Test Report ------ 1/45

# MEASUREMENT REPORT of Matias Bluetooth Folding Keyboard

**Applicant**: Matias Corporation

**EUT** : Matias Bluetooth Folding Keyboard

**FCC ID** : WKMFK304305

**Model**: FK304, FK305, FK304-XX, FK-305-XX,

FK304RM, FK304M, FK305RM, FK305M

 $(X=A\sim Z)$ 

# Tested by:

# Training Research Co., Ltd.

 *Test Report* ------ 2/45

# **CERTIFICATION**

# We here by verify that:

The test data, data evaluation, test procedures and equipment configurations shown in this report were made mainly in accordance with the procedures given in ANSI C63.4 (2003) as a reference. All test were conducted by *Training Research Co., Ltd.*, *No. 255, Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C.* Also, we attest to the accuracy of each.

We further submit that the energy emitted by the sample EUT tested as described in the report is **in compliance with** the technical requirements set forth in the FCC Rules Part 15 Subpart C Section 15.247.

**Applicant** : Matias Corporation

**Applicant address**: 129 Rowntree Dairy Rd, Unit 20, Vaughan, Ontario, L4L

6eE1, Canada

**FCC ID** : WKMFK304305

**Report No.** : 12615080229

**Test Date** : July 31, 2008

Prepared by:

Jack Tsai

Approved by:

Frank Teai

### Conditions of issue:

- (1) This test report shall not be reproduced except in full, without written approval of TRC. And the test result contained within this report only relate to the sample submitted for testing.
- (2) This report must not be used by the client to claim product endorsement by NVLAP or any agency of U.S. Government.
- (3) This test report, measurements made by TRC are traceable to the NIST only Conducted and Radiated Method.



# **Tables of Contents**

| I.   | GE  | NERAL                                                            | 5  |
|------|-----|------------------------------------------------------------------|----|
|      | 1.1 | Introduction                                                     | 5  |
|      | 1.2 | Description of EUT                                               | 5  |
|      | 1.3 | Test method                                                      | 5  |
|      | 1.4 | Description of Support Equipment                                 | 6  |
|      | 1.5 | Configuration of System Under Test                               | 6  |
|      | 1.6 | Verify the Frequency and Channel                                 | 7  |
|      | 1.7 | Test Procedure                                                   | 8  |
|      | 1.8 | Location of the Test Site                                        | 8  |
|      | 1.9 | General Test Condition                                           | 8  |
| II.  | Sec | tion 15.203 : Antenna Requirement                                | 9  |
| III. | Sec | tion 15.207: Power Line Conducted Emissions for AC Powered Units | 10 |
|      | 3.1 | Test Condition & Setup                                           | 10 |
|      | 3.2 | List of Test Instruments                                         | 10 |
|      | 3.3 | Test Result of Conducted Emissions                               | 10 |
| IV.  | Sec | tion 15.247(a): Technical Description of the EUT                 | 11 |
| V.   | Sec | tion 15.247(a)(1): Carrier Frequency Separation                  | 12 |
| 4    | 5.1 | Test Condition                                                   | 12 |
| 4    | 5.2 | Test Instruments Configuration                                   | 12 |
| 4    | 5.3 | List of Test Instruments                                         | 13 |
| 4    | 5.4 | Test Results                                                     | 13 |
| VI.  | Sec | tion 15.247(a)(1)(ii): Number of Hopping Frequencies             | 16 |
| 6    | 5.1 | Test Condition                                                   | 16 |
| 6    | 5.2 | List of Test Instruments                                         | 16 |
| 6    | 5.3 | Test Instruments Configuration                                   | 16 |
| í    | 64  | Test Results                                                     | 17 |

| VII.  | Secti | ion 15.247(a)(1)(ii): Time of Occupancy (Dwell time) | 19 |
|-------|-------|------------------------------------------------------|----|
|       | 7.1   | Test Condition                                       | 19 |
|       | 7.2   | List of Test Instruments                             | 19 |
|       | 7.3   | Test Instruments Configuration                       | 20 |
|       | 7.4   | Test Results                                         | 20 |
| VIII. | Secti | ion 15.247(a)(1)(ii) : 20dB Bandwidth                | 24 |
|       | 8.1   | Test Condition                                       | 24 |
|       | 8.2   | Test Instruments Configuration                       | 24 |
|       | 8.3   | List of Test Instruments                             | 25 |
|       | 8.4   | Test Results                                         | 25 |
| IX.   | Secti | ion 15.247(b) : Peak Output Power                    | 28 |
|       | 9.1   | Test Condition & Setup                               | 28 |
|       | 9.2   | List of Test Instruments                             | 28 |
|       | 9.3   | Test Results                                         | 28 |
| Χ.    | Secti | ion 15.247(c) : Band-edge Compliance                 | 29 |
|       | 10.1  | Test Condition & Setup                               | 29 |
|       | 10.2  | List of Test Instruments                             | 29 |
|       | 10.3  | Test Instruments Configuration                       | 30 |
|       | 10.4  | Test Results                                         | 30 |
| XI.   | Secti | ion 15.247(c) : Spurious Radiated Emissions          | 33 |
|       | 11.1  | Test Condition & Setup                               | 33 |
|       | 11.2  | List of Test Instruments                             | 35 |
|       | 11.3  | Test Results of Spurious Radiated Emissions          | 36 |
| XII.  | Secti | ion 15.247(d): Power Spectral Density                | 42 |
|       | 12.1  | Test Condition & Setup                               | 42 |
|       | 12.2  | Test Instruments Configuration                       | 42 |
|       | 12.3  | List of Test Instruments                             | 43 |
|       | 12.4  | Test Result of Power Spectral Density                | 67 |

*Test Report* ------ 5/45

### I. GENERAL

### 1.1 Introduction

The following measurement report is submitted on behalf of applicant in support that the certification in accordance with Part 2 Subpart J and Part 15 Subpart A and C of the Commission's Rules and Regulations.

