CERTAMEN Nº1 COMPUTACIÓN CIENTÍFICA II SCT - Lu.05.09.16

1. Respuesta:

- (a) La relación entre la matriz de adyacencia y la matriz laplaciana está dada por $L_G = D_G A_G$, donde D_G es una matriz diagonal de $n \times n$ con los valores δ_i . Si $\delta_i = \alpha$, entonces la matriz D_G puede reescribirse como $D_G = \alpha I_n$, con I_n matriz identidad. Luego, $L_G = \alpha I_n A_G$. Usando propiedades de valores propios y sabiendo que A_G tiene valores propios $\lambda_1, \lambda_2, \ldots, \lambda_n$ se llega a que L_G tiene valores propios $-\lambda_1 + \alpha, -\lambda_2 + \alpha, \ldots, -\lambda_n + \alpha$.
- (b) Antes de usar el teorema, considerar que $a_{ii} = 0$ ya que se trata de un grafo simple. Por esta razón y ya que $a_{ij} > 0$, se puede hacer la consideración:

$$r_i = \sum_{j=1, j \neq i}^{n} |a_{ij}| = \sum_{j=1}^{n} a_{ij} = \delta_i$$

Ahora, usando el teorema, se tiene que:

$$|0 - \lambda_i| = |-\lambda_i| \le r_i = \delta_i \le \max_i \delta_i = \delta_{\max}$$

Ya que $|-\lambda_i| \le \delta_{\text{máx}}$, entonces se cumple que $-\delta_{\text{máx}} \le -\lambda_i \le \delta_{\text{máx}}$ o lo que es lo mismo, $\delta_{\text{máx}} \ge \lambda_i \ge -\delta_{\text{máx}}$, al multiplicar por -1. Con esto se muestra que todos los valores propios están acotados superiormente por $\delta_{\text{máx}}$.

(c)

$$\lambda_{1} = \max_{\mathbf{x} \in \mathbb{R}^{n}} \frac{\mathbf{x}^{T} A_{G} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \geq \frac{\mathbf{1}^{T} A_{G} \mathbf{1}}{\mathbf{1}^{T} \mathbf{1}} = \frac{\left[\sum_{i=1}^{n} a_{i1} - \sum_{i=1}^{n} a_{i2} - \dots - \sum_{i=1}^{n} a_{in}\right] \mathbf{1}}{\sum_{i=1}^{n} 1} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}}{n} = \frac{\sum_{i=1}^{n} \delta_{i}}{n} = \delta_{\text{prom}}$$

En el último paso se define el promedio de los grados δ_i como δ_{prom} , que es una cota inferior para el mayor valor propio λ_1 .

(d) Debe demostrarse que la doble implicancia se cumple en ambos sentidos.

Primero demostraremos que si L_G es semidefinida positiva, entonces todos sus valores propios μ_i son mayores o iguales a cero. Considerar el problema de valores propios $L_G v = \mu v$, con μ valor propio y v vevtor propio de L_G . Considerar x = v. Entonces, ya que L_G es matriz semidefinida positiva, sabemos que $0 \le v^T L_G v = v^T \mu v = \mu v^T v = \mu ||v||_2^2$. La única forma en que $\mu ||v||_2^2 \ge 0$ ocurre cuando $\mu \ge 0$. Esto se cumple para cada valor y vector propio que tomemos de la matriz L_G . Por lo tanto, hemos demostrado que si L_G es semidefinida positiva, entonces sus valores propios μ_i son mayores o iguales a cero.

Ahora demostraremos que si los valores propios de L_G son $\mu_i \geq 0$, entonces L_G es matriz semidefinida positiva. Como L_G es matriz simétrica, sus vectores propios forman una base ortonormal. Entonces, considerar un vector $x \in \mathbb{R}^n$ como la combinación lineal de los vectores propios de L_G , $x = c_1v_1 + c_2v_2 + \ldots + c_nv_n$. Realizando la multiplicación x^TL_Gx , tenemos que $x^TL_Gx = (c_1v_1^T + c_2v_2^T + \ldots + c_nv_n^T)(c_1\mu_1v_1 + c_2\mu_2v_2 + \ldots + c_n\mu_nv_n) = c_1^2\mu_1 + c_2^2\mu_2 + \ldots + c_n^2\mu_n$. Se tiene que x^TL_Gx es una suma de términos $c_i^2\mu_i$, donde las constantes c_i^2 siempre son mayores a cero y $\mu_i \geq 0$ por premisa de la demostración. Entonces $x^TL_Gx \geq 0$ con $x \in \mathbb{R}^n$, lo que indica que L_G es matriz semidefinida positiva. Hemos demostrado que si $\mu_i \geq 0$, entonces la matriz L_G es semidefinida positiva.

Como se demostró la implicancia en ambos sentidos, entonces queda demostrado que L_G es semidefinida positiva si y solo sí $\mu_i \geq 0$.

