Aktivität der entsprechenden Fructosyltransferase zu erhöhen, oder die Einführung in Zellen, die dieses Enzym normalerweise nicht exprimieren. Die erfindungsgemäßen Wirtszellen synthetisieren aufgrund der Expression bzw. zusätzlichen Expression mindestens eines erfindungsgemäßen des Inulintyps. insbesondere solche Polyfructose, Nucleinsäuremoleküls Gegenstand der vorliegenden Erfindung sind somit auch die aus den erfindungsgemäßen Wirtszellen sowie dem Vermehrungsmaterial und bei Pflanzen aus den Pflanzen oder aus deren Ernteprodukten erhältlichen Polyfructosen, insbesondere solche des Inulintyps.

Somit betrifft die vorliegende Erfindung insbesondere Verfahren zur Herstellung von Polyfructosen, insbesondere solche des Inulintyps, umfassend:

- (a) Kultivierung einer erfindungsgemäßen Wirtszelle, oder eines eine derartige Zelle enthaltenden Wirts, unter Bedingungen, die die Produktion von Fructosyltransferase und Umsetzung von gegebenenfalls von außen zugeführter Saccharose, oder eines äquivalenten Substrats zu Polyfructosen des Inulintyps erlauben; und
- (b) Gewinnung der so hergestellten Polyfructose aus den kultivierten Wirtszellen, Wirten oder aus dem Medium.

Bei den Wirtszellen handelt es sich vorzugsweise um Pflanzenzellen und bei den Wirten vorzugsweise um Pflanzen. Eine Methode zur Gewinnung von Polyfructose, insbesondere solche des Inulintyps, aus Pflanzen beschreibt z.B. Vogel (in: Inulin

25

and Inulin-containing Crops, Elsevier Science Publishers B.V. Amsterdam, A. Fuchs (Ed.) (1993), 65-75).

Gegenstand der vorliegenden Erfindung ist auch ein in-vitro Verfahren zur Herstellung von Polyfructose, insbesondere solche des Inulintyps, umfassend:

- (a) Inkontaktbringen von Saccharose oder eines äquivalenten Substrats mit einer erfindungsgemäßen Fructosyltransferase unter Bedingungen, die die Umsetzung zu Polyfructose erlauben; und
- (b) Gewinnung der so hergestellten Polyfructose.

Ein zu Saccharose äquivalentes Substrat ist dabei beispielsweise ein Substrat, das von der Wirtszelle oder einem oder mehreren anderen anwesenden Enzym(en) in Saccharose umgesetzt wird. Ein zu Saccharose äquivalentes Substrat können auch diejenigen Di- oder Oligosaccharide sein, die von der erfindungsgemäßen Fructosyltransferase alternativ als Substrat genutzt werden können. Hierzu zählt beispielsweise das Trisaccharid Raffinose. Es können aber auch derivatisierte Saccharosen verwendet werden. Das nach einem der vorgenannten Verfahren gewonnene Inulin ist vorzugsweise langkettig und weist vorzugsweise einen Polymerisationsgrad von DP > 20, bevorzugt von DP > 50, insbesondere von DP > 100, und besonders bevorzugt einen Polymerisationsgrad von DP > 200 auf.

Die vorliegende Erfindung betrifft ferner ein Verfahren zur Herstellung von Polyfructose, insbesondere solche des Inulintyps, umfassend den Schritt der Extraktion der Polyfructose aus einer oben beschriebenen erfindungsgemäßen Pflanze(nzelle) und/oder aus Teilen einer solchen Pflanze. Vorzugsweise umfaßt ein solches Verfahren auch den Schritt des Erntens der kultivierten Pflanzen und/oder Teile dieser Pflanzen vor der Extraktion der Polyfructose und besonders bevorzugt ferner den Schritt der Kultivierung erfindungsgemäßer Pflanzen vor dem Ernten. Verfahren zur Extraktion der Polyfructose aus Pflanzen oder Teilen von Pflanzen sind dem Fachmann bekannt und wurden beispielsweise beschrieben von Gibson (International Sugar Journal 96 (1994), 381-387), Vogel (Stud. Plant Sci. 3 (1993), Inulin and Inulin-Containing Crops, 65-75).

Ferner betrifft die vorliegende Erfindung die Polyfructose, insbesondere solche des Inulintyps, die aus einer erfindungsgemäßen Wirtszelle oder nach einem der vorbeschriebenen erfindungsgemäßen Verfahren erhältlich ist. Diese Polyfructose kann vorzugsweise in der Herstellung von Tensiden, zur Viskositätserhöhung von wäßrigen Systemen, als Detergenz, als suspendierendes Agens, zur Sedimentationsbeschleunigung und Komplexierung oder zur Wasserbindung benutzt werden.

Ferner können die erfindungsgemäßen Wirtszellen, die Polyfructose, insbesondere solche des Inulintyps, synthetisieren, als Nahrungsmittelzusatz verwendet werden. Dies ist vorteilhaft, da Fructane positive Auswirkungen auf die Gesundheit haben (Roberfroid et al., J. of Nutrition 128 (1998), 11-19; Kleesen et al., Am. J. Clin. Nutr. 65 (1997), 1397-1402).

Die vorliegende Erfindung betrifft ferner ein Verfahren zur Herstellung von Polyfructose, insbesondere solcher des Inulintyps, dadurch gekennzeichnet, daß zur Herstellung der Polyfructose eine pilzliche Fructosyltransferase verwendet wird oder ein Wirtsorganismus, der eine pilzliche Fructosyltransferase exprimiert. Vorzugsweise können dabei erfindungsgemäße Fructosyltransferasen oder erfindungsgemäße Wirtszellen verwendet werden. Die vorliegende Erfindung zeigt erstmals, daß es möglich ist, derartige pilzliche Fructosyltransferasen zur Herstellung von Polyfructose des Inulintyps zu verwenden.

Schließlich betrifft die vorliegende Erfindung auch die Verwendung pilzlicher Fructosyltransferasen zur Herstellung von Polyfructose, insbesondere solcher des Inulintyps.

Diese und andere Ausführungsformen sind dem Fachmann offenbart und offensichtlich und umfaßt durch die Beschreibung und die Beispiele der vorliegenden Erfindung. Weiterführende Literatur zu einer der oben angeführten Methoden, Mittel und Verwendungen, die im Sinne der vorliegenden Erfindung

27

angewendet werden können, kann dem Stand der Technik entnommen werden, z.B. aus öffentlichen Bibliotheken unter beispielsweise der Benutzung von elektronischen Hilfsmitteln. Zu diesem Zweck bieten sich unter anderem öffentliche Datenbanken an wie die "Medline", die über Internet zur Verfügung stehen, z.B. unter der Adresse http://www.ncbi.nlm.nih.gov/PubMed/medline.html. Weitere Datenbanken und Adressen sind dem Fachmann geläufig und können aus dem Internet entnommen werden, z.B. unter der Adresse http://www.lycos.com. Eine Übersicht über Quellen und Informationen zu Patenten bzw. Patentanmeldungen in der Biotechnologie ist in Berks, TIBTECH 12 (1994), 352-364 gegeben.