# 1.2 Description of EUT

**FCC ID** : WKMFK304305

**Product Name** : Matias Bluetooth Folding Keyboard

**Model** : FK304, FK305, FK304-XX, FK-305-XX, FK304RM,

FK304M, FK305RM, FK305M (X=A~Z)

Frequency Range: 2402MHz to 2480MHz

**Support Channel:** 79 Channels

**Channel Spacing**: 1MHz

**Modulation Skill**: GFSK

**Power Type** : Powered by DC 1.5V batteries (AAA\*2)

### 1.3 Test method

- 1 Powered by batteries.
- 2 The notebook PC and test fixture is connected by RS-232 cable, and then test fixture connected with EUT setting test mode.
- 3 The Notebook PC and test fixture is moving when test mode set finish. The software provided by the manufacturer, the test is performed under the specific conditions.
- 4 Set different channel (CH1/CH40/CH79) and making EUT to the mode of continuous transmission

Test Report ------ 6/45

# 1.4 Description of Support Equipment

Notebook PC : IBM

Model No. : 2668HT

Serial No. : FX-V3657 01/11 FCC ID : DoC Approved

BSMI : 3892B565

Power type : By AC Adapter

Test fixture : Ione Technology Inc.

Model No. : YFBT-01 Firmwear\_updata\_Board

Power type : By Notebook PC

Data cable : Shielded, 1.2m length, without ferrite core

# 1.5 Configuration of System Under Test



The tests below are carried with the EUT transmitter set at high power in TDD mode. The EUT is forced to select of output power level and channel number by NB PCMCIA interface.

The setting up procedure was recorded in 1.3 test method.

# 1.6 Verify the Frequency (MHz) and Channel

| CH | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|----|------|------|------|------|------|------|------|------|------|------|
|    |      |      |      |      |      |      |      |      |      |      |
| 0  |      | 2402 | 2403 | 2404 | 2405 | 2406 | 2407 | 2408 | 2409 | 2410 |
|    |      |      |      |      |      |      |      |      |      |      |
| 1  | 2411 | 2412 | 2413 | 2414 | 2415 | 2416 | 2417 | 2418 | 2419 | 2420 |
|    |      |      |      |      |      |      |      |      |      |      |
| 2  | 2421 | 2422 | 2423 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 |
|    |      |      |      |      |      |      |      |      |      |      |
| 3  | 2431 | 2432 | 2433 | 2434 | 2435 | 2436 | 2437 | 2438 | 2439 | 2440 |
|    |      |      |      |      |      |      |      |      |      |      |
| 4  | 2441 | 2442 | 2443 | 2444 | 2445 | 2446 | 2447 | 2448 | 2449 | 2450 |
|    |      |      |      |      |      |      |      |      |      |      |
| 5  | 2451 | 2452 | 2453 | 2454 | 2455 | 2456 | 2457 | 2458 | 2459 | 2460 |
|    |      |      |      |      |      |      |      |      |      |      |
| 6  | 2461 | 2462 | 2463 | 2464 | 2465 | 2466 | 2467 | 2468 | 2469 | 2470 |
|    |      |      |      |      |      |      |      |      |      |      |
| 7  | 2471 | 2472 | 2473 | 2474 | 2475 | 2476 | 2477 | 2478 | 2479 | 2480 |

### Note:

- 1. This is for confirming that all frequencies are in 2.402GHz to 2.480GHz.
- Section 15.31(m): Measurements on intentional radiators or receivers shall be performed at three frequencies for operating frequency range over 10 MHz.
   (The locations of these frequencies one near the top, one near the middle and one near the bottom.)
- 3. After test, the EUT operating frequencies are in 2.402GHz to 2.480GHz. So all the items as followed in testing report are need to test these three frequencies:
  - Top: Channel 01; Middle: Channel 40; Bottom: Channel 79.

Test Report ------ 8/45

1.7 Test Procedure

All measurements contained in this report were performed mainly according to the techniques described in ANSI C63.4 (2003) and the pre-setup was written on 1.3 test method, the

detail setup was written on each test item.

1.8 Location of the Test Site

The radiated emissions measurements required by the rules were performed on the **three-meter**, **Anechoic Chamber (FCC Registration Number: 93906)** maintained by *Training Research Co., Ltd.* 1F, No. 255 Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C. Complete description and measurement data have been placed on file with the commission. The conducted

power line emissions tests and other test items were performed in a anechoic chamber also located at

Training Research Co., Ltd.

No. 255 Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C. *Training Research Co., Ltd.* is listed by the FCC as a facility available to do measurement work for others on a contract

basis.

1.9 General Test Condition

The conditions under which the EUT operates were varied to determine their effect on the equipment's emission characteristics. The final configuration of the test system and the mode of operation used during these tests were chosen as that which produced the highest emission levels. However, only those conditions, which the EUT was considered likely to encounter in normal use

were investigated.

There is a test condition apply in this test item, the test procedure description as <1.3 test method>. Three channels were tested, one in the top (CH1), one in the middle (CH40) and the other in bottom (CH79).

# II. Section 15.203: Antenna requirement

The EUT has an integrated antenna permanently attached on the PCB, which inside the housing. In addition, there is no external antenna or connector employed. The antenna requirement stated in Sect.15.203 is inapplicable to this EUT.

Test Report ------ 10/45

# III. Section 15.207: Power Line Conducted Emissions for AC Powered Units

# 3.1 Test Condition & Setup

The EUT operates solely by the batteries (AAA\*2 DC 1.5V batteries).

According to the rule of section 15.207(c), the EUT exempt to the power line conducted test.

# 3.2 List of Test Instruments

N/A (Not applicable)

### 3.3 Test Result of Conducted Emissions

N/A (Not applicable)

Report No.: I2615080229, FCC Part 15.247

# IV. Section 15.247 (a): Technical description of the EUT

Based on the Section 2.1, Frequency Hopping Spectrum System is a spread spectrum system in which the carrier has been modulated by a high speed spreading code and an information data stream with its known hopping algorithm and avoidance method. The high speed code sequence dominates the "modulating function" and is the direct cause of the wide spreading of the transmitted signal. In the operational description demonstrates the operation principles of the base-band processor employed by the EUT, shows that which is a complete FHSS base-band processor and meets the definition of the Frequency Hopping Spectrum System.

# V. Section 15.247(a)(1): Carrier Frequency Separation

### 5.1 Test Condition

The EUT must have its hopping function enabled. Use the following spectrum analyzer setting

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) bandwidth (RBW)  $\geq$  1% of the span

Video ( or Average) Bandwidth (VBW) ≥ RBW

Sweep = Auto

Detector Function = peak

Trace = max hold

Setting up procedure is written on 1.3 test method.

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channel. The limit is specified in one of the subparagraphs of this section. Submit this plot.

