R Notebook

Contents

\mathbf{C}	leaning variables again and doing some prelim stats before regressions	5
	Re-making state employ into a factor incase of linearity of logit violations	5
	remaking state enrollment into a factor incase of linearity of logit violations	7
Lo	ogistic Regression Set Up	9
	setting up the svy object	9
	final model we didn't use race	9
co	ombined Central America, Caribbean, and South America as 1 and the rest as 0.	10
R	unning Regressions	12
	Model 2: logit 1b with employment and enrollment rates for 2023 (enrollment is categorical) $$	14
	logit2: driver license and Isrt interaction	17
	logit 3: An employed and ISRT interaction	18
	logit 4: birthplace and isrt interaction	20
	Logit 5: Race instead of birthplace	22
	Logit6: ISRT X state employment rate interaction	23
Lo	ogistic Regressions with the Latinx sub-set sample	25
	log_latx1 with region birthplace 3 and 2023 employment and enrollment data	~-

```
rm(list=ls())
library(dplyr)
library(forcats)
library(survey)
library(tidyr)
library(car)
library(haven)
library(survey)
library(tidyr)
library(broom)
library(ggplot2)
library(ggeffects)
library(ggeffects)
library(Hmisc)
library(readxl)
# new 2023 ACS data
undoc23e11 <- read_dta("/Users/estellepan/Desktop/AIC/undocumented_student/undoc_2023_acs_02_27_2025.dt
# state-level enrollment & employment data
state_enroll <- read.csv("/Users/estellepan/Desktop/AIC/undocumented_student/state_enroll_long(Sheet1).</pre>
# Filter for undocumented youth aged 18-24
# who have completed high school (GED or diploma)
# but have NOT completed a college degree
undoc_youth <- undoc23e11 %>%
  filter(
    undoc2 == 1,
                                  # Undocumented immigrants (clean, NA-free flag)
    age >= 18 & age <= 24,
                                # Target age range per study definition
    educd %in% c(
                                  # Educational attainment codes (2023 ACS only):
      063, # Regular high school diploma
      064, # GED or alternative credential
      065, # Some college, less than 1 year
      071, # 1+ years of college credit, no degree
            # Associate's degree, type not specified
      081
    )
  )
## People who completed HS and are in college or have some college, exclude people who already have co
# dataset excluding people who already have college degrees
undoc23e1 <- undoc_youth %>%
  left_join(state_enroll, by = c("statefip" = "StateFIP"))
# remove labelled metadata
undoc23e1<-zap labels(undoc23e1)
undoc23e1$state_employ_rate<-zap_formats(undoc23e1$state_employ_rate)
undoc23e1$state_enroll_rate<-zap_formats(undoc23e1$state_enroll_rate)
summary(undoc23e1$state_employ_rate)
      Min. 1st Qu. Median
##
                              Mean 3rd Qu.
```

Max.

summary(undoc23e1\$state_enroll_rate)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1970 0.2400 0.2670 0.2684 0.2950 0.3760
```

Explore Key Variables summary(undoc23e1\$age)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 18.00 20.00 21.00 21.16 23.00 24.00
```

table(undoc23e1\$undoc)

1 ## 5704

colSums(is.na(undoc23e1))

##	year	sample	serial	cbserial
##	0	0	0	0
##	numprec	hhwt	cluster	region
##	0	0	0	0
##	statefip	countyfip	puma	strata
##	0	0	0	0
##	gq	hhincome	foodstmp	pernum
##	0	0	0	0
##	perwt	momloc	poploc	sploc
##	0	0	0	0
##	momloc2	poploc2	relate	related
##	0	0	0	0
##	sex	age	birthqtr	marst
##	0	0	0	0
##	birthyr	marrno	yrmarr	race
##	0	0	0	0
##	raced	hispan	hispand	bpl
##	0	0	0	0
##	bpld	ancestr1	ancestr1d	ancestr2
##	0	0	0	0
##	ancestr2d	citizen	yrnatur	yrimmig
##	0	0	0	0
##	yrsusa1	yrsusa2	speakeng	hcovany
##	0	0	0	0
##	hinstri	hinscaid	hinscare	hinsva
##	0	0	0	0
##	school	educ	educd	gradeatt
##	0	0	0	0
##	gradeattd	schltype	degfield	degfieldd
##	0	0	0	0

