# EEE210: Energy Conversion and Power Systems

**Transformers** 

Lurui Fang

Email: Lurui.Fang@xjtlu.edu.cn

Office: SC471





## 1. Industry Significance





#### 2. History

In 1831, Michael Faraday discovered the principle of induction using a device that presented all of the characteristics of a transformer







Faraday placed one winding around a magnetic needle and connected the other winding to a battery.

By switching the battery supply on and off, Faraday generated an alternating current and was able to demonstrate magnetic induction in the second coil because the magnetic needle started to move

#### 3. Idea transformer

April 23, 2025

An ideal transformer is a lossless device with an input winding and an output winding.



 $N_n$  or  $N_1$ : the number of turns on the primary or left side  $N_s$  or  $N_2$ : the number of turns on the secondary or right side  $I_n$  or  $I_2'$ : the current flows in the primary or left side  $I_s$  or  $I_2$ : the current flows in the secondary or right side.





According to the faraday's law:

$$e = N \frac{d\varphi}{dt} = 2\pi f N \varphi_{\text{max}} \cos(wt + 90^{\circ})$$

N is the number of coils;

 $\varphi$  is the average flux per turn of coils on the induced side

For the rms value

$$E_p = E_1 = 4.44 f N_1 \varphi_{\max}$$
  $\frac{N_1}{N_2} = \frac{E_1}{E_2} = \frac{I_S}{I_P} = \frac{I_2}{I_2'} = a$   $E_S = E_2 = 4.44 f N_2 \varphi_{\max}$ 

Suppose the core has no losses

$$\frac{N1}{N2} = \frac{E_1}{E_2} = \frac{I_S}{I_P} = \frac{I_2}{I_2'} = a$$

a is the turns ratio

4. Reality





### Core loss (iron loss):

- Eddy current losses
- Hysteresis Losses

### Copper loss:

Current flows on the primary and secondary coils

#### Flux leakage:

- $\varphi_{lp}$ : Leakage on the primary side
- φ<sub>ls</sub>

: Leakage on the secondary side

Heating

4. Reality

Hysteresis: once the core is magnified by induced magnetic flux B. It requires addition negative magnetizing force H to demagnetize.

- B is the magnetic flux density;
- H is the magnetizing force, change with the currents on the coil.



#### **Eddy current losses**



 $P_{el} = k_e B^2 f^2 V$  $k_e$  is a constant value, determined by lab

test; *B* is the maximum flux; f is the frequency; V is the volume of the coil

#### **Hysteresis Losses**



a-b:

Current value change from 0-max;

Initial H applies;

Core goes magnetised

b-c:

Current value reduced to 0;

Core stay magnetized

c-d:

Current reduced to negative value:

Core get demagnetised

#### 4. Equivalent Circuit

#### How can the effects of losses be modeled?





On the primary side:

$$E_1 = V_1 - Z_1 I_1$$

On the secondary side:

$$E_2 = V_2 + Z_2 I_2$$

According to the turns ratio:

$$\frac{E_1}{E_2} = \frac{N1}{N2}$$

- Because of the voltage conversion between P and S side.
- I,V,E on P and S sides are in different voltage level

Not a useful equivalent circuits

### 4. Equivalent Circuit

Convert the entire circuit to an equivalent circuit at a single voltage level

#### Refer to the primary side:



### On the secondary side:

$$\frac{N2}{N1}E_1 = E_2 = V_2 + Z_2I_2$$

$$E_1 = \frac{N1}{N2}(V_2 + Z_2I_2)$$
wh

Given that 
$$\frac{I_2}{I_2'} = \frac{N1}{N2} & \frac{V_2'}{V_2} = \frac{N1}{N2}$$

$$E_1 = V_2' + \left(\frac{N1}{N2}\right)^2 Z_2 I_2'$$

$$E_1 = V_2' + Z_2' I_2'$$

where 
$$Z_2' = \left(\frac{N1}{N2}\right)^2 Z_2$$

$$= \left(\frac{N1}{N2}\right)^2 R_2 + j \left(\frac{N1}{N2}\right)^2 X_2$$

## Comparison between refer to P and S sides:



#### 4. Approximation

#### How to simplify the circuit for the reason of engineering simplicity?

#### **Approximation 1:**

The excitation current is only about 2-3% of the full load current for typical power transformers.



