Conservation of interaction partners between related plants varies widely across communities and between plant families - Supporting Information

Alyssa R. Cirtwill^{1,2}, Giulio V. Dalla Riva³, Nick J. Baker¹, Mikael Ohlsson⁴, Isabelle Norström⁴, Inger-Marie Wohlfarth Hasle⁴, Joshua A. Thia^{1,5}, Christie J. Webber¹, Daniel B. Stouffer¹

¹Centre for Integrative Ecology, School of Biological Sciences

²Department of Ecology, Environment, and Plant Sciences (DEEP) Stockholm University 114 19 Stockholm, Sweden

³Biomathematics Research Centre, School of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch 8140, New Zealand

> ⁴Department of Physics, Chemistry, and Biology (IFM) Linköping University 581 83 Linköping, Sweden

⁵Present Address: School of Biological Sciences University of Queensland Brisbane, QLD 4072, Australia

Supporting information 1: Sources for networks

 ${\bf Table~S1:}~{\bf Original~sources~for~each~network~used~in~our~analyses.}$

Network	Network type	Original source
M_PL_001	Pollination	(Arroyo et al., 1982)
M_PL_002	Pollination	(Arroyo <i>et al.</i> , 1982)
M_PL_003	Pollination	(Arroyo <i>et al.</i> , 1982)
M_PL_004	Pollination	(Barrett & Helenurm, 1987)
M_PL_005	Pollination	(Clements & Long, 1923)
M_PL_006	Pollination	(Dicks & Corbet, 2012)
M_PL_007	Pollination	(Dicks & Corbet, 2012)
M_PL_008	Pollination	(Dupont <i>et al.</i> , 2003)
M_PL_009	Pollination	(Elberling & Olesen, 1999)
M_PL_010	Pollination	Elberling, H. & Olesen, J. M. Unpublished.
M_PL_011	Pollination	(Olesen <i>et al.</i> , 2002)
M_PL_012	Pollination	Olesen, J. M. Unpublished.
M_PL_013	Pollination	(Ollerton et al., 2003)
M_PL_014	Pollination	(Hocking, 1968)
M_PL_015	Pollination	(Petanidou, 1991)
M_PL_016	Pollination	(Herrera, 1988)
M_PL_017	Pollination	(Memmott, 2002)
M_PL_018	Pollination	Olesen, J. M. Unpublished.
M_PL_019	Pollination	(Inouye & Pyke, 1988)
M_PL_020	Pollination	(Kevan, 1970)
M_PL_021	Pollination	(Kakutani et al., 1990a)
M_PL_022	Pollination	(Medan et al., 2002)
M_PL_023	Pollination	(Medan et al., 2002)
M_PL_024	Pollination	(Martin, 1965)
M_PL_025	Pollination	(Motten, 1986)
M_PL_026	Pollination	(McMullen, 1993)
M_PL_027	Pollination	(Primack, 1983)
M_PL_028	Pollination	(Primack, 1983)
M_PL_029	Pollination	(Primack, 1983)
M_PL_030	Pollination	(Ramirez, 1992)
M_PL_031	Pollination	(Ramirez, 1989)

Network	Network type	Original source
M_PL_032	Pollination	(Schemske et al., 1978)
M_PL_033	Pollination	(Small, 1982)
M_PL_034	Pollination	(Dmitrieva et al., 1997)
M_PL_035	Pollination	(Percival, 1974)
M_PL_036	Pollination	Olesen, J. M. Unpublished.
M_PL_037	Pollination	(Montero, 2005)
M_PL_038	Pollination	(Montero, 2005)
M_PL_039	Pollination	(Stald, 2003)
M_PL_040	Pollination	(Ingversen, 2006)
M_PL_041	Pollination	(Ingversen, 2006)
M_PL_042	Pollination	(Philipp <i>et al.</i> , 2016)
M_PL_043	Pollination	(Montero, 2005)
M_PL_044	Pollination	(Kato, 2000)
M_PL_045	Pollination	(Lundgren & Olesen, 2005)
M_PL_046	Pollination	(Bundgaard, 2003)
M_PL_047	Pollination	(Dupont & Olesen, 2009)
M_PL_048	Pollination	(Dupont & Olesen, 2009)
M_PL_049	Pollination	(Bek, 2006)
M_PL_050	Pollination	(Stald, 2003)
M_PL_051	Pollination	(Vázquez & Simberloff, 2002)
M_PL_052	Pollination	(Witt, 1998)
M_PL_053	Pollination	(Yamazaki & Kato, 2003)
M_PL_054	Pollination	(Kakutani et al., 1990b)
M_PL_055	Pollination	(Kato, 1996)
M_PL_056	Pollination	(Kato <i>et al.</i> , 1993)
M_PL_057	Pollination	(Inoue et al., 1990)
M_PL_058	Pollination	(Bartomeus et al., 2008)
M_PL_059	Pollination	(Bezerra et al., 2009)
Basset	Herbivory	(Basset & Samuelson, 1996)
Bluthgen	Herbivory	(Blüthgen et al., 2006)
Bodner	Herbivory	(Bodner <i>et al.</i> , 2010)
Coley	Herbivory	(Coley et al., 2006)
Ibanez	Herbivory	(Ibanez <i>et al.</i> , 2013)
Joern_altuda	Herbivory	(Joern, 1979)
Joern_marathon	Herbivory	(Joern, 1979)
Novotny	Herbivory	(Novotny et al., 2012)
Peralta	Herbivory	(Peralta, 2016)
Sheldon	Herbivory	(Sheldon & Rogers, 1978)
Ueckert	Herbivory	(Ueckert & Hansen, 1971)

