FIA Volume Calculations

Tree-level attributes are variables associated with individual trees tallied on FIA ground plots. Various expressions of tree volume and weight are among the most basic statistics reported by FIA. Tree volumes and weights are not directly measured in the field, but computed from other variables that *are* measured (e.g, species and DBH). The functions used to compute these values are typically regression or mathematical models that have been developed by state or region. Commonly reported volume and weight statistics are defined below:

VOLCFGRS (Gross cubic-foot volume). The total volume inside bark of the central stem of a tree 5.0 inches diameter or larger from a 1-foot stump to a minimum 4-inch top d.o.b. or to where the central stem breaks into limbs all of which are less than 4.0 inches d.o.b. Includes rotten/missing and form cull.

VOLCFSND (Sound cubic-foot volume). The volume of sound wood in the central stem of a tree 5.0 inches diameter or larger from a 1-foot stump to a minimum 4-inch top d.o.b., or to where the central stem breaks into limbs all of which are less than 4.0 inches d.o.b. Form cull is included, rotten/missing cull is excluded.

VOLCSGRS (Gross cubic-foot volume in the sawlog portion). The gross volume of wood in the central stem of a commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods) from a 1-foot stump to a minimum top d.o.b. (7.0 inches for softwoods, 9.0 inches for hardwoods) or to where the central stem breaks into limbs, all of which are less than the minimum top d.o.b.

VOLCSNET (Net cubic-foot volume in the sawlog portion). The net volume of wood in the central stem of a commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods) from a 1-foot stump to a minimum top d.o.b. (7.0 inches for softwoods, 9.0 inches for hardwoods) or to where the central stem breaks into limbs, all of which are less than the minimum top d.o.b. Form cull and rotten/missing cull are excluded.

VOLBFGRS (Gross board-foot volume in the sawlog portion). The gross volume of wood in the central stem of a commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods) from a 1-foot stump to a minimum top d.o.b. (7.0 inches for softwoods, 9.0 inches for hardwoods) or to where the central stem breaks into limbs all of which are less than the minimum top d.o.b. Volume is based on International 1/4-inch rule.

VOLBFNET (Net board-foot volume in the sawlog portion). The net volume of wood in the central stem of a commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods) from a 1-foot stump to a minimum top d.o.b. (7.0 inches for softwoods, 9.0 inches for hardwoods) or to where the central stem breaks into limbs all of which are less than the minimum top d.o.b. Volume is based on International 1/4-inch rule. Form cull and rotten/missing cull are excluded.

DRYBIOT (Total gross biomass oven-dry weight for live trees). The total above-ground oven-dry biomass of a tree 1.0 inch diameter or larger, including all tops and limbs (but excluding foliage).

DRYBIOM (Merchantable stem biomass oven-dry weight for live trees). The total gross oven-dry biomass (including bark) of a tree 5.0 inches DBH or larger from a 1-foot stump to a minimum 4-inch top d.o.b. of the central stem.

Let $f(X_{ikt})$ be a function that computes the desired tree-level value (volume, weight, etc.) of tally tree t in condition k on plot i, where X_{ikt} is the array of measured attributes $x_1, x_2, x_3...x_n$ for that tree. Appendix Tables A3.1 to A3.8 present the form of the function $f(X_{ikt})$, the data items in the array X_{ikt} , and the states in which the function is used along with references for the following attributes listed and defined below. Unless otherwise noted, The b values in these tables are regression parameter estimates and the x values are the observed attributes.

