

Semester Two Examination, 2019

Question/Answer booklet

MATHEMATICS APPLICATIONS UNITS 3 AND 4

Section One: Calculator-free

If required by your examination administr	ator, please
place your student identification label in	n this box

Student number:	In figures	
	In words	
	Your name	

Time allowed for this section

Reading time before commencing work: five minutes Working time: fifty minutes

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	8	8	50	52	35
Section Two: Calculator-assumed	13	13 100		98	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet preferably using a blue/black pen. Do not use erasable or gel pens.
- 3. You must be careful to confine your answer to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 5. It is recommended that you do not use pencil, except in diagrams.
- 6. Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

Section One: Calculator-free

35% (52 Marks)

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time: 50 minutes.

Question 1 (4 marks)

Graph G is shown below.

(a) State the length of the shortest cycle in G and list the vertices in this cycle. (2 marks)

(b) State the length of the longest Hamiltonian path in G and list all possible starting vertices for this path. (2 marks)

(2 marks)

Question 2 (6 marks)

The weights on the graph below are the costs, in hundreds of dollars, to connect adjacent offices (represented by the vertices) to a new IT system.

- (a) Cleary indicate the minimum spanning tree on the graph above.
- (b) Determine the cost of connecting the offices to the new IT system using the minimum spanning tree. (2 marks)

(c) An IT consultant recommends that the new system must include a connection between office A and office B, and between office A and office B. Determine the minimum cost of connecting all the offices using a spanning tree that includes these two edges. (2 marks

Question 3 (7 marks)

(a) Graph G_1 below has 5 vertices.

(i) Construct an adjacency matrix from G_1 .

(2 marks)

(ii) Give two reasons that G_1 is not simple.

(2 marks)

(b) Graph G_2 below has 6 edges.

- (i) Without adding any more vertices, add the minimum possible number of edges to G_2 so that it is Eulerian and Hamiltonian. (2 marks)
- (ii) State the difference in length of the Eulerian trail and Hamiltonian cycle in the modified G_2 . (1 mark)

Question 4 (6 marks)

The time series plot below shows the number of trees sold by a garden centre over 15 consecutive days at the start of September. Day 1 was a Sunday.

- (a) On days 16, 17 and 18 the centre sold 28, 33 and 36 trees respectively. Use this data to complete the time series plot. (2 marks)
- (b) Describe the trend and seasonality displayed in the time series plot. (2 marks)

(c) Besides trend and seasonality, fluctuations within a time series are often due to a third factor. Briefly discuss this factor. (2 marks)

Question 5 (7 marks)

The digraph below shows the possible routes that a car can take to reach freeway entry F after they leave carpark A. The weights on each edge represent the maximum number of cars that can travel between adjacent intersections (vertices) every minute.

(a) Determine the maximum number of cars that can travel from A to F every minute. (3 marks)

- (b) Determine, with justification, the maximum increase in the flow of cars every minute from *A* to *F* that could be achieved by adding a new route
 - (i) from A to D that can carry up to 40 cars per minute. (2 marks)

(ii) from C to F that can carry up to 30 cars per minute. (2 marks)

Question 6 (7 marks)

The quarterly sales of a drilling machine are shown in the table below.

Year	2017			2018				2019
Quarter	2	3	4	1	2	3	4	1
Sales	24	22	27	30	23	18	24	_

(a) Calculate the 4-point centred moving average for quarter 1 of 2018. (2 marks)

(b) Determine the sales for quarter 1 of 2019 given that the 3-point moving average for quarter 4 of 2018 was 25. (2 marks)

(c) Moving averages are often calculated to smooth out time series data. Explain why this is useful. (1 mark)

(d) The figures in the table clearly indicate that for one of the seasons, the deseasonalised sales will be higher than the actual sales. Name this season and explain your answer.

(2 marks)

Question 7 (7 marks)

A company sells water coolers and each day allocates staff to call businesses and make sales in its four sales regions. One staff member is assigned to one region for the whole day.

One day, only three sales staff turn up to work and the manager must decide how to allocate them to maximise the total number of sales made. The table below shows the expected number of sales each staff member will make in each region.

		Sales Region					
		P	Q	R	S		
	Jay	33	37	39	35		
Staff	Kai	24	25	26	21		
	Leo	39	38	40	38		

(a) Show use of the Hungarian algorithm to determine the optimum allocation of staff to regions in order to maximise sales on this day. (6 marks)

(b) State the total number of sales on this day using your allocation from (a). (1 mark)

Question 8 (8 marks)

A project consists of activities A_1 to A_{10} . The duration and immediate predecessors for each activity are shown in the table below.

Activity	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A ₁₀
Duration (minutes)	15	12	8	6	11	12	10	9	12	8
Immediate predecessors	_	_	A_1	A_1	A_2	A_2	A_1	A_3, A_4	A_{3}, A_{4}	A_5, A_6, A_7

(a) Complete the network below to represent the durations and interdependencies of all the activities in the project. (2 marks)

- (b) Determine the earliest starting time for A_{10} . (1 mark)
- (c) List, in order, the activities that lie on the critical path and state the minimum completion time for the project. (2 marks)

- (d) Determine the latest starting time for A_5 . (1 mark)
- (e) If the duration of A_5 was increased by 5 minutes, what effect, if any, would this have on the critical path and minimum completion time? (2 marks)

Supplementary page

Question number: _____