

Figura 7.4.7 La revolución de un segmento de recta alrededor del eje *y* genera un tronco de cono.

- **24.** Se realiza un agujero cilíndrico de radio 1 en una bola sólida de radio 2 para formar una junta anular como la mostrada en la Figura 7.4.8. Hallar el volumen y el área de la superficie exterior de esta junta.
- **25.** Hallar el área de la gráfica de la función $f(x,y)=\frac{2}{3}(x^{3/2}+y^{3/2})$ que se encuentra sobre el dominio $[0,1]\times[0,1]$.
- **26.** Expresar el área de la superficie de las gráficas siguientes sobre la región indicada D como una integral doble. No calcularlas.

- (a) $(x+2y)^2$; $D = [-1,2] \times [0,2]$
- (b) xy + x/(y+1); $D = [1,4] \times [1,2]$
- (c) $xy^3e^{x^2y^2}$; D = círculo unidad centrado en el origen.
- (d) $y^3 \cos^2 x$; D = triágulo con vértices en(-1,1), (0,2) y (1,1).
- **27.** Demostrar que el área de la superficie de la semiesfera superior de radio $R, z = \sqrt{R^2 x^2 y^2}$, se puede calcular mediante la fórmula (4), evaluada como una integral impropia.

Figura 7.4.8 Hallar el área de la superficie exterior y el volumen de la región sombreada.

7.5 Integrales de funciones escalares sobre superficies

Ahora ya estamos preparados para definir la integral de una función escalar f sobre una superficie S. Este concepto es una generalización natural del área de una superficie, que corresponde a la integral sobre S de la función escalar f(x,y,z)=1. Esto es parecido a considerar la integral a lo largo de una trayectoria como una generalización de la longitud de arco. En la siguiente sección nos ocuparemos de la integral de una función vectorial $\mathbf F$ sobre una superficie. Estos conceptos desempeñarán un papel crucial en el análisis vectorial que se trata en el capítulo final.

Comenzamos con una superficie S parametrizada por una aplicación $\Phi \colon D \to S \subset \mathbb{R}^3$, donde D es una región elemental, que expresamos como $\Phi(u,v) = (x(u,v),y(u,v),z(u,v))$.

Definición Integral de una función escalar sobre una superficie Si f(x, y, z) es una función continua con valores reales definida sobre una superficie parametrizada S, definimos la *integral de* f sobre S como

$$\iint_{S} f(x, y, z) dS = \iint_{S} f dS = \iint_{D} f(\mathbf{\Phi}(u, v)) \|\mathbf{T}_{u} \times \mathbf{T}_{v}\| du dv.$$
 (1)