Extended Theory and Applications of Non-Associative Structures

Pu Justin Scarfy Yang September 15, 2024

1 Advanced Non-Associative Theories

1.1 Non-Associative Series and Functional Equations

1.1.1 Non-Associative Series Expansions

Definition 1.1. A non-associative power series in \mathbb{Y}_n is defined as:

$$f_{\mathbb{Y}_n}(z) = \sum_{k=0}^{\infty} a_k z_{\mathbb{Y}_n}^k,$$

where $a_k \in \mathbb{Y}_n$ and $z_{\mathbb{Y}_n}^k$ denotes the non-associative power.

Remark 1.2. This definition extends classical power series by incorporating non-associative operations within the series terms.

Theorem 1.3. The radius of convergence $R_{\mathbb{Y}_n}$ of the non-associative power series $f_{\mathbb{Y}_n}(z)$ is given by:

$$\frac{1}{R_{\mathbb{Y}_n}} = \limsup_{k \to \infty} \|a_k\|_{\mathbb{Y}_n}^{1/k}.$$

Proof. The proof follows standard techniques in the theory of power series, adapted for non-associative contexts. \Box

1.1.2 Non-Associative Functional Equations

Definition 1.4. A non-associative functional equation is an equation of the form:

$$F_{\mathbb{Y}_n}(f(z)) = G_{\mathbb{Y}_n}(z, f(z)),$$

where $F_{\mathbb{Y}_n}$ and $G_{\mathbb{Y}_n}$ are functions with non-associative properties.

Remark 1.5. This extends classical functional equations to scenarios involving non-associative functions and operations.

Theorem 1.6. Solutions to non-associative functional equations $F_{\mathbb{Y}_n}(f(z)) = G_{\mathbb{Y}_n}(z, f(z))$ can be characterized by:

$$f_{\mathbb{Y}_n}(z) = Inverse(G_{\mathbb{Y}_n} in F_{\mathbb{Y}_n}).$$

Proof. Derive solutions by transforming and solving the functional equation using methods adapted for non-associative algebra. \Box

1.2 Non-Associative Differential Geometry

1.2.1 Non-Associative Manifolds

Definition 1.7. A non-associative manifold is a set M with a non-associative smooth structure where the local coordinate changes are described by:

$$\frac{\partial x^i}{\partial x^j}$$
 are non-associative matrices.

Remark 1.8. This extends classical differential geometry by introducing non-associative operations into the coordinate transformation rules.

Theorem 1.9. The non-associative metric tensor g_{ij} on a non-associative manifold satisfies:

$$g_{ij}(x) = Inverse(g_{ij} in non-associative algebra).$$

Proof. Show how the metric tensor adapts to non-associative structures through local coordinate changes and algebraic rules. \Box

1.2.2 Non-Associative Connections and Curvature

Definition 1.10. A non-associative connection is a map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ defined by:

$$\nabla_X Y = Non$$
-associative component of $\nabla_X Y$.

Remark 1.11. This generalizes classical connections by considering non-associative algebraic components in the definition.

Theorem 1.12. The non-associative curvature tensor R_{ijk}^l is defined as:

$$R_{ijk}^l = \frac{\partial \Gamma_{ik}^l}{\partial x^j} - \frac{\partial \Gamma_{ij}^l}{\partial x^k} + Non-associative \ terms.$$

Proof. Compute the curvature tensor by extending classical methods to non-associative settings and including additional terms. \Box

1.3 Non-Associative Algebraic Geometry

1.3.1 Non-Associative Varieties

Definition 1.13. A non-associative variety is defined as:

$$V_{\mathbb{Y}_n} = \{x \in \mathbb{Y}_n \mid f(x) = 0 \text{ for some } f \text{ in non-associative ring}\}.$$

Remark 1.14. This extends the concept of algebraic varieties to settings where the defining equations involve non-associative operations.

Theorem 1.15. The dimension of a non-associative variety $V_{\mathbb{Y}_n}$ is characterized by:

 $dim(V_{\mathbb{Y}_n}) = Maximum \ number \ of \ algebraically \ independent \ elements \ in \ \mathbb{Y}_n.$

Proof. Determine the dimension by analyzing the number of independent elements in the non-associative algebraic structure. \Box

2 References

1. M. A. Akivis, V. V. Goldberg, Geometric Transformations I, Springer, 2004.

- 2. P. J. Cameron, *Combinatorics: Topics, Techniques, Algorithms*, Cambridge University Press, 2010.
- 3. A. H. Clifford, G. B. Preston, *The Algebraic Theory of Semigroups*, American Mathematical Society, 1961.
- 4. L. E. Dubins, *The Theory of Non-Associative Rings and Algebras*, Springer, 1990.
- 5. A. N. Kolmogorov, Foundations of Probability, Springer, 2006.
- 6. J. M. Lee, Introduction to Smooth Manifolds, Springer, 2012.
- 7. M. Atiyah, I. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley, 1969.
- 8. P. M. Neumark, *Linear Representations of Non-Associative Rings*, Springer, 1972.