Problem 1: Exercise 16.12

Solve the following linear programs using simplex method:

(a) Maximize $-4x_1 - 3x_2$ subject to

$$5x_1 + x_2 \ge 11$$

$$-2x_1 - x_2 \le -8$$

$$x_1 + 2x_2 \ge 7$$

$$x_1, x_2 \ge 0$$

Introduce slack variables x_3, x_4, x_5 , we will have:

$$5x_1 + x_2 - x_3 = 11$$

$$-2x_1 - x_2 + x_4 = -8$$

$$x_1 + 2x_2 - x_5 = 7$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

We are trying to minimize $4x_1 + 3x_2$

$$C = [4, 3, 0, 0, 0]$$

Then

$$\begin{bmatrix} 5 & 1 & -1 & 0 & 0 & 11 \\ 2 & 1 & 0 & -1 & 0 & 8 \\ 1 & 2 & 0 & 0 & -1 & 7 \end{bmatrix}$$

Now we are using Two-Phase simplex method to solve this problem.

$$\begin{bmatrix} 5 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 11 \\ 2 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 8 \\ 1 & 2 & 0 & 0 & -1 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

We must update the last row:

$$\begin{bmatrix} 5 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 11 \\ 2 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 8 \\ 1 & 2 & 0 & 0 & -1 & 0 & 0 & 1 & 7 \\ -8 & -4 & 1 & 1 & 1 & 0 & 0 & 0 & -26 \end{bmatrix}$$

Take α_{11} as pivot:

$$\begin{bmatrix} 1 & \frac{1}{5} & -\frac{1}{5} & 0 & 0 & \frac{1}{5} & 0 & 0 & \frac{11}{5} \\ 0 & \frac{3}{5} & \frac{2}{5} & -1 & 0 & \frac{2}{5} & 1 & 0 & \frac{18}{5} \\ 0 & \frac{9}{5} & \frac{1}{5} & 0 & -1 & -\frac{1}{5} & 0 & 1 & \frac{24}{5} \\ 0 & -\frac{12}{5} & -\frac{3}{5} & 1 & 1 & \frac{8}{5} & 0 & 0 & \frac{42}{5} \end{bmatrix}$$

Take α_{31} as pivot:

$$\begin{bmatrix} 1 & 0 & ^2/9 & 0 & ^1/9 & ^2/9 & 0 & ^1/9 & ^5/3 \\ 0 & 0 & ^1/3 & -1 & ^1/3 & -^1/3 & 1 & -^1/3 & 2 \\ 0 & 1 & ^1/9 & 0 & -^5/9 & -^1/9 & 0 & ^5/9 & ^8/3 \\ 0 & 0 & ^1/3 & 1 & -^1/3 & ^4/3 & 0 & ^4/3 & -2 \end{bmatrix}$$

Take α_{23} as pivot:

$$\begin{bmatrix} 1 & 0 & 0 & ^2/_3 & ^1/_3 & 0 & ^2/_3 & -^1/_3 & 3 \\ 0 & 0 & 1 & -3 & 1 & -1 & 3 & -1 & 6 \\ 0 & 1 & 0 & ^1/_3 & -^2/_3 & 0 & -3 & ^2/_3 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Now we can remove column 6-8.

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{2}{3} & \frac{1}{3} & 3\\ 0 & 0 & 1 & -3 & 1 & 6\\ 0 & 1 & 0 & \frac{1}{3} & -\frac{2}{3} & 2\\ 4 & 3 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Updating the last row, we can have:

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{2}{3} & \frac{1}{3} & 3 \\ 0 & 0 & 1 & -3 & 1 & 6 \\ 0 & 1 & 0 & \frac{1}{3} & -\frac{2}{3} & 2 \\ 0 & 0 & 0 & \frac{5}{3} & 0 & -18 \end{bmatrix}$$

All the reduced cost coefficients are nonnegative, hence the optimal solution is

$$x = \begin{bmatrix} 3 \\ 2 \\ 6 \\ 0 \\ 0 \end{bmatrix}$$

and the optimal value is 18.