##	degfield2	degfield2d	empstat	empstatd
##	0	0	0	0
##	labforce	classwkr	classwkrd	occ
##	0	0	0	0
##	occ2010	ind	indnaics	uhrswork
##	0	0	0	0
##	wrklstwk	workedyr	inctot	incwage
##	. 0	0	. 0	0
##	incss	incwelfr	incsupp	migplac1
## ##	0 mi mnumo 1	0	0	0
##	migpuma1 0	movedin O	vetstat 0	vetstatd 0
##	qclasswk	qworkedy	citizen_original	fb
##	qciasswa 0	qworkedy 0	Citizen_original	0
##	non cit	sploc2	apartnum	sp_related
##	0	0	5503	5503
##	sp_citizen	sp_yrimmig	yearinus	sp_yearinus
##	5503	5518	0	5518
##	yrsmarried	mex	sp_mex	natcheck
##	0	0	5503	0
##	cit_or	cond_a	mom_cit	mom2_cit
##	0	0	2943	5700
##	pop_cit	pop2_cit	nativept	cond_b
##	3315	5692	0	0
##	cond_c	CHE_benefit	AFGHAN_benefit	cond_d
##	0	0	0	0
##	cond_e	refugee	refugeetype	ethnic_ref
##	0	0	5703	5703
##	mom_refugee	mom2_refugee	pop_refugee	pop2_refugee
##	2943	5700	3315	5692
## ##	mom_yrimmig 2976	mom2_yrimmig 5701	pop_yrimmig 3424	pop2_yrimmig 5692
##	dfyrimm_mom	dfyrimm_mom2	dfyrimm_pop	dfyrimm_pop2
##	2976	5701	3424	5692
##	marr_momarr	marr_poparr	marr_mom2arr	marr_pop2arr
##	2976	3424	5701	5692
##	age_momarr	age_poparr	age_mom2arr	age_pop2arr
##	2976	3424	5701	5692
##	child_refugee	siv	mom_siv	mom2_siv
##	0	0	2943	5700
##	pop_siv	pop2_siv	child_siv	cond_f
##	3315	5692	0	0
##	cond_g	z1	cond_g_1A	mom_g1
##	0	0	0	2943
##	mom2_g1	pop_g1	pop2_g1	g1_parent
##	5700	3315	5692	0
## ##	cond_g_1B 0	cond_g_1C 5503	eu 0	cond_h 0
##				over20hrs
##	attending_college 0	longUSA O	parents_home 0	0 0 0
##	int_student	cond_i	cond_ai	x1_flag
##	0	0	0	5704
##	sp_newcond	cond_all	legal	undoc
##	5689	0	0	0

##	undoc2	legal2	natur	citizen2
##	0	0	0	0
##	mom_undoc	mom2_undoc	pop_undoc	pop2_undoc
##	2943	5700	3315	5692
##	child_undoc	cond_c_daca	x1	x2
##	0	0	0	0
##	cond_e_daca	cond_ai_daca	cond_all_daca	legal_daca
##	0	0	0	0
##	undoc_daca	age31_yr12	age_arrival	us_16
##	0	0	0	0
##	lived_5yrs	cond_edu	daca_imm	daca_all
##	0	0	0	0
##	<pre>yrimmig_period</pre>	state	state_enroll_rate	state_employ_rate
##	0	0	0	0

Cleaning variables again and doing some prelim stats before regressions

Re-making state employ into a factor incase of linearity of logit violations

```
undoc23e1$state_employ23 <- as.numeric(undoc23e1$state_employ_rate)
hist(undoc23e1$state_employ23)</pre>
```

Histogram of undoc23e1\$state_employ23

Histogram of undoc23e1\$state_emp23_sq


```
summary(undoc23e1$state_employ23)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
   0.5170 0.5970 0.6020 0.6077 0.6260 0.6820
undoc23e1$state_employ23_cat<-cut(undoc23e1$state_employ23,
                           labels=c("1","2","3"))
table(undoc23e1$state_employ23_cat)
##
##
               3
      1
          2
   845 3896 963
undoc23e1%>%group_by(state_employ23_cat)%>%
  summarise(min=min(state_employ23),
           max=max(state_employ23))
```

remaking state enrollment into a factor incase of linearity of logit violations

```
undoc23e1$state_enroll23 <- as.numeric(undoc23e1$state_enroll_rate)
hist(undoc23e1$state_enroll23)</pre>
```

Histogram of undoc23e1\$state_enroll23

undoc23e1\$state_enroll23_sq<-undoc23e1\$state_enroll23^2
hist(undoc23e1\$state_enroll23_sq)</pre>

Histogram of undoc23e1\$state_enroll23_sq

Household income categories

```
# Use quantile() with cut() to ensure balanced group sizes
undoc23e1$hhincome_cat <- cut(</pre>
 undoc23e1$hhincome,
  breaks = quantile(undoc23e1$hhincome, probs = c(0, 1/3, 2/3, 1), na.rm = TRUE),
 labels = c("1", "2", "3"),
  include.lowest = TRUE
)
table(undoc23e1$hhincome_cat)
##
     1
          2
## 1906 1898 1900
undoc23e1 %>%
 group_by(hhincome_cat) %>%
 summarise(
   min = min(hhincome, na.rm = TRUE),
   max = max(hhincome, na.rm = TRUE)
## # A tibble: 3 x 3
   hhincome_cat min
                            max
                          <dbl>
##
   <fct> <dbl>
## 1 1
                  -300
                          67500
## 2 2
                 67600 139000
## 3 3
                 139100 9999999
summary(undoc23e1$age)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                             Max.
##
     18.00 20.00 21.00 21.16 23.00
                                            24.00
```

Logistic Regression Set Up

setting up the svy object

```
undoc23e1$ids<-undoc23e1$serial+undoc23e1$pernum
```

final model we didn't use race

```
# collapsing "Asian or Pacific Islander (other)" into a broader "other" group
undoc23e1$race4<-fct_recode(undoc23e1$race3,
                           "other"="API_other")
# Sets "Black" as the reference group for modeling in race5
undoc23e1$race5<-relevel(undoc23e1$race4, ref="Black")
# using the original 9-category race3
undoc23e1$race6<-relevel(undoc23e1$race3, ref="Black")</pre>
# helps detect or model non-linear effects in logit models for continuous predictors
undoc23e1$box_enroll23<-undoc23e1$state_enroll23*log(undoc23e1$state_enroll23)
undoc23e1$box_employ23<-undoc23e1$state_employ23*log(undoc23e1$state_employ23)
#Create employ Variable
undoc23e1$employ <- ifelse(undoc23e1$empstat == 1, 1, 0)</pre>
# Define state FIPS codes for in-state tuition access
# WA, OR, CA, NV, UT, AZ, CO, NM, NE, KS, OK, TX, HI, MN, IL, KY, VA, FL, NY, VT, MA, CT, RI, NJ, MD, D
isrt_states <- c(53, 41, 6, 32, 49, 4, 8, 35, 31, 20, 40, 48, 15,
                        27, 17, 21, 51, 12, 36, 50, 25, 9, 44, 34, 24, 11)
# Create binary indicator variable
undoc23e1$isrt <- ifelse(</pre>
  undoc23e1$statefip %in% isrt_states, 1, 0
# Define state FIPS codes for states that allow driver's licenses for undocumented immigrants
drive_lic_states <- c(6, 8, 9, 10, 11, 15, 17, 24, 25, 27, 32, 34, 35, 36, 41, 44, 49, 50, 51, 53)
# Create binary indicator variable
undoc23e1$driveLic <- ifelse(undoc23e1$statefip %in% drive_lic_states, 1, 0)
```