Table A3	Table A3.1 Gross cubic-foot volume					
Region	States	Form of the model: VOLCFGRS = $f(x_1, x_2,x_n)$	Observed items: (x_1, x_2,x_n)	Reference:		
North Central	IA, IL, IN, KS, MO, NE, SD	VOLCFGRS = $b_1(x_2)^{b_2}(1-e^{b_3x_1^{b_4}})$	$x_1 = DBH$ $x_2 = SI$	Hahn & Hansen, 1991		
North Central	MI, MN, ND, WI	VOLCFGRS = $(b_0 + b_1 x_1 + b_2 4 + b_3 x_1^2 + b_4 x_1^2 h_4 + b_5 h_4^2 + b_6 h_4 4^2 + b_7 x_1^2 h_4^3 + b_8 x_1^2 h_4^2 4)(b_9 + b_{10} x_1)$ where h_4 = predicted BL = $4.5 + b_{11} (1 - e^{(-b_{12} x_1)})^{b_{13}} x_2^{b_{14}} \left(1.00001 - \frac{4.0}{x_1} \right)^{b_{15}} x_3^{b_{16}}$	$x_1 = DBH$ $x_2 = SI$ $x_3 = BA$	Hahn, 1984		
North- eastern	All states in the region	VOLCFGRS = $b_1 + b_2 x_1^{b_3} + b_4 x_1^{b_5} x_2^{b_6}$	$x_1 = DBH$ $x_2 = bole ht$	Scott, 1981		
RMRS	Eastern MT & WY, SD	IF $(x_1^2 x_2 < b_0)$ VOLCFGRS = $(b_1 + b_2 x_1^2 x_2)$ IF $(x_1^2 x_2 \ge b_0)$ VOLCFGRS = $(b_3 + b_4 x_1^2 x_2)$	$x_1 = dbh$ $x_2 = ht$	Myers, 1964 RM-8		

	(SPP=PP)			
RMRS	Western WY, CO, NV, UT (All species except woodland)	IF $(x_1^2 x_2 < b_0)$ VOLCFGRS = $(b_6 + b_7 x_1^2 x_2)$ IF $(x_1^2 x_2 \ge b_0)$ VOLCFGRS = $(b_8 + b_9 x_1^2 x_2)$	$x_1 = dbh$ $x_2 = ht$	Edminster, Beeson, and Metcalf, 1980 Myers and Edminster, 1972 Edminster, Mowrer, Hinds, 1982 Myers, 1964 RM-6

Table A3.1 Gross cubic-foot volume (continued)

RMRS	Western MT (SPP=PP)	VOLCFGRS = $v_1 - \left(v_1 \left(b_{13} \left(\frac{4}{b_{14}}\right)^{b_{15}} / x_1^{b_{16}}\right)\right)$	$x_1 = dbh$ $x_2 = ht$	Moisen, unpublished
	Montana (SPP=DF, GF, LP,WL,WP)	where $V_1 = b_{10}(x_1^{b_{11}})(x_2^{b_{12}})$	-	
RMRS	ID (All species except woodland species) MT (All species except DF, GF, LP, PP, WL, WP & woodland species) AZ, NM (Cottonwood)	IF $(x_1^2 x_2 < b_{17})$ VOLCFGRS = $(b_{18} + b_{19}x_1^2 x_2)$ IF $(x_1^2 x_2 \ge b_{17})$ VOLCFGRS = $(b_{20} + b_{21}x_1^2 x_2)$	$x_1 = dbh$ $x_2 = ht$	Kemp, 1957
RMRS	AZ, NM (All species except woodland species and Cottonwood)	VOLCFGRS = $V_t - V_u$ where: $V_t = (b_{26} + b_{27}x_1^2x_2)$ $V_u = b_{22} + b_{23} \left(\frac{x_3^3x_2}{x_1^b_{24}}\right) + b_{25}x_1^2$	$x_1 = dbh$ $x_2 = ht$ $x_3 = 4$; top diameter	Hann and Bare, 1978 with modification for ES & DF
RMRS	All woodland species	VOLCFGRS = various model forms		Chojnacky, 1988, 1986, 1988, 1985, & 1994 Pillsbury & Kirkley, 1983
SRS	All states in the region	VOLCFGRS = $b_1 + b_2(x_1^2 x_2)$ $x_2 = b_3 + b_4(\sqrt{\log_{10}(x_1)})$ if x_2 not measured or VOLCFGRS = $b_1 + b_2(x_1^2 x_3)$ $x_3 = b_3 + b_4 x_2 + b_5 x_1^{-2}$ if x_3 not measured	$x_1 = dbh$ $x_2 =$ bole ht $x_3 =$ total ht	Royer, 2001

