Cálculo I

Capítulo 1: Números Reales

- lacksquare Definición de $\mathbb R$
 - Axiomas de cuerpo conmutativo
 - Axiomas de orden
 - Valor absoluto
- \bigcirc Subconjuntos destacados de $\mathbb R$
 - Números naturales
 - Números enteros
 - Números racionales
- 3 Tamaño de conjuntos
 - Conjuntos finitos
 - Conjuntos numerables
- Principales resultados
 - Esquema resumen
 - Supremo e ínfimo
 - Raíz n-ésima. Números irracionales
 - \bullet Propiedad arquimediana. Densidad de \mathbb{Q} y $\mathbb{R} \setminus \mathbb{Q}$
 - Intervalos
 - \bullet No numerabilidad de $\mathbb R$

Operaciones algebraicas

Definición de R

•00

Suma: $(x,y) \mapsto x+y$ Producto: $(x,y) \mapsto xy$

- A1. Asociatividad: $(x+y)+z=x+(y+z), (xy)z=x(yz), \forall x,y,z \in \mathbb{R}$
- A2. Conmutatividad: x + y = y + x, xy = yx, $\forall x, y \in \mathbb{R}$
- A3. Distributividad: x(y+z) = xy + xz, $\forall x, y, z \in \mathbb{R}$
- A4. Neutros: $0 \neq 1$, x+0=x, x1=x, $\forall x \in \mathbb{R}$
- A5. Simétricos: $x + (-x) = 0 \quad \forall x \in \mathbb{R}; \quad xx^{-1} = 1 \quad \forall x \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$

Resumen: Res un cuerpo conmutativo

Definición de R

Números positivos y negativos

Positivos: $\mathbb{R}^+ \subset \mathbb{R}$ Negativos: $\mathbb{R}^- = \{-x : x \in \mathbb{R}^+\}$

- A6. Tricotomía: $\mathbb{R} = \mathbb{R}^+ \cup \{0\} \cup \mathbb{R}^-$, partición de \mathbb{R}
- A7. Estabilidad: $x, y \in \mathbb{R}^+ \implies x + y, xy \in \mathbb{R}^+$

Relación de orden total: $x \leq y \iff y - x \in \mathbb{R}^+ \cup \{0\}$

$$x, y \in \mathbb{R}, \ x \leqslant y \implies x + z \leqslant y + z \ \forall z \in \mathbb{R}, \ xw \leqslant yw \ \forall w \in \mathbb{R}^+$$

Resumen A1-A7: R es un cuerpo conmutativo ordenado

Axioma del continuo

• A8. Axioma del continuo:

$$\emptyset \neq A, B \subset \mathbb{R}, \quad a \leqslant b \quad \forall a \in A, \ \forall b \in B$$

$$\exists x \in \mathbb{R} : a \leq x \leq b \ \forall a \in A, \forall b \in B$$

 \mathbb{R} es un cuerpo conmutativo ordenado, verificando el axioma del continuo.

Valor absoluto

000

$$x \in \mathbb{R}, \quad |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Propiedades del valor absoluto

Para $x, y \in \mathbb{R}$,

•
$$|x| \geqslant 0$$
; $|x| = 0 \Leftrightarrow x = 0$

•
$$x \le |x|$$
, $|x| = |-x|$, $|x|^2 = x^2$

$$\bullet |xy| = |x||y|$$

•
$$|x| \le y \Leftrightarrow -y \le x \le y$$
; $|x| < y \Leftrightarrow -y < x < y$

•
$$||x| - |y|| \le |x \pm y| \le |x| + |y|$$

•
$$|x+y| = |x| + |y| \Leftrightarrow xy \geqslant 0$$

Números naturales. Inducción

Definición de N

Un conjunto $A \subset \mathbb{R}$ es inductivo cuando:

- 1 ∈ A
- $x \in A \implies x+1 \in A$

 $\mathbb N$ es la intersección de todos los subconjuntos inductivos de $\mathbb R$ $\mathbb N \text{ es inductivo} \quad \mathbf v \quad n\geqslant 1 \quad \forall n\in \mathbb N$

Principio de inducción

$$A \subset \mathbb{N}$$
, A inductivo $\Longrightarrow A = \mathbb{N}$

Operaciones con números naturales

 $m, n \in \mathbb{N}$:

- m+n, $mn \in \mathbb{N}$
- $m n \in \mathbb{N} \iff n < m$
- $1/n \in \mathbb{N} \iff n = 1$

Orden de los números naturales

Siguiente

$$n, m \in \mathbb{N}, \quad n < m \implies n+1 \leqslant m$$

Máximo v mínimo

 $A \subset \mathbb{R}, a \in A$

- $a = \max A \iff a \geqslant x \ \forall x \in A$
- $a = \min A \iff a \leqslant x \ \forall x \in A$

Buena ordenación

N está bien ordenado es decir,

Todo conjunto no vacío de números naturales tiene mínimo

Potencias de exponente natural

Definición de las potencias

Para $x \in \mathbb{R}$ y $n \in \mathbb{N}$, se define x^n por inducción:

$$x^1 = x$$
, $x^{n+1} = x^n x \ \forall n \in \mathbb{N}$

Se define también $x^0 = 1$.

