CSCE-629 Analysis of Algorithms

Spring 2019

Instructor: Dr. Jianer Chen

Office: HRBB 315C Phone: 845-4259

Email: chen@cse.tamu.edu

Office Hours: T,Th 11:00 am–12:30 pm

Teaching Assistant: Qin Huang

Office: HRBB 315A **Phone:** 402-6216

Email: huangqin@email.tamu.edu Office Hours: MWF 3:00 pm-4:00 pm

Assignment # 1 (Due February 12, 2019)

1. Answer the following questions, and give a brief explanation for each of your answers.

- a) True or False: Quicksort takes time $O(n \log n)$;
- b) True or False: Quicksort takes time $O(n^2)$;
- c) True or False: Mergesort takes time $O(n \log n)$;
- b) True or False: Mergesort takes time $O(n^2)$;
- 2. Solve the following recurrence relations:
 - a) T(1) = O(1), and $T(n) = 2T(n/2) + O(n^2)$;
 - b) T(1) = O(1), and T(n) = 2T(n-2) + O(n).
- 3. Consider the following operation on a set S:

Neighbors (S, x): find the two elements y_1 and y_2 in the set S, where y_1 is the largest element in S that is strictly smaller than x, while y_2 is the smallest element in S that is strictly larger than x.

Develop an $O(\log n)$ -time algorithm for this operation, assuming that the set S is stored in a 2-3 tree. *Hint*: the element x can be either in or not in the set S.

4. Consider the following problem: given a 2-3 tree T of n leaves, and an integer k such that $\log n \le k \le n$, find the k smallest elements in the tree T. Develop an O(k)-time algorithm for the problem. Give a detailed analysis to explain why your algorithm runs in time O(k).