1 Affine and Convex Sets

1.1 Line and Line Segments

Set of points of the form $y = \theta x_1 + (1 - \theta)x_2$, where $\theta \in \mathbf{R}$

1.2 Affine sets

A set C is affine if the line through any two distinct points in C lies in C.

Affine combination is a point of a form $\sum_{i=1}^{k} \theta_i x_i$, where $\sum_{i=1}^{k} \theta_i x_i$

where $\sum_{i=1}^{k} \theta_i = 1$. Prove by induction that C is affine \iff C contains all possible affine combinations.

If \hat{C} is an affine set and $x_o \in C$, then $V = C - x_0$ is a subspace.

1.3 Affine hull

 $\begin{array}{l} \textbf{aff} C = \{ \sum_{i=1}^k \theta_i x_i | x_i \in C, \sum_{i=1}^k \theta_i = 1 \} \text{ It is the smallest affine set that contains } C. \text{ If } S \text{ is any affine set such that } C \subseteq S, \text{ then } \textbf{aff } C \subseteq S. \end{array}$

1.4 Relative interior

Affine dimension of C is dim aff C. relint $C = \{x \in C \mid B(x,r) \cap \text{aff } C \subseteq C \text{ for some } r > 0\}$

Think of relative interior as the analogous version of normal interior, just as the universe is compressed from the original ambient set to the affine hull, with possibly a fall in dimensions. Assume Euclidean norm and Euclidean ball for understanding.

1.5 Convex sets

A set C is *convex* if the line segment between any two points in C lies in C. Line segment is a restriction of the line, with $\theta \in [0, 1]$.

Convex combination takes the same form as the affine combination, with additional restriction of each $\theta_i \in [0, 1]$.

Prove by induction that C is convex $\iff C$ contains all possible convex combinations.

1.6 Convex hull

conv $C=\{\sum_{i=1}^k\theta_ix_i\mid x_i\in C, \sum_{i=1}^k\theta_i=1, \theta_i\in[0,1]\}$

It is again the smallest convex set that contains C. If S is any convex set such that $C \subseteq S$, then $\operatorname{conv} C \subseteq S$.

1.7 Cones

A set C is a *cone* if $\forall x \in C$ and $\theta > 0$ we have $\theta x \in C$. C is convex cone if it satisfies both definitions.

Conic combination is a point of the form $\sum_{i=1}^{k} \theta_i x_i$, where $\theta_i \geq 0$.

Prove by induction that C is a **convex** cone \iff C contains all possible conic combinations. Idea of *conic hull* follows similarly.

1.8 Examples

Empty set \emptyset , singleton, whole space \mathbf{R}^n are affine. Line is affine, and is a convex cone if it passes through zero (making it a subspace). Non-trivial line segment is convex. Non-trivial ray is convex, and a convex cone if x_0 is 0. Any subspace is affine and a convex cone.

1.9 Hyperplanes and halfspaces

Set of the form $\{x \in \mathbf{R}^n | a^T x = b\}$ where $a \in \mathbf{R}^n, a \neq 0$, and $b \in \mathbf{R}$. Natural extension of 3D plane seen in \mathbf{R}^3 .

A hyperplane divides \mathbf{R}^n into two halfspaces, which is a set of the form $\{x \in \mathbf{R}^n | a^T x \leq b\}$, where $a \neq 0$.

1.10 Some more examples

Euclidean ball in $\mathbf{R}^n: B(x_c,r)=\{x\in\mathbf{R}^n: |x-x_c|_2\leq r\}=\{x_c+ru: |u|_2\leq 1\}$ It is convex by homogeneity and triangle inequality of norm property

Ellipsoids in $\mathbf{R}^n \in \{x \in \mathbf{R}^n : (x - x_c)^T P^{-1}(x - x_c \le 1)\}$, where P is symmetric and positive definite. When $P = k^2 I$, the ellipsoid is reduced to a ball.

Norm ball, which is an Euclidean ball generalised to any norm, is convex. Norm cone associated with the norm $|\cdot|$ is $C = \{(x,t) \in \mathbf{R}^{n+1} : |x| \le t\} \subseteq \mathbf{R}^{n+1}$, which is a convex cone.

Polyhedra is a finite intersection of halfspaces and hyperplanes, denoting inequality and equality constraints respectively in a linear programming problem.

Affinely independent means that for k+1 points $v_0, \ldots v_k \in \mathbf{R}^n$, then $v_i - v_0$ are linearly independent. Simplex determined by those vectors is $\mathbf{conv}\{v_i\}$,

which is a coordinate-free version of linear independence.