#### **Approximation 2:**

In fact, general transformers have very high permeability core and very small core resistance







Refer to S side

## 5. Example question



- A 150-kVA, 2400/240-V single-phase transformer has the parameters as shown in the following figure.
- 1. Determine the equivalent circuit referred to the high-voltage side.
- 2. Find the primary voltage when the transformer is operating at full load 0.8 power factor lagging and 240 V terminal voltage at the secondary side with neglected iron losses.
- 3. Find the primary voltage when the transformer is operating at full-load 0.8 power factor leading and 240 V terminal voltage at the secondary side with neglected iron losses.



S = 150 kVA a = 2400/240 = 10

#### 5. Example question

- 1) Determine the equivalent circuit referred to the high-voltage side.
- Recall the equations

$$Z'_2 = (a)^2 R_2 + j(a)^2 X_2 & V'_2 = a V_2$$
  
 $Z'_2 = 10^2 * 0.002 + j10^2 * 0.0045$   
 $= 0.2 + j0.45 \Omega$   
 $V'_2 = 10 * 240 = 2400 V$ 



2) Find the primary voltage when transformer is operating at load 0.8 power factor lagging and 240 V terminal voltage secondary side with neglected iron losses

Recall the equation:

$$V_1 = Z_1 I_1 + Z_2' I_2' + V_2'$$

Power factor is 0.8 lagging

$$S = |S|cos(\theta) + j|S|sin(\theta) = 120.32 + j89.58 \text{ kVA}$$

$$I'_2 = \frac{S^*}{{V'_2}^*} = \frac{120.32 - j89.58}{240 * 10} = 50.1 - j37.3\text{A}$$

$$V_1 = V'_2 + I'_2 * (Z_1 + Z'_2) = 2400 + (50.1 - j37.3) * (0.4 + j0.9)$$

$$V_1 = 2453.933 \angle 0.7^{\circ}\text{V}$$

3) Find the primary voltage when transformer is operating at full load 0.8 power factor leading and 240 V terminal voltage at the secondary side with neglected iron losses

Power factor is 0.8 leading

$$S = \frac{|S|cos(\theta) - j|S|sin(\theta)}{|S|sin(\theta)|} = 120.32 - j89.58 \text{ kVA}$$

$$I'_2 = \frac{S^*}{V'_2} = \frac{120.32 + j89.58}{240 * 10} = 50.1 + j37.3\text{A}$$

$$V_1 = V'_2 + I'_2 * (Z_1 + Z'_2) = 2400 + (50.1 - j37.3) * (0.4 + j0.9)$$

$$V_1 = 2387.004 \angle 1.44^{\circ}\text{V}$$

#### 5. Transformer performance

· Transformer efficiency

Determine the percentage of energy that can be converted from P side to S side.

The larger the better (no more than 100%)

Power transformer efficiencies vary from 95% to 99%, the higher efficiencies being obtained from transformers with greater ratings.

The actual efficiency of a transformer in percent is given by:

$$\eta = \frac{\textit{output power}}{\textit{input power}}$$

Considering the copper loss is determined by loading levels,  $\eta$  is given by:

$$\eta = \frac{n * S * pf}{n * S * pf + n^2 * P_{copper} + P_{iron}}$$

n is the loading level, such as 70%.

Voltage regulation

Determine the percentage of output voltage drops from no-load to full load status, if input voltage is constant.

Voltage regulation indicates the percentage of output voltage drops from no-load to full load status, if input voltage is constant

Regulation = 
$$\frac{\left|V_{2,noload}\right| - \left|V_{2,fuload}\right|}{\left|V_{2,fuload}\right|} * 100\%$$

If refer to the P side:

Regulation = 
$$\frac{|V_1| - |V'_{2,fuload}|}{|V'_{2,fuload}|} * 100\%$$

If refer to the S side:

$$Regulation = \frac{|V_1'| - |V_{2,fuload}|}{|V_{2,fuload}|} * 100\%$$



## **Synchronous Generators**

6. Important theory



What indeed carries electricity energy?

The Big Misconception About Electricity

## 7. How to obtain the impedance parameters



Normally, manufacture will label them on the transformer.

Two methods are normally used to determine the impedance parameters for transformers:

- Open circuit tests The shunt elements  $R_c$  and  $X_m$
- Short circuit tests

  The copper impedance  $Z_{\epsilon}$

## **Open circuit tests**

In the open-circuit test, rated voltage is applied at the terminals of one winding while the other winding terminals are open-circuit.



