

FIG.12

11032 U.S. PTO 09/26/02

FIG.14A

FIG.14B

FIG.14C

FIG.14D

FIG. 15B BEST AVAILABLE COPY

. 1

. .

أغا

sa kanan ada jagi sa 13 ka

13

FIG.19

SEP 2 6 2002

S Ρ S T 11 GGAGTCGACCCACGCGTCCGCAGGGCTGAGGAACC ATG TCT CCA TCC CCG ACC GCC CTC TTC TGT CTT 68 Р S Ρ Ρ Α Q G 31 GGG CTG TGT CTG GGG CGT GTG CCA GCG CAG AGT GGA CCG CTC CCC AAG CCC TCC CTC CAG 128 Ρ Ε Κ Ρ Τ R 51 GCT CTG CCC AGC TCC CTG GTG CCC CTG GAG AAG CCA GTG ACC CTC CGG TGC CAG GGA CCT 188 Υ R Ε K S S S Y 0 71 CCG GGC GTG GAC CTG TAC CGC CTG GAG AAG CTG AGT TCC AGC AGG TAC CAG GAT CAG GCA 248 Р F Α М Κ R S G S 91 GTC CTC TTC ATC CCG GCC ATG AAG AGA AGT CTG GCT GGA CGC TAC CGC TGC TCC TAC CAG 308 S Р S D L Ε 111 AAC GGA AGC CTC TGG TCC CTG CCC AGC GAC CAG CTG GAG CTC GTT GCC ACG GGA GTT TTT 368 Р S S G S 131 Α Q GCC AAA CCC TCG CTC TCA GCC CAG CCC GGC CCG GCG GTG TCG TCA GGA GGG GAC GTA ACC 428 F F 151 Τ Υ G D Q Α Υ E CTA CAG TGT CAG ACT CGG TAT GGC TTT GAC CAA TTT GCT CTG TAC AAG GAA GGG GAC CCT 488 E R S F Р 171 R W Υ Α GCG CCC TAC AAG AAT CCC GAG AGA TGG TAC CGG GCT AGT TTC CCC ATC ATC ACG GTG ACC 548 F Т Υ R С Υ S S S R 191 GCC GCC CAC AGC GGA ACC TAC CGA TGC TAC AGC TTC TCC AGC AGG GAC CCA TAC CTG TGG 608 Ε G S 211 TCG GCC CCC AGC GAC CCC CTG GAG CTT GTG GTC ACA GGA ACC TCT GTG ACC CCC AGC CGG 668 S S Ē F S Ε 231 Α Α Τ Α Ε TTA CCA ACA GAA CCA CCT TCC TCG GTA GCA GAA TTC TCA GAA GCC ACC GCT GAA CTG ACC 728 F Τ Ε Τ S S S 251 Κ Τ R I Τ GTC TCA TTC ACA AAC AAA GTC TTC ACA ACT GAG ACT TCT AGG AGT ATC ACC ACC AGT CCA 788 К Ε S Р Р Υ Υ Τ 271 Α G Α R Q AAG GAG TCA GAC TCT CCA GCT GGT CCT GCC CGC CAG TAC TAC ACC AAG GGC AAC CTG GTC 848 C Ι Α G F 291 Ι L CGG ATA TGC CTC GGG GCT GTG ATC CTA ATA ATC CTG GCG GGG TTT CTG GCA GAG GAC TGG 908 Н S R Κ L R Н R G R Α ٧ 311 Q CAC AGC CGG AGG AAG CGC CTG CGG CAC AGG GGC AGG GCT GTG CAG AGG CCG CTT CCG CCC 968

D 331 CTG CCG CCC CTC CCG CAG ACC CGG AAA TCA CAC GGG GGT CAG GAT GGA GGC CGA CAG GAT 1028 C G 340 GTT CAC AGC CGC GGG TTA TGT TCA TGA 1055 CCGCTGAACCCCAGGCACGGTCGTATCCAAGGGAGGGATCATGGCATGGGAGGCGACTCAAAGACTGGCGTGTGTGGAG 1134 CGTGGAAGCAGGAGGCCAGAGGCTACAGCTGTGGAAACGAGGCCATGCTGCCTCCTCCTGGTGTTCCATCAGGGAGCCG 1213 AATATGGGCTCCAGACGGATCTCTAAGGTTCCCAGCTCTCAGGGTTGACTCTGTTCCATCCTCTGTGCAAAATCCTCCT 1450 GTGCTTCCCTTTGGCCCTCTGTGCTCTTGTCTGGTTTTCCCCAGAAACTCTCACCCTCACTCCATCTCCCACTGCGGTC 1529 AGCACGTTGCCCGCTTCCCTTCACATTAGAAAACAAGATCAGCCTGTGCAACATGGTGAAACCTCATCTCTACCAACAA 1687 AACAAAAAACACAAAAATTAGCCAGGTGTGGTGGTGCATCCCTATACTCCCAGCAACTCGGGGGGCTGAGGTGGGAGA 1766 ATGGCTTGAGCCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCACACCACTGCACTCTAGCTCGGGTGACGAAGCCTGA 1845 CCTTGTCTCAAAAAATACAGGGATGAATATGTCAATTACCCTGATTTGATCATAGCACGTTGTATACATGTACTGCAAT 1924 AAAAAAAAAAAAAAAGGGCGGCCGCTAGACTAGTCTAGAGAACA 2047

