Zack Garza

O Suppose E is bounded, so diam (E) $\leq M$ for some fixed M. In particular, if $Q_i \subseteq E$ is an interval, then $|Q_i| \leq M$. Let E > 0, and choose $Q_i \supseteq Q_i \supseteq E$ s.t. for each i, $|Q_i| \leq \frac{E}{2M}$

Then let $Li = Q_i^2$. We then have $|L_i| \le |b^2 - a| = |b - a| \cdot |b + a| = |Q_i| \cdot |b + a|$ $\le |Q_i| \cdot 2M$ $\le (\frac{\varepsilon}{2^{i+1}M}) 2M$ $= \frac{\varepsilon}{2^i},$

So $\sum_{i=1}^{\infty} |L_i| \leq \sum_{i=1}^{\infty} \epsilon/2i = \epsilon$, and $ALiB \rightarrow E^2$, so $M_*(E^2) < \epsilon \rightarrow 0$.

Claim: It suffices to consider the bounded case. $\frac{Ball of}{around o}$ PF If E is not bounded, consider $F_n = E \cap B(n, o)$.

Then F_n is bounded (by n), and since $F_n \subseteq E \Rightarrow m_*(F_n) \le m_*(E) = 0$ by subadditivity, $m_*(F_n^2) = 0$ by the bounded case.

But then
$$E^2 = \bigcup_{n=1}^{\infty} F_n^2 \Rightarrow m_*(E^2) = m(\bigcup_{n=1}^{\infty} F_n^2) \leq \sum_{n=1}^{\infty} m_*(F_n^2) = 0$$

by countable subadditivity.

2 Note

- $D = E_1 = E_1 \setminus E_2 \cup E_1 \cap E_2$
- 2) $E_2 = E_2 \setminus E_1 \cup E_1 \cap E_2$
- 3) $E_1 \triangle E_2 = E_2 \setminus E_1 \sqcup E_1 \setminus E_2$
- 4) $E_1 \cup E_2 = (E_1 \triangle E_2) \cup (E_1 \cap E_2)$

All disjoint unions, so we can freely apply Measures and use countable additivity.

50

$$m(E_{1}) + m(E_{2}) = m(E_{1} \setminus E_{2}) + m(E_{1} \cap E_{2})$$

$$+ m(E_{2} \setminus E_{1}) + m(E_{1} \cap E_{2})$$

$$= m(E_{1} \triangle E_{2}) + m(E_{1} \cap E_{2}) + m(E_{1} \cap E_{2}) \stackrel{\text{by}}{\text{(3)}}$$

$$= m(E_{1} \cup E_{2}) + m(E_{1} \cap E_{2}). \qquad \stackrel{\text{by}}{\text{(4)}}$$

3a) Suppose
$$m(A) = m(B) < \infty$$
.

Since
$$A \subseteq E \subseteq B$$
, we have $E \setminus A \subseteq B \setminus A$. However, $B = A \sqcup (B \setminus A) \implies m(B) = m(A) + m(B \setminus A)$

$$\Rightarrow$$
 m(B)-m(A)=m(B\A)
(since m(A)(∞)

$$\Rightarrow$$
 m(B\A)=0
(Since m(B)=m(A))

But then

where A is measurable by assumption and E/A is an outer measure O set and thus measurable.

$$m(E) = m(A) + m(E/A)$$

$$\Rightarrow$$
 $M(E) = M(A) = M(B) < \infty$.

- · A=(-00,0)
- $E = A \cup (N+1)$, where N is the non-measurable set, and $N+1=\{x+1 \mid x \in N\}$ is non-measurable by the same argument used for N.

Claim: E is not measurable.

