

Algebra 2 Workbook

Exponential and logarithmic functions

WHAT IS A LOGARITHM?

■ 1. How would you read the logarithmic equation out loud?

$$\log_7 57 = y$$

■ 2. Rewrite the equation in logarithmic form.

$$64^{\frac{1}{2}} = 8$$

■ 3. Rewrite the equation in exponential form.

$$\log_u \frac{19}{20} = v$$

 \blacksquare 4. Use the general log rule to solve for x.

$$\log_5(125) = x$$

■ 5. Use the general log rule to solve the logarithm.

$$\log_{64} 8 = x$$

	deven
■ 6. Write the logarithm that answers this question: To what power	ao you
have to raise 289 in order to get 17?	

COMMON BASES AND RESTRICTED VALUES

■ 1. Is there something wrong with the logarithm? If so, what is it?

$$\log_{-5}(8)$$

■ 2. Is there something wrong with the logarithm? If so, what is it?

$$\log_5(-8)$$

■ 3. Is the following statement true or false? Why?

$$\log 5 = \log_{10} 5$$

- 4. How else can you write $\log_e 7$?
- \blacksquare 5. Solve the logarithm for x.

$$log(10,000) = x$$

 \blacksquare 6. Solve the logarithm for x.

1n	(e^5)	Y
111	(e)	\mathcal{A}

EVALUATING LOGS

■ 1. Find the exact value of the logarithm.

$$log_3 27$$

■ 2. Find the exact value of the logarithm.

$$\log_9 \frac{1}{81}$$

■ 3. Find the value given by the log.

■ 4. Find the exact value of the logarithm.

$$log_{343} 7$$

■ 5. Find the exact value of the logarithm.

$$\log_4(1,024)$$

■ 6. Find the exact value of the logarithm.

$$\log_{64} \frac{1}{4}$$

THE GENERAL LOG RULE

■ 1. Write the inverse of the log function.

$$\log y = 2x$$

■ 2. Write the inverse of the log function.

$$ln y = x$$

■ 3. The table shows points that satisfy an exponential function. Write a set of four points that will satisfy its inverse.

x	1	2	3	4
y=a ^x	1.5	2.25	3.375	5.0625

■ 4. The table shows points that satisfy a logarithmic function. Write a set of four points that will satisfy its inverse.

X	10	100	1,000	10,000
y=log(x)	1	2	3	4

■ 5. The graph shown passes through (-2,11), (-1,5), and (0,3). Sketch the graph of its inverse.

■ 6. The graph shown passes through (-2, -1), (1, -0.3979), (3, -0.2218), and (7,0). Sketch the graph of its inverse.

LAWS OF LOGARITHMS

■ 1. Write the expression as a single logarithm. Solve if possible.

$$\log_2 2 + \log_2 4$$

■ 2. Write the expression as a single logarithm. Solve if possible.

$$\log_3 216 - \log_3 24$$

■ 3. Write the expression as a single logarithm. Solve if possible.

$$\log_4 10 - 3\log_4 2$$

■ 4. Write the expression as a single logarithm. Solve if possible.

$$2\log_7 4 + 3\log_7 5$$

■ 5. Solve the equation.

$$\log_a 2 + \log_a 4 = \log_a (x+2)$$

■ 6. Solve the equation.

$$\log_4(x+5) - \log_4(x-2) = \log_4 3$$

■ 7. Solve the equation.

$$2\log_b x = \log_b 49$$

■ 8. Solve the equation.

$$\log_{12} x = \frac{3}{2} \log_{12} 16$$

CHANGE OF BASE

■ 1. Find the log to four decimal places.

 $log_3 6$

2. Find the log to four decimal places.

 $\log_5 8$

■ 3. Find the approximate solution to the logarithm to the nearest ten thousandth.

 log_640

■ 4. Write the log expression in terms of natural logs.

 $log_46.7$

■ 5. Find the exact value of the logarithmic expression.

 $\frac{\ln(16,807)}{\ln(7)}$

$$8 \cdot 6^{3x} = 4,104$$

LAWS OF NATURAL LOGS

■ 1. Condense the expression into a single logarithm.

$$2 \ln 2 - 3 \ln 4$$

■ 2. Condense the expression into a single logarithm.

$$\frac{5 \ln 2}{4}$$

■ 3. Condense the expression into a single logarithm.

$$3(\ln 2x - \ln 5) + (\ln 4 - \ln 3y)$$

■ 4. Expand the logarithm.

$$\ln\left(3\cdot5\right)^4$$

■ 5. Expand the logarithm.

$$\ln\left(\frac{4}{5}\right)^2$$

<u></u>	5	0.10	J 41			:+	la 194	
o .	Exp	and	וז ג	ne i	oga	arıt	nm	

 $\ln(3xy^2)$

GRAPHING EXPONENTIAL FUNCTIONS

■ 1. Will the function have a vertical or horizontal asymptote? Where is it located? What is the end behavior of the function?

$$y = \left(\frac{1}{3}\right)^{x-2} + 3$$

■ 2. Will the function have a vertical or horizontal asymptote? Where is it located? What is the end behavior of the function?

$$x = -4^{y+3} - 2$$

■ 3. What is the coordinate of the *y*-intercept of the function?

$$y = \left(\frac{1}{8}\right)^x + 2$$

■ 4. What is the *x*-intercept of the function?

$$x = \left(\frac{11}{8}\right)^y - 4$$

■ 5. Sketch the graph of the function by finding the *y*-intercept and figuring out the function's end behavior.

$$y = -2^{x+1} - 5$$

 \blacksquare 6. Sketch the graph of the function using the x-intercept and the end behavior.

$$x = \left(\frac{1}{4}\right)^{y+2} - 2$$

■ 7. Given the graph of $y = 2^x$, use transformations to graph $y = 2^{x-1} + 4$.

GRAPHING LOG FUNCTIONS

■ 1. Will the function have a vertical or horizontal asymptote? Where is it located?

$$y = \log_2(x - 1)$$

■ 2. Will the function have a vertical or horizontal asymptote? Where is it located?

$$y = \log_4(2x) + \log_4(3)$$

■ 3. Given the graph of $y = \log_4(x)$, use transformations to sketch the graph of $y = \log_4(x-2) - 3$.

■ 4. Given the graph of $y = \log_5(x)$, use transformations to sketch the graph of $y = -\log_5(x+1) + 2$.

■ 5. Sketch the graph of the function by making a table of values.

$$y = \log_5 x$$

■ 6. Sketch the graph of the function using intercepts and end behavior.

$$x = 2\log_3(y+1)$$

