Construção dos Números Reais via Cortes de Dedekind

Daniel Alves de Lima

Cortes de Dedekind

Definição: Seja $\alpha \subset \mathbb{Q}$. Dizemos que α é um corte se satisfaz as condições:

- 1. $\emptyset \neq \alpha \neq \mathbb{Q}$.
- 2. Seja $q \in \mathbb{Q}$. Se $p \in \alpha$ e q < p, então $q \in \alpha$.
- 3. α não possui elemento máximo.

Vamos representar por \mathcal{C} o conjunto de todos os cortes.

Proposição. Seja $r \in \mathbb{Q}$. O conjunto $r^* = \{x \in \mathbb{Q}; x < r\}$ é um corte.

 $\begin{array}{l} Demonstração. \text{ Temos que } \frac{r}{2} \in r^* \text{ e } r+1 \notin r^*. \text{ Então, } \emptyset \neq r^* \neq \mathbb{Q}. \text{ Sejam } x \in \alpha \\ \text{e } y \in \mathbb{Q} \text{ tal que } y < x, \text{ então } y < r, \text{ e portanto, } y \in r^*. \text{ Assim, fica satisfeita a segunda condição. Dado } x \in \alpha, \text{ tem-se } x < \frac{x+r}{2} < r \text{ onde } \frac{x+r}{2} \in r^*. \text{ Então, } \alpha \\ \text{não possui elemento máximo e vale a terceira condição.} \end{array}$

Relação de Ordem em $\mathcal C$

Definição: Sejam $\alpha \in \mathcal{C}$ e $\beta \in \mathcal{C}$. Definimos

- 1. $\alpha \leq \beta$ se, e só se, $\alpha \subset \beta$.
- 2. $\alpha < \beta$ se, e só se, $\alpha \subset \beta$ e $\alpha \neq \beta$.

É fácil verificar "≤" é uma relação de ordem.

Lema 1. Sejam $\alpha \in \mathcal{C}$ e $x \in \mathbb{Q}$ com $x \notin \alpha$. Então p < x para todo $p \in \alpha$.

Demonstração. Suponha que vale a hipótese e que existe $p \in \alpha$ tal que $p \geq x$. Como $x \notin \alpha$, só pode ser p > x. Então, tem-se $x \in \alpha$ um absurdo. Logo, deve ser p < x para todo $p \in \alpha$.

Propriedade: Sejam $\alpha \in C$ e $\beta \in C$. Então, $\alpha \leq \beta$ ou $\alpha \geq \beta$.

Demonstração. Se $\alpha \subset \beta$, então $\alpha \leq \beta$. Se $\alpha \not\subset \beta$, então existe $x \in \mathbb{Q}$ tal que $x \in \alpha$ e $x \notin \beta$. Segue do lema que p < x para todo $p \in \beta$. Segue que $p \in \alpha$ para todo $p \in \beta$, ou seja, $\beta \leq \alpha$.

Adição em C

Teorema 1. Se α e β são cortes, então $\alpha + \beta = \{a + b; a \in \alpha, b \in \beta\}$ (chama-se soma de α e β) também é um corte.

Demonstração. 1. Como α e β não são vazios, existem $a \in \alpha$ e $b \in \beta$ tais que $a+b \in \alpha+\beta$. Então, $\alpha+\beta \neq \emptyset$. Como $\alpha \neq \mathbb{Q}$ e $\beta \neq \mathbb{Q}$, existem racionais s e t com $s \notin \alpha$ e $t \notin \beta$. Pelo lema 1, tem-se a < s para todo $a \in \alpha$ e b < t para todo $b \in \beta$. Então, a+b < s+t para todo $a \in \alpha$ e todo $b \in \beta$. Logo, $s+t \notin \alpha+\beta$, e portanto, $\alpha+\beta \neq \mathbb{Q}$.

- 2. Dado $x \in \alpha + \beta$, existem $a \in \alpha$ e $b \in \beta$ tal que x = a + b. Seja $y \in \mathbb{Q}$ tal que y < x. Segue que, $y < a + b \implies y a < b \implies y a \in \beta$. Então, tem-se $y = a + (y a) \in \alpha + \beta$.
- 3. Dado $x \in \alpha + \beta$, existem $a \in \alpha$ e $b \in \beta$ tal que x = a + b. Como α e β não possuem máximo, existem racionais $s \in \alpha$ e $t \in \beta$ tal que a < s e b < t. Então, tem-se x = a + b < s + t onde $s + t \in \alpha + \beta$. Logo, $\alpha + \beta$ não possui elemento máximo.

Assim, fica provado as três condições necessárias para que se tenha $\alpha + \beta \in \mathcal{C}$.

Propriedades da Adição

A operação que associa a cada par (α, β) de elementos de \mathcal{C} a sua soma $\alpha + \beta$ chamamos de adição e indicamos por +.

Lema 2. Sejam $\alpha \in \mathcal{C}$, um racional u < 0 e M_{α} o conjunto das cotas superiores de α . Então, existem $p \in \alpha$, $q \in M_{\alpha}$, $q \neq minM_{\alpha}$ (caso exista este minimo), tais que p - q = u.

