


```
RAM
+ \leftrightarrow + T
                       Disk
               e) 🏩 🖟
                              0s
        import pandas as pd
        import numpy as np
        # Create a DataFrame with miss
        data = {
             'Age': [25, 30, np.nan, 35
             'Salary': [50000, 60000, r
             'Department': ['HR', 'Fina
             'Experience': [2, 5, 3, 8
        }
        df = pd.DataFrame(data)
        print("Original DataFrame:")
        print(df)
        # Drop rows with any missing \
        df_dropped_rows = df.dropna()
        print("\nDropped Rows with Any
        print(df_dropped_rows)
        # Drop rows where any missing
        df_dropped_specific_columns =
        print("\nDropped Rows with Mis
        print(df_dropped_specific_column
```


+	<> -	⊢тТ	•	✓	RAM Disk		^
	\uparrow	\downarrow	*		<u>ئ</u>		t rIR
	\rightarrow	1	30.0		00.0	Fi	nance
		2	NaN	000	NaN		IT
		3	35.0	700	00.0	Fi	nance
		4	40.0		00.0		eting
			10.0	000	00.0	mar it	2 6 1 1 1 8
		Fo	rward	Fill	Miss	ing Va	alues:
			Age	Sa	lary	Depar	tment
		0	25.0	500	00.0		HR
		1	30.0	600	00.0	Fi	nance
		2	30.0	600	00.0		IT
		3	35.0	700	00.0		IT
		4	40.0	800	00.0	Mark	eting
		Ва	ckwar Age			sing \	Values tment
		0	_	500	_		HR
		1		600		Fi	nance
			35.0				IT
			35.0			Mark	eting
		4				Mark	_
		<i< td=""><td></td><td></td><td></td><td></td><td>5a2677</td></i<>					5a2677
			, ,				

The behavior will change in


```
RAM
+ \leftrightarrow + T
                       Disk
          ◆ c> 💠 🖫 🔟
3s
        import pandas as pd
        import numpy as np
        from sklearn.preprocessing imp
        from sklearn.compose import Co
        from sklearn.pipeline import [
        # Sample DataFrame with numer:
        data = {
             'Age': [25, 30, 35, 40, 45
             'Salary': [50000, 60000,
             'Department': ['HR', 'Fina
             'Experience': [2, 5, 3, 8
        }
        df = pd.DataFrame(data)
        print("Original DataFrame:")
        print(df)
        # --- 1. Scaling (Normalization
        def scale_data(df):
            # Normalization (Min-Max 5
            scaler = MinMaxScaler()
            df[['Age', 'Salary', 'Expe
```



```
RAM
+ \leftrightarrow + T
                       Disk
            回
3s
        # --- 1. Scaling (Normalization
        def scale_data(df):
            # Normalization (Min-Max S
            scaler = MinMaxScaler()
            df[['Age', 'Salary', 'Expe
            print("\nData after Normal
            print(df)
            # Standardization (Z-score
            scaler = StandardScaler()
            df[['Age', 'Salary', 'Expe
            print("\nData after Standa
            print(df)
        # Call the scale_data function
        scale_data(df)
        # --- 2. Encoding Categorical
        def encode_data(df):
            # One-Hot Encoding for cat
            df_encoded = pd.get_dummie
            print("\nData after One-Ho
            print(df_encoded)
            # Label Encoding for cates
```


4 1.414214 1.414214 1.4


```
RAM
+ <> + T
                     Disk
                     1.414214
         1.414214
       import pandas as pd
       import numpy as np
       from sklearn.preprocessing imp
       # Load dataset
       from sklearn.datasets import !
       data = load iris()
       df = pd.DataFrame(data.data, 
       df['target'] = data.target
       # 1) Creating a New Feature: [
       df['petal_area'] = df['petal ]
       # 2) Binning (Converting Cont:
       bins = [0, 5.0, 10.0]
       labels = ['Small', 'Large']
       df['petal_area_bin'] = pd.cut(
       # 3) Feature Scaling (Standard
       scaler = StandardScaler()
       df[df.columns[:-2]] = scaler.
       # Output Results
        print("Data after feature eng:
```


