Optimizer selection for CNN in handwritten digit recognition

Wenting Liu, Shuangyu Zhao, Yuhan Zhu, Tiancheng Liu, Yan Lyu

Michigan State University

outline

- Introduction
- Optimizer selection
 - o "SGD"
 - o "momentum"
 - o "RMSprop"
 - o "ADAM
- Conclusion and future discussion

- The objective of no matter machine learning models or deep learning models is prediction, and a crucial aspect of achieving better predictions is identifying a dependable **optimizer**.
- In this project, we aim to study different techniques for **optimizing Convolutional Neural Networks (CNNs) in handwritten digit recognition**.

Introduction - Dataset

 The MNIST dataset, consisting of 70,000 handwritten digit images, with 60,000 images in the training set and 10,000 images in the testing set, has been used extensively for evaluating and comparing various machine learning algorithms, particularly for image classification tasks.

- CNNs is a deep learning technique to classify the input automatically. It has shown remarkable success in image recognition.
- However, the **high computational cost** and **memory requirements** of CNNs have become a major challenge.
- Therefore, the optimization of CNNs is crucial to reduce the computational complexity and memory footprint while maintaining their accuracy.

Optimizer selection

Convolution
$$(n, 128)$$

ReLu $(n, 128)$
 $Z1 = X * f$ $f \in \mathbb{R} \land (657*1)$

A1 = relu(Z1):

 $W2 \in R^{(128*64)}$

Input X

(n, 784)

input layer(ReLU function):

$$relu(x)_{i} = max(0, x_{i})$$

Hidden layer(sigmoid function):

$$sig(x)_{i} = \frac{1}{1+e^{-1}}$$

Output layer(softmax function)
$$soft(x)_{i} = \frac{e^{x_{i}}}{\sum_{i=1}^{N} e^{x_{i}}}$$

Sigmoid

output y

(n, 10)

(n,64)

Softmax

(n, 10) y = soft(Z3)

- Optimizer in CNN is used to calculate the vector for convolution, weights, biases and learning rate in order to reduce losses
 - Stochastic Gradient Descent (SGD)
 - Momentum
 - RMSprop
 - Adam

$$\min \sum_{i} \| y_{i} - y_{targeti} \|_{2}^{2}$$

$$\int \operatorname{soft}(y) = y$$

$$\min \sum_{i} \| y_{i} - Z_{3i} \|_{2}^{2}$$

$$\min_{f, W_2, b_2, W_3, b_3} \sum_{i}^{nrows} \| y_i - \{sig[relu(X * f)W_2 + b_2]W_3 + b_3\}_i \|_2^2$$

SGD

- According to the grid search, the best drop out rate is 0.1,
- Algorithm
 - Set batch size=200, so choose subsets with 200 rows and do gradient descent by subset.

$$\begin{split} f_{j} &:= \ f_{j} \ - \ t_{jk} \frac{\partial \sum\limits_{i}^{\text{NEOWS}} \|y_{i} - \{sig[relu(X^{*}f)W_{2} + b_{2}]W_{3} + b_{3}\}_{i}\|_{2}^{2}}{\partial f} \\ W_{2j} &:= \ W_{2j} \ - \ t_{jk} \frac{\partial \sum\limits_{i}^{\text{NEOWS}} \|y_{i} - \{sig[relu(X^{*}f)W_{2} + b_{2}]W_{3} + b_{3}\}_{i}\|_{2}^{2}}{\partial W_{2}} \\ b_{2j} &:= \ b_{2j} \ - \ t_{jk} \frac{\partial \sum\limits_{i}^{\text{NEOWS}} \|y_{i} - \{sig[relu(X^{*}f)W_{2} + b_{2}]W_{3} + b_{3}\}_{i}\|_{2}^{2}}{\partial b_{2}} \\ W_{3j} &:= \ W_{3j} \ - \ t_{jk} \frac{\partial \sum\limits_{i}^{\text{NEOWS}} \|y_{i} - \{sig[relu(X^{*}f)W_{2} + b_{2}]W_{3} + b_{3}\}_{i}\|_{2}^{2}}{\partial W_{3}} \\ b_{3j} &:= \ b_{3j} \ - \ t_{jk} \frac{\partial \sum\limits_{i}^{\text{NEOWS}} \|y_{i} - \{sig[relu(X^{*}f)W_{2} + b_{2}]W_{3} + b_{3}\}_{i}\|_{2}^{2}}{\partial b_{3}} \\ f &= avg(f_{j}) \\ W_{2} &= avg(W_{2j}) \\ b_{2} &= avg(W_{3j}) \\ b_{3} &= avg(B_{3j}) \end{split}$$

SGD

Result visualization

prediction

SGDModel estimation

	precision	recall	F1 score	support
0	0.9478	0.9816	0.9644	980
1	0.9720	0.9789	0.9754	1135
2	0.9425	0.9205	0.9314	1032
3	0.9146	0.9327	0.9235	1010
4	0.9237	0.9491	0.9362	982
5	0.9298	0.9058	0.9177	892
6	0.9443	0.9552	0.9497	958
7	0.9374	0.9319	0.9345	1028
8	0.9193	0.9127	0.9160	974
9	0.9360	0.8979	0.9165	1009
accuracy	0.9373			10000

Momentum

cost

In Physics In Optimization Movement = Negative of Gradient + Momentum Negative of Gradient Momentum Real Movement

Gradient = 0

Momentum

γ(Gamma): momentum parameter

η(Eta): learning rate

ω t(Omega): current value for model

parameter

v_t: update vector at time step "t"

Momentum based Gradient Descent Update Rule

$$v_t = \gamma * v_{t-1} + \eta
abla w_t$$

$$w_{t+1} = w_t - v_t$$

Result

Best result is 94.23% accuracy, with batch size of 200 and drop rate of 0.1.

