Dokaz. Najprej kot prej zapišemo $g_{[\delta]}(x) = \frac{1}{\sqrt{2\pi}}e^{-\delta^2x^2/2}$ in $g_{(\delta)}(x) = \frac{1}{\sqrt{2\pi}\delta}e^{-\frac{x^2}{2\delta^2}}$. Trdimo, da je

$$(f * g_{(\delta)})(x) = \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{ix\xi} g_{(\delta)}(\xi) d\xi$$

Izračunajmo desno stran enačbe - upoštevamo definicijo \hat{f} :

$$\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{ix\xi} g_{(\delta)}(\xi) d\xi = \int_{-\infty}^{\infty} d\xi \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-it\xi} dt g_{[\delta]}(\xi)$$

Upoštevali smo tudi, da je $\widehat{g_{[delta]}} = g_{(\delta)}$ Uporabimo Fubinijev izrek, da zamenjamo vrstni red integriranja.

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} f(t)e^{-(t-x)i\xi} g_{[\delta]}(\xi)d\xi$$

V drugem integralu prepoznamo $g_{\delta}(t-x)$

$$= \int_{-\infty}^{\infty} g_{(\delta)}(t-x)f(t)dt = g_{(\delta)} * f = f * g_{(\delta)}$$

Plancerelov izrek. Ideja izreka je, da obravnavamo $\mathcal{F} \colon \mathcal{S} \to \mathcal{S}$ kot linearno preslikavo. Na $C_c(\mathbb{R})$ lahko poleg tega vpeljemo skalarni produkt

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx$$

$$||f||_2 = \sqrt{\langle f, f \rangle}$$

Uvedemo množico L^2 , ki je napolnitev metričnega prostora $C_c(\mathbb{R})$ glede na $||\cdot||_2$. Gre v bistvu za vse funkcije, za katere je $\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty$.

Očitno je $\mathcal{S}\subseteq L^2(\mathbb{R})$ oziroma $C_c^\infty(\mathbb{R})\subseteq \mathcal{S}\subseteq L^2(\mathbb{R})$

Trditev. Če sta $f, g \in \mathcal{S}(\mathbb{R})$, potem je $\langle f, g \rangle = \langle \widehat{f}, \widehat{g} \rangle$

Dokaz. Izračunamo.

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx = \int_{-\infty}^{\infty} dx \overline{g(x)} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{ix\xi} d\xi$$

To smemo, ker sta $f, g \in \mathcal{S}$. Poleg tega nam to omogoča tudi uporabo Fubinijevega izreka.

$$= \int_{-\infty}^{\infty} \widehat{f}(\xi) d\xi \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{g(x)} e^{-ix\xi} dx$$
$$= \int_{-\infty}^{\infty} \widehat{f}(\xi) \overline{\widehat{g}(\xi)} d\xi = \langle \widehat{f}, \widehat{g} \rangle$$

Izrek. Fourierovo transformacijo $\mathcal{F} \colon \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ lahko na enoličen način razširimo do unitarne preslikave $\tilde{\mathcal{F}} \colon L^2(\mathbb{R}) \to L^2(\mathbb{R})$

Dokaz. Takšno preslikavo $\tilde{\mathcal{F}}$ lahko definiramo kot limito preslikav \mathcal{F} za zaporedje funkcij $f_n \in \mathcal{S}$. Preverimo, ali je konvergenca proti tej limiti enakomerna:

$$||\hat{f}_n - \hat{f}_m||^2 = \langle \hat{f}_n - \hat{f}_m, \hat{f}_n - \hat{f}_m \rangle = \langle f_n - f_m, f_n - f_m \rangle = ||f_m - f_n||$$

To pa gre proti 0, ko gresta m, n proti neskončno. \hat{f}_n je torej Cauchyjevo zaporedje, torej ima limito. Preverimo še, da je taka preslikava unitarna.

$$\langle \hat{f}, \hat{g} \rangle = \langle \lim \hat{f}_n, \lim \hat{g}_n \rangle = \lim \langle \hat{f}_n, \hat{g}_n \rangle = \lim \langle f_n, g_n \rangle = \langle \lim f_n, \lim g_n \rangle = \langle f, g \rangle$$

Izrek. (Riemann-Lebesguova lema) Za vsako $f \in L^1(\mathbb{R})$ velja

$$\lim_{|\xi|\to\infty} \hat{f}(\xi) = 0$$

Ideja dokaza. Najprej obravnavamo poseben primer:

$$\left|\hat{f}(\xi)\right| = \left|\frac{e^{-ib\xi} - e^{-ia\xi}}{-\sqrt{2\pi}i\xi}\right| \le \frac{1}{\sqrt{2\pi}|\xi|} \left(\left|e^{-ib\xi} - e^{-ia\xi}\right|\right) \le \frac{1}{\sqrt{2\pi}|\xi|}$$

Za splošen primer pa lahko f aproksimiramo s takšnimi funkcijami. Če nam namreč uspe zapisati $g = \sum_i c_i \chi_{[ai,bi]}$, je stvar dokazana. Preostanek dokaza pa bi bil, da se to vedno da storiti.