Demonstração. Exercício.

Teorema 2. A adição satisfaz as propriedades:

- 1. Associativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma, \forall \alpha, \beta, \gamma \in \mathcal{C}$.
- 2. Comutatividade: $\alpha + \beta = \beta + \alpha, \forall \alpha, \beta \in \mathcal{C}$.
- 3. Existência de Elemento Neutro: $\alpha + 0^* = \alpha$, $\forall \alpha \in \mathcal{C}$.
- 4. Inverso aditivo: $\forall \alpha \in \mathcal{C}, \exists \beta \in \mathcal{C}; \alpha + \beta = 0^*$.
- 5. Compatibilidade da adição com a ordem: $\alpha \leq \beta \implies \alpha + \gamma \leq \beta + \gamma$, $\forall \alpha, \beta, \gamma \in \mathcal{C}$.

Demonstração. As duas primeiras propriedades são triviais decorrendo da associatividade e comutatividade em \mathbb{Q} .

Dado $x \in \alpha + 0^*$, existem $a \in \alpha$ e u < 0, $u \in \mathbb{Q}$ tais que x = a + u. Segue que, $a + u < a \implies x < a \implies x \in \alpha$. Então, $\alpha + 0^* \subset \alpha$. Vejamos a inclusão contraria. Dado $x \in \alpha$, existe $a \in \alpha$ tal que x < a. Segue que, $x < a \implies x = a + (x - a) \in \alpha + 0^*$ donde $\alpha \subset \alpha + 0^*$. Assim fica provado a terceira propriedade.

Seja $\alpha \in \mathcal{C}$. Considere o corte $\beta = \{p \in \mathbb{Q}; -p \in M_{\alpha} \text{ e } -p \neq \min M_{\alpha}\}$ (Exercício!). Dado $x \in \alpha + \beta$, existem $a \in \alpha \text{ e } b \in \beta$ tais que x = a + b. Segue que, $b \in \beta \implies -b > a \implies a + b < 0 \implies x < 0 \implies x \in 0^*$. Então, $\alpha + \beta \subset 0^*$. Vejamos a inclusão contraria. Dado $x \in 0^*$, pelo lema anterior, existem $a \in \alpha$ e $-b \in M_{\alpha}$ com $-b \neq \min M_{\alpha}$, tais que x = a - (-b) donde $x = a + b \in \alpha + \beta$. Então, $0 * \subset \alpha + \beta$. Assim fica provado a quarta propriedade.

Sejam $\alpha, \beta, \gamma \in \mathcal{C}$, com $\alpha \leq \beta$. Dado $x \in \alpha + \gamma$, existem $a \in \alpha$ e $c \in \gamma$ tais que x = a + c. Como $a \in \alpha \implies a \in \beta$. Logo, $x = a + c \in \beta + \gamma$. Ficando provado a quinta propriedade.

Teorema 3. O inverso aditivo é único. Ou seja, se $\alpha + \beta = 0^*$ e $\alpha + \gamma = 0^*$, então $\beta = \gamma$.

Demonstração.
$$\beta = 0^* + \beta = (\gamma + \alpha) + \beta = \gamma + (\alpha + \beta) = \gamma + 0^* = \gamma$$

Teorema 4. Unicidade do elemento neutro. Ou seja, se $\alpha + \gamma = \alpha$ para todo $\alpha \in \mathcal{C}$, então $\gamma = 0^*$.

Demonstração. Simplesmente, $0^* + \gamma = 0^* \implies \gamma = 0^*$.

Multiplicação em C

Teorema 5. Sejam $\alpha, \beta \in \mathcal{C}$, com $\alpha > 0^*$ e $\beta > 0^*$. Então, $\gamma = \mathbb{Q}_{\leq 0} \cup \{ab; a \in \alpha, b \in \beta, a > 0, b > 0\}$ é um corte.

Demonstração. Exercício.

Definição: Sejam $\alpha \in \mathcal{C}$ e $\beta \in \mathcal{C}$. Definimos a multiplicação (ou produto) de α e β por:

$$\alpha \cdot \beta = \begin{cases} \mathbb{Q}_{\leq 0} \cup \{ab; a \in \alpha, b \in \beta, a > 0, b > 0\}, & \text{se } \alpha > 0^* \text{ e } \beta > 0^* \\ 0^*, & \text{se } \alpha = 0^* \text{ ou } \beta = 0^* \\ -\{(-\alpha)\beta\}, & \text{se } \alpha < 0^* \text{ e } \beta > 0^* \\ -\{\alpha(-\beta)\}, & \text{se } \alpha > 0^* \text{ e } \beta < 0^* \\ (-\alpha)(-\beta), & \text{se } \alpha < 0^* \text{ e } \beta < 0^* \end{cases}$$
(1)

Propriedades da Multiplicação

Lema 3. Sejam $\alpha > 0^*$ um corte e $u \in \mathbb{Q}$ com 0 < u < 1. Então, existem racionais $p \in \alpha, q \in M_{\alpha}$, com $q \neq m\acute{n}M_{\alpha}$ (caso exista), tais que $\frac{p}{q} = u$.