Momentum

Model estimation

	precision	recall	f1-score	support
0	0.9610	0.9816	0.9712	980
1	0.9746	0.9806	0.9776	1135
2	0.9417	0.9234	0.9325	1032
3	0.9240	0.9386	0.9312	1010
4	0.9301	0.9491	0.9395	982
5	0.9365	0.9092	0.9226	892
6	0.9400	0.9645	0.9521	958
7	0.9453	0.9416	0.9435	1028
8	0.9228	0.9086	0.9157	974
9	0.9411	0.9187	0.9298	1009
accuracy			0.9423	10000
macro avg	0.9417	0.9416	0.9416	10000
weighted avg	0.9423	0.9423	0.9422	10000

RMSprop(Root Mean Square Propagation)

Wt = weights at time t

Wt+1 = weights at time t+1 α t = learning rate at time t ∂ L = derivative of Loss Function ∂ Wt = derivative of weights at time t

Vt = sum of square of past gradients. [i.e sum($\partial L/\partial Wt-1$)] (initially, Vt = 0)

 β = Moving average parameter (const, 0.9)

 \square = A small positive constant (10-8)

$$v_t = \beta v_{t-1} + (1 - \beta) * \left[\frac{\delta L}{\delta w_t}\right]^2$$

$$w_{t+1} = w_t - \frac{\alpha_t}{(v_t + \varepsilon)^{1/2}} * \left[\frac{\delta L}{\delta w_t} \right]$$

RMSprop

With 'batch size': 200, 'dropout rate': 0.1, 'epochs': 10

RMSprop

Model estimation

	precision	recall	f1-score	support
0	0.9808	0.9898	0.9853	980
1	0.9912	0.9921	0.9916	1135
2	0.9691	0.9738	0.9715	1032
3	0.9791	0.9762	0.9777	1010
4	0.9796	0.9796	0.9796	982
5	0.9657	0.9787	0.9722	892
6	0.9791	0.9802	0.9797	958
7	0.9786	0.9786	0.9786	1028
8	0.9690	0.9641	0.9665	974
9	0.9848	0.9653	0.9750	1009
accuracy			0.9780	10000
macro avg	0.9777	0.9778	0.9778	10000
weighted avg	0.9780	0.9780	0.9780	10000

Optimizer selection

Adam

Adaptive Moment Estimation is variant of stochastic gradient descent (SGD) that combines ideas from two other optimization methods, AdaGrad and RMSProp

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \left[\frac{\delta L}{\delta w_t} \right] v_t = \beta_2 v_{t-1} + (1 - \beta_2) \left[\frac{\delta L}{\delta w_t} \right]^2$$

Adam

When 'batch_size': 200, 'dropout_rate': 0.1

c	, .	7e+0	0	1	0	0	1	5	1	3	0	
,	- ۱	0	.1e+0	2	0	0	0	2	0	2	0	- 1000
2	۰ -	6	1	le+03	3	1	1	4	9	7	0	- 800
٣	n -	0	0	5	.8e+0	0	6	0	6	6	2	000
4		0	0	3	1	.6e+0	1	8	3	1	6	- 600
Ľ	n -	2	0	0	8	0	.7e+0	3	2	7	1	
٧	o -	3	2	2	1	2	2	.4e+0	0	1	0	- 400
7		1	2	11	1	0	0	1	1e+03	3	7	
α	o -	2	0	2	4	6	8	2	6	.4e+0	2	- 200
σ	n -	1	3	0	6	13	7	1	9	4	.6e+0	
		ó	i	2	3	4	5	6	7	8	9	- 0

Adam

	precision	recall	f1-score	support
0	0.9848	0.9888	0.9868	980
1	0.9930	0.9947	0.9938	1135
2	0.9747	0.9690	0.9718	1032
3	0.9762	0.9752	0.9757	1010
4	0.9776	0.9766	0.9771	982
5	0.9709	0.9742	0.9726	892
6	0.9732	0.9864	0.9798	958
7	0.9653	0.9747	0.9700	1028
8	0.9652	0.9671	0.9662	974
9	0.9817	0.9564	0.9689	1009
accuracy			0.9765	10000
macro avg	0.9763	0.9763	0.9763	10000
weighted avg	0.9765	0.9765	0.9765	10000

Conclusion and Future Discussion

Optimizer	Accuracy	Recall	Precision	F1	Convergence Iteration Epochs
SGD	0.9373	0.9376	0.9376	0.9375	5
Momentum	0.9423	0.9416	0.9417	0.9416	5
RMSprop	0.9780	0.9778	0.9777	0.9778	2.5
ADAM	0.9763	0.9763	0.9763	0.9765	3

Conclusion and Future Discussion

Try Orthogonal Learning Chaotic Grey Wolf Optimization (CNN-OLCGWO)
 Method, which comes from "An effective digit recognition model using enhanced convolutional neural network based <u>chaotic grey wolf optimization</u>".

Thank for your listening

Any Question?