Lecture 3:

Example1: A root of $x^3 - 10x^2 + 5 = 0$ lies in the interval (0, 1). Use rootsearch to compute this root with four-digit accuracy.

```
from numpy import sign
def rootsearch(f,a,b,dx):
  x1 = a; f1 = f(a)
  x2 = a + dx; f2 = f(x2)
  while sign(f1) == sign(f2):
    if x1 >= b: return None, None
    x1 = x2; f1 = f2
    x2 = x1 + dx; f2 = f(x2)
    print('\nx1 is:', np.round(x1,3), 'f(x1) = ', np.round(f1,3), 'x2 is: ', np.round(x2,3), 'f(x2) = ',
np.round(f2,3))
  else:
    return x1,x2
    print(x1,x2)
import numpy as np
def f(x): return x^**3 - 10.0*x^**2 + 5.0
x1 = 0.0; x2 = 1.0
for i in range(4):
  print('\n\nstep:',i,':')
  dx = (x2 - x1)/10.0
  x1,x2 = rootsearch(f,x1,x2,dx)
  print('\ndx=',dx)
x = (x1 + x2)/2.0
```

```
print('x =', np.round(x,4))
Example 2: Use bisection to find the root of x^3 - 10x^2 + 5 = 0 that lies in the interval (0,1) to
four-digit accuracy.
import numpy as np
import math
# import error
from numpy import sign
def bisection(f,x1,x2,switch=1,tol=1.0e-9):
  f1 = f(x1)
  if f1 == 0.0: return x1
  f2 = f(x2)
  if f2 == 0.0: return x2
  if sign(f1) == sign(f2):
    error.err('Root is not bracketed')
  n = int(math.ceil(math.log(abs(x2 - x1)/tol)/math.log(2.0)))
  for i in range(n):
    x3 = 0.5*(x1 + x2); f3 = f(x3)
    if (switch == 1) and (abs(f3) > abs(f1)) \setminus
              and (abs(f3) > abs(f2)):
       return None
```

if f3 == 0.0: return x3

else: x2 = x3; f2 = f3

if sign(f2)! = sign(f3): x1 = x3; f1 = f3

```
return (x1 + x2)/2.0
```

```
# from bisection import *

def f(x): return x**3 - 10.0*x**2 + 5.0

x = bisection(f, 0.0, 1.0, tol = 1.0e-4)

print('x =', np.round(x,4))
```

Lecture 4:

Example 1: Use the Newton-Raphson method to obtain successive approximations of $\sqrt{2}$ as the ratio of two integers.

```
def f(x): return x**2-2

def df(x): return 2*x

def newtonRaphson(x, tol=1.0e-7):
   for i in range(30):
        dx=-f(x)/df(x)
        x = x+dx
        if abs(dx) < tol: return x,i
        print('Too many iterations\n')

root,numIter = newtonRaphson(2.0)

print('Number of iterations=',numIter)</pre>
```

Example 2: Find the smallest positive zero of

$$f(x) = x^4 - 6.4x^3 + 6.45x^2 + 20.538x - 31.752$$

```
def f(x): return x**4-6.4*x**3+6.45*x**2+20.538*x-31.752
def df(x): return 4*x**3-19.2*x**2+12.9*x+20.538
def newtonRaphson(x, tol=1.0e-9):
for i in range(30):
dx=-f(x)/df(x)
x=x+dx
```

```
if abs(dx) < tol: return x,i
print('Too many iterations\n')
root,numIter = newtonRaphson(2.0)
print('Root=',root)
print('Number of iterations=',numIter)</pre>
```

Example 3: Use Newton's method to find solutions accurate to within 10^{-4} for the following problems.

$$x^3 - 2x^2 - 5 = 0$$
, [1,4]

def f(x):

def df(x):

```
return 3*x**2 - 4*x
```

def newtonRaphson(f, df, a, b, tol=1.0e-9):

from numpy import sign

$$fa = f(a)$$

$$fb = f(b)$$

if abs(fa) < tol:

return a, 0

if abs(fb) < tol:

return b, 0

```
if sign(fa) == sign(fb):
  raise ValueError("Root is not bracketed")
x = 0.5 * (a + b)
for i in range(1, 31):
  fx = f(x)
  dfx = df(x)
  if abs(fx) < tol:
     return x, i
  # Bracket update
  if sign(fa) != sign(fx):
     b = x
     fb = fx
  else:
     a = x
     fa = fx
  try:
    dx = -fx / dfx
  except ZeroDivisionError:
     dx = b - a \# fallback to bisection
```

Systems of Equations:

Example 4: Find a solution of

print("Iterations =", iterations)

$$sin x + y^{2} + ln z - 7 = 0$$

 $3x + 2^{y} - z^{3} + 1 = 0$
 $x + y + z - 5 = 0$

Using newtonRaphson2. Start with the point (1,1,1).

```
import numpy as np
import math
def newtonRaphson2(f, x, tol=1.0e-9):
  def jacobian(f, x):
    h = 1.0e-4
    n = len(x)
    jac = np.zeros((n, n))
    f0 = f(x)
    for i in range(n):
      x1 = x.copy()
      x1[i] += h
      f1 = f(x1)
      jac[:, i] = (f1 - f0) / h
     return jac, f0
  for i in range(30):
    jac, f0 = jacobian(f, x)
    if math.sqrt(np.dot(f0, f0) / len(x)) < tol:
       return x, i
    dx = np.linalg.solve(jac, -f0)
    x = x + dx
    if math.sqrt(np.dot(dx, dx)) < tol * max(np.max(np.abs(x)), 1.0):
       return x, i
```

raise RuntimeError("Too many iterations")

```
# Define the system of equations

def f(x):
    f = np.zeros(len(x))
    f[0] = math.sin(x[0]) + x[1]**2 + math.log(x[2]) - 7.0
    f[1] = 3.0*x[0] + 2.0**x[1] - x[2]**3 + 1.0
    f[2] = x[0] + x[1] + x[2] - 5.0
    return f

x0 = np.array([1.0, 1.0, 1.0])

root, iterations = newtonRaphson2(f, x0)

print("Root:", root)

print("Iterations:", iterations)

print("f(root):", f(root))

input("\nPress return to exit")
```

Lecture 5:

Newton-Gregory Forward interpolation formula

Example: The following table given the population of a town during the last six censuses. Using the Newtown's interpolation formula estimate the population in 1923.

Year (x)	1911	1921	1931	1941	1951	1961
Population (y) (in thousands)	12	15	20	27	39	52

import math

```
years = [1911, 1921, 1931, 1941, 1951, 1961]
populations = [12, 15, 20, 27, 39, 52]

h = years[1] - years[0]

x = 1923
x0 = years[0]
t = (x - x0) / h

n = len(populations)
diff_table = [populations[:]]
for i in range(1, n):
    column = []
    for j in range(n - i):
        delta = diff_table[i-1][j+1] - diff_table[i-1][j]
```

```
column.append(delta)
  diff_table.append(column)

def newtons_forward(t, diff_table):
  result = diff_table[0][0]
  u_term = 1
  for i in range(1, len(diff_table)):
    u_term *= (t - i + 1)
    term = (u_term * diff_table[i][0]) / math.factorial(i)
    result += term
    return result

estimated_population = newtons_forward(t, diff_table)

print(f"Estimated population in {x} is approximately {estimated_population:.2f} thousand")
```

Newton-Gregory Backward interpolation formula:

Example: Using Newton's backward formula, find the value of $l^{-1.9}$ from the following table of values of l^{-x} .

X	1.00	1.25	1.50	1.75	2.00
l^{-x}	0.3679	0.2865	0.2231	0.1738	0.1353

import math

```
x_values = [1.00, 1.25, 1.50, 1.75, 2.00]
y_values = [0.3679, 0.2865, 0.2231, 0.1738, 0.1353]
```

 $h = x_values[1] - x_values[0]$

```
x = 1.9
n = len(x_values)
u = (x - x_values[-1])/h
diff_table = [y_values[:]]
for i in range(1, n):
  column = []
  for j in range(n - i):
    delta = diff_table[i-1][j+1] - diff_table[i-1][j]
    column.append(delta)
    diff_table.append(column)
def newtons_backward(u, diff_table):
  result = diff_table[0][-1]
  u_term = 1
  for i in range(1, len(diff_table)):
    u_term *= (u + i - 1)
    term = (u_term * diff_table[i][-1]) / math.factorial(i)
    result += term
    return result
estimated_value = newtons_backward(u, diff_table)
print(f"Estimated value of x ln(x) at x = {x} is approximately {estimated_value:.4f}")
```

Lecture 6:

Example: Find the value of $e^{-1.7425}$ by Gauss Forward formula, given that

Х	1.72	1.73	1.74	1.75	1.76
e^{-x}	0.17907	0.17728	0.17552	0.17377	0.17204

import numpy as np

result = diff_table[2][0]

```
x_values = [1.72, 1.73, 1.74, 1.75, 1.76]
y_values = [0.17907, 0.17728, 0.17552, 0.17377, 0.17204]
n = len(x_values)
diff_table = np.zeros((n, n))
diff_table[:, 0] = y_values
for j in range(1, n):
  for i in range(n - j):
    diff_{table[i][j]} = diff_{table[i+1][j-1]} - diff_{table[i][j-1]}
x = 1.7425
x0 = x_values[2]
h = x_values[1] - x_values[0]
p = (x - x0) / h
```

```
p_term = 1
fact = 1

for k in range(1, 4):
    if k == 1:
        p_term *= p
    elif k == 2:
        p_term *= (p - 1)
    elif k == 3:
        p_term *= (p + 1)
    fact *= k
    result += (p_term / fact) * diff_table[2 - (k // 2)][k]
```

print(f"Estimated value of e^(-1.7425) using Gauss Forward Interpolation: {result:.6f}")

Example: Using Gauss backward interpolation formula, find *Sin*45⁰ from the following table.

