상담 지원 chatbot

모델 정의서

팀명 : 용&우 컴퍼니

팀장 : 이용우

팀원 : 김찬유 남궁진 성채린 박지민 박소엽

목차

- I. 모델 개요 및 선정 이유
 - 1.1 KMS Embedding 모델
 - 1.2 LLM
 - 1.3 벡터 DB
- II. Data Set
 - 2.1 Data Set 구성
 - 2.2 데이터 전처리
- III. Work flow 및 모델
 - 3.1 전체 work flow
 - 3.2 모델

I. 모델 개요 및 선정 이유

1.1 KMS Embedding 모델

모델 개요

사용 모델	Upstage embedding 모델 (solar-embedding-1-large)
사용목적	상담 지식정보(KMS) 데이터를 단어 의미적 유사성을 기반으로 벡터 화하여 적재하고, 이후 질의가 들어올 때 유사성이 높은 문서들을 반 환하기 위해 사용
활용 방식	VectorStore 기반으로 mmr 알고리즘을 사용해 Retriever로 문서 검 색
성능과 효율성	높은 정확도로 텍스트 유사도 계산 및 검색 속도를 개선
경량화	대규모 데이터셋을 처리하면서도 메모리 효율성을 유지
유연성	다양한 데이터 유형(KMS 텍스트, 문서)과 다국어 지원

모델 선정 이유

비교 항목	solar-embedding- 1-large	kobert	snowflake-arctic- embed2
임베딩 차원수	4096	768	1024
검색 정확도	Top3 Accuracy: 91.42%	85%	
적합성	RAG, 다국어 검색, 임베딩에 적합	한국어 데이터 최적화	RAG, 다국어 검색, 임 베딩에 적합

결론

지식정보(KMS) embedding 모델을 위한 최종 모델로 **solar-embedding-1-large** (upstage) 모델 선정

- 테스트 환경 상 비용 측면의 이점.
- Retriever를 통한 유사도 문서 검색 속도 및 정확성 우수.

1.2 LLM

모델 개요

사용 모델	Gemini-1.5-flash	
사용목적	Retriever를 통해 검색된 관련 문서들을 구어체로 변환해 상담 시 활용하기 편하게 하기 위해 사용	
활용 방식	Retriever방식으로 가져온 문서를 기반으로, 상담사의 요구사항에 맞 춘 프롬프트를 통해 변환 챗봇 UI에 전달	
성능과 효율성	약 6~7초 가량 소요됨.	

모델 선정 이유

비교 항목	gemini	OpenAl
언어 범위	다국어 지원	다국어 지원
비용	무료	5\$/ 100만 토큰
적합성	대규모 구어체 변환 및 다국어	대규모 구어체 변환 및 다국어 작
	작업에 적합	업에 적합

결론

처리 속도는 OpenAl API를 사용하는 것이 좀 더 빠르지만, 가격 상의 문제로 인해 gemini LLM 모델을 사용함.

1.3 Vector DB

DB 개요

사용 DB	pinecone	
사용 목적	지식정보(KMS) 문서를 구어체로 변환	
활용 방식	Retriever 방식으로 가져온 문서를 구어체로 변환하여 챗봇 UI에 전달	
성능과 효율성	SaaS 기반이라 환경에 구애 받지 않고 구축할 수 있고, 배포에 용이함.	

DB 선정 이유

비교 항목	pinecone	Faiss
비용	Cloud 기반 비용 발생	오픈 소스
특징	- API key를 통해 간단히 사용 - 구축 편의성 - 서버리스, Pod 옵션 제공 - 다국어 검색 지원	- 고성능 유사도 검색 지원 - 클러스터링 라이브러리 지원 - GPU 가속 알고리즘 지원 - 대규모 Dataset 처리 최적화
성능	0.8초 (문서 309개)	2.1초 (문서 309개)
비교 항목	Chroma	PGVector
비용	오픈 소스	PostgreSQL 호스팅 비용
특징	- 임베딩, 벡터 검색, 문서 저장 통합 제공 - 멀티모달 검색 지원	- PostgreSQL 기능 사용 가능 - SQL과 통합된 벡터검색기능
성능	1.7초 (문서 309개)	29.3초 (문서 309개)

결론

촉박한 프로젝트 일정 상, 구축이 편리하고, 제일 문서 검색 속도가 빠른 Pinecone Vector DB를 사용하기로 결정함.

II. Data Set

2.1 Data Set 구성

Data Set 명	쿠팡 고객센터 자주 묻는 질문 Q&A	
개요	쿠팡 고객센터의 자주 묻는 질문의 취소/교환/반품, 배송문의, 주문/ 결제, 환불 카테고리의 Q&A쌍 데이터를 가져옴.	
출처	https://mc.coupang.com/ssr/desktop/contact/faq?categoryCode	
사용목적	벡터DB Embedding 이후 Retriever로 관련 문서 검색	
데이터 구조	csv	
수집 방식	크롤링	

2.2 데이터 전처리

- 한 질문에 있는 Main Question과 파생되는 Sub Question을 분리.
- 취소/교환/반품, 배송 문의, 주문/결제, 환불, 서브 카테고리 5개로 나눠서 데이터 적재
- 메인 카테고리 271개, 서브 카테고리 38개

Ⅲ. 모델 및 모델구조

3.1 Work flow 및 모델

전체 flow

3.2 모델

3.2.1 Model에 Query 질의

3.2.2 Model 응답 결과

