

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年3月6日 (06.03.2003)

PCT

(10) 国際公開番号 WO 03/019713 A1

(51) 国際特許分類7: H01M 10/40, 4/02, 4/58, 4/40, 4/38

(21) 国際出願番号:

PCT/JP02/08498

(22) 国際出願日:

2002 年8 月23 日 (23.08.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2001-254547 2001年8月24日(24.08.2001) JP

(71) 出願人 (米国を除く全ての指定国について): ソニー株 式会社 (SONY CORPORATION) [JP/JP]; 〒141-0001 東京都品川区北品川6丁目7番35号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 足立 百恵 (ADACHI, Momoe) [JP/JP]; 〒141-0001 東京都 品川区 北品川6丁目7番35号ソニー株式会社内 Tokyo (JP). 藤田 茂 (FUJITA, Shigeru) [JP/JP]; 〒141-0001 東京都品川区北品川6丁目7番35号ソニー 株式会社内 Tokyo (JP). 遠藤 琢哉 (ENDO, Takuya)

[JP/JP]; 〒141-0001 東京都 品川区 北品川 6 丁目 7番35号ソニー株式会社内 Tokyo (JP). 岩越 康申 (IWAKOSHI, Yasunobu) [JP/JP]; 〒141-0001 東京都品 川区 北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 柴本 悟郎 (SHIBAMOTO,Goro) [JP/JP]; 〒 141-0001 東京都品川区北品川6丁目7番35号ソ 二一株式会社内 Tokyo (JP).

(74) 代理人: 藤島洋一郎 (FUJISHIMA, Youichiro); 〒160-0022 東京都 新宿区 新宿 1 丁目 9 番 5 号 大台ビル 2階 Tokyo (JP).

(81) 指定国 (国内): CN, JP, KR, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

添付公開書類:

国際調査報告書

2 文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: BATTERY

(54) 発明の名称: 電池

(57) Abstract: A battery which is high in battery voltage and can increase an energy density at charging. An anode (12) and a cathode (14) are laminated via an electrolyte-impregnated separator (15). The anode (12) contains a lithium composite oxide having at least one of cobalt and nickel and oxygen contained in an anode active matter. A charging battery voltage is at least 4.25 V. A total amount of lithium carbonate and lithium sulfate in the anode (12) is up to 1.0 mass% against an anode active matter, or the concentration of a proton impurity in an electrolyte is up to 20 ppm in terms of proton at a mass ratio against an electrolyte, or a water

content in an electrolyte is up to 20 ppm at a mass ratio against an electrolyte. Accordingly, the elution of metals from a lithium composite oxide is restricted even at a high voltage.

[続葉有]

WO 03/019713 A1

THIS PAGE BLANK (USPTO)

明細書

電池

技術分野

本発明は、正極および負極と共に電解質を備えた電池に係り、特に、正極にリチウム複合酸化物を用い、電池反応種としてリチウム(Li)を用いることにより起動力を得る電池に関する。

背景技術

近年、カメラー体型VTR(Videotape Recorder;ビデオテープレコーダー),携帯電話あるいはラップトップコンピューターなどのポータブル電子機器が多く登場し、それらの小型化および軽量化が図られている。それに伴い、これら電子機器のポータブル電源として、電池、特に二次電池のエネルギー密度を向上させるための研究開発が活発に進められている。中でもリチウム二次電池およびリチウムイオン二次電池は、従来の鉛電池およびニッケルカドミウム二次電池と比較して大きなエネルギー密度が得られるため期待されている。

このリチウム二次電池およびリチウムイオン二次電池の正極活物質としては、 放電容量などの種々の特性が優れているという理由からリチウムとコバルト(C o)とを含むリチウム・コバルト複合酸化物、あるいは、リチウムとニッケル(Ni)とを含むリチウム・ニッケル複合酸化物などが用いられている。しかし、 これらのリチウム複合酸化物を用いたリチウム二次電池およびリチウムイオン二 次電池では、電池電圧を4.25 V以上とするとリチウム複合酸化物が劣化し、 保存特性および充放電サイクル特性などの諸特性が悪くなってしまう。そこで、 これら二次電池の充電時の電池電圧は4.2 V以下となるように設計されている。

しかしながら、負極の開発が日々刻々と進み、容量が向上したり、また新規充 放電プロファイルを有する材料も見出されるに伴い、4.2 Vよりも高い電圧が 望まれてきている。また、一般にリチウム二次電池およびリチウムイオン二次電 池のエネルギー密度は電池電圧に依存するので、4.2 V以下の二次電池では、 日々高まるエネルギー密度に対する要求に応えることが困難であるという問題もある。よって、電池電圧を高くすることは、リチウム二次電池およびリチウムイオン二次電池にとって重要な問題である。

本発明はかかる問題点に鑑みてなされたもので、その目的は、充電時の電池電圧が高く、エネルギー密度を向上させることができる電池を提供することにある。

発明の開示

本発明による第1の電池は、正極および負極と共に電解質を備えたものであって、正極は、正極活物質に、リチウムと、コバルトおよびニッケルのうちの少なくとも一方と、酸素とを含むリチウム複合酸化物を含有し、負極は、負極活物質に、リチウムを吸蔵および離脱することが可能な負極材料、並びにリチウム金属からなる群のうちの少なくとも1種を含有し、充電時の電池電圧は4.25 V以上であり、正極における炭酸リチウムおよび硫酸リチウムの総量は、正極活物質に対して1.0質量%以下であるものである。

本発明による第2の電池は、正極および負極と共に電解質を備えたものであって、正極は、正極活物質に、リチウムと、コバルトおよびニッケルのうちの少なくとも一方と、酸素とを含むリチウム複合酸化物を含有し、負極は、負極活物質に、リチウムを吸蔵および離脱することが可能な負極材料、並びにリチウム金属からなる群のうちの少なくとも1種を含有し、充電時の電池電圧は4.25 V以上であり、電解質におけるプロトン性不純物の濃度は、電解質に対する質量比で、プロトン(H+)に換算して20pm以下であるものである。

本発明による第3の電池は、正極および負極と共に電解質を備えたものであって、正極は、正極活物質に、リチウムと、コバルトおよびニッケルのうちの少なくとも一方と、酸素とを含むリチウム複合酸化物を含有し、負極は、負極活物質に、リチウムを吸蔵および離脱することが可能な負極材料、並びにリチウム金属からなる群のうちの少なくとも1種を含有し、充電時の電池電圧は4.25 V以上であり、電解質における水分量は電解質に対する質量比で20 ppm以下であるものである。

本発明による第1ないし第3のいずれかの電池では、充電時の電池電圧が4.

25 V以上であり、かつ、正極における炭酸リチウムおよび硫酸リチウムの総量が正極活物質に対して1.0質量%以下、または電解質におけるプロトン性不純物の濃度が電解質に対する質量比でプロトンに換算して20ppm以下、または電解質における水分量が電解質に対する質量比で20ppm以下であるので、高電圧下においてもリチウム複合酸化物からの遷移金属の溶出が抑制され、高いエネルギー密度が得られる。

図面の簡単な説明

第1図は、本発明の第1の実施の形態に係る二次電池の構成を表す断面図である。

発明を実施するための最良の形態

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

[第1の実施の形態]

第1図は、本発明の第1の実施の形態に係る二次電池の断面構造を表すものである。この二次電池はいわゆるコイン型といわれるものであり、外装缶11内に収容された円板状の正極12と外装カップ13内に収容された円板状の負極14とが、セパレータ15を介して積層されたものである。外装缶11および外装カップ13の周縁部は絶縁性のガスケット16を介してかしめることにより密閉されている。

外装缶11および外装カップ13は、例えば、ステンレスあるいはアルミニウム (A1) などの金属によりそれぞれ構成されている。

正極12は、例えば、正極活物質を含み、必要に応じてカーボンブラックあるいはグラファイトなどの導電剤と、ポリフッ化ビニリデンなどの結着剤と共に構成されている。正極活物質としては、リチウムと、コバルトおよびニッケルのうちの少なくとも一方と、酸素とを含むリチウム複合酸化物を含有することが好ましい。高い電池電圧を得ることができると共に、可逆性、放電容量、充放電効率および電位平坦性に優れているからである。このリチウム複合酸化物としては、例えば、化学式LiCoaNiь M。O2で表されるものが挙げられる。式中、M

また、コバルトとニッケルとを共に含むものが好ましい。コバルトを含むものは、単相合成が容易であり、更に、ニッケルを含むものは、高容量なものが多いからである。更に、マンガン,アルミニウム,マグネシウム,チタン,クロムおよび鉄からなる群のうちでも、マンガンを含むものが好ましく、マンガンと、上記群の他の少なくとも1種の金属元素とを含むものがより好ましい。マンガンを含むようにすれば、充放電サイクル特性を向上させることができ、マンガンと、上記群の他の少なくとも1種の金属元素とを含むようにすれば、充放電効率、保存特性あるいは電池容量などの他の電池特性も改善することができると共に、例えば、鉄などの安価な材料を選択すれば、コストを削減することができるからである。

正極 12 は、また、リチウム複合酸化物に加えて、他の正極活物質を含んでいてもよい。他の正極活物質としては、例えば、スピネル型結晶構造を有するLi Mn_2O_4 あるいはオリビン型結晶構造を有するLi $FePO_4$ が挙げられる。

負極14は、例えば、負極活物質として、リチウムを吸蔵および離脱することが可能な負極材料を含み、必要に応じてポリフッ化ビニリデンなどの結着剤と共に構成されている。なお、本明細書においてリチウムの吸蔵・離脱というのは、リチウムイオンがそのイオン性を失うことなく電気化学的に吸蔵・離脱されることを言う。これは、リチウムが完全なイオン状態で存在する場合のみならず、完全なイオン状態とは言えない状態で存在する場合も含む。これらに該当する場合としては、例えば、黒鉛に対するリチウムイオンの電気化学的なインターカレー

ション反応による吸蔵が挙げられる。また、金属間化合物を含む合金へのリチウムの吸蔵、あるいは合金の形成によるリチウムの吸蔵も挙げることができる。

リチウムを吸蔵および離脱することが可能な負極材料としては、例えば、(002)面の面間隔が0.340nm以下の黒鉛、(002)面の面間隔が0.370nm以上の難黒鉛化炭素あるいは易黒鉛化炭素などの炭素材料が挙げられる。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好な充放電サイクル特性を得ることができるので好ましい。中でも難黒鉛化炭素は、充放電時の体積変化を小さくすることができ、より優れた充放電サイクル特性を得ることができるので好ましい。また、黒鉛は初期容量を向上させることができるので好ましい。

これら炭素材料としては、具体的には、熱分解炭素類,コークス類,グラファイト類,ガラス状炭素類,有機高分子化合物焼成体,炭素繊維あるいは活性炭などの炭素質材料が挙げられる。このうち、コークス類には、ピッチコークス,ニードルコークスあるいは石油コークスなどがあり、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいう。

リチウムを吸蔵および離脱することが可能な負極材料としては、また、リチウムと合金を形成可能な金属元素あるいは半金属元素の単体、合金または化合物が挙げられる。これらは高いエネルギー密度を得ることができるので好ましく、特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れた充放電サイクル特性を得ることができるのでより好ましい。また、炭素材料は導電剤としても働き、導電性を向上させることができるのでより好ましい。なお本明細書において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とからなるものも含める。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうち2種以上が共存するものがある。

このような金属元素あるいは半金属元素としては、例えば、スズ(Sn), 鉛(Pb), アルミニウム, インジウム(In), ケイ素(Si), 亜鉛(Zn), 銅(Cu), コバルト, アンチモン(Sb), ビスマス(Bi), カドミウム(Cd),

マグネシウム、ホウ素(B)、ガリウム(G a)、ゲルマニウム(G e)、ヒ素(A s)、銀(A g)、ハフニウム(H f)、ジルコニウム(Z r) およびイットリウム (Y) が挙げられる。これらの合金あるいは化合物としては、例えば、化学式M a。M b t L i u、あるいは化学式M a,M c q M d r で表されるものが挙げられる。これら化学式において、M a はリチウムと合金を形成可能な金属元素および半金属元素のうちの少なくとも 1 種を表し、M b はリチウムおよびM a 以外の金属元素および半金属元素のうち少なくとも 1 種を表し、M c は非金属元素の少なくとも 1 種を表し、M d はM a 以外の金属元素および半金属元素のうち少なくとも 1 種を表し、M d はM a 以外の金属元素および半金属元素のうち少なくとも 1 種を表す。また、s、t、u、p、q およびrの値はそれぞれs > 0、t ≥ 0、u ≥ 0、p > 0、q > 0、r ≥ 0 である。

中でも、短周期型周期表における4B族の金属元素あるいは半金属元素の単体、 合金または化合物が好ましく、特に好ましいのはケイ素あるいはスズ、またはこれらの合金あるいは化合物である。これらは結晶質のものでもアモルファスのものでもよい。

このような合金あるいは化合物について具体的に例を挙げれば、LiAl、A1 Sb、CuMgSb、SiB4、SiB6、Mg2Si、Mg2Sn、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、CusSi、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si3N4、Si2N2O、SiOv(0 < v \leq 2)、SnSiOv(0 < w \leq 2)、SnSiOs、LiSiObavはLiSnOなどがある。

リチウムを吸蔵および離脱することが可能な負極材料としては、更に、他の金属化合物あるいは高分子材料が挙げられる。他の金属化合物としては、酸化鉄、酸化ルテニウムあるいは酸化モリブデンなどの酸化物、またはLiNsなどが挙げられ、高分子材料としてはポリアセチレン、ポリアニリンあるいはポリピロールなどが挙げられる。リチウムを吸蔵および離脱することが可能な負極材料としては、これらのいずれか1種または2種以上を混合して用いてもよい。

セパレータ15は、正極12と負極14とを隔離し、両極の接触による電流の 短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータ1 5は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチ レンなどよりなる合成樹脂製の多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていても良い。

セパレータ15には、液状の電解質が含浸されている。この電解質は、例えば、 溶媒と、電解質塩であるリチウム塩とを含んで構成されている。溶媒は、電解質 塩を溶解し解離させるものである。溶媒としては、非プロトン性溶媒を用いるこ とが好ましい。非プロトン性溶媒としては、例えば、エチレンカーボネート,プ ロピレンカーボネート, ブチレンカーボネート, ビニルエチレンカーボネートあ るいはビニレンカーボネートなどの環状炭酸エステル、または、ジメチルカーボ ネート、ジエチルカーボネートあるいはエチルメチルカーボネートなどの鎖状炭 酸エステル、または、ィーブチロラクトンあるいはィーバレロラクトンなどの環 状カルボン酸エステル、または、酢酸メチル、プロピオン酸メチルあるいは酪酸 メチルなどの鎖状カルボン酸エステル、または、スルホラン、テトラヒドロフラ ン, 2-メチルテトラヒドロフランあるいは1, 2-ジメトキシエタンなどのエ ーテル類などが挙げられ、これらのいずれか1種または2種以上が混合して用い られる。中でも、酸化安定性の点からは、環状炭酸エステルを混合して用いるこ とが望ましく、環状炭酸エステルを溶媒において、20体積%以上100体積% 以下となるように混合して用いればより望ましい。20体積%未満であると充電 電圧を4.25 V以上とした場合、電解質の酸化分解による充放電効率,保存特 性あるいは充放電サイクル特性などの電池特性の低下が起こる虞があるからであ る。

更に、環状炭酸エステルの中でも、ビニレンカーボネートおよびビニルエチレンカーボネートは、初回充電時に負極14の表面に安定な被膜を形成し、電解質の副反応を抑制するので好ましい。但し、ビニレンカーボネートおよびビニルエチレンカーボネートの溶媒における含有量は10体積%未満とすることが好ましく、5体積%以下とすればより好ましい。含有量が多いと、内部抵抗が高くなり、電池特性を劣化させる虞があるからである。

また、環状カルボン酸エステルは酸化に強く、特に、 γ -ブチロラクトンは酸化電位が+5.2V(但し、基準電極として、SCE (saturated calomel electrode

;飽和カロメル電極)を用いた場合)と非常に高く、電池電圧を十分に高くすることができるので好ましい。但し、環状カルボン酸エステルは、耐還元性が弱いと、負極14で分解して充放電効率,保存特性あるいは充放電サイクル特性などの電池特性を劣化させる虞があるので、単独で用いずに、他の溶媒と混合して用いることが好ましい。具体的には、ピニレンカーボネートおよびピニルエチレンカーボネートのうちの少なくとも一方と混合して用いることが好ましい。ビニレンカーボネートまたはビニルエチレンカーボネートの作用により、負極14における環状カルボン酸エステルの分解が抑制され、相対的に酸化耐性の高い環状カルボン酸エステルの特徴が引き出されるからである。なお、これらピニレンカーボネートおよびピニルエチレンカーボネートのように環状カルボン酸エステルの分解を抑制する作用の少ない溶媒と混合して用いる場合は、環状カルボン酸エステルを溶媒において50体積%未満、更には100/3体積%以下となるようにして用いることが好ましい。

非プロトン性溶媒としては、また、鎖状炭酸エステルを混合して用いることが好ましい。鎖状炭酸エステルは類似構造を有する環状炭酸エステルよりも粘性が低いことから、電池特性を向上させることができるからである。但し、鎖状炭酸エステルを溶媒において80体積%以上と多量に含ませると電池特性が劣る傾向が見られるため、80体積%以下の含有量で用いることが望ましく、理想的には、66.6体積%以下の含有量で用いることが望ましい。

リチウム塩としては、例えば、LiAsF6,LiPF6,LiBF4,LiC $1O_4$,LiB(C_6H_5) $_4$,LiС H_8SO_8 ,LiС F_8SO_8 ,LiN(C_8SO_2) $_2$,LiN(C_8SO_2) $_2$,LiN(C_8SO_2) $_2$,LiN(C_8SO_2) $_3$,LiA1 C_8SO_2 0 $_2$,LiSiF6,LiC1あるいはLiBrが挙げられる。中でも、LiPF6は、高い導電率を得ることができ、酸化安定性にも優れているので好ましく、LiBF4 は、熱的安定性および酸化安定性に優れているので好ましい。また、LiC1〇4 は高い導電率が得られるので好ましく、LiN(C_8SO_2 0 $_2$ 2 およびLiN(C_8SSO_2 0 $_2$ 2 は、比較的高い導電率を得ることができ、熱的安定性も高いので好ましい。リチウム塩の含有量は、溶媒に対して0.6 $_8SO_2$ 0 $_8S$

伝導度の極端な低下により十分な電池特性が得られなくなる虞があるからである。なお、液状の電解質に代えて、ゲル状の電解質あるいは固体状の電解質を用いてもよい。ゲル状の電解質は、例えば、高分子化合物に液状の電解質を保持させたものである。高分子化合物としては、例えば、ボリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物あるいはアクリレート系高分子化合物、またはポリフッ化ビニリデンあるいはビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体などのフッ素系高分子化合物が挙げられ、これらのうちのいずれか1種または2種以上が混合して用いられる。特に、酸化還元安定性の観点からは、フッ素系高分子化合物を用いることが望ましい。

また、固体状の電解質には、例えば、イオン導電性を有する高分子化合物に電解質塩を分散させた有機固体電解質、またはイオン伝導性セラミックス、イオン伝導性ガラスあるいはイオン性結晶などよりなる無機固体電解質がある。有機固体電解質における高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、またはポリメタクリレートなどのエステル系高分子化合物あるいはアクリレート系高分子化合物を単独あるいは混合して、または分子中に共重合させて用いられる。なお、固体状の電解質を用いる場合には、セパレータ15を除去してもよい。

この二次電池は、例えば、リチウムを吸蔵・離脱可能な負極材料の量が正極活物質に対して相対的に多く、充電の途中において負極14にリチウム金属が析出しないようになっている。すなわち、いわゆるリチウムイオン二次電池である。また、正極活物質と負極活物質との比率は充電時の電池電圧が4.25 V以上、更には4.30 V以上、より好ましくは4.40 V以上となるように設計されており、より高いエネルギー密度を得ることができるようになっている。充電時における電池電圧の上限は、正極活物質の材料により決定され、例えば、正極活物質として上述したリチウム複合酸化物を主として含む場合には、4.60 V以下となる。

この二次電池を実用化するには、電池電圧を4.25 V以上としたときのリチウム複合酸化物の劣化を防止し、保存特性および充放電サイクル特性を向上させ

ることが好ましい。リチウム複合酸化物の劣化は、種々の原因によるが、多くは、 正極活物質に不純物として含まれる炭酸リチウムあるいは硫酸リチウム、または 電解質に不純物として含まれるプロトン性不純物あるいは水により、高電位で不 安定となっているリチウム複合酸化物から金属、特に遷移金属が溶出してしまう ことに起因するものと考えられる。また、これら不純物は、リチウム複合酸化物 を劣化させるだけでなく、電解質を分解し、これにより保存特性および充放電サ イクル特性を低下させる一原因にもなる。更に、リチウム複合酸化物から溶出し た金属は、負極14に析出することにより内部短絡を引き起こす原因にもなる。 よって、これら不純物の濃度は低い方が好ましく、濃度を零とするようにすれば より好ましい。

具体的には、正極12における炭酸リチウムおよび硫酸リチウムの総量を、正極活物質に対して1.0質量%以下とすることが好ましい。または、電解質におけるプロトン性不純物の濃度を、電解質に対する質量比で、プロトンに換算して20ppm以下とすることが好ましい。または、電解質における水分量を電解質に対する質量比で20ppm以下とすることが好ましい。更に、これら3つの条件のうちの2つを満たすようにすればより好ましく、3つを満たすようにすれば更に好ましい。より高い効果が得られるからである。なお、正極12における炭酸リチウムおよび硫酸リチウムの総量を求める際の正極活物質の質量は、不純物として含有している炭酸リチウムおよび硫酸リチウムの総量を含むものである。

また、プロトン性不純物というのは、対イオンがプロトンであるようなイオン性の不純物のことをいい、遊離酸分と呼ばれることもある。具体的には、HC1, HF, HBr, H_2SO_4 , HNO_8 , H_2S あるいは H_2PO_4 などの無機酸、および HCF_3SO_2 , HCH_3SO_2 あるいは $HC_2H_5SO_2$ などの有機酸が挙げられる。

この二次電池は、例えば、次のようにして製造することができる。

まず、例えば、正極活物質を水洗いなどにより精製し、炭酸リチウムおよび硫酸リチウムの総量を正極活物質に対して1.0質量%以下とする。続いて、この正極活物質と導電剤と結着剤とを混合して正極合剤を調整したのち、この正極合剤を圧縮成型してペレット形状とすることにより正極12を作製する。なお、正

極活物質、導電剤および結着剤に加えて、N-メチル-2-ピロリドンなどの溶剤を添加して混合することにより正極合剤を調整し、この正極合剤を乾燥させたのち圧縮成型するようにしても良い。

次いで、例えば、負極活物質と結着剤とを混合して負極合剤を調整したのち、この負極合剤を圧縮成型してペレット形状とすることにより負極14を作製する。なお、負極活物質および結着剤に加えて、Nーメチルー2ーピロリドンなどの溶剤を添加して混合することにより負極合剤を調整し、この負極合剤を乾燥させたのち圧縮成型するようにしても良い。

そののち、例えば、負極14、電解質が含浸されたセパレータ15および正極 12を積層して、外装カップ13と外装缶11との中に入れ、それらをガスケット16を介してかしめる。これにより、第1図に示した二次電池が形成される。 なお、電解質には、例えば、酸化アルミニウム($A1_2O_3$),酸化バリウム(BaO),酸化マグネシウム(MgO),活性炭,モレキュラーシーブス,微粉化二酸化ケイ素(SiO_2)あるいは各種金属酸化物の微粉末などを用いた化学吸着にて精製することにより、プロトン性不純物の濃度を電解質に対する質量比で、プロトンに換算して20ppm以下、または水分量を電解質に対する質量比で20ppm以下としたものを用いる。

この二次電池は次のように作用する。

この二次電池では、充電を行うと、正極12からリチウムイオンが離脱し、セパレータ15に含浸された電解質を介して負極14に吸蔵される。放電を行うと、例えば、負極14からリチウムイオンが離脱し、セパレータ15に含浸された電解質を介して正極12に吸蔵される。ここでは、充電時の電池電圧が4.25V以上であり、かつ、正極12における炭酸リチウムおよび硫酸リチウムの総量、または電解質におけるプロトン性不純物の濃度あるいは水分量が、所定量以下であるので、高電圧下においてもリチウム複合酸化物からの金属の溶出が抑制され、高いエネルギー密度が得られる。

このように本実施の形態によれば、充電時の電池電圧を4.25 V以上とし、かつ、正極12における炭酸リチウムおよび硫酸リチウムの総量を正極活物質に対して1.0質量%以下、または電解質におけるプロトン性不純物の濃度を電解

質に対する質量比でプロトンに換算して20ppm以下、または電解質における水分量を電解質に対する質量比で20ppm以下とするようにしたので、高電圧下においてもリチウム複合酸化物からの金属の溶出を抑制することができ、高いエネルギー密度を得ることができる。

特に、正極12における炭酸リチウムおよび硫酸リチウムの総量、電解質におけるプロトン性不純物の濃度、または電解質における水分量のうちの2つ以上を上記範囲内とすれば、より高い効果を得ることができる。

また、リチウム複合酸化物に、リチウムと、コバルトおよびニッケルのうちの少なくとも一方とに加えて、マンガン、アルミニウム、マグネシウム、チタン、クロムおよび鉄からなる群のうちの少なくとも1種を含むようにすれば、リチウム複合酸化物の結晶構造を安定にし、化学的安定性を向上させることができ、高電圧下においても高い電池特性を得ることができる。

更に、溶媒に、環状炭酸エステルを含むようにすれば、酸化分解の発生が起こりにくく、より高い電池特性を得ることができる。

加えて、溶媒に、環状カルボン酸エステルを50体積%未満の含有量で含むようにすれば、環状カルボン酸エステルが負極14で分解することを防止でき、高い電池特性を得ることができる。

更にまた、溶媒に、ビニレンカーボネートまたはピニルエチレンカーボネートを10体積%未満の含有量で含むようにすれば、内部抵抗を低下させることなく、高い電池特性を得ることができ、更に環状カルボン酸エステルを含むようにすれば、ビニレンカーボネートまたはピニルエチレンカーボネートにより相対的に酸化耐性の高い環状カルボン酸エステルの特徴が引き出されるので、より高い電池特性を得ることができる。

加えてまた、溶媒に、鎖状炭酸エステルを80体積%以下の含有量で含むようにすれば、溶媒の粘性を低くすることができ、電池特性を向上させることができる。

[第2の実施の形態]

本発明の第2の実施の形態に係る二次電池は、負極の容量がリチウムの析出および溶解による容量成分で表されるいわゆるリチウム二次電池である。この二次

電池は、負極がリチウム金属などにより構成されることを除き、他は第1の実施の形態と同様の構成を有しており、例えば、負極にリチウム金属箔を用いることを除き、他は第1の実施の形態と同様にして製造することができる。よって、ここでは、第1図を参照し、同一の符号を用いて説明する。なお、同一部分についての詳細な説明は省略する。

