# ORDINAL LOGISTIC REGRESSION

Dr. Aric LaBarr
Institute for Advanced Analytics

# INTRODUCTION

### Logistic Regression

- What if there are more than two categories?
  - Ordinal Logistic Regression
  - Multinomial Logistic Regression
- When the outcomes are ordered we can generalize the binary logistic regression model.
- Examples:
  - Disagree, Neutral, Agree
  - Tropical Depression, Tropical Storm, Category 1, 2, 3, 4, 5 Hurricanes

### Ordinal Logistic Regression

- Models are used when the response variable is ordinal.
- Models can also be used when the continuous response variable has a restricted range and need to be split into categories.

### Logistic Models

Binary Logistic Regression (probability that observation i has the event):

$$= \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

• Ordinal Logistic Regression (probability that observation i has **at most** event j, and j = 1, ..., m):

$$= \beta_{0,j} + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

### "Found a Wallet?" Data Set

- Model the association between various factors and different levels of ethical responses on finding a wallet.
- 195 observations in the data set.



### "Found a Wallet?" Data Set

- Model the association between various factors and different levels of ethical responses on finding a wallet.
- Students at UPenn.
- Predictors:
  - male: indicator for a male student
  - business: indicator for student enrolled in business school
  - **punish:** how often the student was punished as a child low (1), moderate (2), high (3)
  - explain: indicator of whether explanation for punishment was given



# PROPORTIONAL ODDS MODEL

### Methods for Modeling

- There are three methods for modeling ordinal logistic regression models:
  - Cumulative Logit Model
  - Adjacent Categories Model
  - Continuation Ratio Model

### Methods for Modeling

- There are three methods for modeling ordinal logistic regression models:
  - Cumulative Logit Model
  - 2. Adjacent Categories Model
  - 3. Continuation Ratio Model

Easy to implement and interpret! Also, most common...

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3} + \cdots p_{i,m}}\right), \log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \cdots + p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1} + \cdots + p_{i,m-1}}{p_m}\right)$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3} + \cdots p_{i,m}}\right), \log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \cdots + p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1} + \cdots + p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3} + \cdots p_{i,m}}\right), \log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \cdots + p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1} + \cdots + p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1 \longrightarrow p_{i,2} + \dots + p_{i,m} = 1 - p_{i,1}$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{p_{i,3}+\cdots+p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1}+\cdots+p_{i,m-1}}{p_{m}}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
  $\longrightarrow$   $p_{i,2} + \dots + p_{i,m} = 1 - p_{i,1}$ 

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{p_{i,3}+\cdots+p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1}+\cdots+p_{i,m-1}}{p_m}\right)$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{p_{i,3}+\cdots+p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1}+\cdots+p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
  $\longrightarrow$   $p_{i,3} + \dots + p_{i,m} = 1 - (p_{i,1} - p_{i,2})$ 

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{1-\left(p_{i,1}+p_{i,2}\right)}\right), \dots, \log\left(\frac{p_{i,1}+\dots+p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
  $\longrightarrow$   $p_{i,3} + \dots + p_{i,m} = 1 - (p_{i,1} - p_{i,2})$ 

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{1-\left(p_{i,1}+p_{i,2}\right)}\right), \dots \left|\log\left(\frac{p_{i,1}+\dots+p_{i,m-1}}{1-\left(p_{i,1}+\dots+p_{i,m-1}\right)}\right|\right|$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities  $(p_1, p_2, ..., p_m)$ , then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{1-\left(p_{i,1}+p_{i,2}\right)}\right), \dots, \log\left(\frac{p_{i,1}+\dots+p_{i,m-1}}{1-\left(p_{i,1}+\dots+p_{i,m-1}\right)}\right)$$

#### *m-1* Binary Logistic Regressions!

• Event now becomes outcome  $\leq j$  for categories j = 1, ..., m

### Logistic Models

Binary Logistic Regression (probability that observation i has the event):

$$= \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

• Ordinal Logistic Regression (probability that observation i has **at most** event m, and j = 1, ..., m):

$$= \beta_{0,j} + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

$$m - 1 \text{ Equations!}$$

### Logistic Models

Binary Logistic Regression (probability that observation i has the event):

$$= \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

• Ordinal Logistic Regression (probability that observation i has **at most** event m, and j = 1, ..., m):

$$= \beta_{0,j} + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

 Intercept changes, but slope parameters stays the same (called proportional odds assumption)!

