ASSIGNMENT 2 (DQL/DML)

Write the following SQL Queries Based on the library database:

1. Get all books with titles containing 'The' followed by any characters.

2. List members who have borrowed books with a price higher than \$20

3. Find the average price of books for each author, display the author name

4. The number of books each member has borrowed even if they do not borrow any book.

```
Run SQL query/queries on table companys.members: 

SELECT members.name, COUNT(borrowings.borrowing_id)
FROM members LEFT JOIN borrowings on members.member_id = borrowings.member_id
GROUP BY members.name
```


5. Find all books borrowed by members who joined in 2023, display book title, member name and borrow date

6. List authors who have written more than 2 books if their names starts with letter a

```
Showing rows 0 - 0 (1 total, Query took 0.0004 seconds.)

SELECT authors.name FROM authors JOIN books on books.author_id = authors.author_id WHERE authors.name LIKE 'a%' GROUP BY authors.author_id, authors.name HAVING COUNT(books.book_id)>2;

Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]
```

7. List all books that have never been borrowed.

8. List all authors who have written books in more than 3 different publication years.

```
✓ MySQL returned an empty result set (i.e. zero rows). (Query took 0.0013 seconds.)

SELECT authors.name FROM authors JOIN books on books.author_id=authors.author_id GROUP BY authors.author_id, authors.name HAVING COUNT(DISTINCT books.publication_year)>3;

Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]

name
```

9. Find the total number of books published each year.

10. Find the members who have borrowed books from at least three different authors.

11. Increase the price of all books published before 2010 by 10.

```
Run SQL query/queries on table companys.books:

1 UPDATE books
2 SET price=price+10
3 WHERE publication_year<2010;
4
```

12. Change the return date of all borrowings that are still not returned (NULL) to today's date.

13. Update all members who joined before 2020 to have "(Old Member)" added to their name.

14. Increase prices of books written by authors who have published more than 3 books by 15%.

```
Run SQL query/queries on table companys.books:

1 UPDATE books
2 SET price = price*1.15
3 WHERE author_id IN(
4 SELECT author_id
5 FROM books
6 GROUP BY author_id
7 HAVING COUNT(book_id)>3
8 );
9
```

15. Set the price of all books written by authors born before 1960 to 50.

16. Give a 20% discount on all books that cost more than 100.

```
Run SQL query/queries on table companys.books:

1 UPDATE books
2 SET price=price*0.8
3 WHERE price>100;
```

17. Delete all borrow records where the book has not been returned.

```
Run SQL query/queries on table companys.borrowings:

1 DELETE FROM borrowings
2 WHERE return_date IS null;

1 DELETE FROM borrowings WHERE return_date IS null;
```

18. Delete members who haven't borrowed any books.

```
Run SQL query/queries on table companys.members:

1 DELETE FROM members
2 WHERE member_id NOT IN (
3 SELECT DISTINCT member_id
4 FROM borrowings
5 WHERE member_id IS NOT NULL
6 );
7 

** 17 rows deleted. (Query took 0.0004 seconds.)

DELETE FROM members WHERE member_id NOT IN ( SELECT DISTINCT member_id FROM borrowings WHERE member_id IS NOT NULL );

[Edit inline] [Edit] [Create PHP code]
```

19. Delete authors whose books have never been borrowed.

```
Run SQL query/queries on table companys.authors:

1 DELETE a
2 FROM authors a
3 LEFT JOIN books bo ON a.author_id = bo.author_id
4 LEFT JOIN borrowings br ON br.book_id = bo.book_id
5 WHERE br.borrowing_id = null;

1 Orows deleted (Query took 0.0005 seconds.)

1 DELETE a FROM authors a LEFT JOIN books bo ON a.author_id LEFT JOIN borrowings br ON br.book_id * bo.book_id NMERE br.borrowing_id * null;

1 Edit inline][Edit][Create PHP code]
```

20. Delete all members who borrowed only books priced below \$10.

```
Run SQL query/queries on table companys.members: 

    1 DELETE FROM members
    2 WHERE member_id IN (
         SELECT m.member_id
         FROM members m
         WHERE NOT EXISTS (
             FROM borrowings b
             JOIN books bo ON b.book_id = bo.book_id
            WHERE b.member_id = m.member_id
   10
            AND bo.price >= 10
        AND EXISTS (
   13
            SELECT*
             FROM borrowings b
   14
   15
             WHERE b.member_id = m.member_id ));
```