Релационен модел

Релационен модел - (през 1970г.). Едгар Код. Най- популярният до днес модел!

Основно за релационния модел:

- структура на данните
- интегритет на данните
- управление на данните

Релационна структура на данните:

- Данните се съхраняват в релации (таблици)
- Всяка релация има схема
- Схемата дефинира атрибутите на релацията
- Данните се записват в кортежи

FacultyNo	Name
9113670	Иван
9113677	Мария
9113682	Стоян

Релационна структура на данните:

Формално:

Схемата е множество от атрибути
Кортежът съдържа стойност за всеки атрибут в схемата
Релацията е множество от кортежи с една и съща схема

```
{ (FacultyNo, 9113670), (Name,Иван) },
{ (FacultyNo, 9113677), (Name,Мария) },
{ (FacultyNo, 9113682), (Name,Стоян) }}
```

FacultyNo	Name
9113670	Иван
9113677	Мария
9113682	Стоян

Свойства на релациите:

- ❖ Релациите са множества от кортежи и кортежите на една релация са уникални и неподредени
- ❖ Броят на кортежите на една релация мощност (кардиналност) на релацията
- Схемите са *множества от атрибути*, атрибутите на една релация са *уникални и неподредени*
- ❖ Броят на атрибутите на една релация се нарича *степен* на релацията

Релация

Name	Salary	First_date	Last_date
Иван Петров	2200	07.12.1997	
Лозан Велев	0	07.12.1997	15.08.2007
Станимир Пеев	750	01.022015	
Мария Стойчева	2200	01.04.2012	
Ана Милева	1300	03.07.2013	

Релационен интегритет на данните

- ✓ Интегритетът на данните контролира какви данни могат да присъстват в релацията
- ✓ Доменът (домейнът) ограничава възможните стойности, които кортежът може да приеме във всеки атрибут
- ✓ Първичните ключове и кандидат-ключовете идентифицират кортежите в една релация
- ✓ Чуждите ключове съотнасят релациите една към друга

Атрибути и домени

- Домен се задава за всеки атрибут
- Доменът задава възможните стойности за атрибута
- Всеки кортеж присвоява стойност от неговия домен Например:
 - Заплатата (бруто) е стойност от множество на цели числа между 0 и ???.
 - Датите на назначаване и напускане са между датата на създаване на фирмата и *днешна дата*
 - Имената са множества от низове

Кандидат ключове

Множество от атрибути в една релация се нарича кандидат ключ ако:

- ❖ Всеки кортеж има уникална стойност за това множество (уникалност)
- Няма подмножество на множеството, което да притежава свойството на уникалност (минималност)

Id	Name	EGN	Salary	First_date	Last_date
17	Иван Петров	5502173412	2200	01.03.1996	
23	Лозан Велев	6007154043	0	01.03.1996	15.08.2007
72	Мария Стойчева	9601013840	2200	01.04.2012	
74	Ана Милева	9903123244	1300	03.07.2013	

Кандидат ключове са:

Id, EGN, Name, Salary, First_date и Last_date

Name, Salary, First_date и Last_date – не дават уникалност Комбинациите – не дават минималност.

Id	Name	EGN	Salary	First_date	Last_date
17	Иван Петров	5502173412	2200	01.03.1996	
23	Лозан Велев	6007154043	0	01.03.1996	15.08.2007
72	Мария Стойчева	9601013840	2200	01.04.2012	
74	Ана Милева	9903123244	1300	03.07.2013	

Първичен ключ:

избира се между кандидат ключовете

Id, EGN

БАЗИ ДАННИ

Ключов интегритет:

Ключов атрибут на релация

t1 and t2 – кортежи в R, а SK – ключов атрибут

 $t1[SK] \neq t2[SK]$

При повече кандидат ключове се избира един за първичен (**primary key**).

Първични ключове и NULL стойности

Липсващи данни се представят с NULL стойности NULL стойност – липсваща или неизвестна стойност

Обектен интегритет – първичните ключове не могат да съдържат NULL стойности.

t[PK] ≠ null за всеки t от(R)

Чужди ключове

Чуждите ключове се използват да съотнасят (свързват) данните в две релации. Множеството атрибути в първата (рефериращата) релация е чужд ключ, ако неговата стойност винаги или съвпада със стойност на кандидат ключ на втората (реферираната) релация, или има стойност NULL.

