Q11 Stability and Convergence of Numerical PDE's

(Dr. Plewa; Summer 2017)

Part 1, Spatial Convergence Study:

A Spatial Convergence Study is conducted using the matlab programs for a one-dimensional heat diffusion problem from Dr. Burkardt's website. The approximate data u(x,t) are stored in matrix hmat.

An L-1 norm is found for the approximate solution by adding the code "L-1 norm = norm(hmat , 1) ."

Each L-1 norm is scaled back to the coarse grid by dividing by 2, 4, and 8 respectively.

An L-1 norm is also found for a very Fine grid of t num = 10,241 and x num of 161.

The **very Fine grid** solution is used to approximate the exact solution.

The "L1 norm **error"** is assumed to be the difference between the Coarse grid L-1 norm and the very Fine grid L-1 norm.

Holding the step size for time to be dt = Δ t = 0.0039047 the following data are generated for four different step spatial step sizes of dx = Δ x:

Spatia	Spatial Convergence Study								
tnum	xnum	L1_norm	dx	LN(dx)	Coarse L1_norm	L1 norm error	LN(L1 norm error)		
2561	11	830.0736	0.1000	-2.30259	830.0736	75.1986	4.32013		
2561	21	1579.9000	0.0500	-2.99573	789.9500	35.0750	3.55749		
2561	41	3079.6000	0.0250	-3.68888	769.9000	15.025	2.70972		
2561	81	6079.2000	0.0125	-4.38203	759.9000	5.025	1.61443		

dx = x step size = 1/(xnum-1)

The L-1 error norm **model** for varying step sizes in the spatial dimension x is written as:

$$L_1 = A(\Delta x)^{\alpha}$$

$$Ln(L_1) = Ln(A(\Delta x)^{\alpha})$$

$$Ln(L_1) = Ln A + Ln (\Delta x)^{\alpha}$$

$$Ln(L_1) = Ln A + \alpha Ln (\Delta x)$$

$$Ln A + \alpha Ln (\Delta x) = Ln(L_1)$$
 letting $a = Ln A$ and $b = \alpha$

$$a + b Ln (\Delta x) = Ln(L_1)$$

Create a system of equation using the data from above:

$$a + b(-2.30259) = 4.32013$$

$$a + b(-2.99573) = 3.55749$$

$$a + b(-3.68888) = 2.70972$$

$$a + b(-4.38203) = 1.61443$$

Putting the system of equations into matrix form:

$$\begin{bmatrix} 1 & -2.30259 \\ 1 & -2.99573 \\ 1 & -3.68888 \\ 1 & -4.38203 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4.23013 \\ 3.55749 \\ 2.70972 \\ 1.61443 \end{bmatrix}$$

Letting A =
$$\begin{bmatrix} 1 & -2.30259 \\ 1 & -2.99573 \\ 1 & -3.68888 \\ 1 & -4.38203 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4.23013 \\ 3.55749 \\ 2.70972 \\ 1.61443 \end{bmatrix}$

Solve for a and b using matrix method of least squares:

$$Ax = b$$

$$A^{T}Ax = A^{T}b$$

From Matlab

$$x = A^T A \setminus A^T b$$

$$x = \begin{bmatrix} a \\ b \end{bmatrix}$$

Plugging \boldsymbol{a} and \boldsymbol{b} into the previous equations:

a = 7.22056435

$$a = Ln A$$

Ln A = 7.22056435

$$A = e^{7.22056435}$$

$$A = 1,367.26$$

$$b = 1.25441031$$

$$b = \alpha$$

$$\alpha = 1.25441031$$

$$L_1 = A(\Delta x)^{\alpha}$$

$$L_1 = 1,367.26(\Delta x)^{1.25441031}$$
 Error Norm for Spatial Study

Part 2, Temporal Convergence Study:

A Temporal Convergence Study is conducted using the matlab programs for a one-dimensional heat diffusion problem from Dr. Burkardt's website. The approximate data u(x,t) are stored in matrix hmat.

An L-1 norm is found for the approximate solution by adding the code "L-1 norm = norm(hmat , 1) ."

