UTEC 
$$P42512 - MATHS 2$$
 MARKING GUIDE

P(A'UB) =  $P(A \cap B')'$ 

i.e.,  $2/5 = 1 - P(A \cap B')$  Mi) ..  $P(A \cap B') = \frac{3}{5}(B_3)$ 
 $P(A) = P(A \cap B) + P(A \cap B')$ 
 $= \frac{3}{10} + \frac{3}{5} - \frac{1}{10}$ 
 $= \frac{3}{10} = \frac{P(A \cap B)}{2}$ 
 $P(B/A) = \frac{P(A \cap B)}{2}$ 
 $= \frac{3}{10} = \frac{1}{3} = \frac$ 

SOLUTIONS

3.  $\chi_{max} = 4.85$  |  $y_{max} = 3.255$   $\chi_{min} = 4.75$  |  $y_{min} = 3.245$   $\chi_{min} = 4.75$  |  $\chi_{min} = 3.245$   $\chi_{min} = 4.75$  |  $\chi_{min} = 3.245$   $\chi_{min} = 4.75 - 3.255$  |  $\chi_{min} = 4.75$ 

Connects

Max. envy in x-y = 0.05 + 0.005 (my)= 0.055 (By)  $2n + c_1 v_2 = 1.55 + 0.055 (my)$ 

= [1.495, 1.605] (A)

| d.W | SOLUTIONS                                                                                                                                                                                                                                                                                                           | Comments        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 6   | RECON       RMATHS       d $d^2$ 1       2       -1       1         2       4       -2       4         3       3       0       0         4       5.5       -1.5       2.25         5       1       4       16         6       5.5       -0.5       0.25         7       7       0       0 $\Sigma d^2 = 23.5$ $B_1$ |                 |
|     | $\int = 1 - \frac{6 \times 23.5}{7 \times 48} \left( \frac{8}{3} \right)$ $= 0.58; (A); correspons is moderate and$                                                                                                                                                                                                 | positive.       |
| 7.  | Let $x = \sqrt{3} = 2^2 = 3 = 0$ (My)                                                                                                                                                                                                                                                                               |                 |
|     | $ \chi_3 - \chi_1  = 0.0$                                                                                                                                                                                                                                                                                           | 00092           |
|     | $= \frac{1}{2}(\chi_{n} + 3\chi_{n}); n = 0,1,2,$ $\chi_{4} \simeq 1.7320$ Use $\chi_{0} = 1.5(B_{1})$ since $1 < \sqrt{3} < 2$ Thus $\sqrt{3} \simeq 1.73$ .                                                                                                                                                       | (A)<br>21 4dps) |
|     | $=) \ \mathcal{X}_{1} = \frac{1}{2} \left( l \cdot s + \frac{3}{l \cdot s} \right)$                                                                                                                                                                                                                                 | ,               |
|     | $= 1.75 ;  x_1 - x_0  = 0.25$ $x_2 = \frac{1}{2} (1.75 + \frac{3}{1.75}) (M)$                                                                                                                                                                                                                                       |                 |
|     | = 1.732143;  2-x, = 0.017857                                                                                                                                                                                                                                                                                        | 4               |

SOLUTIONS 4N (xmments >X Squally: P(cos + 5/n= )=4+32 =) P= 25 : P= 5N(A) PSinx = 3/4 =) tanx=3/4m)

PC3x = 36.87 Uhus, 0 = 90 tx Lami's Theorem = 126.27" (A) Can be used. SECTION B(60 masks) (A) Let x, y be the exact values = DX=x-X = X=X+DX DY= y-Y => y= Y+DY Ein in  $\frac{X}{Y} = \frac{X + \Delta X}{Y + \Delta Y} - \frac{X}{Y}$ Assumption  $= \frac{XY + Y\Delta X - XY - X\Delta Y}{Y^{2}(i + \frac{\Delta Y}{Y})}$ =) AY << Y (B)  $= \frac{Y\Delta x - X\Delta Y}{Y^2(1+\Delta Y)} (M)$  $= \frac{Y\Delta x - x\Delta Y}{Y^2} \left( B_1 \right)$ Hence maximum error is  $= \frac{\Delta x}{Y} - \frac{X\Delta Y}{Y^2}$  $=\frac{x}{Y}\left[\frac{\Delta x}{x}-\frac{\Delta Y}{Y}\right](M_{j})$ < 13/ 12x + 1-2x / (M)

