COMP 3270 Introduction to Algorithms

Homework 2

1. (20pts) Compare the following pairs of functions in terms of order of magnitude. In each case, say whether f(n) = O(g(n)), f(n) = O(g(n)), or f(n) = O(g(n)).

	f(n)	g(n)	
a.	100n + log n	$n + (\log n)^2$	$f(n) = \theta(q(n))$
b.	log n	$log(n^2)$	f(n)= \(\theta(q(n))\)
c.	$\frac{n^2}{\log n}$	$n(\log n)^2$	f(n)= 12 (g(n))
d.	$n^{\frac{1}{2}}$	$log n^5$	$f(n) = \Omega(g(n))$
e.	$n2^n$	3^n	f(n) = O(q(n))

2. (30 pts) Use the Master Method to solve the following three recurrence relations and state the complexity orders of the corresponding recursive algorithms.

(a)
$$T(n) = 2T(99n/100) + 100n$$

T(n) = 198T(n/100) + 100nUsing Masters theorem, we have a = 198, b = 100, c = 1, f(n) = 100n loga base b = log198 base $100 \Rightarrow 1$

togal other or legislation for the following state a = b, a =

(b)
$$T(n) = 16T(n/2) + n^3 lgn$$

Using Masters theorem, we have a=16, b=2, c=3, k=1, loga base $b=\log 16$ base 2=4 $c<\log a$ base be, therefore $T(n)=theta(n^{n}\log a)$ base $b=theta(n^{n})$

(c)
$$T(n) = 16T(n/4) + n^2$$

Using Masters Theorem, we have a =16, b = 4, c = 2, log a base b = log 16 base 4 = 2 c = log a base b, therefore T(n) = theta($n^c\log^k+1n$) = theta($n^2\log^k+1n$) = theta($n^2\log^$

3. (50 pts) Use the Substitution Method to solve the following recurrence relation. Give an exact solution:

$$T(n) = T(n-1) + n/2$$

Using Substitution Method
 $T(n) = T(n-1) + \frac{n}{2}$
 $\leq C(n-1)^2 + \frac{n}{2}$
 $= C n^2 - 2cn + c + \frac{n}{2}$
 $= C n^2 - (2cn - \frac{n}{2} - c)$
 $\leq C n^2$ if $2cn \geq \frac{n}{2} + c$
 $2cn \geq \frac{n}{2} + c$ for all $c > 1$
 $3c_0 + c$