TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA SƯ PHẠM BỘ MÔN SỬ PHẠM TOÁN HỌC

Bài tập nhóm **GIẢI TÍCH SỐ**

Nhóm 3

Nguyễn Ngọc Đăng Duy	B1700014
Lê Hữu Kiệt	B1700024
Phan Thanh Tâm	B1700038
Nguyễn Hiếu Thanh	B1700039

Số gần đúng và sai số

Bài 1. Xác định sai số tuyệt đối giới hạn của số xấp xỉ sau:

$$c = 1,3241; \ \Delta_c = 0,23.10^{-2}$$

Giải

Sai số tuyệt đối giới hạn: $\Delta_c = 0,23.10^{-2}$.

Sai số tương đối giới hạn: $\delta_c = \frac{\Delta_c}{|a|} = 0,00173702893.$

Bài 2. Xác định các chữ số đáng tin và đáng nghi trong trường hợp:

$$b = 0,2351; \ \Delta_b = 0,5.10^{-3}$$

Giải

Ta có $\Delta_b = 0, 5.10^{-3}$.

Dễ thấy $0, 5.10^{-4} \leq \Delta_b \leq 0, 5.10^{-3}$ nên các chữ số 0, 2, 3, 5 là các chữ số đáng tin; chữ số 1 là chữ số đáng nghi.

Bài 3. Xác định các chữ số đáng tin và đáng nghi trong trường hợp:

$$c = 0,2164; \delta_c = 0,5.10^{-3}$$

Giải

Ta có $\delta_c = \frac{\Delta_c}{|c|} \Rightarrow \Delta_c = \delta_c. |c| = 0, 5.10^{-3}.0, 2164 = 0, 0001082 = 0, 1082.10^{-3}.$

Để thấy $0,5.10^{-4} \leqslant \Delta_c \leqslant 0,5.10^{-3}$ nên các chữ số 0,2,1,6 là đáng tin; chữ số 4 là đáng nghi

Bài 4. Tìm sai số tuyệt đối giới hạn và sai số tương đối giới hạn của hàm số:

$$y = (1 + abc)^{\alpha}$$

biết a = 2, 13; b = 4, 39; c = 0, 72.

Giải

Ta có: $a=2, 13\pm 0, 5.10^{-2}$, $b=4, 39\pm 0, 5.10^{-2}, \, c=0, 72\pm 0, 5.10^{-2}$

Lại có:
$$\begin{cases} y_a' = \alpha.bc.(1+abc)^{\alpha-1} \\ y_b' = \alpha.ac.(1+abc)^{\alpha-1} \\ y_c' = \alpha.ab.(1+abc)^{\alpha-1} \end{cases}.$$

Sai số tuyệt đối giới han của hàm số là:

$$\Delta_y = |y_a'| \cdot \Delta_a + |y_b'| \cdot \Delta_b + |y'c| \cdot \Delta_c$$

$$= 3,1608.\alpha.7,732504^{\alpha-1} + 9,3507.\alpha.7,732504^{\alpha-1} + 1,5336.\alpha.7,732504^{\alpha-1}$$

$$= \alpha.7,732504^{\alpha-1}.14,0451$$

$$= \alpha.7,732504^{\alpha}.1,816371514$$

Sai số tương đối giới hạn của hàm số là

$$\delta_y = \frac{\Delta_y}{|y|} = \frac{\alpha.7,732504^{\alpha}.1,816371514}{(1+2,13.4,39.0,72)^{\alpha}} = \alpha.1,816371514$$

Lý thuyết nội suy

Bài 1. Tìm đa thức nội suy Larange của hàm số y = f(x) cho bằng bảng sau:

x	321	322,8	324,2	325
y	2,50651	2,50893	2,51081	2,51188

x	-2	1	3	4	7
y	12	37	51	67	127

và tính gần đúng giá trị f(323, 5).

và tính gần đúng giá trị f(5,1).

Giải

d) Ta có:

$$y_0.L_0(x) = 2,50651 \cdot \frac{(x - 322, 8)(x - 324, 2)(x - 325)}{(321 - 322, 8)(321 - 324, 2)(321 - 325)}$$

$$= \frac{250651}{100000} \cdot \frac{-25}{576} \left(x^3 - \frac{4862}{5} x^2 + \frac{7879661}{25} x - 34053968 \right)$$

$$= \frac{1420849532687}{384000} - \frac{1973417683019}{57600000} x + \frac{6767577}{64000} x^2 - \frac{250651}{2304000} x^3$$

Thay x = 323, 5, ta được $y_0.L_0(323, 5) = -0,07996027$

$$y_1.L_1(x) = 2,50893 \cdot \frac{(x-321)(x-324,2)(x-325)}{(322,8-321)(322,8-324,2)(322,8-325)}$$
$$= -\frac{188572098741}{12320} + \frac{6247598101}{44000}x - \frac{1756251}{4000}x^2 + \frac{27877}{61600}x^3$$

Thay x = 323, 5, ta được $y_1.L_1(323, 5) = 1,18794034$

$$y_2.L_2(x) = 2,51081 \cdot \frac{(x-321)(x-322,8)(x-325)}{(324,2-321)(324,2-322,8)(324,2-325)}$$
$$= \frac{845543137491}{35840} - \frac{56108317827}{256000}x + \frac{43437013}{64000}x^2 - \frac{251081}{358400}x^3$$

Thay x = 323, 5, ta được $y_2.L_2(323, 5) = 1,83897216$

$$y_3.L_3(x) = 2,51188 \cdot \frac{(x-321)(x-322,8)(x-324,2)}{(325-321)(325-322,8)(325-324,2)}$$
$$= -\frac{26369413998039}{2200000} + \frac{490348427793}{4400000}x - \frac{690767}{2000}x^2 + \frac{62797}{176000}x^3$$

