Estimación de Esfuerzo, Tiempo y Costos Lic. Angel Baspineiro Valverde

ING. DE SOFTWARE II :: TEMA 4

² Temario

- Introducción a la estimación
- Tipos de modelos de estimación
- Tamaño del software vs. Esfuerzo
- Métricas del tamaño
- PF, ejemplos, aplicaciones
- COCOMO II
 - Consideraciones previas
 - Estaciones del modelo
 - Proceso
 - Interpretación de resultados
 - Tiempo

Estimar Proyectos de SW..

- Es una actividad muy difícil y errática
- Existen muchos problemas
 - Estimar y negociar
 - Somos muy optimistas
 - No tenemos una BaseLine (BD Histórica)
 - Como medimos nuestro trabajo ?
 - El usuario desea estimaciones al inicio del proyecto con un margen de error pequeño.

Precisamente por eso ha sido un reto para muchos ingenieros. Saber como estimar es algo interesante!

3 Temario

- Costos
 - Estadísticas importantes de nuestro medio
 - Modelos propuestos
- Condiciones para aplicar el modelo COCOMOii
- Consideraciones para elegir un modelo
- Conclusiones

Estimación

Estimar es "el proceso de predicción de la cantidad de esfuerzo requerida para realizar un software sistema". (Boehm)

- Se ha establecido que el esfuerzo es un variable independiente del contexto donde se desarrolla el proyecto.
- El tiempo bien puede estar en función al esfuerzo
- Finalmente el costo del trabajo realizado estará en función al tiempo y esfuerzo.

ARV (2)

7

Estimación

- A un gerente de sistemas le interesa medir y cuantificar variables importantes para el proyecto (Esfuerzo; Tiempo; Costo)
- La ingeniería de SW ha trabajado en este campo para poder asignar valores objetivos a valoraciones subjetivas o ambiguas.
 - Ejs:
 - Cuando podemos decir que un sistema es mas grande que otro?
 - Cuando podemos decir que un sistema es mas complejo que otro?
 - Valoraciones como : "mas o menos", "casi", "me parece",... no nos sirven

Un futuro promisorio para la analogía

- Si, porque combina lo mejor del juicio experto, y el razonamiento basado en casos.
- Es factible de automatizarse.
- Resistencia a casos especiales
- Puede estimarse cualquier tipo de proyectos, no solo de gestión.
- Tiene la capacidad de mostrar claramente al usuario como llega a un resultado.
 - Sin embargo:
 - El ajuste del grado de similaridad entre proyectos puede llegar a ser demasiado complejo.
 - Pueden requerirse muchos detalles, que no están en una estimación temprana.

8

9

Tipos de Modelos

- Basados en el Juicio Experto
 - Técnica Delphi
- Basados en Máquinas de Aprendizaje
 - Pretenden imitar el razonamiento y aprendizaje humano.
 - Redes Neuronales, Lógica difusa, R.B.C., Analogía (la de mayor desarrollo)
- Estadísticos o Algorítmicos
 - Basados en la correlación estadística de tipo logarítmica.

Modelos Estadísticos Tamaño vs. Esfuerzo

- Se ha establecido estadísticamente que el esfuerzo tiene una correlación con el tamaño del proyecto.
- Surgieron modelos lineales y logarítmicos siendo estos últimos los que mejor se ajustan.

EL tamaño(size) es el principal estimador del esfuerzo

Comparación de las Máquinas de Aprendizaje

Método de Máquina de aprendizaje	Resistencia a datos atípicos	Explicación de la salida	Aconsejable para pequeñas BD históricas	Capacidad de razonamiento	Adaptable
Red Neuronal	No	No	No	No	No
Lógica Difusa	Parcialmente	Si	Si	Si	No
CBR	Si	Si	Parcialmente	Si	Si
Analogía	Sí	Sí	Parcialmente	Sí	Sí
Basado en Reglas	Sí	Sí	Sí	Parcialmente	No
Arboles de Regresión	Sí	Sí	Parcialmente	Parcialmente	No
Sistemas Híbridos	Parcialmente	No	Parcialmente	Parcialmente	No

