<u>Help</u>

sandipan_dey >

■ Calculator

Hide Notes

Lecture due Oct 5, 2021 20:30 IST

Synthesize

Product Rule From Chain Rule

u and v. But u and v themselves are actually
going to be functions of t.

Then, well, dg dt is going to be partial g, partial u.

How much is that?

How much is partial g partial u?

1 over v times du dt plus-well, next, we need to have partial g over partial v.

What's the derivative of this with respect to v?

Well, here, we need to know how to differentiate the inverse.

It's minus u over v squared times dv dt.

function of two variables

And that's actually the usual quotient rule just written

in a slightly different way.

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

You may have noticed that when we did the example on the previous page the "old way" we had to use a product rule. When we did it the "new way" we somehow avoided using a product rule. This gives a hint that, in fact, this new chain rule can be used to prove the product rule.

Justify the product rule

Let's see how it is done. For functions $oldsymbol{u}$ and $oldsymbol{v}$ that depend on $oldsymbol{t}$, we want to prove:

(Want to prove)
$$\frac{d(uv)}{dt} = v\frac{du}{dt} + u\frac{dv}{dt}$$
 (6.143)

We can give a name to the function described by the product uv, let's call it f=uv. The chain rule gives us a way of computing the derivative of f with respect to t via the dependence of f on u and v.

(Differentiate with chain rule)
$$\frac{df}{dt} = \frac{d(uv)}{dt} = f_u \frac{du}{dt} + f_v \frac{dv}{dt}$$
 (6.144)

We compute f_u and f_v from f=uv. Substituting, we get:

$$\textbf{(Simplify)} \quad \frac{d\left(uv\right)}{dt} = v\frac{du}{dt} + u\frac{dv}{dt}$$

■ Calculator

Hide Notes

(6.145)

This is indeed the familiar product rule from single-variable calculus.

Justify the quotient rule

A similar calculation can be done to justify the quotient rule. If we instead let $g=rac{u}{v}$, then we can say

$$\frac{dg}{dt} = \frac{d(u/v)}{dt} = g_u \frac{du}{dt} + g_v \frac{dv}{dt}$$
(6.146)

We compute g_u and g_v from $g=rac{u}{v}$. Therefore,

$$\frac{d(u/v)}{dt} = \frac{1}{v}\frac{du}{dt} + \frac{-u}{v^2}\frac{dv}{dt} = \frac{u'v - v'u}{v^2}$$
(6.147)

Indeed we obtain the familiar quotient rule.

Check your understanding

1/1 point (graded)

Through the following problems, you will derive the "triple product rule."

Suppose f=abc. What is df? Type da and db and dc for da and db and dc. Don't forget st for multiplication.

$$df = b*c*da+c*a*db+a*b*dc$$

Answer: $b*c*da + a*c*db + a*b*dc$

? INPUT HELP

Solution:

The partial derivatives of $m{f}$ are

$$f_a = bc ag{6.148}$$

$$f_b = ac ag{6.149}$$

$$f_c = ab \tag{6.150}$$

The answer is obtained by plugging these in to the total differential $df=f_a\,da+f_b\,db+f_c\,dc$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Triple Product Rule

1/1 point (graded)

Now suppose a,b, and c are all functions of t. Then f=abc becomes a function of t. What is $\frac{df}{dt}$?

Type $[\mathtt{a}']$, $[\mathtt{b}']$ and $[\mathtt{c}']$ for the derivatives of a,b, and c with respect to t.

? INPUT HELP

Solution:

Since $df = (bc) \; da + (ac) \; db + (ab) \; dc$, we divide by dt to obtain

$$\frac{df}{dt} = (bc)\frac{da}{dt} + (ac)\frac{db}{dt} + (ab)\frac{dc}{dt} \tag{6.151}$$

This is the "triple product rule."

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Triple Product Rule Practice

1/1 point (graded)

What is the derivative of $f(t)=(1+t^2)\left(\sin t\right)(e^t)$? Use the triple product rule you found above.

$$(1+t^2)*\sin(t)*e^t + (1+t^2)*\cos(t)*e^t + 2*t*\sin(t)*e^t$$

Answer: $(\sin(t))*(e^t)*(2^t) + (1+t^2)*(e^t)*(\cos(t)) + (1+t^2)*(\sin(t))*(e^t)$

? INPUT HELP

Solution:

The triple product rule says that for a triple product $m{f} = abc$ the derivative of $m{f}$ is:

$$\frac{df}{dt} = (bc)\frac{da}{dt} + (ac)\frac{db}{dt} + (ab)\frac{dc}{dt}$$
(6.152)

In our case we have $a=1+t^2$, $b=\sin t$ and $c=e^t$. Plugging in, we obtain:

$$f'(t) = (\sin t)(e^t)(2t) + (1+t^2)(e^t)(\cos t) + (1+t^2)(\sin t)(e^t)$$
(6.153)

Submit

Show all posts

You have used 1 of 3 attempts

1 Answers are displayed within the problem

6. Theoretical Application

Hide Discussion

by recent activity ~

Topic: Unit 5: Curves and Surfaces / 6. Theoretical Application

Add a Post

? <u>a prime?</u>
<u>i tried type a' as input, but it's not accepted.... neither do aprime, pls help...</u>

2

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>