CONTENTS MATH5312 Notes

MATH5312 - Advanced Numerical Methods II Taught by Jiafeng Cai Notes by Aaron Wang

Contents

1	February 2nd, 2021 1.1 Class Logistics 1.1.1 Assessment Scheme 1.1.2 Reference Books 1.2 Direct Methods for Systems of Lienar Equations	3 3 3 3
2	February 4th, 2021 2.1 Efficient Gaussian Elimination	6 6 7 8
3	3.1 Pivoting LU Decomposition	10 13 13
4	4.1 LU Decomposition Continued	14 14 16 18
5	5.1 Basic Iterative Method	18 19 20 21
6	6.1 Spectral Radius Cont	25 25 26 27 27

CONTENTS MATH5312 Notes

7	February 23rd, 2021				
	7.1	Jacobi	for 2D Discrete Laplacian	29	
	7.2		for SPD Matrices	30	
	7.3		Bound of Jacobi Convergence Rate	32	
8	Febr	ruary 2	$25 { m th}, 2021$	34	
	8.1	Gauss-	-Seidel Iteration	34	
		8.1.1	Convergence of Gauss-Seidel	35	
	8.2		eration of G-S / and Jacobi (SOR)	37	
	O. .		Convergence of SOR	38	
9	Mar	ch 2nc	d, 2021	39	
	9.1		al Framework of Stationary Iterations	39	
	-	9.1.1	Matrix Splitting	39	
		9.1.2	Preconditioned Richardson Iteration	39	
		9.1.3	Projection Methods	42	
10	Mar	${ m ch}$ 4th	n, 2021	43	
	10.1	Advan	ced Iterative Methods I	43	
			Projection Methods with SPD Matrices	43	
			One-Dimensional Projection Methods	45	
11	Mar	ch 9th	n, 2021	47	
	11.1	Conver	rgence of Steepest Descent	47	
	11.2	Two-D	Dimensional Projection Method (Conjugate Gradient)	49	
12	Mar	ch 11t	th, 2021	52	
	12.1	Proper	rties of Conjugate Gradient	52	
In	Index				

1 February 2nd, 2021

1.1 Class Logistics

This course is a continuation of MATH5311. In MATH5311, we introduced how to discretize differential equations. In the course, we focus on the algebraic side of numerical analysis, introducing some more advanced solvers for these numerical methods.

1.1.1 Assessment Scheme

Biweekly Homework - 60%

Take-home Final Exam - 40%

1.1.2 Reference Books

Lecture Notes - Main content that will be covered

Youset Saad: Iterative Methods for Sparse Linear Systems - Free ebook can be found on Canvas

Golub, Van Lean: Matrix Computations

Trefethen, Bau: Numerical Linear Algebra

1.2 Direct Methods for Systems of Lienar Equations

The goal of this chapter is very simple, solve:

$$Ax = b$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

and:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

which is the unknown vector, and:

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^n$$

is the right hand side (RHS).

The solution of system of linear equations is a fundamental task in numerical analysis. If we want to solve a non-linear equation, we can do it iteratively, where each step is solving a linear system. In this chapter, we will introduce **Direct Methods**.

Definition 1.1. A **Direct Method** is a method in which, if there is no truncation error in the computer, can solve the system exactly in finite time.

One example of a direct method is **Gaussian Elimination**.

Example 1.2

Consider:

$$\begin{cases} 2x_1 + x_2 - x_3 = 1\\ 4x_1 + 5x_2 - 3x_3 = -3\\ -2x_1 + 5x_2 - 2x_3 = -8 \end{cases}$$

To perform Gaussian Elimination, we eliminate x_1 from Equations 2 and 3 by subtracting Equation 1, and then x_2 from Equation 3 by subtracting Equation 2. Doing so, we get:

$$\begin{cases} 2x_1 + x_2 - x_3 = 1\\ 3x_2 - x_3 = -5\\ -x_3 = 3 \end{cases}$$

After this, we can solve x_3 and then using its value solve x_2 and x_3 .

Typically we use matrix terminology to reformulate the methods. We do this by writing the **augmented matrix** of the above linear system:

$$\left[\begin{array}{ccc|c}
2 & 1 & -1 & -1 \\
4 & 5 & -2 & -3 \\
-2 & 5 & -3 & -8
\end{array}\right]$$

Lemma 1.3

Row Operations are equivalent to left matrix multiplications.

Example 1.4

In Example 1.2, the row operation to eliminate x_1 for Equations 2 and 3 can be represented as:

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 & | & -1 \\ 4 & 5 & -2 & | & -3 \\ -2 & 5 & -3 & | & -8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 & | & -1 \\ 0 & 3 & -1 & | & -5 \\ 0 & 6 & -3 & | & -7 \end{bmatrix}$$

As such, if A is the augmented matrix and we want to solve the system Ax = b, we have:

$$L_{n-1}\dots L_1Ax = L_{n-1}\dots L_1b$$

and until the LHS is an upper triangular matrix.

Remark 1.5 — Note that the row operations L_i are lower triangular matrix. In particular, it is a rank 1 modification of the identity matrix:

$$L_i = I - ve_i^T$$

where $v \in \mathbb{R}^n$ and $v_1 = v_2 = \ldots = v_i = 0$ and e_i is the *i*-th unit vector.

Definition 1.6. L_i are called Gauss Transformations.

In summary, Gaussian Elimination consists of the following steps:

1. Left multiply Gaussian Transformations to reduce A to an upper triangular matrix:

$$A^{(1)} = A = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \dots & a_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & \dots & a_{nn}^{(1)} \end{bmatrix} \text{ and } b^{(1)} = b = \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \\ \vdots \\ b_n^{(1)} \end{bmatrix}$$

In step 1, we have:

$$L_{1} = \begin{bmatrix} 1 \\ -\frac{a_{21}^{(1)}}{a_{11}^{(1)}} & 1 \\ \vdots & & \ddots \\ -\frac{a_{n1}^{(1)}}{a_{11}^{(1)}} & 0 & \dots & 1 \end{bmatrix} = I - \ell_{1} e_{1}^{T}, \quad \ell_{1} = \begin{bmatrix} 0 \\ \frac{a_{21}^{(1)}}{a_{11}^{(1)}} \\ \vdots \\ \frac{a_{n1}^{(1)}}{a_{11}^{(1)}} \end{bmatrix}$$

After step 1, we have:

$$L_1 A^{(1)} = A^{(2)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{bmatrix} \text{ and } L_1 b^{(1)} = b^{(2)} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ \vdots \\ b_n^{(2)} \end{bmatrix}$$

We can continue this process until the LHS is upper left triangular. The pseudocode of this first part is given in 1.

2. For part 2, we solve the resulting upper triangular linear system:

$$A^{(n)}x = b^{(n)}$$

This is quite straightforward, as we just start from the last row and solve each equation, since we are only introducing one unknown with each equation. The pseudocode of this second part is given in 2.

Remark 1.7 — Note that a naive implementation would take $O(n^3)$ memory, as three indexes are used for $a_{ij}^{(k)}$.

We can implement this more efficiently by dropping the superscript, since we do not change it. In other words, we use $a_{ij}^{(k)}$ to overwrite a_{ij} . This will take up the upper triangular part of the matrix. Since the lower triangular part of the matrix is 0, we can use write ℓ_{ik} to this memory. If we do not need b anymore, we can overwrite it as well, meaning that we can do Gaussian Elimination without requiring additional memory.

Algorithm 1 Gaussian Elimination Part 1

```
1: for k = 1 : n - 1 do
               \begin{aligned} \mathbf{for} \ i &= k+1 : n \\ \ell_{ik} &= a_{ik}^{(k)} / a_{kk}^{(k)} \end{aligned} 
 2:
 3:
 4:
 5:
               for i = k + 1 : n \text{ do}
                      for j = k + 1 : n \operatorname{do}
a_{ij}^{(k+1)} = a_{ij}^{(k+1)} - \ell_{ik} a_{kj}^{(k)}
 6:
                                                                                                                                   \triangleright \text{ Compute } A^{(k+1)} = L_k A^{(k)}
 7:
                      end for
 8:
               end for
 9:
               for i = k + 1 : n \text{ do}
b_i^{(k+1)} = b_i^{(k+1)} - \ell_{ik} b_i^{(k)}
10:
                                                                                                                                      \triangleright Compute b^{(k+1)} = L_k b^{(k)}
11:
12:
13: end for
```

Algorithm 2 Gaussian Elimination Part 2

```
1: for k = n : -1 : 1 do

2: for j = n : -1 : k + 1 do

3: y_k = y_k - u_{kj}x_j

4: end for

5: x_k = y_k/a_{kk}

6: end for
```

2 February 4th, 2021

2.1 Efficient Gaussian Elimination

Last time, we introduced a memory efficient way to perform Gaussian Elimination by reusing the inputs. However, this implementation is **not** the most time efficient. To do this, we need to consider the computer architecture. Recall that computers have a few different layers of memory:

- CPU register
- Cache
- RAM
- Disk

The lower the level, the larger the memory but communicating is slower. As such, to improve the efficiency, we should minimize the communication between the different levels of memory.

Remark 2.1 — This principle of memory management should always be considered when performing matrix multiplication.

Note that we can reformulate the previous algorithms into matrix operations. First we perform a vector scaling, then we perform a rank 1 update, and then a matrix vector

product. Since these are very basic operations, there are many very efficient implementations of these **Basic Linear Algebra Subroutines (BLAS)**. There are a few different levels of these BLAS.

BLAS1: Vector operations, e.g.

$$\beta = x^T y, y = \beta x + y, \text{ where } x, y \in \mathbb{R}^n, !\beta \in \mathbb{R}$$

BLAS2: Matrix-Vector operations

$$y = Ax + y$$
, where $A \in \mathbb{R}^{m \times n}$, x, y are vectors

BLAS3: Matrix-Matrix operations

$$C = AB + C$$
, where A, B, C are matricies

These BLAS are implemented to be optimized on the given computer architecture.

Remark 2.2 — Since BLAS3 can be constructed using BLAS2, etc. in terms of the efficiency, we have:

where efficiency is the time needed

Remark 2.3 — BLAS will come with the CPU.

AMD Core Math Library (ACML)

Intel Math Kernel Lib (MKL)

Replacing the algorithm with BLAS, we have:

Algorithm 3 Gaussian Elimination with BLAS

```
1: for k = 1 : n - 1 do
```

2:
$$A(k+1:n,k) = A(k+1:n,k)/A(k,k)$$

3:
$$A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n,k)A(k,k+1:n)$$

- 4: b(k+1:n,1) = b(k+1:n,1) b(k)A(k+1:n,k)
- 5: end for
- 6: **for** k = n : -1 : 1 **do**
- 7: b(k) = b(k) A(k, k+1:n)b(k+1:n)
- 8: b(k) = b(k)/A(k, k)
- 9: end for

2.2 Complexity of Gaussian Elimination

For this, we want to see how many scalar operations are needed. Counting the cost, we have:

$$\sum_{k=1}^{n-1} \left[(n-k) + 2(n-k)^2 + 2(n-k) \right] + \sum_{k=1}^{n} \left[2(n-k) + 1 \right]$$

$$\sum_{k=1}^{n-1} \left[(n-k) + 2(n-k)^2 + 2(n-k) \right] + \sum_{k=1}^{n} \left[2(n-k) + 1 \right]$$

$$= 3 \sum_{k=1}^{n-1} (n-k) + 2 \sum_{k=1}^{n-1} (n-k)^2 + 2 \sum_{k=1}^{n-1} k + \sum_{k=1}^{n} 1$$

$$= \frac{2}{3} n^3 + \frac{3}{2} n^2 - \frac{1}{3} n$$

$$= \frac{2}{3} n^3 + O(n^2)$$

$$= O(n^3).$$

Theorem 2.4

The computational complexity of Gaussian Elimination is $O(n^3)$.

2.3 LU Decomposition view of Gaussian Elimination

Remember we can express Gaussian Elimination as:

$$L_{n-1}\dots L_2L_1Ax = L_{n-1}\dots L_1b$$

Note that $L_{n-1} \dots L_2 L_1 A = A^{(n)}$ which is upper triangular. Let us denote this by:

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ & u_{22} & \dots & u_{2n} \\ & & \ddots & \vdots \\ & & & u_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Note that since each L_i is a Gaussian transformation which is invertable, we have:

$$A = L_1^{-1} L_2^{-1} \dots L_{n-1}^{-1} U$$

Theorem 2.5

$$L_k^{-1} = I + \ell_k e_k^T$$

Proof.

$$(I - \ell_k e_k^T)(I + \ell_k e_k^T)$$

$$= I - \ell_k e_k^T + \ell_k e_k^T - \ell_k e_k^T \ell_k e_k^T$$

$$= I.$$

Theorem 2.6

$$L_1^{-1}L_2^{-1}\dots L_{n-1}^{-1} = I + \sum_{i=1}^{n-1} \ell_i e_i^T$$

which is lower triangular.

Proof. Direct computation.

Theorem 2.7

Gaussian Elimination gives:

$$A = LU$$

where L is unit lower triangular, and U is upper triangular. This is called the **LU Decomposition**.

Remark 2.8 — Note that in the memory efficient implementation of GE, we are computing L and U and it is stored in the original matrix.

With this, we have:

$$Ax = b \iff LUx = b \iff \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Theorem 2.9

The computation cost is: $\begin{cases} \text{LU decomposition} & \frac{2}{3}n^3 + O(n^2) \\ \text{Forward Substitution} & O(n^2) \\ \text{Backward Substitution} & O(n^2) \end{cases}$

Remark 2.10 — If we use the same coefficient matrix, we only need to compute the decomposition once.

