

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 195 355
A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86103254.8

(51) Int. Cl.: C 08 G 77/04

(22) Date of filing: 11.03.86

C 08 L 83/04, C 03 C 27/06
B 32 B 17/10, G 02 B 6/26

(30) Priority: 12.03.85 JP 48559/85

(71) Applicant: Toray Silicone Company Limited
Mitsui Building No. 6 2-8 Nihonbashi-Muromachi
Chuo-ku Tokyo 103(JP)

(43) Date of publication of application:
24.09.86 Bulletin 86/39

(72) Inventor: Suzuki, Toshio
8, 1-chome, Yushudai Nishi
Ichihara-shi Chiba Pref.(JP)

(84) Designated Contracting States:
BE DE FR GB IT NL

(74) Representative: Spott, Gottfried, Dr. et al.
Patentanwälte Spott und Puschmann
Sendlinger-Tor-Platz 11
D-8000 München 2(DE)

(54) Refractive-index-coupling elastic composition for optical communication fiber joints.

(55) A composition of lower alkenyl-containing organopolysiloxane, an organohydrogenpolysiloxane, and a platinum catalyst in which the refractive index of the alkenyl organopolysiloxane is 1.45 to 1.48 and the elastic modulus in compression is from 1.0×10^4 to 3.0×10^1 kg/mm² at 25°C after curing is a refractive-index-coupler for optical communications fiber joints.

EP 0 195 355 A2

1 REFRACTIVE-INDEX-COUPLING ELASTIC COMPOSITION
 FOR OPTICAL COMMUNICATION FIBER JOINTS

5 The present invention relates to a refractive-
index-coupling elastic composition for optical
communication fiber joints. More specifically, the
present invention relates to an organopolysiloxane type
refractive-index-coupling elastic composition for the
joints of optical communication fibers joined by the
10 connecting method.

15 Optical communication glass fibers and optical
communication plastic fibers (optical fibers below) may
be joined by one of two methods: splicing or connecting
in which the ends are placed face to face without splicing.
Because precision connectors have recently been developed,
20 connecting is preferred and appears to be more workable.

25 A refractive-index coupler is generally used in
the connecting method. It is filled into the gap at the
ends of the optical fibers in order to prevent light
transmission loss by reflection. As announced in Report
No. 2232 at the 1984 National General Meeting of the
Institute of Electronics and Communication Engineers of
Japan, silicone oils and silicone oil compounds, in which
silicone oil is combined with silica, etc., for thickening,
are considered to be appropriate refractive-index couplers.

Disadvantages of the Prior Art

30 However, silicone oils are liquids and thus
leak out, which causes a void to appear in the joint.
Silicone oil compounds, which represent an improvement on
silicone oils, have a grease-like consistency and will
not leak out. However, air bubbles formed in the
grease-like compound cannot be removed. In addition,
35 coating the silicone oil compound on the fiber ends

1 requires a very high level technique to avoid the inclusion
of air bubbles.

5 Various methods were examined by the present
inventor in order to develop a refractive-index coupler
which would not have the above-mentioned disadvantages
and the present invention was thus developed as a result.
The goal of the present invention is to eliminate the
above-mentioned disadvantages of the prior art
technologies by providing a refractive-index coupler
10 which does not leak out or trap air bubbles.

Summary of the Invention

15 The present invention relates to a refractive-
index-coupler elastic composition for optical communication
fiber joints comprising (A) an organopolysiloxane having
the average unit formula

20 in which R is a monovalent radical selected from the
group consisting of hydrocarbon radicals and halogenated
alkyl radicals and a has an average value of 1.8 to 2.2,
having at least two lower alkenyl radical in each molecule,
25 and has an n_D^{25} of from 1.45 to 1.48, (B) organohydrogen-
polysiloxane having the average unit formula

