Introduction

Rank&Sele

LOUDS

Primitives

Second to

Perspective

Dynamic dat

Principle

Simply typed

Proving tree algorithms for succinct data structures

Reynald Affeldt ¹ Jacques Garrigue ²
Xuanrui Qi ² Kazunari Tanaka ²

 $^1\mathrm{National}$ Institute of Advanced Industrial Science and Technology, Japan $^2\mathrm{Graduate}$ Scool of Mathematics, Nagoya University

September 9, 2019 https://github.com/affeldt-aist/succinct

Introduction

Succinct Data Structures

- Representation optimized for both time and space
- "Compression without need to decompress"
- Much used for Big Data
- Application examples
 - Compression for Data Mining
 - Google's Japanese IME

Introduction
Rank&Select

Rank&Select Plan

Primitives
First attempt
Second try

Dynamic data Principle

Principle
Simply typed
Perspectives

Rank and Select

To allow fast access, two primitive functions are heavily optimized. They can be computed in constant time.

• rank(i) = number of 1's up to position i

• select(i) = position of the i^{th} 1: rank(select(i)) = i

bitstring	10	01	0100	1110	0100	1101	0000	1111	0100	1001	1001	0100	0100	0101	0101	10	
indices	0		4	8	12	16	20	24	28	32	36	40	44	48	52	n-2	= 56
select(2) = 4						select(17) = 36			select(26) = 57								

Certified implementation of rank [Tanaka A., Affeldt, Garrigue 2016]

Introduction

Rank&Select

Plan

LOUDS

Dutantations

First attemp

Second try Perspectives

Dynamic dat

Principle

Principle
Simply typed
Perspectives

```
Coq definitions
```

```
rank counts occurrences of (b : T).
 Definition rank i (s : list T) :=
    count_mem b (take i s).
select is its (minimal) inverse.
 Definition select i (s : list T) : nat :=
    index i [seq rank k s \mid k \le iota \emptyset (size s).+1].
pred s y is the last b before y (included).
 Definition pred s y := select (rank y s) s.
succ s y is the first b after y (included).
 Definition succ s y := select (rank y.-1 s).+1 s.
Getting the indexing right is challenging.
Here indices start from 1, but there is no fixed convention.
```

Today's story

Introduction

Rank&Select

LOUD

Primitives
First attempt
Second try
Perspectives

Dynamic dat

Principle
Simply typed
Perspectives

Trees in Succinct Data Structures

Featuring two views

Tree as sequence Encode the structure of a tree as a bit sequence, providing efficient navigation through rank and select

Sequence as tree Balanced trees (here red-black) can be used to encode dynamic bit sequences

- Both implemented and proved in Coq/SSReflect
- They can be combined together

Structure

Rank&Select

Primitives

First attemp

Perspectives

Dynamic of

Principle
Simply typed

L.O.U.D.S.

Level-Order Unary Degree Sequence [Navarro 2016, Chapter 8]

- Unary coding of node arities, put in breadth-first order
- Each node of arity a is represented by a 1's followed by 0
- The structure of a tree uses just 2n bits
- Useful for dictionaries (e.g. Google Japanese IME)

Introduction

Rank&Selec

LOUDS

.

Primitive

- - - - -

Perspective

Dynamic data

Dynamic data

Principle

Simply typed Perspectives

What is a Japanese IME?

Incremental input

 Select a word in the dictionary according to a prefix

古池や蛙飛込む水の音

Primitivos

Implementation of primitives

Navigation primitives work by moving inside the LOUDS

The basic operations are

- Position of the ith child of a node
- Position of its parent
- Number of children

```
Variable B : list bool. (* our LOUDS *)
Definition LOUDS_child v i :=
  select false (rank true (v + i) B).+1 B.
Definition LOUDS_parent v :=
 pred false B (select true (rank false v B) B).
Definition LOUDS children v :=
  succ false B v.+1 - v.+1.
```

Primitives

LOUDS navigation

LOUDS_parent v := pred false B (select true (rank false v B)

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6The position w' of the node containing this branch.

Primitives

LOUDS navigation

LOUDS_parent v := pred false B (select true (rank false v B)

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6The position w' of the node containing this branch.

Introduction

Rank&Select

LOUDS

Primitives

C----da--

Perspectives

Dynamic dat

Principle Simply typed LOUDS navigation

LOUDS_parent v := pred false B (select true (rank false v B))

- rank false v B = 5 for v = 14The number of nodes i before position v.
- select true i B = 6 for i = 5
 The position w of the branch leading to this node.
- pred false B w = 4 for w = 6
 The position w' of the node containing this branch.

Primitives

LOUDS navigation

LOUDS_parent v := pred false B (select true (rank false v B)

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6The position w' of the node containing this branch.

Introduction

Rank&Select

LOUDS

First attempt Second try Perspectives

Dynamic dat Principle

Simply typed Perspectives

Functional correctness

Assume an isomorphism LOUDS_position between valid paths in the tree, and valid positions in the LOUDS.

Definition LOUDS_position (t : tree A) (p : list nat) : nat.

Variable t : tree A.

Our 3 primitives shall satisfy the following invariants.

```
Let B := LOUDS t.
Theorem LOUDS_childE (p : list nat) (x : nat) :
  valid_position t (rcons p x) ->
  LOUDS_child B (LOUDS_position t p) x = LOUDS_position t (rcons p x).
```

```
Theorem LOUDS_parentE (p : list nat) (x : nat) : valid_position t (rcons p x) -> LOUDS_parent B (LOUDS_position t (rcons p x)) = LOUDS_position t p.
```

```
Theorem LOUDS_childrenE (p : list nat) : valid\_position \ t \ p \ -> \\ children \ t \ p \ =  LOUDS\_children \ B \ (LOUDS\_position \ t \ p).
```

How do we prove it?

First attempt

Introduction

Rank&Select

LOUDS

Primitives
First attempt

Second try

Dynamic data

Principle Simply typed Define traversal by recursion on the height of the tree.

```
Fixpoint LOUDS' n (s : forest A) :=
   if n is n'.+1 then
    map children_description s ++ LOUDS' n' (children_of_forest s)
   else [::].
Definition LOUDS (t : tree A) := flatten (LOUDS' (height t) [:: t]).

Definition LOUDS_position (t : tree A) (p : list nat) :=
   lo_index t p + (lo_index t (rcons p 0)).-1.
(* number of 0's number of 1's *)

Theorem LOUDS_positionE t (p : list nat) :
   let B := LOUDS t in valid_position t p ->
   LOUDS_position t p = foldl (LOUDS_child B) 0 p.
```

lo_index t p is the number of valid paths preceding p in breadth first order.

Introduction

Rank&Sele

LOUDS

Primitives

First attempt

Second try

Perspective

Dynamic data

Principle

Simply typed

First attempt

Success! Could prove the correctness of all primitives.

First attempt

Rank&Select

Primitives
First attempt

Second try Perspectives

Dynamic data Principle Simply typed

Principle
Simply typed
Perspectives

Success! Could prove the correctness of all primitives.

Various problems

- Breadth first traversal does not follow the tree structure
- Cannot use structural induction
- No natural correspondence to use in proofs
- Oh, the indices!

As a result

- LOUDS related proofs took more than 800 lines
- Many lemmas had proofs longer than 50 lines
- There should be a better approach...

Introducti Rank&Select

Primitives

Second try
Perspectives

Dynamic dat

Principle Simply typed

Second try

- Introduce traversal up to a path : lo_traversal_lt Generalization of lo_index, returning a list
- For easy induction, work on forests rather than trees
- A generating forest need not be on the same level!

Introduction

Rank&Select

LOUE

Primitives

Second try

Perspectives

Dynamic dat Principle

Principle
Simply typed
Perspectives

Traversal and Remainder

Parameters of the traversal

```
Variables (A B : Type) (f : tree A -> B).
```

Traversal of the nodes preceding path p

```
\label{list B.} \mbox{Fixpoint lo\_traversal\_lt (s : forest A) (p : list nat) : list B.}
```

Generating forest for nodes following path p, aka fringe

```
Fixpoint lo_fringe (s : forest A) (p : list nat) : forest A.
```

Relation between traversal and fringe

```
Lemma lo_traversal_lt_cat s p1 p2 :
  lo_traversal_lt s (p1 ++ p2) =
  lo_traversal_lt s p1 ++ lo_traversal_lt (lo_fringe s p1) p2.
```

All paths lead to Rome, i.e. complete traversals are all equal

```
Theorem lo_traversal_lt_max t p :
size p >= height t ->
lo_traversal_lt [:: t] p = lo_traversal_lt [:: t] (nseq (height t) 0).
```

Introduction Rank&Select

LOUDS

Primitivos

First attem

Second try Perspectives

Dynamic data Principle Simply typed

Path, index, and position in LOUDS

Index of a node in level-order, using the traversal

```
Definition lo_index s p := size (lo_traversal_lt id s p).
```

LOUDS_1t generates the LOUDS as a path-indexed traversal

```
Definition LOUDS_lt s p :=
  flatten (lo_traversal_lt children_description s p).
```

Use it to define the position of a node in the LOUDS

```
\label{eq:definition LOUDS_position s p := size (LOUDS_lt s p).} \\
```

Main lemmas: relate position in LOUDS and index in traversal.

Suffix p' allows completion to the whole LOUDS t.

```
Lemma LOUDS_position_select s p p' :
    valid_position (head dummy s) p ->
    LOUDS_position s p = select false (lo_index s p) (LOUDS_lt s (p ++ p')).

Lemma lo_index_rank s p p' n :
    valid_position (head dummy s) (rcons p n) ->
    lo_index s (rcons p n) =
    size s + rank true (LOUDS_position s p + n) (LOUDS_lt s (p ++ n :: p')).
```

LOUDS perspectives

Introduction

Rank&Select

LOUI

Primitives First atter

Second try

Perspectives

Dynamic data

Principle
Simply typed

Advantages of the new approach

- Could prove naturally all invariants
- All proofs are by induction on paths
- Common lemmas arise naturally
- Only about 500 lines in total, long proofs about 20 lines

Remaining problems

- There are still longish lemmas (lo_index_rank, ...)
- Paths all over the place

Future work

Can we apply that to other breadth-first traversals?

Dynamic data

Dynamic succinct data structures

- Succinct data that can be updated (insertion/deletion)
- Concrete use cases: e.g. update in a dictionary
- Optimal static representation do not support updates. We cannot have both constant time rank/select and efficient insertion/deletion
- Using balanced trees, all operations are O(log n)

[Navarro 2016, Chapter 12]

Introduction

Rank&Select

LOUD!

_

Second try

Perspectives

Dynamic da

Principle

Principle Simply typed

Dynamic bit sequence as tree

- num is the number of bits in the left subtree
- ones is the number of 1's in the left subtree

structures

Introduction

Rank&Selec

LOUDS

_

F. . ..

Second try

Perspectives

Dynamic d

Principle

Principle

Perspectives

Implementation

- Used red-black trees to implement
 - complexity is the same for all balanced trees
 - easy to represent in a functional style
 - already several implementations in CoQ
 - however we need a different data layout with new invariants, so we had to reimplement
- Two implementations using types differently
 - 1 simply typed implementations, with invariants expressed as separate theorems
 - 2 dependent types, directly encoding all the required invariants (explained yesterday in Coq workshop)
- We implemented rank, select, insert and delete

Proving tree algorithms for succinct data

Introduction Rank&Select

LOUDS

LOUDS

Primitives
First attempt

Second try Perspectives

Dynamic data Principle

Principle Simply typed

Simply typed Perspectives

Simply typed implementation

A red-black tree for bit sequences

```
Inductive color := Red | Black.
Inductive btree (D A : Type) : Type :=
| Bnode of color & btree D A & D & btree D A
| Bleaf of A.
Definition dtree := btree (nat * nat) (list bool).
```

The meaning of the tree is given by dflatten

```
Fixpoint dflatten (B : dtree) :=
  match B with
  | Bnode _ 1 _ r => dflatten 1 ++ dflatten r
  | Bleaf s => s
  end.
```

Invariants on the internal representation

Rank&Select

LOUDS

Primitives First attemp

Second try
Perspectives

Principle

Simply typed

Basic operations

```
Fixpoint drank (B : dtree) (i : nat) := match B with
  \mid Bnode 1 (num. ones) r =>
    if i < num then drank l i else ones + drank r (i - num)
  | Bleaf s => rank true i s
  end.
Lemma drankE (B : dtree) i :
  wf_dtree B -> drank B i = rank true i (dflatten B).
Proof. move=> wf; move: B wf i. apply: dtree_ind. (* ... *) Oed.
Fixpoint dselect_1 (B : dtree) (i : nat) := match B with
    Bnode 1 (num. ones) r \Rightarrow
    if i <= ones then dselect 1 l i else num + dselect 1 r (i - ones)
  | Bleaf s => select true i s
  end.
Lemma dselect 1E B i :
  wf_dtree B -> dselect_1 B i = select true i (dflatten B).
```

where dtree_ind is a custom induction principle.

All proofs are only a few lines long.

Introduction

Rank&Select

LOUDS

Primitives

F:

Second try

Perspective

Dynamic di

Principle

Simply typed Perspectives

Insertion

```
Definition dins leaf s b i :=
  let s' := insert1 s b i in (* insert bit b in s at position i *)
  if size s + 1 == high then
    let n := size s' \%/ 2 in
    let sl := take n s' in let sr := drop n s' in
    Bnode Red (Bleaf _ sl) (n, count_mem true sl) (Bleaf _ sr)
  else Bleaf s'.
Fixpoint dins (B : dtree) b i : dtree := match B with
    Bleaf s => dins leaf s b i
    Bnode c 1 d r \Rightarrow
      if i < d.1 then balanceL c (dins 1 b i) r (d.1.+1, d.2 + b)
                 else balanceR c l (dins r b (i - d.1)) d
  end.
Definition dinsert B b i : dtree := blacken (dins B b i).
```

The real work is in balanceL/balanceR

Introduction
Rank&Select
Plan

Primitives

First attempt Second try Perspectives

Principle

Simply typed Perspectives

Balancing

- Number of cases is the main difficulty for red-black trees
- Expanding balanceL generates 11 cases
- Following SSReflect style, we avoid opaque automation

```
Ltac decompose_rewrite :=
  let H := fresh "H" in
  case/andP || (move=>H; rewrite ?H ?(eqP H)).
Lemma balanceL_wf c (1 r : dtree) :
  wf_dtree 1 -> wf_dtree r -> wf_dtree (balanceL c l r).
Proof.
case: c => /= wfl wfr. by rewrite wfl wfr ?(dsizeE,donesE,eqxx).
case: 1 wfl =>
  [[[[] 111 []]n 110] []r|[]A] []n 10] [[] 1r] []rn 1ro] [rr|[]rA]
   | | 11 [ln lo] lr] | 1A] /=;
  rewrite wfr; repeat decompose_rewrite;
  by rewrite ?(dsizeE, donesE, size_cat, count_cat, eqxx).
Qed.
                                        4 0 3 4 4 5 3 4 5 5 4 5 5 5
```

```
Proving tree
algorithms for
succinct data
structures
```

Introductio

Primitives
First attemp
Second try

Dynamic data Principle

Simply typed
Perspectives

Properties of insertion

Functional correctness

```
Lemma dinsertE (B : dtree) b i : wf_dtree' B ->
  dflatten (dinsert B b i) = insert1 (dflatten B) b i.
```

Well-formedness and red-black invariants

```
Lemma dinsert_wf (B : dtree) b i :
  wf_dtree' B -> wf_dtree' (dinsert B b i).
Lemma dinsert_is_redblack (B : dtree) b i n :
  is_redblack B Red n ->
  exists n', is_redblack (dinsert B b i) Red n'.
```

where

wf_dtree' is needed for small sequences

```
Definition wf_dtree' t :=
  if t is Bleaf s then size s < high else wf_dtree low high t.</pre>
```

- is_redblack checks the red-black tree invariants:
 - the child of a red node cannot be red
 - both children have the same black depth

Introducti Rank&Select

Primitives
First attemnt

First attemp Second try Perspectives

Dynamic dat Principle

Simply typed
Perspectives

Deletion

The mysterious side

- Omitted in Okasaki's Book
- Enigmatic algorithm by Stefan Kahrs, with an invariant but no details

Chose to rediscover it

- Started with dependent types, guessing invariants
- Used extraction to retrieve the computational part
- Rewrote and proved the simply typed version
 Proofs are small, but use Ltac for repetitive cases.
- As case analysis generates hundreds of cases, performance can be a problem.

```
Lemma ddelete_is_redblack B i n :
   is_redblack B Red n -> exists n', is_redblack (ddel B i) Red n'.
```

Introduction

Rank&Select

LOUD!

First attemp

Dynamic data

Principle
Simply typed
Perspectives

Dynamic bit sequence perspectives

- Simply typed approach
 - SSReflect style worked well, providing short and maintainable proofs
 - could obtain proofs of balancing without complex machinery (just automatic case analysis)
 - however many small lemmas are required
- Dependently typed version
 - all properties are in the types, no need for dispersed proofs
 - Coq support not perfect yet
- Future work
 - We have not yet started working on complexity
 - We also need to extract efficient implementations

https://github.com/affeldt-aist/succinct