Métricas para el tamaño del SW

- SLOC (Líneas de código fuente)
 - No aplicable directamente en estos tiempos
- PF (Puntos Función)
- PF Característicos
 - Idem al anterior pero toma en cuenta la complejidad de los procesos
- PF3D (funciones, datos y control)
- PO (Puntos Objeto), solo COCOMO II
- Los mas usados en el mundo son los PF por que son independientes del método, proceso o herramientas de desarrollo, además de haberse mantenido actualizados. (IFPUG)

Puntos Función (PF)

- Características
 - La funcionalidad de un sistema es una buena medida del tamaño.
 - Pueden usarse en etapas tempranas del desarrollo
- Todo sistema transaccional puede tener:
 - 3 tipos de flujos transaccionales
 - (FE) Flujos de entrada externa, actualizan A L I
 - (FS) Flujos de Salida Externa, tienen datos derivados de ALI o ALE
 - (Q) Flujos de Consulta o Interactivos, no actualizan ningún archivo, solo leen ALI o ALE o los combinan
 - 2 Tipos de archivos lógicos
 - (ALI) Archivos lógicos internos, agrupamientos logicos de datos visibles por el usuario. El sistema mantiene estos datos
 - (ALE) Archivos lógicos externos, agrupamientos lógicos de datos usados como referencia, visibles para el usuario. El sistema no mantiene estos datos.

Puntos	Función (P	PF)- Ta	blas			
	(Para FS y Q				
	Cantidad de AL		e datos			
		1 – 5	6-19	20 o más		
	0 o 1	Bajo	Bajo	Medio		
	2 - 3	Bajo Medio	Medio Alto	Alto		
	4 o más	Medio	Alto	Alto		
 Complejidad 	Para FE					
	Cantidad de ALI		Cantidad de elementos de datos			
	Camidad de Ala	1 - 4	5 – 15	16 o más		
	0 o 1	Bajo	Bajo	Medio		
	2 - 3	Bajo	Medio	Alto		
	4 o más	Medio	Alto	Alto		
	ALI y ALE					
	Cantidad de Tipos De Registros		idad de elementos d			
	De Registros	1 - 19	20 – 50 Baio	51 o más Medio		
	2-5	Bajo Baio	Medio	Alto		
	2 – 3 6 o más	Medio	Alto	Alto		
	6 o mas	Medio	Alto	Ano		
	Items	Simple	Media	Alta		
	Flujos de Entrada Externos	3	4	6		
Pesos	Flujos de Salida Externos	4	5	7		
Relativos	Consultas	3	4	6		
	Archivos Internos	7	10	15		
	Archivos Externos	5	7	10		

Puntos Función (PF)

- Actividades Involucradas
 - Conteo de flujos transaccionales
 - Conteo de flujos de ALI y ALE
 - Determinacion de la complejidad de flujos
 - Determinación de la complejidad de ALI v ALE
 - Agrupación y aplicación de los pesos relativos
 - Conteo Final de PFNA (PF no ajustados)
 - Opcionalmente de puede aplicar un ajuste de complejidad técnica siempre y cuando se tenga ese detalle.

$$FCT = 0.65 + (\sum Factor i) * 0.01$$

Entonces los Puntos Función PF = PFNA * FCT

 Finalmente se puede aplicar la tabla de Behrens para el cálculo de KSLOC promedio Puntos Objeto (PO)

- Características
 - Estimar a partir de prototipos de interfaz
 - Un punto objeto es un pantalla o reporte
 - La funcionalidad del sistema viene dad por entradas y salidas representadas por las pantallas y los reportes
- Proceso
 - Conteo de Pantallas y Reportes
 - Determinación de la complejidad de cada uno
 - Aplicación de la tabla de pesos relativos
 - Calculo del total de puntos objeto
- Es un valor del tamaño que sirve de entrada al modelo de estimación temprana de COCOMO II (Estación I)