RAM + <> + T Disk import pandas as pd 0s # Creating patient data data = { "Patient_ID": [101, 102, 103, 1 "Name": ["John Doe", "Jane Smi1 "Age": [45, 38, 50, 29, 41, 60] "Heart_Rate (bpm)": [72, 110, 7 "Systolic_BP (mmHg)": [120, 135 "Diastolic_BP (mmHg)": [80, 90, "Temperature (°C)": [36.5, 38.2 } # Creating DataFrame df = pd.DataFrame(data) # Define risk score based on condit df["Risk_Score"] = ($(df["Heart_Rate (bpm)"] > 100).$ (df["Systolic_BP (mmHg)"] > 13((df["Diastolic_BP (mmHg)"] > 9((df["Temperature (°C)"] > 38).a) # Assigning Risk Level based on Ris def calculate_risk_level(score): if score == 0: return "Low" elif score == 1: return "Moderate" elif score == 2: return "High"

```
RAM
+ <> + T
                           Disk
            (df["Heart_Rate (bpm)"] > 100)
            (df["Systolic_BP (mmHg)"] > 130
0s
            (df["Diastolic_BP (mmHg)"] > 90
            (df["Temperature (°C)"] > 38).a
        )
        # Sorting by risk score in descending
        df_sorted = df.sort_values(by="Risk
        # Display sorted patients
        print("Patients Sorted by Health Ri
        print(df_sorted[["Patient_ID", "Name
        # Saving to CSV (optional)
        df_sorted.to_csv("sorted_health_ris
        print("\nSorted patient data saved
   →▼ Patients Sorted by Health Risk:
                                        Ri:
           Patient_ID
                                 Name
       5
                  106
                          Michael Lee
                  102
       1
                           Jane Smith
       2
                  103 Alice Johnson
       0
                  101
                             John Doe
       3
                  104
                         Robert Brown
       4
                  105
                          Emily Davis
       Sorted patient data saved to 'so
        ↑ ↓ ♦ 🖘 🔂
                                 import pandas as pd
0s
        # Creating patient data
        data = {
            "Patient_ID": [101, 102, 103,
```


		Systolic_BP	(mmHg)	Diastolic
~	0		120	
₹	1		125	
	2		118	
	3		130	
	4		122	

Basic Statistics:

	Patient_ID	Age	Не
count	5.000000	5.000000	
mean	103.000000	40.600000	
std	1.581139	7.893035	
min	101.000000	29.000000	
25%	102.000000	38.000000	
50%	103.000000	41.000000	
75%	104.000000	45.000000	
max	105.000000	50.000000	

	Diastolic_BP (mmHg) T	emp:
count	5.000000	
mean	83.00000	
std	4.690416	
min	78.000000	
25%	80.00000	
50%	82.000000	
75%	85.000000	
max	90.00000	

import pandas as pd

High-Risk Patients:

```
Patient_ID
                        Name
                              Agı
          102
                  Jane Smith
                               31
2
          103 Alice Johnson
                               51
5
          106
                 Michael Lee 6
   Systolic_BP (mmHg) Diastolic_
                  135
2
                  140
5
                  150
```

High-risk patient data saved to

```
import pandas as pd
0s
        # Creating patient data
        data = {
            "Patient_ID": [101, 102, 103,
            "Name": ["John Doe", "Jane Smit
            "Age": [45, 38, 50, 29, 41, 60]
            "Heart_Rate (bpm)": [72, 110, 7
            "Systolic_BP (mmHg)": [120, 135
            "Diastolic_BP (mmHg)": [80, 90]
            "Temperature (°C)": [36.5, 38.2
        }
        # Creating DataFrame
        df = pd.DataFrame(data)
        # Define risk score based on condit
        df["Risk_Score"] = (
            (df["Heart_Rate (bpm)"] > 100).
```


