Credible Models of Belief Update (Remaining Proofs)

Eduardo Fermé¹, Sébastien Konieczny², Ramón Pino Pérez², Nicolas Schwind³

¹Universidade da Madeira and NOVA LINCS, Portugal ²CRIL, CNRS – Université d'Artois, France ³National Institute of Advanced Industrial Science and Technology, Tokyo, Japan ferme@uma.pt, {konieczny,pinoperez}@cril.fr, nicolas-schwind@aist.go.jp

This supplementary material contains the full proof of Proposition 4.

Proposition 4. If \diamond is a CL update operator, then \diamond^d is a KM update operator, and for all formulae φ , α , we have that $\varphi \diamond \alpha \vdash \varphi \diamond^d \alpha$.

Proof. Let \diamond be a Credibility-Limited update operator, and let us show that \diamond^d is a KM update operator. By Theorem 1, there exists a credible faithful assignment $\omega_i \mapsto (\leq_{\omega_i}, \mathcal{C}_i)$ such that for all formulae $\varphi, \alpha, [\![\varphi \diamond \alpha]\!] =$ $\bigcup_{\omega_i \in \llbracket \varphi \rrbracket} \min(\llbracket \alpha \rrbracket \cap \mathcal{C}_i, \leq_{\omega_i}). \text{ For each world } \omega_i, \text{ let } \leq_i^{\Omega}$ be the binary relation over all worlds from Ω defined as $\leq_i^{\Omega} = \leq_{\omega_i} \cup E_i \text{ where } E_i = \bigcup \{\{(\omega, \omega'), (\omega', \omega')\} \mid \omega \in E_i \}$ $C_i, \omega' \in \Omega \setminus C_i$. We first intend to show that the assignment $\omega_i \mapsto \leq_i^{\Omega}$ is a faithful assignment.

Let $\omega_i \in \Omega$. Let us first observe that for all $\omega, \omega' \in \Omega$:

if
$$(\omega \notin C_i \text{ and } \omega \leq_i^{\Omega} \omega')$$
, then $\omega = \omega'$. (2)

Let us now verify that \leq_i^{Ω} is a (partial) order.

(*Reflexivity*) By definition of \leq_i^{Ω} , if $\omega \in \mathcal{C}_i$, then $\omega \leq_i^{\Omega} \omega$ holds since $(\omega, \omega) \in \leq_{\omega_i}$ and \leq_{ω_i} is reflexive, otherwise $(\omega, \omega) \in E_i$ and thus $\omega \leq_i^{\Omega} \omega$ holds trivially.

(Antisymmetry) Let $\omega \leq_i^{\Omega} \omega'$, $\omega \neq \omega'$, and let us show

that $\omega' \not\leq_i^{\Omega} \omega$.

Assume first that $\omega, \omega' \in \mathcal{C}_i$. Then $(\omega, \omega') \in \leq_{\omega_i}$. Since \leq_{ω_i} is antisymmetric, we know that $(\omega', \omega) \notin \leq_{\omega_i}$. Yet we also have that $(\omega', \omega) \notin E_i$ since $\omega \in \mathcal{C}_i$, thus $\omega' \nleq_i^{\Omega} \omega$. So assume now that $\omega \notin C_i$ or $\omega' \notin C_i$. The case where $\omega \notin C_i$ leads to a contradiction: in this case, $\omega \notin C_i$ and $\omega \leq_i^{\Omega} \omega'$ leads to $\omega = \omega'$ by Equation 2, which contradicts $\omega \neq \omega'$. In the remaining case, we have that $\omega' \notin C_i$. Here, assuming that $\omega' \leq_i^{\Omega} \omega$ also leads to a contradiction: since $\omega' \notin C_i$ and $\omega' \leq_i^{\Omega} \omega$, we get that $\omega = \omega'$ by Equation 2, which contradicts $\omega = \omega'$. This concludes the proof of antisymmetry of \leq_i^{Ω} .