- Figur 1 stellt Konstruktion pSK-as1 zur Transformation von Bakterien dar.
- Figur 2 stellt die Konstruktion des Plasmids p112-as1 zur Transformation von Hefezellen dar.
- Figur 3 stellt die Konstruktion des Plasmids pA7-as1 zur Transformation von Pflanzenzellen dar.
- Figur 4 stellt die Konstruktion des Plasmids p35-as1 zur Transformation von Pflanzen dar.
- Figur 5 stellt die Konstruktion des Plasmids p35-s3-as1 zur Transformation von Pflanzen dar.
- Figur 6 stellt die dünnschichtchromatographische Analyse von mit pSK-as1 transformierten *E.coli* dar. Die Spur 1 zeigt einen Kontrollversuch mit dem leeren Vektor pBluescript SK. Die Spur 2 gibt ein Experiment mit dem Plasmid pas1 wieder, bei dem die as1 Codierregion nicht im Leseraster des lacZ Gens ist (Spur 2). In diesem Fall erfolgt die Translation der as1 Codierregion nicht als Fusion an die β-Glucuronidase, sondern erfolgt, mit verminderter Effizienz, vom

endogenen Startcodon aus. Die Spuren 3 bis 6 zeigen Versuche mit verschiedenen Transformanden des Konstrukts pSK-as1. Nach Anzucht der Bakterien bis zu einer OD 600 von 0,4 wurden die Kulturen mit 100 mM IPTG induziert. Nach 2h Induktion wurden die Zellen geerntet und in 50 mM Natriumphosphat pH 6,0 lysiert. Proteinextrakte wurden für 12h mit 600 mM Saccharose bei 37°C inkubiert. Als Standard für die Dünnschichtchromatographie wurde in den Spuren 7-9 1-Kestose (7), Saccharose (8) bzw. Fructose (9) aufgetragen.

Figur 7

stellt die dünnschichtchromatographische Analyse von transformierten Hefezellen, enthaltend das Plasmid p112-as1 (Spur 2), bzw. p112-as1L (Spur 3) dar. Der Vektor p112-as1L enthält den 5' Leader des Saccharose-Transporters aus Spinat. Die Spur 1 zeigt einen Kontrollversuch mit nicht transformierten Hefezellen. Fructosyltransferaseaktivität wurde in Proteinextrakten aus den Hefezellen nachgewiesen. Als Standard wurde Fructose (Spur 4), ein Gemisch aus 1-Kestose, Nystose und Fructosyl-Nystose (Spur 5) und Saccharose (Spur 6) aufgetragen.

Figur 8

stellt die dünnschichtchromatographische Analyse von Pflanzenzellen, enthaltend das Plasmid pA7-as1, dar. Spur 1 zeigt eine Transformation mit dem leeren Vektor pA7 (50 μ g); die Spuren 2 bis 5 zeigen Transformationen mit dem Vektor pA7-as1 (Spur 2: 10 μ g; Spur 3: 20 μ g; Spur 4 und 5: 50 μ g). Als Standard wurde ein Gemisch aus 1-Kestose, Nystose und Fructosyl-Nystose (Spur 6), Saccharose (Spur 7) und Fructose (Spur 8) aufgetragen.

Für jedes Experiment wurden 500.000 Protoplasten verwendet. Die Protoplasten wurden nach der Transformation zwei Tage bei 25°C inkubiert, anschließend wurde ein Proteinextrakt in 50 mM Natrium-Phosphat pH 6 gewonnen, der für 20 Stunden bei 28°C mit 500 mM

29

Saccharose inkubiert wurde. Aufgetragen wurden 4 μ l einer 1/10-Verdünnung des Ansatzes.

- stellt die dünnschichtchromatographische Analyse von Pflanzen dar, die mit dem Konstrukt 35-as1 transformiert wurden. Zwölf Pflanzen wurden zufällig ausgewählt. Jeweils 20 mg Blattmaterial wurde in 200 µl Wasser extrahiert. Vom Extrakt wurden 4 µl aufgetragen. Als Standard wurde Fructose (Spur F), Saccharose (Spur S) und ein Gemisch aus 1-Kestose, Nystose und Fructosyl-Nystose (Spur St) aufgetragen.
- Figur 10 stellt die dünnschichtchromatographische Analyse von Pflanzen dar, die mit dem Konstrukt 35-S3as1 transformiert wurden. Zwölf Pflanzen wurden zufällig ausgewählt. Jeweils 20 mg Blattmaterial wurde in 200 μl Wasser extrahiert. Vom Extrakt wurden 4 μl aufgetragen. Als Standard wurde Fructose (Spur F), Saccharose (Spur S) und ein Gemisch aus 1-Kestose, Nystose und Fructosyl-Nystose (Spur St) aufgetragen.
- Figur 11 stellt das Eluat "400 bis 0 mM Ammoniumsulfat" einer Phenylsuperose-Säule dar, die mit einem an Fructosyltransferase angereicherten Proteinextrakt aus Aspergillus sydowi beschickt worden war (Spur E). In den mit "M" gekennzeichneten Spuren ist ein Größenmarker aufgetrennt. Die Molmassen der Markerproteine sind rechts in kDalton angegeben.

Die Beispiele erläutern die Erfindung.

30

Aspergillus sydowi IAM 2544 wurde auf einem Kulturmedium angezogen, das 2%

Beispiel 1

Reinigung der af1-SST aus Aspergillus sydowi

Malzextrakt, 0,5% Pepton und 2% Saccharose enthielt. Das Medium wurde durch Zusatz von 2% Agar gefestigt. Sporen wurden ausplattiert, und die Kultur wurde bis zum vollständigen Austrocknen der Platten bei 25°C gehalten. Konidien wurden von den Platten abgeerntet und in 50 mM Natriumphosphat pH 6,0 aufgenommen. Die Lyse der Konidien erfolgte bei drei Passagen durch eine "French Pressure Cell". Zur Reinigung wurde das Homogenat an Sepharose Q adsorbiert. Gebundenes Protein wurde mit einem linearen Gradienten von 0 bis 1000 mM KCl eluiert. Sucrolytisch aktive Fraktionen wurden zwischen 500 und 700 mM KCl erhalten. Diese Fraktionen wurden vereinigt und gegen Natriumphosphat pH 6,0 dialysiert. Zur Anreicherung des Proteins wurde ein weiteres Mal an Sepharose Q (Bettvolumen 2 ml) adsorbiert und in einem Volumen von 10 ml eluiert.

Das Eluat wurde auf 2 M Ammoniumsulfat eingestellt und an Phenylsuperose adsorbiert. Die Elution erfolgte nach Waschen mit 2 M Ammoniumsulfat, 100 mM Natriumphosphat pH 7,0 mit einem linearen Gradienten von 2 M bis 0 M Ammoniumsulfat. Aktive Fraktionen wurden im Elutionsgradienten zwischen 400 und 0 mM Ammoniumsulfat erhalten. Das erhaltene Proteingemisch wurde durch SDS-PAGE analysiert. Das Ergebnis ist in Fig. 11 wiedergegeben. Eine ähnliche Anreicherung einer sucrolytischen Aktivität - allerdings aus Mycel von Aspergillus sydowi ist von Muramatsu und Nakakuki (Biosci. Biotech. Biochem. 59 (1995), 208-212) beschrieben. Die Reinigung ergibt kein homogenes Protein, das beispielsweise für eine Sequenzierung geeignet wäre.

