Итоговый конспект 1 из 19

1 Определения

1.1 Мультииндекс и обозначения с ним

Мультииндекс — вектор $\alpha = (\alpha_1, \alpha_2 \dots \alpha_n), \alpha_i \in \mathbb{Z}_+$

1.
$$|\alpha| \stackrel{\text{def}}{=} \alpha_1 + \alpha_2 + \ldots + \alpha_n$$

2.
$$x^{\alpha} \stackrel{\text{def}}{=} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \quad (x \in \mathbb{R}^n)$$

3.
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \dots \alpha_n!$$

4.
$$f_{(x)}^{(\alpha)} \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_m^{\alpha_m}}$$

1.2 ! Формула Тейлора (различные виды записи)

$$f(x) = \sum_{k=0}^r \frac{d^k f(a,h)}{k!} + \frac{1}{(k+1)!} d^{k+1} f(a+\Theta h,h)$$

$$f(x) = \sum_{\alpha:0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^\alpha + \underbrace{\sum_{\alpha:|\alpha|=r+1} \frac{f^{(\alpha)}(a+t(x-a))}{(\alpha+1)!} (x-a)^\alpha}_{\text{Остаток в форме Лагранжа}}$$

1.3 n-й дифференциал

$$\sum_{\alpha: |\alpha|=k} k! \frac{f^{(\alpha)}}{\alpha!} h^{\alpha} \stackrel{\text{def}}{=} k$$
-й дифференциал функции f в точке $a \stackrel{\text{def}}{=} d^k f(a,h)$

1.4 ! Норма линейного оператора

$$A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \quad ||A|| \stackrel{\text{def}}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ |x| = 1}} |Ax|$$

1.5 Положительно-, отрицательно-, незнако- определенная квадратичная форма

Определение. Положительно определенная кв. форма: $\forall h \neq 0 \;\; Q(h) > 0$

Определение. Отрицательно определенная кв. форма: $\forall h \neq 0 \;\; Q(h) < 0$

Определение. Неопределенная кв. форма: $\exists \overline{h}: Q(h) < 0, \exists \widetilde{h}: Q(h) > 0$

Определение. Полуопределенная (положительно определенная вырожденная) кв. форма: $Q(h) \geq 0 \;\; \exists \overline{h} \neq 0 : Q(\overline{h}) = 0$

Итоговый конспект 2 из 19

1.6 Локальный максимум, минимум, экстремум

 $f:E\subset\mathbb{R}^m o\mathbb{R},a\in E$ — локальный максимум, если

$$\exists U(a) \subset E \ \forall x \in U(a) \ f(x) \le f(a)$$

Аналогично определяется строгий локальный максимум, локальный минимум и строгий локальный минимум

1.7 Диффеоморфизм

 $F: \underbrace{O}_{ ext{offiactb}} \subset \mathbb{R}^m o \mathbb{R}^m$ — диффеоморфизм, если:

- F обратимо
- Г дифференцируемо
- F^{-1} дифференцируемо

1.8 Формулировка теоремы о локальной обратимости

- $T \in C^r(O, \mathbb{R}^m)$
- $x_0 \in O$
- $\det T'(x_0) \neq 0$

Тогда $\exists U(x_0): T\Big|_U$ — диффеоморфизм, т.е. $\exists T^{-1}$

1.9 Формулировка теоремы о локальной обратимости в терминах систем уравнений

$$\begin{cases} f_1(x_1 \dots x_m) = y_1 \\ f_2(x_1 \dots x_m) = y_2 \\ \vdots \\ f_m(x_1 \dots x_m) = y_m \end{cases}$$

Пусть (x^0,y^0) — решение этой системы, $F=(f_1\dots f_m)$

 $\det F'(x^0) \neq 0.$ Тогда $\exists U(y^0): \forall y \in U(y^0)$ система имеет решение, C^r гладко зависящее от y.

