On sparsity and overcompleteness in image models

Pietro Berkes, Richard E. Turner, and Maneesh Sahani

Sparse coding

$$\mathbf{y}_t = \sum_i \mathbf{g}_i x_{i,t} + \epsilon_t, \quad p(x_{i,t}|\alpha) = p_{\text{sparse}}(\alpha)$$

- widely used: BSS, model for early sensory processing in visual and auditory cortex
- motivation for sparse prior different in different communities; BSS: non-gaussianity; sensory cortex: generative model, each image/sound produced by small number of external causes

Overcomplete sparse coding

- Reasons for overcomplete representation:
 - there are more causes than input dimensions (e.g., two speakers, one microphone; more causes than pixels)
 - the brain does it
 - why not? completeness is a very special case
 - even in the noiseless case, inference becomes nonlinear (O&F, 1997)

Why inference gets interesting

A 1D model with 2 components: $y = g_1x_1 + g_2x_2$

Overcomplete sparse coding

Previous work: sparse representation with fixed model size

5 times overcomplete (Lee et al., 2007)

Legitimate but neglected questions

- How sparse? Which family of distributions?
- How overcomplete? (might be overfitting)
- One might expect a trade-off between sparseness and overcompleteness
- Simple questions, require complicated machinery

Model selection

- One possibility is to implement different models and find the one which is most "similar" to visual processing
- Bayesian perspective
 - compare marginal likelihood of the model

$$\frac{p(\mathcal{M}_1,\Xi_1|Y)}{p(\mathcal{M}_2,\Xi_2|Y)} = \frac{p(Y|\mathcal{M}_1,\Xi_1)P(\mathcal{M}_1,\Xi_1)}{p(Y|\mathcal{M}_2,\Xi_2)P(\mathcal{M}_2,\Xi_2)} = \frac{P(Y|\mathcal{M}_1,\Xi_1)}{P(Y|\mathcal{M}_2,\Xi_2)}$$

- automatic Occam's razor
- natural if hypothesis is that the visual system implements an optimal generative model

Model selection in practice

- Tiling the sparseness/overcompleteness space is out of question
- Strategy:
 - use Automatic Relevance Determination (ARD) prior,
 Variational Bayes EM to determine the posterior over parameters and the overcompleteness
 - Unfortunately VB is biased (cannot use the free energy)
 - compute the marginal likelihood using Annealed Importance Sampling (AIS)

ARD

 Place a Gaussian prior over the components to favor small weights

$$p(\mathbf{g}_k|\gamma_k) = \mathcal{N}_{\mathbf{g}_k}(\mathbf{0}, \gamma_k^{-1}),$$
$$p(\gamma_k) = \mathcal{G}_{\gamma_k}(\theta_k, l_k).$$

- Start with a lot of components, let the inference process prune the weights which are unnecessary
- Learning using VBEM

VBEM is biased

$$\log p(Y|\mathcal{M},\Xi) \ge \int dV d\Theta \ q(V,\Theta) \log \frac{p(Y,V,\Theta|\mathcal{M},\Xi)}{q(V,\Theta)} =: \mathcal{F}(q(V,\Theta))$$
$$= \log p(Y|\mathcal{M},\Xi) - KL(q(V,\Theta)||p(V,\Theta|Y))$$

 Ξ : hyperparameters

V: latent variables

 Θ : parameters

The free-energy bound is tightest where q(V,Theta) is a good match to the true posterior. At high sparsities, the true posterior is multimodal and highly non-gaussian. At low sparsities, the true posterior is Gaussian-like and unimodal. q(V,Theta) is always unimodal.

Annealed Importance Sampling (AIS)

- One of the few methods for evaluating normalizing constants of intractable distributions
- Idea 1: Simulated annealing (Kirkpatrick et al., 1983)

$$p_j(x) = p_0(x)^{\beta_j} p_N(x)^{1-\beta_j}$$

 $p_N(x)$: prior distribution

 $p_0(x)$: unnormalized posterior distribution

$$0 = \beta_N > \ldots > \beta_0 = 1$$

The annealing process is a heuristic to avoid getting stuck in local modes. However, there is no guarantee about finding each mode with the right probability.

