Manufacture stage

Prepare NuLink3 programmer for CM (by OEM)

- **0.** OEM server setup Rest API server
- 1. Generate private key for ROOTCA, ICA and WebServer in HSM Generate certificate of ROOTCA (self signed), ICA (chain of trust), Generate WebServer PUBKEY

2. OEM get a blank NuLink3 as Programmer CM Program WebServer PUBKEY to Programmer CM (SWD) Write DevAuth.bin to SRAM of Programmer CM (SWD) Run DevAuth.bin and Programmer_CM talk with host

The RootCA is owned by OEM ICAs belong to different projects of OEM WebServer key pair is for device to authenticate web server

- 4. NuSEC.py ask CLOUD server to generate SECURE BOOT PRI NL3 for Programmer CM NuSEC.py get SECURE BOOT public key from CLOUD and burn to Programmer CM ROTPK SBOOT NuSEC.py send NuLink3 firmware to cloud server and HSM signed it by SECURE BOOT PRI NL3 NuSEC.py install NuLink3 firmware (signed) to Programmer CM Enable secure lock of Programmer CM
- 5. Run NuLink3 firmware, Generate AES NuLink3 by ECDH between HSM and Programmer CM (note1)

6. OEM send Programmer CM adapter to CM as secure programmer

EXPORT PROJECT for CM (by OEM)

- 7. OEM use PROJECT EXPORTER (function of NuSEC.py) make package for CM, the package include:
- Production count
- JOB ID
- IDs to check (e.g. DID of target device)
- 8. Encrypt package by AES_NuLink3, OEM send package to CM OEM upload target firmware (MCUBOOT: BL2, APP_FW: BL3) to FW_STORE server Bind uploaded firmware with corresponding Job ID

Import OEM package (CM)

Cloud Server Adapter (NuLink3) target board

0. CM use package importer function of NuSEC.py to import OEM package to NuLink3

1. The package is processed in NuLink3 SECURE ENVIRONMENT to ensure authenticity and integrity after transporting from OEM to NuLink3. The package is then decrypted (by AES_NuLink3) in NuLink3 SECURE ENVIRONMENT and production_count/Job_ID/.. are programmed in the NuLink3

3. For each provision.

NuLink3 decrease the production count number

Read device UID and communicate with cloud server

Device authentication provision (the following slide)

Firmware installation will be rejected if device authentication fail

Secure boot key provision and FW installation (the following slide)

Device authentication key provision

Cloud Server Desktop PC Adapter (NuLink3) target board

2. Program NuLink3 Certificate, webserver PUBKEY (SWD)
Program DevAuth_MCU.bin to SRAM and run it (SWD)

Public key: 512 bits (64B) Unique ID: 128 bits (16B)

Certificate: 16000 bits (2000bytes)

Firmware attestation - secure boot key and FW install

- 7. NuLink3 issue Secure_Lock & chip reset to MCU_UID_A (SWD)

 MCU_UID_A run from SecureBoot -> MCUBoot (BL2 with firmware upgrade function)
- 11. NuLink3 notify the could MCU UID_A has been successful provisioned with FwVer v1. End point 🛇
- 12. Loop until production counter decrease to zero, each target MCU has being provisioned from start point to the end point by the NuLink3 system.
- 13. MCUBoot_FW and APP_FW on NuLink3 will be erased. Traceability log table can be found on the cloud

Status report

Cloud Server Desktop PC Adapter (NuLink3) target board

Deployment stage

Device authentication

Maintenance stage

Firmware upgrade (NuSEC.py + NuLink3 bridge)

Firmware OTA upgrade (direct)

Cloud Server

Desktop PC

Adapter (NuLink3)

target board

Put upgrade APP FW2 to FW STORE server

MCUBoot get APP_FW with signature, decrypt it by AES_SESSION program to BL3 address.

HTTPS/MQTTS

Device and cloud mutual
Cloud prevent firmware rollback
Cloud attach signature_BL3 and PK_BL3_A to APP_FW2
Cloud use ECDH to derive symmetric AES_SESSION key
Cloud encrypts APP_FW2 by AES_SESSION then send it to MCUBoot

Decommission

Decommission

Cloud Server Desktop PC Adapter (NuLink3) target board

Current status

- Current status (Coworking with A008 JY33)
 - Device authentication: AWS <-> NuSEC.py <-> NuLink2 <-> (M2354,KM1M7C)

We setup server for next step (use Soft HSM as HSM simulator)

3. Target MCU generate device authentication AUTHKEY_PRI to key store (UART command) AWS sign Target MCU public key and burn certificate back to target MCU

UART protocol of DevAuth_MCU.bin is standardized. It can also communicates with other devices. (e.g. DATA IO)

Joy of innovation

NUVOTON

Thank You Danke Merci ありがとう Gracias Kiitos 감사합니다 धन्यबाद ك اركش הדות