Um die Fructosyltransferase zu identifizieren, wurde ein semi-natives Polyacrylamid-Gel eingesetzt, auf das 10 µg Protein des Eluats der Phenylsuperose-Säule in 0,1% SDS, 10% Glyzerin, 50 mM Tris pH 6,8 aufgetragen wurde. Nach der Elektrophorese wurde das Gel in 50 mM Natriumphosphat pH 6,0, 1% Triton X 100 dreimal 10 Minuten umgepuffert und dann 30 Minuten in 50 mM Natriumphosphat pH 6,0, 1% Triton X 100, 500 mM Saccharose inkubiert.

31

Anschließend wurde das Gel in 0,1% (w/v) 2,3,5,-Triphenyltetrazoliumchlorid (TTC), 0,5 M NaOH gekocht. TTC bildet hierbei mit reduzierenden Zuckern einen roten Formazan-Farbstoff. Die in Fig. 11 markierte Proteinbande ergab eine Färbung aufgrund der sucrolytischen Aktivität des Proteins, das so als Fructosyltransferase von Aspergillus sydowi identifiziert werden konnte. Aus einem präparativen Gel wurde die Bande isoliert, das Protein aus dem Gel eluiert und für eine Sequenzierung verwendet. Da das Protein N-terminal blockiert ist, wurden Spaltungen mit Endopeptidase LysC und AspN vorgenommen, die Peptide wurden durch HPLC gereinigt und einer Sequenzierung nach Edmann unterzogen. Hierbei wurden folgende Sequenzen erhalten:

(SEQ ID No. 3) VLPSTSQASEK LysC:

(SEQ ID No. 4) DDLVTYR AspN:

> (SEQ ID No. 5) DPYVFQNHEV

Zur Clonierung des Gens wurde eine cDNA-Bibliothek im Phagen Lambda Zap II (Stragene, Heidelberg) angelegt. Da eine Präparation von RNA aus den Konidien nicht möglich war, wurde RNA aus Mycel nach Logemann et al. (Anal. Biochem. 163 (1987), 16-20) präpariert. Poly A*-RNA wurde mit dem polyATract System (Promega, Madison, USA) gewonnen. Die Synthese von cDNA und die Clonierung in Lambda Zap II erfolgte nach Herstellerangaben (Stratagene, Heidelberg). Entsprechend der Proteinsequenzen wurden folgende primer entworfen:

primer asp19down: 5'-GAYGAYYTNGTNACNTAYMG (SEQ ID No. 6) 5'-CKRTANGTNACNARRTCRTC (SEQ ID No. 7) primer asp19up: primer asp31-down: 5'-GTNTTYCARAAYCAYGARG (SEQ ID No. 8) (SEQ ID No. 9) 5'-TGRTTYTGRAANACRTANGG primer asp31up: 5'-GCYTGNSWNGTNSWNGG (SEQ ID No. 10) primer lys1up:

In einer PCR-Reaktion mit der gesamten cDNA-Bibliothek als Matritze und der primer-Kombination asp19down/asp31up (Annealing-Temperatur 40°C) wurde ein DNA-Fragment von ca. 350 bp erhalten. Dieses Fragment wurde nach radioaktiver Markierung (Megaprime Kit, Boehringer Mannheim, Mannheim) zur Durchmusterung der cDNA-Bibliothek eingesetzt. Erhaltene Clone wurden nach *in vivo*-Excision als pBluescript-Plasmide amplifiziert. Die cDNA-Insertionen wurden nach Restriktionsspaltung verglichen, und die Insertion eines Clons wurde vollständig sequenziert. Die Sequenz der cDNA-Insertion ist in SEQ. ID No. 1 wiedergegeben. Die abgeleitete Proteinsequenz ist in SEQ. ID No. 2 wiedergegeben.

Beispiel 2

Herstellung von Konstrukten, enthaltend Codierregionen pilzlicher Fructosyltransferasen, zur Transformation verschiedener pro- und eukaryontischer Wirtszellen.

Zur Transformation verschiedener Wirtszellen mit pilzlichen Fructosyltransferasen wurde eine Reihe von unterschiedlichen Konstrukten nach molekularbiologischen Standardverfahren (Sambrook et al., 1989, Cold Spring Harbor Laboratory Press) hergestellt. Die Konstrukte sind in Fig. 1 bis 5 dargestellt. Im einzelnen wurden die Konstrukte wie folgt hergestellt:

pSK-as1 ist ein Derivat von pas1, das als *in vivo*-Excision aus einem Lambda Zapli Clon der cDNA-Bank von Aspergillus sydowi gewonnen worden war. pas1 enthält die cDNA als EcoRI/Xhol Fragment. pSK-as1 entstand aus pas1 durch Spaltung an BamHi und Smal, Auffüllen des überstehenden BamHi-Endes und Religation des Vektors. Durch die Entfernung von 4 Nucleotiden wird die Codierregion von as1 in das Leseraster des lacZ-Gens (Figur 1) gebracht.

p112-as1 In den Vektor p112A1NE (siehe Riesmeier et al., EMBO J. 11 (1992), 4705-4713), der BamHl-geschnitten, aufgefüllt und dann Notl-

33

geschnitten worden war, wurde das Fragment as1 aus pas1 (Asp718geschnitten, aufgefüllt und dann Notl-geschnitten) cloniert (Figur 2).

pA7-as1

wurde aus pA7 erzeugt, indem die Codierregion von pas1 als Smal/Asp718 Fragment, dessen überhängende Enden aufgefüllt worden waren, zwischen die aufgefüllte Asp718 und die Smal Schnittstelle des Vektors cloniert wurden. Die richtige Orientierung des Fragments wurde durch einen HindIII-Schnitt überprüft, der ein etwa 1900 bp großes Fragment ergab. pA7 ist ein Derivat von pUC18, das zwischen EcoRl und Asp718 den 35S RNA-Promotor des Cauliflower Mosaikvirus (CaMV; 528 bp; nt 6909-7437, Franck et al., Cell 21 (1980), 285-294) enthält, sowie zwischen Sphl und HindIII den Terminator des Octopinsynthase-Gens aus Agrobacterium tumefaciens (Gielen et al., EMBO J. 3 (1984), 835-846) (Figur 3).

p35-as1

wurde aus pBinAR erzeugt, indem das Fragment as1 aus pas1 (Asp718/Notl-geschnitten und dann aufgefüllt) in den Smalgeschnittenen Vektor ligiert wurde. pBinAR ist ein Derivat von pBin19 (Bevan, Nucl. Acids Res. 12 (1984), 8711), das zwischen EcoRl und Asp718 den 35S RNA Promotor des Cauliflower Mosaikvirus (CaMV; 528 bp; nt 6909-7437, Franck et al., a. a. O.) enthält, sowie zwischen Sphl und HindIII den Terminator des Octopinsynthase-Gens aus Agrobacterium tumefaciens (Gielen et al., a. a. O.) (Figur 4).