An L-1 norm is also found for a **very Fine grid** of t_num = 10,241 and x_num of 161.

The **very Fine grid** solution is used to approximate the exact solution.

The "L1 norm **error"** is assumed to be the difference between the Coarse grid L-1 norm and the very Fine grid L-1 norm.

Holding the spatial x step size to be $dx = \Delta x = 0.05$ the following data are generated for four different step temporal step sizes of $dt = \Delta t$:

Tempo	Temporal Convergence Study							
tnum	xnum	L1_norm	dt	LN(dt)	L1 norm error	LN (L1 norm error)		
41	11	831.5980	0.25000	-1.3863	76.7230	4.34020		
81	11	830.8196	0.12500	-2.0794	75.9446	4.33000		
161	11	830.4336	0.06250	-2.7726	75.5586	4.32491		
321	11	830.2414	0.03125	-3.4657	75.3664	4.32236		

dt = t step size = 10/(tnum -1)

The L-1 error norm **model** for varying step sizes in the spatial dimension x is written as:

$$L_1 = B(\Delta t)^{\beta}$$

$$Ln(L_1) = Ln\big(B(\Delta t)^\beta\big)$$

$$Ln(L_1) = Ln B + Ln (\Delta t)^{\beta}$$

$$Ln(L_1) = Ln B + \beta Ln (\Delta t)$$

$$Ln\ {\sf B}\ +\ \beta\ Ln\ ({\it \Delta}t)\ =\ Ln(L_1)$$
 letting $a\ =\ Ln\ {\sf B}$ and $b\ =\ \beta$

$$a + b Ln (\Delta t) = Ln(L_1)$$

Create a system of equation using the data from above:

$$a + b(-1.3863) = 4.34020$$

$$a + b(-2.0794) = 4.33000$$

$$a + b(-2.7726) = 4.32491$$

$$a + b(-3.4657) = 4.32236$$

Putting the system of equations into matrix form:

$$\begin{bmatrix} 1 & -1.3863 \\ 1 & -2.0794 \\ 1 & -2.7726 \\ 1 & -3.4657 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4.34020 \\ 4.33000 \\ 4.32491 \\ 4.32236 \end{bmatrix}$$

Letting
$$A = \begin{bmatrix} 1 & -1.3863 \\ 1 & -2.0794 \\ 1 & -2.7726 \\ 1 & -3.4657 \end{bmatrix}$$
 , $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4.34020 \\ 4.33000 \\ 4.32491 \\ 4.32236 \end{bmatrix}$

Solve for a and b using matrix method of least squares:

$$Ax = b$$

$$A^T A x = A^T b$$

From Matlab

$$x = A^{T}A \setminus A^{T}b$$

$$x = \begin{bmatrix} a \\ b \end{bmatrix}$$

Plugging a and b into the previous equations:

$$a = 4.34636825$$

$$a = Ln B$$

$$Ln B = 4.34636825$$

$$B = e^{4.34636825}$$

$$B = 77.1976$$

$$b = 0.00754683$$

$$b = \beta$$

$$\beta = 0.00754683$$

$$L_1 = B(\Delta t)^{\beta}$$

$$L_1 = 77.1976(\Delta t)^{0.00754683}$$

Error Norm for Temporal Study

Part 2, Spatial-Temporal Convergence Study:

A Spatial Temporal Convergence Study is conducted using the matlab programs for a one-dimensional heat diffusion problem from Dr. Burkardt's website. The approximate data u(x,t) are stored in matrix hmat.

An L-1 norm is found for the approximate solution by adding the code "L-1 norm = norm(hmat , 1) ."

Each L-1 norm is scaled back to the coarse grid by dividing by 2, 4, and 8 respectively.

An L-1 norm is also found for a very Fine grid of t num = 10,241 and x num of 161.

The **very Fine grid** solution is used to approximate the exact solution.

The "L1 norm **error"** is assumed to be the difference between the Coarse grid L-1 norm and the very Fine grid L-1 norm.