### "Found a Wallet?" Data Set

 Model the association between various factors and different levels of ethical responses on finding a wallet.

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

```
Call:
polr(formula = factor(wallet) ~ male + business + punish + explain,
   data = train, method = "logistic")
Coefficients:
         Value Std. Error t value
male
        -1.0598
                   0.3274 - 3.237
business -0.7389 0.3556 -2.078
punish2 -0.6276 0.4048 -1.551
punish3 -1.4031 0.4823 -2.909
explain 1.0519
                   0.3408 3.086
Intercepts:
   Value Std. Error t value
112 -2.5679 0.4190 -6.1287
2|3 -0.7890 0.3709 -2.1273
```

Residual Deviance: 307.3349

AIC: 321.3349

```
Intercepts:

Value Std. Error t value

1|2 -2.5679 0.4190 -6.1287

2|3 -0.7890 0.3709 -2.1273
```

Residual Deviance: 307.3349

AIC: 321.3349

#### Intercepts:

Call:

```
Value Std. Error t value
1|2 -2.5679 0.4190 -6.1287
2|3 -0.7890 0.3709 -2.1273
```

Residual Deviance: 307.3349

AIC: 321.3349

## **Testing Assumptions**



HOW DO WE TEST IF SLOPES ARE THE SAME?

### Score Test (Brant Test) for Proportional Odds

- Need to test to see if the slopes are statistically different from each other in the proportional odds model.
  - Null: Proportional Odds Correct (Slopes Equal Across Models)
  - Alternative: Proportional Odds Incorrect (Slopes NOT Equal Across Models)

### **Brant Test**

brant(clogit.model)

| Test for | X2 df | prol | bability |
|----------|-------|------|----------|
| Omnibus  | 5.46  | 5    | 0.36     |
| male     | 0.51  | 1    | 0.47     |
| business | 0.58  | 1    | 0.45     |
| punish2  | 0.99  | 1    | 0.32     |
| punish3  | 2.81  | 1    | 0.09     |
| explain  | 0.25  | 1    | 0.62     |
|          |       |      |          |

**H0: Parallel Regression Assumption holds** 

## What if Assumption Fails?

- The proportional odds assumption may not be met for all variables.
- 2 Approaches:
  - 1. Partial Proportional Odds Model
  - 2. Multinomial Logistic Regression

## What if Assumption Fails?

- The proportional odds assumption may not be met for all variables.
- 2 Approaches:
  - Partial Proportional Odds Model
  - 2. Multinomial Logistic Regression

