ΜΑΘΗΜΑ ΒΙΟΣΤΑΤΙΣΤΙΚΗ

ΤΥΠΟΛΟΓΙΟ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Κατανομές συχνοτήτων (συνεχείς μεταβλητές)

Ο αριθμός των κλάσεων

$$k = 1 + 3,322 * log_{10} n$$

Το πλάτος της κλάσης

$$\mathcal{S} = \frac{d'}{k}$$

Το πλάτος του δείγματος

$$d' = X' max - X' min$$

ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΤΡΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ

Μέτρα θέσης ή κεντρικής τάσης

Ο αριθμητικός μέσος

Στον πληθυσμό

$$\mu = \frac{X_1 + X_2 + X_3 + \dots + X_N}{N} = \frac{1}{N} \sum_{i=1}^N X_i$$
 για μη ομαδοποιημένα στοιχεία

$$\mu = \frac{1}{N}(x_1f_1 + x_2f_2 + x_3f_3 + \dots + x_kf_k) = \frac{1}{N}\sum_{i=1}^k f_i x_i \qquad \text{όπου} \quad N = \sum_{i=1}^k f_i$$
 για ομαδοποιημένα στοιχεία σε k κλάσεις με αντίστοιχες \mathbf{f}_i και $\mathbf{\chi}_i$

Στο δείγμα

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$
 για μη ομαδοποιημένα στοιχεία

$$\overline{X} = \frac{1}{n}(x_1f_1 + x_2f_2 + x_3f_3 + \dots + x_kf_k) = \frac{1}{n}\sum_{i=1}^k f_ix_i \quad \text{ frow } n = \sum_{i=1}^k f_i$$

για ομαδοποιημένα στοιχεία σε k κλάσεις με αντίστοιχες f_i και χ_i

Ο σταθμισμένος μέσος

$$W = \frac{W_1 X_1 + W_2 X_2 + \dots + W_n X_n}{W_1 + W_2 + \dots + W_n}$$

Η διάμεσος

$$\mathbf{M} = L_{m} + \frac{\delta_{m}}{f_{m}} \quad (\frac{n+1}{2} - F_{m-1})$$
 για ομαδοποιημένα στοιχεία

Ο τύπος

$$T = L_m + \delta_m \quad (rac{f_m - f_{m-1}}{2f_m - (f_{m-1} + f_{m+1})})$$
 για ομαδοποιημένα στοιχεία

Ο γεωμετρικός μέσος

$$G = \sqrt[n]{X_1 \cdot X_2 \cdot X_3 \cdot \cdot \cdot \cdot X_n}$$
ή αλλιώς,
$$Log G = \frac{1}{n} \cdot [Log X_1 + Log X_2 + \ldots + Log X_n]$$
για μη ομαδοποιημένα στοιχεία

$$G = \sqrt[n]{x_1^{f_1} \cdot x_2^{f_2} \cdot \cdot \cdot \cdot x^{f_k}}$$
ή αλλιώς,
$$Log G = \frac{1}{n} \cdot [f_1 \cdot Log \chi_1 + f_2 \cdot Log \chi_2 + + f_k \cdot Log \chi_n]$$
 για ομαδοποιημένα στοιχεία σε k κλάσεις με αντίστοιχες f_i και χ_i

Τα τεταρτημόρια

Όταν ο αριθμός, η, των στοιχείων είναι άρτιος

Θέση
$$\mathbf{Q}_1 = \frac{n+2}{4}$$
, Θέση $\mathbf{Q}_2 = \frac{n+1}{2}$, Θέση $\mathbf{Q}_3 = \frac{3n+2}{4}$ για μη ομαδοποιημένα στοιχεία

Όταν ο αριθμός, η, των στοιχείων είναι περιττός

Θέση
$$\mathbf{Q}_1 = \frac{n+1}{4}$$
, Θέση $\mathbf{Q}_2 = \frac{n+1}{2}$, Θέση $\mathbf{Q}_3 = \frac{3(n+1)}{4}$ για μη ομαδοποιημένα στοιχεία

$$\begin{aligned} Q_1 &= L_m + \frac{\delta_m}{f_m} \ ([\frac{n+2}{4}] - F_{m-1}) & \acute{\eta} \ [\frac{n+1}{4}] \ , \ \acute{\text{όταν}} \ n = \pi \epsilon \text{ριττός} \ \text{αριθμός} \\ Q_2 &= M = L_m + \frac{\delta_m}{f_m} \ ([\frac{n+1}{2}] - F_{m-1}) & \acute{\eta} \ [\frac{n+1}{2}] \ , \ \acute{\text{όταν}} \ n = \pi \epsilon \text{ριττός} \ \text{αριθμός} \\ Q_3 &= L_m + \frac{\delta_m}{f_m} \ ([\frac{3n+2}{4}] - F_{m-1}) & \acute{\eta} \ [\frac{3(n+1)}{4}] \ , \ \acute{\text{όταν}} \ n = \pi \epsilon \text{ριττός} \ \text{αριθμός} \ \gamma \text{ια} \\ & \text{ομαδοποιημένα στοιχεία} \end{aligned}$$

Σχέση μεταξύ αριθμητικού μέσου, διαμέσου και τύπου

$$T = M = \overline{X}$$

για συμμετρικές κατανομές

$$T < M < \overline{X}$$

για ασύμμετρες δεξιά κατανομές

$$T > M > \overline{X}$$

για ασύμμετρες αριστερά κατανομές

$$\overline{X}$$
- T \cong 3 * $[\overline{X}$ -M]

για μέτρια και όχι υπερβολικά έντονα ασύμμετρες κατανομές

Μέτρα διασποράς ή διακύμανσης

Το πλάτος ή έκταση

$$R = X_{max} - X_{min}$$

Η τεταρτημοριακή απόκλιση

$$IQR = Q_3 - Q_1$$

Το ημι-ενδοταρτημοριακό πλάτος

$$SIQR = \frac{(M - Q_1) + (Q_3 - M)}{2} = \frac{Q_3 - Q_1}{2}$$

Η μέση απόλυτη απόκλιση

$$MAD = \frac{1}{n} \cdot \sum_{i=1}^{n} |(X_i - \overline{X})|$$

για μη ομαδοποιημένα στοιχεία

$$MAD = \frac{1}{n} \cdot \sum_{i=1}^{k} f_i \cdot | (\chi_i - \overline{X}) |$$
 όπου $n = \sum_{i=1}^{k} f_i$

για ομαδοποιημένα στοιχεία σε k κλάσεις με αντίστοιχες f_i και χ_i

Η διακύμανση

Στον πληθυσμό

$$\sigma^2 = \frac{1}{N} \cdot \sum_{i=1}^{N} (X_i - \mu)^2$$

για μη ομαδοποιημένα στοιχεία

$$\sigma^2 = \frac{1}{N} \cdot \sum_{i=1}^k f_i \cdot (\chi_i - \mu)^2$$
 όπου $N = \sum_{i=1}^k f_i$ για ομαδοποιημένα στοιχεία

$$\sigma^2 = \frac{1}{N} \cdot \sum_{i=1}^{N} |X_i|^2 - \frac{1}{N^2} (\sum_{i=1}^{N} |X_i|)^2$$

για μη ομαδοποιημένα στοιχεία και αποφυγή του λάθους στρογγυλοποίησης

$$\sigma^2 = \frac{1}{N} \cdot \sum_{i=1}^k f_i \, \chi_i^2 - \frac{1}{N^2} (\sum_{i=1}^k f_i \cdot \chi_i)^2 \qquad \text{όπου} \quad N = \sum_{i=1}^k f_i$$
 για ομαδοποιημένα στοιχεία και αποφυγή του λάθους στρογγυλοποίησης

Στο δείγμα

$$s^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2$$

για μη ομαδοποιημένα στοιχεία

$$s^2 = \frac{1}{n} \cdot \sum_{i=1}^k f_i \cdot (\chi_i - \overline{X})^2$$
 όπου $n = \sum_{i=1}^k f_i$ για ομαδοποιημένα στοιχεία

Στο τυχαίο δείγμα

$$\hat{\sigma}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \overline{X})^2$$

για μη ομαδοποιημένα στοιχεία

$$\overset{\wedge}{\sigma^2} = \frac{1}{n-1} \cdot \sum_{i=1}^k f_i \cdot (\chi_i - \overline{X})^2$$
 όπου $n = \sum_{i=1}^k f_i$ για ομαδοποιημένα στοιχεία

$$\hat{\sigma}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} X_i^2 - \frac{1}{n(n-1)} \cdot (\sum_{i=1}^{n} X_i)^2$$

μη ομαδοποιημένα στοιχεία και αποφυγή του λάθους της στρογγυλοποίησης

Η τυπική απόκλιση

$$\sigma=\sqrt{\sigma^2}$$
 στον πληθυσμό ή $\sqrt{s}=\sqrt{s^2}$ στο δείγμα ή $\stackrel{\wedge}{\sigma}=\sqrt{\stackrel{\wedge}{\sigma^2}}$ στο τυχαίο δείγμα

Ο συντελεστής μεταβολής

$$CV(x) = \frac{S}{\overline{X}} \cdot 100\%$$

Το θεώρημα του Tchebysheff

Σε κάθε σύνολο στοιχείων, η αναλογία των στοιχείων, που βρίσκονται ανάμεσα σε $\pm \mathbf{k}$ τυπικές αποκλίσεις (σ) από το μέσο τους (μ), είναι κατ' ελάχιστο ίση με:

$$1 - (1/k)^2$$

Μέτρα ασυμμετρίας

Ο συντελεστής ασυμμετρίας του Pearson

$$P_{sk} = rac{3 \cdot (\overline{X} - M)}{s}$$
 ή εναλλακτικά $P_{sk} = rac{(\overline{X} - T)}{s}$

Ο συντελεστής ασυμμετρίας του Bowley

$$B = \frac{2(Q_3 + Q_1 - 2M)}{Q_3 - Q_1}$$

Ο συντελεστής ασυμμετρίας α₃, με βάση τη ροπή 3^{ης} τάξης από τον μέσο

$$m_{_{\scriptstyle V}} = rac{1}{n} \cdot \sum_{_{i=1}}^{^{n}} \; \left(\mathbf{X}_{_{i}} - \mu
ight)^{_{\scriptstyle V}}$$
 για μη ομαδοποιημένα στοιχεία

$$m_{\mathbf{v}} = \frac{1}{n} \cdot \sum_{i=1}^k f_i \cdot (x_i - \mathbf{\mu})^{\mathbf{v}}$$
 όπου $n = \sum_{i=1}^k f_i$ για ομαδοποιημένα στοιχεία σε \mathbf{k} κλάσεις με αντίστοιχες \mathbf{f}_i και $\mathbf{\chi}_i$

$$\alpha_3 = \frac{m_3}{s^3}$$

Μέτρα κύρτωσης

Ο συντελεστής κύρτωσης α₄, με βάση τη ροπή 4^{ης} τάξης από τον μέσο

$$a_4 = \frac{m_4}{s^4}$$

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Ο κλασσικός ορισμός της πιθανότητας

$$P(A) = \frac{f}{N}$$
 ή αλλιώς $P(A) = \frac{E\Pi}{\Delta\Pi}$

Ο στατιστικός ορισμός της πιθανότητας

$$P(A) = \lim_{n \to \infty} \frac{f_A}{n}$$

5

Κανόνες των πιθανοτήτων

Ο κανόνας του πολλαπλασιασμού

Αν τα Α & Β είναι ανεξάρτητα γεγονότα ισχύει:

$$P(A \cap B) = P(A) \times P(B)$$

Αν τα Α & Β είναι όχι απαραιτήτως ανεξάρτητα γεγονότα ισχύει:

$$P(A \cap B) = P(A) \times P(B/A) = P(B) \times P(A/B)$$

Ο κανόνας της πρόσθεσης

Αν τα Α & Β είναι αμοιβαία αποκλειόμενα γεγονότα ισχύει:

$$P(A \cup B) = P(A) + P(B)$$

Αν τα Α & Β είναι όχι απαραιτήτως αμοιβαία αποκλειόμενα γεγονότα ισχύει:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Το θεώρημα του Bayes

 $P(A_i/B)\!\!=\!\![P(A_i)\!\times\!P(B/A_i)] \ / \ [P(A_i)\!\times\!P(B/A_i)\!+\!. \ ..+ \ P(A_n)\times P(B/A_n)], \ \gamma \iota \alpha \ \kappa \acute{\alpha} \theta \epsilon \ i$

Στοιχεία συνδυαστικής ανάλυσης

Οι συνδυασμοί η αντικειμένων ανά r, είναι:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

ΘΕΩΡΗΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ

Ασυνεχείς θεωρητικές κατανομές

Η διωνυμική κατανομή (διαδικασία Bernoulli)

Πιθανότητα μιας ασυνεχούς μεταβλητής X, να πάρει μια συγκεκριμένη τιμή, έστω r (για r=0,1,2,....,n):

6

$$P(x=r) = \frac{n!}{(n-r)!r!} p^{r} (1-p)^{n-r}$$

Η κατανομή Poisson

Συνάρτηση πυκνότητας πιθανότητας

$$P(x=r) = e^{-\lambda} \cdot \frac{\lambda^r}{r!}$$

Συνεχείς θεωρητικές κατανομές

Η κανονική κατανομή

Συνάρτηση πιθανότητας

$$p(X) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X-\mu)^2/(2\sigma^2)} -\infty < X < +\infty$$

Η τυπική κανονική κατανομή

Μετατροπή των τιμών X, μιας κανονικής κατανομής σε τιμές Z της τυπικής κανονικής κατανομής

$$Z = \frac{X - \mu}{\sigma}$$
 για τον πληθυσμό,
$$Z = \frac{X - \overline{X}}{s}$$
 για το δείγμα

Συνάρτηση πιθανότητας

$$p(Z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \qquad -\infty < Z < +\infty$$

Η κατανομή χ2

Ορισμός

Αν οι Z_1 , Z_2 , Z_v αποτελούν ανεξάρτητες ποσότητες, που ακολουθούν την τυπική κανονική κατανομή, τότε η ποσότητα $\chi^2 = Z_1^2 + Z_2^2 + \dots + Z_v^2$ ακολουθεί τη χ^2 κατανομή με v βαθμούς ελευθερίας.

Η κατανομή χ² για βαθμούς ελευθερίας ν >100

$$\chi^2 = \frac{1}{2} (Zp + \sqrt{2\nu - 1})^2$$

Η κατανομή τ

Ορισμός

Αν Z και U αποτελούν ανεζάρτητες τυχαίες μεταβλητές, από τις οποίες η Z ακολουθεί την κανονική κατανομή και η U ακολουθεί την χ^2 κατανομή με ν βαθμούς ελευθερίας, τότε η ποσότητα,

$$t=rac{Z}{\sqrt{rac{U}{v}}}$$
 ακολουθεί την t κατανομή με v βαθμούς ελευθερίας.

Η κατανομή F

Ορισμός

Αν U_1 και U_2 αποτελούν ανεξάρτητες ποσότητες, οι οποίες ακολουθούν την χ^2 με v_1 και v_2 βαθμούς ελευθερίας, τότε η ποσότητα,

 $F = \frac{U_1 / v_1}{U_2 / v_2} \quad \text{ακολουθεί την } F \text{ κατανομή με } v_1 \text{ και } v_2 \text{ βαθμούς ελευθερίας για τον}$

αριθμητή και τον παρονομαστή, αντίστοιχα.

Ο μέσος της Γ κατανομής

$$\mu=v_2/(v_2-2)$$
 $\gamma\iota\alpha$ $v_2>2$

Η διακύμανση της Γ κατανομής

$$\sigma^2 = [2 \cdot v_2^2 \cdot (v_1 + v_2 - 2)] / [v_1 \cdot (v_2 - 2)^2 \cdot (v_2 - 4)] \qquad \gamma \iota \alpha \qquad (v_2 > 4)$$

Κατανομές δειγματοληψίας

Η κατανομή δειγματοληψίας του μέσου

Σε δειγματοληψία χωρίς επανατοποθέτηση ισχύει:

$$μ = μ_{\overline{x}}$$
 και $σ_{\overline{x}}^2 = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$ και αντίστοιχα $σ_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$

Σε δειγματοληψία με επανατοποθέτηση ισχύει:

$$μ = μ_{\overline{x}}$$
 και $σ_{\overline{x}}^2 = \frac{\sigma^2}{n}$ και αντίστοιχα $σ_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$

Η κατανομή δειγματοληψίας της διαφοράς δύο μέσων

Ισχύουν:
$$\mu_{\overline{x_1}-\overline{x_2}} = \mu_1 - \mu_2$$
 και $\sigma^2_{\overline{x_1}-\overline{x_2}} = \sigma^2_{\overline{x_1}} + \sigma^2_{\overline{x_2}}$.

Η κατανομή δειγματοληψίας της διακύμανσης

Σε δειγματοληψία χωρίς επανατοποθέτηση ισχύει

$$\sigma^2 = \frac{N-1}{N} \cdot \mu_{\hat{\sigma}^2}$$

Σε δειγματοληψία με επανατοποθέτηση ισχύει

$$\sigma^2 = \mu_{\hat{\sigma}^2}$$

Επιλογή τυχαίου δείγματος

Πίνακας Τυχαίων Αριθμών [Απόσπασμα...]

6975	5239	*0762	5846	2431
7185	4019	7332	2820	4853
4510	1658	5615	2194	1901
7752	0105	4769	2994	7445
4834	4043	6591	3646	8918

Κατανομή δειγματοληψίας των αναλογιών

$$\pi = \frac{A}{N} \quad \text{στον πληθυσμό} \qquad p_i = \frac{n_i}{n} \quad \text{στο δείγμα}$$

Δειγματοληψία με επανατοποθέτηση

$$\mu_p = \pi \qquad \qquad \sigma_p^2 = \frac{\pi \cdot (1 - \pi)}{n}$$

$$\Delta \textit{eigmatolyvia copis epavatopobethom} \\ \mu_p = \pi \qquad \qquad \sigma_p^2 = \frac{\pi \cdot (1-\pi)}{n} \cdot \frac{N-n}{N-1} \\$$

Κατανομή δειγματοληψίας διαφοράς αναλογιών

$$\begin{split} &\mu_{p_1-p_2} = \mu_{p_1} - \mu_{p_2} = \pi_1 - \pi_2 \\ &\sigma_{p_1-p_2}^2 = \frac{\pi_1 \cdot (1 - \pi_1)}{n_1} + \frac{\pi_2 \cdot (1 - \pi_2)}{n_2} \qquad \acute{\eta} \\ &\sigma_{p_1-p_2}^2 = \frac{\pi_1 \cdot (1 - \pi_1)}{n_1} \cdot \frac{N_1 - n_1}{N_1 - 1} + \frac{\pi_2 \cdot (1 - \pi_2)}{n_2} \cdot \frac{N_2 - n_2}{N_2 - 1} \end{split}$$

EKTIMHTIKH

Εκτίμηση διαστήματος εμπιστοσύνης

Το διάστημα εμπιστοσύνης και τα όρια εμπιστοσύνης

Η πιθανότητα 100(1-α)%, με την οποία εκφράζεται το διάστημα εμπιστοσύνης μιας παραμέτρου 9 ισούται:

$$P(\hat{\vartheta} - k < \vartheta < \hat{\vartheta} + k) = 1 - \alpha$$
 , $0 < \alpha < 1$

Η εκτίμηση διαστήματος εμπιστοσύνης του μέσου

Όταν ισχύει το κεντρικό οριακό θεώρημα

$$\overline{X} - Z_{\alpha/2} \cdot \sigma_{\overline{X}} < \mu < \overline{X} + Z_{\alpha/2} \cdot \sigma_{\overline{X}} \text{ , ópou } \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \text{ '} \acute{\eta} \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

Όταν ισχύει το προσεγγιστικό κεντρικό οριακό θεώρημα

$$\overline{X} - t_{\alpha/2} \cdot s_{\overline{X}} < \mu < \overline{X} + t_{\alpha/2} \cdot s_{\overline{X}} \qquad \text{ffou} \quad s_{\overline{X}} = \frac{s}{\sqrt{n}} \qquad \text{h} \dots \dots$$

Η εκτίμηση διαστήματος εμπιστοσύνης της διαφοράς δύο μέσων

Πληθυσμοί κανονικοί, διακυμάνσεις σ_1^2 και σ_2^2 γνωστές

$$\left| (\overline{X_1} - \overline{X_2}) - Z_{\alpha/2} \cdot \sigma_{\overline{X_1} - \overline{X_2}} \right| < \mu_1 - \mu_2 < (\overline{X_1} - \overline{X_2}) + Z_{\alpha/2} \cdot \sigma_{\overline{X_1} - \overline{X_2}}$$

$$\mu\varepsilon \ \sigma_{\overline{x_1}-\overline{x_2}} = \sqrt{\frac{\sigma_1^2}{n_1} \cdot \frac{N_1 - n_1}{N_1 - 1} + \frac{\sigma_2^2}{n_2} \cdot \frac{N_2 - n_2}{N_2 - 1}} \quad \acute{\eta} \quad \sigma_{\overline{x_1}-\overline{x_2}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

9

Διακυμάνσεις σ_1^2 και σ_2^2 άγνωστες, δείγματα μεγάλα ($n_1 \ge 30$ και $n_2 \ge 30$)

$$(\overline{X_1}-\overline{X_2})-Z_{\alpha/2}\cdot \stackrel{\wedge}{\sigma}_{\overline{x_1}-\overline{x_2}}<\mu_1-\mu_2<(\overline{X_1}-\overline{X_2})+Z_{\alpha/2}\cdot \stackrel{\wedge}{\sigma}_{\overline{x_1}-\overline{x_2}}$$

$$\mu\varepsilon \quad \overset{\wedge}{\sigma}_{\overline{x_1-x_2}} = \sqrt{(\frac{\overset{\wedge}{\sigma_1}}{n_1} \cdot \frac{N_1-n_1}{N_1-1} + \frac{\overset{\wedge}{\sigma_2}}{n_2} \cdot \frac{N_2-n_2}{N_2-1})} \quad \acute{\eta} \quad \overset{\wedge}{\sigma}_{\overline{x_1-x_2}} = \sqrt{(\frac{\overset{\wedge}{\sigma_1}^2}{n_1} + \frac{\overset{\wedge}{\sigma_2}^2}{n_2})}$$

Πληθυσμοί κανονικοί, διακυμάνσεις άγνωστες και $\sigma_1^2 = \sigma_2^2$, δείγματα μικρά $(n_1 < 30 \text{ και } n_2 < 30)$

$$(\overline{X}_1 - \overline{X}_2) - t_{\alpha/2} \cdot \overset{\wedge}{\sigma}_{\overline{X}_1 - \overline{X}_2} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + t_{\alpha/2} \cdot \overset{\wedge}{\sigma}_{\overline{X}_1 - \overline{X}_2} \qquad \qquad v = n_1 + n_2 - 2$$

$$\mu\varepsilon \qquad \overset{\wedge}{\sigma}^{2}_{\overline{x_{1}}-\overline{x_{2}}} = \overset{\wedge}{\sigma}^{2} \cdot (\frac{1}{n_{1}} \cdot \frac{N_{1}-n_{1}}{N_{1}-1} + \frac{1}{n_{2}} \cdot \frac{N_{2}-n_{2}}{N_{2}-1}) \quad \dot{\eta} \qquad \overset{\wedge}{\sigma}^{2}_{\overline{x_{1}}-\overline{x_{2}}} = \overset{\wedge}{\sigma}^{2} \cdot (\frac{1}{n_{1}} + \frac{1}{n_{2}})$$

και
$$\sigma^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

Πληθυσμοί κανονικοί, διακυμάνσεις άγνωστες και $\sigma_1^2 \neq \sigma_2^2$, δείγματα μικρά $(n_1 < 30 \text{ και } n_2 < 30)$

$$(\overline{X}_1 - \overline{X}_2) - t_{\alpha/2} \cdot s_{\overline{X}_1 - \overline{X}_2} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + t_{\alpha/2} \cdot s_{\overline{X}_1 - \overline{X}_2}$$

$$\mu\varepsilon \qquad s^2_{\frac{1}{X_1-X_2}} = \frac{s_1^2}{n_1} \cdot \frac{N_1-n_1}{N_1-1} + \frac{s_2^2}{n_2} \cdot \frac{N_2-n_2}{N_2-1} \qquad \acute{\eta} \qquad s^2_{\frac{1}{X_1-X_2}} = \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$$

και
$$v = \frac{1}{\frac{w^2}{n_1 - 1} + \frac{(1 - w)^2}{n_2 - 1}}$$
, όπου $w = \frac{s_1^2 / n_1}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ για $s_1^2 > s_2^2$

Η εκτίμηση διαστήματος εμπιστοσύνης της διακύμανσης

$$\frac{(n-1)\cdot \mathring{\sigma^2}}{\chi^2_{_{\alpha/2}}} < \sigma^2 < \frac{(n-1)\cdot \mathring{\sigma^2}}{\chi^2_{_{1^{-\alpha/2}}}}$$

Διάστημα εμπιστοσύνης των αναλογιών για μεγάλα δείγματα

$$p - Z_{\underline{\alpha}} \stackrel{\wedge}{\cdot \sigma_p} < \pi < p + Z_{\underline{\alpha}} \stackrel{\wedge}{\cdot \sigma_p}$$

όπου:

$$\overset{\wedge}{\sigma}_p = \sqrt{\frac{p \cdot (1-p)}{n}} \qquad \qquad \overset{\wedge}{\eta} \qquad \qquad \overset{\wedge}{\sigma}_p = \sqrt{\frac{p \cdot (1-p)}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

Διάστημα εμπιστοσύνης διαφοράς αναλογιών για μεγάλα δείγματα

$$(p_1 - p_2) - Z_{\underline{\alpha}} \cdot \overset{\wedge}{\sigma}_{p_1 - p_2} < \pi_1 - \pi_2 < (p_1 - p_2) + Z_{\underline{\alpha}} \cdot \overset{\wedge}{\sigma}_{p_1 - p_2}$$

$$\overset{\wedge}{\sigma}_{p_1 - p_2} = \sqrt{\frac{p_1 \cdot (1 - p_1)}{n_1} + \frac{p_2 \cdot (1 - p_2)}{n_2}}$$

$$\hat{\sigma}_{p_1-p_2} = \sqrt{\frac{p_1 \cdot (1-p_1)}{n_1} \cdot \frac{N_1 - n_1}{N_1 - 1} + \frac{p_2 \cdot (1-p_2)}{n_2} \cdot \frac{N_2 - n_2}{N_2 - 1}}$$

Διάστημα εμπιστοσύνης του μέσου για εξαρτημένα δείγματα

Όταν ισχύει το κεντρικό οριακό θεώρημα

$$\bar{\delta} - Z_{\alpha/2} \cdot \sigma_{\bar{\delta}} \leq \mu_{\delta} < \bar{\delta} + Z_{\alpha/2} \cdot \sigma_{\bar{\delta}}, \quad \text{spon} \quad \sigma_{\bar{\delta}} = \frac{\sigma_{\delta}}{\sqrt{n}} \quad \text{height} \quad \dots \dots$$

Όταν ισχύει το προσεγγιστικό κεντρικό οριακό θεώρημα

$$|\overline{\delta} - t_{\alpha/2} \cdot s_{\overline{\delta}} < \mu_{\delta} < \overline{\delta} + t_{\alpha/2} \cdot s_{\overline{\delta}} \quad \text{ finos } s_{\overline{\delta}} = \frac{s_{\delta}}{\sqrt{n}} \quad \text{ finos } s_{\overline{\delta}} = \frac{s_{\delta}}{\sqrt{n}}$$

Σφάλμα δειγματοληψίας και μέγεθος δείγματος

Ο προσδιορισμός του μεγέθους δείγματος

Όταν στόχος είναι η εκτίμηση του μέσου σε απλή τυχαία δειγματοληψία

$$n = rac{Z^2 lpha_2 \cdot \sigma^2}{e^2}$$
 , $\mu \epsilon \quad \sigma_{\overline{X}} = rac{\sigma}{\sqrt{n}}$

$$\dot{\eta}$$

$$n = \frac{Z^2 \alpha_2 \cdot \sigma^2 \cdot N}{e^2 \cdot (N-1) + Z^2 \alpha_2 \cdot \sigma^2} , \qquad \mu\epsilon \qquad \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{\eta}} \cdot \sqrt{\frac{N-n}{N-1}}$$

Όταν στόχος είναι η εκτίμηση της αναλογίας σε απλή τυχαία δειγματοληψία

$$n = \frac{Z^2 \alpha_2 \cdot \pi \cdot (1 - \pi)}{e^2} , \quad \mu\epsilon \qquad \sigma^2_p = \frac{\pi \cdot (1 - \pi)}{n}$$

$$\ln \frac{1}{e^{2} \cdot (N-1) + Z^{2} \alpha_{2}^{\prime} \cdot \pi \cdot (1-\pi) \cdot N} , \quad \mu \epsilon \quad \sigma_{p}^{2} = \frac{\pi \cdot (1-\pi)}{n} \cdot \frac{N-n}{N-1}$$

11

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Έλεγχος υπόθεσης του μέσου

Όταν ισχύει το κεντρικό οριακό θεώρημα

Οι υποθέσεις

 $Ho: \mu = \mu_o$ $H\alpha: \mu < \mu_o \quad \acute{\eta} \quad H\alpha: \mu > \mu_o \quad \acute{\eta} \quad H\alpha: \mu \neq \mu_o$

Η κατανομή δειγματοληψίας

$$Z = \frac{\overline{X} - \mu_o}{\sigma_{\overline{X}}}$$

$$με$$
 $σ_{\bar{X}} = \frac{σ}{\sqrt{I}}$

$$με$$
 $σ_{\overline{X}} = \frac{σ}{\sqrt{n}}$
 $\acute{\eta}$
 $σ_{\overline{X}} = \frac{σ}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$

Το κρίσιμο πεδίο

 $Z \leq -Z_{\alpha}$ για $H\alpha: \mu < \mu_{o}$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο

 $Z \ge Z_{\alpha}$ για $H\alpha: \mu > \mu_{o}$, ή αλλιώς για μονόπλευρο δεξιά έλεγχο

 $Z \le -Z_{\alpha/2}$ και $Z \ge Z_{\alpha/2}$ για $H\alpha: \mu \ne \mu_0$, ή αλλιώς για δίπλευρο έλεγχο

Όταν ισχύει το προσεγγιστικό κεντρικό οριακό θεώρημα

Οι υποθέσεις

 $Ho: \mu = \mu_o$ και

Η κατανομή δειγματοληψίας.

$$t = \frac{\overline{X} - \mu_o}{s_{\overline{X}}} \qquad \text{ με } v = \text{ n-1 } \beta \alpha \theta \mu \text{ ούς ελευθερίας} \qquad \text{και} \qquad s_{\overline{X}} = \frac{s}{\sqrt{n}}$$

Το κρίσιμο πεδίο.

 $t \le -t_{\alpha}$ για $H\alpha : \mu < \mu_0$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο

 $t \ge t_{\alpha}$ για $H\alpha: \mu > \mu_0$, ή αλλιώς για μονόπλευρο δεξιά έλεγγο

 $t \le -t_{\alpha/2}$ και $t \ge t_{\alpha/2}$ για $H\alpha: \mu \ne \mu_o$, ή αλλιώς για δίπλευρο έλεγχο

Έλεγχος υπόθεσης της διαφοράς δύο μέσων

Ο προσδιορισμός των υποθέσεων:

$$Ho: \mu_1 = \mu_2$$
 $\acute{\eta}$ $Ho: \mu_1 \ge \mu_2$ $\acute{\eta}$ $Ho: \mu_1 \le \mu_2$ $Ha: \mu_1 \ne \mu_2$ $\acute{\eta}$ $Ha: \mu_1 > \mu_2$

ή εναλλακτικά:

$$Ho: \mu_1 \cdot \mu_2 = 0$$
 ή $Ho: \mu_1 \cdot \mu_2 \ge 0$ ή $Ho: \mu_1 \cdot \mu_2 \le 0$
 $Ha: \mu_1 \cdot \mu_2 \ne 0$ ή $Ha: \mu_1 \cdot \mu_2 < 0$ ή $Ha: \mu_1 \cdot \mu_2 > 0$

Πληθυσμοί κανονικοί, διακυμάνσεις σ² και σ² γνωστές

Η κατανομή δειγματοληψίας

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sigma_{\overline{X}_1 - \overline{X}_2}}$$

με

$$\sigma_{\overline{x_1}-\overline{x_2}} = \sqrt{\frac{\sigma_1^2}{n_1} \cdot \frac{N_1 - n_1}{N_1 - 1} + \frac{\sigma_2^2}{n_2} \cdot \frac{N_2 - n_2}{N_2 - 1}} \quad \acute{\eta} \quad \sigma_{\overline{x_1}-\overline{x_2}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Το κρίσιμο πεδίο

 $Z \le -Z_{\alpha}$ για $H\alpha: \mu_1 < \mu_2$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο

 $Z \geq Z_{\alpha}$ για $H\alpha: \mu_1 > \mu_2$, ή αλλιώς για μονόπλευρο δεξιά έλεγχο

 $Z \le -Z_{\alpha/2}$ και $Z \ge Z_{\alpha/2}$ για $H\alpha: \mu_1 \ne \mu_2$, ή αλλιώς για δίπλευρο έλεγχο

Διακυμάνσεις σ_1^2 και σ_2^2 άγνωστες, δείγματα μεγάλα ($n_1 \ge 30$ και $n_2 \ge 30$)

Η κατανομή δειγματοληψίας

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\overset{\wedge}{\sigma}_{\overline{X}_1 - \overline{X}_2}}$$

иε

$$\overset{\wedge}{\sigma}_{\overline{x_{1}-x_{2}}} = \sqrt{(\frac{\overset{\wedge}{\sigma_{1}}}{n_{1}} \cdot \frac{N_{1}-n_{1}}{N_{1}-1} + \frac{\overset{\wedge}{\sigma_{2}}}{n_{2}} \cdot \frac{N_{2}-n_{2}}{N_{2}-1})} \quad \acute{\eta} \quad \overset{\wedge}{\sigma}_{\overline{x_{1}-x_{2}}} = \sqrt{(\frac{\overset{\wedge}{\sigma_{1}}}{n_{1}} + \frac{\overset{\wedge}{\sigma_{1}}}{n_{2}})}$$

Πληθυσμοί κανονικοί, διακυμάνσεις άγνωστες και $\sigma_1^2 = \sigma_2^2$, δείγματα μικρά (n_1 <30 και n_2 <30)

Η κατανομή δειγματοληψίας

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\overset{\wedge}{\sigma}_{\overline{X}_1 - \overline{X}_2}}$$
 για ν= n₁+n₂-2 βαθμούς ελευθερίας

με

$$\hat{\sigma}_{x_{1}-x_{2}} = \hat{\sigma} \cdot \sqrt{(\frac{1}{n_{1}} \cdot \frac{N_{1}-n_{1}}{N_{1}-1} + \frac{1}{n_{2}} \cdot \frac{N_{2}-n_{2}}{N_{2}-1})} \quad \hat{\eta} \quad \hat{\sigma}_{x_{1}-x_{2}} = \hat{\sigma} \sqrt{(\frac{1}{n_{1}} + \frac{1}{n_{2}})}$$

και

Το κρίσιμο πεδίο

 $t \leq -t_{\alpha}$ για $H\alpha: \mu_{1} < \mu_{2}$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο $t \geq t_{\alpha}$ για $H\alpha: \mu_{1} > \mu_{2}$, ή αλλιώς για μονόπλευρο δεξιά έλεγχο $t \leq -t_{\alpha/2}$ και $t \geq t_{\alpha/2}$ για $H\alpha: \mu_{1} \neq \mu_{2}$, ή αλλιώς για δίπλευρο έλεγχο

Πληθυσμοί κανονικοί, διακυμάνσεις άγνωστες και $\sigma_1^2 \neq \sigma_2^2$, δείγματα μικρά (n₁<30 και n₂<30)

Η κατανομή δειγματοληψίας

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_{\overline{X}_1 - \overline{X}_2}}$$

με

$$s_{\overline{x_1}-\overline{x_2}} = \sqrt{\frac{s_1^2}{n_1} \cdot \frac{N_1 - n_1}{N_1 - 1} + \frac{s_2^2}{n_2} \cdot \frac{N_2 - n_2}{N_2 - 1}} \qquad \dot{\eta} \qquad s_{\overline{x_1}-\overline{x_2}} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

και βαθμούς ελευθερίας ν, που υπολογίζονται από τη σχέση:

$$\mathbf{v} = \frac{1}{\frac{\mathbf{w}^2}{\mathbf{n}_1 - 1} + \frac{(1 - \mathbf{w}_1)^2}{\mathbf{n}_2 - 1}}, \quad \text{span} \quad w = \frac{s_1^2 / n_1}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \quad \text{gia} \quad s_1^2 > s_2^2$$

Το κρίσιμο πεδίο

 $t \le -t_{\alpha}$ για $H\alpha : \mu_1 < \mu_2$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο $t \ge t_{\alpha}$ για $H\alpha : \mu_1 > \mu_2$, ή αλλιώς για μονόπλευρο δεζιά έλεγχο $t \le -t_{\alpha/2}$ και $t \ge t_{\alpha/2}$ για $H\alpha : \mu_1 \ne \mu_2$, ή αλλιώς για δίπλευρο έλεγχο

Έλεγχος υπόθεσης της διακύμανσης

Ο έλεγχος υπόθεσης της διακύμανσης ενός πληθυσμού Οι υποθέσεις.

$$Ho: \sigma^2 = \sigma_o^2$$
 και
 $Ha: \sigma^2 < \sigma_o^2$ ή $Ha: \sigma^2 > \sigma_o^2$ ή $Ha: \sigma^2 \neq \sigma_o^2$

Η κατανομή δειγματοληψίας

$$\chi^2 = \frac{(n-1)\cdot \hat{\sigma^2}}{\sigma_0^2}$$
 με ν=n-1 βαμούς ελευθερίας

Το κρίσιμο πεδίο

 $\chi^2 \leq \chi^2_{1-\alpha}$ για $H\alpha: \sigma^2 < \sigma_0^2$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο $\chi^2 \geq \chi^2_{\alpha}$ για $H\alpha: \sigma^2 > \sigma_0^2$, ή αλλιώς για μονόπλευρο δεζιά έλεγχο $\chi^2 \leq \chi^2_{1-\alpha/2}$ και $\chi^2 \geq \chi^2_{\alpha/2}$ για $H\alpha: \sigma^2 \neq \sigma_0^2$, ή αλλιώς για δίπλευρο έλεγχο

Έλεγχος υπόθεσης του «λόγου» διακυμάνσεων δύο πληθυσμών Οι υποθέσεις.

$$Ho: \sigma_1^2 \ge \sigma_2^2 \quad \acute{\eta} \quad Ho: \sigma_1^2 \le \sigma_2^2 \quad \acute{\eta} \quad Ho: \sigma_1^2 = \sigma_2^2$$

 $Ha: \sigma_1^2 < \sigma_2^2 \quad \acute{\eta} \quad Ha: \sigma_1^2 > \sigma_2^2 \quad \acute{\eta} \quad Ha: \sigma_1^2 \ne \sigma_2^2$

ή εναλλακτικά:

Ho:
$$\sigma_1^2/\sigma_2^2 \ge 1$$
 ή Ho: $\sigma_1^2/\sigma_2^2 \le 1$ ή Ho: $\sigma_1^2/\sigma_2^2 = 1$
Hα: $\sigma_1^2/\sigma_2^2 < 1$ ή Hα: $\sigma_1^2/\sigma_2^2 > 1$ ή Hα: $\sigma_1^2/\sigma_2^2 \ne 1$

Η κατανομή δειγματοληψίας.

$$F = \frac{\overset{^{^{^{^{}}}}}{\sigma_{1}^{2}}}{\sigma_{2}^{2}}$$
 με ν_{1} = n_{1} - 1 και ν_{2} = n_{2} - 1 βαθμούς ελευθερίας

Το κρίσιμο πεδίο.

 $F \leq F_{1-\alpha}$ για $H\alpha$: $\sigma_1^2 < \sigma_2^2$, ή αλλιώς για μονόπλευρο αριστερά έλεγχο $F \geq F_\alpha$ για $H\alpha$: $\sigma_1^2 > \sigma_2^2$, ή αλλιώς για μονόπλευρο δεξιά έλεγχο $F \leq F_{1-\alpha/2}$ και $F \geq F_{\alpha/2}$ για $H\alpha$: $\sigma_1^2 \neq \sigma_2^2$, ή αλλιώς για δίπλευρο έλεγχο

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΩΝ

Έλεγχος καλής προσαρμογής

Ο έλεγχος καλής προσαρμογής ως προς την κανονική κατανομή

Οι υποθέσεις

Ηο: Το δείγμα προέρχεται από κανονικό πληθυσμό

Ηα: Το δείγμα <u>δεν</u> προέρχεται από κανονικό πληθυσμό

Η κατανομή

$$\mathcal{X}^2 = \sum_{i=1}^k rac{\left(O_i - E_i
ight)^2}{E_i}$$
 για $\mathbf{v} = \mathbf{k}$ -r βαθμούς ελευθερίας

Έλεγχος ανεξαρτησίας

Έλεγχος ανεξαρτησίας σε πίνακες κατάταξης $r \times c$

Οι υποθέσεις

Ηο: Τα δύο κριτήρια κατάταξης είναι ανεξάρτητα

Ηα: Τα δύο κριτήρια κατάταξης είναι εξαρτημένα

Οι θεωρητικές συχνότητες

$$E_{ij} = n \, \cdot \, p_{i.} \, \cdot \, \, p_{.j} = n \, \cdot p_{ij}$$

Η κατανομή

$$\chi^2 = \sum_i \sum_j \frac{(o_{ij} - E_{ij})^2}{Eij}$$
 για ν=(r-1) · (c-1) βαθμούς ελευθερίας

Έλεγχος ανεξαρτησίας σε πίνακες κατάταξης 2×2 (διόρθωση Yates)

Α κριτήριο κατάταξης	Β κριτήριο Επίπεδα κ		
Επίπεδα κατάταξης	1	2	Σύνολο
1	α	β	$\alpha+\beta$
2	γ	δ	$\gamma+\delta$
Σύνολο	α+γ	$oldsymbol{eta}$ + $oldsymbol{\delta}$	n

Η κατανομή

$$\mathcal{X}^2 = \frac{n \cdot (\left|\alpha \cdot \delta - \beta \cdot \gamma\right| - \frac{1}{2} \cdot n)^2}{(\alpha + \gamma) \cdot (\beta + \delta) \cdot (\alpha + \beta) \cdot (\gamma + \delta)} \quad \text{fix $v=(r-1) \cdot (c-1)$ babmous}$$
 elevberías

Έλεγχος ανεξαρτησίας σε πίνακες κατάταξης 2×c

Α κριτήριο						
κατάταξης		Επίπεδο	α κατάτο	αξης		
Επίπεδα κατάταξης	1	2			c	Σύνολο
1	α1	α2	•	•	$\alpha_{\rm c}$	A
2	β1	β_2	•	•	βc	В
Σύνολο	n_1	n_2	•	•	n_c	n

Η κατανομή

$$\mathcal{X}^2 = rac{\displaystyle\sum_{j} rac{lpha_{j}^2}{n_{j}} - rac{\mathbf{A}^2}{n}}{\displaystylerac{\mathbf{A}}{n} \ (1 - \displaystylerac{\mathbf{A}}{n})}$$
 για ν=(r-1) · (c-1) βαθμούς ελευθερίας

Έλεγχος ομοιογένειας

Οι υποθέσεις που ελέγχονται

Ηο: οι πληθυσμοί είναι ομοιογενείς

Ηα: οι πληθυσμοί είναι ετερογενείς

ή εναλλακτικά:

Ho:
$$\pi_{11} = \pi_{12} = \pi_{13} = \pi_{14}$$

$$\pi_{21} = \pi_{22} = \pi_{23} = \pi_{24}$$

$$\pi_{31} = \pi_{32} = \pi_{33} = \pi_{34}$$

Ηα: Μία τουλάχιστον διαφοροποίηση στις παραπάνω ισότητες

Κανονική κατανομή

					0	7				
Z	0.00	0.01	0 02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0 0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0 0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0 0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0 0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0 0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0 0018	0 0017	0 0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	C 0024	0 0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0 0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0028
-2.6	0.0047	0.0045	0 0044	0 0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0 0060	0 0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-24	0 0082	0 0080	0 0078	0 0075	0 0073	0.0071	0 0069	0.0068	0.0066	0.0064
-23	0 0107	0 0104	0 0102	0 0099	0 0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0 0139	0.0136	0 0132	0 0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0 0179	0.0174	0 0170	0 0166	0 0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0 0228	0.0222	C 0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-19	0.0287	0 028°	0 0274	0 0268	0 0262	0.0256	0.0250	0.0244	0 0239	0.0233
-18	0.0359	0 0352	0 0344	0 0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-17	0.0446	0 0436	0 0427	0 0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-16	0.0548	0 0537	0 0526	0 0516	0 0505	0.0495	0.0485	0.0475	0.0465	0.0455
-15	0.0668	0 0655	0 0643	0 0630	0 0618	0.0606	0.0594	0.0582	0.0571	0.0559
-14	0 0808	0 0793	C 0778	0 0764	0 0749	0 0735	0 0722	0 0708	0.0694	0.0681
-13	0 0968	0 0951	0 0934	0 0918	0 0901	0 0885	0.0869	0.0853	0.0838	0.0823
-12	0 1151	0.1131	0 1112	0 1093	0 1075	0.1056	0.1038	0.1020	0.1003	0.0985
-11	0 1357	0 1335	0 1314	0 1292	0 1271	0 1251	0 1230	0.1210	0.1190	0.1170
-10	0 1587	0 1562	0 1539	0 1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-09	0 1841	0 1814	0 1788	0 1762	0 1736	0 1711	0 1685	0.1660	0 1635	0.1611
-08	0 2119	0 2090	0 2061	C 2033	0 2005	0 1977	0 1949	0.1922	0.1894	0.1867
-07	0 2420	0 2389	0 2358	O 2327	0 2296	0 2266	0 2236	0.2206	0.2177	0.2148
-06	0 2743	0 2709	0 2676	O 2643	0 2611	0 2578	0 2546	0.2514	0 2483	0.2451
-05	0 3085	0 3050	0 3015	O 2981	0 2946	0.2912	0.2877	0.2843	0.2810	0.2776
-04	0 3446	0 3409	0 3372	0 3336	0 3300	0 3264	C 3228	0.3192	0.3156	0.3121
-03	0 3821	0 3783	0 3745	0 3707	0 3669	0 3632	O 3594	0.3557	0.3520	0.3483
-02	0.4207	0 4168	0 4129	0 4090	0 4052	0 4013	O 3974	0.3936	0.3897	0.3859
-01	0 4602	0 4562	0 4522	0 4483	0 4443	0 4404	O 4364	0.4325	0.4286	0.4247
-00	0 5000	0 4960	0 4920	0 4880	0 4840	0 4801	O 4761	0.4721	0.4681	0.4641
00	0 5000	0 5040	C 5080	0 5120	0 5160	0 5199	0 5239	0.5279	0 5319	0 5359
0:	0 5398	0 5438	0 5478	0 5517	0 5557	0 5596	0 5636	0 5675	0 5714	0 5753
02	0 5793	0 5832	0 5871	0 5910	0 5948	0 5967	0 6026	0 6064	0 6103	0 6141
03	0 6179	0 6217	C 6255	0 6293	0 6331	0.6368	0 6406	0.6443	0 6480	0 6517
04	0 6554	0 6591	C 6628	0 6664	0 6700	0 6736	0 6772	0 6808	0 6844	0 6879
0 5	0 6915	C 695C	0 6985	0 7019	C 7054	0 7088	0 7123	0 7157	0 7190	0.7224
0 6	0 7257	O 7291	0 7324	0 7357	0 7389	0 7422	0 7454	0 7486	0.7517	0.7549
0 7	0 758C	O 7611	0 7642	0 7673	G 7704	0 7734	0 7764	0 7794	0.7823	0.7852
0 8	0 7881	C 7910	0 7939	0 7967	0 7995	0 8023	0 8051	0.8078	0 8106	0.8133
0 9	C 8159	O 8186	C 8212	0 8238	0 8264	0 8289	0 8315	0.8340	0.3365	0.8389
10 1: 12 13	0 8413 0 8643 0 8849 0 9032 0 9192	0 8438 0 8665 0 8869 0 9049 0 9207	0 8461 0 8686 0 8888 0 9066 0 9222	0 8485 0 8708 0 8907 0 9082 0 9236	0 8508 0 8729 0 8925 0 9099 0 9251	0 8531 0 8749 0 8944 0 9115 0 9265	0 8554 0.8770 0 8962 0 9131 0 9278	0.8577 0.8790 0.8980 0.9147 0.9292	0.8599 0.8810 0.8997 0.9162 0.9306	0.8621 0.8830 0.9015 0.9177 0.9319
1 5	0 9332	0 9345	C 9357	C 937C	0 9382	0 9394	0 9406	0.9418	0 9429	0.9441
1 6	0 9452	0 9463	O 9474	O 9484	0 9495	0 9505	0 9515	0.9525	0.9535	0.9545
1 7	0 9554	0 9564	O 9573	O 9582	0 9591	0 9599	0 9608	0.9616	0.9625	0.9633
1 8	0 9641	0 9649	O 9656	O 9664	0 9671	0 9678	0 9686	0.9693	0 9699	0.9706
1 9	0 9713	0 9719	O 9726	G 9732	0 9738	0 9744	0 9750	0.9756	0.9761	0.9767
20	0 9772	0 9778	0 9783	0 9788	0 9793	0 9798	0 9803	0.9808	0.9812	0 9817
21	C 9821	0 9826	C 9830	C 9834	C 9838	0 9842	0 9846	0.9850	0.9854	0.9857
22	0 9861	0 9864	C 9868	0 9871	O 9875	0.9878	0 9881	0.9884	0.9887	0 9890
23	C 9893	0 9896	O 9896	0 9901	O 9904	0 9906	0 9909	0.9911	0.9913	0 9916
24	0 9918	0 9920	O 9922	0 9925	O 9927	0 9929	0 9931	0.9932	0.9934	0.9936
2 5	0 9938	0 9940	0 9941	0 9943	0 9945	0.9946	0.9948	0.9949	0 9951	0.9952
2 6	0 9953	0.9955	0 9956	0 9957	0 9959	0.9960	0.9961	0.9962	0.9963	0.9964
2 7	0 9965	0.9966	0 9967	0 9968	0 9969	0.9970	0.9971	0.9972	0.9973	0.9974
2 8	0 9974	0 9975	0 9976	0 9977	0.9977	0.9978	0.9979	0.9979	0 9980	0.9981
2.9	0 9981	0.9982	0 9982	0 9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0 9987	0 9987	0 9987	0 9988	0.9988	0.9989	0 9989	0.9989	0 9990	0.9990
3.1	0 9990	0 9991	0 9991	0 9991	0.9992	0.9992	0 9992	0.9992	0.9993	0.9993
3.2	0 9993	0 9993	0 9994	0 9994	0.9994	0.9994	0 9994	0.9995	0.9995	0.9995
3.3	0 9995	0 9995	0 9995	0 9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0 9997	0 9997	0 9997	0 9997	0.9997	0.9997	0 9997	0.9997	0.9997	0.9998

