Two Applications of RCF, LCF, and EV Theorems

Vasile Cirtoaje

Abstract

In this paper we present two new and difficult symmetric inequalities with right convex and left concave functions, as applications of RCF-Theorem and LCF-Theorem from [1], [2] and [3]. Moreover, we show that both inequalities can be also proved using the Equal Variable Theorem from [2] and [5].

Proposition 1. If $a_1, a_2, \ldots, a_n, n \leq 81$ are nonegative real numbers such that

$$a_1^6 + a_2^6 + \dots + a_n^6 = n$$

then

$$a_1^2 + a_2^2 + \dots + a_n^2 \le a_1^5 + a_2^5 + \dots + a_n^5$$
.

Proof. By letting $a_n = 1$, we obtain the initial statement but for n - 1 numbers. Thus it suffices to prove the inequality for n = 81. Let us make the following substitution: $x_i = a_i^{\frac{1}{6}}$ for all i. Now we have to prove that

$$x_1^{\frac{1}{3}} + x_2^{\frac{1}{3}} + \dots + x_n^{\frac{1}{3}} \le x_1^{\frac{5}{6}} + x_2^{\frac{5}{6}} + \dots + x_n^{\frac{5}{6}}$$

when $x_1 + x_2 + \cdots + x_{81} = 81$. This inequality is equivalent to

$$f(x_1) + f(x_2) + \dots + f(x_{81}) \le 81 \cdot f\left(\frac{x_1 + x_2 + \dots + x_{81}}{81}\right),$$

where $f(u) = u^{\frac{1}{3}} - u^{\frac{5}{6}}, u \ge 0$. The second derivative of f(u) is

$$f''(u) = \frac{1}{36}u^{-\frac{5}{3}} \left(5u^{\frac{1}{2}} - 8\right).$$

It follows that f is concave for $u \leq s$, where $s = \frac{x_1 + x_2 + \dots + x_{81}}{81} = 1$.

Thus by the LCF theorem, it suffices to prove the inequality for

$$x_1 = x_2 = \dots = x_{80} < 1 < x_{81}$$
.

This requires to prove the original inequality for $a_1 = a_2 = \cdots = a_{80} \le 1 \le a_{81}$. Let us rewrite the original inequality in the homogeneous form

$$81\left(a_1^5 + a_2^5 + \dots + a_{81}^5\right)^2 \ge \left(a_1^6 + a_2^6 + \dots + a_{81}^6\right)\left(a_1^2 + a_2^2 + \dots + a_{81}^2\right)^2$$

Since the case $a_1 = a_2 = \cdots = a_{80} = 0$ is trivial, we assume that $a_1 = a_2 = \cdots = a_{80} = 1$. Let $a_{81} = x$, then the inequality becomes

$$81(80 + x^5)^2 \ge (80 + x^6)(80 + x^2)^2$$

which is equivalent to

$$(x-1)^2(x-2)^2(x^6+6x^5+21x^4+60x^3+75x^2+60x+20) \ge 0,$$

and clearly is true. For $a_1 \leq a_2 \leq \cdots \leq a_{81}$, equality occurs in the above homogeneous inequality when $a_1 = a_2 = \cdots = a_{81}$ or $a_1 = a_2 = \cdots = \frac{1}{2}a_{81}$. In the original inequality, equality occurs when $a_1 = a_2 = \cdots = a_n = 1$. Moreover, for n = 81, equality occurs when $a_1 = a_2 = \cdots = a_{80} = \sqrt[3]{\frac{3}{4}}$ and $a_{81} = \sqrt[3]{6}$.

Remark 1. The inequality is not valid for n > 81. To prove this is enough to let $a_1 = a_2 = \cdots = a_{n-1} = 1$ and $a_n = 2$ in the homogeneous inequality

$$n\left(a_1^5 + a_2^5 + \dots + a_n^5\right)^2 \ge \left(a_1^6 + a_2^6 + \dots + a_n^6\right) \left(a_1^2 + a_2^2 + \dots + a_n^2\right)^2.$$

We would get that $(n-1)(81-n) \ge 0$, clearly false for n > 81.

Remark 2. We can also prove the inequality in Proposition 1 using the Equal Variable Theorem ([2], [5]). According to the EV theorem, the following statement holds:

If $0 \le x_1 \le x_2 \le \ldots \le x_{81}$ such that $x_1 + x_2 + \cdots + x_{81} = 81$ and $x_1^{\frac{1}{3}} + x_2^{\frac{1}{3}} + \cdots + x_{81}^{\frac{1}{3}}$ is constant, then the sum $x_1^{\frac{5}{6}} + x_2^{\frac{5}{6}} + \cdots + x_{81}^{\frac{5}{6}}$ is minimal whenever $x_1 = x_2 = \cdots = x_{80} \le x_{81}$.

Proposition 2. Let a_1, a_2, \ldots, a_n be positive real numbers such that

$$a_1 a_2 \cdots a_n = 1.$$

If $m \ge n - 1$, then

$$a_1^m + a_2^m + \dots + a_n^m + n(2m - n) \ge (2m - n + 1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

Proof. Since the case n = 2 and m = 1 is trivial, we may assume that m > 1. Let $a_i = e^{x_i}$ for all i. We have to prove that

$$e^{mx_1} + e^{mx_2} + \dots + e^{mx_n} + n(2m - n) > (2m - n + 1)(e^{-x_1} + e^{-x_2} + \dots + e^{-x_n})$$

for $x_1 + x_2 + \cdots + x_n = 0$. This inequality is equivalent to

$$f(x_1) + f(x_2) + \dots + f(x_n) \le n \cdot f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)$$

where $f(u) = e^{mu} + 2m - n - (2m - n + 1)e^{-u}, u \in \mathbb{R}$.

