Project Plan Summary

Project Name: Surface for 3D Printer

Project Scope: Create a program that takes a valid name, user equation, resolution, and bound and outputs a

file readable by a 3D printer.

Spiral Descriptions

Spiral Descriptions		
#	Name	Scope
1	Research, Plan, and Start UI	Become more familiar with project scope by meeting with customer
9/12		and researching. Use this research to more clearly define project
		plan, requirements, and design. Start with a simple user interface to
		get user equations and bounds with input validation.
2	Research Equation Validation	Research ways to validate the user's 3D equation. Finish researching
9/19	and Tessellation Algorithm	the tessellation algorithm.
3	Input Validation and Storing	Implement input validation for the user's 3D equation and bounds
9/26	Data	(Requirements 1.2, 1.4), then test. Research and implement ways to
		store bounds in Model.
4	Octant Rule (RULE 1)	Implement the Octant Rule for tessellation (only deal with equation
10/3		and bounds in the first all-positive octant) then test.
5	Tessellation and Resolution of	Implement the 2D tessellation algorithm on the user's bound
10/20	Tessellation (RULE 2)	(Requirement 2) and test. Enable the user to change the resolution of
		the 3D print (how close it approximates the surface) (Requirement
		1.3).
6	Solid Name, Controller Remodel,	Implement naming of solid (Requirement 1.1). Separate Controller
10/31	Bound/Surface Normal Vectors,	into multiple classes for separation of concern. Find the normal
	and Orientation Rule (RULE 3,4)	vectors for the bound and surface that satisfy the orientation rule.
7	Tessellating Sides (RULE 2) and	Develop algorithms for estimating the sides with triangles.
11/10	ASCII STL File Formatting	Implement algorithm to create ASCII STL file (Requirement 3) then
		test triangulation.
8	Normal Vectors for Sides (RULE	Find normal vectors for the sides. Implement listing of triangles in
11/28	4) and RULE 5	ascending z order in the STL file.
9	Test Tessellation, Remove GUI	Extensively test the tessellation algorithm using the STL files. Remove
12/8	Graph, Third Party Triangulation	the GUI graph showing the 2D bound tessellation that was used for
	API	testing. Make an API to communicate with the third party code.