Colle n° 4

Chapitre 3 Réduction des endomorphismes

7. Cas particuliers

- 7.1. Endomorphismes nilpotents
- 7.2. Endomorphismes à polynôme minimal scindé

Chapitre 4 Espaces vectoriels normés

- 1. Normes
- 2. Suites dans un espace vectoriel normé
- 3. Eléments de topologie
 - 3.1. Voisinages, ouverts, fermés
 - a) Définitions et exemples : voisinages, ouverts, fermés
 - b) Propriétés

Démonstrations à connaître

Chapitre 3 Réduction des endomorphismes

§ 7.1	$\underline{\text{Nilpotence}}: \text{Soit } u \in \mathcal{L}(E)$
	• $[u \text{ est nilpotent}] \Leftrightarrow [\chi_u = X^n]$
	$\Leftrightarrow [u \text{ est trigonalisable avec } 0 \text{ pour seule valeur propre}]$

Chapitre 4 Espaces vectoriels normés

§ 1.1	Seconde inégalité triangulaire : $\forall (x,y) \in E^2$, $ x - y \le x - y $
§ 1.3.c	$\forall (x,y) \in E^2 : d(x,A) - d(y,A) \le x - y $
§ 1.4.b	Toute boule (ouverte ou fermée) est une partie convexe de E .
§ 1.5	L'ensemble $\mathcal{B}(X,E)$ des applications bornées de X dans E est un espace
	vectoriel normé pour la norme $\ \ \ _{\infty}$ définie par : $\ f\ _{\infty} = \sup_{x \in X} \ \ f(x)\ _{E}$
§ 2.1.a	Unicité de la limite d'une suite
§ 2.1.a	Toute suite convergente est bornée.
§ 2.2.a	Toute suite extraite d'une suite convergente converge vers la même limite.
§ 3.1.a	Toute boule ouverte est un ouvert.
§ 3.1.a	Toute boule fermée est un fermé.
§ 3.1.b	Proposition : propriétés des ouverts, des fermés
	\bullet \varnothing et E sont à la fois ouverts et fermés.
	❖ Toute réunion et toute intersection finie d'ouverts est un ouvert.
	❖ Toute intersection et toute réunion finie de fermés est un fermé.