Groups Definition

Definition A non-empty set G with a binary operation (called multiplication) $\cdot: G \times G \to G$ is called a group if

1. multiplication is closed in G,

$$a \cdot b \in G \quad \forall a, b \in G$$
;

2. multiplication is associative

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 $a, b, c \in G$;

3. there is an identity element e

$$e \cdot a = a \cdot e = a \quad \forall a \in G;$$

4. for every element a, there is an inverse a^{-1}

$$a \cdot a^{-1} = a^{-1}a = e$$
.

Definition A group is abelian if the multiplication is commutative.

Definition If group is finite then the number of elements is called the order of the group.

Groups Examples

- 1. Groups: $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$, identity is 0 and inverse of a is —a.
- 2. Groups: (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) and (\mathbb{C}^*, \times) , identity is 1 and inverse of a is 1/a.
- 3. Finite groups:
 - 3.1 Trivial $G = \{e\}$, $e \cdot e = 1$ 3.2 $G = \{e, a\}$, $a^2 = e$

 - 3.3 $G = \{e, a, b\}, ab = ba = e$
 - 3.4 $C_n = \{e, a, a^2, \dots, a^{n-1}\}, a^n = e$
 - 3.5 D_n generated by a and b such that $a^n = b^2 = e$ and $ab = ba^{-1}$.
- 4. Matrix Groups: $(M_n, +)$, $GL(n, \mathbb{R})$, O(n), SO(n), $GL(n, \mathbb{C})$, U(n), SU(n)
- 5. Permutation Group S_n .
- 6. Transformation Groups: Euclidean group E(n), Lorentz group O(1,3) etc.

Groups Properties

- 1. Identity is unique
- 2. Inverse is unique
- 3. Cancellation Laws: $ab = ac \implies b = c$ and $ab = cb \implies a = c$
- 4. $(a^{-1})^{-1} = a$
- 5. $(ab)^{-1} = b^{-1}a^{-1}$
- 6. Rearrangement theorem: Each row of the multiplication table contains all elements. A row can't have an element appering twice or more.

Subgroups **Definition and Properties**

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Subgroups Definition and Properties

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in H;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

Definition and Properties

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in *H*;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

Examples

1. Trivial subgroups: G and $\{e\}$

Definition and Properties

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in *H*;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

- 1. Trivial subgroups: G and $\{e\}$
- 2. $(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+) \subset (\mathbb{C},+)$. Also $(\mathbb{Q}^*,\times) \subset (\mathbb{R}^*,\times) \subset (\mathbb{C}^*,\times)$

Definition and Properties

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in *H*;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

- 1. Trivial subgroups: G and $\{e\}$
- 2. $(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+) \subset (\mathbb{C},+)$. Also $(\mathbb{Q}^*,\times) \subset (\mathbb{R}^*,\times) \subset (\mathbb{C}^*,\times)$
- 3. $H = \{5n \mid n \in \mathbb{Z}\}$ is subgroup of $(\mathbb{Z}, +)$.

Definition and Properties

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in H;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

- 1. Trivial subgroups: G and $\{e\}$
- 2. $(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+) \subset (\mathbb{C},+)$. Also $(\mathbb{Q}^*,\times) \subset (\mathbb{R}^*,\times) \subset (\mathbb{C}^*,\times)$
- 3. $H = \{5n \mid n \in \mathbb{Z}\}$ is subgroup of $(\mathbb{Z}, +)$.
- 4. Subgroups in D_3 are $\{e, a, a^2\}$, $\{e, b\}$, $\{e, ab\}$ and $\{e, a^2b\}$

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in H;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

- 1. Trivial subgroups: G and $\{e\}$
- 2. $(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+) \subset (\mathbb{C},+)$. Also $(\mathbb{Q}^*,\times) \subset (\mathbb{R}^*,\times) \subset (\mathbb{C}^*,\times)$
- 3. $H = \{5n \mid n \in \mathbb{Z}\}$ is subgroup of $(\mathbb{Z}, +)$.
- 4. Subgroups in D_3 are $\{e, a, a^2\}$, $\{e, b\}$, $\{e, ab\}$ and $\{e, a^2b\}$
- 5. $H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid ad \neq 0, b \in \mathbb{R} \right\}$ and $K = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R} \right\}$ in GL(2)

Definition A subset H of a group G is called a subgroup of G if H is a group by itself with the same group multiplication.

Theorem A subset H of a group G is subgroup of G iff

- 1. multiplication is closed in H;
- 2. for each $a \in H$, a^{-1} is also in H.

