Többváltozós függvénytan Programtervező informatikus szak

Elméleti kérdések a röpdolgozatokhoz

1. Előadás

- 1. Adja meg a normált tér fogálmát!
- 2. Adjon meg három különböző normát az \mathbb{R}^n lineáris téren!
- 3. Adja meg a környezet fogalmát az \mathbb{R}^n euklideszi térben!
- 4. Adja meg a torlódási pont fogalmát az \mathbb{R}^n euklideszi térben!
- 5. Adja meg a belső pont fogalmát az \mathbb{R}^n euklideszi térben!
- 6. Mikor mondjuk, hogy egy sorozat konvergens az \mathbb{R}^n euklideszi térben?
- 7. Milyen kapcsolat van egy sorozat konvergenciája és a hátárértéktől való távolsága között?
- 8. Milyen kapcsolat van egy sorozat konvergenciája és a koordinátasorozatainak konvergenciája között?
- 9. Mit állít a Cauchy-féle konvergenciakritérium az \mathbb{R}^n euklideszi térbeli sorozatokra?
- 10. Mit állít a Bolzano–Weierstrass-féle kiválasztási tétel az \mathbb{R}^n euklideszi térre?

2. Előadás

- 1. Hogyan értelmezzük egy kétváltozós valós értékű függvény grafikonját?
- 2. Mikor mondjuk, hogy egy $f \in \mathbb{R}^n \to \mathbb{R}^m$ függvény folytonos egy adott pontban?
- 3. Igazolja, hogy az \mathbb{R}^n térben értelmezett norma egy folytonos függvény!
- 4. Mit mond a folytonosságra vonatkozó átviteli elv $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvények esetére?
- 5. Mondja ki az összetett függvény folytonosságára vonatkozó tételt többváltozós függvények esetére!
- 6. Milyen kapcsolat van egy függvény folytonossága és a koordinátafüggvényei folytonossága között?
- 7. Fogalmazza a Weierstrass tételét többváltozós függvények esetére!
- 8. Mikor mondjuk, hogy egy $f \in \mathbb{R}^n \to \mathbb{R}^m$ függvénynek van pontbeli határértéke?
- 9. Mit mond a határértékre vonatkozó átviteli elv $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvények esetére?
- 10. Adjon példát olyan $f: \mathbb{R}^2 \to \mathbb{R}$ függvényre, amelynek nincs határértéke egy megadott pontban!

3. Előadás

- 1. Adja meg egy függvény pontbeli i-edik változó szerinti parciális deriváltjának fogalmát!
- 2. Adja meg $\partial_x f(a)$ geometriai jelentését $\mathbb{R}^2 \to \mathbb{R}$ típusú függvények esetében!

- 3. Mit nevezünk parciális függvénynek, és milyen szerepük van a parciális deriváltak kiszámításában?
- 4. Mit jelent a $\partial_{ij} f(a)$ jelölést?
- 5. Adja meg egy függvény pontbeli v irányú iránymenti deriváltjának fogalmát!
- 6. Adja meg $\partial_v f(a)$ geometriai jelentését $\mathbb{R}^2 \to \mathbb{R}$ típusú függvények esetében!
- 7. Igaz-e, hogy minden parciális derivált egyben egy iránymenti derivált? A válaszát indokolja meg!
- 8. Hogyan számítható ki egy iránymenti derivált a parciális deriváltak ismeretében? Adja meg az ehhez elegendő feltételeket!

4. Előadás

- 1. Adja meg a totális derivált fogalmát!
- 2. Hogyan fogalmazható át a totális deriválthatóság lineáris közelítéssel?
- 3. Milyen kapcsolat van a totális derivált és a folytonosság között?
- 4. Adjon példát olyan $\mathbb{R}^n \to \mathbb{R}$ típusú függvényre, amely folytonos, de nem totálisan differenciálható egy adott pontban!
- 5. Milyen kapcsolat van a totális és az iránymenti derivált között?
- 6. Adja meg Jacobi-mátrix fogalmát!
- 7. Mit állít a deriváltmátrix előállításáról szóló tétel?
- 8. Milyen feltételek mellett következik a parciális deriválthatóságról a totális deriválthatóság?
- 9. Adja meg az érintősík fogalmát!
- 10. Mit mond az összetett függvény deriválási szabálya többváltozós függvények esetén?

5. Előadás

- 1. Adja meg a gradiens vektor fogalmát!
- 2. Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ és $f \in D\{a\}$. Milyen $v \in \mathbb{R}^n$ irányban lesz a $\partial_v f(a)$ iránymenti derivált értéke a legnagyobb?
- 3. Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ és $f \in D\{a\}$. Milyen $v \in \mathbb{R}^n$ irányban lesz a $\partial_v f(a)$ iránymenti derivált értéke nulla?
- 4. Mikor mondjuk, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ függvény kétszer differenciálható az $a \in \operatorname{int} \mathcal{D}_f$ pontban?
- 5. Mikor mondjuk, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ függvény kétszer folytonosan differenciálható az $a \in \text{int } \mathcal{D}_f$ pontban?
- 6. Adja meg Hesse-féle mátrix fogalmát!
- 7. Mondja ki a Young-tételt!
- 8. Mit állít a "Taylor-formula a Peano-féle maradéktaggal" című tételt?

