## $\mathbf{Y21} ext{-}\mathbf{T6}-$ Керлинг

**A1<sup>0.50</sup>** Покажите, что суммарная сила, действующая на кольцо, определяется выражением:

$$\vec{F}_{tot} = -\mu mg \cdot f\left(\frac{v(t)}{\omega(t) r}\right)\hat{x},$$

где

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{a - \sin \theta}{\sqrt{1 + a^2 - 2a \sin \theta}} d\theta$$

0.10 Кольцо корректно разбито на малые кусочки и используется интегрирование.

**0.20** Доказано, что  $F_y = 0$ 

0.20

$$\vec{F}_{tot} = -\mu mg \cdot \frac{1}{2\pi} \int_{0}^{2\pi} \frac{v - \omega r \sin \theta}{\sqrt{v^2 + (\omega r)^2 - 2v \omega r \sin \theta}} d\theta$$

 $\mathbf{A2^{0.50}}$  Покажите, что суммарный момент, действующий на кольцо, равен:

$$\tau_{tot} = -\mu mgrf\left(\frac{\omega(t)r}{v(t)}\right)$$

0.10 Кольцо корректно разбито на малые кусочки и используется интегрирование.

0.40

$$\vec{\tau} = -\mu mgr \int_{0}^{2\pi} \frac{\omega r - v \sin \theta}{\sqrt{v^2 + (\omega r)^2 - 2v\omega r \sin \theta}} \frac{d\theta}{2\pi},$$

**А3<sup>0.10</sup>** Докажите, что уравнения движения имеют вид:

$$\dot{v} = -\mu g \cdot f\left(\frac{v}{\omega r}\right) \dot{\omega} r = -\mu g \cdot f\left(\frac{\omega r}{v}\right)$$

**0.05** Записан второй закон Ньютона

**0.05** Записано уравнение моментов для вращательного движения

 ${\bf B1^{0.50}}$  Докажите: a)  $f(0)=0,\ f(1)=rac{2}{\pi},\ f(\infty)=1$  b) f(a) строго возрастает при  $a\geqslant 0$ 

 $3 \times$ 

**0.10** Взяты соответствующие интегралы f(0), f(1) и  $f(\infty)$ .

0.20 Корректно доказано возрастание (например, через производную)

 ${f B2^{0.30}}$  Рассмотрим поведение параметра  $a(t)=rac{v(t)}{\omega(t)r}.$  Покажите, что происходит с a(t) (рас-

тёт/уменьшается/остаётся неизменным) в каждом из следующих случаев:

а) в некоторый момент a(t) = 1

b) в некоторый момент a(t) < 1

c) в некоторый момент a(t) > 1

0.15 Взята производная  $\dot{a}$  или другим способом доказано, что система асимптотически стремится к a

0.05 Получены верные ответы

**B3<sup>0.60</sup>** Нарисуйте качественно на графике, осями которого являются v и  $\omega r$ , траектории, отображающие разное движение кольца, то есть при заданных  $v_0$  и  $\omega_0 r$  нарисуйте, как они будут изменяться с течением времени.

Необходимо нарисовать хотя бы одну траекторию на каждый пункт предыдущего задания. Кроме того, нарисуйте траекторию, проходящую через точку  $(v_0,0)$  и еще одну, начинающуюся в точке  $(0,\omega_0 r)$ 

Подпишите оси графика и укажите направления движения системы для каждой нарисованной траектории

- **0.20** На графике присутствует прямая a = 1
- **0.20** Траектории асимптотически стремятся к a = 1
- **0.20** Указаны верные направления движения

**B4<sup>0.10</sup>** Вычислите мгновенную мощность, которая расходуется, когда есть только угловая скорость  $\omega~(v=0)$ , и отдельно, когда присутствует только линейная  $v~(\omega=0)$ .

- $\mathbf{2}$   $\times$
- **0.05** Получены верные ответы

$$P_v = -\mu mg \, v P_\omega = -\mu mg \, \omega r$$

**В5<sup>0.60</sup>** Для заданных v и  $\omega$  вычислите мгновенную мощность P, которая расходуется на трение в данный момент времени. Дайте ответ в виде интеграла с безразмерной переменной.

- **0.10** Корректно используется идея разбиения системы на малые кусочки и выполняется интегрирование мощности по ним
  - **0.50** Получен верный ответ

$$P = -\mu mg \,\omega r \int_{0}^{2\pi} \sqrt{1 + \left(\frac{v}{\omega r}\right)^2 - 2\left(\frac{v}{\omega r}\right)\sin(\theta)} \,\,\frac{d\theta}{2\pi}$$

**B6<sup>1.20</sup>** Предположим, что кольцу придали определённую начальную кинетическую энергию  $E_0$ . Каково должно быть соотношение  $a_0 = \frac{v_0}{\omega_0 r}$ , при котором кольцо будет двигаться максимальное время?

Подсказка: Постарайтесь дать ответ на предыдущий пункт при помощи только  $E_0$  и  $a_0$  (и других данных из этого пункта), исключив из уравнения v и  $\omega$ 

- **0.50** Показано, что в точке  $a_0 = 1$  достигается экстремум мощности
- 0.50 Доказано, что минимальная мощность при заданной энергии достигается при

$$P_{min}(E_0) = P(1, E_0)$$

**0.20** Указан тот факт, что при  $a_0 = 1$  в дальнейшем движении  $a = a_0$ 

 ${\bf B7^{0.50}}$  Каково максимальное время движения при начальной энергии  $E_0$ ?

0.10 В уравнении для мощности разделены переменные и проведено интегрирование

**0.40** Получен верный ответ

$$\tau = \frac{\pi}{2\mu g} \sqrt{\frac{E_0}{m}}$$

**C1<sup>0.60</sup>** Напишите заново уравнения движения из пункта А3 таким образом, чтобы они подходили под новое условие.

 $\mathbf{2}$  imes

0.30 Получены следующие уравнения движения (или аналогичные):

$$\dot{v} = -\mu g f\left(\frac{v}{\omega r}\right) \cos \alpha + g \sin \alpha \cos \varphi \dot{\omega} r = -\mu g f\left(\frac{\omega r}{v}\right) \cos \alpha$$

 $oldsymbol{0.20}$  В законе Ньютона забыт  $\cos arphi$ 

**С2<sup>2.00</sup>** При заданных начальных  $\omega_0$  и  $v_0 = 0$  нарисуйте все возможные семейства траекторий движения кольца в координатах  $(v, \omega r)$  (для каждого типа кривых нарисуйте свой график). Укажите следующие составляющие:

а) соответствующие значения параметров;

b) конечные точки (в которые траектории приходят за конечное или бесконечное время) в плоскости  $(v,\omega r)$ . Здесь достаточно написать для каждой составляющей, что она стремится к нулю/ стремится к бесконечности/ равна или стремится к какой-то положительной величине.

Подпишите оси графика и укажите направления движения системы для каждой нарисованной траектории

 $oldsymbol{0.50}$  Верно проанализированы  $\dot{v}$  и  $\dot{\omega}r$  для различных an lpha.

3 ×

0.50 Для всех случаев верно указаны конечные точки траекторий и направления движения