浙江大学 2007 - 2008 学年春季学期 《 微积分Ⅱ 》 课程期末考试试卷

开课学	院: _理	学院_	考试形式:	闭卷 考	试时间:	年	月	日所	需时间:	<u>120</u> 5	分钟
考生	生姓名:			学号:		=	专业: _				
-,	填空题	(每小	题 5 分,共	;25分)							
1.	点 M (1	, -1, 2) 到平面 <i>x</i> -	-2y+2z	$-1 = 0 \ \text{f}$	的距离化	=	_•			
2.	已知 $ \vec{a} $	= 2,	$\vec{b} \models 3, \vec{a} \cdot \vec{b}$	5 = 3,则	$ \vec{a} + \vec{b} =$						
3.	设函数	f(u, v)) 可微, z	$=f(x^{y},$	y ^x), 则						
	$dz = $ _										_
4.	设 $f(x)$) 在[0,	1]上连续且	f(x) > 0	, a 与 b 为	r常数, <i>L</i>	$\mathbf{D} = \{(x,$	<i>y</i>) 0 ≤	$x \le 1,0 \le$	$\leq y \leq 1$	},
	则 $\iint_D \frac{aj}{j}$	$\frac{f(x)+f(x)}{f(x)+f(x)}$	$\frac{bf(y)}{f(y)}d\sigma$	=							
5.	设 $f(x,$	y) 为i	连续函数,	交换二次	积分次序	$\int_0^2 \mathrm{d}x \int_0^{x^2}$	f^{-2x}	y)dy =	: 		
二、	所选的	字母填	题 5 分,共 在题后的招	5号内).				1个是	符合题目	要求的	,把
6.	直线 1,	$: \frac{x-1}{1}$	$=\frac{y-5}{-2}=\frac{z-5}{2}$	<u>+5</u> 与直约 1		y = 6 the $+z = 3$	夹角为				
			(B)		-			(D) $\frac{\pi}{6}$		ľ	1
7. <i>f</i>	f(x, y)	为连续	函数, 极坐	标系中的	二次积分	$\int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_0^{\mathrm{co}}$	$\int f(r)$	$\cos \theta, rs$	$\sin \theta$) r \dot{c}	lr 可以	写成
	坐标中的	_									
(1	$A) \int_0^1 d$	$y \int_0^{\sqrt{y}}$	$y-y^2$ $f(x,$	y)dx.	(B)	$\int_0^1 dy \int_0^\infty$	$\sqrt{1-y^2}$	f(x, y)	dx.		
			$\overline{-x^2}$ $f(x, y)$								
8. 诊	姾函数 ƒ	$(x) = \langle$	$\begin{cases} x, & 0 \le x \le 2 - 2x, \frac{1}{2} \end{cases}$	$\leq x \leq \frac{1}{2} \\ < x \leq 1$	S(x) 为 j	f(x)的以	2为周期	期的余弦	双数, 原	$US(-\frac{1}{2})$	$(\frac{5}{2}) =$
			(B) $-\frac{1}{2}$.					$-\frac{3}{4}$.			1

9.设 $f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^4 + y^4}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$, 则 f(x, y) 在点 O(0, 0) 处

- (A) 偏导数存在, 函数不连续.
- (B) 偏导数不存在, 函数连续.
- (C) 偏导数存在,函数连续.
- (D) 偏导数不存在, 函数不连续.

三、 解答题

10. (10 分) 求曲线 L: $\begin{cases} 2x^2 + 3y^2 + z^2 = 9 \\ z^2 = 3x^2 + y^2 \end{cases}$ 在其上点 M(1, -1, 2) 处的切线方程与法平面方程.

11. (10 分) 设 F 可微, z 是由 F(x-y,y-z,z-x)=0 确定的可微函数, 并设 $F_2'\neq F_3'$, $\vec{x}\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}.$

12. (10 分)设 D 是由曲线 $y = x^3$ 与直线 y = x 围成的两块有界闭区域的并集, 求 $\iint_{D} [e^{x^2} + \sin(x + y)] d\sigma.$

13. (10 分) 求空间曲线 L: $\begin{cases} x^2 + 9y^2 - 2z^2 = 0 \\ x + 3y + 3z = 5 \end{cases}$ 上的点到 xOy 平面的距离最大值与最小值.

