CAP 5415 Computer Vision Fall 2012

Dr. Mubarak Shah

Univ. of Central Florida
Office 247-F HEC

Lecture-5

SIFT: David Lowe, UBC

SIFT - Key Point Extraction

- Stands for scale invariant feature transform
- Patented by university of British Columbia
- Similar to the one used in primate visual system (human, ape, monkey, etc.)
- Transforms image data into scaleinvariant coordinates

D. Lowe. *Distinctive image features from scale-invariant key points*., International Journal of Computer Vision 2004.

- Extracting distinctive invariant features
 - Correctly matched against a large database of features from many images
- Invariance to image scale and rotation
- Robustness to
 - Affine distortion,
 - Change in 3D viewpoint,
 - Addition of noise,
 - Change in illumination.

Advantages

- Locality: features are local, so robust to occlusion and clutter
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Efficiency: close to real-time performance

Invariant Local Features

Steps for Extracting Key Points

- Scale space peak selection
 - Potential locations for finding features
- Key point localization
 - Accurately locating the feature key points
- Orientation Assignment
 - Assigning orientation to the key points
- Key point descriptor
 - Describing the key point as a high dimensional vector

Scales

- What should be sigma value for Canny and LG edge detection?
- If use multiple sigma values (scales), how do you combine multiple edge maps?
- Marr-Hildreth:
 - Spatial Coincidence assumption:
 - Zerocrossings that coincide over several scales are physically significant.

Scale Space (Witkin, IJCAI 1983)

- Apply whole spectrum of scales
- Plot zerocrossings vs scales in a scale-space

Scale Space

Multiple smooth versions of a signal

Zerocrossings at multiple scale

Scale Space

Scale Space

Interval Tree

Scale Space (Witkin, IJCAI 1983)

- Apply whole spectrum of scales
- Plot zerocrossings vs scales in a scale-space
- Interpret scale space contours
 - Contours are arches, open at the bottom, closed at the top
 - Interval tree
 - Each interval corresponds to a node in a tree, whose parent node represents larger interval, from which interval emerged, and whose off springs represent smaller intervals.
 - Stability of a node is a scale range over which the interval exits.

Scale Space

- Top level description
 - Iteratively remove nodes from the tree, splicing out nodes that are less stable than any of their parents and off springs

Scale Space

A top level description of several signals using stability criterion.

Laplacian-of-Gaussian (LoG)

Interest points:

Local maxima in scale

space of Laplacian-of-

Gaussian

$$L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^3$$

What Is A Useful Signature Function?

Laplacian-of-Gaussian = "blob" detector

K. Grauman, B. Leibe

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example

Building a Scale Space

- All scales must be examined to identify scaleinvariant features
- An efficient function is to compute the Laplacian Pyramid (Difference of Gaussian) (Burt & Adelson, 1983)

Approximation of LoG by Difference of Gaussians

$$\frac{\partial G}{\partial \sigma} = \sigma \Delta^2 G$$

Heat Equation

$$\sigma \Delta^2 G = \frac{\partial G}{\partial \sigma} = \frac{G(x, y, k\sigma) - G(x, y, \sigma)}{k\sigma - \sigma}$$

$$G(x, y, k\sigma) - G(x, y, \sigma) \approx (k-1)\sigma^2 \Delta^2 G$$

Typical values:
$$\sigma = 1.6$$
; $k = \sqrt{2}$

4

Building a Scale Space

4

Building a Scale Space

	scale —				
octave	0.707107	1.000000	1.414214	2.000000	2.828427
	1.414214	2.000000	2.828427	4.000000	5.656854
	2.828427	4.000000	5.656854	8.000000	11.313708
	5.656854	8.000000	11.313708	16.000000	22.627417

$$\sigma = .707187.6; \ k = \sqrt{2}$$

How many scales per octave?

Initial value of sigma

Scale Space Peak Detection

- Compare a pixel (X) with 26 pixels in current and adjacent scales (Green Circles)
- Select a pixel (X) if larger/smaller than all 26 pixels
- Large number of extrema, computationally expensive
 - Detect the most stable subset with a coarse sampling of scales

Key Point Localization

 Candidates are chosen from extrema detection

original image

extrema locations

Initial Outlier Rejection

- Low contrast candidates
- Poorly localized candidates along an edge
- Taylor series expansion of DOG, D.

