UNIVERSITI MALAYA UNIVERSITY OF MALAYA

PEPERIKSAAN IJAZAH SARJANA MUDA KEJURUTERAAN EXAMINATION FOR THE DEGREE OF BACHELOR OF ENGINEERING

SESI AKADEMIK 2020/2021 : SEMESTER 1 ACADEMIC SESSION 2020/2021 : SEMESTER 1

KIX1001 : MATEMATIK KEJURUTERAAN 1

ENGINEERING MATHEMATICS 1

Jan 2021 Masa: 2 jam Jan 2021 Time: 2 hours

ARAHAN KEPADA CALON: INSTRUCTIONS TO CANDIDATES:

Calon dikehendaki menjawab semua soalan. *Answer all questions.*

Sila pilih set soalan yang betul berdasarkan digit nombor matriks terakhir Please choose the correct set of question based on last digit of matrix number

Digit Terakhir Bagi Nombor	Nombor Set untuk	Muka Surat
Matriks	Peperiksaan S3 & S4	
Last Digit of Matrix Number	Set Number for Exam Q3 & Q4	Page Number
1	#1	<u>2</u> & <u>3</u>
2	#2	<u>4</u> & <u>5</u>
3	#3	<u>6</u> & <u>7</u>
4	#4	<u>8</u> & <u>9</u>
5	#5	<u>10</u> & <u>11</u>
6	#6	<u>12</u> & <u>13</u>
7	#7	<u>14</u> & <u>15</u>
8	#8	<u>16</u> & <u>17</u>
9	#9	<u>18</u> & <u>19</u>
0	#10	<u>20</u> & <u>21</u>

Contoh: pelajar dengan nombor matriks (17001283) harus memilih Nombor Set # 3 Example: a student with matrix number (17001283) should choose Set Number #3

> Peperiksaan Buku Terbuka #2 daripada 2 Open Book Exam #2 out of 2

(Kertas soalan ini mengandungi 2 soalan (10 set) dalam 21 halaman yang dicetak) (This question paper consists of 2 questions (10 sets) in 21 printed pages)

SOALAN 3 (Set #1) QUESTION 3 (Set #1)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((311).(t))$$

(a) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(b) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #1) QUESTION 4 (Set #1)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x^5 term for the following function

$$f(x) = \ln(5 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x=0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation:

$$y'' - 2xy = \ln(5 + x),$$
 $y(0) = y'(0) = 8$

SOALAN 3 (Set #2) QUESTION 3 (Set #2)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((322).(t))$$

(c) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(d) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #2) QUESTION 4 (Set #2)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x^5 term for the following function

$$f(x) = \ln(10 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(10 + x),$$
 $y(0) = y'(0) = 3$

SOALAN 3 (Set #3) QUESTION 3 (Set #3)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((333).(t))$$

(e) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(f) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #3) QUESTION 4 (Set #3)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x⁵ term for the following function

$$f(x) = \ln(6 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(6 + x),$$
 $y(0) = y'(0) = 4$

SOALAN 3 (Set #4) QUESTION 3 (Set #4)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos(344).(t)$$

(g) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(h) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #4) QUESTION 4 (Set #4)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x^5 term for the following function

$$f(x) = \ln(9 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(9 + x),$$
 $y(0) = y'(0) = 2$

SOALAN 3 (Set #5) QUESTION 3 (Set #5)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((355).(t))$$

(i) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(j) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #5) QUESTION 4 (Set #5)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x⁵ term for the following function

$$f(x) = \ln(8 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x=0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(8 + x),$$
 $y(0) = y'(0) = 5$

SOALAN 3 (Set #6) QUESTION 3 (Set #6)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((366).(t))$$

(k) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(I) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #6) QUESTION 4 (Set #6)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x⁵ term for the following function

$$f(x) = \ln(7 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x=0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(7 + x),$$
 $y(0) = y'(0) = 1$

SOALAN 3 (Set #7) QUESTION 3 (Set #7)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((377).(t))$$

(m) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(n) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #7) QUESTION 4 (Set #7)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x^5 term for the following function

$$f(x) = \ln(3 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(3 + x),$$
 $y(0) = y'(0) = 9$

SOALAN 3 (Set #8) QUESTION 3 (Set #8)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((388).(t))$$

(o) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/*marks*)

(p) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #8) QUESTION 4 (Set #8)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x^5 term for the following function

$$f(x) = \ln(2 + x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(2 + x),$$
 $y(0) = y'(0) = 6$

SOALAN 3 (Set #9) QUESTION 3 (Set #9)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((399).(t))$$

(q) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/marks)

(r) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #9) QUESTION 4 (Set #9)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x⁵ term for the following function

$$f(x) = \ln(1+x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(1+x),$$
 $y(0) = y'(0) = 7$

SOALAN 3 (Set #10) QUESTION 3 (Set #10)

Diberikan persamaan tertakluk untuk penapis lulus rendah dengan litar LRC, di mana nilai-nilai aruhan (L), rintangan (R) dan kapasitans (C) ditunjukkan dalam Rajah S3(b). Given the governing equation of the low pass filter with LRC circuit, where the inductance (L = 1 H), resistance ($R = 100 \Omega$), and capacitance (C = 0.0004 F) are shown in Figure Q3(b).

Awak merekabentuk litar tersebut untuk memperolehi voltan keluaran, V_{ouput} dengan menggurangkan/ membuangkan hingar frekuenci tinggi sahaja daripada voltan masukan, V_{input} . V_{input} untuk masa, t > 0 diberikan sebagai:

You are designing the circuit to obtain output voltage, V_{ouput} by reducing/removing the high frequency noise only from the input voltage, V_{input} . V_{input} for time, t > 0 is given as:

$$V_{input} = 10\cos(t) + 10\cos((300).(t))$$

(s) Carikan jumlah voltan keluaran, V_{ouput} untuk masa, t > 0. Gunakan fungsi trigonometri (sinus dan kosinus) untuk menyelesaikan bahagian bukan homogen. Find the total output voltage, V_{ouput} for time, t > 0. Use the trigonometric function (sine & cosine functions) to solve the non-homogeneous part.

(13 markah/*marks*)

(t) Merujuk keputusan keadaan mantap untuk V_{ouput} sahaja, semak sama ada hinggar tersebut berjaya dikurangkan/dibuangkan (> 90% pengurangan amplitud) ataupun tidak. Petunjuk: amplitude = $\sqrt{a^2 + b^2}$ untuk fungsi $a\cos(\omega t) + b\sin(\omega t)$. Refer to the steady state result of V_{ouput} only, check if the noise is successfully reduced/removed (> 90% amplitude reduction) or not. Hint: amplitude = $\sqrt{a^2 + b^2}$ for $a\cos(\omega t) + b\sin(\omega t)$ function.

SOALAN 4 (Set #10) QUESTION 4 (Set #10)

(a) Carikan siri kuasa sehingga sebutan ke- x^5 bagi fungsi berikut

Find the power series until the x⁵ term for the following function

$$f(x) = \ln(4+x)$$

dengan menggunakan Siri Maclaurin di bawah

using the Maclaurin's Series given below

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

(4 Markah/marks)

(b) Gunakan kaedah siri kuasa dan bahagian (a) untuk dapatkan penyelesaian khusus pada x = 0 bagi persamaan pembezaan berikut:

Apply the power series method and part (a) to find the particular solution at x=0 for the following differential equation

$$y'' - 2xy = \ln(4 + x),$$
 $y(0) = y'(0) = 10$

(11 Markah/marks)

TAMAT / END