

AD-A046 958 ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT--ETC F/G 15/7
THE GENERALIZED ZACKS MODEL. (U)
SEP 77 E H INSELMANN
UNCLASSIFIED CACDA-TP-12-77

NL

1 OF 1
ADA046958

END
DATE
FILED
12-77
DOC

SEPTEMBER 1977

TP 12-77

AD A 046958

ACN 23274

9
b.s.

THE GENERALIZED ZACKS MODEL
TECHNICAL PAPER TP 12-77

UNITED STATES ARMY
COMBINED ARMS CENTER

COMBINED ARMS
COMBAT DEVELOPMENTS ACTIVITY

COMBAT OPERATIONS ANALYSIS DIRECTORATE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AM No. _____
DDC FILE COPY

Technical Paper TP 12-77

Sep 1977

(11)

(12) 12P.

(14) CACDA - TP-12-77

Directorate of Combat Operations Analysis
US Army Combined Arms Combat Developments Activity
Fort Leavenworth, Kansas 66027

(9) Final report,

(6) THE GENERALIZED ZACKS MODEL,

by

(10) Edmund H. Inselmann, PhD

ACN 23274

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
DOC	Buff Section <input type="checkbox"/>
UNANNOUNCED	<input type="checkbox"/>
JUSTIFICATION.....	
BY.....	
DISTRIBUTION/AVAILABILITY CODES	
DISL.	AVAIL. AND/W SPECIAL
A	

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

408 081 mt

ABSTRACT

This paper generalizes the Zacks model for minefield crossings. Zacks computes in his model the probability of the Nth vehicle crossing a minefield and also the distribution of the number of vehicles crossing the field. Zacks' computations are made under the assumption that all the vehicles are of the same type and only one kind of mine is present in the field. This paper removes both these restrictions.

THE GENERALIZED ZACKS MODEL

by

Edmund H. Inselmann, PhD
Combat Operations Analysis Directorate
Combined Arms Combat Developments Activity
Combined Arms Center
Fort Leavenworth, Kansas 66027

The purpose of this note is to generalize the Zacks minefield model* for computing the probabilities of vehicles crossing a minefield. In the Zacks model only one type of mine and one type of vehicle are considered. This paper shows how the model can be extended to different mines and different vehicles. This note follows the Zacks paper closely, and the reader is advised to have a copy of that paper at hand when reading this note.

The Zacks model begins with the discussion of the number of mines in the path of the vehicle. In the Zacks model, only the number of mines is required; here, the number of mines for each mine type is needed.

The following notation is introduced:

H = mine type, $H=1,2,\dots,M$

$N(H)$ = number of clusters of the H th type mine

$N(I,H)$ = number of the H th type mines in the I th cluster

$J(H)$ = random number of the H th type mines in the path of a given tank

$J(I,H)$ = random number of the H th type mines from the I th cluster that are in the path of the tank

Then:

$$J(H) = \sum_{I=1}^{N(H)} J(I,H) \quad (\text{Eq 1})$$

*Zacks, S. Survival Distributions in Crossing Fields Containing Clusters of Absorption Points with Possible Detection and Uncertain Activation or Absorption. Technical Report 23, Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio. June 1976.

NOW

$$\binom{N}{M} = \text{number of combinations of } N \text{ things taken } M \text{ at a time}$$

$\psi(I, H) = \text{probability that one of the } H\text{th type mines from the } I\text{th cluster is in the path}$

Then:

$\Pr\{J(I, H)=j\} = \text{probability that } j \text{ mines, coming from the } I\text{th cluster of the } H\text{th type mine, are in the path}$

The probability that j of these mines are in the path is given by:

$$\Pr\{J(I, H) = j\} = \binom{N(I, H)}{j} \cdot \psi(I, H)^j \cdot \{1-\psi(I, H)\}^{N(I, H)-j} \quad (\text{Eq 2})$$

Summing over all clusters yields the probability that a total of j mines are in the path:

$$\Pr\{J(H) = j\} = \sum_{j=j_1+j_2+\dots+j_{N(H)}} \prod_{k=1}^{N(H)} \Pr\{J(k, H)=j_k\} \quad (\text{Eq 3})$$

Equation 3 is Zacks' equation 3.9 with a subscript H for mine type. Note that $\Pr\{J(1), \dots, J(M)\}$ is the product of the $\Pr\{J(H)\}$'s.

