Recitation 4

Subgradients

Brett Bernstein

CDS at NYU

February 18, 2017

Intro Question

Question

When stating a convex optimization problem in standard form we write

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ for all $i = 1, ..., n$.

where f_0, f_1, \ldots, f_n are convex. Why don't we use \geq or = instead of \leq ?

Review of Convexity

Definition (Convex Set)

A set $S \subseteq \mathbb{R}^d$ is convex if for any $x, y \in S$ and $\theta \in (0,1)$ we have $(1-\theta)x + \theta y \in S$.

Definition (Convex Function)

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if for any $x, y \in \mathbb{R}^d$ and $\theta \in (0,1)$ we have $f((1-\theta)x + \theta y) \leq (1-\theta)f(x) + \theta f(y)$.

Review of Convexity

(Sub-)Level Sets of Convex Functions

Definition ((Sub-)Level Sets)

For a function $f: \mathbb{R}^d \to \mathbb{R}$, a *level set* (or contour line) corresponding to the value c is given by the set of all points $x \in \mathbb{R}^d$ where f(x) = c:

$$f^{-1}{c} = {x \in \mathbb{R}^d \mid f(x) = c}.$$

Analogously, the *sublevel set* for the value c is the set of all points $x \in \mathbb{R}^d$ where $f(x) \leq c$:

$$f^{-1}(-\infty,c] = \{x \in \mathbb{R}^d \mid f(x) \le c\}.$$

□ ▶ ∢□ ▶ ∢ ≣ ▶ √ ■ ♥ 9 Q (?)

3D Plot and Contour Plot With Sublevel Set

3D Plot and Contour Plot With Sublevel Set

Sublevel Sets of Convex Functions

Theorem

If $f: \mathbb{R}^d \to \mathbb{R}$ is convex then the sublevel sets are convex.

Sublevel Sets of Convex Functions

Theorem

If $f: \mathbb{R}^d \to \mathbb{R}$ is convex then the sublevel sets are convex.

Proof.

Fix a sublevel set $S = \{x \in \mathbb{R}^d \mid f(x) \le c\}$ for some fixed $c \in \mathbb{R}$. If $x, y \in S$ and $\theta \in (0, 1)$ then we have

$$f((1-\theta)x + \theta y) \le (1-\theta)f(x) + \theta f(y) \le (1-\theta)c + \theta c = c.$$

Plots of Convex Function With Sublevel Set

Intersection of Convex Sets is Convex

Level Sets and Superlevel Sets Not Convex

Brett Bernstein (CDS at NYU)

Lagrange Duality

Weak Duality

Strong Duality

Gradient Characterization of Convexity

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable. Then f is convex iff

$$f(x + v) \ge f(x) + \nabla f(x)^T v$$

hold for all $x, v \in \mathbb{R}^d$.

Gradient Approximation Gives Global Underestimator

Subgradients

Definition (Subgradient, Subdifferential, Subdifferentiable)

Let $f: \mathbb{R}^d \to \mathbb{R}$. We say that $g \in \mathbb{R}^d$ is a *subgradient* of f at $x \in \mathbb{R}^d$ if

$$f(x+v) \geq f(x) + g^T v$$

for all $v \in \mathbb{R}^d$. The subdifferential $\partial f(x)$ is the set of all subgradients of f at x. We say that f is subdifferentiable at x if $\partial f(x) \neq \emptyset$ (i.e., if there is at least one subgradient).

Subgradients at x_0 and x_1

1 If f is convex and differentiable at x then $\partial f(x) = {\nabla f(x)}.$

- **1** If f is convex and differentiable at x then $\partial f(x) = {\nabla f(x)}.$
- ② If f is convex then $\partial f(x) \neq \emptyset$ for all x.

- **1** If f is convex and differentiable at x then $\partial f(x) = {\nabla f(x)}.$
- ② If f is convex then $\partial f(x) \neq \emptyset$ for all x.
- **3** The subdifferential $\partial f(x)$ is a convex set. Thus the subdifferential can contain 0, 1, or infinitely many elements.

- **1** If f is convex and differentiable at x then $\partial f(x) = {\nabla f(x)}.$
- ② If f is convex then $\partial f(x) \neq \emptyset$ for all x.
- **3** The subdifferential $\partial f(x)$ is a convex set. Thus the subdifferential can contain 0, 1, or infinitely many elements.
- If the zero vector is a subgradient of f at x, then x is a global minimum.

- **1** If f is convex and differentiable at x then $\partial f(x) = {\nabla f(x)}.$
- ② If f is convex then $\partial f(x) \neq \emptyset$ for all x.
- **3** The subdifferential $\partial f(x)$ is a convex set. Thus the subdifferential can contain 0, 1, or infinitely many elements.
- If the zero vector is a subgradient of f at x, then x is a global minimum.
- **③** If g is a subgradient of f at x, then (g, -1) is orthogonal to the underestimating hyperplane $\{(x + v, f(x) + g^T v) \mid v \in \mathbb{R}^d\}$ at (x, f(x)).

Compute the Subdifferentials of f(x) = |x|

Compute $\partial f(3,0)$ For $f(x_1,x_2) = |x_1| + 2|x_2|$

Compute $\partial f(3,0)$ For $f(x_1,x_2) = |x_1| + 2|x_2|$

Compute $\partial f(3,0)$ For $f(x_1,x_2) = |x_1| + 2|x_2|$

$$\partial f(3,0) = \{(1,b)^T \mid b \in [-2,2]\}$$

Gradient Lies Normal To Contours

Theorem

If $f : \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and $x_0 \in \mathbb{R}^d$ with $\nabla f(x_0) \neq 0$ then $\nabla f(x_0)$ is normal to the level set $S = \{x \in \mathbb{R}^d \mid f(x) = f(x_0)\}.$

Gradient Lies Normal To Contours

Normal Plane to Subgradient Splits Space

Subgradient Descent

- Let $x^{(0)}$ denote the initial point.
- ② For k = 1, 2, ...
 - Assign $x^{(k)} = x^{(k-1)} \alpha_k g$, where $g \in \partial f(x^{(k-1)})$ and α_k is the step size.
 - Set $f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)})$. (Used since this isn't a descent method.)

Convergence of Subgradient Descent

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and Lipschitz with constant G, and let x^* be a minimizer. For a fixed step size t, the subgradient method satisfies:

$$\lim_{k\to\infty} f(x_{best}^{(k)}) \le f(x^*) + G^2t/2.$$

For step sizes respecting the Robbins-Monro conditions,

$$\lim_{k \to \infty} f(x_{best}^{(k)}) = f(x^*).$$