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x} \qquad \mathbf{x} = (x, y, \sigma)^T \\ \text{Homework}$$

- Minima or maxima is located at $\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$
- Value of D(x) at minima/maxima must be large, |D(x)| > th.

Initial Outlier Rejection

from 832 key points to 729 key points, th=0.03.

Further Outlier Rejection

- DOG has strong response along edge
- Assume DOG as a surface
 - Compute principal curvatures (PC)
 - Along the edge one of the PC is very low, across the edge is high

-

Further Outlier Rejection

- Analogous to Harris corner detector
- Compute Hessian of D

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \qquad Tr(H) = D_{xx} + D_{yy} = \lambda_1 + \lambda_2$$
$$Det(H) = D_{xx}D_{yy} - (D_{xy})^2 = \lambda_1 \lambda_2$$

Remove outliers by evaluating

$$\frac{Tr(H)^{2}}{Det(H)} = \frac{(r+1)^{2}}{r} \qquad r = \frac{\lambda_{1}}{\lambda_{2}}$$

4

Further Outlier Rejection

- Following quantity is minimum when r=1
- It increases with r

$$\frac{Tr(H)^2}{Det(H)} = \frac{(r+1)^2}{r}$$

$$r = \frac{\lambda_1}{\lambda_2}$$

• Eliminate key points if r>10

from 729 key points to 536 key points.

4

Orientation Assignment

- To achieve rotation invariance
- Compute central derivatives, gradient magnitude and direction of *L* (smooth image) at the scale of key point (x,y)

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

Orientation Assignment

- Create a weighted direction histogram in a neighborhood of a key point (36 bins)
- Weights are
 - Gradient magnitudes
 - Spatial gaussian filter with
 σ=1.5 x <scale of key point>

Orientation Assignment

- Select the peak as direction of the key point
- Introduce additional key points (same location) at local peaks (within 80% of max peak) of the histogram with different directions

- Possible descriptor
 - Store intensity samples in the neighborhood
 - Sensitive to lighting changes, 3D object transformation
- Use of gradient orientation histograms
 - Robust representation

Similarity to IT cortex

- Complex neurons respond to a gradient at a particular orientation.
- Location of the feature can shift over a small receptive field.
- Edelman, Intrator, and Poggio (1997)
 - The function of the cells allow for matching and recognition of 3D objects from a range of view points.
- Experiments show better recognition accuracy for 3D objects rotated in depth by up to 20 degrees

- Compute relative orientation and magnitude in a 16x16 neighborhood at key point
- Form weighted histogram (8 bin) for 4x4 regions
 - Weight by magnitude and spatial Gaussian
 - Concatenate 16 histograms in one long vector of 128 dimensions
- Example for 8x8 to 2x2 descriptors

Descriptor Regions (n by n)

Extraction of Local Image Descriptors at Key Points

- Store numbers in a vector
- Normalize to unit vector (UN)
 - Illumination invariance (affine changes)
- For non-linear intensity transforms
 - Bound Unit Vector items to maximum 0.2 (remove larger gradients)
 - Renormalize to unit vector

Key point matching

- Match the key points against a database of that obtained from training images.
- Find the nearest neighbor i.e. a key point with minimum Euclidean distance.
 - Efficient Nearest Neighbor matching
 - Looks at ratio of distance between best and 2nd best match (.8)

Matching local features

Matching local features

- To generate candidate matches, find patches that have the most similar appearance or SIFT descriptor
- Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance)

Ambiguous matches

Image 1 Image 2

- At what distance do we have a good match?
- To add robustness to matching, can consider ratio: distance to best match / distance to second best match
- If low, first match looks good.
- If high, could be ambiguous match.

The ratio of distance from the closest to the distance of the second closest

Reference

D. Lowe. *Distinctive image features from scale-invariant key points.*, International Journal of Computer Vision 2004.