# 5.2 Test Instruments Configuration



Test Configuration of carrier frequency separation

Test Report ------ 13/45

# **5.3** List of Test Instruments

# **Calibration Date**

| <b>Instrument Name</b> | Model No. | Brand   | Serial No. | Next time |
|------------------------|-----------|---------|------------|-----------|
| Spectrum Analyzer      | MS2665C   | ANRITSU | 6200175476 | 12/19/08  |
| Horn                   | 3115      | EMCO    | 9104-3668  | 12/14/08  |
| Antenna                |           |         |            |           |

# 5.4 Test Results

| Channel | Bluetooth |
|---------|-----------|
| 01      | 996 kHz   |
| 40      | 996 kHz   |
| 79      | 990 kHz   |

*Test Report* ------ 14/45

### Carrier Frequency Separation for CH01



# Carrier Frequency Separation for CH40



Report No.: 12615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

Test Report ------ 15/45

# Carrier Frequency Separation for CH79



# VI. Section 15.247(a)(1)(ii) Number of Hopping Frequencies

### **6.1** Test Condition

The EUT must have its Hopping function enabled. Use the following spectrum analyzer setting:

Span = the frequency band of operation

RBW  $\geq$  1% of the span

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. It may prove necessary to break the span up to sections. In order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this section.

### **6.2** List of Test Instruments

### **Calibration Date**

| Instrument Name   | Model No. | Brand   | Serial No. | Next time |
|-------------------|-----------|---------|------------|-----------|
| Spectrum Analyzer | MS2665C   | ANRITSU | 6200175476 | 12/19/08  |
| Horn              | 3115      | EMCO    | 9104-3668  | 12/14/08  |
| Antenna           |           |         |            |           |

# **6.3** Test Instruments Configuration



Test Configuration for number of hopping frequencies

Report No.: I2615080229, FCC Part 15.247

*Test Report* ------ 17/45

### 6.4 Test Results





Test Report ------ 18/45





# VII. Section 15.247(a)(1)(ii) Time of Occupancy (Dwell Time)

### 7.1 Test Condition

The EUT must have its hopping function enabled. Use the following spectrum analyzer setting:

Span = zero span, centered on a hopping channel

RBW = 1M

 $VBW \ge RBW$ 

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

### 7.2 List of Test Instruments

|                    |             |               |             | Campration Date |
|--------------------|-------------|---------------|-------------|-----------------|
| Instrument Name    | Model No.   | Brand         | Serial No.  | Next time       |
| Spectrum Analyzer  | MS2665C     | ANRITSU       | 6200175476  | 12/19/08        |
| Bluetooth Test Set | MT8852A     | ANRITSU       | 6k00001241  | N/A             |
| RF Splitter        | ZFSC-2-2500 | MINI-CIRCUITS | SF863200403 | N/A             |

Calibration Data

Test Report ------ 20/45

# 7.3 Test Instruments Configuration



Note:

- 1. Running Bluetooth test set for Test mode.
- 2. Spectrum Analyzer record test results.

# 7.4 Test Results

| СН | DH1-Packet (ms)           | DH3-Packet (ms)                          | DH5-Packet (ms)         |
|----|---------------------------|------------------------------------------|-------------------------|
| 01 | 0.500x31.6x10.12 = 159.90 | $1.788 \times 31.6 \times 5.06 = 285.89$ | 3.03x31.6x3.37 = 322.67 |
| 40 | 0.522x31.6x10.12 = 166.93 | $1.768 \times 31.6 \times 5.06 = 282.70$ | 3.02x31.6x3.37 = 321.61 |
| 79 | 0.500x31.6x10.12 = 159.90 | $1.768 \times 31.6 \times 5.06 = 282.70$ | 3.03x31.6x3.37 = 322.67 |

備註:1.0.4 x 79 = 31.6 s

2. DH1:  $1600 \div 79 \div 2 = 10.12 \text{ ms}$ 

3. DH3:  $1600 \div 79 \div 4 = 5.06 \,\text{ms}$ 

4. DH5:  $1600 \div 79 \div 6 = 3.37 \text{ ms}$ 

5. Show as following page.

Test Report ------ 21/45

### DH1-Packet:







Report No.: I2615080229, FCC Part 15.247

Test Report ------ 22/45

# DH3-Packet:







Test Report ------ 23/45

### DH5-Packet:







# VIII. Section 15.247(a)(1)(ii) 20dB Bandwidth

### 8.1 Test Condition

Use the following spectrum analyzer setting:

Span = the frequency band of operation

RBW  $\geq$  1% of the emission bandwidth

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this section. Submit this plot(s).

# 8.2 Test Instruments Configuration



Test Configuration of Bandwidth for Frequency Hopping Spread Spectrum System

Report No.: I2615080229, FCC Part 15.247

*Test Report* ------ 25/45

# **8.3** List of Test Instruments

**Calibration Date** 

| <b>Instrument Name</b> | Model No. | Brand   | Serial No. | Next time |
|------------------------|-----------|---------|------------|-----------|
| Spectrum Analyzer      | MS2665C   | ANRITSU | 6200175476 | 12/19/08  |
| Horn                   | 3115      | EMCO    | 9104-3668  | 12/14/08  |
| Antenna                |           |         |            |           |

# 8.4 Test Results

| Channel | Bluetooth |
|---------|-----------|
| 01      | 990 kHz   |
| 40      | 996 kHz   |
| 79      | 996 kHz   |

Note:

The data in the above table are summarizing the following attachment spectrum analyzer.

*Test Report* ------ 26/45

# **Bandwidth of Channel 1:**



### Bandwidth of Channel 40:



Report No.: 12615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

Test Report ------ 27/45

# Bandwidth of Channel 79:



Test Report ----- 28/45

# IX. Section 15.247(b) Peak Output Power

# 9.1 Test Condition & Setup



- 1. The output of the transmitter is connected to the BOONTON RF Power Meter.
- 2. The calibration is performed before every test. The values of the output power of the EUT will shown in the dBm directly are the transmitter output peak power. Recording as follows.

