Übungsblatt 3

Felix Kleine Bösing, Juri Ernesto Humberg, Leonhard Meyer

October 31, 2024

Aufgabe 1

Teil (a)

Zeigen Sie, dass $(\sqrt[n]{x})^n = x$.

Beweis: Um dies zu zeigen, nehmen wir an, dass $\sqrt[n]{x}$ das Supremum $y \in \mathbb{R}_+$ ist, sodass $y^n \leq x$. Wir müssen zeigen, dass $(\sqrt[n]{x})^n = x$.

Da y das größte y ist, für das $y^n \le x$, muss $(\sqrt[n]{x})^n = x$ gelten. Andernfalls gäbe es ein $y > \sqrt[n]{x}$, für das $y^n < x$ wäre, was der Definition von $\sqrt[n]{x}$ widerspricht. Also ergibt sich direkt:

$$\left(\sqrt[n]{x}\right)^n = x.$$

Teil (b)

Zeigen Sie, dass $\{y \in \mathbb{R}_+ : y^n = x\} = \{\sqrt[n]{x}\}.$

Beweis: Dies zeigt, dass $\sqrt[n]{x}$ die eindeutige Lösung ist. Angenommen, es gäbe ein weiteres $y \in \mathbb{R}_+$ mit $y^n = x$ und $y \neq \sqrt[n]{x}$. Wenn $y > \sqrt[n]{x}$, dann wäre $y^n > x$, und wenn $y < \sqrt[n]{x}$, dann wäre $y^n < x$, was in beiden Fällen der Definition von $\sqrt[n]{x}$ widerspricht. Somit gilt:

$${y \in \mathbb{R}_+ : y^n = x} = {\sqrt[n]{x}}.$$

Teil (c)

Zeigen Sie $x^p \cdot x^q = x^{p+q}$ und $(x^p)^q = x^{p \cdot q}$.

Beweis:

1. Für $x^p \cdot x^q = x^{p+q}$:

$$x^p = \prod_{i=1}^p x, \quad x^q = \prod_{j=1}^q x.$$

Wenn wir diese Produkte multiplizieren, ergibt sich:

$$x^p \cdot x^q = \left(\prod_{i=1}^p x\right) \cdot \left(\prod_{j=1}^q x\right) = \prod_{k=1}^{p+q} x = x^{p+q}.$$

2. Für $(x^p)^q = x^{p \cdot q}$:

$$x^p = \prod_{i=1}^p x.$$

Dann gilt:

$$(x^p)^q = \prod_{j=1}^q \left(\prod_{i=1}^p x\right) = \prod_{k=1}^{p \cdot q} x = x^{p \cdot q}.$$

Teil (d)

Zeigen Sie $(xy)^p = x^p y^p$ und $\left(\frac{x}{y}\right)^p = \frac{x^p}{y^p}$.

Beweis:

1. Für $(xy)^p = x^p y^p$:

$$(xy)^p = \prod_{i=1}^p (xy) = \left(\prod_{i=1}^p x\right) \cdot \left(\prod_{i=1}^p y\right) = x^p y^p.$$

2. Für $\left(\frac{x}{y}\right)^p = \frac{x^p}{y^p}$:

$$\left(\frac{x}{y}\right)^p = \prod_{i=1}^p \frac{x}{y} = \frac{\prod_{i=1}^p x}{\prod_{i=1}^p y} = \frac{x^p}{y^p}.$$

Teil (e)

Zeigen Sie $x < y \land p > 0 \Rightarrow x^p < y^p$.

Beweis: Wenn x < y und p > 0, dann bleibt bei der Potenzierung die Ordnung erhalten, da die Funktion $f(t) = t^p$ für p > 0 monoton wachsend ist, was direkt auf den Definitionen von sup basiert.

$$x^p < y^p$$
.

Teil (f)

Zeigen Sie $x < y \land p < 0 \Rightarrow x^p > y^p$.

Beweis: Da p < 0, kehrt sich die Ordnung beim Potenzieren um, da die Funktion $f(t) = t^p$ für p < 0 monoton fallend ist. Daher folgt äquivalent zu Teil (e):

$$x^p > y^p$$
.

Teil (g)

Zeigen Sie $p < q \land x > 1 \Rightarrow x^p < x^q$.

Beweis: Da x > 1, p < q und $f(t) = t^p$ für wächst x schneller bei q, also:

$$x^p < x^q$$
.

Teil (h)

Zeigen Sie $p < q \land x < 1 \Rightarrow x^p > x^q$.