Thay x = 323, 5, ta được $y_3.L_3(323, 5) = -0,43708139$

Do đó ta có đa thức nội suy Larange có dạng:

$$P(x) = y_0.L_0(x) + y_1L_1(x) + y_2.L_2(x) + y_3.L_3(x)$$

$$= \frac{6766686623}{369600000} - \frac{47439221}{316800000}x + \frac{3}{6400}x^2 - \frac{43}{88704000}x^3$$

và

$$L(323,5) = y_0.L_0(323,5) + y_1.L_1(323,5) + y_2.L_2(323,5) + y_3.L_3(323,5)$$

= 2.50987084

Vậy giá trị gần đúng của f(323,5) là $P(323,5) \approx 2,50987084$

e) Ta có:

$$y_0L_0(x) = 12 \cdot \frac{(x-1)(x-3)(x-4)(x-7)}{(-2-1)(-2-3)(-2-4)(-2-7)}$$

$$= \frac{56}{45} - \frac{58}{27}x + \frac{10}{9}x^2 - \frac{2}{9}x^3 + \frac{2}{135}x^4$$

$$y_1L_1(x) = 37 \cdot \frac{(x+2)(x-3)(x-4)(x-7)}{(1+2)(1-3)(1-4)(1-7)}$$

$$= \frac{518}{9} - \frac{703}{54}x - \frac{407}{36}x^2 + \frac{37}{9}x^3 - \frac{37}{108}x^4$$

$$y_2L_2(x) = 51 \cdot \frac{(x+2)(x-1)(x-4)(x-7)}{(3+2)(3-1)(3-4)(3-7)}$$

$$= -\frac{357}{5} + \frac{255}{4}x + \frac{153}{8}x^2 - \frac{51}{4}x^3 + \frac{51}{40}x^4$$

$$y_3L_3(x) = 67 \cdot \frac{(x+2)(x-1)(x-3)(x-7)}{(4+2)(4-1)(4-3)(4-7)}$$

$$= \frac{469}{9} - \frac{2747}{54}x - \frac{67}{6}x^2 + \frac{67}{6}x^3 - \frac{67}{54}x^4$$

$$y_4L_4(x) = 127 \cdot \frac{(x+2)(x-1)(x-3)(x-4)}{(7+2)(7-1)(7-3)(7-4)}$$

$$= -\frac{127}{27} + \frac{1651}{324}x + \frac{127}{216}x^2 - \frac{127}{108}x^3 + \frac{127}{648}x^4$$

Do đó ta có đa thức nội suy Larange có dạng:

$$P(x) = y_0.L_0(x) + y_1.L_1(x) + y_2.L_2(x) + y_3.L_3(x)$$

$$= \frac{4699}{135} + \frac{455}{162}x - \frac{89}{54}x^2 + \frac{61}{54}x^3 - \frac{79}{810}x^4$$

và giá trị gần đúng của f(5,1) là $P(5,1) \approx 90,1281$.

Bài 2. Tìm đa thức nội suy Newton của hàm số y = f(x) được cho bằng bảng sau:

h)	x	-0,35	-0, 1	0, 15	0,4	0,65
D)	y	0,387322	0,762616	1,501553	2,956482	5,821162

và tính gần đúng giá trị f(0,55).

Giải

Ta có bảng tỉ sai phân như sau:

x_i	y_i	TSP cấp 1	TSP cấp 2	TSP cấp 3	TSP cấp 4
-0,35	0,387322				
		1,501176			
-0, 1	0,762616		2,909144		
		2,955748		3,758389	
0, 15	1,501553		5,727936		3,641707
		5,819716		7,400096	
0, 4	2,956482		11,278008		
		11,45872			
0,65	5,821162				

Đa thức nội suy Newton:

$$f(x) = 0,387323 + 1,501176(x + 0,35) + 2,909144(x + 035)(x + 0,1) + + 3,758389(x + 0,35)(x + 0,1)(x - 0,15) + + 3,641707(x + 0,35)(x + 0,1)(x - 0,15)(x - 0,4)$$

Khi đó, ta tính được f(0,55) = 4,447517528.

Tính gần đúng đạo hàm và tích phân

Bài 1. Bằng phương pháp hình thang và Simpson 1/3, với n=10, tính gần đúng và đánh giá sai số các tích phân sau:

b)
$$I = \int_{0}^{\pi} \sin x dx$$
 f) $I = \int_{2}^{4} \frac{1}{(x-1)^{2}} dx$ d) $I = \int_{0}^{6} \frac{1}{x^{2}+1} dx$ j) $I = \int_{0.1}^{1.1} \frac{1}{(1+4x)^{2}} dx$

Giải

b) * Công thức Simpson 1/3

$$h = \frac{\pi - 0}{10} = \frac{\pi}{10}$$
. Ta có bảng sau:

i	x_i	y_i	$=f(x_i)$	$=\sin x$
0	0	0		
1	$\frac{\pi}{10}$		0,3090	
2	$\frac{\pi}{5}$			0,5878
3	$\frac{3\pi}{10}$		0,8090	
4	$\frac{2\pi}{5}$			0,9511
5	$\frac{\pi}{2}$		1	
6	$\frac{3\pi}{5}$			0,9511
7	$\frac{7\pi}{10}$		0,8090	
8	$\frac{4\pi}{5}$			0,5878
9	$\frac{9\pi}{10}$		0,3090	
10	π	0		

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{\pi}{30} \cdot [0 + 4.3, 2361 + 2.3, 0777] \approx 2,000105435$$

Đánh giá sai số:

$$|I - I_S| \le \frac{\max_{0 \le x \le \pi} |f^{(4)}(x)|}{180} (\pi - 0) h^4 = \frac{1}{180} . \pi . \left(\frac{\pi}{10}\right)^4 \approx 0,00017$$

 \star Công thức hình thang

Ta có
$$h = \frac{\pi - 0}{10} = \frac{\pi}{10}$$

Ta được bảng sau:

x_i	y_i	$= f(x_i) = \sin x$
0	0	
$\frac{\pi}{10}$		0,3090
$\frac{\pi}{5}$		0,5878
$\frac{3\pi}{10}$		0,8090
$\frac{2\pi}{5}$		0,9511
$\frac{\pi}{2}$		1
$\frac{3\pi}{5}$		0,9511
$\frac{7\pi}{10}$		0,8090
$\frac{4\pi}{5}$		0,5878
$\frac{9\pi}{10}$		0,3090
1	0	
	0	6,3138

