§3-3 矩陣的應用

"矩陣"是線性代數、多變量微積分、多變量統計分析的基本工具。在資訊蓬勃發展的今日,矩陣的應用更加廣泛。 本節將介紹。

- 1 乘法反方陣。
- 2 用乘法反方陣解線性方程組。
- 3 轉移矩陣。

(甲)乘法反方陣

◆ 矩陣的乘法反方陣:

在實數 R 中,

設 a 為一個實數 $,a \cdot 1 = 1 \cdot a = a$, 數學上稱 1 為乘法單位元素。

若
$$a\neq 0$$
 , $a\cdot \frac{1}{a}=\frac{1}{a}\cdot a=1$, 稱 a 與 $\frac{1}{a}$ 互為**乘法反元素**。

在矩陣的乘法運算中,是否有類似實數乘法的結構呢?

- (1)單位方陣
- (a) 若一個 n 階方陣,由左上角到右下角的對角線上各位置的元(即 (1,1),(2,2)...(n,n)元)都是 1,而其餘各元都是 0,則稱為 n 階單位方陣,以 I_n 表之。

例:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,, $I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & & & 0 \\ 0 & & \ddots & & 0 \\ \vdots & & & 1 & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$.

- $(b)A \cdot I_n = I_n \cdot A = A$,稱 I_n 為 n 階方陣乘法的單位元素。
- (2)矩陣的乘法反元素:

設 A 是一個 n 階方陣,若有 n 階方陣 B 使下列成立 $AB=BA=I_n$, 則稱 B 為 A 的**乘法反方陣(反矩陣)**,記為 $B=A^{-1}$ 。

當方陣 A 有乘法反方陣時, A 稱為**可逆方陣**。 例如:

(1) 設
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$
 ($\neq O$),對任一個 $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,恆使 $AB = \begin{bmatrix} a+2c & b+2d \\ 0 & 0 \end{bmatrix}$ \neq $I \circ$

(2) 設
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
 ($\neq O$),取 $B = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$,則 $AB = I = BA$ 。
[問題與討論]:
若 $AB_1 = B_1 A = I_n$ 且 $AB_2 = B_2 A = I_n$,則 $B_1 = B_2$ 會成立嗎?

◆ 可逆方陣的條件:

以二階方陣來說明:一個方陣須滿足何種條件,才是"可逆方陣"。

給了一個二階方陣
$$A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$
。
假設二階方陣 $B = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$ 滿足 " $AB = I$ " (B 右乘 A),則
$$\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \iff \begin{bmatrix} a_1 x_1 + a_2 x_2 & a_1 y_1 + a_2 y_2 \\ b_1 x_1 + b_2 x_2 & b_1 y_1 + b_2 y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 \iff (1) $\begin{cases} a_1 x_1 + a_2 x_2 = 1 \\ b_1 x_1 + b_2 x_2 = 0 \end{cases}$ 與(2) $\begin{cases} a_1 y_1 + a_2 y_2 = 0 \\ b_1 y_1 + b_2 y_2 = 1 \end{cases}$ 方程組(1)與(2)之 "係數矩陣" 就是原方陣 $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$,

"det
$$(A) \neq 0 \iff B = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$$
 唯一存在"。

方程組(1)'與(2)'之 "係數矩陣" 同為方陣 $A^{T} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$ 。此方陣 $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$ 是將原方陣 $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ 之 "第一列調到第一行,第二列調到第二行" 而形成的。因 $\det (A^T) = \det (A) = a_1b_2 - a_2b_1$ 。(行、列依序交換,行列式的值不改變)。當 $\det (A^T) \neq 0$ (即 $\det (A) \neq 0$) 時,方程組(1)'與(2)'都恰有一解。也就是說:

"det
$$(A) \neq 0 \iff B' = \begin{bmatrix} x_1' & x_2' \\ y_1' & y_2' \end{bmatrix}$$
 唯一存在"。

由上面的論述知:當 $\det(A) \neq 0$ 時,存在二階方陣 B 與 B'滿足 "AB = I = B'A" ,那麼上式的 B 與 B'會 "相等" 嗎?

$$(結合律)$$
 因 $B'=B'I=B'(AB)=(B'A)B=IB=B$,故 $B'=B$ 。

上面導出的結論 B'=B 有兩層意義:

(i)當 det $(A) \neq 0$ 時,則 B' = B。

由此知 B 就是 A 的乘法反方陣,故方陣 A 是 "可逆方陣"。

(ii)當 $\det(A) \neq 0$ 時,欲求方陣 A 的 "乘法反方陣 B" ,只須求出一個同階方陣 B,滿足下列兩個條件之一即可。

"
$$AB=I$$
" (B 右乘 A) 或 " $BA=I$ " (B 左乘 A)。

可逆方陣的充要條件

設A,B,B'都是二階方陣,

- (1) 若 $AB = I_2 = B'A$, 則 B = B'。
- (2) A 為可逆方陣 \iff A 的行列式值 det $(A) \neq 0$ ∘

◆ 如何找乘法反方陣:

例子:

設
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$$
,求一 2 階方陣 B 使得 $AB = I_2$,令 $B = \begin{bmatrix} x & u \\ y & v \end{bmatrix}$,則可得

兩個聯立方程組: $\begin{cases} x+2y=1 \\ 3x+7y=0 \end{cases}
\bigoplus \begin{cases} u+2v=0 \\ 3u+7v=1 \end{cases}$, 因為 $\det(A) = \begin{vmatrix} 1 & 2 \\ 3 & 7 \end{vmatrix} \neq 0$,這兩個聯立

方程組的係數矩陣都是原來的矩陣 A,而解這個聯立方程組可以利用 A 的增廣矩陣的列運算,即

$$\begin{bmatrix}
1 & 2 & 1 \\
3 & 7 & 0
\end{bmatrix}
\xrightarrow{\text{Slight}}
\begin{bmatrix}
1 & 0 & 7 \\
0 & 1 & -3
\end{bmatrix},
\begin{bmatrix}
1 & 2 & 0 \\
3 & 7 & 1
\end{bmatrix}
\xrightarrow{\text{Slight}}
\begin{bmatrix}
1 & 0 & -2 \\
0 & 1 & 1
\end{bmatrix},$$

此時 $B = \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix}$,但我們可以觀察上面兩個增廣矩陣的列運算,我們可以使

用相同的基本列運算,使得它們的前兩行的係數都相同,因此此處可以將它們合併來計算

$$\mathbf{M} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 7 & 0 & 1 \end{bmatrix} \xrightarrow{(-3)R_1 + R_2} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -3 & 1 \end{bmatrix} \xrightarrow{(-2)R_2 + R_1} \begin{bmatrix} 1 & 0 & 7 & -2 \\ 0 & 1 & -3 & 1 \end{bmatrix}$$

(1)找乘法反方陣的一般方法:

$$n$$
 階方陣 $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$ 仿照上述的方法,做一個 $n \times 2n$ 矩陣 M ,

$$\mathbf{M} = \begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} & 1 & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & & \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots & \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} & 0 & 0 & \cdots & \cdots & 1 \end{bmatrix} = [\mathbf{A} | \mathbf{I}_n] ,$$
對 M 作基本列算,

若經過一連串的列運算,可得M'=[I|B],則B即為A的反矩陣。

(2)二階反矩陣:

若設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,若 $\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$,
則反矩陣 $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

記法:a,d 對調;b,c 變號⇒主對調,副變號,再除以 det(A)

[證明]: 設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$, $AA^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

即
$$\begin{cases} ax_1 + by_1 = 1 \\ cx_1 + dy_1 = 0 \end{cases}$$
, $\begin{cases} ax_2 + by_2 = 0 \\ cx_2 + dy_2 = 1 \end{cases}$, 利用克拉瑪公式

$$\Rightarrow \begin{cases} x_1 = \frac{\begin{vmatrix} 1 & b \\ 0 & d \end{vmatrix}}{\det(A)} = \frac{d}{\det(A)} \Rightarrow \begin{cases} x_2 = \frac{\begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}}{\det(A)} = \frac{-b}{\det(A)} \\ y_1 = \frac{\begin{vmatrix} a & 1 \\ c & 0 \end{vmatrix}}{\det(A)} = \frac{-c}{\det(A)} \end{cases} \Rightarrow \begin{cases} x_2 = \frac{\begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}}{\det(A)} = \frac{-b}{\det(A)} \end{cases} , \quad \Leftrightarrow A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

(3)三階乘法反方陣的找法(補充教材):

設
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
,且 $\det A \neq 0$,如何找 A^{-1} 呢?

$$\Rightarrow$$
 B= $\begin{bmatrix} p_1 & p_2 & p_3 \\ q_1 & q_2 & q_3 \\ r_1 & r_2 & r_3 \end{bmatrix}$,且滿足 BA= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

$$\exists \overrightarrow{a} = (a_1, a_2, a_3) , \overrightarrow{b} = (b_1, b_2, b_3) , \overrightarrow{c} = (c_1, c_2, c_3) ,$$

$$\overrightarrow{p} = (p_1, p_2, p_3) , \overrightarrow{q} = (q_1, q_2, q_3) , \overrightarrow{r} = (r_1, r_2, r_3)$$

因為
$$p$$
與 b 、 c 均垂直,且 $det A \neq 0$

所以
$$\overrightarrow{p} = t(\overrightarrow{b} \times \overrightarrow{c})$$
,又 $\overrightarrow{p} \cdot \overrightarrow{a} = 1 \Rightarrow t(\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = 1 \Rightarrow t = \frac{1}{\det(A)}$ 。

故
$$\vec{p} = \frac{1}{\det(A)} (\vec{b} \times \vec{c})$$
。
同理 $\vec{q} = \frac{1}{\det(A)} (\vec{c} \times \vec{a})$, $\vec{r} = \frac{1}{\det(A)} (\vec{a} \times \vec{b})$
所以 $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} \vec{b} \times \vec{c} \\ \vec{c} \times \vec{a} \\ \vec{a} \times \vec{b} \end{bmatrix}$ 。

[**例題1**] (1)若矩陣 $A = \begin{bmatrix} 3 & 5 \\ 2 & -1 \end{bmatrix}$,則反矩陣 $A^{-1} = \underline{\hspace{1cm}}$ 。

(2)若方陣 X 滿足 $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ X $\begin{bmatrix} 3 & -2 \\ -5 & 3 \end{bmatrix}$ = $\begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$,則 X=_____。

Ans: (1) $\begin{bmatrix} \frac{1}{13} & \frac{5}{13} \\ \frac{2}{13} & -\frac{3}{13} \end{bmatrix}$ (2) $\begin{bmatrix} 24 & 13 \\ -34 & -18 \end{bmatrix}$

[**例題2**] 若二階方陣 A 滿足 $A^3 = \begin{bmatrix} 3 & -10 \\ 2 & -7 \end{bmatrix}$, $A^5 = \begin{bmatrix} 7 & -25 \\ 5 & -18 \end{bmatrix}$, 求 $A \circ$ Ans: $A = \begin{bmatrix} 2 & -5 \\ 1 & -3 \end{bmatrix}$

[例題3] (利用矩陣的運算求反矩陣)

若矩陣 A 滿足方程式 X^2 –2X–3I=O,試求 A 的反矩陣。(以 A 來表示)

Ans : $A^{-1} = \frac{1}{3}A - \frac{2}{3}I$

[**例題4**] 設 2 階方陣 A 滿足 A
$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
且 A $\begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$,試求方陣 A。
Ans:A= $\begin{bmatrix} -23 & -13 \\ 1 & 0 \end{bmatrix}$

[**例題5**] 求
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & 3 & 3 \end{bmatrix}$$
的乘法反元素。 $Ans: \frac{1}{15} \begin{bmatrix} 0 & 9 & -3 \\ -5 & 1 & 3 \\ 5 & -4 & 3 \end{bmatrix}$

(練習1) 若二階方陣
$$X$$
 滿足 $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} X + 2 \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 2 & -1 \end{bmatrix}$,則 $X =$
Ans: $\begin{bmatrix} 12 & -\frac{33}{2} \\ -5 & \frac{13}{2} \end{bmatrix}$

(練習2) 設
$$A$$
 為二階方陣, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$;若 $A^2 - 5A + 6I_2 = O$,則下列何者是 $5I_2 - A$ 的乘法反矩陣?
$$(A)A (B) - A (C)A - 5I_2 (D) \frac{1}{6}A \qquad (E)A^2 - 5A \text{ . Ans} : (D)$$

(練習3) 設 2 階方陣 A 滿足 A
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
且 A $\begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$,試求方陣 A。
Ans: A= $\begin{bmatrix} 7 & -2 \\ 11 & -5 \end{bmatrix}$

(練習4) 已知
$$A^2 = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 5 & 8 \\ 8 & 13 \end{bmatrix}$, 求二階方陣 $A \circ Ans : A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

(練習5) 請求出
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & -3 & -2 \\ 4 & 1 & 3 \end{bmatrix}$$
的反矩陣。Ans: $\begin{bmatrix} -7 & -1 & 4 \\ -11 & -2 & 6 \\ 13 & 2 & -7 \end{bmatrix}$

(練習6) 若
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & a \\ 1 & a & 3 \end{bmatrix}$$
沒有乘法反元素,則 $a = ?$ Ans: $a = 2$ 或 -3

◆ 反矩陣的性質:

(1)若A、B為2階方陣,則 det(AB)=det(A)·det(B)。

[證明]:

設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 、 $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$, 則 $AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ · $\begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$ det(AB)

= (ae+bg)(cf+dh)-(af+bh)(ce+dg) = ad(eh-fg)-bc(eh-fg)

$$= (ad-bc)(eh-fg) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} e & f \\ g & h \end{vmatrix} = \det(A) \cdot \det(B) \circ$$

根據這個結果,可以得知:「若 A 為 2 階可逆方陣,則 $\det(A^{-1})=(\det A)^{-1}$ 。」

事實上:「若 A、B 為 n 階方陣,則 det(AB)=det(A)·det(B)。」亦成立!

(2)若方陣 A 為可逆的,且 AB=AC,則 B=C。

[證明]:

::方陣 A 為可逆的,::A⁻¹存在

$$\Rightarrow A^{-1}(AB)=A^{-1}(AC)\Rightarrow (A^{-1}A)B=(A^{-1}A)C\Rightarrow B=C$$

(3)若 A、B 都是 n 階方陣,且 A 和 B 都有反矩陣,則 AB 有反矩陣,且(AB) $^{-1}$ =B $^{-1}$ A $^{-1}$ 。

[證明]:

∵det(AB)=det(A)det(B)≠0, ∴(AB)⁻¹存在

 $AB(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=AIA^{-1}=AA^{-1}=I$

當 A=B 時,可以得知(A²)⁻¹=(A⁻¹)²,一般而言(Aⁿ)⁻¹=(A⁻¹)ⁿ。

 $(4)(ABA^{-1})^n = AB^nA^{-1}$

[證明]:

(ABA⁻¹) "=(ABA⁻¹)(ABA⁻¹)(ABA⁻¹)..... (ABA⁻¹) (ABA⁻¹)=AB " A⁻¹ 再用數學歸納法即可得證

結論: 設 $A \times B \times C$ 為n階方陣

- (1) $det(AB)=det(A) \cdot det(B)$
- (2) $\det(A^{-1}) = (\det A)^{-1}$
- (3)AB=AC, 若 det(A)≠0 (即 A⁻¹存在), 則 B=C
- (4)若 A 和 B 都有反矩陣,則 AB 有反矩陣,且 $(AB)^{-1}=B^{-1}A^{-1}$ 。
- $(5) (A^n)^{-1} = (A^{-1})^n$
- $(6)(\mathbf{A}\mathbf{B}\mathbf{A}^{-1})^n = \mathbf{A}\mathbf{B}^n\mathbf{A}^{-1} \circ$

矩陣裡的 "可逆方陣 A" ($\det(A) \neq 0$) 與實數裡之 "實數 a" ($a \neq 0$),在乘法性質上可以類比。(如下表)

可逆方陣乘法性質	異於0的實數乘法性質
1. 若 det (A)≠0,則存在 A ⁻¹	1. 若 a≠0,則存在 a ⁻¹ 滿足
滿足 AA ⁻¹ =A ⁻¹ A=I。	$aa^{-1}=a^{-1}a=1$ °
2. 若 det (A) ≠ 0, det (B) ≠ 0,	2. 若 a = 0 , b = 0 ,
則 det (AB)≠0 <u>且</u>	則 <i>ab</i> ≠ 0,且
$(AB)^{-1} = B^{-1}A^{-1}$	$(ab)^{-1} = b^{-1} a^{-1} \circ$
3. 乘法消去律成立:	3. 乘法消去律成立
若 AB=AC,且 det (A) ≠ 0,	若ab=ac且a≠0,
則 <i>B</i> = <i>C</i> ∘	類 b=c。
4. 若 det (A) ≠ 0 且 AX=B,	4. 若 a≠0,且 ax=b,
$\coprod X = A^{-1} B \circ$	

[例題6] (矩陣的對角化)

$$A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}, P = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}, D = PAP^{-1}, 求矩陣 D?又A^{n} = ?$$

$$Ans: D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, A^{n} = \begin{bmatrix} 2^{n+1} - 3^{n} & 3^{n} - 2^{n} \\ 2^{n+1} - 2 \cdot 3^{n} & 2 \cdot 3^{n} - 2^{n} \end{bmatrix}$$

[**例題7**] 兩數列
$$< a_n >$$
 , $< b_n >$ 滿足 $a_1 = 1$, $b_1 = 3$,且 $\begin{cases} a_{n+1} = a_n - 3b_n \\ b_{n+1} = -3a_n + b_n \end{cases}$,假設 $\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = A \begin{bmatrix} a_n \\ b_n \end{bmatrix}$,其中 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,則:
$$(1) P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} , 則 P^{-1}AP = ? (2) 利用 A^n 可求得 $a_n = ?$
Ans: $(1) \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}$ $(2)a_n = 2 \times (-2)^{n-1} - 4^{n-1}$$$

(練習7) 設方陣
$$A = \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix}$$
, $P = \begin{bmatrix} 4 & -1 \\ 3 & 1 \end{bmatrix}$,試求:
$$(1) P^{-1} \circ (2) P^{-1}AP \circ (3) A^{n} \circ$$

Ans: (1)
$$\begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ -\frac{3}{7} & \frac{4}{7} \end{bmatrix}$$
 (2)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0.3 \end{bmatrix}$$
 (3)
$$\begin{bmatrix} \frac{4+3(0.3)^n}{7} & \frac{4-4(0.3)^n}{7} \\ \frac{3-3(0.3)^n}{7} & \frac{3+4(0.3)^n}{7} \end{bmatrix}$$

(乙)乘法反方陣解線性方程組

未知數的個數與方程式的個數相同的線性方程組,可用乘法反方陣的概念求 解,說明如下:

(A)
$$\begin{cases} a_{11} x + a_{12} y = b_1, \\ a_{21} x + a_{22} y = b_2, \end{cases} \xrightarrow{\text{\text{\text{\sqrt{\psi}}}}} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(B)
$$\begin{cases} a_{11} u + a_{12} v = c_1 \\ a_{21} u + a_{22} v = c_2 \end{cases} \longleftrightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad uv = c_1 c_2$$
(2)

(B)
$$\begin{cases} a_{11} u + a_{12} v = c_1 \\ a_{21} u + a_{22} v = c_2 \end{cases} \longleftrightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad uv = c_1 c_2$$
 (2)

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x & u \\ y & v \end{bmatrix} = \begin{bmatrix} b_1 & c_1 \\ b_2 & c_2 \end{bmatrix}$$
 (3)

 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x & u \\ y & v \end{bmatrix} = \begin{bmatrix} b_1 & c_1 \\ b_2 & c_2 \end{bmatrix}$ (3) 當係數矩陣 $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ 之行列式值 $\det(A) \neq 0$ 時,A 之乘法反方陣為 $A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$ 。

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

因此方程組(A)與(B)的解可以寫

$$\begin{bmatrix} x & u \\ y & v \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} \begin{bmatrix} b_1 & c_1 \\ b_2 & c_2 \end{bmatrix}$$
 (C)

結論:

解聯 立方程組與乘法反方陣:

將聯立方程組
$$\begin{cases} a_{11}x+a_{12}y=c_1\\ a_{21}x+a_{22}y=c_2 \end{cases}$$
 或
$$\begin{cases} a_{11}x+a_{12}y+a_{13}z=c_1\\ a_{21}x+a_{22}y+a_{23}z=c_2 \text{ 寫成 AX=C}, 此處的\\ a_{31}x+a_{32}y+a_{33}z=c_3 \end{cases}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \vec{\mathbf{x}} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix} \vec{\mathbf{x}} \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \vec{\mathbf{x}} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix},$$

若方陣 A 是可逆的,則解 $X=A^{-1}C$

[**例題8**] 解下列兩個線性方程組

(1)
$$\begin{cases} 2x_1 - 4x_2 = 4 \\ 3x_1 - 5x_2 = 3 \end{cases}$$
 (2)
$$\begin{cases} 2y_1 - 4y_2 = -2 \\ 3y_1 - 5y_2 = 1 \end{cases}$$
 分析:

(i) 兩個線性方程組之係數矩陣皆為
$$A = \begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix}$$
。

因 $\det(A) = 2 \neq 0$,故 A 的乘法反方陣 A^{-1} 存在,即

$$A^{-1} = \frac{1}{2} \begin{bmatrix} -5 & 4 \\ -3 & 2 \end{bmatrix},$$

(ii) 方程組(1)與(2)可用"矩陣的乘法"表成

$$\begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} \circ$$

解法:

承分析之(ii)
$$\begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix}^{-1} \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -5 & 4 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -20 + 12 & 10 + 4 \\ -12 + 6 & 6 + 2 \end{bmatrix} = \begin{bmatrix} -4 & 7 \\ -3 & 4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} -4 & 7 \\ -3 & 4 \end{bmatrix}, \text{所以} \begin{cases} x_1 = -4 \\ x_2 = -3 \end{cases}, \begin{cases} y_1 = 7 \\ y_2 = 4 \end{cases}$$

(練習8) 解線性方程組
$$\begin{cases} 9x_1 + 4x_2 = 17 \\ 7x_1 - 3x_2 = 13 \end{cases}$$
 Ans : $(x_1, y_1) = (\frac{103}{55}, \frac{2}{55})$

(練習9) 設
$$A = \begin{bmatrix} 4 & 9 \\ 3 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 17 \\ 135 \end{bmatrix}$,且矩陣 $X = \begin{bmatrix} x \\ y \end{bmatrix}$ 滿足 $AX = B$,試求 (1)A 的乘法反方陣 A^{-1} 。 (2)矩陣 X 。 Ans:(1) $A^{-1} = \begin{bmatrix} 4 & -9 \\ -3 & 7 \end{bmatrix}$ (2) $\begin{bmatrix} -1096 \\ 489 \end{bmatrix}$

(丙)轉移矩陣

◆ 引入轉移矩陣:

什麼是轉移矩陣呢?先看底下的例子:

有四個大小相同、質料相同的小球,其中甲袋分配到兩個白球,乙袋分配到兩個黑球。今從甲袋任意抽出一球放入乙袋,攬勻後再從乙袋抽出一球放回甲袋稱做操作一次。試問經過操作三次後,甲袋有一黑一白之機率:

每操作一次,甲袋兩個球的顏色有三種狀態:

狀態 S_1 : 二個白球。

狀態 S_2 : 一個白球, 一個黑球。

狀態 S_3 :二個黑球。

[利用樹狀圖]:

先考慮各種狀態間轉換的機率,並且畫出樹狀圖。

Z

上面"樹狀圖"「脈絡清晰,一目了然」是優點,但當操作次數n愈大時,樹的"分枝"就愈多,計算相關的機率也愈趨繁複。

[建立遞迴關係式]:

假設操作第n次後,狀態 $S_1 \times S_2 \times S_3$ 發生之機率為 $a_n \times b_n \times c_n$,顯然 $a_n + b_n + c_n = 1$ 回顧前面的「樹狀圖」

由圖A可由 a_1 、 b_1 、 c_1 求出 a_2 , b_2 , c_2 b_3 , c_3

曲圖B可由 $a_2 \cdot b_2 \cdot c_2$ 求出 a_3 ,

(A)
$$\begin{cases} a_2 = \frac{1}{3} a_1 + \frac{1}{6} b_1 + 0 c_1 \\ b_2 = \frac{2}{3} a_1 + \frac{4}{6} b_1 + \frac{2}{3} c_1 \\ c_2 = 0 a_1 + \frac{1}{6} b_1 + \frac{1}{3} c_1 \end{cases}$$

(B)
$$\begin{cases} a_3 = \frac{1}{3} a_2 + \frac{1}{6} b_2 + 0 c_2 \\ b_3 = \frac{2}{3} a_2 + \frac{4}{6} b_2 + \frac{2}{3} c_2 \\ c_3 = 0 a_2 + \frac{1}{6} b_2 + \frac{1}{3} c_2 \end{cases}$$

用矩陣的乘法來表示上述的關係:

$$(A) \iff \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & \frac{4}{6} & \frac{2}{3} \\ 0 & \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$$

$$(B) \iff \begin{bmatrix} a_3 \\ b_3 \\ c_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & \frac{4}{6} & \frac{2}{3} \\ 0 & \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix}$$

從樹狀圖(A)(B)可以看出,第(n-1)次操作與第n 次操作間,各狀況(S_1 、 S_2 、 S_3) 間的轉換模式都是一樣的,因此可將"樹狀圖B"中的 a_2 , b_2 , c_2 依序換成 a_{n-1} , b_{n-1} , c_{n-1} ,同理可求得 a_n , b_n , c_n

$$\begin{cases} a_{n} = \frac{1}{3} a_{n-1} + \frac{1}{6} b_{n-1} + 0c_{n-1} \\ b_{n} = \frac{2}{3} a_{n-1} + \frac{4}{6} b_{n-1} + \frac{2}{3} c_{n-1} \\ c_{n} = a_{n-1} + \frac{1}{6} b_{n-1} + \frac{1}{3} c_{n-1} \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} a_{n} \\ b_{n} \\ c_{n} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & \frac{4}{6} & \frac{2}{3} \\ 0 & \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1} \\ c_{n-1} \end{bmatrix}$$

$$\Leftrightarrow (1)$$

$$\Leftrightarrow (1)$$

$$\Rightarrow (1$$

參照下面樹狀圖

矩陣 P 之第 1 行是"由狀態 S_1 分別轉到 S_1 , S_2 , S_3 之三項機率"。第 2 行是"由狀態 S_2 分別轉到 S_1 , S_2 , S_3 之三項機率"。第 3 行是"由狀態 S_3 分別轉到 S_1 , S_2 , S_3 之三項機率"。

即
$$P = \begin{bmatrix} S_1 & S_2 & S_3 & 轉變 \\ \frac{1}{3} & \frac{1}{6} & 0 \end{bmatrix} \quad S_1 (\Box & \triangle)$$

$$S_2 (-\triangle - E)$$

$$S_3 (\Box & E)$$

其次考慮三項機率 a_n , b_n , c_n 所形成的矩陣 X_n , 其中 $X_n = \begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix} \leftarrow S_1 \leftarrow S_2$, 而 $\leftarrow S_3$

$$X_0 = \left[egin{array}{c} a_0 \ b_0 \ c_0 \end{array}
ight] (- 開始,甲袋僅有 "二白球")$$

利用上面的(1)式,可以遞推求得 a_n , b_n , c_n 。

$$X_{1} = PX_{0} = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0\\ \frac{2}{3} & \frac{4}{6} & \frac{2}{3}\\ 0 & \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 0 \end{bmatrix},$$

$$X_{2} = PX_{1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & \frac{4}{6} & \frac{2}{3} \\ 0 & \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{9} \\ \frac{6}{9} \\ \frac{1}{9} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{2} \\ b_{2} \\ c_{2} \end{bmatrix} = \begin{bmatrix} \frac{2}{9} \\ \frac{6}{9} \\ \frac{1}{9} \end{bmatrix},$$

同理

所以,經第三次操作後,甲袋有"二個白球"之機率為 $\frac{5}{27}$,

有"一白球、一黑球"之機率為
$$\frac{18}{27}$$
,

有"二個黑球"之機率為
$$\frac{4}{27}$$
。

矩陣
$$P = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & \frac{4}{6} & \frac{2}{3} \\ 0 & \frac{1}{6} & \frac{1}{3} \end{bmatrix}$$
 有兩個特殊性質:

- (i) P 中的每一個元素都是"非負的實數"。 (P 中的元素 a_{ii} ,代表由狀態 S_i 轉變到 S_i 之機率)
- (ii) P 中每一行(直行)之"元素總和等於1"。 像 P 這樣,滿足(i)、(ii)兩個條件的矩陣稱做轉移矩陣。

而上面的行矩陣,像

$$X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ X_1 = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 0 \end{bmatrix}, \ X_2 = \begin{bmatrix} \frac{2}{9} \\ \frac{6}{9} \\ \frac{1}{9} \end{bmatrix}, \dots$$

都滿足

- (1) 行矩陣之每一元素都是"非負的實數"。
- (2) 行矩陣之"元素總和等於1"。 這種行矩陣稱為機率矩陣(或機率向量)。

◆ 轉移矩陣:

一般而言,在自然現象與社現象中,許多現象都會隨時間的改變而呈現不同的狀態。假設某現象所可能呈現的不同狀態只有有限多種: $S_1,S_2,S_3,...,S_n$ 每隔一固定的時間來觀查察它所呈現的狀態。如果此現象在各觀察期呈現某種狀態的過程滿足下面的性質:在任意觀察期中此現象呈現狀態 S_i 時,則它在下一觀察期呈現狀態 S_i 的機率為 p_{ij} 。當一個現象的呈現具有這個性質時,我們就說這個過程形成一個**馬可夫鏈**。

馬可夫鏈有下列的特性:

(a)
$$A = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$
, $p_{ij} \ge 0$, $\sum_{k=1}^{n} p_{kj} = 1$, $j = 1, 2, \dots, n$

稱為此馬可夫鏈的轉移矩陣。

- (b)若一個方陣的各元都大於或等於 0,而且每一行中各元的和都等於 1, 此種方陣稱為馬可夫矩陣或轉移矩陣。
- (c)如果一馬可夫鏈可達到穩定狀態,而其 $(n \, \text{階})$ 轉移矩陣為 A,則其穩定狀態就是滿足 AX=X 的 $n\times 1$ 矩陣 X。
- (練習10) 設 A 為 2×2 階的轉移矩陣, $X_n = \begin{bmatrix} x_n \\ y_n \end{bmatrix}$,n=0,1,2,...,其中 $x_0+y_0=1$, $x_0 \ge 0$, $y_0 \ge 0$,而 $X_n = AX_{n-1}$,試證明 $x_n+y_n=1$,n=1,2,...且 $x_n \ge 0$, $y_n \ge 0$ 。
 - [**例題9**] 設 A,B 兩箱中,A 箱內有1黑球1白球,B 箱內有1白球。甲乙兩人輪流取球,每次先由甲自A 箱內任取一球,放入B 箱內,再由乙自B 箱內任取一球,放入A 箱內,這樣的動作完成後稱為一局。
 - (1)當一局結束時, A 箱內兩球為一黑一白的機率為多少?
 - (2)當第三局結束時, A 箱內兩球為一黑一白的機率為多少?
 - (3)當第n 局結束時,A 箱內兩球為一黑一白的機率為多少?(以n 表示)
 - (4)長期下來, A 箱內兩球為一黑一白的機率為多少?

Ans:
$$(1)\frac{3}{4} (2)\frac{43}{64} (3) \frac{2}{3} + \frac{1}{3} \times (\frac{1}{4})^n (4)\frac{2}{3}$$

[例題10] 假設某區的數學教科書,有甲、乙、丙三種不同的版本提供各校自由選購, 統計各校多年選購的市場資訊,顯示出:

每一年甲版的顧客群中,隔年選購甲版佔 $\frac{5}{10}$;乙版佔 $\frac{2}{10}$;丙版佔 $\frac{3}{10}$ 。

乙版的顧客群中,隔年選購甲版佔 $\frac{4}{10}$;乙版佔 $\frac{2}{10}$;丙版佔 $\frac{2}{10}$ 。

丙版的顧客群中,隔年選購甲版佔 $\frac{3}{10}$;乙版佔 $\frac{2}{10}$;丙版佔 $\frac{5}{10}$ 。

此區,目前甲、乙、丙三種版本的市占率依序為 $\frac{4}{10}$, $\frac{3}{10}$, $\frac{3}{10}$ 。若市場選 購教科書的資訊不變的趨勢下,

試問:

- (1)甲、乙、丙三種版本三年後的市占率各為多少?(教科書每年選購一次) (2) 試求長期之後,甲、乙、丙三種版本三年後的市占率(穩定狀態)各為多少? [分析]:
- (1) 各校使用的數學教科書有三種狀態:
- S₁(甲版); S₂(乙版); S₃(丙版)。
- (2) 求轉移矩陣

$$S_1$$
 S_2 S_3 轉購 甲 乙 丙 轉購
 $P = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ S_1 $S_2 = \begin{bmatrix} 0.5 & 0.4 & 0.3 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix}$ 天 天

(3) 目前甲、乙、丙三種版本的市占率為

$$X_0 = \begin{bmatrix} 0.4 \\ 0.3 \\ 0.3 \end{bmatrix} \leftarrow \mathbb{P}$$
 $\leftarrow \mathbb{Z}$, 設經 k 年後的市占率 $X_k = \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} \leftarrow \mathbb{P}$ $\leftarrow \mathbb{Z}$ 。

[解法]:

[解法]:
$$(1)X_1 = PX_0 = \begin{bmatrix} 0.5 & 0.4 & 0.3 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.3 \\ 0.3 \end{bmatrix} = \begin{bmatrix} 0.41 \\ 0.26 \\ 0.33 \end{bmatrix},$$

$$X_2 = PX_1 = \begin{bmatrix} 0.5 & 0.4 & 0.3 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.41 \\ 0.26 \\ 0.33 \end{bmatrix} = \begin{bmatrix} 0.408 \\ 0.252 \\ 0.340 \end{bmatrix}$$

$$X_3 = PX_2 = \begin{bmatrix} 0.5 & 0.4 & 0.3 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.408 \\ 0.252 \\ 0.340 \end{bmatrix} = \begin{bmatrix} 0.4068 \\ 0.2504 \\ 0.3428 \end{bmatrix}$$

故預估三年後甲、乙、丙三種版本之市占率為40.68%,25.04%,34.28%。

(2) 設穩定狀態的機率矩陣
$$X = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \leftarrow \mathbb{T}$$
 轉移矩陣 $P = \begin{bmatrix} 0.5 & 0.4 & 0.3 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix}$

由 *PX=X* 得

$$\begin{bmatrix} 0.5 & 0.4 & 0.3 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} (a+b+c=1)$$

$$\Rightarrow \begin{cases} -5a + 4b + 3c = 0 & 0 \\ 2a - 6b + 2c = 0 & 0 \\ 3a + 2b - 5c = 0 & 0 \end{cases}$$

$$\Rightarrow \begin{cases} -11a + 0b + 13c = 0 \\ 11a + 0b - 13c = 0 \Rightarrow \\ 3a + 2b - 5c = 0 \end{cases} \begin{cases} -11a + 0b + 13c = 0 \\ 3a + 2b - 5c = 0 \end{cases}$$

$$\Rightarrow (a,b,c) \cancel{\cancel{A}}\cancel{\cancel{A$$

- [**例題11**] 有一夢幻雞排小吃攤每天晚上在 A、B、C 三個夜市之間擇一攤營業。此三個夜市相鄰關係如右圖所示。每天老闆決定隔夜繼續在同一個夜市經營,或轉而前往相鄰任一夜市營業之機率分別為 1/2 與 1/4 。若星期日晚上夢幻雞排小吃攤出現在 A 夜市,請問
 - (1)星期二(兩天後)出現在 A 夜市的機率為何?
 - (2)星期三(三天後)出現在 B 夜市的機率為何?

Ans: (1)
$$\frac{3}{8}$$
 (2) $\frac{21}{64}$

[**例題12**] 設 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 為二階實係數方陣

(1)當 A 為轉移矩陣時,試敘述實數 $a \cdot b \cdot c \cdot d$ 需滿足的條件。

(2)試證:當A為轉移矩陣時,A²也是轉移矩陣(式中A²代表A與A的乘積) (2011 指定乙)

[解法]:

(1)a,b,c,d 均為正實數,且第一行各項之和 a+c=1、第二行各項之和 b+d=1。

(2)
$$A^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}$$

 $:: a \cdot b \cdot c \cdot d$ 均為正實數, $:: A^2$ 中各項亦為正實數。

 $\therefore a+c=1$, b+d=1

 A^2 第一行各項之和 $(a^2+bc)+(ac+cd)=a(a+c)+c(b+d)=a+c=1$

 A^2 第二行各項之和 $(ab+bd)+(bc+d^2)=b(a+c)+d(b+d)=b+d=1$ 。故 A^2 為轉移矩陣。

[**例題13**] 設有 $A \cdot B$ 兩支大瓶子,開始時 A 瓶裝有 a 公升的純果汁 B 瓶裝有 b 公升 的淨水。每一輪操作都是先將A瓶的溶液倒出一半到B瓶,均勻混合後再將 B 瓶的溶液倒出一半回 A 瓶。設 n 輪操作後 A 瓶有 a_n 公升的溶液,B 瓶有 b_n 公升的溶液。

已知二階方陣 $\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$ 滿足 $: \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}^n \begin{bmatrix} a \\ b \end{bmatrix}$ 。

(1) 求二階方陣 $\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$ 。

- (2) 當 $a = \frac{2}{3}$, $b = \frac{1}{3}$ 時,求 a_{100} 及 b_{100} 。
- (3) 在第二輪操作後, A 瓶的溶液中有百分之多少的"果汁"。

Ans: (1)
$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$
 (2) $a_{100} = \frac{2}{3}$, $b_{100} = \frac{1}{3}$ (3) 68.75%

(練習11)設某地區有甲乙兩種報紙,訂戶總人數不變,且每一年訂戶變化皆如下述:今年訂閱甲報的人有 $\frac{1}{3}$ 明年會繼續訂閱甲報,有 $\frac{2}{3}$ 會改定乙報;今年訂閱乙報的人有 $\frac{3}{5}$ 明年會改訂閱甲報,有 $\frac{2}{5}$ 會繼續定乙報,根據這些資料,請寫出這項資料的推移矩陣 A,當市場趨於穩定狀態時,甲乙兩種報紙市場佔有率之比為何?

Ans:
$$A = \begin{bmatrix} \frac{1}{3} & \frac{3}{5} \\ \frac{2}{3} & \frac{2}{5} \end{bmatrix}$$
, 9: 10

- (練習12)台北市捷運局曾做過調查,消費者中原來搭捷運者有80%繼續搭乘捷運, 有10%會改為自行開車,有10%改為騎機車;原來自行開車的人有30%改 搭捷運,有50%會繼續開車,有20%改為騎機車;原來騎機車者有20%改 為搭捷運,有20%會改為自行開車,有60%會繼續騎機車;假設台北市人 口數不變,且目前有20%的消費者採用捷運系統,有30%的人自行開車, 有50%的人騎機車為交通工具。
 - (a)試自行定義狀態,並寫出推移矩陣。
 - (b)一年後將有多少比例的消費者採用捷運系統為交通工具?
 - (c)長期而言,將有多少比例的人會搭乘捷運?

捷運 開車 機車

Ans:(a) 捷運
$$\begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.1 & 0.5 & 0.2 \\ 0.1 & 0.2 & 0.6 \end{bmatrix}$$
(b)35%(c) $\frac{16}{29}$

綜合練習

(1) 小惠有一台自行車,平時用一副四位數密碼的號碼鎖鎖住。有一天, 志明向她 借用這台自行車,她答應借用,但只告訴志明號碼鎖的密碼 abcd 符合以下二階

方陣的等式:
$$\begin{bmatrix} 5 & -15 \\ -10 & 35 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

志明卻一直無法解出正確的密碼, 而不能使用這台自行車。請你(妳)幫忙志明求 出這副號碼鎖的正確密碼。 (2010 指定乙)

(2) 設 $A = \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix}$ 、 $B = \begin{bmatrix} 6 & 7 \\ c & d \end{bmatrix}$ 。已知 $AB = \begin{bmatrix} 3 & 10 \\ -2 & 15 \end{bmatrix}$ 且 A 的行列式之值為 2,試問下 列哪些選項是正確的?

(1)
$$9a-4b=-2(2)$$
 $ac=-24(3)$ $d=-15$ (4) $\begin{bmatrix} b & -a \\ -9 & 4 \end{bmatrix} \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \circ (2011$ 指定甲)

(3) 用 "乘法反方陣" 同時解下列二個方程組。
(a)
$$\begin{cases} 2x+y=3 \\ 5x+3y=7 \end{cases}$$
 (b) $\begin{cases} 2u+v=1 \\ 5u+3v=4 \end{cases}$

(4) 設
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,則

- (a)若實數 a,b 使得, $A^2=aA+bI$,試求 a,b 之值。
- (b)若實數 c,d 使得, $A^{-1}=cA+dI$,試求 c,d 之值。
- (5) 2 階方陣 $A = \begin{vmatrix} t & 5 \\ 1 & t-4 \end{vmatrix}$, 試回答下列問題:
 - (a) A 不為可逆方陣,求 t 的值。
 - (b)若 A 為可逆方陣,用 t 表示 A^{-1} 。

(c)-2A-I=
$$\begin{bmatrix} x^2 & -3x-y \\ y-9 & z+2 \end{bmatrix}$$
, 試求滿足此條件的 x,y,z,t 的值。

$$(6) \Leftrightarrow A = \begin{bmatrix} 3 & 1 \\ 3 & 5 \end{bmatrix},$$

(a)試求實數 t, 使得 $A-tI_2$ 沒有乘法反方陣。(有兩解)

(b)對於(a)中的每個解
$$t$$
,試求出所有 $\begin{bmatrix} x \\ y \end{bmatrix}$ 使得(A- t I₂) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 。

- (7) 設 A、B、C 皆為 3×3 矩陣,則下列敘述哪些是正確的?
 - (A) AB=BA 恆成立 (B)(AB)C=A(BC)恆成立 (C)若 AB=0 則 A=0 或 B=0
 - (D)若 $\det(A) \neq 0$ 且 AB=AC,則 B=C (E) $(A+B)^2 = A^2 + 2AB + B^2$ 恆成立
- (8) 設 A、B 皆為二階方陣且 I、O 分別為二階單位方陣與零矩陣, 則下列何者錯誤?

- (D)若 A²=I,則 A=I或 A=-I (E)若 AB=O,則 A=O或 B=O。
- (9) 已知 A、B、C 為 n 階方陣, O_{n×n} 為 n 階零矩陣,則下列何者為真?
 (A)det(A+B)=det(A)+det(B) (B)若 k 為實數, det(kA)=kdet(A) (C)若 AB=AC 且 det(A)≠0,則 B=C (D)若 A、B 均為可逆方陣,則(AB)⁻¹=B⁻¹A⁻¹
 (E)若 AB=BA,則(A+B)³=A³+3A²B+3AB²+B³。
- (10) 設 A , B 均為 3 階方陣 , A^{-1} 存在 , C 為非零矩陣 , I 為 3 階單位方陣 , O 為零矩陣 , 請選出下列正確的選項 :
 - (A) $\det(A) \det(A^{-1}) = 1$
 - (B) $\det(5A) = 125 \det(A)$
 - $(C)(AB)^2 = A^2B^2$

 - (E)若方程組AX = C恰存在一組解,則 $det(A) \neq 0$

(11)
$$\stackrel{\text{lig}}{\approx} A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \circ$$

- (a) 求 det (A) 及 A^{-1} 。
- (b) 若 AX = B,求矩陣 X。
- (12) 有關矩陣 $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 與矩陣 $B = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$,試問下列哪些選項是正確的? (1) AB = BA (2) $A^2B = BA^2$ (3) $A^{11}B^3 = B^6A^5$ (4) $AB^{12} = A^7$ (5) $(ABA)^{15} = AB^{15}A$ (2007 指定甲)
- (13) 設實係數二階方陣 A 滿足 A $\binom{7}{3}$ = $\binom{2}{1}$, A $\binom{9}{4}$ = $\binom{1}{5}$, 若 A= $\binom{2}{1}$ 5 $\binom{a}{b}$ 6 $\binom{a}{b}$ 9, 則 a=_____, b=_____, c=_____, d=______, d=_____, (2006 指定甲)
- (14)三個二階可逆方陣 $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$ 、 $B = \begin{bmatrix} x & 2 \\ 2 & 2 \end{bmatrix}$ 、 $C = \begin{bmatrix} x & 1 \\ y & 3 \end{bmatrix}$,且滿足 $BA^{-1} = C^{-1}B$ 試求實數 x,y 的值。
- (15) 若矩陣 A 滿足方程式 X^2 –2X–3I=O (I、O 分別代表單位方陣與零矩陣),則 A 的乘法反元素=?
- (16) 設二階可逆方陣 A 滿足: $A\begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ b \end{bmatrix}$ 且 $A\begin{bmatrix} 1 \\ b \end{bmatrix} = \begin{bmatrix} a \\ 1 \end{bmatrix}$,試以 a,b 表示矩陣 A。

(17) 設
$$A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$$
、 $P = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ 且 $D = PAP^{-1}$,則 (a)矩陣 $D = ?$ (b)利用 $D = PAP^{-1}$,計算 $A^n = ?$

(18) 若二階方陣 A 滿足
$$A^3 = \begin{bmatrix} 3 & -10 \\ 2 & -7 \end{bmatrix}$$
且 $A^5 = \begin{bmatrix} 7 & -25 \\ 5 & -18 \end{bmatrix}$,試求 $A = ?$

(19) 一實驗室培養兩種菌,令 $\langle a_n \rangle$ 和 $\langle b_n \rangle$ 分別代表兩種培養菌在時間點 n 的數量,彼此有如下的關係: $a_{n+1} = 2(a_n + b_n)$, $b_{n+1} = 2b_n$ $(n = 0,1,2,\cdots)$.

若二階方陣
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
滿足 $\begin{bmatrix} a_{n+3} \\ b_{n+3} \end{bmatrix} = A \begin{bmatrix} a_n \\ b_n \end{bmatrix}$,(其中 $n = 0, 1, 2, \cdots$),則 $a =$ _____, $b =$ ____, $c =$ ____, $d =$ ____。(2005 指定乙)

(20) 設
$$\begin{cases} a_n = a_{n-1} - 2b_{n-1} \\ b_n = a_{n-1} + 4b_{n-1} \end{cases}$$
 表為 $\begin{bmatrix} a_n \\ b_n \end{bmatrix} = A \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix}$,則:
$$(a) \Leftrightarrow P = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$
 時,求 $P^{-1}AP$ 。

(b)利用 $P^{-1}A^nP=(P^{-1}AP)^n$, n 為自然數, 求 $A^n=?$

(21) 設
$$A = \begin{bmatrix} \frac{1}{3} & c \\ a & b \end{bmatrix}$$
 是一個轉移矩陣,若 $A^2 = \begin{bmatrix} \frac{5}{9} & \frac{4}{9} \\ \frac{4}{9} & \frac{5}{9} \end{bmatrix}$,試求出 a,b,c 的值。

- (22) 設 A,B 是 2×2 階的轉移矩陣,且 X 為 2×1 階的機率向量,且滿足 Y=AX,試 問下列敘述哪些是正確的?
 - $(1)A^2$ 是轉移矩陣。 $(2)AB^2$ 不是轉移矩陣 $(3)\frac{2}{3}A + \frac{1}{3}B$ 是轉移矩陣 (4)Y 是 2×1 階的機率向量 $(5)A^{-1}$ 是轉移矩陣。
- (23) 所謂「轉移矩陣」必須滿足下列兩個條件:
 - (甲)該矩陣的每一個位置都是一個非負的實數,
 - (乙)該矩陣的每一行的數字相加都等於1

以
$$2 \times 2$$
矩陣為例, $\begin{bmatrix} 0.2 & 0.3 \\ 0.8 & 0.7 \end{bmatrix}$ 和 $\begin{bmatrix} 0.9 & 0.6 \\ 0.1 & 0.4 \end{bmatrix}$,滿足(甲)(乙)這兩個條件,因此都

是轉移矩陣。今設 $A \cdot B$ 是兩個 $n \times n$ 的轉移矩陣,請問下列哪些敘述是正確的?

- (1) A^2 是轉移矩陣 (2)AB 不滿足條件(乙) (3) $\frac{1}{2}(A+B)$ 是轉移矩陣 (4) $\frac{1}{4}(A^2+B^2)$ 是轉移矩陣。(2002 指定考科甲)
- (24) 設甲袋中有 3 白球 1 紅球, 乙袋中有 2 白球, 現自兩袋中各取出一球交換, 再第二次各取一球交換, 如此重複交換。在長期交換後, 甲袋中有一紅球的機率為_____。
- (25) 某籃球選手經常作罰球投籃練習,依據過去的經驗,當他前一球投進時,下一球的命中率為80%;當他前一球不進時,下一球的命中率為60%。
 - (a)請寫出此選手投籃的轉移矩陣 A。
 - (b)在暖身球投進之後,分別求接下來投進第1球、第2球、第3球的機率。
 - (c)長期而言,此選手的投籃命中率為何?

- (26) 甲乙兩個袋子,甲袋內裝有兩顆編號 3 的球,乙袋內裝有兩顆編號 4 的球,每 一顆球被抽到的機會相等,今從各袋中抽出一球後互相交換
 - (a)試求交換五次後,甲袋內兩顆球號和為偶數的機率。
 - (b)若經長久交換後成穩定狀態,試求此時乙袋內兩顆球號和為奇數的機率。 (2009 台北區指考模擬考 1)
- (27) 已知甲袋中裝有 1 紅球 2 白球, 乙袋中裝有 2 紅球 1 白球, 現依下列規則取球: 每次取一球後放回原袋, 若某次取出白球, 則下一次由乙袋取球; 若某次取出紅球則下一次由甲袋取球, 且第一次由甲袋取球。設第 n 次取中白球之機率為 P_n , 則 (a) P_3 =? (b)試求穩定狀態 X=?
- (28) 設甲袋中有 2 個白球, 乙袋中有 2 個紅球(設各個球大小及觸感相同), 現在每次自袋中各取一球交換, 回答下列小題:
 - (a)試求在交換兩次後,甲袋中有2紅球的機率。
 - (b)試求甲袋的兩球之轉移矩陣 A。
 - (c)試求在長期交換下,成穩定狀態,甲袋中有2紅球的機率。
- (29) 有一人流浪於 A,B,C,D 四鎮間,此四鎮間相鄰關係如下圖。假設每日清晨,此人決定當日夜晚繼續留宿該鎮,或改而前往相鄰任一鎮之機率皆為 $\frac{1}{3}$ 。若此人第一夜宿 A 鎮,
 - (a)第三夜亦宿於 A 鎮之機率為多少?
 - (b)第五夜此人宿於 A 鎮之機率為多少?宿於 C 鎮之機率為多少?

進階問題

(30) 設三階方陣
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & x \end{bmatrix}$$
, 其中 x 為實數,

(a)若 A 為可逆方陣,則 x 要滿足什麼條件? (b)若 x=4,則 $A^{-1}=$?

