### Outline I

- Linear Regression Models
  - Basis Function
  - Least Squares
  - Bayesian Linear Regression
  - Evidence Approximation

- 2 Linear Models for Classification
  - Nonprobabilistic Approach
  - Probabilistic Approach

# Polynomial Curve Fitting

Given a training set with

- N observations of x,  $\mathbf{x} \equiv (x_1, \dots, x_n)^T$ , and
- observations of target values of t,  $\mathbf{t} \equiv (t_1, \dots, t_n)^{\mathsf{T}}$

We shall fit the data using a polynomial function of the form

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

by minimizing error function

$$E(w) = \frac{1}{2} \sum_{n=1}^{M} (y(x_n, w) - t_n)^2$$

▶ Poly Fit

Linear Regression Models 2 /

# Frequestist and Bayesian View

In a frequentist setting,

- w is considered to be a fixed parameter, whose value is determined by some form of "estimator", and
- error on this estimate are obtained by considering the distribution of possible observed data sets  $\mathscr{D} = \{t_1, \dots, t_n\}$ .

In a Bayesian setting,

- We assume a prior probability distribution p(w) before observing the data.
- The effect of the observed data  $\mathscr{D}$  is expressed through  $p(\mathscr{D}|w)$ , i.e., likelihood function.
- Bayes' theorem

$$p(w|\mathscr{D}) = \frac{p(\mathscr{D}|w)p(w)}{p(\mathscr{D})}$$

allows us to evaluate the uncertainty in w after we have observed  $\mathscr{D}$  in the form of the posterior probability  $p(w|\mathscr{D})$ .

posterior ∝ likelihood × prior

Linear Regression Models 3 / 44

### Linear Basis Function Models

- We have input data  $\mathscr{D}$  which consists of a set of D inputs  $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_D\}$  and corresponding target values target values  $\mathbf{t} = (t_1, ..., t_D)^T$ .
- We assume that the target variable t is given by a deterministic function  $y(\mathbf{x}, \mathbf{w})$  with additive Gaussian noise so that

$$t = y(\mathbf{x}, \mathbf{w}) + \varepsilon$$
 with  $y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$ 

where arepsilon is is a zero mean Gaussian random variable with precision eta,

$$\mathbf{w} = (w_0, w_1, \dots, w_{M-1})^{\mathsf{T}}$$

and

$$\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \dots, \phi_{M-1}(\mathbf{x}))^\mathsf{T}$$

are basis functions.

Basis Funcs

# Maximal Likelihood and Least Squares

Because the target variable t is given by a deterministic function  $y(\mathbf{x}, \mathbf{w})$  plus a Gaussian noise  $\varepsilon$  with precision  $\beta^1$ :

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$
(1.1)

The log likelihood function is

$$\ln p(\mathbf{t}|\mathbf{X},\mathbf{w},\beta) = \frac{N}{2}\ln \beta - \frac{N}{2}\ln(2\pi) - \beta E_{\mathscr{D}}(\mathbf{w})$$

where

$$E_{\mathscr{D}}(\mathbf{w}) = \sum_{n=1}^{N} \left( t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right)^2$$

#### Theorem

Maximization of the likelihood function under a conditional Gaussian noise distribution for a linear model is equivalent to minimize a sum-of-squares error function given by  $E_{\mathscr{D}}(\mathbf{w})$ . The normal equations define  $\mathbf{w}_{ML}$ .

▶ Least Squares

 $<sup>^1</sup>$ Gaussian noise implies that the conditional distribution of t given x is unimodal

### Stochastic Gradient Descent

- When the training data set is very large or data is received in a stream, a direct solution using the normal equations may not be possible.
- An alternative approach is the stochastic gradient descent algorithm.
- The total error function

$$E_{\mathscr{D}}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^\mathsf{T} \phi(x_n))^2 \equiv \sum_{n=1}^{N} E_n(\mathbf{w})$$

• In general, the stochastic gradient descent algorithm is applying

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \bigtriangledown_{\mathbf{w}} E_n$$

where au is the iteration number and  $\eta$  is a learning rate parameter.

