ENEE 467: Robotics Project Laboratory Manipulator Kinematics with the Robotics Toolbox for Python Lab 2

Learning Objectives

The purpose of this lab is to provide a hands-on introduction to fundamental concepts in manipulator kinematics using the Robotics Toolbox for Python. After completing this lab, students should be able to:

- Model robots using URDF and DH parameters
- Map joint configurations to tool poses and vice versa via forward and inverse kinematics
- Map joint and end-effector trajectories to robot motion
- Simulate unconstrained robot motion by interpolating between joint configurations
- Command joint velocities based on desired tool velocities using the manipulator Jacobian and velocity kinematics
- Move a serial-chain robot (simulated using basic line plots) to trace a path in Cartesian space.

Manipulator kinematics refers to the mathematical study of how a robot arm's joint motions relate to the spatial position and orientation of its **end-effector** or **tool**. It is commonly categorized into two connected sub-problems, namely: forward kinematics (hereafter, FK) and inverse kinematics (hereafter, IK). While FK computes the tool pose from known joint variables, IK solves the more challenging problem of finding joint configurations that achieve a desired tool pose. Together, they form the backbone of higher-level motion planning and control, and are thus crucial for robotic manipulation. Therefore, this lab is designed to equip you with the tools and mathematical thinking to understand kinematic modeling, practice kinematics-based problem solving, and prepare for ROS 2 motion planning and control in later labs.

Related Reading

- 1. K. Lynch and F. Park, *Modern Robotics: Mechanics, Planning, and Control*, Cambridge University Press, 2nd ed., 2019 (§4, §5, and §6).
- 2. ROS URDF Tutorials. External Link .

Lab Instructions

Follow the lab procedure closely. Some code blocks have been populated for you and some you will have to fill in yourself. Pay close attention to the lab Questions (highlighted with a box). Answer these as you proceed through the lab and include your answers in your lab writeup. There are several lab Exercises at the end of the lab manual. Complete the exercises during the lab and include your solutions in your lab writeup.

List of Questions

Question 1.																																		5
Question 2.																														 				7
Question 3.																																		9
Question 4.																														 				10
Question 5.																																		10
Question 6.																														 				12
Question 7.																														 				13
Question 8.																														 				14
Question 9.																														 				16
Question 10.																														 				17
Question 11.																														 				18
Question 12.																														 				19
Question 13.																														 				20
Question 14.																														 				22
Question 15.			•	•	•	•	•	•	•		•				•	•	•		•		•			•	•	•	•			 	•	•	•	24
List of Exe	rc	is	es	3																														
Exercise 1.	Fra	ac	ki	nş	g	ı (Ca	rt	es	ia	n	Sq	u	ar	e '	wi	th	ı I	K											 				25
Exercise 2	Frs	ac	ki	ne	, J 1	wi'	th	0	ri	en	ıts	ıti	Or	. (٦,	ne	eti	ra	in	te														25

How to Read This Manual

Throughout the manual, boxes beginning with a Question # title contain questions to be answered as you work through the lab:

Question 0. A question for you.

Boxes with orange light bulbs highlight fully worked-out equations that are essential for longer questions and exercises. Read these carefully.

An important equation or fact you need to complete a question or exercise.

Boxes with a symbol (like the one below) are extra theoretical details provided for your enlightenment. We recommend that you read them during the lab, but they may be skipped during the lab and revisited at a later time (e.g., while working on the lab report):

Some extra context and info.

Terminal commands and code blocks will be set in gray-colored boxes (usually for Python syntax)

import math # some important comment you should totally read

while terminal outputs will be set in yellow-colored boxes

some terminal output

Files and directories will be set in magenta color with a teletype font, ~/some/dir/to/a/file.txt, code variable names and in-text commands will be set in bold teletype font, e.g., a = [0, 0, 0], while Python type hints (and occasionally XML tags) will be set in green teletype font, e.g., save(path: str) signifies that the argument to the save function is a string. Lastly, figure captions go below figures, table captions appear above tables, and the symbol highlights a link to an external online reference.

1. Lab Procedure

1.1 Prerequisites

This lab assumes some familiarity with the Bash shell at the level of file system navigation and basic read-write operations via the Command Line Interface. We also assume that you have done some prior Python programming, and optionally, have some exposure to numerical computation with the NumPy Python library, basic linear algebra, and rigid-body motion.

1.2 Getting this Lab's Code

To begin, in a new terminal session, navigate to the ~/Labs directory and then clone the lab repo:

```
cd ~/Labs
git clone https://github.com/ENEE467-F2025/lab-2.git
cd lab-2/docker
```

Verify that the lab-2 image is built on your system by running the following command

```
docker image ls
```

Make sure that you see the lab-2 image in the output (the size and time information may differ):

```
lab-2-image latest 88f2baf1996e 2 minutes ago 6.01GB
```

Now launch the Docker container with the following commands

```
docker compose -f lab-2-compose.yml run --rm lab-2-docker
```

You should be greeted with the following prompt indicating you are now inside the Docker container:

```
(lab-2) robot@docker-desktop:~$
```

Verify that you have all the files necessary for this lab by entering the lab-2 folder and issuing an ls command from within the container, which should print the following output to shell:

```
cd lab-2 && ls
```

```
README.md docker config src
```

We will be working within the src directory above using the Bash shell. Be mindful of your working directory, and ensure that you run the Python scripts from the appropriate folder.

2. Robot Modeling & Description Formats

Generally, there are two standard and complementary ways of describing robots, namely the URDF (Unified Robot Description Format) and the Denavit–Hartenberg (DH) parameters. In this section, you'll work on retrieving kinematic information from both representations starting with the URDF.

2.1 URDF

The URDF is a robot description format based on the eXtensible Markup Language or XML. It provides a complete description of a robot modeled by a collection of rigid bodies (*links*) connected by *joints* (see Figure 1; top-left) using nested XML tags (Figure 1; right):

- i. Link tags: these contain meta-tags (tags containing tags) specifying visual info (<visual></visual>) like color and material, collision info (<collision></collision>) like geometry and link origin for physics simulation and collision checking, and inertial info (<inertial></inertial>) for robot dynamics and simulation
- ii. **Joint tags**: these define the connection between two links and can be **revolute**, **prismatic**, **cylindrical**, or **spherical** (specified by the joint tag's **type** attribute). A joint's metadata contains info about its parent and child links, referenced by the **name** attributes of the parent (**parent** />) and child (**child** />) tags, its SE(3) pose (**corigin** />), its axis of rotation (for revolute joints) or translation (for prismatic joints), specified in the **axis** /> tag, and its effort, position, and velocity limits (defined in its **climit** /> tag).