30 in which R' is a monovalent radical selected from the
group consisting of hydrogen atom, hydrocarbon radical,
and halogenated hydrocarbon and b has an average value of
1.5 to 3.0, and has at least two silicon-bonded hydrogen
atoms in each molecule, the organohydrogenpolysiloxane
35 being in a quantity such that the molar ratio of silicon-
bonded hydrogen atoms per lower alkenyl radical

1 in component (A) is from 0.2:1 to 5.0:1, and (C) a
 platinum catalyst in an amount of from 0.1 to 100 parts
 by weight platinum metal per one million parts by weight
 of the combined weight of (A) and (B), and said composition
 5 having an elastic modulus in compression of 1.0×10^{-4} to
 3.0×10^{-1} kg/mm² at 25°C after curing.

Description of the Preferred Embodiments

10 Component (A) is the principal component of the
 elastic composition of the present invention. It is
 expressed by the average unit formula

15 in which R is a monovalent radical selected from
 hydrocarbon radicals and halogenated alkyl radicals, and
 \underline{a} is 1.8 to 2.2 on average and contains at least two
 lower alkenyl radicals in each molecule. Examples of the
 20 lower alkenyl radicals are vinyl, allyl, and propenyl.
 The lower alkenyl radicals may be present at any location
 in the molecule, but they are preferably present at least
 at the molecular terminals. Examples of the monovalent
 hydrocarbon radicals R are alkyl radicals such as methyl,
 25 ethyl, propyl, and butyl; aryl radicals such as phenyl,
 tolyl, and benzyl; and the above-mentioned, alkenyl
 radicals; and halogenated alkyl radicals such as chloro-
 propyl, fluoropropyl, and 3,3,3-trifluoropropyl. In
 addition to R, a small quantity of silicon-bonded alkoxy
 30 or hydroxyl groups may be present. In addition, this
 component must have an n_D^{25} (refractive index) of 1.45 to
 1.48 measured using the D line of sodium at 25°C. In
 order to achieve such a refractive index, at least 50
 mol% of R is preferably methyl and 5 to 20 mol% of R is
 35 preferably phenyl. \underline{a} is 1.8 to 2.2 on average, but is
 advantageously 1.95 to 2.05 in order to achieve the
 desired post-cure modulus. An n_D^{25} of 1.45 to 1.48 is

0195355

1 specified for this component because the core materials
of many optical fibers have an n_D^{25} in this range.

5 The molecular configuration of this component
may be straight chain, straight chain with branches, or
cyclic, but a straight chain, possibly with a small
number of branches, is preferred. The preferred straight
chained organopolysiloxane is a linear polydiorganosiloxane.
The molecular weight of this component is unrestricted,
but the weight-average molecular weight is desirably \geq
10 1,000 in order to achieve the desired modulus and it is
preferably $\leq 100,000$ to facilitate operations such as
mixing and molding.

15 Examples of this organopolysiloxane are
dimethylvinylsiloxy-terminated dimethylsiloxane-
diphenylsiloxane copolymer,
dimethylvinylsiloxy-terminated dimethylsiloxane-
methylphenylsiloxane copolymer,
dimethylvinylsiloxy-terminated dimethylsiloxane-
methylvinylsiloxane-diphenylsiloxane copolymer,
20 dimethylvinylsiloxy-terminated dimethylsiloxane-
methylvinylsiloxane-methylphenylsiloxane copolymer,
trimethylsiloxy-terminated dimethylsiloxane-
methylvinylsiloxane-diphenylsiloxane copolymer,
trimethylsiloxy-terminated dimethylsiloxane-
25 methylvinylsiloxane-methylphenylsiloxane copolymer, and
dimethylsiloxane-diphenylsiloxane-methylvinyl-
siloxane copolymer in which one end is blocked with the
trimethylsiloxy unit and the other end is blocked with
the dimethylvinylsiloxy unit.

30 Component (B) is a crosslinker for component
(A) and is an organohydrogenpolysiloxane. It addition-
reacts with component (A) in the presence of component
(C) to cure component (A) into an elastic material.