Supposing it were, note that A is measurable, and countable intersections of measurable sets are measurable, so

 $E \cap A^c = (A \cup (N+1)) \cap A^c = N+1$ must be measurable. X

4) Let A, B be fixed, and define

$$E_{t} := \left\{ x \in \mathbb{R}^{n} \mid \inf_{a \in A} |x-a| \leq t \right\} \cap B$$

$$= \left\{ x \in \mathbb{R}^{n} \mid \operatorname{dist}(x,A) \leq t \right\} \cap B$$

and $f: \mathbb{R} \to \mathbb{R}$ $t \mapsto \mu(E_t)$ Note that $E_0=A$, so $f(0)=\mu(A)$, and since B is compact and thus bounded, there is some t=T such that $B\subseteq E_T$.

So f maps [0,T] to $[\mu(A),\mu(B)+M]$ for some M.

Claim: f is cts, and for all $t\in [0,T']$ for some T', $A\subseteq E_t\subseteq B$ and each E_t is compact.

Note that if this is true, we can first apply the intermediate value theorem to find a T' such that F(T') = m(B), then restrict F to map [O, T'] to [m(A), m(B)]. We can apply it again to pull back any $C \in [m(A), m(B)]$ to a F satisfying $F = F(F) = \mu(F_F)$, in which case $F = F(F) = \mu(F_F) = \mu(F_F)$ and $F = \mu(F_F) = \mu(F$

• f is cts. We'll show that the 2-sided limit $\lim_{t_i \to t} f(t_i)$ exists and is equal to f(t), using the fact that $a \le b \Rightarrow E_a \le E_b$.

If $t_i > t$, then $E_{t_i} \subseteq E_{t_2} \subseteq E_t$, and $\bigcup_{i \in \mathbb{N}} E_{t_i} = E_t$, so

by continuity of measure from below, we have $\lim_{i\to\infty} \mu(E_t) = \mu(E)$, so $\lim_{t\to t} f(t_i) = \lim_{t\to\infty} \mu(E_{t_i}) = \mu(E_t) = f(t)$.

Similarly, if $t_i > t$, noting that $t_i \leq T' \Rightarrow t_i \leq T' \Rightarrow u(E_{t_i}) \leq u(B) < \infty$, and $E_{t_i} \geq E_{t_2} \geq \cdots \geq E$, so

we can apply <u>continuity</u> of measure from above to obtain $\lim_{t_{i} \to t} f(t_{i}) = \lim_{t_{i} \to \infty} \mu(E_{t_{i}}) = \mu(E_{t}) = f(t)$

Sofis ets. 1

· Et is compact:

Since $E_t \subseteq B$ which is compact and thus bounded, it suffices to show that E_t is closed. But letting $N_t = \frac{1}{2} \times eR^n | \operatorname{dist}(x,A) < t^2$, we have $E_t = \overline{N_t \cap B}$, where N_t is open because $N_t = \bigcup_{a \in A} \frac{1}{2} \times eR^n | \operatorname{dist}(x_i a) < r^2$, and $N_t \subseteq B \Rightarrow N_t \cap B$ is still open. But the closure of any open set is closed. But $t \in [0,T'] \Rightarrow A \subseteq E_t \subseteq B$:

Eo= A and tes => Et = Es, so A = Et for all t.

But Et=NtnB=B=B since Bis closed, so Et∈B for all t as well.

Recalling that N is constructed by considering $\frac{R \cap [0,1)}{Q \cap [0,1)}$ and taking exactly one element from each equivalence class, we can note that if $E \subseteq N$, then E contains a choice of at most one element from each equivalence class. We can then take a similar enumeration $Q \cap [-1,1] = \{q_i\}_{i=1}^{\infty}$ and define $E_j := E + q_j$.

Then $E \subseteq N \Rightarrow \coprod_{j \in N} E_j \subseteq \coprod_{j \in N} N_j \subseteq [-1,2]$, and since $E_j := E + q_j$ and $E_j := E + q_j$.