| 42   | SOLY TIONS                                                                                                                                                                                                                                                                                                                                                                      | Comments.                     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 9    | (b) Max enor in $(X-Y) =  Dx  +  DY $ ; $X-Y = 1.24$<br>= 0.55 (B)<br>Max. enor in $(X+Y) = 0.55(B)$ ; $X+Y = 8.36$                                                                                                                                                                                                                                                             | Accept the<br>Simple Interval |
|      | Have maximum error = $\frac{1.24}{8.36}$ $\left\{ \frac{0.55}{1.24} + \frac{0.55}{8.36} \right\} m_1 B_1$                                                                                                                                                                                                                                                                       | An Time h2 Method             |
| 14 W | ~ 0.0755(4dps)(A)                                                                                                                                                                                                                                                                                                                                                               |                               |
| 10   | Height 0-50 50-90 90-100 100-120 120-160  freq. 8 16 20 32 4  f. density 0.16 0.4 2 1.6 0.1 B  c. frequence 8 24 44 76 80 (B)  (a) From the Histogram, mode $\approx$ 98 (see graph)  (b) Height 50 20 90 $=$ $\frac{n_1-8}{24-2} = \frac{80-10}{90-50}$ $\frac{n_1-8}{24-2} = \frac{80-10}{90-50}$ $\frac{n_1-8}{40} = \frac{80-10}{40}$ $\frac{n_1-8}{40} = \frac{80-10}{40}$ | (M)                           |
|      | $ \frac{163 \text{ht} \mid 160  116  120}{\text{c.f.} \mid 20  n_2  32} = \frac{n_2 - 20}{12} = \frac{116 - 100}{12} $ $ n_2 = 20 + 16 $ $ = 36(B) $                                                                                                                                                                                                                            |                               |
|      | The required no of pupils = $n_2 - n_1$ ( $n_1$ ) $= 36 - 20$ $= 16 \cdot (\Lambda_1)$                                                                                                                                                                                                                                                                                          | ·                             |



SOLUTIONS Comments 41 (a) IIV\_ = 602+802  $= V_r = 100 \, \text{km} \, \text{h}^{-1} \left( M_1 \right)$   $tan\theta = \frac{60}{20} \left( M_1 \right)$ →E 0-36.87° The resultant vel. is nockondi due N36.87 E. (b) 60 km h-1 Vr = 802-602  $V_{V} = \sqrt{80^{2} - 60^{2}} (M_{I})$   $= 20\sqrt{7} \, km \, h^{2} / G$  $M_1$ )  $Sin \alpha = \frac{60}{20} = ) \alpha = 48.59 (B)$ The required direction is N48.59° W(A)with a resultant speed of 2017 km h -1. (A)

Commots SOLITIONS (a) X ~ no of malaria patients. ~B(10,0.75) (B) P(4<X<9)=P(X=2)-P(X=4); p=0.75(M)) = P(X>2) - P(X> + M) = 0.25 Symmetry prefety. = 0.7560 - 0.0197(B1) = 0.7363 (TAB) (A) (b) X~ B(42, 6.75); n is large (B)  $X \sim N(\mu, \Omega^{2})$ ;  $\mu = 42 \times 0.75$ ;  $\sigma = \sqrt{36 \times 0.25}$ =  $3(\beta_{1})$ (i) P(X=4) = P(3.5 < X < 4.5) $= P(\frac{3.5-36}{2} < Z < \frac{4.5-36}{3} / M_1)$ = 0.0000 (4 dps) (ii)  $P(X \le 26) = P(X \le 26.5)$  $= \int \left( Z \leq \frac{26.5 - 36}{2} \right) \left( \frac{11}{2} \right)$ = P(Z < -3.167)B)  $= \phi(3.167) = 0.0000(4475)$ 