1 For this reason, this component must contain at least two
silicon-bonded hydrogen atoms in each molecule. This
component can be expressed by the average unit formula

5 $R' b SiO_{(4-b)/2}$

In this formula, R' is a monovalent hydrocarbon radical,
halogenated alkyl radical, or a hydrogen atom. In
addition to the hydrogen atom, R' is exemplified as for R
10 except however, alkenyl radicals are excluded. b is a
value averaging 1.5 to 3.0. This component should be
miscible with component (A), so at least 50 mol% of R'
should be methyl. The molecular configuration of this
15 component is straight chain, straight chain with branches,
cyclic, network, or three dimensional. The molecular
weight of this component is unrestricted. The quantity
of addition of this component is determined by the
requirement that the molar ratio of SiH in this component
to lower alkenyl in component (A) be 0.2:1 to 5.0:1.
20 When the elastic material should have a relatively
low modulus, this molar ratio should be 0.2:1 to 1:1.
When the elastic material is to have a high modulus, this
molar ratio should be 1:1 to 5.0:1. A satisfactory
25 elastic material is not produced when this molar ratio is
less than 0.2:1. When this molar ratio exceeds 5.0:1,
the modulus will exceed the target value.

Examples of this organohydrogenpolysiloxane are
trimethylsiloxy-terminated methylhydrogenpoly-
siloxane,

30 trimethylsiloxy-terminated dimethylsiloxane-
methylhydrogensiloxane copolymer,
dimethylhydrogensiloxy-terminated methylhydrogen-
polysiloxane,

Component (C) catalyzes the crosslinking addition reaction of component (A) and component (B). Examples of said platinum catalysts are finely divided platinum, possibly supported on a carrier, platinum black, chloroplatinic acid, sodium chloroplatinate, potassium chloroplatinate, platinum tetrachloride, alcohol-modified chloroplatinic acid, chloroplatinic acid-olefin complexes, chloroplatinic acid-alkenyl-siloxane complexes, and diketone chelate compounds of platinum.

This component is added at 0.1 to 100 parts by weight as platinum metal per 1,000,000 parts by weight of the combined quantity of components (A) and (B). When this quantity is less than 0.1 part by weight, a satisfactory crosslinking will not occur. It is uneconomical for this quantity to exceed 100 parts by weight.

The elastic material of the invention is produced by mixing the three components (A), (B), and (C), possibly in the presence of a curing retarder which can control the crosslinking reaction, and then allowing the mixture to stand at room or elevated temperature.

Examples of the above-mentioned retarders are triallyl isocyanurate, triazoles, nitrile compounds, acetylene compounds, and vinyl-substituted cyclic polysiloxane. To use the elastic composition of this

1 invention to couple the refractive index of the optical
fiber joint, the elastic material, crosslinked into
membrane form, is inserted into the joint, or the
uncrosslinked liquid composition may be filled in the
5 joint gap and then crosslinked.

The elastic composition of the present
invention must have a post-cure elastic modulus in
compression of 1.0×10^{-4} to 3.0×10^{-1} kg/mm² at 25°C.
When the elastic composition has an elastic modulus in
10 compression of $< 1.0 \times 10^{-4}$ kg/mm², it will flow because
the viscosity component of the viscoelastic behavior is
increased. The elasticity of an elastic composition with
an elastic modulus in compression of $> 3.0 \times 10^{-1}$ kg/mm²
is too high and the fiber ends cannot be brought into
15 tight contact. The term "elastic material" includes
tacky materials denoted as "gels," elastic materials
denoted as "elastomers or rubbers," or elastic materials
denoted as "soft resins" may be used as long as the
material has a modulus in the above-mentioned range.

