Discretizing VAEs for Lossy Image Compression

Zhihao Duan
duan90@purdue.edu
PhD student at Video and Image Processing Lab, ECE
Work on data compression

April 2022

This is part of my ongoing PhD research

Outline

- Motivation
 - VAE vs. rate distortion theory
- Method
 - We want a VAE with integer-valued latent variable
 - Set the components of a continuous VAE (prior, emission, recognition)
 to make it "quantization-aware"
- Experimental results
 - It works well

Motivation

• Recall: VAE and min. free energy

min
$$\underline{D_{KL}(\check{p}_{X|Y} \parallel \hat{p}_X)} + \underline{E_{\check{p}_{X|Y}} \left[\log \frac{1}{\hat{p}_{Y|X}(Y|\check{X})} \right]}$$
"Rate"
"Distortion"

• People have used VAEs to estimate the *R-D* function for natural images [1]

- But VAEs cannot be directly used for lossy compression
- A workaround: discretize X

- The simplest method: nearest int. quantization of *X*
 - Deterministic, not a distribution
 - Gradient is zero almost everywhere
- We use uniform distribution to model quantization error $\check{p}_{X|Y}(\cdot | y) = U(f(y) 0.5, f(y) + 0.5)$ $f(\cdot)$: a neural network (or encoder)
- Training: $x \leftarrow f(y) + u$, where $u \sim U(-0.5, 0.5)$
- Testing: $x \leftarrow [f(y)]$

- We have chosen $\check{p}_{X|Y}(\cdot | y)$ to be uniform
- What should $\hat{p}_X(\cdot)$ be?
 - The shape of the pdf should be like $p_{X|Y}(\cdot)$
 - Should be non-zero everywhere

- We have chosen $p_{X|Y}(\cdot | y)$ to be uniform
- What should $\hat{p}_X(\cdot)$ be?
 - The shape of the pdf should be like $p_{X|Y}(\cdot)$
 - Should be non-zero everywhere
- A good choice:

$$\hat{p}_X(x) \propto F_{\mu,\sigma}(x+0.5) - F_{\mu,\sigma}(x-0.5)$$

 $F_{\mu,\sigma}$: cdf of Normal (μ, σ^2)

Notes:

- ..., $\hat{p}_X(-1)$, $\hat{p}_X(0)$, $\hat{p}_X(1)$, ... is a discrete distribution
- This enables us to encode quantized *X* into bits

The emission distribution:

$$\hat{p}_{Y|X}(y|x) \propto e^{-\lambda \cdot d(g(x),y)},$$

where

- $g(\cdot)$ is a neural network (decoder)
- g(x): reconstruction
- λ is a scalar
- Negative log-likelihood = $\lambda \cdot d(g(x), y)$

Experiment

- We have specified all components of a VAE
- Distortion metric $d(\cdot)$: mean squared error (MSE)
- Training: min. free energy
 - COCO dataset: 118,287 natural images.
 - 64x64 image patches

- Testing: nearest int. quantization + coding
 - Kodak image set: 24 natural images

Results

Methods in comparison:

- JPEG
- Best existing method
 - Based on deep learning
 - A VAE coupled with an (spatially) autoregressive model
- Discretized VAE (ours)

Results

If use a hierarchical VAE instead of a standard one:

(3 layers)

Rate-distortion on Kodak image set → JPEG Discretized VAE Best existing method Discretized hierarchical VAE (12 layers) 10^{-3} MSE 10^{-4} 0.0 0.5 1.0 1.5 2.0 2.5 3.5 3.0 Bits per pixel (bpp)

Unconditional Samples (64x64)

• Training set image patches:

• Standard VAE samples:

- Hierarchical VAE samples
 - Continuous latent variables:
 - Integer latent variables:
 - (With same random seed)

Conclusion

What I learned in this project:

- Latent variable models (in particular VAEs) works well for lossy compression
- Neural network architecture (ResNets, more layers) and training tricks (learning rate, gradient clipping) matters a lot

Existing work:

- Nearest int. quantization and uniform noise for compression
- Hierarchical VAEs

My work:

• Formulate the uniform noise approach into the VAE framework

Future directions:

• Apply normalizing flows to the recognition distribution