Do đó giá trị gần đúng của tích phân đã cho là:

$$I_T \approx \frac{\pi}{2.10}.(0 + 2.6, 3138) \approx 1,9835$$

* Đánh giá sai số: Ta có $M = \max_{0 \leq x \leq \pi} |f''(x)| = 1$ và $\bar{I} = 1,98$

nên
$$|I_T - \bar{I}| \le \frac{M}{12} \cdot (\pi - 0) \cdot \left(\frac{\pi}{10}\right)^2 \approx 0,026$$

và
$$|I_T - \bar{I}| = 3, 5.10^{-3}$$

Do đó
$$|I - \bar{I}| \leq |I - I_T| + |I_T - \bar{I}| \leq 0,0295.$$

d) * Công thức Simpson 1/3

Ta có
$$h = \frac{6-0}{10} = \frac{3}{5}$$

Ta có bảng sau:

i	x_i	$y_i = j$	$f(x_i) = \frac{1}{x}$	$\frac{1}{x^2+1}$
0	0	1		
1	0,6		0,7353	
2	1, 2			0,4098
3	1,8		0,2358	
4	2,4			0,1479
5	3		0, 1	
6	3,6			0,0716
7	4, 2		0,0536	
8	4,8			0,0416
9	5, 4		0,0332	
10	6	0,0270		

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{1}{5} \cdot [1,0270 + 4.1,1579 + 2.0,6980] \approx 1,410973$$

Đánh giá sai số:

$$|I - I_S| \le \frac{\max_{0 \le x \le 6} |f^{(4)}(x)|}{180} (6 - 0) h^4 = \frac{24}{180} \cdot 6 \cdot \left(\frac{3}{5}\right)^4 = 0,10368$$

* Công thức hình thang

Ta có $h = \frac{6-0}{10} = \frac{3}{5}$ Ta có bảng sau:

i	x_i	$y_i =$	$f(x_i) = \frac{1}{x^2 + 1}$
0	0	1	
1	0,6		$\frac{25}{34}$
2	1, 2		$\frac{25}{61}$
3	1,8		$\frac{25}{106}$
4	2,4		$\frac{25}{169}$
5	3		$\frac{1}{10}$
6	3,6		$\frac{25}{349}$
7	4, 2		$\frac{25}{466}$
8	4,8		$\frac{25}{601}$
			0

i	x_i	$y_i =$	$f(x_i) = \frac{1}{x^2 + 1}$
9	5,4		$\frac{25}{754}$
10	6	$\frac{1}{37}$	
		$\frac{38}{37}$	$\frac{11967477}{6543383}$

Do đó giá trị gần đúng của tích phân đã cho là:

$$I_T \approx \frac{6-0}{2.10} \cdot (\frac{38}{37} + 2 \cdot \frac{11967477}{6543383}) = 1,40547$$

* Đánh giá sai số Ta có $M = \max_{0 \leqslant 6} |f''(x)| = 2$ và $\bar{I} = 1,41$

nên
$$|I_T - \bar{I}| \leqslant \frac{M}{12}.(6 - 0).\left(\frac{3}{5}\right)^2 = 0,36$$

và
$$|I_T - \bar{I}| = 4,53.10^{-3}$$

Do đó
$$|I - \bar{I}| \leq |I - I_T| + |I_T - \bar{I}| \leq 0,364653.$$

Do đó
$$|I - \bar{I}| \le |I - I_T| + |I_T - \bar{I}| \le 0,364653.$$

f) Ta có $h = \frac{b - a}{n} = \frac{4 - 2}{10} = 0,2$ và $f(x) = \frac{1}{(x - 1)^2}$

⋆ Công thức hình thang

Ta có bảng sau:

x_i	$y_i =$	$f\left(x_{i}\right) = \frac{1}{\left(x_{i} - 1\right)^{2}}$
2,0	1	
2, 2		$\frac{25}{36}$
2,4		$\frac{25}{49}$
2,6		$\frac{25}{64}$
2,6		$\frac{25}{81}$
3,0		$\frac{1}{4}$
3, 2		$\frac{25}{121}$
3,4		$\frac{25}{144}$
3,6		$\frac{25}{169}$
3,8		$\frac{25}{196}$

x_i	$y_i =$	$f\left(x_{i}\right) = \frac{1}{\left(x_{i}-1\right)^{2}}$
4,0	$\frac{1}{9}$	
	$\frac{10}{9}$	2,809618197

Vậy theo công thức hình thang ta tính được giá trị gần đúng của tích phân là:

$$I \approx \int_{2}^{4} \frac{1}{(x-1)^{2}} dx = \frac{4-2}{2(10)} \left(\frac{10}{9} + 2(2,809618197) \right) = 0,6730347505$$

Nếu làm tròn đến năm chữ số thập phân thì $I_T=0,67303.$

Đánh giá sai số theo công thức tích phân, ta có:

$$f'(x) = -\frac{2}{(x-1)^3}; \quad f''(x) = \frac{6}{(x-1)^4}$$

Do hàm f''nghịch biến trên đoạn [2;4]nên $M=\max_{2\leqslant x\leqslant 4}|f''(x)|=|f''\left(2\right)|=6.$

Nên
$$|I - I_T| \le \frac{6}{12} (4 - 2) (0, 2)^2 = 0,04.$$

Và
$$|I_T - \overline{I}| = 4,7505.10^{-6}$$

Do đó
$$|I - \overline{I}| \le |I - I_T| + |I_T - \overline{I}| = 0,04 + 4,7505.10^{-6}$$
.