### 9.2 List of Test Instruments

**Calibration Date** 

| Instrument Name   | Model No. | Brand   | Serial No. | Next time |
|-------------------|-----------|---------|------------|-----------|
| RF Power Meter    | 4532      | BOONTON | 117501     | 09/11/08  |
| Peak Power Sensor | 57340     | BOONTON | 2696       | 09/11/08  |

# 9.3 Test Result

# Formula:

RF output power of EUT + |Cable loss| = Output peak power

| Channel | RF Output | Cable Loss | Output l | Peak Power |
|---------|-----------|------------|----------|------------|
|         | dBm       | dBm        | dBm      | mW         |
| CH01    | -5.32     | 1.50       | -3.82    | 0.415      |
| CH40    | -4.90     | 1.50       | -3.40    | 0.457      |
| СН79    | -4.87     | 1.50       | -3.37    | 0.460      |

Report No.: I2615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

Test Report ----- 29/45

# X. Section 15.247(c) Band-edge Compliance

### **10.1** Test Condition

If any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified id §15.209(a),

We perform this section by the *radiated manner*, the RBW is set to 100kHz and VBW>RBW. We'd made the observation *up to 10<sup>th</sup> harmonics and the criterion is all the harmonic/spurious emissions must be 20dB below the highest emission level measured*. If the emissions fall in the restricted bands stated in the Part15.205(a) must also *comply with the radiated emission limits specified in Part15.209(a)*. (Peak mode: RBW=VBW=1MHz, Average mode: RBW=1MHz; VBW=10Hz)

### 10.2 List of Test Instruments

|                        |           |         |            | Cumpration Date |
|------------------------|-----------|---------|------------|-----------------|
| Instrument Name        | Model No. | Brand   | Serial No. | Next time       |
| Spectrum Analyzer      | MS2665C   | ANRITSU | 6200175476 | 12/19/08        |
| Spectrum Analyzer      | 8564E     | HP      | 3720A00840 | 11/07/08        |
| Microwave Preamplifier | 84125C    | HP      | US36433002 | 11/05/08        |
| Horn Antenna           | 3115      | EMCO    | 9104-3668  | 12/14/08        |

Calibration Date

Report No.: I2615080229, FCC Part 15.247

Test Report ----- 30/45

# 10.3 Test Instruments Configuration



# 10.4 Test Result of the Bandedge

The following pages show our observations referring to the channel 1 and 79 respectively.

Test Report ----- 31/45

### Channel 1



This is the hard copy of our bandedge measurement generated by our bandedge testing program. The plot shown above is the bandedge of channel 1.

- 1. The lobe left by the fundamental side is already 20dB below the highest emission level.
- 2. The emissions recorded in the restricted band is do comply with the Part 15.209(a) as below.

|           | Rad  | liated Emi | ission |         |                       | ected   | Class B  |        |        |  |
|-----------|------|------------|--------|---------|-----------------------|---------|----------|--------|--------|--|
| Frequency | Ant. | Ant. H.    | Table  | Factors | Amplitude<br>(dBµV/m) |         | Limit (d | BμV/m) | Margin |  |
| (MHz)     | Р.   | (m)        | ()     | (dB)    | Peak                  | Average | Peak     | Ave.   | (dB)   |  |
| 2381.40   | Hor  | 1.00       | 124    | 9.16    | 43.49                 |         | 74.00    | 53.96  | -10.47 |  |
| 2390.02   | Hor  | 1.00       | 249    | 9.18    | 42.52                 |         | 74.00    | 53.96  | -11.44 |  |
| 2374.31   | Ver  | 1.00       | 31     | 9.14    | 44.30                 |         | 74.00    | 53.96  | -9.66  |  |
| 2390.02   | Ver  | 1.00       | 67     | 9.18    | 43.02                 |         | 74.00    | 53.96  | -10.94 |  |

Test Report ----- 32/45

### Channel 79



This is the hard copy of our bandedge measurement generated by our bandedge testing program. The plot shown above is the bandedge of channel 79.

- 3. The lobe left by the fundamental side is already 20dB below the highest emission level.
- 4. The emissions recorded in the restricted band is do comply with the Part 15.209(a) as below.

|           | Rad  | liated Emi | ission |         |              | ected          |          | Class B |        |  |
|-----------|------|------------|--------|---------|--------------|----------------|----------|---------|--------|--|
| Frequency | Ant. | Ant. H.    | Table  | Factors | Ampl<br>(dBµ | litude<br>V/m) | Limit (d | BμV/m)  | Margin |  |
| (MHz)     | Р.   | (m)        | ()     | (dB)    | Peak Average |                | Peak     | Ave.    | (dB)   |  |
| 2483.50   | Hor  | 1.00       | 101    | 9.44    | 52.11        |                | 74.00    | 53.96   | -1.85  |  |
| 2493.18   | Hor  | 1.00       | 102    | 9.47    | 45.64        |                | 74.00    | 53.96   | -8.32  |  |
| 2500.01   | Hor  | 1.00       | 261    | 9.49    | 42.32        |                | 74.00    | 53.96   | -11.64 |  |
| 2508.06   | Hor  | 1.00       | 325    | 9.51    | 44.51        |                | 74.00    | 53.96   | -9.45  |  |
| 2483.50   | Ver  | 1.00       | 170    | 9.44    | 52.61        |                | 74.00    | 53.96   | -1.35  |  |
| 2487.93   | Ver  | 1.00       | 175    | 9.46    | 46.62        |                | 74.00    | 53.96   | -7.34  |  |
| 2500.01   | Ver  | 1.00       | 241    | 9.49    | 42.66        |                | 74.00    | 53.96   | -11.30 |  |
| 2515.47   | Ver  | 1.00       | 274    | 9.52    | 42.85        |                | 74.00    | 53.96   | -11.11 |  |

# XI. Section 15.247(c) Spurious Radiated Emissions

### 11.1 Test Condition and Setup

We'd performed the test by the *radiated emission* skill: The EUT was placed in an anechoic chamber, and set the EUT transmitting continuously and scanned at 3-meter distance to determine its emission characteristics. The physical arrangement of the EUT was varied (within the scope of arrangements likely to be encountered in actual use) to determine the effect on the unit's emanations in amplitude, directivity, and frequency. The exact system configuration, which produced the highest emissions was noted so it could be reproduced later during the final tests. For the measurement above 1GHz, according to the guidance we'd set the spectrum analyzer's 6dB bandwidth RBW to 1MHz.

This was done to ensure that the final measurements would demonstrate the worst-case interference potential of the EUT. Final radiation measurements were made on a three-meter, anechoic chamber. The EUT system was placed on a nonconductive turntable, which is 0.8 meters height, top surface  $1.0 \times 1.5$  meter.