If the group is finite then only the first condition is sufficient.

- 1. Trivial subgroups: G and $\{e\}$
- 2. $(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+) \subset (\mathbb{C},+)$. Also $(\mathbb{Q}^*,\times) \subset (\mathbb{R}^*,\times) \subset (\mathbb{C}^*,\times)$
- 3. $H = \{5n \mid n \in \mathbb{Z}\}$ is subgroup of $(\mathbb{Z}, +)$.
- 4. Subgroups in D_3 are $\{e, a, a^2\}$, $\{e, b\}$, $\{e, ab\}$ and $\{e, a^2b\}$
- 5. $H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid ad \neq 0, b \in \mathbb{R} \right\} \text{ and } K = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R} \right\} \text{ in } GL(2)$
- 6. $GL(n) \supset O(n) \supset SO(n) \supset C_6 \supset C_3$

Definition If H is a subgroup of a group G, and $a \in G$, then a right coset of subgroup H, denoted as Ha, is defined as $Ha = \{ha \mid h \in H\}$.

- Definition If H is a subgroup of a group G, and $a \in G$, then a right coset of subgroup H, denoted as Ha, is defined as $Ha = \{ha \mid h \in H\}$.
- Theorem If $a, b \in G$, and H is a subgroup of G, then Ha and Hb are either equal of disjoint.

- Definition If H is a subgroup of a group G, and $a \in G$, then a right coset of subgroup H, denoted as Ha, is defined as $Ha = \{ha \mid h \in H\}$.
- Theorem If $a, b \in G$, and H is a subgroup of G, then Ha and Hb are either equal of disjoint.
- Theorem There is a one-one correspondance between two right cosets of H in G.

- Definition If H is a subgroup of a group G, and $a \in G$, then a right coset of subgroup H, denoted as Ha, is defined as $Ha = \{ha \mid h \in H\}$.
- Theorem If $a, b \in G$, and H is a subgroup of G, then Ha and Hb are either equal of disjoint.
- Theorem There is a one-one correspondance between two right cosets of H in G.
- Theorem $\mathcal{O}(H) \mid \mathcal{O}(G)$ if G is finite.
 - In general, right coset Ha is not equal to aH. Example: $H = \{e, \sigma\}$ in C_{3v} .

Definition A subgroup N of G is normal subgroup if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.

Definition A subgroup N of G is normal subgroup if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.

Theorem N is a normal subgroup in G if and only if $gNg^{-1} = N$.

Definition A subgroup N of G is normal subgroup if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.

Theorem N is a normal subgroup in G if and only if $gNg^{-1} = N$.

Theorem N is a normal subgroup in G iff every right coset Na is equal to the left coset aN in G.

- Definition A subgroup N of G is normal subgroup if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.
- Theorem N is a normal subgroup in G if and only if $gNg^{-1} = N$.
- Theorem N is a normal subgroup in G iff every right coset Na is equal to the left coset aN in G.
- Definition $A, B \subset G$. Define product $AB = \{x \in G \mid x = ab \text{ for some } a \in A \text{ and } b \in B\}$

- Definition A subgroup N of G is normal subgroup if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.
- Theorem N is a normal subgroup in G if and only if $gNg^{-1} = N$.
- Theorem N is a normal subgroup in G iff every right coset Na is equal to the left coset aN in G.
- Definition $A, B \subset G$. Define product $AB = \{x \in G \mid x = ab \text{ for some } a \in A \text{ and } b \in B\}$
- Theorem N is a normal subgroup in G iff product of two right cosets of N is a right coset of N.

Factor Groups

Definition A collection of the cosets of a normal subgroup N in G is a group with product of sets as the binary operation. This group is called as factor group and is denoted by G/N.

Factor Groups

Definition A collection of the cosets of a normal subgroup N in G is a group with product of sets as the binary operation. This group is called as factor group and is denoted by G/N.

Example $G = S_3 = \left\{e, \psi, \psi^2, \sigma, \sigma\psi, \sigma\psi^2\right\}$. Check that $N = \left\{e, \psi, \psi^2\right\}$ is a normal subgroup with two cosets Ne = N and $N\sigma$. The factor group $G/N = \{N, N\sigma\}$.