Now let:

$P_d(H, V) = \text{probability that the } V\text{th type vehicle will detect the } H\text{th type mine}$

$P_a(H, V) = \text{probability that the } V\text{th type vehicle will activate the } H\text{th type mine}$

$P_k(H, V) = \text{probability that the } V\text{th type vehicle will be killed by the } H\text{th type mine}$

Then the probability that a vehicle V will survive an encounter with an H th type mine is:

$$S(H, V) = P_d(H, V) + \{1-P_d(H, V)\} \cdot \left[\{1-P_a(H, V)\} + P_a(H, V) \cdot \{1-P_k(H, V)\} \right] \quad (\text{Eq 4})$$

Hence, the probability that the first vehicle of type V_1 will survive the H th type mine encounter, given $J(H)=j$, is given by equation 5:

$$\Pr\{S_1(H, V_1) | J(H)=j\} = S(H, V_1)^j \quad (\text{Eq } 5)$$

The probability that the first vehicle will survive, given the J 's, is the product $\Pr\{S_1(V_i)'s | J's\}$ over all mine types. Hence, the probability of survival for the first vehicle is the sum over the J 's of the product (the probability of survival given the J 's and the probability of the J 's); that is:

$$\Pr\{S_1(V_1)\} = \prod_{H=1}^M \sum_{j(H)=0}^{N(H)} \Pr\{S_1(H, V_1) | J(H) = j(H)\} \cdot \Pr\{J(H) = j(H)\}$$

where M is the number of mine types. This corresponds to Zacks' equation 4.3.

Additional notation is required to calculate the probability that the second vehicle V_2 crosses the minefield:

Let:

$M_1(H, V)$ = random number of H th type mines destroyed by the V th type vehicle on a crossing of the path

$\Pr\{M_1(1, V)=m_1, M_1(2, V)=m_2 \dots M_1(M, V)=m_M | J(1)=j_1 \dots J(M)=j_M\}$ = probability that m_1 of the first type mine, m_2 of the second type mine, ... m_M of the last type mine are destroyed, given that j_1 of the first type mine, j_2 of the second type mine, ... j_M of the last type mine are in the path

$$w(H, V) = \{1-P_d(H, V)\} \{1-P_a(H, V)\} \quad (\text{Eq } 6)$$

$\Pr\{S_2 | M_1(1, V)=m_1 \dots M_1(M, V)=m_M, J(1)=j_1 \dots J(M)=j_M\}$ = probability that the second vehicle survives, given M_H of J_H mines in the path have been destroyed

Thus:

$$\Pr \left\{ S_2 \mid M_1(1, V) = m_1 \dots M_1(M, V) = m_M, J(1) = j_1 \dots J(M) = j_M \right\} = \prod_{H=1}^M S(H, V)^{j_H - m_H}$$

(Eq 7)

And:

$$\Pr \left\{ M_1(1, V) = m_1 \dots M_1(M, V) = m_M \mid J(1) = j_1 \dots J(M) = j_M \right\} = \prod_{H=1}^M \binom{j_H}{m_H} \bullet \quad (\text{Eq } 8)$$

$$\left\{ S(H, V) - W(H, V) \right\}^{m_H} W(H, V)^{j_H - m_H} + \sum_{H=1}^M \left\{ 1 - S(H, V) \right\} \left\{ S(H, V) - W(H, V) \right\}^{m_H - 1} \bullet$$

$$\sum_{r_H=m_H-1}^{j_H-1} \binom{r_H}{m_H-1} W(H, V)^{r_H - m_H + 1} \prod_{i \neq H} \left\{ S(i, V) - W(i, V) \right\}^{m_i} \sum_{r_i=m_i}^{j_i} \binom{r_i}{m_i} W(i, j_i)^{r_i - m_i}$$

This is Zacks' equation 4.16; hence, the probability that the second vehicle survives is given by:

$$\Pr \{ S_2 \} = \sum_{j_1=0}^{N(1)} \dots \sum_{j_M=0}^{N(M)} \sum_{m_1=0}^{j_1} \dots \sum_{m_M=0}^{j_M} \Pr \left\{ M_1(1, V) = m_1 \dots M_1(M, V) = m_M \mid J(1) = j_1 \dots J(M) = j_M \right\} \prod_{H=1}^M \Pr \left\{ J(H) = j_H \mid S(H, V)^{j_H - m_H} \right\}$$

(Eq 9)

$$M_1(M, V) = m_M \mid J(1) = j_1 \dots J(M) = j_M \left\{ \prod_{H=1}^M \Pr \left\{ J(H) = j_H \mid S(H, V)^{j_H - m_H} \right\} \right\}$$

The calculation of the probability that the n th vehicle V_n survives is obtained by considering the probability that the vehicle survives an H th type mine encounter, given that there were originally $j(H)$ of such mines and m_{n-1} were destroyed by the $n-1$ vehicles that preceded the current vehicle.