この二次電池では、充電を行うと、例えば、正極12からリチウムイオンが離脱し、セパレータ15に含浸された電解質を介して、負極14の表面にリチウム金属となって析出する。放電を行うと、例えば、負極14を構成するリチウム金属の一部がリチウムイオンとなって溶出し、セパレータ15に含浸された電解質を介して正極12に吸蔵される。これにより、この二次電池では高いエネルギー密度が得られる。また、ここでは、電池電圧が4.25 V以上であり、かつ、第1の実施の形態で説明したように、不純物の濃度が所定量以下となっているので、高電圧下においてもリチウム複合酸化物からの金属の溶出が抑制される。よって、より高いエネルギー密度が得られる。

このように本実施の形態によれば、負極14の容量がリチウムの析出および溶解による容量成分で表されると共に、電池電圧が4.25V以上であり、かつ、正極12における炭酸リチウムおよび硫酸リチウムの総量、または電解質におけるプロトン性不純物の濃度あるいは水分量が所定量以下であるので、より高いエネルギー密度が得られる。

[第3の実施の形態]

本発明の第3の実施の形態に係る二次電池は、負極の容量がリチウムの吸蔵および離脱による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されるものである。この二次電池は、負極の構成が異なることを除き、他は第1の実施の形態と同様の構成を有しており、同様にして製造することができる。よって、ここでは、第1図を参照し、同一の符号を用いて説明する。なお、同一部分についての詳細な説明は省略する。

負極14は、リチウムを吸蔵・離脱可能な負極材料と、必要に応じて結着剤と を含んで構成されている。リチウムを吸蔵・離脱可能な負極材料は、正極活物質 に対して相対的に少なく、充電の途中において負極14にリチウム金属が析出す るようになっている。具体的には、開回路電圧が過充電電圧よりも低い状態においてリチウムを吸蔵・離脱可能な負極材料の表面にリチウム金属が析出しており、負極14の容量は、上述したように、リチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和で表される。従って、この二次電池では、リチウムを吸蔵・離脱可能な負極材料とリチウム金属との両方が負極活物質として機能し、リチウムを吸蔵・離脱可能な負極材料はリチウム金属が析出する際の基材となっている。よって、完全充電状態において負極14中のリチウムを吸蔵・離脱可能な負極材料を例えば7Li核磁気共鳴分光法により測定すると、リチウムイオンに帰属するピークと、リチウム金属に帰属するピークとが得られる。

なお、過充電電圧というのは、電池が過充電状態になった時の開回路電圧を指し、例えば、完全充電時の電池電圧よりも高い電池電圧を指す。ここで、充電時の電池電圧というのは、日本蓄電池工業会(電池工業会)の定めた指針の一つである「リチウム二次電池安全性評価基準ガイドライン」(SBA G1101)に記載され定義されている「完全充電」された電池の開回路電圧を指す。また、換言すれば、各電池の公称容量を求める際に用いた充電方法,標準充電方法または推奨充電方法を用いて充電した後の開回路電圧を指す。

この二次電池は、負極14にリチウムを吸蔵・離脱可能な負極材料を用いるという点では従来のリチウムイオン二次電池と同様であり、また、負極14にリチウム金属を析出させるという点では従来のリチウム二次電池と同様であるが、リチウムを吸蔵・離脱可能な負極材料にリチウム金属を析出させるようにしたことにより、次のような利点が生じる。

第1に、リチウムを吸蔵・離脱可能な負極材料は一般的に表面積が大きいので、 リチウム金属を均一に析出させることができることである。第2に、リチウムを 吸蔵・離脱可能な負極材料の粒子間の隙間にもリチウム金属が析出するので体積 変化が少ないことである。第3に、リチウムを吸蔵・離脱可能な負極材料による リチウムの吸蔵・離脱も充放電容量に寄与するので、電池容量が大きい割にはリ チウム金属の析出・溶解量が小さいことである。第4に、充電初期においてはリ チウムを吸蔵・離脱可能な負極材料にリチウムが吸蔵されるので急速充電が可能 となることである。

これにより、この二次電池では、リチウムイオン二次電池よりも高いエネルギー密度を得ることができると共に、リチウム二次電池よりも充放電サイクル特性および急速充電特性を向上させることができるようになっている。

また、第1の実施の形態と同様に、充電時の電池電圧が4.25 V以上であり、かつ、正極12における炭酸リチウムおよび硫酸リチウムの総量、または電解質におけるプロトン性不純物の濃度あるいは水分量が所定量以下であるので、高電圧下においても、リチウム複合酸化物からの金属の溶出が抑制され、更に高いエネルギー密度が得られる。

この二次電池では、充電を行うと、正極12からリチウムイオンが離脱し、セパレータ15に含浸された電解質を介して、まず、負極14に含まれるリチウムを吸蔵・離脱可能な負極材料に吸蔵される。更に充電を続けると、開回路電圧が過充電電圧よりも低い状態において、リチウムを吸蔵・離脱可能な負極材料の表面にリチウム金属が析出し始める。そののち、充電を終了するまで負極14にはリチウム金属が析出し続ける。

次いで、放電を行うと、まず、負極14に析出したリチウム金属がリチウムイオンとなって溶出し、セパレータ15に含浸された電解質を介して、正極12に吸蔵される。更に放電を続けると、負極14中のリチウムを吸蔵・離脱可能な負極材料に吸蔵されたリチウムイオンが離脱し、電解質を介して正極12に吸蔵される。

このように本実施の形態によれば、負極14の容量がリチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表されるので、リチウムイオン二次電池よりも高いエネルギー密度を得ることができると共に、リチウム二次電池よりも充放電サイクル特性および急速充電特性を向上させることができる。また、充電時の電池電圧が4.25 V以上であり、かつ、正極12における炭酸リチウムおよび硫酸リチウムの総量、または電解質におけるプロトン性不純物の濃度あるいは水分量が所定量以下であるので、高電圧下においても、リチウム複合酸化物からの金属の溶出を抑制することができ、更に高いエネルギー密度を得ることができる。

更に、本発明の具体的な実施例について詳細に説明する。なお、以下の実施例では、負極の容量がリチウムの析出・溶解による容量成分で表されるリチウム二次電池、または負極の容量が、リチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池、または負極の容量がリチウムの吸蔵・離脱による容量成分で表されるリチウムイオン二次電池について、第1図に示したコイン型のものを作製した。よって、ここでは、第1図を参照し、同一の符号を用いて説明する。

(実施例1-1~1-10)

試験用電池として、負極14の容量が、リチウム金属の析出・溶解による容量成分により表されるリチウム二次電池を作製し、正極12の特性を調べた。

まず、炭酸リチウム(Li2COs)と炭酸コバルト(CoCO3)とを、Li2CO3:CoCOs = 0.5:1(モル比)の割合で混合し、空気中において900℃で5時間焼成して、LiCoO2を得た。次いで、得られたLiCoO2、を水洗いして精製し、正極活物質とした。精製した正極活物質について微量化学分析を行ったところ炭酸リチウムおよび硫酸リチウムの総量は、正極活物質に対して実施例1-1~1-10で表1~3に示したとおりであった。次いで、この正極活物質91質量部と、導電剤であるグラファイト6質量部と、結着剤であるポリフッ化ビニリデン3質量部とを溶剤であるN-メチル-2-ピロリドン中で混合し、乾燥させて再度混合することにより正極合剤を調整した。そののち、この正極合剤を網目状のアルミニウム製集電体と共にペレット状に圧縮成型し、正極12を作製した。

更に、エチレンカーボネートとジメチルカーボネートとをエチレンカーボネート:ジメチルカーボネート=1:1の体積比で混合した溶媒に、LiPF6を1. 0mol/1の含有量で溶解させ、精製し、液状の電解質を作製した。この電解質について、微量化学分析を行ったところプロトン性不純物の濃度および水分量は、電解質に対する質量比で実施例 $1-1\sim1-1$ 0で表 $1\sim3$ に示したとおりであった。なお、プロトン性不純物の濃度は、プロトンに換算した値である。

正極12および電解質を作製したのち、外装カップ13の中央部にリチウム箔 を打ち抜いた負極14およびセパレータ15をこの順で置き、電解質を注入し、 正極 12 を入れた外装缶 11 をガスケット 16 を介してかしめ、二次電池とした。得られた実施例 $1-1\sim1-10$ の二次電池について、定電流定電圧充電を行った。その際、定電流充電は 0.5 m A の電流値で、表 $1\sim3$ に示した上限電圧に達するまで行い、定電圧充電は、表 $1\sim3$ に示した上限電圧で、電流値が 0.01 m A に減衰するまで行った。次いで、充電したものを解体し、正極 12 を取り出して、二次電池に注入した電解質と同じ組成の保存用電解質 20 m 1 に浸漬したのち、密閉した。続いて、60 で恒温槽中で 100 時間保存したのち、正極 12 を保存用電解質から取り出し、保存用電解質の着色を観察した。その結果を表 $1\sim3$ に示す。なお、表 $1\sim3$ では、着色が多く見られたものには \times 、見られ なかったものには \bigcirc を記した。

また、上述した条件で定電流定電圧充電を行ったものを、60 ℃恒温槽中で100 時間保存したのち、0.5 mAの電流値で電池電圧が3.0 Vに達するまで放電した。続いて、再度上述した条件で充放電を1 サイクル行い、放電容量を求めた。その結果も表 $1\sim3$ に示す。

実施例 $1-1\sim1-10$ に対する比較例 $1-1\sim1-9$ として、表 $1\sim3$ に示した不純物量の正極活物質および電解質を用いたことを除き、他は実施例 $1-1\sim1-10$ と同様にして二次電池を作製した。比較例 $1-1\sim1-9$ についても、表 $1\sim3$ に示した上限電圧で定電流定電圧充電を行ったことを除き、他は実施例 $1-1\sim1-10$ と同様にして、保存用電解質の着色および保存後の放電容量を調べた。得られた結果を表 $1\sim3$ に示す。

表1~3から分かるように、上限電圧を4. 25 Vとした実施例1-1~1~5の方が、上限電圧を4. 20 Vとした比較例1-1~1-5よりも放電容量が高かった。また、上限電圧を4. 30 Vとした実施例1-6, 1-7の方が、上限電圧を4. 25 Vとした実施例1-1~1-5よりも放電容量が高く、上限電圧を4. 25 Vとした実施例1-1~1-5よりも放電容量が高く、上限電圧を4. 40 Vとした実施例1-8~1-10の方が、上限電圧を4. 30 Vとした実施例1-6, 1-7よりも、放電容量が高かった。なお、比較例1-1は実施例1-1に、比較例1-2は実施例1-2に、比較例1-3は実施例1-3に、比較例1-4は実施例1-5に、それぞれ対応している。すなわち、上限電圧を高くすれば、エネルギー密度を向上させる

ことができることが分かった。

また、炭酸リチウムおよび硫酸リチウムの総量が1.5質量%、プロトン性不純物の濃度が25ppm、水分量が30ppmの比較例1-6と比較例1-7とを比較すると、比較例1-6では放電容量が7.0mAhであったのに対して、比較例1-7では、上限電圧が4.25Vと高い値にも関わらず、放電容量は4.8mAhと低い値であった。表1から分かるように、比較例1-7では、保存用電解質に着色が見られることから、これは、正極12からコバルトが溶出したことが原因であると考えられる。すなわち、炭酸リチウムおよび硫酸リチウムの総量を1.0質量%以下、またはプロトン性不純物の濃度を20ppm以下、または水分量を20ppm以下とすれば、上限電圧を4.25Vと高くしても良好な化学的安定性を得ることができ、優れた保存特性を保持しつつエネルギー密度を向上させることができることが分かった。

更に、実施例1-8~1-10から分かるように、不純物の濃度を低くすれば、 上限電圧を上げても、優れた保存特性を得ることができ、エネルギー密度を高く することができることが分かった。

なお、ここでは試験用電池としてリチウム二次電池を作製して正極12の特性を調べたが、正極12の特性は、負極14の材料に関係なく得ることができると考えられる。すなわち、リチウムイオン二次電池、および負極14の容量がリチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池においても本実施例と同様の効果が得られると考えられる。

(実施例2-1~2-10)

負極14の容量が、リチウムの吸蔵・離脱による容量成分により表されるリチウムイオン二次電池を作製し、その特性を調べた。その際、負極14には、負極活物質である難黒鉛化炭素90質量部と、結着剤であるポリフッ化ビニリデン10質量部とを溶剤であるNーメチルー2ーピロリドン中で混合し、乾燥させることにより負極合剤を調整したのち、この負極合剤を網目状のニッケル製集電体と共に圧縮成型したものを用いた。正極活物質の量と負極活物質の量との比率は、充電の途中で負極14にリチウム金属が析出しないよう調整した。他は、実施例

1-1~1-10と同一とした。用いた正極活物質および電解質の不純物量は表4~6に示したとおりであった。

なお、難黒鉛化炭素は、出発原料に石油ピッチを用い、これに酸素を含む官能基を10%~20%導入して酸素架橋を行い、不活性ガス気流中において1000℃で焼成することにより作製した。得られた難黒鉛化炭素についてX線回折測定を行ったところ、(002)面の面間隔は0.376nmであり、真比重は1.58であった。この難黒鉛化炭素を粉砕して平均粒径10μmの粉末状とし、負極活物質とした。

実施例 $2-1\sim 2-1$ 0 に対する比較例 $2-1\sim 2-9$ として、表 $4\sim 6$ に示した不純物量の正極活物質および電解質を用いたことを除き、他は実施例 $2-1\sim 2-1$ 0 と同様にして二次電池を作製した。

実施例 $2-1\sim2-10$ および比較例 $2-1\sim2-9$ についても、表 $4\sim6$ に示した上限電圧で定電流定電圧充電を行ったことを除き、他は実施例 $1-1\sim1-10$ と同様にして、保存用電解質の着色および保存後の放電容量を調べた。得られた結果を表 $4\sim6$ に示す。

表4~6から分かるように、リチウムイオン二次電池においても、リチウム二次電池と同様の傾向が見られた。すなわち、リチウムイオン二次電池においても、炭酸リチウムおよび硫酸リチウムの総量を1.0質量%以下、またはプロトン性不純物の濃度を20ppm以下、または水分量を20ppm以下とすれば、上限電圧を4.25Vと高くしても良好な化学的安定性を得ることができ、優れた保存特性を保持しつつエネルギー密度を向上させることができることが確認された。(実施例3-1~3-10)

負極活物質として銅スズ(Cu-Sn)系合金を用い、実施例 $2-1\sim 2-1$ 0と同様にして、負極14の容量が、リチウムの吸蔵・離脱による容量成分により表されるリチウムイオン二次電池を作製し、その特性を調べた。用いた正極活物質および電解質の不純物量は表 $7\sim 9$ に示したとおりであった。また、実施例 $3-1\sim 3-1$ 0に対する比較例 $3-1\sim 3-9$ として、表 $7\sim 9$ に示した不純物量の正極活物質および電解質を用いたことを除き、他は実施例 $3-1\sim 3-1$ 0と同様にして二次電池を作製した。

実施例 $3-1\sim3-1$ 0および比較例 $3-1\sim3-9$ についても、表 $7\sim9$ に示した上限電圧で定電流定電圧充電を行ったことを除き、他は実施例 $1-1\sim1-1$ 0と同様にして、保存用電解質の着色および保存後の放電容量を調べた。得られた結果を表 $7\sim9$ に示す。

表7~9から分かるように、銅スズ系合金を用いても、炭酸リチウムおよび硫酸リチウムの総量を1.0質量%以下、またはプロトン性不純物の濃度を20ppm以下、または水分量を20ppm以下とすれば、上限電圧を4.25Vと高くしても良好な化学的安定性を得ることができ、優れた保存特性を保持しつつエネルギー密度を向上させることができることが確認された。

(実施例4-1~4-10)

正極活物質としてLiNi〇 $_2$ を用い、実施例 $_2$ - $_1$ ~ $_2$ - $_1$ 0 と同様にして、負極 $_1$ 4 の容量が、リチウムの吸蔵・離脱による容量成分により表されるリチウムイオン二次電池を作製し、その特性を調べた。なお、LiNi〇 $_2$ は、水酸化リチウム(LiOH・ $_1$ O)と水酸化ニッケル(Ni(OH) $_2$)とを、LiOH・ $_2$ O:Ni(OH) $_2$ =1: $_1$ (モル比)の割合で混合し、酸素雰囲気下において、 $_1$ O $_2$ で $_3$ 時間焼成することにより作製した。用いた正極活物質および電解質の不純物量は表 $_1$ 0 ~ $_1$ 2 に示したとおりであった。

実施例4-1~4-10に対する比較例4-1~4-9として、表10~12 に示した不純物量の正極活物質および電解質を用いたことを除き、他は実施例4 -1~4-10と同様にして二次電池を作製した。

実施例 $4-1\sim 4-1$ 0および比較例 $4-1\sim 4-9$ についても、表10 ~ 1 2に示した上限電圧で定電流定電圧充電を行ったことを除き、他は実施例1-1 $\sim 1-1$ 0と同様にして、保存用電解質の着色および保存後の放電容量を調べた。得られた結果を表10 ~ 1 2に示す。

表10~12から分かるように、正極活物質にLiNiO2を用いても、LiCoO2を用いた場合と同様に、炭酸リチウムおよび硫酸リチウムの総量を1.0質量%以下、またはプロトン性不純物の濃度を20ppm以下、または水分量を20ppm以下とすれば、上限電圧を4.25Vと高くしても良好な化学的安定性を得ることができ、優れた保存特性を保持しつつエネルギー密度を向上させ

ることができることが確認された。

(実施例5-1~5-24)

表1~3および表13~24から、リチウム塩の種類によらず、炭酸リチウムおよび硫酸リチウムの総量を1.0質量%以下、またはプロトン性不純物の濃度を20ppm以下、または水分量を20ppm以下とすれば、上限電圧を4.25Vと高くしても、優れた化学安定性を得ることができ、優れた保存特性を保持しつつエネルギー密度を向上できることが分かった。

また、リチウム塩の種類によらず、炭酸リチウムおよび硫酸リチウムの総量、プロトン性不純物の濃度および水分量のうちの2つ以上を、上記の範囲内とするようにすれば、充電時の電池電圧を4.30V、更には4.40Vと高くしても、優れた保存特性を得ることができ、より高いエネルギー密度が得られることが分かった。

(実施例6-1~6-355)

実施例6-1~6-355および比較例6-1~6-119として、表25~

95に示した組成を有する溶媒に、LiPFcを0.6mol/kgまたは1. 0mol/kgの含有量で溶解させ、精製したものを用いて、負極14の容量が リチウムの吸蔵・離脱による容量成分により表されるリチウムイオン二次電池を 作製した。なお、表25~95において、DMCはジメチルカーボネートを、E Cはエチレンカーボネートを、PCはプロピレンカーボネートを、GBLはアー ブチロラクトンを、VECはビニルエチレンカーボネートを、VCはビニレンカ ーポネートをそれぞれ表し、括弧の中の数字はそれらの混合比(体積%)を表し ている。LiPF6の含有量は、実施例6-1~6-10および実施例6-41 $\sim 6-355$ では1.0mol/kgとし、実施例 $6-11\sim 6-40$ では0. 6mol/kgとした。なお、正極12には、実施例1-1と同様にして作製し たLiCoO294質量%と、導電剤である炭素粉3質量%と、結着剤であるポ リフッ化ビニリデン3質量%とを混合して調整した正極合剤を、溶剤であるNー メチルー2ーピロリドン中に分散させて、正極合剤スラリーとしたのち、この正 極合剤スラリーをアルミニウムよりなる正極集電体の片面に均一に塗布して乾燥 させ正極合剤層を形成し、円形に切断することにより作製したものを用いた。ま た、負極14には、粒状人造黒鉛粉末90質量%と、結着剤であるポリフッ化ビ ニリデン10質量%とを混合して調整した負極合剤を、溶剤であるNーメチルー 2-ピロリドン中に分散させて、負極合剤スラリーとしたのち、この負極合剤ス ラリーを銅よりなる負極集電体の片面に均一に塗布して乾燥させ負極合剤層を形 成し、円形に切断することにより作製したものを用いた。正極12および負極1 4を作製する際には、実施例6-1~6-355で正極合剤層の体積と負極合剤 層の体積との合計が一定となるように、正極合剤層および負極合剤層のそれぞれ の厚みを適宜調整した。用いた正極活物質および電解質の不純物量は表25~9 5に示したとおりであった。

実施例 $6-1\sim6-355$ および比較例 $6-1\sim6-119$ の二次電池についても、表 $25\sim95$ に示した上限電圧で定電流定電圧充電を行ったことを除き、他は実施例1-1 と同様にして、保存後の放電容量を調べた。得られた結果を表 $25\sim95$ に示す。

表25~95から、溶媒の組成によらず、炭酸リチウムおよび硫酸リチウムの

総量を1.0質量%以下、またはプロトン性不純物の濃度を20ppm以下、または水分量を20ppm以下とすれば、上限電圧を4.25Vと高くしても、優れた保存特性を保持しつつエネルギー密度を向上できることが分かった。

また、溶媒の組成によらず、炭酸リチウムおよび硫酸リチウムの総量、プロトン性不純物の濃度および水分量のうちの2つ以上を、上記の範囲内とするようにすれば、充電時の電池電圧を4.30V、更には4.40Vと高くしても、優れた保存特性を得ることができ、より高いエネルギー密度が得られることが分かった。

また、表 25, 26 と表 27 ~ 95 とを比較すると分かるように、溶媒に、鎖状炭酸エステルであるジメチルカーボネートのみを含む実施例 6-1 ~ 6-10 よりも、溶媒に環状炭酸エステルであるエチレンカーボネート,プロピレンカーボネート,ビニルエチレンカーボネートおよびビニレンカーボネートのうちの少なくとも 1 種を含む実施例 6-11 ~ 6-355 の方が、保存後の放電容量が高かった。すなわち、溶媒に環状炭酸エステルを含むようにすれば、より優れた化学的安定性を得ることができ、保存特性を向上させることができることが分かった。

更に、表33~47と表48~50とを比較すると分かるように、溶媒に、鎖状炭酸エステルであるジメチルカーボネートを80体積%以下の含有量で含む実施例6~41~6~115の方が、80体積%よりも多い含有量で含む実施例6~116~6~130よりも、保存後の放電容量が高かった。すなわち、溶媒に、鎖状炭酸エステルを80体積%以下の含有量で含むようにすれば、より優れた化学的安定性を得ることができ、好ましいことが分かった。

加えて、表33~35と表51~56と表57~59とを比較すると分かるように、保存後の放電容量は、ビニルエチレンカーボネートを10体積%の含有量で含む実施例 $6-161\sim6-175$ よりも、ビニルエチレンカーボネートを含まない実施例 $6-41\sim6-55$ の方が大きく、また、実施例 $6-41\sim6-55$ 5よりもビニルエチレンカーボネートを10体積%未満の含有量で含む実施例 $6-131\sim6-160$ の方が大きかった。すなわち、溶媒にビニルエチレンカーボネートを10体積%未満の含有量で含むようにすれば、より優れた化学的安定

性を得ることができ、保存特性を向上させることができることが分かった。

更にまた、表33~35と表60~65と表66~68とを比較すると分かるように、保存後の放電容量は、ビニレンカーボネートを10体積%の含有量で含む実施例6~206~6~220よりも、ビニレンカーボネートを含まない実施例6~41~6~55の方が大きく、また、実施例6~41~6~55よりもビニレンカーボネートを10体積%未満の含有量で含む実施例6~176~6~205の方が大きかった。すなわち、溶媒にビニレンカーボネートを10体積%未満の含有量で含むようにしても、より優れた化学的安定性を得ることができ、保存特性を向上させることができることが分かった。

加えてまた、表33~35および表69~74と表75~77とを比較すると 分かるように、溶媒に、ァーブチロラクトンを含まない実施例6-41~6-5 5およびァーブチロラクトンを50体積%未満の含有量で含む実施例6-221 ~6-250の方が、アーブチロラクトンを50体積%以上の含有量で含む実施 例6-251~6-265よりも、保存後の放電容量が高かった。すなわち、溶 媒に、γーブチロラクトンを50体積%未満の含有量で含むようにすれば、優れ た保存特性を得ることができ、好ましいことが分かった。しかし、表69~74 と表78~83との比較、および表69~74と表87~92との比較から分か るように、実施例6-266~6-295、および実施例6-311~6-34 0は、溶媒にγーブチロラクトンを50体積%以上の含有量で含んでいるのにも かかわらず、アーブチロラクトンを含まない実施例6-41~6-55よりも、 保存後の放電容量が高かった。すなわち、溶媒に、ビニルエチレンカーボネート またはビニレンカーボネートを10体積%未満の含有量で含む溶媒に、γーブチ ロラクトンを含ませるようにすれば、保存特性を向上させることができることが 分かった。なお、これは、ビニルエチレンカーボネートまたはビニレンカーボネ ートの作用により、負極14の表面におけるアープチロラクトンの分解が抑制さ れた結果、相対的に酸化耐性の高いγープチロラクトンの特徴が引き出されたた めと考えられる。

(実施例7-1)

実施例1-7と同様にしてリチウム二次電池を作製した。表96に、不純物濃

度を示す。得られた実施例7-1の二次電池について充放電試験を行い、放電容量維持率を求めた。その際、充電は定電流定電圧充電とし、1.0mAの定電流で電池電圧が4.30Vに達するまで定電流充電を行ったのち、4.30Vの定電圧で電流値が0.01mAに減衰するまで定電圧充電を行った。一方、放電は、1.0mAの電流値の定電流放電とした。なお、放電容量維持率は、2サイクル目の放電容量に対する50サイクル目の放電容量の比率、すなわち(50サイクル目の放電容量/2サイクル目の放電容量)×100として算出した。得られた結果を表96に示す。

また、本実施例に対する比較例7-1として、比較例1-8と同様にしてリチウム二次電池を作製した。表96に、正極活物質および電解質における不純物量を示す。比較例7-1の二次電池についても、本実施例と同様にして、充放電試験を行い、放電容量維持率を求めた。得られた結果を表96に示す。

表96から分かるように、本実施例によれば、比較例7-1よりも高い放電容量維持率が得られた。すなわち、炭酸リチウムおよび硫酸リチウムの総量、プロトン性不純物の濃度および水分量を制御することにより、充放電サイクル特性を向上させることができることが分かった。

(実施例7-2)

負極14の容量がリチウムの吸蔵・離脱による容量成分と、リチウムの析出・ 溶解による容量成分とを含み、かつその和により表される二次電池を作製した。 その際、完全充電時の電池電圧を4.30 Vとし、充電の途中で負極14にリチウム金属が析出するように正極活物質の量と負極活物質の量との比率を調整した ことを除き、他は実施例2-7と同一とした。表97に不純物の濃度を示す。

また、本実施例に対する比較例7-2として、表97に示した不純物量を有する正極活物質および電解質を用いたことを除き、他は本実施例と同様にして二次電池を作製した。実施例7-2および比較例7-2についても、実施例7-1と同様にして充放電試験を行い、放電容量維持率を求めた。得られた結果を表97に示す。なお、表97において、上限電圧は上記実施の形態における完全充電時の電池電圧を意味している。

表97から分かるように、本実施例によれば、実施例7-1と同様に、対応す

る比較例7-2よりも高い放電容量維持率が得られた。すなわち、負極14の容量がリチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池においても、不純物の濃度を制御することにより、充放電サイクル特性を向上させることができることが分かった。

(実施例7-3)