 \star Áp dụng công thức Simpson 1/3

Ta có bảng:

i	x_i	$f\left(x_{i}\right) = \frac{1}{\left(x_{i} - 1\right)^{2}}$				
0	2,0	1				
1	2, 2		$\frac{25}{36}$			
2	2,4			$\frac{25}{49}$		
3	2,6		$\frac{25}{64}$			
4	2,8			$\frac{25}{81}$		
5	3,0		$\frac{1}{4}$			
6	3, 2			$\frac{25}{121}$		
7	3,4		$\frac{25}{144}$			

i	x_i	$f\left(x_{i}\right) = \frac{1}{\left(x_{i} - 1\right)^{2}}$			
8	3,6			$\frac{25}{169}$	
9	3,8		$\frac{25}{196}$		
10	4,0	$\frac{1}{9}$			
		$\frac{10}{9}$	1,636231576	1,173386621	

Áp dụng công thức Simpson 1/3 ta tính gần đúng tích phân là:

$$I_S = \int_{2}^{4} \frac{1}{(x-1)^2} dx \approx \frac{0.2}{3} \left[\frac{10}{9} + 4(1,6366231576) + 2(1,173386621) \right] = 0,6668540438$$

Nếu lấy 5 chữ số thập phân, khi đó $\overline{I}=0,66685$. Nên $\left|I_S-\overline{I}\right|=4.0438\times 10^{-6}$ Đánh giá sai số theo công thức, ta có:

$$f^{(3)}(x) = \frac{24}{(x-1)^5}; \quad f^{(4)}(x) = \frac{120}{(x-1)^6}$$

Do $f^{(4)}(x)$ là hàm nghịch biến trên đoạn [2;4] nên $M = \max_{2 \leqslant x \leqslant 4} \left| f^{(4)}(x) \right| = \left| f^{(4)}(2) \right| = 120$

Do đó
$$|I - I_S| \le \frac{120}{180} \times (4 - 2) \times (0, 2)^4 = 0,05 (3)$$

Vậy
$$|I - \overline{I}| \le |I - I_S| + |I_S - \overline{I}| = 0,05(3) - 4.0438 \times 10^{-6}$$

Bài 5. Tính gần đúng tích phân $I=\int\limits_{-0,8}^{0,8}\frac{\sin^2x}{\sqrt{1-\cos x}}\mathrm{d}x$ bằng công thức Simpson với

n=16 và đánh giá sai số của kết quả vừa nhận được.

Giải

Ta có
$$h = \frac{0.8 - (-0.8)}{16} = 0.1.$$

Ta lập được bảng sau:

i	x_i	$y_i = f(x_i) = \frac{\sin^2 x}{\sqrt{1 - \cos x}}$			
0	-0, 8	0,934411509			
1	-0, 7		0,85582621		
2	-0,6			0,762860112	
3	-0, 5		0,656932407		
4	-0, 4			0,539742953	
5	-0, 3		0,413235796		
6	-0, 2			0,279557228	

i	x_i	$y_i = f(x_i) = \frac{\sin^2 x}{\sqrt{1 - \cos x}}$				
7	-0, 1		0,141009326			
8	0,001			0,001414213		
9	0, 1		0,141009326			
10	0, 2			0,279557228		
11	0, 3		0,413235796			
12	0, 4			0,539742953		
13	0, 5		0,656932407			
14	0,6			0,762860112		
15	0, 7		0,85582621			
16	0,8	0,934411509				
		1,868823017	4,134007477	3,165734799		

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{0,1}{3} \cdot [1,868823017 + 4.4,134007477 + 2.3,165734799] \approx 0,824544084$$

* Đánh giá sai số:

$$|I - I_S| \le \frac{\max_{-0.8 \le x \le 0.8} |f^{(4)}(x)|}{180} (0.8 + 0.8) h^4 = \frac{3.35366}{180} \cdot 1, 6 \cdot (0.1)^4 \approx 1.98103 \cdot 10^{-6}$$

j) Ta có
$$h = \frac{1, 1 - 0, 1}{10} = 0, 1$$
 và $g(x) = \frac{1}{\left(1 + 4x\right)^2}$

Ta tìm được các đạo hàm của g(x):

$$g'(x) = -\frac{8}{(1+4x)^3}; \quad g''(x) = \frac{96}{(1+4x)^4}; \quad g^{(3)(x)} = -\frac{1536}{(1+4x)^5}; \quad g^{(4)}(x) = \frac{30720}{(1+4x)^6}$$

★ Công thức hình thang

Ta có bảng giá trị:

	x_i	$y_i = g(x_i) =$	$\frac{1}{(1+4x_i)^2}$
0	0,1	$\frac{25}{49}$	
1	0, 2		$\frac{25}{81}$
2	0.3		$\frac{25}{121}$
3	0,4		$\frac{25}{169}$
4	0,5		$\frac{1}{9}$

	x_i	$y_i = g(x_i) =$	$\frac{1}{(1+4x_i)^2}$
5	0,6		$\frac{25}{289}$
6	0,7		$\frac{25}{361}$
7	0,8		$\frac{25}{441}$
8	0,9		$\frac{25}{529}$
9	1,0		$\frac{1}{25}$
10	1,1	$\frac{25}{729}$	
		0,5444976344	1,03399924

Vậy theo công thức hình thang, giá trị gần đúng của tích phân cần tìm là:

$$I_T = \int_{0,1}^{1,1} g(x) dx \approx \frac{0,1}{2} [0,5444976344 + 2(1,03399924)] = 0,1306248057$$

Nếu làm tròn đến năm chữ số thập phân thì $\overline{I} = 0,13062$.

* Đánh giá sai số theo công thức tích phân:

Ta có
$$M = \max_{0,1 \leqslant x \leqslant 1,1} |g''(x)| = |g''(1,1)| = 0,1129005854.$$

Nên
$$|I - I_T| \le \frac{M}{12} (1, 1 - 0, 1) (0, 1)^2 = 9,408382116.10^{-5}.$$

và $|I_T - \overline{I}| = 4,8075.10^{-6}.$

Do đó
$$\left|I - \overline{I}\right| \le |I - I_T| + \left|I_T - \overline{I}\right| \le 9,408382116.10^{-5} + 4,8075.10^{-6}$$
.

Giải gần đúng phương trình đại số và siêu việt

Bài 2. Dùng phương pháp lặp đơn, hãy tìm nghiệm của các phương trình:

- c) $x \sin x = 0.25$ với sai số 10^{-2} trong khoảng phân lý nghiệm (1, 1, 5).
- f) $2^x 5x 3 = 0$ với sai số 10^{-4} trong khoảng phân ly nghiệm (4; 5).
- i) $(x-1)^2 = \frac{1}{2}e^x$ với sai số 10^{-2} trong khoảng phân ly nghiệm (0;0,5).
- j) $x = \ln x + 3$ với sai số 10^{-3} trong khoảng phân ly nghiệm (4; 5)

Giải

- c) Đặt $f(x) = x \sin x 0,25$. Ta có:
 - f(x) liên tục trên khoảng (1; 1, 5).
 - $f'(x) = 1 \cos x > 0$, $\forall x \in (1, 1, 5)$ nên hàm số đồng biến trên đoạn (1, 1, 5).
 - f(1) = 0,7325, f(1,5) = 1,2238, suy ra f(1) f(1,5) > 0.

Từ đây ta suy ra hàm số vô nghiệm trên đoạn (1; 1, 5).

- f) Đặt $f(x) = 2^x 5x 3$. Ta có:
 - f(x) liên tục trên khoảng (4;5).
 - f(4) f(5) < 0.
 - $f'(x) = 2^x \ln 2 5 > 0, \forall x \in (4; 5).$

Do đó: phương trình f(x) = 0 có một nghiệm trên khoảng (4; 5).

Do f'(x) > 0 nên ta đặt $\varphi(x) = x - \frac{f(x)}{M}$. Trong đó:

$$M \ge \max_{x \in (4;5)} |f'(x)| \approx 17,1807$$

Chọn
$$M = 17, 1807$$
, suy ra $\varphi(x) = x - \frac{f(x)}{17, 1807} = \frac{-2^x + 22, 1807x + 3}{17, 1807}$.

Ta có
$$\varphi'(x) = \frac{-2^x \ln 2 + 22,1807}{17,1807}$$
 và $\max_{x \in (4;5)} |\varphi'(x)| < |\varphi'(4)| = 0,6455.$

Chọn L = 0,6455.

Chọn $x_0 = 4, 7$, ta có xấp xỉ nghiệm trong bảng sau:

n	$x_n = \varphi\left(x_{n-1}\right)$	$ x_n - x* \le 1,82087 x_n - x_{n-1} $
1	4,72956	0,05382
2	4,73641	0,01247
3	4,73791	0,02731
4	4,73822	0,00056
5	4,73829	0,00013
6	4,73831	0,00004

Vậy $x^* \approx x_6 = 4,73831.$

i) Đặt
$$f(x)=(x-1)^2-\frac{1}{2}e^x=0$$
, ta có:
$$f'(x)=2(x-1)-\frac{1}{2}e^x<0 \forall x\in(0;0,5)$$

$$f(0)=\frac{1}{2}$$

$$f(0,5)=\frac{1}{4}-\frac{1}{2}.e^{\frac{1}{2}}$$

Từ đây ta có f(0).f(0,5)<0 và f(x) đơn điệu giảm trên khoảng (0;0,5) nên phương trình f(x)=0 có duy nhất nghiệm trên khoảng (0;0,5)

Phương trình đã cho tương đương với

$$x = 1 - \sqrt{\frac{e^x}{2}}$$

Đặt
$$\varphi(x) = 1 - \sqrt{\frac{e^x}{2}}$$
, ta có:

$$\varphi'(x) = -\sqrt{\frac{e^x}{8}}$$

$$\max_{x \in [0;0,5]} |\varphi'(x)| \approx 0,45397$$

Do đó $|x_n - x^*| \le 0,83140|x_n - x_{n-1}|$ Chọn x = 0,1, ta có xấp xỉ nghiệm của phương trình được cho trong bảng sau:

n	$x_n = \varphi(x_{n-1})$	$0,83140 x_n - x_{n-1} $
1	0,25664	0,13023
2	0, 19608	0,05035
3	0,22006	0,01994
2	0,21065	$0,78210.10^{-2}$

Vậy nghiệm của phương trình đã cho với sai số 10^{-2} trong khoảng phân ly nghiệm (0;0,5) là $x\approx 0,21065$.

j) Đặt $f(x) = x - \ln x - 3$, ta có:

$$f'(x) = 1 - \frac{1}{x} > 0 \ \forall x \in (4; 5)$$
$$f''(x) = -\frac{1}{x^2}$$
$$f(4) = 1 - \ln 4$$
$$f(5) = 2 - \ln 5$$

Từ đây ta có f(4).f(5) < 0 và f(x) đơn điệu tăng trên khoảng (4;5) nên phương trình f(x) = 0 có duy nhất nghiệm trên khoảng (4;5).

Đặt $\varphi(x) = \ln x + 3$, ta có:

$$\varphi'(x) = \frac{1}{x}; \quad \max_{x \in [4;5]} |\varphi'(x)| = 0,25$$

Do đó
$$|x_n - x^*| \le \frac{1}{3} |x_n - x_{n-1}|$$

Chọn x = 4, 1, ta có xấp xỉ nghiệm của phương trình được cho trong bảng sau:

n	$x_n = \varphi(x_{n-1})$	$\frac{1}{3} x_n - x_{n-1} $
1	4,41099	0,10366
2	4, 48410	0,02437
3	4,50054	$0,54797.10^{-2}$
4	4,50420	$0,12198.10^{-2}$
5	4,50500	$0,27092.10^{-3}$

Vậy nghiệm của phương trình đã cho với sai số 10^{-3} trong khoảng phân ly nghiệm (4; 5) là $x\approx 4,50500.$

