Doc of PathPlanning Approaches for GeckoBot

Lars Schiller

13. Juni 2019

Inhaltsverzeichnis

T	Predicting the next pose of the robot		
	1.1	Modeling of Soft Bending Actuator	1
	1.2	Modeling of the robot	2
2	Pat	h Planning with Search Tree	3
	2.1	Different Gait Patterns for a curve	3
	2.2	Search Tree	4
		2.2.1 Search Tree with weights	5
	2.3	Simulation Results	5
		2.3.1 Simulation Results Curve	5
		2.3.2 Simulation Results Straight	6
	2.4	<u> </u>	7
		2.4.1 Curve Noise	8
		2.4.2 Straight Noise	8
	2.5	Conclusion	8
3	Pat	h Planning with Analytic Model	9
	3.1	Problem Statement	9
	3.2	Approach: Guess structure for a analytic model for walking curves	10
	3.3	Approach: Find a reasonable structure	
	3.4	Approach: Optimize Extra leg bending Angle for given extra torso bending	13

1 Predicting the next pose of the robot

1.1 Modeling of Soft Bending Actuator

- Einführung virtueller Längen, um größeren Bereich erreichen zu können, und dennoch die Annahme von Constant curvature nutzen zu können.
- Weil Sehr effektiv zu rechnen.

1.2 Modeling of the robot

• Zustands- und Eingangsgrößen:

$$oldsymbol{x} = \left[egin{array}{ccc} oldsymbol{lpha} & \ell & arepsilon \end{array}
ight], \quad oldsymbol{r} = \left[egin{array}{ccc} oldsymbol{lpha}_{
m ref} & f \end{array}
ight]$$

• Innere Spannung:

$$\sigma(\boldsymbol{x}_{k}) = w_{\ell} |\boldsymbol{\ell}_{k} - \boldsymbol{\ell}_{n}|_{2}
+ w_{\alpha} |\boldsymbol{\alpha}_{k} - \boldsymbol{\alpha}_{ref,k}|_{2}
+ w_{\varphi} |\operatorname{diag}(\boldsymbol{f}_{k})(\boldsymbol{\varphi}_{k} - \boldsymbol{\varphi}_{k-1})|_{2}$$

• Minimale Spannung:

$$\min_{\boldsymbol{x}_k \in \mathcal{X}} \sigma(\boldsymbol{x}_k)$$
s. t. $\left| \left| \operatorname{diag}(\boldsymbol{f}_k)(\boldsymbol{P}_k - \boldsymbol{P}_{k-1}) \right| \right|_2 = 0$

• Folgepose:

$$\boldsymbol{
ho}_k = \left[oldsymbol{x}_k \; oldsymbol{P}_k \; oldsymbol{f}_k
ight] = \operatorname{fun}_{\mathcal{P}} \left(oldsymbol{r}_k, oldsymbol{
ho}_{k-1}
ight)$$

• Das Modell liefert dann eine quasi statische Vorhersage der neuen Ruhelage zu gegebenen Eingangsgrößen:

2 Path Planning with Search Tree

2.1 Different Gait Patterns for a curve

• Vom Kinematic Paper sind schon verschieden Laufmuster für Kurven bekannt, basierend auf dem Minimierungsproblem:

$$\min_{\alpha \in \mathcal{A}} \ \varepsilon(\alpha) \tag{1}$$

wobei α die Referenzwinkel von zwei Posen, also einem Zyklus enthält.

• Beispiele:

- Idee: Eine ausgewählte Anzahl an Posen, als Grundbausteine für einen beliebigen Gang.
- Diese dann wie Legosteine aufeinander setzen, um von A nach B zu gelangen.

2.2 Search Tree

• Folgender Suchbaum wurde implementiert.