Annealed Importance Sampling (AIS)

- Idea 2: Importance sampling
 - View annealing as defining an importance sampling distribution over (x_0, \ldots, x_{N-1}) :

$$p_N \sim x_{N-1} \xrightarrow{T_{N-1}} x_{N-2} \xrightarrow{T_{N-2}} \dots \xrightarrow{T_1} x_1 \xrightarrow{T_0} x_0$$
$$x_{N-1} \xleftarrow{\longleftarrow} x_{N-2} \xleftarrow{\longleftarrow} \dots \xleftarrow{\longleftarrow} x_1 \xleftarrow{\longleftarrow} x_0 \sim p_0$$

Sample from $p_N \cdot T_{N-1} \cdot \ldots \cdot T_1 \cdot T_0$

to get importance weights for $\tilde{T}_{N-1} \cdot \dots \cdot \tilde{T}_1 \cdot \tilde{T}_0 \cdot p_0$ (marginal distribution is $p_0(x)$)

- Guarantees asymptotic correctness (Neal, 2001)

In Summary

- 1) Use Automatic Relevance Determination (ARD) prior, Variational Bayes EM to determine the posterior over parameters and the overcompleteness
- 2) Compute the marginal likelihood using Annealed Importance Sampling (AIS)

Results (1): Student-t family

$$p(x_{t,k}|\alpha,\lambda) = \frac{1}{Z} \left(1 + \frac{1}{\alpha} \left(\frac{x_{t,k}}{\lambda} \right)^2 \right)^{-\frac{\alpha+1}{2}} \quad \text{or} \quad \begin{aligned} p(u_{t,k}|\alpha,\lambda) &= \mathcal{G}_{u_{t,k}} \left(\frac{\alpha}{2}, \frac{2}{\alpha\lambda^2} \right) \\ p(x_{t,k}|u_{t,k}) &= \mathcal{N}_{x_{t,k}} \left(0, u_{t,k}^{-1} \right) \end{aligned}$$

For given alpha, lambda chosen such that prior variance is 1

Artificial data

- 2 dimensions, 3 sources, alpha = 2.5
- model initialized with K=7 components
- 3000 data points

Artificial data – free energy

Results are from best of 3 simulations

Correct number of sources always recovered, except in the sparsest case (5)

Artificial data – marginal likelihood

Error bars are always 3 times the estimated standard deviation

Natural images

- 9x9 patches from 36 natural images (van Hateren's)
- dimensionality reduced to 36 by PCA
- model initialized with K=108 components
- new batch of 3600 patches at every iteration

Natural images – free energy

Natural images – marginal likelihood

Natural images - overcompleteness

Results (2): "Maneesh's prior"

Student-t might not be such a good prior

• alternative:
$$p(u_{t,k}|a,b) = \mathcal{U}_{u_{t,k}}(a,b)$$

$$p(x_{t,k}|u_{t,k}) = \mathcal{N}_{x_{t,k}}(0, u_{t,k}^{-1})$$

Artificial data

- 2 dimensions, 3 sources, kurtosis = 10.0
- model initialized with K=7 components
- 3000 data points

Artificial data – free energy

Results are from best of 10 simulations

Artificial data – marginal likelihood

Artificial data – number of components

Natural images

- 9x9 patches from 36 natural images (van Hateren's)
- dimensionality reduced to 36 by PCA
- model initialized with K=108 components
- new batch of 3600 patches at every iteration

Natural images – free energy

Natural images – marginal likelihood

Natural images - overcompleteness

Model comparison

Conclusions

- What is the optimal level of sparseness and overcompleteness within a sparse coding model?
 Which model is optimal for, let's say, natural images?
 - Within the Student-t family and the Maneesh family, the optimal model for natural images is very sparse, but only modestly overcomplete
 - Very sparse Student-t distribution is a better prior for natural images than the Maneesh prior (todo: explore other priors, Laplace, gen. Gaussian)
- Of course, there might be other reasons to be overcomplete; todo: generate from an overcomplete, non-linear model and check linear solution

Many thanks to: Yee Whye Teh Iain Murray David McKay

Complete model