(31) 設
$$A = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,試求 $A^{-1} = ?$

(32) 設 $A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix}$, $B_1 \times B_2$ 為兩個 2 階方陣,Q 為 3 階方陣,且這些方陣滿足下列關係:

$$B_1AQ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, B_2AQ = \begin{bmatrix} 0 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix} \not\perp B_1 + B_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(a)試求 B₁ 與 B₂ 。

(b)若
$$AQ^2 = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 0 & 1 \end{bmatrix}$$
,則 $Q = ?$

(33) 設
$$a$$
 為實數,方陣 $A=\begin{bmatrix}8&-10\\4&-6\end{bmatrix}$ 、 $P=\begin{bmatrix}5&1\\2&1\end{bmatrix}$,B 為 2 階方陣且滿足 $AB=BA$ $P^{-1}BP=\begin{bmatrix}-1&a\\0&8\end{bmatrix}$,試回答下列問題:

(a)試求
$$P^{-1}AP = ?$$
 (b)試求 a 的值與方陣 B (c)試求 $(A+B)^n = ?$

(34) (a)設
$$a$$
 為實數,試證明:對於所有的自然數 n ,
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & na \\ 0 & 1 \end{bmatrix}$$
。 (b)設 $A = \begin{bmatrix} -5 & 4 \\ -9 & 7 \end{bmatrix}$, $P = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$,求 $P^{-1}AP = ?$

綜合練習解答

(1)
$$a=7,b=3,c=2,d=1$$

(3)
$$(a)(x,y)=(2,-1)$$
, $(u,v)=(-1,3)$

(4) (a)
$$a=5$$
, $b=2$ (b) $c=\frac{1}{2}$, $d=\frac{-5}{2}$

(5) (a)
$$t=5$$
 \implies -1 (b) $A^{-1} = \frac{1}{t^2 - 4t - 5} \begin{bmatrix} t - 4 & -5 \\ -1 & t \end{bmatrix}$ (c) $x=1$, $y=7$, $z=7$, $t=-1$

(6) (a)
$$t=2$$
 或 6 (b)當 $t=2$ 時, $(x,y)=(s,-s)$, s 為實數 ; 當 $t=6$ 時, $(x,y)=(s,3s)$, s 為實數。

(7) (B)(D)

【解法】

(A) x :矩陣乘法沒有交換性

$$(C)$$
 x : 例如:
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, 但前二者都不是零矩陣。

(D)○ : 行列式值不為 0 是有反方陣的充要條件,

故
$$\det(A) \neq 0$$
 表 A^{-1} 存在,

$$\nearrow AB = AC \Rightarrow A^{-1}AB = A^{-1}AC \Rightarrow B = C$$

(E)
$$\times$$
 : $(A+B)^2 = (A+B)(A+B) = A^2 + AB + BA + B^2$

這是矩陣基本性質,矩陣在某些性質上和「數字」很不相同,容易混淆,因此學習上要特別澄清這些觀念。

(8) (A)(D)(E)

[提示: (A)反例
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
、 $B = \begin{bmatrix} -3 & 6 \\ 1 & -2 \end{bmatrix}$ 滿足 $AB = O$ 但 $BA \neq O$,(D)反例 $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (E)反例同(A)]

(9)
$$(C)(D)(E)$$

(10)
$$(A)(B)(E)$$

(11) (a)
$$\begin{bmatrix} -1 & 3 & -1 \\ 0 & -1 & 1 \\ 1 & -2 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -4 \\ 2 \\ 5 \end{bmatrix}$

$$(12)$$
 $(2)(4)(5)$

(13)
$$a=4$$
, $b=-3$, $c=-9$, $d=7$

(15)
$$A^{-1} = \frac{1}{3}A - \frac{2}{3}I$$
 [提示: $A^2 - 2A - 3I = O \Rightarrow A(A - 2I) = 3I \Rightarrow A(\frac{1}{3}A - \frac{2}{3}I) = I$]

(16)
$$A = \frac{1}{ab-1} \begin{bmatrix} b-a & a^2-1 \\ b^2-1 & a-b \end{bmatrix}$$

(17) (a)
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2^{n+1} - 3^n & 3^n - 2^n \\ 2^{n+1} - 2 \times 3^n & 2 \times 3^n - 2^n \end{bmatrix}$

$$(18) \qquad \begin{bmatrix} 2 & -5 \\ 1 & -3 \end{bmatrix}$$

[提示: 先求 $(A^3)^{-1}$,可得 $A^2=(A^3)^{-1}\cdot A^5$,再求 $(A^2)^{-1}$,則 $A=(A^2)^{-1}\cdot A^3$]

(19)
$$a=8$$
, $b=24$, $c=0$, $d=8$

(20) (a)
$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} -3^n + 2^{n+1} & -2 \cdot 3^n + 2^{n+1} \\ 3^n - 2^n & 2 \cdot 3^n - 2^n \end{bmatrix}$

(21)
$$a = \frac{2}{3}$$
, $b = \frac{1}{3}$, $c = \frac{2}{3}$

(24)
$$\frac{2}{3}$$
 [提示:轉移矩陣為 $\begin{bmatrix} \frac{3}{4} & \frac{2}{4} \\ \frac{1}{4} & \frac{2}{4} \end{bmatrix}$]

(25) (a)A=
$$\begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} \end{bmatrix}$$
 (b)0.8 \cdot 0.76 \cdot 0.752 (c)0.75

(26)
$$(a)\frac{5}{16}$$
 $(b)\frac{2}{3}$

(27)
$$(a)\frac{14}{27}$$
 $(b)\frac{1}{2}$

(28) (a)
$$\frac{1}{4}$$
 (b) $A = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 1 & \frac{1}{2} & 1 \\ 0 & \frac{1}{4} & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 1 & \frac{1}{2} & 1 \\ 0 & \frac{1}{4} & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0W}^{2W} =$

(29)
$$(a)\frac{1}{3}$$
 $(b)\frac{7}{27} \cdot \frac{20}{81}$

(30) (a)
$$x \neq 6$$
 (b)
$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & -1 & 1 \\ \frac{-1}{2} & 1 & \frac{-1}{2} \end{bmatrix}$$

(31)
$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(32) (a)B₁=
$$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$
, B₂= $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ (b)Q= $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$

(33) (a)
$$\begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$$
 (b) $a = 0$, $B = \begin{bmatrix} -7 & 15 \\ -6 & 14 \end{bmatrix}$ (c)
$$\begin{bmatrix} 5 \cdot 3^{n-1} - 4 \cdot 6^{n-1} & -5 \cdot 3^{n-1} + 10 \cdot 6^{n-1} \\ 2 \cdot 3^{n-1} - 4 \cdot 6^{n-1} & -2 \cdot 3^{n-1} + 10 \cdot 6^{n-1} \end{bmatrix}$$

[提示: (b)AB=BA⇒(P⁻¹AP)(P⁻¹BP)= (P⁻¹BP)(P⁻¹AP)⇒
$$a=0$$
⇒B= $\begin{bmatrix} -7 & 15 \\ -6 & 14 \end{bmatrix}$

$$(c)P^{-1}(A+B)P = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix} \Rightarrow [P^{-1}(A+B)P]^n = P^{-1}(A+B)^n P = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}^n = \begin{bmatrix} 3^n & 0 \\ 0 & 6^n \end{bmatrix}]$$

(34) (a)利用數學歸納法 (b)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 (c) $\begin{bmatrix} 1-6n & 4n \\ -9n & 6n+1 \end{bmatrix}$