- \bullet Dabei hat jede Kante des Baums eine Richtung und eine Gewichtung w.
- Die Gewichtung $w = ((\delta x, \delta y), \delta \varepsilon)$ gibt an, inwieweit das entsprechende Kind (Folgepose repräsentiert durch den Knoten, der mit der gewichteten Kante mit dem momentanen Knoten k verbunden ist) den Roboter relativ zur momentanen Orientierung bewegt: $(\delta x, \delta y)$ und wie weit diese Pose ihn drehen wird: $\delta \varepsilon$.
- Für eine gegebene, momentane Pose ρ_k wird für alle Kandidaten $j \in [0, \dots, J-1]$ ausgerechnet, wieweit der Abstand d_j der potentiell neuen Pose ρ_j zum Ziel \bar{x} ist:

$$d(\boldsymbol{\rho}_{k}, w_{j}, \bar{\boldsymbol{x}}) = \left| \bar{\boldsymbol{x}} - \left(\boldsymbol{p}_{1,k} + \boldsymbol{R}(\varepsilon_{k}) \begin{bmatrix} \delta x \\ \delta y \end{bmatrix} \right) \right|_{2}$$
 (2)

• Außerdem wird die Richtungsabweichung $\Delta \varepsilon_j$ aller potentiell neuen Pose j berechnet:

$$\Delta\varepsilon(\boldsymbol{\rho}_{k}, w_{j}, \bar{\boldsymbol{x}}) = \measuredangle\left(\bar{\boldsymbol{x}} - \left(\boldsymbol{p}_{1,k} + \boldsymbol{R}(\varepsilon_{0}) \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}\right), \boldsymbol{R}(\varepsilon_{k} + \delta\varepsilon) \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$
(3)

• Die Folgepose ρ_{k+1} ergibt sich dann aus dem Minimum der mit a=.5 gewichteten Summe von Abstand und Orientierungsabweichung für alle Möglichkeiten ρ_i :

$$\rho_{k+1} = \min_{j} \left(a \frac{d_j}{d_{\min}} + (a-1) \frac{\Delta \varepsilon_j}{\Delta \varepsilon_{\max}} \right) \tag{4}$$

• wobei $\Delta \varepsilon_{\text{max}}$ die maximale Orientierungsabweichung aller Möglichkeiten ist; und d_{min} der minimale Abstand aller Möglichkeiten ist.

2.2.1 Search Tree with weights

 ${\bf Complete\ Search Tree\ contains:}$

- \bullet all vertices (i.e. poses) including fix and defix poses
- weights of egdes: $w = ((\delta x, \delta y), \delta \varepsilon)$

2.3 Simulation Results

Block Diagram of Simulation:

2.3.1 Simulation Results Curve

• Src: path_planner.py

- Startwerte: $p_{1,0}=(0,0),\, \bar{x}=(2,3),\, \varepsilon_0=0,\, \alpha_0=[90,0,-90,90,0]$
- Zu sehen sind:
 - Der gesamte Gang
 - Und alle Schritte, in denen eine Entscheidung getroffen werden musste.
 - Die Position des Roboters und die Zielposition sind als rote Punkte markiert
 - Das möglichen Folgeposen sind als orange Punkte dargestellt.
 - Alle Orientierungen sind als blaue Linien dargestellt

2.3.2 Simulation Results Straight

- Src: path_planner.py
- Startwerte: $p_{1,0}=(0,0), \, \bar{x}=(2,13), \, \varepsilon_0=0, \, \alpha_0=[90,0,-90,90,0]$

2.4 What happens if Process Noise occurs?

- Es kann nicht davon ausgegangen werden, dass der Roboter stets exakt die ReferenzWinkel einnimmt.
- Diese Abweichung soll nun modelliert werden
- Add process noise to Simulation input (0 mean, 5 standard deviation)
- Implementierung: alp = alp + np.random.normal(0, 5, 5)

Block Diagram of Simulation with noise:

2.4.1 Curve Noise

- Src: path_planner.py
- Startwerte: $p_{1,0}=(0,0), \, \bar{x}=(2,3), \, \varepsilon_0=0, \, \alpha_0=[90,0,-90,90,0]$
- Die Simulation wurde 5 mal wiederholt.
- Gezeigt ist jeweils nur der gesamte Gang.

2.4.2 Straight Noise

- Src: path_planner.py
- Startwerte: $p_{1,0} = (0,0), \bar{x} = (2,13), \varepsilon_0 = 0, \alpha_0 = [90,0,-90,90,0]$
- $\bullet\,$ Die Simulation wurde 5 mal wiederholt.
- Gezeigt ist jeweils nur der gesamte Gang.

2.5 Conclusion

• SearchTree Pathplanner funktioniert. Der Roboter kommt ans Ziel! Sowohl in der Simulation als auch im Experiment.

