CM 005 Álgebra Linear: Prova 1

22 de Setembro de 2016

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa. Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Para o sistema linear dado, encontre o conjunto solução em função do parâmetro $\alpha \in \mathbb{R}$.

$$x_1 + x_2 + x_3 = 2$$

 $2x_1 + 3x_2 + 2x_3 = 5$
 $2x_1 + 3x_2 + \alpha x_3 = \alpha^2 + 1$.

Solution: Usamos o método de eliminação de Gauss, para a matriz aumentada

$$\begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 2 & 3 & 2 & | & 5 \\ 2 & 3 & \alpha & | & \alpha^2 + 1. \end{pmatrix}$$

Assim, depois de uma série de operações elementares sobre as linhas obtemos

$$\begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & \alpha - 2 & | & \alpha^2 - 4. \end{pmatrix}$$

O sistema associado à dita matriz é

Da última linha temos que o valor de x_3 vai depender do valor de α . Temos os seguintes casos:

- 1. Se $\alpha \neq 2$. Nesse caso $x_3 = (\alpha^2 4)/(\alpha 2) = \alpha + 2$. Logo, substituindo temos que $x_2 = 1$ e $x_1 = -1 \alpha$. Por tanto o conjunto solução é $\{\bar{x} := (-1 \alpha \ 1 \ \alpha + 2)^T\}$, se $\alpha \neq 2$.
- 2. Se $\alpha = 2$. Nesse caso, como $\alpha^2 4 = 0$, qualquer valor para x_3 serve $(x_3$ é variável livre). Por exemplo para $x_3 = \beta \in \mathbb{R}$, temos que $x_2 = 1$ e $x_1 = 1 \beta$ (com a escolha de $x_3 = \beta$). Assim, temos que o conjunto solução é dado por $\{\bar{x} := (1 \beta \ 1 \ \beta)^T : \beta \in \mathbb{R}\}$, para $\alpha = 2$.

(a) (20 points) Utilize o método de Gauss-Jordan para calcular a inversa de A.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

Solution: Primeiro montamos o matriz aumentada. Assim temos

$$(A|I) = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 2 & 2 & | & 0 & 1 & 0 \\ 1 & 2 & 3 & | & 0 & 0 & 1 \end{pmatrix}$$

O método de Gauss Jordan é usar operações elementares sobre linhas para a matriz anterior até chegar a uma matriz em forma escada reduzida. Calculando temos que

$$(I|B) = \begin{pmatrix} 1 & 0 & 0 & | & 2 & -1 & 0 \\ 0 & 1 & 0 & | & -1 & 2 & -1 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{pmatrix}$$

Logo a inversa de A é a matriz do lado direito de (I|B), i.e.,

$$A^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

(b) (5 points) Sendo A a matriz do item anterior, ache $\bar{x} \in \mathbb{R}^3$ tal que $A\bar{x} = \bar{b}$ onde $\bar{b} = (0 \ 2 \ 1)^T$.

Solution: Como $A\bar{x}=\bar{b}$, temos que $\bar{x}=A^{-1}\bar{b}$. Fazendo a multiplicação, obtemos que

$$\bar{x} = A^{-1}\bar{b} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}.$$

Outra alternativa é usar o método de Gauss, aplicado à matriz $(A|\bar{b})$. Ambos métodos fornecem o mesmo resultado.

(a) (20 points) Verifique que o seguinte conjunto é um subespaço vetorial de $M_{n\times n}(\mathbb{R})$,

$$W_1 := \{ X \in M_{n \times n}(\mathbb{R}) : AX + XB = \bar{0} \}$$

onde $\bar{0}$ é a matriz em $M_{n\times n}(\mathbb{R})$ com todos os seus componentes iguais a zero.

Solution: Para que o conjunto $W_1 \neq \emptyset$ seja um subespaço vetorial devemos verificar que

1. $X + Y \in W_1$ para todo $X \in W_1$ e $Y \in W_1$.

Considere X e Y em W_1 . Vejamos que $X+Y\in W_1$, para isso é suficiente mostrar que $A(X+Y)+(X+Y)B=\bar{0}$.

Assim, calculando

$$A(X + Y) + (X + Y)B = (AX + AY) + (XB + YB) = AX + XB + AY + YB$$

= $(AX + XB) + (AY + YB) = \bar{0} + \bar{0} = \bar{0}$

Na última linha temos usado que $AX + XB = \bar{0}$ e $AY + YB = \bar{0}$, já que X e Y pertencem a W_1 . Portanto, $A(X + Y) + (X + Y)B = \bar{0}$. Logo, $X + Y \in W_1$.

2. $\lambda X \in W_1$ para todo $X \in W_1$ $e \lambda \in \mathbb{R}$.

Tome $X \in W_1$ e $\lambda \in \mathbb{R}$. Vejamos que $\lambda X \in W_1$. Nessa caso é suficiente verificar que $A(\lambda X) + (\lambda X)B = \bar{0}$.

Calculando temos que $A(\lambda X) + (\lambda X)B = \lambda(AX + XB) = \bar{0}$ onde na última linha usamos que $AX + XB = \bar{0}$. Logo concluímos que $A(\lambda X) + (\lambda X)B = \bar{0}$ e $\lambda X \in W_1$.

(b) (5 points) Constate que $W_2 := \{X \in M_{n \times n}(\mathbb{R}) : (A+X)^2 = X^2 + A^2\}$ é um subespaço vetorial. Dica: Use o item anterior.

