

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 100V,124A, $R_{DS(on),max} = 4.5 \text{m}\Omega @V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- MOTOR Driver
- BMS
- High frequency switching and synchronous rectification

Product Summary

 $\begin{array}{ll} V_{DSS} & 100V \\ R_{DS(on),max} @\ V_{GS} = 10V & 4.5 m\Omega \\ I_D & 124A \end{array}$

Pin Configuration

TO-263

Schematic

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	100	V
Continuous drain current (T _C = 25°C)		124	А
(T _C = 100°C)	I _D	82	A
Pulsed drain current ¹⁾	I _{DM}	372	А
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	E _{AS}	7.2	mJ
Power Dissipation	P _D	137	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	0.91	°C/W
Thermal Resistance Junction-to-Ambient	R _{0JA}	62	°C/W

Package Marking and Ordering Information

Device Device Package		Marking	Units/Reel	
VST10N045-T3	TO-263	VST10N045-T3	800	

Electrical Characteristics T_L = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	'					•
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	100			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2	3	4	V
Drain-source leakage current	I _{DSS}	V _{DS} =100 V, V _{GS} =0V			1	μA
Gate leakage current, Forward	Igssf	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =13.5 A		3.8	4.5	mΩ
Forward transconductance	g fs	V _{DS} =10V , I _D =20A		50		S
Dynamic characteristics						
Input capacitance	C _{iss}			4725		pF
Output capacitance	Coss	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$		609		
Reverse transfer capacitance	C _{rss}	- F = 1MHz		14		
Turn-on delay time	t _{d(on)}			35		ns
Rise time	tr	$V_{DD} = 50V, V_{GS} = 10V, I_D = 20A$ $R_G = 3\Omega$		18		
Turn-off delay time	t _{d(off)}			45		
Fall time	t _f			55		
Gate charge characteristics						
Gate to source charge	Qgs	V 50V I 00A		28		
Gate to drain charge	Q_{gd}	V _{DS} =50V, I _D =20A, V _{GS} = 10 V		15		nC
Gate charge total	Qg			74		
Drain-Source diode characteris	tics and Maxi	mum Ratings				
Continuous Source Current	Is				114	А
Pulsed Source Current ³⁾	I _{SM}				342	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =13.5A, T _J =25℃			1.3	V
Reverse recovery time	t _{rr}	1 -12 5A dl /dt-100 A/us		70		ns
Reverse recovery charge	Qrr	- I _F =13.5A,dI _F /dt=100 A/μs		170		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =12A, Starting T_J =25 $^{\circ}$ C .
- 3: Pulse Test: Pulse Width ${\leqslant}300\,\mu\,\text{s},$ Duty Cycle ${\leqslant}2\%.$

Electrical Characteristics Diagrams

Fig 1. Typ. Output Characteristics

Fig 3. Capacitance Characteristics

Fig 5. Body-Diode Characteristics

Fig 2. On-Resistance vs G-S Voltage

Fig 4. Gate Charge Waveform

Fig 6. Rdson-Junction Temperature

0

-50

Nomalized V_{GS(tt)}

 T_J^0 Junction Temperature (100)

Fig 7. V_{GS(th)}-Junction Temperature

Fig 8: Safe Operating Area

Fig 9. Normalized Maximum Transient Thermal Impedance (RthJC)

150

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

