Assignment 02: 01 - Multiple Regression Gradient - Vectorized

In this lab, you will extend the data structures and previously developed routines to support multiple features. Several routines are updated making the lab appear lengthy, but it makes minor adjustments to previous routines making it quick to review.

Outline

- 1.1 Goals
- 1.2 Tools
- 1.3 Notation
- 2 Problem Statement
- 2.1 Matrix X containing our examples
- 2.2 Parameter vector w, b
- 3 Model Prediction With Multiple Variables
- 3.1 Single Prediction element by element
- 3.2 Single Prediction, vector
- 4 Compute Cost With Multiple Variables
- 5 Gradient Descent With Multiple Variables
- 5.1 Compute Gradient with Multiple Variables
- 5.2 Gradient Descent With Multiple Variables

1.1 Goals

- Extend our regression model routines to support multiple features
 - Extend data structures to support multiple features
 - Rewrite prediction, cost and gradient routines to support multiple features
 - Utilize NumPy np.dot to vectorize their implementations for speed and simplicity

1.2 Tools

In this lab, we will make use of:

- NumPy, a popular library for scientific computing
- Matplotlib, a popular library for plotting data

```
import copy, math
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
np.set_printoptions(precision=2) # reduced display precision on numpy
arrays
```

1.3 Notation

Here is a summary of some of the notation you will encounter, updated for multiple features.

```
|General Notation | Description | Python (if applicable) | |: ------|:
```

-------|| a | scalar, non bold || a | vector, bold || A | matrix, bold capital || Regression || || X | training example matrix | X_train | y | training example targets | y_train | $x^{(i)}$, $y^{(i)}$ | i_{th} Training Example | X[i], y[i] || m | number of training examples | m || n | number of features in each example | n || w | parameter: weight, | w || b | parameter: bias | b |

 $|f_{w,b}(x^{(i)})|$ The result of the model evaluation at $x^{(i)}$ parameterized by w, b: $f_{w,b}(x^{(i)}) = w \cdot x^{(i)} + b \mid f_w \mid b \mid$

2 Problem Statement

You will use the motivating example of housing price prediction. The training dataset contains three examples with four features (size, bedrooms, floors and, age) shown in the table below. Note that, unlike the earlier labs, size is in sqft rather than 1000 sqft. This causes an issue, which you will solve in the next lab!

Size (sqft)	Number of Bedrooms	Number of floors	Age of Home	Price (1000s dollars)
2104	5	1	45	460
1416	3	2	40	232
852	2	1	35	178

You will build a linear regression model using these values so you can then predict the price for other houses. For example, a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old.

Run the following code cell to create your X_train and y_train variables.

```
X_{train} = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40], [852, 2, 1, 35]])
y_{train} = np.array([460, 232, 178])
```

2.1 Matrix X containing our examples

Similar to the table above, examples are stored in a NumPy matrix X_train . Each row of the matrix represents one example. When you have m training examples (m is three in our example), and there are n features (four in our example), X is a matrix with dimensions (m, n) (m rows, m columns).

$$X = \begin{pmatrix} x_0^{(0)} & x_1^{(0)} & \cdots & x_{n-1}^{(0)} \\ x_0^{(1)} & x_1^{(1)} & \cdots & x_{n-1}^{(1)} x_{n-1}^{(m-1)} \vdots \\ \vdots & x_0^{(m-1)} & x_1^{(m-1)} & \vdots \end{pmatrix}$$

notation:

- $x^{(i)}$ is vector containing example i. $x^{(i)} = (x^{(i)}_{0, x^{(i)}}, |cdots, x^{(i)}_{n-1})$
- $x_j^{(i)}$ is element j in example i. The superscript in parenthesis indicates the example number while the subscript represents an element.

Display the input data.

2.2 Parameter vector w, b

- w is a vector with n elements.
 - Each element contains the parameter associated with one feature.
 - in our dataset, n is 4.
 - notionally, we draw this as a column vector

$$w = \begin{pmatrix} w_0 \\ w_1 \\ \dots \\ w_{n-1} \end{pmatrix}$$

• *b* is a scalar parameter.