PNW	All states	44 different models (24 softwood, 20 hardwood) These models all have different forms and parameter values. Basic models are for CVTS (total volume including tops and stumps) CVT (volume above stump, including top) or	$x_1 = dbh$ $x_2 =$ total ht $x_3 =$ basal area	USDA, 2000
		VOLCFGRS (volume above stump to 4" top). In all case the TARIF value is computed and used convert to between these values and VOLCFSND, and is also used to estimated sawtimber volume. One example from the 44 different models is presented here. $ \text{Log}_{10}(\text{CVTS}) = b_1 + b_2 \log(x_1) \log(x_2) - b_3 \log(x_1)^2 + b_4 \log(x_1) + b_5 \log(x_2) + b_6 \log(x_2)^2 $ $ \text{TARIF} = \frac{b_7 \text{CVTS}}{\left(\left(b_8\left(1 + b_9 \exp\left(b_{10}\left(\frac{x_1}{10.0}\right)\right)\right)\right)\left(x_3 + b_{11}\right) - b_{12}\right)} $ $ \text{VOLCFGRS} = \frac{TARIF\left(x_3 + b_{13}\right)}{b_{14}} $		

Table A	3.2 Sound c	subic-foot volume		
Region	States	Form of the model: VOLCFSND = $f(x_1, x_2,x_n)$	Observed items: (x_1, x_2,x_n)	Reference:
North Central	IA, IL, IN, KS, MO,	VOLCFSND = $VOLCFGRS \left(1 - \frac{(b_5 + b_6 \min(x_1, b_7))}{100} \right)$ b_5 , b_6 and b_7 are species-tree class specific	$x_1 = dbh$	Hahn and Hansen, 1991
North	NE, SD MI, MN,			Hahn,
Central	ND, WI	$VOLCFSND = VOLCFGRS(1 - \frac{b_{17}}{100})$		1984
		b_{17} is species-tree class specific		
North- eastern	All states in the region	$VOLCFSND = VOLCFGRS(1 - \frac{x_1}{100})$	x_1 = percent rotten cull in bole	Scott, 1981
RMRS	All (Old	VOLCFSND = VOLCFGRS(CMERCH)	$X_1 = dbh$	Region 3
	design)	(<u>Live Growing Stock Trees – Timber Species</u>) $CMERCH = \left(\frac{\left(e^{TC} - e^{TC1}\right)b_{28}}{\left(1 - e^{TC1}\right)}\right) + b_{29}$	x_4 = percent rotten and missing	
		$TC = -\left(ABS\left(\frac{SCALER}{FLEXC}\right)\right)^{b_{31}} SCALER = \left(\frac{(40X_1)}{39}\right) - 1.$	constants, coefficients & exponents are	
		FLEXC = $b_{30} - 1$. $TC1 = -\left(ABS\left(\frac{-1}{FLEXC}\right)\right)^{b_{31}}$	species specific	
		$(\underline{\text{Salvable Dead Trees}}) \text{ CMERCH} = .65$		
		(Nonsalvable Dead Trees) CMERCH = .25		
		(Rough Trees) CMERCH = .33		
		(Rotten Trees) CMERCH = .25		
		(Woodland Species) CMERCH = $1 - \frac{X_4}{100}$		
RMRS	All	$VOLCFSND = VOLCFGRS (1-x_5)$	X_5 = rotten and	
	(Mapped design)		missing proportion	
SRS	All	VOLCFSND = VOLCFGR/F	F = total/gross	Royer,
	states in the	$F = (b_5 + b_6(x_1 - 3)^{-2})^{-1}$ (pole and sawtimber)	volume factor	2001
	region	or $F = (b_5 + b_6 x_1^2 (bole - lenght))^{-1}$ (saplings)		
PNW	All	$VOLCFSND = VOLCFGRS (1-x_5)$	X_5 = rotten and	USDA,

