

UART interface BT controller initial guide Version 1.4

Realtek Semiconductor Corporation
All Rights reserved
No. 2, Innovation Road II, Hsinchu Science Park,
Hsinchu 300, Taiwan
www.realtek.com

Revision History

Revision	Date	Change Description
V0.6	2013/11/15	Draft by Gordon
V1.0	2013/12/17	Initial Release by Ally
V1.1	2014/8/11	Modify to H4 by champion
V1.2	2015/4/17	Config file example changes according 8761by mike
V1.3	2015/6/9	Add low power mode and wakeup function by champion
V1.4	2016/2/19	Format the document by Alex Lu

目录

RI	EVISION HISTORY	2
E	录	3
表	₹目录	4
Ť		
_	3目录	
1	概述	6
	1.1 供电和 PIN 脚定义	6
	1.2 UART 设定	6
	1.2.1 UART <i>参数</i>	
	1.2.2 UART efuse/config	7
	1.2.3 波特率设定	8
	1.2.4 UART RTS/CTS 接法	
	1.3 PCM 设定	
	1.4 32K CLOCK	
	1.4.1 efuse/config definition	
	1.4.2 external/internal 设定	
	1.5 生成 PATCH CODE	
	1.6 CONFIG FILE	
	1.6.1 Config file 结构	
	1.6.2 Config file 例子	
2	初始化过程	13
	2.1 确定卡片型号	13
	2.2 LOAD PATCH CODE 和 CONFIG FILE	
	2.3 CHANGE BAUD RATE	15
	2.4 DOWNLOAD PATCH CODE AND CONFIG FILE	15
	2.5 HCI_VENDOR_DOWNLOAD COMMAND	15
	2.5.1 Download procedure	17
	2.5.2 Check Download Success	18
	2.6 CHANGE HARDWARE FLOW CONTROL	18
3	低功耗模式及唤醒功能	18
	3.1 蓝牙低功耗模式	
	3.2 主机唤醒蓝牙	19 20
	1 1 mt / PT-84 T // 1	/!!

表目录

表	1 UART 参数	7
表	2 Realtek BT controller UART interface 默认参数	
	2 野江 Local Version Information	1:

图目录

图	1 Power on sequence	6
图	2 8723AS 波特率误差	8
图	3 使用外部 32K 的 UART interface 连接示意图	9
冬	4 使用内部 32K 的 UART interface 连接示意图	9
图	5 Config file format	11
冬	6 BT Controller 初始化过程	13
冬	7 Read Local Version Information Command	14
图	8 Patch code 和 Config file 结构	15
图	9 Change Baud Rate Command	15
	10 Vendor Download Command	
图	11 Download Firmware 过程	17
图	12 Non-link mode LPS 时 Host 发送数据包时序图	19
图	13 Link-mode BT 进入 sniff mode 后 Host 发送数据包时序图	20
冬	14 BT Controller 唤醒 Host 时 BT WAKE HOST 的时序图	20

1 概述

本文档主要介绍 Realtek UART interface (H4)蓝牙芯片的初始化流程,供第三方开发参考使用。

1.1 供电和 pin 脚定义

这部分内容请参考 HW datasheet。

需要注意的是 BT_RST pin (EN_CHIP):

Host 在供电状态下可以通过操作 BT RST pin 进行 disable/enable BT 的动作:

- 1. 拉低 BT RST pin, 1s 后, BT controller 才能真正进入 power down 模式;
- 2. 拉高 BT_RST pin,500ms 后发送 HCI_Reset 指令,或者也可发送 command 收不 到 event 情况下面进行重发直到收到 event 继续下面的初始化工作。

1.2 UART 设定

1.2.1 UART 参数

BT controller 上电后使用默认的 UART 参数,host 需要根据芯片的设定来初始化平台的 UART 参数,通过 vendor command 和 config file 设定新的 UART 参数。

其中可以修改的参数有:

- 1. 波特率:
 - 1) 可以在加载 firmware 之前通过 vendor command 修改;
 - 2) Controller 在收到最后一个 download patch command 之后,回复 command complete event 之前会修改 baudrate 为 config file 中设定的值;
 - 3) Config file 中需要设定与 vendor command 相同的 baud rate 值 。
- 2. Hardware flow control: 通过 config file 修改。
 - 1) Controller 在收到最后一个 download patch command 之后,回复 command complete event 之前修改为 config file 中的设定。

