A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 6ED

Bookmark

Show all steps: ON

ON

Problem

Let G be a group. By an automorphism of G we mean an isomorphism f: $G \rightarrow G$.

Let $h: G \to I(G)$ be the function defined by $h(a) = \phi_a$. Prove that h is a homomorphism from G onto I(G) and that C is its kernel.

Step-by-step solution

Step 1 of 4

Suppose that $I(G) = \{\phi_a : a \in G\}$ is the set of all the inner automorphisms of G. Consider a mapping $h: G \to I(G)$ defined by

$$h(a) = \phi_a$$

Objective is to prove that h is a homomorphism from G onto I(G). Also show that kernel of this homomorphism will be same as the center C of G.

The center of any group *G* defined as:

$$C = \{a \in G : ax = xa \text{ for every } x \in G\}$$

Comment

Step 2 of 4

If G and H are two groups, a homomorphism from G to H is a function $f:G\to H$ such that for any two elements a,b in G,

$$f(ab) = f(a)f(b)$$
.

Let $x, y \in G$. Then

$$h(xy) = \phi_{xy}$$

Now by the property ϕ_a $\phi_b = \phi_{ab}$, it implies that

$$h(xy) = \phi_{xy}$$

$$= \phi_x \quad \phi_y$$

$$= h(x) \quad h(y).$$

Therefore, *h* is a homomorphism.

Let $\phi_a \in I(G)$. Then correspondingly the element a will belong to G. That is, for all $\phi_a \in I(G)$ there exists $a \in G$ such that $h(a) = \phi_a$, a onto mapping.

Comment

Step 3 of 4

According to the definition of kernel,

$$\ker h = \{a \in G : h(a) = e\},\$$

where e is the identity of I(G). Since $h(a) = \phi_a$, so

$$\ker h = \{ a \in G : \phi_a = e \}$$

$$= \{ a \in G : \phi_a(x) = e(x) \}$$

$$= \{ a \in G : axa^{-1} = x \}$$

The last equality is obtained by definition of inner automorphism and identity function. Solve the condition $axa^{-1} = x$ by multiplying both the sides by a as:

$$axa^{-1}a = xa$$
$$ax = xa$$

for all $x \in G$. That is, $a \in \ker h$ if it satisfies the condition that for all x in G, ax = xa. Therefore, $a \in C$ and thus kernel of h contains all the center elements.

Comment

Step 4 of 4

Hence, the function h is a homomorphism from G onto I(G) with $\ker h = C$, a center of G.

Comment