The spectrum was examined from 30 MHz to 1000 MHz using an Hewlett Packard 85460A EMI Receiver, SCHWARZECK whole range Small Biconical Antenna (Model No.: UBAA9114 & BBVU9135) is used to measure frequency from 30 MHz to 1GHz. The final test is used the HP 85460A spectrum and 8564E spectrum was examined from 1GHz to 25GHz using an Hewlett Packard Spectrum Analyzer, EMCO/HP Horn Antenna (Model 3115 / 84125-80008) for 1G to 25GHz.

At each frequency, the EUT was rotated 360 degrees, stand on **three orthogonal** planes respectively and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. There are two spectrum analyzers use on this testing, HP 85460A for frequency 30MHz to 1000MHz, and 8564E for frequency 1GHz to 25GHz. No post-detector video filters were used in the test. The spectrum analyzer's 6dB bandwidth was set to 120KHz (spectrum was examined from 30 MHz to 1000 MHz), the spectrum analyzer's 6 dB bandwidth was set to 1 MHz (spectrum was examined from 1GHz to 25GHz) and the analyzer was operated in the maximum hold mode. There is a test condition applies in this test item, the test procedure description as the following:

Three channels were tested, one in the top (CH1), one in the middle (CH40) and the other in bottom (CH79). The setting up procedure is recorded on <1.3 test method>

Test Report ----- 34/45

With the transmitter operating from a AC source and using the internal of EUT, radiates spurious emissions falling within the restricted bands of 15.209 were measured at operating frequencies corresponding to upper, middle and bottom channels in the  $2400 \sim 2483.5$  MHz band.

The actual field intensity in decibels referenced to 1 microvolt per meter ( $dB\mu V/m$ ) is determined by algebraically adding the measured reading in  $dB\mu V$ , the antenna factor (dB), and cable loss (dB) at the appropriate frequency. Since the EUT was set to transmit continuously, no *duty cycle* is present.

### For frequency between 30MHz to 1000MHz

FIa  $(dBuV/m) = FIr (dB\mu V) + Correction Factors$ 

FIa: Actual Field Intensity

FIr : Reading of the Field Intensity

Correction Factors = Antenna Factor + (Cable Loss – Amplifier Gain) + Switching Box Loss

### For frequency between 1GHz to 25GHz

FIa  $(dB\mu V/m)$  = FIr  $(dB\mu V)$  + Correction Factor

FIa: Actual Field Intensity

FIr : Reading of the Field Intensity

Correction Factors = Antenna Factor + (Cable Loss – Amplifier Gain) + Switching Box Loss

*Test Report* ----- 35/45

# 11.2 List of Test Instruments

### **Calibration Date**

| 1                    | 1                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                          | Calibration Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model                | Brand                                                                                                                                                                             | Serial No.                                                                                                                                                                                                                                                                                                                                                                                                                 | Next time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8546A                | HP                                                                                                                                                                                | 3520A00242                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/05/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 85460A               | HP                                                                                                                                                                                | 3448A00217                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/05/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UBAA9114 &           | SCHWARZECK                                                                                                                                                                        | 127                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/07/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BBVU9135             |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PA1F                 | TRC                                                                                                                                                                               | 1FAC                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/08/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ASB-01               | TRC                                                                                                                                                                               | 9904-01                                                                                                                                                                                                                                                                                                                                                                                                                    | 08/08/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A30A30-0058-50FS-15M | JYEBAO                                                                                                                                                                            | SMA-01                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/08/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A30A30-0058-50FS-1M  | JYEBAO                                                                                                                                                                            | SMA-02                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/17/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8564E                | НР                                                                                                                                                                                | 3720A00840                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/07/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 84125C               | HP                                                                                                                                                                                | US36433002                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/05/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3115                 | EMCO                                                                                                                                                                              | 9104-3668                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/14/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 84125-80008          | НР                                                                                                                                                                                | 18-26.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/14/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 84125-80001          | НР                                                                                                                                                                                | 26.5-40GHz                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/12/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1196E (3115)         | HP (EMCO)                                                                                                                                                                         | 9704-5178                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/10/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PA2F                 | TRC                                                                                                                                                                               | 2F1GZ                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/10/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A30A30-0058-50FST118 | JYEBAO                                                                                                                                                                            | MSA-05                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/10/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A30A30-0058-50FST118 | JYEBAO                                                                                                                                                                            | MSA-04                                                                                                                                                                                                                                                                                                                                                                                                                     | 09/05/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | 8546A 85460A UBAA9114 & BBVU9135 PA1F  ASB-01  A30A30-0058-50FS-15M  A30A30-0058-50FS-1M  8564E  84125C  3115  84125-80008  84125-80001  1196E (3115)  PA2F  A30A30-0058-50FST118 | 8546A       HP         85460A       HP         UBAA9114 & SCHWARZECK         BBVU9135       TRC         ASB-01       TRC         A30A30-0058-50FS-15M       JYEBAO         A30A30-0058-50FS-1M       JYEBAO         8564E       HP         3115       EMCO         84125-80008       HP         84125-80001       HP         1196E (3115)       HP (EMCO)         PA2F       TRC         A30A30-0058-50FST118       JYEBAO | 8546A         HP         3520A00242           85460A         HP         3448A00217           UBAA9114 & SCHWARZECK BBVU9135         SCHWARZECK         127           PA1F         TRC         1FAC           ASB-01         TRC         9904-01           A30A30-0058-50FS-15M         JYEBAO         SMA-01           A30A30-0058-50FS-1M         JYEBAO         SMA-02           8564E         HP         3720A00840           84125C         HP         US36433002           3115         EMCO         9104-3668           84125-80008         HP         18-26.5GHz           84125-80001         HP         26.5-40GHz           1196E (3115)         HP (EMCO)         9704-5178           PA2F         TRC         2F1GZ           A30A30-0058-50FST118         JYEBAO         MSA-05 |

Test Report ----- 36/45

# 11.3 Test Result of Spurious Radiated Emissions

The highest peak values of radiated emissions form the EUT at various antenna heights, antenna polarizations, EUT orientation, etc. are recorded on the following. (worst case)

