Elementary Matrices

Recall the three elementary row operations; Let R_i and R_j denote the *i*th row and *j*th row of a matrix A. The row operations are

- (a) $R_i \leftrightarrow R_j$: interchange rows R_i and R_j .
- (b) cR_i , with $c \in \mathbb{R}$: replace R_i by cR_i .
- (c) $R_i + cR_i$: replace R_i by $R_i + cR_i$.

Definition 2.9. An elementary matrix is any $n \times n$ matrix that can be obtained by performing a single elementary row operation to I_n .

Example 2.10. The following matrices are elementary matrices.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 + 2R_3 \to R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = E_1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E_2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_3$$

Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Then we have

$$E_{1}A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + 2a_{31} & a_{22} + 2a_{32} & a_{23} + 2a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$E_{2}A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$E_{3}A = \begin{bmatrix} 3a_{11} & 3a_{12} & 3a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

We observe that following reduction: $A \xrightarrow{R_2 + 2R_3 \to R_2} E_1 A$, $A \xrightarrow{R_2 \leftrightarrow R_3} E_2 A$, and $A \xrightarrow{3R_1 \to R_1} E_3 A$.

Fact 2.11. Let \mathcal{R} denote an elementary row operation. Then

- (a) If $I_n \xrightarrow{\mathcal{R}} E$, the for any matrix A with n rows, $A \xrightarrow{\mathcal{R}} EA$.
- (b) So, if A can be row reduced to B by a sequence of row operations $\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_k$ and $I_n \xrightarrow{\mathcal{R}_i} E_i$ then $B = E_k E_{k-1} \cdots E_2 E_1 A$. In particular, we have

$$A \xrightarrow{\mathcal{R}_1} E_2(E_1 A) \xrightarrow{\mathcal{R}_3} \cdots \xrightarrow{\mathcal{R}_k} E_k E_{k-1} \cdots E_2 E_1 A = B$$

(c) Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transform E back into I. Indeed, let \mathcal{R} be the row operation that reduces I_n to E, i.e. $I_n \xrightarrow{\mathcal{R}} EI_n = E$ and let $\bar{\mathcal{R}}$ be the operation that transforms E back to I and let \bar{E} be the elementary matrix that does the operation, that is $E \xrightarrow{\bar{\mathcal{R}}} \bar{E}E = I$. Then \bar{E} is the inverse of E.

Example 2.12. Let $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$. So E is the elementary matrix given by $I_3 \xrightarrow{R_3 - 4R_1 \to R_3} E$. To

transform E back to I_3 , we add 4 times row 1 to row 3. The elementary matrix that does it is

$$ar{E} = \left[egin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array}
ight]$$

Hence $E^{-1} = \bar{E}$ is the inverse of E.

Theorem 2.13. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , in which case the sequence of elementary row operations which transform A to I_n also transform I_n into A^{-1} .

Proof. Recall that A is invertible if and only if every equation $A\vec{x} = \vec{b}$ has a unique solution. This is true if and only if the row reduced echelon form of A has a pivot in every row)(existence of solution) and column (uniqueness). Thus A is invertible if and only if the row reduced echelon form of A is I_n .

Now suppose that A is invertible and that $A \xrightarrow{\mathcal{R}_1} \xrightarrow{\mathcal{R}_2} \cdots \xrightarrow{\mathcal{R}_k} I_n$. Suppose also that $I_n \xrightarrow{\mathcal{R}_i} E_i$. Then

$$A \xrightarrow{\mathcal{R}_1} E_2(E_1 A) \xrightarrow{\mathcal{R}_3} \cdots \xrightarrow{\mathcal{R}_k} E_k E_{k-1} \cdots E_2 E_1 A = I_n$$

Thus

$$A^{-1} = E_k E_{k-1} \cdots E_2 E_1$$

Note:

If
$$A \xrightarrow{\mathcal{R}_1} \xrightarrow{\mathcal{R}_2} \cdots \xrightarrow{\mathcal{R}_k} I_n$$
, then $\begin{bmatrix} A : I_n \end{bmatrix} \xrightarrow{\mathcal{R}_1} \xrightarrow{\mathcal{R}_2} \cdots \xrightarrow{\mathcal{R}_k} \begin{bmatrix} I_n : A^{-1} \end{bmatrix}$

Algorithm to Find A^{-1}

Given a matrix A, to find A^{-1}

- (a) Start with an augmented matrix $\begin{bmatrix} A & : & I_n \end{bmatrix}$.
- (b) Row reduce the matrix to reduced row echelon form.

(c) If the reduced echelon form is of the form $\begin{bmatrix} I_n : B \end{bmatrix}$ then $A^{-1} = B$. If the matrix is of any other form, then A is not invertible.

Example 2.14. Compute the inverse of
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$

3 Characterizations of Invertible Matrices

Recall that an $n \times n$ square matrix A is invertible if and only if it can be row reduced to the identity matrix I_n . The identity matrix has pivot in every row and column, so A has a pivot in every row and column. We combine all equivalent statements concerning pivots in every row and column in the following theorem.

Theorem 3.1 (The Invertible Matrix Theorem). Let A be a square $n \times n$ matrix. Then, the following statements are equivalent (all are true or all are false)

- (a) A is an invertible matrix.
- (b) A is row equivalent to the identity matrix I_n .
- (c) A has n pivots.
- (d) The equation $A\vec{x} = \vec{0}$ has only the trivial solution.
- (e) The columns of A are linearly independent.
- (f) The linear transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one.
- (g) The equation $A\vec{x} = \vec{b}$ has at least one solution for each \vec{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The linear transformation $\vec{x} \mapsto A\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- (j) There is an $n \times n$ matrix C such that $CA = I_n$.
- (k) There is an $n \times n$ matrix D such that $AD = I_n$.
- (1) A^T is an invertible matrix.

Fact 3.2. Let A and B be square matrices. If AB = I, then A and B are both invertible with $B = A^{-1}$ and $A = B^{-1}$.

Invertible Linear Transformation

We have seen in section 2 that matrix multiplication corresponds to composition of linear transformations. When a matrix A is invertible, the equation $A^{-1}A\vec{x} = \vec{x}$ can be viewed as a statement about linear transformation.

Definition 3.3 (Invertible Linear Transformation). A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be invertible if there exists a transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

(1)
$$S(T(\vec{x})) = \vec{x} \text{ for all } \vec{x} \in \mathbb{R}^n$$

(2)
$$T(S(\vec{x})) = \vec{x} \text{ for all } \vec{x} \in \mathbb{R}^n$$

The next theorem states that if the transformation S exists then it is unique and must be a linear transformation. In this case, we call S the **inverse** of T and write it as T^{-1} .

Theorem 3.4. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S is given by $S(\vec{x}) = A^{-1}\vec{x}$ is the unique transformation satisfying conditions (1) and (2).