Data Science - Capstone Project Review

This project enlists a list of basic and ensemble learning models used to predict Boston House Prices | Advanced Regression Techniques.

Out[3]: The raw code for this IPython notebook is by default hidden for easier reading. To toggle on/off the raw code, click here.

Out[13]:

House Prices: Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting 4,572 teams · Ongoing

Bagging Models

- Support Vector Machine Regressor
- Decision Tree Regressor
- ExtraTree Regressor

Boosting Models

- Random Forest Regressor
- AdaBoost Regressor
- Gradient Boost Regressor
- XGBoost Regressor
- LGBM Regressor
- CatBoost Regressor

Basic Linear Regresison

• Linear Regression using RFE

In the pipeline

- Lasso Linear Regression
- Linear Regression using Gradient Descent
- Neural Network

Standard Boilerplate for Data Science

Import Scikits Learn Maching Learning Marathon List for Data Science

Background

Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, lowa, this competition challenges you to predict the final price of each home.

The **Ames Housing** dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.

Step 1:: Import Data Files

On our very first initial step, we will import both train and test datasets.

Train data is loaded successfully!
Test data is loaded successfully!

There are 1460 observations and 80 features in the TRAIN dataset:
Of which, 37 numeric features
And, 43 non-numeric/object features.

There are 1459 observations and 79 features in the TEST dataset:
Of which, 36 numeric features
And, 43 non-numeric/object features.

We will review the train dataset first and making sure everything is reviewed before we move to the test dataset. One thing to note is test data has one lesser column and that is the dependent variable (i.e. target variable)

Step 2:: Exploratory Data Analysis

Let's review how the data looks like.

Out[21]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotCon
ld										
1	60	RL	65.00	8450	Pave	NaN	Reg	Lvl	AllPub	Insi
2	20	RL	80.00	9600	Pave	NaN	Reg	LvI	AllPub	F
3	60	RL	68.00	11250	Pave	NaN	IR1	LvI	AllPub	Insi
4	70	RL	60.00	9550	Pave	NaN	IR1	LvI	AllPub	Corr
5	60	RL	84.00	14260	Pave	NaN	IR1	LvI	AllPub	F
6	50	RL	85.00	14115	Pave	NaN	IR1	Lvl	AllPub	Insi
7	20	RL	75.00	10084	Pave	NaN	Reg	LvI	AllPub	Insi
8	60	RL	nan	10382	Pave	NaN	IR1	Lvl	AllPub	Corr
9	50	RM	51.00	6120	Pave	NaN	Reg	Lvl	AllPub	Insi
10	190	RL	50.00	7420	Pave	NaN	Reg	Lvl	AllPub	Corr

10 rows × 80 columns

A quick look of it, there are some missing data / NaN values eg. Alley, PoolQC, Fence, MiscFeature. And some columns are numeric. Likewise others are categorical.

So, what data types do we have with this list of columns?

<class 'pandas.co<="" th=""><th>re.fi</th><th>came.DataF</th><th>rame'></th></class>	re.fi	came.DataF	rame'>
		ies, 1 to	1460
		columns)	
MSSubClass		non-null	
MSZoning	1460	non-null	object
LotFrontage	1201	non-null	float64
LotArea	1460	non-null	int64
Street	1460	non-null	object
Alley	91 no	on-null of	-
LotShape	1460	non-null	object
LandContour	1460	non-null	object
Utilities	1460	non-null	object
LotConfig	1460	non-null	object
LandSlope	1460	non-null	object
Neighborhood Condition1	1460 1460	non-null	object object
Condition2	1460	non-null	object
BldgType	1460	non-null	object
HouseStyle	1460	non-null	object
OverallOual	1460	non-null	int64
OverallCond	1460	non-null	int64
YearBuilt	1460	non-null	int64
YearRemodAdd	1460	non-null	int64
RoofStyle	1460	non-null	object
RoofMatl	1460	non-null	object
Exterior1st	1460	non-null	object
Exterior2nd	1460	non-null	object
MasVnrType	1452	non-null	object
MasVnrArea	1452	non-null	float64
ExterQual	1460	non-null	object
ExterCond Foundation	1460 1460	non-null	object
BsmtQual	1423	non-null	object object
BsmtCond	1423	non-null	object
BsmtExposure	1422	non-null	object
BsmtFinType1	1423	non-null	object
BsmtFinSF1	1460	non-null	int64
BsmtFinType2	1422	non-null	object
BsmtFinSF2	1460	non-null	int64
BsmtUnfSF	1460	non-null	int64
TotalBsmtSF	1460	non-null	int64
Heating	1460	non-null	object
HeatingQC	1460	non-null	object
CentralAir	1460	non-null	object
Electrical	1459	non-null	object
1stFlrSF	1460	non-null	int64
2ndFlrSF LowQualFinSF	1460 1460	non-null	int64 int64
GrLivArea	1460	non-null	int64
BsmtFullBath	1460	non-null	int64
BsmtHalfBath	1460	non-null	int64
FullBath	1460	non-null	int64
HalfBath	1460	non-null	int64
BedroomAbvGr	1460	non-null	int64
KitchenAbvGr	1460	non-null	int64
KitchenQual	1460	non-null	object
TotRmsAbvGrd	1460	non-null	int64
Functional	1460	non-null	object
Fireplaces	1460	non-null	int64
FireplaceQu		non-null o	-
GarageType	1379	non-null	object
GarageYrBlt GarageFinish	1379 1379	non-null	float64 object
GarageCars	1460	non-null	int64
GarageArea	1460	non-null	int64
GarageQual	1379	non-null	object
GarageCond	1379	non-null	object
PavedDrive	1460	non-null	object
WoodDeckSF	1460	non-null	int64

We will split categorical and numerical features and address each of them separately.

A quick glance on the numerical features distribution.

Out[24]:

	count	mean	std	min	25%	50%	75%	max
MSSubClass	1460.00	56.90	42.30	20.00	20.00	50.00	70.00	190.00
LotFrontage	1201.00	70.05	24.28	21.00	59.00	69.00	80.00	313.00
LotArea	1460.00	10516.83	9981.26	1300.00	7553.50	9478.50	11601.50	215245.00
OverallQual	1460.00	6.10	1.38	1.00	5.00	6.00	7.00	10.00
OverallCond	1460.00	5.58	1.11	1.00	5.00	5.00	6.00	9.00
YearBuilt	1460.00	1971.27	30.20	1872.00	1954.00	1973.00	2000.00	2010.00
YearRemodAdd	1460.00	1984.87	20.65	1950.00	1967.00	1994.00	2004.00	2010.00
MasVnrArea	1452.00	103.69	181.07	0.00	0.00	0.00	166.00	1600.00
BsmtFinSF1	1460.00	443.64	456.10	0.00	0.00	383.50	712.25	5644.00
BsmtFinSF2	1460.00	46.55	161.32	0.00	0.00	0.00	0.00	1474.00
BsmtUnfSF	1460.00	567.24	441.87	0.00	223.00	477.50	808.00	2336.00
TotalBsmtSF	1460.00	1057.43	438.71	0.00	795.75	991.50	1298.25	6110.00
1stFlrSF	1460.00	1162.63	386.59	334.00	882.00	1087.00	1391.25	4692.00
2ndFlrSF	1460.00	346.99	436.53	0.00	0.00	0.00	728.00	2065.00
LowQualFinSF	1460.00	5.84	48.62	0.00	0.00	0.00	0.00	572.00
GrLivArea	1460.00	1515.46	525.48	334.00	1129.50	1464.00	1776.75	5642.00
BsmtFullBath	1460.00	0.43	0.52	0.00	0.00	0.00	1.00	3.00
BsmtHalfBath	1460.00	0.06	0.24	0.00	0.00	0.00	0.00	2.00
FullBath	1460.00	1.57	0.55	0.00	1.00	2.00	2.00	3.00
HalfBath	1460.00	0.38	0.50	0.00	0.00	0.00	1.00	2.00
BedroomAbvGr	1460.00	2.87	0.82	0.00	2.00	3.00	3.00	8.00
KitchenAbvGr	1460.00	1.05	0.22	0.00	1.00	1.00	1.00	3.00
TotRmsAbvGrd	1460.00	6.52	1.63	2.00	5.00	6.00	7.00	14.00
Fireplaces	1460.00	0.61	0.64	0.00	0.00	1.00	1.00	3.00
GarageYrBlt	1379.00	1978.51	24.69	1900.00	1961.00	1980.00	2002.00	2010.00
GarageCars	1460.00	1.77	0.75	0.00	1.00	2.00	2.00	4.00
GarageArea	1460.00	472.98	213.80	0.00	334.50	480.00	576.00	1418.00
WoodDeckSF	1460.00	94.24	125.34	0.00	0.00	0.00	168.00	857.00
OpenPorchSF	1460.00	46.66	66.26	0.00	0.00	25.00	68.00	547.00
EnclosedPorch	1460.00	21.95	61.12	0.00	0.00	0.00	0.00	552.00
3SsnPorch	1460.00	3.41	29.32	0.00	0.00	0.00	0.00	508.00
ScreenPorch	1460.00	15.06	55.76	0.00	0.00	0.00	0.00	480.00
PoolArea	1460.00	2.76	40.18	0.00	0.00	0.00	0.00	738.00
MiscVal	1460.00	43.49	496.12	0.00	0.00	0.00	0.00	15500.00
MoSold	1460.00	6.32	2.70	1.00	5.00	6.00	8.00	12.00
YrSold	1460.00	2007.82	1.33	2006.00	2007.00	2008.00	2009.00	2010.00
SalePrice	1460.00	180921.20	79442.50	34900.00	129975.00	163000.00	214000.00	755000.00

Very obvious, there are definitely some outliers (eg. LotArea, MiscVal) which we need to address in the next step. Keep an eye on this!

What we probably can gauge from these numeric features are:

- are they missing values? if so, what treatment(s) can we apply?
- are they highly correlated? if so, what can we do to de-correlate them?
- are they outliers which needs to be managed?

Now, let's look at the same information on categorical features.

For Categorical, perhaps we can see what are some of the unique values.

```
Unique values in each non-numeric column:
MSZoning: ['RL' 'RM' 'C (all)' 'FV' 'RH']
Street : ['Pave' 'Grvl']
Alley: [nan 'Grvl' 'Pave']
LotShape : ['Reg' 'IR1' 'IR2' 'IR3']
LandContour : ['Lvl' 'Bnk' 'Low' 'HLS']
Utilities : ['AllPub' 'NoSeWa']
LotConfig : ['Inside' 'FR2' 'Corner' 'CulDSac' 'FR3']
LandSlope : ['Gtl' 'Mod' 'Sev']
Neighborhood: ['CollgCr' 'Veenker' 'Crawfor' 'NoRidge' 'Mitchel' 'Somerst' 'N
WAmes'
 'OldTown' 'BrkSide' 'Sawyer' 'NridgHt' 'NAmes' 'SawyerW' 'IDOTRR'
 'MeadowV' 'Edwards' 'Timber' 'Gilbert' 'StoneBr' 'ClearCr' 'NPkVill'
 'Blmngtn' 'BrDale' 'SWISU' 'Blueste']
Condition1: ['Norm' 'Feedr' 'PosN' 'Artery' 'RRAe' 'RRNn' 'RRAn' 'PosA' 'RRNe
' 1
Condition2: ['Norm' 'Artery' 'RRNn' 'Feedr' 'PosN' 'PosA' 'RRAn' 'RRAe']
BldgType: ['1Fam' '2fmCon' 'Duplex' 'TwnhsE' 'Twnhs']
HouseStyle : ['2Story' '1Story' '1.5Fin' '1.5Unf' 'SFoyer' 'SLvl' '2.5Unf' '2.
RoofStyle : ['Gable' 'Hip' 'Gambrel' 'Mansard' 'Flat' 'Shed']
RoofMatl: ['CompShg' 'WdShngl' 'Metal' 'WdShake' 'Membran' 'Tar&Grv' 'Roll'
 'ClvTile'1
Exterior1st: ['Viny1Sd' 'MetalSd' 'Wd Sdng' 'HdBoard' 'BrkFace' 'WdShing' 'Ce
 'Plywood' 'AsbShng' 'Stucco' 'BrkComm' 'AsphShn' 'Stone' 'ImStucc'
 'CBlock'l
Exterior2nd : ['VinylSd' 'MetalSd' 'Wd Shng' 'HdBoard' 'Plywood' 'Wd Sdng' 'Cm
entBd'
 'BrkFace' 'Stucco' 'AsbShng' 'Brk Cmn' 'ImStucc' 'AsphShn' 'Stone'
 'Other' 'CBlock']
MasVnrType : ['BrkFace' 'None' 'Stone' 'BrkCmn' nan]
ExterQual : ['Gd' 'TA' 'Ex' 'Fa']
ExterCond : ['TA' 'Gd' 'Fa' 'Po' 'Ex']
Foundation : ['PConc' 'CBlock' 'BrkTil' 'Wood' 'Slab' 'Stone']
BsmtOual : ['Gd' 'TA' 'Ex' nan 'Fa']
BsmtCond: ['TA' 'Gd' nan 'Fa' 'Po']
BsmtExposure : ['No' 'Gd' 'Mn' 'Av' nan]
BsmtFinType1 : ['GLQ' 'ALQ' 'Unf' 'Rec' 'BLQ' nan 'LwQ']
BsmtFinType2 : ['Unf' 'BLQ' nan 'ALQ' 'Rec' 'LwQ' 'GLQ']
Heating : ['GasA' 'GasW' 'Grav' 'Wall' 'OthW' 'Floor']
HeatingQC: ['Ex' 'Gd' 'TA' 'Fa' 'Po']
CentralAir : ['Y' 'N']
Electrical : ['SBrkr' 'FuseF' 'FuseA' 'FuseP' 'Mix' nan]
KitchenQual : ['Gd' 'TA' 'Ex' 'Fa']
Functional: ['Typ' 'Min1' 'Maj1' 'Min2' 'Mod' 'Maj2' 'Sev']
FireplaceQu : [nan 'TA' 'Gd' 'Fa' 'Ex' 'Po']
GarageType : ['Attchd' 'Detchd' 'BuiltIn' 'CarPort' nan 'Basment' '2Types']
GarageFinish : ['RFn' 'Unf' 'Fin' nan]
GarageQual : ['TA' 'Fa' 'Gd' nan 'Ex' 'Po']
GarageCond : ['TA' 'Fa' nan 'Gd' 'Po' 'Ex']
PavedDrive : ['Y' 'N' 'P']
PoolQC : [nan 'Ex' 'Fa' 'Gd']
Fence : [nan 'MnPrv' 'GdWo' 'GdPrv' 'MnWw']
MiscFeature : [nan 'Shed' 'Gar2' 'Othr' 'TenC']
SaleType : ['WD' 'New' 'COD' 'ConLD' 'ConLI' 'CWD' 'ConLw' 'Con' 'Oth']
SaleCondition : ['Normal' 'Abnorml' 'Partial' 'AdjLand' 'Alloca' 'Family']
```