	states	missing proportion	2000

Table A	Table A3.3 Gross cubic-foot volume in the sawlog portion					
Region	States	Form of the model:	Observed items:	Reference:		
		$VOLCSGRS = f(x_1, x_2, x_n)$	(x_1, x_2, x_n)			
North Central	IA, IL, IN, KS, MO, NE, SD	VOLCSGRS = $VOLCFGRS005454 \frac{(x_1 - 4)(x_1^2 + 4^2)}{2b_8}$	$x_1 = 7; (sfwd)$ $x_1 = 9; (hdwd)$	Hahn and Hansen, 1991		
North Central	MI, MN, ND, WI	VOLCSGRS = $(b_0 + b_1 x_1 + b_2 x_3 + b_3 x_1^2 + b_4 x_1^2 h_s + b_5 h_s^2 + b_6 h_s x_3^2 + b_7 x_1^2 h_s^3 + b_8 x_1^2 h_s^2 x_3)(b_9 + b_{10} x_1)$ where h_s = height to the top of the sawlog $4.5 + b_{11} (1 - e^{(b_{12} x_1)})^{b_{13}} x_2^{b_{14}} \left(1.00001 - \frac{x_3}{x_1} \right)^{b_{15}} x_4^{b_{16}}$	$x_1 = dbh$ $x_2 = site index$ $x_3 = 7; SW$ $x_3 = 9; HW$ all live basal area	Hahn, 1984		
North- eastern	All states in the region	$VOLCSGRS = VOLCFGRS(1 - x_1)$	x_1 = portion of volume in upper stem	Scott, 1981		
RMRS	All states (Timber species)	IF $(x_1 \le 42)$ VOLCSGRS = VOLCFGRS $\left(b_{32} - b_{33} \frac{(42 - x_1)^{b_{34}}}{33}\right)$ IF $(x_1 > 42)$ VOLCSGRS = VOLCFGRS * b_{35}	$x_1 = dbh$	Jensen and Homeyer, 1971		
RMRS	All states (Woodland species)	VOLCSGRS = VOLCFGRS * RATIO RATIO = $1 - \left(\frac{b_{38} (TOP - 1.5)^{b_{39}}}{(b_{35} + b_{36}x_1 + b_{37}x_5)^{b_{40}}}\right)$	$TOP = 3$ $x_1 = dbh$ $x_5 = 0$; multiple stems = 1; single stem	Chojnacky, 1987		
SRS	All states in the region	VOLCSGRS = VOLCFGRS $(b_7 + b_8(x_1 - 5)^{-2})$		Royer, 2001		

Table A	3.4 Net cubic-	-foot volume in the sawlog portion		
Region	States	Form of the model: $VOLCSNET = f(x_1, x_2,x_n)$	Observed items: (x_1, x_2,x_n)	Reference:
North Central	IA, IL, IN, KS, MO, NE, SD	VOLCSNET = $VOLCSGRS\left(1 - \frac{(b_5 + b_6 \min(x_1, b_7))}{100}\right)$ b_5 , b_6 and b_7 are species-tree class specific	$x_1 = dbh$	Hahn and Hansen, 1991
North Central	MI, MN, ND, WI	VOLCSNET = $VOLCSGRS(1 - \frac{b_{17}}{100})$ b_{17} is species-tree class specific		Hahn, 1984
North- eastern	All states in the region	$VOLCSNET = VOLCFNET(1 - x_1)$	x_1 = portion of volume in upper stem	Scott, 1981
RMRS	All states (Timber species)	$IF (x_1 \le 42) VOLCSNET =$ $VOLCFSND \left(b_{32} - b_{33} \frac{(42 - x_1)^{b_{34}}}{33}\right)$ $IF (x_1 > 42) VOLCSNET = VOLCFSND * b_{35}$	$x_1 = dbh$	Jensen and Homeyer, 1971
RMRS	All states (Woodland species)	VOLCSNET = VOLCFSND * RATIO $RATIO = 1 - \left(\frac{b_{38}(TOP - 1.5)^{b_{39}}}{(b_{35} + b_{36}x_1 + b_{37}x_5)^{b_{40}}}\right)$	TOP = 3 $x_1 = dbh$ $x_5 = 0;$ multiple stems = 1; single stem	Chojnacky, 1987
SRS	All states in the region	VOLCSNET = VOLCFSND $(b_7 + b_8(x_1 - 5)^{-2})$		Royer, 2001

