أكا ديمية الدار البيضاء نيابة ابن مسيك نانوية أبعر شعيب الدكالس

السنة الثانية من سلك الباكالوريا

♦ شعبة العلوم النجريبية

- مسلك علوم الحياة و الأرض
 - العلوم الفيزيائية
 - ◄ مسلك العلوم الزراعية

♦ شعبة العلوم و النكنولوجيات الصناعية

- مسلك العلوم والتكنولوجيات الميكانيكية
 - مسلك العلوم والتكنولوجيات الكهربائية

من إعداد: الأستاذ محمد الكيال

الف في رس

الصفحة:	।विरुद्धः			
4	إشارة حدانية- إشارة و تعميل ثلاثية الحدود			
5	متطابقات هامة- مجموعة تعريف دالة			
6	النهايات			
8	الاتصال			
10	الاشتقاق			
12	محور التماثل- مركز التماثل- نقطة الانعطاف			
13	الفروع اللانهائية			
14	الدالة العكسية			
16	n دالة الجدر من الرتبة			
18	المتتاليات العددية			
20	الدوال الأصلية			
22	التكامل			
24	الدوال اللوغاريتمية			
26	الدوال الأسية			
28	الأعداد العقدية			
31	المعادلات التفاضلية			
32	الهندسة الفضائية			
34	التعداد			
36	الاحتمالات			
38	الحساب المثلثي			

إشارة حدانية

ذ. محمد الكيال

إشارة و نعميك ثلاثية الحدود

 $(a \neq 0)$ ax + b اشارة الحمانية:

$oldsymbol{x}$	$-\infty$	$-rac{b}{a}$	$+\infty$
ax + b	a عكس إشارة	þ	a إشارة

 $(a \neq 0)$ $ax^2 + bx + c$ اشارة و نعميل ثلاثية الحدود:

 $P(x) = ax^2 + bx + c : نضع$

			1 8 1 22
$\mathbf{P}(x)$ تعمیل	$\mathbf{P}(x)$ إشارة	x : حل المعادلة $x\in\mathbb{R}$ واشارة $x\in\mathbb{R}$ الشارة $x\in\mathbb{R}$	
غير ممكن بواسطة حدانيتين	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$S=\varnothing$	$\Delta < 0$
$P(x) = a\left(x + \frac{b}{2a}\right)^2$	$ \begin{array}{ c c c }\hline x & -\infty & -\frac{b}{a} & +\infty \\ \hline P(x) & a & a & a & a \\ \hline \end{array} $	$S = \left\{ \frac{-b}{2a} \right\}$	$\Delta = 0$ $\Delta = b^2 - 4ac$
$P(x) = a(x - x_1)(x - x_2)$	x x_1 x_2 $+\infty$ $-\infty$ $P(x)$ $\left[\begin{array}{ccc} x_1 & x_2 & +\infty \\ & -\infty \end{array}\right]$ $\left[\begin{array}{ccc} x_1 & x_2 & +\infty \\ & -\infty \end{array}\right]$ $\left[\begin{array}{ccc} x_1 & x_2 & +\infty \end{array}\right]$	$S = \left\{x_1; x_2\right\}$ $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$	

$$(a
eq 0)$$
 $x \in \mathbb{R}$ $ax^2 + bx + c = 0$ إذا كان x_2 و x_2 حلي المعادلة:

$$x_1 \times x_2 = \frac{c}{a}$$
 وَإِن:
$$x_1 + x_2 = \frac{-b}{a}$$

منطابقات هامة مجموعة نعريف دالة عددية

ذ. محمد الكيال

→ منطابقات هامة:

$$b$$
 عددين حقيقيين a و a $(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$ $a^2 - b^2 = (a-b)(a+b)$ $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

مجموعة نعريف بعض الدوال العددية:

لتكن Pو Qحدوديتين

بجموعة تعريف الدالة f هي:	دالة عددية لمتغير حقيقي x معرفة بما يلي: f
$D_f=\mathbb{R}$	f(x) = P(x)
$D_f = \left\{ x \in \mathbb{R} / Q(x) \neq 0 \right\}$	$f(x) = \frac{P(x)}{Q(x)}$
$D_f = \left\{ x \in \mathbb{R} / P(x) \ge 0 \right\}$	$f(x) = \sqrt{P(x)}$
$D_f = \left\{ x \in \mathbb{R} / Q(x) > 0 \right\}$	$f(x) = \frac{P(x)}{\sqrt{Q(x)}}$
$D_f = \left\{ x \in \mathbb{R} / \mathrm{P}(x) \ge 0 \mathbf{g}(x) > 0 \right\}$	$f(x) = \frac{\sqrt{P(x)}}{\sqrt{Q(x)}}$
$D_f = \left\{ x \in \mathbb{R} / \frac{\mathrm{P}(x)}{Q(x)} \ge 0 \text{if } Q(x) \ne 0 \right\}$	$f(x) = \sqrt{\frac{P(x)}{Q(x)}}$

نهایات الدوال $x\mapsto \sqrt{x}$ و مقلوبانها: $(n\in\mathbb{N}^*)x\mapsto x^n$ نهایات الدوال

$\lim_{\substack{x \to 0 \\ >}} \sqrt{x} = 0$	$\lim_{x \to 0} x^n = 0$
$\lim_{x \to +\infty} \sqrt{x} = +\infty$ $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$	$\lim_{x \to -\infty} \frac{1}{x^n} = 0$ $\lim_{x \to +\infty} \frac{1}{x^n} = 0$

: عددا فرديا فإن n عددا فرديا	إذا كان n عددا زوجيا فإن:
$\lim_{x \to +\infty} x^n = +\infty$	$\lim_{x \to +\infty} x^n = +\infty$
$\lim_{x \to -\infty} x^n = -\infty$	$\lim_{x \to -\infty} x^n = +\infty$
$\lim_{x \to 0} \frac{1}{x^n} = +\infty$	$\lim_{x \to 0} \frac{1}{x^n} = +\infty$
$x \to 0 \ x^n$	$x \to 0 x^n$
$\lim_{x \to 0} \frac{1}{x^n} = -\infty$	$ \lim_{x \to 0} \frac{1}{x^n} = +\infty $
$x \to 0 \ x$	$x \to 0 x$

$-\infty$ نهايات الدوال الحدودية و الدوال الجنرية عند الدوال الحدودية و الدوال الجنرية عند $-\infty$

نهاية دالة جذرية عند ∞+ أو عند ∞-هي نهاية خارج حديها الأكبر درجة

<u>← نهایات الدوال اطثلثیة:</u>

1 1	,	•
$1 - \cos x$	$\tan x$	$\sin x$
$\lim \longrightarrow = -$	$\lim \longrightarrow = 1$	$\lim \longrightarrow = 1$
$x \rightarrow 0$ x^2 2	$x\rightarrow 0$ x	$x \rightarrow 0$ x

$x\mapsto \sqrt{u(x)}$ نهایات الدوال من النوع: \frown

$\lim_{x ightarrow x_{0}}\sqrt{u\left(x ight) }$	$\lim_{x o x_0} u(x)$
$\sqrt{\ell}$	$\ell \geq 0$
$+\infty$	$+\infty$

 $-\infty$ على اليسار أو عند $\infty+$ أو عند $\infty+$ على اليمين أو عند $\infty+$ أو عند $\infty+$

→ النهایات و النرنیب:

$$\left. \begin{array}{l} u\left(x \right) \leq f\left(x \right) \leq V\left(x \right) \\ \lim\limits_{x \to x_0} u\left(x \right) = \boldsymbol{\ell} \\ \lim\limits_{x \to x_0} V\left(x \right) = \boldsymbol{\ell} \end{array} \right\} \Rightarrow \lim\limits_{x \to x_0} f\left(x \right) = \boldsymbol{\ell}$$

$$\left| \begin{array}{l} \left| f\left(x \right) - \boldsymbol{\ell} \right| \leq V\left(x \right) \\ \lim_{x \to x_0} V\left(x \right) = 0 \end{array} \right\} \Rightarrow \lim_{x \to x_0} f\left(x \right) = \boldsymbol{\ell}$$

خطأ بس
$$u(x) \leq V(x)$$

$$\lim_{x \to x_0} V(x) = -\infty$$

$$\Rightarrow \lim_{x \to x_0} f(x) = -\infty$$

$$\lim_{x \to x_0} u(x) \le f(x)$$

$$\lim_{x \to x_0} u(x) = +\infty$$

$$\Rightarrow \lim_{x \to x_0} f(x) = +\infty$$

 $-\infty$ على اليسار أو عند $\infty+$ على اليمين أو عند x_0 على اليسار أو عند $\infty+$ أو عند

→ العمليات على النهايات:

نهایة مجموع دالنین:

$\lim_{x \to x_0} f(x)$	e	e	e	-∞	+∞	+∞
$\lim_{x \to x_0} g(x)$	ℓ'	-∞	+∞	-∞	+∞	-∞
$\lim_{x \to x_0} \left[g(x) + f(x) \right]$	$\ell + \ell'$	-∞	+∞	-∞	+∞	شغ م

نهایة جداء دالنین:

$\lim_{x \to x_0} f(x)$	e	l <	< 0	<i>l</i> >	> 0	-∞	-∞	+∞	0
$\lim_{x \to x_0} g(x)$	ℓ'		+∞	-∞	+∞	-∞	+∞	+∞	<u>+</u> ∞
$\lim_{x \to x_0} [g(x) \times f(x)]$	$\ell \times \ell'$	+∞	-∞	-∞	+∞	+∞		+∞	شغ م

نهایهٔ خارج دالنین:

$\lim_{x \to x_0} f(x)$	l	l	<i>l</i> <	< 0	<i>l</i> >	> 0	_	∞	+	∞	0	<u>+</u> ∞
$\lim_{x \to x_0} g(x)$	ℓ' ≠ 0	<u>+</u> ∞	0-	0+	0-	0+	0-	0+	0-	0+	0	<u>+</u> ∞
$\lim_{x \to x_0} \frac{g(x)}{f(x)}$	$\frac{\ell}{\ell}$	0	+∞			+∞	+∞		-∞	+∞	ش غ م	ش غ م

<u>ملاحظة عامة:</u>

 $-\infty$ على اليسار أو عند $\infty+$ على اليمين أو عند x_0 على اليسار أو عند $\infty+$ أو عند