Solution: Primeiro perceba que $(A+X)^2=(A+X)(A+X)=A^2+AX+XA+X^2$. Assim, $(A+X)^2=X^2+A^2$ vale se e somente se $AX+XA=\bar{0}$. Então, W_2 pode ser escrito como

$$W_2 = \{ X \in M_{n \times n}(\mathbb{R}) : AX + XA = \bar{0} \}$$

Usando o item anterior, concluímos que W_2 é um subespaço vetorial.

Encontre o núcleo da matriz A em função dos parâmetros α e β .

$$A = \begin{pmatrix} 2 & 2 & \alpha & \beta \\ 1 & 0 & \alpha & 0 \\ 1 & 1 & \alpha & \beta \\ 1 & 1 & \alpha & 0 \end{pmatrix}$$

Dica: Analise cada caso possível, dependendo do valor de α e β .

Solution: Primeiro perceba que o núcleo da A é igual ao conjunto solução do sistema linear $A\bar{x} = \bar{0}$, i.e. $Nuc(A) := \{x \in \mathbb{R}^4 : A\bar{x} = \bar{0}\}$. Assim, usaremos o método de Gauss para resolver $A\bar{x} = \bar{0}$. Fazendo operações elementares temos

$$\begin{pmatrix} 1 & 1 & \alpha/2 & \beta/2 & |0\\ 0 & 1 & -\alpha/2 & \beta/2 & |0\\ 0 & 0 & \alpha & \beta & |0\\ 0 & 0 & 0 & -\beta & |0 \end{pmatrix}$$

Logo, o sistema associado é

Dependendo dos valores de α e β , o sistema terá diferentes conjuntos solução. Temos o seguintes casos:

1. Se $\alpha = 0$ e $\beta = 0$. O sistema associado é

$$\begin{array}{cccc} x_1 & + & x_2 & & = & 0 \\ & & x_2 & & = & 0 \end{array}$$

Assim, $x_1 = x_2 = 0$ com x_3 , x_4 variáveis livres. Então, para qualquer escolha de x_3 e x_4 , por exemplo, $x_3 = t \in \mathbb{R}$, $x_4 = s \in \mathbb{R}$, o vetor com componentes $x_1 = 0$, $x_2 = 0$, $x_3 = t$ e $x_4 = s$

é solução. Assim, o conjunto solução (que é o conjunto formado por todas as soluções) é

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ t \\ s \end{pmatrix} : \quad t \in \mathbb{R}, s \in \mathbb{R} \right\}$$

2. Se $\alpha=0$ e $\beta\neq0.$ O sistema associado é

Assim, como $\beta \neq 0$ temos que $x_4 = 0$. Substituindo obtemos que $x_1 = x_2 = 0$ com x_3 variável livre. Nesse caso, o conjunto solução é

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ t \\ 0 \end{pmatrix} : \quad t \in \mathbb{R} \right\}.$$

3. Se $\alpha \neq 0$ e $\beta = 0$. O sistema associado é

$$x_1 + x_2 + (\alpha/2)x_3 = 0$$

 $x_2 + -(\alpha/2)x_3 = 0$
 $\alpha x_3 = 0$.

Assim, como $\alpha \neq 0$ temos que $x_3 = 0$. Substituindo obtemos que $x_1 = x_2 = 0$ com x_4 variável livre. Nesse caso, o conjunto solução é

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ t \end{pmatrix} : \quad t \in \mathbb{R} \right\}.$$

4. Se $\alpha \neq 0$ e $\beta \neq 0$. O sistema associado é

Como $\beta \neq 0$ temos que $x_4 = 0$. Substituindo obtemos $\alpha x_3 = 0$ que implica que $x_3 = 0$ (já que $\alpha \neq 0$). Finalmente, $x_1 = 0$ e $x_2 = 0$. Nesse caso, o conjunto solução é

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Seja $A \in M_{n \times n}(\mathbb{R})$ uma matriz invertível tal que $A^{-1} = -A$. Mostre que a matriz I + A é invertível.

Solution: Temos duas formas

1. Para mostrar que I+A é invertível, será suficiente mostra que a única solução de $(I+A)\bar{x}=\bar{0}$ é o vetor nulo $\bar{x}=\bar{0}$. Seja \bar{x} uma solução de I+A. Assim,

$$\bar{x} + A\bar{x} = (I+A)\bar{x} = \bar{0} \tag{1}$$

Multiplicando a equação (1) por A^{-1} temos que $A^{-1}(\bar{x} + A\bar{x}) = \bar{0}$

$$A^{-1}(\bar{x} + A\bar{x}) = \bar{0}$$

 $A^{-1}\bar{x} + A^{-1}A\bar{x} = \bar{0}$
 $A^{-1}\bar{x} + \bar{x} = \bar{0}$ (aqui usamos $A^{-1}A = I$)
 $-A\bar{x} + \bar{x} = \bar{0}$ (aqui usamos $A^{-1} = -A$)

Assim, temos que $\bar{x} + A\bar{x} = \bar{0}$ e $\bar{x} - A\bar{x} = \bar{0}$. Somando ambas equações, temos que $\bar{x} = \bar{0}$. Portanto, a matriz I + A é invertível.

2. Para mostrar que I + A é invertível, é suficiente achar uma matriz $B \in M_{n \times n}(\mathbb{R})$ tal que (I + A)B = I. Observe que

$$I + A = A^{-1}A + A = -A^2 + A = A(I - A)$$
 (temos usamos $A^{-1}A = I$ e $A^{-1} = -A$)

Logo, (I+A)B=A(I-A)B=I. Multiplicando por a última equação por A^{-1} concluímos que $(I-A)B=A^{-1}=-A$. Somando as equações (I+A)B=I e (I-A)B=-A vemos que 2B=(I-A). Assim, B=1/2(I-A). Como consequência (I+A) é invertível cuja inversa é dada por 1/2(I-A).