The following L1_norm data are generated for seven different combinations of temporal step sizes dt = Δt and spatial step sizes of dx = Δx :

Spatial/Temporal Convergence Study								
			Coarse		L1 norm			
tnum	dt	xnum	dx	L1_norm	L1_norm	error		
161	0.0625	21	0.05	1580.6000	790.3	35.425		
321	0.03125	21	0.05	1580.2000	790.1	35.225		
641	0.015625	21	0.05	1580.0000	790	35.125		
641	0.015625	41	0.025	3079.9000	769.975	15.1		
1281	0.007813	11	0.1	830.0976	830.0976	75.2226		
1281	0.007813	21	0.05	1579.9000	789.95	35.075		
1281	0.007813	41	0.025	3079.7000	769.925	15.05		

The L-1 error norm **model** for varying step sizes in the spatial dimension x and the temporal dimension t is written as:

$$L_1 = A(\Delta x)^{\alpha} + B(\Delta t)^{\beta} + C(\Delta x \Delta t)^{\gamma}$$

Using the formulas derived from the previous two studies:

$$A(\Delta x)^{\alpha} = 1,367.26(\Delta x)^{1.25441031}$$

and

$$B(\Delta t)^{\beta} = 77.1976(\Delta t)^{0.00754683}$$

The combined L-1 error norm equation for the Spatial-Temporal Convergence study is found to be:

$$L_1$$
 norm error = 1,367.26(Δx)^{1.25441031} + 77.1976(Δt)^{0.00754683} + $C(\Delta x \Delta t)^{\gamma}$

Spatial/Temporal Convergence Study								
					Coarse			
tnum	dt	xnum	dx	L1_norm	L1_norm	L1 Spatial	L1 Temporal	
161	0.0625	21	0.05	1580.6000	790.3	31.9026	75.59907992	
321	0.03125	21	0.05	1580.2000	790.1	31.9026	75.20464884	
641	0.015625	21	0.05	1580.0000	790	31.9026	74.81227568	
641	0.015625	41	0.025	3079.9000	769.975	13.3724	74.81227568	
1281	0.007813	11	0.1	830.0976	830.0976	76.1098	74.42194968	
1281	0.007813	21	0.05	1579.9000	789.95	31.9026	74.42194968	
1281	0.007813	41	0.025	3079.7000	769.925	13.3724	74.42194968	

$$L_1$$
 error norm = 1,367.26(Δx)^{1.25441031} + 77.1976(Δt)^{0.00754683} + $C(\Delta x \Delta t)^{\gamma}$
 L_1 error norm = L1 Spatial error + L1 Temporal error + $C(\Delta x \Delta t)^{\gamma}$

Creating an equation for each combination from the combined spatial-temporal charts above:

 $35.4250 = 31.9026 + 75.59907992 + C(0.003125)^{\gamma}$ $35.2250 = 31.9026 + 75.20464884 + C(0.0015625)^{\gamma}$ $35.1250 = 31.9026 + 74.81227568 + C(0.0007813)^{\gamma}$ $15.1000 = 13.3724 + 74.81227568 + C(0.0003906)^{\gamma}$ $75.2226 = 76.1098 + 74.42194968 + C(0.0007813)^{\gamma}$ $35.0750 = 31.9026 + 74.42194968 + C(0.0003907)^{\gamma}$ $15.0500 = 13.3724 + 74.42194968 + C(0.0001953)^{\gamma}$

Combining numerical terms:

 $-72.07668 = C(0.003125)^{\gamma}$ $-71.88225 = C(0.0015625)^{\gamma}$ $-71.58987 = C(0.0007813)^{\gamma}$ $-73.08468 = C(0.0003906)^{\gamma}$ $-75.30915 = C(0.0007813)^{\gamma}$ $-71.24955 = C(0.0003907)^{\gamma}$ $-72.74435 = C(0.0001953)^{\gamma}$

