신약 개발 후보물질 추천을 위한 머신러닝 모델 설계

201724512 유경민 201724617 허수민

Contents

01 연구 배경

[02] 데이터 전처리

03 모델 구축 및 성능비교

04 _{연구 정보}

압타머(Aptamer)

- RNA/DNA와 유사한 구조를 가지는 핵산 물질
- 항체와 비교될 수 있을 정도 의 높은 결합 친화도
- 표적 단백질에 다양한 형태 로 결합 가능
- ➡ 암 치료제 분야에서 사용

• SELEX(Systematic evolution of ligands by exponential enrichment)

- 다양한 후보의 압타머 중 결합 친화도가 높은 물 질을 선별하는 대표적인 과정
- 유전 물질을 합성 & 분리하는 작업을 반복적으로 수행
- 시간이 오래 소요
 - ▶ 알고리즘 기반 예측 모델 등장

○ MLP 기반 결합 예측 모델 - DeepBind

[3]

- CNN에 기반을 두고 패턴 추출 및 예측을 수행하는 모델
- 노이즈가 포함된 데이터에도 학습 가능

• MLP 기반 결합 예측 모델 - AptaNet

ㅇ 연구 목표

- 기존 사례 모델 대비 성능이 향상된 예측 모델을 개발
- 결합 단백질과 유전물질의 생물학적 정보만으로 예측가능한 일반화된 모델 생성

• 원본 데이터 설명

- 파일명: 단백질_Legand서열_A/B.seg
- A: Bound가 1(결합)인 정보만 존재 B: Bound가 0(미결합) & 1인 정보 혼재

AR FL TCTTCT20NCTG 4 AD B.seq ARNTL_DBD_TCAAAA20NCG_3_W_A.seq ARNTL_DBD_TCAAAA20NCG_3_W_B.seq Arx_DBD_TCGCAT20NACT_2_AC_A.seq Arx_DBD_TCGCAT20NACT_2_AC_B.seq ARX_DBD_TGCGTT20NTGC_2_Z_A.seq ARX_DBD_TGCGTT20NTGC_2_Z_B.seq Ascl2_DBD_TAGGGC20NCG_4_Z_A.seq

Ascl2_DBD_TAGGGC20NCG_4_Z_B.seq

Atf4 DBD_TGCCGC20NGA_4_Z_A.seq

- Atoh1_DBD_TAGTCC20NCTT_3_Z_A.seq Atoh1_DBD_TAGTCC20NCTT_3_Z_B.seq Barhl1_DBD_TCAGTC20NCG_2_AC_A.seq Barhl1_DBD_TCAGTC20NCG_2_AC_B.seq Barhl1_DBD_TCAGTC20NCG_3_AC_A.seq Barhl1_DBD_TCAGTC20NCG_3_AC_B.seq BARHL2_DBD_TATTGT20NGTG_2_AC_A.seq BARHL2_DBD_TATTGT20NGTG_2_AC_B.seq BARHL2_DBD_TATTGT20NGTG_3_AC_A.seq BARHL2_DBD_TATTGT20NGTG_3_AC_B.seq
- BARX1 DBD_TATTCG20NCTG_3_AC_B.seq BATF3_DBD_TAAGAC20NAGA_4_AC_A.seq BATF3_DBD_TAAGAC20NAGA_4_AC_B.seq BCL6B_DBD_TGCGGG20NGA_4_AC_A.seq BCL6B_DBD_TGCGGG20NGA_4_AC_B.seq BHLHA15_DBD_TCCGTG20NCG_4_Y_A.seq BHLHA15_DBD_TCCGTG20NCG_4_Y_B.seq Bhlhb2_DBD_TCAAGG20NGAA_2_Z_A.seq Bhlhb2_DBD_TCAAGG20NGAA_2_Z_B.seq CDX1_DBD_TCAACC20NCAA_3_Y_A.seq BHLHB2 DBD TGGGAC20NGA 2 Y A.seq CDX1_DBD_TCAACC20NCAA_3_Y_B.seq
- BHLHE23_DBD_TATATC20NCG_4_Y_A.seq BHLHE23_DBD_TATATC20NCG_4_Y_B.seq BHLHE41_FL_TGTGCT20NCGG_3_AD_A.seq BHLHE41_FL_TGTGCT20NCGG_3_AD_B.seq BSX DBD_TATGAA20NCG_3_Y_A.seq BSX_DBD_TATGAA20NCG_3_Y_B.seq CART1_DBD_TGCGCC20NGA_2_Y_A.seq CART1_DBD_TGCGCC20NGA_2_Y_B.seq
- 약 500종류 가량의 API(Aptamer Protein Interaction) 데이터 존재