FIG.1B

MSPSPTALFCLGLCLGRVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLE KLSSSRYQDQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQP GPAVSSGGDVTLQCQTRYGFDQFALYKEGDPAPYKNPERWYRASFPIITVTAAHSGTYRC YSFSSRDPYLWSAPSDPLELVVTGTSVTPSRLPTEPPSSVAEFSEATAELTVSFTNKVFT TETSRSITTSPKESDSPAGPARQYYTKGNLVRICLGAVILIILAGFLAEDWHSRRKRLRH RGRAVQRPLPPLPPLPQTRKSHGGQDGGRQDVHSRGLCS

FIG.2

SEP 2 6 2002 ST

Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL.

Title: "GLYCOPROTEIN VI AND USES THEREOF"

ATGTCTCCATCCCGACCGCCCTCTTCTGTCTTGGGCTGTGTCTGGGGCG-TGTGCCAGC--GCAGAGTG inputs GGCCCTTCCCCAAACCCACCCTCTGGGCTGAGCCAGGCTCTGTGAT-CAGCTGGGGGAGCCCCGTGACCA GACCGCTCCCCAAGCCCTCCAGGCTCTGCCCAGCTCCCTGGTGCCCCTGGAGAAGCCA-GTGACCC inputs TCTGGTGTCAGGGGAGCCCTGGAGGCCCAGGAGTACCGACTGGATAAAGAGGGAAGCCCAGAGCCCTTGGA ::.:: ::. ::: :.. TCCGGTGCCAGGG - - ACCT - - - - - CCGGGCGTG - - GACCTGTA - - - - - - CCGCCTGGAG - - - - - AAG CTGAGTT - - CCAGCAGGTACC - AGGATCA - GGCAGTCCTCTTCATCCCGGCCATGAAGAGAAGTCTGGCT inputs GGGAGATACCGCTGCCACTATTACAGCTCTGCAG--GCTGGTCAGAGCCCAGCGACCCCCTGGAGCTGGT ::: .: ::: :::::: GGACGCTACCGCTGCTCCTAC - - CAGAACGGAAGCCTCTGGTCCCTGCCCAGCGACCAGCTGGAGCTCGT inputs GATGACAGGATTCTACAACAAACCCACCCTCTCAGCCCTGCCCAGCCCTGTGGTGGCCTCAGGGGGGAAT inputs TCCCCCGGACCCTGGACTCACAGCAGCTCCACAGTGGGGGGTTCCAGGCCCTGTTCCCTGTGGGCCCCGT ::::::: :::::. ------GGACCCTG-------CAA

FIG.3A

DEMARK							
inputs	GAACCCCAG	CCACAGGTGG	AGGTTCACAT	GCTATTACT.	600 ATTATATGAAC	ACCCCCCAGG	TGTGGTCCCAC
	GAATCCCGA 470	: . : . GAGA	.:::.: TGGTAC-CGG 480	::::::: GCTAGT 490	:: -П	CCCCAT- 500	:: CAT
inputs	CCCAGTGAC	CCCCTGGAGA : :: CGCC	TTCTGCCCTC	AGGCGTGTC	670 TAGGAAGCCCT	CCCTCCTGAC	690 CCTGCAGGGCC
inputs	CTGTCCTGG	CCCCTGGGCA	GAGCCTGACC	CTCCAGTGT		CGGCTACGAC ::::::: CTACAGC	760 AGATTTGTTCT :::: TTCT 550
inputs	GTATAAGGA	GGGGGAACGT	790 GACTTCCTCC	AGCGCCCTG	810 GCCAGCAGCCC	820 CAGGCTGGGC	
inputs							900 ACACAACCTCT .:::: TACCT
inputs	910 CCTCCGAGTC ::: GTC 570	920 GGTCGGCCCC :::::::: GGTCGGCCCC 580	930 CAGCGACCCC :::::::: CAGCGACCCC 590	940 CTGAACATC ::::: CTGGA	950 CTGATGGCAGG ::. GCT	960 ACAGATCTAT : .: TGT 600	970 GACACCGTCTC : G
inputs	CCTGTCAGCA	ACAGCCGGGC(CCCACAGTGG	CCTCAGGAG	1020 AGAACGTGACC :: CC	CTGCTGTGTC.	1040 AGTCATGGTGG .:: GGT
		ACTTTCCTTC	TGACCAAAGA.	AGGGGCAGC(:: CA(CCATCCCCCAC	TGCGTCTGAG	1110 ATCAATGTACG .:: TCG
inputs	GAGCTCATAA	\GTACCAGGC ⁻	FGAATTCCCC	ATGAGTCCT		CCACGCGGGG	1180 ACCTACAGGTG ::.: .
	GTA 660	· GC/	670	·······A(680	CGCTGA-	ACTGA 690

Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL.

01pm	Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL. Title: "GLYCOPROTEIN VI AND USES THEREOF"
TANDEMARK OF SET I I I I I I I I I I I I I I I I I I I	10 20 30 40 50 60 S MSPSPTALFCLGLCLG-RVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLEKLSSS ::::::::::::::::::::::::::::::
i npu	70 80 90 100 110 120 130 25 RYQDQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDV
inpu	TLRCGSQKGYHHFVLMKEGEHQLPRTLDSQQLHSGGFQALFPVGPVNPSHRWRFTCYYYYMNTPQVWSHP 150 160 170 180 190 200 210
input	140 150 GFDQFALYKEGDP SDPLEILPSGVSRKPSLLTLQGPVLAPGQSLTLQCGSDVGYDRFVLYKEGERDFLQRPGQQPQAGLSQAN 220 230 240 250 260 270 280
input	160 csAPYK
input	FTLGPVSPSHGGQYRCYGAHNLSSEWSAPSDPLNILMAGQIYDTVSLSAQPGPTVASGENVTLLCQSWWQ 290 300 310 320 330 340 350 170 180 190 200 YRASFPIITVTAAHSGTYRCYSFSSRDPYLWSAPSDPLELVVTG
	FDTFLLTKEGAAHPPLRLRSMYGAHKYQAEFPMSPVTSAHAGTYRCYGSYSSNPHLLSFPSEPLELMVSG 360 370 380 390 400 410 420 210 220 230 240 250 260
i nput	TSVTPSRLPTEPPSSVAEFSEATAELTVSFTNKVFTTETSRSITTSPKESDSPAGPA- HSGGSSLPPTGPPSTPGLGRYLEVLIGVSVAFVLLLFLLLFLLLRRQRHSKHRTSDQRKTDFQRPAGAAE 430 440 450 460 470 480 490
input	270 280 290 S RQYYTKGNLVRICLGAVILIILAGFLAEDW
input	300 310 320 330 330 330 330 330 330 330 SS
input	570 580 590 600 610 620 630

Н

*->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
+ vtL+C+ + v y + k ++ r++ +
hT268 41 EKPVTLRCQGP-----PGVDLY-RLEK1SSS------RYQDQ-- 70

anlsegrfsissltLtissvekeDsGtYtCvv<-*
++L i +++++G Y+C
hT268 71 -------AVLFIPAMKRSLAGRYRCSY 90

FIG.5A

*->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
G++vtL+C+++ + ++ y k+g++ + y+++
hT268 127 GGDVTLQCQTR---YGFDQFALY-KEGDpAP-----YKNPERWYR-- 162
anlsegrfsissltLtissvekeDsGtYtCvv<-*
++++i++v++ sGtY+C
hT268 163 -------ASFPIITVTAAHSGTYRCYS 182
FIG.5B

OIPE SEP 2 6 2007

Docket No.: 7853-178-999
Serial No.: 09/503,387
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