Same goes to the categorical features, there are definitely NaN values which need to be managed if we want to bring into the model.

From the above, what we can summarise are as follows:

- There are 1460 data rows in the train dataset
- 37 numerical and 43 categorical columns

Our next step is getting into some data construction process:

- Step 3a Handling Missing Values
- Step 3b Removing Collinearity
- Step 3c Managing Outliers

Step 3a:: Handling Missing Values

On this section, we probably need to find out what is the magnitude of missing values in the dataset and what treatments do we want to apply to overcome that. For now, let's take alook at which features do we need to address and how.

There are 19 columns with missing data. These columns are as follows:

Features	No of Obs Missing #	No of Obs Missing %
PoolQC	1453	99.52
MiscFeature	1406	96.3
Alley	1369	93.77
Fence	1179	80.75
FireplaceQu	690	47.26
LotFrontage	259	17.74
GarageFinish	81	5.55
GarageQual	81	5.55
GarageType	81	5.55
GarageYrBlt	81	5.55
GarageCond	81	5.55
BsmtFinType2	38	2.6
BsmtExposure	38	2.6
BsmtFinType1	37	2.53
BsmtQual	37	2.53
BsmtCond	37	2.53
MasVnrArea	8	0.55
MasVnrType	8	0.55
Electrical	1	0.07

There are **19 columns with missing data**, with **PoolQC** being the top feature with highest missing values in the data. For a simpler or straightforward approach, it would be easier to remove these rows in total but not comprising on the overall purpose of this exercise. Alternatively, we can impute these missing values with median/mode.

In summary, we will carry out two approaches when handling missing values.

- Solution #1: Removing features with more than 40% of missing data. The proportion of missing data can be risky if we try to impute any logic to feed them back into the analysis.
- Solution #2: Impute using np.median or np.mode on those remaining features with some levels of missing values

Solution #1 - Remove features with high proportion of missing data

Filter those features with more than 40% of proportion are missing. As a general rule of thumb, we probably remove them in totality.

Out[29]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	Laı
ld										
1	60	RL	65.00	8450	Pave	Reg	Lvl	AllPub	Inside	
2	20	RL	80.00	9600	Pave	Reg	Lvl	AllPub	FR2	
3	60	RL	68.00	11250	Pave	IR1	Lvl	AllPub	Inside	
4	70	RL	60.00	9550	Pave	IR1	Lvl	AllPub	Corner	
5	60	RL	84.00	14260	Pave	IR1	Lvl	AllPub	FR2	

5 rows × 75 columns

These 5 features are removed: ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'Fir eplaceQu'].

After excluding all missing data, the new dataset consists of:

After excluded these features, there are 1460 observations and 75 features.

Of which, 37 numeric features

And, 38 non-numeric/object features.

You probably have noticed **80** features are now left with **75**. And for the rest of features with some missing values, we will impute using median or mode depending on the features

Solution #2 - Impute data with median or mode

In this alternate solution in address missing data, we will filter those features with less than 40% of proportion are missing. This part requires some level of data impute (i.e. applying median or mode depending on the data type).

After removed 5 features, we still need to review the remaining 14 features.

Of which, 3 numeric features

And, 11 non-numeric/object features.

Since there are 3 numeric and 11 categorical features, we will apply median on those numeric and model on categorical features where there are missing values

Out[33]:

ld	1	2	3	4	5	6	7	8	9	10	
LotFrontage	65.00	80.00	68.00	60.00	84.00	85.00	75.00	NaN	51.00	50.00	
GarageFinish	RFn	RFn	RFn	Unf	RFn	Unf	RFn	RFn	Unf	RFn	
GarageQual	TA	Fa	Gd								
GarageType	Attchd	Attchd	Attchd	Detchd	Attchd	Attchd	Attchd	Attchd	Detchd	Attchd	[
GarageYrBlt	2003.00	1976.00	2001.00	1998.00	2000.00	1993.00	2004.00	1973.00	1931.00	1939.00	19
GarageCond	TA										
BsmtFinType2	Unf	BLQ	Unf	Unf							
BsmtExposure	No	Gd	Mn	No	Av	No	Av	Mn	No	No	
BsmtFinType1	GLQ	ALQ	GLQ	ALQ	GLQ	GLQ	GLQ	ALQ	Unf	GLQ	
BsmtQual	Gd	Gd	Gd	TA	Gd	Gd	Ex	Gd	TA	TA	
BsmtCond	TA	TA	TA	Gd	TA	TA	TA	TA	TA	TA	
MasVnrArea	196.00	0.00	162.00	0.00	350.00	0.00	186.00	240.00	0.00	0.00	
MasVnrType	BrkFace	None	BrkFace	None	BrkFace	None	Stone	Stone	None	None	
Electrical	SBrkr	FuseF	SBrkr								

Looks like it, we might need to handle categorical and numeric features separately. For a start, let's take alook at the categorical features.

Out[34]:

	GarageFinish	GarageQual	GarageType	GarageCond	BsmtFinType2	BsmtExposure	BsmtFinType1	Bsm
_) Unf	TA	Attchd	TA	Unf	No	Unf	

Out[38]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	La
ld										
1	60	RL	65.00	8450	Pave	Reg	Lvl	AllPub	Inside	
2	20	RL	80.00	9600	Pave	Reg	Lvl	AllPub	FR2	
3	60	RL	68.00	11250	Pave	IR1	Lvl	AllPub	Inside	
4	70	RL	60.00	9550	Pave	IR1	Lvl	AllPub	Corner	
5	60	RL	84.00	14260	Pave	IR1	Lvl	AllPub	FR2	
6	50	RL	85.00	14115	Pave	IR1	Lvl	AllPub	Inside	
7	20	RL	75.00	10084	Pave	Reg	Lvl	AllPub	Inside	
8	60	RL	nan	10382	Pave	IR1	Lvl	AllPub	Corner	
9	50	RM	51.00	6120	Pave	Reg	Lvl	AllPub	Inside	
10	190	RL	50.00	7420	Pave	Reg	Lvl	AllPub	Corner	

10 rows × 75 columns

Now, for the numerical features, we will apply MEDIAN function to the remaining numeric features

