Scramjet Nozzle Analysis

Pranjal Gupta | 190010053 Soham Phanse | 19D170030 Navjit Debnath | 190010049 Ayush Sarraf | 190010014 Apoorva Janawlekar | 190010010

Guide

Prof Krishnendu Sinha, Dept of Aerospace Engg.

- 1 Introduction
- 2 Intake
- 3 Combustor
- 4 Nozzle

- 1 Introduction
- 2 Intake
- 3 Combustor
- 4 Nozzle

Problem Statement

- Repeat calculation demonstrated, for the off-design conditions mentioned below.
- Effect of nozzle geometry base expansion factor epsilon = 0, 0.1, 0.2

Overview

- Wave rider configuration
- Ram Effect
- Supersonic Combustion

General Scramjet Operation

- · Freestream enters intake from left.
- Intake compresses air with oblique shock waves (acts as a compressor)
- Fuel is injected in combustor to add heat (quasi-1D flow, heat addition, friction)
- Combustion products expand through nozzle to generate thrust

Nomenclature of Parameters

A* Throat area

 A_{exit} Area of cross-section of nozzle exit

 M_{exit} Mach number at nozzle exit \dot{m} mass flow rate through the duct

P Pressure

T Temperature

h Enthalpy per unit of mass at the duct inlet

R Universal gas constant

 ρ Density

x Nozzle axis

Standard Given Values

Station 0 - Freestream

Station 1 - After 1st Shock

Station 2 - After 2nd Shock

Station 3 - After 3rd Shock

Station 4 - Nozzle Entry

Station 5 - Nozzle Exit

θ_1	10°
θ_2	10°
θ_3	20°
R	287.1 J kg ⁻¹ K ⁻¹
Capture area	$1m \times 1m$
Height of intake	1m
Span(z-dimension)	1m
Height of intake exit, H_3	0.0894 m

- 1 Introduction
- 2 Intake
- 3 Combustor
- 4 Nozzle

Intake of Scramjet Engine

Intake Relations

$$\tan \theta = 2 \cot \beta \frac{M^2 \sin^2 \beta - 1}{M^2 (\gamma + \cos 2\beta) + 2} \tag{1}$$

Component of free stream Mach numbers normal to shockwave $M_{1n} = M_0 sin \beta_1$ (2)

Jump in pressure and temperature

$$\frac{p_1}{p_0} = \frac{2M_{1n}^2 - \gamma + 1}{\gamma + 1} \tag{3}$$

$$\frac{T_1}{T_0} = \frac{p_1}{p_0} \cdot \frac{(\gamma - 1)^2 M_{1n}^2 + 2}{(\gamma + 1)^2 M_{1n}^2} \tag{4}$$

Mach no. after 1st shockwave using oblique shock relations

$$M_1^2 \sin^2 \beta_1 = \frac{(\gamma - 1)^2 M_{1n}^2 + 2}{2\gamma M_{1n}^2 - (\gamma - 1)}$$
 (5)

Intake Values

Ramp Angle and Wave Angle			
θ°	eta°		
10	17.3		
10	19.9		
20	33.0674912		

Values calculated here

Intake Parameters						
Station	M	T(K)	p(kPa)	$\rho(kgm^{-3})$	$T_t(K)$	$P_t(MPa)$
0	6.2	230	0.805	0.0121908743	1998.24	1.56
1	4.77	360	3.06	0.0296064089	1998.2088	1.23655364
2	3.84	505.8	8.92	0.0614260851	1997.464896	1.094974229
3	2.49	893.4	44	0.1715432113	2001.233868	0.740017111

 $\gamma = 1.4$ taken throughout

AE 223 | Project

- All shockwaves converge at cowl lip
- p, T, ρ remain constant in a particular shockwave
- p, T, ρ increase across shockwaves
- Total temperature constant in intake (isentropic)
- Total pressure and Mach number decrease in intake

- 1 Introduction
- 2 Intake
- 3 Combustor
- 4 Nozzle

Combustor of Scramjet Engine

Assumptions

- Negligible heat losses from intake
- Combustor circular and of uniform cross section
 Area profile is constant as scramjet combustor is essentially a duct(of rectangular, circular or elliptic cross section).
- Constant mass flow rate through combustor

Combustor : Relations

$$T_{t0} = T_{t3} = T_3 \left[1 + \frac{\gamma - 1}{2} M_3^2 \right] \tag{6}$$

$$(\frac{1-M^2}{B})\frac{dM^2}{M^2} = (\gamma M^2 + 1)\frac{dT_1}{T_1} + \gamma M^2 c_f \frac{L_p}{A} dx - a\frac{dA}{A}$$
 (7)

 c_f is a skin friction coefficient at the walls, A is area of cross-section, L_p is perimeter of the duct at some x, $B = 1 + \frac{\gamma - 1}{2}M^2$ is always greater than 1.