Propiedades de las potencias

 $x, y \in \mathbb{R}, m, n \in \mathbb{N}$

•
$$x^{m+n} = x^m x^n$$
; $x^{mn} = (x^m)^n$; $(xy)^n = x^n y^n$

•
$$1 < x$$
, $n < m \implies x^n < x^m$; $0 \le x < y \implies x^n < y^n$

• Binomio de Newton:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

• Suma de potencias:
$$x \neq 1$$
, $\alpha \in \mathbb{R}$ $\Rightarrow \sum_{k=0}^{n} \alpha x^k = \frac{\alpha x^{n+1} - \alpha}{x-1}$

• Consecuencia:
$$x^{n+1} - y^{n+1} = (x - y) \sum_{k=1}^{n} x^{n-k} y^k$$

Números enteros

Definición de $\mathbb Z$

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\} = \{m-n : m, n \in \mathbb{N}\}\$$

Operaciones con números enteros

 $p,q \in \mathbb{Z}$

- $p \pm q$, $pq \in \mathbb{Z}$
- $p^{-1} \in \mathbb{Z} \iff p = \pm 1$

Orden de los números enteros

- $\bullet \ \text{Siguiente:} \ p,q \in \mathbb{Z} \, , \ p < q \ \implies \ p+1 \leqslant q$
- ullet Z no tiene mínimo, luego no está bien ordenado

Números racionales

Definición de Q

$$\mathbb{Q} = \left\{ \frac{p}{m} : p \in \mathbb{Z}, \ m \in \mathbb{N} \right\}$$

Operaciones con números racionales

•
$$r,s \in \mathbb{Q} \implies r \pm s, rs \in \mathbb{Q}$$

•
$$r \in \mathbb{Q}, r \neq 0 \implies r^{-1} \in \mathbb{Q}$$

 $\mathbb Q$ es un cuerpo conmutativo

Orden de los números racionales

- $r, s \in \mathbb{Q}, r < s \implies \frac{r+s}{2} \in \mathbb{Q}, r < \frac{r+s}{2} < s$
- Q es un cuerpo conmutativo ordenado

Conjuntos equipotente

$$A \sim B \iff \exists f : A \rightarrow B$$
 biyectiva relación reflexiva, simétrica y transitiva

Conjuntos finitos e infinitos

$$n \in \mathbb{N}$$
 $I_n = \{k \in \mathbb{N} : k \le n\} = \{1, 2, \dots, n\}$
 $n, m \in \mathbb{N}, I_n \sim I_m \Rightarrow m = n$

Si $A \sim I_n$ decimos que A es finito, con n elementos

 \emptyset es finito con 0 elementos

A es infinito cuando no es finito

Subconjuntos finitos de \mathbb{R}

Todo conjunto de números reales, no vacío y finito, tiene máximo y mínimo.

Propiedades de los conjuntos finitos

- A finito, $f: B \to A$ inyectiva $\implies B$ finito
- A finito, $f: A \to B \implies f(A)$ finito

Tamaño de conjuntos

Definición de R

A es numerable cuando existe $f: A \to \mathbb{N}$ invectiva

Conjuntos infinitos numerables

- Si $A \subset \mathbb{N}$ y A es infinito, existe $\sigma : \mathbb{N} \to A$ biyectiva, verificando: $n, m \in \mathbb{N}, n < m \Rightarrow \sigma(n) < \sigma(m)$
- Un conjunto es numerable si, y sólo si, es finito o equipotente a N

Propiedades de los conjuntos numerables

- A numerable, $f: B \to A$ invectiva $\implies B$ numerable
- A numerable, $f: A \to B \implies f(A)$ numerable
- A, B numerables $\implies A \times B$ numerable
- Toda unión numerable de conjuntos numerables es numerable:
 - $\emptyset \neq I$ numerable, A_i numerable $\forall i \in I \implies \bigcup_{i \in I} A_i$ numerable

Ejemplos de conjuntos numerables

- $\mathbb{N} \sim \{2n : n \in \mathbb{N}\} \sim \{n^2 : n \in \mathbb{N}\} \sim \{n \in \mathbb{N} : n \text{ primo}\}\$
- $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{O}$

Esquema resumen

Supremo e ínfimo

Definición de R

 $A \subset \mathbb{R}, x \in \mathbb{R}$

- x mayorante de $A \Leftrightarrow x \geqslant a, \forall a \in A$
- x minorante de $A \Leftrightarrow x \leqslant a, \forall a \in A$
- A está mayorado cuando admite un mayorante, minorado cuando admite un minorante. Acotado = mayorado y minorado.

Existencia de supremo e ínfimo

- Todo conjunto de números reales, no vacío y mayorado tiene supremo, es decir, el conjunto de sus mayorantes tiene mínimo.
- Todo conjunto de números reales, no vacío y minorado tiene ínfimo, es decir, el conjunto de sus minorantes tiene máximo.