Factor Groups

- Definition A collection of the cosets of a normal subgroup N in G is a group with product of sets as the binary operation. This group is called as factor group and is denoted by G/N.
- Example $G = S_3 = \{e, \psi, \psi^2, \sigma, \sigma\psi, \sigma\psi^2\}$. Check that $N = \{e, \psi, \psi^2\}$ is a normal subgroup with two cosets Ne = N and $N\sigma$. The factor group $G/N = \{N, N\sigma\}$.
- Example $G = (\mathbb{Z}, +)$. $N = \{5k \mid k \in \mathbb{Z}\} = \{\dots, -10, -5, 0, 5, 10, \dots\}$ is normal in G. The distinct cosets are N = N0, N1, N2, N3, N4 such that $Np = \{5k + p \mid k \in \mathbb{Z}\}$. For example, $N2 = \{\dots, -3, 2, 7, 12, \dots\}$. Then $G/N = \{N0, N1, N2, N3, N4\}$

Definition A mapping f from a group (G, \odot) to a group (\bar{G}, \otimes) is called homomorphism if $\forall a, b \in G$, $f(a \odot b) = f(a) \otimes f(b)$. (For brevity, f(ab) = f(a)f(b))

Definition A mapping f from a group (G, \odot) to a group (\bar{G}, \otimes) is called homomorphism if $\forall a, b \in G$, $f(a \odot b) = f(a) \otimes f(b)$. (For brevity, f(ab) = f(a)f(b))

Theorem If $f:G \to \bar{G}$ is a homomorphism, then

- 1. $f(e) = \bar{e}$.
- 2. $f(a^{-1}) = [f(a)]^{-1}$

Definition A mapping f from a group (G, \odot) to a group (\bar{G}, \otimes) is called homomorphism if $\forall a, b \in G$, $f(a \odot b) = f(a) \otimes f(b)$. (For brevity, f(ab) = f(a)f(b))

Theorem If $f:G \to \bar{G}$ is a homomorphism, then

- 1. $f(e) = \bar{e}$.
- 2. $f(a^{-1}) = [f(a)]^{-1}$

Definition If $f: G \to \bar{G}$ is a homomorphism, then the kernel K of f is defined as $K = \{x \in G \mid f(x) = \bar{e}\}.$

Definition A mapping f from a group (G, \odot) to a group (\bar{G}, \otimes) is called homomorphism if $\forall a, b \in G$, $f(a \odot b) = f(a) \otimes f(b)$. (For brevity, f(ab) = f(a)f(b))

Theorem If $f:G \to \bar{G}$ is a homomorphism, then

- 1. $f(e) = \bar{e}$.
- 2. $f(a^{-1}) = [f(a)]^{-1}$

Definition If $f: G \to \bar{G}$ is a homomorphism, then the kernel K of f is defined as $K = \{x \in G \mid f(x) = \bar{e}\}.$

Theorem Kernel of a homomorphism $f:G \to \bar{G}$ is a normal subgroup of G.

- Definition A mapping f from a group (G, \odot) to a group (\bar{G}, \otimes) is called homomorphism if $\forall a, b \in G$, $f(a \odot b) = f(a) \otimes f(b)$. (For brevity, f(ab) = f(a)f(b))
- Theorem If $f: G \to \bar{G}$ is a homomorphism, then
 - 1. $f(e) = \bar{e}$.
 - 2. $f(a^{-1}) = [f(a)]^{-1}$
- Definition If $f: G \to \bar{G}$ is a homomorphism, then the kernel K of f is defined as $K = \{x \in G \mid f(x) = \bar{e}\}.$
- Theorem Kernel of a homomorphism $f: G \to \bar{G}$ is a normal subgroup of G.
- Definition A homomorphism f is called an isomorphism if f is one-one.

- Definition A mapping f from a group (G, \odot) to a group (\bar{G}, \otimes) is called homomorphism if $\forall a, b \in G$, $f(a \odot b) = f(a) \otimes f(b)$. (For brevity, f(ab) = f(a)f(b))
- Theorem If $f:G \to \bar{G}$ is a homomorphism, then
 - 1. $f(e) = \bar{e}$.
 - 2. $f(a^{-1}) = [f(a)]^{-1}$
- Definition If $f: G \to \bar{G}$ is a homomorphism, then the kernel K of f is defined as $K = \{x \in G \mid f(x) = \bar{e}\}.$
- Theorem Kernel of a homomorphism $f:G \to \bar{G}$ is a normal subgroup of G.
- Definition A homomorphism f is called an isomorphism if f is one-one.
- Definition Two groups G and \bar{G} are isomorphic if there exists an isomorphism from G onto \bar{G} .