• k-mer 지표

머	IEI	정	보
	_	. 0	_

TAA: 1	AAC: 2	ACT: 1	CTG: 2
TGA: 1	GAA: 1	ACC: 1	CCT: 1

- 주어진 문자열 내 길이가 k인 문자열의 집 합을 의미
- k값이 클수록 주변 시퀀스와의 관계를 고려 하는 비중이 커지나 메모리 필요 용량이 증 가
- k값이 작으면 메모리에 저장되는 정보량이 적으나, 주변 서열의 관계 정보도 줄어들게 됨
- k=1인 경우 One-hot Encoding과 유사한 형태의 데이터 추출 가능

• k-mer 지표

```
from itertools import product

def kmer(seq, k):
    base = ['A', 'C', 'G', 'T']

    keys = list(map(''.join, product(base, repeat=k)))
    dicts = {}
    for key in keys: dicts[key] = 0

    for i in range(len(seq)-k+1):
        now = seq[i:i+k]
        dicts[now] += 1

    for key in keys: dicts[key] /= (len(seq)-k+1)
    return dicts
```

- k=1, 2, 3, 4인 경우의 메타정보 추출
- 각 k값을 기준으로 상대적인 비율(합산 1)의 형태로 염기서열 전처리를 수행

- A, C, G, T 이외의 N으로 표기된 문자는 A, C, G, T의 문자를 각각 넣어 서열을 증배하였음

k-mer 지표 전처리 후 데이터

protein	seq	bound	A	С	G	Т	AA	AC	AG	AT
Alx1_DBD	GCAGATAATCTAATTACCCC	1	0.35	0.3	0.1	0.25	0.105263	0.052632	0.052632	0.157895
Alx1_DBD	CTCAGTCCTCGTCTCGATGG	1	0.1	0.35	0.25	0.3	0	0	0.052632	0.052632
Alx1_DBD	TCATAATCTAATTACGCTCG	1	0.3	0.25	0.1	0.35	0.105263	0.052632	0	0.157895
Alx1_DBD	GACTTCCTCAATCTAATTAG	1	0.3	0.25	0.1	0.35	0.105263	0.052632	0.052632	0.105263
Alx1_DBD	GCAGTTAATCTAATTAACCG	1	0.35	0.2	0.15	0.3	0.157895	0.052632	0.052632	0.105263
Alx1_DBD	TCCAGGCCTGATTTAATTAA	1	0.3	0.2	0.15	0.35	0.105263	0	0.052632	0.105263

Amino Acid Composition & Pseudo Amino Acid Composition

[5] Rcpi (version 1.8.0) extractProtPAAC: Pseudo Amino Acid Composition Descriptor Description Pseudo Amino Acid Composition Descriptor Usage extractProtPAAC(x, props = c("Hydrophobicity", "Hydrophilicity", "SideChainMass"), lambda = 30, w = 0.05, customprops = NULL) Arguments A character vector, as the Input protein sequence. A character vector, specifying the properties used. 3 properties are used by default, as listed below. props Hydrophobicity value of the 20 amino acids Hydrophilicity value of the 20 amino acids

- 염기서열의 인코딩과 더불어 단백질 구성 형태 도 고려하여 일반적인 모델을 제작
- 아미노산의 빈도, 단백질 결합 구조 정보를 표 현하는 기법으로 AAC와 PseAAC 존재
- AAC: 단백질 시퀀스 내 특정 아미노산의 출현 빈도를 단순히 표현 (결합정보 무시)
- PseAAC: 2001년 Kuo-Chen Chou에 의해 ^[6] 등장한 결합정보를 고려한 단백질 표현 기법

