

Unit Outline COS40007

Artificial Intelligence for Engineering

Semester September 2025

Please read this Unit Outline carefully. It includes:

PART A Unit Summary

PART B Your Unit in more detail

PART C Further information

"Swinburne University of Technology recognises the historical and cultural significance of Australia's Indigenous history and the role it plays in contemporary education

Each day in Australia, we all walk on traditional Indigenous land

We therefore acknowledge the traditional custodians of the land that our Australian campuses currently occupy, the Wurundjerl people, and pay respect to Elders past and present, including those from other areas who now reside on Wurundjerl land"

PART A: Unit Summary

Unit Code(s)	COS40007
Unit Title	Artificial Intelligence for Engineering
Duration	2025 Semester 1
Total Contact Hours	150
Requisites:	
	COS10009 Introduction to Programming AND
Pre-requisites	100 credit points in BEng, BCompSc, or related double
110104	degrees.
Co-requisites	Nil
Concurrent pre- requisites	Nil
Anti-requisites	Nil
Assumed knowledge	Nil
Credit Points	12.5
Campus/Location	Ha Noi
Mode of Delivery	On-campus Lecture and Studios
Assessment Summan	Design Project (Group): 60%
Assessment Summary	Portfolio (Individual): 40%

Aims

The unit of study aims to provide engineers with the knowledge and skills required to design and implement Artificial Intelligence (AI) and Machine Learning (ML) techniques that can effectively solve complex engineering problems. Engineering professionals must understand AI concepts and techniques for building intelligent systems.

Unit Learning Outcomes

Students who successfully complete this unit can:

- 1. Design, build and train datasets using machine learning algorithms to solve multidisciplinary engineering problems.
- 2. Demonstrate knowledge of a range of AI, machine learning and deep learning algorithms and their applications.
- 3. Assess, appraise and justify appropriate AI techniques to solve computational engineering problems.
- 4. Communicate effectively and succinctly through oral presentations and reports.

Graduate Attributes

The Swinburne Graduate Attributes describe our graduates' capability to use knowledge, skills, and behaviours to contribute to society meaningfully and positively. They include

COS40007_Unit Page **2** of **15**

© Swinburne University of Technology 2025. Not to be shared online. You may download, print and reproduce this material in an unaltered form for your personal use. All other rights reserved

This content is protected and may not be shared, uploaded, or distributed

professional, self-directed learning, and future-ready skills.

COS40007_Unit Page **3** of **15**

This unit contributes to the development of the following Swinburne Graduate Attributes:

- GA1 Communication Verbal communication.
- GA2 Communication Communicating using different media:
- GA3 Teamwork Collaboration and negotiation.
- GA4 Teamwork Teamwork roles and processes:
- GA5 Digital Literacies

 Information literacy.
- GA6 Digital Literacies

 Technical literacy

Other graduate attributes may be practised in the unit but are not formally taught as part of the unit content nor incorporated within formal assessment.

Content

- Different methods of Machine learning
- Machine Learning techniques
- Designing an Algorithm for data preparation
- Specifications of Machine Learning
- Al for Future Engineering Technologies

COS40007_Unit Page **4** of **15**

PART B: Your Unit in more detail

Unit Teaching Staff

Name	Role	Email	Consultation
Dr Bui Ngoc Dung	Unit Convenor & Lecturer	dbui@swin.edu.au	By email appointment

Learning and Teaching Structure

Category	Activity	Total Hours	Hours per Week	Teaching Period Weeks
In-person	Lectures	12 hours	1 hour	Weeks 1 to 12
In-person	Studio	24 hours	2 hours	Weeks 1 to 12

Week-by-Week Schedule

Week	Week Beginning	Teaching and Learning Activity	Student Task or Assessment
1	Sep 3	Seminar: Introduction to Artificial	
		Intelligence (AI), Machine Learning (ML) and	
		Deep Learning (DL). Applications of AI in	
		Engineering	
		Studio: Review Previous experience of	
		AI,	
		Data Exploration – Type of data in the	
		Engineering process	
2	Sep 8	Seminar: A Systematic approach for	
		developing Al models to solve Engineering	
		Problem	
		Studio : Data Pre-processing and Creating Ground Truth Data	
		Portfolio Assessment:	
		Formulating Engineering Process Data	
		for building ML models	
3	Sep 15	Seminar: Machine Learning Algorithms	Submission of
		Studio: Data separation, Parameter	Portfolio Task
		Tuning. Training and Model Selection	
		Portfolio Assessment Task: Train and	
		develop your first ML model	
4	Sep 22	Seminar : Machine Learning with Python and	Submission of
		Scikit-Learn	Portfolio Task

COS40007_Unit Page **5** of **15**

	1			
		Studio : Budling a Machine learning		
		Classifier and Evaluation		
		Portfolio Assessment Task: Test		
		and Evaluate your ML model		
5	Sep 29	Seminar: Deep Learning with Keras and	Submission of	
	3cp 23	TensorFlow	Portfolio Task	
		Studio: Image Labelling and Object	Group Formation	
		Annotation	and Project	
		Portfolio Assessment Task:	Allocation for	
		Object annotation and develop a simple	Design Project	
		ResNet model		
6	Oct 6	Seminar: Deep Learning and Computer	Submission of	
		Vision with Pytorch and YOLO Studio : Training and Evaluation of Deep	Portfolio Task	
		Learning Model		
		Portfolio Assessment Task: Develop a		
		Deep Learning Model for a Custom		
		Object		
7	Oct 13	Seminar: Machine Learning for Time-	1. Submission of	
		Series Forecasting and Sequential Data	Portfolio Task	
		Studio : Working with Time Series data,	2. Submission of	
		Forecasting, Design Project Review	Project Brief for	
←	Oct 20	Seminar: Unsupervised Learning	Design Project Submission of	
	Oct 20	Studio: Clustering + Design Project	Progress Report for	
		Progress	Design Project	
L	Oct 27	Seminar: Recommender system	Submission of Progress	
		Studio : Recommender system + Design	Report for Design	
		Project Progress	Project	
10	Nov 3	Seminar: Working with unstructured,	Submission of Progress	
		unlabelled and limited data, Ensemble	Report for Design	
		Learning	Project	
		Studio : Ensemble Learning + Design Project Progress		
11	Nov 10	Seminar: Real-world Case Studies – Use	Submission of Desing	
		of AI to Improve Engineering Process and	Project Presentation	
		Product -1	-	
		Studio: Design Project Presentation		
12	Nov 17	Seminar: Real-world Case Studies – Use	Submission of Final	
		of Al to Improve Engineering Process and	report	
		Product -2		
		Studio: Design Project Demonstration		

COS40007_Unit Page **6** of **15**

Assessment

a) Assessment Overview

Tasks and Details	Individual or Group	Weighting	Mapped Unit Learning Outcomes	Mapped Graduate Attribute s	Assessment Due Date
1. Portfolio	Individual	40%	1,2,3	GA1, GA2, GA5, GA6	Weeks 3-7: Portfolio Submission
2. Design Project	Group	60%	1,2,3,4	GA1, GA2, GA3, GA4, GA5, GA6	Week 7: Project Brief Week 8-10: Progress Report Week 11: Presentation Week 12: Demo/Video & Final Project Report

^{*}Will be Assessed during On-campus Studios with the Tutor

	Assessment Requirements	Details
b)	Use of generative Al (genAl) in this unit	 The valid use of genAl in this unit is as follows: No Al for Individual Assessments: The Portfolio Tasks in this unit should be completed entirely without genAl assistance. Project Report for Group Assessments: genAl may be used for brainstorming, creating structures, and generating ideas for improving work. Any use of genAl must be acknowledged, with prompts and outputs included in an appendix.
c)	Hurdle requirement s	To pass this unit, you must: (i) achieve an overall mark for the unit of 50% or more, and (ii) complete the project to an acceptable standard. A rubric will be used to determine if students have met the acceptable standard. The rubric is available on Canvas; and
		 (iii) Achieve a minimum of 50% or more on the Portfolio (must pass at least 50% of the portfolio activities). Students who do not successfully achieve hurdle requirements (ii) and (iii) in full, will receive a maximum of 45% as the total mark for the

COS40007_Unit Page **7** of **15**

d) Final assessment period

If the unit you are enrolled in has a final assessment (including invigilated exams), you will be expected to be available for the entire final assessment period, including any Special Exam period.

COS40007_Unit Page **8** of **15**

е)	Submission requirements	Assignments and other assessments are generally submitted online through the Canvas assessment submission system, which integrates with Turnitin.	
		Please ensure you keep a copy of all assessments that are submitted.	
		In cases where a hard copy submission is required, an Assessment Cover Sheet must be submitted with your assignment. The standard Assessment Cover Sheet is available from the <u>Submitting</u> work webpage or <u>www.swinburne.edu.au/studentforms/</u>	
f)	Extensions and late submissions	Late Submissions - Unless an extension has been approved, late submissions will result in a penalty. You will be penalised 10% of your achieved mark for each working day the task is late, up to a maximum of 5 working days. After 5 working days, a zero result will be recorded.	
g)	Referencing	To avoid breaching academic integrity, you are required to provide references whenever you include information from other sources in your work and acknowledge when you have used Artificial Intelligence (AI) tools (such as ChatGPT). Further details regarding academic integrity are available in Section C of this document.	
		Referencing convention required for this unit is IEEE. Helpful information on referencing can be found at http://www.swinburne.edu.au/library/referencing/	
h)	Group work guidelines	A group assignment is the collective responsibility of the entire group, and if one member is temporarily unable to contribute, the group should be able to reallocate responsibilities to keep to schedule. In the event of longer-term illness or other serious problems involving a member of the group, it is the responsibility of the other members to notify immediately the Unit Convenor or relevant Tutor.	
		Group submissions must be submitted with an Assignment Cover Sheet signed by all members of the group. All group members must be satisfied that the work has been correctly submitted. Any penalties for late submission will generally apply to all group members, not just the person who submitted.	

Required Textbook(s)

The required textbook(s) can be purchased from bookshops and may be available through COS40007_Unit Page 9 of 15

This content is protected and may not be shared, uploaded, or distributed

the Swinburne Library.

COS40007_Unit Page 10 of

- 1. Prosise, Jeff. Applied machine learning and AI for engineers. → O'Reilly Media, Inc.", 2022.
- 2. Raschka, Sebastian, Yuxi Hayden Liu, and Vahid Mirjalili. *Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python.* Packt Publishing Ltd, 2022.
- 3. Kapoor, Amita, Antonio Gulli, Sujit Pal, and Francois Chollet. Deep Learning with TensorFlow and Keras: Build and deploy supervised, unsupervised, deep, and reinforcement learning models. Packt Publishing Ltd, 2022.

Recommended Reading Materials

The library has a large collection of resource materials. It is recommended that you explore other sources to broaden your understanding.

A list of recommended online resources for relevant week activities can be found in Canvas.

COS40007_Unit Page 11 of

PART C: FURTHER INFORMATION

For further information on any of these topics, refer to Swinburne's Student webpage http://www.swinburne.edu.au/sludent/

Student behaviour and wellbeing

All students are expected to: act with integrity, honesty and fairness; be inclusive, ethical and respectful of others; and appropriately use University resources, information, equipment and facilities. All students are expected to contribute to creating a work and study environment that is safe and free from bullying, violence, discrimination, sexual harassment, vilification and other forms of unacceptable behaviour.

The <u>Student Charter</u> describes what students can reasonably expect from Swinburne in order to enjoy a quality learning experience. The Charter also sets out what is expected of students with regards to your studies and the way you conduct yourself towards other people and property.

You are expected to familiarise yourself with University regulations and policies and are obliged to abide by these, including the <u>Student Academic Misconduct Regulations</u>, <u>Student General Misconduct Regulations</u> and the <u>People, Culture and Integrity Policy</u>. Any student found to be in breach of these may be subject to disciplinary processes.

Examples of expected behaviours are:

- conducting yourself in teaching areas in a manner that is professional and not disruptive to others
- following specific safety procedures in Swinburne laboratories, such as wearing
 appropriate footwear and safety equipment, not acting in a manner which is dangerous or
 disruptive (e.g. playing computer games), and not bringing in food or drink
- following emergency and evacuation procedures and following instructions given by staff/wardens in an emergency response.

Canvas

You should regularly log on to the Swinburne learning management system, Canvas. You can access Canvas via the <u>Student login</u> webpage or https://swinburne.instructure.com/ Canvas is updated regularly with important unit information and communications.

Communication

All communication will be via your Swinburne email address. If you access your email through a provider other than Swinburne, then it is your responsibility to ensure that your Swinburne email is redirected to your private email address.

Academic Integrity

Academic integrity is about taking responsibility for your learning and submitting work that is honestly your own. It means acknowledging the ideas, contributions and work of others; referencing your sources and acknowledging the use of generative artificial intelligence;

COS40007_Unit Page 12 of

© Swinburne University of Technology 2025. Not to be shared online. You may download, print and reproduce this material in an unaltered form for your personal use. All other rights reserved

contributing fairly to group work; and completing tasks, tests and exams without cheating. Artificial intelligence tools should only be used where approved by the Unit Convenor.

Swinburne University uses the Turnitin system, which helps to identify inadequate citations, poor paraphrasing and unoriginal work in assignments that are submitted via Canvas. Your Unit Convenor will provide further details.

Plagiarism, collusion, contract cheating, unauthorised file sharing, falsification, fabrication, manipulation or misrepresentation of information, reuse of previous work and non- compliance with instructions in an invigilated or non-invigilated assessment item are all breaches of academic integrity and treated as academic misconduct. Examples of breaches of academic integrity include, but are not limited to:

- submitting work as your own for assessment that has been fully or partially completed by a third party, either paid or unpaid
- using output from artificial intelligence tools (e.g. ChatGPT) in whole or part without acknowledgement and/or without the approval of the Unit Convenor
- using another person's work or ideas as though it is your own work, without appropriate attribution
- working closely with another student or group of students (either past or current), to submit for assessment, some or all of the other student or students' work as your own work
- sharing without permission of the Unit Convenor, Swinburne resources or other material related to assessment to an entity or document repository site
- creating, intentionally modifying or inventing information that is intended to be submitted as part of an assessment item
- using the whole or part of a computer program written by another person as your own without appropriate acknowledgement
- poorly paraphrasing somebody else's work
- using a musical composition or audio, visual, graphic and photographic work created by another person without acknowledgment
- enabling others to cheat, including letting another student copy your work or by giving access to a draft or completed assignment
- letting someone or something else impersonate you, or you impersonate someone else in an
 invigilated or non-invigilated assessment item
- accessing, obtaining and/or providing to others unauthorised materials relating to an invigilated or non-invigilated assessment item.

The penalties for academic misconduct can be severe, ranging from a zero grade for an assessment task through to exclusion from Swinburne. For further details, see https://www.swinburne.edu.au/student-login/academic-integrity/

Student support

Swinburne offers a range of services and resources to help you complete your studies successfully. Your Unit Convenor or studentHQ can provide information about the study support and other services available for Swinburne students. For further information, see the Current students web page.

COS40007_Unit Page 13 of

Special consideration

If your studies have been adversely affected due to serious and unavoidable circumstances outside of your control (e.g. severe illness or unavoidable obligation), you may be able to apply for special consideration (SPC).

Applications for Special Consideration are submitted via the SPC online tool normally <u>no later than 5.00pm</u> on the third working day after the submission/sitting date for the relevant assessment component. See https://www.swinburne.edu.au/life-at-swinburne/student-support-services/special-consideration-assistance/

Note: Submitting fraudulent (fake or altered) medical certificates is considered misconduct and can lead to serious penalties from Swinburne. In addition, your doctor may report fraudulent medical certificates as a prosecutable offence under the Victorian Crimes Act.

AccessAbility Services

If you are a student with a disability, medical or mental health condition or you have significant carer responsibilities, you may require reasonable adjustments to fully access and participate in education. Swinburne's AccessAbility Services can develop an Education Access Plan (EAP) that includes the services and reasonable adjustments that you need.

It is recommended that you register with AccessAbility Services when you first commence your course but you can contact the service at any time during your studies to find out about reasonable adjustments. Contact Accessibility Services to discuss further.

Review of marks

An independent marker reviews all fail grades for major assessment tasks. In addition, a review of assessment is undertaken if your final result is between 45 and 49 or within 2 marks of any grade threshold.

You can ask the Unit Convenor to check the result for an assessment item or your final result. Your request must be made in writing within 10 working days of receiving the result. The Unit Convenor can discuss the marking criteria with you and check the aggregate marks of assessment components to identify if an error has been made. This is known as local resolution. If you are dissatisfied with the outcome of the local resolution, you can lodge a formal complaint.

Feedback, complaints and suggestions

In the first instance, discuss any issues with your Unit Convenor. If your concerns are not resolved or you would prefer not to deal with your Unit Convenor, then you can complete a feedback form. See https://www.swinburne.edu.au/corporate/feedback/

Advocacy

Should you require assistance with any academic issues, University statutes, regulations, policies and procedures, you are advised to seek advice from an Academic Student Support Officer at Swinburne Student Life.

COS40007_Unit Page **14** of

This content is protected and may not be shared, uploaded, or distributed

For an appointment, please call 19006412 or email swin@fe.edu.vn

For more information, please see https://portal.swin.edu.vn

COS40007_Unit Page 15 of