UNIVERSITY OF TWENTE.

INTRODUCTION

F.vanderHeijden@utwente.nl

the teaching team

prof. dr. Thomas J.J. Maal

- Radboud UMC

- medical context – 3D technology

prof. Raj Gupta, PhD, MD

- Massachusetts GH

- medical context - machine and deep learning

Can O. Tan, PhD

- Massachusetts GH

- deep learning

Elfi I.S. Hofmeijer, MSc

- UT-RAM

- machine learning and deep learning

dr.ir. Ferdinand van der Heijden - UT-RAM

- coordinator, 3D vision, machine learning

and many teaching assistants and student assistants

Course objectives

After attending the course:

- A student is able to assess whether a clinical problem can benefit from:
 - 3D data technology
 - Machine learning
- He/she is able to implement this scientific, technological approach in the solution of such clinical problems leading to new clinical protocols.
- He/she is able to administer and to carry out this protocol him/herself.

Contents

3D Computer Vision for Medical Applications (100hr):

- 1. 3D acquisition from multiple cameras
 - 3D camera devices
 - Camera models and projective geometry
 - 3D surface reconstruction (from pixels to 3D surface mesh)
- 2. 3D measurements from camera images
 - 3D pose estimation of cameras and landmarks
 - key points
 - visual navigation
- 3. 3D mesh manipulation
 - representations
 - registration
 - simplifications and repair
 - 3D key points

Contents

Machine learning and Deep learning for medical applications (40hr):

- the ML-DL paradigm, how to learn from examples:
 - setting up the data sets
 - learnable parameters and hyperparameters
- Classifiers
 - Naive Bayesian, kNNR, Support Vector Machines, ...
- Neural networks:
 - feedforward neural network with back propagation
 - deep learning neural network
 - saliency map
- Applications to medical data
 - medical context

Relation with other courses

TM-MII students

3D Computer Vision	Math for computer v	ision and navigation	Surgical Navigation		
for Medical Applications	3D segmentation	W////SNT//////	Technology		
Basic skills matlab					
Segmentation and Visualization					

Relation with other courses

BME students

3D Computer Vision for Medical Applications

(math for computer vision and navigation)

from pixels to 3D meshes

3D mesh manipulation

visual navigation

Machine learning/ deep learning

Basic skills matlab + provisional math for computer vision

Image Processing and Computer Vision

Note:

- the syllabi are the primary source of information
 - much in-depth knowledge
 - self-contained text
- aim of the lectures is to gather up the threads
- lectures will often heavily overlap with lectures in IPCV.

Educational formats of 3DCVMA

3D computer vision for medical applications

- Lectures → zoom conferences
 - Clinical context and motivation
 - Common threads (often overlapping IPCV)
- 4 Matlab exercises (mandatory, individual) using exercise books
- Hands-on experience with 3D cameras → cancelled
- Project (group of 2 students)
- Poster presentation + oral exam (individual) → 21 June 25 June

Machine Learning for Medical Applications

- 7 June 11 June: 1 week 8 hours/day
- written exam
 18 June
- educational formats will follow later

example of an exercise: can we measure the shoe size using this image?

the project: assessment of ACL injury

anterior cruciate ligament injury

possible 3D geometrical parameters:

- 3D rotation axis in the knee joint during flexion
- maximum rotation angle
- shift of rotation axis during flexion
- maximum translation of lower leg wrt upperleg

Study materials of 3DCVMA

- Syllabi covering the whole theory; includes useful hints for Matlab
- Lecture sheets and hand-outs.
- Exercise books
- data (images, stereo images, calibration images, etc)
- Software: Matlab 2020a

Assessment

3DCVMA: 67%

ML: 33%

3DCVMA:

4 exercise books (pdf forms)25%

poster presentation project + oral exam 42%

ML:

5 exercise books (pdf books)20%

■ 1 written exam (18 June) 13%

UNIVERSITY OF TWENTE.

program: see canvas

due dates exercise:

- 7-May exercise 1
- 16-May exercise 2
- 20-May exercise 3
- 6-June exercise 4

due date project

21 June

course Machine Learning:

• 7-11 June (40 hours)

written exam ML:

18 June

poster presentation + oral:

• 21-25 June

- Program is indicative. Changes will be published at Canvas
- Detailed program for ML will follow.

when		how who	topics	
22-Apr	15:45	lecture T Maal	- general introduction	
			- motivation	
			- medical context	
		F.van der Heijden	- outline of the course	
			- organization	
23-Apr 13:45	13:45	lecture F. van der Heijden	- homogeneous coordinates	
			- geometrical transforms	
			- homographies	
			- vanishing points	
			- camera models	
			- virtual camera rotations	
23-Apr	17.30		start exercise 1 "measuring the size of a foot"	
07-May	23:59		deadline exercise 1	
29-Apr	15:45	lecture F. van der Heijden	- corner detection	
			- key point detection	
30-Apr	13:45	lecture F. van der Heijden	- key point matching	
			- robust estimation: ransac	
30-Apr	17.30		start exercise 2: "key point matching"	
16-May	23:59		deadline exercise 2	
06-May	15:45	lecture F. van der Heijden	 epipolar geometry and stereo rectification 	
			- stereo matching	
07-May	13:45	lecture F. van der Heijden	 epipolar geometry and stereo rectification 	
			- stereo matching	
07-May	9:30		start exercise 3: 3D surfacce reconstruction	
20-May	23:59		deadline exercise 3	
20-May	15:45	lecture F. van der Heijden	- Intro Mesh manipulation	
			Basic Mesh Representation	
			Mesh Sources	
			Approximating Meshes	
21-May	13:45	lecture F. van der Heijden	- 3D measurements from camera images	
21-May	17.30		start exercise 4: Mesh manipulation	
06-Jun	23:59		deadline exercise 4	
27-May	15:45	lecture F. van der Heijden	- visual navigation	
28-May	13:45	lecture F. van der Heijden	 3D measurements from camera images 	
28-May	17.30		start project:	
			"3D measurements and tracking"	
7 June to	11 June	Gupta et al	Machine Learning	
10 1	9:00		written test Machine Learning	
18-Jun				
21 June to	25 June		poster presentation + oral exam	