Week4_Assignment_TestScores

Henry Pham

2023-04-08

```
# Set the working directory to the root of your DSC 520 directory
getwd()
## [1] "C:/R/DSC520"
dir("C://R//DSC520//data")
## [1] "acs-14-1yr-s0201.csv"
                                       "GO4ResultsDetail2004-11-02.xls"
## [3] "r4ds"
                                       "scores.csv"
## [5] "tidynomicon"
if (!file.exists("data"))
 # set data working directory
 setwd("C://R//DSC520//data")
# Load the data
scores_data <- read.csv("scores.csv")</pre>
head(scores_data)
    Count Score Section
##
## 1
       10 200 Sports
## 2
       10 205 Sports
## 3
       20 235 Sports
       10 240 Sports
## 4
## 5
       10
            250 Sports
## 6
       10
            265 Regular
       What are the observational units in this study?
# The observational units in this study are students.
# Q2. Identify the variables mentioned in the narrative paragraph and
determine
# which are categorical and quantitative?
# The variables mentioned in the narrative paragraph are:
# Section(categorical): Regular or Sports
# Score(quantitative): final scores received in the course
# Count(quantitative): total number of scores earned in the course
```

```
# Q3. Create one variable to hold a subset of your data set that contains
only the
# Regular Section and one variable for the Sports Section.

regular_section <- scores_data[scores_data$Section == "Regular", ]
sports_section <- scores_data[scores_data$Section == "Sports", ]

# Q4. Use the Plot function to plot each Sections scores and the number of
students
# achieving that score. Use additional Plot Arguments to label the graph and
give each axis an appropriate label.

library(ggplot2)

# Plot for Regular Section
hist(regular_section$Score, main = "Regular Section Scores", xlab = "Total
Points Earned", ylab = "Number of Students", col = "blue")</pre>
```

Regular Section Scores


```
# Plot for Sports Section
hist(sports_section$Score, main = "Sports Section Scores", xlab = "Total
Points Earned", ylab = "Number of Students", col = "red")
```

Sports Section Scores

Once you have produced your Plots answer the following questions:
a. Comparing and contrasting the point distributions between the two
section.

looking at both tendency and consistency: Can you say that one section tended to score more points than the other? Justify and explain your answer.

To compare the point distributions between the two sections, we can visually inspect

the histograms. If one section tended to score more points than the other, # we would expect to see a higher peak or more values in the upper end of the distribution for that section.

However, based on the histograms, it's difficult to say whether one section tended to score more points than the other.

Both distributions appear roughly similar in shape and spread.

b. Did every student in one section score more points than every student in the

other section? If not, explain what a statistical tendency means in this context.

It is unlikely that every student in one section scored more points than every

student in the other section. Instead, a statistical tendency means that, on average,

students in one section may have scored more points than students in the other section.

```
# This can be assessed using measures of central tendency, such as the mean
or median.
# regular_section has a right-skewed dist while sports_section has a left-
skewed dist.
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## — Attaching core tidyverse packages —
2.0.0 -
                         ✓ readr
## √ dplyr
               1.1.0
                                      2.1.4
## √ forcats 1.0.0

√ stringr

                                     1.5.0
## ✓ lubridate 1.9.2
                         √ tibble
                                     3.2.0
## √ purrr
               1.0.1

√ tidyr

                                      1.3.0
## — Conflicts -
tidyverse conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                    masks stats::lag()
## i Use the |8;;http://conflicted.r-lib.org/conflicted package|8;; to force
all conflicts to become errors
regular_section %>% summarise(mean(Score), median(Score))
    mean(Score) median(Score)
## 1
       327.6316
sports section %>% summarise(mean(Score), median(Score))
    mean(Score) median(Score)
##
        307.3684
## 1
# C.
        What could be one additional variable that was not mentioned in the
narrative
# that could be influencing the point distributions between the two sections?
# One additional variable that could be influencing the point distributions
# the two sections is student motivation. It's possible that students who
were interested
# in sports were more motivated to succeed in the sports-themed section,
# which could have influenced their scores.
```