- 2) 建议在 download patch code 的过程中关闭 host 端 HW flow control,在发送最后一笔 download patch code command 后再根据 config file 的配置决定是否打开 host 端的 flow control。
- 3) 为了保证传输的效率,建议download patch 结束后同时打开 host 和 controller 的 HW flow control。

其他参数不建议修改,直接使用 BT controller 的默认值即可,如果因为特殊需求必须修改,建议联系我们修改 efuse 设定。

UART 主要参数见下表。

Parameters
Options
Protocol
H4 or H5
Flow control
On or Off
Parity
None\even\odd
Number of data bits
Stop bit
Buad rate
115200, ..., 300000 bps

表 1 UART 参数

BT controller UART interface 默认参数见下表,具体设定可能会有差异,请向芯片提供者确认或者通过读 efuse 确认。

芯片型号	Baud rate	Protocol	Parity	Stop bit	Hardware Flow
					Control
RTL8723A	115200	H5	Even	1	Disable
RTL8723B	115200	H5	Even	1	Disable
RTL8761AT	115200	H4	None	1	Disable
RTL8761ATL	115200	H5	Even	1	Disable

表 2 Realtek BT controller UART interface 默认参数

1.2.2 UART efuse/config

- 1. 波特率: 0x0c~0x0f(4 bytes, 具体设定参考 1.2.3)
- 2. Parity 和 Hardware Flow Control: 0x18~0x1b
 - Bit[0] : parity_en
 - If set to 1, enable parity.
 - If set to 0, disable parity.
 - Bit[1]: parity_even

- Set 1 to enable even parity
- Bit[2]: hw_fctrl_on
 - If set to 1, enable hardware flow control.
 - If set to 0, disable hardware flow control.

1.2.3 波特率设定

波特率在 config file 中的设置: offset 0x000c~0x000f(4 bytes,具体设定参考 1.6.2) Config file 包含了一系列 BT Controller 设定,在蓝牙初始化时下载到 BT Controller,具体参考 1.6

常见 baud rate 设定如下:

14 CO 52 O2 for 115200

04 50 F7 05 For 921600

02 80 92 04 for 1.5M

Host 和 controller 实际工作的波特率可能与设定值都有一定的偏差,为了保证能正常工作,建议 host 和 controller 之间实际波特率误差小于 3%。

以下误差百分比为负数表示实际波特率比设定值偏小,误差百分比为正数表示实际波特率比设定值偏大。

1. 8723A

8723AS UART Baudrate Settings	0x0C	0x0D	0x0E	0x0F	Baudrate Error (%)
115200	1D	70	00	00	-0.22%
230400	10	60	00	00	-1.36%
460800	08	60	00	00	-1.36%
921600	04	60	00	00	-1.36%
2000000	02	50	00	00	+0%
3000000	01	80	00	00	+2.56%
3250000	01	70	00	00	+2.56%
4000000	01	50	00	00	+0%

图 28723AS 波特率误差

2. 8723B/8703A/8821A/8761A 等

具体设定参看 BT driver package 中的 doc/RTL8761A_FineTune_BaudrateTable.txt 文档。

1.2.4 UART RTS/CTS 接法

UART RTS 一般情况下为输出,CTS 为输入。Realtek 对 Host UART CTS, BT UART RTS 做了一些

特殊处理。

- 1. 为了保证数据传输的效率,建议 HOST_UART_RTS_OUT 接到 BT_UART_CTS_IN ,同时打开 HW flow control。
- 2. HOST_UART_CTS_IN,可以经由电阻接 LOW (避免漏电,并让 UART 可以正常运作),若 HOST_UART_CTS_IN 永远是 Input Pin,可以接 GND。
- 3. BT_UART_RTS 不要接到 HOST_UART_CTS_IN。
- 4. 尽量使用 BT UART RTS 当作是 external 32K Clock Input pin (参看 1.4)。
 - 1) Input Voltage Range: VIO_UART~3.3V
 - 2) 3.3V Tolerance, 不会有漏电
- 5. 当不使用 BT_UART_RTS 时,空接,不要接 GND。如果使用内部 32K clock,这个 pin 不能接外部 32K。默认使用内部 32K。