p35-s3-as1

wurde in zwei Schritten kloniert. Zunächst wurde ein BamHI / Asp718 Fragment aus pas1, dessen überhängende Enden mit T4-Polymerase aufgefüllt worden waren, in den Vektor pS3 cloniert, der zuvor mit BamHI geschnitten und aufgefüllt worden war. Hierbei wurde pS3-as1 erhalten. Der Vektor pS3 enthält ein PCR-Fragment des Patatin-Gens B33 (Rosahl et al., Mol. Gen. Genet. 203 (1986), 214-220), das die Nucleotide 725 bis 1400 umfaßt. Das PCR-Fragment ist an nt 725 mit einer Asp718 Schnittstelle versehen (GGTACC), an nt 1400 mit einer Sequenz ATGG, die in Verbindung mit den nt 1399 und 1400 eine Ncol-Schnittstelle ergibt. Das PCR-Fragment ist zwischen die Asp718-und die Smal-Schnittstelle insertiert. Aus pS3-as1 wurde ein Sacl

34

(aufgefüllt) / Xbal Fragment präpariert, das die Fusion S3-as1 enthält. Dieses Fragment wurde zwischen die Smal- und die Xbal-Schnittstelle von pBinAR cloniert (Figur 5).

Die Transformation der jeweiligen Wirte erfolgte nach Standardverfahren. *E. coli* wurde nach der Methode von Hanahan (J. Mol. Biol. 166 (1983), 557-580) transformiert, *Saccharomyces cerevisiae* wurde nach der Methode von Dohmen et al. (Yeast 7 (1991), 691-692) transformiert, die transiente Genexpression in Tabak-Protoplasten erfolgte nach der Methode von Damm und Willmitzer (Mol. Gen. Genet. 213 (1989), 15-20), die stabile Transformation von Kartoffelpflanzen nach der Methode von Dietze et al. (in: Potrykus, I. and G. Spangenberg (Ed.). Gene transfer to plants. xxii+361 (1995), 24-29; Springer-Verlag: Berlin, Germany; New York, New York, USA. ISBN 3-540-58406-4).

Beispiel 3

Analyse der Fructosyltransferaseaktivität von transgenen Wirtszellen bzw. -organismen, die pilzliche Fructosyltransferasen exprimieren.

in vivo Synthese von Inulin

Transgene Wirtszellen oder -organismen, die pilzliche Fructosyltransferasen exprimieren, wurden – soweit es sich nicht um Pflanzengewebe handelt – in Medien mit 2% Saccharose angezogen. Im Falle von *Escherichia coli* K12 als Wirtsorganismus wurde ein funktionales <u>cscB</u> Gen, das die Saccharosepermease von *E. coli* codiert, als Konstrukt im Vector pACYC184 eingebracht. Im Falle von *Saccharomyces cerevisiae* wurde das Gen des Saccharosetransporters von Spinat im Vektor p112AINE (Riesmeier et al., EMBO J. 11 (1992), 4705-4713) eingebracht. Die Zellen wurden mindestens 24h in Gegenwart der Saccharose angezogen, anschließend geerntet und nach Waschen in 50 mM Natriumphosphat pH 6,0 aufgeschlossen.

Pflanzen, die die pilzliche Fructosyltransferasen exprimieren, wurden in Erde angezogen. Nach vier Wochen wurden Blatt- oder sonstige Gewebeproben

genommen und in 1 ml Wasser/g Frischgewicht in Gegenwart von unlöslichem Polyvinylpolypyrrolidon aufgeschlossen, Zelltrümmer wurden abzentrifugiert.

Jeweils 4 µl der Extrakte wurden auf Kieselgel DC-Fertigfolien (Schleicher und Schüll, Dassel, Germany) aufgetragen und in Aceton/Wasser (87:13) zweimal entwickelt. Der Nachweis von Fructosylresten erfolgte mit einem Harnstoff-Phosphorsäure-Reagenz (Röber et al., Planta 199 (1992), 528-536).

in vitro Synthese von Inulin

Zellen, die die pilzliche Fructosyltransferasen exprimieren, wurden in 50 mM Natriumphosphat pH 6,0, 50 μM PMSF, 1 mM DTT, 10% (v/v) Ethylenglykol aufgeschlossen. Extrakte aus den Zellen wurden in 50 mM Natriumphosphat pH 6,0, 500 mM Saccharose, 50 μM PMSF, 1 mM DTT, 0,02% (w/v) NaN₃, 10% (v/v) Ethylenglykol für 12h bei 25°C inkubiert. Die Ansätze wurden 1:10 in Wasser verdünnt, dann wurden 4 μl auf Kieselgel DC-Fertigfolien (Schleicher und Schüll, Dassel, Germaný) aufgetragen und in Aceton/Wasser (87:13) zweimal entwickelt. Der Nachweis von Fructosylresten erfolgte mit einem Harnstoff-Phosphorsäure-Reagenz (Röber et al., a.a.O.).

Das Ergebnis der jeweiligen Analysen ist in den Fig. 6 bis 10 wiedergegeben. Die Figuren zeigen Kieselgel-Folien nach der dünnschichtchromatographischen Auftrennung von Inkubationsansätzen bzw. Zellhomogenaten und der Anfärbung fructosehaltiger Zucker. Bei der Dünnschichtchromatographie in Aceton/Wasser (87:13) werden die Kohlenhydratmono-, oligo- und polymere nach ihrer Größe aufgetrennt. Fructose wandert hierbei weiter als Saccharose, die wiederum weiter wandert als Kestose usf. Oligomere ab einem DP>7 werden nicht mehr aufgetrennt und verweilen am Auftragsort.

In der Figur 6 sieht man, daß *E. coli*-Clone, die mit einem leeren pBluescript-Vektor transformiert sind, Saccharose nicht umwandeln können (Spur 1), während solche, die mit dem Plasmid pas1 transformiert sind, das Trisaccharid Kestose aufbauen. Clone, die mit dem Plasmid pSK-as1 transformiert sind, können auch höhere Oligomere synthetisieren (Spuren 3-6). Gleichzeitig findet eine durch die SFT aus

36

Aspergillus sydowi katalysierte Übertragung von Fructoseresten auf Wasser statt, wobei Fructose entsteht. In Figur 7 ist gezeigt, daß Proteinextrakte aus Hefen, die mit dem Plasmid 112-as1 transformiert sind, Fructane aufbauen können. Die Fructosyltransferaseaktivität ist in diesen Hefen größer als in solchen, die mit dem Konstrukt 112-as1L transformiert wurden. Letztere können wegen der geringeren Fructosyltransferaseaktivität innerhalb der im Experiment verfügbaren Zeit nur das Trisaccharid aufbauen. Die Größe der synthetisierten Fructane hängt von der Reaktionsdauer und der Fructosyltransferaseaktivität ab. Die Figur 8 demonstriert, daß die Größe der in Extrakten aus transformierten Tabak-Protoplasten synthetisierten Fructane bei gegebener Reaktionszeit von der Menge der gebildeten Fructosyltransferaseaktivität abhängt, die wiederum von der Menge an transformierten Plasmid pA7-as1 abhängig ist. In den Spuren 3 – 5 sieht man, daß Oligo- und Polymere mit einem DP>7 entstanden sind, die sich in der Chromatographie nicht vom Auftragsort entfernen. Gleiches gilt für Pflanzenextrakte aus stabil transformierten Pflanzen wie in Figur 9 und 10 gezeigt.