ullet When the error function is the sum-of-squares function  $^1$ , then the algorithm is

$$\mathbf{w}^{ au+1} = \mathbf{w}^{ au} + \eta \left( t_n - \mathbf{w}^{( au)\intercal} \phi_n 
ight) \phi_n$$



Linear Regression Models Least Squares 10 / 44

<sup>&</sup>lt;sup>1</sup> For this type of total error function, the order of evaluation does not change the result

## Regularization

One technique that is often used to control the over-fitting phenomenon is regularization which leads to a modified error function of the form

$$E_{\mathcal{D}}(\mathbf{w}) + \lambda E_{\mathbf{w}}(\mathbf{w})$$

#### Examples:

- ullet q=1 is know as the lasso in the statistics literature, and
- q = 2 corresponds to the quadratic regularizer.

► Regularization

## Bias-Variance Decomposition

From a frequentist perspective, if consider a single input value  $\mathbf{x}$ , the expected squared loss can be decomposed as follows

expected loss 
$$=$$
 bias<sup>2</sup> + variance + noise

It is of limited practical value, because

- the bias-variance decomposition is based on averages with respect to ensembles of data sets E<sub>Q</sub>, whereas in practice we have only the single observed data set.
- If we had a large number of independent training sets of a given size, we would be better off combining them into a single large training set, which of course would reduce the level of over-fitting for a given model complexity.

▶ Bias-Variance Decomp

## Bayesian Linear Regression

Suppose the noise precision parameter eta is known. The likelihood function is

$$p(\mathbf{t}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} \mathscr{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n),\beta^{-1}\right)$$

The corresponding conjugate prior  $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$ . The posterior distribution is

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}) \propto p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where<sup>1</sup>

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^\mathsf{T} \mathbf{t}$$
 and  $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^\mathsf{T} \mathbf{\Phi}$ 

The log of the posterior distribution takes the form

$$\ln p(\mathbf{w}|\mathbf{t}, \mathbf{X}) = -\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))^2 - \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \text{const.}$$

▶ Bayesian Reg

Linear Regression Models Bayesian Linear Regression 17 / 44

 $<sup>^1</sup>x$  will always appear in the set of conditioning variables. We may drop the explicit x from future expressions for simplicity. General prior  $p(w) = \mathcal{N}(w|m_0, S_0)$  gives  $m_N = S_N \left(S_0^{-1}m_0 + \beta \Phi^T t\right)$  and  $S_N^{-1} = S_0^{-1} + \beta \Phi^T \Phi$ 

# Bayesian Linear Regression

#### Theorem

Maximization of the posterior distribution with respect to  ${\bf w}$  is therefore equivalent to the minimization of the sum-of-squares error function with the addition of a quadratic regularization term with  $\lambda=\alpha/\beta$ .

- Maximum likelihood provides a point estimate of w;
- Bayesian method provides a distribution of w, which gives a predictive distribution.

To predict t for new values of x. The predictive distribution is

$$p(t|\mathbf{t},\mathbf{x},\alpha,\beta) = \int p(t|\mathbf{w},\mathbf{x},\beta)p(\mathbf{w}|\mathbf{t},\mathbf{x},\alpha,\beta)d\mathbf{w}$$

It can be shown that

$$p(t|\mathbf{t}, \mathbf{x}, \alpha, \beta) = \mathcal{N}\left(t|\mathbf{m}_N^\mathsf{T} \phi(\mathbf{x}), \sigma_N^2(\mathbf{x})\right)$$

where 
$$\sigma_N^2(\mathbf{x}) = \beta^{-1} + \phi(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \phi(\mathbf{x}).$$

▶ Bayesian Prediction

- The first term represents the noise on the data
- ullet The second term reflects the uncertainty associated with the parameters w.
- Because the noise process and the distribution of w are independent Gaussians, their variances are additive.