実施例2-7と同様にして負極14の容量がリチウムの吸蔵・離脱による容量 成分により表されるリチウムイオン二次電池を作製した。また、本実施例に対す る比較例7-3として、表98に示した不純物量を有する正極活物質および電解 質を用いたことを除き、他は本実施例と同様にして二次電池を作製した。実施例 7-3および比較例7-3についても、実施例7-1と同様にして充放電試験を 行い、放電容量維持率を求めた。得られた結果を表98に示す。

表98から分かるように、本実施例によれば、実施例7-1と同様に、対応する比較例7-3よりも高い放電容量維持率が得られた。すなわち、リチウムイオン二次電池においても、不純物の濃度を制御することにより、充放電サイクル特性を向上させることができることが分かった。

また、表96と表97と表98とを比較すると分かるように、実施例7-2,7-3は、実施例7-1よりも比較例に対する特性の向上が顕著であった。すなわち、リチウム二次電池よりも負極14の容量がリチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池およびリチウムイオン二次電池において、大きな効果が得られることが分かった。

なお、負極14の容量が、リチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池、および負極14の容量がリチウムの吸蔵・離脱による容量成分により表されるリチウムイオン二次電池について、正極12と負極14との体積の和を揃えた時の放電容量を比較したところ、負極14の容量が、リチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池の方が、リチウムイオン二次電池よりも1サイクル目の放電容量(

初期放電容量)が約15%以上高く、50サイクル後においても高かった。従って、負極14の容量が、リチウムの吸蔵・離脱による容量成分と、リチウムの析出・溶解による容量成分とを含み、かつその和により表される二次電池の方が、リチウムイオン二次電池よりも総合的に優れていると言える。

(実施例8-1~8-432)

実施例8-1~8-432および比較例8-1~8-243の二次電池について、室温において充放電試験を行い、10サイクル目,50サイクル目および100サイクル目の放電容量維持率を求めた。その際、充電は定電流定電圧充電とし、1mAの定電流で表99~206に示した上限電圧まで定電流充電を行ったのち、その電圧値で電流値が0.01mAに減衰するまで定電圧充電を行った。一方、放電は、定電流放電とし、0.5mAの定電流で閉回路電圧が2.5Vとなるまで行った。なお、10サイクル目,50サイクル目および100サイクル目の放電容量維持率は、初期容量に対する各サイクル目の放電容量の比率、すなわち、(各サイクル目の放電容量/初期容量)×100として算出した。得られた結果を表99~206に示す。

表99~206から分かるように、放電容量維持率は、上限電圧を4.2 Vとした比較例では、同じ不純物量のもの同士で比較した場合、ほとんど同等であった。これに対して、上限電圧を4.25 V,4.30 V,4.40 Vまたは4.50 Vとした実施例8-1~8-432では、 $LiCoO_2$ を用いた実施例8-1~8-16および $LiNiO_2$ を用いた実施例8-17~8-32に比べて、リチウムと、コバルトおよびニッケルのうちの少なくとも一方とに加えて、マン

ガン,アルミニウム,マグネシウム,チタン,クロムおよび鉄からなる群のうちの少なく1種の金属元素を含む正極活物質を用いた実施例8-49~8-432の方が優れていた。

すなわち、リチウムと、コバルトおよびニッケルのうちの少なくとも一方とに加えて、マンガン、アルミニウム、マグネシウム、チタン、クロムおよび鉄からなる群のうちの少なく1種の金属元素を含む正極活物質を用いれば、上限電圧を4.25 V以上としても、充放電サイクル特性を向上させることができることが分かった。

また、表99~106と表107~110の比較、および表127~130と表166~169との比較から分かるように、コバルトまたはニッケルの一方しか含まない実施例8-1~8-32および実施例8-113~8-128よりも、共に含む実施例8-33~8-48および実施例8-273~8-288の方が、放電容量維持率が優れていた。すなわち、リチウム複合酸化物にコバルトおよびニッケルを共に含むようにした方が好ましいことが分かった。

更に、表 $147\sim149$ と表 $150\sim169$ との比較から分かるように、コバルトまたはニッケル以外の金属元素として、マンガンを含む実施例 $8-193\sim8-208$ の方が他の金属元素を含む実施例 $8-209\sim8-288$ よりも、放電容量維持率が優れていた。すなわち、リチウム複合酸化物にマンガンを含むようにした方が好ましいことが分かった。

加えて、表147~149と表186~206との比較から分かるように、コバルトまたはニッケル以外の他の金属元素としてマンガンを含む実施例8-159~8-208と、マンガンに加えて、アルミニウム、マグネシウム、チタン、クロムおよび鉄からなる群のうちの少なくとも1種を含む実施例8-353~8-432とは、ほぼ同等の放電容量維持率が得られた。また、実施例8-159~8-208よりも、マンガンに加えて、アルミニウムまたはマグネシウムを含む実施例8-321~8-352の方が、上限電圧が高い場合において放電容量維持率が若干優れていた。すなわち、リチウム複合酸化物に、マンガン、アルミニウムおよびマグネシウからなる群のうちのマンガンとマンガン以外の少なく1種の他の金属元

素とを含むようにすれば、充放電サイクル特性を向上させると共に、充放電サイクル特性以外の電池特性の向上、およびコスト削減を図ることができることが分かった。

更にまた、表99~206から分かるように、不純物の濃度を低くすれば、上限電圧を上げても、優れた充放電サイクル特性を得ることができることが分かった。

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施例では、充電時の電池電圧が4.25V,4.3 OV,4.40Vまたは4.50Vの場合について具体的に説明したが、不純物の濃度をより低くすれば、充電時の電池電圧を4.50Vよりも高くしても、優れた保存特性および充放電サイクル特性を得ることができ、エネルギー密度をより高くすることができる。

また、上記実施の形態および実施例では、コイン型の二次電池を具体的に挙げて説明したが、本発明は、円筒型、ボタン型、角型あるいはラミネートフィルムなどの外装部材を用いた他の形状を有する二次電池、または巻回構造などの他の構造を有する二次電池についても同様に適用することができる。また、上記実施の形態では、二次電池について説明したが、一次電池などの他の電池についても同様に適用することができる。

以上説明したように本発明の電池によれば、充電時の電池電圧を4.25 V以上とし、かつ、正極における炭酸リチウムおよび硫酸リチウムの総量を正極活物質に対して1.0質量%以下、または電解質におけるプロトン性不純物の濃度を電解質に対する質量比でプロトンに換算して20ppm以下、または電解質における水分量を電解質に対する質量比で20ppm以下とするようにしたので、高電圧下においても、リチウム複合酸化物からの金属の溶出を抑制することができ、高いエネルギー密度を得ることができる。

特に、本発明の一局面に係る電池によれば、正極における炭酸リチウムおよび 硫酸リチウムの総量、電解質におけるプロトン性不純物の濃度、または電解質に おける水分量のうちの2つ以上を所定の範囲内とするようにしたので、より高い 効果を得ることができる。

また、本発明の他の一局面に係る電池によれば、リチウム複合酸化物に、リチウムと、コバルトおよびニッケルのうちの少なくとも一方とに加えて、マンガン、アルミニウム、マグネシウム、チタン、クロムおよび鉄からなる群のうちの少なくとも1種を含むようにしたので、リチウム複合酸化物の結晶構造を安定にし、化学的安定性を向上させることができ、高電圧下においても高い電池特性を得ることができる。

更に、本発明の他の一局面に係る電池によれば、溶媒に、環状炭酸エステルを含むようにしたので、酸化分解の発生が起こりにくく、より高い電池特性を得ることができる。

加えて、本発明の他の一局面に係る電池によれば、溶媒に、環状カルボン酸エステルを50体積%未満の含有量で含むようにしたので、環状カルボン酸エステルが負極14で分解することを防止でき、高い電池特性を得ることができる。

更にまた、本発明の他の一局面に係る電池によれば、溶媒に、ビニレンカーボネートまたはビニルエチレンカーボネートを10体積%未満の含有量で含むようにしたので、内部抵抗を低下させることなく、高い特性を得ることができ、更に環状カルボン酸エステルを含むようにすれば、ビニレンカーボネートまたはビニルエチレンカーボネートにより相対的に酸化耐性の高い環状カルボン酸エステルの特徴が引き出されるので、より高い電池特性を得ることができる。

加えてまた、本発明の他の一局面に係る電池によれば、溶媒に、鎖状炭酸エステルを80体積%以下の含有量で含むようにしたので、溶媒の粘性を低くすることができ、電池特性を向上させることができる。

以上の説明に基づき、本発明の種々の態様や変形例を実施可能であることは明らかである。したがって、以下のクレームの均等の範囲において、上記の詳細な説明における態様以外の態様で本発明を実施することが可能である。

(表1)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	1	放電 容量 (mAh)
実施例 1-1	LiCoO ₂	Li 金属	LiPF ₆	1.0	25	30	4.25	0	7.2
実施例 1-2	LiCoO ₂	Li 金属	LiPF ₆	1.5	20	30	4.25	0	7.3
実施例 1-3	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	20	4.25	0	7.4
実施例 1-4	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	30	4.25	0	7.6
実施例 1-5	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	20	4.25	0	7.7
比較例 1-1	LiCoO ₂	Li 金属	LiPF ₆	1.0	25	30	4.20	0	7.0
比較例 1-2	LiCoO ₂	Li 金属	LiPF ₆	1.5	20	30	4.20	0	7.1
比較例 1-3	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	20	4.20	0	7.1
比較例 1-4	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	30	4.20	0	7.2
比較例 1-5	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	20	4.20	0	7.2
比較例 1-6	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	30	4.20	0	7.0
比較例 1-7	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	30	4.25	×	4.8

(表2)

	正極 活物質	負極 活物質	リチウム塩		プロン性 不純物 の濃度 (ppm)	しいと目	上限電圧(♡)	着色	放電 容量 (mAh)
実施例 1-6	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	30	4.30	0	7.8
実施例 1-7	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	20	4.30	0	8.2
比較例 1-8	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	30	4.30	×	4.0

(表3)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	着色	放電 容量 (mAh)
実施例 1-8	LiCoO ₂	Li 金属	LiPF ₆	0.5	20	20	4.40	0	8.9
実施例 1-9	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	20	4.40	0	8.8
実施例 1-10	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	30	4.40	0	8.4
比較例 1-9	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	30	4.40	×	4.0

(表4)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 2-1	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	25	30	4.25	0	7.0
実施例 2-2	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	20	30	4.25	0	7.1
実施例 2-3	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	25	20	4.25	0	7.1
実施例 2-4	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	30	4.25	0	7.2
実施例 2-5	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	20	4.25	0	7.3
比較例 2-1	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	25	30	4.20	0	6.7
比較例 2-2	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	20	30	4.20	0	6.9
比較例 2-3	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	25	20	4.20	0	6.9
比較例 2-4	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	30	4.20	0	7.0
比較例 2-5	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	20	4.20	0	7.1
比較例 2-6	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	25	30	4.20	0	6.7
比較例 2-7	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	25	30	4.25	×	4.9

(表5)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	着色	放電 容量 (mAh)
実施例 2-6	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	30	4.30	0	7.5
実施例 2-7	LiCoO ₂	群里砂化	LiPF ₆	1.0	20	20	4.30	0	7.8
比較例 2-8	LiCoO ₂	難里めか	LiPF ₆	1.5	25	30	4.30	×	4.5

(表6)

	正極 活物質	負極 活物質	リチウム塩	$L_{12}CO_3+L_{12}SO_4$	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(以)	着色	放電 容量 (mAh)
実施例 2-8	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	0.5	20	20	4.40	0	8.3
実施例 2-9	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	20	4.40	0	8.2
実施例 2-10	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	30	4.40	0	7.9
比較例 2-9	LiCoO ₂	難里紛化	LiPF ₆	1.5	25	30	4.40	×	4.0

(表7)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロシ性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)		放電 容量 (mAh)
実施例 3-1	LiCoO ₂	Cu-Sn	LiPF ₆	1	25	30	4.25	0	7.5
実施例 3-2	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	20	30	4.25	0	7.6
実施例 3-3	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	25	20	4.25	0	7.7
実施例 3-4	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	20	30	4.25	0	7.9
実施例 3-5	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	20	20	4.25	0	8.0
比較例 3-1	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	25	30	4.20	0	7.1
比較例 3-2	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	20	30	4.20	0	7.2
比較例 3-3	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	25	20	4.20	0	7.2
比較例 3-4	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	20	30	4.20	0	7.4
比較例 3-5	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	20	20	4.20	0	7.4
比較例 3-6	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	25	30	4.20	0	7.1
比較例 3-7	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	25	30	4.25	×	4.8

(表8)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	着色	放電 容量 (mAh)
実施例 3-6	${ m LiCoO_2}$	Cu-Sn	LiPF ₆	1.0	20	30	4.30	0	8.2
実施例 3-7	$LiCoO_2$	Cu-Sn	LiPF ₆	1.0	20	20	4.30	0	8.4
比較例 3-8	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	25	30	4.30	×	4.2

(表9)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 3-8	LiCoO ₂	Cu-Sn	LiPF ₆	0.5	20	20	4.40	0	8.5
実施例 3-9	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	20	20	4.40	0	8.5
実施例 3-10	LiCoO ₂	Cu-Sn	LiPF ₆	1.0	20	30	4.40	0	8.2
比較例 3-9	LiCoO ₂	Cu-Sn	LiPF ₆	1.5	25 ⁻	30	4,40	×	4.0

(表10)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	着色	放電 容量 (mAh)
実施例 4-1	LiNiO ₂	Cu-Sn	LiPF ₆	1	25	30	4.25	0	8.2
実施例 4-2	LiNiO ₂	Cu-Sn	LiPF ₆	1.5	20	30	4.25	0	8.3
実施例 4-3	$LiNiO_2$	Cu-Sn	LiPF ₆	1.5	25	20	4.25	0	8.4
実施例 4-4	LiNiO ₂	Cu-Sn	LiPF ₆	1	20	30	4.25	0	8.6
実施例 4-5	LiNiO ₂	Cu-Sn	LiPF ₆	1	20	20	4.25	0	8.7
比較例 4-1	LiNiO ₂	Cu-Sn	LiPF ₆	1	25	30	4.2	0	7.8
比較例 4-2	LiNiO ₂	Cu-Sn	LiPF ₆	1.5	20	30	4.2	0	8.0
比較例 4-3	LiNiO ₂	Cu-Sn	LiPF ₆	1.5	25	20	4.2	0	8.0
比較例 4-4	LiNiO ₂	Cu-Sn	LiPF ₆	1	20	30	4.2	0	8.1
比較例 4-5	LiNiO ₂	Cu-Sn	LiPF ₆	1	20	20	4.2	0	8.1
比較例 4-6	LiNiO ₂	Cu-Sn	LiPF ₆	1.5	25	30	4.2	0	7.8
比較例 4-7	LiNiO ₂	Cu-Sn	LiPF ₆	, 1.5	25	30	4.25	×	5.0

(表11)

	正極 活物質	負極 活物質	リチウム塩		プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 4-6	LiNiO ₂	Cu–Sn	LiPF ₆	1	20	30	4.3	0	8.7
実施例 4-7	LiNiO ₂	Cu-Sn	LiPF ₆	1	20	20	4.3	0	8.8
比較例 4-8	LiNiO ₂	Cu-Sn	LiPF ₆	1.5	25	30	4.3	×	4.4

(表12)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 4-8	LiNiO ₂	Cu-Sn	LiPF ₆	0.5	20	20	4.4	0	8.9
実施例 4-9	LiNiO ₂	Cu-Sn	LiPF ₆	1	20	20	4.4	0	8.9
実施例 4-10	LiNiO ₂	Cu-Sn	LiPF ₆	. 1	20	30	4.4	0	8.8

(表13)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)		放電 容量 (mAh)
実施例 5-1	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.0	25	30	4.25	0	7.2
実施例 5-2	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	20	30	4.25	0	7.6
実施例 5-3	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	25	20	4.25	0	7.5
実施例 5-4	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.0	20	20	4.25	0	7.7
比較例 5-1	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.0	25	30	4.20	0	7.1
比較例 5-2	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	20	30	4.20	0	7.1
比較例 5-3	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	25	20	4.20	0	7.1
比較例 5-4	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.0	20	20	4.20	0	7.2
比較例 5-5	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	25	30	4.20	0	7.1
比較例 5-6	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	25	30	4.25	Δ	6.8

(表14)

		正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	着色	放電 容量 (mAh)
-	実施例 5-5	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.0	20	20	4.30	0	8.0
	比較例 5-7	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	25	30	4.30	×	4. 3

(表15)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(以)		放電 容量 (mAh)
実施例 5-6	$LiCoO_2$	Li 金属	LiPF ₆ LiBF ₄	1.0	20	20	4.40	0	8.7
比較例 5-8	LiCoO ₂	Li 金属	LiPF ₆ LiBF ₄	1.5	25	30	4.40	×	4. 5

WO 03/019713 PCT/JP02/08498

(表16)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 5-7	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	25	30	4.25	0	7.5
実施例 5-8	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.5	20	30	4.25	0	7.8
実施例 5-9	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	25	20	4.25	0	7.6
実施例 5-10	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	20	20	4.25	0	7.9
比較例 5-9	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	25	30	4.20	0	7.2
比較例 5-10	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.5	20	30	4.20	0	7.2
比較例 5-11	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	25	20	4.20	0	7.2
比較例 5-12	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	20	20	4.20	0	7.4
比較例 5-13	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.5	25	30	4.20	0	7.1
比較例 5-14	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.5	25	30	4.25	×	5.4

(表17)

	正極 活物質	負極 活物質	リチウム塩	$[Ll_2 \cup U_3 + Ll_2 \cup U_4]$	プ の 没 の 没 (ppm)	水分量 (ppm)	上限電圧(♡)	着色	放電 容量 (mAh)
実施例 5-11	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	20	20	4.30	0	8.1
比較例 5-15	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.5	25	30	4.30	×	5.0

(表18)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	,	放電 容量 (mAh)
実施例 5-12	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.0	20	20	4.40	0	8.7
比較例 5-16	LiCoO ₂	Li 金属	LiPF ₆ LiClO ₄	1.5	25	30	4.40	×	4.4

(表19)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 5-13	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	25	30	4.25	0	7.8
実施例 5-14	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.5	20	30	4.25	0	7.9
実施例 5-15	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	25	20	4.25	0	8.0
実施例 5−16	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	20	20	4.25	0	8.1
比較例 5-17	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	25	30	4.20	0	7.5
比較例 5-18	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.5	20	30	4.20	0	7.5
比較例 5-19	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	25	20	4.20	0	7.5
比較例 5-20	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	20	20	4.20	0	7.6
比較例 5-21	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.5	25	30	4.20	0	7.4
比較例 5-22	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.5	25	30	4.25	Δ	6.9

(表20)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロシ性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 5-17	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	20	20	4.30	0	8.6
比較例 5-23	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.5	25	30	4.30	×	5.6

(表21)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 5-18	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.0	20	20	4.40	0	8.8
比較例 5-24	LiCoO ₂	Li 金属	LiPF ₆ LiN(CF ₃ SO ₂) ₂	1.5	25	30	4.40	×	5.3

(表22)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 5-19	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	25	30	4.2 5	0	7.7
実施例 5-20	$LiCoO_2$	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.5	20	.30	4.25	0	7.8
実施例 5-21	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	25	20	4.25	0	7.9
実施例 5-22	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	20	20	4.25	0	7.9
比較例 5-25	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	25	30	4.20	0	7.2
比較例 5-26	LiCoO ₂	Li金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.5	20	30	4.20	0	7.3
比較例 5-27	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	25	20	4.20	0	7.3
比較例 5-28	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	20	20	4.20	0	7.3
比較例 5-29	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.5	25	30	4.20	0	7.2
比較例 5-30	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.5	25	30	4.25	Δ	6.4

(表23)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	着色	放電 容量 (mAh)
実施例 5-23	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	20	20	4.30	0	8.3
比較例 5-31	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.5	25	30	4.30	×	5.0

(表24)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(以)	着色	放電 容量 (mAh)
実施例 5-24	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.0	20	20	4.40	0	8.9
比較例 5-32	LiCoO ₂	Li 金属	LiPF ₆ LiN(C ₂ F ₅ SO ₂) ₂	1.5	25	30	4.40	×	5.9

(表25)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-1	DMC	1.0	25	30	4.25	6.0
実施例 6-2	DMC	1.5	20	30	4.25	6.0
実施例 6-3	DMC	1.5	25	20	4.25	6.0
実施例 6-4	DMC	1.0	20	30	4.25	6.1
実施例 6-5	DMC	1.0	20	20	4.25	6.2
比較例 6-1	DMC	1.0	20	20	4.20	5.8
比較例 6-2	DMC	1.5	25	30	4.20	5.7
比較例 6-3	DMC	1.5	25	30	4.25	3.7

(表26)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-6	DMC	1.0	25	30	4.30	6.2
実施例 6-7	DMC	1.5	20	30	4.30	6.3
実施例 6-8	DMC	1.5	25	20	4.30	6.2
実施例 6-9	DMC	1.0	20	30	4.30	6.4
実施例 6-10	DMC	1.0	20	20	4.30	6.5
比較例 6-4	DMC	1.5	25	30	4.30	3.9

(表27)

•	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-11	EC:PC (50:50)	1.0	25	30	4.25	7.0
実施例 6-12	EC: PC (50:50)	1.5	20	30	4.25	7.0
実施例 6-13	EC:PC (50:50)	1.5	25	20	4.25	7.0
実施例 6-14	EC:PC (50:50)	1.0	20	30	4.25	7.1
実施例 6-15	EC:PC (50:50)	1.0	20	20	4.25	7.1
比較例 6-5	EC : PC (50 : 50)	1.0	20	20	4.20	6.9
比較例 6-6	EC: PC (50:50)	1.5	25	30	4.20	6.8
比較例 6-7	EC : PC (50 : 50)	1.5	25	30	4.25	4.3

(表28)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-16	EC: PC (50:50)	1.0	25	30	4.30	7.2
実施例 6-17	EC:PC (50:50)	1.5	20	30	4.30	7.2
実施例 6-18	EC:PC (50:50)	1.5	25	20	4.30	7.2
実施例 6-19	EC:PC (50:50)	1.0	20	30	4.30	7.3
実施例 6-20	EC:PC (50:50)	1.0	20	20	4.30	7.4
比較例 6-8	EC : PC (50 : 50)	1.5	25	30	4.30	4.0

(表29)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-21	EC:PC (50:50)	1.0	25	30	4.40	7.4
実施例 6-22	EC:PC (50:50)	1.5	20	30	4.40	7.4
実施例 6-23	EC:PC (50:50)	1.5	25	20	4.40	7.4
実施例 6-24	EC:PC (50:50)	1.0	20	30	4.40	7.5
実施例 6-25	EC:PC (50:50)	1.0	20	20	4.40	7.6
比較例 6-9	EC:PC (50:50)	1.5	25	30	4.40	4.0

(表30)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プ마ン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-26	EC:PC (200/3:100/3)	1.0	25	30	4.25	7.1
実施例 6-27	EC:PC (200/3:100/3)	1.5	20	30	4.25	7.0
実施例 6-28	EC:PC (200/3:100/3)	1.5	25	20	4.25	7.0
実施例 6-29	EC:PC (200/3:100/3)	1.0	20	30	4.25	7.1
実施例 6-30	EC:PC (200/3:100/3)	1.0	20	20	4.25	7.1
比較例 6-10	EC:PC (200/3:100/3)	1.0	20	20	4.20	6.9
比較例 6-11	EC:PC (200/3:100/3)	1.5	25	30	4.20	6.7
比較例 6-12	EC:PC (200/3:100/3)	1.5	25	30	4.25	4.2

(表31)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-31	EC:PC (200/3:100/3)	1.0	25	30	4.30	7.2
実施例 6-32	EC:PC (200/3:100/3)	1.5	20	30	4.30	7.2
実施例 6-33	EC:PC (200/3:100/3)	1.5	25	20	4.30	7.2
実施例 6-34	EC:PC (200/3:100/3)	1.0	20	30	4.30	7.3
実施例 6-35	EC:PC (200/3:100/3)	1.0	20	20	4.30	7.4
比較例 6-13	EC:PC (200/3:100/3)	1.5	25	30	4.30	4.0

(表32)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)		上限電圧 (V)	放電容量 (mAh)
実施例 6-36	EC: PC (200/3:100/3)	1.0	25	30	4.40	7.5
実施例 6-37	EC: PC (200/3:100/3)	1.5	20	30	4.40	7.4
実施例 6-38	EC: PC (200/3: 100/3)	1.5	25	20	4.40	7.4
実施例 6-39	EC: PC (200/3:100/3)	1.0	20	30	4.40	7.5
実施例 6-40	EC: PC (200/3:100/3)	1.0	20	20	4.40	7.7
比較例 6-14	EC: PC (200/3:100/3)	1.5	25	30	4.40	3.8

(表33)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6−41	EC: DMC (50: 50)	1.0	25	30	4.25	7.2
	EC:DMC (50:50)	1.5	20	30	4.25	7.2
	EC: DMC (50: 50)		25	20	4.25	7.2
	EC: DMC (50: 50)		20	30	4.25	7.2
	EC: DMC (50:50)		20	20	4.25	7.3
	EC: DMC (50:50)		20	20	4.20	7.0
	6 EC: DMC (50:50)		25	30	4.20	6.9
	7 EC: DMC (50:50)	/	25	30	4.25	4.5

(表34)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-46	EC: DMC (50: 50)	1.0	25	30	4.30	7.4
	EC:DMC (50:50)		20	30	4.30	7.4
	EC: DMC (50:50)		25	20	4.30	7.4
	EC: DMC (50: 50)		20	30	4.30	7.5
	EC: DMC (50: 50)		20	20	4.30	7.6
	BEC: DMC (50: 50)		25	30	4.30	4.0

(表35)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電容量 (mAh)
実施例 6-51	EC:DMC (50:50)	1.0	25	30	4.40	7.6
実施例 6-52	EC: DMC (50:50)	1.5	20	30	4.40	7.6
実施例 6-53	EC: DMC (50: 50)	1.5	25	20	4.40	7.6
実施例 6-54	EC: DMC (50: 50)	1.0	20	30	4.40	7.7
実施例 6-55	EC: DMC (50: 50)	1.0	20	20	4.40	7.8
比較例 6-19	EC:DMC (50:50)	1.5	25	30	4.40	4.1

WO 03/019713
PCT/JP02/08498

(表36)

非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)		水分量 (ppm)	電圧	放電 容量 (mAh)
EC: PC: DMC (40:40:20)	1.0	25	30	4.25	7.0
	1.5	20	30	4.25	7.0
	1.5	25	20	4.25	7.0
		20	30	4.25	7.1
		20	20	4.25	7.1
		20	20	4.20	6.9
		25	30	4.20	6.7
		25	30	4.25	4.2
	非水溶媒 EC:PC:DMC(40:40:20) EC:PC:DMC(40:40:20) EC:PC:DMC(40:40:20) EC:PC:DMC(40:40:20) EC:PC:DMC(40:40:20) EC:PC:DMC(40:40:20) EC:PC:DMC(40:40:20)	非水溶媒	非水溶媒 の濃度 (重量%) の濃度 (ppm) EC:PC:DMC (40:40:20) 1.0 25 EC:PC:DMC (40:40:20) 1.5 20 EC:PC:DMC (40:40:20) 1.5 25 EC:PC:DMC (40:40:20) 1.0 20 EC:PC:DMC (40:40:20) 1.5 25 EC:PC:DMC (40:40:20) 1.5 25	非水溶媒	非水溶媒