Итоговый конспект 3 из 19

1.10 Формулировка теоремы о неявном отображении в терминах систем уравнений

1.11 ! Простое k-мерное гладкое многообразие в \mathbb{R}^m

 $M\subset \mathbb{R}^m$ — простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m , если:

- $\exists \Phi : O \subset \mathbb{R}^k \to \mathbb{R}^m$
- $\Phi(O) = M$
- $\Phi \in C^r$
- $\forall x \in O \operatorname{rg}\Phi'(x) = k$

2 Теоремы

2.1 Лемма о дифференцировании "сдвига"

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $f \in C^r(E)$ это подразумевает, что E открыто
- $a \in E$
- $h \in \mathbb{R}^m : \forall t \in [-1, 1] \quad a + th \in E$
- $\varphi(t) = f(a+th)$

Тогда при $1 \le k \le r$:

$$\varphi^{(k)}(0) = \sum_{i:|j|=k} \frac{k!}{j!} h^j \frac{\partial^k f}{\partial x^j}(a)$$

Доказательство.

$$\varphi'(t) = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i}(a+th)h_i$$

$$\varphi''(t) = \sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i}(a+th)\right)' h_i = \sum_{i=1}^{m} \sum_{i_2=1}^{m} \frac{\partial^2 f}{\partial x_i \partial x_{i_2}}(a+th)h_i h_{i_2}$$

$$\varphi''(0) = \frac{\partial^2 f}{\partial x_1^2} h_1^2 + \frac{\partial^2 f}{\partial x_2^2} h_2^2 + \dots + \frac{\partial^2 f}{\partial x_m^2} h_m^2 + 2\left(\frac{\partial^2 f}{\partial x_1 \partial x_2} h_1 h_2 + \frac{\partial^2 f}{\partial x_1 \partial x_3} h_1 h_3 + \dots\right)$$

$$\varphi^{(k)}(0) = \sum_{i_1=1}^{m} \sum_{i_2=1}^{m} \dots \sum_{i_k=1}^{m} \frac{\partial^k f(a)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} h_{i_1} h_{i_2} \dots h_{i_k}$$

Итоговый конспект 4 из 19

2.2 ! Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)

2.2.1 В форме Лагранжа

• $f \in C^{r+1}(E)$ — это подразумевает $E \subset \mathbb{R}^m, f: E \to \mathbb{R}$

•
$$x \in B(a,R) \subset E$$

Тогда $\exists t \in (0,1)$:

$$f(x) = \sum_{\alpha: 0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha} + \underbrace{\sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a+t(x-a))}{(\alpha+1)!} (x-a)^{\alpha}}_{\text{Остаток в форме Лагранжа}}$$

Доказательство. Кажется, это теперь почти очевидно.

$$\varphi(t)=(a+th)$$
, где $h=x-a$. Тогда $\varphi(0)=f(a)$

$$\varphi(t) = \varphi(0) + \frac{\varphi'(0)}{1!} + \ldots + \frac{\varphi^{(r)}(0)}{r!} t^r + \frac{\varphi^{(r+1)}(\overline{t})}{(r+1)!} t^{r+1}$$

$$f(x) = \underbrace{\sum_{\alpha: 0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha}}_{\text{Многочлен Тейлора}} + \underbrace{\sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a + \Theta(x-a))}{\alpha!} (x-a)^{\alpha}}_{\mathcal{O}(|x-1|^r)}$$

По лемме:

$$f(x) = f(a) + \sum_{k=1}^{r} \sum_{\alpha: |\alpha| = k} \frac{f^{(\alpha)}}{\alpha!} h^{\alpha} + \sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a + \Theta(x - a))}{\alpha!} h^{\alpha}$$

2.2.2 В форме Пеано

$$f(a+h) = \sum_{\alpha:0 < |\alpha| < r} \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} + o(|h|^r)$$

Доказательство. Отсутствует

2.3 Теорема о пространстве линейных отображений

- 1. Отображение $A \to ||A||$ в $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ норма, т.е.:
 - (a) $||A|| \ge 0$
 - (b) $||A|| = 0 \Rightarrow A = 0_{n \times m}$
 - (c) $\forall \lambda \in \mathbb{R} \ ||\lambda A|| = |\lambda|||A||$
 - (d) $||A + B|| \le ||A|| + ||B||$
- 2. $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n), B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^k) \Rightarrow ||BA|| < ||B|| \cdot ||A||$

Доказательство.

1.
$$||A|| = \sup_{|x|=1} |Ax|$$

а, b, c — очевидно.

$$d: |(A+B)x| = |Ax + Bx| \le |Ax| + |Bx| \le (||A|| + ||B||)|x|$$

По замечанию 3 $||A + B|| \le ||A|| + ||B||$

2.
$$|BAx| = |B(Ax)| \le ||B|| \cdot |Ax| \le ||B|| \cdot ||A||$$

2.4 Лемма об условиях, эквивалентных непрерывности линейного оператора

- X, Y линейные нормированные пространства
- $A \in \mathcal{L}(X,Y)$

Тогда эквивалентны следующие утверждения:

- 1. A ограниченный оператор, т.е. ||A|| конечно
- 2. A непрерывно в нуле
- 3. A непрерывно всюду в X
- 4. A равномерно непрерывно

Доказательство.

