

SDS 385: Stat Models for Big Data

Lecture 11: Map reduce

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Map reduce framework

- Provides an easy framework for parallel computation
 - distributes data and takes care of synchronization
- But there are restrictions: only certain kinds of parallelisms are allowed

Map reduce basics

- Represent data as \(\text{key}, \text{value} \) pairs
 - Typically "key" is simple, e.g. the url of an webpage/ ID of a document
 - "value" is complex, can be contents of a webpage/ a document
- distributes data and takes care of synchronization
 - Data from the mapper is fed to the combiner, which is like a local reducer and reduces the amount of data transfer
- But there are restrictions: only certain kinds of parallelisms are allowed

Map reduce basics

Map reduce basics - partitioner

- Runs on the same machine where the mapper had completed its execution by consuming the mapper output.
- Distributes how outputs from the map stage are send to the reducers.
- Controls the keys partition of the intermediate map-outputs.
- The key is used to derive the partition by a hash function.

Map reduce basics

Shuffle and sort

- The shuffling process starts right away as the first mapper has completed its task.
- Once the data is shuffled to the reducer node the intermediate output is sorted based on key before sending it to reduce task.
- The algorithm used for sorting at reducer node is Merge sort.

Shuffle and sort

- The shuffling process starts right away as the first mapper has completed its task.
- Once the data is shuffled to the reducer node the intermediate output is sorted based on key before sending it to reduce task.
- The algorithm used for sorting at reducer node is Merge sort.

Shuffle and sort

Example - calculate degree in weighted graph

- Data: (src,dst, weight)
- Key (src,dst) value weight

Example - calculate degree in weighted graph

- Data: (src,dst, weight)
- Key (src,dst) value weight

Example - transpose of a giant matrix

- Input: sparse matrix in row major order
- Output: sparse matrix in column major order

Example - transpose of a giant matrix

- Input: sparse matrix in row major order
- Output: sparse matrix in column major order

Example - transpose of a giant matrix

- Input: sparse matrix in row major order
- Output: sparse matrix in column major order

- Data is $x_i = (x_{i1}, ..., x_{ip})$
- response variable yi
- Want to compute $w = (X^T X)^{-1} X^T y$

- Data is $x_i = (x_{i1}, ..., x_{ip})$
- response variable yi
- Want to compute $w = (X^T X)^{-1} X^T y$

$$X^T X = \sum_i x_i x_i^T$$

- Data is $x_i = (x_{i1}, ..., x_{ip})$
- response variable y_i
- Want to compute $w = (X^T X)^{-1} X^T y$

•
$$X^T X = \sum_{i} x_i x_i^T$$

• $X^T Y = \sum_{i} y_i x_i$

$$X^T Y = \sum_i y_i x_i$$

• Input data $\langle k, \{x_i, y_i\}_{i \in \text{subgroup} k} \rangle$

- Input data $\langle k, \{x_i, y_i\}_{i \in \text{subgroup} k} \rangle$
- Output: two keys
 - K_1 for X^TX (calculated over subgroup), Value is a $p+1 \times p+1$ matrix
 - ullet K_2 for X^Yy (calculated over subgroup), Value is a p+1 imes 1 vector

- Input data $\langle k, \{x_i, y_i\}_{i \in \text{subgroup} k} \rangle$
- Output: two keys
 - K_1 for X^TX (calculated over subgroup), Value is a $p+1 \times p+1$ matrix
 - ullet K_2 for X^Yy (calculated over subgroup), Value is a p+1 imes 1 vector
- Reducer
 - Sum the $(K_1, Value)$ pairs to get X^TX
 - Sum the (K₂, Value) pairs to get X^Ty
 - Calculate $w = (X^T X)^{-1} X^T y$

Example - Naive Bayes

- Data $x = (x_1, \dots, x_p)$, discrete
- Response variable y_i , in 1, ..., K
- Prediction for datapoint $(a_1, ..., a_p)$: $y^* = \arg \max_k P(y = k) \prod_j P(x_j = a_j | y = k)$