- Durch die finite Anzahl an möglichen Folgeposen, läuft der Roboter allerdings im ZickZack auf das Ziel zu.
- Wird Prozess Rauschen in die Simulation eingebaut, wird der Prozess instabil.
- Teilweise läuft der Roboter knapp am Ziel vorbei und ist in einem Kurven-Loop gefangen.
 - Diese Phänomen konnte auch schon im Experiment gesichtet werden.
- Fazit:
 - PathPlanner SearchTree ist nicht wirklich flexibel. Kann zwar erweitert werden, aber umständlich.
 - instabil bei ProzessRauschen.

3 Path Planning with Analytic Model

3.1 Problem Statement

• Angenommen die Konfiguration / Pose des Roboters $\rho = [\alpha, p_1, \varepsilon]$ ist vollständig bekannt, wobei α die Gelenkkoordinaten / Biegewinkel der einzelnen Glieder sind, p_1 die Position des vorderen Torsoendes und ε die Orientierung des Roboters. Siehe Bild:

- Für die Pfadplanung, wäre eine Funktion hilfreich, die zu einer gegebenen Wunschdrehung $\Delta \varepsilon$, eine entsprechende Abfolge von Roboter-Konfigurationen / Posen ausgibt, sodass sich der Roboter entsprechend dreht.
- So könnte zB die Richtung des Roboters so justiert werden, dass er sich auf ein gegebenes Ziel zu bewegt.
- Für den geraden Gang ist eine analytische Funktion bekannt, die die Geschwindigkeit des Roboters einstellt. Geschwindigkeit im Sinne von Schrittweite, bzw. Vorschub pro Zyklus:

$$\boldsymbol{\alpha} = \begin{bmatrix} 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \\ x_1 \\ 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \end{bmatrix}$$
 (5)

Die Schrittweite ist hier als x_1 beschrieben.

3.2 Approach: Guess structure for a analytic model for walking curves

- Src can be found: analytic_model.py
- Model:

 x_1 beschreibt hier die Schrittweite x_2 das Maß der Drehung.

$$\alpha = \begin{bmatrix} 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \\ x_1 + x_2 \\ 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \end{bmatrix}$$

$$(6)$$

• Method: Simulate for different x_1 and x_2 (in der Abbildung unten ist $x_1=\mathsf{gam}$ und $x_2=\mathsf{x}$)

• Results für 2 Zyklen:

- \bullet Observations:
 - $-\,$ Es funktioniert. Der Roboter läuft eine Kurve.
 - Kurve ist unsymmetrisch. Rechts klappt besser als links.

- Startpose ist besser für Rechtskurve geeignet.
- Noch nichts über die innere SPannung des Roboters herausgefunden

3.3 Approach: Find a reasonable structure

- Src can be found: analytic_model_2.py
- Orientierung der Füße soll konstant bleiben:

$$\varphi_0 = \varepsilon + \frac{\alpha_2}{2} - \alpha_0 \tag{7}$$

Da im vorhergegangenem Versuch die asymmetrischen Aktuierung des Torsos schon zu guten Ergebnissen geführt hat, soll dieses Modell beibehalten werden. Allerdings in einer leicht variierten Form. x_2 ist nun ein relatives Maß für die Drehung:

$$\alpha_2 = x_1 + x_2 |x_1| \tag{8}$$

Es muss also α_0 so gewählt werden, dass φ_0 möglichst unabhängig von x_i wird. Deshalb wird ein noch unbekannter Term x_3 hinzugefügt. Damit ergibt sich der Biegewinkel des Beines:

$$\alpha_0 = 45 + \frac{x_1}{2} + x_3. \tag{9}$$

Für die Orientierung des Fußes bedeutet das:

$$\varphi_0 = \varepsilon + \frac{x_1 + x_2|x_1|}{2} - \left(45 + \frac{x_1}{2} + x_3\right) \tag{10}$$

$$= \varepsilon - 45 + \frac{x_2|x_1|}{2} - x_3 \tag{11}$$

(12)

