HT9200A/B 双音频 (DTMF) 发生器

特征

- 工作电压: 2.0V-5.5V
- HT9200A: 串行传输; HT9200B: 串/并行传输
- 待机电流低
- 总谐波失真低
- 3.58MHZ 晶体或陶瓷振荡器
- HT9200A:8 引脚 DIP/SOP 封装; HT9200B:14 引脚 SOP 封装

概述

HT 9 2 0 0 A/B 双音频发生器是为 μ C 接口而设计的. 通过 μ C 在引脚 24V 可产生 16 倍双音和 8 倍单音. HT9200A 的串行方式和 HT9200B 可选的串 / 并行方式的接口,可用在不同地方. 如:安全系统,主宅自动化,通过电话线遥控,通信系统等等

选择表 1-1

性能型号	工作电压	工作时钟(OSC)	接口	封装
HT9200A	2V-5.5V	3.58MHz	串行	8引脚 DIP/SOP
HT9200B	2V-5.5V	3.58MHz	串 / 并行	1 4 引脚 SOP

结构框图

引脚分布

图 1-2

焊盘分布

芯片尺寸: 1460×1470 (um) ²² 工艺上 IC 底部与 PCB 上的 VSS 相连 图 1-3

焊盘坐标

单位: ឃា

引脚 号	Х	Υ	引脚 号	Х	Υ
1	-553.30	430.40	8	553.30	- 523.50
2	-553.30	_133.50	9	553.30	-190.30
3	-553.30	-328.50	10	553.30	4.70
4	-553.30	-523.50	11	553.30	340.30
5	-220.10	-523.50	12	374.90	523.50
6	-25.10	-523.50	13	-279.30	523.50
7	308.10	-523.50			

引脚说明

	I	
I/0	内部连接	说明
Ι	CMOS 输入上拉	,低电平有效
0	振荡器	由一个反相器,一个偏压电阻,和所需的负载电容构成
Ι		在 X1 和 X2 之间接一个标准的 3.579545MHz 晶振就能实现振荡器的功能
_	_	电源负极,接地
_	_	无连接
Ι	COMS 输入 上拉或悬空	在并行方式中作数据输入.
		当 IC 是串行传输时,数据输入端(D0-D3)还需上拉电阻;当 I C 是并行
		传输时这些脚悬空.
Ι	COMS 输入	工作方式选择
		S/P="H": 并行方式; S/P="L": 串行方式.
Ι	COMS 输入 上拉或悬空	串行方式中是数据同步时钟输入
		当 I C 是并行传输时,输入端 (CLK) 还需上拉电阻; 当 I C 是串行传输
		时,这脚悬空.
Ι	COMS 输入 上拉或悬空	串行方式的数据输入端
		当 I C 是并行传输时,输入脚 (D A T A) 还需上拉电阻; 当 IC 是串行
		传输时,这脚悬空
0	COMS 输出	DTMF 信号的输出脚
_	_	电源正极. 正常工作电压: 2.0V-5.5V
	I 0 I - I I I I I	I CMOS 输入上拉 の 振荡器 I

内部连接概图

图 1 - 4

最大极限参数

电气特性

表 1-4 Ta=25℃

74							
符号	参数	测试条件	‡	最小	典型值	最大	单位
		V _{IN}	条件				
V_{DD}	工作电压	_	_	2	_	5.5	V
I_{DD}	工作电流	2.5V	\$\overline{\overline{S}}\rightarrow{P}=\overline{VDD},\overline{D0}\overline{D0}\overline{D3}=\overline{VSS}	_	240	2500	μА
		5.0V	CE=VSS,无负载	_	950	3000	
VIL	输入电压 " 低 "	_	_	VSS	_	0.2VDD	V
V _{IH}	输入电压"高"	_	_	0 . 8 VDD	_	VDD	V
I _{Stb}	待机电流	2.5 V	S/P=VDD,CE=VDD,	_	_	1	μА
		5.0V	无负载	_	_	2	
R _P	上拉电阻	2.5V	V _{OL} =0V	120	180	270	ΚΩ
		5.0V		45	68	100	
tDE	DTMF 输出延时	5V	_	_	tUP+6	tUP+8	mS
	(并行方式)						
V_{TDC}	DTMF 输出 DC 电	2.V -	DTMF 输出	0.45VDD	_	0.75VDD	V
	平	5.5V					
I_{TOL}	DTMF 吸收电流	2.5V	$V_{DTMF} = 0.5V$	-0.1	_	_	mA
V_{TAC}	DTMF 输出	2.5V	行阵,RL=5 KΩ	0.12	0.15	0.18	Vrms
	AC 电平						