Beweis: Da x < 1, kehrt sich die Ordnung bei höheren Exponenten um, daher:

$$x^p > x^q$$
.

Aufgabe 2

Seien $a, b \in \mathbb{R}$ mit $a, b \geq 0$.

Teil (a)

Zeigen Sie die Ungleichung $\sqrt{ab} \leq \frac{a+b}{2}$.

Beweis: Wir beginnen, indem wir die Ungleichung umformen. Multiplizieren beider Seiten mit 2 ergibt:

$$2\sqrt{ab} \le a + b.$$

Da a und b nicht-negativ sind, können wir beide Seiten quadrieren, ohne die Ungleichung zu verändern:

$$(2\sqrt{ab})^2 \le (a+b)^2,$$

was sich vereinfacht zu:

$$4ab \le a^2 + 2ab + b^2.$$

Durch Subtraktion von 4ab auf beiden Seiten erhalten wir:

$$0 \le a^2 - 2ab + b^2.$$

Dies können wir als Quadrat schreiben:

$$0 < (a-b)^2$$
.

Da $(a-b)^2 \geq 0$ immer wahr ist, folgt die gewünschte Ungleichung:

$$\sqrt{ab} \le \frac{a+b}{2}$$
.

Teil (b)

Zeigen Sie, dass in der Ungleichung $\sqrt{ab} \leq \frac{a+b}{2}$ genau dann Gleichheit eintritt, wenn a=b.

Beweis: Wir setzen a=b in die Ungleichung ein und prüfen, ob dann Gleichheit gilt.

Die linke Seite der Ungleichung wird zu:

$$\sqrt{ab} = \sqrt{a \cdot a} = \sqrt{a^2} = a.$$

Die rechte Seite der Ungleichung wird zu:

$$\frac{a+b}{2} = \frac{a+a}{2} = \frac{2a}{2} = a.$$

Damit ergibt sich die Gleichung:

$$a = a$$

die offensichtlich wahr ist. Dies zeigt, dass Gleichheit genau dann eintritt, wenn a=b.

Aufgabe 3

Auf der Menge $\mathbb{R} \times \mathbb{R}$ seien folgende Verknüpfungen + und · definiert:

$$(a,b) + (a',b') := (a+a',b+b')$$

$$(a,b) \cdot (a',b') := (aa' - bb', ab' + a'b).$$

(a) Zeigen Sie, dass $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ ein Körper ist.

Beweis: Um zu zeigen, dass $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ ein Körper ist, müssen wir folgende Eigenschaften nachweisen: Abgeschlossenheit der Operationen, Assoziativität und Kommutativität der Addition und Multiplikation, Existenz neutraler und inverser Elemente sowie das Distributivgesetz.

1. Abgeschlossenheit der Addition und Multiplikation:

Sei $(a,b), (a',b') \in \mathbb{R} \times \mathbb{R}$.

Für die Addition gilt:

$$(a,b) + (a',b') = (a+a',b+b').$$

Da $a, a' \in \mathbb{R}$ und $b, b' \in \mathbb{R}$, ist auch $a + a' \in \mathbb{R}$ und $b + b' \in \mathbb{R}$. Somit liegt $(a + a', b + b') \in \mathbb{R} \times \mathbb{R}$, und die Addition ist abgeschlossen.

Für die Multiplikation gilt:

$$(a,b) \cdot (a',b') = (aa' - bb', ab' + a'b).$$

Da $a, a', b, b' \in \mathbb{R}$, sind auch $aa' - bb' \in \mathbb{R}$ und $ab' + a'b \in \mathbb{R}$. Somit ist das Ergebnis der Multiplikation wieder ein Element in $\mathbb{R} \times \mathbb{R}$, und die Multiplikation ist abgeschlossen.

2. Assoziativität und Kommutativität der Addition:

Die Addition erfolgt komponentenweise, und da \mathbb{R} unter Addition assoziativ und kommutativ ist, gilt:

$$((a,b) + (a',b')) + (a'',b'') = (a+a',b+b') + (a'',b'')$$
(1)

$$= (a + a' + a'', b + b' + b'') = (a, b) + ((a', b') + (a'', b''))$$
(2)

also ist die Addition assoziativ.

