哈尔滨工业大学深圳研究生院 2012年<u>秋</u>季学期期末考试试卷

HIT Shenzhen Graduate School Examination Paper

Total

	Course Name:							Le	cturer:_	
	One	Two	Three	Four	Five	Six	Seven	Eight	Nine	Ten
ı	Genera	al directi	ions:			•	1	•	1	
	Th	is exam is	closed boo	k . You n	nay not us	e the text	book, you	notes, co	mputer, o	r any
			uring the exa							
			ll be given f	-			, so you sl	nould be s	ure to ans	wer all
	•		f you are onl		•	_				
		-	inswer to each	-	_				-	extra
		_	ovided. Make	•						
			re to write n	•		_	-	-		
	Th	is exam h	as a total of	_100_ p	oints, and	you have	120 minut	es.		
	a. ı	1	10							
	_	_	10 points]							•
			e is most	commo	nly used	to eval	uate the	running	g time o	of one
	algorit	`)							
		orst case		Average						
	(C) Be	st case	(D) I	deal cas	e.					
	2、Wł	nich metl	hod is not	used to	resolve a	recurre	nce. ()		
			method		Recursion			,		
	` '	ster meth		` '			ng metho	d.		
	(0) 1110			(2)	Zinear pr	ogrumm.	ng memo			
	3 An	order_stat	tistic tree is	an alloi	mented re	od-black t	ree In ad	dition to	ite nenal	fields
			a field size	_						
			statistic tre							
			the <i>size</i> fie		n nouc.	s, mc n	1110 101	mscruon,	, uciciioi	ii aiiu
	mamic	nance of	the size he	iu are (,					
	(A) O	$(\lg n)$	$O(\lg n)$	O(18	g(n)					
	(B) O	$(\lg n)$	$O(\lg n)$	O(n	$\lg n$					
	(C) O	$(\lg n)$	$O(\lg n)$	O(1))					
	(D) O	$(\lg n)$	$O(n \lg n)$	O(n	2)					

4,	Computir	ng a dis	crete F	ourier trans	form (DFT)	of N p	oints take	es	arithme	etical oper	rations,
whil		ting a f	fast Fo	urier transf	orm (FFT)	of N p	oints tak	es	arithme	etical oper	rations.
()										
(A)	$O(n^2)$	•	$O(n^2)$	(B)	$O(n \lg n)$		$O(\lg n)$	2)			
(C)	$O(\lg n)$) ($O(n^2)$	(D)	$O(n^2)$	0($(n \lg n)$				
5、	In a has	sh table	e in w	hich colli	sions are r	esolve	d by ch	aining	, a suc	cessful	search
				-	n of simpl	e unifo	orm has	hing. T	The loa	d factor	of this
hasł	table is	s a.()							
(A)	$\theta(1)$	(B)	$\theta(a)$	(C) $\theta(1-\theta)$	+a) (1	D) θ (a^2)				
Г 21	points]										
_	_	gura to	s illust	rote the or	eration of	COLI	NTING	COPT	on the	orrow	
0,	Osing II	gure i	musi	rate the of	Ciauon oi	COO	NIIIVO-	SOKI	on the	array	
A=<	<6,0,2,0,	,1,3,4,6	5,1,3,2	£>.							
C=<	2.2.2.2.	1.0.2>									

C'=<2,4,6,8,9,9,11>

B=<0,0,1,1,2,2,3,3,4,6,6>

7. Using figure to illustrate the operation of RADIX-SORT on the following list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB. [8 points]

8. Please write inorder, preorder and postorder tree walks of the following binary search tree. [9 points]

9. Please write down the elements of dynamic programming. [6 points]

[59 points]

10. Using a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn. [9 points]

- 11. A red-black tree is a binary search tree with one extra bit of storage per node: its color, which can be either RED or BLACK, and the red-black is a nearly balanced tree. [10 points]
- 1) Please write down the red-black properties. [5 points]

2) Please prove the lemma: A red-black tree with n internal codes has height at most $2 \lg(n+1)$? [5 points]

12. Please give an optimal Huffman code for the following set of frequencies. [10 points]

	a	b	c	d	e	f	
Frequency	5	9	16	12	13	45	

13. Converting the following linear program into standard form:

 $Minimize 2x_1 + 7x_2$

Subject to

$$x_1 = 7$$

$$3x_1 + x_2 \ge 24$$

$$x_2 \ge 0$$

$$x_3 \le 0$$

14. Solve the following linear program using SIMPLEX:

maximize $18x_1 + 12.5x_2$

Subject to
$$x_1 + x_2 \le 20$$

$$x_1 \le 12$$

$$x_2 \le 16$$

$$x_1, x_2 \ge 0$$

15. Suppose A_1 a 5×10 matrix, A_2 a 10×3 matrix, A_3 a 3×12 matrix, A_4 a 12×5 matrix, A_5 a 5×50 matrix, A_6 a 50×6 matrix. Please give an optimal parenthesization of a matrix-chain $A_1A_2A_3A_4A_5A_6$. [10 pints]

P						-30+ L-
	1	2	3	4	5	6
1	0	150	330	405	1655	2010
2		0	360	330	2430	1950
3			0	180	930	1770
4				0	3000	1860
5					0	1500
6						0

The final result is $((A_1A_2)((A_3A_4)(A_5A_6)))$

 	` '		