

COLORFUL INTERSECTIONS

TVERBERG PARTITIONS

MICHAEL & DOBBINS SUNY BINGHAMTON

DOHYEON LEE

ANDREAS F HOLMSEN

KAIST & IBS DIMAG

THE COLORFUL HELLY THEOREM

Lovász (1970's) Bárány (1982)

Thm. Let $F_i,...,F_{d+1}$ be finite families of convex sets in \mathbb{R}^d such that $C_1 \cap \cdots \cap C_{d+1} \neq \emptyset$ for every choice $C_i \in F_i$. Then there is a POINT that intersects every member of one of the F_i .

"colorful intersection property"

MONTEJAND'S THEOREM

Montejano (2013) Montejano - Karasev (2011) Strausz (2022)

Thm. Consider three red and three blue convex sets in \mathbb{R}^3 with the colorful intersection property. Then there is a LINE that intersects every red set or every blue set

one of the colors has a "line transversal"

Thm. Let F be a set of n > (d+1)(r-1) points in \mathbb{R}^d .

There is a partition $F = A_1 \cup \cdots \cup A_r$ such that $\operatorname{conv} A_1 \cap \cdots \cap \operatorname{conv} A_r \neq \emptyset$

"Trerberg r-partition"

F.g. d=2, r=3

Thm. Let $F_1,...,F_m$ be families of convex sets in \mathbb{R}^d , each of size n, with the colorful intersection property. If $n > (\frac{d}{m}+1)(r-1)$, where n is a prime power, then one of the F_i has a Tverberg r-partition.

Cor. One of the Fi has an (n-r)-flat transversal E.g. d=3, m=2, r=2, n=3 Montejano's theorem d=10, m=7, r=3, n=5 \Rightarrow 2-flat transversal

QUESTION

Special case of conjecture of Martinez - Roldón - Rubin (2018)

Consider 1000 red and 1000 blue convex sets in R³ with the colorful intersection property.

Is there always a LINE that intersects
4 of the red sets or 4 of the blue sets?

CONFIGURATION SPACE/TEST MAP SCHEME

Thm (Volovikov 1996). Let $G = \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ with p prime. Let X and Y be fixed point-free G-spaces, Where X is n-connected and $Y \simeq S^n$ is finite dimensional. Then there exists no G-equivariant map $X \to Y$.

CONFIGURATION SPACE

SARKARIA'S TENSOR TRICK

Sarkaria (1992) Bárány-Onn (1997)

$$V_{i} = e_{i} - \frac{1}{r} 1 \in \mathbb{R}^{r}, \quad V_{1} + \dots + V_{r} = 0$$

$$W \in \mathbb{R}^{d} \longrightarrow L_{i}(\omega) = \binom{\omega}{1} \otimes V_{i} \in Y \subset \mathbb{R}^{(d+1) \times r}$$

$$\text{So acts on } Y \text{ by permuting columns}$$
For convex set $C \in \mathbb{R}^{d}$ $L_{i} C = \{L_{i}(\omega) : w \in C\}$

OBS. $F = \{C_1, \dots, C_n\}$ convex sets in \mathbb{R}^d $\emptyset \in V_{n,r}$ is a Tverberg r-partition of F \emptyset $O \in Conv(\{L_1C_i\}_{i \in \varphi^{-1}(i)} \cup \dots \cup \{L_rC_i\}_{i \in \varphi^{-1}(r)})$

TEST MAP

CONNECTEDNESS OF K

Cn,r cell complex of ordered r-partitions of subsets of [M]

 $C_{n,r}$ is an (n-r)-dimensional regular cell complex $K_{n,r} \simeq C_{n,r}$ by Quillen's fiber theorem

CONNECTEDNESS OF K

$$K_{n,r} \simeq C_{n,r} \simeq \bigvee_{i \in I} S^{n-r} \Rightarrow (n-r-1) - connected$$

Qullen's Discrete Morse th.

$$\Rightarrow K = K_{n,r}^{*m} \text{ is } \left[m(n-r+1)-2\right] - \text{connected}$$

$$\Rightarrow d(r-1)-2 \text{ since } n>\left(\frac{d}{m}+1\right)(r-1)$$

A CONJECTURE

Our result is GEOMETRIC, but the proof is Topological

requires r is prime power

We conjecture the result holds for any integer $r \ge 2$.

A CONJECTURE

Our result is GEOMETRIC, but the proof is Topological

requires r is prime power

We conjecture the result holds for any integer $r \ge 2$.

THANK YOU!

Wednesday,	July	17.	2024
v v Carrosaa, y,	our	- • 9	

9:30—10:30	Pertti Mattila	Hausdorff dimension of plane sections and general in- tersections
10:30—11:00		Coffee break
11:00—11:30	Wei-Hsuan Yu	On the size of maximal binary codes with 2, 3, and 4 distances
11:30—12:00	Hai Long Dao	The combinatorics of syzygies
12:00-14:00		Lunch
14:00—19:00		Excursion
19:00		Banquet

Thursday, July 18, 2024

9:30—10:30	Hong Wang	Invited lecture
10:30—11:00		Coffee break
11:00—11:30	Alan Chang	Dividing a set in half
11:30—12:00	Terry Harris	Subsets of vertical planes in the first Heisenberg group
12:00—14:00		Lunch
14:00-14:30	Charlotte Aten	TBA
14:30—15:00	Semin Yoo	Improved upper bounds for the largest size of Diophantine m -tuples
15:00-15:30		Coffee break
15:30-17:30		Small group collaboration

Friday, July 19, 2024

9:30—10:30	Cosmin Pohoata	TBA
10:30—11:00		Coffee break
11:00—11:30	Andreas Holmsen	Colorful intersections and Tverberg partitions
11:30—12:00	Jinha Kim	Star clusters in independence complexes of hypergraphs
12:00—14:00		Lunch
14:45 - 15:15	Olivine Silier	TBA
15:15—15:45	Matthew Kroeker	The Average Number of Points in a Spanned Plane
15:45-16:15		Coffee break
16:15—17:30		Small group collaboration