(表37)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
宝施例 6-61	EC: PC: DMC (40:40:20)	1.0	25	30	4.30	7.2
\	EC:PC:DMC (40:40:20)		20	30	4.30	7.2
	EC:PC:DMC (40:40:20)		25	20	4.30	7.2
	EC:PC:DMC (40:40:20)		20	30	4.30	7.3
	EC: PC: DMC (40: 40: 20)		20	20	4.30	7.4
	BEC: PC: DMC (40: 40: 20)		25	30	4.30	4.0

(表38)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プ마ン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-66	EC:PC:DMC (40:40:20)	1.0	25	30	4.40	7.5
実施例 6-67	EC:PC:DMC (40:40:20)	1.5	20	30	4.40	7.4
実施例 6-68	EC:PC:DMC (40:40:20)	1.5	25	20	4.40	. 7.4
実施例 6-69	EC:PC:DMC (40:40:20)	1.0	20	30	4.40	7.6
実施例 6-70	EC:PC:DMC (40:40:20)	1.0	20	20	4.40	7.7
比較例 6-24	EC: PC: DMC (40: 40: 20)	1.5	25	30	4.40	3.9

(表39)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-71	EC: PC: DMC (25: 25: 50)	1.0	25	30	4.25	7.2
実施例 6-72	EC:PC:DMC (25:25:50)	1.5	20	30	4.25	7.2
実施例 6-73	EC:PC:DMC (25:25:50)	1.5	25	20	4.25	7.2
実施例 6-74	EC:PC:DMC (25:25:50)	1.0	20	30	4.25	7.2
実施例 6-75	EC: PC: DMC (25: 25: 50)	1.0	20	20	4.25	7.3
比較例 6-25	EC: PC: DMC (25: 25: 50)	1.0	20	20	4.20	7.0
比較例 6-26	EC:PC:DMC (25:25:50)	1.5	25	30	4.20	6.9
比較例 6-27	EC: PC: DMC (25: 25: 50)	1.5	25	30	4.25	4.5

(表40)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電 容量 (mAh)
実施例 6-76	EC: PC: DMC (25: 25: 50)	1.0	25	30	4.30	7.4
実施例 6-77	EC: PC: DMC (25: 25: 50)	1.5	20	30	4.30	7.4
実施例 6-78	EC: PC: DMC (25: 25: 50)	1.5	25	20	4.30	7.4
実施例 6-79	EC: PC: DMC (25: 25: 50)	1.0	20	30	4.30	7.5
実施例 6-80	EC: PC: DMC (25: 25: 50)	1.0	20	20	4.30	7.6
比較例 6-28	EC:PC:DMC (25:25:50)	1.5	25	30	4.30	4.1

(表41)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)		電圧	放電 容量 (mAh)
実施例 6-81	EC: PC: DMC (25: 25: 50)	1.0	25	30	4.40	7.6
実施例 6-82	EC: PC: DMC (25: 25: 50)	1.5	20	30	4.40	7.5
実施例 6-83	EC: PC: DMC (25: 25: 50)	1.5	25	20	4.40	7.6
実施例 6-84	EC: PC: DMC (25: 25: 50)	1.0	20	30	4.40	7.7
実施例 6-85	EC:PC:DMC (25:25:50)	1.0	20	20	4.40	7.8
比較例 6-29	EC: PC: DMC (25: 25: 50)	1.5	25	30	4.40	4.1

(表42)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧()	放電 容量 (mAh)
実施例 6-86	EC: PC: DMC (50/3:50/3:200/3)	1.0	25	30	4.25	7.1
実施例 6-87	EC: PC: DMC (50/3:50/3:200/3)	1.5	20	30	4.25	7.0
実施例 6-88	EC: PC: DMC (50/3:50/3:200/3)	1.5	25	20	4.25	7.0
実施例 6-89	EC: PC: DMC (50/3:50/3:200/3)	1.0	20	30	4.25	7.1
実施例 6-90	EC: PC: DMC (50/3:50/3:200/3)	1.0	20	20	4.25	7.1
比較例 6-30	EC: PC: DMC (50/3:50/3:200/3)	1.0	20	20	4.20	6.9
比較例 6-31	EC: PC: DMC (50/3:50/3:200/3)	1.5	25	30	4.20	6.8
比較例 6-32	EC: PC: DMC (50/3:50/3:200/3)	1.5	25	30	4.25	4.2

(表43)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(ソ)	
実施例 6-91	EC: PC: DMC (50/3:50/3:200/3)	1.0	25	30	4.30	7.2
実施例 6-92	EC: PC: DMC (50/3:50/3:200/3)	1.5	20	30	4.30	7.2
実施例 6-93	EC: PC: DMC (50/3:50/3:200/3)	1.5	25	20	4.30	7.2
実施例 6-94	EC: PC: DMC (50/3:50/3:200/3)	1.0	20	30	4.30	7.3
実施例 6-95	EC: PC: DMC (50/3:50/3:200/3)	1.0	20	20	4.30	7.4
比較例 6-33	EC: PC: DMC (50/3:50/3:200/3)	1.5	25	30	4.30	4.0

(表44)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電 容量 (mAh)
実施例 6-96	EC: PC: DMC (50/3:50/3:200/3)	1.0	25	30	4.40	7.4
実施例 6-97	EC: PC: DMC (50/3:50/3:200/3)	1.5	20	30	4.40	7.4
実施例 6-98	EC:PC:DMC (50/3:50/3:200/3)	1.5	25	20	4.40	7.4
実施例 6-99	EC:PC:DMC (50/3:50/3:200/3)	1.0	20	30	4.40	7.5
実施例 6-100	EC: PC: DMC (50/3:50/3:200/3)	1.0	20	20	4.40	7.6
比較例 6-34	EC:PC:DMC (50/3:50/3:200/3)	1.5	25	30	4.40	3.9

(表45)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プ마ン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-101	EC:PC:DMC (10:10:80)	1.0	25	30	4.25	7.0
実施例 6-102	EC:PC:DMC (10:10:80)	1.5	20	30	4.25	7.0
実施例 6-103	EC:PC:DMC (10:10:80)	1.5	25	20	4.25	7.0
実施例 6-104	EC: PC: DMC (10:10:80)	1.0	20	30	4.25	7.1
実施例 6-105	EC:PC:DMC (10:10:80)	1.0	20	20	4.25	7.1
比較例 6-35	EC:PC:DMC (10:10:80)	1.0	20	20	4.20	6.8
比較例 6-36	EC:PC:DMC (10:10:80)	1.5	25	30	4.20	6.7
比較例 6-37	EC:PC:DMC (10:10:80)	1.5	25	30	4.25	4.3

(表46)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	1 1
実施例 6-106	EC:PC:DMC (10:10:80)	,1.0	25	30	4.30	7.2
実施例 6-107	EC:PC:DMC (10:10:80)	1.5	20	30	4.30	7.2
実施例 6-108	EC:PC:DMC (10:10:80)	1.5	25	20	4.30	7.2
実施例 6-109	EC:PC:DMC (10:10:80)	1.0	20	30	4.30	7.2
実施例 6-110	EC:PC:DMC (10:10:80)	1.0	20	20	4.30	7.4
比較例 6-38	EC:PC:DMC (10:10:80)	1.5	25	30	4.30	4.0

WO 03/019713 PCT/JP02/08498

(表47)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-111	EC: PC: DMC (10:10:80)	1.0	25	30	4.40	7.3
実施例 6-112	EC:PC:DMC (10:10:80)	1.5	20	30	4.40	7.2
実施例 6-113	EC:PC:DMC (10:10:80)	1.5	25	20	4.40	7.2
実施例 6-114	EC:PC:DMC (10:10:80)	1.0	20	30	4.40	7.5
実施例 6-115	EC:PC:DMC (10:10:80)	1.0	20	20	4.40	7.6
比較例 6-39	EC:PC:DMC (10:10:80)	1.5	25	30	4.40	3.8

62

(表48)

·	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	放電 容量 (mAh)
実施例 6-116	EC:PC:DMC (5:5:90)	1.0	25	30	4.25	6.3
実施例 6-117	EC:PC:DMC (5:5:90)	1.5	20	30	4.25	6.3
実施例 6-118	EC:PC:DMC (5:5:90)	1.5	25	20	4.25	6.3
実施例 6-119	EC:PC:DMC (5:5:90)	1.0	20	30	4.25	6.4
実施例 6-120	EC:PC:DMC (5:5:90)	1.0	20	20	4.25	6.6
比較例 6-40	EC:PC:DMC (5:5:90)	1.0	20	20	4.20	6.1
比較例 6-41	EC:PC:DMC (5:5:90)	1.5	25	30	4.20	6.0
比較例 6-42	EC:PC:DMC (5:5:90)	1.5	25	30	4.25	5.0

(表49)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-121	EC:PC:DMC (5:5:90)	1.0	25	30	4.30	6.5
実施例 6-122	EC:PC:DMC (5:5:90)	1.5	20	30	4.30	6.6
実施例 6-123	EC:PC:DMC (5:5:90)	1.5	25	20	4.30	6.5
実施例 6-124	EC:PC:DMC (5:5:90)	1.0	20	30	4.30	6.7
実施例 6-125	EC:PC:DMC (5:5:90)	1.0	20	20	4.30	6.8
比較例 6-43	EC:PC:DMC (5:5:90)	1.5	25	30	4.30	4.2

(表50)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	
実施例 6-126	EC:PC:DMC (5:5:90)	1.0	.25	30	4.40	6.6
実施例 6-127	EC: PC: DMC (5:5:90)	1.5	20	30	4.40	6.7
実施例 6-128	EC:PC:DMC (5:5:90)	1.5	25	20	4.40	6.7
実施例 6-129	EC:PC:DMC (5:5:90)	1.0	20	30	4.40	6.8
実施例 6-130	EC:PC:DMC (5:5:90)	1.0	20	20	4.40	7.0
比較例 6-44	EC:PC:DMC (5:5:90)	1.5	25	30	4.40	3.9

(表51)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-131	EC: DMC: VEC (49:49:2)	1.0	25	30	4.25	7.3
実施例 6-132	EC: DMC: VEC (49:49:2)	1.5	20	30	4.25	7.3
実施例 6-133	EC: DMC: VEC (49:49:2)	1.5	25	20	4.25	7.3
実施例 6-134	EC: DMC: VEC (49:49:2)	1.0	20	30	4.25	7.3
実施例 6-135	EC: DMC: VEC (49:49:2)	1.0	20	20	4.25	7.4
比較例 6-45	EC: DMC: VEC (49:49:2)	1.0	20	20	4.20	7.2
	EC: DMC: VEC (49:49:2)		25	30	4.20	7.1
比較例 6-47	EC: DMC: VEC (49:49:2)	1.5	25	30	4.25	4.6

(表52)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧()	放電 容量 (mAh)
実施例 6-136	EC: DMC: VEC (49:49:2)	1.0	25	30	4.30	7.5
実施例 6-137	EC: DMC: VEC (49:49:2)	1.5	20	30	4.30	7.5
実施例 6-138	EC: DMC: VEC (49:49:2)	1.5	25	20	4.30	7.5
実施例 6-139	EC: DMC: VEC (49:49:2)	1.0	20	30	4.30	7.6
実施例 6-140	EC: DMC: VEC (49:49:2)	1.0	20	20	4.30	7.7
比較例 6-48	EC: DMC: VEC (49:49:2)	1.5	25	30	4.30	4.1

(表53)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-141	EC: DMC: VEC (49:49:2)	1.0	25	30	4.40	7.7
実施例 6-142	EC: DMC: VEC (49:49:2)	1.5	20	30	4.40	7.7
実施例 6-143	EC: DMC: VEC (49:49:2)	1.5	25	20	4.40	7.7
実施例 6-144	EC: DMC: VEC (49:49:2)	1.0	20	30	4.40	7.8
実施例 6-145	EC: DMC: VEC (49:49:2)	1.0	20	20	4.40	7.9
比較例 6-49	EC: DMC: VEC (49:49:2)	1.5	25	30	4.40	4.2

(表54)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(以)	
実施例 6-146	EC: DMC: VEC (47.5:47.5:5)	1.0	25	30	4.25	7.3
実施例 6-147	EC: DMC: VEC (47.5:47.5:5)	1.5	20	30	4.25	7.3
実施例 6-148	EC: DMC: VEC (47.5:47.5:5)	1.5	25	20	4.25	7.3
実施例 6-149	EC: DMC: VEC (47.5:47.5:5)	1.0	20	30	4.25	7.3
実施例 6-150	EC: DMC: VEC (47.5:47.5:5)	1.0	20	20	4.25	7.4
比較例 6-50	EC: DMC: VEC (47.5:47.5:5)	1.0	20	20	4.20	7.2
比較例 6-51	EC: DMC: VEC (47.5:47.5:5)	1.5	25	30	4.20	7.1
比較例 6-52	EC: DMC: VEC (47.5:47.5:5)	1.5	25	30	4.25	4.5

(表55)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	
実施例 6-151	EC: DMC: VEC (47.5: 47.5: 5)	1.0	25	30	4.30	7.5
実施例 6-152	EC: DMC: VEC (47.5:47.5:5)	1.5	20	30	4.30	7.4
実施例 6-153	EC: DMC: VEC (47.5: 47.5:5)	1.5	25	20	4.30	7.5
実施例 6-154	EC: DMC: VEC (47.5: 47.5: 5)	1.0	20	30	4.30	7.6
実施例 6-155	EC: DMC: VEC (47.5:47.5:5)	1.0	20	20	4.30	7.7
比較例 6-53	EC: DMC: VEC (47.5:47.5:5)	1.5	25	30	4.30	4.1

(表56)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-156	EC: DMC: VEC (47.5:47.5:5)	1.0	25	30	4.40	7.7
実施例 6-157	EC: DMC: VEC (47.5:47.5:5)	1.5	20	30	4.40	7.6
実施例 6-158	EC: DMC: VEC (47.5: 47.5: 5)	1.5	25	20	4.40	7.7
実施例 6-159	EC: DMC: VEC (47.5: 47.5: 5)	1.0	20	30	4.40	7.8
実施例 6-160	EC: DMC: VEC (47.5:47.5:5)	1.0	20	20	4.40	7.9
比較例 6-54	EC: DMC: VEC (47.5:47.5:5)	1.5	25	30	4.40	4.2

(表57)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	
実施例 6-161	EC: DMC: VEC (45:45:10)	1.0	25	30	4.25	7.1
実施例 6-162	EC: DMC: VEC (45: 45:10)	1.5	20	30	4.25	7.1
実施例 6-163	EC: DMC: VEC (45: 45:10)	1.5	25	20	4.25	7.1
実施例 6-164	EC: DMC: VEC (45: 45:10)	1.0	20	30	4.25	7.1
実施例 6-165	EC: DMC: VEC (45: 45:10)	1.0	20	20	4.25	7.2
比較例 6-55	EC: DMC: VEC (45: 45:10)	1.0	20	20	4.20	7.0
比較例 6-56	EC: DMC: VEC (45: 45:10)	1.5	25	30	4.20	6.9
比較例 6-57	EC: DMC: VEC (45: 45:10)	1.5	25	30	4.25	4.3

(表58)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プ마ン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧()	
実施例 6-166	EC:DMC:VEC (45:45:10)	1.0	25	30	4.30	7.3
実施例 6-167	EC: DMC: VEC (45: 45:10)	1.5	20	30	4.30	7.3
実施例 6-168	EC: DMC: VEC (45: 45:10)	1.5	25	20	4.30	7.3
実施例 6-169	EC: DMC: VEC (45: 45: 10)	1.0	20	30	4.30	7.4
実施例 6-170	EC:DMC:VEC (45:45:10)	1.0	20	20	4.30	7.5
比較例 6-58	EC:DMC:VEC (45:45:10)	1.5	25	30	4.30	3.9

(表59)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	放電 容量 (mAh)
実施例 6-171	EC: DMC: VEC (45: 45:10)	1.0	25	30	4.40	7.5
実施例 6-172	EC: DMC: VEC (45: 45:10)	1.5	20	30	4.40	7.4
実施例 6-173	EC:DMC:VEC (45:45:10)	1.5	25	20	4.40	7.5
実施例 6-174	EC: DMC: VEC (45: 45:10)	1.0	20	30	4.40	7.6
実施例 6-175	EC: DMC: VEC (45:45:10)	1.0	20	20	4.40	7.7
比較例 6-59	EC: DMC: VEC (45: 45:10)	1.5	25	30	4.40	4.0

WO 03/019713 PCT/JP02/08498

(表60)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-176	EC: DMC: VC (49:49:2)	1.0	25	30	4.25	7.3
実施例 6-177	EC: DMC: VC (49:49:2)	1.5	20	30	4.25	7.2
実施例 6-178	EC: DMC: VC (49:49:2)	1.5	25	20	4.25	7.2
実施例 6-179	EC: DMC: VC (49:49:2)	1.0	20	30	4.25	7.3
実施例 6-180	EC: DMC: VC (49:49:2)	1.0	20	20	4.25	7.4
比較例 6-60	EC: DMC: VC (49:49:2)	1.0	20	20	4.20	7.2
比較例 6-61	EC: DMC: VC (49:49:2)	1.5	25	30	4.20	7.1
比較例 6-62	EC: DMC: VC (49:49:2)	1.5	25	30	4.25	4.6

(表61)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-181	EC:DMC:VC (49:49:2)	1.0	25	30	4.30	7.5
実施例 6-182	EC:DMC:VC (49:49:2)	1.5	20	30	4.30	7.4
実施例 6-183	EC: DMC: VC (49:49:2)	1.5	25	20	4.30	7.4
実施例 6-184	EC: DMC: VC (49:49:2)	1.0	20	30	4.30	7.5
実施例 6-185	EC: DMC: VC (49:49:2)	1.0	20	20	4.30	7.7
比較例 6-63	EC:DMC:VC (49:49:2)	1.5	25	30	4.30	4.1

(表62)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-186	EC: DMC: VC (49:49:2)	1.0	25	30	4.40	7.7
実施例 6-187	EC:DMC:VC (49:49:2)	1.5	20	30	4.40	7.6
実施例 6-188	EC:DMC:VC (49:49:2)	1.5	25	20	4.40	7.6
実施例 6-189	EC: DMC: VC (49:49:2)	1.0	20	30	4.40	7.7
実施例 6-190	EC: DMC: VC (49:49:2)	1.0	20	20	4.40	7.9
比較例 6-64	EC:DMC:VC (49:49:2)	1.5	25	30	4.40	4.2

(表63)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-191	EC: DMC: VC (47.5: 47.5: 5)	1.0	25	30	4.25	7.3
実施例 6-192	EC: DMC: VC (47.5: 47.5: 5)	1.5	20	30	4.25	7.3
実施例 6-193	EC: DMC: VC (47.5: 47.5:5)	1.5	25	20	4.25	7.3
実施例 6-194	EC: DMC: VC (47.5: 47.5:5)	1.0	20	30	4.25	7.3
実施例 6-195	EC: DMC: VC (47.5: 47.5:5)	1.0	20	20	4.25	7.4
比較例 6-65	EC: DMC: VC (47.5: 47.5: 5)	1.0	20	20	4.20	7.1
比較例 6-66		<u> </u>	25	30	4.20	7.0
	EC: DMC: VC (47.5:47.5:5)		25	30	4.25	4.5

(表64)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-196	EC: DMC: VC (47.5: 47.5:5)	1.0	25	30	4.30	7.5
	EC: DMC: VC (47.5: 47.5: 5)		20	30	4.30	7.5
	EC: DMC: VC (47.5: 47.5: 5)		25	20	4.30	7.5
	EC: DMC: VC (47.5: 47.5: 5)		20	30	4.30	7.6
	EC: DMC: VC (47.5: 47.5:5)		20	20	4.30	7.7
	EC: DMC: VC (47.5: 47.5:5)		25	30	4.30	4.1

(表65)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧()	放電 容量 (mAh)
実施例 6-201	EC: DMC: VC (47.5:47.5:5)	1.0	25	30	4.40	7.7
実施例 6-202	EC: DMC: VC (47.5:47.5:5)	1.5	20	30	4.40	7.7
実施例 6-203	EC: DMC: VC (47.5: 47.5: 5)	1 . 5	25	20	4.40	7.7
実施例 6-204	EC: DMC: VC (47.5: 47.5: 5)	1.0	20	30	4.40	7.7
実施例 6-205	EC: DMC: VC (47.5: 47.5: 5)	1.0	20	20	4.40	7.8
比較例 6-69	EC: DMC: VC (47.5: 47.5: 5)	1.5	25	30	4.40	4.1

WO 03/019713

73

(表66)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧 (V)	放電 容量 (mAh)
実施例 6-206	EC: DMC: VC (45:45:10)	1.0	25	30	4.25	7.1
実施例 6-207	EC: DMC: VC (45: 45:10)	1.5	20	30	4.25	7.1
実施例 6-208	EC: DMC: VC (45:45:10)	1.5	25	20	4.25	7.1
実施例 6-209	EC:DMC:VC (45:45:10)	1.0	20	. 30	4.25	7.1
実施例 6-210	EC:DMC:VC (45:45:10)	1.0	20	20	4.25	7.2
比較例 6-70	EC:DMC:VC (45:45:10)	1.0	20	20	4.20	7.0
比較例 6-71	EC: DMC: VC (45: 45: 10)	1.5	25	30	4.20	6.9
比較例 6-72	EC:DMC:VC (45:45:10)	1.5	25	30	4.25	4.4

(表67)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	
実施例 6-211	EC: DMC: VC (45:45:10)	1.0	25	30	4.30	7.3
実施例 6-212	EC: DMC: VC (45:45:10)	1.5	20	30	4.30	7.3
実施例 6-213	EC: DMC: VC (45: 45: 10)	1.5	25	20	4.30	7.3
実施例 6-214	EC: DMC: VC (45:45:10)	1.0	20	30	4.30	7.4
実施例 6-215	EC: DMC: VC (45:45:10)	1.0	20	20	4.30	7.5
比較例 6-73	EC: DMC: VC (45: 45: 10)	1.5	25	30	4.30	3.9

(表68)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-216	EC: DMC: VC (45:45:10)	1.0	25	30	4.40	7.5
実施例 6-217	EC: DMC: VC (45:45:10)	1.5	20	30	4.40	7.4
実施例 6-218	EC: DMC: VC (45:45:10)	1.5	25	20	4.40	7.5
実施例 6-219	EC: DMC: VC (45: 45: 10)	1.0	20	30	4.40	7.6
実施例 6-220	EC: DMC: VC (45: 45: 10)	1.0	20	20	4.40	7.7
比較例 6-74	EC: DMC: VC (45:45:10)	1.5	25	30	4.40	4.0

75

PCT/JP02/08498

(表69)

非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
EC: DMC: GBL (40:40:20)	1.0	25	30	4.25	7.0
	1.5	20	30	4.25	7.0
	1.5	25	20	4.25	7.0
	1.0	20	30	4.25	7.1
		20	20	4.25	7.1
		20	20	4.20	6.8
	,	25	30	4.20	6.7
		25	30	4.25	4.3
	非水溶媒 EC:DMC:GBL (40:40:20) EC:DMC:GBL (40:40:20) EC:DMC:GBL (40:40:20) EC:DMC:GBL (40:40:20) EC:DMC:GBL (40:40:20) EC:DMC:GBL (40:40:20)	非水溶媒 Li ₂ CO ₃ +Li ₂ SO ₄ の濃度(重量%) EC:DMC:GBL (40:40:20) 1.0 EC:DMC:GBL (40:40:20) 1.5 EC:DMC:GBL (40:40:20) 1.5 EC:DMC:GBL (40:40:20) 1.0 EC:DMC:GBL (40:40:20) 1.0 EC:DMC:GBL (40:40:20) 1.0	非水溶媒	非水溶媒	非水溶媒

(表70)

非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
EC: DMC: GBL (40:40:20)	1.0	25	30	4.30	7.2
	1.5	20	30	4.30	7.1
	1.5	25	20	4.30	7.1
		20	30	4.30	7.3
	1	20	20	4.30	7.4
		25	30	4.30	4.0
	EC: DMC: GBL (40: 40: 20)	EC: DMC: GBL (40: 40: 20) 1.0 EC: DMC: GBL (40: 40: 20) 1.5 EC: DMC: GBL (40: 40: 20) 1.5 EC: DMC: GBL (40: 40: 20) 1.0 EC: DMC: GBL (40: 40: 20) 1.0	非水溶媒	非水溶媒	非水溶媒

(表71)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プ마ン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-231	EC: DMC: GBL (40:40:20)	1.0	25	30	4.40	7.4
実施例 6-232	EC: DMC: GBL (40:40:20)	1.5	20	30	4.40	7.3
実施例 6-233	EC: DMC: GBL (40: 40: 20)	1.5	25	20	4.40	7.3
実施例 6-234	EC: DMC: GBL (40:40:20)	1.0	20	30	4.40	7.5
実施例 6-235	EC: DMC: GBL (40:40:20)	1.0	20	20	4.40	7.6
比較例 6-79	EC: DMC: GBL (40:40:20)	1.5	25	30	4.40	4.1

(表72)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	放電 容量 (mAh)
実施例 6-236	EC: DMC: GBL (100/3:100/3:100/3)	1.0	25	30	4.25	7.0
実施例 6-237	EC: DMC: GBL (100/3:100/3:100/3)	1.5	20	30	4.25	7.0
実施例 6-238	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	20	4.25	7.0.
実施例 6-239	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	30	4.25	7.1
実施例 6-240	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	20	4.25	7.1
比較例 6-80	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	20	4.20	6.9
比較例 6-81	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	30	4.20	6.7
比較例 6-82	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	30	4.25	4.2

(表73)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	第二	放電 容量 (mAh)
実施例 6-241	EC: DMC: GBL (100/3:100/3:100/3)	1.0	25	30	4.30	7.2
実施例 6-242	EC: DMC: GBL (100/3:100/3:100/3)	1.5	20	30	4.30	7.1
実施例 6-243	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	20	4.30	7.1
実施例 6-244	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	30	4.30	7.3
実施例 6-245	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	20	4.30	7.4
実施例 6-83	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	30	4.30	4.1

(表74)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-246	EC: DMC: GBL (100/3:100/3:100/3)	1.0	25	30	4.40	7.3
実施例 6-247	EC: DMC: GBL (100/3:100/3:100/3)	1.5	20	30	4.40	7.3
実施例 6-248	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	20	4.40	7.3
実施例 6-249	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	30	4.40	7.4
実施例 6-250	EC: DMC: GBL (100/3:100/3:100/3)	1.0	20	20	4.40	7.6
比較例 6-84	EC: DMC: GBL (100/3:100/3:100/3)	1.5	25	30	4.40	3.9