◄ الانصال في نقطة:

$$x_0$$
 متصلة في $f\Leftrightarrow\lim_{x\to x_0}f(x)=f\left(x_0
ight)$

<u>نعریف:</u>

◄ الانصال على اليمين – الانصال على اليسار:

- x_0 متصلة على اليمين في $f\Leftrightarrow \lim_{\substack{x\to x_0\\>}}f(x)=f\left(x_0
 ight)$
- x_0 متصلة على اليسار في $f \Leftrightarrow \lim_{\substack{x \to x_0 < <}} f(x) = f\left(x_0\right)$

 x_0 متصلة على اليمين و على اليسار في $f \Leftrightarrow x_0$ متصلة في متصلة في

→ الانصال على مجال:

]a,b[عنصر من المجال مفتوح]a,b[إذا كانت f متصلة في كل عنصر من المجال]a,b[تكون f دالة متصلة على مجال مغلق [a,b]إذا كانت f متصلة على المجال المفتوح [a,b] و متصلة على اليمين في [a,b] و متصلة على اليمين في [a,b]

→ العمليات على الدوال اطنصلة:

لتكن f و g دالتين متصلتين على مجال I و g عدد حقيقي

- I الدوال g و f imes g الحجال f imes g الحجال •
- I المجال على المجال المناتين $\frac{f}{g}$ و $\frac{1}{g}$ متصلتين على المجال المجال وإذا كانت g
 - \mathbb{R} کل دالة حدودية متصلة على \bullet
 - كل دالة جذرية متصلة على مجموعة تعريفها
 - \mathbb{R}^+ الدالة $x\mapsto \sqrt{x}$ متصلة على •
 - \mathbb{R} الدالتان $x\mapsto \cos x$ و $x\mapsto \sin x$ الدالتان على
- $\mathbb{R}-\left\{rac{\pi}{2}+k\pi/k\in\mathbb{Z}
 ight\}$ الدالة $x\mapsto an x$ متصلة على مجموعة تعريفها

<u>← انصال مركب دالنين:</u>

 $f(I)\subset J$: يثيث f دالة متصلة على مجال I و g متصلة على مجال f دالة متصلة على المجال g متصلة على المجال المجال g

→ صورة مجال بدالة منصلة:

- صورة قطعة بدالة متصلة هي قطعة
- صورة مجال بدالة متصلة هي مجال
 - I دالة متصلة و رتيبة قطعا على مجال f دالة متصلة و رتيبة قطعا على المجال \bullet

f(I) الجدول التالي يوضح طبيعة المجال

f(I)	f(I) المجال					
I تناقصية قطعا على f	I تزايدية قطعا على f	I المجال				
[f(b);f(a)]	[f(a);f(b)]	[a,b]				
$\lim_{x \to b^{-}} f(x); f(a)$	$\left[f(a); \lim_{x \to b^{-}} f(x)\right]$	[a,b[
$\left[f(b); \lim_{x \to a^{+}} f(x)\right]$	$\lim_{x \to a^{+}} f(x); f(b)$]a,b]				
$\lim_{x \to b^{-}} f(x); \lim_{x \to a^{+}} f(x)$	$\lim_{x \to a^{+}} f(x); \lim_{x \to b^{-}} f(x)$]a,b[
$\lim_{x \to +\infty} f(x); f(a)$	$\left[f(a); \lim_{x \to +\infty} f(x) \right]$	$[a,+\infty[$				
$\lim_{x \to +\infty} f(x); \lim_{x \to a^{+}} f(x)$	$\lim_{x \to a^{+}} f(x); \lim_{x \to +\infty} f(x)$	$]a,+\infty[$				
$\left[f(a); \lim_{x \to -\infty} f(x) \right]$	$\left[\lim_{x\to-\infty}f(x);f(a)\right]$	$]-\infty,a]$				
$\lim_{x \to a^{-}} f(x); \lim_{x \to -\infty} f(x)$	$\lim_{x \to -\infty} f(x); \lim_{x \to a^{-}} f(x) \Big[$	$]-\infty,a[$				
$\lim_{x \to +\infty} f(x); \lim_{x \to -\infty} f(x)$	$\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x)$	\mathbb{R}				

→ ميرهنة القيم الوسيطية:

f(b) و f(a) و كانت f متصلة على مجال [a,b] فإنه لكل عدد حقيقي g محصور بين العددين g و أذا كانت g من المجال g من المجال g من المجال g المجيث: g من المجال g من المحال g من المجال g من المحال g من ا

f(a) imes f(b) < 0 و [a,b] و [a,b] متصلة على مجال [a,b] و [a,b] و [a,b] فإن المعادلة f(x)=0 تقبل على الأقل حلا [a,b] و [a,b] ينتمي إلى المجال [a,b] و [a,b] دالة متصلة و رتيبة قطعا على مجال [a,b] و [a,b] قبل حلا وحيدا [a,b] ينتمي إلى المجال [a,b]

→ طريقة النفرع الثنائي:

🏶 ننيجة:

f(a) imes f(b) < 0 : کیث [a,b] التکن a دالة متصلة و رتیبة قطعا علی مجال a,b الحل الوحید للمعادلة a ولیکن a الحل الوحید للمعادلة a

$$f(b) imes f\Bigl(rac{a+b}{2}\Bigr) < 0$$
 إذا كان: $0 < a < b$ و هذا التأطير سعته $rac{b-a}{2} < \alpha < b$ فإن: $a+b < \alpha < b < 2$ يكن إعادة هذه الطريقة على المجال $\left[rac{a+b}{2};b
ight]$ للحصول على تأطير أدق للعدد $lpha$

$$f(a) imes f\Bigl(rac{a+b}{2}\Bigr) < 0$$
 إذا كان: $0 < a < a + b$ و هذا التأطير سعته $a < \alpha < rac{a+b}{2}$: فإن: $a < \alpha < rac{a+b}{2}$ إللحصول يمكن إعادة هذه الطريقة على المجال $a < \alpha < rac{a+b}{2}$ للحصول على تأطير أدق للعدد $a < \alpha < rac{a+b}{2}$

ما حظة: وهكذا دواليك يمكن إعادة هذه الطريقة إلى أن يتم الحصول على تأطير للعدد α سعته مرغوب فيها

الاشنقاق

→ قابلية الاشتقاق في عدد:

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$: نقول إن دالة f قابلة للاشتقاق في العدد x_0 إذا كانت النهاية والماية العام منتهية

 $f'(x_0):$ هذه النهاية تسمى العدد المشتق للدالة f في x_0 ويرمز له بالرمز

→ معادل اطماس طنحني دالة - الدالة النالفية اطماسة طنحني دالة:

 x_0 لتكن f دالة قابلة للاشتقاق في

- $y=f'(x_0)(x-x_0)+f(x_0)$ هي: x_0 معادلة المماس لمنحنى الدالة f في النقطة التي أفصولها x_0
 - $u(x) = f'(x_0)(x x_0) + f(x_0)$: کما یلی \mathbb{R} کما یلی الدالة u

 x_0 تسمى الدالة التآلفية المماسة لمنحنى الدالة f في النقطة التي أفصولها x_0 و هي تقريب للدالة f بجوار

→ قابلية الاشتقاق على اليمين - قابلية الاشتقاق على اليمين :

نقول إن دالة f قابلة للاشتقاق على اليمين في x_0 إذا كانت النهاية $\frac{f(x)-f\left(x_0
ight)}{x-x_0}$ منتهية *

 $f'_d\left(x_0
ight)$: هذه النهاية تسمى العدد المشتق للدالة f على اليمين في x_0 و يرمز له بالرمز

نقول إن دالة f قابلة للاشتقاق على اليسار في x_0 إذا كانت النهاية : $x \to x_0$ منتهية $x \to x_0$ نقول إن دالة f قابلة للاشتقاق على اليسار في x_0 إذا كانت النهاية :

 $f'g\left(x_{0}
ight)$ النهاية تسمى العدد المشتق للدالة f على اليسار في x_{0} و يرمز له بالرمز:

 $f'g(x_0) = f'd(x_0)$ و يا اليسار في x_0 و اليسار في x_0 و اليسار في x_0 و اليسار في x_0 و الكتفاق في x_0 إذا كانت x_0 قابلة للاشتقاق في x_0 إذا كانت x_0 قابلة للاشتقاق في x_0 اليسار في x_0 و الكتفاق في x_0 الكتفاق في الكتفاق في x_0 الكتفاق في ال

← الاشتقاق و الانصال:

 x_0 إذا كانت دالة f قابلة للاشتقاق في عدد x_0 فإن f تكون متصلة في

حدول مشنقات بعض الدوال الاعتبادية:

	f(x)	f'(x)
$(k \in \mathbb{R})$	k	0
	x	1
	1	$\frac{-1}{x^2}$
	$\frac{\overline{x}}{x}$	x^2
$\left(r\in\mathbb{Q}\ ^*-\{1\}\right)$	x^r	rx^{r-1}
	\sqrt{x}	1
		$\overline{2\sqrt{x}}$
	$\sin x$	$\cos x$
	$\cos x$	$-\sin x$
	$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

← العمليات على الدوال المشنقة- مشنقة مركب دالنين - مشنقة دالة الجنر:

$(k \in \mathbb{R}) \qquad (k$	$\operatorname{cu})' = k\left(u\right)'$	(u-v)'	=u'-v'	(u+v)' = u' + v'
u	$u^n)' = nu'.u^{n-1}$		(uı	v)' = u'v + uv'
$\left(\frac{u}{u}\right)$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$			$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$
	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$		(u_{o})	$v)' = [u' \circ v] \times v'$

← الاشنقاق و نغيرات دالة:

I لتكن f دالة قابلة للاشتقاق على مجال f دالة قابلة للاشتقاق على $f \Leftrightarrow \ \forall x \in I \qquad f'(x) \geq 0$

I المجال $f \Leftrightarrow \forall x \in I$ على المجال $f \circ \phi$ تناقصية على المجال

I المجال $f\Leftrightarrow \ \forall x\in I$ المجال f'(x)=0

◄ الاشتقاق و الناويل الهندسي:

		<u> </u>
:التأويل الهندسي للمنحنى $\left(C_f ight)$ يقبل	استنتاج	النهاية
a معامله الموجه هو $Aig(x_0;fig(x_0ig)ig)$ معامله الموجه هو	قابلة للاشتقاق في f	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$ $(a \neq 0)$
$A\!\left(x_0; f\!\left(x_0 ight) ight)$ ماسا أفقيا في النقطة	x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$
$Aig(x_0;fig(x_0ig)ig)$ نصف مماس على اليمين في النقطة م a معامله الموجه هو	قابلة للاشتقاق f	$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = a \\ (a \neq 0)$
$A\left(x_0;f\left(x_0 ight) ight)$ نصف مماس أفقي على اليمين في النقطة	x_0 على يمين	$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = 0$
نصف مماس عمودي على اليمين في النقطة $A\left(x_0;f\left(x_0 ight) ight)$ موجه نحو الأسفل	غير قابلة f غير قابلة	$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$
نصف مماس عمودي على اليمين في النقطة $Aig(x_0;fig(x_0ig)ig)$ موجه نحو الأعلى	x_0 علی یین	$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$
$Aig(x_0;fig(x_0ig)ig)$ نصف مماس على اليسار في النقطة معامله الموجه هو a	قابلة للاشتقاق f	$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = a $ (a \neq 0)
$A\left(x_0;f\left(x_0 ight) ight)$ نصف مماس أفقي على اليسار في النقطة	x_0 على يسار	$\lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = 0$
نصف مماس عمودي على اليسار في النقطة $Aig(x_0;fig(x_0ig)ig)$ موجه نحو الأعلى	غير قابلة f للاشتقاق	$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$
نصف مماس عمودي على اليسار في النقطة $A\left(x_0;f\left(x_0 ight) ight)$ موجه نحو الأسفل	بالاشتفاق x_0 على يسار x_0	$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$

محور النمائل – مركز النمائل نقطة الانعطاف

ذ. محمد الكيال

← محور النماثك:

$$\left(C_f
ight)$$
 يكون المستقيم الذي معادلته $x=a$ محور تماثل للمنحنى

إذا تحقق الشرطان التاليان:

$$\forall x \in D_f$$

$$\forall x \in D_f \qquad (2a - x) \in D_f \quad \bullet$$

$$\forall x \in D_f$$

$$\forall x \in D_f$$
 $f(2a-x) = f(x)$ •

مركز النماثل:

$$\left(C_{f}\right)$$
 مركز تماثل للمنحنى $I\left(a,b\right)$ تكون النقطة

إذا تحقق الشرطان التاليان:

$$\forall x \in D_f$$

$$(2a-x) \in D_f$$
 •

$$\forall x \in D_f$$

$$f(2a - x) + f(x) = 2b$$

← النقعر – النحرب - نقطة الانعطاف:

يكون منحنى دالة مقعرا على مجال إذا كان يوجد تحت جميع مماساته على هذا المجال

$$\forall x \in I$$

$$\forall x \in I$$
 $f''(x) \leq 0$ إذا كان:

$$I$$
 فإن: المنحنى C_f يكون مقعرا على المجال

يكون منحنى دالة محدبا على مجال إذا كان يوجد فوق جميع مماساته على هذا الجال

$$\forall x \in I \quad f''$$

$$\forall x \in I \quad f''(x) \ge 0$$
 إذا كان:

$$I$$
 المنحنى C_f يكون محدبا على المجال

نقطة انعطاف منحنى دالة هي نقطة من المنحني التي عندها يتغير تقعر هذا المنحني

إذا كانت f'' تنعدم في x_0 مع تغيير الإشارة

 x_0 فإن المنحنى $\left(C_f
ight)$ يقبل نقطة انعطاف أفصولها

إذا كانت f' تنعدم في x_0 دون تغيير الإشارة

 x_0 فإن المنحنى $\left(C_f
ight)$ يقبل نقطة انعطاف أفصولها

الدالة العكسية

→ خاصية:

I إذا كانت f دالة متصلة و رتيبة قطعا على مجال f فإن f تقبل دالة عكسية معرفة من المجال f نحو المجال و يرمز لها بالرمز f^{-1} :

 $\begin{cases} f(x) = y \\ x \in I \end{cases} \Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in f(I) \end{cases}$

$$\forall x \in I \qquad \left(f^{-1}of\right)(x) = x$$

$$\forall y \in f(I) \quad (fof^{-1})(y) = y$$

خديد صيغة الدالة العكسية: ←

I لتكن f دالة متصلة و رتيبة قطعا على مجال I ليكن x عنصرا من المجال f(I) و y عنصرا من المجال $f^{-1}(x)=y\Leftrightarrow f(y)=x$ بالاستعانة بالتكافؤ التالي: x نستنتج صيغة $f^{-1}(x)$ لكل عنصر x من $f^{-1}(x)$

→ انصال الدالة العكسية:

I إذا كانت f دالة متصلة و رتيبة قطعا على مجال f(I) فإن الدالة العكسية f^{-1} متصلة على المجال

→ اشنقاق الدالة العكسية:

I لتكن f دالة متصلة و رتيبة قطعا على مجال $y_0=f\left(x_0
ight)$ و $f\left(I
ight)$ و عنصرا من المجال $f\left(x_0
ight)\neq 0$ و ليكن $f\left(x_0
ight)\neq 0$ قابلة للاشتقاق في y_0 فإن الدالة العكسية f^{-1} قابلة للاشتقاق في $\left(f^{-1}\right)'\left(y_0
ight)=\frac{1}{f\left(x_0
ight)}$ و لدينا :

I لتكن f دالة متصلة و رتيبة قطعا على مجال

I إذا كانت f قابلة للاشتقاق على المجال I و دالتها المشتقة f لا تنعدم على المجال إذا كانت f قابلة للاشتقاق على المجال f

$$\forall x \in f(I)$$

$$\left(f^{-1}\right)'(x) = \frac{1}{f'[f^{-1}(x)]}$$
 : او لدينا

→ رئابة الدالة العكسية:

I لتكن f دالة متصلة ورتيبة قطعا على مجال f الدالة العكسية f^{-1} لها نفس منحى تغير الدالة f

→ النمثيل اطبياني للدالة العكسية:

I لتكن f دالة متصلة ورتيبة قطعا على مجال f التمثيلان المبيانيان للدالتين f و f^{-1} في معلم متعامد ممنظم متماثلان بالنسبة للمنصف الأول للمعلم

ملاحظات هامة:

$\left(oldsymbol{C_{f^{-1}}} ight)$ المنحنى
$A'(b,a) \in \left(C_{f^{-1}}\right)$
يقبل مقاربا أفقيا
y=a : معادلته
يقبل مقاربا عموديا
x=b : معادلته
$y = \frac{1}{a}x + \frac{b}{a}$: يقبل مقاربا مائلا معادلته
و يتم تحديد المعادلة انطلاقا من العلاقة:
x = ay + b
يقبل مماسا (أو نصف مماس)
أفقيا
يقبل مماسا (أو نصف مماس)
عموديا

$\left(oldsymbol{C}_{f} ight)$ المنحنى
$A(a,b) \in \left(C_f\right)$
يقبل مقاربا عموديا
x=a : معادلته
يقبل مقاربا أفقيا
y=b:معادلته
يقبل مقاربا مائلا
y = ax + b : معادلته
يقبل مماسا (أو نصف مماس)
عموديا
يقبل مماسا (أو نصف مماس)
أفقيا

القوى الجذرية

←خاصية ونعريف:

$$n$$
 الدالة : $x\mapsto x^n$ المعرفة على \mathbb{R}^+ تقبل دالة عكسية تسمى دالة الجذر من الرتبة $x\mapsto x^n$: ويرمز لها بالرمز : $x\mapsto x^n$

$$x \mapsto \sqrt[n]{x}$$

$$\forall (x;y) \in \mathbb{R}^2_+ \qquad \sqrt[n]{x} = y \Leftrightarrow x = y^n$$

→ حالات خاصة:

- $\sqrt{x} = \sqrt[2]{x}$
- x العدد: $\sqrt[3]{x}$ يسمى الجذر المكعب ل

→خاصات:

$$\forall (x;y) \in \mathbb{R}^{2}_{+} \qquad \forall (m;n) \in \left(\mathbb{N}^{*}\right)^{2}$$

$$\sqrt[n]{x} \times \sqrt[n]{y} = \sqrt[n]{x \times y}$$

$$\left(\sqrt[n]{x}\right)^{m} = \sqrt[n]{x^{m}}$$

$$\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}} \qquad (y \neq 0)$$

$$\sqrt[n]{\sqrt[n]{x}} = \sqrt[n \times m]{x}$$

$$\forall (x;y) \in \mathbb{R}^2_+ \quad \forall n \in \mathbb{N} *$$

$$\sqrt[n]{x^n} = x$$

$$(\sqrt[n]{x})^n = x$$

$$\sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x = y$$

$$\sqrt[n]{x} > \sqrt[n]{y} \Leftrightarrow x > y$$

ماإحظة هامة:

$$\sqrt[3]{x} - \sqrt[3]{y} = \frac{x - y}{\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{y} + \sqrt[3]{y^2}}$$
 $\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$

مجموعة النعريف:

: مجموعة تعريف الدالة f هي	الدالة f معرفة كما يلي:
$D_f = [0; +\infty[$	$f(x) = \sqrt[n]{x}$
$D_f = \left\{ x \in \mathbb{R} / x \in D_u \operatorname{gu}(x) \geq 0 \right\}$	$f(x) = \sqrt[n]{u(x)}$

← النهايات:

$\lim_{x\to x_0}\sqrt[\eta]{u(x)}$	$\lim_{x o x_0} u\left(x ight)$
$\sqrt[n]{\boldsymbol{\ell}}$	$\ell \geq 0$
$+\infty$	$+\infty$

 $-\infty$ على اليسار أو عند ∞ على اليمين أو عند x_0 على اليسار أو عند ∞ أو عند

← الانصال:

$$\mathbb{R}^+$$
 الدالة $x\mapsto \sqrt[n]{x}$ متصلة على

I لتكن u دالة معرفة على مجال

I إذا كانت u دالة موجبة و متصلة على مجال I فإن الدالة u دالة موجبة و متصلة على المجال

← الاشتقاق:

$$I$$
لتكن u دالة معرفة على مجال

I إذا كانت u دالة موجبة قطعا و قابلة للاشتقاق على مجال u فإن الدالة u على المجال u قابلة للاشتقاق على المجال u

$$\forall x \in I$$

$$\left(\sqrt[n]{u(x)} \right)' = \frac{u'(x)}{n \sqrt[n]{[u(x)]^{n-1}}}$$
 ولدينا:

$$]0;+\infty$$
الدالة $x\mapsto \sqrt[n]{x}$ قابلة للاشتقاق على المجال ولدينا:

$$\forall x \in]0; +\infty[\qquad (\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}$$

$$(a \in \mathbb{R})$$
 $x \in \mathbb{R}$ $x^n = a$ خله اطعادله:

عدد زوجي n	عدد فردي n	
$S = \{-\sqrt[n]{a}; \sqrt[n]{a}\}$	$S = \{\sqrt[n]{a}\}$	a>0
$S = \{0\}$	$S = \{0\}$	a=0
$S = \varnothing$	$S = \left\{ -\sqrt[n]{ a } \right\}$	a < 0

← القوى الجنرية لعدد حقيقي موجب قطعا:

$$q\in\mathbb{N}^*$$
ليكن $p\in\mathbb{Z}^*$ عددا جذريا غير منعدم حيث $p\in\mathbb{Z}^*$ عددا جذريا $x^r=x^{rac{p}{q}}=\sqrt[q]{x^p}$

ملاحظات:

$$\forall x \in]0; +\infty[\qquad \sqrt[n]{x} = x^{\frac{1}{n}} \quad \bullet$$

$$\left(r\in\mathbb{Q}^*
ight)$$
 $f(x)=\left[u\left(x
ight)
ight]^r$ جموعة تعریف دالة عددیة f لمتغیر حقیقي x معرفة کما یلي: $D_f=\left\{x\in\mathbb{R}\,/\,x\in D_u\,\, g(x)>0
ight\}$ هي: $\{x\in\mathbb{R}\,/\,x\in D_u\,\, g(x)>0\}$

$$\left(\sqrt[n]{u(x)}\right)' = \left((u(x))\frac{1}{n}\right)' = \frac{1}{n} \times u'(x) \times [u(x)]\frac{1}{n} - 1 \quad \bullet$$

$$\mathbb{Q}^*$$
 لکل عنصرین x و y من \mathbb{R}^* ولکل عنصرین $x^r \times x^{r'} = x^{r+r'}$ • $(x^r)^{r'} = x^{r \times r'}$ • $(x \times y)^r = x^r \times y^r$ • $(\frac{x}{y})^r = \frac{x^r}{y^r}$ • $(\frac{x^r}{x^{r'}}) = x^{r-r'}$ • $\frac{1}{x^{r'}} = x^{-r'}$ •

المنناليات العدية

◄ اطنالية الحسابية – اطنالية الهندسية:

لمتتالية هندسية	لمتتالية حسابية	
$u_{n+1} = q \times u_n$	$u_{n+1} = u_n + r$	تعریف
هو الأساس q	هو الأساس r	
$u_n = u_p \times q^{n-p}$	$u_n = u_p + (n-p)r$	الحد العام
$(p \le n)$	$(p \le n)$, 507.55 ·
$u_p + \ldots + u_n = u_p \times \left(\frac{q^{n-p+1} - 1}{q - 1}\right)$	$u_p + \ldots + u_n = u_p \times \left(\frac{q^{n-p+1}-1}{q-1}\right)$	مجموع حدود متتابعة
$(q \neq 1)$		·
		c و b و a
$b^2 = a \times c$	2b = a + c	ثلاثة حدود
		متتابعة

◄ اطنالية اطلورة – اطنالية اطصغورة:

لتكن
$$(u_n)_{n\in I}$$
 متتالية عددية

$$M$$
 مكبورة بالعدد $\left(u_{n}\right)_{n\in I}\Leftrightarrow \forall n\in I$ مكبورة بالعدد $u_{n}\leq M$

$$u_n \leq M$$

$$m$$
 مصغورة بالعدد $\left(u_{n}
ight)_{n\in I}\Leftrightarrow orall n\in I$ مصغورة بالعدد $u_{n}\geq m$

$$u_n \ge m$$

مکبورة و مصغورة
$$(u_n)_{n\in I}\Leftrightarrow u_n$$
محدودة مصغورة ع

<u>← رنابة مثنالية عددية:</u>

لتكن
$$(u_n)_{n\in I}$$
 متتالية عددية

تناقصية
$$\left(u_{n}\right)_{n\in I}\Leftrightarrow \forall n\in I$$

$$u_{n+1} \le u_n$$
 •

تزايدية
$$(u_n)_{n\in I} \Leftrightarrow \forall n\in I$$
 تزايدية $u_{n+1}\geq u_n$

$$u_{n+1} \ge u_n$$

ثابتة
$$(u_n)_{n\in I} \Leftrightarrow orall n\in I$$
 ثابتة $u_{n+1}=u_n$

$$u_{n+1} = u_n$$

→ نهایة مثالیة:

 $\underline{:} \alpha \in \mathbb{Q}^*$ <u>نهایهٔ اطنئالیهٔ</u> (n^{α}) <u>حیث:</u>

lpha < 0	$\alpha > 0$
$\lim_{n \to +\infty} n^{\alpha} = 0$	$\lim_{n \to +\infty} n^{\alpha} = +\infty$

 $\underline{\cdot} q \in \mathbb{R}$ نهاية اطنئالية الهنسية (q^n) حيث:

$q \leq -1$	-1 < q < 1	q=1	q>1
$\left(q^{n} ight)$ المتتالية ليس لها نهاية	$\lim_{n \to +\infty} q^n = 0$	$\lim_{n \to +\infty} q^n = 1$	$\lim_{n \to +\infty} q^n = +\infty$

← مصاديق النقارب:

- كل متتالية تزايدية و مكبورة هي متتالية متقاربة
- كل متتالية تناقصية و مصغورة هي متتالية متقاربة

$$\left| \begin{aligned} |u_n - \boldsymbol{\ell}| &\leq v_n \\ \lim_{n \to +\infty} v_n &= 0 \end{aligned} \right\} \Rightarrow \lim_{n \to \infty} u_n = \boldsymbol{\ell}$$

$$\left. \begin{array}{l} v_n \leq u_n \leq w_n \\ \lim\limits_{n \to +\infty} v_n = \boldsymbol{\ell} \\ \lim\limits_{n \to +\infty} v_n = \boldsymbol{\ell} \end{array} \right\} \Rightarrow \lim\limits_{n \to \infty} u_n = \boldsymbol{\ell}$$

$$\lim_{n \to +\infty} v_n = +\infty \bigg\} \Rightarrow \lim_{n \to +\infty} u_n = +\infty$$

$$\begin{vmatrix} u_n \leq v_n \\ \lim_{n \to +\infty} v_n = -\infty \end{vmatrix} \Rightarrow \lim_{n \to +\infty} u_n = -\infty$$

 $u_{n+1} = f(u_n)$ مثنالية من النوع \leftarrow

نعتبر المتتالية
$$(u_n)$$
 المعرفة كما يلي:
$$\begin{cases} u_0=a \\ u_{n+1}=f(u_n) \end{cases}$$
حيث f دالة متصلة على مجال I بحيث f دالة متصلة على مجال I بحيث f

I حيث f دالة متصلة على مجال I بحيث f جيث f و f عنصرا من f إذا كانت f(x)=x متقاربة فإن نهايتها f حل للمعادلة f

◄ الدوال الأصلية لدالة منصلة على مجال:

فعریف:

I لتكن f دالة عددية معرفة على مجال f نقول أن F هي دالة أصلية للدالة f على المجال f إذا تحقق الشرطان التاليان:

I قابلة للاشتقاق على المجال F

 $\forall x \in I$ F'(x) = f(x)

خاصیات:

كل دالة متصلة على مجال تقبل دالة أصلية على هذا الجال

I لتكن f دالة عددية معرفة على مجال I فإن: إذا كانت F دالة أصلية للدالة f على المجال I فإن: جميع الدوال الأصلية للدالة f معرفة على I بما يلي: $x\mapsto F(x)+k$ $(k\in\mathbb{R})$

I لتكن f دالة عددية تقبل دالة أصلية على مجال \mathbb{R} وليكن x_0 عنصرا من x_0 عنصرا من x_0 وليكن أصلية وحيدة x_0 للدالة x_0 على المجال x_0 تحقق الشرط البدئي: x_0

الدوال الأصلية: طجموع دالذين- لجدا ، دالة و عدد حقيقي:

<u>خاصية:</u>

لتكن f و g دالتين عدديتين معرفتين على مجال I و g عددا حقيقيا إذا كانت F و G دالتين أصليتين للدالتين f و g على المجال G على التوالي فإن :

- I دالة أصلية للدالة f+g على المجال F+G
 - I دالة أصلية للدالة kf على المجال kF •

→ جدول الدوال الأصلية ليعض الدوال الاعتبادية:

	f(x)	F(x)	
	$a \in \mathbb{R}$	ax + k	
	x	$\frac{1}{2}x^2 + k$	
	$\frac{1}{x^2}$	$\frac{-1}{x} + k$	
	$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$	
$(r \in \mathbb{Q} * - \{-1\})$	x^{r}	$\frac{x^{r+1}}{r+1} + k$	
	$\sin x$	$-\cos x + k$	
	$\cos x$	$\sin x + k$	
	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\tan x + k$	
	$\frac{1}{x}$	$\ln x + k$	
	e^x	$e^x + k$	

→ استعمال صبى الاشتقاق لنحديد بعض الدوال الأصلية:

	f(x)	F(x)	
	$\frac{u'(x)}{\sqrt{u(x)}}$	$2\sqrt{u\left(x\right)}+k$	
	$\frac{-v'(x)}{[v(x)]^2}$	$\frac{1}{v(x)} + k$	
$(r \in \mathbb{Q}^* - \{-1\})$	$u'(x) \times [u(x)]^r$	$\frac{\left[u\left(x\right)\right]^{r+1}}{r+1}+k$	
	$\frac{u'(x)}{u(x)}$	$\ln u(x) + k$	
	$u'(x) \times e^{u(x)}$	$e^{u(x)} + k$	
$(a \neq 0)$	$\cos(ax+b)$	$\frac{1}{a}\sin\left(ax+b\right)+k$	
$(a \neq 0)$	$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+k$	$\left (k \in \mathbb{R}) \right $

الحساب النكاملي

⇒ نكامل دالة منصلة على قطعة:

<u>نعریف</u>

I لتكن f دالة متصلة على مجال I و F دالة أصلية للدالة f على المجال I و g عنصرين من المجال g

: تكامل الدالة f من a إلى b هو العدد الحقيقى

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

←خاصیات:

الخطانية:

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \quad (k \in \mathbb{R}) \quad \int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