Figure 1: Illustrating how a joint (top left) connects links in the kinematic chain, with the kinematic diagram of a 2R planar manipulator (bottom left) compared against its URDF description (right). The +z axis points out of the page.

Question 1. In the file src/utils/urdf_builder.py is a class for building and visualizing basic URDF files. The add_link and add_joint methods are for adding link and joint tags, and the plot_robot(q) method will visualize the robot (using info defined in the built URDF) at the specified configuration q (which is a list of length equal to the number of joints, with

each element in the list corresponding to a joint angle in radians). The **save(path: str)** method will save the built URDF file to the **string** file path argument specified.

- (a). Using the appropriate methods from the aforementioned list, modify **lines 8** to **29** of the src/build_2r_urdf.py file to build a 2R manipulator with the following specs:
 - name: twoR_lab2
 - Link 1: {name: "twoR_link1", length: 0.4, geometry: "box"}
 - Link 2: {name: "twoR_link2", length: 0.25, geometry: "box"}
 - EE Link: name:twoR_ee
 - Three joints, comprising:
 - * one (+z axis) revolute joint (named twoR_joint1) between a world frame at the origin (i.e., (0, 0, 0)) and the link named twoR_link1
 - * one (+z axis) revolute joint (named twoR_joint2) between the links named twoR_link1 and twoR_link2
 - * a fixed joint (named twoR_joint_ee) between the link named twoR_link2 and the end-effector.
- (b). Save the built URDF file as twoR.urdf using the save method. Be aware that the file will be saved on the Docker container in your current working directory on the host lab machine, and any files in the mounted container drive that are not saved will be deleted after each lab. Copy the contents of the URDF file however you see fit (e.g., by saving the file itself to a pen drive or copying the contents to a live Google Docs document containing your team's report draft). Include the complete URDF (text) description in your final lab report.
- (c). Plot the robot at the [0, 0.7854] configuration, and save the plot in your current working container directory using the save icon on Matplotlib (ask your TA if you need help identifying this). Copy the saved plot from the Docker container to a pen drive, cloud storage, or a live report draft. Include the plot in your final lab report.

2.2 Computing Homogeneous Transformation Matrices from a URDF File

Using information from the URDF file of a serial-chain robotic manipulator, it is straightforward to perform kinematic computations, such as computing homogeneous transformation matrices that transform the pose of a **source** link frame in the URDF to a **target** link frame, expressed in the "world" or inertial frame. We do this by multiplying the individual transformation matrices from the source up to the specified target frame as you saw from Exercise 2 in Lab 1:

$$T_{\text{target}}^{\text{source}} = T_{\text{frame}_1}^{\text{source}} \cdot T_{\text{frame}_2}^{\text{frame}_1} \cdot \cdots T_{\text{target}}^{\text{frame}_n},$$
 (1)

where each individual transformation is an SE(3) matrix. Since XML files can be easily parsed into a tree-like data structure, we can compute the transformation between two link frames directly from the URDF by reading off and multiplying the **static** (origin) and the motion (i.e., **axis**) transforms

from the metadata of the joints between link pairs from the source to the target frame. If the source and target frames coincide, then there is no joint between them and the transformation is the **identity** matrix. Question 2 outlines a task that should help solidify this concept.

Question 2. A Python class for parsing URDF files and querying for the homogeneous transformation between link frames has been provided for you; we have also provided a URDF file for the UR3 at the file directory: src/urdf/ur3.urdf. The Python class provides a method _compute_T(from_frame: str, to_frame: str, config: Robot.Configuration) that returns a spatialmath.SE3 object containing the homogeneous transformation between the provided link frames at a specific robot configuration (encapsulated by a Robot.Configuration constructor). The configuration constructor takes as argument the actuated joints of the robot and a list of joint angles to set (in radians). For example, to retrieve the transformation matrix from the UR3's base_link frame to the shoulder_link frame at the zero configuration, you would use:

Complete the following questions using the above method:

(a). Modify **line 28** and **lines 41** to **52** of the file **src/compute_urdf_T.py** to compute the homogeneous transformation matrix (at the configuration with **joint_values = [1.5, -2.5, 1.5, -1.05, -1.55, 0.0]** between **each consecutive link** frame pair in the following kinematic chain for the UR3 (stored in the variable **link_list** in the file). Arrows (->) indicate the direction of tree/chain traversal:

```
base_link -> shoulder_link -> upper_arm_link -> forearm_link ->
wrist_1_link -> wrist_2_link -> wrist_3_link -> tool0
```

Provide the transformation matrix for each pair in your report (you can use Python's built-in **print** function to print your answers to the terminal and copy the printed results to your report).

- (b). By merely inspecting the provided UR3 URDF file, deduce the homogeneous transformation matrix between the **flange** and **tool0** link frames. The joint between these frames is defined between lines **234** to **239** of the referenced URDF file. Include the matrix along with **one** sentence providing the reasoning for your answer in your report.
- (c). Using the same **_compute_T** function in Question 2 (a), compute the transformation matrix for the (base_link, base) link pair, and include the matrix in your report.

In kinematics, the position and orientation of each link in a kinematic chain are determined **entirely** by the joint variables. This is the fundamental principle in forward kinematics where we calculate the pose of the chain's end-effector (and by extension, all **intermediate** link frames) based on the joint angles (for revolute joints) or joint displacements (for prismatic joints). We include the motion axis transform to incorporate the joint's **current** position or displacement, thus avoiding stale transforms.

2.3 The Denavit–Hartenberg (DH) Convention

The DH convention is a systematic way to assign coordinate frames to the links of a serial-chain robot and express FK as a sequence of transformations. In the DH convention, each link i is characterized by four parameters described on Table 1. The joint angle θ_i is variable and d_i is constant for revolute joints; conversely, d_i is variable while θ_i is constant for prismatic joints.

Table 1:	Denavit-	-Hartenberg	(DH)	Convention
----------	----------	-------------	------	------------

Parameter	Description
a_i	Link length (distance along x_i from z_i to z_{i+1})
$lpha_i$	Link twist (angle about x_i from z_i to z_{i+1})
d_{i}	Link offset (distance along z_i from x_{i-1} to x_i)
$ heta_i$	Joint angle (angle about z_i from x_{i-1} to x_i)

Let's construct the DH model for a 2R robot. Open the file $2r_dh.py$ in the **src** folder. Using the Robotics Toolbox for Python (hereafter, **RTB4PY** or "**The Toolbox**"), the script builds a DH model of the 2R planar robot shown in Figure 1 by specifying its four DH parameters. The link lengths are set to 0.5 m and 0.33 m, consistent with the URDF specification, and no angular offsets are applied for either joint (i.e., robot.q = q + [0, 0] = q):

We can print a summary of the constructed model using **print(twoR)**. This yields:

```
DHRobot: 2R, 2 joints (RR), dynamics, standard DH parameters
+----+
| thj | dj | aj | alphaj|
+----+---+
| q1 | 0 | 0.5 | 0.0 |
| q2 | 0 | 0.33 | 0.0 |
+----+---+
```

Instances of built-in DH models within the toolbox can be created using the rtb.models.DH.<RobotName>() constructor (an example of the UR3 is provided below):

```
import roboticstoolbox as rtb
ur3 = rtb.models.DH.UR3() # load a DH UR3 model
```

Question 3.

