יעל ויצמן 312232655

ממן 13 – פרק 5 הפרד ומשול

שאלה 1:

יהי הפולינום:

$$P(x) = x^3 + 2x^2-3x-1 \rightarrow p(x) = -1-3x+2x^2 + x^3$$

n=4, w= $e^{\frac{2\pi i}{4}}=i$ כאשר:

הסבר: 1. נפריד את הפונקציה הנתונה ל2 פולינומים המורכבים מהחזקות הזוגיות והאי זוגיות:

Podd (x) = -3+
$$x^2 \to Podd(x^2) = -3+x$$

- עבור אינדקסים אי זוגיים

Peven (x) =
$$-1+2x^2 \rightarrow \text{Peven}(x^2) = -1+2x$$

- עבור אינדקסים זוגיים

2. נראה את תוצאות הרצת האלגוריתם על שורשי היחידה:

	1	i	-1	-i
Peven $(x^2) = -1 + 2x$	1	-3	1	-3
$Podd(x^2) = -3+x$	-2	-4	-2	-4
$P(x) = P_{even}(x^2) + xP_{odd}(x^2)$	-1	-3-4i	3	-3+4i

FFT - INVERSE

3. נראה את תוצאות הרצת

	1	-i	-1	i
$P_{even}(x^2) = (-3 - 4i)x - 3 + 4i$	2	-4	2	-4
$P_{odd}(x^2) = -x + 3$	-6	-8i	-6	-8i
$P(x) = P_{even}(x^2) + xP_{odd}(x^2)$	-4	-12	8	4

4. תיאור ריצת האלגוריתם:

- 1. Calculating FFT ((-1, -3, 2, 1), w)
 - 1.1. Calling FFT $((-1,3),w^2)$
 - a. Calling FFT(-1), w^4) Return (-1)
 - b. Calling FFT((3), w^4) Return (2)
 - c. Return $((-1+1*2), (-1+w^2*2)) = (1, -3)$
 - 1.2. Calling FFT((-3,1), w^2)
 - a. Calling FFT((-3), w^4) Return (-3)
 - b. Calling FFT ((1), w^4) Return (1)
 - c. Return $((-3+1*1), (-3+w^2*1)) = (-2, -4)$
 - 1.3. Calculate: * f(1) = 1+1*-2 = -1

$$f(i) = -3+i*-4 = -3-4i$$

$$f(-1) = 1 + -1 \cdot -2 = 3$$

$$f(-i) = -3 + -i^* - 4 = -3 + 4i$$

- 1.4. Return (-1, -3-4i, 3, -3+4i)
- 2. Calculating FFT ((-1, -3-4i, 3, -3+4i), w^{-1})
 - 1.1. Calling FFT($(-1, 3), w^{-2}$)
 - a. Calling FFT((-1), w^{-4}) Return (-1)
 - b. Calling FFT ((3), w^{-4}) Return (3)
 - c. Return $((-1+1*3), (-1+w^{-2}*3)) = (2, -4)$

- 1.2. Calling FFT $((-3-4i, -3+4i), w^{-2})$
 - a. Calling FFT((-3-4i), w^{-4}) Return (-3-4i)
 - b. Calling FFT ((-3+4i), w^{-4}) Return (-3+4i)
 - c. Return ($(-3-4i+1*(-3+4i)), (-3-4i+w^{-2}*(-3+4i))$) = (-6, -8i)
- 1.3. Calculating: f(1) = 2 + 1* 6 = -4

$$f(i) = -4+w^{-1}*-8i = -4-8 = -12$$

$$f(-1) = 2+w^{-2}*-6 = 8$$

$$f(-i) = -4 + w^{-3} - 8i = -4 + 8 = 4$$

1.4. Return(-4, -12, 8, 4)

<u>שאלה 2:</u>

שלבי האלגוריתם:

הנחות:

- 1. שני המספרים המוכפלים הם שווי אורך.
 - 2. שני המספרים חיוביים
- 3. ההכפלות שמתבצעות במהלך הקריאות הרקורסיביות אינן מגדילות את אורכם של המספרים.
 - * נמיר לייצוג בינארי את שני הפולינומים שהתקבלו כקלט: X,Y .
- * נמיר כל פולינום מייצוג מקדמים לייצוג ערכים ע"י הרצת אלגוריתם FFT על בלוקים בגודל n/k על כל פולינום בנפרד.

