Ren Pang

Mobile: +1 (484)-747-2401, Email: rbp5354@psu.edu

Education

2019-present PhD Informatics, College of Information Sciences and Technology,

Pennsylvania State University, (Advisor: Ting Wang).

2018–2019 **PhD Computer Science**, Department of Computer Science and Engineering,

(transferred) Lehigh University, (Advisor: Ting Wang).

2014–2018 BSc. Mathematics, Department of Mathematics, Nankai University.

Research Interests

Deep Learning Security; Adversarial Robustness; Trojan Backdoor

Publications

ACM CCS'20 A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models.

Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobeychik, Xiapu Luo, Alex Liu, Ting Wang

ACM SAC Conference on Computer and Communications (CCS)

ACM KDD'20 AdvMind: Inferring Adversary Intent of Black-Box Attacks.

Ren Pang, Xinyang Zhang, Shouling Ji, Xiapu Luo, Ting Wang *ACM International Conference on Knowledge Discovery and Data Mining (KDD)*

AAAI'21 i-Algebra: Towards Interactive Interpretability of Neural Nets.

Xinyang Zhang, **Ren Pang**, Shouling Ji, Fenglong Ma, Ting Wang *AAAI Conference on Artificial Intelligence*

USENIX Graph Backdoor.

Security'21 Zhaohan Xi, **Ren Pang**, Shouling Ji, Ting Wang USENIX Security Symposium

USENIX On the Security Risks of AutoML.

Security'22 **Ren Pang**, Zhaohan Xi, Shouling Ji, Xiapu Luo, Ting Wang *USENIX Security Symposium*

Preprints

2020 TROJANZOO: Everything you ever wanted to know about neural backdoors (but were afraid to ask).

Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Cheng Peng, Ting Wang

Research Experiences

2018 Adversarial Vulnerabilities in Neural Networks.

My work explores the mutual reinforcement effects between two attack vectors in deep learning: adversarial inputs and poisoned models, and designs a unified framework to control the trade-offs. The framework can be easily extended to the backdoor scenario and lead to a new powerful attack (IMC).

2019 Detection of Black-box Adversarial Attacks.

The project develops a novel estimation model to infer the adversary intent of black-box adversarial attacks.

2020 Backdoors in Neural Networks.

We construct a universal platform (TrojanZoo) that contains state-of-the-art works on backdoor attacks and defenses, evaluate the performance of different methods under the same metrics, and explore the underlying mechanism of backdoors in neural networks.

2021 Vulnerabilities and Robustness in AutoML.

We propose that Neural-Architecture-Search(NAS) algorithms introduce vulnerabilities of different kinds of attacks. Compared with human-designed models, the DARTS-like models tend to be more sensitive against PGD, TrojanNN, Membership Inference, etc.

GitHub

Owner TrojanZoo.

https://github.com/ain-soph/trojanzoo

TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning. All my research studies are using this powerful library. Docs and unit-tests are still in development.

Owner AlpsPlot.

https://github.com/ain-soph/alpsplot

My personal python plotting library of alps-lab style using matplotlib.

Owner trojanzoo-sphinx-theme.

https://github.com/ain-soph/trojanzoo-sphinx-theme

I modify pytorch_sphinx_theme, remove auxiliary items and make it a generalized theme. It supports easy customization in your project without touching the package contents.

Contributor **Open-source Projects**.

matplotlib; pytorch_sphinx_theme; sphinxcontrib-katex; torchvision

Teaching Experience

2018 Fall **Teaching Assistant**, *CSE 017: Structured Programming and Data Structures*, Lehigh University (Instructor: Jeff Heflin).

Technical Skills

Language Python; Java; C++; MatLab; Bash; LaTeX; HTML; JavaScript

Package pytorch; matplotlib; sphinx; jinja; pytest

Tools Auto CI; Docker; GitHub Actions