θ	20	30	40	50	60	70	80
Sinθ	0.34202	0.50200	0.64279	0.76604	0.86603	0.93969	0.98481

import numpy as np

```
x_values = [20, 30, 40, 50, 60, 70, 80]
y_values = [0.3420, 0.5000, 0.6428, 0.7660, 0.8660, 0.9397, 0.9848]
n = len(x_values)
diff_table = np.zeros((n, n))
```

```
diff_table[:, 0] = y_values
for j in range(1, n):
  for i in range(n-j):
    diff_{table[i][j]} = diff_{table[i][j-1]} - diff_{table[i-1][j-1]}
x = 45
x_n_{index} = x_values.index(50)
x_n = x_values[x_n_index]
h = 10
p = (x - x_n) / h
result = diff_table[x_n_index][0]
p_term = 1
fact = 1
for k in range(1, 5): # up to 4th order
  p_{term} *= (p + (k - 1))
  fact *= k
  result += (p_term / fact) * diff_table[x_n_index][k]
print(f"Estimated sin(45°) using Gauss Backward Interpolation: {result:.6f}")
```

3. Stirling's Interpolation:

```
import numpy as np
x_values = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5]
y_values = [0.0, 0.19146, 0.34134, 0.43319, 0.47725, 0.49379]
n = len(x_values)
diff_table = np.zeros((n, n))
diff_table[:, 0] = y_values
for j in range(1, n):
  for i in range(n - j):
    diff_{table[i][j]} = diff_{table[i+1][j-1]} - diff_{table[i][j-1]}
x = 1.22
h = 0.5
p = (x - x_values[2]) / h
result = diff_table[2][0]
factorial = 1
p_term = 1
sign = 1
for k in range(1, 5): # up to 4th order
```

```
factorial *= k

if k % 2 == 1:
    term = (diff_table[2 - k//2][k] + diff_table[2 - k//2 + 1][k]) / 2
    p_term *= (p ** k)

else:
    term = diff_table[2 - k//2][k]
    p_term *= (p ** k)

result += p_term * term / factorial
```

print(f"Estimated f(1.22) using Stirling's Interpolation: {result:.6f}")

Example: Apply Stirling's and Bessel's formula to find the value of f(1.22) from the following table which gives the values of $f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-x^{2}/2} dx$ at intervals of h = 0.5 from x = 0 to 2.5.

x	0.0	0.5	1.0	1.5	2.0	2.5
f(x)	0.0	0.19146	0.34134	0.43319	0.47725	0.49379

import numpy as np

y_values = [0.0, 0.19146, 0.34134, 0.43319, 0.47725, 0.49379]

$$h = 0.5$$

```
diff_table = np.zeros((n, n))
diff_table[:, 0] = y_values
for j in range(1, n):
  for i in range(n - j):
     diff_{table[i][j]} = diff_{table[i+1][j-1]} - diff_{table[i][j-1]}
x_interp = 1.22
p = (x_interp - (x_values[2] + x_values[3]) / 2) / h
y0 = diff_table[2][0]
y1 = diff_table[3][0]
delta_y0 = diff_table[2][1]
delta_y1 = diff_table[3][1]
delta2_y0 = diff_table[2][2]
delta3_y0 = diff_table[2][3]
delta4_y0 = diff_table[2][4]
f_x = (y0 + y1)/2
  + p * (delta_y1 - delta_y0)/2 \
  + (p**2) * delta2_y0 / 2 \
  + (p*(p**2 - 1)) * (delta3_y0)/6 \
  + ((p**2) * (p**2 - 1)) * delta4_y0 / 24
print(f"Estimated f(1.22) using Bessel's Interpolation: {f_x:.6f}")
```

Lecture 7:

Example1: Using Lagrange's interpolation formula find f(4) from the following data.

$$f(0) = 2$$
, $f(1) = 3$, $f(2) = 12$, $f(15) = 3587$

```
x=[0,1,2,15]
y=[2,3,12,3587]
xv=4

def lagrange_interpolation(x,y,xv):
    n=len(x)
    result=0.0
    for i in range(n):
        term=y[i]
        for j in range(n):
        if i!=j:
            term *= (xv-x[j])/(x[i]-x[j])
        result += term
    return result
estimated_value=lagrange_interpolation(x,y,xv)
print(f"Estimated value of f(4): {estimated_value:.2f}")
```