Set of symmetric n*n matrices $S^n = \{X \in \mathbf{R}^{n*n} : X = X^T\}$, set of symmetric positive semidefinite matrices $S^n_+ = \{X \in S^n : X \succeq 0\}$, set of symmetric positive definite matrices $S^n_{++} = \{X \in S^n : X \succ 0\}$.

1.11 Operations preserving convexity

Finite/infinite intersections of convex sets: Every closed convex set is the intersection of all halfspaces containing it.

Affine function: function $f: \mathbf{R}^n \to \mathbf{R}^m$ with the form f(x) = Ax + b, where $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^m$ If $S \in \mathbf{R}^n$ is convex, then f(S) is convex. If $P \in \mathbf{R}^m$ is convex, then $f^{-1}(P)$ is convex. Examples include scaling, translation, projection, sum, partial sum. Linear fractional and perspective functions: $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$, $\mathbf{dom} P = \mathbf{R}^n \times \mathbf{R}^{++}$, with the form P(z,t) = z/t. If $C \subseteq \mathbf{dom} P$ is convex, then P(C) is convex. Linear fractional is formed by a composition of affine function and perspective function, f is a linear fraction if $f = P \circ g$, where g is an affine function.

1.12 Generalised order

Proper cone: a cone K which is convex, closed, solid(interior not empty), pointed(if $x \in K$ and $-x \in K$, then x = 0), then we can define $x \prec_K y \Leftrightarrow y - x \in K$, and $x \prec_K y \Leftrightarrow y - x \in \text{int}K$. Some properties: preservation under addition, nonnegative scaling and limits, transitivity, reflexivity, anti-symmetric.

1.13 Separating hyperplane theorem

Theorem: suppose C and D are convex, nonempty and disjoint sets, $\exists a \neq 0$ and b such that $a^Tx \leq b \forall x \in C$ and $a^Tx >= b \forall x \in D$. If at least one of C and D is bounded, and both are closed, the *strict* inequalities hold. Intuition: Construct singleton/finite sets to satisfy strict separation condition. Proof: Fix two points in C and D that achieves the distance of two sets, then a = d - c, $b = \frac{1}{2}(|d|_2^2 - |c|_2^2)$. Prove by contradiction that it is true.

1.14 Supporting hyperplane

Suppose $C \in \mathbf{R}^n$, and $x_0 \in \mathbf{bd}C = \mathbf{cl}C \setminus \mathbf{int}C$, if $\exists a \neq 0$ such that $a^Tx \leq a^Tx_0 \ \forall x \in C$, then the hyperplane $a^Tx = a^Tx_0$ is a supporting hyperplane to C at point x_0 . For every nonempty convex set C and any $x_0 \in \mathbf{bd}C$, such a plane exists.

1.15 Dual cone

Let K be a cone. We define $K^* = \{y : x^T y \ge 0 \forall x \in K\}$ as the *dual cone* of K, and the dual cone is always a convex cone. Geometrically, dual cone contains vectors that make acute angle with all vectors in the original cone.

2 Convex functions

2.1 First-order conditions

If f is differentiable, then f is convex iff $\operatorname{\mathbf{dom}} f$ is convex and $f(y) \geq f(x) + \nabla f(x)^T (y-x) \ \forall x,y \in \operatorname{\mathbf{dom}} f$. Note that zero gradient in this case implies a global minimum, and the global minimum if f is strictly convex. Strict convexity can be implied by strict inequality.

2.2 Second-order conditions

Hessian matrix: $H_{ij} = \frac{\delta f}{\delta x_i \delta x_j}$. f is convex iff $\mathbf{dom} f$ is convex and its Hessian is positive semidefinite.

2.3 Examples

Exponential: e^{ax} is convex on $\mathbf{R} \forall a \in \mathbf{R}$.

Powers: x^a is convex on \mathbf{R}^{++} when $a \ge 1$ or $a \le 0$, and concave for $a \in [0, 1]$.

Powers of absolute value: $|x|^p$, for $p \ge 1$, is convex on **R**.

Logarithm: $\log x$ is concave on \mathbf{R}^{++} .

Negative entropy: $x \log x$ is strictly convex on \mathbb{R}^{++} . Other examples include norms, max, quadratic-over-linear, log-sum-exp, geometric mean, log-determinant.