- (a). Using a **two-column** table, collect the UR3's joint names and corresponding origins (from the src/urdf/ur3.urdf file). <u>Hint</u>: For faster, error-free URDF parsing, you may use the **joints** attribute of the **Robot** class provided by the URDF parser in Question 2. The **Robot().joints** attribute is a list of **Joint** objects with a string **name** attribute and a **T** attribute of type **spatialmath.SE3**.
- (b). Compare the joint data from your table with the DH model specified by **rtb.models.DH.UR3()**. What kinematic parallels do you notice between both descriptions? Hint: To link DH to URDF, observe that each DH row tells you how to set the **<origin xyz>** and **<origin rpy>** for that joint in the URDF. Revolute joints correspond to θ_j , translations along z and x correspond to d_j and a_j , respectively, and rotations about x, i.e., α_j are built into the joint frame, i.e., the joint's **<origin>** tag.

2.4 Computing Transformation Matrices using the DH Parameters

Using the DH parameters, we can also construct the homogeneous transformation between consecutive link frames (i - 1 and i) for a robot modeled as a kinematic chain:

$$T_i^{i-1} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cos \alpha_i & \sin \theta_i \sin \alpha_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cos \alpha_i & -\cos \theta_i \sin \alpha_i & a_i \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

Chaining these transforms yields the manipulator's FK (frame 0 is the base or world frame):

$$T_n^0 = T_1^0 \cdot T_2^1 \cdot \dots \cdot T_n^{n-1}. \tag{3}$$

Let's practice calculating the DH transformation matrix using Python code. Each element of the **links** array used to form the **twoR** model above has the following properties:

```
link.a link.alpha link.d link.theta
```

Using these properties, we can easily compute the transformation matrix in Equation 2 as follows

Question 4. Modify the file $2r_dh.py$ to implement Equation 3 for the 2R planar robot in Figure 1 by computing the second (and last) transformation in the chain (i.e., T_2^1) and multiplying it to T_01 in the code block above. Add the final matrix to your lab report. Verify that your result yields the same output as the simpler command: twoR.fkine([links[0].theta, links[1].theta]).

3. Forward Kinematics of Serial Chains

3.1 Computing FK from Homogeneous Transformation Matrices

Because robotic tasks are most naturally expressed in the tool frame but we can typically only measure the **position** of the **joints** via encoders and have no way of ascertaining the end-effector's position without external instrumentation, we need a mapping between the joint angles we can measure and the end-effector's pose. The FK equations (Equation 4) provide this very important mapping, typically in terms of the manipulator's link lengths and the joint configuration (q):

$$f(q) = \begin{bmatrix} R(q) & p(q) \\ 0 & 1 \end{bmatrix} \in SE(3). \tag{4}$$

To compute f(q) for a kinematic chain, we multiply the transformation matrices for every link pair in the chain from the root link (the link with no parent) to the end-effector link:

$$f(q) = T_{\text{link1}}^{\text{root}} \cdot T_{\text{link2}}^{\text{link1}} \cdots T_{\text{ee_link}}^{\text{linkN}}$$
(5)

Let's try a concrete example with Question 5.

Question 5.

(a). Within the same file you modified in Question 2, modify the block highlighted with a **# MODIFY HERE for Question 5(a)** comment to find the **matrix product** of **all** transformation matrices in Question 2 (a) in ascending order of the frame pair's index within the kinematic chain, i.e., $T_{\text{shoulder_link}}^{\text{base_link}} \cdot T_{\text{upper_arm_link}}^{\text{shoulder_link}} \cdot \cdots T_{\text{tool0}}^{\text{wrist_3_link}}$. Include the final matrix product in your report.

To multiply two matrices, you can use the **numpy.matmul** function:

```
import numpy as np
a = np.eye(4)
b = a
mat_prod = np.matmul(a, b)
```

(b). Compare your answer in Question 5 (a) with the homogeneous transformation matrix between the link pair: (base_link, tool0) (use the same function in (a) to find this). Modify the code block marked with a # MODIFY HERE for Question 5(b). In your

report, provide the **modified code block** (the raw text or a screenshot is fine) as well as reasoning (in no more than **two** sentences) why you think the matrices are the same or different (depending on your results).

- (c). Modify the variable **q** in the file **q5c.py** to **[1.5, -2.5, 1.5, -1.05, -1.55, 0.0]**. Then change the **end** argument of the **robot.fkine** method to **'tool0'**. Run the modified script. The script will print an SE(3) matrix to the terminal. Read off the translation component of the matrix, and provide the translation vector in your report. Compare the printed SE(3) matrix and your result in (b). Verify that they are the same.
- (d). Change the robot's configuration (line 28 of the calculate_urdf_T.py file) to [0, -np.pi/4, np.pi/4, 0, np.pi/3, 0], and calculate the transformation for the (base_link, tool0) link pair again. Note down your answer in your report.

As you've seen from the questions up to this point, for a two or three link manipulator, it is a simple matter to compute FK by hand by straightforward matrix multiplication; anything more complex, and the calculations quickly become tedious. And because FK changes with the joint configuration, we don't want to keep multiplying matrices for each configuration anytime we want to do FK. Fortunately, we can easily compute FK for any serial chain using its kinematic model (contained in the URDF spec or specified as DH parameters) using a handy method provided by RTB4PY. We go over an example and question in the next section.