GAGTCGACCCACGCGTCCGCTTCCCTGCTTGGCCACATAGCTCAGGACTGGGTTGCAGAACC ATG TCT CCA GCC 74 TFFCI G L C LQVI 24 TCA CCC ACT TTC TTC TGT ATT GGG CTG TGT GTA CTG CAA GTG ATC CAA ACA CAG AGT GGC 44 CCA CTC CCC AAG CCT TCC CTC CAG GCT CAG CCC AGT TCC CTG GTA CCC CTG GGT CAG TCA 194 P Ð GTT ATT CTG AGG TGC CAG GGA CCT CCA GAT GTG GAT TTA TAT CGC CTG GAG AAA CTG AAA 254 ΥE Q D FLF 84 D I T CCG GAG AAG TAT GAA GAT CAA GAC TIT CTC TIC ATT CCA ACC ATG GAA AGA AGT AAT GCT N G Н 104 GGA CGG TAT CGA TGC TCT TAT CAG AAT GGG AGT CAC TGG TCT CTC CCA AGT GAC CAG CTT 374 Κ 124 GAG CTA ATT GCT ACA GGT GTG TAT GCT AAA CCC TCA CTC TCA GCT CAT CCC AGC TCA GCA 434 144 R D VTLKC GTC CCT CAA GGC AGG GAT GTG ACT CTG AAG TGC CAG AGC CCA TAC AGT TTT GAT GAA TTC 494 Р Ε G Т G ΥK D R 164 K GTT CTA TAC AAA GAA GGG GAT ACT GGG CCT TAT AAG AGA CCT GAG AAA TGG TAC CGG GCC 554 G 184 AAT TTC CCC ATC ATC ACA GTG ACT GCT GCT CAC AGT GGG ACG TAC CGG TGT TAC AGC TTC 614 YL W SAPS D P 204 TCC AGC TCA TCT CCA TAC CTG TGG TCA GCC CCG AGT GAC CCT CTA GTG CTT GTG GTT ACT 674 Ε Ε S 224 GGA CTC TCT GCC ACT CCC AGC CAG GTA CCC ACG GAA GAA TCA TTT CCT GTG ACA GAA TCC 734 Ι Τ Ι S Τ Т Ε 244 Ν Κ TCC AGG AGA CCT TCC ATC TTA CCC ACA AAC AAA ATA TCT ACA ACT GAA AAG CCT ATG AAT PΕ LSPPI GFA H Q 264 ATC ACT GCC TCT CCA GAG GGG CTG AGC CCT CCA ATT GGT TTT GCT CAT CAG CAC TAT GCC 854 284 AAG GGG AAT CTG GTC CGG ATA TGC CTT GGT GCC ACG ATT ATA ATA ATT TTG TTG GGG CTT 914 K Κ 304 Н CTA GCA GAG GAT TGG CAC AGT CGG AAG AAA TGC CTG CAA CAC AGG ATG AGA GCT TTG CAA P L PIA 314 AGG CCA CTA CCA CCC CTC CCA CTG GCC TAG 1004 AAATAACTTGGCTTTCAGCAGAGGGATTGACCAGACATCCATGCACAACCATGGACATCACCACTAGAGCCACAGACAT 1083 1163

MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRL EKLKPEKYEDQDFLFIPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAH PSSAVPQGRDVTLKCQSPYSFDEFVLYKEGDTGPYKRPEKWYRANFPIITVTAAHSGTYR CYSFSSSSPYLWSAPSDPLVLVVTGLSATPSQVPTEESFPVTESSRRPSILPTNKISTTE KPMNITASPEGLSPPIGFAHQHYAKGNLVRICLGATIIIILLGLLAEDWHSRKKCLQHRM RALQRPLPPLPLA

FIG.7

SEP 2 5 2002

Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL

Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG. 8A

Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL

Inventor(s): BUSFIELD ET AL.

Title: "GLYCOPROTEIN VI AND USES THEREOF"

nputs ACCCCAGCCACAGGTGGAGGTTCACATGCTATTACTATTATATGAACACCCCCCAGGTGTGGTCCCACCC ::::::: .:...::.::. ::::: ---CCAACCATGGAAAGAAGTA---ATGCT------GGAC-------GGTAT-----660 670 ::::. . . : : . : : : CGATG---CTCTTA-----TCAGA-----ATGGGAGTC-----ACTGGTCTCT inputs GTCCTGGCCCCTGGGCAGAGCCTGACCCTCCAGTGTGGCTCTGATGTCGGCTACGACAGATTTGTTCTGT ::::: : .:.: :::..: ::.:: ------CCCAAG------TGACCAGCTTGAG-----CTAATT---GCTAC-----inputs ATAAGGAGGGGAACGTGACTTCCTCCAGCGCCCTGGCCAGCCCCAGGCTGGGCTCTCCCAGGCCAA :::::: : ...: ..:: ::::: inputs CTTCACCCTGGGCCCTGTGAGCCCCTCCCACGGGGGCCAGTACAGGTGCTATGGTGCACACACCTCTCC ::: : ::::: ------GCT------inputs TCCGAGTGGTCGGCCCCCAGCGACCCCCTGAACATCCTGATGGCAGGACAGATCTATGACACCGTCTCCC ::::.. ::: ------CAGCAGTCCC-----TC---AAGGCAGG---GAT--GTGACTCTGA----AGT------CAGTTTTGATGA--inputs GTTTGACACTTTCCTTCTGACCAAAGAAGGGGCAGCCCATCCCCCACTGCGTCTGAGATCAATGTACGGA **** : :: : : : ::: ::: -----ATTCGTTCTATACAAAGAAGGGG-----AT----ACTGGGCCTTATA--AGAGACCTGA