Problem 2: Exercise 16.12

The dual problem: Maximize $11\lambda_1 + 8\lambda_2 + 7\lambda_3$ subject to:

$$5\lambda_1 + 2\lambda_2 + \lambda_3 \le 4$$
$$\lambda_1 + \lambda_2 + 2\lambda_3 \le 3$$
$$\lambda_1, \lambda_2, \lambda_3 \ge 0$$

If we introduce slack variables λ_4 and λ_5 , we will have :

$$5\lambda_1 + 2\lambda_2 + \lambda_3 + \lambda_4 = 4$$
$$\lambda_1 + \lambda_2 + 2\lambda_3 + \lambda_5 = 3$$
$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \ge 0$$

Then

$$\begin{bmatrix} 5 & 2 & 1 & 1 & 0 & 4 \\ 1 & 1 & 2 & 0 & 1 & 3 \\ -11 & -8 & -7 & 0 & 0 & 0 \end{bmatrix}$$

Take α_{11} as pivot to get :

$$\begin{bmatrix} 1 & 2/5 & 1/5 & 1/5 & 0 & 4/5 \\ 0 & 3/5 & 9/5 & -1/5 & 1 & ^{11}/5 \\ 0 & -^{18}/5 & -^{24}/5 & ^{11}/5 & 0 & ^{44}/5 \end{bmatrix}$$

Take α_{23} as pivot to get :

$$\begin{bmatrix} 1 & 1/3 & 0 & 2/9 & -1/9 & 5/9 \\ 0 & 1/3 & 1 & -1/9 & 5/9 & 11/9 \\ 0 & -2 & 0 & 5/3 & 8/3 & 44/3 \end{bmatrix}$$

Take α_{12} as pivot to get :

$$\begin{bmatrix} 3 & 1 & 0 & \frac{2}{3} & -\frac{1}{3} & \frac{5}{3} \\ -1 & 0 & 1 & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 6 & 0 & 0 & 3 & 2 & 18 \end{bmatrix}$$

All the reduced cost coefficients are nonnegative, hence the optimal solution is

$$\lambda = \begin{bmatrix} 0 \\ 5/3 \\ 2/3 \\ 0 \\ 0 \end{bmatrix}$$

and the optimal value is 18.

Problem 3: Exercise 20.2 b.

Find local extremizers for the following optimization problem:

Minimize: $4x_1 + x_2^2$ subject to : $x_1^2 + x_2^2 = 9$

$$f(x_1, x_2) = 4x_1 + x_2^2$$

$$h(x_1, x_2) = x_1^2 + x_2^2 - 9$$

$$\nabla f = \begin{bmatrix} 4 & 2x_2 \end{bmatrix}$$

$$\nabla h = \begin{bmatrix} 2x_1 & 2x_2 \end{bmatrix}$$

By the Lagrange condition:

$$4 - \lambda \times 2x_1 = 0$$
$$2x_2 - \lambda \times 2x_2 = 0$$
$$x_1^2 + x_2^2 - 9 = 0$$

If $\lambda = -1$, we have:

$$\mathbf{x} = \begin{bmatrix} 2 & \sqrt{5} \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} 2 & -\sqrt{5} \end{bmatrix}$$

If
$$\lambda = \frac{2}{3}$$
, we have: $\mathbf{x} = \begin{bmatrix} -3 & 0 \end{bmatrix}$
If $\lambda = -\frac{2}{3}$, we have: $\mathbf{x} = \begin{bmatrix} 3 & 0 \end{bmatrix}$

Since we want maximizers only, we keep $\lambda = -1$. Now we want to show that

$$\mathbf{x} = \begin{bmatrix} 2 & \sqrt{5} \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} 2 & -\sqrt{5} \end{bmatrix}$$

are indeed the maximizers. The Hessian matrix is:

$$H(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} + \lambda \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$$

To find the tangent space we have:

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 & \pm \sqrt{5} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0$$

So the tangent space is $\left[\frac{\sqrt{5}}{2}a, a\right]$ and $\left[-\frac{\sqrt{5}}{2}a, a\right]$ Then,

$$\begin{bmatrix} \frac{\sqrt{5}}{2}a, & a \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{5}}{2}a \\ a \end{bmatrix} = -\frac{5}{2}a^2 < 0$$
$$\begin{bmatrix} -\frac{\sqrt{5}}{2}a, & a \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{5}}{2}a \\ a \end{bmatrix} = -\frac{5}{2}a^2 < 0$$

Therefore,

$$\mathbf{x} = \begin{bmatrix} 2 & \sqrt{5} \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} 2 & -\sqrt{5} \end{bmatrix}$$

are indeed the maximizers.

Problem 4: Exercise 20.9

Find all maximizers of the function: $f(x_1,x_2) = \frac{18x_1^2 - 8x_1x_2 + 12x_2^2}{2x_1^2 + 2x_2^2}$ In this problem we have

$$P = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$Q = \begin{bmatrix} 18 & -4 \\ -4 & 12 \end{bmatrix}$$

Then we can have:

$$\boldsymbol{P}^{-1}\boldsymbol{Q} = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$$

The eigenvalues are $\lambda=10$ and $\lambda=5$, Since we are looking for maximizer, we keep $\lambda=10$ only. Now we will show that the $\left[-\frac{2}{\sqrt{10}},\frac{1}{\sqrt{10}}\right]$ and $\left[\frac{2}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right]$ and is indeed the maximizer.

The Hessian is

$$H(x_1, x_2) = 2\mathbf{Q} - 2\lambda \mathbf{P} = \begin{bmatrix} -8 & -8 \\ -8 & -16 \end{bmatrix}$$

To find the tangent space we have:

$$\begin{bmatrix} 4x_1^*, 4x_2^* \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a \\ 2a \end{bmatrix}$$

Then

$$\begin{bmatrix} a & 2a \end{bmatrix} \begin{bmatrix} -8 & -8 \\ -8 & -16 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \begin{bmatrix} a \\ 2a \end{bmatrix} = -104a^2 < 0$$

Therefore,

$$\mathbf{x} = \left[-\frac{2}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right]$$
$$\mathbf{x} = \left[\frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}} \right]$$

are indeed the maximizers.

Problem 5: Exercise 21.2

Find local extremizers for :

a.
$$x_1^2+x_2^2-2x_1-10x_2+26$$
, subject to $^1\!/_5x_2-x_1^2\leq 0, 5x_1+^1\!/_2x_2\leq 5$
b. $x_1^2+x_2^2$, subject to $x_1\geq 0, x_2\geq 0, x_1+x_2\geq 5$
c. $x_1^2+6x_1x_2-4x_1-2x_2$, subject to $x_1^2+2x_2\leq 1, 2x_1-2x_2\leq 1$

(a)

$$f(\mathbf{x}) = x_1^2 + x_2^2 - x_1 - 10x_2 + 26$$

$$g_1(\mathbf{x}) = \frac{1}{5}x_2 - x_1^2 \le 0$$

$$g_2(\mathbf{x}) = 5x_1 + \frac{1}{2}x_2 - 5 \le 0$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 - 2, & 2x_2 - 10 \end{bmatrix}$$

$$\nabla g_1(\mathbf{x}) = \begin{bmatrix} -2x_1, & \frac{1}{5} \end{bmatrix}$$

$$\nabla g_2(\mathbf{x}) = \begin{bmatrix} 5, & \frac{1}{2} \end{bmatrix}$$

Write the KKT condition:

$$(2x_1 - 2) - 2\mu_1 x_1 + 5\mu_2 = 0$$
$$(2x_2 - 10) + \frac{1}{5}\mu_1 + \frac{1}{2}\mu_2 = 0$$
$$\mu_1(\frac{1}{5}x_2 - x_1^2) + \mu_2(5x_1 - \frac{1}{2} - 5) = 0$$

