

Functional Description

adVAE aims to:

- 1. Aid Alzheimer's research by creating high-quality multimodal synthetic data (gene expression, EEG, MRI)
- 2. Easily integrate with existing biomedical workflows

User Interface

Command line interface (CLI)

Functionality

- Preprocess input data used to train the VAE
- 2. Latent space representation of various data modalities
- Generation of synthetic data using latent space variables

Task Prioritization

- 1. Identify example data (gene expression, EEG and MRI)
- Create VAE model architecture for one modality (gene expression)
- 3. Train the model using the example gene expression dataset
- 4. Perform latent space optimization
- Validate the results by calculating KL loss and reconstruction error of generated dataset
- 6. Extend the model to include other modalities
- 7. Train, validate, and test the model using the bulk data

Goals and Milestones

- 1. Finish all design documentation
- 2. Set up GitHub repository
- 3. Create modules
- 4. Start implementing code
- 5. Create model for one modality
- 6. Extend model for other modalities
- 7. Peer review
- 8. Refine model and update design documentation

Solutions

- 1. Tensorize all input data
- Create separate modules/classes for handling different data modalities
- 3. Validate by calculating KL loss and reconstruction loss

Module Structure

	١V	Veek	1 (02	.03 -	02.0	9)	We	ek2	(02.1	0 - 02	2.016)	Wee	k3(02.17	- 02	23)			Wee						Veek 5					Week					Wee						Veek i		
Tasks	М	T۱	N TI	h F	S	Su	м т	W	/ Th	F	S S	u M	Т	W	Th F	- s	Su	М	T١	N TI	ı F	S	Su	м т	W	Th F	s	Su	М 1	r w	Th	FS	Su	М	T١	N Th	ı F	S	Su I	ч т	W	Th I	F S	St
Create SRS																							\Box																П					
Create Datasets.md																																												
Create WBS																																												
Create Timeline																																												
Create DDS																																												
Identify data sources																																												
Validate data																																												
Implement first function																							\Box																					
Split dataset into example-training-validation-test data																																												
Perform data preprocessing for gene expression data																							П																T					
(normalization, scaling, handling missing values)																																												
Perform exploratory statistical analysis on the example data		ш										\perp							ш				_			ш								ш				ш	_			ш	_	
Visualize the example data																																												
Construct the VAE architecture																							\Box																					
Set up hyperparameter tuning, backpropagation and training																																												
functions												\perp											_																_				_	_
Set up loss functions and other validation metrices		ш		_				_				\perp				_			ш			_	_			ш	_			_		_		\perp	_			ш	_			_	_	
Train and test model on example dataset																							\Box																					
Evaluate reconstruction quality																																												
Optimize latent space for gene expression VAE model																																												
Adapt model for MRI data												\perp											\perp															Ш	\perp				_	_
Adapt model for EEG data																																												
Validate using full training, validation and test data																																												
Develop Command Line Interface for adVAE																							\Box																					
Update all design documentation																																												
Summarize key findings																																												
Prepare for peer review																																												
Present findings																							\Box																7					I

Timeline