Es wird **angenommen**, dass die Orientierung des Roboters mit der Schrittweite linear wächst (i.e. Der Roboter dreht sich ein wenig zwischen seinen Extremposen):

$$\varepsilon = c_1 x_1 + \varepsilon_0 \tag{13}$$

Mit konstantem Orientierungswinkel $\varphi = \varphi_0$ ergibt sich somit:

$$\varphi_0 = c_1 x_1 + \varepsilon_0 - 45 + \frac{x_2 |x_1|}{2} - x_3 \tag{14}$$

$$x_3 = c_1 x_1 + \frac{x_2 |x_1|}{2} + c (15)$$

Unter der **Annahme**, dass $\varphi_0 \approx \varepsilon_0 - 45$ ist, ergibt sich $c \approx 0$. Das meint, die Orientierung ändert sich nur minimal. entspricht also im Wesentlichen der Ausgangskonfiguration. Weiterhin wird **angenommen**, dass für einen fixierter Fuß der Term $c_1x_1 \approx 0$ vernachlässigbar ist. Somit ergibt sich für den Biegewinkel des fixierten vorderen linken Beins:

$$\alpha_{0,f} = 45 - \frac{x_1}{2} + \frac{1}{2}x_2|x_1| \tag{16}$$

Wenn das Bein nicht fixiert ist, kann es beliebige Orientierung annehmen. Hierfür wird **angenommen**, dass sich die Drehung des Körpers erst in der nicht fixierten Phase eines Beines in desses Orientierung auswirkt. Deshalb, wird der Term c_1x_1 in dieser Phase aktiv. Weiterhin wird **angenommen**, dass $c_1 = x_2$. Damit ergibt sich für einen nicht fixierten Fuß:

$$\alpha_{0,\bar{f}} = 45 - \frac{x_1}{2} + x_2 x 1 \tag{17}$$

• Das resultierende Modell sieht so aus:

$$\boldsymbol{\alpha} = \begin{bmatrix} 45 - \frac{x_1}{2} + f_0 \frac{1}{2} |x_1| + f_0 x_1 x_2 \\ 45 + \frac{x_1}{2} + f_1 \frac{1}{2} |x_1| + f_1 x_1 x_2 \\ x_1 + |x_1| + x_2 \\ 45 - \frac{x_1}{2} + f_2 \frac{1}{2} |x_1| + f_2 x_1 x_2 \\ 45 + \frac{x_1}{2} + f_3 \frac{1}{2} |x_1| + f_3 x_1 x_2 \end{bmatrix}$$

$$(18)$$

Wobei f_i den Zustand des Fußes beschreibt:

$$f_i = \begin{bmatrix} 1 & if & \text{foot fixed} \\ 0 & else \end{bmatrix}$$
 (19)

$$f_{i} = \begin{bmatrix} 1 & if & \text{foot fixed} \\ 0 & else \end{bmatrix}$$

$$\bar{f}_{i} = \begin{bmatrix} 0 & if & \text{foot fixed} \\ 1 & else \end{bmatrix}$$

$$(19)$$

• Results

Delta Epsilon: $\frac{\Delta \varepsilon}{cycle}(x_1, x_2) = f$

3.4 Approach: Optimize Extra leg bending Angle for given extra torso bending

- Src can be found: analytic_model_3.py
- Nun soll untersucht werden, welche Extra Leg Bending Angle die ineere Spannung des Roboters minimiert.
- Model:

$$\alpha = \begin{bmatrix} 45 - \frac{x_1}{2} + \bar{f}_0 x_3 + f_0 x_4 \\ 45 + \frac{x_1}{2} + \bar{f}_1 x_3 + f_1 x_4 \\ x_1 | x_2 | \\ 45 - \frac{x_1}{2} + \bar{f}_2 x_4 + f_3 x_3 \\ 45 + \frac{x_1}{2} + \bar{f}_3 x_4 + f_4 x_3 \end{bmatrix}$$
(21)

• Annahme:

Die Extra Biegung x_3 für freie Beine und die Extra Biegung x_4 für fixierte Beine sind abhängig von der Extra Biegung x_2 für den Torso.

Hinter- und Vorderbeine sind nicht symmetrisch, aber kreuzweise symmetrisch: Die Extrabiegung für ein nicht fixiertes Vorderbein entspricht der Extrabiegung eines fixierten Hinterbeins und anderesherum.

• Methode:

Für gegebenes Extra Torso Bending x_2 und gegebenene Torso Biegung x_1 minimiere die Innere Spannung über den Gang mit n Zyklen aufsummiert:

Gegeben: x_1 Torsobiegung

 x_2 Extra Torsobiegung

Gesucht: x_3 Extra Beinbiegung fixiert vorn

 x_4 Extra Beinbiegung fixiert hinten

$$cost(\mathbf{x}) = \sum gait(\mathbf{x}).stress$$
 (22)

• Results:

