0.1 W_n (Räder)

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen C_n mit Knoten $\{v_1,..,v_n\}$, $n \ge 3$ ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph W_n entsteht (Achtung: W_n hat n+1 Knoten). Um eine Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [?] inspirieren. Unser Ziel ist es folgendes zu zeigen:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right) + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{1}$$

Wir beobachten, dass wir den Fan-Graphen F_n bekommen, wenn wir die Kante v_1v_n aus W_n entfernen. Die Anzahl der Spannbäume von F_n kennen wir bereits von oben. Wir werden zeigen, dass $k(W_n) = k(F_n) + 2\sum_{j=2}^n k(F_{j-1})$; damit können wir danach die Anzahl der Spannbäume von W_n berechnen. Als ersten Schritt dahin beweisen wir, dass für $n \ge 3$ die nachfolgende rekursive Beziehung gilt:

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(2)

Um das zu tun, werden die Spannbäume von W_{n+1} in drei verschiedene Klassen einteilen:

- 1) Alle Spannbäume, die die Kante v_1v_{n+1} nicht enthalten; das sind genau die Spannbäume von F_{n+1} .
- 2) Alle Spannbäume, die die Kante v_1v_{n+1} enthalten, jedoch nicht die Kante v_1z ; das sind die Spannbäume des Graphen W_{n+1}/v_1v_{n+1} , den wir durch Kontraktion der Kante v_1v_{n+1} aus W_{n+1} erhalten dieser Graph ist aber W_n .
- 3) Alle Spannbäume, die die Kanten v_1v_{n+1} und v_1z beinhalten; das sind die Spannbäume des Graphen, den wir durch die Kontraktion der Kante v_1z gewinnen, also von F_n , wie wir aus der nachfolgenden Grafik entnehmen können.

Wie wir sehr leicht sehen können ist jeder Spannbaum von W_{n+1} in genau einer dieser Klassen, also gilt die Rekursion.

Wir können jetzt - zum Beispiel durch vollständige Induktion über $n \in \mathbb{N}$ - unsere Formel verifizieren. Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, können wir das sofort in die Formel einsetzen, und erhalten:

Damit haben wir erfolgreich gezeigt, dass für die Anzahl der Spannbäume in W_n gilt: