Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №0 по курсу «Искусственный интеллект» Тема: Анализ и подготовка данных

Студент: Е.А. Кондратьев

Преподаватели: С. Х. Ахмед

Группа: М8О-406Б-19

Дата:

Оценка: Подпись:

Лабораторная работа №0

Задача: Требуется определить задачу и найти под нее соответствующие данные. Необходимо вручную проанализировать данные, визуализировать зависимости, построить новые признаки, определить, хватит ли этих данных, и если не хватит найти еще.

1 Описание

В качестве задачи выбрана задача по бинарной классификации астрономических объектов согласно датасету Predicting Pulsar Star.

Датасет направлен на определение пульсаров, и описывает каждый объект при помощи следующих признаков:

- 1. Mean of the integrated profile среднее значение усредненного профиля импульса
- 2. Standard deviation of the integrated profile отклонение усредненного профиля импульса
- 3. Excess kurtosis of the integrated profile эксцесс усредненного профиля импульса
- 4. Skewness of the integrated profile асимметрия усредненного профиля импульса
- 5. Mean of the DM-SNR curve среднее значение кривой DM-SNR
- 6. Standard deviation of the DM-SNR curve отклонение кривой DM-SNR
- 7. Excess kurtosis of the DM-SNR curve эксцесс кривой DM-SNR
- 8. Skewness of the DM-SNR curve асимметрия кривой DM-SNR
- 9. Class целевое значение

2 Ход работы

Датасет содержит в себе данные о восьми параметрах объекта и его класс.

RangeIndex: 12528 entries, 0 to 12527
Data columns (total 9 columns):
Column Non-Null Count Dtype

```
0 Mean IP 12528 non-null float64
```

- 1 Std IP 12528 non-null float64
- 2 Kurtosis IP 10793 non-null float64
- 3 Skewness IP 12528 non-null float64
- 4 Mean DM-SNR 12528 non-null float64
- 5 Std DM-SNR 11350 non-null float64
- 6 Kurtosis DM-SNR 12528 non-null float64
- 7 Skewness DM-SNR 11903 non-null float64
- 8 class 12528 non-null int32

Все признаки являются количественными, дополнительного кодирования не требуется. Видно, что данные неполные, рассмотрим это подробнее.

Mean IP 0 Std IP 0 Kurtosis IP 1735 Skewness IP 0 Mean DM-SNR 0 Std DM-SNR 1178 Kurtosis DM-SNR 0 Skewness DM-SNR 625 class 0

В качестве борьбы с пропусками удалим все строки, в которых они обнаружены. В результате данных станет немного меньше.

Визуализируем признаки при помощи гистограмм:

В распределениях признаков не наблюдается аномальных отклонений.

Подсчитаем коэффициенты корреляции между признаками:

	Mean IP	Std IP	Kurtosis IP	Skewness IP	Mean DM-SNR	Std DM-SNR	Kurtosis DM-SNR	Skewness DM-SNR	class
Mean IP	1.000000	0.554197	-0.872497	-0.734920	-0.299984	-0.307431	0.236010	0.146103	-0.675819
Std IP	0.554197	1.000000	-0.528370	-0.542560	-0.011061	-0.059486	0.036907	0.030959	-0.368223
Kurtosis IP	-0.872497	-0.528370	1.000000	0.944715	0.421126	0.436362	-0.344571	-0.216748	0.790866
Skewness IP	-0.734920	-0.542560	0.944715	1.000000	0.415570	0.415902	-0.328328	-0.204109	0.704743
Mean DM-SNR	-0.299984	-0.011061	0.421126	0.415570	1.000000	0.796449	-0.614526	-0.353186	0.407043
Std DM-SNR	-0.307431	-0.059486	0.436362	0.415902	0.796449	1.000000	-0.807013	-0.573260	0.493163
Kurtosis DM-SNR	0.236010	0.036907	-0.344571	-0.328328	-0.614526	-0.807013	1.000000	0.924326	-0.390352
Skewness DM-SNR	0.146103	0.030959	-0.216748	-0.204109	-0.353186	-0.573260	0.924326	1.000000	-0.258428
class	-0.675819	-0.368223	0.790866	0.704743	0.407043	0.493163	-0.390352	-0.258428	1.000000

Также в виде тепловой карты:

Видно, что некоторые признаки коррелируют друг с другом. Вероятно это связано с тем, что они представляют из себя статистические характеристики других данных. Отдельно отметим коэффиценты корреляции между признаками и целевым значением.

Mean IP -0.675819 Kurtosis DM-SNR -0.390352 Std IP -0.368223 Skewness DM-SNR -0.258428 Mean DM-SNR 0.407043 Std DM-SNR 0.493163 Skewness IP 0.704743 Kurtosis IP 0.790866

Имеются три признака с высокой корреляцией: Mean IP, Skewness IP, Kurtosis IP — их можно считать наиболее выжными. Это говорит о возможности использования линейных моделей.

Такие графики подтверждают предыдущие выводы. На них видно и сильно коррелирующие признаки, и то, что на графиках признаков с высокой корреляцией с целевым значением, объекты разных классов можно достаточно хорошо разделить прямой. Отсюда также можно сделать вывод об отсутствии необходимости составления новых признаков.

3 Выводы

В ходе лабораторных работ был проведен анализ данных для их последующего использования при обучении линейной модели. Данные визуализируются различными способами, что позволило сделать некоторые выводы о зависимостях между ними и применимости линейных моделей в целом.