20 Silica fillers and thermal stabilizers are
optionally added to the elastic composition of the
present invention. In order to increase the adhesiveness,
vinyltrialkoxysilane, γ -methacryloxypropyltrialkoxysilane,
or siloxanes with alkoxy and methacrylic groups may also
25 be added. In order to raise the strength within the
range of the prescribed modulus, organopolysiloxanes
composed of $(CH_3)_2(CH=CH_2)SiO_{1/2}$ units and SiO_2 units or
organopolysiloxanes composed of $(CH_3)_2(CH=CH_2)SiO_{1/2}$
units, $(CH_3)_3SiO_{1/2}$ units, and SiO_2 units may also be
30 added.

The present invention will be illustrated using
examples of execution. "Parts" and "%" in the examples
are "parts by weight" and "weight percent" respectively.
The viscosity is the value measured at 25°C.

EXAMPLE 1

1 100 Parts dimethylvinylsiloxy-terminated
dimethylsiloxane-methylphenylsiloxane copolymer
(dimethylsiloxane unit:methylphenylsiloxane unit molar
ratio = 76:24, viscosity, 2 Pa.s; n_D^{25} = 1.455) was mixed
5 with 1.0 part dimethylhydrogensiloxy-terminated methyl-
hydrogenpolysiloxane with a viscosity of 0.01 Pa.s, 0.2
part of a 1% chloroplatinic acid solution in 2-ethylhexanol
and 0.005 part 3-methyl-1-butyn-3-ol and this mixture was
molded into a thin membrane and then cured at 150°C for
10 30 minutes to produce a transparent, rubbery elastic
membrane with a thickness of 10 μm and an elastic modulus
in compression of 0.10 kg/mm². This elastic membrane
was inserted into the joint of a graded-index multimode
optical fiber (core diameter, 50 μm ; fiber diameter,
15 125 μm). The measured transmission loss increment at the
joint was \leq 0.1 dB. For comparison, the transmission
loss increment was \geq 0.3 dB in the absence of the elastic
membrane and was 0.1 to 0.2 dB for a joint with a transparent
elastic membrane of polysiloxane (n_D^{25} = 1.43).
20

EXAMPLE 2

1 100 Parts dimethylvinylsiloxy-terminated dimethyl-
siloxane-diphenylsiloxane copolymer (dimethylsiloxane unit:
diphenylsiloxane unit molar ratio = 85:15; viscosity, 1.5
25 Pa.s; n_D^{25} = 1.465) was mixed with 0.34 part tetramethyl-
tetrahydrogencyclotetrasiloxane, and 0.1 part of 1% chloro-
platinic acid in 2-ethylhexanol injected into the joint
(design gap, 8 μm) between the ends of the same type of
30 optical fiber as in Example 1 and this was then heated at
80°C for 2 hours. The organopolysiloxane composition was
converted into a transparent, elastic gel which was filled
between the optical fiber ends. The elastic modulus in

1 compression of this elastic gel was 1.2×10^{-3} kg/mm².
The measured transmission loss increment was ≥ 0.4 dB in
the absence of the elastic gel and at ≤ 0.1 dB in the
presence of the gel filler. A joint (connector) filled
5 with the elastic gel was subjected to 1000 temperature
cycles (1 cycle = 1 hour from -20°C to 80°C). Then the
measured transmission loss increment was ≤ 0.1 dB. For
comparison, the transparent elastic product (elastic
modulus in compression of 0.8 kg/mm²) of a commercial
10 nonsilicone composition ($n_D^{25} = 1.465$) was tested as
above. The transmission loss increment is 0.2 dB before
the temperature cycles and ≥ 0.4 dB after the temperature
cycles.