This LU decomposition view of Gaussian Elimination has a number of advantages:

- 1. If we want to solve $Ax_i = b_i$ for i = 1, ..., m, then we only need to do LU decomposition once
- 2. LU decomposition can be used for other matrix computation tasks. e.g.
 - (a) $\det(A) = \det(LU) = \det(L) \det(U) = u_{11}u_{22} \dots u_{nn}$
 - (b) $A^{-1} = U^{-1}L^{-1}$

3 February 9th, 2021

3.1 Pivoting LU Decomposition

Example 3.1

Consider Ax = b:

$$\begin{bmatrix} 2 & 1 & -1 \\ 4 & 5 & -3 \\ -2 & 5 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -8 \end{bmatrix}$$

At each step, we have:

1.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 3 & -1 \\ -1 & 6 & -3 \end{bmatrix}$$

2.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

Thus, we have:

$$L = \begin{bmatrix} 1 & & \\ 2 & 1 & \\ -1 & 2 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 2 & 1 & -1 \\ & 3 & -1 \\ & & -1 \end{bmatrix}$$

Now we solve Ly = b by forward substitution:

$$\begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -8 \end{bmatrix} \implies \begin{cases} y_1 = 1 \\ y_2 = -5 \\ y_3 = 3 \end{cases}$$

Then we solve Ux = y by back substitution:

$$\begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 \\ & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix} \implies \begin{cases} y_1 = 1/3 \\ y_2 = -8/3 \\ y_3 = -3 \end{cases}$$

In LU Decomposition, A(k, k) at step k is in the denominator, which means:

1. The procedure cannot continue if A(k, k) = 0

Example 3.2

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

2. If A(k, k) is small, then the computation becomes inaccurate.

As such, LU Decomposition is unstable unless A(k, k) is large.

Definition 3.3. We call A(k, k) at step k a pivot entry.

In order to avoid small pivots, we use "pivoting", where we interchange the row or columns of the matrix. There are many pivoting schemes, for example Row Pivoting, where at each step k, we choose the largest entry in the k column under A(k, k).

Algorithm 4 Row Pivoting

- 1: **for** k = 1 : n 1 **do**
- 2: Find the max entry in abs. value in A(k:n,k) denoted by i_k
- 3: $A(i_k,:) \iff A(k,:)$ \triangleright Swap row i_k and k
- 4: A(k+1:n,k) = A(k+1:n,k)/A(k,k)
- 5: A(k+1:n,k+1:n) = A(k+1:n,k+1:n) A(k+1:n,k)A(k,k+1:n)
- 6: end for

Row interchanging (row $i_k \iff \text{row } k$) is equivalent to Left multiplying by a permutation matrix:

$$P_k = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & \\ & & 1 & & 0 & & \\ & & & & \ddots & & \\ & & & & 1 \end{bmatrix}$$

Thus when we perform the LU decomposition, we have:

$$L_{n-1}P_{n-1}\dots L_2P_2L_1P_1A=U$$

However, this is too complicated, so we will do some simplification. It is easy to check that $P_k P_k = I$, since we are swapping the two rows again, and that $P_k^T = P_k$.

Lemma 3.4

$$P_{n-1}P_{n-2}\dots P_{k+1}L_kP_{k+1}\dots P_{n-2}P_{n-1}=I-(P_{n-1}P_{n-2}\dots P_{k+1}\ell_k)e_k^T$$

Proof. We have:

$$L_{k} = I - \ell e_{k}^{T}$$

$$P_{k+1}L_{k}P_{k+1} = P_{k+1}(I - \ell_{k}e_{k}^{T})P_{k_{1}} = I - P_{k+1}\ell_{k}e_{k}^{T}P_{k+1}$$

$$= I - (P_{k+1}\ell_{k})e_{k}^{T}$$

$$\vdots$$

If we denote $P_{n-1}P_{n-2}\dots P_{k+1}\ell_k = \tilde{\ell_k}$, we have:

$$L_{n-1}P_{n-1} \dots L_2P_2L_1P_1A$$

$$= L_{n-1}(P_{n-1}L_{n-2}P_{n-1})(P_{n-1}P_{n-2}\dots L_2P_2L_1P_1A)$$

$$= \tilde{L_{n-1}L_{n-2}}\dots \tilde{L_1}P_{n-1}P_{n-2}\dots P_1A.$$

Denoting $P_{n-1}P_{n-2}\dots P_1=P$, we have:

$$PA = \tilde{L_1}^{-1} \tilde{L_2}^{-1} \dots \tilde{L_{n-1}}^{-1} U$$

Giving us

$$PA = LU$$

Example 3.5

Using the same example as before, $A = \begin{bmatrix} 2 & 1 & -1 \\ 4 & 5 & -3 \\ -2 & 5 & -2 \end{bmatrix}$ we have:

1.

$$\begin{bmatrix} 2 & 1 & -1 \\ 4 & 5 & -3 \\ -2 & 5 & -2 \end{bmatrix} \xrightarrow{\text{row } 1 \leftrightarrow \text{row } 2} \begin{bmatrix} 4 & 5 & -3 \\ 2 & 1 & -1 \\ -2 & 5 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 5 & -3 \\ \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{15}{2} & -\frac{7}{2} \end{bmatrix}$$

2.

$$\begin{bmatrix} 4 & 5 & -3 \\ \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{15}{2} & -\frac{7}{2} \end{bmatrix} \xrightarrow{\text{row } 2 \leftrightarrow \text{row } 3} \begin{bmatrix} 4 & 5 & -3 \\ \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{15}{2} & -\frac{7}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 5 & -3 \\ -\frac{1}{2} & \frac{15}{2} & -\frac{7}{2} \\ \frac{1}{2} & -\frac{1}{5} & -\frac{1}{5} \end{bmatrix}$$

Giving us an output:

$$PA = \begin{bmatrix} 4 & 5 & -3 \\ -\frac{1}{2} & \frac{15}{2} & -\frac{7}{2} \\ \frac{1}{2} & -\frac{1}{5} & -\frac{1}{5} \end{bmatrix}$$

With this, we have:

$$L = \begin{bmatrix} 1 \\ -\frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{5} & 1 \end{bmatrix} \quad U = \begin{bmatrix} 4 & 5 & -3 \\ & \frac{15}{2} & -\frac{7}{2} \\ & & -\frac{1}{5} \end{bmatrix} \quad P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Remark 3.6 — All entries in L have an abs. value smaller than 1.

There are also other pivoting strategy, such as **full pivoting** where you swap the columns as well go get the maximum pivot in the lower submatrix. This would give us:

$$PAQ = LU$$

where Q is also a permutation matrix.

Remark 3.7 — Full pivoting not only rearranges the equation, but it also rearranges the unknowns.

Remark 3.8 — Full pivoting is more stable than row pivoting but it is computationally more expensive.

For any non-singular matrix, we can solve it using pivoting LU decomposition. However, we can consider the structure of the matrix to improve the algorithm.

3.2 LU Decomposition on SPD Matrices

Definition 3.9. $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite (SPD) if it is:

• Symmetric: $A = A^T$

• Positive Definite: $x^T A x > 0$ for all $x \in \mathbb{R}^n$ and $x \neq 0$

Example 3.10

Examples of SPD matrices include:

- Discrete Laplacian is SPD
- Normal equation of Least Squares
- Hessian of strictly convex functions

For general matrices, the LU decomposition is $\frac{2}{3}n^3 + O(n^2)$. For SPD matrices, we can reduce this to $\frac{1}{3}n^3 + O(n^2)$, meaning we can reduce the computation cost by half. In addition, no pivoting is necessary for SPD matrices.

There is a slight modification of LU for SPD matrices called the **Cholesky Decomposition**.

3.3 Cholesky Decomposition

Assume $A \in \mathbb{R}^{n \times n}$ is SPD. Then there exists a decomposition such that:

$$A = LL^T$$

where L is a lower triangular matrix. With Cholesky decomposition, we can solve the linear system:

$$Ax = b \iff LL^T x = b \iff \begin{cases} Ly = b \\ L^T x = y \end{cases}$$

Since $A = LL^T$ with:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix} \quad L = \begin{bmatrix} \ell_{11} & & & & \\ \ell_{21} & \ell_{22} & & & \\ \vdots & \vdots & \ddots & \\ \ell_{n1} & \ell_{n2} & & \ell_{nn} \end{bmatrix} \quad L^T = \begin{bmatrix} \ell_{11} & \ell_{21} & \dots & \ell_{n_1} \\ & \ell_{22} & \dots & \ell_{n_2} \\ & & \ddots & \vdots \\ & & & \ell_{nn} \end{bmatrix}$$

We have:

- $a_{11} = \ell_{11}^2 \implies \ell_{11} = \sqrt{a_{11}}$
- $a_{21} = \ell_{21}\ell_{11} \implies \ell_{21} = a_{21}/\ell_{11}$
- $a_{n1} = \ell_{n1}\ell_{11} \implies \ell_{n1} = a_{n1}/\ell_{11}$

To be continued in the next lecture.

4 February 11th, 2021

4.1 LU Decomposition Continued

Recall that:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \quad L = L = \begin{bmatrix} \ell_{11} & & & & \\ \ell_{21} & \ell_{22} & & & \\ \vdots & \vdots & \ddots & & \\ \ell_{n1} & \ell_{n2} & & \ell_{nn} \end{bmatrix} \quad L^T = \begin{bmatrix} \ell_{11} & \ell_{21} & \dots & \ell_{n_1} \\ & \ell_{22} & \dots & \ell_{n_2} \\ & & \ddots & \vdots \\ & & & \ell_{nn} \end{bmatrix}$$

Observing the first column of LL^T , we have:

- $a_{11} = \ell_{11}^2 \implies \ell_{11} = \sqrt{a_{11}}$
- $a_{21} = \ell_{21}\ell_{11} \implies \ell_{21} = a_{21}/\ell_{11}$
- $a_{n1} = \ell_{n1}\ell_{11} \implies \ell_{n1} = a_{n1}/\ell_{11}$

Remark 4.1 — Note that we only need to compare the lower triangular part of LL^T , since it is symmetric.

For the second column, note that we have:

$$a_{k2} = \ell_{k1}\ell_{21} + \ell_{k2}\ell_{22}$$

As such, we have:

- $a_{22} = \ell_{21}^2 + \ell_{22}^2 \implies \ell_{22} = (a_{22} \ell_{21}^2)^{\frac{1}{2}}$
- $\ell_{k2} = (a_{k2} \ell_{k1}\ell_{21})\ell_{22}$ for $k = 3, \dots, n$.

We can continue this process, and for the k-th column, we have:

$$a_{kk} = \ell_{k1}^2 + \ell_{k2}^2 + \ldots + \ell_{kk}^2 \implies \ell_{kk} = (a_{kk} - \sum_{i=1}^{k-1} \ell_{ki}^2)^{\frac{1}{2}}$$

and:

$$a_{ik} = \sum_{j=1}^{k} \ell_{ij} \ell_{kj} \implies \ell_{kj} = a_{ik} - (\sum_{j=1}^{k-1} \ell_{ij} \ell_{kj}) / \ell_{kk}$$

for i = k + 1, ..., n. Thus, we have Algorithm 5.

However, Algorithm 5 is not memory efficient. To create a memory efficient version, we should use the lower triangular part of L to overwrite that of A. This gives us Algorithm 6.

Remark 4.2 — The only difference between Algorithm 5 and 6 is that we change ℓ to a.

Using BLAS, we have Algorithm 7.

Algorithm 5 Cholesky Decomposition Version 1

```
1: for k = 1 : n do

2: \ell_{kk} = (a_{kk} - \sum_{i=1}^{k-1} \ell_{ki}^2)^{1/2}

3: for i = k + 1 : n do

4: \ell_{ik} = (a_{ik} - \sum_{j=1}^{k-1} \ell_{ij}\ell_{kj})/\ell_{kk}

5: end for

6: end for
```

Algorithm 6 Cholesky Decomposition Version 2 - Memory Efficient

```
1: for k = 1 : n do

2: a_{kk} = (a_{kk} - \sum_{i=1}^{k-1} a_{ki}^2)^{1/2}

3: for i = k+1 : n do

4: a_{ik} = (a_{ik} - \sum_{j=1}^{k-1} a_{ij} a_{kj})/a_{kk}

5: end for

6: end for
```

Algorithm 7 Cholesky Decomposition Version 3 - BLAS

```
1: for k = 1 : n do

2: A(k,k) = A(k,k) - \text{norm}(A(k,1:k-1),2)^2

3: A(k,k) = (A(k,k))^{1/2}

4: A(k+1:n,k) = A(k+1:n,k) - A(k+1:n,1:k-1)(A(k,1:k-1))^T

5: A(k+1:n,k) = A(k+1:n,k)/A(k,k)

6: end for
```

Theorem 4.3

Cholesky decomposition has a complexity of:

$$\frac{1}{3}n^3 + O(n^2)$$

which is only half of LU for general A. In addition, the memory required is also halved.

Example 4.4

Consider $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$. We have:

• Step 1:
$$\begin{bmatrix} \sqrt{2} \\ \frac{1}{\sqrt{2}} & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

• Step 2:
$$\begin{bmatrix} \sqrt{2} \\ \frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} \\ 0 & \sqrt{\frac{2}{3}} & 2 \end{bmatrix}$$

• Step 3:
$$\begin{bmatrix} \sqrt{2} \\ \frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} \\ 0 & 1 & \sqrt{\frac{4}{3}} \end{bmatrix}$$

This gives us:

$$L = \begin{bmatrix} \sqrt{2} \\ \frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} \\ 0 & 1 & \sqrt{\frac{4}{3}} \end{bmatrix}$$

Remark 4.5 — The SPD-ness of A guarantees that $a_{kk} - \sum_{i=1}^{k-1} \ell_{ki}^2$ is positive.

4.2 LU on Banded Matrices

Definition 4.6. A matrix is **banded** if there exists an integer p > 0 such that:

$$a_{ij} \neq 0 \implies |i-j| \leq p$$

Example 4.7

. For p = 1, the matrix is called a **tri-diagonal matrix**:

If we apply LU decomposition to a tri-diagonal matrix, we have:

• Step 1:

$$A(2,1) = A(2,1)/A(1,1)$$

$$A(2,2) = A(2,2) - A(2,1)A(1,2)$$

• Step k:

$$A(k+1,k) = A(k+1,k)/A(kk)$$

$$A(k+1,k+1) = A(k+1,k+1) - A(k+1,k)A(k,k+1)$$

This leads to Algorithm 8

Remark 4.8 — Note that the resulting matrix is also tri-diagonal.