BMI: 24.49

→▼ Category: Normal weight

Simulated patient vital signs heart_rates = np.array([72, 75, $systolic_bp = np.array([120, 122]$ diastolic_bp = np.array([80, 82, body_temperatures = np.array([36

Compute basic statistics heart_rate_mean = np.mean(heart_ heart_rate_std = np.std(heart_ra

systolic_mean = np.mean(systolic diastolic_mean = np.mean(diastol

temperature_mean = np.mean(body_ temperature_max = np.max(body_te temperature_min = np.min(body_te

Display the analysis results print(f"Heart Rate - Mean: {hear print(f"Blood Pressure - Mean: { print(f"Body Temperature - Mean:

→ Heart Rate - Mean: 76.50 bpm, Blood Pressure - Mean: 121.80/ Body Temperature - Mean: 36.76

import pandas as pd


```
import pandas as pd
0s
        # Creating patient data
        data = {
             "Patient_ID": [101, 102, 103,
             "Name": ["John Doe", "Jane Smit
             "Age": [45, 38, 50, 29, 41, 60]
"Gender": ["Male", "Female", "F
             "Heart_Rate (bpm)": [72, 110, 7
             "Systolic_BP (mmHg)": [120, 135
             "Diastolic_BP (mmHg)": [80, 90]
             "Temperature (°C)": [36.5, 38.2
        }
        # Creating DataFrame
        df = pd.DataFrame(data)
        # Filtering high-risk patients
        high_risk_patients = df[
             (df["Heart_Rate (bpm)"] > 100)
             (df["Systolic_BP (mmHg)"] > 13(
             (df["Diastolic_BP (mmHg)"] > 9(
             (df["Temperature (°C)"] > 38)
        1
        # Display high-risk patients
        print("High-Risk Patients:\n")
        print(high_risk_patients)
        # Saving to CSV (optional)
        high_risk_patients.to_csv("high_ris
```

print("\nHigh-risk patient data sav

import pandas as pd

```
# Creating patient data
data = {
    "Patient_ID": [101, 102, 103,
    "Name": ["John Doe", "Jane Smi
    "Age": [45, 38, 50, 29, 41, 60]
    "Gender": ["Male", "Female", "
    "Heart_Rate (bpm)": [72, 110,
    "Systolic_BP (mmHg)": [120, 135
    "Diastolic_BP (mmHg)": [80, 90
    "Temperature (°C)": [36.5, 38.2
}
# Creating DataFrame
df = pd.DataFrame(data)
# Filtering high-risk patients
high_risk_patients = df[
    (df["Heart_Rate (bpm)"] > 100)
    (df["Systolic_BP (mmHg)"] > 130
    (df["Diastolic_BP (mmHg)"] > 90
    (df["Temperature (°C)"] > 38)
]
# Display high-risk patients
print("High-Risk Patients:\n")
print(high_risk_patients)
# Saving to CSV (optional)
high_risk_patients.to_csv("high_ris
print("\nHigh-risk patient data say
```

```
+ <> + τT
```


import pandas as pd

```
# Creating patient data
data = {
    "Patient_ID": [101, 102, 103, 1
    "Name": ["John Doe", "Jane Smi1
    "Age": [45, 38, 50, 29, 41],
    "Gender": ["Male", "Female", "Female",
```

df = pd.DataFrame(data)

Display the DataFrame
print("Patient Records:\n")
print(df)

Display basic statistics
print("\nBasic Statistics:\n")
print(df.describe())

→ Patient Records:

Ago	Name	Patient_ID	
4!	John Doe	101	0
3	Jane Smith	102	1
51	Alice Johnson	103	2
21	Robert Brown	104	3
1	Emily Davis	105	1