- 1. $4 \Rightarrow 3 \Rightarrow 2$ очевидно.
- $2. 2 \Rightarrow 1$

Непрерывность в 0: $\forall \varepsilon \;\; \exists \delta : \forall x : |x| \leq \delta \quad |Ax| < \varepsilon$

Итоговый конспект 6 из 19

$$\sphericalangle \varepsilon = 1, |x| = 1: |Ax| = \left|A\frac{1}{\delta}\delta x\right| = \frac{1}{\delta}|A\delta x| \le \frac{1}{\delta}$$

3. $1 \Rightarrow 4$

$$\forall \varepsilon > 0 \ \exists \delta := \frac{\varepsilon}{||A||} \ \forall x_1, x_0 \ |x_1 - x_0| < \delta$$

2.5 Теорема Лагранжа для отображений

- E открыто
- $F: E \subset \mathbb{R}^m \to \mathbb{R}^l$
- F дифф. на E
- $a, b \in E$
- $[a,b] \in E$

Тогда $\exists c \in [a, b] \ (c = a + \Theta(b - a)), \Theta \in [0, 1]$:

$$|F(b) - F(a)| \le ||F'(c)|||b - a|$$

2.6 Теорема об обратимости линейного отображения, близкого к обратимому

- $L \in \Omega_m$
- $M \in \mathcal{L}_{m,m}$
- $||L-M||<rac{1}{||L^{-1}||}-M$ "близкий" к L

Тогда:

- 1. $M\in\Omega_m$, т.е. Ω_m открыто в $\mathcal{L}_{m,m}$
- 2. $||M^{-1}|| \le \frac{1}{||L^{-1}||^{-1} ||L M||}$
- 3. $||L^{-1} M^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} ||L M||} ||L M||$

Итоговый конспект 7 из 19

Доказательство. По неравенству треугольника $|a+b| \ge |a| - |b|$:

$$|Mx| = |Lx + (M - L)x|$$

$$\geq |Lx| - |(M - L)x|$$

$$\geq \frac{1}{||L||^{-1}}|x| - ||M - L|| \cdot |x|$$

$$\geq (||L^{-1}||^{-1} - ||M - L||) |x|$$

Это доказало пункты 1 и 2, докажем 3:

Аналогично равенству $\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}$ в $\mathbb R$ выполняется следующее равенство в Ω_m :

$$M^{-1} - L^{-1} = M^{-1}(L - M)L^{-1}$$

Это очевидно доказывается домножением на M слева и на L справа:

Доказательство.

$$M^{-1} - L^{-1} \stackrel{?}{=} M^{-1}(L - M)L^{-1}$$

 $E - L^{-1} \stackrel{?}{=} (L - M)L^{-1}$
 $L - M = L - M$

 $||M^{-1} - L^{-1}|| = ||M^{-1}(L - M)L^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||L - M||}||L - M||$

2.7 Теорема о непрерывно дифференцируемых отображениях

- $F: E \subset \mathbb{R}^m \to \mathbb{R}^l$
- F дифф. на E

Тогда эквивалентны 1 и 2:

- 1. $F \in C^1(E)$, т.е. \exists все $\frac{\partial F_i}{\partial x_i}$ и они непрерывны на E
- 2. $F': E \to \mathcal{L}_{m,l}$ непрерывно, т.е.

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon, x) \ \forall \overline{x} : |\overline{x} - x| < \delta \ ||F'(x) - F'(\overline{x})|| \le \varepsilon$$

Доказательство.

M3137y2019

Итоговый конспект 8 из 19

• $1 \Rightarrow 2$:

Берем
$$x, \varepsilon. \, \exists \delta > 0 : \forall \overline{x} \, \left| \frac{\partial F_i}{\partial x_j}(x) - \frac{\partial F_i}{\partial x_j}(\overline{x}) \right| < \frac{\varepsilon}{\sqrt{ml}}$$
 для всех $i, j.$

$$||F'(x)| - F'(\overline{x})|| < \sqrt{\sum_{i,j} \frac{\varepsilon^2}{ml}} = \varepsilon$$

