MS8-Xany

Bien plus qu'un simple MultiSwitch à 8 sorties pour OpenAVRc

Manuel Utilisateur MultiSwitch MS8-Xany

Copyright OpenAVRc 2018

Table des matières

Τa	ıble des matières	
1	CE DOCUMENT	3
	1.1 Versions	3
	1.2 Copyright	3
	1.3 Avertissement	3
	1.4 Contenu	3
2	PRESENTATION DE MS8-XANY	4
	2.1 Vue d'ensemble	
	2.2 Résumé des spécifications du décodeur MS8-Xany	
	SCHEMA DU DECODEUR MS8-XANY	
4	REALISATION DU DECODEUR MS8-XANY	
	4.1 Circuit imprimé	7
_	4.2 Chargement du Firmware	7
5	UTILISATION	7
	5.1 Connexion au récepteur	7
	5.2 Mode standard MultiSwitch/Commutation Tout-Ou-Rien	
	5.2.1 Câblage des « utilisations » Tout-Ou-Rien sur les sorties	/
	5.2.2 Sélection de la tension d'alimentation des sorties S1 à S8	
	5.2.3 Diodes de roue libre	
	5.2.4 Commande directe de relais avec diode intégrée à l'ULN2308	
	5.2.5 Commande de relais opto-isolés	
	5.3 Configuration X-Any côté émetteur OpenAVRc	
	5.4 Mode avancé/Commande de servos	
	5.4.1 Utilisation du port série de MS8-Xany	
	5.4.2 Les messages de commande de MS8-Xany	
	5.4.3 Exemple de configuration réelle	12
	5.4.6 Exemple de comiguration recile	. ±0

1 CE DOCUMENT

1.1 Versions

Version	Date	Raison de l'évolution
0.1	20/12/2018	Création

1.2 Copyright

Ce document est Copyright © 2018 OpenAVRc.

1.3 Avertissement

L'équipe **OpenAVRc** n'est aucunement responsable des dommages qui pourraient découler de la mauvaise utilisation ou d'un éventuel dysfonctionnement de l'émetteur **OpenAVRc**, du module décodeur **MS8-Xany** et/ou des logiciels associés.

Il appartient donc à l'utilisateur final d'en mesurer, d'en assumer les risques et de respecter la législation en vigueur selon le pays d'utilisation.

1.4 Contenu

Ce document décrit la réalisation du module décodeur MS8-Xany ainsi que le paramétrage pour son utilisation avec l'émetteur OpenAVRc.

2 PRESENTATION DE MS8-XANY

2.2 Résumé des spécifications du décodeur MS8-Xany

Spécification	Valeur / Caractéristique	Note
Alimentation	+3.3V à +6.6V	Mettre le cavalier « tension récepteur » sur « = » ou « ↓ » selon la valeur de la tension fournie par le récepteur
Protocole X-Any	- Protocole numérique universel utilisé par OpenAVRc pour les accessoires distants - Contrôle d'intégrité par checksum 8 bits - Fonctionne avec tous les protocoles, y compris en 2.4GHz: - Protocole PPM - Protocoles SPIRfMod - Protocoles MultiMod	Contrairement à bon nombre de modules MultiSwitches, MS8-Xany fonctionne également avec les modules HF en 2.4GHz
8 sorties Tout-Ou-Rien	- Commandées en Tout-Ou-Rien par sortie transistorisée	Sorties configurées en mode « numérique » (MultiSwitch)
Alimentation des sorties	- Interne : tension du récepteur - Externe : tension externe 5 à 24V	Sélectionnable par cavalier (commun aux 8 sorties)
Diode de roue libre	Diodes de roue libre des 8 sorties au + de l'alimentation des sorties	Sélectionnable par cavalier (commun aux 8 sorties)
8 sorties Servo	- Commandées en Tout-Ou-Rien - Positions extrêmes paramétrables - Durée du mouvement entre positions extrêmes paramétrable	- Sorties configurées en mode «Servo» - Inversion de la course des servos possible en permuttant les valeurs extrêmes - Possibilité d'utiliser la tension du récepteur - Possibilité d'utiliser un tension externe (compatible avec les servos)
1 sortie Servo proportionnelle	Commande proportionnelle d'un servo de 988µs à 2008µs (0 à 255 pas de 4µs)	Présence de commande de servo détectée en dynamique par MS8-Xany : rien à configurer sauf côté émetteur OpenAVRc
LED rouge perte de signal	Au bout de 2 secondes sans signal	Non gérée si servo proportionnel utilisé (broche partagée)
Failsafe	- Toutes les sorties passent à 0 en cas de perte de signal RC - Le servo proportionnel conserve sa position courante	Synchrone avec LED rouge perte de signal
Port série TTL	Connecteur pour câble USB/FTDI TTL	Pour configuration avancée à l'aide d'une application type « Terminal série »

