Teorema de Rice
Conjunto de indices
A \subseteq IN es un conjunto de indices si existe una clase \subset de funciones IN \rightarrow IN parcial computables tal que $A = \{X : \Phi_X \in C\}$.
Teorema
Si A es un conjunto de indices no trivial (A # Ø y A ¥ IN)
entonces A no es computable.
Demo Supongamos existe una clase C de funciones IN-> IN parcial
computables tal que $A = \{x : \phi_x \in C\}$ computable.
Como A ≠ Ø ≠ IN, existen f y g funciones IN > IN parcial
computables tal que FEC y q &C.
Luego h: IN2 -> IN es parcial computable:
$h(t,x) = \begin{cases} g(x) & \text{si } t \in A \\ F(x) & \text{si } no \end{cases}$
Por el Teorema de la Recursión existe un e tal que:
$\phi_e(x) = h(e,x)$