Multiplying both sides times -1:

$$72.07668 = -C(0.003125)^{\gamma}$$

$$71.88225 = -C(0.0015625)^{\gamma}$$

$$71.58987 = -C(0.0007813)^{\gamma}$$

$$73.08468 = -C(0.0003906)^{\gamma}$$

75.30915 =
$$-C(0.0007813)^{\gamma}$$

$$71.24955 = -C(0.0003907)^{\gamma}$$

$$72.74435 = -C(0.0001953)^{\gamma}$$

Taking the natural log of both sides of the equation:

$$Ln(72.07668) = Ln(-C) + Ln(0.003125)^{\gamma}$$

$$Ln (71.88225) = Ln(-C) + Ln(0.0015625)^{\gamma}$$

$$Ln(71.58987) = Ln(-C) + Ln(0.0007813)^{\gamma}$$

$$Ln (73.08468) = Ln(-C) + Ln(0.0003906)^{\gamma}$$

$$Ln(75.30915) = Ln(-C) + Ln(0.0007813)^{\gamma}$$

$$Ln (71.24955) = Ln(-C) + Ln(0.0003907)^{\gamma}$$

$$Ln(72.74435) = Ln(-C) + Ln(0.0001953)^{\gamma}$$

Letting
$$a = Ln(-C)$$
 and $b = \gamma$:

$$a + b Ln (\Delta t) = Ln(L_1)$$

$$a + b Ln(0.003125) = Ln (72.07668)$$

$$a + b Ln(0.0015625) = Ln(71.88225)$$

$$a + b Ln(0.0007813) = Ln(71.58987)$$

$$a + b Ln(0.0003906) = Ln(73.08468)$$

$$a + b Ln(0.0007813) = Ln(75.30915)$$

$$a + b Ln(0.0003907) = Ln(71.24955)$$

a + b Ln(0.0001953) = Ln (72.74435)

Create a system of equation using the data from above:

$$a + b(-5.76832) = 4.27773$$

$$a + b(-6.46147) = 4.27503$$

$$a + b(-7.15455) = 4.27095$$

$$a + b(-5.54524) = 4.29162$$

$$a + b(-7.15455) = 4.32160$$

$$a + b(-5.54499) = 4.26619$$

$$a + b(-8.54097) = 4.28695$$

Putting the system of equations into matrix form:

$$\begin{bmatrix} 1 & -5.76832 \\ 1 & -6.46147 \\ 1 & -7.15455 \\ 1 & -5.54524 \\ 1 & -7.15455 \\ 1 & -5.54499 \\ 1 & -8.54097 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4.27773 \\ 4.27503 \\ 4.27095 \\ 4.29162 \\ 4.32160 \\ 4.26619 \\ 4.28695 \end{bmatrix}$$

Letting A =
$$\begin{bmatrix} 1 & -5.76832 \\ 1 & -6.46147 \\ 1 & -7.15455 \\ 1 & -5.54524 \\ 1 & -7.15455 \\ 1 & -5.54499 \\ 1 & -8.54097 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4.27773 \\ 4.27503 \\ 4.27095 \\ 4.29162 \\ 4.32160 \\ 4.26619 \\ 4.28695 \end{bmatrix}$

.

Solve for a and b using matrix **method of least squares**:

$$Ax = b$$

$$A^{T}Ax = A^{T}b$$

From Matlab

$$x = A^T A \setminus A^T b$$

$$x = \begin{bmatrix} a \\ b \end{bmatrix}$$

Plugging a and b into the previous equations:

$$a = 4.25134868$$

$$a = Ln$$
 (-C)

$$Ln$$
 (-C) = 4.25134868

$$-C = e^{4.25134868}$$

$$C = -e^{4.25134868}$$

C = -70.2000

$$b = -0.00499521$$

$$b = \gamma$$

 $\gamma = -0.00499521$

Error Norm for Combined Spatial-Temporal Convergence Study:

$$L_1 = A(\Delta x)^{\alpha} + B(\Delta t)^{\beta} + C(\Delta x \Delta t)^{\gamma}$$

L1 error norm =
$$1,367.26(\Delta x)^{1.25441031} + 77.1976(\Delta t)^{0.00754683} + C(\Delta x \Delta t)^{\gamma}$$

L1 error norm =
$$1,367.26(\Delta x)^{1.25441031} + 77.1976(\Delta t)^{0.00754683} - 70.20(\Delta x \Delta t)^{-0.00499521}$$

The L1 error norm rate of convergence for the Δx term is much larger than the rate of convergence term for the Δt term. The Δx term should be higher because the PDE equation is a 2nd order derivative with respect to the spatial dimension x. The PDE is only a 1st order derivative with respect to temporal variable t for time.