علاقة شاك:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

← النكامل و النرنيب:

$$\forall x \in [a,b]$$
 $f(x) \leq g(x)$ إذا كان: $\forall x \in [a,b]$ $f(x) \geq 0$ إذا كان: $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$ فإن: $\int_a^b f(x) \, dx \geq 0$

→ القيمة اطنوسطة:

$$[a,b]$$
 لتكن f دالة متصلة على مجال

$$\frac{1}{b-a}\int_a^b f(x)\,dx$$
 : القيمة المتوسطة للدالة على المجال هي العدد الحقيقي

→ اطكاملة بالأجزاء:

$$I$$
لتكن u و v دالتين قابلتين للاشتقاق على مجال I بحيث الدالتين u' متصلتين على المجال u

$$I$$
 و a عنصرين من المجال a

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx$$

مساحة حيز

$$(o, ec{i}, ec{j})$$
 ليكن المستوى منسوبا إلى معلم متعامد

$$\vec{j}$$
 و المتجهتين \vec{i} و المتجهتين المتحل

$$1.u.A = \left\| \overrightarrow{i} \right\| \times \left\| \overrightarrow{j} \right\|$$

[a,b] لتكن f دالة متصلة على مجال C_f ومحور الأفاصيل مساحة الحيز المحصور بين المنحنى C_f ومحور الأفاصيل والمستقيمين اللذين معادلتاهما : $x=b\ g = a$ $\left(\int_a^b |f(x)|\,dx\right).u.A$ هي :

حالات خاصة:

مساحة الحيز البنفسجي في الرسم هي:	ملاحظات	رسم توضيحي
$\left(\int_{a}^{b} f(x) dx\right) . u.A$	موجبة f على المجال $\left[a,b ight]$	
$\left(\int_{a}^{b} -f(x) dx\right) . u.A$	سالبة f على المجال $\left[a,b ight]$	$\begin{array}{c c} & a & b \\ \hline & & \\ \hline \\ \hline$
$\left(\int_{a}^{c} f(x) dx + \int_{c}^{b} -f(x) dx\right) . u.A$	موجبة f موجبة على المجال $[a,c]$ سالبة f على المجال $[c,b]$	a c b (C_f)
$\left(\int_{a}^{b} \left(f(x) - g(x)\right) dx\right) . u.A$	$\left(C_g ight)$ يوجد فوق $\left(C_f ight)$ على المجال $\left[a,b ight]$	$\begin{array}{c c} C_g \\ \hline \\ a \\ \end{array}$
$\left(\int_{a}^{c} \left(f(x) - g(x)\right) dx + \int_{c}^{b} \left(g(x) - f(x)\right) dx\right) . u.A$	$\left(C_g ight)$ فوق $\left(C_f ight)$ • على المجال $\left(C_f ight)$ فوق $\left(C_g ight)$ • على المجال $\left[c,b ight]$	$\begin{pmatrix} C_f \\ a \ c \ b \end{pmatrix}$

<u>→ حساب حجم:</u>

حجم المجسم المولد بدوران المنحنى $\left(C_f\right)$ حول محور الأفاصيل دورة كاملة في مجال [a;b]

$$V = \left[\int_{a}^{b} \pi (f(x))^{2} dx \right] u.v$$
 : هو

وحدة الحجوم: uv

الدوال اللوغارينمية

الدالة اللوغارينمية البيرية

فعریف:

 $]0;+\infty[$ دالة اللوغاريتم النبيري هي الدالة الأصلية للدالة $x\mapsto \frac{1}{x}$ على المجال المجال

والتي تنعدم في 1 و يرمز لها بالرمز: ln

اسنناجات وخاصیات:

	$\forall x \in]0; +\infty[\qquad \forall y \in]0; +\infty[$	ln 1 = 0	$\ln e = 1$
	$\ln\left(xy\right) = \ln x + \ln y$	$\forall x \in]0; +\infty[$	$\forall y \in]0; +\infty[$
$(r \in \mathbb{Q})$	$\ln\left(x^r\right) = r \ln x$	$ \ln x = \ln y $	=
		$\ln x > \ln y$	$\Leftrightarrow x > y$
	$\ln\left(\frac{1}{x}\right) = -\ln x$	$\forall x \in]0; +\infty[$	$\forall y \in \mathbb{R}$
	$ \ln\left(\frac{x}{y}\right) = \ln x - \ln y $	$ \ln x = y \Leftrightarrow x $	$=e^y$

 $\forall x \in \mathbb{R}^* \quad \ln \left(x^n \right) = n \ln |x|$ إذا كان n عددا زوجيا فإن:

• مجموعة النعريف:

: مجموعة تعريف الدالة f هي	الدالة f معرفة كما يلي:
$D_f = \left\{ x \in \mathbb{R} / x \in D_u \mathbf{y} u(x) > 0 \right\}$	$f(x) = \ln[u(x)]$
$D_f = \left\{ x \in \mathbb{R} / x \in D_u \mathbf{u}(x) \neq 0 \right\}$	$f(x) = \ln[(u(x))^2]$
$D_f = \{x \in \mathbb{R} \mid x \in D_u \mathbf{J} u(x) \neq 0\}$	$f(x) = \ln u(x) $

نهایات اساسیة:

	$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$	$\lim_{x \to +\infty} (\ln x) = +\infty$
$(n \in \mathbb{N}^*)$	$\lim_{\substack{x \to 0 \\ >}} \left(x^n \ln x \right) = 0$	$\lim_{\substack{x \to 0 \\ >}} (\ln x) = -\infty$
	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$	$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$

الانصاك:

$$]0;+\infty[$$
 الدالة $x\mapsto \ln x$ الدالة

I لتكن u دالة معرفة على مجال

I المجال على المجال المالة $u\left(u\left(x
ight)
ight)$ متصلة على المجال المجال

الاشنقاق:

 $]0;+\infty[$ الدالة $x\mapsto \ln x$ قابلة للاشتقاق على الدالة ولدينا:

$$\forall x \in]0; +\infty[(\ln x)' = \frac{1}{x}$$

I لتكن u دالة معرفة على مجال I إذا كانت u دالة موجبة قطعا و قابلة للاشتقاق على مجال I فإن: الدالة $\ln\left[u\left(x\right)\right] + \ln\left[u\left(x\right)\right]$ قابلة للاشتقاق على المجال $\exists x \mapsto \ln\left[u\left(x\right)\right]$ ولدينا: $\exists x \mapsto \ln\left[u\left(x\right)\right]$

: ln <u>إشارة</u>

x	0	1	$+\infty$
$\ln x$	-	þ	+

النمثيل اطبياني:

$a\in\mathbb{R}_{+}^{*}-\{1\}$ الدالة اللوغارينم للأساس a سين الدالة اللوغارين الأساس الدالة اللوغارين الأساس

- الدالة اللوغاريتم للأساس a هي الدالة التي يرمز لها بالرمز: a
 - $\forall x \in]0; +\infty[$ $\log_a(x) = \frac{\ln x}{\ln a}$:حيث

اسنناحات وخاصیات:

$$\forall x \in]0; +\infty[\quad \forall y \in]0; +\infty[\quad \qquad \ell o g_a 1 = 0$$

$$\ell o g_a (xy) = \ell o g_a x + \ell o g_a y$$

$$(r \in \mathbb{Q}) \quad \ell o g_a (x^r) = r \ell o g_a x$$

$$\ell o g_a \left(\frac{1}{x}\right) = -\ell o g_a x$$

$$\ell o g_a \left(\frac{x}{y}\right) = \ell o g_a x - \ell o g_a y$$

$$\ell o g_a \left(\frac{x}{y}\right) = \ell o g_a x - \ell o g_a y$$

$$\ell o g_a \left(\frac{x}{y}\right) = \ell o g_a x - \ell o g_a y$$

$$\ell o g_a \left(\frac{x}{y}\right) = \ell o g_a x - \ell o g_a y$$

😻 نهایات و منفاونات:

0 < a < 1	a > 1
$\boldsymbol{\ell} o g_a x < \boldsymbol{\ell} o g_a y \Leftrightarrow x < y$	
$\lim_{x\to +\infty} \boldsymbol{\ell} o g_a x = -\infty$	$\lim_{x\to +\infty} \boldsymbol{\ell} o g_a x = +\infty$
$\lim_{x \to 0^+} \ell o g_a x = +\infty$	$\lim_{x \to 0^+} \ell o g_a x = -\infty$

المشنقة:

$$\forall x \in]0, +\infty[\qquad (\ell \circ g_a x)' = \frac{1}{x \ln a}$$

الدوال الأسية

الدالة اللوغارينمية النيرية

فعریف:

الدالة الأسية النبيرية هي الدالة العكسية للدالة اللوغاريتمية النبيرية

و يرمز لها بالرمز: exp

 $\exp(x) = e^x$ نضع لکل x من

♦ اسنناجات و خاصیات:

$\forall x \in \mathbb{R} \qquad \forall y \in \mathbb{R}$ $e^x \times e^y = e^{x+y}$	$\forall x \in \mathbb{R} e^x > 0$ $\forall x \in \mathbb{R} \ln\left(e^x\right) = x$
$e^{x} e^{x} = e^{-x}$ $(r \in \mathbb{Q}) (e^{x})^{r} = e^{rx}$	$\forall x \in]0, +\infty[\qquad e^{\ln x} = x$
$\frac{1}{e^x} = e^{-x}$	$\forall x \in \mathbb{R} \qquad \forall y \in]0; +\infty[$ $e^x = y \Leftrightarrow x = \ln y$
$\frac{e^x}{e^y} = e^{x-y}$	$\forall (x;y) \in \mathbb{R}^2 \qquad e^x = e^y \Leftrightarrow x = y$ $e^x > e^y \Leftrightarrow x > y$

مجموعة النعريف:

: مجموعة تعريف الدالة f هي	الدالة f معرفة كما يلي:
$D_f = \mathbb{R}$	$f(x) = e^x$
$D_f = \left\{ x \in \mathbb{R} / x \in D_u \right\}$	$f(x) = e^{u(x)}$

غایات اساسیة:

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to -\infty} \left(\frac{e^x}{x^n} \right) = +\infty$$

$$\lim_{x \to -\infty} \left(x^n e^x \right) = 0$$

$$\lim_{x \to -\infty} \frac{e^x - 1}{x} = 1$$

الانصاك:

$$\mathbb{R}$$
 الدالة $x\mapsto e^x$ متصلة على

 \overline{I} لتكن u دالة معرفة على مجال

I المجال على المجال الفإن الدالة $x\mapsto e^{u(x)}$ المجال المجال

الاشنقاق:

$$\forall x \in \mathbb{R} \quad \left(e^x\right)' = e^x$$
 الدالة $x \mapsto e^x$ قابلة للاشتقاق على \mathbb{R} ولدينا

Iلتكن u دالة معرفة على مجال

I إذا كانت u قابلة للاشتقاق على الجال I فإن: الدالة $u\mapsto e^{u(x)}$ قابلة للاشتقاق على الجال

$$\forall x \in I$$
 $\left(e^{u(x)}\right)' = u'(x) \times e^{u(x)}$: ولدينا

النمثيل المبياني للدالة In:

$a \in \mathbb{R}_+^* - \{1\}$ حيث: a الدالة الأسية للأساس عند الدالة الأسية الأساس

- \exp_a : الدالة العكسية للدالة \log_a تسمى الدالة الأسية للأساس a و يرمز لها بالرمز \bullet
 - $\exp_a(x) = a^x$ نضع لکل x من

اسنناجات وخاصیات:

	$\forall (x;y) \in \mathbb{R}^2$	$\forall x \in \mathbb{R} \qquad a^x = e^{x \ln a}$
	$a^x \times a^y = a^{x+y}$	$log_a(a^x) = x$
$(r \in \mathbb{Q})$	$\left(a^{x}\right)^{r} = a^{rx}$	$\forall x \in]0; +\infty[\qquad a^{\ell o g_a(x)} = a$
	$\frac{1}{a^x} = a^{-x}$	$\forall (x;y) \in \mathbb{R}^2 \qquad a^x = a^y \Leftrightarrow x = y$
		$\forall x \in \mathbb{R} \qquad \forall y \in]0; +\infty[$
	$\frac{a^x}{a^y} = a^{x-y}$	$a^{x} = y \Leftrightarrow x = \ell o g_{a}(y)$

انهایات و منفاونات:

0 < a < 1	a > 1	
$a^x < a^y \Leftrightarrow x < y$	$a^x > a^y \Leftrightarrow x > y$	
$\lim_{x \to +\infty} a^x = 0$	$\lim_{x \to +\infty} a^x = +\infty$	
$\lim_{x \to -\infty} a^x = +\infty$	$\lim_{x \to -\infty} a^x = 0$	
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$		

$$\left(a^x\right)' = (\ln a) \times a^x$$

المشنقة :

الأعداد العقدية

 $\mathbb{C}=\left\{z=a+ib\,/(a;b)\in\mathbb{R}^2\;
ight.$ و $i^2=-1\}$ و عداد العقدية هي الأعداد العقدية عن الأعداد العداد العقدية عن الأعداد العداد العدا

→ الكنابة الجبرية لعدد عقدي:

 $(a;b)\in\mathbb{R}^2$: عددا عقدیا حیث z=a+ib لیکن

- z تسمى الكتابة الجبرية للعدد العقدى a+ib
- $\operatorname{Re}(z)$: العدد a يسمى الجزء الحقيقى للعدد z و يرمز له بالرمز •
- $\operatorname{Im}(z)$: العدد b يسمى الجزء التخيلي للعدد z و يرمز له بالرمز •

حالنان خاصنان: • إذا كان:
$$\operatorname{Im}(z) = 0$$
 فإن z هو عدد حقيقى

إذا كان: $\operatorname{Re}(z)=0$ و $\operatorname{Im}(z)\neq 0$ و أذا كان: $\operatorname{Re}(z)=0$

- نساوي عدين عقدين:

لیکن
$$z$$
و z' عددین عقدیین $z=z'\Leftrightarrow \mathrm{Re}(z)=\mathrm{Re}ig(z'ig)$ و

← النمثيل المبياني لعدد عقدي:

 $(o,\overrightarrow{e_1},\overrightarrow{e_2})$ اليكن المستوى العقدي منسوبا إلى معلم متعامد منظم

bلیکن z=a+i عددا عقدیا حیث: z=a+i

 $M\left(a,b
ight)$ نربط العدد العقدي z بالنقطة

- $M\left(z
 ight)$: العدد z يسمى لحق النقطة M و النقطة M تسمى صورة العدد z و نكتب •
- $z=Aff\left(\overrightarrow{OM}
 ight)$ او $\overrightarrow{OM}\left(z
 ight)$ العدد z يسمى كذلك لحق المتجهة \overrightarrow{OM} و نكتب

$\begin{array}{c|c} b & M(z) \\ \hline \overrightarrow{e_2} & a \\ \hline -b & M'(\overline{z}) \end{array}$

مرافق عدد عقدي:

 $(a;b)\in\mathbb{R}^2$: ليكن z=a+ib عددا عقديا حيث

 $\overline{z}=a-ib$:مرافق العدد z هو العدد العقدي

و $M'(\overline{z})$ متماثلان بالنسبة للمحور الحقيقي M(z)

- عدد حقیقي $z \Leftrightarrow \overline{z} = z$
- عدد تخیلی صرف $z \Leftrightarrow \overline{z} = -z$
 - $z + \overline{z} = 2\operatorname{Re}(z)$
 - $z \overline{z} = 2i\operatorname{Im}(z)$
- $z\overline{z} = \left[\operatorname{Re}(z)\right]^2 + \left[\operatorname{Im}(z)\right]^2$

- $\overline{z+z'} = \overline{z} + \overline{z'} \quad \bullet$
 - $\overline{z \times z'} = \overline{z} \times \overline{z'}$
- $(n \in \mathbb{N}^*) \qquad \overline{z^n} = \overline{z}^n$
 - $\overline{\left(\frac{1}{z'}\right)} = \frac{1}{\overline{z'}} \quad \bullet$
- $(z' \neq 0)$ $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$ •

🖚 معيار عدد عقدي:

 $(a;b)\in\mathbb{R}^2$: ليكن z=a+ib عددا عقديا حيث

 $|z|=\sqrt{z\overline{z}}=\sqrt{a^2+b^2}$: معيار العدد العقدي z هو العدد الحقيقي الموجب

$$\begin{aligned} |z \times z'| &= |z| \times |z'| & |z^n| &= |z|^n & (n \in \mathbb{N}^*) \\ |\overline{z}| &= |z| & |-z| &= |z| \\ & \left| \frac{1}{z'} \right| &= \frac{1}{|z'|} & \left| \frac{z}{|z'|} \right| &= \frac{|z|}{|z'|} & (z' \neq 0) \end{aligned}$$

→ الشكل اطثلثي و الكتابة الأسية لعدد عقدي غير متعدم:

M ليكن z عددا عقديا غير منعدم صورته $\left(\widehat{\overrightarrow{e_1},OM}
ight)$: عمدة العدد العقدي z هو heta أحد قياسات الزاوية الموجهة rg z : و نرمز له بالرمز

$$\arg z = \theta[2\pi]$$

حالات خاصة:

الكتابة المثلثية لعدد حقيقي a غير منعدم

a < 0	a>0
$a = [-a, \pi]$	a = [a, 0]
$ai = \left[-a, -\frac{\pi}{2} \right]$	$ai = \left[a, +\frac{\pi}{2}\right]$

ليكن عددا عقديا غير منعدم

$$\arg z = \theta[2\pi]$$
 نضع

- الشكل المثلثي للعدد العقدي z هو:
- $z = r(\cos\theta + i\sin\theta) = [r, \theta]$
- $z=re^{i heta}$ الكتابة الأسية للعدد العقدي z هي: •

$$re^{i\theta} \times r'e^{i\theta'} = rr'e^{i(\theta+\theta')} \bullet \begin{bmatrix} [r,\theta] \times [r',\theta'] = [rr';\theta+\theta'] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,-\theta] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,-\theta] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,-\theta] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,-\theta] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,-\theta] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,\theta] = [r,\pi+\theta] \\ \hline [r,\theta] = [r,\pi+\theta] & \text{arg } (zz') \equiv (arg z + arg z')[2\pi] \\ \hline [r,\theta] = [r,\theta] = [r,\pi+\theta] \\ \hline [r,\theta] = [r,\theta] = [r,\pi+\theta] \\ \hline [r,\theta] = [r,\theta] = [r,\pi+\theta] \\ \hline [r,\theta] = [r,\theta] = [r,\theta] \\ \hline [r,\theta$$

- $[r, \theta] = [r, -\theta] \bullet$ $[r, \theta] = [r, -\theta] \bullet$

عدد حقیقی $z \Leftrightarrow rg z = k\pi$ •

- $re^{i\theta} \times r'e^{i\theta'} = rr'e^{i(\theta+\theta')} \bullet [r,\theta] \times [r',\theta'] = [rr';\theta+\theta'] \bullet \arg(zz') \equiv (\arg z + \arg z')[2\pi] \bullet$
 - $\arg \overline{z} \equiv -\arg z[2\pi]$
 - $-\arg z \equiv (\pi + \arg z)[2\pi]$
 - $\arg z^n \equiv n \arg z \ [2\pi]$

 - $\forall k \in \mathbb{Z} \quad [r, \theta + 2k\pi] = [r, \theta]$

<u>← صيغنا أولم:</u>

 $(k \in \mathbb{Z})$ عدد تخیلي صرف $z \Leftrightarrow \arg z = \frac{\pi}{2} + k\pi$ •

$$\forall \theta \in \mathbb{R}$$
 $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$ $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$ و

→ صبغة موافر:

$$\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) \\
\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) \quad \forall n \in \mathbb{N} \\
(\cos \theta + i \sin n\theta)^n = \cos(n\theta) + i \sin(n\theta)$$

$\underline{\cdot}(a\in\mathbb{R})$ کین $z\in\mathbb{C}$ $z^2=a$ کین $\underline{\cdot}$

مجموعة حلول المعادلة:	المعادلة:		
$S = \{-\sqrt{a}; \sqrt{a}\}$	a > 0		
$S = \{0\}$	a = 0	$z \in \mathbb{C}$	$z^2 = a$
$S = \{-i\sqrt{-a}; i\sqrt{-a}\}$	a < 0		

$(a \neq 0)$ عداد حقیقیه c و و و a و ماعداد $z \in \mathbb{C}$ $az^2 + bz + c = 0$ عداد حقیقیه ($a \neq 0$

