

| angle If with the intial line and of with a                                                                                                                          |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| angle I with the intial line and of with a angle between the oradius vector of and the                                                                               |   |
| stangent PL.                                                                                                                                                         |   |
| LLPO = .                                                                                                                                                             |   |
| = 0.000 + 0.0000 = 0.0000                                                                                                                                            |   |
| Applying tan both sides tan $\Psi = tan(\theta + \phi)$                                                                                                              | þ |
| Applying tan both sides, $tan \Psi = tan(\theta + q)$<br>$tan \Psi = tan \theta + tan \phi$ — D<br>1- $tan \theta \cdot tan \phi$                                    |   |
| 1-ctano tano                                                                                                                                                         |   |
| 9000110                                                                                                                                                              |   |
| Let $(x, y)$ be the carlesian co-ordinates of P, so                                                                                                                  |   |
| that $x = or Cos \theta$ , $y = or sin \theta$                                                                                                                       |   |
| that $x = \text{or } \cos \Theta$ , $y = \text{or } \sin \Theta$<br>By the geometrical meaning of derivative $\frac{dy}{dx} = \text{slope of PL} = \text{tan } \Psi$ |   |
| dy = slope of PL = tan 4                                                                                                                                             |   |
| and a monthly me rate towards                                                                                                                                        |   |
| $tan \Psi = dy = (dy)$                                                                                                                                               |   |
| $\frac{dan}{da} = \frac{da}{d\theta} = 3r \cos \theta + \sin \frac{dr}{d\theta}$                                                                                     |   |
| (dr) - r sin 0 + Cos etr                                                                                                                                             |   |
| dt / de                                                                                                                                                              |   |
| tan Y = or Cos O + usin O or'                                                                                                                                        |   |
| -91 Sint + Cost or'                                                                                                                                                  |   |
| Dividing by or'Coso                                                                                                                                                  |   |
| 1.2 Cos O + sin Or'                                                                                                                                                  |   |
| $tan \Psi = \frac{(2r\cos\theta + \sin\theta r')}{(r^{\prime}\cos\theta)}$                                                                                           |   |
| 1-9 min 8 + COS D or'                                                                                                                                                |   |
| $\left(\frac{-\operatorname{Im}\theta + \operatorname{Cos}\theta \operatorname{Or}'}{\operatorname{I}'\operatorname{Cos}\theta}\right)$                              |   |
|                                                                                                                                                                      |   |

C

tan 4 = or + ctan o = itan 0 + in made rect 1 - or tano -r tano +1 Forem (1) and (2) tan = r = r = ordo



Radius of curreature

$$S = (1+y^2)^{3/2}$$

$$-y^2$$

where  $y_1 = \frac{dy}{dx}$ ,  $y_2 = \frac{dy_1}{dx} = \left[\frac{d^2y}{dx}\right]$ 

Cauchy's Mean value Theorem (CMVT):(State and prove it) (State and provert)  $\Rightarrow 4f i) f(x) f g(x)$  are continuous un [a,b] ii) f'(x) f g(x) unist un (a,b)  $iii) g'(x) \neq 0$ ,  $\forall x \in (a,b)$ , then there exists

at least one  $c \in (a,b)$ , such that f'(c) = f(b) - f(a) g'(c) g(b) - g(a)



Proof: Let  $\phi(x) = b(x) - kg(x)$ since f(x) and g(x) are continous in [a,b],  $\phi(x)$ is also continous in [a,b] and also usince f'(x)+g'(x)exist in (a,b),  $\phi(x) = f'(x) - kg'(x)$  unists in (a,b)Now consider  $\phi(a) = \phi(b)$ ,

if, f(a) - kg(a) = f(b) = kg(b)if, f(b) - f(a) = kg(b) - kg(a)Let k = f(b) - f(a), then  $\phi(a) = \phi(b)$  g(b) - g(b)

by Rolle's theorem, there unists at least one  $c \in (a,b)$  such that  $\phi'(c) = 0$  f'(c) = -kg'(c) = 0 g'(c)

From O and O

$$g'(cc) = f(b) - f(a)$$
  
 $g'(cc) = g(b) - g(a)$