 $u(E) = u(\bigsqcup_{j \in N} E_j) = \sum_{j \in N} u(E_j) = \sum_{j \in N} u(E) \le 3$, which can only hold if m(E) = 0. \Box

Suppose $\mu(I|\mathcal{N}) \langle 1$, so $m(I|\mathcal{N}) = 1-2\varepsilon$ for some $\varepsilon > 0$. Then choose an open $G = I|\mathcal{N}$ such that $\mu(G) = \mu(I|\mathcal{N}) + \varepsilon = 1-\varepsilon$. Then $I|G \subseteq \mathcal{N}$,

and so by (1) we must have
$$\mu(I\backslash G)=0$$
. But then
$$I=G \coprod I\backslash G \Rightarrow \mu(I)=\mu(G)+\mu(I\backslash G)$$

$$\Rightarrow$$
 1 = 1-8 < 1, a contradiction. \Box

5c) Let

$$E_{1} = \mathcal{N}$$

$$E_{2} = I \setminus \mathcal{N}$$

$$\Rightarrow I = E_{1} \sqcup E_{2}$$

but $m_*(E_1) = m_*(\mathcal{N}) > 0$, otherwise \mathcal{N} would be

measurable so $m_x(E_1 \sqcup F_2) = 1$ but

 $m_*(E_1) + m_*(E_2) = 1 + \varepsilon$ for some $\varepsilon > 0$.

(a) Claim. E is a countable union of a countable intersection of measurable Sets, and thus measurable.

<u>Proof</u>: Write $E = \frac{1}{2} \times 1 \times E_j$ for infinitely many j?, the claim is that $E = \bigcap_{k=1}^{\infty} \bigcup_{k=1}^{\infty} E_j$.

 $E = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_j$. Suppose X is in infinitely many E_j . Then for any fixed

K, there is some $M \ge k$ such that $x \in E_M \subseteq \bigcup_{j=k}^{\infty} E_j := S_k$. But this happens for every k,

•
$$E \supseteq_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_j$$
. Suppose $x \in \bigcup_{j=k}^{\infty} E_j$ for every K . Then if x were in only finitely many E_j , we could pick a maximal E_M such that $K \ge M \Rightarrow x \notin E_K$, and so $X \notin \bigcup_{j=M}^{\infty} E_j - a$ contradiction. \square

We'll use the fact that
$$\sum_{n=1}^{\infty} a_n \langle \infty \Rightarrow \lim_{j \to \infty} \sum_{n=j}^{\infty} a_n = 0$$
, i.e. the tails of a convergent sum must become arbitrarily small.

Since
$$E = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j$$
, $E \subseteq \bigcup_{j=k}^{\infty} E_j$ for all K . So $m(E) \subseteq \sum_{j=k}^{\infty} E_j \rightarrow 0$, forcing $m(E) = 0$.

(bb) Fix x and let
$$E_{p,j} = \{x \in \mathbb{R} \mid |x-p'_j| \leq |y_j^3\}$$

and $E_j = \bigcup_{\substack{p \in P, j \in P, j \in P\\ \text{to} j}} E_{p,j} \subseteq \bigcup_{\substack{p=1 \ P \neq j}} E_{p,j} \text{, and since } E_{p,j} \subseteq B(y_j^3, p'_j),$

$$m(E_{p,j}) \leq \frac{2}{j^3} \text{ and thus } m(E_j) \leq 9(\frac{2}{j^3}) = \frac{2}{j^2}.$$

But then
$$\sum_{j=1}^{\infty} m(E_j) \leq \sum_{j=1}^{\infty} \frac{2}{j^2} < \infty$$
. Moreover,

 $E = \bigcap_{j=1}^{\infty} \bigcup_{j=k}^{\infty} E_j = \{x \in \mathbb{R} \mid \text{ there are infinitely many } j'^{s} \text{ such that there exists a p coprime to } j \text{ s.t. } |x-P_j| \leq |Y_j|^3 \},$

which is precisely the set we want. So by (1), m(E)=0.