3 SCHEMA DU DECODEUR MS8-XANY

4 REALISATION DU DECODEUR MS8-XANY

4.1 Circuit imprimé

TO DO

4.2 Chargement du Firmware

TO DO

5 UTILISATION

5.1 Connexion au récepteur

Avant de connecter MS8-Xany au récepteur, il est impératif de mesurer la tension fournie par le récepteur.

Si la tension disponible entre les broches – et + du connecteur 3 points de la voie utilisée est :

- 1. Inférieure à 5.7V, placer le cavalier « tension récepteur » sur « = »
- 2. Supérieure à 5.7V, placer le cavalier « tension récepteur » sur « ↓ »

5.2 Mode standard MultiSwitch/Commutation Tout-Ou-Rien

MultiSwitch, c'est le mode par défaut après chargement du Firmware : le mode commutation Tout-Ou-Rien des 8 sorties **S1** à **S8**. Il n'y a donc rien à configurer pour fonctionner en mode MultiSwitch.

5.2.1 Câblage des « utilisations » Tout-Ou-Rien sur les sorties

Le MS8-Xany s'utilise alors comme un module MultiSwitch standard :

- Les « utilisations » (ex : un lampe) se branchent sur les sorties S1 à S8 entre les broches « S » et « + », la rangée 8 points de « - » en bord de carte n'est pas utilisée dans ce cas.

5.2.2 Sélection de la tension d'alimentation des sorties S1 à S8

Il est possible d'alimenter les sorties **S1** à **S8** (fourniture du +) à partir :

- 1. De la tension du **+VRx** fournie par le récepteur (Attention à la consommation sur les sorties !)
 - → Cavalier de sélection alimentation sur « VRx »
- 2. D'une tension externe **VExt** (de **5V** à **24V**) appliquée sur le connecteur 2 points en bas à droite de la carte
 - → Cavalier de sélection alimentation sur « VExt »

5.2.3 Diodes de roue libre

Si les « utilisations » connectées sur les sorties sont selfiques (ex :relais), il faut connecter les diodes internes de roue libre sinon il y a risque de détruire l'ULN2308.

5.2.4 Commande directe de relais avec diode intégrée à l'ULN2308

5.2.5 Commande de relais opto-isolés

Il existe des « modules relais » très bon marché souvent appelés « Arduino Relay Module ». Ces modules intègrent un opto-coupleur permettant une isolation totale entre la tension de commande et la tension d'alimentation des bobines des relais.

Le schéma équivalent d'une voie de ces modules est donné ci-dessous :

- VCC est la tension de commande des opto-coupleurs : accessible sur le connecteur de bord de carte
- ◆ JD-VCC est la tension de commande des bobines des relais : accessible sur le point 2 du connecteur « Jumper »

Note importante:

Pour bénéficier d'une isolation totale entre VCC et JD-VCC, le Jumper jaune (cavalier) doit être retiré.

5.2.6 Montage conseillé pour relais 5V opto-isolés

- ◆ Les opto-coupleurs sont alimentés par la tension du récepteur (quelques x10 mA)
- VCC de la carte relais est relié à un des points de OUTPUT_1X8_ALIM
- In1 de la carte relais est reliée à la sortie S1
- ◆ In2 de la carte relais est reliée à la sortie S2, etc
- ◆ Les bobines des relais sont alimentés par une alimentation séparée (+4.8V à +7.2V)
- → Les alimentations étant complètement isolées, la tension du récepteur ne sera pas perturbée lors des commuations des relais : aucun risque de perdre le contrôle RC.