For demonstration, w and b will be loaded with some initial selected values that are near the optimal. w is a 1-D NumPy vector.

```
b_init = 785.1811367994083
w_init = np.array([ 0.39133535, 18.75376741, -53.36032453, -
26.42131618])
print(f"w_init shape: {w_init.shape}, b_init type: {type(b_init)}")
w_init shape: (4,), b_init type: <class 'float'>
```

3 Model Prediction With Multiple Variables

The model's prediction with multiple variables is given by the linear model:

$$f_{w,b}(x) = w_0 x_0 + w_1 x_1 + \dots + w_{n-1} x_{n-1} + b$$

or in vector notation:

$$f_{w,b}(x) = w \cdot x + b$$

where is a vector dot product

To demonstrate the dot product, we will implement prediction using (1) and (2).

3.1 Single Prediction element by element

Our previous prediction multiplied one feature value by one parameter and added a bias parameter. A direct extension of our previous implementation of prediction to multiple features would be to implement (1) above using loop over each element, performing the multiply with its parameter and then adding the bias parameter at the end.

```
def predict_single_loop(x, w, b):
    single predict using linear regression

Args:
    x (ndarray): Shape (n,) example with multiple features
    w (ndarray): Shape (n,) model parameters
    b (scalar): model parameter
Returns:
    p (scalar): prediction
""""
```

```
n = x.shape[0]
    p = 0
    for i in range(n):
        p i = x[i] * w[i]
        p = p + p i
    p = p + b
    return p
# get a row from our training data
x_{vec} = X_{train}[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")
# make a prediction
f wb = predict single loop(x vec, w init, b init)
print(f"f wb shape {f wb.shape}, prediction: {f wb}")
x vec shape (4,), x vec value: [2104 5
                                             1 45]
f_wb shape (), prediction: 459.999976194083
```

Note the shape of x_vec . It is a 1-D NumPy vector with 4 elements, (4,). The result, f_wb is a scalar.

3.2 Single Prediction, vector

Noting that equation (1) above can be implemented using the dot product as in (2) above. We can make use of vector operations to speed up predictions.

Recall from the Python/Numpy lab that NumPy np.dot()[link] can be used to perform a vector dot product.

```
def predict(x, w, b):
    single predict using linear regression
    Args:
        x (ndarray): Shape (n,) example with multiple features
        w (ndarray): Shape (n,) model parameters
        b (scalar): model parameter

    Returns:
        p (scalar): prediction
        p = np.dot(x, w) + b
        return p

# get a row from our training data
    x_vec = X_train[0,:]
    print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")
```

```
# make a prediction
f_wb = predict(x_vec,w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")
x_vec shape (4,), x_vec value: [2104 5 1 45]
f_wb shape (), prediction: 459.9999976194082
```

The results and shapes are the same as the previous version which used looping. Going forward, np.dot will be used for these operations. The prediction is now a single statement. Most routines will implement it directly rather than calling a separate predict routine.

4 Compute Cost With Multiple Variables

The equation for the cost function with multiple variables J(w,b) is:

$$J(w,b) = \frac{1}{2m} \sum_{i=0}^{m-1} \left(f_{w,b} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

where:

$$f_{w,b}(x^{(i)}) = w \cdot x^{(i)} + b$$

In contrast to previous labs, w and $x^{(i)}$ are vectors rather than scalars supporting multiple features.

Below is an implementation of equations (3) and (4). Note that this uses a *standard pattern for this course* where a for loop over all m examples is used.

Exercise 1 - Compute Cost - Non-vectorized

Implement the compute_cost_nonvectorized() function, below, according to the specifications below, including the input parameters and return value (cost). This function should *not* make use of any vectorization.

```
def compute_cost_nonvectorized(X, y, w, b):
    compute cost
Args:
    X (ndarray (m,n)): Data, m examples with n features
    y (ndarray (m,)) : target values
    w (ndarray (n,)) : model parameters
    b (scalar) : model parameter

    Returns:
    cost (scalar): cost
"""
```

```
m = X.shape[0] # Number of examples
    cost = 0
    for i in range(m):
        # Calculate the predicted value for the i-th example
        y pred = np.dot(X[i], w) + b
        # Calculate the squared error for the i-th example
        error = (y \text{ pred - } y[i])**2
        # Accumulate the squared error to the cost
        cost += error
    # Calculate the mean squared error (MSE)
    cost = cost / (2 * m)
    return cost
# Compute and display cost using our pre-chosen optimal parameters.
cost = compute_cost_nonvectorized(X_train, y_train, w_init, b_init)
print(f'Cost at optimal w : {cost}')
Cost at optimal w : 1.5578904330213735e-12
```

