folha 1 —

1. Noções elementares de lógica

- 1.1. Das seguintes frases indique aquelas que são proposições:
 - (a) A Terra é redonda.
 - (b) Hoje está sol.
 - (c) 2 + x = 3 e 2 é par.
 - (d) $(25 \times 2) + 7$
 - (e) 2 é impar ou 3 é múltiplo de 4.
 - (f) Qual é o conjunto de soluções inteiras da equação $x^2 1 = 0$?
 - (g) 4 < 3
 - (h) Se $x \ge 2$ então $x^3 \ge 1$.
 - (i) A U.M. é a melhor academia do país.
- 1.2. Representando as frases Eu gosto de leite, Eu não gosto de cereais e Eu sei fazer crepes por p_0, p_1 e p_2 , respetivamente, traduza as seguintes fórmulas para linguagem corrente:

- (a) $p_0 \wedge p_1$ (c) $\neg p_2$ (e) $\neg p_0 \vee \neg p_1$ (g) $(p_2 \wedge p_0) \vee p_1$ (b) $p_1 \vee p_2$ (d) $\neg (p_0 \vee p_1)$ (f) $p_2 \to p_0$ (h) $p_2 \wedge (p_0 \vee p_1)$
- **1.3.** Considere as proposições 7 é um número inteiro par, 3+1=4 e 24 é divisível por 8 representadas, respetivamente, por p_0 , p_1 e p_2 .
 - (a) Escreva fórmulas que representem as afirmações:
 - (i) $3+1 \neq 4$ e 24 é divisível por 8.
 - (ii) Não é verdade que: 7 é impar ou 3+1=4.
 - (iii) Se 3 + 1 = 4 então 24 não é divisível por 8.
 - (b) Traduza por frases cada uma das seguintes fórmulas:
 - (i) $p_0 \vee (\neg p_2)$
- (ii) $\neg (p_0 \land p_1)$ (iii) $(\neg p_2) \rightarrow (\neg p_1 \lor p_0)$
- 1.4. De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :
 - (a) $(\neg (p_1 \lor p_2))$
- (d) $((p_0 \land \neg p_0) \to \bot)$
- (b) $((\neg p_5) \to (\neg p_6))$
- (e) (\perp)
- (c) $((p_3 \wedge p_1) \vee ($
- (f) $(((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot)))$

— folha 2 —

1.5. Das seguintes proposições indique as que são verdadeiras:

- (a) $(e < 4) \land (e^2 < 9)$
- (b) 1 e -1 são soluções da equação $x^3 1 = 0$.
- (c) 64 é múltiplo de 3 ou de 4.
- (d) $\sqrt{530} < 25 \rightarrow 530 < 25^2$
- (e) 7^4 é par se e só se $7^4 + 1$ é impar.

1.6. Construa tabelas de verdade para cada uma das seguintes fórmulas do Cálculo Proposicional:

(a) $p_0 \vee (\neg p_0)$

(g) $(p_0 \rightarrow p_1) \leftrightarrow (\neg p_0 \lor p_1)$

(b) $\neg (p_0 \lor p_1)$

(h) $(p_0 \rightarrow p_1) \leftrightarrow (\neg p_1 \rightarrow \neg p_0)$

(c) $p_0 \wedge \neg (p_0 \vee p_1)$

(i) $p_0 \to (p_1 \to p_2)$

(d) $p_0 \wedge (\neg p_0 \vee p_1)$

(j) $p_0 \wedge \neg (p_1 \rightarrow p_2)$

(e) $\neg (p_0 \rightarrow \neg p_1)$

(k) $(p_0 \leftrightarrow \neg p_2) \lor (p_1 \land p_2)$

(f) $p_0 \leftrightarrow (p_1 \lor p_0)$

(1) $(p_0 \to (p_1 \to p_2)) \to ((p_0 \land p_1) \to p_2)$

1.7. Suponha que p_0 representa uma proposição verdadeira, p_1 uma proposição falsa, p_2 uma proposição falsa e p_3 uma proposição verdadeira. Quais das seguintes fórmulas são verdadeiras e quais são falsas?