Test Conditions: Temperature: 25° C Humidity: 73% RH

Test mode: BT CH01 for 30MHz to 1GHz [Horizontal]

|                    | Radiat<br>Emissi    |             |       | Correction<br>Factors | Corrected<br>Amplitude | (3 m)             |                |  |
|--------------------|---------------------|-------------|-------|-----------------------|------------------------|-------------------|----------------|--|
| Frequency<br>(MHz) | Amplitude<br>(dBµV) | Ant. H. (m) | Table | (dB)                  | (dBµV/m)               | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
| 193.69             | 39.37               | 1.00        | 177   | -3.58                 | 35.79                  | 43.50             | -7.71          |  |
| 217.94             | 43.18               | 1.00        | 187   | -3.72                 | 39.46                  | 46.00             | -6.54          |  |
| 242.19             | 42.34               | 1.00        | 187   | -3.61                 | 38.73                  | 46.00             | -7.27          |  |
| 362.22             | 44.51               | 1.00        | 129   | -1.98                 | 42.53                  | 46.00             | -3.47          |  |
| 396.17             | 44.30               | 1.00        | 292   | -1.17                 | 43.13                  | 46.00             | -2.87          |  |
| 420.42             | 43.14               | 1.00        | 292   | -0.15                 | 42.99                  | 46.00             | -3.01          |  |

Test mode: BT CH01 for 30MHz to 1GHz [Vertical]

|                    | Radiat<br>Emissi    |             |              | Correction<br>Factors | Corrected Amplitude | Class B<br>(3 m)  |                |  |
|--------------------|---------------------|-------------|--------------|-----------------------|---------------------|-------------------|----------------|--|
| Frequency<br>(MHz) | Amplitude<br>(dBµV) | Ant. H. (m) | Table<br>(°) | (dB)                  | (dBµV/m)            | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
| 134.27             | 28.68               | 1.00        | 153          | -3.21                 | 25.47               | 43.50             | -18.03         |  |
| 289.47             | 32.26               | 1.00        | 247          | -3.38                 | 28.88               | 46.00             | -17.12         |  |
| 373.14             | 33.64               | 1.00        | 267          | -1.72                 | 31.92               | 46.00             | -14.08         |  |
| 445.89             | 32.23               | 1.00        | 237          | 1.00                  | 33.23               | 46.00             | -12.77         |  |
| 481.05             | 28.11               | 1.00        | 230          | 1.53                  | 29.64               | 46.00             | -16.36         |  |
| 528.34             | 25.80               | 1.00        | 262          | 3.62                  | 29.42               | 46.00             | -16.58         |  |

### Note:

- 1. Margin = Amplitude limit, *if margin is minus means under limit*.
- 2. Corrected Amplitude = Reading Amplitude + Correction Factors
- 3. Correction factor = Antenna factor + (Cable Loss Amplitude gain) + Switching Box Loss

Report No.: 12615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

Test mode: BT CH01 for 1GHz to 25GHz [Horizontal]

| Frequency | Ant.<br>H. | Table  | Amplitude |         | Correction<br>Factor | Corr<br>Ampi | ected<br>litude | Limit  |        | Margin |
|-----------|------------|--------|-----------|---------|----------------------|--------------|-----------------|--------|--------|--------|
|           |            |        | Peak .    | / Ave.  |                      | Peak .       | / Ave.          | Peak . | / Ave. |        |
| MHz       | m          | degree | dB        | $\mu V$ | dB/m                 | dΒμ          | V/m             | dΒμ    | V/m    | dB     |
| 1602.08   | 1.00       | 343    | 37.66     |         | 14.30                | 51.96        |                 | 73.96  | 53.96  | -2.00  |
| 2304.17   | 1.00       | 265    | 37.00     |         | 8.94                 | 45.94        |                 | 73.96  | 53.96  | -8.02  |
| 12012.71  | 1.00       | 164    | 36.77     |         | 10.01                | 46.78        |                 | 73.96  | 53.96  | -7.18  |
| 19214.79  | 1.00       | 295    | 47.29     |         | 1.60                 | 48.89        |                 | 73.96  | 53.96  | -5.07  |
| 21619.58  | 1.00       | 67     | 45.70     |         | 2.79                 | 48.49        |                 | 73.96  | 53.96  | -5.47  |
| 24020.83  | 1.00       | 320    | 46.55     |         | 3.14                 | 49.69        |                 | 73.96  | 53.96  | -4.27  |

Test mode: BT CH01 for 1GHz to 25GHz [Vertical]

| Frequency | Ant. | Table  | Ampl      | litude | Correction | Corr   | ected  | Lii    | mit    | Margin |
|-----------|------|--------|-----------|--------|------------|--------|--------|--------|--------|--------|
|           | Н.   |        | T         |        | Factor     | Ampl   | litude |        |        |        |
|           |      |        | Peak ,    | / Ave. |            | Peak . | / Ave. | Peak . | / Ave. |        |
| MHz       | m    | degree | $dB\mu V$ |        | dB/m       | dΒμ    | V/m    | dΒμ    | vV/m   | dB     |
| 2497.92   | 1.00 | 50     | 36.17     |        | 9.48       | 45.65  |        | 73.96  | 53.96  | -8.31  |
| 3058.33   | 1.00 | 3      | 35.33     |        | 10.71      | 46.04  |        | 73.96  | 53.96  | -7.92  |
| 12012.71  | 1.00 | 273    | 37.44     |        | 10.01      | 47.45  |        | 73.96  | 53.96  | -6.51  |
| 19214.79  | 1.00 | 277    | 47.21     |        | 1.60       | 48.81  |        | 73.96  | 53.96  | -5.15  |
| 21619.58  | 1.00 | 47     | 45.61     |        | 2.79       | 48.40  |        | 73.96  | 53.96  | -5.56  |
| 24020.83  | 1.00 | 332    | 46.57     |        | 3.14       | 49.71  |        | 73.96  | 53.96  | -4.25  |

### Note:

- 1. Margin = Corrected Limit.
- 2. The EUT utilizes a *permanently attached antenna*. In addition the spurious RF radiated emissions levels do comply with the *20dBc limit* both at its bandedges and other spurious emissions.
- 3. As stated in Section 15.35(b), for any frequencies above 1000MHz, radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. As the results of our test, the peak amplitudes are already below the FCC limit. Thus the average amplitudes of the rest are omitted.