下图是使用 external 32K 的接法。如果使用 internal 32K,则 BT_UART_RTS_OUT 空接,其它不变。

图 3 使用外部 32K 的 UART interface 连接示意图

图 4使用内部 32K 的 UART interface 连接示意图

1.3 PCM 设定

BT controller 的 PCM 参数需要根据 host 参数在 config file (参看 1.6) 中设定,参数定义

参看 BT driver package 中 doc/目录下的 PCM setting_Description_v03.pdf 和 PCM_Spec.pdf 文档,如果需要,也可以将 host 参数告诉我们由我们计算 controller 的设定。

1.4 32K clock

如果 host 平台有可用的 32K clock,建议 BT controller 使用 external 32K clock,并且使用平台上的 32K clock,否则使用 internal 32K。

1.4.1 efuse/config definition

- 1. 8723A
 - 32K clock 选择: WIFI efuse 0x0B[7]
 - WIFI efuse 0x0B[7] = 1, enable UART_RTS pin as 32k clock input pin.
 - WIFI efuse 0x0B[7] = 0, UART_RTS pin is output pin.
- 2. 8723B/8761A/8821A 等
 - 32K clock 选择: 0x27[7]
 - 0: internal
 - 1: external
 - BT_UART_RTS pin direction: 0x1E3[0]
 - 0: output
 - 1: input
 - Select low power clock: 0XFE
 - 1: 32KHz
 - 0: 32.768KHz

1.4.2 external/internal 设定

- 1. 0x27[7] = 0, 0x13e[0] = 0: internal 32K, UART_RTS pin is output.
- 2. 0x27[7] = 1,0x13e[0] = 1: external 32K, 32k clock input pin is BT_UART_RTS pin. efuse/config 设定要与平台硬件连接保持一致,参看 1.2.4。

1.5 生成 patch code

目前 Realtek 的蓝牙芯片,都需要在初始化的时候加载 patch code. 使用我们提供的 patch code 再加上后面的 config 文件一起加载给芯片。

firmware(patch code) config

Buffer

Copyright 2013 Realtek Semiconductor Corporation.

1.6 Config file

Realtek BT controller 支持通过 config 文件动态调整 HW 设定(config 文件直接拷贝到 patch code 之后再一起 download 即可)。

通常会使用 config fille 修改如下参数:

- 1. 蓝牙地址;
- 2. UART 参数;
- 3. PCM 设定;
- 4. 32K clock 选择,要与平台硬件连线对应。如果有其他特殊要求,可以直接联系我们。

1.6.1 Config file 结构

Config 文件包含两个 section: Signature Section 和 data section。

图 5 Config file format

- 1. Signature section
 - Signature Field (4 octets)
 - Must be 0x8723ab55
 - If the signature field is expected, data_length field and data section are valid.
 - Data_Length Field (2 octets)
 - The total length of Data Section, exclude length of Signature and Data_Length.
- 2. data section
 - Offset Field (2 Octets): The Started Offset of BT efuse
 - Length Field (1 Octect): The byte length of following data.

图 1.6.2 data format

Copyright 2013 Realtek Semiconductor Corporation.

1.6.2 Config file 例子

以 8761a 卡片的 config 为例。

000000000h: 55 AB 23 87 B1 00 F4 00 08 01 00 00 00 05 50 00 00000010h: 00 DC 00 10 02 80 92 04 50 C5 EA 19 E1 1B F1 AF 00000020h: 5F 01 A4 0B 27 00 01 67 FE 00 01 01 5B 01 04 0B 00000030h: 0B 0B 0A E3 01 01 00

- 1. Data length: 0x31
- 2. PCM setting(具体内容参看 PCM setting_Description_v03.pdf 和 PCM_Spec.pdf) f4 00 08 01 00 00 00 55 000 00
- 3. UART baudrate and setting: (具体内容参看 RTL8761A_FineTune_BaudrateTable.txt) 0c 00 10 ...
- 4. 32k clock (具体定义参看 1.4)
 - External 32K
 - external 32k: 27 00 01 E7
 - BT low power clock : FE 00 01 00
 - UART_RTS pin direction: E3 01 01
 - Internal 32K
 - Internal 32k: 27 00 01 67
 - BT low power clock : FE 00 01 01
 - UART_RTS pin direction: E3 01 01 00

