DeepSEA – Zhou & Troyanskaya

predicting the effects of non coding variants on chromatin and regulation

CS231B journal club

Arbel Harpak & Ziyue Gao

DeepSEA — Zhou & Troyanskaya predicting the effects of non coding variants on chromatin and regulation

Single noncoding SNP

Regulatory effect

Function

Setup: multitask prediction of regulatory effects

First wave of genomics CNN papers, Introducing:

- Integrating sequence from wide context
- Learn at multiple spatial scale with hierarchical architecture
- Joint learning of diverse chromatin factors sharing predictive features (690 TF profiles, 125 DHS, 104 histone mark)

Part of first wave of CNN for genomics

Introducing:

- Integration of sequence from wide context
- Learning at multiple spatial scale with hierarchical architecture
- Joint learning of diverse chromatin factors sharing predictive features

Is multitasking a good idea?

Sequence-only → factor peaks → Overall functional effect

Data:

- Samples: stride of 1bp along the genome
- Input features: 1000bp one-hot, reference genome

Sequence-only → factor peaks → Overall functional effect

Data:

- Samples: stride of 1bp along the genome
- Input features: 1000bp one-hot, reference genome
- Response (output): 0/1 for each chromatin factor (based on previously called peaks)

Position (bp)

Sequence-only → factor peaks → Overall functional effect

Data:

- Samples: stride of 1bp along the genome
- Input features: 1000bp one-hot, reference genome
- Response (output): 0/1 for each chromatin factor (based on previously called peaks)
- Train (only samples with>1TF),
 validate (only 4000 samples), test
 (2 chromosomes)

Architecture – your standard deep CNN

Architecture:

- 3 convolutional layers with ReLU activation + max pooling
- # Kernels is 240, 480, 960 respectively
- Followed by a fully-connected layer with ReLU(WX)
- Last layer (919 outputs) is logistic, represents probability of peak

Objective function: sum of Negative Log Likelihood

objective = NLL + Regularization

$$NLL = -\sum_{s} \sum_{t} \log(Y_{t}^{s} f_{t}(X^{s}) + (1 - Y_{t}^{s})(1 - f_{t}(X^{s})))$$

Objective function overweights transcription factors?

objective = NLL + Regularization

$$NLL = -\sum_{s} \sum_{t} \log(Y_{t}^{s} f_{t}(X^{s}) + (1 - Y_{t}^{s})(1 - f_{t}(X^{s})))$$

Regularization—I just can't get enough

objective = NLL +
$$\lambda_1 ||W||_2^2 + \lambda_2 ||H^{-1}||_1$$

Also:

 λ_3 - (shared) regularization on weight matrix for each neuron

" λ_4 " – dropout training

" λ_5 " – multi-task prediction

Test performance metrics: The infamous ROC AUC

Test performance of importance scoring: Allelic imbalance

Axes = DeepSEA estimates Color = Allelic imbalance

Importance scoring: in-silico mutagenesis

Probability of 1 (peak) with reference allele

$$\log_2\left(\frac{P_0}{1-P_0}\right) - \log_2\left(\frac{P_1}{1-P_1}\right)$$

Probability of 1 (peak) with alternative allele

Axes = DeepSEA estimates Color = Allelic imbalance

Axes = DeepSEA estimates Color = Allelic imbalance

Validation of importance scoring: positive controls

Blood disorder

Prioritization / overall effect of variant on function

 Competing methods use a lot of high-throughput data as well, but virtually always include evolutionary conservation

Logit(Probability variant is functional) \approx $\beta_0 + \overrightarrow{\beta_1} \cdot \overrightarrow{DeepSEA} + \overrightarrow{\beta_2} \cdot \overrightarrow{Evol.conservation}$

Prioritization / overall effect of variant on function

Performance of prioritization method

Prioritization / overall effect of variant on function

DeepSEA - Summary

- (1) First wave of genomics CNN; predict functional effect from sequence
- (2) Performance:
 - Surprisingly good importance scoring
 - Per task—could prob. be improved
- (3) Some questionable choices e.g. objective function, learning rate, test performance metric, training and validation set choices

but...

Flexible CNN + Heavy regularization compensate for all crimes (e.g. hyperparameters don't seem to matter much)

Software forecasts effects of mysterious mutations

BY KATE YANDELL / 26 AUGUST 2015

Model Architecture:

- 1. Convolution layer (320 kernels. Window size: 8. Step size: 1.)
- 2. Pooling layer (Window size: 4. Step size: 4.)
- 3. Convolution layer (480 kernels. Window size: 8. Step size: 1.)
- 4. Pooling layer (Window size: 4. Step size: 4.)
- 5. Convolution layer (960 kernels. Window size: 8. Step size: 1.)
- 6. Fully connected layer (925 neurons)
- 7. Sigmoid output layer

Regularization Parameters:

Dropout proportion (proportion of outputs randomly set to 0):

Layer 2: 20%

Layer 4: 20%

Layer 5: 50%

All other layers: 0%

L2 regularization (λ_1): 5e-07

L1 sparsity (λ_2): 1e-08

Max kernel norm (λ_3): 0.9