Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

15 febbraio 2017

Problema 1. Sia $\Sigma = \{a, b, c, d\}$. Si consideri la macchina di Turing T definita sull'alfabeto Σ descritta dal seguente insieme di quintuple:

dove q_0 , q_A e q_R sono, rispettivamente gli stati iniziale, di accettazione e di rigetto di T.

Dopo aver definito il linguaggio $L \subseteq \Sigma^*$ deciso da T, si trasformi T in una macchina T' definita sull'alfabeto $\{0,1\}$ equivalente a T.

Problema 2. Si consideri il problema seguente: dato un intero n, decidere se esistono due interi h > 1 e k > 1 tali che n = hk.

- 2.a) Dire se il seguente frammento di codice è un algoritmo non deterministico che decide il problema, argomentando la propria risposta:
 - 1. **Input**: *n*;
 - 2. **scegli** l'intero h nell'insieme $\{2, \ldots, n-1\}$;
 - 3. **scegli** l'intero k nell'insieme $\{2, \ldots, n-1\}$;
 - 4. **if** $(n = h \cdot k)$ **then Output**: accetta;
 - 5. else Output: rigetta.
- 2.b) Dire se il seguente frammento di codice che decide il problema opera in tempo polinomiale, argomentando la propria risposta:
 - 1. **Input**: *n*;
 - 2. **for** $(h \leftarrow 2; h < n-1; h \leftarrow h+1)$ **do**
 - 3. **for** $(k \leftarrow 2; k < n-1; k \leftarrow k+1)$ **do**
 - 4. **if** $(n = h \cdot k)$ **then Output**: accetta;
 - 5. Output: rigetta.

Anche alla luce dei punti 2.a) e 2.d) sopra, cosa si può dire circa l'appartenenza del problema alla classe **P** o alla classe **NP**? Motivare la propria risposta.

Problema 3. Si considerino i due problemi seguenti:

- a) dati un grafo non orientato G = (V, E) ed un intero $k \in \mathbb{N}$, decidere se G contiene una Clique di cardinalità < k;
- b) dati un grafo non orientato G = (V, E) ed un intero $k \in \mathbb{N}$, decidere se ogni Clique in G ha cardinalità

Dopo aver formalizzato la definizione dei suddetti problemi mediante la tripla $\langle I, S, \pi \rangle$, si collochi ciascuno di essi nella corretta classe di complessità.

Soluzione

Problema 1. Il linguaggio L(T), deciso dalla macchina T, è costituito dalle parole in Σ^* che iniziano con ab e terminano con cd ed è definito formalmente nel modo seguente

$$L(T) = \{abxcd : x \in \Sigma^*\}.$$

Definiamo, innanzi tutto, una codifica $\chi: \Sigma \to \{0,1\}^*$: sia, dunque, $\chi(a) = 00$, $\chi(b) = 01$, $\chi(c) = 10$ e $\chi(d) = 11$.

La macchina T_{01} definita sull'alfabeto $\{0,1\}$ che decide il linguaggio L(T) codificato secondo la codifica χ utilizza l'insieme di stati $Q_{01} = \{q_0, q_0(0), q_1, q_1(0), q_2, q_3, q_3(1), q_4, q_4(0), q_A, q_R\}$, ove q_0 è lo stato iniziale, ed è descritta dal seguente insieme di quintuple:

$$\begin{array}{lll} \langle q_0,0,0,q_0(0),d\rangle & \langle q_0,x,x,q_R,f\rangle \ \forall x \in \{1,\square\} \\ \langle q_0(0),0,0,q_1,d\rangle & \langle q_0(0),x,x,q_R,f\rangle \ \forall x \in \{1,\square\} \\ \langle q_1,0,0,q_1(0),d\rangle & \langle q_1,x,x,q_R,f\rangle \ \forall x \in \{1,\square\} \\ \langle q_1(0),1,1,q_2,d\rangle & \langle q_1(0),x,x,q_R,f\rangle \ \forall x \in \{0,\square\} \\ \langle q_2,x,x,q_2,d\rangle \ \forall x \in \{0,1\} & \langle q_2,\square,\square,q_3,s\rangle \\ \langle q_3,1,1,q_3(1),s\rangle & \langle q_3,x,x,q_R,f\rangle \ \forall x \in \{0,\square\} \\ \langle q_3(1),1,d,q_4,s\rangle & \langle q_3(1),x,x,q_R,f\rangle \ \forall x \in \{0,\square\} \\ \langle q_4,0,0,q_4(0),s\rangle & \langle q_4,x,x,q_R,f\rangle \ \forall x \in \{1,\square\}, \\ \langle q_4(0),1,1,q_A,f\rangle & \langle q_4(0),x,x,q_R,f\rangle \ \forall x \in \{0,\square\}, \end{array}$$

Problema 2. Il frammento di codice di cui al punto 2.a) non è un algoritmo non deterministico in quanto l'operazione non deterministica **scegli** può effettuare una scelta all'interno di un insieme di dimensione *costante*, mentre nel frammento di codice del punto 2.a) l'insieme in cui viene effettuata la scelta è l'insieme $\{2, \ldots, n-1\}$ la cui dimensione è funzione dell'istanza e, pertanto, non costante.