combined Central America, Caribbean, and South America as 1 and the rest as 0.

```
# Used `dpl` (summary birthplace variable) instead of `dpld` because:
# 1. `dpl` has full and consistent coverage across the ACS 2023 sample.
# 2. `dpld` is more granular but includes many missing or unavailable categories in the current dataset
# 3. `dpl` captures all major Latinx regional categories needed (e.g., Central America, Caribbean, Sout
# 4. Using `dpl` maintains consistency with prior studies' region-level groupings.
undoc23e1$birthplace1 <- case_when(
   undoc23e1$birthplace1 <- case_when(
   undoc23e1$bpl %in% c(210, 250, 260, 299, 300) ~ "Cam Sam", # Central America, Caribbean, South Ameri
   TRUE ~ "Other"
)
# subset for lat but excluding Mexico , use this for further regression
lat_sub1 <- subset(undoc23e1, birthplace1=="Cam Sam")</pre>
```

undoc23e1%>%group_by(state)%>% summarise(n=sum(perwt))%>% print(n=50)

		A	
##	# 1	A tibble: 51 x 2	
##		state <chr></chr>	n
##	1		<dbl>4650</dbl>
## ##	1	Alabama Alaska	1200
##		Arizona	16898
##		Arkansas	3939
##		California	109066
##		Colorado	10423
##		Connecticut	9457
##		Delaware	1624
##	_	District of Columbia	1432
##		Florida	87017
##		Georgia	25951
##		Hawaii	2098
		Idaho	2399
		Illinois	26131
		Indiana	7381
		Iowa	2764
		Kansas	5536
		Kentucky	3695
		Louisiana	5608
##	20	Maine	1493
##	21	Maryland	14813
##		13316	
##	23	Michigan	9354
##		Minnesota	7649
##	25	Mississippi	3288
##	26	Missouri	5031
##	27	Montana	47
##	28	Nebraska	4329
##	29	Nevada	9380
##	30	New Hampshire	1049
##	31	New Jersey	39576
##	32	New Mexico	5643
##		New York	43837
##		North Carolina	16117
##		North Dakota	588
##		Ohio	8122
		Oklahoma	6133
		Oregon	5486
		Pennsylvania	17105
		Rhode Island	1870
		South Carolina	7576
		South Dakota	1284
		Tennessee	9905
		Texas	129111
		Utah	8705
##	46	Vermont	117

```
## 47 Virginia
                            17491
## 48 Washington
                            15966
## 49 West Virginia
                             156
## 50 Wisconsin
                             4559
## # i 1 more row
save(undoc23e1, file="final_undoc23e.RData")
# svydesign
# creates a survey-weighted design object using perwt (person weight).
undoc_data1<-svydesign(id=~ids,
                         weights=~perwt,
                       data=undoc23e1)
lat sub1<-svydesign(id=~ids,</pre>
                         weights=~perwt,
                       data=lat sub1)
```

Running Regressions

##

Box Tidewell for state enrollment and employment in 2023

```
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                4.59525 0.43468 10.572 < 2e-16 ***
                                     4.556 5.32e-06 ***
                 0.34102
                           0.07485
## sex
## age
                -0.28674
                           0.01959 -14.635 < 2e-16 ***
                           0.09233
## hhincome cat2 0.11294
                                     1.223
                                              0.221
                                    7.471 9.20e-14 ***
## hhincome cat3 0.67233
                           0.09000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9976777)
##
## Number of Fisher Scoring iterations: 4
# survey-weighted logistic regression using the svyglm() function from the survey package
# It models the probability of attending college among undocumented youth using various predictors.
box1<-svyglm(attending_college~ isrt+ driveLic+ sex+age+birthplace1+daca_imm+
                     hhincome_cat+state_enroll23+state_employ23+
                     box enroll23+box employ23,
                   family=quasibinomial,
                   design=undoc_data1,
                   na.action = na.omit)
summary(box1)
##
## Call:
## svyglm(formula = attending_college ~ isrt + driveLic + sex +
##
      age + birthplace1 + daca_imm + hhincome_cat + state_enroll23 +
##
      state_employ23 + box_enroll23 + box_employ23, design = undoc_data1,
##
      family = quasibinomial, na.action = na.omit)
##
## Survey design:
## svydesign(id = ~ids, weights = ~perwt, data = undoc23e1)
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -14.28906 32.09629 -0.445
                                                  0.656
## isrt
                   -0.02013
                               0.11274 - 0.179
                                                  0.858
## driveLic
                    -0.07724
                               0.10762 -0.718
                                                  0.473
## sex
                     0.34404
                               0.07584
                                        4.537 5.84e-06 ***
## age
                    -0.28502
                               0.02028 -14.055 < 2e-16 ***
## birthplace10ther
                   0.69625
                               0.08752 7.955 2.14e-15 ***
                               0.09503 -0.269
                                                  0.788
## daca_imm
                    -0.02558
                    0.04624
                               0.09421 0.491
                                                  0.624
## hhincome_cat2
## hhincome_cat3
                    5.42759
                                                  0.261
## state_enroll23
                    6.10088
                                        1.124
## state_employ23
                   12.86250
                              26.13012
                                        0.492
                                                  0.623
## box_enrol123
                    -4.19303
                             19.60941 -0.214
                                                  0.831
## box_employ23
                   -25.23148
                              51.52884 -0.490
                                                  0.624
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9994175)
##
```

Model 2: logit 1b with employment and enrollment rates for 2023 (enrollment is categorical)

```
## # A tibble: 13 x 6
##
                        estimate std.error statistic p.value
     term
                                                               or
##
     <chr>>
                           <dbl>
                                     <dbl>
                                              <dbl>
                                                     <dbl> <dbl>
  1 (Intercept)
                            4.92
                                     1.1
                                              4.45 0
                                                           137
##
## 2 isrt
                           -0.03
                                     0.11
                                              -0.28 0.777
                                                             0.97
                                              0.69 0.490
## 3 driveLic
                            0.07
                                     0.1
                                                             1.07
## 4 sex
                            0.31
                                     0.08
                                              4
                                                    0.0001 1.36
## 5 age
                           -0.25
                                     0.02
                                             -12.0 0
                                                             0.78
                                              7.53 0
                                     0.09
## 6 birthplace10ther
                           0.68
                                                             1.97
## 7 daca imm
                           -0.02
                                     0.1
                                              -0.2 0.838
                                                             0.98
## 8 employ
                                     0.08
                                                             0.52
                           -0.66
                                              -8.24 0
## 9 hhincome_cat2
                           0.15
                                     0.1
                                              1.52 0.128
                                                             1.16
## 10 hhincome_cat3
                            0.6
                                     0.1
                                               6.35 0
                                                             1.82
## 11 state_enroll23_cat2
                                     0.1
                                              1.66 0.0973
                            0.16
                                                             1.17
                                     0.22
## 12 state_enroll23_cat3
                            0.85
                                               3.93 0.0001
                                                             2.34
## 13 state employ23
                                              -1.19 0.234
                           -1.98
                                     1.67
                                                             0.14
```

Wald test for logit1b (using 2023 employment and enrollment data)

```
## Wald test for isrt driveLic sex age birthplace2 daca_imm employ hhincome_cat state_enroll23_cat stat
## in svyglm(formula = attending_college ~ isrt + driveLic + sex +
## age + birthplace1 + daca_imm + employ + hhincome_cat + state_enroll23_cat +
## state_employ23, design = undoc_data1, family = quasibinomial,
```

```
na.action = na.omit)
## F = 32.048 on 11 and 5682 df: p = < 2.22e-16
# wald test for isrt for logit1
wald_test_isrtlog1<-regTermTest(logit1b, ~isrt)</pre>
print(wald_test_isrtlog1) ## significant nice
## Wald test for isrt
  in svyglm(formula = attending_college ~ isrt + driveLic + sex +
      age + birthplace1 + daca_imm + employ + hhincome_cat + state_enrol123_cat +
##
      state_employ23, design = undoc_data1, family = quasibinomial,
      na.action = na.omit)
## F = 0.08033123 on 1 and 5682 df: p = 0.77686
Predicted probs for logit1b
#visualize the predicted probabilities of college attendance based on birthplace1 from logit1b model.
log1b_pred_bpl<-ggpredict(logit1b, terms="birthplace1")</pre>
print(as.data.frame(log1b_pred_bpl))
##
          x predicted std.error conf.low conf.high group
      Other 0.2923613 0.08868401 0.2577305 0.3295792
## 2 Cam Sam 0.1733182 0.11272659 0.1438989 0.2072958
log1b_pred_bpl
## # Predicted probabilities of attending_college
## birthplace1 | Predicted |
## Other
           | 0.29 | 0.26, 0.33
## Cam Sam
             0.17 | 0.14, 0.21
##
## Adjusted for:
                  isrt = 0.81
             driveLic = 0.47
## *
## *
                  sex = 1.46
## *
                   age = 21.32
## *
              daca_{imm} = 0.22
## *
                employ = 0.65
## *
         hhincome cat =
                             1
## * state_enroll23_cat =
## *
        state_employ23 = 0.61
plot(log1b_pred_bpl)
```



```
## # Predicted probabilities of attending_college
##
## isrt | Predicted |
                         95% CI
     0 |
            0.30 | 0.25, 0.35
##
##
     1 |
              0.29 | 0.26, 0.33
##
## Adjusted for:
## *
        driveLic = 0.47
## *
                   sex = 1.46
                   age = 21.32
           birthplace1 = Other
## *
              daca_imm = 0.22
## *
## *
                employ = 0.65
          hhincome_cat =
## * state_enroll23_cat =
```

```
## * state_employ23 = 0.61
```

```
plot(log1b_pred_isrt)
```

