CS & IT ENGINEERING

DIGITAL LOGIC Sequential Circuit ASYNCHRNOUS COUNTER

Lecture No.

By- CHANDAN SIR

TOPICS TO BE COVERED **01 ASYNCHRNOUS COUNTER**

02 Practice

03 Discussion

Q Besign a Mod 16 UP Ripple counter in which Q will be taken as clock?

MOD-16 UP Ripple Lauréer

Reset (clear)

Preset.

Feedback reduces the number of states.

61	
(1/2=	Q Q QA
	of old att

000-001-010-	1011-1100	,

			:	
CLOCK	Q_{c}	O _D	Q4	Clr=QcQp
0	0	0	0	0
_1	0	Ó	1	0
_2	0	1	0	0
-3	0	1	7	0
V 4	Ţ	0	0	0
V5	J10	80	200	100
6	0	0		0
7	0	1	0	0
В	9	1	1	0
9	1	δ	Ó	Ò

FEEDBACK REDUCES THE NUMBER OF STATES

ASYNCHRONOUS COUNTER

Chr=QcQBQA	
$0 T 1 \Rightarrow W00(3)$	UP Ripple
	conter

CLK		
0		
1		
2		
3	1	
4		
5		
6	70	
7		
8		

MOD-5 UP Ripple counter: 3-7

$$(1 - 9.980)$$
= 101=(5)

Q. Design a BCD Ripple Carry counter?

A Design a MOD-13 UP Ripple counter?

A Design a MOD-23 UP Ripple counter?

Saturday

Q. Which type of counter is shown below?

- A. mod 5 down counter
- c. mod 6 up counter

- B. mod 5 up counter
- D. mod 6 down counter

Consider the following counter

If counter starts at 000, what will be the count after 13 clock

