Série 2012

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2 Bases technologiques

Dossier des expertes et experts

Temps: 30 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans

banque de données), règle, compas, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 24,0

	6,0	Points = Note	23,0 - 24,0
	5,5	Points = Note	20,5 - 22,5
	5,0	Points = Note	18,0 - 20,0
	4,5	Points = Note	16,0 - 17,5
	4,0	Points = Note	13,5 - 15,5
Les solutions n	3,5	Points = Note	11,0 - 13,0
pour des rai	3,0	Points = Note	8,5 - 10,5
pour des rai	2,5	Points = Note	6,0 - 8,0
(Décision de l	2,0	Points = Note	4,0 - 5,5
tâches d'exam	1,5	Points = Note	1,5 - 3,5
taches u exam	1,0	Points = Note	0,0 - 1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le **1**^{er} **septembre 2013**.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre d maximal	e points obtenus
1.	3.2.1 Nommez trois moyens permettant de produire une tension électrique et expliquez pour chacun d'eux le principe utilisé.	3	
	Réponses possibles:		
	Par échauffement. Si l'on chauffe le point de soudure de 2 métaux différents, une différence de potentiel apparaît entre les extrémités libres.	(1 par rép.)	
	Par induction magnétique. Une spire, en rotation sur son axe, placée dans un champ magnétique est le siège d'une tension induite.		
	Par transformation chimique. Deux métaux de nature différente plongés dans un électrolyte provoquent un déplacement d'ions entre les deux électrodes.		
	Par la lumière. Lorsque de la lumière atteint une matière semi-conductrice, il en résulte une tension électrique aux bornes de ce semi-conducteur.		
	Par pression. Une pression exercée sur un quartz génère à ses bornes une tension.		
	Par friction Le frottement de deux corps l'un contre l'autre provoque la séparation des charges électriques positives et négatives, d'où l'apparition d'une tension.		
2.	3.2.4 Quelle est l'énergie consommée par une plaque de cuisson vitrocéramique absorbant une puissance moyenne de 1500W sachant que la préparation d'un repas pour quatre personnes dure exactement 99 minutes?	2	
	Solution:		
	$t = \frac{99 \text{min}}{60 \frac{\text{min}}{\text{h}}} = 1,65 \text{h}$		
	h	(1)	
	$W = P \cdot t = 1500 \text{ W} \cdot 1,65 \text{ h} = 2475 \text{ Wh} = 2,48 \text{ kWh}$		
		(1)	

ercices	Nombre d maximal	e point obtenu
3.2.5		2.5.10
Un courant électrique circule dans une spire. Celle-ci est placée dans un cha magnétique.	mp 3	
a) Dessinez le sens du flux magnétique produit par les pôles.	(0,5 par	
b) Dessinez le sens du flux magnétique produit par chaque conducteur de la	rép.)	
spire.		
c) Indiquez à l'aide de flèches les zones présentant un renforcement ou un		
affaiblissement du champ magnétique.		
d) Indiquez le sens de rotation de la spire sachant que celle-ci est montée su	ır un	
axe.		
e) Comment peut-on augmenter la force sur les conducteurs de la spire?		
f) Quel type de moteur fonctionne selon ce principe?		
O a basilia wa		
Solution: Affaiblissement Renforcement		
N S		
Renforcement 📆 Affaiblissement		
Renforcement to Affaiblissement		
Sens		
d) Dans le sens horaire (Une flèche suffit).		
a, zano lo cono nolano (ene necho canno).		
e) Augmentation de l'induction des pôles ou augmentation du courant		
dans la spire ou augmentation du nombre de spires ou augmentatior la longueur de conducteur actif (dans le champ magnétique).	n de	
la longueur de conducteur deur (dans le champ magnetique).		
f) Moteur universel ou moteur à courant continu et autre.		
, martin amora da martin a de martin de danos		
	1	

4. Le mât d'une construction provisoire est assuré avec un câble de 5m de longueur. A quelle distance par rapport au sommet du mât de 7 m doit-on fixer le câble de sorte à avoir un angle de 60° entre le sol et le câble? Solution:	2		obtenus
Opp = Hyp · sin60° = 5 m · 0,866 = 4,33 m $y = I_{M\hat{a}t} - \text{Opp} = 7 \text{ m} - 4,33 \text{ m} = 2,67 \text{ m}$	x=4.33 m y=2.67 m		
 3.2.6 Une ligne de cuivre de 75 m est chargée par un courant maximum de 12 / La chute de tension en ligne ne doit pas dépasser 4% de la tension de départ (230 V / 50 Hz). Calculez la section normalisée minimale que vous devez utiliser pour cette afin de respecter la chute de tension maximale. ρ_{Cuivre} = 0,0175 Ω·m m²/m 			
Solution: $\Delta U = \frac{4\% \cdot U}{100\%} = \frac{4\% \cdot 230 \text{ V}}{100\%} = 9,2 \text{ V}$ $A = \frac{2 \cdot I \cdot \rho \cdot I}{\Delta U} = \frac{2 \cdot 12 \text{ A} \cdot 0,0175 \frac{\Omega \cdot \text{mm}^2}{\text{m}} \cdot 75 \text{ m}}{9,2 \text{ V}} = 3,42 \text{ mm}^2$			
ou $R_{L} = \frac{\Delta \cdot U}{I} = \frac{9.2 \text{ V}}{12 \text{ A}} = 0.76 \Omega$ $0.1.2 0.0175 \frac{\Omega \cdot \text{m m}^{2}}{10.0175 \cdot 75 \text{ m} \cdot 2} \cdot 75 \text{ m} \cdot 2$	(2)	
$A = \frac{\rho \cdot l \cdot 2}{R_L} = \frac{0,0175 \frac{\Omega \cdot m m^2}{m} \cdot 75 m \cdot 2}{0,76 \Omega} = 3,45 m m^2$ II faut utiliser un conducteur de $\underline{4 mm^2}$.	(1)	

