





# RAIN PREDICT PROJECT



Supervised by Eng. Heba





1.Hassan Abdelrazek (Team Leader)

2. Mahmoud Ebrahim

3. Mohamed Elseragy

4. Abdulrhman Hosny

5.Ahmed Fouad

6. Wageeh Abdelhameed



# Agenda

|    | _          |                 |
|----|------------|-----------------|
| 01 | <br>Introc | uction          |
|    |            | lu (CH KO) in i |
|    |            | action.         |

Our Team

02

- 03 Project Workflow
- 04 Dataset Overview
- 05 Initial Data Exploration (EDA)

- 06 Data Cleaning & Preprocessing
- Feature Engineering & Selection
- 08 Modeling Strategy & Evaluation
- 09 Deployment
- 10 Future Work

### **01** Problem Understanding

- Define the goal: Predict rain using weather data.
- Understand the business value and real-world impact





### Feature Engineering & Selection 06

- · Create new useful features.
- Perform statistical tests and correlation analysis.
- Selectmost relevant features for modeling.

### **Data Collection**

- Get the weatherAUS.csv dataset.
- Explore data source, structure, and formats.



**Smart Rain Forecasting** Step-by-Step Workflow



### Modeling 07

- Train models: XGBoost, Random Forest, Decision Tree.
- Use pipeline with preprocessing steps.
- · Apply cross-validation and parameter tuning.

### **Initial Data Exploration (EDA)** 03

- Identify patterns, distributions, and relationships.
- · Visualize rain patterns, temperature, humidity, etc.



### **04** Data Cleaning

- Handle missing values.
- · Detect and treat outliers.
- Check for data redundancy.



### **Evaluation**

- Use proper metrics: F1, Recall, ROC-AUC.
- Handle class imbalance, overfitting issues



### Result Interpretation 09

• Document the troubleshooting steps, solutions, and any new knowledge gained during the process

### **05** Preprocessing

- Scale numerical features.
- Encode categorical variables.
- Transform skewed distributions



### **Model Deployment 10**

built a simple interactive dashboard using Streamlit





# I will cover some steps

let's Go >>





# Problem Understanding



# Data Collection



01

### **Source & Context:**

The data was collected from weather stations across Australia, providing detailed daily weather observations.

02

### **Volume & Variety:**

It includes over 145,000 records with a mix of numerical features (like temperature and humidity) and categorical ones (like wind direction and location).

03

### Why It Matters for Us:

The dataset's size and diversity made it suitable for building strong predictive models — but also introduced real-world complexity that we had to handle early.



# Initial Data Inspection

What did we see when we first opened the dataset?

### Key Findings:

- 145,460 rows × 24 columns
- Mixture of numerical, categorical, and date features
- missing values in columns reached ~40% in some columns
- outliers in Rainfall
- Date Column is object dtype
- Total Duplicates: 0



### DATA CHALLENGES



### DATA CHALLENGES ROADMAP



DATA QUALITY ISSUES

DATA IMBALANCE

**FOR CAT** 

MODEL SELECTION







Missing Values
Skewed Data

RainTomorrow
No Rain
Accuracy
Evaluation

binary label enable cat (xGBoost) XGBoost Random forest Decision Tree

# Missing Values



# Features Distribution



### RainTomorrow Distribution



# RainTomorrow Distribution

- Majority of days have no rain
- Data is imbalanced
- Needs to be considered in model training



# Data Cleaning



# Data Cleaning

How did we handle the data quality problems? Handling Missing Values

### Problem:

Many columns had missing values, especially in wind & humidity.

### What We Did:

For numerical columns: Used KNN Imputer to fill based on nearest neighbors

For categorical columns: Filled using most frequent (mode).

### Result:

Missing values filled with relevant, context-aware estimates.

No major loss of information or need to drop rows.

# Handling Outliers



### Problem:

Some numeric features had extreme outliers



Winsorize Method For Handling Outliers

### **Result:**

- Keeps the sample size unchanged, unlike methods like trimming that remove values
- Reduced noise in training data.

# Data cleaned... but the real work begins





# Date Column Processing

Convert the Date column into datetime format and extract temporal features (day, month, year).

Revealed seasonal patterns (e.g., higher rain likelihood in Winter/Autumn).

O2 Improved model ability to capture temporal dependencies.

Enable time-based analysis (e.g., seasonal trends).