Simplified circuits

The shunt elements  $R_c$  and  $X_m$  can be determined from the relations:

$$R_{c1} = \frac{V_1^2}{P_0}$$

The no-load input power  $P_0$  gives the transformer core loss commonly referred to as *iron loss*.

$$I_C = \frac{V_1}{R_{c1}}$$

And

$$I_0 = I_c + I_m j$$
  $|I_0| = \sqrt{{I_c}^2 + {I_m}^2}$  if we have the magnitude of  $I_0$ :

$$I_m = \sqrt{{I_0}^2 - {I_c}^2}$$
, therefore  $X_{m1} = \frac{V_1}{I_m}$ 

### 7. How to obtain the impedance parameters

 $I_0$  is minimal



Normally, manufacture will label them on the transformer.

Two methods are normally used to determine the impedance parameters for transformers:

- Open circuit tests The shunt elements  $R_c$  and  $X_m$
- Short circuit tests

  The copper impedance  $Z_{\epsilon}$

### **Short circuit tests**

In the short-circuit test, a reduced voltage Vsc is applied at the terminals of one winding while the other terminals are short-circuited.



Test circuits

$$Z_{e1} = R_{e1} + jX_{e1}$$
 $+I_{sc}$ 
 $V_{sc}$ 
 $-$ 
Simplified circuits

The series elements  $R_{e1}$  and  $X_{e1}$  may then be determined from the relations

$$Z_{e1} = \frac{V_{sc}}{I_{sc}}$$

And

$$R_{e1} = \frac{P_{sc}}{I_{sc}^2}$$

$$X_{e1} = \sqrt{{Z_{e1}}^2 - {R_{e1}}^2}$$

There is no easy way to split the series impedance into primary and secondary components. Fortunately, such separation is not necessary to solve normal problems. (we have the approximation circuits)

## 西交利才的海大學 Xran Jacking-Userpool University

#### 7. How to obtain the impedance parameters

Normally, manufacture will label them on the transformer.

Two methods are normally used to determine the impedance parameters for transformers:

- Open circuit tests

  The shunt elements  $R_c$  and  $X_m$
- Short circuit tests

  The copper impedance  $Z_e$

## Attention safety reasons:

 the open-circuit test is usually performed on the low-voltage side of the transformer

 $R_c$  and  $X_m$  refer to the LV side

 the short-circuit test is usually performed on the high voltage side of the transformer

 $R_{eq}$  and  $X_{eq}$  refer to the HV side

## 8. Three phase transformers



- Low insulation cost
- Available neutral to ground connections
- Rarely used due to 3<sup>rd</sup> harmonics



- Often used as a step-down transformer
- Block 3<sup>rd</sup> harmonics
- Have a neutral-ground connection





- Block 3<sup>rd</sup> harmonics
- No neutral to ground connection
- Normally three single transformers are connected as the  $\Delta$ - $\Delta$  connection:

If required, one single transformer can be disconnected, while the rest two can still provide three phase power conversion at a reduced power.



- Often used as a step-up transformer
- Block 3<sup>rd</sup> harmonics
- Have a neutral-ground connection

## 9. Auto transformers





#### Winding name:

 $X_1$  to  $X_2$ : series winding  $H_1$  to  $H_2$ : common winding

AT can work as both a step-up and a stepdown transformer

• step-up

 $H_1$  to  $H_2$  is the primary winding

step-down

 $H_1$  to  $H_2$  is the secondary winding

Compared to normal transformer, the ideal AT transformer circuit is used to approximate the power ratings.

#### 9. Auto transformers

P and S side are electrically connected

No electrical connection  $N_1 : N_2$  $X_2$  $V_H$  $V_2$ (b) (a) AT transformer Normal transformer

connecting P and S

Like normal transformer:

$$\frac{N1}{N2} = \frac{V_1}{V_2} = \frac{I_2}{I_1} = a$$





If refer to V2 side:

$$V_H = V_2 + \frac{N1}{N2}V_2$$

Since  $V_2 = V_L$ 

$$V_H = V_L + \frac{N1}{N2}V_L; \qquad \frac{V_H}{V_I} = 1 + a$$

From Kirchoff's law,  $I_2 = I_L - I_1$ :

$$I_L = \frac{N1 + N2}{N2} I_1$$

Since  $I_1 = I_{H}$ :

$$\frac{I_L}{I_H} = 1 + a = \frac{V_H}{V_L}$$

The ratio of the *S* of an autotransformer to its corresponding twowinding transformer is called the power rating advantage, which is given by:

$$\frac{S_{auto}}{S_{2w}} = \frac{(V_1 + V_2)I_1}{V_1I_1} = 1 + \frac{1}{a}$$



## 西交利均浦大學 Xian diactong-Liverpool University

#### 10. Example question

A two-winding transformer is rated at 60-kVA, 240/1200-V, 60-Hz. When operated as a conventional two-winding transformer at rated load, 0.8 power factor, its efficiency is 0.96. This transformer is to be used as a 1440/1200-V step-down autotransformer in a power distribution system.

