Logic Gates

- 1. Timing Issues
- 2. Specifying Logic Functions
- 3. Logic Design

Handouts: Lecture Slides

Combinational Devices

Static

discipline

A combinational device is a circuit element that has

- one or more digital inputs
- one or more digital outputs
- a functional specification that details the value of each output for every possible combination of valid input values
- a timing specification consisting (at minimum) of an upper bound t_{PD} on the required time for the device to compute the specified output values from an arbitrary set of stable, valid input values

2

A Combinational Digital System

A set of interconnected elements is a combinational device if

- each circuit element is combinational
- every element input is connected to exactly one element output or 1 (power supply) or 0 (ground)
- the circuit contains no directed cycles
- Why is this true?
 - Given an acyclic circuit meeting the above constraints, we can derive functional and timing specs for the input/output behavior from the specs of its components!

Signal Timing: Propagation Delay

Propagation delay t_{pd} is <u>upper bound</u> between new valid inputs and new valid output

Signal Timing: Contamination Delay

Contamination delay t_{cd} is <u>lower bound</u> between invalid inputs and invalid output

Do we really need t_{cp}?

Usually not... it'll be important when we design circuits with registers (coming

If t_{cp} is not specified, safe to assume it's O.

5

Timing Analysis

Logically valid A, B → Logically valid C (static discipline)

$$t_{pd} = 5$$
 $t_{cd} = 1$ for each NAND gate

Over all input combinations, over all input-output paths

What is the propagation delay for the circuit? What is the contamination delay for circuit?

6

Logical Analysis

Logic Function?

A B	С
0 0	
10	
1 1	

Combinational Contract Summary

 t_{PD} propagation delay t_{CD} contamination delay

1. No Promises during

XXXXXXX

2. Default (conservative) spec: $t_{CD} = 0$

Oh yeah... one last issue

NOR:

Α	
В	
Z	$\xrightarrow{t_{pp}}$

Recall the rules for combinational devices:

Output guaranteed to be valid when <u>all</u> inputs have been valid for at least t_{PD} , and, outputs may become invalid no earlier than t_{CD} after an input changes!

Many CMOS gate implementations adhere to even tighter restrictions.

What happens in this case?

LENIENT Combinational Device:

Output guaranteed to be valid when <u>any</u> combination of inputs sufficient to determine output value has been valid for at least t_{PD}. Tolerates transitions -- and invalid levels -- on irrelevant inputs!

10

How do we specify what we want?

Truth Tables

Number of Distinct truth tables with k inputs is 2^{2^k}

Truth Tables and Logic Equations

A B C	F		
0.00	1	F = 1 if $A=0$ AND $B=0$ AND $C=0$	OR
0 0 0 0 0 1	'	A=0 AND B=0 AND C=1	OR
0 0 1	1	A=0 AND B=1 AND C=0	
0 1 0	1		
0 1 0		A=0 AND B=1 AND C=1	OR
0 1 1 1 1 0	1	A=1 AND B=1 AND C=0	
1 1 0	1		
		F = 0 otherwise	

Write as a logic equation:

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C}$$
or
$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C}$$

Logic Equations and AND-OR Circuits

$F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C}$

No problem...

DeMorgan's laws

$$\overline{A} + \overline{B} = \overline{A}\overline{B}$$
 $\overline{A}\overline{B} = \overline{A} + \overline{B}$
 \Rightarrow
 $\overline{A}B = \overline{A} + \overline{B}$

NAND and NORs are universal

NAND-NAND Circuit

$F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C}$

13

15

Number of transistors if implemented in CMOS: 40 (ignoring input inverters)

Identities for Logic Functions

Given logic functions f, g, h

$$f \cdot f = f$$
 $f + f = f$
 $f \cdot 1 = f$ $f + 1 = 1$
 $f \cdot \underline{0} = 0$ $f + \underline{0} = f$
 $f \cdot \overline{f} = 0$ $f + \overline{f} = 1$

Distributive laws

$$f \cdot (g+h) = f \cdot g + f \cdot h$$

 $(f+g) \cdot (f+h) = f+g \cdot h$ WHY?

14

Simplifying Logic Equations

Apply identities to simplify equation for F

$$F = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, C + \overline{A} \, B \, \overline{C} + \overline{A} \, B \, C + A \, B \, \overline{C}$$

$$= \underline{\overline{A} \, \overline{B}} + \underline{\overline{A} \, B} + A \, B \, \overline{C}$$

$$= \underline{\overline{A}} + A \, B \, \overline{C}$$

Can we simplify further?

Comparison

$F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C}$

17

18

Parity (XOR) Functions

Count the number of 1's in the inputs and produce a 1 if odd

Smallest AND-OR circuit for P_n will contain 2^{n-1} AND gates

Similar increase for adders, subtractors, multipliers, and most arithmetic functions

Combinational Composition

Suppose we have some 2-input XOR gates:

$$t_{pd} = 1$$
$$t_{cd} = 0$$

And we want an *N*-input XOR:

iff number of 1s input is ODD ("ODD PARITY")

output = 1

 $t_{pd} = O(N)$ -- WORST CASE.

Can we compute N-input XOR faster?

I think that I shall never see a circuit lovely as...

N-input TREE has $O(log_2N)$ levels.

Signal propagation takes $O(log_2N)$ gate delays.

Logic Geek Party Games

• You have plenty of ANDs and ORs, but only 2 inverters. Can you invert more than 2 independent inputs?

- CHALLENGE: Come up with a combinational circuit using ANDs, ORs, and at most 2 inverters that inverts A, B, and C!
- Such a circuit exists. What does that mean?
 - If we can invert 3 signals using 2 inverters, can we use 2 of the pseudo-inverters to invert 3 more signals?
 - Do we need only 2 inverters to make ANY combinational circuit?
- Hint: Is our 3-inv device LENIENT?

21