IP und Netzwerkkonzepte

Router

Verbinden Netzwerke und Übertragungstechnologien miteinander, Paketweiterleitung bis zum Ziel

Vorteile und Nachteile von Routern über Bridges:

VORTEILE		NACHTEILE	
optimaler Pfad		Teuer	7
Netze können logisch getrennt werden	Teuer konfigurationsintensiv		
Abgrenzung von Schicht 2 (Broadcast-Shit-Storm)		teilweise lassen sich Protokolle nicht routen (Netbios)	
optimaler Pfad Netze können logisch getrennt werden Teuer konfigurationsintensiv			

Kriterium Sicherheit Pfade

Routingalgorithmen:

- RIP: Routing Information Protocol
- BGP: Border Gateway Protocol

Loop-Unterdrücku Broadcast Multi MTU Multi Medium S3-unabhängig

Brouter

• Router mit Bridging-Funktionen, Bridges die routen

Gateway

- Spannen über alle OSI Layer
- Verbinden komplette Systeme

Internet Protocol

Das IP Protokoll ist aus dem ARPANET (US DOD) entstanden. Idee: keine zentrale Steuerung Der Internetlayer ist ein verbindungsloser Networklayer, er ermöglicht Datengramme über jedes Netz zu senden. Der Transport-Layer befindet sich oberhalb des Internet-Layers. Er beinhaltet die Kommunikation zwischen der Quelle und dem Ziel.

- TCP Transmission Control Protocol
 - Verbindungsorientiert, zuverlässig, Flowcontrol, fehlerfreie Übertragung
- UDP User Datagram Protocol
 - TCP ohne Flowcontrol, unzuverlässig, time-reliable

Der höhere Layer (Application Layer) beinhaltet Protokolle wie SSH, HTTP etc.

Adressierung

Adresse	Dezimal	Binär	Berechnung
Host-Adresse	160.85.17.161	1010 0000 / 0101 0101 / 0001 0001 / 1010 0001	
Netz-Adresse	160.85.17.160	1010 0000 / 0101 0101 / 0001 0001 / 1010 0000	host AND netmask
Netzmaske	255.255.255.240	1111 1111 / 1111 1111 / 1111 1111 / 1111 0000	
Broadcast-Adresse	160.85.17.175	1010 0000 / 0101 0101 / 0001 0001 / 1010 1111	host OR inv(netmask)

SubNetBin	SubNe
0000.0000	0
1000.0000	128
1100.0000	195
1110.0000	224
1111.0000	240
1111.1000	248
1111.1100	255
1111.1110	254
1111.1111	25

Eine IP Adresse besteht somit aus 4Byte. Ebenfalls ist die IP 127.0.0.1 (/8) eine LoopBack Adresse (Bereich)

Classful-Routing

Es wird keine SUbnetzmaske benötigt. A(2^24, 1byte Netz (128), 3byte host (16'777'214)), B(2^16, 16'384, 65'534), C(2^8, 2'097'152, 254), D(Multicast, 224.0.0.0 - 239.255.255.255), E(Zukunft, 240.0.0.0 - 247.255.255.255)

Routing

Routen können mit "route -n" oder "netstat -rn" angezeigt werden. (route add -net 160.85.19.0 netmask 255.255.255.0 dev eth2) Falls kein Eintrag der Routingtabelle matcht, dann wird das Paket einfach an den "default" Host weitergeleitet.

IP Protokoll

1. Byte (Oktett)	2. Byte (Oktett)	3. Byte (Oktett)	4. Byte (Oktett)				
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31				
Version IHL	Type of Service	Total I	ength				
Identification	on Number	Flags Fragment Offset					
Time to Live	Protocol	IP Header	Checksum				
IP Source Address							
 							
IP Destination Address							
 							
Optio		/ Pad	ding				

- Die Internet Header Length (IHL) gibt die Länge des IP-Headers(min5/max15) inklusive dem optionalen Teil(max40byte) in Double Words (32 Bit) an. Die Länge bezeichnet also die Stelle wo im Datagramm die Nutzdaten beginnen.
- Quality of Service, gibt die Eigenschaft an. Dringend, hi reliablility, throughput etc.
- Total Length bezeichnet die gesamte Llange des Datagramms in Byte (inklusive Header und Nutzdaten)
- alle Fragmente des Datagramms den gleichen Identifikationswert
- Flags: reserved null, fragment allowed, last more fragments
- innerhalb des Datagramms ein Fragment: Der Fragment-Offset wird in 8-Byte-Einheiten (64 bits) angegeben, wobei das erste Fragment einen Offset von Null hat (in maximal 213 = 8192 Fragmente zerlegt)
- TTL: verbleibende Zeit in Sekunden an, die das Datagramm noch im Internet-System verbleiben darf
- \bullet Protocol: 1 ICMP / 6 TCP / 17 UDP

Fragmenting