Algorithm 8 LU Decomposition for Tri-Diagonal Matrix

- 1: **for** k = 1 : n 1 **do**
- 2: A(k+1,k) = A(k+1,k)/A(k,k)
- 3: A(k+1, k+1) = A(k+1, k+1) A(k+1, k)A(k, k+1)
- 4: end for

Theorem 4.9

The computation complexity for Algorithm 8 is $\sum_{k=1}^{n-1} 3 = 3(n-1) \sim O(n)$.

Theorem 4.10

In general, for a banded matrix with band width p, the computation cost is $O(np^2)$.

Example 4.11

The discrete Laplacian matrix in 1-D is a banded matrix with p = 1 (tri-diagonal).

Example 4.12

The discrete Laplacian in 2-D on a grid is:

$$A_1 \otimes I + I \otimes A_2 \in \mathbb{R}^{N \times N}$$
,

where $N = n^2$, $A_1, A_2 \in \mathbb{R}^{n \times n}$ are the 1-D discrete Laplacian matrix for each dimension, it is a banded matrix with p = n.

Remark 4.13 — If we applied GE to example 4.12, it would be $O(Np^2) = O(N^2)$, which is significantly lower than $O(N^3)$.

Our goal is to improve this cost to O(N).

4.3 LU on Spare Matrix

Definition 4.14. A sparse matrix is a matrix with many zero entries.

Remark 4.15 — Banded matrices with small bandwith can be considered to be sparse.

Sparse matrices arise from many numerical solutions of PDE, as differential operators are local, making many of the entries zero. Sometimes, we can exploit the structure of sparse matrix to speed up LU decomposition. However, LU does not always work well.

Example 4.16

Consider $\begin{bmatrix} 5 & 4 & 3 & 2 \\ 4 & 4 & & \\ 3 & & 3 \\ 2 & & & 2 \end{bmatrix}$. Note that this is sparse. However, when we divide the first

row, we will modify the lower sub matrix, making the final result a dense matrix. Thus it would be the same as applying LU to a general dense matrix, as the sparse structure is destroyed.

Now, we should ask, can we keep as many zeros as possible in LU? The answer is yes, by re-ordering both the equations and the unknowns, i.e. permute the matrix.

Example 4.17

If we consider the matrix in 4.16, we could permute it so we get:

$$\begin{bmatrix} 2 & & 2 \\ & 3 & & 3 \\ & & 4 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix}$$

If we perform LU on this matrix, the sparse structure is preserved.

Now we must ask, how should we re-order to allow LU to produce the minimum number of fill-in's? This is a very difficult topic to answer, and was an active research topic. To answer this, we use graph theory. This is beyond the scope of this course.

5 February 16th, 2021

5.1 Basic Iterative Method

In this chapter, we will introduce iterative methods. There will be a lot of overlap with MATH5311. For iterative methods, we make use of the fact that matrix vector products are fast for sparse matrices.

Jacobi Iteration MATH5312 Notes

Remark 5.1 — If the matrix is sparse, then the matrix vector product is on the order of non-zero entries.

Example 5.2

For the Discrete Laplacian in 2D, the matrix vector product is O(N).

We will solve Ax = b by stationary iterative methods. Given $x_k \in \mathbb{R}^n$, we want to improve the quality of x_k using:

$$x_{k+1} = Gx_k + f, \quad k \in \{0, 1, 2...\}$$

where $G \in \mathbb{R}^{n \times n}$ and $f \in \mathbb{R}^n$ are stationary matrices and vectors.

Definition 5.3. G is a stationary matrix, as it does not depend on k.

5.2 Jacobi Iteration

- $(y)_i$ denotes the *i*-th component of a vector y
- $\xi_i^{(k)}$ denotes the *i*-th component of x_k
- ξ_i denotes the *i*-th component of x (true solution)
- ξ_i denotes the *i*-th component of b

The idea of the Jacobi iteration is, given x_k , we obtain x_{k+1} by solving the *i*-th unknown from the i-th equation. More precisely, we are solving:

$$(Ax - b)_i = 0.$$

with ξ_j , $j \neq i$, fixed to be $\xi_j^{(k)}$, for i = 1, ..., n. As such, we have:

$$(Ax - b)_i = 0$$

$$\iff a_{ii}\xi_i^{(k+1)} + \sum_{j \neq i} a_{ij}\xi_j^{(k)} = \beta_i$$

$$\iff \xi_i^{(k+1)} = (\beta_i - \sum_{j \neq i} a_{ij}\xi_j^{(k)})/a_{ii}.$$

This can be expressed as Algorithm 9. In order to perform this effeciently, we reformulate

Algorithm 9 Element Wise Jacobi Iteration

- 1: **for** $k = 0, 1, 2, \dots$ **do** for i = 1, ..., n do $\xi_i^{(k+1)} = (\beta_i - \sum_{j \neq i} a_{ij} \xi_j^{(k)}) / a_{ii}$ 2:
- 3:
- end for 4:
- 5: end for

this in matrix notation to make use of BLAS. Let A = D - E - F, where:

$$A = \begin{bmatrix} d_1 & * \\ & \ddots & \\ * & & d_n \end{bmatrix} = \begin{bmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{bmatrix} - \begin{bmatrix} 0 & & 0 \\ & \ddots & \\ -* & & 0 \end{bmatrix} - \begin{bmatrix} 0 & & -* \\ & \ddots & \\ 0 & & 0 \end{bmatrix} = D - E - F$$

Thus, we have Algorithm 10, which is in stationary form.

Algorithm 10 Jacobi Iteration in Matrix Form

1: **for** $k = 0, 1, 2, \dots$ **do**

2:
$$x_{k+1} = D^{-1}(b + (E+F)x_k)$$

3: end for

Remark 5.4 — Some other equivalent forms of the Jacobi Iteration are:

$$x_{k+1} = D^{-1}(E+F)x_k + D^{-1}b$$

$$x_{k+1} = D^{-1}(D-A)x_k + D^{-1}b$$

$$x_{k+1} = (I - D^{-1}A)x_k + D^{-1}b$$

5.3 Review on Norms

5.3.1 Vector Norms

Definition 5.5. A (vector) **norm** on \mathbb{R}^n is a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ that satisfies:

- 1. $||x|| \ge 0 \quad \forall x \in \mathbb{R}^n \text{ and } ||x|| = 0 \iff x = 0.$
- 2. $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R} \text{ and } x \in \mathbb{R}^n$.
- 3. $||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$ (triangle inequality).

This defines a **metric** on \mathbb{R}^n .

Definition 5.6. A *p*-norm on \mathbb{R}^n is defined as:

$$||x||_p = \left(\sum_{i=1}^n |x_1|^p\right)^{1/p}$$

Example 5.7 (Spedial p Norm)

Here are a few common norms on \mathbb{R}^n .

- *p*-norm $(p \ge 1)$:
- Euclidean norm (p=2)

$$||x||_2 = \left(\sum_{i=1}^n |x_1|^2\right)^{1/2}$$

• 1-norm (p = 1)

$$||x||_1 = \sum_{i=1}^n |x_1|$$

• ∞ -norm $(p = \infty)$

$$||x||_{\infty} = \max_{i=1}^{n} |x_1|$$

5.3 Review on Norms MATH5312 Notes

Theorem 5.8 (Holder's Inequality)

$$|x^T y| \le ||x||_p ||y||_q$$

if $\frac{1}{p} + \frac{1}{q} = 1$, with $p, q \ge 1$.

Theorem 5.9 (Cauchy-Schwartz Inequality)

$$|\langle u, v \rangle| \le ||u|| ||v||, \quad \forall u, v \in \mathbb{R}^n$$

Example 5.10 (Weighted Norm)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Then:

$$||x||_A = (x^T A x)^{1/2}$$

is a norm, called the **weighted norm**.

From functional analysis, because \mathbb{R}^n is finite dimensional, any two norms are equivalent. More formally.

Theorem 5.11 (Norm equivalence of \mathbb{R}^n)

Given $\|\cdot\|_a$ and $\|\cdot\|_b$, $\exists C_1, C_2 > 0$ independent of x, s.t.

$$C_1 ||x||_b \le ||x||_a \le C_2 ||b|| \forall x \in \mathbb{R}^n$$

Consequently, from Theorem 5.11, the convergence of vectors in \mathbb{R}^n under any norm is the same. Thus, we can analyze the convergence under any norm.

Remark 5.12 — Theorem 5.11 does not hold for infinite dimensional space. However, for numerical analysis, we always work with finite dimensional space.

Example 5.13 (Equivalence of 1-norm and other p-norms)

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2 \quad \forall x \in \mathbb{R}^n$$

$$||x||_{\infty} \le ||x||_1 \le n||x||_{\infty} \quad \forall x \in \mathbb{R}^n$$

5.3.2 Matrix Norm

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Let $A \in \mathbb{R}^{n \times n}$ be a matrix.

5.3 Review on Norms MATH5312 Notes

Definition 5.14. The norm of A induced by the vector norm $\|\cdot\|$ is:

$$||A|| = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||$$

Remark 5.15 — The second equality in 5.14 is due to the scaling property of A and because the norm is continuous. However, this might not be the case in infinite-dimensional spaces.

We can check that ||A|| is a matrix, i.e.:

- $||A|| \ge 0 \quad \forall A \in \mathbb{R}^{n \times n} \text{ and } ||A|| = 0 \iff A = 0.$
- $\|\alpha A\| = |\alpha| \|A\| \quad \forall \alpha \in \mathbb{R} \text{ and } A \in \mathbb{R}^{n \times n}.$
- $||A + B|| \le ||A|| + ||B|| \quad \forall A, B \in \mathbb{R}^{n \times n}$ (triangle inequality).

In addition, since it is an **operator norm** that is induced, it has some consistency properties, namely

- $||AB|| \le ||A|| ||B|| \quad \forall A, B \in \mathbb{R}^{n \times n}$
- $||Ax|| \le ||A|| ||x|| \quad \forall A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$

Example 5.16 (matrix 2-norm)

$$||A||_2 = \max_{\|x\|_2 = 1} ||Ax||_2 = \left(\max_{\|x\|_{x=1}} ||Ax||_2^2\right)^{\frac{1}{2}} = \left(\max_{x^T x = 1} x^T A^T A x\right)^{\frac{1}{2}}$$
$$= (\text{maximum eivenvale of } A^T A)^{\frac{1}{2}}$$

which is the maximum singular value of A.

Remark 5.17 — The last equality in Example 5.16 can be shown by taking the eigenvalue decomposition of A.

Theorem 5.18

$$||A||_1 = \max_{1 \le j \le n} ||a_j||_1$$
, where $A = [a_1 \ a_2 \ \dots \ a_n], a_j \in \mathbb{R}^n$,

i.e. the maximum column 1-norm (column sum).

Proof. • $\forall x \in \mathbb{R}^n$ with $|||_{1=1}$, we have:

$$||Ax||_1 = ||\sum_{j=1}^n x_j a_j||_1 \le \sum_{j=1}^n |x_j| ||a_j||_1 \le \max_{1 \le j \le n} ||a_j||_1 \sum_{j=1}^n |x_j| = \max_{1 \le j \le n} ||a_j||_1$$

Taking the max over all $x : ||x||_1 = 1$, we obtain:

$$||A||_1 \le \max_{1 \le j \le n} ||a_j||_1$$

• Let $j_0 = \arg \max_{1 \le j \le n} ||a_j||_1$. Consider $x = e_{j_0}$. Then $||x||_1 = 1$ and $Ax = Ae_{j_0} = a_{j_0}$. Thus:

$$||Ax||_1 = ||a_{j_0}||_1 = \max_{1 \le j \le n} ||a_j||_1$$

Therefore:

$$||A||_1 \ge ||Ax||_1 = \max_{1 \le j \le n} ||a_j||_1$$

Remark 5.19 — This means that for the matrix 1-norm, the maximum is attained at the image of one of the standard unit vector. This is true, since the 1-ball is a convex polytope.

Theorem 5.20

$$||A||_{\infty} = \max_{1 \le i \le n} ||a^{(i)}||_{\infty}, \text{ where } A = \begin{bmatrix} (a^{(1)})^T \\ \vdots \\ (a^{(n)})^T \end{bmatrix}, a^{(i)} \in \mathbb{R}^n,$$

i.e. the maximum row 1-norm (maximum row sum).

Proof. (omitted).