Това се нарича референциален интегритет.

Референциален интегритет.

Кортежът t_1 в R_1 се съотнася към кортежа t_2 в R_2 , ако

$$\mathbf{t}_1[\mathbf{FK}] = \mathbf{t}_2[\mathbf{PK}]$$

Пример за чужди ключове:

Id	Name	Dep	Manager
17	Иван Петров	1	23
23	Лозан Велев	1	
72	Иван Иванов	1	23
74	Петя Милева	1	23

Референциален интегритет - проблеми

При обновяване на данни в релациите може да бъде нарушен референциалния интегритет и особено при обновяване на реферираната релация — актуализация или изтриване

Опциите са:

- лишаване на потребителя от възможност да го прави
- Промените да се разнасят
- стойностите стават NULL
- действия, дефинирани от потребителя

Референциален интегритет – пример:

Id	Name	EGN	Dep	Salary	First_date	Last_date
17	Иван Петров	5502173412	1	2200	01.03.1996	
23	Лозан Велев	6007154043	1	0	01.03.1996	15.08.2007
72	Мария Стойчева	8601013840	2	2200	01.04.2012	
74	Ана Милева	8903123244	2	1300	03.07.2013	

Ако Dep на Маркетинг стане 5???

Ако записът на Мениджмънт се изтрие???

Dep	Name
1	Мениджмънт
2	Маркетинг
3	Конструкторски отдел

Референциален интегритет — лишаване на потребителя от възможност да го прави

1d	Name	EGN	Dep	Salary	First_date	Last_date
17	Иван Петров	5502173412	1	2200	01.03.1996	
23	Лозан Велев	6007154043	1	0	01.03.1996	15.08.2007
72	Мария Стойчева	8601013840	2	2200	01.04.2012	
74	Ана Милева	8903123244	2	1300	03.07.2013	

Не може да се актуализира или трие *Маркетинг и Мениджмънт*

Dep	Name	
1	Мениджмънт	
2	Маркетинг	
3	Конструкторски отдел	

Референциален интегритет – промените да се разнасят

Id	Name	EGN	Dep	Salary	First_date	Last_date
1 7	Иван Петров	5502173412	1	2200	01.03.1996	
23	Лозан Велев	6007154043	1	0	01.03.1996	15.08.2007
72	Мария Стойчева	8601013840	2	2200	01.04.2012	
74	Ана Милева	8903123244	2	1300	03.07.2013	

Ако Dep на Маркетинг стане 5 в релацията

Department, то Dep за Мария Стойчева
и Ана Милева също трябва да се промени на 5!
Ако Мениджмънт се изтрива, то
Иван Петров и Лозан Велев също се изтриват.

Dep	Name	
1	Мениджмънт	
2	Маркетинг	
3	Конструкторски отдел	

Референциален интегритет — стойностите стават NULL

Id	Name	EGN	Dep	Salary	First_date	Last_date
17	Иван Петров	5502173412	Null	2200	01.03.1996	
23	Лозан Велев	6007154043	Null	0	01.03.1996	15.08.2007
72	Мария Стойчева	8601013840	Null	2200	01.04.2012	
74	Ана Милева	Null	Null	1300	03.07.2013	

Ако Dep на Маркетинг стане 5 в релацията Department, то Dep за Мария Стойчева и Ана Милева стават Null! Ако Мениджмънт се изтрива, то Dep за Иван Петров и Лозан Велев стават Null.

Dep	Name	
1	Мениджмънт	
5	Маркетинг	
3	Конструкторски отдел	

Алгебра § Релационна алгебра

- \bullet Множество от операции (+, -, \times , \div , ...)
- Операторите приемат като вход числа и връщат като резултат числа
- Ограничения за някои оператори
- **❖** Комбиниране на оператори 7+20/2, приоритет
- ❖ Множество от операции (обединение, селекция, ...)
- Операторите приемат като вход релации и връщат като резултат релации
- Ограничения за някои оператори
- * Комбиниране на оператори, приоритет

Релационният модел се изгражда с три основни елемента: област (домейн), атрибут и релация.