• $2 \Rightarrow 1$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \overline{x} : |x - \overline{x}| < \delta \quad ||F'(x) - F'(\overline{x})|| < \varepsilon$$

$$|A| = (0, 0, \dots, 0, \underbrace{1}_{j}, 0, \dots, 0)$$

$$|F'(x)h - F'(\overline{x})h| \le ||F'(x) - F'(\overline{x})|| \cdot |h| < \varepsilon$$

$$|F'(x)h - F'(\overline{x})h| = \sqrt{\sum_{i=1}^{l} \left(\frac{\partial F_{i}}{\partial x_{j}}(x) - \frac{\partial F_{i}}{\partial x_{j}}(\overline{x})\right)^{2}}$$

$$\sqrt{\sum_{i=1}^{l} \left(\frac{\partial F_{i}}{\partial x_{j}}(x) - \frac{\partial F_{i}}{\partial x_{j}}(\overline{x})\right)^{2}} < \varepsilon \Rightarrow \forall i \ \left|\frac{\partial F_{i}}{\partial x_{j}}(x) - \frac{\partial F_{i}}{\partial x_{j}}(\overline{x})\right| < \varepsilon$$

2.8 Теорема Ферма. Необходимое условие экстремума. Теорема Ролля

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $a \in IntE$
- a точка локального экстремума
- f дифф. в точке a

Тогда
$$\forall u \in \mathbb{R}^m : |u| = 1 \quad \frac{\partial f}{\partial u}(a) = 0$$

Доказательство. Для $f\Big|_{\text{прямая}(a,u)}$ a остается локальным экстремумом, выполняется одномерная теорема Ферма.

Следствие (необходимое условие экстремума). a — локальный экстремум $f \Rightarrow \frac{\partial f}{\partial x_1}(a) \dots \frac{\partial f}{\partial x_m}(a) = 0$

Следствие (теорема Ролля).

M3137y2019

Итоговый конспект 9 из 19

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $K \subset E$ компакт
- ƒ дифф. в IntK
- f непрерывно на K

•
$$f\Big|_{\text{граница}K} = \text{const}$$

Тогда $\exists a \in IntK : f'(a) = \vec{0}$

Доказательство. По теореме Вейерштрасса f достигает минимального и максимального значения на компакте. Тогда либо f на K const, либо $\exists a \in IntK$ — точка экстремума. В первом случае $f' \equiv 0$, во втором по т. Ферма f'(a) = 0

2.9 Лемма об оценке квадратичной формы и об эквивалентных нормах

• $p: \mathbb{R}^m \to \mathbb{R}$ — норма

Тогда $\exists C_1, C_2 > 0 \ \forall x \ C_2|x| \le p(x) \le C_1|x|$

Доказательство.

$$C_1 := \min_{x \in S^{m-1}} p(x)$$
 $C_2 := \max_{x \in S^{m-1}} p(x)$

$$p(x) = p\left(|x|\frac{x}{|x|}\right) = |x|p\left(\frac{x}{|x|}\right) \begin{cases} \ge C_2|x| \\ \le C_1|x| \end{cases}$$

Существование C_1 и C_2 гарантируется теоремой Вейерштрасса, но она требует непрерывности p(x).

Докажем, что p непрерывна.

Введем базис $\{e_i\}_{i=1}^n$. Тогда

$$p(x - y) = p\left(\sum (x_k - y_k)e_k\right)$$

$$\leq \sum p((x_k - y_k)e_k)$$

$$= \sum |x_k - y_k|p(e_k)$$

$$\leq |x - y|\sqrt{\sum p(e_k)^2}$$

$$\leq |x - y|M$$

Итоговый конспект 10 из 19

2.10 Достаточное условие экстремума

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $a \in IntE$
- $\frac{\partial f}{\partial x_1}(a) = 0, \dots, \frac{\partial f}{\partial x_m}(a) = 0$
- $Q(h) := d^2 f(a, h)$
- $f \in C^2(E)$

Тогда:

- Если Q(h) положительно определена, a локальный минимум
- Если Q(h) отрицательно определена, a локальный максимум
- Если Q(h) незнакоопределена, a не экстремум
- Если Q(h) положительно определена, но вырождена, недостаточно информации.