3.2 Computing FK for a Kinematic Chain with the Toolbox

Suppose we load a standard UR3 model and specify an array of joint angles (we will use variables namespaced by **q** for Python objects related to joint configurations). We can compute the resulting end-effector pose (as a transformation matrix) using the method **fkine** from the **UR3** class instance. Inspect the src/ur3_fk.py for example Python code (shown below) that implements FK.

```
import roboticstoolbox as rtb
import numpy as np # library containing important kernels for matrix math

robot = rtb.models.DH.UR3() # Load a UR3 model
q = np.array([0, -np.pi/4, np.pi/4, 0, np.pi/3, 0]) # joint configuration
T = robot.fkine(q) # Compute FK
```

This produces a 4×4 homogeneous transformation matrix **T**, which encodes our robot's end-effector position and orientation in task space (for the UR3, this is the **tool0** frame). Issue a **print(T)** statement on a new line at the end of the script and run it. You should see the following matrix output in the terminal

In the homogeneous transformation matrix (T), as you learned in class, the first three rows of the last column correspond to the end-effector's position, while the rotation matrix (the 3×3 matrix

block in the first three columns of T) defines the end-effector's SO(3) orientation. We can plot the robot at this configuration to confirm visually that the FK calculations are correct. After the **print(T)** line in the ur3_fk.py script you just modified, add the following new line

robot.plot(q, block=True, jointaxes=True, shadow=True, name=True)

You should see a Matplotlib window showing a simple line plot of the robot.

Question 6. By modifying the $ur3_fk.py$ script, try computing FK at a configuration near the robot's upper limit (accessible using robot.qlim[1], where robot.qlim is a 2×6 NumPy array). What is the position of the robot's end-effector? Plot the robot at the upper limit configuration using the robot.plot command. Notice how some of the robot's links appear folded on each other, causing the end-effector's position to look out of place. Save the Matplotlib figure and add it to your report, along with the array representing the robot's end-effector position.

Great, you just computed FK for a robot arm! But how are we certain that the robot can reach the specific configuration stored in the variable **q**, if we command this configuration to the robot's controller? We can see here that successfully computing FK tells us nothing about the **quality** of a joint configuration, only that a certain joint configuration led to a certain end-effector pose. It is possible that while the math checks out, this set of joint angles themselves might together characterize or be near a **singular** configuration or **kinematic singularity**, which are configurations at which the manipulator's end effector loses the ability to move in one or more directions.

Near (or at) singular configurations, the robot arm may stop unexpectedly or behave in undesirable ways, thus constituting a safety hazard.

4. Kinematic Singularity & The Manipulator Jacobian

4.1 The Manipulator Jacobian

To move from the FK realm of tool **positions** and **orientations** to **velocities**, we need a new object — the **Jacobian matrix** or **Jacobian** for short ¹. The Jacobian is an object in the study of kinematics you'll see repeatedly. It is an especially useful matrix because it provides both quantitative and qualitative information about the manipulator at a particular configuration. Mathematically, the Jacobian J relates the velocity of the end-effector (\dot{x}) to joint-space velocities (\dot{q}) , and depends on the current configuration, q

$$\dot{x} = J(q)\dot{q}. \tag{6}$$

J is a block matrix with 6 rows and n columns (corresponding to the number of joints) and is typically decomposed into **linear** (top 3 rows) and **angular** (bottom 3 rows) velocity components:

$$J(q) = \begin{bmatrix} J_{\nu}(q) \\ J_{\omega}(q) \end{bmatrix}. \tag{7}$$

¹Unless otherwise noted, all discussions related to the Jacobian in this manual refer to the **space** (base frame) Jacobian.

For example, the Jacobian corresponding to the UR3 at the configuration $[0, -\frac{\pi}{2}, 0, -\frac{\pi}{2}, 0, 0]$ is

[[0.19	0.54	-0.3	-0.09	0.08	0.] # }	lin. vel. along base x
[0.	0.	0.	0.	0.	0.] # <i>J_v</i>	lin. vel. along base y
[0.	0.	0.	0.	0.	0.] # }	lin. vel. along base z
[0.	0.	0.	0.	0.	0.] # }	ang. vel. about base x
[0.	-1.	-1.	-1.	0.	-1.] # J_{-} omega	ang. vel. about base y
[1.	0.	0.	0.	1.	0.]]# <i>}</i>	ang. vel. about base z

which makes sense, since just by inspecting the first row, we see that motion in all joints except the last joint yields instantaneous velocity along the base x axis, and the last column is all zeros (except for rotation about the y axis) since the last joint can only **rotate** the tool frame but not **translate** it.

It helps to picture the Jacobian as a summary of joint velocity contributions:

Revolute joints contribute a column $\in \mathbb{R}^6$ Prismatic joints contribute a col-

$$J_{i} = \begin{bmatrix} z_{i-1} \times (p_{ee} - p_{i-1}) \\ ---- \\ z_{i-1} \end{bmatrix} \qquad \begin{matrix} J_{v_{i}} \\ J_{\omega_{i}} \end{matrix}$$
(8)
$$J_{i} = \begin{bmatrix} z_{i-1} \\ ---- \\ 0 \end{bmatrix} \qquad \begin{matrix} J_{v_{i}} \\ J_{\omega_{i}} \end{matrix}$$
(9)

where p_{ee} is the position of the chain's end-effector (i.e., the translation component of T_n^0), p_{i-1} is the position of link i-1 (the translation component of T_{i-1}^0), z_{i-1} is the unit vector corresponding to the ith joint's motion axis $(0 \in \mathbb{R}^3 \text{ for prismatic joints})$, and \times denotes the vector **cross product** operator. To understand the indexing, recall that **joint i** connects link i-1 (child) to link i (parent), the base link is the zeroth link, and the origin of joint i with respect to the base frame is the position of the end of joint i's child **link**, or the origin, if we are at the chain's root. With each joint's contribution (J_i) , we can then write J as

$$J = [J_1 | J_2 | \dots | J_n], \tag{10}$$

where | denotes column wise concatenation.

Since the FK equations can be applied to any frame pair in a kinematic chain, we have all the components we need to compute J, so let's write a simple Jacobian calculator to concretize things.

4.2 Writing a Simple Jacobian Calculator

As you can probably tell from Equations 8, 9, and 10, computing J(q) amounts to simply stacking columns into matrices, one for each joint of the kinematic chain. We can perform this "stacking" operation for each Jacobian component, as you'll explore in the next question.

Question 7. Open the file compute_urdf_jac.py. The file contains a partial implementation of a simple Jacobian calculator function (compute_jacobian) that computes the linear and angular velocity Jacobian components using forward kinematics kernels from a custom URDF parser class we have provided. The script populates a NumPy array of zeros with the computed values, and returns the final matrix as the Jacobian.

(a). By modifying **lines 27**, **28**, **40**, and **41**, compute the Jacobian by implementing Equation 8 for the revolute joint. For example, to compute the Jacobian for the case of a prismatic joint (i.e., Equation 9), you would set:

```
Jv = z_i_prev
Jw = np.zeros(3)
```

for each joint in the kinematic chain. In your report, provide the resulting Jacobian, as well as (text) code snippets showing only the four lines that produced your result.