Nel caso peggiore (che si presenta quando n è un numero primo), il frammento di codice di cui al punto 2.b) esegue $(n-2)^2$ volte l'istruzione alla linea 4. Dunque, esso richiede tempo $\geq (n-2)^2$. Poiché la codifica binaria del numero n richiede spazio $\lceil \log_2 n \rceil$, allora per qualunque codifica ragionevole di n si ha che $|n| = \mathbf{O}(\log_2 n)$. Conseguentemente, il tempo richiesto dal frammento di codice è

$$\geq (n-2)^2 = \mathbf{O}(2^{|n|}).$$

Il frammento di codice, dunque, opera in tempo pseudopolinomiale, ma non in tempo polinomale.

La discussione sopra dei due punti 2.a) e 2.b) non ci permette di trarre alcuna conclusione circa l'appartenenza del problema alla classe **P** o alla classe **NP**.

Tuttavia, possiamo osservare che un certificato per una istanza del problema è una coppia di interi $\langle h, k \rangle$: poiché $|h| \le |n|$ e $|k| \le |n|$, e poiché per verificare se un certificato è una soluzione effettiva è sufficiente calcolare il prodotto hk e tale operazione è eseguibile in tempo polinomiale in |h| e |k|, possiamo concludere che il problema appartiene alla classe **NP**.

Problema 3. Indicheremo i due problemi in esame, rispettivamente, con l'acronimo Γ_a e Γ_b . Entrambi i problemi sono definiti sull'insieme di istanze I_{Γ} e sull'insieme di soluzioni possibili Γ di seguito descritti:

- $I_{\Gamma} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \in \mathbb{N}^+ \};$
- $S_{\Gamma}(G,k) = \{V' : V' \subseteq V\} \}.$

I predicati dei due problemi sono, invece, distinti.

Il predicato π_{Γ_a} del problema Γ_a è molto simile al predicato che definisce il problema CLIQUE, e differisce da quest'ultimo soltanto per la cardinalità del sottografo completo richiesto:

$$\pi_{\Gamma_a}(G, k, S_{\Gamma}(G, k)) = \exists \ V' \in S_{\Gamma}(G, k) : \ |V'| < k \ \land \ \forall \ u, v \in V' \ [\ (u, v) \in E \].$$

Osserviamo che, nel predicato del problema (così come in quello del problema CLIQUE), viene assunto implicitamente $u \neq v$, ossia, il predicato richiede che esista una soluzione possibile in cui ogni coppia di nodi *distinti* sia collegata da un arco. Esso, più propriamente, dovrebbe essere scritto nel modo seguente:

$$\exists V' \in S_{\Gamma}(G,k) : |V'| < k \land \forall u, v \in V' : u \neq v [(u,v) \in E].$$

Pertanto, ciascun insieme V' contenente un solo nodo soddisfa banalmente il predicato, in quanto non contiene una coppia di nodi distinti. In altre parole, un singolo nodo di G è un sottografo completo di di dimensione 1.

Analogamente, l'insieme vuoto soddisfa banalmente il predicato in quanto non contiene alcun nodo. Ossia, l'insieme vuoto è un sottografo completo di G di dimensione 0. Quindi, per decidere se una istanza $\langle G=(V,E),k\rangle$ di Γ_a è una istanza sì è sufficiente verificare se k>0: in caso affermativo $\langle G=(V,E),k\rangle$ è una istanza sì, in caso negativo $\langle G=(V,E),k\rangle$ è una istanza no. Questo prova che il problema Γ_a è in \mathbf{P} .

Il predicato π_{Γ_b} del problema Γ_b , pur essendo collegato al predicato di CLIQUE, è sostanzialmente diverso da esso in quanto richiede che *ogni* soluzione possibile soddisfi una certa proprietà. In particolare, π_{Γ_b} richiede che, se una soluzione possibile è un sottografo completo, allora la sua cardinalità deve essere minore di k:

$$\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \forall V' \in S_{\Gamma}(G, k) \left[\forall u, v \in V' \left[(u, v) \in E \right] \rightarrow |V'| < k \right],$$

che può essere anche scritto

$$\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \forall \ V' \in S_{\Gamma}(G, k) \ \big[\ \neg \big(\forall \ u, v \in V' \ \big[\ (u, v) \in E \ \big] \ \big) \ \lor \ |V'| < k \ \big].$$

Consideriamo ora la negazione del predicato π_{Γ_b} :

$$\neg \left[\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \exists V' \in S_{\Gamma}(G, k) : \forall u, v \in V' \left[(u, v) \in E \right] \land |V'| \ge k.$$

Osserviamo, ora, che detti I_{Cl} , S_{Cl} e π_{Cl} , rispettivamente, l'insieme delle istanze, l'insieme delle soluzioni possibili e il predicato del problema CLIQUE, si ha che $I_{Cl} = I_{\Gamma}$ e, per ogni $\langle G = (V, E), k \rangle \in I_{\Gamma}$, $S_{Cl}(G, k) = S_{\Gamma}(G, k)$ e $\neg [\pi_{\Gamma_b}(G, k, S_{\Gamma}(G, k)) = \pi_{Cl}(G, k, S_{VC}(G, k))$. Questo signifca che il problema Γ_b^c , complemento di Γ_b , coincide con il problema CLIQUE. Quindi, Γ_b^c è **NP**-completo e Γ_b è co**NP**-completo.