*Test Report* ----- 38/45

Test mode: BT CH40 for 30MHz to 1GHz [Horizontal]

|                 | Radiat<br>Emissi    |                |              | Correction<br>Factors | Corrected Amplitude | Class B (3 m)     |                |  |
|-----------------|---------------------|----------------|--------------|-----------------------|---------------------|-------------------|----------------|--|
| Frequency (MHz) | Amplitude<br>(dBμV) | Ant. H.<br>(m) | Table<br>( ) | (dB)                  | (dBµV/m)            | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
| 243.40          | 43.26               | 1.00           | 316          | -3.54                 | 39.72               | 46.00             | -6.28          |  |
| 314.94          | 46.36               | 1.00           | 188          | -2.71                 | 43.65               | 46.00             | -2.35          |  |
| 350.10          | 47.12               | 1.00           | 199          | -2.27                 | 44.85               | 46.00             | -1.15          |  |
| 362.22          | 46.68               | 1.00           | 199          | -1.98                 | 44.70               | 46.00             | -1.30          |  |
| 422.85          | 43.90               | 1.00           | 299          | -0.04                 | 43.86               | 46.00             | -2.14          |  |
| 458.01          | 41.45               | 1.00           | 289          | 1.28                  | 42.73               | 46.00             | -3.27          |  |

Test mode: BT CH40 for 30MHz to 1GHz [Vertical]

|                    | Radiat<br>Emissi    |                |              | Correction<br>Factors | Corrected Amplitude | Class B (3 m)     |                |
|--------------------|---------------------|----------------|--------------|-----------------------|---------------------|-------------------|----------------|
| Frequency<br>(MHz) | Amplitude<br>(dBµV) | Ant. H.<br>(m) | Table<br>(°) | (dB)                  | (dBµV/m)            | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 135.49             | 32.48               | 1.00           | 153          | -3.26                 | 29.22               | 43.50             | -14.28         |
| 157.31             | 33.89               | 1.00           | 143          | -4.14                 | 29.75               | 43.50             | -13.75         |
| 348.89             | 34.94               | 1.00           | 267          | -2.28                 | 32.66               | 46.00             | -13.34         |
| 385.26             | 34.57               | 1.00           | 257          | -1.43                 | 33.14               | 46.00             | -12.86         |
| 528.34             | 32.30               | 1.00           | 325          | 3.62                  | 35.92               | 46.00             | -10.08         |
| 599.87             | 31.04               | 1.00           | 360          | 6.46                  | 37.50               | 46.00             | -8.50          |

Report No.: I2615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

Test Report ----- 39/45

Test mode: BT CH40 for 1GHz to 25GHz [Horizontal]

| Frequency | Ant.<br>H. | Table  | Ampl   | litude | Correction<br>Factor | Corrected<br>Amplitude |       | Limit |        | Margin |
|-----------|------------|--------|--------|--------|----------------------|------------------------|-------|-------|--------|--------|
|           |            |        | Peak . | / Ave. |                      | Peak                   | /Ave. | Peak  | / Ave. |        |
| MHz       | m          | degree | dΒμV   |        | dB/m                 | dΒμ                    | vV/m  | dΒμ   | ıV/m   | dB     |
| 2158.33   | 1.00       | 149    | 39.84  |        | 8.53                 | 48.37                  |       | 73.96 | 53.96  | -5.59  |
| 9765.21   | 1.00       | 182    | 34.78  |        | 11.90                | 46.68                  |       | 73.96 | 53.96  | -7.28  |
| 12206.04  | 1.00       | 79     | 39.61  |        | 9.79                 | 49.40                  |       | 73.96 | 53.96  | -4.56  |
| 19526.46  | 1.00       | 319    | 46.17  |        | 1.70                 | 47.87                  |       | 73.96 | 53.96  | -6.09  |
| 21970.21  | 1.00       | 199    | 45.71  |        | 2.95                 | 48.66                  |       | 73.96 | 53.96  | -5.30  |
| 24410.42  | 1.00       | 123    | 46.33  |        | 3.10                 | 49.43                  |       | 73.96 | 53.96  | -4.53  |

Test mode: BT CH40 for 1GHz to 25GHz [Vertical]

| Frequency | Ant.<br>H. | Table  | Amplitude |        | Correction<br>Factor |        | ected<br>litude | Limit  |        | Margin |
|-----------|------------|--------|-----------|--------|----------------------|--------|-----------------|--------|--------|--------|
|           |            |        | Peak .    | / Ave. |                      | Peak . | / Ave.          | Peak . | / Ave. |        |
| MHz       | m          | degree | dBμV      |        | dB/m                 | dΒμ    | V/m             | dΒμ    | vV/m   | dB     |
| 2535.42   | 1.00       | 78     | 37.33     |        | 9.56                 | 46.89  |                 | 73.96  | 53.96  | -7.07  |
| 9765.21   | 1.00       | 50     | 34.94     |        | 11.90                | 46.84  |                 | 73.96  | 53.96  | -7.12  |
| 12206.04  | 1.00       | 51     | 38.11     |        | 9.79                 | 47.90  |                 | 73.96  | 53.96  | -6.06  |
| 19526.46  | 1.00       | 307    | 45.88     |        | 1.70                 | 47.58  |                 | 73.96  | 53.96  | -6.38  |
| 21970.21  | 1.00       | 196    | 45.83     |        | 2.95                 | 48.78  |                 | 73.96  | 53.96  | -5.18  |
| 24410.42  | 1.00       | 118    | 46.24     |        | 3.10                 | 49.34  |                 | 73.96  | 53.96  | -4.62  |

*Test Report* ------ 40/45

Test mode: BT CH79 for 30MHz to 1GHz [Horizontal]

|                 | Radiat<br>Emissi    |             | •            | Correction<br>Factors | Corrected Amplitude | Clas              | -              |
|-----------------|---------------------|-------------|--------------|-----------------------|---------------------|-------------------|----------------|
| Frequency (MHz) | Amplitude<br>(dBµV) | Ant. H. (m) | Table<br>( ) | (dB)                  | (dBµV/m)            | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 124.57          | 27.45               | 1.00        | 64           | -2.68                 | 24.77               | 43.50             | -18.73         |
| 226.42          | 29.11               | 1.00        | 320          | -3.79                 | 25.32               | 46.00             | -20.68         |
| 301.60          | 31.94               | 1.89        | 330          | -2.88                 | 29.06               | 46.00             | -16.94         |
| 427.70          | 39.04               | 1.00        | 289          | 0.18                  | 39.22               | 46.00             | -6.78          |
| 460.44          | 37.78               | 1.00        | 202          | 1.30                  | 39.08               | 46.00             | -6.92          |
| 534.40          | 30.07               | 1.00        | 298          | 4.02                  | 34.09               | 46.00             | -11.91         |