Out[40]:

	count	mean	std	min	25%	50%	75%	max	median	Q1	C
LotFrontage	1201.00	70.05	24.28	21.00	59.00	69.00	80.00	313.00	69.00	59.00	80.0
GarageYrBlt	1379.00	1978.51	24.69	1900.00	1961.00	1980.00	2002.00	2010.00	1980.00	1961.00	2002.0
MasVnrArea	1452.00	103.69	181.07	0.00	0.00	0.00	166.00	1600.00	0.00	0.00	166.0

Upon checking against the basic statistics on these numeric features, it look reasonable to apply **MEDIAN** on these features

Out[42]: LotFrontage 69.00
GarageYrBlt 1980.00
MasVnrArea 0.00
dtype: float64

Out[45]:

	MSSubClass	MSZoning	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neig
ld										
1	60	RL	8450	Pave	Reg	Lvl	AllPub	Inside	GtI	
2	20	RL	9600	Pave	Reg	Lvl	AllPub	FR2	GtI	
3	60	RL	11250	Pave	IR1	Lvl	AllPub	Inside	Gtl	
4	70	RL	9550	Pave	IR1	Lvl	AllPub	Corner	Gtl	
5	60	RL	14260	Pave	IR1	LvI	AllPub	FR2	Gtl	

5 rows × 75 columns

There are 0 columns with missing data. These columns are as follows:

Features No of Obs Missing # No of Obs Missing %

Since there are 0 columns with missing data, which means we have succesfully \boldsymbol{r} emoved or

imputed with mode/median accordingly.

Step3b:: Collinearity

After fixing the missing values, the next thing we will look at is collinearity. As collinearity is very important before we start building any learning models.

Based on the heatmap above, the darker red/blue tone across the grid denote highly positively/negatively correlated. Which means some of these columns need to be removed from the model selection process

There are 13 features/columns with high correlation, which need to be removed.

==	
	Features
0	YearBuilt
1	YearRemodAdd
2	TotalBsmtSF
3	1stFlrSF
4	GrLivArea
5	BsmtFullBath
6	FullBath
7	HalfBath
8	BedroomAbvGr
9	TotRmsAbvGrd
10	GarageCars
11	GarageArea
12	new_GarageYrBlt

Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2bd28150>

	_		
<pre><class 'pandas.core.<="" pre=""></class></pre>			
		, 1 to 146	0
Data columns (total		-	
MSSubClass MSZoning	1460 1460		
LotArea	1460		int64
Street	1460		object
LotShape	1460	non-null	object
LandContour	1460	non-null	object
Utilities	1460	non-null	object
LotConfig	1460	non-null	object
LandSlope	1460	non-null	object
Neighborhood	1460	non-null	object
Condition1	1460	non-null	object
Condition2	1460	non-null	object
BldgType	1460	non-null	object
HouseStyle	1460	non-null	object
OverallQual	1460	non-null	int64
OverallCond	1460	non-null	int64
RoofStyle	1460	non-null	object
RoofMatl	1460	non-null	object
Exterior1st	1460	non-null	object
Exterior2nd	1460	non-null	object
ExterQual	1460	non-null	object
ExterCond	1460	non-null	object
Foundation	1460	non-null	object
BsmtFinSF1	1460	non-null	int64
BsmtFinSF2	1460	non-null	
BsmtUnfSF	1460	non-null	int64
Heating	1460	non-null	object
HeatingQC	1460	non-null	object
CentralAir	1460	non-null	object
2ndFlrSF	1460	non-null	int64
LowQualFinSF BsmtHalfBath	1460 1460	non-null	int64 int64
KitchenAbvGr	1460	non-null	int64
KitchenOual	1460	non-null	
Functional	1460	non-null	-
Fireplaces	1460	non-null	int64
PavedDrive	1460	non-null	object
WoodDeckSF	1460	non-null	int64
OpenPorchSF	1460	non-null	int64
EnclosedPorch	1460	non-null	int64
3SsnPorch	1460	non-null	int64
ScreenPorch	1460	non-null	int64
PoolArea	1460	non-null	
MiscVal	1460	non-null	int64
MoSold	1460	non-null	int64
YrSold	1460	non-null	int64
SaleType	1460	non-null	object
SaleCondition	1460	non-null	object
SalePrice	1460	non-null	int64
new_GarageFinish	1460	non-null	object
new_GarageQual	1460	non-null	object
new_GarageType	1460	non-null	object
new_GarageCond	1460	non-null	object
new_BsmtFinType2	1460	non-null	object
new_BsmtExposure	1460	non-null	object
new_BsmtFinType1	1460	non-null	object
new_BsmtQual	1460	non-null	object
new_BsmtCond	1460	non-null	object
new_MasVnrType	1460	non-null	-
new_Electrical new_LotFrontage	1460 1460	non-null	object float64
new_MasVnrArea	1460		
dtypes: float64(2),		1011-11411 1(22), obj	
memory usage: 718.64		. (22), OD.	,

With collinearity check, these is our latest dataset which we can take to the next step - data visualisation. This time round, we removed a fair bit of numerical columns.

In summary, we have:

- removed 5 features due to high proportion of data with missing values,
- applied mode function on 11 categorical features,
- applied median function on 3 numeric features and
- · removed 13 columns which are highly correlated.

After collinearity step, there are now 1460 observations and 62 features.

Of which, 24 numeric features

And, 38 non-numeric/object features.

Step 3c:: Managing Outliers

Come to the last part of data construction, managing outliers, I find boxplot does a really good job and applying Z-score (if you know how to do that).

I have written a function below to identify outliers.

Out[54]:

	MSSubClass	LotArea	OverallQual	OverallCond	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF	2ndFlr
min	20.00	1300.00	1.00	1.00	0.00	0.00	0.00	0.
max	190.00	215245.00	10.00	9.00	5644.00	1474.00	2336.00	2065.
Q1	20.00	7553.50	5.00	5.00	0.00	0.00	223.00	0.
Q3	70.00	11601.50	7.00	6.00	712.25	0.00	808.00	728.
IQR	50.00	4048.00	2.00	1.00	712.25	0.00	585.00	728.
low_xtrem	20.00	1481.50	2.00	3.50	0.00	0.00	0.00	0.
hi_xtrem	145.00	17673.50	10.00	7.50	1780.62	0.00	1685.50	1820.

From above, we can see there are definitely outliers which need to be removed. But before we do that, it is always good to visual some of these boxplots for better illustration.

So after having a look at the distribution and boxplot graphs, we will proceed to remove these outliers for better accuracy in our model development.

After eliminating outliers, there are now 1362 observations and 62 features. In summary, we still have 93.29% of the data retained, which is still reasonable.

Step 4: Data Visualisation

As this exercise is to predict on the dependent variable, in this case, the SalePrice. We will visualise how the original data is distributed

Out[62]: <matplotlib.axes. subplots.AxesSubplot at 0x1a1e212350>

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1e0294d0>

It looks like SalePrice is leftly skewed (see histogram on the left above) and after applying log transformation, SalePrice is normally distributed. This is important if we are using regression technique.

Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1f184e10>

Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1e655610>

Out[67]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1e42c350>

new_Electrical

Out[69]: <seaborn.axisgrid.FacetGrid at 0x1a1fc54c10>

In this section, there is no change. There are still have 1362 observations wi th 62 features.

Step 5 :: Features Engineering

The process of constructing additional features is very time-consuming because each new feature usually requires several steps to build, especially when using information from more than one table. We can group the operations of feature creation into two categories: transformations and aggregations. Let's look at a few examples to see these concepts in action.

```
Response Code: 200 which means all good.
```

Now that the web data has been scrapped successfully, we will now massage the data to get the table information from the web.

```
Out[74]: bs4.element.ResultSet
Out[75]: bs4.element.Tag
```

This part can be easily done by assessing the exact tag location in the webpage.

```
Out[77]: array([['1914', '$20.00', '0'],
                   ['1915', '$20.03', '0.16%'],
                   ['1916', '$20.60', '2.85%'],
                   ['1917', '$23.38', '13.48%'],
                   ['1918', '$27.54', '17.79%'],
['1919', '$33.40', '21.27%'],
                   ['1920', '$39.16', '17.25%'],
                   ['1921', '$35.65', '-8.96%'
                   ['1922', '$32.49', '-8.86%'],
                   ['1923', '$32.98', '1.51%'],
                   ['1924', '$33.21', '0.67%'],
                   ['1925', '$33.57', '1.10%'],
                   ['1926', '$34.81', '3.69%'],
                   ['1927', '$34.44', '-1.05%'],
                   ['1928', '$33.78', '-1.94%'],
['1929', '$33.62', '-0.47%'],
                   ['1930', '$33.38', '-0.71%'],
['1931', '$30.79', '-7.75%'],
['1932', '$27.76', '-9.85%'],
                   ['1933', '$25.92', '-6.63%'],
                   ['1934', '$26.73', '3.12%'],
                   ['1935', '$27.29', '2.08%'],
                   ['1936', '$27.44', '0.58%'],
                   ['1937', '$28.06', '2.26%'],
                   ['1938', '$27.35', '-2.55%'],
                   ['1939', '$26.94', '-1.51%'],
                   ['1940', '$27.19', '0.94%'],
                   ['1941', '$28.40',
                                         '4.44%'],
                   ['1942', '$31.43',
                                         '10.68%'],
                   ['1943', '$33.08', '5.25%'],
                   ['1944', '$33.44', '1.10%'],
                   ['1945', '$34.13', '2.04%'
                                                 1,
                   ['1946', '$36.92', '8.19%'
                   ['1947', '$42.03', '13.84%'],
                   ['1948', '$45.49', '8.23%'],
                   ['1949', '$44.94', '-1.22%'],
                   ['1950', '$45.52', '1.31%'],
                   ['1951', '$48.57', '6.69%'],
                   ['1952', '$49.63', '2.19%'],
                   ['1953', '$49.76', '0.26%'],
                   ['1954', '$49.95', '0.38%'],
['1955', '$50.19', '0.48%'],
                   ['1956', '$51.57', '2.75%'],
                   ['1957', '$53.38', '3.51%'
                   ['1958', '$55.10', '3.21%'],
                   ['1959', '$55.52', '0.78%'],
                   ['1960', '$56.57', '1.89%'],
                   ['1961', '$57.43', '1.52%'],
                   ['1962', '$58.67', '2.16%'],
                   ['1963', '$59.86', '2.03%'],
                   ['1964', '$60.67', '1.35%'],
                   ['1965', '$61.81', '1.88%'],
                   ['1966', '$63.71', '3.08%'],
['1967', '$65.38', '2.62%'],
                   ['1968', '$67.95', '3.93%'],
                   ['1969', '$71.71', '5.54%'],
                   ['1970', '$76.10', '6.11%'
                   ['1971', '$80.14', '5.32%'],
                   ['1972', '$83.00', '3.57%'],
                   ['1973', '$87.62', '5.57%'],
                   ['1974', '$96.67', '10.33%'],
                   ['1975', '$105.38', '9.01%'],
                   ['1976', '$113.95', '8.13%'],
                   ['1977', '$119.76', '5.10%'],
                   ['1978', '$126.16', '5.34%'],
                   ['1979', '$138.86', '10.07%'],
['1980', '$156.48', '12.69%'],
['1981', '$174.25', '11.36%'],
                   ['1982', '$181.71', '4.28%'],
```

Great! Looks like it the data is almost ready except a little of touch-ups before we can fully use it and then merge this information back into our dataset.

Before merging the data, make sure both columns carried the same datatype.

Out[87]:

	MSSubClass	MSZoning	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neigl
0	60	RL	8450	Pave	Reg	Lvl	AllPub	Inside	GtI	
1	60	RL	11250	Pave	IR1	Lvl	AllPub	Inside	Gtl	
2	60	RL	14260	Pave	IR1	Lvl	AllPub	FR2	GtI	
3	50	RM	6120	Pave	Reg	Lvl	AllPub	Inside	Gtl	
4	190	RL	7420	Pave	Reg	Lvl	AllPub	Corner	Gtl	

5 rows × 66 columns

<pre><class 'pandas.core.<="" pre=""></class></pre>	frame	e.DataFram	ne'>
Int64Index: 1362 ent			
Data columns (total			
MSSubClass	1362	•	int64
MSZoning	1362	non-null	object
LotArea	1362	non-null	int64
Street	1362	non-null	object
LotShape	1362	non-null	object
LandContour	1362	non-null	object
Utilities	1362	non-null	object
LotConfig	1362	-	object
LandSlope	1362		object
Neighborhood	1362		object
Condition1	1362		object
Condition2	1362	non-null	object
BldgType	1362	non-null	object
HouseStyle	1362		object
OverallQual	1362		
OverallCond	1362	non-null	
RoofStyle	1362	non-null	-
RoofMatl	1362	non-null	object
Exterior1st	1362		object
Exterior2nd	1362		_
ExterQual	1362	non-null	object
ExterCond	1362	non-null	object
Foundation	1362	non-null	object
BsmtFinSF1	1362		int64
BsmtFinSF2	1362	-	
BsmtUnfSF	1362	non-null	
Heating HeatingQC	1362 1362	non-null	object object
CentralAir	1362	non-null	object
2ndFlrSF	1362		-
LowQualFinSF	1362	non-null	
BsmtHalfBath	1362	non-null	int64
KitchenAbvGr	1362		int64
KitchenOual	1362		
Functional	1362		-
Fireplaces	1362	non-null	
PavedDrive	1362	non-null	object
WoodDeckSF	1362	non-null	int64
OpenPorchSF	1362	non-null	int64
EnclosedPorch	1362	non-null	
3SsnPorch	1362	non-null	
ScreenPorch	1362	non-null	
PoolArea	1362	non-null	int64
MiscVal	1362	non-null	int64
MoSold	1362	non-null	int64
YrSold	1362	non-null	int64
SaleType	1362	non-null	object
SaleCondition	1362	non-null	object
SalePrice	1362	non-null	int64
new_GarageFinish	1362	non-null	object
new_GarageQual	1362	non-null	object
new_GarageType	1362	non-null	object
new_GarageCond	1362	non-null	object
new_BsmtFinType2	1362	non-null	object
new_BsmtExposure	1362	non-null	object
new_BsmtFinType1	1362	non-null	object
new_BsmtQual	1362	non-null	object
new_BsmtCond	1362	non-null	object
new_MasVnrType	1362	non-null	object
new_Electrical	1362	non-null	object
new_LotFrontage	1362	non-null	float64
new_MasVnrArea	1362	non-null	float64
CPI	1362	non-null	
new_BsmtUnfSF	1362	non-null	float64
new_OpenPorchSF	1362	non-null	
dtypes: float64(5),	int64	$\{(22), ob\}$	ject(38)

With some features engineering, we are still keeping 1362 observations but having 66 features now.