مجموعة حلول المعادلة:	المعادلة:		
$S = \left\{ \frac{-b - \sqrt{\Delta}}{2a}; \frac{-b + \sqrt{\Delta}}{2a} \right\}$	$\Delta > 0$	2 . 1	
$S = \left\{ \frac{-b}{2a} \right\}$	$\Delta = 0$	$z \in \mathbb{C} az^2 + bz + c = 0$ $(\Delta = b^2 - 4ac)$	
$S = \left\{ \frac{-b - i\sqrt{-\Delta}}{2a}; \frac{-b + i\sqrt{-\Delta}}{2a} \right\}$	$\Delta < 0$		

→ مفاهيم هندسية و مصطلحات الأعداد العقدية:

العلاقة العقدية	المفهوم الهندسي
$AB = z_B - z_A $	AB المسافة
$z_I = \frac{z_A + z_B}{2}$	$\left[A;B ight]$ منتصف القطعة I
$\left(\overline{\overrightarrow{AB}}; \overline{\overrightarrow{AC}}\right) \equiv \arg\left(\frac{z_c - z_A}{z_B - z_A}\right) [2\pi]$	$\left(\widehat{\overrightarrow{AB}}; \widehat{\overrightarrow{AC}} ight)$ قياس الزاوية
$rac{z_C-z_A}{z_B-z_A}\in\mathbb{R}$	و B و C نقط مستقيمية A
$\frac{z_D-z_A}{z_B-z_A} imes rac{z_D-z_C}{z_B-z_C} \in \mathbb{R}$ أو $\frac{z_D-z_A}{z_B-z_A} imes rac{z_B-z_C}{z_D-z_C} \in \mathbb{R}$	و B و C و B و A

المفهوم الهندسي	العلاقة العقدية
AM = r •	$ z - z_A = r$
r تنتمي إلى الدائرة التي مركزها A و شعاعها M	(r > 0)
AM=BM• $[AB]$ تنتمي إلى واسط M	$ z - z_A = z - z_B $
A مثلث قائم الزاوية في ABC	$\frac{z_C - z_A}{z_B - z_A} = \left[r; \pm \frac{\pi}{2}\right]$
A مثلث متساوي الساقين في ABC	$\frac{z_C - z_A}{z_B - z_A} = [1; \theta]$
A مثلث متساوي الساقين و قائم الزاوية في ABC	$\frac{z_C - z_A}{z_B - z_A} = \left[1; \pm \frac{\pi}{2}\right]$
مثلث متساوي الأضلاع ABC	$\frac{z_C - z_A}{z_B - z_A} = \left[1; \pm \frac{\pi}{3}\right]$

مثيرات عقرية لبعض النحويرات الاعتيادية:

ىقدي ھو:	عثيله الع	التحويل
$ec{u}$ حيث b حيث b	z' = z + b	$ec{u}$ الإزاحة t ذات المتجهة
Ω حيث ω لحق النقطة	$z' - \omega = k(z - \omega)$	k الذي مركزه Ω و نسبته h
Ω حيث ω لحق النقطة	$z' - \omega = e^{i\theta} (z - \omega)$	$ heta$ الذي مركزه Ω و زاويته r

الحل العام للمعادلة التفاضلية:	المعادلة التفاضلية:
$y(x) = \alpha e^{ax} - \frac{b}{a}$ $(\alpha \in \mathbb{R})$	$y' = ay + b$ $(a \neq 0)$

الحل العام للمعادلة التفاضلية:	مادلة المميزة تقبل :	٦١	معادلتها المميزة:	المعادلة التفاضلية:
$y(x) = \alpha e^{r_1 x} + \beta e^{r_2 x}$	حلين حقيقيين	$\Delta > 0$		
$(lpha,eta)\in\mathbb{R}^2$:حيث	\emph{r}_{2} و \emph{r}_{1}			
$y(x) = (\alpha x + \beta)e^{rx}$ $(\alpha, \beta) \in \mathbb{R}^2$ حيث:	r حلا حقیقیا وحیدا	$\Delta = 0$	$r^2 + ar + b = 0$	y"+ay'+by=0
$y(x) = (\alpha \cos qx + \beta \sin qx)e^{px}$ $(\alpha, \beta) \in \mathbb{R}^2$ حيث:	حلين عقديين مترافقين: $r_1=p-iq$ و $r_2=p+iq$	$\Delta < 0$	$(\Delta = a^2 - 4b)$	g + ag + bg = 0

ذ. محمد الكيال

الهندسة الفضائية

 $\left(o, \vec{i}, \vec{j}, \vec{k}\right)$ في سياق هذا الملخص ليكن الفضاء منسوبا إلى معلم متعامد مختطم مباشر

← الصبغة النحليلية ل: الجداء السلمي- منظم منجهة- الجداء المنجهي

$$\vartheta_3$$
 نم متجهتین من $\vec{v}\left(a^{\, \prime},b^{\, \prime},c^{\, \prime}\right)$ و $\vec{u}\left(a,b,c\right)$ متجهتین من

$$\vec{u}.\vec{v} = aa' + bb' + cc'$$

$$\|\vec{u}\| = \sqrt{a^2 + b^2 + c^2}$$

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & a & a \\ \vec{j} & b & b \\ \vec{k} & c & c \end{vmatrix} = \begin{vmatrix} b & b \\ c & c \end{vmatrix} \vec{i} - \begin{vmatrix} a & a \\ c & c \end{vmatrix} \vec{j} + \begin{vmatrix} a & a \\ b & b \end{vmatrix} \vec{k}$$

→ المسافة:

المسافة بين نقطتين
$$A$$
 و B هي:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

ax+by+cz+d=0 هي: المسافة نقطة M عن مستوى

$$d(M,(P)) = \frac{|ax_M + by_M + cz_M + d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$d\left(A,(\Delta)
ight)=rac{\left\|\overrightarrow{AM}\wedge\overrightarrow{u}
ight\|}{\left\|\overrightarrow{u}
ight\|}$$
 عن مستقيم $\Delta\left(A,\overrightarrow{u}
ight)$ هي:

← معادلة مسنوى:

$$(P)$$
 متجهة منظمية على المستوى $\vec{n}(a,b,c) \Leftrightarrow (P): ax+by+cz+d=0$

(ABC)إذا كانت A و B و C نقط غير مستقيمة فإن $\overrightarrow{AB} \wedge \overrightarrow{AC}$ متجهة منظمية على المستوى

يكن تحديد معادلة المستوى (ABC)بالاستعانة بالتكافؤ التالي:

$$M \in (ABC) \Leftrightarrow \overrightarrow{AM}. \left(\overrightarrow{AB} \wedge \overrightarrow{AC}\right) = 0$$

<u>← معادلة فلكة:</u>

$$:$$
معادلة فلكة مركزها $\Omega(a,b,c)$ و شعاعها $\Omega(x-a)^2+(y-b)^2+(z-c)^2=R^2$

معادلة فلكة (S) أحد أقطارها [AB] يمكن تحديدها بالاستعانة $M\in (S)\Leftrightarrow \overrightarrow{AM}$. $\overrightarrow{BM}=0$ بالتكافؤ التالي :

 $\frac{AB}{2}$ مركزها Ω منتصف [AB]و شعاعها ملاحظة: الفلكة

 (\mathbf{P}) : ax+by+cz+d=0 و مسئوی $S(\Omega,R)$ فاكة lackappa

 (\mathbf{P}) لتكن H المسقط العمودي للمركز Ω على المستوى

 $d = \Omega H = d(\Omega; (P))$ نضع:

- (S) المستوى (P) يقطع الفلكة (C) وفق دائرة H مركزها: $r=\sqrt{R^2-d^2}$ وشعاعها:
- (S) المستوى (P)ماس للفلكة في النقطة H
- (S) المستوى (P)و الفلكة لا يتقاطعان

$:\!(\Delta)$ و مستقیم $S(\Omega,R)$ فلکه lacktriangle

 (Δ) لتكن H المسقط العمودي للمركز Ω على المستقيم $d=\Omega H=d\left(\Omega;(\Delta)\right)$ نضع:

33

النعداد

<u>← رئيسي مجموعة:</u>

فعریف:

CardE: رئيسي مجموعة منتهية E هو عدد عناصر المجموعة E ويرمز له بالرمز $Card\varnothing=0$

اخاصية:

و B محموعتان منتهيتان A $Card\left(A\cup B\right)=CardA+CardB-Card\left(A\cap B\right)$

<u>→ वांवत वर्व्यक्रः</u>

فعریف:

Eليكن A جزءا من مجموعة منتهية \overline{A} متمم A بالنسبة للمجموعة E هي المجموعة التي يرمز لها بالرمز : $\overline{A}=\{x\in E\,/\,x\not\in A\}$ حيث

- « مالحظان :
 « مالحظان :
 « المنان :
 » المناز المنان :
 » المناز المنان :
 « المناز المنان :
 » المناز المنان :
 « المناز ا
- $A \cap \overline{A} = \varnothing$ •
- $A \cup \overline{A} = E$
- $card\overline{A} = cardE cardA$ •

→ اطبدأ الأساسى للنعداد:

نعتبر تجربة تتطلب نتائجها p اختيار ا $p \in \mathbb{N}^*$ انعتبر تجربة تتطلب نتائجها p اختيار الأول يتم بp كيفية مختلفة و كان الاختيار الثاني يتم بp كيفية مختلفة و كان الاختيار p يتم بp كيفية مختلفة و كان الاختيار p يتم بp كيفية مختلفة فإن عدد النتائج المكنة هو الجداء p

النرنيبات بنكرار - النرنيبات بدون بنكرار:

النرنيبات بنكرار:

لیکن n و p عنصرین من * \mathbb{N} \mathbb{N} عنصر هو : n^p عنصر من بین n عنصر هو :

النرنيبات بدون بنكرار:

لیکن
$$n$$
 و p عنصرین من n عنصر من بین n عنصر هو: عدد الترتیبات بدون تکرار ل p عنصر من بین n عنصر هو:
$$A_n^p = \underbrace{n \times (n-1) \times (n-2) \times ... \times (n-p+1)}_{p}$$
 من العوامل

حالة خاصة:

n عنصر من بين n عنصر تسمى كذلك تبديلة ل n عنصر من بين n عنصر $n!=n\times(n-1)\times(n-2)\times\ldots\times2\times1$ و عددها :

← الثاليفات:

$$n$$
 لتكن E مجموعة منتهية عدد عناصرها E كل جزء E من E عدد عناصره E كل جزء E من E عنصر من بين E يسمى تأليفة ل E عنصر من بين E عنصر E و عدد هذه التأليفات هو E

