

2023 로봇스터디 7주차

기본 신경망 이론과 CNN

# 목차

- 1. 신경망 이론
- 2. 모델평가
- 3. CNN

# 신경망(Neural Network)

인간의 뇌가 가지는 생물학적 특성 중 뉴런의 연결 구조



단층 신경망



### 다층 신경망



# 기울기(gradient)

텐서연산의 변화율(=경사도, 변화도)

# 손실 함수(Activation Functions)

지도학습 시 알고리즘이 예측한 값과 실제 정답의 차이를 비교하기 위한 함수

- '학습 중에 알고리즘이 얼마나 잘못 예측하는 정도'를 확인하기 위한 함수로써 최적화(Optimization)를 위해 최소화하는 것이 목적
- 목적 함수(Objective Function)라고도 부름

# 역전파(Back Propagation)

신경망의 각 노드가 가지고 있는 가중치(weight)와 편향(bias)을 학습시키기 위한 알고리즘

- 딥러닝에 있어 가장 핵심적인 부분
- 목표(target)와 모델의 예측결과(output)의 차이를 바탕으로 가중치와 편향을 <mark>뒤에서부터 앞으로 갱신</mark>해 나감
- 경사하강법(Gradient Descent)을 통해 오차를 최소화 함

# 경사하강법(Gradient Descent)

함수의 기울기(gradient)를 이용해 경사의 반대 방향으로 계속 이동시켜 극 값에 이를 때까지 반복시키는 최적화 알고리즘

- 손실함수의 크기를 최소화하는 방향으로 파라미터를 업데이트하기 위해 사용
- 기울기가 최소값 일 때 최적의 파라미터를 찾는다



# 경사하강법(Gradient Descent)

- 전체 훈련 데이터셋을 대상으로 학습
- 한계: 파라미터가 한 번 이동할 때마다 계산해야 할 값이 지나치게 많음
  - → 학습 데이터셋이 커지면 커질수록 시간과 리소스 소모가 지나치게 큼



# 확률적 경사하강법(Stochastic gradient descent)

학습 데이터셋에서 무작위로 한 개의 샘플 데이터 셋을 추출하고 그 샘플에 대해서만 기울기를 계산하는 경사하강법

- 샘플 데이터셋에 대해서만 경사를 계산
- 매 반복에서 다뤄야 할 데이터 수가 매우 적어 학습 속도가 빠름



#### batch size(배치 사이즈)

: 파라미터를 한 번 업데이트 시킬 때 사용할 데이터 개수



#### Mini-Batch(미니배치)

: 전체 데이터를 N등분하여 각각의 학습 데이터를 배치 방식으로 학습

- 확률적 경사 하강법과 배치를 섞은 것
- 신경망을 한 번 학습시키는데(Iteration) 걸리는 시간은 줄이면서 전체 데이터 반영하여 효율적으로 GPU 활용가능

미니 배치 학습

배치 학습

미니배치 크기 - 4 전체 데이터를 4개씩 학습

#### Iteration(이터레이션)

: 전체 데이터를 모델에 한 번 학습시키는데 필요한 배치의 수





# 활성화 함수(Activation Functions)

입력 신호의 총합을 출력 신호로 변환하는 함수

#### 1. 시그모이드(sigmoid) 함수



#### 2. tanh 함수



#### 3. ReLU 함수



### 하이퍼파라미터

최적의 훈련 모델을 구현하기 위해 모델에 설정하는 변수로 학습률(Learning Rate), 에포크 수(훈련 반복 횟수), 가중치 초기화 등을 결정

• 개발자에 의해 임의로 조정 가능

#### 모델 파라미터

새로운 샘플이 주어지면 무엇을 예측할지 결정하기 위해 사용하는 것이며 학습 모델에 의해 결정

#### 하이퍼파라미터

학습 알고리즘 자체의 파라미터

절대적인 최적값은 존재하지 않고 사용자가 직접 설정

### 옵티마이저

손실함수의 최솟값을 찾아가는 것을 최적화하는 알고리즘

• 학습속도를 빠르고 안정적이게 하는 것을 목표



Adam (Adaptive Moment Esimation)

진행하던 속도에 관성을 주고, 최근 경로의 곡면의 변화량에 따른 적응적 학<del>습률을</del> 갖는 알고리즘

• 현재 가장 많이 사용되고 있는 최적화 알고리즘

# tensorflow2.x tf.keras.optimizers.Adam(Ir=0.001, beta\_1=0.9, beta\_2=0.99, epsilon=None)

### <데이터 전처리>

왜곡된 분석결과를 방지하기 위해 분석에 적합하게 데이터를 가공하여 데이터의 품질을 올리는 과정

# 정규화(Data Normalization)

모델 학습데이터를 과도하게 학습하게 되어 학습데이터 이외의 새로운 데이터에 대해 예측을 하지 못하는 현상

1. Min-Max Normalization (최소-최대 정규화) 모든 feature에 0과 1 사이의 값으로 변환



2. Z-Score Normalization (Z-점수 정규화)

이상치(outlier)를 잘 처리하지만, 정확히 동일한 척도로 정규화 된 데이터를 생성하지는 않음

# 데이터 증강(Data Agumentation)

데이터의 양을 늘리기 위해 원본에 각종 변환을 적용하여 개수를 증강시키는 기법

• training dataset size 증가

- > rotation(회전)
- ➤ scaling(크기 줄이기)
- ➤ reflection(뒤집기)
- ➤ cropping(자르기)
- ➤ noise(노이즈 삽입)
- ➤ mixing image(모자이크)

#### **Base Augmentations**



# 오버피팅(overfitting)

모델 학습데이터를 과도하게 학습하게 되어 학습데이터 이외의 새로운 데이터에 대해 예측을 하지 못하는 현상



# 오버피팅(overfitting) 해결방안

- 더 많은 dataset 확보
- Dropout 기법 (추후 설명)
- EarlyStopping
  - → Validation Acc 가 감소하는 지점에서 학습을 중단



# 드롭아웃(Drop-out)

서로 연결된 연결망(layer)에서 0부터 1 사이의 확률로 <mark>뉴런을 제거(drop)</mark>하는 기법

• 과적합 방지



### 소프트맥스 함수(softmax)

입력받은 값을 0~1 사이의 출력이 되도록 정규화하여 <mark>출력 벡터들의 총합이 항상 1이</mark> 되는 특성을 가진 함수

• 딥러닝에서는 출력 노드의 활성화 함수로 많이 사용됨

$$ext{softmax}_i(x) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$
 where  $x \in \mathbb{R}^n$ .

# 크로스엔트로피 함수(Cross-Entropy)

실제 데이터의 확률 분포와, 학습된 모델이 계산한 확률 분포의 차이를 구하는데 사용되는 손실 함수

$$H_p(q) = -\sum_{i=1}^n q(x_i)logp(x_i)$$

# 3. CNN







# Max Pooling