Predicted probabilities of attending_college

logit2: driver license and Isrt interaction

A tibble: 14 x 6

term

##

estimate std.error statistic p.value

##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	4.93	1.1	4.46	0	138.
##	2	isrt	-0.04	0.12	-0.33	0.738	0.96
##	3	driveLic	-0.33	0.77	-0.43	0.665	0.72
##	4	sex	0.31	0.08	4	0.0001	1.36
##	5	age	-0.25	0.02	-12.0	0	0.78
##	6	birthplace10ther	0.68	0.09	7.52	0	1.97
##	7	daca_imm	-0.02	0.1	-0.21	0.837	0.98
##	8	employ	-0.66	0.08	-8.24	0	0.52
##	9	hhincome_cat2	0.15	0.1	1.52	0.129	1.16
##	10	hhincome_cat3	0.6	0.1	6.33	0	1.82
##	11	state_enroll23_cat2	0.16	0.1	1.67	0.0955	1.17
##	12	state_enroll23_cat3	0.85	0.22	3.92	0.0001	2.34
##	13	state_employ23	-1.99	1.66	-1.2	0.232	0.14
##	14	isrt:driveLic	0.41	0.78	0.53	0.598	1.51

logit 3: An employed and ISRT interaction

```
## # A tibble: 14 x 6
##
     term
                         estimate std.error statistic p.value
##
      <chr>
                            <dbl>
                                      <dbl>
                                                <dbl>
                                                        <dbl> <dbl>
## 1 (Intercept)
                             4.8
                                       1.11
                                                 4.31 0
                                                              122.
## 2 isrt
                             0.1
                                       0.16
                                                 0.66 0.508
                                                                1.11
## 3 driveLic
                             0.07
                                       0.1
                                                 0.7
                                                      0.485
                                                                1.07
## 4 sex
                             0.31
                                       0.08
                                                 3.99 0.0001
                                                                1.36
## 5 age
                            -0.25
                                       0.02
                                               -12.0 0
                                                                0.78
                                       0.09
                                                 7.55 0
                                                                1.97
## 6 birthplace10ther
                             0.68
## 7 daca imm
                            -0.02
                                       0.1
                                                -0.22 0.829
                                                                0.98
                                                -2.71 0.0067
                                       0.18
## 8 employ
                            -0.48
                                                                0.62
## 9 hhincome_cat2
                             0.15
                                       0.1
                                                 1.51 0.130
                                                                1.16
## 10 hhincome_cat3
                             0.61
                                       0.1
                                                 6.39 0
                                                                1.84
## 11 state_enroll23_cat2
                             0.16
                                       0.1
                                                 1.65 0.0991
                                                                1.17
                                                 3.93 0.0001
## 12 state_enroll23_cat3
                             0.85
                                       0.22
                                                                2.34
                                                                0.14
## 13 state_employ23
                                       1.67
                                                -1.18 0.238
                            -1.97
                                                -1.16 0.246
## 14 isrt:employ
                            -0.23
                                       0.2
                                                                0.79
```

predicted probabilities for logit3-employed X isrt interaction

plot(logit3_pred)

```
logit3_pred<-ggpredict(logit3, terms=c("isrt","employ"))</pre>
print(as.data.frame(logit3_pred))
     x predicted std.error conf.low conf.high group
## 1 0 0.3696105 0.1527250 0.3029505 0.4416450
## 2 0 0.2660744 0.1542061 0.2113287 0.3290844
                                                    1
## 3 1 0.3939172 0.1016873 0.3474602 0.4423747
                                                    0
## 4 1 0.2425461 0.1000807 0.2083389 0.2803806
logit3_pred
## # Predicted probabilities of attending_college
##
## employ: 0
##
                          95% CI
## isrt | Predicted |
##
              0.37 | 0.30, 0.44
##
      0 |
               0.39 | 0.35, 0.44
##
      1 |
##
## employ: 1
##
                        95% CI
## isrt | Predicted |
               0.27 | 0.21, 0.33
##
      0 |
##
      1 |
               0.24 | 0.21, 0.28
##
## Adjusted for:
## *
            driveLic = 0.47
## *
                    sex = 1.46
## *
                    age = 21.32
## *
           birthplace1 = Other
## *
               daca_{imm} = 0.22
## *
          hhincome_cat =
                              1
## * state_enroll23_cat =
         state_employ23 = 0.61
## *
```


0.50

isrt

0.75

1.00

logit 4: birthplace and isrt interaction

0.25

20%

0.00

```
## # A tibble: 14 x 6
##
     term
                            estimate std.error statistic p.value
##
      <chr>
                               <dbl>
                                         <dbl>
                                                   <dbl>
                                                           <dbl> <dbl>
   1 (Intercept)
                                4.79
                                          1.11
                                                                 120.
##
                                                    4.31 0
                                          0.22
##
   2 isrt
                                0.16
                                                    0.74 0.457
                                                                   1.17
   3 driveLic
                                0.08
                                          0.1
                                                                   1.08
                                                    0.8
                                                          0.422
   4 sex
                                0.31
                                          0.08
                                                    3.96 0.0001
                                                                   1.36
##
```

```
## 5 age
                           -0.25
                                    0.02
                                           -12.1 0
                                                           0.78
## 6 birthplace10ther
                          0.91
                                    0.22
                                            4.08 0
                                                           2.48
## 7 daca imm
                           -0.02
                                    0.1
                                            -0.21 0.834
                                                           0.98
                          -0.66
                                            -8.23 0
## 8 employ
                                    0.08
                                                           0.52
                           0.15
## 9 hhincome_cat2
                                    0.1
                                             1.51 0.131
                                                          1.16
## 10 hhincome cat3
                                    0.09
                                             6.32 0
                                                          1.82
                          0.6
## 11 state_enroll23_cat2
                          0.15
                                    0.1
                                             1.52 0.128
                                                          1.16
## 12 state_enroll23_cat3
                          0.83
                                    0.22
                                             3.82 0.0001
                                                          2.29
## 13 state employ23
                           -2
                                    1.66
                                            -1.2
                                                  0.23
                                                           0.14
                                    0.24
                                                           0.75
## 14 isrt:birthplace10ther
                           -0.29
                                            -1.21 0.228
```