- (a) $p_0 \vee p_2$
- (b) $(p_2 \wedge p_3) \vee p_1$
- (c) $\neg (p_0 \land p_1)$

- (d) $\neg p_3 \lor \neg p_2$
- (e) $(p_3 \wedge p_0) \vee (p_1 \wedge p_2)$ (f) $p_2 \vee (p_3 \vee (p_0 \wedge p_1))$
- (g) $p_2 \rightarrow p_1$
- (h) $p_0 \leftrightarrow p_2$
- (i) $(p_1 \leftrightarrow p_3) \land p_0$

- $(j) p_3 \to (p_0 \to \neg p_3) \qquad \qquad (k) ((p_1 \to p_3) \leftrightarrow p_3) \land \neg p_0 \qquad \qquad (l) (p_3 \to p_0) \leftrightarrow \neg (p_2 \lor p_1)$

1.8. Admitindo que p_0 , p_1 e p_2 representam proposições e que $p_0 \leftrightarrow p_1$ é falsa, o que pode dizer sobre o valor lógico das seguintes fórmulas?

- (a) $p_0 \wedge p_1$
- (b) $p_0 \vee p_1$
- (c) $p_0 \rightarrow p_1$
- (d) $(p_0 \wedge p_2) \leftrightarrow (p_1 \wedge p_2)$

folha 3 —

- 1.9. Suponha que o Manuel gosta da cor azul, não gosta da cor vermelha, gosta da cor amarela e não gosta da cor verde. Quais das seguintes proposições são verdadeiras e quais são falsas?
 - (a) O Manuel gosta de azul e de vermelho.
 - (b) O Manuel gosta de amarelo ou verde e o Manuel não gosta de vermelho.
 - (c) O Manuel gosta de vermelho ou o Manuel gosta de azul e amarelo.
 - (d) O Manuel gosta de azul ou amarelo e o Manuel gosta de vermelho ou verde.
 - (e) Se o Manuel gosta de azul então gosta de amarelo.
 - (f) O Manuel gosta de amarelo se e só se gosta de vermelho.
 - (g) O Manuel gosta de verde e se o Manuel gosta de amarelo então gosta de azul.
 - (h) Se o Manuel gosta de amarelo então gosta de verde ou o Manuel gosta de amarelo se e só se gosta de vermelho.
- **1.10.** Considere as seguintes afirmações:
 - Se há vida em Marte, então Zuzarte gosta de tarte.
 - Zuzarte é um marciano ou não gosta de tarte.
 - Zuzarte não é um marciano, mas há vida em Marte.
 - (a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases simples.
- (b) Mostre que as três afirmações acima não podem ser simultaneamente verdadeiras.
- 1.11. De entre as seguintes fórmulas, indique aquelas que são tautologias e aquelas que são contradições:

(a)
$$p_0 \to (p_0 \lor p_1)$$

(d)
$$(p_0 \to (p_0 \lor p_1)) \land p_1$$

(b)
$$\neg (p_0 \land p_1) \rightarrow (p_0 \lor p_1)$$

(e)
$$(p_0 \vee \neg p_0) \rightarrow (p_0 \wedge \neg p_0)$$

(c)
$$(p_0 \to p_1) \leftrightarrow (\neg p_1 \to \neg p_0)$$

(f)
$$\neg (p_0 \to (p_1 \to p_0))$$

1.12. Indique quais dos pares de fórmulas que se seguem são logicamente equivalentes:

(a)
$$\neg (p_0 \land p_1); \neg p_0 \land \neg p_1$$

(b)
$$p_0 \to p_1; p_1 \to p_0$$

(c)
$$\neg (p_0 \to p_1); p_0 \land (p_1 \to (p_0 \land \neg p_0))$$

(c)
$$\neg (p_0 \to p_1); p_0 \land (p_1 \to (p_0 \land \neg p_0))$$
 (d) $p_0 \to (p_1 \to p_2); \neg (\neg p_2 \to \neg p_1) \to \neg p_0$

1.13. Encontre uma fórmula que seja logicamente equivalente à fórmula $p_0 \vee \neg p_1$ e que envolva apenas os conetivos \wedge e \neg .

—— folha 4 –

- 1.14. Exprima cada uma das seguintes frases como quantificações:
 - (a) A equação $x^3=28$ tem pelo menos uma solução nos números naturais.
 - (b) 1000000 não é o maior número natural.
 - (c) A soma de três números naturais consecutivos é um múltiplo de 3.
 - (d) Entre cada dois números racionais distintos existe um outro número racional.
- 1.15. Considere a seguinte proposição:

Todos os Hobbits são criaturas pacíficas.