Expected Result: Cost at optimal w : 1.5578904045996674e-12

Exercise 2 - Compute Cost - Vectorized

Implement the compute_cost_vectorized() function, below, according to the specifications below, including the input parameters and return value (cost). This function should have a vectorization-based implementation.

```
def compute_cost_vectorized(X, y, w, b):
    compute cost
Args:
        X (ndarray (m,n)): Data, m examples with n features
        y (ndarray (m,)): target values
        w (ndarray (n,)): model parameters
        b (scalar): model parameter
Returns:
    cost (scalar): cost
"""
m = X.shape[0] # Number of examples
```

```
# Calculate predicted values for all examples in a vectorized
manner
    y_pred = np.dot(X, w) + b

# Calculate the squared errors for all examples
errors = (y_pred - y)**2

# Calculate the mean squared error (MSE)
cost = np.mean(errors) / 2

return cost

# Compute and display cost using our pre-chosen optimal parameters.
cost = compute_cost_vectorized(X_train, y_train, w_init, b_init)
print(f'Cost at optimal w : {cost}')
Cost at optimal w : 1.5578904330213735e-12
```

Expected Result: Cost at optimal w: 1.5578904045996674e-12

5 Gradient Descent With Multiple Variables

Gradient descent for multiple variables:

 $$\ \phi_{\alpha} \times \int_{\alpha} \frac{1}{m^*} \operatorname{lign*} \operatorname{lign*}$

where, n is the number of features, parameters w_i , b, are updated simultaneously and where

$$\frac{\partial J(w,b)}{\partial w_{j}} \quad \dot{c} \frac{1}{m} \sum_{i=0}^{m-1} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\frac{\partial J(w,b)}{\partial b} \quad \dot{c} \frac{1}{m} \sum_{i=0}^{m-1} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)$$

- · m is the number of training examples in the data set
- $f_{w,h}(x^{(i)})$ is the model's prediction, while $y^{(i)}$ is the target value

5.1 Compute Gradient with Multiple Variables

An implementation for calculating the equations (6) and (7) is below. There are many ways to implement this. In this version, there is an

- outer loop over all m examples.
 - $-\frac{\partial J(w,b)}{\partial b}$ for the example can be computed directly and accumulated
 - in a second loop over all n features:
 - $\frac{\partial J(w,b)}{\partial w_j}$ is computed for each w_j .

Exercise 3 - Compute Gradient - Non-vectorized

Implement the compute_gradient_nonvectorized() function, below, according to the specifications below, including the input parameters and return value (cost). This function should *not* make use of any vectorization.

```
def compute gradient nonvectorized(X, y, w, b):
   Computes the gradient for linear regression
   Aras:
     X (ndarray (m,n)): Data, m examples with n features
     y (ndarray (m,)) : target values
     w (ndarray (n,)) : model parameters
     b (scalar) : model parameter
   Returns:
      dj db (scalar): The gradient of the cost w.r.t. the
parameter b.
      dj dw (ndarray (n,)): The gradient of the cost w.r.t. the
parameters w.
   m = X.shape[0] # Number of examples
   n = X.shape[1] # Number of features
   dj db = 0
   dj dw = np.zeros like(w)
   for i in range(m):
        # Calculate the predicted value for the i-th example
        y_pred = np.dot(X[i], w) + b
        # Calculate the error for the i-th example
        error = y pred - y[i]
        # Update the gradients
        dj db += error
        dj dw += error * X[i]
```

```
# Take the average of the gradients
dj_db = dj_db / m
dj_dw = dj_dw / m

return dj_db, dj_dw

#Compute and display gradient
tmp_dj_db, tmp_dj_dw = compute_gradient_nonvectorized(X_train, y_train, w_init, b_init)
print(f'dj_dw at initial w,b: {tmp_dj_dw}')
print(f'dj_db at initial w,b: {tmp_dj_db}')

dj_dw at initial w,b: [-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]
dj_db at initial w,b: -1.6739251122999121e-06
```