Table A	3.5 Gross board-	foot volume in the sawlog portion		
Region	States	Form of the model: $VOLBFGRS = f(x_1, x_2,x_n)$	Observed items: (x_1, x_2,x_n)	Reference:
North Central	IA, IL, IN, KS, MO, NE, SD	VOLBFGRS = $b_1(x_2)^{b_2}(1-e^{b_3x_1^{b_4}})$	$x_1 = DBH$ $x_2 = SI$	Hahn & Hansen, 1991
North Central	MI, MN, ND, WI	VOLBFGRS = $ \begin{bmatrix} (b_0 + b_1 x_1 + b_2 h_s + b_3 x_1^2 + b_4 x_1^2 h_s + b_5 h_s^2 + b_6 h_s x_3^2 + b_7 x_1^2 h_s^3 + b_8 x_1^2 h_s^2 x_3)(b_9 + b_{10} x_1) + b_{18} x_1 + b_{19} h_s + b_{20} x_3 + b_{21} \\ \text{where } h_s = \text{estimated SL} = $ $ 4.5 + b_{11} (1 - e^{(b_{12} x_1)})^{b_{13}} x_2^{b_{14}} \left(1.00001 - \frac{x_3}{x_1} \right)^{b_{15}} x_4^{b_{16}} $	$x_1 = DBH$ $x_2 = SI$ $x_3 = 7$; Sfwd $x_3 = 9$; Hdwd $x_4 = BA$	Hahn, 1984
North- eastern	All states in the region	VOLBFGRS = $b_1 + b_2 x_1^{b_3} + b_4 x_1^{b_5} x_2^{b_6}$	$x_1 = dbh$ $x_2 = sawlog$ height (height to 7" or 9" diameter outside bark)	Scott, 1979
RMRS	Eastern MT, Eastern WY, SD (SPP=PP)	Young Growth $(x_1^2x_2 \text{ Lt } b_{41})$ VOLBFGRS = $(b_{42} + b_{43}x_1^2x_2)$ Old Growth $(x_1^2x_2 \text{ Ge } b_{44})$ VOLBFGRS = $(b_{45} + b_{46}x_1^2x_2)$	$x_1 = dbh$ $x_2 = ht$	Myers, 1964 RM-8
RMRS	Western WY, CO, NV, UT (SPP=PP)	Young Growth $(x_1^2x_2 \text{ Lt } b_{47})$ VOLBFGRS = $(b_{48} + b_{49}x_1^2x_2)$ Old Growth $(x_1^2x_2 \text{ Ge } b_{47})$ VOLBFGRS = $(b_{50} + b_{51}x_1^2x_2)$	$x_1 = dbh$ $x_2 = ht$	Edminster, Beeson, and Metcalf, 1980 Myers and Edminster, 1972 Edminster, Mowrer,

				Hinds, 1982
				Myers, 1964 RM-6
RMRS	Idaho (All	Young Growth (x ₁ ² x ₂ Lt b ₅₂)	$x_1 = dbh$	Kemp, 1957
	species)	$VOLBFGRS = (b_{53} + b_{54}x_1^2x_2)$	$x_2 = ht$	
	AZ, NM (Cottonwood)	Old Growth $(x_1^2x_2 \text{ Ge } b_{52})$		
	Montana (All	$VOLBFGRS = (b_{53} + b_{54}x_1^2x_2)$		
	species			
	except PP in Eastern MT			
	and			
	woodland			
RMRS	species)	be be be	v _ dhh	Hann and
KWKS	AZ, NM (All species	VOLBFGRS = VOLCFGRS $b_{55} - \frac{b_{56}}{x_1} - \frac{b_{57}}{x_1^2} - \frac{b_{58}}{x_1^3}$	$x_1 = dbh$	Bare, 1978
	except			with
	woodland			modification for ES &
	species and Cottonwood)			DF
RMRS	All woodland	VOLBFGRS = various model forms		Chojnacky,
	species			1988, 1986,
				1988, 1985, & 1994
				Pillsbury &
				Kirkley, 1983
SRS	All states in	(1/)	$x_1 = dbh$	Royer, 2001
	the region	VOLBFGRS = VOLCFGRS $\left(b_3 + b_4(1 - \frac{1}{x_1})\right)$ =	A ₁ con	110761, 2001
		$\left(b_1 + b_2(x_1^2 x_2)\right)\left(b_3 + b_4(1 - \frac{1}{x_1})\right)$		
PNW		Softwoods: VOLBFGRS =	$x_1 = dbh$	USDA,
		$b_{15} + b_{16} \log(x_1 TARIF) + b_{17} x_1 + b_{18} TARIF^2 + \frac{b_{19}}{x_1^2}$		2000
		Hardwoods: VOLBFGRS =		
		$ \left(b_{23} + b_{24} \log(x_1 TARIF) + b_{25} x_1 + b_{26} TARIF^2 + \frac{b_{27}}{x_1^2} \right) $ $ \left(\left(b_{20} - b_{21} b_{22}^{(x_1 - 6.0)} \right) \left(VOLCFGRS \right) \right) \left(b_{28} + b_{29} \left(b_{30}^{(x_1 - 9.5)} \right) \right) $		
		$(b_{20} - b_{21}b_{22}^{(x_1-6.0)})(VOLCFGRS)(b_{28} + b_{29}(b_{30}^{(x_1-9.5)}))$		