Definition 5.21. The spectral radius of a matrix A is defined as:

$$\rho(A) = \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } A\}$$

Theorem 5.22

Let $A \in \mathbb{C}^{n \times n}$. Then:

- 1. $||A|| \ge \rho(A)$ for any matrix norm induced by $||\cdot||$.
- 2. For any $\epsilon > 0$, we can find a vector norm $\|\cdot\|$, s.t. the induced matrix norm satsfies:

$$||A|| \le \rho(A) + \epsilon$$

3. From (1) and (2), we have:

$$\rho(A) = \inf \|A\|$$

4. If A is diagonalizable, there exists a matrix operator norm s.t.

$$\rho(A) = ||A||$$

5. In particular, when A is symmetric, $\rho(A) = ||A||_2$.

Proof. 1. Let λ_0, x_0 be an eigenpair of A satisfying $|\lambda_0| = \rho(A)$. Assume that $||x_0|| = 1$. Then, for any vector norm $||\cdot||$, its induced operator norm satisfies:

$$||A|| \ge ||Ax_0|| = ||\lambda_0 x|| = |\lambda_0|||x_0|| = \rho(A)$$

2. We use a construction proof by finding such vector norm. Let

$$A = X \begin{bmatrix} \lambda_1 & \delta_1 & & & \\ & \lambda_2 & \delta_2 & & & \\ & & \ddots & \ddots & \\ & & & \lambda_{n-1} & \delta_{n-1} & \\ & & & & & \lambda_n \end{bmatrix}$$

be the Jordan decomposition, where: $\delta_i \in \{0, 1\}$, and λ_i are eigenvalues of A. Given $\epsilon > 0$, we define:

$$||x||_{\epsilon} = ||(XD_{\epsilon})^{-1}x||_{\infty}, \quad \text{with } D_{\epsilon} = \begin{bmatrix} 1 & & & \\ & \epsilon & & \\ & & \epsilon^{2} & & \\ & & & \ddots & \\ & & & & \epsilon^{n-1} \end{bmatrix}.$$

We can check that $\|\cdot\|_{\epsilon}$ is a norm on \mathbb{C}^n . So:

$$||A||_{\epsilon} = \max_{\|x\|_{\epsilon}=1} ||Ax||_{\rho} = \max_{\|(XD_{\epsilon})^{-1}x\|_{\infty}=1} ||(XD_{\epsilon})^{-1}Ax||_{\infty}$$

Let $y = (XD_{\epsilon})^{-1}x$, we have:

$$||A||_{\epsilon} = \max_{\|y\|_{\infty}=1} ||(XD_{\epsilon})^{-1}A(XD_{\epsilon})y||_{\infty} = ||(XD_{\epsilon})^{-1}A(XD_{\epsilon})||_{\infty}$$

Note that we have:

$$(XD_{\epsilon})^{-1}A(XD_{\epsilon}) = D_{\epsilon}^{-1}X^{-1}AXD_{\epsilon} = D_{\epsilon}\begin{bmatrix} \lambda_{1} & \delta_{1} & & & \\ & \lambda_{2} & \delta_{2} & & \\ & & \ddots & \ddots & \\ & & & \lambda_{n-1} & \delta_{n-1} \\ & & & & \lambda_{n} \end{bmatrix}D_{\epsilon}$$

$$= \begin{bmatrix} \lambda_{1} & \epsilon\delta_{1} & & & \\ & \lambda_{2} & \epsilon\delta_{2} & & \\ & & \ddots & \ddots & \\ & & & \lambda_{n-1} & \epsilon\delta_{n-1} \\ & & & & \lambda_{n} \end{bmatrix}$$

Thus, since the infinity norm is the maximum row sum, we have:

$$||A||_{\epsilon} \le \max_{1 \le i \le n} (|\lambda_i| + \epsilon) \le \rho(A) + \epsilon$$

3. By part 2, if A is diagonalizable, $\delta_i = 0$ for all i. Then $||A||_{\epsilon} = \max_i |\lambda_i| = \rho(A)$. If $A = A^T$, then $\delta_i = 0$ for all i, λ_i are real, and X is unitary. Thus:

$$A^{T}A = X^{-1} \begin{bmatrix} \lambda_{1}^{2} & & & \\ & \lambda_{2}^{2} & & \\ & & \ddots & \\ & & & a\lambda_{n}^{2} \end{bmatrix}$$
$$\rho(A) = (\rho(A^{T}A))^{\frac{1}{2}} = ||A||_{2}$$

Remark 5.23 — 1. and 2. imply

$$\rho(A) = \inf\{\|A\| : \|\cdot\| \text{ is an operator norm } \}$$

In particular

• If A diagonalizable, then minimum is attainable, meaning:

$$\rho(A) = \min\{||A|| : ||\cdot|| \text{ is an operator norm } \}$$

• If A is symmetric:

$$\rho(A) = ||A||_2 = \min\{||A|| : ||\cdot|| \text{ is an operator norm }\}$$

6 February 18th, 2021

6.1 Spectral Radius Cont.

Corollary 6.1

Let $A \in \mathbb{R}^{n \times n}$. Then:

$$\lim_{k \to \infty} A^k = 0 \iff \rho(A) < 1$$

Proof. • " \Longrightarrow " Assume $\lim_{k\to\infty} A^k = 0$. Let λ be the eigenvalue of A s.t. $\rho(A) = |\lambda|$. For any k,, then A^k is an eigenvalue of A^k . We have:

$$(\rho(A))^k = |\lambda|^k = |\lambda^k| \le \rho(A^k) \le ||A^k||$$

for any operator norm. Thus:

$$\lim_{k \to \infty} (\rho(A))^k \le \lim_{k \to \infty} ||A^k|| = 0 \implies \rho(A) < 1$$

• " \Leftarrow " Assume $\rho(A) < 1$. Choose $\epsilon = \frac{1}{2}(1 - \rho(A)) > 0$. Thus there exists $\|\cdot\|_{\epsilon}$ s.t.:

$$||A||_{\epsilon} \le \rho(A) + \epsilon = \rho(A) + \frac{1}{2}(1 - \rho(A)) = \frac{1}{2} + \frac{1}{2}\rho(A) < 1$$

Then:

$$||A^k||_{\epsilon} \le (||A||_{\epsilon})^k \to 0 \text{ as } k \to \infty \implies \lim_{kn \to \infty} ||A^k||_{\epsilon} = 0$$

Since norms are continuous functions for finite dimension, we have:

$$\|\lim_{k\to\infty} A^k\| = 0 \to \lim_{k\to\infty} A^k = 0$$

6.2 Convergence of Jacobi Iteration

Recall that the Jacobi iteration can be written in the stationary iteration form:

$$x_{k+1} = Gx_k + f$$

where $G = I - D^{-1}A$, $f = D^{-1}b$. Let x_* be the solution of Ax = b. i.e. ($Ax_* = b$). Then:

$$Dx_* - b = (D - A)x_*$$

$$Dx_* = (D - A)x_* + b$$

$$x_* = D^{-1}(D - A)x_* + D^{-1}b$$

$$x_* = Gx_* + f.$$

Taking the difference, we have:

$$(x_{k+1} - x_*) = G(x_k - x_*)$$

Now, taking the norms on both sides, we have:

$$||x_{k+1} - x_*|| = ||G(x_k - x_*)||$$

$$\leq ||G|| ||x_k - x_*||.$$

If $\rho(G) < 1$, then we can choose $\epsilon = \frac{1}{2}(1 - \rho(G))$ and construct the norm $\|\cdot\|$ (depending on G) s.t.

$$||G||_{\epsilon} \le \rho(G) + \epsilon = \frac{1}{2} + \frac{1}{2}\rho(G) < 1$$

Then:

$$||x_{k+1} - x_*||_{\epsilon} \le ||G||_{\epsilon} ||x_k - x_*||_{\epsilon} = \rho ||x_k - x_*||_{\epsilon}, \quad \forall k.$$

As a result, we have:

$$||x_k - x_*||_{\epsilon} \le \rho^k ||x_0 - x_*||_{\epsilon} \to 0 \text{ as } k \to +\infty,$$

i.e. $x_k \to x_*$.

In addition, the convergence rate is "linear", because:

$$\frac{\|x_k - x_*\|}{\|x_{k-1} - x_*\|} \le \rho < 1$$

In order to obtain a $\tilde{\epsilon}$ -precision solution, i.e.:

$$||x_k - x_*||_{\epsilon} \le \rho^k ||x_0 - x_*||_{\epsilon} < \tilde{\epsilon}$$

$$\iff \rho^k \le \frac{\tilde{\epsilon}}{||x_0 - x_*||_{\epsilon}}$$

$$\iff k \ge \frac{\log\left(\frac{||x_0 - x_*||_{\epsilon}}{\tilde{\epsilon}}\right)}{\log(1/\rho)} \sim O(1/\log \rho^{-1}).$$

Remark 6.2 — Note that ρ can be arbitrarily close to $\rho(G)$. Thus, ρ is called the **convergence factor**.

Remark 6.3 — If $\rho \approx \rho(G) = 1 - O(1/n^{\alpha})$, where $\alpha > 0$, then:

$$\log \rho^{-1} \sim O(n^{\alpha})$$

meaning we require $k \sim O(n^{\alpha} \cdot \log \tilde{\epsilon}^{-1})$. Usually $\tilde{\epsilon}^{-1}$ can be treated as a constant.

Corollary 6.4

Jacobi converges to x_* for any x_0 if and only if $\rho(G) < 1$.

6.3 Computation Cost of Jacobi Iteration

Note that the Jacobi iteration only uses matrix-vector product (and O(n) operations for calculating D^{-1}). Thus:

computational cost per step:
$$\begin{cases} O(n^2) & \text{for general } A \\ O(m+n) & \text{for sparse } A \text{ with } m \text{ non-zero entries} \end{cases}$$

Thus the total computational cost is:

$$O(m+n) \times O(n^{\alpha} \cdot \log \tilde{\epsilon}^{-1}) = O((m+n)n^{\alpha} \cdot \log \tilde{\epsilon}^{-1})$$

6.4 Jacobi Iteration for 1D Discrete Laplacian

Recall that the Laplacian equation in 1D is:

$$\begin{cases}
-u_{xx} = f & x \in (0,1) \\
u(0) = u(1) = 0
\end{cases}$$

Using central difference, we have Ax = b, where:

$$A = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{bmatrix}$$

We have $Au = \lambda u$, i.e.

$$\begin{cases}
-u_{j-1} + 2u_j - u_{j+1} = \lambda u_j & j = 1, \dots, n \\
u_0 = u_{n+1} = 0
\end{cases}$$

Recall that this is a discrete difference eq. whose solutions are given by:

$$u_i = c_1 \alpha_1^j + c_2 \alpha_2^j$$

where c_1, c_2 are constants, α_1, α_2 are roots of

$$-1 + 2\alpha - \alpha^2 = \lambda \alpha$$
.

i.e. $\alpha_1 + \alpha_2 = 2 - \lambda$ and $\alpha_1 \alpha_2 = 1$. Because $u_0 = u_{n+1} = 0$, we have:

$$\begin{cases} c_1 + c_2 = u_0 = 0 \\ c_1 \alpha_1^{n+1} + c_2 \alpha_2^{n+1} = u_{n+1} = 0 \end{cases}$$

$$\det\left(\begin{bmatrix} 1 & 1 \\ \alpha_1^{n+1} & \alpha_2^{n+1} \end{bmatrix}\right) = 0 \iff \alpha_1^{n+1} = \alpha_2^{n+1}$$

$$\iff \left(\frac{\alpha_1}{\alpha_2}\right)^{n+1} = 1$$

$$\iff \frac{\alpha_1}{\alpha_2} = e^{i \cdot \frac{2\pi}{n+1} \cdot k}, \ k = 0, 1, \dots, n.$$

Since, $\alpha_1 \alpha_2 = 1$, we have:

$$\implies 1 = \alpha_2^2 \frac{\alpha_1}{\alpha_2} = \alpha_2^2 e^{i\frac{2\pi}{n+1}k}$$

$$\implies \begin{cases} \alpha_2 = e^{-i\frac{\pi}{n+1}k} \\ \alpha_1 = e^{i\frac{\pi}{n+1}k} \end{cases}, k = 0, 1, ..., n.$$

Thus:

$$\alpha_1 + \alpha_2 = 2 - \lambda \implies \lambda = 2 - (\alpha_1 + \alpha_2) = 2 - 2\operatorname{Re}(e^{i\frac{\pi}{n+1}k}) = 2(1 - \cos\left(\frac{\pi}{n+1}k\right))$$

However, there are n+1 values of k, but there are only n eigenvalues of A. When k=0, $\alpha_1=\alpha_2=1$. However, in this case, we have:

$$u_j = c_1 \alpha_1^j + c_2 \alpha_2^j \implies c_1 + c_2 = 0$$

which is a contradiction since $c_1 + c_2 = 0 \implies u = 0$. Thus when k = 1, 2, ..., n, we can find the corresponding u (left as homework).

Thus, the eigenvalues of A are:

$$\lambda_k = 2(1 - \cos\left(\frac{\pi}{n+1}k\right)), \quad k = 1, 2, \dots, n$$

Consequently:

$$\rho(G) = \max_{k=1,2,\dots,n} |1 - \frac{1}{2}\lambda_k| = \max_{k=1,2,\dots,n} |\cos\left(\frac{\pi}{n+1}k\right)| = \cos\left(\frac{\pi}{n+1}k\right) < 1$$

Thus the Jacobi converges, and:

$$||x_k - x_*||_2 \le ||G||_g ||x_{k-1} - x_*||_2 = \rho(G) ||x_{k-1} - x_*||_2$$

Thus,

$$\rho = \rho(G) = \cos\frac{\pi}{n+1} = 1 - 2\sin^2\frac{\pi}{2(n+1)} = 1 - O(\frac{1}{n^2})$$

This gives us $\alpha = 2$.

As such, the number of iteration for $||x_k - x_*||_2 \le \tilde{\epsilon}$ is:

$$k \sim O(n^2 \cdot \log \tilde{\epsilon}^{-1})$$

Since we only need matrix product, we only need O(n) FLOPs per iteration, meaning that the total FLOPs needed is:

$$O(n^3 \cdot \log \tilde{\epsilon}^{-1})$$

As a comparison, Gaussian Elimination needs O(n). Thus, the Jacobi iteration (in this version), is not efficient.

7 February 23rd, 2021

7.1 Jacobi for 2D Discrete Laplacian

For the 2D Laplacian, we have:

$$\begin{cases} -u_{xx} - u_{yy} = f & (x, u) \in \Omega = (0, 1)^2 \\ u(x, y) = 0 & \text{on } \partial\Omega \end{cases}$$

By central difference:

$$A_2 x = b, x \in \mathbb{R}^N \quad A_2 \in \mathbb{R}^{N \times N}$$

with $N = n^2$ and:

$$A_2 = A \otimes I + I \otimes A$$

, where A is the 1D discrete Laplacian.

Definition 7.1 (Kronecker Product (Tensor Product)).

$$B \otimes C = \begin{bmatrix} b_{11}C & b_{12}C & \dots & b_{1q}C \\ \vdots & & & \vdots \\ b_{p1}C & b_{p2}C & \dots & b_{pq}C \end{bmatrix}$$

Theorem 7.2

$$(A \otimes B)(C \otimes D) = (AC) \otimes (CD)$$

Lemma 7.3

The eigenvalues of A_2 are $\lambda_i + \lambda_j$, where λ_i, λ_j are eigenvalues of A and $1 \leq i, j \leq n$.