In summary, we added 4 new data columns (i.e. CPI, transformed BsmtUnfSF & OpenPorchSF).

Step 6:: Train/Test Split and Cross Validation with Hyperparams Tuning

Now that we have completed cleansing the dataset, removed/imputed missing values, added new/engineered features and transformed target variables, we will now split the dataset for cross validation and model fitting.

So in X dataframe, there are 65 independent variables and in Y dataframe, only 1 target variable.

Also there are 1362 number of observations.

Drawback of Train/Test split It provides high variance estimate since changing which observations or examples happens to be in testing dataset can significantly change testing accuracy. Now you may say what if we split the datasets into bunch of train/test splits, calculate their training accuracy and average the results together. That is where cross-validation comes to play. The common type of cross validation is k-fold cross validation.

	Street_GrvI	Street_Pave	LotShape_IR1	LotShape_IR2	LotShape_IR3	LotShape_Reg	LandContour_Bnk
0	0	1	0	0	0	1	0
1	0	1	1	0	0	0	0
2	0	1	1	0	0	0	0
3	0	1	0	0	0	1	0
4	0	1	0	0	0	1	0

5 rows × 225 columns

Training examples: 953
Validation examples: 409

Step 7:: Model Development

This section, we will run some basic regression learning models to identify the most important features to be used in our prediction model.

• Support Vector Regressor

- Support Vector Machine can also be used as a regression method, maintaining all the main features that characterize the algorithm (maximal margin). The Support Vector Regression (SVR) uses the same principles as the SVM for classification, with only a few minor differences. First of all, because output is a real number it becomes very difficult to predict the information at hand, which has infinite possibilities. In the case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM which would have already requested from the problem. But besides this fact, there is also a more complicated reason, the algorithm is more complicated therefore to be taken in consideration. However, the main idea is always the same: to minimize error, individualizing the hyperplane which maximizes the margin, keeping in mind that part of the error is tolerated.
 - Rule: Standardise all independent variables & target variable before deploying SVR

DecisionTree Regressor

- Decision tree builds regression or classification models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. Decision tree is arriving at an estimate by asking a series of questions to the data, each question narrowing our possible values until the model get confident enough to make a single prediction. The order of the question as well as their content are being determined by the model. In addition, the questions asked are all in a True/False form
 - o Rule: Decision trees can handle both categorical and numerical data.

• ExtraTree Regressor

■ This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control overfitting. Rule: The maximum depth of the tree. But sometimes, it is also called as extreme random forests. In my personal opinion, this model sits in between decision tree and random forest. And when it comes to performance wise, extra trees seem to keep a higher performance in presence of noisy features. Extra Tree lies in the fact that, instead of computing the locally optimal feature/split combination (for the random forest), for each feature under consideration, a random value is selected for the split (for the extra trees).

Random Forest Regressor

- Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees.Random decision forests correct for decision trees' habit of overfitting to their training set. In summary, random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
 - Rule: The number of trees in the forest.

AdaBoost Regressor

AdaBoost is the first stepping stone in the world of Boosting. In contrast to bagging techniques like Random Forest, in which trees are grown to their maximum extent, boosting makes use of trees with fewer splits. This model is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. AdaBoost is sensitive to noisy data and outliers. In some problems it can be less susceptible to the overfitting problem than other learning algorithms.

• Gradient Boosting Regressor

■ It (GBM for short) ensembles of weak prediction models, typically decision trees. The objective of any supervised learning algorithm is to define a loss function and minimize it. So, the intuition behind gradient boosting algorithm is to repetitively leverage the patterns in residuals and strengthen a model with weak predictions and make it better. Once we reach a stage that residuals do not have any pattern that could be modeled, we can stop modeling residuals (otherwise it might lead to overfitting). Algorithmically, we are minimizing our loss function, such that test loss reach its minima. In summary, this follows Gradient Descent concept for optimizing the loss function.

XGBoost Regressor

XGBoost is an algorithm that has recently been dominating applied machine learning and Kaggle competitions for structured or tabular data. XGBoost is an implementation of gradient boosted decision trees designed for speed and performance. XGBoost stands for eXtreme Gradient Boosting. Both GBM & XGBoost are the same, XGBoost and GBM, both works on the same principle. In XGBoost parallel computation is possible, means in XGBoost parallelly many GBM's are working. In XGBoost tunning parameters are more. Any of them can be

Support Vector Machine

```
R2 Score : 0.7381

MSE : 0.0427

RMSE : 0.2066

Optimal hyperparameter(s): {'C': 1000.0, 'epsilon': 0.001, 'kernel': 'rbf'}.

Optimal Estimator:

SVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.001, gamma='scale',

kernel='rbf', max iter=-1, shrinking=True, tol=0.001, verbose=False)
```

Decision Tree

```
R2 Score : 0.7342

MSE : 0.0433

RMSE : 0.2082

Optimal hyperparameter(s): {'criterion': 'mse', 'max_depth': 10, 'min_samples_split': 40}.

Optimal Estimator:

DecisionTreeRegressor(criterion='mse', max_depth=10, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=40, min_weight_fraction_leaf=0.0, presort=False, random_state=24, splitter='best')
```

Extra Tree

Random Forests

Gradient Boosting

```
R2 Score : 0.8875
         : 0.0183
         : 0.1354
Optimal hyperparameter(s): {'learning_rate': 0.03, 'max_features': 'sqrt', 'n_
estimators': 3000}.
Optimal Estimator:
GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
                          learning_rate=0.03, loss='ls', max_depth=3,
                          max_features='sqrt', max_leaf_nodes=None,
                          min_impurity_decrease=0.0, min_impurity_split=None,
                          min_samples_leaf=1, min_samples_split=2,
                          min_weight_fraction_leaf=0.0, n_estimators=3000,
                          n_iter_no_change=None, presort='auto',
                          random state=24, subsample=1.0, tol=0.0001,
                          validation fraction=0.1, verbose=0, warm start=Fals
e)
```