FIG.8B

Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL

Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.8C

1750	1760		1780		1800	1810	
inputs GC	TGCTGCATCTGAA	GCCTCCCAG	GATGTGACCT	ACGCCCAGCT	GCACAGCTTG	ACCCTTAGAG	CGGAAGG
::	::::::.	:::	:::::::		::::	.:	.::::
GC	CTGCAACA	CAG	GATGAGA		GCTTT	GC	- AAAGG
	890		900		9	10	
1820	1830	1840	1850	1860	1870	1880	
inputs CA	ACTGAGCCTCCTC	CATCCCAGG	AAGGGGAACC	TCCAGCTGAG	CCCAGCATCT	ACGCCACTCT	GGCCAT
	:::. ::::		::	:::		:.::	::::
CC	ACTACCAC	:C	CC	TCC		CACT	rggcc
	920		9	30			
1890							
inputs CC	AC						

FIG. 8D

Docket No.: 7853-178-999 Serial No.: 09/503,387 Inventor(s): BUSFIELD ET AL.

Title: "GLYCOPROTEIN VI AND USES THEREOF"

Н

	*	->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek	
		G+sv L+C+ +++v y + k ++ +++e +	
mT268	42	GQSVILRCQGPPDVDLY-RLEK1KPEKYEDQ 7	1
		anlsegrfsissltLtissvekeDsGtYtCvv<-*	
		L i + e++++G Y+C	
mT268	72	91 PTLFIPTMERSNAGRYRCSY	

FIG.10A

	*.	->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
		G +vtL C++ ++ y k+g++ + Y+r+e +
mT268	128	GRDVTLKCQSPYSFDEFVLY-KEGDtGPYKRPEKW-Y 162
		anlsegrfsissltLtissvekeDsGtYtCvv<-*
		diribegi ib ibb i ce cibb vekebbaci cov v
		+ ++i++v++ sGtY+C

FIG.10B

	10	0.0	0.0	40	**		
innuta MCDCI	10		30		50 (T) D0000000	60	CCDVOD
inputs MSPSI	PIALFULGEU	LGKV-PAJUSG	iPLPKPSLQALI	PSSLVPLEKPI	/TERCUGPPG\	/ULYKLEKLS	22KYUD
MCDAS	DTEECTOLO	UL OVIOTOSC	PLPKPSLQAQI			:::::::: /DI VDI EVI V	:.:
INSTA.	10	20	irlekeslyayi 30	-55EVPLGQ5V 40	TERCUGPPDV 50	DETRLENLA 60	70
70	80	20 90	100			130	70
inputs QAVLI						200	COTRYG
: ::	111000000		SENSEI SEGEI	Transcor.	JEJAQI GI AV		·· ·
ODFLF	IPTMERSNA(GRYRCSYONG	SHWSLPSDQLE	LIATGVYAKE	SLSAHPSSAV	POGRDVTI K	COSPYS
	80	90	100		120	130	140
140	150	160	170	180	190	200	
inputs FDQFA	ALYKEGDPAP'	YKNPERWYRA	SFPI ITVTAAN	<u>ISGTYR</u> CYSFS	SRDPYLWSAP	SDPLELVVT	GTSVTP
			.::::::::::	:::::::::::::::::::::::::::::::::::::::	: .::::::	:::: ::::	: :.::
FDEF	/LYKEGDTGP	YKRPEKWYRA	NFPIITVTAAH	(SGTYRCYSFS	SSSPYLWSAP	SDPLVLVVT	GLSATP
	150	160		180		200	210
210	220		240				
inputs SRLPT	EPPSSVAEFS	SEATAELTVS	FTNKVFTTETS	SRSITTSPKES	SDSPAGPARQY	YTKGNLVRI	CLGAVI
	· · · · · · ·		THE TEXT !				
SUVPI	220 220		-TNKISTTEKF				JEGATI
	220	230	240	250	260	270	
280	290	300	310	320	330		
inputs LIILAGFLAEDWHSRRKRLRHRGRAVQRPLPPLPPLPQTRKSHGQQDGGRQDVHSRGLCS							
······································							
IIILL	GLLAEDWHSF	RKKCLQHRMR	ALQRPLPPLP-	LA			
280	290	300	310				

FIG.11