3.2.3 Selon les NIB ⁻ surintensité ay à la section de												maximal
	Γ, une canalis	ation	doit ê	etre p	rotég	jée er	n amo	nt pa	r un c	oupe	-	3
à la section de							lench	emer	nt cori	respo	ndant	
	s conducteur	s et a	u mo	de de	pos	e.						
Extrait du table	501 F 2 2 1 1	15 2 2	2									
Extrait du table Courant en am				nnse	de i	référe	nce A	1 Δ2) R1	B2 (. D	
E et F, isolatio	•			•								
a ligne 70° C									•			
A I Namel		-17 -1	l		(FA1 -				- (- (
Mode de Nomb pose de de	re Courant de de la canalisation		nement	assign	e [A] d	iu coup	e surinte	ensite ir	isere e	n amon	t de	
référence circuit		16	20	25	32	40	50	63	80	100	125	
A1 1 A2 1	1,5 1,5	2,5	4	6	6	10 10	16 16	25 25	35 35	50 50	70 70	
B1 1	1,5	,	2,5	4	6		10	16	25	35	50	
B2 1	1,5		2,5	4	6		10	16	25	35	50	
2	1,5	2,5	4	6		10	16	25	35	50	95	
-\ D41		ا بالم	-le-	Le	!		:::					
a) Déterminez												
	s suivants. Le alement la de			•		ร่อเ นแ	nse po	Jui 18	CITCU	iit.		
Calculate eg	alomont la de	,, ioito	40 00	Jaran	••							
Drotootion	Caption	[Densi	té de								
Protection [A]	Section [mm ²]		cour									
[/]	[,,,,,,]		[A/m	m ²]								
16												
16 50 Solution:												
50	$\frac{16 \text{A}}{1,5 \text{mm}^2} = 1$ Section [mm ²]		A mm² Densi cour [A/m	té de	$o = \frac{1}{1}$	50 <i>A</i> 10mr	$\frac{\lambda}{m^2} = \frac{\lambda}{2}$	5 A	<u>1²</u>			(0,5 par rép.)
50 Solution: $J = \frac{I}{A}, J_{16} =$ Protection	Section		Densi cour	té de rant nm²]	$o = \frac{1}{1}$	50 <i>A</i> 10mr	$\frac{\lambda}{n^2} = \frac{\lambda}{2}$	5 A	<u>1²</u>			

cices	Mombre d maximal	le points obtenus
3.5.2	maxima	Obtenu
Un monte-charge de bâtiment s'élève de 18 m en 23 secondes. La cage du monte-charge pèse 0,7 tonne et peut transporter une charge de 1,4 tonne.	3	
Calculez la puissance électrique absorbée (en kW) sachant que le monte-charge complet (Moteur et système de levage) a un rendement de 75%?		
$P_{\text{mec}} = \frac{m \cdot g \cdot h}{t} = \frac{(700 \text{kg} + 1'400 \text{kg}) \cdot 9,81 \frac{m}{s^2} \cdot 18 \text{m}}{23 \text{s}} = 16'122,5 \frac{\text{Nm}}{s}$		
mec t 23 s s = 16'122,5 W	(2)	
$P_{el} = \frac{P_{mec}}{\eta} = \frac{16'122,5 \text{ W} \cdot 100 \%}{75 \%} = 21'496,7 \text{ W} = \underbrace{\frac{21,50 \text{ kW}}{100 \text{ kW}}}_{=0.00000000000000000000000000000000000$		
	(1)	
(Calcul sans la masse de la cage -1 Pt)		
3.5.5 Un accumulateur Ni-MH (Nickel-Hydrure métallique) a les caractéristiques	3	
suivantes: $E = 1,2 \text{ V}$; $R_i = 0,36 \Omega$; $Q = 1'200 \text{ mAh}$. Trois accumulateurs sont couplés en parallèle et produisent ensemble un courant de 1,5 A.		
a) Calculez la tension aux bornes du couplage.	(2)	
Solution:		
$R_{iTot} = \frac{R_i}{n} = \frac{0.36 \Omega}{3} = 0.12 \Omega$		
$U_{Bornes} = E - R_{iTot} \cdot I = 1,2 \text{ V} - 0,12 \Omega \cdot 1,5 \text{ A} = 1,02 \text{ V}$		
	(1)	
b) Calculez le temps de décharge complet de ce couplage (Hypothèse : Le courant de décharge est constant).		
Solution:		
$Q_{Tot} = n \cdot Q_1 = 3 \cdot 1,2 \text{ Ah} = 3,6 \text{ Ah}$ $Q_{Tot} = 3,6 \text{ Ah} = 3,4 \text{ Bh}$		
$t = \frac{Q_{Tot}}{I} = \frac{3,6 \text{ Ah}}{1,5 \text{ A}} = \frac{2,4 \text{ h}}{1}$		

9. Nommez quatre grandeurs physiques pouvant être contrôlées par des capteurs en technique du bâtiment. Réponses possibles: - Température - Pression - Vent - Pluie - Lumière (Luminosité) - Niveau d'un liquide - Mouvement - (Etat logique ou ouvert/fermé) sera également accepté	2 (0,5 par rép.)	
 Température Pression Vent Pluie Lumière (Luminosité) Niveau d'un liquide Mouvement 	(0,5 par rép.)	
 Pression Vent Pluie Lumière (Luminosité) Niveau d'un liquide Mouvement 	(0,5 par rép.)	
Total		