Доказательство.

$$\begin{split} f(a+h) &= f(a) \\ &= \frac{1}{2} d^2 f(a+\Theta h,h) \\ &= \frac{1}{2} \left(Q(h) + \sum_{i=1}^n \underbrace{\left(f_{x_i x_i}''(a+\Theta h) - f_{x_i x_i}''(a) \right)}_{\to 0} \underbrace{ h_i^2 + 2 \sum_{i < j} \underbrace{\left(f_{x_i x_i}''(a+\Theta h) - f_{x_i x_i}''(a) \right)}_{\to 0} \underbrace{ b_i h_j^2 }_{\text{по модулю}} \right) \end{split}$$

$$f(a+h) - f(a) \ge \frac{1}{2} \left(\gamma_Q |h|^2 - \frac{\gamma_Q}{2} |h|^2 \right) \ge \frac{1}{4} \gamma_Q |h|^2 > 0$$

$$\begin{split} \sphericalangle\overline{h}:Q(\overline{h})>0 \Rightarrow f(a+t\overline{h})-f(a)&=\frac{1}{2}d^2f(a+\Theta t\overline{h},\overline{h})t^2\\ &=\frac{1}{2}\left(\underbrace{t^2Q(\overline{h})}_{Q(t\overline{h})}+t^2\underbrace{\left(\sum(f''_{x_ix_i}(a+\Theta th)-f''_{x_ix_i}(a))\overline{h}_i^2+2\sum_{i< j}\ldots\right)}_{\text{6.м. при }t\to 0}\right)\\ &\geq \frac{1}{2}t^2(Q(h)-\frac{1}{2}Q(h))>0 \end{split}$$

Итоговый конспект 11 из 19

Т.е. $f(a+t\overline{h}) > f(a)$ при t, близких к 0.

Аналогично $f(a+t\overline{\overline{h}}) < f(a)$ при t, близких к 0.

Это доказывает первые три пункта теоремы. Докажем последний пункт примером.

$$f(x_1, x_2 \dots) = x_1^2 - x_2^4 - x_3^4 \dots$$

$$\overline{f}(x_1, x_2 \dots) = x_1^2 + x_2^4 + x_3^4 \dots$$

$$a = (0, 0, \ldots)$$

$$f'_{x_1}(a) = 0, f'_{x_2}(a) = 0, \dots$$

$$d^2f(a,h) = h_1^2$$

$$d^2\overline{f}(a,h) = 2h_1^2$$

Итого f не имеет экстремума в a, но для \overline{f} a — локальный минимум.

2.11 Лемма о "почти локальной инъективности"

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- F дифф. в $x_0 \in O$
- $\det F'(x_0) \neq 0$

Тогда $\exists c > 0, \delta > 0 \ \forall h < \delta \ |F(x_0 + h) - F(x_0)| > C|h|$

Доказательство. Если F — линейное отображение:

$$|F(x_0 + h) - F(x_0)| = |F(h)| = |F'(x_0)h| \ge ||F'(x_0)|| \cdot |h| \ge \frac{1}{||(F'(x_0))^{-1}||} |h|$$
$$|F(x_0 + h) - F(x_0)| = |F'(x_0)h + \alpha(h)|h|| \ge c|h| - \frac{c}{2}|h| \ge \frac{c}{2}|h|$$

2.12 Теорема о сохранении области

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- F дифф.
- $\forall x \in O \det F'(x) \neq 0$

Тогда F(O) — открыто.

Доказательство. $x_0 \in O \Rightarrow F(x_0) \in F(O)$ — внутренняя? в F(O)

По лемме
$$\exists c, \delta : \forall h \in \overline{B(0,\delta)} \ |F(x_0+h) - F(x_0)| > C|h|$$

M3137y2019

Итоговый конспект 12 из 19

В частности $F(x_0+h) \neq F(x_0)$ при $|h|=\delta$

$$r := \frac{1}{2}\rho(y_0, F(S(x_0, \delta)))$$

$$\rho(A,B) \stackrel{\mathrm{def}}{=} \inf_{a \in A, b \in B} \rho(a,b)$$

Т.к. S — компакт, \exists min.

Если $y \in B(y_0,r)$, то $\rho(y,F(S(x_0,\delta))) > r$:

Итоговый конспект 13 из 19

Проверим, что $B(y_0,r)\subset F(O)$, т.е. $\forall y\in B(y_0,r)\;\;\exists x\in B(x_0,\delta)\;\;F(x)=y$

Рассмотрим функцию $g(x) = |F(x) - y|^2$ при $x \in \overline{B(x_0, \delta)}$.

