LAB 4: Exercises

1. Construct the binary representation of documents D1-D4 and construct the inverted index.

D1 = New solution for lung cancer

D2 = Treatment for lung cancer

D3 = New cancer treatment bring hopes
D4 = Results of cancer treatment research

Binary representation (columns)								
Term/Doc	D1	D2	D3	D4				
brings								
cancer								
for								
hopes								
lung								
new								
of								
solution								
research								
results								
treatment								

Inverted index		
brings		
cancer		
for		
hopes		
lung		
new		
of		
solution	-	
research		
results		_
treatment		

Find the relevant documents for:

- q =, lung AND cancer:
- "q = cancer OR lung":
- 2. Build a suffix tree of a word "DODO\$" using naïve algorithm.

3. Build a suffix tree of a word "DODO\$" using Ukkonen's algorithm.

4. Build a suffix array for a word "DODO\$" using Qsufsort algorithm.

	1	2	3	4	5
S	D	О	D	О	\$
I[i]					
V[i]					
V'[i] = V[I[i] + 1]					
I[i]					
V[i]					
V'[i] = V[I[i] + 2]					
I[i]					

5. There are four documents D1-D4 in the collection and one query Q. Firstly, compute a Jaccard index between each two documents (and Q). Then, Compute a cosine similarity using TF and TF-IDF models. For this purpose, compute: a number of occurrences of each term in each document, IDF coefficients, and length of each vector for TF and TF-IDF representations.

Documents	and	the	q	uery	7

Q	=	I	R		
D1	=	I	R	I	R
D2	=	R	R	R	R
D3	=	A	I	R	A
D4	=	R	A	R	A

<u>IDF</u>	
coefficients	

	IDF
R	
A	
I	

Jaccard index

	Q	D1	D2	D3	D4
Q					
D1					
D2					
D3					
D4					

Cosine similarity (TF and TF-IDF)

			Term currence	es		TF		v	Cosine similarity	Tl	F-ID	F	v	Cosine similarity
		R	A	I	R	A	I			R	A	Ι		
Q	=													
D1	=													
D2														
D3														
D4														

6. Find unique 3-grams (3-shingles) for D1, D2, and D3. Then, compute a similarity (Jaccard index) between each two documents.

			3-shingles
D1	П	to be or not to be or not to be	
D2	=	to be or maybe to be or not	
D3	=	maybe to be but surely not	

Jaccard index

	D1	D2	D3
D1			
D2			
D3			