predicted probabilities for isrt X birthplace interaction

```
logit4_pred<-ggpredict(logit4, terms=c("birthplace1","isrt"))</pre>
logit4_pred
## # Predicted probabilities of attending_college
## isrt: 0
## birthplace1 | Predicted |
                            95% CI
          | 0.32 | 0.26, 0.37
## Other
## Cam Sam
           0.16 | 0.11, 0.22
##
## isrt: 1
##
## birthplace1 | Predicted | 95% CI
## -----
## Other | 0.29 | 0.25, 0.33
## Cam Sam
                 0.18 | 0.15, 0.21
##
## Adjusted for:
## *
      driveLic = 0.47
             sex = 1.46
## *
## *
                age = 21.32
            daca_{imm} = 0.22
## *
## *
              employ = 0.65
        hhincome_cat =
## * state_enroll23_cat =
       state_employ23 = 0.61
print(as.data.frame(logit4_pred))
```

3 Cam Sam 0.1560160 0.22342021 0.1065797 0.2226679

Other 0.3155668 0.13123255 0.2627960 0.3735646 Other 0.2888457 0.09249868 0.2530654 0.3274670

x predicted std.error conf.low conf.high group

##

1

0

Logit 5: Race instead of birthplace

```
## # A tibble: 20 x 6
##
     term
                         estimate std.error statistic p.value
                                                        <dbl> <dbl>
##
      <chr>
                            <dbl>
                                      <dbl>
                                                <dbl>
  1 (Intercept)
                             4.74
                                       1.12
                                                 4.23 0
                                                              114.
                             0.08
                                       0.12
                                                 0.67 0.503
                                                                1.08
##
   2 isrt
```

```
-0.01 0.988
## 3 driveLic
                                       0.11
## 4 sex
                             0.32
                                       0.08
                                                 4.06 0.0001
                                                                1.38
                                       0.02
## 5 age
                            -0.25
                                               -11.7
                                                       0
                                                                0.78
## 6 race3Black
                             0.43
                                       0.17
                                                 2.49 0.013
                                                                1.54
## 7 race3AIAN
                            -0.65
                                       0.26
                                                -2.5
                                                      0.0125
                                                                0.52
## 8 race3Chinese
                             2.29
                                       0.27
                                                 8.56 0
                                                               9.87
## 9 race3Japanese
                             2.07
                                       0.75
                                                 2.74 0.0062
                                                               7.92
## 10 race3API other
                                       0.14
                                                6.96 0
                                                                2.72
                             1
## 11 race30ther
                            -0.76
                                       0.12
                                                -6.44 0
                                                                0.47
## 12 race3TwoRaces
                                       0.12
                                                -5.35 0
                                                                0.53
                            -0.64
## 13 race3ThreePlus
                            -0.09
                                       0.44
                                                -0.21 0.838
                                                                0.91
## 14 daca_imm
                                       0.1
                                                4.68 0
                             0.46
                                                                1.58
                                                -6.53 0
                                       0.08
                                                                0.58
## 15 employ
                            -0.55
## 16 hhincome_cat2
                                       0.1
                                                1.84 0.0655
                             0.18
                                                               1.2
## 17 hhincome_cat3
                             0.54
                                       0.1
                                                5.34 0
                                                                1.72
                                                 0.75 0.455
## 18 state_enroll23_cat2
                             0.07
                                       0.1
                                                                1.07
## 19 state_enroll23_cat3
                             0.55
                                       0.23
                                                 2.41 0.016
                                                                1.73
## 20 state_employ23
                            -0.88
                                       1.68
                                                -0.52 0.600
                                                                0.41
```

Logit6: ISRT X state employment rate interaction

```
## # A tibble: 22 x 6
                    estimate std.error statistic p.value
##
     term
##
                      <dbl>
                                <dbl>
                                          <dbl>
                                                 <dbl> <dbl>
     <chr>
                                 1.13
## 1 (Intercept)
                       4.01
                                          3.54 0.0004 55.2
## 2 isrt
                      -0.17
                                 0.14
                                         -1.24 0.214
                                                        0.84
## 3 driveLic
                      -0.1
                                 0.11
                                         -0.94 0.345
                                                        0.9
## 4 sex
                       0.33
                                 0.08
                                          4.08 0
                                                        1.39
## 5 age
                      -0.25
                                 0.02
                                        -11.8
                                                        0.78
                                                0
## 6 race3Black
                       0.4
                                 0.17
                                          2.33 0.0199 1.49
## 7 race3AIAN
                      -0.68
                                 0.26
                                          -2.63 0.0086 0.51
## 8 race3Chinese
                       2.3
                                 0.27
                                          8.51 0
                                                        9.97
                       2.03
                                 0.76
                                          2.68 0.0074 7.61
## 9 race3Japanese
                                 0.14
                                          6.96 0
                                                        2.72
## 10 race3API_other
                       1
## # i 12 more rows
```

predicted probs for logit6 (isrt X state enroll interaction)