- 1. Assuming that the transformer is ideal, find the transformer kVA rating when used as an autotransformer
- 2. Find the efficiency with the kVA loading of part (a) and 0.8 power factor.

#### Read the problem:

$$S_{tw}$$
 = 60 kVA  
a = 240/1200 = 0.2 as a two winding transformer  
pf = 0.8  
Efficiency = 0.96 as a two winding transformer  
 $a_{auto} = \frac{1400}{1200} = 1.167$ 

#### 10. Example question

A two-winding transformer is rated at 60-kVA, 240/1200-V, 60-Hz. When operated as a conventional two-winding transformer at rated load, 0.8 power factor, its efficiency is 0.96. This transformer is to be used as a 1440/1200-V step-down autotransformer in a power distribution system.

1. Assuming the transformer is ideal, find the transformer kVA rating when used as an autotransformer



Recall the knowledge of auto transformer:

$$S_{auto} = (V_1 + V_2)I_1 = V_2I_L$$
  
 $S_{auto} = 1200*(I_1 + I_2)$ 

 $I_1$  and  $I_2$  are derived, suppose the auto transformer is a two-winding one.

$$I_1 = \frac{S_{tw}}{V_1} = \frac{60,000}{240} = 250 \,\text{A}$$

$$I_2 = \frac{S_{tw}}{V_2} = \frac{60,000}{1200} = 50 \,\text{A}$$

$$S_{auto} = V_2 I_L = 1200 * (250 + 50) = 360 \,\text{kVA}$$
The power advantage =  $\frac{S_{auto}}{S_{tw}} = \frac{360}{60} = 6$ 

April 25, 2025

#### 10. Example question

A two-winding transformer is rated at 60-kVA, 240/1200-V, 60-Hz. When operated as a conventional two-winding transformer at rated load, 0.8 power factor, its efficiency is 0.96. This transformer is to be used as a 1440/1200-V step-down autotransformer in a power distribution system.

2. Find the efficiency with the kVA loading of part (a) and 0.8 power factor



Recall the efficiency equation at full load:

Efficiency = 
$$\frac{|S_{auto}| * pf}{|S_{auto}| * pf + P_{loss}}$$

Remember, when a two winding transformer is connected as an auto transformer,  $\frac{12auto}{18PJ} + \frac{12}{12} = \frac{12}{12} = \frac{12auto}{18PJ} + \frac{12$ 

Deem the auto transformer as a two winding one:

Efficiency = 
$$\frac{|S_{tw}|*pf}{|S_{tw}|*pf+P_{loss}} = 0.96$$
$$P_{loss} = 2 \text{ kW}$$

Take the  $P_{loss}$  into the auto transformer:

Efficiency = 
$$\frac{|S_{auto}|*pf}{|S_{auto}|*pf+P_{loss}} = \frac{(360*0.8)}{360*0.8+2} = 0.9931$$

11. Other application

#### In lab:

- · Current meter
- Voltage meter

Don't applied to high voltage or high current scenarios

#### **Current transformers:**





- Current flows in the conductor would magnetize the ferromagnetic ring.
- A small sample of flux flow in the ring will induce voltage and currents on the coils (a reduced value, e.g. 100 V, 5A)
- Loosely coupled winding covert the original currents into a proportional small one.

#### **Potential transformers:**





- Similar structure with the normal transformer
- Low rated power (can be deemed as open circuit on the secondary side)
- Lower the voltage to a safe value, e.g. 100V.

#### 12. Extensions

#### Saturation

#### In reality:

The applied field strength and the flux increase is not a linear function



Flux

With the increase of applied field, saturation will reach.



Time-dependent distribution of magnetic flux density for a)

 $A_c$ =0.0105  $m^2$  b)  $A_c$ =0.0153  $m^2$  c)  $A_c$ = 0.018  $m^2$ 

B [tesla]

1.0000

0.9000 0.8400

0.7800 0.7200

0.6600

0.6000

0.5400

0.4800 0.4200

0.3600 0.3000

0.2400 0.1800

0.1200

0.0600

0.0000

12. Extensions

Dynamic rating









Unexpected loads



Rated capacity at the nameplate

- If RLOL>1
   Transformer will have a lower life than the rated one.
- If RLOL<1
  Transformer will
  have a **greater life**than the rated one.



Over temperature exacerbate insulation degradation, component aging, etc.