# Numerical Feature Engineering



- TempDiff: Captures daily temperature swings
  - smaller swings often indicate rain
- WindSpeedAvg, HumidityDiff, PressureDiff: Reflect intraday changes; pressure drops signal rain
- RainToday: Binary flag rain events tend to cluster

### **Impact**

- Higher HumidityDiff & lower PressureDiff associated with rain
- WindGustDiff ranked among top 5 predictive features
- Capturing dynamic weather interactions improved model accuracy

# Seasonal Feature Creation

### Purpose

Categorize months into seasons to capture cyclical weather patterns.

### **Benefit**

- Identified Winter/Autumn as high-rain seasons
- Added domain knowledge to the model.



### Categorical Feature Encoding

To match each model's nature, we applied encoding techniques accordingly:

- Random Forest → Binary Encoding
- XGBoost → Handled internally (no manual encoding needed)
- Decision Tree → Label Encoding

This ensured optimal compatibility and preserved model performance

# Statistical Tests

Chi-Square Test for categorical features

ANOVA Test for numerical features

To identify which features have a meaningful relationship with the target variable (RainTomorrow), and to guide our feature selection process.

# Statistical Tests

### Chi-Square

- Tested feature association with RainTomorrow
- Significant: Location,
   RainToday, WindDir3pm,
   WindDir9am, WindGustDir
- Not significant: Season

### **ANOVA**

- Tested mean difference by rain outcome
- Significant: MaxTemp,
   Rainfall, WindGustSpeed,
   Sunshine, Pressure3pm



# Features Selection

### **Methods Used**

- Chi-Square Test (SelectKBest)
- XGBoost Feature Importance

### Goal:

- Understand which features have the strongest relationship with the target (RainTomorrow)
- Improve interpretability and prepare for model training

### Note:

- No features were dropped
- XGBoost handles low-importance features internally



# Clean & Ready!

The dataset is now fully cleaned and saved — ready for modeling





# Model Selection

- Decision Tree
- Random Forest
- XGBoost

# Why We Chose These Models?

- High number of missing values
- Class imbalance in the target variable
- Presence of outliers

# **Decision Tree Classifier**

Used as a initial model to quickly test performance and feature influence

### Random Forest Classifier

Designed to generalize well and improve stability over Decision Tree

### **XGBoost Classifier**

Chosen as the main production model due to highest performance in tests

Each model we chose tackled a real problem in our data — our strategy wasn't random, it was data-driven."

### **Decision Tree: Model Training & Evaluation**

### **Before Tuning**

- Used default Decision Tree
- No parameter tuning
- Weak performance on rain class
- Overfitting likely on training data



### **After Tuning**

**Before Tuning** 

- Used GridSearchCV for best params
- Better overall accuracy
- Precision improved
- But recall dropped for rain cases



### Random Forest: Model Training & Evaluation

### **Before Tuning**

• Used default Random Forest settings.

### **After Tuning**

- Tuned with Bayesian Optimization.
- Best params: max\_depth=30, n\_estimators=200, etc.
- Applied SMOTE to fix class imbalance.
- Improved recall for "Rain = Yes".
- Training took longer, but performance more balanced.



Precision

Accuracy

Recall

Metric

F1-score





### **XGBoost: Model Training & Evaluation**

### **Before Tuning**

- Used default XGBoost settings
- No handling for class imbalance
- Fast training, but not optimal
- Weak on minority class (missed rain cases)
- Model was overconfident, needed regularization

### **After Tuning**

- Balanced classes with scale\_pos\_weight
- Reduced learning\_rate for smoother learning
- Added regularization (gamma, lambda, alpha)
- Used early stopping for better generalization
- Tuned threshold to improve recall (detect more rain)



## Which Model Predicts Rain Best?



# XGBoost: Our Final Model

## Why We Chose It:

| Dataset Challenge  | XGBoost Solution                         |  |
|--------------------|------------------------------------------|--|
| Missing data       | Handled without manual imputation        |  |
| Outliers           | Less sensitive compared to linear models |  |
| Class imbalance    | Managed with weight tuning               |  |
| Feature complexity | Learns nonlinear interactions well       |  |

# **Model Deployment**





# Future Work



**01** Use real-time weather data

**02** Improve model accuracy

03 Build a mobile app

**05** Work on long-term prediction

# Access the Project

Includes full exploratory data analysis (EDA), visualizations, and model evaluation.

<u>Kaggle</u>

### **Our GitHub Repo**

Collaborative work with clean code, data preprocessing, and model training.



# 

Any Questions or Feedback?