Außerdem ist die Addition kommutativ, da

$$(a,b) + (a',b') = (a+a',b+b') = (a',b') + (a,b).$$

3. Neutrales Element der Addition:

Das neutrale Element der Addition ist (0,0), da

$$(a,b) + (0,0) = (a+0,b+0) = (a,b).$$

4. Additives Inverses:

Für jedes $(a, b) \in \mathbb{R} \times \mathbb{R}$ ist das additive Inverse gegeben durch (-a, -b), da

$$(a,b) + (-a,-b) = (a-a,b-b) = (0,0).$$

5. Kommutativität und Assoziativität der Multiplikation:

Die Kommutativität der Multiplikation folgt daraus, dass

$$(a,b)\cdot(a',b') = (aa'-bb',ab'+a'b) = (a',b')\cdot(a,b).$$

Für die Assoziativität der Multiplikation ist zu zeigen, dass

$$((a,b)\cdot(a',b'))\cdot(a'',b'')=(a,b)\cdot((a',b')\cdot(a'',b''))$$

was durch direkte Berechnung bestätigt werden kann. Dieser Schritt ist jedoch aufwendig und kann mit der expliziten Form der Multiplikation überprüft werden.

6. Neutrales Element der Multiplikation:

Das neutrale Element der Multiplikation ist (1,0), da

$$(a,b) \cdot (1,0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + b \cdot 1) = (a,b).$$

7. Multiplikatives Inverses:

Für jedes $(a,b) \in \mathbb{R} \times \mathbb{R}$ mit $(a,b) \neq (0,0)$ existiert ein Inverses (c,d) mit

$$(a,b) \cdot (c,d) = (1,0).$$

Durch Auflösen der Gleichung ergeben sich die Werte von c und d, sodass das Inverse berechnet werden kann.

8. Distributivgesetz:

Die Multiplikation ist über die Addition distributiv, was sich durch die Berechnung von

$$(a,b) \cdot ((a',b') + (a'',b'')) = (a,b) \cdot (a'+a'',b'+b'')$$

und

$$(a,b) \cdot (a',b') + (a,b) \cdot (a'',b'')$$

überprüfen lässt. Beide ergeben dasselbe Resultat.

Da alle Eigenschaften eines Körpers erfüllt sind, ist $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ ein Körper.

(b) Zeigen Sie, dass i = (0,1) die Eigenschaft $i^2 = (-1,0)$ erfüllt.

Wir berechnen i^2 für i = (0, 1):

$$i \cdot i = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0).$$

Damit ist gezeigt, dass $i^2 = (-1, 0)$.

Aufgabe 4

Zeigen Sie, dass für alle $x, y \in \mathbb{R}$ Folgendes gilt:

$$\max\{x, y\} = \frac{1}{2}(x + y + |x - y|)$$

und

$$\min\{x,y\} = \frac{1}{2}(x+y-|x-y|).$$

Beweis: Wir setzen y=x+c mit einer Konstante $c\in\mathbb{R}$. Dies bedeutet, dass y um den Betrag c größer oder kleiner als x ist. Dies hilft uns dabei, den Betrag |x-y| zu analysieren und die gewünschten Ausdrücke für den Maximal- und Minimalwert zu erhalten.

1. Berechnung von |x-y|

Da y = x + c, erhalten wir:

$$x - y = x - (x + c) = -c.$$

Daraus folgt:

$$|x - y| = |-c| = |c|$$
.

Nun betrachten wir zwei Fälle, je nachdem, ob $c\geq 0$ oder $c\leq 0$ ist, um zu zeigen, dass die Formel für den Maximal- und Minimalwert unabhängig von c tatsächlich korrekt ist.

2. Fallunterscheidung für $\max\{x,y\}$ und $\min\{x,y\}$

Fall 1: $c \ge 0$ (d.h. $y \ge x$)

In diesem Fall ist $y=x+c\geq x$, daher gilt $\max\{x,y\}=y$ und $\min\{x,y\}=x$.

Berechnung des Maximums:

$$\max\{x,y\} = y = \frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+(x+c)+|-c|) = \frac{1}{2}(2x+c+c) = x+c = y.$$

Berechnung des Minimums:

$$\min\{x,y\} = x = \frac{1}{2}(x+y-|x-y|) = \frac{1}{2}(x+(x+c)-|-c|) = \frac{1}{2}(2x+c-c) = x.$$

Fall 2:
$$c \le 0$$
 (d.h. $x \ge y$)

In diesem Fall ist $x=y-c\geq y,$ daher gilt $\max\{x,y\}=x$ und $\min\{x,y\}=y.$

Berechnung des Maximums:

$$\max\{x,y\} = x = \frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+(x+c)+|-c|) = \frac{1}{2}(2x+c+c) = x+c = y.$$