Proof. Let (λ_i, u_i) be eigenpairs of A. Then:

$$A_2(u_i \otimes u_j) = (A \otimes I)(u_i \otimes u_j) + (I \otimes A)(u_i \otimes u_j)$$

$$A_{2}(u_{i} \otimes u_{j}) = (A \otimes I)(u_{i} \otimes u_{j}) + (I \otimes A)(u_{i} \otimes u_{j})$$

$$= Au_{i} \otimes u_{j} + u_{j} \otimes Au_{j}$$

$$= \lambda_{i}u_{i} \otimes u_{j} + u_{i} \otimes (\lambda_{j}u_{j})$$

$$= (\lambda_{i} + \lambda_{j})(u_{i} \otimes u_{j}).$$

Thus:

$$G_2 = I - D_2^{-1} A_2$$
$$= I - \frac{1}{4} A_2.$$

Meaning that the eigenvalues of G_2 are:

$$1 - \frac{1}{2}(\lambda_i + \lambda_j) = 1 - \frac{1}{4} \left(4 - 2\cos\frac{i\pi}{n+1} - 2\cos\frac{j\pi}{n+1} \right)$$
$$= \frac{1}{2} \left(\cos\frac{i\pi}{n+1} + \cos\frac{j\pi}{n+1} \right).$$

Thus:

$$\rho(G_2) = \max_{1 \le i, j \le n} \left| \frac{1}{2} \left(\cos \frac{i\pi}{n+1} + \cos \frac{j\pi}{n+1} \right) \right| = \cos \frac{\pi}{n+1} < 1$$

Because G_2 is symmetric, $||G_2||_2 = \rho(G_2)$:

$$||x_k - x_*||_2 \le \rho(G_2) \cdot ||x_{k-1} - x_*||_2$$

Similar to before, we have:

$$1 - O\left(\frac{1}{n^2}\right) = 1 - O\left(\frac{1}{N}\right)$$

This gives us $\alpha = 1$, meaning that:

- number of iterations needed: $O(N \log \tilde{\epsilon}^{-1})$
- number of FLOPs needed per iterations: O(N), which is the number of non-zero entries

Thus the total computation cost is $O(N^2 \cdot \log \tilde{\epsilon}^{-1})$. This is the same order as Gaussian Elimination, since $\tilde{\epsilon}$ is usually a constant.

Remark 7.4 — More examples of Jacobi Iteration include the strictly/irreducibly diagonally dominant matrix, which have been covered in MAT5311.

7.2 Jacobi for SPD Matrices

Theorem 7.5

Let $A \in \mathbb{R}^{n \times n}$ be SPD. Then Jacobi converges to x_* for any x_0 if and only if 2D - A is SPD too.

Proof. Recall that Jacobi converges to x_* for any x_0 if and only if $\rho(G) < 1$.

• Assume Jacobi converges, then:

$$\rho(I - D^{-1}A) < 1 \iff \rho(I - D^{-\frac{1}{w}}AD^{-\frac{1}{2}}) < 1$$

because $D^{\frac{1}{2}}(I-D^{-1}A)D^{-\frac{1}{2}}$ is similar, thus meaning they share the same eigenvalue and thus spectral radius. Let λ be an eigenvalue of $I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$. Then $|\lambda|<1$ and $1+\lambda$ is an eigenvalue of $2I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$.

Since A is symmetric, λ is real, meaning that $1 + \lambda$ is positive, thus meaning $2I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ is SPD.

Consider:

$$D^{\frac{1}{2}}(2I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}})D^{\frac{1}{2}} = 2D - A$$

which is also SPD, since they are similar.

• The reverse is very similar, just in reverse. Assume 2D - A is SPD. We have:

$$2D - A$$
 is SPD $\implies 2I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ is SPD $\implies 1 + \lambda$, where λ is an eigenvalue of $I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$.

We also have:

$$A \text{ is SPD} \implies D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = I - (I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}) \text{ is SPD}$$

$$\implies 1 - \lambda > 0$$

$$\implies \lambda > -1.$$

where λ is an eigenvalue of $I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$. As such, we have:

$$-1 < \lambda < 1 \implies |\lambda| < 1 \implies \rho(I - D^{-1}A) < 1$$

Example 7.6

Consider the 1D Laplacian:

$$\begin{cases} A \text{ is SPD} \\ 2D - A = 4I - A \text{ is SPD} \end{cases} \implies \text{Jacobi converges}$$

7.3 Lower Bound of Jacobi Convergence Rate

We have:

$$\frac{\|x_k - x_*\|}{\|x_{k-1} - x_*\|} \le \rho(G) + \epsilon$$

for an arbitrarily small ϵ , or $\epsilon = 0$ if G is symmetric. This is a worse-case, i.e. an upper bound. However, this factor is asymptotically optimal, meaning:

$$\lim_{k \to \infty} \frac{\|x_k - x_*\|}{\|x_{k-1} - x_*\|} \ge \rho(G)$$

As such, convergence factor ρ is **tight**.

Let us demonstrate this when G is symmetric first.

Remark 7.7 — For nonsymmetric matrices, this is also true, we will prove later.

 $|\lambda_1| > |\lambda_2|$ where λ_1, λ_2 are the largest and 2nd largest eigenvalue of G in absolute value.

Let
$$G = U \begin{bmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{bmatrix} U^T$$
 be the eigenvalue decomposition of G , where $U = \begin{bmatrix} u_1 & u_2 & \dots & u_2 \end{bmatrix}$ is unitary.

Let $x_k - x_* = z_k$. Then:

$$z_k = G^k z_0 = \left(U \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} U^T \right) z_0 = U \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} U^T z_0.$$

Denote
$$U^T z_0 = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
. Thus we have:

$$||z_k||_2 = ||\begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}||$$

$$= \left(\sum_{i=1}^n \lambda_i^{2k} \alpha_i^2\right)^{1/2}$$

$$= |\lambda_1|^k \left(\sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^{2k} \alpha_i^2\right)^{1/2}.$$

Thus, we have:

•
$$\lim_{k\to\infty} \frac{\|z_k\|_2}{\|z_{k-1}\|_2} = \rho(G)$$

Proof.

$$\lim_{k \to \infty} \frac{\|z_k\|_2}{\|z_{k-1}\|_2} = |\lambda_1| \lim_{k \to \infty} \frac{\left(\sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^{2k} \alpha_i^2\right)^{1/2}}{\left(\sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^{2(k-1)} \alpha_i^2\right)^{1/2}}$$

$$= |\lambda_1| \lim_{k \to \infty} \frac{\alpha_1^2 + \left(\frac{\lambda_2}{\lambda_1}\right)^{2k} \alpha_2^2 + \dots}{\alpha_1^2 + \left(\frac{\lambda_2}{\lambda_1}\right)^{2(k-1)} \alpha_2^2 + \dots}$$

$$= |\lambda_1|$$

$$= |\lambda_1|$$

$$= \rho(G).$$

• $|\langle z_k, u_j \rangle| = |\lambda_j^k \alpha_j| = |\lambda_j|^k |\langle z_0, u_j \rangle|$, meaning that the convergence speed of error projected onto u_j is $|\lambda_j|$.

Remark 7.8 — This means that different error components have different convergence speed.

• The error converges to the same direction as u_1 .

Proof.

$$\lim_{k \to \infty} \frac{|\langle z_k, u_j \rangle|}{\|z_k\|_2} = \lim_{k \to \infty} \frac{|\lambda_j|^k |\langle z_0, u_j \rangle|}{|\lambda_1|^k \left(\sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^{2k} \alpha_i^2\right)^{1/2}}$$

$$= \lim_{k \to \infty} \frac{|\lambda_j|^k}{|\lambda_1|^k} \cdot \frac{|\alpha_1|}{|\alpha_1|}$$

$$= \lim_{k \to \infty} \left|\frac{\lambda_j}{\lambda_1}\right|$$

$$= \begin{cases} 1 & j = 1\\ 0 & j \neq 0 \end{cases}.$$

Example 7.9

Let's consider the 1D discrete Laplacian:

Recall that the eigenvalues of A are :

$$\lambda_j(A) = 2\left(1 - \cos\frac{j\pi}{n+1}\right), \quad j = 1, 2\dots, n$$

meaning that the eigenvalues of G aer:

$$\lambda_j(G) = 1 - \frac{1}{2}\lambda_j(A) = \cos\frac{j\pi}{n+1}, \quad j = 1, 2..., n$$

Let u_i be the eigenvectors of A (and of G, since it is a shift of A). Let the error be

$$z_k = x_k - x_* = \sum_{j=1}^n \alpha_j^{(k)} u_j$$

Then the convergence speed of $\alpha_j^{(k)}$ is $\lambda_j(G)$. As such, we have:

- If j is close to 1 or n, then $|\lambda_j(G)|$ is close to 1, meaning it has a slower convergence.
- If j is close $\frac{n}{2}$, then $|\lambda_j(G)|$ is close to 0, meaning it has a faster convergence.

Remark 7.10 — To improve Jacobi, in the Multigrid, we use different grids. The main motivation is that the convergence speed of different components depends on the eigenvalues. For components that are difficult to decrease, we project them onto a coarse grid to reduce the error.

8 February 25th, 2021

8.1 Gauss-Seidel Iteration

Recall that in Jacobi, $\xi_i^{(k+1)}$ are updated parallely in Algorithm 9.

Gauss-Seidel is just modifying Jacobi to be updated "successively". When we modify $\xi_i^{(k+1)}$ we can use $\xi_1^{(k+1)}, \ldots \xi_{i-1}^{(k+1)}$. This gives us Algorithm 11.

In the matrix reformulation, recalling that A = D - E - F, where E is lower triangular and F is upper triangular, we have:

Algorithm 11 Gauss-Seidel Iteration

1: for $k=0,1,2,\ldots$ do 2: for $i=1,\ldots,n$ do 3: $\xi_i^{(k+1)}=(\beta_i-\sum_{j>i}a_{ij}\xi_j^{(k)}-\sum_{j< i}a_{ij}\xi_j^{(k+1)})/a_{ii}$ 4: end for 5: end for

$$x_{k+1} = D^{-1}(b + Fx_k + Ex_{k+1})$$

$$\iff (D - E)x_{k+1} = b + Fx_k$$

$$\iff x_{k+1} = (D - E)^{-1}Fx_k + (D - E)^{-1}b$$

$$\iff x_{k+1} = \underbrace{(I - (D - E)^{-1}A)}_{G}x_x + \underbrace{(D - E)^{-1}}_{f}b.$$

which is in the stationary iteration form.

Remark 8.1 — In the algorithm above, we are updating $\xi_i^{(k+1)}$ in regular numerical order (from 1 to n). However, we can use other ordering, such as going from n to 1 in reverse order. Gauss-Seidel is sensitive to the ordering of updating of unknowns.

8.1.1 Convergence of Gauss-Seidel

Since Gauss-Seidel is a stationary iteration, we can use the same framework as the Jacobi iteration, with:

$$(x_k - x_*) = G^k(x_0 - x_*)$$

Theorem 8.2

Gauss-Seidel converges to x_* for any x_0 if and only if $\rho(G) < 1$.

The convergence speed is ||G||, as we have:

$$||x_{k+1} - x_*|| \le ||G|| ||x_k - x_*||$$

In particular, we have:

$$||G|| = \begin{cases} \rho(G) & \text{if } G \text{ is symmetric and } ||\cdot|| = ||\cdot||_2 \\ \rho(G) + \epsilon & \text{otherwise} \end{cases}$$

with ϵ arbitrarily small.

Theorem 8.3

Let $A \in \mathbb{R}^{n \times n}$ be SPD. Then $\rho(G) < 1$.

Proof. Recall $G = I - (D - E)^{-1}A$. Let (λ, u) be an eigenpair of G (note that λ, u may be complex). We have:

$$Gu = \lambda u$$

$$(I - (D - E)^{-1}Au) = \lambda u$$

$$(D - E)^{-1}Fu = \lambda u$$

$$Fu = \lambda(D - E)u.$$

Since A is symmetric, we have:

$$A = A^T \implies F = E^T$$
.

Thus, we have:

$$\lambda (D - E)u = E^T u$$
$$\lambda u^* (D - E)u = u^* E^T u.$$

by left-multiplying both side by $u^* = \overline{u}^T$

Let us set $u^*Eu = \alpha + i\beta \in \mathbb{C}$ and $u^*Du = \delta \in \mathbb{R}$, since D is real and symmetric. Then, we have:

$$u^*E^Tu = (u^*E^Tu)^T = u^TE(u^*)^T = \overline{u^*}\overline{E}\overline{u} = \overline{u^*Eu} = \alpha - i\beta$$

Since A is SPD, D is also SPD, giving us $u^*Du > 0$.

Thus

$$\lambda(\delta - (\alpha + i\beta)) = \alpha - i\beta \implies \lambda = \frac{\alpha - i\beta}{(\delta - \alpha) - i\beta}$$

Giving us:

$$|\lambda|^2 = \frac{(\alpha^2 + \beta^2)}{(\delta - \alpha)^2 + \beta^2}$$

Because:

$$(\delta - \alpha)^2 + \beta^2 = \delta^2 + \alpha^2 + \beta^2 - 2\alpha\delta = (\alpha^2 + \beta^2) + \underbrace{\delta}_{\alpha}(\delta - 2\alpha)$$

we need to check the sign of $\delta - 2\alpha$.

Since A is SPD, $u^*Au>0 \implies u^*(D-E-E^T)u=\delta-(\alpha+i\beta)-(\alpha-i\beta)=\delta-2\alpha>0$. As such:

$$(\delta - \alpha)^2 + \beta^2 > \alpha^2 + \beta^2 \implies |\lambda|^2 < 1$$

Remark 8.4 — This is more general than Jacobi, which is convergent if and only if 2D - A is SPD.

Example 8.5

Recall that the 1D discrete Laplacian is SPD, meaning that Gauss-Seidel converges. Similarly for the 2D case.

Example 8.6

Gauss-Seidel converges for irriducible diagonally dominant matrices. This is used for laplacian on irregular domains.

8.2 Acceleration of G-S / and Jacobi (SOR)

Here we try to accelerate Gauss-Seidel and Jacobi by considering momentum acceleration. We can consider the iteration of x_k to x_{k+1} as a movement by the Gauss-Seidel iteration. The idea of SOR is to consider the momentum of the movement until some stage.