### Bayesian Model Comparison

Compare a set of model  $\mathcal{M}_i$ . Given a training set  $\mathcal{D}$ , we wish to evaluate

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i)$$

 $p(\mathcal{M}_i)$  allows us to express a preference for different models. By simply assuming equal prior,  $p(\mathcal{D}|\mathcal{M}_i)$  is model evidence or marginal likelihood as the parameters are marginalized out.

$$p(\mathbf{w}|\mathscr{D},\mathscr{M}_{i}) = \frac{p(\mathscr{D}|\mathbf{w},\mathscr{M}_{i})p(\mathbf{w}|\mathscr{M}_{i})}{p(\mathscr{D}|\mathscr{M}_{i})} \Rightarrow p(\mathscr{D}|\mathscr{M}_{i}) = \int p(\mathscr{D}|\mathbf{w},\mathscr{M}_{i})p(\mathbf{w}|\mathscr{M}_{i})d\mathbf{w}$$

$$\ln p(\mathscr{D}) = \ln \left( \int p(\mathscr{D}|\mathbf{w})p(\mathbf{w})d\mathbf{w} \right) \approx \ln \left( p(\mathscr{D}|\mathbf{w}_{\mathsf{MAP}}) \int_{\mathsf{posterior support }} \frac{1}{\Delta \mathbf{w}_{\mathsf{prior}}} d\mathbf{w} \right)$$

$$\approx \ln p(\mathscr{D}|\mathbf{w}_{\mathsf{MAP}}) + M \ln \frac{\Delta \mathbf{w}_{\mathsf{posterior }}}{\Delta \mathbf{w}_{\mathsf{prior }}}$$

- model complexity  $\uparrow \Rightarrow$  first term  $\downarrow$ , because complex model fits data better.
- model complexity  $\uparrow \Rightarrow$  second term<sup>1</sup>  $\uparrow$  due to M

Linear Regression Models Bayesian Linear Regression 19 / 44

 $<sup>^1 \</sup>text{All parameters have the same ratio of } \Delta \textbf{w}_{posterior}/\Delta \textbf{w}_{prior}$ 

### Bayesian Model Comparison



- The Bayesian framework avoids the problem of over-fitting and allows models to be compared on the basis of the training data alone.
- A simple model (such as a first order polynomial) has little variability and so will generate data sets that are fairly similar to each other. Its distribution  $p(\mathcal{D})$  is therefore confined to a relatively small region of the horizontal axis.
- A complex model (such as a ninth order polynomial) generates a great variety of different data sets, so its distribution  $p(\mathscr{D})$  is spread over a large region of the space of data sets
- The model evidence can be sensitive to many aspects of the prior.

### Predictive Distribution

In practice, we are interested in making predictions of t for new values of x. This requires that we evaluate the predictive distribution defined by

$$p(t|\mathbf{t},\mathbf{x},\alpha,\beta) = \int p(t|\mathbf{w},\mathbf{x},\beta)p(\mathbf{w}|\mathbf{t},\mathbf{x},\alpha,\beta)d\mathbf{w}$$

It can be shown that

$$p(t|\mathbf{t},\mathbf{x},\alpha,\beta) = \mathcal{N}\left(t|\mathbf{m}_N^\mathsf{T}\phi(\mathbf{x}),\sigma_N^2(\mathbf{x})\right)$$

where  $\sigma_N^2(\mathbf{x}) = \beta^{-1} + \phi(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \phi(\mathbf{x})$ .

- The first term represents the noise on the data whereas
- $\bullet$  The second term reflects the uncertainty associated with the parameters w.
- Because the noise process and the distribution of w are independent Gaussians, their variances are additive.

▶ Bayesian Prediction

## **Evidence Approximation**

In a fully Bayesian treatment, the predictive distribution is

$$p(t|\mathbf{t}) = \int \int \int p(t|\mathbf{w},\beta)p(\mathbf{w}|\mathbf{t},\alpha,\beta)p(\alpha,\beta|\mathbf{t})d\mathbf{w}d\alpha d\beta$$

- $p(t|\mathbf{w},\beta)$ : target t is determined by  $\mathbf{w}$  and Gaussian noise;
- $p(\mathbf{w}|\mathbf{t}, \alpha, \beta)$ : posterior distribution of  $\mathbf{w}$ ;
- $p(\alpha, \beta|\mathbf{t})$ : posterior distribution of hyper-parameters.