Мы хотим показать, что $\exists x: g(x) = 0$. Найдем $\min g$.

$$g(x_0) = |F(x_0) - y|^2 = |y_0 - y|^2 < r^2$$

При $x \in S(x_0,\delta): g(x) > r^2 \Rightarrow \min g$ не лежит на границе шара \Rightarrow он лежит внутри шара.

$$g(x) = (F_1(x) - y_1)^2 + \ldots + (F_m(x) - y_m)^2$$

$$\forall i \quad \frac{\partial g}{\partial x_i} = 0$$

$$2(F_1(x) - y)F'_{1x_i}(x) + \ldots + 2(F_m(x) - y)F'_{mx_i}(x) = 0$$

$$F'_x 2(F(x) - y) = 0$$

$$\forall x \quad \det F' \neq 0 \Rightarrow F(x) - y = 0$$

2.13 Следствие о сохранении области для отображений в пространство меньшей размерности

• $F: O \subset \mathbb{R}^m \to \mathbb{R}^l$

• $F \in C^1(O)$

• *l* < *m*

• $\operatorname{rg} F'(x) = l \ \forall x \in O$

Тогда F(O) открыто.

Доказательство. Зафискируем точку x_0 . Пусть ранг реализуется на столбцах $1\dots l$, т.е. определитель матрицы из столбцов $1\dots l \neq 0$, т.е.:

$$\det \underbrace{\left(\frac{\partial F_i}{\partial x_j}\right)_{i,j=1\dots l}(x_0)}_{A(x_0)} \neq 0$$

Итоговый конспект 14 из 19

И для близких точек тоже $\neq 0$

$$\tilde{F}: O \to \mathbb{R}^m \quad \tilde{F}(x) = \begin{pmatrix} F_1(x) \\ F_2(x) \\ \vdots \\ F_l(x) \\ x_{l+1} \\ \vdots \\ x_m \end{pmatrix}$$

$$\tilde{F}'(x) = \left[\frac{F'(x)}{0 \mid E_{m-l}} \right]$$

 $\det \tilde{F}'(x) = \det A(x) \det E_{m-l} \neq 0$ в окрестности x_0

Тогда $\tilde{F}\Big|_{U(x_0)}$ удовлетворяет теореме $\Rightarrow \tilde{F}(U(x_0))$ — открытое множество в \mathbb{R}^m

$$F(U(x_0)) = \tilde{F}(U(x_0)) \cap \mathbb{R}^l$$

2.14 Теорема о гладкости обратного отображения

- $T \in C^r(O, \mathbb{R}^m)$
- $O \subset \mathbb{R}^m$
- $r = 1, 2, ... + \infty$
- T обратимо
- $\det T'(x) \neq 0 \ \forall x \in O$

Тогда
$$T^{-1}\in C^r(0,\mathbb{R}^m)$$
 и $(T^{-1})'_{y_0}=(T'(x_0))^{-1}$, где $y_0=T(x_0)$

Доказательство. Докажем по индукции по r.

База: r = 1

 $S := T^{-1}$ — непрерывно по теореме о сохранении области. Почему?

f:X o Y непр. $\Leftrightarrow \forall B-$ откр. $\subset Y$ $f^{-1}(B)-$ открыто.

 $T'(x_0) = A$ — невырожденный оператор.

По лемме о локальной иньективности

$$\exists c, \delta : \forall x \in B(x_0, \delta) \ |T(x) - T(x_0)| > C|x - x_0| \quad (*)$$

По определению дифференцируемости $T(x) - T(x_0) = A(x - x_0) + \omega(x)|x - x_0|$

M3137y2019

Итоговый конспект 15 из 19

$$T(x) = y$$
 $T(x_0) = y_0$ $x = S(y)$ $x_0 = S(x_0)$

B терминах y и S:

$$S(y) - S(y_0) = A^{-1}(y - y_0) - \underbrace{A^{-1}\omega(S(y))|S(y) - S(y_0)|}_{\stackrel{?}{y \to 0} 0 \text{ быстрее, чем } |y - y_0|}$$

Если действительно ightarrow 0, то S дифференцируемо по определению.

Пусть y близко к y_0 , тогда $|x-x_0|=|S(y)-S(y_0)|<\delta$

$$|A^{-1}w(S(y))|S(y) - S(y_0)|| = |S(y) - S(y_0)| \cdot |A^{-1}w(S(y))|$$

$$\leq |x - x_0| \cdot ||A^{-1}|| \cdot |w(S(y))|$$

$$\stackrel{(*)}{\leq} \frac{1}{C} |y - y_0| \cdot ||A^{-1}|| \cdot |w(S(y))|$$

Мы доказали, что S дифференцируемо, теперь необходимо доказать, что S' непрерывно.

$$S'(y_0) = A^{-1}$$

"Алгоритм" получения обратного оператора:

$$y\mapsto T^{-1}(y)=x\mapsto T'(x)=A\mapsto A^{-1}$$

Здесь все шаги непрерывны, поэтому S' непрерывно.

