Intervale de Confrienza

Ljerice	,	(
U		
	1	

Para estudiar la efectividad de un medicamento contra la diabetes se mide la cantidad de glucemia en sangre antes y después de la administración de dicho medicamento, obteniéndose los resultados siguientes:

X1 - X2: Peducción de glucerie Déferencie al former

	_:-		Λ
W0	w	щ	4

X1:	Antes	7.2	7.3	6.5	4.2	3.1	5.3	5.6
X ₂ :	Después	5.2	5.4	5.3	4.7	4.1	5.4	4.9
		2	11.9	1.2	1-0.5	l —		0.7

a) Estimar un IC para la reducción de glucemia en sangre producida por el medicamento.

20. Do Contient pera

Diferencie de blades

 $\bar{X}_1 = \frac{1}{3} \stackrel{?}{\underset{(i)}{\ge}} \times_{1i} = 5.6$ $\bar{X}_2 = \frac{1}{3} \stackrel{?}{\underset{(i)}{\ge}} \times_{2i} = 5$

Graha renetida / poneadad

$$IC_{\mathcal{A}}(\mathcal{M}_{1}-\mathcal{M}_{2}) = (\overline{X}_{1}-\overline{X}_{2}) + + + -1; \alpha/2 \cdot \overline{X}_{1}$$

$$IC_{\mathcal{A}}(\mathcal{M}_{1}-\mathcal{M}_{2}) = (\overline{X}_{1}-\overline{X}_{2}) + + + -1; \alpha/2 \cdot \overline{X}_{1}$$

$$Quite varia) = X_{1} - X_{2}.$$

$$D: (\text{Diference}) = X_{1} - X_{2}.$$

D: (diference) =
$$X_1 - X_2$$
.

$$S_b^2 = \frac{1}{N} \sum_{i=1}^{n} (di - X_b)^2 = \frac{1}{7} \left[4.84 + 5.29 + 16 + 22.09 + 27.04 + 18.49 + 12.27 \right]$$

$$= \frac{106}{7} = 15.14$$

$$= \frac{106}{7} = 15.14$$

$$= \frac{106}{7} = 15.14$$

$$= \frac{106}{7} = 15.14$$

$$SD = \sqrt{SD^2} = \sqrt{17.14} = 3.89$$

$$= 0.6 \pm 3.89$$

$$= [-3.29 ; 4.49]$$

Tabla t-Student

Grados de						
libertad	0.25	0.1	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3137	12.7062	31.8210	63.6559
2	0.8165	1.8856	2.9200	4.3027	6.9645	9.9250
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8408
4	0.7407	1.5332	2.1318	2.7765	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9979	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453