

Гібридні ітераційні алгоритми розв'язання дискретних задач для еліптичних рівнянь

Керівник магістерської роботи член-кор. НАН України, д. ф.-м. н., проф. Хіміч Олександр Миколайович

Виконав студент Оленченко Ілля Андрійович

Мета роботи: розробка та дослідження гібридних ітераційних алгоритмів для розв'язання різницевих рівнянь для еліптичних операторів. Використання повного спектру можливостей гібридних архітектур.

Актуальність роботи зумовлена нестримним рухом технологій з плином часу. Таким чином на вже розв'язані задачі можна подивитися під іншим кутом, а саме використання гібридних комп'ютерів для розв'язання диференціальних рівнянь. Значна частина прикладних задач зводиться до математичних моделей, які описуються системами лінійних алгебраїчних рівнянь (СЛАР).

ЧАСТИНА 1. Огляд архітектур паралельних комп'ютерів та засобів паралелізації

ЧАСТИНА 1.

Огляд архітектур паралельних комп'ютерів та засобів паралелізації

Технологія CUDA

- CUDA apxiteктура
 - Використання GPU обчислень для звичайних цілей
 - Збереження продуктивності
- CUDA C/C++ мова програмування
 - Заснована на стандартизованому С/С++
 - Має малий набір доповнень для включення можливостей гетерогенного програмування
 - Чітке АРІ для управління пристроями, пам'яттю.

ЧАСТИНА 2.

Аналіз алгоритмів ітераційних методів

Основні властивості та оцінки паралельних алгоритмів

$$K_{\pi} = \frac{T_1}{T_p} \qquad \qquad K_e = \frac{K_{\pi}}{p}$$

$$K_{e} = \frac{K_{\pi}}{p}$$

Де p — кількість процесорів на *MIMD* машині

 T_{p} — час розв язання на р — процесорах

T₁ — час розв'язання на 1 — процесорній ЕОМ

Ціна алгоритма: $C_p = pT_p$

Якість:
$$F_p = \frac{K_{\pi}}{C_p} = \frac{K_e}{T_p} = \frac{T_1}{pT_p^2}$$

 t_0 — час обміну одним машинним словом між ПП

 $t_{\rm c}$ — час встановлення зв $^{'}$ язку між ПП

$$\tau_0 = \frac{t_0}{t}$$

$$\tau_c = \frac{t_c}{t}$$

ЧАСТИНА 2. Аналіз алгоритмів ітераційних методів

Постановка модельної задачі

У якості модельної розглядаємо задачу для рівнянь другого порядку в прямокутнику з заданими граничними умовами.

$$\Delta u = f(x)$$
$$u \mid_{\partial\Omega} = g(x)$$

ЧАСТИНА 3. ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 1 GPU

Методи

- Метод Річардсона
- Метод верхньої релаксації

ЧАСТИНА 3.

ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 1 GPU

Попередня обробка діагонального розбиття

ЧАСТИНА 3.

ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 1 GPU

Чисельні експерименти

	Метод Річардсона		Метод верхньої релаксації	
	1 CPU	1 CPU + 1 GPU	1 CPU	1CPU + 1 GPU
Головний цикл	0,01355	0,0049	0,172671	0,03865
Загальний цикл	0.032	2,82	0,0846629	0,632961

10 кроків

	Метод Річардсона		Метод верхньої релаксації	
	1 CPU	1 CPU + 1 GPU	1 CPU	1CPU + 1 GPU
Головний цикл	0,734045	0,07132	0,87493	0,133061
Загальний цикл	6,6208	8,8451	33,807	33,6342

ЧАСТИНА 3.ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 1 GPU

Часи виконання методу Річардсона на різних архітектурах

ЧАСТИНА 3.ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 1 GPU

Часи виконання методу верхньої релаксації на різних архітектурах

ЧАСТИНА 4.ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 2 GPU

ЧАСТИНА 4.ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 2 GPU

Чисельні експерименти

	Метод Річардсона		Метод верхньої релаксації	
	1 GPU	2 GPU	1 GPU	2 GPU
Головний цикл	0.0102	0.00879	0.763	0.6372
Загальний цикл	3.17	3.44	60.2	63.23

40 кроків

	Метод Річардсона		Метод верхньої релаксації	
	1 GPU	2 GPU	1 GPU	2 GPU
Головний цикл	0.0405	0.0323	1.43	0.837
Загальний цикл	120	120	108.9	105.3

ЧАСТИНА 4. ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 2 GPU

Прискорення методу Річардсона на різних архітектурах

ЧАСТИНА 4.ПАРАЛЕЛЬНІ АЛГОРИТМИ ТА ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ АРХІТЕКТУРИ 1 СРU + 2 GPU

Часи виконання методу верхньої релаксації на різних архітектурах