2.4 Sublevel sets

The α -sublevel set of a function $f: \mathbf{R}^n \to \mathbf{R}$ is defined as $C_{\alpha} = \{x \in \operatorname{dom} f: f(x) \leq \alpha\}$. It is convex if f is convex for any value of α . Analogous α -superlevel set by $\{x \in \operatorname{dom} f: f(x) \geq \alpha\}$ is convex if f is concave. Converse is not true. Consider $-e^x$.

2.5 Epigraph

 $\begin{aligned} &\mathbf{graph}(f) = \{(x,f(x)): x \in \mathbf{dom}f\} \\ &\mathbf{epi}(f) = \{(x,t): x \in \mathbf{dom}f, t \geq f(x)\} \\ &\mathbf{hypo}(f) = \{(x,t): x \in \mathbf{dom}f, t \leq f(x)\} \\ &f \text{ is convex iff } \mathbf{epi}(f) \text{ is convex, and is concave iff} \\ &\mathbf{hypo}(f) \text{ is convex.} \end{aligned}$

2.6 Operations preserving convexity

Conic combinations of convex functions Composition with affine functions

Pointwise max/sup: geometrically, the epigraph of the max/sup function is the intersection of epigraphs of all component functions, which are all convex. **Intuition**: establish convexity of a function by construction from max/sup of other more obvious convex functions.

Composition: Assume **twice differentiability**, check cases to ensure the second derivative is nonnegative. **Some compositions**: If g is convex, then exp g(x) is convex. If g is concave and positive, then $\log g(x)$ is concave. If g is concave and positive, then $\frac{1}{g(x)}$ is convex. If g is convex and non-negative and $p \geq 1$, then $g(x)^p$ is convex. If g is convex then $-\log(-g(x))$ is convex on $\{x \in \mathbf{dom} g : g(x) < 0\}$. Minimization: if f is convex in (x,y), and C is convex and nonempty, then $g(x) = \inf_{y \in C} f(x,y)$ is convex. $\mathbf{dom} g = \{x : \exists y \in C, (x,y) \in \mathbf{dom} f\}$

3 Conjugate functions

3.1 Definitions

Let $f: \mathbf{R}^n \to \mathbf{R}$, then conjugate of f, which is $f^*: \mathbf{R}^n \to \mathbf{R}$ is defined as $f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$. The domain of f^* consists of $y \in \mathbf{R}^n$ where the supremum is finite. We can understand it as the maximum gap between the linear function yx and f(x). If f is differentiable, this occurs when f'(x) = y.

 f^* is convex in y as it is the pointwise supremum of a family of convex(indeed affine) functions of y.

3.2 Examples

Affine functions: f(x) = ax + b, $x \in \mathbf{R}$, then $f^*(y) = \sup_{x \in \mathbf{R}} \{xy - ax - b\} = \sup_{x \in \mathbf{R}} \{x(y - a)\} - b$, hence $f^*(y) = -b$ when y = a and $+\infty$ otherwise.

Negative logarithm: $f(x) = -\log(x), x \in \mathbf{R}^{++}$. $f^*(y) = \sup_{x \in \mathbf{R}^{++}} \{xy + \log(x)\}$, hence $f^*(y) = +\infty$ when $y \geq 0$ and $f^*(y) = -\log(-y) - 1$ when y < 0 by differentiation. **Intuition**: divide cases for y, draw graphs to see the sum and find potential extremum by calculus.

Exponential: $f(x) = e^x$, $x \in \mathbf{R}$, then $f^*(y) = \sup_{x \in \mathbf{R}} \{xy - e^x\}$, hence $f^*(y) = +\infty$ when y < 0, and $f^*(y) = y\log(y) - y$ when y > 0 and $f^*(0) = 0$. Inverse: $f(x) = \frac{1}{x}$, $x \in \mathbf{R}^{++}$, then $f^*(y) = \sup_{x \in \mathbf{R}^{++}} \{xy - \frac{1}{x}\}$, hence $f^*(y) = +\infty$ when y > 0,

 $f^*(y) = -2(-y)^{\frac{1}{2}}$ when y < 0, and $f^*(y) = 0$ when y = 0.

 $\begin{array}{ll} \textit{Log-sum-exp function:} & f(x) = \log(\Sigma_{i=1}^n e^{x_i}), \ x \in \mathbf{R}^n, \ \text{then dom} f^* = \{y \in \mathbf{R}^n : y_i \geq 0, \Sigma_{i=1}^n y_i = 1\}, \\ \text{and} & f^*(y) = \Sigma_{i=1}^n y_i \log(y_i) \end{array}$

3.3 Properties

By definition, we have $f^*(y) \geq x^T y - f(x) \rightarrow f^*(y) + f(x) \geq x^T y \ \forall x \in \mathbf{dom} f$, which is Fenchel's inequality.