C_n^p و A_n^p و n! نافعاد:

$n \in \mathbb{N}^*$ $n! = n \times (n-1) \times (n-2) \times \times 2 \times 1$ 0! = 1						
$A_n^p = \frac{n!}{(n-p)!}$	$C_n^p = \frac{n!}{p!(n-p)!}$					
$C_n^{n-1} = n \qquad C_n^0 = 1$	$C_n^1 = n C_n^n = 1$					
$C_n^{p-1} + C_n^p = C_{n+1}^p$	$C_n^p = C_n^{n-p}$					

<u>← بعض أنواع السحب:</u>

 $(p \leq n)$ عنصر من بين p عنصر p عنصر نلخص النتائج في الجدول التالي:

الترتيب	عدد السحبات المكنة هو:	نوع السحب:
غير مهم	C_n^p	آني
مهم	n^p	بالتتابع و بإحلال
مهم	A_n^p	بالتتابع و بدون إحلال

الاحنمالات

مصطلحات ٢

معناه:	المصطلح الاحتمالي:
كل تجربة تقبل أكثر من نتيجة	تجربة عشوائية
هي مجموعة الإمكانيات الممكنة لتجربة عشوائية	كون الإمكانيات Ω
Ω جزءا من كون الإمكانيات A	A حدث
كل حدث يتضمن عنصرا وحيدا	حدث ابتدائي
إذا تحقق الحدثان A و B في آن واحد	$A\cap B$ تحقق الحدث
إذا تحقق A أو هما معا	$A \cup B$ تحقق الحدث
$A\cap\overline{A}=arnothing$ هو الحدث $\overline{A}=\Omega$ هو الحدث $\overline{A}=\overline{A}$	الحدث المضاد للحدث A
$A \cap B = \emptyset$	و B حدثان غیر منسجمین A

← اسنقرار حدث - احتمال حدث:

- نیکن Ω کون إمکانیات تجربة عشوائیة Φ
- p_i : هو $\{\omega_i\}$ هو احتمال الحدث $\{\omega_i\}$ هو عندما يستقر احتمال حدث ابتدائي و $\{\omega_i\}$ هو الجدث $P\left(\{\omega_i\}\right)=p_i$ ونكتب:
 - احتمال حدث هو مجموع الاحتمالات الابتدائية التي تكون هذا الحدث و مجموع الاحتمالات الابتدائية التي تكون هذا الحدث $A=\{\omega_1;\omega_2;\omega_3;\ldots;\omega_n\}$ فإن احتمال الحدث $p(A)=p(\omega_1)+p(\omega_2)+p(\omega_3)+\ldots+p(\omega_n)$
 - پنات: لیکن Ω کون اِمکانیات تجربهٔ عشوائیه Φ
 - $p(\Omega) = 1$, $p(\emptyset) = 0$ •
 - Ω من A من $0 \leq p(A) \leq 1$
 - احتمال اتحاد حدثين:

 Ω لکل حدثین A و B من

$$p\left(A\cup B\right)=p\left(A\right)+p\left(B\right)-p\left(A\cap B\right)$$
 يذا كان $P\left(A\cup B\right)=p\left(A\right)+p\left(B\right)$ يذا كان $P\left(A\cup B\right)=p\left(A\right)$

• احتمال الحدث المضاد:

$$p\left(\overline{A}\right) = 1 - p\left(A\right)$$
 : Ω نکل حدث A من

← فرضية نساوي الاحتمالات:

🍨 نعریف:

 Ω إذا كانت جميع الأحداث الابتدائية متساوية الاحتمال في تجربة عشوائية كون إمكانيتها

 $p(A) = rac{cardA}{card\Omega}$ نإن احتمال کل حدث A من A من A

→ الاحتمال الشرطي - استقلالية حدثين:

$$p(A) \neq 0$$
: ليكن A و B حدثين مرتبطين بنفس التجربة العشوائية بحيث:

$$p\left(B
ight)=p\left(B/A
ight)=rac{p\left(A\cap B
ight)}{p\left(A
ight)}$$
 :احتمال حدث B علما أن الحدث A محقق هو العدد

$$p(A) imes p(B)
eq 0$$
 لكل حدثين A و B مرتبطين بنفس التجربة العشوائية بحيث: A لكل حدثين A لكينا: A لكينا: A لكينا: A لكينا:

لكل حدثين
$$A$$
 و B مرتبطين بنفس التجربة العشوائية $A\Leftrightarrow p(A\cap B)=p(A) imes p(B)$

$$\Omega$$
لیکن Ω کون إمکانیات تجربة عشوائیة و Ω_1 و کون إمکانیات تجربة Ω_2

$$\left(\Omega_1\cap\Omega_2=arnothing_1\cup\Omega_2=\Omega
ight)$$
 و $p\left(A
ight)=p\left(\Omega_1
ight) imes p\left(A/\Omega_1
ight)+p\left(\Omega_2
ight) imes p\left(A/\Omega_2
ight) = i\Omega$ لکل حدث A من A

← الاختيارات اطتكررة:

$$p$$
ليكن A حدثا في تجربة عشوائية احتماله

اذا أعيدت هذه التجربة $\,n$ مرة فان احتمال تحقق الحدث $\,k$, $\,A$ مرة بالضبط هو:

$$(k \le n) \qquad C_n^k (p)^k (1-p)^{n-k}$$

➡قانون احنمال منغير عشوائي:

لیکن متغیرا عشوائیا علی Ω کون إمکانیات تجربة عشوائیة

لتحديد قانون احتمال المتغير العشوائي X نتبع المرحلتين التاليتين:

- X تحديد $\{x_1;x_2;x_3;\ldots;x_n\}$ تحديد عديد جموعة القيم التي يأخذها المتغير
 - $\{1;2;...;n\}$ لكل أمن المجموعة $p\left(X=x_{i}
 ight)$ لكل أمن المجموعة •

← الأمل الرياضي- المغايرة- الاخراف الطرازي لمنغير عشوائي:

x_i	x_1	x_2	x_3	 x_n	لیکن X متغیرا عشوائیا قانونه
$p(X = x_i)$	p_1	p_2	p_3	 p_n	معرف بالجدول التالي :

$$E(X) = x_1 imes p_1 + x_2 imes p_2 + x_3 imes p_3 + ... + x_n imes p_n$$
 : X الأمل الرياضي للمتغير X : X المغايرة للمتغير X : X الانحراف الطرازي للمتغير X : X الانحراف الطرازي للمتغير X : X الانحراف الطرازي للمتغير

← القانون الحداني:

ليكن p احتمال حدث A في تجربة عشوائية. نعيد هذه التجربة n مرة p

p المتغير العشوائي X الذي يربط كل نتيجة بعدد المرات التي يتحقق فيها الحدث A يسمى توزيعا حدانيا وسيطاه n

$$\forall k \in \{0;1;2;...;n\}$$
 $p(X=k) = C_n^k \times p^k \times (1-p)^{n-k}$ ولدينا $p(X=k) = C_n^k \times p^k \times (1-p)^{n-k}$

$$V(X) = np(1-p) \qquad \qquad E(X) = n \times p$$

ذ. محمد الكيال

الحساب المثلثي (نذكير)

→ جدول القيم الاعنيادية و الدائرة المثلثية:

$\mid x \mid$	0	$\left \frac{\pi}{6} \right $	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\left \; rac{\pi}{2} \; ight $
$\overline{\sin x}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\overline{ an x}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

← العلاقات بين النسب المثلثية:

	-x	$\pi - x$	$\pi + x$	$\left \frac{\pi}{2} - x \right $	$\left \frac{\pi}{2} + x \right $
\sin	$-\sin x$	$\sin x$	$-\sin x$	$\cos x$	$\cos x$
cos	$\cos x$	$-\cos x$	$-\cos x$	$\sin x$	$-\sin x$

$$\cos(x + 2k\pi) = \cos x$$
$$\sin(x + 2k\pi) = \sin x$$
$$\tan(x + k\pi) = \tan x$$

$$\tan x = \frac{\sin x}{\cos x}$$
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$-1 \le \cos x \le 1$$
$$-1 \le \sin x \le 1$$
$$\cos^2 x + \sin^2 x = 1$$

→ معادلات مثلثیة أساسیة:

$$\cos x = \cos a \Leftrightarrow x = a + 2k\pi$$
 أو $x = -a + 2k\pi$ $\sin x = \sin a \Leftrightarrow x = a + 2k\pi$ أو $x = (\pi - a) + 2k\pi$ $\tan x = \tan a \Leftrightarrow x = a + k\pi$ ($k \in \mathbb{Z}$)

→ صبغ خویل مجموع:

$$\cos(a - b) = \cos a \times \cos b + \sin a \times \sin b$$
$$\sin(a - b) = \sin a \times \cos b - \cos a \times \sin b$$
$$\tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \times \tan b}$$

$$\cos(a+b) = \cos a \times \cos b - \sin a \times \sin b$$
$$\sin(a+b) = \sin a \times \cos b + \cos a \times \sin b$$
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \times \tan b}$$

→ ننائن:

$$t = \tan\frac{a}{2}:$$
بوضع
$$\sin a = \frac{2t}{1+t^2}$$
$$\cos a = \frac{1-t^2}{1+t^2}$$
$$\tan a = \frac{2t}{1-t^2}$$

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$= 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$\sin 2a = 2\sin a \times \cos a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

$$\cos^2 a = \frac{1 + \cos 2a}{2}$$

$$\sin^2 a = \frac{1 - \cos 2a}{2}$$

→ تحويل مجموع إلى جداء:

- تحويل جداء إلى مجموع:

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \qquad \cos a \times \cos b = \frac{1}{2}\left[\cos(a+b) + \cos(a-b)\right]$$

$$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \qquad \sin a \times \sin b = -\frac{1}{2}\left[\cos(a+b) - \cos(a-b)\right]$$

$$\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \qquad \sin a \times \cos b = \frac{1}{2}\left[\sin(a+b) - \sin(a-b)\right]$$

$$\sin p - \sin q = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \qquad \cos a \times \sin b = \frac{1}{2}\left[\sin(a+b) - \sin(a-b)\right]$$

$$(a,b) \neq (0,0)$$
 $a\cos x + b\sin x$

$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$$

$$= \sqrt{a^2 + b^2} \cos(x - \alpha)$$

$$= \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$

$$\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$$