Test mode: BT CH79 for 30MHz to 1GHz [Vertical]

| Radiated<br>Emission |                     |                |              | Correction<br>Factors | Corrected Amplitude | Clas<br>(3        | -~ -           |
|----------------------|---------------------|----------------|--------------|-----------------------|---------------------|-------------------|----------------|
| Frequency<br>(MHz)   | Amplitude<br>(dBµV) | Ant. H.<br>(m) | Table<br>( ) | (dB)                  | (dB µV/m)           | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 156.10               | 32.95               | 1.00           | 94           | -4.18                 | 28.77               | 43.50             | -14.73         |
| 237.34               | 32.17               | 1.00           | 336          | -3.76                 | 28.41               | 46.00             | -17.59         |
| 376.77               | 45.26               | 1.00           | 17           | -1.63                 | 43.63               | 46.00             | -2.37          |
| 528.34               | 31.43               | 1.00           | 311          | 3.62                  | 35.05               | 46.00             | -10.95         |
| 597.45               | 27.41               | 1.00           | 357          | 6.39                  | 33.80               | 46.00             | -12.20         |
| 665.35               | 28.21               | 1.00           | 315          | 8.48                  | 36.69               | 46.00             | -9.31          |

Report No.: I2615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

Test Report ------ 41/45

Test mode: BT CH79 for 1GHz to 25GHz [Horizontal]

| Frequency | Ant.<br>H. | Table  | Ampl   | litude  | Correction<br>Factor |       | ected<br>litude | Li          | mit   | Margin |
|-----------|------------|--------|--------|---------|----------------------|-------|-----------------|-------------|-------|--------|
|           |            |        | Peak . | /Ave.   |                      | Peak  | /Ave.           | Peak / Ave. |       |        |
| MHz       | m          | degree | dB     | $\mu V$ | dB/m                 | dΒμ   | vV/m            | dΒμ         | ιV/m  | dB     |
| 2158.33   | 1.00       | 107    | 40.50  |         | 8.53                 | 49.03 |                 | 73.96       | 53.96 | -4.93  |
| 9922.29   | 1.00       | 15     | 35.11  |         | 11.66                | 46.77 |                 | 73.96       | 53.96 | -7.19  |
| 12399.37  | 1.00       | 270    | 38.77  |         | 9.02                 | 47.79 |                 | 73.96       | 53.96 | -6.17  |
| 19799.17  | 1.00       | 331    | 46.79  |         | 1.90                 | 48.69 |                 | 73.96       | 53.96 | -5.27  |
| 22320.83  | 1.00       | 75     | 45.06  |         | 3.33                 | 48.39 |                 | 73.96       | 53.96 | -5.57  |
| 24800.00  | 1.00       | 43     | 47.08  |         | 2.22                 | 49.30 |                 | 73.96       | 53.96 | -4.66  |

Test mode: BT CH79 for 1GHz to 25GHz [Vertical]

| Frequency | Ant.<br>H. | Table  | Ampl   | litude  | Correction<br>Factor |       | ected<br>litude | Li          | mit   | Margin |
|-----------|------------|--------|--------|---------|----------------------|-------|-----------------|-------------|-------|--------|
|           |            |        | Peak . | / Ave.  |                      | Peak  | /Ave.           | Peak / Ave. |       |        |
| MHz       | m          | degree | dB     | $\mu V$ | dB/m                 | dΒμ   | vV/m            | dΒμ         | ıV/m  | dB     |
| 2575.00   | 1.00       | 41     | 36.33  |         | 9.63                 | 45.96 |                 | 73.96       | 53.96 | -8.00  |
| 9922.29   | 1.00       | 244    | 33.94  |         | 11.66                | 45.60 |                 | 73.96       | 53.96 | -8.36  |
| 12399.37  | 1.00       | 201    | 36.60  |         | 9.02                 | 45.62 |                 | 73.96       | 53.96 | -8.34  |
| 19799.17  | 1.00       | 337    | 46.64  |         | 1.90                 | 48.54 |                 | 73.96       | 53.96 | -5.42  |
| 22320.83  | 1.00       | 85     | 45.25  |         | 3.33                 | 48.58 |                 | 73.96       | 53.96 | -5.38  |
| 24800.00  | 1.00       | 45     | 47.16  |         | 2.22                 | 49.38 |                 | 73.96       | 53.96 | -4.58  |

Test Report ------ 42/45

# XII. Section 15.247(d): Power Spectral Density

### 12.1 Test Condition & Setup

The tests below are running with the EUT transmitter set at high power in TDD mode. The EUT is needed to force selection of output power level and channel number. While testing, the EUT was set to transmit continuously and to be tested by the contact manner with the spectrum analyzer.

# 12.2 Test Instruments Configuration



PC to control the EUT at maximal power output and channel number and set antenna kit

### 12.3 List of Test Instruments

### **Calibration Date**

| <b>Instrument Name</b> | Model No. | Brand   | Serial No. | Next time |
|------------------------|-----------|---------|------------|-----------|
| Spectrum Analyzer      | MS2665C   | ANRITSU | 6200175476 | 12/19/08  |

Report No.: I2615080229, FCC Part 15.247

*Test Report* ------ 43/45

# 12.4 Test Result of Power spectral density

The following table shows a summary of the test results of the Power Spectral Density.

| Channel | Ppr<br>(dBm) | Cable Loss<br>(dB) | Ppq<br>(dBm) | Limit<br>(dB) | Margin<br>(dB) |
|---------|--------------|--------------------|--------------|---------------|----------------|
| CII 01  | 10.00        | 1.50               | 16.50        | 0.00          | 24.50          |
| CH 01   | -18.00       | 1.50               | -16.50       | 8.00          | -24.50         |
| CH 40   | -17.43       | 1.50               | -15.93       | 8.00          | -23.93         |
|         |              |                    |              |               |                |
| CH 79   | -17.51       | 1.50               | -16.01       | 8.00          | -24.01         |

### Note:

- 1. The following pages show the results of spectrum reading.
- 2. Ppr: spectrum read power density (using peak search mode), Ppq: actual peak power density in the spread spectrum band.
- 3. Ppq = Ppr + |Cable Loss|

*Test Report* ------ 44/45

# Power Spectral Density for CH01



# Power Spectral Density for CH40



Report No.: I2615080229, FCC Part 15.247

Training Research Co., Ltd., TEL: 886-2-26935155, Fax: 886-2-26934440

*Test Report* ------ 45/45

# Power Spectral Density for CH79

