Continuous Random Variables

Common continuous random variables

A) Uniform random variables [Ross 5.3]

We say X is uniform on the interval (a,b), denoted $X \sim U(a,b)$, if

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{else} \end{cases}$$

Note: If
$$X$$
 has units of kg, then a and b have units of kg, and $1/(b-a)$ has units kg $^{-1}$.

Example 17.1: Buses arrive at a stop at 7:00, 7:15 and 7:30. If a person arrives between 7:00 and 7:30 uniformly, what is probability that they wait less than 5 minutes?

Solution:

Example 17.2: Let $X \sim U(a, b)$. Find E[X] and Var[X].

Solution:

f_x(x)

This is denoted $X \sim \mathcal{N}(\mu, \sigma^2)$.

2) Normal (Gaussian) random variables [Ross 5.4]

Definition 17.1: X is normal (or Gaussian) with parameters μ and σ^2 if

 $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

(17.1)

To verify that $f_X(x)$ has unit area, see Notes #21. *Note:* If X has units of kg, then μ has units of kg and σ^2 has units of kg².

Proposition 17.1 If $X \sim \mathcal{N}(\mu, \sigma^2)$, then Y = aX + b is $\mathcal{N}(a\mu + b, a^2\sigma^2)$

 $f_Y(u) = \frac{d}{du} F_Y(u)$ Then

 $= \frac{d}{du} F_X \left(\frac{u - b}{a} \right)$ $= f_X\left(\frac{u-b}{a}\right) \times \frac{1}{a}$ $= \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{(\frac{u-b}{a} - \mu)^2}{2\sigma^2}\right)$ $= \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{(u-b-a\mu)^2}{2(a\sigma)^2}\right)$

Why? [Assume a > 0; a < 0 is similar]

 $= P[aX + b \le u]$ $= P[X \le (u - b)/a]$

 $=F_X\left(\frac{u-b}{a}\right)$

 $F_Y(u) = P[Y \le u]$

So $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.