2 初始化过程

初始化过程如下,host 在初始化结束时改变自身 hardware flow control 设置之前,一直要处于 flow control disable 状态,并且 HOST_UART_RTS_OUT 要设为低电平。

图 6 BT Controller 初始化过程

2.1 确定卡片型号

在 download patch code 之前,Realtek 蓝牙芯片的 default Local Version Information 如下表,download patch code 之后,LMP subversion 和 HCl reversion 会发生变化,并且每一版 patch code 都会不同。

To a sylve Boom voision information							
芯片型号	LMP Subversion	HCI Revision					
RTL8723A	0X1200	0X000B					
RTL8723B	0X8723	0X000B					

表 3 默认 Local Version Information

Copyright 2013 Realtek Semiconductor Corporation.

RTL8761A	0X8761	0X000A
RTL8821A	0X8821	0X000A

Host 在 download patch code 之前需要读取 Local Version Information: HCI_Read_Local_Version_Information:

- 1) 根据 LMP Subversion 和 HCI Revision 确定芯片型号(参考表 3)。
- 2) 如果读到的 LMP Subversion 和 HCI Revision 不是表 3 中的任何一个,则可以认为 patch code 已经存在,不需要重复 download。

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Local_Version_	0x0001		Status,
Information			HCI Version,
			HCI Revision,
			LMP Version,
			Manufacturer_Name,
			LMP Subversion

图 7 Read Local Version Information Command

2.2 Load patch code 和 config file

Host 分别从文件中读出 patch code 和 config file,组成一个新的文件(结构如下图,最大不超过 24K),通过 HCI vendor command 下载到 BT controller(参考 2.5)。

一般来说,在 download 之前需要从其他地方读取 BD address,并替换 config file 中的 BD address,否则,download 相同 config file 的设备会出现 BD address 相同的情况。

图 8 Patch code 和 Config file 结构

2.3 Change baud rate

建议在 download patch code 之前先将 host 和 controller 的波特率统一修改成 config file 中的设定值。

Command	Opcode	OCF	OGF	Parameter length	Parameter	Return Parameter
Set Baudrate	0XFC17	0X0017	0X3F	4 byte	Baudrate	Status

图 9 Change Baud Rate Command

Baudrate 设定参考 1.2.2。

BT controller 收到这个 command 之后,会以旧的 baudrate rate 回复 Command Complete Event,host 收到 event 后,确认 BT controller 波特率已经改变后,需要同时改变自己的波特率,从而才能够继续通信。

2.4 Download patch code and config file

使用 HCI vendor command 完成 download patch 的功能。

2.5 HCI_VENDOR_DOWNLOAD command

Command	Opcode	Command Parameters	Return Parameters
HCI_VENDOR_DOWNLOAD	0XFC20	Index, Data[]	Status, Index

Copyright 2013 Realtek Semiconductor Corporation.

图 10 Vendor Download Command

1. Command Parameters

- Index (1 Octet)
 - bit[7]: 1 is the last and 0 is the start/continuous block
 - bit[6:0]: the sequence number. The number shall be incremented by 1 after host send each commands to the controller. The reset value is 0.
- Data (4N Octets)
 - The length is the multiple of 4 bytes. If it is not the last block, host may send 252 byte in data field to reduce the time in download procedure.

2. Return Parameters:

- Status (1 Octet): 0x00 means Vendor Download command succeed. Otherwise, mean failed
- Index (1 Octet): Return the index from received Vendor Download command

2.5.1 Download procedure

图 11 Download Firmware 过程

在 download 的过程中有以下几点需要注意:

- 1. 在 BT controller 上电后,host 端发送第一个 HCI command 前必须完成 Patch code download 过程。
- 2. Download 过程中不能发送其他的 HCI command。
- 3. Host 发送最后一个 vendor download command(last = 1, Index = N -1)后,BT controller 会根据 patch code 和 config file 设定重新配置 controller,因此需要等待一段时间(300ms)才能回复 command complete event。BT controller 是在新的配置状态下回复 command complete event。

Copyright 2013 Realtek Semiconductor Corporation.