Supporting information 2: Distributions of *p*-values for permuted networks

Comparing the permuted networks to permutations of the permuted networks, the slope obtained from the initial permuted network showed no clear relationship to the slopes obtained from 500 permutations of the permuted network. Averaged over the 1000 permutations of each observed network, the slope of the permuted network was more extreme than 48.1-51.3% of the permutations of the permuted network. This confirms that shuffling phylogenetic distances between plant pairs destroys the relationship between distance and interaction partner overlap, and that further shuffling distances does not have a predictable effect.

Networks shown in each panel of Figure S1

All names are as in Table S1. Networks included in each panel (from darkest to lightest line colours) are:

- **A)** M_PL_001, M_PL_002, M_PL_003, M_PL_004, M_PL_005;
- B) M_PL_006, M_PL_007, M_PL_008, M_PL_009, M_PL_010;
- C) M_PL_011, M_PL_012, M_PL_013, M_PL_014, M_PL_015;
- **D)** M_PL_016, M_PL_017, M_PL_018, M_PL_019, M_PL_020;
- E) M_PL_021, M_PL_022, M_PL_023, M_PL_024, M_PL_025;
- F) M_PL_026, M_PL_027, M_PL_028, M_PL_029, M_PL_030;
- G) M_PL_031, M_PL_032, M_PL_033, M_PL_034, M_PL_035;
- H) M_PL_036, M_PL_037, M_PL_038, M_PL_039, M_PL_040;
- I) M_PL_041, M_PL_042, M_PL_043, M_PL_044, M_PL_045;
- J) M_PL_046, M_PL_047, M_PL_048, M_PL_049, M_PL_050;
- **K)** M_PL_051, M_PL_052, M_PL_053, M_PL_054, M_PL_055;
- L) M_PL_056, M_PL_057, M_PL_058, M_PL_059;
- M) Ibanez, Joern_altuda, Joern_marathon, Peralta, Sheldon;
- N) Ueckert, Basset, Bluthgen, Bodner, Coley, Novotny.

Figure S1: Distributions of p-values obtained when comparing the strength of the relationship between niche overlap and phylogenetic distance in 999 permutations of each network in our dataset with 500 permutations of each permuted network. Each line in each panel represents the histogram of p-values for one network. Bins are 0.05 wide. Purple lines in panels A-L represent pollination networks while green lines in panels M-N represent plant-herbivore networks. A list of networks shown on each panel follows; see Table S1 for original sources.

Supporting information 3: Details of within-family regressions

Models for nine families could not be fit because there was no variation in the phylogenetic distance between plants, their numbers of shared interaction partners, or both. These families were Amaranthaceae, Araliaceae, Cactaceae, Cornaceae, Gentianaceae, Liliaceae, Oxalidaceae, Rhamnaceae, and Zingiberaceae. Further, we could not fit a model for Sapindaceae in herbivory networks as all but one plant pair had the same phylogenetic distances.

Only nine families were sufficiently well-represented to fit models for shared herbivores. Five of these were also well-represented in plant-pollinator networks: Asteraceae, Fabaceae, Melastomataceae, Poaceae, and Rubiaceae. In total, there were 48 families which were well-represented enough to fit models for shared pollinators. Note that singular fits were obtained for Amaranthaceae, Araliaceae, Boraginaceae, Campanulaceae, Caryophyllaceae, Ericaceae, Geraniaceae, Hydrangeaceae, Malvaceae, Oxalidaceae, Primulaceae, Saxifragaceae, and Verbenaceae.

References

- Arroyo MTK, Primack R & Armesto J. 1982. Community studies in pollination ecology in the high eemperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. American Journal of Botany 69: 82–97.
- Barrett SCH & Helenurm K. 1987. The reproductive biology of boreal forest herbs.

 I. Breeding systems and pollination. Canadian Journal of Botany 65: 2036–2046.
- Bartomeus I, Vilà M & Santamaría L. 2008. International association for ecology contrasting effects of invasive plants in plant-pollinator networks contrasting effects of invasive plants in plant-pollinator networks. *Oecologia* 155: 761–770.
- Basset Y & Samuelson GA. 1996. Ecological characteristics of an arboreal community of Chrysomelidae in Papua New Guinea. SPB Academic Publishing (eds. P.H.A. Jolivet & M.L. Cox), pp. 243–262. Amsterdam: SPB Academic Publishing.
- Bek S. 2006. A pollination network from a Danish forest meadow Tabel of content.

 Master's thesis, University of Aarhus, Denmark.
- Bezerra ELS, MacHado IC & Mello MAR. 2009. Pollination networks of oil-flowers: a tiny world within the smallest of all worlds. *Journal of Animal Ecology* 78: 1096–1101.
- Blüthgen N, Menzel F & Blüthgen N. 2006. Measuring specialization in species interaction networks. *BMC Ecology* **6**: 9.
- Bodner F, Brehm G, Homeier J, Strutzenberger P & Fiedler K. 2010.
 Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador. *Journal of Insect Science* 10: 1–22.

- Bundgaard M. 2003. Tidslig og rummelig variation i et plante-bestøvernetværk.

 MSc.-thesis. Master's thesis, University of Aarhus, Denmark.
- Clements FE & Long Frances L. 1923. Experimental pollination; an outline of the ecology of flowers and insects. Washington, D.C.: Carnegie Institution of Washington.
- Coley PD, Bateman ML & Kusar TA. 2006. The effects of plant quality on caterpillar growth and defense against natural enemies. *Oikos* 115: 219–228.
- Dicks LV & Corbet SA. 2012. Compartmentalization in plant-insect flower visitor webs. *Journal of Animal Ecology* 71: 32–43.
- Dmitrieva LA, Romanov AE, Tsarev VN, Ushakov RV & Karnaukhov AT.

 1997. Sravnitel'naia kharakteristika antibakterial'noi aktivnosti novykh antiseptikov i
 perspektivy ikh primeneniia v stomatologicheskoi praktike. Stomatologiia 76: 26–27.
- **Dupont YL, Hansen DM & Olesen JM. 2003**. Structure of a plant-flower-visitor network in the high-altitude. *Ecography* **26**: 301–310.
- Dupont YL & Olesen JM. 2009. Ecological modules and roles of species in heathland plant-insect flower visitor networks. *Journal of Animal Ecology* 78: 346–353.
- Elberling H & Olesen JM. 1999. The structure of a high latitude plant-pollinator system: The dominance of flies. *Ecography* 22: 314–323.
- **Herrera J. 1988**. Pollination relationships in southern Spanish Mediterranean shrublands. *The Journal of Ecology* **76**: 274.
- **Hocking B. 1968**. Insect-flower associations in the High Arctic with special reference to nectar. *Oikos* **19**: 359.

- Ibanez S, Lavorel S, Puijalon S & Moretti M. 2013. Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers. Functional Ecology 27: 479–489.
- Ingversen TT. 2006. Plant-pollinator interactions on Jamaica and Dominica.
 Master's thesis, University of Aarhus, Denmark.
- Inoue T, Kato M, Kakutani T, Suka T & T I. 1990. Relationship in the temperate deciduous forest of Kibune, Kyoto: an overview of the flowering phenology. Contributions from the Biological Laboratory, Kyoto University 27: 377–463.
- Inouye DW & Pyke GH. 1988. Pollination biology in the Snowy Mountains of Australia comparisons with montane Colorado, USA. Australian Journal of Ecology.pdf. Australian Journal of Ecology 13: 191–210.
- **Joern A. 1979**. Feeding patterns in grasshoppers (Orthoptera: Acrididae): factors influencing diet specialization. *Oecologia* **38**: 325–347.
- Kakutani T, Inoue T, Kato M & Ichihashi H. 1990a. Insect-flower relationship in the campus of Kyoto University, Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits. *Contributions from the Biological Laboratory Kyoto University* 27: 465–521.
- Kakutani T, Inoue T, Kato M & Ichihashi H. 1990b. Insect-flower relationship in the campus of Kyoto University, Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits. *Contributions from the Biological Laboratory Kyoto University* 27: 465–521.
- Kato M. 1996. Flowering phenology and anthophilous insect community at a