If $\mu_1 = 0$ and $\mu_2 = 0$, we have

$$\mathbf{x} = \begin{bmatrix} 1, & 5 \end{bmatrix}$$

which does not satisfy $g_2(x) \le 0$, so no feasible solutions. If $\mu_1 \ne 0$ and $\mu_2 = 0$, we have only one feasible solution:

$$\mathbf{x} = \begin{bmatrix} -1.02, & 5.2 \end{bmatrix}$$

If $\mu_1 = 0$ and $\mu_2 \neq 0$, we do not have only one feasible solution. If $\mu_1 \neq 0$ and $\mu_2 \neq 0$, we have only one feasible solution:

$$\mathbf{x} = \begin{bmatrix} -1 + \sqrt{2}, & 3 - 2\sqrt{2} \end{bmatrix}$$

(b)

$$f(\mathbf{x}) = x_1^2 + x_2^2$$

$$g_1(\mathbf{x}) = x_1 \ge 0$$

$$g_2(\mathbf{x}) = x_2 \ge 0$$

$$g_3(\mathbf{x}) = x_1 + x_2 - 5 \ge 0$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1, & 2x_2 \end{bmatrix}$$

$$\nabla g_1(\mathbf{x}) = \begin{bmatrix} 1, & 0 \end{bmatrix}$$

$$\nabla g_2(\mathbf{x}) = \begin{bmatrix} 0, & 1 \end{bmatrix}$$

$$\nabla g_3(\mathbf{x}) = \begin{bmatrix} 1, & 1 \end{bmatrix}$$

Then we have

$$2x_1 + \mu_1 + \mu_3 = 0$$

$$2x_2 + \mu_2 + \mu_3 = 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$\mu_1 x_1 + \mu_2 x_2 + \mu_3 (x_1 + x_2 - 5) = 0$$

If $\mu_1 = \mu_2 = 0$ and $\mu_3 \neq 0$ then $x_1 = x_2 = \frac{5}{2}$ After trying different combination of μ_1 , μ_2 and μ_3 The only extreminzer is $(\frac{5}{2}, \frac{5}{2})$

(c)

$$f(\mathbf{x}) = x_1^2 + 6x_1x_2 - 4x_1 - 2x_2$$

$$g_1(\mathbf{x}) = x_1^2 + 2x_2 - 1 \le 0$$

$$g_2(\mathbf{x}) = 2x_1 - 2x_2 - 1 \le 0$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 + 6x_2 - 4, & 6x_1 - 2 \end{bmatrix}$$

$$\nabla g_1(\mathbf{x}) = \begin{bmatrix} 2x_1, & 2 \end{bmatrix}$$

$$\nabla g_2(\mathbf{x}) = \begin{bmatrix} 2, & -2 \end{bmatrix}$$

Then we have

$$(2x_1 + 6x_2 - 4) + \mu_1(2x_1) + 2\mu_2 = 0$$

$$(6x_1 - 2) + 2\mu_1 - 2\mu_2 = 0$$

$$x_1^2 + 2x_2 - 1 \le 0$$

$$2x_1 - 2x_2 - 1 \le 0$$

$$\mu_1(x_1^2 + 2x_2 - 1) + \mu_2(2x_1 - 2x_2 - 1) = 0$$

If $\mu_1=0$ and $\mu_2=0$: we can get $x_1=\frac{1}{3}$ and $x_2=\frac{5}{9}$, which will make $x_1^2+2x_2-1=\frac{2}{9}>0$, not feasible.

If $\mu_1 = 0$ and $\mu_2 \neq 0$: we can get $[1/7, x_2 = 9/14]$

If $\mu_1 \neq 0$ and $\mu_2 = 0$: we can not get any solutions.

If $\mu_1 \neq 0$ and $\mu_2 \neq 0$: we can get only one feasible point $\left[-1 - \sqrt{2}, 3 + 2\sqrt{2}\right]$.