An evidence approximation (if  $p(\alpha, \beta|\mathbf{t})$  is sharply peaked around  $\hat{\alpha}, \hat{\beta}$ )

$$p(t|\mathbf{t}) \approx p(t|\mathbf{t}, \hat{\alpha}, \hat{\beta}) = \int \int p(t|\mathbf{w}, \hat{\beta}) p(\mathbf{w}|\mathbf{t}, \hat{\alpha}, \hat{\beta}) d\mathbf{w}$$

Note that  $p(\alpha, \beta | \mathbf{t}) \propto p(\mathbf{t} | \alpha, \beta) p(\alpha, \beta)$ . If prior  $p(\alpha, \beta)$  is flat,  $\hat{\alpha}, \hat{\beta}$  can be obtained by maximizing the marginal likelihood  $p(\mathbf{t} | \alpha, \beta)$ , where

$$p(\mathbf{t}|\alpha,\beta) = \int p(\mathbf{t}|\mathbf{w},\beta)p(\mathbf{w}|\alpha)d\mathbf{w}$$

- $p(\mathbf{t}|\mathbf{w},\beta)$ : the likelihood function;
- $p(\mathbf{w}|\alpha)$ : prior distribution of  $\mathbf{w}$ .

# **Empirical Bayes**

### Algorithm

- Initialization: k = 0,  $\alpha^0 = \alpha_0$  and  $\beta^0 = \beta_0$
- **②** Find eigenvalues  $\lambda_i$  i = 0, ..., M-1 such that

$$\left(\beta\Phi^{T}\Phi\right)\mathbf{u}_{i}=\lambda_{i}\mathbf{u}_{i}$$

Let

$$\gamma^k = \sum_{i=0}^{M-1} \frac{\lambda_i}{\alpha^k + \lambda_i}, \ \alpha^{k+1} = \frac{\gamma^k}{\mathbf{w}_{mean}^T \mathbf{w}_{mean}} \ \text{and} \ \frac{1}{\beta^{k+1}} = \frac{1}{N-\gamma} \sum_{i=1}^N \left( t_i - \mathbf{w}_{mean}^T \phi(x_i) \right)^2$$

where  $\mathbf{w}_{mean} = \mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^T \mathbf{t}$ .

 $\textbf{ If } |\alpha^{k+1}-\alpha^k|+|\beta^{k+1}-\beta^k|< \text{threshold, then return }\alpha,\beta, \text{ else }k=k+1 \text{ and go to step 2}.$ 

▶ Empirical Bayes

### Introduction

- The goal in classification is to assign D-dimension  $\mathbf{x}$  to one of K classes  $\mathscr{C}$ .
- A target vector  $\mathbf{t} = (0,1,0,0,0)^{\mathsf{T}}$  indicates a pattern from class 2 out of 5 classes and we can interpret the value of  $t_k$  as the probability that the class is  $\mathscr{C}_k$ .
- Nonprobabilistic approach constructs a discriminant function that directly assigns each vector x to a specific class.
- Probabilistic approach models the conditional probability distribution  $p(\mathscr{C}_k|\mathbf{x})$  in an **inference** stage, and then subsequently uses this distribution to make optimal decisions

▶ Training Data

Linear Models for Classification 26 / 44

### Discriminant Function

A linear function  $y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0$  can assign  $\mathbf{x}$  to class  $\mathscr{C}_1$  if  $y(\mathbf{x}) \geq 0$  and to class  $\mathscr{C}_2$  otherwise. However, for multiple classes





- Figure (a) uses K-1 classifier each of which solves a two-class problem.
- Figure (b) uses K(K-1)/2 classifier and one for every possible pair of classes.
- Both run into the problem of ambiguous regions.

### Multiple K Classes

A single K-class discriminant:  $y_k(\mathbf{x}) = \mathbf{w}_k^\mathsf{T} \mathbf{x} + w_{k0}$ .  $\mathbf{x}$  is assigned to class  $\mathscr{C}_k$  if  $y_k(\mathbf{x}) > y_j(\mathbf{x})$  for all  $j \neq k$ , i.e. class  $k^* = \operatorname{argmax}_k \{ y_k(\mathbf{x}) : k = 1, \dots, K \}$ .