Переход

$$T \in C^{r+1}$$
 $T': O \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ $T' \in C^r$ $?S \in C^{r+1}$

$$y \stackrel{\in C^r \text{ no whd.}}{\mapsto} S(y) \stackrel{\in C^r}{\mapsto} T'(x) \stackrel{\in C^{\infty}}{\mapsto} (S^{-1})'$$

2.15 Теорема о неявном отображении

- $F: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n$
- О откр.
- $F \in C^r(O, \mathbb{R}^n)$
- $(a,b) \in O$
- F(a,b) = 0

M3137y2019

Итоговый конспект 16 из 19

•
$$\det F_u'(a,b) \neq 0$$

Тогда:

1.
$$\exists$$
 откр. $P \subset \mathbb{R}^m, a \in P$
 \exists откр. $Q \subset \mathbb{R}^n, b \in Q$
 $\exists ! \Phi : P \to Q \in C^r : \forall x \in P \ F(x, \Phi(x)) = 0$
2. $\Phi'(x) = -\left(F'_y(x, \Phi(x))\right)^{-1} \cdot F'_x(x, \Phi(x))$

Доказательство.

$$1 \Rightarrow 2$$
: $F(x, \Phi(x)) = 0 \Rightarrow F'_x(x, \Phi(x)) + F'_y(x, \Phi(x))\Phi'(x) = 0$

1:
$$\tilde{F}: O \to \mathbb{R}^{m+n}: (x,y) \mapsto (x, F(x,y)), \tilde{F}(a,b) = (a,0)$$

$$F' = \left(\begin{array}{c|c} E_m & 0 \\ \hline F_x' & F_y' \end{array}\right)$$

Очевидно $\det \tilde{F}' \neq 0$ в (a,b), значит $\exists U(a,b): \tilde{F} \Big|_{U} -$ диффеоморфизм

- 1. $U = P_1 \times Q$ можно так считать
- 2. $V = \tilde{F}(U)$
- 3. $ilde{F}$ диффеоморфизм на $U\Rightarrow\exists\Psi= ilde{F}^{-1}:V o U$
- 4. \tilde{F} не меняет первые m координат $\Rightarrow \Psi(u,v) = (u,H(u,v)), H:V \to \mathbb{R}^n.$
- 5. "Ось x" \Leftrightarrow "ось y", P:= "ось $u''=\mathbb{R}^m\times a\cap V,$ P- откр. в $\mathbb{R}^m,$ $P=P_1$

Итоговый конспект 17 из 19

6.
$$\Phi(x):=H(x,0)$$

$$F\in C^r\Rightarrow \tilde{F}\in C^r\Rightarrow \Psi\in C^r\Rightarrow H\in C^r\Rightarrow \Phi\in C^r$$
 Единственность: $(x,y)=\Psi(\tilde{F}(x,y))=\Psi(x,0)=(x,H(x,0))=(x,\Phi(x))$

2.16 Теорема о задании гладкого многообразия системой уравнений

- $M \subset \mathbb{R}^m$
- 1 < k < m
- $1 < r < \infty$
- $p \in M$

Тогда эквивалентны следующие утверждения:

- 1. $\exists U(p) \subset \mathbb{R}^m$ окрестность p в \mathbb{R}^m : $M \cap U k$ -мерное C^r -гладкое многообразие.
- 2. $\exists \tilde{U}(p) \subset \mathbb{R}^m$ и функции $f_1, f_2 \dots f_{m-k} : \tilde{U} \to \mathbb{R}$, все $f_i \in C^r$ $x \in M \cap \tilde{U} \Leftrightarrow f_1(x) = f_2(x) = \dots = 0$, при этом $\operatorname{grad} f_1(p) \dots \operatorname{grad} f_{m-k}(p) \operatorname{ЛН3}$.

Доказательство.

 $1\Rightarrow 2: \ \Phi$ — параметризация $O\subset\mathbb{R}^k\to\mathbb{R}^m, \Phi\in C^r, p=\Phi(t^0)$

$$\operatorname{rg}\Phi'(t^0)=k$$

Пусть
$$\det \left(\frac{\partial \Phi_i}{\partial t_j}(t^0) \right)_{i,j=1\dots k}
eq 0$$

Пусть $L: \mathbb{R}^m \to \mathbb{R}^k$ — проекция на первые k координат: $(x_1 \dots x_m) \mapsto (x_1 \dots x_k)$

Тогда $(L \circ \Phi)'$ — невырожденный оператор \Rightarrow локальный диффеоморфизм. Тогда если $W(t^0)$ — окрестность точки t^0 , то $L \circ \Phi : W \to V \subset \mathbb{R}^k$ — диффеоморфизм.

