Álgebra Linear e Geometria Analítica – ISEL - DM

LEIC -LEETC 2º Teste - 15 de junho de 2022 Versão A

Leia com atenção:

A duração do teste é de 1,5 horas.

Não é permitido o uso de calculadora.

Justifique todas as suas respostas.

1. Calcule a matriz canónica e a expressão analítica da aplicação linear h que verifica:

$$h(1,3) = (4, -2, 11) e h(-1,1) = (0, -2, 1).$$

[2.0]

2. Considere a aplicação linear $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ cuja matriz canónica é:

$$M_f = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ -3 & 0 & a \end{bmatrix}, a \in \mathbb{R}.$$

e a aplicação linear $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que g(x, y, z) = (x + z, y + z).

- (a) Determine o valor de a para o qual f não é sobrejetiva. Neste caso, determine:
 - i. a dimensão e uma base da Imagem de f;
 - ii. os valores de b para os quais (b, 1, 0) não pertence à Imagem de f. [4.0]
- (b) Utilizando a **definição de vector próprio**, determine os valores reais de a e c para os quais (c, -1, 1) é vector próprio de f e calcule o respetivo valor próprio. [2.0]
- (c) Determine a dimensão e uma base do Núcleo de g e conclua que g é sobrejetiva. [2.0]
- (d) Seja a=1. Defina a aplicação linear $g\circ f$ e calcule $(g\circ f)(1,-1,3)$. [2.0]
- 3. Considere o endomorfismo f de \mathbb{R}^3 cuja matriz canónica é $A=\begin{bmatrix}0&4&0\\1&0&0\\0&2&-2\end{bmatrix}$.
 - (a) Determine os valores próprios de f e indique as respetivas multiplicidades algébricas. [1.5]
 - (b) Averigue se f é diagonalizável. [2.0]

Nome:	Curso:
Número:	Versão A

Escolha Múltipla

Em cada uma das questões escolha APENAS uma opção, rodeando a letra correspondente.

I. Considere a aplicação linear $T: \mathbb{R}^3 \Longrightarrow \mathbb{R}^2, T(a,b,c) = (-3a-2b,b+c)$. Suponha fixas as bases B = ((1,0,1), (0,1,0), (0,0,1)) de \mathbb{R}^3 e B' = ((1,1), (2,0)) de \mathbb{R}^2 . Seja $A = \begin{bmatrix} 0 & b & c \\ a & -\frac{3}{2} & d \end{bmatrix}$, a matriz que representa T relativamente às bases anteriores.

Assinale a resposta correta:

A.
$$a = 1$$
, $b = -\frac{1}{2}$, $c = 0$, $d = -\frac{3}{2}$.

B.
$$a = -\frac{1}{2}$$
, $b = 1$, $c = -\frac{3}{2}$, $d = 0$.

C.
$$a = -\frac{1}{2}$$
, $b = 1$, $c = 0$, $d = -\frac{3}{2}$.

D.
$$a = -\frac{1}{2}$$
, $b = 1$, $c = 0$, $d = -\frac{2}{3}$.

[1.5]

II. Considere o endomorfismo f de \mathbb{R}^3 tal que $\operatorname{Nuc} f = \langle (1,1,1), (1,0,0) \rangle$ e f(1,0,1) = (5,-1,2). Considere as seguintes afirmações:

a.
$$Im f = \langle (5, -1, 2) \rangle$$
.

b.
$$f(6,0,1) = f(1,0,1)$$
.

c. A matriz canónica de
$$f$$
 é $A = \begin{bmatrix} 0 & -5 & 5 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \end{bmatrix}$.

d. 0 não é valor próprio de f.

A lista completa das proposições verdadeiras é:

A.
$$\{a, c, d\}$$
 B. $\{a, b, c\}$ C. $\{b, d\}$ D. $\{b, c\}$ [1.5]

- III. Seja A uma matriz de ordem 3 cujo polinómio característico é: $p(\lambda) = -\lambda(3+\lambda)^2$. Considere as seguintes afirmações:
 - a. -3 é valor próprio de A e se a sua multiplicidade geométrica é 2 então A é diagonalizável.

b.
$$|A - 2I_3| = 0$$
.

c.
$$|A + 3I_3| = 0$$
.

d. A é invertível.

A lista completa das proposições verdadeiras é:

A.
$$\{a, c, d\}$$
 B. $\{b, c\}$

$$\{b,c\}$$

B.
$$\{b, c\}$$
 C. $\{a, b, d\}$ D. $\{a, c\}$

D.
$$\{a, c\}$$