## STAT 103 Statistical Thinking

Exam 1 Review
Professor Mengshi Zhou

#### Chapter 1 Individuals and Variables

Goal: Identify the individuals and the variables in a study(dataset)

Goal: Distinguish categorical variable and numerical variables

**Individuals** are objects described by the (people, animals, or things)

Variables any characteristics about individuals

Categorical variables place an individual in to one of serval groups (sex, major).

**Numerical variables** take numerical values for which arithmetic operations make sense (weight, height).

### Chapter 1 Observational studies and Experiments

Goal: Know the definition and goal of observational studies and Experiments, and the difference between an observational study and an experiment

- Observational studies try to gather information without disturbing the scene they are observing.
- Experiments assignment treatment to individuals in order to see how they respond. The goal of an experiment is usually to learn whether some treatment actually causes a certain response.

#### **Chapter 1 Population and Sample**

Goal: Identify the population and sample in a study

**Population:** The entire set of possible individuals about which we want information

**Sample:** A subset of the population from which data are collected

### Chapter 1 Sample Survey and Census

Goal: Know the definition of sample survey and census, determine if an observational study is a sample survey

- A census is an attempt to collect data from every member of the population.
- A sample survey is a collection of data from a subset of the population chosen by the researcher.

### **Chapter 2 Biased Samples**

Goal: Be able to recognize bad sampling methods and know why they cause bias

- A convenience sample select of whichever individuals are easiest to reach
- A convenience sample is biased because it favors those who are easy to access y researchers

### **Chapter 2 Biased Samples**

Goal: Be able to recognize bad sampling methods and know why they cause bias

- In a voluntary response sample individuals chooses themselves by responding to a general appeal (write-in or call-in opinion polls).
- A voluntary response sample is biased because people who feel strongly about a topic are more likely to respond to voice their feelings.

### Chapter 2 Simple Random Sample

Goal: Know the definition of a simple random sample and SRS can avoid bias

- The deliberate use of chance in producing data is one of the big ideas of statistics. Random samples use chance to choose a sample, thus avoiding bias due to personal choice.
- The basic type of random sample is the **simple** random sample, which gives all samples of the same size the same chance to be the sample we actually choose.

#### **Chapter 2 Simple Random Sample**

### Goal: Know the steps to generate a simple random sample

To select a simple random sample:

- 1. Label each population element with as few digits as possible, making sure each label is the same length.
- 2. Use the table or software to select random numbers.

### **Chapter 3 Proportion**

Goal: Calculate sample proportion

#### **Proportion**

$$Proportion = \frac{Number\ in\ the\ category}{Total\ number}$$

The symbol for a sample proportion is  $\hat{p}$  and is read as p-hat. The symbol for a population proportion is p.

### **Chapter 3 Parameter and Statistic**

Goal: Identify of parameter and statistic in a study

**Parameter:** A number that describes a population. It is a fixed number, but in practice we don't know the actual value of this number.

**Statistic**: A number that describes a sample. This is a known value when we have taken a sample, but it can change from sample to sample. It is often used to estimate an unknown parameter.

### **Chapter 3 Bias and Variability**

Goal: Understand Bias and Variability and know how to reduce Bias and Variation

**Bias:** When the design of a statistical study systematically favors certain outcomes. Can be reduced using simple random sample

Variability: Describes how spread out the values of the sample statistic are when we take many samples. Can be reduced using larger sample size

### **Chapter 3 Margin of Error**

Goal: Know what "margin of error" means

margin of error: margin of error says how close the sample statistic lies to the population parameter (Only measure variability).

### Chapter 3 Proportion and Quick Method

Goal: Know the quick method for finding the margin of error AND when the method is appropriate

We can roughly approximate the margin of error of population proportion for 95% confidence based on a **simple random sample** of size n by the formula  $1/\sqrt{n}$ .

95% confidence interval = 
$$\hat{p} \pm \frac{1}{\sqrt{n}}$$

#### **Chapter 3 Confidence statement**

Goal: Know the 2 parts of a confidence statement and how to interpret a confidence statement

confidence statement: We are 95% confidence that the true parameter is between statistics plus or minus margin error

Most often, this margin of error is for 95% confidence level. That is, if we chose many samples, the truth about the population would be within the margin of error 95% of the time.

### **Chapter 4 Sampling Errors**

Goal: Know the types of sampling errors

- Sampling errors come from the act of choosing a sample. Random sampling error, bad sampling methods and undercoverage are common types of sampling error.
- Undercoverage occurs when some members of the population are left out of the sampling frame, the list from which the sample is actually chosen.

### **Chapter 4 Non-Sampling Errors**

#### Goal: Know the types of nonsampling errors

The most serious errors in most careful surveys, however, are **nonsampling errors**. These have nothing to do with choosing a sample—they are present even in a census.

The single biggest problem is **nonresponse**: subjects can't be contacted or refuse to answer.

Mistakes in handling the data (**processing errors**) and incorrect answers by respondents (**response errors**) are other examples of nonsampling errors.

Finally, the exact **wording of questions** has a big influence on the answers.

#### **Chapter 4 Distinguish two types of errors**



### Chapter 4 Stratified Random Sample

Goal: Know what a stratified sample is and how to identify strata

**Stratified random sample**: A sample in which the sampling frame is first divided into various **strata** (groups). A simple random sample is then taken in each of these **strata**, with those selected combined to form the complete sample:

# Chapter 5 response variables, explanatory variables, treatments Goal: Identify the response variables, explanatory variables, and treatments in an experiment.

**explanatory variable** A variable that we think explains or causes changes in the response variable.

**response variable** A variable that measures an outcome or result of a study.

**Treatments:** Any specific experimental condition that is applied to the subjects. If an experiment has several explanatory variables, this is a combination of specific values of these variables.

### Chapter 5 lurking variables and confounding

Goal: Be able to identify a lurking variable that is confounding a study

Lurking variable = has important effect on response variable but is NOT an explanatory variable (sometimes called a confounding variable or a third variable)

Two variables are **CONFOUNDED** when their effects on a response variable cannot be distinguished from each other.

### **Chapter 5 Randomized Comparative Experiment**

Goal: Know the definition of a Randomized Comparative Experiment

Randomization--randomly assigning cases to different levels of the explanatory variable (e.g., different treatment groups).

An experiment that involves randomization may be referred to as a randomized comparative experiment.

#### **Chapter 5 Logics for good experiments**

Control Group--A group receive no treatment or a placebo

Placebo Group--A group that receives placebo (e.g., a sugar pill in a medication study)

If we want to compare multiple treatments, we do not need placebo group

### Chapter 5 Logics for good experiments

Goal: Fully understand the logic of experimental design

Identify control groups, randomization, placebos, blinding, and use enough subjects in experiments and explain why each is used.

#### **Chapter 5 Logics for good experiments**

- **Control** the effects of lurking variables on the response, most simply by comparing two or more treatments.
- **Randomize** use impersonal chance to assign subjects to treatments.
- **Double-Blind** –Research study in which neither the participants nor the researchers interacting with them know which cases have been assigned to which treatment groups
- Use enough subjects in each group to reduce chance variation in the results.
- Make sure experimental units **represent** the others not in the experiments