Programmable 1-bit ALU

In this experiment, an Arithmetic and Logic Unit (ALU) capable of performing 8 Arithmetic/Logic functions on 1-bit operands, as listed in Table 3.1. will be designed, assembled and tested. Note that the first 4 functions are Logic functions generating 1-bit output Y₀, while the last four are Arithmetic functions generating 2-bit output Y₁Y₀. The circuit will consist 8-input of two multiplexers (74LS151), one quad 2-input multiplexer (74LS157) and one guad 2-input XOR gate (74LS86), belonging to the TTL family.

Table 3.1 ALU Function Table

F ₂ F ₁ F ₀	ALU Function	Y ₁	Y ₀
000	0 (Zero)	1	0
001	A OR B	-	A + B
010	A AND B	-	A • B
011	A EXOR B	-	A ⊕ B
100	A PLUS B	Carry	Sum
101	A MINUS B	Borrow	Difference
110	A PLUS B PLUS C	Carry	Sum
111	A MINUS B MINUS C	Borrow	Difference

The pin connections of these ICs are given in **Fig. 3.1** below. X0, X1,.....denote the data inputs and Q denotes the data output for each multiplexer. S is the select input for a 2-input multiplexer and S_2 , S_1 , S_0 are the select inputs for an 8-input multiplexer. Thus for a 2-input multiplexer, Q = X0 if S = 0 and Q = X1 if S = 1, while for an 8-input multiplexer, the output Q = Xn (selected data input) if $S_2S_1S_0 = n$ (in binary code). EN' is the (negative-logic) output enable input, i.e. the corresponding multiplexer output is equal to the selected data input only if EN' = 0. Q-outputs of multiplexers are LOW if EN' = 1.

Fig. 3.1 Pin Connections of the ICs used

- 1. Test the three given multiplexer chips one by one by connecting V_{CC} and Gnd appropriately and applying EN' and appropriate inputs (X0, X1....) from the Input Switches. Verify the multiplexer function by tabulating the values of the Q output(s) for all input combinations. Test all gates in the given quad XOR chip as done in Experiment 2.
- 2. The final ALU output bits Y_0 and Y_1 will be generated by the two 8-input multiplexers referred to as MUX_0 and MUX_1 respectively. The required data, select and output enable inputs of MUX_0 and MUX_1 are shown in Fig. 3.2. Note that MUX_0 is always

enabled, while $\mathbf{MUX_1}$ is enabled only when F_2 = 1, i.e. for Arithmetic functions only. This is because $\mathbf{Y_1}$ is required only to provide the CARRY/BORROW output for Arithmetic functions. Verify theoretically that $\mathbf{MUX_0}$ and $\mathbf{MUX_1}$ do generate the outputs $\mathbf{Y_0}$ and $\mathbf{Y_1}$ as required by **Table 3.1**.

Fig. 3.2 Input connections for MUX₀ and MUX₁

3. Note that though the two 8-input multiplexers $\mathbf{MUX_0}$ and $\mathbf{MUX_1}$ require 16 inputs, they involve only 6 distinct Boolean functions of A, B, C – A • B, A' • B, A + B, A' + B, A \oplus B and A \oplus B \oplus C. The first four terms are realised by four 2-input multiplexers as shown in **Fig. 3.3**. This implementation requires only one chip, whereas any implementation using gates would need more, as a single gate chip contains only one kind of gate (AND/OR/NAND/NOR). Assemble the circuit given in **Fig. 3.3** and verify its operation by actual tabulation of the observed outputs for all combinations of values of A and B applied from two Input Switches.

Fig. 3.3 Boolean Functions of A and B using a quad 2-input Multiplexer

- **4.** Connect the same A and B inputs to the inputs of one of the gates in the XOR chip to generate $A \oplus B$. Generate $(A \oplus B) \oplus C$ by applying $(A \oplus B)$ and C to a second XOR gate. Verify the logic of these two outputs for all combinations of values of A, B and C.
- **5.** Assemble the complete circuit by adding two 74LS151 chips, used as MUX_0 and MUX_1 , to the circuit assembled so far, making connections to all the inputs of MUX_0 and MUX_1 according to Fig. 3.2. Use a third gate from the XOR chip to generate F_2 ' (= $F_2 \oplus 1$), providing the Enable input for MUX_1 .
- **6.** Apply all the combinations of the Function select inputs $F_2F_1F_0$ one by one and tabulate the observed outputs $\mathbf{Y_0}$ and $\mathbf{Y_1}$ for as many combinations of the data inputs A, B, C as possible. Verify that the tabulated results conform to the ALU functions given in **Table 3.1**.