Physics 613 Last Exam Due: In class, Thursday, March 11, 2 PM (Problems #1 and #2) In Toner's affice, 12 noon, Saturday, March 20 (a) hour after Vernal Equinox!) Problem #3

Problem!) Consider a system of 2 particles

contained in a box of volume

V. The particles whenteat

are distinguishable; each has the same mass

m, and the interact with a potential

that is -60 if the separation between

the particles is <a>a, and <a>c if the separation between

the particles is <a>a, and <a>a if their

seperation is 7 a. In the microcanonical ensemble,

calculate T(E) and P(V, E) for this

system, what is assuming that a3 <a>cV.

SURVEY AND THE

How does the pressure behave at large positive energies, and at negative energies? Give a simple physical interpretation of your result in both of these limits.

Nidentical porticles of mass M sit in vertical a conex of radius R and height h,

with the point down, as shown.

The come is capped at the top so that none of the particles can escape.

Gravity og pacts in the negative & direction.

Calcatate

The whole system is in equilibrium with its survoundings at a fixed temperature T.

a) Calculate the partition functions define

21 cont)	system. What is the behavior of the
	specific heat at low temperature? At
	high temperature? How high must
	the temperature be for the
	high temperature limit to hold accorately!
	Calculate the density g(z) inside the come
c)	Calculate the pressure at the top of the
	cone by considering (JE) NT, BYNO.
	ANT, V
	cone (i.e., R) fixed.
\mathcal{A}	What is Prop of How could you
	have gressed this answer?