Областите могат да бъдат безкрайни или да съдържат краен брой елементи.

Разглеждаме декартовото произведение на n-те множества D1, D2, ..., Dn:

$$D1 \times D2 \times ... \times Dn = \{ | di \in Di, i=1, 2, ..., n \}.$$

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}$$

Всяко подмножество на декартовото произведение се нарича **релация** (relation).

При зададен набор от домени D1, D2,...,Dn (не непременно различни), релация R върху тези домени е множество от подредени кортежи от степен n <d1,d2,...,dn>, където d1 е елемент от D1, d2 е елемент от D2,..., и dn е елемент от Dn.

- задължително спазване на местата на отделните стълбове от таблицата
- ако стълбовете се именуват, то информационното съдържание на релацията се запазва и при размяна на местата на стълбовете
- всеки именуван стълб на релацията се нарича атрибут на релацията

Структурата на всяка релация се задава с нейната релационна схема.

R(A1, A2, ..., An)

Пълен запис:

R(A1:D1, A2:D2, ..., An:Dn)

Нека **R(A1, A2, ..., An)** е релационна схема, **a r** е релация с тази релационна схема.

r:R

Съвкупността от всички релационни схеми представляват схемата на БД.

 $(R1, R2, ..., R\kappa)$

	CID	Title
Релационен модел & алгебра	1	Информатика I
Пример:	2	Информатика II
Grade Point Average (GPA)	3	Математика I

SID	Name	Age	GPA	
1	Ivan Ivanov	19	3.21	Схема ????
2	Peter Petrov	20	4.24	
3	Anna Borisova	19	5.63	Инстанция ???

ID	CID	SID	Date	Mark	
1	1	1	25.01.2013	4	
2	1	2	25.01.2013	3	
3	1	3	25.01.2013	6	
4	2	1	15.06.2013	2	
5	2	2	15.06.2013	5	

Ключови атрибути (ключове на релацията).

Една релация може да има повече от един ключ.

Ако едно множество от атрибути A е ключ на една релация R, то всяко множество X от атрибути на R, за което A принадлежи на X, също ще идентифицира еднозначно елементите на R.

Основни ключове в релациите

- Първичен ключ (primary key) е атрибут (по-рядко група атрибути), който служи да идентифицира по уникален начин всеки запис (екземпляр) на релацията. Когато измежду атрибутите на релацията няма един подходящ за първичен ключ атрибут, вариантите са:
 - да се прибегне към множество от два и повече атрибути, които заедно идентифицират записите еднозначно, т.нар. сложен първичен ключ (composite primary key)
 - да се добави нов атрибут, по който да се прави идентификацията на записите.
- ▶ Външният ключ (foreign key) е необходим, когато налице е отношение между две таблици (релации). Отношението се създава, като копие от първичния ключ на едната таблица се включи в структурата на втората таблица, за която той е външен (понеже тя вече си има свой собствен първичен ключ). Освен да помогне в установяването на отношение между двете таблици, външният ключ помага да се осигури и интегритета (целостта) на ниво отношение

Един от всички възможни ключове се избира за ключ на релацията и се нарича **първичен ключ (prymary key)**.

Външен ключ (foreign key) К*

Установяване на връзки между две релации

Релационна алгебра е набор от операции (релационни оператори), чрез които се описва **начин за получаване на нови релации** от други съществуващи релации.

Основни понятия

Нека A1, A2, ..., An е списък от n атрибути, който ще означим кратко с A. Нека В е друг списък от m атрибута В1, В2, ..., Вт.

Списъците от атрибути А и В са сравними, ако:

- 1. n=m
- 2. Ak и Bk са от един и същ тип за всяко k=1, 2, ..., n.