Let:

$M_{n-1}(H, V_{n-1})$ = random number of H th type mines destroyed by the passing of the V_{n-1} vehicles over the path

$S_n(H, V_n)$ = the random event of the n th vehicle surviving the H th type mine

Then:

$$\Pr \left\{ S_n(V_n) \mid M_{n-1}(1, V_{n-1}) = m_1 \dots M_{n-1}(M, V_{n-1}) = m_H \mid J(1) = j_1 \dots J(M) = j_M \right\} =$$

probability that the n th vehicle survives given that m_H of the j_H

$$\text{mines have been destroyed} = \prod_{H=1}^M S(H, V_n)^{j_H - m_H} \quad (\text{Eq 10})$$

Thus:

$$\Pr \left\{ S_n(V_n), M_{n-1}(1, V_n) = m_1 \dots M_{n-1}(H, V_n) = m_H \mid J(1) = j_1 \dots J(M) = j_M \right\} *$$

$$\Pr \left\{ M_{n-1}(1, V_n) = m_1 \dots M_{n-1}(H, V_n) \mid J(1) = j_1 \dots J(M) = j_M \right\} \prod_{H=1}^M S(H, V_n)^{j_H - m_H} \quad (\text{Eq 11})$$

Now, the probability of m_n losses having occurred with the V_n crossing by the H th type mine, given that there had been j mines in the path, must be calculated.

Let:

$M_n(H, V_n)$ = random number of H th type mines destroyed by the first n vehicle crossings.

These probabilities will be calculated recursively as follows:

$$\Pr \left\{ M_n(1, V) = m_1 \dots M_n(M, V) = m_M \mid J(1) = j_1 \dots J(H) = j_H \right\} = \\ (\text{Eq } 12)$$

$$\sum_{r_1=0}^{m_1} \dots \sum_{r_M=0}^{m_M} \Pr \left\{ M_1(1, V_{m-1}) = r_1 \dots M_1(M, V_{n-1}) = r_H \mid J(1) = j_1 - m_1 + r_1 \right\} \cdot \\ \Pr \left\{ M_{n-1}(1, V_n) = M_1 - r_1 \dots M_{n-1}(M, V_{n-1}) = m_M - r_M \mid J(1) = j_1 \dots J(M) = j_M \right\}$$

This probability depends on the order in which vehicles enter the path.

Now the probability that the nth vehicle survives is given by:

$$\Pr \left\{ S_n(V_n) \mid J(1) = j_1 \dots J(H) = j_H \right\} = \sum_{m_1=0}^{j_1} \dots \sum_{m_M=0}^{j_M} \Pr \left\{ M_{n-1}(1, V_{n-1}) = m_1 \dots M_{n-1}(M, V_{n-1}) = m_M \mid J(1) = j_1 \dots J(M) = j_M \right\} \\ (\text{Eq } 13)$$

$$M_{n-1}(M, V_{n-1}) = m_M \mid J(1) = j_1 \dots J(M) = j_M \left\{ \prod_{H=1}^M S(H, V_n)^{j_H - m_H} \right\}$$

Hence, the probability that V_n survives, given the J 's, is:

$$\Pr \left\{ S_n \right\} = \sum_{j_1=0}^{N(1)} \dots \sum_{j_M=0}^{N(M)} \Pr \left\{ S_n(V_n) \mid J(1) = j_1 \dots J(M) = j_M \right\} \prod_{H=1}^M \Pr \left\{ J(H) = j_H \right\} \\ (\text{Eq } 14)$$

In conclusion, the paper considers the distribution of the number of survivors of N crossings. This is determined recursively.

Let:

$I(K)$ = a random variable; 1, if the K th vehicle survives the minefield crossing; 0, otherwise

$X(K)$ = a random number of vehicles out of K that have survived crossing the minefield.

$$X(K) = \sum_{h=1}^K I(h) \quad (\text{Eq } 15)$$

Now the joint probability of X_1 and the $M_1(1, V_1) \dots M_1(M, V_1)$ given $J(1), \dots J(M)$ is given as follows:

$$\Pr \left\{ X(1)=1, M_1(1, V_1)=m_1, \dots M_1(M, V_1)=m_M \mid J(1)=j_1, \dots J(M)=j_M \right\} \\ = \prod_{H=1}^M \binom{j_H}{m_H} W(H, V_1)^{m_H} \{S(H, V_1) - W(H, V_1)\}^{j_H - m_H} \quad (\text{Eq } 16)$$

Hence:

$$\Pr \left\{ X(1)=0, M_1(1, V_1)=m_1, \dots M_1(M, V_1)=m_M \mid J(1)=j_1, \dots J(M)=j_M \right\} \\ = \Pr \left\{ M_1(1, V_1)=m_1, \dots M_1(M, V_1)=m_M \mid J(1)=j_1, \dots J(M)=j_M \right\} - \\ - \Pr \left\{ X(1)=1, M_1(1, V_1)=m_1, \dots M_1(M, V_1)=m_M \mid J(1)=j_1, \dots J(M)=j_M \right\} \quad (\text{Eq } 17)$$