2. Respuesta:

- (a) Como no está asegurada la relación $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$ con los valores propios de A_G , se aplicará un shift conveniente sobre esta matriz. De la pregunta 1(b) se sabe que $-\delta_{\text{máx}} \le \lambda_i \le \delta_{\text{máx}}$ para todo i. Si sumamos $\delta_{\text{máx}}$ sobre la desigualdad esta se convierte en $0 \le \lambda_i + \delta_{\text{máx}} \le 2\delta_{\text{máx}}$, donde $\lambda_i + \delta_{\text{máx}}$ son los valores propios de la matriz $A_G + \delta_{\text{máx}} I_n$. Si los valores propios de A_G satisfacen la relación $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$, entonces la matriz $A_G + \delta_{\text{máx}} I_n$ cumple con $\lambda_1 + \delta_{\text{máx}} \ge \lambda_2 + \delta_{\text{máx}} \ge \ldots \ge \lambda_n + \delta_{\text{máx}} \ge 0$, los cuales si están ordenados por magnitud. De manera análoga, si consideramos la matriz $A_G \delta_{\text{máx}} I_n$, esta tendrá los valores propios $\lambda_1 \delta_{\text{máx}} \ge \lambda_2 \delta_{\text{máx}} \ge \ldots \ge \lambda_n \delta_{\text{máx}}$, con $-2\delta_{\text{máx}} \le \lambda_i \delta_{\text{máx}} \le 0$. Ahora, usaremos un algoritmo sobre la matriz $A_G + \delta_{\text{máx}} I_n$ y $A_G \delta_{\text{máx}} I_n$ para obtener λ_1 y λ_n de la matriz A_G .
 - Si usamos *Power Iteration* sobre la matriz $A_G + \delta_{\text{máx}} I_n$ obtendremos el valor propio dominante $\hat{\lambda}_1 = \lambda_1 + \delta_{\text{máx}}$, luego restando $\delta_{\text{máx}}$ obtendremos λ_1 .
 - Si usamos *Power Iteration* sobre la matriz $A_G \delta_{\text{máx}} I_n$ obtendremos el valor propio dominante $\widehat{\lambda}_2 = \lambda_n \delta_{\text{máx}}$, luego sumando $\delta_{\text{máx}}$ obtendremos λ_n .

Un algoritmo que obtiene una estimación para la cota de Hoffman de la matriz A_G sería:

Algorithm 1 Número cromático

```
1: x_0 = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}

2: s = \delta_{\text{máx}}

3: B = A_G + sI

4: C = A_G - sI

5: \widehat{\lambda}_1 = \text{PowerIteration}(B, x_0)

6: \widehat{\lambda}_2 = \text{PowerIteration}(C, x_0)

7: \lambda_1 = \widehat{\lambda}_1 - s

8: \lambda_n = \widehat{\lambda}_2 + s

9: \chi = 1 - \lambda_1/\lambda_n

10: Return \chi
```

(b) El algoritmo propuesto en la pregunta anterior sigue funcionando. Al aplicar los algoritmos sobre la matriz $A_G + \delta_{\text{máx}} I_n$ no existen problemas asociados con la magnitud de los valores propios, ya que λ_1 siempre será el valor propio dominante de $A + \delta_{\text{máx}}$ y λ_n siempre será el valor propio dominante de $A - \delta_{\text{máx}}$ (con sus respectivos shifts).

3. Answer:

Algorithm 2 Find c (f,a,b,m)

- 1: I=midpoint(f, m, a, b):
-) $_{2: \text{ g=lambda c: I-f(c)*(b-a)}}$
 - 3: a2,b2=find_change_sign(g,a.b)
 - 4: c=bisección(g,a2,b2)
 - 5: Return c
- (b) We first compute the integral:

$$\int_{-1}^{2} 1 + x - 20 x^2 dx = \frac{-111}{2} = -55.5$$

We then solve the equation:

$$\frac{-111}{2} = (1 + c - 20c^2)(2 - (-1))$$

This equation has 2 solution in the interval: $c_1 = \frac{1}{40}(1-\sqrt{1561}) \approx -0.962737$ and $c_2 = \frac{1}{40}(1+\sqrt{1561}) \approx 1.01274$. Both of them satisfy the theorem.

4. Answer

(a) We observe from the definition of the Airy function that the double integral becomes:

$$\int_{-9.165362310991792}^{1} \operatorname{Ai}(x) \, dx$$

so, we only need to compute the integral of the Airy function $\mathrm{Ai}(x)$ on the given interval. Also, we know from the ODE that y''(x) = xy(x), so, we can solve for y(x) as a function of x and its second derivative. Thus we obtain $\mathrm{Ai}(x) = \frac{\mathrm{Ai}''(x)}{x}$. Fortunately, from the plot we can **estimate** the value of $\mathrm{Ai}''(x)$ (solid line) and divide by x and we obtain an estimation of $\mathrm{Ai}(x)$.

To estimate the integral we can use the midpoint integration method. In this case we need to evaluate Ai(x) at the following points: $x_i = (i+0.5) h + (-9.165362310991792)$, with $h = \frac{1-(-9.165362310991792)}{5}$ for i = 0:4. These are: $\{-8.14883, -6.11575, -4.08268, -2.04961, -0.0165362\}$.

x	Ai''(x)	Ai(x)
-8.14883	1.49286	$\frac{1.49286}{-8.14883} \approx -0.183199$
-6.11575	2.17368	$\frac{2.17368}{-6.11575} \approx -0.355423$ 0.0172736
-4.08268	0.0172736	${-4.08268} \approx -0.00423094$
-2.04961	-0.402129	$\frac{-0.402129}{-2.04961} \approx 0.196198$
-0.0165362	-0.00594159	$\frac{-0.402129}{-0.0165362} \approx 0.359308$

Thus, the final estimation will be $\sum_{i=0}^{4} \operatorname{Ai}(x_i) h = 0.0257239$.