Итоговый конспект 18 из 19

Множество $\Phi(W)$ — график некоторого отображения $H:V \to \mathbb{R}^{m-k}$

Пусть
$$\Psi = (L \circ \Phi)^{-1}$$

Берем
$$x' \in V$$
, тогда $(x', U(x')) = \Phi(\Psi(x'))$, т.е. $H \in C^r$

Множество $\Phi(W)$ открыто в $M\Rightarrow \Phi(W)=M\cap \tilde{U}$, где \tilde{U} открыто в \mathbb{R}^m

$$\tilde{U} \subset V \times \mathbb{R}^{m-k}$$

Пусть
$$f_j: \tilde{U} \to \mathbb{R}, x \mapsto H_j(L(x)) - x_{k+j}$$
. Тогда $x \in M \cap \tilde{U} (=\Phi(W)) \Leftrightarrow f_j(x) = 0$

$$\begin{pmatrix} \operatorname{grad} f_1(p) \\ \vdots \\ \operatorname{grad} f_{m-k}(p) \end{pmatrix} = \begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \dots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & 0 & -1 & \dots & \vdots \\ \frac{\partial H_{m-k}}{\partial x_1} & \dots & \frac{\partial H_{m-k}}{\partial x_k} & 0 & 0 & \dots & -1 \end{pmatrix}$$

$$rg = k \Rightarrow ЛН3$$

$$2 \Rightarrow 1$$
: $F := (f_1 \dots f_{m-k})$

$$I := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(p) & \dots & \frac{\partial f_1}{\partial x_k}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m-k}}{\partial x_1}(p) & \dots & \frac{\partial f_{m-k}}{\partial x_k}(p) \end{pmatrix}$$

Градиенты ЛНЗ \Rightarrow rgI=m-k.

Пусть ранг реализуется на последних m-k столбцах, т.е.

$$\det\left(\frac{\partial f_i}{\partial x_{k+j}}(p)\right)_{i,j=1...m-k} \neq 0$$

Итоговый конспект 19 из 19

$$F(x_1 \dots x_k, x_{k+1} \dots x_m) = 0$$
 при $x \in U$

По т. о неявном отображении:

$$\exists P$$
 — окр. $(x_1 \dots x_k)$ в \mathbb{R}^m

$$\exists Q - \text{orp.}(x_{k+1} \dots x_m) \text{ B } \mathbb{R}^{m-k}$$

$$\exists H \in C^2 : P \to Q : F(x', H(x)) = 0$$
 для $x \in P$

Тогда
$$\Phi: P \to \mathbb{R}^m: (x_1 \dots x_k) \mapsto (x_1 \dots x_k, H_1(x_1 \dots x_k), H_2(x_1 \dots x_k) \dots H_{m-k}(x_1 \dots x_k)$$

 Φ — гомеоморфизм P и $M\cap \tilde{U}, \Phi$ — фактически проекция.

2.17 Следствие о двух параметризациях

- $M \subset \mathbb{R}^m k$ -мерное C^r -гладкое многообразие
- $p \in M$
- \exists две параметризации:

$$\Phi_1: O_1 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m, \Phi_1(t^0) = p$$

$$\Phi_2: O_2 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m, \Phi_2(s^0) = p$$

Тогда \exists диффеоморфизм $\Psi: O_1 \to O_2$, такой что $\Phi_1 = \Phi_2 \circ \Psi$

Доказательство.

Частный случай: Пусть $\operatorname{rg}\Phi_1'(t^0), \operatorname{rg}\Phi_2'(s^0)$ достигается на первых k столбцах.

Тогда
$$\Phi_1=\Phi_2\circ\underbrace{(L\circ\Phi_2)^{-1}\circ(L\circ\Phi_1)}_{\Theta$$
 – искомый диффеоморфизм

Общий случай: $\Phi_1 = \Phi_2 \circ (\Phi_2 \circ L_2)^{-1} \circ (L_2 \circ L_1^{-1}) \circ (L_1 \circ \Phi_1)$

$$L_2 \circ L_1^{-1} = L_2 \circ \Phi_1 \circ (L \circ \Phi_1)^{-1} \in C^r$$

Гладкость очевидна в силу гладкости всех элементов.

Невырожденность мы не доказали, поэтому то, что это диффеоморфизм — ещё не доказано. Возможно, это будет на следующей лекции.