For Gauss-Seidel, the components are:

$$\bullet$$
 $x_k: \xi_i^{(k)}$

•
$$x_{k+1}: \xi_i^{(k+1)} = (\beta_i - \sum_{j>i} a_{ij} \xi_j^{(k)} - \sum_{j$$

To consider the momentum, we would have:

$$\begin{aligned} \xi_i^{(k+1)} &= \xi_i^{(k)} + \omega(\xi_i^{(k+1)} - \xi_i^{(k)}) \\ &= \xi_i^{(k)} + \omega \left((\beta_i - \sum_{j>i} a_{ij} \xi_j^{(k)} - \sum_{j < i} a_{ij} \xi_j^{(k+1)}) / a_{ii} - \xi_i^{(k)} \right). \end{aligned}$$

for some $\omega > 1$, giving us the Algorithm 12.

Algorithm 12 SOR Iteration

- 1: **for** $k = 0, 1, 2, \dots$ **do**
- 2: **for** i = 1, ..., n **do**

3:
$$\xi_i^{(k+1)} = \xi_i^{(k)} + \omega \left[(\beta_i - \sum_{j>i} a_{ij} \xi_j^{(k)} - \sum_{j$$

- 4: end for
- 5: end for

In the matrix reformulation, we have:

$$x_{k+1} = x_k + \omega \left[D^{-1}(b + Fx_k + Ex_{k+1}) - x_k \right]$$

Expressing this in its stationary form, we have:

$$x_{k+1} = \underbrace{(D - \omega E)^{-1} ((1 - \omega)D + \omega F)}_{G_{\omega}} x_k + \underbrace{\omega (D - \omega E)^{-1}}_{f_{\omega}} b$$

Now the question is finding a suitable ω .

8.2.1 Convergence of SOR

Theorem 8.7

If $\omega \notin (0,2)$, then $\rho(G_{\omega}) > 1$.

Proof. We have:

$$\det(G_{\omega}) = \det((D - \omega E)^{-1}) \cdot \det((1 - \omega)D + \omega F)$$

• Since $D - \omega E$ is lower triangular, $(D - \omega E)^{-1}$ is also lower triangular. Thus, $\det((D-\omega E)^{-1})$ is the product of its diagonals, which are the inverse of the diagonal of $D - \omega E$ which are $\frac{1}{a_{ij}}$. As such, we have:

$$\det((D - \omega E)^{-1}) = \prod_{i=1}^{n} a_{ii}^{-1}$$

• Since $(1 - \omega)D + \omega F$ is upper triangular, we have:

$$\det((1-\omega)D + \omega F) = \prod_{i=1}^{n} (1-\omega) \ a_{ii}$$

Thus, we have:

$$\det(G_{\omega}) = \prod_{i=1}^{n} (1 - \omega) \ a_{ii} \cdot a_{ii}^{-1} = (1 - \omega)^{n} = \prod_{i=1}^{n} \lambda_{i}$$

This gives us:

$$|1 - \omega|^n = |\lambda_1||\lambda_2|\dots|\lambda_n| \le (\rho(G_\omega))^n$$

$$\Longrightarrow |1 - \omega| \le \rho(G_\omega).$$

Corollary 8.8

In order for SOR to converge, we must have $\omega < 2$.

- If $\omega = 1$, we have Gauss Seidel
- If $\omega \in (0,1)$, we have successive under relaxation
- If $\omega \in (1,2)$ we have successive over relaxation (SOR).

Theorem 8.9

If A is SPD, then $\rho(G_{\omega}) < 1$ for all $\omega \in (0,2)$.

Proof. Similar to Gauss-Seidel.

How do we pick the optimal ω ? Roughly speaking, with the optimal ω :

• $\rho(G_{\omega_{\text{opt}}}) \sim \rho(G_1)^2$. Where G_1 is the iteration matrix in G-S.

ni maurix ni G-5.

March 2nd, 2021 MATH5312 Notes

Remark 8.10 — This means that SOR is roughly two times faster than G-S, since it is the square.

• $\rho(G_1) \sim (\rho(G_{\text{Jacobi}}))^2$.

9 March 2nd, 2021

9.1 General Framework of Stationary Iterations

9.1.1 Matrix Splitting

Given non singular matrix $A \in \mathbb{R}^{n \times n}$, we split it as:

$$A = M - N,$$

where $M, N \in \mathbb{R}^{n \times n}$. Then:

$$Ax = b \iff (M - N)x = b \iff Mx = Nx + b$$

Now, if we assume that M is easy to invert, e.g. diagonal, we can obtain:

$$x = M^{-1}Nx + M^{-1}b$$

$$\iff x = (I - M^{-1}A)x + M^{-1}b.$$

We can then construct an iteration:

$$x_{k+1} = (I - M^{-1}A)x_k + M^{-1}b$$

For different stationary iterations, we have:

Jacobi: M = A

Gauss-Seidel: M = D - E

Backward Gauss-Seidel: M = D - F

SOR: $M = \frac{1}{\omega}(D - \omega E)$

For the convergence, the algorithm converges to the solution of Ax = b with any x_0 if and only if $\rho(I - M^{-1}A) < 1$.

9.1.2 Preconditioned Richardson Iteration

Assume A is SPD. Solve Ax = b is the same as solving the optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x), \quad f(x) = \frac{1}{2} x^T A x - x^T b$$

This is because:

$$\nabla f(x) = Ax - b \implies \nabla^2 f(x) = A \implies f \text{ is convex}$$

Remark 9.1 — Since A is SPD, f(x) is strongly convex.

Since this is a convex optimization problem, we can apply gradient descent:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$\implies x_{k+1} = x_k - \alpha \nabla \alpha (Ax_k - b)$$

i.e.

$$x_{k+1} = (I - \alpha A)x_k + \alpha b$$

where $\alpha > 0$ is a constant. This is called the **Richardson Iteration**.

Remark 9.2 — Richardson is a special case of matrix splitting where $M = \frac{1}{\alpha}I$.

For the convergence, we have:

$$G = I - \alpha A$$
.

Let $\Lambda(A) = \{\lambda : \lambda \text{ is an eigenvalue of A}\}$. We have:

$$\rho(G) = \max_{\lambda \in \Lambda(A)} |1 - \alpha\lambda|$$

If we let λ_{\min} and λ_{\max} be the min and max eigenvalues of A, we have:

$$\rho(G) = \max\{|1 - \alpha \lambda_{\min}|, |1 - \alpha \lambda_{\max}|\}$$

Since $|1 - \alpha \lambda|$ is a piecewise linear function. By direct calculation, we have:

$$\rho(G) < 1 \implies |1 - \alpha \lambda_{\max}| = \alpha \lambda_{\max} - 1 < 1 \implies \alpha < \frac{2}{\lambda_{\max}}$$

Thus, we have:

$$\alpha \in (0, \frac{2}{\lambda_{\max}})$$

for the iteration to converge.

In order to have optimal convergence speed, we consider:

$$\alpha_{\text{ opt}} = \arg\min_{\alpha} \rho(G) \iff \min_{\alpha>0} \max_{\lambda \in \Lambda(A)} |1 - \alpha\lambda|$$

Then it is easy to check that:

$$1 - \alpha_{\text{opt}} = \alpha_{\text{ opt}} \lambda_{\text{max}} - 1 \implies \alpha_{\text{ opt}} = \frac{2}{\lambda_{\text{min}} + \lambda_{\text{max}}}$$

and

$$\rho_{\rm \; opt}(G) = 1 - \alpha_{\rm \; opt} \lambda_{\rm min} = \frac{\lambda_{\rm max} - \lambda_{\rm min}}{\lambda_{\rm max} + \lambda_{\rm min}} = \frac{\gamma - 1}{\gamma + 1}$$

where $\gamma = \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{\|A\|_2}{1/\|A^{-1}\|_2} = \|A\|_2 \cdot \|A^{-1}\|_2$ which is the **condition number** of A as shown in Assignment 1.

Remark 9.3 — The convergence is slow if γ is big, as such we want to see if we can improve it.

Remark 9.4 — Intuitively, we would have a slow convergence if we have a flat level set. Meanwhile, if we have a round level set, the gradient descent would be fast. This is because of the ratio of λ_{\max} and λ_{\min} .

In addition, we should note that the gradient depends on the inner product in \mathbb{R}^n . As such, to improve the Richardson iteration, we change the inner product such that the level set of f(x) in the new inner product space is very round.

Definition 9.5 (Weighted Inner Product).

$$\langle x, y \rangle_P = x^T P y$$
, where P is SPD.

Under the weighted inner product space, since:

$$f(y) = f(x) + \langle y - x, Ax - b \rangle + o(||x - y||_2)$$

we have:

$$f(y) = f(x) + \langle y - x, P^{-1}(Ax - b) \rangle_P + o(\|x - y\|_P)$$

Thus, we have:

$$\nabla_P f(x) = P^{-1}(Ax - b)$$

Remark 9.6 — This is because the gradient $(\langle y-x, Ax-b \rangle)$ is a linear approximation at point x. This is the definition of the **Frechet derivative** in Hilbert spaces.

Remark 9.7 — $o(\|x-y\|_2) = o(\|x-y\|_P)$ since vector norms are equivalent in finite dimensional space.

As such, the gradient descent under weighted inner product is:

$$x_{k+1} = x_k - \alpha P^{-1}(Ax_k - b)$$

Note that α can be absorbed into P^{-1} since P is SPD, thus giving us:

$$x_{k+1} = x_k - P^{-1}(Ax_k - b) \iff x_{k+1} = (I - P^{-1}A)x_k + P^{-1}b$$

This is called the **preconditioned gradient descent**. Similarly, for the convergence, we have:

$$\rho(I - P^{-1}A) < 1$$

and the optimal convergence rate is:

$$p_{\text{opt}} = \frac{\gamma(P^{-1}A) - 1}{\gamma(P^{-1}A) + 1}$$

where $\gamma(P^{-1}A)$ is the condition number of $P^{-1}A$.

Remark 9.8 — Note that the condition number of P before and after absorbing α is the same, since we are just scaling it.

To be a good preconditioner, P has to satisfy the following:

- 1. P is SPD.
- 2. P is easy to invert so that P^{-1} is easy to compute
- 3. $\gamma(P^{-1}A)$ has to be small (or equivalent $P \approx A$).

There are a few special cases:

- P = D (diagonal part of A) Jacobi iteration
- Symmetric G-S

9.1.3 Projection Methods

Let K and L be two m-dimensional subspaces in \mathbb{R}^n . Given $x_0 \in \mathbb{R}^n$, we obtain a better solution \tilde{x} of Ax = b by:

$$\begin{cases} \text{Find} & \tilde{x} \in x_0 + K \\ \text{s.t.} & b - A\tilde{x} \perp L \end{cases} \iff \begin{cases} \tilde{x} = x_0 + \delta, & \delta \in K \\ \langle b - A(x_0 + \delta), \omega \rangle = 0, & \forall \omega \in L \end{cases}$$

A pictorial illustration is shown in Figure 1.

Figure 1: Pictorial Representation of the Projection Method

If we choose $K = L = \text{span}\{e_i\}$

- $\tilde{x} = x_0 + \delta$, $\delta \in \text{span}\{e_i\}$ (only the *i*-th component of x_0 is changed)
- $b A\tilde{x} \perp \text{span}\{e_i\}$ (the *i*-th equation has an error 0).

March 4th, 2021 MATH5312 Notes

we obtain Gauss-Seidel.

There are a few other variants of the projection methods. For example, we can choose two families of subspaces: K_i , L_i , $i = 1, ... \ell$. Given x_0 , we obtain \tilde{x} by:

$$\tilde{x} = x_0 + \delta_1 + \ldots + \delta_\ell$$
, where
$$\begin{cases} \delta_i \in K_i \\ b - A(x_0 + \delta_i) \perp L_i \end{cases}$$

If we have $K_i = L_i = \text{span}\{e_i\}$ we have the Jacobi iteration.

We can have several other choices of K and L:

Multigrid Method: $K = L = \text{span}\{e_1\} \dots \text{span}\{e_n\}$ on fine grid.

Then we do span $\{e_1\}$...span $\{e_{n/2}\}$ on the coarse grid, etc.

Domain Decomposition: We first partition Ω into overlapping spaces into Ω_1, Ω_2 , and then we set $K = L = \text{span}\{e_i, i \in \Omega_1\}$, and then $\text{span}\{e_i, i \in \Omega_2\}$.

Remark 9.9 — For both the methods mentioned above, K and L are fixed, making the iterative methods fixed.

10 March 4th, 2021

10.1 Advanced Iterative Methods I

In this chapter, we will develop non-stationary iterative methods. We will first do this using the projection method, and then improve it by incorporating preconditioning. Throughout this chapter, we assume Ax = b, where A is SPD.

10.1.1 Projection Methods with SPD Matrices

Recall that for projection methods, the problem is reformulated as: Given x_0 , generate \tilde{x} by:

$$\begin{cases} \text{Find} & \tilde{x} \in x_0 + K \\ \text{s.t.} & b - A\tilde{x} \perp L \end{cases}$$

In other words, we are finding

In matrix terms,

- Let $V = \begin{bmatrix} v_1 & v_2 & \dots & v_m \end{bmatrix} \in \mathbb{R}^{n \times m}$ be a basis of K
- Let $W = \begin{bmatrix} w_1 & w_2 & \dots & w_m \end{bmatrix} \in \mathbb{R}^{n \times m}$ be a basis of L

Then:

$$\tilde{x} \in x_0 + K \implies \tilde{x} = x_0 + Vy \text{ for some } y \in \mathbb{R}^m$$

and

$$b - A\tilde{x} \perp L \implies \langle b - A(x_0 + Vy), Wz \rangle = 0 \quad \forall z \in \mathbb{R}^m$$

$$\iff W^T(b - A(x_0 + Vy)) = 0$$

$$\iff W^TAVy = W^T(Ax_0 - b).$$

This means that each step, we only need to solve the system of linear equations: $W^TAVy = W^T(Ax_0 - b)$. Note that $W^TAV \in \mathbb{R}^{m \times m}$ which is smaller than n.