 $\alpha$ 

SOLUTIONS Comments (4) 1 m 2.59 cost tano = 4/3 let F be the minimum fora! R = 2.59 (03 8 B) and F = 2.59.51 - 112 (M) = 2.535me - 1 x 2.53638 = 2.5x5.2 (4 - 1x3, /4) = 12.25 N(A) (b) ¥2.59638 => R= 2.53(538), resultant fora = 2.555100-2.5 pagas8(B) 2.59 (smt - Mass) Acceleration =  $= \frac{2.5 \times 9.2 (0.2 - 0.3)}{}$  $= 4.9 \, \text{ms}^{-2}$ 

4N

13

| ĺ <b></b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4N        | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4         | (a) $f(\alpha) = \chi^{3} - 2\chi - 1$   Since $f(1) < 0$<br>f(1) = 1 - 2 - 1   $= -2$ (b)   $= -2$ (c)   $= -2$ (d)   $= -2$ (e)   $= -2$ (f)   $= -2$ (f)   $= -2$ (g)   $= -2$ (g) |
|           | By linear interpolation: $\frac{\chi_0 - 1}{2 - 1} = \frac{\ddot{o} - (-2)}{3 - (-2)}$ $\chi_0 = 1 + \frac{2}{1}$ $= 1.4  (A_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | (b) $\chi_{n+1} = \frac{\chi_n - (\chi_n^3 - 2\chi_n - 1)}{3\chi_n^2 - 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | $\chi_{m1} = \frac{2z_n^3 + 1}{3z_n^2 - 2}, h = 0,1,2,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

 $f(x) = x^{\frac{3}{2}} 2x - 1$   $f(x) = 3x^{\frac{1}{2}} 2$ 

Commants.

and f(2)>0

 $\frac{Dry-Kun}{\lambda_0=1.4}$ 

| T  | Ac 1     |           |            |  |  |
|----|----------|-----------|------------|--|--|
| n  | $\chi_n$ | Hint 1    | Xnt, -Xn1  |  |  |
| 0  | 1.4      | 1.6722    | 0.2722     |  |  |
| 1" | 6722     | 1.6203    | 0.0519     |  |  |
| 2  | 1/6203   | 1.6180(B) | 0.002 \$ B |  |  |
| 3  | 1,6180   | 1.6180    | 0.0000     |  |  |

The raf is 1.6180 2 1.618 (3 dpls)



4N

&N Comments. (a) Velouty of Ferry Velocity of Brist XXX Typing com V = (60) kmh / By The did not sell  $(B_1)$ travelling ivestwinds so Part (b) is V = ( -45/2 COS45° ) M) unworkable. = (-45) kmh (A) => V = (-45) - (0) (m) | W.B | = (-45) + (-15) (my) FB (-45) - (60) (m) | W.B | = (-45) + (-15) (my) = 15 1/10 km/h (A)  $= \begin{pmatrix} -45 \\ -15 \end{pmatrix} kmk$ Direction & FVB  $tan \alpha = \frac{45}{15} = 3$ x = 71.57°(B)  $M_{j}$  >E W - 45 6mh -1 Hence Vehicility of the Ferry 15kmh) 15 15 10 km/2 due 571.57 W 13

41 SOLUTIONS 16 Let X be the Mails oftened by a cardidate =) X~N(64,02) (a) P(X > 50) = 0.60 (My) => P(Z > Zo) = 0.60; when Zo = 50-10 (My) From table: Zu = -0.253 = -0.253 = 50-4 Bi)  $A = \frac{14}{0.25}$ 255(角) (b) Let no be the pass mark  $=) p(\chi > \chi_{\delta}) = 0.75 (M_1)$ =  $P(Z > z_0) = 0.75$ ,  $z_0 = \frac{z_0 - 64}{55}$  $=) - 0.674 = \frac{\chi_0 - 64}{17}$ =) 10 = 64 - 0.674x55 (M) = 27(A) =P(-0.3455 < Z<-0.1636) €) P(0.1636< Z< 0.3455) = 0.1353-0.0652 = 0.0701 (A) No required = 2000 x 0.070 (M) = 140

CEMMENTI