WHAT IS CLAIMED IS:

1	1. An automaton configured to perform a task, the automaton comprising:
2	a communication interface to communicate positional information with one or
3	more anchor points provided within a given environment, the positional information enabling
4	generation of mapping information of the given environment;
5	a motor to provide the automation with mobility;
6	a memory to store the mapping information; and
7	a controller to control the motor to enable the automaton to perform the task in
8	the given environment using a task route that has been generated using the mapping
9	information.
1	2. The automaton of claim 1, further comprising:
2	a sensor to detect an object provided within the given environment.
1	3. The automaton of claim 1, wherein the controller is configured to
2	generate the mapping information using the positional information.
1	4. The automaton of claim 1, wherein the communication interface and
2	anchor points are Ultra Wide Band transceivers.
1	5. The automaton of claim 4, wherein the mapping information is
2	generated remotely from the automaton.
1	6. The automaton of claim 1, wherein the automaton is an automatic
2	cleaner.
1	7. The automaton of claim 1, wherein the automaton is configured to
2	perform at least one of the following tasks: sweeping, vacuuming, mopping, mowing, and
3	painting.
1	8. An automated system for performing a task in a given environment, the
2	system comprising:
3	a plurality of anchor points configured to transmit and receive Ultra Wide
4	Band ("UWB") signals, the plurality of anchor points provided within the environment to
5	define a first area wherein the task is to be performed; and
6	an automaton configured to perform the task, the automaton including:

7	a communication interface configured to transmit and receive the
8	UWB signals to and from the anchor points,
9	a controller configured to process the UWB signals and generate
10	mapping information of the environment using the UWB signals,
11	a memory to store the mapping information, and
12	a motor configured to provide the automation with mobility.
1	9. The system of claim 8, wherein the controller is configured to generate
2	a task route for performing the task in the given environment using the mapping information.
2	a task route for performing the task in the given environment using the mapping information.
1	10. The system of claim 8, wherein the anchor points are provided with
2	unique identification numbers.
1	11. The system of claim 8, wherein the anchor points are used to define a
1	•
2	second area within the environment that is excluded from the first area, so that the task is not
3	performed within the second area.
1	12. The system of claim 8, wherein the mapping information includes a
2	task route for performing the task, or positional information on one or more objects provided
3	within the first area, or both.
1	13. A method for performing a task within an environment using an
2	automaton, the method comprising:
3	generating first mapping information of a first area defined within the
4	environment using positional information relating to the first area, where the positional
5	information is obtained by using signals exchanged between the automaton and one or more
6	anchor points provided within the environment; and
7	controlling the automaton to navigate within the first area to perform the task
8	using second mapping information of the first area.
1	14. The mostle dief claim 12 and coming the condensation are accorded a mission
1	14. The method of claim 13, wherein the anchor points are provided within
2	the environment to define the first area.
1	15. The method of claim 13, further comprising:
2	determining position of an obstacle encountered within the first area using a
3	communication interface provided in the automaton

I	16. The method of claim 15, wherein the positional information is derived
2	using the Ultra Wide Band technology, wherein the positional information includes
3	information about the position of the obstacle.
1	17. The method of claim 13, further comprising:
2	generating a first task route using the first mapping information, the first task
3	route being used by the automaton to navigate within the first area to perform the task.
1	18. The method of claim 17, wherein the second mapping information
2	includes the first task route.
1	19. The method of claim 17, further comprising:
2	updating the first mapping information when a given obstacle is encountered
3	by the automaton while performing the task within the first area; and
4	re-routing the automaton based on the updated first mapping information.
1	20. The method of claim 19, further comprising:
2	categorizing the given obstacle as a temporary obstacle when the given
3	obstacle is first encountered; and
4	categorizing the given obstacle as a stationary obstacle when the given
5	obstacle is found in the same location while the automaton is performing the task at a later
6	time.
1	21. A method for using an automaton, the method comprising:
2	controlling the automaton to perform a first task within a first area defined by
3	a plurality of anchor points, the anchor points configured to transmit positional information to
4	the automaton;
5	generating first mapping information of the first area using the positional
6	information received from the anchor points, the first mapping information including
7	information on a location of a first obstacle provided within the first area;
8	thereafter, controlling the automaton to navigate and perform a second task
9	within the first area using the first mapping information; and
10	generating second mapping information if a second obstacle is encountered
11	while performing the second task.

1	22. The method of claim 21, further comprising:
2	determining power available to the automaton, wherein the second mapping
3	information is generated according to the available power.
1	23. The method of claim 21, further comprising:
2	determining power available to the automaton;
3	calculating whether the power determined to be available is sufficient to
4	complete an initial task route obtained according to the first or second mapping information;
5	and
6	generating a substitute task route if the calculation indicates that the available
7	power is insufficient to perform the initial task route.
1	24. The method of claim 23, wherein the substitute task route ends
2	proximate a power supply.