Bangladesh Army University of Science and Technology

Department of Computer Science and Engineering

Referred/Improvement/Backlog Examination, Fall 2018

Level-I Term-II

Course code: EEE 1269 Time: 03 (Three) hours

्री

Course Title: Electronic Devices and Circuits

Full Marks: 210

- N.B. (i) Answer any three questions from each PART
 - (iii) Marks allotted are indicated in the margin
- (ii) Use separate answer script for each PART (iv) Symbols and abbreviations bear usual meanings

PART A

- What do you understand by a semi-conductor? Discuss some important properties of 1. semiconductor.
 - What is electronics? Mention some important applications of electronics.

10

- The 6.8-V zenar diode in the circuit of Fig. 1(c) is specified to have $V_Z = 6.8V$ at $I_Z = 5mA$, 15 r_z =20 Ω , and I_{ZK} =0.2 mA. The supply voltage V is nominally 10 V but can vary by ± 1 V.
 - Find V_O with no load and with V at its nominal value. i.
 - ii. Find the change in V_O resulting from the ± 1 -V change in V
 - Find the change in resulting from connecting a load resistance R_L that draws a current iii. $I_L = 1 \, mA$.

Fig. 1(c)

- What do you understand by intrinsic and extrinsic semiconductors? Explain the formation of 2. potential barrier in a pn junction.
 - What is zenar diode? Write down the differences between ideal diode and zenar diode

10

- Why BJT is called bi-polar? Find out the relations between common base current gain (α) and common emitter current gain (β) .
 - 10
- Design a diode logic circuit for the expression $V_0 = (A+B) \cdot (B+C)$ where A, B & C are inputs. 3. a) 10
 - Draw a full wave rectifier circuits and explain its operations with input and output wave 13 shapes.

For the network of Fig. 3(c) determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V.

Fig. 3(c)

4. a) Claculate the constant current I in the circuit of Fig. 4(a)

Fig. 4(a)

- b) Draw the hybrid equivalent model for the common-emitter and common base transistor 15 configuration.
- c) What is stability factor? Derive the equation of stability factor for common emitter 10 configuration in terms of I_{CBO}

PART B

5. a) For the parallel clipper given in Fig. 5(a), draw the output waveform and explain its operation. 10

Where $v_i = 10 \sin wt$

10

Fig. 5(a)

12

Fig. 7(c)

- 8. a) What is an operational amplifier? Write down the properties of an ideal op-amp. Also draw the equivalent circuit of the nonideal op amp.
 - b) Determine the output voltage for the following circuit given at Fig. 8(b)

Fig. 8(b)

c) What is difference amplifier? Design an op amp circuit with inputs v_1 , v_2 and v_3 such that $v_o = v_{1+} 2v_2 - 3v_3$

- Draw the output characteristics of BJT in case of common emitter configuration and mark its different regions, also explain the operating principle of BJT in case of active mode n-p-n transistor.
- c) What is biasing of a transistor? Draw a voltage divider biasing circuit using n-p-n transistor.
- 6. a) For the circuit shown in the Fig. 6(a), find out i) I_B ii) I_C iii) V_{CE} iv) V_{BC}

Fig. 6(a)

b) For the circuit in Fig. 6(b), find the value of R that results in $V_D = 0.8V$, The MOSFET has $V_{Cox} = 0.5V$, $\mu_n C_{ox} = 0.4 \text{ mA/V}^2$, W/L = 4.

Fig. 6(b)

- c) What are the differences between FET and BJT? Write down the families of FET.
- 7. a) What are the differences between JFET and MOSFET? Explain the output characteristics of n- 15 channel JFET with several values of V_{OS} , and V_{DS} with some positive values.
 - b) Describe the modes of operation of BJT.

10

10

15