Операции с релации:

Нека са дадени две релации r1 и r2 с еднакви релационни схеми

R (Name, Salary, First_date, Last_date).

r1			
Name	Salary	First_date	Last_date
Иван Петров	1200	01.01.1996	
Лозан Велев	0	07.12.1995	15.08.2007

r2

Name	Salary	First_date	Last_date
Стоян Петров	1300	01.01.2003	
Пенчо Стойков	2000	05.07.2001	
Лозан Велев	0	07.12.1995	15.08.2007

 $r3 = r1 \cup r2$

Обединение

<u> </u>			
Name	Salary	First_date	Last_date
Иван Петров	1200	01.01.1996	
Лозан Велев	0	07.12.1995	15.08.2007
Стоян Петров	1300	01.01.2003	
Пенчо Стойков	2000	05.07.2001	

Нека р и q са две n-членни релации с една и съща релационна схема R(A1, A2, ..., An). Обединението на релациите р и q е трета релация г със същата релационна схема, съдържаща елементите на р и q, т. е.

$$r = \{t \mid t \in p$$
 или $t \in q \}$.

Обикновено се означава с общоприетия в математиката знак за обединение на множества" U":

$$r = p \cup q$$
.

 $r3 = r1 \cap r2$

Name	Salary	First_date	Last_date
Лозан Велев	0	07.12.1995	15.08.2007

Релационен модел & алгебра

Сечение

Нека р и q са две п-членни релации с една и съща релационна схема R(A1, A2, ..., An). Сечението на релациите р и q е трета релация г със същата релационна схема, съдържаща тези елементи, които принадлежат и на р и на q, т. е.

$$r = \{t \mid t \in p \text{ и } t \in q \}.$$

Обикновено се означава с общоприетия в математиката знак за сечение на множества"\(\cappa\)":

$$r = p \cap q$$
.

r3 = r1 - r2				
Name	Salary	First_date	Last_date	
Иван Петров	1200	01.01.1996	1	

Разлика

Нека р и q са две п-членни релации с една и съща релационна схема R(A1, A2, ..., An). Разликата на релациите р и q е трета релация г със същата релационна схема, съдържаща елементите на р, непринадлежащи на q, т. е.

$$r = \{t \mid t \in p \text{ ut } \notin q \}.$$

Означава се със знак "-":

$$\mathbf{r} = \mathbf{p} - \mathbf{q}$$
.

Декартово произведение

Нека р е релация с релационна схема P(A1, A2, ..., An), а q е релация с релационна схема Q(B1, B2, ..., Bm). Декартовото произведение на релациите р и q е трета (n+m)-членна релация г с релационна схема R(A1, A2, ..., An, B1, B2, ..., Bm), съдържаща всички възможни конкатенации на елементи от р и q, т. е.

$$r = \{ab \mid a \in p \text{ и } b \in q \}.$$

Означава се с "× ":

$$\mathbf{r} = \mathbf{p} \times \mathbf{q}$$
.

Нека са дадени две релации r1 с релационна схеми R(Name, Salary, First_date, Last_date) и r2 с релационна схеми P (Department, Building).

rI

Name	Salary	First_date	Last_date
Иван Петров	1200	01.01.1996	
Лозан Велев	0	07.12.1995	15.08.2007

r2

Department	Building
Продажби	1
Реклама	2

Релационен модел & алгебра r1xr2 r2xr1 комутативност

Декартовото произведение на двете релации r3, ще има следния вид:

$$r3 = r1 \times r2$$

$$r1x r2 = r2 x r1$$

Name	Salary	First_date	Last_date	Department	Building
Иван Петров	1200	01.01.1996		Продажби	1
Лозан Велев	0	07.12.1995	15.08.2007	Продажби	1
Иван Петров	1200	01.01.1996		Реклама	2
Лозан Велев	0	07.12.1995	15.08.2007	Реклама	2

доц. Стоянова

Селекция (рестрикция)

Нека р е релация с релационна схема P(A1, A2, ..., An). Селекцията на релацията р по отношение на дадено условие F е друга релация г със същата релационна схема, всеки ред на която удовлетворява условието F, т. е.

$$r = \{t \mid t \in p \text{ и } F(t) = \text{истина}\}.$$

Очевидно е, че r⊆p. Селекцията се означава с σF(p).

Нека е дадена релация r1. Селекцията r3 ще има следния вид:

$$r3 = \sigma$$
Заплата=1200 $(r1)$

+	Name	Salary	First_date	Last_date
	Иван Петров	1200	01.01.1996	

$$r3 = \sigma GPA > 4.50$$

SID	Name	Age	GPA
1	Ivan Ivanov	19	3.21
2	Peter Petrov	20	4.24
3	Anna Borisova	19	5.63

Селекцията може да включва всяка колона на r1, константи, сравнения като = , \leq , \geq и т.н., булеви оператори \land , \lor и \neg Пр.