14. (10 分)设平面区域 $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$, 计算二重积分 $\iint_D |x^2 + y^2 - 1| d\sigma.$

15. (5分)设当y > 0时u(x, y)可微,且已知

参考解答:

- 一. 1. 2;
 - 2. $\sqrt{19}$:
 - 3. $(f_1' \cdot yx^{y-1} + f_2' y^x \ln y) dx + (f_1' \cdot x^y \ln x + f_2' xy^{x-1}) dy$;
 - 4. $\frac{a+b}{2}$;
 - 5. $\int_0^{-1} dy \int_{1-\sqrt{1+y}}^{1+\sqrt{1+y}} f(x,y) dx.$
- \equiv . (6)B; (7) D; (8) C; (9) A.
- 三. 10. 曲线 L: $\begin{cases} 2x^2 + 3y^2 + z^2 9 = 0 \\ 3x^2 + y^2 z^2 = 0 \end{cases}$ 在点 M(1, -1, 2) 处切矢量:

$$\vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4x & 6y & 2z \\ 6x & 2y & -2z \end{vmatrix}_{M} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & -6 & 4 \\ 6 & -2 & -4 \end{vmatrix} // \{8, 10, 7\}$$

则切线方程: $\frac{x-1}{8} = \frac{y+1}{10} = \frac{z-2}{7}$, 法平面方程: 8x + 10y + 7z - 12 = 0.

11.
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = -\frac{F_1' - F_3'}{F_3' - F_2'} - \frac{-F_1' + F_2'}{F_3' - F_2'} = 1$$

12.
$$\iint_{D} [e^{x^{2}} + \sin(x + y)] d\sigma = 2 \int_{0}^{1} dx \int_{x^{3}}^{x} e^{x^{2}} dy = 2 \int_{0}^{1} (x - x^{3}) e^{x^{2}} dx$$
$$= (1 - x^{2}) e^{x^{2}} \Big|_{0}^{1} + \int_{0}^{1} e^{x^{2}} d(x^{2}) = -1 + e^{x^{2}} \Big|_{0}^{1} = e - 2$$

13. 曲线上点 (x, y, z) 到 xOy 面的距离: d = |z|,

设
$$L = z^2 + \lambda(x^2 + 9y^2 - 2z^2) + \mu(x + 3y + 3z - 5)$$

14. 设
$$D_1 = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, 0 \le x \le 1\},$$

$$D_2 = \{(x, y) | \sqrt{1 - x^2} \le y \le 1, 0 \le x \le 1\},$$

$$\iint_D |x^2 + y^2 - 1| \, d\sigma = \iint_{D_1} (1 - x^2 - y^2) \, d\sigma + \iint_{D_2} (x^2 + y^2 - 1) \, d\sigma$$
解 1: 原式 = $\iint_{D_1} (1 - x^2 - y^2) \, d\sigma + \iint_D (x^2 + y^2 - 1) \, d\sigma - \iint_{D_1} (x^2 + y^2 - 1) \, d\sigma$

$$= 2 \iint_{D_1} (1 - x^2 - y^2) \, d\sigma + \iint_D (x^2 + y^2 - 1) \, d\sigma$$

$$= 2 \int_0^{\frac{\pi}{2}} \, d\theta \int_0^1 (1 - r^2) \, r \, dr + \int_0^1 \, dx \int_0^1 (x^2 + y^2 - 1) \, dy = \frac{\pi}{4} - \frac{1}{3}$$
解 2: 原式 = $\int_0^1 dx \int_0^{\sqrt{1 - x^2}} (1 - x^2 - y^2) \, dy + \int_0^1 dx \int_{\sqrt{1 - x^2}}^1 (x^2 + y^2 - 1) \, dy$

$$= \frac{4}{3} \int_0^1 (\sqrt{1 - x^2})^3 \, dx - \frac{1}{3} \, \underline{x = \sin t} \, \frac{4}{3} \int_0^{\frac{\pi}{2}} \cos^4 t \, dt - \frac{1}{3} = \frac{\pi}{4} - \frac{1}{3}$$

15.
$$\frac{\partial u}{\partial x} = \frac{y}{x^2 + y^2} + xy^2,$$
 两边关于 x 积分,有
$$u(x, y) = \arctan \frac{x}{y} + \frac{1}{2}x^2y^2 + \varphi(y),$$

$$\frac{\partial u}{\partial y} = -\frac{x}{x^2 + y^2} + x^2y + 2y = \frac{-\frac{x}{y^2}}{1 + \frac{x^2}{y^2}} + x^2y + \varphi'(y)$$

$$\therefore \varphi'(y) = 2y, \quad \varphi(y) = y^2 + C,$$

$$\therefore u(x, y) = \arctan \frac{x}{y} + \frac{1}{2}x^2y^2 + y^2 + C.$$