Scaling and composition with affine function: For a > 0 and $b \in \mathbf{R}$, the conjugate of g(x) = af(x) + b is $g^*(y) = af^*(\frac{y}{a}) - b$, and $\mathbf{dom}g^* = \{y \in \mathbf{R}^n : \frac{y}{a} \in \mathbf{dom}f^*\}$.

Sum of independent functions: $f(u,v) = f_1(u) + f_2(v)$, then $f^* = f_1^* + f_2^*$.

Conjugate of conjugate: Let $f: \mathbf{R}^n \to \mathbf{R}$, then (i) $f(x) \geq f^{**}(x) \forall x \in \mathbf{R}^n$ (ii) If f is closed(**epi**f is closed) and convex, then $f^{**} = f$

4 Quasiconvex functions

4.1 Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\mathbf{dom} f$ is convex and the sublevel sets $S_\alpha = \{x \in dom f: f(x) \leq \alpha\}$ are convex $\forall \alpha \in \mathbf{R}.f$ is quasiconcave if -f is quasiconvex. f is quasilinear if f is simultaneously quasiconvex and quasiconcave.

4.2 Examples

Logarithm: $f = \log(x), x \in \mathbb{R}^{++}$ is concave but

Square root of absolute: $f = \sqrt{|x|}, x \in \mathbf{R}$ is quasi-

Product: $f(x_1, x_2) = x_1 x_2$, $\mathbf{dom} f = \mathbf{R}_+^2$ is quasi-

Max-nonzero-indices: $f(x) = \max\{i \in [n] : x_i \neq 0\}$ is quasiconvex.

4.3 Properties

Theorem: f is quasiconvex iff dom f is convex and $\forall x, y \in \mathbf{dom} f, \forall \theta \in [0, 1], f[\theta x + (1 - \theta)y] \leq$ $\max\{f(x), f(y)\}.$

Theorem: The following statements are equivalent: (i) S_{α} is convex $\forall \alpha \in \mathbf{R}$ (ii) $\forall x, y \in \mathbf{dom} f, \forall \theta \in [0, 1], f[\theta x + (1 - \theta)y] \leq \max\{f(x), f(y)\}.$ **Theorem**: If $f : \mathbf{R} \to \mathbf{R}$ is continuous, it is quasi-

convex iff at least one of the following is true: (i)it is non-decreasing. (ii) it is non-increasing. (iii) $\exists c' \in \mathbf{dom} f$ such that $\forall t \leq c, f$ is non-increasing and $\forall t \geq c, f \text{ is non-decreasing.}$

4.4 Differentiable quasiconvex func-

Suppose $f: \mathbf{R}^n \to \mathbf{R}$ is differentiable.

First-order condition: f is quasiconvex iff $\mathbf{dom} f$ is convex and $\forall x, y \in \mathbf{dom} f$, f(y) < f(x) $\nabla f(x)^T (y - x) \le 0.$

Second-order condition: Suppose f is twicedifferentiable, then f is quasiconvex iff $\forall y \in \mathbf{R}^n, \nabla f(x)^T y = 0 \implies y^T \nabla^2 f(x) y \ge 0$.

If $f_1 \dots f_n$ are quasiconvex, and $w_i \geq 0$, then f =

 $\max\{w_1f_1,\ldots,w_nf_n\}$ is quasiconvex. If f is quasiconvex in (x,y), and C is a convex set, then $g(x)=\inf_{y\in C}\{f(x,y)\}$ is quasiconvex.

5 Optimization problems

5.1 Standard form

 $\min f_0(x)$

s.t. $f_i(x) \le 0 \ \forall i = 1, \dots, m$

 $h_i(x) = 0 \ \forall i = 1, \dots, p \ f_0$ is the objective function. f_i is the i^{th} inequality constraint, and h_i is the i^{th} equality constraint. **Domain** of the problem is defined as $D = (\bigcap \mathbf{dom} f_i) \cap (\bigcap \mathbf{dom} h_i)$

5.2 Optimal value

We denote feasible set $C = \{x : f_i(x) \le 0 \ \forall i, h_i(x) = 0 \}$

We denote the optimal value $p^* = \inf\{f_0(x) : x \in$ C}. If $C = \emptyset$, then the problem is *infeasible*, we define $p^* = +\infty$. If $\exists (x_k)_{k=1}^{+\infty}$ such that x_k is feasible and $f_0(x_k) \to -\infty$ as $k \to +\infty$, then the problem is $unbounded\ below,\ p^* = -\infty$

5.3 Set of optimal points

Suppose $D \subseteq \mathbf{R}^n$.

