Principles of Brain Computation SS 2018

HW 1: The Leaky Integrate-and-Fire Model

March 2018

Michael Müller
Institute of Theoretical Computer Science, TU Graz

HW 1: The Leaky Integrate-and-Fire Model

The leaky integrate-and-fire model (LIF)

- One the simplest neuron models
- Derived from electrical properties of cell membrane

Electrical properties of neurons

Figure 5.3: The capacitance and membrane resistance of a neuron considered as a single compartment. The membrane capacitance determines how the membrane potential V and excess internal charge Q are related. The membrane resistance $R_{\rm m}$ determines the size of the membrane potential deviation ΔV caused by a small current $I_{\rm e}$ entering through an electrode, for example. Equations relating the total membrane capacitance and resistance, $C_{\rm m}$ and $R_{\rm m}$, to the specific membrane capacitance and resistance, $c_{\rm m}$ and $r_{\rm m}$, are given along with typical values of $c_{\rm m}$ and $r_{\rm m}$. The value of $r_{\rm m}$ may vary considerably under different conditions and for different neurons.

HW 1: The Leaky Integrate-and-Fire Model

The leaky integrate-and-fire model (LIF)

Create equivalent circuit and find equation describing u(t)?

Response of neurons to injected current

Figure 5.6: A) Comparison of interspike-interval firing rates as a function of injected current for an integrate-and-fire model and a cortical neuron measure *in vivo*. The line gives $r_{\rm isi}$ for a model neuron with $\tau_{\rm m}=30$ ms, $E_{\rm L}=V_{\rm reset}=-65$ mV, $V_{\rm th}=-50$ mV and $R_{\rm m}=90$ M Ω . The data points are from a pyramidal cell in the primary visual cortex of a cat. The filled circles show the inverse of the interspike interval for the first two spikes fired, while the open circles show the steady-state interspike-interval firing rate after spike-rate adaptation. B) A recording of the firing of a cortical neuron under constant current injection showing spike-rate adaptation. C) Membrane voltage trajectory and spikes for an integrate-and-fire model with an added current with $r_{\rm m}\Delta g_{\rm sra}=0.06$, $\tau_{\rm sra}=100$ ms, and $E_{\rm K}=-70$ mV (see equations 5.13 and 5.14). (Data in A from Ahmed et al., 1998, B from McCormick, 1990.)