Example - Naive Bayes

- Map:
 - Input: $\langle k, \{x_i, y_i\}_{i \in \text{subgroup} k} \rangle$
 - Output: three types of keys

•
$$K_1 = (j, a_j, k)$$
, and Value1 $\sum_{\text{subgroup}} 1(x_j = a_j, y = k)$

•
$$K_2 = (k)$$
 and Value2 $\sum_{subgroup} 1(y = k)$

$$ullet$$
 K_3 and Value3 $\sum_{subgroup} 1$

Example - Naive Bayes

- Reduce
 - Estimate $P(x_j = a_j | y = k)$ by $\frac{\sum_{K_1 = (j, a_j, k)} Value1}{\sum_{K_2 = k} Value2}$
 - Estimate P(y = k) by $\frac{\sum_{K_2=k} Value2}{\sum_{K_3} Value3}$

Example - Expectation maximization

- Data $x = (x_1, ..., x_p)$
- Assumption: data is generated from a mixture of gaussians
- \bullet Want to learn parameters of Mixture model $\{\mu_k, \Sigma_k\}_{k=1}^K$
- E step: Calculate "expected" soft class memberships

$$\gamma_{k,i}^{(t)} = \frac{P(x_i|y=k,\Theta_t)P(y=k)}{\sum_j P(x_i|y=j,\Theta_t)P(y=j)}$$

• M step: update Θ_{t+1} using these expected weights

$$\mu_k^{(t+1)} = \frac{\sum_j x_j \gamma_{k,j}^{(t)}}{\sum_j \gamma_{k,j}^{(t)}}$$

• Derive the Σ_k update as an exercise.

Example - Expectation maximization

- Map:
 - Input: $\langle k, \{x_i\}_{i \in \text{subgroup} k} \rangle$
 - Compute $\gamma_{k,i}^{(t)}$ for *i* in subset of data
 - Output: 4 types of keys

•
$$K_1 = (k)$$
, and Value1 $\sum_{subgroup} \gamma_{k,i}^{(t)}$
• $K_2 = (k)$ and Value2 $\sum_{subgroup} x_i \gamma_{k,i}^{(t)}$

•
$$K_3 = (k)$$
 and Value3 $\sum_{subgroup}^{subgroup} (x_i - \mu_k^{(t)}) (x_i - \mu_k^{(t)})^T \gamma_{k,i}^{(t)}$

$$ullet$$
 K_4 and Value4 $\sum_{subgroup} 1$

Example - EM

- Reduce
 - $\begin{array}{l} \bullet \ \ \text{Estimate} \ \gamma_{k,i}^{(t)} \ \text{by} \ \frac{\sum_{K_1=k} Value1}{\sum_{K_4} Value4} \\ \bullet \ \ \text{Estimate} \ \mu_j^{(t)} \ \text{by} \ \frac{\sum_{K_2=j} Value2}{\sum_{K_1=i} Value1} \end{array}$

 - $\bullet \ \ \mathsf{Estimate} \ \Sigma_j^{(t)} \ \mathsf{by} \ \frac{\sum_{K_3=j} \mathit{Value3}}{\sum_{\nu ...} \mathit{Value1}}$

Seems like we can do anything

• Any ML algorithm that has an inner step with sum over matrices or vectors concerning *n* datapoints can be parallelized.

Seems like we can do anything

- Any ML algorithm that has an inner step with sum over matrices or vectors concerning n datapoints can be parallelized.
- Works well when p is small, since then the communication overhead is relatively small
- Since we are invoking MR framework over each iteration of an algorithm (like GD), for large *p* things are pretty bad.
- So, how to reduce communication?

Acknowledgment

- https://www.tutorialscampus.com/tutorials/map-reduce/ shuffle-and-sort.htm
- Sergei Vassilvitskii's notes
- Modeling with Hadoop KDD 2011 tutorial
- Map-Reduce for Machine Learning on Multicore NIPS 2007 paper by Chu et al.