### Least Squares for Classification

Consider a training data set  $\{\mathbf{x}_i, \mathbf{t}_i\}$  where  $i=1,\ldots,N$ . The least squares approach is to find  $\mathbf{w}_k$ ,  $k=1,\ldots,K$  such that the sum-of-squares error between  $\mathbf{y}(\mathbf{x}_i)=(y_1(\mathbf{x}),\ldots,y_K(\mathbf{x}))$  and  $\mathbf{t}_i$  is minimal.

#### Remark

The failure of least squares should not surprise us when we recall that it corresponds to maximum likelihood under the assumption of a Gaussian conditional distribution, whereas binary target vectors clearly have a distribution that is far from Gaussian.

▶ Least Squares

### Linear Discriminant

#### Linear Classification

A linear classification model reduce the D dimension input  $\mathbf{x}$  down to one dimension using  $y = \mathbf{w}^\mathsf{T}\mathbf{x}$ 

consider a two-class problem in which there are  $N_1$  points of class  $\mathcal{C}_1$  and  $N_2$  points of class  $\mathcal{C}_2$ , so that the mean vectors of two classes:

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathscr{C}_1} \mathbf{x}_n$$
 and  $\mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathscr{C}_2} \mathbf{x}_n$ 

We want to choose **w** to maximize  $\mathbf{w}^{\mathsf{T}}(\mathbf{m}_1 - \mathbf{m}_2) \equiv m_1 - m_2$ , with scaler  $\sum_i w_i^2 = 1$ .

#### Fisher's Method

Fisher's idea is to maximize a function that will give a large separation between the projected class means while giving a small variance within each class, thereby minimizing the class overlap.

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{\sum_{k=1}^2 \sum_{n \in \mathscr{C}_k} (y_n - m_k)^2} = \frac{\text{between class variance}}{\text{within class variance}}$$

### Probabilistic Approach

Generative models consider

$$\underbrace{p(\mathscr{C}_k|\mathbf{x})}_{\text{posterior probabilities}} = \underbrace{p(\mathbf{x}|\mathscr{C}_k)}_{\text{class-conditional densities}} \cdot \underbrace{p(\mathscr{C}_k)}_{\text{class priors}} \equiv f_k(a_k)$$

When class-conditional densities are in exponential family,  $f_k = \text{softmax}_k$  (or  $\sigma(\cdot)$ logistic sigmoid function if K = 2);  $a_k$  is a linear function of  $\mathbf{x}$ .

- Generative models use maximum likelihood solution to estimate parameters in  $p(\mathbf{x}|\mathcal{C}_k)$  and  $p(\mathcal{C}_k)$ .
- Discriminative models consider  $p(\mathscr{C}_k|\mathbf{x}) = f_k(a_k)$  where  $a_k = \mathbf{w}^{\mathsf{T}}\phi$  directly with nonlinear transfer  $\phi$ .
- $f_k = \sigma(\cdot)$  is logistic regression and  $f_k = \Phi(\cdot)$  is probit regression.
- In discriminative models, w can be estimated by least squares or Bayesian approach.

▶ Multiple Methods

Logistic

### Laplace Approximation, AIC and BIC

Laplace Approximation is to find a Gaussian approximation to a probability density p(z)

$$p(z)=rac{1}{Z}f(z)$$
 where  $Z=\int f(z)dz$   $p(z)\sim \mathcal{N}(z|z_0,A^{-1})$  where  $z_0$  is a mode of  $p(z)$ 

 $f'(z_0) = 0$  and  $A = -\nabla \nabla \ln f(z_0)$ .

- AIC:  $\ln p(\mathcal{D}|\mathbf{w}_{\text{ML}}) M$ , where  $p(\mathcal{D}|\mathbf{w}_{\text{ML}})$  is the best-fit log likelihood.
- BIC: recall Bayesian model evidence

$$\ln p(\mathscr{D}) \approx \ln p(\mathscr{D}|\mathbf{w}_{\mathsf{MAP}}) + \underbrace{\ln p(\mathbf{w}_{\mathsf{ML}}) + \frac{M}{2} \ln(2\pi) - \frac{1}{2} \ln|A|}_{\mathsf{Occam factor}}$$

$$\approx \ln p(\mathscr{D}|\mathbf{w}_{\mathsf{MAP}}) - \frac{1}{2} M \ln N$$