Now the recursive probabilities for $X(k)$ and $M_k(1, V_k) \dots M_k(M, V_k)$ given $J(1) \dots J(M)$ are written as:

$$\Pr \left\{ X(K)=i, M_k(1, V_k)=M_1, \dots, M_k(M, V_k) | J(1)=j_1 \dots J(M)=j_M \right\}$$

$$= \sum_{r_1=0}^{m_1} \dots \sum_{r_M=0}^{m_M} \left[\Pr \left\{ X_{k-1}=i-1, M_{k-1}(1, V_{k-1})=r_1 \dots M_{k-1}(M, V_{k-1})=r_m | J(1)=j_1 \dots J(M)=j_M \right\} \right.$$

$$\bullet \Pr \left\{ X(1)=1, M_1(1, V_k)=m_1-r_1 \dots M_1(M, V_k)=m_M-r_M | J(1)=j_1-r_1 \dots J(M)=j_M \right\} +$$

$$+ \Pr \left\{ X_{k-1}=i, M_{k-1}(1, V_{k-1})=r_1 \dots M_{k-1}(M, V_{k-1})=r_m | J(1)=j_1 \dots J(M)=j_M \right\} \bullet$$

$$\bullet \Pr \left\{ X(1)=0, M_1(1, V_k)=m_1-r_1 \dots M_1(M, V_k)=m_M-r_M | J(1)=j_1-r_1 \dots J(M)=j_M \right\}$$

(Eq 18)

Then:

$$\Pr \left\{ X(K)=i \right\} = \sum_{j_1=0}^{N(1)} \dots \sum_{j_H=0}^{N(H)} \sum_{M_1=0}^{j_1} \dots \sum_{M_H=0}^{j_H} \bullet$$

$$\bullet \Pr \left\{ X(K)=i, M_K(1, V_K)=M_1, \dots, M_K(H, V_K)=M_H | J(1)=j_1, \dots, J(H)=j_H \right\}$$

(Eq 19)

DISTRIBUTION

<u>Organization</u>	<u>Number of Copies</u>
Defense Documentation Center Cameron Station Alexandria, VA 22314	12
Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL (Tech Lib)	1
ATTN: ATAA-TGI (Mr Willis)	1
ATTN: ATAA- TGP (Mr Shugart)	1
White Sands Missile Range, NM 88002	
Professor S. Zacks Dept of Mathematics and Statistics Case Western Reserve University Cleveland, Ohio 44106	1
Mr George Schecter Suite 540 7956 Jones Branch Drive McLean, VA 22101	1
Director US Army Materiel Systems Analysis Activity ATTN: DRXSY-GP (Mr Orlov)	
Aberdeen Proving Ground, MD 21005	1
Commander US Army Materiel Developments Readiness Command ATTN: Dr Gerald Anderson 5001 Eisenhower Ave Alexandria, VA 22333	1
General Jack Guthrie Commanding General, DARCOM 5001 Eisenhower Ave Alexandria, VA 22333	1
Naval Postgraduate School ATTN: Sam Perry Monterey, CA 93940	1

DISTRIBUTION (concluded)

<u>Organization</u>	<u>Number of Copies</u>
Commander US Army Combat Developments Experimentation Command ATTN: ATEC-SA (COL Reed E. Davis, Jr.) Fort Ord, CA 93941	1
DCDR US Army Combined Arms Combat Developments Activity ATTN: ATCA-CA Fort Leavenworth, KS 66027	10

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TP 12-77	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) THE GENERALIZED ZACKS MODEL		5. TYPE OF REPORT & PERIOD COVERED Final
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Edmund H. Inselmann, PhD		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Directorate of Combat Operations Analysis ATTN: ATCA-CA US Army Combined Arms Combat Developments Activity Fort Leavenworth, KS 66027		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS ACN 23274
11. CONTROLLING OFFICE NAME AND ADDRESS Deputy Commander US Army Combined Arms Combat Developments Activity ATTN: ATCA-CA Fort Leavenworth, KS 66027		12. REPORT DATE September 1977
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 11
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Mines, minefields, minefield models, minefield effectiveness		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper generalizes the Zacks model for minefield crossings. Zacks computes in his model the probability of the Nth vehicle crossing a minefield and also the distribution of the number of vehicles crossing the field. Zacks' computations are made under the assumptions that all the vehicles are of the same type and only one kind of mine is present in the field. This paper removes both these restrictions.		