(b). After the **print(f"Simple URDF Jacobian Calculator: ...")** line (around **line 80**, accounting for modifications) in the **compute_urdf_jac.py** file, add the ffg. lines:

Note: You may need to indent the print statements after pasting the code. Run the resulting code, and compare the new matrix result (printed after the **Toolbox Jacobian** line) to the Jacobian you obtained in (a). Verify that they are the same (up to three decimal places). Include the final compute_urdf_jac.py file in the attachment you turn in with your report.

4.3 Computing the Jacobian using the Toolbox

In RTB4PY, we can directly compute the Jacobian using yet another one-liner, robot.jacob0(q), a function you've already seen from Question 7 (b). The robot.jacob0 method yields the robot's $6 \times n$ Jacobian at the joint configuration q, expressed in the base (0) frame. To use it, simply call the method from the corresponding rtb.models.DH.<RobotClass> or rtb.models.RobotClass> robot model constructor instance. An example using the UR3 DH model follows:

```
robot = rtb.models.DH.UR3()
J = robot.jacob0(q) # assuming q is not NoneType and len(q) == 6
```

```
Question 8. Using the toolbox, compute the Jacobian for the UR3 at the configuration:
```

```
q = [-1.860, -2.990, 0.670, -2.000, 1.610, -0.007]
```

What are the linear (J_v) and angular velocity (J_ω) Jacobians? Include these in your report.

From the examples and questions on the Jacobian, it is easy to deduce that, for a 6-DoF kinematic chain, i.e., $\mathbf{n} = \mathbf{6}$, J(q) is a square matrix, making computing quantities like the inverse and adjoint of J possible (assuming J has a **non-zero** determinant). For rectangular Jacobians for which we cannot compute an inverse, we use the **Moore-Penrose** pseudoinverse, denoted as J^{\dagger} and computed via NumPy using **numpy.linalg.pinv(J)**. Additionally, other Jacobian-related kernels are also provided by RTB4PY, including the derivative of the Jacobian (**robot.jacob0_dot**) and the end-effector Jacobian (**robot.jacobe**), but **jacob0** will be sufficient for our purposes.

4.4 Identifying Singular Manipulator Configurations

Once the Jacobian is computed, determining whether the robot is at a singular configuration is simply a matter of computing the **Jacobian's inverse**. From linear algebra, we know that a non-invertible matrix is **rank-deficient**, meaning one or more rows or columns can be written as **non-zero** factors of another. So if J(q) is an $n \times n$ matrix and its rank (or equivalently, in most cases, the existence of its inverse) is less than n, then q must be singular. Thus, we can check singularity by computing the inverse of **robot.jacob0(q)**. To compute the inverse or rank of a matrix, NumPy provides handy functions:

```
import numpy as np
J = robot.jacob0(q) # assuming q and robot = rtb.DH.UR() are not NoneType
J_inv = np.linalg.inv(J) # inverse
rank_J = np.linalg.matrix_rank(J)) # rank
```

Let's try an example. Open the file named ur3_jac.py, containing the following code (truncated):

```
q_regular = [-1.860, -2.990, 0.670, -2.000, 1.610, -0.007] # Non-singular q
q_at_lim = robot.qlim[0] # lower joint limit of robot, theta = -\pi
# Jacobians
J_reg = robot.jacob0(q=q_regular)
J_at_lim = robot.jacob0(q=q_at_lim)
# Matrix ranks
rank_J_reg = np.linalg.matrix_rank(J_reg)
```

Two manipulator configurations are included in the script: a non-singular configuration, **q_regular** and a singular configuration at the lower joint limit ($-\pi$ for all joints), **q_at_lim**. The script computes the Jacobians corresponding to each configuration and the associated matrix ranks, and then checks whether the inverse of the Jacobians exist using a nuanced approach involving the **condition number** and not the inverse directly (see: here \Box and the next \triangleright box). Run the script, and verify that the following output is printed to the terminal:

```
The rank of J_reg is 6, so q_reg is non-singular,
    and it is true that its inverse exists

The rank of J_at_lim is 5, so q_at_lim is singular,
    and it is not true that its inverse exists
```

Question 9. By modifying the q_to_test and J_to_test variables on lines 14 and 34, respectively, along with attendant print statements in the ur3_jac.py file, determine whether or not the following configurations are singular by comparing both the Jacobian inverse (if it exists) and the value returned by the provided check_inv function. Report your answer as Singular or Non-singular in each case (Note: you only need to report one answer per configuration. Use your best judgment to determine which method to trust: the de facto and intuitive inverse, or the lesser-known condition number approach):

```
(i.). q = [-1.360, -1.990, 0.570, -1.000, 1.510, -0.002]

(ii.). q = [3.1415, 3.1415, 3.1415, 3.1415, 3.1415]

(iii.). q = [-0.380, -1.330, 0.420, -0.000, 0.510, -0.054]

(iv.). q = [0, 3.14159265, 3.14159265, 3.14159265, 3.14159265, 0]

(v.). q = [1.65762426, 3.14159265, 3.14159265, 3.14159265, 3.14159265, 1.65762426].
```

5. From Single Joint Configurations to Trajectories

To move from configuration to motion, we must define a new object that specifies a *sequence* of configurations to step through over **time** to achieve the required motion. This object is the **joint trajectory**, typically denoted by q(t), with t denoting the time variable.

5.1 Mapping Joint Trajectories to Robot Motion

While it might be straightforward to define a trajectory comprising a few joint configurations by hand, especially if the end-points are trivially close, defining a trajectory for say 50 steps manually is not only unreasonable but is also guaranteed to be fraught with errors. Luckily, we have a single-call method to simplify this process within the toolbox, namely the **jtraj** method.

The **jtraj** method takes three arguments: the start configuration, the end configuration, and the desired number of intermediate steps between both configurations, and produces a joint-space trajectory comprising as many configurations as the specified number of steps. Open the src/ur3_jsp_motion.py file which should contain the following lines of code (truncated):

```
robot = rtb.models.DH.UR3() # Load a UR3 model

# Define the start and end configurations of the robot arm
q_start = [0.0, -np.pi/2, 0.0, -np.pi/2, 0.0, 0.0]
q_end = [-1.860, -2.990, 0.670, -2.000, 1.610, -0.007]

traj = rtb.jtraj(q_start, q_end, 50) # Interpolate trajectory (50 steps)
robot.plot(traj.q, block=True) # Animate the motion
```

Run the code. A Matplotlib window should appear showing an animation where the robot moves from an initial upright configuration to a final configuration. In the file, the trajectory created by

traj is a multidimensional NumPy array containing **50** joint configurations between **q_start** and **q_end**, inclusive. Confirm this by checking the trajectory's length. Comment out the **robot.plot()** call to disable the animation, and add the following two lines at the end of the Python file

```
print(f"The trajectory's shape is: {np.shape(traj.q)}")
print(f"The trajectory contains {len(traj.q)} configurations \n \
    each of length {np.shape(traj.q)[1]}")
```

Run the script. It should print:

```
The trajectory's shape is: (50, 6)
The trajectory contains 50 configurations
each of length 6
```

verifying that there are indeed 50 joint configurations in the trajectory, with each trajectory containing 6 joint angles, one for each joint of the UR3.