Giải tích số trong đại số tuyến tính

Bài 3 Giải hệ phương trình Ax = b bằng phương pháp lặp đơn với sai số 10^{-3} :

d)
$$A = \begin{pmatrix} 10,9 & 1,2 & 2,1 & 0,9 \\ 1,2 & 11,2 & 1,5 & 2,5 \\ 2,1 & 1,5 & 9,8 & 1,3 \\ 0,9 & 2,5 & 1,3 & 21,1 \end{pmatrix}, b = \begin{pmatrix} -7 \\ 5,3 \\ 10,3 \\ 24,6 \end{pmatrix}$$

e)
$$A = \begin{pmatrix} 20,9 & 1,2 & 2,1 & 0,9 \\ 1,2 & 21,2 & 1,5 & 2,5 \\ 2,1 & 1,5 & 19,8 & 1,3 \\ 0,9 & 2,5 & 1,3 & 32,1 \end{pmatrix}, b = \begin{pmatrix} -7 \\ 5,3 \\ 10,3 \\ 24,6 \end{pmatrix}$$

f)
$$A = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 3 & -2 & 18 & 4 \\ 22 & 1 & -4 & 7 \\ 4 & 21 & -8 & -4 \end{pmatrix}$$
, $b = \begin{pmatrix} 20 \\ 26 \\ 10 \\ 2 \end{pmatrix}$

Giải

d) Ta có bảng sau:

	i=1	i=2	i=3	i=4
$ a_{ii} $	10,9	11,2	9,8	21,1
$\sum_{j=1, j \neq i}^{4} a_{ij} $	4,2	5,2	4,9	4,7

Từ đây suy ra hệ phương trình Ax = b có thể đưa về dạng x = Bx + g sao cho $||B||_{\infty} < 1$.

Từ đây suy ra hệ phương trình
$$Ax=b$$
 có thể đưa về dạng $x=Bx+g$ sao cho $\|B\|_{\infty}<1$. Ta tìm được ma trận B và g như sau:
$$B=\begin{pmatrix} 0 & -0,110091743119266 & -0,192660550458716 & -0,0825688073394495 \\ -0,107142857142857 & 0 & -0,133928571428571 & -0,223214285714286 \\ -0,214285714285714 & -0,153061224489796 & 0 & -0,13265306122449 \\ -0,042654028436019 & -0,118483412322275 & -0,0616113744075829 & 0 \end{pmatrix}$$

$$g=\begin{pmatrix} -0,642201834862385 \\ 0,473214285714286 \\ 1,05102040816327 \\ 1,16587677725118 \end{pmatrix}$$

$$g = \begin{pmatrix} -0,642201834862385 \\ 0,473214285714286 \\ 1,05102040816327 \\ 1,16587677725118 \end{pmatrix}$$

Xét $||B||_{\infty} = \max_{1 \le i \le 4} \sum_{i=1}^{4} ||b_{ij}|| = 0, 5 < 1$ nên ma trận B thỏa điều kiện hội tụ.

Ta có $\frac{\|B\|_{\infty}}{1-\|B\|_{\infty}} = 1$ và chọn $x^{(0)} = g$, ta xây dựng dãy $\{x^{(k)}\}$ theo công thức $x^{(k+1)} = g$

 $Bx^{(k)}+g$, đồng thời đánh giá sai số của phương pháp, ta có kết quả sau:

k	$x^{(k)} = Bx^{(k-1)} + g$	$\ x^{(k)} - x^*\ _{\infty} = \frac{\ B\ _{\infty}}{1 - \ B\ _{\infty}} \ x^{(k)} - x^{(k-1)}\ _{\infty}$
1	$\begin{pmatrix} -0,993054045828079\\ 0,14101961129125\\ 0,961547205531943\\ 1,07244641736863 \end{pmatrix}$	0,350852210965694
2	$\begin{pmatrix} -0,931529765210858\\ 0,211448928863767\\ 1,09996976905335\\ 1,1322838031197 \end{pmatrix}$	0,138422563521411
3	$\begin{pmatrix} -0,970892720408834\\ 0,172961746149442\\ 1,0680683846522\\ 1,11278643444365 \end{pmatrix}$	0,0393629551979762
4	$\begin{pmatrix} -0,958899586619104\\ 0,185803803696713\\ 1,08498058457731\\ 1,12099100393111 \end{pmatrix}$	0,0169121999251123
5	$\begin{pmatrix} -0,964249146384074\\ 0,180422421182962\\ 1,07935664502496\\ 1,11791589378033 \end{pmatrix}$	0,00562393955235119
6	$\begin{pmatrix} -0,962319281135253\\ 0,182435203006485\\ 1,08173458303242\\ 1,11912817726331 \end{pmatrix}$	0,00237793800745756
7	$\begin{pmatrix} -0,963099103441544\\ 0,181639358897804\\ 1,08085214851347\\ 1,1186608714485 \end{pmatrix}$	0,000882434518947317

Vậy nghiệm của hệ phương trình là $x^* \approx x^{(7)}$ với sai số $\epsilon = 0,000882435 < 10^{-3}$. e) Ta có bảng sau:

	i=1	i=2	i=3	i=4
$ a_{ii} $	20,9	21,2	19,8	32,1
$\sum_{j=1, j\neq i}^{4} a_{ij} $	4,2	5,2	4,9	4,7

Từ đây suy ra hệ phương trình Ax = b có thể đưa về dạng x = Bx + g sao cho $||B||_{\infty} < 1$. Ta tìm được ma trận B và g như sau:

$$B = \begin{pmatrix} 0 & -0.0574162679425837 & -0.100478468899522 & -0.0430622009569378 \\ -0.0566037735849057 & 0 & -0.0707547169811321 & -0.117924528301887 \\ -0.106060606060606 & -0.07575757575758 & 0 & -0.0656565656565657 \\ -0.0280373831775701 & -0.0778816199376947 & -0.0404984423676012 & 0 \end{pmatrix}$$

$$g = \begin{pmatrix} -0.334928229665072 \\ 0.25 \\ 0.52020202020202 \\ 0.766355140186916 \end{pmatrix}$$