6 3 0.4219004 0.2610776 0.3043245 0.5490505

```
log6_pred<-ggpredict(logit6, terms=c("state_enroll23_cat", "isrt"))</pre>
log6_pred
## # Predicted probabilities of attending_college
##
## isrt: 0
##
## state_enroll23_cat | Predicted |
## 1
                    0.32 \mid 0.25, 0.39
## 2
                    Т
                           0.21 | 0.15, 0.29
## 3
                           0.42 \mid 0.22, 0.66
##
## isrt: 1
##
## state_enroll23_cat | Predicted |
## -----
                    0.28 | 0.23, 0.33
## 2
                    0.34 | 0.28, 0.39
## 3
                           0.42 | 0.30, 0.55
                     1
##
## Adjusted for:
         driveLic = 0.47
           sex = 1.46
             age = 21.32
## *
## *
           race3 = White
          daca_imm = 0.22
          employ = 0.65
## *
## *
      hhincome cat =
                     1
## * state_employ23 = 0.61
print(as.data.frame(log6_pred))
    x predicted std.error conf.low conf.high group
## 1 1 0.3160925 0.1599769 0.2524848 0.3874196
## 2 1 0.2795633 0.1319931 0.2305185 0.3345067
## 3 2 0.2097390 0.2081509 0.1500059 0.2852750
                                                0
## 4 2 0.3375718 0.1253299 0.2849928 0.3944991
## 5 3 0.4245832 0.4875202 0.2210234 0.6574023
                                                0
```


Logistic Regressions with the Latinx sub-set sample

log_latx1 with region birthplace 3 and 2023 employment and enrollment data

A tibble: 13 x 6

```
##
                      estimate std.error statistic p.value
                        <dbl>
##
     <chr>>
                                  <dbl>
                                         <dbl> <dbl> <dbl>
## 1 (Intercept)
                         3.22
                                  0.8
                                           4.01 0.0001 25.0
## 2 isrt
                                   0.24
                                          0.28 0.780
                          0.07
                                                        1.07
                                           0.62 0.537
## 3 driveLic
                          0.16
                                   0.26
## 4 sex
                          0.39
                                  0.13
                                           2.91 0.0036 1.48
## 5 age
                         -0.24
                                  0.04 -6.75 0
                                                         0.79
                                           3.4 0.0007 2.05
## 6 daca_imm
                                  0.21
                         0.72
## 7 employ
                         -0.18
                                  0.14
                                           -1.22 0.221
                                                         0.84
## 8 hhincome_cat2
                                  0.16
                                          2.65 0.0082 1.52
                         0.42
                                           1.87 0.0615 1.39
## 9 hhincome_cat3
                         0.33
                                  0.17
                                   0.21
                                           0.63 0.532
## 10 state_enroll23_cat2
                         0.13
                                                        1.14
                                           2.25 0.0243 2.25
## 11 state_enroll23_cat3
                         0.81
                                   0.36
## 12 state_employ23_cat2
                                   0.25
                                           -1.53 0.125
                       -0.38
                                                        0.68
## 13 state_employ23_cat3
                         -0.51
                                   0.3
                                           -1.69 0.0905 0.6
```

Wald Test for effect of ISRT with Latinx sub-sample

```
wald_full_latx1 <- regTermTest(log_latx1, ~isrt+driveLic+</pre>
                      sex+age+daca imm+
                      employ+hhincome_cat+
                      state_enroll23+state_employ23)
print(wald_full_latx1)
## Wald test for isrt driveLic sex age daca_imm employ hhincome_cat state_enrol123 state_employ23
## in svyglm(formula = attending_college ~ isrt + driveLic + sex +
##
       age + daca imm + employ + hhincome cat + state enroll23 cat +
##
       state_employ23_cat, design = lat_sub1, family = quasibinomial,
##
       na.action = na.omit)
## F = 9.363365 on 8 and 2004 df: p = 9.1854e - 13
# wald test for isrt for logit1
wald isrt latx1<-regTermTest(log latx1, ~isrt)</pre>
print(wald_isrt_latx1) ## significant nice
## Wald test for isrt
## in svyglm(formula = attending_college ~ isrt + driveLic + sex +
       age + daca_imm + employ + hhincome_cat + state_enroll23_cat +
##
       state_employ23_cat, design = lat_sub1, family = quasibinomial,
##
       na.action = na.omit)
## F = 0.07817957 on 1 and 2004 df: p = 0.77981
predicted probabilities for log_latx1
```

```
log_latx1_pred1<-ggpredict(log_latx1, terms=c("isrt"))</pre>
log_latx1_pred1
```

```
## # Predicted probabilities of attending_college
##
## isrt | Predicted |
                         95% CI
           0.21 | 0.10, 0.37
##
     0 |
##
             0.22 | 0.13, 0.34
## Adjusted for:
## *
             driveLic = 0.44
## *
               sex = 1.46
                  age = 21.40
              daca_imm = 0.09
## *
## *
                employ = 0.69
          hhincome_cat =
## * state_enroll23_cat =
                             1
## * state_employ23_cat =
```