Question 10. Run ur3_jsp_motion.py file for 30, 60, 100, 120, and 150 steps (joint configurations). Log the approximate execution time (printed at the top-right corner of the Matplotlib window) for each run, i.e., the time (in seconds) it roughly takes for the robot to reach q_end. Include a plot of number of steps vs. execution time in your report.

5.2 Computing Singularity-Free Joint Trajectories

We can now put the Jacobian math from Section 4 to some more use. Whereas the example in Section 4.4 determined if a **single** configuration was singular using the Jacobian, in practice, we'd like to plan **entire** robot arm motions in such a way that singular configurations are avoided. That is, we want to ensure that each configuration in the computed trajectory is non-singular. We have all the tools to do this. Open the file <code>ur3_jsp_jac.py</code>. You'll find that this file is somewhat similar to the <code>ur3_jsp_motion.py</code> script except that now instead of an initial and a final configuration, we have included an intermediate configuration by stacking trajectory segments, setting this middle configuration to a known singular configuration on purpose.

```
q_start = [0.0, -np.pi/2, 0.0, -np.pi/2, 0.0, 0.0]
q_at_lim = robot.qlim[0] # singular intermediate config
q_end = [-1.860, -2.990, 0.670, -2.000, 1.610, -0.007]
```

The script implements two versions of the trajectory planner we saw in the ur3_jsp_motion.py example: a **naive** planner, where *all* configurations are included in the planned trajectory, and a **singularity-aware** planner that *filters* the trajectory from the naive planner by removing configurations near or at kinematic singularities using the method we saw in Section 4.4. The code block that implements this filtering routine is:

```
else:
    traj_sing = np.vstack([traj_sing, q])
return traj_non_sing, traj_sing
```

Run the code. You should see two animations play sequentially. In the first animation, the robot visits every configuration in the trajectory, including the singular ones, 'happily' folding on top of itself (yes, as you will notice from the animation and Question 11, including a singular configuration smack in the middle of configurations to visit creates even more singular configurations). In the second animation, however, the robot visits fewer configurations, and is actively steered away from reaching the singular configurations as the trajectory progresses. The VERY_HIGH_NUM variable in the check_inv function controls the filter's strength. At VERY_HIGH_NUM = 1000, for instance, 10 singular configurations are expunged from the final trajectory, leaving 40 valid ones; at 100, only 24 make it through.

Question 11. By modifying the ur3_jsp_jac.py file, test the performance of the singularity-avoiding planner with the variable VERY_HIGH_NUM on line 10 set to the following values: 1e3, 1e4, 1e5, and 1e6. Report the number of valid (non-singular) trajectories in each case. Hint: You should notice an upward trend.

6. Velocity Kinematics of Serial Chains

Velocity kinematics relate joint **velocities** (\dot{q}) to end-effector **twists** (\dot{x}), i.e., linear and angular velocities. From the FK equations in Equation 4, we can derive the velocity kinematics equations by straightforward differentiation:

$$\dot{x} := \begin{bmatrix} \dot{p} \\ \omega \end{bmatrix} = \overbrace{\begin{bmatrix} J_{\nu}(q) \\ J_{\omega}(q) \end{bmatrix}}^{\text{Jacobian}} \dot{q} \implies \dot{q} = \underbrace{J^{-1}}_{\text{Jacobian inverse}} \dot{x}, \tag{11}$$

where $J_{\nu}(q)$ and $J_{\omega}(q)$ are the linear and angular velocity blocks of the Jacobian we computed in Section 4. Intuitively, while J_{ν} is responsible for adapting \dot{x} 's linear velocity components, J_{ω} adapts its angular components. What this tells us is that to follow a curve at constant velocity in the end-effector frame, we have to vary the joint velocities in a nonlinear fashion (via J's inverse), since $\dot{q}(t) = J^{\dagger}(q(t))\dot{x}_d$ for constant \dot{x}_d , and the Jacobian pseudo-inverse (or inverse, if it exists) is nonlinear in general. Let's go over an example to make things tangible, followed by a question.

6.1 Velocity Kinematics with the Toolbox

Open the file named ur3_vk.py, which contains a minimal velocity kinematics example (truncated here to highlight the important bits):

```
traj = [q]
ee_pos = [robot.fkine(q).t]  # initial end-effector position

for _ in range(200):
    J = robot.jacob0(q)[:3, :]  # only need linear part of J to update v
    dq = np.linalg.pinv(J) @ v_des # compute corresponding joint velocity
    q = q + dq * dt  # update joint configuration
    traj.append(q)  # keep track of q for animation
    ee_pos.append(robot.fkine(q).t)# keep track of ee position for animation
```

In the script, we compute joint velocities by prescribing a constant end-effector velocity along the base frame X axis. The joint velocities are updated at a fixed time step \mathbf{dt} to maintain this end-effector velocity. As a result, the end-effector traces a horizontal line in the ZX plane (see Figure 2). Specifically, with a constant tool velocity along the base X axis, \dot{x}_d , the end-effector position evolves as

$$x_{t+1} = x_t + \dot{x}_d dt,$$

which corresponds to the parametric form of a line, with the *X* coordinate changing over time while the *Y* and *Z* coordinates remain constant. However, since our script only commands linear velocity

Figure 2: UR3 tool frame tracking a constant reference via velocity kinematics. In the final configuration, the tool maintains nearly constant linear velocity, but angular effects arise from $J_{\omega}(q)$.

without considering the end-effector's angular velocity, there is some residual angular velocity error from the angular velocity Jacobian. We confirm this by computing both the linear velocity and angular velocity errors using

$$e_{v} = ||J_{v}(q)\dot{q} - v_{\text{des}}||, \qquad e_{\omega} = ||J_{\omega}(q)\dot{q} - \omega_{\text{des}}||,$$
 (12)

where $v_{\rm des}$ and $\omega_{\rm des}$ are the desired linear and angular velocities, respectively. The calculations come out to be the negligible 0.0025 m/s for e_v and 4.18 rad/s for e_ω , a noticeable value.