Xét $||B||_{\infty} = \max_{1 \leq i \leq 4} \sum_{j=1}^{4} ||b_{ij}|| = 0,247474747 < 1$ nên ma trận B thỏa điều kiện hội tụ. Ta có $\frac{||B||_{\infty}}{1 - ||B||_{\infty}} = 0,32885906$ và chọn $x^{(0)} = g$, ta xây dựng dãy $\{x^{(k)}\}$ theo công thức $x^{(k+1)} = Bx^{(k)} + g$, đồng thời đánh giá sai số của phương pháp, ta có kết quả sau:

k	$x^{(k)} = Bx^{(k-1)} + g$	$ x^{(k)} - x^* _{\infty} = \frac{ B _{\infty}}{1 - B _{\infty}} x^{(k)} - x^{(k-1)} _{\infty}$
1	$\begin{pmatrix} -0,434552338210166\\ 0,14177938654848\\ 0,486469070709781\\ 0,735207874779936 \end{pmatrix}$	0,0355893292558691
2	$\begin{pmatrix} -0,423608009552663\\ 0,153478278907438\\ 0,507278817838622\\ 0,747795602682095 \end{pmatrix}$	0,00684347388800811
3	$\begin{pmatrix} -0,426912703089183\\ 0,149901998962265\\ 0,504405309000642\\ 0,745734861312729 \end{pmatrix}$	0,00117609206250647
4	$\begin{pmatrix} -0,426329900614236\\ 0,150535383345483\\ 0,505162038299866\\ 0,746222415379245 \end{pmatrix}$	0,000248857286321837

Vậy nghiệm của hệ phương trình $x^* \approx x^{(4)}$ với sai số là $0,000248857 < 10^{-3}$.

f) Ta có bảng sau:

		i=1	i=2	i=3	i=4	
Ī	$ a_i $	1	2	4	4	
	$\sum_{i=1}^{4} a_{ij} $	19	25	30	33	Vê

		j = 1	j=2	j=3	j=4
	$ a_{jj} $	1	2	4	4
à	$\sum_{i=1, i \neq j}^{4} a_{ij} $	29	24	29	25

Do đó hệ phương trình vô nghiệm.

Bài 5 Giải gần đúng hệ phương trình Ax = b bằng phương phái Seidel với sai số 10^{-3} :

a)
$$A = \begin{pmatrix} 4 & 0.24 & -0.08 \\ 0.09 & 3 & -0.15 \\ 0.04 & -0.08 & 4 \end{pmatrix}$$
, $b = \begin{pmatrix} 8 \\ 9 \\ 20 \end{pmatrix}$

e)
$$A = \begin{pmatrix} 10 & -2 & -1 \\ -1 & 10 & -2 \\ -2 & -1 & 10 \end{pmatrix}$$
, $b = \begin{pmatrix} 3 \\ 13 \\ 26 \end{pmatrix}$

f)
$$A = \begin{pmatrix} 2 & -2 & 1 & 10 \\ 10 & -2 & -1 & 1 \\ 2 & 20 & -5 & -5 \\ 1 & 3 & 20 & -2 \end{pmatrix}$$
, $b = \begin{pmatrix} 10 \\ 10 \\ 20 \\ 20 \end{pmatrix}$

g)
$$A = \begin{pmatrix} 1 & -0.25 & -0.25 & 0 \\ -0.25 & 1 & 0 & -0.25 \\ -0.25 & 0 & 1 & -0.25 \\ 0 & -0.25 & -0.25 & 1 \end{pmatrix}, b = \begin{pmatrix} 50 \\ 50 \\ 25 \\ 25 \end{pmatrix}$$

Giải

a) Ta có bảng sau:

	i = 1	i=2	i=3
$ a_{ii} $	4	3	4
$\sum_{j=1, j \neq i}^{3} a_{ij} $	0,32	0,24	0,12

Từ đây suy ra hệ phương trình Ax = b có thể đưa về dạng x = Bx + g sao cho $||B||_{\infty} < 1$. Ta tìm được ma trận B và q như sau:

$$B = \begin{pmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{pmatrix}, g = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$

Ta có $\|B\|_{\infty} = 0,08 < 1$ nên ma trận B thỏa điều kiện hội tụ.

Ta lần lượt có các ma trận
$$U$$
 và L như sau:
$$U = \begin{pmatrix} 0 & 0 & 0 \\ -0.03 & 0 & 0 \\ -0.01 & 0.02 & 0 \end{pmatrix}, L = \begin{pmatrix} 0 & -0.06 & 0.02 \\ 0 & 0 & 0.05 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta tiếp tục có:

	i = 1	i=2	i=3
α_i	0,08	0,05	0
β_i	0	0,03	0,03
$\frac{\alpha_i}{1 - \beta_i}$	0,08	0,0515463917525773	0
λ		0,08	
$\frac{\lambda}{1-\lambda}$		0,0869565217391304	

Chọn $x^{(0)} = g$, và áp dụng công thức Seidel tính $x^{(k+1)} = (I - U)^{-1}(Lx^{(k)} + g)$ ta có được kết quả trong bảng sau:

k	$x^{(k)}$	Sai số
1	$\begin{pmatrix} 2\\3\\5 \end{pmatrix}$	0,0167304347826087
2	$ \begin{pmatrix} 1,92\\ 3,1924\\ 5,044648 \end{pmatrix} $	0,000926177391304343

Vậy hệ phương trình có nghiệm là $x^* \approx x^{(2)}$ với sai số là 0,000926177

e) Ta có bảng sau:

	i = 1	i=2	i=3
$ a_{ii} $	10	10	10
$\sum_{j=1, j \neq i}^{3} a_{ij} $	3	3	3

Từ đây suy ra hệ phương trình Ax=b có thể đưa về dạng x=Bx+g sao cho $\|B\|_{\infty}<1$. Ta tìm được ma trận B và g như sau:

$$B = \begin{pmatrix} 0 & 0, 2 & 0, 1 \\ 0, 1 & 0 & 0, 2 \\ 0, 2 & 0, 1 & 0 \end{pmatrix}, g = \begin{pmatrix} 0, 3 \\ 1, 3 \\ 2, 6 \end{pmatrix}$$

Ta có $\|B\|_{\infty}=0, 3<1$ nên ma trận B thỏa điều kiện hội tụ.

