ESERCIZIO 1. Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{(1,2), (1,3), (1,4), (2,3), (2,5), (2,6), (4,3), (5,6), (6,3)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1, 3)	(1,4)	(2,3)	(2,5)	(2,6)	(4,3)	(5, 6)	(6,3)
c_{ij}	2	6	1	10	3	18	21	2	15
d_{ij}	11	4	3	8	9	5	1	10	7

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5	6
b_i	11	0	-2	-1	0	-8

Determinare una soluzione ottima e il valore ottimo per questo problema di flusso a costo minimo a partire dalla seguente terna

$$B = \{x_{12}, x_{14}, x_{23}, x_{25}, x_{56}\} \quad N_0 = \{x_{13}, x_{63}\} \quad N_1 = \{x_{43}, x_{26}\}.$$

ESERCIZIO 2. Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5, 6\}$$

e

$$A = \{(1,2), (1,3), (2,4), (2,5), (3,5), (3,6), (4,6), (6,5)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(2,4)	(2,5)	(3, 5)	(3, 6)	(4, 6)	(6,5)
c_{ij}	6	4	2	8	2	9	1	2
d_{ij}	7	8	6	6	3	2	1	2

e i seguenti valori b_i associati ai nodi

no	do	1	2	3	4	5	6
b_i		5	0	0	0	-5	0

Determinare una soluzione ottima e il valore ottimo per questo problema di flusso a costo minimo a partire dalla tripla iniziale

$$B = \{x_{12}, x_{13}, x_{24}, x_{25}, x_{36}\}$$
 $N_0 = \{x_{35}, x_{46}, x_{65}\}$ $N_1 = \emptyset$.

ESERCIZIO 3. Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5\}$$

е

$$A = \{(1,2), (1,3), (2,3), (2,4), (3,5), (5,2), (5,4)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(2,3)	(2,4)	(3, 5)	(5,2)	(5,4)
c_{ij}	2	2	5	5	3	7	1
d_{ij}	5	11	7	3	8	3	1

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5
b_i	8	-4	0	-2	-2

Determinare una soluzione ottima e il valore ottimo per questo problema di flusso a costo minimo, partendo dalla base

$$B_0 = \{(1,2), (1,3), (2,4), (3,5)\}, N_0 = \{(2,3), (5,4)\}, N_1 = \{(5,2)\}.$$