Πηγή: Walpole, R.E. (1976). Elementary statistical

Manuallan Man Vani

	* *	
1		
	0.10)
	13 36	2

								15.50	X-					
P	0.595	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005	P
1 2 3 4 5 5	0.04393 0.0100 0.0717 0.207 0.412	0.0 ³ 157 0.0201 0.115 0.297 0.554	0.0 ³ 982 0.0506 0.216 0.484 0.831	0.0 ² 3 0.103 0.352 0.711 1.145	0.0158 0.211 0.584 1.064 1.610	0.102 0.575 1.213 1.923 2.67	0.455 1.386 2.37 3.36 4.35	1.323 2.77 4.11 5.39 6.63	2.71 4.61 6.25 7.78 9.24	3.84 5.99 7.81 9.49 11.07	5.02 7.38 9.35 11.14 12.83	6.63 9.21 11.34 13.28 15.09	7.88 10.60 12.84 14.86 16.75	
	0.676 0.989 1.344 1.735 2.16 2.60	0.872 1.239 1.646 2.09 2.56	1.237 1.690 2.18 2.70 3.25	1.635 2.17 2.73 3.33 3.94	2.20 2.83 3.49 4.17 4.87	3.45 4.25 5.07 5.90 6.74	5.35 6.35 7.34 8.34 9.34	7.84 9.04 10.22 11.39 12.55	10.64 12.02 13.36 14.68 15.99	12.59 14.07 15.51 16.92 18.31	14.45 16.01 17.53 19.02 20.5	16.81 18.48 20.1 21.7 23.2	18.55 20.3 22.0 23.6 25.2	
	2.60 3.07 3.57. 4.07 4.60 5.14	3.05 3.57 4.11 4.66 5.23	3.82 4.40 5.01 5.63 6.26	4.57 5.23. 5.89 6.57 7.26	5.58 6.30 7.04 7.79 8.55	7.58 8.44 9.30 10.17 11.04	10.34 11.34 12.34 13.34 14.34	13.70 14.85 15.98 17.12 18.25	17.28 18.55 19.81 21.1 22.3	19.68 21.0 22.4 23.7 25.0	21.9 23.3 24.7 26.1 27.5	24.7 26.2 27.7 29.1 30.6	26.8 28.3 29.8 31.3 32.8	
	5.70 6.26 6.84 7.43 8.03	5.81 6.41 7.01 7.63 8.26	6.91 7.56 8.23 8.91 9.59	7.96 8.67 9.39 10.12 10.85	9.31 10.09 10.86 11.65 12.44	11.91 12.79 13.68 14.56 15.45	15.34 16.34 17.34 18.34 19.34	19.37 20.5 21.6 22.7 23.8	23.5 24.8 26.0 27.2 28.4	26.3 27.6 28.9 30.1 31.4	28.8 30.2 31.5 32.9 34.2	32.0 33.4 34.8 36.2 37.6	34.3 35.7 37.2 38.6 40.0	
	8.64 9.26 9.89 10.52	8.90 9.54 10.20 10.86 11.52	10.28 10.98 11.69 12.40 13.12	11.59 12.34 13.09 13.85 14.61	13.24 14.04 14.85 15.66 16.47	16.34 17.24 18.14 19.04 19.94	20.3 21.3 22.3 23.3 24.3	24.9 26.0 27.1 28.2 29.3	29.6 30.8 32.0 33.2 34.4	32.7 33.9 35.2 36.4 37.7	35.5 36.8 38.1 39.4 40.6	38.9 40.3 41.6 43.0 44.3	41.4 42.8 44.2 45.6 46.9	
	11.16 11.81 12.46 13.12 13.79	12.20 12.88 13.56 14.26 14.95	13.84 14.57 15.31 16.05 16.79	15.38 16.15 16.93 17.71 18.49	17.29 18.11 18.94 19.77 20.6	20.8 21.7 22.7 23.6 24.5	25.3 26.3 27.3 28.3 29.3	30.4 31.5 32.6 33.7 34.8	35.6 36.7 37.9 39.1 40.3	38.9 40.1 41.3 42.6 43.8	41.9 43.2 44.5 45.7 47.0	45.6 47.0 48.3 49.6 50.9	48.3 49.6 51.0 52.3 53.7	
	20.7 28.0 35.5 43.3	22.2 29.7 37.5 45.4	24.4 32.4 40.5 48.8	26.5 34.8 43.2 51.7	29.1 37.7 46.5 55.3	33.7 42.9 52.3 61.7	39.3 49.3 59.3 69.3	45.6 56.3 67.0 77.6	51.8 63.2 74.4 85.5	55.8 67.5 79.1 90.5	59.3 71.4 83.3 95.0	53.7 76.2 88.4 100.4	66.8 79.5 92.0 104.2	
	51.2 59.2 67.3 2.58	53.5 61.8 70.1 -2.33	57.2 65.6 74.2 -1.96	60.4 69.1 77.9	64.3 73.3 82.4	71.1 80.6 90.1	79.3 89.3 99.3	88.1 98.6 109.1	96.6 107.6 113.5	101.9 113.1 124.3	106.5 118.1 129.6	112.3 124.1 135.8	116.3 128.3 140.2	
			-1.70	-1.64	-1.28	-0.674	0.000	0.674	1.282	1.645	1.960	2.33	2.58	

Πηγή: Parsons, R. (1974). Statistical analysis: A decision making approach, Harper and Row, New York.