print(as.data.frame(log_latx1_pred1))

```
plot(log_latx1_pred1)
```

Predicted probabilities of attending_college


```
# the effect of DACA status on college attendance differs by household income level.
logit_daca_income <- svyglm(</pre>
  attending_college ~ daca_imm * hhincome_cat +
   sex + age + isrt + driveLic + employ +
   state_enroll23_cat + state_employ23_cat,
  design = undoc_data1,
 family = quasibinomial,
 na.action = na.omit
)
summary(logit_daca_income)
##
## Call:
## svyglm(formula = attending_college ~ daca_imm * hhincome_cat +
##
       sex + age + isrt + driveLic + employ + state_enroll23_cat +
##
       state_employ23_cat, design = undoc_data1, family = quasibinomial,
##
       na.action = na.omit)
##
## Survey design:
## svydesign(id = ~ids, weights = ~perwt, data = undoc23e1)
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                   0.46212 9.280 < 2e-16 ***
                          4.28846
## daca imm
                          0.21744
                                     0.17057 1.275 0.20242
## hhincome_cat2
                          0.21732
                                     0.10826 2.007 0.04475 *
## hhincome_cat3
                          0.72795
                                     0.10609 6.862 7.52e-12 ***
## sex
                          0.30377
                                     0.07670 3.961 7.56e-05 ***
                                     0.02035 -12.417 < 2e-16 ***
## age
                         -0.25266
## isrt
                         -0.10218
                                     0.11459 -0.892 0.37261
                                              1.797 0.07246 .
## driveLic
                          0.20040
                                     0.11155
                         -0.69975
## employ
                                     0.08041 -8.703 < 2e-16 ***
## state_enroll23_cat2
                         0.03169
                                     0.09601 0.330 0.74135
                                     0.21364
                                              3.087 0.00203 **
## state_enroll23_cat3
                         0.65942
## state_employ23_cat2
                         -0.03690
                                     0.12551 -0.294 0.76877
## state_employ23_cat3
                         -0.22481
                                     0.16036 -1.402 0.16098
## daca imm:hhincome cat2 -0.08859
                                     0.22689 -0.390 0.69623
## daca_imm:hhincome_cat3 -0.09391
                                     0.22198 -0.423 0.67227
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for quasibinomial family taken to be 0.9985401)
## Number of Fisher Scoring iterations: 4
undoc_data_18_21 <- subset(undoc_data1, age >= 18 & age <= 21)
logit_age1821 <- svyglm(</pre>
 attending_college ~ isrt + driveLic + sex + age + race3 + daca_imm +
  employ + hhincome_cat + state_enroll23_cat + state_employ23_cat,
  design = undoc_data_18_21,
  family = quasibinomial
summary(logit_age1821)
```

```
##
## Call:
## svyglm(formula = attending_college ~ isrt + driveLic + sex +
      age + race3 + daca_imm + employ + hhincome_cat + state_enroll23_cat +
##
      state_employ23_cat, design = undoc_data_18_21, family = quasibinomial)
##
## Survey design:
## subset(undoc_data1, age >= 18 & age <= 21)
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                                  1.01569
                                          1.255 0.209653
## (Intercept)
                       1.27447
## isrt
                       0.20394
                                  0.15240
                                           1.338 0.180912
                      -0.05155
                                  0.15871 -0.325 0.745330
## driveLic
                                  0.10363 3.018 0.002566 **
## sex
                       0.31274
                      -0.09654
                                  0.04999 -1.931 0.053520 .
## age
## race3Black
                       0.26091
                                  0.22068
                                          1.182 0.237171
## race3AIAN
                      -0.45977
                                  0.34034 -1.351 0.176819
## race3Chinese
                                 0.36170 6.248 4.72e-10 ***
                       2.26000
## race3Japanese
                      1.65426
                                 1.12840 1.466 0.142744
                                 0.19586 4.914 9.37e-07 ***
## race3API_other
                       0.96252
## race30ther
                      ## race3TwoRaces
                               0.15279 -5.269 1.46e-07 ***
                      -0.80511
## race3ThreePlus
                                 0.61099 -0.422 0.673240
                      -0.25768
## daca imm
                      0.45669
                               0.13823 3.304 0.000965 ***
## employ
                      -0.65668
                                  0.10860 -6.047 1.66e-09 ***
                                  0.12830
                                          2.469 0.013606 *
## hhincome_cat2
                       0.31676
## hhincome_cat3
                       0.73845
                                  0.12833
                                           5.754 9.54e-09 ***
                                          0.522 0.601413
## state_enroll23_cat2 0.07001
                                  0.13401
## state_enroll23_cat3 0.86759
                                  0.31668
                                          2.740 0.006186 **
## state_employ23_cat2 -0.01620
                                  0.17571 -0.092 0.926530
## state_employ23_cat3 -0.11849
                                  0.21934 -0.540 0.589085
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for quasibinomial family taken to be 0.9946631)
##
## Number of Fisher Scoring iterations: 5
lat_sub1_age1821 <- subset(lat_sub1, age >= 18 & age <= 21)</pre>
log_latx1_age1821 <- svyglm(</pre>
 attending_college ~ isrt + driveLic + sex + age + daca_imm +
 employ + hhincome_cat + state_enroll23_cat + state_employ23_cat,
 design = lat_sub1_age1821,
 family = quasibinomial
summary(log_latx1_age1821)
##
## Call:
## svyglm(formula = attending_college ~ isrt + driveLic + sex +
##
      age + daca_imm + employ + hhincome_cat + state_enroll23_cat +
      state_employ23_cat, design = lat_sub1_age1821, family = quasibinomial)
##
##
```

```
## Survey design:
## subset(lat_sub1, age >= 18 & age <= 21)
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     1.17796 1.63984 0.718 0.472714
## isrt
                     0.33469 0.30259 1.106 0.268948
                              0.36222 0.526 0.599014
## driveLic
                     0.19052
## sex
                     0.41215
                              0.16803 2.453 0.014343 *
## age
                    -0.15007 0.07974 -1.882 0.060112 .
## daca_imm
                     0.62161
                              0.29402 2.114 0.034742 *
## employ
                     -0.26235
                                0.17608 -1.490 0.136542
                              0.19252 3.820 0.000141 ***
## hhincome_cat2
                      0.73546
                      0.43970
                                0.22563 1.949 0.051599 .
## hhincome_cat3
## state_enroll23_cat2 0.08729
                              0.30112 0.290 0.771954
## state_enroll23_cat3 1.11501
                              0.49840 2.237 0.025491 *
                                0.35714 -1.403 0.160895
## state_employ23_cat2 -0.50110
## state_employ23_cat3 -0.56558
                                0.42699 -1.325 0.185605
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9934321)
##
## Number of Fisher Scoring iterations: 4
```