Table A3	Table A3.6 Net board-foot volume in the sawlog portion					
Region	States	Form of the model: $VOLBFNET = f(x_1, x_2,x_n)$	Observed items: (x_1, x_2,x_n)	Reference:		
North Central	IA, IL, IN, KS, MO, NE, SD	VOLBFNET = $VOLBFGRS(1 - (b_5 + b_6x_1))$ b_5 and b_6 are species-tree class specific	$x_1 = dbh$	Hahn and Hansen, 1991		
North Central	MI, MN, ND, WI	VOLBFNET = $VOLBFGRS(1 - b_{22}x_1)$ b_{22} is species-tree class specific	$x_1 = dbh$	Hahn, 1984		
North- eastern	All states in the region	$VOLBFNET = VOLBFGRS(1 - \frac{x_1}{100})$	x_1 = percent cull in sawlog	Scott, 1979		
RMRS	All states in the region Old Design	VOLBFNET = VOLBFGRS(BMERCH) where: (Live Growing Stock Trees - Timber Species) BMERCH = $\left(\frac{\left(e^{TB} - e^{TBI}\right)b_{59}}{\left(1 - e^{TCI}\right)}\right) + b_{60}$ TB = $-\left(ABS\left(\frac{SCALER}{FLEXB}\right)\right)^{b_{61}}$ SCALER = $\left(\frac{(40 X_1)}{39}\right) - 1$. FLEXB = $b_{62} - 1$. TB1 = $-\left(ABS\left(\frac{-1}{FLEXB}\right)\right)^{b_{61}}$ (Salvable Dead Trees) BMERCH = .50 (Nonsalvable Dead Trees) BMERCH = .25 (Rough Trees) BMERCH = .25 (Rotten Trees) BMERCH = .25	$x_1 = dbh$	Region 3		
RMRS	All states in the region	VOLBFNET = VOLBFGRS (1-x ₅)	x ₅ = rotten and missing proportion			

	(Mapped Design)		
SRS	All states in the region	VOLBFNET = $VOLCFSND\left(b_9 + b_{10}(1 - \frac{1}{x_1})\right)$	Royer, 2001