We will prove that f(u) is right convex for $u \ge s$, where $s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0$; or $f''(u) \ge 0$ for $u \ge 0$. Taking the second derivative of f(u), we get

$$f''(u) = e^{-u} [m^2 e^{(m+1)u} - 2m + n - 1] > 0,$$

because

$$m^{2}e^{(m+1)u} - 2m + n - 1 \ge m^{2} - 2m + n - 1 = (m-1)^{2} + n - 2 \ge 0.$$

According to the RCF theorem, it suffices to prove the inequality above for $x_2 = x_3 = \cdots = x_n \ge 0$ or, equivalently, the original inequality for $a_2 = \cdots = a_n \ge 1$:

$$x^{m} + (n-1)y^{m} + n(2m-n) \ge (2m-n+1)\left(\frac{1}{x} + \frac{n-1}{y}\right)$$

for $m \ge n-1$, $0 < x \le 1 \le y$ and $xy^{n-1} = 1$. Let us rewrite the inequality as $f(y) \ge 0$, where

$$f(y) = \frac{1}{y^{m(n-1)}} + (n-1)y^m + n(2m-n) - (2m-n+1)\left(y^{n-1} + \frac{n-1}{y}\right).$$

We have $f'(y) = \frac{(n-1)g(y)}{y^{mn-m+1}}$, $g(y) = m(y^{mn-1}) - (2m-n+1)y^{mn-m-1(y^n-1)}$, and

$$g'(y) = y^{mn-m-2}h(y),$$

where

$$h(y) = m^2 n y^{m+1} - (2m - n + 1)[(m+1)(n-1)y^n - mn + m + 1]$$

$$h'(y) = (m+1)n y^{n-1}[m^2 y^{m-n+1} - (2m - n + 1)(n-1)].$$

If m = n - 1 and $n \ge 3$, then h(y) = n(n - 1)(n - 2) > 0. Otherwise, if m > n - 1 and $n \ge 2$, then

$$m^2 y^{m-n+1} - (2m-n+1)(n-1) \ge m^2 - (2m-n+1)(n-1) = (m-n+1)^2 > 0,$$

and hence h'(y) > 0 for $y \ge 1$. Therefore, h(y) is strictly increasing on $[1, \infty)$, and

$$h(y) \ge h(1) = n[(m-1)^2 + n - 2] > 0$$

for $y \ge 1$. Since h(y) > 0 implies g'y > 0, it follows that g(y) is strictly increasing on $[1, \infty)$. Then $g(y) \ge g(1)$ for $y \ge 1$, and from $y^{mn-m+1}f'(y) = (n-1)g(y) \ge 0$ it follows that f(y) is strictly increasing on $[1, \infty)$.

Consequently, $f(y) \ge f(1) = 0$ for $y \ge 1$. For n = 2 and m = 1, the original inequality becomes an equality. Otherwise, equiity occurs if and only if $a_1 = a_2 = \cdots = a_n = 1$.

Remark 3. For m = n - 1, the following statement is true:

If a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1} + n(n-2) \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

This inequality follows from the Generalized Popoviciu's Inequality If f is a convex function on an interval I and $a_1, a_2, \ldots, a_n \in I$, then

$$f(a_1) + \dots + f(a_n) + n(n-2)f\left(\frac{a_1 + \dots + a_n}{n}\right) \ge (n-1)\left(f(b_1) + \dots + f(b_n)\right),$$

where $b_j = \frac{1}{n-1} \sum_{j \neq i}^n a_j$, for all i.

Consider the convex function $f(x) = e^x$, replace a_1, a_2, \ldots, a_n with $(n-1) \ln a_1, (n-1) \ln a_2, \ldots, (n-1) \ln a_n$, and you get the desired result (see [4]).

Remark 4. Replacing a_1, a_2, \ldots, a_n by $\frac{1}{x_1}, \frac{1}{x_2}, \ldots, \frac{1}{x_n}$ the inequality in Proposition 2 becomes

$$\frac{1}{x_1^m} + \frac{1}{x_2^m} + \dots + \frac{1}{x_n^m} + (2m - n)n \ge (2m - n + 1)(x_1 + x + 2 + \dots + x_n),$$

where $x_1x_2\cdots x_n=1$. We can also prove the inequality by the Equal Variable theorem:

If $0 < x_1 \le x_2 \le \cdots \le x_n$ such that

$$x_1 + x_2 + \cdots + x_n = \text{constant and } x_1 x_2 \cdots x_n = 1,$$

then the sum $\frac{1}{x_1^m} + \frac{1}{x_2^m} + \dots + \frac{1}{x_n^m}$ is minimal when $0 < x_1 = x_2 = \dots = x_{n-1} \le x_n$.

References

- [1] V. Cirtoaje, A generalization of Jensens Inequality, Gazeta Matematica Seria A, 2 (2005), 124-138.
- [2] V. Cirtoaje, Algebraic Inequalities. Old and New Method, Gil Publishing House, 2006.
- [3] V. Cirtoaje, Four Applications of RCF and LCF Theorems, Mathematical Reflections, 1 (2007).[http://reflections.awesomemath.org/2007_1.html].
- [4] V. Cirtoaje, Two Generalizations of Popovicius Inequality, Crux Math., 5 (2005), 313-318.
- [5] V. Cirtoaje, The Equal Variable Method, Journal of Inequalities in Pure and Applied Mathematics, 8 (1) (2007), Art. 15. [http://jipam.vu.edu.au/article.php?sid=828].

Vasile Cartoaje Petroleum-Gas University, Ploiesti, Romania email: vcirtoaje@upg-ploiesti.ro