 $\sigma GPA \ge 4.0 \land (age < 18 \lor age > 21) (Student)$

Условието трябва да може да се изчисли върху един ред!

Пр. студент с най-висок успех $\sigma GPA \geq all\ GPA$ in Student table

	CID	Title
Релационен модел & алгебра	1	Информатика I
Пример:	2	Информатика II
Grade Point Average (GPA)	3	Математика I

SID	Name	Age	GPA	
1	Ivan Ivanov	19	3.21	Схема ????
2	Peter Petrov	20	4.24	
3	Anna Borisova	19	5.63	Инстанция ???

I D	CID	SID	Date	Mark	
1	1	1	25.01.2013	4	
2	1	2	25.01.2013	3	
3	1	3	25.01.2013	6	
4	2	1	15.06.2013	2	43
5	2	2	15.06.2013	5	45

Съединение

Нека р е релация с релационна схема P(A1, A2, ..., An), а q е релация с релационна схема Q(B1, B2, ..., Bm). Съединение или θ - съединение на релациите р и q по отношение на атрибутите Ai и Bj, $1 \le i \le n$, $1 \le j \le m$ е (n+m)-членна релация r с релационна схема R(A1, A2, ..., An, B1, B2, ..., Bm).

Релацията г е такова подмножество на декартовото произведение р× q, при което Ai - тия атрибут на г е в θ отношение с Bj - тия атрибут. С θ е означено кое да е от отношенията за сравнение.

За означаване на съединението се използва ">< ":

$$r = p > < q = \sigma Ai \theta Bj(p \times q).$$

Ai θ Bj

Нека са дадени две релации r1 с релационна схеми R(Name, Salary, First_date, Last_date) и r2 с релационна схеми P (Department, Building).

r1

Name	Salary	First_date	Last_date
Иван Петров	1200	01.01.1996	
Лозан Велев	0	07.12.1995	15.08.2007

r2

Department	Building
Продажби	1
Реклама	2

Съединението на двете релации r3, ще има следния вид:

$$r3 = r1 > < r2$$

Salary>1200 и Building =1

Name	Salary	First_date	Last_date	Department	Building
Иван Петров	1200	01.01.1996		Продажби	1

Отношения между обекти и представянето им в релационна БД

1:1

Id_patient	Name	Bed
1	Иван Стоянов	34
2	Иванка Тотева	52

Отношения (кардиналност) между обекти и представянето им в релационна БД

	Id_doc	Name	???
1:M	1	Петров	
	2	Чечев	

Id_patient	Name	???
1	Петър Хубчев	
2	Мария Михайлова	
3	Симона Илиева	

Отношения между обекти и представянето им в релационна БД

M:M

Patient_Id	Name	Age
11	П.Иванов	27
74	И.Петров	68

Patient_Id	Medicine_Id
11	34567
11	45676

Medicine_Id	Name
34567	Аналгин
45676	Парацетамол

"Simplicity is a virtue"

	CID	Title
Релационен модел & алгебра	1	Информатика I
Пример:	2	Информатика II
Grade Point Average (GPA)	3	Математика I

SID	Name	Age	GPA
1	Ivan Ivanov	19	3.21
2	Peter Petrov	20	4.24
3	Anna Borisova	19	5.63

ID	CID	SID	Date	Mark
1	1	1	25.01.2013	4
2	1	2	25.01.2013	3
3	1	3	25.01.2013	6
4	2	1	15.06.2013	2
5	2	2	15.06.2013	5

За тази лекция:

- о Опишете двете условия, на които трябва да отговаря множество от атрибути, за да бъде кандидат ключ на една релация?
- о Кои са кандидат ключовете на таблиците от предходния слайд?
- Що е първичен и що е външен ключ на една релация?
- Обяснете върху тези таблици термина ключов интегритет.
- о Обяснете върху тези таблици термина обектен интегритет.
- Обяснете върху тези таблици термина референциален интегритет.
- о Що е обединение на две релации?
- Що е сечение на две релации?
- Що е селекция на две релации?

