Visualizing Clustered Botnet Traffic Using t-SNE on Aggregated NetFlows

Studying high volume flood of network traffic, droplet by droplet

Objective

Visualize network traffic by clustering similar behaviors together so that researchers can easily analyse and study interesting clusters.

An ideal clustering would look like this figure: \rightarrow

Objective is to visualize not to detect

Analysis of the visualization might help in detection

Introduction

Rule-based Detection

- Rule examples:
 - Blacklist of IPs
 - Blacklist of content checksums
- Require previous knowledge of malware
 - Known previous compromise
 - Can't detect new, different or adaptive malware
- Botnets are dynamic, their IPs can change (as nodes join and leave)
- Malware payloads might include random data regions (resulting in changing checksums)

Anomaly Detection

- Hard to define baseline in dynamic changing environment
- Require previous knowledge of environment or baseline

High-level Methodology

Collect

Aggregate

Embed & Visualize

Capture traffic

Collect network traffic and store it. In this research we do not rely on contents but rather on the flow.

Group many rows

Reducing number of rows into collective figures (total/mean/...)

Dimensionality reduction

Reducing number of columns from higher dimensions into 2D or 3D coordinates in order to visualize the data.

Netflows

- Like phone bill
 - Who contacted who
 - When
 - For how long
 - But NOT: what was said

How does Netflows file look like?

We have used the same file format as the data published in:

"An empirical comparison of botnet detection methods" Sebastian Garcia, Martin Grill, Honza Stiborek and Alejandro Zunino. Computers and Security Journal, Elsevier. 2014. Vol 45, pp 100-123. http://dx.doi.org/10.1016/j.cose.2014.05.011

It's 15 column CSV file that looks like this:

```
StartTime, Dur, Proto, SrcAddr, Sport, Dir, DstAddr, Dport, State, sTos, dTos, TotPkts, TotBytes, SrcBytes, Label

2011/08/10 09:46:53.047277, 3550.182373, udp, 212.50.71.179, 39678, <->, 147.32.84.229, 13363, CON, 0, 0, 12, 875, 413, flow=Background-UDP-Established
```

Are Netflows Indicators Effective?

- Without looking at content:
 - periodic, small, fixed-sized, short-duration, single destination
 - Single source, multiple destinations, fixed-size
 - Non-periodic, variable sized, variable duration, ..etc.

Aggregation of rows

- Taking the input netflows, and picking some aggregation key like source IP address then aggregate some numbers like
 - Count of netflows
 - Average bytes
 - Summation of packets
 - o ...etc

Choice of aggregations

- Choice of aggregation key
 - Should we include source port?
- Being robust and independent of varying factors
 - Capture duration
 - Incremental or Real-time

Dimensionality reduction

- Given many dimensions for a single data point
- We can study them by looking at only two of those dimensions at a time (ignoring others) which is called projection
- Or use PCA or t-SNE to transform data from high dimension to low dimension (2D) preserving as much

Dimensionality reduction

- Principal component analysis (PCA)
 - Invented in 1901
 - Statistical method
 - orthogonal linear transformation
 - can be thought of as fitting an n-dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal component.

Dimensionality reduction

- t-distributed Stochastic Neighbor Embedding (t-SNE)
 - Modern 2008
 - Stochastic (depends on initial random state)
 - Not only linear relation
 - Tries to preserve distances

Introduced methodology

Choice of aggregation: aggregation key

- Our aggregation key
 - the type of transport layer protocol (TCP/UDP/ICMP)
 - source address
 - destination address
 - destination port
- Source port is not included in our aggregation key but it's not ignored (later)
- Other papers used different keys like only IP Address or a fixed moving window of 10 minutes traffic ...etc. (see "Literature review" section in our paper)
- Our choice to include destination port allow us to analyse process behaviors not just hosts

Choice of aggregated fields: before normalization

- Number of Netflows
- Number of Distinct source ports
- Summation of total packets
- Summation of total bytes
- Summation of source bytes (bytes in forward direction)
- Summation of destination bytes (bytes in backward direction)
- Average bytes balance ratio (where bytes balance ratio is source bytes / total bytes)
- Average wait time between flows
- Average flow duration