The graphs on the next page show model curve for the L1 error norm versus actual data points found using the approximation solution code. The spatial data fits the model curve very well. The temporal data follows the outline of the model curve but is offset slightly downward.

MATLAB CODES

```
%Spatial Convergence
A1 = [1 -2.30259 ; 1 -2.99573 ; 1 -3.68888 ; 1 -4.38202 ];
b1 = [4.23013 ; 3.55749 ; 2.70972 ; 1.61443];
%solve for a and b using matrix method of least squares
 % Ax = b
 % ATAx = ATb
 % x = ATA \setminus ATb
AT 1 = transpose(A1);
x1 = ((AT 1)*(A1)) \setminus ((AT 1)*(b1));
x1
%Temporal Convergence
A2 = [1 -1.3863 ; 1 -2.0794 ; 1 -2.0794 ; 1 -3.4657];
b2 = [4.34020 ; 4.33000 ; 4.32491 ; 4.32236];
%solve for a and b using matrix method of least squares
 % Ax = b
 % ATAx = ATb
 % x = ATA \setminus ATb
AT 2 = transpose(A2);
x2 = ((AT 2)*(A2)) \setminus ((AT 2)*(b2));
x2
%Spatial/Temporal Convergence
A3 = [1 -5.76832 ; 1 -6.46147 ; 1 -7.15455 ; 1 -5.54524 ; 1 -7.15455 ; 1 -5.54499 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455 ; 1 -7.15455
8.54097 ];
b3 = [4.27773; 4.27503; 4.27095; 4.29162; 4.32160; 4.26619; 4.28695];
%solve for a and b using matrix method of least squares
 % Ax = b
 % ATAx = ATb
 % x = ATA \setminus ATb
AT 3 = transpose(A3);
x3 = ((AT 3)*(A3)) \setminus ((AT 3)*(b3));
x3
```

```
%graph 1
dx1 = [.1 ; .05 ; .025 ; .0125];
dt1 = 0.0039047;
spatial norm error = [75.1986; 35.0750; 15.025; 5.025];
%initializing Error Norm
spatial norm curve = [0; 0; 0; 0];
spatial norm curve = 1367.26 * ((dx1).^{(1.25441031)}) + 77.1976 * ((dt1).^{(0.00754683)}) -
70.20*((dx1*dt1).^(-0.00499521));
figure (1)
plot(dx1,spatial norm curve)
hold on
scatter(dx1, spatial norm error)
hold on
%plot(dx1, spatial norm error)
legend('spatial error norm MODEL curve', 'APPROX spatial norm error points')
title ( ' L1 Error Norm vs dx' );
xlabel ( 'dx' );
ylabel ( 'L1 Error Norm' );
hold on
%graph 2
dx2 = 0.10;
dt2 = [0.25 ; 0.125 ; 0.0625 ; 0.03125];
temporal norm error = [76.7230 ; 75.9446 ; 75.5586 ; 75.3664];
%Initializing Error Norm
temporal norm curve = [0; 0; 0; 0];
temporal\_norm\_curve = 1367.26 * ((dx2).^(1.25441031)) + 77.1976 * ((dt2).^(0.00754683)) -
70.20* ((dx2*dt2).^(-0.00499521));
figure (2)
plot( dt2, temporal norm curve)
hold on
scatter(dt2, temporal norm error)
hold on
%plot(dt2, temporal norm error)
legend('temporal error norm MODEL curve', 'APPROX temporal norm error points' )
title ( ' L1 Error Norm vs dt');
xlabel ( 'dt' );
ylabel ( 'L1 Error Norm' );
```