WO 00/14246

Patentansprüche

37

- Nucleinsäuremolekül, codierend eine Fructosyltransferase, ausgewählt aus 1. der Gruppe bestehend aus
 - Nucleinsäuremolekülen, die ein Protein codieren, das die unter SEQ (a) ID No. 2 angegebene Aminosäuresequenz umfaßt;
 - Nucleinsäuremolekülen, die die Nucleotidsequenz der unter SEQ ID (b) No. 1 angegebenen codierenden Region umfassen oder eine korrespondierende Ribonucleotidsequenz;
 - Nucleinsäuremolekülen, die mit einem komplementären Strang der (c) unter (a) oder (b) genannten Nucleinsäuremoleküle hybridisieren; und
 - Nucleinsäuremolekülen, deren Nucleotidsequenz aufgrund der (d) Degeneration des genetischen Codes von der Sequenz eines unter (c) genannten Nucleinsäuremoleküls abweicht;

sowie die zu diesen komplementären Nucleinsäuremoleküle.

- Nucleinsäuremolekül nach Anspruch 1, das ein DNA- oder RNA-Molekül ist. 2.
- Nucleinsäuremolekül nach Anspruch 1 oder 2, das ein Polypeptid aus einem 3. Pilz codiert.
- Nucleinsäuremolekül nach Anspruch 3, wobei der Pilz aus der Gattung 4. Aspergillus ist.
- Vektor, enthaltend ein Nucleinsäuremolekül nach einem der Ansprüche 1 bis 5. 4.
- Vektor nach Anspruch 5, wobei das Nucleinsäuremolekül operativ verknüpft 6. ist mit regulatorischen Elementen, die die Transkription und Synthese einer translatierbaren RNA in pro- und/oder eukaryontischen Zellen gewährleisten.

PCT/EP99/06319 WO 00/14246

Vektor nach Anspruch 6, wobei das Nucleinsäuremolekül eine Region 7. enthält, die eine Signalsequenz codiert, die die intra- oder extrazelluläre Lokalisation der Fructosyltransferase beeinflußt.

38

- Wirtszelle, die mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 8. bis 4 oder einem Vektor nach einem der Ansprüche 5 bis 7 transformiert ist oder von einer solchen Zelle abstammt.
- Wirtszelle nach Anspruch 8, die eine bakterielle Zelle oder Pilzzelle ist. 9.
- Pflanzenzelle, die mit einem Nucleinsäuremolekül nach einem der 10. Ansprüche 1 bis 4 oder einem Vektor nach einem der Ansprüche 5 bis 7 transformiert wurde oder von einer solchen Zelle abstammt.
- Verfahren zur Herstellung einer Pflanze, wobei 11.
 - eine pflanzliche Zelle genetisch modifiziert wird durch die Einführung (a) eines Nucleinsäuremoleküls nach einem der Ansprüche 1 bis 4 und/oder eines Vektors nach einem der Ansprüche 5 bis 7, und
 - aus einer Zelle eine Pflanze regeneriert wird; und gegebenenfalls (b)
 - aus der Pflanze nach (b) weitere Pflanzen erzeugt werden. (c)
- Pflanze enthaltend Pflanzenzellen nach Anspruch 10 oder erhältlich durch 12. das Verfahren nach Anspruch 11.
- Pflanze nach Anspruch 12, die eine Nutzpflanze ist. 13.
- Vermehrungsmaterial einer Pflanze nach Anspruch 12 oder 13 enthaltend 14. Pflanzenzellen nach Anspruch 10.
- Erntebare Pflanzenteile einer Pflanze nach Anspruch 12 oder 13. 15.

- 16. Futtermittel und/oder Nahrungsmittel enthaltend erntebare Pflanzenteile nach Anspruch 15.
- 17. Verfahren zur Herstellung von Wirtszellen nach Anspruch 8 oder 9, wobei geeignete Zellen mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder mit einem Vektor nach einem der Ansprüche 5 bis 7 transformiert werden.
- 18. Verfahren zur Herstellung einer Fructosyltransferase, bei dem eine Wirtszelle nach Anspruch 8 oder 9 oder eine Pflanzenzelle nach Anspruch 10 unter Bedingungen kultiviert wird, die die Synthese der Fructosyltransferase erlauben und die Fructosyltransferase aus den kultivierten Zellen und/oder dem Kulturmedium isoliert wird.
- 19. Fructosyltransferase, codiert durch ein Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder erhältlich nach dem Verfahren nach Anspruch 18.
- Nucleinsäuremolekül, das spezifisch mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder einem komplementären Strang davon hybridisiert.
- 21. Verfahren zur Herstellung von Polyfructose, insbesondere solche des Inulintyps umfassend:
 - (a) Kultivierung einer Wirtszelle nach Anspruch 8 oder 9 oder eines eine derartige Zelle enthaltenden Wirtes unter Bedingungen, die die Produktion von Fructosyltransferase und Umsetzung von gegebenenfalls von außen zugeführter Saccharose oder eines äquivalenten Substrats zu Polyfructose erlauben; und
 - (b) Gewinnung der so hergestellten Polyfructose aus den kultivierten Zellen, dem Wirt oder aus dem Medium.

40

- 22. Verfahren zur Herstellung von Polyfructose, insbesondere solche des Inulintyps, umfassend:
 - (a) Inkontaktbringen von Saccharose oder eines äquivalenten Substrats mit einer Fructosyltransferase nach Anspruch 19 unter Bedingungen, die die Umsetzung zu Polyfructose erlauben; und
 - (b) Gewinnung der so hergestellten Polyfructose.
- 23. Verfahren zur Herstellung von Polyfructose, insbesondere solche des Inulintyps, umfassend den Schritt der Extraktion der Polyfructose aus einer Pflanzenzelle nach Anspruch 10, aus einer Pflanze nach Anspruch 12 oder 13 oder aus Teilen einer solchen Pflanze.
- Verfahren zur Herstellung von Tensiden, das die Verfahrensschritte (a) und(b) des Verfahrens nach Anspruch 21 oder 22 oder den Extraktionsschritt des Verfahrens nach Anspruch 23 umfaßt.
- 25. Verwendung von Wirtszellen nach Anspruch 8 oder 9 oder Pflanzenzellen nach Anspruch 10 als Nahrungsmittelzusatz.
- Verwendung der Fructosyltransferase nach Anspruch 19 zur Herstellung von Polyfructose, insbesondere solche des Inulintyps.