Indique qual ou quais das seguintes proposições equivale à negação da proposição anterior:

- (a) Todos os Hobbits são criaturas conflituosas.
- (b) Nem todos os Hobbits são criaturas pacíficas.
- (c) Existem Hobbits que são criaturas conflituosas.
- (d) Nem todos os Hobbits são criaturas conflituosas.
- 1.16. Escreva quantificações equivalentes à negação de cada uma das seguintes proposições.
 - (a) Todo o OVNI tem o objetivo de conquistar alguma galáxia.
- (b) Existem morcegos que pesam 50 ou mais quilogramas.
- (c) A inequação $x^2 2x > 0$ verifica-se para todo o número real x.
- (d) Existe um inteiro n tal que n^2 é um número perfeito.
- 1.17. Considere as seguintes proposições, em que o universo de cada uma das quantificações é o conjunto dos números reais.

(a)
$$\forall_x \exists_y \ x + y = 0$$

(b)
$$\exists_x \forall_y \ x + y = 0$$

(c)
$$\exists_x \forall_y \ x + y = y$$

(d)
$$\forall_x (x > 0 \rightarrow \exists_y xy = 1)$$

Para cada proposição p acima (i) indique se p é ou não verdadeira e (ii) apresente, sem recorrer ao conetivo negação, uma proposição que seja equivalente a $\neg p$.

— folha 5 —

- **1.18.** Considerando que p representa a proposição $\forall_{a \in A} \exists_{b \in B} (a^2 = b \lor a + b = 0),$
 - (a) verifique se p é verdadeira para $A = \{-2, 0, 1, 2\}$ e $B = \{-1, 0, 4\}$.
- (b) indique em linguagem simbólica, sem recorrer ao símbolo de negação, uma proposição equivalente à negação de p.
- **1.19.** Considerando que p representa a proposição

$$\exists_{y \in A} \forall_{x \in A} (x \neq y \to (xy > 0 \lor x^2 + y = 0)),$$

- (a) dê exemplo de um universo A não vazio onde:
 - (i) a proposição p é verdadeira;
 - (ii) a proposição p é falsa.
- (b) indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- **1.20.** Averigue a validade dos seguintes argumentos:
 - (a) O João afirma: "Hoje vou ao cinema ou fico em casa a ver um filme na televisão". No dia seguinte o João comentou: "Ontem não fui ao cinema." Em resposta, a Joana concluiu: "Então viste um filme na televisão!".
- (b) A Maria afirmou: "Se hoje encontrar a Alice e estiver calor, vou à praia". No dia seguinte a Maria comentou: "Ontem esteve calor e fui à praia". Em resposta, a Rita concluiu: "Então encontraste a Alice".
- (c) O Tiago disse: "Vou almoçar no bar ou na cantina". E acrescentou: "Se comer no bar fico mal disposto e não vou ao cinema". Nesse dia, a Joana encontrou o Tiago no cinema e concluiu: "O Tiago foi almoçar à cantina".
- 1.21. Mostre que a soma de dois números inteiros ímpares é um número par.
- 1.22. Mostre que o produto de números inteiros ímpares é um número ímpar.
- **1.23.** Mostre que não existe $n \in \mathbb{N}$ tal que n+5=3n+2.
- **1.24.** Seja n um número natural ímpar. Mostre que $n^2 + 8n 1$ é múltiplo de 4.
- **1.25.** Mostre que, para todo o natural n, se 3n + 5 é impar, então n é par.
- **1.26.** Prove que, para todo o natural n, n^2 é impar se e só se n é impar.
- **1.27.** Prove que, dado um número natural n, se n é múltiplo de 6, então n é múltiplo de 2 e de 3.
- 1.28. Encontre um contraexemplo para cada das afirmações seguintes:
 - (a) Se $n = p^2 + q^2$, com p, q primos, então n é primo.
 - (b) Se a > b, com $a, b \in \mathbb{R}$, então $a^2 > b^2$.
 - (c) Se $x^4 = 1$, com $x \in \mathbb{R}$, então x = 1.