In order to preserve the structure of A (SPD-ness), we choose K = L (so that W = V). Then, we need to solve:

$$V^T A V y = V^T (A x_0 - b)$$

Remark 10.1 — Note that V^TAV is SPD because A is.

Theorem 10.2

 \tilde{x} is optimal in the sense that:

$$\tilde{x} = \operatorname{argmin}_{x \in x_0 + K} \|x - x_*\|_A^2$$

where x_* is the true solution of Ax = b and $\|\cdot\|_A$ is defined by $\|x\|_A = (x^T A x)^{1/2}$.

In other words, if we project x_* into the subspace, then the resulting \tilde{x} is the closest point.

Proof. Note that:

$$\tilde{x} = \operatorname{argmin}_{x \in x_0 + K} \|x - x_*\|_A^2$$

$$\iff \langle x_* - \tilde{x}, (x_0 + z) - \tilde{x} \rangle_A = 0 \quad \forall z \in K$$

$$\iff \langle A(x_* - \tilde{x}), (x_0 + z) - \tilde{x} \rangle = 0 \quad \forall z \in K$$

$$\iff \langle b - A\tilde{x}, (x_0 - \tilde{x}) + z \rangle = 0 \quad \forall z \in K.$$

Since \tilde{x} satisfies:

$$\begin{cases} \tilde{x} \in x_0 + K \implies x_0 - \tilde{x} \in K \\ \langle b - A\tilde{x}, z \rangle = 0 \quad \forall z \in K \end{cases}$$

$$\implies \langle b - A\tilde{x}, (x_0 - \tilde{x}) + z \rangle = 0 \quad \forall z \in K$$

If we let $P_K^{(A)}$ denote the projection onto K with $\|\cdot\|_A$, projection methods can be expressed as:

$$x_{k+1} = P_{x_k+K}^{(A)}(x_*), \quad k = 0, 1, 2, \dots$$

Note that this means that error is non-increasing under A-norm, as:

$$||x_{k+1} - x_*||_A \le ||x_K - x_*||_A$$

However, this does not guarantee that the error converges to zero.

10.1.2 One-Dimensional Projection Methods

Now the question is how to choose K? In Gauss-Seidel, we choose the simplest one, i.e. e_i .

Given x_k , we choose K s.t. $\dim(K) = 1$, i.e.:

$$K = \operatorname{span}\{d_k\}, \text{ where } d_k \in \mathbb{R}^n.$$

Remark 10.3 — d_k can be thought up as the direction.

Now we might ask what is the best d_k ? We have:

$$x_{k+1} = x_k + \alpha_k d_k$$
 for some $\alpha_k \in \mathbb{R}$

Assume we have fixed $\alpha_k \geq 0$ and $||d_k||_A = \beta$. We want $||x_{k+1} - x_*||_A^2$ minimized. This gives us:

$$||x_{k+1} - x_*||_A^2 = ||(x_k + \alpha_k d_k) - x_*||_A^2$$

= $||x_k - x_*||_A^2 + \alpha_k^2 ||d_k||_A^2 + 2\alpha_k \langle d_k, x_k - x_* \rangle_A$.

Note that $||x_k - x_*||_A^2$ and $\alpha_k^2 ||d_k||_A^2$ are constants, meaning that in order to minimize the error, we want:

$$\min_{d_k \in \mathbb{R}^n} \langle d_k, x_k - x_* \rangle_A$$

Note that the solution to this is:

$$d_k = -C(x_k - x_*)$$

where $C = \frac{\beta}{\|x_k - x_*\|_A} > 0$.

Remark 10.4 — The optimal d_k is in the opposite direction of $x_k - x_*$.

Finally, we choose:

$$K = \operatorname{span}\{d_k\} = \operatorname{span}\{x_k - x_*\}$$

However, we need to know x_* , which is not possible to know (since that is our goal). Thus this method is non-practical.

Remark 10.5 — This is optimal only if we fixed $||d_k||_A$.

Now let's consider fixing $\alpha_k \gtrsim 0$ and $||d_k||_2 = \beta$.

Remark 10.6 — $\alpha_k \gtrsim 0$ means that it is greater but approximately zero.

Again, we minimize $||x_{k+1} - x_*||_2^2$. Now we have:

$$||x_{k+1} - x_*||_A^2 = ||(x_k + \alpha_k d_k) - x_*||_A^2$$

= $||x_k - x_*||_A^2 + \alpha_k^2 ||d_k||_A^2 + 2\alpha_k \langle d_k, x_k - x_* \rangle_A \approx 2\alpha_k \langle d_k, x_k - x_* \rangle_A \quad \text{(since } \alpha_k \approx 0\text{)}.$

Since α_k is a constant, we have:

$$\min_{\|d_k\|_2 = \beta} \langle d_k, x_k - x_* \rangle_A$$

$$\iff \min_{\|d_k\|_2 = \beta} \langle d_k, Ax_k - b \rangle.$$

Remark 10.7 — Note that the 2-norm ball is an ellipsoid in \mathbb{R}^n with A-norm, thus, we change it to use the standard inner product. After doing this, the optimal d_k is in the opposite direction of $Ax_k - b$.

The solution to this equation is:

$$d_k = -C(Ax_k - b)$$

where $c = \frac{\beta}{\|Ax_k - b\|_2} > 0$. Thus, the optimal choice of K is:

$$K = \operatorname{span}\{d_k\} = \operatorname{span}\{r_k\}, \text{ where } r_k = b - Ax_k$$

Now we have found the optimal K, but the next step is to find the optimal α_k .

Figure 2: Pictorial Version of K

In other words:

$$\min_{\alpha} \|(x_k + \alpha r_k) - x_*\|_A^2$$

$$\iff \min_{\alpha} \|(x_k - x_*)\|_A^2 + \alpha^2 \|r_k\|_A^2 + 2\alpha \langle r_k, x_k - x_* \rangle_A.$$

Takign derivative w.r.t. α and setting it to 0, we have:

$$2\alpha \|r_k\|_A^2 + 2\langle r_k, x_k - x_* \rangle_A = 0 \iff \alpha = -\frac{\langle r_k, x_k - x_* \rangle_A}{\|r_k\|_A^2} = -\frac{\langle r_k, Ax_k - b \rangle}{\|r_k\|_A^2} = \frac{\|r_k\|_2^2}{\|r_k\|_A^2}.$$

Thus the optimal 1D projection method is given in Algorithm 14.

March 9th, 2021 MATH5312 Notes

Algorithm 13 Optimal 1D Projection Method

1: **for** $k = 0, 1, 2, \dots$ **do**

 $r_k = b - Ax_k$

 $\alpha_k = \|r_k\|_2^2 / \|r_k\|_A^2 = \frac{\langle r_k, r_k \rangle}{\langle Ar_k, r_k \rangle}$

 $x_{k+1} = x_k + \alpha_k x_k$

5: end for

Remark 10.8 — Note that for each iteration, we use 2 matrix-vector products and O(n) operations.

This can be improved to 1 matrix-vector product. If we have denote $p_k = Ar_k$, then:

$$r_{k+1} = b - Ax_{k+1}$$

$$= b - A(x_k + \alpha_k r_l)$$

$$= b - Ax_k - \alpha_k Ar_k$$

$$= r_k - \alpha_k p_k.$$

This gives us Algorithm ??. Note that this is the algorithm Gradient descent for:

Algorithm 14 Optimal 1D Projection Method Improved

1: $r_0 = b - Ax_0$

2: **for** $k = 0, 1, 2, \dots$ **do**

 $\begin{array}{l} p_k = A r_k \\ \alpha_k = \frac{\langle r_k, r_k \rangle}{\langle p_k, r_k \rangle} \\ x_{k+1} = x_k + \alpha_k x_k \end{array}$

 $r_{k+1} = r_k - \alpha_k p_k$

7: end for

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x - x^T b$$

with the exact line search, i.e.:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

where $\alpha_k = \arg\min_{\alpha \in \mathbb{R}} f(x_k - \alpha \nabla f(x_k))$. Thus, the algorithm is called: steepest descent.

March 9th, 2021 11

Convergence of Steepest Descent 11.1

Theorem 11.1

Let $A \in \mathbb{R}^{n \times n}$ be SPD. Then $\{x_k\}$ generated by steepest descent satisfies:

$$||x_{k+1} - x_*||_A \le \frac{\gamma - 1}{\gamma + 1} ||x_k - x_*||_A$$

where: $\gamma = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$ is the condition number of A.

Proof. Due to the optimality of x_{k+1} :

$$\begin{aligned} \|x_{k+1} - x_k\|_A &= \min_{x \in x_k + \operatorname{span}\{r_k\}} \|x - x_*\|_A \\ &= \min_{\beta \in \mathbb{R}} \|(x_k - \beta r_k) - x_*\|_A \\ &= \min_{\beta \in \mathbb{R}} \|(x_k - x_*) + \beta A(x_k - x_*)\|_A \\ &= \min_{p \in \mathbb{P}_1, p(0) = 1} \|p(A) \cdot (x_k - x_*)\|_A \qquad \leq \left(\min_{p \in \mathbb{P}_1, p(0) = 1} \|p(A)\|_A\right) \|x_k - x_*\|_A. \end{aligned}$$

Where \mathbb{P}_1 is the set of all polynomial of degree 1. Note that minimizing over β is minimizing over \mathbb{P}_1 where p(0) = 1, since we can take $\{1 + \beta t : \beta \in \mathbb{R}\}$.

Lemma 11.2

Let $B \in \mathbb{R}^{n \times n}$. Then:

$$||B||_A = ||A^{\frac{1}{2}}BA^{-\frac{1}{2}}||_2$$

where $A^{\frac{1}{2}}$ is the square root of A (using eigenvalue decomposition).

Proof.

$$||B||_A^2 = \max_{x \in \mathbb{R}^n} \frac{\langle ABx, Bx \rangle}{\langle Ax, x \rangle} = \max_{y \in \mathbb{R}^n} \frac{\langle A^{\frac{1}{2}}BA^{-\frac{1}{2}}y, A^{\frac{1}{2}}BA^{\frac{1}{2}}y \rangle}{\langle y, y \rangle} = ||A^{\frac{1}{2}}BA^{-\frac{1}{2}}||_2^2$$

where $y = A^{\frac{1}{2}}y \iff x = A^{-\frac{1}{2}}y$

Then

$$|p(A)||_A = ||A^{\frac{1}{2}}p(A)A^{-\frac{1}{2}}||_2 = ||p(A)||_2 = \max_{i=1,\dots,i} |p(\lambda_i)|_i$$

where λ_i are eigenvalues of A. Therefore:

$$||x_{k+1} - x_*||_A \le \left(\min_{p \in \mathbb{P}_1, p(0) = 1} ||p(A)||_A\right) ||x_k - x_*||_A$$

$$\le \left(\min_{p \in \mathbb{P}_1, p(0) = 1} \max_{i = 1, \dots, n} |p(\lambda_i)|\right) ||x_k - x_*||_A$$

$$\le \left(\min_{p \in \mathbb{P}_1, p(0) = 1} \max_{\lambda \in [\lambda_{\min}, \lambda_{\max}]} |p(\lambda)|\right) ||x_k - x_*||_A.$$

Remark 11.3 — This is taking the infinity norm, which will be discussed in further detail later.

This minimax occurs when:

$$|p(\lambda_{\min})| = |p(\lambda_{\max}) \text{ and } p\left(\frac{\lambda_{\min} + \lambda_{\max}}{2}\right) \implies p(t) = 1 - \frac{2}{\lambda_{\min} + \lambda_{\max}}t$$

Thus:

$$\min_{p \in \mathbb{P}_1, p(0) = 1} \max_{\lambda \in [\lambda_{\min}, \lambda_{\max}]} |p(\lambda)| = 1 - \frac{2}{\lambda_{\min} + \lambda_{\max}} \lambda_{\min} = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} = \frac{\gamma - 1}{\gamma + 1}$$

Remark 11.4 — Thus, the convergence speed is $\frac{\gamma-1}{\gamma+1}$.

To achieve an ϵ -solution, it suffices to have:

$$\left(\frac{\gamma - 1}{\gamma + 1}\right)^k \|x_0 - x_*\|_A \le \epsilon \implies k \log\left(\frac{\gamma - 1}{\gamma + 1}\right) \le \log\left(\frac{\epsilon}{\|x_0 - x_*\|_A}\right) \implies k \ge \frac{\log\left(\frac{\|x_0 - x_*\|_A}{\epsilon}\right)}{\log\left(\frac{\gamma + 1}{\gamma - 1}\right)}$$

Because:

$$\log\left(\frac{\gamma+1}{\gamma-1}\right) = \log\left(1+\frac{2}{\gamma-1}\right) \approx \frac{2}{\gamma} \text{ if } \gamma \text{ is large.}$$

Thus, we have:

$$k \ge \frac{1}{2} \log \left(\frac{\|x_0 - x_*\|_A}{\epsilon} \right) \cdot \gamma$$

Remark 11.5 — The number of iterations needed is $O(\gamma)$.

11.2 Two-Dimensional Projection Method (Conjugate Gradient)

We consider the projection method where $\dim(K) = 2$. We choose:

$$K = \operatorname{span}\{r_k, d_{k-1}\}\$$

where:

$$\begin{cases} r_k = b - Ax_k & \text{(potential)} \\ d_{k-1} = x_{k-1} - x_k & \text{(momentum)} \end{cases}$$

A pictorial representation of this is given in Fig 3.

Remark 11.6 — Recall that r_k is the best possible direction in 1D.