Fig. 1

ERSATZBLATT (REGEL 26)

Fig. 3

Fig. 4

ERSATZBLATT (REGEL 26)

4/7

Fig. 6

Fig. 7

ERSATZBLATT (REGEL 26)

Fig. 8

Fig. 9

Fig. 10

Fig. 11

1/5

```
SEQUENZPROTOKOLL
<110> Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
<120> Nucleinsäuremoleküle codierend Enzyme, die
      Fructosyltransferaseaktivität besitzen und deren Verwendung
<130> C 1056 PCT
<140>
<141>
<160> 10
<170> PatentIn Ver. 2.1
<210> 1
<211> 2197
<212> DNA
<213> Aspergillus sydowi
<400> 1
gaatteggea egaggeegee atgaagetee cetetteaet ggacattett etegeeagae 60
aggoggttyg cqqtactqaq gtcgactacg actcaccacc ccctqacctq acqacqctcc 120
ctgagaactc gctgttcgag acctggagac ccaagatcca cgttctgccc ccaaatggcc 180
aaatcqqqqa cccatqcqct cattacaatg acccggcgac gqqtttqttc catqtcqqat 240
tectecacaa tggcacegge atttecageg tetacacega tgacetggtg acetategtg 300
atatcaatcc taacggcggc tacattattg ttgctggtgg ccccaatgac cccgaagccg 360
tctttgatgg atctgtcatc cccagcggaa tcgatgacct gcccacgctc ctttatacct 420
ctgtgacatc gttgccaatc cactggactc taccttatac ccccggaagc gagactcagt 480
cactggccqt aagtgacgat ggtggtcacc acttcgataa gcttgaccga ggcccagtca 540
ttccacttcc qccaqatqqa ctcqatqtta caqccttccq tqacccttat qtattccaqa 600
accacgaggt agacgaagtt accggtagtg acccagatac atggtatgcc gccatatccg 660
ggggtgtcca tgatgtaggg cccggaatct ttctctaccg caaccaagac tcctcctttg 720
agaactggga atatctaggc gagtggtggc aagaacccgc caactcgact tggggtgacg 780
gcacttgggc caaacgctgg ggctacaatt tcgaaaccgg caacgtcttc tctctcgatc 840
gagaagggta caacgttgac ggccacacgt ttatgactat tggagttgag ggtgcatacg 900
cgcccatcca gccctcggtt acatctatgc atgccatgct gtgggcagcg ggaaatgttt 960
cctcagagaa tggcgaaaac gttaccttca cgccttatat ggccggtgct ttggactggg 1020
geatggeege atacgeeggt getggaaagg ttetaceeag cacateteag gettetgaga 1080
agagtggagc gcccgaccgc ttcatctcgt gggtttggct tacaggtgat gaatttggtg 1140
ctgccgctgg atttcctgct gcccagcagg ggtggcagaa tactctcctg cttccgcgtg 1200
aattgagtat acacacaatc cagaatgtgg tcgacaacga actcatccac gagactgcat 1260
cetggegtgt ggcagaacat ggcggegaga ggagatetgg tggtgtegag etggagacae 1320
tgggaatcaa tattgcgagg gagacctacg atgcaatcgt ctcttctggg acctcgtttg 1380
aggageette gegagaeatt aatgaateeg geaceattee atttgagege tegeecaeta 1440
gcaggttctt cgcccttgaa gcccaaatct ccttcccca gtctgcgcga gactcggaag 1500
tccagtccgg atttcaaatc cttgcttctg aactcgagtg gacgacgatc tattatcagt 1560
tttcgaatga gtcgattgtc attgaccgta accacacaag tgctgcgtcc gagactacac 1620
ctggtctcgg tactgtgact gagtctggcc gtatccggct tttcgatatc gcgggtggtt 1680
gcgatcatga tggacatggc ggccacgatg gcggcaacga tgatgaccac aacggtgacg 1740
gtgatcatag cggtgacggt gaccacaatg acgatgatga ccataacgtc gacggcgatg 1800
acaaggagcg tgctcgttac caaaagcgag atggcccttg cgataaagac catgataagg 1860
ttgagacatt ggatctcacc attgtcgtcg ataactcagt gcttgaagtt tacgccaact 1920
cacgatttgt ggtgtcgacc tgggttcggc cttggtacac caattcaacg gagattcgct 1980
tettecacaa eggegagggt gaggteaget ttgacaacat tgeggtteat gatggtetgt 2040
```

atgatgcata teeggacagg gacaactgaa gattteactg qttgatgtat tagettgcga 2100 gctataaaga tggcgataat tagtagattt aatccaatga attacctgcc gagattgcag 2160