Ta lần lượt có các ma trận U và L như sau:

$$U = \begin{pmatrix} 0 & 0 & 0 \\ 0, 1 & 0 & 0 \\ 0, 2 & 0, 1 & 0 \end{pmatrix}, L = \begin{pmatrix} 0 & 0, 2 & 0, 1 \\ 0 & 0 & 0, 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta tiếp tục có:

	i=1	i=2	i = 3
α_i	0,3	0,2	0
β_i	0	0,1	0,3
$\frac{\alpha_i}{1 - \beta_i}$	0,3	0,2222222222222	0
λ		0,3	
$\frac{\lambda}{1-\lambda}$		0,428571428571429	

Chọn $x^{(0)}=g$, và áp dụng công thức Seidel tính $x^{(k+1)}=(I-U)^{-1}(Lx^{(k)}+g)$ ta có được kết quả trong bảng sau:

k	$x^{(k)}$	Sai số
1	$\begin{pmatrix} 0, 3 \\ 1, 3 \\ 2, 6 \end{pmatrix}$	0,258
2	$\begin{pmatrix} 0,82\\1,902\\2,9542 \end{pmatrix}$	0,06678
3	$\begin{pmatrix} 0,97582 \\ 1,988422 \\ 2,9940062 \end{pmatrix}$	0,00911357999999999
4	$\begin{pmatrix} 0,99962874622\\ 1,999816470262\\ 2,9999073962702 \end{pmatrix}$	0,00109016837999995
5	$\begin{pmatrix} 0,99995403367942 \\ 1,99997688262198 \\ 2,99998849499808 \end{pmatrix}$	0,000139408911180075

Vậy hệ phương trình có nghiệm là $x^* \approx x^{(5)}$ với sai số là 0,000139409.

f) Ta có bảng sau:

	i = 1	i=2	i = 3	i=4	
$ a_{ii} $	2	2	5	2	
$\sum_{j=1, j \neq i}^{4} a_{ij} $	13	12	27	24	và

	j=1	j=2	j=3	j=4
$ a_{jj} $	2	2	5	2
$\sum_{i=1, i \neq j}^{4} a_{ij} $	13	25	22	16

Từ đây ta suy ra hệ phương trình vô nghiệm.

g) Ta có bảng sau:

	i = 1	i=2	i = 3	i = 4
$ a_{ii} $	1	1	1	1
$\sum_{j=1, j \neq i}^{4} a_{ij} $	0,5	0,5	0,5	0,5

Từ đây suy ra hệ phương trình Ax=b có thể đưa về dạng x=Bx+g sao cho $\|B\|_{\infty}<1$. Ta tìm được ma trận B và g như sau:

$$B = \begin{pmatrix} 0 & 0.25 & 0.25 & 0\\ 0.25 & 0 & 0 & 0.25\\ 0.25 & 0 & 0 & 0.25\\ 0 & 0.25 & 0.25 & 0 \end{pmatrix}, g = \begin{pmatrix} 50\\ 50\\ 25\\ 25 \end{pmatrix}$$

Ta có $\|B\|_{\infty}=0, 5<1$ nên ma trận B thỏa điều kiện hội tụ.

Ta lần lượt có các ma trận U và L như sau:

$$U = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0,25 & 0 & 0 & 0 \\ 0,25 & 0 & 0 & 0 \\ 0 & 0,25 & 0,25 & 0 \end{pmatrix}, L = \begin{pmatrix} 0 & 0,25 & 0,25 & 0 \\ 0 & 0 & 0 & 0,25 \\ 0 & 0 & 0 & 0,25 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ta tiếp tục có:

	i = 1	i = 2	i = 3	i=4
α_i	0,5	0,25	0,25	0
β_i	0	0,25	0,25	0,5
$\frac{\alpha_i}{1-\beta_i}$	0,5	0,3333333333333333	0,3333333333333333	0
λ	0,5			
$\frac{\lambda}{1-\lambda}$	1			

Chọn $x^{(0)}=g$, và áp dụng công thức Seidel tính $x^{(k+1)}=(I-U)^{-1}(Lx^{(k)}+g)$ ta có được kết quả trong bảng sau:

k	$x^{(k)}$	Sai số
1	$\begin{pmatrix} 47,75\\ 59,4375\\ 34,4375\\ 48,46875 \end{pmatrix}$	64,4375
2	$ \begin{pmatrix} 73,46875\\ 80,484375\\ 55,484375\\ 58,9921875 \end{pmatrix} $	25,71875

k	$x^{(k)}$	Sai số
3	$\begin{pmatrix} 83,9921875 \\ 85,74609375 \\ 60,74609375 \\ 61,623046875 \end{pmatrix}$	10,5234375
4	$\begin{pmatrix} 86,623046875\\ 87,0615234375\\ 62,0615234375\\ 62,28076171875 \end{pmatrix}$	2,630859375
5	$\begin{pmatrix} 87, 28076171875 \\ 87, 390380859375 \\ 62, 390380859375 \\ 62, 4451904296875 \end{pmatrix}$	0,65771484375
6	$\begin{pmatrix} 87,4451904296875\\ 87,4725952148437\\ 62,4725952148437\\ 62,4862976074218 \end{pmatrix}$	0,1644287109375
7	(87, 4862976074218) 87, 4931488037109 62, 4931488037109 62, 4965744018554)	0,041107177734375
8	(87, 4965744018554) 87, 4982872009277 62, 4982872009277 62, 4991436004638)	0,0102767944335937
9	$\begin{pmatrix} 87,4991436004638\\ 87,4995718002319\\ 62,4995718002319\\ 62,4997859001159 \end{pmatrix}$	0,00256919860839844
10	(87, 4997859001159) 87, 4998929500579 62, 4998929500579 62, 4999464750289)	0,000642299652099609

Vậy hệ phương trình có nghiệm $x^* \approx x^{(10)}$ với sai số 0,0006423.