Figure 3: Pictorial Representation of $x_k + K$

Thus, we have:

$$x_{k+1} = x_k + \alpha_k(r_k + \beta_k d_{k-1}), \text{ where } \alpha_k, \beta_k \in \mathbb{R}$$

with:

$$(\alpha_k, \beta_k) = \underset{\alpha, \beta \in \mathbb{R}}{\arg \min} \|x_k + \alpha(r_k + \beta d_{k-1}) - x_*\|_A^2$$

Now we find the expressions of α_k, β_k :

$$||x_{k} + \alpha(r_{k} + \beta d_{k-1}) - x_{*}||_{A}^{2} = ||x_{k} - x_{*}||_{A}^{2} + 2\alpha \langle x_{k} - x_{*}, r_{k} \rangle_{A} + \alpha^{2} ||r_{k}||_{A}^{2} + 2\alpha \beta \langle x_{k} - x_{*}, d_{k-1} \rangle_{A} + \alpha^{2} \beta^{2} ||d_{k-1}||_{A}^{2} + 2\alpha^{2} \beta \langle r_{k}, d_{k-1} \rangle_{A}.$$

Because x_k is the projection of x_* onto $x_{k-1} + \operatorname{span}\{r_{k-1}, d_{k-2}\}$, we have:

$$\langle x_k - x_*, d_{k-1} \rangle_A = 0$$

Taking derivative w.r.t α, β and setting them to 0, we have:

$$\begin{cases} 2 \langle x_k - x_*, r_k \rangle_A + 2\alpha_k ||r_k||_A^2 + 2\alpha_k \beta_k^2 ||d_{k-1}||_A^2 + 4\alpha_k \beta_k \langle r_k, d_{k-1} \rangle_A = 0 \\ 2\alpha_k^2 (\beta_k ||d_{k-1}||_A^2 + 2\langle r_k, d_{k-1} \rangle_A) = 0 \end{cases}$$

• If $\alpha_k = 0$, then: $x_{k+1} = x_k = \text{projection of } x_* \text{ onto } x_k + \text{span}\{r_k, d_{k-1}\},$

$$\iff \langle x_* - x_k, r_k \rangle_A = 0$$

$$\iff \langle r_k, r_k \rangle = 0$$

$$\iff r_k = 0 \iff Ax_k = b$$

$$\iff x_k = x_*.$$

 x_k is the exact solution, and the algorithm stop.

• If $\alpha_k \neq 0$, then $r_k \neq 0$ and:

$$\beta_k = -\frac{\langle r_k, d_{k-1} \rangle_A}{\|d_{k-1}\|_A^2}$$

Then denote $d_k = r_k + \beta_k d_{k-1}$. So:

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} \|(x_k + \alpha d_k) - x_*\|_A$$

$$\iff \alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} \|x_k - x_*\|_A^2 + 2\alpha \left\langle d_k, x_k - x_* \right\rangle_A + \alpha^2 \|d_k\|_A^2.$$

Taking the derivative and setting to zero, we have:

$$2\alpha_k \|d_k\|_A^2 = -2 \langle d_k, x_k - x_* \rangle_A$$

$$\iff \alpha_k = -\frac{\langle d_k, x_k - x_* \rangle_A}{\|d_k\|_A^2} = -\frac{\langle d_k, -r_k \rangle}{\langle Ad_k, d_k \rangle}$$

$$\iff \alpha_k = \frac{\langle d_k, r_k \rangle}{\langle Ad_k, d_k \rangle}.$$

Thus, we have Algorithm 15.

Algorithm 15 Conjugate Gradient Method

- 1: $d_{-1} = 0$
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- $r_{k} = b Ax_{k}$ $\beta_{k} = -\frac{\langle r_{k}, Ad_{k-1} \rangle}{\langle d_{k-1}, Ad_{k-1} \rangle}$ $d_{k} = r_{k} + \beta_{k} d_{k-1}$ $\alpha_{k} = \frac{\langle d_{k}, r_{k} \rangle}{\langle Ad_{k}, d_{k} \rangle}$ $r_{k+1} = r_{k} + \alpha_{k} d_{k}$

- $x_{k+1} = x_k + \alpha_k d_k$
- 8: end for

Algorithm 15 requires 2 matrix-vector products + operations of O(n). It can be improved to only requiring one matrix vector product, similarly to before, by introducing:

$$p_k = Ad_k$$
.

Then we have:

$$Ax_{k+1} = Ax_k + \alpha_k A d_k$$
$$(b - Ax_{k+1}) = (b - Ax_k) - \alpha_k A d_k$$
$$r_{k+1} = r_k - \alpha_k p_k.$$

Remark 11.7 — Algorithm 16 only requires 1 matrix-vector product and opeartions of O(n).

Definition 11.8. Algorithm 16 is called the **Conjugate Gradient (CG)** method.

Recall that the CG method is an optimization algorithm for:

$$\min_{x \in \mathbb{R}^n} f(x), \quad f(x) = \frac{1}{2} x^T A x - x^T b.$$

For this problem, we have shown a few different variations of gradient descent:

March 11th, 2021 MATH5312 Notes

Algorithm 16 2D Projection Method Improved

```
1: d_{-1} = 0

2: p_{-1} = 0

3: r_0 = b - Ax_0

4: for k = 0, 1, 2, ... do

5: \beta_k = -\frac{\langle r_k, p_{k-1} \rangle}{\langle d_{k-1}, p_{k-1} \rangle}

6: d_k = r_k + \beta_k d_{k-1}

7: p_k = Ad_k

8: \alpha_k = \frac{\langle d_k, r_k \rangle}{\langle p_k, d_k \rangle}

9: x_{k+1} = x_k + \alpha_k d_k

10: r_{k+1} = r_k - \alpha_k p_k

11: end for
```

- (with exact line search) gives us Steepest Descent.
- (accelerated by momentum) gives us SOR Method.
- (simultaneously apply momentum and potential) gives us CG Method.
- (successively apply momentum then potential) gives us the **Nesterov momentum** algorithm.
- (successively apply potential then momentum) gives us gradient descent but with a larger step size (not optimal, which is exact line search).

For quadratic function f(x) of the form

$$f(x) = \frac{1}{2}x^T A x - x^T b,$$

CG is preferred. For general non-linear function, Nesterov is preferred because α_k and β_k are not easy to obtain in CG. As such, Nesterov is popular in machine learning due to the complex objective function.

Remark 11.9 — If f(x) is quadratic, we can get the optimal α_k and β_k , allowing us to update them simultaneously in CG.

Remark 11.10 — Best NN optimization function is probably just SGD with Nesterov acceleration.

12 March 11th, 2021

12.1 Properties of Conjugate Gradient

Going back to the projection framework, we know that CG is derived from 2-dim projection method by choosing $K = \text{span}\{r_k, d_{k-1}\}$.

Theorem 12.1

CG is a K-dim projection method at step K.

Since

$$x_{k+1} = \underset{x \in x_k + \text{span}\{r_k, d_{k-1}\}}{\arg \min} \|x_* - x\|_A.$$

The residue vector must be orthogonal to the subspace, meaning:

$$\langle x_* - x_{k+1}, v \rangle = 0 \quad \forall v \in \operatorname{span}\{r_k, d_{k-1}\}$$

 $\iff \langle r_{k+1}, v \rangle = 0.$

Therefore:

$$\langle r_{k+1}, r_k \rangle = 0, \quad \langle r_{k+1}, d_{k-1} \rangle = 0, \quad \langle r_{k+1}, d_k \rangle = 0.$$

Thus, with $\alpha_k \neq 0$ (i.e. $r_k \neq 0$), β_k is optimal in the sense that:

$$\beta_k = \underset{\beta \in \mathbb{R}}{\arg \min} \|x_k + \alpha_k (r_k + \beta d_{k-1}) - x_*\|_A$$

$$\iff d_k = \underset{d \in r_k + \operatorname{span}\{d_{k-1}\}}{\arg \min} \|x_k + \alpha_k d - x_*\|_A$$

$$\iff d_k = \underset{d \in r_k + \operatorname{span}\{d_{k-1}\}}{\arg \min} \left\|d - \frac{1}{\alpha_k} (x_* - x_k)\right\|_A.$$

Thus d_k is the projection of $\frac{1}{\alpha_k}(x_* - x_k)$ onto the 1-dim subspace $r_k + \text{span}\{d_{k-1}\}$. As such, we have:

$$\left\langle d_{k-1}, d_k - \frac{1}{\alpha_k} (x_* - x_k) \right\rangle_A = 0$$

$$\left\langle d_{k-1}, d_k \right\rangle_A = \frac{1}{\alpha_k} \left\langle d_{k-1}, x_* - x_k \right\rangle_A = \frac{1}{\alpha_k} \left\langle d_{k-1}, r_k \right\rangle = 0.$$

since $\langle r_{k+1}, d_k \rangle = 0$. As such:

$$\langle d_{k-1}, d_k \rangle_A = 0, \quad ifr_k \neq 0$$

which means that each d_k is orthogonal from d_{k-1} .

Remark 12.2 — If $r_k = 0$, then the algorithm stops, since we have achieved x_* .

In general $a \perp b, b \perp c \implies a \perp c$, since orthogonality is not transitive. However, the orthogonality of vector produced by CG is transitive.

Figure 4: Diagram showing Orthogonality between d_k and r_k

Theorem 12.3

Assume A is SPD. Assume $r_0, r_1, r_2, \ldots, r_{i-1} \neq 0$. Then:

1. $\langle r_j, r_j \rangle = 0$ for all $j \leq i - 1$ (meaning $\{r_0, r_1, \dots, r_i\}$ are orthogonal)

2. (a)
$$\langle r_i, d_j \rangle = 0$$
 for all $j \leq i - 1$
(b) $\langle r_i, d_j \rangle_A = 0$ for all $j \leq i - 2$
(c) $\langle d_i, r_j \rangle_A = 0$ for all $j \leq i - 1$

(b)
$$\langle r_i, d_j \rangle_A = 0$$
 for all $j \leq i - 2$

(c)
$$\langle d_i, r_j \rangle_A = 0$$
 for all $j \leq i - 1$

3.
$$\langle d_i, d_j \rangle_A = 0$$
 for all $j \leq i-1$ ($\{d_0, d_1, \dots, d_i\}$ are A-orthogonal)

Proof. By Induction. Check notes.

In matrix form, this is equivalent to:

1.
$$\iff$$
 Let $R_i = \begin{bmatrix} r_0 & r_1 & \dots & r_i \end{bmatrix} \in \mathbb{R}^{n \times (i+1)}$. Then: $R_i^T R_i$ is diagonal.

2.
$$\iff$$
 Let $D_i = \begin{bmatrix} d_0 & d_1 & \dots & d_i \end{bmatrix} \in \mathbb{R}^{n \times (i+1)}$. Then:

(a)
$$R_i^T D_i$$
 is $\begin{bmatrix} \times & \dots & \times \\ & \ddots & \vdots \\ 0 & & \times \end{bmatrix}$, i.e. upper triangular.

(b)
$$R_i^T A D_i$$
 is
$$\begin{bmatrix} \times & & & & \\ \times & \times & & & \\ & \times & \ddots & & \\ & & \ddots & \ddots & \\ & & & \times & \times \end{bmatrix}$$
, i.e. upper triangular.

3. $\iff D_i^T A D_i$ is diagonal.

Theorem 12.4

 $\{x_k\}$ generated by CG satisfies:

$$\langle x_* - x_k, v \rangle_A = 0 \quad \forall v \in K_k$$

where K_k is the Krylov subspace. As a result:

$$x_k = \underset{x \in x_0 + K_k}{\arg\min} \|x_* - x\|_A$$

Furthermore, if $r_0, r_1, r_2, \ldots, r_{k-1} \neq 0$, then $\dim(K_k) = k$. Therefore, either GC stops early with $x_k = x_*$, or $x_n = x_*$

Definition 12.5 (Krylov Subspace).

$$K_k := \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0\}$$

Figure 5: Pictoral Representation of Theorem 12.4

Proof. Using Theorem 12.3, we have:

$$r_1 = b - Ax_1 = b - A(x_0 + \alpha_0 r_0) = r_0 - \alpha_0(Ar_0) \in \operatorname{span}\{r_0, Ar_0\} \subset K_k$$

$$d_1 = r_1 + \beta_0 r_0 \in \operatorname{span}\{r_0, Ar_0\} \subset K_k$$

$$r_1 = b - Ax_2 = b - A(x_0 + \alpha_1 d_1) = r_0 - \alpha_1 A d_1 \in \operatorname{span}\{r_0, Ar_0, A^2 r_0\} \subset K_k$$

$$d_2 = r_2 + \beta_1 r_1 \in \operatorname{span}\{r_0, Ar_0, A^2 r_0\} \subset K_k.$$

Using induction, we get:

$$r_0, r_1, d_1, r_2, d_2, \dots, r_{k-1}, d_{k-1} \in K_k \implies \operatorname{span}\{r_0, r_1, \dots, r_{k-1}\} \subset K_k$$

• If $r_i = 0$ for some $i \in \{0, 1, 2, ..., k - 1\}$, then $r_k = 0$, and:

$$\langle r_k, v \rangle = 0 \quad \forall v \in K_k \iff \langle x_* - x_k, v \rangle_A = 0 \quad \forall v \in K_k$$

• If $r_0, r_1, \dots r_{k-1} \neq 0$, then:

$$k = \dim(\operatorname{span}\{r_0, r_1, \dots r_{k+1}\}) \le \dim(K_k) \le k$$

 \implies dim $(K_k) = k$ and $\{r_0, r_1, r_{k-1}\}$ is an orthogonal basis of K_k

because:

$$\langle r_k, r_i \rangle = 0 \quad \forall i = 0, 1, \dots, k - 1$$

$$\Longrightarrow \langle r_k, v \rangle \quad \forall v \in K_k$$

$$\Longrightarrow \langle x_* - x_k, v \rangle_A = 0 \quad \forall v \in K_k.$$

Corollary 12.6

If we run CG for N steps, it is equivalent to projecting to \mathbb{R}^n , which is x_* , thus meaning that CG is optimal.

Index

```
p norm, 20
```

banded matrix, 16

Cauchy-Schwartz inequality, 21 condition number, 40 conjugate gradient, 51 convergence factor, 27

direct method, 4

Frechet derivative, 41

gauss transformation, 5 Gauss-Seidel Iteration, 34 gaussian elimination, 4

Holder's inequality, 21

Krylov subspace, 55

matrix norm, 22

Nesterov momentum algoritm, 52 norm, 20

pivot entry, 11

Richardson iteration, 40

SOR iteration, 37 spare matrix, 18 spectral radius, 23 stationary matrix, 19 steepest descent, 47 symmetric positive definite (SPD), 13

tri-diagnoal matrix, 16

weighted inner product, 41 weighted norm, 21