

CLASE DE PROBLEMAS N°9: Aleaciones - Equilibrio de Fases

- 1) A 200°, una aleación de soldadura Sn-Pb al 50%, presenta dos fases: un sólido rico en Pb y un líquido rico en Sn. Calcule los grados de libertad para la aleación y comente su significado físico.
- 2) En la aleación anterior repita el cálculo para:
- a- Una solución sólida de una sola fase de Sn disuelta en Pb.
- b- Pb puro debajo de su punto de fusión.
- c- Pb puro en su punto de fusión.
- 3) ¿Para cuál de los siguientes sistemas de aleaciones se esperaría que desarrolle una solubilidad sólida ilimitada?
- a- Mo-W
- b- Ge-Si
- c- Al-Au
- 4) Dada las siguientes fórmulas idealizadas para las fases β , γ y ϵ de un latón, verifique la relación n° e-/n° átomos que le son caracteríticas. B CuZn, γ Cu5Zn8, ϵ CuZn3.
- 5) La solubilidad sólida intersticial extensa sólo se presenta cuando la relación entre el diámetro aparente del átomo de soluto y el de solvente es menor que 0.5. Determine si el carbono tendrá una solubilidad intersticial importante en el Fe.
- 6) a- Con las siguientes curvas se enfriamiento confeccione el diagrama de fases correspondiente.
 b- Indique temperatura y composición del eutéctico.

- 7) Dado el diagrama de equilibrio Cu- Ag, indique para el caso de una aleación 60% de Cu- 40% Ag, que se enfría bajo condiciones de equilibrio.
- a- ¿Cuándo comienza a solidificar este material?
- b- ¿Cuándo es totalmente sólida la aleación?
- c- ¿Cuáles son las fases sólidas que se observana 400°C?,¿cómo están constituidas?.

d- Identifique las fases y componentes presentes en cada región.

8) El Bi (t_f =271.3°C) y el Cd (t_f = 320.9°C) son totalmente solubles en estado líquido e insolubles en estado sólido. Forman un eutéctico en 144 °C, que contiene 60% de Bi.

Con estos datos:

- a- Dibuje el diagrama de equilibrio Bi-Cd, suponiendo que las líneas de equilibrio son rectas.
- b- Indique las fases y grados de libertad en cada una de las regiones y puntos notables del diagrama.
- c- Para una aleación con 25% de Bi, trácese la curva de enfriamiento e indique las fases que coexisten a $200^{\circ}C$ y a temperatura ambiente.
- 9) Dado el siguiente diagrama para el sistema Mg- Sn:
- a- Indique las fases presentes en las distintas regiones.
- b- Identifique los puntos notables.
- c- Calcule la composición centesimal del compuesto intermetálico, Mg2Sn.
- d- Determine las transformaciones que experimenta una aleación con 20% de Sn al enfriarse lentamente desde 800 a $100^{\circ}C$.
- e- Repita el cálculo para la aleación con 80% de Sn.

10) El bismuto (t_f =271.4°C) y el antimonio (t_f = 630.5°C) son completamente solubles en el estado líquido y sólido. Mediante análisis térmico se han obtenido los siguientes resultados:

% en masa de antimonio	Temperatura del líquido (°C)	Temperatura del sólido (°C)
10	345	280
20	400	300
30	450	315
40	490	335
50	525	360
60	550	380
70	575	420
80	590	465
90	615	530

Con estos datos, construir el diagrama de equilibrio, indicando las distintas fases que coexisten en cada una de ellas y grados de libertad. Para la aleación 45% de Sb:

- a- Describir las transformaciones que experimenta al enfriarse lentamente desde el estado líquido hasta la temperatura ambiente.
- b- Trazar la curva de enfriamiento
- c- Si el enfriamiento se verifica en condiciones de equilibrio, ¿cuál será la composición del sólido obtenido por enfriamiento de un líquido con 45% de Bi?
- 11) Construir el diagrama de fases del sistema plomo-antimonio y completar las fases presentes en el mismo, utilizando los siguientes datos:

Temperatura de fusión del plomo = 328°C

Temperatura de fusión del antimonio = 631°C

Composición eutéctica, 11 % de antimonio.

Solubilidad del antimonio en plomo: máxima de 4% a 252°C y nula a 25°C Solubilidad del plomo en antimonio: máxima de 5% a 252°C y 2% a 25°C

- 12) A partir del siguiente diagrama del sistema Cu-Ni, indique:
- a- Tipo de aleación.
- b- Partiendo de una mezcla líquida don 70% de Cu:
 - i. Composición del sólido en equilibrio con el líquido a 1200°C
 - ii. Composición del sólido a 1000°C.
- c- ¿Por qué es diferente la composición en el inciso b-i) que la composición inicial del líquido?