6. Előadás

- 1. Mit ért azon, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ függvénynek valamely helyen lokális maximuma van?
- 2. Mit ért azon, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ függvénynek valamely helyen abszolút maximuma van?
- 3. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel többváltozós függvények esetén?
- 4. Mondjon példát olyan $f \in \mathbb{R}^2 \to \mathbb{R}$ függvényre, amelynek egy stacionárius pontján nincs lokális szélsőértéke!
- 5. Mikor mondjuk, hogy egy kvadratikus alak pozitív definit?
- 6. Mikor mondjuk, hogy egy kvadratikus alak pozitív szemidefinit?
- 7. Mikor mondjuk, hogy egy kvadratikus alak negatív definit?
- 8. Mikor mondjuk, hogy egy kvadratikus alak negatív szemidefinit?
- 9. Mikor mondjuk, hogy egy kvadratikus alak indefinit?
- 10. Hogyan szól a lokális szélsőértékre vonatkozó másodrendű elégséges feltétel többváltozós függvények esetén?
- 11. Mit mondhatunk egy függvény lokális szélsőértékéről egy adott pontban, ha ott a Hesseféle mátrix indefinit, és ez milyen feltételek mellett mondható ki?

7. Előadás

- 1. Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan invertálható?
- 2. Fogalmazza meg az inverzfüggvény-tételt!
- 3. Mikor mondjuk, hogy a φ függvény az f(x,y)=0 egyenletnek egy implicit megoldása?
- 4. Fogalmazza meg az egyváltozós implicitfüggvény-tételt!
- 5. Adja meg a feltételes abszolút maximum fogalmát!
- 6. Adja meg a feltételes lokális maximum fogalmát!
- 7. Igaz-e, hogy egy feltételes abszolút maximum egyben feltételes lokális maximum? A válaszát indokolja meg!
- 8. Hogyan szól a feltételes lokális szélsőértékre vonatkozó szükséges feltétel többváltozós függvények esetén?
- 9. Hogyan szól a feltételes lokális szélsőértékre vonatkozó elégséges feltétel többváltozós függvények esetén?
- 10. Milyen esetekben és hogyan tudjuk a Weierstrass-tételt alkalmazni a feltételes abszolút szélsőértékek keresésében?

8. Előadás

1. Mit nevezünk n-dimenziós intervallumnak?

- 2. Hogyan értelmezzük egy n-dimenziós intervallum mértékét?
- 3. Mit értünk az n-dimenziós intervallumnak egy felosztásán?
- 4. Adja meg az alsó és felső közelítő összeg fogalmát egy *n*-dimenziós intervallumon értelmezett függvényre vonatkozóan!
- 5. Adja meg a Darboux-féle alsó és felső integrál fogalmát egy *n*-dimenziós intervallumon értelmezett függvényre vonatkozóan!
- 6. Mikor mondjuk, hogy egy n-dimenziós intervallumon értelmezett függvény (Riemann)-integrálható?
- 7. Adjon példát olyan kétváltozós függvényre, amely nem (Riemann)-integrálható!
- 8. Mi a kapcsolat a Riemann-integrálhatóság és a folytonosság között?
- 9. Hogyan szól a Riemann-integrálhatóság Lebesgue-kritériuma?
- 10. Fogalmazza meg a Fubini-tételt!

9. Előadás

- 1. Mikor mondjuk, hogy egy $H \subset \mathbb{R}^n$ korlátos halmazon értelmezett függvény (Riemann)-integrálható?
- 2. Hogyan értelmezzük egy $H \subset \mathbb{R}^2$ korlátos halmaznak a területét?
- 3. Hogyan értelmezzük a tanult \mathbb{R}^3 -beli hengerszerű test térfogatát?
- 4. Adja meg az x tengelyre nézve normáltartomány fogalmát!
- 5. Adja meg az y tengelyre nézve normáltartomány fogalmát!
- 6. Hogyan számolható ki egy kettős integrál, ami egy x tengelyre nézve normáltartományon van értelmezve?
- 7. Hogyan számolható ki egy kettős integrál, ami egy y tengelyre nézve normáltartományon van értelmezve?
- 8. Igaz-e a következő állítás? "Ha egy tartomány az x és az y tengelyre nézve is normáltartomány, akkor a tartományon vett kettős integrál kiszámításakor ugyanilyen integrálási nehézségek lépnek fel, ha az integrálási sorrendet felcseréjük ." A válaszát indokolja meg!

10. Előadás

- 1. Hogyan szól a helyettesítéses integrálról szóló tétel valós-valós függvények határozott integrálokra?
- 2. Hogyan értelmezzük egy $H \subset \mathbb{R}^n$ korlátos halmaznak a Jordan-mértékét?
- 3. Mit állít az integráltranszformációról szóló tétel?
- 4. Mikor beszélünk síkbeli polárkoordináta-transzformációról? Ebben az esetben mivel egyenlő a Jacobi-determináns?
- 5. Milyen típusú tartományoknál érdemes síkbeli polárkoordináta-transzformációt alkalmazni? Adjon egy példát!

- 6. Fogalmazza meg az integráltranszformációról szóló tételt síkbeli polárkoordináta-transzformáció esetén!
- 7. Mikor beszélünk térbeli polárkoordináta-transzformációról? Ebben az esetben mivel egyenlő a Jacobi-determináns?
- 8. Mikor beszélünk hengerkoordináta-transzformációról? Ebben az esetben mivel egyenlő a Jacobi-determináns?