2ª Generación por defecto	107
3ª Generación por defecto	80
4ª Generación por defecto	20
5ª Generación por defecto	5
Bases de Datos por defecto	40
Orientado a Objetos por defecto	29
Generadores de código por defecto	16
De Simulación por defecto	46
Hoja de Cálculo por defecto	6
ADA 95	49
ANSI BASIC	64
ANSI COBOL 74	107
ANSI COBOL 85	91
ANSI SQL	13
CLIPPER	19
DELPHI	29
EXCEL 5	6
FOXPRO 2.5	34
GENEXUS	15
Visual Basic 5.0	29
Visual C++	34

Estimación Temprana

- Estimar tiempo a partir PF
 - Capers Jones
 - T = (Tamaño en PF) ^0,4
 - ISBSG
 - T = 0,80 * (Tamaño en PF) ^0,404
 - T = 0,33 * (Tamaño en PF) ^0,559 3G
 - T = 1,11 * (Tamaño en PF) ^0,342 4GL
- Estimar tiempo a partir del esfuerzo
 - Oligny, y otros
 - T = 0,662*(ESFUERZO) ^0,328
 - COCOMO II
 - T = $(3 \times E^{(0.33 + 0.2 \times (B-1.01))}) \times (SCED /100\%)$

ARV (2

5

Aplicación del Modelo

CASO II

• Estimación a partir de una arquitectura definida usando el modelo pos arquitectura.

ESTIMADOS	REAL			
E = 13,9 PM				
T = 8,4 M	TREAL=8 M			
DESVIACIÓN : 5% mas del TREAL				
Esta dentro de los límites esperados				
0,80E => T=7,8 M < TF	REAL < 1,25E => T= 9			

Por qué fue posible aplicar COCOMO II?

- Porque nuestra gente ya tiene el conocimiento de la ing. de software.
- Porque los nuevos paradigmas y herramientas de desarrollo ya se están aplicando (globalización).
- Porque los sistemas de gestión tienen la misma naturaleza.
- Porque podemos crear una propia BD para ajustar la calibración original.
- Porque casi todos los manejadores de costo son aplicables en nuestro medio

CASO II - Valores Asignados RELY Confiabilidad Requerida ======> nominal DATA Tamaño de la BD ======> baia Producto CPLX Completidad =====> nominal • RUSE Reusabilidad requerida ===> nominal DOCU Documentación ====> baja Plataforma Restricciones de tiempo de ejecución=> no se considero • TIME STOR Restricciones de almacenamiento principal => no considero PVOL Volatilidad de la plataforma ====> baja ACAP Capacidad del analista ==> alta PCAP Capacidad del programador => alta AEXP Experiencia de aplicaciones => alto PEXP Experiencia en la plataforma ==> baja LTEX Experiencia en el lenguaje y herramientas ====> alta PCON Continuidad del personal ==> muv alta Software para la gestión o apoyo al proyecto ==> bajo • TOOL SITE Desarrollo en multiples sitios => (no muy aplicable) • SCED Agenda de desarrollo requerida => nominal

Conclusiones

Sobre COCOMO II

- Transparencia en comparación a otros modelos no estadísticos
- Base estadística, menor error
- Se adecua mas a proyectos de gestión
- Abierto a otros estándares : CMM, UML, RUP
- PF no se han desactualizado (IFPUG).
- Existen herramientas automatizadas.
- Es posible aplicarlo en un entorno local, mas allá de que sea un modelo extranjero.

7

CASO II - Valores Asignados

- Factores de escala
 - PREC se considero ALTO
 - FLEX se considero ALTO
 - RESL se considero NOMINAL (mas referido a la definición de la arquitectura)
 - TEAM se considero ALTO
 - PMAT se considero BAJO (Nivel II del CMM, que es el nivel Repetible)

Recomendaciones para aplicar el Modelo COCOMO II

- Para que la aplicación del modelo sea efectiva, independientemente del lugar o región, se deben cumplir ciertos requisitos:
 - Conocimiento avanzado del modelo COCOMOII y su razonamiento.
 - Conocimiento de aspectos cualitativos del grupo de desarrollo
 - Conocimiento del costo promedio por persona mes.
 - Conocimiento del CMM.
 - Uso de una herramienta automatizada.
 - Tener la capacidad de construir una propia BD de calibración.

ARV (2