Formulario

Propiededades mecanicas	Dislocaciones y mecanismos de endurecimiento
$\sigma = rac{F_t}{A_0} \ \Box \ au = rac{F_s}{A_o} \ \Box \ \sigma_R = rac{F}{A_i}$	Fuerza de traccion: $F_n = F\cos(arphi)$
$arepsilon = rac{\Delta L}{L_0} = rac{L - L_0}{L_0}$	Fuerza cizalladura: $F_c = \cos(\lambda)$
$arepsilon_L = rac{\Deltaarnothing}{arnothing_0} = rac{arnothing - arnothing_0}{arnothing_0}$	$A_{arphi}=rac{A}{\cos(arphi)}$
$\gamma = an(heta) \ \Box \ au = G \gamma$	$\sigma_n = \sigma \cos(arphi)^2$
$v=-rac{arepsilon_L}{arepsilon}\;\epsilon\;[-1,0.5]$	$ au_r = \sigma \cos(arphi) \cos(\lambda)$
$P=-Krac{\Delta V}{V_0}$	$\sigma_y = rac{ au_{CRSS}}{(\cos(arphi)\cos(\lambda))_{MAX}}$
$U_R=\int_0^{arepsilon_y}\sigma darepsilon=0.5arepsilon_y\sigma_y=rac{\sigma_y^2}{2E}=0.5Earepsilon_y^2$	mejor caso: $arphi=\lambda=45^{ m o}\Rightarrow\sigma_y=2 au_{CRSS}$
$\%EL=rac{L_f-L_0}{L_0} imes 100$	$\sigma_y = \sigma_0 + k_y d^{-1/2}$
$\%AR=rac{A_0-A_f}{A_0} imes 100$	
$U_t = \int_0^{arepsilon_f} \sigma darepsilon = U_r + \int_{arepsilon_y}^{arepsilon_f} \sigma darepsilon$	

- σο límite elástico del material en estado monocristalino (cte)
- ky parámetro de ajuste (cte)
- d diámetro medio de los granos (variable)