Svar, TATA24, 2020-01-16

3.
$$e^{\frac{1}{\sqrt{7}}\begin{pmatrix} -1\\2\\1\\-1\end{pmatrix}}$$
, $e^{\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\0\\0\\-1\end{pmatrix}}$ 4. $\frac{1}{10}\begin{pmatrix} 1&-3\\-3&q\end{pmatrix}$

$$4. \quad \frac{1}{10} \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$$

Ekvationer for N(F) (och samtidigt benoendeekv. For F(e,),..., F(en):

$$\begin{pmatrix} 1 & 3 & 1 & 2 & 0 \\ -1 & -2 & 0 & -1 & 0 \\ 2 & 1 & -3 & 2 & 0 \end{pmatrix} \sim \dots \sim \begin{pmatrix} 1 & 3 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 & 0 \end{pmatrix}, \text{ vilket gen}$$

$$\begin{cases} X_1 = -3(-t) - t = 2t \\ X_2 = -t \\ X_3 = t \\ X_4 = 0 \end{cases}$$

- V(F) spanns upp av F(e,1),..., F(e,4), och trappformen ger att F(es) ar onodig, så en bas for V(F) ar (1,-1,2), (3,-2,1), (2,-1,2).
- (Alltså ar V(F) = R3, så vilken bas som helst for R3 ger ett alternative svar.)
- 8. $A = \begin{pmatrix} -1 & -1 \\ 8 & 5 \end{pmatrix}$. Egenvärden och egenvektorer till A:

$$\begin{vmatrix} -1-\lambda & -1 \\ 8 & 5-\lambda \end{vmatrix} = \lambda^2 - 4\lambda + 3 = 0 \implies \lambda = 1, 3.$$

 $\lambda = 3: \begin{pmatrix} -4 & -1 & | & 0 \\ 8 & 2 & | & 0 \end{pmatrix} \quad \text{ger} \quad t \begin{pmatrix} 1 \\ -4 \end{pmatrix}. \quad \lambda = 1: \begin{pmatrix} -2 & -1 & | & 0 \\ 8 & 4 & | & 0 \end{pmatrix} \quad \text{ger} \quad t \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$

Med $T = \begin{pmatrix} 1 & 1 \\ -4 & -2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$ fås AT = TD, så $A = TDT^{-1}$,

vilket ger: $A^n = TD^nT^{-1} = \begin{pmatrix} 1 & 1 \\ -4 & -2 \end{pmatrix}\begin{pmatrix} 3^n & 0 \\ 0 & 1^n \end{pmatrix}T^{-1} =$

$$= \begin{pmatrix} 3^{n} & 1 \\ -4.3^{n} & -2 \end{pmatrix} \frac{1}{2} \begin{pmatrix} -2 & -1 \\ 4 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -2.3^{n} + 4 & -3^{n} + 1 \\ 8.3^{n} - 8 & 4.3^{n} - 2 \end{pmatrix}.$$

9.
$$Q(\underline{e}X) = 2x_1^2 + 8x_1x_3 + 3x_2^2 + 8x_3^2 = X^tAX$$
, $dar A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 3 & 0 \\ 4 & 0 & 8 \end{pmatrix}$. Egenvarden och egenvektorer till A :

$$\begin{vmatrix} 2-\lambda & 0 & 4 \\ 0 & 3-\lambda & 0 \\ 4 & 0 & 8-\lambda \end{vmatrix} = (3-\lambda) \begin{vmatrix} 2-\lambda & 4 \\ 4 & 8-\lambda \end{vmatrix} = (3-\lambda) (\lambda^2 - 10\lambda) = 0 \implies \lambda = 0,3,10.$$

$$\lambda=0: \begin{pmatrix} 2 & 0 & 4 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 8 & 0 \end{pmatrix} \text{ ger } t\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \quad \lambda=3: \begin{pmatrix} -1 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 5 & 0 \end{pmatrix} \text{ ger } t\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

$$\lambda = 10: \begin{pmatrix} -8 & 0 & 4 \\ 0 & -7 & 0 \\ 4 & 0 & -2 \end{pmatrix}$$
 ger $t \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Normering ger ON-basen $f:$

a) Sat
$$f_1 = e \begin{pmatrix} 2/\sqrt{5} \\ 0 \end{pmatrix}$$
, $f_2 = e \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $f_3 = e \begin{pmatrix} 1/\sqrt{5} \\ 0 \end{pmatrix}$. Med $T = \begin{pmatrix} 2/\sqrt{5} & 0 & 1/\sqrt{5} \\ 0 & 1 & 0 \\ -1/\sqrt{5} & 0 & 2/\sqrt{5} \end{pmatrix}$ fas $f = eT$ och $AT = TD$, dar $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 10 \end{pmatrix}$, sa $T^tAT = D$, vilket ger;
$$Q(fY) = Q(eTY) = (TY)^tA(TY) = Y^tT^tATY = 3y_2^2 + 10y_3^2.$$

b)
$$Q(fY) = 0 \Leftrightarrow 3y_2^2 + 10y_3^2 = 0 \Leftrightarrow y_1 = t, y_2 = y_3 = 0, ds - t \in \mathbb{R},$$

så Q:s nollställen ar tf_1 , $t \in \mathbb{R}$, $ds = \begin{pmatrix} 2s \\ 0 \\ -s \end{pmatrix}$, $s \in \mathbb{R}$.

- 10. a) F ar isometrisk om |F[ū] = [ū] for alla ū ∈ V.
 - b) Om $\lambda \in \mathbb{R}$ are the genvarde fill F finns ett $\overline{u} \neq \overline{0}$ s.a. $F(\overline{u}) = \lambda \overline{u}$. Då fås $|\overline{u}| = |F(\overline{u})| = |\lambda \overline{u}| = |\lambda||\overline{u}|$, så $|\lambda| = 1$, vilket ger att $\lambda = 1$ eller $\lambda = -1$.
 - c) Antag att $\bar{u} \neq \bar{0}$, att $F(\bar{u}) = \lambda \bar{u}$ ($dar \lambda = \pm 1$) och att $(\bar{u}|\bar{v}) = 0$. Då fås $0 = (\bar{u}|\bar{v}) = /F$ isometrisk / $= (F(\bar{u})|F(\bar{v})) = (\lambda \bar{u}|F(\bar{v})) = \lambda (\bar{u}|F(\bar{v})), så (\bar{u}|F(\bar{v})) = 0,$ dvs $F(\bar{v})$ ar ortogonal mot \bar{u} .