Question 12. Inspect the code in src/ur3_vk.py. Modify only lines 38 and 39 (i.e., the J and dq computation logic) to make the robot track the prescribed linear velocity (v_des) and a zero desired angular velocity, i.e., np.array([0, 0, 0]). To determine if your modification works, we have included text annotation helper functions that will print the mean-squared tracking error for the linear (e_v) and angular (e_ω) velocity components on the Matplotlib figure window (see Figure 2). Save the Matplotlib plot with these annotations and include them in your report (you do not need to annotate the figure yourself; the script will handle this). Hint: Your value for e_{ω} should be in the order of 10^{-6} .

7. Inverse Kinematics

7.1 Unpacking IK

IK is simply the process of finding the joint configuration q that achieves a **desired** end-effector pose $T_d \in SE(3)$. Unlike FK, which is mostly straightforward (T = f(q)), IK requires solving the nonlinear inverse mapping $q = f^{-1}(T_d)$ using one of two primary approaches: analytical methods, which are often difficult to derive, and numerical methods, which are more tractable but approximate. In what follows, we focus on the latter by implementing a basic numerical IK solver.

 \bigcirc Numerical IK methods use the **pseudoinverse** of the manipulator Jacobian J^{\dagger} (here's that object again) to update the joint configuration iteratively until convergence to a solution (i.e., to a **joint configuration**) is achieved, as in

$$q_{k+1} = q_k + \gamma_k J^{\dagger}(q_k) (x_d - f(q_k)), \tag{13}$$

where $f(q_k)$ is the end-effector pose at time step k realized from computing FK, and γ_k is a step size parameter that may be constant or vary with k. Convergence is achieved if

$$||q_{k+1} - q_k|| \le \epsilon, \text{ for } k < \infty, \tag{14}$$

and where $\epsilon > 0$ is a convergence tolerance. Note: γ_k and ϵ are not the same quantity.

7.2 Writing a Minimal Numerical IK Solver

To implement our IK solver, we need a few components:

- i. a convergence tolerance, ϵ to implement Equation 14
- ii. a Jacobian-computing kernel that outputs Jacobians given a joint configuration, making sure that the configurations are non-singular and within joint limits before computing anything
- iii. An FK map to compute the task-space error in Equation 13, i.e., $x_d f(q_k)$
- iv. A step-size schedule for γ_k . For simplicity, we'll set γ_k to a constant $(\gamma \in (0,1])$ for all k.

Luckily, we already have all the necessary components from previous sections; we only need to wrap them into one function. This is the subject of the next question.

Question 13.

- (a). In the file $min_ik_solver.py$ is a partial implementation of a minimal IK solver (compute_ik) that takes as argument the desired SE(3) pose (x_d), a positive convergence tolerance (eps), an initial configuration guess (init_guess), a value for γ (stored in the variable gamma), and a specification of the maximum number of iterations (max_iters) after which the routine reports failure if a solution is not found within the tolerance specified by eps. The function should output a set of joint angles in radians whose FK work out to be the desired SE(3) pose argument. By modifying line 66, and lines 95 and 105-106, complete the numerical IK routine by implementing Equation 14 and Equation 13, respectively. Your function should return three results upon convergence:
 - The final configuration, stored in the variable: **config_k**
 - The norm of the task-space error, stored in the variable: **error**
 - The number of iterations at convergence.

Using the provided **main** function (around **line 115+**, accounting for modification), test your IK function with the following desired SE(3) Cartesian poses (**line 129**):

```
- Test Case 1: T_1 = T_x(0.3)T_y(0.2)T_z(0.35)R_x(0)R_y(0)R_z(0)
```

- Test Case 2: $T_2 = T_x(0.4)T_y(-0.1)T_z(0.3)R_x(0)R_y(\pi/4)R_z(0)$
- Test Case 3: $T_3 = T_x(0.2)T_y(0.1)T_z(0.4)R_x(\pi/2)R_y(0)R_z(\pi/2)$,

noting down the final configuration, task space error norm, and number of iterations at convergence (these metrics will appear in the terminal if your programming logic is correct). In your report, provide the joint configuration, number of iterations, and error for all three test cases above, making sure to include your modified code as an attachment.

(b). Compare your solutions in (a) with the solutions returned by the following code block (add it to the main function in min_ik_solver.py after the print(f"IK Solution ...") line, and run the script):

Explain in at most **two** sentences in your report why you think the results in (a) and (b) are different.

(c). By computing forward kinematics for the solution returned by your solver in (a), verify that the desired Cartesian poses are recovered for each test case. In your report, provide the resulting 4×4 homogeneous transformation matrix in each case, along with a text snippet of the code that produced your FK results.

7.3 Computing IK with the Toolbox

To compute IK via the toolbox, we can call one of several algorithm-specific methods from the same robot.models.DH.UR3 class instance we've used in previous sections. The methods are summarized on Table 2. Open the file ur3_ik.py for an example that implements IK (a truncated version is included below). In the example, we want the end-effector to reach a desired pose expressed as a desired position or translation (using the method sm.SE3(x, y, z)) and a desired 90° counterclockwise rotation about the Z axis (using the method sm.SE3.Rz(angle)). We apply IK here to find the joint configuration(s) that achieve this pose.

```
import roboticstoolbox as rtb
import numpy as np # library containing important kernels for matrix math
import spatialmath as sm # library containing important kernels for tf math

robot = rtb.models.DH.UR3() # Load a UR3 model; creates a UR3 class instance
T_goal = sm.SE3(0.5, 0.2, 0.3) * sm.SE3.Rz(np.pi/2) # Desired EE pose

# Compute IK
solution = robot.ikine_LM(T_goal) # Levenberg-Marquardt solver
print(solution.q) # Joint angles (if solution found)
```

Run the code. You should see a 6D array of joint angles in radians, which corresponds to the solution found by the IK solver: [-2.97125889 0.0532965 -0.43369849 -1.19039433 1.57079633 -0.17033376]. Note that your solution might be different from the previous array, but the solver will return a solution regardless.

Intuitively, we can think of IK as essentially "nudging" the joints in the direction that reduces the tool pose error $(x_d - f(q_k))$, converging to a solution over time. If no convergence occurs within the preset maximum number of iteration steps or a collision occurs, the procedure ends and reports failure. In addition, IK may yield multiple solutions or none at all, depending on the desired pose and joint limits, as numerical IK solvers often include joint limits as constraints. To ensure repeatability, it may thus be necessary to "freeze" or store desirable trajectories, especially for tasks involving repeated motions.

Table 2: Common numerical methods for IK. The string in each function's name identifies the numerical optimization IK solver associated with that function.

Function	Algorithm	External Reference
ikine_LM	Levenberg–Marquardt	Wikipedia 🗹
$ikine_GN$	Gauss-Newton	Wikipedia 🗹
$ikine_NR$	Newton-Raphson	Wikipedia 🗹
ikine_QP	Quadratic Programming	Wikipedia 🗹

Question 14.