atttattctt acaaaaaaaa aaaaaaaaa actcgag

PCT/EP99/06319 WO 00/14246

2/5

<210> 2 <211> 682 <212> PRT <213> Aspergillus sydowi

<400> 2

Met Lys Leu Pro Ser Ser Leu Asp Ile Leu Leu Ala Arg Gln Ala Val

Gly Gly Thr Glu Val Asp Tyr Asp Ser Pro Pro Pro Asp Leu Thr Thr

Leu Pro Glu Asn Ser Leu Phe Glu Thr Trp Arg Pro Lys Ile His Val

Leu Pro Pro Asn Gly Gln Ile Gly Asp Pro Cys Ala His Tyr Asn Asp

Pro Ala Thr Gly Leu Phe His Val Gly Phe Leu His Asn Gly Thr Gly

Ile Ser Ser Val Tyr Thr Asp Asp Leu Val Thr Tyr Arg Asp Ile Asn

Pro Asn Gly Gly Tyr Ile Ile Val Ala Gly Gly Pro Asn Asp Pro Glu

Ala Val Phe Asp Gly Ser Val Ile Pro Ser Gly Ile Asp Asp Leu Pro

Thr Leu Leu Tyr Thr Ser Val Thr Ser Leu Pro Ile His Trp Thr Leu 135

Pro Tyr Thr Pro Gly Ser Glu Thr Gln Ser Leu Ala Val Ser Asp Asp 150

Gly Gly His His Phe Asp Lys Leu Asp Arg Gly Pro Val Ile Pro Leu 165 170

Pro Pro Asp Gly Leu Asp Val Thr Ala Phe Arg Asp Pro Tyr Val Phe 185

Gln Asn His Glu Val Asp Glu Val Thr Gly Ser Asp Pro Asp Thr Trp

Tyr Ala Ala Ile Ser Gly Gly Val His Asp Val Gly Pro Gly Ile Phe

Leu Tyr Arg Asn Gln Asp Ser Ser Phe Glu Asn Trp Glu Tyr Leu Gly 230 235

Glu Trp Trp Gln Glu Pro Ala Asn Ser Thr Trp Gly Asp Gly Thr Trp 250

Ala Lys Arg Trp Gly Tyr Asn Phe Glu Thr Gly Asn Val Phe Ser Leu

Asp Arg Glu Gly Tyr Asn Val Asp Gly His Thr Phe Met Thr Ile Gly 275 280

Val	Glu 290	Gly	Ala	Tyr	Ala	Pro 295	Ile	Gln	Pro	Ser	Val 300	Thr	Ser	Met	His
Ala 305	Met	Leu	Trp	Ala	Ala 310	Gly	Asn	Val	Ser	Ser 315	Glu	Asn	Gly	Glu	Asn 320
Val	Thr	Phe	Thr	Pro 325	Tyr	Met	Ala	Gly	Ala 330	Leu	Asp	Trp	Gly	Met 335	Ala
Ala	Tyr	Ala	Gly 340	Ala	Gly	Lys	Val	Leu 345	Pro	Ser	Thr	Ser	Gln 350	Ala	Ser
Glu	Lys	Ser 355	Gly	Ala	Pro	Asp	Arg 360	Phe	Ile	Ser	Trp	Val 365	Trp	Leu	Thr
Gly	Asp 370	Glu	Phe	Gly	Ala	Ala 375	Ala	Gly	Phe	Pro	Ala 380	Ala	Gln	Gln	Gly
Trp 385	Gln	Asn	Thr	Leu	Leu 390	Leu	Pro	Arg	Glu	Leu 395	Ser	Ile	His	Thr	Ile 400
Gln	Asn	Val	Val	Asp 405	Asn	Glu	Leu	Ile	His 410	Glu	Thr	Ala	Ser	Trp 415	Arg
Val	Ala	Glu	His 420	Gly	Gly	Glu	Arg	Arg 425	Ser	Gly	Gly	Val	Glu 430	Leu	Glu
Thr	Leu	Gly 435	Ile	Asn	Ile	Ala	Arg 440	Glu	Thr	Tyr	Asp	Ala 445	Ile	Val	Ser
Ser	Gly 450	Thr	Ser	Phe	Glu	Glu 455	Pro	Ser	Arg	Asp	Ile 460	Asn	Glu	Ser	Gly
Thr 465	Ile	Pro	Phe	Glu	Arg 470	Ser	Pro	Thr	Ser	Arg 475	Phe	Phe	Ala	Leu	Glu 480
Ala	Gln	Ile	Ser	Phe 485	Pro	Gln	Ser	Ala	Arg 490	Asp	Ser	Glu	Val	Gln 495	Ser
Gly	Phe	Gln	Ile 500	Leu	Ala	Ser	Glu	Leu 505	Glu	Trp	Thr	Thr	Ile 510	Tyr	Tyr
Gln	Phe	Ser 515	Asn	Glu	Ser	Ile	Val 520	Ile	Asp	Arg	Asn	His 525	Thr	Ser	Ala
Ala	Ser 530	Glu	Thr	Thr	Pro	Gly 535	Leu	Gly	Thr	Val	Thr 540	Glu	Ser	Gly	Arg
Ile 545	Arg	Leu	Phe	Asp	Ile 550	Ala	Gly	Gly	Cys	Asp 555	His	Asp	Gly	His	Gly 560
Gly	His	Asp	Gly	Gly 565	Asn	Asp	Asp	Asp	His 570	Asn	Gly	Asp	Gly	Asp 575	His
Ser	Gly	Asp	Gly 580	Asp	His	Asn	Asp	Asp 585	Asp	Asp	His	Asn	Val 590	Asp	Gly
Asp	Asp	Lys 595	Glu	Arg	Ala	Arg	Tyr 600	Gln	Lys	Arg	Asp	Gly 605	Pro	Cys	Asp

4/5

Lys Asp His Asp Lys Val Glu Thr Leu Asp Leu Thr Ile Val Val Asp Asn Ser Val Leu Glu Val Tyr Ala Asn Ser Arg Phe Val Val Ser Thr Trp Val Arg Pro Trp Tyr Thr Asn Ser Thr Glu Ile Arg Phe Phe His Asn Gly Glu Gly Glu Val Ser Phe Asp Asn Ile Ala Val His Asp Gly Leu Tyr Asp Ala Tyr Pro Asp Arg Asp Asn <210> 3 <211> 11 <212> PRT <213> Aspergillus sydowi Val Leu Pro Ser Thr Ser Gln Ala Ser Glu Lys 1 5 <210> 4 <211> 7 <212> PRT <213> Aspergillus sydowi <400> 4 Asp Asp Leu Val Thr Tyr Arg 1 5 <210> 5 <211> 10 <212> PRT <213> Aspergillus sydowi <400> 5 Asp Pro Tyr Val Phe Gln Asn His Glu Val <210> 6 <211> 20 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz: künstliche Sequenz

5/5

<400> gaygay	6 yytng tnacntaymg	20
<210> <211> <212> <213>	20	
<220> <223>	Beschreibung der künstlichen Sequenz: künstliche Sequenz	
<400> ckrtar	7 ngtna cnarrtcrtc	20
<210> <211> <212> <213>	19	
<220> <223>	Beschreibung der künstlichen Sequenz: künstliche Sequenz	
<400> gtntty	8 /cara aycaygarg	19
<210> <211> <212> <213>	20	
<220> <223>	Beschreibung der künstlichen Sequenz: künstliche Sequenz	
<400> tgrtty	9 rtgra anacrtangg	20
<210> <211> <212> <213>	17	
	Beschreibung der künstlichen Sequenz: künstliche Sequenz	
<400> gcytgn	10 swng tnswngg	17
1		

5

INTERNATIONAL SEARCH REPORT

onal Application No PCT/EP 99/06319

A CLASS IPC 7	IFICATION OF SUBJECT MATTER C12N15/52 C12N9/10 C12N15/ C12P19/18	/31 C12N5/10	C12N15/82
According t	to international Patent Classification (IPC) or to both national classific	fication and IPC	
	SEARCHED		
Minimum de IPC 7	ocumentation searched (classification system followed by classific C12N C12P	ation symbols)	
Documenta	dion searched other than minimum documentation to the extent that	t such documents are included	in the fields searched
Electronic d	iata base consulted during the International search (name of data i	base and, where practical, sea	rch terme used)
	ENTS CONSIDERED TO BE RELEVANT		·
Category *	Citation of document, with indication, where appropriate, of the r	relevant passages	Relevant to claim No.
A	SOMIARI ET AL.: "Cloning and se of an Aspergillus niger gene cod beta-fructofuranosidase" EMBL SEQUENCE DATABASE, 14 November 1997 (1997-11-14), X HEIDELBERG DE Ac AF029359 the whole document -& SOMIARI ET AL.: EMBL SEQUENCE 1 January 1998 (1998-01-01), XPO HEIDELBERG DE Ac 013388 the whole document & SOMIARI ET AL.: BIOTECHNOL LET vol. 19, no. 12, 1997, pages 124	T,	1-4,19,
X Furth	ner documents are listed in the continuation of box C.	X Peterst family memi	bers are listed in annex.
"A" documer consider to filing de "L" documer which is challen other m" "P" documer later the	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another is or other special reason (as specified) and referring to an oral disclosure, use, exhibition or neans int published prior to the international filing date but an the priority date claimed	or priority date and not include to understand the invention "X" document of particular recannot be considered in inventive an inventive attempt of particular recannot be considered to document is combined."	i after the international filing date in conflict with the application but principle or theory underlying the elevance; the claimed invention ovel or carmot be considered to p when the document is taken alone elevance; the claimed invention involve an inventive step when the with one or more other such documen being obvious to a person skilled
	7 January 2000	28/01/2000	ternational search report
Name and m	tailing address of the ISA European Patent Office, P.B. 6818 Patentiaan 2 NL – 2280 HV Rijewijk Tel. (+31–70) 340–2040, Tx. 31 661 epo ni, Fax: (+31–70) 440–3016	Authorized officer Ceder, 0	

