In [4]: import numpy as np

import pandas as pd

import scipy.stats as stats

import matplotlib.pyplot as plt

import sklearn

from sklearn.datasets import load\_boston

boston = load\_boston()

bos = pd.DataFrame(boston.data)

bos.head(5)

Out[4]:

|   | 0       | 1    | 2    | 3   | 4     | 5     | 6    | 7      | 8   | 9     | 10   | 11     | 12   |
|---|---------|------|------|-----|-------|-------|------|--------|-----|-------|------|--------|------|
| 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 396.90 | 4.98 |
| 1 | 0.02731 | 0.0  | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 396.90 | 9.14 |
| 2 | 0.02729 | 0.0  | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 392.83 | 4.03 |
| 3 | 0.03237 | 0.0  | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 394.63 | 2.94 |
| 4 | 0.06905 | 0.0  | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 396.90 | 5.33 |

In [5]: boston.keys()

Out[5]: dict\_keys(['data', 'target', 'feature\_names', 'DESCR'])

In [6]: boston.data.shape

Out[6]: (506, 13)

In [7]: bos.describe()

Out[7]:

|       | 0          | 1          | 2          | 3          | 4          | 5          |          |
|-------|------------|------------|------------|------------|------------|------------|----------|
| count | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.0000 |
| mean  | 3.593761   | 11.363636  | 11.136779  | 0.069170   | 0.554695   | 6.284634   | 68.57490 |
| std   | 8.596783   | 23.322453  | 6.860353   | 0.253994   | 0.115878   | 0.702617   | 28.14886 |
| min   | 0.006320   | 0.000000   | 0.460000   | 0.000000   | 0.385000   | 3.561000   | 2.900000 |
| 25%   | 0.082045   | 0.000000   | 5.190000   | 0.000000   | 0.449000   | 5.885500   | 45.02500 |
| 50%   | 0.256510   | 0.000000   | 9.690000   | 0.000000   | 0.538000   | 6.208500   | 77.50000 |
| 75%   | 3.647423   | 12.500000  | 18.100000  | 0.000000   | 0.624000   | 6.623500   | 94.07500 |
| max   | 88.976200  | 100.000000 | 27.740000  | 1.000000   | 0.871000   | 8.780000   | 100.0000 |

In [8]: boston.keys()

Out[8]: dict\_keys(['data', 'target', 'feature\_names', 'DESCR'])

```
In [9]:
         display(boston.feature_names)
         array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
                'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
In [10]:
         display(boston.target)
         array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
                18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
                35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
                19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
                20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
                23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
                33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
                21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
                20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
                23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
                15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
                17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
                25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
                23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
                32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
                34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
                20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
                26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
                31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
                22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
                42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
                36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
                32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
                20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
                20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
                22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
                21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
                19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
                32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
                18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
                16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
                13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                            7.4, 10.2, 11.5, 15.1, 23.2,
                 7.2, 10.5,
                                                          9.7, 13.8, 12.7, 13.1,
                             5., 6.3, 5.6, 7.2, 12.1,
                                                           8.3, 8.5,
                12.5,
                       8.5,
                                                                       5., 11.9,
                27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3,
                                                           7.,
                                                                7.2,
                                                                      7.5, 10.4,
                 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                           8.3, 10.2, 10.9, 11.
                 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4,
                                                          9.6, 8.7, 8.4, 12.8,
                10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
                15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
                19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
                29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
                20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
                23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])
```

In [11]: print(boston.DESCR)

Boston House Prices dataset

## Notes

-----

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order):

- CRIM per capita crime rate by town

- ZN proportion of residential land zoned for lots over 25,000

sq.ft.

- INDUS proportion of non-retail business acres per town

- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

- NOX nitric oxides concentration (parts per 10 million)

- RM average number of rooms per dwelling

- AGE proportion of owner-occupied units built prior to 1940

- DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highwaysTAX full-value property-tax rate per \$10,000

- PTRATIO pupil-teacher ratio by town

- B 1000(Bk - 0.63)<sup>2</sup> where Bk is the proportion of blacks by

town

- LSTAT % lower status of the population

- MEDV Median value of owner-occupied homes in \$1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carneg ie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

## \*\*References\*\*

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.

- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-24 3, University of Massachusetts, Amherst. Morgan Kaufmann.
  - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

In [12]: bos = pd.DataFrame(boston.data)
bos.head()

Out[12]:

|   | 0       | 1    | 2    | 3   | 4     | 5     | 6    | 7      | 8   | 9     | 10   | 11     | 12   |
|---|---------|------|------|-----|-------|-------|------|--------|-----|-------|------|--------|------|
| 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 396.90 | 4.98 |
| 1 | 0.02731 | 0.0  | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 396.90 | 9.14 |
| 2 | 0.02729 | 0.0  | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 392.83 | 4.03 |
| 3 | 0.03237 | 0.0  | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 394.63 | 2.94 |
| 4 | 0.06905 | 0.0  | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 396.90 | 5.33 |

In [13]: bos.columns = boston.feature\_names
 bos.head()