(表75)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-251	EC: DMC: GBL (25:25:50)	1.0	25	30	4.25	6.2
実施例 6-252	EC: DMC: GBL (25: 25:50)	1.5	20	30	4.25	6.2
実施例 6-253	EC: DMC: GBL (25: 25:50)	1.5	25	20	4.25	6.2
実施例 6-254	EC: DMC: GBL (25: 25:50)	1.0	20	30	4.25	6.3
実施例 6-255	EC: DMC: GBL (25:25:50)	1.0	20	20	4.25	6.4
比較例 6-85	EC: DMC: GBL (25: 25:50)	1.0	20	20	4.20	6.0
比較例 6-86	EC: DMC: GBL (25: 25:50)	1.5	25	30	4.20	5.9
比較例 6-87	EC: DMC: GBL (25: 25:50)	1.5	25	30	4.25	3.9

(表76)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(ソ)	放電 容量 (mAh)
実施例 6-256	EC: DMC: GBL (25: 25:50)	1.0	25	30	4.30	6.4
実施例 6-257	EC: DMC: GBL (25: 25:50)	1.5	20	30	4.30	6.5
実施例 6-258	EC: DMC: GBL (25: 25:50)	1.5	25	20	4.30	6.5
実施例 6-259	EC: DMC: GBL (25: 25:50)	1.0	20	30	4.30	6.6
実施例 6-260	EC: DMC: GBL (25: 25:50)	1.0	20	20	4.30	6.7
比較例 6-88	EC: DMC: GBL (25: 25:50)	1.5	25	30	4.30	4.0

(表77)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(ソ)	放電 容量 (mAh)
実施例 6-261	EC: DMC: GBL (25: 25:50)	1.0	25	30	4.40	7.2
	EC: DMC: GBL (25: 25:50)	1.5	20	30	4.40	7.2
	EC: DMC: GBL (25: 25:50)		25	20	4.40	7.2
	EC: DMC: GBL (25: 25:50)		20	30	4.40	7.3
	EC: DMC: GBL (25:25:50)		20	20	4.40	7.4
	EC: DMC: GBL (25: 25:50)		25	30	4.40	3.8

(表78)

	非水溶媒 .	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-266	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.0	25	30	4.25	7.3
実施例 6-267	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.5	20	30	4.25	7.3
実施例 6-268	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.5	25	20	4.25	7.3
実施例 6-269	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.0	20	30	4.25	7.3
実施例 6-270	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.0	20	20	4.25	7.4
比較例 6-90	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.0	20	20	4.20	7.2
比較例 6-91	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.5	25	30	4.20	7.1
比較例 6-92	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.5	25	30	4.25	4.6

(表79)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限 電圧 (V)	放電 容量 (mAh)
実施例 6-271	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.0	25	. 30	4.30	7.5
<u></u> 実施例 6−272	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.5	20	30	4.30	7.5
実施例 6−273	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.5	25	20	4.30	7.5
	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)		20	30	4.30	7.6
<u></u>	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)		20	20	4.30	7.7
	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)		25	30	4.30	4.2

(表80)

	非水溶媒	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)		放電 容量 (mAh)
宝城例 6-276	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1.0	25	30	4.40	7.7
	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1	20	30	4.40	7.6
	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	1	25	20	4.40	7.7
l.	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)		20	30	4.40	7.8
l l	EC: DMC: GBL: VEC (19.6:19.6:58.8:2)	B	20	20	4.40	7.9
	1 mg (10 G · 10 G · 58 8 · 2		25	30	4.4	4.3
比較例 6-94	EC: DMC: GBL: VEC (13.0:13.0:00.0:0	<u> </u>				

(表81)

						
	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
	EC: DMC: GBL: VEC (19:19:57:5)	1.0	25	30	4.25	7.3
	EC: DMC: GBL: VEC (19:19:57:5)	1.5	20	30	4.25	7.3
	EC : DMC : GBL : VEC (19:19:57:5)		25	20	4.25	7.3
		_	20	30	4.25	7.3
	EC: DMC: GBL: VEC (19:19:57:5)		20	20	4.25	7.4
	EC: DMC: GBL: VEC (19:19:57:5)		20	20	4.20	7.2
比較例 6-95	EC: DMC: GBL: VEC (19:19:57:5)	,	25	30	4.2	0 7.1
比較例 6-96				30	4.2	
比較例 6-97	EC: DMC: GBL: VEC (19:19:57:5	1.5	25	30	4.2	

(表82)

及02)						
	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロシ性 不純物 の濃度 (ppm)	水分量 (ppm)		放電 容量 (mAh)
-14-F1 0, 00C	EC: DMC: GBL: VEC (19:19:57:5)	1.0	25	30	4.30	7.5
	EC: DMC: GBL: VEC (19:19:57:5)		20	30	4.30	7.4
			25	20	4.30	7.5
	EC: DMC: GBL: VEC (19:19:57:5)	1	20	30	4.30	7.6
	EC: DMC: GBL: VEC (19:19:57:5)		20	20	4.30	7.7
	EC: DMC: GBL: VEC (19:19:57:5)		25	30	4.30	4.1
比較例 6-98	EC: DMC: GBL: VEC (19:19:57:5)	1.5	20		1.0	

(表83)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
実施例 6-291	EC: DMC: GBL: VEC (19:19:57:5)	1.0	25	30	4.40	7.7
実施例 6-292	EC: DMC: GBL: VEC (19:19:57:5)	1.5	20	30	4.40	7.7
<u></u>	EC: DMC: GBL: VEC (19:19:57:5)		25	20	4.40	7.7
	EC: DMC: GBL: VEC (19:19:57:5)		20	30	4.40	7.8
	EC: DMC: GBL: VEC (19:19:57:5)		20	20	4.40	7.9
	EC: DMC: GBL: VEC (19:19:57:5)		25	30	4.40	4.2

(表84)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロトン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
	TO ODE VEC (18 · 18 · 54 : 10)	1.0	25	30	4.25	7.2
建施例 6-296	EC: DMC: GBL: VEC (18:18:54:10)	1.5	20	30	4.25	7.2
美施例 6-297	EC: DMC: GBL: VEC (18:18:54:10)	1.5	25	20	4.25	7.2
実施例 6-298 	EC: DMC: GBL: VEC (18:18:54:10)	1.0	20	30	4.25	7.2
実施例 6-299 	EC: DMC: GBL: VEC (18:18:54:10)	1.0	20	20	4.25	7.3
	EC: DMC: GBL: VEC (18:18:54:10)	1	20	20	4.2	0 7.0
比較例 6-100	EC: DMC: GBL: VEC (18:18:54:10	<u> </u>	25	30	4.2	0 6.9
比較例 6-10	1 EC: DMC: GBL: VEC (18:18:54:10	·/	25	30	4.2	5 4.
比較例 6-10	2 EC: DMC: GBL: VEC (18:18:54:10	7/				

(表85)

支85)	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
	CDI (VEC (18:18:54:10)	1.0	25	30	4.30	7.4
実施例 6-301	EC: DMC: GBL: VEC (18:18:54:10)	1.5	20	30	4.30	7.3.
実施例 6-302	EC: DMC: GBL: VEC (18:18:54:10)	1.5	25	20	4.30	7.3
実施例 6-303	EC: DMC: GBL: VEC (18:18:54:10)	1.0	20	30	4.30	7.4
実施例 6-304	EC: DMC: GBL: VEC (18:18:54:10)		20	20	4.30	7.5
	EC: DMC: GBL: VEC (18:18:54:10)		25	30	4.3	0 4.0
比較例 6-103	EC: DMC: GBL: VEC (18:18:54:10) 1.5	20			

(表86)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧()	
実施例 6-306	EC: DMC: GBL: VEC (18:18:54:10)	1.0	25	30	4.40	7.5
実施例 6-307	EC: DMC: GBL: VEC (18:18:54:10)	1.5	20	30	4.40	7.5
実施例 6-308	EC: DMC: GBL: VEC (18:18:54:10)	1.5	25	20	4.40	7.5
実施例 6-309	EC: DMC: GBL: VEC (18:18:54:10)	1.0	20	30	4.40	7.5
実施例 6-310	EC: DMC: GBL: VEC (18:18:54:10)	1.0	20	20	4.40	7.6
比較例 6-104	EC: DMC: GBL: VEC (18:18:54:10)	1.5	25	30	4.40	4.0

(表87)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(♡)	放電 容量 (mAh)
実施例 6-311	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	25	30	4.25	7.3
実施例 6-312	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	20	30	4.25	7.2
実施例 6-313	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	20	4.25	7.2
実施例 6-314	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	30	4.25	7.3
実施例 6-315	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	20	4.25	7.4
比較例 6-105	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	20	4.20	7.2
比較例 6-106	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	30	4.20	7.1
比較例 6-107	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	30	4.25	4.6

(表88)

	非水溶媒(体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	甩儿	放電 容量 (mAh)
実施例 6-316	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	25	30	4.30	7.5
実施例 6-317	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	20	30	4.30	7.4
実施例 6-318	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	20	4.30	7.4
実施例 6-319	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	30	4.30	7.5
実施例 6-320	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	20	4.30	7.7
比較例 6-108	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	30	4.30	4.1

(表89)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)		放電 容量 (mAh)
実施例 6-321	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	25	30	4.40	7.7
実施例 6-322	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	20	30	4.40	7.6
実施例 6-323	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	20	4.40	7.6
実施例 6-324	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	30	4.40	7.7
実施例 6-325	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.0	20	20	4.40	7.9
比較例 6-109	EC: DMC: GBL: VC (19.6:19.6:58.8:2)	1.5	25	30	4.40	4.2

(表90)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
実施例 6-326	EC: DMC: GBL: VC (19:19:57:5)	1.0	25	30	4.25	7.3
実施例 6-327	EC: DMC: GBL: VC (19:19:57:5)	1.5	20	30	4.25	7.3
実施例 6-328	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	20	4.25	7.3
実施例 6-329	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	30	4.25	7.3
実施例 6-330	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	20	4.25	7.4
比較例 6-110	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	20	4.20	7.1
比較例 6-111	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	30	4.20	7.0
比較例 6-112	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	30	4.25	4.5

(表91)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	
実施例 6-331	EC: DMC: GBL: VC (19:19:57:5)	1.0	25	30	4.30	7.5
実施例 6-332	EC: DMC: GBL: VC (19:19:57:5)	1.5	20	30	4.30	7.5
実施例 6-333	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	20	4.30	7.5
実施例 6-334	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	30	4.30	7.6
実施例 6-335	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	20	4.30	7.7
比較例 6-113	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	30	4.30	4.1

(表92)

	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電 容量 (mAh)
実施例 6-336	EC: DMC: GBL: VC (19:19:57:5)	1.0	25	30	4.40	7.7
実施例 6-337	EC: DMC: GBL: VC (19:19:57:5)	1.5	20	30	4.40	7.7
実施例 6-338	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	20	4.40	7.7
実施例 6-339	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	30	4.40	7.7
実施例 6-340	EC: DMC: GBL: VC (19:19:57:5)	1.0	20	20	4.40	7.8
比較例 6-114	EC: DMC: GBL: VC (19:19:57:5)	1.5	25	30	4.40	4.1

(表93)

	非水溶媒 (<u>体積%</u>)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	電圧	放電 容量 (mAh)
			25	30	4.25	7.2
医施例 6-341	EC: DMC: GBL: VC (18:18:54:10)		20	30	4.25	7.2
実施例 6 -342	EC: DMC: GBL: VC (18:18:54:10)	1.5	25	20	4.25	7.2
実施例 6-343	EC: DMC: GBL: VC (18:18:54:10)	1.0	20	30	4.25	7.2
実施例 6-344 	EC: DMC: GBL: VC (18:18:54:10)	1.0	20	20	4.25	7.3
	EC: DMC: GBL: VC (18:18:54:10		20	20	4.2	0 6.9
比較例 6-115	EC: DMC: GBL: VC (18:18:54:10	1.5	25	30	4.2	0 6.9
比較例 6-110	6 EC: DMC: GBL: VC (18:18:54:10	0) 1.5	25	30	4.2	25 4.
比較例 6-11	7 EC: DMC: GBL: VC (18:18:54:16					

(表94)

表94)			-0-12 014-			1.7
	非水溶媒 (体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)		放電 容量 (mAh)
	CDL - VC (18:18:54:10)	1.0	25	30	4.30	7.4
実施例 6-346	EC: DMC: GBL: VC (18:18:54:10)	1.5	20	30	4.30	7.3
実施例 6-347	EC: DMC: GBL: VC (18:18:54:10)	1.5	25	20	4.30	7.3
実施例 6-34	BEC: DMC: GBL: VC (18:18:54:10)	1.0	20	30	4.30	7.3
実施例 6-34	9 EC: DMC: GBL: VC (18:18:54:10)	/	20	20	4.30	7.5
実施例 6-35	0 EC: DMC: GBL: VC. (18:18:54:10	1	25	30	4.3	0 4.0
比較例 6-11	8 EC: DMC: GBL: VC (18:18:54:10)) 1.5	20			

(表95)

	非水溶媒(体積%)	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (重量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	1
実施例 6-351	EC: DMC: GBL: VC (18:18:54:10)	1.0	25	30	4.40	7.5
実施例 6-352	EC:DMC:GBL:VC (18:18:54:10)	1.5	20	30	4.40	7.4
実施例 6-353	EC: DMC: GBL: VC (18:18:54:10)	1.5	25	20	4.40	7.5
実施例 6-354	EC:DMC:GBL:VC(18:18:54:10)	1.0	20	30	4.40	7.6
実施例 6-355	EC:DMC:GBL:VC (18:18:54:10)	1.0	20	20	4.40	7.6
比較例 6-119	EC: DMC: GBL: VC (18:18:54:10)	1.5	25	30	4.40	4.0

(表96)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(公)	放電容量 維持率 (%)
実施例 7-1	LiCoO ₂	Li 金属	LiPF ₆	1.0	20	20	4.30	55
比較例 7-1	LiCoO ₂	Li 金属	LiPF ₆	1.5	25	30	4.30	53

(表97)

	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電容量 維持率 (%)
実施例 7-2	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	20	4.30	84
比較例 7-2	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	25	30	4.30	79

(表98)

-	正極 活物質	負極 活物質	リチウム塩	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧(V)	放電容量 維持率 (%)
実施例 7-3	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.0	20	20	4.30	96
比較例 7-3	LiCoO ₂	難黒鉛化 炭素	LiPF ₆	1.5	25	30	4.30	90

(表99)

	TF-1367	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	活物質	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-1	LiCoO ₂	1.0	20	20	4.25	98.5	94.8	91.0
実施例 8-2	LiCoO ₂	1.5	20	20	4.25	98.3	94.1	90.2
実施例 8-3	LiCoO ₂	1.0	25	20	4.25	98.4	94.0	90.0
実施例 8-4	LiCoO ₂	1.0	20	30	4.25	98.3	94.0	89.9
比較例 8-1	LiCoO ₂	1.0	20	20	4.20	98.9	96.5	93.0
比較例 8-2	$LiCoO_2$	1.5	20	20	4.20	98.8	96.4	93.1
比較例 8-3	LiCoO ₂	1.0	25	20	4.20	98.7	96.0	92.1
比較例 8-4	LiCoO_2	1.0	20	30	4.20	98.7	96.0	92.0
比較例 8-5	LiCoO ₂	1.5	25	30	4.20	98.0	95.5	91.5
比較例8-6	LiCoO ₂	1.5	25	30	4.25	98.2	93.2	88.2

(表100)

	正極	Li₂CO₃+Li₂SO₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	活物質	(質量%)	の濃度 (ppm)	(ppm)	(S)	10 サイクル	50 サイクル	100 サイクル
実施例 8-5	LiCoO ₂	1.0	20	20	4.30	98.4	94.8	91.0
実施例 8-6	LiCoO ₂	1.5	20	20	4.30	98.2	94.0	90.1
実施例 8-7	LiCoO ₂	1.0	25	20	4.30	98.2	94.0	90.0
実施例 8-8	LiCoO ₂	1.0	20	30	4.30	98.2	94.0	89.8
比較例 8-7	LiCoO ₂	1.5	25	30	4.30	98.1	93.1	88.1

(表101)

•		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電容量維持率 (%)		
	正極 活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
### MI 9_0	LiCoO ₂	1.0	20	20	4.40	96.4	89.4	86.3
			20	20	4.40	95.1	88.1	82.2
実施例 8-10	· 	4	25	20	4.40	95.6	89.1	83.8
実施例 8-11		2	20	30	4.40	95.6	89.3	83.5
実施例 8-12	LiCoU	2 1.0		20	4.40	93.0	87.1	78.7
比較例 8-8	LiCoC	1.5	25	30	4.40	30.0		

(表102)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電物	字量維持率(%)		
	正極 活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-13	LiCoOo	1.0	20	20	4.50	92.4	86.4	76.3	
			20	20	4.50	90.1	83.1	71.2	
実施例 8-14			25	20	4.50	90.0	83.2	71.0	
実施例 8-15		3	20	30	4.50	89.9	83.3	70.8	
実施例 8-16	PILICOU	2 1.0		1 20	4.50	88.8	82.1	68.7	
比較例 8-9	LiCoO	2 1.5	25	30	4.50	00.0	02.2		

(表103)

	正極 活物質	Li ₂ CO ₃ +Li ₂ SC の濃度 (質量%)	プロング 不純物の濃度	水分	里声	上限	放電	電容量 (%)	 維持率)
生长 加 0		(貝里%)	(ppm)	(P)		(V)	10 サイク/	1 5	100
実施例 8-17		1.0	20	20	4	.25	95.0		
実施例 8-18		1.5	20	20	4.	.25	95.0		-
実施例 8-19		1.0	25	20	4.	25	95.0		
実施例 8-20	LiNiO ₂	1.0	20	30	4.	25	94.9	92.6	-
比較例 8-10 L	iNiO ₂	1.0	20	20	4.2	_	95.0		
比較例 8-11 L	iNiO ₂	1.5	20	20	4.2	-		93.5	92.0
上較例 8-12 L	iNiO ₂	1.0	25	20		+	95.0	93.6	92.0
七較例 8-13 Li	NiO ₂	1.0	20		4.2		4.9	93.3	91.9
七較例 8-14 Li		1.5		30	4.2		4.9	93.2	91.8
△較例 8-15 Lil			25	30	4.20) 9.	4.5	92.8	90.2
	102	1.5	25	30	4.25	94	4.6	91.6	87.6

(表104)

	正極 活物質	Li ₂ CO ₃ +Li ₂ SO の濃度 (質量%)	プロン性不純物の濃度	水分量		^ <u> </u>	電容量) (%)	維持率
実施例 8-21	Linio		(ppm)	(PPIII)	(V)	10 サイク/	50 サイクバ	100 サイクル
		1.0	20	20	4.30	94.9	93.0	90.3
実施例 8-22		1.5	20	20	4.30	94.8	92.5	89.5
実施例 8-23		1.0	25	20	4.30	94.8	92.4	89.5
実施例 8-24	LiNiO ₂	1.0	20	30	4.30	94.8	92.4	89.1
比較例 8-16 I	LiNiO ₂	1.5	25	20	4.00			09.1
			20	30	4.30	94.4	91.4	87.5

(表105)

	·	プロン性		上限	放電容	字量維持	寺率
正極 活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	水分量 (ppm)	電圧	10 サイクル	50	100 サイクル
1 250	1.0	20	20	4.40	94.2	86.2	82.6
		20	20	4.40	93.5	83.9	81.1
	2	25	20	4.40	94.0	85.1	81.8
7 LiNiO	2			4.4	0 93.9	85.3	81.2
8 LiNiC	02 1.0	20	1 30			0 02 2	76.9
L7 LiNiC	02 1.5	25	30	4.4	0 93.	0 83.	10.5
	LiNiO ₂ LiNiO ₃ LiNiO	正極活物質 Li ₂ CO ₃ +Li ₂ SO ₄ の濃度(質量%) 1.0 LiNiO ₂ 1.5 LiNiO ₂ 1.0 LiNiO ₂ 1.0 1.0	正極	正極	正極	正極 活物質 Li ₂ CO ₃ +Li ₂ SO ₄ 不純物 水分量 に限 で決度 (ppm) に対力ル に対心2 1.0 20 20 4.40 94.2 LiNiO ₂ 1.5 20 20 4.40 93.5 25 LiNiO ₂ 1.0 25 20 4.40 94.0 8 LiNiO ₂ 1.0 20 30 4.40 93.5 25 20 30 4.40 93.5 25 26 30 4.40 93.5 26 30 4.40 93.5	正極

(表106)

表1007						七种重为	字量維持	寺率
	正極 活物質	Li ₂ CO ₃ +Li ₂ SU ₄	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧	10	(%) 50 サイクル	100
		1.0	20	20	4.50	90.2	84.2	70.6
実施例 8-29			20	20	4.50	88.88	81.9	70.1
実施例 8-3	LiNiO ₂	1.5		20	4.50	89.2	82.1	69.8
実施例 8-3	1 LiNiO	1.0	25		4.50	1	82.3	70.0
実施例 8-3	2 LiNiO	1.0	20	30	4.50	1	1 200	1 66 0
比較例 8-			25	30	4.5	85.1	80.3	66.9
THE TOTAL PROPERTY OF THE PARTY					•			

(表107)

正極 活物質	の濃度	一不純物	水分量	一一一	14		
		(ppm)	(ppm)		10	50 レサイク	100
	1.0	20	20	4.25			
 i	1.5	20	20	4.25	 	-	92.0
	1.0	25	20	4.25			
	1.0	20	30	4.25	98.8	 	92.0
	1.0	20	20	4 20			
iCo _{0.9} Ni _{0.1} O ₂	1.5	20					93.2
iCo _{0.9} Ni _{0.1} O ₂	1.0	25					93.3
Co _{0.9} Ni _{0.1} O ₂	1.0						93.2
_							93.1
						95.9	92.7
	活物質 LiCo _{0.9} Ni _{0.1} O ₂	活物質 の濃度 (質量%) LiCo _{0.9} Ni _{0.1} O ₂ 1.0 LiCo _{0.9} Ni _{0.1} O ₂ 1.5 LiCo _{0.9} Ni _{0.1} O ₂ 1.0 Co _{0.9} Ni _{0.1} O ₂ 1.0	活物質 の濃度 (質量%) 不純物の濃度 (質量%) 不純物の濃度 (質量%) 不純物の濃度 (質量%) にiCo _{0.9} Ni _{0.1} O ₂ 1.0 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 25 iCo _{0.9} Ni _{0.1} O ₂ 1.0 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 25 iCo _{0.9} Ni _{0.1} O ₂ 1.5 25	活物質 の濃度 (質量%) の濃度 (ppm) 水分量 (ppm) にiCo _{0.9} Ni _{0.1} O ₂ 1.0 20 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 25 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 20 30 iCo _{0.9} Ni _{0.1} O ₂ 1.0 20 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 20 20 iCo _{0.9} Ni _{0.1} O ₂ 1.5 20 20 iCo _{0.9} Ni _{0.1} O ₂ 1.5 20 20 iCo _{0.9} Ni _{0.1} O ₂ 1.5 20 20 iCo _{0.9} Ni _{0.1} O ₂ 1.0 25 20 Co _{0.9} Ni _{0.1} O ₂ 1.0 25 30 Co _{0.9} Ni _{0.1} O ₂ 1.5 25 25 30 Co _{0.9} Ni _{0.1} O ₂ 1.5 25 25 30 Co _{0.9} Ni _{0.1} O ₂ 1.5 25 25 30 Co _{0.9} Ni _{0.1} O ₂ 1.5 25 25 30 Co _{0.9} Ni _{0.1} O ₂ 1.5 25 25 20 Co _{0.9} Ni _{0.1}	正極	活物質 の濃度 (質量%) 不純物 水分量 に限 10 10 11 11 11 11 11 11 11 11 11 11 11	活物質 の濃度 (質量%) が分量 に限 で (物) 大分量 (質量%) が (物) が (物) が (物) で で で で (か) で で で で で で で で で で で で で で で で で で で

(表108)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物の濃度	水分量		×1	医容量系 (%)	推持率
宝施 例 9_27		(質量%)	(ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
	LiCo _{0.9} Ni _{0.1} O ₂	1.0	20	20	4.30		96.0	93.0
	LiCo _{0.9} Ni _{0.1} O ₂	1.5	20	20	4.30	98.7	95.0	92.0
実施例 8-39		1.0	25	20	4.30	98.6	95.1	92.0
実施例 8-40 [1.0	20	30	4.30	98.6	95.0	92.0
比較例 8-25 L	$iCo_{0.9}Ni_{0.1}O_2$	1.5	25	30	1 20			
			20	30	4.30	98.3	94.7	91.0

(表109)

及1007			プロン性		나시다	放電容	学量維持	寺率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	水分量 (ppm)	電圧	10 サイクル	(%) 50 サイクル	100 サイクル
		1.0	20	20	4.40	96.5	93.0	88.7
	LiCo _{0.9} Ni _{0.1} O ₂		20	20	4.40	94.3	92.5	86.6
	2 LiCo _{0.9} Ni _{0.1} O ₂	2	25	20	4.40	94.5	92.7	87.7
	3 LiCo _{0.9} Ni _{0.1} O	1	20	30	4.40	95.1	92.9	88.1
実施例 8-4	4 LiCo _{0.9} Ni _{0.1} O	1.0			4.40	93.0	90.0	79.2
比較例 8-2	26 LiCo _{0.9} Ni _{0.1} C	D ₂ 1.5	25	30	4.4	30.0		

(表110)

表 1 1 0 /			プロン性		LKE	放電容	字量維持	寺率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	水分量 (ppm)	(7-7)	10 サイクル	(%) 50 サイクル	100 サイクル
	75.0	1.0	20	20	4.50	94.5	89.0	82.7
	LiCo _{0.9} Ni _{0.1} O ₂		20	20	4.50	91.3	87.5	76.6
	LiCo _{0.9} Ni _{0.1} O ₂	2	25	20	4.50	92.5	88.7	77.7
	7 LiCo _{0.9} Ni _{0.1} O	2	20	30	4.50	93.1	88.9	78.1
実施例 8-4	8 LiCo _{0.9} Ni _{0.1} O	1.0		30	4.50	91.0	87.0	72.2
比較例 8-2	27 LiCo _{0.9} Ni _{0.1} C	02 1.5	25		1.00			

(表111)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个和电视	水分量	上限電圧	1 1 2/2			
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル	
実施例 8-49	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	20	4.25	99.0	96.2	92.5	
実施例 8-50	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	20	20	4.25	98.6	95.3	91.2	
実施例 8-51	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	25	20	4.25	98.6	95.3	91.3	
実施例 8-52	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	30	4.25	98.6	95.4	91.3	
比較例 8-28	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	20	4.20	99.0	96.3	92.7	
比較例 8-29	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	20	20	4.20	98.9	96.3	92.6	
比較例 8-30	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	25	20	4.20	98.7	96.2	92.6	
比較例 8-31	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	30	4.20	98.7	96.2	92.5	
比較例 8-32	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	25	30	4.20	98.6	96.0	92.0	
比較例 8-33	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	25	30	4.25	98.2	95.0	91.0	

(表112)

·	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个小电视	水分量	上限電圧	放電	容量維(%)	 É持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-53	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	20	4.30	99.0	96.0	92.2
実施例 8-54	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	20	20	4.30	98.5	95.1	91.0
	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂		25	20	4.30	98.4	95.1	91.0
実施例 8-56	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	30	4.30	98.6	95.2	91.1
比較例 8-34	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	25	30	4.30	98.1	95.0	90.8

(表113)

