

Ë.

ig. 2

Fig. 3

Fig. 4

Gene Expression (rlu/ug)

11. 19.

Fig. 7B

Luciferase Expression, Mean RLU/mg (+/- SEM)

Fig. 8

- o Type A Formulations
- ☐ Type B Formulations

Fig. 9A

SEDIMENTATION (% DNA RECOVERY)

- Type A Formulations
- ☐ Type B Formulations

Fig. 9B

TURBIDITY PARAMETER

- O Type A Formulations
- □ Type B Formulations

Fig. 9C

PROPERTIES OF VARIOUS PLAS min^{TM} FORMULATIONS

Formulation #	Countenen	Poly lysine	FLG Content (%)	(b)	Taubidary Parameter	Sedimentation (%)
1	TFA	CK ₁₅	40	116	-1.5	30
7			60	10 8	-3.0	66
3			80	9.4	-2.4	42
4			100	16.7	-1.3	11
5	TFA	€K, ₂₈	40	8.1	-1.4	44
6			60	4.3	-32	79
7			80	3.4	-40	117
2			100	2.6	-4.3	90
9	TFA	CX45	40	6.3	-3.3	78
10			60	4.4	3.8	82
11			80	4.8	-3.3	84
12			100	5.0	-3.9	89
13	Acetate	CK ₁₅	40	7.4	-4.8	101
14			60	1.8	4.7	104
15			80	1.6	-4.1	90
16			100	2.4	-4.0	102
17	Acetate	CK ₇₀	40	1.9	- 74.1	99
18			60	2.4	4.3	91
19			89	2.2	-4.4	108
20			100	4.0	- 44	109
21	Acetate	CK.,	40	6.4	-4.2	100
72			60	4.2	-3.9	104
23			80	49	-4.5	105
24			100	3.5	-4 6	108

Fig. 9D

Fig. 11

Sample	Before Lyophilization	After Lyophilization
CK30TFA	-, - _F	, r
Original		
0.5M Sucrose	-4.31	ppt
0.5 M Trehalose	-3.81	-4.10
CK30P10k - TFA	-4.70	-4.01
Original		
0.5M Sucrose	-4.51	NE-4.61
0.5 M Trehalose	-4.15	
CK30P10k - Acetate	-4.65	-4.66
Original		-3.86
0.5M Sucrose	-4.76	
0.5 M Trehalose	-4.56	-3.32
	-4.57	-4.39
1		

Fig. 12

Fig. 13

AFTER

Fig. 15

Date de la fina	Carratanian	DNA	Turbidity
Polylysine	Counterion	Recovery	Parameter
	Acetate	100	-4.2
CK30P10k	Bicarbonate	98	-4.0
CKSUPTUK	Chloride	101	-5.2*
	TFA	97	-4.6
CK45P10k	Chloride	105	-4.0

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20