Integrating $\dot{m}_3 c_p dT_t = d\dot{Q}$ from combustor entry to x,

$$T_t(x) = T_{t3} + \frac{Q(x)}{m_3 c_p} = T_{t3} + \frac{Q(x)}{c_p}$$
 (8)

$$T(x) = T_t(x)[1 + \frac{\gamma - 1}{2}M^2]^{-1}$$
(9)

$$p_t(x) = p(x)[1 + \frac{\gamma - 1}{2}M^2(x)]^{\frac{\gamma}{\gamma - 1}}$$
(10)

Combustor Values

Offset = 0.5 m (Portion with no heat transfer)			
Station	3′	4	
Angle(°)	0	3	
Length(m)	0.7	1.2	
γ	1.3	1.3	
Mach number	1.240174303	2.195747757	
Temperature(K)	2346.885335	1882.060097	
Pressure(Pa)	148588.2947	27146.78203	
Density(kg m ⁻³)	0.2205258653	0.05024023665	
Total temperature(K)	2888.323153	3243.158867	
Total Pressure(Pa)	365301.5741	286969.3713	
Velocity(m s ⁻¹)	1160.691853	1840.295074	
Area(m ²)	0.0894	0.2572448937	

Combustor: Plots

Combustor: Plots

Combustor: Plots

Combustor : Conclusion

Constant Area Section

- Total temperature increases
- Total pressure decreases
- Mach number decreases

Diverging Area Section

- Total temperature increases
- Total pressure decreases
- Mach number increases.

Choking condition : M < 1

- 1 Introduction
- 2 Intake
- 3 Combustor
- 4 Nozzle

Nozzle of Scramjet Engine

Nozzle Assumptions

- Quasi 1-D flow
- No boundary layer formation
- Nozzle walls are adiabatic
- Zero friction with the walls
- Constant mass flow rate through nozzle
- Pressure along curved jet boundary on bottom side is close to ambient

Nozzle Relations

Assuming a hypothetical throat point, we can apply the area-mach relation for compressible flow at two different stations, 4 and 5, to arrive at the following formula:

$$\frac{A_5}{A_4} = \frac{M_4}{M_5} \left[\frac{1 + \frac{\gamma - 1}{2} M_5^2}{1 + \frac{\gamma - 1}{2} M_4^2} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \tag{11}$$

For thrust calculation

$$F = m_0(\forall_5 - \forall_0) + (1 + \epsilon)(p_5 - p_0)A_5$$
 (12)

[Momentum balance for the entire scramjet vehicle]

where
$$\forall_5 = M_5 \sqrt{\gamma R T_5}$$

$$p_5 = p_{t4} (1 + \frac{\gamma - 1}{2} M_5^2)^{\frac{-\gamma}{\gamma - 1}}$$

$$T_5 = T_{t4}(1 + \frac{\gamma - 1}{2}M_5^2)^{-1}$$

Nozzle Calculations - without Base Expansion Factor

- $A_{exit} = A_0 = 1m^2$, where A_0 is the capture area of the engine
- $A_4 = 0.257$
- $M_4 = 2.196$
- $Mach_{exit} = 3.645$
- $T_{t4} = 3243.159 \text{ K}$
- $P_{t4} = 286969.371 \text{ Pa}$
- $P_{exit} = P_{t4} * (1 + \frac{\gamma 1}{2} M_{exit}^2)^{\frac{-\gamma}{\gamma 1}}$
- $\bullet \quad T_{exit} = \frac{T_{t4}}{(1 + \frac{\gamma 1}{2} M_{exit}^2)}$
- $V_{exit} = M_{exit} * \sqrt{\gamma R T_{exit}}$
- $m_{\circ} = \frac{P_{exit} * A_{exit} * T_{exit}}{R * T_{exit}}$

Nozzle Calculations - with Base Expansion Factor

- Base expansion factor (ϵ): Factor to account for the increase in the overall jet area at station 5
- Length of midplane (nozzle cowl) is 1m.

ϵ	Mach Number	Thrust (in N)	Exit Pressure (in Pa)
0	3.424242424	11844.9106	3532.14
0.1	3.5	12095.2653	2907.52
0.2	3.606060606	12305.5776	2639.91

Link to notebook with code

Nozzle Calculations - with Base Expansion Factor

- $\epsilon = 0.1$
- $Mach_{exit} = 3.5$
- $T_{t4} = 3243.158867 \text{ K}$
- $P_{t4} = 286969.3713 \text{ Pa}$
- $P_{exit} = P_{t4} * (1 + \frac{\gamma 1}{2} M_{exit}^2)^{\frac{-\gamma}{\gamma 1}}$
- $\bullet \ T_{exit} = \frac{T_{t4}}{(1 + \frac{\gamma 1}{2} M_{exit}^2)}$
- $V_{exit} = M_{exit} * \sqrt{\gamma R T_{exit}}$
- $m_{\circ} = \frac{P_{exit} * A_{exit} * T_{exit}}{R * T_{exit}}$
- Thrust = $\dot{m} * (V_{exit} V_{fstr}) + (1 + \epsilon) * (P_{exit} P_{fstr}) * A_{exit} = 12095.26 \text{ N}$

Plots - with Base Expansion Factor

Base Expansion Factor ε Versus Thrust (in Newtons) with SERN

Figur: Thrust versus Base Expansion Factor

Plots: with Base Expansion Factor

Figur: Mach number versus Base Expansion Factor

Nozzle: Conclusions

- Total temperature and total pressure are constant
- Thrust increases with increase in Mach Number and base expansion factor
- Gas expansion takes place and as a result, static pressure and temperature approach ambient conditions
- Mach number has an upper limit (≈ 4.382) corresponding to the condition of static pressure becoming equal to ambient pressure

Thank you

