3 State Jensen's Inequality. Use the Inequality to show that when $X \sim Exp(2)$, we have $E(X^4) > 16$.

$$E(f(x)) \ge f(E(x))$$
where $f(x)$ is convex.
i.e. $f''(x) > 0$.

Let $f(x) = X^{4}$. then $f'(x) = 4 \cdot 3 \cdot \lambda^{2} > 0$ For Exp(2), E(x) = 2. then since f(x)**Manager 44 is connex. by Jensen's in eq. $E(X^{4}) \geq [E(x)]^{4} = 2^{4} = 16$

4. Below is a two-way table for joint pmf of discrete r.v. X and Y. Compute $E(Y|X \ge 2)$.

	0	1 = 1 =	2	3		
X=1	07	15				
X=2	.03	.11	.04	.06		
X=2 X=3	.15	.05	.03	.13	adds	

(No need to simplify the expression.)

$$E[Y(x22]]$$
= $I(.267)$ = $I.449$
+ $I.449$

9. Let (X, Y) be random vector with joint pdf

$$f(x,y) = \begin{cases} 1/50 & \text{if } 0 < X < Y < 10 \\ 0 & \text{otherwise} \end{cases}$$

Calculate $P\{(5 < 2X + Y < 10) \cup (7X - 10Y > 30)\}$. [Obtain the numerical value for full credit].

$$= \frac{1}{50} \iint 1 \, dx \, dy$$

$$= \frac{1}{50} \left(\text{Area if } \Phi \right)$$

$$= \frac{1}{50} \left(\text{Area if } \Phi \right)$$

$$= \frac{1}{50} \left[\frac{10(\frac{10}{3}) - 5(\frac{5}{3})}{2} \right]$$