AdaBoost

XGBoost

```
[20:11:47] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:12:03] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:12:20] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:12:36] WARNING: src/objective/regression_obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:12:52] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:13:08] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:13:24] WARNING: src/objective/regression_obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:13:40] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:13:56] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:14:12] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
[20:14:28] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep
recated in favor of reg:squarederror.
R2 Score : 0.8789
          : 0.0197
MSE
RMSE
          : 0.1405
Optimal hyperparameter(s): {'learning_rate': 0.02, 'max_depth': 5, 'n_estimato
rs': 1000}.
Optimal Estimator:
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
             colsample_bynode=1, colsample_bytree=1, gamma=0,
             importance_type='gain', learning_rate=0.02, max_delta_step=0,
             max_depth=5, min_child_weight=1, missing=None, n_estimators=1000,
             n_jobs=1, nthread=None, objective='reg:linear', random_state=24,
             reg alpha=0, reg lambda=1, scale pos weight=1, seed=None,
             silent=None, subsample=1, verbosity=1)
```

Light GBM

CatBoost

0:	learn:	0.3698692	total:	11.4ms	remaining:	22.8s
1:	learn:	0.3678352	total:	23.1ms	remaining:	23.1s
2:	learn:	0.3660123	total:	45ms	remaining:	30s
3:	learn:	0.3640926	total:	50.8ms	remaining:	25.4s
4:	learn:	0.3621144	total:	64.4ms	remaining:	
5 :	learn:	0.3601741	total:	71.6ms	remaining:	23.8s
6 :	learn:	0.3584215	total:	80.3ms	remaining:	22.9s
7:	learn:	0.3566557	total:	86.6ms	remaining:	
8:		0.3548704	total:		remaining:	
9:		0.3530245	total:		remaining:	19.7s
10:	learn:		total:		remaining:	19s
11:		0.3495341	total:		-	18.4s
12:		0.3477495	total:		,	10.45 18s
13:		0.3477493	total:		remaining:	
14:					-	
14: 15:		0.3443992	total:		remaining:	
		0.3426235	total:		remaining:	16.9s
16:	learn:		total:			16.6s
17:		0.3392668	total:			16.3s
18:		0.3377111	total:		remaining:	16.1s
19:		0.3359597	total:		remaining:	15.8s
20:	learn:		total:			15.6s
21:	learn:		total:		-	15.4s
22:	learn:	0.3311236	total:		remaining:	15.3s
23:	learn:	0.3294708	total:	184ms	remaining:	15.1s
24:	learn:	0.3280725	total:	190ms	remaining:	15s
25:	learn:	0.3266595	total:	196ms	remaining:	14.8s
26:	learn:	0.3251069	total:	202ms	remaining:	14.7s
27:	learn:	0.3235301	total:	211ms	remaining:	14.9s
28:	learn:	0.3219792	total:	227ms	remaining:	15.5s
29:	learn:	0.3205190	total:	234ms	remaining:	15.3s
30:	learn:	0.3190128	total:	239ms		15.2s
31:	learn:	0.3175946	total:	253ms	-	15.6s
32:		0.3164112	total:		remaining:	
33:		0.3148448	total:		remaining:	15.4s
34:		0.3133569	total:		-	15.4s
35:	learn:		total:		_	15.3s
36:	learn:	0.3106652	total:		-	15.2s
37 :		0.3092358	total:		_	15.1s
38:		0.3078719	total:		remaining:	15.15 15s
39:	learn:	0.3078719	total:			13s 14.9s
					remaining:	
40:		0.3052142	total:	311ms	remaining:	14.9s
41:		0.3038410	total:		-	14.8s
42:		0.3024747	total:		remaining:	
43:		0.3011759	total:		remaining:	
44:		0.2998979	total:		remaining:	
45:		0.2985808	total:		remaining:	
46:		0.2972943	total:		remaining:	
47:		0.2960470	total:		remaining:	
48:		0.2946958	total:		remaining:	
49:	learn:	0.2935066	total:	364ms	remaining:	14.2s
50:	learn:	0.2922166	total:	370ms	remaining:	14.1s
51:	learn:	0.2909577	total:	376ms	remaining:	14.1s
52:	learn:	0.2896621	total:	382ms	remaining:	14s
53:	learn:	0.2884248	total:	388ms	remaining:	14s
54:	learn:	0.2871877	total:	394ms	remaining:	13.9s
55:	learn:	0.2858988	total:	400ms	remaining:	13.9s
56:	learn:	0.2846304	total:	406ms	remaining:	13.9s
57:		0.2833973	total:		remaining:	
58:		0.2822967	total:		remaining:	
59:		0.2811390	total:		remaining:	
60:	learn:		total:		remaining:	
61:		0.2789152	total:		remaining:	
62:	learn:		total:		remaining:	
63:		0.2776149	total:		remaining:	14.1s
					_	
64:		0.2753440	total:		remaining:	
65 :	learn:		total:		remaining:	
66:		0.2731885	total:		remaining:	
67 :	learn:		total:		remaining:	
68:	learn:	0.2710530	total:	495ms	remaining:	13.9s

Which Model Has the Best Performance?

From the hyperparameters tuning process below, we have gotten most of the models with their best parameters. So in this part, we will call out each and every of them and compare their performance.