**Some** variables fail assumption

All variables fail assumption

### Partial Proportional Odds

### Partial Proportional Odds

```
Call:
vglm(formula = factor(wallet) ~ male + business + punish + explain,
    family = cumulative(parallel = F ~ business), data = train)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                          0.4466 -5.978 2.26e-09 ***
(Intercept):1
             -2.6695
(Intercept):2 -0.7730
                          0.3678 - 2.102 0.03557 *
             1.0707
                         0.3258 3.287
                                        0.00101 **
male
business:1
                                         0.04236 *
           0.9722
                          0.4789
                                  2.030
                                  1.674
               0.6376
                                        0.09423 .
business:2
                          0.3810
punish2
               0.6300
                          0.4008
                                  1.572 0.11594
punish3
                          0.4727
                                  2.952
                                         0.00316 **
               1.3956
                                         0.00203 **
explain
              -1.0532
                          0.3413
                                  -3.086
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```



# INTERPRETATION

### **Model Notation**

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of higher outcome category:

$$\log\left(\frac{p_{i,3}}{p_{i,1} + p_{i,2}}\right) = \beta_{0,1} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,3} + p_{i,2}}{p_{i,1}}\right) = \beta_{0,2} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

#### **Model Notation**

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of higher outcome category:

$$\log\left(\frac{p_{i,3}}{p_{i,1} + p_{i,2}}\right) = \beta_{0,1} + \beta_1 \text{male} + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log \left(\frac{p_{i,3} + p_{i,2}}{p_{i,1}}\right) = \beta_{0,2} + \beta_1 \text{male} + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_5 \text{explain}_i$$

• Interpretation is still an odds ratio:  $100 * (e^{\hat{\beta}_j} - 1) \%$  higher expected odds of being in a higher category.



- Interpretation is still an odds ratio:  $100 * (e^{\widehat{\beta}_j} 1) \%$  higher expected odds of being in a higher category.
- Proportional odds model:
  - Same increase in odds across all singular jumps in category.
  - Wallet example: OR same comparing 3 to 1,2 and from 3,2 to 1.

- Interpretation is still an odds ratio:  $100 * (e^{\hat{\beta}_j} 1) \%$  higher expected odds of being in a higher category.
- Proportional odds model:
  - Same increase in odds across all singular jumps in category.
  - Wallet example: OR same comparing 3 to 1,2 and from 3,2 to 1.
- Male variable (coefficient = -1.0598,  $\mathbf{100} * (e^{-1.0598} \mathbf{1}) = -65.35\%$ )
  - Males have 65.35% lower expected odds of being in a higher ethical category as compared to females.

- Interpretation is still an odds ratio:  $100 * (e^{\hat{\beta}_j} 1) \%$  higher expected odds of being in a higher category.
- Proportional odds model:
  - Same increase in odds across all singular jumps in category.
  - Wallet example: OR same comparing 3 to 1,2 and from 3,2 to 1.
- Business variable (coefficient = -0.7389,  $\mathbf{100} * (e^{-0.7389} \mathbf{1}) = -\mathbf{52.24} \%$ )
  - Business school students have 52.24% lower expected odds of being in a higher ethical category as compared to students not in the business school.



# PREDICTIONS AND DIAGNOSTICS

### **Similarities**

- Ordinal logistic regression has a lot of the same aspects/issues as a binary logistic regression:
  - Multicollinearity still exists.
  - Non-convergence problems still exist.
  - Confidence intervals need profile likelihoods.
  - Concordance, Discordance, Tied pairs still exist so the c statistic still exists.
  - Generalized R<sup>2</sup> remains the same.

### Differences

- Ordinal logistic regression has a few aspects/issues that differ from a binary logistic regression:
  - A lot of the diagnostics for binary regression cannot be calculated easily since there are actually multiple models – ROC curves for each model?
  - Diagnostics / Influence plots are not available residuals for each model?
  - Predicted probabilities are for each category.

#### **Predicted Probabilities**

```
pred_probs <- predict(clogit.model, newdata = train, type = "probs")
head(pred_probs)</pre>
```

```
1 2 3
1 0.12562481 0.3341195 0.5402557
2 0.04778463 0.1813420 0.7708734
3 0.02609095 0.1108549 0.8630542
4 0.12562481 0.3341195 0.5402557
5 0.07176375 0.2423258 0.6859105
6 0.02609095 0.1108549 0.8630542
```

### **Confusion Matrix**

 A confusion matrix is a matrix of all predicted responses compared to actual responses in terms of correct percentage.

|        | Predicted |    |     |
|--------|-----------|----|-----|
|        | 4         | 11 | 9   |
| Actual | 3         | 9  | 38  |
|        | 0         | 12 | 109 |

### **Confusion Matrix**

 A confusion matrix is a matrix of all predicted responses compared to actual responses in terms of correct percentage.

|        | Predicted |       |       |
|--------|-----------|-------|-------|
|        | 16.7%     | 45.8% | 37.5% |
| Actual | 6.0%      | 18.0% | 76.0% |
|        | 0.0%      | 9.9%  | 90.1% |

## **Good Confusion Matrix**

|        | Predicted |      |      |
|--------|-----------|------|------|
|        | 100%      | 0.0% | 0.0% |
| Actual | 0.0%      | 100% | 0.0% |
|        | 0.0%      | 0.0% | 100% |

### **Confusion Matrix**

Weighted accuracy scores are common.

|        | Predicted |     |     |
|--------|-----------|-----|-----|
|        | 1         | 0.5 | 0   |
| Actual | 0.5       | 1   | 0.5 |
|        | 0         | 0.5 | 1   |

# Notch Graph

 Some people use notch graphs to show the "accuracy" gains the further out the prediction is from the truth.



