Non-stationary Reinforcement Learning without Prior Knowledge: An Optimal Black-box Approach

Chen-Yu Wei Haipeng Luo University of Southern California

Non-stationary Reinforcement Learning

Stationary RL: fixed transition / reward

Non-stationary RL (our focus): time-varying transition / reward

$$\text{Dynamic-Regret} = \sum_{t=1}^{T} \left(\mu_t^{\star} - R_t \right)$$
 expected reward of the best policy at round t

Non-stationary Reinforcement Learning

Measures of non-stationarity:

$$S = 1 + \sum_{t=2}^{T} \mathbf{1} \left[r_t \neq r_{t-1} \text{ or } p_t \neq p_{t-1} \right]$$

of change points

$$V = 1 + \sum_{t=2}^{T} \left(||r_t - r_{t-1}||_{\infty} + ||p_t - p_{t-1}||_{\infty} \right)$$

sum of changes between consecutive rounds

The achievable dynamic regret bound will depend on S or V.

Related Works

Popular approaches: sliding window, time discounting, periodic restarting (Ortner et al. 2018, Mao et al., 2021, Zhou et al., 2020, Touati and Vincent, 2020, Domingues et al. 2021)

- Gives sub-optimal bound
- Requires prior knowledge on S or V (to tune hyperparameters)

Cheung, et al., (2020) developed **Bandit-over-RL**, making the above algorithms prior-knowledge free. But it worsens the bound.

Multi-armed bandit: optimal bound without knowledge of S or V

Auer, Gajane, Ortner (2019): multi-armed bandit **Chen, et al.,** (2019): multi-armed contextual bandit

specialized and unclear how to extend to, e.g., linear bandit, MDPs

Our Contribution

We address all these issues via a general approach that is:

a black-box reduction

UCB (originally for stationary env)

an algorithm for non-stationary env

- widely applicable (bandits, episodic/infinite-horizon MDP, linear MDP, ...)
- optimal & prior-knowledge free (knowledge on S or V)

Applications and Comparisons (unknown S or V)

Setting	Prior Work	Our Work
Linear Bandit / Episodic tabular MDP	$S^{1/3}T^{2/3}+T^{3/4} \qquad V^{1/3}T^{2/3}+T^{3/4} \label{eq:cheung}$ (Cheung et al., 2018, Fei et al., 2020, Mao et al., 2021)	$\min\{\sqrt{ST}, V^{1/3}T^{2/3}\}$ (optimal bound)
Episodic Linear MDP / Infinite-horizon MDP	$S^{1/3}T^{2/3}+T^{3/4} \qquad V^{1/4}T^{3/4}$ (Ortner et al., 2018, Chueng et al. 2020, Zhou et al., 2020, Touati and Vincent, 2020)	
Generalized Linear Bandit	$S^{1/3}T^{2/3} + T^{3/4} \qquad V^{1/5}T^{4/5}$ (Russac et al., 2020, Faury et al., 2021)	

- Except for (contextual) multi-armed bandits, previous work does not get \sqrt{ST} even if S is known.
- For generalized linear bandits, linear MDPs, previous work does not get $V^{1/3}T^{2/3}$ even if V is known.

Algorithm

Properties of UCB (Upper-Confidence Bound) Algorithms

In the stationary environment, in every round, the algorithm can output a scaler $\widetilde{\mu}_t$ that is non-increasing in t, such that:

(1)
$$\widetilde{\mu}_t \geq \mu^\star$$
 : expected reward of the best policy

Idea of our algorithm:

Run UCB, and detect non-stationarity ← test if 1 or 2 is violated

If non-stationarity is detected → restart the algorithm

Testing the violation of (2) is straightforward

Detecting the Violation of $\widehat{\mathbf{1}}$ (i.e., detecting $\widetilde{\mu}_t < \mu_t^{\star}$)

Detecting the Violation of $\widehat{\mathbf{1}}$ (i.e., detecting $\widetilde{\mu}_t < \mu_t^{\star}$)

If we start a **new** UCB algorithm from t_0 ... (assume it coexists with the original UCB)

Algorithm

- Randomly schedule UCBs of different lengths (shorter UCBs for quickly detecting larger change; longer UCBs for detecting smaller change)
- If multiple UCBs overlap, the shortest one has priority (the longer ones pause)
- At the end of every UCB, test if the average performance exceeds $\widetilde{\mu}_t$ If so, restart the whole algorithm.

Summary

UCB \sqrt{T} stationary RL

$$\min\{\sqrt{ST}, V^{1/3}T^{2/3}\}$$
 non-stationary RL