 $X_{opt} = \{x \in D : x \in C, f_0(x) = p^*\}$. If $X_{opt} \neq \emptyset$, then the optimal value is attained. If $X_{opt} = \emptyset$, (assume problem is feasible), we could distinguish between two cases: problem is unbounded below, or the infimum value exists but is not attainable. If we minimise a continuous function over a compact set, then the optimal solution is attainable. A feasible xis ϵ -optimal if $f_0(x) \leq p^* + \epsilon$.

5.4 Local optimality

x is locally optimal if $\exists R>0$ such that $f_0(x)=\inf\{f_0(z):z\in C,|z-x|_2\leq R\},$ geometrically it means that x minimizes f_0 over its R-neighborhood. If x is feasible and $f_i(x) = 0$, we say the i^{th} inequality constraint is active, otherwise inactive.

5.5 Feasibility

We can formulate an optimization problem in a way that we are to optimize a constant value, say 0, over a family of constraints. If $p^* \neq +\infty$, we find x that satisfies all constraints.

5.6 Standardise problems

 $x_i \le u_i \to x_i - u_i \le 0$ $x_i \ge li \to -x_i + l_i \le 0$

5.7 Change of variables

If $\exists \phi: \mathbf{R}^n \to \mathbf{R}^n$ and is into, we define $x = \phi(z)$, and $f_i'(z) = f_i(\phi(z)), \ h_i'(z) = h_i(\phi(z))$. If x solves the original optimization problem, then z solves the transformed optimization problem.

5.8 Change of objective and con- 6.7 Geometric programming straints

Suppose $\psi_0: \mathbf{R} \to \mathbf{R}$ is monotone increasing. $\psi_i: \mathbf{R} \to \mathbf{R}, i = 1, \dots, m$ satisfies that $\psi_i(u) \le$ $0 \iff u \leq 0, \text{ and } \varphi_j : \mathbf{R} \to \mathbf{R}, j = 1, \dots, p$ satisfies that $\varphi_j(u) = 0$ when u = 0, then we define $f'_i(x) = \psi_i(f_i(x)), i = 0, 1, ..., m, h'_i(x) =$ $\varphi_j(h_j(x)), j = 1, \ldots, p$. This transformed problem is equivalent to the original problem.

5.9 Slack variables

We can change inequality constraints into equality constraints by introducing non-negative slack variables.

 $f_i(x) \le 0 \iff \exists s_i \ge 0 \text{ such that } f_i(x) + s_i = 0.$ x is optimal for original problem \iff (x, s) is optimal for transformed problem, and $s_i = -f_i(x)$.

5.10 Epigraph form

 $\min_{x \neq t} t$

s.t. $t \ge f_0(x)$

 $f_i(x) \leq 0 \ \forall i = 1, \dots, m$ $h_i(x) = 0 \ \forall i = 1, \dots, p$

It is equivalent to the original problem.

(x,t) is optimal for the transformed problem $\iff x$ is optimal for the original problem and $t = f_0(x)$

6 Convex optimization

6.1 Standard form

The form follows from the general optimization problem, with additional requirements:

- 1. f_0 must be convex(if quasiconvex, then the problem is quasiconvex optimization)
- 2. f_i must be convex.
- 3. h_i must be affine, that is, $h_i(x) = a_i^T x b_i$

6.2 Optimality

For convex optimization problems, we have that any local minimum is a global minimum. The optimal set is convex. If the objective is strictly convex, then the optimal set contains at most one point.

6.3 Optimality condition for differentiable f_0

Theorem: Let C be the feasible set for a convex problem. x is optimal $\iff x \in C$ and $\nabla f_0(x)^T(y-x) \geq 0 \ \forall y \in C$. Geometrically, $-\nabla f_0(x)$ defines a supporting hyperplane to the feasible set C, $-\nabla f_0(x)$ makes an obtuse angle with y-x. If problem is unconstrained, then the optimal condition reduces to $\nabla f_0(x) = 0$.