2.5.2 Check Download Success

通过以下两点可以确认 patch code 已经 download 成功。

- 1. 收到 controller 回复的最后一个 command complete event(last = 1 and index = N-1)。
- 2. LMP Subversion 和 HCI Revision 已经非初始值。

2.6 Change Hardware Flow Control

在 download patch code 完成之前,host 一直是 hardware flow control disable 状态,BT controller 收到最后一个 download command(last = 1,Index = N -1)后,会根据 config file 的设定重新配置 controller(比如是否打开 Hardware Flow Control,PCM setting, BD address 等),发送最后一个 command complete event 时已经工作在新的配置状态。所以 host 在发送完最后一个 download patch command 之后,收到 command complete event 之前,需要根据 config file 的设定修改 Host UART 的 Hardware Flow Control 设定。

至此, 蓝牙的初始化过程结束。

3 低功耗模式及唤醒功能

3.1 蓝牙低功耗模式

蓝牙 controller 进入低功耗模式(底电流<1mA)必须有特定版本的固件支持,且符合以下条件 controller 会自动进入低功耗模式,不需要 host 进行设置

1. Non-link mode

- 1) 放 6s 之后就会自动进入 LPS。
- 2) Page Scan、Inquiry Scan、LE Adv、LE Scan 这四个状态下的 interval 不能小于 0x80。

2. Link mode

- 1) Sniff 、Page Scan、Inquiry Scan、LE Adv、LE Scan 这四个状态下的 interval 不能小于 0x80。
- 2) 两条 Link 不能够进入 LPS。
- 3) 有 eSCO、SCO 不会进入 LPS。
- 4) 先进入 Sniff Mode 才能进入 LPS,如果 Sniff Mode 进不去就不会进 LPS,Sniff 参数建议: N_{sniff attempt} 设置为大于 1 的值(Sniff Mode Command)。

3. LE specific

- 1) LE master/slave: Connection Interval (conn_interval)不能小于 0x80,否则也不能进入 LPS。
- 2) LE master: Connection Interval (conn_interval)、 Initiator Scan Interval(LE_Scan_Interval in LE Create Connection Command)也不能小于 0x80,否则不能进入 LPS。

Copyright 2013 Realtek Semiconductor Corporation.

4. HCI commands/Events

- 1) Read Inquiry Scan Activity Command
- 2) Write Inquiry Scan Activity Command
- 3) Read Page Scan Activity Command
- 4) Write Page Scan Activity Command
- 5) LE Set Advertising Parameters Command
- 6) LE Set Scan Parameters Command
- 7) Sniff Mode Command (N_{sniff attempt})
- 8) Mode Change Event: Return the actual sniff interval in the Interval parameter
- 9) LE Create Connection Command(Initiator Scan Interval)

(基本上现在提供的正式版 patch 都是给 40M 使用, 26M 要额外提供。)

3.2 主机唤醒蓝牙

蓝牙 controller 支持通过 UART inbandside signal 唤醒,只要 host 发包给 controller, controller 自动会醒来,但是由于 8761AT 醒来需要时间,H4 没有重传机制,可能存在小概率丢包,请 host 实现以下机制确认不会丢包

Non-link mode:每次发包前都会丢 0xFF,如果和上一次发包间隔大于 5s,发完 0xff 之后 Delay 2ms

图 12 Non-link mode LPS 时 Host 发送数据包时序图

Link mode: 进入 sniff mode 后,只要 host 有数据要送都会先丢 0xff,如果和上一次发包间隔大于 5s,发完 0xff 之后 Delay 2ms

图 13 Link-mode BT 进入 sniff mode 后 Host 发送数据包时序图

3.3 蓝牙唤醒主机

主机进入睡眠状态,通过蓝牙唤醒。

配置 Pin25(BT_WAKE_HOST)作为 Wakeup output pin

0xDF, 0x01, 0x01, 0x41, 0xE2, 0x01, 0x01, 0x50, // wake up GPIO config

BT Controller 可以通过判断 2 个 event 间隔是否大于 2 秒,如果间隔大于 2s,在发包之前去拉一下 BT_WAKE_HOST 来实现唤醒主机,并且 delay 1ms 后发送 event 给 host, 防止丢包。

图 14 BT Controller 唤醒 Host 时 BT_WAKE_HOST 的时序图