נקבל שני ווקטורי תוצאות שכל אחד מהם הוא בגודל של n/k.

- * נכפיל את שני הווקטורים שקיבלנו מהרצת האלגוריתם.
- * על מנת לעבור בחזרה מייצוג ערכים לייצוג מקדמים נריץ על תוצאת ההכפלה את אלגוריתם *
 - * נמיר את הערכים המתקבלים מייצוג בינארי לייצוג השלם שלהם. קיבלנו את התוצאה הסופית של הכפלת שני הפולינומים.

נכונות

האלגוריתם מתבסס על המרת מספרים לבסיס בינארי ולהפך , ועל אלגוריתם FFT וועל אלגוריתם אלו. ולכן הנכונות שלו נובעת מנכונות שני אלגוריתמים אלו.

<u>זמן ריצה</u>

- $\Theta(n)$ ההמרה מייצוג בינארי ולהפך מתבצע תוך זמן של
- רכפי שנתון ולכן נקבל - $\Theta(k^2)$ איז הרצת האלגוריתם $\Theta(k^2)$ על בלוקים בגודל (n/k) היא היא (n/k) היא (n/k) היא (n/k) על בלוקים בגודל (n/k) אועל פי חוקי לוגריתמים: $\Theta(\log n*n*\log \frac{n}{\log n})$ ועל פי חוקי לוגריתמים: $\Theta(k^2*\frac{n}{k}*\log \frac{n}{k})=\Theta(k*n*\log \frac{n}{k})$

$$\Theta(\log n * n * \log \frac{n}{\log n}) = \Theta(\log n * n * (\log n - \log \log n)) = \Theta(\log n * n * \log n) = \Theta(n * \log^2 n)$$

. $\Theta(n*\log^2 n)$ לכן סה"כ זמן הריצה הוא

שאלה 3

אלגוריתם לחישוב ערכי הנגזרות בנקודה כלשהי:

A, B :נגדיר שני ווקטורים

:כך ש

$$A_i = (n-i)! \, a_{n-i} \,:$$
ועבור כל i יתקיים , $A = (n! \, a_n, (n-1)! \, a_{n-1}, \dots, 1! \, a_1, 0! \, a_0)$

$$B_i = rac{x_0^i}{i!}: ועבור כל $i: B = (rac{x_0^0}{0!}, rac{x_0^1}{1!}, ..., rac{x_0^n}{n!})$$$

.fב מכיל את כל המקדמים של x_0 לכל המקדמים את מכיל את מכיל

בווקטור B עבור כל קורדינאטה: במונה יהיה החזקה של x_0 והמכנה יכיל את עצרת גובה החזקה.

על ידי שימוש ב FFT נכפול בין הווקטורים A,B את תוצאת ההכפלה נשמור ב: SUM שהוא הקונוולוציה בין שני הווקרטורים. כעת על מנת לחשב את ערך נגזרת כלשהי k נחשב:

$$\sum_{0 \le i, j \le k \land i+j=k} A_i B_j = A_0 B_k + \dots + A_k B_0 = f^{(k)}(x_0)$$

נכונות + סיבוכיות.

- O(n) יצירת שני הווקטורים לוקחת זמן לינארי 1.
- O(n) :חישוב ערך נגזרת כלשהי הצגת התוצאה 2
- $.3*\Theta(n\log n)=\Theta(n\log n)$ \leftarrow FFT^-1 שני הרצות + הרצה נוספת של FFT -1 שני הרצות GRIP GRIP שני הרצות GRIP GRIP שני הרצות GRIP GR

 $\Theta(n\log n)$ 'סך הכל זמן הריצה הכולל

שאלה 4

מימוש ישיר של כפל מטריצות כרוך ב- $\Theta(n^3)$ פעולות אריתמטיות. ביטוי זה נגזר מהעובדה שבכל שלב של הרקורסיה באלגוריתם מפרקים כל מטריצה ל-4 תתי מטריצות מסדר $\frac{n}{2}*\frac{n}{2}$ (כלומר 8 קריאות רקורסיביות – פעולות כפל) ו-4 פעולות חיבור (בין כל שני איברים במטריצה). על כן מתקבלת נוסחה לפי שיטת האב לחישוב זמן הריצה של האלגוריתם - $\Theta(n^{\log_2 8})=\Theta(n^3)=$