6.4 Quadratic optimization problem

 $\min_{x \in \mathbf{R}^n} \frac{1}{2} x^T P x + q^T x + r$ such that $Gx \leq h$, Ax = b, where $P \in S^n_+, G \in \mathbf{R}^{m*n}, A \in \mathbf{R}^{p*n}, q \in$ $\mathbf{R}^n, h \in \mathbf{R}^m, b \in \mathbf{R}^p$

If P is positive semidefinite, the problem is convex. If P is positive definite, the problem is strictly con-

6.5 Quadratic constrained quadratic program

 $\min_{x} \frac{1}{2} x^{T} P_{0} x + q_{0}^{T} x + r_{0} \text{ such that } \frac{1}{2} x^{T} P_{i} x + q_{i}^{T} x + r_{0}$ $r_i \leq 0 \ \forall i = 1, ..., m, \ Ax = b, \ \text{where} \ P_i \in S^n_+ \to f_i$ are convex functions.

If we take $P_i = 0$, we recover a linear program. Therefore, LP is a subset of QCQP.

6.6 Second order cone programming

Second order cone $K = \{(x,t) \in \mathbf{R}^{n+1} : t \ge$ $0, |x|_2 \le t\}$

 $\min_{x \in \mathbf{R}^n} f^T x$

such that $|A_ix + b_i|_2 \le c_i^T x + d_i, i \in [m], Fx = g$, where $A_i \in \mathbf{R}^{n_i * n}, b_i \in \mathbf{R}^{n_i}, c_i \in \mathbf{R}^n, d_i \in \mathbf{R}, F \in$ $\mathbf{R}^{p*n}, G \in \mathbf{R}^p$.

We say that $|A_i x + b_i|_2 \le c_i^T x + d_i$ is a second order cone constraint, since $(Ax + b, c^Tx + d) \in K$.

If we take $c_i = 0$, we recover quadratic constraint. If we take $A_i = 0$, we recover affine constraint. Therefore, QCQP is a subset of SOCP.

A function $f: \mathbf{R}^n \to \mathbf{R}$ with $\mathbf{dom} f = \mathbf{R}_{++}^n$ defined as $f(x) = cx_1^{a_1} \dots x_n^{a_n}$ where $c > 0, a_i \in \mathbf{R}$ is

A function $f: \mathbf{R}^n \to \mathbf{R}$ with $\mathbf{dom} f = \mathbf{R}_{++}^n$ defined as $f(x) = \sum_{i=1}^{k} f_i(x)$, where f_i are monomials, is a posynomial.

 $\min_{x} f_0(x)$ such that $f_i(x) \leq 1 \ \forall i \in [m], h_i(x) =$ $1 \ \forall i \in [p]$, where f_i are posynomials and h_i are monomials.

Note that GP is not guaranteed convex. However, consider substitution $y_i = \log(x_i) \iff x_i = e^{y_i}$ (Note that this change of variable makes sense as $\dot{x}_i > 0$), then the objective function and the constraints can be rewritten as a sum of exponential. Optimise over the logarithms of the transformed objectives and inequality constraints, then we have changed the objective and inequality constraints into log-sum-exp functions, which are convex. GP thus is transformed into a convex optimization.

6.8 Generalized inequalities

Remember that a proper cone K defines a partial order.

Definition: $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex

if $\forall x, y \in \mathbf{dom} f, \forall \theta \in [0, 1],$ $f(\theta x + (1 - \theta y)) \leq_K \theta f(x) + (1 - \theta) f(y).$

6.9 Semidefinite programming

We consider an optimization problem with generalized inequality constraints.

 $\min_x f_0(x) \text{ such that } f_i(x) \leq_{K_i} 0 \ \forall i \in [m], Ax = b$ When $K = S^n_+$, the associated conic form problem is called a semidefinite program.

 $\min_{x} c^{T} x \text{ such that } x_{1}F_{1} + \dots + x_{n}F_{n} + G \leq_{K} 0, Ax = b, \text{ where } G, F_{i} \in S^{n}_{+}, A \in \mathbf{R}^{p*n}.$

If G, F_i are diagonal, we recover an LP.

Consider the matrix X = $det(A) \neq 0$, then the Schur complement of A in X $S = C - B^T A^{-1} B.$

We have Schur complement lemma: if A > 0, then $X \ge 0 \iff S \ge 0.$ Therefore, consider matrix constraint $\begin{bmatrix} tI & x \\ x^T & t \end{bmatrix} \ge 0$,

by Schur complement lemma, it is equivalent to $t-x^T(tI)^{-1}x \geq 0 \iff t \geq t^{-1}x^Tx \iff |x|_2 \leq t$, therefore we recover the SOCP inequality constraint. Therefore, SOCP is a subset of SDP.