Species divergence (our closest living relatives)

Aida Andrés
University College London

Differ in:

Demographic history

Social patterns

Mating behaviour

Environment

Diet

Size

Locomotion

Extremely closely related

Selection at different older frames?
Selection over long evolutionary times?
Evolutionary context

Direct advantages of including information on divergence

Time Scales for the Signatures of Selection

Sabeti et al., Science, 2006

Time Scales for the Signatures of Selection

Protein-coding evolution: Ka/Ks

$$\frac{Ka}{Ks} = \frac{\text{proportion of NS changes}}{\text{proportion of S changes}}$$

Maximum likelihood approach

Along the full sequence

For specific lineages

Across all lineages

Ortiz et al., Retrovirology 2006

Maximum likelihood approach

Along the full sequence

For specific lineages

Across all lineages

Per codon

In particular protein sections (domains)

Maximum likelihood approach

Along the full sequence

For specific lineages

Across all lineages

Per codon

In particular protein sections (domains)(exons)

For specific codons

Maximum likelihood approach

Along the full sequence

For specific lineages

Across all lineages

Per codon

In particular protein sections (domains)

For specific codons

For specific codons and lineages

Calculate the likelihood of models with positive selection in particular lineages/codons and identify putatively selected codons

	Fixed	Polymorphic
Synonymous	D _s	P _s
Nonsynonymous	<i>D</i> _n	<i>P</i> _n

Assumptions:

- Rapid fixation of advantageous alleles
- Rapid removal of deleterious alleles
- Similar drift in both

Test

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

	Fixed	Polymorphic
Synonymous	D _s	P _s
Nonsynonymous	<i>D</i> _n	<i>P</i> _n

$$\alpha = 1 - \frac{d_0}{d} \frac{p}{p_0},$$

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

Issue: accumulation of polymorphic slightly deleterious alleles

Solution: removing low-frequency alleles

Issue: how to choose right freq?

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

Issue: accumulation of polymorphic slightly deleterious alleles

Solution: simultaneous estimate of the DFE of new mutations using the SFS, and alpha *e.g. DFE-alpha*

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

Issue: accumulation of polymorphic slightly deleterious alleles

Solution: simultaneous estimate of the DFE of new mutations using the SFS, and alpha *e.g. DFE-alpha*

Issue: demography and linked selection (background selection and genetic draft)

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

Issue: accumulation of polymorphic slightly deleterious alleles

Issue: demography and linked selection (background selection and genetic draft)

Solution: asymptoticMK

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

asymptoticMK

$$\alpha(x) = 1 - \frac{d_0}{d} \frac{p(x)}{p_0(x)}.$$

Estimate the proportion of non-synonymous substitutions driven by positive selection (alpha).

asymptoticMK

Messer and Petrov, PNAS 2013

asymptoticMK

asymptoticMK: Asymptotic McDonald-Kreitman Test

By Benjamin C. Haller & Philipp W. Messer. Copyright © 2017 Philipp Messer.

See below for background and usage information. If you use this service, please cite our paper:

[not yet published, please check back for a citation...]

Submit your data:

d	:	
d_0	:	
Input file	:	Choose File SFSasympMKan_no1.tx
(Tab-delimited	wit	named columns for x , p , and p_0) [sample]
x interval to fit	:	0.10 , 0.90]
		Submit

	Fixed Polymorpl			
Synonymous	d0	pS		
Nonsynonymous	d	pN		

	Fixed Polymorphic				
Locus 1	D1	P1			
Locus 2	D2	P2			

P1 / D1

P2 / D2

Neutral

SNPs/FDs

SNPs/FDs

	Fixed Polymorphic				
Locus 1	D1	P1			
Locus 2	D2	P2			

P1 / D1

P2 / D2

Test

Time Scales for the Signatures of Selection

Changes in Local Genealogies along the Genome

Internal regions (~90%)

External regions (~10%)

Signal of Positive Selection

Length

Adapted from Green et al., Science, 2010

Signal of Positive Selection

We can use several outgroup individuals Right only for some species/population pairs

Cagan et al., MBE 2016

Extended lineage sorting (ELS)

Data

Genotypes in the outgroup individual (A,D)

Allele frequency in your population.

Extended lineage sorting (ELS)

Relevant parameters

Probability of the outgroup to share a derived allele in the population.

If external region, the probability is 0 (but there may be errors, e.g. genotyping)

If internal region, if the site is fixed in the population the probability is 1 (but there may be errors)

If internal region, if the site is polymorphic the probability depends on the age of the allele (proxy frequency)

Extended lineage sorting (ELS)

Relevant parameters

Probability of the outgroup to share a derived allele in the population.

Length of internal and external regions

Length of ELS regions

A Hidden Markov Model to Detect Extended Lineage Sorting

Estimate for each position the probability of each state

Detection of Extended Lineage Sorting

We obtain

Statistical signatures of natural selection

Thanks to

Stephane Peyregne

Gabriel Santpere
Joshua Schmidt
Philip Messer

asymptoticMK

asymptoticMK: Asymptotic McDonald-Kreitman Test

By Benjamin C. Haller & Philipp W. Messer. Copyright © 2017 Philipp Messer.

See below for background and usage information. If you use this service, please cite our paper:

[not yet published, please check back for a citation...]

Submit your data:

d	:							
d_0	:							
Input file	:	Choos	se File	S	FSasy	mpMK	an_	_no1.txt
(Tab-delimite	ed with	name	d colun	nns fo	or x, p	, and	p ₀) [<u>s</u>	ample]
x interval to	fit:	0.10	, 0.9	0]			
							S	ubmit

asymptoticMK

For individual genes?

For sets of genes?

Extended lineage sorting (ELS) Process

- For efficiency purposes we have the genetic data & configuration file, and the parameters previously inferred.
- Run ELS_HMM to calculate the probability at each site of it being internal, external or ELS.
- Combine sites into internal, external and ELS regions
- Use length to prioritise ELS regions & visualise
- Compare across outgroup individuals