Expected Result: dj_dw at initial w,b: [-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05] dj_db at initial w,b: -1.6739251122999121e-06

Exercise 4 - Compute Gradient - Vectorized

Implement the compute_cost_vectorized() function, below, according to the specifications below, including the input parameters and return value (cost). This function should have a vectorization-based implementation.

```
# Calculate the error for all examples
error = y_pred - y

# Calculate the gradient for b
dj_db = np.sum(error) / m

# Calculate the gradient for w
dj_dw = np.dot(X.T, error) / m

return dj_db, dj_dw

#Compute and display gradient
tmp_dj_dw, tmp_dj_db = compute_gradient_vectorized(X_train, y_train, w_init, b_init)
print(f'dj_dw at initial w,b: {tmp_dj_dw}')
print(f'dj_db at initial w,b: {tmp_dj_db}')

dj_dw at initial w,b: -1.6739251122999121e-06
dj_db at initial w,b: [-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]
```

Expected Result: dj_dw at initial w,b: [-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05] dj db at initial w,b: -1.6739251122999121e-06

5.2 Gradient Descent With Multiple Variables

The routine below implements equation (5) above.

```
def gradient_descent(X, y, w_in, b_in, cost_function,
    gradient_function, alpha, num_iters):

    Performs batch gradient descent to learn w and b. Updates w and b
by taking
    num_iters gradient steps with learning rate alpha

Args:
    X (ndarray (m,n)) : Data, m examples with n features
    y (ndarray (m,n)) : target values
    w_in (ndarray (n,)) : initial model parameters
    b_in (scalar) : initial model parameter
    cost_function : function to compute cost
    gradient_function : function to compute the gradient
    alpha (float) : Learning rate
    num_iters (int) : number of iterations to run gradient
descent
```

```
Returns:
     w (ndarray (n,)) : Updated values of parameters
     b (scalar) : Updated value of parameter
      0.00
   # An array to store cost J and w's at each iteration primarily for
graphing later
   J history = []
   w = copy.deepcopy(w in) #avoid modifying global w within function
   b = b in
   for i in range(num iters):
        # Calculate the gradient and update the parameters
        dj db,dj dw = gradient function(X, y, w, b) ##None
        # Update Parameters using w, b, alpha and gradient
       w = w - alpha * dj dw
                                           ##None
        b = b - alpha * dj db
                                           ##None
        # Save cost J at each iteration
        if i<100000:
                         # prevent resource exhaustion
           J history.append( cost function(X, y, w, b))
       # Print cost every at intervals 10 times or as many iterations
if < 10
        if i% math.ceil(num iters / 10) == 0:
           print(f"Iteration {i:4d}: Cost {J history[-1]:8.2f}
    return w, b, J_history #return final w,b and J history for
graphing
```

In the next cell you will test the implementation.

```
for i in range(m):
   print(f"prediction: {np.dot(X train[i], w final) + b final:0.2f},
target value: {y train[i]}")
Iteration
            0: Cost
                     2529.46
                      695.99
Iteration
          100: Cost
Iteration 200: Cost
                      694.92
Iteration 300: Cost
                      693.86
Iteration 400: Cost
                      692.81
Iteration 500: Cost
                      691.77
Iteration 600: Cost
                      690.73
Iteration 700: Cost
                      689.71
                      688.70
Iteration 800: Cost
Iteration 900: Cost
                      687.69
b,w found by gradient descent: -0.00,[ 0.2  0.  -0.01 -0.07]
prediction: 426.19, target value: 460
prediction: 286.17, target value: 232
prediction: 171.47, target value: 178
```

Expected Result:

b,w found by gradient descent: -0.00,[0.2 0. -0.01 -0.07]

prediction: 426.19, target value: 460 prediction: 286.17, target value: 232 prediction: 171.47, target value: 178

These results are not inspiring! Cost is still declining and our predictions are not very accurate. The next lab will explore how to improve on this.				