Out[13]:

|   |   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      |
|---|---|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|
| ( | 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 |
|   | 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 |
|   | 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 |
| ; | 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 |
| 4 | 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 |

In [14]: bos['Price'] = boston.target
bos.head()

Out[14]:

| ſ |   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      |
|---|---|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|
|   | 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 |
|   | 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 |
|   | 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 |
|   | 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 |
|   | 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 |

```
In [15]: from sklearn.linear_model import LinearRegression
   X = bos.drop('Price',axis=1)
   Y = bos['Price']
   lm = LinearRegression() #initialize the model
   lm
```

Out[15]: LinearRegression(copy X=True, fit intercept=True, n jobs=1, normalize=False)

```
In [16]: lm.fit(X,Y)
```

Out[16]: LinearRegression(copy\_X=True, fit\_intercept=True, n\_jobs=1, normalize=False)

```
In [17]: print ('Estimated Beta Coefficient:',lm.coef_)
```

Estimated Beta Coefficient: [-1.07170557e-01 4.63952195e-02 2.08602395e-02 2.68856140e+00

-1.77957587e+01 3.80475246e+00 7.51061703e-04 -1.47575880e+00

3.05655038e-01 -1.23293463e-02 -9.53463555e-01 9.39251272e-03

-5.25466633e-01]

```
In [18]: print ('Number of Coefficients:', len(lm.coef_))
```

Number of Coefficients: 13

```
In [19]: plt.scatter(bos.RM,bos.Price)
   plt.xlabel('Average Number of Rooms')
   plt.ylabel('Housing Price')
   plt.title('Correlation Grpah')
   plt.show()
```



```
In [20]: lm.predict(X)[0:5]
```

Out[20]: array([30.00821269, 25.0298606, 30.5702317, 28.60814055, 27.94288232])

```
In [21]: plt.scatter(bos.Price,lm.predict(X))
    plt.xlabel('Prices')
    plt.ylabel('Predicted Prices')
    plt.title('Actual vs. Predicted')
    plt.show()
```



In [22]: #error calculation
 np.mean((bos.Price-lm.predict(X))\*\*2)

Out[22]: 21.897779217687486

```
In [33]: import statsmodels.formula.api as smf

lm = smf.ols(formula='Price ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD + TAX + PTRATIO + B + LSTAT', data=bos).fit()
lm.conf_int()
lm.summary()
```

## Out[33]: OLS Regression Results

| Dep. Variable:    | Price            | R-squared:          | 0.741     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.734     |
| Method:           | Least Squares    | F-statistic:        | 108.1     |
| Date:             | Tue, 24 Jul 2018 | Prob (F-statistic): | 6.95e-135 |
| Time:             | 22:10:37         | Log-Likelihood:     | -1498.8   |
| No. Observations: | 506              | AIC:                | 3026.     |
| Df Residuals:     | 492              | BIC:                | 3085.     |
| Df Model:         | 13               |                     |           |
| Covariance Type:  | nonrobust        |                     |           |

|           | coef     | std err | t       | P> t  | [0.025  | 0.975]  |
|-----------|----------|---------|---------|-------|---------|---------|
| Intercept | 36.4911  | 5.104   | 7.149   | 0.000 | 26.462  | 46.520  |
| CRIM      | -0.1072  | 0.033   | -3.276  | 0.001 | -0.171  | -0.043  |
| ZN        | 0.0464   | 0.014   | 3.380   | 0.001 | 0.019   | 0.073   |
| INDUS     | 0.0209   | 0.061   | 0.339   | 0.735 | -0.100  | 0.142   |
| CHAS      | 2.6886   | 0.862   | 3.120   | 0.002 | 0.996   | 4.381   |
| NOX       | -17.7958 | 3.821   | -4.658  | 0.000 | -25.302 | -10.289 |
| RM        | 3.8048   | 0.418   | 9.102   | 0.000 | 2.983   | 4.626   |
| AGE       | 0.0008   | 0.013   | 0.057   | 0.955 | -0.025  | 0.027   |
| DIS       | -1.4758  | 0.199   | -7.398  | 0.000 | -1.868  | -1.084  |
| RAD       | 0.3057   | 0.066   | 4.608   | 0.000 | 0.175   | 0.436   |
| TAX       | -0.0123  | 0.004   | -3.278  | 0.001 | -0.020  | -0.005  |
| PTRATIO   | -0.9535  | 0.131   | -7.287  | 0.000 | -1.211  | -0.696  |
| В         | 0.0094   | 0.003   | 3.500   | 0.001 | 0.004   | 0.015   |
| LSTAT     | -0.5255  | 0.051   | -10.366 | 0.000 | -0.625  | -0.426  |

| Omnibus:       | 178.029 | Durbin-Watson:    | 1.078     |
|----------------|---------|-------------------|-----------|
| Prob(Omnibus): | 0.000   | Jarque-Bera (JB): | 782.015   |
| Skew:          | 1.521   | Prob(JB):         | 1.54e-170 |
| Kurtosis:      | 8.276   | Cond. No.         | 1.51e+04  |