Solution set 18

Problem 1

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1 \to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。求同态像 $f(G_1)$ 。

(1) $G_1 = \langle Z, + \rangle$, $G_2 = \langle R^*, \cdot \rangle$, 其中 R^* 为非零实数集合,+ 和·分别表示数的加法和乘法。

(2) $G_1 = \langle Z, + \rangle$, $G_2 = \langle A, \cdot \rangle$, 其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in C \land |x| = 1\}$, 其中 C 为复数集合。

$$f: Z \to A, f(x) = \cos x + i \sin x$$

解:

- (1) 是同态,不是单同态,也不是满同态。 $f(G_1) = \{-1, 1\}$
- (2) 是同态, 是单同态, 不是满同态。 $f(G_1) = \{\cos x + i \sin x | x \in \mathbb{Z}\}$

Problem 2

令 G, G' 为群,函数 $f: G \to G'$ 是一个群同态。证明:

- (1) $\ker f = \{x \in G | f(x) = e\}$ 是 G 的子群
- (2) $img f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

解:

- (1) 首先 $e \in \ker f$, $\ker f$ 非空。任取 $a,b \in \ker f$, 我们有 $f(ab^{-1}) = f(a)f(b)^{-1} = e \in \ker f$, 所以 $\ker f = \{x \in G | f(x) = e\}$ 是 G 的子群
- (2) 首先 $e \in \text{img } f$, img f 非空。任取 $a,b \in \text{img } f$, 则存在 $g,h \in G$, 使 得 f(g) = a, f(h) = b。则 $ab^{-1} = f(g)f(h^{-1}) = f(gh^{-1}) \in \text{img } f$,所以 $\text{img } f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

Problem 3

设 G_1 为循环群,f 是群 G_1 到 G_2 的同态,证明 $f(G_1)$ 也是循环群。解:

设 $G_1 = \langle a \rangle$, $f: G_1 \to G_2$ 为群同态。易见 $f(G_1)$ 为群, 对任意 $y \in f(G_1)$, 存在 $a^i \in G_1$, 使得

$$y = f(a^i) = (f(a))^i$$

故 $f(G_1) = < f(a) >$.

Problem 4

设 ϕ 是群 G 到 $G^{'}$ 的同构映射, $a \in G$,证明: a 的阶和 $\phi(a)$ 的阶相等。解:

注意到 $\phi(a)^{|a|} = \phi(a^a) = \phi(e) = e$,则有 $|\phi(a)| \mid |a|$ 。因为 ϕ 为同构,故 ϕ^{-1} 为 G' 到 G 的同构,因此 $|a| \mid |\phi(a)|$ 。得证。

Problem 5

证明: 三阶群必为循环群.

证明:

任意不为单位元的元素阶均不等于 1 且整除 3,故只能为 3。因此任意不为单位元的元素均生成整个群,故为循环群。

Problem 6

我们记 n 阶循环群为 C_n ,欧拉函数 $\phi(m)$ 定义为与 m 互素且不大于 m 的 正整数的个数,考虑以下三个事实

对正整数 m, 欧拉函数的结果 $\phi(m)$ 为 C_m 的生成元的个数

 C_n 的每个元素均生成 C_n 的一个子群

 C_n 的每个子群均是一个循环群 C_m , 且 $m \mid n$

证明著名的公式

$$\sum_{m>0,m|n}\phi(m)=n$$

证明: 左边为 C_n 的所有子群的生成元的数量,右边为 C_n 中元素的数量。 我们知道 C_n 中每个元素均能生成一个循环子群,故得证。

严格地,对任意 $m \mid n$, C_n 中恰好存在 $\phi(m)$ 个可以生成 m 阶循环子群的元素。因为 $m \mid n$, $C_n = < a >$ 恰有一个 m 阶子群 $< a^{n/m} >$ 。其有 $\phi(m)$ 个生成元,均属于 C_n 。故 $\sum_{m>0,m\mid n} \phi(m) \le n \land \sum_{m>0,m\mid n} \phi(m) \ge n$ 。得证。

Problem 7

设 p 是素数,证明每一个 p 阶群都是循环群,且以每一个非单位元的元素 作为它的生成元。

证明:

设 G 为 p 阶群,可知 $|G| \geq 2$ 。对任意 $m \neq e \in G$ 我们有 $|m| \mid p$,即 |m| = p。则 $G = \langle m \rangle$ 。得证。

Problem 8

证明:整数加群 Z 不与有理数加群 Q 同构。

证明:

归谬法,假设同构,则存在双射 $f:Z\to Q$ 满足同态性质。令有理数 p/q=f(1),我们有 f(-1)=-p/q。则对任意 $k\in Q$,均存在整数 z,使得 $k=f(z)=z\times (p/q)$ 。即存在 z' 使得 |z||p/q|=|(1/2q)|<|p/q|。 矛盾,得证。