

Model-Based RL as Stackelberg Games: Don't Be Fooled by Your Own Model

Nils Cremer Kacper Ozieblowski Yanick Zengaffinen

Supervisor: Vinzenz Thoma

1 Background

Model-based RL enables efficient learning and can be framed as a Stackelberg game [1]. In [2] they propose an algorithm to learn Stackelberg equilibria (in simple iterated matrix games).

Model Based RL as Stackelberg Game [1]

Environment M, Model \hat{M} , Policy π

Policy as Leader:
$$\max_{\pi} \left\{ J(\pi, \widehat{M}^{\pi}) \ s.t. \ \widehat{M}^{\pi} \in \arg\min_{\widehat{M}} \ \ell(\widehat{M}, \mu_{M}^{\pi}) \right\}$$
 (PAL)

Model as Leader: $\min_{\widehat{M}} \left\{ \ell(\widehat{M}, \mu_{M}^{\pi_{\widehat{M}}}) \ s.t. \ \pi_{\widehat{M}} \in \arg\max_{\pi} J(\pi, \widehat{M}) \right\}$ (MAL)

$$\mu_M^\pi = \frac{1}{T}\sum_{t=0}^T P(s_t = s, a_t = a) \; \; \mathsf{and} \quad \ell(\hat{M}, \mu) = \mathbb{E}_{(s,a)\sim \mu}\left[D_{KL}(P(\cdot|s,a), \hat{P}(\cdot|s,a))\right]$$

Theorem 1: Given policy π and model \hat{M} , such that

$$\ell(\hat{M},\mu_M^\pi) \leq \epsilon_M$$
 and $J(\pi,\hat{M}) \geq J(\pi',\hat{M}) - \epsilon_\pi \ orall \pi'$

then for any optimal policy π^*

$$J(\pi^*,M)-J(\pi,M)\leq O(\epsilon_\pi+rac{\sqrt{\epsilon_M}}{(1-\gamma)^2}+rac{1}{1-\gamma}D_{TV}(\mu_M^{\pi^*},\mu_{\hat{M}}^{\pi^*}))$$

Learning a Stackelberg Equilibrium [2]

Contextualized Follower

for each pre-training iteration do sample random leader query leader -> leader description ω train follower given leader description ω (e.g. PPO) for each training iteration do // Leader Training query leader -> leader description ω get best-response follower using ω

Inner-Outer Loop

train leader

for each leader iteration do
for each follower iteration do
train follower
train leader

// Outer Loop // Inner Loop

2 Theory

MDP can be designed such that the final policy performs arbitrarily bad. We can prove that PAL does not suffer from this.

Theorem (ours): Given an approximate solution π to **PAL** with approximate best-responding models $\hat{M}(\pi)$, such that

$$\ell(\hat{M}(\pi), \mu_M^\pi) \leq \epsilon_M, orall \pi ext{ and } J(\pi, \hat{M}(\pi)) \geq \sup_{\pi'} J(\pi', \hat{M}(\pi')) - \epsilon_\pi$$

then
$$J(\pi^*,M)-J(\pi,M)\leq \epsilon_\pi+rac{4\gamma\sqrt{\epsilon_M}R_{max}}{(1-\gamma)^2}$$

where π^* is an optimal policy and R_{max} is a bound on the absolute values of all rewards.

Fixing MAL

 $\min_{\hat{M}} \left\{ \alpha \cdot \ell(\hat{M}, \mu_M^{\pi_{\hat{M}}}) - (1 - \alpha) \cdot J(\pi_{\hat{M}}, \hat{M}) \, s. \, t. \, \pi_{\hat{M}} \in \arg\max_{\pi} J(\pi, \hat{M}) \right\}$ (MAL + Random Noise) $\min_{\hat{M}} \left\{ \ell\left(\hat{M}, \alpha \mu_M^{\pi_{\hat{M}}} + (1 - \alpha)\mathbb{E}_{\pi' \in \Pi}\left[\mu_M^{\pi'}\right]\right) s. \, t. \, \pi_{\hat{M}} \in \arg\max_{\pi} J(\pi, \hat{M}) \right\}$

3 Experiments

4 Results

Problem Formulation	Avg. Ep. Reward
MAL	00.97 ± 00.05
MAL + Agent Reward	36.93 ± 00.57
MAL + Random Noise	36.74 ± 00.67
PAL	36.77 ± 00.64

The average reward is the mean of 5 experiments

5 Discussion

Model as Leader

- Can fail because the model is not incentivized to maximize the reward, thus it can hide parts of the environment
- Ergodicity and determinism are not strong enough
- ullet Good mixing $D_{TV}(\mu_M^{\pi^*},\mu_{\hat{M}}^{\pi^*}) o 0$ can solve the issue [1]
- MAL with changed leader objective can work
- Learns model only for best responding policies

Policy as Leader

- Provably aligned with the actual goal
- Reduces to normal model based RL in MDPs

6 Future Work

- Sample efficiency of PAL (e.g. on POMDPs)
- Theoretical guarantees for our MAL formulations
- Complex MDPs
- Thoroughly investigate why [1] worked
- Continuous environments

References

[1] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model based reinforcement learning. CoRR, abs/2004.07804, 2020. URL https://arxiv.org/abs/2004.07804.

[2] Matthias Gerstgrasser and David C. Parkes. Oracles followers: Stackelberg equilibria in deep multi-agent reinforcement learning, 2023. URL https://proceedings.mlr.press/v202/gerstgrasser23a/gerstgrasser23a.pdf