Table A3.7 Total gross biomass oven-dry weight for live trees							
Region	States	Form of the model: $DRYBIOT = f(x_1, x_2,x_n)$	Observed items: (x_1, x_2,x_n)	Reference:			
North Central	All states in the region	For DBH \geq 5.0"DRYBIOT $= x_2b_4 + (b_1 + x_1b_2)x_2b_5 + b_3x_1^2b_4$ For DBH $<$ 5.0" DRYBIOT $= \frac{(x_3b_4 + (b_1 + 5b_2)x_3b_5 + b_35^2b_4)}{b_65^{b_7}}b_6x_1^{b_7}$	$x_1 = DBH$ $x_2 =$ VOLCFGRS $x_3 =$ VOLCFGRS of a 5" DBH tree	Hahn, 1984 and Smith, 1985			
North- eastern	All states in the region	For DBH \geq 5.0" DRYBIOT $= e^{(.b_1 + b_2 \ln(x_1))} b_4 \text{ or}$ $= 10^{(.\log_{10}(b_1) + b_2 \log_{10}(x_1))} b_4 \text{ or}$ $= 2.2046 (b_1 + b_2 25.4x_1 + b_3 (25.4x_1)^2) b_4$ model form is species dependent $b_4 \text{ is DBH class dependent}$ For DBH $<$ 5.0" DRYBIOT $= e^{(.95595 + 2.42640 \ln(x_1))}$	$x_1 = dbh$	Wharton & Griffith, 1998			
RMRS	All states in the region (Timber species)	$\begin{aligned} & DRYBIOT = \\ & DRYBIOM + 193.5 - \left(43.5412X_1^2\right) + 3.1659X_1^2 \\ & for \ Pines \ with \ dbh \ \ge \ 5.0 \\ & DRYBIOT = \\ & DRYBIOM + .191 + \left(2.0304X_1\right) + \left(7031X_1^2\right) \\ & for \ other \ conifers \ with \ dbh \ \ge \ 5.0 \\ & DRYBIOT = \ DRYBIOM + (129.69P05)2.2046 \\ & where: \ P = e^{Prime} \\ & Prime = \ -1 \Bigg(ABS \bigg(\bigg(\frac{X_1}{27.56} \bigg) - 1. \bigg) 1.56 \bigg) \bigg)^{3.5} \\ & for \ hardwoods \ with \ dbh \ \ge \ 5.0 \\ & DRYBIOT = DRYBIOM \\ & for \ hardwoods \ with \ dbh \ \ge \ 5.0 \end{aligned}$	$x_1 = dbh$	Van Hooser and Chojnacky, 1983			
RMRS	All states in the region (Woodland species)	DRYBIOT = various model forms		Chojnacky, 1993 INT- RB-332 Nov. 1984 Chojnacky,			

				1985
				Chojnacky, 1994
				GTR-RM- 218, April 1992
SRS	All states in	For DBH≥5.0" DRYBIOT	$x_1 = DBH$	Royer, 2001
	the region	$= b_1 + b_2 x_1^2 \left(b_3 + b_4 x_2 + \frac{b_5}{x_1^2} \right) \text{ or }$	$x_2 = Bole ht$	
			$x_3 = \text{Total ht}$	
		$= b_1 \left(x_1^2 \left(b_2 + b_3 x_2 + \frac{b_4}{x_1^2} \right) \right)^{b_5}$		
		model form is species dependent		
		For DBH < 5.0" DRYBIOT		
		$=b_1+b_2x_1^2x_3$ or $=b_1(x_1^2x_3)^{b_2}$		
		model form is species dependent		

Table A3.8 Merchantable stem biomass oven-dry weight for live trees					
Region	States	Form of the model: $DRYBIOM = f(x_1, x_2,x_n)$	Observed items:	Reference:	
			(x_1, x_2, x_n)		
North Central	All states in the region	$DRYBIOM = (b_1 + x_1b_2)x_2b_4$	$x_1 = dbh$ $x_2 =$	Hahn, 1984	
NT1	A 11		VOLCFGRS	MH 0 0 100 1	
North- eastern	All states in the	DRYBIOM = $(1 - (b_1 + b_2))x_1$	$x_1 =$	Wharton & Griffith, 1998	
eastern	region		DRYBIOT	1990	
RMRS	All states	$DRYBIOM = x_1b_1(b_2 + 1)$	$\mathbf{x}_1 =$	Van Hooser and	
	in the	for Timber species with	VOLCFGRS	Chojnacky, 1983	
	region	dbh ≥ 5.0"			
		species dependant			
RMRS	All states	$DRYBIOM = b_3$		Van Hooser and	
	in the	for Timber species with		Chojnacky, 1983	
	region	dbh ≥ 5.0"			
		species and dbh dependant			
RMRS	All states	DRYBIOM = various model		Chojnacky,	
	in the	forms		1993,1985,	
	region			1994,1992, & 1984	
SRS					