5.3 Configuration X-Any côté émetteur OpenAVRc

Reportez vous au manuel d'OpenAVRc pour configurer l'instance X-Any avec les paramètres suivants :

- 1. Le N° de voie doit correspondre au N° de voie sur laquelle le décodeur MS8-Xany sera connecté sur le récepteur
- 2. Le nombre de répétition sera en premier lieu réglé sur 3 (dès que ça fonctionnera, il sera possible de réduire cette valeur afin d'atteindre la réactivité maximale autorisée par votre ensemble HF).
- 3. Configurer « Sw. » sur Sw.8 : cela va transmettre l'état de 8 contacts
- 4. Si le servo proportionnel sera utilisé sur MS8-Xany, cocher « Pot. », cela va ajouter la transmission de la valeur du potentiomètre.

5.4 Mode avancé/Commande de servos

Le décodeur MS8-Xany dispose d'un accès pour les configurations avancées : un port série TTL.

Pour l'utiliser, il est nécessaire de déconnecter l'entrée RC de MS8-Xany afin de ne pas perturber le fonctionnement de l'accès série.

C'est cet accès série qui va permettre l'utilisation de servos connectés au sorties S1 à S8.

Dans ce cas, la tension « + » de sortie devra impérativement être compatible des servos!

5.4.1 Utilisation du port série de MS8-Xany

Pour accéder au port série de MS8-Xany, il faut un câble USB/Série TTL par exemple de type « FTDI ».

Les points nécessaires sur le câble USB/Série TTL sont :

- GND.
- +5V
- TX
- RX

Le câble USB/Série TTL doit être capable de fournir le +5V pour alimenter MS8-Xany car pendant la configuration avancée, MS8-Xany doit être déconnecté du récepteur.

- 1. Connecter le câble USB/Série TTL sur sur le port USB d'un PC pour le côté USB
- 2. Sur le PC, ouvrir un Terminal série, par exemple, PuTTY, TeraTerm, HyperTerminal, GtkTerm, ou encore CoolTerm avec les paramètres suivants : 19200 bauds, 8 bits de données, 1 bit de stop, pas de parité.
 - Selon le Terminal série, il peut être nécessaire d'activer les retours à la ligne automatique sur réception de CR/LF pour avoir un bon affichage.
- 3. Connecter le câble USB/Série TTL sur le connecteur 6 points de MS8-Xany pour le côté TTL, ceci va alimenter MS8-Xany (vérifier qu'il n'y a pas trop de gros consommateurs branchés sur les sorties, puisque c'est l'USB du PC qui fournit l'alimentation +5V)
- 4. **Dans les 3 secondes** après le branchement sur **MS8-Xany**, appuyer sur la touche « Entrée » de votre clavier, le message « MS8 VX.Y » doit apparaître sur le Terminal série comme illustré ci-dessous. Si ce n'est pas le cas, débrancher le câble USB/Série TTL sur le connecteur 6 points de **MS8-Xany** et recommencer à l'étape 3 ci-dessus.

Exemple de connexion avec le Terminal GtkTerm sous Linux

5.4.2 Les messages de commande de MS8-Xany

La liste des messages supportés par MS8-Xany est donnée dans la table suivante :