Demonstração. Exercício.

Teorema 6. Sejam α, β e γ cortes quaisquer. A multiplicação possui as seguintes propriedades:

1.
$$(\alpha \cdot \beta)\gamma = \alpha \cdot (\beta \cdot \gamma)$$
.

2.
$$\alpha \cdot \beta = \beta \cdot \alpha$$
.

3.
$$\alpha \cdot 1^* = \alpha$$
.

4. Se $\alpha \neq 0^*$, existe $\beta \in \mathcal{C}$ tal que $\alpha \cdot \beta = 1^*$.

5.
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$
.

6.
$$\alpha \leq \beta \ e \ 0^* \leq \gamma \implies \alpha \cdot \gamma \leq \beta \cdot \gamma$$
.

Demonstração. As duas primeiras propriedades são triviais.

Se $\alpha>0^*$, note que $\alpha\cdot 1^*=\mathbb{Q}_{\leq 0}\cup\{ab;a\in\alpha,a>0,1>b>0\}$. Tem-se $x\in\alpha\cdot 1^*$ e $x\leq0\Longrightarrow x\in\alpha$. Também, $x\in\alpha\cdot 1^*$ e $x>0\Longrightarrow x=au$ com $a\in\alpha,a>0$, e 0< u<1. Então, $au<a\Longrightarrow x=au\in\alpha$, ou seja, $\alpha\subset\alpha\cdot 1^*$. Para a inclusão contraria, temos que $x\in\alpha$ e $x\leq0\Longrightarrow x\in\alpha\cdot 1^*$, também $x\in\alpha ex>0\Longrightarrow\exists a\in\alpha$, com x<a. Assim, $x=a\cdot\frac{x}{a}\in\alpha\cdot 1^*$. Então, tem-se $\alpha\subset\alpha\cdot 1^*$. Se $\alpha=0^*$, pela definição temos $\alpha\cdot 1^*=0^*\cdot 1^*=0^*=\alpha$. Se $\alpha<0^*$, então $\alpha\cdot 1^*=-[(-\alpha)\cdot 1^*]=-[-\alpha]=\alpha$. Fica provado a terceira propriedade.

As outras propriedades ficam como exercício.

Teorema do Supremo

Um subconjunto $A \subset \mathcal{C}$ é dito limitado superiormente se existe um corte m tal que $\alpha \leq m$, para todo $\alpha \in A$.

Lema 4. Seja A um subconjunto de C, não-vazio e limitado superiormente. Então,

$$\gamma = \bigcup_{\alpha \in A} \alpha$$

é um corte.

Demonstração. Sendo $A \neq \emptyset$, existe $\alpha \in A$, e, como $\alpha \neq \phi$, então $\gamma \neq \phi$. Sendo A limitado superiormente, existe um corte m tal que $\alpha \leq m$, para todo $\alpha \in A$. Como m é um corte, existe $x \in \mathbb{Q}$ com $x \notin m$. Daí, para todo $\alpha \in A$, $x \notin \alpha \implies x \notin \gamma$, e portanto, $\gamma \neq \mathbb{Q}$. Assim, fica satisfeita a primeira condição.

Sejam $p \in \mathbb{Q}$ e $q \in \mathbb{Q}$, com $p \in \gamma$ e q < p. Temos que $p \in \alpha$ para algum $\alpha \in A$ e q . Assim, fica satisfeita a segunda condição.

Dado $p \in \gamma$, existe $\alpha \in A$ tal que $p \in \alpha$. Como α não tem máximo, existe $t \in \alpha$, com t > p. Note que $t \in \gamma$. Assim, para todo $p \in \gamma$, existe $t \in \gamma$ tal que p < t. Logo, γ não possui máximo, sendo satisfeita a terceira condição.

Teorema 7. Se $A \subset \mathcal{C}$ é não-vazio e limitado superiormente, então A admite supremo.

Demonstração. Seja $\gamma = \bigcup_{\alpha \in A} \alpha$. Pelo lema anterior, γ é um corte. Segue que, para todo $\alpha \in A$ tem-se $\gamma \supset \alpha$, ou seja, $\gamma \geq \alpha$. Então, α é cota superior de A. Por outro lado, se γ' é uma cota superior qualquer de A, temos que $\gamma' \geq \alpha$ para todo $\alpha \in A$, e portanto, $\gamma' \supset \alpha$ para todo $\alpha \in A$. Então, $\gamma' \supset \gamma = \bigcup_{\alpha \in A} \alpha$, ou seja, $\gamma' \geq \gamma$. Logo, γ é a menor cota superior de A, isto é, $\gamma = \sup A$.

Com a propriedade do supremo em mãos, podemos então definir \mathcal{C} como o conjunto dos números reais que denotaremos por \mathbb{R} .