- Chojnacky, D. C. 1984. Volume and biomass for curlleaf cercocarpus in Nevada. Res. Bul. INT-332. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1985. Pinyon-Juniper volume equations for the central rocky mountain states. Res. Pap. INT-339. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1986. Pinyon-juniper volume equations for Arizona Hualapai and Havasupai Indian Reservations. Res. Bul. INT-363. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1987. Estimating singleleaf pinyon and Utah juniper volumes for several utilization standards.WJAF 2(2).
- Chojnacky, D. C. 1988. Juniper, pinyon, oak and mesquite volume equations for Arizona. Res. Bul. INT-391. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1988. Woodland volume equations for Arizona Fort Apache and San Carlos Indian Reservations. Res. Bul. INT-379. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1992. Estimating volume and biomass for dryland oak species. GTR RM218. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1993. Converting wood volume to biomass for pinyon and juniper. Res. Note INT-411. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Chojnacky, D. C. 1994. Volume equations for New Mexico's pinyon-juniper dryland forests. Res. Pap. INT-471. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Edminster, C. B., Beeson, R. T. and Metcalf, G. B. 1980. Volume tables and point-sampling factors for ponderosa pine in the front range of Colorado. Res. Pap. RM-218. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Edminster, C.B., Mowrer, H. T. and Hinds, T. E. 1982. Volume tables and point-sampling factors for aspen in Colorado Res. Pap. RM-232. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Hahn, J. T. and Hansen, M. H. 1991. Cubic and board foot volume models for the Central States. NJAF 8:47-57.
- Hahn, J. T. 1984. Tree volume and biomass equations for the Lake States. Res. Pap. NC-250. USDA, Forest Service, North Central Forest Experiment Station,
- Hann, D.W. and Bare, B. B. 1978. Comprehensive tree volume equations for major species of New Mexico and Arizona: II. Tables for unforked trees. Res. Pap. INT-210. USDA, Forest Service, Intermountain Forest And Range Experiment Station.

- Jensen, C. E. and Homeyer, J. W. 1971. Matchacurve-2 for algebraic transformations to describe curves of the class X. Res. Pap. INT-106. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Kemp, P.D. 1958. Unpublished report on file at USDA, Forest Service, Rocky Mountain Research Station, Interior West Resource Inventory, Monitoring, and Evaluation Program, Ogden, UT.
- Moisen, G. G. 1990. Volume equations for timber species in western Montana and northern Idaho. Unpublished report on file at USDA, Forest Service, Rocky Mountain Research Station, Interior West Resource Inventory, Monitoring, and Evaluation Program, Ogden, UT.
- Myers, C. A. and Edminster, C. B. 1972. Volume tables and point-sampling factors for engelmann spruce in Colorado and Wyoming, 1972. Res. Pap. RM-95. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Myers, C.A. 1964. Volume tables and point-sampling factors for lodgepole pine in Colorado and Wyoming. Res. Pap. RM-6. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Myers, C.A. 1964. Volume tables and point-sampling factors for ponderosa pine in the Black Hills. Res. Pap. RM-8. USDA, Forest Service, Intermountain Forest And Range Experiment Station.
- Pillsbury, N., Kirkley, M., 1983, A memo from Charles L. Bolsinger to Tom Farrenkopf. January 3, 1983.
- Royer, L. 2001. Personal communications with Larry Royer, USDA/FS SRS FIA, 828-257-4370, Iroyer@fs.fed.us
- Scott, C. T. 1979. Northeastern Forest Survey Board-Foot Volume Equations. Research Note NE-271. USDA, Forest Service, Northeastern Research Station, 4p.
- Scott, C. T. 1981. Northeastern Forest Survey Revised Cubic-Foot Volume Equations. Research Note NE-304. USDA, Forest Service, Northeastern Research Station, 4p.
- Smith W. B. 1985. Factors and equations to estimate forest biomass in the North Central Region. Res. Pap. NC-268. USDA, Forest Service, North Central Forest Experiment Station,
- Smith W. B. 1985. Factors and equations to estimate forest biomass in the North Central Region. Res. Pap. NC-268. USDA, Forest Service, North Central Forest Experiment Station, 6p.
- USDA, 2000, Western Oregon 1995-1997, August 15, 2000, a CD available from USDA/FS PNW Research at http://www.fs.fed.us/pnw/fia/
- Van Hooser, D. D. and Chojnacky, D. C. 1983. Whole tree volume estimates for the rocky mountain states. Res. Bul. INT-29. USDA, Forest Service, Intermountain Forest And Range Experiment Station.

Wharton, E. H. and Griffith, D. M. 1998. Estimating total forest biomass in Maine, 1995. Resource Bull. NE-142. USDA, Forest Service, Northeastern Research Station, 50p.