- (a). Run the ur3_ik.py script THREE times, freezing the solver to the LM and GN types for each triple run. Collect the different joint configuration solutions (rounded to 4 decimal places) each solver type yields each time in a table and include the table in your report.
- (b). Using the same IK script but only with the LM solver, find the joint configuration corresponding to the tool pose at the robot's lower and upper joint limits, i.e., the two elements of **robot.qlim**. Note: one IK solution is enough for each joint limit. Include the values (rounded to 4 d.p.) in your report.
- (c). For the two solutions you obtained in (b), compute the magnitude of the difference between the corresponding configuration at the joint limits and the IK solution. We provide an example for the lower limit below (assuming the IK solution corresponding to this limit is stored in the variable **sol_l**), but you should also compute the corresponding quantity for the upper limit as well:

```
np.linalg.norm(robot.qlim[\theta] - sol_l.q)
```

In your report, explain in **one** sentence why you think your answer is (or isn't) non-zero.

7.4 Mapping End-Effector Trajectories to Robot Motion via IK

You just crunched numbers to compute IK! Let's now explore a few things we can do with this new tool. We'll use a tracking example like in Section 6, but with a circular trajectory. Open the file ur3_ik_circle.py. The relevant blocks are highlighted below.

```
# Create a circle in task space (ZX plane; y constant)
r = RADIUS # m
t = np.linspace(0, 2*np.pi, NUM_PTS_TSP_CIRC) # controls smoothness; see code
x = r * np.cos(t)
y = ee_pose_des_t[1] * np.ones_like(x)
z = r * np.sin(t)
tsp\_circle = np.vstack((x, y, z)).T
# Sample points on the task-space circle
indices = np.linspace(0, NUM_PTS_TSP_CIRC - 1, NUM_SAMP_PTS, dtype=int)
sampled_pts = tsp_circle[indices]
# Compute IK for each sampled point and add to trajectory
traj = np.empty((0, 6))
for sampled_pt in sampled_pts:
    T_{qoal} = sm.SE3(np.array(sampled_pt)) * sm.SE3(sm.SO3((ee_pose_des_R)))
    q_sol = robot.ikine_LM(T_goal).q
    traj = np.vstack([traj, q_sol])
```

The main logic of the script is simple: we define a circle in task space. Since there are an infinite number of points on any geometric circle, we sample a few, making sure to cover the entire perimeter. We then compute IK for each sampled point and add the solution to our robot's

trajectory. Try running the script. You should see an animation of the UR3 tracking a task-space circle using IK-computed joint configurations. However, while the task space trajectory appears smooth, the joint space trajectory appears jerky and fragmented. We will revisit this jerky motion in a later lab. For now, try your hands on the next question to test your understanding.

Question 15. Suppose the UR3 in Section 7.4 has been fitted with a painting tool and that we require the robot to trace the symbol for infinity (∞) in Cartesian space, on some surface in the ZX plane. By modifying the ur3_ik_circle.py file, compute the required set of joint configurations (using the LM solver) to achieve the task space infinity symbol, assuming the robot's controllers can only execute at most $(2 * NUM_SAMP_PTS)$ configurations for any given task. Provide legible Matplotlib plots of the robot at its initial and final configurations (see Figure 3). Your figures should show the infinity symbol. Note: You may change the argument of the plt.pause function (around line 71, accounting for modifications) to 1 or higher, if needed, to slow down the animation and allow you save a plot of the robot's initial configuration.

Figure 3: UR3 tracking a task-space circle using numerical inverse kinematics.

8. Exercises

Exercise 1. Tracking a Cartesian Square with IK

In the **src/exercise** folder, you should see two files: **ur3_draw_square_vk.py** and **exercise.py**. The former is a complete implementation that uses velocity kinematics to trace a Cartesian square by integrating joint velocities over time. It is provided as a reference example to guide you and help you (visually) benchmark your IK solution. In the latter, we have provided starter code to implement the same demo using **only IK** (no velocity kinematics). Your task is to complete **exercise.py** to re-implement the square demo by solving inverse kinematics (using the Levenberg–Marquardt solver) at each corner of the square.

To complete this task, you only need to modify two lines: **line 36**, which specifies a variable (waypoints) that should contain the corners of the square we want the UR3's tool frame to traverse, and **line 43**, which computes the IK solution for each tool pose in waypoints.

Deliverables:

- The 6×6 IK solution array that is printed to the terminal when your code runs
- The modified exercise.py file that produced the IK solution results (see the file-naming convention in the next section (Section 9)).

Exercise 2. Tracking with Orientation Constraints

The current implementation within the ur3_draw_square_vk.py file only tracks linear tool velocities. By modifying only the relevant lines within the **for** loop in ur3_draw_square_vk.py (**lines 41-58**), adapt the velocity update logic to enable the robot maintain a **zero** angular velocity (in other words, a fixed orientation) while tracking the Cartesian square.

Deliverables:

- A plot of the robot at the final waypoint
- The numeric **MSE(v)** and **MSE(omega)** values displayed on the Matplotlib animation window during execution. **Note**: Your grade for this exercise will largely depend on these MSE values, so try to make them as low as possible.
- The modified ur3_draw_square_vk.py file that produced the above results.

9. Conclusion and Lab Report Instructions

After completing the lab, summarize the procedure and results into a well written lab report. Include your solutions to all of the question boxes in the lab report. Refer to the List of Questions to ensure you don't miss any. Include your full solution to the exercises in your lab report. If you wrote any Python programs during the exercises, include these files as a separate attachment, appending your team's number and last names (in alphabetical order) to the file, e.g., Jane Doe, Alice Smith, and Richard Roe in Team 90 submitting their modified main.py would submit the file main_Team90_Doe_Roe_Smith.py and the report Lab_<LabNumber>_Report_Team90_Doe_Roe_Smith.pdf, where <LabNumber> is the number for that week's lab, e.g., 0, 1, 2, etc. Submit your lab report along with any code to ELMS under the assignment for that week's lab. You must complete and submit your lab report by Friday, 11:59 PM of the week following the lab session. See the Files section on ELMS for a lab report template named Lab_Report_Template.pdf. Below is a rubric breaking down the grading for this week's lab assignment:

Component	Points
Lab Report and Formatting	11
Question 1.	6
Question 2.	6
Question 3.	4
Question 4.	4
Question 5.	4
Question 6.	3
Question 7.	7
Question 8.	2
Question 9.	4
Question 10.	2
Question 11.	7
Question 12.	7
Question 13.	9
Question 14.	6
Question 15.	4
Exercise 1.	7
Exercise 2.	7
Total	100