

GOAL

- Analyze wine dataset utilizing clustering techniques to determine which wines should be grouped together
- Create a tool that could be utilized by a sommelier or aspiring sommelier to improve their technique for identifying wines

THE DATA

‡	Alcohol :	Malic_Acid ÷	Ash ÷	Ash_A	lcanity :	Magnesium	ŧ To	tal_Phenols :			
0	14.23	1.71	2.43		15.6	13	27	2.80			
1	13.20	1.78	2.14		11.2	10	90	2.65			
2	13.16	2.36	2.67	18.6		10	91	2.80			
3	14.37	1.95	2.50		16.8	1:	13	3.85			
4	13.24	2.59	2.87		21.0	1:	18	2.80			
Fla	avanoids ÷	Nonflavanoi	d_Phen	ols ÷	Proantho	cyanins :	Colo	r_Intensity :	Hue ÷	0D280 ÷	Proline :
	3.06			0.28		2.29		5.64	1.04	3.92	1065
	2.76 0.26			1.28			4.38	1.05	3.40	1050	
	3.24 0.30			2.81			5.68	1.03	3.17	1185	
	3.49 0.24			2.18			7.80	0.86	3.45	1480	
	2.69			0.39		1.82		4.32	1.04	2.93	735

- 13 features contained within the dataset
- Will drop Proline because it is the only categorical feature and feels out of place

RESULTING FEATURE VECTOR

- Alcohol ←→
- Malic_Acid ←→
- Ash ←→
- Ash_Alcanity ←→
- Magnesium $\leftarrow \rightarrow$
- Total_Phenols ←→

Falvanoids

Nonflavanoid_Phenols

Proanthocyanins

Color_Intensity

Hue

OD280

Flavanoids vs Nonflavanoid Phenols Plane

ARE CLUSTERS OBVIOUS?

 Clusters are not obvious to the eye on any of the plots

DETERMINING NUMBER OF CLUSTERS

- Decided to run the vat and ivat algorithm to visualize if there is a cluster structure within the data
- There seems to be a structure with 2 main clusters and the larger cluster may have 2 sub clusters within

DETERMINING NUMBER OF CLUSTERS

- It is more clear in the ivat that there are two main clusters and the larger cluster has two sub clusters
- This observation will influence my approach. I will not try to cluster using 3 clusters as num clusters. Instead I will try and find two main clusters and then with the larger cluster I will try and find the sub clusters.

CLUSTERING PLAN

DIMENSIONALITY REDUCTION ROUND #1

Reduce the 12-feature set with t-SNE into a 2D map to aid in clustering

CLUSTERING ROUND #1

Utilize the map given from dimensionality reduction to identify two clusters with spectral clustering

DIMENSIONALITY REDUCTION ROUND #2

Remove the data points from the smaller cluster from the dataset and then reduce the 12-feature set into a 2D map with t-SNE for clustering

CLUSTERING ROUND #2

With the final map apply fuzzy c-means clustering over it to obtain two subclusters. Harden the memberships and calculate the final clusters

DIMENSIONALITY REDUCTION ROUND 1: T-SNE

- PCA didn't give ideal results
- Applied t-SNE on the data and there appears to be more separability between the data
- This t-SNE implementation allows for the saving of embeddings as well, so new data can be mapped to this exact
 embedding

CLUSTERING ROUND 1: SPECTRAL

- Since we know one cluster is likely larger than the other cluster, I decided to opt for spectral clustering to deal with the imbalance of cluster sizes
- Spectral clustering also seemed like a good fit because the clusters each have structured shapes that are not the same

Was able to obtain two clear and concise

clusters

DIMENSIONALITY REDUCTION ROUND #2: T-SNE

- Now to start this round, I deleted the data points from the smaller cluster from the input vector
- Applied t-SNE on the larger cluster to get a smaller feature set

- The t-SNE plot obtained from the larger cluster did not seem to have as crisp of clusters as the first t-SNE plot.
- Because of this I decided to employ the Fuzzy C-Means clustering algorithm to account for uncertainty within the clusters

FINAL CLUSTERING RESULT

- The results are visualized on the first t-SNE embedding that was produced
- My dataset that I found online had a counterpart with the same data for supervised learning, so I was able to obtain the labels, my method performs at 93% accuracy when applied against the labels as a benchmark

CITATIONS

- Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001.
 On spectral clustering: analysis and an algorithm. In
 Proceedings of the 14th International Conference on
 Neural Information Processing Systems: Natural and
 Synthetic (NIPS'01). MIT Press, Cambridge, MA, USA,
 849-856.
- Bezdek, James C., et al. "FCM: The fuzzy C-means clustering algorithm." Computers & Description of Computers & Descr
- Havens, Timothy & Bezdek, James. (2012). An Efficient Formulation of the Improved Visual Assessment of Cluster Tendency (iVAT) Algorithm. Knowledge and Data Engineering, IEEE Transactions on. 24. 1 - 1. 10.1109/TKDE.2011.33.
- Maaten, Laurens van der and Geoffrey E. Hinton.
 "Visualizing Data using t-SNE." Journal of Machine Learning Research 9 (2008): 2579-2605.
- Wang, Harry. "Wine Dataset for Clustering." *Kaggle*, 29 Apr. 2020, www.kaggle.com/datasets/harrywang/wine-dataset-for-clustering.