

Digital Image Encryption using Improved Chaotic Map Lattice

Radhika Chapaneri[#], Santosh Chapaneri[@], Dr. Tanuja Sarode[#]

#TSEC, @SFIT, University of Mumbai

1. THE BIG PROBLEM: IMAGE ENCRYPTION

Security of digital images is crucial to preserve privacy.

Figure 1. Applications of Image Encryption

Features: High correlation; Bulk capacity; Redundancy

Problem: Conventional Algorithms (DES, RSA) not applicable

2. Solution: CHAOS-BASED CRYPTOGRAPHY

- Flaws of original Chaotic Map Lattice (CML): Improper keys, Non-invertible, key space violating basic principles
- **Proposed Solution**: Improved CML (ICML) achieving both confusion as well as diffusion

Figure 2. Schematic of Proposed Solution (ICML Encryption)

3. Details of ICML

- 256-bit secret key => Key space is 2²⁵⁶
- Instead of Logistic Map, use Piecewise Linear Chaotic Map (PWLCM) => highly chaotic with positive Lyapunov exponent
- Invertible since conversion of A/D and D/A done before and after making *n* iterations of the map
- Pixel diffusion achieved using "XOR plus mod" operation, incorporating a different PWLCM

4. RESULTS AND ANALYSIS

Figure 3. (a) Plain Image, (b) Encrypted Image with *K*, (c) & (d) Histograms of (a) & (b), (e) Decrypted Image with correct *K*, (f) Decrypted Image with one-bit change in *K*

Table 1. Statistical Analysis of ICML

Test Criteria	Ideal Random Image	CML Cipher Image	Proposed ICML Cipher Image
NPCR %	99.5693	84.3281	99.6384
UACI %	33.2824	31.7260	33.5668
Entropy	8	7.4957	7.9994
Correlation	0	0.1693	0.0046
Kurtosis	1.8054	5.3549	1.8062
χ² test (histogram uniformity)	293	55,114	200

5. DISCUSSION

- Highly sensitive to changes in input image as well as changes in key => resists differential cryptanalytic attacks
- Achieves both confusion and diffusion by effective use of chaotic maps => resists known/chosen-plaintext attacks
- High level of security, large key space, passes statistical moment analysis tests
- Solution suitable for grayscale as well as colour images