Amino Acid Composition & Pseudo Amino Acid Composition

```
# 라이브러리 불러오기
library("Rcpi")
file = "csv파일 경로 작성"
labelList = read.csv(file, header=TRUE)
rslt df = c()
(i 1:nrow(labelList)){
      nowe = labelList[i, 1]
      nowl = labelList[i, 2]
      # 단백질 구조 추출
      seqs = getProt(nowe, from = 'uniprot', type = 'aaseq')[[1]][[1]]
      # 단백질 meta 정보 추출
       rslt = extractProtPAAC(seqs)
       trslt = t(rslt) # 행/열 뒤집기
      rownames(trslt) = nowl # 행 이름 지정
       rslt df = rbind(rslt df, trslt)
directory path = '저장할 폴더 위치'
setwd(directory path)
write.csv(rslt_df, file='protein_data.csv', quote=FALSE)
```

- R언어 환경에서 Rcpi 라이브러리를 이용해 단백 질 PseAAC 정보를 추출
- 단백질 정보는 UniProt^[7] 의 DB 정보를 기반으로 얻어내었음

PseAAC 정보가 담긴 데이터

	Xc1.A	Xc1.R	Xc1.N	Xc1.D	Xc1.C	Xc1.E	Xc1.Q	Xc1.G	Xc1.H	Xc1.I	Xc1.L
Alx1	5.777514	5.777514	4.727057	3.6766	1.575686	5.777514	3.939214	4.464442	3.151371	1.575686	6.302742
ARX	29.79562	9.746231	1.113855	6.68313	1.949246	13.92319	4.45542	12.80933	2.784638	1.949246	15.87243
ALX3	7.778015	5.555725	2.22229	3.333435	1.666717	5.277939	3.333435	9.444732	3.333435	1.388931	8.333587
AR FL	22.95207	11.61771	5.667177	10.48428	7.650689	15.58474	20.11848	27.20245	5.383818	6.517254	24.65222

• 전체 데이터 전처리

bound	Α	С	G	T	AA
1	0.5	0.1	0.05	0.35	0.315789
1	0.25	0.3	0.15	0.3	0.052632
0	0.5	0.1	0.05	0.35	0.157895
1	0.55	0.1	0	0.35	0.210526
1	0.4	0.2	0.1	0.3	0.105263

- 앞선 k-mer 지표와 PseAAC 정보 를 합쳐서 각 API별 학습용 데이터 셋을 구축

- Alx1_DBD_TAAAGC20NCG_3_Z_A.seq Alx1_DBD_TAAAGC20NCG_3_Z_B.seq
- ALX3 DBD TGTAAA20NAAG 2 Z A.seq
- ALX3_DBD_TGTAAA20NAAG_2_Z_B.seq
- ALX3_FL_TGCAAG20NGA_2_AE_A.seq
- ALX3_FL_TGCAAG20NGA_2_AE_B.seq
- Alx4_DBD_TGGTAG20NCG_2_P_A.seq
- Alx4_DBD_TGGTAG20NCG_2_P_B.seq
- ALX4_DBD_TGTGTC20NGA_2_W_A.seq
- ALX4_DBD_TGTGTC20NGA_2_W_B.seq
- Ar_DBD_TCTAAT20NCG_4_P_A.seq
- Ar_DBD_TCTAAT20NCG_4_P_B.seq
- AR_DBD_TGCTCG20NGA_3_AF_A.seq
- AR_DBD_TGCTCG20NGA_3_AF_B.seq
- AR_FL_TCTTCT20NCTG_4_AD_A.seq

- metadata#Alx1_DBD#TAAAGC20NCG_3_Z_00.csv
- metadata#ALX3_DBD#TGTAAA20NAAG_2_Z_00.csv
- metadata#ALX3_FL#TGCAAG20NGA_2_AE_00.csv
- metadata#Alx4_DBD#TGGTAG20NCG_2_P_00.csv
- metadata#ALX4_DBD#TGTGTC20NGA_2_W_00.csv
- metadata#Ar_DBD#TCTAAT20NCG_4_P_00.csv
- metadata#AR_DBD#TGCTCG20NGA_3_AF_00.csv
- metadata#AR_FL#TCTTCT20NCTG_4_AD_00.csv

