'MATH+ECON+CODE' MASTERCLASS ON MATCHING MODELS, OPTIMAL TRANSPORT AND APPLICATIONS

Alfred Galichon (NYU)

Spring 2018
Day 4, May 24 2018: one-to-many matching
Block 12. Matching function equlibrium algorithms

A MODEL OF MATCHING WITH TAXES

- Assume that \mathcal{X} is worker's location, and \mathcal{Y} is firm's location. These sets are all set to be a grid of 100 points in a square city $[0,1]^2$. That is, $\mathcal{X} = \mathcal{Y} = \{1/10, 2/10, 3/10, ..., 9/10, 1\} \times \{1/10, 2/10, 3/10, ..., 9/10, 1\}$.
- Assume:
 - ▶ there is a mass one $n_x = 1$ of workers at each $x \in \mathcal{X}$.
 - ▶ if a firm $y \in \mathcal{Y}$ has coordinates (y^1, y^2) there is a mass $m_y = y^1 \times y^2$ of passengers at y.

TAXLESS BENCHMARK

Assume that if the wage of a worker i of type x working for a firm of type y is w_{xy} , then the payoff of the worker is

$$u_i = \alpha_{xy} + w_{xy} + \varepsilon_{iy}$$
 if matched with firm y $u_i = \varepsilon_{i0}$ if unassigned

where $\alpha_{xy} = -0.1d(x,y)^2$ and $d(x,y)^2$ is the squared Euclidian distance between y and z, and $(\varepsilon_{iy}, y \in \mathcal{Y}_0)$ are i.i.d. Gumbel random utility terms.

▶ The payoff of a firm j of type y is

$$v_j = \gamma_{xy} - w_{xy} + \eta_{xj}$$
 if matched with x $v_j = \eta_{0j}$ if unassigned

where $\gamma_{xy} = 1$ for all x and y.

- ▶ **Q1**. Compute:
 - 1. the total number of matched pairs $\sum_{xy} \mu_{xy}$
 - 2. the average wage $(\sum_{xy} \mu_{xy} w_{xy}) / (\sum_{xy} \mu_{xy})$.

LINEAR AND PROGRESSIVE TAXATION

▶ Q2. Same question if the workers' utilities are replaced by

$$u_i = \alpha_{xy} + 0.8 \times w_{xy} + \varepsilon_{iy}$$
 if matched with firm y $u_i = \varepsilon_{i0}$ if unassigned

and the firms' utilities are unchanged.

▶ **Q3**. Same question if the taxation schedule is given by the following progressive taxation schedule with three tax rates

$$\min \left\{ w, 0.8 \times (w-0.1) + 0.1, 0.6 \left(w-0.2\right) + 0.18 \right\}.$$

A TOY MODEL OF FERTILITY

Now keep the same n_x , m_y and the same α_{xy} and γ_{xy} but change the interpretation to assume that i is a man and j a woman; and if a man i matches with a woman j, they get utilities

$$u_i = 1 - 0.1d(x, y)^2 + 0.2g + \ln c_x$$

 $v_j = 1 - 0.2d(x, y)^2 + 0.1g + \ln c_y$

where $g \in \{0, 1, 2\}$ is the number of kids, and c_x and c_y are the private consumptions, which are subject to the constraint $c_x + c_y = 2 - 5g$.

▶ **Q4**. Compute the total number of matched agents at equilibrium $\sum_{xy} \mu_{xy}$, as well as the average number of kids per couples

$$\frac{\sum_{xy} \mu_{xy} \mathsf{g}_{xy}}{\sum_{xy} \mu_{xy}}.$$