

AS TO
DISEASES,
MAKE A HABIT
OF TWO THINGS
— TO HELP, OR
AT LEAST, TO
DO NO HARM.

- Hippocrates

PNEUMONIA

- What is it?:
 - Infection that inflames air sacs in one or both lungs, which may fill with fluid.
- 1.5 million+ US cases per year (VERY COMMON)
- 40,000 Death each year
- Lab tests or imaging are always required

Source: CDC https://www.cdc.gov/

- Business Problem
- Data Understanding
- Metrics

- Raw Data
- Modeling
- Modeling Results

- Business recommendations
- Next Steps

INTRODUCTION

- Business problem
- Key Idea
- Data sources & Methods

BUSINESS PROBLEM

- Our team was hired by an unnamed local hospital to create a model which automatically classifies if a patient has pneumonia by looking a x-ray.
- 10-15% of all diagnoses are incorrect.[1]
- 1 in 3 misdiagnoses result in serious injury or death.[2]
- Our model should provide over 90% accuracy and 95% recall in predicting pneumonia.

Source:

[1] BMJ journal https://qualitysafety.bmj.com/content/22/Suppl_2/ii21.info [2] Johns Hopkins University School of Medicine https://www.degruyter.com/document/doi/10.1515/dx-2019-0019/html

KEY IDEA BEHIND

• Fundamental approach:

"Good health and effective medical care are essential for a society's ability to function."

• Philosophy:

"The philosophy of healthcare is the study of the ethics, processes, and people which constitute the maintenance of health for human beings."

DATA UNDERSTANDING

METHODS:

- Image recognition using Deep Learning techniques:
 - Fully Connected Neural Networks
 - Convolutional Neural Networks
 - Pretrained Convolutional Neural Networks

DATA SOURCES:

• Kermany, Daniel; Zhang, Kang; Goldbaum, Michael (2018), "Large Dataset of Labeled Optical

Coherence Tomography (OCT) and Chest X-Ray Images", Mendeley Data

https://data.mendeley.com/datasets/rscbjbr9sj/3

METRICS

We are focused on finding people with pneumonia.

- Hypothesis:
 - H0 Person has pneumonia.
 - HA There is statistically significant proof that the person doesn't' have pneumonia.

USED METRICS:

- Recall Health of people is our priority, we will be focused on finding pneumonia cases.
 - Business requirement: our system should have at least 95% recall.
- Accuracy How accurate our results are considering false identified cases.

RESEARCH

- Raw data
- Model results
- Modeling

< >>

RAW DATA

- TOTAL 6462 X-RAY IMAGES
 - 4879 HAS PNEUMONIA
 - 1583 ARE NORMAL

PNEUMONIA X-RAY

NORMAL X-RAY

()

MODEL RESULTS

Model name	Image size	Parameters	Train time	Train accuracy	Validation accuracy	Test accuracy	Test Recall
Baseline_model	(64, 64)	614971	12.0	0.9514	0.4834	0.6266	0.9915
Baseline with reg	(64, 64)	615996	31.0	0.9061	0.7749	0.625	0.0
Baseline with reg, dropout	(64, 64)	615996	31.0	0.7689	0.7691	0.625	0.0
Baseline with reg, dropout, optimizer	(64, 64)	615996	40.0	0.7689	0.7691	0.625	0.0
Baseline with reg, dropout, optimizer + extra	(64, 64)	615996	83.0	0.7689	0.7691	0.625	0.0
Basic CNN	(64, 64)	107553	456.0	0.9609	0.9486	0.7837	0.4444
Basic CNN with reg, dropout	(64, 64)	72705	293.0	0.9688	0.8869	0.6763	0.1368
Basic CNN 100x100	(100, 100)	138241	617.0	0.7689	0.7691	0.625	0.0
Basic CNN 100x100 with reg and dropout	(100, 100)	173089	756.0	0.7689	0.7691	0.625	0.0
Augmented CNN 100x100 with reg	(100, 100)	376421	1359.0	0.8404	0.8562	0.5016	0.6282
Augmented CNN 100x100 with reg and RMSprop opt	(100, 100)	390757	920.0	0.7626	0.785	0.383	0.9658
Augmented CNN 100x100 with additional reg, inc	(100, 100)	390757	2736.0	0.8854	0.9038	0.4615	0.6923
Pre-trained Augmented CNN 100x100 frozen layer	(100, 100)	15009729	1476.0	0.8939	0.9375	0.4631	0.7308
Pre-trained Augmented CNN 100x100 frozen layer	(100, 100)	15009729	1132.0	0.9262	0.9217	0.5385	0.6692
Pre-trained Augmented CNN 100x100 frozen layer	(100, 100)	15009729	997.0	0.9231	0.936	0.8333	0.9846
Pre-trained Augmented CNN 224x224 frozen layer	(200, 200)	6272193	1318.0	0.9438	0.932	0.9503	0.9641
Pre-trained Augmented CNN 224x224 frozen layer	(200, 200)	16320449	4090.0	0.94	0.93	0.9263	0.9821
Pre-trained Augmented CNN 200x200 frozen layer	(200, 200)	15894465	3486.0	0.9394	0.94	0.9279	0.9744

BEST MODEL:
PRETRAINED CONVOLUTIONAL NEURAL NETWORK MOBILENETV2

BEST MODEL BEFORE TUNING:

- PRETRAINED CONVOLUTIONAL NEURAL **NETWORK MOBILENETV2**
 - 96.41% RECALL
 - 95.03% ACCURACY

3 TYPES OF TUNING:

DEFAULT MODEL:

- 96.41% RECALL
- 95.03% ACCURACY

MAX RECALL

- 99.49% RECALL
- 91.35% ACCURACY

MAX ACCURACY:

- 97.69% RECALL
- 95.19% ACCURACY

SUSPICIOUS CASE REMOVAL APPROACH:

MAX ACCURACY OPTIMIZED MODEL:

- 97.69% RECALL
- 95.19% ACCURACY

SUSPICIOUS CASES REMOVED

- 99.92% RECALL
- 97.26% ACCURACY
- 6.41% SUSPICIOUS CASES pneumonia

FINALIZE

- Business recommendations
- Next Steps
- QA

Recommendations

01

MODEL OPTIMIZATION

Based on hospital treatment policy model should be tuned

02

USE OF MODEL

The model gives less error than doctors

03

INFORMATION INPUTS

Model can be extended to diagnose other lungs illnesses

Next steps

- Extend the model to different types of lung desease.
- Gather additional data for model accuracy improvement
- Double verification of input data

Q & A:

Thank you for joining today's presentation.

SYRVACHEV SERGEY

- DATA SCIENTIST
- DEST.STUDIO@GMAIL.COM
- LINKEDIN: /SSYRVACHEV
- GITHUB: 314KA4Y
- MEDIUM: @SERGEYSYRVACHEV
- JEREMIAS CAMPOS
- DATA SCIENTIST
- JEREMIASCAMPOS3@GMAIL.COM
- LINKEDIN: /JEREMIASCAMPOS
- GITHUB: DATAJCAMPOS
- MEDIUM: @JEREMIASCAMPOS3