Κατανομή τ

L			Tibavot	ητα μιας	αριθμη	τικά μεγ	ζαλύτερτ	ης τιμής	t
8	0.5	0.4	0.3	0.2	0. 1	0.05	0.02	0.01	0.001
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	
3	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841	12.941
4	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	.727	.920	1.156	1.476	2015	2.571	3.365	4.032	6.859
6	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499	5.405
8	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	.703	.383	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	.694	.370	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	692	.368		-1.345		2.145	2.624	2.977	4.140
15	.69i	.866	1.074	1.341	1.753	2.131	2,602	2947	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.567	2.898	3:965
18	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767
24	.685	.857	1.059	1.313	1.711	2.064	2.492	2797	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2485	2787	3.725
- 26	.684	.356	1.053	1.315	1.706	2.056	2.479	2.779	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.462	2756	3.659
(30)	_683	.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646
40	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704	-3.551
60	.679	.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460
120	.677	.845	1.041	1.289	1.653	1.980	2.358	2617	3.373
8	.674	.842	1.036	1.282	1.645	1.960	2.326	2576	3.291
1	0.25	0.2	0.15	0.1	0.05	0.025	0.01	0.005	0.0005

Πηγή: Steel, R.G.D and J. H. Torrie, (1980). Principles and procedures of statistics: A biometrical approach, McGraw-Hill, Kogakusha, Tokyo.

Κατανομή F

11	Т	V.								
v ₂	Р	I	2	3	4	V ₁	1		1 -	
1	.100 .050 .025 .010 .005	39.86 161.4 647.8 4052 16211	49.50 199.5 799.5 4999.5 20000	53.59 215.7 864.2 5403 21615	55,83 224.6 899.6 5625 22500	57.24 230.2 921.8 5764 23056	58.20 234.0 937.1 5859 23437	58.91 236.8 948.2 5928	59.44 238.9 956.7 5982	59.86 240.5 963.3 6022
2	.100 .050 .025 .010 .005	8.53 18.51 38.51 96.50 198.5	9.00 19.00 39.00 99.00 199.0	9.16 19.16 39.17 99.17 199.2	9.24 19.25 39.25 99.25	9.29 19.30 39.30 99.30 199.3	9.33 19.33 39.33 99.33 199.3	9.35 19.35 39.36 99.36 199.4	9.37 19.37 39.37 99.37 199.4	9.38 19.38 39.39 99.39 199.4
3	.100 .050 .025 .010 .005	5.54 10.13 17.44 34.12 55.55	5.46 9.55 16.04 30.82 49.80	5.39 9.28 15.44 29.46 47.47	5.34 9.12 15.10 28.71 46.19	5.91 9.01 14.88 28.24 45.39	5.28 8.94 14.73 27.91 44.84	5.27 6.89 14.62 27.67 44.43	5.25 8.85 14.54 27.49 44.13	5.24 8.81 14.47 27.35 43.88
5	.100 .050 .025 .010 .005	4.54 7.71 12.22 21.20 31.33	4.32 6.94 10.65 18.00 26.28	4.19 6.59 9.98 16.69 24.26	4.11 6.39 9.60 15.98 -23.15	4.05 6.26 9.36 15.52 22.46	4.01 6.16 9.20 15.21 21.97	3.98 6.09 9.07 14.98 21.62	3.95 6.04 8.98 14.80 21.35	3.94 6.00 8.90 14.66 21.14
	.050 .025 .010 .005	4.06 6.61 10.01 16.26 22.78	3.78 5.79 8.43 13.27 18.31	3.62 5.41 7.76 12.06 16.53	3.52 5.19 7.39 11.39 15.56	3.45 5.05 7.15 10.97 14.94	3.40 4.95 6.98 10.67 14.51	3.37 4.88 6.85 10.46 14.20	3.34 4.82 6.76 10.29 13.96	3.32 4.77 6.68 10.16 13.77
7	.050 .025 .010 .005	3.78 5.99 8.81 13.75 18.63	3.46 5.14 7.26 10.92 14.54	3.29 4.76 6.60 9.78 12.92	3.18 4.53 6.23 9.15 12.03	3.11 4.39 5.99 8.75 11.46	3.05 4.28 5.82 8.47 11.07	3.01 4.21 5.70 8.26 10,79	2.98 4.15 5.60 8.10 10.57	2.96 4.10 5.52 7.98 10.39
To a	.100 .050 .025 .010 .005	3.59 5.59 8.07 12.25 16.24	3.26 4.74 6.54 9.55 12.40	3.07 4.35 5.89 8.45 10.88	2.96 4.12 5.52 7.85 10.05	2.88 3.97 5.29 7.46 9.52	2.83 3.87 5.12 7.19 9.16	2.78 3.79 4.99 6.99 8.89	2.75 3.73 4.90 6.84 8.68	2.72 3.68 4.82 6.72
	.100 .050 .025 .010 .005	3.46 5.32 7.57 11.26 14.69	3.11 4.46 6.06 8.65 11.04	2.92 4.07 5.42 7.59 9.60	2.81 3.84 5.05 7.01 8.81	2.73 3.69 4.82 6.63 8.30	2.67 3.58 4.65 6.37 7.95	2.62 3.50 4.53 6.18 7.69	2.59 3.44 4.43 6.03	8.51 2.56 3.39 4.36 5.91
9	.100 .050 .025 .010 .005	3.36 5.12 7.21 10.56 13.61	3.01 4.26 5.71 8.02 10.11	2.81 3.86 5.08 6.99 8.72	2.69 3.63 4.72 6.42 7.96	2.61 3.48 4.48 6.06 7.47	2.55 3.37 4.32 5.80 7.13	2.51 3.29 4.20 5.61 6.88	7.50 2.47 3.23 4.10 5.47	7.34 2.44 3.18 4.03 5.35
10	.100 .050 .025 .010 .005	3.29 4.96 6.94 10.04 12.83	2.92 4.10 5.46 7.56 9.43	2.73 3.71 4.83 6.55 8.08	2.61 3.48 4.47 5.99 7.34	2.52 3.33 4.24 5.64 6.87	2.46 3.22 4.07 5.39 6.54	2.41 3.14 3.95 5.20 6.30	2.38 3.07 3.85 5.06 6.12	6.54 2.35 3.02 3.78 4.94
11	.100 .050 .025 .010	3.23 4.84 6.72 9.65 12.23	2.86 3.98 5.26 7.21 8.91	2.66 3.59 4.63 6.22 7.60	2.54 3.36 4.28 5.67 6.88	2.45 3.20 4.04 5.32 6.42	2.39 3.09 3.88 5.07 6.10	2.34 3.01 3.76 4.89 5.86	2.30 2.95 3.66 4.74 5.68	5.97 2.27 2.90 3.59 4.63
12	.100 .050 .025 .010 .005	3.18 4.75 6.55 9.33 11.75	2.81 3.89 5.10 6.93 8.51	7.61 3.49 4.47 5.95 7.23	2.48 3.26 4.12 5.41 6.52	2.59 3.11 3.89 5.06 6.07	2.33 3.00 3.73 4.82 5.76	2.28 2.91 3.61 4.64 5.52	2.24 2.85 3.51 4.50 5.35	5.54 2.21 2.80 3.44 4.39 5.20
13	.100 .050 .025 .010	3.14 4.67 6.41 9.07 11.37	2.76 3.81 4.97 6.70 8,19	2.56 3.41 4.35 5.74 6.93	2.43 3.18 4.00 5.21 6.23	2.35 3.03 3.77 4.86 5.79	2.28 2.92 3.60 4.62 5.48	2.23 2.83 3.48 4.44 5.25	2.20 2.77 3.39 4.30 5.08	2.16 2.71 3.31 4.19 4.94
14	.100 .050 .025 .010 .005	3.10 4.60 6.30 8.86 11.06	2.73 3.74 4.86 6.51 7.92	2.52 3.34 4.24 5.56 6.68	2.39 3.11 3.89 5.04 6.00	2.31 2.96 3.66 4.69 5.56	2.24 2.85 3.50 4.46 5.26	2.19 2.76 3.36 4.28 5.03	2.15 2.70 3.29 4.14 4.86	2.12 2.65 3.21 4.03 4.72

ILULX / LATON