	Li ₂ CO ₃ +Li ₂ SO ₄			上限	放電網	字量維持率 (%)		
正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル	
LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	20	20	4.40	96.4	93.8	88.5	
		20	20	4.40	95.4	91.5	86.9	
		25	20	4.40	94.7	92.3	87.6	
		20	30	4.40	94.5	92.4	87.7	
		25	30	4.40	93.5	90.9	78.9	
	正極活物質 LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	正極活物質	正極活物質	正極活物質 の濃度 (質量%) の濃度 (ppm) (p	正極活物質	正極活物質	正極活物質	

(表114)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維(%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
宝施例 8-61	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.0	. 20	20	4.50	94.4	88.8	83.5
	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂		20	20	4.50	91.4	87.5	76.9
	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂		25	20	4.50	91.7	88.3	77.6
	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂		20	30	4.50	91.5	88.4	77.7
			25	30	4.50	90.5	86.9	71.9
比較例 8-36	LiCo _{0.8} Ni _{0.15} Al _{0.05} O ₂	1.5	20					1

(表115)

	- Low you ble fift	Li ₂ CO ₃ +Li ₂ SO ₄	プロシ性不純物	水分量	上限電圧	(707)			
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-65	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	20	4.25	99.2	96.4	91.7	
実施例 8-66	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	20	20	4.25	99.0	95.4	90.5	
実施例 8-67	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	25	20	4.25	99.0	95.5	90.6	
実施例 8-68	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.25	99.0	95.5	90.7	
比較例 8-37	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	20	4.20	99.2	96.6	92.0	
比較例 8-38	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	20	20	4.20	99.0	96.5	91.9	
比較例 8-39	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	25	20	4.20	99.1	96.5	91.8	
比較例 8-40	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.20	99.1	96.5	91.7	
比較例 8-41	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25	30	4.20	98.5	96.2	90.8	
比較例 8-42	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25	30	4.25	98.8	95.4	90.2	

(表116)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-69	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	20	4.30	99.1	96.2	91.5
実施例 8-70	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	20	20	4.30	99.0	95.1	90.2
実施例 8-71	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	25	20	4.30	99.0	95.2	90.3
実施例 8-72	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.30	99.0	95.3	90.4
比較例 8-43	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25	30	4.30	98.7	95.2	90.0

(表117)

		r : CO +1 i-50	プロン性	放電容量維持率 (%)				
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	(ppm)	421	10 サイクル	50 サイクル	100 サイクル
		1.0	20	20	4.40	96.2	93.0	88.7
	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂		20	20	4.40	95.2	91.9	87.0
	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂		25	20	4.40	95.8	91.9	87.5
· <u></u>	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	1	20	30	4.40	95.5	92.1	87.7
実施例 8-70	6 LiCo _{0.9} Mg _{0.05} Al _{0.05} O	2 1.0			4.40	93.5	90.7	7 79.
比較例 8-4	4 LiCo _{0.9} Mg _{0.05} Al _{0.05} O	1.5	25	30	4.4	7 30.0		<u></u>

(表118)

(表118)						执電 窓	字量維	寺率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	プロン性 不純物 の濃度 (ppm)	水分量 (ppm)	上限電圧	10	(%) 50	100 サイクル
		1.0	20	20	4.50	94.2	89.0	83.7
	LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂		20	20	4.50	91.0	86.9	77.0
	3 LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂		25	20	4.50	93.8	88.9	84.0
	9 LiCo _{0.9} Mg _{0.05} Al _{0.05} O ₂	2	20	30	4.50	93.5	89.1	83.9
実施例 8-8	0 LiCo _{0.9} Mg _{0.05} Al _{0.05} O	2		30	4.50	90.5	85.7	71.7
比較例 8-4	LiCo _{0.9} Mg _{0.05} Al _{0.05} O	1.5	25					

(表119)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个地名	水分量	上限電圧		放電容量維持率 (%)		
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル	
実施例 8-81	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	20	20	4.25	98.8	96.5	93.0	
実施例 8-82	$\mathrm{LiCo_{0.9}Ti_{0.05}Al_{0.05}O_{2}}$	1.5	20	20	4.25	98.7	95.3	91.6	
実施例 8-83	$\mathrm{LiCo_{0.9}Ti_{0.05}Al_{0.05}O_{2}}$	1.0	25	20	4.25	98.7	95.4	91.6	
実施例 8-84	$\mathrm{LiCo_{0.9}Ti_{0.05}Al_{0.05}O_{2}}$	1.0	20	30	4.25	98.7	95.4	91.6	
比較例 8-46	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	20	20	4.20	98.8	96.7	93.2	
比較例 8-47	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.5	20	20	4.20	98.8	96.7	93.3	
比較例 8-48	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	25	20	4.20	98.7	96.7	93.0	
比較例 8-49	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	20	30	4.20	98.7	96.7	93.0	
比較例 8-50	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.5	25	30	4.20	98.5	96.4	92.4	
比較例 8-51	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.5	25	30	4.25	98.5	95.2	90.1	

(表120)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个不电视	水分量	上限電圧		容量約(%)	 É持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル
実施例 8-85	$\mathrm{LiCo_{0.9}Ti_{0.05}Al_{0.05}O_{2}}$	1.0	20	20	4.30	98.6	96.4	93.0
実施例 8-86	$\mathrm{LiCo_{0.9}Ti_{0.05}Al_{0.05}O_{2}}$	1.5	20	20	4.30	98.5	95.2	91.5
実施例 8-87	$\mathrm{LiCo_{0.9}Ti_{0.05}Al_{0.05}O_{2}}$	1.0	25	20	4.30	98.6	95.4	91.5
実施例 8-88	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	20	30	4.30	98.7	95.3	91.6
比較例 8-52	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.5	25	30	4.30	98.5	95.1	90.0

(表121)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電線	字量維持率 (%)		
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(八)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-89	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	20	20	4.40	96.8	93.5	88.7	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		20	20	4.40	95.8	91.7	87.4	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		25	20	4.40	96.2	93.2	87.7	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		20	30	4.40	96.2	93.3	87.9	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		25	30	4.40	93.5	90.8	78.8	

(表122)

		Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限	放電網	字量維持率 (%)		
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-93	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂	1.0	20	20	4.50	93.8	88.5	79.7	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		20	20	4.50	90.8	86.7	73.4	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		25	20	4.50	94.2	89.2	80.0	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		20	30	4.50	94.2	89.3	79.9	
	LiCo _{0.9} Ti _{0.05} Al _{0.05} O ₂		25	30	4.50	90.5	85.8	70.8	

(表123)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个小型的	水分量	电压 (V)	1 1701			
	,—. — , — , — , — , — , — , — , — , — ,	(質量%)	の濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル	
実施例 8-97	$LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_{2}$	0.7	20	20	4.25	98.9	95.6	92.3	
実施例 8-98	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	1.5	20	20	4.25	98.5	94.3	91.0	
実施例 8-99	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	0.7	25	20	4.25	98.5	94.3	91.0	
実施例 8-100	${ m LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_2}$	0.7 ·	20	30	4.25	98.6	94.3	91.0	
比較例 8-55	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	0.7	20	20	4.20	98.9	95.6	92.6	
比較例 8-56	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	1.5	20	20	4.20	98.8	95.5	92.5	
比較例 8-57	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	0.7	25	20	4.20	98.9	95.5	92.5	
比較例 8-58	${\rm LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_{2}}$	0.7	20	30	4.20	98.9	95.5	92.5	
比較例 8-59	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	1.5	25	30	4.20	98.8	95.1	92.1	
比較例 8-60	${\rm LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_{2}}$	1.5	25	30	4.25	98.4	93.5	90.2	

(表124)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	11 》中也1993	水分量	电压 (V)	1 (70)		
		(質量%)	の濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル
実施例 8-101	$LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_{2}$	0.7	20	20	4.30	98.9	95.5	92.3
実施例 8−102	${ m LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_2}$	1.5	20	20	4.30	98.4	94.1	90.8
実施例 8-103	$\mathrm{LiCo_{0.8}Mn_{0.15}Mg_{0.05}O_{2}}$	0.7	25	20	4.30	98.3	94.2	90.9
実施例 8-104	$\text{LiCo}_{0.8}\text{Mn}_{0.15}\text{Mg}_{0.05}\text{O}_{2}$	0.7	20	30	4.30	98.4	94.3	91.0
比較例 8-61	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	1.5	25	30	4.30	98.2	93.1	89.2

(表125)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロトン性	水分量	上限	放電網	字量維护 (%)	寺率
	正極活物質	の濃度 (質量%)	不純物 の濃度 (ppm)	かル重 (ppm)	ヘハ	10 サイクル	50 サイクル	100 サイクル
	34	0.7	20	20	4.40	97.9	94.6	89.5
	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂		20	20	4.40	96.9	93.5	88.0
	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	2	25	20	4.40	97.0	94.3	89.2
L	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O	2	20	30	4.4	97.6	94.1	89.1
実施例 8-108	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O	0.7				0 96.6		7 80.2
比較例 8-62	LiCo _{0.8} Mn _{0.15} Mg _{0.05} C	0_2 1.5	25	30	4.4	90.0		

(表126)

表 I Z O)		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電容量維持率 (%)			
	正極活物質	の濃度 (質量%)	小純的 の濃度 (ppm)	(ppm)	\ \tau \ 1\ \	10 サイクル	50 サイクル	100 サイクル	
	36.	0.7	20	20	4.50	93.9	87.6	78.5	
	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂		20	20	4.50	90.9	86.5	73.0	
実施例 8-110	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O ₂	1.5		20	4 50	94.0	87.3	77.8	
中华间 8-111	LiCo _{0.8} Mn _{0.15} Mg _{0.05} O	0.7	25		 -			78.1	
	2 LiCo _{0.8} Mn _{0.15} Mg _{0.05} O		20	30	4.5	0 93.6	87.4	10.1	
			25	30	4.5	90.6	85.7	7 71.2	
比較例 8-63	LiCo _{0.8} Mn _{0.15} Mg _{0.05} C	0_2 1.5	20				_1		

(表127)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个和电视	水分量	上限電圧	放電	放電容量維持率 (%)				
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100			
実施例 8-113	LiCo _{0.9} Fe _{0.1} O ₂	1.0	20	20	4.25	98.7	96.2	92.1			
実施例 8-114	LiCo _{0.9} Fe _{0.1} O ₂	1.5	20	20	4.25	98.5	95.3	90.7			
実施例 8-115	LiCo _{0.9} Fe _{0.1} O ₂	1.0	25	20	4.25	98.6	95.4	90.8			
実施例 8-116	LiCo _{0.9} Fe _{0.1} O ₂	1.0	20	30	4.25	98.5	95.4	90.7			
比較例 8-64	LiCo _{0.9} Fe _{0.1} O ₂	1.0	20	20	4.20	98.7	96.3	92.1			
比較例 8-65	LiCo _{0.9} Fe _{0.1} O ₂	1.5	20	20	4.20	98.8	96.3	92.1			
比較例 8-66	LiCo _{0.9} Fe _{0.1} O ₂	1.0	25	20	4.20	98.7	96.2	92.0			
比較例 8-67	LiCo _{0.9} Fe _{0.1} O ₂	1.0	20	30	4.20	98.6	96.2	92.0			
比較例 8-68	LiCo _{0.9} Fe _{0.1} O ₂	1.5	25			98.5	95.9	91.5			
七較例 8-69	LiCo _{0.9} Fe _{0.1} O ₂	1.5	25			98.5	95.1	90.1			

(表128)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物の濃度	水分量	上限電圧	j .	容量約(%)	生持率
		(質量%)	の候及 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル
	${ m LiCo_{0.9}Fe_{0.1}O_2}$	1.0	20	20	4.30	98.5	96.1	92.0
実施例 8-118	LiCo _{0.9} Fe _{0.1} O ₂	1.5	20	20	4.30	98.3	95.0	90.4
	LiCo _{0.9} Fe _{0.1} O ₂	1.0	25	20	4.30	98.3	95.2	90.5
実施例 8-120	LiCo _{0.9} Fe _{0.1} O ₂	1.0	20	30	4.30	98.4	95.2	90.5
比較例 8-70	LiCo _{0.9} Fe _{0.1} O ₂	1.5	25	30	4.30	98.1	95.0	89.1

(表129)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限電圧	放電容量維持率 %)			
	正極活物質	70.70	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-121	LiCo _{0.9} Fe _{0.1} O ₂	1.0	20	20	4.40	97.7	94.2	88.8	
実施例 8-122	LiCo _{0.9} Fe _{0.1} O ₂	1.5	20	20	4.40	96.6	93.0	85.9	
実施例 8-123	LiCo _{0.9} Fe _{0.1} O ₂	1.0	25	20	4.40	96.9	94.1	87.1	
	LiCo _{0.9} Fe _{0.1} O ₂		20	30	4.40	97.1	93.8	87.1	
比較例 8-71	LiCo _{0.9} Fe _{0.1} O ₂	1.5	25	30	4.40	95.4	90.8	79.9	

(表130)

		Li ₂ CO ₃ +Li ₂ SO ₄	50 ₄ プロン性 不純物 水気		上限電圧	1 1707			
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-125	$ ext{LiCo}_{0.9} ext{Fe}_{0.1} ext{O}_2$	1.0	20	20	4.50	93.7	87.2	78.6	
	LiCo _{0.9} Fe _{0.1} O ₂		20	20	4.50	90.6	86.0	73.1	
実施例 8-127	LiCo _{0.9} Fe _{0.1} O ₂	1.0	25	20	4.50	92.9	87.1	77.1	
	LiCo _{0.9} Fe _{0.1} O ₂		20	30	4.50	93.1	87.0	78.1	
比較例 8-72	LiCo _{0.9} Fe _{0.1} O ₂	1.5	25	30	4.50	90.4	85.8	71.1	

(表131)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-129	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	0.3	20	20	4.25	99.0	96.6	92.9
実施例 8-130	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	1.5	20	20	4.25	97.9	95.4	91.7
実施例 8-131	$LiNi_{0.5}Mn_{0.5}O_2$	0.3	25	20	4.25	98.0	95.3	91.8
実施例 8-132	$LiNi_{0.5}Mn_{0.5}O_2$	0.3	20	30	4.25	98.0	95.4	91.7
比較例 8-73	$LiNi_{0.5Mn_{0.5}O_2}$	0.3	20	20	4.20	99.0	96.7	93.4
比較例 8-74	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	1.5	20	20	4.20	99.1	96.7	93.4
比較例 8-75	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	0.3	25	20	4.20	99.0	96.7	93.4
比較例 8-76	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	0.3	20	30	4.20	99.0	96.7	93.4
比較例 8-77	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	1.5	25	30	4.20	98.6	96.5	93.0
比較例 8-78	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	1.5	25	30	4.25	97.8	94.1	91.3

(表132)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維持率(%)		
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-133	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	0.3	20	20	4.30	99.0	96.5	92.7	
実施例 8-134	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	1.5	20	20	4.30	97.6	95.2	91.5	
実施例 8-135	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	0.3	25	20	4.30	98.0	95.2	91.8	
実施例 8-136	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	0.3	20	30	4.30	98.0	95.2	91.7	
比較例 8-79	$\mathrm{LiNi_{0.5}Mn_{0.5}O_{2}}$	1.5	25	30	4.30	97.8	94.0	91.3	

(表133)

		Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限	放電名	字量維(%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(八)	10 サイクル	50 サイクル	100 サイクル
生物和 8-137	LiNi _{0.5} Mn _{0.5} O ₂	0.3	20	20	4.40	97.4	95.1	89.9
	LiNi _{0.5} Mn _{0.5} O ₂		20	20	4.40	96.5	93.7	88.2
	LiNi _{0.5} Mn _{0.5} O ₂		25	20	4.40	97.1	95.0	88.7
	LiNi _{0.5} Mn _{0.5} O ₂		20	30	4.40	96.9	94.7	88.9
			25	30	4.40	94.9	92.9	82.2
比較例 8-80	LiNi _{0.5} Mn _{0.5} O	1.5	20				1	

(表134)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電器	容量維持率 (%)		
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル	
宝饰/例 8-141	LiNi _{0.5} Mn _{0.5} O ₂	0.3	20	20	4.50	94.4	89.1	85.9	
	LiNi _{0.5} Mn _{0.5} O ₂	1.5	20	20	4.50	91.5	87.7	77.2	
	LiNi _{0.5} Mn _{0.5} O ₂		25	20	4.50	93.8	89.0	84.0	
	LiNi _{0.5} Mn _{0.5} O ₂		20	30	4.50	93.7	88.7	83.9	
			25	30	4.50	91.4	87.0	75.2	
比較例 8-81	LiNi _{0.5} Mn _{0.5} O ₃	1.5	20					\	

(表135)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个种物	水分量		S	電容量系 (%)	性持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクバ	100 サイクル
	5 LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂		20	20	4.25		 	
	6 LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	·	20	20	4.25	96.0	93.5	90.3
	7 LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂		25	20	4.25	96.0	93.5	90.4
実施例 8-148	3 LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.25	96.0	93.6	90.3
比較例 8-82	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	20	4.20	96.0	94.3	92.3
北較例 8−83	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	20	20	4.20	95.9	94.3	92.2
七較例 8-84	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	25	20	4.20	95.9	94.2	92.2
比較例 8-85	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20					92.2
比較例 8-86	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25					91.9
	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25		.25			90.0

(表136)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物の濃度	水分量			直容量 約 (%)	持率
phy links .		(質量%)	の仮及 (ppm)	(ppm)	(V)	10	50 サイクル	100
·	$LiNi_{0.9}Mg_{0.05}Al_{0.05}O_2$	2	20	20	4.30	96.0	94.1	92.1
	$\text{LiNi}_{0.9}\text{Mg}_{0.05}\text{Al}_{0.05}\text{O}_{2}$	1.5	20	20	4.30	96.0	93.3	90.2
	$LiNi_{0.9}Mg_{0.05}Al_{0.05}O_2$	1.0	25	20	4.30	96.0	93.4	90.4
実施例 8-152	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.30	96.0	93.6	90.2
比較例 8-88	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25	30	4.30	96.0	93.0	89.4

(表137)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維(%)	诗 率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-153	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	20	4.40	95.4	93.2	89.2
実施例 8-154	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	20	20	4.40	95.0	91.9	83.3
実施例 8-155	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	25	20	4.40	95.1	92.7	86.2
実施例 8-156	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.40	95.3	93.0	86.0
比較例 8-89	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25	30	4.40	95.2	92.2	80.7

(表138)

		Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維持 (%)	寺率
	正極活物質	の 後度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-157	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	20	4.50	92.4	88.2	79.2
実施例 8-158	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	20	20	4.50	90.5	85.9	73.3
実施例 8-159	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	25	20	4.50	91.1	87.7	76.2
実施例 8-160	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.0	20	30	4.50	91.3	88.0	76.0
比較例 8-90	LiNi _{0.9} Mg _{0.05} Al _{0.05} O ₂	1.5	25	30	4.50	90.2	85.2	71.7

(表139)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	11700	水分量			[容量組 (%)	——— 持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル
実施例 8-161	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	20	20	4.25	96.0	94.5	92.4
実施例 8-162	$\mathrm{LiNi_{0.9}Mn_{0.05}Al_{0.05}O_{2}}$	1.5	20	20	4.25	95.6	94.2	91.3
実施例 8-163	$\mathrm{LiNi_{0.9}Mn_{0.05}Al_{0.05}O_{2}}$	0.9	25	20	4.25	95.7	94.2	91.3
実施例 8-164	$\mathrm{LiNi_{0.9}Mn_{0.05}Al_{0.05}O_{2}}$	0.9	20	30	4.25	95.7	94.3	91.4
比較例 8-91	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	20	20	4.20	96.0	94.5	92.4
比較例 8-92	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	1.5	20	20	4.20	96.0	94.5	92.3
比較例 8-93	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	25	20	4.20	96.0	94.5	92.3
比較例 8-94	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	20	30	4.20	96.0	94.5	92.2
比較例 8-95	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	1.5	25	30	4.20	95.9	94.4	91.8
比較例 8-96	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	1.5	25	30	4.25	95.5	94.0	90.5

(表140)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	11/4/2007	水分量		放電	运容量組 (%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-165	$LiNi_{0.9}Mn_{0.05}Al_{0.05}O_2$	0.9	20	20	4.30	96.0	94.4	92.0
実施例 8-166	$\mathrm{LiNi_{0.9}Mn_{0.05}Al_{0.05}O_{2}}$	1.5	20	20	4.30	95.5	94.2	91.1
実施例 8-167	$LiNi_{0.9}Mn_{0.05}Al_{0.05}O_2$	0.9	25	20	4.30	95.5	94.2	91.2
実施例 8-168	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	20	30	4.30	95.6	94.2	91.0
比較例 8-97	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	1.5	25	30	4.30	95.1	93.8	90.1

(表141)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	· 容量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-169	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	20	20	4.40	95.0	92.8	89.4
	LiNi $_{0.9}$ Mn $_{0.05}$ Al $_{0.05}$ O $_2$		20	20	4.40	94.7	91.2	85.0
	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.0	25	20	4.40	94.5	92.1	86.7
	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂		20	30	4.40	94.8	91.9	86.5
	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂		25	30	4.40	94.1	90.0	80.1

(表142)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-173	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂	0.9	20	20	4.50	93.0	88.8	81.4
	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂		20	20	4.50	90.7	86.2	76.0
	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂		25	20	4.50	92.5	88.1	80.7
	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂		20	30	4.50	92.0	87.9	80.5
比較例 8-99	LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂		25	30	4.50	90.1	86.0	72.1

(表143)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-177	$\mathrm{LiNi_{0.8}Fe_{0.05}Al_{0.15}O_{2}}$	1.0	20	20	4.25	95.6	94.0	92.3
実施例 8-178	$\mathrm{LiNi_{0.8}Fe_{0.05}Al_{0.15}O_{2}}$	1.5	20	20	4.25	95.1	92.7	90.9
実施例 8-179	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	25	20	4.25	95.2	92.6	90.9
実施例 8-180	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	20	30	4.25	95.1	92.7	90.8
比較例 8-100	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	20	20	4.20	95.6	94.0	92.3
比較例 8-101	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.5	20	20	4.20	95.5	94.0	92.4
比較例 8-102	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	25	20	4.20	95.5	94.0	92.4
比較例 8-103	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	20	30	4.20	95.5	94.1	92.5
比較例 8-104	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.5	25	30	4.20	95.5	93.8	92.0
比較例 8-105	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.5	25	30	4.25	95.0	92.5	90.2

(表144)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	~ ~ 小小出半90	水分量	上限電圧	放電	容量維 (%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-181	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	20	20	4.30	95.5	94.0	92.2
実施例 8-182	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.5	20	20	4.30	95.0	92.3	90.8
実施例 8-183	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	25	20	4.30	95.2	92.2	90.9
実施例 8-184	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	20	30	4.30	95.1	92.4	90.8
比較例 8-106	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.5	25	30	4.30	94.8	92.3	90.1

(表145)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電容量維持率 (%)			
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	~ <i>t</i> \	111 1	50 サイクル	100 サイクル	
	A1 O	1.0	20	20	4.40	95.0	91.9	88.3	
	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂		20	20	4.40	93.5	90.3	84.5	
実施例 8-186	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.5	ļ		1 10	94.2	91.5	86.8	
宝協例 8-187	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	1.0	25	20	4.40	94.2	-		
			20	30	4.40	94.3	91.5	86.8	
実施例 8-186	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	2		1 00	1 40	93.2	90.7	81.1	
比較例 8-107	LiNi _{0.8} Fe _{0.05} Al _{0.15} O	2 1.5	25	30	4.40	30.2			

(表146)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	1			
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	77	10 サイクル	50 サイクル	100 サイクル	
	ν η Γ ₂ Δ1 Ω ₂	1.0	20	20	4.50	93.6	86.9	77.3	
	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂		20	20	4.50	91.0	85.3	73.5	
	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂		25	20	4.50	93.2	86.8	76.8	
実施例 8-191	LiNi _{0.8} Fe _{0.05} Al _{0.15} O ₂	L L		30	4.50	93.3	86.5	76.8	
実施例 8-192	2 LiNi _{0.8} Fe _{0.05} Al _{0.15} O	1.0	20	1 30			1 04 7	71.1	
	8 LiNi _{0.8} Fe _{0.05} Al _{0.15} O	T	25	30	4.50	91.0	84.7	11.1	

(表14.7)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	インが出行のマン	水分量	上限電圧	放電	容量維(%)	持率
		(質量%)	濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル
実施例 8-193	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	20	20	4.25	99.0	96.5	92.8
実施例 8-194	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	20	20	4.25	98.7	96.0	91.5
実施例 8-195	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	25	20	4.25	98.7	96.0	91.8
実施例 8−196	$\text{LiCo}_{0.333}\text{Ni}_{0.333}\text{Mn}_{0.333}\text{O}_2$	0.3	20	30	4.25	98.7	95.9	92.0
比較例 8-109	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	20	20	4.20	99.0	96.6	93.5
比較例 8-110	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	20	20	4.20	98.9	96.6	93.6
比較例 8-111	$\text{LiCo}_{0.333}\text{Ni}_{0.333}\text{Mn}_{0.333}\text{O}_2$	0.3	25	20	4.20	99.0	96.6	93.5
比較例 8-112	${\rm LiCo_{0.333}Ni_{0.333}Mn_{0.333}O_{2}}$	0.3	. 20	30	4.20	99.0	96.7	93.5
比較例 8-113	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	25	30	4.20	98.9	96.5	93.3
比較例 8-114	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	25	30	4.25	98.5	95.6	90.7

(表148)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	いいいになのマン	水分量	上限電圧	放電	容量維 (%)	持率
		(質量%)	濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-197	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	20	20	4.30	99.0	96.4	92.7
実施例 8-198	$\text{LiCo}_{0.333}\text{Ni}_{0.333}\text{Mn}_{0.333}\text{O}_2$	1.5	20	20	4.30	98.7	96.0	91.4
実施例 8-199	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	25	20	4.30	98.6	95.9	91.7
実施例 8-200	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	20	30	4.30	98.7	95.9	92.0
比較例 8-115	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	25	30	4.30	98.4	95.4	90.3

(表148)

		Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物の	水分量	上限電圧	放電	容量維 (%)	寺率
	正極活物質	の	濃度 (ppm)	(ppm)	(V) I	10 サイクル	50 サイクル	100 サイクル
実施例 8-201	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	20	20	4.40	97.1	94.5	90.8
実施例 8-202	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	20	20	4.40	96.3	92.7	87.5
実施例 8-203	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	25	20	4.40	96.7	93.0	88.8
	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂		20	30	4.40	96.8	93.1	89.0
比較例 8-116	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	25	30	4.40	95.3	91.2	85.8

(表149)

		Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性 不純物の	水分量	上限電圧	放電	容量維(%)	寺率
	正極活物質	の濃度 (質量%)	濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-205	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	0.3	20	20	4.50	94.1	89.5	84.8
実施例 8-206	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂	1.5	20	20	4.50	91.3	87.7	77.5
	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂		25	20	4.50	93.7	89.0	81.8
	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂		20	30	4.50	93.8	89.1	82.0
	LiCo _{0.333} Ni _{0.333} Mn _{0.333} O ₂		25	30	4.50	91.3	87.2	73.8