But they are not robust

- The scale along different dimensions is not the same
 - having 1 byte off in total bytes is not the same as having 1 second off in daley between flows
 - IMPORTANT: t-SNE tries to preserve distances
- The longer the capture period, the more bytes we capture and aggregate
 - Can't be real-time
 - Can't be incremental

Normalization: flows relative metrics

- Make numbers relative to number of flows, for example
 - Average number of packets per flow
 - Average total bytes per flow
- The ratio of number of distinct source ports over number of flows
 - A client that uses different ephemeral source port each time would have the ratio to be 1.0
 - A client the uses the same port over and over would have a value that approaches
 0.0
- No matter how long we capture or how many flows we have aggregated
- The scale is not yet normalized

Normalization: scale and center

- Range normalized

 - o Pros: scale [0 1.0]
 - Cons: not average centered
- Make metrics average centered
 - $\circ \quad x' = (x x_{avq})$
 - o Pros: center is 0
 - \circ Cons: Scale is $(-\infty, \infty)$
- Make metrics average centered and inverse max scale
 - $\circ \quad x' = (x x_{avg}) / x_{max}$
 - Pros: center is 0
 - Cons: Scale

- Use log
 - \circ x = log(x+1)
 - Make 1,10,100,1000 into 0,1,2,3
- Standard Score
 - \circ $x'=(x-x_{avg})/\sigma$
 - \circ Pros: center is 0, step is σ
 - \circ Cons: open-ended range $(-\infty, +\infty)$
- Sigmoid-family squashing
 - \circ x'= tanh(x x_{avg})
 - Pros: center is 0, range is (-1.0, 1.0)

Evaluation of normalization methods

PCA applied to scenario 5 of CTU-13 dataset with different normalization methods

TOP: PCA with no normalization (left) standard score (right) BOTTOM: range normalized (left), tanh-normalized (right)

PCA

t-SNE applied to scenario 5 of CTU-13 dataset

TOP: t-SNE with no normalization (left) standard score (right) BOTTOM: range normalized (left), tanh-normalized

(right)

20

30

std-normalized t-SNE

Evaluation of embedding methods

Scenario 1 in the CTU-13 dataset

PCA (top) vs. t-SNE (bottom) applied on both range normalized (left) and tanh normalized (right)

Include variance as a feature

Botnets tend to be periodic, being able to identify periodic behaviors is desired.

Some papers try to calculate frequencies, but our paper use "variance" as a metric or feature which would be 0 for uniform values and increase when data is not uniform.

Final Normalized Aggregated Features

- 1. tanh(flows_i flows_{avg})
- 2. tanh(srcPorts_i srcPorts_{avg})
- 3. tanh(avgPacketsPerFlow_i avgPacketsPerFlow_{avq})
- 4. tanh(varPacketsPerFlow_i varPacketsPerFlow_{avq})
- 5. tanh(avgBytesLogPerFlow_i avgBytesLogPerFlow_{avq})
- tanh(varBytesLogPerFlow_i -varBytesLogPerFlow_{avg})
- 7. tanh(avgSrcBytesLogPerFlow_i avgSrcBytesLogPerFlow_{avg})
- 8. tanh(varSrcBytesLogPerFlow_i varSrcBytesLogPerFlow_{avg})
- 9. tanh(avgDstBytesLogPerFlow_i avgDstBytesLogPerFlow_{avg})
- 10. tanh(varDstBytesLogPerFlow_i varDstBytesLogPerFlow_{avg})
- 11. tanh(avgBalanceRatio_i avgBalanceRatio_{avg})
- 12. tanh(varBalanceRatio_i -varBalanceRatio_{avg})
- 13. tanh(avgWaitTime_i avgWaitTime_{avg})
- 14. tanh(varWaitTime_i varWaitTime_{avg})
- 15. tanh(avgDurationi avgDuration_{avg})
- 16. tanh(varDuration_i varDuration_{avq})

Results

Interactive tool published on github

https://github.com/muayyad-alsadi/flowvis

Q & A