- 데이터셋 생성 과정에서 같은 종류의 단백질 데이 터인 경우 하나의 데이터 셋으로 합쳐서 생성 (단. Legand sequence가 다른 경우엔 일단 분리해서 저장)

• 데이터 샘플링

```
# 각 dataframe에서 몇 퍼센트 가량 데이터 추출할지 결정
percentage = 1.0
# 최소 샘플링 데이터 개수, 만일 전체 데이터가 이것보다 작으면 모든 데이터를 추출
min sample = 10000
#최대 샘플링 데이터 개수, 최소/최대 반대로 값 작성 시 논리오류 발생할 수 있음
max sample = 10000
```

```
for file in file_list:
   now_protein = file.split('#')[1]
   file name = file
   print(now protein + ' 진행 중.... ', end='')
   datafile - datadir + '/' + file_name
   nowdf = pd.read_csv(datafile)
   nowsize = len(nowdf)
   sample_size = min(nowsize, max(min_sample, min(int(nowsize*percentage), max_sample)))
   one protein = protein data[protein data.seg -- now protein]
   nowdf rand = nowdf.sample(n=sample size)
   nowdf_cut = nowdf_rand.drop(['seg'], axis=1)
   nowdf_cut.protein = now_protein
   one_full_data = pd.merge(nowdf_cut, one_protein, left_on='protein', right_on='seq').drop(['protein'], axis=1)
   one full data to csy(nowdir + '/data/finalcsy/sample#' + now protein + '.csy', index = False)
   print('>>완료!<<', end=' [> ')
   print('추출된 사이즈: ' + str(sample_size))
```

- 전체 데이터로 학습하게 될 경우 200GB 이상 의 용량 필요
- 각 API 데이터별 대표 sample만 추출하는 샘플 링 코드를 별도로 제작
- 모델 학습을 위한 경량화된 데이터셋 랜덤 생성

- sample#Alx1_DBD.csv sample#BARX1 DBD.csv sample#ALX3_DBD.csv sample#BATF3_DBD.csv sample#ALX3_FL.csv sample#BCL6B_DBD.csv
- sample#Alx4_DBD.csv sample#Ar_DBD.csv sample#Bhlhb2_DBD.csv
- sample#AR_FL.csv sample#ARNTL_DBD.csv
- sample#Arx_DBD.csv

- sample#BHLHA15_DBD.csv
- sample#BHLHB3_FL.csv sample#BHLHE22_DBD.csv
- sample#BHLHE23_DBD.csv
- sample#CEBPD_DBD.csv sample#CEBPE_DBD.csv
- sample#CEBPG_DBD.csv sample#CEBPG_FL.csv
- sample#CENPB_FL.csv sample#CLOCK_DBD.csv sample#CPEB1_FL.csv
 - sample#CREB3_FL.csv
- sample#Dbp_DBD.csv sample#DBP_FL.csv
- sample#DLX1_DBD.csv

sample#DLX4_DBD.csv

sample#DLX6_DBD.csv

sample#DLX5_FL.csv

- sample#Dlx2_DBD.csv sample#EBF1_FL.csv sample#DLX3_DBD.csv sample#EGR1_DBD.csv
 - sample#EGR1_FL.csv sample#EGR2_DBD.csv
 - sample#EGR2_FL.csv

sample#E2F4 DBD.csv

sample#E2F7_DBD.csv

sample#E2F8_DBD.csv

➡ 데이터를 병합하여 모델 학습에 이용!

• 평가 지표 선정

$$(F1 \ score) = 2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Recall}}$$
$$= 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

- 정밀도와 재현율을 동시에 고려하여 데이 터의 불균형 상태에서도 성능평가가 용이 한 F1-score를 기반으로 성능 측정

- 정확한 성능 측정을 위해 10-Fold Cross Validation 과정을 거쳐 F1-score의 평균 을 계산

• 모델 구축

```
#Optimization Algorithm
opt=keras.optimizers.RMSprop(lr=0.00014, rho=0.9, epsilon=None, decay=0.0)

#Multi Layer Perceptron Model
model = Sequential()
model.add(Dense(128, input_dim=639, activation='relu'))
keras.layers.AlphaDropout(0.3, noise_shape=None, seed=None)

model.add(Dense(128, activation='relu'))
keras.layers.AlphaDropout(0.3, noise_shape=None, seed=None)
```

- 구조적으로 변형이 용이한 AptaNet 모델을 기반으로 튜닝을 수행
- 이후 레이어의 구조를 변경해가며 약 20가 지의 후보 모델을 선정
- 최종적으로 기존 모델 대비 성능이 좋은 두 모델을 채택하였음

○ 하이퍼 파라미터 튜닝 (batch_size, epochs)

```
seed = 6
np.random.seed(seed)
model = KerasClassifier(build fn = create model, verbose =1)
batch size = [50, 200, 100]
epochs = [50, 100, 200]
param grid = dict(batch size=batch size, epochs=epochs)
grid = GridSearchCV(estimator = model, param grid = param grid,
        cv = KFold(random state=seed,shuffle=True), verbose =1)
grid results = grid.fit(x resampled, y resampled)
print("Best: {0}, using {1}".format(
        grid results.best score , grid results.best params ))
means = grid results.cv results ['mean test score']
stds = grid results.cv results ['std test score']
params = grid results.cv results ['params']
for mean, stdev, param in zip(means, stds, params):
   print('{0} ({1}) with: {2}'.format(mean, stdev, param))
```

- 과적합 현상 방지를 위해 GridSearch를 기반으로 최적의 batch_size와 epochs를 찾는 작업 수행
- batch_size 후보: 50, 100, 200
- epochs 후보: 50, 100, 200

```
Best: 0.8998814105987549, using {'batch_size': 100, 'epochs': 100}

0.8619400858879089 (0.04143294163598879) with: {'batch_size': 50, 'epochs': 50}
0.8926722049713135 (0.01974376316175716) with: {'batch_size': 50, 'epochs': 100}
0.8926671862602233 (0.023526674849552395) with: {'batch_size': 50, 'epochs': 200}
0.8448996663093566 (0.007430710366369083) with: {'batch_size': 200, 'epochs': 50}
0.863494050502777 (0.030913171415396783) with: {'batch_size': 200, 'epochs': 100}
0.8998814105987549 (0.014584248215795424) with: {'batch_size': 100, 'epochs': 100}
0.8384358268657605 (0.029215181191311116) with: {'batch_size': 100, 'epochs': 50}
0.84601229429245 (0.034495465520618294) with: {'batch_size': 200, 'epochs': 200}
0.8786211371421814 (0.04362401317217036) with: {'batch_size': 100, 'epochs': 200}
```

- 최적 파라미터: batch_size=100, epochs=100

o 하이퍼 파라미터 튜닝 (Learning Rate, rho)

```
Fitting 5 folds for each of 9 candidates, totalling 45 fits

Best: 0.8376875996589661, using {'lr': 0.0001, 'rho': 0.9}

0.7038209438323975 (0.015536282900006072) with: {'lr': 0.001, 'rho': 0.9}

0.68790682554245 (0.015500385441618405) with: {'lr': 0.0001, 'rho': 0.8}

0.6882755398750305 (0.013634766766607386) with: {'lr': 0.0001, 'rho': 0.7}

0.8376875996589661 (0.019345160104122565) with: {'lr': 0.0001, 'rho': 0.9}

0.8232771158218384 (0.02733706506326075) with: {'lr': 0.001, 'rho': 0.8}

0.8278290510177613 (0.010495489895340363) with: {'lr': 0.001, 'rho': 0.7}

0.6776666164398193 (0.010234468325862856) with: {'lr': le-05, 'rho': 0.9}

0.6776666164398193 (0.010234468325862856) with: {'lr': le-05, 'rho': 0.8}

0.6776666164398193 (0.010234468325862856) with: {'lr': le-05, 'rho': 0.8}
```