15

EXAMPLE 3

100 Parts dimethylvinylsiloxy-terminated
dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane
copolymer (molar ratio among siloxane units = 64.0:35.5:0.5;
20 viscosity, 3 Pa.s; $n_D^{25} = 1.475$) was thoroughly mixed with
0.8 part 1,1,3,3,5,7,-hexamethyl-5,7-dihydrogencyclotetra-
siloxane, 10 parts methylphenyldimethoxysilane-treated
fumed silica (average primary particle size, 10 μ), 0.2
part of 1% chloroplatinic acid solution in 2-ethylhexanol
25 and 0.003 part 3-methyl-1-butyn-3-ol to produce a transparent
organopolysiloxane composition. The resulting mixture
was then cured under the conditions of Example 1 to give
a rubbery elastic membrane (membrane thickness, 30 μ m;
elastic modulus in compression, 0.25 kg/mm²). This
30 elastic membrane was tested in a joint as described in
Example 1 and the transmission loss increment was 0.15 dB.
Thirty samples were examined by the joint test, but no
sample had an increment of > 0.2 dB in transmission loss.

1 For comparison, thirty samples of a silicone oil compound
5 ($n_D^{25} = 1.475$) were examined in the joint test. Two
samples had a 0.2 dB transmission loss increment and this
was due to the mixing air bubbles into the silicone oil
compound.

Effects of the Invention

10 The application of the refractive-index-coupling
elastic composition of the present invention to the gap
in an optical fiber joint produces an optical fiber joint
which does not suffer from oil leakage, the admixture of
air bubbles or from a transmission loss increment. Such
an optical fiber joint produced by the above method is
15 crucial to optical fiber communications.

20

25

30

35

1 That which is claimed is:

5 1. A refractive-index-coupler elastic
composition for optical communication fiber joints
comprising

10 (A) an organopolysiloxane having the average
unit formula

15 in which R is a monovalent radical selected from the
group consisting of hydrocarbon radicals and halogenated
alkyl radicals and a has an average value of 1.8 to 2.2,
having at least two lower alkenyl radical in each molecule,
and has an n_D^{25} of from 1.45 to 1.48,

20 (B) organohydrogenpolysiloxane having the
average unit formula

25 in which R' is a monovalent radical selected from the
group consisting of hydrogen atom, hydrocarbon radical,
and halogenated hydrocarbon and b has an average value of
1.5 to 3.0, and has at least two silicon-bonded hydrogen
atoms in each molecule, the organohydrogenpolysiloxane
being in a quantity such that the molar ratio of silicon-
bonded hydrogen atoms per lower alkenyl radical in
component (A) is from 0.2:1 to 5.0:1, and

30 (C) a platinum catalyst in an amount of from
0.1 to 100 parts by weight platinum metal per one million
parts by weight of the combined weight of (A) and (B),
and said composition having an elastic modulus in
compression of 1.0×10^{-4} to 3.0×10^{-1} kg/mm² at 25°C
after curing.

1 2. The composition according to claim 1 in
which the organopolysiloxane of (A) is such that R is at
least 50 mol% methyl and from 5 to 20 mol% phenyl, a has
an average value of 1.95 to 2.05, and the lower alkenyl
5 radical is vinyl, and at least 50 mol% of R' is methyl.

10 3. The composition according to claim 2 in
which the molar ratio of silicon-bonded hydrogen atom per
vinyl is from 0.2:1 to 1.0:1.

15 4. The composition according to claim 2 in
which the molar ratio of silicon-bonded hydrogen atom per
vinyl is from 1.0:1 to 5.0:1.

20 5. The composition according to claim 2 in
which (A) is a linear polydiorganopolysiloxane.

25 6. The composition according to claim 5 in
which (A) is a dimethylvinylsiloxy terminated polydiorgano-
siloxane having dimethylsiloxane units and methylphenyl-
siloxane units and having a viscosity at 25°C in the
range of from 1 to 10 Pa.s.

30 7. The composition according to claim 5 in
which (A) is a dimethylvinylsiloxy terminated polydiorgano-
siloxane having dimethylsiloxane units and diphenylsiloxane
units and having a viscosity at 25°C in the range of from
1 to 10 Pa.s.

35 8. The composition according to claim 6 further
comprising a curing retarder.

9. The composition according to claim 7 further
comprising a curing retarder.

35 10. The composition according to claim 1 further
comprising a silica filler.