Supremo y máximo, ínfimo y mínimo

- $\emptyset \neq A \subset \mathbb{R}$, A mayorado:
 - A tiene máximo \Leftrightarrow sup $A \in A$, en cuyo caso: máx $A = \sup A$
- A minorado:
 - A tiene mínimo \Leftrightarrow $\inf A \in A$, en cuyo caso: $\min A = \inf A$

Raíz n-ésima. Números irracionales

Raíz n-ésima

Dado $n \in \mathbb{N}$, para cada $x \in \mathbb{R}^+$ existe un único $y \in \mathbb{R}^+$ tal que $y^n = x$.

Se dice que y es la raíz n-ésima de x: $y = \sqrt[n]{x}$

Existencia de irracionales

$$n, m \in \mathbb{N} \implies \sqrt[n]{m} \in \mathbb{N} \cup (\mathbb{R} \setminus \mathbb{Q})$$

- $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt[3]{2}$, $\sqrt[3]{7}$... son irracionales
- $r, s \in \mathbb{Q}, s \neq 0, \alpha \in \mathbb{R} \setminus \mathbb{Q} \implies r + s\alpha \in \mathbb{R} \setminus \mathbb{Q}$

Propiedad arquimediana. Densidad de \mathbb{Q} y de $\mathbb{R} \setminus \mathbb{Q}$

Propiedad arquimediana

 $\emptyset \neq A \subset \mathbb{Z}$

- A mayorado \implies A tiene máximo. Por tanto, $\mathbb N$ no está mayorado: $\forall x \in \mathbb R \ \exists n \in \mathbb N : x < n$
- ullet A minorado \Longrightarrow A tiene mínimo.
- A acotado \implies A es finito.

Parte entera de un número real

$$E(x) = \max\{k \in \mathbb{Z} : k \leqslant x\} \quad \forall x \in \mathbb{R}$$

Equivalentemente: E(x) es el único $k \in \mathbb{Z}$ que verifica $k \leq x < k+1$

Densidad de \mathbb{Q} y $\mathbb{R} \setminus \mathbb{Q}$ en \mathbb{R}

- \mathbb{Q} es denso en \mathbb{R} : $x, y \in \mathbb{R}, x < y \implies \exists r \in \mathbb{Q} : x < r < y$
- $\mathbb{R} \setminus \mathbb{Q}$ es denso en \mathbb{R} : $x, y \in \mathbb{R}, x < y \implies \exists \beta \in \mathbb{R} \setminus \mathbb{Q} : x < \beta < y$

Se llama intervalos a los subconjuntos de \mathbb{R} de los siguientes tipos:

- Ø v ℝ
- Intervalos acotados de extremos $a, b \in \mathbb{R}$, con $a \leq b$:
 - Cerrado: $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$
 - Abierto: $|a,b| = \{x \in \mathbb{R} : a < x < b\}$
 - Semiabierto por la izquierda: $[a,b] = \{x \in \mathbb{R} : a < x \le b\}$
 - Semiabierto por la derecha: $[a,b] = \{x \in \mathbb{R} : a \leq x < b\}$
- Semirrectas con origen $a \in \mathbb{R}$:
 - Hacia la derecha, cerrada: $[a, +\infty[= \{x \in \mathbb{R} : a \leq x\}]$
 - Hacia la derecha, abierta: $[a, +\infty[= \{x \in \mathbb{R} : a < x\}]$
 - Hacia la izquierda, cerrada: $]-\infty,a]=\{x\in\mathbb{R}:x\leqslant a\}$
 - Hacia la izquierda, abierta: $|-\infty, a| = \{x \in \mathbb{R} : x < a\}$

Caracterización de los intervalos

Para un conjunto $I \subset \mathbb{R}$, son equivalentes:

- (i) I es un intervalo
- (ii) $x, y \in I, x < y, z \in \mathbb{R}, x < z < y \implies z \in I$

No numerabilidad de \mathbb{R}

Principio de los intervalos encajados

Si para cada $n \in \mathbb{N}$ tenemos un intervalo cerrado y acotado J_n , verificando que $J_{n+1} \subset J_n \ \forall n \in \mathbb{N}$, entonces $\bigcap_{n \in \mathbb{N}} J_n \neq \emptyset$.

\mathbb{R} no es numerable

To do intervalo no trivial es un conjunto no numerable En particular, $\mathbb R$ no es numerable Por tanto, $\mathbb R\setminus\mathbb Q$ no es numerable

Números algebraicos y trascendentes

 $x \in \mathbb{R}$ es un número algebraico cuando existe un polinomio P con coeficientes enteros, no constante, tal que P(x) = 0. Un número real es trascendente cuando no es algebraico.

Abundancia de números trascendentes

El conjunto $\mathbb A$ de los números algebraicos es numerable.

Por tanto, el conjunto $\mathbb{R} \setminus \mathbb{A}$ de los números trascendentes no es numerable.