- 빠른 최적해 학습을 위해 Learning rate(Ir)와 Rho 값 역시 GridSearch를 기반으로 파라미터 탐색
- Ir 후보: 0.001, 0.0001, 0.00001
- rho 후보: 0.7, 0.8, 0.9
- 최적 파라미터: lr=0.0001, rho=0.9

• 최종 예측 모델 선정

• 성능 비교

	GradientBoost	AptaNet	AdaBoost	XGBoost	
F1-Score (CV)	0.817	0.831	0.867	0.898	

- 기존 모델들의 성능 => F1-Score 기준 0.900 미만의 값을 보임
- 모델 1 F1-Score: 0.937
- 모델 2 F1-Score: 0.929
- 모델 1, 2 모두 0.900 이상의 F1-Score 값을 얻어내었음 (가장 성능이 좋았던 기존의 XGBoost 모델 점수 대비, 절대 치로 모델 1은 4%, 모델 2는 3% 가량 의 성능 향상 달성)

• 연구 결론 및 발전가능성 제시

○ 데이터 샘플링

- 약 500<mark>종류 총 9천만 개 API 데이터</mark>를 기반으로 생물학 정보를 속성으로 추가하여 기존 모델 대비향상된 성능의 모델 구축을 하였음 (F1-Score 기준)
- 단백질의 명칭을 고려하지 않아도 데이터 기반으로 결합 여부를 예측할 수 있다는 장점 존재

○ 모델 구축

- MLP 구조 기반으로 모델의 <mark>하이퍼파라미터를 GridSearch 기반 튜닝</mark>하여 최적의 파라미터를 찿고, 적절한 학습을 통해 성능 향상을 이뤄낼 수 있었음
- Drop-out의 파라미터 조정을 고려한 일반화된 모델을 생성해야 할 필요 존재

○ 향후 연구 방향

- Drop-out, EarlyStopping 등 딥러닝 모델을 섬세하게 조정할 수 있는 기법을 적용하여 더욱 최적화된 모델을 생성하는 방향으로 연구
- 생물학적 정보를 토대로 적절한 파생변수 생성과 차원축소 기법을 적용하여 설명력 높은 모델을 제작하는 방식으로 연구

• 개발 일정

• 조원별 수행 역할

학번	성명	구성원별 역할
201724512	유경민	- 학습용 데이터셋 탐색 - 딥러닝 기반 AptaNet 모델 연구 및 학습 모델 구축 - 학습 모델 파라미터 튜닝 및 최적화 - 보고서 및 발표 자료 작성
201724617	허수민	- 학습용 데이터셋 탐색 및 전처리 - 모델 평가 지표 선정 - 프로그램 개발환경 선정 및 구축 - 보고서 및 발표 자료 작성

• 출처 및 주석

- [1] Shuanghui Yang, Huan Li, Ling Xu, Zhenhan Deng, Wei Han, Yanting Liu, Wenqi Jiang, Youli Zu, Oligonucleotide Aptamer-Mediated Precision Therapy of Hematological Malignancies, Molecular Therapy Nucleic Acids, Volume 13, Pages 164-175, 2018.
- [2] Yi Xi Wu, Young Jik Kwon, Aptamers: The "evolution" of SELEX, Methods, Volume 106, Pages 21-28, 2016.
- [3] Alipanahi, B., Delong, A., Weirauch, M. et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33, 831-838, 2015.
- [4] Emami, N., Ferdousi, R. AptaNet as a deep learning approach for aptamer-protein interaction prediction. Sci Rep 11, 6074, 2021.
- [5] "extractProtPAAC function". RDocumentation 페이지. 2022년 10월 2일 접속, https://www.rdocumentation.org/packages/Rcpi/versions/1.8.0/topics/extractProtPAAC.
- [6] Ding, Y. S., Zhang, T. L. & Chou, K. C. Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept. Lett. 14, 811-815, 2007.
- [7] UniProt 메인 페이지, https://www.uniprot.org/ 해당 사이트에서 단백질 정보를 검색할 수 있다.

Thank you!