- threatened natural lowland marsh at Nakaikemi in Tsuruga, Japan. Contributions from Biological Laboratory Kyoto University 29: 1–48.
- Kato M. 2000. Anthophilous insect community and plant-pollinator interactions on Amami Islands in the Ryukyu Archipelago, Japan. Contributions from the Biological Laboratory, Kyoto University 29: 157–254.
- Kato M, Matsumoto M & Kato T. 1993. Flowering phenology and anthophilous insect community in the cool-temperate subalpine forests and meadows at Mt.
 Kushigata in the central part of Japan. Contributions from the Biological Laboratory, Kyoto University 28: 119–172.
- Kevan PG. 1970. High arctic insect-flower relations: the inter-relationships of arthropods and flowers at Lake Hazen, Ellesmere Island, NWT, Canada. Ph.d. thesis, University of Alberta.
- Lundgren R & Olesen JM. 2005. The dense and highly connected world of Greenland's plants and their pollinators. Arctic, Antarctic, and Alpine Researcher 37: 514–520.
- Martin H. 1965. Observations on the pollination biology of plants on Melville Island, N.W.T., Canada. Canadian Field Naturalist 81: 201–205.
- McMullen CK. 1993. Flower-visiting insects of the Galapagos Islands. *Pan-Pacific Entomology* 69: 95–106.
- Medan D, Montaldo NH, Devoto M, Mantese A, Vasellati V, Roitman GG & Bartoloni NH. 2002. Plant-Pollinator Relationships at Two Altitudes in the Andes of Mendoza, Argentina. Arctic, Antarctic, and Alpine Research 34: 233.

- Memmott J. 2002. The structure of a plant–pollinator food web. *Ecology Letters* 2: 276–280.
- Montero AC. 2005. The Ecology of pollination networks, MSc.-thesis. Master's thesis, University of Aarhus, Denmark.
- Motten AF. 1986. Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ph.d. thesis, Duke University, USA. doi: 10.2307/2937269
- Novotny V, Miller SE, Hrcek J, Baje L, Basset Y, Lewis OT, Stewart AJA & Weiblen GD. 2012. Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. *The American Naturalist* 179: 351–362.
- Olesen JM, Eskildsen LI & Venkatasamy S. 2002. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. *Diversity and Distributions* 8: 181–192.
- Ollerton J, Johnson SD, Cranmer L & Kellie S. 2003. The pollination ecology of an assemblage of grassland asclepiads in South Africa. *Annals of Botany* 92: 807–834.
- Peralta G. 2016. Merging evolutionary history into species interaction networks.

 Functional Ecology 30: 1917–1925.
- **Percival M. 1974**. Floral ecology of coastal scrub in southeast Jamaica. *Biotropica* **6**: 104.
- **Petanidou T. 1991**. Pollination ecology in a phryganic ecosystem. Ph.d. thesis, Aristotelian University, Thessaloniki.

- Philipp M, Böcher J, Siegismund HR, Nielsen LR, Philipp M, Bcher J & Siegismund HR. 2016. Structure of a plant-pollinator network on a pahoehoe lava desert of the Galápagos Islands. *Ecography* 29: 531–540.
- Primack RB. 1983. Insect pollination in the New Zealand mountain flora. New Zealand Journal of Botany 21: 317–333.
- Ramirez NBY. 1992. Pollination biology in a palm swamp community in the Venezuelan central plains. Botanical Journal of the Linnean Society 110: 277–302.
- Ramirez N. 1989. Biologia de polinizacion en una comunidad arbustiva tropical de la Alta Guayana Venezolana. *Biotropica* 21: 319.
- Schemske DW, Willson MF, Melampy MN, Miller LJ, Verner L, Schemske KM & Best LB. 1978. Flowering ecology of some spring woodland herbs. *Ecology* 59: 351–366.
- **Sheldon JK & Rogers LE. 1978**. Grasshopper food habits within a shrub-steppe community. *Oecologia* **32**: 85–92.
- Small E. 1982. Insect pollinators of the Mer Bleue peat bog of Ottawa. Canadian Field Naturalist 90: 22–28.
- Stald L. 2003. Struktur og dynamik i rum og tid af et bestøvningsnetværk på Tenerife, De Kanariske Øer. Master's thesis, University of Aarhus, Denmark.
- Ueckert DN & Hansen RM. 1971. Dietary overlap of grasshoppers on sandhill rangeland in northeastern Colorado. Oecologia 8: 276–295.
- Vázquez DP & Simberloff D. 2002. Ecological specialization and susceptibility to disturbance: conjectures and refutations. *The American Naturalist* **159**: 606–623.

Witt P. 1998. Witt, P. Bsc thesis, University of Aarhus, Denmark.

Yamazaki K & Kato M. 2003. Flowering phenology and anthophilous insect community in a grassland ecosystem at Mt. Yufu, western Japan. *Contributions from the Biological Laboratory, Kyoto University* 29: 255–318.