INTERNATIONAL SEARCH REPORT

ional Application No PCT/EP 99/06319

0.10	Man partition adjustments to the principle	FC1/EF 99/00319
Category *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to dam No.
<u>.</u>	от не в помения в наприменти в при применти в негодини в применти в негодини	I MOVER WIGHT IN
A	EP 0 307 158 A (JAPAN MAIZE PROD) 15 March 1989 (1989-03-15) page 4, line 58 -page 5, line 45	3,4,18, 19, 21-23,26
A	PATENT ABSTRACTS OF JAPAN vol. 017, no. 135 (C-1037), 19 March 1993 (1993-03-19) & JP 04 311378 A (AJINOMOTO CO INC), 4 November 1992 (1992-11-04) abstract	3,4
A	WO 94 14970 A (SMEEKENS JOSEPHUS CHRISTIANUS; WEISBEEK PETRUS JACOBUS (NL); EBSKA) 7 July 1994 (1994-07-07) cited in the application abstract; claims page 5, line 15 - line 32	5-17,23, 25,26
A	DE 196 17 687 A (SUEDUCKER AG; KWS KLEINWANZLEBENER SAATZUCHT (DE)) 6 November 1997 (1997-11-06) cited in the application the whole document	5-17,23, 26

INTERNATIONAL SEARCH REPORT.

information on patent family members

onal Application No PCT/EP 99/06319

Patent document ched in search report			Publication date		'atent family member(s)	Publication date
EP	0307158	A	15-03-1989	JP	1063389 A	09-03-1989
				JP	2806522 B	30-09-1998
				AT	109797 T	15-08-1994
				DE	3851022 D	15-09-1994
				DE	3851022 T	24-11-1994
				US	5334516 A	02-08-1994
JP	04311378	A	04-11-1992	NONE		
WO	9414970	Α	07-07-1994	AU	5843794 A	19-07-1994
				EP	0677112 A	18-10-1995
				HU	71782 A	28-02-1996
				JP	8507918 T	27-08-1996
				NL	9300646 A	18-07-1994
				PL	309606 A	30-10-1995
				US	5986173 A	16-11-1999
DE	19617687	A	06-11-1997	AU	2774197 A	26-11-1997
				WO	9742331 A	13-11-1997
				EP	0944727 A	29-09-1999

INTERNATIONALER RECHERCHENBERICHT

h. nalee Aktenzeichen PCT/EP 99/06319

A. KLASSIFIZIERUNG DES ANNELDUNGSGEGENSTANDES IPK 7 C12N15/52 C12N9/10 C12N15/31 C12N9/10 C12N5/10 C12N15/82 C12P19/18 Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C12N C12P Recherchierte aber nicht zum Mindestprütstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsuttlerte elektronische Datenbenk (Name der Datenbenk und evtl. verwendete Suchbegdiffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Ansoruch Nr. A SOMIARI ET AL.: "Cloning and sequencing 1-4,19, of an Aspergillus niger gene coding for 20 beta-fructofuranosidase' EMBL SEQUENCE DATABASE, 14. November 1997 (1997-11-14). XP002127822 HEIDELBERG DE Ac AF029359 das ganze Dokument A -& SOMIARI ET AL.: EMBL SEQUENCE DATABASE, 1. Januar 1998 (1998-01-01), XP002127823 HEIDELBERG DE Ac 013388 das ganze Dokument & SOMIARI ET AL.: BIOTECHNOL LETT, Bd. 19, Nr. 12, 1997, Seiten 1243-1247, -/--Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu X X Siehe Anhang Patentfamille * Besondere Kategorien von angegebenen Veröffentlichungen T" Sp

ßtere Ver

öffert

fichung, die nach dem internationalen Anmeidedatum oder dem Priorit

ätstadt

m ver

öffert

ficht worden ist und mit der Anmeidung nicht kollidiert, sondem nur zum Verst

ändnie des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam enzusehen ist Erfindung zugrundellegenden Prinzipe oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspsuchte Erfindung kann alleh aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffenflichung, die geeignet ist, einen Prioritätsenspruch zweitelheit er-scheinen zu lassen, oder durch die das Veröffenflichungsdatum einer anderen im Recherchenbericht genannten Veröffenflichung belegt werden Vertiffertlichung von besonderer Bedeutung; die beenspruchte Erfindung kenn nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Vertiffertlichung mit einer oder mehreren anderen Vertiffertlichungen dieser Kategorie in Vertiffertlichungen der kategorie in Vertiffertlichungen gebracht wird und diese Verbindung gür einen Fachmann nahellegend ist soil oder die aus einem anderen besonderen Grund angegeben ist (wie "O" Veröffentlichung, die eich auf eine mündliche Offenbarung, eine Berudzung, eine Ausstellung oder andere Maßnehmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanapruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der Internationalen Recherche Absendedatum des Internationalen Recherchenberichts 17. Januar 2000 28/01/2000 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bedlensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Fijewijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016 Ceder. 0

INTERNATIONALER RECHERCHENBERICHT

h nates Aktenzeichen
PCT/EP 99/06319

		99/06319					
(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN							
ategorie*	Bezeichnung der Veräffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anapruch Nr.					
A .	EP 0 307 158 A (JAPAN MAIZE PROD) 15. März 1989 (1989-03-15)	3,4,18, 19, 21-23,26					
	Seite 4, Zeile 58 -Seite 5, Zeile 45						
A	PATENT ABSTRACTS OF JAPAN vol. 017, no. 135 (C-1037), 19. März 1993 (1993-03-19) & JP 04 311378 A (AJINOMOTO CO INC), 4. November 1992 (1992-11-04) Zusammenfassung	3,4					
A	WO 94 14970 A (SMEEKENS JOSEPHUS CHRISTIANUS ;WEISBEEK PETRUS JACOBUS (NL); EBSKA) 7. Juli 1994 (1994-07-07) in der Anmeldung erwähnt Zusammenfassung; Ansprüche Seite 5, Zeile 15 - Zeile 32	5-17,23, 25,26					
A	DE 196 17 687 A (SUEDZUCKER AG ;KWS KLEINWANZLEBENER SAATZUCHT (DE)) 6. November 1997 (1997-11-06) in der Anmeldung erwähnt das ganze Dokument	5-17,23,26					

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichtlingen, die zur seiben Patentfamilie gehören

nates Aktenzeichen
PCT/EP 99/06319

	echerchenberich rtes Patentdokun	-	Datum der Veröffentlichung		itgiled(er) der Patentfamilie	Datum der Veröffentlichung	
EP	0307158	Α	15-03-1989	JP	1063389 A	09-03-1989	
				JP	2806522 B	30-09-1998	
				AT	109797 T	15-08-1994	
				DΕ	3851022 D	15-09-1994	
				DE	3851022 T	24-11-1994	
				US	5334516 A	02-08-1994	
JP	04311378	A	04-11-1992	KEIN	<u> </u>		
WO	9414970	A	07-07-1994	AU	5843794 A	19-07-1994	
				EP	0677112 A	18-10-1995	
				HU	71782 A	28-02-1996	
				JP	8507918 T	27-08-1996	
				NL	9300646 A	18-07-1994	
				PL	309606 A	30-10-1995	
				US	5986173 A	16-11-1999	
DE	19617687	Α	06-11-1997	AU	2774197 A	26-11-1997	
				WO	9742331 A	13-11-1997	
				ËP	0944727 A	29-09-1999	