A_{CR}	纵向预加重	2.5V	行阵=0dB	1	2	3	dB
$R_{\rm L}$	DTMF 输出负载	2.5V	THD≤−23dB	5	_	_	ΚΩ
tHD	音频信号失真	2.5V	RL=5K	_	-30	-23	dB
fCLK	输入时钟频率	_	_	_	100	500	KHz
	(串行方式)						
tUP	振荡器启动时间	5.0V	CE 的下降沿到振荡器	_	_	10	mS
	(Œ 为低)		正常工作时间				
fOSC	系统频率	_	晶振=3.5795MHz	3.5859	3.5795	3.5831	MHz

功能概述

HT 9 2 0 0 A/B 双音频发生器是为此 接口而设计的. 它们由此 控制是串行方式还是并行方式 (只对 H T 9 2 0 0 B)

串行方式 (NT9200A/B)

HT9200A/B 使用一个数据输入端和一个同步时钟形成一个 5 位代码来发送 DTMF 信号的.含有 5 位数据的输入数据串可选择要发送的电话号码的每个数字.5 位数据中,D0 (LSB) 始发位,HT9200A/B 在时钟 (CLK 脚)的下降沿锁存数据.数字代码和音频输出频率的关系见表 1-5.图 1-5 为控制时序.系统工作在串行方式时,输入端 D0-D3 (在并行方式使用,在串行方式中不使用)需连接一个上拉电阻。

数字,输入数据,和音频输出频率的关系(串行方式)

数字	D4	D3	D2	D1	D0	音调输出频率(Hz)
1	0	0	0	0	1	697 +1 209
2	0	0	0	1	0	697+1336
3	0	0	0	1	1	697+1477
4	0	0	1	0	0	770+1209
5	0	0	1	0	1	770+1336
6	0	0	1	1	0	770+1477
7	0	0	1	1	1	852+1209
8	0	1	0	0	0	852+1336
9	0	1	0	0	1	852 + 1477
0	0	1	0	1	0	941+1336
*	0	1	0	1	1	941+1209
#	0	1	1	0	0	941+1477
A	0	1	1	0	1	697+1633
В	0	1	1	1	0	770+1633
С	0	1	1	1	1	852+1633
D	0	0	0	0	0	941+1633
-	1	0	0	0	0	697
-	1	0	0	0	1	770
-	1	0	0	1	0	852
-	1	0	0	1	1	941
-	1	0	1	0	0	1209
-	1	0	1	0	1	1336
-	1	0	1	1	0	1477
-	1	0	1	1	1	1633
DTMF关	1	1	1	1	1	_

注: 表中没列到的代码不使用, D4 是最高位 MSB

并行方式 (HT9200B)

HT9200B 提供四位数据输入脚 D0-D3 以产生相应的 DTMF 信号,S/P 置高以选择并行工作方式.输入数据代码应先确定,然后 CE 置低,从 DTMF 脚发送 DTMF 信号.

TDE 为从 CE 下降沿到 DTMF 信号输出延时(大约 6ms). 在表 1-6 中,表明了数字代码和音频输出频率间的 关系. 图 1-6 为控制时序.

系统为并行工作方式时,HT9200B 的管脚 D0-D3 全为输入状态,因此,这些数据输入脚不应悬空.

数字,输入数据和音频输出频率的关系(并行方式)

数字	D3	D2	D1	D0	音调输出频率 (Hz)
1	0	0	0	1	697 1 1 209
2	0	0	1	0	697+1336
3	0	0	1	1	697+1477
4	0	1	0	0	770H209
5	0	1	0	1	770 1 1336
6	0	1	1	0	770 11 477
7	0	1	1	1	852H1209
8	1	0	0	0	852 1 336
*-			- 54	Б0	在3回检山塘茨(tr.)

数字	D3	D2	D1	D0	音调输出频率(Hz)
9	1	0	0	1	852 11 477
0	1	0	1	0	941+1336
*	1	0	1	1	941 11 1209
#	1	1	0	0	941+1477
Α	1	1	0	1	697 11 633
В	1	1	1	0	770 H 1633
С	1	1	1	1	852 H 1633
D	0	0	0	0	941 +1 633

图 1 - 6

双音频频率

输出频	0/38*	
设定值	实际值	%误差
697	699	+0.29%
770	766	0.52%
852	847	0.59%
941	948	+0.74%
1209	1215	+0.50%
1336	1332	0.30%
1477	1472	0.34%

此误差不包括晶振频率的漂移

应用电路

串行方式

串 / 并行方式

