Introducción a la Lógica y la Computación. Examen final, 19/12/2006.

- (1) i. Defina filtro primo.
 - ii. Pruebe la ley de cancelación de los reticulados distributivos:

$$\begin{array}{ccc} x \lor a = y \lor a \\ x \land a = y \land a \end{array} \implies x = y$$

- iii. Vale la ley de cancelación en reticulados?
- (2) Sea el NFA $M = (\{q_0, q_1, q_2, \}, \{0, 1\}, \delta, q_0, \{q_2\})$ donde δ viene dada por la siguiente tabla de transición:

- (a) Construir un DFA que acepte el mismo lenguaje que M. Use el mtodo enseñado en el curso.
- (b) Definir una gramática que genere L(M).
- (3) Suponga $\varphi_1, \ldots, \varphi_n = \varphi$ es serie de formación de φ .
 - (a) Probar que $\varphi_1[\perp/p_0], \ldots, \varphi_n[\perp/p_0]$ es serie de formación de $\varphi[\perp/p_0]$.
 - (b) ¿Vale en general que $\varphi_1[\psi/p_0], \ldots, \varphi_n[\psi/p_0]$ es serie de formación de $\varphi[\psi/p_0]$ para todas φ, ψ ?
- (4) Encuentre derivaciones para las siguientes tautologías:

i.
$$\varphi \lor \neg \varphi$$

ii. $(\varphi \to \neg \varphi) \to \neg \varphi$

- (5) i. Enuncie el Pumping Lemma.
 - ii. Pruebe que el lunguaje $\{01^n001^{2n} : n \ge 1\}$ no es regular.

Ejercicios para alumnos libres:

- (a) Defina filtro (en reticulados distributivos).
- (b) Defina el orden \leq de \overline{PROP} .
- (c) Sea Γ cerrado por derivaciones. Probar que $\bar{\Gamma}$ es un filtro en \overline{PROP} . (Ayuda: pueden suponer que $\bar{\varphi} \in \bar{\Gamma}$ implica $\varphi \in \Gamma$).

