Χ

(https://swayam.gov.in)

2111cs010033@mallareddyuniversity.ac.in >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 1 ()

Week 2 ()

Week 3 ()

week 4 ()

- Recap:
 Learning
 Parameters:
 Guess Work,
 Gradient
 Descent (unit?
 unit=59&lesso
 n=60)
- Contours Maps (unit? unit=59&lesso n=61)

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2024-08-21, 23:59 IST.

Assignment submitted on 2024-08-21, 21:07 IST

- 1) What is the primary benefit of using Adagrad compared to other optimization *1 point* algorithms?
 - It converges faster than other optimization algorithms.
 - It is more memory-efficient than other optimization algorithms.
 - It is less sensitive to the choice of hyperparameters(learning rate).
 - It is less likely to get stuck in local optima than other optimization algorithms.

Yes, the answer is correct.

Score: 1

Accepted Answers:

It is less sensitive to the choice of hyperparameters(learning rate).

- 2) Select the true statements about the factor β used in the momentum based gradient **1** point descent algorithm.
 - Setting eta=0.1 allows the algorithm to move faster than the vanilla gradient descent algorithm
 - Setting eta=0 makes it equivalent to the vanilla gradient descent algorithm
 - Setting eta=1 makes it equivalent to the vanilla gradient descent algorithm
 - Oscillation around the minimum will be less if we set eta=0.1 than setting eta=0.99

Partially Correct.

- Momentum based Gradient Descent (unit? unit=59&lesso n=62)
- Nesterov
 Accelerated
 Gradient
 Descent (unit?
 unit=59&lesso
 n=63)
- Stochastic And Mini-Batch Gradient
 Descent (unit? unit=59&lesso n=64)
- Tips for Adjusting Learning Rate and Momentum (unit? unit=59&lesso n=65)
- Line Search (unit? unit=59&lesso n=66)
- Gradient
 Descent with
 Adaptive
 Learning Rate
 (unit?
 unit=59&lesso
 n=67)
- Bias
 Correction in
 Adam (unit?
 unit=59&lesso
 n=68)
- Lecture Material for Week 4 (unit? unit=59&lesso n=69)
- Week 4
 Feedback
 Form: Deep
 Learning IIT

Score: 0.67
Accepted Answers:
Setting $eta=0.1$ allows the algorithm to move faster than the vanilla gradient descent
algorithm
Setting $eta=0$ makes it equivalent to the vanilla gradient descent algorithm Oscillation around the minimum will be less if we set $eta=0.1$ than setting $eta=0.99$
3) Select the behaviour of the Gradient descent algorithm that uses the following 1 point
update rule,
$w_{t+1} = w_t - \eta abla w_t$
where w is a weight and η is a learning rate.
The weight update is tiny at a steep loss surface
The weight update is tiny at a gentle loss surface
The weight update is large at a steep loss surface
☐ The weight update is large at a gentle loss surface
Yes, the answer is correct. Score: 1
Accepted Answers:
The weight update is tiny at a gentle loss surface
The weight update is large at a steep loss surface
4) Given data where one column predominantly contains zero values, which algorithm <i>1 point</i> should be used to achieve faster convergence and optimize the loss function?
should be used to achieve laster convergence and optimize the loss function:
Adam
NAG
Momentum-based gradient descent
Stochastic gradient descent
Yes, the answer is correct. Score: 1
Accepted Answers:
Adam
5) In Nesterov accelerated gradient descent, what step is performed before 1 point
determining the update size?
O Increase the momentum
Adjust the learning rate
Opecrease the step size
Estimate the next position of the parameters
Yes, the answer is correct. Score: 1
Accepted Answers:
Estimate the next position of the parameters
6) Which parameter in vanilla gradient descent determines the step size taken in the 1 point
direction of the gradient?
Learning rate
○ Momentum

unit=59&lesso	
n=187) None of the above	
Quiz: Week 4 Yes, the answer is correct. Score: 1	
: Assignment Accepted Answers:	
Learning rate	
(assessment? name=288) 7) Which of the following are among the disadvantages of Adagrad?	1 point
Week 5 ()	
It usually goes past the minima.	
Week 6 () It gets stuck before reaching the minima.	
Week 7 () Weight updates are very small at the initial stages of the algorithm.	
Week 8 () Yes, the answer is correct. Score: 1	
Accepted Answers:	
Week 9 () It gets stuck before reaching the minima.	
week 10 () 8) Which of the following is a variant of gradient descent that uses an estimate of the	1 point
next gradient to update the current position of the parameters?	
Week 11 () Momentum optimization	
Week 12 () Stochastic gradient descent	
Nesterov accelerated gradient descent	
Download Adagrad	
Videos () Yes, the answer is correct.	
Books () Score: 1 Accepted Answers:	
Nesterov accelerated gradient descent	
Text	
Transcripts 9) Consider a gradient profile $\nabla W = [1, 0.9, 0.6, 0.01, 0.1, 0.2, 0.5, 0.55, 0.56]$	-
Assume $v_{-1}=0, \epsilon=0, \beta=0.9$ and the learning rate is $\eta_{-1}=0.1.$ Suppose that w	e use the
Problem Adagrad algorithm then what is the value of $\eta_6 = \eta/sqrt(v_t + \epsilon)$?	
Solving 0.03	
Session - © 0.06	
July 2024 () 0.08	
0.006	
Yes, the answer is correct.	
Score: 1 Accepted Answers:	
0.06	
10) What are the two main components of the ADAM optimizer?	1 point
Momentum and learning rate.	
Gradient magnitude and previous gradient.	
Exponential weighted moving average and gradient variance.	
Learning rate and a regularization term.	

Yes, the answer is correct.

Score: 1

Accepted Answers:

Exponential weighted moving average and gradient variance.