(Transitivity) Let ω , ω' , $\omega'' \in \Omega$, and assume that $\omega \leq_i^{\Omega}$ ω' and $\omega' \leq_i^{\Omega} \omega''$. We must show that $\omega \leq_i^{\Omega} \omega''$. We fall into one of the following cases:

Case 1: $\omega \notin C_i$. Then by Equation 2, we get that $\omega = \omega'$, and using Equation 2 again, we get that $\omega'=\omega''$. Thus $\omega=\omega''$, and the fact that $\omega\leq_i^\Omega\omega''$ directly follows from the reflexivity of \leq_i^{Ω} .

Case 2: $\omega \in \mathcal{C}_i$ and $\omega' \notin \mathcal{C}_i$. Since $\omega' \notin \mathcal{C}_i$, by Equation 2 we get that $\omega' = \omega''$, so $\omega'' \notin \mathcal{C}_i$. And since $\omega \in \mathcal{C}_i$ and

 $\omega'' \notin \mathcal{C}_i$, we directly get that $(\omega, \omega'') \in E_i$, thus $\omega \leq_i^{\Omega} \omega''$. Case 3: $\omega, \omega' \in \mathcal{C}_i$ and $\omega'' \notin \mathcal{C}_i$. Since $\omega \in \mathcal{C}_i$ and $\overline{\omega''} \notin \mathcal{C}_i$, we directly get that $(\omega, \omega'') \in E_i$, thus $\omega \leq_i^{\Omega} \omega''$. Case 4: $\omega, \omega', \omega'' \in \mathcal{C}_i$. Then $\omega \leq_{\omega_i} \omega'$ and $\omega' \leq_{\omega_i} \omega''$, so $\omega \leq_{\omega_i} \omega''$ since \leq_{ω_i} is transitive. Hence, $\omega \leq_i^{\Omega} \omega''$.

We have shown in every case that $\omega \leq_i^{\Omega} \omega''$, thus \leq_i^{Ω} is transitive.

At this point, we have shown that for each world ω_i , the relation \leq_i^{Ω} is a partial order. To show that the assignment $\omega_i \mapsto \leq_i^{\Omega}$ is faithful, we only need to show that for all $\omega_i, \omega \in \Omega$, if $\omega \neq \omega_i$ then $\omega_i <_i^{\Omega} \omega$. Let us first verify that $\omega_i \leq_i^{\Omega} \omega$. By definition of a credible assignment, $\omega_i \in \mathcal{C}_i$. If $\omega \in \mathcal{C}_i$, then we also know by definition of a credible assignment that $\omega_i \leq_{\omega_i} \omega$, so $\omega_i \leq_i^{\Omega} \omega$; and if $\omega \notin \mathcal{C}_i$, we directly get that $(\omega, \omega') \in E_i$, so $\omega_i \leq_i^{\Omega} \omega$. We now need to show that $\omega \not\leq_i^{\Omega} \omega_i$. Since $\omega_i \in \mathcal{C}_i$, $(\omega, \omega_i) \notin E_i$; and by definition of a credible assignment, $\omega \nleq_{\omega_i} \omega_i$. Hence, $\omega \nleq_i^{\Omega} \omega_i$. This shows that if $\omega \neq \omega_i$ then $\omega_i \lt_i^{\Omega} \omega$, and completes the proof that the assignment $\omega_i \mapsto \leq_i^{\Omega}$ is faithful.

Now, we intend to show that for all formulae φ , α , $[\![\varphi \diamond^d \alpha]\!] = \bigcup_{\omega_i \in [\![\varphi]\!]} \min([\![\alpha]\!], \leq_i^{\Omega})$. Let φ , α be two formulae. We consider two cases:

Case 1: assume first that there exists a formula ψ \vdash φ , $\psi \nvdash \bot$, $\psi \diamond \varphi \vdash \bot$. We need to show that $[\![\varphi \diamond^d \alpha]\!] = [\![\alpha]\!]$. We know from Theorem 1 that $[\![\psi \diamond \alpha]\!] =$ $\bigcup_{\omega_i \in \llbracket \psi \rrbracket} \min (\llbracket \alpha \rrbracket \cap \mathcal{C}_i, \leq_{\omega_i}). \quad \text{Yet } \llbracket \psi \diamond \alpha \rrbracket = \emptyset, \text{ which}$ means that for each world $\omega_i \in [\![\psi]\!]$, we have that $[\![\alpha]\!] \cap \mathcal{C}_i =$ \emptyset , or stated equivalently, that for each world $\omega \in [\alpha]$, $\omega \notin \mathcal{C}_i$. Let $\omega_i \in [\![\psi]\!]$. Since $\omega_i \mapsto \leq_i^{\Omega}$ is a faithful assignment, $\omega_i <_i^{\Omega} \omega$. And from Equation 2, we can see that for all $\omega, \omega' \notin \mathcal{C}_i$, if $\omega \neq \omega'$ then $\omega \nleq_i^{\Omega} \omega'$, i.e., all non-credible worlds w.r.t. ω_i are pairwise incomparable. Together with the fact that $[\alpha] \cap \bar{C}_i = \emptyset$, this means that $\min([\alpha], \leq_i^{\Omega})$) = $[\![\alpha]\!]$. Hence, $\bigcup_{\omega_i \in [\![\varphi]\!]} \min([\![\alpha]\!], \leq_i^\Omega) = [\![\alpha]\!]$, and so $\llbracket \varphi \diamond^d \alpha \rrbracket = \bigcup_{\omega_i \in \llbracket \varphi \rrbracket} \min(\llbracket \alpha \rrbracket, \leq_i^{\Omega}).$

Case 2: assume that case 1 does not hold. In particular, this means that for each *complete* formula $\psi = \gamma_{\omega_i}$ such that $\gamma_{\omega_i} \vdash \varphi$, we have that $\gamma_{\omega_i} \diamond \varphi \nvdash \bot$. Yet we know from Theorem 1 that $[\![\gamma_{\omega_i} \diamond \alpha]\!] = \min([\![\alpha]\!] \cap \mathcal{C}_i, \leq_{\omega_i})$, so this means that (i) for each world $\omega_i \in \varphi$, $[\![\alpha]\!] \cap \mathcal{C}_i \neq \emptyset$. Now for each world $\omega_i \in \varphi$, by definition of \leq_i^{Ω} , for each world $\omega \in \mathcal{C}_i$, we can easily see that:

$$\begin{array}{ll} \text{(ii)} & \omega \leq_i^\Omega \omega' \text{ iff } \omega \leq_{\omega_i} \omega' & \text{if } \omega' \in \mathcal{C}_i, \\ \text{(iii)} & \omega <_i^\Omega \omega', & \text{otherwise.} \end{array}$$

For each $\omega_i \in [\![\varphi]\!]$, we got that $\min([\![\alpha]\!] \cap \mathcal{C}_i, \leq_{\omega_i}) = \min([\![\alpha]\!] \cap \mathcal{C}_i, \leq_i^\Omega)$ (from (ii)), and $\min([\![\alpha]\!] \cap \mathcal{C}_i, \leq_i^\Omega) = \min([\![\alpha]\!], \leq_i^\Omega)$ (from (i) and (iii)), so $\min([\![\alpha]\!] \cap \mathcal{C}_i, \leq_{\omega_i}) = \min([\![\alpha]\!], \leq_i^\Omega)$. Hence, $[\![\varphi \diamond^d \alpha]\!] = [\![\varphi \diamond \alpha]\!]$.

We have shown that $\omega_i \mapsto \leq_i^\Omega$ is a fatihful assignment and that for all formulae φ , α , $[\![\varphi \diamond^d \alpha]\!] = \bigcup_{\omega_i \in [\![\varphi]\!]} \min([\![\alpha]\!], \leq_i^\Omega)$. From Proposition 1, this means that \diamond^d is a KM update operator.

The fact that $\varphi \diamond \alpha \vdash \varphi \diamond^d \alpha$ for all formulae φ , α , is direct by definition of \diamond^d and since \diamond^d satisfies (U1). This concludes the proof.

concludes the proof.