[12:08:41] WARNING: src/objective/regression obj.cu:152: reg:linear is now dep recated in favor of reg:squarederror. learn: 0.3631696 total: 78.5ms remaining: 2m 36s total: 84.7ms remaining: 1m 24s 1: learn: 0.3611579 learn: 0.3593385 total: 90.8ms remaining: 1m 2: 3: learn: 0.3572012 total: 96.7ms remaining: 48.3s learn: 0.3554998 total: 103ms remaining: 41s 5: learn: 0.3536831 total: 109ms remaining: 36.1s learn: 0.3517982 total: 114ms remaining: 32.5s 6: total: 120ms 7 : learn: 0.3499999 remaining: 29.9s learn: 0.3483170 total: 126ms 8: remaining: 27.9s 9: learn: 0.3466251 total: 132ms remaining: 26.2s learn: 0.3448163 total: 138ms 10: remaining: 24.9s 11: learn: 0.3430775 total: 144ms remaining: 23.8s 12: learn: 0.3414047 total: 151ms remaining: 23.1s remaining: 22.3s 13: learn: 0.3397186 total: 157ms remaining: 21.8s learn: 0.3379550 14: total: 164ms 15: learn: 0.3363028 total: 171ms remaining: 21.2s learn: 0.3345596 total: 177ms 16: remaining: 20.6s 17: learn: 0.3328670 total: 183ms remaining: 20.1s learn: 0.3311341 total: 189ms 18: remaining: 19.7s total: 197ms learn: 0.3295795 remaining: 19.5s 19: 20: learn: 0.3279493 total: 205ms remaining: 19.3s 21: learn: 0.3264573 total: 211ms remaining: 19s 22: learn: 0.3249050 total: 217ms remaining: 18.7s 23: learn: 0.3233423 total: 223ms remaining: 18.4s 24: learn: 0.3216840 total: 230ms remaining: 18.2s remaining: 18.7s 25: learn: 0.3201139 total: 246ms learn: 0.3185966 total: 252ms remaining: 18.4s 26: 27: learn: 0.3169656 total: 258ms remaining: 18.2s 28: learn: 0.3154448 total: 264ms remaining: 17.9s 29: learn: 0.3140814 total: 270ms remaining: 17.7s total: 279ms 30: learn: 0.3125907 remaining: 17.7s total: 288ms learn: 0.3111431 31: remaining: 17.7s 32: learn: 0.3097749 total: 294ms remaining: 17.5s 33: learn: 0.3085077 total: 300ms remaining: 17.3s learn: 0.3069630 total: 308ms 34: remaining: 17.3s 35: learn: 0.3054645 total: 314ms remaining: 17.1s 36: learn: 0.3041763 total: 321ms remaining: 17.1s 37: learn: 0.3029609 total: 327ms remaining: 16.9s learn: 0.3016048 38: total: 335ms remaining: 16.8s 39: learn: 0.3003799 total: 341ms remaining: 16.7s 40: learn: 0.2991962 total: 347ms remaining: 16.6s 41: learn: 0.2978391 total: 354ms remaining: 16.5s learn: 0.2965498 total: 362ms 42: remaining: 16.5s total: 369ms 43: learn: 0.2952134 remaining: 16.4s learn: 0.2940328 total: 377ms 44: remaining: 16.4s 45: learn: 0.2926954 total: 388ms remaining: 16.5s learn: 0.2914741 total: 395ms 46: remaining: 16.4s 47: learn: 0.2902896 total: 402ms remaining: 16.3s 48: learn: 0.2890199 total: 409ms remaining: 16.3s 49: remaining: 16.2s learn: 0.2878247 total: 417ms 50: learn: 0.2865303 total: 424ms remaining: 16.2s 51: learn: 0.2852432 total: 433ms remaining: 16.2s 52: learn: 0.2841812 total: 440ms remaining: 16.2s 53: learn: 0.2829225 total: 447ms remaining: 16.1s 54: learn: 0.2818122 total: 454ms remaining: 16.1s 55: learn: 0.2806020 total: 463ms remaining: 16.1s learn: 0.2794183 total: 470ms 56: remaining: 16s 57: learn: 0.2781683 total: 481ms remaining: 16.1s 58: learn: 0.2770785 total: 490ms remaining: 16.1s 59: learn: 0.2759602 total: 507ms remaining: 16.4s 60: learn: 0.2748951 total: 517ms remaining: 16.4s learn: 0.2737439 61: total: 525ms remaining: 16.4s 62: learn: 0.2726395 total: 532ms remaining: 16.4s 63: learn: 0.2715255 total: 540ms remaining: 16.3s 64: learn: 0.2702957 total: 547ms remaining: 16.3s 65: learn: 0.2691468 total: 554ms remaining: 16.2s

36 of 39

total: 562ms

remaining: 16.2s

66:

learn: 0.2681354

So, this model scoring board consolidates all R2 Score and RMSE for ease of comparison.

Out[98]:

	Models	R2 Score	RMSE
7	LGBMRegressor	0.89	0.13
4	GradientBoostRegressor	0.89	0.13
8	CatBoostRegressor	0.88	0.14
6	XGBRegressor	0.88	0.14
3	RandomForestRegressor	0.85	0.16
2	ExtraTreeRegressor	0.81	0.18
5	AdaBoostRegressor	0.80	0.18
0	SupportVectorRegressor	0.74	0.21
1	DecisionTreeRegressor	0.74	0.21

Looks like it, LGBM & GradientBoost algorithms provide the highest R2 score and lowest RMSE values.

Selecting two best models and reviewing the top 30 features.

	Fea	tures	Importance
2	Overal	lQual	0.09
11	Firep	laces	0.06
151	ExterQu	al_TA	0.06
1	Lo	tArea	0.05
4	BsmtF	inSF1	0.04
243	new_BsmtQu	al_TA	0.04
7	2nd	FlrSF	0.04
207	new_GarageFinis	h_Unf	0.04
159	Foundation_	PConc	0.03
26	new_OpenPo	rchSF	0.03
	Features	Impor	tance
6	BsmtUnfSF		274
1	LotArea		265
2	OverallQual		196
7	2ndFlrSF		179
4	BsmtFinSF1		176
0	MSSubClass		174
14	EnclosedPorch		150
13	OpenPorchSF		127
12	WoodDeckSF		109
21	new_LotFrontage		104

One interesting note, although Gradient Boost and Light GBM generated the highest score of 0.89 but their top 10 most important features are somewhat different.

Is this normal? It is not surprising. First, I am using different measures of feature importance. It's like measuring the importance of people (or simply sorting them) using their a) weight, b) height, c) wealth and d) IQ. With a and b you might get quite similar results, but these results are likely to be different from results obtained with c and d.

Second, the performance of my models is likely to be different. In extreme case, output on one model could be completely not making sense at all. Then the feature importance metrics produced with such model is not credible. In less extreme scenarios when the difference in models' performance is not so dramatic the trustworthiness of importances produced by two different models is more comparable. Still the importances might be quite different due to the first argument, i.e. different language used to capture the importance.

In this play, I would suggest we need to apply some business or general knowledge when looking at situation as such.

Whilst you are putting some thoughts to this, it would also be good to know how R2 Score will change if we take these features into a linear regression model. Now, let's take alook at how linear regression would have performed independently and how that will differ if we some of the features we identified through the two top ensemble models above.

Linear Regression Model using recursive feature elimination

For a start, we probably need to work out what is the best number of features from a raw linear model. To do that, we can use recursive feature elimination proces. Recursive Feature Elimination (RFE) method works by recursively removing attributes and building a model on those attributes that remain. It uses accuracy metric to rank the feature according to their importance. The RFE method takes the model to be used and the number of required features as input. It then gives the ranking of all the variables, 1 being most important. It also gives its support, True being relevant feature and False being irrelevant feature.

```
Optimal number of features : 56
```

R2 Score : 0.632 MSE : 0.06 RMSE : 0.2449

If we take 56 independent variables into linear regression model, we could reach an R2 Score of 0.632 which is still lower than all models above.

What about we only apply the features we identified through Gradient Boost and Light GBM and see if these linear model outperform the linear model using 56 variables above.

Linear Regression Model using top 56 features from Light GBM

R2 Score : 0.8703 MSE : 0.0211 RMSE : 0.1454

Linear Regression Model using top 56 features from Gradient Boost

R2 Score : 0.8826 MSE : 0.0191 RMSE : 0.1383 Consolidate both scoring and put that into a dataframe.

Merge these scores with the original Model Scoring Board above.

Out[122]:

	Models	R2 Score	RMSE
7	LGBMRegressor	0.89	0.13
4	GradientBoostRegressor	0.89	0.13
11	LinearReg_w_GBM	0.88	0.14
8	CatBoostRegressor	0.88	0.14
6	XGBRegressor	0.88	0.14
10	LinearReg_w_LightGBM	0.87	0.14
3	RandomForestRegressor	0.85	0.16
2	ExtraTreeRegressor	0.81	0.18
5	AdaBoostRegressor	0.80	0.18
0	SupportVectorRegressor	0.74	0.21
1	DecisionTreeRegressor	0.74	0.21
9	LinearReg_w_RFE	0.63	0.24

Note: Next step, I will be exploring a few more models eg linear regression model with gradient descent & neural network. Stay tuned! Hope you find this kernel useful and enjoyable. Your comments and feedbacks are most welcome.

THE END