Tutorial 9

Exercise 1: Construct GNFA accepting languages L_1 and L_4 :

- a) $L_1 = L_2 \cdot L_3$, where $L_2 = \{w \in \{0,1\}^* \mid \text{every occurrence of 00 in } w \text{ is immediately followed by 1}\}$ $L_3 = \{w \in \{0,1\}^* \mid |w|_1 \mod 3 = 2\}$
- b) $L_4 = \{w \in \{a, b\}^* \mid w \text{ is obtained from some word } w' \in L_5 \text{ by ommiting of one symbol}\}$, where L_5 is the language consisting of those words over alphabet $\{a, b\}$ that contain subword abba and end with suffix abb.

Exercise 2: Construct equivalent DFA for the given GNFA:

Exercise 3: For each of the following automata find at least one word over alphabet $\{a, b\}$, which is not accepted by the given automaton.

Exercise 4: For each of the following regular expressions, construct an equivalent finite automaton (it can be a GNFA):

- a) (0+11)*01
- b) (0+11)*00*1
- c) $(a + bab)^* + a^*(ba + \varepsilon)$

Exercise 5: Describe an algorithm that for a given NFA $\mathcal{A} = (Q, \Sigma, \delta, I, F)$ decides if:

- a) $\mathcal{L}(\mathcal{A}) = \emptyset$
- b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Exercise 6: Describe an algorithm that for given NFA $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ decides if $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.

Exercise 7: Describe an algorithm that for given GNFA \mathcal{A} constructs an equivalent NFA \mathcal{A}' such that the sets of states of automata \mathcal{A} and \mathcal{A}' are the same.

*Exercise 8: Consider an arbitrary alphabet Σ .

The **Hamming distance** h(u,v) of a pair of words $u,v \in \Sigma^*$, such that |u|=|v|, is the number of positions in the words u,v where these two words differ. Formally, h(u,v) can be defined as follows: $h(\varepsilon,\varepsilon)=0$, and for all symbols $a,b\in\Sigma$ and words $u,v\in\Sigma^*$, such that |u|=|v|, we have

$$h(au,bv) = \left\{ \begin{array}{ll} h(u,v) & \text{if } a = b \\ 1 + h(u,v) & \text{if } a \neq b \end{array} \right.$$

For a language $L\subseteq \Sigma^*$ and each $k\geq 0$ we define the language $H_k(L)$ as

$$H_k(L) = \{ w \in \Sigma^* \mid \exists w' \in L : |w| = |w'| \land h(w, w') \le k \}.$$

Show that for each $k \geq 0$ holds that if a language L is regular then also language $H_k(L)$ is regular.