120

(表150)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	-	水分量	上限電圧	放電	容量維 (%)	持率
	3127空1口700只	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-209	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	20	4.25	98.5	95.4	92.2
実施例 8-210	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.5	20	20	4.25	98.2	94.7	90.7
実施例 8-211	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	25	20	4.25	98.2	94.7	91.2
実施例 8-212	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	30	4.25	98.3	95.0	90.9
比較例 8-118	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	20	4.20	98.5	95.5	92.5
比較例 8-119	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.5	20	20	4.20	98.5	95.4	92.5
比較例 8-120	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	25	20	4.20	98.5	95.4	92.4
比較例 8-121	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	30	4.20	98.5	95.4	92.4
比較例 8-122	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.5	25	30	4.20	98.3	95.2	92.0
比較例 8-123	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.5	25	30	4.25	98.1	94.0	90.0

(表151)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	~ 'NPE 120	水分量	上限電圧	1 (70)		
	工工程和口机关	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-213	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	20	4.30	98.4	95.4	92.1
実施例 8-214	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.5	20	20	4.30	98.2	94.3	90.5
実施例 8-215	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	25	20	4.30	98.2	94.5	91.0
実施例 8-216	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	30	4.30	98.3	94.3	90.8
比較例 8-124	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.5	25	30	4.30	98.0	93.8	89.2

121

(表152)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	レム島	上限	放電容量維持率(%)		
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(77)	10 サイクル	50 サイクル	100 サイクル
 対域版	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	20	4.40	96.5	93.4	89.2
	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂		20	20	4.40	95.9	92.1	86.3
			25	20	4.40	96.1	92.7	86.8
	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂		20	30	4.40	96.3	92.5	87.1
	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂		05	30	4.40	94.1	91.5	83.3
比較例 8-125	LiCo _{0.3} Ni _{0.5} Al _{0.2} O	1.5	25	30	7.10			

(表153)

		Li ₂ CO ₃ +Li ₂ SO ₄ 不純物 水分		UiCOstiaSOstーチャルルン島一		プロン性		放電線	字量維 (%)	持率
	正極活物質	で濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル		
-t-/-/	T:Co Ni AlOo	1.0	20	20	4.50	94.5	88.4	82.2		
	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	_	20	20	4.50	90.9	86.1	76.3		
	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂		25	20	4.50	91.6	87.7	80.8		
	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂		20	30	4.50	92.3	87.5	81.1		
実施例 8-224	LiCo _{0.3} Ni _{0.5} Al _{0.2} O ₂	1.0	20	1 30				70.0		
比較例 8-126	LiCo _{0.3} Ni _{0.5} Al _{0.2} O	1.5	25	30	4.50	90.1	85.2	73.3		

(表154)

	T-15-71-14-155	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	正極活物質	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-225	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	20	4.25	99.0	96.3	92.4
実施例 8-226	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.5	20	20	4.25	98.6	95.4	91.4
実施例 8-227	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	25	20	4.25	98.6	95.7	91.8
実施例 8-228	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	30	4.25	98.6	95.4	91.7
比較例 8-127	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	20	4.20	99.0	96.3	92.7
比較例 8-128	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.5	20	20	4.20	98.8	96.2	92.6
比較例 8-129	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	25	20	4.20	98.9	96.3	92.6
比較例 8-130	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	30	4.20	99.0	96.3	92.5
比較例 8-131	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.5	25	30	4.20	98.7	96.0	91.8
比較例 8-132	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.5	25	30	4.25	98.5	95.0	90.7

(表155)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度		水分量	上限電圧	放電	容量維(%)	特率
	止他佔物員	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-229	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	20	4.30	99.0	96.2	92.3
実施例 8-230	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.5	20	20	4.30	98.4	95.2	91.3
実施例 8-231	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	25	20	4.30	98.5	95.5	91.7
実施例 8-232	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	30	4.30	98.6	95.4	91.5
比較例 8-133	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.5	25	30	4.30	98.4	95.0	90.0

(表156)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
宝施例 8-233	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	20	4.40	97.0	93.3	89.4
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂		20	20	4.40	96.0	92.9	87.5
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂		25	20	4.40	97.1	93.2	89.0
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂		20	- 30	4.40	96.9	93.0	89.2
			25	30	4.40	95.5	91.7	82.2
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₄		25	30	4.40	95.5	91.7	82

(表157)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
宝施例 8-237	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	1.0	20	20	4.50	94.0	88.3	80.4
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂		20	20	4.50	91.0	85.9	73.5
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂		25	20	4.50	93.5	86.2	80.0
	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂		20	30	4.50	92.9	86.4	79.8
			25	30	4.50	91.0	83.7	70.2
比較例 8-135	LiCo _{0.45} Ni _{0.5} Mg _{0.05} O ₂	2						

(表158)

·	工艺工机位际	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	717NB420	水分量	上限電圧	放電	容量維(%)	持率
	正極活物質	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-241	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	20	4.25	98.8	94.6	92.0
実施例 8-242	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	20	20	4.25	98.7	94.1	90.6
実施例 8-243	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	25	20	4.25	98.7	94.3	91.1
実施例 8-244	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	30	4.25	98.8	94.5	90.8
比較例 8-136	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	20	4.20	98.8	94.6	92.2
比較例 8-137	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	20	20	4.20	98.9	94.6	92.0
比較例 8-138	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	25	20	4.20	98.8	94.6	92.1
比較例 8-139	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	30	4.20	98.8	94.6	92.0
比較例 8-140	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	25	30	4.20	98.7	94.4	91.5
比較例 8-141	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	25	30	4.25	98.6	93.7	89.8

(表159)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性 不純物	水分量	上限 放電容量維 (%)			持率
	11.11处1百700 貝	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-245	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	20	4.30	98.7	94.5	91.8
実施例 8-246	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	20	20	4.30	98.5	94.0	90.4
実施例 8-247	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	25	20	4.30	98.6	94.2	91.0
実施例 8-248	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	30	4.30	98.7	94.3	90.8
比較例 8-142	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	25	30	4.30	98.4	93.2	89.1

(表160)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル
実施例 8-249	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	20	4.40	96.8	93.6	88.0
実施例 8-250	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	20	20	4.40	95.1	92.3	83.9
実施例 8-251	LiCo _{0,35} Ni _{0.6} Ti _{0.05} O ₂	1.0	25	20	4.40	96.0	93.4	87.6
実施例 8-252	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	30	4.40	96.1	93.5	87.1
比較例 8-143	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	25	30	4.40	95.0	91.8	79.8

(表161)

		Li ₂ CO ₃ +Li ₂ SO ₄	こ 「一つ下記者の「ハトン」		上限電圧	放電	容量維 (%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	PJ工 (V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-253	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	20	4.50	93.8	87.6	78.0
実施例 8-254	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	20	20	4.50	91.1	86.3	72.9
実施例 8-255	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	25	20	4.50	93.0	87.4	77.6
実施例 8-256	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.0	20	30	4.50	93.1	87.5	77.1
比較例 8-144	LiCo _{0.35} Ni _{0.6} Ti _{0.05} O ₂	1.5	25	30	4.50	91.0	85.8	69.8

126

(表162)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維(%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-257	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	20	4.25	97.3	94.6	91.8
実施例 8-258	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.5	20	20	4.25	97.0	94.1	90.2
実施例 8-259	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	2 5	20	4.25	97.2	94.5	90.8
実施例 8-260	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	30	4.25	97.1	94.3	91.1
比較例 8-145	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	20	4.20	97.3	94.7	92.3
比較例 8-146	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.5	20	20	4.20	97.2	94.7	92.2
比較例 8-147	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	25	20	4.20	97.2	94.7	92.2
比較例 8-148	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	30	4.20	97.2	94.7	92.1
比較例 8-149	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.5	25	30	4.20	97.0	94.5	91.3
比較例 8-150	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.5	25	30	4.25	97.0	94.1	89.9

(表163)

	T to The little	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度		水分量	上限電圧	放電	容量維(%)	持率
	正極活物質	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-261	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	20	4.30	97.2	94.5	91.6
実施例 8-262	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.5	. 20	20	4.30	96.7	94.0	90.0
実施例 8-263	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	25	20	4.30	97.0	94.0	90.4
実施例 8-264	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	30	4.30	97.0	94.1	90.6
比較例 8-151	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.5	25	30	4.30	96.8	93.7	89.1

(表164)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維持 (%)	寺率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	の濃度 (ppm)	水分量 (ppm)	電上 (V)	10 サイクル	50 サイクル	100 サイクル
+14-FI 0, 00F	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	1.0	20	20	4.40	96.3	93.6	88.8
			20	20	4.40	95.8	91.8	84.0
	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂		25	20	4.40	95.9	92.3	88.1
\	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂		20	30	4 40	96.0	92.6	87.9
実施例 8-268	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O	1.0	1 20	+	- -	<u> </u>	<u> </u>	70 '
比較例 8-152	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O	2 1.5	25	30	4.4	95.6	90.9	79.

(表165)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維持(%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	人人	10 サイクル	50 サイクル	100 サイクル
	ViCa Ni Craa-Oa	1.0	20	20	4.50	93.3	86.6	78.8
	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	`	20	20	4.50	90.8	85.4	74.0
	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂		25	20	4.50	92.7	86.3	78.1
	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O ₂	2	20	30	4.50	93.0	85.8	77.3
実施例 8-272	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O	2 1.0		1 00	1 5/	00.6	84.9	70.7
比較例 8-153	LiCo _{0.2} Ni _{0.75} Cr _{0.05} O	1.5	25	30	4.50	90.6	04.5	

(表166)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个种物	水分量	上限電圧	放電	宣容量約 (%)	挂持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-273	$\mathrm{LiCo}_{0.25}\mathrm{Ni}_{0.65}\mathrm{Fe}_{0.1}\mathrm{O}_{2}$	1.0	20	20	4.25	97.7	95.0	92.3
実施例 8-274	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	20	20	4.25	97.6	94.4	91.1
実施例 8-275	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	25	20	4.25	97.7	94.6	91.5
実施例 8-276	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	30	4.25	97.8	94.5	91.6
比較例 8-154	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	20	4.20	97.7	95.1	92.3
比較例 8-155	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	20	20	4.20	97.7	95.0	92.1
比較例 8-156	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	25	20	4.20	97.7	95.0	92.2
比較例 8-157	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	30	4.20	97.7	95.0	92.1
比較例 8-158	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	25	30	4.20	97.6	94.8	91.7
比較例 8-159	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	25	30	4.25	97.5	94.2	91.2

(表167)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个形式物	水分量			容量# (%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル
実施例 8-277	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	20	4.30	97.6	95.0	92.1
実施例 8-278	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	20	20	4.30	97.6	94.3	90.8
実施例 8-279	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	25	20	4.30	97.6	94.2	91.2
実施例 8-280	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	30	4.30	97.7	94.2	91.2
比較例 8-160	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	25	30	4.30	97.3	94.0	90.3

(表168)

		$Li_2CO_3+Li_2SO_4$	プロン性不純物	水分量	上限	サイクル サイクル † 95.7 93.5 95.2 91.6 95.4 92.7		寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(八/)			100 サイクル
実施例 8-281	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	20	4.40	95.7	93.5	89.3
実施例 8-282	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.5	20	20	4.40	95.2	91.6	83.5
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	25	20	4.40	95.4	92.7	88.8
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂		20	30	4.40	95.5	92.8	88.5
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂		25	30	4.40	94.9	91.0	80.2

(表169)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物		上限	放電	容量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(八)	10 サイクル	50 サイクル	100 サイクル
実施例 8-285	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂	1.0	20	20	4.50	93.7	87.0	79.3
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂		20	20	4.50	91.2	85.6	73.5
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂		25	20	4.50	92.2	86.7	78.8
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂		20	30	4.50	92.5	86.8	78.5
	LiCo _{0.25} Ni _{0.65} Fe _{0.1} O ₂		25	30	4.50	90.9	85.0	71.2

(表170)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个种也的	水分量	上限電圧	放電	容量維 (%)	持率
	工业工业	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-289	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	0.7	20	20	4.25	98.7	95.5	92.3
実施例 8-290	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5	20	20	4.25	98.5	94.3	90.8
実施例 8-291	${ m LiCo_{0.3}Ni_{0.5}Mn_{0.15}Al_{0.05}O_2}$	0.7	25	20	4.25	98.5	94.6	91.2
実施例 8-292	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	0.7	20	30	4.25	98.7	94.5	91.3
比較例 8-163	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	0.7	20	20	4.20	98.7	95.6	92.8
比較例 8-164	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5	20	20	4.20	98.6	95.6	92.6
比較例 8-165	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	0.7	25	20	4.20	98.7	95.6	92.6
比較例 8-166	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	0.7	20	30	4.20	98.7	95.5	92.6
比較例 8-167	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5	25	30	4.20	98.6	95.1	92.1
比較例 8-168	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5	25	30	4.25	98.4	94.0	90.0

(表171)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	こいからわり	水分量	上限電圧	放電	容量維 (%)	持率
	ILIZILI MA	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-293	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	0.7	20	20	4.30	98.5	95.3	92.0
実施例 8-294	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5	20	20	4.30	98.2	94.1	90.5
実施例 8-295	$\mathrm{LiCo_{0.3}Ni_{0.5}Mn_{0.15}Al_{0.05}O_{2}}$	0.7	25	20	4.30	98.3	94.2	91.0
実施例 8-296	${ m LiCo_{0.3}Ni_{0.5}Mn_{0.15}Al_{0.05}O_2}$	0.7	20	30	4.30	98.2	94.3	91.2
比較例 8-169	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5	25	30	4.30	98.1	93.7	88.8

(表172)

1 (2)		L: CO-HisO4	プロン性	水分量	上限	放電網	字量維持 (%)	寺 率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	水の重 (ppm)	7	10 サイクル	50 サイクル	100 サイクル
		0.7	. 20	20	4.40	96.1	93.9	89.3
B	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂		20	20	4.40	95.0	92.5	83.7
•	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₃	2	25	20	4.40	95.7	93.0	85.0
	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O	2	20	30	4.40	95.2	93.2	85.8
実施例 8-300	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} C	0.1					1 90.9	81.1
	0 LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} C	·	25	30	4.4	0 94.4	1 90.3	01.1

(表173)

		Li COatLiaSO4	プロン性	水分量	上限	放電	容量維持(%)	摔
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	(ppm)	43	10 サイクル	50 サイクル	100 サイクル
	A1 O	0.7	20	20	4.50	94.1	88.5	80.3
	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂		20	20	4.50	91.0	86.5	73.7
実施例 8-302	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O ₂	1.5			4.50	93.7	88.0	80.0
	LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O		25	20				-
		· · · · · · · · · · · · · · · · · · ·	20	30	4.50	94.0	87.9	79.8
実施例 8-304	1 LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} O	<u>P</u>		30	4.5	0 90.4	1 85.9	71.
比較例 8-17	1 LiCo _{0.3} Ni _{0.5} Mn _{0.15} Al _{0.05} C	0_2 1.5	25		1.0			

(表174)

·	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个形电视	水分量	上限電圧	放電	容量維(%)	持率
	3上(2)以700	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-305	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	20	20	4.25	97.9	94.6	91.6
実施例 8-306	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	20	20	4.25	97.5	93.2	90.5
実施例 8-307	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	25	20	4.25	97.6	93.8	90.6
実施例 8-308	$\text{LiCo}_{0.3}\text{Ni}_{0.5}\text{Ti}_{0.15}\text{Mg}_{0.05}\text{O}_{2}$	1.0	20	30	4.25	97.6	93.5	90.5
比較例 8-172	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	20	20	4.20	97.9	94.8	92.6
比較例 8-173	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	20	20	4.20	97.7	94.8	92.4
比較例 8-174	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	25	20	4.20	97.8	94.8	92.5
比較例 8-175	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	20	30	4.20	97.7	94.8	92.4
比較例 8-176	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	25	30	4.20	97.6	94.5	92.0
比較例 8-177	$\mathrm{LiCo_{0.3}Ni_{0.5}Ti_{0.15}Mg_{0.05}O_{2}}$	1.5	25	30	4.25	97.5	93.2	89.8

(表175)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个产品的	水分量	上限電圧	放電	放電容量維持(%)		
	工工工厂	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル	
実施例 8-309	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	20	20	4.30	97.6	94.3	91.4	
実施例 8-310	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	20	20	4.30	97.2	93.0	90.3	
実施例 8-311	${ m LiCo_{0.3}Ni_{0.5}Ti_{0.15}Mg_{0.05}O_2}$	1.0	25	20	4.30	97.4	93.6	90.4	
実施例 8-312	$\text{LiCo}_{0.3}\text{Ni}_{0.5}\text{Ti}_{0.15}\text{Mg}_{0.05}\text{O}_2$	1.0	20	30	4.30	97.4	93.5	90.5	
比較例8-178	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	25	30	4.30	97.0	92.8	89.0	

(表176)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維 (%)	
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-313	${\rm LiCo_{0.3}Ni_{0.5}Ti_{0.15}Mg_{0.05}O_{2}}$	1.0	20	20	4.40	95.9	93.6	89.6
実施例 8-314	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	20	20	4.40	95.2	92.4	85.6
実施例 8-315	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	25	20	4.40	95.5	93.3	87.1
	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂		20	30	4.40	95.8	93.4	87.3
	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂		25	30	4.40	94.7	91.1	81.7

(表177)

		$Li_2CO_3+Li_2SO_4$	プロシ性不純物	水分量	上限	放電	容量維(%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8−317	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.0	20	20	4.50	93.9	87.6	80.6
	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂		20	20	4.50	91.2	86.4	73.6
	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂		25	20	4.50	93.5	87.3	80.1
	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂		20	30	4.50	92.8	87.4	80.3
比較例 8-180	LiCo _{0.3} Ni _{0.5} Ti _{0.15} Mg _{0.05} O ₂	1.5	25	30	4.50	90.7	86.1	70.7

(表178)

	正極活物質·	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	个种物	水分量	上限電圧	放電	容量維(%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-321	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	20	4.25	98.7	95.6	92.1
実施例 8-322	$\mathrm{LiCo_{0.3}Ni_{0.4}Mn_{0.2}Al_{0.1}O_{2}}$	1.5	20	20	4.25	98.4	94.9	90.3
実施例 8-323	$LiCo_{0.3}Ni_{0.4}Mn_{0.2}Al_{0.1}O_2$	0.6	25	20	4.25	98.6	94.9	90.7
実施例 8-324	$\mathrm{LiCo_{0.3}Ni_{0.4}Mn_{0.2}Al_{0.1}O_{2}}$	0.6	20	30	4.25	98.5	95.2	91.1
比較例 8-181	$\mathrm{LiCo_{0.3}Ni_{0.4}Mn_{0.2}Al_{0.1}O_{2}}$	0.6	20	20	4.20	98.7	95.6	92.7
比較例 8-182	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	20	20	4.20	98.7	95.6	92.7
比較例 8-183	$\mathrm{LiCo_{0.3}Ni_{0.4}Mn_{0.2}Al_{0.1}O_{2}}$	0.6	25	20	4.20	98.7	95.6	92.7
比較例 8-184	$\operatorname{LiCo}_{0.3}\operatorname{Ni}_{0.4}\operatorname{Mn}_{0.2}\operatorname{Al}_{0.1}\operatorname{O}_2$	0.6	20	30	4.20	98.7	95.6	92.6
比較例 8-185	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	25	30	4.20	98.6	95.4	92.0
比較例 8-186	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	25	30	4.25	98.4	94.8	90.1

(表179)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	イトがともり	水分量	上限電圧	放電	容量維 (%)	持率
	TELIA NA DE	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-325	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	20	4.30	98.6	95.5	91.8
実施例 8-326	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	20	20	4.30	98.2	94.6	90.0
実施例 8-327	$\mathrm{LiCo_{0.3}Ni_{0.4}Mn_{0.2}Al_{0.1}O_{2}}$	0.6	25	20	4.30	98.5	94.8	90.2
実施例 8-328	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	30	4.30	98.5	95.2	90.6
比較例 8-187	$\mathrm{LiCo}_{0.3}\mathrm{Ni}_{0.4}\mathrm{Mn}_{0.2}\mathrm{Al}_{0.1}\mathrm{O}_{2}$	1.5	25	30	4.30	98.1	94.4	89.4

(表180)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維(%)	持率
	止極沽物質	の濃度 (質量%)	の濃度 (ppm)	(mqq)	電圧 (V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-329	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	20	4.40	96.7	94.6	90.1
実施例 8-330	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	20	20	4.40	95.8	93.1	87.9
実施例 8-331	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	25	20	4.40	96.5	94.0	88.3
実施例 8-332	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	30	4.40	96.5	93.8	88.7
比較例 8-188	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	25	30	4.40	95.5	91.4	82.9

(表181)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
·	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル
実施例 8-333	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	20	4.50	93.7	88.6	85.1
実施例 8-334	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	20	20	4.50	90.8	86.1	77.9
実施例 8-335	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	25	20	4.50	93.5	88.0	84.3
実施例 8-336	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	0.6	20	30	4.50	93.5	87.8	84.7
比較例 8-189	LiCo _{0.3} Ni _{0.4} Mn _{0.2} Al _{0.1} O ₂	1.5	25	30	4.50	90.5	85.4	72.9

(表182)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-337	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	0.5	20	20	4.25	98.1	94.8	92.3
実施例 8-338	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	20	20	4.25	98.0	94.2	90.6
実施例 8−339	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	0.5	25	20	4.25	98.2	94.2	91.0
実施例 8-340	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	0.5	20	30	4.25	98.1	94.6	91.0
比較例 8-190	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	0.5	20	20	4.20	98.1	94.9	92.5
比較例 8-191	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	20	20	4.20	98.3	94.8	92.5
比較例 8-192	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	0.5	25	20	4.20	98.2	94.7	92.4
比較例 8-193	${ m LiCo_{0.4}Ni_{0.3}Mn_{0.2}Mg_{0.1}O_2}$	0.5	20	30	4.20	98.1	94.7	92.4
比較例8-194	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	25	30	4.20	98.0	94.2	91.6
比較例 8-195	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	25	30	4.25	98.0	94.0	90.2

(表183)

	T FRILLIAN FIF	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロトン性 不純物	水分量	上限電圧	1 1/0/		
	正極活物質	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-341	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	0.5	20	20	4.30	98.1	94.6	92.0
実施例 8-342	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	20	20	4.30	97.8	94.1	90.1
実施例 8-343	$\mathrm{LiCo_{0.4}Ni_{0.3}Mn_{0.2}Mg_{0.1}O_{2}}$	0.5	25	20	4.30	98.0	94.0	90.0
実施例 8-344	$\mathrm{LiCo_{0.4}Ni_{0.3}Mn_{0.2}Mg_{0.1}O_{2}}$	0.5	20	30	4.30	98.1	94.4	90.4
比較例 8-196	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	25	30	4.30	97.7	93.5	89.6

(表184)

表 1 8 4 /		r: co +Li-so.	プロトン性	よ八星	上限	放電物	容量維持率(%)		
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	水分量 (ppm)	77	10 サイクル	50 サイクル	100 サイクル	
		0.5	20	20	4.40	96.1	94.8	89.9	
1	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂		20	20	4.40	94.9	93.4	87.7	
実施例 8-346	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	1.5	-	20	4 40	95.6	94.6	88.2	
	7 LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O		25	20		-}		20.2	
			20	30	4.4	95.4	94.1	89.2	
	8 LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O		25	30	4.4	0 94.8	3 91.7	7 83.1	
比較例 8-19	7 LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} C	O_2 1.5	25						

(表185)

₹185) —————		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性	水分量	上限	放電%	字量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	不純物 の濃度 (ppm)	(ppm)	27	10 サイクル	50 サイクル	100 サイクル
		0.5	20	20	4.50	94.1	88.88	84.9
	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂		20	20	4.50	90.9	86.4	77.
実施例 8-350	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₂	2	25	20	4.50	93.6	88.6	84.
実施例 8-351	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O ₀	2	20	30	4.50	93.4	88.1	84.
実施例 8-352	LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} O	2 0.0	1		4.5	0 90.8	85.	7 73
	8 LiCo _{0.4} Ni _{0.3} Mn _{0.2} Mg _{0.1} C		25	30	4.5	0, 30.		

(表186)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一个产出物	水分量	上限電圧		[容量約 (%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100
実施例 8-353	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	20	4.25	98.3	95.0	92.0
実施例 8-354	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	1.5	20	20	4.25	98.2	94.5	90.3
実施例 8-355 	$\mathrm{LiCo_{0.3}Ni_{0.45}Mn_{0.2}Ti_{0.05}O_{2}}$	0.6	25	20	4.25	98.4	94.8	91.5
実施例 8−356 ———	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	30	4.25	98.3	95.0	90.9
比較例 8-199	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	20	4.20	98.3	95.0	92.3
比較例 8-200	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	1.5	20	20	4.20	98.2	95.0	92.3
比較例 8-201	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	25	20	4.20	98.2	95.1	92.3
比較例 8-202	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	30	4.20	98.2	94.9	92.3
北較例 8−203	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	1.5	25					91.9
上較例 8-204	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	1.5	25		1.25			89.9

(表187)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	小规物	水分量	上限電圧		宣容量組 (%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10	50 サイクル	100 サイクル
	$\mathrm{LiCo_{0.3}Ni_{0.45}Mn_{0.2}Ti_{0.05}O_{2}}$		20	20	4.30	98.2	94.7	91.5
	$\text{LiCo}_{0.3}\text{Ni}_{0.45}\text{Mn}_{0.2}\text{Ti}_{0.05}\text{O}_{2}$		20	20	4.30	98.0	94.1	90.0
	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	25	20	4.30	98.1	94.4	91.1
実施例 8-360	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	30	4.30	98.3	94.7	90.8
比較例 8-205	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	1.5	25	30	4.30	97.8	92.9	88.7

(表188)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電	容量維持 (%)	寺率
	正極活物質	で濃度 (質量%)	の濃度 (ppm)	(ppm)	4 1	10 サイクル	50 サイクル	100 サイクル
+	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	20	4.40	95.8	94.5	89.5
			20	20	4.40	94.1	93.0	87.0
	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂		25	20	4.40	95.0	93.9	89.3
	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	21	20	30	4.40	94.9	94.0	89.3
実施例 8-364 	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O	2 0.0		1 00	1 40	94.8	91.3	81.4
比較例 8-206	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O	1.5	25	30	4.40	7 94.0	31.0	01.