← Commande/ → Réponse	Action	Remarque
← Enter → MS8 Vx.y	Si envoyée pendant les 3 secondes après la mise sous tension, passe en mode Terminal	Si échec et 3 secondes écoulées, débrancher puis rebrancher le connecteur 6 points du câble USB/Série TTL
← S0? → S0=Pos:OffsetPas4us	Retourne la position courante en µs et la commande OffsetPas4us qui est le nombre de pas de 4µs (valeur entre 0 et 255) à ajouter à 988 pour avoir la largeur d'impulsion en µs pour le servo proportionnel	Largeur d'impulsion(us) = 988 + (OffsetPas4us x 4)
← S0=Pos → S0	Définit la position en µs pour le servo proportionnel	Renvoie ERR, si valeur non comprise entre 988 et 2008
← Sx? → Sx=D:E ou → Sx=S;Pos0;Pos1;Dur:C	Si x est compris entre 1 et 8, retourne la configuration de la sortie N°x ainsi que l'état « C » de la Commande courante associée (0 ou 1) - Si la sortie est configurée en sortie numérique MultiSwitch, la réponse est : Sx=D:C D=Digital (Numérique) - Si la sortie est configurée en sortie Servo, la réponse est : Sx=S;Pos0;Pos1;Dur:C avec Pos0=la position en µs pour une commande à 0, Pos1=la position en µs pour une commande à 1, et Dur=la durée du mouvement du servo entre Pos0 et Pos1	Renvoie ERR, si - Valeur x non comprise entre 0 et 8 - Pos0 ou Pos1 < 600 - Pos0 ou Pos1 > 2400 Exemple de réponses : S1=1000;2000;5000:0 S2=2300;600;8500:1
← Sx=D → Sx	Définit la sortie x comme étant de type numérique (Digitale)	
← Sx=S;Pos0;Pos1;Dur → Sx	Définit la sortie x comme étant de type Servo avec une position à Pos0 µs pour une commande à 0, une position à Pos1 µs pour une commande à 1, et une durée de mouvement à Dur ms	La valeur « Dur » en ms est recalculée en interne par MS8-Xany en tenant compte des différentes résolutions/limitations et peut être différente à la relecture.
← Sx=C → Sx	Si x est compris entre 1 et 8, « C » définit la Commande (0 ou 1) pour la sortie x, que celle-ci soit de type Digitale ou Servo	Très pratique pour les tests par l'accès série sans RC.
← Q	Quitte le mode Terminal : MS8-Xany peut être connecté au récepteur	Ne pas oublier de déconnecter le câble USB/Série TTL !

5.4.3 Exemple de configuration réelle

Dans l'exemple ci-dessous :

La largeur d'impulsion pour le servo connecté sur la sortie proportionnelle S0 vaut :

```
[988 + (242 \times 4)] = 1956 \mu s
```

- \rightarrow la commande (= le nombre de pas de 4 μ s à ajouter à 988 μ s) serait de 242 pour la largeur d'impulsion de 1956 μ s
- Les sorties S1, S2, S3 et S8 sont de type Servo, leurs commandes valent respectivement 0, 0, 1 et 1
- Les sorties S4, S5, S6 et S7 sont de type Digital (MultiSwitch), leurs commandes valent respectivement 0, 1, 0 et 1

```
🔊 🖨 🗊 GtkTerm - /dev/ttyUSB0 19200-8-N-1
File Edit Log Configuration Control signals View Help
MS8 V0.2
50?
50=1956:242
51?
S1=S;0600;2300;8500:0
52?
S2=S; 2000; 1000; 1666: 0
S3=S; 1000; 2000; 5000: 1
54?
S4=D:0
55?
S5=D:1
56?
S6=D:0
57?
S7=D:1
58?
S8=S; 1500; 1750; 1250: 1
 /dev/ttyUSB0 19200-8-N-1 DTR RTS CTS CD DSR RI
```

1. Mouvement de servo dans le sens contraire des aiguilles d'une montre

L'impulsion du servo connecté à la sortie N°1 va de 600 μ s à 2300 μ s (soit un mouvement d'environ 180°) en 8,5 secondes si la commande vaut 1, et de 2300 μ s à 600 μ s (soit un mouvement d'environ 180°) en 8,5 secondes si la commande vaut 0.

2. Mouvement de servo dans le sens contraire des aiguilles d'une montre

Avec MS8-Xany, il est possible d'avoir un movement dans le sens opposé : il suffit de permutter les positions extrêmes.

L'impulsion du servo connecté à la sortie N^2 va de 2000 μ s à 1000 μ s (soit un mouvement d'environ 100°) en 1,67 secondes si la commande vaut 1, et de 1000 μ s à 2000 μ s (soit un mouvement d'environ 100°) en 1,67 secondes si la commande vaut 0.