(表189)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電物	~	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	(1)	10 サイクル	50 サイクル	100 サイクル
++++ 0 255	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂	0.6	20	20	4.50	94.3	.88.0	80.0
		_	20	20	4.50	91.1	86.0	73.0
	LiCo Ni Mp. Tions Of	1	25	20	4.50	94.0	87.9	79.5
	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O ₂		20	30	4.50	93.9	87.6	79.6
	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O		25	30	4.50	90.8	84.3	70.4
比較例 8-207	LiCo _{0.3} Ni _{0.45} Mn _{0.2} Ti _{0.05} O	2 1.5	20					

(表190)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	个种物	水分量	上限電圧	放電	容量維(%)	持率
	TI IN FL	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-369	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	0.5	20	20	4.25	97.5	94.1	91.4
実施例 8-370	$LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_2$	1.5	20	20	4.25	97.3	93.8	90.2
実施例 8-371	$LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_2$	0.5	25	20	4.25	97.4	94.0	91.1
実施例 8-372	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	0.5	20	30	4.25	97.5	94.1	90.7
比較例 8-208	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	0.5	20	20	4.20	97.5	94.1	92.2
比較例 8-209	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	1.5	20	20	4.20	97.5	94.0	92.1
比較例8-210	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	0.5	25	20	4.20	97.5	94.1	92.2
比較例 8-211	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	0.5	20	30	4.20	97.5	94.1	92.1
比較例8-212	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	1.5	25	30	4.20	97.4	93.9	91.7
比較例8-213	$LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_2$	1.5	25	30	4.25	97.2	93.7	90.0

(表191)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	正泛而初头	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8−373	${ m LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_{2}}$	0.5	20	20	4.30	97.4	94.0	91.2
実施例 8-374	$LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_{2}$	1.5	20	20	4.30	97.2	93.4	90.0
実施例 8-375	${\rm LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_{2}}$	0.5	25	20	4.30	97.4	93.7	91.0
実施例 8-376	$LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_2$	0.5	20	30	4.30	97.4	93.7	90.7
比較例 8-214	$LiCo_{0.2}Ni_{0.5}Mn_{0.25}Cr_{0.05}O_2$	1.5	25	30	4.30	97.0	93.2	90.0

(表192)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性	水分量	上限	放電網	字量維持 (%)	寺率
	正極活物質	し203220 4 の濃度 (質量%)	不純物 の濃度 (ppm)	(ppm)	41	10 サイクル	50 サイクル	100 サイクル
		0.5	20	20	4.40	95.7	94.1	89.4
	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂		20	20	4.40	94.6	92.7	87.1
	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂		25	20	4.40	95.3	93.6	89.5
	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	2	20	30	4.40	95.0	93.7	88.9
実施例 8-380	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O	0.5				<u> </u>		3 79.
比較例 8-215	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O	1.5	25	30	4.4	94.8	30.0	1.0.

(表193)

		Li ₂ CO ₂ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電網	容量維持(%)	寺率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	(ppm)	(3.7)	10 サイクル	50 サイクル	100 サイクル
		0.5	20	20	4.50	92.7	87.1	78.4
	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂		20	20	4.50	90.6	85.7	73.1
	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₂	2	25	20	4.50	92.3	86.6	77.7
	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O ₅	2	20	30	4.50	92.0	86.7	78.
実施例 8-384	LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} O	2	0.5	30	1 5	0 90.4	84.6	5 70.
比較例 8-216	6 LiCo _{0.2} Ni _{0.5} Mn _{0.25} Cr _{0.05} C	1.5	25	30	4.5			

(表194)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロシ性不純物	水分量	上限電圧	放電	容量維(%)	持率
	工作公司初員	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイク _! ル	50 サイクル	100 サイクル
実施例 8-385	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	0.4	20	20	4.25	98.0	95.4	91.5
実施例 8-386	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	1.5	20	20	4.25	98.0	95.0	90.5
実施例 8-387	$LiCo_{0.3}Ni_{0.3}Mn_{0.3}Fe_{0.1}O_2$	0.4	25	20	4.25	98.1	95.0	90.9
実施例 8-388	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	0.4	20	30	4.25	98.0	95.1	91.0
比較例 8-217	LiCo _{0.3} Nī _{0.3} Mn _{0.3} Fe _{0.1} O ₂	0.4	20	20	4.20	98.0	95.5	92.4
比較例 8-218	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	1.5	20	20	4.20	98.0	95.6	92.4
比較例 8-219	${ m LiCo_{0.3}Ni_{0.3}Mn_{0.3}Fe_{0.1}O_2}$	0.4	25	20	4.20	98.0	95.5	92.5
比較例 8-220	$\rm LiCo_{0.3}Ni_{0.3}Mn_{0.3}Fe_{0.1}O_2$	0.4	20	30	4.20	98.0	95.6	92.4
比較例 8-221	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	1.5	25	30	4.20	98.0	95.3	91.8
比較例 8-222	${ m LiCo_{0.3}Ni_{0.3}Mn_{0.3}Fe_{0.1}O_2}$	1.5	25	30	4.25	97.9	94.9	90.3

(表195)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	プロン性不純物	水分量	上限電圧	放電	容量維 (%)	持率
	11.1些百亿貝	(質量%)	の濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル
実施例 8-389	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	0.4	20	20	4.30	98.0	95.3	91.2
実施例 8-390	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	1.5	20	20	4.30	98.0	94.8	90.2
実施例 8-391	${ m LiCo_{0.3}Ni_{0.3}Mn_{0.3}Fe_{0.1}O_2}$	0.4	25	20	4.30	98.1	94.9	90.7
実施例 8−392	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂	0.4	20	30	4.30	98.0	94.8	90.8
比較例 8-223	$\rm LiCo_{0.3}Ni_{0.3}Mn_{0.3}Fe_{0.1}O_2$	1.5	25	30	4.30	97.9	94.2	90.0

(表196)

		Li COatLiaSOa	プロン性不純物	水分量	上限	放電	容量維持 (%)	寺率
	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	(ppm)	41	10 サイクル	50 サイクル	100 サイクル
		0.4	20	20	4.40	96.0	93.9	89.5
	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂		20	20	4.40	95.6	91.9	87.4
実施例8-394	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₃	1.5	-	20	1 40	95.9	92.7	88.5
	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O		25	20				-
			20	30	4.4	95.7	92.8	89.0
実施例 8-396	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O	[2]		00	14.4	0 95.4	1 90.2	2 80.
比較例 8-224	4 LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} C	0_2 1.5	25	30	4.4	90.		

(表197)

	TiCOatlisSO4 アのはは		水公量	上限	放電網	容量維持 (%)	寺 率
正極活物質	の濃度 (質量%)	小純物 の濃度 (ppm)	(ppm)	(5 A)	10 サイクル	50 サイクル	100 サイクル
To O	0.4	20	20	4.50	93.0	87.4	79.5
		20	20	4.50	90.6	86.4	73.4
	2		20	4.50	92.2	87.2	79.2
LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O	2 0.4						79.
I		20	. 30				
		25	30	4.5	0 90.4	4 84.2	2 71.
	LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂ LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O ₂ LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O LiCo _{0.3} Ni _{0.3} Mn _{0.3} Fe _{0.1} O	正極活物質	正極活物質	(質量%) (ppm) (ppm	正極活物質	正極活物質	正極活物質

(表198)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	一一个把例 小刀 里 靈		上限電圧	放電	容量維 (%)	持率
	正位的 英	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-401	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	0.7	20	20	4.25	98.6	94.8	92.4
実施例 8-402	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1.5	20	20	4.25	98.2	94.5	91.5
実施例 8-403	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	0.7	25	20	4.25	98.3	94.7	91.7
実施例 8-404	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	0.7	20	30	4.25	98.2	94.6	91.8
比較例 8-226	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Al_{0.1}Mg_{0.05}O_2$	0.7	20	20	4.20	98.6	94.8	92.6
比較例 8-227	${ m LiCo_{0.3}Ni_{0.4}Mn_{0.15}Al_{0.1}Mg_{0.05}O_2}$	1.5	20	20	4.20	98.5	94.8	92.5
比較例 8-228	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	0.7	25	20	4.20	98.5	94.8	92.5
比較例 8-229	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	0.7	20	30	4.20	98.6	94.8	92.6
比較例 8-230	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1.5	25	30	4.20	98.5	94.6	92.0
比較例 8-231	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1.5	25	30	4.25	98.2	94.2	91.0

(表199)

	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度	小小型化	水分量	上限電圧	放電	容量維 (%)	持率
		(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-405	$\text{LiCo}_{0.3}\text{Ni}_{0.4}\text{Mn}_{0.15}\text{Al}_{0.1}\text{Mg}_{0.05}\text{O}_2$	0.7	20	20	4.30	98.4	94.7	92.1
実施例 8-406	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1.5	20	20	4.30	98.0	94.2	91.1
実施例 8-407	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	0.7	25	20	4.30	98.0	94.5	91.7
実施例 8-408	${\rm LiCo_{0.3}Ni_{0.4}Mn_{0.15}Al_{0.1}Mg_{0.05}O_2}$	0.7	20	30	4.30	98.0	94.6	91.6
比較例 8-232	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1.5	25	30	4.30	98.0	94.0	90.6

(表200)

	Li _o CO _o +Li _o SO ₄	プロトン性	水公量	上限	放電網	放電容量維持率(%)	
正極活物質	の濃度 (質量%)	不純物 の濃度 (ppm)		なか	10 サイクル	50 サイクル	100 サイクル
TiCa Ni Mara-Ala Mga 0502	0.7	20	20	4.40	96.3	93.3	89.7
	1	20	20	4.40	95.3	91.8	87.7
	1	25	20	4.40	96.2	93.0	88.
		20	30	4.40	96.3	92.8	89.
		25	30	4.40	95.3	90.6	81.
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂ LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂ LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂ LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	正極活物質	正極活物質	(質量%) (ppm) (ppm	正極活物質	正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄

(表201)

		Li ₂ CO ₃ +Li ₂ SO ₄	プロン性不純物	水分量	上限	放電容	字量維持 (%)	寺率
	正極活物質	の濃度 (質量%)	不 の 濃度 (ppm)	(ppm)	人力	10 サイクル	50 サイクル	100 サイクル
1.11.141 0 410	Lica Ni Ma Ala Mga os Oa	0.7	20	20	4.50	94.1	88.3	82.7
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂		20	20	4.50	91.2	85.8	76.7
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1	25	20	4.50	93.7	88.0	81.7
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O ₂	1	20	30	4.50	93.9	87.8	81.5
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O	_	25	30	4 50	90.8	84.2	72.2
比較例 8-234	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Al _{0.1} Mg _{0.05} O	1.5	20				<u></u>	<u> </u>

146

(表202)

	T. F. J. How Fift	$\lfloor \text{LI}_2\text{CO}_3 + \text{LI}_2\text{SO}_4 \rfloor$	プロン性不純物	水分量	上限電圧	放電	持率	
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)		10 サイクル	50 サイクル	100 サイクル
実施例 8-417	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	0.8	20	20	4.25	97.6	94.4	91.9
実施例 8-418	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	1.5	20	20	4.25	97.4	94.0	90.9
実施例 8-419	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	0.8	25	20	4.25	97.5	94.2	91.3
実施例 8-420	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	0.8	20	30	4.25	97.5	94.0	91.1
比較例 8-235	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	0.8	20	20	4.20	97.6	94.4	92.3
比較例 8-236	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	1.5	20	20	4.20	97.5	94.5	92.3
比較例 8-237	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	0.8	25	20	4.20	97.5	94.5	92.3
比較例 8-238	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	8.0	20	30	4.20	97.5	94.5	92.2
比較例 8-239	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	1.5	25	30	4.20	97.5	94.4	91.7
比較例 8-240	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	1.5	25	30	4.25	97.4	94.0	90.4

(表204)

	正極活物質	Ll ₂ CU ₃ +Ll ₂ SU ₄ 不	プロン性不純物	水分量	上限電圧	放電	容量維(%)	持率
	正他行物員	(質量%)	の濃度 (ppm)	(ppm)	(V)	10 サイクル	50 サイクル	100 サイクル
実施例 8-421	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	0.8	20	20	4.30	97.5	94.2	91.7
実施例 8~422	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	1.5	20	20	4.30	97.2	93.7	90.9
実施例 8-423	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	0.8	25	20	4.30	97.3	94.0	91.1
実施例 8-424	$LiCo_{0.3}Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	0.8	20	30	4.30	97.3	93.8	90.8
比較例 8-241	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	1.5	25	30	4.30	97.1	93.3	90.0

(表205)

正極活物質	Li ₂ CO ₃ +Li ₂ SO ₄ の濃度 (質量%)	不純物 の濃度 (ppm)	水分量 (ppm)	ベン	10 サイクル	50 サイケル	100 # <i>ለ</i> ታル
		<u> </u>	 				7177
Ni_{a} Mn_{a} $=$ UI_{a} iNE_{a} ne 2	0.8	20	20	4.40	96.5	93.7	89.9
Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂		20	20	4.40	95.5	91.9	87.9
		25	20	4.40	95.9	93.3	88.
		20	30	4.40	96.3	93.0	88.
		25	30	4.40	95.2	91.1	. 80.
	Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂ Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂ Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	$Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 1.5 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8	$Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 1.5 20 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 25 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 20	$Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 1.5 20 20 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 25 20 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 20 30	$Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 1.5 20 20 4.40 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 25 20 4.40 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 20 30 4.40 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	$Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 1.5 20 20 4.40 95.5 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 25 20 4.40 95.9 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 20 30 4.40 96.3 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$	$Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 1.5 20 20 4.40 95.5 91.9 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 25 20 4.40 95.9 93.3 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 20 30 4.40 96.3 93.0 $Ni_{0.4}Mn_{0.15}Cr_{0.1}Mg_{0.05}O_2$ 0.8 20 30 4.40 95.2 91.1

(表206)

		LI2CU3TLI2OU41	プロン性不純物		上限	放電容	字量維 (%)	寺率
	正極活物質	の濃度 (質量%)	の濃度 (ppm)	(ppm)	八八	10 サイクル	50 サイクル	100 サイクル
++-min 400	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	0.8	20	20	4.50	92.6	87.4	81.9
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂		20	20	4.50	90.7	85.9	75.9
		1 _	25	20	4.50	91.9	86.9	81.
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₂	1	20	30	4.50	92.3	87.0	81.
	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O ₃	2	25	30	4.50	90.2	85.0	72.
比較例 8-243	LiCo _{0.3} Ni _{0.4} Mn _{0.15} Cr _{0.1} Mg _{0.05} O	2 1.5					<u> </u>	

請求の範囲

1. 正極および負極と共に電解質を備えた電池であって、

前記正極は、正極活物質に、リチウム(Li)と、コバルト(Co)およびニッケル(Ni)のうちの少なくとも一方と、酸素(O)とを含むリチウム複合酸化物を含有し、

前記負極は、負極活物質に、リチウムを吸蔵および離脱することが可能な負極 材料、並びにリチウム金属からなる群のうちの少なくとも1種を含有し、

充電時の電池電圧は4.25V以上であり、

前記正極における炭酸リチウムおよび硫酸リチウムの総量は、前記正極活物質に対して1.0質量%以下である

ことを特徴とする電池。

- 2. 前記電解質におけるプロトン性不純物の濃度は、前記電解質に対する質量比で、プロトン (H+) に換算して20ppm以下であることを特徴とする請求の範囲第1項記載の電池。
- 3. 前記電解質における水分量は前記電解質に対する質量比で20ppm以下であることを特徴とする請求の範囲第1項記載の電池。
- 4. 前記電解質におけるプロトン性不純物の濃度は、前記電解質に対する質量比で、プロトン (H+) に換算して20ppm以下であり、

前記電解質における水分量は前記電解質に対する質量比で20ppm以下である

ことを特徴とする請求の範囲第1項記載の電池。

- 5. 前記リチウム複合酸化物は、更に、マンガン (Mn), アルミニウム (Al), マグネシウム (Mg), チタン (Ti), クロム (Cr) および鉄 (Fe) からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第1項記載の電池。
- 6. 前記リチウム複合酸化物は、コパルトとニッケルとを含むことを特徴とする請求の範囲第5項記載の電池。
- 7. 前記リチウム複合酸化物は、マンガンを含むことを特徴とする請求の

- 8、前記リチウム複合酸化物は、マンガンに加えて、アルミニウム,マグ 範囲第5項記載の電池。 ネシウム, チタン, クロムおよび鉄からなる群のうちの少なくとも1種を 含むことを特徴とする請求の範囲第7項記載の電池。
 - 9. 前記電解質は、溶媒およびリチウム塩を含み、

前記溶媒は、環状炭酸エステルを含むことを特徴とする請求の範囲第1項記載

- 10. 前記溶媒における環状炭酸エステルの含有量は、20体積%以上100体 の電池。 積%以下であることを特徴とする請求の範囲第9項記載の電池。
- 11. 前記溶媒は、更に、環状カルボン酸エステルを50体積%未満の含有量で 含むことを特徴とする請求の範囲第9項記載の電池。
- 12. 前記溶媒は、ビニレンカーボネートを10体積%未満の含有量で含むこと を特徴とする請求の範囲第9項記載の電池。
- 13. 前記溶媒は、更に、環状カルボン酸エステルを含むことを特徴とする請求 の範囲第12項記載の電池。
- 14. 前記溶媒は、ビニルエチレンカーボネートを10体積%未満の含有量で含 むことを特徴とする請求の範囲第9項記載の電池。
- 15. 前記溶媒は、更に、環状カルボン酸エステルを含むことを特徴とする請求
- 16. 前記溶媒は、更に、鎖状炭酸エステルを80体積%以下の含有量で含むこ の範囲第14項記載の電池。 とを特徴とする請求の範囲第9項記載の電池。
- 17.前記溶媒に対する前記リチウム塩の含有量は、0.6mの1/kg以上2.
- 0m01/kg以下であることを特徴とする請求の範囲第9項記載の電池。
- 18. 前記電解質は、更に、高分子化合物を含むことを特徴とする請求の範囲第
- 19. 前記電解質は、LiPFe, LiBF4, LiClO4, LiN (CFs S O2) 2 およびLiN(C2F5SO2) 2からなる群のうちの少なくとも1種を含 むことを特徴とする請求の範囲第1項記載の電池。
- 20.前記負極は炭素材料を含むことを特徴とする請求の範囲第1項記載の電池。

- 21. 前記負極は、黒鉛、易黒鉛化炭素および難黒鉛化炭素からなる群のうちの 少なくとも1種を含むことを特徴とする請求の範囲第20項記載の電池。
- 22. 前記負極は難黒鉛化炭素を含むことを特徴とする請求の範囲第21項記載 の電池。
- 23. 前記負極は黒鉛を含むことを特徴とする請求の範囲第21項記載の電池。
- 24. 前記負極は、リチウムと合金を形成可能な金属元素または半金属元素の単 体、合金および化合物からなる群のうちの少なくとも1種を含むことを特徴とす る請求の範囲第1項記載の電池。
- 25. 前記負極は、スズ (Sn), 鉛 (Pb), アルミニウム (A1), インジウム (In), ケイ素 (Si), 亜鉛 (Zn), 銅 (Cu), コバルト, アンチモン (S b), ピスマス (Bi), カドミウム (Cd), マグネシウム (Mg), ホウ素 (B), ガリウム (Ga), ゲルマニウム (Ge), ヒ素 (As), 銀 (Ag), ハフニウ ム (Hf), ジルコニウム (Zr) またはイットリウム (Y) の単体, 合金および 化合物からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第 24項記載の電池。
- 26. 前記負極の容量は、リチウムの吸蔵および離脱による容量成分と、リチウ ムの析出および溶解による容量成分とを含み、かつその和により表されることを 特徴とする請求の範囲第1項記載の電池。
- 27. 正極および負極と共に電解質を備えた電池であって、

前記正極は、正極活物質に、リチウム(Li)と、コバルト(Co)およびニ ッケル(Ni)のうちの少なくとも一方と、酸素(O)とを含むリチウム複合酸 化物を含有し、

前記負極は、負極活物質に、リチウムを吸蔵および離脱することが可能な負極 材料、並びにリチウム金属からなる群のうちの少なくとも1種を含有し、

充電時の電池電圧は4.25 V以上であり、

前記電解質におけるプロトン性不純物の濃度は、前記電解質に対する質量比で、 プロトン (H+) に換算して20ppm以下である

ことを特徴とする電池。

28. 前記電解質における水分量は前記電解質に対する質量比で20ppm以下

7 1 1 1 7

であることを特徴とする請求の範囲第27項記載の電池。

- 29. 前記リチウム複合酸化物は、更に、マンガン (Mn), アルミニウム (Al), マグネシウム (Mg), チタン (Ti), クロム (Cr) および鉄 (Fe) から なる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第27項記載 の電池。
 - 30.前記リチウム複合酸化物は、コバルトとニッケルとを含むことを特徴とする請求の範囲第29項記載の電池。
 - 31.前記リチウム複合酸化物は、マンガンを含むことを特徴とする請求の範囲第29項記載の電池。
 - 32.前記リチウム複合酸化物は、マンガンに加えて、アルミニウム、マグネシウム、チタン、クロムおよび鉄からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第31項記載の電池。
 - 33. 前記電解質は、溶媒およびリチウム塩を含み、

前記溶媒は、環状炭酸エステルを含むことを特徴とする請求の範囲第27項記載の電池。

- 34. 前記溶媒における環状炭酸エステルの含有量は、20体積%以上100体積%以下であることを特徴とする請求の範囲第33項記載の電池。
- 36.前記溶媒は、ビニレンカーボネートを10体積%未満の含有量で含むことを特徴とする請求の範囲第33項記載の電池。
- 37.前記溶媒は、更に、環状カルボン酸エステルを含むことを特徴とする請求の範囲第36項記載の電池。
- 38. 前記溶媒は、ビニルエチレンカーボネートを10体積%未満の含有量で含むことを特徴とする請求の範囲第33項記載の電池。
- 39.前記溶媒は、更に、環状カルボン酸エステルを含むことを特徴とする請求の範囲第38項記載の電池。
- 40.前記溶媒は、更に、鎖状炭酸エステルを80体積%以下の含有量で含むことを特徴とする請求の範囲第33項記載の電池。

- 41.前記溶媒に対する前記リチウム塩の含有量は、0.6m01/kg以上2.
- 0mol/kg以下であることを特徴とする請求の範囲第33項記載の電池。
- 42. 前記電解質は、更に、高分子化合物を含むことを特徴とする請求の範囲第33項記載の電池。
- 43. 前記電解質は、 $LiPF_6$, $LiBF_4$, $LiClO_4$, LiN (CF_8SO_2) $_2$ およびLiN ($C_2F_5SO_2$) $_2$ からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第27項記載の電池。
- 44.前記負極は炭素材料を含むことを特徴とする請求の範囲第27項記載の電池。
- 45. 前記負極は、黒鉛、易黒鉛化炭素および難黒鉛化炭素からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第44項記載の電池。
- 46. 前記負極は難黒鉛化炭素を含むことを特徴とする請求の範囲第45項記載の電池。
- 47. 前記負極は黒鉛を含むことを特徴とする請求の範囲第45項記載の電池。
- 48. 前記負極は、リチウムと合金を形成可能な金属元素または半金属元素の単体、合金および化合物からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第27項記載の電池。
- 49. 前記負極は、スズ (Sn), 鉛 (Pb), アルミニウム (A1), インジウム (In), ケイ素 (Si), 亜鉛 (Zn), 銅 (Cu), コバルト, アンチモン (Sb), ビスマス (Bi), カドミウム (Cd), マグネシウム (Mg), ホウ素 (B), ガリウム (Ga), ゲルマニウム (Ge), ヒ素 (As), 銀 (Ag), ハフニウム (Hf), ジルコニウム (Zr) またはイットリウム (Y) の単体, 合金および 化合物からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第48項記載の電池。
- 50.前記負極の容量は、リチウムの吸蔵および離脱による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されることを特徴とする請求の範囲第27項記載の電池。
- 51. 正極および負極と共に電解質を備えた電池であって、 前記正極は、正極活物質に、リチウム(Li)と、コパルト(Co)およびニ

ッケル(Ni)のうちの少なくとも一方と、酸素(O)とを含むリチウム複合酸 化物を含有し、

前記負極は、負極活物質に、リチウムを吸蔵および離脱することが可能な負極 材料、並びにリチウム金属からなる群のうちの少なくとも1種を含有し、

充電時の電池電圧は4.25V以上であり、

前記電解質における水分量は前記電解質に対する質量比で20ppm以下であ る

ことを特徴とする電池。

- 52.前記リチウム複合酸化物は、更に、マンガン (Mn),アルミニウム (A1), マグネシウム (Mg), チタン (Ti), クロム (Cr) および鉄 (Fe) から なる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第51項記載 の電池。
- 53. 前記リチウム複合酸化物は、コバルトとニッケルとを含むことを特徴とす る請求の範囲第52項記載の電池。
- 54. 前記リチウム複合酸化物は、マンガンを含むことを特徴とする請求 の範囲第52項記載の電池。
- 55. 前記リチウム複合酸化物は、マンガンに加えて、アルミニウム,マ グネシウム, チタン, クロムおよび鉄からなる群のうちの少なくとも1種 を含むことを特徴とする請求の範囲第54項記載の電池。
- 56. 前記電解質は、溶媒およびリチウム塩を含み、

前記溶媒は、環状炭酸エステルを含むことを特徴とする請求の範囲第51項記 載の電池。

- 57. 前記溶媒における環状炭酸エステルの含有量は、20体積%以上100体 積%以下であることを特徴とする請求の範囲第56項記載の電池。
- 58. 前記溶媒は、更に、環状カルボン酸エステルを50体積%未満の含有量で 含むことを特徴とする請求の範囲第56項記載の電池。
- 59. 前記溶媒は、ビニレンカーボネートを10体積%未満の含有量で含むこと を特徴とする請求の範囲第56項記載の電池。
- 60. 前記溶媒は、更に、環状カルボン酸エステルを含むことを特徴とする請求

の範囲第59項記載の電池。

- 61. 前記溶媒は、ビニルエチレンカーボネートを10体積%未満の含有量で含むことを特徴とする請求の範囲第56項記載の電池。
- 62. 前記溶媒は、更に、環状カルボン酸エステルを含むことを特徴とする請求の範囲第61項記載の電池。
- 63. 前記溶媒は、更に、鎖状炭酸エステルを80体積%以下の含有量で含むことを特徴とする請求の範囲第56項記載の電池。
- 64.前記溶媒に対する前記リチウム塩の含有量は、0.6mol/kg以上2.0mol/kg以下であることを特徴とする請求の範囲第56項記載の電池。
- 65. 前記電解質は、更に、高分子化合物を含むことを特徴とする請求の範囲第56項記載の電池。
- 66. 前記電解質は、 $LiPF_6$, $LiBF_4$, $LiClO_4$, LiN (CF₈S O_2) $_2$ およびLiN (C $_2F_5SO_2$) $_2$ からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第51項記載の電池。
- 67. 前記負極は炭素材料を含むことを特徴とする請求の範囲第51項記載の電池。
- 68. 前記負極は、黒鉛、易黒鉛化炭素および難黒鉛化炭素からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第67項記載の電池。
- 69. 前記負極は難黒鉛化炭素を含むことを特徴とする請求の範囲第68項記載の電池。
- 70. 前記負極は黒鉛を含むことを特徴とする請求の範囲第68項記載の電池。
- 71. 前記負極は、リチウムと合金を形成可能な金属元素または半金属元素の単体、合金および化合物からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第51項記載の電池。
- 72. 前記負極は、スズ (Sn), 鉛 (Pb), アルミニウム (A1), インジウム (In), ケイ素 (Si), 亜鉛 (Zn), 銅 (Cu), コバルト, アンチモン (Sb), ビスマス (Bi), カドミウム (Cd), マグネシウム (Mg), ホウ素 (B), ガリウム (Ga), ゲルマニウム (Ge), ヒ素 (As), 銀 (Ag), ハフニウム (Hf), ジルコニウム (Zr) またはイットリウム (Y) の単体, 合金および

化合物からなる群のうちの少なくとも1種を含むことを特徴とする請求の範囲第71項記載の電池。

73.前記負極の容量は、リチウムの吸蔵および離脱による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されることを特徴とする請求の範囲第51項記載の電池。

1/1

第1図

